T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte V)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Anteriormente, vimos como lidar com problemas de classificação que envolvem mais de duas classes, também chamados de problemas de classificação multi-classes através das abordagens:
 - Um-Contra-Resto
 - Um-Contra-Um
 - Regressão Softmax
- Nesta aula, veremos as *métricas* mais utilizadas para medir o *desempenho de classificadores*.

Métricas para avaliação de classificadores

- As métricas para avalição do desempenho de classificadores que estudaremos são:
 - Matriz de confusão
 - Várias métricas podem ser extraídas da matriz.
 - Pontuação-F1 (*F1-score*)
 - Curva Característica Operacional do Receptor (do inglês, Receiver Operating Characteristic - ROC)

$$\boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1Q} \\ C_{21} & C_{22} & \dots & C_{2Q} \\ \vdots & \ddots & \vdots \\ C_{Q1} & C_{Q2} & \dots & C_{QQ} \end{bmatrix}$$

- O nome, *matriz de confusão* mostra o quanto um classificador está se *confundindo*.
- A matriz permite verificar quais classes o classificador tem maior dificuldade em classificar.
- A matriz de confusão contabiliza o número de classificações corretas e incorretas para cada uma das Q classes existentes.
- É uma matriz quadrada com dimensões $\mathbb{R}^{Q \times Q}$.

$$\boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} & \dots & C_{1Q} \\ C_{21} & C_{22} & & C_{2Q} \\ \vdots & \ddots & \vdots \\ C_{Q1} & C_{Q2} & \dots & C_{QQ} \end{bmatrix}$$

- A *diagonal principal* de *C* fornece o número de *classificações corretas*.
- A q-ésima linha indica o total de exemplos que foram classificados como pertencentes a q-ésima classe, incluindo exemplos que pertencem e não pertencem à classe.
- A q-ésima coluna indica o total de exemplos que realmente pertencem à qésima classe, incluindo classificações corretas e incorretas.

Quantidade de exemplos realmente pertencentes à classe 1.

- C_{11} indica quantos exemplos da classe 1 foram corretamente atribuídos à classe 1.
- C_{12} indica quantos exemplos da classe 2 foram atribuídos à classe 1.

Rótulos: classes a que realmente

pertencem os exemplos

Matriz de confusão para caso binário (Q=2)

Classes Verdadeiras

- Verdadeiro Positivo (TP): número de exemplos da classe positiva, C_2 , classificados corretamente.
- Verdadeiro Negativo (TN): número de exemplos da classe negativa, \mathcal{C}_1 , classificados corretamente.
- Falso Positivo (FP): número de exemplos atribuídos à classe positiva, mas que pertencem à classe negativa.
- *Falso Negativo* (FN): número de exemplos atribuídos à classe negativa, mas que pertencem à classe positiva.

Nós podemos calcular algumas métricas de desempenho importantes a partir das informações contidas na matriz de confusão.

Acurácia

$$acurácia = \frac{TP + TN}{TP + FN + FP + TN}$$

- Acurácia mede a proporção de exemplos classificados corretamente em relação ao total de exemplos avaliados.
- Em outras palavras, a acurácia fornece uma indicação de quão bem o modelo está fazendo suas predições corretas em comparação com todas as previsões feitas.
- É uma métrica útil para avaliar a performance geral do modelo.

Acurácia

$$acurácia = \frac{TP + TN}{TP + FN + FP + TN}$$

- A acurácia é, geralmente, a primeira escolha para medir a qualidade de um classificador.
- Entretanto, ela pode ser *enganosa* com problemas desbalanceados.
 - Problemas onde uma ou algumas classes têm muito mais exemplos do que as demais.
- Nesses casos, ela pode nos levar a concluir que um classificador ruim é muito bom.

