

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

(1)

In der
Anschrift
Straße,
haus-Nr.
und ggl.
Postleitzahl
angegeben

Sendungen des Deutschen Patentamts sind addressten an: 200 000 00 000

Herrn Patentanwalt
Dr. Hans D. Boeters
Bereiteranger 15
81541 München

DEUTSCHES PATENTAMT

Antrag auf Erteilung eines Patents

Aktenzeichen (wird vom Deutschen Patentamt vergeben)

195 42 986.9

(2)

Zeichen des Anmelders/Vertreters (max. 20 Stellen)
7865-GBF

Telefon des Anmelders/Vertreters
089/65 00 86

Datum
17. Nov. 1995

(3)

Der Empfänger in Feld (1) ist der

Anmelder Zustellungsbevollmächtigte

Vertreter

ggf. Nr. der Allgemeinen Vollmacht

(4)

Anmelder

Gesellschaft für Biotechnologische Forschung mbH (GBF)
Mascheroder Weg 1
38124 Braunschweig

Vertreter

Dr. Hans D. Boeters
Dipl.-Ing. Robert Bauer
Dr. Enno Meyer
Bereiteranger 15
81541 München

soweit
bekannt

(5)

Anmeldercode-Nr. | Vertretercode-Nr. | Zustelladressee-Nr.

(6)

Bezeichnung der Erfindung (bei Überlänge auf gesondertem Blatt - 2/fach)

Epothilon-Derivate und deren Verwendung

(7)

Sonstige Anträge

Aktenzeichen der Hauptanmeldung (des Hauptpatents)

Erläuterungen u.
Kostenanweise
auf der
Rückseite

Die Anmeldung ist Zusatz zur Patentanmeldung (zum Patent) →

Prüfungsantrag - Prüfung der Anmeldung (§ 44 Patentgesetz)

Recherchenantrag - Ermittlung der öffentlichen Druckschriften ohne Prüfung (§ 43 Patentgesetz)

Lieferung von Abbildungen der ermittelten Druckschriften im Prüfungsverfahren Recherchenverfahren

Aussetzung des Erteilungsbeschlusses auf _____ Monate

(§ 49 Abs. 2 Patentgesetz) (Max. 15 Mon. ab Anmelde- oder Prioritätsstag)

(8)

Erklärungen

Aktenzeichen der Stammanmeldung

Tteilung/Ausscheidung aus der Patentanmeldung →

an Lizenzvergabe interessiert (unverbindlich)

mit vorzeitiger Offenlegung und damit früher Akteureinsicht einverstanden (§ 31 Abs. 2 Nr. 1 Patentgesetz)

(9)

Inländische Priorität (Datum, Aktenzeichen der Voranmeldung)

Ausländische Priorität (Datum, Land, Aktenz. der Voranmeldung) } bei Überlänge auf gesondertem Blatt - 2/fach}

(10)

Änderungen
Kostenanweise
Rückseite

Gebührenzahlung in Höhe von 100,00 DM

DM

Abbuchung von meinem/unserem Ab-
buchungskonto b. d. Dresdner Bank AG,
München

Nr.:

(11) Anlagen

1. Vertretervolmacht
2. Erfinderbenennung
3. Zusammenfassung (ggf. mit Zeichnung Fig. _____)
- 3...7. 4. Seiten(n) Beschreibung
- etweds 5. ggf. Bezugsscheinlisten
- 3-fach 6. Seiten(n) Patentansprüche
7. Anzahl Patentansprüche
8. Blatt Zeichnungen
9. Abschrift(en) d. Voranmelde

Telefax vorab am _____

(Dr. Meyer)

17. November 1995/pl

Unser Zeichen: 7865

Epothilonderivate und deren Verwendung

Die vorliegende Erfindung betrifft allgemein Epothilonderivate und deren Verwendung zur Herstellung von Arzneimitteln. Insbesondere betrifft die vorliegende Erfindung die Herstellung der Epothilonderivate der nachfolgend dargestellten allgemeinen Formeln 1 bis 7 sowie deren Verwendung zur Herstellung von therapeutischen Mitteln und Mitteln für den Pflanzenschutz.

5

6

7

In den vorstehend n Formeln 1 bis 7 bedeuten:

R = H, C₁- bis C₄-Alkyl;

R¹, R², R³, R⁴, R⁵ = H, C₁- bis C₆-Alkyl,

C₁- bis C₆-Acyl-Benzoyl,

C₁- bis C₄-Trialkylsilyl,

Benzyl,

Phenyl,

C₁- bis C₆-Alkoxy-,

C₆-Alkyl-, Hydroxy- und Halogen-

substituiertes Benzyl bzw. Phenyl;

wobei auch zwei der Reste R¹ bis R⁵ zu der Gruppierung -(CH₂)_n- mit n = 1 bis 6 zusammentreten können und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

In der Formel 1 sind X und Y entweder gleich oder verschieden und stehen jeweils für Halogen, OH, O-(C₁- bis C₆)-Acyl, O-(C₁- bis C₆)-Alkyl, O-Benzoyl.

In der Formel 3 steht X allgemein für -C(O)-, -C(S)-, -S(O)-, -CR¹R²-, wobei R¹ und R² die Bedeutung haben wie oben angegeben, und -SiR₂, wobei R die Bedeutung hat wie oben angegeben.

In der Formel 4 bedeutet X Sauerstoff, NOR³, N-NR⁴R⁵, und NHCONR⁴R⁵, wobei die Reste R³ bis R⁵ die oben angegebene Bedeutung haben.

In der Formel 5 bedeutet X Wasserstoff, C₁- bis C₁₈-Alkyl, C₁- bis C₁₈-Acyl, Benzyl, Benzoyl und Cinnamoyl.

Verbindungen gemäß der allgemeinen Formel 1 sind ausgehend von Epothilon A und B sowie von deren 3-O- und/oder 7-O-geschützten Derivaten durch Öffnung des 12,13-Epoxids zugänglich. Werd n dazu Hydrogenwasserstoffsäur n in ein m bevorzugt nicht wässrigen Lösungsmittel eingesetzt, w b i man

die Halogenhydrine X = Hal, Y = OH und Y = OH, Y = Hal erhält. Protonensäuren wie z.B. Toluolsulfonsäur und Trifluressigsäur führen in Gegenwart von Wasser zu 12,13-Diolen, die anschließend nach Standardverfahren acyliert (z.B. mit Carbonsäureanhydriden und Pyridin oder Triethylamin/DMAP) oder alkyliert (Alkylhalogenide und Silberoxid) werden. Die 3- und 7-Hydroxygruppen können dazu vorübergehend als Formiat (Abspaltung mit NH₃/MeOH) oder p-Methoxybenzylether (Abspaltung mit DDQ) geschützt werden.

Verbindungen gemäß der allgemeinen Formel 2 sind aus Epothilon A und B sowie deren 3-O- und/oder 7-O-geschützten Derivaten durch Reduktion, z.B. mit NaBH₄ in Methanol erhältlich. Sind dabei 3-OH und/oder 7-OH reversibel geschützt, so können nach Acylierung oder Alkylierung und Entfernen der Schutzgruppen 5-O-monosubstituierte, 3,5- oder 5,7-O-disubstituierte Derivate der allgemeinen Formel 2 erhalten werden.

Umsetzungen von Epothilon A und B mit bifunktionellen elektrophilen Reagenzien, wie (Thio)Phosgen, (Thio)Carbonyldimidazol, Thionylchlorid oder Dialkylsilyldichloriden bzw. -bistriflaten ergeben Verbindungen der allgemeinen Formel 3. Als Hilfsbasen dienen dabei Pyridin, Trialkylamine, ggf. zusammen mit DMAP bzw. 2,6-Lutidin in einem nichtprotischen Lösungsmittel. Die 3,7-Acetale der allgemeinen Formel 3 entstehen durch Umacetalisierung z.B. von Dimethylacetalen in Gegenwart eines sauren Katalysators.

