(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 22. September 2005 (22.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/088838 A1

- (51) Internationale Patentklassifikation⁷: H03K 19/173
- (21) Internationales Aktenzeichen: PCT/DE2005/000292
- (22) Internationales Anmeldedatum:

21. Februar 2005 (21.02.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 10 2004 011 433.1 9. März 2004 (09.03.2004) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): INFINEON TECHNOLOGIES AG [DE/DE]; St.-Martin-Str. 53, 81669 München (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): GLIESE, Jörg [DE/DE]; Am Glockenbach 9, 80469 München (DE).

- (74) Anwalt: KÜHN, Armin; Viering, Jentschura & Partner, Steinsdorfstr. 6, 80538 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL,

[Fortsetzung auf der nächsten Seite]

- (54) Title: LOGIC BASIC CELL, LOGIC BASIC CELL ARRAY AND LOGIC DEVICE
- (54) Bezeichnung: LOGIK-GRUNDZELLE, LOGIK-GRUNDZELLEN-ANORDNUNG UND LOGIK-VORRICHTUNG

(57) Abstract: A logic base cell contains a first logic functional block and a second logic functional block for logic linking a first input signal and a second input signal according to a predeterminable first or second logic partial function, and contains a first logic transistor, which is coupled to the first logic functional block and which has a gate terminal on which a third input signal can be provided. In addition, a second logic transistor coupled to the second logic functional block is provided that has a gate terminal on which a signal complementary to the third input signal can be provided, and has a source/drain terminal that is coupled to the source/drain terminal of the first logic transistor.

WO 2005/088838 A1

PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00e4nderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6fentlichung wird wiederholt, falls \u00e4nderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Eine Logik-Grundzelle enthält einen ersten Logikfunktionsblock und einen zweiten Logikfunktionsblock zur Logik-Verknüpfung eines ersten Eingangssignals und eines zweiten Eingangssignals gemäß einer vorgebbaren ersten bzw. zweiten Logikteilfunktion, sowie einen mit dem ersten Logikfunktionsblock gekoppelten ersten Logik-Transistor mit einem Gate-Anschluss, an dem ein drittes Eingangssignal bereitstellbar ist, und mit einem Source-/Drain-Anschluss, an dem das Ausgangssignal bereitstellbar ist. Ferner ist ein mit dem zweiten Logikfunktionsblock gekoppelter zweiter Logik-Transistor bereitgestellt, mit einem Gate-Anschluss, an dem ein zu dem dritten Eingangssignal komplementäres Signal bereitstellbar ist, und mit einem Source-/Drain-Anschluss, der mit dem Source-/Drain-Anschluss des ersten Logik-Transistors gekoppelt ist.

Beschreibung

5

Logik-Grundzelle, Logik-Grundzellen-Anordnung und Logik-Vorrichtung

Die Erfindung betrifft eine Logik-Grundzelle, eine Logik-Grundzellen-Anordnung und eine Logik-Vorrichtung.

Mit dem Aufkommen der Digitaltechnik und der sich sprunghaft
entwickelnden Mikroprozessortechnik entstand ein Bedarf nach
programmierbarer Logik. Ein PLD ("Programmable Logical
Device") ist ein integrierter Schaltkreis, der vom Anwender
mittels Programmierens in seiner Logikfunktion festgelegt
wird. Ein PLD ist eine Architektur für digitale

Logikoperationen mit einer Mehrzahl von Schaltern, welche
eine Vielzahl von Signalpfaden ermöglichen. Die einem PLD

eine Vielzahl von Signalpfaden ermöglichen. Die einem PLD anwenderspezifisch zugeordnete Logikfunktion wird mittels Konfigurierens des PLDs festgelegt.

Zu den PLDs gehören unter anderen Field Programmable Gate Arrays (FPGAs), deren Funktionalität ihnen vom Anwender zugeordnet werden kann, und Mask Programmable Gate Arrays (MPGAs, auch "structured ASICs" genannt), welchen mittels hardwaremäßigen Konfigurierens eine Logikfunktion zugewiesen werden kann. Via Programmable Gate Arrays (VPGAs) gehören zu den MPGAs.

Eine digitale Logikzelle bildet n Eingangssignale auf ein Ausgangssignal ab. Die Anzahl der möglichen

Abbildungsfunktionen ist 2^{2ⁿ}. Eine Schaltungsgruppe als digitale Logikzelle wird gemäß dem Stand der Technik z.B. unter Verwendung von sogenannten Look-Up-Tabellen (LUT), anschaulich Nachschlagetabellen, realisiert. Hierfür werden

Funktionswerte der Logikfunktion mittels eines Datenwortes von 2ⁿ Bit eingestellt. Mit anderen Worten ist die jeweils ausgewählte Logikfunktion in ein Datenwort kodiert.

Entsprechend der ausgewählten Logikfunktion werden n

5 Eingangssignale a₀, a₁, ..., a_{n-1} miteinander verknüpft. Somit können die Logikeingangssignale der Logikfunktion y=f(a₀, a₁,...a_{n-1}) als binäre Adresse angesehen werden und in eine One-Hot-Codierung gewandelt werden, um anschließend über Pass-Gate-Logik den Funktionswert zu wählen. Ein solches

10 Verfahren ist zum Beispiel in [1] offenbart.

Alternativ können die Eingänge als Steuereingänge für einen Multiplexer-Baum dienen, siehe [2]. Die Multiplexer können logikbasiert und/oder auf Basis von Transmissions-Gates realisiert werden.

In [3] ist ein FPGA auf Basis einer Look-Up-Tabelle (LUT) offenbart.

15

30

Die aus dem Stand der Technik bekannten Logik-Grundzellen unter Verwendung einer Look-Up-Tabelle weisen hinsichtlich Schaltgeschwindigkeit bzw. Störsicherheit Nachteile auf. Die bekannten Lösungen lassen sich ferner für viele Anwendungen nicht ausreichend kompakt im Layout realisieren. Daher ist mit den aus dem Stand der Technik bekannten LUT-Lösungen eine fortgesetzte Skalierung nur schwierig möglich.

Alternativ zu den bekannten LUT-Architekturen sind aus dem Stand der Technik Verschaltungen aus einzelnen Logikgattern bekannt, mit denen eine gewünschte Logikfunktion gebildet werden kann. Allerdings ist eine solche Architektur auf das Bilden einer ganz bestimmten Logikfunktion beschränkt, wohingegen der Gesamtumfang aller möglichen Logikabbildungs-

Funktionen unter Verwendung vorgegebener Logikgatter nur sehr aufwendig zu realisieren ist. Auch hinsichtlich der erreichbaren Schaltgeschwindigkeit sind die komplizierten \ Logikgatter beschränkt. Die Einschränkung des Umfangs der möglichen Logikfunktionen kompliziert die automatische Logikpartitionierung bei einem FPGA Entwurf erheblich.

Ein anderer Ansatz besteht darin, logische Komplexgatter, die eine Verknüpfung von mehreren logischen Eingängen

10 realisieren, flexibel beschaltbar zu machen und durch geschicktes Kombinieren von weniger als den möglichen Eingängen zu einer vollständigen oder fast vollständigen Abdeckung des kombinatorischen Funktionsraums zu gelangen. Eine solche Realisierung weist jedoch den Nachteil auf, dass

15 Flexibilität außerhalb der Zelle zur inneren logischen Konfiguration der Zelle benutzt wird und damit eingeschränkt ist. Außerdem ist das funktionelle Mapping in der Regel aufwendig.

Weiterhin ist aus [4] ein konfigurierbares NAND/NOR-Element bekannt.

Der Erfindung liegt insbesondere das Problem zugrunde, eine Logik-Grundzelle bereitzustellen, die mit vertretbarem Flächenaufwand fertigbar ist und eine ausreichend gute Signalverarbeitungsgeschwindigkeit aufweist.

25

Das Problem wird durch eine Logik-Grundzelle, durch eine Logik-Grundzellen-Anordnung und durch eine Logik-Vorrichtung mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.

Die erfindungsgemäße Logik-Grundzelle zum Bilden eines Ausgangssignals aus mindestens drei Eingangssignalen gemäß einer vorgebbaren Logikfunktion enthält einen ersten Logikfunktionsblock mit zwei Datensignaleingängen, an denen ein erstes Eingangssignal und ein zweites Eingangssignal 5 anlegbar sind, und mit einem Datensignalausgang zum Bereitstellen einer Logikverknüpfung des ersten Eingangssignals und des zweiten Eingangssignals gemäß einer vorgebbaren ersten Logikteilfunktion. Ferner enthält die Logik-Grundzelle einen zweiten Logikfunktionsblock mit zwei 10 Datensignaleingängen, an denen das erste Eingangssignal und das zweite Eingangssignal anlegbar sind, und mit einem Datensignalausgang zum Bereitstellen einer Logikverknüpfung des ersten Eingangssignals und des zweiten Eingangssignals gemäß einer vorgebbaren zweiten Logikteilfunktion. Ferner ist 15 ein erster Logik-Transistor mit einem ersten Source-/Drain-Anschluss bereitgestellt, der mit dem Datensignalausgang des ersten Logikfunktionsblocks gekoppelt ist, mit einem Gate-Anschluss, an dem ein drittes Eingangssignal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, an dem 20 das Ausgangssignal bereitstellbar ist. Darüber hinaus ist ein zweiter Logik-Transistor mit einem zweiten Source-/Drain-Anschluss bereitgestellt, der mit dem Datensignalausgang des zweiten Logikfunktionsblocks gekoppelt ist, mit einem Gate-Anschluss, an dem ein zu dem dritten Eingangssignal 25 komplementäres Signal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, der mit dem zweiten Source-/Drain-Anschluss des ersten Logik-Transistors gekoppelt ist.

Die erfindungsgemäße Logik-Grundzellen-Anordnung zum Bilden eines Ausgangssignals aus mindestens vier Eingangssignalen gemäß einer vorgebbaren Logikfunktion enthält eine erste Logik-Grundzelle mit den oben beschriebenen Merkmalen. Ferner

WO 2005/088838 PCT/DE2005/000292 5

ist ein dritter Logik-Transistor bereitgestellt, mit einem ersten Source-/Drain-Anschluss, an den das Ausgangssignal der ersten Logik-Grundzelle anlegbar ist, mit einem Gate-Anschluss, an dem ein viertes Eingangssignal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, an dem 5 das Ausgangssignal der Logik-Grundzellen-Anordnung bereitstellbar ist. Darüber hinaus enthält die Logik-Grundzellen-Anordnung einen zweite Logik-Grundzelle mit den oben beschriebenen Merkmalen. Ferner ist ein vierter Logik-Transistor bereitgestellt, mit einem ersten Source-/Drain-10 Anschluss, an dem das Ausgangssignal der zweiten Logik-Grundzelle anlegbar ist, mit einem Gate-Anschluss, an dem ein zu dem vierten Eingangssignal komplementäres Signal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, der mit dem zweiten Source-/Drain-Anschluss des 15 dritten Logik-Transistors gekoppelt ist.

Ferner ist erfindungsgemäß eine Logik-Vorrichtung zum Bilden einer logischen Verknüpfung von mehr als vier Datensignalen geschaffen, die eine Mehrzahl von Logik-Grundzellen-Anordnung mit den oben beschriebenen Merkmalen aufweist.

20

Eine Grundidee der Erfindung beruht darauf, in einer LogikGrundzelle zwei mittels zweier Logikfunktionsblöcke

25 generierte Logik-Verknüpfungen einer ersten Anzahl von
Eingangssignalen miteinander in vorteilhafter Weise so zu
verknüpfen, dass mit geringem Hardware-Aufwand eine
komplexere Logikfunktion einer größeren Anzahl von
Eingangssignalen realisiert wird. Eine zu realisierende

30 komplexe Logikfunktion wird anschaulich basierend auf der
sogenannten Shannon-Zerlegung auf einfachere
Logikteilfunktionen zurückgeführt, und dies in

schaltungstechnisch besonders einfacher Weise mittels zweier Logik-Transistoren.

PCT/DE2005/000292

Mit der in Gleichung (1) dargestellten Shannon-Zerlegung kann eine Logikfunktion y(a₀,a₁,a₂) von beispielsweise drei Eingangssignalen a₀, a₁, a₂ in zwei Logikteilfunktionen y₀(a₁,a₀), y₁(a₁,a₀) zerlegt werden, welche Logikteilfunktionen von einem Eingangssignal nicht mehr abhängen. Das Bilden der Funktion y aus y₀ und y₁ erfolgt unter Verwendung des dritten Eingangssignals a₂ und des dazu logisch komplementären Signals a₂:

$$y(a_2, a_1, a_0) = \overline{a_2} \cdot y_0(a_1, a_0) \vee a_2 \cdot y_1(a_1, a_0)$$
 (1)

Verallgemeinert auf eine Funktion f von n Eingangssignalen, die auf zwei Teilfunktionen f_0 , f_1 von jeweils (n-1) Eingangssignalen zurückgeführt wird, ergibt sich

$$f(a_n, a_{n-1}, \dots, a_1, a_0) = \overline{a_n} \cdot f_0(a_{n-1}, \dots, a_0) \vee a_n \cdot f_1(a_{n-1}, \dots, a_0)$$
(2)

Anschaulich wird eine Aussage der booleschen Logik als Grundlage für eine Schaltungsarchitektur verwendet, welche in der erfindungsgemäßen Logik-Grundzelle realisiert ist. Die Funktion $f(a_n, a_{n-1}, ..., a0)$ von n+1 Eingangssignalen a_i lässt sich gemäß der booleschen Logik gemäß Gleichung (2) auf zwei Funktionen f_0 , f_1 von jeweils n Eingangssignalen a_i zurückführen.

35

Für den Fall n=2, das heißt für eine Funktion von n+1=3 Eingangssignalen, ist somit die Logikgesamtfunktion f als Funktion dreier Eingangssignale auf zwei Logikteilfunktionen f_0 und f_1 von je zwei Eingangssignalen zurückgeführt. Jede

der Logikteilfunktionen f_0 , f_1 kann von einem der Logikfunktionsblöcke einer Logik-Grundzelle realisiert

7

WO 2005/088838

werden.

