Network Monitoring & **Anomaly Detection** using Machine Learning

By: Akshay Shembekar

Why is there a need to monitor Networks and have anomaly detection?

1

Bookish

- Find which users or applications may be causing a network slowdown
- Identify your network's top talkers and determine the best interventions to minimize their impact on the network as a whole
- Determine if you're distributing bandwidth effectively across your network
- Get insights into the actual state of your network, including accessing data on bandwidth usage by type of traffic, bandwidth usage by application, usage patterns over time, performance statistics, and end-user experience

More vivid Happenings

Nov 2008

Jan 2015

Podcast

What do I wish to accomplish in this study?

Wireshark

Play around more with wireshark as a tool.

Traffic Monitoring

Pattern \Longrightarrow

Get a better sense of traffic flowing over my home network

Traffic over a time series

Datadog - SIEM

Room for expansion to delve into newer Cloud Monitoring Tools

Apply Learnings

Intersect Cybersecurity + Cloud + AI/ML

Open Source

Make project public and fork-able

Get hands dirty with ML Ops

How do I to accomplish my goal?

Up Next...

Model Training, Tuning, and Selection

Methods Tested

DECISION TREE

A decision tree is a machine learning algorithm that partitions the data into subsets. The partitioning process starts with a binary split and continues until no further splits can be made. Various branches of variable length are formed.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

RANDOM FOREST

XGBOOST

Gradient Boosting is an approach where new models are created that predict the residuals or errors of prior models and then added together to make the final prediction. It is called gradient boosting because it uses a gradient descent algorithm to minimize the loss when adding new models.

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction.

The PCA converts data from high dimensional space to low dimensional space by selecting the most important attributes that capture maximum information about the dataset and logistic regression method is used to train the model.

LOGISTIC REGRESSION WITH PCA

24hr - Usage Pattern

Observations:

- Heavy traffic around 8:30 AM ET, lasts for -2 hrs.
- Stedy traffic between 10:30 AM ET to 12:30PM ET

<u>Unsupervised Learning</u> (K-Means Clustering)

Exploratory Data Analysis

Anomaly Detection Profiling Report Overview Variables Interactions Correlations Missing values Sample

Overview

Exploratory Data Analysis (cont..)

Sample

First rows

	no.	time	source	destination	length	protocol	info
0	1	00:23:49.159985	e673.dsce9.akamaiedge.net	Akshays-MacBook-Pro.local	66	TCP	443 > 61724 [ACK] Seq=1 Ack=1 Win=506 Len=0 TSval=2951765
1	2	00:23:49.159986	e673.dsce9.akamaiedge.net	Akshays-MacBook-Pro.local	353	TLSv1.2	Application Data
2	3	00:23:49.159986	e673.dsce9.akamaiedge.net	Akshays-MacBook-Pro.local	353	TLSv1.2	Application Data
3	4	00:23:49.160179	Akshays-MacBook-Pro.local	e673.dsce9.akamaiedge.net	66	TCP	61724 > 443 [ACK] Seq=2693 Ack=575 Win=2039 Len=0 TSval=3

Last rows

	no.	time	source	destination	length	protocol	info
3163097	15499	00:22:53.838925	Akshays-MacBook-Pro.local	play.google.com	81	UDP	57538 > 443 Len=39
3163098	15500	00:22:53.840538	play.google.com	Akshays-MacBook-Pro.local	220	UDP	443 > 57538 Len=178
3163099	15501	00:22:53.850833	Akshays-MacBook-Pro.local	play.google.com	75	UDP	57538 > 443 Len=33

Exploratory Data Analysis (cont..)

Exploratory Data Analysis (cont..)

Observations:

- High Correlation between Protocol and anomaly
- Good degree of correlation between length and anomaly

Supervised Learning

 System is taught/trained by labelled data to classify or predict the outcome

```
"""Apply Classifier Rules"""

df_data['anomaly'] = 0

df_data.loc[df_data['protocol'] == 'NBNS', 'anomaly'] = 1

df_data.loc[df_data['protocol'] == 'SSDP', 'anomaly'] = 1

df_data.loc[df_data['protocol'] == 'TELNET', 'anomaly'] = 1

df_data.loc[(df_data['protocol'] == 'FTP') & (df_data['length'] >= 1000), 'anomaly'] = 1
```


Interesting Protocols Observed

Simple Service Discovery Protocol (SSDP)- Discover available devices (and their capabilities) in a local area network / piconet.

- SSDP attack exploits that final request for services by asking the device to respond to the targeted victim.
- For network
 administrators, a key
 mitigation is to block
 incoming UDP traffic on
 port 1900 at the firewall.

Interesting Protocols Observed (cont...)

NetBIOS Name Service (NBNS) - NBNS serves the same purpose as DNS does: translate human-readable names to IP addresses (e.g. www.wireshark.org to 65.208.228.223).

- SMB relies on NetBIOS for communication with devices that do not support direct hosting of SMB over TCP/IP.
- Commonly abused to perform Man-in-the-middle attack.
- NBNS Spoofing can be carried out via metasploit.
- Disabling NBNS support on network & devices is recommended.

Models Explored

Decision Tree

Probabilistic tree that enables to make a decision


```
""""Apply Classifier Rules"""

df_data['anomaly'] = 0

df_data.loc[df_data['protocol'] == 'NBNS', 'anomaly'] = 1

df_data.loc[df_data['protocol'] == 'SSDP', 'anomaly'] = 1

df_data.loc[df_data['protocol'] == 'TELNET', 'anomaly'] = 1

df_data.loc[(df_data['protocol'] == 'FTP') & (df_data['length'] >= 1000), 'anomaly'] = 1
```


Models Explored (cont..)

Random Forest

Forest of Decision Trees

Random Forest Classifier

- Considering only Protocol as a feature, a Decision Tree (DT1) can be constructed
- Considering only Length as a feature, a Decision Tree (DT2) can be constructed
- Considering Protocol & Length, both, as a feature, a Decision Tree (DT3) can be constructed

Based on consensus voting of DT1, DT2, DT3 – a record will be classified as safe or anomaly. This model is seen to perform better by providing higher precision & accuracy.

https://github.com/ax-shay/Network-Monitoring-Anomaly-Detection-using-Machine-Learning

References

- 1. Network Traffic Analysis using Machine Learning: an unsupervised approach to understand and slice your network
 - Ons Aouedi, Kandaraj Piamrat, Salima Hamma, J K Menuka Perera
 - https://hal.archives-ouvertes.fr/hal-03344361/document
- 2. Decision Tree: Definition and Example
 - https://www.statisticshowto.com/decision-tree-definition-and-examples/
- 3. SSDP DDoS Attack
 - https://www.cloudflare.com/learning/ddos/ssdp-ddos-attack/