## Graphs having many holes but with small competition numbers

JungYeun Lee<sup>a,1</sup>, Suh-Ryung Kim<sup>a,1</sup>, Seog-Jin Kim<sup>b</sup>, Yoshio Sano<sup>c,2,\*</sup>

<sup>a</sup>Department of Mathematics Education, Seoul National University, Seoul 151-742, Korea
<sup>b</sup>Department of Mathematics Education, Konkuk University, Seoul 143-701, Korea
<sup>c</sup> Pohang Mathematics Institute, POSTECH, Pohang 790-784, Korea

## Abstract

The competition number k(G) of a graph G is the smallest number k such that G together with k isolated vertices added is the competition graph of an acyclic digraph. A chordless cycle of length at least 4 of a graph is called a hole of the graph. The number of holes of a graph is closely related to its competition number as the competition number of a chordal graph which does not contain a hole is at most one and the competition number of a complete bipartite graph  $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$  which has so many holes that no more holes can be added is the largest among those of graphs with n vertices. In this paper, we show that even if a connected graph G has many holes, k(G) can be as small as 2 under some assumption. In addition, we show that, for a connected graph G with exactly h holes and exactly one non-edge maximal clique, if all the holes of G are pairwise edge-disjoint and the size G of the non-edge clique of G satisfies G at G is at most G at G at G is at most G and G is at most G and G are pairwise edge-disjoint and the size G of the non-edge clique of G satisfies G at G and G at G at

Keywords: competition graph; competition number; hole; clique

2000 MSC: 05C75

## 1. Introduction

Let D = (V, A) be a digraph (for all undefined graph-theoretical terms, see [1]). The competition graph C(D) of D has the same vertex set as D and has an edge xy if for some vertex  $v \in V$ , the arcs (x, v) and (y, v) are in D. The notion of competition graph is due to Cohen [3] and has arisen from ecology. A food web in an ecosystem is a digraph whose vertices are the species of the system and which has an arc from a vertex u to a vertex v if and only if u preys on v. Given a food web F, it is said that species u and v compete if and only if they have a common prey. Competition graphs also have applications in coding, radio transmission, and modeling of complex economic systems. (See [10] and [12] for a summary of these applications and [4] for a sample paper on the modeling application.)

Roberts [11] observed that every graph together with sufficiently many isolated vertices is the competition graph of an acyclic digraph. The competition number k(G) of a graph G is defined to be the smallest number k such that G together with k isolated vertices added is the competition graph of an acyclic digraph. That is, when  $I_k$  is a set of k isolated vertices, k(G) is the smallest integer k such that the disjoint union  $G \cup I_k$  is the competition graph of an acyclic digraph. It is well known that computing the competition number of a graph is an NP-hard problem [9]. It has been one of the important research problems in the study of competition graphs to characterize a graph by its competition number.

We call a cycle of a graph G a chordless cycle of G if it is an induced subgraph of G. A chordless cycle of length at least 4 of a graph is called a hole of the graph and a graph without holes is called a chordal graph. The number of holes of a graph is closely related to its competition number as the competition number of a chordal graph which does not contain a hole is at most one (see [11]) and the competition number of a complete bipartite graph  $K_{\lfloor n/2\rfloor,\lceil n/2\rceil}$  which has so many holes that no more holes can be added is the largest among those of graphs with n vertices (see [5]). In fact, the competition number of a triangle-free graph with only holes no two of which share an edge can be

<sup>\*</sup>Corresponding author: vsano@postech.ac.kr

<sup>&</sup>lt;sup>1</sup>The authors were supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2008-531-C00004).

<sup>&</sup>lt;sup>2</sup>This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094069).

computed in terms of the number of its holes. Take a graph G such that G has exactly h holes and no two holes of G share an edge. Roberts [11] showed that if G is nontrivial, triangle-free and connected, then k(G) = |E(G)| - |V(G)| + 2. By this theorem, the competition number of G is h+1 as G has h+|V(G)|-1 edges. Therefore k(G) is almost as large as h. Then we naturally come up with an interesting question: "Is k(G) still kept large if G is allowed to have just one maximal clique of size sufficiently large?". In this paper, we answer this question by showing that even if a connected graph G has many holes, k(G) can be as small as 2 under some assumption. In addition, we show that, for a connected graph G with exactly h holes and exactly one non-edge maximal clique, if all the holes of G are pairwise edge-disjoint and the size  $\omega$  of the non-edge clique of G satisfies  $1 \le \omega \le 1$ , then the competition number of G is at most  $1 \le \omega \le 1$ .

