3/22/2014

Gradiance Online Accelerated Learning

Zayd

· Home Page

· Assignments Due

· Progress Report

· Handouts

· Tutorials

· Homeworks

· Lab Projects

• Log Out

Help

Submission number: 71307 **Submission certificate:** JA777263

Submission time: 2014-03-22 18:23:24 PST (GMT - 8:00)

Number of questions: 6 3.0 Positive points per question: Negative points per question: 1.0 Your score: 18

Based on Chapter 6 of HMU.

- 1. Consider the pushdown automaton with the following transition rules:
 - 1. $\delta(q,0,Z_0) = \{(q,XZ_0)\}$
 - 2. $\delta(q,0,X) = \{(q,XX)\}$
 - 3. $\delta(q,1,X) = \{(q,X)\}$
 - 4. $\delta(q, \varepsilon, X) = \{(p, \varepsilon)\}\$
 - 5. $\delta(p,\varepsilon,X) = \{(p,\varepsilon)\}\$
 - 6. $\delta(p,1,X) = \{(p,XX)\}$
 - 7. $\delta(p,1,Z_0) = \{(p,\epsilon)\}\$

The start state is q. For which of the following inputs can the PDA first enter state p with the input empty and the stack containing XXZ_0 [i.e., the ID (p,ε,XXZ_0)]?

- a) 0100110
- b) 011011
- c) 111001
- d) 001110

Answer submitted: d)

You have answered the question correctly.

2. Here are the transitions of a deterministic pushdown automaton. The start state is q_0 , and f is the accepting state.

State-Symbol	a	b	3
q_0 - Z_0	(q_1,AAZ_0)	(q_2,BZ_0)	(f,ε)
q ₁ -A	(q ₁ ,AAA)	(q ₁ ,ε)	-
q_1 - Z_0	-	-	(q_0, Z_0)

q ₂ -B	(q_3,ε)	(q ₂ ,BB)	-
q_2 - Z_0	-	-	(q_0,Z_0)
q ₃ -B	-	-	(q_2, ε)
q_3 - Z_0	-	-	(q_1,AZ_0)

Describe informally what this PDA does. Then, identify below, the one input string that takes the PDA into state q_3 (with any stack).

- a) bbabbba
- b) aabbbbb
- c) babbbaa
- d) ababba

Answer submitted: a)

You have answered the question correctly.

3. If we convert the context-free grammar G:

to a pushdown automaton that accepts L(G) by empty stack, using the construction of Section 6.3.1, which of the following would be a rule of the PDA?

a)
$$\delta(q, \varepsilon, A) = \{(q, A0), (q, 1B), (q, 1)\}$$

b)
$$\delta(q, \epsilon, B) = \{(q, 0B), (q, 0)\}$$

c)
$$\delta(q,\epsilon,A) = \{(q,1)\}$$

d)
$$\delta(q, \varepsilon, S) = \{(q, AS)\}$$

Answer submitted: **b**)

You have answered the question correctly.

- **4.** Suppose one transition rule of some PDA P is $\delta(q,0,X) = \{(p,YZ), (r,XY)\}$. If we convert PDA P to an equivalent context-free grammar G in the manner described in Section 6.3.2 (p. 247), which of the following could be a production of G derived from this transition rule? You may assume s and t are states of P, as well as p, q, and r.
 - a) $[qXr] \rightarrow 0[rXs][sYr]$
 - b) $[qXr] \rightarrow [rXs][sYr]$
 - c) $[qXr] \rightarrow 0[qYs][sZp]$
 - d) $[qXr] \rightarrow 0[rXs][qYr]$

Answer submitted: a)

You have answered the question correctly.

5. Here are the transitions of a deterministic pushdown automaton. The start state is q_0 , and f is the accepting state.

State-Symbol	a	b	3
q_0 - Z_0	(q_1,AAZ_0)	(q_2,BZ_0)	(f,ε)
q ₁ -A	(q ₁ ,AAA)	(q ₁ ,ε)	-
q_1 - Z_0	-	-	(q_0,Z_0)
q ₂ -B	(q ₃ ,ε)	(q ₂ ,BB)	-
q_2 - Z_0	-	-	(q_0,Z_0)
q ₃ -B	-	-	(q ₂ ,ε)
q_3 - Z_0	-	-	(q_1,AZ_0)

Describe informally what this PDA does. Then, identify below the one input string that the PDA accepts.

- a) bababbbb
- b) bbbab
- c) babbaba
- d) abbbab

Answer submitted: **d**)

You have answered the question correctly.

6. Consider the pushdown automaton with the following transition rules:

- 1. $\delta(q,0,Z_0) = \{(q,XZ_0)\}$
- 2. $\delta(q,0,X) = \{(q,XX)\}$
- 3. $\delta(q,1,X) = \{(q,X)\}$
- 4. $\delta(q, \varepsilon, X) = \{(p, \varepsilon)\}\$
- 5. $\delta(p,\varepsilon,X) = \{(p,\varepsilon)\}\$
- 6. $\delta(p,1,X) = \{(p,XX)\}$
- 7. $\delta(p,1,Z_0) = \{(p,\epsilon)\}\$

From the ID (p,1101,XXZ₀), which of the following ID's can NOT be reached?

- a) $(p,01,XXXZ_0)$
- b) $(p,01,XXXXZ_0)$
- c) $(p,01,XXZ_0)$
- d) $(p, \varepsilon, \varepsilon)$

Answer submitted: d)

You have answered the question correctly.