Модели обнаружения зависимостей во временных рядах (проекции в латентные пространства)

1. Цель

Работа посвящена обнаружению причинно-следственных связей между разнородными временным рядами. Примеры зависимых разнородных временных рядов:

- 1. Эконометрические временные ряды.
- 2. Связь показателей ЭКГ и пульса (http://smartlab.ws/component/content/article?id=60)

Если прогноз временного ряда \mathbf{x} строится с использованием группы временных рядов $\mathbf{y}_1, \dots, \mathbf{y}_k$, то установление зависимостей ряда \mathbf{x} от $\mathbf{y}_1, \dots, \mathbf{y}_k$ может повысить качество прогноза и упростить прогностическую модель. Если установлено, что ряд \mathbf{x} не зависит от ряда \mathbf{y}_i , то \mathbf{y}_i можно исключить из прогностической модели. В данной работе для обнаружения зависимостей между рядами в работе применяется два подхода: тест Гренджера и метод снижения размерности PLS.

1.1. Тест Генджера

В основе теста Гренджера лежит следующий подход. Считаем, что ряд **x** зависит от ряда **y** (или следует из ряда **y**), если использование истории ряда **y** при построении прогностической модели улучшает прогноз ряда **x**. Данный метод подробно рассмотрен в статьях [1, 2]. Тест Гренджера позволяет установить причинно-следственные связи между рядами и основан на сравнении качества прогноза, в котором используется история только прогнозируемого ряда, и прогноза, который дополнительно использует историю других рядов. Если улучшение качества прогноза подтверждается статистически, то говорят, что прогнозируемый ряд следует из использовавшихся во втором прогнозе рядов. Более

формально используемый в этой работе тест Гренджера описан в разделе 4. Тест Гренджера применим к стационарным временным рядам, поэтому в случае нестационарных рядов их необходимо продифференцировать перед проведением теста Гренджера. Тест Гренджера используется в различных задачах, в котрых необходимо исследовать взаимосвязь между развивающимися во времени процессами [3, 4].

В данной работе для построения прогноза одного временного ряда по нескольким используется алгоритм многомерной гусеницы (MSSA-L) [5]. Этот алгоритм является обобщением на многомерный случай алгоритма анализа спектральных компонент SSA [6, 7, 8].

Метод SSA основан на разложении временного ряда в сумму интерпретируемых компонент. Он делится на четыре основных шага: запись ряда в виде траекторной матрицы, ее сингулярное разложение, группировка компонент полученных при сингулярном разложении, по каждой сгруппированной матрице восстанавливается временной ряд. Таким образом исходный временной ряд представляется в виде суммы временных рядов. Метод SSA применяется в таких задачах, как выявления трендов во временных рядах [9], подавления шума во временных рядах [10], прогнозирование временных рядов [11, 12].

Недостатком теста Гренджера является то, что при используемом в нем подходе невозможно точно определить структуру зависимости рядов. Например, два ряда могут следовать из третьего, но при отсутствии информации о третьем ряде тест Грернджера установит причинно-следственную связь между первым и вторым рядом, хотя она отсутствует. Проблема точного определения структуры зависимости рядов рассмотрена в работе [13].

В случае, когда тест Гренджера неприменим или не может обнаружить связь между рядами, применяется метод сходящегося перекрестно-

го отображения (convergent cross mapping, CCM). Этот метод основан на оценке того, насколько хорошо один ряд может быть восстановлен и использованием второго. Считается, что ряд \mathbf{x} точно восстанавливается по ряду \mathbf{y} , только если ряд \mathbf{y} влияет на ряд \mathbf{x} . Метод ССМ основан на сравнении ближайших соседей в фазовом пространстве ряда \mathbf{x} , полученных с помощью ряда \mathbf{x} и с помощью ряда \mathbf{y} . Другими словами, проверяется, насколько точно моменты времени, соответствующие ближайшим соседям вектора \mathbf{y}_t , определяют ближайших соседей вектора \mathbf{x}_t . [14, 15].

Зависимость между рядами может наблюдаться не во всем фазовом пространстве, а только в некотором его подпространстве. Поэтому важно правильно выбрать главные компоненты при разложении в методе SSA. В данной работе предлагается применять метод ССМ на подпространствах. Снижение размерности (проекция в фазовое подпространство) позволяет более детально изучить связь между главными компонентами рядов и найти подпространство, в котором наблюдается зависимость между рядами.

2. Постановка задачи прогнозирования

Поставим задачу прогноза многомерного временного ряда.

