Lógicas Modales

Decidibilidad y complejidad de lógicas modales (i)

Carlos Areces

1er cuatrimestre de 2012 Córdoba, Argentina

Repaso

En el episodio anterior...

- Repasamos las principales clases de complejidad
- Vimos una forma de dar cotas de complejidad:
 - Si muestro que puedo adivinar una solución en f(n) pasos
 - ullet Y que puedo chequear si es correcta en a lo sumo f(n) pasos
 - ullet Entonces el problema seguro está en $\mathsf{NTIME}(f(n))$
- Usando esto vimos que satisfacibilidad de la lógica modal básica está en NEXPTIME

Repaso

En el episodio anterior...

- Repasamos las principales clases de complejidad
- Vimos una forma de dar cotas de complejidad:
 - Si muestro que puedo adivinar una solución en f(n) pasos
 - Y que puedo chequear si es correcta en a lo sumo f(n) pasos
- Usando esto vimos que satisfacibilidad de la lógica modal básica está en NEXPTIME

Para leer más...

Lo que veamos hoy y la próxima lo pueden encontrar bien explicado en el Modal Logic (Blackburn et al), capítulo 6.

Modelos "más chicos" vía una función de selección

Dados
$$\varphi$$
 y un modelo $\mathcal{M} = \langle W, R, V \rangle$, definimos:

$$\begin{array}{ll} s(p,w) = \{w\} & s(\varphi \wedge \psi,w) = s(\varphi,w) \cup s(\psi,w) \\ s(\neg \varphi,w) = s(\varphi,w) & s(\diamondsuit \psi,w) = \{w\} \cup \bigcup_{\{v \mid wRv\}} s(\psi,v) \end{array}$$

Modelos "más chicos" vía una función de selección

Dados φ y un modelo $\mathcal{M} = \langle W, R, V \rangle$, definimos:

$$s(p,w) = \{w\} \qquad s(\varphi \land \psi, w) = s(\varphi, w) \cup s(\psi, w)$$

$$s(\neg \varphi, w) = s(\varphi, w) \qquad s(\diamondsuit \psi, w) = \{w\} \cup \bigcup_{\{v \mid wRv\}} s(\psi, v)$$

Teorema

Para todo \mathcal{M} , w y φ , \mathcal{M} , $w \models \varphi$ sii $\mathcal{M} \upharpoonright s(\varphi, w)$, $w \models \varphi$

Modelos "más chicos" vía una función de selección

Dados φ y un modelo $\mathcal{M} = \langle W, R, V \rangle$, definimos:

$$\begin{split} s(p,w) &= \{w\} \\ s(\neg\varphi,w) &= s(\varphi,w) \\ &= s(\varphi,w) \\ s(\diamondsuit\psi,w) &= \{w\} \ \cup \bigcup_{\{v \mid wRv\}} s(\psi,v) \end{split}$$

Teorema

Para todo \mathcal{M} , $w y \varphi$, \mathcal{M} , $w \models \varphi \sin \mathcal{M} \upharpoonright s(\varphi, w)$, $w \models \varphi$

Demostración (idea)

- ullet Sea k el modal depth de φ
- Se puede ver que $\mathcal{M} \upharpoonright s(\varphi, w)$ es k-bisimilar a \mathcal{M}
- De donde se sigue el resultado buscado

Vía una función de selección

KAlt₁

Es la lógica modal básica restringida a la clase de modelos C_{Alt_1} donde R es una función parcial.

Vía una función de selección

KAlt₁

Es la lógica modal básica restringida a la clase de modelos C_{Alt_1} donde R es una función parcial.

Observación 1

 $\mathrm{Si}\; \mathcal{M} \in \mathcal{C}_{\mathbf{Alt}_1}\text{, entonces } \mathcal{M} \upharpoonright s(\varphi,w) \in \mathcal{C}_{\mathbf{Alt}_1}\; \mathrm{y}\; |\mathcal{M} \upharpoonright s(\varphi,w)| \leq |\varphi|.$

Vía una función de selección

KAlt₁

Es la lógica modal básica restringida a la clase de modelos C_{Alt_1} donde R es una función parcial.

