It is well-known that Laplacian is

$$\Delta + c_n R \tag{1}$$

invariant with respect to conformal transformations

$$\tilde{g}_{ik} = e^{2\sigma} g_{ik} \tag{2}$$

Here c_n is constand depending on dimension of the space, R is a scalar curvature.

What is the exact statement?

Why R appears?

Let $\mathbf{s} = s|Dx|^{\lambda}$ be a density of weight λ . Consider our operator $\hat{\Delta}$ acting on this density:

$$\hat{\Delta}_{g,\Gamma} = \hat{\Delta}\mathbf{s} = \left(\partial_m(g^{mn}\partial_n s) + (2\lambda - 1)\Gamma^i\partial_i s\right)|Dx|^{\lambda} + \lambda\partial_i\Gamma^i \mathbf{s} + \lambda(\lambda - 1)\Gamma^i\Gamma_i \mathbf{s}$$
(3)

here Γ_i is a connection on densities. We know that

$$\hat{\Delta}\mathbf{s} = \rho^{\lambda} \Delta(\rho^{-\lambda}\mathbf{s}), \tag{4}$$

where $\rho = \sqrt{\det g} |Dx|$ is volume form on Riemannian manifold, $\Gamma_i = -\partial_i \log \rho$ and Δ is Laplace-Beltrami Laplacian on functions:

$$\Delta F = \frac{1}{\rho} \partial_m \left(\rho g^{mn} \partial_n F \right) \tag{5}$$

Now study how operator $\hat{\Delta}$ changes under conformal transformations:

$$g \to \tilde{g} = e^{2\sigma} g, \rho \to \tilde{\rho} = \rho(\sqrt{\det g})^{\frac{n}{2}} = \rho e^{n\sigma}, \Gamma_i \to \tilde{\Gamma}_i = -\partial_i \log \tilde{\rho} = \Gamma_i - n\partial_i \sigma.$$
 (6)

Then we come to operator

$$\hat{\Delta}' = \hat{\Delta}'_{\tilde{q},\tilde{\Gamma}} = \partial_m(\tilde{g}^{mn}\partial_n) + (2\lambda - 1)\tilde{\Gamma}^i\partial_i + \lambda\partial_i\tilde{\Gamma}^i + \lambda(\lambda - 1)\tilde{\Gamma}^i\tilde{\Gamma}_i \tag{7}$$

Study the relation between operators $\hat{\Delta}'$ and $\hat{\Delta}$.

Using equations (6) we come to

$$\begin{split} \hat{\Delta}' &= \hat{\Delta}_{\tilde{g},\tilde{\Gamma}} = \partial_m \left(e^{-2\sigma} g^{mn} \partial_n \right) + (2\lambda - 1) \tilde{\Gamma}^i \partial_i + \lambda \partial_i \tilde{\Gamma}^i + \lambda (\lambda - 1) \tilde{\Gamma}^i \tilde{\Gamma}_i = \\ \partial_m \left(e^{-2\sigma} g^{mn} \partial_n \right) + (2\lambda - 1) e^{-2\sigma} g^{ij} (\Gamma_j - n \partial_j \sigma) \partial_i + \lambda \partial_i \left(e^{-2\sigma} g^{ij} \left(\Gamma_j - n \partial_j \sigma \right) \right) + \\ \lambda (\lambda - 1) e^{-2\sigma} g^{ij} (\Gamma_i - n \partial_i \sigma) (\Gamma_j - n \partial_j \sigma) = \\ e^{-2\sigma} \left[\partial_m \left(g^{mn} \partial_n \right) - 2 \partial_m \sigma g^{mn} \partial_n \right] + \end{split}$$

$$+e^{-2\sigma}(2\lambda-1)g^{ij}(\Gamma_{j}-n\partial_{j}\sigma)\partial_{i}+$$

$$+e^{-2\sigma}\lambda\left[-2\partial_{i}\sigma g^{ij}(\Gamma_{i}-n\partial_{j}\sigma)+\partial_{i}\Gamma^{i}-n\partial_{i}\left(g^{ij}\partial_{j}\sigma\right)\right]+$$

$$e^{-2\sigma}\lambda(\lambda-1)g^{ij}(\Gamma_{i}-n\partial_{i}\sigma)(\Gamma_{j}-n\partial_{j}\sigma)=$$

$$e^{-2\sigma}\left[\partial_{m}(g^{mn}\partial_{n})+(2\lambda-1)\Gamma^{i}\partial_{i}+\lambda\partial_{i}\Gamma^{i}+\lambda(\lambda-1)\Gamma^{i}\Gamma_{i}\right]$$