## 2. Main result

For a graph G and a set  $S \subseteq V(G)$  of vertices of G, we denote by G[S] the subgraph of G induced by S.

**Lemma 2.1.** Let C be a cycle of length at least 4 in a graph G. If C has a chord, then the subgraph G[V(C)] of G has a triangle or contains two holes which have a common edge.

Proof. Let  $C = v_1v_2v_3...v_n$  be a cycle of G and  $v_iv_j$  be a chord of C for some i < j. Two  $(v_i, v_j)$ -sections of C are  $(v_i, v_j)$ -walks of  $G[\{v_i, v_{i+1}, ..., v_j\}] - v_iv_j$  and  $G[\{v_j, v_{j+1}, ..., v_i\}] - v_iv_j$ . Let  $P_1$  and  $P_2$  be shortest  $(v_i, v_j)$ -paths in  $G[\{v_i, v_{i+1}, ..., v_j\}] - v_iv_j$  and  $G[\{v_j, v_{j+1}, ..., v_i\}] - v_iv_j$ , respectively. Since G is simple, the lengths of  $P_1$  and  $P_2$  are at least 2. If the length of  $P_1$  or  $P_2$  is 2, then  $P_1 + v_iv_j$  or  $P_2 + v_iv_j$  is a triangle in G[V(C)]. Otherwise,  $P_1 + v_iv_j$  and  $P_2 + v_iv_j$  are holes which have a common edge  $v_iv_j$ .

A clique is a complete subgraph of a graph. A clique K is called non-edge if  $|V(K)| \geq 3$ .

**Lemma 2.2.** Let G be a connected graph. Suppose that all the holes in G are pairwise edge-disjoint and that G has exactly one non-edge maximal clique K. Then, a cycle C in G is a holes if and only if it stisfies  $|V(K) \cap V(C)| \leq 2$ .

*Proof.* The 'only if' part is obvious. We show the 'if' part by contradiction. Suppose that C is not a hole, that is, C has a chord. By Lemma 2.1, the subgraph G[V(C)] of G has a triangle or contains two holes with a common edge. If G[V(C)] has a triangle, then the triangle is a clique of size 3 different from K since  $|V(K) \cap V(C)| \leq 2$ , which is a contradiction. Otherwise, it contradicts the assumption that all the holes of G are edge-disjoint. Thus C is a hole.

For a clique K in a graph G, we call a path P in G a K-avoiding path if P is not an edge of K and any of internal vertices of P is not on K.

**Lemma 2.3.** Let G be a connected graph with exactly h holes. Suppose that all the holes in G are pairwise edge-disjoint and that G has exactly one non-edge maximal clique. If the non-edge maximal clique K in G has size h+1, then G contains a vertex  $v \in K$  satisfying one of the following:

- (a) there is no K-avoiding path from the vertex v to any vertex in any holes,
- (b) the vertex v is incident to an edge common to K and a hole, and is not contained in any other hole.

Proof. Let  $H_1, H_2, ..., H_h$  be the holes of G. We define a bipartite multigraph B on bipartition  $(V_1, V_2)$ , where  $V_1 = V(K) = \{v_1, v_2, ..., v_{h+1}\}$  and  $V_2 = \{H_1, H_2, ..., H_h\}$ , as follows. Two vertices  $v_i \in V_1$  and  $H_j \in V_2$  are joined by r edges in B if there exists a K-avoiding path from  $v_i$  to a vertex in  $H_j$ , where r is defined by

```
r = \begin{cases} 2 & \text{if } v_i \text{ is a cut vertex in } G \text{ and any vertex in } V(K) \setminus \{v_i\} \text{ and any vertex in } V(H_j) \setminus \{v_i\} \\ & \text{belong to different components of } G - v_i, \\ 1 & \text{otherwise.} \end{cases}
```

