

RD-R157 155

USER UNDERSTANDING(U) CALIFORNIA UNIV SAN DIEGO LA
JOLLA INST FOR COGNITIVE SCIENCE M S RILEY MAY 85
ICS-8504 N00014-84-K-0579

1/1

UNCLASSIFIED

F/G 5/10

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A157 155

0

USER UNDERSTANDING

Mary S. Riley

May 1985

ICS Report 8504

COGNITIVE
SCIENCE

This document has been approved
for public release and sale; its
distribution is unlimited.

DTIC
ELECTED
JUL 31 1985
S A

INSTITUTE FOR COGNITIVE SCIENCE
UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CALIFORNIA 92093

7 25 03

(1)

USER UNDERSTANDING

Mary S. Riley

May 1985

ICS Report 8504

*Institute for Cognitive Science
University of California, San Diego C-015
La Jolla, CA 92093*

DTIC
SELECTED
S JUL 31 1985 D
A

To be published in D. A. Norman & S. W. Draper (Eds.) (1986), *User centered system design: New perspectives in human-computer interaction*. Hillsdale, NJ: Lawrence Erlbaum Associates.

The research reported here was conducted under Contract N00014-84-K-0579, NR 667-538 with the Personnel and Training Research Programs of the Office of Naval Research. The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the sponsoring agency. Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government. Requests for reprints should be sent to Mary Riley, Institute for Cognitive Science, C-015; University of California, San Diego; La Jolla, CA 92093.

Copyright © 1985 by Mary S. Riley

AD-A157155

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION Unclassified		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release: distribution unlimited.	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) ICS 8504		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Institute for Cognitive Science	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION	
6c. ADDRESS (City, State, and ZIP Code) C-015 University of California, San Diego La Jolla, CA 92093		7b. ADDRESS (City, State, and ZIP Code)	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Personnel & Training Research	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N-00014-84-K-0579	
8c. ADDRESS (City, State, and ZIP Code) Code (442 PT) Office of Naval Research 800 North Quincy Street, Arlington VA 22217		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO.	PROJECT NO.
		NR 667-538	TASK NO.
		WORK UNIT ACCESSION NO	
11. TITLE (Include Security Classification) User Understanding			
12. PERSONAL AUTHOR(S) Mary S. Riley			
13a. TYPE OF REPORT Technical	13b. TIME COVERED FROM 12-84 TO 3-85	14. DATE OF REPORT (Year, Month, Day) May 1985	15. PAGE COUNT 11
16. SUPPLEMENTARY NOTATION To be published in D. A. Norman & S. W. Draper (Eds.), <u>User centered system design: New perspectives in human-computer interaction</u> . Hillsdale, NJ: Lawrence Erlbaum Assoc.			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Expert-novice users; human-computer interaction; learning; problem solving; understanding	
FIELD	GROUP	SUB-GROUP	
19. ABSTRACT (Continue on reverse if necessary and identify by block number)			
OVER			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION	
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE (Include Area Code)	22c. OFFICE SYMBOL

ABSTRACT

This document
In this chapter I explore some ideas about how much understanding a user needs to perform skillfully using a device. I suggest a framework for characterizing user understanding and discuss the role of understanding in performance and learning. I propose that (a) the level at which a user interacts with a device is determined by the tasks being performed, (b) the device's functions and structures that are understood differ from level to level, and (c) a uniform set of criteria is appropriate for evaluating understanding at any level. The criteria concern three aspects of a user's knowledge about a device:

- 1) *Coherence* — are the components of the user's knowledge related in an integrated structure?
- 2) *Validity* — does the user's knowledge reflect the actual behavior of the device? ; and
- 3) *Integration* — to what extent is the user's knowledge about a device tied to other components of a user's knowledge?

This chapter
discusses how Coherence, Validity, and Integration facilitate learning, improve the efficiency, flexibility, and reliability of performance, provide predictive and explanatory power, increase the likelihood that procedures will be remembered or can be regenerated, and enable the transfer of skills.

Contents

A FRAMEWORK FOR CHARACTERIZING UNDERSTANDING	2
WHAT KIND OF UNDERSTANDING DOES A USER NEED?	3
Internal Coherence	3
Validity	6
Integration	8
SUMMARY	9
REFERENCES	9

User Understanding

MARY S. RILEY

My goal in this chapter is to explore how much understanding a user needs to perform skillfully. My interest in the relationship between understanding and skilled performance is currently focused on two areas: basic electronics and human-computer interfaces.

In the study of how people learn basic electronics, I am analyzing how theoretical understanding of physics might influence skilled performance in analyzing and troubleshooting electronic circuits. A traditional assumption is that formal physics is necessary for skilled task performance. Yet many skilled electronics technicians probably do not use formal physics to perform these tasks, and some may have had no formal training at all. However, the issue is complicated. Electronic technicians spend years of apprenticeship and practice. Perhaps knowledge of formal physics provides a more direct way to develop understanding early in learning. Just because formal physics may not show up explicitly in skilled performance does not mean it would not facilitate learning.

My interest in human-computer interactions focuses on how much understanding is required to become a skilled user. Clearly, understanding must be defined relative to the task or set of tasks the user wants to perform. Someone who is using a text editor to write a paper needs to understand commands at a very different level than someone who intends to modify the editor. To the person who uses the editor only in order to write a paper, a detailed understanding of the principles of systems design would probably have little beneficial effect; it may even be harmful if the ideas distracted the user.

We must also consider tasks other than the immediate ones the user will perform: users also do experiments; they make mistakes, at times the system fails. For a user to be able to interpret the effects of an experiment or the nature of a mistake requires additional understanding. Even more understanding is required to distinguish between the behavior of a functioning system and a nonfunctioning system. Furthermore, with the increasing proliferation of computers, most users need to learn several systems. We must be concerned with identifying the kinds of understanding a user needs to transfer skills between systems.

In the next two sections I focus on a framework for characterizing user understanding and discuss the role of understanding in performance and learning. I propose that (a) the level at which a user interacts with a device is determined by the tasks being performed; (b) the functions and structures that are understood differ from level to level (see Miyake, *in press*); (c) a uniform set of criteria are appropriate for evaluating understanding at any level.

My discussion of understanding is informal, focusing primarily on examples from human-computer interfaces to illustrate the various points. Cognitive theories are being developed that more accurately specify the nature of understanding. The framework for characterizing understanding used here is based on current theories of problem solving and language understanding. Ideally, analyses of user understanding will reach a similar level of description, maximizing the extent to which work on human-computer interfaces can benefit from, and contribute to, other developing theories.

A FRAMEWORK FOR CHARACTERIZING UNDERSTANDING

I view the user's task in interacting with a complex device as a problem-solving episode. The user constantly sets goals and must plan how to achieve these goals with the available commands. This view is generally consistent with several other current analyses of human-computer interactions (e.g., Card, Moran, & Newell, 1983; Kieras & Polson, 1982; Moran, 1983; Norman, in press).

Figure 1 presents a typical planning episode in the form of a hierarchical goal structure, or *planning net* (cf. VanLehn & Brown, 1980; Sacerdoti, 1977). At the higher levels of the planning net are global goals. Here the person is using a text editor: The current goal is to edit the paper. This, in turn, generates the additional goal to "transpose two words." Since this goal does not correspond to an executable action, further goal specification and planning is required. "Transpose two words" is broken down into the subgoals "delete word1" and "insert word1 after word2" which correspond to the actions of typing "dw" (delete word) and "p" (put), respectively.

