

《操作系统》作业汇报与展示

OS-HW1 (Ch 3. Process Description and Control)

崔冠宇

2018202147 cuiguanyu@ruc.edu.cn

信息学院 中国人民大学

2020年4月23日

目录

P172, 3.2 题目及解析

P173, 3.3 题目及解析

P172, 3.2 题目

题目

Suppose that four interleaved processes are running in a system having start addresses 4050, 3200, 5000 and 6700. The traces of the individual processes are as follows:

Process P1	Process P2	Process P3	Process P4
4050	3200	5000	6700
4051	3201	5001	6701
4052	3202	5002	6702
4053	3203	5003	<i o=""></i>
4054	3204	5004	
4055	3205	5005	
4056	3206	5006	
4057	<i o=""></i>	5007	
4058		5008	
4059		5009	
4060		5010	

Find the interleaved traces of the processes. Assume that the dispatcher is invoked after 5 instructions or for interrupts and the dispatcher cycle has 4 instructions.

P172, 3.2 解析

Step 1. 翻译题干

设有四个进程交替运行在一个系统上, 它们的起始地址分别 为 4050, 3200, 5000 和 6700. 单个进程的轨迹 (trace) 如上表所 示. 写出这些进程的组合轨迹. 假定分派器 (dispatcher) 在 5 条 指令或中断 (interrupt) 后被唤醒, 且分派器周期为 4条指令.

Step 2. 思考解题步骤

按照题目规则进行. 首先遍历就绪的进程, 对每个进程运行 至多5步(如遇到进程结束或I/O请求等可能不足五步),然后交 给分派器运行 4 步, 按此重复, 直至全部进程结束.

中国人瓦大學

P172, 3.2 解析

Step3. 得到结果 (1)

	1022	-1- ()							
序号	地址	进程			地址	进程	序号	地址	进程
1	4050			15	100		30	6702	P4
2	4051			16	101	分派器		-I/O 请习	℟——
3	4052	P1		17	102	刀心砧	31	100	
4	4053			18	103		32	101	八定型
5	4054			19	5000		33	102	分派器
_	超时-			20	5001		34	103	
6	100			21	5002	P3	35	4055	
7	101	分派器		22	5003		36	4056	
8	102	刀冰器	23	5004		37	4057	P1	
9	103			_	超时-		38	4058	
10	3200			24	100		39	4059	
11	3201			25	101	分派器	_	超时-	
12	3202	P2		26	102	刀心路	40	100	
13	3203			27	103		41	101	分派器
14	3204			28	6700	P4	42	102	刀似石
_	超时-			29	6701	F4	43	103	

P172, 3.2 解析

Step3. 得到结果 (2)

序号	地址	进程	
44	3205	P2	
45	3206	F2	
	-I/O 请求	₹——	
46	100		
47	101	分派器	
48	102	刀拟砧	
49	103		
50	5005		
51	5006		
52	5007	P3	
53	5008		
54	5009		
_	超时-		

	地址	进程
55	100	
56	101	八定型
57	102	分派器
58	103	
59	4060	P1
	—P1 结束	₹——
60	100	
61	101	分派器
62	102	ノン ルズ右首
63	103	
64	3200	P3
	—P3 结束	
_	结束-	

中国人民大學

P173, 3.3 题目

题目

Figure 3.9b contains seven states. In principle, one could draw a transition between any two states, for a total of 42 different transitions.

- a. List all of the possible transitions and give an example of what could cause each transition.
- b. List all of the impossible transitions and explain why.

Fig. 3.9b

Step 1. 翻译题干

- 图 3.9b 含有七个状态. 原则上, 如果在任意两状态之间画出一个状态转换, 则总共有 42 种不同的转换.
 - a. 列出所有可能的状态转换, 并给出一个能导致这种转换的 实例.
 - b. 列出所有不可能的状态转换并解释原因.

Step 2. 思考解题步骤

题目要求很清晰, 根据图 3.9b, 找出图上有的状态转换, 以及其他可能的转换, 并举一个例子即可; 其余的转换都是不可能发生的, 解释理由即可.

中圍人瓦大學

Step3. 得到结果 (1)

a. 可能的状态转换列表如下:

转换	实例		
$New \to Ready/Suspend$	新建进程完毕,但部分资源在外存中,尚未加载入内存.		
$New \to Ready$	新建进程完毕, 且除 CPU 资源外均已准备完毕.		
$Ready/Suspend \to Ready$	处于就绪/挂起态但优先级较高的进程可能被载入内存.		
$Ready \to Ready/Suspend$	就绪态进程太多时有可能被挂起.		
$Ready \to Running$	就绪的进程被分派器选中运行.		
$Running \rightarrow Ready/Suspend$	进程时间到期而就绪进程太多, 可能直接转为就绪/挂起.		
Running \rightarrow Ready	达到允许进程不中断的最大时间、被系统抢占等.		
$Running \to Blocked$	需要等待某些事件, 如 I/O 等.		
* → Exit(6 种)	进程正常结束、超时、I/O 失败、父进程请求等.		
$Blocked \to Ready$	所等待的事件 (如 I/O) 已发生.		
$Blocked \to Blocked/Suspend$	为腾出空间, 可能挂起阻塞的进程.		
${\sf Blocked/Suspend} \to {\sf Ready/Suspend}$	等待事件已经发生		
$Blocked/Suspend \to Blocked$	可能是该挂起进程优先级较高, 而等待的事件很快将发生.		

Step3. 得到结果 (2)

b. 不可能的状态转换列表如下:

转换	原因			
* → New (6 种)	进程新建状态,不能回头.			
$New \to Running$	新建的进程不能不经过就绪态直接运行.			
$New \to Blocked$	新建的进程尚未运行,不会被阻塞.			
$\text{New} \to \text{Blocked/Suspend}$	同上,而且更不会被挂起.			
Exit \rightarrow * (5 种, Exit \rightarrow New 已包括)	进程退出状态,不能继续.			
$Ready/Suspend \rightarrow Running$	未加载到内存中, 无法直接运行.			
$\textbf{Ready/Suspend} \rightarrow \textbf{Blocked/Suspend}$	被挂起的进程未运行,不会遇到阻塞事件.			
$\textbf{Ready/Suspend} \rightarrow \textbf{Blocked}$	同上,而且也不会被加载到内存中.			
——转下页——				

Step3. 得到结果 (3)

转换

原因

——接上页——

Ready → Blocked

Ready → Blocked/Suspend

 ${\sf Running} \to {\sf Blocked/Suspend}$

 $\mathsf{Blocked} \to \mathsf{Ready/Suspend}$

 $\mathsf{Blocked} \to \mathsf{Running}$

 $\mathsf{Blocked/Suspend} \to \mathsf{Ready}$

Blocked/Suspend → Running

就绪的进程尚未运行,不会遇到阻塞事件.

同上, 而且更无法被挂起.

跳步, 阳寒和挂起应该分两步讲行,

跳步,事件发生和挂起不能同时进行.

跳步, 应首先变为就绪态才可能运行.

跳步, 缺少事件发生和激活.

跳步,事件发生、激活后进入就绪态才可能运行.