Announcement

- Midterm
 - ▶ Time: TBD (in class)
 - Location: TBA
 - Format
 - Closed-book. You can bring an A4-size cheat sheet and nothing else.
 - Grade
 - ▶ 40% of the total grade

Announcement

- Homework 2
 - Available in Blackboard -> Homework
 - Due: Mar. 22, 11:59pm

Sequence Labeling

SLP3 Ch 8, 9.4; INLP Ch 7, 8

Sequence Labeling

- Known
 - A set of labels $Y = \{y_1, y_2, ..., y_I\}$
- Input:
 - Sentences $x = \{x_1, x_2, ..., x_m\}$
- Output:
 - For each word x_i , predict a label $y_i \in Y$

Part-of-Speech Tagging

Map from sequence $x_1, x_2, ..., x_m$ of words to $y_1, y_2, ..., y_m$ of POS tags

Two classes of words: Open vs. Closed

- Closed class words
 - Relatively fixed membership
 - Usually function words: short, frequent words with grammatical function
 - determiners: a, an, the
 - pronouns: she, he, I
 - prepositions: on, under, over, near, by, ...
- Open class words
 - Usually content words: Nouns, Verbs, Adjectives, Adverbs
 - Plus interjections: oh, ouch, uh-huh, yes, hello

Two classes of words: Open vs. Closed

Why Part-of-Speech Tagging

- Can be useful for other NLP tasks
 - Parsing
 - POS tagging can improve syntactic parsing
 - MT
 - reordering of adjectives and nouns (say from Spanish to English)
 - Sentiment or affective tasks
 - may want to distinguish adjectives or other POS
 - Text-to-speech
 - how do we pronounce "lead" or "object"?

Other sequence labeling tasks

- Chinese word segmentation
 - Input

```
    瓦里西斯的船只中···
    ▶ Output
    B I E S B E S ...
    (瓦里西斯)(的)(船只)(中)···
```

B = beginning of a word

I = inside of a word

E = end of a word

S = single character word

Other sequence labeling tasks

- Named entity recognition
 - Input

```
Michael Jeffrey Jordan was born in Brooklyn ...
```

Output

```
B-PER I-PER E-PER O O S-LOC

Michael Jeffrey Jordan

Person

Description

Descripti
```

```
B = beginning of an entity -PER = person
```

I = inside of an entity -LOC = location

E = end of an entity -ORG = organization

S = single word entity ...

O = outside of any entity

Other sequence labeling tasks

- Semantic role labeling
 - Input

The cat loves hats ...

Output

B = beginning of an entity

I = inside of an entity

E = end of an entity

S = single word entity

O = outside of any entity

-PRED = predicate

-ARG0 = agent

-ARG1 = patient

. . .

The simplest method

- For each word, predict its most frequent label
 - 90% accuracy on POS tagging!
 - Disadvantages:
 - 1. It does not consider the contextual info
 - "book a flight" vs. "read a book"
 - 我骑车差点摔倒,好在我一把把把把住了
 - ▶ 校长说衣服上除了校徽别别别的
 - 2. It does not consider relations between adjacent labels
 - In BIOES: "B-I" and "B-E" are OK, but "B-O" and "B-S" are not

Method

- Hidden Markov model (HMM)
- Conditional random filed (CRF)
- Neural models

Hidden Markov Model

Hidden Markov Model (HMM)

- Variables
 - X: word
 - Y: label (hidden state)
- Parameters
 - Transition model $P(y_t|y_{t-1})$
 - Similar to a bigram model
 - Emission model $P(x_t|y_t)$
 - Initial distribution $P(y_1)$
 - Can be seen as transition from Y₀=START to Y₁
 - Modeling end of sequence
 - Can be seen as transition from Y_n to Y_{n+1}=STOP
- ▶ Joint prob: $P(x_1 \cdots x_n, y_1 \cdots y_{n+1}) = \prod_t P(y_t | y_{t-1}) P(x_t | y_t)$

HMM Example

Transition

Y _{t-1}	$P(Y_t Y_{t-1})$				
	Ν	V	Р		
START	0.5	0.1	0.1		
N	0.4	0.3	0.1		
V	0.5	0	0.3		
Р	0.3	0.1	0		

Emission

Y _t	$P(X_t Y_t)$				
	"fox"	"dog"	"run"		
N	0.02	0.03	0.01		
V	0	0	0.05		
Р	0	0	0		