Verbindungen gemäß der allgemeinen Formel 4 werden aus Epothilon A und B oder ihren 3-O- und/oder 7-O-geschützten Derivaten durch Ozonalyse und reduktive Aufarbeitung, z.B. mit Dimethylsulfid, erhalten. Die C-16-Ketone können anschließend nach dem Fachmann geläufigen Standardverfahren in Oxime, Hydrazone oder Semicarbazone umgewandelt werden. Sie werden weiterhin durch Wittig-, Wittig-Homer-, Julia- oder Peterson-*n*-Olefinition in C-16/C-17-Olefin überführt.

Durch Reduktion der C-16-Ketogrupp , z.B. mit einem Aluminium- oder Borhydrid, sind die 16-Hydroxyderivat gemäß der allgemeinen Formel 5 erhältlich. Diese können, wenn 3-OH und 7-OH mit entsprechenden Schutzgruppen versehen sind, selektiv acyliert oder alkyliert werden. Die Freisetzung der 3-OH- und 7-OH-Gruppen erfolgt z.B. bei O-Formyl durch NH₃/MeOH, bei O-p-Methoxybenzyl durch DDQ.

Die Verbindungen der allgemeinen Formel 6 werden aus Derivaten von Epothilon A und B erhalten, bei denen die 7-OH-Gruppe durch Acyl- oder Ethergruppen geschützt ist, in dem die 3-OH-Gruppe z.B. formyliert, mesyliert oder tosyliert und anschließend durch Behandlung mit einer Base z.B. DBU eliminiert wird. Die 7-OH-Gruppe kann wie oben beschrieben freigesetzt werden.

Verbindungen der allgemeinen Formel 7 werden aus Epothilon A und B oder deren 3-OH- und 7-OH-geschützten Derivaten durch basische Hydrolyse erhalten, z.B. mit NaOH in MeOH. Die Carboxylgruppe kann mit Diazoalkanen nach Schutz der 19-OH-Gruppe durch Alkylierung in Ester umgewandelt werden.

Die Erfindung betrifft ferner Mittel für den Pflanzenschutz in Landwirtschaft, Forstwirtschaft und/oder Gartenbau, bestehend aus einer oder mehreren der vorstehend aufgeführten Epothilonderivate bzw. bestehend aus einem oder mehreren der vorstehend aufgeführten Epothilonderivate neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

Schließlich betrifft die Erfindung therapeutische Mittel, bestehend aus einer oder mehreren der vorstehend aufgeführten Verbindungen oder einer oder mehreren der vorstehend aufgeführten Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n). Diese Mittel können insb sondere cytotoxische Aktivitäten entwickeln und/oder Immunsuppression bewirken, so daß si besonders bevorzugt als Cytostatika verwendbar sind.

Die Erfindung wird im folgenden durch die Beschreibung von einigen ausgewählten Ausführungsbeispielen näher erläutert und beschrieben.

Beispiele

Verbindung 1a:

20 mg (0.041 mmol) Epothilon A werden in 1 ml Aceton gelöst, mit 50 µl (0.649 mmol) Trifluoressigsäure versetzt und über Nacht bei 50 °C gerührt. Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Phosphatpuffer pH 7 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natrium-sulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schicht-chromatographie (Laufmittel: Dichlormethan/Aceton, 85 : 15). Ausbeute: 4 mg (19 %) Isomer I
4 mg (19 %) Isomer II

Isomer I

R_f (Dichlormethan/Aceton, 85 : 15): 0.46

IR (Film): ν = 3440 (m, b, Sch), 2946 (s, Sch), 1734 (vs), 1686 (m), 1456 (m), 1375 (w), 1256 (s, Sch), 1190 (w, b, Sch), 1071 (m, Sch); 884 (w), 735 (w) cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (43 [M-H₂O]⁺), 394 (47), 306 (32), 206 (30), 181 (40), 166 (72), 139 (100), 113 (19), 71 (19), 57 (24), 43 (24).

Hochauflösung: C₂₆H₃₉O₆NS ber.: 493.2498 für [M-H₂O]⁺
gef.: 493.2478

ISOMER II

R_r (Dichlormethan/Aceton, 85 : 15): 0.22

IR (Film): ν = 3484 (s, b, Sch), 2942 (vs, Sch), 1727
(vs), 1570 (w), 1456 (m), 1380 (m), 1265
(s), 1190 (w), 1069 (m), 975 (w), cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (21 [M-H₂O]⁺), 394 (12), 306
(46), 206 (37), 181 (63), 166 (99),
139 (100), 113 (21), 71 (23), 57
(33), 43 (28).

Hochauflösung: C₂₆H₃₀O₆NS ber.: 493.2498 für [M-H₂O]⁺
gef.: 493.2475

Verbindung 1b:

55 mg (0.111 mmol) Epothilon A werden in 0.5 ml Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und 30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 N Phosphatpuffer pH 7 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Methanol, 90 : 10). Ausbeute: 19 mg (32 %)

R_r (Dichlormethan/Methanol, 90 : 10): 0.46

IR (Film): ν = 3441 (s, br, Sch), 2948 (s, Sch), 1725
(vs, Sch), 1462 (m), 1381 (w), 1265 (m),
1154 (w), 972 (m, br, Sch) cm⁻¹.

UV (Methanol): λ_{max} (lg ε) = 210 (4.29), 248 (4.11) nm.

MS (20/70 eV): m/e (%) = 529 (13 [M⁺]), 494 (10), 342 (38),
306 (23), 194 (32), 164 (100), 140
(31), 113 (15), 57 (16).

Hochauflösung: C₂₆H₃₀O₆ClNS ber.: 529.2265 für [M⁺].

Verbindung 1c:

25 mg (0.047 mmol) 12-Chlor-13-hydroxy-epothilon A (1b) werden in 1 ml Dichlormethan gelöst, mit 29 mg (0.235 mmol) Dimethylaminopyridin, 151 µl (1.081 mmol) Triethylamin und 20 µl (0.517 mmol) 98 %-iger Ameisensäure versetzt. Das Reaktionsgemisch wird mit Eis/Natriumchlorid abgekühlt. Nach Erreichen von - 15 °C werden dem Reaktionsgemisch 40 µl (0.423 mmol) Essigsäureanhydrid zugegeben und 70 Minuten bei - 15 °C gerührt. Nach dem ein Dünnschichtchromatogramm keinen vollständigen Umsatz anzeigt, werden dem Reaktionsgemisch weitere 6 mg (0.047 mmol) Di-methylaminopyridin, 7 µl (0.047 mmol) Triethylamin, 2 µl 98 %-ige Ameisensäure (0.047 mmol) und 4 µl (0.047 mmol) Essigsäureanhydrid zugesetzt und 60 Minuten gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch auf Raumtemperatur erwärmt, mit 1 M Phosphatpuffer pH 7 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10).

Ausbeute 1c: 5 mg (18 %)

Verbindung 1c:

R_f (Dichlormethan/Aceton, 90 : 10): 0.67

IR (Film): ν = 3497 (w, b, Sch), 2940 (s, b, Sch), 1725 (vs), 1468 (m, b, Sch), 1379 (m), 1265 (s), 1253 (s), 1175 (vs), 972 (m, b, Sch), 737 (s) cm⁻¹.

MS (20/70 eV): m/e (%) = 613 (9 [M⁺]), 567 (43), 472 (63), 382 (23), 352 (21), 164 (100),

151 (33), 96 (31), 69 (17), 44
(26).

Hochauflösung: C₂₉H₄₀O₉NSCl ber.: 613.2112 für [M⁺]
gef.: 613.2131

Verbindung 1d:

10 mg (0.020 mmol) Epothilon B werden in 0.5 ml Tetrahydrofuran gelöst, mit 0.5 ml 1 N Salzsäure versetzt und 30 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schicht-chromatographie (Laufmittel: Dichlormethan/Aceton, 85 : 15).

Ausbeute: 1 mg (9 %)

R_f (Dichlormethan/Aceton, 85 : 15): 0.38
MS (20/70 eV): m/e (%) = 543 (3 [M⁺]), 507 (14), 320 (19),
234 (9), 194 (17), 182 (23), 164
(100), 140 (22), 113 (14), 71
(13).