Planning does not necessarily stop with the selection of the primary actions. Associated with actions are requisite conditions that must be taken into account in the planning process:

- *Prerequisites* are conditions that must be satisfied before an action can be performed. The prerequisite of "dw" and "p" is that the cursor be at the appropriate location. Additional goals must be generated to ensure that these prerequisites are satisfied.

FIGURE 1
Planning net for the task *Transpose two words* (from Riley & O'Malley, 1984).

- *Consequences* are the changes that result from performing an action. In this example, the consequence of "dw" is that the word is deleted from the text. The consequence of "p" is to put the most recently deleted word at the location of the cursor. These consequences define the *order* in which "dw" and "p" must be executed and, furthermore, place restrictions on interleaving plans.
- *Postrequisites*, relevant to some commands, are conditions that must be satisfied after performing an action. For example, the action of inserting text must be followed by pressing the ESCAPE key, to return to command mode.

It is one thing to solve a problem, but quite another to solve it with "understanding." As Greeno (1977, 1978) suggests,¹ understanding depends on three important criteria for evaluating the representation generated during problem solving:

Internal Coherence.

Are the components of the user's representation mutually coherent?

Validity.

Does the representation accurately reflect the behavior of the system?

Integration.

To what extent is the user's representation integrated with the user's knowledge of other areas?

Of course, devices can be described at different levels. Devices can be hierarchically decomposed into structures with each structure serving one or more function at a level of the hierarchy (cf. Brown, Burton, & de Kleer, 1983; Miyake, in press). For example, at one level of description, we can talk about editors, mail systems, and directories; at another level we can talk about the underlying programs, at yet another level we can talk about shuffling bits. The objects differ at different levels, as do the commands and procedures available for operating on those objects. Thus, depending on the particular task a user wishes to accomplish, the objects in the user's problem representation will differ. Nevertheless we can use the same criteria of understanding to evaluate a user's problem representation.

Furthermore, understanding continues to be important regardless of the amount of experience. True, skilled performance of routine tasks probably involves having a large store of automated procedures for accomplishing frequent goals, but not all of a user's interactions with a computer are routine. Among other things, users experiment, make mistakes, and may also have to regenerate procedures that were once automated but forgotten through disuse. For these reasons, a user needs to have more knowledge about a system than simply a list of procedures for accomplishing specific tasks.

WHAT KIND OF UNDERSTANDING DOES A USER NEED?

In this section I discuss in more detail the three criteria for understanding and their roles in performance and learning.

Internal Coherence

Internal Coherence is the extent to which components of knowledge are related in an integrated structure. I argue that a coherent knowledge base facilitates learning and increases the likelihood that commands will be remembered or can be regenerated.

There are many kinds of knowledge that contribute to internal coherence:

¹ Greeno used the terms "coherence," "correspondence," and "correctedness."

- Knowledge about the action structure of a command;
- Knowledge about the syntactic structure of a command;
- Knowledge about how a command works;
- Knowledge about objects (e.g., files, programs, buffers);

The knowledge of the action structure of commands is *coherent* in that goals are associated with a command's requisite conditions and component actions. Furthermore, during planning, this knowledge can be used to generate a coherent representation of the hierarchical relations between related sequences of commands. In Figure 1, there is a central high-level goal, "transpose two words," and commands are related to that goal as either primary or enabling goals.

Improved performance (i.e., increased flexibility and efficiency) could be achieved by memorizing additional goal-command pairs. But still, important components of understanding would be missing—components that could have an important influence on performance and learning. Improved understanding could be achieved with the addition of knowledge about the *syntactic structure* of commands, as shown in Figure 2.

In the particular editor used in this example (Berkeley UNIX *vi*), command sequences are defined as the cross-product of an action and a text object: "dw" is the cross-product of the action "d" (for delete) and the object "w" (for word). Furthermore, the text object can be preceded by a number, e.g., "d4w" deletes four words. Other rules involve systematic changes in the scope or direction of a command. Whatever the form of these rules, they add *coherence* to the knowledge, facilitating learning and increasing the likelihood that commands will be remembered or can be regenerated.

Note that the coherence of a user's representation depends largely on the system itself. If there is no high-level rule to describe the syntactic structure of a command language, the user is restricted in forming a coherent representation of the relation between command sequences. Indeed, several studies (Payne & Green, 1983; Reisner, 1981) have linked the degree of syntactic coherence to users' ability to learn, remember, and regenerate commands.

FIGURE 2
Knowledge about the syntactic structure of commands.

Knowledge about how a command works also adds internal coherence to the user's representation of the editor command structure. For example, in Figure 1, the consequence of deleting a word is not related directly to the action of putting the word in a new location. That is, there is no explicit representation of the relation between the consequence of "dw" and the prerequisite of "p." In fact, the consequence of "dw" is to place the word in a temporary storage place, or buffer. The prerequisite of "p" is that there be something in the buffer and its consequence is to put the buffer contents at the location of the cursor. Figure 3 shows how this additional knowledge adds coherence to the user's representation by explicitly identifying the relation between the consequence of "dw" and the prerequisite of "p."

Other kinds of knowledge also contribute to coherence. Most editors keep the modified version of the text in active memory and do not update the permanent copy on the user's disk until the user leaves the editor. In order to understand this fact, the user has to know that the editor is a program and be familiar with concepts of memory and disk storage (see Kieras & Polson, 1982, for further discussion). Users also need to know about the properties of the objects that are operated on by these programs and commands. A coherent representation of why the command to edit a file is sometimes preceded by a command to change directories and/or a command to change the file protection depends upon the user knowing that files are organized in directories (which are also files) and that each file has a protection status that is checked by the editor program. A coherent representation of the effects of editor commands requires knowledge of how text objects are specified, e.g., the different notions of a "line" discussed by Owen (in press).

An interesting issue concerns whether there is a tradeoff between internal coherence and learnability. Coming up with a single coherent view of a system may involve structural models and rules that are quite difficult to learn. Multiple "distributed" models may be less coherent

FIGURE 3
Knowledge about buffers.

overall but may be easier to learn (see diSessa's, in press, discussion of this point).

Another issue concerns whether knowledge at any level of description increases coherence. Would an explanation of the editor in elaborate programming terms or design terms increase coherence? Or would it simply provide an alternative perspective (see Miyake, in press), without directly affecting the connections between the objects of concern? That is, this additional knowledge about underlying mechanisms and design constraints may add more nodes and links to the knowledge representation, but it is not clear that the density (i.e., coherence) of the representation would increase.

Several studies (e.g., Halasz & Moran, 1983; Kieras & Bovair, 1984) show that having some model of how a device works facilitates learning, retention and/or invention of procedures for operating a device. However, the benefits of a device model depend on whether it allows the user to infer the exact steps required to operate the device. Specifically, inferring procedures requires information about the system topology (what is connected to what) and the principle of flow of control. Thus the critical "how-it-works" information is the specific description of the controls and their path relations to the internal components. Neither details about the nature of the components, nor general principles about how a system works enable users to infer procedures. How-it-works information must be selected so that it is actually relevant to the user's task—it must explain how or why a goal must be accomplished.

