MindCore Vision

机器人大脑小脑一体化智能芯片

天使轮融资计划书 | 2025年7月

执行摘要

公司定位

专注于机器人**"大脑小脑一体化"**的智能芯片设计公司

通过**自主可控的高性能RISC-V多核处理器**,与**深度定制的VPU、NPU和实时控制单元**进行异构融合,提供完整智能解决方案

融资需求

1亿

人民币

用于核心架构研发、软件工具链构建、原型流片验证以及战略合作

核心价值

大脑负责高级认知与决策, 小脑负责实时控制与运动协 调,实现智能与控制的完美 融合

◎ 多模态感知融合

视觉处理是优势之一,同时 支持激光雷达、触觉、力觉 等多种传感器的深度融合

🚀 自主可控与开放

采用高性能RISC-V核心,无 ARM授权依赖,架构开放, 可深度定制

→ 实时智能处理

毫秒级响应的实时控制与深度AI推理并行,满足机器人复杂任务需求

■ 开发者友好

硬件架构兼容主流异构编程思想,提供LLVM 编译器和完整SDK

市场机会与洞察

市场规模

526亿

美元 (2032年预测)

30%

年复合增长率

行业痛点

- ▶ 架构分离导致效率低下
 感知、决策、执行脱节,限制智能水平
- ► 生态封闭与成本高昂 GPGPU功耗高、价格贵,ASIC灵活性差

MindCore 整体架构

核心技术挑战: 如何平衡实时性和高计算量

在物理上高度整合, 在功能上严格分离

第一支柱: 架构分区

- ► 专用实时核心(小脑)运 行RTOS
- ► 高性能计算核心(大脑) 运行Linux
- ▶ 片上网络(NoC)与QoS保证

第二支柱: 内存管理

- ▶ 硬件内存分区保护
- ▶ 零拷贝DMA传输机制
- ▶ 固定带宽保障

第三支柱: 软件协同

- ▶ 双系统并行运行
- ► 标准化RPC接口
- ▶ 对开发者透明

核心设计哲学: 不靠软件去"平衡", 而是靠硬件架构从设计根源上"保证"

技术指标对比

特性	MindCore大脑小脑一体	传统GPGPU方案	传统ASIC方案
大脑处理器	高性能RISC-V	ARM Cortex-A系列	ARM/其他
小脑控制器	专用实时核 <1ms	无	有限
视觉处理	30-60 fps 高精度	30-60 fps	30-60 fps
AI处理深度	高 (支持多模型并发)	高 (功耗大)	有限 (固化)
实时控制	硬实时保证	软实时	部分支持
功耗	< 30W	60W+	< 30W
架构灵活性	高	官	低
编程生态	开放,兼容主流思想	封闭 (CUDA)	专用SDK
预估成本	\$200	\$500+	\$150

眼脑合一数据流架构

软件与生态战略

赋能开发者,而非锁定开发者

核心思想:硬件架构在设计上考虑了与 ROCM/CUDA等主流异构计算生态的兼容性, 让熟悉GPU编程的开发者能**平滑迁移技能**

提供工具

- ▶ 基于LLVM的优化编译器,支持C++/Python
- ▶ 完整的SDK,包含底层驱动、硬件加速库
- ▶ 针对主流机器人算法的参考设计和优化范例

生态建设路线

1. 基础期(0-12月)

与核心战略伙伴共同打磨SDK, 完成关键算法 的移植与优化

2. 成长期(12-24月)

向合作院校和开发者社区开放SDK, 启动开发 者计划

3. 成熟期 (24月+)

建立线上开发者社区,提供完善的文档和技术支持

市场与竞争策略

市场切入点

滩头阵地

与**核心战略合作伙伴**深度绑定,为其下一代 **工业及服务机器人**提供定制化的"大脑小脑一 体化"智能芯片

扩展路径

从标杆客户的成功案例出发,逐步拓展至其 他工业自动化、智能安防、商用机器人等领 域

竞争策略

X 我们不做

不与英伟达在通用计算和算力顶峰上正面竞争

▼ 我们只做

机器人"大脑小脑一体化"的垂直整合方案,追 求极致的**智能决策、实时控制**和**感知融合**

我们的竞争对手不是芯片公司,而是"智能与控制脱节、成本高昂"的旧有解决方案

技术实施路线

阶段一:架构定义与验证(O-9月)

- ▶ 完成RISC-V多核架构设计与仿真
- ▶ 完成VPU和NPU的模块设计
- ▶ 在FPGA平台上完成关键IP验证和性能评估

阶段二:工程与流片(9-18月)

- ▶ 完成SoC前后端设计,进行MPW(多项目晶圆)流片
- ▶ 软件SDK Beta版交付核心伙伴测试
- ▶ 获得工程样片,完成功能与性能验证

阶段三:产品化与量产(18-30月)

- ▶ 基于样片和客户反馈进行优化、准备正式版流片
- ► SDK正式版发布、完善开发者文档

财务规划

天使轮资金用途(1亿人民币)

类别	金额(万元)	比例
核心团队	3,000	30%
软件与生态	2,500	25%
原型与流片	3,000	30%
IP与EDA工具	1,000	10%
运营储备	500	5%

关键里程碑

- ► **M3 (3个月)** 完成SoC详细架构设计
- ► M9 (9个月)
 FPGA原型演示核心功能, SDK Alpha版发布
- ► **M15(15个月)** 完成MPW流片
- ► M18 (18个月) 获得工程样片,启动核心伙伴评估
- ▶ **M24(24个月)** 获得首笔千万级量产订单

核心团队

CEO

资深产品与战略专家,拥有 将技术产品成功商业化的完 整经验

CTO

顶尖芯片架构师,在高性能 RISC-V处理器和SoC设计领 域有超过15年经验

软件VP

资深软件架构师,在异构计 算、编译器和AI框架领域有 深厚积累

顾问团队

来自机器人、半导体、计算机视觉领域的资深行业专家与顶尖院校教授

投资亮点总结

1. 赛道精准

聚焦机器人"大脑小脑一体化"这一高增长、 高壁垒的核心赛道

2. 架构创新

"大脑小脑一体"的理念与自主可控的RISC-V 架构相结合,具备颠覆潜力

3. 技术壁垒

成功解决了"实时性与高计算量平衡"这一业界公认难题,构建极高技术护城河

4. 路径务实

深度绑定战略合作伙伴,确保技术研发与市场需求紧密对齐,商业闭环清晰

5. 团队完整

拥有芯片架构、软件生态、产品战略的黄金 三角组合,是实现愿景的有力保障

6. 成本可控

采用RISC-V架构,极大降低IP授权成本和供应链风险、1亿融资计划具备高度可行性

谢谢!

让我们一起创造机器人智能的未来

下一步

深入技术交流|产品演示|合作探讨