High-order HMM

- Transition model $P(y_t|y_{t-1},y_{t-2},\cdots,y_{t-n+1})$
 - Similar to an n-gram model

HMM Inference (Decoding)

Find the most likely sequence under the model

$$y^* = \underset{y_1 \cdots y_n}{\operatorname{argmax}} P(y_1 \cdots y_{n+1} | x_1 \cdots x_n) = \underset{y_1 \cdots y_n}{\operatorname{argmax}} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

Given an input, we can score any tag sequence

$$P(x_1 \cdots x_n, y_1 \cdots y_{n+1}) = \prod_t P(y_t | y_{t-1}) P(x_t | y_t)$$

NNP VBZ NN NNS CD NN .
Fed raises interest rates 0.5 percept .

q(NNP|START) e(Fed|NNP) q(VBZ|NNP) e(raises|VBZ) q(NN|VBZ).....

HMM Inference (Decoding)

Find the most likely sequence under the model

$$y^* = \underset{y_1 \cdots y_n}{\operatorname{argmax}} P(y_1 \cdots y_{n+1} | x_1 \cdots x_n) = \underset{y_1 \cdots y_n}{\operatorname{argmax}} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

- Given an input, we can score any tag sequence
- In principle, we're done list all possible tag sequences, score each one, pick the best one
 - Exponential time complexity!

Dynamic Programming (Viterbi Algorithm)

• Define $\pi(i, y_i)$ to be the max score of a tag sequence of length i ending in tag y_i

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} P(x_1 \dots x_i, y_1 \dots y_i)$$

$$= \max_{y_1 \dots y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) P(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

$$= e(x_i | y_i) \max_{y_{i-1}} q(y_i | y_{i-1}) \max_{y_1 \dots y_{i-2}} P(x_1 \dots x_{i-1}, y_1 \dots y_{i-1})$$

$$= e(x_i | y_i) \max_{y_{i-1}} q(y_i | y_{i-1}) \pi(i-1, y_{i-1})$$

Dynamic Programming (Viterbi Algorithm)

• Define $\pi(i, y_i)$ to be the max score of a tag sequence of length i ending in tag y_i

$$\pi(i, y_i) = e(x_i|y_i) \max_{y_{i-1}} q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

- We now have an efficient DP algorithm
 - Start with $\pi(0, START) = 1$
 - Work your way to the end of the sentence
 - $P(y^*) = \max_{y_1 \cdots y_n} P(x_1 \cdots x_n, y_1 \cdots y_{n+1}) = \pi(n+1, STOP)$

$$\pi(1, N)$$

Fruit

$$\pi(2, N)$$

$$\pi(3, N)$$

$$\pi(4, N)$$

$$\pi(1, V)$$

$$\pi(2, V)$$

$$\pi(3, V)$$

$$\pi(4, V)$$

$$\pi(0, START)$$
= 1

$$\pi(1, IN)$$

$$\pi(2, IN)$$

$$\pi(3, IN)$$

$$\pi(4, IN)$$

$$\pi(i, y_i) = e(x_i|y_i) \max_{y_{i-1}} q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

STOP

Fruit Flies Like Bananas

$$\pi(i, y_i) = e(x_i|y_i) \max_{y_{i-1}} q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

STOP

Fruit

Flies

Like

Bananas

$$\pi(i, y_i) = e(x_i|y_i) \max_{y_{i-1}} q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

STOP

Fruit Flies Like Bananas

$$\pi(i, y_i) = e(x_i|y_i) \max_{y_{i-1}} q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

Fruit Flies Like Bananas

$$\pi(i, y_i) = e(x_i|y_i) \max_{y_{i-1}} q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

The Viterbi Algorithm: Runtime

$$\pi(i, y_i) = e(x_i|y_i) \max_{y_{i-1}} q(y_i|y_{i-1}) \pi(i-1, y_{i-1})$$

- Sentence length n, tag number |Y|
- ightharpoonup O(n|Y|) entries in $\pi(i, y_i)$
- ightharpoonup O(|Y|) time to compute each $\pi(i, y_i)$
- ▶ Total runtime: $O(n|Y|^2)$

Marginal Inference

Compute the marginal probability of the input sentence

$$P(x_1 \cdots x_n) = \sum_{y_1 \dots y_n} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

- Given an input, we can score any tag sequence
- In principle, we're done list all possible tag sequences with y_i , score each one, take summation
 - Exponential time complexity!

