Teoría de Códigos Tarea 1

Rubí Rojas Tania Michelle

29 de marzo de 2020

1. Construye el campo \mathbb{F}_{16} . También da sus tablas de suma y multiplicación.

Solución: En el anillo \mathbb{Z}_2 existe el polinomio irreducible $f(x) = x^4 + x + 1$. Tenemos que

$$\mathbb{F}_{16} = \mathbb{Z}_2[x]/(x^4 + x + 1) \tag{1}$$

donde los elementos de \mathbb{F}_{16} son:

$$\mathbb{F}_{16} = \{ax^3 + bx^2 + cx + d : a, b, c, d \in \mathbb{Z}_2\}$$

$$= \{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1, x^3, x^3 + 1, x^3 + x, x^3 + x + 1, x^3 + x^2, x^3 + x^2 + x, x^3 + x^2 + 1, x^3 + x^2 + x + 1\}$$

Etiquetamos cada uno de los elementos de \mathbb{F}_{16} de la siguiente manera:

$$g_0(x) = 0$$

$$g_1(x) = 1$$

$$g_2(x) = x$$

$$g_3(x) = x + 1$$

$$g_4(x) = x^2$$

$$g_5(x) = x^2 + 1$$

$$g_6(x) = x^2 + x$$

$$g_7(x) = x^2 + x + 1$$

$$g_8(x) = x^3$$

$$g_9(x) = x^3 + 1$$

$$g_{10}(x) = x^3 + x$$

$$g_{11}(x) = x^3 + x + 1$$

$$g_{12}(x) = x^3 + x^2$$

$$g_{13}(x) = x^3 + x^2 + x$$

$$g_{14}(x) = x^3 + x^2 + 1$$

$$g_{15}(x) = x^3 + x^2 + x + 1$$

Su respectiva tabla de suma es:

+	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_0	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_1	g_1	g_0	g_3	g_2	g_5	g_4	g_7	g_6	g_9	g_8	g_{11}	g_{10}	g_{14}	g_{15}	g_{12}	g_{13}
g_2	g_2	g_3	g_0	g_1	g_6	g_7	g_4	g_5	g_{10}	g_{11}	g_8	g_9	g_{13}	g_{12}	g_{15}	g_{14}
g_3	g_3	g_2	g_1	g_0	g_7	g_6	g_5	g_4	g_{11}	g_{10}	g_9	g_8	g_{15}	g_{14}	g_{13}	g_{12}
g_4	g_4	g_5	g_6	g_7	g_0	g_1	g_2	g_3	g_{12}	g_{14}	g_{13}	g_{15}	g_8	g_{10}	g_9	g_{11}
g_5	g_5	g_4	g_7	g_6	g_1	g_0	g_3	g_2	g_{14}	g_{12}	g_{15}	g_{13}	g_9	g_{11}	g_8	g_{10}
g_6	g_6	g_7	g_4	g_5	g_2	g_3	g_0	g_1	g_{13}	g_{15}	g_{12}	g_{14}	g_{10}	g_8	g_{11}	g_9
g_7	g_7	g_6	g_5	g_4	g_3	g_2	g_1	g_0	g_{15}	g_{13}	g_{14}	g_{12}	g_{11}	g_9	g_{10}	g_8
g_8	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{14}	g_{13}	g_{15}	g_0	g_1	g_2	g_3	g_4	g_6	g_5	g_7
g_9	g_9	g_8	g_{11}	g_{10}	g_{14}	g_{12}	g_{15}	g_{13}	g_1	g_0	g_3	g_2	g_5	g_7	g_4	g_6
g_{10}	g_{10}	g_{11}	g_8	g_9	g_{13}	g_{15}	g_{12}	g_{14}	g_2	g_3	g_0	g_1	g_6	g_4	g_7	g_5
g_{11}	g_{11}	g_{10}	g_9	g_8	g_{15}	g_{13}	g_{14}	g_{12}	g_3	g_2	g_1	g_0	g_7	g_5	g_6	g_4
g_{12}	g_{12}	g_{14}	g_{13}	g_{15}	g_8	g_9	g_{10}	g_{11}	g_4	g_5	g_6	g_7	g_0	g_2	g_1	g_3
g_{13}	g_{13}	g_{15}	g_{12}	g_{14}	g_{10}	g_{11}	g_8	g_9	g_6	g_7	g_4	g_5	g_2	g_0	g_3	g_1
g_{14}	g_{14}	g_{12}	g_{15}	g_{13}	g_9	g_8	g_{11}	g_{10}	g_5	g_4	g_7	g_6	g_1	g_3	g_0	g_2
g_{15}	g_{15}	g_{13}	g_{14}	g_{12}	g_{11}	g_{10}	g_9	g_8	g_7	g_6	g_5	g_4	g_3	g_1	g_2	g_0

mientras que su tabla de multiplicación es:

