IN THE CLAIMS:

Please cancel claims 48 and 65 without prejudice, and amend claims 49 and 50 as follows:

1. (Previously presented) A method of treating a disease selected from transplant rejection, melanoma, or a cancer selected from colon, breast, lung, kidney, ovary, pancreas, CNS, or cancer of the gastric tract in a patient, which method comprises administering to said patient a compound of formula I:

$$R^3U_n$$
 NH
 Z^1
 Z^1
 Z^2
 Z^1
 Z^2
 Z^1
 Z^2
 Z^1
 Z^2
 Z^1
 Z^2
 $Z^$

or a pharmaceutically acceptable salt thereof, wherein:

Sp is a spacer group having a 5-membered heteroaromatic ring, wherein Ring A and QR² are attached to Sp at non-adjacent positions; and wherein Sp has up to two R⁶ substituents, provided that two substitutable carbon ring atoms in Sp are not simultaneously substituted by R⁶;

Z1 is N and Z2 is CH;

T is a linker group selected from -NH-, -CH₂-, -CO-, or a saturated or unsaturated C₁₋₆ alkylidene chain which is optionally substituted, and wherein up to two saturated carbons of the chain are optionally replaced by -C(O)-, -C(O)C(O)-, -CONR⁷-, -CONR⁷NR⁷-, -CO₂-, -OC(O)-, -NR⁷CO₂-, -O-, -NR⁷CONR⁷-, -OC(O)NR⁷-, -NR⁷NR⁷-, -NR⁷CO-, -S-, -SO₂-, -NR⁷-, -SO₂NR⁷-, or -NR⁷SO₂-;

Q is $-CO_2$ -, $-C(O)NR^7$ -, or $-S(O)_2NR^7$ -;

U is selected from $-NR^7$ -, $-NR^7CO$ -, $-NR^7CONR^7$ -, $-NR^7CO_2$ -, -O-, $-CONR^7$ -, -CO-, $-CO_2$ -, -OC(O)-, $-NR^7SO_2$ -, $-SO_2NR^7$ -, $-NR^7SO_2NR^7$ -, or $-SO_2$ -;

m and n are each independently selected from zero or one;

R¹ is selected from hydrogen, CN, halogen, R, N(R⁷)₂, OR, or OH;

 R^2 is selected from -(CH₂)_yR⁵, -(CH₂)_yCH(R⁵)₂, -(CH₂)_yCH(R⁸)CH(R⁵)₂, -N(R⁴)₂, or -NR⁴(CH₂)_yN(R⁴)₂;

y is 0-6;

 R^3 is selected from R^7 , R, -(CH₂)_yCH(R^8)R, CN, -(CH₂)_yCH(R^8)CH(R^5)₂, or -(CH₂)_yCH(R^8)N(R^4)₂;

each R is independently selected from an optionally substituted group selected from C₁₋₆ aliphatic, C₆₋₁₀ aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms;

each R^4 is independently selected from R, R^7 , $-COR^7$, $-CO_2R$, $-CON(R^7)_2$, $-SO_2R^7$, $-(CH_2)_vR^5$, or $-(CH_2)_vCH(R^5)_2$;

each R^5 is independently selected from R, OR, CO_2R , $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 , NR^7COR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$; each R^6 is independently selected from R^7 , F, Cl, $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 ,

 NR^7COR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$;

each R⁷ is independently selected from hydrogen or an optionally substituted C₁₋₆ aliphatic group, or two R⁷ on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring;

 R^8 is selected from R, $(CH_2)_wOR^7$, $(CH_2)_wN(R^4)_2$, or $(CH_2)_wSR^7$; and each w is independently selected from 0-4.

2. (Previously presented) The method according to claim 1, wherein Sp is selected from one of the following:

- 3. (Previously presented) The method according to claim 2, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;

- (b) T_mR¹ is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
- (c) Q is -CO₂-, -CONH-, or -SO₂NH-;
- (d) R^2 is $-NR^4(CH_2)_yN(R^4)_2$, $-(CH_2)_yR^5$, $-(CH_2)_yCH(R^5)_2$, or $-(CH_2)_yCH(R^8)CH(R^5)_2$;
- (f) R^4 is R, R^7 , or $-(CH_2)_vCH(R^5)_2$; and
- (g) R⁵ is an optionally substituted group selected from C₁₋₆ aliphatic, phenyl, 5-6 membered heteroaryl, or 5-6 membered heterocyclyl.
- 4. (Previously presented) The method according to claim 3, wherein:
- (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
- (b) T_mR¹ is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
- (c) Q is -CO₂-, -CONH-, or -SO₂NH-;
- (d) R^2 is $-NR^4(CH_2)_yN(R^4)_2$, $-(CH_2)_yR^5$, $-(CH_2)_yCH(R^5)_2$, or $-(CH_2)_yCH(R^8)CH(R^5)_2$;
- (f) R^4 is R, R^7 , or $-(CH_2)_vCH(R^5)_2$; and
- (g) R⁵ is an optionally substituted group selected from C₁₋₆ aliphatic, phenyl, 5-6 membered heteroaryl, or 5-6 membered heterocyclyl.
- 5. (Previously presented) The method according to claim 3, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂, -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl, benzyl, or isoxazolyl group;
 - (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAc, NHC(O)NHCH₃, or CH₂NHCH₃;
 - (c) Q is -CONH-, or -SO₂NH-;
 - (d) R^2 is -(CH₂)_y R^5 , -(CH₂)_yCH(R^5)₂, or -(CH₂)_yCH(R^8)CH(R^5)₂, wherein R^8 is OH or CH₂OH; and

- (e) R⁵ is -CH₂OH, -(CH₂)₂OH, isopropyl, or an optionally substituted group selected from pyrrolidin-1-yl, morpholin-4-yl, piperidin-1-yl, piperazin-1-yl, 4-methyl[1,4]diazepan-1-yl, 4-phenyl-piperazine-1-yl, pyridin-3-yl, pyridin-4-yl, imidazolyl, furan-2-yl, 1,2,3,4-tetrahydroisoquinoline, tetrahydrofuran-2-yl, cyclohexyl, phenyl, or benzyl.
- 6. (Previously presented) The method according to claim 5, wherein:
- (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂, -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl, benzyl, or isoxazolyl group;
- (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAC, NHC(O)NHCH₃, or CH₂NHCH₃;
- (c) Q is -CONH-, or -SO₂NH-;
- (d) R^2 is $-(CH_2)_y R^5$, $-(CH_2)_y CH(R^5)_2$, or $-(CH_2)_y CH(R^8) CH(R^5)_2$, wherein R^8 is OH or CH_2OH ; and
- (e) R⁵ is -CH₂OH, -(CH₂)₂OH, isopropyl, or an optionally substituted group selected from pyrrolidin-1-yl, morpholin-4-yl, piperidin-1-yl, piperazin-1-yl, 4-methyl[1,4]diazepan-1-yl, 4-phenyl-piperazine-1-yl, pyridin-3-yl, pyridin-4-yl, imidazolyl, furan-2-yl, 1,2,3,4-tetrahydroisoquinoline, tetrahydrofuran-2-yl, cyclohexyl, phenyl, or benzyl.
- 7. (Previously presented) The method according to claim 2, wherein said compound is of formula III-a:

III-a

- 8. (Previously presented) The method according to claim 7, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
 - (c) Q is -CO₂-, -CONH-, or -SO₂NH-;
 - (d) R^2 is $-NR^4(CH_2)_yN(R^4)_2$, $-(CH_2)_yR^5$, $-(CH_2)_yCH(R^5)_2$, or $-(CH_2)_yCH(R^8)CH(R^5)_2$;
 - (f) R^4 is R, R^7 , or $-(CH_2)_yCH(R^5)_2$; and
 - (g) R⁵ is an optionally substituted group selected from phenyl, 5-6 membered heteroaryl, or 5-6 membered heterocyclyl.
 - 9. (Previously presented) The method according to claim 8, wherein:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
 - (c) Q is -CO-, -CO₂-, -CONH-, or -SO₂NH-;
 - (d) R^2 is $-NR^4(CH_2)_yN(R^4)_2$, $-(CH_2)_yR^5$, $-(CH_2)_yCH(R^5)_2$, or $-(CH_2)_yCH(R^8)CH(R^5)_2$;
 - (f) \mathbb{R}^4 is \mathbb{R} , \mathbb{R}^7 , or -(\mathbb{CH}_2)_y $\mathbb{CH}(\mathbb{R}^5)_2$; and
 - (g) R⁵ is an optionally substituted group selected from phenyl, 5-6 membered heterocyclyl.
 - 10. (Previously presented) A method of inhibiting ERK-2, Aurora-2, GSK-3, CDK-2, AKT3, or Lck activity in a biological sample, which method comprises contacting said sample with a compound of formula I:

$$R^3U_n$$
 NH
$$X Z^1$$

$$Z^1$$

$$Z^2$$

$$Z^1$$

$$Z^1$$

$$Z^2$$

$$Z^1$$

$$Z^2$$

$$Z^1$$

$$Z^2$$

$$Z^$$

or a pharmaceutically acceptable salt thereof, wherein:

Sp is a spacer group having a 5-membered heteroaromatic ring, wherein Ring A and QR² are attached to Sp at non-adjacent positions; and wherein Sp has up to two R⁶ substituents, provided that two substitutable carbon ring atoms in Sp are not simultaneously substituted by R⁶;

 Z^{1} is N and Z^{2} is CH;

T is a linker group selected from -NH-, -CH₂-, -CO-, or a a saturated or unsaturated C₁₋₆ alkylidene chain which is optionally substituted, and wherein up to two saturated carbons of the chain are optionally replaced by -C(O)-, -C(O)C(O)-, -CONR⁷-, -CONR⁷NR⁷-, -CO₂-, -OC(O)-, -NR⁷CO₂-, -O-, -NR⁷CONR⁷-, -OC(O)NR⁷-, -NR⁷NR⁷-, -NR⁷CO-, -S-, -SO₂-, -NR⁷-, -SO₂NR⁷-, or -NR⁷SO₂-;

Q is $-CO_2$ -, $-C(O)NR^7$ -, or $-S(O)_2NR^7$ -;

U is selected from $-NR^7$ -, $-NR^7CO$ -, $-NR^7CONR^7$ -, $-NR^7CO_2$ -, -O-, $-CONR^7$ -, -CO-, $-CO_2$ -, -OC(O)-, $-NR^7SO_2$ -, $-SO_2NR^7$ -, $-NR^7SO_2NR^7$ -, or $-SO_2$ -;

m and n are each independently selected from zero or one;

R¹ is selected from hydrogen, CN, halogen, R, N(R⁷)₂, OR, or OH;

 R^2 is selected from -(CH₂)_yR⁵, -(CH₂)_yCH(R⁵)₂, -(CH₂)_yCH(R⁸)CH(R⁵)₂, -N(R⁴)₂, or -NR⁴(CH₂)_yN(R⁴)₂;

y is 0-6:

 R^3 is selected from R^7 , R, -(CH₂)_yCH(R^8)R, CN, -(CH₂)_yCH(R^8)CH(R^5)₂, or -(CH₂)_yCH(R^8)N(R^4)₂;

each R is independently selected from an optionally substituted group selected from C_{1-6} aliphatic, C_{6-10} aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms;

each R⁴ is independently selected from R, R⁷, -COR⁷, -CO₂R, -CON(R⁷)₂, -SO₂R⁷, -(CH₂)_vR⁵, or -(CH₂)_vCH(R⁵)₂;

each R^5 is independently selected from R, OR, CO_2R , $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 , NR^7COR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$;

each R⁶ is independently selected from R⁷, F, Cl, (CH₂)_yN(R⁷)₂, N(R⁷)₂, OR⁷, SR⁷, NR⁷COR⁷, NR⁷CON(R⁷)₂, CON(R⁷)₂, SO₂R⁷, NR⁷SO₂R⁷, COR⁷, CN, or SO₂N(R⁷)₂; each R⁷ is independently selected from hydrogen or an optionally substituted C₁₋₆ aliphatic group, or two R⁷ on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring;

R⁸ is selected from R, (CH₂)_wOR⁷, (CH₂)_wN(R⁴)₂, or (CH₂)_wSR⁷; and each w is independently selected from 0-4.

11. (Previously presented) The method according to claim 10, wherein Sp is selected from one of the following:

- 12. (Previously presented) The method according to claim 11, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
 - (c) Q is -CO₂-, -CONH-, or -SO₂NH-;
 - (d) R^2 is $-NR^4(CH_2)_yN(R^4)_2$, $-(CH_2)_yR^5$, $-(CH_2)_yCH(R^5)_2$, or $-(CH_2)_yCH(R^8)CH(R^5)_2$;
 - (f) R4 is R, R7, or -(CH2)yCH(R5)2; and
 - (g) R⁵ is an optionally substituted group selected from C₁₋₆ aliphatic, phenyl, 5-6 membered heteroaryl, or 5-6 membered heterocyclyl.
 - 13. (Previously presented) The method according to claim 12, wherein:

- (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
- (b) T_mR¹ is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
- (c) Q is -CO₂-, -CONH-, or -SO₂NH-;
- $(d) \ R^2 \ is \ -NR^4 (CH_2)_y N(R^4)_2, \ -(CH_2)_y R^5, \ -(CH_2)_y CH(R^5)_2, \ or \ -(CH_2)_y CH(R^8) CH(R^5)_2;$
- (f) R^4 is R, R^7 , or $-(CH_2)_yCH(R^5)_2$; and
- (g) R⁵ is an optionally substituted group selected from C₁₋₆ aliphatic, phenyl, 5-6 membered heteroaryl, or 5-6 membered heterocyclyl.
- 14. (Previously presented) The method according to claim 12, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂, -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl, benzyl, or isoxazolyl group;
 - (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAc, NHC(O)NHCH₃, or CH₂NHCH₃;
 - (c) Q is -CONH-, or -SO₂NH-;
 - (d) R^2 is $-(CH_2)_y R^5$, $-(CH_2)_y CH(R^5)_2$, or $-(CH_2)_y CH(R^8) CH(R^5)_2$, wherein R^8 is OH or CH_2OH ; and
 - (e) R⁵ is -CH₂OH, -(CH₂)₂OH, isopropyl, or an optionally substituted group selected from pyrrolidin-1-yl, morpholin-4-yl, piperidin-1-yl, piperazin-1-yl, 4-methyl[1,4]diazepan-1-yl, 4-phenyl-piperazine-1-yl, pyridin-3-yl, pyridin-4-yl, imidazolyl, furan-2-yl, 1,2,3,4-tetrahydroisoquinoline, tetrahydrofuran-2-yl, cyclohexyl, phenyl, or benzyl.
 - 15. (Previously presented) The method according to claim 14, wherein:
 - (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂,

- -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl, benzyl, or isoxazolyl group;
- (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAc, NHC(O)NHCH₃, or CH₂NHCH₃;
- (c) Q is -CONH-, or -SO₂NH-;
- (d) R² is -(CH₂)_yR⁵, -(CH₂)_yCH(R⁵)₂, or -(CH₂)_yCH(R⁸)CH(R⁵)₂, wherein R⁸ is OH or CH₂OH; and
- (e) R⁵ is -CH₂OH, -(CH₂)₂OH, isopropyl, or an optionally substituted group selected from pyrrolidin-1-yl, morpholin-4-yl, piperidin-1-yl, piperazin-1-yl, 4-methyl[1,4]diazepan-1-yl, 4-phenyl-piperazine-1-yl, pyridin-3-yl, pyridin-4-yl, imidazolyl, furan-2-yl, 1,2,3,4-tetrahydroisoquinoline, tetrahydrofuran-2-yl, cyclohexyl, phenyl, or benzyl.
- 16. (Previously presented) The method according to claim 11, wherein said compound is of formula III-a:

III-a

- 17. (Previously presented) The method according to claim 16, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
 - (c) Q is -CO₂-, -CONH-, or -SO₂NH-;

- (d) R^2 is $-NR^4(CH_2)_yN(R^4)_2$, $-(CH_2)_yR^5$, $-(CH_2)_yCH(R^5)_2$, or $-(CH_2)_yCH(R^8)CH(R^5)_2$;
- (f) R^4 is R, R^7 , or $-(CH_2)_yCH(R^5)_2$; and
- (g) R⁵ is an optionally substituted group selected from phenyl, 5-6 membered heteroaryl, or 5-6 membered heterocyclyl.
- 18. (Previously presented) The method according to claim 17, wherein:
- (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
- (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring;
- (c) Q is $-CO_2$ -, -CONH-, or $-SO_2NH$ -;
- (d) R^2 is $-NR^4(CH_2)_yN(R^4)_2$, $-(CH_2)_yR^5$, $-(CH_2)_yCH(R^5)_2$, or $-(CH_2)_yCH(R^8)CH(R^5)_2$;
- (f) R^4 is R, R^7 , or $-(CH_2)_vCH(R^5)_2$; and
- (g) R⁵ is an optionally substituted group selected from phenyl, 5-6 membered heteroaryl, or 5-6 membered heterocyclyl.
- 19. (Previously presented) A method of treating a disease selected from transplant rejection, melanoma, or a cancer selected from colon, breast, lung, kidney, ovary, pancreas, CNS, or cancer of the gastric tract in a patient, which method comprises administering to said patient a compound selected from the group consisting of:
 - 4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid dimethylamide;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-pyrrolidin-1-yl-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-pyrrolidin-1-yl-methanone;
- 4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-pyridin-3-ylethyl)-amide;
 - [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-morpholin-4-yl-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[1,4']bipiperidinyl-1'-yl-methanone;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(3-hydroxy-piperidin-1-yl)-methanone;

- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}[1,4']bipiperidinyl-1'-yl-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[1,4']bipiperidinyl-1'-yl-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}[1,4']bipiperidinyl-1'-yl-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(4-hydroxy-piperidin-1-yl)-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[4-(2-fluoro-phenyl)-piperazin-1-yl]-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(4-phenyl-piperazin-1-yl)-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[4-(4-fluoro-phenyl)-3,6-dihydro-2H-pyridin-1-yl]-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(4-pyridin-2-yl-piperazin-1-yl)-methanone;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-morpholin-4-yl-methanone;
- 4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-pyridin-3-yl-ethyl)-amide;
 - [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-morpholin-4-yl-methanone;
- 4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-pyridin-3-ylethyl)-amide;
- 4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-pyridin-3-yl-ethyl)-amide;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[4-(2-fluoro-phenyl)-piperazin-1-yl]-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-phenyl-piperazin-1-yl)-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[4-(4-fluoro-phenyl)-3,6-dihydro-2H-pyridin-1-yl]-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyπol-2-yl}-(3,4-dihydro-1H-isoquinolin-2-yl)-methanone;

- (4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-pyridin-2-yl-piperazin-1-yl)-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-morpholin-4-yl-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-hydroxy-piperidin-1-yl)-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[1,4']bipiperidinyl-1'-yl-methanone;
- 4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid benzyl-methylamide:
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[4-(4-methoxy-phenyl)-piperazin-1-yl]-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(2-hydroxymethyl-piperidin-1-yl)-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(3,4-dihydro-1H-isoquinolin-2-yl)-methanone;
- 4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid benzyl-methyl-amide;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[4-(4-fluoro-phenyl)-3.6-dihydro-2H-pyridin-1-yl]-methanone;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(3,4-dihydro-1H-isoquinolin-2-yl)-methanone;
- 4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid benzyl-methylamide;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(4-phenyl-piperazin-1-yl)-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(4-methyl-[1,4]diazepan-1-yl)-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(3,4-dihydro-1H-isoquinolin-2-yl)-methanone;
- 4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid benzylmethyl-amide;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-methyl-[1,4]diazepan-1-yl)-methanone;

