RLC régime forcé – modulation (suite)

Exercice n°4/

On monte en série un conducteur ohmique (D), une bobine idéale (B) et un condensateur (C). On applique entre les bornes du dipôle obtenu une tension sinusoïdale $u(t)=2O\sqrt{2}.cos(2\pi N.t)$ en Volt. On garde la tension efficace constante et on fait varier la fréquence N. On mesure l'intensité efficace I du courant pour chaque valeur de N. On visualise

à l'aide d'un dispositif approprié l'évolution de l'intensité I en fonction de N, on obtient alors les deux courbes (a) et (b) représentées dans la figure (1) pour deux valeurs R1 et R2 de la résistance R; (R2>R1).

- 1-Déterminer la valeur de la résistance R1.
- 2-Calculer le coefficient de qualité Q du circuit dans le cas où R=R2.
- 3-Trouver l'expression de l'impédance du circuit en fonction de R pour l'une des deux courbes quand la valeur de l'intensité efficace du courant vaut $I=I_0/\sqrt{2}$ avec I_0 l'intensité efficace du courant à la résonance.

4-Calculer dans le cas de R_1 le coefficient de puissance pour $I=I_0/\sqrt{2}$ en déduire le déphasage en valeur absolue de l'intensité i(t) par rapport à u(t).

Exercice n°5/ Session Rattrapage 2017 SM

On réalise le montage schématisé sur la figure 3 comportant : -un générateur de basse fréquence (GBF),

de résistance R_o =30 Ω , – un condensateur de capacité C=2,5 μF . Le générateur délivre une tension alternative sinusoïdale u(t) de fréquence réglable. Un courant d'intensité i(t) circule alors dans le circuit. On fait varier la fréquence N en gardant la tension maximale U_m constante. L'étude expérimentale a permis de tracer les deux courbes représentées sur les

-une bobine d'inductance L_o et de résistance r_o -un conducteur ohmique

1-Choisir l'affirmation juste parmi les propositions suivantes :

a-Le générateur GBF joue le rôle du résonateur.

b-Les oscillations du circuit sont libres.

c-φ représente le coefficient de puissance.

d-L'expression du facteur de qualité est $Q=N_o/\Delta N$

- 2-Déterminer la valeur de Um, de Lo et celle de ro.
- 3-Déterminer la valeur de la puissance électrique moyenne consommée dans le circuit à la résonance.

Exercice n°6/

Les ondes sonores audibles ont une faible fréquence, leur transmission à des longues distances nécessite qu'elles soient modulante à une onde électromagnétique de haute fréquence.

I- Modulation: On considère le montage représenté dans la figure 1;

-un générateur GBF1 applique à l'entrée E_1 de la composante électronique X une tension sinusoïdale $u_1(t)=P_m.cos(2\pi t/T_P)$ et un générateur GBF2 applique à l'entrée E_2 de la composante électronique X une tension sinusoïdale $u_2(t)=U_O+s(t)$ avec U_O la composante continue de la tension et $s(t)=S_m.cos(2\pi t/T_S)$ la tension

 $t(5, 4.10^{-3}s)$

correspondante à l'onde qu'on désire transmettre. On visualise sur l'écran d'un oscilloscope la tension de sortie $u_5(t)=k.u_1(t).u_2(t)$; avec k une constante positive caractérisant la composante X; fig 2

0,2

0,1

-0,2

- 0,3

- 1-Nommer les composantes X et Y.
- 2-Montrer que l'expression de la tension us(t) s'écrit sous la forme
- $u_S(t)$ =A[1+m.cos(2 $\pi t/T_S$)].cos(2 $\pi t/T_P$) et préciser l'expression de A et celle de m.
- 3-Relever les valeurs de T_P , F_P , T_S , F_S , U_{Sm} max
- , U_{sm}min . Que peut-on dire de la qualité de la modulation justifier.

montage utilisé dans un dispositif de réception constitué de trois étages. On donne L=1,5mH ;

- 1-Préciser le rôle de l'étage 1 et 3 dans ce montage.
- 2- Déterminer la valeur du condensateur C pour sélectionner l'onde $u_S(t)$.
- 3- Montrer que l'intervalle auquel doit appartenir la valeur de la résistance R pour une bonne détection de l'enveloppe de la

tension modulante dans ce montage est : $4\pi^2.L/T_P << R < 4\pi^2.L.T_S/(T_P)^2$. Calculer les bornes de cet intervalle .

Exercice n°7/

Afin d'obtenir un signal modulé en amplitude, on utilise un circuit intégré multiplieur X (fig1.). On donne : $u_1(t)=s(t)+U_0=S_m.cos(2\pi.f_s.t)+U_0$ $u_2(t)=P_m.cos(2\pi.F_p.t)$ et $u_s(t)=k.u_1(t).u_2(t)$

- 2- Calculer m; F_P et F_S , la modulation est-elle de bonne qualité?
- 3- Pour recevoir le signal $u_s(t)$, on utilise un circuit LC d'inductance $L_o=0.06H$ et formé de deux condensateurs , montés en série, de Capacité $C=10\mu F$ et C_o . Déterminer la valeur de C_o .

