Pytorch ECG Heartbeat Categorisation Project Team ==4==

Francisco Correia Szymon Pajzert Bijan Rad

École polytechnique

MAP583, March 2020

Outline

- Introduction
- 2 Data
 - Data distribution
 - ECG signals
- Models
 - Baseline
 - LSTM_3
 - 1D-CNN
 - 1D-RESNET
- 4 Results
 - Binary classification
 - Multi-class classification

• Cardiovascular diseases (CVD) account for 1/3 of all deaths

- Cardiovascular diseases (CVD) account for 1/3 of all deaths
- ECG is the principal tool used by cardiologists to diagnose heart conditions

- Cardiovascular diseases (CVD) account for 1/3 of all deaths
- ECG is the principal tool used by cardiologists to diagnose heart conditions
- Problem: the difficulty of manually detecting and categorizing different wave-forms in the signal

- Cardiovascular diseases (CVD) account for 1/3 of all deaths
- ECG is the principal tool used by cardiologists to diagnose heart conditions
- Problem: the difficulty of manually detecting and categorizing different wave-forms in the signal

Aim: Develop an accurate model for diagnosis of arrhythmic heartbeats

Problem formulation

 Create a binary classifier to distinguish normal ECG signals from anomalous ECG signals

Problem formulation

- Create a binary classifier to distinguish normal ECG signals from anomalous ECG signals
- ② Improve the classifier into a multi-class classifier to determine the different types of heartbeat conditions

Data Partitioning By ECG Signal Type

Legend
Normal
Undetermined
Premature ventricular contraction
Artial Premature
Fusion of ventricular and normal

5 classes

- 5 classes
- highly unbalanced 82.8% normal signals

- 5 classes
- ighly unbalanced 82.8% normal signals
- PV, PA, and Fusion signals are more severe

- 5 classes
- highly unbalanced 82.8% normal signals
- PV, PA, and Fusion signals are more severe
- Undetermined is also dangerous

ECG signals

Legend → Normal → Artial Premature

→ Premature ventricular contraction
→ Fusion of ventricular and normal
→ Undetermined

Baseline model: LSTM $_{-}1$ - 1 long-short term memory layer + dense layer + log softmax

• Input dimension = 1×187

- Input dimension = 1×187
- 2 Hidden layer dimension = 1×100

- **1** Input dimension = 1×187
- ② Hidden layer dimension $= 1 \times 100$
- **3** Result dimension = 1x5 (or 1x2 for binary classification)

- 1 LSTM layer maybe not be sufficiently complex
- Problem of unbalanced data
- Other models may need to be aware of zero padding
- Hyper-parameter choices

- 1 LSTM layer maybe not be sufficiently complex
- Problem of unbalanced data
- Other models may need to be aware of zero padding
- Hyper-parameter choices
- angle Up sampling/ down-sampling

- 1 LSTM layer maybe not be sufficiently complex
- Problem of unbalanced data
- Other models may need to be aware of zero padding
- Hyper-parameter choices
- eals Up sampling/ down-sampling
- Weighted penalization for different classes

- 1 LSTM layer maybe not be sufficiently complex
- Problem of unbalanced data
- Other models may need to be aware of zero padding
- Hyper-parameter choices
- angle Up sampling/ down-sampling
- Weighted penalization for different classes
- Masking

- 1 LSTM layer maybe not be sufficiently complex
- Problem of unbalanced data
- Other models may need to be aware of zero padding
- Hyper-parameter choices
- Up sampling/ down-sampling
- Weighted penalization for different classes
- Masking
- $holdsymbol{\Im}$ Hyper-parameter tuning

- 1 LSTM layer maybe not be sufficiently complex
- Problem of unbalanced data
- Other models may need to be aware of zero padding
- Hyper-parameter choices
- f Q Up sampling/ down-sampling
- Weighted penalization for different classes
- Masking
- $holdsymbol{\Im}$ Hyper-parameter tuning
- Make more models!

