

Schletter, Inc.		15° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
ами	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads - N/A

$S_S = S_{DS} = S_1 = S_1 = S_1$	0.00	$R = 1.25$ $C_S = 0$ $\rho = 1.3$	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5 may be used to calculate the base shear, C_s , of structures under five stories and with a period, T ,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S $_{ds}$ of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W M 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>1689.67</u>	<u>5746.25</u>	k
Compressive Load =	<u>5000.99</u>	<u>5186.92</u>	k
Lateral Load =	<u>9.45</u>	2070.47	k
Moment (Weak Axis) =	0.02	<u>0.01</u>	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check $M_O = 143785.6 \text{ in-lbs}$ Resisting Force Required = 2178.57 lbs A minimum 132in long x 32in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3630.95 lbs to resist overturning. Minimum Width = <u>32 in</u> in Weight Provided = 6380.00 lbs Sliding 497.59 lbs Force = Friction = Use a 132in long x 32in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 1243.98 lbs Resisting Weight = 6380.00 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 497.59 lbs Cohesion = 130 psf Use a 132in long x 32in wide x 18in tall 29.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3190.00 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required.

2500 psi

8 in

Bearing Pressure

 $f'_c =$ Length =

 $\frac{\text{Ballast Width}}{32 \text{ in}} = \frac{33 \text{ in}}{34 \text{ in}} = \frac{35 \text{ in}}{35 \text{ in}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.67 \text{ ft}) = \frac{6380 \text{ lbs}}{6579 \text{ lbs}} = \frac{6779 \text{ lbs}}{6978 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D+	+ 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D+	+ 1.0W	
Width	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in
FA	1681 lbs	1681 lbs	1681 lbs	1681 lbs	1825 lbs	1825 lbs	1825 lbs	1825 lbs	2504 lbs	2504 lbs	2504 lbs	2504 lbs	-806 lbs	-806 lbs	-806 lbs	-806 lbs
F _B	1740 lbs	1740 lbs	1740 lbs	1740 lbs	1892 lbs	1892 lbs	1892 lbs	1892 lbs	2595 lbs	2595 lbs	2595 lbs	2595 lbs	-2757 lbs	-2757 lbs	-2757 lbs	-2757 lbs
F _V	148 lbs	148 lbs	148 lbs	148 lbs	878 lbs	878 lbs	878 lbs	878 lbs	759 lbs	759 lbs	759 lbs	759 lbs	-995 lbs	-995 lbs	-995 lbs	-995 lbs
P _{total}	9801 lbs	10000 lbs	10199 lbs	10399 lbs	10098 lbs	10297 lbs	10496 lbs	10696 lbs	11479 lbs	11679 lbs	11878 lbs	12077 lbs	265 lbs	384 lbs	504 lbs	624 lbs
M	4082 lbs-ft	4082 lbs-ft	4082 lbs-ft	4082 lbs-ft	5504 lbs-ft	5504 lbs-ft	5504 lbs-ft	5504 lbs-ft	6885 lbs-ft	6885 lbs-ft	6885 lbs-ft	6885 lbs-ft	1381 lbs-ft	1381 lbs-ft	1381 lbs-ft	1381 lbs-ft
е	0.42 ft	0.41 ft	0.40 ft	0.39 ft	0.55 ft	0.53 ft	0.52 ft	0.51 ft	0.60 ft	0.59 ft	0.58 ft	0.57 ft	5.22 ft	3.59 ft	2.74 ft	2.21 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	258.2 psf	257.0 psf	255.8 psf	254.7 psf	241.9 psf	241.2 psf	240.5 psf	239.8 psf	263.3 psf	261.9 psf	260.6 psf	259.4 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	410.0 psf	404.2 psf	398.7 psf	393.5 psf	446.6 psf	439.6 psf	433.1 psf	426.9 psf	519.4 psf	510.2 psf	501.6 psf	493.5 psf	232.9 psf	48.9 psf	43.0 psf	43.4 psf

Maximum Bearing Pressure = 519 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

A minimum 132in long x 32in wide x 18in tall

Overturning Check

1211.3 ft-lbs $M_O =$

Resisting Force Required = 908.49 lbs

S.F. = 1.67

Weight Required = 1514.16 lbs Minimum Width = 32 in in

ballast foundation is required to resist overturning.

Weight Provided = 6380.00 lbs

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E		
Width		32 in		32 in			32 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	233 lbs	630 lbs	233 lbs	917 lbs	2784 lbs	917 lbs	68 lbs	184 lbs	68 lbs
F _V	1 lbs	0 lbs	1 lbs	3 lbs	0 lbs	3 lbs	0 lbs	0 lbs	0 lbs
P _{total}	8131 lbs	6380 lbs	8131 lbs	8436 lbs	6380 lbs	8436 lbs	2378 lbs	6380 lbs	2378 lbs
М	3 lbs-ft	0 lbs-ft	3 lbs-ft	11 lbs-ft	0 lbs-ft	11 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft
f _{min}	277.0 psf	217.5 psf	277.0 psf	286.7 psf	217.5 psf	286.7 psf	81.0 psf	217.5 psf	81.0 psf
f _{max}	277.4 psf	217.5 psf	277.4 psf	288.4 psf	217.5 psf	288.4 psf	81.1 psf	217.5 psf	81.1 psf

Maximum Bearing Pressure = 288 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 32in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.847 k	Maximum Axial Load = 4.022 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>52%</u>	Utilization = <u>54%</u>
<u>Diagonal Strut</u>		
Maximum Axial Load =	1.503 k	
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)
Utilization =	<u>20%</u>	
0		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.031 \text{ in} \\ \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 117 \text{ in}$$

$$J = 0.432$$

$$323.677$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

 $S2 = 1701.56$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L = 27.5 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 117$$
 $J = 0.432$
205.839

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 28.7$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

Not Used

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

38.9 ksi

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 25.1 \text{ ksi} \\ lx = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ y = & 41.015 \text{ mm} \\ Sx = & 1.335 \text{ in}^3 \\ M_{max} St = & 2.788 \text{ k-ft} \end{array}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 23.1 \, \, ksi \\ y = & 446476 \, \, mm^4 \\ & 1.073 \, \, in^4 \\ x = & 45.5 \, \, mm \\ Sy = & 0.599 \, \, in^3 \\ M_{max} W \, k = & 1.152 \, \, k\text{-ft} \end{array}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = **BF0**

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

b/t =

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

16.2

$$\phi F_L = 31.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.2$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used

Rb/t = 18.1

$$\left(Bt - 1.17 \frac{\theta_y}{\theta_t} Fcy\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$
 2.366 in^4
 $y = 43.717 \text{ mm}$
 $Sx = 1.375 \text{ in}^3$
 $M_{max} St = 3.363 \text{ k-ft}$

 $\phi F_L = 1.3 \phi y F c y$

43.2 ksi

3.4.16.1

N/A for Weak Direction

3.4.18
$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ ly = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

 $M_{max}St =$

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

S1 = 12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L}_b = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \mathsf{\phiF_L} = & 31.4 \text{ ksi} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ \mathsf{S2} &= 1701.56 \\ \phi \mathsf{F}_{L} &= \phi b [\mathsf{Bc-1.6Dc}^{*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb}^{*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \phi \mathsf{F}_{L} &= 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

24.5

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

 $0.621 in^{3}$

1.460 k-ft

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

$$V = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_b = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2))}}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\varphi F_L = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

$\varphi F_L =$

3.4.16.1

3.4.16

N/A for Weak Direction

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$

 $S2 = \frac{k_1 Bp}{1.6Dp}$

S1 = 12.2

24.5

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$\varphi F_L St = 28.2 \text{ ksi}$

$$Ix = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

 $M_{\text{max}}St = 1.460 \text{ k-ft}$

Max 01 = 1.400 K-11

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

0 4 40

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ \text{Sy} = & 0.621 \text{ in}^3 \\ M_{\text{max}} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$
 $A = 663.99 \text{ mm}^2$

1.03 in²

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\phi F_L =$ $\phi F_1 St =$ 28.2 ksi

 $lx = 279836 \text{ mm}^4$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi cc = 0.76536$ $\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_L = 18.9268$ ksi

$$\begin{split} \phi F_L &= \phi cc (Bc\text{-}Dc^*\lambda) \\ \phi F_L &= 18.9268 \text{ ksi} \end{split}$$
 3.4.9
$$b/t &= 24.5 \\ \text{S1} &= 12.21 \text{ (See 3.4.16 above for formula)} \\ \text{S2} &= 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L &= \phi c [Bp\text{-}1.6Dp^*b/t] \\ \phi F_L &= 28.2 \text{ ksi} \end{split}$$

$$b/t &= 24.5 \\ \text{S1} &= 12.21 \\ \text{S2} &= 32.70 \\ \phi F_L &= \phi c [Bp\text{-}1.6Dp^*b/t] \\ \phi F_L &= 28.2 \text{ ksi} \end{split}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-52.98	-52.98	0	0
2	M14	٧	-52.98	-52.98	0	0
3	M15	V	-84.769	-84.769	0	0
4	M16	V	-84.769	-84.769	0	0

Member Distributed Loads (BLC 5 : Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	121.855	121.855	0	0
2	M14	V	94.305	94.305	0	0
3	M15	V	52.98	52.98	0	0
4	M16	V	52 98	52.98	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E				1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations (Continued)

_	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
	LATERAL - ASD 1.238D + 0.875E				1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	382.572	2	1197.377	1	1.002	1	.004	1	Ö	1	Ó	1
2		min	-503.85	3	-1350.993	3	.037	15	0	15	0	1	0	1
3	N7	max	.031	9	1303.051	1	248	15	0	15	0	1	0	1
4		min	114	2	-382.114	3	-7.272	1	016	1	0	1	0	1
5	N15	max	.023	9	3846.917	1	0	2	0	2	0	1	0	1
6		min	-1.469	2	-1299.747	3	0	11	0	11	0	1	0	1
7	N16	max	1461.242	2	3989.942	1	0	2	0	2	0	1	0	1
8		min	-1592.671	3	-4420.195	3	0	12	0	12	0	1	0	1
9	N23	max	.031	9	1303.051	1	7.272	1	.016	1	0	1	0	1
10		min	114	2	-382.114	3	.248	15	0	15	0	1	0	1
11	N24	max	382.572	2	1197.377	1	037	15	0	15	0	1	0	1
12		min	-503.85	3	-1350.993	3	-1.002	1	004	1	0	1	0	1
13	Totals:	max	2224.689	2	12837.716	1	0	2						
14		min	-2601.169	3	-9186.156	3	0	12						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	79.576	1	535.596	1	-4.335	15	0	3	.189	1	0	1
2			min	2.613	15	-693.659	3	-132.7	1	015	1	.006	15	0	3
3		2	max	79.576	1	374.999	1	-3.333	15	0	3	.062	1	.64	3
4			min	2.613	15	-488.052	3	-101.972	1	015	1	.002	15	493	1
5		3	max	79.576	1	214.402	1	-2.332	15	0	3	0	3	1.057	3
6			min	2.613	15	-282.444	3	-71.243	1	015	1	032	1	812	1
7		4	max	79.576	1	53.805	1	-1.33	15	0	3	002	12	1.252	3
8			min	2.613	15	-76.836	3	-40.514	1	015	1	092	1	958	1
9		5	max	79.576	1	128.772	3	328	15	0	3	004	12	1.224	3
10			min	2.613	15	-106.792	1	-9.786	1	015	1	12	1	929	1
11		6	max	79.576	1	334.38	3	20.943	1	0	3	004	15	.973	3
12			min	2.613	15	-267.389	1	.188	12	015	1	114	1	726	1
13		7	max	79.576	1	539.988	3	51.672	1	0	3	002	15	.499	3
14			min	2.613	15	-427.986	1	1.19	12	015	1	074	1	35	1
15		8	max	79.576	1	745.596	3	82.401	1	0	3	0	10	.201	1
16			min	2.613	15	-588.583	1	2.191	12	015	1	002	3	197	3
17		9	max	79.576	1	951.203	3	113.129	1	0	3	.104	1	.926	1
18			min	2.613	15	-749.18	1	3.193	12	015	1	.001	12	-1.116	3
19		10	max	79.576	1	909.777	1	-4.195	12	0	3	.243	1	1.824	1
20			min	2.613	15	-1156.811	3	-143.858	1	015	1	.005	12	-2.258	3
21		11	max	79.576	1	749.18	1	-3.193	12	.015	1	.104	1	.926	1
22			min	2.613	15	-951.203	3	-113.129	1	0	3	.001	12	-1.116	3
23		12	max	79.576	1	588.583	1	-2.191	12	.015	1	0	10	.201	1
24			min	2.613	15	-745.596	3	-82.401	1	0	3	002	3	197	3
25		13	max	79.576	1	427.986	1	-1.19	12	.015	1	002	15	.499	3
26			min	2.613	15	-539.988	3	-51.672	1	0	3	074	1	35	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
27		14	max	79.576	1	267.389	1	188	12	.015	1	004	15	.973	3
28			min	2.613	15	-334.38	3	-20.943	1	0	3	114	1	726	1
29		15	max	79.576	1_	106.792	1	9.786	1	.015	1	004	12	1.224	3
30			min	2.613	15	-128.772	3	.328	15	0	3	12	1	929	1
31		16	max	79.576	1	76.836	3	40.514	1	.015	1	002	12	1.252	3
32			min	2.613	15	-53.805	1	1.33	15	0	3	092	1	958	1
33		17	max	79.576	1	282.444	3	71.243	1	.015	1	0	3	1.057	3
34			min	2.613	15	-214.402	1	2.332	15	0	3	032	1	812	1
35		18	max	79.576	1	488.052	3	101.972	1	.015	1	.062	1	.64	3
36			min	2.613	15	-374.999	1	3.333	15	0	3	.002	15	493	1
37		19	max	79.576	1	693.659	3	132.7	1	.015	1	.189	1	0	1
38			min	2.613	15	-535.596	1	4.335	15	0	3	.006	15	0	3
39	M14	1	max	37.68	1	569.395	1	-4.472	15	.009	3	.216	1	0	1
40			min	1.239	15	-549.682	3	-136.893	1	012	1	.007	15	0	3
41		2	max	37.68	1	408.798	1	-3.47	15	.009	3	.085	1	.51	3
42			min	1.239	15	-391.828	3	-106.165	1	012	1	.003	15	53	1
43		3	max	37.68	1	248.201	1	-2.468	15	.009	3	.001	3	.849	3
44			min	1.239	15	-233.973	3	-75.436	1	012	1	014	1	886	1
45		4	max	37.68	1	87.604	1	-1.466	15	.009	3	002	12	1.017	3
46			min	1.239	15	-76.118	3	-44.707	1	012	1	079	1	-1.068	1
47		5	max	37.68	1	81.736	3	465	15	.009	3	003	12	1.014	3
48			min	1.239	15	-72.993	1	-13.978	1	012	1	111	1	-1.076	1
49		6	max	37.68	1	239.591	3	16.75	1	.009	3	004	15	.84	3
50			min	1.239	15	-233.591	1	.037	3	012	1	109	1	909	1
51		7	max	37.68	1	397.445	3	47.479	1	.009	3	002	15	.495	3
52			min	1.239	15	-394.188	1	1.058	12	012	1	074	1	569	1
53		8	max	37.68	1	555.3	3	78.208	1	.009	3	0	10	0	15
54			min	1.239	15	-554.785	1	2.059	12	012	1	006	1	064	2
55		9	max	37.68	1	713.154	3	108.936	1	.009	3	.095	1	.633	1
56			min	1.239	15	-715.382	1	3.061	12	012	1	.001	12	708	3
57		10	max	37.68	1	875.979	1	-4.063	12	.009	3	.23	1	1.495	1
58			min	1.239	15	-871.009	3	-139.665	1	012	1	.005	12	-1.566	3
59		11	max	37.68	1	715.382	1	-3.061	12	.012	1	.095	1	.633	1
60			min	1.239	15	-713.154	3	-108.936	1	009	3	.001	12	708	3
61		12	max	37.68	1	554.785	1	-2.059	12	.012	1	0	10	0	15
62			min	1.239	15	-555.3	3	-78.208	1	009	3	006	1	064	2
63		13	max	37.68	1	394.188	1	-1.058	12	.012	1	002	15	.495	3
64			min	1.239	15	-397.445	3	-47.479	1	009	3	074	1	569	1
65		14	max	37.68	1	233.591	1	037	3	.012	1	004	15	.84	3
66			min	1.239	15	-239.591	3	-16.75	1	009	3	109	1	909	1
67		15	max	37.68	1	72.993	1	13.978	1	.012	1	003	12	1.014	3
68			min	1.239	15	-81.736	3	.465	15	009	3	111	1	-1.076	1
69		16	max	37.68	1	76.118	3	44.707	1	.012	1	002	12	1.017	3
70			min	1.239	15	-87.604	1	1.466	15	009	3	079	1	-1.068	1
71		17	max	37.68	1	233.973	3	75.436	1	.012	1	.001	3	.849	3
72			min	1.239	15	-248.201	1	2.468	15	009	3	014	1	886	1
73		18	max	37.68	1	391.828	3	106.165	1	.012	1	.085	1	.51	3
74			min	1.239	15	-408.798	1	3.47	15	009	3	.003	15	53	1
75		19	max	37.68	1	549.682	3	136.893	1	.012	1	.216	1	0	1
76			min	1.239	15	-569.395	1	4.472	15	009	3	.007	15	0	3
77	M15	1	max	-1.3	15	671.185	2	-4.471	15	.013	1	.216	1	0	2
78			min	-39.48	1	-308.204	3	-136.881	1	008	3	.007	15	0	3
79		2	max	-1.3	15	479.893	2	-3.469	15	.013	1	.084	1	.287	3
80			min	-39.48	1	-221.98	3	-106.152	1	008	3	.003	15	623	2
81		3	max	-1.3	15	288.602	2	-2.467	15	.013	1	.003	3	.481	3
82			min	-39.48	1	-135.755	3	-75.423	1	008	3	014	1	-1.04	2
83		4	max	-1.3	15	97.94	1	-1.466	15	.013	1	002	12	.581	3
			,ux			0.101									

