Assignment 5

due midnight (Eastern Time), Monday, October 26, 2020

Prove all statements in the questions below. You must TeX your solutions and submit your writeup as a pdf at www.gradescope.com.

You can submit it any time until the deadline (try not to spend your Friday evening working on this!).

Question 1. (Folland 2.6.55 a and b) Let $E = [0, 1] \times [0, 1]$. Investigate the existence and equality of

$$\int_{E} f \ dm^{2}$$
, $\int_{0}^{1} \int_{0}^{1} f(x,y) \ dxdy$ and $\int_{0}^{1} \int_{0}^{1} f(x,y) \ dydx$

for the following f:

1.
$$f(x,y) = (x^2 - y^2)(x^2 + y^2)^{-2}$$

2.
$$f(x,y) = (1 - xy)^{-a}, (a > 0).$$

Question 2. Let ν be a signed measure on (X, \mathcal{M}) .

- 1. $L^1(\nu) = L^1(|\nu|)$.
- 2. If $f \in L^1(\nu)$, then $|\int f d\nu| \le \int |f| d|\nu|$.
- 3. If $E \in \mathcal{M}$, $|\nu|(E) = \sup\{|\int_E f d\nu| : |f| \le 1\}$.

Question 3. (Folland 3.2.13) Let X = [0,1], $\mathcal{M} = \mathcal{B}_{[0,1]}$, m = Lebesgue measure, and $\mu =$ counting measure on \mathcal{M} .

- 1. $m \ll \mu$ but $dm \neq f d\mu$ for any f.
- 2. μ has no Lebesgue decomposition with respect to m.

Question 4. (Folland 3.2.16) Suppose that μ , ν are measures on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda = \mu + \nu$. If $f = d\nu/d\lambda$, then $0 \le f < 1$ μ -a.e. and $d\nu/d\mu = f/(1-f)$.

Question 5. (Folland 3.2.17) Let (X, \mathcal{M}, μ) be a σ -finite measure space, \mathcal{N} a sub- σ -algebra of \mathcal{M} , and $\nu = \mu|_{\mathcal{N}}$. If $f \in L^1(\mu)$, there exists $g \in L^1(\nu)$ (thus g is \mathcal{N} -measurable) such that $\int_E f \ d\mu = \int_E g \ d\nu$ for all $E \in \mathcal{N}$; if g' is another such function, then $g = g' \nu$ -a.e.

(In probability theory, g, is called the <u>conditional expectation</u> of f on \mathcal{N} .)