COMP3028 Lecture 7 - Cryptography IV

Public key Cryptography & Key Management

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- · shared by both sender and receiver
- if this key is disclosed communications are compromised
- · also is symmetric, parties are equal
- hence does not protect sender from receiver forging a message & claiming is sent by sender

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public & a private key
- · asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key crypto

Why Public-key Cryptography?

- developed to address two key issues:
 - key distribution how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender

Public-Key Cryptography

- public-key/two-key/asymmetric
 cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- · is asymmetric because
 - those who encrypt messages or verify signatures cannot decrypt messages or create signatures

Public-Key Cryptography

Public-Key Characteristics

- Public-Key algorithms rely on two keys with the characteristics that it is:
 - computationally infeasible to find decryption key knowing only algorithm & encryption key
 - computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (> 512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is known, its just made too hard to do in practise
- requires the use of very large numbers
- hence is slow compared to private key schemes

RSA

- · by Rivest, Shamir & Adleman of MIT in 1977
- · best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime
 - nb. exponentiation takes $O((\log n)^3)$ operations (easy)
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
 - nb. factorization takes $O(e^{\log n \log \log n})$ operations (hard)

RSA Key Setup

- each user generates a public/private key pair by:
- selecting two large primes at random: p, q
- computing their system modulus n = p.q
 - note ø(n) = (p-1)(q-1)
- · selecting at random the encryption key e
 - where $1 < e < \emptyset(n)$, GCD $(e, \emptyset(n)) = 1$
- solve following equation to find decryption key d
 - e.d = 1 mod $\emptyset(n)$ and $0 \le d \le n$
- publish their public encryption key: KU = {e,n}
- keep secret private decryption key: KR = {d,p,q}

RSA Use

- to encrypt a message M the sender:
 - obtains public key of recipient KU={e,n}
 - computes: $C = M^e \mod n$, where $0 \le M < n$
- to decrypt the ciphertext C the recipient:
 - uses their private key KR={d,p,q}, n = p.q
 - computes: $M = C^d \mod n$
- note that the message M must be smaller than the modulus n (block if needed)

RSA Example - Key Setup

- 1. Select primes: p = 17 & q = 11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\varphi(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e: 1 < e < 160, GCD(e,160) = 1; choose e = 7
- 5. Determine d: de = 1 mod 160 and d < 160 Value is d = 23 since 23×7=161= 10×160+1
- 6. Publish public key KU={7,187}
- 7. Keep secret private key KR={23,17,11}

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88 < 187)
- · encryption:

$$C = 88^7 \mod 187 = 11$$

decryption:

```
M = 11^{23} \mod 187 = 88
```

Exponentiation

- can use the Square and Multiply Algorithm
- a fast, efficient algorithm for exponentiation
- concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent
- only takes O(log₂ n) multiples for number n
 - eg. $7^5 = 7^4.7^1 = 3.7 = 10 \mod 11$
 - eg. $3^{129} = 3^{128}.3^1 = 5.3 = 4 \mod 11$

Square and Multiply Algorithm

· Compute ae mod n:

```
- Convert e to binary: b_{i-1}...b_1b_0

z=1

for k = i-1 downto 0

do z = z^2 mod n

if b_k = 1

then z = (z^2 \times a) mod n

return z
```

S&M Algorithm - Example

 $11^{23} \mod 187 = 88$

i	Ь	z mod n
4	1	$1^2 \times 11 = 11$
3	0	11 ² = 121
2	1	$121^2 \times 11 = 44$
1	1	$44^2 \times 11 = 165$
0	1	$165^2 \times 11 = 88$

RSA Key Generation

- users of RSA must:
 - determine two primes at random: p, q
 - select either e or d and compute the other
- primes p, q must not be easily derived from modulus n = p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use inverse algorithm to compute the other

RSA Security

- possible approaches to attacking RSA:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing $\emptyset(n)$, by factoring modulus n)
 - timing attacks (on running of decryption)
 - chosen ciphertext attacks (given properties of RSA)

