

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta081

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Mili$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

În sistemul cartezian xOy se consideră punctele O(0,0), A(1,2), B(1,a), cu $a \in \mathbb{R}$.

- (4p) a) Să se determine lungimea segmentului (OA).
- (4p) a) Să se determine ecuația mediatoarei segmentului (OA).
- (4p) c) Să se determine $a \in \mathbf{R}$ pentru care OA = OB.
- (4p) d) Să se determine ecuația cercului de centru O și rază OA.
- (2p) e) Să se calculeze produsul de numere complexe $i \cdot i^2 \cdot i^3 \cdot i^4 \cdot i^5 \cdot i^6 \cdot i^7$.
- (2p) f) Să se calculeze produsul scalar al vectorilor $\vec{u} = 2 \cdot \vec{i} 5 \cdot \vec{j}$ şi $\vec{w} = 5 \cdot \vec{i} + 2 \cdot \vec{j}$.

SUBIECTUL II (30p)

1.

- (3p) a) Să se determine probabilitatea ca alegând $n \in \{0, 1, 2, 3, 4, 5\}$ să avem $2^n \le n^2$.
- (3p) b) Să se determine trei numere reale în progresie aritmetică crescătoare, știind că suma lor este 9, iar produsul lor este 15.
- (3p) | c) Să se rezolve ecuația $\log_4 x = 2$, $x \in (0, \infty)$.
- (3p) d) Să se rezolve în multimea $[0, \infty)$ ecuația $\sqrt{x+2} = x$.
- (3p) e) Să se determine valoarea minimă a funcției $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 6x + 5$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, f(x) = arctg x.
- (3p) a) Să se calculeze f'(x), pentru $x \in \mathbb{R}$.
- (3p) b) Să se demonstreze că funcția f este strict monotonă pe \mathbf{R} .
- (3p) c) Să se determine ecuațiile asimptotelor orizontale ale graficului funcției f.
- (3p) d) Să se calculeze $\lim_{x\to 0} \frac{\operatorname{arctg} x}{x}$.
- (3p) e) Să se calculeze $\int_{-1}^{1} f(x) dx$.

Ministerul Educatiei și Cercetării - Serviciul National de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră grupul S_4 al permutărilor cu 4 elemente și permutările $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$,

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} \text{ si } e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

(4p) a) Să se verifice că
$$\sigma^2 = \tau^2 = e$$
.

(4p) **b**) Să se arate că
$$\sigma^{-1} = \sigma$$
 și $\tau^{-1} = \tau$.

(4p) c) Să se găsescă o permutare
$$a \in S_4$$
 pentru care $a^{-1} \neq a$

(2p) d) Să se verifice că
$$\sigma \cdot \tau \neq \tau \cdot \sigma$$

(2p) e) Să se determine numărul de elemente ale mulțimii
$$S_4$$
.

(2p) f) Să se arate că permutarea
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$
 este un element de ordinul 4 în grupul S_4 .

(2p) g) Să se arate că orice submulțime H a lui S_4 care are cel puțin 13 elemente, conține două permutări u și v cu proprietatea $u \cdot v \neq v \cdot u$.

SUBIECTUL IV (20p)

Se consideră funcțiile $f_n: \left[0, \frac{\pi}{2}\right] \to \mathbf{R}$, $f_n(x) = \frac{\sin nx}{\sin x}$, $\forall x \in \left[0, \frac{\pi}{2}\right]$,

$$f_n(0) = n$$
, $\forall n \in \mathbf{N}^*$ şi integralele $I_n = \int_0^{\frac{\pi}{2}} f_n(x) dx$, $\forall n \in \mathbf{N}^*$.

(4p) a) Să se calculeze
$$\lim_{x\to 0} \frac{\sin nx}{\sin x}$$
, $n \in \mathbb{N}^*$.

(4p) b) Să se arate că funcția
$$f_n$$
 este continuă pe intervalul $\left[0, \frac{\pi}{2}\right]$, $\forall n \in \mathbb{N}^*$.

(4p) c) Să se calculeze integralele
$$I_1$$
 și I_2 .

(2p) d) Utilizând formula
$$\sin a - \sin b = 2\sin \frac{a-b}{2}\cos \frac{a+b}{2}$$
, $\forall a,b \in \mathbb{R}$, să se arate că $I_n - I_{n-2} = \frac{2}{n-1} \cdot \sin \frac{(n-1)\pi}{2}$, $\forall n \in \mathbb{N}^*$, $n \ge 3$.

(2p) e) Să se arate că
$$I_{2n-1} = \frac{\pi}{2}$$
, $\forall n \in \mathbb{N}^*$.

(2p) f) Să se arate că
$$I_{2n} = 2\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \left(-1\right)^{n+1} \frac{1}{2n-1}\right), \forall n \in \mathbb{N}^*.$$

(2p) g) Să se arate că
$$\lim_{n\to\infty} \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + (-1)^{n+1} \frac{1}{2n-1}\right) = \frac{\pi}{4}$$
.

2