NUS DataScience

Introduction to Data Analytics with R
TOH Wei Zhong
31/10/2015

A little bit about me

- Graduated from NUS, Computational Biology
 - Statistics and computing onto biology and healthcare
 - E.g. –omics
- Data Scientist in NCS
 - Smart Nation projects (defense and public safety)

Agenda for this afternoon

- Overview of data analytics
- Introduce key concepts for hands-on session
 - Logistic regression
 - Decision tree
 - Random forest
 - Evaluation metrics
 - Cross-validation
- Short break
- Hands-on

Overview of data analytics

What is data analytics?

- A collection of established methods/techniques that
 - Seeks to make sense of and generate insights and knowledge from collected data (Big Data or otherwise)
 - Is statistically sound and rigorous
 - Preferably scalable
 - Is used to support decision making

Data Science

Data analytics

Data streaming

Big Data technologies

Hadoop

Spark

Communication

Data visualization

Tableau

Grammar of Graphics

Social media

Text and network analytics

NLP

Semantics

A common way to think about data analytics

Predictive

Descriptive

Prescriptive

Given existing data, generate some form of summary / aggregated view so that data can be consumed

Given existing data, construct models so that predictions on future, yet-to-be collected data can be made

Given constructed models, recommend future decisions

Key aspects that businesses are concerned about

Key techniques in data analytics

- Feature selection
- Clustering
- Linear models
- Tree-based models
- Evaluation metrics
- Resampling methods
- Hypothesis testing
- Association rule mining
- Time series analysis
- Feature engineering

Statistical learning

Sometimes neglected, but nonetheless powerful

Statistical learning

- Supervised and unsupervised learning (also, semisupervised learning)
- Supervised learning: learning with ground truth/answers available (response variable)
 - Classification: response variable is categorical
 - Regression: response variable is continuous or numerical
- Unsupervised learning: finding intrinsic relationships between samples in the dataset
 - Clustering algorithms

Supervised learning: linear models

- Generalized linear models (GLM): mainstay tool in data analytics
- Generalized in the sense of the type of response variable:
 - Continuous response variable: ordinary least squares (OLS) regression
 - Binary / multinomial response: logistic regression
 - Discrete response: Poisson regression
- Gives an equation: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \epsilon$
- Regularization (ridge regression, LASSO regression)

Supervised learning: tree-based models

- Models that uses decision trees as fundamental building blocks
 - Random forest
 - Gradient boosting machines
 - Rotation forest
- More on decision trees and random forest later

Pruned decision tree (9 leaf nodes)

Unsupervised learning: clustering

- Clustering: empirically grouping observations / samples / rows in a dataset together in different groups (cluster), such that the more similar observations are grouped together
- Unsupervised because there is no ground truth to guide the process, unlike e.g. regression

Feature selection

- Feature: a variable / attribute in the dataset
- Feature selection: the process of selecting relevant features that aids in the modelling process, used especially when there are too many features in the dataset to work with
- Curse of dimensionality: the more irrelevant features are used in a model, the weaker the model

Evaluation metrics

- Measures using which constructed models are assessed
- Examples include accuracy and ROC-AUC
- Later

Key concepts

Hands-on session

- For the hands-on session, we will be look at a dataset of emails, consisting of both spam and nonspam
- The objective is to construct models that can predict whether a given email is spam or non-spam

														Q,	
nal ‡	project ‡	re ‡	edu ‡	table ‡	conference ‡	charSemicolon ‡	$char Round bracket \ ^{\diamondsuit}$	$char Square bracket \ \ ^{\diamondsuit}$	charExclamation $^{\diamondsuit}$	charDollar ‡	charHash ‡	capitalAve ‡	capitalLong ‡	capitalTotal ‡	type ‡
0.00	0.00	0.00	0.00	0	0.0	0.000	0.000	0.000	0.778	0.000	0.000	3.756	61	278	spam ^
0.00	0.00	0.00	0.00	0	0.0	0.000	0.132	0.000	0.372	0.180	0.048	5.114	101	1028	spam
0.12	0.00	0.06	0.06	0	0.0	0.010	0.143	0.000	0.276	0.184	0.010	9.821	485	2259	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.137	0.000	0.137	0.000	0.000	3.537	40	191	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.135	0.000	0.135	0.000	0.000	3.537	40	191	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.223	0.000	0.000	0.000	0.000	3.000	15	54	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.054	0.000	0.164	0.054	0.000	1.671	4	112	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.206	0.000	0.000	0.000	0.000	2.450	11	49	spam
0.30	0.00	0.00	0.00	0	0.0	0.000	0.271	0.000	0.181	0.203	0.022	9.744	445	1257	spam
0.00	0.06	0.00	0.00	0	0.0	0.040	0.030	0.000	0.244	0.081	0.000	1.729	43	749	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.000	0.000	0.462	0.000	0.000	1.312	6	21	spam
0.00	0.00	0.00	0.00	0	0.0	0.022	0.044	0.000	0.663	0.000	0.000	1.243	11	184	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.056	0.000	0.786	0.000	0.000	3.728	61	261	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.000	0.000	0.000	0.000	0.000	2.083	7	25	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.102	0.000	0.357	0.000	0.000	1.971	24	205	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.063	0.000	0.572	0.063	0.000	5.659	55	249	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.000	0.000	0.428	0.000	0.000	4.652	31	107	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.000	0.000	1.975	0.370	0.000	35.461	95	461	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.182	0.000	0.455	0.000	0.000	1.320	4	70	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.275	0.000	0.055	0.496	0.000	3.509	91	186	spam
0.00	0.00	0.00	0.00	0	0.0	0.000	0.729	0.000	0.729	0.000	0.000	3.833	9	23	spam
0.00	0.00	0.00	0.00	0	0.0	0.042	0.101	0.016	0.250	0.046	0.059	2.569	66	2259	spam
0.00	0.00	0.00	0.00	0	0.0	0.404	0.404	0.000	0.809	0.000	0.000	4.857	12	34	spam
4										III P					

