§ 6.3. Домашнее задание (письменное)

Письменно решить номера 11.5.41 – 11.5.68.

11.5.41. Дано
$$z=\cos(ax+e^y)$$
. Найти $\frac{\partial^3 z}{\partial x \partial y^2}$.

11.5.42. Дано
$$z = \frac{x^4 - 8xy^3}{x - 2y}$$
. Найти $\frac{\partial^3 z}{\partial x^2 \partial y}$.

11.5.43. Дано
$$u = x \ln(xy)$$
. Найти $\frac{\partial^3 u}{\partial x^2 \partial y}$.

11.5.44. Дано
$$u=x^3\sin y+y^3\sin x$$
. Найти $\frac{\partial^3 u}{\partial x \partial y \partial z}$.

11.5.45. Дано
$$u=e^{xyz}$$
. Найти $\frac{\partial^3 u}{\partial x \partial y \partial z}$.

11.5.46. Дано
$$z=\ln \frac{1}{\sqrt{(x-u)^2+(y-v)^2}}.$$
 Найти $\frac{\partial^4 z}{\partial x \partial y \partial u \partial v}.$

11.5.47. Дано
$$u = (x - x_0)^p (y - y_0)^q$$
. Найти $\frac{\partial^{p+q} u}{\partial x^p \partial y^q}$.

11.5.48. Дано
$$u = \frac{x+y}{x-y}$$
. Найти $\frac{\partial^{m+n}u}{\partial x^m\partial y^n}$.

11.5.49. Дано
$$u=(x^2+y^2)e^{x+y}$$
. Найти $\frac{\partial^{m+n}u}{\partial x^m\partial y^n}$.

11.5.50. Дано
$$u=\arctan\frac{x+y+z-xyz}{1-xy-xz-yz}$$
. Найти $\frac{\partial^3 u}{\partial x \partial y \partial z}$.

Найти дифференциалы:

11.5.51.
$$d^{10}u$$
, если $u=\ln(x+y)$. **11.5.52.** d^4u , если $u=\ln(x^xy^yz^z)$.

11.5.53.
$$d^n u$$
, если $u = e^{ax+by}$. 11.5.54. $d^n u$, если $u = e^{ax+by+cz}$.

11.5.55. Доказать, что из равенства
$$x^2y^2+x^2+y^2-1=0$$
 следует, что
$$\frac{dx}{\sqrt{1-x^4}}+\frac{dy}{\sqrt{1-y^4}}=0.$$

Найти d^2z для функций z(x;y):

11.5.56.
$$z = \left(\frac{y}{x}\right)^x$$
. **11.5.57.** $z = \ln \lg \frac{y}{x}$.

- 11.5.58. $z = \frac{x}{y}e^{xy}$.
- **11.5.59.** Вычислить первые, вторые и третьи частные производные для функции $z = x^4 + 3x^3y 4x^2y^2 + 5xy^3 y^4$.
- 11.5.60. Найти частные производные второго порядка для функции $z=e^{xy}$.
- 11.5.61. Для $u = \sin xyz$ найти u'''_{xyz} .
- **11.5.62.** Показать, что функции $z = \ln \sqrt{(x x_0)^2 + (y y_0)^2}$, и $z = \arctan \frac{y}{x}$ удовлетворяют уравнению Лапласа $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
- **11.5.63.** Показать, что функция $u = \frac{1}{\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}}$ удовлетворяет уравнению Лапласа $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.
- **11.5.64.** Известно, что z=f(u;v), а переменные u и v являются функциями независимых переменных x и y: $u=u(x;y), \, v=v(x;y)$. Определить $\frac{\partial^2 z}{\partial x^2}, \, \frac{\partial^2 z}{\partial y^2}, \, \frac{\partial^2 z}{\partial x \partial y}$.
- **11.5.65.** Найти $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ и $\frac{\partial^2 z}{\partial y^2}$, если $z=z(u;v),\, u=x^2+y^2,\, v=xy.$
- **11.5.66.** Найти $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ и $\frac{\partial^2 z}{\partial y^2}$, если $z=z(u;v),\, u=x+y,\, v=x-y.$
- **11.5.67.** Доказать, что функция $z = xf(x+y) + y\varphi(x+y)$ удовлетворяет уравнению $\partial^2 z = \partial^2 z = \partial^2 z$

 $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0.$

11.5.68. Найти d^3z , если $z = \cos(x + 2y^2)$.