Ejercicios 32-42

Luis Gerardo Arruti Sebastian Sergio Rosado Zúñiga

Ej 32. Mod(R) es normal y conormal.

Demostración. Se tiene que, por el Ej. 28, Mod(R) tiene objeto cero y más aún, que $\forall M, N \in Mod(R)$ el morfismo 0 de M en N está dado por

$$0_{M,N}: M \to N$$
$$m \mapsto 0_N,$$

con 0_N el neutro aditivo de N. En vista de lo anterior, en lo sucesivo prescindiremos de los subíndices en la notación de los morfismos cero.

Normal Sean $\alpha:M\to N$ en $Mod(R),P:={}^{N}/_{Im(\alpha)}$ y β el epi canónico dado por

$$\beta:N\rightarrow P$$

$$n\mapsto n+In\left(\alpha\right).$$

Afirmamos que α es un kernel para β . En efecto:

Dado que $Im(\alpha)$ es el neutro aditivo de P y $Im(\alpha) = \{\alpha(m) \mid m \in M\}$, se tiene que $\beta\alpha = 0$.

Supongamos ahora que $\alpha': M' \to N$ en Mod(R) es tal que $\beta\alpha' = 0$, así

$$\beta (\alpha'(a)) = Im(\alpha) \qquad \forall a \in M'$$

$$\implies Im(\alpha') \subseteq Im(\alpha)$$

De lo cual se sigue que $\forall a \in M' \exists b_a \in M$ tal que $\alpha(b_a) = \alpha'(a)$. Más aún, como α es un monomorfismo se tiene que tal b_a es único, y por lo tanto la siguiente aplicación es una función bien definida

$$\gamma: M' \to M$$
$$a \mapsto b_a.$$

Sean $r \in R$, $a_1, a_2 \in M'$. Así

$$\alpha (b_{ra_1-a_2}) = \alpha' (ra_1 - a_2) = r\alpha' (a_1) - \alpha (a_2)$$

$$= r\alpha (b_{a_1}) - \alpha (b_{a_2}) = \alpha (rb_{a_1} - b_{a_2}),$$

$$\implies b_{ra_1-a_2} = rb_{a_1} - b_{a_2}, \qquad \alpha \text{ es mono}$$

$$\implies \gamma (ra_1 - a_2) = r\gamma (a_1) - \gamma (a_2).$$

Con lo cual γ es un morfismo de R-módulos que satisface que, si $a \in M'$, entonces

$$\alpha \gamma (a) = \alpha (b_a) = \alpha' (a) ,$$

$$\alpha \gamma = \alpha' .$$

Más aún, puesto que α es mono, γ es el único morfismo de R-módulos de M' en M que satisface lo anterior, con lo cual se ha verificado la afirmación.

Conormal Ahora supongamos que $\alpha: M \to N$ es epi en Mod(R) y denotemos por β al morfismo inclusión de $Ker(\alpha)$ en M. Afirmamos que α es un cokernel para β , en efecto:

Como $Ker(\alpha) = \{m \in M \mid \alpha(m) = 0_N\}$, entonces $\alpha\beta = 0$. Sea $\alpha' : M \to N'$ en Mod(R) tal que $\alpha'\beta = 0$, así

$$Ker(\alpha') \supseteq Im(\beta) = Ker(\alpha)$$
.

Como α es epi se tiene que $N=Im\left(\alpha\right)$. Así, consideremos la aplicación

$$\gamma: N \to N'$$
 $\alpha(m) \mapsto \alpha'(m)$,

la cual es una función bien definida, puesto que si $m, o \in M$ son tales que $\alpha\left(m\right) = \alpha\left(o\right)$, entonces

$$m - o \in Ker(\alpha) \subseteq Ker(\alpha')$$

 $\implies \alpha'(m) = \alpha'(o).$

Más aún, es un morfismo de R-módulos, pues α y α' lo son, que satisface que $\gamma\alpha=\alpha'$. Finalmente γ es el único morfismo de R-módulos que satisface la igualdad anterior dado que α es epi.

Ej 33. Pruebe que Mod(R) es colocalmente pequeña.

