Complejidad

Miguel Raggi

Algoritmos ENES UNAM

5 de febrero de 2019

Índice:

- Complejidad
 - Medir Algoritmos
 - O, Ω y Θ

Índice:

- Complejidad
 - Medir Algoritmos
 - O, Ω y Θ

■ El problema es que casi nunca ocurre que un algoritmo sea mejor en todos los rubros que otro.

- El problema es que casi nunca ocurre que un algoritmo sea mejor en todos los rubros que otro.
- Elegir el algoritmo adecuado no siempre es fácil.

- El problema es que casi nunca ocurre que un algoritmo sea mejor en todos los rubros que otro.
- Elegir el algoritmo adecuado no siempre es fácil.
- La medida final será qué tan bien corra, haciendo mediciones de tiempo (qué algoritmo se tarda más, cuál menos).

- El problema es que casi nunca ocurre que un algoritmo sea mejor en todos los rubros que otro.
- Elegir el algoritmo adecuado no siempre es fácil.
- La medida final será qué tan bien corra, haciendo mediciones de tiempo (qué algoritmo se tarda más, cuál menos).
- Pero hay varios problemas con esto:

- El problema es que casi nunca ocurre que un algoritmo sea mejor en todos los rubros que otro.
- Elegir el algoritmo adecuado no siempre es fácil.
- La medida final será qué tan bien corra, haciendo mediciones de tiempo (qué algoritmo se tarda más, cuál menos).
- Pero hay varios problemas con esto:
 - El primero y más importante es que programar los algoritmos es difícil y toma tiempo. No puedes programar 14 algoritmos diferentes sólo para ver cuál será mejor al final.

- El problema es que casi nunca ocurre que un algoritmo sea mejor en todos los rubros que otro.
- Elegir el algoritmo adecuado no siempre es fácil.
- La medida final será qué tan bien corra, haciendo mediciones de tiempo (qué algoritmo se tarda más, cuál menos).
- Pero hay varios problemas con esto:
 - El primero y más importante es que programar los algoritmos es difícil y toma tiempo. No puedes programar 14 algoritmos diferentes sólo para ver cuál será mejor al final.
 - Además, varía mucho de implementación a implementación.

- El problema es que casi nunca ocurre que un algoritmo sea mejor en todos los rubros que otro.
- Elegir el algoritmo adecuado no siempre es fácil.
- La medida final será qué tan bien corra, haciendo mediciones de tiempo (qué algoritmo se tarda más, cuál menos).
- Pero hay varios problemas con esto:
 - El primero y más importante es que programar los algoritmos es difícil y toma tiempo. No puedes programar 14 algoritmos diferentes sólo para ver cuál será mejor al final.
 - Además, varía mucho de implementación a implementación.
 - Hablando más académicamente, si queremos comparar un algoritmo inventado en china en los 90's con uno inventado en rusia el año pasado, ¿qué computadora usamos para medir?

■ Lo que usamos es órdenes teóricos. Se dicen cosas como "este algoritmo es $O(n^2)$ o $O(n \log(n))$ ".

- Lo que usamos es órdenes teóricos. Se dicen cosas como "este algoritmo es $O(n^2)$ o $O(n \log(n))$ ".
- Esto mide, de cierta forma, el crecimiento de la velocidad conforme le pedimos al algoritmo que opere en cosas más y más grandes.

- Lo que usamos es órdenes teóricos. Se dicen cosas como "este algoritmo es $O(n^2)$ o $O(n \log(n))$ ".
- Esto mide, de cierta forma, el crecimiento de la velocidad conforme le pedimos al algoritmo que opere en cosas más y más grandes.
- Entre más grande sea el orden, más tardará el algoritmo en operar en entradas muy grandes.

