

Cursos: Bacharelado em Ciência da Computação e

Bacharelado em Sistemas de Informação

<u>Disciplinas:</u> (1493A) Teoria da Computação e Linguagens Formais,

(4623A) Teoria da Computação e Linguagens Formais e

(1601A) Teoria da Computação

Professora: Simone das Graças Domingues Prado

e-mail: simonedp@fc.unesp.br

home-page: wwwp.fc.unesp.br/~simonedp/discipl.htm

Apostila 03

Assunto: Linguagens Livres de Contexto

Objetivos:

- ⇒ Estudar as linguagens livres de contexto
- ⇒ Estudar as gramáticas livres de contexto
- ⇒ Estudar os autômatos com pilha

Conteúdo:

- 1. Introdução
- 2. Gramática Livre de Contexto
- 3. Árvore de derivação
- 4. Ambigüidade
- 5. Simplificação de GLC
- 6. Formas Normais
- 7. Autômato com pilha
- 8. Propriedades das Linguagens Livres de Contexto

1. Introdução

Foi visto na primeira apostila (TC01.pdf) a hierarquia de Chomsky (veja a figura 1). Na segunda (TC02.pdf) foram tratadas as linguagens regulares que são as mais simples das linguagens, sendo possível desenvolver algoritmos de reconhecimento ou de geração de pouca complexidade, grande eficiência e de fácil implementação.

Figura 1. Hierarquia de Chomsky

As Linguagens Livres de Contextos compreendem uma abordagem mais ampla do que as Linguagens Regulares tratando, de forma apropriada, as questões de balanceamentos entre parênteses e blocos de programas. Os seus algoritmos são simples e possuem uma boa eficiência.

Nessa Apostila serão abordadas as Linguagens Livres de Contexto a partir de dois formalismos:

- Operacional ou reconhecedor uso dos autômatos com pilha (AP)
- Axiomático ou gerador gramática livre de contexto (GLC)

2. Gramática Livre de Contexto

Definição 1.

Uma gramática G = (V, T, S, P) é dita ser uma <u>Gramática Livre de Contexto</u> (GLC) se todas as suas produções, em P, são da forma:

$$A \to \alpha$$
 onde $A \in V$ e $\alpha \in (V \cup T)^*.$

Como $A \in V$, então, do lado esquerdo da produção, aparece somente uma variável. Entretanto, do lado direito, podem aparecer quaisquer combinações, já que $\alpha \in (V \cup T)^*$, ou seja, quaisquer combinações entre as variáveis e os símbolos terminais.

$$\begin{array}{l} L_1 = \{ \ a^n b^n \ | \ n \geq 0 \} \ \text{\'e} \ \text{uma LLC} \\ \text{com } G_1 = (\{S\}, \ \{a,b\}, \ S, \ P) \ \text{tal que} \\ P = \{ \ S \rightarrow a S b \\ S \rightarrow \lambda \ \} \\ \text{Então as cadeias } \{ \ \lambda, \ ab, \ aabb, \ aaabbb \ ... \} \ \text{pertencem a } L_1 \end{array}$$

Exemplo 02

$$L_2 = \{ ww^R \mid w \in \{a,b\}^* \} \text{ \'e uma LLC}$$

$$com G_2 = (\{S\}, \{a,b\}, S, P) \text{ tal que}$$

$$P = \{ S \rightarrow aSa$$

$$S \rightarrow bSb$$

$$S \rightarrow \lambda \}$$

Então as cadeias { λ , aa, bb, abba, aabbaa, aabbbbaa ... } pertencem a L₂

Exemplo 03

 L_3 é composta de expressões aritméticas contendo parênteses balanceados, um operador e dois operandos: com $G_3 = (\{S\}, \{+, *, (,), a\}, S, P)$ tal que

$$P = \{ S \rightarrow S + S \\ S \rightarrow S * S \\ S \rightarrow (S) \\ S \rightarrow a \}$$

Então as cadeias $\{a, a+a, a*a, (a+a), (a*a), (a+a)*a \dots \}$ pertencem a L₃

3. Árvore de derivação

Definição 2

Seja uma Gramática G = (V, T, S, P).

Uma <u>Derivação à Esquerda</u> é aquela que, em cada passo, a variável $A \in V$, mais à esquerda, é substituída.

Uma **<u>Derivação à Direita</u>** é aquela que, em cada passo, a variável A ∈ V, mais à direita, é substituída.

Exemplo 04

Seja $L = \{a^nb^m \mid n \neq m\}$, uma linguagem livre de contexto, com $G = (\{S,T,A,B\}, \{a,b\}, S, P)$, onde as produções são da forma:

$$S \rightarrow AT \mid TB$$

 $T \rightarrow aTb \mid \lambda$
 $A \rightarrow aA \mid a$
 $B \rightarrow bB \mid b$

Verifique as derivações abaixo:

Derivação 01: $S \rightarrow AT \rightarrow aAT \rightarrow aaT \rightarrow aaaTb \rightarrow aaab$ Derivação 02: $S \rightarrow AT \rightarrow AaTb \rightarrow Aab \rightarrow aAab \rightarrow aaab$

Pela Definição02 tem-se que a Derivação 01 é uma derivação à esquerda e a Derivação 02 é uma derivação à direita. Percebe-se que as duas derivações são diferentes e resultam na mesma cadeia. Isso quer dizer que a gramática construída é ambígua. Esse conceito será mais bem formalizado adiante.

Outra forma de mostrar as derivações é através das árvores de derivação.

Definição 3

Para uma determinada Gramática Livre de Contexto, G = (V, T, S, P), a representação da derivação das cadeias na forma de árvore, denominada **Árvore de Derivação**, é como segue:

- a) a raiz é o símbolo inicial da gramática, portanto S;
- b) os vértices interiores obrigatoriamente são variáveis.

Se A é um vértice interior e $X_1, X_2, ..., X_n$ são os filhos de A, então $A \to X_1 X_2 ... X_n$ é uma produção da gramática e os vértices $X_1, X_2, ..., X_n$ são ordenados da esquerda para a direita;

c) um vértice folha é um símbolo terminal ou o símbolo λ (vazio).

Se a folha é o símbolo vazio, ele é o único filho, ou seja, $A \rightarrow \lambda$.

Exemplo 05

 $L_1 = \{ a^n b^n \mid n \ge 0 \}$ uma LLC, com $G_1 = (\{S\}, \{a,b\}, S, P_1)$ tal que $P_1 = \{ S \to aSb, S \to \lambda \}$ Então a cadeia aabb pertence a L_1 . A árvore de derivação é dada pela figura 2.

Exemplo 06

 L_2 é composta de expressões aritméticas contendo parênteses balanceados, um operador e dois operandos, com $G_2 = (\{S\}, \{+, *, (,), a\}, S, P_2)$ tal que $P_2 = \{S \rightarrow S + S \mid S * S \mid (S) \mid a\}$ Então a cadeia a+a*a pertence a L_2 . A árvore de derivação é dada pela figura 3.

Figura 2. cadeia aabb $\in L_1$

Figura 3. cadeia $a+a*a \in L_2$

4. Ambigüidade

Definição 4

Uma Gramática Livre de Contexto é dita ser **Gramática Ambígua**, se existe uma cadeia que possua duas ou mais derivações ou duas ou mais árvores de derivação.

Exemplo 07

 L_1 é composta de expressões aritméticas contendo parênteses balanceados, um operador e dois operandos, com $G_1 = (\{S\}, \{+, *, (,), a\}, S, P_1)$ tal que $P_1 = \{S \rightarrow S + S \mid S * S \mid (S) \mid a\}$ A cadeia a+a*a, pertencente a L_1 pode ter as derivações:

$$S \rightarrow S + S \rightarrow a + S \rightarrow a + S * S \rightarrow a + a * S \rightarrow a + a * a$$

 $S \rightarrow S + S \rightarrow S + S * S \rightarrow S + S * a \rightarrow S + a * a \rightarrow a + a * a$

e as árvores de derivação:

Então a gramática é ambígua.

Definição 5

Uma Linguagem é uma <u>Linguagem Inerentemente Ambígua</u> se qualquer Gramática Livre de Contexto que a define é ambígua.

Uma Linguagem é uma <u>Linguagem Não Ambígua</u> se existir uma Gramática Livre de Contexto, que a define, não ambígua.

Exemplo 08 - Linguagens não ambíguas.

Seja
$$G_1 = (\{S\}, \{a, +\}, S, P_1)$$
, tal que $P_1 = \{S \rightarrow a \mid S + S\}$
Então se pode gerar a cadeia $a + a$ da forma:
$$S \rightarrow S + S \rightarrow S + a \rightarrow a + a \quad (derivação à direita)$$
$$S \rightarrow S + S \rightarrow a + S \rightarrow a + a \quad (derivação à esquerda)$$
Portanto G_1 é ambígua

Seja
$$G_2 = (\{S\}, \{a, +\}, S, P_2)$$
, tal que $P_2 = \{S \rightarrow a \mid a + S\}$
Então se pode gerar a cadeia $a + a$ da forma:

$$S \rightarrow a + S \rightarrow a + a \rightarrow a + a$$

Portanto G₂ não é ambígua

Seja
$$G_3 = (\{S\}, \{a, +\}, S, P_3)$$
, tal que $P_3 = \{S \rightarrow a \mid a + a \mid S + S\}$
Então se pode gerar a cadeia $a + a$ da forma:
 $S \rightarrow a + a$
 $S \rightarrow S + S \rightarrow S + a \rightarrow a + a$ (deriveoño à diraita)

$$S \rightarrow S + S \rightarrow S + a \rightarrow a + a$$
 (derivação à direita)
 $S \rightarrow S + S \rightarrow a + S \rightarrow a + a$ (derivação à esquerda)

Portanto G₃ é ambígua

Entretanto a Linguagem, $L = L(G_1) = L(G_2) = L(G_3)$, não é ambígua, já que existe uma gramática (G_2) que não é ambígua.

Exemplo 09 - Linguagens inerentemente ambíguas.

A linguagem $L = \{ a^n b^m c^m \mid n \ge 0, m \ge 0 \} \cup \{ a^n b^m c^n \mid n \ge 0, m \ge 0 \}$ é inerentemente ambígua. Vejamos porque:

$$L = L_1 \cup L_2$$

L₁ é gerada pela Gramática $G_1 = (\{S_1, A\}, \{a,b,c\}, S_1, P_1)$, tal que $P_1 = \{S_1 \rightarrow S_1 c \mid A, A \rightarrow aAb \mid \lambda\}$ L₂ é gerada pela Gramática $G_2 = (\{S_2, B\}, \{a,b,c\}, S_2, P_2)$, tal que $P_2 = \{S_2 \rightarrow aS_2 \mid B, B \rightarrow bBc \mid \lambda\}$ L é gerada pela gramática, $G = (\{S_1, A, S_2, B\}, \{a,b,c\}, S, P)$, tal que $P = P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}$

A gramática G é ambígua desde que a cadeia $a^nb^nc^n$ (a única resultante da união das duas linguagens) tem duas derivações distintas (uma a partir de S_1 e outra a partir de S_2).

5. Simplificação de Gramáticas Livres de Contexto

A simplificação acontece para a otimização de construções de gramáticas e por consequência na otimização de algoritmos e demonstração de teoremas. A seguir serão vistas as seguintes simplificações:

- Retirada de produções vazias da forma $A \rightarrow \lambda$
- Retirada de produções da forma $A \rightarrow B$ que simplesmente substituem uma variável por outra.
- Retirada de variáveis ou símbolos terminais não usados

5.1. Retirada de produções vazias

Considere a Gramática Livre de Contexto G = (V, T, S, P). O algoritmo para retirada das produções vazias é composto por três etapas, como segue:

Etapa1: Definição do conjunto de variáveis que constituem produções vazias (V_{λ})

Etapa2: Definição do conjunto de produções sem produções vazias.

Etapa3: Inclusão de geração da palavra vazia, se necessário.

Etapa1: Conjunto de variáveis que constituem produções vazias

No final dessa etapa será construído um conjunto de variáveis que geram λ , ou seja, V_{λ} .

Rotina para construção de V_{λ}

```
\begin{split} & V_{\lambda} = \{A \mid A \rightarrow \lambda \;\}; \\ & \text{Repita} \\ & V_{\lambda} = V_{\lambda} \cup \{\; X \mid X \rightarrow X_{1} \; ... \; X_{n} \; \in P \; \text{tal que} \; X_{1}, \; ...., \; X_{n} \; \in V_{\lambda} \;\} \\ & \text{At\'e que o cardinal de} \; V_{\lambda} \; \text{n\~ao} \; \text{aumente} \end{split}
```

Lembre-se que cardinal de um conjunto corresponde ao tamanho deste conjunto. Assim, a rotina encerra o comando "Repita ... Até ..." quando o conjunto V_{λ} não se alterar.

Etapa2: Conjunto de produções sem produções vazias.

A gramática resultante dessa etapa é $G_1 = (V, T, S, P_1)$ onde o conjunto de produções P_1 é construído pela rotina abaixo.

Rotina para construção de P₁

```
\begin{array}{l} P_1 = \{A \rightarrow \alpha \mid \alpha \neq \lambda \ \} \\ \text{Repita} \\ \text{para toda produção } A \rightarrow \alpha \in P \ e \ X \in V_\lambda \ \text{tal que } \alpha = \alpha_1 \ X \ \alpha_2 \quad e \quad \alpha_1 \alpha_2 \neq \lambda \ \text{faça} \\ P_1 = P_1 \cup \{\ A \rightarrow \alpha_1 \alpha_2 \ \} \\ \text{Até que o cardinal de } P_1 \ \text{não aumente} \end{array}
```

Etapa3: Inclusão de geração da palavra vazia, se necessário.