Demostraci'on. Este ejercicio es consecuencia de varios resultados pasados: Dado un anillo R se cumple que:

- \blacksquare Mod(R) tiene kerneles y Cokerneles (ejercicios 29 y 30 respectivamente).
- Mod(R) es localmente pequeña (ejercicio 31).
- Mod(R) es normal y conormal (ejercicio 32).

Entonces por el teorema 1.6.3 Mod(R) es colocalmente pequeña.

 \mathbf{Ej} 34. Sean $\mathscr C$ una categoría exacta y

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

$$\downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{\alpha'} B' \xrightarrow{\beta'} C' \longrightarrow 0$$

un diagrama en $\mathscr C$ con filas exactas. Pruebe que $\exists f:A\to A'$ tal que $\gamma\alpha=\alpha'f\iff\exists g:C\to C'$ tal que $\beta'\gamma=g\beta$. Mas aún, dado uno de ellos ("f" o "g") el otro queda deteminado univocamente.

Demostración. Supongamos tenemos el diagrama de las hipotesis sobre una categoría exacta \mathscr{C} . Como α' es mono y la sucesión es exacta, se tiene que $\alpha' \simeq Im(\alpha') \simeq Ker(\beta')$.

Si existe $g: C \to C'$ tal que $\beta' \gamma = g\beta$, entonces $\beta'(\gamma \alpha) = (\beta' \gamma)\alpha = g\beta\alpha$ = g0 = 0, por la pripiedad universal del $Ker(\beta')$ existe una única $f: A \to A'$ tal que $\alpha' f = \gamma \alpha$.

Ahora, como $\mathscr C$ es exacta, por 1.7.3 se tiene el siguiente diagrama con renglones exactos en $\mathscr C^{op}$

$$0 \longrightarrow C' \xrightarrow{(\beta')^{op}} B' \xrightarrow{(\alpha')^{op}} A' \longrightarrow 0$$

$$\downarrow^{\gamma^{op}} \downarrow^{\alpha^{op}} A \longrightarrow 0.$$

Si existiera $f: A \to A'$ tal que $\alpha' f = \gamma \alpha$ entonces existe $f^{op} \in Mor(\mathscr{C}^{op})$ tal que $\alpha^{op} \gamma^{op} = f^{op} (\alpha')^{op}$. Así, como \mathscr{C}^{op} es exacta y como se tienen las hipótesis de la primera parte de la demostración, entonces existe una única $q^{op}: C' \to C$ tal que $\beta^{op} q^{op} = \gamma^{op} (\beta')^{op} = (\beta' \gamma)^{op}$.

Por lo tanto existe una única $g: C \to C'$ tal que $(\beta'\gamma)^{op} = \beta^{op}g^{op} = (g\beta)^{op}$ por lo tanto $\beta'\gamma = g\beta$.

Ej 35. Construiremos la noción dual a la intersección de una familia de subobjetos.

Intersección: $\mu: B \to A$ es una intersección para $\{\mu_i: A_i \hookrightarrow A\}$ en $\mathscr C$ si

- IntI) $\forall i \in I \exists \lambda_i : B \to A_i \text{ tal que } \mu = \mu_i \lambda_i;$
- IntII) si $\nu: C \to A$ satisface que $\forall i \in I \exists \eta_i: C \to A_i$ tal que $\nu = \mu_i \eta_i$, entonces $\exists \eta: C \to B$ tal que $\nu = \mu \eta$.

Intersección para $\{\mu_i^{op}: B \to A \text{ es una intersección para } \{\mu_i^{op}: A_i \hookrightarrow A\}$ en $\mathscr C$ si

Int^{op}I) $\forall i \in I \exists \lambda_i^{op} : B \to A_i \text{ tal que } \mu^{op} = \mu_i^{op} \lambda_i^{op};$

Int^{op}II) si $\nu^{op}: C \to A$ satisface que $\forall i \in I \exists \eta_i^{op}: C \to A_i$ tal que $\nu^{op} = \mu_i^{op} \eta_i^{op}$, entonces $\exists \eta^{op}: C \to B$ tal que $\nu^{op} = \mu^{op} \eta^{op}$.