PCT/DE2005/000292

Erfindungsgemäß wird die Rückführung einer Funktion f von allgemein n Variablen auf zwei Funktionen mit jeweils (n-1) Variablen dadurch realisiert, dass die ersten und zweiten Logik-Transistoren in der beschriebenen Weise mit den Datensignalausgängen der ersten und zweiten

Logikfunktionsblöcke verschaltet werden. Diese Realisierung stellt eine schaltungstechnisch besonders vorteilhafte Verwirklichung von Gleichung (1) bzw. (2) dar, bei der eine geringe Anzahl verwendeter Transistoren mit einer hohen Signalverarbeitungsgeschwindigkeit und einem geringen

15 Flächenbedarf auf einem Halbleiterwafer kombiniert sind.

Anschaulich wird in einem ersten Logikfunktionsblock, dessen Aufbau beliebig ist, die Logikfunktion $y_0(a_1, a_0)$ (bzw. allgemein f_0 gemäß Gleichung (2)) dadurch realisiert, dass an den Eingängen des ersten Logikfunktionsblocks die 20 Eingangssignale ao, a1 bereitgestellt werden und der Logikfunktionsblock hinsichtlich seiner Funktionalität derart eingerichtet ist, dass er die Logikfunktion y_0 realisiert. Ferner wird in einem zweiten Logikfunktionsblock die Funktion $y_1(a_1,a_0)$ (bzw. allgemein f_1 gemäß Gleichung (2)) realisiert, 25 indem an den Eingängen des zweiten Logikfunktionsblocks die Datensignale a₁, a₀ bereitgestellt werden und das Ausgangssignal $y_1(a_1, a_0)$ an dem Ausgang des zweiten Logikfunktionsblocks bereitgestellt ist. Unter Verwendung von nur zwei Transistoren, nämlich des ersten und des zweiten 3 O Logik-Transistors, werden die gemäß den auswählbaren Logikteilfunktionen gebildeten Logikfunktionswerte yo, yı (bzw. allgemein f_0 , f_1 gemäß Gleichung (2)) derart mit dem

dritten Datensignal a_2 bzw. mit den dazu logisch komplementären Signal a_2 verknüpft, dass gemäß Gleichung (1) bzw. (2) die Gesamtfunktion y bzw. f realisiert wird. Diese Verknüpfung ist erfindungsgemäß mit lediglich zwei zusätzlichen Feldeffekttransistoren realisierbar, so dass eine schaltungstechnisch äußerst günstige Verkopplung der Datensignale a_0 , a_1 , a_2 ermöglicht ist.

Anschaulich ist erfindungsgemäß die Verwendung eines

expliziten Multiplexers zum Verkoppeln der

Logikteilfunktionen y₀, y₁ mit dem dritten Datensignal a₂ bzw.

dessen logisch komplementären Signal a₂ vermieden. Die

Funktionalität eines Multiplexers wird anschaulich von den

zwei Logik-Transistoren erfüllt.

15

20

25

30

5

Anders ausgedrückt ermöglicht die Erfindung eine Realisierung von Funktionen von mehr als zwei Eingangssignalen mit einer geringen Anzahl von Transistoren, wobei ein expliziter Multiplexer entbehrlich ist, so dass nur eine optimal geringe Anzahl von Transistoren erforderlich ist.

Ein wichtiger Aspekt der Erfindung besteht darin, die dritte (bzw. eine vierte oder zusätzliche) Schaltvariable in einem Transistorserienpfad derart anzuordnen bzw. derart zu verschalten, dass der Eingang mit der höchsten Wertigkeit direkt den Ausgang schaltet.

Mit der erfindungsgemäßen Logik-Grundzelle bzw. mit der darauf basierenden Logik-Grundzellen-Anordnung ist es ermöglicht, Logikfunktionen hoher Komplexität zwecks besserer Verarbeitbarkeit auf Logikfunktionen geringerer Komplexität zurückzuführen, und dies mit einer schaltungstechnisch äußerst vorteilhaften Anordnung von Transistoren zu

realisieren, die nur eine geringe Fläche auf einem Chip erfordern und eine schnelle Verarbeitung der zu verknüpfenden Signale sicherstellen.

9

PCT/DE2005/000292

WO 2005/088838

ı O

- Anders ausgedrückt kann erfindungsgemäß durch eine
 Verschaltung von Logik-Grundzellen miteinander eine
 beliebige, komplizierte Logikgesamtfunktion, die abhängig von
 einer Vielzahl von Eingangssignalen ist, auf mehrere
 einfachere Logikteilfunktionen von einer geringeren Anzahl
 von Eingangssignalen zurückgeführt werden. Die
 erfindungsgemäße Lösung basiert auf der booleschen Logik und
 realisiert diese in einer vorteilhaften, vorzugsweise
 halbleitertechnologischen Schaltungsarchitektur.
- Die Auswahl einer Logikteilfunktion (zum Beispiel UND-Verknüpfung, ODER-Verknüpfung, Exklusiv-ODER-Verknüpfung, Nicht-UND-Verknüpfung, Nicht-ODER-Verknüpfung, Nicht-Exklusiv-ODER-Verknüpfung, etc.) eines Logikfunktionsblocks kann beispielsweise mittels Konfigurierens von
- Logikfunktionskonfigurationseingängen des jeweiligen Logikfunktionsblocks erfolgen. In der schaltungstechnischen Realisierung kann ein Logikfunktionsblock miteinander verschaltete Transistoren aufweisen, wobei mittels Anlegens von Logikfunktionssignalen an
- Logikfunktionskonfigurationseingänge der Logikfunktionsblöcke bestimmte Pfade innerhalb des Transistornetzwerks durchgeschaltet werden können, so dass Eingangssignale gemäß diesen ausgewählten Pfaden gemäß einer vorgebbaren Logikfunktion verarbeitbar sind.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

Bei der erfindungsgemäßen Logik-Grundzelle kann der erste Logikfunktionsblock und der zweite Logikfunktionsblock jeweils mindestens einen zusätzlichen Datensignaleingang aufweisen, wobei an jedem der zusätzlichen

- Datensignaleingänge ein zusätzliches Eingangssignal anlegbar ist, womit die Logik-Grundzelle zum Bilden eines Ausgangssignals aus mindestens vier Eingangssignalen gemäß einer vorgebbaren Logikfunktion eingerichtet ist. Anders ausgedrückt sind gemäß dieser Ausgestaltung an jeden der
- Logikfunktionsblöcke mehr als zwei Eingangssignale angelegt, so dass der entsprechende Logikfunktionsblock eine Logikteilfunktion von mindestens drei Eingangssignalen realisiert. Somit ist die erfindungsgemäße Logik-Grundzelle nicht auf die Verknüpfung von insgesamt drei Datensignalen miteinander beschränkt, sondern kann gemäß Cleichung (2) mit
 - miteinander beschränkt, sondern kann gemäß Gleichung (2) mit einer beliebigen Anzahl von Daten- oder Eingangssignalen betrieben werden. Dies ermöglicht auch sehr komplexe Verknüpfungen von vielen Datensignalen.
- Der erste Logikfunktionsblock und der zweite
 Logikfunktionsblock können jeweils aus einer Mehrzahl von
 miteinander gemäß der jeweiligen Logik-Teilfunktion
 verschalteten Datensignal-Transistoren gebildet sein. Somit
 kann die Logik-Grundzelle vollständig aus Transistoren
 (vorzugsweise Feldeffekttransistoren) aufgebaut werden und
- (vorzugsweise Feldeffekttransistoren) aufgebaut werden und daher mit den ausgereiften Methoden der Silizium-Mikroelektronik gefertigt werden.
- Die Logik-Transistoren und die Datensignal-Transistoren

 können Transistoren eines ersten Leitungstyps sein, und die
 Transistoren des ersten Leitungstyps können einen ersten
 Datensignalpfad bilden. Ferner kann ein zweiter
 Datensignalpfad aus Transistoren eines zweiten Leitungstyps,

der zu dem ersten Leitungstyp komplementär ist, gebildet werden, wobei zu jedem der Transistoren des ersten Datensignalpfads ein entsprechend verschalteter Transistor in dem zweiten Datensignalpfad bereitgestellt ist. Die zweiten Source-/Drain Anschlüsse der Logik-Transistoren des ersten Datensignalpfads und die zweiten Source-/Drain Anschlüsse der Logik-Transistoren des zweiten Datensignalpfads können in der erfindungsgemäßen Logik-Grundzelle miteinander gekoppelt sein.

10

15

5

Die Transistoren des ersten Leitungstyps können zum Beispiel Transistoren des n-Leitungstyps sein, wohingegen die Transistoren des zweiten Leitungstyps Transistoren des p-Leitungstyps sein können, oder vice versa. Somit kann die erfindungsgemäße Logik-Grundzelle beispielsweise unter Verwendung einer CMOS-Architektur gebildet sein.

Die erfindungsgemäße Logik-Grundzelle kann mit einem Evaluierungs-Schalter versehen sein, an dem das Ausgangssignal anlegbar ist, und mit einem Vorlade-Schalter, 30 welche Schalter derart verschaltet und steuerbar sind, dass an einem Ausgang der Logik-Grundzelle bei geöffnetem (das heißt Signaltransfer erlaubenden) Evaluierungs-Schalter und geschlossenem (das heißt Signaltransfer nicht erlaubenden) Vorlade-Schalter das Ausgangssignal bereitgestellt ist. 15 Ferner kann an dem Ausgang der Logik-Grundzelle bei geöffnetem (das heißt Signaltransfer erlaubenden) Vorlade-Schalter und geschlossenem (das heißt Signaltransfer nicht erlaubenden) Evaluierungs-Schalter ein Referenzsignal bereitgestellt ist. Der Evaluierungs-Schalter und der 0 Vorlade-Schalter können jeweils Transistoren sein, insbesondere Feldeffekttransistoren oder Bipolartransistoren.

Gemäß dieser Ausgestaltung kann mittels des Vorlade- oder Precharge-Schalters der Ausgang auf das Referenzpotential vorgeladen werden (Precharge-Phase), zum Beispiel während der ersten Hälfte einer Schaltperiode der Logik-Grundzelle.

Mittels des Evaluierungs-Schalters kann an dem Ausgang das gemäß der vorgegebenen Logikfunktion verarbeitete Ausgangssignal bereitgestellt werden, zum Beispiel während der zweiten Hälfte der Schaltperiode der Logik-Grundzelle (Evaluate-Phase).

10

5

Die erfindungsgemäße Logik-Grundzelle kann als CMOS Logik-Grundzelle eingerichtet sein.

Gemäß einer Ausgestaltung der Erfindung kann zumindest einer der Logikfunktionsblöcke in der Struktur eines Programmable 15 Logic Device (PLD), eines Field-Programmable Gate Array (FPGA), eines maskenprogrammierten Application-Specific Integrated Circuit (mASIC), eines Logikgatters oder einer Anordnung mehrerer Logikgatter oder einer Look-Up-Tabelle gebildet sein. Erfindungsgemäß kann im Prinzip jede beliebige 20 Ausgestaltung für die Logikfunktionsblöcke gewählt werden. Im Falle der Ausgestaltung eines Logikfunktionsblocks als Look-Up-Tabelle kann beispielsweise die aus [3] bekannte Architektur in der Logik-Grundzelle der Erfindung implementiert werden. Im Falle der Realisierung eines 25 Logikfunktionsblocks als maskenprogrammierter Application-Specific Integrated Circuit bzw. als "structured ASIC" kann eine gewünschte Logikteilfunktion eines Logikfunktionsblocks mittels Festverdrahtens von Transistoren innerhalb des Logikfunktionsblocks realisiert werden. Mit anderen Worten 30 kann unter Verwendung von Vias oder anderen fest implementierten Kopplungselementen ein bestimmter Signalpfad

bzw. mehrere Signalpfade innerhalb der Transistor-Anordnung

eines solchen "structured ASICs" erlaubt werden, wodurch dem Logikfunktionsblock dauerhaft eine feste Logikfunktion zugeordnet ist.

- An mindestens einem Logikkonfigurationseingang von zumindest einem der Logikfunktionsblöcke kann die realisierbare Logikteilfunktion unveränderlich vorgegeben werden. Gemäß dieser Ausgestaltung erfüllt der Logikfunktionsblock stets die ihm fest und unveränderlich zugewiesene
- Logikteilfunktion, da diese mittels Anlegens vorgegebener Signale (oder Betriebsspannungen) an den Logikkonfigurationseingängen fest eingestellt ist. Die vorgegebene Logikteilfunktion kann auch festverdrahtet mittels Kurzschließens oder entsprechenden hardwaremäßigen
- Koppelns der Transistoren des Logikfunktionsblocks realisiert werden. Dann können an die in festgelegter Weise miteinander verschalteten Transistoren über einen oder mehrere Anschlüsse des Logikfunktionsblocks vorgegebene elektrische Potentiale (zum Beispiel Betriebsspannung, Massepotential) angelegt
- werden. Bei fest vorgegebener Logikteilfunktion eines
 Logikfunktionsblocks kann eine mit dem mindestens einen
 Logikkonfigurationseingang gekoppelte Speichereinrichtung
 vorgesehen sein, in welcher die Information zum Vorgeben der
 realisierbaren Logikteilfunktion speicherbar ist. Somit ist
- in einer solchen Speichereinrichtung ein Datenwort speicherbar, in welchem die Logikteilfunktion des Logikfunktionsblocks kodiert ist, zum Beispiel als binäres Datenwort.
- Alternativ zu der beschriebenen Ausgestaltung kann an mindestens einem Logikfunktionskonfigurationseingang eines jeweiligen Logikfunktionsblocks die realisierbare Logikteilfunktion mittels eines anlegbaren Signals variabel

Vorgegeben sein. Bei dieser Ausgestaltung des
Logikfunktionsblocks kann dieser jede beliebige Logikfunktion
durchführen, welche der Logik-Grundzelle mittels eines (zum
Beispiel zeitlich) veränderlichen elektrischen Potentials an
Steuereingängen von Transistoren innerhalb des
Logikfunktionsblocks vorgegeben ist. In diesem Szenario kann
der Logikfunktionsblock als variable Logikkomponente der
übergeordneten Logik-Grundzelle bzw. der dieser
übergeordneten Logik-Grundzellen-Anordnung verschaltet
werden, was eine flexible Schaltungsarchitektur ermöglicht.

Die erfindungsgemäße Logik-Grundzelle ist vorzugsweise zum Verarbeiten von digitalen Datensignalen eingerichtet, welche einen logischen Wert "1" oder "0" aufweisen.

15

10

5

Gemäß einem bevorzugten Ausführungsbeispiel der erfindungsgemäßen Logik-Grundzelle weist zumindest einer der Logikfunktionsblöcke ferner einen ersten Komplementär-Datensignaleingang auf, an den das zu dem ersten Eingangssignal logisch komplementäre Signal anlegbar ist, und 30 weist einen zweiten Komplementär-Datensignaleingang auf, an den das zu dem zweiten Eingangssignal logisch komplementäre Signal anlegbar ist. Ein erstes Logikauswahl-Element ist zwischen dem ersten Datensignaleingang und dem zweiten Datensignaleingang gebildet. Ein zweites Logikauswahl-Element 35 ist zwischen dem ersten Datensignaleingang und dem zweiten Komplementär-Datensignaleingang gebildet. Ein drittes Logikauswahl-Element ist zwischen dem zweiten Datensignaleingang und dem ersten Komplementär-Datensignaleingang gebildet. Ein viertes Logikauswahl-Element , O ist zwischen dem ersten Komplementär-Datensignaleingang und dem zweiten Komplementär-Datensignaleingang gebildet. An dem Datensignalausgang ist die Logik-Verknüpfung der zwei

Datensignale gemäß der mittels der Logikauswahl-Elemente ausgewählten Logikfunktion bereitstellbar.

