

Model Selection

Which Algorithm to Use?

- K-Nearest Neighbor
- Logistic Regression
- Decision tree
- Neural networks
- SVM
- Fisher Linear Discriminant
- Naïve bayes
- ...

Which Algorithm is the Best?

Table 3. Normalized scores of each learning algorithm by problem (averaged over eight metrics)

	MODEL	CAL	COVT	ADULT	LTR.P1	LTR.P2	MEDIS	SLAC	$_{ m HS}$	MG	CALHOUS	COD	BACT	MEAN
	BST-DT	PLT	.938	.857	.959	.976	.700	.869	.933	.855	.974	.915	.878*	.896*
	RF	PLT	.876	.930	.897	.941	.810	.907*	.884	.883	.937	.903 *	.847	.892
	BAG-DT	_	.878	.944*	.883	.911	.762	.898*	.856	.898	.948	.856	.926	.887*
	BST-DT	ISO	.922*	.865	.901*	.969	.692*	.878	.927	.845	.965	.912*	.861	.885*
	RF		.876	.946*	.883	.922	.785	.912 *	.871	.891 *	.941	.874	.824	.884
	BAG-DT	PLT	.873	.931	.877	.920	.752	.885	.863	.884	.944	.865	.912 *	.882
	RF	ISO	.865	.934	.851	.935	.767*	.920	.877	.876	.933	.897 *	.821	.880
	BAG-DT	ISO	.867	.933	.840	.915	.749	.897	.856	.884	.940	.859	.907 *	.877
İ	SVM	PLT	.765	.886	.936	.962	.733	.866	.913 *	.816	.897	.900 *	.807	.862
	ANN	_	.764	.884	.913	.901	.791*	.881	.932 *	.859	.923	.667	.882	.854
	SVM	ISO	.758	.882	.899	.954	.693 *	.878	.907	.827	.897	.900 *	.778	.852
İ	ANN	PLT	.766	.872	.898	.894	.775	.871	.929*	.846	.919	.665	.871	.846
	ANN	ISO	.767	.882	.821	.891	.785*	.895	.926 *	.841	.915	.672	.862	.842
	BST-DT	_	.874	.842	.875	.913	.523	.807	.860	.785	.933	.835	.858	.828
	KNN	PLT	.819	.785	.920	.937	.626	.777	.803	.844	.827	.774	.855	.815
	KNN	-	.807	.780	.912	.936	.598	.800	.801	.853	.827	.748	.852	.810
	KNN	ISO	.814	.784	.879	.935	.633	.791	.794	.832	.824	.777	.833	.809
	BST-STMP	PLT	.644	.949	.767	.688	.723	.806	.800	.862	.923	.622	.915 *	.791
	SVM	-	.696	.819	.731	.860	.600	.859	.788	.776	.833	.864	.763	.781
	BST-STMP	ISO	.639	.941	.700	.681	.711	.807	.793	.862	.912	.632	.902 *	.780
	BST-STMP		.605	.865	.540	.615	.624	.779	.683	.799	.817	.581	.906 *	.710
	DT	ISO	.671	.869	.729	.760	.424	.777	.622	.815	.832	.415	.884	.709
	DT	_	.652	.872	.723	.763	.449	.769	.609	.829	.831	.389	.899*	.708
	DT	PLT	.661	.863	.734	.756	.416	.779	.607	.822	.826	.407	.890 *	.706
	LR	_	.625	.886	.195	.448	.777*	.852	.675	.849	.838	.647	.905 *	.700
	LR	ISO	.616	.881	.229	.440	.763 *	.834	.659	.827	.833	.636	.889*	.692
	LR	PLT	.610	.870	.185	.446	.738	.835	.667	.823	.832	.633	.895	.685
	NB	ISO	.574	.904	.674	.557	.709	.724	.205	.687	.758	.633	.770	.654
	NB	PLT	.572	.892	.648	.561	.694	.732	.213	.690	.755	.632	.756	.650
:	NB	_	.552	.843	.534	.556	.011	.714	654	.655	.759	.636	.688	.481

Zürcher Hochschule für Angewandte Wissenschaften

Comparison of supervised algorithms (decision trees, random forest, SVM, neural networks etc.) over 11 classification tasks

The bias-variance tradeoff

Generalisation error

General for supervised machine learning: Split the available data into a training and independent test set

All Data

Training

Test

Estimate the generalisation error based on the independent test set

The bias-variance tradeoff

Typically, we would like to choose our model complexity to trade bias off with variance in such a way as to minimize the test error

The **model bias** refers to the limitation due to the model flexibility. More flexible models result in less bias

The **variance of the model** refers to the amount by which \hat{f} would change, if a different training dataset was used.

More flexible models have higher variance, i.e. small changes in the training data can result in large changes in \hat{f} .

Hyperparameters

Model Selection - Hyperparameters

The goal of Model Selection is to find good hyperparameters for a given algorithm. Hyperparameters are not optimised during training (they do not belong to the «trainable parameters»). How to choose the best values?