Así, aplicando el funtor $D_{\mathscr{C}^{op}}$ a las flechas que aparecen en lo anterior, y sabiendo que el dual de mono es epi, se llega a la siguiente definición **Intersección***:

Definición. $\beta:A\to B$ es una **cointersección** para $\{\beta_i:A\twoheadrightarrow A_i\}$ en $\mathscr C$ si

CointI) $\forall i \in I \exists \delta_i : A_i \to B \text{ tal que } \beta = \delta_i \beta_i;$

CointII) si $\omega : A \to C$ satisface que $\forall i \in I \exists \gamma_i : A_i \to C$ tal que $\omega = \gamma_i \beta_i$, entonces $\exists \gamma : B \to C$ tal que $\omega = \gamma \beta$.

Ej 36. Sean $\mathscr C$ una categoría exacta y $\theta: A \twoheadrightarrow A', \{\alpha_i: A_i \hookrightarrow A\}_{i \in I}$ y, $\forall i \in I, \beta_i := \operatorname{coker}(\alpha_i)$, en $\mathscr C$. Si θ es una cointersección para $\{\beta_i\}_{i \in I}$, entonces $\operatorname{ker}(\theta)$ es una unión para $\{\alpha_i\}_{i \in I}$.

Demostraci'on. Denotemos por k_θ un kernel de θ . Se tiene que k_θ es un subobjeto de A.

 $I = \varnothing$ En este caso, por la vacuidad de I, basta con verificar que si $f: A \to B$ y $\mu: B' \hookrightarrow B$, entonces θ es llevado a μ vía f. Notemos que por vacuidad f satisface la condición CointI) para la familia $\{\beta_i\}_{i \in I}$, y así por la propiedad universal de la cointersección, CointII), $\exists \ \gamma: A' \to B$ tal que $f = \gamma \theta$. Con lo cual $fk_{\theta} = f\gamma \ (\theta k_{\theta}) = 0$, y por tanto si denotamos por ρ al morfismo 0 de A en B' se tiene que

$$fk_{\theta} = 0 = \rho \mu$$

i.e. θ es llevado a μ vía f.

 $I \neq \emptyset$ Dado que θ es una cointersección para $\{\beta_i\}_{i \in I}$ se tiene en partícular que $\forall i \in I \exists \eta_i : A/A_i \to A'$ tal que $\theta = \eta_i \beta_i$, así

$$\theta \alpha_i = (\eta_i \beta_i) \alpha_i = \eta_i (\beta_i \alpha_i) = 0,$$
 $\beta_i = coker (\alpha_i)$

Luego para cada $i \in I$, por la propiedad universal del kernel, se tiene que $\exists ! \ \lambda_i : A_i \to Ker(\theta)$ tal que $\alpha_i = k_\theta \lambda_i$. Por lo tanto $\forall \ i \in I \ \alpha_i \le k_\theta$.

Ahora, sean $f:A\to B$ y $\mu:B'\hookrightarrow B$ en $\mathscr C$ tales que α_i es llevado a μ vía $f,\ \forall\ i\in I,$ i.e., tales que $\forall\ i\in I\ \exists\ \rho_i:A_i\to B'$ de modo que el siguiente diagrama conmuta

$$\begin{array}{ccc}
A_i & \xrightarrow{\rho_i} & B' \\
\alpha_i \downarrow & & \downarrow \mu \\
A & \xrightarrow{f} & B
\end{array}$$
(*)

Si c_{μ} es un cokernel para μ , entonces por lo anterior se tiene que

$$(c_{\mu}f) \alpha_i = (c_{\mu}\mu) \rho_i = 0, \quad \forall i \in I$$

Luego, aplicando para cada $i \in I$ la propiedad universal del cokernel, se tiene que $\forall i \in I \; \exists ! \; \chi_i : A_{A_i} \to B_{B'}$ tal que

$$c_{\mu}f = \chi_i coker\left(\mu_i\right) = \chi_i \beta_i.$$

Esto último, por la propiedad universal de la cointersección, garantiza que $\exists \ \chi: A' \to B_{B'}$ tal que el siguiente diagrama conmuta

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\theta \downarrow & & \downarrow^{c_{\mu}} \\
A' & \xrightarrow{\chi} & B_{B'}
\end{array}$$
(**)