15

PCT/DE2005/000292

WO 2005/088838

10

15

20

10

Gemäß dieser Ausgestaltung ist zumindest einer der

Logikfunktionsblöcke der Logik-Grundzelle in einer solchen schaltungstechnischen Realisierung bereitgestellt, dass bei einer sehr geringen Anzahl von erforderlichen Komponenten (zum Beispiel Transistoren) eine komplette Abbildung des kombinatorischen Funktionsraums über n Eingängen erreicht

ist. Mit anderen Worten ist es mit dieser Ausgestaltung der Logikfunktionsblöcke ermöglicht, jede mögliche Logikverknüpfung von zwei Datensignalen in einer optimierten Verschaltung von Logikauswahl-Elementen und Datensignaleingängen zu realisieren. In Kombination mit den

Logik-Transistoren der Logik-Grundzelle kann somit eine schaltungstechnisch äußerst effiziente Verknüpfung von drei Datensignalen ermöglicht werden. Anschaulich sind die Logikauswahl-Elemente des Logikfunktionsblocks derart konfiguriert, dass sie die von der erfindungsgemäßen Logik-Grundzelle rogligierte Logikfunktions

Grundzelle realisierte Logikfunktion determinieren. Dies kann zum Beispiel durch eine hartverdrahtete Realisierung der Logikauswahl-Elemente erreicht werden, so dass in diesem Fall die Logikfunktion mittels der durch die Logikauswahl-Elemente vorgegebenen unveränderlichen Verdrahtung der

Datensignaleingänge bestimmt ist. Alternativ können die Logikauswahl-Elemente zum Beispiel als Logikauswahl-Transistoren vorgesehen sein, wobei mittels Anlegens von Logikauswahlsignalen an deren Gate-Anschlüsse die zu realisierende Logikfunktion vorgegeben wird.

Diese Architektur eines Logikfunktionsblocks stellt eine sehr einfache Anordnung dar, bei der es mit schaltungstechnisch sehr geringem Aufwand ermöglicht ist, jede mögliche Logikfunktion von zwei Eingängen zu realisieren. Die besonders kompakte Realisierung der Logikfunktionsblöcke gemäß der beschriebenen Ausgestaltung spart Chipfläche und ermöglicht somit eine miniaturisierte Realisierung der Logik-

16

PCT/DE2005/000292

Die Logikauswahl-Elemente können unveränderliche Hardwareelemente sein. Gemäß dieser Realisierung wird die gewünschte Logikfunktion einmal fest vorgegeben, und zwar mittels Verdrahtens der vier Datensignaleingänge in einer vorgegebenen Weise. Die vorgegebene Kopplung zwischen den einzelnen Datensignalen, die an den Datensignaleingängen bereitgestellt werden, wird durch die Verschaltung der Logikauswahl-Elemente vorgegeben und führt somit zu einer eindeutigen Logikfunktion.

Gemäß der beschriebenen Konfiguration können die Logikauswahl-Elemente mittels einer Mehrzahl von Metallisierungsebenen und/oder Vias realisiert werden.

20

WO 2005/088838

Grundzelle.

5

10

15

Bei dem Logikfunktionsblock gemäß der beschriebenen
Ausgestaltung der Erfindung kann das erste LogikauswahlElement ein erster Logik-Transistor sein, der mittels eines
ersten Logikauswahlsignals steuerbar ist. Das zweite

Logikauswahl-Element kann ein Logik-Transistor sein, der
mittels eines zweiten Logikauswahlsignals steuerbar ist. Das
dritte Logikauswahl-Element kann ein dritter Logik-Transistor
sein, der mittels eines dritten Logikauswahlsignals steuerbar
ist. Das vierte Logikauswahl-Element kann ein vierter LogikTransistor sein, der mittels eines vierten LogikauswahlElements steuerbar ist. Gemäß dieser Ausgestaltung werden
vier Logikauswahlsignale an die Logik-Transistoren,
vorzugsweise an deren Gate-Anschlüsse, angelegt, wodurch eine

ganz bestimmte Kopplung der Datensignale an den Datensignaleingängen realisiert wird. Gemäß dieser speziellen Kopplung, die variabel vorgebbar ist, wird die realisierte Logikfunktion vorgegeben.

17

PCT/DE2005/000292

5

10

15

30

WO 2005/088838

Ferner kann der Logikfunktionsblock gemäß der beschriebenen Ausgestaltung vier Datensignal-Transistoren aufweisen, an deren Gate-Anschlüssen jeweils eines der Datensignale oder der logisch komplementären Datensignale bereitstellbar ist. Bei dieser Ausgestaltung werden die vier Datensignale, das heißt das erste Datensignal und das dazu logisch komplementäre Datensignal, sowie das zweite Datensignal und das dazu logisch komplementäre Datensignal über Gate-Anschlüsse von vier Datensignal-Transistoren in den Logikfunktionsblock eingekoppelt.

Gemäß der beschriebenen Ausgestaltung kann ein erster
Datensignal-Transistor derart verschaltet sein, dass ein
erster Source-/Drain-Anschluss mit einem ersten Source
/Drain-Anschluss des ersten Logik-Transistors und mit einem
zweiten Source-/Drain-Anschluss des zweiten Logik-Transistors
gekoppelt ist. Ferner kann der zweite Source-/Drain-Anschluss
des zweiten Datensignal-Transistors mit einem ersten Source/Drain-Anschluss eines dritten Datensignal-Transistors
gekoppelt sein.

Der dritte Datensignal-Transistor kann derart verschaltet sein, dass dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des vierten Logik-Transistors und mit einem ersten Source-/Drain-Anschluss des zweiten Logik-Transistors gekoppelt ist.

Ein zweiter Datensignal-Transistor kann derart verschaltet sein, dass dessen erster Source-/Drain-Anschluss mit einem zweiten Source-/Drain-Anschluss des ersten Logik-Transistors und mit einem zweiten Source-/Drain-Anschluss des dritten Logik-Transistors gekoppelt ist. Ein zweiter Source-/Drain-Anschluss des ersten Datensignal-Transistors kann mit einem ersten Source-/Drain Anschluss eines vierten Datensignal-Transistors gekoppelt sein. Der vierte Datensignal-Transistor kann derart verschaltet sein, dass dessen zweiter Source-/Drain-Anschluss mit einem zweiten Source-/Drain-Anschluss des dritten Logik-Transistors und mit einem zweiten Source-/Drain-Anschluss des vierten Logik-Transistors gekoppelt ist.

Die beschriebene Verschaltung der vier Datensignal
Transistoren mit den vier Logik-Transistoren stellt eine bevorzugte schaltungstechnische Realisierung eines Logikfunktionsblocks einer Logik-Grundzelle zum Realisieren einer möglichen Logikfunktion zum Verknüpfen der Datensignale bereit, und dies mit schaltungstechnisch sehr geringem

Aufwand.

Wenngleich Ausgestaltungen der Logik-Grundzelle beschrieben worden sind, so sollen diese Ausgestaltungen auch für die erfindungsgemäße Logik-Grundzellen-Anordnung und die erfindungsgemäße Logik-Vorrichtung gelten.

Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im Weiteren näher erläutert.

30 Es zeigen:

5

10

25

Figur 1 eine Logik-Grundzelle gemäß einem Ausführungsbeispiel der Erfindung,

- Figur 2 eine Tabelle, in der die Korrelation zwischen Werten von vier Logikauswahlsignalen und einer von der Logik-Grundzelle gemäß Figur 1 realisierten Logikfunktion dargestellt sind,
- Figur 3 einen Logikfunktionsblock einer Logik-Grundzelle gemäß einem Ausführungsbeispiel der Erfindung,

5

15

30

0

5

- 10 Figur 4 eine Logik-Grundzellen-Anordnung gemäß einem ersten Ausführungsbeispiel der Erfindung,
 - Figur 5 eine Logik-Grundzellen-Anordnung gemäß einem zweiten Ausführungsbeispiel der Erfindung,

Figuren 6A und 6B einen p-MOS-Teilpfad und einen n-MOS-Teilpfad eines Logikfunktionsblocks einer Logik-Grundzelle gemäß einem Ausführungsbeispiel der Erfindung.

Gleiche oder ähnliche Komponenten in unterschiedlichen Figuren sind mit gleichen Bezugsziffern versehen.

Die Darstellung in den Figuren ist schematisch und nicht maßstäblich.

Im Weiteren wird bezugnehmend auf **Fig.1** eine Logik-Grundzelle 100 gemäß einem Ausführungsbeispiel der Erfindung beschrieben.

Die Logik-Grundzelle 100 weist einen ersten Datensignalpfad 101 aus n-MOS-Transistoren und einen zweiten Datensignalpfad 102 aus p-MOS-Transistoren auf. Der erste Datensignalpfad 101 enthält einen ersten Logikfunktionsblock 160 und einen zweiten Logikfunktionsblock 170. Der zweite Datensignalpfad

102 enthält einen ersten Logikfunktionsblock 140 und einen zweiten Logikfunktionsblock 150.

Im Weiteren wird die Struktur des ersten Logikfunktionsblocks 5 160 des ersten Datensignalpfads 101 näher beschrieben.

Der erste Logikfunktionsblock 160 des ersten Datensignalpfads 101 weist einen ersten Datensignaleingang 103 auf, an dem ein zu einem ersten Datensignal ao komplementäres erstes

10 komplementäres Datensignal ao bereitgestellt ist. Ferner ist an einem zweiten Datensignaleingang 104 ein zu einem zweiten Datensignal aı komplementäres zweites komplementäres

Datensignal aı bereitgestellt. An einem dritten

Datensignaleingang 105 ist das erste Datensignal ao

bereitgestellt. Darüber hinaus ist an einem vierten

Datensignaleingang 106 das zweite Datensignal aı

bereitgestellt.

An einem Datensignalausgang 107b des ersten

Logikfunktionsblocks 160 des ersten Datensignalpfads 101 ist
ein Ausgangssignal des ersten Logikfunktionsblocks 160, das
heißt eine Logikverknüpfung des ersten Eingabesignals a₀, a

und des zweiten Eingabesignals a1, a

gemäß einer
vorgebbaren Logikteilfunktion bereitgestellt.

25

Als ein erstes Logikauswahl-Element ist ein erster n-MOSLogikauswahl-Transistor 108 zwischen dem ersten
Datensignaleingang 103 und dem zweiten Datensignaleingang 104
bereitgestellt. Der erste n-MOS-Logikauswahl-Transistor 108
ist mittels eines ersten Logikauswahlsignals so steuerbar.
Ferner ist ein zweiter n-MOS-Logikauswahl-Transistor 109 als
ein zweites Logikauswahl-Element zwischen dem ersten

Datensignaleingang 103 und dem vierten Datensignaleingang 106 bereitgestellt. Der zweite n-MOS-Logikauswahl-Transistor 109 ist mittels eines zweiten Logikauswahlsignals s1 steuerbar. Darüber hinaus ist als drittes Logikauswahl-Element ein dritter n-MOS-Logikauswahl-Transistor 110 zwischen dem zweiten Datensignaleingang 104 und dem dritten Datensignaleingang 105 bereitgestellt, welcher dritte n-MOS-Logikauswahl-Transistor 110 mittels eines dritten Logikauswahlsignals s2 steuerbar ist. Als ein viertes Logikauswahl-Element ist ein vierter n-MOS-Logikauswahl-Transistor 111 zwischen dem dritten Datensignaleingang 105 und dem vierten Datensignaleingang 106 verschaltet, welcher vierte n-MOS-Logikauswahl-Transistor 111 mittels eines vierten Logikauswahlsignals s3 steuerbar ist.

15

20

10

5

Der erste Datensignaleingang 103 ist mit dem Gate-Bereich eines ersten n-MOS-Datensignal-Transistors 112 gekoppelt. Der zweite Datensignaleingang 104 ist mit dem Gate-Bereich eines zweiten n-MOS-Datensignal-Transistors 113 gekoppelt. Der dritte Datensignaleingang 105 ist mit dem Gate-Bereich eines dritten n-MOS-Datensignal-Transistors 114 gekoppelt. Der vierte Datensignaleingang 106 ist mit dem Gate-Bereich eines vierten n-MOS-Datensignal-Transistors 115 gekoppelt.

Der erste n-MOS-Datensignal-Transistor 112 ist derart
verschaltet, dass dessen erster Source-/Drain-Anschluss mit
einem ersten Source-/Drain-Anschluss des ersten n-MOSLogikauswahl-Transistors 108 und mit einem ersten Source/Drain-Anschluss des zweiten n-MOS-Logikauswahl-Transistors

109 gekoppelt ist. Ein zweiter Source-/Drain Anschluss des nMOS-Datensignal-Transistors 112 ist mit einem ersten Source/Drain-Anschluss des dritten n-MOS-Datensignal-Transistors

114 gekoppelt und auf das elektrische Versorgungspotential

126 gebracht. Der dritte n-MOS-Datensignal-Transistor 114 ist derart verschaltet, dass dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des

PCT/DE2005/000292

vierten n-MOS-Logikauswahl-Transistors 111 und mit einem ersten Source-/Drain-Anschluss des dritten n-MOS-Logikauswahl-Transistors 110 gekoppelt ist. Der zweite n-MOS-Datensignal-Transistor 113 ist derart verschaltet, dass dessen erster Source-/Drain-Anschluss mit einem zweiten Source-/Drain-Anschluss des ersten n-MOS-Logikauswahl-

Transistors 108 und mit einem zweiten Source-/Drain-Anschluss des dritten n-MOS-Logikauswahl-Transistors 110 gekoppelt ist. Ein zweiter Source-/Drain-Anschluss des zweiten n-MOS-Datensignal-Transistors 113 ist mit einem ersten Source-/Drain-Anschluss des vierten n-MOS-Datensignal-Transistors

115 gekoppelt. Der vierte n-MOS-Datensignal-Transistor 115 ist derart verschaltet, dass dessen zweiter Source-/Drain-Anschluss mit einem zweiten Source-/Drain-Anschluss des zweiten n-MOS-Logikauswahl-Transistors 109 und mit einem zweiten Source-/Drain-Anschluss des vierten n-MOS-

Logikauswahl-Transistors 111 gekoppelt ist. Der zweite Source-/Drain-Anschluss des zweiten n-MOS-Datensignal-Transistors 113 und der erste Source-/Drain-Anschluss des vierten n-MOS-Datensignal-Transistors 115 sind mit dem Datensignalausgang 107b gekoppelt.

5

5

WO 2005/088838

Mittels eines ersten Inverters 124 kann aus dem zweiten Datensignal a_1 das dazu komplementäre Datensignal a_1 generiert werden. Mittels eines zweiten Inverters 125 kann aus dem ersten Datensignal a_0 das dazu komplementäre

Datensignal $\overline{a_0}$ generiert werden. Mittels eines dritten Inverters 128 kann aus dem dritten Datensignal a_2 das dazu komplementäre Datensignal $\overline{a_2}$ generiert werden.

Der zweite Logikfunktionsblock 170 des ersten Datensignalpfads 101 ist gemäß dem beschriebenen Ausführungsbeispiel völlig identisch aufgebaut wie der erste Logikfunktionsblock 160 des ersten Datensignalpfads 101. Allerdings kann die Logikteilfunktion, die mittels des 5 zweiten Logikfunktionsblocks 170 realisiert wird, sich von der Logikteilfunktion unterscheiden, welche mittels des ersten Logikfunktionsblocks 160 realisiert wird. Dies ist in Fig.1 dadurch gekennzeichnet, dass Logikauswahlsignale s4 bis s, des zweiten Logikfunktionsblocks 170 des ersten 10 Datensignalpfads 101 von den Logikfunktionssignalen so bis s3 des ersten Logikfunktionsblocks 160 unterschiedlich bezeichnet sind. Somit kann in jedem der Logikfunktionsblöcke 160, 170 voneinander unabhängig eine beliebige logische Verknüpfung der Eingangssignale ao, aı, ,ao, aı realisiert 15

werden.