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
84			min	-39.48	1	-49.531	3	-44.695	1	008	3	079	1	-1.249	2
85		5	max	-1.3	15	36.694	3	464	15	.013	1	003	12	.588	3
86			min	-39.48	1	-93.982	2	-13.966	1	008	3	111	1	-1.251	2
87		6	max	-1.3	15	122.918	3	16.763	1	.013	1	004	15	.502	3
88			min	-39.48	1	-285.273	2	.093	12	008	3	109	1	-1.045	2
89		7	max	-1.3	15	209.143	3	47.492	1	.013	1	002	15	.322	3
90			min	-39.48	1	-476.565	2	1.095	12	008	3	074	1	637	1
91		8	max	-1.3	15	295.367	3	78.22	1	.013	1	0	10	.049	3
92		T .	min	-39.48	1	-667.856	2	2.097	12	008	3	006	1	029	1
93		9	max	-1.3	15	381.592	3	108.949	1	.013	1	.095	1	.815	2
94		1 3	min	-39.48	1	-859.148	2	3.098	12	008	3	.001	12	318	3
95		10		-1.3	15	1050.44	2	-4.1	12	.013	1	.23	1	1.849	2
96		10	max	-39.48	1	-467.816	3	-139.678	1	008	11	.005	12		3
		4.4	min											778	
97		11	max	-1.3	15	859.148	2	-3.098	12	.008	3	.095	1	.815	2
98		40	min	-39.48	1_	-381.592	3	-108.949	1	013	1	.001	12	318	3
99		12	max	-1.3	15	667.856	2	-2.097	12	.008	3	0	<u>10</u>	.049	3
100			min	-39.48	1	-295.367	3	-78.22	1	013	1	006	_1_	029	1
101		13	max	-1.3	15	476.565	2	-1.095	12	.008	3	002	15	.322	3
102			min	-39.48	1	-209.143	3	-47.492	1	013	1	074	1_	637	1
103		14	max	-1.3	15	285.273	2	093	12	.008	3	004	<u>15</u>	.502	3
104			min	-39.48	1	-122.918	3	-16.763	1	013	1	109	1	-1.045	2
105		15	max	-1.3	15	93.982	2	13.966	1	.008	3	003	12	.588	3
106			min	-39.48	1	-36.694	3	.464	15	013	1	111	1	-1.251	2
107		16	max	-1.3	15	49.531	3	44.695	1	.008	3	002	12	.581	3
108			min	-39.48	1	-97.94	1	1.466	15	013	1	079	1	-1.249	2
109		17	max	-1.3	15	135.755	3	75.423	1	.008	3	.001	3	.481	3
110			min	-39.48	1	-288.602	2	2.467	15	013	1	014	1	-1.04	2
111		18	max	-1.3	15	221.98	3	106.152	1	.008	3	.084	1	.287	3
112		10	min	-39.48	1	-479.893	2	3.469	15	013	1	.003	15	623	2
113		19	max	-1.3	15	308.204	3	136.881	1	.008	3	.216	1	0	2
114		10	min	-39.48	1	-671.185	2	4.471	15	013	1	.007	15	0	3
115	M16	1	max	-2.763	15	640.568	2	-4.34	15	.013	1	.19	1	0	2
116	IVITO		min	-84.046	1	-286.275	3	-132.894	1	011	3	.006	15	0	3
117		2		-2.763	15	449.277	2	-3.338	15	.013	1	.063	1 <u>5</u>	.263	3
118			max		1	-200.051	3		1		3				2
		2	min	-84.046 -2.763	_		2	-102.166 -2.336		011	1	.002	15	59	
119		3	max		15	257.985			15	.013	_	0	3	.433	3
120		1	min	-84.046	1_	-113.826	3	-71.437	1_	011	3	031	1	973	2
121		4	max	-2.763	15	66.694	2	-1.334	15	.013	1	002	12	.51	3
122		-	min	-84.046	1_	-27.602	3	-40.708	1_	011	3	092	1_	-1.149	2
123		5	max	-2.763	15	58.623	3	332	15	.013	1	004	12	.493	3
124			mın		1_	-124.598		-9.98	1	011	3	119	<u>1</u>	-1.118	2
125		6	max		15	144.847	3	20.749	1	.013	1	004	<u>15</u>	.383	3
126			min	-84.046	1	-315.89	2	.314	12	011	3	114	_1_	879	2
127		7	max		15	231.072	3	51.478	1	.013	1	002	15	.179	3
128			min	-84.046	1	-507.181	2	1.315	12	011	3	074	1_	433	2
129		8	max		15	317.296	3	82.207	1_	.013	1	0	10	.223	1
130			min	-84.046	1	-698.473	2	2.317	12	011	3	002	1	118	3
131		9	max	-2.763	15	403.521	3	112.935	1	.013	1	.104	1_	1.08	2
132			min	-84.046	1	-889.765	2	3.319	12	011	3	.002	12	508	3
133		10	max		15	1081.056		-4.321	12	.013	1	.243	1	2.147	2
134			min		1	-489.746		-143.664		011	3	.006	12	992	3
135		11	max		15	889.765	2	-3.319	12	.011	3	.104	1	1.08	2
136			min	-84.046	1	-403.521	3	-112.935		013	1	.002	12	508	3
137		12	max		15	698.473	2	-2.317	12	.011	3	0	10	.223	1
138		_ ·-	min	-84.046	1	-317.296	3	-82.207	1	013	1	002	1	118	3
139		13	max		15	507.181	2	-1.315	12	.011	3	002	15	.179	3
140		10	min	-84.046	1	-231.072		-51.478	1	013	1	074	1	433	2
170			111111	UT.UTU		201.012	J	01.770		.010		.077			

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]			LC			Torque[k-ft]	LC			z-z Mome	LC
141		14	max	-2.763	15	315.89	2	314	12	.011	3	004	15	.383	3
142			min	-84.046	1_	-144.847	3	-20.749	1	013	1	114	1_	879	2
143		15	max	-2.763	15	124.598	2	9.98	1	.011	3	004	12	.493	3
144			min	-84.046	1	-58.623	3	.332	15	013	1	119	1	-1.118	2
145		16	max	-2.763	15	27.602	3	40.708	1	.011	3	002	12	.51	3
146			min	-84.046	1	-66.694	2	1.334	15	013	1	092	1	-1.149	2
147		17	max	-2.763	15	113.826	3	71.437	1	.011	3	0	3	.433	3
148			min	-84.046	1	-257.985	2	2.336	15	013	1	031	1	973	2
149		18	max	-2.763	15	200.051	3	102.166	1	.011	3	.063	1	.263	3
150			min	-84.046	1	-449.277	2	3.338	15	013	1	.002	15	59	2
151		19	max	-2.763	15	286.275	3	132.894	1	.011	3	.19	1	0	2
152			min	-84.046	1	-640.568	2	4.34	15	013	1	.006	15	0	3
153	M2	1	max	1170.124	1	2.28	4	1.133	1	0	3	0	3	0	1
154			min	-1230.683	3	.537	15	.037	15	0	1	0	1	0	1
155		2	max	1170.452	1	2.265	4	1.133	1	0	3	0	1	0	15
156			min	-1230.436	3	.534	15	.037	15	0	1	0	15	0	4
157		3	max	1170.78	1	2.25	4	1.133	1	0	3	0	1	0	15
158			min	-1230.19	3	.53	15	.037	15	0	1	0	15	001	4
159		4	max	1171.109	1	2.235	4	1.133	1	0	3	0	1	0	15
160			min	-1229.944	3	.526	15	.037	15	0	1	0	15	002	4
161		5		1171.437	1	2.219	4	1.133	1	0	3	0	1	0	15
162			min	-1229.697	3	.523	15	.037	15	0	1	0	15	002	4
163		6		1171.766	1	2.204	4	1.133	1	0	3	.001	1	0	15
164			min	-1229.451	3	.519	15	.037	15	0	1	0	15	002	4
165		7		1172.094	1	2.189	4	1.133	1	0	3	.001	1	0	15
166			min	-1229.205	3	.516	15	.037	15	0	1	0	15	003	4
167		8	max		1	2.174	4	1.133	1	0	3	.002	1	0	15
168			min	-1228.958	3	.512	15	.037	15	0	1	0	15	003	4
169		9		1172.751	1	2.158	4	1.133	1	0	3	.002	1	0	15
170		- 3	min	-1228.712	3	.509	15	.037	15	0	1	0	15	004	4
171		10		1173.079	1	2.143	4	1.133	1	0	3	.002	1	004	15
172		10	min	-1228.466	3	.505	15	.037	15	0	1	0	15	004	4
173		11		1173.408	1	2.128	4	1.133	1	0	3	.002	1	004	15
174			min	-1228.219	3	.501	15	.037	15	0	1	0	15	005	4
175		12		1173.736	<u> </u>	2.113	4	1.133	1		3	.003	1	003	
176		12	min	-1227.973	3	.498	15	.037	15	0	1	0	15	005	15
		12				2.097								003	-
177 178		13		1174.065	3	.494	4 15	1.133 .037	15	0	1	.003	1 15		15
		14	min								_			006	4
179		14		1174.393	1	2.082	4	1.133	1	0	3	.003	1	001	15
180		4.5	min	-1227.48	3	.491	15	.037	15	0	1	0	15	006	4
181		15		1174.722	1	2.067	4	1.133	1	0	3	.003	1	002	15
182		40	min	-1227.234	3	.487	15	.037	15	0	1	0	15	007	4
183		16		1175.05	1	2.052	4	1.133	1	0	3	.004	1_	002	15
184		4-	min		3	.483	15	.037	15	0	1	0	15	007	4
185		17		1175.379	1	2.036	4	1.133	1_	0	3	.004	1	002	15
186		4.0	min		3	.48	15	.037	15	0	1	0	15	008	4
187		18		1175.707	1	2.021	4	1.133	1_	0	3	.004	1	002	15
188			min	-1226.495	3	.476	15	.037	15	0	1	0	15	008	4
189		19		1176.035	1	2.006	4	1.133	1	0	3	.005	1	002	15
190			min	-1226.249	3	.473	15	.037	15	0	1	0	15	009	4
191	M3	1	max	358.935	2	8.078	4	.015	1	0	3	0	1	.009	4
192			min		3	1.899	15	0	15	0	1	0	15	.002	15
193		2	max		2	7.305	4	.015	1	0	3	0	1	.005	4
194			min		3	1.718	15	0	15	0	1	0	15	.001	12
195		3	max	358.594	2	6.533	4	.015	1	0	3	0	1	.003	2
196			min		3	1.536	15	0	15	0	1	0	15	0	3
197		4	max	358.424	2	5.761	4	.015	1	0	3	0	1	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

