ASSIGNMENT 3 MATH 251 NICHOLAS HAYEK

QUESTION 1

Part (a): Consider $\delta : \mathbb{F}[t]_{n+1} \to \mathbb{F}[t]_n$ which takes $p(t) \to p'(t)$. This function is surjective, but not injective. For the latter, consider a counterexample: for t and $t+1 \in \mathbb{F}[t]_{n+1}$, we have $\delta(t)=1$ and $\delta(t+1)=1$. To show δ is surjective, consider an arbitrary element in $\mathbb{F}[t]_n$:

$$p(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$
 $a_i \in \mathbb{F}$

Then $\delta(a_0t + a_1\frac{t^2}{2} + ... + a_n\frac{t^{n+1}}{n+1}) = a_0 + a_1t + a_2t^2 + ... + a_nt^n = p(t)$. Note that the constants $\frac{1}{i}$ and i can be thought of as 1 + ... + 1 and inverses thereof in the field. of these coefficients = 0, so

Note that, since \mathbb{F} is characteristic 0 or > n + 1, none we don't run into any trouble. The same should be remarked for parts (b) and (c).

The kernel of δ is \mathbb{F} : clearly, $\delta(a) = 0 \ \forall a \in \mathbb{F}$. Suppose $p(t) \notin \mathbb{F}$, and WLOG write $p(t) = a_i t^i$ where $1 \le i \le n$ and $a_i \in \mathbb{F} \ne 0$. Then $\delta(a_i t^i) = a_i i t^{i-1}$, which is non-zero (e.g. take t = 1).

"WLOG": for a full-fledged sum, the argument remains the same, as all $a_i i t^{i-1} \neq 0$

Since $\dim(\mathbb{F}) = 1$, $\operatorname{null}(\delta) = 1$

Part (b): Consider $\iota : \mathbb{F}[t]_n \to \mathbb{F}[t]_{n+1}$ which takes $p(t) \to \int_0^t p(t)$. This function is injective, but not surjective: for the latter, take $1 \in \mathbb{F}[t]_{n+1}$. No polynomial on $\mathbb{F}[t]_n$ integrates to this over [0, t]: take $p(t) = a_0 + a_1 t + ... + a_n t_n$. Then

$$\iota[p(t)] = a_0 t + a_1 \frac{t^2}{2} + \dots + a_n \frac{t^{n+1}}{n+1} \neq 1$$

To show injectivity, suppose $\iota(p(t)) = \iota(q(t))$. We then have

$$a_0t + a_1\frac{t^2}{2} + \dots + a_n\frac{t^{n+1}}{n+1} = b_0t + b_1\frac{t^2}{2} + \dots + b_n\frac{t^{n+1}}{n+1}$$

Taking the derivative of both sides (which we can do, as δ is a linear transformation), we get $a_0 + ... + a_n t^n = b_0 + ... + b_n t^n \implies p(t) = q(t)$

The image of ι is $\{a_1t + ... + a_nt_n + a_{n+1}t^{n+1} : a_i \in \mathbb{F}\}$. Suppose $q(t) \in \text{Im}(\iota)$ were not in this set. WLOG, we can just write $q(t) = a + bt^{n+2}$ for some $a, b \in \mathbb{F}$. Any polynomial of degree $\leq n$ will integrate to a polynomial of degree $\leq n+1$, so we arrive at a contradiction, and $\text{Im}(\iota) \subseteq \{a_1t + ... + a_nt_n + a_{n+1}t^{n+1}\}.$

To overdo it, the LHS has degree at least one, and the RHS has degree 0.

For $p(t) = a_1 t + ... + a_n t^n + a_{n+1} t^{n+1}$, we have that $\iota(a_1 + 2a_2 t + ... + (n+1)a_{n+1} t^n) =$ p(t), so $p(t) \in \text{Im}(\iota)$, and so $\text{Im}(\iota) = \{a_1t + ... + a_nt^n + a_{n+1}t^{n+1}\}$. This has dimension n + 1, so rank(ι) = n + 1.

"WLOG": note that no function integrates to a constant, by definition.