Hochauflösung: C₂₉H₄₁O₉NSCl ber.: 543.2421 für [M⁺]
gef.: 543.2405

Verbindung 2a:

100 mg (0.203 mmol) Epothilon A werden in 4 ml Tetrahydrofuran/1 M Phosphatpuffer pH 7 (1 : 1) gelöst und solange mit Natrium-borhydrid (150 mg = 3.965 mmol) versetzt bis das Edukt laut Dünnschichtchromatogramm vollständig abgereagiert ist. Anschließend wird mit 1 M Phosphatpuffer pH 7 verdünnt und die

wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Die Reinigung des Rohproduktes erfolgt durch Kieselchromatographie (Laufmittel: Dichlormethan/Aceton, 95 : 5 - grad - nach. Dichlormethan/Aceton, 85 : 15).

Ausbeute: (20 %)

B_r (Dichlormethan/Aceton, 75 : 25): 0.27

IR (Film): ν = 3413 (s, b, Sch), 2965 (vs, Sch), 1734 (vs), 1458 (m, b, Sch), 1383 (m, Sch), 1264 (s, b, Sch), 1184 (m, b, Sch), 1059 (s, Sch), 966 (s), 885 (w), 737 (m) cm⁻¹.

MS (20/70 eV): m/e (%) = 495 (6 [M⁺]), 477 (8), 452 (12), 394 (9), 364 (16), 306 (49), 194 (19), 178 (35), 164 (100), 140 (40), 83 (21), 55 (27).

Hochauflösung: C₂₆H₄₁O₆NS ber.: 495.2655 für [M⁺] gef.: 495.2623

Verbindung 3a-d (a-d sind Stereoisomere):

100 mg (0.203 mmol) Epothilon werden in 3 ml Pyridin gelöst, mit 50 µl (0.686 mmol) Thionylchlorid versetzt und 15 Minuten bei Raumtemperatur gerührt. Anschließend wird mit 1 M Phosphatpuffer pH 7 versetzt und die wässrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes und Trennung der vier Stereoisomeren 3a-d erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methan 1, 90 : 10).

Verbindung 3a:

Ausbeute: 4 mg (12 %)

R_f (Toluol/Methanol, 90 : 10): 0.50

IR (Film): $\nu =$ 2961 (m, b, Sch), 1742 (vs), 1701 (vs), 1465 (m, Sch), 1389 (m, Sch), 1238 (s, Sch), 1210 (vs, Sch), 1011 (s, Sch), 957 (s, b, Sch), 808 (m, Sch), 768 (s, Sch) cm^{-1} .

UV (Methanol): λ_{max} ($\lg \epsilon$) = 210 (4.50), 248 (4.35) nm.

MS (20/70 eV): m/e (%) = 539 (40 [M⁺]), 457 (22), 362 (16), 316 (27), 222 (30), 178 (30), 164 (100), 151 (43), 96 (38), 69 (29), 55 (28), 43 (20).

Hochauflösung: C₂₆H₃₁O₂NS₂ ber.: 539.2011 für [M⁺]

Verbindung 3b:

Ausbeute: 14 mg (13 %)

R_f (Toluol/Methanol, 90 : 10): 0.44

IR (Film): $\nu =$ 2963 (s, br, Sch), 1740 (vs), 1703 (s), 1510 (w), 1464 (m, br, Sch), 1389 (m, Sch), 1240 (s, br, Sch), 1142 (m), 1076 (w), 1037 (w), 1003 (m), 945 (s, br, Sch), 806 (m, Sch), 775 (s), 737 (m) cm^{-1} .

UV (Methanol): λ_{max} ($\lg \epsilon$) = 211 (4.16), 250 (4.08) nm.

MS (20/70 eV): m/e (%) = 539 (27 [M⁺]), 475 (17), 322 (41), 306 (67), 222 (16), 206 (17), 194 (19), 178 (32), 164 (100), 151 (33), 125 (18), 113 (15), 96 (39), 81 (23), 64 (58), 57 (42), 41 (19).

Hochauflösung: C₂₆H₃₁O₂NS₂ ber.: 539.2011 für [M⁺]
gef.: 539.1998

Verbindung 3c:

Ausbeute: 4 mg (4 %)

R_f (Toluol/Methanol, 90 : 10): 0.38

MS (20/70 eV): m/e (%) = 539 (51 [M⁺]), 322 (22), 306 (53),
222 (36), 178 (31), 164 (100), 151 (41), 96
(25), 81 (20), 69 (26), 55 (25), 41 (25).

Hochauflösung: C₂₆H₁₇O₂NS₂ ber.: 539.2011 für [M⁺]
gef.: 539.2001

Verbindung 3d:

Ausbeute: 1 mg (1 %)

R_f (Toluol/Methanol, 90 : 10): 0.33

MS (20/70 eV): m/e (%) = 539 (69 [M⁺]), 322 (35), 306 (51),
222 (41), 178 (31), 164 (100), 151
(46), 96 (31), 81 (26), 69 (34),
55 (33), 41 (35).

Hochauflösung: C₂₆H₁₇O₂NS₂ ber.: 539.2011 für [M⁺]
gef.: 539.1997

Verbindung 4a:

10 mg (0.020 mmol) Epothilon A werden in 2 ml Dichlormethan gelöst, auf -70 °C abgekühlt und anschließend 5 Minuten mit Ozon bis zur schwachen Blaufärbung behandelt. Das resultierende Reaktionsgemisch wird anschließend mit 0.5 ml Dimethylsulfid versetzt und auf Raumtemperatur erwärmt. Zur Aufarbeitung wird das Reaktionsgemisch vom Lösungsmittel befreit und schließlich durch präparative Schichtchromatographie (Laufmittel: Dichlormethan/Aceton/Methanol, 85 : 10 : 5) gereinigt.

Ausbeute: 5 mg (64 %)

R_f (Dichlormethan/Aceton/Methanol, 85 : 10 : 5): 0.61

IR (Film): ν = 3468 (s, br, Sch), 2947 (s, br, Sch),
1734 (vs, Sch), 1458 (w), 1380 (w), 1267
(w), 1157 (w), 1080 (w), 982 (w) cm⁻¹.

UV (Methanol): λ_{max} (lg ϵ) = 202 (3.53) nm.

MS (20/70 eV): m/e (%) = 398 (2 [M⁺]), 380 (4), 267 (14),
249 (17), 211 (20), 193 (26), 171
(34), 139 (34), 111 (40), 96
(100), 71 (48), 43 (50).

Hochauflösung: C₂₁H₃₄O,
ber.: 398.2305 für [M⁺]
gef.: 398.2295

Verbindung 6a:

10 mg (0.018 mmol) 3,7-Di-O-formyl-epothilon A werden in 1 ml Di-chlormethan gelöst, mit 27 μ l (0.180 mmol) 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) versetzt und 60 Minuten bei Raumtemperatur gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natrium-dihydrogenphosphat-Puffer pH 4.5 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Nach Beseitigung des Lösungsmittel wird das resultierende Rohprodukt in 1 ml Methanol gelöst, mit 200 μ l einer ammoniakalischen Methanol-Lösung (2 mmol NH₃/ml Methanol) versetzt und über Nacht bei Raumtemperatur gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt.

Ausbeute: 4 mg (22 %)

R_t (Dichlormethan/Aceton 85 : 15): 0.46

IR (Film): ν = 3445 (w, br, Sch), 2950 (vs, br, Sch),

1717 (vs, Sch), 1644 (w), 1466 (m, Sch),

1370 (m, Sch), 1267 (s, br, Sch), 1179

(s, Sch), 984 (s, Sch), 860 (w), 733 (m)

cm⁻¹.

UV (Methanol): λ_{max} (lg ϵ) = 210 (4.16) nm.

MS (20/70 eV): m/e (%) = 475 (28 [M⁺]), 380 (21), 322 (37), 318 (40), 304 (66), 178 (31), 156 (100), 151 (29), 140 (19), 96 (38), 81 (20), 57 (26).

Hochauflösung: C₁₆H₁₁O₂NS ber.: 475.2392 für [M⁺] gef.: 475.2384

Verbindung 6b:

50 mg (0.091 mmol) 3,7-Di-O-formyl-epothilon A (werden in 1 ml Dichlorethan gelöst, mit 2 ml (0.013 mol) 1,8-Diazabicyclo [5.4.0]undec-7-en (DBU) versetzt und 12 Stunden bei 90 °C gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M Natrium-dihydrogenphosphat-Puffer pH 4.5 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit.