Algorithm	Hyperparameter	Parameters		
k-Means	- Number of clusters k	- Coordinates of the k centroids		
Polynomial Regression	- Polynomials of the input variables - Regularization parameter $\boldsymbol{\lambda}$	- Values of $\theta_0, \theta_1, \dots \theta_N$		
Neural Networks	Number of hidden layersSize of hidden layersLinks between neuronsActivation function	- Weights and biases		

Data partitioning

Data Partitioning

All Data

Training

Test

Independent test set. Do not use during model building and selection

Default approaches split into training, test, and validation set (if possible)

All Data

Training

Validation

Test

Used for model selection and finding the optimal hyperparameters

By partitioning the available data into three sets, we drastically reduce the number of samples which can be used for learning the model, and the results can depend on a particular random choice for the pair of (train, validation) sets. A solution to this problem is **cross-validation**.

k-Fold Cross Validation

Zürcher Hochschule für Angewandte Wissenschaften

Typical choice is k = 5 or k = 10

k-fold Cross Validation (CV)

- Cross calidation is for model checking and finding good hyperparameter, but NOT for model building
- Cross calidation needs to run several times to give reliable results (e.g. 100 times for 5-fold CV)
- After cross calidaton the entire training data can be used to build the model

- Divide the data set into k folds of equal size, here k is 10
 2 3 4 5 6 7 8 9 10
 Use one fold for testing a model built on all other data folds.
 2 3 4 5 6 7 8 9 10
- 1 2 3 4 5 6 7 8 9 10

3. Repeat the model building and testing for each of the data folds.

4. Calculate the average of all of the k test errors and deliver this as result.

Leave-one-out Cross Validation LOOCV

- De-facto n-fold cross validation, with n number of training samples
- Train the model on n-1 samples and evaluate it on the single data point
- Computationally expensive
- Useful especially for small datasets

für Angewandte Wissenschaften

Engineering

Cross validation score

The cross validation score

The Cross validation score is the average of a given accuracy metric over all these runs for all data folds.

The actual accuracy metric used to compute the score depends on the task

- regression: MSE, MAE, RMSD, etc.
- classification: Precision, Recall, F1-score, Accuracy

Attention – do not get confused!

- if the metric represents an error: smaller is better
- If the metric represents a type of accuracy: larger is better
- → always check what is ACTUALLY plottet!

Model Selection and generalisation error in polynomial regression

Which degree of the polynomial is appropriate?

10 data points sampled from $y(x) = \sin 2\pi x$ with small additive Gaussian noise

The agreement with the training data improves with increasing model flexibility (degree of the polynomial).

Generalisability: An Important Aspect in Model Selection

Illustration for **Overfitting**: The model with 10 degrees of feedom manages to fit the 10 data points exactly. However, visual inspection suggests that its **generalisability** is poor, i.e. large deviations from the underlying structure in observations different from the training set.

Overfitting vs. underfitting

An **overfitted** model corresponds too closely or exactly to the training data. It may include some of the residual variation of the data, i.e. the noise, in the model structure and therefore fail to predict observations from data not included in the training set reliably, i.e. **generalise poorly**.

In other words: The model contains more paramaters than can be justified by the structure underlying the training data.

Underfitting occurs when the model is not flexible enough to capture the underlying structure of the training data. This results in both, poor agreement with the training data and generalisability.

Measuring the generalisation error

If the underlying structure of the data is unknown, an **independent test** dataset is used to **estimate the generalisation error** by means of the evaluation **metrics**, e.g. *RMSD*.

Generalisation error as a function of model flexibility

- Monotonously decreasing training error
- and U-shaped test error
 with increasing flexibility of the model (and constant trainingset size)

Generalisation Error as a Function of the Amount of Training Data

Typically, the overfitting problem decreases with increasing amount of training data and constant model flexibility.

More flexible models need more training data

Zürcher Hochschule

Learning curve analysis in classification

Evaluation of Learning Curves

Evaluate tendencies of training and test curves for sufficient examples (right side of plot):

General Rules:

- If both curves are "close to each other" and both of them have a low score -> potential underfitting (High Bias)
- If training curve has a much better score than testing curve
 -> potential overfitting (High Variance)

https://stats.stackexchange.com/questions/220827/how-to-know-if-a-learning-curve-front-synt-model-suffers-from-bias-c

Zürcher Hochschule für Angewandte Wissenschaften

Exercise: Analyze the following Learning Curve

Exercise: Analyze the following Learning Curve

SOLUTION: Analyze the following Learning Curve

Observations:

- High training score, stable
- Validation score still rising

Interpretation:

 More training examples will probably improve the classifier

http://scikit-

Exercise: Analyze the following Learning Curve

SOLUTION: Analyze the following Learning Curve

Observations:

- Training score is at its maximum regardless of training examples
- Cross-validation score increases over time
- Huge gap between cross-validation score and training score

Interpretation:

- High training score shows severe overfitting
- · High variance scenario
- Reduce complexity of the model or gather more data

Exercise: Analyze the following Learning Curve

SOLUTION: Analyze the following Learning Curve

Observations:

- Training score decreases and plateau: indicates underfitting, High bias
- Cross-validation score stagnating throughout
- Low scores

Interpretation:

- Unable to learn from data
- Should tweak model (perhaps increase model complexity)

Appendix

Stratified Sampling

Oversampling and Undersampling

For highly imbalanced datasets

- Oversampling: repeat samples from underrepresented class, or create new synthetic samples (e.g. with SMOTE)
- Untersampling: only use a small fraction of samples from the overrepresented class, such that all classes have same amount of samples

SMOTE -

