# Econ 8020

January 7th, 2025

## Course Outline

- Math Review and Monotone Comparative Statics
- General Equilibrium
- Auction Theory
- Mechanism Design
- Special Topics (if time permits)
  - Matching and Market Design
  - Bayesian Persuasion and Information Design

#### Syllabus: Materials

- Lecture slides
  - These are not to be distributed unless given permission
- Variety of supplemental lecture notes on eLC
- Recommended books:
  - Microeconomic Theory by Mas-colell, Whinston, Green
  - Auction Theory by Vijay Krishna
  - Two-Sided Matching by Alvin Roth and Marilda Sotomayor

#### SYLLABUS: EXPECTATIONS

- Class Attendance is expected
- Please show up to class on time as coming in late can be distracting to other students.
- Please do not leave class early
  - Let me know in advance otherwise
  - Obvious exceptions include emergencies
- Please do not use phones & laptops to surf. It can be distracting to other students

# Syllabus: Office Hours

- Bohdan and I will hold offices hours once a week
  - Time and location will be posted on eLC.

#### Syllabus: Office Hours

- Bohdan and I will hold offices hours once a week
  - Time and location will be posted on eLC.
- Questions and email policy
  - 48hr rule: give the individual at least 48hrs to respond
  - Exceptions: email on Friday, expectation should be Monday

#### SYLLABUS: GRADING

- Assignments due approximately every two weeks (40%)
  - About one for each topic
- In-class "mid-term" (30%)
- Take-home exam (30%)

#### SYLLABUS: CHEATING

- Assignments should be written up individually
- I do not mind you working with a friend but one should not simply copy the answers
- Abide by Honor Code
- University policy for handling cases of suspected dishonesty: www.uga.edu/ovpi

#### Syllabus: Mental Health

- UGA has several resources for students
  - https://www.uhs.uga.edu/bewelluga/bewelluga
  - Crisis Support: https://www.uhs.uga.edu/info/emergencies
- If need help managing stress, anxiety, relationships, etc., please visit BeWellUGA
  - List of free workshops, classes, mentoring, and health coaching
  - Additional resources can be accessed through the UGA App
- Take care of yourselves
- Look out for others

### MATHEMATICAL CONCEPTS

- Constrained Optimization
  - Karush-Kuhn-Tucker Conditions (KKT)
- Envelope Theorem
- Monotone Comparative Statics

# Useful Terms

• Continuity, Differentiability, Smoothness

## Useful Terms

- Continuity, Differentiability, Smoothness
- Convexity, Concavity, Quasi-Concavity

### Useful Terms

- Continuity, Differentiability, Smoothness
- Convexity, Concavity, Quasi-Concavity
- Upper and lower hemicontinuity
  - Occasionally called upper and lower semicontinuity

- Parameter set Θ
  - Examples: Wealth level in consumer optimization problem, Prices, wages

- Parameter set Θ
  - Examples: Wealth level in consumer optimization problem, Prices, wages
- Choice set  $\mathcal{X}(\theta)$ 
  - Can be dependent on parameter

- Parameter set Θ
  - Examples: Wealth level in consumer optimization problem, Prices, wages
- Choice set  $\mathcal{X}(\theta)$ 
  - Can be dependent on parameter
- Objective function  $f: \mathcal{X} \times \Theta \longrightarrow \mathbb{R}$

#### ENVIRONMENT

For a given  $\theta \in \Theta$ , the optimization problem we wish to solve is:

$$\max_{x \in \mathcal{X}(\theta)} f(x, \theta)$$

- This is what is known as constrained-optimization
- Myriad of economic problems are of this form

- $x^*(\theta) = arg \max_{x \in \mathcal{X}(\theta)} f(x, \theta)$  is called the solution set
- $V(\theta) = \max_{x \in \mathcal{X}(\theta)} f(x, \theta)$  is the value function

- Does a solution exist for each  $\theta \in \Theta$ ?
- What are the properties of the solution set and value function?
  - Continuous, Differentiable etc.
- How can we compute the solution or value function?
- How does the solution and value change with the parameter?

# Constrained Optimization: $\mathbb{R}^n$

- $\mathcal{X}(\theta)$  is a convex subset of  $\mathbb{R}^n$
- There are functions  $g_1, \ldots, g_K$  such that  $\mathcal{X}(\theta) = \{x | g_1(x, \theta), \ldots, g_K(x, \theta) \leq 0\}$

$$\max_{x \in \mathbb{R}^n} f(x, \theta)$$

subject to 
$$g_j(x, \theta) \leq 0$$
 for  $j = 1, \dots, K$ 

### KKT THEOREM: NECESSITY

Given a parameter  $\theta$ , suppose the following conditions hold:

- $lacktriangledown f, g_1, \dots, g_K$  are continuously differentiable in x
- $oldsymbol{2} \mathcal{X}( heta)$  is non-empty (i.e. the constraint inequalities can be satisfied)
- **o** For a solution  $x^*$ , the vectors in  $\{\nabla g_j(x^*,\theta)|g_j(x^*,0)=0\}$  are linearly independent