Notice that this does not constitute a general argument against the role of formal principles in learning complex skills. In basic electronics, physics principles can be used to constrain the quantities in the problem representation, adding coherence. Physics principles also provide a way of relating different procedures, thereby embedding them in a higher-order organized structure that could be beneficial for retention and application. (See Riley, 1984, for a detailed discussion of the role of formal principles in learning basic electronics.)

Validity

Validity is the extent to which the user's components of knowledge are consistent with the behavior of the system. To the extent that the user's knowledge corresponds to the system's behavior, the user will be able to *explain* and *predict* the effects of commands and *generate* new sequences of commands to achieve desired effects. I identify different kinds of validity that are roughly equivalent to diSessa's distinction between functional models, distributed models, and structural models (diSessa, in press).

Distributed and structural models correspond to how-it-works knowledge at varying levels of description. How-it-works knowledge enables users to predict the behavior of any sequence of commands, justify rules when they are correct, explain their limitations, and go beyond them. However, as diSessa (in press) and Young (1981, 1983) point out, structural models are not always sufficient to enable fluent interaction with the system. A significant amount of problem solving may be required to invent a way to achieve a goal. It seems highly unlikely that users would continually rederive procedures through explicit reference to models and rules. For example, when transposing two letters for the 100th time it is unlikely that the user explicitly represents the letter going into the buffer and then being moved from the buffer to a new location in the text. Rather, the keystrokes corresponding to this procedure are probably done automatically, as a unit (cf. Robertson & Black, 1983).

Note validity does not depend on whether the user's models are identical to (contain same objects and relations as) the Design Model, as long as they lead to the same predictions. At the same time, if correspondence is maintained as a user's knowledge encompasses more and more of the system, the space of functionally equivalent models probably decreases.

Users often generate context-dependent validity to achieve coherence at the expense of accuracy. Lewis (in press) shows how users generate coherent explanations of a command's function in a specific context but these explanations often do not predict the command's function in

another context (see de Kleer & Brown 1983). Robust models contain no implicit, context-specific assumptions about a command's function. Such models should predict the command's effects and functions, regardless of the particular command string it is embedded in. Robust models correspond to the behavior of the system for sequences of commands that were unanticipated and therefore not precompiled.

Consider robustness in the context of the buffer model. Knowledge about which commands change the contents of the buffer and which commands access the contents of the buffer suffices to predict and explain the effects of many command sequences. For example, the command for changing a word, "cw," also has the consequence of replacing the contents of the buffer with the word that was changed (and therefore deleted). Following a "cw" event with the command "p" has the effect of putting the changed word at the current location of the cursor. If "dw" were executed between "cw" and "p," the model correctly predicts that consequence of "p" would be different.

An interesting issue concerns the degree of robustness acquired with experience. I use diSessa's terms "structural" and "distributed" to characterize two different perspectives. de Kleer and Brown (1983) suggest that with experience, users acquire increasingly robust device knowledge—approaching what diSessa refers to as "structural models." Initial component models invariably include many implicit assumptions about the overall functioning of the device, which may or may not be correct. With experience, component models become more robust by making implicit assumptions explicit. This transition is primarily motivated by discovering violations of consistency, validity, and/or robustness constraints. That is, the causal model may contain conflicting models for a single component type, the causal model may not correspond to the observed behavior of the device, or the causal model may only correspond when the device is functioning correctly. Discoveries like these encourage the learner to identify an underlying implicit assumption in a component model, gradually making the component models more robust. These assumptions (and future ones) need not be discarded—they lead to very efficient reasoning about the correctly functioning device from which they originated. Thus with experience, the learner probably stores more and more device-specific assumptions along with the component models. These new component models are robust in that, if assumptions are violated, the learner can automatically distinguish these assumptions from the actual model and proceed to envision a correct causal model of the device.

I extrapolate from diSessa's notion of distributed models to propose an alternative perspective. It is possible that users continue to have many models to account for different aspects of the system and no single model is robust (in the strong sense used by de Kleer and Brown). Does an expert electrician ever acquire robust models of the circuits being tested? Does an automechanic ever acquire a robust model of a car engine? What about operators of steam plants and nuclear power plants? Often there may be no single model that is perfect for describing the behavior of the system (cf. Bott, 1978; Rumelhart & Norman, 1980). The distributed perspective says that improvements in skill result from learning to apply the right model at the right time and perhaps refining models with context-specific knowledge.

It is likely that the distributed view of learning describes most users. For one thing, inferring a robust causal model is difficult, if not impossible, even for relatively simple devices (cf. Miyake, in press; Young, 1981). Young's (1981) account of how he derived a robust model of the stack calculator shows the importance of systematically generating, testing, and revising hypotheses. In contrast, many users probably form hypotheses on the fly on the basis of isolated examples, fail to experiment systematically, or may be afraid to experiment (see Lewis, in press, for further discussion). Especially when a detailed model is not required to operate a device, users probably do not take the time to generate one. One of Miyake's subjects had used a sewing machine for years without generating a detailed model of how the machine worked—although when forced, she generated and refined a very robust model.

There are several reasons why understanding more about the kinds of models users generate is interesting from a design perspective. Knowing more about the kinds of models people develop with experience would tell us something about the limits on the complexity of the models with which humans reason—or at least the kinds of models with which they prefer to

ONR DISTRIBUTION LIST

Dr. Roger Schank
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

Dr. Walter Schneider
University of Illinois
Psychology Department
605 E. Daniel
Champaign, IL 61120

Dr. Alan Schoenfeld
University of California
Department of Education
Berkeley, CA 94720

Dr. Marc Sebrechts
Department of Psychology
Wesleyan University
Middletown, CT 06457

Dr. Judy Segal
NIE
1200 19th Street, N.W.
Mail Stop 1806
Washington, DC 20208

Dr. Robert J. SEIDEL
US Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Herbert A. Simon
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Zita M Simutis, Chief
Instructional Technology
Systems Area
ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. N. Wallace Sisaito
Manpower Research
and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Derek Sleeman
Stanford University
Computer Science Department
Stanford, CA 94305

Dr. Edward E. Smith
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Alfred F. Smode
Senior Scientist
Code 7B
Naval Training Equipment Center
Orlando, FL 32813

Dr. Richard Show
Liaison Scientist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Dr. Elliot Soloway
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

Dr. Ted Shortliffe
Computer Science Department
Stanford University
Stanford, CA 94305

Dr. Lee Shulman
Stanford University
1040 Cathcart Way
Stanford, CA 94305

Dr. Kathryn T. Spoehr
Brown University
Psychology Department
Providence, RI 02912

James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Frederick Steinheiser
CIA-010D
612 Ames
Washington, DC 20505

Dr. Robert Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St.
Cambridge, MA 02238

Dr. Paul J. Sticha
Senior Staff Scientist
Training Research Division
HuRRO

Dr. Richard Show
Liaison Scientist
Code 7B
Naval Training Equipment Center
Orlando, FL 32813

Dr. Richard Show
Liaison Scientist
Office of Naval Research
Branch Office, London
Box 39
FPO New York, NY 09510

Dr. Perry W. Thorndike
FMC Corporation
Central Engineering Labs
1185 Coleman Avenue, Box 580
Santa Clara, CA 95052

Dr. Douglas Towne
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

Dr. Paul Tuohig
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Headquarters, U. S. Marine Corps
Code MPM-20
Washington, DC 20380