Observación 1

 $\mathrm{Si}\; \mathcal{M} \in \mathcal{C}_{\mathbf{Alt}_1}\text{, entonces } \mathcal{M} \upharpoonright s(\varphi,w) \in \mathcal{C}_{\mathbf{Alt}_1}\; \mathrm{y}\; |\mathcal{M} \upharpoonright s(\varphi,w)| \leq |\varphi|.$

Observación 2

Dado $\mathcal M$ finito, se puede decidir si $\mathcal M \in \mathcal C_{Alt_1}$ en tiempo polinomial.

Vía una función de selección

KAlt₁

Es la lógica modal básica restringida a la clase de modelos C_{Alt_1} donde R es una función parcial.

Observación 1

 $\mathrm{Si}\; \mathcal{M} \in \mathcal{C}_{\mathbf{Alt}_1}\text{, entonces } \mathcal{M} \upharpoonright s(\varphi,w) \in \mathcal{C}_{\mathbf{Alt}_1}\; \mathrm{y}\; |\mathcal{M} \upharpoonright s(\varphi,w)| \leq |\varphi|.$

Observación 2

Dado $\mathcal M$ finito, se puede decidir si $\mathcal M \in \mathcal C_{Alt_1}$ en tiempo polinomial.

Algoritmo NP para satisfacibilidad de KAlt₁

Dado φ , adivinar un modelo de tamaño a lo sumo $|\varphi|$ y chequear polinomialmente que esté en \mathcal{C}_{Alt_1} y que satisfaga φ .

Satisfacibilidad de KAlt₁ es NP-completo

Satisfacibilidad de **KAlt**₁ es NP-completo

Demostración

- Ya probamos que satisfacibilidad de KAlt₁ está en NP.
- Sólo necesitamos reducir (polinomialmente) un problema que se sepa NP-completo.
- Satisfacibilidad proposicional es NP-completo.
- ullet Y podemos resolver sat proposicional con sat para $KAlt_1$.

Satisfacibilidad de KAlt₁ es NP-completo

Demostración

- Ya probamos que satisfacibilidad de KAlt₁ está en NP.
- Sólo necesitamos reducir (polinomialmente) un problema que se sepa NP-completo.
- Satisfacibilidad proposicional es NP-completo.
- ullet Y podemos resolver sat proposicional con sat para $KAlt_1$.

OJO

¡Las reducciones no siempre son tan triviales!

Lógicas modales NP-completas

Recapitulando

- Usamos funciones de selección para mostrar que **KAlt**₁ tiene la "propiedad de modelos polinomiales".
- Como sus modelos son reconocibles en tiempo polinomial,
- Concluimos que es NP-completa (para satisfacibilidad)

Lógicas modales NP-completas

Recapitulando

- Usamos funciones de selección para mostrar que **KAlt**₁ tiene la "propiedad de modelos polinomiales".
- Como sus modelos son reconocibles en tiempo polinomial,
- Concluimos que es NP-completa (para satisfacibilidad)

De manera similar se puede ver que son NP-completas:

- **S5**: La LMB sobre modelos con *R* relación de equivalencia.
- **S**4.3: La LMB sobre modelos donde R es transitiva y conexa ($\forall xy.(Rxy \lor Ryx)$) y existe un nodo que es la raíz (sin predecesor y todo otro nodo es accesible desde él).
- Toda lógica que extienda **S4.3**.

Lógicas modales NP-completas

Recapitulando

- Usamos funciones de selección para mostrar que **KAlt**₁ tiene la "propiedad de modelos polinomiales".
- Como sus modelos son reconocibles en tiempo polinomial,
- Concluimos que es NP-completa (para satisfacibilidad)

De manera similar se puede ver que son NP-completas:

- **S5**: La LMB sobre modelos con *R* relación de equivalencia.
- **S**4.3: La LMB sobre modelos donde R es transitiva y conexa ($\forall xy.(Rxy \lor Ryx)$) y existe un nodo que es la raíz (sin predecesor y todo otro nodo es accesible desde él).
- Toda lógica que extienda **S4.3**.

El caso de K, la LMB sobre modelos arbitrarios

¿Tendrá K la propiedad de modelos polinomiales?

K <u>no</u> tiene la propiedad de modelos polinomiales

Veremos que:

Para todo natural k, existe una φ_k satisfacible, tal que:

- I. el tamaño de φ_k es polinomial en k,
- II. todo modelo de φ_k tiene al menos 2^k nodos.