De (*) y (**) se sigue que

$$c_{\mu}(fk_{\theta}) = \chi(\theta k_{\theta})$$
$$= 0,$$

lo cual, en conjunto a que

$$\mu \simeq Im(\mu) \simeq Ker(Coker(\mu)) \simeq Ker(c_{\mu}), \quad en Mon_{\mathscr{C}}(-,B)$$

(pues \mathscr{C} es exacta y μ es mono) garantiza que por medio de la propiedad universal del kernel $\exists ! \ \rho : Ker(\theta) \to B'$ tal que $fk_{\theta} = \rho \mu$, i.e. el siguiente diagrama conmuta

$$Ker (\theta) \xrightarrow{\rho} B'$$

$$\downarrow^{\mu} A \xrightarrow{f} B$$

y así se tiene lo deseado.

Ej 37. Sea \mathscr{C} una categoría y $\{A_i\}_{i\in I}$ en \mathscr{C} . Pruebe que si $I=\emptyset$, el producto de esa familia (si es que existe) es un objeto final en \mathscr{C} .

Notación: En una categoría \mathscr{C} con objeto cero, para cada $\{A_i\}_{i\in I}$ en \mathscr{C} , se define la familia de morfismos $\delta_i^A := \{\delta_{ij}^A : A_i \to A_j\}_{(i,j)\in I^2}$ en \mathscr{C}

$$\delta_{i,j}^A := \left\{ \begin{array}{ccc} 0 & \text{si} & i \neq j \\ 1_{A_j} & \text{si} & i = j \end{array} \right.$$

Demostración. Como $I=\emptyset$ por vacuidad se tiene que para todo $C\in\mathscr{C}$, se tiene una familia $\{\alpha_i:C\to A_i\}_{i\in I}$ en \mathscr{C} . Entonces (puesto que el producto existe) existe una única $\alpha:C\to P$ tal que $\pi_i\alpha=\alpha_i \quad \forall i\in I$, donde π_i son los morfismos que cumplen la propiedad universal del producto. Si existiera otro morfismo $\gamma:C\to P$ éste cumpliría por vacuidad que $\pi_i\gamma=\alpha_i \quad \forall i\in I$, y como existe un único morfismo con esta propiedad, tenemos que para cada objeto $C\in\mathscr{C} \quad \big|\operatorname{Hom}_{\mathscr{C}}(C,P)\big|=1$ por lo que P es objeto final.

Ej 38. Pruebe que, $\forall \{A_i\}_{i\in I}$ en Sets, el producto de conjuntos (cartesiano) es el categórico.

Demostración. Primero se mostrará el caso en que $I \neq \emptyset$ y $A_j \neq \emptyset \quad \forall j \in J$, definimos $P = \{f : I \to \bigcup_{i \in I} A_i\}$ y $\{\pi_i : P \to A_i\}_{i \in I}$ las funciones tales que para cada

$$x: I \to \bigcup_{i \in I} A_i, \qquad \pi_j(x) = x(j) \in A_j \quad \forall j \in I.$$

Observemos primero que si $Q = \emptyset$ entonces α_i es la función vacia para cada $i \in I$, entonces tomando $\alpha: Q \to P$ como la función vacia, se tiene la propiedad universal del producto en P. De la misma forma, si alguna $\alpha_j = \emptyset$ para alguna $i \in I$, entonces $Q = \emptyset$ y se repite el argumento anterior.

Supongamos entoces que existe $Q \in Sets$ con $Q \neq \emptyset$ tal que existe la familia $\{\alpha_i : Q \to A_i\}_{i \in I}$ en Sets, como $A_j \neq \emptyset \quad \forall j \in I$ entonces $\alpha_i \neq \emptyset \quad \forall i \in I$, además como π_i es suprayectiva para toda $i \in I$, se tiene que para cada $i \in I$ y $\forall q \in Q$, $\alpha_i(q) = \pi_i(r_q)$ para algún $r_q \in P$. Así definimos $\alpha: Q \to P$ como $\alpha(q) = r_q$.

Se afirma que α está bien definida.

