Predictive Model Testing

Securities and Digital Assets

Andrei, Jon, Lareeb, Michelle, Tara

Agenda

- Motivation/Summary
- Model Summary
- Data Cleanup & Model Training
- Model Evaluation
- Discussion
- Postmortem
- Questions

Motivation & Summary

- Project one peaked interest in delving more into predictability of 4 assets
 - o SPY, Gold, BTC and ETH
- Can we use machine learning to predict future prices of assets
- What model is best at predicting future prices
- Best tool to evaluate model

Model Summary

- Model used and why
 - LSTM was used for prediction of 4 assets
 - LSTM was used as it is more sophisticated than a standard RNN model
 - LSTM more suited to classifying, processing and making predictions on time series data
 - LSTM deals with vanishing gradient problem that can be encountered when training traditional RNNs
 - LSTM architecture allows model to learn longer term dependencies

Data Cleanup and Model Training

We used the DataFrames we created for each asset in the prior project.

We created models for each asset, and then trained and tested each model.

We ran each model for 100 Epochs.

```
split = int(0.7 * len(X))
X_train = X[: split]
X_test = X[split:]
y train = y[: split]
y_test = y[split:]
scaler = MinMaxScaler()
scaler.fit(X_train)
X train = scaler.transform(X train)
X_test = scaler.transform(X_test)
scaler.fit(y train)
y train = scaler.transform(y train)
y_test = scaler.transform(y_test)
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
print (f"X_train sample values:\n{X_train[:3]} \n")
print (f"X test sample values:\n{X test[:3]}")
```

Model Evaluation - Gold

Mean Absolute Percentage Error (MAPE) is commonly used because it's easy to interpret and explain. For example, a MAPE value of 11.5% (.115) means the average difference between the forecasted and actual value is 11.5%. The lower the value for MAPE, the better a model is able to forecast values. Feb 27, 2020 – statology.org

```
from sklearn.metrics import mean_absolute_percentage_error
y_true = stocks["SPY Actual"]
y_pred = stocks["SPY Predicted"]
mean_absolute_percentage_error(y_true, y_pred)
```

Asset	Mean Absolute % Error
SPY	0.02137092813390049
GOLD	0.014784009823776893
втс	0.06374552301709513
ETH	0.22953520557197069

Model Evaluation - Gold

Creating a LSTM

```
[28] # Create the LSTM RNN Model Structure
     # Define the LSTM RNN model.
     model = Sequential()
     # Initial model setup
     number units = 30
     dropout fraction = 0.2
     # Layer 1
     model.add(LSTM(
         units=number_units,
         return sequences=True,
         input_shape=(X_train.shape[1], 1))
     model.add(Dropout(dropout fraction))
     # Layer 2
     model.add(LSTM(units=number units, return sequences=True))
     model.add(Dropout(dropout fraction))
     # Layer 3
     model.add(LSTM(units=number units))
     model.add(Dropout(dropout_fraction))
     # Output layer
     model.add(Dense(1))
```

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 50, 30)	3840
dropout (Dropout)	(None, 50, 30)	0
lstm_1 (LSTM)	(None, 50, 30)	7320
dropout_1 (Dropout)	(None, 50, 30)	0
lstm_2 (LSTM)	(None, 30)	7320
dropout_2 (Dropout)	(None, 30)	0
dense (Dense)	(None, 1)	31
 Total params: 18,511		
Trainable params: 18,511 Non-trainable params: 0		

Making Sense of the Data

```
[17] # Create the Features X and Target y Data
     def window data(df, window, feature col number, target col number):
         This function accepts the column number for the features (X) and the target (y).
         It chunks the data up with a rolling window of Xt - window to predict Xt.
         It returns two numpy arrays of X and y.
         X = []
         y = []
         for i in range(len(df) - window):
             features = df.iloc[i : (i + window), feature col number]
             target = df.iloc[(i + window), target col number]
             X.append(features)
            y.append(target)
         return np.array(X), np.array(y).reshape(-1, 1)
[31] # Train the Model
     # Train the model
     model.fit(X train, y train, epochs=100, shuffle=False, batch size=90, verbose=1)
[32] # Model Performance
     # Evaluate the model
     model.evaluate(X test, y test, verbose=0)
     0.02222518064081669
[33] # Make Predictions
     # Make predictions using the testing data X test
     predicted = model.predict(X test)
[34] # Recover the original prices instead of the scaled version
     predicted prices = scaler.inverse transform(predicted)
     real prices = scaler.inverse transform(v test.reshape(-1, 1))
```

```
# Plotting Predicted Vs. Real Prices
# Create a DataFrame of Real and Predicted values
stocks = pd.DataFrame({
    "SPY Actual": real_prices.ravel(),
    "SPY Predicted": predicted_prices.ravel()
}, index = spy_historical.index[-len(real_prices): ])
# Show the DataFrame's head
stocks.head()
```

```
SPY Actual SPY Predicted

2021-10-29 458.429443 443.604523

2021-11-01 460.282898 444.471008

2021-11-02 463.093048 445.329987

2021-11-03 465.275391 446.190186

2021-11-04 466.889709 447.058197
```

```
[36] # Plot the real vs predicted prices as a line chart
    stocks.plot(title="SPY Prediction", xlabel="Date", ylabel="Predicted Price",rot=45);
```


Model Evaluation - Original TimeFrame

model.evaluate(X_test, y_test, verbose=0)

0.01722021773457527

Model Evaluation - Original TimeFrame ETH

model.evaluate(X_test, y_test, verbose=0)

0.11493466794490814

Jon \rightarrow

Model Evaluation - ETH

Model Evaluation - NEW TimeFrame

model.evaluate(X_test, y_test, verbose=0)

0.026134470477700233

0.025733275339007378

Model Evaluation - BTC

Trying to Predict BTC via Gold and SPY

scaled_needed_predictions.plot()

So you've got a model.. Now What??

model.evaluate(X_test, y_test, verbose=0)

0.026134470477700233

0.010466416366398335

Bull vs. Bear Market

Most Recent Data

[133] from sklearn.metrics import mean_absolute_percentage_error
 y_true = stocks["SPY Actual"]
 y_pred = stocks["SPY Predicted"]
 mean_absolute_percentage_error(y_true, y_pred)

0.020434298316266856

[134] from sklearn.metrics import mean_absolute_percentage_error y_true = gold["Gold Actual"] y_pred = gold["Gold Predicted"] mean_absolute_percentage_error(y_true, y_pred)

0 014603110796334268

[135] from sklearn.metrics import mean_absolute_percentage_error
 y_true = bitcoin["BTC Actual"]
 y_pred = bitcoin["BTC Predicted"]
 mean_absolute_percentage_error(y_true, y_pred)

0.06407523552875073

[136] from sklearn.metrics import mean_absolute_percentage_error
y_true = ethereum["ETH Actual"]
y_pred = ethereum["ETH Predicted"]
mean_absolute_percentage_error(y_true, y_pred)

```
[69] # Create the LSTM RNN Model Structure
     # Define the LSTM RNN model.
     model = Sequential()
     # Initial model setup
     number_units = 30
     dropout_fraction = 0.2
     # Layer 1
     model.add(LSTM(
         units=number units,
         return_sequences=True,
         input_shape=(X_train.shape[1], 1))
     model.add(Dropout(dropout fraction))
     # Layer 2
     model.add(LSTM(units=number_units, return_sequences=True))
     model.add(Dropout(dropout_fraction))
     # Layer 3
     model.add(LSTM(units=number_units))
     model.add(Dropout(dropout_fraction))
     # Output layer
     model.add(Dense(1))
```