 $\mathbb{F}[t]_{n+1}$ has a basis $\{1, t, t^2, ..., t^{n+1}\}$, as shown in class, so $\{t, t^2, ..., t^{n+1}\}$ is linearly independent. Clearly it is spanning for Im(ι), so $\{t, t^2, ..., t^{n+1}\}$ is a basis for $Im(\iota)$ with n+1elements.

Part (c): Let
$$p(t) := a_0 + a_1 t + ... + a_n t_n$$
. Then
$$\delta \circ \iota(p(t)) = \delta \circ \iota(a_0 + a_1 t + ... + a_n t^n)$$
$$= \delta \left[a_0 t + \frac{a_1 t^2}{2} + ... + a_n \frac{t^{n+1}}{n+1} \right]$$
$$= a_0 + a_1 t + ... + a_n t^n = p(t)$$
$$\implies \delta \circ \iota = I_{\mathbb{F}[t]_n}$$

Thus ι is a right inverse for δ . Now let $q(t) = a_0 + ... + a_{n+1}t^{n+1}$. Then:

$$\iota \circ \delta(q(t)) = \iota \circ \delta(a_0 + a_1 t + \dots + a_{n+1} t^{n+1})$$

$$= \iota(a_1 + 2a_2 t + a_{n+1} (n+1) t^n)$$

$$= a_1 t + a_2 t^2 + \dots + a_{n+1} t^{n+1} \neq q(t)$$

$$\implies \iota \circ \delta \neq I_{\mathbb{F}[t]_{n+1}}$$

so ι is not a left inverse for δ .

QUESTION 2

Part (a): Consider $T:(W_0,W_1)\to V$ which sends $(w_0,w_1)\to w_0+w_1$. The kernel of this set is $\{(w_0,w_1)\in W_0\times W_1:w_0+w_1=0\}$, just by definition.

Consider the transformation $S: W_0 \cap W_1 \to \ker(T)$ which sends $w \to (w, -w)$. This is an isomorphism, and so $W_0 \cap W_1$ and $\ker(T)$ are isomorphic:

OK Definition (w, -w) is indeed $\in \ker(T)$, since w + (-w) = 0, $w \in W_0$ and W_1 .

Linear
$$S(aw + w') = (aw + w', -aw - w') = (aw, -aw) + (w', -w') = a(w, -w) + (w', -w') = aS(w) + S(w')$$

Injective Let S(w) = S(w'). Then (w, -w) = (w', -w'). It follows that w = w'

Surjective For any $(w_0, w_1) \in \ker(T)$, we have $w_0 + w_1 = 0$, so $(w_0, w_1) = (w_0, -w_0) = S(w_0)$. Note also that $w_0 \in W_1 \cap W_0$: since $w_1 \in W_1$, we have $-w_1 = w_0 \in W_1$ by closure.

Part (b): To show $1 \iff 2 \iff 3$:

- 2 Consider elements $w_0, w_2 \in W_0$ and $w_1, w_3 \in W_1$. The sum $w_0 + w_1$ is equal to a vector $v \in V$, and by assumption this is a unique representation. Then $T[(w_0, w_1)] = T[(w_2, w_3)] \implies v = w_2 + v_3$. But our assumption stipulates $w_2 = w_0, w_3 = w_1$ by uniqueness, so $(w_0, w_1) = (w_2, w_3)$, and T is injective.
- 2 \Longrightarrow 1 Let $w_0 + w_1$ be some representation of $v \in V$. Suppose another existed, and write $v = w_2 + w_3$ for $w_2 \in W_0$, $w_3 \in W_1$. Then $v = T[(w_0, w_1)] = T[(w_2, w_3)]$. By injectivity, $(w_0, w_1) = (w_2, w_3)$, so $w_0 = w_2$ and $w_1 = w_3$, and we conclude that this representation is unique.
- 2 \iff 3 We have $V = W_1 + W_2$, so it remains to show $W_1 \cap W_2 = \{0\}$ \iff T injective. But T is injective \iff $\ker(T) = \{0\}$. And from part (a), we have that $\ker(T)$ and $W_0 \cap W_1$ are isomorphic, so $\ker(T) = \{0\}$ \iff $W_0 \cap W_1 = \{0\}$ as well.

