RNN-based Dimensional Speech Emotion Recognition

Bagus Tris Atmaja*, Reda Elbarougy, Masato Akagi *bagus@jaist.ac.jp

AIS-Lab
School of Information Science
.JAIST

ASJ Autumn Meeting @Ritsumeikan Univ. 4 September 2019

Outline

- 1. Background
- 2. Problem & Purpose
- 3. Method
- 3.1 Dataset and Acoustic Feature
- 3.2 Classifier
- 3.3 Multitask Learning
- 4. Result
- 5. Conclusion

Paper, slides, & experiment codes available at http://github.com/bagustris/asj_autumn_2019

Background

- The need of recognizing human emotion by machine automatically increases on demand of such applications like call center or humanoid robotics.
- Most speech emotion recognition analyze human emotion in categorical views (angry, sad, fear, happy, etc).
- Recognizing "degree" of emotion is important because it enables deeper analysis on how weak/strong emotion.
- Dimensional emotion represents emotions in a two- or three-dimensional space e.g. VAD (Valence – positive/negative, Arousal – excited/calm, and dominance – degree of control).

Problem & Purpose

• Problem: How to recognize emotion in 3 dimensional VAD space, i.e. predicting score V, A, and D from speech utterances?

 Purpose: Evaluate a recurrent neural network (RNN)-based system for predicting dimensional emotion degree with multitask learning which learns together to predict score of V, A, and D.

Dataset and Acoustic Feature

Dataset:

- Name: IEMOCAP (interactive emotional dyadic motion capture database)
- Modality: Speech
- □ Number of utterances: 10039 (Training/Test: 80/20)
- □ Duration: 12h

Acoustic Features:

- □ 31 Features: 3 time domain features, 5 frequency domain features, 13 MFCCs, 5 F0, 5 Harmonics.
- eGeMaps Feature set (Geneva Minimalistic Acoustic Parameter Set)¹:
 23 features, e.g. Loudness, alpha ratio, hammarberg index, spectral slope, spectral flux, 4 MFCCs, F0, jitter, shimmer, Harmonicsto-Noise Ratio (HNR), etc.

¹F. Eyben et al., The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing, IEEE Trans. Affect. Comput., vol. 7, no. 2, pp. 190202, 2016.

Multi-task Learning

- Instead of minimizing error (e.g. MSE), we minimize concordance correlation coefficient (CCC) loss (CCCL).
- CCC measures the association between variables and penalizes the score even if the model predicts the emotion well, but it shifts the value.

$$CCC = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$
$$CCCL = 1 - CCC$$

 Where CCCL is summation of CCCL from valence, arousal, and dominance. We define our multitask learning as follows,

$$CCCL_{tot} = \alpha CCCL_V + \beta CCCL_A + \gamma CCCL_D$$

• Where α, β, γ are obtained by experiments (0.7, 0.3, and 0.6).

Result among different methods

Table 1: Results of dimensional emotion recognition among different methods and metrics; Each score is averaged score from V, A, and D. For error, the smaller the better. For CCC, the higher the better $(-1 \sim 1)$.

Method	MSE	MAPE	MAE	CCC
	31 Features			
DNN	1.441	32.372	0.965	0.050
GRU	1.332	30.802	0.925	0.076
LSTM	1.068	28.278	0.823	0.088
	eGeMaps			
DNN	0.955	25.855	0.7	0.198
GRU	0.663	23.488	0.644	0.234
LSTM	0.683	23.814	0.655	0.245

Result on each V, A, and D dimension

Figure 1: CCC score for each emotion dimension after 50 epochs using eGeMaps feature set.

- CCC score of LSTM networks after 100 epochs: [0.11, 0.43, 0.36]

Conclusion

- An RNN-based dimensional speech emotion recognition is presented by utilizing three network layers using either LSTM or GRU layers and split the last RNN layer into three dense layer with 1 unit to represent/predict score of valence, arousal, and dominance.
- A multitask learning is employed by introducing new loss function namely CCC loss which minimizes concordance correlation between true value and predicted score for V, A, and D degree simultaneously.
- By tuning the parameters in that multitask learning (i.e. $\alpha=0.7, \gamma=0.3, \ and \ \beta=0.6.$), the highest CCC score among 2 acoustic feature sets and 3 network architectures is [0.11, 0.43, 0.36] for valence, arousal, and dominance, which is obtained using eGeMaps feature set and LSTM networks.