1 Internal core model induction

1.1 Operators

Define model operator, (hybrid) mouse operator, tameness

1.2 Mouse witness equivalence

Definition 1.1. asd

Define coarse (k, U, x)-Woodin pairs

0

Definition 1.2. Let F be a total condensing operator and let α be an ordinal. Then the **coarse mouse witness condition at** α **with** F, written $W_{\alpha}^{*}(F)$, states that given any scaled-co-scaled $U \subseteq \mathbb{R}$ whose associated sequences of prewellorderings are elements of $\operatorname{Lp}_{\alpha}^{F}(\mathbb{R})$, we have for every $k < \omega$ and $x \in \mathbb{R}$ a coarse (k, U, x)-Woodin pair (N, Σ) with $\Sigma \upharpoonright \mathsf{HC} \in \operatorname{Lp}_{\alpha}^{F}(\mathbb{R})$. \circ

Check if this is a reasonable defini-

Theorem 1.3 (Hybrid witness equivalence). Let $\theta > 0$ be a cardinal, $g \subseteq \operatorname{Col}(\omega, <\theta)$ V-generic, $\mathbb{R}^g := \bigcup_{\alpha < \theta} \mathbb{R}^{V[g \upharpoonright \alpha]}$, F a total radiant operator and α a critical ordinal of $\operatorname{Lp}^F(\mathbb{R}^g)$. Assume that

$$\operatorname{Lp}^F(\mathbb{R}^g) \models \mathit{DC} + \ulcorner W_\beta^*(F) \ \mathit{holds for all } \beta \leq \alpha \urcorner.$$

Then there is a hybrid mouse operator $\mathcal{N} \in V$ on $H_{\aleph_1^{V[g]}}$ such that

$$\operatorname{Lp}^F(\mathbb{R}^g) \models W_{\alpha+1}^*(F) \quad \textit{iff} \quad V \models \lceil M_n^{\mathcal{N}} \text{ is total on } H_{\aleph_1^{V[g]}} \text{ for all } n < \omega \rceil$$

Furthermore, if $\theta < \aleph_1^V$ then we only need to assume that F is total and condensing.

Be more explicit about what the given operator \mathcal{N} looks like.

1.3 Core models

Define K(x), $K^F(x)$, $\mathfrak{C}(X)$

1.4 Core model dichotomy

Lemma 1.4. Let θ be a regular uncountable cardinal or $\theta = \infty$ and let \mathcal{N} be a tame hybrid mouse operator on H_{θ} which relativises well. Then \mathcal{N} is countably iterable iff it's (θ, θ) -iterable, guided by \mathcal{N} . Furthermore, for every $x \in H_{\theta}$, if $M_1^{\mathcal{N}}(x)$ exists and is countably iterable, then it's also (θ, θ) -iterable, guided by \mathcal{N} .

Change this to model operators; perhaps change parts of the proof and/or assumptions needed.

PROOF. Fix $x \in H_{\theta}$. We first show that $\mathcal{N}(x)$ is (θ, θ) -iterable. Let $\mathcal{T} \in H_{\theta}$ be a normal tree of limit length on $\mathcal{N}(x)$. Let $\eta \gg \text{rk}(\mathcal{T})$ and let

$$\mathcal{H} := \mathrm{cHull}^{H_{\eta}}(\{x, \mathcal{N}(x), \mathcal{T}\})$$

with uncollapse $\pi \colon \mathcal{H} \to H_{\eta}$. Set $\overline{a} := \pi^{-1}(a)$ for every $a \in \operatorname{ran} \pi$. Note that $\overline{\mathcal{N}(x)} = \mathcal{N}(\overline{x})$ since \mathcal{N} relativises well. Now $\overline{\mathcal{T}}$ is a normal, countable iteration tree on $\mathcal{N}(\overline{x})$ and hence our iteration strategy yields a wellfounded cofinal branch $\overline{b} \in V$ for $\overline{\mathcal{T}}$. Note that $\overline{\mathcal{Q}} := \mathcal{Q}(\overline{b}, \overline{\mathcal{T}})$ exists, since if \overline{b} drops then there's nothing to do, and otherwise we have that

$$\rho_1(\mathcal{M}_{\overline{h}}^{\overline{T}}) = \rho_1(\mathcal{N}(\overline{x})) = \operatorname{rk} \overline{x} < \delta(\overline{T}),$$

Why is that?

so $\delta(\overline{\mathcal{T}})$ is not definably Woodin over $\mathcal{M}_{\overline{b}}^{\overline{\mathcal{T}}}$.