En efecto, si r_q y s_q son elementos en P tales que $\pi_i(r_q) = \pi_i(s_q) = q \quad \forall i \in I$, entonces $r_q(i) = s_q(i) \quad \forall i \in I$ pero $r_q, s_q : I \to \bigcup_{i \in I} A_i$, entonces $r_q = s_q$. Mas aún, $\pi_i \alpha(q) = \pi_i(r_q) = \alpha_i(q)$.

Supongamos que existe $\beta: Q \to P$ tal que $\pi_i \beta = \alpha_i \quad \forall i \in I$. Por definición, para toda $q \in Q$, $\beta(q) \in P$, es decir, $\beta(q)$ es una función con dominio I y contradominio $\bigcup_{i \in I} A_i$. Así, para toda $i \in I$

$$(\alpha(q))(i) = \pi_i(\alpha(q))$$

$$= \alpha_i(q)$$

$$= \pi_i(\beta(q))$$

$$= \beta(q)(i).$$

Por lo tanto se cumple la unicidad.

Supongamos ahora que $A_j = \emptyset$ para alguna $j \in I$. Se tiene entonces que el producto cartesiano de la familia es \varnothing , pues no existe una función $u:I \to \bigcup_{i \in I} A_i$ tal que $u(j) \in A_j$. Así para cada $i \in I$ denotemos por π_i a la función vacía de \varnothing en A_i . Sean $Q \in Sets$ y $\{\alpha_i: Q \to A_i\}_{i \in I}$ en Sets, en partícular se tendría que existe una función de Q en $A_j = \varnothing$ y por tanto necesariamente $Q = \varnothing$. Así, $\forall i \in I$, $\alpha_i = \pi_i = \pi_i 1_\varnothing$, y más aún la función identidad $1_\varnothing: \varnothing \to \varnothing$ es la única que satisface lo anterior puesto que es la única función en $Hom_{Sets}(\varnothing, \varnothing)$. Con lo cual se tiene que \varnothing en conjunto a la familia $\{\pi_i\}_{i \in I}$ es un producto categórico para $\{A_i\}_{i \in I}$.

Por último se mostrará el caso en que $I = \emptyset$.

Sea $\{A_i\}_{i\in I}$ una familia de conjuntos. Sea P un conjunto con un único elemento * y $\{\pi_i: P \to A_i\}_{i\in I}$ una familia vacia de funciones. Observamos que, para toda $A \in Sets$ se tiene que: Si $A = \emptyset$, existe $\varphi: A \to P$ la función vacia y esta es única.

Si $A \neq \emptyset$ existe $\varphi: A \to P$ la función constante, donde $\varphi(x) = *$, esta es única, pues si $f: A \to P$ es función, para toda $r \in A$ se tiene que $f(a) \in P$, por lo que f(a) = *. Así φ es única.

Ahora, sea $Q \in Sets$ y $\{\alpha_i : Q \to A_i\}_{i \in I}$ en Sets, por lo anterior existe una única $\varphi : Q \to P$ y es tal que $\forall i \in I$ $\pi_i \alpha = \alpha_i$ (Como I es vacio esta propiedad se cumple por vacuidad). Así P con la familia $\{\pi_i : P \to A_i\}_{i \in I}$ es un producto en Sets.

Ahora, el producto cartesiano de $\prod_{i \in I} X_i = \{g : I \to \bigcup_{i \in I} X_i \mid \forall i \in I \quad g(i) \in X_i\}$, si I es vacio, la única $g : I \to \bigcup_{i \in I} X_i$ es la función vacia f_\emptyset , por lo que $\prod_{i \in I} X_i = \{f_\emptyset : \emptyset \to \emptyset\} = \{\emptyset\}$, el cual es un conjunto con un único elemento.

Ej 39. Sean \mathscr{C} una categoría y $\{A_i\}_{i\in I}$ en \mathscr{C} . Si $I=\varnothing$ y dicha familia admite un coproducto, entonces este es un objeto inicial en \mathscr{C} .