Acurácia

 Analisando a equação da acurácia, o que aconteceria se TP fosse muito maior do que TN, FN e FP?

$$\lim_{TP\to\infty} \text{acurácia} = \lim_{TP\to\infty} \left(\frac{TP + TN}{TP + TN + FN + FP} \right) = \frac{TP}{TP} = 1.$$

- Portanto, quando temos *classes desbalanceadas, precisamos analisar outras métricas*.
 - O mesmo aconteceria se TN fosse muito maior do que TP, FN e FP
- Ela também é enganosa quando os custos de falsos positivos e falsos negativos não são iguais.

Precisão

$$precisão = \frac{TP}{FP + TP}$$

TN	FN
FP	TP

- **Precisão** é a proporção de exemplos da classe positiva corretamente classificados (TP) em relação a todos os exemplos atribuídos à classe positiva (TP + FP).
- É uma boa medida para determinar a qualidade do classificador quando os custos de falsos positivos são altos.
 - Por exemplo, na classificação de spams (verdadeiro positivo), um falso positivo significa que um ham (verdadeiro negativo) foi classificado como spam. O usuário de email pode perder emails importantes se a precisão for baixa.

Recall

$$recall = \frac{TP}{FN + TP}$$

- Recall ou sensibilidade é a proporção de exemplos da classe positiva corretamente classificados.
- O recall calcula quantos exemplos realmente positivos o classificador captura em relação a todos exemplos positivos.
- É uma boa medida para determinar a qualidade de um classificador quando os custos de falsos negativos são altos.
 - Por exemplo, na classificação de doenças, se um paciente doente (verdadeiro positivo) for classificado como não doente (falso negativo). O custo associado ao falso negativo será extremamente alto se a doença for contagiosa.

Especificidade

$$especificidade = \frac{TN}{TN + FP}$$

• Especificidade ou taxa de verdadeiros negativos é a proporção de exemplos da classe negativa corretamente classificados.

Matriz de confusão para caso multiclasses (Q > 2)

Classe C_1 é a positiva.

	+ (C ₁)	Verdadeiro Positivo (TP)	Falso Positivo (FP)	Falso Positivo (FP)
Classes Preditas	- (C ₂)	Falso Negativo (FN)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)
	- (C ₃)	Falso Negativo (FN)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)
		+ (C ₁)	- (C ₂)	- (<i>C</i> ₃)
		Classes Verdadeiras		

- É possível calcular as métricas anteriores para o cenário multiclasses (i.e., Q > 2).
- Para isso, basta selecionar, uma vez, cada classe como sendo a classe positiva, enquanto todas as demais classes formam a classe negativa.
 - Estratégia um-contra-o-resto.
- Assim, obtém-se os valores das *métricas para cada uma das Q classes*.
- Vejamos um exemplo para Q=3, ou seja, C_1 , C_2 e C_3 .

Matriz de confusão para caso multiclasses (Q > 2)

Classe C_2 é a positiva.

	- (C ₁)	Verdadeiro Negativo (TN)	Falso Negativo (FN)	Verdadeiro Negativo (TN)
Classes Preditas	+ (C ₂)	Falso Positivo (FP)	Verdadeiro Positivo (TP)	Falso Positivo (FP)
	- (C ₃)	Verdadeiro Negativo (TN)	Falso Negativo (FN)	Verdadeiro Negativo (TN)
		- (C ₁)	+ (C2)	- (C ₃)
	Classes Verdadeiras			iras

Classe C_3 é a positiva.

	- (C ₁)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)	Falso Negativo (FN)
Classes Preditas	- (C ₂)	Verdadeiro Negativo (TN)	Verdadeiro Negativo (TN)	Falso Negativo (FN)
	+ (C ₃)	Falso Positivo (FP)	Falso Positivo (FP)	Verdadeiro Positivo (TP)
		- (C ₁)	- (C ₂)	+ (C ₃)
		Classes Verdadeiras		

Precisão versus recall

$$precisão = \frac{TP}{FP + TP}$$

$$recall = \frac{\text{TP}}{\text{FN + TP}}$$

- A precisão não fornece informações a respeito da quantidade de falsos negativos.
- Por outro lado, o recall não fornece informações a respeito da quantidade de falsos positivos.
- Mas e se os custos associados a falsos positivos e negativos são iguais?
- Nesse caso, para analisarmos o desempenho de um classificador, precisamos de uma métrica que combine as duas.

