36

11. **Linear Combinations:**

Given a finite set of vectors $\vec{a}, \vec{b}, \vec{c}, \dots$ then the vector $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c} + \dots$ is called a linear combination of $\vec{a}, \vec{b}, \vec{c}, \dots$ for any x, y, z.... \in R. We have the following results:

- If \vec{a} , \vec{b} are non zero, non-collinear vectors then $x\vec{a} + y\vec{b} = x'\vec{a} + y'\vec{b} \Rightarrow x = x'$; y = y'(a)
- FundamentalTheorem: Let \vec{a} , \vec{b} be non zero, non collinear vectors. Then any vector \vec{r} coplanar (b) with \vec{a} , \vec{b} can be expressed uniquely as a linear combination of \vec{a} , \vec{b}

i.e. There exist some uniquely $x, y \in R$ such that $x\vec{a} + y\vec{b} = \vec{r}$.

If \vec{a} , \vec{b} , \vec{c} are non-zero, non-coplanar vectors then: (c)

$$x\vec{a} + y\vec{b} + z\vec{c} = x' \vec{a} + y' \vec{b} + z' \vec{c} \Rightarrow x = x', y = y', z = z'$$

- Fundamental Theorem In Space: Let \vec{a} , \vec{b} , \vec{c} be non-zero, non-coplanar vectors in space. Then any (d) vector \vec{r} , can be uniquly expressed as a linear combination of \vec{a} , \vec{b} , \vec{c} i.e. There exist some unique x,y $\in R$ such that $x\vec{a} + y\vec{b} + z\vec{c} = \vec{r}$.
- FREE Download Study Package from website: www.tekoclasses.com If $\vec{x}_1, \vec{x}_2, \vec{x}_n$ are n non zero vectors, & $k_{_1}, \ k_{_2}, k_{_n}$ are n scalars & if the linear (e) $\text{combination } k_1\vec{x}_1+k_2\vec{x}_2+\dots \\ k_n\vec{x}_n=0 \\ \Rightarrow k_1=0, k_2=0 \\ \dots \\ k_n=0 \\ \text{ then we say that } \mathbf{\hat{k}}_n = \mathbf{\hat{k}}$ vectors $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n$ are Linearly Independent Vectors.
 - Vectors x_1, x_2, \ldots, x_n are Linearly Independent Vectors. If $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ are not Linearly Independent then they are said to be Linearly Dependent vectors. i.e. if $k_1\vec{x}_1 + k_2\vec{x}_2 + \ldots + k_n\vec{x}_n = 0$ & if there exists at least one $k_r \neq 0$ then $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ are said to be

LINEARLY DEPENDENT.

Note 1: If $k_r \neq 0$; $k_1 \vec{x}_1 + k_2 \vec{x}_2 + k_3 \vec{x}_3 + \dots + k_r \vec{x}_r + \dots + k_n \vec{x}_n = 0$

$$\begin{aligned} -k_r\vec{x}_r &= k_1\vec{x}_1 + k_2\vec{x}_2 + \dots + k_{r-1}.\vec{x}_{r-1} + k_{r+1}.\vec{x}_{r+1} + \dots + k_n\vec{x}_r \\ -k_r\frac{1}{k_r}\vec{x}_r &= k_1\frac{1}{k_r}\vec{x}_1 + k_2\frac{1}{k_r}\vec{x}_2 + \dots + k_{r-1}.\frac{1}{k_r}\vec{x}_{r-1} + \dots + k_n\frac{1}{k_r}\vec{x}_n \end{aligned}$$

 $\vec{x}_r = c_1 \vec{x}_1 + c_2 \vec{x}_2 + \dots + c_{r-1} \vec{x}_{r-1} + c_r \vec{x}_{r-1} + \dots + c_n \vec{x}_n$

i.e. \vec{x}_{\perp} is expressed as a linear combination of vectors.

$$\vec{x}_1$$
 , $\dot{\vec{x}}_2$,..... \vec{x}_{r-1} , \vec{x}_{r+1} ,.... \vec{x}_n

Hence \vec{x}_r with \vec{x}_1 , \vec{x}_2 ,.... \vec{x}_{r-1} , \vec{x}_{r+1} \vec{x}_n forms a linearly dependent set of vectors.

