REVIEW OF TWO-PERIOD MODEL

CHAPTER 1

(Modern Macroeconomics - Sanjay K. Chugh)

- Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods – the benefit of consumption
- Marginal Utility
 - The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - Mathematically, the (partial) slope of utility with respect to that good

Alternative notation: du/dc OR u'(c) OR $u_c(c)$ OR $u_1(c)$

- One-good case: u(c), with du/dc > 0 and d^2u/dc^2 < 0
 - Recall interpretation: strictly increasing at a strictly decreasing rate
 - Diminishing marginal utility

- Two-good case: $u(c_1, c_2)$, with $u_i(c_1, c_2) > 0$ and $u_{ii}(c_1, c_2) < 0$ for each of i = 1, 2
 - ☐ Utility strictly increasing in each good individually (partial)
 - □ Diminishing marginal utility in each good individually

Easily extends to N-good case: $u(c_1, c_2, c_3, c_4,..., c_N)$

□ One-good case

□ Two-good case

Example:

$$u(c_1, c_2) = \ln c_1 + \ln c_2$$
or
 $u(c_1, c_2) = \sqrt{(c_1)} + \sqrt{(c_2)}$

Viewed in good-by-good space

Alternative views

Indifference
Curve: the set of all consumption bundles that deliver a particular level of utility/happiness

Alternative views

Top-down view of contour

- Marginal Rate of Substitution (MRS)
 - Maximum quantity of one good consumer is willing to give up to obtain one extra unit of the other good
 - ☐ Graphically, the (negative of the) slope of an indifference curve
 - ☐ MRS is itself a function of c_1 and c_2 (i.e., $MRS(c_1, c_2)$)

MRS equals ratio of marginal utilities

$$\square MRS(c_1, c_2) = \frac{u_1(c_1, c_2)}{u_2(c_1, c_2)}$$

□ Using Implicit Function Theorem

BUDGET CONSTRAINTS

- Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - □ Assume income Y is taken as given by consumer for now...

- ☐ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - ☐ Assume income *Y* is taken as given by consumer for now...

BUDGET CONSTRAINTS

Isolate c_2 to graph the budget constraint

$$P_1c_1 + P_2c_2 = Y$$

$$P_2c_2 = -P_1c_1 + Y$$

$$c_2 = -\frac{P_1}{P_2}c_1 + \frac{Y}{P_2}$$

Plotted in 2D-consumption-space

BUDGET CONSTRAINTS

Plotted in 3D-consumption-space

Plotted in 2D-consumption-space

- Consumer's decision problem: maximize utility subject to budget constraint – bring together both cost side and benefit side
- One-good case
 - \Box Trivially, choose c = Y/P
 - No decision to make here...

- Two-good case
 - ☐ How to optimally allocate Y across the two goods c_1 and c_2 ?
 - ☐ A non-trivial decision problem...

- Two-good case
 - \square How to optimally allocate Y across the two goods c_1 and c_2 ?
 - ☐ A non-trivial decision problem...

- Two-good case
 - ☐ How to optimally allocate Y across the two goods c_1 and c_2 ?
 - ☐ A non-trivial decision problem...

LAGRANGE METHOD

- Consumer optimization a constrained optimization problem
 - Maximize some function (economic application: utility function)...
 - ...taking into account some restriction on the objects to be maximized over (economic application: budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems

Maximizing an OBJECTIVE conditioned on **some** CONSTRAINTS

Original setting

Max Objective Function

subject to:
$$\begin{cases} Constraint \ 1 = 0 \\ Constraint \ 2 = 0 \\ ... \\ Constraint \ 3 = 0 \end{cases}$$

Set up another function

$$L(...) = \text{Objective Function}$$

 $+\lambda_1(Constraint\ 1)$
 $+\lambda_2(Constraint\ 2)+...$
 $+\lambda_n(Constraint\ n)$

 $\lambda_1, \lambda_2 \dots \lambda_n$ are the Lagrangian multipliers. They are created as the $L(\dots)$ function is set up.

Lagrange (the mathematician) proved a very useful result:

The solutions to the maximization of L(...) are also the solutions to the original setting.