Die Reinigung des aus zwei Verbindungen bestehenden Rohproduktes erfolgt mittels präparativer Schichtchromatographie (Laufmittel: Dichlormethan/Aceton, 90 : 10).

Ausbeute: 7 mg (15 %)

Substanzcode

B₁ (Dichlormethan/Aceton, 90 : 10): 0.62

IR (Film): ν = 2951 (m, br, Sch), 1723 (vs), 1644 (w, br, Sch), 1468 (w), 1377 (w), 1271 (m, br, Sch), 1179 (s), 987 (m, br, Sch), 735 (w, br, Sch) cm⁻¹.

UV (Methanol): λ_{max} (lg ε) = 210 (4.44) nm.

MS (20/70 eV): m/e (%) = 503 (68 [M⁺]), 408 (58), 390 (32), 334 (25), 316 (34), 220 (21), 206 (27), 194 (20), 181 (33), 164 (100), 151 (34), 139 (28), 113 (20), 96 (82), 81 (33), 67 (24).

55 (26), 43 (22).

Hochauflösung: C₂₁H₂₀O₆NS ber.: 503.2342 für [M⁺] gef.: 503.2303

Verbindung 6c:

5 mg (0.009 mmol) 3,7-Di-O-acetyl-epothilon werden in 1 ml Methanol gelöst, mit 150 µl einer ammoniakalischen Methanolösung (2 mmol NH₃/ml Methanol) versetzt und über Nacht bei 50 °C gerührt.

Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

Ausbeute: 3 mg (67 %)

R_f (Dichlormethan/Aceton, 90 : 10): 0.55

IR (Film): ν = 2934 (s, b, Sch), 1719 (vs, b, Sch), 1641 (m), 1460 (m, Sch), 1372 (s, Sch), 1237 (vs, b, Sch), 1179 (s, Sch), 1020 (s), 963 (s, Sch), 737 (vs) cm⁻¹.

UV (Methanol): λ_{max} (lg ε) = 210 (4.33) nm.

MS (20/70 eV): m/e (%) = 517 (57 [M⁺]), 422 (58), 318 (31), 194 (20), 181 (34), 166 (100), 151 (31), 96 (96), 81 (32), 69 (27), 55 (29), 43 (69).

Hochauflösung: C₂₁H₂₀O₆NS ber.: 517.2498 für [M⁺] gef.: 517.2492

Verbindung 7a:

20 mg (0.041 mmol) Epothilon werden in 0.5 ml Methanol gelöst, mit 0.5 ml 1 N Natronlauge versetzt und 5 Minuten bei Raum-

temperatur gerührt.

Zur Aufarbeitung wird das Reaktionsgemisch mit 1 M. Phosphatpuffer pH 7 versetzt und die wäßrige Phase viermal mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Dichlormethan/Methanol, 85 : 15).

Ausbeute: 11 mg (52 %)

R_f (Dichlormethan/Methanol, 85 : 15): 0.92

IR (Film): $\nu =$ 3438 (s, br, Sch), 2971 (vs, br, Sch),
1703 (vs), 1507 (m), 1460 (s, Sch), 1383
(m, Sch), 1254 (w), 1190 (w, br, Sch),
1011 (w, br, Sch), 866 (w, br), 729 (s)
 cm^{-1} .

MS (20/70 eV): m/e (%) = 423 (0.1 [M⁺]), 323 (4), 168 (89),
140 (100), 85 (31), 57 (67).

Hochauflösung: C₂₁H₃₂O₄NS ber.: 423.2443 für [M⁺]
gef.: 423.2410

Verbindung 7b:

5 mg (0.009 mmol) 7-O-Acetyl-epothilon werden in 1 ml Methanol gelöst, mit 200 μl einer ammoniakalischen Methanolösung (2 mmol NH₃/ml Methanol) versetzt und zwei Tage bei 50 °C gerührt. Zur Aufarbeitung wird das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgt mit Hilfe der präparativen Schichtchromatographie (Laufmittel: Toluol/Methanol, 90 : 10).

Ausbeute: 3 mg (59 %)

R_f (Dichlormethan/Methanol, 90 : 10): 0.63

IR (Film): $\nu =$ 3441 (m, b, Sch), 2946 (s, Sch), 1732
(vs), 1600 (w), 1451 (m), 1375 (m), 1246

(s, b, Sch), 1013 (m, b, Sch) cm^{-1} .

UV (Methanol): λ_{max} ($\lg \epsilon$) = 211 (3.75), 247 (3.59) nm.

MS (20/70 eV): m/e (%) = 567 (1 [M⁺]), 465 (4), 422 (7),
388 (5), 194 (5), 182 (7), 168
(65), 164 (17), 140 (100), 97
(10), 71 (22), 43 (27).

Hochauflösung: C₂₉H₄₅O₈NS ber.: 567.2866 für [M⁺]
gef.: 567.2849

Patentansprüche

1. Epothilonderivat der Formel 1

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X und Y entweder gleich oder verschieden sind und jeweils für Halogen, OH, O-(C₁- bis C₆)-Acyl, O-(C₁- bis C₆)-Alkyl, O-Benzoyl stehen.

2. Epothilonderivat der Formel 1 2

wobei R = H, C₁- bis C₄-Alkyl; R¹, R², R³ = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

3. Epothilonderivat der Formel 3

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X allgemein für -C(O)-, -C(S)-, -S(O)-, -CR¹R²- und -SiR₂- steht, wobei R, R¹ und R² die Bedeutung hat wie oben angegeben.

4. Epothilonderivat der Formel 4

4

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, X Sauerstoff, NOR³, N-NR⁴R⁵, und N-NHCONR⁴R⁵ bedeutet, wobei die Reste R³ bis R⁵ die oben angegebene Bedeutung haben.

5. Epothilonderivat der Formel 5

wobei R = H, C₁- bis C₄-Alkyl; R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt, und X Wasserstoff, C₁- bis C₁₈-Alkyl, C₁- bis C₁₈-Acyl, Benzyl, Benzoyl und Cinnamoyl bedeutet.

6. Epothilonderivat der Formel 6

wobei R = H, C₁- bis C₄-Alkyl und R¹ = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl, und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

7. Epothilone rivat der Formel 7

7

wobei R = H, C₁- bis C₄-Alkyl und R¹, R² = H, C₁- bis C₆-Alkyl, C₁- bis C₆-Acyl-Benzoyl, C₁- bis C₄-Trialkylsilyl, Benzyl, Phenyl, C₁- bis C₆-Alkoxy-, C₆-Alkyl-, Hydroxy- und Halogensubstituiertes Benzyl bzw. Phenyl; und es sich bei den in den Resten enthaltenen Alkyl- bzw. Acylgruppen um gradkettige oder verzweigte Reste handelt.

8. Mittel für den Pflanzenschutz in der Landwirtschaft und Forstwirtschaft und/oder im Gartenbau, bestehend aus einem oder mehreren der Verbindungen gemäß einem der vorangehenden Ansprüche oder einer oder mehreren dieser Verbindungen neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

9. Therapeutisches Mittel, insbesondere zum Einsatz als Cytostatikum, bestehend aus einer oder mehrerer der Verbindungen nach einem oder mehreren der Ansprüche 1 bis 7 oder einer oder mehreren der Verbindungen nach einem oder mehreren der Ansprüche 1 bis 7 neben einem oder mehreren üblichen Träger(n) und/oder Verdünnungsmittel(n).

Zusammenfassung

Die vorliegende Erfindung betrifft Epothilononderivate und deren Verwendung.

