LAPLACE TRANSFORM PAIRS

S. No.	f(t)	F(s) = L[f(t)]
1	K	K/s
2	t ⁿ	$\frac{\Gamma(n+1)}{s^{n+1}}$
3	e ^{at}	$\frac{1}{s-a}$
4	e ^{-at}	$\frac{1}{s+a}$
5	sin(at)	$\frac{a}{s^2 + a^2}$
6	cos(at)	$\frac{s}{s^2 + a^2}$
7	sinh(at)	$\frac{a}{s^2-a^2}$
8	cosh(at)	$\frac{s}{s^2-a^2}$
9	$u(t-a)$ or $u_a(t)$	e ^{-as} / _s
10	1	1
	$\mathbf{u}(t)$ or $\mathbf{u}_0(t)$	s

S. No.	f(t)	F(s) = L[f(t)]
11	$\delta(t-a)$ or $\delta_a(t)$	e ^{-as}
12	$\delta(t)$ or $\delta_0(t)$	1
13	eat sin(bt)	$\frac{\mathbf{b}}{(\mathbf{s}-\mathbf{a})^2 + \mathbf{b}^2}$
14	eat cos(bt)	$\frac{\mathbf{s}-\mathbf{a}}{(\mathbf{s}-\mathbf{a})^2+\mathbf{b}^2}$
15	e ^{-at} sin(bt)	$\frac{\mathbf{b}}{(\mathbf{s}+\mathbf{a})^2+\mathbf{b}^2}$
16	$e^{-at}\cos(bt)$	$\frac{s+a}{(s+a)^2+b^2}$
17	e ^{at} sinh(bt)	$\frac{\mathbf{b}}{(\mathbf{s}-\mathbf{a})^2-\mathbf{b}^2}$
18	eat cosh(bt)	$\frac{\mathbf{s} - \mathbf{a}}{(\mathbf{s} - \mathbf{a})^2 - \mathbf{b}^2}$
19	e ^{-at} sinh(bt)	$\frac{\mathbf{b}}{(\mathbf{s}+\mathbf{a})^2 - \mathbf{b}^2}$
20	e ^{-at} cosh(bt)	$\frac{s+a}{(s+a)^2-b^2}$
21	$\frac{e^{at}t^n}{\Gamma(n+1)}$	$\frac{1}{\left(s-a\right)^{n+1}}$

 $\underline{\text{Unit Step Function}} \ (\text{or } \underline{\text{Heaviside's Unit function}}) : \ \ \mathbf{u}(t-a) = \begin{cases} 1 & \text{if } \ t \geq a \\ 0 & \text{else} \end{cases}$

 $\underline{\text{Dirac Delta Function}} : \delta(\mathbf{t} - \mathbf{a}) = \underbrace{Lt}_{\varepsilon \to 0} \delta_{\varepsilon}(\mathbf{t} - \mathbf{a}), \text{ where } \delta_{\varepsilon}(\mathbf{t} - \mathbf{a}) = \begin{cases} \frac{1}{\varepsilon} & \text{for } \mathbf{a} - \frac{\varepsilon}{2} < \mathbf{t} < \mathbf{a} + \frac{\varepsilon}{2} \\ 0 & \text{else} \end{cases}$

 $\underline{\text{Gamma Function}}: \Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt \text{ defined for } x > 0.$

Properties of Gamma Function:

- For +ve integer 'n', $\Gamma(n+1) = n!$. If 'n' is zero or a -ve integer, $\Gamma(n)$ is undefined.
- For a +ve non-integer 'x', $\Gamma(\mathbf{x})\Gamma(1-\mathbf{x}) = \frac{\pi}{\sin(\pi \mathbf{x})}. \text{ Example : } \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$
- For a positive real number 'x', $\Gamma(x+1) = x\Gamma(x)$.
- For a negative real number 'x', $\Gamma(x) = \frac{\Gamma(x+1)}{x}$. Example: $\Gamma\left(\frac{-1}{2}\right) = -2\sqrt{\pi}$.

