Capítulo 1 - Distribuições amostrais

Seção 1 - Introdução à amostragem

Seção 2 - Formas de amostragem e tamanho da amostra

Seção 3 - Distribuição amostral

Capítulo 2 - Estimação de parâmetros

Seção 1 - Estimador e estimativa

Seção 2 - Estimação por ponto

Seção 3 - Estimação por intervalos

Capítulo 3 - Teste de hipóteses

Seção 1 - Introdução aos testes de hipóteses

Seção 2 - Testes para a média populacional

Seção 3 - Testes para a variância e proporção populacional

Seção 4 - Testes para comparação de parâmetros

Nomenclatura

N = tamanho da população.

n = tamanho da amostra.

 X_i = valores.

 f_i = frequência simples.

 μ = média da população.

 \overline{X} = média da amostra.

 $\sigma^2(x)$ = variância dos valores da população.

 $S^2(x)$ = variância dos valores da amostra.

 σ = desvio padrão dos valores da população.

S(X) = desvio padrão dos valores da amostra.

 \mathcal{D} = proporção de elementos da população.

 \hat{p} = proporção de elementos da população.

Z = grau de confiança (também chamado de valor crítico).

 e_o = "erro de origem" = o valor bruto de intervalo multiplicado pelo grau de confiança.

1.1 Introdução à amostragem

Estatística descritiva ou dedutiva;

Estatística inferencial ou indutiva; previsões e conclusões sobre uma população a partir dos resultados descritivos obtidos de uma amostra. Se baseia no cálculo de probabilidades para sustentar essas conjecturas ou inferências, as quais serão possíveis de testar e comprovar sob determinadas circunstâncias.

- Quais relações se podem achar entre as variáveis ou entre as classificações se comparadas?
- Qual a confiança que se pode ter nessas relações? Ou seja, qual o grau de probabilidade para que elas não sejam fruto do acaso?
- Qual a segurança com a qual se pode projetar a amostra sobre a população toda ou sobre outras populações semelhantes?

1.2 Formas de amostragem e tamanho da amostra

Diferentes formas de amostragem

- Aleatória simples
- Aleatória sistemática
- Aleatória estratificada
- Aleatória por conglomerados
- Não aleatória a esmo ou "aproximadamente aleatória"
- Não aleatória intencionada
- Não aleatória voluntária

Tamanho da amostra

Inicialmente apenas para amostras aleatórias simples.

Erro amostral: diferença entre o valor que a estatística acusa ou poderia acusar e o verdadeiro valor do parâmetro estimado.

Erro amostral tolerável: o quanto de erro é admissível por problemas previstos na própria amostragem.

Fórmulas de cálculo

■ Tamanho da população desconhecido ou infinitamente grande:

$$n_0 = \frac{1}{E^2} = E^{-2}.$$

no: primeira aproximação do tamanho da amostra.

E: erro amostral tolerável da pesquisa (fórmula no livro mostra como E_0).

2.2 Estimação por ponto

Estimador da média populacional: média amostral ($\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$). $\lim_{n \to \infty} \sigma^2(\overline{x}) = 0$ (o limite da variância ser zero conforme tamanho da amostra tende ao infinito) expressa a consistência do estimador.

Estimador da variância populacional: "estatística S": $\frac{\sum_{1}^{n}(x_{i}-\mu)^{2}}{n}$, caso tenhamos a média populacional; $\frac{\sum_{1}^{n}(x_{i}-\overline{x})^{2}}{n}$, caso não tenhamos

a média populacional; diferenças para as médias multiplicadas pelas frequências dos elementos, e somatórias divididas por n-1, caso a $\sum_{i=1}^{n} (x_i - \mu)^2 \cdot f_i = \sum_{i=1}^{n} (x_i - \overline{x})^2$

"frequência esteja envolvida": $\frac{\sum_{1}^{n}(x_{i}-\mu)^{2} \cdot f_{i}}{n-1} = \frac{\sum_{1}^{n}(x_{i}-\overline{x})^{2}}{n-1}.$

Estimador do desvio padrão populacional: $\sqrt{S^2}$ (estimador da variância populacional), com amostra grande (> 100); fator de correção para amostras menores que isto: 2 = 2.51; 3 = 1.69; 4 = 1.45; 6 = 1.26; 8 = 1.18; 10 = 1.14;

$$12 = 1.11$$
; $15 = 1.09$; $20 = 1.07$; $25 = 1.05$; $50 = 1.03$

Estimador de proporção populacional: $p' = \frac{p(1-p)}{n}$. Novamente, $\lim_{n\to\infty} \sigma^2(p') = 0$ é expressão da consistência.

2.3 Estimação por intervalos

Confiança e precisão em sentidos opostos. O aumento da confiança (Z) aumenta o intervalo, o que diminui a precisão. (A amostra menor tem mais confiança e menos precisão.)

95% de confiança:
$$\alpha=0.05\Rightarrow \frac{\alpha}{2}=0.025$$
. Nível de confiança $1-\alpha$.

$$\alpha = \text{monocaudal}, \frac{a}{2} = \text{bicaudal}.$$

Sob a distribuição normal:

$$0.99 (\alpha = 0.01) \Rightarrow z_{\frac{a}{2}} = \pm 2.58 (z_a = \pm 5.16).$$

$$0.95 \ (\alpha = 0.05) \Rightarrow z_{\frac{a}{2}} = \pm 1.96 \ (z_a = \pm 3.92).$$

$$0.90 \, (\alpha = 0.1) \Rightarrow z_{\frac{a}{2}} = \pm 1.65 \, (z_a = \pm 3.3).$$

Média populacional para σ (desvio padrão populacional) conhecido: $\overline{X} \pm Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$.

Média populacional para σ desconhecido (independente do tamanho da amostra, pois com n >= 30 t-Student se aproxima da normal): $\overline{X} \pm t_{\alpha,n-1} = \frac{s(x)}{\sqrt{n}}$. t é encontrado na tabela de t-Student para o α e n-1 (graus de liberdade). s(x) é o desvio padrão amostral.

Proporção populacional:
$$\hat{p}\pm z_{\frac{\alpha}{2}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
.

3.2 Testes para a média populacional

Bicaudal: o erro será distribuído em ambas as caudas e por isso trabalharemos com metade dele em cada uma.