Dr. David Vale
Assessment Systems Corp.
2233 University Avenue
Suite 310
St. Paul, MN 55114

Dr. Kurt Van Lehn
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

Dr. Beth Warren
Boit Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Lt. Col. James E. Watson
HQ USAF/AFXOA
The Pentagon
Washington, DC 20330

Roger Weisinger-Beylon
Department of Administrative
Sciences
Naval Postgraduate School
Monterey, CA 93940

Dr. Donald Weitzman
MITRE
1820 Dolley Madison Blvd.
MacLean, VA 22102

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

ONR DISTRIBUTION LIST

Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. Harry F. O'Neill, Jr.
Training Research Lab
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Steven Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O'Hare Street
Pittsburgh, PA 15213

Director Technology Programs
Office of Naval Research
Code 200
800 North Quincy Street
Arlington, VA 22217-5000

Director Research Programs
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Office of Naval Research
Code 433
800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research
Code 442EP
800 N. Quincy Street
Arlington, VA 22217-5000

Special Assistant for Marine
Corps Matters
Code 100H
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

Psychologist
OMR Branch Office
1030 East Green Street
Pasadena, CA 91101

Commanding Officer
Army Research Institute
ATTN: PERI-BN (Dr. J. Oransky)
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Jesse Oransky
Institute for Defense Analyses
1801 N. Beauregard St.
Alexandria, VA 22311

Prof. Seymour Papert
20C-109
Massachusetts Institute
of Technology
Cambridge, MA 02139

Lt. Col. (Dr.) David Payne
AFHRL
Brooks AFB, TX 78235

Dr. Douglas Pearce
DCIDH
Box 2000
Downsview, Ontario
CANADA

Dr. Nancy Pennington
University of Chicago
Graduate School of Business
1101 E. 58th St.
Chicago, IL 60637

Military Assistant for Training and
Personnel Technology
OUSD (R & E)
Room 30129, The Pentagon
Washington, DC 20301

Lt Frank C. Petho
CMET (H-432)
NAS
Pensacola, FL 32508

Dr. Tjeerd Plomp
Twente University of Technology
Department of Education
7500 AE ENSCHEDE
P.O. Box 217
THE NETHERLANDS

Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Steven E. Poltrack
MCC
9430 Research Blvd.
Echelon Bldg. #1
Austin, TX 78759-6509

Dr. Harry E. Pople
University of Pittsburgh
Decision Systems Laboratory
1360 Scalefe Hall
Pittsburgh, PA 15261

Dr. Joseph Psotka
ATTN: PERI-IC
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Lynne Reder
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O'Hare Street
Pittsburgh, PA 15213

Dr. Gil Ricard
Code M711
NAVTRA/QUIPCEN
Orlando, FL 32813

Dr. Harry S. Riley
Program in Cognitive Science
Center for Human Information
Processing
University of California
La Jolla, CA 92093

William Rizzo
Code T12 NAVTRA/QUIPCEN
Orlando, FL 32813

Dr. Andrew M. Rose
American Institutes
for Research
1055 Thomas Jefferson St., NW
Washington, DC 20007

Dr. William B. Rouse
Georgia Institute of Technology
School of Industrial & Systems
Engineering
Atlanta, GA 30332

Dr. David Rumelhart
Center for Human
Information Processing
Univ. of California
La Jolla, CA 92093

Dr. Funiko Samelima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Dr. Michael J. Samet
Perceptronics, Inc
6271 Veril Avenue
Woodland Hills, CA 91364

Dr. Robert Sosmar
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

ONR DISTRIBUTION LIST

Dr. Paul E. Lehner
PAR Technology Corp.
7926 Jones Branch Drive
Suite 170
McLean, VA 22102

Col. Ray Leidich
Headquarters, Marine Corps
NPI
Washington, DC 20380

Dr. Thomas Leonard
University of Wisconsin
Department of Statistics
1210 West Dayton Street
Madison, WI 53705

Dr. Alan M. Leisgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Alan Lehner
Deputy Division Director
Behavioral and Neural Sciences
National Science Foundation
1800 G Street
Washington, DC 20550

Dr. Jim Levin
University of California
Laboratory for Comparative
Human Cognition
D003A
La Jolla, CA 92093

Dr. Clayton Lewis
University of Colorado
Department of Computer Science
Campus Box 430
Boulder, CO 80309

Science & Technology Division
17th Street of Congress
Arlington, DC 20540

Dr. Frederic H. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. Don Lyon
P. O. Box 44
Higley, AZ 85236

Dr. William L. Maloy (02)
Chief of Naval Education
and Training
Naval Air Station
Pensacola, FL 32508

Dr. Sandra P. Marshall
Department of Psychology
University of California
Santa Barbara, CA 93106

Dr. Manten M. Mathews
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. Richard E. Mayer
Department of Psychology
University of California
Santa Barbara, CA 93106

Dr. Joe McLaughlan
Navy Personnel R&D Center
San Diego, CA 92152

Dr. James McMichael
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Arthur Melmed
U. S. Department of Education
Washington, DC 20208

Dr. Al Meyrovitz
Office of Naval Research
Code 433
800 N. Quincy
Arlington, VA 22217-5000

Dr. Lance Miller
IBM Thomas J. Watson
Research Center
Yorktown Heights, NY 10598

Capt. Robert Milne (Ph.D.)
Artificial Intelligence Laboratory
Wright-Patterson AFB, OH 45433

Dr. Andrew R. Molnar
Scientific and Engineering
Personnel and Education
National Science Foundation
Washington, DC 20550

Dr. William Montague
NPADC Code 13
San Diego, CA 92152

Dr. Tom Moran
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 93304

Head
Manpower, Personnel, Training
and Reserve Team
NAVOP 910D
54578, The Pentagon
Washington, DC 20350

Assistant for Personnel
Logistics Planning
NAVOP 987H
50772, The Pentagon
Washington, DC 20350

Leadership Management Education
and Training Project Officer
Naval Medical Command (Code 05C)
Washington, DC 20372

Mr. Bill Meale
HQ ATC/TTA
Randolph AFB, TX 78148

Director, Training Laboratory
NPADC (Code 05)
San Diego, CA 92152

Director, Manpower and Personnel
Laboratory
NPADC (Code 07)
San Diego, CA 92152

Assistant for Evaluation,
Analysis, and MIS
Naval Military Personnel Command
N-6C
Washington, DC 20370

Spec. Asst. for Research, Experimental
& Academic Programs
Naval Technical Training Command
(Code 016)
NAS Memphis (75)
Millington, TN 38054

Assistant for Long Range
Requirements
CNO Executive Panel (NAVOP 00K)
2000 North Beauregard Street
Alexandria, VA 22311

Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Assistant for Planning MANTRAPERS
NAVOP 01B6
Washington, DC 20370

Assistant for MPT Research,
Development and Studies
NAVOP 01B7
Washington, DC 20370

ONR DISTRIBUTION LIST

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles A 38th Street
Baltimore, MD 21218

Dr. Harold Hawkins
University of Oregon
Department of Psychology
Eugene, OR 97403

Dr. Bruce Hemill
The Johns Hopkins University
Applied Physics Laboratory
Laurel, MD 20707

Dr. Harold Hawkins
University of Washington
Department of Psychology
Seattle, WA 98105

