Devoir à la maison n° 11

À rendre le 25 janvier

On cherche à déterminer toutes les fonctions réelles f définies et continues sur $\mathbb R$ vérifiant :

$$\forall (x,y) \in \mathbb{R}^2, f(x) + f(y) = 2f\left(\frac{x+y}{2}\right) \quad (\star)$$

Préliminaires

1) Donner l'expression générale des suites réelles (u_n) et (v_n) vérifiant :

$$\forall n \in \mathbb{N}, u_{n+2} = 2u_{n+1} - u_n, \quad 2v_{n+1} = v_n$$

en fonction de n et des premiers termes u_0, u_1, v_0 .

Partie I. Première méthode

On note E l'ensemble des fonctions définies et continues sur \mathbb{R} vérifiant (\star) .

- 1) Soit $f \in E$. Montrer que la fonction $g: x \mapsto f(x) f(0)$ est un élément de E.
- 2) On considère maintenant une fonction f élément de E et vérifiant f(0) = 0. On pose a = f(1).
 - a) Montrer que la fonction f est impaire.
 - **b)** Montrer que pour tout $x \in \mathbb{R}$, f(x+2) = 2f(x+1) f(x).
 - c) En déduire que pour tout $n \in \mathbb{N}$, f(n) = an, puis que pour tout $m \in \mathbb{Z}$, f(m) = am.
 - **d)** Montrer que pour tout $p \in \mathbb{N}$, $f\left(\frac{1}{2^p}\right) = \frac{a}{2^p}$.
 - e) On note $B = \left\{ \frac{n}{2^p} \mid n \in \mathbb{Z} \text{ et } p \in \mathbb{N} \right\}$. Montrer que pour tout $x \in B, f(x) = ax$.
 - f) Soit x_0 un réel fixé. On considère la suite (w_n) définie par $\forall n \in \mathbb{N}, w_n = \frac{\lfloor 2^n x_0 \rfloor}{2^n}$
 - i) Démontrer que (w_n) converge et donner sa limite.
 - ii) Déterminer $f(w_n)$ en fonction de w_n pour tout $n \in \mathbb{N}$. En déduire l'expression de $f(x_0)$.
- 3) Déduire de ce qui précède toutes les fonctions f éléments de E.

Partie II. Seconde méthode

On étudie ici une autre méthode : les résultats de la partie I ne devront donc pas être utilisés.

Soit f une fonction continue sur \mathbb{R} et vérifiant (\star) .

- 1) Montrer que $\forall (x, y) \in \mathbb{R}^2$, f(x + y) = f(x) + f(y) f(0).
- **2)** Montrer que $\forall x \in [0,1], 2x \in [0,1]$ ou $2x 1 \in [0,1]$.
- **3)** Dans cette question, on suppose que f(0) = f(1).
 - a) Montrer que f est 1-périodique.
 - **b)** Justifier l'existence de $(c,d) \in [0,1]^2$ tel que : $\forall x \in [0,1], f(d) \leqslant f(x) \leqslant f(c)$
 - c) i) On suppose que $c \in [0, \frac{1}{2}]$. Montrer que f(c) = f(0).
 - ii) On suppose que $c \in \left[\frac{1}{2}, 1\right]$. Montrer que f(c) = f(0).
 - d) Montrer que f(0) = f(c) = f(d). Que peut-on en déduire pour f?
- 4) On considère la fonction $h: x \mapsto f(x) (f(1) f(0))x$. Montrer que h vérifie la relation (\star) , puis que h est constante.
- 5) En déduire toutes les fonctions f solutions du problème.

— FIN —