Reasoning with Small & Large Models

Vaishak Belle, University of Edinburgh

DL excels at (scalable) pattern recognition but ...

structured reasoning, causality vs. correlation, data hungry, explainability, abstraction, ...

Neuro-symbolic AI: response to the limitations of DL

Pragmatically, formalisms and frameworks that combine, enhance or support neural networks with reasoning and symbolic emergence mechanisms

"Scaling is all you need" hypothesis vs the need for (hybrid) neurosymbolic systems

Examples

Knowledge graphs (vs RAGs)

Constrained prediction (including RL)

Program execution & learning

LLM + executor

LLMs as Encoders

Premise There are four persons. Everyone is visible to others. Each person draws a card, face unrevealed (red or black). Cara's card is shown to Vasiliki. Cara's card is shown to Conrad. Jennifer's card is shown to Conrad. Vasiliki's card is shown to Cara. It is publicly announced that someone picked a red card. It is publicly announced that Vasiliki knows whether someone picked a red card. Hypothesis Cara can now know whether Conrad picked a red card. Symbolic Formulation VARS 1,2,3,4 LAW Top OBS Agenta:3 Agentb:3,4 Agentc:1 VALID? [! (1|2|3|4)] [! (Agenta knows whether (1|2|3|4))] (Agentc knows whether 2)

Baseline Slightly better than random guess

Approach	Execution Rate(%)	Accuracy(%)	AUC
DP	99.50	58.00	0.58
SFGP	78.00	49.00	0.60
DP_{FT}	100	76.00	0.76
ToM-LM	94.50	91.00	0.94

NP-complete problems

Consider: Sudoku, Graph Colouring, TSP

LLMs struggle with multi-objective optimisation, strict constraints, and huge search spaces

Proposal: Genetic Algorithm meta-framework

Verifier-based vs
LLM-based modules for
Error Detection, Fitness
Evaluation, Crossover, and
Mutation

Model	Method	SK_{CR}	SK_{PS}	$ \operatorname{GC}_{CR} $	GC_{PS}	$ \operatorname{TSP}_{CR} $	TSP_{PS}
GPT-4o-Mini	DP	0	39	0	73	0	79
	BoN	6 16	73 _{†34}	0	86 113	4 †4	94 115
	Lyria	8 ↑8 ↑2	73 ↑34 –	0	97 ↑24 ↑11	6 16 12	96 ↑17 ↑2
Qwen2.5:32B-Instruct	DP	0	31	0	74	0	81
	BoN	8 18	76 _{†45}	0	87 ↑13	8 18	97 ↑16
	Lyria	32 ↑32 ↑24	87 ↑56 ↑11	0	96 †22 †9	30 ↑30 ↑22	99 ↑18 ↑2
Mistral:7B-Instruct	DP	0	0	0	0	0	60
	BoN	0	5 ↑5	0	84 ↑84	0	80 †20
	Lyria	0	12 †12 †7	0	92 ↑92 ↑8	0	89 †29 †9
Qwen2.5:7B-Instruct	DP	0	26	0	73	0	34
	BoN	0	55 †29	0	84 11	0	88 ↑54
	Lyria	0	61 ↑35 ↑6	0	95 ↑22 ↑11	4 ↑4 ↑4	95 ↑61 ↑7

Lyria consistently improves over DP and BoN across models and tasks Oracle/symbolic Fitness >> LLM Fitness

Grammar generation

Prompt LLM to produce k grammars, keep top k/2 by fitness, cross-over and mutate Combine parser feedback to produce valid BNF initially

Models	Syntax Correctness (SX)			Semantics Correctness (SE)			
	DP	OPF	HyGenar	DP	OPF	HyGenar	
GPT-4o	93	97 ↑4	96 ↑₃ ↓1	84	85 ↑1	93 ↑9 ↑8	
GPT-3.5-Turbo	94	95 ↑ 1	99 ↑5 ↑4	37	38 ↑1	61 ↑24 ↑23	
Llama3:70b-Instruct	57	61 ↑4	75 †18 †14	41	42 ↑1	61 ↑20 ↑19	
Qwen:72b-Chat	47	49 † 2	76 †29 †27	20	21 1	38 ↑18 ↑17	
Mistral:7b-Instruct	1	19 †18	$1 - \downarrow_{18}$	0	8 ↑8	1 ↑1 ↓7	
Gemma2:27b-Instruct	91	92 † 1	98 †7 †6	56	57 ↑1	79 †23 †22	
Starcoder2:15b-Instruct	76	60 _{↓16}	98 †22 †38	30	20 110	44 †14 †24	
Codestral:22b	53	71 ↑18	80 ↑27 ↑9	44	52 ↑8	67 ↑23 ↑15	

Takeways

Thinking "fast and slow"

Integration: using formal systems to **vet** LLM solutions and as "Sources of Truth"

Other successes: AlphaGeometry and AlphaProof demonstrate viability of hybrid approaches