Se a palavra vazia pertence à linguagem, então a gramática resultante desta etapa é G_2 = (V, T, S, P_2), com P_2 = P_1 \cup { S \rightarrow λ }

- 7 -

Seja G = (
$$\{S, X, Y\}$$
, $\{a,b\}$, P, S) com P = $\{S \rightarrow aXa \mid bXb \mid \lambda, X \rightarrow a \mid b \mid Y, Y \rightarrow ab \mid \lambda\}$

Etapa1:

$$\begin{split} &V_{\lambda} = \{Y \mid Y \to \lambda \;\} = \{\; Y\;\} \\ &V_{\lambda} = \{S \mid S \to \lambda \;\} = \{\; S, \; Y\;\} \\ &1^{a}. \; iteração: \; V_{\lambda} = \{\; Y\;\} \;\cup \; \{\; X \mid X \to Y\;\} = \{S, \; Y, \; X\} \end{split}$$

Portanto $V_{\lambda} = \{S, X, Y\}$

Etapa2:

$$\begin{array}{ll} P_{1} = \{ \; S \rightarrow aXa \; | \; bXb \; \; , \; X \rightarrow a \; | \; b \; | \; Y, \; Y \rightarrow ab \; \} \\ 1^{a}. \; iteração - & P_{1} = \{ \; S \rightarrow aXa \; | \; bXb \; \; , \; X \rightarrow a \; | \; b \; | \; Y \; , \; Y \rightarrow ab \; \} \; \cup \; \{ \; S \rightarrow aa \; | \; bb \; \} = \\ = \{ \; S \rightarrow aXa \; | \; bXb \; | \; aa \; | \; bb \; , \; X \rightarrow a \; | \; b \; | \; Y, \; Y \rightarrow ab \; \} \\ 2^{a}. \; iteração - & P_{1} = \{ \; S \rightarrow aXa \; | \; bXb \; | \; aa \; | \; bb \; , \; X \rightarrow a \; | \; b \; | \; Y \; , \; Y \rightarrow ab \; \} \; \cup \; \Phi = \\ = \{ \; S \rightarrow aXa \; | \; bXb \; | \; aa \; | \; bb \; , \; X \rightarrow a \; | \; b \; | \; Y \; , \; Y \rightarrow ab \; \} \\ Então \; G_{1} = (V, \; T, \; S, \; P_{1}) \; onde \; P_{1} = \{ \; S \rightarrow aXa \; | \; bXb \; | \; aa \; | \; bb \; , \; X \rightarrow a \; | \; b \; | \; Y \; , \; Y \rightarrow ab \; \} \end{array}$$

Etapa3:

$$P_2 = P_1 \cup \{S \rightarrow \lambda\}$$

Então $G_2 = (V, T, S, P_2)$, com $P_2 = \{ S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \lambda, X \rightarrow a \mid b \mid Y, Y \rightarrow ab \}$

5.2. Retirada de produções da forma $A \rightarrow B$

Considere a Gramática Livre de Contexto G = (V, T, S, P). O algoritmo para retirada dessas produções é composto por duas etapas, como segue:

<u>Etapa1</u>: Construção do fecho de cada variável

Etapa2: Exclusão das produções da forma $A \rightarrow B$.

Etapa1: construção do fecho de cada variável

Rotina para construção dos fechos

Para toda variável $A \in V$ faça fecho- $A = \{B \mid A \neq B \text{ e } A \Rightarrow^+ B \text{ usando exclusivamente produções da forma } X \rightarrow Y\};$

Etapa2: exclusão das produções da forma $A \rightarrow B$.

A gramática resultante dessa etapa é $G_1 = (V, T, P_1, S)$ onde P_1 é construído como na rotina a seguir: Rotina para geração de P_1

$$P_{1} = \{ A \rightarrow \alpha \mid \alpha \notin V \};$$
Para toda variável $A \in V$ e $B \in$ fecho- A faça
$$Se \ B \rightarrow \alpha \in P \ e \ \alpha \notin V$$
Então $P_{1} = P_{1} \cup \{ A \rightarrow \alpha \};$

Considere a Gramática obtida do exercício 10:

$$G = (\{S, X, Y\}, \{a, b\}, S, P), \text{ com } P = \{S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \lambda, X \rightarrow a \mid b \mid Y, Y \rightarrow ab \}$$

Etapa1:

```
Para toda variável A \in V, então S, X e Y fecho-S = \Phi fecho-X = \{Y\} fecho-Y = \Phi
```

Etapa2:

```
\begin{array}{l} P_1 = \{ \ S \rightarrow aXa \ | \ bXb \ | \ aa \ | \ bb \ | \ \lambda \ , \ X \rightarrow a \ | \ b \ , \ Y \rightarrow ab \ \} \\ 1^a.iteração - \quad S \in \{S,X,Y\} \\ \quad \text{fecho-S} = \Phi \ \text{então} \ \ (FALHA) \\ 2^a.iteração - \quad X \in \{S,X,Y\} \ e \ Y \in \text{fecho-X} = \{Y\} \\ \quad \text{Como} \ Y \rightarrow ab, \ \text{então} \ X \rightarrow ab \\ \quad \text{Então} \ P_1 = \{S \rightarrow aXa \ | \ bXb \ | \ aa \ | \ bb \ | \ \lambda, \ X \rightarrow a \ | \ b \ | \ ab, \ Y \rightarrow ab\} \\ \quad P_1 = \{S \rightarrow aXa \ | \ bXb \ | \ aa \ | \ bb \ | \ \lambda, \ X \rightarrow a \ | \ b \ | \ ab, \ Y \rightarrow ab\} \end{array}
```

A gramática resultante é $G_1 = (V, T, P_1, S)$ onde $P_1 = \{S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \lambda, X \rightarrow a \mid b \mid ab, Y \rightarrow ab\}$

5.3. Retirada de símbolos não usados

Considere a Gramática Livre de Contexto G = (V, T, S, P). O algoritmo para retirada dos símbolos inúteis é composto por duas etapas, como segue:

Etapa1: Garantia de que qualquer variável gera terminais.

Etapa2: Garantia de que qualquer símbolo é atingível a partir do símbolo inicial.

Etapa1: garante que qualquer variável gera terminais. Resultado: $G_1 = (V_1, T, S, P_1)$

Ao final dessa etapa é construída a Gramática Livre de Contexto $G_1 = (V_1, T, S, P_1)$ com V_1 construído como na rotina a seguir e P_1 possuirá os mesmos elementos de P excetuando-se as produções cujas variáveis não pertencem a V_1 .

Rotina para geração de V_1 :

```
\begin{aligned} V_1 &= \Phi; \\ \text{Repita} \\ V_1 &= V_1 \cup \{ \text{ A} \mid A \rightarrow \alpha \in P \text{ e } \alpha \in (T \cup V_1)^* \} \\ \text{At\'e que o cardinal de } V_1 \text{ n\~ao se altere.} \end{aligned}
```

Lembre-se que cardinal de um conjunto corresponde ao tamanho deste conjunto. Assim, a rotina encerra o comando "Repita ... Até ..." quando o conjunto V_1 não se alterar.

Etapa2: garante que qualquer símbolo é atingível a partir do símbolo inicial.

Ao final dessa etapa é construída a Gramática Livre de Contexto $G_2 = (V_2, T_2, S, P_2)$ com V_2 construído e T_2 construídos como a rotina abaixo e o conjunto P_2 possuirá os mesmos elementos de P_1 excetuando-se as produções cujos símbolos não pertencem a V_2 ou T_2 .

Rotina para a geração de V₂ e T₂:

```
\begin{split} T_2 &= \Phi; \\ V_2 &= \{\,S\,\}; \\ \text{Repita} \\ V_2 &= V_2 \cup \{\,A \mid X \rightarrow \alpha \; A \; \beta \; \in P_1, \, X \in V_2\,\}; \\ T_2 &= T_2 \cup \{\,a \mid X \rightarrow \alpha \; a \; \beta \; \in \; P_1, \, X \in V_2\,\}; \\ \text{Até que os cardinais de } V_2 \, e \; T_2 \; \text{não aumentem}. \end{split}
```

Exemplo 12

A gramática resultante do exercício 11 foi G = (V, T, P, S) onde $P = \{S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \lambda, X \rightarrow a \mid b \mid ab, Y \rightarrow ab\}$

Etapa1:

A geração de V₁

```
V_1 = \Phi;

1^a. interação - V_1 = \Phi \cup \{ S, X, Y \mid S \rightarrow aa \mid bb, X \rightarrow a \mid b \mid ab, Y \rightarrow ab \} = \{S, X, Y\}

Então V_1 = \{S, X, Y\}
```

Então $P_1 = P$

Etapa2:

A geração de V₂ e T₂

```
\begin{array}{l} T_2 = \Phi; \\ V_2 = \{\,S\,\}; \\ 1^a. \ \text{interação} - V_2 = \{S\} \cup \{\,A \mid B \to \alpha \, A \, \beta \, \in P_1, \, B \in \{S\}\} = \\ &= \{S\} \cup \{\,X \mid S \to a \, X \, a\,\} = \{S, \, X\} \\ T_2 = \Phi \cup \{\,a \mid B \to \alpha \, a \, \beta \, \in \, P_1, \, B \in \{S, \, X\}\} = \\ &= \{\,a \mid X \to a\} = \{a\} \\ 2^a. \ \text{interação} - V_2 = \{S, \, X\} \cup \{\,A \mid B \to \alpha \, A \, \beta \, \in P_1, \, B \in \{S, \, X\}\} = \\ &= \{S, \, X\} \cup \Phi = \{S, \, X\} \\ T_2 = \{a\} \cup \{\,a \mid B \to \alpha \, a \, \beta \, \in \, P_1, \, B \in \{S, \, X\}\} = \\ &= \{a\} \cup \{\,b \mid X \to b\,\} = \{a, b\} \\ \text{Então } V_2 = \{S, \, X\} \in T_2 = \{a, b\} \end{array}
```

Então
$$P_2 = P = \{S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \lambda, X \rightarrow a \mid b \mid ab \}$$
, já que $Y \notin V_2$
Assim, $G_2 = (\{S, X\}, \{a,b\}, S, P_2)$, com $P_2 = \{S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \lambda, X \rightarrow a \mid b \mid ab \}$

Portanto, a partir de:

$$G = (\{S,\,X,\,Y\},\,\{a,b\},\,P,\,S)\;com\;P = \{S \to aXa\mid bXb\mid \lambda\;,\,X \to a\mid b\mid Y,\,Y \to ab\mid \lambda\;\}$$
 Obteve-se:

$$G_2 = (\{S, X\}, \{a,b\}, S, P_2), \text{ com } P_2 = \{S \rightarrow aXa \mid bXb \mid aa \mid bb \mid \lambda, X \rightarrow a \mid b \mid ab \}$$

5.4. Simplificações combinadas

Deve-se seguir a seguinte sequência:

- 1. Retirada de produções vazias $(A \rightarrow \lambda)$
- 2. Retirada de produções da forma $A \rightarrow B$
- 3. Retirada de símbolos não usados

Exemplo 13

```
Seja G = ({S,X,Y,Z,A,B}, {a,b,u,v}, S, P), onde

P = { S \rightarrow XYZ,

X \rightarrow AXA \mid BXB \mid Z \mid \lambda,

Y \rightarrow AYB \mid BYA \mid Z \mid \lambda,

Z \rightarrow Zu \mid Zv \mid \lambda,

A \rightarrow a,

B \rightarrow b}
```

1^a. Fase: Retirada das produções vazias

Etapa 1.1: Definição do conjunto de variáveis que constituem produções vazias (V_{λ})

$$V_{\lambda} = \{X, Y, Z\}, já que X \rightarrow \lambda, Y \rightarrow \lambda e Z \rightarrow \lambda$$

Mas como $S \to XYZ$ e todas essas variáveis já pertencem a V_{λ} , então S pertence, também a V_{λ} Então $V_{\lambda} = \{S, X, Y, Z\}$

Etapa 1.2: Definição do conjunto de produções sem produções vazias.

Primeiramente, farão parte do conjunto de produções, as produções que não são vazias, ou seja, $\{A \to \alpha \mid \alpha \neq \lambda \}$

Então, $P_1 = \{S \rightarrow XYZ, X \rightarrow AXA \mid BXB \mid Z, Y \rightarrow AYB \mid BYA \mid Z, Z \rightarrow Zu \mid Zv, A \rightarrow a, B \rightarrow b\}$ Depois, serão incluídas as produções que obedecem à regra:

Se A
$$\rightarrow \alpha \in P$$
 e X $\in V_{\lambda}$ tal que $\alpha = \alpha_1 \times \alpha_2$ e $\alpha_1 \alpha_2 \neq \lambda$ faça $P_1 = P_1 \cup \{A \rightarrow \alpha_1 \alpha_2\}$

Assim,

$$\begin{split} P_1 = P_1 \cup \{ & \text{ S} \rightarrow \text{YZ} \mid \text{XZ} \mid \text{XY} \mid \text{X} \mid \text{Y} \mid \text{Z}, \text{ } \text{X} \rightarrow \text{AA} \mid \text{BB}, \text{Y} \rightarrow \text{AB} \mid \text{BA}, \text{Z} \rightarrow \text{u} \mid \text{v} \text{ } \} \\ \text{Portanto } P_1 = \{ \text{S} \rightarrow \text{XYZ} \mid \text{YZ} \mid \text{XZ} \mid \text{XY} \mid \text{X} \mid \text{Y} \mid \text{Z}, \text{ } \text{X} \rightarrow \text{AXA} \mid \text{BXB} \mid \text{Z} \mid \text{AA} \mid \text{BB}, \\ \text{Y} \rightarrow \text{AYB} \mid \text{BYA} \mid \text{Z} \mid \text{AB} \mid \text{BA}, \text{ } \text{Z} \rightarrow \text{Zu} \mid \text{Zv} \mid \text{u} \mid \text{v}, \text{ } \text{A} \rightarrow \text{a}, \text{ } \text{B} \rightarrow \text{b} \} \end{split}$$

Etapa 1.3: Inclusão de geração da palavra vazia, se necessário (S $\rightarrow \lambda$)

A palavra vazia pertencia à linguagem, portanto precisa ser recolocada.