NNP VBZ NN NNS CD NN
$$\implies$$
 logP = -23 NNP NNS NN NNS CD NN \implies logP = -29 NNP VBZ VB NNS CD NN \implies logP = -27

Marginal Inference

Compute the marginal probability of the input sentence

$$P(x_1 \cdots x_n) = \sum_{y_1 \dots y_n} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

Compare it with decoding

$$y^* = \underset{y_1 \cdots y_n}{\operatorname{argmax}} P (x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

The State Trellis: Viterbi

The State Trellis: Marginal

$$\sum_{y_1\dots y_n} P(x_1\cdots x_n, y_1\cdots y_{n+1})$$

Dynamic Programming (Forward Algorithm)

$$\alpha(i, y_i) = P(x_1 \cdots x_i, y_i) = \sum_{y_1, \dots, y_{i-1}} P(x_1 \cdots x_i, y_1 \cdots y_i)$$

$$= \sum_{y_1, \dots, y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) P(x_1 \cdots x_{i-1}, y_1 \cdots y_{i-1})$$

$$= \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \sum_{y_1, \dots, y_{i-2}} P(x_1 \cdots x_{i-1}, y_1 \cdots y_{i-1})$$

$$= \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i-1, y_{i-1})$$

 y_{i-1}

Dynamic Programming (Forward Algorithm)

Start with:

$$\alpha(0, y_0) = \begin{cases} 1 & if \ y_0 = START \\ 0 & otherwise \end{cases}$$

For $i = 1, \dots, n$:

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i-1, y_{i-1})$$

Finally:

$$P(x_1 \cdots x_n) = \sum_{\substack{y_1 \cdots y_n \\ y_n}} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

$$= \sum_{\substack{y_1 \cdots y_n \\ y_n}} q(STOP|y_n) \sum_{\substack{y_1 \cdots y_{n-1} \\ y_1 \cdots y_{n-1}}} P(x_1 \cdots x_n, y_1 \cdots y_n)$$

$$= \sum_{\substack{y_n \\ y_n}} q(STOP|y_n) \alpha(n, y_n) := \alpha(n+1, STOP)$$

Marginal Inference

Find the marginal probability of each tag for y_i

$$P(x_1 \cdots x_n, y_i) = \sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

- Given an input, we can score any tag sequence
- In principle, we're done list all possible tag sequences with y_i , score each one, take summation
 - Exponential time complexity!

NNP VBZ NN NNS CD NN
$$\implies$$
 logP = -23 NNP NNS NN NNS CD NN \implies logP = -29 NNP VBZ VB NNS CD NN \implies logP = -27

The State Trellis: Marginal

$$\sum_{y_1 \dots y_{i-1}} \sum_{y_{i+1} \dots y_n} P(x_1 \dots x_n, y_1 \dots y_{n+1})$$

Dynamic Programming

$$P(x_1 \cdots x_n, y_i) = \sum_{y_1 \cdots y_{i-1}} \sum_{y_{i+1} \cdots y_n} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

$$P(x_1 \cdots x_n, y_i) = P(x_1 \cdots x_i, y_i) P(x_{i+1} \cdots x_n | y_i, x_1 \cdots x_i)$$

$$= P(x_1 \cdots x_i, y_i) P(x_{i+1} \cdots x_n | y_i)$$

$$\alpha(i, y_i) \beta(i, y_i)$$

Backward

 $y_{i+1},...,y_n$

$$\beta(i, y_i) = P(x_{i+1} \cdots x_n | y_i) = \sum_{y_{i+1}, \dots, y_n} P(x_{i+1} \cdots x_n, y_{i+1} \cdots y_{n+1} | y_i)$$