														1		
•	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0	g_0
g_1	g_0	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}	g_{12}	g_{13}	g_{14}	g_{15}
g_2	g_0	g_2	g_4	g_6	g_8	g_{10}	g_{12}	g_{13}	g_3	g_1	g_7	g_5	g_{11}	g_{15}	g_9	g_{14}
g_3	g_0	g_3	g_6	g_5	g_{12}	g_{15}	g_{10}	g_9	g_{11}	g_8	g_{14}	g_{13}	g_7	g_1	g_4	g_2
g_4	g_0	g_4	g_8	g_{12}	g_3	g_7	g_{11}	g_{15}	g_6	g_2	g_{13}	g_{10}	g_5	g_{14}	g_1	g_9
g_5	g_0	g_5	g_{10}	g_{15}	g_7	g_2	g_{14}	g_8	g_{13}	g_{11}	g_4	g_1	g_9	g_3	g_{12}	g_6
g_6	g_0	g_6	g_{12}	g_{10}	g_{11}	g_{14}	g_7	g_1	g_5	g_3	g_9	g_{15}	g_{13}	g_2	g_8	g_4
g_7	g_0	g_7	g_{13}	g_9	g_{15}	g_8	g_1	g_6	g_{14}	g_{10}	g_3	g_4	g_2	g_{12}	g_5	g_{11}
g_8	g_0	g_8	g_3	g_{11}	g_6	g_{13}	g_5	g_{14}	g_{12}	g_4	g_{15}	g_7	g_{10}	g_9	g_2	g_1
g_9	g_0	g_9	g_1	g_8	g_2	g_{11}	g_3	g_{10}	g_4	g_{14}	g_5	g_{12}	g_6	g_7	g_{15}	g_{13}
g_{10}	g_0	g_{10}	g_7	g_{14}	g_{13}	g_4	g_9	g_3	g_{15}	g_5	g_8	g_2	g_1	g_6	g_{11}	g_{12}
g_{11}	g_0	g_{11}	g_5	g_{13}	g_{10}	g_1	g_{15}	g_4	g_7	g_{12}	g_2	g_9	g_{14}	g_8	g_6	g_3
g_{12}	g_0	g_{12}	g_{11}	g_7	g_5	g_9	g_{13}	g_2	g_{10}	g_6	g_1	g_{14}	g_{15}	g_4	g_3	g_8
g_{13}	g_0	g_{13}	g_{15}	g_1	g_{14}	g_3	g_2	g_{12}	g_9	g_7	g_6	g_8	g_4	g_{11}	g_{10}	g_5
g_{14}	g_0	g_{14}	g_9	g_4	g_1	g_{12}	g_8	g_5	g_2	g_{15}	g_{11}	g_6	g_3	g_{10}	g_{13}	g_7
g_{15}	g_0	g_{15}	g_{14}	g_2	g_9	g_6	g_4	g_{11}	g_1	g_{13}	g_{12}	g_3	g_8	g_5	g_7	g_{10}

- 2. Construye una matriz generadora para el código RS(4,11).
- 3. Supón que recibes la palabra $y=(10,1,2,2,2,10,7,2,9,3,7)\in\mathbb{F}_{11}^{11}$. Decodifica la palabra usando el algoritmo de Gao, sabiendo que la palabra es del código RS(4,11).
- 4. Construye una base para \mathcal{L}_k de tal manera que la matriz generadora del código RS(k,q) sea de la forma

$$\begin{bmatrix} I_k & P \end{bmatrix} \tag{2}$$

donde I_k es la matriz identidad $k \times k$ y P es una matriz $k \times (q - k)$.

5. Demuestra que el número de subespacios vectoriales de \mathbb{F}_q^n de dimensión i es:

$$\mathcal{G}(n,i) = \frac{(q^n - 1)(q^n - q)\cdots(q^n - q^{i-1})}{(q^i - 1)(q^i - q)\cdots(q^i - q^{i-1})}$$
(3)

para i = 1, ..., n.

- 6. Demuestra que $RS(k,q)_q^{\top} = RS(q-k,q)$.
- 7. Demuestra que si C es un código MDS, entonces C^{\top} también es MDS.
- 8. Resuelve los siguientes ejercicios
 - a) Encuentra la matriz generadora G del código Simplex S(3,2).
 - b) Supongamos que un mensaje es enviado bajo el código H(3,2). Verifica si el mensaje r=1010001 es correcto.