Part (c): By dimension theorem, we have

$$\dim(W_1 \times W_2) = \dim(\ker(T)) + \dim(\operatorname{Im}(T))$$

$$= \dim(W_1 \cap W_2) + \dim(V)$$

$$\implies \dim(V) = \dim(W_1 \times W_2) - \dim(W_1 \cap W_2)$$

$$\dim(V) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$
c.f. HW2, Q2

QUESTION 3

Part (a): Consider $P_0: V \to V$, which sends $v \to w_0$, where $v = w_0 + w_1$ is the unique representation of v for $w_0 \in W_0$, $w_1 \in W_1$. This is linear: let $v = w_0 + w_1$ and $v' = w'_0 + w'_1$. Then:

$$\begin{split} P_0(av+v') &= P_0(aw_0 + aw_1 + w_0' + w_1') \\ &= aw_0 + w_0' \quad \text{since } \underbrace{(aw_0 + w_0')}_{\in W_0} + \underbrace{(aw_1 + w_1')}_{\in W_1} = av + v' \end{split}$$

i.e. is the unique representation of av + v'

which is just $aP_0(v) + P_0(v')$, hence P_0 is linear. Furthermore, $P_0^2 = P_0$:

$$P_0^2(v) = P_0(P_0(v)) = P_0(w_0) = w_0$$
 since w_0 is its own representation

As $P_0(v) = w_0$, we conclude $P_0^2 = P_0$. Lastly, we have

$$\ker(P_0) = \{v \in V : P_0(v) = 0\} \qquad \operatorname{Im}(P_0) = \{P_0(v) : v \in V\}$$

$$= \{w_0 + w_1 : w_0 = 0, w_1 \in W_1\} = W_1 \qquad = \{P_0(w_0 + w_1) : w_0 \in W_0, w_1 \in W_1\}$$

$$(\text{note that } V = W_1 + W_2) \qquad = \{w_0 : w_0 \in W_0\} = W_0$$

Part (b): Let $T: V \to V$ be s.t. $T^2 = T$. For $v \in V$, write v = v - T(v) + T(v). We'll show that $v - T(v) \in \ker(T)$: let v - T(v) = w for some $w \in V$. Then $T(v) - T^2(v) = T(w) \implies T(v) - T(v) = 0 = T(w)$, since $T^2 = T$, and thus $w = v - T(v) \in \ker(T)$. Clearly $T(v) \in \operatorname{Im}(T)$, so $V \subseteq \ker(T) + \operatorname{Im}(T)$. The \supseteq direction is trivial, since $\ker(T) \subseteq V$ and $\operatorname{Im}(T) \subseteq V$, and so $V = \ker(T) + \operatorname{Im}(T)$.

It remains to show that $\ker(T) \cap \operatorname{Im}(T) = \{0\}$. Suppose a non-zero element v were in this intersection, and write T(v) = 0 and v = T(w) for some $w \in V$. Then $T(v) = T^2(w) \implies T(v) = T(w) \implies 0 = T(w)$, so $w \in \ker(T)$. But we have v = T(w), so $v = 0 \nsubseteq$, and $\ker(T) \cap \operatorname{Im}(T) = \{0\} \implies V = \ker(T) \oplus \operatorname{Im}(T)$

The projection onto Im(T) along $\ker(T)$ is precisely $P: V \to V$ which sends $v \to w$, where $w \in \text{Im}(T)$, and v = w + y for some $y \in \ker(T)$. For our T, write v = w + y. Then T(v) = T(w + y) = T(w) + T(y) = T(w), so T sends $v \to T(w)$.

Mental gymnastics: $w \in \text{Im}(T)$, so $T(w) = T \circ T(v')$ for some *other* $v' \in V$. Thus, T really sends $v \to T^2(v') = T(v')$. But we said w = T(v'), so T sends $v \to w$.

 \implies T = P, as defined above.

Part(c): Let $(x, y) \in \mathbb{R}^2$. Then (x, y) = (0, y - x) + (x, x). Thus, for $V := \mathbb{R}^2$, the projection onto the *y*-axis along $\{(t, t) : t \in \mathbb{R}\}$ is the function $P : \mathbb{R}^2 \to \mathbb{R}^2$ which sends $(x, y) \to (0, y - x)$. Fun little animation here.

