

# Applied Machine Learning

Lecture 13
Unsupervised Learning
(Clustering)

Ekarat Rattagan, Ph.D.

### Supervised learning



**Training set:**  $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$ 

### Unsupervised learning



Training set:  $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$ 

### Applications of clustering



Market segmentation



Organize computing clusters



Social network analysis



Astronomical data analysis

### K-means algorithm

- The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance,
- Minimizing a criterion known as the inertia or within-cluster sum-of-squares (see below).
- This algorithm requires the number of clusters to be specified. The k-means algorithm divides a set of samples into disjoint clusters, each described by the mean of the samples in the cluster. The means are commonly called the cluster "centroids"; note that they are not, in general, points from , although they live in the same space.
- The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion:

### K-means optimization objective

 $c^{(i)}$  = index of cluster (1,2,...,K) to which example  $x^{(i)}$  is currently assigned

 $\mu_k$  = cluster centroid k ( $\mu_k \in \mathbb{R}^n$  )

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example  $x^{(i)}$  has been assigned

### Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

### K-means algorithm

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n
Repeat {
          for i = 1 to m
              c^{(i)} = index (from 1 to K ) of cluster centroid closest to \boldsymbol{x}^{(i)}
          for k = 1 to K
                \mu_k := average (mean) of points assigned to cluster k
```



















## Limitation of K-Means

### Limitation

- 1. Where to put initial centroids?
- 2. What is the right value of K?

# Random initialization Centroids



### **Random initialization**

```
For i = 1 to 100 {
```

```
Randomly initialize K-means. Run K-means. Get c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K. Compute cost function (distortion) J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) }
```

Pick clustering that gave lowest cost  $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$ 

#### The k-means++ algorithm

We propose a specific way of choosing centers for the k-means algorithm. In particular, let D(x) denote the shortest distance from a data point to the closest center we have already chosen. Then, we define the following algorithm, which we call k-means++.

- 1a. Take one center  $c_1$ , chosen uniformly at random from  $\mathcal{X}$ .
- 1b. Take a new center  $c_i$ , choosing  $x \in \mathcal{X}$  with probability  $\frac{D(x)^2}{\sum_{x \in \mathcal{X}} D(x)^2}$ . (Assign probability to each x)
- 1c. Repeat Step 1b. until we have taken k centers altogether.

Arthur, David, and Sergei Vassilvitskii. "k-means++: The Advantages of Careful Seeding."

Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We begin by randomly selecting (7,4) to be a cluster center.

| X      | prob   |
|--------|--------|
| (7,4)  | -      |
| (8,3)  | 2/103  |
| (5,9)  | 29/103 |
| (3,3)  | 17/103 |
| (1,3)  | 37/103 |
| (10,1) | 18/103 |



Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (1,3) to the list of cluster centers.

| X      | prob  |
|--------|-------|
| (7,4)  | -     |
| (8,3)  | 2/53  |
| (5,9)  | 29/53 |
| (3,3)  | 4/53  |
| (1,3)  | -     |
| (10,1) | 18/53 |



Suppose we have the small dataset [(7,4),(8,3),(5,9),(3,3),(1,3),(10,1)] to which we wish to assign 3 clusters.

We add (5,9) to the list of cluster centers.

| X      | prob |
|--------|------|
| (7,4)  | -    |
| (8,3)  |      |
| (5,9)  | -    |
| (3,3)  |      |
| (1,3)  | -    |
| (10,1) |      |



# Choosing the number of clusters

### What is the right value of K?



### Choosing the value of K

Elbow method:





### Choosing the value of K

### Silhouette analysis:

$$s(i) = \begin{cases} 1 - \frac{a(i)}{b(i)} & \text{if } a(i) < b(i) \\ 0 & \text{if } a(i) = b(i) \\ \frac{b(i)}{a(i)} - 1 & \text{if } a(i) > b(i) \end{cases}$$
 a(i) : the average distance between 'i' and all other data within the same cluster 
$$s(i) = \begin{cases} 1 - \frac{a(i)}{b(i)} & \text{if } a(i) < b(i) \\ 0 & \text{other data within the same cluster} \end{cases}$$
 b(i) : the lowest average distance of 'i' to all points in any other clusters, of which 'i' is not a member

a(i): the average distance between 'i' and all

member

This metric ranges from -1 to 1 for each observation in your data and can be interpreted as follows:

- Values close to 1 suggest that the observation is well matched to the assigned cluster
- Values close to 0 suggest that the observation is borderline matched between two clusters
- Values close to -1 suggest that the observations may be assigned to the wrong cluster

### Choosing the value of K

### Silhouette analysis:





https://scikit-learn.org/stable/auto\_examples/cluster/plot\_kmeans\_silhouette\_analysis.html