If  $\deg_B(v_i) = 0$  for some i, then  $v_i$  satisfies the condition (a). Suppose that  $\deg_B(v_i) = 1$  for some i. Then there exists a unique j such that G has a K-avoiding path P from  $v_i$  to a vertex x in  $H_j$ . Therefore  $v_i$  is not contained in any other hole than  $H_j$ . Since  $\deg_B(v_i) \neq 2$ , G has a K-avoiding path

P' from  $v_{i'} \in V(K) \setminus \{v_i\}$  to a vertex x' in  $H_j$ . Then the walk formed by  $v_i v_{i'}$ , P, a (x, x')-section of  $H_j$ , and P' contains a cycle. Then the edge  $v_i v_{i'}$  is contained in a hole since G has exactly one non-edge maximal clique K. Thus  $v_i$  satisfies the condition (b). Hence what we have to prove is the following:

(\*) there exists  $v_i \in V_1$  such that  $\deg_B(v_i) \leq 1$ .

To show the claim (\*), we show that  $\deg_B(H_j) \leq 2$  hold for all  $1 \leq j \leq h$ . Suppose that  $\deg_B(H_j) \geq 3$  for some  $j \in \{1, \ldots, h\}$ . We will reach a contradiction.

First, we suppose that there are three distinct K-avoiding paths  $P_1$ ,  $P_2$ , and  $P_3$  going from the distinct vertices  $v_{i_1}$ ,  $v_{i_2}$ , and  $v_{i_3}$  in K to vertices  $x_1$ ,  $x_2$ , and  $x_3$  in  $H_j$ , respectively. Since  $V(H_j) \cap$  $V(K) \leq 2$  by Lemma 2.2, without loss of generality, we may assume  $v_{i_3} \notin V(H_j)$ . Then the length of  $P_3$  is at least 1. Let w be the vertex immediately following  $v_{i_3}$  on  $P_3$ . Then  $w \notin V(K)$ . If  $v_{i_3}w$ is a cut edge of G, then any path from a vertex in K to a vertex in  $H_j$  must contain the edge  $v_{i_3}w$ . This implies that  $P_1$  contains the vertex  $v_{i3}$  as an internal vertex of  $P_1$ , which contradicts that  $P_1$  is a K-avoiding path. Therefore  $v_{i_3}w$  is not a cut edge, and so the edge  $v_{i_3}w$  is contained in some cycle in G. Let C be a shortest cycle among the cycles containing the edge  $v_{i_3}w$ . By the choice of C, C has no chord. If C is a triangle, i.e., a clique of size 3, then C is a clique different from K since  $w \notin V(K)$  and  $w \in V(C)$ , which is a contradiction. Thus C is a hole. Since  $\{v_{i_1}, v_{i_2}, v_{i_3}\} \nsubseteq V(C)$  and  $v_{i_3} \in V(C)$ ,  $v_{i_1} \notin V(C)$  or  $v_{i_2} \notin V(C)$ . Without loss of generality, we may assume that  $v_{i_1} \notin V(C)$ . The  $(w, x_3)$ section of  $P_3$ , an  $(x_3, x_1)$ -section of  $H_j$  and the  $(x_1, v_{i_1})$ -section of  $P_1$  form a  $(w, v_{i_1})$ -walk W which does not contain  $v_{i_3}$ . Let Q be the shortest  $(w, v_{i_1})$ -path that is a subsequence of the  $(w, v_{i_1})$ -walk W. Then  $C' = Qv_{i_3}w$  is a cycle. Here we note that  $V(K) \cap V(C') = \{v_{i_1}, v_{i_3}\}$  by the definition. By Lemma 2.2, C' is a hole and we have reached a contradiction as  $v_{i_3}w$  is an edge common to the holes C and C'.