Обозначим $\mathbf{X} = (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(s)})^\mathsf{T}$ – заданный s-мерный временной ряд. Построим матрицу плана из сегментов ряда:

$$\begin{pmatrix} x_0^{(1)} & \dots & x_{n-1}^{(1)} \\ \vdots & & & \\ x_0^{(s)} & \dots & x_{n-1}^{(s)} \end{pmatrix} = \mathbf{X}_{0 \div (n-1)}.$$
 (1)

Пусть $\mathbf{x}_n = \left(x_n^{(1)}, \dots x_n^{(s)}\right)^\mathsf{T}$ – значение ряда \mathbf{X} в момент времени n. Построим прогноз $\hat{\mathbf{x}}$ ряда \mathbf{X} в точке \mathbf{x}_n . Проделаем это k раз для различ-

ных обучающих выборок $\mathbf{X}_{\text{train}}^i = \mathbf{X}_{i \div (n+i-1)}, \ i = 0, \dots, (k-1)$. Получим k прогнозов $\mathbf{\hat{X}} = (\mathbf{\hat{x}}_n, \mathbf{\hat{x}}_{n+1}, \dots \mathbf{\hat{x}}_{n+k-1})$ ряда \mathbf{X} в точках $\mathbf{x}_n, \mathbf{x}_{n+1}, \dots \mathbf{x}_{n+k-1}$.

Прогностическая модель имеет вид

$$\hat{\mathbf{x}}_{t+1} = \mathbf{f}(\hat{\mathbf{w}}, \mathbf{x}_t, \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-L+2}),$$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} S(\mathbf{w}, \mathbf{X}, \hat{\mathbf{x}}_n, \hat{\mathbf{x}}_{n+1}, \dots \hat{\mathbf{x}}_{n+k-1}) = S(\mathbf{w}, \mathbf{X}, \hat{\mathbf{X}}),$$

где функция потерь

$$S(\mathbf{w}, \mathbf{X}, \hat{\mathbf{X}}) = \sum_{i=0}^{k-1} \mathcal{L}(\mathbf{x}_{n+i}^{(1)}, \hat{\mathbf{x}}_{n+i}^{(1)}).$$

В данной работе в качестве прогностической модели ${\bf f}$ используется алгоритм многомерной гусеницы (MSSA-L). Функция ${\bf f}$ имеет вид:

$$\mathbf{f}(\hat{\mathbf{w}}, \mathbf{x}_t, \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-L+2}) = egin{pmatrix} x_{t-L+2}^{(1)} & \dots & x_t^{(1)} \\ x_{t-L+2}^{(2)} & \dots & x_t^{(2)} \\ \vdots & & & \vdots \\ x_{t-L+2}^{(s)} & \dots & x_t^{(s)} \end{pmatrix} \cdot \mathbf{p}.$$

вектор коэффициентов **p** определяется алгоритмом многомерной гусеницы MSSA-L. Алгоритм MSSA-L подробнее описан в следующем разделе.

3. Алгоритм многомерной гусеницы (MSSA-L)

Алгоритм MMSA-L является обобщением на многомерный случай алгоритма гусеницы (SSA). Задача алгоритма MSSA-L состоит в представлении временного ряда в виде суммы интерпретируемых компонент. Это осуществляется в четыре шага: запись ряда в виде траекторной матрицы, сингулярное разложение этой матрицы, группировка компонент, полученных при сингулярном разложении, в интерпретируемые компоненты и восстановление временного ряда по каждой из интерпретируемых компонент.

По ряду (1) построим матрицу Ганкеля $\mathbf{H} \in \mathbb{R}^{L \times sK}, \ K = N - L + 1$:

$$\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2, \dots, \mathbf{H}_s],$$

где L – ширина окна, $\mathbf{H}_i \in \mathbb{R}^{L \times K}$ – матрица Ганкеля для ряда $\mathbf{x}^{(i)}$,

$$\mathbf{H}^{(i)} = \begin{pmatrix} x_0^{(i)} & x_1^{(i)} & \dots & x_{N-L}^{(i)} \\ x_1^{(i)} & x_2^{(i)} & \dots & x_{N-L+1}^{(i)} \\ & & \vdots & & \\ x_{L-1}^{(i)} & x_L^{(i)} & \dots & x_{N-1}^{(i)} \end{pmatrix}.$$

По матрице Ганкеля \mathbf{H} восстановим временной ряд \mathbf{X} . Метод многомерной гусеницы строит приближение $\hat{\mathbf{H}}$ матрицы \mathbf{H} меньшего ранга с помощью сингулярного разложения этой матрицы и восстанавливает ряд по матрице $\hat{\mathbf{H}}$. Сингулярное разложение матрицы \mathbf{H} имеет вид

$$\mathbf{H} = \mathbf{U} \mathbf{\Lambda} \mathbf{V} = \sum_{i=1}^d \lambda_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T}$$

где $\lambda_1,\dots,\lambda_d>0$ — сингулярные числа матрицы $\mathbf{H},\,\mathbf{u}_i$ и \mathbf{v}_i — столбцы матриц \mathbf{U} и $\mathbf{V}.$ Тогда наилучшее приближение матрицы \mathbf{H} матрицей ранга r< d имеет вид :

$$\hat{\mathbf{H}} = \sum_{i=1}^r \lambda_i \mathbf{u}_i \mathbf{v}_i^\mathsf{T}$$

По матрице $\hat{\mathbf{H}}$ восстанавливается временной ряд \mathbf{X} путем усреднения элементов, стоящих на антидиагоналях.