199		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
200	198			min	-477.268	3	1.355	15	0	15	0	1	0	15	001	3
201	199		5	max	358.253	2	4.988	4	.015	1	0	3	0	1	0	15
202	200			min		3	1.173	15	0	15	0		0	15	003	3
203			6	max	358.083	2	4.216	4	.015	1	0	3	0	1	001	15
204	202			min	-477.524	3	.992	15	0	15	0	1	0	15	004	4
205	203		7	max	357.913	2	3.443		.015		0	3	0		001	15
Dec Principle Principle	204			min	-477.651	3		15	0	15	0	1	0	15	006	4
207	205		8	max	357.742	2			.015		0	3	0		002	15
208	206			min	-477.779	3	.628	15	0	15	0	1	0	15	007	4
209			9	max	357.572	2	1.898		.015		0	3	0	1	002	15
210	208			min	-477.907	3	.447	15	0	15	0	1	0	15	008	4
1	209		10	max	357.402	2			.015		0	3	0			15
212	210			min		3				15	0		0	15	009	4
213			11	max		2	.429		.015	1	0	3	0	1	002	15
214	212			min	-478.162	3	004	3	0	15	0	1	0	15	009	4
215	213		12	max	357.061	2	098		.015		0	3	0		002	15
216				min	-478.29	3	455		0	15	0	_	0	15	009	4
217	215		13	max	356.891	2	279	15	.015		0	3	0	1	002	15
218	216			min	-478.418	3	-1.191	4	0	15	0	1	0	15	009	4
219	217		14	max	356.72	2	461	15	.015	1	0	3	0	1	002	15
220	218			min	-478.546	3		4	0	15	0	1	0	15		4
221	219		15	max		2	643	15	.015		0	3	0	1	002	15
222	220			min	-478.674	3	-2.736	4	0	15	0	1	0	15	007	4
17 max 356,299 2 -1,006 15 .015 1 .0 3 .0 1 .001 1	221		16	max		2	824	15	.015	1	0	3	0	1	001	15
224	222			min	-478.801	3	-3.509	4	0	15	0	1	0	15	006	4
225	223		17	max	356.209	2	-1.006	15	.015	1	0	3	0	1	001	15
226	224			min	-478.929	3	-4.281	4	0	15	0	1	0	15	004	4
226	225		18	max	356.039	2	-1.187	15	.015	1	0	3	0	1	0	15
228	226				-479.057	3	-5.053	4	0	15	0	1	0	15	002	4
229 M4	227		19	max	355.869	2	-1.369	15	.015	1	0	3	0	1	0	1
230	228			min	-479.185	3	-5.826	4	0	15	0	1	0	15	0	1
231	229	M4	1	max	1299.985	1	0	1	248	15	0	1	0	1	0	1
232	230			min	-384.414	3	0	1	-7.579	1	0	1	0	10	0	1
233 3 max 1300.326 1 0 1 248 15 0 1 0 15 0 234 min -384.158 3 0 1 -7.579 1 0 1 002 1 0 235 4 max 1300.496 1 0 1 248 15 0 1 0 15 0 236 min -384.03 3 0 1 -7.579 1 0 1 002 1 0 237 5 max 1300.666 1 0 1 -248 15 0 1 0 15 0 238 min -383.903 3 0 1 -7.579 1 0 1 -003 1 0 1 -248 15 0 1 0 15 0 1 0 1 -248 15 0 1	231		2	max	1300.155	1	0	1	248	15	0	1	0	12	0	1
234	232			min	-384.286	3	0	1	-7.579	1	0	1	0	1	0	1
235 4 max 1300.496 1 0 1 248 15 0 1 0 15 0 236 min -384.03 3 0 1 -7.579 1 0 1 002 1 0 237 5 max 1300.666 1 0 1 248 15 0 1 0 15 0 238 min -383.903 3 0 1 -7.579 1 0 1 003 1 0 239 6 max 1300.837 1 0 1 248 15 0 1 0 15 0 240 min -383.775 3 0 1 -7.579 1 0 1 -0.04 1 0 1 2.248 15 0 1 0 15 0 1 0 1 -248 15 0 1 </td <td>233</td> <td></td> <td>3</td> <td>max</td> <td>1300.326</td> <td>1</td> <td>0</td> <td>1</td> <td>248</td> <td>15</td> <td>0</td> <td>1</td> <td>0</td> <td>15</td> <td>0</td> <td>1</td>	233		3	max	1300.326	1	0	1	248	15	0	1	0	15	0	1
236 min -384.03 3 0 1 -7.579 1 0 1 -,002 1 0 237 5 max 1300.666 1 0 1 -,248 15 0 1 0 15 0 238 min -383.903 3 0 1 -7.579 1 0 1 -,003 1 0 239 6 max 1300.837 1 0 1 -,248 15 0 1 0 15 0 240 min -383.775 3 0 1 -7.579 1 0 1 -,004 1 0 241 7 max 1301.007 1 0 1 -7.579 1 0 1 -0.004 1 0 1 -2.248 15 0 1 0 1 5 0 1 0 1 -0.005 1 <t< td=""><td>234</td><td></td><td></td><td>min</td><td>-384.158</td><td>3</td><td>0</td><td>1</td><td>-7.579</td><td>1</td><td>0</td><td>1</td><td>002</td><td>1</td><td>0</td><td>1</td></t<>	234			min	-384.158	3	0	1	-7.579	1	0	1	002	1	0	1
237 5 max 1300.666 1 0 1 248 15 0 1 0 15 0 238 min -383.903 3 0 1 -7.579 1 0 1 003 1 0 239 6 max 1300.837 1 0 1 248 15 0 1 0 15 0 240 min -383.775 3 0 1 -7.579 1 0 1 004 1 0 241 7 max 1301.007 1 0 1 248 15 0 1 0 15 0 242 min -383.647 3 0 1 -7.579 1 0 1 005 1 0 243 8 max 1301.177 1 0 1 248 15 0 1 0 15	235		4	max	1300.496	1	0	1	248	15	0	1	0	15	0	1
238 min -383.903 3 0 1 -7.579 1 0 1 003 1 0 239 6 max 1300.837 1 0 1 248 15 0 1 0 15 0 240 min -383.775 3 0 1 -7.579 1 0 1 004 1 0 241 7 max 1301.007 1 0 1 248 15 0 1 0 15 0 242 min -383.647 3 0 1 -7.579 1 0 1 005 1 0 243 8 max 1301.177 1 0 1 248 15 0 1 0 15 0 244 min -383.519 3 0 1 -7.579 1 0 1 -0.06 1 0	236			min	-384.03	3	0	1	-7.579	1	0	1	002	1	0	1
239 6 max 1300.837 1 0 1 248 15 0 1 0 15 0 240 min -383.775 3 0 1 -7.579 1 0 1 004 1 0 241 7 max 1301.007 1 0 1 248 15 0 1 0 15 0 242 min -383.647 3 0 1 -7.579 1 0 1 005 1 0 243 8 max 1301.177 1 0 1 248 15 0 1 0 15 0 244 min -383.519 3 0 1 -7.579 1 0 1 006 1 0 245 9 max 1301.348 1 0 1 -2.248 15 0 1 0 15 0 246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 <t< td=""><td>237</td><td></td><td>5</td><td>max</td><td>1300.666</td><td>1</td><td>0</td><td>1</td><td>248</td><td>15</td><td>0</td><td>1</td><td>0</td><td>15</td><td>0</td><td>1</td></t<>	237		5	max	1300.666	1	0	1	248	15	0	1	0	15	0	1
240 min -383.775 3 0 1 -7.579 1 0 1 004 1 0 241 7 max 1301.007 1 0 1 248 15 0 1 0 15 0 242 min -383.647 3 0 1 -7.579 1 0 1 005 1 0 243 8 max 1301.177 1 0 1 248 15 0 1 0 15 0 244 min -383.519 3 0 1 -7.579 1 0 1 006 1 0 245 9 max 1301.348 1 0 1 -248 15 0 1 0 15 0 246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 <	238			min	-383.903	3	0	1	-7.579	1	0	1	003	1	0	1
241 7 max 1301.007 1 0 1 248 15 0 1 0 15 0 242 min -383.647 3 0 1 -7.579 1 0 1 005 1 0 243 8 max 1301.177 1 0 1 248 15 0 1 0 15 0 244 min -383.519 3 0 1 -7.579 1 0 1 006 1 0 245 9 max 1301.348 1 0 1 248 15 0 1 0 15 0 246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 247 10 max 1301.518 1 0 1 -248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1 008 1 0 <td< td=""><td>239</td><td></td><td>6</td><td>max</td><td>1300.837</td><td>1</td><td>0</td><td>1</td><td>248</td><td>15</td><td>0</td><td>1</td><td>0</td><td>15</td><td>0</td><td>1</td></td<>	239		6	max	1300.837	1	0	1	248	15	0	1	0	15	0	1
242 min -383.647 3 0 1 -7.579 1 0 1 005 1 0 243 8 max 1301.177 1 0 1 248 15 0 1 0 15 0 244 min -383.519 3 0 1 -7.579 1 0 1 006 1 0 245 9 max 1301.348 1 0 1 248 15 0 1 0 15 0 246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 247 10 max 1301.518 1 0 1 248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1 008 1 0	240			min	-383.775	3	0	1	-7.579	1	0	1	004	1	0	1
243 8 max 1301.177 1 0 1 248 15 0 1 0 15 0 244 min -383.519 3 0 1 -7.579 1 0 1 006 1 0 245 9 max 1301.348 1 0 1 248 15 0 1 0 15 0 246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 247 10 max 1301.518 1 0 1 248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1 008 1 0 249 11 max 1301.688 1 0 1 -248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 </td <td>241</td> <td></td> <td>7</td> <td>max</td> <td>1301.007</td> <td>1</td> <td>0</td> <td>1</td> <td>248</td> <td>15</td> <td>0</td> <td>1</td> <td>0</td> <td>15</td> <td>0</td> <td>1</td>	241		7	max	1301.007	1	0	1	248	15	0	1	0	15	0	1
244 min -383.519 3 0 1 -7.579 1 0 1 006 1 0 245 9 max 1301.348 1 0 1 248 15 0 1 0 15 0 246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 247 10 max 1301.518 1 0 1 248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1 008 1 0 249 11 max 1301.688 1 0 1 248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 0 1 009 1 0	242			min	-383.647	3	0	1	-7.579	1	0	1	005	1	0	1
245 9 max 1301.348 1 0 1 248 15 0 1 0 15 0 246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 247 10 max 1301.518 1 0 1 248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1 008 1 0 249 11 max 1301.688 1 0 1 248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 0 1 009 1 0 251 12 max 1301.859 1 0 1 248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1 009 1 0	243		8	max	1301.177	1	0	1	248	15	0	1	0	15	0	1
246 min -383.392 3 0 1 -7.579 1 0 1 007 1 0 247 10 max 1301.518 1 0 1 248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1 008 1 0 249 11 max 1301.688 1 0 1 248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 0 1 009 1 0 251 12 max 1301.859 1 0 1 -248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1 009 1 0 253 13 max 1302.029 1 0 1 248 <td< td=""><td>244</td><td></td><td></td><td>min</td><td>-383.519</td><td>3</td><td>0</td><td>1</td><td>-7.579</td><td>1</td><td>0</td><td>1</td><td>006</td><td>1</td><td>0</td><td>1</td></td<>	244			min	-383.519	3	0	1	-7.579	1	0	1	006	1	0	1
247 10 max 1301.518 1 0 1248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1008 1 0 249 11 max 1301.688 1 0 1248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 0 1009 1 0 251 12 max 1301.859 1 0 1248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1009 1 0 253 13 max 1302.029 1 0 1248 15 0 1 0 15 0	245		9	max	1301.348	1	0	1	248	15	0	1	0	15	0	1
247 10 max 1301.518 1 0 1248 15 0 1 0 15 0 248 min -383.264 3 0 1 -7.579 1 0 1008 1 0 249 11 max 1301.688 1 0 1248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 0 1009 1 0 251 12 max 1301.859 1 0 1248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1009 1 0 253 13 max 1302.029 1 0 1248 15 0 1 0 15 0						3		1				1	007			1
248 min -383.264 3 0 1 -7.579 1 0 1 008 1 0 249 11 max 1301.688 1 0 1 248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 0 1 009 1 0 251 12 max 1301.859 1 0 1 248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1 009 1 0 253 13 max 1302.029 1 0 1 248 15 0 1 0 15 0			10					1		-		1		15		1
249 11 max 1301.688 1 0 1248 15 0 1 0 15 0 250 min -383.136 3 0 1 -7.579 1 0 1009 1 0 251 12 max 1301.859 1 0 1248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1009 1 0 253 13 max 1302.029 1 0 1248 15 0 1 0 15 0						3		1				1	008			1
250 min -383.136 3 0 1 -7.579 1 0 1 009 1 0 251 12 max 1301.859 1 0 1 248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1 009 1 0 253 13 max 1302.029 1 0 1 248 15 0 1 0 15 0			11			1	0	1		15	0	1		15	0	1
251 12 max 1301.859 1 0 1 248 15 0 1 0 15 0 252 min -383.008 3 0 1 -7.579 1 0 1 009 1 0 253 13 max 1302.029 1 0 1 248 15 0 1 0 15 0						3		1				1				1
252 min -383.008 3 0 1 -7.579 1 0 1009 1 0 253 13 max 1302.029 1 0 1248 15 0 1 0 15 0			12					1				1		15	_	1
253 13 max 1302.029 1 0 1248 15 0 1 0 15 0								1				<u> </u>				1
			13					1				1				1
254	254			min		3	0	1	-7.579	1	0	1	01	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]				Torque[k-ft]	LC	y-y Mome			
255		14		1302.199	_1_	0	1	248	15	0	_1_	0	<u>15</u>	0	1
256			min	-382.753	3	0	1	-7.579	1	0	1_	011	1_	0	1
257		15	max		<u>1</u>	0	1	248	15	0	<u>1</u>	0	<u>15</u>	0	1
258			min	-382.625	3	0	1	-7.579	1	0	1	012	1	0	1
259		16	max	1302.54	1	0	1	248	15	0	1	0	15	0	1
260			min	-382.497	3	0	1	-7.579	1	0	1	013	1	0	1
261		17	max	1302.71	1	0	1	248	15	0	1	0	15	0	1
262			min	-382.369	3	0	1	-7.579	1	0	1	014	1	0	1
263		18	max	1302.881	1	0	1	248	15	0	1	0	15	0	1
264			min	-382.242	3	0	1	-7.579	1	0	1	015	1	0	1
265		19		1303.051	1	0	1	248	15	0	1	0	15	0	1
266			min	-382.114	3	0	1	-7.579	1	0	1	016	1	0	1
267	M6	1		3759.883	1	2.848	2	0	1	0	1	0	1	0	1
268	1410		min	-4022.444	3	.047	3	0	1	0	1	0	1	0	1
269		2		3760.212	1	2.837	2	0	1	0	1	0	1	0	3
270			min	-4022.198	3	.038	3	0	1	0	1	0	1	0	2
271		3	max		1	2.825	2	0	1	0	1	0	1	0	3
272		-	min	-4021.951	3	.029	3	0	1	0	1	0	1	001	2
273		4		3760.869	<u> </u>	2.813	2	0	1	0	1	0	1	0	3
		4		-4021.705			3	0	1		1	0	1	_	
274		E	min		3_1	.02			1	0	1	·	1	002	2
275		5		3761.197	1	2.801	2	0		0		0	<u> </u>	0	3
276			min	-4021.459	3	.011	3	0	1	0	1	0	1_	003	2
277		6		3761.525	1_	2.789	2	0	1	0	1	0	1	0	3
278		-	min	-4021.212	3	.002	3	0		0		0	_	003	2
279		7		3761.854	1_	2.777	2	0	1	0	1	0	1_	0	3
280			min	-4020.966	3	007	3	0	1	0	1	0	1_	004	2
281		8		3762.182	_1_	2.765	2	0	1	0	1	0	_1_	0	3
282		_	min	-4020.72	3_	016	3	0	1	0	1	0	_1_	004	2
283		9		3762.511	_1_	2.753	2	0	1	0	1	0	_1_	0	3
284			min	-4020.473	3	025	3	0	1	0	1_	0	1_	005	2
285		10		3762.839	_1_	2.741	2	0	1	0	_1_	0	_1_	0	3
286			min	-4020.227	3	034	3	0	1	0	_1_	0	_1_	006	2
287		11		3763.168	_1_	2.73	2	0	1	0	_1_	0	_1_	0	3
288			min	-4019.981	3	042	3	0	1	0	1	0	1	006	2
289		12	max	3763.496	_1_	2.718	2	0	1	0	_1_	0	_1_	0	3
290			min	-4019.734	3	051	3	0	1	0	1	0	1_	007	2
291		13	max	3763.824	<u>1</u>	2.706	2	0	1	0	_1_	0	<u>1</u>	0	3
292			min	-4019.488	3	06	3	0	1	0	1	0	1	007	2
293		14	max	3764.153	1	2.694	2	0	1	0	1	0	1	0	3
294			min	-4019.242	3	069	3	0	1	0	1	0	1	008	2
295		15	max	3764.481	1	2.682	2	0	1	0	1	0	1	0	3
296			min	-4018.995	3	078	3	0	1	0	1	0	1	009	2
297		16	max	3764.81	1	2.67	2	0	1	0	1	0	1	0	3
298			min		3	087	3	0	1	0	1	0	1	009	2
299		17		3765.138	1	2.658	2	0	1	0	1	0	1	0	3
300			min		3	096	3	0	1	0	1	0	1	01	2
301		18		3765.467	1	2.646	2	0	1	0	1	0	1	0	3
302			min		3	105	3	0	1	0	1	0	1	01	2
303		19		3765.795	1	2.634	2	0	1	0	1	0	1	0	3
304		ľ		-4018.01	3	114	3	0	1	0	1	0	1	011	2
305	M7	1		1395.412	2	8.117	4	0	1	0	1	0	1	.011	2
306			min	-1501.095	3	1.905	15	0	1	0	1	0	1	0	3
307		2		1395.242	2	7.344	4	0	1	0	1	0	1	.008	2
308		_	min		3	1.723	15	0	1	0	1	0	1	002	3
309		3		1395.071	2	6.572	4	0	1	0	1	0	1	.002	2
310			min		3	1.541	15	0	1	0	1	0	1	003	3
311		4		1394.901	2	5.799	4	0	1	0	1	0	1	.003	2
		т_	IIIIUX	1.00 7.001		0.700	т_		<u> </u>						