Demostración. Se tiene que, por definición, dada una familia de objetos $\{A_i\}_{i\in I}$, un objeto C en conjunto a una familia de morfismos $\{\mu_i:A_i\to C\}$ es un coproducto para $\{A_i\}_{i\in I}$ si $\forall B\in y\ \forall \{\beta_i:A_i\to B\}\ \exists!\ \alpha:C\to B$ tal que $\beta_i=\alpha\mu_i$. De modo que si $I=\varnothing$ lo anterior se reduce a que $\forall B\in\mathscr{C}$ existe un único morfismo $\alpha\in Hom_\mathscr{C}(C,B)$, i.e. C es un objeto

inicial en \mathscr{C} .

Notemos que, más aún, si C es un objeto inicial entonces C en conjunto una familia vacía de morfismos es un coproducto para cualquier familia vacía de objetos en \mathscr{C} .

Ej 40. Sean $\mathscr C$ una categoría, $C \in \mathscr C$ y $\{\mu_i : A_i \to C\}_{i \in I}$ en $\mathscr C$. C y $\{\mu_i : A_i \to C\}_{i \in I}$ es un coproducto para $\{A_i\}_{i \in I}$ en $\mathscr C$ si y sólo si C y $\{\mu_i^{op} : C \to A_i\}_{i \in I}$ es un producto para $\{A_i\}_{i \in I}$ en $\mathscr C^{op}$.

Demostración. Si $I = \emptyset$ la equivalencia se sigue de los ejercicios 37 y 39, y que $A \in \mathscr{C}$ es un objeto inicial si y sólo si $A \in \mathscr{C}^{op}$ es un objeto final. En adelante supondremos que $I \neq \emptyset$.

Para la necesidad comencemos notando que C también es un objeto de \mathscr{C}^{op} . Sean A y $\{\gamma_i^{op}:A\to A_i\}_{i\in I}$ en \mathscr{C}^{op} , luego A es un objeto de \mathscr{C} y $\{\gamma_i:A_i\to A\}$ es una familia de morfismos en \mathscr{C} , con lo cual por la propiedad universal del coproducto $\exists !\ \alpha:C\to A$ tal que $\forall\ i\in I\ \gamma_i=\alpha\mu_i$ en \mathscr{C} . De modo que α^{op} satisface que $\alpha^{op}\in Hom_{\mathscr{C}^{op}}(A,C)$ y $\forall\ i\in I$ $\gamma_i^{op}=\mu_i^{op}\alpha^{op}$. Finalmente, si suponemos que $\beta^{op}:A\to C$ satisface que $\forall\ i\in I\ \gamma_i^{op}=\mu_i^{op}\beta^{op}$, entonces $\beta\in Hom_{\mathscr{C}}(C,A)$ y $\forall\ i\in I\ \gamma=\beta\mu_i$. De esto último y la unicidad de α se sigue que $\beta=\alpha$ en \mathscr{C} , y así $\beta^{op}=\alpha^{op}$ en \mathscr{C}^{op} , con lo cual se tiene lo dseeado.

La suficiencia se verifica en forma análoga, puesto que tomar una familia de morfismos en la categoría $\mathscr C$ induce una familia de morfismos en $\mathscr C^{op}$, empleando ahora la propiedad universal del producto.

Ej 41. Pruebe que Mod(R) tiene productos y coproductos.

Demostración. Por los ejercicios 37 y 39, se tiene que si el producto y el coproducto existen, en el caso de familias no vacias, entonces estos deben ser un objeto inicial y un objeto final respectivamente, los cuales para Mod(R) existen y son el objeto cero.

Afirmamos entonces que, si $I = \emptyset$, $CP = \{0_R\}$ junto a $\{\pi_i : CP \to A_i\}_{i \in I}$ es el producto de $\{A_i\}_{i \in I}$ y junto a $\{\mu_i : A_i \to CP\}_{i \in I}$ es el coproducto de $\{A_i\}_{i \in I}$ en Mod(R), donde π_i y μ_i son morfismos cero.

Sea $Q\in Mod(R)$ entonces $\varphi:Q\to CP$ y $\psi:CP\to Q$ dadas por $\varphi(q)=0_R$ y $\psi(0_R)=0_Q$ son R-morfismos de módulos, mas aún, son únicos.