$$= \sum_{y_{i+1}, \dots, y_n} e(x_{i+1} | y_{i+1}) q(y_{i+1} | y_i) P(x_{i+2} \cdots x_n, y_{i+2} \cdots y_{n+1} | y_{i+1})$$

$$= \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i) \sum_{y_{i+2},\cdots,y_n} P(x_{i+2}\cdots x_n,y_{i+2}\cdots y_{n+1}|y_{i+1})$$

$$= \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i)\beta(i+1,y_{i+1})$$

- N
 N
 N
 N

 V
 V
 V
 V
 V

 J
 J
 J
 J
 J
 J
- \$ \$ \$ \$

Forward-Backward Algorithm

- Two passes: one forward, one backward
 - Forward

$$\alpha(0, y_0) = \begin{cases} 1 & if \ y_0 = START \\ 0 & otherwise \end{cases}$$

For $i = 1, \dots, n$:

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i - 1, y_{i-1})$$

Backward

$$\beta(n, y_n) = \begin{cases} q(y_{n+1}|y_n) & \text{if } y_{n+1} = STOP \\ 0 & \text{otherwise} \end{cases}$$

For $i = n - 1, \dots, 0$

$$\beta(i, y_i) = \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i)\beta(i+1, y_{i+1})$$

Forward-Backward: Runtime

$$\alpha(i, y_i) = \sum_{y_{i-1}} e(x_i | y_i) q(y_i | y_{i-1}) \alpha(i-1, y_{i-1})$$

$$\beta(i, y_i) = \sum_{y_{i+1}} e(x_{i+1}|y_{i+1})q(y_{i+1}|y_i)\beta(i+1, y_{i+1})$$

- Sentence length n, tag number |Y|
- ▶ O(n|Y|) entries in $\alpha(i, y_i)$ and $\beta(i, y_i)$
- ightharpoonup O(|Y|) time to compute each entry
- ▶ Total runtime: $O(n|Y|^2)$
- Exactly the same as Viterbi

HMM Supervised Learning

- Learn HMM given annotated sequence $\{(x_1, y_1), \dots, (x_n, y_n)\}$
 - Maximum likelihood estimate

$$P(x,y) = \prod_{i=1}^{n+1} e(x_i|y_i) \cdot q(y_i|y_{i-1}) = \prod_{i,j \in Y} q(j|i)^{c(i,j)} \prod_{j \in X} \prod_{i \in Y} e(j|i)^{c(i,j)}$$

e: emission; q: transition; c: co-occurrence count

Closed-form solution: count and normalize

$$e(k|i) = \frac{c(i,k)}{\sum_{k' \in X} c(i,k')} \qquad q(j|i) = \frac{c(i,j)}{\sum_{j' \in Y} c(i,j')}$$

- Handle data sparseness
 - We can use all of the tricks we use for n-gram models

HMM Unsupervised Learning

- Learn HMM given unannotated sequence $\{x_1, \dots, x_n\}$
- Application: part-of-speech induction
 - Induce the set of POS tags from text
- Maximize marginal likelihood

$$P(x_1 \cdots x_n) = \sum_{y_1 \cdots y_n} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

Expectation-Maximization (EM)

- Can be used to learn any model with hidden variables (missing data)
- Alternate:
 - Compute distributions over hidden variables based on current parameter values
 - Compute new parameter values to maximize expected log likelihood based on distributions over hidden variables
- Stop when no changes
- Can reach a local optimum but not necessarily a global optimum

EM for HMM (Baum-Welch Algorithm)

- Initialize transition and emission parameters
 - Random, uniform, or more informed initialization
- Iterate until convergence
 - ▶ E-Step:
 - Compute expected counts
 - General form:

$$c(S) = \mathbb{E}_{P(y_1 \cdots y_{n+1} | x_1 \cdots x_n)}[Count(S | x_1, \cdots, x_n, y_1 \cdots y_{n+1})]$$

