Supplement for: Carbon cycling in mature and regrowth forests globally: a macroecological synthesis based on the global Forest Carbon (ForC) database

#### Contents

| 6  | Appendix S1. Duplicates and Conflicting Records within ForC         | 2  |
|----|---------------------------------------------------------------------|----|
| 7  | Table S#(variable mapping))                                         | 3  |
| 8  | Figure S1. Age trends and biome differences for $NEP$               | 4  |
| 9  | Figure S2. Age trends and biome differences for $GPP$               | 5  |
| 10 | Figure S3. Age trends and biome differences for $NPP$               | 6  |
| 11 | Figure S4. Age trends and biome differences for $ANPP$              | 7  |
| 12 | Figure S5. Age trends and biome differences for $ANPP_{woody}$      | 8  |
| 13 | Figure S6. Age trends and biome differences for $ANPP_{stem}$       | 9  |
| 14 | Figure S7. Age trends and biome differences for $ANPP_{foliage}$    | 10 |
| 15 | Figure S8. Age trends and biome differences for $ANPP_{litterfall}$ | 11 |
| 16 | Figure S9. Age trends and biome differences for $BNPP$              | 12 |
| 17 | Figure S10. Age trends and biome differences for $BNPP_{coarse}$    | 13 |
| 18 | Figure S11. Age trends and biome differences for $BNPP_{fine}$      | 14 |
| 19 | Figure S12. Age trends and biome differences for $R_{eco}$          | 15 |
| 20 | Figure S13. Age trends and biome differences for $R_{root}$         | 16 |
| 21 | Figure S14. Age trends and biome differences for $R_{soil}$         | 17 |
| 22 | Figure S15. Age trends and biome differences for $R_{het-soil}$     | 18 |
| 23 | Figure S16. Age trends and biome differences for $B_{tot}$          | 19 |
| 24 | Figure S17. Age trends and biome differences for $B_{ag}$           | 20 |
| 25 | Figure S18. Age trends and biome differences for $B_{ag-wood}$      | 21 |
| 26 | Figure S19. Age trends and biome differences for $B_{foliage}$      | 22 |
| 27 | Figure S20. Age trends and biome differences for $B_{root}$         | 23 |
| 28 | Figure S21. Age trends and biome differences for $B_{root-coarse}$  | 24 |
| 29 | Figure S22. Age trends and biome differences for $B_{root-fine}$    | 25 |
| 30 | Figure S23. Age trends and biome differences for $DW_{tot}$         | 26 |
| 31 | Figure S24. Age trends and biome differences for $DW_{standing}$    | 27 |
| 32 | Figure S25. Age trends and biome differences for $DW_{down}$        | 28 |
| 22 | Figure S26. Age trends and biome differences for QL                 | 20 |

#### Appendix S1. Duplicates and Conflicting Records within ForC

- 35 Status of duplicates and conflicting records within ForC
- 36 Generating ForC\_simplified
- <sup>37</sup> Replicate measurements (*i.e.*, replicates from within a single study) were averaged. Records that subsumed
- $_{38}$  others— i.e., the time period included that of  $\geq 2$  other records or dates were unknown and therefore
- conflicted with  $\geq 2$  other records—were removed. For each group of duplicate records—i.e., measurements of
- 40 the same variable in the same plot at the same time—one record was assigned precedence (recorded in
- 41 D.precedence field). When measurement periods overlapped or were not specified, precedence was given first
- to records representing longer measurement periods (i.e., end.date start.date) and then to more recently
- 43 published values. We manually reviewed duplicates that differed only in methodology, assigning precedence
- to the record employing a more comprehensive approach (e.g., inclusion of understory, lianas, or bamboo as
- opposed to just trees) or using a favored methodology.

- Table  $S\#(variable\ mapping))$
- this table)

### Figure S1. Age trends and biome differences for NEP



Figure S1 | Age trends and biome differences for NEP. Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S2. Age trends and biome differences for GPP



Figure S2 | Age trends and biome differences for GPP. Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S3. Age trends and biome differences for NPP



Figure S3 | Age trends and biome differences for NPP. Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### $_{51}$ Figure S4. Age trends and biome differences for ANPP



Figure S4 | Age trends and biome differences for ANPP. Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S5. Age trends and biome differences for $ANPP_{woody}$



Figure S5 | Age trends and biome differences for  $ANPP_{woody}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifiant differences between biomes.

### Figure S6. Age trends and biome differences for $ANPP_{stem}$



Figure S6 | Age trends and biome differences for  $ANPP_{stem}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

# Figure S7. Age trends and biome differences for $ANPP_{foliage}$



Figure S7 | Age trends and biome differences for  $ANPP_{foliage}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

## 55 Figure S8. Age trends and biome differences for ANPP<sub>litterfall</sub>



Figure S8 | Age trends and biome differences for  $ANPP_{litterfall}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S9. Age trends and biome differences for BNPP



Figure S9 | Age trends and biome differences for BNPP. Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S10. Age trends and biome differences for $BNPP_{coarse}$



Figure S10 | Age trends and biome differences for  $BNPP_{coarse}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

# Figure S11. Age trends and biome differences for $BNPP_{fine}$



Figure S11 | Age trends and biome differences for  $BNPP_{fine}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifiant differences between biomes.

### Figure S12. Age trends and biome differences for $R_{eco}$



Figure S12 | Age trends and biome differences for  $R_{eco}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

## Figure S13. Age trends and biome differences for $R_{root}$



Figure S13 | Age trends and biome differences for  $R_{root}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

## $_{61}$ Figure S14. Age trends and biome differences for $R_{soil}$



Figure S14 | Age trends and biome differences for  $R_{soil}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S15. Age trends and biome differences for $R_{het-soil}$



Figure S15 | Age trends and biome differences for  $R_{het-soil}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S16. Age trends and biome differences for $B_{tot}$



Figure S16 | Age trends and biome differences for  $B_{tot}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### <sub>64</sub> Figure S17. Age trends and biome differences for $B_{ag}$



Figure S17 | Age trends and biome differences for  $B_{ag}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S18. Age trends and biome differences for $B_{ag-wood}$



Figure S18 | Age trends and biome differences for  $B_{ag-wood}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

# Figure S19. Age trends and biome differences for $B_{foliage}$



Figure S19 | Age trends and biome differences for  $B_{foliage}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S20. Age trends and biome differences for $B_{root}$



Figure S20 | Age trends and biome differences for  $B_{root}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S21. Age trends and biome differences for $B_{root-coarse}$



Figure S21 | Age trends and biome differences for  $B_{root-coarse}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S22. Age trends and biome differences for $B_{root-fine}$



Figure S22 | Age trends and biome differences for  $B_{root-fine}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifiant differences between biomes.

### Figure S23. Age trends and biome differences for $DW_{tot}$



Figure S23 | Age trends and biome differences for  $DW_{tot}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### Figure S24. Age trends and biome differences for $DW_{standing}$



Figure S24 | Age trends and biome differences for  $DW_{standing}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifiant differences between biomes.

### Figure S25. Age trends and biome differences for $DW_{down}$



Figure S25 | Age trends and biome differences for  $DW_{down}$ . Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.

### $_{73}$ Figure S26. Age trends and biome differences for OL



Figure S26 | Age trends and biome differences for OL. Map shows data sources (x and o indicate young and mature stands, respectively). Left plot shows age trends in forests up to 100 years old, as characterized by a linear mixed effects model with fixed effects of age and biome. Solid lines indicate significant effect of age, non-pareallel lines indicate a significant age x biome interaction. Boxplot illustrates distribution across mature forests, with different letters indicating signifant differences between biomes.