THIS PAGE BLANK (USPTO)

BC

GERMAN PATENT OFFICE

(1) In the address, give street, house number and, if applicable, P.O. box number		Shipments of the German Patent Office are to be directed to To: Dr. Hans D. Boeters Patent Attorney Bereichstrasse 15 81341 Munich	
		Application for granting a patent	
		File No. issued by the German Patent Office 195 42 964.9	
(2) Reference of the Applicant/ Representative (max. 20 digits) 7863-GBF		Telephone No. of the Applicant/ Representative 089/65 00 86	
(3) The recipient in field (1) is the <input checked="" type="checkbox"/> Applicant <input type="checkbox"/> Power of Attorney		If applicable, No. of general power of attorney <input checked="" type="checkbox"/> Representative	
(4) <small>Fill out only when different from field (3)</small> Applicant Gesellschaft für Biotechnologische Forschung mbH (GBF) Mascheroder Weg 1 38124 Braunschweig		Representative Dr. Hans D. Boeters Dipl.-Ing. Robert Bemer Dr. Erno Mayer Bereichstrasse 15 81341 Munich	
(5) If known Application date No.		Representative date No.	
(6) Description of the invention (if too long, submit on a separate sheet in 2 copies) Epothilone Derivatives and their use			
(7) <small>on continuation and next information on the reverse side</small> Other applications <input type="checkbox"/> The application is an addition to Patent Application (to the prior) - <input type="checkbox"/> Application for examination - continuation of the application (§ 44 Patent Law) <input type="checkbox"/> Application for search - continuation of published documents without examination (§ 43 of the Patent Law) Supply of copies of the discontinued publications in 1/2 copies <input type="checkbox"/> Examination process <input type="checkbox"/> Research process <input type="checkbox"/> Declaration of no decision of granting in _____ months (§ 45 of Section 2 of the Patent Law) (Maximum 12 months from the date of application or priority)		File No. of the main Application (of the main Patent)	
(8) Explanations <input type="checkbox"/> Division/continuation from the Patent Application - <input type="checkbox"/> Increased in granted license (without obligation) <input type="checkbox"/> With prior lease open and thus agreement with free inspection of the documents (§ 31, Section 2, No. 1 of the Patent Law)		File No. of the main Application	
(9) <input type="checkbox"/> Domestic priority (date, the number of the prior application) <input type="checkbox"/> Foreign priority (date, country, the number of the prior application)		(In case of excessive length, submit on a separate sheet in two copies)	
(10) <small>Explanation and next information on the reverse side</small> Payment of fees in the amount of 100,00 DM <input type="checkbox"/> Check is enclosed <input type="checkbox"/> Transfer (After receipt <input type="checkbox"/> Remittance stamp are attached of notice of receipt) Please do not glue on the reverse side, possibly on a separate sheet		<input type="checkbox"/> charge to my/clear account at Dresdner Bank AG, Munich No.: _____	
(11) Attachments 1. — Power of Attorney 2. — naming the inventor 3. — summary (equivalently with drawing No. _____) 4. — pages of specifications 5. — optional reference number list 6. — pages of Prior Claims 7. — copies of Prior Claims 8. — pages of drawings 9. — copy/ed of prior application		<input type="checkbox"/> Telephone sent previously as _____	

Attachments 1-4,
each 3 copies

(12) _____ (Dr. Mayer)

THIS PAGE BLANK (USPTO)

November 17, 1995/pl

Our reference: 7865

EPOTHILONE DERIVATIVES AND THEIR USE

The present invention concerns general epothilone derivatives and their use for the production of drugs. Especially, the present invention is concerned with the preparation of epothilones derivatives according to the general Formulas 1 to 7 given below, as well as with their use for the production of therapeutic agents and agents for plant protection.

THIS PAGE BLANK (USPTO)

2

3

3

THIS PAGE BLANK (USPTO)

DE 195 42 986.9

THIS PAGE BLANK (USPS)

DE 195 42 986.9

THIS PAGE BLANK (USPTO)

DE 195 42 986.9

In the above Formulas 1 to 7, the symbols have the following meanings:

$R = H, C_{1-4}\text{-alkyl};$

$R^1, R^2, R^3, R^4, R^5 = H, C_{1-6}\text{-alkyl},$

$C_{1-6}\text{-acyl-benzoyl},$

$C_{1-4}\text{-trialkylsilyl},$

$\text{benzyl},$

$\text{phenyl},$

$C_{1-6}\text{-alkoxy-},$

$C_6\text{-alkyl-}, \text{hydroxy and halogen-substituted benzyl or phenyl};$

also, two of the groups R^1 to R^5 may be combined to form the grouping $-(CH_2)_n-$ with $n = 1$ to 6 and the alkyl or acyl groups contained in the groups are either straight-chain or branched groups.

In Formula 1, X and Y are either identical or different and can stand for halogens, OH, O- (C_{1-6}) -acyl, O- (C_{1-4}) -alkyl, O-benzoyl.

In Formula 3, X generally stands for -C(O)-, -C(S)-, -S(O)-, -CR¹R²-, where R¹ and R² have the meaning given above and -SiR₃-, where R has the meaning given above.

In Formula 4, X stands for oxygen, NOR³, N-NR⁴R⁵, and N-NHCONR⁴R⁵, where the groups R³ to R⁵ have the meaning given above.

In Formula 5, X stands for hydrogen, C₁₋₁₅-alkyl, C₁₋₁₅-acyl, benzyl, benzoyl and cinnamoyl.

Compounds according to general Formula 1 are accessible starting from epothilone A and B, as well as from their 3-O- and/or 7-O-protected derivatives by opening the 12,13-epoxide. When hydrogen halides are used for this purpose in a preferred nonaqueous solvent, the halohydrins X = Hal, Y = OH and Y = OH, Y = Hal are obtained. Protomic acids, for example, toluenesulfonic acid and trifluoroacetic acid, lead to 12,13-diols in the presence of water and then these are acylated subsequently according to standard methods (for example, with carboxylic acid anhydrides and pyridine or triethylamine/DMAP) or are alkylated (alkyl

THIS PAGE BLANK (USPTO)

DE 195 42 986.9

halides and silver oxide). For this purpose, the 3- and 7-hydroxy groups can be protected temporarily as the formate (cleaved with NH₃/MeOH) or p-methoxybenzyl ether (cleaved with DDQ).

Compounds according to general Formula 2 are obtainable from epothilone A and B as well as from their 3-O- and/or 7-O-protected derivatives by reduction, for example, with NaBH₄ in methanol. If the 3-OH and/or 7-OH groups are protected reversibly during this process, after acylation or alkylation, and removal of the protecting groups, 5-O-monosubstituted, 3,5- or 5,7-O-disubstituted derivatives according to general Formula 2 can be obtained.

Reactions of epothilone A and B with bifunctional electrophilic reagents, such as (thio)phosgene, (thio)carbonyldimidazole [sic], thionyl chloride or dialkylsilyl dichlorides or bis triflates give compounds having general Formula 3. The bases used as aids here can be pyridine, trialkylamine, optionally together with DMAP or 2,6-lutidine in an aprotic solvent. The 3,7-acetals having general Formula 3 are formed by transacetalization, for example, of dimethylacetals, in the presence of an acidic catalyst.

Compounds according to general Formula 4, obtained from epothilone A and B or from their 3-O- and/or 7-O-protected derivatives by ozonolysis and reductive processing, for example, with dimethyl sulfide. The C-16 ketones can then be converted to the oximes, hydrazones or semicarbazones according to standard methods known to the expert in the field. Furthermore, they are converted into C-16/C-17 olefins by the Wittig, Wittig-Horner, Julia or Petersen olefination method.

The 16-hydroxy derivatives according to general Formula 5 are obtainable by reduction of the C-16 keto group, for example, with aluminum hydride or borohydride. When the 3-OH and 7-OH groups are protected correspondingly, they can be acylated or alkylated selectively. The liberation of the 3-OH- and 7-OH groups is done, for example, with NH₃/MeOH in the case of O-formyl and with DDQ in the case of O-p-methoxybenzyl.

The compounds having general Formula 6 are obtained from derivatives of epothilone A and B in which the 7-OH group is protected by acyl or ether groups, in which the 3-OH group

THIS PAGE BLANK (USPTO)

is, for example, formylated, mesylated or tosylated and then eliminated by treatment with a base, for example, DBU. The 7-OH group can be liberated as described above.