Factoring Problem

- mathematical approach takes 3 forms:
 - factor n = p.q, hence find $\phi(n)$ and then d
 - determine ø(n) directly and find d
 - find d directly
- · currently believe all equivalent to factoring
 - have seen slow improvements over the years
 - as of Feb-20 best is 250 decimal digits (829 bit) with GNFS
 - currently assume 1024+ bit RSA is secure
 - ensure p, q of similar size and matching other constraints

Timing Attacks

- developed by Paul Kocher in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or IF's varying which instructions executed
- · infer operand size based on time taken
- · RSA exploits time taken in exponentiation
- · countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Key Management

- public-key encryption helps address key distribution problems
- have two aspects of this:
 - distribution of public keys
 - use of public-key encryption to distribute secret keys

Public-Key Distribution of Secret Keys

- use previous methods to obtain public-key
- · can use for secrecy or authentication
- but public-key algorithms are slow
- so usually want to use private-key encryption to protect message contents
- hence need a session key
- have several alternatives for negotiating a suitable session

Diffie-Hellman Key Exchange

- · first public-key type scheme proposed
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
 - note: now know that James Ellis (UK CESG) secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) hard

Diffie-Hellman Setup

- all users agree on global parameters:
 - large prime integer or polynomial q
 - α , primitive root mod q
- · each user (eg. A) generates their key
 - chooses a secret key (number): $x_A < q$
 - compute their public key: $y_A = \alpha^{x_A} \mod q$
- each user makes public that key y_A

Diffie-Hellman Key Exchange

• shared session key for users A & B is K_{AB} :

```
K_{AB} = \alpha^{\times A.\times B} \mod q
= y_A^{\times B} \mod q (which B can compute)
= y_B^{\times A} \mod q (which A can compute)
```

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the same key as before, unless they choose new public-keys
- · attacker needs an x, must solve discrete log

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- agree on prime q=353 and α =3
- select random secret keys:
 - A chooses $x_A=97$, B chooses $x_B=233$
- compute public keys:
 - $y_A = 3^{97} \mod 353 = 40$ (Alice) $y_B = 3^{233} \mod 353 = 248$ (Bob)
- compute shared session key as:

$$K_{AB} = y_B^{\times A} \mod 353 = 248^{97} = 160$$
 (Alice)
 $K_{AB} = y_A^{\times B} \mod 353 = 40^{233} = 160$ (Bob)

Man in the Middle Attack

- Charles chooses a secret key, $x_c = 3$
- He intercepts q=353, α =3, y_A =40, y_B =248
- He computes public key $y_c = 3^3 \mod 353 = 27$ and sends it to Alice and Bob
- He then computes $K_{AC} = 40^3 \mod 353 = 107$ and $K_{BC} = 248^3 \mod 353 = 215$
- Not knowing the public key is from Charles:
 - Alice computes $K = 27^{97} \mod 353 = 107$
 - Bob computes $K = 27^{233} \mod 353 = 215$

El Gamal Public-Key Encryption Scheme

- a variant of the Diffie-Hellman key distribution scheme
- allowing secure exchange of messages
- published in 1985 by ElGamal:
- T. ElGamal, "A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms", IEEE Trans. Information Theory, vol IT-31(4), pp469-472, July 1985.
- like Diffie-Hellman its security depends on the difficulty of computing discrete logarithms
- major disadvantage is that it doubles the size of info sent

El Gamal Setup

- Key Generation
 - select a large prime p, and $\alpha,$ a primitive element mod p
 - recipient Bob chooses a secret number x_B (0 < x_B < p) and computes $y_B = \alpha^{x_B} \mod p$

El Gamal Encryption

- to encrypt a message M into ciphertext C:
- sender selects a random number n (sender's private key), 0 < n < p
- and computes the message key, $K = (y_B)^n \mod p$
- then computes the ciphertext pair: $C = \{C_1, C_2\}$, where

```
C_1 = \alpha^n \pmod{p}

C_2 = K.M \pmod{p}
```

- this is then sent to the recipient
- note that K should be destroyed after use and never knowingly used again

