Modelltheorie Übungsblatt 5

Aufgabe 1. Sei \mathcal{A} eine \mathcal{L} -Struktur und $C \subset B \subset A$. Ist $\varphi(x)$ eine $\mathcal{L}(B)$ -Formel, so sei $[\varphi] = \{p(x) \in S_n^{\mathcal{A}}(B) \mid \varphi(x) \in p(x)\}$. Dann ist $\{[\varphi] \mid \varphi(x) \text{ eine } \mathcal{L}(B)\text{-Formel}\}$ clopen Basis einer kompakten Topologie auf $S_n^{\mathcal{A}}(B)$. Es bedeutet, dass diese Familie abgeschlossene unter Schnitt, Vereinigung, und Komplement ist. Für $p(x) \in S_n^{\mathcal{A}}(B)$ sei $p|_C(x) = \{\phi(x) \in p(x) \mid \phi(x) \text{ eine } \mathcal{L}(C)\text{-Formel}\}$.

- a) Zeigen Sie, dass $p|_C \in S_n^{\mathcal{A}}(C)$ gilt.
- b) Zeigen Sie, dass die Abbildung $|_C: S_n^{\mathcal{A}}(B) \to S_n^{\mathcal{A}}(C)$ surjektiv und stetig ist.
- c) Beweisen Sie das Trennungslemma mithilfe von Aufgabe 2 von Übungsblatt 4.

Aufgabe 2. Sei K ein Körper und $\mathcal{L}_{V(K)}$ die Sprache der K-Vektorräume. Zeigen Sie, dass die $\mathcal{L}_{V(K)}$ -Theorie der unendlichen K-Vektorräume Quantorenelimination hat.

Aufgabe 3. Sei \mathcal{L}_G die Sprache der Gruppen. Eine Gruppe G heißt divisible, fals für alle $x \in G$ und alle $n \in \mathbb{N}$ es gibt $y \in G$ mit $\underbrace{y + y + \cdots + y}_{} = x$. Zeigen Sie, dass die

 \mathcal{L}_G -Theorien der divisiblen torsionfreien abelschen Gruppen Quantorenelimination hat. Hinweis: jede divisible torsionnfrei abelsche Gruppe ist auf kanonische Weise ein Q-Vektorraum (Warum?). Sie können also Aufgabe 2 verwenden.

Aufgabe 4. Sei $\mathcal{L} = \{R\}$. Zeigen Sie, dass die \mathcal{L} -Theorie der Zufallsgraphen Quantorenelimination hat.