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1501.479	3	1.36	15	0	1	0	1	0	1	004	3
313		5	max	1394.731	2	5.027	4	0	1	0	1	0	_1_	.001	2
314			min	-1501.606	3	1.178	15	0	1	0	1	0	1	005	3
315		6	max		2	4.255	4	0	1	0	1	0	1	0	2
316			min	-1501.734	3	.997	15	0	1	0	1	0	1	006	3
317		7	max	1394.39	2	3.482	4	0	1	0	1	0	1	001	15
318			min	-1501.862	3	.815	15	0	1	0	1	0	1	007	3
319		8	max	1394.22	2	2.71	4	0	1	0	1	0	_1_	002	15
320			min	-1501.99	3	.618	12	0	1	0	1	0	1	007	3
321		9	max	1394.049	2	2.042	2	0	1	0	1	0	1	002	15
322			min	-1502.118	3	.318	12	0	1	0	1	0	1	008	4
323		10	max	1393.879	2	1.44	2	0	1	0	1	0	_1_	002	15
324			min	-1502.245	3	018	3	0	1	0	1	0	1	009	4
325		11	max	1393.709	2	.838	2	0	1	0	1	0	1	002	15
326			min	-1502.373	3	469	3	0	1	0	1	0	1	009	4
327		12	max	1393.538	2	.237	2	0	1	0	1	0	1	002	15
328			min	-1502.501	3	92	3	0	1	0	1	0	1	009	4
329		13	max	1393.368	2	274	15	0	1	0	1	0	1	002	15
330			min	-1502.629	3	-1.372	3	0	1	0	1	0	1	009	4
331		14	max	1393.198	2	456	15	0	1	0	1	0	1	002	15
332			min	-1502.756	3	-1.925	4	0	1	0	1	0	1	008	4
333		15	max	1393.027	2	637	15	0	1	0	1	0	1	002	15
334			min	-1502.884	3	-2.697	4	0	1	0	1	0	1	007	4
335		16	max	1392.857	2	819	15	0	1	0	1	0	1	001	15
336			min	-1503.012	3	-3.47	4	0	1	0	1	0	1	006	4
337		17	max	1392.687	2	-1.001	15	0	1	0	1	0	1	0	15
338			min	-1503.14	3	-4.242	4	0	1	0	1	0	1	004	4
339		18	max		2	-1.182	15	0	1	0	1	0	1	0	15
340			min	-1503.267	3	-5.014	4	0	1	0	1	0	1	002	4
341		19	max	1392.346	2	-1.364	15	0	1	0	1	0	1	0	1
342			min	-1503.395	3	-5.787	4	0	1	0	1	0	1	0	1
343	M8	1	max	3843.851	1	0	1	0	1	0	1	0	1	0	1
344			min	-1302.047	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3844.021	1	0	1	0	1	0	1	0	1	0	1
346			min	-1301.919	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3844.192	1	0	1	0	1	0	1	0	1	0	1
348			min	-1301.791	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3844.362	1	0	1	0	1	0	1	0	1	0	1
350			min	-1301.663	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3844.532	1	0	1	0	1	0	1	0	1	0	1
352				-1301.536	3	0	1	0	1	0	1	0	1	0	1
353		6		3844.703	1	0	1	0	1	0	1	0	1	0	1
354			min	-1301.408	3	0	1	0	1	0	1	0	1	0	1
355		7		3844.873	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8	max	3845.043	1	0	1	0	1	0	1	0	1	0	1
358			min	-1301.152	3	0	1	0	1	0	1	0	1	0	1
359		9	max	3845.214	1	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	0	1	0	1	0	1	0	1
361		10		3845.384	1	0	1	0	1	0	1	0	1	0	1
362			min		3	0	1	0	1	0	1	0	1	0	1
363		11	_	3845.554	1	0	1	0	1	0	1	0	1	0	1
364			min	-1300.769	3	0	1	0	1	0	1	0	1	0	1
365		12		3845.725	1	0	1	0	1	0	1	0	1	0	1
366		12	min	-1300.641	3	0	1	0	1	0	1	0	1	0	1
367		13		3845.895	1	0	1	0	1	0	1	0	1	0	1
368		· ·	min	-1300.514	3	0	1	0	1	0	1	0	1	0	1
500													_		

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC	I -	LC		LC
369		14		3846.065 -1300.386	1	0	1	0	<u>1</u> 1	0	1	0	1	0	1
370		15	min	3846.236	<u>3</u>	0	1	0	1	0	<u>1</u> 1	0	1	0	1
372		13		-1300.258	3	0	1	0	1	0	1	0	1	0	1
373		16		3846.406	<u> </u>	0	1	0	1	0	1	0	1	0	1
374		10		-1300.13	3	0	1	0	1	0	1	0	1	0	1
375		17		3846.576	1	0	1	0	1	0	-	0	1	0	1
376		- ' '		-1300.003	3	0	1	0	1	0	1	0	1	0	1
377		18		3846.747	1	0	1	0	1	0	1	0	1	0	1
378			min	-1299.875	3	0	1	0	1	0	1	0	1	0	1
379		19		3846.917	1	0	1	0	1	Ö	1	0	1	0	1
380			min	-1299.747	3	0	1	0	1	0	1	0	1	0	1
381	M10	1		1170.124	1	2.28	4	037	15	0	1	0	1	0	1
382			min	-1230.683	3	.537	15	-1.133	1	0	3	0	3	0	1
383		2	max	1170.452	1	2.265	4	037	15	0	1	0	15	0	15
384			min	-1230.436	3	.534	15	-1.133	1	0	3	0	1	0	4
385		3	max	1170.78	1	2.25	4	037	15	0	1	0	15	0	15
386			min	-1230.19	3	.53	15	-1.133	1	0	3	0	1	001	4
387		4	max	1171.109	1_	2.235	4	037	15	0	1	0	15	0	15
388			min	-1229.944	3	.526	15	-1.133	1	0	3	0	1	002	4
389		5	max	1171.437	_1_	2.219	4	037	15	0	_1_	0	15	0	15
390			min	-1229.697	3	.523	15	-1.133	1	0	3	0	1	002	4
391		6		1171.766	_1_	2.204	4	037	<u>15</u>	0	_1_	0	15	0	15
392			min	-1229.451	3	.519	15	-1.133	1_	0	3	001	1	002	4
393		7		1172.094	1_	2.189	4	037	<u>15</u>	0	1	0	15	0	15
394			min	-1229.205	3	.516	15	-1.133	1_	0	3	001	1_	003	4
395		8		1172.423	_1_	2.174	4	037	<u>15</u>	0	1	0	15	0	15
396			min	-1228.958	3	.512	15	-1.133	1_	0	3	002	1_	003	4
397		9		1172.751	1_	2.158	4	037	15	0	1_	0	15	0	15
398		40	min	-1228.712	3	.509	15	-1.133	1_	0	3	002	1_	004	4
399		10		1173.079 -1228.466	1	2.143	<u>4</u> 15	037	<u>15</u> 1	0	1	0	1 <u>5</u>	001	15
400		11	min	1173.408	<u>3</u> 1	.505 2.128	4	-1.133 037	15	0	<u>3</u>	002 0	15	004 001	15
402			min	-1228.219	3	.501	15	-1.133	1	0	3	002	1	005	4
403		12		1173.736	<u> </u>	2.113	4	037	15	0	1	0	15	003	15
404		12	min	-1227.973	3	.498	15	-1.133	1	0	3	003	1	005	4
405		13		1174.065	1	2.097	4	037	15	0	1	0	15	001	15
406		10		-1227.727	3	.494	15	-1.133	1	0	3	003	1	006	4
407		14		1174.393	1	2.082	4	037	15	0	1	0	15	001	15
408				-1227.48	3	.491	15	-1.133	1	0	3	003	1	006	4
409		15		1174.722	1	2.067	4	037	15	0	1	0	15	002	15
410			min	-1227.234	3	.487	15	-1.133	1	0	3	003	1	007	4
411		16		1175.05	1	2.052	4	037	15	0	1	0	15	002	15
412				-1226.988	3	.483	15	-1.133	1	0	3	004	1	007	4
413		17		1175.379	1	2.036	4	037	15	0	1	0	15	002	15
414				-1226.741	3	.48	15	-1.133	1	0	3	004	1	008	4
415		18		1175.707	1_	2.021	4	037	15	0	1	0	15	002	15
416				-1226.495	3	.476	15	-1.133	1_	0	3	004	1	008	4
417		19		1176.035	1_	2.006	4	037	15	0	1	0	15	002	15
418				-1226.249	3	.473	15	-1.133	1	0	3	005	1	009	4
419	<u>M11</u>	1		358.935	2	8.078	4	0	15	0	1	0	15	.009	4
420			min	-476.885	3	1.899	15	015	1	0	3	0	1	.002	15
421		2		358.764	2	7.305	4	0	15	0	1	0	15	.005	4
422				-477.013	3	1.718	15	015	1_	0	3	0	1	.001	12
423		3	max		2	6.533	4	0	<u>15</u>	0	1	0	15	.003	2
424			min		3	1.536	15	015	1_	0	3	0	1_	0	3
425		4	max	358.424	2	5.761	4	0	15	0	<u>1</u>	0	15	0	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
426			min	-477.268	3	1.355	15	015	1	0	3	0	1	001	3
427		5	max	358.253	2	4.988	4	0	15	0	1	0	15	0	15
428			min	-477.396	3	1.173	15	015	1	0	3	0	1	003	3
429		6	max	358.083	2	4.216	4	0	15	0	1	0	15	001	15
430			min	-477.524	3	.992	15	015	1	0	3	0	1	004	4
431		7	max	357.913	2	3.443	4	0	15	0	1	0	15	001	15
432			min	-477.651	3	.81	15	015	1	0	3	0	1	006	4
433		8	max	357.742	2	2.671	4	0	15	0	1	0	15	002	15
434			min	-477.779	3	.628	15	015	1	0	3	0	1	007	4
435		9	max	357.572	2	1.898	4	0	15	0	1	0	15	002	15
436			min	-477.907	3	.447	15	015	1	0	3	0	1	008	4
437		10	max	357.402	2	1.126	4	0	15	0	1	0	15	002	15
438			min	-478.035	3	.265	15	015	1	0	3	0	1	009	4
439		11	max	357.231	2	.429	2	0	15	0	1	0	15	002	15
440			min	-478.162	3	004	3	015	1	0	3	0	1	009	4
441		12	max		2	098	15	0	15	0	1	0	15	002	15
442			min	-478.29	3	455	3	015	1	0	3	0	1	009	4
443		13	max	356.891	2	279	15	0	15	0	1	0	15	002	15
444			min	-478.418	3	-1.191	4	015	1	0	3	0	1	009	4
445		14	max	356.72	2	461	15	0	15	0	1	0	15	002	15
446			min	-478.546	3	-1.964	4	015	1	0	3	0	1	008	4
447		15	max		2	643	15	0	15	0	1	0	15	002	15
448			min	-478.674	3	-2.736	4	015	1	0	3	0	1	007	4
449		16	max	356.38	2	824	15	0	15	0	1	0	15	001	15
450			min	-478.801	3	-3.509	4	015	1	0	3	0	1	006	4
451		17	max		2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-478.929	3	-4.281	4	015	1	0	3	0	1	004	4
453		18	max		2	-1.187	15	0	15	0	1	0	15	0	15
454		1.0	min	-479.057	3	-5.053	4	015	1	0	3	0	1	002	4
455		19	max	355.869	2	-1.369	15	0	15	0	1	0	15	0	1
456			min	-479.185	3	-5.826	4	015	1	0	3	0	1	0	1
457	M12	1		1299.985	1	0	1	7.579	1	0	1	0	10	0	1
458	····-		min	-384.414	3	0	1	.248	15	0	1	0	1	0	1
459		2		1300.155	1	0	1	7.579	1	0	1	0	1	0	1
460			min	-384.286	3	0	1	.248	15	0	1	0	12	0	1
461		3		1300.326	1	0	1	7.579	1	0	1	.002	1	0	1
462			min	-384.158	3	0	1	.248	15	0	1	0	15	0	1
463		4		1300.496	1	0	1	7.579	1	0	1	.002	1	0	1
464			min	-384.03	3	0	1	.248	15	0	1	0	15	0	1
465		5		1300.666	1	0	1	7.579	1	0	1	.003	1	0	1
466		Ĭ		-383.903	3	0	1	.248	15	0	1	0	15	0	1
467		6		1300.837	1	0	1	7.579	1	0	1	.004	1	0	1
468				-383.775	3	0	1	.248	15	0	1	0	15	0	1
469		7		1301.007	1	0	1	7.579	1	0	1	.005	1	0	1
470				-383.647	3	0	1	.248	15	0	1	0	15	0	1
471		8		1301.177	1	0	1	7.579	1	0	1	.006	1	0	1
472			min		3	0	1	.248	15	0	1	0	15	0	1
473		9		1301.348	1	0	1	7.579	1	0	1	.007	1	0	1
474		Ť	min		3	0	1	.248	15	0	1	0	15	0	1
475		10		1301.518	1	0	1	7.579	1	0	1	.008	1	0	1
476			min		3	0	1	.248	15	0	1	0	15	0	1
477		11		1301.688	1	0	1	7.579	1	0	1	.009	1	0	1
478				-383.136	3	0	1	.248	15	0	1	0	15	0	1
479		12		1301.859	1	0	1	7.579	1	0	1	.009	1	0	1
480		1,2		-383.008	3	0	1	.248	15	0	1	0	15	0	1
481		13		1302.029	1	0	1	7.579	1	0	1	.01	1	0	1
482			min		3	0	1	.248	15	0	1	0	15	0	1
		_		0000											