Now suppose that  $H_j \in V_2$  is incident to multiple edges. Let  $v_{i_1} \in V_1$  be the other end of the multiple edges. Since  $\deg_B(H_j) \geq 3$ , there is another vertex  $v_{i_2}$  adjacent to  $H_j$  in B. By the definition of B,  $v_{i_1}$  is a cut vertex of G and no other vertex in K belongs to the component containing vertices of  $H_j$  in  $G - v_{i_1}$ . It contradicts to the existence of a K-avoiding path from  $v_{i_2}$  to a vertex in  $H_j$  which does not contain  $v_{i_1}$ .

Consequently,  $\deg_B(H_j) \leq 2$  for all  $1 \leq j \leq h$  and so

$$\sum_{i=1}^{h+1} \deg_B(v_i) = |E(B)| = \sum_{j=1}^{h} \deg_B(H_j) \le 2h.$$

If  $\deg_B(v_i) \geq 2$  for all  $1 \leq i \leq h+1$ , then  $\sum_{i=1}^{h+1} \deg_B(v_i) \geq 2(h+1)$  and it is a contradiction. Therefore, there exists a vertex  $v_i$  with  $\deg_B(v_i) \leq 1$  and so (\*) holds.

**Lemma 2.4.** Let G be a connected graph with exactly h holes. Suppose that all the holes in G are pairwise edge-disjoint and that G has exactly one non-edge maximal clique K. If G - e has at least h holes for some edge e of a hole H in G, then e is an edge of K. In particular, holes in G - e but not in G have the form  $(H - v_i v_j) \cup \{v_i v_k, v_j v_k\}$  where  $e = v_i v_j$  and  $v_k$  is a vertex of K.

Proof. To show it by contradiction, we suppose that G-e has at least h holes for an edge e=uv of a hole H which is not an edge of K. Since all the holes in G are edge-disjoint, any hole other than H does not contain the edge e. Since G-e has at least h hole, e is a chord of a cycle distinct from H in G. That is, there exists a (u,v)-path P other than H-e. Without loss of generality, we may assume that P is a shortest path between u and v in G-e. Since G is simple, P is not an edge. If the length of P is 2, then P+e is a triangle and so it is contained in K, which contradicts our assumption that e is not an edge of K. On the other hand, if the length of P is at least 3, then P+e is a hole which is distinct from H. It is also a contradiction as e is an edge common to H and P+e. Therefore G-e has at most e0 holes and it is also a contradiction. Consequently, e1 is an edge common to e2 and e3 is a hole of e4 where e5 is a vertex of e6.

**Lemma 2.5.** Let  $D_1$  and  $D_2$  be acyclic digraphs such that  $V(D_1) \cap V(D_2) = \emptyset$ . Suppose that there are p vertices in  $D_1$  which have no in-neighbors in  $D_1$  and there are p isolated vertices in  $C(D_2)$ . Then there exists an acyclic digraph D such that  $C(D) = C(D_1) \cup C(D_2) - I_p$ , where  $I_p$  is a set of p isolated vertices in  $C(D_2)$ .



Figure 1:  $D_1$ ,  $D_2$ , and D.

*Proof.* Let  $u_1, u_2, \ldots, u_p$  be vertices which have no in-neighbors in  $D_1$  and  $I_p = \{i_1, i_2, \ldots, i_p\}$  be a set of p isolated vertices in  $C(D_2)$ . We define a digraph D with vertex set  $V(D_1) \cup V(D_2) - I_p$  by changing the arcs incoming toward  $i_j$  to the arcs incoming toward  $u_j$ , that is,

$$A(D) = A(D_1) \cup A(D_2) - \bigcup_{j=1}^{p} \{(v, i_j) \mid v \in N_{D_1}^{-}(i_j)\} \cup \bigcup_{j=1}^{p} \{(v, u_j) \mid v \in N_{D_1}^{-}(i_j)\}$$

(see Figure 1 for an illustration). Then D is acyclic and  $C(D) = C(D_1) \cup C(D_2) - I_p$ . Hence the lemma holds.

In the following, we will prove the main theorem by induction. We prove the basis step first.

**Lemma 2.6.** Let G be a connected graph with exactly two holes. Suppose that the holes in G are edge-disjoint and that G has exactly one non-edge maximal clique. If the non-edge maximal clique K has size three, then there is an acyclic digraph D such that  $C(D) = G \cup \{i_1, i_2\}$  and all the vertices of K have a common out-neighbor  $i_1$  or  $i_2$ .