Claim 1.5.
$$\overline{\mathcal{Q}} \triangleleft \mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$$

PROOF OF CLAIM. If $\overline{\mathcal{Q}} = \mathcal{M}(\overline{\mathcal{T}})$ then the claim is trivial, so assume that $\mathcal{M}(\overline{\mathcal{T}}) \lhd \overline{\mathcal{Q}}$. Note that $\overline{\mathcal{Q}} \unlhd M_{\overline{b}}^{\overline{\mathcal{T}}}$ by definition of \mathcal{Q} -structures, and that $M_{\overline{b}}^{\overline{\mathcal{T}}}$ satisfies (2) of the definition of relativises well, meaning that

Define this, cutpoint and $\mathcal{M}_b^{\mathcal{T}}$

$$M_{\overline{b}}^{\overline{T}} \models \lceil \forall \eta \forall \zeta > \eta : \text{if } \eta \text{ is a cutpoint then } M_{\overline{b}}^{\overline{T}} | \zeta \not\models \varphi_{\mathcal{N}}[\bar{x}, p_{\mathcal{N}}] \rceil.$$
 (1)

This statement is Π_2^1 and $\overline{\mathcal{Q}}$ is Π_2^1 -correct since it contains a Woodin cardinal, so that \mathcal{Q} satisfies the statement as well. Since \mathcal{N} is tame we get that $\delta(\overline{\mathcal{T}})$ is a cutpoint of $\overline{\mathcal{Q}}$, so that $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{N}(\overline{\mathcal{Q}}|\delta(\overline{\mathcal{T}}))$ is not a proper initial segment of $\overline{\mathcal{Q}}$. Further, as we're assuming that both $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ and $\mathcal{M}_{\overline{b}}^{\overline{\mathcal{T}}}$ are (ω_1+1) -iterable above $\delta(\overline{\mathcal{T}})$ the same thing holds for $\overline{\mathcal{Q}} \unlhd \mathcal{M}_{\overline{b}}^{\overline{\mathcal{T}}}$, so that we can compare $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ with $\overline{\mathcal{Q}}$ (in V). Let

$$(\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})), \overline{\mathcal{Q}}) \leadsto (\mathcal{P}, \mathcal{R})$$

be the result of the coiteration. We claim that $\mathcal{R} \unlhd \mathcal{P}$. Suppose $\mathcal{P} \lhd \mathcal{R}$. Then there is no drop in $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) \leadsto \mathcal{P}$ and in fact $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{P}$ since $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ projects to $\delta(\overline{\mathcal{T}})$. Furthermore, as we established that $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{N}(\overline{\mathcal{Q}}|\delta(\overline{\mathcal{T}}))$ isn't a proper initial segment of $\overline{\mathcal{Q}}$ it can't be a proper initial segment of \mathcal{R} either, as the coiteration is above $\delta(\overline{\mathcal{T}})$. But we're assuming that $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) = \mathcal{P} \lhd \mathcal{R}$, a contradiction. So $\mathcal{R} \unlhd \mathcal{P}$.

Since $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ and $\overline{\mathcal{Q}}$ agree up to $\delta(\overline{\mathcal{T}})$ and there is no drop $\overline{\mathcal{Q}} \leadsto \mathcal{R}$ we have that $\overline{\mathcal{Q}} = \mathcal{R}$. If $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}})) \leadsto \mathcal{P}$ doesn't move either we're done, so assume not. Let F be the first exit extender of $\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ in the coiteration. We have $\mathrm{lh}(F) \leq o(\overline{\mathcal{Q}})$, $\overline{\mathcal{Q}} \unlhd \mathcal{P}$ and $\mathrm{lh}(F)$ is a cardinal in \mathcal{P} .

P. "))

Define this

As $\overline{\mathcal{Q}}$ is $\delta(\overline{\mathcal{T}})$ -sound and projects to $\delta(\overline{\mathcal{T}})$ it follows that $J(\overline{\mathcal{Q}}|\operatorname{lh}(F))$ collapses $\operatorname{lh}(F)$, so it has to be the case that $\overline{\mathcal{Q}}|\operatorname{lh}(F)=\mathcal{P}$ and thus $o(\mathcal{P})=\operatorname{lh}(F)$. But this means that $\mathcal{P}=\mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ even though we assumed that $\mathcal{N}(\mathcal{M}(\mathcal{T})) \leadsto \mathcal{P}$ moved, a contradiction.

Now, in a sufficiently large collapsing extension extension of \mathcal{H} , \bar{b} is the unique cofinal, wellfounded branch of $\overline{\mathcal{T}}$ such that $\mathcal{Q}(\bar{b}, \overline{\mathcal{T}}) \leq \mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$ exists. Hence, by the homogeneity of $\operatorname{Col}(\omega, \theta)$, $\bar{b} \in H$. By elementarity there is a unique cofinal, wellfounded branch b of \mathcal{T} such that $\mathcal{Q}(b, \mathcal{T}) \leq \mathcal{N}(\mathcal{M}(\mathcal{T}))$. This proves that M is (uniquely) On-iterable and virtually the same argument yields the iterability of M via successor-many stacks of normal trees.

To show that M is fully iterable, it remains to be seen that the unique iteration strategy (guided by \mathcal{N}) of M outlined above leads to wellfounded

direct limits for stacks of normal trees on M of limit length. Let λ be a limit ordinal and $\vec{\mathcal{T}} = (\mathcal{T}_i \mid i < \lambda)$ a stack according to our iteration strategy. Suppose $\lim_{i < \lambda} \mathcal{M}_{\infty}^{\mathcal{T}_i}$ is illfounded.

