Rockchip RK809 Developer Guide

文件标识: RK-KF-YF-058

发布版本: V1.0.0

日期: 2019-11-26

文件密级: 公开资料

免责声明

本文档按"现状"提供,福州瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和 内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。 本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有© 2019福州瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

福州瑞芯微电子股份有限公司

Fuzhou Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文档主要介绍 RK809 的各个子模块,介绍相关概念、功能、dts 配置和一些常见问题的分析定位。

产品版本

芯片名称	内核版本
RK809	4.4、4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

日期	版本	作者	修改说明
2019.11.26	V1.0.0	张晴	第一次版本发布

Rockchip RK809 Developer Guide

- 1. 基础
 - 1.1 概述
 - 1.2 功能
 - 1.3 芯片引脚功能
 - 1.4 重要概念
 - 1.5 上电条件和时序
- 2. 配置
 - 2.1 驱动和 menuconfig
 - 2.2 DTS 配置
 - 2.3 函数接口
- 3. Debug
 - 3.1 内核
 - 3.2 内核

1. 基础

1.1 概述

RK809 是一款高性能 PMIC,RK809 集成 5 个大电流 DCDC、9 个 LDO、2 个 开关SWITCH、 1个 RTC、1个 高性能CODEC、可调上电时序等功能。

系统中各路电源总体分为两种: DCDC 和 LDO。两种电源的总体特性如下(详细资料请自行搜索):

- 1. DCDC:输入输出压差大时,效率高,但是存在纹波比较大的问题,成本高,所以大压差,大电流负载时使用。一般有两种工作模式。PWM模式:纹波瞬态响应好,效率低;PFM模式:效率高,但是负载能力差。
- 2. LDO:输入输出压差大时,效率低,成本低,为了提高 LDO 的转换效率,系统上会进行相关优化如: LDO 输出电压为 1.1V,为了提高效率,其输入电压可以从 VCCIO_3.3V 的 DCDC 给出。所以电路上如果允许尽量将 LDO 接到 DCDC 输出回路,但是要注意上电时序。

1.2 功能

从使用者的角度看, RK809 的功能概况起来可以分为 4 个部分:

- 1. regulator 功能: 控制各路 DCDC、LDO 电源状态;
- 2. rtc 功能:提供时钟计时、定时等功能;
- 3. gpio 功能:可当普通 gpio 使用,有pinctrl的功能;
- 4. pwrkey 功能: 检测 power 按键的按下/释放,可以为 AP 节省一个 gpio;
- 5. clk 功能:有两个32.768KHZ时钟输出,一个不可以控常开,一个是软件可控;
- 6. codec 功能:采样率最高支持到192KHZ,支持16bit和32bit,支持DAC、ADC PDM等(此功能暂不在本文档中介绍,后面会有专有文档补充说明)。

1.3 芯片引脚功能

下面描述中,SLEEP 和 INT 引脚需要重点关注,而且具有扩展gpio功能的sleep脚:

PIN NO	PIN NAME	PIN DESCRIPTION		
1	SCL	I2C clock input		
2	SDA	I2C data input and output		
3	LD07	LDO7 output		
4	VCC7	Power supply of LDO7/8/9		
5	LD08	LDO8 output		
6	LDO9	LDO9 output		
7	INT	Interrupt request pin, open drain		
8	FB2	Output feedback voltage of buck2		
9	SW2	Switching node of buck2		
10	VCC2	Power supply of buck2		
11	VCC1	Power supply of buck1		
12	SW1	Switching node of buck1		
13	FB1	Output feedback voltage of buck1		
14	LRCLK	The I2S framing clock		
15	BCLK	The I2S bit clock		
16	MCLK	The I2S main clock input pin		
17	SDI	The I2S DAC input data		
18	SDO/PDMDATA	The I2S ADC output data/PDM Data for the DSADC		
19	PDMCLK	PDM CLK for the DSADC OUTPUT		
20	LDO3	LDO3 output		
21	LDO2	LDO2 output		
22	VCC5	Power supply of LDO1/2/3		
23	LDO1	LDO1 output		