K <u>no</u> tiene la propiedad de modelos polinomiales

Veremos que:

Para todo natural k, existe una φ_k satisfacible, tal que:

- I. el tamaño de φ_k es polinomial en k,
- II. todo modelo de φ_k tiene al menos 2^k nodos.

De donde se desprende trivialmente que:

- Ningún polinomio acota el tamaño de un modelo mínimo para una fórmula en función de su tamaño.
- Luego, K no tiene la propiedad de modelos polinomiales.

K <u>no</u> tiene la propiedad de modelos polinomiales

Estrategia de la demostración

- En cada φ_k usamos proposiciones p_1, \ldots, p_k y l_0, \ldots, l_k .
- φ_k exige un nodo por cada asignación posible de $p_1 \dots p_k$.
- ullet Serán nodos a profundidad k en un arbol binario completo.
- ullet Usamos l_i para marcar aquellos nodos a profundidad i.

$K \underline{no}$ tiene la propiedad de modelos polinomiales

Ladrillos para armar cada φ_k

• B_i fuerza dos sucesores, uno para cada valor de p_i :

$$B_i := \Diamond p_{i+1} \wedge \Diamond \neg p_{i+1}$$

• S_i propaga los valores de p_i y $\neg p_i$ al siguiente nivel:

$$S_i := (p_i \to \Box p_i) \land (\neg p_i \to \Box \neg p_i)$$

• L_{ki} asegura que un nodo esté en el nivel i y sólo en ese:

$$L_{ki} := \bigwedge_{j \in \{0...k\} \setminus \{i\}} \neg l_j \wedge l_i$$

K no tiene la propiedad de modelos polinomiales

Finalmente, φ_k

```
\varphi_k \text{ es la conjunción de:}
L_{k0} \wedge \square L_{k1} \wedge \square^2 L_{k2} \wedge \square^3 L_{k3} \wedge \ldots \wedge \square^{k-1} L_{kk-1} \wedge \square^k L_{kk}
B_0 \wedge \square B_1 \wedge \square^2 B_2 \wedge \square^3 B_3 \wedge \ldots \wedge \square^{k-1} B_{k-1}
\square S_1 \wedge \square^2 S_1 \wedge \square^3 S_1 \wedge \ldots \wedge \square^{k-1} S_1
\square^2 S_2 \wedge \square^3 S_2 \wedge \ldots \wedge \square^{k-1} S_2
\wedge \square^3 S_3 \wedge \ldots \wedge \square^{k-1} S_3
\vdots
\wedge \square^{k-1} S_{k-1}
```

K no tiene la propiedad de modelos polinomiales

Finalmente, φ_k

φ_k es la conjunción de:

```
\varphi_k crece "poco" a medida que aumentamos k
```

- I. Notar que $|\Box^k L_{ki}|$, $|\Box^k B_i|$ y $|\Box^k S_i|$ son O(k).
- II. Viendo la matriz, acotamos a lo bruto: $|\varphi_k| \in O(k^3)$.

$K \underline{no}$ tiene la propiedad de modelos polinomiales

Finalmente, φ_k

$$\varphi_k$$
 es la conjunción de:

```
\varphi_k crece "poco" a medida que aumentamos k
```

- I. Notar que $|\Box^k L_{ki}|$, $|\Box^k B_i|$ y $|\Box^k S_i|$ son O(k).
- II. Viendo la matriz, acotamos a lo bruto: $|\varphi_k| \in O(k^3)$.

¡Pero todo modelo para φ_k tiene al menos 2^k nodos!

Qué podemos concluir (y qué no)

Concluimos que...

- No es verdad que en K las fórmulas satisfacibles tengan modelos polinomiales.
- No podremos usar la técnica de "adivinar modelos" para probar que satisfacibilidad de K está en NP.

No podemos concluir que...

- No sea el caso que satisfacibilidad de K esté en NP
- (aunque parece poco probable)

Satisfacibilidad de K está en PSPACE Intuición

Idea general

- No tenemos espacio para adivinar un modelo entero
- Pero podemos ir adivinando de a una "rama" por vez
- Y, sobre la marcha, ir verificando si satisface la fórmula
- ¡Las ramas podemos asumirlas lineales en la fórmula!

Satisfacibilidad de K está en PSPACE Intuición

Idea general

- No tenemos espacio para adivinar un modelo entero
- Pero podemos ir adivinando de a una "rama" por vez
- Y, sobre la marcha, ir verificando si satisface la fórmula
- ¡Las ramas podemos asumirlas lineales en la fórmula!