- Lo que usamos es órdenes teóricos. Se dicen cosas como "este algoritmo es $O(n^2)$ o $O(n \log(n))$ ".
- Esto mide, de cierta forma, el crecimiento de la velocidad conforme le pedimos al algoritmo que opere en cosas más y más grandes.
- Entre más grande sea el orden, más tardará el algoritmo en operar en entradas muy grandes.
- Luego vemos exactamente qué significa que un algoritmo sea *O*(algo), pero por ahora, piénsenlo así:

- Lo que usamos es órdenes teóricos. Se dicen cosas como "este algoritmo es $O(n^2)$ o $O(n \log(n))$ ".
- Esto mide, de cierta forma, el crecimiento de la velocidad conforme le pedimos al algoritmo que opere en cosas más y más grandes.
- Entre más grande sea el orden, más tardará el algoritmo en operar en entradas muy grandes.
- Luego vemos exactamente qué significa que un algoritmo sea O(algo), pero por ahora, piénsenlo así:
 - O(1), $O(\log(n))$: Muy rápidos!
 - $O(n \log(n))$, O(n): Rápidos.
 - $O(n^2)$: Medianos.
 - $O(n^3)$, $O(n^4)$ o más: Lentos.
 - $O(2^n)$: Muy lentos.

Con el avance en la velocidad de las computadoras, es difícil comparar algoritmos.

- Con el avance en la velocidad de las computadoras, es difícil comparar algoritmos.
- Utilizamos entonces el análisis asintótico:

- Con el avance en la velocidad de las computadoras, es difícil comparar algoritmos.
- Utilizamos entonces el análisis asintótico:

Definición

Sea $f : \mathbb{N} \to \mathbb{N}$.

■ Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un múltiplo de f.

- Con el avance en la velocidad de las computadoras, es difícil comparar algoritmos.
- Utilizamos entonces el análisis asintótico:

Definición

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un múltiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

- Con el avance en la velocidad de las computadoras, es difícil comparar algoritmos.
- Utilizamos entonces el análisis asintótico:

Definición

Sea $f : \mathbb{N} \to \mathbb{N}$.

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un múltiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

Usualmente queremos que f sea una función simple: $O(n^2)$, $O(2^n)$, $O(n \log(n))$, etc. Nada de

$$O\left(\sqrt{e^{\tan(2n)}-2n\log(\sin(n))}+1\right)$$

Definición

Definición

Sea $f : \mathbb{N} \to \mathbb{N}$.

■ Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un multiplo de f.

Definición

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un multiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

Definición

Sea $f : \mathbb{N} \to \mathbb{N}$.

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un multiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

■ $17n \in O(n^2)$

Definición

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un multiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

- $17n \in O(n^2)$
- $n^2 \in O(n^2)$

Definición

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un multiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

- $17n \in O(n^2)$
- $n^2 \in O(n^2)$
- $n^3 16n^2 \notin O(n^2)$

Definición

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un multiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

- $17n \in O(n^2)$
- $n^2 \in O(n^2)$
- $n^3 16n^2 \notin O(n^2)$
- $n\sqrt{n}\log(n) \in \hat{O}(n^2)$

Definición

Sea $f : \mathbb{N} \to \mathbb{N}$.

- Intuitivamente: Decimos que $g \in O(f)$ si, hasta constantes, f eventualmente le gana a g; es decir, si g esta casi acotado por arriba por un multiplo de f.
- Formalmente: Definimos el conjunto de funciones O(f) por la siguiente propiedad:

$$g \in O(f) \iff (\exists c \in \mathbb{R})(\exists N \in \mathbb{N})(\forall n \geq N)(g(n) < cf(n))$$

- $17n \in O(n^2)$
- $n^2 \in O(n^2)$
- $n^3 16n^2 \notin O(n^2)$
- $n\sqrt{n}\log(n) \in O(n^2)$

4 D > 4 D > 4 E > 4 E > 90

 $\log(n^7 + 800n^2) \in O(\log(n))$ Miguel Raggi (Algoritmos ENES UNAM) Complejidad

Sea f una función $f: \mathbb{N} \to \mathbb{N}$.

Sea f una función $f: \mathbb{N} \to \mathbb{N}$.

Definición

Decimos que $g \in \Omega(f)$ si $f \in O(g)$. Es decir, si eventualmente g "le gana" a f.