- 4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid benzyl-methyl-amide;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[2-(2-hydroxy-ethyl)-piperidin-1-yl]-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-phenyl-piperazin-1-yl)-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[4-(2-fluoro-phenyl)-piperazin-1-yl]-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(3-hydroxy-piperidin-1-yl)-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[4-(4-methoxy-phenyl)-piperazin-1-yl]-methanone;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[4-(4-fluoro-phenyl)-3,6-dihydro-2H-pyridin-1-yl]-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[4-(2-fluoro-phenyl)-piperazin-1-yl]-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[4-(4-methoxy-phenyl)-piperazin-1-yl]-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-methyl-[1,4]diazepan-1-yl)-methanone;
- 1-(4-{4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carbonyl}-piperazin-1-yl)-ethanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-рупоl-2-yl}-(3,4-dihydro-1H-isoquinolin-2-yl)-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(3-hydroxy-piperidin-1-yl)-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(4-methyl-[1,4]diazepan-1-yl)-methanone;
- 1-(4-{4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carbonyl}-piperazin-1-yl)-ethanone;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-methyl-[1,4]diazepan-1-yl)-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(3-hydroxy-piperidin-1-yl)-methanone;

- 4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid methyl-(2-pyridin-2-yl-ethyl)-amide;
- [4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-[2-(2-hydroxy-ethyl)-piperidin-1-yl]-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyπol-2-yl}-[2-(2-hydroxy-ethyl)-piperidin-1-yl]-methanone;
- 4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-pyridin-2-yl-piperazin-1-yl)-methanone;
- [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-(4-hydroxy-piperidin-1-yl)-methanone;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-hydroxy-piperidin-1-yl)-methanone;
- {4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-hydroxy-piperidin-1-yl)-methanone;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-(4-pyridin-2-yl-piperazin-1-yl)-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[4-(2-hydroxy-ethyl)-piperazin-1-yl]-methanone;
- 1-{4-[4-(2-Amino-5-m-tolyl-pyrimidin-4-yl)-1H-pyrrole-2-carbonyl]-piperazin-1-yl}-ethanone;
- {4-[2-Amino-5-(3,4-dimethoxy-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-[4-(2-fluoro-phenyl)-piperazin-1-yl]-methanone;
 - [4-(2-Amino-5-phenyl-pyrimidin-4-yl)-1H-pyrrol-2-yl]-pyrrolidin-1-yl-methanone;
- {4-[2-Amino-5-(3-chloro-phenyl)-pyrimidin-4-yl]-1H-pyrrol-2-yl}-morpholin-4-yl-methanone;
 - 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid benzylamide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3,4-difluoro-benzylamide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 4-fluoro-benzylamide;

- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chlorobenzylamide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 4-methoxybenzylamide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (tetrahydro-furan-2-ylmethyl)-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (tetrahydro-furan-2-ylmethyl)-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-(2,5-Diamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-(2-Amino-5-methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-(5-Acetylamino-2-amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-[2-Amino-5-(3-methyl-ureido)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-(2-Amino-5-hydroxy-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-(2-Amino-5-methylaminomethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-(2-Amino-5-hydroxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-[2-Cyclohexylamino-5-(3-methyl-ureido)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-[2-Acetylamino-5-(3-methyl-ureido)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4--(5-Hydroxy-2-methanesulfonylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;

- 4-(2-Amino-5-methanesulfonyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3-chloro-4-fluoro-benzylamide;
- 4-(2-Amino-5-hydroxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3,4-difluorobenzylamide;
- 4-(2-Cyclohexylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 3,4-difluoro-benzylamide;
- 4-[2-Amino-5-(3,5-dichloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (pyridin-4-ylmethyl)-amide;
- 4-[5-(3,5-Dichloro-phenyl)-2-phenylamino-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid 3-trifluoromethyl-benzylamide;
- 4-[2-Amino-5-(3,5-dichloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-Amino-5-(3,5-dichloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (benzo[1,3]dioxol-5-ylmethyl)-amide;
- 4-[2-Amino-5-(3,5-dichloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-dimethylamino-2-pyridin-3-yl-ethyl)-amide;
- 4-[2-Amino-5-(3,5-dichloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid 4-methanesulfonyl-benzylamide;
- 4-[5-(3,5-Dichloro-phenyl)-2-phenylamino-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (benzo[1,3]dioxol-5-ylmethyl)-amide;
- 4-[5-(3,5-Dichloro-phenyl)-2-phenylamino-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-morpholin-4-yl-2-pyridin-3-yl-ethyl)-amide;
- 4-[2-Amino-5-(3-fluoro-5-trifluoromethyl-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-5-propyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-pyridin-3-ylethyl)-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-pyridin-3-ylethyl)-amide;
- 4-(5-Methyl-2-methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-pyridin-3-yl-ethyl)-amide;
- 4-(2-Methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-pyridin-3-yl-ethyl)-amide:
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-dimethylamino-ethyl)-amide;

- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid propylamide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-phenyl-propyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (naphthalen-1-ylmethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid cyclopropylamide;
- 4-(2-Ethylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid 2-trifluoromethylbenzylamide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (4-methyl-cyclohexyl)-amide;
 - 4-(5-Ethyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid isopropylamide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-amino-ethyl)-amide;
 - 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid benzyl-methyl-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 1-{4-[4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carbonyl]-piperazin-1-yl}-ethanone;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-phenyl-propyl)-amide;
- 4-(2-Amino-5-ethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-(6-methoxy-1H-indol-3-yl)-ethyl]-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-phenoxyethyl)-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (1-methyl-3-phenyl-propyl)-amide;
- 4-(5-Methyl-2-methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (1H-benzoimidazol-2-ylmethyl)-amide;

- 4-(5-Methyl-2-methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (1-hydroxymethyl-3-methyl-butyl)-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-hydroxymethyl-2-(1H-imidazol-4-yl)-ethyl]-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (tetrahydro-furan-2-ylmethyl)-amide;
- 4-[2-(2-Diethylamino-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid 3,4-difluoro-benzylamide;
- 4-[5-Methyl-2-(2-piperidin-1-yl-quinazolin-4-ylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid benzylamide;
- 4-(5-Methyl-2-methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chloro-4-fluoro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chloro-4-fluoro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Methoxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Hydroxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(Benzo[1,3]dioxol-5-ylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-yl]-1H-pyπole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Benzyloxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(4-Hydroxy-cyclohexylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Cyclohexyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Cyclopropyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-4-methyl-phenyl)-2-hydroxy-ethyl]-amide;

- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-4-methyl-phenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[5-Methyl-2-(3-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Benzylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3,4-Dimethyl-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(4-Benzyloxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Isopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(2,2,2-trifluoro-ethylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Methoxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(4-trifluoromethoxy-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Isobutylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(Cyclopropylmethyl-amino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methoxymethyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-5-methoxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxyl-phenyl-ethyl)-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