31/10/2015

Showing 1 to 24 of 4,601 entries

A bit on R

- R is a statistical computing language that was developed with statistical analysis in mind
- One of the most popular tools in the data science community
- R scripts: sequence of procedures that enables step-bystep customized data crunching
- R packages: collations of R scripts (functions) that we can leverage on to do various, more complex tasks easily, e.g. manipulate data and construct models
- R and Rstudio

Key concepts to be used

- Logistic regression
- Decision tree
- Random forest
- Cross-validation
- Evaluation metrics: accuracy and ROC-AUC

Logistic regression

- A type of generalized linear model (GLM)
- Assigns each variable used in the model with a coefficient that can be used in summation to predict log-odds
- $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \varepsilon$
- In our case, probability of an email being a spam email

Pros and cons of logistic regression

• Pros:

 Easy to interpret – the idea of regression is familiar and intuitive

• Cons:

- Requires certain statistical assumptions to hold true in the data
- Generally low predictive accuracy

Decision trees

- A simple model used in supervised learning
- CART, C4.5 amongst top 10 most popular data mining algorithms
- Can handle both classification and regression
- The tree package that we are using uses the recursive partitioning algorithm

Equivalents

- Tree == Binary partitioning of dataset
- Each partition is represented by the mode (classification) or mean (regression)

Terminologies

- Depth
- Node
 - Leaf nodes
 - Non-leaf nodes
- The size of a tree sometimes refers to the number of leaf nodes
- Parents and children
- Branching factor

Pruned decision tree (9 leaf nodes)

Pruning

 Typically after the construction of a decision tree, we would want to prune the tree, because the tree may be overly complicated

Decision tree

Pruning (2)

- Pruning refers to the process of trimming the tree to a more compact and concise one, without sacrificing much performance
- The tree package uses cost-complexity pruning
 - Comparing the relationship between number of leaf nodes and performance of model

Decision tree: Cross validation to find optimal size of tree

Pros and cons of decision trees

• Pros:

- Very easy to interpret and communicate to others, because it is similar to how humans think and make decisions
- Easy to construct

Cons:

- Generally unstable
- Generally low predictive accuracy

Random forest

- In the RF model, instead of using one decision tree to do predictions, we use multiple of them
- The idea is to build decision trees on different subsets of the training data
 - Each subset is known as a "bag"
 - Each bag yields one decision tree
- To make a prediction, we ask each tree to make a predictions
 - To get the overall prediction of the RF model, we take a majority vote

Pros and cons of random forest

Pros:

- One of the top-performing models in supervised learning
- With some basic understanding of sampling and bootstrapping, RF can be easy to communicate. The intuition of voting as a mechanism to make decisions is simple
- Able to derive variable importance measures

• Cons:

Computationally intensive

Evaluation metrics: assessing the performance of a supervised learning model

- In order to know whether the models constructed can perform well in reality, we need to assess some metrics to assess their performance
- Classification: accuracy / error rate
 - Sensitivity, specificity etc.
- Regression: mean squared error
 - $MSE = \frac{1}{n} \sum (prediction actual)^2$
- Also, there are two types of classification models:
 - (1) Those that output classes / categories as predictions
 - (2) Those that output probabilities as predictions
- (2): can use ROC-AUC as a measure of performance

Cross-validation

- Gives rise to the idea of training and testing datasets
- Rationale:
 - Recall that the constructed models are ultimately meant to do predictions on future, unknown observations
 - Models are constructed/trained using input datasets.
 We call them training data
 - If the models constructed are too attuned to the training data => overfitting

http://www.turingfinance.com/regressionanalysis-using-python-statsmodels-andquandl/

Cross-validation

- In order to know whether our models are overfitted to the data, we use cross-validation
 - Split the dataset in two parts: training and testing
 - Use the training set to build the models
 - Use the models to make predictions on the testing set
- A way to think about this: studying for an examination

Hands-on

Thanks! Questions?

github.com/tohweizhong/NUS-DataScience sg.linkedin.com/in/tohweizhong tohweizhong@u.nus.edu