

Electromagnetic Waves

Displacement Current, Ampere Maxwell's Law

- 1. A 100 Ω resistance and a capacitor of 100 Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is: (2016 II)
 - a. 4.4 A
- b. $11\sqrt{2}$ A
- c. 2.2 A
- d. 11 A

Properties and Applications (i.e. Velocity, Amplitude, Energy Density) of Electromagnetic Waves

When light propagates through a material medium of relative permittivity ∈_r and relative permeability μ_r, the velocity of light, v is given by : (c - velocity of light in vacuum) (2022)

$$a. \ v = \frac{c}{\sqrt{\in_r \mu_r}}$$

b.
$$v = c$$

$$c. \ \ v = \sqrt{\frac{\mu_r}{\in_r}}$$

$$d. \quad v = \sqrt{\frac{\in_r}{\mu_r}}$$

- 3. For a plane electromagnetic wave propagating in x-direction, which one of the following combination gives the correct possible directions for electric field (E) and magnetic field (B) respectively? (2021)
 - a. $-\hat{\mathbf{j}} + \hat{\mathbf{k}}, -\hat{\mathbf{j}} \hat{\mathbf{k}}$
- b. $\hat{j} + \hat{k}, -\hat{j} \hat{k}$
- c. $-\hat{j} + \hat{k}, -\hat{j} + \hat{k}$
- d. $\hat{j} + \hat{k}$, $\hat{j} + \hat{k}$
- **4.** Light with an average flux of 20 W/cm² falls on non-reflecting surface at normal incidence having surface area 20 cm². The energy received by the surface during time span of 1 minute is: (2020)
 - a. $12 \times 10^3 \,\text{J}$
- b. $24 \times 10^{3} \,\text{J}$
- c. $48 \times 10^{3} \text{ J}$
- d. $10 \times 10^{3} \, \text{J}$

5. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: (c = speed of electromagnetic waves) (2020)

a. 1:1

b. 1 : c

c. $1:c^2$

d. c:1

6. The magnetic field in an electromagnetic wave is given by, (2020-Covid)

 $B_y = 2 \times 10^{-7} \sin(\pi \times 10^3 \text{ x} + 3\pi \times 10^{11} \text{ t}) T$ Calculate the wavelength.

a. 2×10^{-3} m

b. 2×10^3 m

c. $\pi \times 10^{-3}$ m

d. $\pi \times 10^3$ m

7. An em wave is propagating in a medium with a velocity $v = \hat{i}v$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along. (2018)

a. -y direction

b. +z direction

c. -z direction

d. -x direction

8. In an electromagnetic wave in free space the root mean square value of the electric field is $E_{rms} = 6 \text{ V/m}$. The peak value of the magnetic field is: (2017-Delhi)

a. $2.83 \times 10^{-8} \text{ T}$

b. $0.70 \times 10^{-8} \text{ T}$

c. $4.23 \times 10^{-8} \text{ T}$

d. 1.41 × 10⁻⁸ T

- **9.** Out of the following options which one can be used to produce a propagating electromagnetic wave? (2016 1)
 - a. A charge moving at constant velocity
 - b. A stationary charge
 - c. A charge less particle
 - d. An accelerating charge
- **10.** Radiation of energy 'E' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is (C = velocity of light): (2015)

a. $\frac{2E}{C}$

b. $\frac{2E}{C^2}$

c. ___

d. $\frac{E}{C}$

- 11. Light with an energy flux of 25×10^4 W/m² falls on a perfectly reflecting surface at normal incidence. If the surface area is 15 cm^2 , the average force exerted on the surface is: (2014)
 - a. $1.25 \times 10^{-6} \,\mathrm{N}$

b. $2.50 \times 10^{-6} \,\mathrm{N}$

c. $1.20 \times 10^{-6} \text{ N}$

d. $3.0 \times 10^{-6} \text{ N}$

Electromagnetic Spectrum

12. Match List-I with List-II

(2022)

List-I

List-II

(Electromagnetic waves)

(Wavelength)

- a. AM radio waves
- (i) 10^{-10} m
- b. Microwaves
- (ii) 10² m
- c. Infraraed radiations
- (iii) 10⁻² m
- 1 37
- (111) 10 111

d. X-rays

(iv) 10⁻⁴ m

Choose the correct answer from the options given below:

- a. (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- b. (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- c. (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- d. (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
- **13.** The E.M. wave with shortest wavelength among the following is, (2020-Covid)
 - a. X-rays
- b. Gamma-rays
- c. Microwaves
- d. Ultraviolet rays
- 14. Which colour of the light has the longest wavelength?

(2019)

a. Red

- b. Blue
- c. Green
- d. Violet
- **15.** The energy of the E.M. waves is of the order of 15 keV. To which part of the spectrum does it belong? (2015 Pre)
 - a. Gamma-rays
 - b. X-rays
 - c. Infra-red rays
 - d. Ultraviolet rays

- **16.** The condition under which a microwave oven heats up a food item containing water molecules most efficiently is: (2013)
 - a. Infra-red waves produce heating in a microwave oven
 - b. The frequency of the microwaves must match the resonant frequency of the water molecules
 - c. The frequency of the microwaves has no relation with natural frequency of water molecules
 - d. Microwaves are heat waves, so always produce heating

Effects of Dielectrics in Capacitors

17. When light propagates through a material medium of relative permittivity $\in_{\mathbf{r}}$ and relative permeability $\mu_{\mathbf{r}}$, the velocity of light, v is given by : (c - velocity of light in vacuum) (2022)

a.
$$v = \frac{c}{\sqrt{\epsilon_r \ \mu_r}}$$

b.
$$v = c$$

c.
$$v = \sqrt{\frac{\mu_r}{\epsilon_r}}$$

d.
$$v = \sqrt{\frac{\epsilon_r}{\mu_r}}$$

- 18. A parallel plate capacitor of capacitance 20 μF is being charged by a voltage source whose potential is changing at the rate of 3 V/s. The conduction current through the connecting wires, and the displacement current through the plates of the capacitor, would be, respectively. (2019)
 - a. Zero, 60 μA
- b. 60 μA, 60 μA
- c. 60 µA, zero
- d. Zero, zero

Answer Key

- 5 6 9 10 11 12 13 14 15 16 17 b b b b b c a a a a a a
 - 18
- b