Algorithmus

Fall: Max. $\lambda - 1$ Friendly-Knoten

- 1. Improved-Graph G' berechnen $\rightarrow \exists$ I.simp.-Knoten v mit $deg(v) = k + 1 \Rightarrow STOP$
- 2. Alle I.simp.-Knoten in Menge SL und von G entfernen $\Rightarrow \widehat{G}$ entsteht $\rightarrow |SL| < c_2 \cdot |V| \Rightarrow {\sf STOP}$ (THEOREM 4.2.)
- 3. Algorithmus rekursiv auf \widehat{G} ausführen \Rightarrow Ausgabe von Zerteilung (Y,T) von \widehat{G}
 - $\to \operatorname{\mathsf{tw}}(\widehat{\mathsf{G}}) > k \Rightarrow \operatorname{\mathsf{STOP}}(\widehat{\mathsf{G}} \operatorname{\mathsf{Teilgraph}} \operatorname{\mathsf{von}} \mathsf{G} \Rightarrow \operatorname{\mathsf{tw}}(\mathsf{G}) > k)$
- 4. $\forall v \in SL$: Finde ein $Y_{i_v} \in Y$ in dem alle Nachbarn von v sind $(N_G(v) \subseteq Y_{i_v})$
- 5. Füge $Y_{j_v} = \{v\} \cup N_G(v)$ zu Y hinzu und mache es adjazent zu $Y_{i_v} \rightarrow$ Baumzerteilung von G mit Baumweite max. k

Algorithmus

Fall: Max. $\lambda-1$ Friendly-Knoten: Letzter Schritt

- 1. $\forall v \in SL$: Finde ein $Y_{i_v} \in Y$ in dem alle Nachbarn von v sind $(N_G(v) \subseteq Y_{i_v})$
- 2. Füge $Y_{j_v} = \{\{v\} \cup N_G(v)\}$ zu Y hinzu und mache es adjazent zu Y_{i_v}

 \Rightarrow Baumzerteilung von G mit Baumweite max. k

 $Y_{i_{\nu}}$ existiert für jedes ν , da I.simp.-Knoten in G nicht adjazent sind und $N_{G}(\nu)$ eine Clique formt.

LEMMA 2.1.i): "Ist (X, T) Zerteilung von G und formt $W \subseteq V$ eine Clique in G, $\exists i \in IW \subseteq X_i$ "

Laufzeitanalyse

Fall 1

1. Improved-Graph G' berechnen