LSTM₃

Model 2: LSTM $_{-}3$ - 3 long-short term memory layer + dense layer + log softmax

3 stacked LSTM layers

LSTM₃

Model 2: LSTM_3 - 3 long-short term memory layer + dense layer + log softmax

- 3 stacked LSTM layers
- Wilden layer dimension is tuned on Google Cloud (1x100 in image)

Model 3: 1D-CNN - 2 convolution layers + dense layer + log softmax

Model 3: 1D-CNN - 2 convolution layers + dense layer + log softmax

2x (1D convolution layer (kernel size = 7) + Relu non-linearity + Max Pooling (3x down-sampling))

Model 3: 1D-CNN - 2 convolution layers + dense layer + log softmax

- 2x (1D convolution layer (kernel size = 7) + Relu non-linearity + Max Pooling (3x down-sampling))
- Masking can be activated by the flag -masking

Model 3: 1D-CNN - 2 convolution layers + dense layer + log softmax

- Masking can be activated by the flag -masking
- It doesn't increase performance of the models

1D-RESNET

Model 4: 1D-RESNET - 1 convolution layer + 4 residual blocks + dense layer + log softmax

- **1** ID convolution layer (kernel size = 5) + Relu non-linearity + Batch normalization + Max Pooling (2x down-sampling)
- 4x (Residual block: 2x (1D convolution + Relu + Bn))
- Average Pool + Fully connected layer

Hyperparameters tuning

Model 4: 1D-RESNET - 1 convolution layer + 4 residual blocks + dense layer + log softmax

All models

Table: Base model architectures and the principal variations that were tested¹.

Base Model	Variations
LSTM	1 LSTM layer
	2 LSTM layers
	3 LSTM layers
1D-CNN	2 convolutional layers
1D-RESNET	V1 ² - 2 convolutional layers per residual block
	V1 - 4 convolutional layers per residual block
	V2 ³ - 2 convolutional layers per residual block
	V2 - 4 convolutional layers per residual block

¹Other hyper-parameters such as optimizer, learning rates, layer dimensions, weight decay and batch size are not shown but have also been experimented.

²Residual block has a fixed number of filters (32).

³Each residual block doubles the number of filters.

Binary classification results

Figure: Normalized confusion matrices for a) LSTM_1 with no sampling b) LSTM_1 with equal sampling c) 1D-RESNET_v2 with equal sampling

Binary classification results

Figure: Normalized confusion matrices for a) LSTM_1 with no sampling b) LSTM_1 with equal sampling c) 1D-RESNET_v2 with equal sampling

Binary classification results

Binary classification results

Performance is very good

Binary classification results

Figure: ROC curve for binary classification with 1D-RESNET_V2_10 with equal sampling

Figure: Accuracy metric on test set for multi-class classification

Metric: Accuracy

	Sampling Type		
Model name	equal	importance	none
cnn1d_3	0.946	0.886	0.973
lstm_1	0.937	0.897	0.972
lstm_2	0.944	0.929	0.975
resnet1d_10	0.9764	0.976	0.984
resnet1d_18	0.980	0.976	0.987
resnet1d_v2_10	0.985	0.977	0.986
resnet1d_v2_18	0.980	0.981	0.987

Table: Accuracy metric on test set for multi-class classification

Average accuracy per class

Figure: Average accuracy per class metric on test set for multi-class classification

Metric: Average Accuracy per Class

	Sampling Type		
Model name	equal	importance	none
cnn1d_3	0.889	0.896	0.817
lstm_1	0.912	0.909	0.810
lstm_2	0.916	0.921	0.835
resnet1d_10	0.941	0.928	0.911
resnet1d_18	0.919	0.933	0.917
resnet1d_v2_10	0.921	0.936	0.917
resnet1d_v2_18	0.935	0.934	0.915

Table: Average accuracy per class metric on test set for multi-class classification

Figure: Normalized confusion matrices for a) LSTM_1 with no sampling b) LSTM_1 with equal sampling c) 1D-RESNET_v2 with equal sampling

Performance is improving significantly

Classification Comparison

Work	Approach	Avg Acc (%)
Acharya et al ⁴ (2017)	${\sf Augmentation} + {\sf CNN}$	93.5
Li et al ⁵ (2016)	DWT + random forest	94.6
Kachuee et al ⁶ (2018)	Deep residual CNN	93.4
Martis et al ⁷ (2013)	DWT + SVM	93.8
This work	Deep residual CNN	94.1

A deep convolutional neural network model to classify heartbeats.

⁵ Li, Taiyong and Zhou, Min.

ECG Classification Using Wavelet Packet Entropy and Random Forests.

⁶ Kachuee, Mohammad and Fazeli, Shayan and Sarrafzadeh, Majid. ECG Heartbeat Classification: A Deep Transferable Representation.

Applications of Higher Order Cumulant Features for Cardiac Health Diagnosis using ECG Signals.

Resources

OUR WEBSITE:

https://fv316.github.io/MAP583/