Package 'anchorpoint'

January 8, 2021
Title Anchor Point Selection Based on the Gini Inequality Criterion
Version 0.0.0.9000
Description This package implements a Anchor Point Selection method based on the paper 'Anchor Point Selection – Scale Alignment Based on an Inequality Criterion' by Strobl et al. (2020). It provides data generating processes and graphical decision support functions (criterion path, shifted item plots and a graphical test).
License `use_mit_license()`, `use_gpl3_license()` or friends to pick a license
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
Imports grDevices, stats, ineq, graphics, scales, psychotools, multcomp Suggests qvcalc, mirt
R topics documented: anchorpoint checkInput clfCriterion dgp_multi dgp_single diftests generateGrid getCriterionRes getData
getItemDiscrimination

2 anchorpoint

and his although	1.1
graphicalTest	
plot.anchorpoint	11
plotCriterion	12
print.anchorpoint	13
print.plot.anchorpoint	13
print.summary.anchorpoint	14
print.waldtestpV	14
raschFit	15
shiftPlot	15
summary.anchorpoint	16
waldtestpV	17
Wald_test	17
	19
	15

anchorpoint

Function to produce anchorpoint objects

Description

Function to produce anchorpoint objects

Usage

Index

```
anchorpoint(
  rm1,
  rm2,
  select = c("CLF Criterion", "Gini Index"),
  grid = c("symmetric", "sparse")
)
```

Arguments

rm1	Fitted Rasch Model object corresponding to the first group. Object is of class "raschmodel", produced by function RaschModel.fit of the package psychotools .
rm2	Fitted Rasch Model object corresponding to the second group. Object is of class "raschmodel", produced by function RaschModel.fit of the package psychotools .
select	a string, specifying the criterion that is evaluated ("CLF Criterion" or "Gini Index", abbreviations are accepted)
grid	a string, specifying the grid method that is used to generated the shifts for eval- uation ("symmetric" or "sparse", abbreviations are accepted)

Value

an anchorpoint object containing:

- list with global optima
- list with all results (grids and criterion values)
- string with used criteria
- string with used grids
- list with the rm object

checkInput 3

checkInput	Function to check user-specific Input for the right format
•	1 3 1 3 0 3

Description

Function to check user-specific Input for the right format

Usage

```
checkInput(manuelInput, resp.var, group.var)
```

Arguments

manuelInput manual Data input as list with response matrix and grouping vector

resp.var name of the binary response matrix group.var name of the binary grouping vector

Value

Data ready for anchorpoint::raschFit function

clfCriterion	Calculates the CLF criterion	

Description

Calculates the CLF criterion

Usage

```
clfCriterion(dist, eps = 1e-04)
```

Arguments

dist distance vector

eps shift for numerical stability (see Muthen paper)

Value

criterion value

4 dgp_multi

dgp_multi	Data generating process for multi dimensional rasch model (only two dimensions are supported at the moment)

Description

Data generating process for multi dimensional rasch model (only two dimensions are supported at the moment)

Usage

```
dgp_multi(
  nobs,
  tlength,
  DIFpercent,
  Nr.dim = 2,
  Theta = NULL,
  a.vec = NULL,
  d.vec = NULL,
  DIF_mode = "intersect",
  d_distr = list(mean = 0, sd = 0.2),
  MultiNorm = NULL,
  itemtype = "dich"
)
```

nobs	positive interger, number of total observations (default 1000) or positive integer vector vector of length 2, number of group observations
tlength	positive interger, number of items (default 30)
DIFpercent	numeric array, proportion of items which have DIF per dimension (default $0.1/3$)
Nr.dim	positive interger, number of dimensions (default 2)
Theta	matrix of the underlying ability parameters (optional)
a.vec	numeric nobs x Nr.dim-dimensional matrix, item discrimination parameter matrix (if NA, calculated according to DIFmode & DIFpercent)
d.vec	numeric one-dimensional vector, task difficulty matrix (if NA, calculated according to d_distr)
DIF_mode	positive interger, number of dimensions (default 2)
d_distr	distribution parameters normal distribution to calculate d.vec, default: mean = 0 , $sd = .2$
MultiNorm	list with parameters for multivariate normal which models the abilities of group 1 and group 2, respectively
itemtype	type of items (default "dich" which corresponds to multidimensional Rasch model items)

dgp_single 5

Value

list consisting of:

- binary response matrix
- group vector (factor),
- · a.vec.
- · d.vec.
- · DIFindex,
- Theta,
- DIFside

dgp_single

Data generating process for one dimensional rasch model

Description

Data generating process for one dimensional rasch model

Usage

```
dgp_single(
  nobs,
  tlength,
  DIFpercent,
  DIFpattern = "balanced",
  DIFeffect = "constant",
  DIFamount = 0.6,
  ability = TRUE,
  sigmaable = c(1, 1),
  itemref = c(-2.522, -1.902, -1.351, -1.092, -0.234, -0.317, 0.037, 0.268, -0.571,
      0.317, 0.295, 0.778, 1.514, 1.744, 1.951, -1.152, -0.526, 1.104, 0.961, 1.314,
      -2.198, -1.621, -0.761, -1.179, -0.61, -0.291, 0.067, 0.706, -2.713, 0.213, 0.116,
      0.273, 0.84, 0.745, 1.485, -1.208, 0.189, 0.345, 0.962, 1.592)
)
```

Arguments

nobs number of observations in each group (here equal) number of items the test contains tlength **DIFpercent** rel. frequency of DIF items in the test "balanced": DIF balanced over groups "favorref", "favorfoc": all DIF items favor DIFpattern one group DIFeffect data generating process for DIF effect: "normal" -> Wang(2012), "uniform" -> alternative DIFamount magnitude of DIF ability ability sigmaable positive numeric vector of length two (two groups), default c(1,1), standard deviation for person parameter matrix (abilities) itemref numeric vector of length tlength (if shorter, then sampling with replacement is used), items difficulty parameters according to Hartmann

6 generateGrid

Value

list containing response matrix, group assignments, DIFindex, DIFside, itemref, itemfoc

diftests

Extend diftests function of psychotools to include offset

Description

Extend diffests function of psychotools to include offset

Usage

```
diftests(obj1, obj2, anchor_items, adjust = "none", offset = 0)
```

Arguments

```
obj1 rasch model object 1
obj2 rasch model object 2
anchor_items anchor items
adjust p-value adjustment
offset offset
```

Value

list containing test results, item paramters and covariance

generateGrid

This function generates the grid values.

Description

This function generates the grid values.

Usage

```
generateGrid(
  beta1,
  beta2,
  grid_method = c("symmetric", "sparse"),
  j.length = 1000
)
```

beta1	Coefficients from first Rasch model fit
beta2	Coefficients from second Rasch model fit
grid_method	a string, specifying the grid method that is used to generated the shifts for evaluation ("symmetric" and/or "sparse", abbreviations are accepted)
j.length	positive integer, the granularity of the symmetric grid (default: 1000)

getCriterionRes 7

Value

A list with the selected grid methods each having two components:

- 1. A vector 'c_grid' with the grid values
- 2. A list of matrices 'betas_grid' for each grid value (length = j.length) each matrix has three columns: coefficient from group 1 (beta1), shifted coefficient from group 2 (newbeta2) and distance between them (beta1-newbeta2). The rows correspond to the items.

getCriterionRes

Criterion function

Description

Criterion function

Usage

```
getCriterionRes(
   rm1,
   rm2,
   select = c("Gini Index", "CLF Criterion"),
   grid = c("symmetric", "sparse"),
   shift = NULL
)
```

Arguments

rm1	Fitted Rasch Model object corresponding to the first group. Object is of class "raschmodel", produced by function raschmodel of the package psychotools .
rm2	Fitted Rasch Model object corresponding to the second group. Object is of class "raschmodel", produced by function raschmodel of the package psychotools .
select	criterion: Gini Index or CLF Criterion
grid	grid method: symmetric or sparse
shift	desired shift. if NULL, then the criterion maximizing is used. Can also be numeric to get desired shift. Caution: must be within grid!

Value

a list which contains:

- a list with the results (grid values, criterion values, information about the optima)
- a rm object,

8 getItemDiscrimination

getData

Simulate data from one dimensional or multidimensional DGP

Description

Simulate data from one dimensional or multidimensional DGP

Usage

```
getData(nobs, tlength, DIFpercent, type = c("single", "multi"), ...)
```

Arguments

nobs positive integer, number of observations

tlength positive integer, number of items

DIFpercent non-negative double <= 1, DIF percentage

type string specifying which DGP to use ("single" or "multi")

... additional arguments:

• For single-dimensional DGP, check ?anchorpoint::dgp_single

• For multi-dimensional DGP, check ?anchorpoint::dgp_multi

Value

a list containing

• DGP: simulated data

• RM: Rasch Model objects

getItemDiscrimination Function to create a item discrimination parameter matrix

Description

Function to create a item discrimination parameter matrix

Usage

```
getItemDiscrimination(
  dimensions,
  DIFpercent,
  tlength,
  DIF_mode = c("intersect", "disjoint")
)
```

getWald 9

Arguments

dimensions integer specifying the number of dimensions used in dgp (currently only 2 are

allowed)

DIFpercent numeric, quantifying DIF percentage

tlength positive integer specifying the number of items

DIF_mode character vector specifying the mode how to create the matrix:

- "intersect": all items load on the first, length*DIFpercent items also on the second
- "disjoint": ceiling(tlength*DIFpercent) items load on the first, the rest on the second, where ceiling rounds the number up to the next integer

Value

A binary item discrimination parameter matrix of dimension: tlength x dimensions

getWald	Function which executes Wald test for given rm object and shift (with
	"min_dist" setting)

Description

Function which executes Wald test for given rm object and shift (with "min_dist" setting)

Usage

```
getWald(rm, shift)
```

Arguments

rm A list containing the two Rasch Model objects of group 0 and group 1

shift The desired shift of the second group

Value

A list containing the output of the function Wald_test():

- p: results from the test (p-values)
- vcov: the covariance matrices of the fit (from diffests function)

10 get_results

get_covmat	Function that gives back a covariance matrix for n dimesnions
------------	---

Description

Function that gives back a covariance matrix for n dimesnions

Usage

```
get_covmat(Nr.dim, variances = 0.25, covariances = 0.125)
```

Arguments

Nr.dim integer - the number of dimensions

variances numeric, positive, <= 1, (same for all dimensions) or Nr.dim-dimensional vector

- variance of each dimension

covariances numeric, positive, <= 1, (same for all dimensions) or choose(Nr.dim,2)-dimensional

vector - covariances between dimensions

Value

covariance matrix of dimension Nr.dim x Nr.dim

get_results	Function to evaluate criterion values and obtain test results for a given grid and method
get_results	, ,

Description

Function to evaluate criterion values and obtain test results for a given grid and method

Usage

```
get_results(grid, shift, getTestResults, rm, metric)
```

Arguments

grid The grid values: output of the "generateGrid.R" function

shift the desired shift

getTestResults logic, whether test should be applied

rm list containing the two Rasch Model corresponding two group 0 and 1

metric criterion to evaluate as a function

Value

a list containing the criterion evaluated at grid points and the result of the wald test

graphicalTest 11

			_		
gra	nh	٠i،	റചി	$I T_{\Delta}$	c+

Function to produce graphical test plot

Description

Function to produce graphical test plot

Usage

Arguments

object	anchorpoint object as produced by the function anchorpoint
shift	numeric, shift which is applied, default NULL (global optimum)
highlight	positive integer, items to be highlighted (invalid items are excluded).
alpha	significance level for DIF test
testColors	list with colors for the items:
	• "not significant" = "darkgreen"
	• "significant" = "red3"
	• "anchor item" = "black"
TestResults	waldtest object from anchorpoint::getWald. If NULL, then they are computed within the function. Default: NULL.
ask	logical, ask for next plot. Default = TRUE
	further arguments for plot() like lty, cex.axis, cex.main, cex.lab etc. credit: some code is adapted from the function plotGOF of the R package eRm.

 ${\tt plot.anchorpoint}$

Plot function hand over location_picker = TRUE, to identify specific points in the plot to terminate the function, press any mouse button other than the first (X11 device) or press ESC key (quartz) see ?identify for help

Description

Plot function hand over location_picker = TRUE, to identify specific points in the plot to terminate the function, press any mouse button other than the first (X11 device) or press ESC key (quartz) see ?identify for help

12 plotCriterion

Usage

```
## S3 method for class 'anchorpoint'
plot(x, ask = T, location_picker = FALSE, ...)
```

Arguments

x anchorpoint object as produced by the function anchorpoint
ask logical, ask for next plot. Default = TRUE
location_picker
logical, use location picker. Default FALSE.
... additional parameters for plot function as for standard plot function (e.g. col)

plotCriterion

Function to produce criterion plot

Description

Function to produce criterion plot

Usage

```
plotCriterion(
  object,
  names,
  location_picker = FALSE,
  lty = 1,
  col = 1,
  cex.axis = 1,
  cex.lab = 1,
  cex.main = 1,
  cex = 1
)
```

Arguments

object anchorpoint object as produced by the function anchorpoint names list, with criterion and grid: names of the methods used. location_picker

use location picker

lty line type
col color
cex.axis cex.axis
cex.lab cex.lab
cex.main cex
cex

Value

selected points with additional information

print.anchorpoint 13

print.anchorpoint

Print function

Description

Print function

Usage

```
## S3 method for class 'anchorpoint' print(x, ...)
```

Arguments

x anchorpoint object as produced by the function anchorpoint

... further arguments passed to or from other methods (e.g. digits for rounding).

```
print.plot.anchorpoint
```

Print function for plot.anchorpoint

Description

Print function for plot.anchorpoint

Usage

```
## S3 method for class 'plot.anchorpoint' print(x, ...)
```

Arguments

x plot.anchorpoint object

... further arguments passed to or from other methods.