Алгоритм многомерной гусеницы также позволяет построить прогноз временного ряда в момент N по (L-1) предыдущим значениям ряда. Алгоритм находит такой вектор коэффициентов $\mathbf{p} \in \mathbb{R}^{(L-1)}$, что

значения ряда \mathbf{X} в момент N:

$$\mathbf{x}_{N} = \begin{pmatrix} x_{N-L+1}^{(1)} & \dots & x_{N-1}^{(1)} \\ x_{N-L+1}^{(2)} & \dots & x_{N-1}^{(2)} \\ & \vdots & & \\ x_{N-L+1}^{(s)} & \dots & x_{N-1}^{(s)} \end{pmatrix} \cdot \mathbf{p} = \mathbf{Y} \cdot \mathbf{p}$$
 (2)

Заметим, что коэффициенты ${\bf p}$ оказываются общими для всех компонент ряда ${\bf X}$.

Для каждого $i \in [1,r]$ обозначим $\tilde{\mathbf{u}}_i$ первые (L-1) компонент столбца \mathbf{u}_i , π_i – последнюю компоненту столбца \mathbf{u}_i и $\nu = \sum_{i=1}^r \pi_i^2$. Тогда вектор коэффициентов \mathbf{p} вычисляется по формуле:

$$\mathbf{p} = \frac{1}{1 - \nu^2} \sum_{i=1}^{r} \pi_i \tilde{\mathbf{u}}_i \tag{3}$$

Заметим, что для одномерного временного ряда справедливы все приведенные соотношения при s=1.

4. Тест Гренджера

В работе для установления причинно-следственных связей предлагается использовать статистический тест Гренджера. Ниже приведен алгоритм теста Гренджера для проверки наличия зависимости одного временного ряда от другого. Пусть требуется проверить, зависит ли ряд \mathbf{x} от ряда \mathbf{y} . Выдвинем гипотезу о независимости ряда \mathbf{x} от ряда \mathbf{y} и проверим ее. Делаем это следующим образом.

1. Строим прогноз ряда ${\bf x}$ без использования ряда ${\bf y}$ и находим значение функции потерь

$$S_{\mathbf{x}} = \sum_{i=1}^{n} \mathcal{L}\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right),$$

где n – длина тестовой выборки.

Функцию $\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}})$ выбираем в зависимости от распределения ошибок прогноза на тестовой выборке (??).

2. Строим прогноз ряда \mathbf{x} с использованием ряда \mathbf{y} . Вычисляем для него значение функции потерь

$$S_{\mathbf{x}\mathbf{y}} = \sum_{i=1}^{n} \mathcal{L}\left(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i}\right).$$

3. Рассмотрим статистику

$$T(\mathbf{x}, \mathbf{y}) = \frac{N - 2k}{k} \cdot \frac{S_{\mathbf{x}} - S_{\mathbf{x}\mathbf{y}}}{S_{\mathbf{x}\mathbf{y}}},$$

где N — длина обучающей выборки, k — размерность регрессионной модели. Статистика T имеет распределение F(k,N-2k) (распределение Фишера с параметрами (k,N-2k)).

4. Если ряд \mathbf{x} не зависит от ряда \mathbf{y} , то значения $S_{\mathbf{x}}$ и $S_{\mathbf{x}\mathbf{y}}$ будут близки, а статистика $T(\mathbf{x},\mathbf{y})$ – незначима. Поэтому в случае больших значений статистики $T(\mathbf{x},\mathbf{y})$ отвергаем гипотезу о независимости ряда \mathbf{x} от \mathbf{y} . Выберем некоторое критические значение t статистики $T(\mathbf{x},\mathbf{y})$. Тогда критерий зависимости ряда \mathbf{x} от ряда \mathbf{y} выглядит следующим образом:

Из
$$T(\mathbf{x}, \mathbf{y}) > t$$
 следует, что ряд \mathbf{x} зависит от ряда \mathbf{y}

5. Аналогично проверим зависимость ряда ${\bf x}$ от восстановленного (с помощью алгоритма MSSA-L) ряда ${\bf \hat{y}}$. Для этого используем статистику

$$T(\mathbf{x}, \hat{\mathbf{y}}) = \frac{N - 2k}{k} \cdot \frac{S_{\mathbf{x}} - S_{\mathbf{x}\hat{\mathbf{y}}}}{S_{\mathbf{x}\hat{\mathbf{y}}}}.$$