Dr. Earl Hunt
University of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Earl Hunt
Department of Psychology
University of Washington
Seattle, WA 98105

Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Zachary Jacobson
Bureau of Management Consulting
365 Laurier Avenue West
Ottawa, Ontario K1A 0S5
CANADA

Prof. John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University
Stanford, CA 95305

Dr. Frederick Hayes-Roth
Teknowledge
525 University Ave.
Palo Alto, CA 94301

Ms. Glenda Greenwald, Editor
Human Intelligence Newsletter
P. O. Box 1163
Birmingham, MI 48012

Donald Haggard
Fort Monmouth
Army Research Institute
Steele Hall
Ft. Monot, NY 10121

Dr. Henry M. Haffr
Haffr Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207

Dr. Lloyd Humphreys
University of Michigan
Human Performance Center
330 Packard Road
Ann Arbor, MI 48109

Dr. Keith Holyoak
University of Michigan
Department of Psychology
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Dennis Kibler
University of California
Department of Information
and Computer Science
Irvine, CA 92717

Dr. David Kieras
University of Michigan
Technical Communication
College of Engineering
1223 E. Engineering Building
Ann Arbor, MI 48109

Dr. Peter Kincaid
Training Analysis
& Evaluation Group
Department of the Navy
Orlando, FL 32813

Margaret Jerome
c/o Dr. Peter Chandler
83, The Drive
Hove
Sussex
UNITED KINGDOM

Dr. Joan I. Heller
Graduate Group in Science and
Mathematics Education
c/o School of Education
University of California
Berkeley, CA 94720

Dr. Jim Holland
Code 51
Navy Personnel R & D Center
San Diego, CA 92152

Dr. Melissa Holland
Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Keith Holyoak
University of Michigan
Human Performance Center
330 Packard Road
Ann Arbor, MI 48109

Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Earl Hunt
Department of Psychology
University of Washington
Seattle, WA 98105

Dr. Ed Hutchins
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Zachary Jacobson
Bureau of Management Consulting
365 Laurier Avenue West
Ottawa, Ontario K1A 0S5
CANADA

Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

Dr. Maxine Kerr
Program Manager
Training Research Division
Human Factors
1100 S. Washington
Alexandria, VA 22314

Dr. Janet L. Koldner
Georgia Institute of Technology
School of Information
& Computer Science
Atlanta, GA 30332

Dr. Stephen Kosslin
Harvard University
1236 William James Hall
33 Kirkland St.
Cambridge, MA 02138

Dr. David R. Lambert
Naval Ocean Systems Center
Code 4817
271 Catalina Boulevard
San Diego, CA 92152

Dr. Pat Langley
University of California
Department of Information
and Computer Science
Irvine, CA 92717

Dr. Marcy Lansman
University of North Carolina
The L. L. Thurstone Lab.
Davie Hall 013A
Chapel Hill, NC 27514

Dr. Jill Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Robert Lawler
Information Sciences, FRL
GTE Laboratories, Inc.
10 Sylvan Road
Waltham, MA 02254

ONR DISTRIBUTION LIST

Chief of Naval Education and Training
Liaison Office
Air Force Human Resource Laboratory
Operations Training Division
Williams AFB, AZ 85224

CDR Mike Curran
 Office of Naval Research
 800 N. Quincy St.
 Code 270
 Arlington, VA 22217-5000

Bryan Ballman
 AFNRL/LBT
 Lowry AFB, CO 80230

Mr. Paul DiRenzo
 Commandant of the Marine Corps
 Code 1BC4
 NAS Pensacola, FL 32508

Dr. Michael Cole
 University of California
 at San Diego
 Laboratory of Comparative
 Human Cognition - D0034
 La Jolla, CA 92093

Dr. Allen M. Collins
 Bolt Beranek & Newman, Inc.
 50 Moulton Street
 Cambridge, MA 02138

Dr. Stanley Collyer
 Office of Naval Technology
 800 N. Quincy Street
 Arlington, VA 22217

Dr. Lynn A. Cooper
 Learning R&D Center
 University of Pittsburgh
 3939 O'Hara Street
 Pittsburgh, PA 15213

Dr. Lee Cronbach
 16 LeBaron Road
 Atherton, CA 94205

Dr. Kenneth B. Gross
 Anscope Sciences, Inc.
 P.O. Drawer Q
 Santa Barbara, CA 93102

Capt. Stephen Gross (Ph.D.)
 Artificial Intelligence Laboratory
 Wright-Patterson AFB, OH 45433

Dr. Carl H. Frederiksen
 McGill University
 3700 McTavish Street
 Montreal, Quebec H3A 1T6
 CANADA

Edward Esty
 Department of Education, OEM
 MS 40
 1200 19th St., NW
 Washington, DC 20208

Dr. Beatrice J. Farr
 Army Research Institute
 5001 Eisenhower Avenue
 Alexandria, VA 22333

Dr. R. K. Disautes
 Associate Director for Life Sciences
 AFOSR
 Boiling AFB
 Washington, DC 20032-6008

Defense Technical
 Information Center
 Cameron Station, Bldg 5
 Alexandria, VA 22314
 Attn: TC
 (12 Copies)

Dr. Thomas H. Derry
 Communications Design Center
 Carnegie-Mellon University
 Schenley Park
 Pittsburgh, PA 15213

Edward E. Edowes
 CHATTA #301
 Naval Air Station
 Corpus Christi, TX 78419

Dr. Jeffrey Elman
 University of California,
 San Diego
 Department of Linguistics
 La Jolla, CA 92093

Dr. Richard Elster
 Deputy Assistant Secretary
 of the Navy (Manpower)
 Washington, DC 20350

Dr. Linda Flower
 Carnegie-Mellon University
 Department of English
 Pittsburgh, PA 15213

Dr. Marvin D. Glock
 217 Stone Hall
 Cornell University
 Ithaca, NY 14853

Dr. Joseph Goguen
 SRI International
 333 Ravenswood Avenue
 Menlo Park, CA 94025

Dr. Sherrie Gott
 AFHRL/MODJ
 Brooks AFB, TX 78235

Dr. Wayne Gray
 Army Research Institute
 5001 Elsenhower Avenue
 Alexandria, VA 22333

Dr. Jude Franklin
 Code 7510
 Navy Research Laboratory
 Washington, DC 20375

ERIC Facility-Acquisitions
 3833 Ruby Avenue
 Bethesda, MD 20014

ONR DISTRIBUTION LIST

Special Assistant for Projects
QDSN(WARH)
5000, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/WFO
Brooks AFB, TX 78235

Air Force Office
of Scientific Research
Life Sciences Directorate
Boeing Air Force Base
Washington, DC 20332

Dr. Robert Ahlers
Code W711
Human Factors Laboratory
NAVTREQUPCN
Orlando, FL 32813

Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152

Dr. William E. Alley
AFHRL/WFO
Brooks AFB, TX 78235

Dr. Earl A. Alluisi
NO, AFHRL (AFSC)
Brooks AFB, TX 78235

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Technical Director
Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Richard Braby
TAEG
NAVTREQUPCN
Orlando, FL 32813