- Note 2: $(\vec{a} + 3\hat{i} + 2\hat{j} + 5\hat{k})$ then \vec{a} is expressed as a Linear Combination of vectors \hat{i} , \hat{j} , \hat{k} Also, \vec{a} , \hat{i} , \hat{j} , k form a linearly dependent set of vectors. In general, every set of four vectors is a linearly dependent system.
- $\hat{i}, \hat{j}, \hat{k}$ are **Linearly Independent** set of vectors. For

$$K_1 \hat{i} + K_2 \hat{j} + K_3 \hat{k} = 0 \Rightarrow K_1 = K_2 = K_3 = 0$$

- Two vectors \vec{a} & \vec{b} are linearly dependent $\Rightarrow \vec{a}$ is parallel to \vec{b} i.e. $\vec{a} \times \vec{b} = 0 \Rightarrow$ linear dependence of \vec{a} & \vec{b} . Conversely if $\vec{a} \times \vec{b} \neq 0$ then \vec{a} & \vec{b} are linearly independent.
- If three vectors \vec{a} , \vec{b} , \vec{c} are linearly dependent, then they are coplanar i.e. $[\vec{a}, \vec{b}, \vec{c}] = 0$, conversely, if $[\vec{a}, \vec{b}, \vec{c}] \neq 0$, then the vectors are linearly independent.

Given A that the points $\vec{a} - 2\vec{b} + 3\vec{c}$, $2\vec{a} + 3\vec{b} - 4\vec{c}$, $-7\vec{b} + 10\vec{c}$, A, B, C have **Solved Example:**

position vector prove that vectors \overrightarrow{AB} and \overrightarrow{AC} are linearly dependent. Let A, B, C be the given points and O be the point of reference then

$$\overrightarrow{OA} = \overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$$
, $\overrightarrow{OB} = 2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$ and $\overrightarrow{OC} = -7\overrightarrow{b} + 10\overrightarrow{c}$

Now $\overrightarrow{AB} = p.v.$ of B - p.v. of A

$$=\overrightarrow{OB} - \overrightarrow{OA} = (\vec{a} + 5\vec{b} - 7\vec{c}) = -\overrightarrow{AB}$$

 $\therefore \overrightarrow{AC} = \lambda \overrightarrow{AB}$ where $\lambda = -1$. Hence \overrightarrow{AB} and \overrightarrow{AC} are linearly dependent

Solved Example:

dependent \vec{a} , \vec{b} , \vec{c} being linearly independent vectors. **IDENTIFY and SET OF** We know that if these vectors are linearly dependent, then we can express one of them as a linear combination of the other two. Solution.

 $\Rightarrow -\vec{a} - 5\vec{b} + 4\vec{c} = x \left(\vec{a} + \vec{b} - \vec{c} \right) + y \left(-\vec{a} - 9\vec{b} - 7\vec{c} \right) \Rightarrow -\vec{a} - 5\vec{b} + 4\vec{c} = (x - y) \vec{a} + (x - 9y) \vec{b} + (-x + 7y) \vec{c}$

Solving the first of these three equations, we get $x = -\frac{1}{2}$, $y = \frac{1}{2}$

Now let us assume that the given vector are coplanar, then we can write

Comparing the coefficients of \vec{a} , \vec{b} and \vec{c} on both sides of the equation

 $\frac{1}{2}$ = m which evidently satisfies (ii) equation too.

 $5\vec{a} + 6\vec{b} + 7\vec{c} = \ell(7\vec{a} - 8\vec{b} + 9\vec{c}) + m(3\vec{a} + 20\vec{b} + 5\vec{c})$

Hence the given vectors are linearly dependent.

where ℓ , m are scalars

From (i) and (iii) we get

 $5 = 7\ell + 3$ $7 = 9\ell + 5m$

Self Practice Problems:

1.

FREE Download Study Package from website: www.tekoclasses.com

Vec&3D/Page: 37 Does there exist scalars u, v, w such that $\vec{ue}_1 + \vec{ve}_2 + \vec{we}_3 = \vec{i}$ where $\vec{e}_1 = \vec{k}$, $\vec{e}_2 = \vec{j} + \vec{k}$, $\vec{e}_3 = -\vec{j} + 2\vec{k}$? Ë **MATHS: SUHAG Solved Example:** Prove that four points $2\vec{a} + 3\vec{b} - \vec{c}$, $\vec{a} - 2\vec{b} + 3\vec{c}$, $3\vec{a} + 4\vec{b} - 2\vec{c}$ and $\vec{a} - 6\vec{b} + 6\vec{c}$ are coplanar. Solution. Let the given four points be P, Q, R and S respectively. These points are coplanar if the vectors PQ, \overrightarrow{PR} and \overrightarrow{PS} are coplanar. These vectors are coplanar iff one of them can be expressed as a linear combination of other two. So, let $\overrightarrow{PQ} = x \overrightarrow{PR} + y \overrightarrow{PS}$ $5\vec{b} + 4\vec{c} = x (\vec{a} + \vec{b} - \vec{c}) + y (-\vec{a} - 9\vec{b} - 7\vec{c}) \Rightarrow -\vec{a} - 5\vec{b} + 4\vec{c} = (x - y) \vec{a} + (x - 9y) \vec{b} + (-x + 7y) \vec{c}$ $\Rightarrow x - y = -1, x - 9y = -5, -x + 7y = 4$ [Equating coeff. of \vec{a} , \vec{b} , \vec{c} on both sides]