Computing:

$$c(NN) = \sum_{i} P(y_i = NN \mid x_1, \dots, x_n)$$

$$c(NN \to VB) = \sum_{i} P(y_i = NN, y_{i+1} = VB \mid x_1, \dots, x_n)$$

$$c(NN \to apple) = \sum_{i} P(y_i = NN, x_i = apple \mid x_1, \dots, x_n)$$

Compute expected counts

$$c(NN) = \sum_{i} P(y_{i} = NN \mid x_{1}, \dots, x_{n})$$

$$= \sum_{i} \frac{P(x_{1} \dots x_{n}, y_{i} = NN)}{P(x_{1} \dots x_{n})}$$

$$= \frac{\sum_{i} \alpha(i, y_{i} = NN)\beta(i, y_{i} = NN)}{\alpha(n + 1, STOP)}$$

$$c(NN \rightarrow VB) = \sum_{i} P(y_{i} = NN, y_{i+1} = VB \mid x_{1}, \dots, x_{n})$$

$$= \sum_{i} \frac{P(x_{1} \dots x_{n}, y_{i} = NN, y_{i+1} = VB)}{P(x_{1} \dots x_{n})}$$

$$= \frac{\sum_{i} \alpha(i, y_{i} = NN) \ q(VB \mid NN) \ e(x_{i+1} \mid VB) \ \beta(i + 1, y_{i+1} = VB)}{\alpha(n + 1, STOP)}$$

EM for HMM (Baum-Welch Algorithm)

- Initialize transition and emission parameters
 - Random, uniform, or more informed initialization
- Iterate until convergence
 - ▶ E-Step:
 - Compute expected counts

These statistics summarize $P(y_1 \cdots y_{n+1} | x_1 \cdots x_n)$

- M-step:
 - Compute new parameter values to maximize expected log likelihood

$$\mathbb{E}_{Q(y_1\cdots y_{n+1})}[\log P(x_1,\cdots,x_n,y_1\cdots y_{n+1})]$$

Closed form solution: normalizing expected counts

$$e_{ML}(x|y) = \frac{c(y,x)}{c(y)}$$
 $q_{ML}(y_i|y_{i-1}) = \frac{c(y_{i-1},y_i)}{c(y_{i-1})}$

HMM Unsupervised Learning

- Learn HMM given unannotated sequence $\{x_1, \dots, x_n\}$
- Maximize marginal likelihood

$$P(x_1 \cdots x_n) = \sum_{y_1 \cdots y_n} P(x_1 \cdots x_n, y_1 \cdots y_{n+1})$$

- EM for HMM (Baum-Welch Algorithm)
- Can we directly optimize it by gradient descent?
 - Yes!

Forward-Backward is just backprop!

Expected counts can be computed by backprop

$$c(NN \to VB) = \frac{\partial \log P(x_1 \cdots x_n)}{\partial q(NN \to VB)}$$

$$c(NN \to apples) = \frac{\partial \log P(x_1 \cdots x_n)}{\partial e(NN \to apples)}$$

- The forward and then backprop procedure is almost the same as Forward-Backward
- See https://aclanthology.org/W16-5901.pdf

From HMM to Conditional Random Field

Beyond HMM

- The simplest method: for each word, predict its most frequent label
 - Problems:
 - 1. It does not consider the contextual info
 - 2. It does not consider relations between adjacent labels
- Does HMM solve the two problems?
 - HMM handles problem 2, but not 1

- Score function $s(y_{t-1}, y_t, x_t)$ can be a simple linear function $W^T f(y_{t-1}, y_t, x_t)$.
 - Possible features:
 - y_{t-1} is B and y_t is E?
 - y_{t-1} is B and y_t is O?
 - $\rightarrow x_t$ is a noun?
 - $\rightarrow x_t$ is capitalized? ...

- Score function $s(y_{t-1}, y_t, x_t)$ can be a simple linear function $W^T f(y_{t-1}, y_t, x_t)$.
- It may also be a neural network with word embedding of x_t and label embedding of y_t and y_{t-1} as input
 - more on this later...
- Sometimes, $s(y_{t-1}, y_t, x_t)$ is decomposed to a transition score and an emission score
 - $s(y_{t-1}, y_t, x_t) = s_e(y_t, x_t) + s_q(y_t, y_{t-1})$

$$P(y_{1:n}|x_{1:n}) = P(y_1|x_1) \prod_{t=2}^{n} P(y_t|y_{t-1}, x_t)$$

$$x_n \qquad P(y_t|y_{t-1}, x_t) = \frac{\exp(s(y_{t-1}, y_t, x_t))}{Z(y_{t-1}, x_t)}$$

