

Qiime Commands

Melissa Dsouza

Abstract

Commands for hands-on component for Qiime are found in guidelines.

Citation: Melissa Dsouza Qiime Commands. protocols.io

dx.doi.org/10.17504/protocols.io.fesbjee

Published: 26 Jul 2016

Guidelines

1. Checking mapping file format

\$ validate_mapping_file.py -m map_file.txt -o mapping_file_output

2.1 Join paired end reads

\$ join_paired_ends.py -f Undetermined_S0_L001_R1_001.fastq - r Undetermined S0 L001 R2 001.fastq -b Undetermined S0 L001 I1 001.fastq -o reads

2.2 Depmultiplex & quality filter

\$ split_libraries_fastq.py -i fastqjoin.join.fastq -b fastqjoin.join_barcodes.fastq -o split -m map_file.txt - q 29 --barcode_type 12 --store_demultiplexed_fastq

3.1 De novo OTU picking

\$ pick_de_novo_otus.py -i subs_seqs_q.fasta -o uclust_otus/

3.2 Closed-reference OTU picking

\$ pick_closed_reference_otus.py -i subs_seqs_q.fasta -r \$PWD/gg_13_8_otus/rep_set/97_otus.fasta t \$PWD/gg_13_8_otus/taxonomy/97_otu_taxonomy.txt -o_ref_otus

3.3 Open-reference OTU picking

\$ pick_open_reference_otus.py -i subs_seqs_q.fasta -r \$PWD/gg_13_8_otus/rep_set/97_otus.fasta o uclust_open_otu

BIOM files

- \$ biom summarize-table -i uclust_otus/otu_table_even10.biom
- \$ biom summarize-table -i uclust otus/otu table even10.biom --qualitative
- \$ biom add-metadata -i \$PWD/otu_table_even10.biom -o denovo_otu.biom --sample-metadata-fp map_file.txt --observation-metadata-
- fp \$PWD/uclust_assigned_taxonomy/subs_seqs_q_rep_set_tax_assignments.txt --observation-header
 OTUID,taxonomy --sc-separated taxonomy
- \$ biom convert -i otu table.biom -o otu table.txt --table-type "otutable" --header-key taxonomy -b

More commands:

- \$ identify_chimeric_seqs.py -m ChimeraSlayer -i rep_set_aligned.fasta -a gold.fa -o chimeric_seqs.txt
- \$ core diversity analyses.py -i denovo otu.biom -o core diversity -e 10 -m map file.txt -t ref set.tre
- 1. Filter low sequence count samples from table (minimum sequence count: 7500)
- \$ filter_samples_from_otu_table.py -i denovo_otu.biom -o core_diversity7500/table_mc7500.biom -n 7500
- 2. Rarify the OTU table to 7500 sequences/sample
- \$ single_rarefaction.py -i core_diversity7500/table_mc7500.biom -
- o core diversity7500s/table even7500.biom -d 7500
- 3. Beta Diversity (weighted unifrac)
- \$ beta diversity.py -i core diversity7500s/table even7500.biom -
- o core diversity7500/bdiv even7500/ --metrics weighted unifrac -t ref set.tre
- 4. Principal coordinates (weighted unifrac)
- \$principal_coordinates.py -i core_diversity7500/bdiv_even7500//weighted_unifrac_dm.txt o core diversity7500/bdiv_even7500//weighted_unifrac_pc.txt
- 5. Make emperor plots, weighted_unifrac)
- \$make_emperor.py -i core_diversity7500s/bdiv_even7500//weighted_unifrac_pc.txt o core diversity7500/bdiv even7500//weighted unifrac emperor pcoa plot/ -m map file.txt
- 6. Alpha rarefaction
- \$ multiple_rarefactions.py -i core_diversity7500/table_mc7500.biom -m 10 -x 7500 -s 749 o core_diversity7500/arare_max7500//rarefaction/
- 7. Alpha diversity on rarefied OTU tables
- \$ alpha diversity.py -i core diversity7500/arare max7500//rarefaction/ -
- o core_diversity7500_1105noblanks/arare_max7500//alpha_div/ -t ref_set.tre
- 8. Collate alpha
- \$ collate alpha.py -i core diversity7500/arare max7500//alpha div/ -
- o core diversity7500 /arare max7500//alpha div collated/

9. Rarefaction plot: All metrics \$ make_rarefaction_plots.py -i core_diversity7500/arare_max7500// alpha_div_collated/ -m 150701_CAWSMF_1104.txt o core_diversity7500/arare_max7500//alpha_rarefaction_plots/

10. Summarize Taxonomy \$ summarize_taxa.py -i core_diversity7500s/taxa_plots/table_mc7500_sorted.biom - o core_diversity7500/taxa_plots/

Protocol