АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (АРЕНЫ) АРЕНЫ. СТРОЕНИЕ

ОБЩАЯ ФОРМУЛА - C_nH_{2n-6}

Гибридизация атомов С:

Ключевая связь:
Форма молекул:

Валентный угол: ______ Длина связи: _____

	Сп ₃
HC/	Ċ ≪ch
Ĭ	Ĭ

НОМЕНКЛАТУРА

- CH₃ HC C C CH₃ HC CH CH₃ H₃C CH CH₃
- HC CH CH CH₃

 HC CH CH

 H₃C CH CH₃

- 1) Главная цепь ароматическое (бензольное) кольцо
- 2) Нумеруем атомы углерода, начиная с того конца, где ближе радикал, первый идущий по алфавиту
- 3) Составляем название вещества по схеме: "местоположение заместителя (орто/мета/пара) + название заместителя + БЕНЗОЛ". Пример:

1,2-диметил-3-этилбензол

ГОМОЛОГИЧЕСКИЙ РЯД БЕНЗОЛА

ИЗОМЕРИЯ У АРЕНОВ

углеродного скелета

структурная изомерия у аренов обусловлена:

- 1) взаиморасположением заместителей
- 2) изомерией самих заместителей

МЕТА = МЕЖДУ

ПАРА = НАПРОТИВ

ОРТО = ОКОЛО

ФИЗИЧЕСКИЕ СВОЙСТВА АРЕНОВ

Первые члены гомологического ряда бензола - бесцветные жидкости со специфическим запахом. Нерастворимы в воде, но хорошо - во многих органических растворителях (в том числе сами могут выступать в роли растворителей, например, тот же бензол). Большинство из них - ядовитые вещества, многие являются канцерогенами.

ХИМИЧЕСКИЕ СВОЙСТВА АРЕНОВ

РЕАКЦИИ ПРИСОЕДИНЕНИЯ **ПРИСОЕДИНЕНИЯ**

-> гидрирование
-> хлорирование бензола

РЕАКЦИИ ЗАМЕЩЕНИЯ (наиболее характерны)

- -> галогенирование
 - -> нитрование
- -> сульфирование
- -> алкилирование

РЕАКЦИИ ОКИСЛЕНИЯ

-> до бензойной к-ты и её солей и др. -> горение

РЕАКЦИИ ПРИСОЕДИНЕНИЯ

-> хлорирование БЕНЗОЛА [+ Cl₂, катализатора и условий **HET**]

Образующееся в этой реакции вещество - 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран) - используется в качестве мощного инсектицида в борьбе с насекомыми!

РЕАКЦИИ ЗАМЕЩЕНИЯ

Если в бензоле не принципиально, в каком положении ЗАМЕЩАТЬ атом водорода (молекула бензола симметрична со всех сторон), то с его гомологами уже возникают проблемы. Выясняется, что PA3Hble ориентанты направляют заместители совершенно в PA3Hble положения. Кто, что и куда направляет, - отображено на схеме чуть ниже.

ОРИЕНТАНТЫ І РОДА = ЭЛЕКТРОНОДОНОРЫ

Примеры: -CH₃, -C₂H₅, -OH, -NH₂, -Cl, -Br, -OCH₃...

направляют заместителей в ОРТО- и ПАРА-положение (т.е. 2,4,6)

р.ѕ. в итоге образуется смесь из орто- и пара-изомеров

ОРИЕНТАНТЫ II РОДА = ЭЛЕКТРОНОАКЦЕПТОРЫ

Примеры: -NO₂, -COOH, -CN, -CHO...

направляют заместителей в **МЕТА**положение (т.е. **3,5**)

р.ѕ. в итоге образуется мета-изомер

-> галогенирование [+ Hal, катализатор - AlCl, FeCl, Fe + Cl,]

ОБРАЩАЙТЕ ВНИМАНИЕ НА КАТАЛИЗАТОРЫ НАД СТРЕЛОЧКОЙ: если указаны хлориды/бромиды железа (III) или алюминия - это замещение в бензольном кольце; если указаны свет (hv) или температура (t) - это реакция замещения в радикале.

-> нитрование/сульфирование [+ HO-NO $_2$ /+ HO-SO $_3$ H, нитрование протекает при действии нитрующей смеси (HNO $_3$ (к) + H $_2$ SO $_4$ (к)) + t]

-> алкилирование = реакция Фриделя-Крафтса [+ галогеналкан/алкен, катализатор - $AlCl_3$ /неорг. к-ты (H_3PO_4)]

Помимо этого также существуют реакции ацилирования (т.е. присоединения к бензольному кольцу АЦИЛА = "остатка" органической кислоты). Протекают они аналогично реакциям алкилирования и в присутствии тех же катализаторов.

РЕАКЦИИ ОКИСЛЕНИЯ И ГОРЕНИЯ ОСОБЕННОЕ ОКИСЛЕНИЕ

- -> <u>ВСЕГДА</u> до бензойной кислоты или её солей (в кислой среде до кислоты, в щелочной и нейтральной до соли)
 - -> окисляются всегда атомы углерода ПРИ бензольном кольце

-> "одиночные" атомы С - до СО2

РЕАКЦИИ ПОЛУЧЕНИЯ

ароматизация алканов и циклоалканов	
тримеризация ацетиле- на и его гомологов	
реакция Дюма	
алкилирование аренов	
реакция Вюрца	
выделение из продуктов коксования угля и переработки нефти	

ПРИМЕНЕНИЕ АРЕНОВ

Получение красителей, взрывоопасных веществ, лекарств, полимеров (полистирол), ядохимикатов (гексахлоран); их добавляют в бензин (улучшают его качество); используются в качестве растворителей.