PROPERTIES OF LAPLACE TRANSFORM

S. No.	Name of the Property	f(t)	$\mathbf{F}(\mathbf{s}) = \mathbf{L} \big[\mathbf{f}(\mathbf{t}) \big]$
1	Linearity	af(t)+bg(t)	aF(s)+bG(s)
2	Change of Scale	f(at)	$\frac{1}{a}F(s/a)$
3	First Shifting (or)	e ^{at} f(t)	F(s-a)
	Frequency Shift	$e^{-at}f(t)$	$\mathbf{F}(\mathbf{s}+\mathbf{a})$
4	Second Shifting (or) Time Shift	u(t-a)f(t-a)	$e^{-as}F(s)$
5	Derivatives of the	tf(t)	$-\frac{\mathrm{d}}{\mathrm{d}\mathrm{s}}\big[\mathrm{F}(\mathrm{s})\big]$
	transform	t ⁿ f(t)	$(-1)^n \frac{d^n}{ds^n} \big[F(s) \big]$
6	Transform of the derivatives	f'(t)	sF(s)-f(0)
		f''(t)	$s^2F(s)-sf(0)-f'(0)$
		$f^{n}(t)$	$s^{(n)}F(s)-s^{(n-1)}f(0)-s^{(n-2)}f'(0)f^{(n-1)}(0)$
7	Integrals of the Transform	$\frac{\mathbf{f}(\mathbf{t})}{\mathbf{t}}$	$\int_{s}^{\infty} \mathbf{F}(s) ds, \text{ provided } \underset{t \to 0}{\mathbf{L}t} \left[\frac{\mathbf{f}(t)}{t} \right] \text{ exists.}$
8	Transform of the integrals	$\int_{0}^{t} f(t)dt$	$\frac{\mathbf{F}(\mathbf{s})}{\mathbf{s}}$
9	Convolution	f(t)*g(t)	$\mathbf{F}(\mathbf{s})\mathbf{G}(\mathbf{s})$
10	Periodicity	f(t) = f(t+T) T- fundamental period	$\frac{1}{\left(1-e^{-sT}\right)} \left[\int_{0}^{T} e^{-st} f(t) dt \right]$
11	Initial Value Theorem	$f(0) = \underset{t \to 0}{\text{Lt}} [f(t)] = \underset{s \to \infty}{\text{Lt}} [sF(s)]$	
12	Final Value Theorem	$f(\infty) = \underset{t \to \infty}{\text{Lt}} [f(t)] = \underset{s \to 0}{\text{Lt}} [sF(s)]$	

PROPERTIES OF INVERSE LAPLACE TRANSFORM

S. No.	Name of the Property	$\mathbf{F}(\mathbf{s}) = \mathbf{L} \big[\mathbf{f}(\mathbf{t}) \big]$	$f(t) = L^{-1}[F(s)]$
1	Linearity	aF(s)+bG(s)	$aL^{-1}[F(s)] + bL^{-1}[G(s)]$
2	Change of Scale	$\mathbf{F}\left(\frac{\mathbf{s}}{\mathbf{a}}\right)$	$aL^{-1}[F(s)]\Big _{t\to at}$
		F(as)	$\frac{1}{a}L^{-1}[F(s)]_{t\to\frac{t}{a}}$
3	First Shifting	F(s-a)	$e^{at}L^{-1}[F(s)]$
		F(s+a)	$e^{-at}L^{-1}[F(s)]$
4	Second Shifting	$e^{-as}F(s)$	u(t-a)f(t-a)
5	Inverse LT of the derivatives	F'(s)	$-t L^{-1}[F(s)]$
		$\mathbf{F}^{(\mathbf{n})}(\mathbf{s})$	$(-1)^n t^n L^{-1}[F(s)]$
6	Multiplication by s	sF(s)	$f'(t)+f(0)\delta(t)$
7	Inverse LT of the integrals	$\int_{s}^{\infty} F(s)ds, \text{ provided } \underset{t\to 0}{\text{Lt}} \left[\frac{f(t)}{t} \right] \text{ exists.}$	$\frac{1}{t}L^{-1}[F(s)]$
8	Division by s	$\frac{\mathbf{F}(\mathbf{s})}{\mathbf{s}}$	$\int_{0}^{t} L^{-1}[F(s)]dt$
9	Convolution	F(s)G(s)	$L^{-1}[F(s)]*L^{-1}[G(s)]$