Ferner ist ein erster n-MOS-Logik-Transistor 129 bereitgestellt, mit einem ersten Source-/Drain-Anschluss, der mit dem Datensignalausgang 107b des ersten 30 Logikfunktionsblocks 160 gekoppelt ist, mit einem Gate-Anschluss, an dem ein zu einem dritten Datensignal a2 komplementäres drittes komplementäres Eingangssignal a2 bereitgestellt ist, und mit einem zweiten Source-/Drain-Anschluss, an dem das Ausgangssignal der Logik-Grundzelle 100 35 aus den drei Eingangssignalen a0, a1, a2 sowie deren logisch komplementären Signalen $\overline{a_0}$, $\overline{a_1}$, $\overline{a_2}$ gemäß einer vorgegebenen Logikfunktion bereitgestellt ist. Ferner ist ein zweiter n-MOS-Logik-Transistor 130 in der Logik-Grundzelle 100 bereitgestellt, mit einem ersten Source-/Drain-Anschluss, der 10 mit dem ersten Datensignalausgang 107b des zweiten Logikfunktionsblocks 170 gekoppelt ist, mit einem GateAnschluss, an dem das dritte Datensignal a2 bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, der mit dem zweiten Source-/Drain-Anschluss des ersten n-MOS-Logik-Transistors 129 gekoppelt ist.

24

PCT/DE2005/000292

5

WO 2005/088838

Im Weiteren wird der Aufbau des zweiten Datensignalpfads 102 beschrieben.

Dieser ist in antisymmetrischer Weise zu dem ersten Datensignalpfad 101 verschaltet, so dass in dem zweiten 10 Datensignalpfad 102 ebenfalls ein erster Logikfunktionsblock 140 und ein zweiter Logikfunktionsblock 150 bereitgestellt sind. Anstelle eines ersten n-MOS-Logikauswahl-Transistors 108 ist in dem zweiten Datensignalpfad 102 ein erster p-MOS-Logikauswahl-Transistor 116 bereitgestellt. Der zweite n-MOS-15 Logikauswahl-Transistor 109 ist durch einen zweiten p-MOS-Logikauswahl-Transistor 117 ersetzt. Der dritte n-MOS-Logikauswahl-Transistor 110 ist durch einen dritten p-MOS-Logikauswahl-Transistor 118 ersetzt. Der vierte n-MOS-Logikauswahl-Transistor 111 ist durch einen vierten p-MOS-10 Logikauswahl-Transistor 119 ersetzt. Der erste n-MOS-Datensignal-Transistor 112 ist durch einen ersten p-MOS-Datensignal-Transistor 120 ersetzt. Der zweite n-MOS-Datensignal-Transistor 113 ist durch einen zweiten p-MOS-Datensignal-Transistor 121 ersetzt. Der dritte n-MOS-5 Datensignal-Transistor 114 ist durch einen dritten p-MOS-Datensignal-Transistor 122 ersetzt. Der vierte n-MOS-Datensignal-Transistor 114 ist durch einen vierten p-MOS-Datensignal-Transistor 123 ersetzt. Das Signal an den Gate-Anschlüssen der Datensignal-Transistoren 120 bis 123 ist das 0 jeweils invertierte Signal verglichen mit den Signalen an den Gate-Anschlüssen der Datensignal-Transistoren 112 bis 115 des n-MOS-Datensignalpfades 101. So liegt am Gate des ersten pMOS-Datensignal-Transistors 120 a_0 an, wohingegen am Gate des ersten n-MOS-Datensignal-Transistors 112 \bar{a}_0 anliegt. Am Gate des zweiten p-MOS-Datensignal-Transistors 121 liegt a_1 an, wohingegen am Gate des zweiten n-MOS-Datensignal-Transistors 113 \bar{a}_1 anliegt. Am Gate des dritten p-MOS-Datensignal-Transistors 122 liegt \bar{a}_0 an, wohingegen am Gate des dritten p-MOS-Datensignal-Transistors 114 a_0 anliegt, und am Gate des vierten p-MOS-Datensignal-Transistors 123 liegt \bar{a}_1 an, wohingegen am Gate des vierten n-MOS-Datensignal-Transistors 115 a_1 anliegt.

5

10

Unter Asymmetrie der beiden Datensignalpfade 101, 102 ist zu verstehen, dass deren Anordnung zueinander zwar im Wesentlichen spiegelsymmetrisch ist, wobei die Leitungstypen der einander entsprechenden Transistoren jedoch zueinander komplementär sind, und wobei die Datensignale an den Eingängen von einander entsprechenden Datensignal-Transistoren ebenfalls zueinander komplementär sind. Die Logikauswahlsignale an den Eingängen von einander entsprechenden Datensignal-Transistoren sind in den beiden Datensignalpfaden 101, 102 allerdings identisch.

Die miteinander gekoppelten Source-/Drain-Anschlüsse des ersten p-MOS-Datensignal-Transistors 120 und des dritten p25 MOS-Datensignal-Transistors 122 sind auf das
Versorgungspotential 127 gebracht. Ferner sind die miteinander gekoppelten Source-/Drain-Anschlüsse des zweiten p-MOS-Datensignal-Transistors 121 und des vierten p-MOS-Datensignal-Transistors 123 mit einem Datensignalausgang 107a gekoppelt. An dem Datensignalausgang 107a des ersten Logikfunktionsblocks 140 ist ein Ausgangssignal bereitgestellt, welches einer Verarbeitung der Eingangssignale ao, aı innerhalb des Logikfunktionsblocks 140

gemäß der darin vorgegebenen Logikteilfunktion entspricht. Ein erster p-MOS-Logik-Transistor 131 weist einen ersten Source-/Drain-Anschluss auf, der mit dem Datensignalausgang 107a des ersten Logikfunktionsblocks 140 gekoppelt ist, einen Gate-Anschluss, an den das dritte Eingangssignal a2 angelegt ist, und einen zweiten Source-/Drain-Anschluss, an dem das Ausgangssignal der Logik-Grundzelle 100 bereitstellbar ist. Ferner ist ein zweiter p-MOS-Logik-Transistor 132 vorgesehen, mit einem ersten Source-/Drain-Anschluss, der mit dem Datensignalausgang 107a des zweiten Logikfunktionsblocks 150 des zweiten Datensignalpfads 102 gekoppelt ist, mit einem Gate-Anschluss, an den das zu dem dritten Eingangssignal a2 komplementäre Signal a2 bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, der mit dem zweiten Source-/Brain-Anschluss des ersten p-MOS-Logik-Transistors 131 gekoppelt ist.

5

10

15

20

An den zweiten Source-/Drain-Anschlüssen der Logikauswahl-Transistoren 128 bis 132 ist somit ein Ausgangssignal y entsprechend der Verknüpfung der drei Eingangssignale a_0 , a_1 , a_2 sowie deren logisch komplementären Signale a_0 , a_1 , a_2 gemäß einer vorgebbaren Logikfunktion bereitgestellt.

Die Logik-Grundzelle 100 stellt eine Realisierung einer

optimierten Logik-Grundzelle von drei Eingängen a₀, a₁, a₂ in statischer Standard-CMOS-Schaltungstechnik dar. Mittels

Vorgebens der ersten bis vierten Logikauswahlsignale s₀ bis s₃ wird in den ersten Logikfunktionsblöcken 140, 160 der ersten bzw. zweiten Datensignalpfade 101, 102 anschaulich vorgegeben, welche Logikteilfunktion von den

Logikfunktionsblöcken 140, 160 realisiert werden soll.

Mittels Vorgebens der ersten bis vierten Logikauswahlsignale s₀ bis s₃ wird somit festgelegt, ob die Kanal-Bereiche der

Logikauswahl-Transistoren 108 bis 111 bzw. 116 bis 119 leitend sind oder nicht leitend sind. Dadurch werden bestimmte Signalpfade innerhalb der Logikfunktionsblöcke 140, 160 erlaubt, andere ausgeschlossen. Dies führt zu einer definierten Verknüpfung der Eingangssignale a_0 , a_1 , $\overline{a_0}$, $\overline{a_1}$ gemäß einer Logikteilfunktion, die mittels Vorgebens der

27

PCT/DE2005/000292

In ähnlicher Weise werden mittels Vorgebens der fünften bis achten Logikauswahlsignale s4 bis s7 in den zweiten Logikfunktionsblöcken 150, 170 entsprechende leitende Transistor-Pfade vorgegeben, so dass auch in diesen eine vorgebbare Logikteilfunktion der zwei Eingangsvariablen a0, a1 realisiert werden kann.

Logikauswahlsignale so bis s3 definiert wird.

15

20

10

5

WO 2005/088838

Die Verknüpfung der Ausgangssignale der Logikfunktionsblöcke 140, 150, 160, 170 mit dem dritten Datensignal a₂ bzw. dessen logisch komplementären Wert a₂ erfolgt unter Verwendung der Logik-Transistoren 129 bis 132, so dass anschaulich mittels der Schaltung aus Fig.1 Gleichung (1) schaltungstechnisch realisiert ist. Dies führt zu einem Ausgangssignal y, das an einem globalen Datensignalausgang bereitstellbar ist.

Mit der erfindungsgemäßen Logik-Grundzelle 100 ist somit eine Realisierung von Funktionen mit drei Eingängen mit einer sehr geringen Anzahl erforderlicher Transistoren ermöglicht, wobei ein expliziter Multiplexer entbehrlich ist. Das Prinzip, dass diese geringe Anzahl von Transistoren ermöglicht, besteht darin, die dritte (bzw. im verallgemeinerten Fall jede weitere Schaltvariable) im Transistor-Serienpfad derart anzuordnen, dass der Eingang mit der höchsten Wertigkeit direkt den Ausgang schaltet.

Anschaulich gliedert sich die Schaltung der Logik-Grundzelle 100 in ein erstes und zweites p-Kanal-Transistornetzwerk 140, 150 und in ein erstes und ein zweites n-Kanal-Transistornetzwerk 160, 170. Das erste p-Kanal-Transistornetzwerk 140 und das erste n-Kanal-Transistornetzwerk 140 und das erste n-Kanal-Transistornetzwerk 160 bilden zusammen eine Schaltung, die

Transistornetzwerk 160 bilden zusammen eine Schaltung, die jede beliebige Funktion zweier Eingänge entsprechend den Schalterbelegungen von so bis s3 realisiert. Nimmt a2 einen logischen Wert "0" ein, bildet diese Funktion einen Ausgang

5

10

25

30

der Funktion von drei Eingängen. Das zweite p-Kanal-Transistornetzwerk 150 und das zweite n-Kanal-Transistornetzwerk 170 bilden zusammen eine Schaltung, die jede beliebige Funktion zweier Eingänge entsprechend der Schalterbelegungen s4 bis s7 realisiert. Nimmt a2 einen

logischen Wert "1" ein, bildet diese Funktion den Ausgang der Funktion von drei Eingängen. Damit ist wiederum die Shannon-Zerlegung der Funktion von drei Eingängen gemäß Gleichung (1) realisiert. Es wurde eine Multiplexer-Funktionalität erfüllende funktionelle Einheit in Form einer c_(n-1)_MOS Struktur realisiert, wobei n die Anzahl der Eingänge ist.

Die in Fig.2 gezeigte Tabelle 200 gibt für das Beispiel des ersten Logikfunktionsblocks 140 des zweiten Datensignalpfads 102 bzw. für den ersten Logikfunktionsblock 160 des ersten Datensignalpfads 101 an, welche Logikteilfunktion y_T für die unterschiedlichen Permutationen der Logikauswahlsignale s_0 bis s_3 vorgegeben wird. Zum Beispiel werden die Datensignale a_0 und a_1 gemäß einer ODER-Logikteilfunktion verknüpft, wenn das erste Logikauswahlsignal s_0 einen logischen Wert "1" aufweist, und die zweiten bis vierten Logikauswahlsignale s_1 bis s_3 jeweils einen logischen Wert "0" aufweisen.

Tabelle 200 zeigt die Belegung der Schaltvariablen so bis s3 an, mit Hilfe derer alle möglichen 16 Logikfunktionen zum Verknüpfen von zwei Datensignalen ao und a1 eingestellt werden können. Höherwertige komplexere Funktionen werden unter Verwendung von Gleichung (2) aufgebaut, indem mehrere Logikfunktionsblöcke 140, 150, 160, 170 miteinander in der in Fig.1 gezeigten Weise verschaltet werden, wobei die Einflüsse des dritten Datensignals a2 mittels der in Fig.1 gezeigten verschalteten Logik-Transistoren 129 bis 132 realisiert wird.

10

15

5

Im Weiteren wird bezugnehmend auf Fig.3 ein
Logikfunktionsblock 300 gemäß einem Ausführungsbeispiel
beschrieben, der anstelle der Logikfunktionsblöcke 140, 150,
160, 170 in eine erfindungsgemäße Logik-Grundzelle (z.B. die
Logik-Grundzelle 100 aus Fig.1) implementiert werden kann und
ebenfalls eine beliebig wählbare Logikteilfunktion erfüllen
kann.

Zunächst wird die der Funktionalität des Logikfunktionsblocks
300 der erfindungsgemäßen Logik-Grundzelle zugrundliegende
theoretische Basis basierend auf der booleschen Logik
beschrieben.

Eine boolesche Funktion lässt sich in der kanonisch
konjunktiven Normalform als ODER-Verknüpfung der Produktterme

ihrer n Eingänge ausdrücken (in Fig.3 ist beispielsweise n=2,

da zwei Eingangssignale a₁, a₀ bereitgestellt sind). Diesen n

Eingängen sind 2ⁿ Produktterme zugeordnet.

Auf Standard-CMOS-Logik angewendet werden die Produktterme für den logischen Wert "1" einer Funktion als Serienpfad von p-Kanal-Transistoren realisiert. Der Logik-Wert "0" wird entsprechend als Serienpfad aus n-Kanal-Transistoren

realisiert. Entsprechend kann jede Logik-Funktion, gemäß welcher an n Eingängen bereitgestellte Signale miteinander Logik-verknüpft werden, aus 2ⁿ Produkttermen zusammengesetzt werden, indem anschaulich Produktterme zu- oder abgeschaltet werden.

Für zwei Eingänge ao und aı gilt:

$$y = k_0 \cdot \overline{a_1} \cdot \overline{a_0} \vee k_1 \cdot \overline{a_1} \cdot a_0 \vee k_2 \cdot a_1 \cdot \overline{a_0} \vee k_3 \cdot a_0 \cdot a_1$$
 (3)

mit

5

10

20

35

$$-k_{i} = \{-0, 1\} \text{ mit } i = 0, 1, \dots, 7$$
 (5)

Jede Funktion $y=f(a_0, a_1)$ wird gebildet, indem vier Werte der Schaltkoeffizienten oder Logikfunktionsvariablen k_0 bis k_7 auf einen Wert logisch "1" und die restlichen auf einen Wert logisch "0" gesetzt werden. Da in CMOS-Logik die p-Kanal-Transistoren mit einem elektrischen Potential "0" am Steuer- oder Gate-Anschluss öffnen, die n-Kanal-Transistoren hingegen bei einem elektrischen Potential mit einem Wert "1", lassen sich die Produktterme in Gleichungen (3), (4) zu einander sich ausschließenden Paaren ordnen. In Gleichungen (3), (4) schließen sich die jeweils ersten Produktterme gegenseitig logisch aus, ebenso die jeweils zweiten, die jeweils dritten und die jeweils vierten.