Then there exist  $\lambda_1, \ldots, \lambda_K \geq 0$  such that:

$$abla f(x^*, heta) = \sum_{j=1}^K \lambda_j 
abla g_j(x^*, heta)$$
 $\lambda_j g_j(x^*, heta) = 0$ 

#### KKT THEOREM: SUFFICIENCY

Suppose the following holds:

- $lackbox{0} f(\cdot, \theta)$  is quasi-concave
- $g_1(\cdot,\theta),\ldots,g_K(\cdot,\theta)$  are quasi-convex

Then any  $x^*$  satisfying the KKT conditions is a solution

# Incorporating equality constraints

- Multiplier can be positive or negative
- No complementary slackness condition needed
- Gradient of equality constraints and active inequality constraints are linearly independent

## ENVELOPE THEOREM

$$V(\theta) = \max_{x \in \mathcal{X}(\theta)} f(x, \theta)$$

- How does  $V(\theta)$  change as  $\theta$  change?
- This type of question comes up a lot in economics
- ullet In particular, focus on case where  $\mathcal{X}(\theta)$  is independent of  $\theta$

$$V(\theta) = \max_{x \in \mathcal{X}} f(x, \theta)$$

# ENVELOPE THEOREM: PERFECT CONDITIONS

- To build intuition, let's assume everything is "perfect"
- By "perfect" I mean:
  - ullet  $\Theta$  is a convex subset of  $\mathbb R$
  - ullet  $\mathcal X$  is a non-singleton, convex subset of  $\mathbb R$
  - Everything is differentiable

# ENVELOPE THEOREM: PERFECT CONDITIONS

$$V(\theta) = \max_{x \in \mathcal{X}} f(x, \theta)$$

Let  $x^*(\theta)$  be the solution to the optimization problem. Therefore:

$$V(\theta) = f(x^*(\theta), \theta)$$

Let's take the derivative of V with respect to  $\theta$ :

$$V'(\theta) = \frac{df(x^*(\theta), \theta)}{d\theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} + \frac{\partial f(x^*(\theta), \theta)}{\partial x} \cdot \frac{dx^*(\theta)}{d\theta}$$

# ENVELOPE THEOREM: PERFECT CONDITIONS

$$V'(\theta) = \frac{df(x^*(\theta), \theta)}{d\theta} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta} + \frac{\partial f(x^*(\theta), \theta)}{\partial x} \cdot \frac{dx^*(\theta)}{d\theta}$$

- Now, what do we know about  $\frac{\partial f(x^*(\theta), \theta)}{\partial x}$ ?
- Has to be 0 by first-order condition (maximize a function means derivative is 0)

$$\implies V'(\theta) = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta}$$

### ENVELOPE THEOREM

When choice set is independent of parameter & conditions are "perfect" (e.g. differentiable):

$$\frac{\partial V(\theta)}{\partial \theta_j} = \frac{\partial f(x^*(\theta), \theta)}{\partial \theta_j}$$

#### ENVELOPE THEOREMS



FIGURE 1

# ENVELOPE THEOREM: MILGROM AND SEGAL (2002)

- ullet  $\Theta$  is a convex subset of  $\mathbb R$  (i.e.  $\Theta=[\underline{ heta},\overline{ heta}]$ )
- $f(x, \theta)$  is absolutely continuous in  $\theta$
- $f(x,\theta)$  is differentiable in  $\theta$  and  $\frac{\partial f(x,\theta)}{\partial \theta} < m(\theta)$  for some integrable function m

# ENVELOPE THEOREM: MILGROM AND SEGAL (2002)

- ullet  $\Theta$  is a convex subset of  $\mathbb R$  (i.e.  $\Theta=[\underline{ heta},\overline{ heta}]$ )
- $f(x, \theta)$  is absolutely continuous in  $\theta$
- $f(x,\theta)$  is differentiable in  $\theta$  and  $\frac{\partial f(x,\theta)}{\partial \theta} < m(\theta)$  for some integrable function m

#### THEOREM

$$V( heta) = V(\underline{ heta}) + \int_{ heta}^{ heta} rac{\partial f(x^*(t),t)}{\partial heta} dt$$

### MONOTONE COMPARATIVE STATICS

- KKT → technique to characterize optimal solution
- ullet Envelope theorem  $\longrightarrow$  how value function changes with parameter
- ullet Monotone Comparative Statics  $\longrightarrow$  how optimal choice changes with parameter

### MONOTONE COMPARATIVE STATICS

- Single-variable/One-dimensional case (e.g. the choice and parameter are real numbers)
  - ullet  $\mathcal X$  is a closed subset of  $\mathbb R$
- **4** Multi-variable case (e.g. the choice x is a *vector*; the parameter  $\theta$  is a *vector*)

$$x^*(\theta) = \arg\max_{x \in \mathcal{X}} f(x, \theta)$$

- How does  $x^*(\theta)$  change with  $\theta$ ?
- Why is this a tricky problem?
- $x^*$  need not be differentiable or continuous
- May not even be single-valued!

