CS 570 HW2 Zhuoling Chen 933341319

/· a)

	Processor 1	Processor 2	Processor 3	
1	R _A			-> cold miss
2		R _B		-> cold miss
3			R _C	-> cold miss
4	, W A			
5			R _C —	false sharing miss
6		R_A		false sharing miss true sharing miss
7	W _B			
8			R _A	> trul sharing miss
9			R _B	> true sharing miss

Time step 1, 2, 3 \Rightarrow first access to the block

Time step 4: P1 $S \xrightarrow{WA} M$; P2: I; P3 = I

Time step 5 \Rightarrow miss but C did not be changed

P1: S, P2= I P3 = I \xrightarrow{RC} S,

Time step 6 \Rightarrow miss but be changed by P1

P1: S; P2: S; P3: S

Time step 7 \Rightarrow P1= S \xrightarrow{WB} M; P2 = I; P3 = I

Time step 8 \Rightarrow miss and change by P1

P1: S P2: I P3: I \xrightarrow{RA} S

False sharing miss will not send the processor new data to cache. Therefore, it can be ignored

C)

	Processor 1	Processor 2	Processor 3
1	R _A		
2		R_{B}	
3			R _C
4	W _A		
5			R _C
6		R_{A}	
7	W_{B}		
8			R _A
9			R _B

70
$$\times$$
 3 + 10 + 70 + 70 + 10 + 70 + 0 = 440
Read

Buslingr

Read

Read

Read

Read

Read

Prom

Read

Read

Read

Exclusive

by next level

by next level

by next level

 $440-70$
 440
 $\times 100\% = 84\%$

2

a) home node = requesting node; memony = clean Cycle = 50+1 = 51 cycle

Traffic: N/A

b) home node = requesting node; memony = dirty Cycle = 50+20+50+100+50+1=27 (cycle Traffic = 6+6+32=44 byte

c) home node \pm requestion node; memory=clan Cycle: 20+50+100+50+1=221 cycle Traffic= 6+6+32=444 by te

d) home node + requestion node; memory = dirty home node = remote node

Cycle = 20 + 50 + 100 + 50 + 1 = 221 cycle Traffic = 6 + 6 + 32 = 44 byte.

e) home node \pm requesting hode; memory=dirty remote node \pm home node

Cycle = 20+50+20+50+100+50+100+50+1=441Traffic = 6+6+6+32+6+32=88


```
3.
                P3 there has 8 conditions
  P1
        P2
                       total.

if do \mid PI \mid A=1

P2 \mid R1=A=1

P3 \mid R2=B=1 \mid R3=A=1
                R2=B
        R1=A
  A=1
                R3=A
        B=1
 In the conclusion, P3 is not be D. Therefore,
1,1,0 will not be sequentially consistent.
4
\alpha
    N=1 (k-1)\times 2
   N=2 (K-1)\times2\times2\times F
   N=3 \qquad (K-1)\times 2\times 3\times K^2
            2 \times n \times k^{n-1} (K-1)
```

bandwith = K^{n-1} uni-directional = $2K^{n-1}$

max channel load = 2

5.

d) $S \to E$ $E \to S$ $S \to W$ $N \to W$ $V \to E$ $E \to N$ it's connected and not dead - (ock)