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1302.199	1	0	1	7.579	1	0	1_	.011	1	0	1
484			min	-382.753	3	0	1	.248	15	0	1	0	15	0	1
485		15	max	1302.37	1	0	1	7.579	1	0	1	.012	1	0	1
486			min	-382.625	3	0	1	.248	15	0	1	0	15	0	1
487		16	max	1302.54	1	0	1	7.579	1	0	1	.013	1	0	1
488			min	-382.497	3	0	1	.248	15	0	1	0	15	0	1
489		17	max	1302.71	1	0	1	7.579	1	0	1	.014	1	0	1
490			min	-382.369	3	0	1	.248	15	0	1	0	15	0	1
491		18	max	1302.881	1	0	1	7.579	1	0	1	.015	1	0	1
492			min	-382.242	3	0	1	.248	15	0	1	0	15	0	1
493		19	max	1303.051	1	0	1	7.579	1	0	1	.016	1	0	1
494			min	-382.114	3	0	1	.248	15	0	1	0	15	0	1
495	M1	1	max	132.703	1	693.641	3	-2.613	15	0	1	.189	1	0	3
496			min	4.335	15	-534.357	1	-79.503	1	0	3	.006	15	015	1
497		2	max	133.074	1	692.603	3	-2.613	15	0	1	.147	1	.268	1
498			min	4.447	15	-535.741	1	-79.503	1	0	3	.005	15	365	3
499		3	max		3	601.016	1	-2.576	15	0	3	.105	1	.537	1
500			min	-174.97	2	-509.501	3	-78.569	1	0	1	.003	15	716	3
501		4	max	284.166	3	599.632	1	-2.576	15	0	3	.064	1	.22	1
502			min	-174.599	2	-510.539	3	-78.569	1	0	1	.002	15	447	3
503		5	max	284.444	3	598.249	1	-2.576	15	0	3	.022	1	004	15
504		_ <u> </u>	min	-174.229	2	-511.576	3	-78.569	1	0	1	0	15	177	3
505		6	max		3	596.865	1	-2.576	15	0	3	0	15	.093	3
506			min	-173.858	2	-512.614	3	-78.569	1	0	1	019	1	411	1
507		7	max	285.001	3	595.481	1	-2.576	15	0	3	002	15	.364	3
508			min	-173.487	2	-513.652	3	-78.569	1	0	1	061	1	726	1
509		8	max		3	594.098	1	-2.576	15	0	3	003	15	.635	3
510		-	min	-173.116		-514.689	3	-78.569	1	0	1	102	1	-1.04	1
511		9		293.032	<u>2</u> 3	46.754	2	-3.816	15	0	9	.061	1	.741	3
512		9	max		2		15		1		3	.002	15		1
513		10	min	-120.236 293.31	3	.42 45.371	2	-3.816	15	0			15	-1.185 .723	3
		10	max				15		1	0	9	0	1		
514		4.4	min	-119.866	2	.002		-116.272		0	3		_	<u>-1.198</u>	1
515		11	max		3_	43.987	2	-3.816	15 1	0	9	002	15	.705 -1.21	3
516		40	min	-119.495	2	-1.717	4	-116.272	-	0	3	062	1		1
517		12	max	301.283	3	342.769	3	-2.515	15	0	2	.101	1	.614	3
518		40	min	-75.274	10	-643.523	1	-76.819	1	0	3	.003	15	-1.069	1
519		13	max		3	341.731	3	-2.515	15	0	2	.06	1	.434	3
520		4.4	min	-74.965	10	-644.907	1	<u>-76.819</u>	1_	0	3	.002	15	729	1
521		14	max	301.839	3	340.693	3	-2.515	15	0	2	.02	1	.254	3
522		4.5	min	-74.656	10	-646.291	1	<u>-76.819</u>	1_	0	3	0	15	388	1
523		15	_	302.117	3	339.656	3	-2.515	15	0	2	0	15	.074	3
524		40	min		10	-647.674	1	<u>-76.819</u>	1	0	3	021	1	047	1
525		16	max		3	338.618	3	-2.515	15	0	2	002	15	.317	2
526		4-	min	-74.038	10	-649.058	1	<u>-76.819</u>	1	0	3	061	1_	105	3
527		17	max		3	337.58	3	-2.515	15	0	2	003	15	.652	2
528		10	min	-73.729	10	-650.441	1	<u>-76.819</u>	1_	0	3	102	1_	283	3
529		18	max		<u>15</u>	642.354	2	-2.763	15	0	3	005	15	.328	2
530			min		_1_	-285.277	3	-84.116	1	0	2	146	1	14	3
531		19	max		<u> 15</u>	640.97	2	-2.763	15	0	3	006	15	.011	3
532			min	-132.892	1_	-286.315	3	-84.116	1	0	2	19	1	013	1
533	<u>M5</u>	1	max		_1_	2313.561	3	0	1	0	1	0	1	.03	1
534			min	8.39	12	-1812.38		0	1	0	1_	0	1	002	3
535		2	max		_1_	2312.523	3	0	1	0	_1_	0	1	.986	1
536			min	8.575	12	-1813.764	1	0	1	0	1	0	1	-1.222	3
537		3	max		3	1826.305	1	0	1	0	1_	0	1	1.9	1
538			min	-618.087	2	-1625.481	3	0	1	0	1	0	1	-2.395	3
539		4	max	911.523	3	1824.921	1	0	1	0	1	0	1	.937	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-617.716	2	-1626.519	3	0	1	0	1	0	1	-1.537	3
541		5	max	911.801	3	1823.538	1	0	1	0	1	0	1	.016	9
542			min	-617.346	2	-1627.557	3	0	1	0	1	0	1	678	3
543		6	max	912.079	3	1822.154	1	0	1	0	1	0	1	.181	3
544			min	-616.975	2	-1628.594	3	0	1	0	1	0	1	988	1
545		7	max	912.357	3	1820.771	1	0	1	0	1	0	1	1.04	3
546			min	-616.604	2	-1629.632	3	0	1	0	1	0	1	-1.949	1
547		8	max	912.635	3	1819.387	1	0	1	0	1	0	1	1.901	3
548			min	-616.233	2	-1630.67	3	0	1	0	1	0	1	-2.909	1
549		9	max	925.007	3	156.183	2	0	1	0	1	0	1	2.186	3
550			min	-506.935	2	.418	15	0	1	0	1	0	1	-3.294	1
551		10	max	925.285	3	154.8	2	0	1	0	1	0	1	2.12	3
552			min	-506.564	2	0	15	0	1	0	1	0	1	-3.337	1
553		11	max	925.563	3	153.416	2	0	1	0	1	0	1	2.054	3
554			min	-506.194	2	-1.608	4	0	1	0	1	0	1	-3.379	1
555		12	max	938.054	3	1076.415	3	0	1	0	1	0	1	1.804	3
556			min	-396.934	2	-1983.724	1	0	1	0	1	0	1	-3.012	1
557		13	max	938.332	3	1075.378	3	0	1	0	1	0	1	1.236	3
558			min	-396.563	2	-1985.107	1	0	1	0	1	0	1	-1.965	1
559		14	max	938.61	3	1074.34	3	0	1	0	1	0	1	.669	3
560			min	-396.192	2	-1986.491	1	0	1	0	1	0	1	917	1
561		15	max	938.888	3	1073.302	3	0	1	0	1	0	1	.207	2
562			min	-395.822	2	-1987.875	1	0	1	0	1	0	1	004	13
563		16	max	939.166	3	1072.264	3	0	1	0	1	0	1	1.232	2
564			min	-395.451	2	-1989.258	1	0	1	0	1	0	1	464	3
565		17	max	939.444	3	1071.227	3	0	1	0	1	0	1	2.258	2
566			min	-395.08	2	-1990.642	1	0	1	0	1	0	1	-1.029	3
567		18	max	-8.826	12	2165.743	2	0	1	0	1	0	1	1.164	2
568			min	-287.703	1	-978.674	3	0	1	0	1	0	1	538	3
569		19	max	-8.641	12	2164.359	2	0	1	0	1	0	1	.026	1
570			min	-287.333	1	-979.712	3	0	1	0	1	0	1	021	3
571	<u>M9</u>	1	max	132.703	1_	693.641	3	79.503	1	0	3	006	15	0	3
572			min	4.335	15	-534.357	1	2.613	15	0	1	189	1	015	1
573		2	max	133.074	1	692.603	3	79.503	1	0	3	005	15	.268	1
574			min	4.447	15	-535.741	1	2.613	15	0	1	147	1	365	3
575		3	max	283.888	3	601.016	1_	78.569	1	0	1	003	15	.537	1
576			min	-174.97	2	-509.501	3	2.576	15	0	3	105	1	716	3
577		4	max	284.166	3	599.632	1_	78.569	1	0	1	002	15	.22	1
578			min	-174.599	2	-510.539	3	2.576	15	0	3	064	1	447	3
579		5	max	284.444	3	598.249	1_	78.569	1	0	1	0	15	004	15
580						-511.576		2.576	15		3	022	1	177	3
581		6		284.722	3	596.865	1	78.569	1	0	1	.019	1	.093	3
582				-173.858	2	-512.614	3	2.576	15	0	3	0	15	411	1
583		7		285.001	3	595.481	1	78.569	1	0	1	.061	1	.364	3
584			min	-173.487	2	-513.652	3	2.576	15	0	3	.002	15	726	1
585		8	max		3	594.098	1	78.569	1	0	1	.102	1	.635	3
586				-173.116	2	-514.689	3	2.576	15	0	3	.003	15	-1.04	1
587		9	max		3	46.754	2	116.272	1	0	3	002	15	.741	3
588				-120.236	2	.42	15	3.816	15	0	9	061	1	-1.185	1
589		10	max	293.31	3	45.371	2	116.272	1	0	3	0	1	.723	3
590					2	.002	15	3.816	15	0	9	0	15	<u>-1.198</u>	1
591		11		293.588	3	43.987	2	116.272	1	0	3	.062	1	.705	3
592			min	-119.495	2	-1.717	4	3.816	15	0	9	.002	15	-1.21	1
593		12		301.283	3	342.769	3	76.819	1	0	3	003	15	.614	3
594			min	-75.274	10	-643.523	1	2.515	15	0	2	101	1	-1.069	1
595		13	max		3	341.731	3	76.819	1	0	3	002	15	.434	3
596			min	-74.965	10	-644.907	1_	2.515	15	0	2	06	1	729	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	301.839	3	340.693	3	76.819	1	0	3	0	15	.254	3
598			min	-74.656	10	-646.291	1	2.515	15	0	2	02	1	388	1
599		15	max	302.117	3	339.656	3	76.819	1	0	3	.021	1	.074	3
600			min	-74.347	10	-647.674	1	2.515	15	0	2	0	15	047	1
601		16	max	302.395	3	338.618	3	76.819	1	0	3	.061	1	.317	2
602			min	-74.038	10	-649.058	1	2.515	15	0	2	.002	15	105	3
603		17	max	302.673	3	337.58	3	76.819	1	0	3	.102	1	.652	2
604			min	-73.729	10	-650.441	1	2.515	15	0	2	.003	15	283	3
605		18	max	-4.452	15	642.354	2	84.116	1	0	2	.146	1	.328	2
606			min	-133.263	1	-285.277	3	2.763	15	0	3	.005	15	14	3
607		19	max	-4.34	15	640.97	2	84.116	1	0	2	.19	1	.011	3
608			min	-132.892	1	-286.315	3	2.763	15	0	3	.006	15	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.122	1	.005	3 9.678e-3	1	NC	1_	NC	1
2			min	0	15	025	3	002	2 -1.866e-3	3	NC	1	NC	1
3		2	max	0	1	.278	3	.029	1 1.108e-2	1	NC	5	NC	2
4			min	0	15	089	1	0	10 -1.944e-3	3	773.511	3	8439.325	1
5		3	max	0	1	.523	3	.069	1 1.249e-2	1	NC	5	NC	3
6			min	0	15	256	1	.002	15 -2.021e-3	3	427.67	3	3463.596	1
7		4	max	0	1	.67	3	.103	1 1.39e-2	1	NC	5	NC	3
8			min	0	15	348	1	.003	15 -2.099e-3	3	336.675	3	2295.468	1
9		5	max	0	1	.703	3	.121	1 1.53e-2	1	NC	5	NC	3
10			min	0	15	352	1	.004	15 -2.177e-3	3	321.411	3	1957.508	1
11		6	max	0	1	.624	3	.117	1 1.671e-2	1	NC	5	NC	3
12			min	0	15	271	1	.004	15 -2.254e-3	3	360.672	3	2030.182	1
13		7	max	0	1	.456	3	.092	1 1.812e-2	1	NC	5	NC	3
14			min	0	15	124	1	.003	10 -2.332e-3	3	486.843	3	2593.271	1
15		8	max	0	1	.243	3	.053	1 1.952e-2	1	NC	4	NC	2
16			min	0	15	.001	15	001	10 -2.409e-3	3	874.038	3	4515.723	1
17		9	max	0	1	.217	2	.016	3 2.093e-2	1	NC	4	NC	1
18			min	0	15	.005	15	005	10 -2.487e-3	3	2359.309	2	NC	1
19		10	max	0	1	.284	1	.016	3 2.234e-2	1	NC	3	NC	1
20			min	0	1	037	3	01	2 -2.564e-3	3	1444.191	1	NC	1
21		11	max	0	15	.217	2	.016	3 2.093e-2	1	NC	4	NC	1
22			min	0	1	.005	15	005	10 -2.487e-3	3	2359.309	2	NC	1
23		12	max	0	15	.243	3	.053	1 1.952e-2	1	NC	4	NC	2
24			min	0	1	.001	15	001	10 -2.409e-3	3	874.038	3	4515.723	1
25		13	max	0	15	.456	3	.092	1 1.812e-2	1	NC	5	NC	3
26			min	0	1	124	1	.003	10 -2.332e-3	3	486.843	3	2593.271	1
27		14	max	0	15	.624	3	.117	1 1.671e-2	1	NC	5	NC	3
28			min	0	1	271	1	.004	15 -2.254e-3	3	360.672	3	2030.182	1
29		15	max	0	15	.703	3	.121	1 1.53e-2	1	NC	5	NC	3
30			min	0	1	352	1	.004	15 -2.177e-3	3	321.411	3	1957.508	1
31		16	max	0	15	.67	3	.103	1 1.39e-2	1	NC	5	NC	3
32			min	0	1	348	1	.003	15 -2.099e-3	3	336.675	3	2295.468	1
33		17	max	0	15	.523	3	.069	1 1.249e-2	1	NC	5	NC	3
34			min	0	1	256	1	.002	15 -2.021e-3	3	427.67	3	3463.596	1
35		18	max	0	15	.278	3	.029	1 1.108e-2	1	NC	5	NC	2
36			min	0	1	089	1	0	10 -1.944e-3	3	773.511	3	8439.325	1
37		19	max	0	15	.122	1	.005	3 9.678e-3	1	NC	1	NC	1
38			min	0	1	025	3	002	2 -1.866e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.22	3	.005	3 5.991e-3	1	NC	1	NC	1
40			min	0	15	389	1	002	2 -3.95e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC			(n) L/z Ratio	
41		2	max	0	1	.522	3	.02		7.177e-3	_1_	NC	5	NC	1_
42			min	0	15	<u>738</u>	1	0		-4.798e-3	3	671.183	1	NC	1
43		3	max	0	1	.777	3	.055		8.364e-3	_1_	NC	5	NC	2
44			min	0	15	-1.038	1	.002		-5.646e-3	3	360.399	1	4339.711	1
45		4	max	0	1	.956	3	.088		9.551e-3	1_	NC	15	NC	3
46			min	0	15	-1.258	1	.003		-6.493e-3	3	269.342	1	2690.102	1
47		5	max	0	1	1.04	3	.107	1	1.074e-2	1_	NC	15	NC	3
48			min	0	15	-1.379	1	.004	15 -	-7.341e-3	3	236.313	1	2211.589	1
49		6	max	0	1	1.032	3	.106	1	1.192e-2	1	NC	15	NC	3
50			min	0	15	-1.402	1	.004		-8.188e-3	3	231.038	1	2240.644	1
51		7	max	0	1	.947	3	.085		1.311e-2	1	NC	15	NC	3
52			min	0	15	-1.341	1	.003	10 -	-9.036e-3	3	245.778	1	2814.174	1
53		8	max	0	1	.817	3	.05	1	1.43e-2	1_	NC	15	NC	2
54			min	0	15	-1.229	1	0	10 -	-9.884e-3	3	278.685	1	4828.185	1
55		9	max	0	1	.69	3	.015	3	1.548e-2	1	NC	15	NC	1
56			min	0	15	-1.112	1	004	10 -	-1.073e-2	3	323.46	1	NC	1
57		10	max	0	1	.631	3	.014	3	1.667e-2	1	NC	5	NC	1
58			min	0	1	-1.056	1	009	2 -	-1.158e-2	3	350.58	1	NC	1
59		11	max	0	15	.69	3	.015		1.548e-2	1	NC	15	NC	1
60			min	0	1	-1.112	1	004		-1.073e-2	3	323.46	1	NC	1
61		12	max	0	15	.817	3	.05		1.43e-2	1	NC	15	NC	2
62			min	0	1	-1.229	1	0		-9.884e-3	3	278.685	1	4828.185	1
63		13	max	0	15	.947	3	.085		1.311e-2	1	NC	15	NC	3
64			min	0	1	-1.341	1	.003		-9.036e-3	3	245.778	1	2814.174	1
65		14	max	0	15	1.032	3	.106		1.192e-2	1	NC	15	NC	3
66			min	0	1	-1.402	1	.004		-8.188e-3		231.038	1	2240.644	1
67		15	max	0	15	1.04	3	.107		1.074e-2	1	NC	15	NC	3
68		10	min	0	1	-1.379	1	.004				236.313	1	2211.589	1
69		16	max	0	15	.956	3	.088		9.551e-3	1	NC	15	NC	3
70		10	min	0	1	-1.258	1	.003		-6.493e-3	3	269.342	1	2690.102	1
71		17	max	0	15	.777	3	.055		8.364e-3	1	NC	5	NC	2
72		- ' '	min	0	1	-1.038	1	.002		-5.646e-3		360.399	1	4339.711	1
73		18	max	0	15	.522	3	.02		7.177e-3	1	NC	5	NC	1
74		10	min	0	1	738	1	.02		-4.798e-3	3	671.183	1	NC NC	1
75		19	max	0	15	.22	3	.005		5.991e-3	1	NC	1	NC	1
76		19	min	0	1	389	1	002		-3.95e-3	3	NC	1	NC NC	1
77	M15	1	max	0	15	.225	3	.002		3.352e-3	3	NC	1	NC	1
78	IVITO		min	0	1	389	1	002		-6.106e-3	1	NC	1	NC NC	1
79		2	max	0	15	.422	3	.02		4.073e-3	3	NC	5	NC NC	1
80			min	0	1	778	1	0		-7.319e-3	1	601.02	1	NC NC	1
81		3	max	0	15	.593	3	.056	1 1	4.793e-3		NC	5	NC NC	2
		3				-1.112		.002		-8.533e-3		323.687			
82 83		4	min	0	1 15	.721	3	.089		5.514e-3		NC		4326.828 NC	3
84		4	max	0	1	-1.351	1	.003		-9.747e-3	3_1		<u>15</u> 1	2683.53	1
		E	min				-				1_	243.144			•
85		5	max	0	15	.794	3	.107		6.235e-3	3_	NC	<u>15</u>	NC	3
86		_	min	0	1	-1.477	1	.004		-1.096e-2	1_	214.999	1_	2206.366	1
87		6	max	0	15	.814	3	.106		6.955e-3	3	NC	<u>15</u>	NC	3
88		_	min	0	1	<u>-1.489</u>	1	.004		-1.217e-2	1_	212.632	1_	2234.752	1_
89		7	max	0	15	.788	3	.085		7.676e-3	3	NC	15	NC	3
90			min	0	1	<u>-1.406</u>	1	.003		-1.339e-2	1_	230.015	1_	2804.387	1
91		8	max	0	15	.732	3	.05		8.396e-3	3_	NC	15	NC 4700.744	2
92			min	0	1	-1.265	1	0		-1.46e-2	1_	266.986	1_	4798.714	1
93		9	max	0	15	.673	3	.015		9.117e-3	3	NC	15	NC	1
94			min	0	1	-1.123	1	004		-1.582e-2	1_	318.614	1	NC	1
95		10	max	0	1	.644	3	.013		9.837e-3	3	NC	5	NC	1_
96			min	0	1	<u>-1.055</u>	1	008		-1.703e-2	1_	350.929	1	NC	1
97		11	max	0	1	.673	3	.015	1 !	9.117e-3	3	NC	15	NC	1_