*Proof.* First we show that  $k(G - E(K)) \le 1$ . Let  $V(K) = \{v_1, v_2, v_3\}$ . Note that the number of components of G - E(K) is at most 3. We consider the following three cases.

Case 1: The number of the components of G - E(K) is 1.

We show that G - E(K) is a tree by contradiction. Suppose that G - E(K) has a cycle C. Since G - E(K) is connected in this case, there exist at least two of a  $(v_1, v_2)$ -path which does not contain  $v_3$ , a  $(v_2, v_3)$ -path which does not contain  $v_1$ , and a  $(v_3, v_1)$ -path which does not contain  $v_2$  in G - E(K). Without loss of generality, we may assume that there exist a  $(v_1, v_2)$ -path  $P_1$  which does not contain  $v_3$  and a  $(v_2, v_3)$ -path  $P_2$  which does not contain  $v_1$  in G - E(K). Then, since  $P_1$  is a K-avoiding  $(v_1, v_2)$ -path and  $P_2$  is a K-avoiding  $(v_2, v_3)$ -path in G - E(K),  $C_1 := P_1 + v_1v_2$  and  $C_2 := P_2 + v_2v_3$  are cycles in G other than G. Since  $V(C_i) \cap V(K) = \{v_i, v_{i+1}\}$  for i = 1, 2, by Lemma 2.2,  $C_1$  and  $C_2$  are holes in G. Since G contains neither G nor G is distinct from G and G is consecutive edges of G form a triangle. This triangle is different from G, which contradicts the hypothesis.

Case 2: The number of the components of G - E(K) is 2.

Let  $G_1$  and  $G_2$  be the two components of G-E(K). Since V(K) is not contained in one component in G-E(K), we may assume, without loss of generality, that  $v_1, v_2 \in V(G_1)$  and  $v_3 \in V(G_2)$ . Then  $\{v_1v_3, v_2v_3\}$  is an edge cut of G. Since  $v_1$  and  $v_2$  are in the same component, there is a  $(v_1, v_2)$ -path in  $G_1$ . Let P be a shortest  $(v_1, v_2)$ -path in  $G_1$ . Then, by Lemma 2.2, the cycle  $C_1 := P + v_1v_2$  is a hole of G. Since  $\{v_1v_3, v_2v_3\}$  is an edge cut, none of  $v_1v_3, v_2v_3$  belongs to a hole. Thus G-E(K) contains the other hole  $G_2$  of G. Since  $G_2$  is the only hole G-E(K), either  $G_1$  or  $G_2$  is a tree. Without loss of generality, we may assume that  $G_1$  is a tree. Then  $G_2$  contains  $G_2$ . Since  $G_1$  is a tree,  $G_1$  is a tree, which that  $G_2$  contains  $G_3$  is an isolated vertex. Note that  $G_3$  contains two vertices  $G_3$  which have no in-neighbors. Since  $G_3$  is connected, triangle-free and has exactly one hole,  $G_3$  is  $G_3$  where  $G_3$  is an isolated vertice. By Lemma 2.5, there exists an acyclic digraph  $G_3$  such that  $G_3$  such that  $G_3$  is an isolated vertice. By Lemma 2.5, there exists an acyclic digraph  $G_3$  such that  $G_3$  such that  $G_3$  is an isolated vertice. By Lemma 2.5, there exists an acyclic digraph  $G_3$  such that  $G_3$  is an isolated vertice. By Lemma 2.5, there exists an acyclic digraph  $G_3$  such that  $G_3$  is an isolated vertice. By Lemma 2.5, there exists an acyclic digraph  $G_3$  such that  $G_3$  is an isolated vertice.

Case 3: The number of the components of G - E(K) is 3.

