limit.df\$cluster==1, # aridity

limit.df\$cluster==2, # geography
limit.df\$cluster==3, # freezing

limit.df\$cluster==4)) # multi

KH

From: Kay Hodgins kathryn.hodgins@monash.edu @

Subject: analysis

Date: May 10, 2017 at 3:18 AM

To: Katie Lotterhos k.lotterhos@gmail.com

Hey Katie,

I redid the analysis and as predicted I didn't find much after the fdr correction (just one molecular function was significant). However, I think there are still many interesting candidates. For example in the final cluster the only gene that was annotated was ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT. In the second cluster there is a gene involved in sporopollenin biosynthesis which is important for desiccation resistant microspores in land plants. Several flowering time/floral development genes and drought/stress response genes are in the lists. I attached the lists with the TAIR homologs. Below are the top biological processes for each cluster. Only a few genes were annotated for each of the top terms. I guess you might expect more than one type of molecular pathway to be involved in adaptation to each climate combo.

Cluster 1	top	terms
~ ~		

GO.ID	Term Annotated Significant Expected p					
17 GO:0009653	anatomical structure morphogenes	sis 30	8	2	0.33	0.0395 0.2566727
23 GO:0044262	cellular carbohydrate metabolic proce	ess 34	2	2	0.36	0.0479 0.2566727
25 GO:0048856	anatomical structure developmen	nt 842		3	0.89	0.0505 0.2566727
27 GO:0001101	response to acid chemical	360	2	0.3	38	0.0526 0.2566727
28 GO:0048513	organ development	370	2	0.39		0.0552 0.2566727

Cluster 2 top terms

	•			
GO.ID	Term Annotated Significant Expected p fdr			
1 GO:0006885	regulation of pH 18	2	0.07	0.0020 0.07880000
2 GO:0006475	internal protein amino acid acetylation	21	2 0.08	0.0027 0.07880000
3 GO:0016573	histone acetylation 21	2	0.08	0.0027 0.07880000
4 GO:0018393	internal peptidyl-lysine acetylation	21	2 0.08	0.0027 0.07880000

Cluster 3 top terms

GO.ID	Term Annotated Significant Expected p - for				
13 GO:0009628	response to abiotic stimulus	669	3 0.62	0.01852 0.21917	
15 GO:0009416	response to light stimulus	248	2 0.23	0.02027 0.21917	
16 GO:0009314	response to radiation	254	2 0.24	0.02121 0.21917	

I also looked to see if your outlier clusters had an over-representation of differentially expressed genes using a fisher's exact test. I didn't find anything significant so far for pairwise comparisons of the climate treatments. However, I will also see if there are any co-expressed networks that were over-represented in your outlier clusters.

I just took a quick look at the LD for some of the outliers (Sam had the LD for the outliers calculated). As predicted, you can see for the few I looked at from cluster 1 the LD was pretty high - perhaps suggesting that selection is driving the associations ... if they are unlinked. Do you have this file? Sam has it on dropbox. I guess the only worry could be that they are actually nearby one another and the clusters are due to linkage so perhaps you wouldn't want to focus on this.

```
nput_data_and_intermediates kayhodgins$ grep comp90150_c0_seq1
pine_super_outlier_LD_p4_all_genemeans.txt | comp9553_c0_seq1
-bash: comp9553_c0_seq1: command not found
MU00063726:input_data_and_intermediates kayhodgins$ grep
comp90150_c0_seq1 pine_super_outlier_LD_p4_all_genemeans.txt | grep
comp9553_c0_seq1
comp90150_c0_seq1 comp9553_c0_seq1 0.182609947794215
```

```
comp9553_c0_seq1
                        comp90150_c0_seq1
                                                0.182609947794215
MU00063726:input_data_and_intermediates kayhodgins$ grep
comp90150_c0_seq1 pine_super_outlier_LD_p4_all_genemeans.txt | grep
comp1565_c0_seq1
comp1565_c0_seq1
                        comp90150_c0_seq1
                                                0.196499097314239
comp90150_c0_seq1
                        comp1565_c0_seq1
                                                0.196499097314239
MU00063726:input_data_and_intermediates kayhodgins$ grep
comp90150_c0_seq1 pine_super_outlier_LD_p4_all_genemeans.txt | grep
comp24588_c0_seq1
comp24588_c0_seq1
                        comp90150_c0_seq1
                                                0.291894701616989
comp90150_c0_seq1
                        comp24588_c0_seq1
                                                0.291894701616989
```

