Corrigé - Colle 8 (Sujet 1)

MPSI2 Année 2021-2022

23 novembre 2021

Question de cours . Démontrer que pour trois parties A, B et C d'un ensemble E,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Exercice 1. On considère la fonction $f: x \mapsto \sqrt{x^2 + x - 2}$.

- 1. Déterminer l'ensemble de définition \mathcal{D}_f de f.
- 2. Déterminer l'image de f, i.e. $f(\mathcal{D}_f)$.
- 3. L'application f est-elle injective de \mathcal{D}_f dans \mathbb{R} ?

Solution de l'exercice 1. 1. L'ensemble de définition de f est l'ensemble des points x tels que $x^2 + x - 2 \ge 0$. Or, $x^2 + x - 2$ est un trinôme dont le discriminant est $\Delta = 9$ et dont les racines sont donc $x_1 = -2$ et $x_2 = 1$. De plus, $x^2 + x - 2$ est positif sauf entre les racines $x_1 = -2$ et $x_2 = 1$. L'ensemble de définition de f est donc $\mathcal{D}_f =]-\infty, -2] \cup [1, +\infty[$.

- 2. L'image de f est donnée par $f(\mathcal{D}_f) = [0, +\infty[$ (car le trinôme s'annule en -2 et en $1, x^2 + x 2 \to +\infty$ lorsque $x \to +\infty$ et la fonction racine est continue sur \mathbb{R}^+).
- 3. Non, l'application f n'est pas injective de \mathcal{D}_f dans \mathbb{R} . En effet, f(-2) = f(1) = 0.

Exercice 2. Soient

- 1. Montrer que tout réel x, f(x) > 0.
- 2. Montrer que la composée $f \circ g$ est bien définie sur \mathbb{R}_+^* et calculer $(f \circ g)(x)$ pour tout x > 0.
- 3. De même, montrer que la composée $g \circ f$ est bien définie sur \mathbb{R} et calculer $(f \circ g)(x)$ pour tout $x \in \mathbb{R}$.
- 4. Que peut-on en conclure?

Solution de l'exercice 2. 1. On a

$$f(x) > 0 \quad \Leftrightarrow \quad \sqrt{x^2 + 1} > x \quad \Leftrightarrow \quad x^2 + 1 > x^2 \quad \Leftrightarrow \quad 1 > 0$$

ce qui est bien sûr vraie pour tout $x \in \mathbb{R}$. Ainsi, f(x) > 0 pour tout $x \in \mathbb{R}$.

2. $f \circ g$ est bien définie lorsque pour tout $x \in \mathbb{R}_+^*$ puisque f est définie sur \mathbb{R} et g est bien définie sur \mathbb{R}^* et donc sur \mathbb{R}_+^* . De plus,

$$(f \circ g)(x) = f(g(x)) = \sqrt{\left(\frac{1-x^2}{2x}\right)^2 + 1} - \frac{1-x^2}{2x} = \sqrt{\frac{1-2x^2+x^4}{4x^2} + 1} - \frac{1-x^2}{2x}.$$

Après calcul, on arrive à

$$(f \circ g)(x) = \sqrt{\frac{1 + 2x^2 + x^4}{4x^2}} - \frac{1 - x^2}{2x} = \sqrt{\frac{(1 + x^2)^2}{4x^2}} - \frac{1 - x^2}{2x}.$$

Or, $\sqrt{(1+x^2)^2} = |(1+x^2)^2| = (1+x^2)^2$ car $(1+x^2)^2 \ge 0$ et de plus, puisque $x \in \mathbb{R}_+^*$, $\sqrt{4x^2} = |2x| = 2x$. Ainsi, on a finalement,

$$(f \circ g)(x) = \frac{1+x^2}{2x} - \frac{1-x^2}{2x} = x.$$

3. La composée $g \circ f$ est définie sur \mathbb{R} car f est définie sur \mathbb{R} , f(x) > 0 pour tout $x \in \mathbb{R}$ et g est bien définie sur \mathbb{R}^* et donc sur \mathbb{R}^*_+ . De plus,

$$(g \circ f)(x) = g(f(x)) = \frac{1 - (\sqrt{x^2 + 1} - x)^2}{2(\sqrt{x^2 + 1} - x)} = \frac{1 - (x^2 + 1 - 2x\sqrt{x^2 + 1} + x^2)}{2(\sqrt{x^2 + 1} - x)}.$$

Après calcul, on arrive à

$$(g \circ f)(x) = \frac{1 - x^2 - 1 + 2x\sqrt{x^2 + 1} - x^2}{2(\sqrt{x^2 + 1} - x)} = \frac{2x(\sqrt{x^2 + 1} - x)}{2(\sqrt{x^2 + 1} - x)} = x.$$

4. On a montré que

Autrement dit,

$$f \circ g = Id_{\mathbb{R}_{+}^{\star}}$$
 et $g \circ f = Id_{\mathbb{R}}$.

On peut en déduire que l'on a en réalité montré que f et g sont des applications réciproques l'une de l'autre.

Exercice 3. On considère la fonction $h: x \mapsto \frac{2x+1}{x+2}$.

- 1. Déterminer l'ensemble de définition \mathcal{D}_h de h.
- 2. Déterminer $\operatorname{Im}(h) = h(\mathcal{D}_h)$ et montrer que h est bijective de \mathcal{D}_h dans $\operatorname{Im}(h)$.
- 3. Donner son application réciproque.

Solution de l'exercice 3. 1. $\mathcal{D}_h = \mathbb{R} \setminus \{-2\}$ car c'est le seul endroit où le dénominateur s'annule (et le numérateur ne s'y annule pas).