Compounds having general Formula 7 are obtained from epothilone A and B or from their 3-OH- and 7-OH-protected derivatives by basic hydrolysis, for example, with NaOH in MeOH. After protection of the 19-OH group, the carboxyl group can be converted to the ester by alkylation with diazoalkanes.

Furthermore, the invention is concerned with means for plant protection in agriculture, forestry and/or gardening, consisting of one or several of the epothilone derivatives described above or consisting of one or several of the epothilone derivatives described above in addition to one or several of the usual carrier(s) and/or diluent(s).

Finally, the invention is concerned with therapeutic agents, consisting of one or several of the compounds listed above or of one or several of the compounds listed above in addition to one or several of the usual carrier(s) and/or diluent(s). These agents can exhibit especially cytotoxic activities and/or cause immune suppression, so that they can especially preferably be used as cytostatic agents.

The invention is explained further and described by the description of a few selected practical examples.

Examples

Translator's note: In the infrared spectra in the examples, the general English abbreviations are used, s, m, w, vs, b, etc., except for Sch = shoulder and ny = > (nm). Also, the abbreviation lg stands for log.

THIS PAGE BLANK (USPTO)

Compound 1a

20 mg (0.041 mmole) of epothilone A is dissolved in 1 mL of acetone, with 50 μ L (0.649 mmole) of trifluoroacetic acid is added and the mixture is stirred overnight at 50°C. For work-up, the reaction mixture is treated with 1 M pH 7 phosphate buffer and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product is done with the aid of preparative layer-chromatography (solvent: dichloromethane/acetone, 85:15).

Yield: 4 mg (19%) isomer I

4 mg (19%) isomer II

Isomer I

R_f (dichloromethane/acetone, 85:15): 0.46

IR (Film): ν = 3440 (m, b, Sch), 2946 (s, Sch), 1734 (vs), 1686 (m), 1456 (m), 1375 (w), 1256 (s, Sch), 1190 (w, b, Sch), 1071 (m, Sch), 884 (w), 735 (w) cm⁻¹.

MS (20/70 eV): m/e (%) = 459 (43) ($[M-H_2O]^+$), 394 (47), 306 (32), 206 (30), 181 (40), 166 (72), 139 (100), 113 (19), 71 (19), 57 (24), 43 (24).

THIS PAGE BLANK (USPTO)

Isomer II

R_t (dichloromethane/acetone, 85:15): 0.22

IR (Film): ν = 3484 (s, b, Sch), 2942 (vs, Sch), 1727 (vs), 1570 (w), 1456 (m), 1380 (m), 1265 (s), 1190 (w), 1069 (m), 975 (w), cm⁻¹.

MS (20/70 eV): m/e (%) = 493 (21, [M-H₂O]⁺), 394 (12), 306 (46), 206 (37), 181 (63), 166 (99), 139 (100), 113 (21), 71 (23), 57 (33), 43 (28).

High resolution: C₂₂H₃₃O₆NS calculated: 493.2498 for [M-H₂O]⁺
found: 493.2475

Compound 1b

Epothilone A, 55 mg (0.111 mmole), is dissolved in 0.5 mL of tetrahydrofuran. 0.5 mL of 1 N hydrochloric acid is added and the mixture is stirred for 30 minutes at room temperature. Then 1 N phosphate buffer of pH 7 is added and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product is done with the aid of preparative layer chromatography (solvent: dichloromethane/methanol, 90:10).

Yield 1c: 19 mg (32%).

THIS PAGE BLANK (USPTO)

DE 195 42 986.9

R_f (dichloromethane/methanol, 90:10): 0.46IR (Film): $\nu = 3441$ (s, br., Sch), 2948 (s, Sch), 1725
(vs, Sch), 1662 (m), 1381 (w), 1265 (m),
1154 (w), 971 (m, br., Sch) cm^{-1} .UV (Methanol): λ_{max} (lg e) = 210 (4.29), 248 (4.11) nm.MS (20/70 eV): m/e (%) = 529 (10) [M⁺], 494 (10), 342 (38),
306 (11), 194 (32), 164 (100), 140
(31), 113 (15), 57 (16).

High resolution: $\text{C}_{22}\text{H}_{34}\text{O}_6\text{ClNS}$ calculated: 529.2265 for [M⁺],
found: 529.2280

Compound 1c

12-Chloro-13-hydroxy-epothilone A (1b), 25 mg (0.047 mmole), is dissolved in 1 mL of dichloromethane, and then 29 mg (0.235 mmole) of dimethylaminopyridine, 151 μL (1.081 mmole) of triethylamine and 20 μL (0.517 mmole) of 98% formic acid are added. The reaction mixture is cooled with ice/sodium chloride. After reaching -15°C, 40 μL (0.423 mmole) of acetic anhydride is added to the reaction mixture, followed by stirring for 70 minutes at -15°C. Since the thin-layer chromatogram did not show complete conversion, another 6 mg (0.047 mmole) of dimethylaminopyridine, 7 μL (0.047 mmole) of triethylamine, 2 μL of 98% formic acid (0.047 mmole) and 4 μL (0.047 mmole) of acetic anhydride are added to the reaction mixture, followed by stirring for 60 minutes.

For work-up, the reaction mixture is heated to room temperature, 1 M phosphate buffer with pH 7 is added and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

The purification of the crude product is done with the aid of preparative layer chromatography (solvent: dichloromethane/acetone, 90:10).

Yield: 5 mg (18%).

THIS PAGE BLANK (USPTO)

Compound 1c**R_f (Dichloromethane/acetone, 90:10): 0.67**

IR (Film): $\nu =$ 3497 (w, b, Sch), 2940 (s, b, Sch), 1725
 (vs), 1668 (m, b, Sch), 1379 (m), 1265
 (s), 1253 (s), 1175 (vs), 972 (m, b,
 Sch), 737 (s) cm^{-1} .

MS (20/70 eV): m/e (%) = 613 (9 [M⁺]), 567 (43), 472 (63),
 382 (23), 352 (21), 164 (100),
 151 (33), 96 (31), 69 (17), 44
 (26).

High resolution: C₂₁H₃₄O₂NSCl calculation: 613.2112 for [M⁺]
found: 613.2131

Compound 1d

10 mg (0.020 mmole) of epothilone B is dissolved in 0.5 mL of tetrahydrofuran, then 0.5 mL of 1 N hydrochloric acid is added and the mixture stirred for 30 minutes at room temperature. Then 1 M phosphate buffer at pH 7 is added and the aqueous phase is extracted 4 times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

The purification of the crude product is done with the aid of preparative layer chromatography (solvent: dichloromethane/acetone, 85:15).

Yield: 1 mg (9%)

THIS PAGE BLANK (USPTO)

R. (Dichloromethane/acetone, 85:15): 0.38

MS (20/70 eV): m/e (%) = 543 (3 [M⁺]), 507 (14), 320 (19), 234 (9), 194 (17), 182 (23), 164 (100), 140 (22), 113 (14), 71 (13).

High resolution: C₂₁H₂₀O₄NSCl calculated: 543.2421 for [M⁺] found: 543.2405

Compound 2a

Epochilone A, 100 mg (0.203 mmole), is dissolved in 4 mL of tetrahydrofuran/1 M phosphate buffer, pH 7 (1:1) and sodium borohydride (150 mg = 3.965 mmole) is added until the thin-layer chromatogram shows that the starting material reacted completely. Then the mixture is diluted with 1 M phosphate buffer, pH 7 and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

The purification of the crude product is done by silica gel chromatography (solvent: dichloromethane/acetone, 95:5 - in 5 steps to dichloromethane/acetone, 85:15).

Yield: (20%)

THIS PAGE BLANK (USPTO)

R. (Dichloromethane/acetone, 75:25): 0.27

IR (Film): $\nu =$ 3413 (s, b, Sch), 2965 (vs, Sch), 1734 (vs), 1658 (m, b, Sch), 1383 (m, Sch), 1264 (s, b, Sch), 1184 (m, b, Sch), 1059 (s, Sch), 966 (s), 885 (w), 737 (m) cm^{-1}

MS (20/70 eV): m/e (%) = 495 (6, [M⁺]), 477 (8), 452 (12), 394 (9), 364 (16), 306 (49), 194 (19), 178 (35), 164 (100), 140 (60), 93 (21), 55 (27).