- Again, for intuition assume perfect conditions:
  - **1**  $x^*$  is single-valued (i.e. unique solution for each  $\theta$ )
- Sufficient condition for #1 and #2: f is strictly concave, twice differentiable

First-order condition means  $\frac{\partial f(x^*(\theta), \theta)}{\partial x} = 0$ 

$$\Rightarrow \frac{\partial^{2} f(x^{*}(\theta), \theta)}{\partial x \partial \theta} + \frac{\partial^{2} f(x^{*}(\theta), \theta)}{\partial x^{2}} \cdot \frac{\partial x^{*}(\theta)}{\partial \theta} = 0$$

$$\Rightarrow \frac{\partial x^{*}(\theta)}{\partial \theta} = -\frac{f_{x\theta}(x^{*}, \theta)}{f_{xx}(x^{*}, \theta)}$$

$$\Rightarrow sign(\frac{\partial x^{*}(\theta)}{\partial \theta}) = sign(f_{x\theta}(x^{*}, \theta))$$

$$x^*(\theta) = \arg\max_{x \in \mathcal{X}} f(x, \theta)$$

- Relax assumptions from before
- Assume  $x^*(\theta)$  exists but is not necessarily unique
- No assumptions on differentiability

- What does one mean by  $x^*(\theta)$  increases/decreases if it is not single-valued?
- Since  $x^*(\theta)$  is a correspondence (i.e. set-valued), need a slightly different notion
  - Strong-set order
  - Fancy way of saying a set "lies above" another set

#### STRONG-SET ORDER

#### **DEFINITION**

Given two sets A and B, A is less than B in the **strong set order** (denoted by  $A \leq_S B$ ) if for any  $a \in A$  and  $b \in B$ ,  $min\{a, b\} \in A$  and  $max\{a, b\} \in B$ .

$$x^*(\theta) = \arg\max_{x \in \mathcal{X}} f(x, \theta)$$

- Relax assumptions from before
  - Assume  $x^*(\theta)$  exists but is not necessarily unique
  - No assumptions on differentiability
- ullet Want to know if  $x^*( heta)$  is increasing or decreasing in the strong-set order

#### DEFINITION

A function  $f(x, \theta)$  satisfies increasing differences if:

For every 
$$x' > x$$
,  $f(x', \theta) - f(x, \theta)$  is non-decreasing in  $\theta$ 

• When f is twice-differentiable, this is just  $\frac{\partial^2 f}{\partial x \partial \theta} \geq 0$ 

- Sometimes you will see Increasing Differences called Supermodularity
  - E.g.  $f(x, \theta)$  is supermodular in  $(x, \theta)$
- This is not technically correct
- ullet Supermodularity  $\Longrightarrow$  Increasing Differences, but the opposite isn't always true
- $\bullet$  Equivalent when choice set is cartesian product of convex subsets of  $\mathbb R$

#### TOPKIS THEOREM

Suppose  $f(x, \theta)$  satisfies increasing differences in  $(x, \theta)$ . Then  $x^*(\theta)$  is non-decreasing in  $\theta$  in the strong-set order.

ullet Think of increasing differences as saying that the two objects x and heta are complements

# How to Prove?

- Consider  $\theta' > \theta$  and  $x' \in x^*(\theta')$  and  $x \in x^*(\theta)$
- Want to show that  $x^*(\cdot)$  is increasing in the strong-set order
- Need to show that  $\min{\{x,x'\}} \in x^*(\theta)$  and  $\max{\{x,x'\}} \in x^*(\theta')$

### EXAMPLE

Suppose a monopolist faces an inverse demand curve of p(q). The cost to produce q units is given by the cost function  $c(q,\theta)$ . One can interpret  $\theta$  as a parameter affecting the monopolists cost structure (e.g. a price of a key input). The monopolists problem is:

$$\max_{q} p(q)q - c(q, \theta)$$

When is  $q^*(\theta)$  nondecreasing?

#### TOPKIS THEOREM: GENERAL

• What if x is a vector (e.g., many choice variables)?

#### THEOREM

Let  $x = (x_1, ..., x_n)$ . If the choice set is a lattice,  $f(x, \theta)$  satisfies increasing differences in  $(x, \theta)$  and is supermodular in  $(x_1, ..., x_n)$ , then  $x^*(\theta)$  is non-decreasing in  $\theta$ .

- Lattice is technical condition
  - ullet Any cartesian product of closed subsets of  $\mathbb R$  is a lattice
- Increasing differences and supermodular are both used (that is because they are different)
  - ullet Equivalent when choice set is cartesian product of closed subsets of  ${\mathbb R}$
  - In that case, need to check increasing difference between every pair in  $(x_1, \ldots, x_n, \theta)$