Portanto,
$$G_2 = (\{S, X, Y, Z, A, B\}, \{a, b, u, v\}, S, P_2)$$
, onde

$$P_2 = \{ S \rightarrow XYZ \mid YZ \mid XZ \mid XY \mid X \mid Y \mid Z \mid \lambda, X \rightarrow AXA \mid BXB \mid Z \mid AA \mid BB, Y \rightarrow AYB \mid BYA \mid Z \mid AB \mid BA, Z \rightarrow Zu \mid Zv \mid u \mid v, A \rightarrow a, B \rightarrow b \}$$

2^a . Fase: Retirada de produções da forma $A \rightarrow B$

Etapa 2.1: Construção do fecho de cada variável

fecho- $S = \{X,Y,Z\}$

 $fecho-X = \{Z\}$

fecho- $Y = \{Z\}$

fecho- $Z = \Phi$

fecho- $A = \Phi$

fecho-B = Φ

Etapa 2.2: Exclusão das produções da forma $A \rightarrow B$.

Primeiramente, forme o conjunto de produções excluindo as produções da forma $A \rightarrow B$

$$P_3 = \{ S \rightarrow XYZ \mid YZ \mid XZ \mid XY \mid \lambda, X \rightarrow AXA \mid BXB \mid AA \mid BB, \}$$

$$Y \rightarrow AYB \mid BYA \mid AB \mid BA, Z \rightarrow Zu \mid Zv \mid u \mid v, A \rightarrow a, B \rightarrow b$$

Passe por todas as variáveis e seus fechos e faça:

Para variável X e Z em seu fecho, acrescentaremos: $X \rightarrow Zu \mid Zv \mid u \mid v$

Para variável Y e Z em seu fecho, acrescentaremos: $Y \rightarrow Zu \mid Zv \mid u \mid v$,

Para variável S e X em seu fecho, acrescentaremos: S → AXA | BXB| AA | BB

Para variável S e Y em seu fecho, acrescentaremos: S → AYB | BYA | AB | BA

Para variável S e Z em seu fecho, acrescentaremos: $S \rightarrow Zu \mid Zv \mid u \mid v$,

Assim,
$$P_3 = \{ S \rightarrow XYZ | YZ | XZ | XY | \lambda | AXA | BXB | AA | BB | AYB | BYA | AB | BA | Zu | Zv | u | v,$$

 $X \rightarrow AXA \mid BXB \mid AA \mid BB \mid Zu \mid Zv \mid u \mid v$

 $Y \rightarrow AYB \mid BYA \mid AB \mid BA \mid Zu \mid Zv \mid u \mid v,$

 $Z \rightarrow Zu \mid Zv \mid u \mid v, A \rightarrow a, B \rightarrow b$

3ª. Fase: Retirada de símbolos não usados

Etapa 3.1: Garantia de que qualquer variável gera terminais.

$$V_1 = \Phi$$
;

$$V_1 = \Phi \cup \{ W \mid W \to \alpha \in P \text{ e } \alpha \in (a,b,u,v)^* \} = \{ S, X, Y, Z, A, B \}$$

Assim, P₃ não se altera.

Etapa 3.2: garante que qualquer símbolo é atingível a partir do símbolo inicial.

$$T_2 = \Phi$$
;

$$V_2 = \{S\};$$

 1^a . interação - verifica quais variáveis são "vistas" pelas variáveis que estão em $V_2 = \{S\}$.

Assim,
$$V_2 = \{S\} \cup \{X, Y, Z, A, B\} = \{S, X, Y, Z, A, B\}$$

Verifica quais terminais são "vistos" pelas variáveis que estão em V₂

Assim,
$$T_2 = \Phi \cup \{a, b, u, v\} = \{a, b, u, v\}$$

Então
$$V_2 = \{ S, X, Y, Z, A, B \} e T_2 = \{ a, b, u, v \}$$

Portanto a gramática simplificada é:

$$G_3 = (\{S,X,Y,Z,A,B\}, \{a,b,u,v\}, S, P_3), onde:$$

$$P_3 = \{ S \rightarrow XYZ \mid YZ \mid XZ \mid XY \mid \lambda \mid AXA \mid BXB \mid AA \mid BB \mid AYB \mid BYA \mid AB \mid BA \mid Zu \mid Zv \mid u \mid v, \}$$

$$X \rightarrow AXA \mid BXB \mid AA \mid BB \mid Zu \mid Zv \mid u \mid v$$

$$Y \rightarrow AYB \mid BYA \mid AB \mid BA \mid Zu \mid Zv \mid u \mid v$$

$$Z \rightarrow Zu \mid Zv \mid u \mid v, A \rightarrow a, B \rightarrow b$$

6. Formas Normais

Existem vários conjuntos de formas normais para linguagens livres de contexto. Algumas delas são mais úteis e são mais estudadas. Aqui serão vistas duas: a Forma Normal de **Chomsky** e a Forma Normal de **Greibach**.

Uma forma normal, a pesar de impor restrições sobre as gramáticas, é suficientemente abrangentes para permitir que qualquer gramática tenha uma gramática equivalente na forma normal.

6.1. Forma Normal de Chomsky

Definição 6

Uma Gramática Livre de Contexto é dita estar na **Forma Normal de Chomsky** se todas as produções são da forma:

 $A \rightarrow BC$ ou $A \rightarrow a$

Onde A, B e C são variáveis e a é um terminal.

Teorema 1

Qualquer Gramática Livre de Contexto G = (V, T, S, P) com $\lambda \notin L(G)$ tem uma gramática $G_{fnc} = (V_{fnc}, T_{fnc}, S, P_{fnc})$ na Forma Normal de Chomsky

Algoritmo

Transforma uma Gramática Livre de Contexto em uma Gramática na Forma Normal de Chomsky em três etapas:

Etapa1: Simplificação da gramática

Etapa2: Transformação do lado direito das produções de comprimento maior ou igual a dois.

<u>Etapa3</u>: Transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis.

Etapa1: Simplificação da gramática

A gramática resultante desta etapa é: $G_1 = (V_1, T_1, S, P_1)$

Etapa2: Transformação do lado direito das produções de comprimento maior ou igual a dois.

A gramática resultante desta etapa é: $G_2 = (V_2, T_1, S, P_2)$, onde V_2 e P_2 são construídos através da rotina abaixo:

```
\begin{split} V_2 &= V_1; \\ P_2 &= P_1; \\ Para toda produção \ A \rightarrow X_1 X_2 \dots X_n \ \in P_2 \ tal \ que \ n \geq 2 \ faça \\ & se \ r \in \{1, ..., n\}, \ X_r \ \'e \ um \ s\'mbolo \ terminal \\ & então \ (suponha \ X_r = a) \\ & V_2 &= V_2 \cup \{C_a\}; \\ & substitui \ a \ pela \ variável \ C_a \ em \ A \rightarrow X_1 X_2 \dots X_n \ \in P_2 \ ; \\ & P_2 &= P_2 \ \cup \{C_a \rightarrow a\}; \end{split}
```

<u>Etapa3</u>: Transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis.

A gramática resultante desta etapa é: $G_3 = (V_3, T_1, S, P_3)$, onde V_3 e P_3 são construídos através da rotina abaixo:

```
\begin{array}{l} V_3 = V_2; \\ P_3 = P_2; \\ Para \ toda \ produção \ A \to B_1B_2 \ ... \ B_n \ \in P_3 \ tal \ que \ n \geq 3 \ faça \\ P_3 = P_3 - \{ \ A \ \to B_1B_2 \ ... \ B_n \ \}; \\ V_3 = V_3 \cup \{ \ D_1D_2 \ ... \ D_{n-2} \ \}; \\ P_3 = P_3 \ \cup \{ A \to B_1D_1, \ D_1 \to B_2D_2, \ ..., \ D_{n-3} \to B_{n-2}D_{n-2}, \ D_{n-2} \to B_{n-1}B_n \}; \end{array}
```

Exemplo 14

Considere a Gramática $G = (\{S\}, \{+, *, [,], x\}, P, S), \text{ onde } P = \{S \rightarrow S + S \mid S * S \mid [S] \mid x\}$

Etapa1: Simplificação – já está simplificada

Etapa2:

```
\begin{array}{ll} V_2 = V = \{S\} \\ P_2 = P = \{ \ S \to S + S \mid S * S \mid [\ S\ ] \mid x \} \\ Para & toda\ produção\ A \to X_1 X_2 ...\ X_n \in P_2\ tal\ que\ n \geq 2 \\ S \to S + S \\ & \text{Faça: se para } r \in \{1, ..., 3\},\ X_r \text{ \'e um s\'imbolo terminal} \\ & \text{então (suponha}\ X_r = +) \\ & V_2 = \{S\} \cup \{C_+\} = \{\ S,\ C_+\} \\ & S \to S\ C_+\ S \\ & P_2 = \{\ S \to S\ C_+\ S \mid S * S \mid [\ S\ ] \mid x \} \ \cup \{C_+ \to +\} = \\ & P_2 = \{\ S \to S\ C_+\ S \mid S * S \mid [\ S\ ] \mid x,\ C_+ \to +\} \end{array}
```

```
Faça se r \in \{1, ..., 3\}, X_r é um símbolo terminal
                                               então (suponha X_r = *)
                                                   V_2 = \{ S, C_+ \} \cup \{C_* \} = \{ S, C_+, C_* \}
                                                    S \rightarrow S C_* S
                                                    P_2 = \{ S \to S C_+ S | S C_* S | [S] | x, C_+ \to + \} \cup \{C_* \to * \} =
                                                    P_2 = \{ S \to S C_+ S \mid S C_* S \mid [E] \mid x, C_+ \to +, C_* \to * \}
                                     S \rightarrow [S]
                                     Faça se r \in \{1, ..., 3\}, X_r é um símbolo terminal
                                               então (suponha X_r = [)
                                                   V_2 = \{ S, C_+, C_* \} \cup \{ C_{\Gamma} \} = \{ S, C_+, C_*, C_{\Gamma} \}
                                                    S \rightarrow C_{1} S
                                                    P_2 = \{ S \to S C_+ S | S C_* S | C_F S | x, C_+ \to + \} \cup \{C_F \to F\} =
                                                    P_2 = \{ S \to S C_+ S \mid S C_* S \mid C_f S \} \mid x, C_+ \to +, C_f \to [ \}
                                               então (suponha X_r = 1)
                                                   V_2 = \{ S, C_+, C_*, C_{\lceil} \} \cup \{C_1\} = \{ S, C_+, C_*, C_{\lceil}, C_1\} \}
                                                    S \rightarrow C_1 S C_1
                                                    P_2 = \{ S \to S C_+ S \mid S C_* S \mid C_{\Gamma} S C_{\Gamma} \mid x, C_+ \to +, C_{\Gamma} \to \Gamma \} \cup \{C_1 \to \Gamma\} \}
                                                    P_2 = \{ S \rightarrow S C_+ S \mid S C_* S \mid C_f S C_l \mid x, C_+ \rightarrow +, C_f \rightarrow \lceil, C_l \rightarrow \rceil \}
Então V_2 = \{ S, C_+, C_*, C_1, C_1 \}
          P_2 = \{ S \rightarrow S C_+ S \mid S C_* S \mid C_1 \mid x, C_+ \rightarrow +, C_1 \rightarrow [, C_1 \rightarrow ] \}
Etapa3:
                       V_3 = V_2 = \{ S, C_+, C_*, C_[, C_1] \}
                       P_3 = P_2 = \{ S \to S C_+ S \mid S C_* S \mid C_f S C_l \mid x, C_+ \to +, C_f \to [, C_f \to ] \}
                       Para toda produção A \rightarrow B_1B_2 ... B_n \in P_3 tal que n \ge 3
                                    S \rightarrow S C_+ S
                                    P_3 = P_3 - \{S \to S C_+ S\} = \{S \to S C_+ S | C_1 S C_1 | x, C_+ \to +, C_1 \to [C_1 \to C_1]\}
                                    V_3 = V_3 \cup \{D_1\} = \{S, C_+, C_*, C_{\lceil}, C_{\rceil}, D_1\}
                                     P_3 = P_3 \cup \{S \to SD_1, D_1 \to C_+ S\} =
                                          = \{ S \rightarrow S C_* S | C_f S C_1 | x | SD_1, C_+ \rightarrow +, C_f \rightarrow [, C_1 \rightarrow ], D_1 \rightarrow C_+ S \}
                                    S \rightarrow S C_* S
                                    P_3 = P_3 - \{ S \rightarrow S C * S \} =
                                         = \{S \rightarrow C_1 \mid X \mid SD_1, C_+ \rightarrow +, C_1 \rightarrow [, C_1 \rightarrow ], D_1 \rightarrow C_+ S\}
                                    V_3 = V_3 \cup \{D_2\} = \{S, C_+, C_*, C_{\lceil}, C_{\rceil}, D_1, D_2\}
                                     P_3 = P_3 \cup \{S \rightarrow SD_2, D_2 \rightarrow C * S\} =
                                          = \{S \rightarrow C_1 \mid SC_1 \mid X \mid SD_1 \mid SD_2, C_+ \rightarrow +, C_1 \rightarrow [, C_1 \rightarrow ], D_1 \rightarrow C_+ \mid S, D_2 \rightarrow C_* \mid S\}
                                    S \rightarrow C_1 S C_1
                                    P_3 = P_3 - \{ S \rightarrow C_1 \ S \ C_1 \} =
                                         = \{S \rightarrow x \mid SD_1 \mid SD_2, C_+ \rightarrow +, C_{\lceil} \rightarrow [, C_{\rceil} \rightarrow ], D_1 \rightarrow C_+ S, D_2 \rightarrow C_* S\}
                                    V_3 = V_3 \cup \{D_3\} = \{S, C_+, C_*, C_1, D_1, D_2, D_3\}
                                     P_3 = P_3 \cup \{S \to C_1 D_3, D_3 \to S C_1\} =
                                         = \{S \rightarrow x | SD_1 | SD_2 | C_1D_3, C_+ \rightarrow +, C_1 \rightarrow [, C_1 \rightarrow ], D_1 \rightarrow C_+ S, D_2 \rightarrow C_* S, D_3 \rightarrow S C_1 \}
```