Sea f una función $f: \mathbb{N} \to \mathbb{N}$.

Definición

Decimos que $g \in \Omega(f)$ si $f \in O(g)$. Es decir, si eventualmente g "le gana" a f.

Definición

Definimos $\Theta(f) = O(f) \cap \Omega(f)$. Es decir, $g \in \Theta(f)$ si f g "crecen igual" $(g \in \Theta(g))$.

Sea f una función $f: \mathbb{N} \to \mathbb{N}$.

Definición

Decimos que $g \in \Omega(f)$ si $f \in O(g)$. Es decir, si eventualmente g "le gana" a f.

Definición

Definimos $\Theta(f) = O(f) \cap \Omega(f)$. Es decir, $g \in \Theta(f)$ si f g "crecen igual" $(g \in \Theta(g))$.

Ejemplos: $17n^2 - n \in \Theta(n^2)$, $n \log(n^{500} + 1) \in \Theta(n \log(n))$

■ Medimos la rapidez de los algoritmos usando la notación de O, Ω y Θ .

- lacktriangle Medimos la rapidez de los algoritmos usando la notación de O,Ω y Θ .
- Pensemos en f(n) como el tiempo que tarda el algoritmo en correr cuando le metemos una instancia de tamaño n.

- Medimos la rapidez de los algoritmos usando la notación de O, Ω y Θ .
- Pensemos en f(n) como el tiempo que tarda el algoritmo en correr cuando le metemos una instancia de tamaño n.
- Tiempo: ¿Tiempo en dónde? Mejor medir número de pasos. explica paso

- Medimos la rapidez de los algoritmos usando la notación de O, Ω y Θ .
- Pensemos en f(n) como el tiempo que tarda el algoritmo en correr cuando le metemos una instancia de tamaño n.
- Tiempo: ¿Tiempo en dónde? Mejor medir número de pasos. explica paso
- Tamaño de una instancia: Un algoritmo, más que resolver un sólo problema, resuelve una clase de problemas que crecen con tamaño n.

- Medimos la rapidez de los algoritmos usando la notación de O, Ω y Θ .
- Pensemos en f(n) como el tiempo que tarda el algoritmo en correr cuando le metemos una instancia de tamaño n.
- Tiempo: ¿Tiempo en dónde? Mejor medir número de pasos. explica paso
- Tamaño de una instancia: Un algoritmo, más que resolver un sólo problema, resuelve una clase de problemas que crecen con tamaño n.
- Usualmente *n* es el número de bits necesarios para describir el problema. mucho cuidado

- Medimos la rapidez de los algoritmos usando la notación de O, Ω y Θ .
- Pensemos en f(n) como el tiempo que tarda el algoritmo en correr cuando le metemos una instancia de tamaño n.
- Tiempo: ¿Tiempo en dónde? Mejor medir número de pasos. explica paso
- Tamaño de una instancia: Un algoritmo, más que resolver un sólo problema, resuelve una clase de problemas que crecen con tamaño n.
- Usualmente n es el número de bits necesarios para describir el problema. mucho cuidado
- Como a O, Ω y Θ les dan igual las constantes, bits \approx bytes \approx enteros menores que un entero fijo = etc.

- Medimos la rapidez de los algoritmos usando la notación de O, Ω y Θ .
- Pensemos en f(n) como el tiempo que tarda el algoritmo en correr cuando le metemos una instancia de tamaño n.
- Tiempo: ¿Tiempo en dónde? Mejor medir número de pasos. explica paso
- Tamaño de una instancia: Un algoritmo, más que resolver un sólo problema, resuelve una clase de problemas que crecen con tamaño n.
- Usualmente *n* es el número de bits necesarios para describir el problema. mucho cuidado
- Como a O, Ω y Θ les dan igual las constantes, bits \approx bytes \approx enteros menores que un entero fijo = etc.
- Ejemplo: ¿Cuántos bits se necesitan para describir a todos los enteros hasta 7625?