$$P(y_t|y_{t-1},x_t) = \frac{\exp(s(y_{t-1},y_t,x_t))}{Z(y_{t-1},x_t)}$$

$$y_1$$
 y_2 y_3 y_n \dots $x_{1:n}$

$$P(y_{1:n}|x_{1:n}) = P(y_1|x_{1:n}) \prod_{t=2}^{n} P(y_t|y_{t-1}, x_{1:n})$$

$$P(y_t|y_{t-1},x_{1:n}) = \frac{\exp(s(y_{t-1},y_t,x_{1:n}))}{Z(y_{t-1},x_{1:n})}$$

- Now we can consider info from the whole sentence in the score function
- MEMM considers both contextual info and relations between adjacent labels!
- But... MEMM suffers from label bias problem

- What the local transition probabilities say:
 - Label 1 prefers to go to label 2
 - Label 2 prefers to stay at label 2

- $P(1 \rightarrow 1 \rightarrow 1 \rightarrow 1) = 0.4^3 = 0.064$
- $P(1 \rightarrow 2 \rightarrow 1 \rightarrow 2) = 0.6*0.1*0.6$ = 0.036

- $P(2\rightarrow2\rightarrow2\rightarrow2)=0.3^3=0.027$
- P(2→1→2→1)=0.1*0.6*0.1 =0.006

- Label 1 has only two transitions but label 2 has five
- Transition probabilities from label 2 are lower

- Label bias in MEMM
 - Preference of states with lower number of transitions

- Solution
 - From local probabilities to local potentials

From MEMM to CRF

$$y_1 y_2 y_3 y_n$$

$$x_{1:n} P(y_{1:n}|x_{1:n}) = \frac{1}{Z(x_{1:n})} \prod_{t=1}^n \exp(s(y_{t-1}, y_t, x_{1:n}))$$

From MEMM to CRF

- Conditional Random Field (CRF) is an undirected graphical model
 - Global normalization instead of local normalization
 - ▶ Both problems solved ✓
 - ▶ Label bias solved ✓

CRF inference (decoding)

$$y^* = \underset{y_1 \cdots y_n}{\operatorname{argmax}} \frac{1}{Z(x_{1:n})} \prod_{t=1}^{n} \exp(s(y_{t-1}, y_t, x_{1:n}))$$

$$= \underset{y_1 \cdots y_n}{\operatorname{argmax}} \prod_{t=1}^{n} \exp(s(y_{t-1}, y_t, x_{1:n}))$$

$$= \underset{y_1 \cdots y_n}{\operatorname{argmax}} \sum_{t=1}^{n} s(y_{t-1}, y_t, x_{1:n})$$
Score of label sequence $s(y_{1:n})$

Decoding by Viterbi

$$\pi(i, y_i) = \max_{y_1 \dots y_{i-1}} \sum_{t=1}^{i} s(y_{t-1}, y_t, x_{1:n})$$

$$= \max_{y_{i-1}} s(y_{i-1}, y_i, x_{1:n}) + \max_{y_1 \dots y_{i-2}} \sum_{t=1}^{i-1} s(y_{t-1}, y_t, x_{1:n})$$

$$= \max_{y_{i-1}} s(y_{i-1}, y_i, x_{1:n}) + \pi(i-1, y_{i-1})$$

CRF Supervised Learning

- Learn CRF given annotated sequence $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Maximizing conditional likelihood

$$P(y_{1:n}|x_{1:n}) = \frac{1}{Z(x_{1:n})} \exp\left(\sum_{t=1}^{n} s(y_{t-1}, y_t, x_{1:n})\right)$$
$$Z(x_{1:n}) = \sum_{y_t} \exp\left(\sum_{t=1}^{n} s(y'_{t-1}, y'_t, x_{1:n})\right)$$

- Optimization with gradient descent
 - The partition function Z is computed by Forward algorithm
 - The gradient formula involves expected counts
 - Can be computed with Forward-Backward
 - Or we simply let auto-differentiation handle everything (as discussed earlier)

