Сходимость решения системы уравнений переноса-диффузии к решению системы уравнений переноса

© Фуджита-Яшима Хисао

PhD,

ученое звание профессор, преподаватиль-исследователь Высшая нормальная школа

Алжир, 25000 Константина, Али Менжели, унивепситетский кампус 3 hisaofujitayashima@yahoo.com, hisaofujitayashima@qq.com

© Айт-Махиоут Латифа

PhD с научной аккредитацией, ученое звание "maître de conférence A", преподаватиль-исследователь Высшая нормальная школа Алжир, 16050 Алжир, Старая Куба, В.Р. 92 latifaaitmahiout@gmail.com

Рассмотрим следующие системы уравнений (1) и (2)

$$\partial_t u_i^{[\kappa]} + \sum_{j=1}^d v_{i,j} \partial_{x_j} u_i^{[\kappa]} = \kappa \mathcal{A}_i u_i^{[\kappa]} + f_i(u^{[\kappa]}) \qquad \text{B} \quad \mathbb{R}_+ \times \mathbb{R}^d, \quad j = 1, \dots, m,$$
 (1)

$$\partial_t u_i^{[0]} + \sum_{j=1}^d v_{i,j} \partial_{x_j} u_i^{[0]} = f_i(u^{[0]})$$
 B $\mathbb{R}_+ \times \mathbb{R}^d$, $i = 1, \dots, m$, (2)

где $u^{[\kappa]}=(u_1^{[\kappa]},\cdots,u_m^{[\kappa]})$ (соотв. $u^{[0]}=(u_1^{[0]},\cdots,u_m^{[0]}))$ — искомая векторная функция для системы (1) (соотв. (2)), $v_{i,j}$ ($i=1,\cdots,m,\ j=1,\cdots,d$) — гладкие заданные функции от t и $x,\ f_i$ ($i=1,\cdots,m$) — заданные функции от (t,x,u) со значениями в \mathbb{R}^m , гладкие и ограниченные по (t,x) а глобально липшицевы по $u\in\mathbb{R}^m$, κ — положительный коэффициент и \mathcal{A}_i — эллиптический оператор с постоянными коэффициентами.

Целью настоящей работы является доказательство сходимости решения $u^{[\kappa]}$ системы (1) к решению $u^{[0]}$ системы (2) при $\kappa \to 0$.

Для этого построим с помощью ядра диффузии с постоянными коэффициентами и оператора переноса приближенные решения $u^{[\kappa,n]}(t,x)$ для системы уравнений (1). Точнее, определим сначала шаги $\delta_n = \frac{1}{2^n}, \ n=1,2,\cdots$, и соответствующую шагу δ_n дискретизацию по времени

$$0 = t_0^{[n]} < t_1^{[n]} < \dots < t_{k-1}^{[n]} < t_k^{[n]} < \dots, \qquad t_k^{[n]} = k\delta_n.$$

Для каждого $n=1,2,\cdots$ рассмотрим ядро параболического уравнения

$$\Theta_{\kappa,i,n}(x) = \frac{1}{(4\pi\kappa\delta_n)^{\frac{d}{2}}(\det A_i)^{\frac{1}{2}}} \exp\left(-\frac{1}{4\kappa\delta_n} \sum_{j,j'=1}^d \omega_{i,jj'} x_j x_{j'}\right),\tag{3}$$

где A_i — матрица коэффициентов эллиптического оперетора \mathcal{A}_i , а $\omega_{i,jj'}$ — элементы обратной матрицы A_i^{-1} .