7

ð

....(ii)

- If, $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are any four vectors in 3-dimensional space with the same initial point and such that $3\vec{a}-2\vec{b}+\vec{c}-2\vec{d}=\vec{0}$, show that the terminal A, B, C, D of these vectors are coplanar. Find the point at which AC and BD meet. Find the ratio in which P divides AC and BD.
- 2. Show that the vector $\vec{a} - \vec{b} + \vec{c}$, $\vec{b} - \vec{c} - \vec{a}$ and $2\vec{a} - 3\vec{b} - 4\vec{c}$ are non-coplanar, where $\vec{a}, \vec{b}, \vec{c}$, are any non-
- Find the value of λ for which the four points with position vectors $-\hat{j}-\hat{k}$, $4\hat{i}+5\hat{j}+\lambda\hat{k}$. $3\hat{i}+9\hat{j}+4\hat{k}$ and 3. $-4\hat{i}+4\hat{j}+4\hat{k}$ are coplanar. Ans.
- **Application Of Vectors:** (a) Work done against a constant force \vec{F} over a displacement \vec{s} **12**. **TS:(a)** Work done against a constant force \vec{F} over a displacement \vec{s} The tangential velocity \vec{V} of a body moving in a circle is given is defined as $\vec{W} = \vec{F} \cdot \vec{s}$ (b) by $\vec{V} = \vec{w} \times \vec{r}$ where \vec{r} is the pv of the point P. 98930 58881, BHOPAL,

- The moment of \vec{F} about 'O' is defined as $\vec{M} = \vec{r} \times \vec{F}$ where \vec{r} is the pv of P wrt 'O'. The direction of \vec{M} is along the normal to the plane OPN such that $\vec{r}, \vec{F} \& \vec{M}$ form a right handed system.
- Moment of the couple = $(\vec{r}_1 \vec{r}_2) \times \vec{F}$ where $\vec{r}_1 \& \vec{r}_2$ are pv's of the point of the application of the forces

Moment of the couple = $(\vec{r}_1 - \vec{r}_2)$ x F where $\vec{r}_1 \& \vec{r}_2$ are pv's of the point of the application of the forces $\vec{F} \& -\vec{F}$. Solved Example:

Sir)

Ż.

R. KARIYA (S. R.

Let \vec{F} be the resultant force and \vec{d} be the displacement vector. Then, Solution.

$$\vec{F} = 5 \frac{(6\hat{i} + 2\hat{j} + 3\hat{k})}{\sqrt{36 + 4 + 9}} + 3 \frac{(3\hat{i} + 2\hat{j} + 6\hat{k})}{\sqrt{9 + 4 + 36}} = \frac{1}{7} (39\hat{i} + 4\hat{j} + 33\hat{k})$$

and,
$$\vec{d} = (4\hat{i} + 3\hat{j} + \hat{k}) - (2\hat{i} + 2\hat{j} - \hat{k}) = 2\hat{i} + \hat{j} + 2\hat{k}$$

.. Total work done =
$$\vec{F} \cdot \vec{d} = \frac{1}{7} (39\hat{i} + 4\hat{j} + 33\hat{k}) \cdot (2\hat{i} + \hat{j} + 2\hat{k})$$

= $\frac{1}{7} (78 + 4 + 66) = \frac{148}{7}$ units.