Example:

Max
$$f(x, y)$$

subject to:
$$\begin{cases} g(x, y) = 0 \\ h(x, y) = 0 \end{cases}$$

Set up the Lagrangian function for this problem, we have:

$$L(x, y, \lambda_1, \lambda_2) = \underbrace{f(x, y)}_{\text{obj. func}} + \lambda_1 \cdot \underbrace{g(x, y)}_{\text{constraint 1}} + \lambda_2 \cdot \underbrace{h(x, y)}_{\text{constraint 2}}$$

Function with 4 variables

We do the usual FOCs:

$$\frac{\partial L(\mathbf{x}, \mathbf{y}, \lambda_1, \lambda_2)}{\partial \mathbf{x}} = 0$$

$$\frac{\partial L(x, \mathbf{y}, \lambda_1, \lambda_2)}{\partial \mathbf{y}} = 0$$

$$\frac{\partial L(x, y, \lambda_1, \lambda_2)}{\partial \lambda_1} = 0$$

$$\frac{\partial L(x, y, \lambda_1, \frac{\lambda_2}{\lambda_2})}{\partial \lambda_2} = 0$$

Solution to Max $L(x, y, \lambda_1, \lambda_2)$

$$x^*, y^*, \lambda_1^*, \lambda_2^*$$

 x^* , y^* are also the solution to the original setting. Which is:

Max
$$f(x, y)$$

subject to:
$$\begin{cases} g(x, y) = 0 \\ h(x, y) = 0 \end{cases}$$

LAGRANGE METHOD

- General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ...subject to the constraint g(x,y) = 0 (Note formulation of constraint)
 - Step 1: Construct Lagrange function

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$
Lagrange multiplier

Step 2: Compute first-order conditions with respect to x, y, and λ

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$
Lagrange multiplier

$$f_x(x,y) + \lambda g_x(x,y) = 0$$

2)

3)

Rationale: Setting first derivatives to zero isolates maxima (or minima...technically, need to check second-order condition...)

- Step 3: Solve the system of first-order conditions for x, y, and λ
 - Often most interested in simply eliminating the multiplier...
 - □ From eqn 1), isolate λ : $\lambda = -\frac{f_x(x, y)}{g_x(x, y)}$
 - \square Insert expression for λ in eqn 2):

$$f_{y}(x, y) - \frac{f_{x}(x, y)}{g_{x}(x, y)} g_{y}(x, y) = 0$$

- Step 3:
 - **.....**
 - Rearrange
 - \Box Optimality condition: at the optimum (x^*, y^*)

$$\frac{f_x(x^*, y^*)}{f_y(x^*, y^*)} = \frac{g_x(x^*, y^*)}{g_y(x^*, y^*)}$$

■ Step 3:

....

$$\frac{f_x(x^*, y^*)}{f_y(x^*, y^*)} = \frac{g_x(x^*, y^*)}{g_y(x^*, y^*)}$$

Graphical interpretation: at the constrained optimum, the function f(.) is tangent to the function g(.)

- Apply Lagrange tools to consumer optimization
- lacksquare Objective function: $u(c_1, c_2)$
- Constraint:

$$g(c_1, c_2) = Y - P_1c_1 - P_2c_2 = 0$$

Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda [Y - P_1 c_1 - P_2 c_2]$$

Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ

1)
$$u_1(c_1, c_2) - \lambda P_1 = 0$$

$$u_2(c_1, c_2) - \lambda P_2 = 0$$

$$Y - P_1 c_1 - P_2 c_2 = 0$$

Step 3: Solve (focus on eliminating multiplier from eqns 1 & 2)

$$\frac{u_1(c_1^{\star}, c_2^{\star})}{u_2(c_1^{\star}, c_2^{\star})} = \frac{P_1}{P_2}$$

At the optimality condition, the trade-off between c1 and c2 in term of utility is equal to the trade-off between c1 and c2 in term of finance (budget). That is, to give up 1 unit of c1, we need to give up same amount of c2 in both aspects.

MRS: tradeoff in term of utility

Price ratio: trade-off in term of money

Suppose that I would like to consume one more unit of c_1 . I have to spend P_1 to purchase that unit of c_1 .