Пусть $u_0(x) = (u_{0,1}(x), \cdots, u_{0,m}(x))$ — заданная начальная векторная функция. Определим приближенные решения $u^{[\kappa,n]}(t,x)$ соотношениями

$$u_i^{[\kappa,n]}(t_0^{[n]}, x) = u_{0,i}(x), \tag{4}$$

$$u_i^{[\kappa,n]}(t_k^{[n]},x) = \int_{\mathbb{R}^d} \Theta_{\kappa,i,n}(y) u_i^{[\kappa,n]}(t_{k-1}^{[n]},x - \delta_n v_i(t_k^{[n]},x) - y) dy +$$

$$+ \delta_n f_i(t_{k-1}^{[n]}, x, u^{[\kappa, n]}(t_{k-1}^{[n]}, x)), \qquad k = 1, 2, \cdots,$$
(5)

$$u_i^{[\kappa,n]}(t,x) = \frac{t_k^{[n]} - t}{\delta_n} u_i^{[\kappa,n]}(t_{k-1}^{[n]}, x) + \frac{t - t_{k-1}^{[n]}}{\delta_n} u_i^{[\kappa,n]}(t_k^{[n]}, x) \qquad \text{при } t_{k-1}^{[n]} \le t \le t_k^{[n]}. \tag{6}$$

Аналогично работам [1, 2] можно доказать сходимость приближенных решений $u^{[\kappa,n]}(t,x)$ к векторной функции $u^{[\kappa]}(t,x)$, удовлетворяющей системе (1) и начальному условию $u^{[\kappa]}(0,x) = u_0(x)$.

Если определим аналогичным образом приближенные решения $u^{[0,n]}(t,x)$ для системы (2), справнение приближенных решений $u^{[\kappa,n]}(t,x)$ и приближенных решений $u^{[0,n]}(t,x)$ позволяет оцеить в частности

$$\sup_{x \in \mathbb{R}^d} |u^{[\kappa,n]}(t,x) - u^{[0,n]}(t,x)|, \qquad \sum_{j=1}^d \sup_{x \in \mathbb{R}^d} |\partial_{x_j} u^{[\kappa,n]}(t_k^{[n]},x) - \partial_{x_j} u^{[0,n]}(t_k^{[n]},x)|.$$

Путем предельного перехода для $n\to\infty$, можно оценить разность $u^{[\kappa]}(t,x)-u^{[0]}(t,x)$ или $\partial_{x_j}u^{[\kappa]}(t,x)-\partial_{x_j}u^{[0]}(t,x)$. Таким образом ролучим результаты: каково бы ни было $\tau>0$, имеем

$$\sup_{(t,x)\in[0,\tau]\times\mathbb{R}^d} |u^{[\kappa]}(t,x) - u^{[0]}(t,x)| \le K_{0,\tau}\kappa,\tag{7}$$

$$\sup_{(t,x)\in[0,\tau]\times\mathbb{R}^d} \left| \frac{\partial}{\partial t} u^{[\kappa]}(t,x) - \frac{\partial}{\partial t} u^{[0]}(t,x) \right| \le K_{1,\tau}\kappa, \tag{8}$$

$$\sup_{(t,x)\in[0,\tau]\times\mathbb{R}^d,\,i\in\{1,\cdots,d\}} \left| \frac{\partial}{\partial x_i} u^{[\kappa]}(t,x) - \frac{\partial}{\partial x_i} u^{[0]}(t,x) \right| \le K_{2,\tau}\kappa,\tag{9}$$

$$\sup_{\substack{(t,x)\in[0,\tau]\times\mathbb{R}^d,\,i,j\in\{1,\cdots,d\}\\}} \left| \frac{\partial^2}{\partial x_i \partial x_j} u^{[\kappa]}(t,x) \right| \le K_{3,\tau},\tag{10}$$

где $K_{0,\tau}, K_{1,\tau}, K_{2,\tau}, K_{3,\tau}$ — независимые от κ постоянные.

Ключевые слова: Система уравнений переноса-диффузии, приближение ядром дмффузии, стремяющийся к нулю коеффициент диффузии, сходимость к решению уравнений переноса, оценки сходимости.

Список литературы

- 1. Taleb, L., Selvaduray, S., Fujita Yashima, H.: Approximation par une moyenne locale de la solution de l'équation de transport-diffusion. *Ann. Math. Afr.*, vol. 8 (2020), 53-73.
- 2. Smaali, H., Fujita Yashima, H.: Une généralisation de l'approximation par une moyenne locale de la solution de l'équation de transport-diffusion. *Ann. Math. Afr.*, vol. **9** (2021), 89-108.