Abelian Varieties

"如果是勇者辛美尔,他一定会这么做的!"

Contents

1	The	e First Properties of Abelian Varieties	1
	1.1	Preliminaries	1
	1.2	Definition and examples of Abelian Varieties	1
	1.3	Complex abelian varieties	3
2	Pica	ard Groups of Abelian Varieties	3
	2.1	Pullback along group operations	3
	2.2	Projectivity	5
	2.3	Isogenies and finite subgroups	5
	2.4	Dual abelian varieties	5

1 The First Properties of Abelian Varieties

1.1 Preliminaries

Proposition 1.1. Let $f: X \to Y$ be a morphism of varieties over a field **k**. Then the function $y \mapsto \dim f^{-1}(y)$ is upper semicontinuous, i.e., for every integer m, the set $\{y \in Y : \dim f^{-1}(y) \ge m\}$ is closed in Y. Yang: To be check.

1.2 Definition and examples of Abelian Varieties

Theorem 1.2 (Rigidity Lemma). Let $\pi_i: X \to Y_i$ be proper morphisms of varieties over a field **k** for i = 1, 2. Suppose that π_1 is a fibration and π_2 contracts $\pi_1^{-1}(y_0)$. Then there exists a rational map $\varphi: Y_1 \dashrightarrow Y_2$ such that $\pi_2 \circ \varphi = \pi_1$ and φ is well-defined near $Y_1 \setminus \{y_0\}$.

Definition 1.3. Let S be a scheme. An *abelian scheme over* S is a group object in the category \mathbf{Sch}_{S} such that the structure morphism is proper, smooth and a fibration. If $S = \operatorname{Spec} \mathbf{k}$ for some field \mathbf{k} , then it is called an *abelian variety over* \mathbf{k} .

Definition 1.4. Let **k** be a field. An abelian variety over **k** is a proper variety A over **k** together with morphisms identity $e : \operatorname{Spec} \mathbf{k} \to A$, multiplication $m : A \times A \to A$ and inversion $i : A \to A$ such that the following diagrams commute:

Date: August 30, 2025, Author: Tianle Yang, My Homepage

(b) (Identity)

(c) (Inversion)

Yang: Can we just say that $A(\mathbf{k})$ is a group with e, m, i satisfying the axioms?

Example 1.5. Let E be an elliptic curve over a field k. Then E is an abelian variety of dimension 1.

Example 1.6.

Example 1.7.

In the following, we will always assume that A is an abelian variety over a field \mathbf{k} of dimension d. Temporarily, we will use the notation e_A, m_A, i_A to denote the identity section, multiplication morphism and inversion morphism of an abelian variety A. The left translation by $a \in A(\mathbf{k})$ is defined

as

$$l_a: A \xrightarrow{\cong} \operatorname{Spec} \mathbf{k} \times A \xrightarrow{a \times \operatorname{id}_A} A \times A \xrightarrow{m_A} A.$$

Similar definition applies to the right translation r_a .

Proposition 1.8. Let A be an abelian variety. Then A is smooth.

Proof. Note that there is an open subset $U \subset A$ which is smooth. Then apply the left translation morphism l_a .

Proposition 1.9. Let A be an abelian variety. Then the cotangent bundle Ω_A is trivial, i.e., $\Omega_A \cong \mathcal{O}_A^{\bigoplus d}$ where $d = \dim A$.

Proof. Consider Ω_A as a geometric vector bundle of rank d. Then the conclusion follows from the fact that the left translation morphism l_a induces a morphism of varieties $\Omega_A \to \Omega_A$ for every $a \in A(\mathbf{k})$.

Yang: But how to show it is a morphism of varieties? Yang: To be completed.

Lemma 1.10. Let X, Y, Z be proper varieties over a field \mathbf{k} and $g: X \times Y \to Z$ a morphism over \mathbf{k} . Suppose that g contracts $X \times y_0$ for some point $y_0 \in X(\mathbf{k})$. Then there exists a unique morphism $f: Y \to Z$ such that $g = f \circ p_Y$, where $p_Y: X \times Y \to Y$ is the projection to the second factor.

Proof. Yang: To be completed.

Theorem 1.11. Let A and B be abelian varieties. Then any morphism $f:A\to B$ with $f(e_A)=e_B$ is a group homomorphism.

Proof. Let $f: A \times A \to B$ be given by $A \times A \xrightarrow{f \times f} B \times B \xrightarrow{m_B} B$. Then f contracts $A \times e_A$ to e_B . Yang: To be completed.

Proposition 1.12. Let A be an abelian variety. Then $A(\mathbf{k})$ is an abelian group.

Proof. Note that a group is abelian if and only if the inversion map is a homomorphism of groups. Then the conclusion follows from Theorem 1.11.

From now on, we will use the notation $0, +, [-1]_A, t_a$ to denote the identity section, addition morphism, inversion morphism and translation by a of an abelian variety A. For every $n \in \mathbb{Z}_{>0}$, the homomorphism of multiplication by n is defined as

$$[n]_A:A\xrightarrow{\Delta}A\times A\xrightarrow{[n-1]_A\times\operatorname{id}_A}A\times A\xrightarrow{+}A,$$

where Δ is the diagonal morphism.

Proposition 1.13. Let A be an abelian variety over \mathbb{k} and n a positive integer. Then the multiplication by n morphism $[n]_A:A\to A$ is finite surjective and étale.

Proof. Yang: To be completed.

1.3 Complex abelian varieties

Theorem 1.14. Let A be a complex abelian variety. Then A is a complex torus, i.e., there exists a lattice $\Lambda \subset \mathbb{C}^d$ such that $A \cong \mathbb{C}^d/\Lambda$. Conversely, let $A = \mathbb{C}^n/\Lambda$ be a complex torus for some lattice Λ . Then A is a complex abelian variety if and only if Λ Yang: To be completed.

