Datum:		Třída:
14.12.2023	SPŠ CHOMUTOV	A4
Číslo úlohy:	Programování AMS –	Příjmení:
9.	převodník f/U a U/f	Lacek
	(Keysight VEE)	

Zadání:

Ověřte činnost převodníku f/U v rozsahu 1 kHz až 10 kHz. Změřte převodní charakteristiku převodníku a určete její konstantu a nelinearitu od ideální strmosti 1 V/kHz

Schéma:

Tabulka přístrojů:

Název přístroje:	Označení:	Údaje:	Ev. Číslo:
Číslicový voltmetr	ČV	HP 34401A	LE 94
generátor	G	HP 33120A	LE 100
Zdroj		AUL 310 ±15 V; +5 V	LE4 1045
Převodník f/U	f/U		LE2 2155

Teorie:

Převodník frekvence na napětí je zařízení, které transformuje proměnnou frekvenci signálu na ekvivalentní napětí. Tato technologie nachází uplatnění například v regulaci rychlosti elektromotorů. Princip spočívá v detekci frekvence vstupního signálu a následném generování odpovídajícího napětí. Čím vyšší frekvence, tím vyšší napětí na výstupu. Využívá se zpravidla ve spojení s tzv. PID regulací pro optimalizaci výkonu. Přesný převod frekvence na napětí umožňuje efektivní kontrolu elektrických zařízení, zvyšuje energetickou účinnost a umožňuje jemnou regulaci různých průmyslových procesů.

Postup:

- 1. Zapojíme obvod, pro připojení generátoru použijeme synchronizační výstup
- 2. Nejprve si programově vykreslíme ideální charakteristiku
- 3. Poté pomocí generátoru budeme nastavovat frekvenci a multimetr bude odečítat napětí, které budeme zanášet do grafu
- 4. Z naměřených hodnot dopočítáme převodní konstantu a nelinearitu

Výpis programu:

- 1. Dotaz na převodní konstantu
- 2. Z frekvence a převodní konstanty počítá napětí, které zobrazuje na grafu
- 3. Collector ukládá hodnoty ideálního napětí
- 4. Cyklus pro všechny měřené frekvence
- 5. Převod z kHz na Hz
- 6. Nastavení frekvence na generátoru
- 7. Collector ukládá hodnoty nastavované frekvence
- 8. Časové zpoždění pro ustálení výstupní hodnoty
- 9. Odečtení výstupní hodnoty
- 10. Výstupní hodnota je záporná, proto jí invertujeme
- 11. Collector ukládá hodnoty reálného napětí
- 12. Výpočet reálné převodní konstanty
- 13. Po konci měření nastaví generátor na 1 kHz hodnotu, kterou další měření začne
- 14. Vypočítá rozdíl mezi naměřený a skutečným napětím
- 15. Collector uloží rozdíl mezi naměřený a skutečným napětím
- 16. Rozhodne, jestli je největší odchylka kladná, nebo záporná
- 17. Výpočet nelinearity pro kladnou odchylku
- 18. Výpočet nelinearity pro zápornou odchylku
- 19. Převod čísla na text a zaokrouhlení
- 20. Vypsání vypočítaných konstant
- 21. Vykreslení grafu reálné a ideální charakteristiky

Grafy:

Závislost vstupní frekvence na výstupním napětí:

Závěr:

Převodník pomalu reaguje na změnu frekvence, potřebuje cca 2 vteřiny na ustálení.

Přesnost převodníku je vysoká. Při ideální převodní kostantě 1 V/kHz byla reálná konstanta 1,00425 V/kHz a největší nelinearita byla 0,44163 %.

Měření bylo bez problémů.

Zadání jsme splnili.