 $S \rightarrow S * S$

Portanto, a Gramática na Forma Normal de Chomsky, pode ser dada por:

```
\begin{split} G_{fnc} &= (V_{fnc}, T_{fnc}, S, P_{fnc}), \, \text{onde} \\ V_{fnc} &= \{ \, S, \, C_+, C_*, C_[, C_], \, D_1, \, D_2, \, D_3 \} \\ T_{fnc} &= \{ +, \, *, \, [, \, ], \, x \} \\ P_{fnc} &= \{ S \rightarrow x, \\ S \rightarrow SD_1, \\ S \rightarrow SD_2, \\ S \rightarrow C_[D_3, \\ C_+ \rightarrow +, \\ C_[\rightarrow [, \\ C_] \rightarrow ], \\ D_1 \rightarrow C_+ \, S, \\ D_2 \rightarrow C_* \, S, \\ D_3 \rightarrow S \, C_1 \} \end{split}
```

Exemplo 15

Considere a Gramática $G = (\{S, A, B\}, \{a,b\}, S, P), P = \{S \rightarrow abAB, A \rightarrow bAB|\lambda, B \rightarrow BAa|A|\lambda\}$

Etapa1: Simplificação

1^a. Fase: Retirada das produções vazias

Etapa 1.1: Definição do conjunto de variáveis que constituem produções vazias (V_{λ}) $V_{\lambda} = \{A, B\}$, já que $A \rightarrow \lambda$ e $B \rightarrow \lambda$ Então $V_{\lambda} = \{A, B\}$

Etapa 1.2: Definição do conjunto de produções sem produções vazias.

Primeiramente, farão parte do conjunto de produções, as produções que não são vazias

Então,
$$P_1 = \{S \rightarrow abAB, A \rightarrow bAB, B \rightarrow BAa \mid A\}$$

Depois, serão incluídas as produções que obedecem à regra:

$$Se\ A \rightarrow \alpha \in P\ e\ X \in V_{\lambda}\ tal\ que\ \alpha = \alpha_{1}\ X\ \alpha_{2}\ e\ \alpha_{1}\alpha_{2} \neq \lambda\ faça\ P_{1} = P_{1}\ \cup\ \{\ A \rightarrow \alpha_{1}\alpha_{2}\ \}$$
 Assim, $P_{1} = P_{1}\ \cup\ \{\ S \rightarrow abB\ |\ abA\ |\ ab\ ,\ A \rightarrow bB\ |\ bA\ |\ b,\ B \rightarrow Ba\ |\ Aa\ |\ a\}$ Portanto $P_{1} = \{\ S \rightarrow abAB\ |\ abB\ |\ abA\ |\ ab,\ A \rightarrow bAB\ |\ bB\ |\ bA\ |\ b,\ B \rightarrow BAa\ |\ A\ |\ Ba\ |\ Aa\ |\ a\ \}$

Etapa 1.3: Inclusão de geração da palavra vazia, se necessário $(S \rightarrow \lambda)$

A palavra vazia não pertencia à linguagem, portanto não precisa ser recolocada.

Portanto,
$$G_1 = (\{S, A, B\}, \{a,b\}, S, P_1)$$
, onde
 $P_1 = \{S \rightarrow abAB \mid abA \mid abA \mid ab, A \rightarrow bAB \mid bB \mid bA \mid b$, $B \rightarrow BAa \mid A \mid Ba \mid Aa \mid a \}$

2^a . Fase: Retirada de produções da forma $A \rightarrow B$

Etapa 2.1: Construção do fecho de cada variável

```
fecho-S = \Phi
fecho-A = \Phi
fecho-B = {A}
```

```
Etapa 2.2: Exclusão das produções da forma A \rightarrow B.
```

Primeiramente, forme o conjunto de produções excluindo as produções da forma $A \to B$

 $P_2 = \{ S \rightarrow abAB \mid abB \mid abA \mid ab, A \rightarrow bAB \mid bB \mid bA \mid b, B \rightarrow BAa \mid Ba \mid Aa \mid a \}$

Passe por todas as variáveis e seus fechos:

Para fecho-B = $\{A\}$, acrescentaremos: B \rightarrow bAB | bB | bA | b

Assim, $P_2 = \{S \rightarrow abAB \mid abB \mid abA \mid ab, A \rightarrow bAB \mid bB \mid bA \mid b, B \rightarrow BAa \mid Ba \mid Aa \mid bAB \mid bB \mid bA \mid a\mid b\}$

Portanto, $G_2 = (\{S, A, B\}, \{a,b\}, S, P_2)$, onde

 $P_2 = \{S \rightarrow abAB \mid abB \mid abA \mid ab, A \rightarrow bAB \mid bB \mid bA \mid b, B \rightarrow BAa \mid Ba \mid Aa \mid bAB \mid bB \mid bA \mid a\mid b\}$

3ª. Fase: Retirada de símbolos não usados

Etapa 3.1: Garantia de que qualquer variável gera terminais.

$$V_2 = \Phi$$
;

 $V_2 = \Phi \cup \{ W \mid W \to \alpha \in P \ e \ \alpha \in (a,b)^* \} = \{ S, A, B \}$

Assim, P₂ não se altera.

Etapa 3.2: garante que qualquer símbolo é atingível a partir do símbolo inicial.

$$T_3 = \Phi$$
;

 $V_3 = \{S\};$

 1^a . interação - verifica quais variáveis são "vistas" pelas variáveis que estão em $V_3 = \{S\}$.

Assim, $V_3 = \{S\} \cup \{A, B\} = \{S, A, B\}$

Verifica quais terminais são "vistos" pelas variáveis que estão em V₃

Assim, $T_3 = \Phi \cup \{ a, b \} = \{ a, b \}$

Então $V_3 = \{ S, A, B \} e T_3 = \{ a, b \}$

Portanto a gramática simplificada é $G_2 = (\{S, A, B\}, \{a, b\}, S, P_2)$, onde:

 $P_2 = \{ S \rightarrow abAB \mid abB \mid abA \mid ab, \}$

 $A \rightarrow bAB \mid bB \mid bA \mid b$,

 $B \rightarrow BAa \mid Ba \mid Aa \mid bAB \mid bB \mid bA \mid a \mid b$

Etapa2: Transformação do lado direito das produções de comprimento maior ou igual a dois.

 $V_3 = \{S,A,B\};$

 $P_3 = \{S \rightarrow abAB \mid abB \mid abA \mid ab, A \rightarrow bAB \mid bB \mid bA \mid b, B \rightarrow BAa \mid Ba \mid Aa \mid bAB \mid bB \mid bA \mid a \mid b\};$

 $V_3 = V_3 \cup \{C_a, C_b\} = \{S,A,B,C_a,C_b\};$

deve-se acrescentar as produções: $\{C_a \rightarrow a, C_b \rightarrow b\}$ e fazer as substituições.

 $P_3 = \{ S \rightarrow C_a C_b AB \mid C_a C_b B \mid C_a C_b A \mid C_a C_b, A \rightarrow C_b AB \mid C_b B \mid C_b A \mid b, A \rightarrow C_b AB \mid C_b A \mid C_b A$

 $B \rightarrow BAC_a \mid BC_a \mid AC_a \mid C_bAB \mid C_bB \mid C_bA \mid a \mid b, C_a \rightarrow a, C_b \rightarrow b$;

<u>Etapa3</u>: Transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis.

 $V_4 = V_3 = \{S,A,B,C_a,C_b\};$

 $P_4 = P_3$;

Verifique as produções que possuam mais de 2 variáveis e as retire de P₄

Então: $P_4 = \{S \rightarrow C_aC_b, A \rightarrow C_bB \mid C_bA \mid b, B \rightarrow BC_a \mid AC_a \mid C_bB \mid C_bA \mid a \mid b, C_a \rightarrow a, C_b \rightarrow b\};$

Para cada produção retirada, $\{S \rightarrow C_a C_b A B \mid C_a C_b B \mid C_a C_b A, A \rightarrow C_b A B, B \rightarrow B A C_a \mid C_b A B\}$

 $S \rightarrow C_a C_b AB$

 $V_4 = V_4 \cup \{D_1, D_2\} = \{S,A,B,C_a,C_b,D_1, D_2\}$

 $P_4 = P_4 \cup \{S \rightarrow C_aD_1, D_1 \rightarrow C_bD_2, D_2 \rightarrow AB\}$

$$\begin{split} S &\rightarrow C_a C_b B \\ V_4 &= V_4 \cup \{D_3\} = \{S,A,B,C_a,C_b,D_1,D_2,D_3\} \\ P_4 &= P_4 \cup \{S \rightarrow C_a D_3,\, D_3 \rightarrow C_b B\} \\ S &\rightarrow C_a C_b A \\ V_4 &= V_4 \cup \{D_4\} = \{S,A,B,C_a,C_b,D_1,D_2,D_3,D_4\} \\ P_4 &= P_4 \cup \{S \rightarrow C_a D_4,\, D_4 \rightarrow C_b A\} \\ A &\rightarrow C_b A B \\ V_4 &= V_4 \cup \{D_5\} = \{S,A,B,C_a,C_b,D_1,D_2,D_3,D_4,D_5\} \\ P_4 &= P_4 \cup \{A \rightarrow C_b D_5,\, D_5 \rightarrow A B\} \\ B &\rightarrow B A C_a \\ V_4 &= V_4 \cup \{D_6\} = \{S,A,B,C_a,C_b,D_1,D_2,D_3,D_4,D_5,D_6\} \\ P_4 &= P_4 \cup \{B \rightarrow B D_6,\, D_6 \rightarrow A C_a\} \\ B &\rightarrow C_b A B \\ V_4 &= V_4 \cup \{D_7\} = \{S,A,B,C_a,C_b,D_1,D_2,D_3,D_4,D_5,D_6,D_7\} \\ P_4 &= P_4 \cup \{B \rightarrow C_b D_7,\, D_7 \rightarrow A B\} \end{split}$$

Portanto, a Gramática $G = (\{S, A, B\}, \{a,b\}, S, P), P = \{S \rightarrow abAB, A \rightarrow bAB|\lambda, B \rightarrow BAa|A|\lambda\},$ na Forma Normal de Chomsky é:

$$\begin{aligned} G &= (\{S,A,B,C_a,C_b,D_1,D_2,D_3,D_4,D_5,D_6,D_7\},\ \{a,b\},\ S,\ P_4),\\ P_4 &= \{\ S \rightarrow C_aC_b \mid C_aD_1 \mid C_aD_3 \mid C_aD_4\\ &\quad A \rightarrow C_bB \mid C_bA \mid C_bD_5 \mid b\\ &\quad B \rightarrow BC_a \mid AC_a \mid C_bB \mid C_bA \mid BD_6 \mid C_bD_7 \mid a \mid b\\ &\quad D_1 \rightarrow C_bD_2,\\ &\quad D_2 \rightarrow AB,\\ &\quad D_3 \rightarrow C_bB,\\ &\quad D_4 \rightarrow C_bA,\\ &\quad D_5 \rightarrow AB,\\ &\quad D_6 \rightarrow AC_a,\\ &\quad D_7 \rightarrow AB, \end{aligned}$$

6.2. Forma Normal de Greibach

Definição 7

 $C_a \rightarrow a$, $C_b \rightarrow b$ }

Uma Gramática Livre de Contexto é dita estar na **Forma Normal de Greibach** se todas as produções são da forma:

$$A \rightarrow a \alpha$$

Onde A é uma variável, a é um terminal e α é uma cadeia de variáveis.

Teorema 2

```
Qualquer Gramática Livre de Contexto G = (V, T, S, P) com \lambda \notin L(G) tem uma gramática G_{fng} = (V_{fng}, T_{fng}, S, P_{fng}) na Forma Normal de Greibach
```

Algoritmo

Transforma uma Gramática Livre de Contexto em uma Gramática na Forma Normal de Greibach em seis etapas:

Etapa 1: Simplificação da gramática

Etapa 2: Renomeação das variáveis em uma ordem crescente qualquer

Etapa 3: Transformação de produções para a forma $A_r \to A_s \alpha$, onde $r \le s$

Etapa 4: Exclusão das recursões da forma $A_r \rightarrow A_r \alpha$.

Etapa 5: Um terminal no início do lado direito de cada produção.

