dde_simpleODE

September 28, 2023

1 Solve a Simple ODE System

We consider the simple system of two equations,

$$\frac{dy_1}{dt} = y_2, \qquad \frac{dy_2}{dt} = -y_1, \qquad \text{where} \quad t \in [0, 10],$$

with initial conditions

$$y_1(0) = 0, \quad y_2(0) = 1.$$

The exact solution is

$$y_1 = \sin(t), \quad y_2 = \cos(t).$$

1.1 Implementation

We begin by importing the necesary modules. Note that torch is detected automatically.

```
[1]: import deepxde as dde import numpy as np
```

Using backend: pytorch

Other supported backends: tensorflow.compat.v1, tensorflow, jax, paddle. paddle supports more examples now and is recommended.

We now define the system of ODEs, where the first argument to ode_system is the network input, i.e., the t-coordinate, which we represent as x. The second argument to ode_system is the network output, which is a 2-dimensional vector where the first component y[:, 0:1] is y_1 and the second component y[:, 1:] is y_2 .

We also consider the initial condition, where we need to implement a function that should return True for points inside the subdomain and False for the points outside. In our case, the point t of the initial condition is t=0. The argument \mathbf{x} to boundary is the network input and is a d-dimensional vector, with d=1 here. To facilitate the implementation of boundary, a boolean on_initial is used as the second argument. If the point t=0, then on_initial is True, otherwise, on_initial is False.

```
[2]: def ode_system(x, y):
    """ODE system.
    dy1/dx = y2
    dy2/dx = -y1
    """
```

```
y1, y2 = y[:, 0:1], y[:, 1:]
    dy1_x = dde.grad.jacobian(y, x, i=0)
    dy2_x = dde.grad.jacobian(y, x, i=1)
    return [dy1_x - y2, dy2_x + y1]

def boundary(_, on_initial):
    return on_initial

def func(x):
    """
    y1 = sin(x)
    y2 = cos(x)
    """
    return np.hstack((np.sin(x), np.cos(x)))
```

Now, we define the geometry, the innitial conditions and the data.

We use 35 training residual points, 2 training points on thee boundaries, and 100 points for testing the ODE residual.

The argument solution=func is the reference solution to compute the error of our solution, and is defined above.

```
[3]: geom = dde.geometry.TimeDomain(0, 10)
    ic1 = dde.icbc.IC(geom, lambda x: 0, boundary, component=0)
    ic2 = dde.icbc.IC(geom, lambda x: 1, boundary, component=1)
    data = dde.data.PDE(geom, ode_system, [ic1, ic2], 35, 2, solution=func,
    onum_test=100)
```

We now define the network. We use a fully connected neural network of depth 4 (i.e., 3 hidden layers) and width 50.

```
[4]: layer_size = [1] + [50] * 3 + [2]
activation = "tanh"
initializer = "Glorot uniform"
net = dde.nn.FNN(layer_size, activation, initializer)
```

Finally, we define the model, train for 20000 iterations and plot the results.

```
[5]: model = dde.Model(data, net)
  model.compile("adam", lr=0.001, metrics=["12 relative error"])
  losshistory, train_state = model.train(iterations=20000)

dde.saveplot(losshistory, train_state, issave=True, isplot=True)
```

```
Compiling model...
'compile' took 0.000413 s
```

Training model...

Step	Train loss			Test loss
Test metric				
0	[6.60e-02,	5.64e-02, 0.00e+00,	1.00e+00]	[6.57e-02, 5.83e-02,
0.00e+00,	1.00e+00]	[1.05e+00]		
1000	[9.25e-03,	7.65e-03, 2.21e-07,	2.51e-04]	[1.02e-02, 7.46e-03,
2.21e-07,	2.51e-04]	[7.63e-01]		
2000	[4.84e-03,	4.10e-03, 8.80e-07,	1.02e-04]	[4.99e-03, 4.36e-03,
8.80e-07,	1.02e-04]	[5.77e-01]		
		3.15e-03, 2.02e-06,	4.89e-05]	[2.62e-03, 3.18e-03,
		[4.20e-01]		
		2.31e-03, 1.72e-05,	7.83e-06]	[1.72e-03, 1.91e-03,
		[2.86e-01]		
		3.51e-04, 4.81e-08,	4.15e-06]	[1.72e-04, 2.59e-04,
		[9.61e-02]	_	_
		7.38e-05, 2.88e-08,	1.69e-07]	[2.35e-05, 5.54e-05,
=		[2.68e-02]	_	_
		1.65e-04, 2.64e-05,	1.16e-06]	[1.44e-04, 1.38e-04,
		[2.14e-02]		_
	-	1.30e-05, 1.41e-09,	9.64e-09]	[4.33e-06, 1.03e-05,
		[6.23e-03]		.
		6.88e-06, 4.84e-10,	2.78e-09]	[2.06e-06, 5.93e-06,
		[3.47e-03]		F
		9.96e-06, 3.17e-06,	2.05e-06]	[1.11e-05, 9.92e-06,
		[3.61e-03]		[4 00 00 0 FF 00
		2.85e-06, 7.21e-12,	1.20e-09J	[1.23e-06, 2.75e-06,
		[1.49e-03]	0.40.40]	[4 4 4 0 C 0 0 0 0 C
		2.02e-06, 3.13e-10,	8.19e-12]	[1.14e-06, 2.02e-06,
		[1.12e-03]	0 40- 00]	[6, 22- 06, 6, 14- 06
		6.08e-06, 2.45e-06, [2.53e-03]	2.48e-06]	[6.33e-06, 6.14e-06,
· ·			1 160 06]	[0 01 06 2 02 06
		3.18e-06, 7.32e-07, [1.76e-03]	1.16e-06]	[2.01e-06, 3.23e-06,
=		2.99e-05, 1.07e-05,	1 650-05]	[2.01e-05, 3.07e-05,
		[5.70e-03]	1.05e-05]	[2.01e-05, 5.07e-05,
		8.20e-07, 2.16e-08,	/ 1/0-09]	[9.82e-07, 8.64e-07,
		[5.76e-04]	4.146-05]	[3.02e-07, 0.04e-07,
		4.47e-05, 5.88e-05,	4 570-061	[1.34e-04, 3.70e-05,
		[1.10e-02]	4.076 00]	[1.046 04, 0.706 00,
18000		6.36e-07, 1.14e-08,	2 54e-091	[9.04e-07, 7.15e-07,
	2.54e-09]		2.010 00]	[5.010 01, 1.100 01,
-		8.22e-07, 1.64e-07,	1 55e-07]	[1.01e-06, 8.78e-07,
		[7.58e-04]	1.000 01]	11.010 00, 0.100 01,
		4.67e-07, 5.61e-11,	4.07e-117	[7.71e-07, 5.53e-07,
		[3.73e-04]	, , , , , , , ,	225 5., 5.655 61,
,				

Best model at step 20000:

train loss: 1.07e-06
test loss: 1.32e-06
test metric: [3.73e-04]

'train' took 13.001740 s

Saving loss history to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/DDE/loss.dat ...

Saving training data to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/DDE/train.dat ...

Saving test data to

/Users/markasch/Dropbox/3Teaching/Assim/Assim_ML_2023_Caraga/02course-advanced/02Examples/01_SciML/DDE/test.dat ...

[]:[