under Graduate Homework In Mathematics

SetTheory 3

王胤雅

201911010205

201911010205@mail.bnu.edu.cn

2023年11月2日

ROBEM I Prove the following statements.

- 1. If $x \cap y = \emptyset$ and $x \cup y \leq y$, then $\omega \times x \leq y$.
- 2. If $x \cap y = \emptyset$ and $\omega \times x \leq y$, then $x \cup y \approx y$.
- SOLTION. 1. Let $f: x \cup y \to y$ is injective, $f_1 := f, f_{n+1} := f_n \circ f$. $g: \omega \times x \to y, g(n,t) \mapsto f_{n+1}(t)$. Next we will prove g is injective. Since f is injective, then f_n is injective obviously $\forall n \in \mathbb{N}_+$. For $(n, u), (m, v) \in \omega \times x$:
 - (a) If n = m, then $f_n(u) \neq f_n(v)$.
 - (b) If $m \neq n$, W.L.O.G. let n < m, m = n + k. So $f_m[x] = f_{n+k}[x] = f_n[f_k[x]] \subset f_n[y]$. Since f_n is injective, we get $f_n[x] \cap f_n[y] = \emptyset$. While $g(n, u) \in f_n[x], g(m, v) \in f_n[y]$, so $g(n, u) \neq g(m, v)$, so g is injective.
- 2. Let $f: \omega \times x \to y$ is injective, $x_n := \{(n,t) : t \in x\}$. Then $\omega \times x = \bigcup_{n \in \omega} x_n$. Consider $g: x \cup y \to y$. If $t \in x$, then g(t) := f(0,t). If $t \in f[x_n]$, then g(t) = f(n+1,t). If $t \notin x \cup (\bigcup_{n=1}^{\infty} f[x_n])$, then g(t) = t. Next we will prove g is a bijection.
 - (a) g is injection: For $u, v \in x \cup y, u \neq v$,
 - If $u, v \in x$, since f is injective, then $g(u) = f(0, u) \neq f(0, v) = g(v)$.
 - If $u \in x, v \in f[x_n]$, for some n, then $g(u) = f(0, u) \in f[x_0]$. $g(v) = f(n + 1, v) \in f[x_{n+1}]$. Since f is injective, $f[x_0] \cap f[x_{n+1}] = \emptyset$, so $g(u) \neq g(v)$.
 - If $u \in x, v \notin x \cup (\bigcup_{n=1}^{\infty} f[x_n])$, then we know $g(v) = v \notin f[x_0] \ni g(u)$.
 - If $u \in f[x_m], v \in f[x_n]$, then
 - i. If m = n, then $g(u) = f(m + 1, u) \neq f(n + 1, v) = g(v)$.
 - ii. If $m \neq n$, then $g(u) \in f[x_{m+1}], g(v) \in f[x_{n+1}]$. Since f is injective, $f[x_{m+1}] \cap f[x_{n+1}] = \emptyset$. So $g(u) \neq g(v)$.
 - iii. If $u \in x_n, v \notin x \cup (\bigcup_{n=1}^{\infty} f[x_n])$, then $g(u) \in f[x_{n+1}]$ and $g(v) = v \notin f[x_{n+1}]$.
 - iv. If $u, v \notin x \cup (\bigcup_{n=1}^{\infty} f[x_n])$, then $g(u) = u \neq v = g(v)$.
 - (b) g is surjective.
 - If $\exists n \text{ s.t. } u \in f[x_n]$, then:
 - i. When n = 0, then $\exists t \in x \text{ s.t. } y = f(0, t)$. Then g(t) = u.
 - ii. When $n \ge 1$, let n = m + 1. Then $\exists t \in x \text{ s.t. } y = f(m + 1, t)$. So g(t) = u.
 - If $u \notin f[x_n], \forall n$, then g(u) = u.

