Université MOHAMED BOUDIAF de M'SILA

Faculté de Technologie

Année universitaire 2022/2023

Département : Electronique

Durée: 1H30 min

Epreuve de Ondes et Vibrations

Questions de cours (6 pts)

- 1. La force de rappel dans un ressort est proportionnelle à :
 - a) L'élongation, b) La vitesse, c) l'accélération.
- 2. La force de frottement visqueux est proportionnelle à :
 - a) L'accélération, b) la vitesse, c) l'élongation.
- 3. Un régime forcé amortie :
 - a) $\alpha=0$, F(t)=0, b) $\alpha\neq0$, F(t)=0, c) $\alpha\neq0$, $F(t)\neq0$.
- 4. La pulsation propre d'un circuit LC tel que L=20 mH et C=800 pF est :
 - a) 0.25.10⁶ rad. s⁻¹, b) 3.10⁻⁶ rad. s⁻¹, c) 0.25.10⁵ rad. s⁻¹
- 5. La pulsation propre d'un système constitué d'un ressort k=100N/m et d'une masse m=0.5kg est :
 - a) 22 rad. s⁻¹, b) 14.14 rad. s⁻¹, c) 16 rad. s⁻¹.
- 6. Pour entretenir des oscillations dans un système amorti il faut :
 - a) Ne rien faire, b) augmenter l'élongation initiale, c) Appliquer une force extérieure.

Exercice N°1 (8 pts)

On considère un système à un degré de liberté de la fig.1. Le disque homogène de masse M et de rayon R peut pivoter autour de son axe horizontal fixe et passant par son centre. Une tige rigide de longueur (I) et sans masse est solidaire au disque et porte à son extrémité libre une masse ponctuelle m. Un ressort de constante de raideur k placé horizontalement est relié au disque comme indiqué sur la fig.1, l'autre extrémité étant maintenue fixe. Le système est à l'équilibre statique lorsque la tige est dans sa position horizontale. En mouvement la tige est repérée par rapport à cette position par l'ongle θ . On se place dans le cas des vibrations de faibles amplitudes. Le système est soumis à des frottements visqueux représentés par un amortisseur de coefficient linéaire α , et une force harmonique verticale de la forme : $F(t)=F_{\theta}\cos\omega t$.

- 1- Trouver l'énergie potentielle du système, l'énergie cinétique du système et le Lagrangien.
- 2- Etablir l'équation différentielle des oscillations de petites amplitudes et en déduire la pulsation propre ω_{θ} , le coefficient d'amortissement δ et F_{θ} .

Figure 1

Exercice N°2 (6 pts)

On considère les oscillations libres du système à deux degrés de liberté de la figure 2 :

Figure 2

- 1) Calculer les énergies cinétique et potentielle du système.
- 2) Pour $k_1 = k_2 = k$ et $m_1 = m$, $m_2 = 2m$, et en utilisant la formule de Lagrange établir les équations différentielles du mouvement. En déduire les pulsations propres du système.

<u>Important</u>: Pour consulter le corrigé type et les notes d'examen scanner l'image suivantes Enseignant de la matière

Le corrigé type du rattrapage de module Ondes et Vibrations

Aux Questions de cours (6 pts)

Exercice N°1 (8 pts)

1. L'énergie potentielle du système, l'énergie cinétique du système et le Lagrangien.

$$U = U_k + U_m$$

$$U_k = \frac{k}{2}x^2 + kxx_0 + cte$$

$$\sin \theta = \frac{x}{R} \Rightarrow x = R \sin \theta \Rightarrow U_k = \frac{k}{2} (R \sin \theta)^2 + k (R \sin \theta) x_0 + cte$$

$$U_m = -mgh$$

$$\sin \theta = \frac{h}{l} \Rightarrow h = l \sin \theta \Rightarrow U_m = -mgl \sin \theta$$

$$U = \frac{k}{2}R^{2}(\sin\theta^{2}) + (kRx_{0} - mgl)(\sin\theta) + cte$$

à faible amplitude
$$\sin \theta \approx \theta \implies U = \frac{k}{2}R^2(\theta^2) + (kax_0 - mgl)(\theta) + cte$$

à l'équilibre
$$U = \frac{k}{2}R^2(\theta^2) + cte$$
.

$$T = T_m + T_D$$

$$T_m = \frac{1}{2}m\dot{x}^2$$

$$\dot{x} = l\dot{\theta} \Rightarrow T_m = \frac{1}{2}m(l\dot{\theta})^2 = \frac{1}{2}ml^2\dot{\theta}^2$$

$$T_D = \frac{1}{2}J\dot{\theta}^2$$

$$J = \frac{1}{2}MR^2 \Rightarrow T_D = \frac{1}{2} \left(\frac{1}{2}MR^2\right) \dot{\theta}^2$$

$$T = \frac{1}{2} \left(ml^2 + \left(\frac{1}{2} MR^2 \right) \right) \dot{\theta}^2$$

Alors, le Lagrangien du système s'écrit :

$$L = T - U = \frac{1}{2} \left(ml^2 + \left(\frac{1}{2} MR^2 \right) \right) \dot{\theta}^2 - \frac{k}{2} R^2 \left(\theta^2 \right) + cte.$$

2. L'équation différentielle des oscillations de petites amplitudes, la pulsation propre ω_0 , le coefficient d'amortissement δ et F_{θ} .

