Algoritmi per l'Ingegneria Compito, 31/1/2019 (Durata: 2h30m)

Nome, Cognome:

Prima Parte: domande a risposta unica (due punti a domanda)

1. Sia f(n) = n - 1. Si determini il valore $f^*(n, n_0)$ per n = 55 e $n_0 = 48$. $f^*(55, 48) = 6$

(Solution strategy:) For f(n) = n - 1 and $i \ge 0$, we have $f^{(i)}(n) = n - i$. Recalling that for $n > n_0$ $f^*(n, n_0) = \max\{i \ge 0 : f^{(i)}(n) > n_0\}$, we solve the inequality $n - i > n_0$, which yields $i < n - n_0$. Thus, the largest value of i satisfying the inequality is $n - n_0 - 1$. It follows that $f^*(55, 48) = 55 - 48 - 1 = 6$.

2. Utilizzando il Master Theorem, si determini l'ordine di grandezza della seguente ricorrenza:

$$T(n) = 16T\left(\frac{n}{64}\right) + n^{2/3}.$$
 $T(n) = \Theta\left(n^{2/3}\log n\right)$

(Solution strategy:) The threshold function is $n^{\log_{64}(16)} = n^{(\log_4 16/\log_4 64)} = n^{2/3}$. Since the threshold function and the work function are of the same order, we are in the second case of the Master Theorem, thus $T(n) = \Theta\left(n^{2/3}\log n\right)$.

3. Sia $\mathbf{x} = (7, 2, 2, 2, 7, 2, 2, 2)$ e sia $\mathbf{y} = F_8(\mathbf{x})$. Allora:

$$\mathbf{y} = (26, 0, 10, 0, 10, 0, 10, 0)$$

(Solution strategy:) Observe that (7,2,2,2,7,2,2,2) = (5,0,0,0,5,0,0,0) + (2,2,2,2,2,2,2,2,2) and recall that DFT_8 is a linear transformation. The first summand is (8,4)-sparse, and the second is a vector with identical components. Thus, the first summand's transform is the four-fold concatenation of $DFT_2(5,5) = (10,0)$, while the second summand's transform is the vector with all null components but the first, equal to $2 \cdot 8 = 16$. We obtain $\mathbf{y} = (10,0,10,0,10,0,10,0) + (16,0,0,0,0,0,0,0) = (26,0,10,0,10,0,10,0)$. Alternatively, we can simulate the computation performed by the FFT algorithm. The first level of recursion requires computing $DFT_4(7,2,7,2)$ and $DFT_4(2,2,2,2,2)$. The latter is a special transform, yielding $DFT_4(2,2,2,2) = (8,0,0,0)$ immediately. For the former, from $DFT_2(7,7) = (14,0)$ and $DFT_2(2,2) = (4,0)$ we obtain $DFT_4(7,2,7,2) = (18,0,10,0)$. The result follows by applying the conquer phase of the first level of recursion.

4. Si consideri il seguente frammento di pseudocodice:

$$\begin{array}{c} a \leftarrow 0 \\ \textbf{for } i \leftarrow 1 \ \textbf{to} \ n-1 \ \textbf{do} \\ \quad \textbf{for } j \leftarrow i \ \textbf{to} \ i+1 \ \textbf{do} \\ \quad \textbf{for } k \leftarrow j+2 \ \textbf{to} \ 2j+1 \ \textbf{do} \\ \quad a \leftarrow a+2 \end{array}$$

Si calcoli il valore di a restituito per n=21.

