

Diseño Digital Avanzado

Unidad 1 - Herramientas

Dr. Ariel L. Pola apola@fundacionfulgor.org.ar August 8, 2021

Tabla de Contenidos

1. Proyecto Leds

2. Herramienta Vivado

Implementación en FPGA - Leds

Descripción

- Los nombres en ROJO son puertos.
- ck_rst es el reset del sistema, el cual pone a cero el contador e inicializa el shiftregister (SR).
- i_sw[0] controla el enable (1) del contador. En estado (0) todo se detiene sin alterar el estado actual del contador y del SR
- El SR se desplaza únicamente cuando el contador llegó a algún límite R0-R3.
- La elección del límite se puede realizar en cualquier momento del funcionamiento.
- *i_sw[3]* elije el color de los leds RGB.

Test Bench

Descripción

- El test bench (banco de pruebas) es un módulo que no tiene puertos declarados.
- Genera los estímulos de reloj y señales de control para modelar un escenario de prueba.
- Las variables utilizadas para estimular los puertos de entrada son declaradas como tipo reg.
- Las variables utilizadas para conectar los puertos de salida son declaradas como tipo wire.
- Lectura y cambio de estado de variables internas a los módulos
 - Definiendo las instancias se puede leer las variables internas
 Ejemplo, assign tb_count = tb_shiftleds.u_shiftleds.counter;
 - Utilizando force se cambia el valor de una variable en una instancia. Se debe definir dentro de un bloque de procesamiento initial.
 Ejemplo, force tb shiftleds.u shiftleds.o led = 4'b0001;

Test Bench

Ejemplo - Generando Estímulos

```
'define N LEDS 4
   'define NB SW 4
                                                      always #5 CLK100MHZ = ~CLK100MHZ;
   'timescale 1ns/100ps
                                                      shiftleds
                                                        #(.N LEDS
                                                                    (N LEDS)
   module tb shiftleds();
                                                          .NB SW
                                                                    (NB SW)
      parameter N LEDS
                                                      u shiftleds
                         = 'N LEDS
9
                                                        (.o led
                                                                    (o led)
      wire [N LEDS - 1: 0] o led
                                                         .i sw
                                                                    (i sw)
      reg [NB SW - 1:0] i sw
                                                         .ck rst
                                                                    (ck rst)
                                                         .CLK100MHZ (CLK100MHZ)
      req
                            ck rst
      rea
                           CLK100MHZ:
                                                         );
14
                                                   14
      initial begin
                                                      endmodule // tb shiftleds
16
         i sw
                       = 4'b0000
         CLK100MHZ
                       = 1'b0
18
                      = 1'b0
        ck rst
19
       #100 ck rst = 1'b1
20
      #100 i sw
                       = 4'b0001
        #10000000 i sw = 4'b0011
         #1000000 i sw = 4'b1011 :
         #1000000 $finish:
24
      end
```

Test Bench

Ejemplo - Estímulos desde Archivos

```
'define N LEDS 4
                                                           always #5 CLK100MHZ = ~CLK100MHZ:
    'define NB SW 4
                                                           always@(posedge CLK100MHZ) begin
   'timescale 1ns/100ps
                                                     4
                                                              code error <=
                                                                 $fscanf(fid reset."%d".reset tmp):
   module tb shiftleds file();
                                                              if (code error!=1) $stop;
                                                              for (ptr_sw=0;ptr_sw<NB SW;
8
      parameter N LEDS
                          = 'N LEDS
9
      parameter NB SW
                          = 'NB SW
                                                     9
                                                                  ptr sw = ptr sw+1) begin
                                                               code error1 <=
      wire [N LEDS - 1: 0] o led
                                                                  $fscanf(fid sw."%d".sw tmp[(ptr sw+1)
      reg [NB SW - 1:0] i sw
                                                              -1 -: 1]);
      reg [NB SW - 1 : 0] sw tmp
                                                               if (code error1!=1) $stop;
      reg ck rst. CLK100MHZ, reset tmp:
14
                                                            end
                                                     14
16
      integer fid reset, fid sw;
                                                              ck rst <= reset tmp;
      integer code error.code error1:
                                                     16
                                                              i sw <= sw tmp:
18
      integer
                           ptr sw:
                                                              $display("%d".ck rst):
19
                                                           end
20
      initial begin
         fid reset = $fopen("./vectors/reset.out"
                                                           shiftleds
          ,"r");
                                                             u shiftleds
          if(fid reset==0) $stop;
                                                               (.o led
                                                                           (o led)
         fid sw = $fopen("./vectors/switch.out"."r 23
                                                                .i sw
                                                                           (isw)
         ");
                                                                .ck rst
                                                                           (ck rst)
          if (fid sw == 0) $stop;
                                                                .CLK100MHZ (CLK100MHZ));
         CLK100MHZ
                      = 1'b0 :
                                                    26
26
      end
                                                        endmodule // tb shiftleds
```


Crea un nuevo proyecto

Vivado

Configura el kit de trabajo

Configura el kit de trabajo

Agrega nuevas fuentes a Design Sources

Seleccionar todos los archivos verilog relacionados al diseño

Agrega nuevas fuentes a Constraints

Vivado

Selecciona el archivo xdc

Agrega nuevas fuentes a Simulation Sources

Vivado

Selecciona el archivo verilog para simulación

Run Simulation - Run Behavioral Simulation

Simulando el comportamiento del diseño

Vivado

Generar el bitstream

Generar el bitstream

Generar el bitstream

Vivado

Ejecutando tareas de implementación

Abriendo el modelo implementado

Vivado

Diseño implementado

RTL Schematic

Esquemático RTL

Synthesis - Schematic

Esquemático Implementación

Implementation - Schematic

Implementation