So that means I have P_1 less to by $c_2 \implies$ how much of c_2 I forewent? It is:

\$P₂

CONSUMPTION-SAVINGS FRAMEWORK

CHAPTER 3

(Modern Macroeconomics - Sanjay K. Chugh)

THE MACROECONOMICS OF TIME

Dynamic frameworks the core of modern macroeconomic analysis

Simplest dynamic model:

Period 1

Period 2

 Explicit consideration of how economic decisions/behaviors/outcomes unfold over multiple time periods

Eg. Savings/Investments across time

THE MACROECONOMICS OF TIME

- □ Two-period framework (Chapters 3 and 4) the simplest possible multi-period framework
 - Will allow us to begin analyzing issues regarding interest rates and inflation (phenomena that occur across time)
 - Will allow us to think about credit restrictions and the "credit crunch"
- ☐ Infinite-period framework (Chapter 8)
 - Allows a richer quantitative description of the macroeconomy
 - Highlights the role of assets and the intersection between finance and macroeconomics

☐ Timeline of events

- Notation
 - \Box c_1 : consumption in period 1
 - \Box c_2 : consumption in period 2
 - \square P_1 : nominal price of consumption in period 1
 - \square P_2 : nominal price of consumption in period 2

$$\pi_2 = \frac{P_2 - P_1}{P_1} \left(= \frac{P_2}{P_1} - 1 \right)$$

- \Box Y_2 : nominal income in period 2 ("falls from the sky")
- **...**

- □ Notation
 - **...**
 - \square A_0 : nominal wealth at the beginning of period 1/end of period 0
 - \square A_1 : nominal wealth at the beginning of period 2/end of period 1
 - \square A_2 : nominal wealth at the beginning of period 3/end of period 2
 - □ i: nominal interest rate between periods
 - \Box r: real interest rate between periods
 - \square π_2 : net inflation rate between period 1 and period 2
 - \square y_1 : real income in period 1 ($=\frac{Y_1}{P_1}$)
 - \square y_2 : real income in period 2 ($=\frac{Y_2}{P_2}$)

STOCKS VS. FLOWS

- Stock variables, aka accumulation variables
 - Quantity variables whose natural measurement occurs at a particular moment in time
 - Checking account balance
 - Credit card indebtedness
 - Mortgage loan payoff

A is a stock variable

STOCKS VS. FLOWS

- Flow variables
 - Quantity variables whose natural measurement occurs over the course of a given interval of time
 - Income
 - Consumption
 - Savings
- □ The two broad categories of income
 - Labor income
 - □ Asset income (generated by interest rate(s) on (components of) wealth)

- Building blocks of consumption-savings framework

 Same building blocks
- Utility
 - Describes the benefits of engaging in financial market (and other) activities
- Budget constraint
 - Describes the costs of engaging in financial market (and other) activities

UTILITY

- \square Preferences $u(c_1, c_2)$ with all the "usual properties"
 - ☐ Lifetime utility function
 - $lue{}$ Strictly increasing in c_1
 - \square Strictly increasing in c_2
 - lacksquare Diminishing marginal utility in c_1
 - lacktriangle Diminishing marginal utility in c_2

UTILITY

- Plotted as indifference curves
- Utility side of consumption-savings framework identical to Chapter 1 framework

BUDGET CONSTRAINT(S)

- lue Suppose again Y "falls from the sky"
 - \square Y_1 in period 1, Y_2 in period 2
- Need two budget constraints to describe economic opportunities and possibilities
 - One for each period

BUDGET CONSTRAINT(S)

Period-1 budget constraint

Asset income during period 1 (a flow)

$$P_1c_1 + A_1 = Y_1 + (1+i)A_0 \longrightarrow P_1c_1 + A_1 - A_0 = Y_1 + iA_0$$

Savings during period 1 (a flow)

$$P_1c_1 + A_1 - A_0 = Y_1 + iA_0$$

Total <u>expenditure</u> in period 1: period-1 consumption + wealth to carry into period 2

Total income in period 1: period-1 Y + income from wealth carried into period 1 (inclusive of interest)

$$A_0 + (A_1 - A_0) = A_1$$

$$Top-up$$

$$or sell$$

$$P_1c_1 + (A_1 - A_0) = Y_1 + iA_0$$

Amount of new assets bought (or sold)

If new assets purchased:
Purchased by <u>savings</u>

If assets sold \rightarrow converted into cash to buy c_1 (dissaving)

BUDGET CONSTRAINT(S)

□ Period-2 budget constraint

Asset income during period 2 (a flow)

Savings during period 2 (a flow)

$$P_2c_2 + A_2 = Y_2 + (1+i)A_1 \longrightarrow P_2c_2 + A_2 - A_1 = Y_2 + iA_1$$

