Blockchains & Cryptocurrencies

Instructors: Matthew Green & Abhishek Jain Johns Hopkins University - Spring 2019

Housekeeping

- Assignment I is out (last Weds)
- Due Friday 2/15 end of day
- Readings: for today crypto stuff, NBFMG 0, I for weds: Bitcoin and Hashcash
- Office hours, etc., Piazza, TA questions

- Grin launched 1/15
 - Privacy-preserving currency based on MimbleWimble
 - We'll talk about how this all works later

Canadian Bitcoin Exchange QuadrigaCX claims it can't find crypto wallets holding \$190 million in funds. | Source: Shutterstock

\$190 Million in Crypto Gone Forever, How Canada's Biggest Bitcoin Exchange Lost it All

QuadrigaCX, the largest bitcoin exchange in Canada, has lost \$190 million worth of crypto after it lost access to its cold storage wallets.

QuadrigaCX Never Held \$100M In Bitcoin, Says Crypto Researcher

NICK CHONG | FEBRUARY 4, 2019 | 12:00 AM

Surprise! The craziest crypto-related story of 2019 has just become a tad zanier. According to a research piece from a leading industry researcher, QuadrigaCX, a Canadian Bitcoin (BTC) exchange in the midst of a multi-month imbroglio, could have been fibbing about its cryptocurrency holdings — and by a large sum at that.

Related Reading: Crypto Exchanges Begin to Shutdown: Bear Market in Full Force

The Crazy Crypto Debacle That Is OuadrinaCY

https://medium.com/@zeroresearchproof/quadrigacx-chain-analysis-report-pt-I-bitcoin-wallets-I9d3a375d389

Today

- We're going to talk about "consensus"
- What the hell is consensus, how do you accomplish it, what's the point?
- This is all in preparation for Weds, when we'll actually talk about Bitcoin

Review: cash problems

Double spending

 To capture double spending you need an online (networked) party that must be trusted

Privacy

 In many naive systems, the bank sees every transaction you make

Origin/Issuance

How is new currency created?

Review: centralized \$\$

- Use a centralized bank database ("ledger") to record account balances
 - Require merchants/ATMs to contact the bank for approval
 - · Ledger can be "account-based" or "transaction-based"
 - · Typically it's both, and the two are reconciled

Problems with centralized \$\$

- Centralized party is a huge trust requirement
 - This bank can attack the system and steal your money
 - The bank can be taken down by a DDoS or hacked, shut down by legal action
 - Also: who <u>issues</u> the currency?

Goofy can create new coins

signed by pk_{Goofy}

CreateCoin [uniqueCoinID]

A coin's owner can spend it.

signed by pk_{Goofy}
Pay to pk_{Ali¢e}H(,)

signed by pk_{Goofy}

CreateCoin [uniqueCoinID]

The recipient can pass on the coin again.

double-spending

double-spending attack

the main design challenge in digital currency

How do we solve this?

- Simplest answer: send all transactions to an atomic, append-only centralized ledger
- Have the ledger provide a definite ordering for transactions
 - If two transactions conflict, simply disallow the later one
- No TX is valid unless the ledger has "approved" and ordered it

ScroogeCoin

optimization: put multiple transactions in the same block

CreateCoins transaction creates new coins

transID: 73	type:CreateCoir	IS			
coins created					
num	value	r	ecipien	nt .	
				coin	ID
0	3.2		0x	73(0 coin) PD
1	1.4		0x	73(1 coin	Ъ
2	7.1		0x	73(2	2)
signature					1

Valid, because I said so.

PayCoins transaction consumes (and destroys) some coins, and creates new coins of the same total value

transID: 73 type:PayCoins

consumed coinIDs: 68(1), 42(0), 72(3)

coins created

Valid if:

- -- consumed coins valid,
- -- not already consumed,
- -- total value out = total value in, and
- -- signed by owners of all consumed coins

num	value	recipient
0	3.2	0x
1	1.4	0x
2	7.1	0x

signatures

Immutable coins

Coins can't be transferred, subdivided, or combined.

But: you can get the same effect by using transactions to subdivide: create new trans consume your coin pay out two new coins to yourself

Don't worry, I'm honest.

Crucial question:

Can we descroogify the currency, and operate without any central, trusted party?

Centralization vs. Decentralization

- Competing paradigms that underlie many technologies
- Decentralized != Distributed
 (as in distributed system) but we'll often use them as synonyms

Centralization vs. Decentralization

- Examples:
 - email?
 - ****?
 - · DNS?
- What about software development?

Aspects of decentralization in Bitcoin

- I. Who maintains the ledger?
- 2. Who has authority over which transactions are valid?
- 3. Who creates (and obtains) new bitcoins?
- 4. Who determines how the rules change?
- 5. How do these coins acquire monetary value?

Aspects of decentralization in Bitcoin

Peer-to-peer network:

open to anyone, low barrier to entry

Mining:

open to anyone, but inevitable concentration of power often seen as undesirable

Updates to software:

core developers trusted by community, have great power

Distributed consensus

Bitcoin's key challenge

Key technical challenge of decentralized e-cash: <u>distributed consensus</u>

or: how to decentralize ScroogeCoin

Why consensus protocols?

Traditional motivation: reliability in distributed systems

<u>Distributed key-value store</u> enables various applications:

DNS, public key directory, stock trades ...

Defining distributed consensus

The protocol terminates and all honest nodes decide on the same value

This value must have been proposed by some honest node

Bitcoin is a peer-to-peer system

When Alice wants to pay Bob: she <u>broadcasts the transaction</u> to all Bitcoin nodes

Note: Bob's computer is not in the picture

How consensus could work in Bitcoin

At any given time:

- All nodes have a sequence of <u>blocks of</u> transactions they've reached consensus on
- Each node has a set of outstanding transactions it's heard about

How consensus could work in Bitcoin

OK to select any valid block, even if proposed by only one node

Why consensus is hard

Nodes may crash Nodes may be malicious

Network is imperfect

- Not all pairs of nodes connected
- Faults in network
- Latency