- actice Problems :1. A point describes a circle uniformly in the \hat{j} , \hat{j} plane taking 12 seconds to complete one revolution. If its initial position vector relative to the centre is \hat{j} , and the rotation is from **Self Practice Problems :1.** A point describes a circle uniformly in the \hat{i} , \hat{j} plane taking 12 seconds to \hat{j} to \hat{j} , find the position vector at the end of 7 seconds. Also find the velocity vector. $(\hat{i} - \sqrt{3} \hat{i}), p/12 (\hat{i} - \sqrt{3} \hat{i})$
- The force represented by $3\hat{i} + 2\hat{k}$ is acting through the point $5\hat{i} + 4\hat{j} 3\hat{k}$. Find its moment about the 2. point $\hat{i} + 3\hat{j} + \hat{k}$. Ans. $2\hat{i} - 20\hat{i} - 3\hat{k}$
- Find the moment of the comple formed by the forces $5\hat{i}+\hat{k}$ and $-5\hat{i}-\hat{k}$ acting at the points 3. (9, -1, 2) and (3, -2, 1) respectively

Miscellaneous Solved Examples

Solved Example: Show that the points A, B, C with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ respectively, are the vertices of a right angled triangle. Also find the remaining angles of the triangle.

Solution. We have,
$$\overrightarrow{AB}$$
 = Position vector of B – Position vector of A

$$= (\hat{i} - 3\hat{j} - 5\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = -\hat{i} - 2\hat{j} - 6\hat{k}$$

= Position vector of C - Position vector of B BC

 $= (3\hat{i} - 4\hat{i} - 4\hat{k}) - (\hat{i} - 3\hat{i} - 5\hat{k}) = 2\hat{i} - \hat{i} + \hat{k}$ = Position vector of A - Position vector of C and. \overrightarrow{CA} $= (2\hat{i} - \hat{i} + \hat{k}) - (3\hat{i} - 4\hat{i} - 4\hat{k}) = -\hat{i} + 3\hat{i} + 5\hat{k}$ Since $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = (-\hat{i} - 2\hat{j} - 6\hat{k}) + (2\hat{i} - \hat{j} + \hat{k}) + (-\hat{i} + 3\hat{j} + 5\hat{k}) = \vec{0}$ So, A, B and C are the vertices of a triangle. $\overrightarrow{BC} \cdot \overrightarrow{CA} = (2\hat{i} - \hat{j} + \hat{k}) \cdot (-\hat{i} + 3\hat{j} + 5\hat{k}) = -2 - 3 + 5 = 0$ $\overrightarrow{BC} \perp \overrightarrow{CA} \Rightarrow \angle BCA = \frac{\pi}{2}$ Hence, ABC is a right angled triangle. \Rightarrow

Since a is the angle between the vectors \overrightarrow{AB} and \overrightarrow{AC} . Therefore

$$\cos A = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}|| |\overrightarrow{AC}|} = \frac{(-\hat{i} - 2\hat{j} - 6\hat{k}) \cdot (\hat{i} - 3\hat{j} - 5\hat{k})}{\sqrt{(-1)^2 + (-2)^2 + (-6)^2} \sqrt{1^2 + (-3)^2 + (-5)^2}}$$

$$= \frac{-1 + 6 + 30}{\sqrt{1 + 4 + 36} \sqrt{1 + 9 + 25}} = \frac{35}{\sqrt{41} \sqrt{35}} = \sqrt{\frac{35}{41}} \qquad A = \cos^{-1} \sqrt{\frac{35}{41}}$$

$$= \frac{\overrightarrow{BA}}{|\overrightarrow{BA}|| |\overrightarrow{BC}|} = \frac{(\hat{i} + 2\hat{j} + 6\hat{k}) (2\hat{i} - \hat{j} + \hat{k})}{\sqrt{1^2 + 2^2 + 6^2} \sqrt{2^2 + (-1)^2 + (1)^2}} \Rightarrow \cos B = \frac{2 - 2 + 6}{\sqrt{41} \sqrt{6}} = \sqrt{\frac{6}{41}} \Rightarrow B = \cos^{-1} \sqrt{\frac{6}{41}}$$

Solved Example: If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magnitude, prove that $\vec{a} + \vec{b} + \vec{c}$ is equally inclined with vectors \vec{a}, \vec{b} and \vec{c} .

Let $|\vec{a}| = |\vec{b}| = |\vec{c}| = \lambda$ (say). Since $\vec{a}, \vec{b}, \vec{c}$ are mutually Solution.: perpendicular vectors, therefore $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$

Now,
$$|\vec{a} + \vec{b} + \vec{c}|^2$$

 $= \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{b} \cdot \vec{c} + 2\vec{c} \cdot \vec{a}$
 $= |\vec{a}|^2 | + |\vec{b}|^2 + |\vec{c}|^2$ [Using (i)]
 $= 3\lambda^2$ [: $|\vec{a}| = |\vec{b}| = |\vec{c}| = \lambda$]
 $\therefore |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}\lambda$ (ii)