QUESTION 4

Consider the set $\tau = \{T_{v,w} : v \in \beta, w \in \gamma\}$, where β, γ are basis of V and W, respectively, and $\beta := \{v_1, ..., v_n\}$ is finite. This is a basis for Hom(V, W).

Independence To consider a truly arbitrary subset of τ , we need to represent all $T_{v_i,\times}$ and, for $T_{v_i,\times}$, any number of $\times = w_i$. Thus, we form the following combination:

$$\star \quad a_{11} T_{v_1, w_1} + \dots + a_{1k} T_{v_1, w_k} + \dots + a_{nl} T_{v_n, w_l} + \dots + a_{nm} T_{v_n, w_m} = 0$$

where 0 is the transformation that sends $v \to 0_W$.

This must hold for all $v_i \in \beta$, so we can evaluate the combination at $v = v_1$. Since $T_{v_1,w}(v_1) = w$ and $T_{v_i,w}(v_j) = 0$ for $i \neq j$, $w \in \gamma$, we have

$$a_{11}w_1 + ... + a_{1k}w_k = 0 \implies a_{11} = ... = a_{1k} = 0$$

since $w_i \in \gamma$ are members of a basis. Similarly, evaluating \star at any v_j will imply that $a_{jk} = 0$, $w_k \in \gamma$. These are all our coefficients, so \star is a trivial combination, and since any subset of τ is linearly independent, so is τ .

Spanning Consider a transformation $T: V \to W$, which sends $v_i \to w_i$ for $w_i \in W$. Remember $v_i \in \beta$.

$$T(v) = T(a_1v_1 + ... + a_nv_n)$$
 for constants $a_i \in \mathbb{F}$
= $a_1T(v_1) + ... + a_nT(v_n) = a_1w_1 + ... + a_nw_n$
= $T_{v_1,w_1}(v) + ... + T_{v_n,w_n}(v)$

where T_{v_i,w_i} sends $v_i \to w_i$ and $v_j \to 0$ for $j \neq i$. For this last step, see that

$$T_{v_i,w_i}(v) = T_{v_i,w_i}(a_1v_1 + \dots + a_nv_n)$$

$$= a_1 T_{v_i,w_i}(v_1) + \dots + a_i T_{v_i,w_i}(v_i) + \dots + a_n T_{v_i,w_i}(v_n) = a_i w_i$$

Thus, it only remains to show that $T_{v_i,w_i} \in \operatorname{Span}(\tau)$, but

This is not immediate, since $w_i \notin \gamma$ necessarily.

$$\begin{split} T_{v_i,w_i}(v) &= a_i w_i = a_i [b_1 w_1^* + \ldots + b_n w_n^*] \quad w_i^* \in \gamma, b_i \in \mathbb{F} \\ &= a_i \left[\frac{b_1}{a_1} T_{v_1,w_1^*}(v) + \ldots + \frac{b_n}{a_n} T_{v_n,w_n^*}(v) \right] \end{split}$$

where $w_i^* \in \gamma$. The second line requires the following justification:

$$T_{v_1,w_1^*}(v) = T_{v_1,w_1^*}(a_1v_1 + \dots + a_nv_n) = a_1w_1^*$$

Since $w_i^* \in \gamma$, $T_{v_i, w_i^*} \in \tau$, so $T_{v_i, w_i} \in \operatorname{Span}(\tau)$. Thus, \blacktriangle , i.e. T(v), $\in \operatorname{Span}(\tau)$. Clearly $\operatorname{Span}(\tau) \subseteq \operatorname{Hom}(V, W)$, so $\operatorname{Span}(\tau) = \operatorname{Hom}(V, W)$, and τ is a basis.