- 4-(5-Methyl-2-propylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-2-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-hydroxymethyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-hydroxymethyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-[2-(1-Hydroxymethyl-cyclopropylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-methyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

- 4-[2-(2-Hydroxy-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-cyclohexylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Hydroxymethyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- {[4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carbonyl]-amino}-phenyl-acetic acid methyl ester;
- 4-[2-(2-Hydroxy-1-methyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Dimethylamino-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Ethylamino-5-methoxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-pyridin-3-yl-ethyl)-amide;
- 4-(2-Ethylamino-5-hydroxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-5-trifluoromethyl-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-fluorophenyl)-2-hydroxy-ethyl]-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(2-fluorophenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(2-Cyclopropyl-1-hydroxymethyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2,3-Dimethyl-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

- 4-[2-(1-Hydroxymethyl-2-methyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-oxo-1-phenyl-propyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(2-Chloro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(3-Dimethylamino-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(2-methoxy-phenyl)-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chloro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(2-Methoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxyl-phenyl-ethyl)-amide;
- 4-(2-Isopropoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Dimethylamino-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(2-Chloro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(2,3-Dimethyl-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;

- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(2-Acetylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methyl-2-o-tolylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(pyridin-3-ylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-{5-Methyl-2-[(tetrahydro-furan-2-ylmethyl)-amino]-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-{5-Methyl-2-[(tetrahydro-furan-2-ylmethyl)-amino]-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- N'-{4-[5-(2-Hydroxy-1-phenyl-ethylcarbamoyl)-1H-pyrrol-3-yl]-5-methyl-pyrimidin-2-yl}-hydrazinecarboxylic acid ethyl ester;
- 4-{5-Methyl-2-[(pyridin-3-ylmethyl)-amino]-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Cyclopropylmethoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(Isoxazol-3-ylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Cyanoamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-methyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(5-Methyl-2-o-tolylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(5-Methyl-2-o-tolylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chlorophenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(2-Hydroxy-ethoxyamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(N',N'-Dimethyl-hydrazino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(2-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

4-[5-Methyl-2-(morpholin-4-ylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

4-[5-Methyl-2-(5-methyl-isoxazol-3-ylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

4-{2-[1-(3-Chloro-4-fluoro-phenyl)-2-hydroxy-ethylamino]-5-methyl-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-phenyl)-2-hydroxy-ethyl]-amide;

4-[2-(1-Hydroxymethyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [1-(3-chloro-phenyl)-2-hydroxy-ethyl]-amide;

4-[2-(2-Hydroxy-1-hydroxymethyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [1-(3-chloro-phenyl)-2-hydroxy-ethyl]-amide;

4-[2-(1-Hydroxymethyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;

4-[2-(2-Hydroxy-1-hydroxymethyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

4-[2-(1-Hydroxymethyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide; and

4-[5-Methyl-2-(2-methyl-cyclopropylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide.

20. (Previously presented) A compound of formula I':

$$R^3U_n$$
 NH
$$X_1 = X_1$$

$$X_2 = X_1$$

$$X_1 = X_2$$

$$X_1 = X_1$$

$$X_2 = X_1$$

$$X_1 = X_2$$

$$X_1 = X_1$$

$$X_2 = X_1$$

$$X_1 = X_2$$

$$X_2 = X_1$$

$$X_3 = X_1$$

$$X_4 = X_2$$

$$X_4 = X_1$$

$$X_5 = X_1$$

$$X_5 = X_1$$

$$X_7 = X_1$$

$$X_7$$

or a pharmaceutically acceptable salt thereof, wherein:

Sp is a spacer group having a 5-membered heteroaromatic ring, wherein Ring A and Q'R^{2'} are attached to Sp at non-adjacent positions; and wherein Sp has up to two R⁶ substituents, provided that two substitutable carbon ring atoms in Sp are not simultaneously substituted by R⁶:

 Z^1 is N and Z^2 is CH:

T is a linker group selected from -NH-, -CH₂-, -CO-, or a saturated or unsaturated C₁₋₆ alkylidene chain which is optionally substituted, and wherein up to two saturated carbons of the chain are optionally replaced by -C(O)-, -C(O)C(O)-, -CONR⁷-, -CONR⁷NR⁷-, -CO₂-, -OC(O)-, -NR⁷CO₂-, -O-, -NR⁷CONR⁷-, -OC(O)NR⁷-, -NR⁷NR⁷-, -NR⁷CO-, -S-, -SO-, -SO₂-, -NR⁷-, -SO₂NR⁷-, or -NR⁷SO₂-;

Q' is selected from -CO₂-, -C(O)NR⁷- or -SO₂NR⁷-;

U is selected from $-NR^7$ -, $-NR^7CO$ -, $-NR^7CO_2$ -, $-NR^7CO_2$ -, -O-, $-CONR^7$ -, -CO-, $-CO_2$ -, -OC(O)-, $-NR^7SO_2$ -, $-SO_2NR^7$ -, $-NR^7SO_2NR^7$ -, or $-SO_2$ -;

m and n are each independently selected from zero or one;

R¹ is selected from hydrogen, CN, halogen, R, N(R⁷)₂, OR, or OH;

R^{2'} is selected from -(CH₂)_yCH(R⁵)₂ or -(CH₂)_yCH(R⁸)CH(R⁵)₂; y is 0-6;

 R^3 is selected from R^7 , R, -(CH₂)_yCH(R⁸)R, CN, -(CH₂)_yCH(R⁸)CH(R⁵)₂, or -(CH₂)_yCH(R⁸)N(R⁴)₂;

- each R is independently selected from an optionally substituted group selected from C₁₋₆ aliphatic, C₆₋₁₀ aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms;
- each R^4 is independently selected from R, R^7 , $-COR^7$, $-CO_2R$, $-CON(R^7)_2$, $-SO_2R^7$, $-(CH_2)_yR^5$, or $-(CH_2)_yCH(R^5)_2$;
- each R^5 is independently selected from R, OR, CO_2R , $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 , NR^7COR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$;

each R^6 is independently selected from R^7 , F, Cl, $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 , NR^7COR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$;

each R⁷ is independently selected from hydrogen or an optionally substituted C₁₋₆ aliphatic group, or two R⁷ on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring;

R⁸ is selected from R, (CH₂)_wOR⁷, (CH₂)_wN(R⁴)₂, or (CH₂)_wSR⁷; and each w is independently selected from 0-4.