Let  $G_1$ ,  $G_2$  and  $G_3$  be the three components of G - E(K). In this case, any two vertices of K are disconnected in G - E(K), that is, there is no K-avoiding  $(v_i, v_j)$ -path for each distinct pair  $i, j \in \{1, 2, 3\}$ , and so no edge of K is on a hole in G. Therefore the two holes  $C_1$  and  $C_2$  of G remain

in G - E(K). We consider the following two subcases:

**Subcase 3-1:** The two holes are contained in the same component of G - E(K).

Without loss of generality, we may assume that  $G_1$  and  $G_2$  have no holes and  $G_3$  contains the two holes. Then  $G_1$  and  $G_2$  are trees. Therefore there exist acyclic digraphs  $D_1$  and  $D_2$  such that  $C(D_1) = G_1 \cup \{i_1\}$  and  $C(D_2) = G_2 \cup \{i_2\}$ , where  $i_1$  and  $i_2$  are new isolated vertices. Let  $x_1$  and  $y_1$  be two vertices which have no in-neighbors in  $D_1$  and  $x_2$  and  $y_2$  be two vertices which have no in-neighbors in  $D_2$ . Since  $G_3$  is connected and triangle-free and has exactly two holes,  $k(G_3) = |E(G_3)| - |V(G_3)| + 2 = 3$ . Then there exists an acyclic digraph  $D_3$  such that  $C(D_3) = G_3 \cup \{i_3, i_4, i_5\}$ , where  $i_3$ ,  $i_4$ , and  $i_5$  are new isolated vertices. By Lemma 2.5, there exists an acyclic digraph  $D^*$  such that  $C(D^*) = C(D_1) \cup C(D_2) - \{i_2\} = G_1 \cup G_2 \cup \{i_1\}$ . Then, by Lemma 2.5 again, there exists an acyclic digraph D such that  $C(D) = C(D^*) \cup C(D_3) - \{i_3, i_4, i_5\} = G_1 \cup G_2 \cup \{i_1\}$ . Thus  $k(G - E(K)) \leq 1$ .

**Subcase 3-2:** The two holes are contained in different components of G - E(K).

Without loss of generality, we may assume that  $G_1$  have no holes and  $G_2$  and  $G_3$  contain exactly one hole. Then  $G_1$  is a tree. Therefore there exists an acyclic digraphs  $D_1$  such that  $C(D_1) = G_1 \cup \{i_1\}$ , where  $i_1$  is a new isolated vertex. Let  $x_1$  and  $y_1$  be two vertices which have no in-neighbors in  $D_1$ . Since  $G_l$  is connected and triangle-free and has one hole,  $k(G_l) = |E(G_l)| - |V(G_l)| + 2 = 2$  for l = 2, 3. Then there exist acyclic digraphs  $D_2$  and  $D_3$  such that  $C(D_2) = G_2 \cup \{i_2, i_3\}$  and  $C(D_3) = G_3 \cup \{i_4, i_5\}$ , where  $i_2$ ,  $i_3$ ,  $i_4$ , and  $i_5$  are new isolated vertices. Let  $x_2$  and  $y_2$  be two vertices which have no in-neighbors in  $D_2$ . By Lemma 2.5, there exists an acyclic digraph  $D^*$  such that  $C(D^*) = C(D_1) \cup C(D_2) - \{i_2, i_3\} = G_1 \cup G_2 \cup \{i_1\}$ . Then, by Lemma 2.5 again, there exists an acyclic digraph D such that  $C(D) = C(D^*) \cup C(D_3) - \{i_4, i_5\} = (G - E(K)) \cup \{i_1\}$ . Thus  $k(G - E(K)) \leq 1$ .

Hence, in any cases, we have  $k(G - E(K)) \leq 1$ . Let D' be an acyclic digraph such that  $C(D') = (G - E(K)) \cup \{i_1\}$ , where  $i_1$  is a new isolated vertex. We define a digraph D by  $V(D) = V(G) \cup \{i_1, i_2\}$  and  $A(D) = A(D') \cup \{(v, i_2) \mid v \in K\}$ , where  $i_2$  is a new isolated vertex. Then D is acyclic and  $C(D) = G \cup \{i_1, i_2\}$ . Furthermore, all the vertices of K have  $i_2$  as a common out-neighbor in D. Hence the lemma holds.

Now we will prove the main result.