QUESTION 5

We need to show $L_{E_{ji}} = T_{v_i,w_j}$, where $v_i \in \beta$, $w_i \in \gamma$, the standard bases for \mathbb{F}^n and \mathbb{F}^m , respectively. If this is true, we conclude that

$$\begin{split} \{L_{E_{ij}}:i\in[1,m],j\in[1,n]\} &= \{L_{E_{ji}}:j\in[1,m],i\in[1,n]\} \\ &= \{T_{v_i,w_i}:i\in[1,n],j\in[1,m]\} = \{T_{v,w}:v\in\beta,w\in\gamma\} \end{split}$$

as desired. Consider $L_{E_{ji}}$. This is the transformation that sends $v \to E_{ji} \cdot v$, where v is represented as a column vector $\langle a_1, ..., a_n \rangle$, $a_i \in \mathbb{F}$:

$$L_{E_{ji}}(v) = E_{ji} \cdot v = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & 1_{ji} & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = a_1 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \dots + a_i \begin{bmatrix} 0 \\ \vdots \\ 1_j \\ 0 \end{bmatrix} + \dots + a_n \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = a_i w_j$$

And this is precisely $T_{v_i,w_i}(v)$, which expands to

$$T_{v_i,w_j}(v) = T_{v_i,w_j}(a_1v_1 + \ldots + a_nv_n) = a_1T_{v_i,w_j}(v_1) + \ldots + a_iT_{v_i,w_j}(v_i) + \ldots + a_nT_{v_i,w_j}(v_n) = a_iw_j$$

QUESTION 6

Linearity: We need to first show $[T_1 + T_2]^{\gamma}_{\beta} = [T_1]^{\gamma}_{\beta} + [T_2]^{\gamma}_{\beta}$ and $[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$ for $a \in \mathbb{F}$, $T \in \text{Hom}(V, W)$. Let $\beta = \{v_1, ..., v_n\}$ and $\gamma = \{w_1, ..., w_m\}$

Inverse: If an inverse exists for $T \to [T]^{\gamma}_{\beta}$, then both are bijective. Since linearity has been shown, this is sufficient to show isomorphism. Consider $A \to I^{-1}_{\gamma} \circ L_A \circ I_{\beta}$.

We show the mapping $T \to [T]^\gamma_\beta \to I^{-1}_\gamma \circ L_{[T]^\gamma_\beta} \circ I_\beta$ is the identity on $\operatorname{Hom}(V,W)$, i.e. takes $T \to T$. However, we've previously seen that $I_\gamma \circ T = L_{[T]^\gamma_\beta} \circ I_\beta$, so $T = I^{-1}_\gamma \circ L_{[T]^\gamma_\beta} \circ I_\beta$, as desired.

We can take the inverse and apply it, since I_{γ} is an isormophism

We now need to show that $A \to I_{\gamma}^{-1} \circ L_A \circ I_{\beta} \to [I_{\gamma}^{-1} \circ L_A \circ I_{\beta}]_{\beta}^{\gamma}$ is the identity on $M_{m \times n}(\mathbb{F})$, i.e. takes $A \to A$:

$$[I_{\gamma}^{-1} \circ L_{A} \circ I_{\beta}]_{\beta}^{\gamma} = \begin{bmatrix} & & & & & & & & & \\ [I_{\gamma}^{-1} \circ L_{A} \circ I_{\beta}(v_{1})]_{\gamma} & [I_{\gamma}^{-1} \circ L_{A} \circ I_{\beta}(v_{2})]_{\gamma} & \cdots & [I_{\gamma}^{-1} \circ L_{A} \circ I_{\beta}(v_{n})]_{\gamma} \\ & & & & & & \end{bmatrix}$$

We have $[I_{\gamma}^{-1} \circ L_A \circ I_{\beta}(v_i)]_{\gamma} = [I_{\gamma}^{-1} \circ L_A([v_i]_{\beta})]_{\gamma} = [I_{\gamma}^{-1} \left(A \cdot [v_i]_{\beta}\right)]_{\gamma}$, but $v_i \in \beta$, so $[v_i]_{\beta} = \langle 0, ..., 0, 1, 0, ..., 0 \rangle$, where 1 is in the i^{th} position. Then $A \cdot [v_i]_{\beta} = A^{(i)}$. Finally, I_{γ}^{-1} is an isomorphism, so $v \to I_{\gamma}^{-1}(v) \to [I_{\gamma}^{-1}(v)]_{\gamma} = \text{Id}$. Combining:

 $\Longrightarrow \left[I_{\gamma}^{-1}\left(A\cdot[v_i]_{\beta}\right)\right]_{\gamma}=A^{(i)}$. We return to the matrix form to find

$$[I_{\gamma}^{-1} \circ L_A \circ I_{\beta}]_{\beta}^{\gamma} = \begin{bmatrix} & & & & & \\ & & & & \\ A^{(1)} & A^{(2)} & \cdots & A^{(n)} \\ & & & & & \end{bmatrix} = A$$

and we're done.

QUESTION 7

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} & & & & & & & & & & & & \\ [T(E_{11})]_{\beta} & [T(E_{12})]_{\beta} & [T(E_{21})]_{\beta} & [T(E_{22})]_{\beta} \\ & & & & & & & \end{bmatrix}$$

$$= \begin{bmatrix} & & & & & & & & & \\ [1]_{\beta} & [1+t^{2}]_{\beta} & [0]_{\beta} & [2t]_{\beta} \\ & & & & & & & & \end{bmatrix}$$

We now write

$$1 = 1(1)$$
 $1 + t^2 = 1(1) + 1(t^2)$ $0 = 0$ and $2t = 2(t)$

where (·) are our basis vectors. Then $[1]_{\beta} = \langle 1, 0, 0 \rangle$, $[1 + t^2]_{\beta} = \langle 1, 0, 1 \rangle$, $[0] = \langle 0, 0, 0 \rangle$, and $[2t]_{\beta} = \langle 0, 2, 0 \rangle$. Thus:

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Implicit in this calculation is the assumption that β is ordered exactly as $\{1, t, t^2\}$ and α as $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ (the final result would change otherwise to some permutation of these columns [order of α] and rows [order of β]).

QUESTION 8

Part (a):

I show $T(\text{Im}(T^k)) = \text{Im}(T^{k+1})$ at the start of part (b), case l = 1.

Let $x \in \ker(T^{k+1})$. Then $T^{k+1}(x) = 0 \implies T^k(T(x)) = 0$, so $T(x) \in \ker(T^k)$, i.e. $x \in T^{-1}(\ker(T^k))$, so $\ker(T^{k+1}) \subseteq T^{-1}(\ker(T^k))$.

Now let $x \in T^{-1}(\ker(T^k))$. Then $T(x) \in \ker(T^k)$, i.e. $T^k(T(x)) = 0 \implies T^{k+1}(x) = 0$, so $x \in \ker(T^{k+1})$, and $T^{-1}(\ker(T^k)) \subseteq \ker(T^{k+1}) \implies T^{-1}(\ker(T^k)) = \ker(T^{k+1})$.

Part (b): Note that $T^l(\operatorname{Im}(T^k)) = \operatorname{Im}(T^{k+l})$:

$$T^{l}(\operatorname{Im}(T^{k})) = \{T^{l}(x) : x \in \operatorname{Im}(T^{k})\} = \{T^{l}(x) : x = T^{k}(y), y \in V\}$$
$$= \{T^{l}(T^{k}(y)) : y \in V\} = \{T^{k+l}(y) : y \in V\} = \operatorname{Im}(T^{k+l})$$

Then, assuming $\operatorname{Im}(T^k) = \operatorname{Im}(T^{k+1})$ for some $k \in \mathbb{N}$, we show $\operatorname{Im}(T^k) = T^l \operatorname{Im}(T^k)$ by induction on l, which shows $\operatorname{Im}(T^k) = \operatorname{Im}(T^{k+l})$ from above.

$$l = 1 T(\operatorname{Im}(T^k)) = \operatorname{Im}(T^{k+1}) = \operatorname{Im}(T^k)$$

$$l \to l+1 T^{l+1}(\operatorname{Im}(T^k)) = T \circ T^l(\operatorname{Im}(T^k)) = T(\operatorname{Im}(T^k)) = \operatorname{Im}(T^k)$$

Assume now $\ker(T^k) = \ker(T^{k+1})$ for some k. We'll show $\ker(T^k) = \ker(T^{k+l})$ by induction on l:

l = 1 $\ker(T^k) = \ker(T^{k+1})$

 $l \to l+1$ We know $\ker(T^k) \subseteq \ker(T^{k+l+1})$. Let $x \in \ker(T^{k+l+1})$. Then $T^{k+l}(T(x)) = 0$, so $T(x) \in \ker(T^{k+l})$. By ind. hyp., we have $T(x) \in \ker(T^k)$, so $x \in T^{-1}(\ker(T^k))$. From part (a), this means $x \in \ker(T^{k+1}) \implies x \in \ker(T^k)$ by assumption.

