2018-2019 Term 2

PHYS1001 Essential Physics

Assignment 7

Due date: 26th March, 2019 by 6:00 pm

(Please leave your homework in the box with the label "PHYS 1001" outside room 213 in Science Centre North Block)

Please answer all five questions

1. An electron, originally placed at the mid-point between the two charged planes, starts from rest. It is known that the electric field between the two plates is uniform and has a value of 0.002~N/C. Ignore the effect of gravitation in the calculation. Given that the mass of an electron is $9.11 \times 10^{-31} \text{kg}$.

- (a) Calculate the electric force on the electron.
- (b) Calculate the time it takes the electron to reach plate A.

Answer:

(a)
$$F = qE$$

$$F = (1.6 \times 10^{-19})(0.002)$$

$$F = 3.2 \times 10^{-22} \text{ N}$$
(b)
$$F_{net} = ma$$

$$3.2 \times 10^{-22} = (9.11 \times 10^{-31})a$$

$$a = 0.351 \times 10^{9} \text{ m/s}^{2}$$

$$s = \frac{0.01}{2}, u = 0, a = 0.351 \times 10^{9}, t = ?$$

$$s = ut + \frac{1}{2}at^{2}$$

$$\frac{0.01}{2} = \frac{1}{2}(0.351 \times 10^{9})t^{2}$$

2. A student measures the resistance of an unknown resistor experimentally by collecting the potential difference V across the resistor and the current passing through the resistor.

V/volts	2	4	6	8	10	12
I/mA	16	32	49	63	80	96

- (a) Plot a graph of *V* against *I*. Label your graph properly.
- (b) What is the meaning of the slope of the graph? Find the value of the slope.

Answer:

(a)

(b) The slope is the resistance of the resistor.

$$R = \frac{12 - 2}{(96 - 16) \times 10^{-3}} = 125 \,\Omega$$

3. (a) Calculate the current passing through each resistor.

(b) Calculate the power consumed by each resistor.

Answer:

Equivalent resistance = $1.6 + 4 + 2 = 7.6 \Omega$

Current passing through the 2 Ω and 4 Ω resistor= $\frac{3}{7.6}$ = 0.395 A

Potential difference across the 8 Ω resistor= $3 - 2 \times 0.395 - 4 \times 0.395 = 0.63$ V

Current passing through the 2 Ω resistor=0.316 A

Current passing through the 8 Ω resistor=0.080 A

(b) Power of the 2Ω resistor (the 2Ω resistor in parallel with the 8Ω resistor) = $I^2 R = (0.316)^2(2) = 0.2 \text{ W}$

Power of the 8 Ω resistor)= $I^2R = (0.08)^2(8) = 0.05 \text{ W}$

Power of the 4 Ω resistor)= $I^2R = (0.395)^2(4) = 0.62W$

Power of the 2 Ω resistor (the 2 Ω resistor in the rightmost branch) $= I^2R = (0.395)^2(2) = 0.31 \text{ W}$

4. In the circuit below, the resistance of resistors 1, 2 and 3 are 10 Ω , 5Ω and 10 Ω respectively. The EMF of the battery is 5V.

- (a) Calculate the current passing through R_2 .
- (b) Calculate the voltage across R_1 and R_3

Answer:

(a) R_1 and R_3 are connected in parallel

$$\frac{1}{R_1} + \frac{1}{R_3} = \frac{1}{R_{eq}}$$

$$R_{eq,A} = 5 \Omega$$

 $R_{eq,A}$ and R_2 are connected in series

$$R_{eq,total} = 5 + 5 = 10 \Omega$$

The current passing through $R_{eq,total}$ is:

$$V = IR_{eq,total}$$

$$I = \frac{V}{R_{eq,total}}$$

$$I = \frac{5}{10}$$

$$I = 0.5 \text{ A}$$

(b) The potential difference across R_2 is $V = IR_2 = (0.5)(5) = 2.5$ V The potential difference across R_1 :

$$V_1 = -V_2 + \text{E. M. F.}$$

 $V_1 = 5 - 2.5$
 $V_1 = 2.5 \text{ V}$

Similarly, the potential difference across R_3 is also 2.5 V.

5. Consider the following circuit:

The resistance of each resistor is 10Ω and V = 100 V.

(a) Before the switch is closed, calculate the currents through each resistor.

(b) After the switch is closed, calculate the currents through each resistor.

Answer:

(a) Before the switch is closed, R_3 and R_4 are connected in parallel.

$$\frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{R_{eq,A}}$$
$$R_{eq,A} = 5 \Omega$$

 $R_{eq,A}$ is connected in series with R_1 .

$$R_{eq,total} = 5 + 10 = 15 \Omega$$

The current through the battery:

$$V = IR_{eq,total}$$

$$100 = I(15)$$

$$I = 6.67 \text{ A}$$

The current through R_1 is 6.67 A. The current passing through R_3 is $\frac{6.67}{2} = 3.33$ A. Similarly, the current passing through R_4 is $\frac{6.67}{2} = 3.33$ A.

(b) After the switch is closed, R_2 , R_3 and R_4 are connected in parallel.

$$\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} = \frac{1}{R_{eq,A}}$$

$$R_{eq,A} = 3.33 \Omega$$

 $R_{eq,A}$ is connected in series with R_1 .

$$R_{ea,total} = 3.33 + 10 = 13.33 \Omega$$

The current through the battery:

$$V = IR_{eq,total}$$
$$100 = I(13.33)$$

I = 7.5 A

The current through R_1 is 7.5 A. The current passing through R_2 is $\frac{7.5}{3} = 2.5$ A. Similarly, the current through each resistor R_3 and R_4 is $\frac{7.5}{3} = 2.5$ A