Model Name

Schletter, Inc.HCV

:

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
98			min	0	15	-1.123	1	004	10		1_	318.614	1_	NC	1
99		12	max	0	1	.732	3	.05	1	8.396e-3	3	NC	<u>15</u>	NC	2
100			min	0	15	-1.265	1	0	10	-1.46e-2	1	266.986	1	4798.714	1
101		13	max	0	1	.788	3	.085	1	7.676e-3	3	NC	15	NC	3
102			min	0	15	-1.406	1	.003	15	-1.339e-2	1	230.015	1	2804.387	1
103		14	max	0	1	.814	3	.106	1	6.955e-3	3	NC	15	NC	3
104			min	0	15	-1.489	1	.004	15	-1.217e-2	1	212.632	1	2234.752	1
105		15	max	0	1	.794	3	.107	1	6.235e-3	3	NC	15	NC	3
106			min	0	15	-1.477	1	.004	15	-1.096e-2	1	214.999	1	2206.366	1
107		16	max	0	1	.721	3	.089	1	5.514e-3	3	NC	15	NC	3
108			min	0	15	-1.351	1	.003	15	-9.747e-3	1	243.144	1	2683.53	1
109		17	max	0	1	.593	3	.056	1	4.793e-3	3	NC	5	NC	2
110			min	0	15	-1.112	1	.002	15	-8.533e-3	1	323.687	1_	4326.828	1
111		18	max	0	1	.422	3	.02	1	4.073e-3	3	NC	5	NC	1
112			min	0	15	778	1	0	10	-7.319e-3	1	601.02	1	NC	1
113		19	max	0	1	.225	S	.004	3	3.352e-3	3	NC	1	NC	1
114			min	0	15	389	1	002	2	-6.106e-3	1	NC	1	NC	1
115	M16	1	max	0	15	.116	1	.004	3	5.883e-3	3	NC	1	NC	1
116			min	0	1	075	3	002	2	-8.935e-3	1	NC	1	NC	1
117		2	max	0	15	.033	3	.029	1	6.89e-3	3	NC	5	NC	2
118			min	0	1	159	2	0	10		1	893.337	2	8483.2	1
119		3	max	0	15	.118	3	.069	1	7.897e-3	3	NC	5	NC	3
120			min	0	1	367	2	.002	15		1	497.334	2	3469.892	1
121		4	max	0	15	.162	3	.103	1	8.905e-3	3	NC	5	NC	3
122			min	0	1	487	2	.003		-1.262e-2	1	396.589	2	2294.948	
123		5	max	0	15	.16	3	.121	1	9.912e-3	3	NC	5	NC	3
124			min	0	1	501	2	.004		-1.385e-2	1	387.336	2	1953.351	1
125		6	max	0	15	.113	3	.117	1	1.092e-2	3	NC	5	NC	3
126			min	0	1	413	2	.004	15	-1.508e-2	1	453.739	2	2020.857	1
127		7	max	0	15	.03	3	.092	1	1.193e-2	3	NC	5	NC	3
128			min	0	1	244	2	.003	15	-1.631e-2	1	674.313	2	2570.023	1
129		8	max	0	15	.017	9	.054	1	1.293e-2	3	NC	3	NC	2
130			min	0	1	068	3	0	10		1	1676.695	2	4424.512	
131		9	max	0	15	.184	1	.016	1	1.394e-2	3	NC	4	NC	1
132		T	min	0	1	155	3	003		-1.877e-2	1	2926.398	3	NC	1
133		10	max	0	1	.267	1	.012	3	1.495e-2	3	NC	5	NC	1
134		10	min	0	1	193	3	008	2	-2.e-2	1	1553.824	1	NC	1
135		11	max	0	1	.184	1	.016	1	1.394e-2	3	NC	4	NC	1
136		+ ' '	min	0	15	155	3	003	10		1	2926.398	3	NC	1
137		12	max	0	1	.017	9	.054	1	1.293e-2	3	NC	3	NC	2
138		12	min	0	15	068	3	0		-1.754e-2	1	1676.695	2	4424.512	
139		13	max	0	1	.03	3	.092	1	1.193e-2	3	NC	5	NC	3
140		10	min	0	15	244	2	.003	15		1	674.313	2	2570.023	
141		14	max	0	1	.113	3	.117	1	1.092e-2	3	NC	5	NC	3
142		17	min	0	15	413	2	.004		-1.508e-2	1	453.739	2	2020.857	1
143		15	max	0	1	.16	3	.121	1	9.912e-3	3	NC	5	NC	3
144		13	min	0	15	501	2	.004	15	-1.385e-2	1	387.336	2	1953.351	1
145		16	max	0	1	.162	3	.103	1	8.905e-3	3	NC	5	NC	3
146		10	min	0	15	487	2	.003	15	-1.262e-2	1	396.589	2	2294.948	
147		17		0	1	467 .118	3	.069	1	7.897e-3	3	NC		NC	3
147		17	max min	0	15	367	2	.002	15	-1.139e-2	<u> </u>	497.334	<u>5</u> 2	3469.892	1
		10					3	.002			3	NC	5	NC	2
149		18	max	0	1	.033			1	6.89e-3					
150		10	min	0	15	1 <u>59</u>	2	0	10	-1.016e-2	1	893.337	2	8483.2	1
151		19	max	0	1	.116	1	.004	3	5.883e-3	3	NC	1_	NC	1
152	NAC	A .	min	0	15	075	3	002	2	-8.935e-3	1_	NC NC	1_1	NC NC	1
153	<u>M2</u>	1	max	.005	1	.003	2	.006	1	-5.108e-6	<u>15</u>	NC	1_	NC	2
154			min	006	3	007	3	0	15	-1.559e-4	1_	NC	<u>1</u>	7838.507	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
155		2	max	.005	1	.003	2	.006	1	-4.734e-6	<u>15</u>	NC	_1_	NC	2
156			min	005	3	006	3	0	15	-1.445e-4	1_	NC	1_	8548.034	1
157		3	max	.005	1	.002	2	.005	1	-4.36e-6	15	NC	_1_	NC	2
158			min	005	3	006	3	0	15	-1.33e-4	1_	NC	1	9393.382	1
159		4	max	.005	1	.002	2	.005	1	-3.985e-6	<u>15</u>	NC	_1_	NC	1_
160			min	005	3	006	3	0	15	-1.216e-4	1_	NC	1_	NC	1
161		5	max	.004	1	.001	2	.004	1	-3.611e-6	15	NC	_1_	NC	1
162			min	004	3	006	3	0	15	-1.102e-4	1_	NC	1_	NC	1
163		6	max	.004	1	.001	2	.004	1	-3.237e-6	15	NC	1_	NC	1
164			min	004	3	005	3	0	15	-9.872e-5	1_	NC	1_	NC	1
165		7	max	.004	1	0	2	.003	1_	-2.862e-6	<u>15</u>	NC	_1_	NC	1_
166			min	004	3	005	3	0	15	-8.728e-5	1_	NC	1_	NC	1
167		8	max	.003	1	0	2	.003	1	-2.488e-6	<u>15</u>	NC	_1_	NC	1_
168			min	003	3	005	3	0	15	-7.584e-5	1	NC	1	NC	1
169		9	max	.003	1	0	2	.002	1	-2.113e-6	15	NC	1_	NC	1
170			min	003	3	004	3	0	15	-6.441e-5	1	NC	1	NC	1
171		10	max	.003	1	0	2	.002	1	-1.739e-6	15	NC	1	NC	1_
172			min	003	3	004	3	0	15	-5.297e-5	1	NC	1	NC	1
173		11	max	.002	1	0	2	.002	1	-1.365e-6	15	NC	1	NC	1
174			min	003	3	004	3	0	15	-4.153e-5	1	NC	1	NC	1
175		12	max	.002	1	0	15	.001	1	-9.903e-7	15	NC	1	NC	1
176			min	002	3	003	3	0	15	-3.009e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	0	1	-6.159e-7	15	NC	1	NC	1
178			min	002	3	003	3	0	15		1	NC	1	NC	1
179		14	max	.002	1	0	15	0	1	-2.415e-7	15	NC	1	NC	1
180			min	002	3	003	3	0	15	-7.211e-6	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	4.228e-6	1	NC	1	NC	1
182			min	001	3	002	3	0	15	-2.03e-7	3	NC	1	NC	1
183		16	max	0	1	0	15	0	1	1.567e-5	1	NC	1	NC	1
184			min	0	3	002	3	0	15	3.965e-7	12	NC	1	NC	1
185		17	max	0	1	0	15	0	1	2.711e-5	1	NC	1	NC	1
186			min	0	3	001	3	0	15	8.816e-7	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1	3.854e-5	1	NC	1	NC	1
188			min	0	3	0	4	0	15	1.256e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1	4.998e-5	1	NC	1	NC	1
190			min	0	1	0	1	0	1	1.63e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-5.065e-7	15	NC	1	NC	1
192			min	0	1	0	1	0	1	-1.552e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	3.988e-6	1	NC	1	NC	1
194			min	0	2	001	4	0	15	1.31e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0	1	2.349e-5	1	NC	1	NC	1
196			min	0	2	003	4	0	15	7.685e-7	15	NC	1	NC	1
197		4	max	0	3	001	15	0	1	4.3e-5	1	NC	1	NC	1
198			min	0	2	005	4	0		1.406e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	.001	1	6.251e-5	1	NC	1	NC	1
200			min	0	2	007	4	0	15	2.044e-6	15	NC	1	NC	1
201		6	max	.001	3	007	15	.001	1	8.202e-5	1	NC	1	NC	1
202			min	0	2	002	4	0	15	2.681e-6	15	NC	1	NC	1
203		7	max	.001	3	002	15	.002	1	1.015e-4	1	NC	1	NC	1
204			min	001	2	002 01	4	0	15	3.319e-6		9286.424	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.21e-4	1	NC	1	NC	1
206		J	min	001	2	003 011	4	0	15	3.956e-6		8277.867	4	NC	1
207		9		.002	3	003	15	.002	1	1.405e-4	1 <u>15</u>	NC	1	NC NC	1
208		3	max	001	2	003 012	4	<u>.002</u>	15	4.594e-6		7675.184	4	NC NC	1
209		10	min	.002	3	012	15	.003	1	1.6e-4	15 1	NC	2	NC NC	1
210		10	max	002	2		4	003 0	15	5.231e-6		7371.274	4	NC NC	1
		11	min			013	_								
211		11	max	.002	3	003	15	.003	1	1.796e-4	_1_	NC	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					LC
212			min	002	2	013	4	0	15	5.869e-6	15		4	NC	1
213		12	max	.003	3	003	15	.003	1	1.991e-4	_1_	NC	_1_	NC	1
214			min	002	2	013	4	0	15	6.506e-6	15	7521.429	4	NC	1
215		13	max	.003	3	003	15	.004	1	2.186e-4	1	NC	1	NC	1
216			min	002	2	012	4	0	15	7.144e-6	15	8017.653	4	NC	1
217		14	max	.003	3	002	15	.004	1	2.381e-4	1	NC	1	NC	1
218			min	002	2	011	4	0	15	7.781e-6	15	8921.831	4	NC	1
219		15	max	.003	3	002	15	.004	1	2.576e-4	1	NC	1	NC	1
220			min	002	2	009	4	0	15	8.419e-6	15	NC	1	NC	1
221		16	max	.003	3	002	15	.005	1	2.771e-4	1	NC	1	NC	1
222			min	003	2	008	1	0	15	9.056e-6	15	NC	1	NC	1
223		17	max	.004	3	001	15	.005	1	2.966e-4	1	NC	1	NC	1
224			min	003	2	006	1	0	15	9.694e-6	15	NC	1	NC	1
225		18	max	.004	3	0	15	.005	1	3.161e-4	1	NC	1	NC	1
226			min	003	2	005	1	0	15	1.033e-5	15	NC	1	NC	1
227		19	max	.004	3	0	15	.006	1	3.356e-4	1	NC	1	NC	1
228			min	003	2	003	1	0	15	1.097e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.002	2	0	15	-2.611e-7	12	NC	1	NC	2
230			min	0	3	004	3	006	1	-1.067e-5	1	NC	1	4242.194	
231		2	max	.003	1	.002	2	0	15	-2.611e-7	12	NC	1	NC	2
232		_	min	0	3	004	3	005	1	-1.067e-5	1	NC	1	4620.634	1
233		3	max	.003	1	.002	2	0	15	-2.611e-7	12	NC	1	NC	2
234			min	0	3	004	3	005	1	-1.067e-5	1	NC	1	5070.621	1
235		4	max	.003	1	.002	2	0	15	-2.611e-7	12	NC	1	NC	2
236			min	0	3	003	3	004	1	-1.067e-5	1	NC	1	5610.817	1
237		5	max	.002	1	.002	2	<u>.004</u>	15	-2.611e-7	12	NC	1	NC	2
238			min	0	3	003	3	004	1	-1.067e-5	1	NC	1	6266.579	1
239		6	max	.002	1	.002	2	<u>.004</u>	15	-2.611e-7	12	NC	1	NC	2
240			min	0	3	003	3	004	1	-1.067e-5	1	NC	1	7073.076	
241		7	max	.002	1	.002	2	0	15	-2.611e-7	12	NC	1	NC	2
242			min	0	3	003	3	003	1	-1.067e-5	1	NC	1	8080.231	1
243		8	max	.002	1	.002	2	0	15	-2.611e-7	12	NC	1	NC	2
244		-	min	0	3	003	3	003	1	-1.067e-5	1	NC	1	9360.862	1
245		9	max	.002	1	.003	2	<u>003</u> 0	15	-2.611e-7	12	NC	1	NC	1
246		3	min	0	3	002	3	002	1	-1.067e-5	1	NC	1	NC	1
247		10	max	.002	1	.002	2	<u>002</u> 0	15	-2.611e-7	12	NC	1	NC	1
248		10	min	0	3	002	3	002	1	-1.067e-5	1	NC NC	1	NC	1
249		11		.001	1	.002	2	002 0	15	-2.611e-7	12	NC	1	NC	1
250			max min	0	3	002	3	002	1	-1.067e-5	1	NC NC	1	NC	1
		12			1		2				•	NC NC	1		1
251		12	max	.001 0		0		0	15		12		1	NC NC	1
252		13	min	.001	3	002 0	2	001	15	-1.067e-5 -2.611e-7	12	NC NC	1	NC NC	1
253 254		13	max		3	001	3	0 0	15			NC NC	1	NC NC	1
		1.4	min	0	1	<u>001</u> 0	2			-1.067e-5	1	NC NC	1		1
255		14	max		3			0		-2.611e-7			1	NC NC	1
256		15	min	0		001	3	0	1 1 5	-1.067e-5	12	NC NC	_	NC NC	
257		15	max	0	3	0	2	0		-2.611e-7	12	NC NC	<u>1</u> 1	NC NC	1
258		16	min	0		0	3	0	1 1 5	-1.067e-5	10	NC NC		NC NC	
259		16	max	0	1	0	2	0	15				1		1
260		17	min	0	3	0	3	0	1 1 5	-1.067e-5	1	NC NC	1	NC NC	•
261		17	max	0	1	0	2	0		-2.611e-7		NC NC	1	NC NC	1
262		40	min	0	3	0	3	0	1	-1.067e-5	1	NC NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	-2.611e-7	12	NC NC	1_	NC NC	1
264		40	min	0	3	0	3	0	1	-1.067e-5	1_	NC NC	1_	NC NC	1
265		19	max	0	1	0	1	0	1	-2.611e-7		NC	1_	NC NC	1
266	1.40		min	0	1	0	1	0	1	-1.067e-5	1_	NC NC	1_	NC NC	1
267	<u>M6</u>	1	max	.017	1	.014	2	0	1	0	1_	NC 0.4.40.000	3	NC NC	1
268			min	019	3	021	3	0	1	0	<u> 1</u>	3449.392	2	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
269		2	max	.016	1	.013	2	0	1	0	1	NC	3	NC	1
270			min	017	3	019	3	0	1	0	1	3772.583	2	NC	1
271		3	max	.015	1	.012	2	0	1	0	1	NC	3	NC	1
272			min	016	3	018	3	0	1	0	1	4159.743	2	NC	1
273		4	max	.014	1	.01	2	0	1	0	1	NC	3	NC	1
274			min	015	3	017	3	0	1	0	1	4628.394	2	NC	1
275		5	max	.013	1	.009	2	0	1	0	1	NC	1	NC	1
276		—	min	014	3	016	3	0	1	0	1	5202.683	2	NC	1
277		6		.013	1	.008	2	0	1	0	1	NC	1	NC	1
278		-0	max	013	3	015	3	0	1	-	1	5916.637	2	NC NC	1
		7	min						1	0	•				_
279			max	.012	1	.007	2	0		0	1	NC 2010 100	1_	NC NC	1
280			min	012	3	<u>014</u>	3	0	1	0	1_	6819.466	2	NC	1
281		8	max	.011	1	.006	2	0	1	0	1_	NC	1_	NC	1
282			min	011	3	013	3	0	1	0	1_	7984.518	2	NC	1
283		9	max	.01	1	.005	2	0	1	0	_1_	NC	_1_	NC	1
284			min	01	3	011	3	0	1	0	1_	9525.108	2	NC	1
285		10	max	.009	1	.004	2	0	1	0	1	NC	1_	NC	1
286			min	009	3	01	3	0	1	0	1	NC	1	NC	1
287		11	max	.008	1	.003	2	0	1	0	1	NC	1	NC	1
288			min	008	3	009	3	0	1	0	1	NC	1	NC	1
289		12	max	.007	1	.003	2	0	1	0	1	NC	1	NC	1
290		T -	min	007	3	008	3	0	1	0	1	NC	1	NC	1
291		13	max	.006	1	.002	2	0	1	0	1	NC	1	NC	1
292		''	min	006	3	007	3	0	1	0	1	NC	1	NC	1
293		14	max	.005	1	.001	2	0	1	0	1	NC NC	1	NC	1
294		14	min	005	3	006	3	0	1	0	1	NC NC	1	NC NC	1
		4.5								-	•		•		
295		15	max	.004	1	0	2	0	1	0	1	NC NC	1_	NC	1
296		1.0	min	004	3	005	3	0	1	0	1_	NC	1_	NC	1
297		16	max	.003	1	0	2	0	1	0	1_	NC	1_	NC	1
298			min	003	3	003	3	0	1	0	1	NC	1_	NC	1
299		17	max	.002	1	0	2	0	1	0	_1_	NC	_1_	NC	1
300			min	002	3	002	3	0	1	0	1	NC	1	NC	1
301		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
302			min	001	3	001	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	0	3	0	15	0	1	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	0	1	NC	1	NC	1
309		3	max	.001	3	<u>002</u> 0	15	0	1	0	1	NC NC	1	NC NC	1
310		J		001	2	004	3	_	1	_	1	NC NC	1	NC NC	1
		1	min					0		0					
311		4	max	.002	3	001	15	0	1	0	1	NC NC	1_	NC NC	1
312		-	min	002	2	006	3	0	1	0	1_	NC NC	1_	NC NC	1
313		5_	max	.003	3	002	15	0	1	0	1_	NC	1_	NC	1
314			min	003	2	008	3	0	1	0	1_	NC	1_	NC	1
315		6	max	.004	3	002	15	0	1	0	1_	NC	1_	NC	1
316			min	003	2	009	3	0	1	0	1_	9880.386	3	NC	1
317		7	max	.004	3	002	15	0	1	0	1_	NC	1_	NC	1
318			min	004	2	011	3	0	1	0	1	8767.433	3	NC	1
319		8	max	.005	3	003	15	0	1	0	1	NC	1	NC	1
320			min	005	2	011	3	0	1	0	1	8100.192	3	NC	1
321		9	max	.006	3	003	15	0	1	0	1	NC	1	NC	1
322		Ť	min	005	2	012	4	0	1	0	1	7742.137	3	NC	1
323		10	max	.007	3	003	15	0	1	0	1	NC	1	NC	1
324		10	min	006	2	013	4	0	1	0	1	7537.198	4	NC NC	1
325		11			3				1		1		1		_
325		11	max	.007	」 ろ	003	15	0		0	<u> </u>	NC		NC	<u> 1</u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