Для более подробного изучения связи между временными рядами ${\bf x}$ и ${\bf y}$ вычисляем кросс–корреляционную функцию $\gamma_{{\bf x}{\bf y}}(h)$

$$\gamma_{\mathbf{x}\mathbf{y}}(h) = \frac{\mathsf{E}\left[\left(\mathbf{x}_{t} - \mu_{\mathbf{x}}\right)\left(\mathbf{y}_{t+h} - \mu_{\mathbf{y}}\right)\right]}{\sigma_{\mathbf{x}}\sigma_{\mathbf{y}}},$$

где E – математическое ожидание, μ – выборочное среднее, σ – выборочная дисперсия.

Если h^* соответствует максимальному значению кросс-корреляции, то говорят, что ряд \mathbf{y} сдвинут на h^* относительно \mathbf{x} . То есть $\mathbf{x}_{t+h} = \mathbf{y}_t$ Заметим, что если ряд \mathbf{x} сдвинут на h_1 относительно ряда \mathbf{y} , а ряд \mathbf{y} сдвинут на h_2 относительно ряда \mathbf{z} . То ряд \mathbf{x} сдвинут на $h_3 = h_1 + h_2$ относительно ряда \mathbf{z} .

Пусть прогноз ряда \mathbf{x} строится с использованием истории ряда \mathbf{y} и пусть с помощью вычисления кросс-корреляции рядов \mathbf{x} и \mathbf{y} получено, что ряд \mathbf{x} отстает от ряда \mathbf{y} на h отсчетов времени. Тогда использование при прогнозе ряда \mathbf{y} , сдвинутого на h отсчетов назад, может повысить качество прогноза.

Asymmetric Causality, $X \Rightarrow Y$

A Bidirectional Causality (generic case), $X \Leftrightarrow Y$

5. CCM

Пусть $\mathbf{x}=(x_1,\ldots,x_N)$ и $\mathbf{y}=(y_1,\ldots,y_N)$ – временные ряды длины N.

Опишем, как строится прогноз ряда ${\bf y}$ с помощью ряда ${\bf x}$.

Строим матрицу Ганкеля ряда \mathbf{x} .

$$\mathbf{H_{x}} = \begin{pmatrix} x_{1} & x_{2} & \dots & x_{L-1} & x_{L} \\ x_{2} & x_{3} & \dots & x_{L} & x_{L+1} \\ \vdots & \vdots & & \vdots & \vdots \\ x_{N-L+1} & x_{N-L+2} & \dots & x_{N-1} & x_{N} \end{pmatrix},$$

где L – ширина окна, длина истории ряда, используемая при нахождении

главных компонент. Аналогично строим матрицу $\mathbf{H}_{\mathbf{v}}$.

Обозначим t-ю строку матрицы $\mathbf{H}_{\mathbf{x}}$ через \mathbf{x}_{t+L-1} соответственно. Тогда матрица $\mathbf{H}_{\mathbf{x}}$ принимает вид

$$\mathbf{H}_{\mathbf{x}} = \begin{pmatrix} \mathbf{x}_L \\ \vdots \\ \mathbf{x}_N \end{pmatrix}, \quad \mathbf{x}_i = (x_{i-L+1}, \dots, x_{i-1}, x_i), \quad i = L, \dots, N.$$

Заметим, что все вектора $\mathbf{x}_L, \dots, \mathbf{x}_N$ принадлежат L-мерному фазовому пространству $\mathbf{M}_{\mathbf{x}}$ ряда \mathbf{x} . Аналогично вводим $\mathbf{y}_t, t = L, \dots, N$, лежащие в фазовом пространстве $\mathbf{M}_{\mathbf{y}}$ ряда \mathbf{y} .

Выберем момент $t\in [L,N]$ и найдем k ближайших соседей вектора \mathbf{x}_t в $\mathbf{M}_{\mathbf{x}}$. Обозначим их индексы через t_1,\ldots,t_k . Тогда ближайшие соседи \mathbf{x}_t это строки матрицы $\mathbf{H}_{\mathbf{x}}$ с номерами $(t_1-L+1),\ldots,(t_k-L+1)$:

$$\mathbf{x}_{t_i} = (x_{t_i-L+1}, \dots, x_{t_i-1}, x_{t_i}), \quad i = 1, \dots, k$$

Прогноз \hat{y}_t строится следующим образом:

$$\hat{y}_t = \sum_{i=1}^k \mathbf{w}_i y_{t_i},$$
 где t_i – индексы ближайших соседей \mathbf{x}_t

$$w_i = \frac{u_i}{\sum_i u_i}, \quad u_i = \exp -\left(\frac{||\mathbf{x}_t - \mathbf{x}_{t_i}||_2}{||\mathbf{x}_t - \mathbf{x}_{t_{L+1}}||_2}\right)$$

Аналогично строится прогноз ряда ${\bf X}$ с использованием ряда ${\bf Y}$.

