

Robust and Efficient Computation of Eigenvectors

in a Generalized Spectral Method for Constrained Clustering

Chengming Jiang

University of California, Davis

Huiqing Xie

East China University of Science and Technology

Zhaojun Bai University of California, Davis

Motivation and Objectives

Image Segmentation

Unconstrained:
Normalized-Cut (NCut) and
Spectral-Clustering(SC)

Constrained:
Must-Link (ML) and
Cannot-Link (CL) constraints

Objectives

Mathematically rigorous and computationally effective treatments of FAST-GE model for constrained clustering

Ncut and FAST-GE

Model	NCut [Shi and Malik, PAMI 2000]	FAST-GE [Cucuringu et al, AISTATS 2016]	
Laplacian		L _G , L _H with embedded ML and CL constraints	
Objective Function	$\frac{cut(A)}{vol(A)} + \frac{cut(\overline{A})}{vol(\overline{A})}$	$\frac{cut_{G}(A)}{cut_{H}(A)}$	
Rayleigh Quotient Opt.	$\min_{x} \frac{x^{T} L x}{x^{T} D x} \text{ s.t. } x^{T} D 1 = 0$ (1) x is binary (2) L \ge 0, degree matrix D > 0	$\min_{x^T L_H x > 0} \frac{x^T L_G x}{x^T L_H x}$ (1) x is binary (2) $L_G \ge 0$, $L_H \ge 0$ (3) $L_G - \lambda L_H$ is singular	
Relaxation	$\min_{x \in \mathbb{R}^n} \frac{x^T L x}{x^T D x} \text{s.t. } x^T D 1 = 0$	$\inf_{\substack{x \in R^n \\ x^T L_H x > 0}} \frac{x^T L_G x}{x^T L_H x}$	
Variational Principle	Courant-Fischer	?	
Eigenvalue Problem	$Lx = \lambda Dx$?	

Variational Principles

- Courant-Fischer variational principle For a symmetric matrix $L \in R^{n \times n}$, $\lambda_i = \max_{\substack{S \subseteq R^n \\ \text{dim}(S) = n}} \min_{\substack{x \in S \\ x \neq 0}} \frac{x^T L x}{x^T x}$
- An extended Courant-Fischer variational principle

 For symmetric matrices $L_G, L_H \in R^{n \times n}, L_G, L_H \geq 0$ and $r = \operatorname{rank}(L_H)$,

 (1) $L_G \lambda L_H$ has r finite eigenvalues $0 \leq \lambda_1 \leq ... \leq \lambda r$

(2)
$$\lambda_i = \max_{\substack{S \subseteq R^n \\ \dim(S) = n-i+1}} \min_{\substack{x \in S \\ X^T L_H x > 0}} \frac{x^T L_G x}{x^T L_H x}$$

The extended variational principle implies that

(1)
$$\inf_{\substack{x \in R^n \\ x^T L_H x > 0}} \frac{x^T L_G x}{x^T L_H x} = \min_{\substack{x \in R^n \\ x^T L_H x > 0}} \frac{x^T L_G x}{x^T L_H x} = \lambda_1$$
 (2) minimizer x_1 : $L_G x_1 = \lambda_1 L_H x_1$

Eigenvalue Problems

- The eigenproblem: $L_Gx = \lambda L_Hx$, where L_G , $L_H \ge 0$ and $L_G \lambda L_H$ is singular.
- RegularizationLet

$$K = -L_H$$
 and $M = L_G + \mu L_H + ZSZ^T$

 $-\mu \int_{1}^{\infty} \lambda_{1} \lambda_{2} = 1 - \mu$

where $Z = null(L_G) \cap null(L_H)$, S is SPD and $\mu > 0$ is a scalar. Then:

- (1) M > 0
- (2) The eigenvalues of K λ M are $\sigma_1 \le ... \le \sigma_r < \sigma_{r+1} = ... = \sigma_n = 0$, where $\sigma_i = -1/(\lambda_i + \mu)$ for i = 1, 2, ..., r
- The generalized symmetric definite eigenvalue problem

$$Kx = \sigma Mx$$

- (1) High-quality solvers (Lanczos and LOBPCG)
- (2) Spectral enhancement without explicit inverse $\sigma_1 \parallel 1$
- (3) "Natural" preconditioner $T \approx M^{-1}$
- (4) Efficient sparse-plus-low-rank matrix-vector multiplications

Constrained Image Segmentation

Image, constraints, eigvec, renormalized eigvec, const. seg.

Image	Pixels n	Clusters	Constraints	t_eig(sec)	t_total(sec)
Flower	30,000	2	23	5.88	7.14
Crab	143,000	2	32	55.71	62.14
Camel	249,057	2	23	144.94	159.67
Daisy	1,024,000	2	58	1518.88	1677.51
Cat	50,325	3	18	12.45	15.16
Davis	235,200	4	12	77.9	89.75
Patras	44,589	5	14	11.81	13.72

Concluding Remarks

- 1. Provided mathematical foundation and numerical treatment for the FAST-GE model
- 2. Eigensolver is still the computational bottleneck
- 3. Future studies: (1) exploiting structures of Laplacians for HPC, (2) other apps such as generalized linear discriminant analysis and multi-surface classification
- 4. https://github.com/aistats2017239/fastge2