Dr. Robert Carroll
Code W-095R
NAVTREQUPCN
Orlando, FL 32813

Dr. Robert Breaux
NAVOF 0187
Washington, DC 20370

Dr. Fred Chung
Navy Personnel R&D Center
San Diego, CA 92152

Dr. John S. Brown
XEROX Palo Alto Research
Center
3333 Coyote Road
Palo Alto, CA 94304

Dr. Bruce Buchanan
Computer Science Department
Stanford University
Stanford, CA 94305

Capt. J. Jean Belanger
Training Development Division
Canadian Forces Training Systems
CFTSHQ, CFB Trenton
Astra, Ontario, K0K
CANADA

Dr. Gautam Biswas
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. John Black
Yale University
Box 116, Yale Station
New Haven, CT 06520

Code W711
Arthur S. Blatwies
Naval Training Equipment Center
Orlando, FL 32813

Dr. Nick Bond
Office of Naval Research
Liaison Office, Far East
APO San Francisco, CA 960503

Dr. Gordon W. Bower
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Jim Carey
Coast Guard C-PTF
2100 Second St., S.W.
Washington, DC 20593

Dr. Susan Carey
Harvard Graduate School of
Education
337 Gutman Library
Applian Way
Cambridge, MA 01338

ONR-8201. Jonathan T. Grudin and Serge Laroche. *Digraph Frequency Effects in Skilled Typing*. February 1982.

ONR-8202. Jonathan T. Grudin. *Central Control of Timing in Skilled Typing*. February 1982.

ONR-8203. Amy Geoffroy and Donald A. Norman. *Ease of Tapping the Fingers in a Sequence Depends on the Mental Encoding*. March 1982.

ONR-8204. LNR Research Group. *Studies of Typing from the LNR Research Group: The role of context, differences in skill level, errors, hand movements, and a computer simulation*. May 1982. Also published in W. E. Cooper (Ed.), *Cognitive aspects of skilled typewriting*. New York: Springer-Verlag, 1983.

ONR-8205. Donald A. Norman. *Five Papers on Human-Machine Interaction*. May 1982. Also published individually as follows: Some observations on mental models, in D. Gentner and A. Stevens (Eds.), *Mental models*, Hillsdale, NJ: Erlbaum, 1983; A psychologist views human processing: Human errors and other phenomena suggest processing mechanisms, in *Proceedings of the International Joint Conference on Artificial Intelligence*, Vancouver, 1981; Steps toward a cognitive engineering: Design rules based on analyses of human error, in *Proceedings of the Conference on Human Factors in Computer Systems*, Gaithersburg, MD, 1982; The trouble with UNIX, in *Datamation*, 27,12, November 1981, pp. 139-150; The trouble with networks, in *Datamation*, January 1982, pp. 188-192.

ONR-8206. Naomi Miyake. *Constructive Interaction*. June 1982.

ONR-8207. Donald R. Gentner. *The Development of Typewriting Skill*. September 1982. Also published as Acquisition of typewriting skill, in *Acta Psychologica*, 54, pp. 233-248, 1983.

ONR-8208. Gary Perlman. *Natural Artificial Languages: Low-Level Processes*. December 1982. Also published in *The International Journal of Man-Machine Studies*, 20, pp. 373-419, 1984.

ONR-8301. Michael C. Mozer. *Letter Migration in Word Perception*. April 1983. Also published in *Journal of Experimental Psychology: Human Perception and Performance*, 9, 4, pp. 531-546, 1983.

ONR-8302. David E. Rumelhart and Donald A. Norman. *Representation in Memory*. June 1983. To appear in R. C. Atkinson, G. Lindzey, & R. D. Luce (Eds.), *Handbook of experimental psychology*. New York: Wiley (in press).

Earlier Reports by People in the Cognitive Science Lab

The following is a list of publications by people in the Cognitive Science Lab and the Institute for Cognitive Science. For reprints, write or call:

Institute for Cognitive Science, C-015
University of California, San Diego
La Jolla, CA 92093
(619) 452-6771

ONR-8001. Donald R. Gentner, Jonathan Grudin, and Eileen Conway. *Finger Movements in Transcription Typing*. May 1980.

ONR-8002. James L. McClelland and David E. Rumelhart. *An Interactive Activation Model of the Effect of Context in Perception: Part I*. May 1980. Also published in *Psychological Review*, 88, 5, pp. 375-401, 1981.

ONR-8003. David E. Rumelhart and James L. McClelland. *An Interactive Activation Model of the Effect of Context in Perception: Part II*. July 1980. Also published in *Psychological Review*, 89, 1, pp. 60-94, 1982.

ONR-8004. Donald A. Norman. *Errors in Human Performance*. August 1980.

ONR-8005. David E. Rumelhart and Donald A. Norman. *Analogue Processes in Learning*. September 1980. Also published in J. R. Anderson (Ed.), *Cognitive skills and their acquisition*. Hillsdale, NJ: Erlbaum, 1981.

ONR-8006. Donald A. Norman and Tim Shallice. *Attention to Action: Willed and Automatic Control of Behavior*. December 1980.

ONR-8101. David E. Rumelhart. *Understanding Understanding*. January 1981.

ONR-8102. David E. Rumelhart and Donald A. Norman. *Simulating a Skilled Typist: A Study of Skilled Cognitive-Motor Performance*. May 1981. Also published in *Cognitive Science*, 6, pp. 1-36, 1982.

ONR-8103. Donald R. Gentner. *Skilled Finger Movements in Typing*. July 1981.

ONR-8104. Michael I. Jordan. *The Timing of Endpoints in Movements*. November 1981.

ONR-8105. Gary Perlman. *Two Papers in Cognitive Engineering: The Design of an Interface to a Programming System and MENUNIX: A Menu-Based Interface to UNIX (User Manual)*. November 1981. Also published in *Proceedings of the 1982 USENIX Conference*, San Diego, CA, 1982.

ONR-8106. Donald A. Norman and Diane Fisher. *Why Alphabetic Keyboards Are Not Easy to Use: Keyboard Layout Doesn't Much Matter*. November 1981. Also published in *Human Factors*, 24, pp. 509-515, 1982.

ONR-8107. Donald R. Gentner. *Evidence Against a Central Control Model of Timing in Typing*. December 1981. Also published in *Journal of Experimental Psychology: Human Perception and Performance*, 8, pp. 793-810, 1982.

interfaces: A case study; Riley, M., & O'Malley, C., Planning nets: A framework for analyzing user-computer interactions; all published in B. Shackel (Ed.), *INTERACT '84, First Conference on Human-Computer Interaction*, Amsterdam: North-Holland, 1984; Norman, D.A., & Draper, S.W., Software engineering for user interfaces, *Proceedings of the Seventh International Conference on Software Engineering*, Orlando, FL, 1984.