Покажем, как описанный подход можно применяется для обнаружения зависимости между рядами. Пусть выбран момент времени t^* и вектор $\mathbf{x}_{t^*} = (x_{t^*-L+1}, \dots, x_{t^*-1}, x_{t^*})$. И пусть $\mathbf{x}_{t_1} \dots, \mathbf{x}_{t_k}$ – ближайшие соседи вектора \mathbf{x}_{t^*} . Тогда вектора $\mathbf{y}_{t^*}, \mathbf{y}_{t_1}, \dots, \mathbf{y}_{t_k}$ – строки матрицы $\mathbf{H}_{\mathbf{y}}$, соответствующие индексам t_1, \dots, t_k . Тогда, если вектора $\mathbf{y}_{t^*}, \mathbf{y}_{t_1}, \dots, \mathbf{y}_{t_k}$ расположены в $\mathbf{M}_{\mathbf{y}}$ достаточно близко, то утверждается, что ряд \mathbf{Y} зависит от ряда \mathbf{X} .

Введем меру близости $\mathbf{y}_{t^*}, \mathbf{y}_{t_1}, \dots, \mathbf{y}_{t_k}$ следующим образом:

$$S(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{dist}(\mathbf{x})}{\operatorname{dist}(\mathbf{y})}, \quad \operatorname{dist}(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} ||\mathbf{x}_{t^*} - \mathbf{x}_{t_i}||_2$$

Если $S(\mathbf{x}, \mathbf{y})$ меньше некоторого порога s, то ряд \mathbf{y} зависит от ряда \mathbf{x} .

Заметим, что можно рассматривать ближайших соседей не во всем фазовом пространстве $\mathbf{M_x}$ и $\mathbf{M_y}$, а только в некотором его подпространстве, натянутом на первые главные компоненты. Пусть сингулярное разложение матрицы $\mathbf{H_x}$ имеет вид

$$\mathbf{H}_{\mathbf{x}} = \mathbf{U}_{\mathbf{x}} \mathbf{\Lambda}_{\mathbf{x}} \mathbf{V}_{\mathbf{x}}$$

Пусть $\mathcal{T}_{\mathbf{x}}$ – некоторый набор индексов компонент ряда \mathbf{x} . Построим проекцию ряда \mathbf{x} на подпространство, натянутое на компоненты с номерами из $\mathcal{T}_{\mathbf{x}}$. Обозначим это подпространство $\mathbf{M}_{\mathcal{T}_{\mathbf{x}}}$. Заменим в матрице $\mathbf{\Lambda}_{\mathbf{x}}$ элементы, находящиеся в строках с индексами, не из $\mathcal{T}_{\mathbf{x}}$, нулями. Обозначим полученную матрицу $\tilde{\mathbf{\Lambda}}_{\mathbf{x}}$. Тогда проекция ряда \mathbf{x} в подпространство, натянутое на компоненты с индексами из $\mathcal{T}_{\mathbf{x}}$ задается траекторной матрицей

$$\mathbf{P}_{\mathcal{T}_{\mathbf{x}}} = \mathbf{U}_{\mathbf{x}} \tilde{\mathbf{\Lambda}}_{\mathbf{x}} \mathbf{V}_{\mathbf{x}}.$$

Аналогично по некоторому набору $\mathcal{T}_{\mathbf{y}}$ строится подпространство $\mathbf{M}_{\mathcal{T}_{\mathbf{y}}}$ и траекторная матрица $\mathbf{P}_{\mathcal{T}_{\mathbf{y}}}$. Далее предлагается искать ближайших соседей не в полных фазовых пространствах $\mathbf{M}_{\mathbf{x}}$ и $\mathbf{M}_{\mathbf{y}}$, задающихся траекторными матрицами \mathbf{H}_{x} и $\mathbf{H}_{\mathbf{y}}$ соответственно, а в подпространствах $\mathbf{M}_{\mathcal{T}_{\mathbf{x}}}$ и $\mathbf{M}_{\mathcal{T}_{\mathbf{y}}}$, задающихся матрицами $\mathbf{P}_{\mathcal{T}_{\mathbf{x}}}$ и $\mathbf{P}_{\mathcal{T}_{\mathbf{y}}}$.

Рассмотрев различные подпространства, можно выбрать то, которое будет наилучшим образом описывать исследуемый временной ряд и будет иметь минимальную размерность. Перебор различных подпространств также позволяет установить, между какими именно компонентами рядов \mathbf{x} и \mathbf{y} существует зависимость.