Total Total income

expenditure in in period 2:

period 2: period-2 Y +

<u>period-2</u> income from

consumption wealth carried

+ wealth to into period 2

carry into (inclusive of

<u>period 3</u> interest)

BUDGET CONSTRAINT(S)

- Adopt a lifetime view of the budget constraint(s)
 - All analysis conducted from perspective of beginning of period 1

 Asset position
 - □ Period-1 budget constraint

$$P_1c_1 + A_1 = Y_1 + (1+i)A_0$$

Period-2 budget constraint

1/beginning

of period 2

at end of

period

$$P_2c_2 + A_2 = Y_2 + (1+i)A_1$$

Assume = 0 (no bankruptcies + strictly increasing utility)

No more

holding in

between

asset

BUDGET CONSTRAINT(S)

- Combine into lifetime budget constraint (LBC)
 - \square Solve period-2 budget constraint for A_1 ...
 - ...and substitute into period-1 budget constraint

$$P_1c_1 + \frac{P_2c_2}{1+i} = Y_1 + \frac{Y_2}{1+i} + (1+i)A_0$$

Present discounted value (PDV) of all lifetime expenditure

Present discounted value (PDV) of all lifetime income

For graphical simplicity, will often assume $A_0 = 0$ (i.e., consumer begins planning horizon with zero net wealth).

Note this is a different assumption than $A_2 = 0$.

LIFETIME BUDGET CONSTRAINT

LIFETIME BUDGET CONSTRAINT

Rearrange further using definition of inflation:

$$1 + \pi_2 = \frac{P_2}{P_1} \Longrightarrow \frac{1}{1 + \pi_2} = \frac{P_1}{P_2}$$

$$c_2 = -\left(\frac{1+i}{1+\pi_2}\right)c_1 + \left(\frac{1+i}{P_2}\right)Y_1 + \frac{Y_2}{P_2}$$

IMPORTANT:

Changes in nominal interest rates (Fed) and/or inflation affect the slope of the LBC

CONSUMER OPTIMIZATION

- Consumer's decision problem: maximize lifetime utility subject to lifetime budget constraint – bring together both cost side and benefit side
 - \Box Choose c_1 and c_2 subject to

$$P_1c_1 + \frac{P_2c_2}{1+i} = Y_1 + \frac{Y_2}{1+i}$$

□ Plot budget line

CONSUMER OPTIMIZATION

□ Superimpose indifference map

$$\frac{u_1(c_1^*,c_2^*)}{u_2(c_1^*,c_2^*)} = \frac{1+i}{1+\pi_2}$$
 optimal choice
$$u_2(c_1^*,c_2^*)$$

LAGRANGE ANALYSIS

- Apply Lagrange tools to consumption-savings optimization
- \Box Objective function: $u(c_1, c_2)$

- □ Constraint: $g(c_1, c_2) = Y_1 + \frac{Y_2}{1+i} P_1c_1 \frac{P_2c_2}{1+i} = 0$
- Step 1: Construct Lagrange function
- Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ
- Step 3: Combine (1) and (2) (with focus on eliminating multiplier)

LAGRANGE ANALYSIS

Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda \left[Y_1 + \frac{Y_2}{1+i} - P_1 c_1 - \frac{P_2 c_2}{1+i} \right]$$

Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ

(1)
$$u_1(c_1, c_2) - \lambda P_1 = 0$$

$$\partial L(\dots)/\partial c_1=0$$

(2)
$$u_2(c_1, c_2) - \frac{\lambda P_2}{1+i} = 0$$

$$\partial L(\dots)/\partial c_2=0$$

(3)
$$Y_1 + \frac{Y_2}{1+i} - P_1 c_1 - \frac{P_2 c_2}{1+i} = 0$$

$$\partial L(...)/\partial \lambda = 0$$

From 1:
$$u_1(c_1, c_2) - \lambda P_1 = 0 \implies \lambda P_1 = u_1(c_1, c_2)$$

$$\implies \lambda = \frac{u_1(c_1, c_2)}{P_1}$$

From 2:
$$u_2(c_1, c_2) - \frac{\lambda P_2}{1+i} = 0 \implies u_2(c_1, c_2) = \frac{\lambda P_2}{1+i}$$

$$\Rightarrow u_2(c_1, c_2) = \frac{u_1(c_1, c_2)}{P_1} \frac{P_2}{1 + i}$$

$$u_2(c_1, c_2) = \frac{P_2}{P_1} \frac{1}{1 + i}$$

$$\Rightarrow \frac{u_2(c_1, c_2)}{u_1(c_1, c_2)} = \frac{P_2}{P_1} \frac{1}{1+i}$$

$$\Rightarrow \frac{u_2(c_1, c_2)}{u_1(c_1, c_2)} = \frac{1 + \pi_2}{1 + i} \text{ or } \frac{u_1(c_1, c_2)}{u_2(c_1, c_2)} = \frac{1 + i}{1 + \pi_2}$$