Für die Schaltkoeffizienten ki gilt die Beziehung:

$$k_0 = \overline{k_4}, k_1 = \overline{k_5}, k_2 = \overline{k_6}, k_3 = \overline{k_7}$$
 (6)

Aus Gleichungen (4), (5), (6) ergibt sich nach Zusammenfassen zu vier unabhängigen Schaltvariablen c_0 , c_1 , c_2 , c_3 :

$$y = \overline{c_0} \cdot \overline{a_1} \cdot \overline{a_0} \vee \overline{c_1} \cdot \overline{a_1} \cdot a_0 \vee \overline{c_2} \cdot a_1 \cdot \overline{a_0} \vee \overline{c_3} \cdot a_1 \cdot a_0$$
 (7)

$$\bar{y} = c_0 \cdot \bar{a_1} \cdot \bar{a_0} \vee c_1 \cdot \bar{a_1} \cdot \bar{a_0} \vee c_2 \cdot \bar{a_1} \cdot \bar{a_0} \vee c_3 \cdot \bar{a_1} \cdot \bar{a_0}$$
 (8)

mit

5

10
$$c_i = \{0,1\} \text{ mit } i=0,1,...3$$
 (9)

Fig.3 zeigt eine halbleitertechnologische Realisierung der Funktion gemäß Gleichungen (7), (8) auf Basis von

Transistoren als möglichen Logikfunktionsblock 140, 150, 160, 170 für eine Logik-Grundzelle 100.

Bei dem Logikfunktionsblock 300 aus Fig.3 ist an einem ersten Datensignal-Eingang 350 ein erstes Datensignal ao bereitgestellt. Ferner wird an einem zweiten Datensignal-20 Eingang 351 ein zweites Datensignal a₁ bereitgestellt. Mittels eines ersten Inverter-Schaltkreises 301 wird aus dem ersten Datensignal a₀ das dazu komplementäre Signal a₀ gebildet. Der erste Datensignal-Eingang 350 ist mit dem Gate-Bereich eines ersten n-MOS-Inverter-Transistors 302 25 gekoppelt. Ferner ist der erste Datensignal-Eingang 350 mit dem Gate-Anschluss eines ersten p-MOS-Inverter-Transistors 303 gekoppelt. Ein erster Source-/Drain-Bereich des ersten p-MOS-Inverter-Transistors 303 ist auf das elektrische Versorgungspotential 307 gebracht. Der zweite Source-/Drain-30 Bereich des ersten p-MOS-Inverter-Transistors 303 ist mit einem ersten Source-/Drain-Bereich des ersten n-MOS-InverterTransistors 302 gekoppelt, dessen zweiter Source-/Drain-Bereich auf das elektrische Massepotential 308 gebracht ist.

Ferner ist ein zweiter Inverter-Schaltkreis 304 vorgesehen, mittels welchen aus dem zweiten Datensignal a1 dessen logisch komplementäres Signal a₁ gebildet wird. Der zweite Datensignal-Eingang 351 ist mit den Gate-Anschlüssen eines zweiten n-MOS-Inverter-Transistors 305 und eines zweiten p-MOS-Inverter-Transistors 306 gekoppelt, welche Transistoren 305, 306 den zweiten Inverter-Schaltkreis 304 bilden. Ein erster Source-/Drain-Bereich des zweiten p-MOS-Inverter-Transistors 306 ist mit dem ersten Source-/Drain-Bereich des ersten p-MOS-Inverter-Transistors 303 gekoppelt, wohingegen der zweite Source-/Drain-Anschluss des zweiten p-MOS-Inverter-Transistors 306 mit einem ersten Source-/Drain-Anschluss des zweiten n-MOS-Inverter-Transistors 305 gekoppelt ist. Der zweite Source-/Drain-Anschluss des zweiten n-MOS-Inverter-Transistors 305 ist auf das elektrische Massepotential 308 gebracht.

20

5

10

15

Wie in Fig.3 gezeigt, werden die Datensignale und deren logisch komplementäre Werte einer Signalpfad-Einheit 309 bereitgestellt. An einem ersten Signalpfad-Eingang 310 ist das Signal ao bereitgestellt. An einem zweiten Signalpfad-Eingang 311 ist das Signal al bereitgestellt. An einem dritten Signalpfad-Eingang 312 ist das Signal ao bereitgestellt. An einem vierten Signalpfad-Eingang 313 ist das Signal al bereitgestellt.

Die Signalpfad-Einheit 309 ist gebildet aus ersten bis zwölften p-MOS-Logik-Transistoren 314 bis 325 und aus ersten bis zwölften n-MOS-Logik-Transistoren 326 bis 337. Die ersten

bis zwölften p-MOS-Logik-Transistoren 314 bis 325 bilden eine erste Signalpfad-Teileinheit, wohingegen die ersten bis zwölften n-MOS-Logik-Transistoren 326 bis 337 eine zweite Signalpfad-Teileinheit bilden.

33

PCT/DE2005/000292

5

WO 2005/088838

An einem ersten Logikfunktions-Eingang 338 ist ein erstes Logikfunktionssignal c₀ angelegt. An einem zweiten Logikfunktions-Eingang 339 ist ein zweites Logikfunktionssignal c₁ bereitgestellt. An einem dritten Logikfunktions-Eingang 340 ist ein drittes Logikfunktionssignal c₂ bereitgestellt. An einem vierten Logikfunktions-Eingang 341 ist ein viertes Logikfunktionssignal c₃ bereitgestellt.

Der vierte Logikfunktions-Eingang 341 ist mit dem GateAnschluss des neunten p-MOS-Logik-Transistors 322 und mit dem
Gate-Anschluss des ersten n-MOS-Logik-Transistors 326
gekoppelt. Der dritte Logikfunktions-Eingang 340 ist mit den
Gate-Anschlüssen des zehnten p-MOS-Logik-Transistors 323 und
des zweiten n-MOS-Logik-Transistors 327 gekoppelt. Der zweite
Logikfunktions-Eingang 339 ist mit den Gate-Anschlüssen des
elften p-MOS-Logik-Transistors 324 und des dritten n-MOSLogik-Transistors 328 gekoppelt. Der erste LogikfunktionsEingang 338 ist mit den Gate-Anschlüssen des zwölften p-MOSLogik-Transistors 325 und des vierten n-MOS-Logik-Transistors
329 gekoppelt.

Der erste Datensignal-Eingang 310 ist mit dem Gate-Anschluss des fünften n-MOS-Logik-Transistors 330, des sechsten p-MOS
Logik-Transistors 319, des siebten n-MOS-Logik-Transistors 332 und des vierten p-MOS-Logik-Transistors 317 gekoppelt.

Der zweite Datensignal-Eingang 311 ist mit den GateAnschlüssen des neunten n-MOS-Logik-Transistors 334, des

zehnten n-MOS-Logik-Transistors 335, des dritten p-MOS-Logik-Transistors 316 und des achten p-MOS-Logik-Transistors 321 gekoppelt. Der dritte Datensignal-Eingang 312 ist mit den Gate-Anschlüssen des fünften p-MOS-Logik-Transistors 318, des sechsten n-MOS-Logik-Transistors 331, des siebten p-MOS-Logik-Transistors 320 und des achten n-MOS-Logik-Transistors 333 gekoppelt. Der vierte Datensignal-Eingang 313 ist mit den Gate-Anschlüssen des ersten p-MOS-Logik-Transistors 314, des zweiten p-MOS-Logik-Transistors 315, des elften n-MOS-Logik-Transistors 337 gekoppelt.

5

10

15

20

25

30

Erste Source-/Drain-Anschlüsse der ersten bis vierten p-MOS-Logik-Transistoren 314 bis 317 sind auf das elektrische Potential der Versorgungsspannung 307 gebracht. Der zweite Source-/Drain-Anschluss des ersten p-MOS-Logik-Transistors 314 ist mit einem ersten Source-/Drain-Anschluss des fünften p-MOS-Logik-Transistors 318 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des neunten p-MOS-Logik-Transistors 322 gekoppelt ist. Der zweite Source-/Drain-Anschluss des zweiten p-MOS-Logik-Transistors 315 ist mit einem ersten Source-/Drain-Anschluss des sechsten p-MOS-Logik-Transistors 319 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des zehnten p-MOS-Logik-Transistors 323 gekoppelt ist. Der zweite Source-/Drain-Anschluss des dritten p-MOS-Logik-Transistors 316 ist mit einem ersten Source-/Drain-Anschluss des siebten p-MOS-Logik-Transistors 320 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des elften p-MOS-Logik-Transistors 324 gekoppelt ist. Der zweite Source-/Drain-Anschluss des vierten p-MOS-Logik-Transistors 317 ist mit einem ersten Source-/Drain-Anschluss des achten p-MOS-LogikTransistors 321 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des zwölften p-MOS-Logik-Transistors 325 gekoppelt ist.

35

PCT/DE2005/000292

WO 2005/088838

308 gebracht.

Die zweiten Source-/Drain-Anschlüsse der neunten bis zwölften 5 p-MOS-Logik-Transistoren 322 bis 325 sind mit dem Ausgang 352 und mit ersten Source-/Drain-Anschlüssen der ersten bis vierten n-MOS-Logik-Transistoren 326 bis 329 gekoppelt. Der zweite Source-/Drain-Anschluss des ersten n-MOS-Logik-Transistors 326 ist mit einem ersten Source-/Drain-Anschluss 10 des fünften n-MOS-Logik-Transistors 330 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des neunten n-MOS-Logik-Transistors 334 gekoppelt ist. Der zweite Source-/Drain-Anschluss des zweiten n-MOS-Logik-Transistors 327 ist mit einem ersten Source-/ 15 Drain-Anschluss des sechsten n-MOS-Logik-Transistors 331 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des zehnten n-MOS-Logik-Transistors 335 gekoppelt ist. Der zweite Source-/Drain-Anschluss des dritten n-MOS-Logik-Transistors 328 ist mit 20 einem ersten Source-/Drain-Anschluss des siebten n-MOS-Logik-Transistors 332 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des elften n-MOS-Logik-Transistors 336 gekoppelt ist. Ferner ist der zweite Source-/Drain-Anschluss des vierten n-MOS-Logik-25 Transistors 329 mit einem ersten Source-/Drain-Anschluss des achten n-MOS-Logik-Transistors 333 gekoppelt, dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des zwölften n-MOS-Logik-Transistors 337 gekoppelt ist. Die zweiten Source-/Drain-Anschlüsse der neunten bis 30

zwölften n-MOS-Logik-Transistoren 334 bis 337 sind

miteinander gekoppelt und auf das elektrische Massepotential

An einem Knoten 352 ist das Ausgangssignal y_{int} bereitgestellt.

- Aus dem Ausgangssignal y_{int} an dem Knoten 352 wird unter Verwendung eines dritten Inverter-Schaltkreises 342 das Logik-Inverse y₀ gebildet, das an einem Ausgang des Logikfunktionsblocks 300 bereitgestellt ist. Das Ausgangssignal y_{int} wird durch den dritten Inverter-
- Schaltkreis 342 geführt, gebildet aus einem dritten n-MOS-Inverter-Transistor 343 und einem dritten p-MOS-Inverter-Transistor 344. Der Ausgang des Logikfunktionsblocks ist mit den Drain-Anschlüssen der Transistoren 344, 343 gekoppelt. Ein erster Source-/Drain-Anschluss des dritten p-MOS-
- Inverter-Transistors 344 ist auf das elektrische
 Versorgungspotential 307 gebracht. Der zweite Source-/DrainAnschluss des dritten p-MOS-Inverter-Transistors 344 ist mit
 einem ersten Source-/
- Drain-Anschluss des dritten n-MOS-Inverter-Transistors 343

 20 gekoppelt, dessen zweiter Source-/Drain-Anschluss auf das elektrische Massepotential 308 gebracht ist. Der zweite Source-/Drain-Anschluss des dritten p-MOS-InverterTransistors 344 und der erste Source-/Drain-Anschluss des dritten n-MOS-Inverter-Transistors 343 sind mit dem Ausgang
- gekoppelt, an dem Signal y_0 anliegt. Das Signal y_0 kann in einen Logik-Transistor der erfindungsgemäßen Logik-Grundzelle eingekoppelt werden.

Im Weiteren wird die Funktionalität des Logikfunktionsblocks 30 300 beschrieben.

Die Signalpfad-Einheit 309 führt anschaulich die Logikoperationen mit den Eingabesignalen $\overline{a_0}$, $\overline{a_1}$, a_0 und a_1

durch. Die Funktionalität von Gleichung (7) wird anschaulich von den in der Fig.3 gezeigten Weise verschalteten p-MOS-Transistoren 314 bis 325 durchgeführt, wohingegen die Logikoperation gemäß Gleichung (8) anschaulich durch die n-MOS-Transistoren 326 bis 337 durchgeführt wird. Zwischen den

37

PCT/DE2005/000292

WO 2005/088838

5

10

30

Datensignal-Eingängen 350, 351 und den Signalpfad-Eingängen 310 bis 313 sind die beiden Inverter-Schaltkreise 301, 304 vorgesehen, um die komplementären Signale $\overline{a_0}$, $\overline{a_1}$ zu generieren. Zwischen Ausgang 352 und dem globalen Ausgang

107a ist der treibende Inverter-Schaltkreis 342 geschaltet. Für den Logikfunktionsblock 300 mit zwei Eingängen 350, 351 werden gemäß dem beschriebenen Ausführungsbeispiel dreißig Transistoren benötigt, nämlich die zwölf p-MOS-Logik-Transistoren 314 bis 325, die zwölf n-MOS-Logik-Transistoren

326 bis 337 und die sechs Transistoren 302, 303, 305, 306, 343, 344. Die Anzahl der Konfigurationsbits bzw. der Logikfunktionssignale ist vier (c₀, c₁, c₂, c₃).

Es ist anzumerken, dass anstelle von vier gemeinsamen

Logikfunktionssignalen c₀ bis c₃ alternativ auch die zwölf pMOS-Logik-Transistoren 314 bis 325 mit vier separaten

Logikfunktionssignalen betrieben werden können und die zwölf
n-MOS-Logik-Transistoren 326 bis 337 mit vier separaten, von
c₀ bis c₃ unterschiedlichen Logikfunktionssignalen betrieben

werden können.

Im Weiteren wird bezugnehmend auf **Fig.4** eine Logik-Grundzellen-Anordnung 400 gemäß einem ersten Ausführungsbeispiel der Erfindung beschrieben.

Die Logik-Grundzellen-Anordnung 400 ist aus zwei im Wesentlichen baugleichen Teilschaltungen, nämlich einer p-MOS-Teilschaltung 410 und einer n-MOS-Teilschaltung 411

gebildet. Die p-MOS-Teilschaltung 410 ist aus p-MOS-Transistoren aufgebaut, wohingegen die n-MOS-Teilschaltung

411 aus n-MOS-Transistoren aufgebaut ist.