PIN NO	PIN NAME	PIN DESCRIPTION		
24	VCC3	Power supply of buck3		
25	SW3	Switching node of buck3		
26	VBUCK3	Output voltage of buck3		
27	FB3	Output feedback voltage of buck3		
28	LDO4	LDO4 output		
29	LDO5	LDO5 output		
30	VCC6	Power supply of LDO4/5/6		
31	LDO6	LDO6 output		
32	SPKP_OUT	Positive speaker driver output		
33	VCC_SPK_HP	Power supply for speaker and charger pump		
34	SPKN_OUT	Negative speaker driver output.		
35	VCC_CPVSS	Negative power supply for the headphone		
36	CPN	Negative switching node of the charger pump		
37	CPP	Positive switching node of the charger pump.		
38	VCC_CPVDD	Positive power supply for the headphone		
39	HPL_OUT	Left channel output of the headphone		
40	HP_SNS	Reference ground for the headphone		
41	HPR_OUT	Right channel output of the headphone		
42	MICIN	Negative input of the Microphone		
43	MICIP	Positive input of the Microphone		
44	VCC_1P8A	Power supply for internal 1.8V analog circuit		
45	VCC_RTC	Power supply filter		
46	VREF	Internal reference voltage		
47	GNDREF	Reference ground		
48	VCC_1P8D	Power supply for internal 1.8V digital circuit		

49	SLEEP	Sleep mode control input	
50	XIN	32.768KHz crystal oscillator input	
51	XOUT	32.768KHz crystal oscillator output	
52	PWRON	Power on key input, active low, internal 17k resistor pull high	
		to VCC_RTC	
53	SW5	Switching node of BUCK5	
54	VCC9	Power supply of buck5 and SWOUT1	
55	SWOUT1	Power switch out 1	
56	BATDIV	Divided voltage of positive battery	
57	VCC8	Power supply of SWOUT2	
58	SWOUT2	Power switch out 2	
59	FB5	Output feedback voltage of buck5	
60	EXT_EN	Enable Signal for external high voltage BUCK	
61	VDC	If it exceeds 0.55V for the first time, it will start the	
		PMIC(rising edge triggering start). And it is connected to the	
		divider of external power supply generally.	
62	SNSP	Bat charging and discharging sense current positive pin	
63	SNSN	Bat charging and discharging sense current negative pin	
64	FB4	Output feedback voltage of buck4	
65	SW4	Switching node of buck4	
66	VCC4	Power supply of buck4	
67	RESETB	Reset pin after power on, active low	
68	CLK32K	32.768KHz clock output, open drain	
Exposed	Exposed	Ground	
pad	ground		

1.4 重要概念

• I2C 地址

7 位从机地址: 0x20

- PMIC 有 3 种工作模式
 - 1. PMIC normal 模式

系统正常运行时 PMIC 处于 normal 模式,此时 pmic_sleep 为低电平。

2. PMIC sleep 模式

系统休眠时需要待机功耗尽量低,PMIC 会切到 sleep 模式减低自身功耗,这时候一般会降低某些路的输出电压,或者直接关闭输出,这可以根据实际产品需求进行配置。系统待机时 AP 通过 I2C 指令把 pmic_sleep 配置成 sleep 模式,然后拉高 pmic_sleep 即可让 PMIC 进入 sleep 状态;当 SoC 唤醒时 pmic_sleep 恢复为低电平,PMIC 退出休眠模式。

3. PMIC shutdown 模式

当系统进入关机流程的时候,PMIC 需要完成整个系统的电源下电操作。AP 通过 I2C 指令把pmic_sleep 配置成 shutdown 模式,然后拉高 pmic_sleep 即可让 PMIC 进入 shutdown 状态。

pmic_sleep 引脚

常态为低电平,PMIC 处于 normal 模式。当引脚拉高的时候会切换到 sleep 或者 shutdown 的模式。

RK809上这个脚是有复用功能的,可以通过pinctrl切换,选择需要的功能:

- 1. SLEEP功能,用于SLEEP模式切换;
- 2. 关机功能,用于POWER DOWN;
- 3. 复位功能,用于RESET;
- 4. 空闲,没有作用;

● pmic_int 引脚

常态为高电平,当有中断产生的时候变为低电平。如果中断没有被处理,则会一直维持低电平。

• pmic_pwron 引脚

pwrkey 的功能需要硬件上将 power 按键接到这个引脚,驱动通过这个引脚来判断按下/释放。

• 各路 DCDC 的工作模式

DCDC 有 PWM(也叫 force PWM)、PFM 模式,但是 PMIC 有一种模式会动态切换 PWM、PFM,这就是我们通常所说的 AUTO 模式。PMIC 支持 PWM、AUTO PWM/PFM 两种模式,AUTO 模式效率高但是纹波瞬态响应会差。出于系统稳定性考虑,运行时都是设置为 PWM 模式,系统进入休眠时会选择切换到 AUTO PWM/PFM。

• DCDC3 电压调节

DCDC3 这路电源比较特殊,不能通过寄存器修改电压,只能通过外部电路的分压电阻进行调节,所以如果需要修改电压请修改外围硬件,在 Rockchip 的方案上一般作为 VCC_DDR 使用。

- DCDC 和 LDO 的运行时电压调节范围
 - 1. DCDC 电压范围不连续:

电压范围(V)	步进值(mV)	具体档位值(V)
0.7125 ~ 1.5	12.5	0.7125、0.725、0.737.5、、1.5
1.6 ~ 2.4	100	1.6、1.7、1.8、1.9、、2.4

2. LDO 电压连续:

电压范围(V)	步进值(mV)	具体档位值(V)		
0.6 ~ 3.4	25	0.6、0.625、0.65、0.675、、3.4		

1.5 上电条件和时序

1. 上电条件

只要满足下面任意一个条件即可以实现 PMIC 上电:

- EN 信号从低电平变高电平触发
- EN 信号保持高电平,且 RTC 闹钟中断触发
- EN 信号保持高电平,按 PWRON 键触发
- EN 信号保持高电平,充电器插入
- 2. 上电时序

每款 SOC 平台对各路电源上电时序要求可能不一样,目前上电时序有如下情况,具体请参考最新的 datasheet:

			RK809-1	
7	Range of output voltage	Maximum output current	Default voltage	Start up sequence
BUCK1	0.5V-2.4V	2.5A	1.0V	2
BUCK2	0.5V-2.4V	2.5A	1.0V	2
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	х	4
BUCK4	0.5V-3.4V	1.5A	3.0V	5
LDO1	0.6V-3.4V	400mA	2.5V	3

			RK809-1	
		Maximum		
		output	Default	Start up
	Range of output voltage	current	voltage	sequence
LDO2	0.6V-3.4V	400mA	1.8V	3
LDO3	0.6V-3.4V	400mA	1.0V	2
LDO4	0.6V-3.4V	100mA	3.0V	5
LDO5	0.6V-3.4V	400mA	3.0V	5
LDO6	0.6V-3.4V	400mA	3.0V	5
LDO7	0.6V-3.4V	400mA	2.8V	OFF
LDO8	0.6V-3.4V	400mA	1.8V	OFF
LDO9	0.6V-3.4V	400mA	1.5V	OFF
BUCK5	1.5V-3.6V	2.5A	3.3V	1
SWOUT1				OFF
SWOUT2				OFF

2. 配置

2.1 驱动和 menuconfig

4.4 内核配置

RK809 驱动文件(跟rk817、rk805有复用部分):

```
drivers/mfd/rk808.c
drivers/input/misc/rk8xx-pwrkey.c
drivers/rtc-rk808.c
drivers/gpio/gpio-rk8xx.c
drivers/regulator/rk808-regulator.c
drivers/clk/clk-rk808.c
```

