CS & IT ENGING

Operating System

Memory Management

Lecture - 3

Recap of Previous Lecture

Topic

Non-Contiguous MMT

Topic

Paging

Topic

Address Translation

Topics to be Covered

Address Translation Topic

Topic

Performance of Paging

Topic: Paging

-				
Pa	σe	Ia	b	ΙО
	56	I	2	,

	-0-
00	110
01	010
10	100
11	160

Physical Memory

0000		000	
0001			
0010	9 L C	00	
0011	Y		
0100	C	010	
0101	d	0 0	
0110		0	
0111			
1000	6	100	
1001	f	100	
1010		101	
1011			
1100	a	110	
1101	b	11 9	
1110		111	
1111		111	

CPU requires content 's', hence it generales it's logical adhess => 101 page no. (10)2 Divide Logical address frame no. => (100)₂ CPU wants to access byte 1
of page (10)2 cpvs required content is available at byte 1 of frame (100)₂ Physical address = f d = 100 1

some by a h/w called as
MMU (Mem. Mgmt Unit)

- Process is divided in equal size of pages
- Physical memory is divided in same equal size of frames
- Processor will have a view of process and its pages
- Pages are scattered in frames
- Page table is used to map a process page to a physical frame
- Number of entries in page table = Number of pages in process
- OS maintains a page table for each process

no. of pages in process = process size no. of frames in main memory = physical mem sise page size Logical address space => process size

(L.A.S.) \ Gollection of all logical addresses. Physical address space => Physical mem. size

(p.A.s.) sollection of all physical addresses

$$LA = log_2(LAS)$$
 bits

$$P.A.S. = 2^{PA} bytes$$
 $P.A. = 69_2 (PAS) bits$

Page table size

= no. of entires * 1 P.T. entry
in P.T.

= no. of pages * 1 P.T. entry
in process

in process

1 P.T. entry size = frame no. bits extra bits

process size
$$(L.A.s.) = 2^{20}$$
 bytes
no. of pages in process = $\frac{2^{20}}{256}$ B

$$= \frac{2^{20}}{2^8} = \frac{2^{12}}{4}$$

physical mem size =
$$2^{28}$$
 bytes
no. of frames = $\frac{2^{28}B}{25613} = \frac{2^{28}}{2^8} = 2^{20}$

frame no. = 20 bits

Method 2:-

P.T. Size =
$$2^{12}$$
 * 20 bits
= 80 k bits
= 10 k bytes

9

Rues 2)

L.A. = 36 676 P.A. = 41 bits Page size = 2k bytes = 2B

1. No. of pages = 225

2. Page no. bits = 25 bits

3. No. of trames = 230

4. Frame no. bits = 30 bits

5. bits for offset = 11 bits

6. Page table size = 225 * 30 bits

L·A· ← 36 →

P.A. - 41 ---

Topic: Question

- #Q. Consider a paged memory system where the logical address of 28 bits and physical address of 34 bits. If each page table entry is of 4 bytes and page size is 2 KB then:
 - 1. Number of pages in process? = 2^{17}
 - 2. Number of frames in main memory? $= 2^{-3}$
 - 3. Number of bits for page number? 17 bits
 - 4. Number offfor frames?= 23 bits
 - 5. Number of entries in page table? 2
 - 6. Page table size? $2^{17} * 4 \text{ bytes} = 2^{17} * 2^{19} \text{ B} = 512 \text{ kB}$

1 P. T. entry = 4 bytes = 32 bits P. T. entry protection bits frame no Hexlus bits 当的比 Translation bits

Topic: Question

26 20 B = 26 B => P.A = 26 bits

[GATE-2001]

logical

#Q. Consider a machine with 64 MB physical memory and a 32-bit virtual address space. If the page size 4 KB, what is the approximate size of the page table?

A TOME	A		16	MB
--------	---	--	----	----

$$2^{2} \cdot 2^{10} = 2^{12} = 3d = 12$$
 bits
L.A. J2
P | d
20 | 12

- #Q. Consider a paged memory system where the process size is 16MB and main memory size is 4GB. The page size is 2KB.
 - A Number of pages in process?
 - B Number of frames in main memory?
 - Number of bits for page number?
 - Number of bits for frames?
 - Number of entries in page table?
 - F Page table size?

#Q. Consider a paged memory system where the process size is 128MB and main memory size is 2GB. The page size is 1KB.

A Number of pages in process?

B Number of frames in main memory?

Number of bits for page number?

Number of bits for frames?

Number of entries in page table?

F Page table size?

- #Q. Consider a paged memory system where the logical address is 25 bits and physical address is 33 bits. The page size is 4KB.
 - A Number of pages in process?
 - B Number of frames in main memory?
 - Number of bits for page number?
 - Number of bits for frames?
 - Number of entries in page table?
 - F Page table size?

[GATE-2015]

#Q. A computer system implements 8 kilobyte pages and a 32-bit physical address space. Each page table entry contains a valid bit, a dirty bit, three permission bits, and the translation. If the maximum size of the page table of a process is 24 megabytes, the length of the logical address supported by the system is _____ bits?

2 mins Summary

Topic

Address Translation

Topic

Performance of Paging

Happy Learning

THANK - YOU