**Theorem 2.7.** Let G be a connected graph with exactly h holes. Suppose that the holes in G are pairwise edge-disjoint and that G has exactly one non-edge maximal clique. If the non-edge maximal clique K in G has size h+1, then  $k(G) \leq 2$ . In particular, there exists an acyclic digraph D such that  $C(D) = G \cup \{i_1, i_2\}$  and all vertices of K have a common out-neighbor  $i_1$  or  $i_2$ , where  $i_1$  and  $i_2$  are new isolated vertices.

Proof. We prove the theorem by induction on the number of edge-disjoint holes. The basis step was already shown in the Lemma 2.6. Let  $h \geq 2$ . We assume that, for any graph G with exactly one maximal clique of size h+1 and exactly h edge-disjoint holes, there is an acyclic digraph D such that  $C(D) = G \cup \{i_1, i_2\}$  and all vertices of K have a common out-neighbor in  $\{i_1, i_2\}$ . Now let G be a graph with just one maximal clique K of size h+2 and exactly h+1 edge-disjoint holes. We denote the vertices of K by  $v_1, v_2, ..., v_{h+2}$  and the holes of G by  $H_1, H_2, ..., H_{h+1}$ . By Lemma 2.3, G contains a vertex  $v_i$  satisfying the condition (a) or (b). With out loss of generality, we may assume  $v_i = v_1$ .

First, suppose that  $v_1$  satisfies the condition (a). By Lemma 2.4, G-e has at most h edge-disjoint holes for an edge  $e = uw \in E(H_i) \setminus E(K)$ . Consider the graph  $G' = G - \{v_1v_j \mid v_j \in V(K) \setminus \{v_1\}\} - \{e\}$ . Since  $v_1$  satisfies (a),  $v_1$  must belong to a component not containing holes or u or w in G' and G' has exactly two components. Let  $G_1$  be the component containing  $v_1$  and  $G_2$  be the other components of G'. Since  $G_1$  is a tree and the competition number of a tree is at most 1, there exists an acyclic digraph  $D_1$  such that  $C(D_1) = G_1 \cup \{i_1\}$  where  $i_1$  is a new isolated vertex, and  $D_1$  has at least two vertices , say x and y, of indegree 0. Since  $G_2$  has a unique maximal clique of size h+1 and exactly h edge-disjoint holes, by the induction hypothesis, there exists an acyclic digraph  $D_2$  such that  $C(D_2) = G_2 \cup \{i_2, i_3\}$  where  $i_2$  and  $i_3$  are isolated vertices and all the vertices of  $K - v_1$  has a common out-neighbor  $i_2$  in  $D_2$ . By Lemma 2.5, there exists an acyclic digraph  $D^*$  such that  $C(D^*) = C(D_1) \cup C(D_2) - \{i_3\} = G_1 \cup G_2 \cup \{i_1, i_2\}$ . Moreover, all the vertices of  $K - v_1$  has a common out-neighbor  $i_2$  in  $D^*$ . Now we add arcs  $(v_1, i_2)$ , (u, y), (w, y) to  $D^*$  to obtain a digraph D. It can easily be checked that D is acyclic and  $C(D) = G \cup \{i_1, i_2\}$ , and that all the vertices in K have a common out-neighbor  $i_2$ .

Second, suppose that  $v_1$  satisfies the condition (b). Then  $v_1$  is incident to an edge e shared by K and a hole  $H_j$ , and is not a vertex on any other hole. Without loss of generality, we may assume  $H_j = H_1$ . Then  $G' := G - \{v_1v_j \mid v_j \in V(K) \setminus \{v_1\}\}$  has a unique maximal clique  $K - v_1$ . By Lemma 2.4, G' has at most h edge-disjoint holes since we removed all the edges incident to  $v_1$  in K. By the induction hypothesis, there exists an acyclic digraph D' such that  $C(D') = G' \cup \{i_1, i_2\}$  where  $i_1$  and  $i_2$  are isolated vertices added and all the vertices of  $K - v_1$  have a common out-neighbor  $i_1$  in D'. Now, we define a digraph D by  $V(D) = V(G) \cup \{i_1, i_2\}$  and  $A(D) = A(D') \cup \{(v_1, i_1)\}$ . Then it can easily be checked that D is acyclic and  $C(D) = G \cup \{i_1, i_2\}$  and that all the vertices in K have a common out-neighbor  $i_1$ .