326		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
328	326			min		2	013		0	1	_	1		4	NC	1
13			12	max					0		0	1		1_		1
330												•				
331			13													
333			4.4									_		_		
333			14													
334			4.5													
336			15													
336			4.0					-						•		•
338			16													
338			17									_		_		
339			17													
3440			10									•		•		
341			10													•
342			10								_	_				
343 M8			13													
344		M8	1			_								•		
345		IVIO	<u> </u>													1
346			2											1		1
347						-										
348			3							1		1		1		1
349										1		1		1		1
S50			4			1			0	1	0	1		1		1
S51						3			0	1	0	1		1		1
353			5			1	.008		0	1	0	1	NC	1	NC	1
354	352			min	002	3	01	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.007	1	.007	2	0	1	0	1	NC	1	NC	1
356	354			min	002	3	009	3	0	1	0	1	NC	1	NC	1
357			7	max	.006	-			0	1		1_		1_		1_
358				min								1		1_		
359			8	max					0	1	0	1		1_		1
360				min					0	•		•		1_		1
361			9													
362											_	_				
363 11 max .004 1 .005 2 0 1 0 1 NC 1 NC 1 364 min 001 3 006 3 0 1 0 1 NC 1 NC 1 365 12 max .004 1 .004 2 0 1 0 1 NC 1 NC 1 366 min 001 3 005 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 368 min 001 3 004 3 0 1 0 1 NC 1 NC 1 369 14 max .003 1 .004 3 0 1			10			_										
364						_										
365 12 max .004 1 .004 2 .0 .1 .0 .1 .0 .1 .NC .1 .			11											1_		1
366			40								_			1_		1
367 13 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 368 min 001 3 004 3 0 1 0 1 NC 1 NC 1 369 14 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 0 1 0 1	365		12					2								-
368 min 001 3 004 3 0 1 0 1 NC 1 NC 1 369 14 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 NC 1 </td <td></td> <td></td> <td>40</td> <td></td>			40													
369 14 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1			13													
370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1			1.1									•		•		
371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1			14			_										
372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 <td< td=""><td></td><td></td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td></td<>			15									_		_		
373 16 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC<			10													
374 min 0 3 002 3 0 1 0 1 NC 1 NC 1 375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC			16													
375 17 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .003 2 0 15 1.5559e-4 1			10													
376 min 0 3 001 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .003 2 0 15 1.5559e-4 1 NC 1 NC 2			17		_					•						•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .003 2 0 15 1.559e-4 1 NC 1 NC 2			17			-										
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .003 2 0 15 1.559e-4 1 NC 1 NC 2			18									_		_		
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .003 2 0 15 1.559e-4 1 NC 1 NC 2			10	_												
380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .003 2 0 15 1.559e-4 1 NC 1 NC 2			19									•		_		
381 M10 1 max .005 1 .003 2 0 15 1.559e-4 1 NC 1 NC 2			10				-									
		M10	1		•	1				15		1		1		
	382			min	006		007	3	006		5.108e-6	15	NC	1	7838.507	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.003	2	0	15	1.445e-4	_1_	NC	_1_	NC	2
384			min	005	3	006	3	006	1	4.734e-6	15	NC	1_	8548.034	
385		3	max	.005	1	.002	2	0	15	1.33e-4	_1_	NC	_1_	NC	2
386			min	005	3	006	3	005	1	4.36e-6	15	NC	1	9393.382	1
387		4	max	.005	1	.002	2	0	15	1.216e-4	_1_	NC	_1_	NC	1
388			min	005	3	006	3	005	1	3.985e-6	15	NC	1_	NC	1
389		5	max	.004	1	.001	2	0	15	1.102e-4	<u>1</u>	NC	_1_	NC	1
390			min	004	3	006	3	004	1	3.611e-6	15	NC	1_	NC	1
391		6	max	.004	1	.001	2	00	15	9.872e-5	_1_	NC	_1_	NC	1
392			min	004	3	005	3	004	1	3.237e-6	15	NC	1	NC	1
393		7	max	.004	1	0	2	0	15	8.728e-5	_1_	NC	_1_	NC	1
394			min	004	3	005	3	003	1	2.862e-6	15	NC	1_	NC	1
395		8	max	.003	1	0	2	0	15	7.584e-5	_1_	NC	_1_	NC	1
396			min	003	3	005	3	003	1	2.488e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	6.441e-5	1	NC	1_	NC	1
398			min	003	3	004	3	002	1	2.113e-6	15	NC	1	NC	1
399		10	max	.003	1	0	2	0	15	5.297e-5	1_	NC	1_	NC	1
400			min	003	3	004	3	002	1	1.739e-6	15	NC	1	NC	1
401		11	max	.002	1	0	2	0	15	4.153e-5	1	NC	1	NC	1
402			min	003	3	004	3	002	1	1.365e-6	15	NC	1	NC	1
403		12	max	.002	1	0	15	0	15	3.009e-5	1	NC	1	NC	1
404			min	002	3	003	3	001	1	9.903e-7	15	NC	1	NC	1
405		13	max	.002	1	0	15	0	15	1.865e-5	1	NC	1	NC	1
406			min	002	3	003	3	0	1	6.159e-7	15	NC	1	NC	1
407		14	max	.002	1	0	15	0	15	7.211e-6	1	NC	1	NC	1
408			min	002	3	003	3	0	1	2.415e-7	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	2.03e-7	3	NC	1	NC	1
410			min	001	3	002	3	0	1	-4.228e-6	1	NC	1	NC	1
411		16	max	0	1	0	15	0	15	-3.965e-7	12	NC	1	NC	1
412			min	0	3	002	3	0	1	-1.567e-5	1	NC	1	NC	1
413		17	max	0	1	0	15	0	15	-8.816e-7	15	NC	1	NC	1
414			min	0	3	001	3	0	1	-2.711e-5	1	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-1.256e-6	15	NC	1	NC	1
416			min	0	3	0	4	0	1	-3.854e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.63e-6	15	NC	1	NC	1
418			min	0	1	0	1	0	1	-4.998e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.552e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	5.065e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-1.31e-7	15	NC	1	NC	1
422			min	0	2	001	4	0	1	-3.988e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0		-7.685e-7		NC	1	NC	1
424			min	0	2	003	4	0	1	-2.349e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15		•	NC	1	NC	1
426			min	0	2	005	4	0	1	-4.3e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	0	15			NC	1	NC	1
428			min	0	2	007	4	001	1	-6.251e-5	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15		•	NC	1	NC	1
430			min	0	2	002	4	001	1	-8.202e-5	1	NC	1	NC	1
431		7	max	.001	3	002	15	001 _		-3.319e-6		NC	1	NC	1
432			min	001	2	002 01	4	002	1	-1.015e-4	1	9286.424	4	NC	1
433		8	max	.002	3	003	15	<u>002</u> 0	15			NC	1	NC NC	1
434		0	min	001	2	003 011	4	002	1	-1.21e-4	1	8277.867	4	NC	1
435		9		.002	3	003	15	<u>002</u> 0	15		15	NC	1	NC NC	1
436		3	max	001	2	003 012	4	002	1	-4.594e-6 -1.405e-4	1	7675.184	4	NC NC	1
436		10	min	.002	3	012	15	<u>002</u> 0	15			NC	2	NC NC	1
437		10	max	002	2		4	003	15	-5.231e-6 -1.6e-4	1	7371.274	4	NC NC	1
		11	min			013					_				
439		11	max	.002	3	003	15	0	15	-5.869e-6	15	NC	2	NC	1