Etapa 6: Produções na forma A \rightarrow a α onde α é composta por variáveis.

Etapa1: Simplificação da gramática

A gramática resultante desta etapa é: $G_1 = (V_1, T_1, S, P_1)$

Etapa2: Renomeação das variáveis em uma ordem crescente qualquer

A gramática resultante desta etapa é: $G_2 = (V_2, T_1, S, P_2)$ onde V_2 e P_2 são construídos como segue: Supondo que o cardinal de V_1 é n,

 $V_2 = \{ A_1, A_2, ..., A_n \}$ e V_1 onde as variáveis são renomeadas;

P₂ é P₁ renomeando as variáveis nas produções.

Etapa 3 e 4: Transformação de produções para a forma $A_r\to A_s\alpha$, onde $r\le s$ e Exclusão das recursões da forma $A_r\to A_r\alpha$.

A gramática resultante destas duas etapas realizadas em conjunto é: $G_3 = (V_3, T_1, S, P_3)$ onde V_3 e P_3 são construídos como a rotina a seguir e supondo o cardinal de $V_2 = n$

```
\begin{array}{l} P_3 = P_2; \\ V_3 = V_2; \\ Para \ \mathbf{r} \ \text{variando de 1 até } \mathbf{n} \ \text{faça} \\ Para \ \mathbf{s} \ \text{variando de 1 até } \mathbf{r-1} \ \text{faça} \\ Para \ \text{toda produção } \mathbf{A_r} \to \mathbf{A_s} \boldsymbol{\alpha} \in P_3 \ \text{faça} \\ Excluir \ \text{a produção } \mathbf{A_r} \to \mathbf{A_s} \boldsymbol{\alpha} \ \text{de } P_3 \\ Para \ \text{toda produção } \mathbf{A_s} \to \boldsymbol{\beta} \in P_3 \ \text{faça} \\ P_3 = P_3 \cup \left\{ \ \mathbf{A_r} \to \boldsymbol{\beta} \boldsymbol{\alpha} \ \right\} \end{array}
```

```
Para toda produção \mathbf{Ar} \to \mathbf{Ar}\alpha \in P3 faça 
 Excluir a produção \mathbf{A_r} \to \mathbf{A_r}\alpha de P_3 
 V_3 = V_3 \cup \{B_r\} 
 P_3 = P_3 \cup \{B_r \to \alpha\} \cup \{B_r \to \alpha B_r\} 
 Para toda produção \mathbf{A_r} \to \mathbf{\Phi} \in P_3 tal que \mathbf{\Phi} não inicia por A_r e alguma A_r \to A_r\alpha foi excluída faça P_3 = P_3 \cup \{A_r \to \mathbf{\Phi} \mid B_r\}
```

Etapa 5: Um terminal no início do lado direito de cada produção.

A gramática resultante destas duas etapas realizadas em conjunto é: $G_4 = (V_3, T_1, S, P_4)$ onde P_4 é construído a partir da rotina:

```
\begin{array}{l} P_4 = P_3; \\ \text{Para r variando de n-1 até 1 e toda } A_r \rightarrow A_s \alpha \in P_4 \text{ faça} \\ \text{Excluir a produção } A_r \rightarrow A_s \alpha \text{ de }_{P^4}; \\ \text{Para toda produção } A_s \rightarrow \beta \in P_4 \text{ faça} \\ P_4 = P_4 \cup \{ A_r \rightarrow \beta \alpha \} \end{array}
```

Também é necessário garantir que as produções relativas às variáveis auxiliares Br iniciam por um terminal do lado direito, como segue:

Rotina para produções B_r

```
Para toda produção B_r \to A_s \beta_r \in P_4 faça 
 Excluir a produção B_r \to A_s \beta_r de P_4 
 Para toda produção A_s \to a\alpha faça 
 P_4 = P_4 \cup \{ B_r \to a\alpha\beta_r \}
```

Etapa 6: Produções na forma $A \rightarrow a\alpha$ onde α é composta por variáveis.

A gramática resultante desta etapa é: $G_5 = (V_4, T_1, S, P_5)$ onde P_5 é construído a partir da rotina:

```
\begin{array}{c} V_4 = V_3; \\ P_5 = P_4; \\ Para \ toda \ produção} \ A \rightarrow aX_1X_2 \ ... \ X_n \ \in P_5 \ faça \\ \text{se para } r \in \{1, \ ..., \ n\}, \ X_r \ \acute{e} \ um \ s\'{m} bolo \ terminal \\ \text{então } (suponha \ X_r = b) \\ V_4 = V_4 \cup \{C_b\}; \\ \text{substitui b pela variável } C_b \ em \ A \rightarrow aX_1X_2 \ ... \ X_n \ \in P_5 \ ; \\ P_5 = P_5 \ \cup \{C_b \rightarrow b\}; \end{array}
```

Considere a Gramática Livre de Contexto $G = (\{S,A\}, \{a,b\}, S, P)$ onde $P = \{S \rightarrow AA \mid a, A \rightarrow SS \mid b\}$

Etapa1: Simplificação da gramática

A gramática já está simplificada.

Etapa2: Renomeação das variáveis em uma ordem crescente qualquer

 $G_2 = (V_2, T, S, P_2)$ onde V_2 e P_2 são dados abaixo: $V_2 = \{ A_1, A_2 \}$ $P_2 = \{ A_1 \rightarrow A_2 A_2 \mid a, A_2 \rightarrow A_1 A_1 \mid b \}$

Etapa 3 e 4: Transformação de produções para a forma $A_r \to A_s \alpha$, onde $r \le s$ e Exclusão das recursões da forma $A_r \to A_r \alpha$.

```
P_3 = P_2 = \{ A_1 \rightarrow A_2 A_2 \mid a, A_2 \rightarrow A_1 A_1 \mid b \}
V_3 = V_2 = \{A_1, A_2\};
Para r = 1 (até 2) faça
         Para s = 1 (até r-1 = 0) .....
         Para toda A_1 \rightarrow A_1 \alpha \notin P3 \dots
         Para toda A_1 \rightarrow \Phi \in P_3 tal que \Phi não inicia por A_1 e alguma A_1 \rightarrow A_1 \alpha foi excluída ....
Para \mathbf{r} = 2 (até 2) faça
         Para s = 1 (até 1)
                 Para A_2 \rightarrow A_1 \alpha \in P_3, portanto A_2 \rightarrow A_1 A_1 (\alpha = A_1)
                          Excluir A_2 \rightarrow A_1A_1 de P_3 então P_3 = \{A_1 \rightarrow A_2A_2 \mid a, A_2 \rightarrow b\}
                          Para toda A_1 \rightarrow \beta \in P_3, ou seja, A_1 \rightarrow A_2 A_2 e A_1 \rightarrow a, faça
                                  P_3 = P_3 \cup \{A_2 \rightarrow \beta\alpha\} = P_3 \cup \{A_2 \rightarrow A_2A_2A_1\} \cup \{A_2 \rightarrow aA_1\}
                                  P_3 = \{ A_1 \rightarrow A_2 A_2 \mid a, A_2 \rightarrow b \mid A_2 A_2 A_1 \mid aA_1 \}
         Para toda A_2 \rightarrow A_2 \alpha \in P_3, portanto: A_2 \rightarrow A_2 A_2 A_1, com \alpha = A_2 A_1, faça
                 Excluir A_2 \rightarrow A_2 A_1 de P_3, portanto P_3 = \{A_1 \rightarrow A_2 A_2 \mid a, A_2 \rightarrow b \mid aA_1\}
                 V_3 = V_3 \cup \{B_2\} = \{A_1, A_2, B_2\}
                 P_3 = P_3 \cup \{B_2 \to A_2A_1\} \cup \{B_2 \to A_2A_1B_2\}
                 P_3 = \{ A_1 \rightarrow A_2 A_2 \mid a, A_2 \rightarrow b \mid aA_1, B_2 \rightarrow A_2 A_1 \mid A_2 A_1 B_2 \}
         Para toda A_2 \rightarrow \Phi \in P_3, ou seja: A_2 \rightarrow b \mid aA_1, eA_2 \rightarrow A_2 A_2 A_1 foi excluída faça
                 P_3 = P_3 \cup \{ A_2 \rightarrow \Phi B_2 \} = P_3 \cup \{ A_2 \rightarrow b B_2 \mid aA_1B_2 \}
                 P_3 = \{ A_1 \rightarrow A_2 A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid b \mid B_2 \mid aA_1 B_2, B_2 \rightarrow A_2 A_1 \mid A_2 A_1 B_2 \}
Assim, G_3 = (\{A_1, A_2, B_2\}, \{a,b\}, S, P_3) onde
P_3 = \{ A_1 \rightarrow A_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, B_2 \rightarrow A_2A_1 \mid A_2A_1B_2 \}
```

Etapa 5: Um terminal no início do lado direito de cada produção.

```
\begin{array}{l} P_4 = \{\; A_1 \rightarrow A_2A_2 \mid a,\, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2,\, B_2 \rightarrow A_2A_1 \mid A_2A_1B_2 \} \\ \text{Para } r = 2 \; (at\acute{e} \; 1) \; e \; toda \; A_2 \rightarrow A_s\alpha \notin P_4 \; ..... \\ \text{Para } r = 1 \; (at\acute{e} \; 1) \; e \; toda \; A_1 \rightarrow A_s\alpha \in P_4 \; , \; ent\~{a}o \; A_1 \rightarrow A_2A_2 \; , \; com \; \alpha = A_2 \; , \; faça \\ \text{Excluir } A_1 \rightarrow A_2A_2 \; de \; P_4 \; , \; ent\~{a}o \\ P_4 = \{\; A_1 \rightarrow a,\, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2,\, B_2 \rightarrow A_2A_1 \mid A_2A_1B_2 \} \\ \text{Para } toda \; A_2 \rightarrow \beta \in P_4 \; , \; ou \; seja: \; A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, \; faça \\ P_4 = P_4 \cup \; \{\; A_1 \rightarrow \beta\alpha \} = P_4 \cup \; \{\; A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \; \} \end{array}
```

```
P_4 = \{ A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, aA_1B_2 \mid aA_1
                                                                                                                                                                                                                                                                                                                                            B_2 \rightarrow A_2A_1 \mid A_2A_1B_2
                                                                                                           Para toda B_r \to A_s \beta_r \in P_4, ou seja, B_2 \to A_2 A_1 \mid A_2 A_1 B_2, faça
                                                                                                                                                                               B_2 \rightarrow A_2A_1, então r = 2, A_s = A_2 e \beta_r = A_1
                                                                                                                                                                                                                                    Excluir B_2 \rightarrow A_2A_1 de P_4, então
                                                                                                                                                                                                                                           P_4 = \{ A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, aA_1B_2 \mid aA_1B_2 \mid aA_1B_2, aA_1B_2 \mid aA_1B_2, aA_1B_2 \mid aA_1B_2 \mid aA_1B_2, aA_1B_2 \mid aA_1B
                                                                                                                                                                                                                                                                                                                                            B_2 \rightarrow A_2A_1B_2
                                                                                                                                                                                                                                    Para toda A_2 \rightarrow a\alpha, ou seja, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, faça
                                                                                                                                                                                                                                             P_4 = P_4 \cup \{B_2 \rightarrow a\alpha\beta_r\} = P_4 \cup \{B_2 \rightarrow bA_1 \mid aA_1A_1 \mid bB_2A_1 \mid aA_1B_2A_1\}
                                                                                                                                                                                                                                           P_4 = \{ A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, aA_1B_2 \mid aA_1B_2 \mid aA_1B_2, aA_1B_2 \mid aA
                                                                                                                                                                                                                                                                                                                                                    B_2 \rightarrow A_2A_1B_2|bA_1|aA_1A_1|bB_2A_1|aA_1B_2A_1
                                                                                                                                                                               B_2 \rightarrow A_2A_1B_2, então r = 2, A_s = A_2 e \beta_r = A_1B_2
                                                                                                                                                                                                                                 Excluir B_2 \rightarrow A_2 A_1 B_2 de P_4, então
                                                                                                                                                                                                                                           P_4 = \{ A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, aA_1B_2 \mid a
                                                                                                                                                                                                                                                                                                                                                    B_2 \to bA_1 | aA_1A_1 | bB_2A_1 | aA_1B_2A_1 
                                                                                                                                                                                                                                    Para toda A_2 \rightarrow a\alpha, ou seja, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, faça
                                                                                                                                                                                                                                             P_4 = P_4 \cup \{B_2 \rightarrow a\alpha\beta_r\} = P_4 \cup \{B_2 \rightarrow b \ A_1B_2 | \ aA_1 \ A_1B_2 | \ bB_2 \ A_1B_2 | \ aA_1B_2\}
                                                                                                                                                                                                                                           P_4 = \{ A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, aA_1B_2 \mid aA_1
                                                                                                                                                                                                                                                                                      B_2 \rightarrow bA_1 | aA_1A_1 | bB_2A_1 | aA_1B_2A_1 | bA_1B_2 | aA_1A_1B_2 | bB_2A_1B_2 | aA_1B_2A_1B_2
G_4 = (\{A_1, A_2, B_2\}, \{a,b\}, A_1, P_4) \text{ com}
P_4 = \{ A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, aA_1B_2 \mid aA_1B_
                                                                                                      B_2 \rightarrow bA_1 | aA_1A_1 | bB_2A_1 | aA_1B_2A_1 | bA_1B_2 | aA_1A_1B_2 | bB_2A_1B_2 | aA_1B_2A_1B_2
```

Etapa 6: Produções na forma $A \rightarrow a\alpha$ onde α é composta por variáveis.