L'équation de Lagrange pour un système amortie forcé est

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \left(\frac{\partial L}{\partial \dot{\theta}} \right) + \left(\frac{\partial D}{\partial \dot{\theta}} \right) = F_0 \operatorname{R} \cos(\omega t)$$

$$D = \frac{1}{2}\alpha \dot{x}^2$$

$$\dot{x} = \frac{3l}{4}\dot{\theta}$$

$$D = \frac{1}{2} \alpha \left(\frac{3l}{4} \right)^2 \dot{\theta}^2 \Rightarrow \frac{\partial D}{\partial \dot{\theta}} = \alpha \left(\frac{3l}{4} \right)^2 \dot{\theta}$$

$$\begin{cases} \ddot{\theta} + \frac{kR^2}{\left(ml^2 + \left(\frac{1}{2}MR^2\right)\right)}\theta + \frac{\alpha\left(\frac{3l}{4}\right)^2}{\left(ml^2 + \left(\frac{1}{2}MR^2\right)\right)}\dot{\theta} = \frac{F_0 R}{\left(ml^2 + \left(\frac{1}{2}MR^2\right)\right)}\cos(\omega t) \\ \ddot{\theta} + \omega_0^2\theta + 2\delta\dot{\theta} = F_\theta(t) \end{cases}$$

$$\omega_0^2 = \frac{kR^2}{\left(ml^2 + \left(\frac{1}{2}MR^2\right)\right)} \Rightarrow \omega_0 = \sqrt{\frac{kR^2}{\left(ml^2 + \left(\frac{1}{2}MR^2\right)\right)}}$$

$$2\delta = \frac{\alpha \left(\frac{3l}{4}\right)^{2}}{\left(ml^{2} + \left(\frac{1}{2}MR^{2}\right)\right)} \Rightarrow \delta = \frac{\alpha \left(\frac{3l}{4}\right)^{2}}{2\left(ml^{2} + \left(\frac{1}{2}MR^{2}\right)\right)}$$

$$F_{\theta}(t) = \frac{F_0 R}{\left(ml^2 + \left(\frac{1}{2}MR^2\right)\right)} \cos(\omega t)$$

Exercice N°2 (6 pts)

1- Les énergies cinétique et potentielle + le Lagrangien :

$$E_c = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2$$

$$E_p = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2(x_1 - x_2)^2$$

$$L = \frac{1}{2}m_{1}\dot{x}_{1}^{2} + \frac{1}{2}m_{2}\dot{x}_{2}^{2} - \frac{1}{2}k_{1}x_{1}^{2} - \frac{1}{2}k_{2}(x_{1} - x_{2})^{2}$$

2- Les équations différentielles :

$$\begin{vmatrix} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_1} \right) - \left(\frac{\partial L}{\partial x_1} \right) = 0 \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_2} \right) - \left(\frac{\partial L}{\partial x_2} \right) = 0 \\ \left(m_1 \ddot{x}_1 + k_1 x_1 + k_2 \left(x_1 - x_2 \right) \right) = 0 \end{vmatrix}$$

$$\begin{cases} m_1 \ddot{x}_1 + k_1 x_1 + k_2 (x_1 - x_2) = 0 \\ m_2 \ddot{x}_2 - k_2 (x_1 - x_2) = 0 \end{cases}$$

En remplaçant les constantes, on trouve :

$$\begin{cases} m\ddot{x}_1 + 2kx_1 - kx_2 = 0\\ 2m\ddot{x}_2 - k(x_1 - x_2) = 0 \end{cases}$$

Les pulsations propres :

On propose les solutions suivantes :

En notation complexe on a

$$\begin{cases} \overline{x}_1 = \overline{A}_1 e^{j\Omega t} \\ \overline{x}_2 = \overline{A}_2 e^{j\Omega t} \end{cases} \Rightarrow \begin{cases} \left(-m\omega^2 + 2k\right) A_1 - kA_2 = 0 \\ -kA_1 + \left(-2m\omega^2 + k\right) A_2 = 0 \end{cases}$$

On calcule le déterminant :

$$\Delta(\omega) = \begin{vmatrix} (-m\omega^2 + 2k) & -k \\ -k & (-2m\omega^2 + k) \end{vmatrix} = (-m\omega^2 + 2k)(-2m\omega^2 + k) - k^2 = 0$$

$$2m^2\omega^4 - 3mk\omega^2 + k^2 = 0 \Longrightarrow \Delta = m^2k^2$$

Le terme de plus basse fréquence correspondant à la pulsation ω_1 est appelé le fondamental.

L'autre terme, de pulsation ω_2 , est appelé harmonique. Les deux pulsations propres sont :

$$\omega_1 = \sqrt{\frac{k}{2m}}$$
 et $\omega_2 = \sqrt{\frac{k}{m}}$.