En particular, si $\{\alpha_i:Q\to A_i\}_{i\in I}$ y $\{\beta:A_i\to Q\}$ son familias de morfismos en Mod(R), por vacuidad de I se cumple que $\pi_i\varphi=\eta_i$ y

 $\psi \mu_i = \beta_i \quad \forall i \in I$. Por lo tanto CP es producto y coproducto de $\{A_i\}$.

Consideremos $I \neq \emptyset$ un conjunto, y a $\{A_i\}_{i \in I}$ una familia de R-módulos. Veamos que existe el producto.

Sea P el producto cartesiano de conjuntos, es decir, $P = \{f: I \to \bigcup_{i \in I} A_i\}$

y sean $\{\pi_i: P \to A_i\}_{i \in I}$ las funciones tales que para cada $x: I \to \bigcup_{i \in I} A_i, \quad \pi_j(x) = x(j) \in A_j \quad \forall j \in I.$

Por el ejercicio 38 sabemos que π_i está bien definida para cada $i \in I$, veamos que es morfismo. Sean $r \in R$ y $a, b \in P$ (se dará por hecho que P es un R-módulo), entonces

$$\pi_i(ra+b) = (ra+b)(i) = ra(i) + b(i) = r\pi_i(a) + \pi_i(b).$$

Por lo tanto para toda $i \in I$, $\pi_i \in Mor(Mod(R))$.

Ahora, puesto que todo morfismo de R- módulos es función, e $I \neq \emptyset$, por el ejercicio 38 si $Q \in Mod(R)$ es tal que existe una familia $\{\alpha_i: Q \to A_i\}$ en Mod(R), entonces existe una única función $\alpha: Q \to P$ tal que $\pi_i \alpha = \alpha_i \quad \forall i \in I$ definida como $\alpha(q) = r_q$ con $q \in Q$ y $r_q \in P$ tales que $\pi_i(r_q) = \alpha_i(q)$.

Esta función está bien definida, solo es necesario probar que es morfismo de R-módulos. Sean $s \in R$, y $a, b \in Q$, entonces, como π_i es morfismo para cada $i \in I$, se tiene que si $(sr_a + r_b) \in P$ se cumple que

$$\pi_i(sr_a + r_b) = s\pi_i(r_a) + \pi_i(r_b) = s\alpha_i(a) + \alpha_i(b) = \alpha_i(sa + b).$$

Por lo tanto $r_{sa+b} = sr_a + r_b$, y así $\alpha(sa+b) = s\alpha(a) + \alpha(b)$, es decir, α es morfismo y en consecuencia P es el producto categórico.

Veamos que existe el coproducto para $I \neq \emptyset$. Se afirma que $\sum_{i \in I} A_i \in Mod(R) \text{ junto con la familia } \{\mu_i : A_i \to \sum_{i \in I} A_i\}_{i \in I} \text{ donde } \mu_i(a) = a, \text{"la inclusión natural"}, \text{ son un coproducto de } \{A_i\}_{i \in I}.$

Sean $B \neq \{\beta_i: A_i \to B\}_{i \in I}$ una familia de morfismos. Como $I \neq \emptyset \neq A_i, B$ son módulos para toda $i \in I$, β_i no puede ser la función vacia para ninguna $i \in I$. Así, podemos tomar $x \in \sum_{i \in I} A_i$, es decir, $x = x_{i_1} + x_{i_2} \ldots + x_{i_n}$ para alguna $n \in \mathbb{N}$, $i_k \in I \neq x_{i_k} \in A_{i_k} \quad \forall k \in \{1, 2 \ldots, n\}$.

Definimos
$$\beta : \sum_{i \in I} A_i \longrightarrow B$$
 como $\beta(x) = \sum_{k=1}^n \beta_{i_k}(x_{i_k}).$

Como β_{i_k} es morfismo $\forall i_k \in I$ entonces β es morfismo de R-m'odulos.Además, $\forall i \in I$, si $x \in A_i$, se tiene que $\beta \mu_i(x) = \beta(x) = \beta_i(x)$, por lo que $\beta \mu_i = \beta_i \quad \forall i \in I.$

