Exercice 1. /4

1. Écrire la matrice carrée d'ordre 3 telle que pour tous entiers naturels $1 \le i \le 3$ et $1 \le j \le 3$:

$$a_{ij} = \begin{cases} i & \text{si } i = j, \\ 0 & \text{si } i < j, \\ -1 & \text{si } i > j \end{cases}$$

2. Soit la matrice $A = (a_{ij})$ telle que $A = \begin{pmatrix} 5 & 0 & 1 & 3 \\ 2 & 3 & 0 & 4 \\ 1 & 4 & 0 & 2 \\ 1 & -2 & 0 & 6 \end{pmatrix}$.

Calculer les sommes suivantes :

(a)
$$\sum_{i=1}^{3} a_{i3}$$
 (b) $\sum_{i=1}^{4} a_{ii}$

Exercice 2. /4

Soient A et B deux matrices carrées non nulles d'ordre p telles que $A+B=I_p$. Soit M une matrice carrée d'ordre p telle qu'il existe deux réels non nuls et distincts λ et μ tels que : $M=\lambda A+\mu B$ et $M^2=\lambda^2 A+\mu^2 B$.

- 1. Démontrer que $(M \lambda I_p)(M \mu I_p) = 0_p$ où 0_p désigne la matrice nulle carré d'ordre p.
- 2. En déduire que $BA = 0_p$.

Exercice 3. /6

On considère la matrice $M=\begin{pmatrix}1&-1&2\\-3&\frac12&-3\\-2&1&-3\end{pmatrix}$. On note $I=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$ la matrice identité d'ordre 3.

- 1. Vérifier l'égalité $2M^2 + M = I$.
- 2. En déduire que M est inversible et exprimer M^{-1} en fonction des matrices I et M.
- 3. Calculer M^{-1} .
- 4. Résoudre dans \mathbb{R}^3 le système : $\begin{cases} x-y+2z &= 1\\ -3x+\frac{1}{2}y-3z &= 2\\ -2x+y-3z &= 3 \end{cases}$

Exercice 4 /6

On considère la matrice $A = \begin{pmatrix} 0, 6 & -0, 2 \\ 0, 2 & 0, 6 \end{pmatrix}$ ainsi que la matrice colonne $Z = \begin{pmatrix} x \\ y \end{pmatrix}$ dans laquelle x et y sont des nombres réels vérifiant $N(Z) = x^2 + y^2 = 1$ et xy > 0.

- 1. Montrer que $0 \leqslant N(AZ) \leqslant \frac{1}{2}N(Z)$.
- 2. Démontrer que, pour tout $n \in \mathbb{N}$, $0 \leq N(A^n Z) \leq \frac{1}{2^n}$.
- 3. En déduire $\lim_{n\to+\infty} N(A^n Z)$.