#### RAPORT Z WYKONANIA PROJEKTU

## Porównanie modeli detekcji obiektów

Jakub Wiercimak, Krzysztof Polak, Tymoteusz Widlarz

#### 1. Początek pracy

Próby uruchomienia gotowych modeli z pochodzących z keras.io. Zbiorem danych, na którym trenowane były interesujące nas modele był ImageNET. Niestety ogromna liczba klas dostępnych w w/w zbiorze uniemożliwia znalezienie innego zbioru danych, który będzie posiadał każdą z nich. Z tego powodu porzuciliśmy Keras.

## 2. Wybór modeli do testowania

Użyliśmy modeli dostępnych na stronie tfhub [1]. Ze względu na charakter projektu (porównanie) wykorzystaliśmy modele wytrenowane na takim samym zbiorze danych (COCO). Wybrane przez nas modele to:

- ssd+mobilenet v2 [2]
- Centernet+resnet [3]
- Centernet+hourglass [4]
- faster\_rcnn+resnet [5]

Zrezygnowaliśmy z testowania YOLO, ponieważ chcieliśmy zachować jednolity format danych wychodzących.

#### 3. Przygotowanie danych do testowania

Znaleźliśmy duży zbiór danych Open Images [6]. Ręcznie sprawdziliśmy czy wszystkie klasy z COCO mają swoje odpowiedniki w w/w zbiorze. Niestety nie znaleźliśmy zdjęć dla klasy 'hair brush'. Pobraliśmy zdjęcia dla każdej z klas korzystając z narzędzia pozwalające na wybór klasy zdjęć oraz ich ilości [7]. Następnie przygotowaliśmy mapowanie nazw pochodzących z Open Images do COCO. Utworzyliśmy metodę, która pozwala na zmianę rozdzielczości zdjęć zachowując stosunek wysokości do szerokości oryginalnego zdjęcia.

## 4. Testowanie modeli na przygotowanych danych

Stworzyliśmy funkcje które pozwalały na przetestowanie każdego z modeli na naszych danych. Dla każdego modelu funkcja ta zwracała macierze pomyłek dla każdej wybranej przez nas rodzielczości zdjęć. Testy obejmowały około 100 zdjęć na klasę. Klas było 90.

### 5. Analiza rezultatów

Na podstawie macierzy pomyłek wyliczyliśmy parametry takie jak F1 score, precision, recall, normalized score. Następnie przygotowaliśmy wykresy obrazujące w/w parametry dla danych klas i modeli w funkcji rozdzielczości oraz porównanie klas wewnątrz danego modelu przy danej rozdzielczości. Poniżej przykładowe wykresy. Pozostałe rezultaty dostępne są w repozytorium github dot. projektu [8].



Rys 1. F1 Score



Rys 2. Normalized Score



Rys. 3 Precision



#### Wnioski dotyczące rys.1-4

F1 Score, Normalized Score, Precision oraz Recall wskazują na nieznaczną poprawę rezultatów wraz ze wzrostem rozdzielczości. Faster\_rcnn+resnet okazał się być niewrażliwy na zmianę rozdzielczości. Różnice były niewielkie. Może to wynikać ze sposobu zmiany rozdzielczości. Po analizie wykresów można porównać skuteczność modeli, od najlepszej do najgorszej: faster\_rcnn+resnet, Centernet+hourglass, ssd+mobilnet\_v2, centernet+resnet. Kolejność ta jest zgodna ze stopniem złożoności modelu oraz prędkością wykrywania obiektów. Wykresy dotyczące Precision wskazują na dominację ssd+mobilnet\_v2 w tym zakresie. Pozostałe modele zachowują się zgodnie z resztą miar.



Rys. 5 Normalized score dla hourglass

## Wnioski dotyczące rys. 5

Skuteczność wykrywania poszczególnych klas była bardzo podobna dla każdego z modeli. Zauważyliśmy że kilka klas w tym 'window', 'mirror' oraz 'eye glasses' nie były rozpoznawane przez żaden z testowanych modeli. Inne zaś takie jak stop sign są rozpoznawane przez każdy model z największą skutecznością. Może to wynikać z wykorzystanych danych jak i tego, że np. zamiast lustra rozpoznawane z większą wiarygodnością jest to co się w nim odbija. Obiekty słabo bądź nie wykrywane często występują również za innymi obiektami, przez co model nie jest w stanie ich rozróżnić. Natomiast znaki stop sign są zawsze bardzo podobne niezależnie od zbioru danych. W przeciwieństwie do bardziej ogólnej klasy 'street sign' czy luster.



Rys.6 Macierz pomyłek dla Hourglass+Centernet dla rozdzielczości 800x600

# Wnioski dotyczące rys. 6

Wizualizacja macierzy w raporcie ze względu na liczbę klas jest mało czytelna. Lepszej jakości wizualizacja dostępna jest na GitHub [8]. Mapa termiczna wskazuje na przekątne co wynika z większości wykryć zgodnie z poszukiwaną klasą. Znacznie wybija się klasa 'person' ze względu na dużą liczbę obiektów tego typu w pozostałych zdjęciach (dotyczących innych klas). Warto zauważyć że wysoka liczba wykryć (na przekątnej) niekoniecznie musi się wiązać z dobrą dokładnością dla danej klasy. Przykładami są klasy 'chair' oraz 'person', które znajdują się na środku osi y wykresu Rys.5. Klasy te mają dużą liczbę wykryć oraz stosunkowo równie dużą liczbę pomyłek (krzesło jest brane za człowieka). Może to wynikać z danych z których korzystaliśmy, na krześle często mógł siedzieć człowiek. Idealną sytuacją jest gdy liczby większe od zera występują jedynie na przekątnej.

## 6. Przypisy

- [1] <a href="https://tfhub.dev/s?module-type=image-object-detection">https://tfhub.dev/s?module-type=image-object-detection</a>
- [2] https://tfhub.dev/tensorflow/ssd\_mobilenet\_v2/fpnlite\_640x640/1
- [3] https://tfhub.dev/tensorflow/centernet/resnet50v1\_fpn\_512x512/1
- [4] https://tfhub.dev/tensorflow/centernet/hourglass\_512x512/1
- [5] https://tfhub.dev/tensorflow/faster\_rcnn/resnet101\_v1\_640x640/1
- [6] https://storage.googleapis.com/openimages/web/index.html
- [7] https://github.com/EscVM/OIDv4 ToolKit
- [8] https://github.com/tymekw/ML-project