Зависимость рядов в выбранных подпространствах устанавливается аналогично зависимости в полных пространствах $\mathbf{M_x}$ и $\mathbf{M_y}$. Пусть $\mathcal{T_x}$ и $\mathcal{T_y}$ – наборы индексов главных компонент рядов \mathbf{x} и \mathbf{y} соответственно. Тогда $\mathbf{P_{\mathcal{T}_x}}$ и $\mathbf{P_{\mathcal{T}_y}}$ – траекторные матрицы проекций рядов \mathbf{x} и \mathbf{y} в подпространства, натянутые на $\mathcal{T_x}$ и $\mathcal{T_y}$ соответственно. Для фиксированного t^* находим k ближайших соседей $\mathbf{x}_{t_1}, \ldots, \mathbf{x}_{t_k}$ и соответствующие им $\mathbf{y}_{t^*}, \mathbf{y}_{t_1}, \ldots, \mathbf{y}_{t_k}$. Здесь \mathbf{x}_t и \mathbf{y}_t – строки матриц $\mathbf{P_{\mathcal{T}_x}}$ и $\mathbf{P_{\mathcal{T}_y}}$ соответственно.

Будем перебирать различные комбинации индексов главных компонент и соответствующие им подпространства $\mathbf{M}_{\mathcal{T}_{\mathbf{x}}}$ и $\mathbf{M}_{\mathcal{T}_{\mathbf{y}}}$. Для каждой пары $(\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}})$ индексов главных компонент рядов \mathbf{x} и \mathbf{y} соответственно будем находить среднее расстояние между k ближайшими соседями для ряда \mathbf{x} и между ближайшими соседями для ряда \mathbf{y} . Введем меру близости векторов

$$S(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}) = \frac{\operatorname{dist}(\mathbf{x}, \mathcal{T}_{\mathbf{x}})}{\operatorname{dist}(\mathbf{y}, \mathcal{T}_{\mathbf{y}})}, \quad \operatorname{dist}(\mathbf{x}, \mathcal{T}_{\mathbf{x}}) = \frac{1}{k} \sum_{i=1}^{k} ||\mathbf{x}_{t^*} - \mathbf{x}_{t_i}||_2$$
(4)

Тогда задача поиска подпространств $\mathbf{M}_{\mathcal{T}_{\mathbf{x}}}$ и $\mathbf{M}_{\mathcal{T}_{\mathbf{y}}}$ эквивалентна поиску номеров главных компонент $(\mathcal{T}_{\mathbf{x}},\mathcal{T}_{\mathbf{y}})$ и имеет вид

$$(\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}}) = \arg \max_{\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{x}}} S(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}})$$
 (5)

$$|\mathcal{T}_{\mathbf{x}}| \to \min$$

$$|\mathcal{T}_{\mathbf{y}}| \to \min$$

6. ССМ, эксперимент

6.1. Сгенерированные данные

Эксперимент проводился на двух сгенерированных рядах ${\bf X}$ и ${\bf Y}$:

$$\mathbf{X} = \sin t + 2\sin\frac{t}{2} + \sigma_x^2 \boldsymbol{\varepsilon}, \quad \sigma_x^2 = 0.3$$

$$\mathbf{Y} = \sin(2t+5) + \sigma_y^2 \boldsymbol{\varepsilon}, \quad \sigma_y^2 = 0.25,$$

где $oldsymbol{arepsilon} \in \mathcal{N}(\mathbf{0}, \mathbf{I})$

Строим матрицу Ганкеля $\mathbf{H}_{\mathbf{x}}$ по ряду \mathbf{X} , взяв ширину окна L=250. Для некоторого момента времени t^* рассмотрим вектор \mathbf{x}_{t^*} , равный t^* -й строке матрицы $\mathbf{H}_{\mathbf{x}}$. Выберем k и найдем среди строк матрицы $\mathbf{H}_{\mathbf{x}}$ k ближайших (в смысле евклидовой нормы) соседей вектора \mathbf{x}_{t^*} . Обозначим индексы найденных векторов t_1, \ldots, t_k , а сами найденные вектора – $\mathbf{x}_{t_1}, \ldots, \mathbf{x}_{t_k}$.

На рисунке изображен ряд \mathbf{X} и k=25 ближайших соседей для момента $t^*=15$. Моменты времени t_1,\dots,t_k выделены красным, момент t^* – черным.

Рис. 1: Ближайшие соседи точки \mathbf{x}_{15}

Строим матрицу Ганкеля $\mathbf{H}_{\mathbf{y}}$ по ряду \mathbf{Y} . Обозначим i-ю строку $\mathbf{H}_{\mathbf{y}}$ через \mathbf{y}_i . Тогда по найденным индексам t_1, \ldots, t_k можно отобрать соответствующие $\mathbf{y}_{t_1}, \ldots, \mathbf{y}_{t_k}$. Если ряд \mathbf{Y} зависит от ряда \mathbf{X} , то вектора $\mathbf{y}_{t_1}, \ldots, \mathbf{y}_{t_k}$, как и $\mathbf{x}_{t_1}, \ldots, \mathbf{x}_{t_k}$, будут находиться рядом в фазовом пространстве. Изобразим $\mathbf{x}_{t^*}, \mathbf{x}_{t_1}, \ldots, \mathbf{y}_{t_k}$ и $\mathbf{y}_{t^*}, \mathbf{x}_{t_1}, \ldots, \mathbf{y}_{t_k}$ на фазовых траекториях.