CRF Supervised Learning

- Learn CRF given annotated sequence $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- Minimizing margin-based loss (Structured SVM)

$$L_{SSVM} = \max_{y_{1:n}} \left(s(y_{1:n}) + \Delta(y_{1:n}, y_{1:n}^{\star}) - s(y_{1:n}^{\star}) \right)$$

- $\Delta(y, y^*) \ge 0$ is the cost we incur when we predict y but the truth is y^*
- $\max_{y_{1:n}}(\cdots)$ can be computed with Viterbi if Δ is position-wise decomposable, e.g., num of different labels
- Advantages
 - take into account the Δ cost
 - focus on the decision boundary instead of the full distribution
- Optimization --- loss not differentiable
 - stochastic subgradient descent
 - quadratic programming (cutting-plane method)

CRF Unsupervised Learning

- Learn CRF given unannotated sequence $\{x_1, \dots, x_n\}$
- Impossible to compute $P(x_1, \dots, x_n)$ with a CRF!
- CRF autoencoder (CRF-AE)
 - Encoder: CRF
 - Decoder: simply predict each word from its tag

CRF Unsupervised Learning

- Learn CRF given unannotated sequence $\{x_1, \dots, x_n\}$
- Impossible to compute $P(x_1, \dots, x_n)$ with a CRF!
- CRF autoencoder (CRF-AE)
 - Encoder: CRF
 - Decoder: simply predict each word from its tag
- Training loss:

$$P(\widehat{x_{1:n}} \mid x_{1:n}) = \sum_{y_{1:n}} P(y_{1:n} \mid x_{1:n}) P(\widehat{x_{1:n}} \mid y_{1:n})$$

$$= \sum_{y_{1:n}} \frac{1}{Z(x_{1:n})} \prod_{t=1}^{n} \exp(s(y_{t-1}, y_t, x_{1:n})) P(\widehat{x_i} \mid y_i)$$

The loss can be computed with Forward algorithm and optimized with gradient descent

CRF in general

An extension of Markov networks (aka. Markov random fields) where everything is conditioned on the input

$$P(y|x) = \frac{1}{Z(x)} \prod_{C} \psi_{C}(y_{C}, x)$$

where $\psi_C(y_C, x)$ is the potential over clique C and Z(x) is the normalization coefficient.

$$Z(x) = \sum_{y} \prod_{C} \psi_{C}(y_{C}, x)$$

Neural Sequence Labeling Model

Simplest neural method

- Predicting labels directly from static word embeddings
 - Problem 1: it does not utilize the context of each word
 - Problem 2: it does not utilize relations between neighboring labels

RNN for sequence labeling

- Predicting labels from RNN hidden vectors
 - Problem 1: it does not utilize the context of each word
 - ▶ Each hidden vector only incorporates info from the left context
 - Problem 2: it does not utilize relations between neighboring labels

Bidirectional RNN

- Predicting labels from bi-RNN hidden vectors
 - Problem 1: it does not utilize the context of each word
 - Solved!
 - Problem 2: it does not utilize relations between neighboring labels

Multilayer bidirectional RNN

- Predicting labels from the last layer of multilayer bi-RNN
 - Problem 1: it does not utilize the context of each word
 - Solved! more powerful representation of the context
 - Another choice: Transformer
 - Problem 2: it does not utilize relations between neighboring labels

Neural CRF

- Use a neural model (RNN, Transformer, or both) to compute CRF potentials (typically only the emission scores)
 - Both problems solved!
 - The default model for sequence labeling nowadays

Inference and Learning

- For all these models:
 - Inference
 - Without CRF: independent prediction at each position
 - Sometimes called neural softmax
 - With CRF: Viterbi
 - Learning
 - Optimize conditional likelihood or margin-based loss
 - Similar to those in CRF learning

Summary

Sequence Labeling

- Hidden Markov model (HMM)
 - Inference: Viterbi, Forward, Backward
 - Learning: Maximum Likelihood Estimate, Expectation-Maximization / SGD
- Conditional random filed (CRF)
 - Label bias problem
 - Inference: Viterbi, Forward, Backward
 - Learning: conditional likelihood, margin-based loss, CRF-AE
- Neural models
 - Neural softmax, neural CRF