Colles - Semaine 11

Exercice 1

Une urne contient n boules noires (avec $n \in \mathbb{N}^*$) et deux boules blanches. On effectue dans cette urne des tirages successifs d'une boule, sans remise. On note :

- × X la v.a.r. égale au nombre de tirages nécessaires pour obtenir la première boule blanche.
- \times Y la v.a.r. égale au nombre de tirages nécessaires pour obtenir la seconde boule blanche.
- × Pour tout $i \in [1, n+2]$, N_i (resp. B_i) l'événement « le *i*ème tirage amène une boule noire (resp. blanche) ».
- 1. a) Préciser $X(\Omega)$. Décrire, pour tout $k \in X(\Omega)$, l'événement [X = k] à l'aide des événements N_i et B_i .
 - b) Montrer que pour tout $k \in X(\Omega)$, $\mathbb{P}([X=k]) = \frac{2(n+2-k)}{(n+1)(n+2)}$.
 - c) Calculer $\mathbb{E}(X)$.
- 2. a) Déterminer $Y(\Omega)$.
 - b) Déterminer la loi jointe du couple (X, Y).
 - c) En déduire la loi de Y.
 - d) Calculer $\mathbb{E}(Y)$.
- 3. Calculer Cov(X,Y). Commenter son signe.

Exercice 2

On considère une suite infinie de lancers d'une pièce équilibrée. Pour tout entier naturel non nul n, on désigne par P_n l'événement « Pile apparaît au nème lancer » et par F_n l'événement « Face apparaît au nème lancer »

Soit Y la v.a. désignant le rang du lancer où, pour la première fois, apparaît un Face précédé d'au moins deux Pile si cette configuration apparaît, et prenant la valeur 0 si cette configuration n'apparaît jamais.

On suppose que l'expérience est modélisée par un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

On pose $c_1 = c_2 = 0$ et pour tout $n \ge 3$, $c_n = \mathbb{P}([Y = n])$. On note également :

$$\forall n \geqslant 3, \ B_n = P_{n-2} \cap P_{n-1} \cap F_n \ \text{ et } \ U_n = \bigcup_{i=3}^n B_i$$

On pose enfin $u_1 = u_2 = 0$ et pour tout $n \ge 3$, $u_n = \mathbb{P}(U_n)$

- 1. Montrer que la suite $(u_n)_{n\geqslant 3}$ est monotone et convergente.
- **2.** a) Pour tout $n \ge 3$, calculer $\mathbb{P}(B_n)$.
 - b) Montrer que, pour tout $n \ge 3$, les événements B_n , B_{n+1} et B_{n+2} sont deux à deux incompatibles.
 - c) Calculer les valeurs de u_3 , u_4 et u_5 .
- 3. Dans cette question, on suppose $n \ge 5$.
 - a) Comparer les événements $U_n \cap B_{n+1}$ et $U_{n-2} \cap B_{n+1}$. Préciser leurs probabilités respectives.
 - **b)** Montrer que pour tout $n \ge 3$, $u_{n+1} = u_n + \frac{1}{8}(1 u_{n-2})$.
 - c) Déterminer la limite de la suite (u_n) .
 - d) Calculer $\mathbb{P}([Y=0])$.
- 4. Pour tout $n \in \mathbb{N}^*$, on pose $v_n = 1 u_n$.
 - a) Trouver $(\beta, \gamma) \in \mathbb{R}^2$ tels que pour tout $n \in \mathbb{N}^*$, $v_n = \beta v_{n+2} + \gamma v_{n+3}$.
 - b) Montrer que la série de terme général v_n est convergente et calculer $\sum_{n=0}^{+\infty} v_n$.

Exercice 3

Soit n un entier naturel tel que $n \ge 2$. On dispose d'un paquet de n cartes C_1, C_2, \ldots, C_n que l'on distribue intégralement, les unes après les autres entre n joueurs J_1, J_2, \ldots, J_n selon le protocole suivant :

- \times la première carte C_1 est donnée à J_1 ;
- \times la deuxième carte C_2 est donnée de façon équiprobable entre J_1 et J_2 ;
- \times la troisième carte C_3 est donnée de façon équiprobable entre J_1 , J_2 et J_3 ;
- \times et ainsi de suite, jusqu'à la dernière carte C_n qui est donc distribuée de façon équiprobable entre les joueurs J_1, \ldots, J_n .

On suppose l'expérience modélisée sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$.

On note X_n la variable aléatoire égale au nombre de joueurs qui n'ont reçu aucune carte à la fin de la distribution.

- 1. Déterminer $X_n(\Omega)$ et calculer $\mathbb{P}([X_n=0])$ et $\mathbb{P}([X_n=n-1])$.
- 2. Pour tout i de [1, n], on note B_i la v.a.r. qui vaut 1 si J_i n'a reçu aucune carte à la fin de la distribution et vaut 0 sinon.

Déterminer la loi de B_i . Exprimer la v.a.r. X_n en fonction des v.a.r. B_i et en déduire l'espérance de X_n .

- 3. En faisant le moins de calculs possibles, donner la loi de X_4 .
- **4.** a) Montrer que pour i et j dans [1, n] tels que i < j, on a :

$$\mathbb{P}([B_i = 1]) \cap [B_j = 1]) = \frac{(i-1)(j-2)}{n(n-1)}$$

En déduire la covariance des v.a.r. B_i et B_j .

b) Montrer que $\mathbb{V}(X_n) = \frac{n+1}{12}$.