Рис. 2: Точки на фазовых траекториях рядов ${\bf X}$ и ${\bf Y}$, соответствующие 15-ти ближайшим соседям ${\bf x}_{15}$

Видно, что точки обоих фазовых траекториях расположены близко друг другу. Значит, ряд ${\bf Y}$ зависит от ряда ${\bf X}$.

Аналогично для некоторого t^* находим ближайших соседей вектора \mathbf{y}_{t^*} . Обозначим их $\mathbf{y}_{t_1},\ldots,\mathbf{y}_{t_k}$. На рисунке изображен ряд \mathbf{Y} и k=25 ближайших соседей вектора \mathbf{y}_{20} .

Рис. 3: Ближайшие соседи точки \mathbf{y}_{20}

Изобразим $\mathbf{y}_{t^*}, \mathbf{y}_{t_1}, \dots, \mathbf{y}_{t_k}$ и соответствующие им $\mathbf{x}_{t^*}, \mathbf{x}_{t_1}, \dots, \mathbf{x}_{t_k}$ на фазовых траекториях.

Рис. 4: Точки на фазовых траекториях рядов ${\bf X}$ и ${\bf Y}$, соответствующие 15-ти ближайшим соседям ${\bf y}_{20}$

Видим, что точки $\mathbf{x}_{t^*}, \mathbf{x}_{t_1}, \dots, \mathbf{x}_{t_{15}}$ расположены на фазовых траекториях близко друг к другу. При этом они распадаются на четыре плотные группы. Это связано с тем, что период ряда \mathbf{X} в четыре раза меньше пе-

6.2. Реальные данные

В эксперименте исследуются ряд объема потребления электроэнергии \mathbf{X} и ряд значений температуры \mathbf{Y} в течение года. Так как эти ряды не являются стационарными, их необходимо продифференцировать и отнормировать перед тем, как исследовать зависимости между ними. Ряд температуры будем приводить к стационарной форме следующим образом. Рассмотрим ряд длины светового дня в течение года \mathbf{Z} . С помощью вычисления кросс-корреляционной функции $\gamma_{\mathbf{x}\mathbf{y}}(h)$ рядов \mathbf{X} и \mathbf{Z} . Определим, насколько ряд \mathbf{Z} опережает ряд \mathbf{Y} . То есть найдем такое h^* , что $\mathbf{Y}(t+h^*) = \mathbf{Z}(t)$. Вычтем из ряда \mathbf{Y} ряд \mathbf{Z} с учетом сдвига h^* . Полученный ряд $\mathbf{Y}(t) = \mathbf{Y}(t) - \mathbf{Z}(t-h^*)$ будет стационарным рядом температуры.

Исходные ряды потребления электроэнергии \mathbf{X} , температуры \mathbf{Y} и длины светового дня \mathbf{Z} изображены на рис. 5.

Рис. 5: Продифференцированные и нормированные ряды потребления электроэнергии и температуры

Построим кросс-корреляционную диаграмму рядов ${\bf Y}$ и ${\bf Z}$

Рис. 6: Кросс-корреляционная диаграмма для ряда температуры ${\bf Y}$ и длины светового дня ${\bf Z}$

Максимум модуля кросс
–корреляции $\gamma_{\mathbf{yz}}(h)$ достигается при h=560. Значит,

$$\mathbf{Z}(t) = \mathbf{Y}(t + 560).$$

И новый стационарный ряд температуры имеет вид

$$\mathbf{Y}^*(t) = \mathbf{Y}(t) - \mathbf{Z}(t - 560).$$

Далее, для удобства, полученный ряд температуры \mathbf{Y}^* будем обозначать \mathbf{Y} . Продифференцированные и нормированные ряды потребления электроэнергии и температуры изображены на рис. 7.

Рис. 7: Продифференцированные и нормированные ряды потребления электроэнергии и температуры

Исследуем зависимость ряда температуры \mathbf{Y} от ряда потребления электроэнергии \mathbf{X} . Делаем это аналогично эксперименту на искусственных данных. Выбираем ширину окна L и некоторый момент времени t^* . Находим k ближайших соседей векторов \mathbf{x}_{t^*} и \mathbf{y}_{t^*} и их расположение в фазовом пространстве.