Suppose $\vec{a} + \vec{b} + \vec{c}$ makes angles θ_1 , θ_2 , θ_3 with \vec{a} , \vec{b} and \vec{c} respectively. Then

$$\cos\theta_{1} = \frac{\vec{a} \cdot (\vec{a} + \vec{b} + \vec{c})}{|\vec{a}| |\vec{a} + \vec{b} + \vec{c}|} = \frac{\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}}{|\vec{a}| |\vec{a} + \vec{b} + \vec{c}|}$$

$$= \frac{|\vec{a}|^{2}}{|\vec{a}| |\vec{a} + \vec{b} + \vec{c}|} = \frac{|\vec{a}|}{|\vec{a} + \vec{b} + \vec{c}|} = \frac{\lambda}{\sqrt{3}\lambda} = \frac{1}{\sqrt{3}}$$

$$\vdots$$

$$\theta_{1} \cos^{-1} \left(\frac{1}{\sqrt{3}}\right)$$
(1)

Similarly, $\theta_2 = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ and $\theta_3 = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

FREE Download Study Package from website: www.tekoclasses.com Hence, $\vec{a} + \vec{b} + \vec{c}$ is equally inclineded with \vec{a} , \vec{b} and \vec{c} **Example:** Prove using vectors: If two medians of a triangle are equal, then it is isosceles.

Let ABC be a triangle and let BE and CF be two equal medians. Taking A as the origin, Solved Example: Solution. let the position vectors of B and C be \vec{b} and \vec{c} respectively. Then,

P.V. of E =
$$\frac{1}{2}$$
 \vec{c} and, P.V. of F = $\frac{1}{2}$ \vec{b} \therefore \vec{BE} = $\frac{1}{2}$ $(\vec{c} - 2\vec{b})$ \vec{CF} = $\frac{1}{2}$ $(\vec{b} - 2\vec{c})$

Now,
$$BE = CF \Rightarrow |\overrightarrow{BE}| = |\overrightarrow{CF}|$$

$$\Rightarrow |\overrightarrow{BE}|^2 = |\overrightarrow{CF}|^2 \Rightarrow \left|\frac{1}{2}(\vec{c} - 2\vec{b})\right|^2 = \left|\frac{1}{2}(\vec{b} - 2\vec{c})\right|^2$$

$$\Rightarrow \frac{1}{4}|\vec{c} - 2\vec{b}|^2 = \frac{1}{4}|\vec{b} - 2\vec{c}|^2 \Rightarrow |\vec{c} - 2\vec{b}|^2 = |\vec{b} - 2\vec{c}|^2$$

$$\Rightarrow (\vec{c} - 2\vec{b}) \cdot (\vec{c} - 2\vec{b}) = (\vec{b} - 2\vec{c}) \cdot (\vec{b} - 2\vec{c})$$

7

ð

FREE Download Study Package from website: www.tekoclasses.com

$$\Rightarrow$$

$$\vec{c} \cdot \vec{c} - 4\vec{b} \cdot \vec{c} + 4\vec{b} \cdot \vec{b} = \vec{b} \cdot \vec{b} - 4\vec{b} \cdot \vec{c} + 4\vec{c} \cdot \vec{c}$$

$$\Rightarrow$$

$$|\vec{c}|^2 - 4\vec{b}.\vec{c} + 4|\vec{b}|^2 = |\vec{b}|^2 - 4\vec{b}.\vec{c} + 4|\vec{c}|^2$$

$$3 |b|^2 = 3 |\vec{c}|^2$$

$$\Rightarrow$$
 $|b|^2 = |\bar{c}|$

= $3 |\vec{c}|^2$ \Rightarrow $|b|^2 = |\vec{c}|^2$ C Hence, triangle ABC is an isosceles triangle. Using vectors: Prove that $\cos (A + B) = \cos A \cos B - \sin A \sin B$ Solved Example: Solution.

Let OX and OY be the coordinate axes and let î and î be unit vectors along OX and OY respectively. Let \angle XOP = A and \angle XOQ = B. Drawn PL \perp OX and QM \perp OX.

Clearly angle between \overrightarrow{OP} and \overrightarrow{OQ} is A + B

In \triangle OLP, OL = OP cos A and LP = OP sin A. Therefore \overrightarrow{OL} = (OP cos A) \hat{i} and \overrightarrow{LP} = (OP sin A) $\left(-\hat{j}\right)$

c = bcosA + acosB.