LAGRANGE ANALYSIS

Step 3: Combine (1) and (2) (with focus on eliminating multiplier)

$$\frac{u_1(c_1^*, c_2^*)}{u_2(c_1^*, c_2^*)} = \frac{1+i}{1+\pi_2}$$
MRS

(between consumption in consecutive time periods)

price ratio
(across
consecutive
time
periods)

CONSUMPTION-SAVINGS
OPTIMALITY CONDITION

 $\frac{1+i}{1+\pi_2}$ determines where we should consume and thus savings

$$slope = -(1+i)/(1+\pi_2)$$

(continuing to assume $A_0 = 0$)

INFLATION AND INTEREST RATES IN THE CONSUMPTION-SAVINGS FRAMEWORK

CHAPTER 4

(Modern Macroeconomics - Sanjay K. Chugh)

FISHER EQUATION

- Nominal interest rate measured in dollars
- □ Real interest rate measured in goods
- Fisher equation: a link between the nominal interest rate, inflation rate, and real interest rate
 - □ "Strips out the effect of inflation"
 - Exact Fisher equation

$$1+r = \frac{1+i}{1+\pi}$$

FISHER EQUATION

Approximate Fisher equation (intro macro)

$$(1+r)(1+\pi) = 1+i$$

$$1+r+\pi+r\pi = 1+i$$

In advanced economies, r and π are both generally small $\rightarrow r\pi \approx 0$

$$r = i - \pi$$

 $r=i-\pi$ A useful rule of thumb

REAL INTEREST RATE

- \Box r a key variable for macroeconomic analysis
- ☐ Unit Analysis (i.e., analyze algebraic units of variables)

Slope measures how much c_2 must be given up in order to obtain one more unit of c_1 ("rise over run") when saving or dissaving at market interest rates

1+r is the <u>price</u> of period-1 consumption in terms of period-2 consumption

More generally: 1+r measures the price of current goods in terms of future goods 69

REAL INTEREST RATE

- □ Economic decisions depend on real interest rates (r), not nominal interest rates (i)
 - Measures the cost of borrowing/lending in terms of goods...
 - ...which is presumably what people most care about

LBC in nominal terms

TWO-PERIOD FRAMEWORK IN REAL TERMS

Depending on application, may be useful to work with framework (independent of lifetime vs. sequential approach) in nominal terms or in real terms

$$P_1c_1 + \frac{P_2c_2}{1+i} = Y_1 + \frac{Y_2}{1+i}$$
 (assuming $A_0 = 0$)

ightharpoonup Divide by P_1

$$c_1 + \left(\frac{P_2}{P_1(1+i)}\right)c_2 = \frac{Y_1}{P_1} + \frac{Y_2}{P_1(1+i)}$$

TWO-PERIOD FRAMEWORK IN REAL TERMS

LBC in real terms (assuming $A_0 = 0$)

$$c_{1} + \left(\frac{P_{2}}{P_{1}(1+i)}\right)c_{2} = \frac{Y_{1}}{P_{1}} + \frac{Y_{2}}{P_{1}(1+i)}$$

$$\downarrow \quad \text{Multiply } \underline{and} \text{ divide last term on right-hand-side by } P_{2}$$

$$c_{1} + \left(\frac{P_{2}}{P_{1}(1+i)}\right)c_{2} = \frac{Y_{1}}{P_{1}} + \frac{Y_{2}}{P_{1}(1+i)} \cdot P_{2}$$

$$\downarrow \quad \text{Use definitions: } y_{1} = Y_{1}/P_{1}, y_{2} = Y_{2}/P_{2} \text{ and } 1 + \pi_{2} = P_{2}/P_{1}$$

$$c_{1} + \left(\frac{1+\pi_{2}}{1+i}\right)c_{2} = y_{1} + \frac{1+\pi_{2}}{1+i} \cdot y_{2}$$

$$\downarrow \quad \text{Use Fisher equation: } (1+\pi_{2})/(1+i) = 1/(1+r)$$

$$\begin{vmatrix} c_{1} + \frac{C_{2}}{1+r} \\ 1+r \end{vmatrix} = y_{1} + \frac{Y_{2}}{1+r} \cdot P_{2} \cdot P_{2} \cdot P_{3} \cdot P_{4} \cdot P$$

