Separating the production of single top quarks in association with a Z boson from background events with Machine Learning techniques at the ATLAS experiment

BSc candidate: Niccolò Laurora

Supervisor: Lidia Dell'Asta

The Standard Model and the top quark.

Standard Model:

- Fermions: quarks and leptons;
- Bosons: four vector, one scalar;

Top quark:

- Heaviest particle in the SM (172.69 ± 0.30 GeV);
- Unitary coupling to the Higgs boson;
- No bound states: its lifetime ($5 \times 10^{-25} \text{ s}$) is shorter than time needed to form hadrons;
- Decay: $t \to Wb \ (100 \%)$;

Top quark production at LHC.

Production channels:

- Strong pair production (dominant): σ ≈ 830 pb;
- Electroweak single top production (smaller σ);
- Associated Z boson production (rare):
 ttZq, tWZ;

tZq: single top production in association with a Z boson.

- Electroweak process \rightarrow Small cross-section (102 fb at \sqrt{s} = 13 TeV, NLO);
- Observed by ATLAS and CMS $(97 \pm 13 \text{ (stat.)} \pm 7 \text{ (syst.)} \text{ fb with } 139 \text{ fb}^{-1});$
- Sensitive to top-Z coupling, background to tHq;
- Trilepton final state (BR=2.17 %):
 - 3 leptons;
 - one neutrino;
 - one light jet;
 - one jet from b-quark (b-jet);

Purpose of my work.

Explore a more refined multivariate analysis based on a multi-class classifier.

- The classifier problem: which classifier should the analysis use?
 Binary or Multi-Class?
- The selection problem: which selection should the analysis use?
 Default or Loose?

Event Selection and Signal Region.

Three signal regions: 2j1b, 3j1b, nj1b.

2j1b	3j1b	nj1b
1 OSSF pair	1 OSSF pair	1 OSSF pair
$ m_{\ell\ell} - m_Z < 10 \text{ GeV}$	$ m_{\ell\ell} - m_Z < 10 \text{ GeV}$	$ m_{\ell\ell} - m_Z < 10 \text{ GeV}$
2 jets, $ \eta < 4.5$	3 jets, $ \eta < 4.5$	2 or 3 jets, $ \eta < 4.5$
1 b-jet, $ \eta < 2.5$	1 b-jet, $ \eta < 2.5$	1 b-jet, $ \eta < 2.5$

Two selections: Default, Loose.

Selection	Jet p_T	b-tag working point	Leptons p_T
Default Loose	$35 \mathrm{GeV}$ $20 \mathrm{GeV}$	70% $85%$	27,20,15 GeV 27,15,10 GeV

Dominant background.

- Diboson: mostly WZ events.
 Dominant background in 2j1b and 3j1b SRs;
- ttZ: strong process of a pair production in association with a Z boson.

Dominant background in 3j1b SR;

Feature selection.

Deep Neural Networks.

Classifiers:

- Binary:
 signal vs background;
- Multi-class:
 three classes.
 - Signal (tZq);
 - Dominant background (diboson/ttZ);
 - All other processes;

The classifier problem.

0.6 ATLAS Simulation Work in Progress
13TeV
14Text 2j1b
15Text 2d
15Text

Binary

Multi-class Diboson

Multi-class tīZ

The classifier problem.

SR	Classifier	Separation Binary	Separation Diboson	Separation $t\bar{t}Z$
2j1b	Default	43.77 %	44.47 %	44.08 %
	Loose	60.11 %	57.08 %	54.20 %
3j1b	Default	39.15 %	37.11 %	38.42 %
	Loose	53.03%	51.43%	49.05 %
nj1b	Default	40.60 %	38.72 %	40.48 %
	Loose	57.17 %	56.22~%	52.84 %

Binary classifiers \geq multi-class classifiers

The selection problem.

The selection problem.

SR	Classifier	Separation Binary	Sepa tZq	ration Dib Diboson	oson Other
2j1b	Default Loose	$43.77 \% \\ 60.11 \%$	44.47 % 57.08 %	$28.32~\% \ 52.94~\%$	$27.04~\% \ 59.91~\%$
3j1b	Default Loose	39.15 % 53.03 %	37.11 % 51.43 %	21.28 % 45.48 %	$21.60 \\ 46.32 \%$
nj1b	Default Loose	40.60 % 57.17 %	$oxed{38.72 \%} 56.22 \%$	24.26 % 52.39 %	$20.46 \\ 55.87 \%$

		$S/\sqrt{S+B}$	
SR	Cut on tZq node	Default	Loose
	Binary	7.82	6.09
2j1b	Multi-class diboson	7.86	5.86
	Binary	5.10	6.09
3j1b	Multi-class diboson	5.03	6.01
	Binary	9.18	8.67
nj1b	Multi-class diboson	9.08	8.62

Separation
Default

Separation

Significance Default

Significance

Conclusions and future prospects.

- The classifier problem: binary separation \geq multi-class separation. Is the separation the best metric to choose the classifier?
- The selection problem:

Loose vs Default

	Selection		
	Default Loose		
Separation	Worse	Better	
Significance	Better	Worse	

Transfer Learning:

- Training on Loose selection;
- Work on Default selection;

Thank you for your attention.

Non-resonant tZq Feynman diagram.

Separation.

$$\langle S^2 \rangle = \frac{1}{2} \sum_{i=1}^{bin} \frac{(S_i - B_i)^2}{S_i + B_i}$$

Variables.

$m(b,j_f)$	m(top)	$q(\ell_W)$
$m_T(W)$	m(Z)	$j_b(b-tagging)$
$p_T(j_b)$	$ \eta(j_b) $	$j_f(b-tagging)$
$ \eta(j_f) $	$ \eta(Z) $	mind if fmass
$ \eta(\ell_W) $	$p_T(\ell_W)$	$\Delta\phi(W, j_{closest})$
$p_T(j_f)$	$p_T(top)$	$\Delta R(top, Z)$
$\Delta R(j_f, Z)$	$\Delta\phi(top,Z)$	$\Delta R(\ell_W, j_{closest})$
$p_T(Z)$	$p_T(W)$	

DNNs' specifics.

- 5 hidden layers: 20, 30, 30, 30, 20;
- Activation function: ReLU;
- 2000 epochs;
- Batch Size equal to 1000;
- 4 Dropout layers;
- 3 folds;

- MinMax feature scaler;
- Early Stopping: 100 epochs, $\Delta = 0.0005$;
- Validation size 25 %;
- Learning rate differs from one DNN to another (~ 0.0001);
- No BatchNormalisation layers;

Loss Functions.

Every Loss function showed a well converging model.

Future prospects.

The separation might not be the best metric to choose the classifier.

- SR of scores;
- CR of scores;

Selections' Yields.

	Default		Loose	
Event	SR 2j1b	SR 3j1b	SR 2j1b	SR 3j1b
tZq	118	66	93	99
Diboson	235	69	557	450
$t\bar{t}Z + tWZ$	97	148	33	79
Z + jets	10	10	368	205
Others	9	6	6	6
Total	469	299	1057	839

b-tagging.

b-jets: hadronic jets from a b-quark.

- b-hadron longer lifetime;
- Secondary vertex;

b-tagging:

- Reconstructed in the ID ($|\eta|$ < 2.5);
- Many b-jets identification algorithms (based on vertex and tracks informations);

