Discrete Structures and Theory of Logic Lecture-2

Dharmendra Kumar July 7, 2020

Operations defined on set

Union operation

For any two sets A and B, the union of A and B is the set of all the elements which are belongs into A or B or both. It is denoted by $A \cup B$. Mathematically, it is defined as following:-

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$$

Example: Let $A = \{ a, b, c \}$ and $B = \{ d, e, c \}$. Then union of A and B will be, $A \cup B = \{ a, b, c, d, e \}$.

Intersection operation

For any two sets A and B, the intersection of A and B is the set of all the elements which are belong into both A and B. It is denoted by $A \cap B$. Mathematically, it is defined as following:-

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$$

Example: Let $A = \{ a, b, c \}$ and $B = \{ d, e, c \}$. Then intersection of A and B will be, $A \cap B = \{ c \}$.

Operations defined on set(cont.)

Set difference operation

For any two sets A and B, the set difference of A and B is the set of all the elements which are belong into A but not belong into B . It is denoted by A-B. Mathematically, it is defined as following:-

$$A-B = \{ x \mid x \in A \text{ and } x \notin B \}$$

Example: Let $A = \{ a, b, c \}$ and $B = \{ d, e, c \}$. Then set difference of A and B will be, A-B = $\{a, b\}$.

Complement operation

Let U is the universal set. For any set A, the complement of A is the set of all the elements U, which are not belong into A. It is denoted by A^c or A'. Mathematically, it is defined as following:-

$$A' = U - A = \{ x \mid x \in U \text{ and } x \notin A \}$$

Example: Let $A = \{ a, b, c \}$ and $U = \{ a, b, c, d, e, f, g \}$. Then complement of A will be, $A' = \{ d, e, f, g \}$.

Operations defined on set(cont.)

Symmetric difference operation

For any two sets A and B, the symmetric difference of A and B is denoted by $A \bigoplus B$. Mathematically, it is defined as following:-

$$A \bigoplus B = (A-B) \cup (B-A)$$

Example: Let $A = \{ a, b, c \}$ and $B = \{ d, e, c \}$. Then symmetric difference of A and B will be, $A \bigoplus B = \{ a, b, d, e \}$.

3

Disjoint and Mutually disjoint sets

Disjoint sets

Two sets A and B are said to be disjoint if there is no common elements between A and B. That is, A and B are disjoint iff $A \cap B = \phi$.

Example: Let $A = \{ a, b, c \}$ and $B = \{ d, e, f \}$. Here A and B are disjoint because $A \cap B = \phi$.

Mutually disjoint sets

A collection of sets S={ $A_1, A_2, ..., A_n$ } is said to be mutually disjoint if each pair of A_i and A_j in S are disjoint. That is, S is mutually disjoint if $A_i \cap A_j = \phi$, \forall i,j = 1,2,....,n. and i \neq j.

Example: Let A = { {1, 2}, { 3} }, B = { {1}, {2, 3}} and C = { {1, 2, 3}}. These sets A, B and C are mutually disjoint because $A \cap B = \phi$, $B \cap C = \phi$, and $A \cap C = \phi$.

Some examples

Example: Show that $A \subseteq B \Leftrightarrow A \cap B = A$

Solution: In this question, we have to prove two parts.

First part: In this part, we have to show that if $A \subseteq B$ then $A \cap B = A$.

Suppose $A \subseteq B$.

Let $x \in A$. Since $A \subseteq B$ therefore $x \in B$. Clearly x is belong into both A and B. Therefore x also belongs into $A \cap B$. Therefore

$$A\subseteq A\cap B \dots (1)$$

Let $x \in A \cap B$. Therefore $x \in A$ and $x \in B$. Therefore we can say $x \in A$. Therefore

$$\mathsf{A} \cap \mathsf{B} \subseteq \mathsf{A} \(2)$$

Using equations(1) and (2), $A \cap B = A$.

Second part: In this part we have to show that if $A \cap B = A$ then $A \subseteq B$.

Let $x \in A$. Since $A \cap B = A$ therefore $x \in A \cap B$. This imply that $x \in A$ and $x \in B$. Therefore we can say $x \in B$. Therefore

 $\mathsf{A}\subseteq\mathsf{B}.$

Example: Show that

- (a) $A-B = A \cap B'$
- (b) $A \subseteq B \Leftrightarrow B' \subseteq A'$

Solution:

(a) Let
$$x \in A-B \Rightarrow x \in A$$
 and $x \notin B$

$$\Rightarrow x \in A \text{ and } x \in B'$$

$$\Rightarrow x \in A \cap B'$$
Therefore, $A-B \subseteq A \cap B'$ (1)
Now, let $x \in A \cap B' \Rightarrow x \in A$ and $x \in B'$

$$\Rightarrow x \in A \text{ and } x \notin B$$

$$\Rightarrow x \in A \text{ and } x \notin B$$
Therefore, $A \cap B' \subseteq A-B$ (2)
Using equations (1) and (2), $A-B = A \cap B'$

(b) First part: Suppose
$$A \subseteq B$$
.
Let let $x \in B' \Rightarrow x \notin B$
 $\Rightarrow x \notin A$ (Since $A \subseteq B$)
 $\Rightarrow x \in A'$
Therefore, $B' \subseteq A'$
Second part: Suppose $B' \subseteq A'$.
Let let $x \in A \Rightarrow x \notin A'$
 $\Rightarrow x \notin B'$ (Since $B' \subseteq A'$)
 $\Rightarrow x \in B$
Therefore, $A \subseteq B$
Using first and second parts, we can say that
 $A \subseteq B \Leftrightarrow B' \subseteq A'$

Therefore, $A-(A\cap B) = A-B$

```
Example: Show that for any two sets A and B,
                             A-(A\cap B)=A-B
Solution: Let x \in A-(A \cap B) \Leftrightarrow x \in A and x \notin A \cap B
                                                    \Leftrightarrow x \in A \text{ and } x \in (A \cap B)'
                                                    \Leftrightarrow x \in A \text{ and } (x \notin A \text{ or } x \notin B)
                                                    \Leftrightarrow (x \in A and x \notin A) or (x \in A
and x \notin B)
                                                     \Leftrightarrow FALSE or (x \in A \text{ and } x \notin B)
                                                     \Leftrightarrow (x \in A and x \notin B)
                                                    \Leftrightarrow x \in A-B
```