Detalles escabrosos

- Necesitamos garantizar que todo diamante sea verificado
- Podemos usar no-determinismo! (PSPACE = NPSPACE)
- Formalizaremos la idea usando "Hintikka sets"

Hintikka sets – preliminares

Negation Normal Form (NNF)

 Por simplicidad, y sin perder generarlidad, asumamos NNF:

$$\varphi ::= p \mid \neg p \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \Diamond \varphi \mid \Box \varphi$$

• $\overline{\varphi}$ es la "negación en NNF" de φ (e.g., $\overline{\neg p} = p$, $\overline{\varphi} \wedge \overline{\psi} = \overline{\varphi} \vee \overline{\psi}$, etc.)

Clausura de un conjunto de fórmulas Σ (Cl (Σ))

$$\operatorname{Cl}(\Sigma) = \{\varphi \mid \varphi \text{ ocurre en } \Sigma\} \cup \{\overline{\varphi} \mid \varphi \text{ ocurre en } \Sigma\}$$

Intuición

 $\mathrm{Cl}(\Sigma)$ es el conjunto de "fórmulas relevantes" de Σ .

Hintikka sets

Hintikka sets

Decimos que H es un Hintikka set para Σ si cumple:

I.
$$H \subseteq Cl(\Sigma)$$

II.
$$\varphi \in \operatorname{Cl}(\Sigma) \Rightarrow \varphi \in H \operatorname{sii} \overline{\varphi} \notin H$$

III.
$$\varphi \land \psi \in Cl(\Sigma) \Rightarrow \varphi \land \psi \in H \text{ sii } \varphi \in H \text{ y } \psi \in H$$

IV.
$$\varphi \lor \psi \in \operatorname{Cl}(\Sigma) \Rightarrow \varphi \lor \psi \in H$$
 sii $\varphi \in H$ ó $\psi \in H$

Hintikka sets

Hintikka sets

Decimos que H es un Hintikka set para Σ si cumple:

- I. $H \subseteq Cl(\Sigma)$
- II. $\varphi \in \operatorname{Cl}(\Sigma) \Rightarrow \varphi \in H \operatorname{sii} \overline{\varphi} \notin H$
- III. $\varphi \wedge \psi \in Cl(\Sigma) \Rightarrow \varphi \wedge \psi \in H \text{ sii } \varphi \in H \text{ y } \psi \in H$
- IV. $\varphi \lor \psi \in Cl(\Sigma) \Rightarrow \varphi \lor \psi \in H \text{ sii } \varphi \in H \text{ ó } \psi \in H$

Intuición

Un Hintikka set para Σ es un conjunto "suficientemente grande" de "subfórmulas" de Σ que alcanza para verificar si Σ es verdadero en un mundo.

Hintikka sets – ¿para qué?

Teorema

 Σ es satisfacible sii existe un Hintikka set para Σ , H, que es satisfacible, e incluye a Σ .

Hintikka sets – ¿para qué?

Teorema

 Σ es satisfacible sii existe un Hintikka set para Σ , H, que es satisfacible, e incluye a Σ .

Demostración

- \Leftarrow) Directo dado que $\Sigma \subseteq H$.
- $\Rightarrow) \qquad \bullet \ \, \mathsf{Dado}\, \mathcal{M}, w \models \Sigma, \mathsf{sea}\, H = \{\varphi \mid \mathcal{M}, w \models \varphi \, \mathsf{y} \, \varphi \in \mathsf{Cl}(\Sigma)\}$
 - Es fácil ver que H es un Hintikka set para Σ y $\mathcal{M}, w \models H$.

Hintikka sets – ¿para qué?

Teorema

Sea H un Hintikka set para Σ . Son equivalentes:

- I. *H* es satisfacible.
- II. Para todo $\Diamond \varphi_i \in H$, $H_i = \{\varphi_i\} \cup \Box(H)$ es satisfacible.

Notación: $\Box(H) = \{ \varphi \mid \Box \varphi \in H \}$

Hintikka sets – ¿para qué?

Teorema

Sea H un Hintikka set para Σ . Son equivalentes:

- I. H es satisfacible.
- II. Para todo $\Diamond \varphi_i \in H$, $H_i = \{\varphi_i\} \cup \Box(H)$ es satisfacible.

