ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Introducción al Machine Learning

Andrés G. Abad, Ph.D.

Agenda

Introducción al Machine Learning

Problema de Aprendizaje Supervisado

Referencias bibliográficas

Agenda

Introducción al Machine Learning

Problema de Aprendizaje Supervisado

Referencias bibliográficas

Introducción al Aprendizaje de Máquina I

Def. Aprendizaje de Máquina [Mitchell, 1997]

Una máquina aprende con respecto a

- ▶ una tarea T,
- ▶ una medida de desempeño P, y
- ▶ un tipo de experiencia E,

si la máquina confiablemente mejora su

ightharpoonup desempeño P, en la tarea T, siguiendo una experiencia E.

Introducción al Aprendizaje de Máquina II

El Aprendizaje de Máquina es una rama del Inteligencia Artificial

Def. Inteligencia Artificial (AI)

La Inteligencia Artificial es la ciencia que estudia la **representación** de los procesos mentales relacionados a la **inteligencia humana** mediante **modelos**

El aprendizaje es incuestionablemente uno de los principales procesos del cerebro

Introducción al Aprendizaje de Máquina III Aprendizaje supervisado

- ► Aprendizaje no supervisado
- ► Aprendizaje semi-supervisado
- ► Aprendizaje reforzado

Introducción al Aprendizaje de Máquina IV

Dos acercamientos:

- 1. Escribir un programa en el cual detallamos procesos para diferenciar entre un rostro masculino de uno femenino.
 - Longitud del cabello, distancia entre ojos, medidas de nariz, area del rostro, tonalidad de labios, etc
- 2. Escribir un meta-programa que defina automaticamente un programa para realizar esta distinción

Introducción al Aprendizaje de Máquina V

- ► Elementos de un algoritmo
 - 1. Datos de entrada
 - 2. Procedimientos
 - 3. Salidas

Formalización del Problema de Aprendizaje Supervisado I

Considere $(\mathbf{x_1}, y_1), \dots, (\mathbf{x_m}, y_m)$ donde $\mathbf{x_i} \in \mathcal{X} \subseteq \mathbb{R}^n, y_i \in \mathcal{Y} \subseteq \mathbb{R}$. Asumimos que existe una función no conocida

$$f: \mathcal{X} \to \mathcal{Y}$$

Según la naturaleza del conjunto \mathcal{Y} tenemos los siguientes tipos de problemas

\mathcal{Y}	Tipo de problema
$\overline{\mathbb{R}}$	Regresión
$\{c_1,\ldots,c_n\}$	Clasificación
$\{-1, +1\}$	Clasificación binaria

Formalización del Problema de Aprendizaje Supervisado II

Buscamos una hipótesis

$$h: \mathcal{X} \to \mathcal{Y}$$

que tenga un bajo error de generalización

$$\epsilon = \mathbb{E}_{\mathbf{x} \sim \mathbb{P}}[h(\mathbf{x}) \neq f(\mathbf{x})].$$

Regresión:
$$\hat{\epsilon} = MSE(h) = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} (f(\mathbf{x}) - h(\mathbf{x}))^2$$

Clasificación:
$$\hat{\epsilon} = \frac{1}{|\mathcal{X}|} \sum_{x,y} [\mathbb{I}(h(x) \neq f(x))]$$

Habilitadores del desarrollo del Aprendizaje de Máquina I

Habilitadores del desarrollo del Aprendizaje de Máquina

- 1. Avances en optimización matemática
- 2. Avances en poder de cómputo
- 3. Disponbilidad de grandes conjuntos de datos

Muchas gracias por su atención

Andrés G. Abad, Ph.D.

agabad@espol.edu.ec

@agabad5

Referencias bibliográficas I

- A. G. Abad and L. I. Reyes-Castro. Collaborative filtering using denoising auto-encoders for market basket data. *IISE Annual Conference & Expo 2017*, 2017.
- Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized Denoising Auto-Encoders as Generative Models. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 26*, pages 899–907. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/5023-generalized-denoising-auto-encoders-as-generative-models.pdf.
- G. Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals, and Systems (MCSS)*, 2(4):303–314, 1989.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In *Advances in neural information processing systems*, pages 2672–2680, 2014.
- G. Linden, B. Smith, and J. York. Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80, Jan. 2003. ISSN 1089-7801. doi: 10.1109/MIC.2003.1167344.
- T. Mitchell. *Machine Learning*. McGraw-Hill Education, New York, 1 edition edition, Mar. 1997. ISBN 9780070428072.

Referencias bibliográficas II

- A. Rakhlin, A. Shvets, V. Iglovikov, and A. A. Kalinin. Deep convolutional neural networks for breast cancer histology image analysis. In *International Conference Image Analysis and Recognition*, pages 737–744. Springer, 2018.
- D. Ribli, A. Horváth, Z. Unger, P. Pollner, and I. Csabai. Detecting and classifying lesions in mammograms with deep learning. *Scientific reports*, 8(1):4165, 2018.