Les molécules organiques et les squelettes carbonées

Situation-problème

Le diesel est un mélange complexe d'hydrocarbures obtenu par la distillation du pétrole brut. Il est constitué d'hydrocarbures ayant un nombre de carbone majoritairement compris entre C9 et C20, et possédant un point d'ébullition compris approximativement entre 163 °C et 357 °C .

- Quel-ce qu'un hydrocarbure? Et quelle est sa formule brute?
- Comment établir le nom d'un hydrocarbure?

Objectifs

- Connaître les différentes formules chimiques d'une molécule.
- Connaître les différents types des chaines carbonées.
- Définir les isomères Z et E
- 🦤 Connaître le groupe d'alcane et el groupe d'alcènes .
- 🦃 Connaître les règles de nomenclature des alcanes et des alcènes.
- Connaître certaines techniques utilisées pour modifier des squelettes carbonés.

Les chaines carbonées « les squelettes carbonés »
① Définition
② Types des chaînes carbonées
 Les chaînes carbonés saturées et insaturées
□ Exemples
❖ Les chaînes carbonées linéaires, ramifiées et cycliques

Chimie 1BAC Page 142

□ Exemples
 ③ Représentation d'une molécule organique ❖ La formule brute
❖ La formule semi-développée
❖ La formule développée

*	L'écriture	topo	logiane
•	L ccittuic	topo	logique

La <u>formule topologique</u> d'une <u>molécule organique</u> est une représentation simplifiée dans laquelle les <u>atomes</u> de <u>carbone</u> et la <u>majorité des atomes d'hydrogène ne sont pas</u> <u>représentés</u>. Par contre, les <u>hétéroatomes</u> (oxygène, azote, chlore,...) et les éventuels atomes d'hydrogènes qu'ils portent, sont <u>représentés</u>.

Règles:

- La chaine carbonée est représentée par une ligne brisée (en zigzague) portants éventuellement des ramifications. Les atomes de carbone et les atomes d'hydrogène qui leurs sont liés ne sont pas représentés.
- La liaison entre les atomes de carbones est représentée par un segment dont chaque extrémité correspond à un atome de carbone.
- Les doubles liaisons sont représentées par des doubles segments .

□ Exemples

Molécule	Formule brute	Formule semi- développée	Formule développée	Écriture topologique
Propane	C_3H_8			
Hexane	C_6H_{14}			
Ethanol		$CH_3 - CH_2 - OH$		
Acide éthanoïque				ОН
2-méthyle propane				

L	4	4				- 3		1)	Y •	11	U		<u>a</u>		_	u _			<u> </u>	2	a	. L	u	11		. D																											
(D	Ι)	éf	ìı	ni	ti	0	n																																												
							• • •								• • •							•			• • •	•						•																					
	••	•		•••	•••	•••	•••		•	•	•	• • •	•••	•	•••			•	••	••	••	•••	••	•••	• • •	• • •	• • •		•	••	•	•••		•	•	• • •	••	••		•••	•••	•••	•	•		•	•••	•	••	•••	•	•••	•
	••	• • •	• • •	•••	• • •	•••	• • •	• • •	•••	• • •	••	• • •	••	••	•••	• • •	• •	••	••	••	••	• • •	••	• • •	• • •	• •	• • •	• •	• • •	••	• •	• • •	• • •	• •	••	• • •	••	••	• • •	••	• •	• • •	••	• • •	•••	••	• • •	•••	••	• • •	••	• • •	•
	••	• •	• • •	••	• • •	••	• • •	• • •	• •	• • •	••	• • •	••	••	• • •	• • •	• •	• •	••	••	• •	• •	••	• • •	• • •	• •	• • •	• •	• • •	••	• •	• •	• • •	• •	••	• • •	••	• •	• • •	• •	• •	• • •	••	• • •	• •	••	• • •	• •	• •	• • •	••	• • •	•
	• •	• •			• • •		• • •		• •		••			• •	• • •	• • •				• •		• •	• •	• • •	• •	• •				• •	• •	• •			• •	• • •				• •	• •		• •	• • •		••	• • •	• •	• •		••		•

• • • • • • • • • • • • • • • • • • • •				
••••				
••••				
•••••				
••••				
•••••			•••••	
•••••				
•••••			•••••	
••••				
		• • • • • • • • • • • • • • • • • • • •		
••••		• • • • • • • • • • • • • • • • • • • •		
	ire des hydroca			
* Nomenclatu	re des alcanes lin	éaires		
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		
••••				
		• • • • • • • • • • • • • • • • • • • •		
Exemples				
Nombre de	Nom de	Formule	Formule semi-	Écriture
carbone dans l'alcane	l'alcane	brute	développée	topologique
1: Méth	Méthane			
1. Meth	Methane			
2: Éth	Éthane			
3: <i>Prop</i>	Propane			
4.0.4	D (
4: <i>But</i>	Butane			
5: Pent	Pentane			

Nombre de carbone dans l'alcane	Nom de l'alcane	Formule brute	Formule semi- développée	Écriture topologique
6: M é th	Hexane			
7: É <i>th</i>	Heptane			
8: <i>Prop</i>	Octane			
9: <i>But</i>	Nonane			
10: Pent	D écane			
* Nomenclatu	re des radicaux alk	xyles		
Exemples				
Nombre de carbone dans l'alcane	Nom de l'alcane	Formule brute	Nom de l'alkyle correspondant	Formule brute
1: <i>M</i> éth	Méthane			
2: Éth	Éthane			
3: <i>Pro</i>	Propane			
4: But	Butane			
5: <i>But</i>	pentane			

* Nomenclature des alcanes ramifiés	
<u>Le nom</u> d'un <u>alcane ramifié</u> est déterminé en appliquan	t les règles suivantes :
	••••••
	••••••
	••••••
Exemples	
Formule semi-développée de l'alcane ramifié	Nom de l'alcane ramifié
H ₃ C-HC-CH ₃	
H ₃ C—HC—CH ₃ CH ₃	
ÇH₃	
CH ₃ H ₃ C-C-CH ₃	
ĊH ₃	
H ₃ C-HC-CH ₂ -CH ₃	
CH ₃	
H ₃ C	
H ₃ C-CH-HC-CH ₂ -CH ₂ -CH ₃	
ĊH ₂ -CH ₃	
❖ Nomenclature des cycloalcanes	

Exemples	
Le cycloalcane	Nom du cycloalcane
H ₂ C—CH ₂ H ₂ C—CH ₂	
H ₃ C CH ₃	
Les alcènes	
① Définition	
② Nomenclature des alcène	es

Exemples	
Le cycloalcane	Nom du cycloalcane
$CH_2 = CH - CH_3$	
$CH_3 - CH_2 - CH = CH_2$	
	2-méthyle But-1-ène
$CH_3 - C = CH - CH - CH_3$ CH_3	
3 Les isomèresDéfinition	
* Types d'isomérie	

Exemples	
Molécules isomères Ty d'isor	
① $CH_2 = CH - CH_2 - CH_3$ ② $CH_3 - CH = CH - CH_3$	
③ $CH_3 - CH - CH_2 - CH_3$ CH_3 ④ $CH_3 - CH_2 - CH_2 - CH_2 - CH_3$	
$CH_3 - CH_2 - C$ $CH_3 - C$ $CH_3 - C$	
$CH^3 = C$ $CH^3 = C$ CH_3	

IV Modification du squelette carboné	
D Craquage de la chaîne carbonée	
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Reformage catalytique	
	• • • • • • • • • • • • • • • • • • • •

Chimie 1BAC Page 151

3 Polymérisation