Schletter, Inc.HCV

Job Number : Model Name : Standard P

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		
440			min	002	2	013	4	003	1	-1.796e-4	1	7320.569	4	NC	1
441		12	max	.003	3	003	15	0	15	-6.506e-6	15	NC	1	NC	1
442			min	002	2	013	4	003	1	-1.991e-4	1	7521.429	4	NC	1
443		13	max	.003	3	003	15	0	15	-7.144e-6	15	NC	1	NC	1
444			min	002	2	012	4	004	1	-2.186e-4	1	8017.653	4	NC	1
445		14	max	.003	3	002	15	0	15	-7.781e-6	15	NC	1	NC	1
446			min	002	2	011	4	004	1	-2.381e-4	1	8921.831	4	NC	1
447		15	max	.003	3	002	15	0	15	-8.419e-6	15	NC	1	NC	1
448		10	min	002	2	009	4	004	1	-2.576e-4	1	NC	1	NC	1
449		16	max	.002	3	003	15	0	15		15	NC	1	NC	1
450		10	min	003	2	002	1	005	1	-9.030e-0	1	NC NC	1	NC	1
		47					_				•		•		
451		17	max	.004	3	001	15	0	15	-9.694e-6	<u>15</u>	NC	1	NC NC	1
452		1.0	min	003	2	006	1	005	1	-2.966e-4	_1_	NC	1_	NC	1
453		18	max	.004	3	0	15	0	15	-1.033e-5	15	NC	1_	NC	1
454			min	003	2	005	1	005	1	-3.161e-4	1_	NC	1_	NC	1
455		19	max	.004	3	0	15	0	15	-1.097e-5	15	NC	_1_	NC	1
456			min	003	2	003	1	006	1	-3.356e-4	1_	NC	1_	NC	1
457	M12	1	max	.003	1	.002	2	.006	1	1.067e-5	1_	NC	1_	NC	2
458			min	0	3	004	3	0	15	2.611e-7	12	NC	1	4242.194	1
459		2	max	.003	1	.002	2	.005	1	1.067e-5	1	NC	1	NC	2
460			min	0	3	004	3	0	15	2.611e-7	12	NC	1	4620.634	1
461		3	max	.003	1	.002	2	.005	1	1.067e-5	1	NC	1	NC	2
462			min	0	3	004	3	0	15	2.611e-7	12	NC	1	5070.621	1
463		4	max	.003	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
464			min	0	3	003	3	0	15	2.611e-7	12	NC	1	5610.817	1
465		5	max	.002	1	.002	2	.004	1	1.067e-5	1	NC	1	NC	2
466			min	0	3	003	3	0	15	2.611e-7	12	NC	1	6266.579	1
		6			1								1		1
467		6	max	.002		.002	2	.004	1	1.067e-5	1_	NC NC		NC 7070.070	2
468		-	min	0	3	003	3	0	15	2.611e-7	12	NC	1_	7073.076	
469		7	max	.002	1	.002	2	.003	11	1.067e-5	1_	NC	1	NC	2
470			min	0	3	003	3	0	15	2.611e-7	12	NC	1_	8080.231	1
471		8	max	.002	1	.002	2	.003	1	1.067e-5	_1_	NC	_1_	NC	2
472			min	0	3	003	3	0	15	2.611e-7	12	NC	1_	9360.862	1
473		9	max	.002	1	.001	2	.002	1	1.067e-5	_1_	NC	_1_	NC	1
474			min	0	3	002	3	0	15	2.611e-7	12	NC	1	NC	1
475		10	max	.002	1	.001	2	.002	1	1.067e-5	1	NC	1	NC	1
476			min	0	3	002	3	0	15	2.611e-7	12	NC	1	NC	1
477		11	max	.001	1	.001	2	.002	1	1.067e-5	1	NC	1	NC	1
478			min	0	3	002	3	0	15	2.611e-7	12	NC	1	NC	1
479		12	max	.001	1	0	2	.001	1	1.067e-5	1	NC	1	NC	1
480			min	0	3	002	3	0		2.611e-7		NC	1	NC	1
481		13	max	.001	1	0	2	0	1	1.067e-5	1	NC	1	NC	1
482		13	min	0	3	001	3	0		2.611e-7	12	NC	1	NC	1
483		14	max	0	1	<u>001</u> 0	2	0	1	1.067e-5	1	NC	1	NC	1
		14		0	3		3	0	15	2.611e-7		NC NC	1	NC NC	1
484		4.5	min			001					12				
485		15	max	0	1	0	2	0	1	1.067e-5	1	NC NC	1	NC NC	1
486		10	min	0	3	0	3	0	15	2.611e-7	12	NC NC	1_	NC NC	1
487		16	max	0	1	0	2	0	1	1.067e-5	1_	NC	1	NC	1
488			min	0	3	0	3	0	15	2.611e-7	12	NC	1_	NC	1
489		17	max	0	1	00	2	00	1	1.067e-5	_1_	NC	_1_	NC	1
490			min	0	3	0	3	0	15	2.611e-7	12	NC	1	NC	1
491		18	max	0	1	0	2	0	1	1.067e-5	1_	NC	1_	NC	1
492			min	0	3	0	3	0	15	2.611e-7	12	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.067e-5	1	NC	1	NC	1
494			min	0	1	0	1	0	1	2.611e-7	12	NC	1	NC	1
495	M1	1	max	.005	3	.122	1	0	1	1.691e-2	1	NC	1	NC	1
496			min	002	2	025	3	0		-2.415e-2	3	NC	1	NC	1
				.002	_	1020						.,,			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
497		2	max	.005	3	.06	1	0	15	8.247e-3	1	NC	5	NC	1
498			min	002	2	012	3	004	1	-1.194e-2	3	1860.034	1	NC	1
499		3	max	.005	3	.008	3	0	15	3.332e-5	10	NC	5	NC	1
500			min	002	2	007	2	006	1	-1.164e-4	3	890.959	1	NC	1
501		4	max	.005	3	.041	3	0	15	5.016e-3	1_	NC	5	NC	1
502			min	002	2	084	1	006	1	-4.526e-3	3	557.59	1	NC	1
503		5	max	.005	3	.083	3	0	15	1.013e-2	1		15	NC	1
504			min	002	2	165	1	004	1	-8.936e-3	3	399.504	1	NC	1
505		6	max	.005	3	.128	3	0	15	1.525e-2	1	NC	15	NC	1
506			min	002	2	244	1	002	1	-1.335e-2	3	312.893	1	NC	1
507		7	max	.005	3	.172	3	0	1	2.037e-2	1	9837.428	15	NC	1
508			min	002	2	315	1	0	12	-1.776e-2	3	261.999	1	NC	1
509		8	max	.005	3	.208	3	0	1	2.549e-2	1	8743.188	15	NC	1
510			min	002	2	372	1	0	15	-2.217e-2	3	231.995	1	NC	1
511		9	max	.005	3	.232	3	0	15	2.814e-2	1	8172.494	15	NC	1
512			min	002	2	408	1	0	1	-2.236e-2	3	216.412	1	NC	1
513		10	max	.004	3	.241	3	0	1	2.916e-2	1	7998.65	15	NC	1
514			min	002	2	419	1	0	15	-1.975e-2	3	211.756	1	NC	1
515		11	max	.004	3	.235	3	0	1	3.017e-2	1	8172.325	15	NC	1
516			min	002	2	407	1	0	15	-1.714e-2	3	216.728	1	NC	1
517		12	max	.004	3	.215	3	0	15	2.854e-2	1		15	NC	1
518			min	002	2	371	1	0	1	-1.442e-2	3	232.97	1	NC	1
519		13	max	.004	3	.183	3	0	15	2.293e-2	1	9836.794	15	NC	1
520			min	002	2	313	1	0	1	-1.155e-2	3	264.393	1	NC	1
521		14	max	.004	3	.142	3	.001	1	1.731e-2	1	NC	15	NC	1
522			min	002	2	241	1	0	15	-8.671e-3	3	318.03	1	NC	1
523		15	max	.004	3	.096	3	.004	1	1.169e-2	1	NC	15	NC	1
524			min	002	2	161	1	0	15	-5.796e-3	3	410.095	1	NC	1
525		16	max	.004	3	.048	3	.005	1	6.076e-3	1	NC	5	NC	1
526			min	002	2	08	1	0	15	-2.92e-3	3	579.921	1	NC	1
527		17	max	.004	3	.003	S	.006	1	4.593e-4	1	NC	5	NC	1
528			min	002	2	005	2	0	15	-4.51e-5	3	941.529	1	NC	1
529		18	max	.004	3	.059	1	.004	1	1.042e-2	2	NC	5	NC	1
530			min	002	2	037	3	0	15	-4.277e-3	3	1988.584	1	NC	1
531		19	max	.004	3	.116	1	0	15	2.096e-2	2	NC	1	NC	1
532			min	002	2	075	3	0	1	-8.675e-3	3	NC	1	NC	1
533	M5	1	max	.016	3	.284	1	0	1	0	1	NC	1	NC	1
534			min	01	2	037	3	0	1	0	1	NC	1	NC	1
535		2	max	.016	3	.14	1	0	1	0	1	NC	5	NC	1
536			min	01	2	019	S	0	1	0	1	800.625	1	NC	1
537		3	max	.016	3	.024	S	0	1	0	1	NC	5	NC	1
538			min	01	2	023	1	0	1	0	1	374.301	1	NC	1
539		4	max	.016	3	.112	3	0	1	0	1	9627.532	15	NC	1
540			min	01	2	221	1	0	1	0	1	227.156	1	NC	1
541		5	max	.015	3	.23	3	0	1	0	1		15	NC	1
542			min	01	2	438	1	0	1	0	1		1	NC	1
543		6	max	.015	3	.362	3	0	1	0	1	5185.055	15	NC	1
544			min	01	2	654	1	0	1	0	1	122.139	1	NC	1
545		7	max	.015	3	.49	3	0	1	0	1		15	NC	1
546			min	009	2	851	1	0	1	0	1	100.964	1	NC	1
547		8	max	.014	3	.597	3	0	1	0	1		15	NC	1
548			min	009	2	-1.009	1	0	1	0	1	88.652	1	NC	1
549		9	max	.014	3	.667	3	0	1	0	1		15	NC	1
550			min	009	2	-1.108	1	0	1	0	1	82.342	1	NC	1
551		10	max	.014	3	.692	3	0	1	0	1		15	NC	1
552			min	009	2	-1.141	1	0	1	0	1		1	NC	1
553		11	max	.013	3	.674	3	0	1	0	1		15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	009	2	-1.108	1	0	1	0	1	82.469	1	NC	1
555		12	max	.013	3	.616	3	0	1	0	1_	3769.312	15	NC	1
556			min	008	2	-1.006	1	0	1	0	1	89.072	1	NC	1
557		13	max	.013	3	.521	3	0	1	0	1_	4290.001	15	NC	1
558			min	008	2	845	1	0	1	0	1	102.056	1	NC	1
559		14	max	.013	3	.402	3	0	1_	0	_1_		15	NC	1
560			min	008	2	643	1	0	1	0	1	124.598	1	NC	1
561		15	max	.012	3	.269	3	0	1	0	1_		15	NC	1
562			min	008	2	424	1	0	1	0	1	164.14	1	NC	1
563		16	max	.012	3	.134	3	0	1	0	1	9629.995	15	NC	1
564			min	008	2	207	1	0	1	0	1	239.125	1	NC	1
565		17	max	.012	3	.009	3	0	1	0	1	NC	5	NC	1
566			min	008	2	014	2	0	1	0	1	403.462	1	NC	1
567		18	max	.012	3	.138	1	0	1	0	1	NC	5	NC	1
568			min	008	2	098	3	0	1	0	1	878.869	1	NC	1
569		19	max	.012	3	.267	1	0	1	0	1	NC	1	NC	1
570			min	008	2	193	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.005	3	.122	1	0	15	2.415e-2	3	NC	1	NC	1
572			min	002	2	025	3	0	1	-1.691e-2	1	NC	1	NC	1
573		2	max	.005	3	.06	1	.004	1	1.194e-2	3	NC	5	NC	1
574			min	002	2	012	3	0	15	-8.247e-3	1	1860.034	1	NC	1
575		3	max	.005	3	.008	3	.006	1	1.164e-4	3	NC	5	NC	1
576			min	002	2	007	2	0	15	-3.332e-5	10	890.959	1	NC	1
577		4	max	.005	3	.041	3	.006	1	4.526e-3	3	NC	5	NC	1
578			min	002	2	084	1	0	15	-5.016e-3	1	557.59	1	NC	1
579		5	max	.005	3	.083	3	.004	1	8.936e-3	3	NC	15	NC	1
580			min	002	2	165	1	0	15	-1.013e-2	1	399.504	1	NC	1
581		6	max	.005	3	.128	3	.002	1	1.335e-2	3		15	NC	1
582			min	002	2	244	1	0	15	-1.525e-2	1	312.893	1	NC	1
583		7	max	.005	3	.172	3	0	12	1.776e-2	3		15	NC	1
584			min	002	2	315	1	0	1	-2.037e-2	1	261.999	1	NC	1
585		8	max	.005	3	.208	3	0	15	2.217e-2	3	8743.188	15	NC	1
586			min	002	2	372	1	0	1	-2.549e-2	1	231.995	1	NC	1
587		9	max	.005	3	.232	3	0	1	2.236e-2	3	8172.494	15	NC	1
588			min	002	2	408	1	0	15	-2.814e-2	1	216.412	1	NC	1
589		10	max	.004	3	.241	3	0	15	1.975e-2	3		15	NC	1
590			min	002	2	419	1	0	1	-2.916e-2	1	211.756	1	NC	1
591		11	max	.004	3	.235	3	0	15	1.714e-2	3		15	NC	1
592			min	002	2	407	1	0	1	-3.017e-2	1	216.728	1	NC	1
593		12	max	.004	3	.215	3	0	1	1.442e-2	3		15	NC	1
594			min		2	371	1	0	15	-2.854e-2			1	NC	1
595		13	max	.004	3	.183	3	0	1	1.155e-2	3		15	NC	1
596			min	002	2	313	1	0	15	-2.293e-2	1	264.393	1	NC	1
597		14	max	.004	3	.142	3	0		8.671e-3	3		15	NC	1
598			min	002	2	241	1	001	1	-1.731e-2	1	318.03	1	NC	1
599		15	max	.004	3	.096	3	0	15	5.796e-3	3		15	NC	1
600			min	002	2	161	1	004	1	-1.169e-2	1	410.095	1	NC	1
601		16	max	.004	3	.048	3	0	15	2.92e-3	3	NC	5	NC	1
602	_	l Ť	min	002	2	08	1	005	1	-6.076e-3	1	579.921	1	NC	1
603		17	max	.004	3	.003	3	0	15	4.51e-5	3	NC	5	NC	1
604			min	002	2	005	2	006	1	-4.593e-4	1	941.529	1	NC	1
605		18	max	.004	3	.059	1	0	15	4.277e-3	3	NC NC	5	NC	1
606			min	002	2	037	3	004	1	-1.042e-2	2	1988.584	1	NC	1
607		19	max	.004	3	.116	1	0	1	8.675e-3	3	NC	1	NC	1
608			min	002	2	075	3	0		-2.096e-2	2	NC	1	NC	1
				.002	_	1010	_		,,,	Z	_				-

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na 0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2559	6071	0.42	Pass
Concrete breakout	5118	10231	0.50	Pass
Adhesive	5118	8093	0.63	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1784	3156	0.57	Pass (Governs)
T Concrete breakout x+	3567	8641	0.41	Pass
Concrete breakout y-	1784	22862	0.08	Pass
Pryout	3567	20601	0.17	Pass
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.