A (origin)

c(c)

 $\binom{\vec{b}}{2}$ F

Now.

$$\overrightarrow{OL} + \overrightarrow{LP} = \overrightarrow{OP}$$

 $\overrightarrow{OP} = OP[(\cos A) \hat{i} - (\sin A) \hat{j}]$

In \triangle OMQ, OM = OQ cos B and MQ = OQ sin B.

$$\overrightarrow{OM} = (OQ \cos B) \hat{j}, \overrightarrow{MQ} = (OQ \sin B) \hat{j}$$

Now. OM + MQ = OO From (i) and (ii), we get

$$\overrightarrow{OP}$$
 . \overrightarrow{OQ} = OP [(cos A) \hat{i} - (sin A) \hat{j}] . OQ [(cos B) \hat{i} + (sin B) \hat{j}] = OP . OQ [cos A cos B - sin A sin B]

But, $\overrightarrow{OP} \cdot \overrightarrow{OQ} = |\overrightarrow{OP}| |\overrightarrow{OQ}| \cos(A + B) = OP \cdot OQ \cos(A + B)$

OP . OQ cos (A + B) = OP . OQ [cos A cos B - sin A sin B] cos (A + B) = cos A cos B - sin A sin B

le: Prove that in any triangle ABC

Solved Example: $c^2 = a^2 + b^2 - 2ab \cos C$

or, BC + \overline{CA} = $-\overline{AB}$ Squaring both sides

 $(\overrightarrow{BC})^2 + (\overrightarrow{CA})^2 + (\overrightarrow{BC}) \cdot \overrightarrow{CA} + (\overrightarrow{AB})^2$

$$\Rightarrow a^2 + b^2 + 2(\overrightarrow{BC} \cdot \overrightarrow{CA}) = c^2 \Rightarrow c^2 = a^2 + b^2 = 2 \text{ ab } \cos(\pi - \overrightarrow{CA})$$

 $a^{2} + b^{2} + 2 (\overrightarrow{BC} \cdot \overrightarrow{CA}) = c^{2}$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$

(ii)
$$(\overrightarrow{BC} + \overrightarrow{CA}) \cdot \overrightarrow{AB} = -\overrightarrow{AB} \cdot \overrightarrow{AB}$$

 \overrightarrow{BC} $\cdot \overrightarrow{AB}$ + \overrightarrow{CA} $\cdot \overrightarrow{AB}$ = - ac cosB - bc cos A =

Solved Ex.: If D, E, F are the mid-points of the sides of a triangle ABC, prove by vector method that area of

$$\Delta DEF = \frac{1}{4} \text{ (area of } \Delta ABC)$$

Solution. Taking A as the origin, let the position vectors of B and C be b and \vec{c} respectively. Then, the

position vectors of D, E and F are $\frac{1}{2}$ $(\vec{b}+\vec{c})$, $\frac{1}{2}$ \vec{c} and $\frac{1}{2}$ \vec{b} respectively.

Now,
$$\overrightarrow{DE}$$
 = $\frac{1}{2} \overrightarrow{c} - \frac{1}{2} (\overrightarrow{b} + \overrightarrow{c}) = \frac{-\overrightarrow{b}}{2}$

 $=\frac{1}{2}\vec{b}-\frac{1}{2}(\vec{b}+\vec{c})=\frac{-\vec{c}}{2}$ and

$$\therefore \qquad \text{Vector area of } \Delta \text{DEF } \frac{1}{2} \ (\overrightarrow{DE} \times \overrightarrow{DF}) \ = \ \frac{1}{2} \ \left(\frac{-\vec{b}}{2} \times \frac{-\vec{c}}{2} \right)$$

 $= \frac{1}{8} (\vec{b} \times \vec{c}) = \frac{1}{4} \left\{ \frac{1}{2} (\overrightarrow{AB} \times \overrightarrow{AC}) \right\}$

=
$$\frac{1}{4}$$
 (vector area of $\triangle ABC$) Hence, area of $\triangle DEF = \frac{1}{4}$ area of $\triangle ABC$.

Solved Example: P, Q are the mid-points of the non-parallel sides BC and AD of a trapezium ABCD. Show that ΔAPD = ΔCQB.