$$-e^{-2\sigma}\left[2+n(2\lambda-1)\right](\nabla\sigma)^{m}\partial_{m}+$$

$$\lambda e^{-2\sigma}\left[-2\partial_{i}\sigma\Gamma^{i}+2n(\nabla\sigma)^{m}\partial_{m}\sigma-n\partial_{i}(\nabla^{i}\sigma)\right]+$$

$$-2e^{-2\sigma}\lambda(\lambda-1)n\Gamma^{i}\partial_{i}\sigma++e^{-2\sigma}\lambda(\lambda-1)n^{2}\nabla^{i}\sigma\partial_{i}\sigma,$$
(8)

where $\nabla^i \sigma = \operatorname{grad}_g \sigma = g^{ij} \partial_j \sigma$. Use also that

$$\mathcal{L}_{\mathbf{A}}\mathbf{s} = (A^m \partial_m s + \lambda \partial_m A^m) |Dx|^{\lambda} \tag{9}$$

and the fact that:

$$\Delta \sigma = \partial_n \nabla^m \sigma = \partial_n (g^{mn} \partial_m \sigma) - \Gamma^m \partial_m \sigma = (\hat{\Delta})_{\lambda=0} \sigma. \tag{10}$$

Hence we have

$$\hat{\Delta}' \mathbf{s} = \hat{\Delta}_{\tilde{g} = e^{2\sigma}g} \mathbf{s} = e^{-2\sigma} \hat{\Delta}_g \mathbf{s}$$

$$- [2 + n(2\lambda - 1)] \mathcal{L}_{\nabla\sigma} \mathbf{s} + \lambda [2 + n(2\lambda - 1)] \partial_m \nabla^m \sigma \mathbf{s} +$$

$$\lambda e^{-2\sigma} [-2\partial_i \sigma \Gamma^i + 2n(\nabla\sigma)^m \partial_m \sigma - n\partial_i (\nabla^i \sigma)] \mathbf{s} +$$

$$-2e^{-2\sigma} \lambda (\lambda - 1) n \Gamma^i \partial_i \sigma + e^{-2\sigma} \lambda (\lambda - 1) n^2 \nabla^i \sigma \partial_i \sigma \mathbf{s} =$$

$$e^{-2\sigma} \left(\Delta \mathbf{s} - [2 + n(2\lambda - 1)] \mathcal{L}_{\nabla \sigma} \mathbf{s} + 2\lambda [1 + n(\lambda - 1)] \left(\nabla^i \sigma \partial_i \sigma - \Gamma_i \sigma \right) \mathbf{s} + n\lambda [2 + n(\lambda - 1)] \nabla^i \sigma \partial_i \sigma \mathbf{s} \right)$$

$$= e^{-2\sigma} \left(\Delta \mathbf{s} - [2 + n(2\lambda - 1)] \mathcal{L}_{\nabla \sigma} \mathbf{s} + 2\lambda [1 + n(\lambda - 1)] (\Delta \sigma) \mathbf{s} + n\lambda [2 + n(\lambda - 1)] \nabla^i \sigma \partial_i \sigma \mathbf{s} \right)$$
or in other way:

$$e^{2\sigma}\hat{\Delta}' = \hat{\Delta} - (2 + n(2\lambda - 1)) \mathcal{L}_{\nabla\sigma} + 2\lambda \left(1 + n(\lambda - 1)\right) \Delta\sigma + n\lambda \left(2 + n(\lambda - 1)\right) \nabla^{i}\sigma\partial_{i}\sigma. \tag{11}$$

or in other way:

$$\hat{\Delta}' = e^{-2\sigma} \left(\hat{\Delta} + a(n, \lambda) \mathcal{L}_{\nabla \sigma} + \Phi \right) ,$$

where

$$a(n,\lambda) = (2 + n(2\lambda - 1)), \ \Phi = 2\lambda (1 + n(\lambda - 1)) \Delta \sigma + n\lambda (2 + n(\lambda - 1)) \nabla^i \sigma \partial_i \sigma.$$
 (11a)

We see that symbols of operator pencils $\hat{\Delta}'$ and $\hat{\Delta}$ coincide up to multiplier $e^{2\sigma}$. The pencil $\hat{\Delta}$ defines self-adjoint operator in algebra of densities. The operator $e^{2\sigma}\hat{\Delta}'$ differs from operator Δ on antiself-adjoint operator \mathcal{L} and scalar function.