Mas aún, si $\gamma: \sum_{i \in I} A_i \longrightarrow B$ es un morfismo tal que $\gamma \mu_i = \beta_i \quad \forall i \in I$, entonces, si $x \in \sum_{i=1}^n A_i$ (y usando la descripción de la "x"que usamos anteriormente),

$$\gamma(x) = \gamma \left(\sum_{k=1}^{n} x_{i_k}\right) = \sum_{k=1}^{n} \gamma(x_{i_k})$$

$$= \sum_{k=1}^{n} \gamma \mu_{i_k}(x_{i_k}) = \sum_{k=1}^{n} \beta_{i_k}(x_{i_k})$$

$$= \sum_{k=1}^{n} \beta \mu_{i_k}(x_{i_k}) = \sum_{k=1}^{n} \beta(x_{i_k})$$

$$= \beta \sum_{k=1}^{n} (x_{i_k}) = \beta(x).$$

Por lo que β es única, y así $\sum_{i=1}^{n} A_i$ es un coproducto.

Ej 42. Sean $\mathscr C$ una categoría, $\left\{\mu_i:A_i\to\coprod_{i\in I}A_i\right\}$ un coproducto en $\mathscr C,\,C\in\mathscr C$ y $\{\nu_i:A_i\to C\}_{i\in I}$ en $\mathscr{C}.$ Pruebe que las siguientes condiciones son equiva-

a) $C \text{ y } \{\nu_i : A_i \to C\}_{i \in I} \text{ son un coproducto de } \{A_i\}_{i \in I};$ b) $\exists \varphi : \coprod_{i \in I} A_i \tilde{\to} C \text{ tal que } \varphi \mu_i = \nu_i \quad \forall \ i \in I.$

Demostraci'on. Supongamos C y $\{\nu_i : A_i \to C\}_{i \in I}$ son un coproducto de $\{A_i\}_{i\in I}$ entonces, como $\coprod A_i$ es un coproducto, existe una única

$$\alpha: \coprod_{i \in I} A_i \longrightarrow C \text{ tal que } \alpha \mu_i = \nu_i \quad i \in I.$$

De la misma forma, como $\{\nu_i:A_i\to C\}_{i\in I}$ es un coproducto para $\{A_i\}_{i\in I}$, existe un único $\beta:C\to\coprod_{i\in I}A_i$ tal que $\beta\nu_i=\mu_i\quad \forall i\in I$.

Notemos ahora que $\beta\alpha:\coprod_{i\in I}A_i\longrightarrow\coprod_{i\in I}A_i$ es tal que

$$(\beta \alpha)\mu_i = \beta(\alpha \mu_i) = \beta \nu_i = \mu_i.$$

Pero $\coprod A_i$ es coproducto, entonces sólo existe un morfismo con dicha propiedad, el cual, en este caso, sería $1_{\coprod A_i}.$ Por lo tanto $\beta\alpha=1_{\coprod A_i}.$ Análogamente $\alpha\beta:C\to C$ es tal que

$$(\alpha\beta)\nu_i = \alpha(\beta\nu_i) = \alpha\mu_i = \nu_i$$

y como C es coproducto $\alpha\beta=1_C.$ Así $\alpha:\coprod_{i\in I}A_i\to C$ es un isomorfismo tal que $\mu_i = \nu_i \quad \forall i \in I.$

Supongamos ahora que existe $\varphi: \coprod_{i \in I} A_i \tilde{\to} C$ tal que $\varphi \mu_i = \nu_i \quad \forall i \in I.$

Sea $M \in \mathcal{C}$ y $\{\eta_i: A_i \to M\}_{i \in I}$ una famiilia en \mathcal{C} . Como $\coprod A_i$ es copro-

ducto existe una única $\alpha: \coprod_{i \in I} A_i \longrightarrow M$ tal que $\alpha \mu_i = \eta_i \quad \forall i \in I$. Tomando $\beta:=\alpha \varphi^{-1}: C \to M$ se tiene que

$$\beta \nu_i = \alpha(\varphi^{-1}\nu_i) = \alpha \mu_i = \eta_i \quad \forall i \in I,$$

entonces C, $\{\nu_i : A_i \to C\}_{i \in I}$ son un coproducto de $\{A_i\}_{i \in I}$.