ROBEM II

- 1. A subset of a finite set is finite.
- 2. The union of a finite set of finite sets is finite.
- 3. The power set of a finite set is finite.

- 4. The image of a finite set (under a mapping) is finite.
- SOUTHOW. 1. (a) When $n=0, A\approx 0 \to A=\varnothing$. So $B\subset A$, then $B=\varnothing\approx 0$.
 - (b) If n s.t. $\forall A \approx n, \forall B \subset A, \exists m \in \omega, B \approx m \text{ for } n \in \omega.$

Now we prove n+1. Let $A \approx n+1$, $f: A \to n+1$ is bijection. If B = A, then $B \approx n+1$. Else, $\exists x \in A \setminus B$.

Let $g: A \to n+1$, where g(t) = f(t), if $t \neq x$ and $g(t) \neq n$; g(t) = n+1, if t = x; g(t) = f(x), if f(t) = n. So g is bijection. And since $x \notin B$ we get $B \subset g^{-1}[n] \approx n$, so by induction we get $\exists m \in \omega, B \approx m$.

- 2. (a) A and B are finite and $A \cap B = \emptyset$:
 - i. For $B = \emptyset$, $A \cup B = A$ is finite.
 - ii. For $B \approx 1$, assume $A \approx n$, and $B \approx \{n\}$, so $A \cup B \approx n \cup \{n\} = n+1$ is finite.
 - iii. For certain n s.t. $\forall B \approx n, A \cup B$ is finite. Then to prove it's right for n+1. Let $f: B \to n+1$ is bijection, then $f^{-1}[n] \approx n$, so by induction assumption $A \cup f^{-1}[n]$ is finite. Since $B = f^{-1}[n] \cup \{f^{-1}(n)\}$, so $A \cup B = A \cup f^{-1}[n] \cup \{f^{-1}(n)\}$. Since $\{f^{-1}(n)\} \approx 1$, so by induction assumption the union is finite.
 - (b) $\forall A, B$ are two finite sets, so $A \cup B = A \cup (B \setminus A)$. By II.1, $B \setminus A$ is finite, so $A \cup B$ is finite.

Now we use MI to prove $\forall n, A_i, i \leq n$ is Finite, then $\bigcup_{i=1}^n$ is Finite.

- i. When n = 0, 1, 2 it's obvious.
- ii. For certain $n \geq 2$ we have $A_i, i \leq n$ is Finite, then $\bigcup_{i=1}^n A_i$ is Finite. Then we prove n+1. Since $\bigcup_{i=1}^n A_i$ is Finite, and so do A_{n+1} , then $\bigcup_{i=1}^{n+1} A_i$.
- 3. (a) For $x \approx 0$, so $\mathscr{P}(x) = {\varnothing} \approx 1$.
 - (b) For certain n s.t. $\forall x \approx n$, $\mathscr{P}(x)$ is Finite, then it goes to $x \approx n+1$: Assume $f: x \to n+1$ is bijection. Let $y = f^{-1}[n]$ and $t = f^{-1}(n)$. Then $y \approx n$. Let $\theta: \mathscr{P}(x) \setminus \mathscr{P}(y) \to \mathscr{P}(y)$, $\theta(a) := a \setminus \{t\}$. Obviously θ is bijective, so $\mathscr{P}(x) \setminus \mathscr{P}(y) \approx \mathscr{P}(y)$ is finite. By II.2, $\mathscr{P}(x) = \mathscr{P}(y) \cup (\mathscr{P}(x) \setminus \mathscr{P}(y))$ is finite.
- 4. (a) For $A \approx 0$ it's obvious.
 - (b) For $A \approx n$ it's right.It goes for $A \approx n+1$. Let $f: A \to n+1$ is a bijection, and $g: A \to \mathbb{S}et$ is a map on A. Let $B:=f^{-1}[n] \subset A, t=f^{-1}(n) \in A$. Then $B \approx n$, so g[B] is finite. Since $A=B \cup \{t\}$, then $g[A]=g[B] \cup g[\{t\}]=g[B] \cup \{g(t)\}$. And $\{g(t)\}\approx 1$ is finite, by II.2, g[A] is finite.