38

PCT/DE2005/000292

WO 2005/088838

30

Die p-MOS-Teilschaltung 410 ist gebildet aus einer ersten p-5 MOS-Logik-Grundzelle 412 und aus einer zweiten p-MOS-Logik-Grundzelle 413. Jede der p-MOS-Logik-Grundzellen 412, 413 weist einen ersten p-MOS-Logik-Funktionsblock 140 und einen zweiten p-MOS-Logikfunktionsblock 150 auf, welche mittels des ersten p-MOS-Logik-Transistors 131 und des zweiten p-MOS-10 Logik-Transistors 132 derart gekoppelt sind, dass an einem Knoten 403 an einem Ausgang der ersten p-MOS-Logik-Grundzelle 412 eine Logik-Verknüpfung von drei Eingangssignalen ao, a1, a₂ gebildet ist. In ähnlicher Weise ist an dem Knoten 403 am Ausgang der zweiten p-MOS-Logik-Grundzelle 413, deren innerer Aufbau jener der ersten p-MOS-Logik-Grundzelle 412 entspricht, eine Logikverknüpfung der drei Datensignale ao, a₁, a₂ bereitgestellt. An dem Ausgang der ersten p-MOS-Logik-Grundzelle 412 ist ein dritter p-MOS-Logik-Transistor 401a angeordnet, mit einem ersten Source-/Drain-Anschluss, an dem 20 das Ausgangssignal der ersten p-MOS-Logik-Grundzelle 412 angelegt ist, mit einem Gate-Anschluss, an dem ein viertes Eingangssignal a3 bereitgestellt ist, und mit einem zweiten Source-/Drain-Anschluss, an dem das Ausgangssignal y der Logik-Grundzellen-Anordnung 400 bereitgestellt ist. 25

An dem Ausgang, das heißt an dem Knoten 403, der zweiten p-MOS-Logik-Grundzelle 413 ist ein vierter p-MOS-Logik-Transistor 401b angeordnet, mit einem ersten Source-/Drain-Anschluss, an dem das Ausgangssignal der zweiten p-MOS-Logik-Grundzelle 413 angelegt ist, mit einem Gate-Anschluss, an dem ein zu dem vierten Eingangssignal a_3 komplementäres Signal $\overline{a_3}$ bereitgestellt ist, und mit einem zweiten Source-/Drain-

Anschluss, der mit dem zweiten Source-/Drain-Anschluss des dritten p-MOS-Logik-Transistors 401a der ersten p-MOS-Logik-Grundzelle 412 gekoppelt ist.

39

PCT/DE2005/000292

WO 2005/088838

20

25

30

Der Aufbau der n-MOS-Teilschaltung 411 entspricht im Wesentlichen jener der p-MOS-Teilschaltung 410 mit dem Unterschied, dass die darin enthaltenen Komponenten n-Kanal-Transistoren sind, und nicht p-Kanal Transistoren wie in der ersten p-MOS-Logik-Grundzelle 412. Ein erster

Logikfunktionsblock 160 aus n-MOS-Transistoren und ein zweiter p-MOS-Logikfunktionsblock 170 aus p-MOS-Transistoren sind gemeinsam mit einem ersten n-MOS-Logik-Transistor 129 und einem zweiten n-MOS-Logik-Transistor 130 derart verschaltet, dass an einem Knoten 403 am Ausgang der ersten n-MOS-Logik-Grundzelle 414 ein Ausgangssignal von droi

n-MOS-Logik-Grundzelle 414 ein Ausgangssignal von drei Datensignalen a₀, a₁, a₂ bereitgestellt ist. In ähnlicher Weise ist an einen Knoten 403 am Ausgang der zweiten n-MOS-Logik-Grundzelle 415 ein Ausgangssignal von drei Datensignalen a₀, a₁, a₂ bereitgestellt. Mittels eines dritten n-MOS-Logik-Transistors 402a am Ausgang 403 der ersten n-MOS-Logik-Grundzelle 414 und mittels eines vierten n-MOS-Logik-

Grundzelle 415 wird am Ausgang 404 der Logik-Grundzellen-Anordnung 400 ein globales Ausgangssignal y generiert.

Transistors 402b am Ausgang 403 der zweiten n-MOS-Logik-

Der dritte n-MOS-Logik-Transistor 402a hat einen ersten Source-/Drain-Anschluss, an den das Ausgangssignal der ersten n-MOS-Logik-Grundzelle 414 angelegt ist, ferner weist der dritte n-MOS-Logik-Transistor 402a einen Gate-Anschluss auf, an den das zu dem vierten Eingangssignal a3 komplementäre Signal angelegt ist, und weist einen zweiten Source-/Drain-Anschluss auf, an dem das Ausgangssignal y der Logik-Grundzellen-Anordnung 400 bereitgestellt ist. Ferner hat der

zweite n-MOS-Logik-Transistor 402b einen ersten Source-/Drain-Anschluss, an dem das Ausgangssignal 403 der zweiten n-MOS-Logik-Grundzelle 415 bereitgestellt ist, einen Gate-Anschluss, an dem das vierte Eingangssignal a3 bereitgestellt ist, und einen zweiten Source-/Drain-Anschluss, der mit dem zweiten Source-/Drain-Anschluss des dritten n-MOS-Logik-Transistors 402a der ersten n-MOS-Logik-Grundzelle 414 gekoppelt ist.

10 Im Weiteren wird die Funktionalität der Logik-Grundzellen-Anordnung 400 beschrieben.

5

15

20

25

An den Ausgängen der Logik-Grundzellen 412 bis 415 ist jeweils ein Signal gemäß einer von der jeweiligen Logik-Grundzelle 412 bis 415 realisierten Logikteilfunktion bereitgestellt, welches eine Verknüpfung von zwei Eingangssignalen ao, aı darstellt. An den Knoten 403, die mit den ersten Source-/Drain-Anschlüssen der Logik-Transistoren 401a, 401b, 402a, 402b gekoppelt sind, ist jeweils ein gemäß Gleichung (1) gebildetes Logik-Teilausgangssignal von drei Datensignalen ao, aı, a₂ bereitgestellt. An dem globalen Ausgang 404 der Logik-Grundzellen-Anordnung 400 ist ein Logik-Ausgangssignal y von vier Dateneingangssignalen ao, aı, a₂, a₃ bereitgestellt, was Gleichung (2) für den Fall n=3 entspricht.

Somit kann erfindungsgemäß eine Funktion von mehr als drei Eingängen (Fig.4 zeigt eine Funktion von vier Eingängen) mit einer Struktur als binärem Baum realisiert werden. Die kapazitive Last an dem globalen Ausgang 404 hängt bei dem binären Baum aus Fig.4 nicht von der Anzahl der Eingänge ab. Sie entspricht stets der Drain-Kapazität der vier

Transistoren 401a, 401b, 402a, 402b, die am Ausgang 404

41

PCT/DE2005/000292

anliegen.

Im Weiteren wird bezugnehmend auf Fig.5 eine Logik-Grundzellen-Anordnung 500 gemäß einem zweiten Ausführungsbeispiel der Erfindung beschrieben.

WO 2005/088838

5

Im Unterschied zu der Logik-Grundzellen-Anordnung 400 aus Fig.4 ist die Logik-Grundzellen-Anordnung 500 aus Fig.5 nicht 10 in statischer CMOS-Logik aufgebaut, d.h. Fig.5 zeigt nicht einen p-MOS-Pfad, der im Wesentlichen spiegelgleich zu einem n-MOS-Pfad aufgebaut ist. Die Logik-Grundzellen-Anordnung 500 ist nur aus einem Datensignalpfad gebildet, welcher der n-MOS-Teilschaltung 411 aus Fig.4 entspricht. Somit ist der interne Aufbau der n-MOS-Teilschaltung 411 aus Fig.5 im .15 Wesentlichen identisch zu jener aus Fig.4. Im Unterschied zu der Logik-Grundzellen-Anordnung 400 ist somit bei der Logik-Grundzellen-Anordnung 500 genau ein Datensignalpfad 411 aus n-MOS-Feldeffekttransistoren vorgesehen, wohingegen der in Fig.3 gezeigte Datensignalpfad 410 aus p-MOS-20 Feldeffekttransistoren eingespart ist. Dies führt zu einer besonders platzsparenden Anordnung.

Ein Ausgabesignal, welches das Ergebnis der Verarbeitung der 25 Datensignale a_0 , a_1 , a_2 , a_3 der ausgewählten Logikfunktion darstellt, ist an einem Knoten 404 des Datensignalpfads 411 bereitgestellt, welcher Ausgang mit einem ersten Source-/Drain-Anschluss eines n-MOS-Evaluierungs-Transistors 501 gekoppelt ist. Bei einem entsprechenden Signal an einem mit dem Gate-Bereich des Evaluierungs-Transistors 501 gekoppelten 30 Evaluier-Eingang 503 liegt an einem mit dem zweiten Source-/Drain-Bereich des Evaluierungs-Transistors 501 gekoppelten globalen Ausgang 505 der Logik-Grundzellen-Anordnung 500 das

verarbeitete Ausgabesignal an. Der zweite Source-/DrainBereich des Evaluierungs-Transistors 501 ist mit einem ersten
Source-/Drain-Bereich eines p-MOS-Vorlade-Transistors 502
gekoppelt, dessen zweiter Source-/Drain-Bereich auf das
elektrische Versorgungspotential 127 gebracht ist. Bei einem
entsprechenden Signal an einem mit dem Gate-Bereich des
Vorlade-Transistors 502 gekoppelten Vorlade-Eingang 504 liegt
an dem mit dem ersten Source-/Drain-Bereich des VorladeTransistors 502 gekoppelten Ausgang 505 der LogikGrundzellen-Anordnung 500 das elektrische
Versorgungspotential 127 als Referenzpotential an.

Verglichen mit Fig.4 ist in Fig.5 somit der Pfad aus p-MOSTransistoren eingespart. Das Pull-Down-Netzwerk 411 ist in

15 Fig.5 wie in Fig.4 aus n-MOS-Transistoren gebildet,
wohingegen in Fig.5 das Pull-Up-Netzwerk 410 aus p-MOSTransistoren eingespart ist und durch einen statisch oder
dynamisch geschalteten Precharge-Transistor 502 ersetzt ist.
Alternativ zu Fig.5 kann auch der Signalpfad aus n-MOSTransistoren gemäß Fig.4 eingespart und durch ein VorladeTransistor ersetzt werden, wobei in diesem Fall ein
Signalpfad aus p-MOS-Transistoren vorgesehen ist.

10

Bei der nicht-statischen CMOS-Realisierung der

25 erfindungsgemäßen Logik-Grundzellen-Anordnung 500 gemäß Fig.5
ist somit ein Pull-Up-Transistor 502 vorgesehen, der in einem
Teilintervall der Schaltzeit der Logik-Grundzellen-Anordnung
500 den Ausgang 505 auf einen logischen Wert "1" vorlädt
(Precharge-Phase), wohingegen in der restlichen Schaltzeit
30 die ausgewählte Logikfunktion im erfindungsgemäß realisierten
Pull-down-Pfad 411 errechnet wird (Evaluierungs-Phase).

Alle Schaltungen, die wenigstens einen der beiden Pfade (Pull-Up- oder Pull-down-Pfad) der Struktur von Fig.4 enthalten, stellen ebenfalls eine Logik-Grundzelle bzw. eine Logik-Grundzellen-Anordnung im Sinne der Erfindung dar, unabhängig davon, wie das jeweils entgegengesetzte Logikpotential realisiert wird.

5

10

15

20

25

Im Weiteren wird bezugnehmend auf Fig.6A, Fig.6B eine Alternative zu den ersten und zweiten n-MOS-Teilpfaden 101a, 101b bzw. zu den ersten und zweiten p-MOS-Teilpfaden 102a, 102b der Logik-Grundzelle 100 aus Fig.1 beschrieben.

In Fig.1 wird die Logikteilfunktion, die von den Teilpfaden 101a, 101b, 102a, 102b realisiert wird, mittels Vorgebens von Logikfunktionssignalen so bis so definiert. Dadurch werden bestimmte Pfade innerhalb des Transistornetzwerkes leitend gemacht, andere Pfade für den Signaltransport ausgeschlossen, so dass die an den Eingängen der Teilpfade 101a, 101b, 102a, 102b bereitgestellten Eingangssignale ao, ai, ao, ai gemäß der dadurch ausgewählten Logikteilfunktion verknüpft werden.

Der in Fig.6A, Fig.6B gezeigte p-MOS-Teilpfad 600 bzw. n-MOS-Teilpfad 610 stellt jeweils eine Realisierung dar, bei der die von den Teilpfaden 600, 610 realisierten Logik-Teilfunktionen mittels Festverdrahtens vorgegeben sind. Dass heißt, dass die Logikauswahl-Transistoren aus Fig.1 in Fig.6A, Fig.6B durch Vias bzw. Metallbrücken ersetzt sind.

Der p-MOS-Teilpfad 600 aus Fig.6A unterscheidet sich von dem ersten und zweiten p-MOS-Teilpfaden 102a, 102b aus Fig.1 dadurch, dass die Logikauswahl-Transistoren 116 bis 119 durch fest verdrahtete Kontaktierungselemente ersetzt sind, gebildet aus Komponenten 601 bis 603. Ähnlich unterscheidet

sich der n-MOS-Teilpfad 610 aus Fig.6B von den ersten und zweiten n-MOS-Teilpfaden 101a, 101b aus Fig.1 dadurch, dass die Logikauswahl-Transistoren 108 bis 111 durch fest verdrahtete Kontaktierungselemente ersetzt sind, gebildet aus Komponenten 601 bis 603. Die Verschaltung der Datensignal-5 Transistoren 120 bis 123 bzw. 112 bis 115 in dem p-MOS-Teilpfad 600 bzw. in dem n-MOS-Teilpfad 610 ist hardwaremäßig fest vorgegeben, das heißt mittels Kontaktierungselementen einer ersten Metallisierungsebene 601, einer zweiten 10 Metallisierungsebene 602 mittels Vias 603. Die Vias 603 sind senkrecht zu der Papierebene von Fig.6A, Fig.6B verlaufend gebildet. Die Logikauswahl-Elemente in Fig.6A, Fig.6B sind als unveränderliche Hardwareelemente vorgesehen, realisiert mittels der Metallisierungsebenen 601, 602 und der Vias 603. 15 Die Verdrahtung der Datensignal-Transistoren 112 bis 115 bzw. 120 bis 123 legt eine jeweils fest vorgegebene Logikfunktion fest. Anders ausgedrückt sind in Fig.6A, Fig.6B Konfigurationstransistoren 108 bis 111 bzw. 116 bis 119 durch Viabrücken $s_0p...s_3p$ bzw. $s_0n...s_3n$ ersetzt. Ferner ermöglichen 20 Power-Vias 604, eventuell entfallende Logikpfade von der Versorgungsspannung 127 VDD bzw. von dem Massepotential VSS 126 zu trennen.

Alternativ können die Schalter zwischen einzelnen

Transistoren in Fig.6 auch durch alle anderen Via Ebenen,
jede beliebige Metalllage, Polysilizium, Diffusionsgebiete
oder über jede andere geeignete Ebene eines gegenwärtigen
oder eines zukünftigen CMOS-Prozesses hergestellt werden. Die
Realisierung aus Fig.6A, Fig.6B ist innerhalb der Standard
CMOS-Schaltungstechnik eine besonders kleine, schnelle und
von der Leistungsaufnahme her besonders günstige
Realisierung.