<u>Note</u>:

From the ILT of the derivatives property, $\mathbf{L}^{-1}[\mathbf{F}'(\mathbf{s})] = -\mathbf{t}\mathbf{f}(\mathbf{t}) = -\mathbf{t}\mathbf{L}^{-1}[\mathbf{F}(\mathbf{s})]$. Thus, $\boxed{\mathbf{L}^{-1}[\mathbf{F}(\mathbf{s})] = -\frac{1}{t}\mathbf{L}^{-1}[\mathbf{F}'(\mathbf{s})]}.$ This result is very important, if the transform function $\mathbf{F}(\mathbf{s})$ involves logarithmic functions and / or inverse trigonometric functions.

INVERSE LAPLACE TRANSFORM by PARTIAL FRACTION METHOD

Consider the transform function F(s), expressed as a proper rational function in the form $F(s) = \frac{P(s)}{Q(s)}$. We can find $f(t) = L^{-1}[F(s)]$ by the method of partial fractions.

Q(s)	By Partial Fraction method	Coefficients (or) Residues
$(s-s_1)(s-s_2)(s-s_n)$	$F(s) = \sum_{i=1}^{n} \frac{A_i}{(s - s_i)}$	$\mathbf{A}_{i} = \underset{\mathbf{s} \to \mathbf{s}_{i}}{\mathbf{Lt}} \left[(\mathbf{s} - \mathbf{s}_{i}) \mathbf{F}(\mathbf{s}) \right]$
$(s-r)^n$	$F(s) = \sum_{i=1}^{n} \frac{A_i}{(s-r)^i}$	$A_{i} = \frac{1}{(n-i)!} \operatorname{Lt}_{s \to r} \left\{ \frac{d^{(n-i)}}{ds^{(n-i)}} \left[(s-r)^{n} F(s) \right] \right\}$ $i = n, (n-1),, 1$
s^2+b^2	$\mathbf{F}(\mathbf{s}) = \mathbf{A}_1 \left[\frac{\mathbf{s}}{\mathbf{s}^2 + \mathbf{b}^2} \right] + \mathbf{A}_2 \left[\frac{\mathbf{b}}{\mathbf{s}^2 + \mathbf{b}^2} \right]$	Obtain A_1 and A_2 by comparing the numerator terms
s^2-b^2	$\mathbf{F}(\mathbf{s}) = \mathbf{A}_1 \left[\frac{\mathbf{s}}{\mathbf{s}^2 - \mathbf{b}^2} \right] + \mathbf{A}_2 \left[\frac{\mathbf{b}}{\mathbf{s}^2 - \mathbf{b}^2} \right]$	-do-
$(s-a)^2+b^2$	$F(s) = A_1 \left[\frac{(s-a)}{(s-a)^2 + b^2} \right] + A_2 \left[\frac{b}{(s-a)^2 + b^2} \right]$	-do-
$(\mathbf{s}-\mathbf{a})^2-\mathbf{b}^2$	$F(s) = A_1 \left[\frac{(s-a)}{(s-a)^2 - b^2} \right] + A_2 \left[\frac{b}{(s-a)^2 - b^2} \right]$	-do-
$(s+a)^2+b^2$	$F(s) = A_1 \left[\frac{(s+a)}{(s+a)^2 + b^2} \right] + A_2 \left[\frac{b}{(s+a)^2 + b^2} \right]$	-do-
$(s+a)^2-b^2$	$F(s) = A_1 \left[\frac{(s+a)}{(s+a)^2 - b^2} \right] + A_2 \left[\frac{b}{(s+a)^2 - b^2} \right]$	-do-