بسم الله الرحمن الرحيم

المادة: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي ١٤٣٩/١٤٣٨ هـ الاختبار الفصلي الثاني

اسم الطالب:	الرقم الجامعي:
أستاذ المقرر:	الدرجة:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
A	C	D	C	A	В	C	В	D	В	C	A	В	A	D

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
D	В	A	D	A	В	C	A	В	C	A	В	C	В	D

السؤال الأول:

ليكن لدينا البرنامج الخطي التالي:

$$\max z = 3x_1 + 2x_2$$

s.t.

$$2x_1 + 3x_2 \le 6$$
 :(1) القيد

$$4x_1 + 2x_2 \le 6$$
 :(2) القيد

$$2x_1 \leq 3$$
 القيد (3) القيد

$$-4x_1 + 2x_2 \le 4$$
 القيد (4) القيد

$$x_1 \ge 0$$
 , $x_2 \ge 0$

$$x_1^* = \frac{3}{4}$$
 , $x_2^* = \frac{3}{2}$, $z^* = \frac{21}{4}$:الحل الأمثل هو

1. القيود الرابطة هي القيدان:

D	الأول والثاني

2. الموارد المتوفرة هي موارد القيدان:

3. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (1) هي:

4. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (1) هو:

5. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (2) هي:

6. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (2) هو:

D	1	C	0.5	В	0.625	A	2
---	---	---	-----	---	-------	---	---

7. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (3) هو:

D 1.5

C 2

B 1

A 3

8. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (4) هو:

D 2

C 3

B 4

A 1

9. فترة الحساسية لمعامل المتغير x_1 في دالة الهدف هي:

 $\mathbf{D} \qquad \frac{4}{3} \le c_1 \le 1$

 $\mathbf{B} \qquad \frac{2}{3} \le c_1 \le 4$

A $1.5 \le c_1 \le 2$

10. فترة الحساسية لمعامل المتغير x_2 في دالة الهدف هي:

D $4.5 \le c_2 \le 6$

C $3 \le c_2 \le 4$

B $1.5 \le c_2 \le 4.5$

 $\mathbf{A} \qquad 2 \le c_2 \le 6$

السؤال الثاني:

ليكن لدينا البرنامج الخطى التالى:

max
$$z = 2x_1 + 3x_2$$

s.t. $3x_1 + 5x_2 \le 15$
 $4x_1 + 4x_2 \le 16$
 $x_1 \ge 0$, $x_2 \ge 0$

11. القيود الخطية في الصيغة القياسية لهذا البرنامج الخطى هي:

$$\begin{array}{c|c}
\mathbf{D} & 3x_1 + 5x_2 + s_1 = 15 \\
4x_1 + 4x_2 + s_2 = 16 \\
x_1, x_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
\mathbf{B} & 3x_1 + 5x_2 + s_1 \le 15 \\
4x_1 + 4x_2 + s_2 \le 16 \\
x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
A & 3x_1 + 5x_2 + s_1 = 15 \\
\hline
4x_1 + 4x_2 + s_2 = 16 \\
x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

12. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} = \begin{pmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 3, 0, 4) \end{pmatrix}$$

$$\mathbf{C} \begin{array}{|c|} \hline (x_1, x_2, s_1, s_2) = \\ (2.5, 1.5, 0, 0) \\ \hline \end{array}$$

$$\mathbf{B} (x_1, x_2, s_1, s_2) = (4, 0, 3, 0)$$

$$\mathbf{B} \begin{bmatrix} (x_1, x_2, s_1, s_2) = \\ (4, 0, 3, 0) \end{bmatrix} \quad \mathbf{A} \begin{bmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 0, 15, 16) \end{bmatrix}$$

13. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

14. إذا كانت المتغيرات الأساسية هي (x_1, s_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} = \begin{pmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 4, -5, 0) \end{pmatrix}$$

$$\begin{array}{c|c}
\mathbf{C} & (x_1, x_2, s_1, s_2) = \\
 & (5, 0, 0, -4)
\end{array}$$

$$\mathbf{B} = \begin{pmatrix} (x_1, x_2, s_1, s_2) = \\ (0, 5, -4, 0) \end{pmatrix}$$

$$\mathbf{B} (x_1, x_2, s_1, s_2) = (0, 5, -4, 0) \mathbf{A} (x_1, x_2, s_1, s_2) = (0, 3, 0, 4)$$

15. إذا كانت المتغيرات الأساسية هي (x_1, s_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

_	.,
D	K

A L

16. إذا كانت المتغيرات الأساسية هي (x_1, s_2) ، فإن الحل الأساسي سيكون:

غیر ممکن	
----------	--

السؤال الثالث:

$$\max z = -2x_1 + x_2 - 3x_3$$

ليكن لدينا البرنامج الخطى التالى:

s.t.
$$2x_1 + x_2 + 3x_3 \le 2$$
$$-x_1 + 2x_2 + 2x_3 \le 2$$
$$x_1, x_2, x_3 \ge 0$$

17. بعد تحويل البرنامج الخطى للصيغة القياسية ، سوف يتم تكوين جدول السمبلكس المبدئي التالى:

B	BV	x_1	x_2	x_3	s_1	s_2	RHS
•	Z	2	-1	3	0	0	0
	s_1	2	1	3	1	0	2
	s_2	-1	1 2	2	0	1	2

A
 BV

$$x_1$$
 x_2
 x_3
 s_1
 s_2
 RHS

 z
 2
 -1
 3
 0
 0
 0

 x_1
 2
 1
 3
 1
 0
 2

 x_2
 -1
 2
 2
 0
 1
 2

18. في جدول السمبلكس المبدئي ، المتغير الغير أساسي الذي سوف يدخل ليصبح متغير أساسي هو:

$$\mathbf{C}$$
 x_2

$$\mathbf{B}$$
 x_3

$$\mathbf{A}$$
 s_1

19. في جدول السمبلكس المبدئي ، اختبار النسبة الصغرى (ratio test) هو:

	ratio test
D	2/3 = 0.67
	2/2 = 1

C
$$\frac{\text{ratio test}}{1/2 = 0.5}$$

 $2/2 = 1$

$$\begin{array}{c|c}
 & \text{ratio test} \\
\hline
 & 2/1 = 2 \\
 & 2/2 = 1
\end{array}$$

A
$$\frac{\text{ratio test}}{2/2 = 1}$$

 $2/-1 = -2$

20. في جدول السمبلكس المبدئي ، المتغير الأساسي الذي سوف يخرج ليصبح متغير غير أساسي هو:

D	x_1	C	x_3	В	<i>S</i> ₁	A	<i>s</i> ₂
---	-------	---	-------	---	-----------------------	---	-----------------------

السؤال الرابع:

إذا كان لدينا جدول السمبلكس التالي لمسألة ما (دالة الهدف هي دالة تعظيم: max z):

_	BV	x_1	x_2	x_3	S_1	s_2	RHS
	Z	3	4	- 3	0	0	0
	S_1	- 2	1	2	1	0	4
	s_2	1	2	2	0	1	2

بعد معرفة المتغير الغير أساسي الداخل والمتغير الأساسي الخارج وإكمال عملية تحديث الجدول، سنحصل على جدول

السمبلكس التالى:

BV	x_1	x_2	x_3	s_1	s_2	RHS
Z	E				F	G
	Н	K				L
M					N	

21. القيمة التي في موقع الحرف E هي:

D	ليس من الإجابات السابقة	C	4.5	В	1.5	A	0	
---	-------------------------	---	-----	---	-----	---	---	--

22. القيمة التي في موقع الحرف F هي:

D ليس من الإجابات السابقة C	0 B	1.5	A -1.5
-----------------------------	------------	-----	---------------

23. القيمة التي في موقع الحرف G هي:

D ليس من الإجابات السابقة C 2	B -3	A 3	
-------------------------------	-------------	------------	--

24. القيمة التي في موقع الحرف H هي:

D ليس من الإجابات السابقة C – 3	B -1	A 2	
---------------------------------	-------------	------------	--

25. القيمة التي في موقع الحرف K هي:

ت السابقة D	ليس من الإجابان	C	3	В	- 1	A	2
-------------	-----------------	---	---	---	-----	---	---

26. القيمة التي في موقع الحرف ١ هي:

D	ليس من الإجابات السابقة	C	1	В	6	A	2	
		·				· · · · · · · · · · · · · · · · · · ·		

هي:	M	الحرف	موقع	في	الذي	المتغير	.27
-----	---	-------	------	----	------	---------	-----

28. القيمة التي في موقع الحرف N هي:

D فيس من الإجابات السابقة C 0 B 1 A 0.5

29. الحل الأساسي الممكن الموافق لجدول السمبلكس بعد التحديث هو:

 $\mathbf{D} \qquad \qquad \mathbf{C} \qquad (x_1, x_2, x_3, s_1, s_2) = \\ (0, 0, 0, 2, 1) \qquad \mathbf{B} \qquad (x_1, x_2, x_3, s_1, s_2) = \\ (0, 0, 1, 2, 0) \qquad \mathbf{A} \qquad (x_1, x_2, x_3, s_1, s_2) = \\ (0, 0, 1, 2, 0) \qquad \mathbf{A} \qquad (0, 0, 1, 6, 0)$

30. الحل الأساسي الممكن الموافق لجدول السمبلكس بعد التحديث يعتبر حل:

 D
 C
 غیر محدود
 B
 غیر ممکن
 B
 مثل