High resolution: $\text{C}_{24}\text{H}_{41}\text{O}_6\text{NS}$ calculated: 493.2655 for [M⁺]
found: 493.2623

Compound 3a-d (a-d are stereoisomers)

Epothilone, 100 mg (0.203 mmole) is dissolved in 3 mL of pyridine, with 50 μL (0.686 mmole) of thionyl chloride added and the mixture is stirred for 15 minutes at room temperature. Then, 1 M phosphate buffer, pH 7, is added and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product and separation of the four stereoisomers 3a-d is done with the aid of preparative layer chromatography (solvent: toluene/methanol, 90:10).

Compound 3a

Yield: 4 mg (12%)

THIS PAGE BLANK (USPTO)

R_f (toluene/methanol, 90:10): 0.50

IR (Film): $\nu =$ 2961 (m, b, Sch), 1742 (vs), 1701 (vs), 1465 (m, Sch), 1389 (m, Sch), 1238 (s, Sch), 1210 (vs, Sch), 1011 (s, Sch), 957 (s, b, Sch), 808 (m, Sch), 768 (s, Sch) cm^{-1}

UV (Methanol): λ (lg ϵ) = 210 (4.50), 248 (4.35) nm.

MS (20/70 eV): m/e (%) = 539 (40 [M⁺]), 457 (22), 362 (16), 316 (27), 222 (30), 178 (30), 164 (100), 151 (43), 96 (38), 69 (29), 55 (28), 43 (20).

High resolution: $\text{C}_{22}\text{H}_{27}\text{O}_2\text{NS}_2$ calculated: 539.2011 for [M⁺]

Compound 3b

Yield: 14 mg (13%)

R_f (toluene/methanol, 90:10): 0.44

IR (Film): $\nu =$ 2963 (s, br, Sch), 1740 (vs), 1703 (s), 1510 (w), 1464 (m, br, Sch), 1389 (m, Sch), 1240 (s, br, Sch), 1142 (m), 1076 (w), 1037 (w), 1001 (w), 945 (s, br, Sch), 806 (m, Sch), 775 (s), 737 (m) cm^{-1} .

UV (Methanol): λ (lg ϵ) = 211 (4.16), 250 (4.08) nm.

MS (20/70 eV): m/e (%) = 539 (27 [M⁺]), 475 (17), 322 (41), 306 (67), 222 (16), 206 (17), 194 (19), 178 (32), 164 (100), 151 (33), 125 (18), 113 (15), 96 (39), 81 (23), 64 (58), 57 (42), 43 (28).

THIS PAGE BLANK (USPTO)

High resolution: $C_{26}H_{37}O_2NS_2$ calculated: 539.2011 for $[M^+]$
 found: 539.1998

Compound 3c

Yield: 4 mg (4%)

 R_f (toluene/methanol, 90:10): 0.38

MS (20/70 eV): m/e (%) = 539 (65) [M⁺], 322 (22), 306 (53),
 222 (36), 178 (31), 164 (100), 151 (41), 96
 (25), 81 (20), 69 (26), 55 (25), 41 (25);

High resolution: $C_{26}H_{37}O_2NS_2$ calculated: 539.2011 for $[M^+]$
 found: 539.2001

Compound 3d

Yield: 1 mg (1%)

 R_f (toluene/methanol, 90:10): 0.33

MS (20/70 eV): m/e (%) = 539 (65) [M⁺], 322 (35), 306 (51),
 222 (42), 178 (31), 164 (100), 151
 (46), 96 (31), 81 (26), 69 (34),
 55 (33), 41 (35).

High resolution: $C_{26}H_{37}O_2NS_2$ calculated: 539.2011 for $[M^+]$
 found: 539.1997

THIS PAGE BLANK (USPTO)

Compound 4a

Epothilone A, 10 mg (0.020 mmole), is dissolved in 2 mL of dichloromethane, cooled to -70°C and then treated with ozone for 5 minutes until a weak blue coloration develops. The resulting reaction mixture is then treated with 0.5 mL of dimethyl sulfide and heated to room temperature. In the work-up, the solvent is removed from the reaction mixture and finally the product is purified with preparative layer chromatography (solvent: dichloromethane/acetone/methanol, 85:10:5).

Yield: 5 mg (64%)

R. (Dichloromethane/acetone/methanol, 85:10:5): 0.61

IR (Film): $\nu = 3468$ (s, br, Sch), 3947 (s, br, Sch), 1734 (vs, Sch), 1458 (w), 1380 (w), 1267 (w), 1157 (w), 1080 (w), 982 (w) cm^{-1} .

UV (MeOH): λ_{max} (lg e) = 202 (3.53) nm.

MS (20/70 eV): m/e (%) = 398 (21 [M⁺]), 380 (4), 267 (14), 249 (17), 211 (20), 193 (26), 171 (34), 139 (34), 111 (40), 96 (100), 71 (48), 43 (50).

High resolution: C₂₁H₂₄O, calculated: 398.2305 for [M⁺]
found: 398.2295

Compound 6a

3,7-Di-O-formyl-epothilone A, 10 mg (0.018 mmole), is dissolved in 1 mL of dichloromethane. 27 μ L (0.180 mmole) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is added and the mixture stirred at room temperature for 60 minutes.

For work-up, the reaction mixture is treated with 1 M sodium dihydrogen phosphate buffer, pH 4.5, and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed.

THIS PAGE BLANK (USPTO)

After elimination of the solvent, the resulting crude product is dissolved in 1 mL of methanol, treated with 200 μ L of ammoniacal methanol solution (2 mmole of NH₃/mL of methanol) and stirred overnight at room temperature. For work-up, the solvent is removed in vacuum.

Yield: 4 mg (22%)

R_f (Dichloromethane/acetone, 85:15): 0.46

IR (Film): $\nu =$ 3445 (w, br, Sch), 2950 (vs, br, Sch), 1717 (vs, Sch), 1644 (w), 1466 (m, Sch), 1370 (m, Sch), 1267 (s, br, Sch), 1179 (s, Sch), 984 (s, Sch), 860 (w), 733 (m) cm^{-1} .

UV (Methanol): λ_{max} (lg ϵ) = 210 (4.16) nm.

MS (20/70 eV): m/e (%) = 475 (28 [M⁺]), 380 (21), 322 (37), 318 (40), 304 (66), 178 (31), 166 (100), 151 (29), 140 (19), 96 (38), 81 (20), 57 (26).

High resolution: C₂₆H₃₇O₅NS calculated: 475.2392 for [M⁺]
found: 475.2384

Compound 6b

3,7-Di-O-formyl-epothilone A, 50 mg (0.091 mmole), is dissolved in 1 mL of dichloroethane, 2 mL (0.013 mole) of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is added and the mixture stirred for 12 hours at 90°C.

For work-up, the reaction mixture is treated with 1 M sodium dihydrogen phosphate buffer, pH 4.5, and the aqueous phase extracted four times with ethyl acetate. The combined

¹ [Note: Compound 5 was not mentioned in the original. It jumps from 4 to 6.]

THIS PAGE BLANK (USPTO)

For work-up, the reaction mixture is treated with 1 M sodium dihydrogen phosphate buffer, pH 4.5, and the aqueous phase extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent removed.

The purification of the crude product, which consists of two compounds, is done with the aid of preparative layer chromatography (solvent: dichloromethane/acetone, 90:10).

Yield: 7 mg (15%)

Substance code

R. (Dichloromethane/acetone, 90:10): 0.62.

IR (Film): $\nu =$ 2951 (m, br, Sch), 1723 (vs), 1644 (w, br, Sch), 1468 (w), 1377 (w), 1271 (m, br, Sch), 1179 (s), 987 (m, br, Sch), 735 (w, br, Sch) cm^{-1} .

UV (Methanol): λ_{max} (lg ϵ) = 210 (4.44) nm.

MS (20/70 eV): m/e (%) = 503 (68, [M⁺]), 408 (58), 390 (32), 334 (25), 316 (34), 220 (21), 206 (27), 194 (20), 181 (33), 164 (100), 151 (34), 139 (28), 113 (20), 95 (82), 81 (33), 67 (24), 59 (24), 43 (22).

