

Supervised Deep Learning with Auxiliary Networks

Junbo Zhang, Guangjian Tian, Yadong Mu, Wei Fan

Solution: SUpervision-Guided AutoencodeR (SUGAR)

Main Network

It is used to reconstruct the input. A sparsity-encouraging variant of autoencoder.

Auxiliary Network

It is used to regularize the learnt network by pairwise similarity or dissimilarity constraints. The supvervised hashing learning.

Bridge: Mixed Objective

It is used to connect Main Network and Auxiliary **Network** by enforcing the correlation of their parameters.

Main Network

♦ Semi-supervised learning: Nonparametrically Guided Autoencoder, Semi-Supervised Recursive Autoencoders

(a) Unsupervised (b) Supervised (c) Semi-supervised

Problems and Shortcoming

- Ineffectively handle sparse side information
- Sample-specific annotations are always required

Experiments

Data Sets

♦ MNIST: well-known digit classification problem

- ♦ Benchmark classification tasks
 - Variations on MNIST
 - Discrimination between tall and wide rectangles
 - Recognition of convex sets

Baseline Methods

Support Vector Machines: SVM-RBF, SVM-Poly

labeled

Auxiliary Network

 $\mathbf{PP}^T = \mathbf{I}.$

 $PP^T = I$.

SUGAR with Denoising Autoencoder

SUGAR with Contractive Autoencoder

subject to

Feed-forward neural network (Nnet) Gated softmax classifier (GSN) Stacked Autoassociator Network (SAA)

Restricted Boltzmann Machine (RBM)

 $lpha \mathcal{J}_{DAE}(\phi) + (1-lpha)\mathcal{J}_{SH}(\mathbf{P}) + rac{\epsilon}{2} \|\mathbf{P} - \mathbf{W}\|_F^2 + \lambda \|\mathbf{W}\|_{\ell_1},$

 $\alpha \mathcal{J}_{CAE}(\phi) + (1-\alpha)\mathcal{J}_{SH}(\mathbf{P}) + \frac{\epsilon}{2} \|\mathbf{P} - \mathbf{W}\|_F^2 + \lambda \|\mathbf{W}\|_{\ell_1},$

Parameter Sensitivity

Extensions: SUGAR with Various Autoencoders

Guiding Coefficient

Sparsity Penalty

Filters learnt by SUGAR with various sparsity

Classification error rates on the benchmark tasks

Dataset/Model:	SVM-RBF	SVM-Poly	NNet	GSM	NonGSM	SAA-3	RBM	SUGAR-3
Rectangles	02.15	02.15	07.16	0.83	0.56	02.41	04.71	03.49
Rect _{Img}	24.04	24.05	33.20	22.51	23.17	24.05	23.69	22.55
Convex	19.13	19.82	32.25	17.08	21.03	18.41	19.92	17.00
MNIST _{Basic}	03.03	03.69	04.69	03.70	03.98	03.46	03.94	03.47
$MNIST_{Rot}$	11.11	15.42	18.11	11.75	16.15	10.30	14.69	9.53
$MNIST_{Rand}$	14.58	16.62	20.04	10.48	11.89	11.28	09.80	11.40
MNIST _{Img}	22.61	24.01	27.41	23.65	22.07	23.00	16.15	20.65
MNIST _{RotImg}	55.18	56.41	62.16	55.82	55.16	51.93	52.21	49.40
Average	18.98	20.27	25.63	18.23	19.25	18.11	18.14	17.19

Take away messages

SUpervision-Guided AutoencodeR (SUGAR) can effectively handle side information. It is a general model for representation learning from both unlabeled & labeled data.

Codes will be available at http://kdd2014.noahlab.com.hk/sugar