Projet pratique Algorithme / Complexité / Calculabilité

Jean-Marc Lagniez, Viktor Lesnyak, Pierre-Alexandre Cimbe, Ahmed Rafik

Master Informatique - Université Montpellier II

2013

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- 3 Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- 4 Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

Graphe initiale

Soit G = (V,E) un graphe,avec V-ensemble des arcs et Eensemble des sommets.

Graphe d'ecart

Pour passer de notre graphe G au Graphe d'ecart G_e on applique un flot null sur toutes les arcs et on ajout un arc qui va de la source(S) vers le puit(T).

Chemin ameliorant

Ensuite on choisi un chemin ammeliorant sur le graphe d'ecart obtenue grace a un parcour en largeur.

Chemin ameliorant

En utilisant le flotle plus petit de ce chemin on met a jour le graphe d'ecart.

Chemin ameliorant

Une foi tout les chemin ameliorants sont parcouru, on obtien un graphe d'ecart complet avec le flot maximal (das notre cas c'est 6).

AlgoEK

Graphe initiale

On reprends le meme graphe initiale.
Soit G = (V,E) un graphe,avec
V-ensemble des arcs et E-ensemble des sommets.

AlgoEK

Graphe d'ecart

On refait a nouveau a partir de graphe G le Graphe d'ecart G_e on applique un flot null sur toutes les arcs et on ajout un arc qui va de la source(S) vers le puit(T).

AlgoEK

Chemin ameliorant

On choisi ici un chemin ameliorant en fonction de plus court chemin, qui dans notre cas est calculec l'algo de Dijsktra

Chemin ameliorant

En utilisant le flotle plus petit de ce chemin on met a jour le graphe d'ecart.

Ford-Fulkerson Edmonds-Karp Dinic Cacity Scaling

AlgoD

Ford-Fulkerson Edmonds-Karp Dinic Cacity Scaling

AlgoCS

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

Performance de l'ordinateur utilisitine

Temps d'execution en fonction du nombre de sommets en con

Version Ubuntu : 10.04 Intel(R) Pentium(R) Dual CPU T3200 @ 2.00GHZ

Ford-Fulkerson

Temps d'execution en fonction du nombre de sommets en con

Capacity-Scaling

Edmons-Karp

Temps d'execution en fonction du nombre de sommets en cor

Dinic

Comparaison des algorithmes

- Les algorithmes étudiés
 - Ford-Fulkerson
 - Edmonds-Karp
 - Dinic
 - Capacity Scaling
- Experimentation et Performance
- Experimentation et Performance
 - Performance de l'ordinateur utilisitine
 - Temps d'execution en fonction du nombre de sommets comptant le temps de crion des graphes
- Demonstration du fonctionnement sous TIKZ
 - Demonstration du fonctionnement sous TIKZ

Démo