Solution. Let $\overrightarrow{AB} = \overrightarrow{b}$ and $\overrightarrow{AD} = \overrightarrow{d}$

Now DC is parallel to AB \Rightarrow there exists a acalar t sush that $\overrightarrow{DC} = t \overrightarrow{DB} = t \overrightarrow{b}$

$$\therefore \qquad \overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{d} + t \overrightarrow{b}$$

Also
$$2\Delta \overrightarrow{CQB} = \overrightarrow{CQ} \times \overrightarrow{CB} = \left[\frac{1}{2}\overrightarrow{d} - (\overrightarrow{d} + t\overrightarrow{b})\right] \times [\overrightarrow{b} - (\overrightarrow{d} + t\overrightarrow{b})]$$

$$= \left[-\frac{1}{2} \mathbf{d} - t \, \vec{\mathbf{b}} \right] \times \left[-\mathbf{d} + (1 - t) \, \mathbf{b} \right] = -\frac{1}{2} (1 - t) \, \vec{\mathbf{d}} \times \vec{\mathbf{b}} + t \, \vec{\mathbf{b}} \times \vec{\mathbf{d}}$$

$$= \frac{1}{2} (1 - t + 2t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{2} (1 + t) \, \vec{\mathbf{b}} \times \vec{\mathbf{d}} = \frac{1}{$$

$$=\frac{1}{2}(1-t+2t)\vec{b}\times\vec{d}$$

$$= \frac{1}{2}(1+t)\,\vec{b}\times\vec{d}$$

$$2\Delta \overrightarrow{\mathsf{APD}}$$

Hence the result.

7

(M.P.) Vec&3D/Page: 41

0 98930 58881, BHOPAL,

32 00 000,

Solved Example: Let \vec{u} and \vec{v} are unit vectors and \vec{w} is a vector such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$ then find the value of $[\vec{u} \ \vec{v} \ \vec{w}]$.

Given $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$ Solution.

$$\Rightarrow \qquad \left(\vec{u} \times \vec{v} + \vec{u}\right) \times \vec{u} = \vec{w} \times \vec{u} \quad \Rightarrow \qquad \left(\vec{u} \times \vec{v}\right) \times \vec{u} + \vec{u} \times \vec{u} = \vec{v} \qquad (as, \ \vec{w} \times \vec{u} = \vec{v})$$

$$\Rightarrow \qquad \left(\vec{u} \;.\; \vec{u}\right) \; \vec{v} - \left(v \;.\; \vec{u}\right) \; \vec{u} + \vec{u} \times \vec{u} = \vec{v} \qquad \text{(using } \vec{u} \;.\; \vec{u} \; = 1 \text{ and } \vec{u} \times \vec{u} \; = 0, \text{ since unit vector)}$$

$$\Rightarrow \qquad \vec{v} - (\vec{v} \cdot \vec{u}) \vec{u} = \vec{v} \qquad \Rightarrow \qquad (\vec{u} \cdot \vec{v}) \vec{u} = \vec{0}$$

$$\Rightarrow$$
 $\vec{u} \cdot (\vec{v} \times \vec{w})$

$$= \vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v} + \vec{u}))$$
 (given $\vec{w} = \vec{u} \times \vec{v} + u$)

$$= \vec{u} \cdot (\vec{v} \times (\vec{u} \times \vec{v}) + \vec{v} \times \vec{u}) \qquad \qquad = \vec{u} \cdot ((\vec{v} \cdot \vec{v}) \vec{u} - (\vec{v} \cdot \vec{u}) \vec{v} + \vec{v} \times \vec{u})$$

$$= \vec{u} \cdot (|\vec{v}|^2 u - 0 + \vec{v} \times \vec{u})$$
 (as; $\vec{u} \cdot \vec{v} = 0$ from (i))

$$= |\vec{\mathbf{v}}|^2 (\vec{\mathbf{u}} \cdot \vec{\mathbf{u}}) - \vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{u}}) = |\vec{\mathbf{v}}|^2 |\vec{\mathbf{u}}|^2 - 0$$
 (as, $[\vec{\mathbf{u}} \ \vec{\mathbf{v}} \ \vec{\mathbf{u}}] = 0$)

$$=1 \qquad \qquad (as; \ |\vec{u}| = |\vec{v}| = 1) \qquad \therefore \qquad \left[\vec{u} \ \vec{v} \ \vec{w}\right] = 1$$
 Sol. Ex.: In any triangle, show that the perpendicular bisectors of the sides are concurrent. **Solution.** Let ABC be the triangle and D, E and F are respectively middle points of sides BC, CA and AB. Let the perpendicular of D and E meet at O join OF. We are required to prove that OF is \bot to AB. Let the

position vectors of A, B, C with O as origin of reference be \vec{a} , \vec{b} and \vec{c} respectively.

$$\overrightarrow{OD} = \frac{1}{2} (\vec{b} + \vec{c}), \overrightarrow{OE} = \frac{1}{2} (\vec{c} + \vec{a}) \text{ and } \overrightarrow{OF} = \frac{1}{2} (\vec{a} + \vec{b})$$