Toda produção $A \rightarrow a\alpha$, α é composta por variáveis. Então não tem nada para fazer.

```
Portanto, a Gramática G = (\{S,A\}, \{a,b\}, S, P) onde P = \{S \rightarrow AA \mid a, A \rightarrow SS \mid b\} na Forma Normal de Greibach é: G_4 = (\{A_1, A_2, B_2\}, \{a,b\}, A_1, P_4) com P_4 = \{A_1 \rightarrow bA_2 \mid aA_1A_2 \mid bB_2A_2 \mid aA_1B_2A_2 \mid a, A_2 \rightarrow b \mid aA_1 \mid bB_2 \mid aA_1B_2, B_2 \rightarrow bA_1 \mid aA_1A_1 \mid bB_2A_1 \mid aA_1B_2A_1 \mid bA_1B_2 \mid aA_1A_1B_2 \mid bB_2A_1B_2 \mid aA_1B_2A_1B_2 \}
```

Considere a Gramática Livre de Contexto $G = (\{S,A\}, \{a,b\}, S, P), P = \{S \rightarrow aSaA \mid A, A \rightarrow abA \mid b\}$

Etapa1: Simplificação

1^a. Fase: Retirada das produções vazias – não há produções vazias

2^a . Fase: Retirada de produções da forma $A \rightarrow B$

Etapa 2.1: Construção do fecho de cada variável

fecho- $S = \{A\}$

fecho- $A = \Phi$

Etapa 2.2: Exclusão das produções da forma $A \rightarrow B$.

Primeiramente, forme o conjunto de produções excluindo as produções da forma $A \rightarrow B$

$$P_2 = \{ S \rightarrow aSaA, A \rightarrow abA \mid b \}$$

Passe por todas as variáveis e seus fechos:

Para fecho-S =
$$\{A\}$$
, acrescentaremos: $S \rightarrow abA \mid b$

Assim,
$$P_2 = \{ S \rightarrow aSaA \mid abA \mid b, A \rightarrow abA \mid b \}$$

Portanto, $G_2 = (\{S, A, B\}, \{a,b\}, S, P_2)$, onde $P_2 = \{S \rightarrow aSaA \mid abA \mid b, A \rightarrow abA \mid b\}$

3ª. Fase: Retirada de símbolos não usados

Etapa 3.1: Garantia de que qualquer variável gera terminais.

$$V_2 = \Phi$$
;

$$V_2 = \Phi \cup \{ W \mid W \to \alpha \in P \ e \ \alpha \in (a,b)^* \} = \{ S, A \}$$

Assim, P₂ não se altera.

Etapa 3.2: garante que qualquer símbolo é atingível a partir do símbolo inicial.

$$T_3 = \Phi$$
;

$$V_3 = \{S\};$$

 1^a . interação - verifica quais variáveis são "vistas" pelas variáveis que estão em $V_3 = \{S\}$.

Assim,
$$V_3 = \{S\} \cup \{A\} = \{S, A\}$$

Verifica quais terminais são "vistos" pelas variáveis que estão em V₃

Assim,
$$T_3 = \Phi \cup \{a, b\} = \{a, b\}$$

Então $V_3 = \{ S, A \} e T_3 = \{ a, b \}$

Portanto a gramática simplificada é $G_2 = (\{S, A\}, \{a,b\}, S, P_2)$, onde:

$$P_2 = \{ S \rightarrow aSaA \mid abA \mid b, \}$$

 $A \rightarrow abA \mid b \}$

Etapa2: Renomeação das variáveis em uma ordem crescente qualquer

 $G_3 = (\{ A_1, A_2 \}, T, S, P_3), P_3 = \{ A_1 \rightarrow a \ A_1 a \ A_2 \ | \ abA_2 \ | \ b, \ A_2 \rightarrow ab \ A_2 \ | \ b \ \}$

Etapa 3 e 4: Transformação de produções para a forma $A_r \to A_s \alpha$, onde $r \le s$ e Exclusão das recursões da forma $A_r \to A_r \alpha$.

Como não temos $A_r \to A_s \alpha$, $r \le s$ e nem $A_r \to A_r \alpha$, nada muda.

$$G_3 = (V_3, T, S, P_3), V_3 = \{A_1, A_2\}, P_3 = \{A_1 \rightarrow a A_1 a A_2 \mid abA_2 \mid b, A_2 \rightarrow ab A_2 \mid b\}$$

Etapa 5: Um terminal no início do lado direito de cada produção.

```
Como já temos um terminal no início de cada produção, nada se altera. G_3 = (V_3, T, S, P_3), V_3 = \{A_1, A_2\}, P_3 = \{A_1 \rightarrow a \ A_1 a \ A_2 \mid abA_2 \mid b, \ A_2 \rightarrow ab \ A_2 \mid b\}
```

Etapa 6: Produções na forma A \rightarrow a α onde α é composta por variáveis.

```
V_4 = V_3 = \{A_1, A_2\};
           P_4 = P_3 = \{ A_1 \rightarrow a A_1 a A_2 \mid abA_2 \mid b, A_2 \rightarrow ab A_2 \mid b \}
           Como temos terminais em \alpha, então se retira essas produções de P_4, ficando P_4 = \{A_1 \rightarrow b, A_2 \rightarrow b\}
           Faz: V_4 = V_4 \cup \{C_a, C_b\} = \{A_1, A_2, C_a, C_b\};
           E: P_4 = P_4 \cup \{ C_a \to a, C_b \to b \};
           Substitui os terminais nas produções excluídas: \{A_1 \rightarrow a A_1 a A_2 \mid abA_2, A_2 \rightarrow ab A_2\}
           Obtendo: \{A_1 \rightarrow a \ A_1 \ C_a \ A_2 \ , A_1 \rightarrow a \ C_b \ A_2 \ , A_2 \rightarrow a \ C_b \ A_2 \ \}
           Então: V_4 = \{A_1, A_2, Ca, Cb\};
                       P_4 = \{ A_1 \rightarrow aA_1C_aA_2 \mid aC_bA_2 \mid b, A_2 \rightarrow aC_bA_2 \mid b, C_a \rightarrow a, C_b \rightarrow b \}
Portanto, a Gramática G = (\{S,A\}, \{a,b\}, S, P), P = \{S \rightarrow aSaA \mid A, A \rightarrow abA \mid b\},
na Forma Normal de Greibach é:
G_4 = (\{A_1, A_2, C_a, C_b\}, \{a,b\}, A_1, P_4),
P_4 = \{ A_1 \rightarrow aA_1C_aA_2 \mid aC_bA_2 \mid b, \}
           A_2 \rightarrow aC_bA_2 \mid b,
           C_a \rightarrow a,
           C_b \rightarrow b
```

7. Autômatos com Pilha (Pushdown Automata)

Os aceitadores ou reconhecedores das Linguagens Livres de Contexto são os Autômatos com Pilha. Os Autômatos com Pilha podem ser determinísticos ou não determinísticos. Os mais usuais são os Autômatos com Pilha não determinísticos.

Esses Autômatos possuem uma **memória auxiliar** para o processamento da entrada. Essa memória é definida como sendo uma pilha que não possui limite máximo de armazenamento, portanto, sendo infinita. Por ser uma pilha o último símbolo gravado na pilha é o primeiro a ser lido.

```
Enquanto os Autômatos Finitos eram definidos como sendo M = (Q, \Sigma, \delta, q_0, F), onde Q – conjunto finito de estados \Sigma – alfabeto de entrada, conjunto finito de símbolos \delta – função de transição ou função programa definido por \delta: Q \times \Sigma \to Q q_0 – estado inicial (q_0 \in Q) F – conjunto de estados finais (F \in Q)
```

O Autômato com Pilha pode ser definido como abaixo.

Definição 8

Um Autômato com Pilha Não Determinístico (APND) é definido pela sétupla: $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

Onde: Q – conjunto finito de estados

 Σ – alfabeto de entrada, conjunto finito de símbolos

 Γ – conjunto finito de símbolos, chamado de alfabeto da pilha

 δ – função de transição ou função programa definido por δ : Q x ($\Sigma \cup \{\lambda\}$) x ($\Gamma \cup \{\lambda\}$) $\rightarrow 2^{Qx\Gamma^*}$

 q_0 – estado inicial ($q_0 \in Q$)

z – símbolo inicial da pilha ($z \in \Gamma$)

F – conjunto de estados finais ($F \in Q$)

Exemplo 18

Seja a função de transição $\delta(q_1, a, b) = \{(q_2, cd), (q_3, \lambda)\}$ Então:

Se em algum momento, o AP estiver no estado q_1 , o símbolo lido é a e o símbolo desempilhado é b (o topo da pilha continha b)

Então: vai para o estado **q**₂ e **cd** é empilhado vai para o estado **q**₃ e nada é empilhado

Assume-se que a inserção de um conjunto de símbolos (por exemplo o cd do exemplo anterior) na pilha é feita símbolo por símbolo, da direita para a esquerda.

Exemplo 19

Seja o Autômato com Pilha Não Determinístico:

```
\begin{split} M &= (\{\ q_0, q_1, q_2, q_3\},\ \{a,b\},\ \{0,1\},\ \delta,\ q_0,\ 0,\ \{q_3\}),\ onde: \\ \delta(q_0, a,0) &= \{(q_1,10),\ (q_3,\lambda)\}, \\ \delta(q_0,\lambda,0) &= \{(q_3,\lambda)\}, \\ \delta(q_1,a,1) &= \{(q_1,11)\}, \\ \delta(q_1,b,1) &= \{(q_2,\lambda)\}, \\ \delta(q_2,b,1) &= \{(q_2,\lambda)\}, \\ \delta(q_2,\lambda,0) &= \{(q_3,\lambda)\}. \end{split}
```

A leitura das funções de transição pode ser feita:

$$\delta(q_0, a, 0) = \{(q_1, 10), (q_3, \lambda)\}\$$

Estando no estado \mathbf{q}_0 , lido o símbolo \mathbf{a} e desempilhado o símbolo $\mathbf{0}$, então desempilha $\mathbf{0}$ e pode-se ir para \mathbf{q}_1 e empilhar $\mathbf{10}$ ou ir para \mathbf{q}_3 e não empilhar nada.

$$\delta(q_0, \lambda, 0) = \{(q_3, \lambda)\}\$$

Estando no estado \mathbf{q}_0 , lido o símbolo λ e desempilhado o símbolo $\mathbf{0}$, então desempilha $\mathbf{0}$, vai para \mathbf{q}_3 e não se empilha nada.

 $\delta(q_1, a, 1) = \{(q_1, 11)\}\$

Estando no estado $\mathbf{q_1}$, lido o símbolo \mathbf{a} e desempilhado o símbolo $\mathbf{1}$, então desempilha $\mathbf{1}$, vai para $\mathbf{q_1}$ e empilha-se $\mathbf{11}$.

 $\delta(q_1, b, 1) = \{(q_2, \lambda)\},\$

Estando no estado $\mathbf{q_1}$, lido o símbolo \mathbf{b} e desempilhado o símbolo $\mathbf{1}$, então desempilha $\mathbf{1}$, vai para $\mathbf{q_2}$ e não se empilha nada.

 $\delta(q_2, b, 1) = \{(q_2, \lambda)\},\$

Estando no estado q_2 , lido o símbolo b e desempilhado o símbolo 1, então desempilha 1, vai para q_2 e não se empilha nada.

 $\delta(q_2, \lambda, 0) = \{(q_3, \lambda)\}.$

Estando no estado q_2 , "lido" o símbolo λ e desempilhado o símbolo 0, então desempilha 0, vai para q_3 e não se empilha nada.

7.1. A linguagem aceita por um Autômato com Pilha

Definição 9

Um Autômato com Pilha Não Determinístico (APND) é definido pela sétupla:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$$

A linguagem aceita por M é o conjunto:

$$L(M) = \{ w \in \Sigma^* : (q_0, w, z) \vdash^* {}_{M}(p, \lambda, u), p \in F, u \in \Gamma^* \}$$

Ou seja, a linguagem aceita por um autômato é o conjunto de todas as cadeias/palavras que podem colocar o autômato em um estado final quando atingir o fim da string. O conteúdo da pilha é irrelevante para essa definição.

Considerando o APND do exercício 19,

```
\begin{split} M &= (\{\ q_0, q_1, q_2, q_3\},\ \{a,b\},\ \{0,1\},\ \delta,\ q_0,\ 0,\ \{q_3\}),\ onde: \\ \delta(q_0, a,0) &= \{(q_1,10), (q_3,\lambda)\}, \\ \delta(q_0,\lambda,0) &= \{(q_3,\lambda)\}, \\ \delta(q_1,a,1) &= \{(q_1,11)\}, \\ \delta(q_1,b,1) &= \{(q_2,\lambda)\}, \\ \delta(q_2,b,1) &= \{(q_2,\lambda)\}, \\ \delta(q_2,\lambda,0) &= \{(q_3,\lambda)\}. \end{split}
```

Sabendo-se que:

 q_0 – estado inicial 0 – símbolo inicial da pilha, portanto Pilha = $\{0\}$ $\{q_3\}$ – conjunto de estados finais

Pode-se intuitivamente concluir:

(1) As cadeias $\{a, \lambda\}$ são reconhecidas pelo autômato, já que:

Por $\delta(q_0,\,a,\,0)$ = $\{(q_3,\,\lambda)\}$, chega-se ao estado final. Portanto a é reconhecida pelo autômato.

Por $\delta(q_0, \lambda, 0) = \{(q_3, \lambda)\}$, chega-se ao estado final. Portanto λ é reconhecida pelo autômato.