RK809 dts文件(可参考范例):

```
arch/arm64/boot/dts/rockchi/px30-evb-ddr4-v10.dts
```

menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK808
CONFIG_RTC_RK808
CONFIG_GPIO_RK8XX
CONFIG_REGULATOR_RK818
CONFIG_INPUT_RK8XX_PWRKEY
CONFIG_COMMON_CLK_RK808
```

4.19 内核配置

RK809 驱动文件:

```
drivers/mfd/rk808.c
drivers/input/misc/rk805-pwrkey.c // 跟4.4内核不同
drivers/rtc/rtc-rk808.c
drivers/pinctrl/pinctrl-rk805.c // 跟4.4内核不同
drivers/regulator/rk808-regulator.c // 跟4.4内核不同
drivers/clk/clk-rk808.c
```

RK809 dts文件(可参考范例):

```
arch/arm64/boot/dts/rockchi/px30-evb-ddr4-v10.dts
```

menuconfig 里对应的宏配置:

```
CONFIG_MFD_RK808
CONFIG_RTC_RK808
CONFIG_PINCTRL_RK805
CONFIG_REGULATOR_RK808
CONFIG_INPUT_RK805_PWRKEY
CONFIG_COMMON_CLK_RK808
```

2.2 DTS 配置

4.4 内核 DTS 配置

DTS 的配置包括: i2c 挂载、主体、rtc、pwrkey、gpio、regulator 等部分。

```
&pinctrl {
    pmic {
        pmic_int: pmic_int {
            rockchip,pins =
                <0 RK_PA7 RK_FUNC_GPIO &pcfg_pull_up>;
        };
        soc_slppin_gpio: soc_slppin_gpio {
            rockchip,pins =
                <0 RK_PA4 RK_FUNC_GPIO &pcfq_output_low>;
        };
        soc_slppin_slp: soc_slppin_slp {
            rockchip,pins =
                <0 RK_PA4 RK_FUNC_1 &pcfg_pull_none>;
        };
        soc_slppin_rst: soc_slppin_rst {
            rockchip,pins =
                <0 RK_PA4 RK_FUNC_2 &pcfg_pull_none>;
        };
    };
};
&i2c1 {
    status = "okay";
    rk809: pmic@20 {
        compatible = "rockchip,rk809";
        reg = <0 \times 20>;
        interrupt-parent = <&gpio0>;
        interrupts = <7 IRQ_TYPE_LEVEL_LOW>;
        pinctrl-names = "default", "pmic-sleep",
                "pmic-power-off", "pmic-reset";
        pinctrl-0 = <&pmic_int>;
        pinctrl-1 = <&soc_slppin_slp>, <&rk817_slppin_slp>;
        pinctrl-2 = <&soc_slppin_gpio>, <&rk817_slppin_pwrdn>;
        pinctrl-3 = <&soc_slppin_rst>, <&rk817_slppin_rst>;
        rockchip,system-power-controller;
        wakeup-source;
        #clock-cells = <1>;
        clock-output-names = "rk808-clkout1", "rk808-clkout2";
        //fb-inner-reg-idxs = <2>;
        /* 1: rst regs (default in codes), 0: rst the pmic */
        pmic-reset-func = <1>;
        vcc1-supply = <&vcc5v0_sys>;
        vcc2-supply = <&vcc5v0_sys>;
        vcc3-supply = <&vcc5v0_sys>;
        vcc4-supply = <&vcc5v0_sys>;
        vcc5-supply = <&vcc3v3_sys>;
        vcc6-supply = <&vcc3v3_sys>;
        vcc7-supply = <&vcc3v3_sys>;
        vcc8-supply = <&vcc3v3_sys>;
        vcc9-supply = <&vcc5v0_sys>;
        pwrkey {
```