8403. Steven L. Greenspan and Eric M. Segal. *Reference Comprehension: A Topic-Comment Analysis of Sentence-Picture Verification*. April 1984. Also published in *Cognitive Psychology*, 16, 556-606, 1984.
8404. Paul Smolensky and Mary S. Riley. *Harmony Theory: Problem Solving, Parallel Cognitive Models, and Thermal Physics*. April 1984. The first two papers are published in *Proceedings of the Sixth Annual Meeting of the Cognitive Science Society*, Boulder, CO, 1984.
8405. David Zipser. *A Computational Model of Hippocampus Place-Fields*. April 1984.
8406. Michael C. Mozer. *Inductive Information Retrieval Using Parallel Distributed Computation*. May 1984.
8407. David E. Rumelhart and David Zipser. *Feature Discovery by Competitive Learning*. July 1984. Also published in *Cognitive Science*, 9, 75-112, 1985.
8408. David Zipser. *A Theoretical Model of Hippocampal Learning During Classical Conditioning*. December 1984.
8501. Ronald J. Williams. *Feature Discovery Through Error-Correction Learning*. May 1985.
8502. Ronald J. Williams. *Inference of Spatial Relations by Self-Organizing Networks*. May 1985.
8503. Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. *Direct Manipulation Interfaces*. May 1985. To be published in D. A. Norman & S. W. Draper (Eds.), *User Centered System Design: New Perspectives in Human-Computer Interaction*. Hillsdale, NJ: Erlbaum.
8504. Mary S. Riley. *User Understanding*. May 1985. To be published in D. A. Norman & S. W. Draper (Eds.), *User Centered System Design: New Perspectives in Human-Computer Interaction*. Hillsdale, NJ: Erlbaum.

ICS Technical Report List

The following is a list of publications by people in the Institute for Cognitive Science. For reprints, write or call:

Institute for Cognitive Science, C-015
University of California, San Diego
La Jolla, CA 92093
(619) 452-6771

8301. David Zipser. *The Representation of Location*. May 1983.
8302. Jeffrey Elman and Jay McClelland. *Speech Perception as a Cognitive Process: The Interactive Activation Model*. April 1983. Also published in N. Lass (Ed., *Speech and language: Volume 10*, New York: Academic Press, 1983.
8303. Ron Williams. *Unit Activation Rules for Cognitive Networks*. November 1983.
8304. David Zipser. *The Representation of Maps*. November 1983.
8305. The HMI Project. *User Centered System Design: Part I, Papers for the CHI '83 Conference on Human Factors in Computer Systems*. November 1983. Also published in A. Janda (Ed.), *Proceedings of the CHI '83 Conference on Human Factors in Computing Systems*. New York: ACM, 1983.
8306. Paul Smolensky. *Harmony Theory: A Mathematical Framework for Stochastic Parallel Processing*. December 1983. Also published in *Proceedings of the National Conference on Artificial Intelligence, AAAI-83*, Washington DC, 1983.
8401. Stephen W. Draper and Donald A. Norman. *Software Engineering for User Interfaces*. January 1984. Also published in *Proceedings of the Seventh International Conference on Software Engineering*, Orlando, FL, 1984.
8402. The UCSD HMI Project. *User Centered System Design: Part II, Collected Papers*. March 1984. Also published individually as follows: Norman, D.A. (in press), Stages and levels in human-machine interaction, *International Journal of Man-Machine Studies*; Draper, S.W., The nature of expertise in UNIX; Owen, D., Users in the real world; O'Malley, C., Draper, S.W., & Riley, M., Constructive interaction: A method for studying user-computer-user interaction; Smolensky, P., Monty, M.L., & Conway, E., Formalizing task descriptions for command specification and documentation; Bannon, L.J., & O'Malley, C., Problems in evaluation of human-computer

empirical results. *Communications of the ACM*, 26, 265-283.

Robertson, S. P., & Black, J. B. (December, 1983). Planning units in text editing behavior. Pp. 217-221. In A. Janda (Ed.), *Proceedings of the CHI '83 Conference on Human Factors in Computing Systems* (pp. 217-221). New York: ACM.

Reisner, P. (1981). Formal grammar and human factors design of an interactive graphics system. *IEEE Transactions on Software Engineering*, 5, 229-240.

Rumelhart, D. E., & Norman, D. A. (1981). *Analogical processes in learning*. In J. R. Anderson (Ed.), *Cognitive skills and their acquisition*. Hillsdale, NJ: Erlbaum.

Sacerdoti, E. D. (1977). *A structure for plans and behavior*. New York: Elsevier.

VanLehn, K., & Brown, J. S. (1980). Planning nets: A representation for formalizing analogies and semantic models of procedural skills. In R. E. Snow, P. A. Federico, & W. E. Montague (Eds.), *Apitude, learning, and instruction: Vol. 2. Cognitive process analyses of learning and problem solving*. Hillsdale, NJ: Erlbaum.

Young, R. M. (1981). The machine inside the machine: Users' models of pocket calculators. *International Journal of Man-Machine Studies*, 15, 51-85.

Young, R. M. (1983). Surrogates and mappings: Two kinds of conceptual models for interactive devices. In D. Gentner & A. Stevens (Eds.), *Mental models*. Hillsdale, NJ: Erlbaum.

Greeno, J. G. (1978). Understanding and procedural knowledge in mathematics instruction. *Educational Psychologist, 12*, 262-283.

Halasz, F. G., & Moran, T. P. (1982). Analogy considered harmful. *Proceeding of the Conference on Human Factors in Computer Systems* (pp. 383-386). New York: ACM. Gaithersburg, MD.

Halasz, F. G., & Moran, T. P. (1983). Mental models and problem solving in using a calculator. Pp. 212-216. In A. Janda (Ed.), *Proceedings of the CHI '83 Conference on Human Factors in Computing Systems* (pp. 212-216). New York: ACM.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate a device. *Cognitive Science, 8*, 255 - 273.

Kieras, D. E., & Polson, P. G. (1983). A generalized transition network representation for interactive systems. In A. Janda (Ed.), *Proceedings of the CHI '83 Conference on Human Factors in Computing Systems* (pp. 103-106). New York: ACM.

Kieras, D. E., & Polson, P. G. (in press). An approach to the formal analysis of user complexity. *International Journal of Man-Machine Studies*.

Lewis, C. (in press). Understanding what's happening in system interactions. In D. A. Norman & S. W. Draper (Eds.), *User centered system design: New perspectives in human-machine interaction*. Hillsdale, NJ: Erlbaum.

Lewis, C. H., & Mack, R. (1982). Learning to use a text processing system: Evidence from "thinking aloud" protocols. *Proceedings of the Conference on Human Factors in Computer Systems* (pp. 387-392). New York: ACM.

Miyake, N. (in press). Constructive interaction.

Moran, T. P. (1983). Getting into a system: External-internal task mapping analysis. Pp. 45-49. In A. Janda (Ed.), *Proceedings of the CHI '83 Conference on Human Factors in Computing Systems* (pp. 45-49). New York: ACM.

Norman, D. A. (in press). Cognitive engineering. In D. A. Norman & S. W. Draper (Eds.), *User centered system design: New perspectives in human-machine interaction*. Hillsdale, NJ: Erlbaum.

Norman, D. A., Rumelhart, D. E., & the LNR Research Group. (1975). *Explorations in cognition*. San Francisco: Freeman.

Owen, D. (in press). Naive theories of computation. In D. A. Norman & S. W. Draper (Eds.), *User centered system design: New perspectives in human-machine interaction*. Hillsdale, NJ: Erlbaum.

Payne, S. J., & Green, T. R. G. (1983). The user's perception of the interaction language: A two-level model. In A. Janda (Ed.), *Proceedings of the CHI '83 Conference on Human Factors in Computing Systems*. (pp. 202-206). New York: ACM.

Riley, M. S. (1984). *Structural understanding in performance and learning*. Unpublished doctoral dissertation, University of Pittsburgh.

