东南大学学生会 Students' Union of Southeast University

05-06-3高数A期末试卷

-. 填空题(本题共 9 小题,每小题 4 分,满分 36 分)

1. 交换积分次序:
$$\int_0^1 dx \int_{\sqrt{x}}^{1+\sqrt{1-x^2}} f(x,y) dy =$$
_______;

3. 向量场
$$\mathbf{A} = 3x^2yz^2\mathbf{i} + 4xy^2z^2\mathbf{j} + 2xyz^3\mathbf{k}$$
 在点 (2,1,1) 处的散度 $\mathbf{div}\mathbf{A} = \underline{\hspace{1cm}}$;

6. 若幂级数
$$\sum_{n=1}^{\infty} a_n (x+1)^n$$
 在 $x=2$ 处条件收敛,则 $\sum_{n=1}^{\infty} na_n (x+1)^{n-1}$ 的收敛半径 $R=$ ____;

7. 将函数
$$f(x) = \begin{cases} 1 & , & 0 \le x < 1 \\ x + 1, 1 \le x < \pi \end{cases}$$
 在 $[0, \pi]$ 上展开为正弦级数,其和函数 $S(x)$ 在 $x = -1$

处的函数值 $S(-1) = ______;$

8. 设
$$C$$
为正向圆周: $|z|=1$,则质 $\frac{\sin z}{z^2}$ d $z=$ ______;

9. 设
$$f(z)$$
 在 z 平面上解析, $f(z) = \sum_{n=0}^{\infty} a_n z^n$,则对任一正整数 k ,函数 $\frac{f(z)}{z^k}$ 在点 $z = 0$

的留数
$$\operatorname{Res}\left[\frac{f(z)}{z^k};0\right] = \underline{\hspace{1cm}}$$
。

二. 计算下列各题(本题共 4 小题,满分 33 分)

10. (本题满分 7 分) 设函数
$$z = z(x, y)$$
 由方程 $x^2 + y^2 = x\varphi\left(\frac{z}{y}\right)$ 所确定,其中 φ 为可微

函数, 求
$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$.

东南大学学生会 Students' Union of Southeast University

- **11. (本题满分 7 分)** 将函数 $f(x) = \ln(2x x^2)$ 展开为 x 1 的幂级数, 并指出其收敛域。
- **12.** (**本题满分 10 分**) 求幂级数 $\sum_{n=1}^{\infty} \frac{n \cdot 3^n}{n+1} x^{n+1}$ 的收敛域及和函数,并求 $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{3}{4}\right)^n$ 的 和。
- **13. (本题满分 9 分)** 计算第二型曲线积分: $I = \int_{Y} x \sqrt{x^2 + y^2} dx + y \left(x + \sqrt{x^2 + y^2}\right) dy$,

其中L是从点A(2,1)沿曲线 $y = \sqrt{x-1}$ 到点B(1,0)的一段。

- 三 (14). (本题满分 9 分) 试就 x 在区间 $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ 上的不同取值,讨论级数
- $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n \sin^{2n} x}{n}$ 的敛散性; 当级数收敛时, 判别其是绝对收敛, 还是条件收敛?
- 四 (15). (本题满分 10 分) 将函数 $f(z) = \frac{1}{z^2(1+z)}$ 分别在圆环域 (1) $1 < |z| < +\infty$; (2)

1 < |z-1| < 2内展开成罗朗级数。

- 五 (16). (本题满分 6 分) 证明级数 $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \sqrt{\ln \frac{n+1}{n}} \right) \psi$ 效。
- 六(17).(本题满分6分)计算第二型曲面积分:

$$\iint_{S} (yf(x,y,z) + x) dy \wedge dz + (xf(x,y,z) + y) dz \wedge dx + (2xyf(x,y,z) + z) dx \wedge dy,$$

其中 S 是曲面 $z = \frac{1}{2}(x^2 + y^2)$ 介于平面 z = 2 与平面 z = 8 之间的部分,取上侧,

f(x, y, z) 为连续函数。