- Medimos la rapidez de los algoritmos usando la notación de O, Ω y Θ .
- Pensemos en f(n) como el tiempo que tarda el algoritmo en correr cuando le metemos una instancia de tamaño n.
- Tiempo: ¿Tiempo en dónde? Mejor medir número de pasos. explica paso
- Tamaño de una instancia: Un algoritmo, más que resolver un sólo problema, resuelve una clase de problemas que crecen con tamaño n.
- Usualmente n es el número de bits necesarios para describir el problema. mucho cuidado
- Como a O, Ω y Θ les dan igual las constantes, bits \approx bytes \approx enteros menores que un entero fijo = etc.
- Ejemplo: ¿Cuántos bits se necesitan para describir a todos los enteros hasta 7625?
- Respuesta: $\lceil \log_2(7625) \rceil = 13$ Habla de factorizar números y ajedrez

■ Hablé de f(n) = número de pasos, como si eso estuviera bien definido. Pero quizás para instancias del "mismo tamaño", el número de pasos varía muchísimo.

- Hablé de f(n) = número de pasos, como si eso estuviera bien definido. Pero quizás para instancias del "mismo tamaño", el número de pasos varía muchísimo.
- Usualmente nos interesa el peor caso, o el promedio, casi nunca el "mejor caso" (usualmente en el mejor de los casos, no hay nada que hacer y el tiempo es casi 0).

- Hablé de f(n) = número de pasos, como si eso estuviera bien definido. Pero quizás para instancias del "mismo tamaño", el número de pasos varía muchísimo.
- Usualmente nos interesa el peor caso, o el promedio, casi nunca el "mejor caso" (usualmente en el mejor de los casos, no hay nada que hacer y el tiempo es casi 0).
- Usualmente debes considerar ambos, el peor caso y el caso promedio.

- Hablé de f(n) = número de pasos, como si eso estuviera bien definido. Pero quizás para instancias del "mismo tamaño", el número de pasos varía muchísimo.
- Usualmente nos interesa el peor caso, o el promedio, casi nunca el "mejor caso" (usualmente en el mejor de los casos, no hay nada que hacer y el tiempo es casi 0).
- Usualmente debes considerar ambos, el peor caso y el caso promedio.
- A veces en la práctica es falso que si un algoritmo A corre en tiempo $\Theta(n)$ es mejor que uno B que corra en tiempo $\Theta(n^3)$. Quizás es 10000000000n vs $0.0001n^3$.

- Hablé de f(n) = número de pasos, como si eso estuviera bien definido. Pero quizás para instancias del "mismo tamaño", el número de pasos varía muchísimo.
- Usualmente nos interesa el peor caso, o el promedio, casi nunca el "mejor caso" (usualmente en el mejor de los casos, no hay nada que hacer y el tiempo es casi 0).
- Usualmente debes considerar ambos, el peor caso y el caso promedio.
- A veces en la práctica es falso que si un algoritmo A corre en tiempo $\Theta(n)$ es mejor que uno B que corra en tiempo $\Theta(n^3)$. Quizás es 100000000000 n vs $0.0001 n^3$.
- Efectivamente, para n suficientemente grande, A le ganará a B, pero quizás sólo nos interesan casos pequeños.

¿Cómo medimos el tiempo?

Si algo cuesta $0.01n^2 + 10n$, ¿por qué decimos que es $\Theta(n^2)$?

n	$a=0.01n^2$	b=10n	$0.01n^2 + 10n$	$\frac{a+b}{n^2}$
10	1	100	101	1.01
50	25	500	525	0.21
100	100	1000	1,100	0.11
500	2,500	5,000	7,500	0.03
1,000	10,000	10,000	20,000	0.02
5,000	25,000	50,000	300,000	0.01
10,000	1,000,000	100,000	1,100,000	0.01
50,000	25,000,000	500,000	25,500,000	0.01
100,000	100,000,000	1,000,000	101,000,000	0.01
500,000	2,500,000,000	5,000,000	2,505,000,000	0.01

Fin.

¡Gracias!