

Department of Psychiatry and Behavioral Sciences

Machine Learning for Neuroimaging

Autumn 2023

Session 5 or 6 – 10/2023 Statistical analysis on ML models

Statistical Tests for Machine Learning

- Is classifier 1 significantly better than classifier 2?
- Does the disease impact the brain (structural or functional organization)?
 - Is the accuracy of the classifier significantly better than chance?
- Is the association between X and Y stronger in females than males?
 - Is the classifier significantly more accurate in females?
- Is the association between X and Y stronger than the association between X and Z

Stanford | Department of Psychiatry MEDICINE | and Behavioral Sciences

Statistical Tests for Machine Learning

Beat SOTA model by 0.6%

Statistical Tests for Model Validation (Classification)

Chi-Squared Test

Null Hypothesis: the ML prediction is no better than guessing (50%/50%)

 X^2 follows a Chi-squared distribution of DOF = 1 Observed $X^2 = \frac{(60-50)^2}{50} + \frac{(40-50)^2}{50} \rightarrow p=0.045$

Prediction

Correct	Wrong	Total	
60	40	100	

Expected

Correct	Wrong	Total
50	50	100

Statistical Tests for Model Validation (Classification)

Chi-Squared Test

Null Hypothesis: the ML prediction is impartial to males and females

Review the example of handedness in males and females (X^2 follows Chi-squared distribution of DOF = 1

Prediction

		Correct	Wrong	Total
rts	Male	75	35	110
Coho	Female	64	26	90
O	Total	139	61	200
		Fxnec	ted	

ts		Control	Disease
ohorts	Control	76.45	33.35
O	Disease	62.55	27.45

Comparing two ML models on a cohort

Chi-Squared Test

Null Hypothesis: the two ML models are equally accurate (when tested on the same dataset)

Prediction

els		Correct	Wrong	Total
Mod	Model 1	75	25	100
ML	Model 2	64	36	100
	Total	139	61	200

- Violating the independent samples assumption!
- Duplicating the 100 samples to 200 samples!
- Do NOT construct contingency matrix like this!

McNemar's Test

 McNemar's test is applied to 2 × 2 contingency tables with matched pairs of subjects to determine whether the row and column marginal frequencies are equal.

Null Hypothesis: the two ML models are equally accurate on the same cohort

Null Hypothesis: marginal frequencies are equal.

Model 2 Correct Wrong Total Model 5 65 Correct 60 20 15 35 Wrong **Marginal frequencies** 80 20 100 Total

McNemar's Test

 McNemar's test is applied to 2 × 2 contingency tables with matched pairs of subjects to determine whether the row and column marginal frequencies are equal.

Null Hypothesis: the two ML models are equally accurate on the same cohort

Null Hypothesis: off-diagonal frequencies are equal.

Pitfall of Class Imbalance

Model 1: Always predicting control

Prediction

ruth		Control	Disease	Total
-	Control	80	0	80
Sround	Disease	20	0	20
	Total	100	0	100

Model 2: Random guessing

Prediction

	Control	Disease	Total
Control	40	40	80
Disease	10	10	20
Total	50	50	100
	Disease	Control 40 Disease 10	Control 40 40 Disease 10 10

McNemar's test p<0.0001, Model 1 is better?

Model 2

	Correct	Wrong	Total
Correct	40	40	80
Wrong	10	10	20
Total	50	50	100

Both models are non-informative!

Balanced Accuracy and AUC

- Alternative metrics for binary classifiers
 - Balanced accuracy (Bacc): (true positive rate + true negative rate)/2
 - Area under the ROC curve (AUC)
- Testing Procedures
 - Hardin-Shumway test
 - Build probability distribution of Model-1 AUC (or Bacc) via bootstrapping
 - Compare Model-2 AUC (or Bacc) to the Model-1 distribution to derive p-value
 - DeLong's test
 - the Mann-Whitney *U*-statistics

Statistical Significance and Normalized Confusion Matrices, Photogramm. Eng. Remote Sens, 1997 Comparing areas under two or more correlated reciever operating characteristics curves: a nonparamentric approach. Biometrics, 1988

Statistical Tests for Model Validation (Regression)

Null Hypothesis: the ML prediction is no better than guessing

Test for Pearson's correlation between y and y'

Statistical Tests for Model Validation (Regression)

Null Hypothesis: Model 1 prediction is no better than Model 2 prediction

- Absolute error of a sample $err_i = |y'_i y_i|, i = 1, ..., N$
 - Errors associated with N samples by Model-1 $\{err_i^1 | i = 1, ..., N\}$
 - Errors associated with N samples by Model-2 $\{err_i^2 | i = 1, ..., N\}$
- Compare $\{err_i^1\}$ and $\{err_i^2\}$ by paired *t*-test

Pitfall of Cross-Validation

Accuracy scores from K-fold or Monte-Carlo Simulation

- Scores are not independent
- Arbitrarily inflated sample size

Significantly better by *t*-test?