2 Picard Groups of Abelian Varieties

2.1 Pullback along group operations

Theorem 2.1 (Seesaw Theorem). Let A be an abelian variety over \mathbb{k} .

Theorem 2.2 (Theorem of the cube). Let X,Y,Z be completed varieties over \mathbbm{k} and \mathcal{L} a line bundle on $X\times Y\times Z$. Suppose that there exist $x\in X(\mathbbm{k}),y\in Y(\mathbbm{k}),z\in Z(\mathbbm{k})$ such that the restriction $\mathcal{L}|_{\{x\}\times Y\times Z},\,\mathcal{L}|_{X\times \{y\}\times Z}$ and $\mathcal{L}|_{X\times Y\times \{z\}}$ are trivial. Then \mathcal{L} is trivial.

Proof. Yang: To be completed.

Remark 2.3. If we assume the existence of the Picard scheme, then the theorem of the cube can be deduced from the Rigidity Lemma. Yang: To be completed.

Proposition 2.4. Let A be an abelian variety over \mathbb{k} , $f, g, h : X \to A$ morphisms from a variety X to A and \mathcal{L} a line bundle on A. Then

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1}.$$

Proof. Yang: To be completed.

Proposition 2.5. Let A be an abelian variety over \mathbb{K} , $n \in \mathbb{Z}$ and \mathcal{L} a line bundle on A. Then we have

$$[n]_{\mathcal{A}}^*\mathcal{L} \cong \mathcal{L}^{\bigotimes \frac{1}{2}(n^2+n)} \bigotimes [-1]_{\mathcal{A}}^*\mathcal{L}^{\bigotimes \frac{1}{2}(n^2-n)}.$$

Proof. Yang: To be completed.

Theorem 2.6 (Theorem of the square). Let A be an abelian variety over \mathbb{k} , $x, y \in A(\mathbb{k})$ two points and \mathcal{L} a line bundle on A. Then

$$t_{x+y}^*\mathcal{L}\otimes\mathcal{L}\cong t_x^*\mathcal{L}\otimes t_y^*\mathcal{L}.$$

Remark 2.7. We can define a map

$$\Phi_{\mathcal{L}}: A(\mathbb{k}) \to \operatorname{Pic}(A), \quad x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}.$$

Then theorem of the square implies that $\Phi_{\mathcal{L}}$ is a homomorphism of groups. When we vary \mathcal{L} , the map

$$\Phi_{\square}: \operatorname{Pic}(A) \to \operatorname{Hom}_{\mathbf{Grp}}(A(\mathbb{k}), \operatorname{Pic}(A)), \quad \mathcal{L} \mapsto \Phi_{\mathcal{L}}$$

is a group homomorphism. For any $x \in A(\mathbb{k})$, we have

$$\Phi_{t_{\nu}^*\mathcal{L}} = \Phi_{\mathcal{L}}.$$

In the other words,

$$\Phi_{\mathcal{L}}(x) \in \operatorname{Ker} \Phi_{\square}, \quad \forall \mathcal{L} \in \operatorname{Pic}(A), x \in A(\mathbb{k}).$$

Yang: To be completed.

If we assume the scheme structure on $\operatorname{Pic}(A)$, then $\Phi_{\mathcal{L}}$ is a morphism of scheme and factors through $\operatorname{Pic}^0(A)$. Let $K(\mathcal{L}) := \operatorname{Ker} \Phi_{\mathcal{L}}$, then $K(\mathcal{L})$ is a subgroup scheme of A. We give another description of $K(\mathcal{L})$. From this point, we can recover the dual abelian variety $A^{\vee} = \operatorname{Pic}^0(A)$ as the quotient $A/K(\mathcal{L})$. Yang: To be completed.

2.2 Projectivity

Proposition 2.8. Let A be an abelian variety over \mathbb{k} and D an effective divisor on A. Then |2D| is base point free.

Theorem 2.9. Let A be an abelian variety over \mathbb{k} and D an effective divisor on A. TFAE:

- (a) the stabilizer Stab(D) of D is finite;
- (b) the morphism $\Phi_{|2D|}$ induced by the complete linear system |2D| is finite;
- (c) D is ample;
- (d) $K(o_A(D))$ is finite.

Theorem 2.10. Let A be an abelian variety over \mathbf{k} . Then A is projective.

Proof. Yang: To be completed.

2.3 Isogenies and finite subgroups

Theorem 2.11. Let A be an abelian variety of dimension d over k. Then the subgroup A[n] of n torsion points is finite and we have

- (a) if n is coprime to char(\mathbf{k}), then $A[n] \cong (\mathbb{Z}/n\mathbb{Z})^{2d}$;
- (b) if $n = p^k$ for $p = \text{char}(\mathbf{k}) > 0$

Proof. Yang: To be completed.

Theorem 2.12. Let A be an abelian variety over \mathbb{k} . There is a bijection between the isogenies from A over \mathbb{k} and the finite subgroup schemes of A.

2.4 Dual abelian varieties

Theorem 2.13. Let A be an abelian variety over \mathbf{k} . Then $\operatorname{Pic}^{0}(A)$ has a natural structure of an abelian variety, called the *dual abelian variety* of A, denoted by A^{V} .

Proposition 2.14. There exists a unique line bundle \mathcal{P} on $A \times A^{\vee}$ such that for every $y = \mathcal{L} \in A^{\vee} = \operatorname{Pic}^{0}(A)$, we have $\mathcal{P}|_{A \times \{y\}} \cong \mathcal{L}$.