CONSUMPTION-SAVINGS OPTIMALITY CONDITION

- Can also analyze two-period framework sequentially, rather than from a lifetime perspective

$$\frac{1+i}{1+\pi} = (1+i)\frac{P_1}{P_2} = \frac{(1+i)P_1}{P_2}$$

If I refrain from consuming 1 unit of $c_1 \rightarrow$ I save P_1

Investing P_1 , I get $1+iP_1$ in period 2 (nominal)

In period 2, I buy composite goods with $(1+i)P_1$. The amount is:

$$\frac{\$(\mathbf{1}+\boldsymbol{i})\boldsymbol{P_1}}{\$\boldsymbol{P_2}} \leftarrow \text{Price of consuming 1 unit of } c_1$$

$$+ \boldsymbol{P_1} \leftarrow Price \text{ of consuming 1 unit of } c_2$$

So:

$$1+r = \frac{\Delta c_2}{1}$$

1+*r* is the *price* of period-1 consumption in terms of period-2 consumption

More generally: 1+r measures the price of current goods in terms of future goods

Sum up:

- Sequential formulation highlights the role of net wealth (A_1) between period 1 and period 2
 - Accords better with the explicit timing of economic events than the lifetime approach...
 - ...but yields the same result
 - □ Advantage: allows us to think about interaction between asset prices and macroeconomic events (intersection of finance theory and macro theory in Chapter 8)

- Apply Lagrange tools to consumption savings optimization
- \Box Objective function: $u(c_1,c_2)$
- Constraints:
 - ☐ Period 1 budget constraint:

$$Y_1 + (1+i)A_0 - P_1c_1 - A_1 = 0$$

□ Period 2 budget constraint:

$$Y_2 + (1+i)A_1 - P_2c_2 - A_2 = 0$$

TWO constraints

Step 1: Construct Lagrange function

$$L(c_1, c_2, A_1, \lambda_1, \lambda_2) = u(c_1, c_2)$$

$$+ \frac{\lambda_1}{\lambda_1} \left[Y_1 + (1+i)A_0 - P_1c_1 - A_1 \right]$$

$$+ \frac{\lambda_2}{\lambda_2} [Y_2 + (1+i)A_1 - P_2C_2 - A_2]$$

Why do I use two periods' constraints instead of collapsing them into one Life-time budget constraint?

Easier to solve

So that A1 appears

$$L(c_1, c_2, A_1, \lambda_1, \lambda_2) = u(c_1, c_2) + \lambda_1 [Y_1 + (1+i)A_0 - P_1c_1 - A_1] + \lambda_2 [Y_2 + (1+i)A_1 - P_2c_2 - A_2]$$

$$\frac{\partial L(c_1, \dots)}{\partial c_1} = \frac{\partial u(c_1, c_2)}{\partial c_1} + \lambda_1 P_1 = 0 \quad \text{or} \quad u_1(c_1, c_2) + \lambda_1 P_1 = 0$$

$$\frac{\partial L(\dots c_2, \dots)}{\partial c_2} = \frac{\partial u(c_1, c_2)}{\partial c_2} + \lambda_2 P_2 = 0 \quad \text{or} \quad u_2(c_1, c_2) + \lambda_2 P_2 = 0$$

$$\frac{\partial L(\dots A_1, \dots)}{\partial A_1} = \lambda_1 + \lambda_2 (1+i) = 0 \quad \text{or} \quad \lambda_1 + \lambda_2 (1+i) = 0$$

$$\frac{\partial L(\dots \lambda_1, \dots)}{\partial \lambda_1} = Y_1 + (1+i)A_0 - P_1c_1 - A_1 = 0 \quad Period-1 BC$$

$$\frac{\partial L(\dots \lambda_2, \dots)}{\partial \lambda_2} = Y_2 + (1+i)A_1 - P_2 c_2 - A_2 = 0$$
Period-2 BC

