Def:
$$V$$
, W vector spaces, $B = (v_1, v_2, ..., v_n)$ basis for V

$$B' = (v_1, v_2, ..., v_n)$$
 basis for W

$$\frac{\int_{A}^{1} e^{i} V_{3}W}{V_{3}W} = \underbrace{\left[\int_{A}^{1} e^{i} V_{3}\right]}_{A \times 1} = \underbrace{\left[\int_{A}^{1} e^{i}$$

2. Let
$$f \in Hom_{\mathbb{R}}(\mathbb{R}^3, \mathbb{R}^2)$$
 be defined by

$$f(x, y, z) = (y, -x)$$

and consider the bases $B = (v_1, v_2, v_3) = ((1, 1, 0), (0, 1, 1), (1, 0, 1))$ of \mathbb{R}^3 , $B' = (v'_1, v'_2) = ((1, 1), (1, -2))$ of \mathbb{R}^2 and let $E' = (e'_1, e'_2)$ be the canonical basis of \mathbb{R}^2 . Determine the matrices $[f]_{BE'}$ and $[f]_{BB'}$.

$$\ell_1 = (1,9,0)$$
 $\ell_2 = (9,0,0)$
 $\ell_3 = (0,0,1)$

Sol T. show on example, we will compute
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{E,B}$$
:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{E,B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{E} \begin{bmatrix} 1 \\ 1$$

$$=7$$
 $(0,-1) = $(1,1) + \beta_1 \cdot (1,-2)$$

$$= \begin{cases} 0 = x_1 + p_1 & = 1 \\ -1 = x_1 - 2p_1 \end{cases} \begin{cases} p_2 = -x_1 \\ -1 = x_1 + 2x_1 \end{cases} \begin{cases} p_3 = -x_1 \\ p_4 = -\frac{1}{3} \end{cases}$$

$$\int (u_1) = \int (1, 1, 0) = (1, -1) = x_1 \cdot e_1' + x_1 \cdot e_2'$$

Verification: Make sure that by slugging in the course, you get the right result

4. Let $f \in End_{\mathbb{R}}(\mathbb{R}^4)$ with the following matrix in the canonical basis E of \mathbb{R}^4 :

$$[f]_E = \begin{pmatrix} 1 & 1 & -3 & 2 \\ -1 & 1 & 1 & 4 \\ 2 & 1 & -5 & 1 \\ 1 & 2 & -4 & 5 \end{pmatrix}.$$

- (i) Show that $v = (1, 4, 1, -1) \in Ker f$ and $v' = (2, -2, 4, 2) \in Im f$.
- (ii) Determine a basis and the dimension of Ker f and Im f.
- (iii) Define f.

$$\frac{P_{np} : V_{NW} \times -u.s.}{F_{NW}} = \underbrace{\left[\int_{B_{NB}} V_{NW} \times \frac{v.v.}{W}\right]}_{N\times N} = \underbrace{\left[\int_{B_{NB}} V_{NW} \times \frac{v.v.}{W}\right]}_{N\times N}$$

(i)
$$u' \in \mathcal{I}_{-}/C_{\mathcal{I}}$$
 $\exists u \in \mathbb{Z}^{n}$. $I(u) = u'$

$$(3n) = (4n) = (4n)$$

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{$$

2x+1y -5=++, 4+1y -5=+5+)

rank [() B, E din In