01 LOGIC

01 02 Truth Tables

If one proposition consists of n independent propositions,

Then there are 2ⁿ cases which are represented by 2ⁿ rows in a truth table.

Construct the truth table for $\sim p \vee p$

Notice that $\sim p \lor p$ consists of one independent proposition.

So there are 2^1 cases or 2^1 rows in the truth table.

p	~p	p ∨ ~p
T	F	T
F	T	T

Notice also that the truth value of $\sim p \lor p$ is always T.

Construct the truth table for $\sim p \land p$

Notice that $\sim\!\!p\wedge p$ consists of one independent proposition.

So there are 2¹ cases or 2¹ rows in the truth table.

p	~p	$p \land \sim p$
T	F	F
F	T	F

Notice also that the truth value of $\sim p \land p$ is always F.

For an implication $p \to q$, the implication $q \to p$ is called the <u>converse</u> of $p \to q$; the implication $\sim p \to \sim q$ is called the <u>inverse</u> of $p \to q$; the implication $\sim q \to \sim p$ is called the <u>contrapositive</u> of $p \to q$.

Construct the truth table for $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$. Notice that $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ consists of two independent propositions. So there are 2^2 cases or 2^2 rows in the truth table.

p	q	~p	~q	$p \rightarrow q$	$\sim q \rightarrow \sim p$	$(p \rightarrow q) \leftrightarrow$
						$(\sim q \rightarrow \sim p)$
T	T	F	F	T	Т	Т
T	F	F	T	F	F	T
F	Т	T	F	T	T	T
F	F	T	T	T	Т	T

Notice that the truth value of $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is always T.

Construct the truth table for $\sim q \oplus (q \leftrightarrow p)$.

Notice that $\sim q \oplus (q \leftrightarrow p)$ consists of two independent propositions. So there are 2^2 cases or 2^2 rows in the truth table.

p	q	~q	$q \leftrightarrow p$	$\sim q \oplus (q \leftrightarrow p)$
T	T	F	T	T
T	F	T	F	T
F	T	F	F	F
F	F	T	T	F

Construct the truth table for $\sim p \land (q \rightarrow r)$.

Notice that $\sim p \land (q \rightarrow r)$ consists of three independent propositions. So there are 2^3 cases or 2^3 rows in the truth table.

p	q	r	~p	$q \rightarrow r$	$\sim p \land (q \rightarrow r)$
T	T	T	F	T	F
Т	T	F	F	F	F
T	F	T	F	T	F
T	F	F	F	T	F
F	T	T	T	T	Т
F	T	F	T	F	F
F	F	T	T	T	Т
F	F	F	T	T	Т

Construct the truth table for $p \leftrightarrow (q \oplus r)$.

Notice that $p \leftrightarrow (q \oplus r)$ consists of three independent propositions. So there are 2^3 cases or 2^3 rows in the truth table.

p	q	r	q⊕r	$p \leftrightarrow (q \oplus r)$
T	T	T	F	F
T	T	F	T	Т
T	F	T	T	T
T	F	F	F	F
F	T	T	F	T
F	Т	F	T	F
F	F	T	T	F
F	F	F	F	T

Precedence of Logical Operators

<u>Operator</u>	<u>Precedence</u>
~	1
٨	2
V	3
\rightarrow	4
\leftrightarrow	5