Step 2: Compute FOCs with respect to c_1 , c_2 , A_1 , λ_1 , λ_2

(1)
$$u_1(c_1, c_2) - \lambda_1 P_1 = 0$$
 (2) $u_2(c_1, c_2) - \lambda_2 P_2 = 0$

$$\lambda_1 = u_1(c_1, c_2) / P_1$$

$$\lambda_2 = u_2(c_1, c_2) / P_2$$

$$\frac{into (3)}{P_1} + \lambda_2 (1+i) = 0$$

$$-\frac{u_1(c_1, c_2)}{P_1} + \frac{u_2(c_1, c_2)}{P_2} (1+i) = 0$$

$$-\frac{u_1(c_1, c_2)}{P_1} + \frac{u_2(c_1, c_2)}{P_2} (1 + i) = 0$$

$$\frac{u_1(c_1, c_2)}{P_1} = \frac{u_2(c_1, c_2)}{P_2} (1 + i)$$

$$u_1(c_1, c_2) = \frac{u_2(c_1, c_2)P_1}{P_2}(1+i)$$

$$\frac{u_1(c_1, c_2)}{u_2(c_1, c_2)} = \frac{P_1}{P_2} (1 + i)$$

$$\frac{u_1(c_1,c_2)}{u_2(c_1,c_2)} = \frac{1+i}{1+\pi_2} = \mathbf{1} + \mathbf{r}$$

$$\frac{P_1}{P_2} = \frac{1}{1 + \pi_2}$$

Step 3: Combine (1),(2),(3) (with focus on eliminating multipliers)

$$\frac{u_{1}(c_{1}^{*},c_{2}^{*})}{u_{2}(c_{1}^{*},c_{2}^{*})} = \frac{1+i}{1+\pi_{2}} = 1+r$$
using Fisher equation

MRS (between consumption in consecutive time periods)

price ratio (across consecutive time periods)

Identical to result of lifetime formulation

CONSUMER BUDGET CONSTRAINT(S)

consumer NOMINAL savings during period 1

consumer NOMINAL savings during period 2

$$P_1c_1 + A_1 - A_0 = Y_1 + iA_0$$
 $P_2c_2 + A_2 - A_1 = Y_2 + iA_1$

$$-A_0 = Y_1 + iA_0 - P_1c_1 | A_2 - A_1 = Y_2 + iA_1 - P_2c_2$$

Saving

Saving

CONSUMER BUDGET CONSTRAINT(S)

consumer *REAL* savings during period 1

consumer *REAL* savings during period 2

$$c_1 + a_1 - a_0 = y_1 + ra_0$$

$$c_1 + a_1 - a_0 = y_1 + ra_0 c_2 + a_2 - a_1 = y_2 + ra_1$$

$$a_1 - a_0 = y_1 + ra_0 - c_1$$

$$a_1 - a_0 = y_1 + ra_0 - c_1 | a_2 - a_1 = y_2 + ra_1 - c_2$$

MICRO-LEVEL SAVINGS

How do micro-level consumption/savings choices change as the real interest rate changes (continue assuming $A_0 = 0$ for simplicity)? **REAL INTEREST RATE:** $r_1 < r_2$

MICRO-LEVEL SAVINGS

IMPORTANT: LBC <u>pivots</u> around the point (y_1, y_2) because (y_1, y_2) is always a <u>possible</u> choice of consumption

RESULT: optimal choice of c_1 falls as r rises \rightarrow optimal choice of savings $(= y_1 - c_1)$ rises as r rises

MICRO-LEVEL SAVINGS

RESULT: optimal choice of c_1 <u>falls</u> as r rises \rightarrow optimal choice of savings (= y_1 - c_1) <u>rises</u> as r rises

Empirical evidence shows that when r rises, period-1 (i.e., "short-run") $\underline{consumption}$ of all types of consumers falls

implying that when *r* rises, period-1

— — ► (i.e., "short-run") <u>savings</u> of all
types of consumers rises...