Also
$$\overrightarrow{BC} = \vec{c} - \vec{b}$$
, $\overrightarrow{CA} = \vec{a} - \vec{c}$ and $\overrightarrow{AB} = \vec{b} - \vec{a}$

Since OD
$$\perp$$
 BC, $\frac{1}{2} (\vec{b} + \vec{c}) \cdot (\vec{c} - \vec{b}) = 0$
 $\Rightarrow b^2 = c^2$

⇒
$$b^2 = c^2$$
(i

Similarly
$$\frac{1}{2} (\vec{c} + \vec{a}) \cdot (\vec{a} + \vec{c}) = 0$$

$$\Rightarrow$$
 $a^2 = c^2$ (ii) from (i) and (ii) we have $a^2 - b^2 = 0$

$$\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{b} + \vec{a}) = 0$$
 $\Rightarrow \frac{1}{2} (\vec{b} + \vec{a}) \cdot (\vec{b} - \vec{a}) = 0$

Solution.: Let the position vector of A, B, C, D be \vec{a} , \vec{b} , \vec{c} and \vec{d} respectively then

Let ABC be the triangle and D. E and F are respectively middle points of sides BC, CA and AB. Let the perpendicular of D and E meet at O join OF. We are required to prove that OF is
$$\bot$$
 to AB. Let the position vectors of A, B, C with O as origin of reference be \vec{a} , \vec{b} and \vec{c} respectively.

$$\vec{c} \cdot \vec{OD} = \frac{1}{2} \cdot (\vec{b} + \vec{c}), \quad \vec{OE} = \frac{1}{2} \cdot (\vec{c} + \vec{a}) \text{ and } \vec{OF} = \frac{1}{2} \cdot (\vec{a} + \vec{b})$$
Also $\vec{BC} = \vec{c} - \vec{b}$. $\vec{CA} = \vec{a} - \vec{c}$ and $\vec{AB} = \vec{b} - \vec{a}$

Since OD \bot BC, $\frac{1}{2} \cdot (\vec{b} + \vec{c}) \cdot (\vec{c} - \vec{b}) = 0$

$$\Rightarrow b^2 = c^2$$
Similarly $\frac{1}{2} \cdot (\vec{c} + \vec{a}) \cdot (\vec{a} + \vec{c}) = 0$

$$\Rightarrow \vec{a}^2 = c^2$$
In the position vector of A, B, C, D are four points in space. using vector methods, prove that ACC² + BD² + AD² + BC² \ge AB² + CD² what is the implication of the sign of equaliity.

Similarly $\vec{a} \cdot (\vec{c} + \vec{a}) = 0$

$$\vec{b} \cdot (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) = 0$$
Example: A, B, C, D are four points in space. using vector methods, prove that ACC² + BD² + AD² + BC² \ge AB² + CD² what is the implication of the sign of equaliity.

Similarly $\vec{a} \cdot (\vec{c} + \vec{a}) = 0$

$$\vec{b} \cdot (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{b}) \cdot (\vec{c} - \vec{b}) \cdot (\vec{c} - \vec{b})$$

$$\vec{c} \cdot (\vec{c} + \vec{b}) \cdot (\vec{b} + \vec{a}) = 0$$

$$\vec{c} \cdot (\vec{c} + \vec{b}) \cdot (\vec{c} - \vec{b})$$

$$\vec{c} \cdot (\vec{c} + \vec{b}) \cdot (\vec{c} - \vec$$

$$= \left(\vec{a} - \vec{b}\right) \cdot \left(\vec{a} - \vec{b}\right) + \left(\vec{c} - \vec{d}\right) \cdot \left(\vec{c} - \vec{d}\right) + \left(\vec{a} - \vec{b} - \vec{c} - \vec{d}\right) \ge AB^2 + CD^2$$

$$= AB^2 + CD^2 + \left(\vec{a} + \vec{b} - \vec{c} - \vec{d} \right) \cdot \left(\vec{a} + \vec{b} - \vec{c} - \vec{d} \right) \le AB^2 + CD^2 \\ AC^2 + BD^2 + AD^2 + BC^2 \ge AB^2 + CD^2$$

for the sign of equality to hold,
$$\vec{a} + \vec{b} - \vec{c} - \vec{d} = 0$$

$$\vec{a} - \vec{c} = \vec{d} - \vec{b}$$

AC and BD are collinear the four points A, B, C, D are collinear \Rightarrow