F1-score

- O F1-score combina as duas métricas em uma única.
- A métrica dá a mesma importância a *precisão* e para o *recall*.
- Valores de F_1 próximos de 1 indicam que o *classificador* obteve ótimos resultados tanto de *precisão* quanto de *recall*.
- Em outras palavras, $F_1 \approx 1$ significa que FN e FP ≈ 0 .

$$F_1 = \frac{\text{TP}}{\text{TP} + \frac{\text{FN} + \text{FP}}{2}} = 2 \frac{\text{precisão} \times recall}{\text{precisão} + recall}.$$

- Também conhecida como curva ROC.
- É um gráfico que mostra o desempenho de um *classificador binário* conforme seu limiar de quantização (ou discriminação), T, é variado.
- A curva é criada plotando-se o *recall* em função da taxa de falsos positivos para vários valores de T.
- Quanto mais à esquerda e para cima estiver a curva ROC de um classificador, melhor será o seu desempenho.

- A linha em vermelho, indica um classificador puramente aleatório.
 - Um bom *classificador* fica o mais à esquerda possível dessa linha.
- Classes sem sobreposição apresentam uma curva ROC paralela aos eixos do recall e da TFP (linha azul tracejada).
- Classes sem sobreposição têm classificação perfeita quando T=0.5, representando 100% de **recall** (i.e., sem falsos negativos) e 100% de **especificidade** (i.e., sem falsos positivos).

- Em geral, classificadores binários apresentam em sua saída a probabilidade para um exemplo de entrada.
- Em seguida, essas probabilidades são discretizadas para que se tenha a decisão final.
- Por exemplo, se o valor de $h_a(x(i))$ ultrapassa um determinado *limiar*, T, ele é mapeado no valor 1 (classe positiva, C_2); caso contrário, ele é mapeado no valor 0 (classe negativa, C_1).

- Sendo assim, ao plotarmos a taxa de verdadeiro positivo (ou recall) versus a taxa de falso positivo para diferentes valores de limiar, T, obtemos a curva ROC associada a um classificador binário.
- A escolha do limiar de decisão diferente de 0.5 pode melhorar o desempenho de um classificador binário em situações de desbalanceamento de classes, custos assimétricos de erro, preferência por precisão ou recall, etc.

Comparando classificadores com a curva ROC

- Comparamos classificadores binários criando curvas ROC para cada um deles.
- Por exemplo, considerem as *curvas ROC* na figura ao lado.
- Para decidir qual o melhor classificador, podemos analisar a área sob a curva (ASC) ROC.
- **ASC** é outra métrica da qualidade de um classificador.
- É um número entre 0 e 1. Quanto maior a **ASC**, melhor será o classificador.

Comparando classificadores com a curva ROC

 O classificador A tem melhor desempenho, pois tem ASC maior do que a do classificador B.

Vantagens da curva ROC

- Possibilita a análise de diferentes métricas de desempenho independente do *limiar de* quantização.
- Auxilia o estudo de diferentes limiares para lidar com problemas de desbalanceamento nos dados.

Desvantagens

- Usada em problemas de classificação binária.
- No caso multiclasses, devemos utilizar as estratégias um-contra-o-resto ou um-contra-um e plotar várias curvas ROC.

Tarefas

- Quiz: "T320 Quiz Classificação (Parte V)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #5.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Atividades podem ser feitas em grupo, mas as entregas devem ser individuais.

Obrigado!

verdadeiro positivo falso positivo Você está Você está grávida. grávido. Você não Você não está grávida. está grávido.

falso negativo

verdadeiro negativo

Taxa de verdadeiros positivos

1 – especificidade

Curva para classes sem sobreposição

