Rappel de cours

• Théorème de l'énergie cinétique. $W_{A\to B}(\overrightarrow{F}) = E_c(t_b) - E_c(t_a)$ avec $E_c(t) = \frac{1}{2}||v(t)||^2$ avec $t_b > t_a$.

Exo 1

Q 1.2

D'après le théorème de l'énergie cinétique. $W_{A\to B}(\overrightarrow{F})=E_c(t_b)-E_c(t_a)$ avec $E_c(t)=\frac{1}{2}\|v(t)\|^2$. On a $t_a=0$, $v(t_a)=0$ et $v(t_b)=2m/s$ (i.e3.6 km/h).

$$W_{A\to B}(\overrightarrow{F}) = \frac{1}{2}.1000.2^2 - \frac{1}{2}.1000.0^2 = 2000J$$

Q 1.3

On a
$$W_{A\to B}(\overrightarrow{F}) = \overrightarrow{F}.d$$
 avec $\|\overrightarrow{F}\| = 500$.

$$2000 = 500.d$$

Donc il faut pousser la voiture sur 4m. QED.