2. Si $y \in \text{Im}(h)$, alors il existe $x \in \mathbb{R} \setminus \{-2\}$ tel que h(x) = y. Or,

$$h(x) = y \quad \Leftrightarrow \quad \frac{2x+1}{x+2} = y \quad \Leftrightarrow \quad 2x+1 = y(x+2) \quad \Leftrightarrow \quad (2-y)x = 2y-1.$$

Ainsi, si $y \neq 2$, $x = \frac{2y-1}{2-y}$ est un antécédent de y. Ceci montre que $\mathbb{R} \setminus \{2\} \subset \text{Im}(h)$. Afin de montrer que c'est une égalité, montrons à présent que 2 n'a pas d'antécédent par f. Supposons par l'absurde qu'il existe x tel que h(x) = 2. Alors,

$$h(x) = 2$$
 \Leftrightarrow $\frac{2x+1}{x+2} = 2$ \Leftrightarrow $2x+1 = 2(x+2)$ \Leftrightarrow $1 = 4$

ce qui est absurde. On a ainsi montré que $Im(h) = \mathbb{R} \setminus \{2\}$.

Montrons à présent que h est bijective de \mathcal{D}_h dans Im(h). Cela revient à montré que h est injective. Soit $(x,y) \in (\mathbb{R} \setminus \{-2\})^2$ tel que h(x) = h(y). Alors,

$$h(x) = h(y) \Leftrightarrow \frac{2x+1}{x+2} = \frac{2y+1}{y+2} \Leftrightarrow (2x+1)(y+2) = (2y+1)(x+2).$$

Ainsi,

$$h(x) = h(y) \Leftrightarrow 2xy + 4x + y + 2 = 2xy + 4y + x + 2 \Leftrightarrow 3(x - y) = 0.$$

On en déduit que h(x) = h(y) si et seulement si x = y. h est donc bijective de \mathcal{D}_h dans $\mathrm{Im}(h)$.

3. Nous avons déjà montré que pour tout $y \neq 2$,

$$h(x) = y \quad \Leftrightarrow \quad x = \frac{2y-1}{2-y}.$$

L'application réciproque de h est donc donnée par

$$\begin{array}{cccc} h^{-1} & : & \mathbb{R} \setminus \{2\} & \to & \mathbb{R} \setminus \{-2\} \\ & x & \mapsto & \frac{2x-1}{2-x} \end{array}.$$

Exercice 4. Soit $f: E \to F$ et $A \subset F$. Montrer que $f^{-1}(f(A)) \subset A$. Trouver un contre-exemple pour l'autre inclusion. Que peut-on dire si f est de plus surjective?

Solution de l'exercice 4. 1. Si $y \in f(f^{-1}(A))$ alors il existe $x \in f^{-1}(A)$ tel que y = f(x). $x \in f^{-1}(A)$ donc $f(x) \in A$ d'où $y \in A$ donc on a bien $f(f^{-1}(A)) \subset A$.

- 2. Donnons un contre-exemple lorsque f n'est pas surjective. On peut choisir $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \cos(x)$. Pour $A = [1, +\infty[$ on a $f^{-1}(A) = \{2k\pi, \ k \in \mathbb{Z}\}$ et $f(f^{-1}(A)) = \{1\}$. Donc A n'est pas inclu dans $f(f^{-1}(A))$.
- 3. Supposons que f est surjective. Soit $y \in A$. Alors, comme $y \in F$, il existe $x \in E$ tel que y = f(x) par surjectivité de f. Pour montrer que $y \in f(f^{-1}(A))$ il reste à prouver que $x \in f^{-1}(A)$ c'est-à-dire que $f(x) \in A$. Or $f(x) = y \in A$ donc on a bien $A \subset f(f^{-1}(A))$. Ainsi, lorsque f est surjective on a donc $f(f^{-1}(A)) = A$.

Exercice 5. Pour tout $m \in \mathbb{R}$, on définit la droite \mathcal{D}_m par l'équation

$$\mathcal{D}_m: 12mx - 9y = 3m + 6.$$

Montrer que toutes les droites \mathcal{D}_m sont concourantes en un unique point.

Solution de l'exercice 5. On procède par analyse-synthèse.

• Analyse: Soient $m \neq m'$ deux valeurs du paramètre. Un point appartient aux deux droites \mathcal{D}_m et $\mathcal{D}_{m'}$ si et seulement il vérifie les deux conditions simultanément. Autrement, dit

$$(x,y) \in \mathcal{D}_m \cap \mathcal{D}_{m'} \Leftrightarrow \begin{cases} 12mx - 9y = 3m + 6 \\ 12m'x - 9y = 3m' + 6 \end{cases} \Leftrightarrow \begin{cases} 12mx - 9y = 3m + 6 \\ 12(m - m')x = 3(m - m') \end{cases}.$$

Avec la deuxième ligne on obtient

$$12(m-m')x = 3(m-m') \Leftrightarrow x = \frac{3}{12} = \frac{1}{4}$$

et en injectant dans la première ligne on arrive à

$$12m\frac{1}{4} - 9y = 3m + 6 \quad \Leftrightarrow \quad y = -\frac{6}{9} = -\frac{2}{3}.$$

Ainsi, si (x,y) appartient à toutes les droites \mathcal{D}_m alors $(x,y)=\left(\frac{1}{4},-\frac{2}{3}\right)$.

• Synthèse. Vérifions que si $(x,y) = (\frac{1}{4}, -\frac{2}{3})$ alors ce point appartient à toutes les droites \mathcal{D}_m :

$$12mx - 9y = 12m\frac{1}{4} + 9\frac{2}{3} = 3m + 6.$$

Donc $(x, y) \in \mathcal{D}_m$.

On a donc bien montré que toutes les droites \mathcal{D}_m sont concourantes au point $(\frac{1}{4}, -\frac{2}{3})$.