Summary of Complexity: dec - A Turing Machine (TM) solves a problem in polynomial time if there's a polynomial p s.t. on every instance of n-bit input and m-bit output the TM halts in at most p(n, m) steps. - A problem is non-deterministic polynomial (NP) if we can verify an answer in polynomial time. To prove that a problem is in NP, we need to Show that there is a polynomial-time algo which: 1. Can accept every Yes instance with the right polynomial-size advice. 2. Will not accept any No instance with any advice. - A decision problem is a problem where the output is Yes/No. - A problem is CO-NP if we can verify a No instance in polynomial time. Note: A dec problem X is in CO-NP iff its complement X is NP. - Problem A is p-reducible to Problem B, denoted as A &p B if an oracle/subroutine for B can be used to efficiently solve A. I.e. You can solve A by making polynomially many cally to an oracle for B and doing addition poly-time compitations.

	3
TO	
- If A = p B and B can be solved	
efficiently, then so can A.	
3,	
- 70 0 1 - 0 1 0 - 1 1 - 0 1 1	
- If A & p B and A can't be solved efficiently	
then neither can B.	
- A problem is NP-hard if we can reduce	
1. problem to 101 hard it we can passe	
another NP-hard problem to it.	
- A problem is NP-complete if it's both NP	
and NP-hard.	
	Santa Para

Question 34, 5-2:
Suppose we have a 3-CNF formula F with
V literals and c clauses.
Let var X; =1 if its value is True.
Let var Xi = 0 if its value is False.
Let Xi, the regated version of Xi have value
C(-Xi).
Given this, a clause is True iff the sum of its
literals is I or more.
Eig. Say we have clause (1 = (XIVX2V X3)
If any of the 3 literals is True, then Ci is True.
This also means that X, + X2 + X3 = 1.
IF all 3 literals are False, then Ci is False but
also that X, + X2 + X3 =0
۷ ۱
$A_{\times} \ge 1 \leftarrow \sum (A)_{\times} \le -1$
I will create matrix A to be CXV with each
Now corresponding to a clause without negation Let aij = \(\frac{1}{2} \), if var j is in clause i
Let aij = } -1, if vari is in clause i
Lo, otherwise LI, if var j is in clause i
Let X be a VXI vector with each row representing
a literal.
Let b = -1 be a CX1 vector.

5
Now, 3-CNF SAT is True iff
$Ax \leq b$.
Proof:
(3-CNF SAT -> 0-1 LP)
Suppose that there's an assignment of literals
that make F True.
This means that in each clause, at least one
literal is set to True.
Suppose that in clause i, literal Xa is True and
in Clause j, literal Xb is True, and all other literals
in both clauses i and j are False.
With Clause i, we have a ia = 1 while Xa = -1.
$(aia)(xa) = -1 \leq -1$
With Clause j, we have ajb = -1 while Xb =1.
$(a_{jb})(x_b) = -1 \leq -1$
Since each clause has at least I literal whose value
is True, Ax = b.
is tide, it x = 0.

	O
(0-1 LP -> 3-CNF SAT)	
Suppose that AX Eb.	
This means that each clause has at least / literal	
who's value is True.	
Hence, 3-CNF SAT is True.	
Hence, we've proved that 0-1 LP is NP-hard.	
Now, I'll prove that 0-1 LP is in NP.	
Let the advice be the vector X. We can easily	
Verify whether or not AX = b.	
Therefore, O-1 LP is NP-Complete.	
Question 34. 5-3.	
I'll reduce 0-1 LP to Int Linear Programming.	
I.e. O-1 LP &p Int LP	
Given (A, x, b), an instance of O-1 LP, we want	
to construct in poly-time (A', X', b') an instance of	
Int LP, s.t. 0-1 LP is True iff Int LP is True.	
Just let $A' = A$, $X' = X$ and $b' = b$.	
Note: We also could'ue done 3-CNF SAT = p Int	LP
and the soln is the same as before.	