Hence one can find a value of λ such that operator is almost the same up to scalar:

$$2+(2\lambda-1)n=0$$
 i.e. $\lambda_{\scriptscriptstyle 0}=\frac{1}{2}-\frac{1}{n}$

In this case we have that for equation (11)

$$2\lambda(1+n(\lambda-1))\big|_{\lambda=\lambda_0} = \frac{n-2}{2}, \ n\lambda(2+n(\lambda-1))\big|_{\lambda=\lambda_0} = -\frac{(n-2)^2}{4}. \tag{12}$$

We see that on the densities of weight $\lambda_0 = \frac{1}{2} - \frac{1}{n}$ the following realtion holds:

$$\hat{\Delta}' = e^{-2\sigma} \left(\hat{\Delta} - \frac{n-2}{2} \Delta \sigma - \frac{(n-2)^2}{4} \partial_m \sigma \nabla^m \sigma \right). \tag{13}$$

Thus we come to construction of the operator:

$$L = \hat{\Delta} - \frac{n-2}{4(n-1)}R$$
 acting on densities of weight $\lambda = \frac{1}{2} - \frac{1}{n}$.

Now we want to go further. Return to the formula (11)

$$\hat{\Delta}' = e^{-2\sigma} \left(\hat{\Delta} + a(n, \lambda) \mathcal{L}_{\nabla \sigma} + \Phi \right) ,$$

where

$$a(n,\lambda) = (2 + n(2\lambda - 1)), \quad \Phi = 2\lambda (1 + n(\lambda - 1)) \Delta \sigma + n\lambda (2 + n(\lambda - 1)) \nabla^i \sigma \partial_i \sigma. \quad (11a)$$

ecall that operator pencil $\hat{\Delta}$ is constructed vial Beltrami-Laplace, and we know that $\hat{\Delta}$ is self-adjoint operator. Consider operator

$$\hat{\Delta}_{\delta} = \rho^{\delta} \hat{\Delta} = (\det g)^{\frac{n}{2}} |Dx|^{\delta} \hat{\Delta}$$

This operator sends λ -densities to $\lambda + \delta$ dentisites. This is easy exercise to check that this is also self-adjoint operator! We denote by $\hat{\Delta}$ the Beltrami-Laplac pencil defined by Riemannian ,metric g_{ik} $\hat{\Delta}'$ the pencil cooresponding to the metric $g_{ik} = e^{2\sigma}g_{ik}$, and we denote by $\hat{\Delta}_{(\delta)}$ the weighted pencil $\hat{\Delta}_{(\delta)} = \rho^{\delta}\hat{\Delta}_{(0)}$.

The relation (11a) will take the form:

$$\hat{\Delta}'_{(\delta)} = \tilde{\rho}^{\delta} \hat{\Delta}' = (\det \tilde{g})^{\frac{n\delta}{2}} |Dx|^{\delta} \hat{\Delta}' = e^{n\sigma\delta} \rho^{\delta} \hat{\Delta}' = e^{n\sigma\delta} e^{-2\sigma} \rho^{\delta} \left(\hat{\Delta} + a(n,\lambda) \mathcal{L}_{\nabla \sigma} + \Phi \right) =$$

$$e^{(n\delta-2)\sigma}\rho^{\delta}\left(\hat{\Delta}+a(n,\lambda)\mathcal{L}_{\nabla\sigma}+\Phi\right)=e^{(n\delta-2)\sigma}\left(\hat{\Delta}_{(\delta)}+a(n,\lambda)\rho^{\delta}\mathcal{L}_{\nabla\sigma}+\rho^{\delta}\Phi\right).$$

Now we put

$$\delta = \frac{2}{n}$$
, then $\rho^{\delta} = \det g$.

We come to the statement:

If weight $\delta = \frac{2}{n}$ then the weighted pencil obeys the transformation:

$$\hat{\Delta}'_{\frac{2}{n}} = \hat{\Delta}_{\frac{2}{n}} + \det g\left(a(n,\lambda)\mathcal{L}\nabla\sigma + \Phi\right)$$

Note that

$$a(n,\hat{\lambda})^* = -a(n,\lambda)$$

We come to

Proposition I Weighted Operators $\hat{\Delta}, \hat{\Delta}'$ both are self-adjoint weighted operators with the same principal symbol in the case if $\delta = \frac{1}{2n}$.

Using Vornov-Khudaverdian Theorem we come to the conclusion that

$$\hat{\Delta} = t^{\delta} \left(S^{ab} \partial_b \partial_a + \partial_b S^{ba} \partial_a + + \left(2\hat{\lambda} + \delta - 1 \right) \Gamma^a \partial_a + \hat{\lambda} \partial_a \mathcal{G}^a + \hat{\lambda} (\hat{\lambda} + \delta - 1) \Gamma^a \Gamma_a \right)$$