```
status = "okay";
};
pinctrl_rk8xx: pinctrl_rk8xx {
    gpio-controller;
    #gpio-cells = <2>;
    rk817_slppin_null: rk817_slppin_null {
        pins = "gpio_slp";
        function = "pin_fun0";
    };
    rk817_slppin_slp: rk817_slppin_slp {
        pins = "gpio_slp";
        function = "pin_fun1";
    };
    rk817_slppin_pwrdn: rk817_slppin_pwrdn {
        pins = "gpio_slp";
        function = "pin_fun2";
    };
    rk817_slppin_rst: rk817_slppin_rst {
        pins = "gpio_slp";
        function = "pin_fun3";
    };
};
regulators {
    vdd_logic: DCDC_REG1 {
        regulator-always-on;
        regulator-boot-on;
        regulator-min-microvolt = <950000>;
        regulator-max-microvolt = <1350000>;
        regulator-ramp-delay = <6001>;
        regulator-initial-mode = <0x2>;
        regulator-name = "vdd_logic";
        regulator-state-mem {
            regulator-on-in-suspend;
            regulator-suspend-microvolt = <950000>;
        };
    };
    vdd_arm: DCDC_REG2 {
        regulator-always-on;
        regulator-boot-on;
        regulator-min-microvolt = <950000>;
        regulator-max-microvolt = <1350000>;
        regulator-ramp-delay = <6001>;
        regulator-initial-mode = <0x2>;
        regulator-name = "vdd_arm";
        regulator-state-mem {
            regulator-off-in-suspend;
            regulator-suspend-microvolt = <950000>;
        };
    };
```

```
vcc_ddr: RK809_DCDC3@2 {
                . . . . . . . . . . . . . . . . . . .
            };
                };
        rk809_codec: codec {
            #sound-dai-cells = <0>;
            compatible = "rockchip,rk809-codec", "rockchip,rk817-codec";
            clocks = <&cru SCLK_I2S1_OUT>;
            clock-names = "mclk";
            pinctrl-names = "default";
            pinctrl-0 = <&i2s1_2ch_mclk>;
            hp\text{-volume} = <20>;
            spk-volume = <3>;
            status = "okay";
        };
   };
};
```

1. i2c 挂载

整个完整的 rk809 节点挂在对应的 i2c 节点下面,并且配置 status = "okay";

- 2. 主体部分
- 不可修改:

```
compatible = "rockchip,rk809";
reg = <0x20>;
rockchip,system-power-controller;
wakeup-source;
gpio-controller;
#gpio-cells = <2>;
```

• 可修改(按照 pinctrl 规则)

```
interrupt-parent: pmic_int 隶属于哪个 gpio;
interrupts: pmic_int 在 interrupt-parent 的 gpio 上的引脚索引编号和极性;
pinctrl-names: 不修改,固定为 "default";
pinctrl-0: 引用 pinctrl 里定义好的 pmic_int 引脚;
```

3. rtc、pwrkey、gpio

如果 menuconfig 选中了这几个模块,但是实际又不需要使能这几个驱动,那么可以在 dts 里增加 rtc、pwrkey、gpio 节点,并且显式指明状态为 status = "disabled",这样就不会使能驱动,但是开机信息会有错误 log 报出,可以忽略;如果要使能驱动,则可以去掉相应的节点,或者设置状态为 status = "okay"。

- 4. regulator
- regulator-compatible: 驱动注册时需要匹配的名字,不能改动,否则会加载失败;
- regulator-name: 电源的名字,建议和硬件图上保持一致,使用 regulator_get 接口时需要匹配 这个名字;
- regulator-init-microvolt: u-boot阶段的初始化电压,kernel阶段无效;
- regulator-min-microvolt:运行时可以调节的最小电压;

- regulator-max-microvolt: 运行时可以调节的最大电压;
- regulator-initial-mode: 运行时 DCDC 的工作模式,一般配置为 1。 1: force pwm, 2: auto pwm/pfm;
- regulator-mode: 休眠时 DCDC 的工作模式,一般配置为 2。1: force pwm,2: auto pwm/pfm;
- regulator-initial-state: suspend 时的模式,必须配置成 3;
- regulator-boot-on:存在这个属性时,在注册 regulator 的时候就会使能这路电源;
- regulator-always-on:存在这个属性时,表示运行时不允许关闭这路电源且会在注册的时候使能这路电源;
- regulator-ramp-delay: DCDC 的电压上升时间,固定配置为 12500;
- regulator-on-in-suspend: 休眠时保持上电状态,想要关闭该路电源,则改成"regulator-off-in-suspend";
- regulator-suspend-microvolt: 休眠不断电情况下的待机电压。
- 5. power off

RK809在关机上比较特殊,因为支持直接拉IO关机,所以内核注册pm_shutdown_prepare_fn,用于关机前一些准备工作,主要包括:关闭RTC中断、设置特殊IO的IOMUX等。 真正的关机是在PCIE中,pm_power_off中直接拉IO关机。

