Standardization of Chiplet Models

Chiplet Summit
January 24-26, 2023, San Jose, California
Tony Mastroianni, Siemens EDA

Chiplet Design Exchange (CDX)

OPEN DOMAIN
SPECIFIC
ARCHITECTURE

- Members: EDA, chiplet Providers, Assemblers & Integrators
- Other ODSA work groups are working on
 - Die-to-Die (D2D) interfaces
 - Security agents
 - Business models & other related chiplet topics

Standardized Chiplet Models

Machine readable models

Industry Standards

Security & Traceability Assurance

Documentation

Chiplet Design Kits (CDK)

Model	Description
Thermal	• ECXML – JEDEC JEP181
Physical, Mechanical & IO	 Library Exchange Format (LEF) GDSII or OASIS SPICE JEDEC JEP30-P101/CDXML Optional: Verilog to Physical Pin Mapping file (CSV)
Behavioral	 SystemVerilog IEEE – 1800-2017 Recommended: Verilog-AMS 2.4 Optional: SystemC IEEE – 1666-2011 Optional: Bus Functional Model (BFM)
Power	 Liberty (.LIB) IEEE2416 Standard for Power Modeling Optional: UPF – IEEE 1801-2018 or Chip Power Format Optional: Verilog-AMS 2.4 Optional: SystemC IEEE – 1666-2011
SI Analysis	 IBIS/IBIS AMI Optional: Spice netlist (for the IO driver and/or receiver) Optional: Channel model

Model	Description
PI Analysis	Chip Power Model (CPM)
Electrical Rules	JEDEC JEP30-E101/CDXML
Test	 BSDL - IEEE 1149.1/1149.6/1149.7 ATPG model - Primitive/UDP based Verilog Recommended: Internal JTAG (IJTAG) IEEE 1687 Optional: IEEE-1500 Core Test Language (CTL) Recommended: Gray-box level netlist ATPG vectors - STIL (IEEE1450.1) or WGL MBIST/repair vectors - STIL (IEEE1450.1) or WGL Optional: UPF - IEEE 1801 or Chip Power Format Optional: IP Firmware (if applicable)
Security/T&T	Optional: Security AgentOptional: Trust & Traceability
Documentation and Guidelines	 General Chiplet Documentation SiP Physical Integration guidelines SiP Test guidelines Optional: Firmware (if applicable) Optional: Security

Thermal

ECXML - JEDEC JEP181

Physical, Mechanical & 10

Library Exchange Format (LEF)

GDSII or OASIS

SPICE

Optional: Verilog to Physical Pin Mapping file (CSV)

JEDEC JEP30-P101/CDXML (New)

Physical, Mechanical and IO: CDXML File Format

CDXML is being Developed at CDX Workstream of ODSA in Collaboration with Industry Leaders. CDXML adopted the ZEF opensource model from zGlue.

- Mechanical describes all x,y,z, dimensions, tolerance, solder type and material properties
- IO describes pin location, functionality, mode of operation and standardized
 D2D interface pin names

Electrical Properties

JEDEC JEP30-E101/CDXML

 Electrical contains overall electrical characteristics information to aid in power scenarios calculations, modes of operation, absolute maximum ratings, recommended operating conditions, and ESD EC (Electrical Characteristics), abs max values, operating conditions, allowable RLC, voltage references, temperate based VI (Voltage and Current) pin characteristics

Behavioral

SystemVerilog IEEE – 1800-2017

Recommended: Verilog-AMS 2.4

Optional: SystemC IEEE - 1666-2011

Optional: Bus Functional Model (BFM)

Power

Liberty (.LIB)

IEEE2416 Standard for Power Modeling

Optional: UPF - IEEE 1801-2018 or Chip

Power Format

Optional: Verilog-AMS 2.4

Optional: SystemC IEEE - 1666-2011

Signal Integrity Analysis

IBIS/IBIS AMI

Optional: SPICE netlist

(IO driver and/or Transceiver)

Optional: Channel model

Power Integrity Analysis

Chip Power Model (CPM)

Test

BSDL - IEEE 1149.1/1149.6/1149.7

ATPG model - Primitive/UDP based Verilog

Recommended: Internal JTAG (IJTAG) IEEE 1687

Optional: IEEE-1500 Core Test Language (CTL)

Recommended: Gray-box level netlist

ATPG vectors - STIL (IEEE1450.1) or WGL

MBIST/repair vectors - STIL (IEEE1450.1) or WGL

Optional: UPF – IEEE 1801 or chip power format

Optional: IP firmware (if applicable)

Security and Trust/Traceability

Optional: Security agent

Optional: Trust & Traceability

Documentation

General chiplet documentation

SiP physical integration guidelines

SiP test guidelines

Optional: Firmware (if applicable)

Optional: Security/T&T

Summary

Broad adoption of chiplet based designs requires standardization of chiplet models CDX whitepapers and CDXML format are a good start towards this standardization:

IEEE 3DIC 2021: November 15-18, 2022

https://ieeexplore.ieee.org/document/9687611

OCP: September 17, 2022

https://www.opencompute.org/documents/ocp-odsa-cdx-proposed-standardization-of-chiplet-models-for-heterogeneous-integration-2-pdf

OCP Global Summit: Oct 18-20, 2022

https://drive.google.com/file/d/1EEwYuEAECPM5Btu4 9Znder-RD4X Dx-/view

Current CDX areas of focus:

- HI Workflows White Paper
- Defining new CDXML format

Open Possibilities.

Acknowledgments

CDX Authors

- Anthony Mastroianni (Siemens)
- Benjamin Kerr (Google)
- Jawad Nasrullah (Palo Alto Electron)
- Kevin Cameron (Cameron EDA)
- Hockshan James Wong (Palo Alto Electron)
- David Ratchkov (Thrace Systems)
- Joseph Reynick (Siemens)

CDX Contributors

- Javier Delacruz (ARM)
- Yin Hang (Facebook)
- Meelan Lee (Chipletz)
- Chris Ortiz (Ansys)
- Anu Ramamurthy (Microchip)
- Myron Shak (Applied Materials)
- Marc Swinnen (Ansys)
- Lihong Cao (ASE)
- Ravi Agarwal (Facebook)

Open Possibilities.

Call for Participation

Join us to continue our work on chiplet models and SiP workflows and to support the adoption of these recommendations.

- We're looking for volunteers!
- For participation, Email:

jawad@paloaltoelectron.com or david.ratchkov@thracesystems.com

https://www.opencompute.org/wiki/Server/ODSA

Thank You