ROBEM III

- 1. A subset of a countable set is at most countable.
- 2. The union of a finite set of countable sets is countable.
- 3. The image of a countable set (under a mapping) is at most countable.

- SOUTION. 1. Let A is countable, so $\exists \theta$ s.t. $\theta: A \to \omega$ is bijection. Let $B \subset A$, so $B \approx \theta[B]$. So we only need to prove every subset of ω is at most countable. Let $x \subset \omega$. If x is finite, then x is at most countable. If x is infinite. Let $f(0) = \min x$ and $f(n) = \min(x \setminus f[n])$. Since x is infinite, so $f[n] \subsetneq x$, so f is well-defined. And obviously, f is a bijection. So $x \approx \omega$ is countable.
 - 2. That is to prove $\forall n \in \mathbb{N}_+, \{A_k\}_{k=1}^n$ is a sequence of countable sets, then $\bigcup_{k=1}^n A_n$ is countable.
 - (a) When n = 1 it's obvious.
 - (b) For n=2, let $f: \omega \to A_1, g: \omega \to A_2$ are bijections, $h: \omega \to A_1 \cup A_2$, where $h(n)=f(\min f^{-1}[A_1 \setminus h[n]])$, if $2 \mid n$; $h(n)=g(\min g^{-1}[A_2 \setminus h[n]])$, if $2 \nmid n$. Since A_1, A_2 are infinite, so h is well-defined.
 - i. $\forall m, n \in \omega, m \neq n$, assume m < n, then $h(n) = f(\min f^{-1}[A_1 \setminus h[n]]) \in f[f^{-1}[A_1 \setminus h[n]]] = u \setminus h[n]$ and $h(m) \in h[n]$. So $h(m) \neq h(n)$.
 - ii. For n=0 it's obvious that $f[n] \subset h[2n-1]$. Assume for certain n $f[n] \subset h[2n-1]$ is right, when it is for n+1, we only need to prove $a:=f(n) \in h[2n+1]$. If not, since $h(2n)=f(\min f^{-1}[A_1 \setminus h[2n]]), \ a \notin h[2n], \ \text{so } a \in A_1 \setminus h[2n]$. Then $n=f^{-1}(a) \in f^{-1}[A_1 \setminus h[2n]]$. For m < n, $f(m) \in h[2m-1] \subset h[2n]$, so $m \notin f^{-1}[A_1 \setminus h[2n]]$, thus $n=\min f^{-1}[A_1 \setminus h[2n]]$. So h(2n)=a, contradiction! So, $A_1 \subset h[\omega]$, it is same to prove $A_2 \subset h[\omega]$.
 - (c) Assume for certain $n \geq 2$, $\bigcup_{k=1}^{n} A_k$ is countable. It goes to n+1: By induction we know $\bigcup_{k=1}^{n} A_k$ is countable. And we have proved union of two countable sets is countable. So $\bigcup_{k=1}^{n+1} A_k = \bigcup_{k=1}^{n} A_k \cup A_{n+1}$ is countable.
 - 3. Same as the first question. We only need to prove image of ω is at most countable. For $f:\omega\to\mathbb{S}et$ is a map, let $h:\operatorname{ran}(f)\to\omega, t\mapsto\min f^{-1}[\{t\}]$. Obviously h is a injective, so $\operatorname{ran}(f)$ is at most countable.