Part (c): Suppose $Im(T^k) = Im(T^{k+1})$. Then by dimension theorem, we have

 $\dim(\operatorname{Im}(T^k)) + \dim(\ker(T^k)) = \dim(V) = \dim(\operatorname{Im}(T^{k+1})) = \dim(\ker(T^{k+1}))$

 \implies dim(ker(T^k)) = dim(ker(T^{k+1})) \implies ker(T^k) = ker(T^{k+1}), using the fact that ker(T^k) \subseteq ker(T^{k+1}).

Similarly, if $\dim(\ker(T^k)) = \dim(\ker(T^{k+1}))$, then $\dim(\operatorname{Im}(T^k)) = \dim(\operatorname{Im}(T^{k+1}))$.

 \implies Since $\operatorname{Im}(T^{k+1}) \subseteq \operatorname{Im}(T^k)$, this means $\operatorname{Im}(T^k) = \operatorname{Im}(T^{k+1})$.

Part (d): Suppose $\ker(T^k) \neq \ker(T^{k+1}) \ \forall k \leq n$. Since $\ker(T^k) \subseteq \ker(T^{k+1})$, this means

$$\ker(T) \subsetneq \ker(T^2) \subsetneq ... \subsetneq \ker(T^n)$$

By monotonicity, this means

$$0 < \dim(\ker(T)) < \dim(\ker(T^2)) < \dots < \dim(\ker(T^n)) \le n$$

then we can notate below the minimum dimensions of each:

$$0 < \dim(\ker(T)) < \dim(\ker(T^2)) < \dots < \dim(\ker(T^n)) \le n$$

We conclude that $\dim(\ker(T^n)) = n$, but $\dim(\ker(T^n)) \le \dim(\ker(T^{n+1})) \le n$ by necessity, so $\dim(\ker(T^n)) = \dim(\ker(T^{n+1}))$, and we arrive at a contradiction. $\implies \exists k \le n : \ker(T^k) = \ker(T^{k+1}) \implies \operatorname{Im}(T^k) = \operatorname{Im}(T^{k+1})$ by (c).

Note that, if $\dim(\ker(T)) = 0$, that means $\ker(T) = \{0\}$, so T is injective, and thus surjective. Then, $\ker(T^2)$ is $\{x: T(T(x)) = 0\}$ $= \{y: T(y) = 0, y = \operatorname{Im}(T)\}$ $= \{y: T(y) = 0, y \in V\}$ $= \ker(T)$ which also establishes the contradiction

QUESTION 9

Suppose $\exists k \in \mathbb{N}$ such that $T^k = 0$, i.e. $\operatorname{Im}(T^k) = \{0\}$. We can assume k > n, else $\operatorname{Im}(T^n) \subseteq ... \subseteq \operatorname{Im}(T^k) = \{0\} \implies \operatorname{Im}(T^n) = \{0\}$, i.e. $T^n = 0$.

From (8d), we know $\exists l \leq n$ such that $\operatorname{Im}(T^l) = \operatorname{Im}(T^{l+1})$, and from (8b) this means $\operatorname{Im}(T^l) = \operatorname{Im}(T^{l+l'})$ for any $l' \in \mathbb{N}$. Since $k > n \geq l$, let l' := k - l.

Then $\text{Im}(T^l) = \text{Im}(T^{l+(k-l)}) = \text{Im}(T^k) = \{0\}$. Thus $\text{Im}(T^l) = \{0\}$, or $T^l = 0$.

 $l \le n$, so by our first remarks, $T^n = 0$