(2) A cadeia {ab} é reconhecida pelo autômato, já que:

$$\begin{split} & \text{Pilha} = \{0\} \\ & \text{Por } \delta(q_0, \, a, \, 0) = \{(q_1, 10)\}, \, \text{Pilha} = \{10\} \\ & \text{Por } \delta(q_1, \, b, \, 1) = \{(q_2, \, \lambda)\}, \, \text{Pilha} = \{0\} \\ & \text{Por } \delta(q_2, \, \lambda, \, 0) = \{(q_3, \, \lambda)\}, \, \text{Pilha} = \{\} \end{split}$$

(3) A cadeia {aabb} é reconhecida pelo autômato, já que:

```
\begin{array}{l} Pilha = \{0\} \\ Por \ \delta(q_0, \, a, \, 0) = \{(q_1, 10)\}, \ Pilha = \{10\} \\ Por \ \delta(q_1, \, a, \, 1) = \{(q_1, 11)\}, \ Pilha = \{110\} \\ Por \ \delta(q_1, \, b, \, 1) = \{(q_2, \, \lambda)\}, \ Pilha = \{10\} \\ Por \ \delta(q_1, \, b, \, 1) = \{(q_2, \, \lambda)\}, \ Pilha = \{0\} \\ Por \ \delta(q_2, \, \lambda, \, 0) = \{(q_3, \, \lambda)\}, \ Pilha = \{\} \end{array}
```

Percebe-se que esse autômato reconhece a linguagem:

$$L = \{ a, \lambda, ab, aabb, \} = \{ a^n b^n : n \ge 0 \} \cup \{ a \}$$

Exemplo 20

Seja a linguagem $L = \{w \in \{a,b\}^* \mid w \text{ possui o mesmo número de a e de b}\}$ Então o autômato $M = (\{q_0, q_f\}, \{a, b\}, \{0, 1, z\}, \delta, q_0, z, \{q_f\}), \text{ onde:}$

$$\begin{split} &\delta(q_0,\,\lambda,\,z) = \{(q_f,\,z)\},\\ &\delta(q_0,\,a,\,z) = \{(q_0,\,0z)\,\},\\ &\delta(q_0,\,b,\,z) = \{(q_0,\,1z)\},\\ &\delta(q_0,\,a,\,0) = \{(q_0,\,00)\},\\ &\delta(q_0,\,b,\,0) = \{(q_0,\,\lambda)\},\\ &\delta(q_0,\,a,\,1) = \{(q_0,\,\lambda)\},\\ &\delta(q_0,\,b,\,1) = \{(q_0,\,11)\}. \end{split}$$

Processando:

$$\begin{array}{ccc} (q_0,\, \textbf{b}aab,\, z) & \vdash (q_0,\, \textbf{a}ab,\, \textbf{1}z) \\ & \vdash (q_0,\, \textbf{a}b,\, z) \\ & \vdash (q_0,\, \textbf{b},\, \textbf{0}z) \\ & \vdash (q_0,\, \lambda,\, z) \\ & \vdash (q_f,\, \lambda,\, z) \Rightarrow \text{aceita baab} \end{array}$$

$$\begin{array}{ll} (q_0,\,aab,\,z) & \vdash (q_0,\,ab,\,0z) \\ & \vdash (q_0,\,b,\,00z) \\ & \vdash (q_0,\,\lambda,\,0z) \Rightarrow \text{n\~ao aceita aab} \end{array}$$

```
Seja a linguagem L = \{ww^R \mid w \in \{a,b\}^+\}
Então o autômato M = (\{q_0, q_1, q_f\}, \{a, b\}, \{a, b, z\}, \delta, q_0, z, \{q_f\}), onde:
             \delta(q_0, a, a) = \{(q_0, aa)\},\
             \delta(q_0, b, a) = \{(q_0, ba)\},\
             \delta(q_0, a, b) = \{(q_0, ab)\},\
             \delta(q_0, b, b) = \{(q_0, bb)\},\
             \delta(q_0, a, z) = \{(q_0, az)\},\
             \delta(q_0, b, z) = \{(q_0, bz)\},\
             \delta(q_0, \lambda, a) = \{(q_1, a)\},\
             \delta(q_0,\lambda,b) = \{(q_1,b)\}.
             \delta(q_1, a, a) = \{(q_1, \lambda)\},\
             \delta(q_1, b, b) = \{(q_1, \lambda)\},\
             \delta(q_1, \lambda, z) = \{(q_2, z)\}.
Processando:
(q_0, \mathbf{a}bba, z) \vdash (q_0, \mathbf{b}ba, \mathbf{a}z)
                          \vdash (q<sub>0</sub>, ba, baz)
                          \vdash (q<sub>0</sub>, a, bbaz)
                          \vdash (q<sub>0</sub>, \lambda, abbaz)
                          \vdash (q<sub>1</sub>, \lambda, abbaz) \Rightarrow não aceita
(q_0, \mathbf{a}bba, z) \vdash (q_0, \mathbf{b}ba, \mathbf{a}z)
                          \vdash (q_0, \mathbf{ba}, \mathbf{baz})
                          \vdash (q<sub>1</sub>, ba, baz)
                          \vdash (q<sub>1</sub>, a, az)
                          \vdash (q<sub>1</sub>, \lambda, z)
                          \vdash (q_2, \lambda, z) \Rightarrow aceita
```

7.2. Autômatos com Pilha, Gramáticas Livres de Contexto e Linguagens Livres de Contexto

Teorema 03

Se L é uma Linguagem Livre de Contexto, então existe um Autômato com Pilha Não Determinístico tal que L = L(M).

Se L é uma Linguagem Livre de Contexto, então existe uma Gramática Livre de Contexto G, tal que L = L(G). Se a partir de G for possível determinar um Autômato com Pilha Não Determinístico M, tal que L(G) = L(M), então teremos L = L(G) = L(M).

Seja G uma Gramática Livre de Contexto na forma Normal de Greibach, tal que G = (V, T, S, P) com $\lambda \notin L(G)$. Então para construir um Autômato com Pilha Não Determinístico M a partir de G, faz-se:

```
\begin{split} M &= (\{\ q_0, \, q_1, \, q_f\}, \, T, \, V \, \cup \, \{z\}, \, \delta, \, q_0, \, z, \, \{q_f\}), \, \text{onde:} \\ \delta(q_0, \, \lambda, \, z) &= \{(q_1, \, Sz)\}, \\ \delta(q_1, \, a, \, A) &= \{(q_1, \, \alpha) \, \, \text{para} \, \, A \, \rightarrow \, a\alpha \, \in \, P\}, \\ \delta(q_1, \, \lambda, \, z) &= \{(q_f, \, z)\}, \end{split}
```

Se $\lambda \in L$, então basta construir um autômato como feito anteriormente e incluir a transição:

$$\delta(q_0, \lambda, z) = \{(q_f, z)\}$$

Exemplo 22

Considere a Gramática Livre de Contexto na Forma Normal de Greibach:

$$G = (\{S,B\}, \{a,b\}, S, P) \text{ com } P = \{S \rightarrow aB \mid aSB, B \rightarrow b\}$$

Então M = ($\{q_0, q_1, q_f\}$, $\{a, b\}$, $\{S, B, z\}$, δ , q_0, z , $\{q_f\}$), onde: $\delta(q_0, \lambda, z) = \{(q_1, Sz)\},$ $\delta(q_1, a, S) = \{(q_1, B)\},$ $\delta(q_1, a, S) = \{(q_1, SB)\},$ $\delta(q_1, b, B) = \{(q_1, \lambda)\},$ $\delta(q_1, \lambda, z) = \{(q_f, z)\}.$

 $L(G) = \{ab, aabb, aaabbb, ...\} - de forma intuitiva$

$$\begin{array}{ccc} (q_0,\,ab,\,z) & & \vdash (q_1,\,ab,\,Sz) \\ & & \vdash (q_1,\,b,\,Bz) \\ & & \vdash (q_1,\,\lambda,\,z) \\ & & \vdash (q_f,\,\lambda,\,z) \Longrightarrow aceita \end{array}$$

$$(q_0, aabb, z) \vdash (q_1, aabb, Sz)$$

$$\vdash (q_1, abb, SBz)$$

$$\vdash (q_1, bb, BBz)$$

$$\vdash (q_1, b, Bz)$$

$$\vdash (q_1, \lambda, z)$$

$$\vdash (q_f, \lambda, z) \Rightarrow aceita$$

$$(q_0, aaabbb, z) \vdash (q_1, aaabbb, Sz)$$
 $\vdash (q_1, aabbb, SBz)$
 $\vdash (q_1, abbb, SBBz)$
 $\vdash (q_1, bbb, BBBz)$

```
\vdash (q<sub>1</sub>, bb, BBz)

\vdash (q<sub>1</sub>, b, Bz)

\vdash (q<sub>1</sub>, λ, z)

\vdash (q<sub>f</sub>, λ, z) ⇒ aceita
```

```
Considere a Gramática Livre de Contexto na Forma Normal de Greibach: G = (\{S,A,B,C\}, \{a,b,c\}, S, P) \text{ com } P = \{S \rightarrow aA, A \rightarrow aABC | bB | a, B \rightarrow b, C \rightarrow c\} Então M = (\{q_0, q_1, q_f\}, \{a, b, c\}, \{S, A, B, C, z\}, \delta, q_0, z, \{q_f\}), \text{ onde: } \delta(q_0, \lambda, z) = \{(q_1, Sz)\}, \delta(q_1, a, S) = \{(q_1, A)\}, \delta(q_1, a, A) = \{(q_1, ABC)\}, \delta(q_1, b, A) = \{(q_1, \lambda)\}, \delta(q_1, b, B) = \{(q_1, \lambda)\}, \delta(q_1, c, C) = \{(q_1, \lambda)\}, \delta(q_1, \lambda, z) = \{(q_f, z)\}.
A cadeia aaabc pertence a L(G) = L(M)?
S \Rightarrow aA \Rightarrow aaABC \Rightarrow aaaBC \Rightarrow aaabC \Rightarrow aaabc
```

```
(q_0, aaabc, z) \vdash (q_1, aaabc, Sz) 
\vdash (q_1, aabc, Az) 
\vdash (q_1, abc, ABCz) 
\vdash (q_1, bc, BCz) 
\vdash (q_1, c, Cz) 
\vdash (q_1, \lambda, z) 
\vdash (q_f, \lambda, z)
```

Teorema 04

Se L é aceita por um Autômato com Pilha Não Determinístico então L é uma Linguagem Livre de Contexto.

Se for possível a partir de um Autômato com Pilha Não Determinístico M, tal que L = L(M), encontrar uma Gramática Livre de Contexto G tal que L(G) = L(M) = L, então L é uma Linguagem Livre de Contexto.

Seja M = $(Q, \Sigma, \Gamma, \delta, q_0, z, F)$ com as seguintes restrições:

- $F = \{q_f\}$, ou seja, possui um único estado final
- Todas as Funções de Transição são da forma:

$$\delta(q_i, a, A) = \{c_1, c_2, \dots, c_n\}$$
, onde $c_i = (q_j, \lambda)$ ou $c_i = (q_j, BC)$ ou seja, cada movimento incrementa ou decrementa a pilha de um símbolo.

Suponha que uma Gramática que tenha as variáveis da forma $(q_iAq_j) \Rightarrow^* v$ se no Autômato com Pilha Não Determinístico apaga A da pilha enquanto faz a leitura de v e passa do estado q_i para q_j . "Apagar A da pilha" significa que A e todos seus efeitos serão removidos da pilha.

Suponha que em tal Gramática se possa escolher (q_0zq_f) como variável inicial, então $(q_0zq_f) \Rightarrow^* w$, ou seja, o Autômato com Pilha Não Determinístico consegue aceitar w partindo de q_0 e indo até qf. Assim a Linguagem gerada pela Gramática será a mesma gerada pelo Autômato com Pilha Não Determinístico.

Para criar a Gramática, segundo essas condições, faz-se:

- a partir das produções da forma: $\delta(q_i, a, A) = (q_i, \lambda)$, cria-se as regras de produção na forma:

$$(q_iAq_j) \rightarrow a$$

- a partir das produções da forma: $\delta(q_i, a, A) = (q_i, BC)$, cria-se as regras de produção na forma:

$$(q_iAq_k) \rightarrow a(q_iBq_l)(q_lCq_k)$$

onde q_k e q_l são todas os possíveis símbolos do conjunto Q do Autômato com Pilha Não Determinístico

- escolhe-se o (q_0zq_f) como variável inicial da Gramática, onde q_0 é o símbolo inicial e q_f , o símbolo final do Autômato com Pilha Não Determinístico.