El Gamal Decryption

- to decrypt the message:
- extracts the message key K: $K = (C_1)^{\times B}$ (mod p)
- extracts M by solving for M in the following equation:

$$M = C_2.K^{-1} \pmod{p}$$

El Gamal Example

- given prime p=97 with primitive root α =5
- recipient Bob chooses secret key, $x_B = 58$ & computes & publishes his public key, $y_B = 5^{58} = 44 \mod 97$
- Alice wishes to send the message M=3 to Bob
- she obtains Bob's public key, $y_B=44$
- she chooses random n=36 (her private key) and computes the message key: K=44³⁶=75 mod 97
- she then computes the ciphertext pair:

```
C_1 = 5^{36} = 50 \mod 97

C_2 = 75.3 \mod 97 = 31 \mod 97

and send the ciphertext \{50,31\} to Bob
```

- Bob recovers the message key K=50⁵⁸=75 mod 97
- Bob computes the inverse $K^{-1} = 22 \mod 97$
- Bob recovers the message M = 31.22 = 3 mod 97

Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- imposes a significant load in storing and processing keys and messages
- · an alternative is to use elliptic curves
- offers same security with smaller bit sizes

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- · consider a cubic elliptic curve of form
 - $-y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - also define point O (point at infinity)
- have addition operation for elliptic curve
 - geometrically sum of Q+R is reflection of intersection R

Real Elliptic Curve Example

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- · have two families commonly used:
 - prime curves $E_p(a,b)$ defined over Z_p
 - · use integers modulo a prime
 - · best in software
 - binary curves $E_{2m}(a,b)$ defined over $GF(2^n)$
 - · use polynomials with binary coefficients
 - · best in hardware

Elliptic Curve Cryptography

- · ECC addition is analog of modulo multiply
- ECC repeated addition is analog of modulo exponentiation
- need "hard" problem equiv to discrete log
 - Q=kP, where Q,P belong to a prime curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- Certicom example: E₂₃(9,17)
 - https://www.certicom.com/content/certicom/en/52-theelliptic-curve-discrete-logarithm-problem.html

ECC Diffie-Hellman

- can do key exchange analogous to D-H
- users select a suitable curve $E_p(a,b)$
- select base point $G=(x_G,y_G)$ with large order n s.t. nG = O
- A & B select private keys k_A<n, k_B<n
- compute public keys: $P_A = k_A G$, $P_B = k_B G$
- · compute shared key: $K_{AB} = k_A P_B = k_B P_A$
 - same since $K_{AB}=k_Ak_BG$

ECC Encryption/Decryption

- · several alternatives, will consider simplest
- $\boldsymbol{\cdot}$ must first encode any message M as a point on the elliptic curve P_m
- select suitable curve & point G as in D-H
- each user chooses private key k_A,k_B<n
- and computes public key $P_A = k_A G$, $P_B = k_B G$
- to encrypt $P_m : C_m = \{k_A G, P_m + k_A P_B\} = \{C_1, C_2\}$
- decrypt C_m compute: $C_2 k_B C_1 = P_m$

ECC Example

- Consider $E_{751}(-1,188)$ and G = (0,376)
- E is of order n = 727 s.t. nG = 0
- Alice wishes to send the message $P_m = (562,201)$ to Bob
- she obtains Bob's public key $P_B = (201,5)$
- she chooses random k=386
- she then computes the ciphertext $C_m = \{kG, P_m + kP_B\}$ where kG = 386(0,376) and $P_m + kP_B = (562,201) + 386(201,5) = (385,328)$
- and sends the ciphertext {(676,558),(385,328)} to Bob

ECC Security

- relies on elliptic curve logarithm problem
- fastest method is "Pollard rho method"
- compared to factoring, can use much smaller key sizes than with RSA etc
- for equivalent key lengths computations are roughly equivalent
- hence for similar security ECC offers significant computational advantages

Comparable Key Sizes for Equivalent Security

Symmetric scheme (key size in bits)	ECC-based scheme (size of <i>n</i> in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

Summary

- Public-key cryptosystems
- · RSA
- · Diffie-Hellman key exchange
- · El Gamal Scheme
- · Elliptic Curve cryptography