Redefine $\eta \gg \operatorname{rk}(\vec{\mathcal{T}})$, $\mathcal{H} := \operatorname{cHull}^{H_{\eta}}(\{x,M,\vec{\mathcal{T}}\})$ and $\pi: \mathcal{H} \to H_{\eta}$ the uncollapse, again with $\overline{a} := \pi^{-1}(a)$ for every $a \in \operatorname{ran} \pi$. By elementarity we get that $\mathcal{H} \models \lceil \lim_{i < \overline{\lambda}} \mathcal{M}_{\infty}^{\overline{\mathcal{T}}_i}$ is illfounded \rceil . But $\overline{\vec{\mathcal{T}}}$ is countable and according to the iteration strategy guided by \mathcal{N} , so that

$$V \models \lim_{i < \overline{\lambda}} \mathcal{M}_{\infty}^{\overline{\mathcal{T}}_i}$$
 is wellfounded.

Now note that $(\lim_{i<\overline{\lambda}}\mathcal{M}_{\infty}^{\overline{\mathcal{T}}_i})^{\mathcal{H}}=(\lim_{i<\overline{\lambda}}\mathcal{M}_{\infty}^{\overline{\mathcal{T}}_i})^V$ and well foundedness is absolute between \mathcal{H} and V, a contradiction.

Now assume that $M_1^{\mathcal{N}}(x)$ exists for some $x \in H_{\theta}$, and that it's countably iterable. We then do exactly the same thing as with $\mathcal{N}(x)$ except that in the claim we replace (1) with

$$\overline{\mathcal{Q}} \models \forall \eta(\overline{\mathcal{Q}} | \eta \not\models \lceil \delta(\overline{\mathcal{T}}) \text{ is not Woodin} \rceil),$$

so that if $\mathcal{P} \triangleleft \mathcal{R}$ then $\delta(\overline{\mathcal{T}})$ is still Woodin in $\mathcal{P} = \mathcal{N}(\mathcal{M}(\overline{\mathcal{T}}))$, contradicting the defining property of $M_1^{\mathcal{N}}(x)$ (and thus also of \mathcal{R}). The rest of the proof is a copy of the above.

I don't think tame is needed here, as we're only indexing extenders at F-initial segments

Theorem 1.6 (Hybrid core model dichotomy). Let θ be a \beth -fixed point or $\theta = \infty$, and let F be a tame model operator on H_{θ} that condenses well. Let $x \in H_{\theta}$. Then either:

- (i) The core model $K^F(x)|\theta$ exists and is (θ,θ) -iterable; or
- (ii) $M_1^F(x)$ exists and is (θ, θ) -iterable.

PROOF. Assume first that $K^{c,F}(x)|\theta$ reaches a premouse which isn't Fsmall; let \mathcal{N}_{ξ} be the first part of the construction witnessing this. Then $\mathfrak{C}(\mathcal{N}_{\xi}) = M_1^F(x)$, and by Lemma ?? it suffices to show that $M_1^F(x)$ is countably iterable.

Show that $M_1^F(x)$ is countably iterable.

Insert argument?

We can thus assume that $K^{c,F}(x)|\theta$ is F-small. Note that if $K^{c,F}(x)|\theta$ has a Woodin cardinal then because the model is F-closed we contradict F-smallness, so the model has no Woodin cardinals either, making it (θ,θ) -iterable.

Let $\kappa < \theta$ be any uncountable cardinal and let $\Omega := \beth_{\kappa}(\kappa)^+$. Note that $\Omega < \theta$ since we assumed that θ is a \beth -fixed point and $\kappa < \theta$. If Ω is a limit cardinal in $K^{c,F}(x)|\theta$ then let $\mathcal{S} := \operatorname{Lp}(K^{c,F}(x)|\Omega)$ and otherwise let $\mathcal{S} := K^{c,F}(x)|\Omega$. Then by Lemma 3.3 of [?] we get that \mathcal{S} is countably iterable, with largest cardinal Ω in the "limit cardinal case".

This also means that Ω isn't Woodin in L[S], as it's trivial in the case where Ω is a successor cardinal of $K^{c,F}(x)|\theta$ by our case assumption, and in the "limit cardinal case" it also holds since

$$K^{c,F}(x)|\Omega^{+K^{c,F}(x)|\theta} \subseteq \mathcal{S}.$$

By [?] and [?] this means that we can build $K^F(x)|\kappa$, as the only places they use that there's no inner model with a Woodin are to guarantee that $K^{c,F}(x)|\Omega$ exists and has no Woodin cardinals, and in Lemma 4.27 of [?] in which they only require that Ω isn't Woodin in L[S].

As $\kappa < \theta$ was arbitrary we then get that $K^F(x)|\theta$ exists. Note that $K^F(x)|\theta$ has no Woodin cardinals either and is F-small, so that \mathcal{Q} -structures trivially exist, making it (θ,θ) -iterable.