 $\mathbb{R}^{O_{\text{BEM}}}$ IV $\mathbb{N}\times\mathbb{N}$ is countable.

$$[f(m,n) = 2^m(2n+1) - 1.]$$

SOLTION. Let $f: \mathbb{N}^2 \to \mathbb{N}, (m,n) \mapsto 2^m(2n+1)-1$

- 1. Let f(a,b) = f(c,d), then $2^a(2b+1) = 2^c(2d+1)$. If $a \neq c$, WLOG, let a < c, then $2b+1 = 2^{c-a}(2d+1)$. While $2 \mid 2^{c-a}(2d+1), 2 \nmid 2b+1 = 2^{c-a}(2d+1)$, contradiction! So a = c, then 2b+1 = 2d+1, so b = d.
- 2. $\forall t \in \mathbb{N}$, let $s := \sup\{k : 2^k \mid t+1\}$. Since $0 < t+1 < \omega$, then if $2^k \mid t+1$, then $2^k \le t+1$, so $s < \omega$. Assume $t+1 = m2^s$, so $2 \nmid m$, so m = 2n+1. Then t = f(m,n).

POBLEM V Prove that $\kappa^{\kappa} \leq 2^{\kappa \kappa \kappa}$.

SOLITION. Let $h:^{\kappa} \kappa \to^{\kappa \times \kappa} 2$. $\forall f \in^{\kappa} \kappa$, let $h(f): \kappa \times \kappa \to 2$, where $\forall u, v \in \kappa$, h(f)(u, v) := 1 if u = f(v); h(f)(u, v) := 0, if $u \neq f(v)$. Assume $f, g \in^{\kappa} \kappa$ and h(f) = h(g). Then $\forall v \in \kappa$, h(g)(f(v), v) = h(f)(f(v), v) = 1, so f(v) = g(v). So h is injective.

 \mathbb{R}^{OBEM} VI If $A \leq B$, then $A \leq^* B$.

SOUTION. 1. If $A = \emptyset$, then $A \preceq^* B$ is obvious.

2. If $A \neq \emptyset$, then $a \in A$. Let $f: A \to B$ is injection, $g: B \to A, g(y): f^{-1}(y)$, if $y \in \operatorname{ran}(f)$; a, if $y \notin \operatorname{ran}(f)$. Then $\forall x \in A, h(f(x)) = x$, obviously. So h is surjective.

ROBEM VII If $A \preceq^* B$, then $\mathscr{P}(A) \preceq \mathscr{P}(B)$.

SOUTHOW. 1. If $A = \emptyset$, then $\mathscr{P}(A) = 1$. Let $f : \mathscr{P}(A) \to \mathscr{P}(B), 0 \mapsto B$, then f is injective.

2. If $A \neq \emptyset$, then by $A \preceq^* B$, $\exists f : B \to A$ is surjective. Let $h : \mathscr{P}(A) \to \mathscr{P}(B), U \mapsto f^{-1}[U]$. Then we will prove h is injective. Let $U, V \subset A$ and h(U) = h(V), i.e. $f^{-1}[U] = f^{-1}[V]$. If $U \neq V$, WLOG, let $U \setminus V \neq \emptyset$ and let $x \in U \setminus V$. Since f is surjective, so $\exists t \in B, f(t) = x$. So $t \in f^{-1}[U]$ but $t \notin f^{-1}[V]$, contradiction! So h is injective. Then $\mathscr{P}(A) \preceq \mathscr{P}(B)$.

ROBEM VIII Let X be a set. If there is an injective function $f: X \to X$ such that $\operatorname{ran}(f) \subsetneq X$, then X is infinite.

SOUTHOW. That is to prove $\forall n \in \omega, X \not\approx n$. By MI,

- 1. For n = 0, if $X \approx n$, then X = 0. So $X \subset \operatorname{ran}(f)$, contradiction!
- 2. Assume $n \geq 1$, $\forall m < n, X \not\approx m$ is right. If $X \approx n$, then $\exists h : X \to n$ is bijection. So $h[\operatorname{ran}(f)] \subsetneq n$, then $\exists m < n, h[\operatorname{ran}(f)] \approx m$. While f is injective, and h is bijection, so $X \approx m$. Contradiction!