#### Школа-семинар

# «Расширенные возможности пакета OpenFOAM»

## $\frac{\partial \rho U}{\partial t} + \nabla \cdot (\rho U U) - \nabla \cdot \left(\mu \frac{1}{2} (\nabla U + (\nabla U)^T)\right) = -\nabla p$ fvm::dd**0Б30P**) - **РЕШАТЕЛЯ**, U) -

М.В. Крапошин (НИЦ Курчатовский Институт)
О.И. Самоваров (Институт Системного Программирования РАН)
С.В. Стрижак (ГОУ ВПО МГТУ им. Баумана)



#### ОБЩИЙ ПОРЯДОК ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ

Решение задачи проводится на три этапа. Результат выполнения каждого из трех — **fvMatrix**. В случае неявной дискретизации (**fvm::**) - матрица коэффициентов в левой части, в случае явной (**fvc::**) — вектор правой части (поле, определенное в расчетных точках)

- 1) Неявная дискретизация слагаемых уравнений (fvm::)
- 2) Явная дискретизация слагаемых уравнений (fvc::)
- 3) Дискретизация по времени (fvm::ddt,fvm::d2dt2 и fvc::dtdt,fvc::d2tdt2)
- fvc::d2tdt2)
- 4) Обновление граничных условий (возможно на шагах 1 и 2)
- 5) Решение системы уравнений





#### ПРИЛОЖЕНИЕ OpenFOAM. ОСНОВНЫЕ ЭТАПЫ

- 1)Инициализация структуры каталогов рабочей задачи
- 2)Инициализация потоков выполнения (МРІ)
- 3)Инициализация физического времени
- 4)Инициализация расчетной сетки
- 5)Инициализация искомых полей
- 6)Инициализация цикла интегрирования (время)
- 7)Интегрирование уравнений и запись результатов
- 8)Завершение работы



#### ПРИЛОЖЕНИЕ OpenFOAM. ОСНОВНЫЕ ЭТАПЫ. ПРИМЕР

**laplacianFoam** — решение уравнения Лапласа, например, тепловой диффузии в твердом теле

```
#include "fvCFD.H" //Основной заголовочный файл, содержащий
                //практически все необходимы объявления
int main(int argc, char *argv[]) //Точка входа в программу
   include "setRootCase.H" //Инициализация каталога задачи и
                        //потоков выполнения
   include "createTime.H" //Инициализация физического времени
   include "createMesh.H" //Инициализация расчетной сетки
   include "createFields.H"//Инициализация полей
```



#### <u>ПРИЛОЖЕНИЕ OpenFOAM. ЭТАПЫ 1 и 2.</u>

```
Foam::argList args(argc, argv);
if (!args.checkRootCase())
{
    Foam::FatalError.exit();
}
```

Инициализация структуры каталога задачи производится в конструкторе класса argList, там же осуществляется и инициализация потоков выполнения MPI

```
Officer (int argI = 0; argI < argC; argI++)
{
    if (argv[argI][0] == '-')
    {
       const char *optionName = &argv[argI][1];

       if (validParOptions.found(optionName))
       {
            parRunControl_.runPar(argc, argv);
            Break;
}
</pre>
```

#### Ne5



#### <u>ПРИЛОЖЕНИЕ OpenFOAM. ЭТАПЫ 3 и 4</u>

Создание времени — файл createTime.H содержит обращение к конструктору класса Time

```
Foam::Info<< "Create time\n" <<
Foam::endl;

Foam::Time runTime
    (
          Foam::Time::controlDictName,
          args.rootPath(),
          args.caseName()
);</pre>
```

```
Foam::fvMesh mesh
(
    Foam::IOobject
    (
        Foam::fvMesh::defaultRegion,
        runTime.timeName(),
        runTime,
        Foam::IOobject::MUST_READ
)
);
```

Создание расчетной сетки — файл createMesh.Н содержит обращение к конструктору класса fvMesh





#### <u>ПРИЛОЖЕНИЕ OpenFOAM. ЭТАП 5</u>

```
volScalarField T
    IOobject
        runTime.timeName(),
        mesh,
        IOobject::MUST READ,
        IOobject::AUTO WRITE
   mesh
IOdictionary transportProperties
    IOobject
        "transportProperties",
        runTime.constant(),
        mesh,
        IOobject::MUST_READ,
IOobject::NO_WRITE
```

сreateMesh.Н (представлен не полностью) инициализация искомых полей, физических констант

Nº7



#### <u> ПРИЛОЖЕНИЕ OpenFOAM. ЭТАПЫ 6 и 7</u>

В основном цикле (while) содержатся условие выхода из него (runTime.loop()) и процедура интегрирования уравнений (solve(...)). Запись результатов производится в подключаемом файле "write.H"

```
while (runTime.loop())
    Info<< "Time = " << runTime.timeName() << nl << endl;</pre>
    include "readSIMPLEControls.H"
    for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++
    include "write.H" //runTime.write()
```

#### Институт системного программирования PAI

Nes



#### <u>ПРИЛОЖЕНИЕ OpenFOAM. ЭТАП 8</u>

В конце каждого шага по времени выводится информация об общем затраченном времени на выполнение и использованном процессорном времени

По окончании расчета, вызов оператора **return 0** приводит к уничтожению всех переменных, в т.ч. и **args**, класса **argList**. В деструкторе последнего содержатся инструкции по корректному завершению программы



#### ПРОЦЕСС РЕШЕНИЯ ДУ В ЧП

$$\frac{\partial T}{\partial t} - \nabla \cdot (D_T \nabla T) = 0 \longrightarrow \text{fvm}:: ddt(T) - fvm:: laplacian(DT, T)$$

- 1) Формируется матрица СЛАУ: операторы пространства имен fvm::
- 2) Формируется правая часть (поле): операторы пространства имен fvc::
- 3) Результаты суммируются для получения общей системы Ax=b
- 4) Вызывается процедура **solve (....)**, в которой:
  - а) В которой выполняется предобуславливание полученной матрицы
  - b) Производится поиск решения заданным пользователем методом
  - с) Полученное решение возвращается в виде поля и присваивается искомой переменной (Т в данном случае)

#### СПАСБО ЗА ВНИМАНИЕ!

$$pV = vRT$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \, U = 0$$

fvm::ddt(rho) + fvc::div(phi)=0

$$\frac{\partial \rho \mathbf{U}}{\partial t} + \nabla \cdot (\rho \mathbf{U} \mathbf{U}) - \nabla \cdot \left( \mu \frac{1}{2} (\nabla \mathbf{U} + (\nabla \mathbf{U})^T) \right) = -\nabla p$$

$$\text{fvm::ddt(rho, U) + fvm::div(phi,U) -}$$

$$\text{fvm::laplacian(mu,U)}$$

-fvc::grad(p)

Nº11