SAVINGS

Define private savings function (in period 1) for an individual
Emphasizing functional relationships

(Recall alternative (equivalent) definition: savings is the change in wealth during a period)

$$S_1^{priv}(r, y_1, y_2) = y_1 - c_1(r, y_1, y_2)$$

Individual-level savings function

Aggregate-level savings function

Using name of the variable

$$\frac{dU(c)}{dc} = U'(c) \text{ or } U_{\mathbf{c}}(c) \text{ or } U_{\mathbf{1}}(c) \longleftarrow \text{Marginal utility}$$

Using position of the variable in the list of variables

$$\frac{\partial \left(\frac{dU(c)}{dc}\right)}{\partial c} = \frac{d^2U(c)}{dc^2} = U''(c) \text{ or } U_{cc}(c) \text{ or } U_{11}(c)$$
How MU

changes w.r.t c

Using name of the variable

$$\frac{dU(c_1, c_2)}{dc_1} = U^{t}(c_1, c_2) \text{ or } U^{t}_{c_1}(c_1, c_2) \text{ or } U_{1}(c_1, c_2) > 0$$

Using position of the variable / in the list of variables

$$\frac{dU(c_1, c_2)}{dc_2} = U_{c_2}(c_1, c_2) \text{ or } U_2(c_1, c_2) > 0$$

$$U_{i}(c_{1}, c_{2}) > 0$$
 for $i = 1,2$

$$\frac{\partial \left(\frac{\partial U(c_1, c_2)}{\partial c_1}\right)}{\partial c_1} = U_{11}(c_1, c_2) < 0$$

$$\frac{\partial \left(\frac{\partial U(c_1, c_2)}{\partial c_2}\right)}{\partial c_2} = U_{22}(c_1, c_2) < 0$$

$$U_{ii}(c_1, c_2) < 0 \text{ for } i = 1,2$$

EXAMPLE OF A UTILITY FUNCTION

$$\frac{\partial U(c)}{\partial c} = \frac{\partial \ln c}{\partial c} = \frac{1}{c} > 0$$

$$\frac{\partial \left(\frac{\partial U(c)}{\partial c}\right)}{\partial c} = \frac{\partial \left(\frac{\partial \ln c}{\partial c}\right)}{\partial c} = \frac{\partial \left(\frac{1}{c}\right)}{\partial c} = -\frac{1}{c^2} < 0$$

Implicit function theorem (not tested)

$$U(c_1, c_2)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Let $G(x, y) = L$ around the point (x_0, y_0)

$$\uparrow$$
This means that $x = x_0$ and $y = y_0$

$$G(x_0 + \Delta, y_0 +?) = L$$
 around the point (x_0, y_0)

$$\Delta \text{ is small}$$

By chain rule, differentiate G(x, y) = L w.r.t to x at (x_0, y_0)

$$\frac{dG(...)}{dx} = \frac{\partial G(x, y(x))}{\partial x} \cdot \frac{dx}{dx} + \frac{\partial G(x, y(x))}{\partial y} \cdot \frac{dy}{dx} = 0$$
Evaluated at (x_0, y_0)

$$\frac{\partial G(x,y(x))}{\partial y} \cdot \frac{dy}{dx} = -\frac{\partial G(x,y(x))}{\partial x} \cdot \frac{dx}{dx}$$

Evaluated at (x_0, y_0)

$$\frac{dy}{dx} = -\frac{\frac{\partial G(x, y(x))}{\partial x}}{\frac{\partial G(x, y(x))}{\partial y}} | (x_0, y_0)$$

Apply to our context, we have:

$$\frac{dc_2}{dc_1} = -\frac{\frac{\partial U(c_1, c_2(c_1))}{\partial c_1}}{\frac{\partial U(c_1, c_2(c_1))}{\partial c_2}} | (\bar{c}_1, \bar{c}_2)$$

$$\frac{dc_2}{dc_1} = -\frac{\frac{\partial U(c_1, c_2(c_1))}{\partial c_1}}{\frac{\partial U(c_1, c_2(c_1))}{\partial c_2}} | (\bar{c}_1, \bar{c}_2)$$

$$\begin{split} MRS_{c_1,c_2} &= -\frac{MU_{c_1}}{MU_{c_2}} \\ & \quad Evaluated\ at\ (\bar{c}_1,\bar{c}_2) \end{split}$$

ANOTHER WAY OF INTERPRETING. NOT COVEREd Real interest rate is REAL – in term of units of good

$$\frac{1+i}{1+\pi}$$
 is the reduced form:

Can interpret: 1 + i is the amount gotten by investing \$1 in period 1.

Can interpret: $1 + \pi$ is the relative price of c_2 w.r.t c_1

RECALL:
$$1 + \pi = \frac{P_2}{P_1}$$