Возьмем L=170, что соответствует периоду в семь дней. Возьмем $t^*=400.$ На рис. 8 красным показаны ближайшие соседи вектора \mathbf{x}_{t^*}

Рис. 8: Ближайшие соседи вектора \mathbf{x}_{t^*} , ширина окна L=170

Рис. 9: Ближайшие соседи векторов \mathbf{x}_{t^*} и \mathbf{y}_{t^*} на фазовых диаграммах с периодом 12 часов

Рис. 10: Ближайшие соседи вектора \mathbf{x}_{t^*} и \mathbf{y}_{t^*} на фазовых диаграммах с периодом 24 часа

Исследуем зависимость ряда ${\bf X}$ от ряда ${\bf Y}$. Возьмем $t^*=400, L=170.$ На рис. 11 красным показаны ближайшие соседи вектора ${\bf y}_{t^*}$

Рис. 11: Ближайшие соседи вектора \mathbf{y}_{t^*} , ширина окна L=100

Рис. 12: Ближайшие соседи векторов \mathbf{x}_{t^*} и \mathbf{y}_{t^*} на фазовых диаграммах с периодом 12 часов

Рис. 13: Ближайшие соседи векторов \mathbf{x}_{t^*} и \mathbf{y}_{t^*} на фазовых диаграммах с периодом 24 часа

6.3. Перебор подпространств

Переберем фазовые подпространства рядов ${\bf x}$ и ${\bf y}$ размера не больше пяти. Для этого будет перебирать пары множеств индексов главных

компонент $(\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}})$. Для каждой пары $(\mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}})$ найдем $S(\mathbf{x}, \mathbf{y}, \mathcal{T}_{\mathbf{x}}, \mathcal{T}_{\mathbf{y}})$, за-дающееся (4)

 ${f Puc.\ 14:}$ Отношение расстояния между ближайшими соседями ряда ${f X}$ к расстоянию между соседями ряда ${f Y}.$ Ближайшие соседи определяются по ряду ${f X}$

 ${f Puc.~15:}$ Отношение расстояния между ближайшими соседями ряда ${f Y}$ к расстоянию между соседями ряда ${f X}.$ Ближайшие соседи определяются по ряду ${f Y}$

Список литературы

- 1. Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods. *Econometrica: Journal of the Econometric Society*, pages 424–438, 1969.
- Adam B Barrett, Lionel Barnett, and Anil K Seth. Multivariate granger causality and generalized variance. *Physical Review E*, 81(4):041907, 2010.
- 3. Craig Hiemstra and Jonathan D Jones. Testing for linear and nonlinear granger causality in the stock price-volume relation. *The Journal of Finance*, 49(5):1639–1664, 1994.
- 4. Robert Hoffmann, Chew-Ging Lee, Bala Ramasamy, and Matthew Yeung. Fdi and pollution: a granger causality test using panel data. Journal of international development, 17(3):311–317, 2005.
- 5. N Golyandina and D Stepanov. Ssa-based approaches to analysis and forecast of multidimensional time series. In *proceedings of the 5th St. Petersburg workshop on simulation*, volume 293, page 298, 2005.
- 6. Nina Golyandina, Vladimir Nekrutkin, and Anatoly A Zhigljavsky. Analysis of time series structure: Ssa and related techniques (chapman & hall crc monographs on statistics & applied probability). 2001.
- 7. Nina Golyandina and Anatoly Zhigljavsky. Singular Spectrum Analysis for time series. Springer Science & Business Media, 2013.
- 8. James B Elsner and Anastasios A Tsonis. Singular spectrum analysis: a new tool in time series analysis. Springer Science & Business Media, 2013.
- 9. Theodore Alexandrov. A method of trend extraction using singular spectrum analysis. arXiv preprint arXiv:0804.3367, 2008.
- 10. Myles R Allen and Leonard A Smith. Monte carlo ssa: Detecting

- irregular oscillations in the presence of colored noise. *Journal of climate*, 9(12):3373–3404, 1996.
- 11. Hossein Hassani, Saeed Heravi, and Anatoly Zhigljavsky. Forecasting uk industrial production with multivariate singular spectrum analysis.

 Journal of Forecasting, 32(5):395–408, 2013.
- 12. CAF Marques, JA Ferreira, A Rocha, JM Castanheira, P Melo-Gonçalves, N Vaz, and JM Dias. Singular spectrum analysis and forecasting of hydrological time series. *Physics and Chemistry of the Earth, Parts A/B/C*, 31(18):1172–1179, 2006.
- 13. Halbert White and Xun Lu. Granger causality and dynamic structural systems. *Journal of Financial Econometrics*, 8(2):193–243, 2010.
- George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan Munch. Detecting causality in complex ecosystems. *science*, page 1227079, 2012.
- 15. George Sugihara and Robert M May. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. *Nature*, 344(6268):734, 1990.