딥러닝 이론PBL 점자문자 이미지를 알파벳으로 변환

2018380605 백대환 - 데이터 수집, 코딩, ppt, 보고서 2018380719 김재훈 - 데이터 수집, 코딩, ppt, 보고서

점자문자를 알파벳으로 변환

데이터 _{점자문}자 이미지(jpg) 1560개(Kaggle)

점자문자를 알파벳으로 변환

데이터 증강

전처리 된 이미지(1040)을 대비(3배수), 색상화(4배수), 흐림정도의 변경(3배수)을 통해 1개의 이미지를 10배수로 증가 1040 -> 10400 -> 11440 (원본데이터 1040추가)

01

데이터셋 구성

1 Training, Validation, Test 데이터 셋 분할

내용

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test

= train_test_split(images_list, name_list, test_size=0.15, random_state=42)

X_train, X_validation, y_train, y_validation

= train_test_split(X_train, y_train, test_size=0.15, random_state=42)

images_list 는 input, name_list는 output, test_size는 test사이즈, random_state는 데이터 분할 시 셔플이 이루어지는데 이를 위한 시드 값

출력

- X_train, y_train : 훈련데이터 (8265)
- X_validation, y_validation : 검증데이터(1459)
- X_test, y_test : 시험데이터(1716)

Test Dataset(15%)

Training Dataset(85%)

validation Dataset(15%)

Training Dataset(85%)

모델구성

하이퍼파라미터 최적화

3-1 *에폭=5*로 고정하고 배치사이즈 변경

ADAM *배치사이즈 32* Dropout 0,2 소요시간 1분25초

Training Accuracy: 99,92741 % Validation Accuracy: 99,86292 % Test Accuracy: 99,88345 %

ADAM *배치사이즈 64* Dropout 0,2 소요시간 1분20초

Training Accuracy: 99.9758 % Validation Accuracy: 99.93146 % Test Accuracy: 99.7669 %

ADAM *배치사이즈 128* Dropout 0.2 소요시간 1분15초

Training Accuracy: 7.6951 %
Validation Accuracy: 7.60795 %
Test Accuracy: 8.56643 %

하이퍼파라미터 최적화

3-2 에폭 = 10으로 고정하고 배치사이즈 변경

ADAM *배치사이즈 32* Dropout 0,2 소요시간 2분40초

Training Accuracy: 99.87901 % Validation Accuracy: 99.79438 % Test Accuracy: 99.88345 %

ADAM *배치사이즈 64* Dropout 0.2 소요시간 2분30초

Training Accuracy: 100.0 %
Validation Accuracy: 99.93146 %
Test Accuracy: 99.94172 %

ADAM *배치사이즈 128* Dropout 0.2 소요시간 2분20초

Training Accuracy: 100.0 % Validation Accuracy: 100.0 % Test Accuracy: 100.0 %

하이퍼파라미터 최적화

3-3 배치사이즈 256은 왜 안될까

ADAM, *에폭 10* 배치사이즈 256 Dropout 0.2 소요시간 2분13초

Training Accuracy: 14.70054 % Validation Accuracy: 15.01028 % Test Accuracy: 16.95804 %

ADAM, *에폭 15* 배치사이즈 256 Dropout 0.2 소요시간 3분30초

Training Accuracy: 67.7556 % Validation Accuracy: 66.48389 % Test Accuracy: 68.70629 %

ADAM, *에폭 20* 배치사이즈 256 Dropout 0,2 소요시간 4분40초

Training Accuracy: 100.0 % Validation Accuracy: 100.0 % Test Accuracy: 99.94172 %

하이퍼파라미터 최적화

3-4 *에폭 = 10, 배치사이즈 128*로 고정하고 Dropout 변경

ADAM 배치사이즈 128 *Dropout 0,2* 소요시간 2분20초

Training Accuracy: 100.0 %
Validation Accuracy: 100.0 %
Test Accuracy: 100.0 %

ADAM 배치사이즈 128 *Dropout 0.4* 소요시간 2분25초

Training Accuracy: 99,9879 % Validation Accuracy: 100.0 % Test Accuracy: 99,94172 %

ADAM 배치사이즈 128 *Dropout 0.6* 소요시간 2분25초

Training Accuracy: 99.9758 % Validation Accuracy: 100.0 % Test Accuracy: 99.94172 %

하이퍼파라미터 최적화

3-5 에폭 = 10, 배치사이즈 128, Dropout = 0,2 고정 Optimizer 변경

ADAM 배치사이즈 128 Dropout 0.2 소요시간 2분20초

Training Accuracy: 100.0 %
Validation Accuracy: 100.0 %
Test Accuracy: 100.0 %

RMS 배치사이즈 128 Dropout 0.2 소요시간 2분30초

Training Accuracy: 99,9879 % Validation Accuracy: 100,0 % Test Accuracy: 99,94172 %

SGB 배치사이즈 128 Dropout 0.2 소요시간 2분30초

Training Accuracy: 95.46279 % Validation Accuracy: 95.06511 % Test Accuracy: 93.64802 %

최적화된 모델 반복 시행(1~3)

3-6 최종하이퍼파라미터: 에폭 = 10, 배치사이즈 128, Dropout 0,2, Optimizer 'Adam'

#모델을 시행할 때마다 데이터셋을 랜덤으로 뽑기 때문에 데이터 셋이 달라지므로 여러 번 반복하여 값이 일정하게 나오는지 확인함.

시행 1

Training Accuracy: 100.0 % Validation Accuracy: 100.0 % Test Accuracy: 99.94172 %

시행 2

Training Accuracy: 100.0 % Validation Accuracy: 100.0 % Test Accuracy: 100.0 %

시행 3

Training Accuracy: 99.9395 % Validation Accuracy: 99.86292 % Test Accuracy: 99.88345 %

최적화된 모델 반복 시행(4~6)

3-6 최종하이퍼파라미터: 에폭 = 10, 배치사이즈 128, Dropout 0,2, Optimizer 'Adam'

#모델을 시행할 때마다 데이터셋을 랜덤으로 뽑기 때문에 데이터 셋이 달라지므로 여러 번 반복하여 값이 일정하게 나오는지 확인함.

시행 4

Training Accuracy: 100.0 % Validation Accuracy: 100.0 % Test Accuracy: 99.94172 %

시행 5

Training Accuracy: 99.9395 % Validation Accuracy: 99.93146 % Test Accuracy: 99.88345 %

시행 6

Training Accuracy: 99.9758 %
Validation Accuracy: 99.93146 %
Test Accuracy: 99.94172 %

점자문자를 알파벳으로 변환

결론

- 비슷한 패턴의 점자문자 이미지들만 사용하여 분석 능력이 뛰어났다.
- 새로운 패턴의 이미지를 불러올 경우 성능이 저하하고, 과적합의 문제가 있음을 파악함.