14 print.waldtestpV

```
print.summary.anchorpoint
```

Print function for summary.anchorpoint

Description

Print function for summary.anchorpoint

Usage

```
## S3 method for class 'summary.anchorpoint' print(x, ...)
```

Arguments

- x summary.anchorpoint object
- ... further arguments passed to or from other methods.

print.waldtestpV

Print function for waldtestpV object

Description

Print function for waldtestpV object

Usage

```
## S3 method for class 'waldtestpV' print(x, ...)
```

- x waldtest object
- ... further arguments passed to or from other methods.

raschFit 15

raschFit

Fits Rasch models for the reference group 0 and the focal group 1

Description

Fits Rasch models for the reference group 0 and the focal group 1

Usage

```
raschFit(data, resp.mat.name = "i", group.name = "groups")
```

Arguments

data

- data.frame simulated or a real data. Must contain:
- response item matrix (matrix), binary (0/1) input.
- group (vector), the group of the test takers.

resp.mat.name

string vector, the name of the response matrix in 'data' input with 'i' as a default

(as dgp).

group.name

string vector, the group name in the data frame 'data' (as dgp).

Value

two objects of class "raschmodel", produced by function RaschModel.fit of the package **psychotools**.

shiftPlot

Function to produce shift Plot

Description

Function to produce shift Plot

Usage

```
shiftPlot(
  object,
  shift = NULL,
  testColors = list(`not significant` = "darkgreen", significant = "red3", `anchor
    item` = "black"),
  testPCH = list(`not significant` = 21, significant = 22, `anchor item` = 23),
  addLegend = TRUE,
  highlight = NULL,
  digits = 3,
  cex.legend = 0.5,
  TestResults = NULL,
  ask = TRUE,
  ...
)
```

16 summary.anchorpoint

Arguments

object as produced by the function anchorpoint

shift numeric, shift which is applied testColors list with colors for the items:

• "not significant" = "darkgreen"

• "significant" = "red3"

• "anchor item" = "black"

testPCH list with pch for the items (for color blind people):

• "not significant" = 21

• "significant" = 22

• "anchor item" = 23

addLegend logic, add a legend to the plot, default: False

highlight positive integer, items to be highlighted (invalid items are excluded).

digits positive integer, controls rounding of the shift in title

cex.legend numeric, controls size of legend

TestResults waldtest object from anchorpoint::getWald. If NULL, then they are computed

within the function. Default: NULL.

ask logical, ask for next plot. Default = TRUE

... additional graphics arguments

summary.anchorpoint Summary function

Description

Summary function

Usage

```
## S3 method for class 'anchorpoint'
summary(object, ...)
```

Arguments

object anchorpoint object as produced by the function anchorpoint ... additional arguments affecting the summary produced.

waldtestpV 17

Description

Function to get waldtest p-value results

Usage

```
waldtestpV(object, shift = NULL, ...)
```

Arguments

object anchorpoint object as produced by the function anchorpoint shift shift, default NULL (global optimum), else numeric further arguments for signif(x,...) (digits)

Wald_test

Function to create a item discrimination parameter matrix

Description

Function to create a item discrimination parameter matrix

Usage

```
Wald_test(
    rm1,
    rm2,
    c_shift,
    alias_method = c("constant4_MPT", "quasi_var", "min_dist"),
    alias_anchor_items = NULL,
    adjust = "none"
)
```

rm1	Fitted Rasch Model object corresponding to the first group. Object is of class "raschmodel", produced by function RaschModel.fit of the package psychotools .			
rm2	Fitted Rasch Model object corresponding to the first group. Object is of class "raschmodel", produced by function RaschModel.fit of the package psychotools .			
c_shift	The shift of the second group			
alias_method	character vector specifying the aliasing method. One of "constant4_MPT", "quasi_var", "min_dist".			
alias_anchor_items				
	integer in 1,,#items. Default: NULL, will be chosen according to alias_method			
adjust	p-value adjustment (multiple testing correction), Default: "none"			

18 Wald_test

Value

list containing

- p: results from the test (p-values)
- vcov: the covariance matrices of the fit (from diffests function)

Index

```
anchorpoint, 2
checkInput, 3
clfCriterion, 3
dgp_multi, 4
dgp_single, 5
diftests, 6
{\tt generateGrid}, {\color{red} 6}
\texttt{get\_covmat}, \textcolor{red}{10}
get_results, 10
getCriterionRes, 7
getData, 8
{\tt getItemDiscrimination}, \\ 8
getWald, 9
graphicalTest, 11
plot.anchorpoint, 11
plotCriterion, 12
print.anchorpoint, 13
print.plot.anchorpoint, 13
print.summary.anchorpoint, 14
print.waldtestpV, 14
raschFit, 15
shiftPlot, 15
summary.anchorpoint, 16
Wald_test, 17
waldtestpV, 17
```