Exemplo 24

Considere o Autômato com Pilha Não Determinístico $M = (\{q_0,q_1,q_2\}, \{a,b\}, \{A,z\}, \delta, q_0, z, \{q_2\})$ com

$$\delta(q_0, a, z) = \{(q_0, Az)\}$$

$$\delta(q_0,a,A) = \{(q_0,A)\}$$

$$\delta(q_0,b,A)=\{(q_1,\lambda)\}$$

$$\delta(q_1,\lambda,z)=\{(q_2,\lambda)\}$$

Vejamos as restrições:

- $F = \{q_2\}$, ou seja, possui um único estado final OK
- $\delta(q_i, a, A) = \{c_1, c_2, ..., c_n\}$, onde $c_i = (q_i, \lambda)$ ou $c_i = (q_i, BC) N\tilde{A}O$ está na forma: $\delta(q_0, a, A) = \{(q_0, A)\}$

Então se cria a partir de $\delta(q_0,a,A) = \{(q_0,A)\}$, faz-se:

$$\delta(q_3,\lambda,z) = \{(q_0,Az)\}$$

$$\delta(q_0,a,A) = \{(q_3,\lambda)\}$$

$$\delta(q_0, a, z) = \{(q_0, Az)\}$$

$$\delta(q_3, \lambda, z) = \{(q_0, Az)\}$$

$$\delta(q_0, a, A) = \{(q_3, \lambda)\}$$

$$\delta(q_0, b, A) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}$$

Agora temos de encontrar as regras de produção a partir das funções de transição:

- as últimas três funções de transição são convertidas diretamente já que são da forma $c_i = (q_i, \lambda)$:

$$\begin{split} &\delta(q_0,a,A) = \{(q_3,\lambda)\}, \text{ então } (q_0Aq_3) \rightarrow a \\ &\delta(q_0,b,A) = \{(q_1,\lambda)\}, \text{ então } (q_0Aq_1) \rightarrow b \\ &\delta(q_1,\lambda,z) = \{(q_2,\lambda)\}, \text{ então } (q_1zq_2) \rightarrow \lambda \end{split}$$

- as duas primeiras, que são da forma $c_i = (q_j, BC)$, geram:

```
\begin{split} \delta(q_0, a, z) &= \{(q_0, Az)\}, \text{ então} \quad (q_0zq_0) \to a(q_0Aq_0)(q_0zq_0)| \ a(q_0Aq_1)(q_1zq_0)| \ a(q_0Aq_2)(q_2zq_0)| \ a(q_0Aq_3)(q_3zq_0) \\ & (q_0zq_1) \to a(q_0Aq_0)(q_0zq_1)| \ a(q_0Aq_1)(q_1zq_1)| \ a(q_0Aq_2)(q_2zq_1)| \ a(q_0Aq_3)(q_3zq_1) \\ & (q_0zq_2) \to a(q_0Aq_0)(q_0zq_2)| \ a(q_0Aq_1)(q_1zq_2)| \ a(q_0Aq_2)(q_2zq_2)| \ a(q_0Aq_3)(q_3zq_2) \\ & (q_0zq_3) \to a(q_0Aq_0)(q_0zq_3)| \ a(q_0Aq_1)(q_1zq_3)| \ a(q_0Aq_2)(q_2zq_3)| \ a(q_0Aq_3)(q_3zq_3) \\ & \delta(q_3,\lambda,z) = \{(q_0,Az)\}, \ \text{então} \quad (q_3zq_0) \to (q_0Aq_0)(q_0zq_0)| \ (q_0Aq_1)(q_1zq_0)| \ (q_0Aq_2)(q_2zq_0)| \ (q_0Aq_3)(q_3zq_0) \\ & (q_3zq_1) \to (q_0Aq_0)(q_0zq_1)| \ (q_0Aq_1)(q_1zq_1)| \ (q_0Aq_2)(q_2zq_1)| \ (q_0Aq_3)(q_3zq_1) \\ & (q_3zq_2) \to (q_0Aq_0)(q_0zq_2)| \ (q_0Aq_1)(q_1zq_2)| \ (q_0Aq_2)(q_2zq_2)| \ (q_0Aq_3)(q_3zq_2) \\ & (q_3zq_3) \to (q_0Aq_0)(q_0zq_3)| \ (q_0Aq_1)(q_1zq_3)| \ (q_0Aq_2)(q_2zq_3)| \ (q_0Aq_3)(q_3zq_3) \end{split}
```

- variável inicial $(q_0zq_f) = (q_0zq_2)$

Então a Gramática Livre de Contexto $G = (V, \{a,b\}, (q_0zq_2), P)$ onde P são as produções acima e V é o conjunto formado por todas as variáveis geradas: $\{(q_0Aq_3), (q_0Aq_1), (q_1zq_2), (q_0zq_0), (q_0zq_1), (q_0zq_2), (q_0zq_3), (q_0Aq_0), (q_0zq_0), ...\}$

Verifiquemos se a cadeia aab é aceita pelo Autômato M e pela Gramática G:

$$(q_0, aab, z) \qquad \vdash (q_0, ab, Az)$$

$$\vdash (q_3, b, z)$$

$$\vdash (q_0, b, Az)$$

$$\vdash (q_1, \lambda, z)$$

$$\vdash (q_2, \lambda, \lambda) \quad ACEITA$$

$$(q_0zq_2) \qquad \Rightarrow a(q_0Aq_3)(q_3zq_2)$$

$$\Rightarrow aa(q_3zq_2)$$

$$\Rightarrow aa(q_0Aq_1)(q_1zq_2)$$

$$\Rightarrow aab(q_1zq_2)$$

$$\Rightarrow aab \qquad ACEITA$$

7.3. Autômato com Pilha Determinístico

Definição 10

Um Autômato com Pilha Determinístico, $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ é um Autômato com Pilha Não Determinístico sujeito as seguintes restrições, para todo $q \in Q$, $a \in \Sigma \cup \{\lambda\}$ e $b \in \Gamma$:

- (1) $\delta(q,a,b)$ contém ao menos um elemento
- (2) se $\delta(q,\lambda,b)$ não é vazio, então $\delta(q,c,b)$ deve ser vazio para todo $c \in \Sigma$

```
Seja L = { ww<sup>R</sup> | w ∈ {a,b}+} e M = ({q<sub>0</sub>,q<sub>1</sub>,q<sub>2</sub>}, {a,b}, {a,b,z}, \delta, q<sub>0</sub>, z, {q<sub>2</sub>}) com as funções de transição: \delta(q_0,a,a) = \{(q_0,aa)\} \delta(q_0,b,a) = \{(q_0,ba)\} \delta(q_0,a,b) = \{(q_0,bb)\} \delta(q_0,b,b) = \{(q_0,bb)\} \delta(q_0,b,z) = \{(q_0,bz)\} \delta(q_0,b,z) = \{(q_0,bz)\} \delta(q_0,\lambda,a) = \{(q_1,a)\} \delta(q_0,\lambda,b) = \{(q_1,b)\} \delta(q_1,a,a) = \{(q_1,\lambda)\} \delta(q_1,b,b) = \{(q_1,\lambda)\} \delta(q_1,\lambda,z) = \{(q_2,z)\} M é não determinístico, já que \delta(q_0,\lambda,a) = \{(q_1,a)\} e \delta(q_0,a,a) = \{(q_0,aa)\} \neq vazio \dots
```

Exemplo 26

```
Seja L = \{a^nb^n \mid n \geq 0\} com M = (\{q_0,q_1,q_2\}, \{a,b\}, \{0,1\},\delta,q_0,0, \{q_0\}) com as funções de transição: \delta(q_0,a,0) = \{(q_1,10)\} \delta(q_1,a,1) = \{(q_1,11)\} \delta(q_1,b,1) = \{(q_2,\lambda)\} \delta(q_2,b,1) = \{(q_2,\lambda)\} \delta(q_2,\lambda,0) = \{(q_0,\lambda)\} M é determinístico, já que \delta(q_2,\lambda,0) = \{(q_0,\lambda)\} e \delta(q_2,a,0) = \delta(q_2,b,0) = \{\}
```

Definição 11

L é dita ser uma Linguagem Livre de Contexto Determinística se e somente se existe um Autômato com Pilha Determinístico M tal que L = L(M).

Como no exemplo 26, M é determinístico então $L = \{a^nb^n \mid n \ge 0\}$ é uma Linguagem Livre de Contexto Determinística.

8. Propriedades das Linguagens Livres de Contexto

8.1. Lema do Bombeamento

Lema:

Exemplo 27:

Seja a Linguagem $L = \{a^n b^n c^n \mid n \ge 0\}.$

Aplicando o Lema do Bombeamento, $w = uvxyz = a^rb^rc^r$ com $|vxy| \le r$, $|vy| \ge 1$ e para $i \ge 0$, uv^ixy^iz tem de ser uma palavra de L.

Supondo que vy possui os símbolos a e c, x deve conter símbolos b. Só que uvⁱxyⁱz não é palavra de L, já que tem desbalanceamento no número de a, b e c.

8.2. Operações sobre as Linguagens Livres de Contexto

Teorema 05

A Classe das Linguagens Livres de Contexto é fechada para as operações de União e Concatenação.

Prova - União

Sejam L_1 e L_2 duas Linguagens Livres de Contexto geradas, respectivamente, pelas Gramáticas Livres de Contexto G_1 = (V_1, T_1, S_1, P_1) e G_2 = (V_2, T_2, S_2, P_2) . Considere L_3 = $L_1 \cup L_2$, então G_3 = (V_3, T_3, S_3, P_3) ($S_3 \notin V_1 \cup V_2$) tal que

$$V_3 = V_1 \cup V_2 \cup \{S_3\},$$

 $T_3 = T_1 \cup T_2 e$

$$P_3 = P_1 \cup P_2 \cup \{S_3 \to S_1 | S_2\}$$

Suponha $w \in L_1$, então $w \in L_3$, já que $S_3 \Rightarrow S_1 \Rightarrow^* w$.

Suponha $v \in L_2$, então $v \in L_3$, já que $S_3 \Rightarrow S_2 \Rightarrow^* v$.

Portanto $L_3 = L(G_3)$ é uma Linguagem Livre de Contexto.

Pode-se provar também usando Autômatos com Pilha Não Determinísticos.

Sejam L_1 e L_2 duas Linguagens Livres de Contexto aceitas, respectivamente, pelos Autômatos com Pilha Não Determinísticos $M_1 = (Q_1, \Sigma_1, \Gamma_1, \delta_1, q_{01}, z_1, F_1)$ e $M_2 = (Q_2, \Sigma_2, \Gamma_2, \delta_2, q_{02}, z_2, F_2)$. Seja $M_3 = (Q_3, \Sigma_3, \Gamma_3, \delta_3, q_{03}, z_3, F_3)$ com $q_{03} \notin Q_1 \cup Q_2, z_3 \neq z_1 \neq z_2$, tal que

$$Q_3 = Q_1 \cup Q_2 \cup \{q_{03}\}$$

 $\Sigma_3 = \Sigma_1 \cup \Sigma_2$

$$\Gamma_3 = \Gamma_1 \cup \Gamma_2 \cup \{z_3\}$$

$$F_3 = F_1 \cup F_2$$

Dessa forma, M3 reconhece $L_1 \cup L_2$

Prova - Concatenação

Retomando a prova para União acima usando Gramática Livre de Contexto, pode-se definir $G_4 = (V_4, T_4, S_4, P_4)$ ($S_4 \notin V_1 \cup V_2$) tal que

$$V_4 = V_1 \cup V_2 \cup \{S_4\},$$

$$T_4 = T_1 \cup T_2 e$$

$$P_4 = P_1 \cup P_2 \cup \{S_4 \to S_1S_2\}$$

Então $L(G_4) = L(G_1)L(G_2)$ que possui como prefixo uma cadeia de L_1 e como sufixo uma cadeia de L_2 .

Se construir $G_5 = (V_5, T_5, S_5, P_5)$ $(S_5 \notin V_1)$ tal que

$$V_5 = V_1 \cup \{S_5\},\$$

$$T_5 = T_1$$

$$P_5 = P_1 \cup \{S_5 \rightarrow S_1S_5 | \lambda\}$$

Então $L(G_5) = L(G_1)^*$

Teorema 06

A Classe das Linguagens Livres de Contexto não é fechada para as operações de Intersecção e Complemento.

Prova - Intersecção.

Façamos a prova com um contra-exemplo.

Considere as Linguagens Livres de Contexto $L_1 = \{a^nb^nc^m \mid n \ge 0, \ m \ge 0\}$ e $L_2 = \{a^nb^mc^m \mid n \ge 0, \ m \ge 0\}$. Seja $L = L_1 \cap L_2 = \{a^nb^nc^n \mid n \ge 0\}$ não é uma Linguagem Livre de Contexto.

Prova - Complemento

Sabe-se que $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$. Como para a intersecção a operação não é fechada, então também não o é para o complemento.

Teorema 07

Seja L_1 uma Linguagem Livre de Contexto e L_2 uma Linguagem Regular. Então $L_1 \cap L_2$ é uma Linguagem Livre de Contexto.

Prova

Seja $M_1 = (Q, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ um Autômato com Pilha Não Determinístico que aceita L_1 e $M_2 = (P, \Sigma, \delta_2, p_0, F_2)$ um Autômato Finito Determinístico que aceita L_2 .

Seja $M_3 = (Q_3, \Sigma, \Gamma, \delta_3, q_{03}, z, F_3)$ um Autômato com Pilha Não Determinístico que aceita $L = L_1 \cap L_2$ Onde $Q_3 = Q \times P$,

$$q03 = (q01,p0),$$

$$F3 = F1 \times F2$$

 δ_3 é definido tal que $((q_k,p_l),x) \in \delta_3((q_i,p_j),a,b)$, se e somente se $(q_k,x) \in \delta_1(q_i,a,b)$ e $\delta_2(p_j,a) = p_l$. se $a = \lambda$, então $p_j = p_l$.

Assim uma cadeia é aceita por M_3 se e somente se ela é aceita por M_1 e por M_2 ou seja, se ela está em $L(M_1) \cap L(M_2) = L_1 \cap L_2$.

Exemplo 28

A linguagem $L = \{a^nb^n \mid n \ge 0, n \ne 100\}$ é uma Linguagem Livre de Contexto. Seja $L_1 = \{a^nb^n \mid n \ge 0\}$ e $L_2 = \{a^{100}b^{100}\}$, onde L_1 é uma Linguagem Livre de Contexto e L_2 é uma Linguagem Regular, $\overline{L_2}$ também é Regular. Então $L1 \cap \overline{L_2} = L$ é Livre de Contexto.