21. (Previously presented) The compound according to claim 20, wherein Sp is selected from one of the following:

- 22. (Original) The compound according to claim 21, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR^1 is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C_{1-6} aliphatic or a 5-6 membered aryl or heteroaryl ring; and
 - (c) R⁵ is R or OR⁷, wherein R is carbocyclic, or an optionally substituted 5 or 6-membered aryl or heteroaryl ring.
 - 23. (Original) The compound according to claim 22, wherein:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and
 - (c) R⁵ is R or OR⁷, wherein R is carbocyclic, or an optionally substituted 5 or 6-membered aryl or heteroaryl ring.
- 24. (Original) The compound according to claim 22, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂,

- -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl, b nzyl, or isoxazolyl group;
- (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAc, NHC(O)NHCH₃, or CH₂NHCH₃; and
- (c) R⁵ is OH, CH₂OH, carbocyclic, or an optionally substituted phenyl or pyridyl ring, and Q' is -C(O)NH-.
- 25. (Original) The compound according to claim 24, wherein:
- (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂, -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl, benzyl, or isoxazolyl group;
- (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAc, NHC(O)NHCH₃, or CH₂NHCH₃; and
- (c) R⁵ is OH, CH₂OH, carbocyclic, or an optionally substituted phenyl or pyridyl ring, and Q' is -C(O)NH-.
- 26. (Previously presented) The compound according to claim 21, wherein said compound is of formula I'':

27. (Original) The compound according to claim 26, wherein said compound has one or more features selected from the group consisting of:

- (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
- (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and
- (c) R⁵ is an optionally substituted 6-membered aryl, heteroaryl, or carbocyclic ring.
- 28. (Original) The compound according to claim 27, wherein:
- (a) R³ is hydrogen, carbocyclyl, -CH(R³)R, or an optionally substituted group selected from C₁₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
- (b) T_mR^1 is hydrogen, $N(R^4)_2$, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C_{1-6} aliphatic or a 5-6 membered aryl or heteroaryl ring; and
- (c) R⁵ is an optionally substituted 6-membered aryl, heteroaryl, or carbocyclic ring.
- 29. (Previously presented) The compound according to claim 21, wherein said compound is of formula I^o :

$$R^3U_n$$
 NH
 X^1 Z^1 Z^1 Z^1 Z^1 Z^2 Z^1 Z^1

- 30. (Original) The compound according to claim 29, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;

- (b) T_mR¹ is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and
- (c) R⁵ is R or OR⁷, wherein R is carbocyclic, or an optionally substituted 5 or 6-membered aryl or heteroaryl ring.
- 31. (Original) The compound according to claim 30, wherein:
- (a) R³ is hydrogen, carbocyclyl, -CH(R³)R, or an optionally substituted group selected from C₁₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
- (b) T_mR¹ is hydrogen, amino, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and
- (c) R⁵ is R or OR⁷, wherein R is carbocyclic, or an optionally substituted 5 or 6-membered aryl or heteroaryl ring.
- 32. (Previously presented) A compound of formula III-a':

or a pharmaceutically acceptable salt thereof, wherein:

T is a linker group selected from -NH-, -CH₂-, -CO-, or a a saturated or unsaturated C₁₋₆ alkylidene chain which is optionally substituted, and wherein up to two saturated carbons of the chain are optionally replaced by -C(O)-, -C(O)C(O)-, -CONR⁷-, -CONR⁷NR⁷-, -CO₂-, -OC(O)-, -NR⁷CO₂-, -O-, -NR⁷CONR⁷-, -OC(O)NR⁷-, -NR⁷NR⁷-, -NR⁷CO-, -S-, -SO-, -SO₂-, -NR⁷-, -SO₂NR⁷-, or -NR⁷SO₂-;

U is selected from $-NR^7$ -, $-NR^7CO$ -, $-NR^7CONR^7$ -, $-NR^7CO_2$ -, -O-, $-CONR^7$ -, -CO-, $-CO_2$ -, -OC(O)-, $-NR^7SO_2$ -, $-SO_2NR^7$ -, $-NR^7SO_2NR^7$ -, or $-SO_2$ -;

m and n are each independently selected from zero or one;

R¹ is selected from hydrogen, CN, halogen, R, N(R⁷)₂, OR, or OH;

- R^3 is selected from R^7 , R, -(CH₂)_yCH(R^8)R, CN, -(CH₂)_yCH(R^8)CH(R^5)₂, or -(CH₂)_yCH(R^8)N(R^4)₂;
- each R is independently selected from an optionally substituted group selected from C₁₋₆ aliphatic, C₆₋₁₀ aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms;
- each R⁴ is independently selected from R, R⁷, -COR⁷, -CO₂R, -CON(R⁷)₂, -SO₂R⁷, -(CH₂)_yR⁵, or -(CH₂)_yCH(R⁵)₂;
- each R^5 is independently selected from R, OR, CO_2R , $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 , NR^7COR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$;
- each R^6 is independently selected from R^7 , F, Cl, $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 , NR^7COR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$;
- each R^7 is independently selected from hydrogen or an optionally substituted C_{1-6} aliphatic group, or two R^7 on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring;
- R⁸ is selected from R, (CH₂)_wOR⁷, (CH₂)_wN(R⁴)₂, or (CH₂)_wSR⁷; and each w is independently selected from 0-4.
- 33. (Original) The compound according to claim 32, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R³)R, or an optionally substituted group selected from C₁₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and
 - (c) R⁵ is an optionally substituted 6-membered aryl, heteroaryl, or carbocyclic ring.
 - 34. (Original) The compound according to claim 33, wherein:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and

- (c) R⁵ is an optionally substituted 6-membered aryl, heteroaryl, or carbocyclic ring.
- 35. (Original) The compound according to claim 33, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂, -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl or benzyl group;
 - (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAc, NHC(O)NHCH₃, or CH₂NHCH₃; and
 - (c) R⁵ is cyclohexyl or an optionally substituted phenyl or pyridylring.
 - 36. (Original) The compound according to claim 35, wherein:
 - (a) R³ is selected from hydrogen, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, isopropyl, -CH(CH₂OH)phenyl, -CH(CH₂OH)ethyl, -CH(CH₂OH)₂, -CH(CH₂OH)isopropyl, -CH(CH₂OH)CH₂cyclopropyl, or an optionally substituted phenyl or benzyl group;
 - (b) T_mR¹ is selected from optionally substituted phenyl, methyl, ethyl, propyl, cyclopropyl, cyclohexyl, CH₂OCH₃, CH₂OH, OH, NH₂, NHCH₃, NHAc, NHC(O)NHCH₃, or CH₂NHCH₃; and
 - (c) R⁵ is cyclohexyl or an optionally substituted phenyl or pyridyl ring.
 - 37. (Previously presented) A compound of formula III-a^o:

or a pharmaceutically acceptable salt thereof, wherein:

T is a linker group selected from -NH-, -CH₂-, -CO-, or a a saturated or unsaturated C_{1-6} alkylidene chain which is optionally substituted, and wherein up to two saturated carbons of the chain are optionally replaced by -C(O)-, -C(O)C(O)-, -CONR⁷-, -CONR⁷NR⁷-,

-CO₂-, -OC(O)-, -NR⁷CO₂-, -O-, -NR⁷CONR⁷-, -OC(O)NR⁷-, -NR⁷NR⁷-, -NR⁷CO-, -S-, -SO₂-, -NR⁷-, -SO₂NR⁷-, or -NR⁷SO₂-;

U is selected from $-NR^7$ -, $-NR^7CO$ -, $-NR^7CO_2$ -, $-NR^7CO_2$ -, -O-, $-CONR^7$ -, -CO-, $-CO_2$ -, -OC(O)-, $-NR^7SO_2$ -, $-SO_2NR^7$ -, $-NR^7SO_2NR^7$ -, or $-SO_2$ -;

m and n are each independently selected from zero or one;

R¹ is selected from hydrogen, CN, halogen, R, N(R⁷)₂, OR, or OH; y is 0-6;

- R^3 is selected from R^7 , R, -(CH₂)_yCH(R⁸)R, CN, -(CH₂)_yCH(R⁸)CH(R⁵)₂, or -(CH₂)_yCH(R⁸)N(R⁴)₂;
- each R is independently selected from an optionally substituted group selected from C₁₋₆ aliphatic, C₆₋₁₀ aryl, a heteroaryl ring having 5-10 ring atoms, or a heterocyclyl ring having 3-10 ring atoms;
- each R^4 is independently selected from R, R^7 , $-COR^7$, $-CO_2R$, $-CON(R^7)_2$, $-SO_2R^7$, $-(CH_2)_yR^5$, or $-(CH_2)_yCH(R^5)_2$;
- each R⁵ is independently selected from R, OR, CO₂R, (CH₂)_yN(R⁷)₂, N(R⁷)₂, OR⁷, SR⁷, NR⁷COR⁷, NR⁷CON(R⁷)₂, CON(R⁷)₂, SO₂R⁷, NR⁷SO₂R⁷, COR⁷, CN, or SO₂N(R⁷)₂;

each R^6 is independently selected from R^7 , F, Cl, $(CH_2)_yN(R^7)_2$, $N(R^7)_2$, OR^7 , SR^7 , $NR^7CON(R^7)_2$, $CON(R^7)_2$, SO_2R^7 , $NR^7SO_2R^7$, COR^7 , CN, or $SO_2N(R^7)_2$;

each R⁷ is independently selected from hydrogen or an optionally substituted C₁₋₆ aliphatic group, or two R⁷ on the same nitrogen are taken together with the nitrogen to form a 5-8 membered heterocyclyl or heteroaryl ring;

R⁸ is selected from R, (CH₂)_wOR⁷, (CH₂)_wN(R⁴)₂, or (CH₂)_wSR⁷; and each w is independently selected from 0-4.

- 38. (Original) The compound according to claim 37, wherein said compound has one or more features selected from the group consisting of:
 - (a) R³ is hydrogen, carbocyclyl, -CH(R⁸)R, or an optionally substituted group selected from C₁₋₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
 - (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and
 - (c) R⁵ is R or OR⁷, and R⁸ is R⁷ or OR⁷.

- 39. (Original) The compound according to claim 38, wherein:
- (a) R³ is hydrogen, carbocyclyl, -CH(R³)R, or an optionally substituted group selected from C₁₄ aliphatic, 3-6 membered heterocyclic, or a 5-6 membered aryl or heteroaryl ring;
- (b) T_mR¹ is hydrogen, N(R⁴)₂, OH, 3-6 membered carbocyclyl, or an optionally substituted group selected from C₁₋₆ aliphatic or a 5-6 membered aryl or heteroaryl ring; and
- (c) \mathbb{R}^5 is R or \mathbb{OR}^7 , and \mathbb{R}^8 is \mathbb{R}^7 or \mathbb{OR}^7 .
- 40. (Original) A compound selected from the group consisting of:
- 4-[2-Amino-5-(3-chloro-2-fluoro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-(2-Amino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-[2-Amino-5-(3,5-dichloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-Amino-5-(3,5-dichloro-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-dimethylamino-2-pyridin-3-yl-ethyl)-amide;
- 4-[5-(3,5-Dichloro-phenyl)-2-phenylamino-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-morpholin-4-yl-2-pyridin-3-yl-ethyl)-amide;
- 4-[2-Amino-5-(3-fluoro-5-trifluoromethyl-phenyl)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(5-Methyl-2-methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (1-hydroxymethyl-3-methyl-butyl)-amide;

- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-hydroxymethyl-2-(1H-imidazol-4-yl)-ethyl]-amide;
- 4-(5-Methyl-2-methylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chloro-4-fluoro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chloro-4-fluoro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Methoxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Hydroxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(Benzo[1,3]dioxol-5-ylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Benzyloxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(4-Hydroxy-cyclohexylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Cyclohexyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Cyclopropyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-4-methyl-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-4-methyl-phenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[5-Methyl-2-(3-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

- 4-(2-Benzylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3,4-Dimethyl-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(4-Benzyloxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Isopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(2,2,2-trifluoro-ethylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Methoxy-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(4-trifluoromethoxy-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Isobutylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxyl-phenyl-ethyl)-amide;
- 4-[2-(Cyclopropylmethyl-amino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methoxymethyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-5-methoxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methyl-2-propylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;

- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-2-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-hydroxymethyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-hydroxymethyl-2-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (3-hydroxy-1-phenyl-propyl)-amide;
- 4-[2-(1-Hydroxymethyl-cyclopropylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-methyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-cyclohexylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Hydroxymethyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- {[4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carbonyl]-amino}-phenyl-acetic acid methyl ester;

- 4-[2-(2-Hydroxy-1-methyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Dimethylamino-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Amino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-methyl-2-phenyl-ethyl)-methyl-amide;
- 4-(2-Ethylamino-5-methoxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-pyridin-3-yl-ethyl)-amide;
- 4-(2-Ethylamino-5-hydroxymethyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-5-trifluoromethyl-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyπole-2-carboxylic acid [1-(3-fluoro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(2-fluorophenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(2-Cyclopropyl-1-hydroxymethyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2,3-Dimethyl-phenylamino)-\$-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(1-Hydroxymethyl-2-methyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-oxo-1-phenyl-propyl)-amide;
- 4-(2-Ethylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;