Roberts, T. L., & Moran, T. P. (1983). The evaluation of text editors: Methodology and

SUMMARY

Understanding facilitates learning, provides predictive and explanatory power, increases the likelihood that procedures will be remembered or can be regenerated, and enables the transfer of skills. In unfamiliar situations, understanding improves the efficiency, flexibility, and reliability of performance, permits and constrains generation of new procedures, and facilitates checking answers.

A direct outcome of the analyses presented in this chapter is a view of understanding as a multi-dimensional quality rather than as something one has or one does not have. Understanding is related to three characteristics of the user's knowledge: internal coherence, validity, and integration. Coherence concerns the degree to which the user's components of knowledge are related in an integrated structure. Validity concerns the extent to which the user's components of knowledge accurately reflect the behavior of the system. Integration concerns the degree to which the components of knowledge are related to other components of user's knowledge.

The degree of internal coherence, validity, and integration does not depend on a single aspect of knowledge, but upon several. This emphasizes that a user should not be considered as either performing with or without understanding, since it clearly is possible for the user to have acquired some components of knowledge and not others.

REFERENCES

Bott, R. A. (1978). *A study of complex learning, theory and methodologies*. Unpublished doctoral dissertation, University of California, San Diego.

Brown, J. S., Burton, R. R., & deKleer, J. (1983). Pedagogical, natural language, and knowledge engineering techniques in SOPHIE I, II, and III. In D. Sleeman & J. S. Brown (Eds.), *Intelligent tutoring systems*. New York: Academic Press.

Card, S. K., Moran, T. P., & Newell, A. (1983). *The psychology of human-computer interaction*. Hillsdale, NJ: Erlbaum.

Clement, J. (1983). A conceptual model discussed by Galileo and used intuitively by physics students. In D. Gentner & A. L. Stevens (Eds.), *Mental models*. Hillsdale, NJ: Erlbaum.

deKleer, J., & Brown, J. S. (1983). Assumptions and ambiguities in mechanistic mental models. In D. Gentner & A. L. Stevens (Eds.), *Mental models*. Hillsdale, NJ: Erlbaum.

diSessa, A. A. (1983). Phenomenology and the evolution of intuition. In D. Gentner & A. L. Stevens (Eds.), *Mental models*. Hillsdale, NJ: Erlbaum.

diSessa, A. A. (in press). Models of computation. In D. A. Norman & S. W. Draper (Eds.), *User centered system design: New perspectives in human-machine interaction*. Hillsdale, NJ: Erlbaum.

Douglas, S. A., & Moran, T. P. (1983). Learning text editor semantics by analogy. In A. Janda (Ed.), *Proceedings of the CHI '83 Conference on Human Factors in Computing Systems* (pp. 207-211). New York: ACM.

Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: Mental models of electricity. In D. Gentner & A. L. Stevens (Eds.), *Mental models*. Hillsdale, NJ: Erlbaum.

Greeno, J. G. (1977). Process of understanding in problem solving. In N. J. Castellan, D. B. Pisoni, & G. R. Potts (Eds.), *Cognitive theory* (Vol. 2, pp. 43-83). Hillsdale, NJ: Erlbaum.

reason. It would also provide us with information about how multiple mental models are coordinated in learning and performance. Furthermore, information about how those models are acquired, modified, abandoned, may be useful in guiding users through progressive layers of competency.

Integration

Integration is the extent to which the components of knowledge in one domain are tied to other components of a person's knowledge. Ease of learning depends on the extent that objects and relations in a new domain can be connected to familiar components of knowledge.

One kind of integration that is especially important for new users is integration with general knowledge. For example, many editor goals are connected with goals familiar to the user—changing and deleting characters and words, inserting new text, correspond to general goals in editing text, regardless of whether the text is handwritten, typewritten, or written using a computer text editor.

However, the semantics of the actions are not necessarily the same. For example, on a typewriter, the actions associated with Change-word involve erasing the old word, making space for the new word, and then typing in the new word. The goals "Transpose-Two-Letters" and "Repeat-Last-Command" have no direct counterpart in typewriting or handwriting (but transpose-two-words is used in proof-reading; also, these actions are frequently carried out in several steps, e.g., with white-out). See Owen's discussion of the same issue (in press).

A second kind of integration is with other knowledge of the other systems. Buffers and cross-product rules are not specific to this particular text editor or to text editors in general. At the right level of description, these concepts can be connected to other systems, leading to efficient transfer of knowledge. For example, most editors use buffers to store text that has been recently deleted or inserted. Even though editors may differ in the specific ways they use buffers, simply knowing that buffers are used constrains hypotheses, and explanations.

Integration is not necessarily beneficial. As Lewis points out (in press) learners unfamiliar with a domain often make connections that are not valid, resulting in inefficient performance and errors.² Users learning to use a text editor for the first time connect commands for inserting text to their knowledge of inserting text using a typewriter (or to their knowledge of inserting text using paper and pencil). As a result, users often think that space has to be made before text can be inserted. Similarly, users think that any text visible on the screen is in the file and, vice versa, any text not visible on the screen is not in the file. This leads to predictable confusion in editors where inserting text has the consequence of typing over existing text until a special key is pressed to terminate the input mode. Subjects are likely to think that the over-typed text is no longer in the file. Predictable confusion also results in editors that leave deleted text on the screen during input mode, even though the user has backspaced over the text to delete it. In this case the user is likely to think that the text has not been deleted, when in fact it has been.

A major problem with naive models is that they are surprisingly persistent (cf. Clement, 1983; DiSessa, 1983). Among the frequently suggested reasons for the persistence of these naive models are that (a) students may misinterpret or distort information to fit their naive views; (b) students may have several models for different instances of the same phenomenon and shift between models to interpret the various situations; (c) students may focus only on the salient aspects of an event and ignore less salient (or invisible) factors. Clearly, further empirical and theoretical analyses are required to identify the cognitive processes that could lead to necessary changes in user's models.

² (cf. Bott, 1978; Douglas & Moran, 1983; Halasz & Moran, 1982; Lewis & Mack, 1982; Riley & O'Malley, 1984; Rumelhart & Norman, 1980).

ONR DISTRIBUTION LIST

Dr. Keith T. Wescourt
PMC Corporation
Central Engineering Labs
1185 Coleman Ave., Box 580
Santa Clara, CA 95052

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Barbara White
Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Mike Williams
Intelligence
124 University Avenue
Palo Alto, CA 94301

Dr. Robert A. Wisher
U.S. Army Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Martin F. Wiskor
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave., SW
Washington, DC 20202

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Wallace Mulbeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Joe Yasutake
AFHRL/LBT
Lowry AFB, CO 80230

Mr. Carl York
System Development Foundation
181 Lytton Avenue
Palo Alto, CA 94301

Dr. Joseph L. Young
Memory & Cognitive
Processes
National Science Foundation
Washington, DC 20550

Dr. Steven Zornetzer
Office of Naval Research
Code 440
800 N. Quincy St.,
Arlington, VA 22217-5000

Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Mike Williams
Intelligence
124 University Avenue
Palo Alto, CA 94301

Dr. Robert A. Wisher
U.S. Army Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Martin F. Wiskor
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave., SW
Washington, DC 20202

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Wallace Mulbeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Joe Yasutake
AFHRL/LBT
Lowry AFB, CO 80230

END

FILMED

9-85

DTIC