УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 26

> Студент Черныш Александр Владимирович Р3109

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $-2 \le x_4x_5 - x_1x_2x_3 < 1$ и неопределенное значение при $-4 \le x_4x_5 - x_1x_2x_3 \le -3$.

Таблица истинности

№	x_1	x_2	x_3	x_4	x_5	$x_{4}x_{5}$	$x_1x_2x_3$	$x_{4}x_{5}$	$x_1 x_2 x_3$	f
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	1	0	1	0	0
2	0	0	0	1	0	2	0	2	0	0
3	0	0	0	1	1	3	0	3	0	0
4	0	0	1	0	0	0	1	0	1	1
5	0	0	1	0	1	1	1	1	1	1
6	0	0	1	1	0	2	1	2	1	0
7	0	0	1	1	1	3	1	3	1	0
8	0	1	0	0	0	0	2	0	2	1
9	0	1	0	0	1	1	2	1	2	1
10	0	1	0	1	0	2	2	2	2	1
11	0	1	0	1	1	3	2	3	2	0
12	0	1	1	0	0	0	3	0	3	d
13	0	1	1	0	1	1	3	1	3	1
14	0	1	1	1	0	2	3	2	3	1
15	0	1	1	1	1	3	3	3	3	1
16	1	0	0	0	0	0	4	0	4	d
17	1	0	0	0	1	1	4	1	4	d
18	1	0	0	1	0	2	4	2	4	1
19	1	0	0	1	1	3	4	3	4	1
20	1	0	1	0	0	0	5	0	5	0
21	1	0	1	0	1	1	5	1	5	d
22	1	0	1	1	0	2	5	2	5	d
23	1	0	1	1	1	3	5	3	5	1
24	1	1	0	0	0	0	6	0	6	0
25	1	1	0	0	1	1	6	1	6	0
26	1	1	0	1	0	2	6	2	6	d
27	1	1	0	1	1	3	6	3	6	d
28	1	1	1	0	0	0	7	0	7	0
29	1	1	1	0	1	1	7	1	7	0
30	1	1	1	1	0	2	7	2	7	0
31	1	1	1	1	1	3	7	3	7	d

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \,$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5)$ $(x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		$K^1(f)$			$K^2(f)$	Z(f)	
m_0	00000	√	m_0 - m_4	00X00	√	m_0 - m_4 - m_8 - m_{12}	0XX00	X0000
m_4	00100		m_0 - m_8	0X000	✓	m_8 - m_9 - m_{12} - m_{13}	01X0X	X0101
m_8	01000	✓	m_0 - m_{16}	X0000		m_8 - m_{10} - m_{12} - m_{14}	01XX0	X1010
m_{16}	10000	✓	m_4 - m_5	0010X	√	m_4 - m_5 - m_{12} - m_{13}	0X10X	X1111
m_5	00101	$\overline{}$	m_8 - m_9	0100X	✓	m_{16} - m_{17} - m_{18} - m_{19}	100XX	0XX00
m_9	01001	✓	m_8 - m_{10}	010X0	✓	m_{12} - m_{13} - m_{14} - m_{15}	011XX	01X0X
m_{10}	01010	✓	m_8 - m_{12}	01X00	\checkmark	m_{18} - m_{19} - m_{22} - m_{23}	10X1X	01XX0
m_{18}	10010	✓	m_4 - m_{12}	0X100	\checkmark	m_{17} - m_{19} - m_{21} - m_{23}	10XX1	0X10X
m_{12}	01100	✓	m_{16} - m_{17}	1000X	\checkmark	m_{18} - m_{19} - m_{26} - m_{27}	1X01X	100XX
m_{17}	10001	✓	m_{16} - m_{18}	100X0	\checkmark	m_{19} - m_{23} - m_{27} - m_{31}	1XX11	011XX
m_{13}	01101	\checkmark	m_{12} - m_{13}	0110X	\checkmark			10X1X
m_{14}	01110	✓	m_{12} - m_{14}	011X0	\checkmark			10XX1
m_{19}	10011	✓	m_9 - m_{13}	01X01	\checkmark			1X01X
m_{21}	10101	✓	m_{10} - m_{14}	01X10	\checkmark			1XX11
m_{22}	10110	✓	m_5 - m_{13}	0X101	\checkmark			
m_{26}	11010	✓	m_{18} - m_{19}	1001X	\checkmark			
m_{15}	01111	√	m_{17} - m_{19}	100X1	\checkmark			
m_{23}	10111	✓	m_{17} - m_{21}	10X01	\checkmark			
m_{27}	11011	✓	m_{18} - m_{22}	10X10	\checkmark			
m_{31}	11111	√	m_{18} - m_{26}	1X010	\checkmark			
			m_5 - m_{21}	X0101				
			m_{10} - m_{26}	X1010				
			m_{14} - m_{15}	0111X	\checkmark			
			m_{13} - m_{15}	011X1	\checkmark			
			m_{22} - m_{23}	1011X	\checkmark			
			m_{21} - m_{23}	101X1	\checkmark			
			m_{19} - m_{23}	10X11	\checkmark			
			m_{26} - m_{27}	1101X	\checkmark			
			m_{19} - m_{27}	1X011	✓			
			m_{27} - m_{31}	11X11	✓			
			m_{23} - m_{31}	1X111	\checkmark			
			m_{15} - m_{31}	X1111				