In der Realisierung aus Fig.6A, Fig.6B in Standard-CMOS-Technologie werden zwei Eingangsinverter 124, 125 verwendet, zum Erzeugen der Potentiale $\overline{a_0}$, $\overline{a_1}$ aus den Datensignalen a_0 bzw. a₁. Es ist möglich, die Eingangsinverter 124, 125 einzusparen, indem in dem Pull-Up-Pfad 600 auch n-Kanal-Transistoren und in dem Pull-Down-Pfad 610 auch p-Kanal-Transistoren verwendet werden. Um an einem Ausgang dennoch vollen Spannungshub zu erreichen, werden die Spannungsabfälle mittels Anhebens des Versorgungspotentials bzw. Absenkens des Massepotentials um ein Mehrfaches der Threshold-Spannung (Schwellenspannung) V_{th} kompensiert. Dabei ist bei langen Serienpfaden allerdings die elektrische Belastbarkeit der Transistoren zu beachten. Mit einer solchen Maßnahme lassen sich Anordnungen höchster kombinatorischer Packungsdichte aufbauen, wobei mehrere Versorgungsspannungen bereitgestellt sind.

5

10

15

20

25

30

Die erfindungsgemäße Realisierung der Logik-Grundzelle mit einem expliziten Multiplexer ist besonders dann eine interessante Variante, wenn die Unterfunktionen fo und f1 aus Gleichung (1) zur weiteren Verwendung auf dem Chip für andere Anwendungen bereitzustellen sind. Ist dies nicht der Fall, ist die erfindungsgemäße Zerlegung mittels eines c_(n-1)_MOSStruktur eine kompakt zu realisierende Variante, die in der realisierbaren Komplexität möglicherweise durch leicht erhöhte Verzögerungen aufgrund langer Transistorserienpfade begrenzt sein kann. Für sehr komplexe Funktionen kann eine Kombination aus beiden Ansätzen die beste Lösung darstellen. Für kombinatorische Funktionen mit mehr als sechs Eingängen ergeben sich Vereinfachungsmöglichkeiten, da mehr als 16 Funktionen von zwei Eingängen nicht existieren. Insbesondere ist es mit einer Via-programmierten Lösung möglich, sich die

Vorteile der Erfindung in effizienter Weise zunutze zu machen.

46

PCT/DE2005/000292

WO 2005/088838

47

PCT/DE2005/000292

In diesem Dokument sind folgende Veröffentlichungen zitiert:

- [1] Wannemacher, M "Das FPGA-Kochbuch", Abb.6.4: SRAM-Zelle von XILINX, 1. Auflage, International Thomson Publishing Company, Bonn, 1998, S.111;
- [2] Wannemacher, M "Das FPGA-Kochbuch", Abb.7.36: Logikblock (CLB) der XC4000-Familien, 1. Auflage, International Thomson Publishing Company, Bonn, 1998, S.197;

[3] US 6,529,040 B1;

[4] US 5,592,107.

WO 2005/088838

5

10

Bezugszeichenliste

100 Logik-Grundzelle 101 erster Datensignalpfad 101a erster n-MOS-Teilpfad 101b zweiter n-MOS-Teilpfad 102 zweiter Datensignalpfad 102a erster p-MOS-Teilpfad 102b zweiter p-MOS-Teilpfad 103 erster Datensignaleingang 104 zweiter Datensignaleingang 105 dritter Datensignaleingang 106 vierter Datensignaleingang 107a Datensignalausgang 107b Datensignalausgang 108 erster n-MOS-Logikauswahl-Transistor 109 zweiter n-MOS-Logikauswahl-Transistor 110 dritter n-MOS-Logikauswahl-Transistor 111 vierter n-MOS-Logikauswahl-Transistor 112 erster n-MOS-Datensignal-Transistor 113 zweiter n-MOS-Datensignal-Transistor 114 dritter n-MOS-Datensignal-Transistor 115 vierter n-MOS-Datensignal-Transistor 116 erster p-MOS-Logikauswahl-Transistor 117 zweiter p-MOS-Logikauswahl-Transistor 118 dritter p-MOS-Logikauswahl-Transistor 119 vierter p-MOS-Logikauswahl-Transistor 120 erster p-MOS-Datensignal-Transistor 121 zweiter p-MOS-Datensignal-Transistor 122 dritter p-MOS-Datensignal-Transistor 123 vierter p-MOS-Datensignal-Transistor 124 erster Inverter 125 zweiter Inverter 126 Massepotential 127 Versorgungspotential

49

- 128 dritter Inverter
- 129 erster n-MOS-Logik-Transistor
- 130 zweiter n-MOS-Logik-Transistor
- 131 erster p-MOS-Logik-Transistor
- 132 zweiter p-MOS-Logik-Transistor
- 140 erster Logikfunktionsblock
- 150 zweiter Logikfunktionsblock
- 160 erster Logikfunktionsblock
- 170 zweiter Logikfunktionsblock
- 200 Tabelle
- 300 Logikfunktionsblock
- 301 erster Inverter-Schaltkreis
- 302 erster n-MOS-Inverter-Transistor
- 303 erster p-MOS-Inverter-Transistor
- 304 zweiter Inverter-Schaltkreis
- 305-zweiter n-MOS-Inverter-Transisitor
- 306 zweiter p-MOS-Inverter-Transistor
- 307 Versorgungspotential
- 308 Massepotential
- 309 Signalpfad-Einheit
- 310 erster Signalpfad-Eingang
- 311 zweiter Signalpfad-Eingang
- 312 dritter Signalpfad-Eingang
- 313 vierter Signalpfad-Eingang
- 314 erster p-MOS-Logik-Transistor
- 315 zweiter p-MOS-Logik-Transistor
- 316 dritter p-MOS-Logik-Transistor
- 317 vierter p-MOS-Logik-Transistor
- 318 fünfter p-MOS-Logik-Transistor
- 319 sechster p-MOS-Logik-Transistor
- 320 siebter p-MOS-Logik-Transistor
- 321 achter p-MOS-Logik-Transistor
- 322 neunter p-MOS-Logik-Transistor
- 323 zehnter p-MOS-Logik-Transistor
- 324 elfter p-MOS-Logik-Transistor

50

```
325 zwölfter p-MOS-Logik-Transistor
```

- 326 erster n-MOS-Logik-Transistor
- 327 zweiter n-MOS-Logik-Transistor
- 328 dritter n-MOS-Logik-Transistor
- 329 vierter n-MOS-Logik-Transistor
- 330 fünfter n-MOS-Logik-Transistor
- 331 sechster n-MOS-Logik-Transistor
- 332 siebter n-MOS-Logik-Transistor
- 333 achter n-MOS-Logik-Transistor
- 334 neunter n-MOS-Logik-Transistor
- 335 zehnter n-MOS-Logik-Transistor
- 336 elfter n-MOS-Logik-Transistor
- 337 zwölfter n-MOS-Logik-Transistor
- 338 erster Logikfunktions-Eingang
- 339 zweiter Logikfunktions-Eingang
- 340 dritter Logikfunktions-Eingang
- 341 vierter Logikfunktions-Eingang
- 342 dritter Inverter-Schaltkreis
- 343 dritter n-MOS-Inverter-Transisitor
- 344 dritter p-MOS-Inverter-Transistor
- 350 erster Datensignaleingang
- 351 zweiter Datensignaleingang
- 352 Knoten
- 400 Logik-Grundzellen-Anordnung
- 401a dritter p-MOS-Logik-Transistor
- 401b vierter p-MOS-Logik-Transistor
- 402a dritter n-MOS-Logik-Transistor
- 402b vierter n-MOS-Logik-Transistor
- 403 Knoten
- 404 globaler Knoten
- 410 p-MOS-Teilschaltung
- 411 n-MOS-Teilschaltung
- 412 erste p-MOS-Logik-Grundzelle
- 413 zweite p-MOS-Logik-Grundzelle
- 414 erste n-MOS-Logik-Grundzelle

415 zweite n-MOS-Logik-Grundzelle

- 500 Logik-Grundzellen-Anordnung
- 501 Evaluierungs-Feldeffekttransistor
- 502 Vorlade-Feldeffekttransistor
- 503 Evaluier-Eingang
- 504 Vorlade-Eingang
- 505 globaler Ausgang
- 600 p-MOS-Teilpfad
- 601 erste Metallisierungsebene
- 602 zweite Metallisierungsebene
- 603 Via
- 604 Power-Via
- 610 n-MOS-Teilpfad

Patentansprüche:

5

10

15

1. Logik-Grundzelle zum Bilden eines Ausgangssignals aus mindestens drei Eingangssignalen gemäß einer vorgebbaren Logikfunktion

PCT/DE2005/000292

- mit einem ersten Logikfunktionsblock mit zwei Datensignaleingängen, an denen ein erstes Eingangssignal und ein zweites Eingangssignal anlegbar sind, und mit einem Datensignalausgang zum Bereitstellen einer Logik-Verknüpfung des ersten Eingangssignals und des zweiten Eingangssignals gemäß einer vorgebbaren ersten Logikteilfunktion;
- mit einem zweiten Logikfunktionsblock mit zwei Datensignaleingängen, an denen das erste Eingangssignal und das zweite Eingangssignal anlegbar sind, und mit einem Datensignalausgang zum Bereitstellen einer Logik-Verknüpfung des ersten Eingängssignals und des zweiten Eingangssignals gemäß einer vorgebbaren zweiten Logikteilfunktion;
- mit einem ersten Logik-Transistor mit einem ersten Source-/Drain-Anschluss, der mit dem Datensignalausgang des ersten Logikfunktionsblocks gekoppelt ist, mit einem Gate-Anschluss, an dem ein drittes Eingangssignal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, an dem das Ausgangssignal bereitstellbar ist;

mit einem zweiten Logik-Transistor mit einem ersten

- Source-/Drain-Anschluss, der mit dem Datensignalausgang des zweiten Logikfunktionsblocks gekoppelt ist, mit einem Gate-Anschluss, an dem ein zu dem dritten

 30 Eingangssignal komplementäres Signal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, der mit dem zweiten Source-/Drain-Anschluss des ersten Logik-Transistors gekoppelt ist.
- 2. Logik-Grundzelle nach Anspruch 1, bei welcher der erste Logikfunktionsblock und der zweite Logikfunktionsblock jeweils mindestens einen zusätzlichen

Datensignaleingang aufweisen, wobei an jeden der zusätzlichen Datensignaleingänge ein zusätzliches Eingangssignal anlegbar ist, womit die Logik-Grundzelle zum Bilden eines Ausgangssignals aus mindestens vier Eingangssignalen gemäß einer vorgebbaren Logikfunktion eingerichtet ist.

- 3. Logik-Grundzelle nach Anspruch 1 oder 2, bei welcher der erste Logikfunktionsblock und der zweite Logikfunktionsblock jeweils aus einer Mehrzahl von miteinander gemäß der jeweiligen Logikteilfunktion verschalteten Datensignal-Transistoren gebildet sind.
- 4. Logik-Grundzelle nach Anspruch 3, bei der

5

10

- odie Logik-Transistoren und die Datensignal-Transistoren Transistoren eines ersten Leitungstyps sind, und wobei die Transistoren des ersten Leitungstyps einen ersten Datensignalpfad bilden;
- ein zweiter Datensignalpfad aus Transistoren eines
 zweiten Leitungstyps, der zu dem ersten Leitungstyp komplementär ist, gebildet ist, wobei zu jedem der Transistoren des ersten Datensignalpfads ein entsprechend verschalteter Transistor in dem zweiten Datensignalpfad bereitgestellt ist;
- odie zweiten Source-/Drain-Anschlüsse der LogikTransistoren des ersten Datensignalpfads und die zweiten
 Source-/Drain-Anschlüsse der Logik-Transistoren des
 zweiten Datensignalpfads miteinander gekoppelt sind.
- 5. Logik-Grundzelle nach einem der Ansprüche 1 bis 4, mit einem Evaluierungs-Schalter, an den das Ausgangssignal anlegbar ist, und mit einem Vorlade-Schalter, welche Schalter derart verschaltet und steuerbar sind, dass an einem Ausgang der Logik-Grundzelle bei geöffnetem Evaluierungs-Schalter und geschlossenem Vorlade-Schalter das Ausgangssignal bereitgestellt ist, und dass an dem Ausgang der Logik-

Grundzelle bei geöffnetem Vorlade-Schalter und geschlossenem

Evaluierungs-Schalter ein Referenzsignal bereitgestellt ist.

- 6. Logik-Grundzelle nach Anspruch 5, bei welcher der Evaluierungs-Schalter und der Vorlade-Schalter jeweils Transistoren sind.
- 7. Logik-Grundzelle nach einem der Ansprüche 1 bis 6, eingerichtet als CMOS-Logik-Grundzelle.
- 10 8. Logik-Grundzelle nach einem der Ansprüche 1 bis 7, bei der zumindest einer der Logikfunktionsblöcke als
 - Programmable Logic Device;

5

15

25

35

- Field-Programmable Gate-Array;
- maskenprogrammierter Application-Specific Integrated Circuit;
- Logik-Gatter oder Anordnung mehrerer Logik-Gatter; oder
- Look-Up-Tabelle ausgebildet ist.
- 9. Logik-Grundzelle nach einem der Ansprüche 1 bis 8, bei der zumindest einer der Logikfunktionsblöcke mindestens einen Logikfunktionkonfigurationseingang aufweist, mittels welchem dem jeweiligen Logikfunktionsblock die realisierbare Logik-Teilfunktion unveränderlich vorgegeben ist.
- 10. Logik-Grundzelle nach Anspruch 9,
 mit einer mit dem mindestens einen
 Logikfunktionkonfigurationseingang gekoppelten SpeicherEinrichtung, in welcher die Information zum Vorgeben der
 realisierbaren Logik-Teilfunktion speicherbar ist.
 - 11. Logik-Grundzelle nach einem der Ansprüche 1 bis 8, bei der zumindest einer der Logikfunktionsblöcke mindestens einen Logikfunktionkonfigurationseingang aufweist, mittels welchem dem jeweiligen Logikfunktionsblock die realisierbare Logik-Teilfunktion mittels eines anlegbaren Signals variabel vorgegeben ist.

- 12. Logik-Grundzelle nach einem der Ansprüche 1 bis 11, bei welcher zumindest einer der Logikfunktionsblöcke ferner aufweist:
- einen ersten Komplementär-Datensignaleingang, an den das zu dem ersten Eingangssignal logisch komplementäre Signal anlegbar ist;
 - einen zweiten Komplementär-Datensignaleingang, an den das zu dem zweiten Eingangssignal logisch komplementäre Signal anlegbar ist;
 - ein erstes Logikauswahl-Element zwischen dem ersten Datensignaleingang und dem zweiten Datensignaleingang;
 - ein zweites Logikauswahl-Element zwischen dem ersten Datensignaleingang und dem zweiten Komplementär-Datensignaleingang;
 - ein drittes Logikauswahl-Element zwischen dem zweiten Datensignaleingang und dem ersten KomplementärDatensignaleingang;
- ein viertes Logikauswahl-Element zwischen dem ersten

 Komplementär-Datensignaleingang und dem zweiten

 Komplementär-Datensignaleingang;

wobei an dem Datensignalausgang die Logik-Verknüpfung der zwei Datensignale gemäß der mittels der Logikauswahl-Elemente ausgewählten Logikfunktion bereitstellbar ist.