- 4-[2-(2-Chloro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-[2-(3-Dimethylamino-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(3-trifluoromethyl-phenyl)-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [2-hydroxy-1-(2-methoxy-phenyl)-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chloro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-(2-Cyclopropylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(2-Methoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxyl-phenyl-ethyl)-amide;
- 4-(2-Isopropoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(3-Dimethylamino-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(2-Chloro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-phenyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(2,3-Dimethyl-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(3-Fluoro-phenylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(2-Acetylamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methyl-2-o-tolylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(pyridin-3-ylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;

- 4-{5-Methyl-2-[(tetrahydro-furan-2-ylmethyl)-amino]-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-{5-Methyl-2-[(tetrahydro-furan-2-ylmethyl)-amino]-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- N'-{4-[5-(2-Hydroxy-1-phenyl-ethylcarbamoyl)-1H-pyrrol-3-yl]-5-methyl-pyrimidin-2-yl}-hydrazinecarboxylic acid ethyl ester;
- 4-{5-Methyl-2-[(pyridin-3-ylmethyl)-amino]-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Cyclopropylmethoxyamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(Isoxazol-3-ylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(2-Cyanoamino-5-methyl-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-methyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(5-Methyl-2-o-tolylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-(5-Methyl-2-o-tolylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-chlorophenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(2-Hydroxy-ethoxyamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(N',N'-Dimethyl-hydrazino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(2-trifluoromethyl-phenylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(morpholin-4-ylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[5-Methyl-2-(5-methyl-isoxazol-3-ylamino)-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-{2-[1-(3-Chloro-4-fluoro-phenyl)-2-hydroxy-ethylamino]-5-methyl-pyrimidin-4-yl}-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-(5-Methyl-2-phenylamino-pyrimidin-4-yl)-1H-pyrrole-2-carboxylic acid [1-(3-fluoro-phenyl)-2-hydroxy-ethyl]-amide;

- 4-[2-(1-Hydroxymethyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [1-(3-chloro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(2-Hydroxy-1-hydroxymethyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid [1-(3-chloro-phenyl)-2-hydroxy-ethyl]-amide;
- 4-[2-(1-Hydroxymethyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-m-tolyl-ethyl)-amide;
- 4-[2-(2-Hydroxy-1-hydroxymethyl-ethylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide;
- 4-[2-(1-Hydroxymethyl-propylamino)-5-methyl-pyrimidin-4-yl]-1H-pyrrole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide; and
- 4-[5-Methyl-2-(2-methyl-cyclopropylamino)-pyrimidin-4-yl]-1H-pyπole-2-carboxylic acid (2-hydroxy-1-phenyl-ethyl)-amide.
- 41. (Previously presented) A composition comprising an effective amount of a compound according to any of claims 20-40 and a pharmaceutically acceptable carrier.
- 42. (Previously presented) The composition according to claim 41, further comprising an additional therapeutic agent selected from a chemotherapeutic agent or anti-proliferative agent, or an agents for treating diabetes, an anti-inflammatory agent, an immunomodulatory or immunosuppressive agent, an agent for treating neurlogical disorders, an agent for treating cardiovascular disease, an agent for treating liver disease, cholestyramine, an interferon, an anti-viral agents, an agents for treating blood disorders, or an agent for treating immunodeficiency disorders.
 - 43. (Canceled).
 - 44. (Canceled).
 - 45. (Canceled).
 - 46. (Canceled).
 - 47. (Canceled).

- 48. (Canceled).
- 49. (Currently amended) The A method of treating a disease in a patient, according to elaim 48, wherein the disease is transplant rejection, melanoma, or a cancer selected from colon, breast, lung, kidney, ovary, pancreas, CNS, or cancer of the gastric tract a cancer selected from breast; ovary; cervix; prostate; testis, genitourinary tract; esophagus; larynx, glioblastoma; neuroblastoma; stomach; skin, keratoacanthoma; lung, epidermoid careinoma, large cell careinoma, small cell careinoma, lung adenocareinoma; bone; colon, adenoma; pancreas, adenocareinoma; thyroid, follicular careinoma, undifferentiated careinoma, papillary carcinoma; melanoma; sareoma; bladder careinoma; liver careinoma and biliary passages; kidney careinoma; myeloid disorders; lymphoid disorders, Hodgkin's, hairy cells; buccal cavity and pharynx (oral), lip, tongue, mouth, pharynx; small intestine; colon-rectum, large intestine, rectum; brain and central nervous system; or leukemia comprising the step of administering to said patient a composition according to claim 41.
- 50. (Currently amended) The method according to claim 47, A method of treating a disease in a patient, wherein the disease is cardiovascular disease, comprising the step of administering to said patient a composition according to claim 41.
- 51. (Original) The method according to claim 50, wherein the disease is a cardiovascular disease selected from restenosis, cardiomegaly, artherosclerosis, myocardial infarction, or congestive heart failure.
 - 52. (Canceled).
 - 53. (Canceled).
- 54. (Previously presented) A method of treating a disease in a patient in need thereof, wherein said disease is diabetes, comprising the step of administering to said patient a composition according to claim 41.
- 55. (Previously presented) A method of treating a disease in a patient in need thereof, wherein said disease is Alzheimer's disease, comprising the step of administering to said patient a composition according to claim 41.

- 56. (Previously presented) A method of treating a disease in a patient in need thereof, wherein said disease is schizophrenia, comprising the step of administering to said patient a composition according to claim 41.
- 57. (Original) A method of enhancing glycogen synthesis in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 41.
- 58. (Original) A method of lowering blood levels of glucose in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 41.
- 59. (Original) A method of inhibiting the production of hyperphosphorylated Tau protein in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 41.
- 60. (Original) A method of inhibiting the phosphorylation of β -catenin in a patient in need thereof, which method comprises the step of administering to said patient a therapeutically effective amount of the composition according to claim 41.
 - 61. (Canceled).
 - 62. (Canceled).
- 63. (Previously presented) A method of treating a disease in a patient in need thereof, wherein said disease is selected from melanoma or a cancer selected from colon, breast, lung, kidney, ovary, pancreas, CNS, or cancer of the gastric tract, comprising the step of administering to said patient a composition according to claim 41.
 - 64. (Canceled).
 - 65. (Canceled).

- 66. (Canceled).
- 67. (Previously presented) A method of treating a disease in a patient in need thereof, wherein said disease is selected from an autoimmune disease or transplant rejection, comprising the step of administering to said patient a composition according to claim 41.
- 68. (Original) A method of inhibiting ERK2, Aurora-2, GSK-3, CDK-2, AKT3, or Lck activity in a biological sample comprising the step of contacting said biological sample with a compound according to any one of claims 20-40.
- 69. (Original) A composition for coating an implantable device comprising a compound according to claim 20 and a carrier suitable for coating said implantable device.
- 70. (Original) An implantable device coated with a composition according to claim 69.