Kalman FIlter Implementation Report

Acharya U

December 13, 2024

Contents

1	Equations of Motion Used	1
2	State Vector	1

1 Equations of Motion Used

The Equations of Motion Used Are:

1.
$$s_t = s_o + v_{t-1} \times T$$

2.
$$v_t = v_{t-1} + a \times T$$

2 State Vector

This is the state vector \vec{X}

 $\begin{bmatrix} x \\ y \\ z \\ v_x \\ v_y \\ v_z \\ a_z \end{bmatrix}$

 a_z is always going to be 9.81, it will never change but i needed g in the equation so that i can write the A matrix.

Transition state:

$$X_{t+1} = A \times X_t$$

There is no noise as we are not taking any sensor measurements, so i have not put the white noise