- 13. Logik-Grundzelle nach Anspruch 12, bei der die Logikauswahl-Elemente unveränderliche Hardware-Elemente sind.
- 14. Logik-Grundzelle nach Anspruch 12 oder 13, bei der die Logikauswahl-Elemente mittels einer Mehrzahl von Metallisierungsebenen und/oder mittels Vias realisiert sind.
 - 15. Logik-Grundzelle nach Anspruch 14,
- 35 bei der

10

15

25

 das erste Logikauswahl-Element ein erster Logik-Transistor ist, der mittels eines ersten WO 2005/088838 PCT/DE2005/000292 56

Logikauswahlsignals steuerbar ist;

10

15

35

- das zweite Logikauswahl-Element ein zweiter Logik-Transistor ist, der mittels eines zweiten Logikauswahlsignals steuerbar ist;
- odas dritte Logikauswahl-Element ein dritter Logik-Transistor ist, der mittels eines dritten Logikauswahlsignals steuerbar ist;
 - das vierte Logikauswahl-Element ein vierter Logik-Transistor ist, der mittels eines vierten Logikauswahlsignals steuerbar ist.
 - 16. Logik-Grundzelle nach einem der Ansprüche 12 bis 15, mit vier Datensignal-Transistoren, an deren Gate-Anschlüssen jeweils eines der Datensignale oder eines der zu einem der Datensignale logisch komplementären Datensignale bereitstellbar ist.
- 17. Logik-Grundzelle nach Anspruch 16, bei der ein erster Datensignal-Transistor derart verschaltet 20 ist, dass dessen
 - erster Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des ersten Logik-Transistors und mit einem ersten Source-/Drain-Anschluss des zweiten Logik-Transistors gekoppelt ist;
- zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss eines dritten Datensignal-Transistors gekoppelt ist.
 - 18. Logik-Grundzelle nach Anspruch 17,
- bei welcher der dritte Datensignal-Transistor derart verschaltet ist, dass dessen zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss des vierten Logik-Transistors und mit einem ersten Source-/Drain-Anschluss des dritten Logik-Transistors gekoppelt ist.

19. Logik-Grundzelle nach einem der Ansprüche 16 bis 18, bei der ein zweiter Datensignal-Transistor derart verschaltet ist, dass dessen

5

- erster Source-/Drain-Anschluss mit einem zweiten Source-/Drain-Anschluss des ersten Logik-Transistors und mit einem zweiten Source-/Drain-Anschluss des dritten Logik-Transistors gekoppelt ist;
- zweiter Source-/Drain-Anschluss mit einem ersten Source-/Drain-Anschluss eines vierten Datensignal-Transistors gekoppelt ist.
- 20. Logik-Grundzelle nach Anspruch 19, bei welcher der vierte Datensignal-Transistor derart verschaltet ist, dass dessen zweiter Source-/Drain-Anschluss mit einem zweiten Source-/Drain-Anschluss des zweiten Logik-Transistors und mit einem zweiten Source-/Drain-Anschluss des vierten Logik-Transistors gekoppelt ist.
 - 21. Logik-Grundzellen-Anordnung zum Bilden eines Anordnungs-Ausgangssignals aus mindestens vier Eingangssignalen gemäß einer vorgebbaren Logikfunktion,
- o mit einer ersten Logik-Grundzelle nach einem der Ansprüche 1 bis 20;
 - mit einem dritten Logik-Transistor mit einem ersten Source-/Drain-Anschluss, an dem das Ausgangssignal der ersten Logik-Grundzelle anlegbar ist, mit einem Gate-Anschluss, an dem ein viertes Eingangssignal
- Anschluss, an dem ein viertes Eingangssignal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, an dem das Ausgangssignal der Logik-Grundzellen-Anordnung bereitstellbar ist;
- mit einer zweiten Logik-Grundzelle nach einem der 30 Ansprüche 1 bis 20;
- mit einem vierten Logik-Transistor mit einem ersten Source-/Drain-Anschluss, an dem das Ausgangssignal der zweiten Logik-Grundzelle anlegbar ist, mit einem Gate-Anschluss, an dem ein zu dem vierten Eingangssignal komplementäres Signal bereitstellbar ist, und mit einem zweiten Source-/Drain-Anschluss, der mit dem zweiten Source-/Drain-Anschluss des dritten Logik-Transistors

WO 2005/088838 PCT/DE2005/000292 58

gekoppelt ist.

- 22. Logik-Vorrichtung zum Bilden einer logischen Verknüpfung von mehr als vier Datensignalen,
- 5 mit einer Mehrzahl von Logik-Grundzellen-Anordnungen nach Anspruch 21.

WO 2005/088838 2/12

FIG 2

200	

S ₃	S ₂	S ₁	S ₀	УТ
0	0	0	0	1
0	0	0	1	[OR]
0	0	1	0	a ₀ √ā ₁ a ₀
0	0	1	1	ao
0	1	0	0	āo∨a₁
0	1	0	1	a ₁
0	1	1	0	[XNOR]
0	1	1	1	[AND]
1	0	0	0	[NAND]
1	0	0	1	[XOR]
1	0	1	0	\overline{a}_1
1	0	1	1	ao∧ā₁
1	1	0	0	\bar{a}_0
1	1	0	1	$a_0 \wedge \overline{a}_1$ \overline{a}_0 $\overline{a}_0 \wedge a_1$ [NOR]
1	1	1	0	[NOR]
1	1	1	1	0

INTERNATIONAL SEARCH REPORT

a. classification of subject matter IPC 7 H03K19/173						
According to	According to International Patent Classification (IPC) or to both national classification and IPC					
	SEARCHED					
Minimum do IPC 7	ocumentation searched (classification system followed by classificat H03K	ion symbols)				
Documental	lion searched other than minimum documentation to the extent that	such documents are included in the fields sear	ched			
Electronic d	ata base consulted during the international search (name of data be	ase and, where practical, search terms used)	to the total sections.			
EPO-In	ternal					
	•					
с. росимі	ENTS CONSIDERED TO BE RELEVANT					
Category °	Citation of document, with indication, where appropriate, of the re	levant passages	Relevant to claim No.			
Υ .	KIM H ET AL: "Design of heurist	ic	1-3			
X	algorithms based on Shannon expan	nsion for	. .			
	low-power logic circuit synthesis					
	SYSTEMS, INSTITUTION OF ELECTRICA					
	ENGINEERS, STENVENAGE, GB,		٠.,			
	vol. 144, no. 6, 3 December 1997 (1997-12-03), pag	ges				
,	355-360, XP006008366					
A	ISSN: 1350-2409 paragraph '03.1! - paragraph '03	.31:	4–22			
, ,	figures 1,3		, 22			
·						
,			•			
·		1	 B			
	•	•				
		1				
X Furth	ner documents are listed in the continuation of box C.	X Patent family members are listed in a	annex.			
° Special ca	tegories of cited documents :	"T" later document published after the interna	ational filing date			
"A" docume consid	ent defining the general state of the art which is not lered to be of particular relevance	or priority date and not in conflict with the cited to understand the principle or theor invention	e application but y underlying the			
	"E" earlier document but published on or after the international filling date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to					
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance: the claimed invention						
citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such document.						
other means "P" document published prior to the international filing date but "P" document published prior to the international filing date but "Of in the art.						
later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report						
	asidar sompressor or the memational sourch	•	Topon			
1	12 July 2005 22/07/2005					
Name and n	Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 Authorized officer					
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni,	V 0 0 0 0 0 0 11				
	Fax: (+31~70) 340~3016	Kassner, H				

INTERNATIONAL SEARCH REPORT

PCT/DE2005/000292

C/Combinus	-ti\ DOCUMENTS CONSIDERED TO BE BELEVANT	PCI/DEZUC	
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	EP 1 122 888 A (SONY CORPORATION) 8 August 2001 (2001-08-08) column 3, line 5 - column 4, line 4; figures 2,6a,12a-12c column 7, line 25 - column 8, line 52 column 9, line 8 - column 11, line 20	•	1-22
X A	claim 2 US 6 130 553 A (NAKAYA ET AL) 10 October 2000 (2000-10-10) column 3, line 38 - column 4, line 41; figures 2,4,6-8	, and a second s	1-3 4-22
X A	US 2003/210073 A1 (NGAI TONY ET AL) 13 November 2003 (2003-11-13) paragraph '0104! - paragraph '0112!; figures 10,11		1-3 4-22
•			
,			
,			

INTERNATIONAL SEARCH REPORT Information on patent family members

In ational Application No PCT/DE2005/000292

•	atent document d in search report		Publication date		Patent family member(s)	Publication date	
EP	1122888	А	08-08-2001	JP DE DE EP US	2001217707 A 60101169 D1 60101169 T2 1122888 A1 2001013797 A1	27-05-2004 08-08-2001	
US	6130553	A	10-10-2000	JP JP	3185727 B2 11122096 A	11-07-2001 30-04-1999	
US	2003210073	A1	13-11-2003	USSUBPEED JOWWWUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	2002057103 A1 6407576 B1 2004251930 A1 60012639 D1 1092268 A2 1076931 A1 1078463 A1 1465345 A2 2002538562 A 2002538633 A 2002538634 A 0052824 A1 0052825 A1 0052825 A1 0052826 A2 2002041192 A1 6690195 B1 2003071654 A1 6359468 B1 6342792 B1 6366120 B1 6323680 B1 6323680 B1 6323680 B1 6323680 B1 632792 B1 2004222818 A1	18-06-2002 16-12-2004 09-09-2004 18-04-2001 21-02-2001 28-02-2001 06-10-2004 12-11-2002 12-11-2002 12-11-2002 08-09-2000 08-09-2000 08-09-2000 11-04-2002 10-02-2004 17-04-2003 19-03-2002 12-11-2002 02-04-2002 27-11-2001 29-01-2002	

INTERNATIONALER RECHERCHENBERICHT

In ationales Aktenzeichen	
PCT/DE2005/00029	2

a. KLASSI IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES H03K19/173			
Nach der In	ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas	ssifikation und der IPK		
	RCHIERTE GEBIETE			
	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo	ole)		
IPK 7	H03K			
Recherchier	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	weit diese unter die recherchierten Gebiete	e fallen	
		-		
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	ame der Datenhank und evil verwendete	Suchbegriffe)	
		-	· · · · · · · · · · · · · · · · · · ·	
EPO-In	ternal			
			•	
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN			
Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Teile	Betr. Anspruch Nr.	
, X	KIM H ET AL: "Design of heuristi	С	1-3	
, .	algorithms based on Shannon expan			
	low-power logic circuit synthesis			
ı	IEE PROCEEDINGS: CIRCUITS DEVICES			
	SYSTEMS, INSTITUTION OF ELECTRICA ENGINEERS, STENVENAGE, GB,	NL		
	Bd. 144, Nr. 6,	·		
ı	3. Dezember 1997 (1997-12-03), Se			
	355-360, XP006008366	1		
	ISSN: 1350-2409	ı		
Α	Absatz '03.1! - Absatz '03.3!; Ab	bildungen	4-22	
	1,3			
		-/		
			Þ	
		r	·	
	,			
·				
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie		
	e Kategorien von angegebenen Veröffentlichungen : ntlichung, die den allgemeinen Stand der Technik definiert,	"T" Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlich	t worden ist und mit der	
aber n	icht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern nu Erfindung zugrundeliegenden Prinzips		
"E" alteres Anmel	Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist	Theorie angegeben ist "X" Veröffentlichung von besonderer Beder	utung: die beanspruchte Erfindung	
schein	ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- ien zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentli erfinderischer Tätlakeit beruhend betra	chung nìcht als neu oder auf	
andere	en im Recherchenbericht genannten Veröffentlichung belegt werden Ier die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonderer Bedet	utung; die beanspruchte Erfindung	
ausge		kann nicht als auf erfinderischer Tätigle werden, wenn die Veröffentlichung mit Veröffentlichungen die er Katagoria in	einer oder mehreren anderen	
O Veröffentlichung, die sich auf eine mündliche Offenbarung, Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Fachmann naheliegend ist *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach *** Veröffentlichung, die Mitglied derealban Betantfamilie ist				
dem b	eanspruchten Prioritätsdatum veröffentlicht worden ist	*&* Veröffentlichung, die Mitglied derselber		
Datum des	Abschlusses der internationalen Recherche	Absendedatum des internationalen Re	cherchenberichts	
1	2. Juli 2005	22/07/2005		
		22/0//2005		
Name und F	Postanschrift der Internationalen Recherchenbehörde	Bevollmächtigter Bediensteter		
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk			
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Kassner, H		

INTERNATIONALER RECHERCHENBERICHT

C.(Fortsetz	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
` Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommende	en Teile	Betr. Anspruch Nr.
A	EP 1 122 888 A (SONY CORPORATION) 8. August 2001 (2001-08-08) Spalte 3, Zeile 5 - Spalte 4, Zeile 4; Abbildungen 2,6a,12a-12c Spalte 7, Zeile 25 - Spalte 8, Zeile 52 Spalte 9, Zeile 8 - Spalte 11, Zeile 20 Anspruch 2		1-22
X	US 6 130 553 A (NAKAYA ET AL)		1-3
A	10. Oktober 2000 (2000-10-10) Spalte 3, Zeile 38 - Spalte 4, Zeile 41; Abbildungen 2,4,6-8		4-22
X	US 2003/210073 A1 (NGAI TONY ET AL)		1-3
Α	13. November 2003 (2003-11-13) Absatz '0104! - Absatz '0112!; Abbildungen 10,11		4-22
·			
		Į.	
00	ı		
	·		
1			
			,
·			
	·		
•			

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichengen, die zur selben Patentfamilie gehören

In ationales Aktenzeichen
PCT/DE2005/000292

lm Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 1122888 .	A 08-08-2001	JP 2001217707 A DE 60101169 D1 DE 60101169 T2 EP 1122888 A1 US 2001013797 A1	10-08-2001 18-12-2003 27-05-2004 08-08-2001 16-08-2001
US 6130553	A 10-10-2000	JP 3185727 B2 JP 11122096 A	11-07-2001 30-04-1999
US 2003210073	A1 13-11-2003	US 2002057103 A1 US 6407576 B1 US 2004251930 A1 DE 60012639 D1 EP 1092268 A2 EP 1076931 A1 EP 1465345 A2 JP 2002538562 A JP 2002538633 A JP 2002538634 A WO 0052824 A1 WO 0052825 A1 WO 0052826 A2 US 2002041192 A1 US 6690195 B1 US 2003071654 A1 US 6359468 B1 US 636120 B1 US 6323680 B1 US 6342792 B1 US 6300792 B1 US 2004222818 A1	16-05-2002 18-06-2002 16-12-2004 09-09-2004 18-04-2001 21-02-2001 28-02-2001 06-10-2004 12-11-2002 12-11-2002 12-11-2002 08-09-2000 08-09-2000 08-09-2000 11-04-2002 10-02-2004 17-04-2003 19-03-2002 12-11-2002 02-04-2002 27-11-2001 29-01-2002 09-10-2001 11-11-2004