Notación: $\Box(H) = \{ \varphi \mid \Box \varphi \in H \}$

Demostración

 \Rightarrow) Si $\mathcal{M}, w \models H \ y \diamond \varphi_i \in H$, $\exists v \ \mathcal{M}, v \models \varphi_i \ y \ \mathcal{M}, v \models \Box(H)$.

Hintikka sets – ¿para qué?

Teorema

Sea H un Hintikka set para Σ . Son equivalentes:

- I. *H* es satisfacible.
- II. Para todo $\Diamond \varphi_i \in H$, $H_i = \{\varphi_i\} \cup \square(H)$ es satisfacible.

Notación: $\Box(H) = \{ \varphi \mid \Box \varphi \in H \}$

Demostración

- \Rightarrow) Si $\mathcal{M}, w \models H \ y \diamond \varphi_i \in H$, $\exists v \ \mathcal{M}, v \models \varphi_i \ y \ \mathcal{M}, v \models \Box(H)$.
- \Leftarrow) Para cada $\diamond \varphi_i \in H$, sea $\mathcal{M}_i = \langle W_i, R_i, V_i \rangle$ tal que $\mathcal{M}_i, w_i \models H_i$.
 - Sea \mathcal{M} la unión disjunta de los \mathcal{M}_i , con el agregado de un nuevo w tal que wRw_i para todo w_i y $w \in V(p)$ sii $p \in H$.
 - Claramente, $\mathcal{M}, w_i \underline{\leftrightarrow} \mathcal{M}_i, w_i$, con lo cual $\mathcal{M}, w_i \models H_i$.
 - Por las clausuras de H, es fácil ver que, $\mathcal{M}, w \models H$.

Un algoritmo no-determinístico basado en Hintikka sets

```
\begin{aligned} & \operatorname{EsSat}\left(\Sigma\right) \\ & \operatorname{subfs}_{\Sigma} \leftarrow \operatorname{Cl}(\Sigma) \\ & H \leftarrow \operatorname{adivinar} \text{ un subconjunto de } \operatorname{subfs}_{\Sigma} \\ & \operatorname{si} H \text{ no es un } \operatorname{\textit{Hintikka set sobre}} \Sigma \\ & \operatorname{devolver} \text{ 0} \\ & \operatorname{para} \text{ todo } \Diamond \varphi \in H \\ & \operatorname{si} \text{ EsSat}\left(\{\varphi\} \cup \square(H)\right) = 0 \\ & \operatorname{devolver} \text{ 0} \end{aligned}
```

Un algoritmo no-determinístico basado en Hintikka sets

```
\begin{aligned} & \operatorname{EsSat}\left(\Sigma\right) \\ & \operatorname{subfs}_{\Sigma} \leftarrow \operatorname{Cl}(\Sigma) \\ & H \leftarrow \operatorname{adivinar} \text{ un subconjunto de } \operatorname{subfs}_{\Sigma} \\ & \operatorname{si} H \text{ no es un } Hintikka \operatorname{set} \operatorname{sobre} \Sigma \\ & \operatorname{devolver} \text{ 0} \\ & \operatorname{para} \text{ todo } \Diamond \varphi \in H \\ & \operatorname{si} \operatorname{EsSat}\left(\{\varphi\} \cup \Box(H)\right) = 0 \\ & \operatorname{devolver} \text{ 0} \end{aligned}
```

Observaciones

- ullet EsSat(Σ) computa K-satisfacibilidad Σ (para Σ finito)
- Recursion depth de $\operatorname{EsSat}(\Sigma) \leq \operatorname{modal} \operatorname{depth} \operatorname{de} \Sigma$
- ullet En cada paso se necesita espacio polinomial en Σ

Recapitulando

$\operatorname{EsSat}(\Sigma)$

- Algoritmo no-determinístico para la satisfacibilidad de K.
- Requiere espacio polinomial para su ejecución.
- Prueba que este problema está en NPSPACE.
- Por el T. de Savitch prueba también que está en PSPACE.

Recapitulando

$\operatorname{EsSat}(\Sigma)$

- Algoritmo no-determinístico para la satisfacibilidad de K.
- Requiere espacio polinomial para su ejecución.
- Prueba que este problema está en NPSPACE.
- Por el T. de Savitch prueba también que está en PSPACE.

¿Será además completo para PSPACE?