Roult-Hurwitz Criterion

Ex. Find the number of poles in the LHP, in the RHP and on the imaginary axis. 8 + 3 x⁷ + 10x⁶ + 24x⁵ + 48x⁹ + 96x³ + 128x² + 192x + 128 $\frac{7}{5^{8}}$ $\frac{1}{3^{1}}$ $\frac{10}{24^{8}}$ $\frac{48}{96^{32}}$ $\frac{128}{192^{64}}$ 192°4 ~ (s) = 56+854+32 12864 ~ A(s) = 56+854+32 + 6432 + 55 0 32 16' 0 64 32' \\
54 0 8/3 1' 64/3 8' 64 24' 3³ -8⁻¹ -40⁻⁵ -31 248 -Two roots of the even w polynomial in the RIAP. I two rooks of the even we to poly nomial in the LIHP.

(due to symmetry wirth origin) Two √ V₂ / 8 √ 4 m LHP 2 in RHP
2 in imaginary axis / Two moginary axis.

Time-domain trabjers First order system U(s) $\sqrt{3(+)} = \sqrt{\gamma(s)} = \sqrt{\left[\frac{1}{s} - \frac{1}{s+a}\right]}$ 0.632

```
\frac{dy(t)}{dt}\Big|_{t\to 0} = a e^{at}\Big|_{t\to 0} = a
Time Constant: Time it takes for the step

(T) response to rise to 63.2%.

of its final value.
                Time Constant = \frac{1}{\alpha}
 Rise time: The time required to go from (Tr) 0.1 to 0.9 of its final value.
             \Im(t) = 1 - e^{at_1} = 0.17
1 - e^{at_2} = 0.9
7_7 = t_2 - t_1 = 2 \ln 3
2.2
2.2
                                                                            ≈ 2.2T
                          The time for the response to reach and story within 2% of its final value.
Settling time:
                             0.98 = 1 - e 2+
                            T_s = + = -\frac{1}{\alpha} ln(0.02) \approx \frac{4}{\alpha} = 4T
```

$$\varphi(s) = \frac{1}{sT + 1}$$

$$Y(s) = \frac{1}{sT + 1} \Rightarrow y(t) = \frac{1}{T} e^{t/T}, t > 0.$$

$$y(t) = \frac{1}{T} e^{t/T}, t > 0.$$

Unit ramp response:

Y(s) =
$$\frac{1}{\beta T + 1} \times \frac{1}{\delta V} = \frac{1}{\beta V} - \frac{T}{\delta} + \frac{T^{2}}{\beta T + 1}$$

Y(s) = $\frac{1}{\beta T + 1} \times \frac{1}{\delta V} = \frac{1}{\delta V} - \frac{T}{\delta} + \frac{T^{2}}{\beta T + 1}$

Y(s) = $\frac{1}{\beta T + 1} \times \frac{1}{\delta V} = \frac{1}{\delta V} - \frac{T}{\delta} + \frac{T^{2}}{\beta T + 1}$

Y(s) = $\frac{1}{\beta T + 1} \times \frac{1}{\delta V} = \frac{1}{\delta V} - \frac{T}{\delta} + \frac{T^{2}}{\beta T + 1}$

Y(s) = $\frac{1}{\beta T + 1} \times \frac{1}{\delta V} = \frac{1}{\delta V} - \frac{T}{\delta} + \frac{T^{2}}{\delta T + 1}$

Y(s) = $\frac{1}{\beta T + 1} \times \frac{1}{\delta V} = \frac{1}{\delta V} - \frac{T}{\delta} + \frac{T^{2}}{\delta T + 1}$

Error at $t \to \infty$, = $t - t + T = T$

Unit-impulse: $y(t) = \frac{1}{t}e^{-t/T}$ Unit-step: $y(t) = 1 - e^{-t/T}$ Unit-ramp: $y(t) = t - T + Te^{-t/T}$ t > 0.