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы											
Простые импликанты			0	0	Φ	0	0	0	0	0	1	1	1
			0	0	1	1	1	1	1	1	0	0	0
			1	1		0	0	1	1	1	0	0	1
			0	0	0	0	1	0	1	1	1	1	1
				1	0	1	0	1	0	1	0	1	1
				5	8	9	10	13	14	15	18	19	23
A	X0000	X											
В	X0101			X									
С	X1010						X						
D	X1111									X			
Е	0XX00	X	X		X								
	01X0X				Х	Х		Х					
F	01XX0				Х		X		X				
G	0X10X		X	X				X					
Н	100XX										X	X	
I	011XX							X	X	X			
J	10X1X										X	X	X
K	10XX1											X	X
L	1X01X										X	X	
M	1XX11											X	X

Ядро покрытия:

$$T = \left\{01X0X\right\}$$

Получим следующую упрощенную импликантную таблицу:

			0-кубы										
		0	0	0	0	0	0	1	1	1			
Простые импликанты			0	0	1	1	1	0	0	0			
			1	1	0	1	1	0	0	1			
				0	1	1	1	1	1	1			
			0	1	0	0	1	0	1	1			
		0	4	5	10	14	15	18	19	23			
A	X0000	X											
В	X0101			X									
С	X1010				X								
D	X1111						X						
Е	0XX00	X	X										
F	01XX0				X	X							
G	0X10X		X	X									
Н	100XX							X	X				
I	011XX					X	X						
J	10X1X							X	X	X			
K	10XX1								X	X			
L	1X01X							X	X				
M	1XX11								X	X			

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (A \lor E) \ (E \lor G) \ (B \lor G) \ (C \lor F) \ (F \lor I) \ (D \lor I) \ (H \lor J \lor L) \ (H \lor J \lor K \lor L \lor M) \ (J \lor K \lor M)$$

Приведем выражение в ДНФ:

 $Y = ACGHIK \lor ACGHIM \lor ACGIJ \lor ACGIKL \lor ACGILM \lor ADFGHK \lor ADFGHM \lor ADFGJ \lor ADFGKL \lor ADFGLM \lor AFGHIK \lor AFGHIM \lor AFGHIM \lor AFGHIK \lor AFGHIM \lor AFGHIM \lor AFGHIM \lor AFGHIM \lor BCEHIK \lor BCEHIM \lor BCHIM \lor BCHIM$

$C \, E \, G \, H \, I \, M \lor C \, E \, G \, I \, J \lor C \, E \, G \, I \, K \, L \lor C \, E \, G \, I \, L \, M \lor D \, E \, F \, G \, H \, K \lor D \, E \, F \, G \, H \, M \lor D \, E \, F \, G \, J \lor D \, E \, F \, G \, K \, L \lor D \, E \, F \, G \, L \, M \, V \, E \, F \, G \, H \, I \, K \, \lor \, E \, F \, G \, H \, I \, M \, \lor \, E \, F \, G \, I \, L \, M \, \lor \, E \, F \, G \, I \, L \, M$

Возможны следующие покрытия:

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 01X0X \\ 0XX00 \\ 01XX0 \\ 0X10X \\ 011XX \\ 10X1X \end{cases}$$
$$S^{a} = 18$$
$$S^{b} = 24$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, x_2 \, \overline{x_4} \vee \overline{x_1} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_5} \vee \overline{x_1} \, x_3 \, \overline{x_4} \vee \overline{x_1} \, x_2 \, x_3 \vee x_1 \, \overline{x_2} \, x_4$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, x_2 \, \overline{x_4} \vee \overline{x_1} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_5} \vee \overline{x_1} \, x_3 \, \overline{x_4} \vee \overline{x_1} \, x_2 \, x_3 \vee x_1 \, \overline{x_2} \, x_4$$