High resolution: C₂₁H₃₂O₆NS calculated: 503.2342 for [M⁺] found: 503.2303

Compound 6c

3,7-Di-O-acetyl-epothilone, 5 mg (0.009 mmole), is dissolved in 1 mL of methanol, 150 μL of an ammoniacal methanol solution (2 mmole of NH₃/mL of methanol) is added and the mixture stirred overnight at 50°C.

THIS PAGE BLANK (USPTO)

For work-up, the solvent is removed in vacuum and the crude product is purified with the aid of preparative layer chromatography (solvent: toluene/methanol, 90:10).

Yield: 3 mg (67%)

R. (Dichloromethane/acetone, 90:10): 0.55

IR (Film): $\nu =$ 2934 (s, b, Sch), 1719 (vs, b, Sch),
1641 (m), 1460 (m, Sch), 1372 (s, Sch),
1237 (vs, b, Sch), 1179 (s, Sch), 1020
(s), 963 (m, Sch), 737 (vs) cm^{-1} .

UV (Methanol): λ_{max} (lg ϵ) = 210 (4.33) nm.

MS (20/70 eV): m/e (%) = 517 (57 [M⁺]), 422 (58), 318
(31), 194 (20), 181 (34), 166
(100), 151 (31), 96 (96), 81
(32), 69 (27), 53 (29), 43 (69).

High resolution: C₂₁H₃₁O₆NS calculated: 517.2498 for [M⁺]
found: 517.2492

Compound 7a

Epothilone, 20 mg (0.041 mmole), is dissolved in 0.5 mL of methanol, 0.5 mL of 1 N sodium hydroxide is added and the mixture stirred for 5 minutes at room temperature.

For work-up, the reaction mixture is treated with 1 M phosphate buffer, pH 7, and the aqueous phase is extracted four times with ethyl acetate. The combined organic phases are washed with saturated sodium chloride solution, dried over sodium sulfate and the solvent is removed. The purification of the crude product is done with the aid of preparative layer chromatography. (Solvent: dichloromethane/methanol, 85:15).

Yield: 11 mg (52%)

THIS PAGE BLANK (USPTO)

R_f (Dichloromethane/methanol, 85:15): 0.92

IR (Film): $\nu = 3438$ (s, br, Sch), 2971 (vs, br, Sch), 1703 (vs), 1507 (m), 1460 (s, Sch), 1383 (m, Sch), 1254 (w), 1190 (w, br, Sch), 1011 (w, br, Sch), 866 (w, br), 729 (s) cm^{-1} .

MS (20/70 eV): m/e (%) = 423 (0.1 [M⁺]), 323 (4), 168 (89), 160 (100), 85 (31), 57 (67).

High resolution: $\text{C}_{20}\text{H}_{22}\text{O}_4\text{NS}$ calculated: 423.2443 for [M⁺] found: 423.2410

Compound 7b

5 mg (0.009 mmole) of 7-O-acetyl-epothilone is dissolved in 1 mL of methanol, 200 μL of an ammoniacal methanol solution (2 mmole of NH₃/mL of methanol) is added and the mixture is stirred for 2 days at 50°C. For work-up, the solvent is removed in vacuum. The purification of the crude product is done with the aid of preparative layer chromatography (solvent: toluene/methanol, 90:10).

Yield: 3 mg (59%)

R_f (Dichloromethane/methanol, 90:10): 0.63

IR (Film): $\nu = 3441$ (m, b, Sch), 2946 (s, Sch), 1732 (vs), 1600 (w), 1451 (m), 1375 (m), 1246 (s, b, Sch), 1013 (m, b, Sch) cm^{-1} .

UV (MeOH): λ_{max} (lg e) = 211 (3.75), 247 (3.59) nm.

MS (20/70 eV): m/e (%) = 567 (1 [M⁺]), 465 (4), 422 (7), 388 (5), 194 (5), 182 (7), 168 (65), 164 (17), 140 (100), 97 (10), 71 (22), 43 (27).

High resolution: $\text{C}_{20}\text{H}_{22}\text{O}_4\text{NS}$ calculated: 567.2866 for [M⁺] found: 567.2849

THIS PAGE BLANK (USPTO)

Patent Claims

1. Epothilone derivative having Formula 1

where R = H, C₁₋₄-alkyl; R¹, R² = H, C₁₋₆-alkyl, C₁₋₆-acyl, benzoyl, C₁₋₄-trialkylsilyl, benzyl, phenyl, C₁₋₆-alkoxy, C₁₋₆-alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; and the alkyl and acyl groups in these groups are straight-chain or branched groups and X and Y are either the same or different and stand for halogen, OH, O-(C₁₋₆-acyl), O-(C₁₋₆-alkyl) or O-benzoyl).

THIS PAGE BLANK (USP10)

2. Epothilone derivative having formula 2

where R = H, C₁₋₆-alkyl; R¹, R² = H, C₁₋₆-alkyl, C₁₋₆-acyl, benzoyl, C₁₋₆-trialkylsilyl, benzyl, phenyl, C₁₋₆-alkoxy-, C₁₋₆-alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups.

3. Epothilone derivative according to formula 3

where R = H, C₁₋₆-alkyl; R¹, R² = H, C₁₋₆-alkyl, C₁₋₆-acyl, benzoyl, C₁₋₆-trialkylsilyl, benzyl, phenyl, C₁₋₆-alkoxy-, C₁₋₆-alkyl-, hydroxy-, and halogen-substituted benzyl and phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups.

THIS PAGE BLANK (USPTO)

the alkyl and acyl groups contained in these groups are straight-chain or branched groups and X stands generally for -C(O)-, -C(S)-, -S(O)-, -CR¹R²- and -SIR₂, where R, R¹ and R² have the meaning given above.

4. Epothilone derivative according to formula 4

where R = H, C₁₋₆-alkyl; R', R'', R¹, R², R³ = H, C₁₋₆-alkyl, C₁₋₆-acyl, benzoyl, C₁₋₆-trialkylsilyl, benzyl, phenyl, C₁₋₆-alkoxy-, C₁₋₆-alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups; X stands for oxygen, NOR³, N-NR⁴R⁵, and N-NHCONR⁴R⁵, where the groups R⁴ to R⁵ have the meaning given above.

5. Epothilone derivative having formula 5

THIS PAGE BLANK (USPTO)

where R = H, C₁₋₆-alkyl; R¹, R² = H, C₁₋₆-alkyl, C₁₋₆-acyl, benzoyl, C₁₋₆-trialkylsilyl, benzyl, phenyl, C₁₋₆-alkoxy-, C₆-alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups and X stands for hydrogen, C₁₋₁₅-alkyl, C₁₋₁₅-acyl, benzyl, benzoyl and cinnamoyl.

6. Epothilone derivative according to formula 6

in which R = H, C₁₋₆-alkyl and R¹ = H, C₁₋₆-alkyl, C₁₋₆-acyl, benzoyl, C₁₋₆-trialkylsilyl, benzyl, phenyl, C₁₋₆-alkoxy-, C₆-alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups.

7. Epothilone derivative according to formula 7

THIS PAGE BLANK (USPTO)

in which R = H, C₁₋₆-alkyl; and R¹, R², = H, C₁₋₆-alkyl, C₁₋₆-acyl, benzoyl, C₁₋₆-trialkylsilyl, benzyl, phenyl, C₁₋₆-alkoxy-, C₆-alkyl-, hydroxy- and halogen-substituted benzyl or phenyl; the alkyl and acyl groups contained in these groups are straight-chain or branched groups.

8. Means for plant protection in agriculture and forestry and/or in gardening, consisting of one or several of the compounds according to one of the previous Claims, or according to one or several of these compounds together with one or several usual carrier(s) and/or diluent(s).

9. Therapeutic agent, especially for use as cytostatic agent, consisting of one or several of the compounds according to one or several of Claims 1 to 7, or one or several compounds according to one or several of Claims 1 to 7 together with one or several of the usual carrier(s) and/or diluent(s).

Summary

The present invention is concerned with epothilone derivatives and their application.

THIS PAGE BLANK (USPTO)