Theorem 2.7 can be generalized as follows:

**Theorem 2.8.** Let G be a connected graph with exactly h holes. Suppose that the holes in G are pairwise edge-disjoint and that G has exactly one non-edge maximal clique. If the size  $\omega$  of the non-edge maximal clique in G satisfies  $3 \le \omega \le h+1$ , then  $k(G) \le h-\omega+3$ .

Proof. Let G be a connected graph with exactly  $h \geq 2$  edge-disjoint holes  $H_1, H_2, \ldots, H_h$  and exactly one non-edge maximal clique K of size  $\omega$ ,  $3 \leq \omega \leq h+1$ . Since the bound holds when  $\omega = h+1$  by Theorem 2.7, we deal with the case  $\omega < h+1$ . We take an edge  $e_j \in E(H_j) \setminus E(K)$  for each  $j=1,2,\ldots,h$ . Let F be the set of such edges and F' be a subset of F with  $h+1-\omega$  elements. Let G'=G-F'. Then G' still has a unique maximal clique K. Moreover, since  $e_j \in E(H_j) \setminus E(K)$  for each j, G' has exactly  $\omega-1$  edge-disjoint holes by Lemma 2.4. Thus,  $k(G') \leq 2$  by Theorem 2.7. Then there exists an acyclic digraph D' such that  $C(D')=G'\cup I_2$ . Now we add vertices  $i_1,\ldots,i_{h+1-\omega}$  and arcs from the ends of  $e_j$  to  $i_j$  for  $j=1,\ldots,h+1-\omega$  to D' to obtain D. Then it is easy to check that D is acyclic and  $C(D)=G\cup I_{2+(h+1-\omega)}$ . Hence  $k(G)\leq h-\omega+3$ .

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, (North Holland, New York, 1976).
- [2] H. H. Cho and S. -R. Kim, The competition number of a graph having exactly one hole, *Discrete Math.* **303** (2005) 32–41.
- [3] J. E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corporation, Santa Monica, CA (1968).
- [4] H. J. Greenberg, J. R. Lundgren, and J. S. Maybee, Graph-theoretic foundations fo computer-assisted analysis, in H. J. Greenberg, J. S. Maybee (eds.), Computer-Assisted Analysis and Model Simplification, Academic Press, New York, 1981, 481–495.
- [5] F. Harary, S.-R. Kim, and F. S. Roberts: Extremal competition numbers as a generalization of Turan's theorem, J. Ramanujan Math. Soc. 5 (1990) 33–43.
- [6] S. -R. Kim, The competition number and its variants, Quo Vadis, Graph Theory, (J. Gimbel, J. W. Kennedy, and L. V. Quintas, eds.), Annals of Discrete Mathematics 55, North-Holland, Amsterdam (1993) 313–326.
- [7] S. -R. Kim, Graphs with one hole and competition number one, J. Korean Math. Soc. 42 (2005) 1251–1264.
- [8] B. -J. Li and G. J. Chang, The competition number of a graph with exactly h holes, all of which are independent, *Discrete Appl. Math.* **157** (2009) 1337–1341.
- [9] R. J. Opsut, On the computation of the competition number of a graph, SIAM J. Algebraic Discrete Methods 3 (1982) 420–428.
- [10] A. Raychaudhuri and F. S. Roberts, Generalized competition graphs and their applications, in P. Brücker and R. Pauly (eds.), Methods of Operations Research, 49 Anton Hain, Königstein, West Germany, (1985) 295–311.
- [11] F. S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in Y. Alavi and D. Lick (eds.), Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976) (1978) 477–490.
- [12] F. S. Roberts, Competition graphs and phylogeny graphs, in L. Lovasz (ed.), Graph Theory and Combinatorial Biology, Bolyai Mathematical Studies, Vol. 7, J. Bolyai Mathematical Society, Budapest, 1999, 333–362.