```
static int rk817_shutdown_prepare(struct rk808 *rk808)
{
    int ret;
    /* close rtc int when power off */
    regmap_update_bits(rk808->regmap,
               RK817_INT_STS_MSK_REG1,
               (0x3 << 5), (0x3 << 5));
    regmap_update_bits(rk808->regmap,
               RK817_RTC_INT_REG,
               (0x3 << 2), (0x0 << 2));
    if (rk808->pins && rk808->pins->p && rk808->pins->power_off) {
        ret = regmap_update_bits(rk808->regmap,
                     RK817_SYS_CFG(3),
                     RK817_SLPPIN_FUNC_MSK,
                     SLPPIN_NULL_FUN);
        if (ret) {
            pr_err("shutdown: config SLPPIN_NULL_FUN error!\n");
            return 0;
        }
        ret = regmap_update_bits(rk808->regmap,
                     RK817_SYS_CFG(3),
                     RK817_SLPPOL_MSK,
                     RK817_SLPPOL_H);
            pr_err("shutdown: config RK817_SLPPOL_H error!\n");
            return 0;
        ret = pinctrl_select_state(rk808->pins->p,
                       rk808->pins->power_off);
```

6. clk 部分

如果某个节个需要引用 RK809 的 clk 进行使用,引用格式如下:

```
clocks = <&rk809 1>;
第一个参数: &rk809 固定,不可改动;
第二个参数: 引用 rk809 的哪个 clk,只能是 0 或者 1,其中 0: rk809-clkout1, 1: rk809-clkout2;
```

4.19 内核 DTS 配置

请参考4.4内核DTS配置。差异点: 4.19内核的DTS配置不再需要gpio子节点,但其他模块依然使用gpios = <&rk809 0 GPIO_ACTIVE_LOW>; 的方式引用和使用rk809的pin脚。

2.3 函数接口

如下几个接口基本可以满足日常使用,包括 regulator 开、关、电压设置、电压获取等:

1. 获取 regulator:

```
struct regulator *regulator_get(struct device *dev, const char *id)
dev 默认填写 NULL 即可,id 对应 dts 里的 regulator-name 属性。
```

2. 释放 regulator

```
void regulator_put(struct regulator *regulator)
```

3. 打开 regulator

```
int regulator_enable(struct regulator *regulator)
```

4. 关闭 regulator

```
int regulator_disable(struct regulator *regulator)
```

5. 获取 regulator 电压

```
int regulator_get_voltage(struct regulator *regulator)
```

6. 设置 regulator 电压

```
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV) 传入的参数时保证 min_uV = max_uV,由调用者保证。
```

7. 范例

说明: 4.4或者4.19内核还提供了 devm_ 开头的regulator接口帮开发者管理要申请的资源。

3. Debug

3.1 内核

命令格式同 3.10 内核一样,只是节点路径不同,4.4 内核上的 debug 节点路径是:

/sys/rk8xx/rk8xx_dbg

3.2 内核

请参考4.4内核命令。