CIVE 546 Structural Design Optimization

(3 units)

Sensitivity Analysis (Continued) Load Path

Instructor: Prof. Yi Shao

Select finite difference approximation based on geometric intepretations

i Start presenting to display the poll results on this slide.

Topology Optimization

General Setup for Density Based Approach

$$\min_{\mathbf{u},\rho_e} \mathbf{f}^T \mathbf{u} \quad \text{Compliance.} = \frac{1}{\text{Stiffness}}$$

$$\text{s.t.} : \left(\sum_{e=1}^N \rho_e^p \mathbf{K}_e\right) \mathbf{u} = \mathbf{f} , \qquad \qquad \text{1:20}$$

$$\sum_{e=1}^N v_e \rho_e \leq V, \quad 0 < \rho_{\min} \leq \rho_e \leq 1, \quad e = 1, \dots, N .$$

Given material volume, how can we distribute materials to minimize compliance (i.e., maximize stiffness)?

Sensitivity Analysis A powerful example

Consider a 2 DOF spring system shown below, let's try to determine the sensitivity of the compliance to spring stiffness using (1) analytical method (2) direct differentiation method (3) adjoint method.

Current value: $k_1 = I$ (N/m), $k_2 = 2$, (N/m), $P_1 = I$ (N), $P_2 = 2$ (N) External force P is independent of stiffness.

Administrative announcement

Monday (Mar 17) 1:30pm-3:30pm, MD 497

Guest lecture from Prof. Josephine Carstensen (MIT) on Structural Design Optimization

Administrative announcement

Practice midterm has been uploaded

Load Path

Load Path Exchange house in London

William F. Baker, PE, SE, FASCE, FIStructE, NAE

STRUCTURAL INNOVATION: COMBINING CLASSIC THEORIES WITH NEW TECHNOLOGIES

Load Path Reinforced concrete

$$Z = \sum_{e} |F_e| L_e = \sum_{e \in G^T} |F_e| L_e + \sum_{e \in G^C} |F_e| L_e$$

$$V = \frac{\sum_{e \in G^T} |F_e| L_e}{\sigma^T} + \frac{\sum_{e \in G^C} |F_e| L_e}{\sigma^C} = \frac{(\sigma^C + \sigma^T) Z + (\sigma^C - \sigma^T) C}{2\sigma^C \sigma^T}$$
(2)

Zhao, T., Alshannaq, A. A., Scott, D. W., & Paulino, G. H. (2023). Strut-and-Tie Models Using Multi-Material and Multi-Volume Topology Optimization: Load Path Approach. *ACI Structural Journal*, *120*(6).

Is it possible to design stiffer structure with less material?

James Clerk Maxwell

- In 1865, James Clerk
 Maxwell provided a
 mathematical theory that
 showed a close relationship
 between all electric and
 magnetic phenomena
- Maxwell's equations also predict the existence of electromagnetic waves that propagate through space

Geometric Proof

STRUCTURAL INNOVATION: COMBINING CLASSIC THEORIES WITH NEW TECHNOLOGIES

A powerful example

Maxwell number: $C = \sum F_i L_i = \sum P_l \cdot \underline{r_l} = P \cdot \underline{P_l}$ Michell number: $Z = \sum |F_i| L_i$

Negative of the work
for applied loads & reactions
to cancel each other

JPE External force

A powerful example: Option I Moment-diagram

Maxwell number: $C = \sum_{i} F_i L_i = \sum_{i} F_i L_i - \sum_{i} I_i = I \circ PB - PB$

Michell number: $Z = \sum |F_i| \widetilde{L}_i = l_0 PB + 9 PB = 19 PB$

A powerful example: Option 2 Pratt Truss

Maxwell number:
$$C = \sum F_i L_i = 9 PB - 8PB = PB$$

Michell number: $Z = \sum |F_i| L_i = 9PB + 8PB = 17PB$

ZFT.LT = 8PB

A powerful example: Option 3 Warren Truss

Maxwell number: $C = \sum F_i L_i = 8PB - 7PB = PB$

Michell number: $Z = \sum |F_i| L_i = 8PB + 77B = 15PB$

A powerful example: Option 3 Optimized Truss

Maxwell number: $C = \sum F_i L_i = 7.778 - 6.7 PB = 1PB$

Michell number: $Z = \sum |F_i| L_i = 7.7PB + 6.7PB = 14.47 PB$

ZF-4= 8.52 PB

A powerful example: Option 4 Only Compression Chord

z Fc. Lc= 7.52PB

Maxwell number: $C = \sum F_i L_i = 178$

Michell number: $Z = \sum |F_i| L_i = \frac{16.04}{10.04}$

Comparison

	Tensile Load	Compressive	Difference in	Sum of Load	
	Path,	Load Path,	Load Paths,	Paths,	Deflection, Δ
	$\sum F_T L_T$	$\sum F_C L_C$	$\sum F_T L_T - \sum F_C L_C$	$\sum F_T L_T + \sum F_C L_C$	
Moment Diagram Truss	10 <i>PB</i>	9 <i>PB</i>	PB	19 <i>PB</i>	$19\frac{\sigma B}{E}$
Pratt Truss	9 <i>PB</i>	8 <i>PB</i>	PB	17 <i>PB</i>	$17\frac{\sigma B}{E}$
Warren Truss	8 <i>PB</i>	7 <i>PB</i>	PB	15 <i>PB</i>	$15\frac{\sigma B}{E}$
Bounded Optimal Truss	7.7 <i>PB</i>	6.7 <i>PB</i>	PB	14.47 <i>PB</i>	$14.47 \frac{\sigma B}{E}$
Comp. Chord Cantilever	8.52 <i>PB</i>	7.52 <i>PB</i>	PB	16.04 <i>PB</i>	$16.04 \frac{\sigma B}{E}$

Remark

Maxwell's Theorem
$$\Delta = Z_1 \cdot \frac{V_1 \cdot B}{E} = Z_2 \cdot \frac{V_2 \cdot B}{E} \Rightarrow V_2 = \frac{Z_1}{Z_2} \cdot V_1$$
Remark

Let's compare two structures that are uniformly stressed and designed to achieve the same target deflection.

Pratt Truss

V1 = 21: 18

Warren Truss

Practice

If a parabolic cable (zero bending stiffness) under uniform load is inverted, the shape is a funicular arch (under pure compression). What is the optimal height, h, that minimizes the weight of the cable, when the design is done under conditions of a maximum (constant) allowable stress σ ?

Mitchell Structure

Beghini, Alessandro, et al. "Structural Optimization for Stiffness and Ductility of High-Rise Buildings." *Structures Congress 2015*.

Beghini, Lauren L., et al. "Connecting architecture and engineering through structural topology optimization." *Engineering Structures*59 (2014): 716-726.