

Zero-Knowledge Proofs: Simultaneously ensuring integrity and privacy

Tjerand Silde @ Sikkerhetsfestivalen 2025

Introduction

Associate Professor in Cryptology

Department of Information Security and Communication Technology at NTNU

Leading the NTNU Applied Cryptology Lab

Quantum-safe cryptography and privacy

Part-time position at PONE Biometrics

Cryptography Today

Cryptography Today

Secure messaging: Signal, WhatsApp, iMessage, ...

Secure connections: TLS, SSH, IPsec, ...

Digital authentication: FIDO, Buypass ID, Bank ID, ...

Payments: PayPal, VISA / Mastercard, Bitcoin, Apple / Google Pay, Vipps, ...

What else is out there?

ZERO-KNOWLEDGE PROOFS

Mathematical Proofs

Mathematical Proofs

Zero-Knowledge Proofs

Zero-Knowledge Proofs

The prover publishes a statement and keeps a secret witness.

Correctness: the protocol works with the secret

Soundness: one cannot cheat without the secret X

> Zero-knowledge: the protocol does not leak the secret 😯

Goldwasser, Micali, and Rackoff (1985)

The Knowledge Complexity of Interactive Proof-Systems

(Extended Abstract)

Shafi Goldwasser MIT Silvio Micali MIT

Charles Rackoff University of Toronto

APPLICATIONS FROM ZKP

Quantum-Safe Signatures

FIPS 204

Federal Information Processing Standards Publication

Module-Lattice-Based Digital Signature Standard

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900

Signatures from ZKP

Private information: $\mathbf{s}_1 \in [\beta]^m, \mathbf{s}_2 \in [\beta]^n$ Public information: $\mathbf{A} \in \mathcal{R}_{q,f}^{n \times m}, \mathbf{t} = \mathbf{A}\mathbf{s}_1 + \mathbf{s}_2 \in \mathcal{R}_{q,f}^n$

Prover

 $\mathbf{y}_1 \leftarrow [\gamma + \bar{\beta}]^m$

 $\mathbf{y}_2 \leftarrow [\gamma + \bar{\beta}]^n,$

 $\mathbf{w} := \mathbf{A}\mathbf{y}_1 + \mathbf{y}_2$

 $c \leftarrow C$

Verifier

 $\mathbf{z}_1 := c\mathbf{s}_1 + \mathbf{y}_1$

 $\mathbf{z}_2 := c\mathbf{s}_2 + \mathbf{y}_2$

if $\mathbf{z}_1 \notin [\bar{\beta}]^m$ or $\mathbf{z}_2 \notin [\bar{\beta}]^n$ then $(\mathbf{z}_1, \mathbf{z}_2) := \bot$

 $(\mathbf{z}_1,\mathbf{z}_2)$

Accept iff $\mathbf{z}_1 \in [\bar{\beta}]^m$ and $\mathbf{z}_2 \in [\bar{\beta}]^n$ and $\mathbf{A}\mathbf{z}_1 + \mathbf{z}_2 - c\mathbf{t} = \mathbf{w}$

Electronic Voting

Electronic Voting

Prove that ciphertexts contains valid votes

Prove that votes are shuffled correctly

Prove that votes are decrypted correctly

Anonymous Transactions

Anonymous Transactions

> Encrypt a transaction (sender, receiver, amount)

> Prove that the unknown sender has the amount available

Prove that the funds are not already spent

Anonymous Credentials

EU Digital Identity Mallet

Anonymous Credentials

Anonymous Credentials

Smittestopp

Verifiable Machine Learning

Verifiable Machine Learning

Prove that a machine learning model was trained on a specific set of (potentially encrypted) data

Prove that a machine learning model was evaluated on a specific set of (potentially encrypted) data

Succinct Arguments

COMPONENT OF ZK-SNARK

Succinct Arguments

Proofs are potentially much smaller than the secret itself (even logarithmic or constant size)

Verification can be much faster than re-computation

> Puts a larger burden on the prover (time, memory)

Norwegian University of Science and Technology

Thanks! Questions?

tjerand.silde@ntnu.no https://tjerandsilde.no