Семинар 3

Задачи:

- 1. Пусть ξ случайная величина такая, что $P(\xi = -1) = \frac{1}{4}$ и $P(\xi = 2) = \frac{1}{4}$ и для любых точек $a, b \in [0, 1]$ с условием a < b верно $P(\xi \in [a, b]) = \frac{b-a}{2}$. Нарисуйте график функции распределения $F_{\xi}(x) = P(\xi \leqslant x)$.
- 2. В равностороннем треугольнике ABC площади 1 выбираем точку M. Найти математическое ожидание площади ABM.
- 3. Какую наибольшую дисперсию может иметь случайная величина, принимающая значения на отрезке от 0 до 1?
- 4. Найдите математическое ожидание числа неподвижных точек для случайной перестановки на n элементах.
- 5. Отрезок [0,1] разбит двумя случайными точками на три части. Найдите математическое ожидание длины меньшей из частей.
- 6. Рассмотрим случайную перестановку $P = (p_1, p_2, \dots, p_n)$ натуральных чисел от 1 до n. Пару чисел (i, j) назовем «обменом», если выполняются соотношения $p_i = j, p_j = i$. Вычислите математическое ожидание количества обменов в перестановке P (перестановка выбирается случайно равновероятно из множества всех перестановок от 1 до n).
- 7. На окружности выбираются две случайные точки A и B. Найдите математическое ожидание площади меньшего из сегментов, на которые хорда AB разбивает круг.
- 8. Робот движется по клеткам бесконечной шахматной доски. Один его шаг это перемещение на случайную из восьми соседних клеток. Найдите математическое ожидание модуля разности между количеством черных и количеством белых клеток, на которых робот побывал за n шагов (каждая клетка считается столько раз, сколько на ней побывал робот). Ответ представьте в виде компактного выражения.
- 9. В ряд расположены m предметов. Случайно выбираются k предметов, k < m. Случайная величина X равна количеству таких предметов i, что i выбран, а все его соседи не выбраны. Найдите математическое ожидание X.
- 10. Случайная величина X равна длине цикла, содержащего одновременно элементы 1 и 2, при случайной перестановке множества $1, 2, \ldots, n$. Если такого цикла нет, то X=0. Найдите распределение случайной величины X и ее математическое ожидание.
- 11. На отрезок бросаются две точки. Найти математическое ожидание и дисперсию расстояния между ними.
- 12. Найти математическое ожидание и дисперсию величины ξ с плотностью $p(x) = \frac{1}{2\alpha} e^{-\frac{|x-a|}{\alpha}}$.
- 13. Найти математическое ожидание и дисперсию числа смен успеха на неуспех и неуспеха на успех в схеме Бернули.
- 14. Пусть ξ_1, ξ_2 случайные пуассоновские величины с параметрами λ_1 и λ_2 соответственно, причем $\lambda_1 \leqslant \lambda_2$. Доказать, что для любого t>0 выполняется $P(\xi_1 \leqslant t) \geqslant P(\xi_2 \leqslant t)$.
- 15. Пусть ξ геометрически распределенная случайная величина. Найти распределение величины $\eta = \xi \frac{1+(-1)^{\xi}}{2}$.
- 16. Пусть $\mathbb{E}\xi = 0$. Доказать, что $\mathbb{E}|\xi| \leqslant \frac{1}{2}(\mathbb{D}\xi + 1)$.
- 17. Показать, что $\inf_{-\infty < a < \infty} \mathbb{E}(\xi a)^2$ достигается при $a = \mathbb{E}\xi$ и, следовательно, $\inf_{-\infty < a < \infty} \mathbb{E}(\xi a)^2 = \mathbb{D}\xi$.
- 18. Пусть $P_{\xi}(x) = P(\xi = x)$ и $F_{\xi}(x) = P(\xi \leqslant x)$. Показать, что для a>0 и $-\infty < b < \infty$

$$P_{a\xi+b}(x)=P_{\xi}\left(rac{x-b}{a}
ight)$$
 и $F_{a\xi+b}(x)=F_{\xi}\left(rac{x-b}{a}
ight)$

Показать также, что для $y\geqslant 0$

$$F_{\xi^2}(y) = F_{\xi}(+\sqrt{y}) - F_{\xi}(-\sqrt{y}) + P_{\xi}(-\sqrt{y})$$

и для
$$\xi^+ = \max(\xi, 0)$$

$$F_{\xi^{+}}(x) = \begin{cases} 0, & x < 0 \\ F_{\xi}(x), & x \geqslant 0 \end{cases}$$

- 19. Привести пример двух случайных величин ξ и η , имеющих одну и ту же функцию распределения ($F_{\xi}=F_{\eta}$), но таких, что $P(\xi\neq\eta)>0$.
- 20. Пусть ξ , η и ζ случайные величины, причем функции распределения величин ξ и η совпадают. Верно ли, что тогда функции распределения величин $\xi\zeta$ и $\eta\zeta$ совпадают?