Определение МКНФ

$$f = (\overline{x_1} \vee x_4) \ (\overline{x_1} \vee \overline{x_2}) \ (x_1 \vee x_2 \vee \overline{x_4}) \ (x_1 \vee x_2 \vee x_3 \vee \overline{x_5}) \ (x_1 \vee x_3 \vee \overline{x_4} \vee \overline{x_5})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,x_2\,\overline{x_4}\vee\overline{x_1}\,\overline{x_4}\,\overline{x_5}\vee\overline{x_1}\,x_2\,\overline{x_5}\vee\overline{x_1}\,x_3\,\overline{x_4}\vee\overline{x_1}\,x_2\,x_3\vee x_1\,\overline{x_2}\,x_4 \qquad S_Q=24 \quad \tau=2$$

$$f=\overline{x_1}\,\left(x_2\vee\overline{x_4}\right)\,\left(x_3\vee\overline{x_5}\right)\vee\overline{x_1}\,x_2\,\overline{x_4}\vee x_1\,\overline{x_2}\,x_4 \qquad S_Q=16 \quad \tau=3$$

$$\varphi=\overline{x_2}\,x_4$$

$$\overline{\varphi}=x_2\vee\overline{x_4}$$

$$f=\overline{x_1}\,\overline{\varphi}\,\left(x_3\vee\overline{x_5}\right)\vee\overline{x_1}\,x_2\,\overline{x_4}\vee\varphi\,x_1 \qquad S_Q=16 \quad \tau=4$$
 Декомпозиция нецелесообразна
$$f=\overline{x_1}\,\left(x_2\vee\overline{x_4}\right)\,\left(x_3\vee\overline{x_5}\right)\vee\overline{x_1}\,x_2\,\overline{x_4}\vee x_1\,\overline{x_2}\,x_4 \qquad S_Q=16 \quad \tau=3$$

Факторизация и декомпозиция МКНФ

$$f = (\overline{x_1} \vee x_4) \ (\overline{x_1} \vee \overline{x_2}) \ (x_1 \vee x_2 \vee \overline{x_4}) \ (x_1 \vee x_2 \vee x_3 \vee \overline{x_5}) \ (x_1 \vee x_3 \vee \overline{x_4} \vee \overline{x_5}) \qquad S_Q = 20 \qquad \tau = 2$$

$$f = (\overline{x_1} \vee \overline{x_2} \, x_4) \ (x_1 \vee x_2 \vee \overline{x_4}) \ (x_1 \vee x_3 \vee \overline{x_5} \vee x_2 \, \overline{x_4}) \qquad S_Q = 16 \qquad \tau = 3$$

$$\varphi = \overline{x_2} \, x_4$$

$$\overline{\varphi} = x_2 \vee \overline{x_4}$$

$$f = (\overline{x_1} \vee \varphi) \ (\overline{\varphi} \vee x_1) \ (x_1 \vee x_3 \vee \overline{x_5} \vee x_2 \, \overline{x_4}) \qquad S_Q = 16 \qquad \tau = 4$$
 Декомпозиция нецелесообразна
$$f = (\overline{x_1} \vee \overline{x_2} \, x_4) \ (x_1 \vee x_2 \vee \overline{x_4}) \ (x_1 \vee x_3 \vee \overline{x_5} \vee x_2 \, \overline{x_4}) \qquad S_Q = 16 \qquad \tau = 3$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_1} \ (x_2 \vee \overline{x_4}) \ (x_3 \vee \overline{x_5}) \vee \overline{x_1} \ x_2 \ \overline{x_4} \vee x_1 \ \overline{x_2} \ x_4 \quad (S_Q = 16, \tau = 3)$$

Схема по упрощенной МКНФ:

$$f = (\overline{x_1} \vee \overline{x_2} \, x_4) \, \left(x_1 \vee x_2 \vee \overline{x_4} \right) \, \left(x_1 \vee x_3 \vee \overline{x_5} \vee x_2 \, \overline{x_4} \right) \quad \left(S_Q = 16, \tau = 3 \right)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1} \, \overline{\varphi} \, \overline{x_3} \, x_5} \, \overline{\overline{x_1} \, x_2 \, \overline{x_4}} \, \overline{\varphi \, x_1} \quad (S_Q = 21, \tau = 6)$$
$$\varphi = \overline{x_2} \, x_4$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1 \, \overline{\varphi}} \, \overline{\varphi \, \overline{x_1}} \, \overline{x_1 \, \overline{x_3} \, x_5 \, \overline{x_2 \, \overline{x_4}}} \quad (S_Q = 20, \tau = 5)$$
$$\varphi = \overline{x_2} \, x_4$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_1}} \overline{\overline{\overline{x_2}} \overline{x_4}} \overline{\overline{\overline{x_3}} \overline{x_5}} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{x_1}} \overline{\overline{\overline{x_2}} \overline{x_4}}} \quad (S_Q = 20, \tau = 5)$$

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_1}} \overline{\overline{\overline{x_2}} \overline{x_4}} \overline{\overline{\overline{x_3}}} \overline{\overline{\overline{x_5}} \overline{\overline{x_2}} \overline{\overline{x_4}}} \overline{\overline{x_1}} \overline{\overline{x_2}} \overline{x_4}} \quad (S_Q = 22, \tau = 8)$$