 $a|_{n=21} = 880$

(Solution strategy:) For a generic value of n, the returned value a(n) is

$$a(n) = \sum_{i=1}^{n-1} \sum_{j=i}^{i+1} \sum_{k=j+2}^{2j+1} 2$$

$$= \sum_{i=1}^{n-1} \sum_{j=i}^{i+1} 2j$$

$$= \sum_{i=1}^{n-1} (2i + 2(i+1))$$

$$= \sum_{i=1}^{n-1} (4i + 2)$$

$$= 2(n-1)n + 2(n-1)$$

$$= 2(n-1)(n+1)$$

Therefore $a(21) = 2 \cdot 20 \cdot 22 = 880$

5. Dato un file sull'alfabeto $\Sigma = \{\text{'A', 'B', 'C', 'D', 'E', 'F'}\}$ con frequenze 'A':9%, 'B':11%, 'C':15%, 'D':25%, 'E':40%, si determinino le 5 codeword ottenute con la codifica di Huffman vista in classe. Nella costruzione del codice, si associ sempre il bit 0 sempre al sottoalbero di frequenza cumulativa minore.

$$e('A') = 1110, e('B') = 1111, e('C') = 110, e('D') = 10, e('E') = 0$$

(**Solution strategy:**) The answer follows from executing the algorithm for the given frequencies.

Seconda Parte: risoluzione di problemi

Esercizio 1 [12 punti]

Punto 1 [7 punti] Sia $n \geq 2$ una potenza di due. Si progetti e si scriva lo pseudocodice di un algoritmo divide-and-conquer TWO_LARGEST(A) per calcolare la coppia ordinata in senso decrescente dei due elementi più grandi di una stringa $A = \langle a_1, a_2, \ldots, a_n \rangle$ di n interi positivi distinti. Ad esempio, se $A = \langle 3, 1, 7, 5, 4, 9, 6, 8 \rangle$, l'algoritmo deve restituire la coppia (9,8). (Attenzione: per essere non banale, l'algoritmo progettato deve eseguire meno di (n-1) + (n-2) = 2n-3 confronti, complessità banalmente ottenibile calcolando prima il massimo di A per poi eliminarlo dalla stringa e calcolare il massimo della stringa residua.)

Punto 2 [5 punti] Si scriva e si risolva esattamente la ricorrenza relativa al numero di confronti tra gli elementi della stringa effettuati dall'algoritmo. sviluppato al Punto 1.

Answer:

Point 1. For the base case n=2, let $A=\langle a_1,a_2\rangle$. Then TWO_LARGEST(A) must return $(\max\{a_1,a_2\},\min\{a_1,a_2\})$. For n>2, divide $A=\langle a_1,a_2,\ldots,a_n\rangle$ into the two substrings $A_1=\langle a_1,a_2,\ldots,a_{n/2}\rangle$ and $A_2=\langle a_{n/2+1},a_{n/2+2},\ldots,a_n\rangle$, and let $(M_1,m_1),(M_2,m_2)$ be the pairs of the two largest elements of A_1 and A_2 , respectively, returned by the two recursive calls TWO_LARGEST(A_1) and TWO_LARGEST(A_2). It is immediate to see that if $M_1>M_2$, then

the two largest elements of A will be $(M_1, \max\{m_1, M_2\})$. Otherwise, if $M_1 < M_2$, then the two largest elements of A will be $(M_2, \max\{M_1, m_2\})$. The algorithm follows.

```
TWO\_LARGEST(A)
    n \leftarrow A.len
    if (n = 2)
       then if (a_1 > a_2)
                 then return (a_1, a_2)
                 else return (a_2, a_1)
    A_1 \leftarrow \langle a_1, a_2, \dots, a_{n/2} \rangle
    A_2 \leftarrow \langle a_{n/2+1}, a_{n/2+2}, \dots, a_n \rangle
    (M_1, m_1) \leftarrow \text{TWO\_LARGEST}(A_1)
    (M_2, m_2) \leftarrow \text{TWO\_LARGEST}(A_2)
    if (M_1 > M_2)
       then if (m_1 > M_2)
                 then return (M_1, m_1)
                 else return (M_1, M_2)
       else if (M_1 > m_2)
                then return (M_2, M_1)
                else return (M_2, m_2)
```

Point 2. In the above algorithm, the base case performs a single comparison, the divide step does not perform any comparison, and the conquer step performs two comparisons. Thus, the number of comparisons T(n) obeys to the following recurrence:

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + 2, & \text{if } n > 2, \\ 1, & \text{if } n = 2. \end{cases}$$

This is a simple recurrence that can by solved by unfolding as follows:

$$T(n) = 2T\left(\frac{n}{2}\right) + 2$$

$$= 2^{2}T\left(\frac{n}{2^{2}}\right) + 2^{2} + 2$$
...
$$= 2^{k}T\left(\frac{n}{2^{k}}\right) + \sum_{i=1}^{k} 2^{i}, \ 1 \le k \le \log_{2} n - 1.$$

For $k = \log_2 n - 1$ we have that $2^k = n/2$ and $\sum_{i=1}^{\log_2 n - 1} 2^i = 2^{\log_2 n} - 2 = n - 2$. Thus

$$T(n) = \frac{n}{2}T(2) + n - 2$$

= $\frac{n}{2} + n - 2$
= $\frac{3n}{2} - 2$.

In fact, a smaller number of comparisons may be obtained with the alternative algorithm sketched in the following. First, we perform the classical divide-and-conquer algorithm seen in class for computing $\max\{A\}$. Observe that algorithm can be thought of as a tournament where each internal node corresponds to a match between the two maximum values M_1 and M_2 associated to its children subinstances. Clearly, the match is won by $\max\{M_1, M_2\}$. When the tournament ends at the root, the global winner is clearly $\max\{A\}$. Once the tournament is over, we can track

down all matches that involved $\max\{A\}$. Clearly, the second largest value must be among the opponents of these matches. Since $\max\{A\}$ was involved in exactly $\log_2 n$ matches, we can obtain the second largest element with $\log_2 n - 1$ comparisons, for a total of $n + \log_2 n - 2$ comparisons altogether. It can be shown that this is the least number of comparisons needed to determine the two largest elements of a string. However, note that this is not a divide-and-conquer algorithm and that additional information has to be stored in order to track down the matches involving $\max\{A\}$.

Esercizio 2 [11 punti] Per $n \geq 0$, si consideri la seguente definizione per ricorrenza della quantità intera c(i, j), con $0 \leq i, j \leq n$:

$$c(i,j) = \begin{cases} 2 \cdot (i+j) & (i=0) \lor (j=0), \\ 2 \cdot (c(i-1,j-1) + c(i-1,j) - c(i,j-1)) & \text{altrimenti.} \end{cases}$$

Punto 1 [7 punti] Si fornisca lo pseudocodice di un algoritmo memoizzato per il calcolo di c(n,n). Si presti attenzione alla scelta del valore di default da utilizzare nell'inizalizzazione.

Punto 2 [4 punti] Si determini, analizzando l'albero delle chiamate, il numero esatto di operazioni aritmetiche complessive effettuate dalle due routine che costituiscono il codice memoizzato.

Answer:

Point 1. The code is the following:

```
\begin{array}{lll} \operatorname{INIT\_c}(n) & \operatorname{REC\_c}(i,j) \\ \mathbf{if} \ (n=0) \ \mathbf{then} \ \mathbf{return} \ 0 & \mathbf{if} \ (c[i,j]=1) \ \mathbf{then} \\ c[0,0] \leftarrow 0 & c[i,j] \leftarrow 2 \cdot (\operatorname{REC\_c}(i-1,j-1) + \\ \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} & \operatorname{REC\_c}(i-1,j) - \operatorname{REC\_c}(i,j-1)) \\ c[i,0] \leftarrow c[0,i] \leftarrow 2 \cdot i & \mathbf{return} \ c[i,j] \\ \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} & \\ c[i,j] \leftarrow 1 & \mathbf{return} \ \operatorname{REC\_c}(n,n) \end{array}
```

The correctness of the above code follows from the fact that it implements the given recurrence and that the data structure is correctly initialized, since the default value 1 cannot be obtained by the recurrence (whose values are always even).

Point 2 First observe that INIT_{-c}(n) executes n products to initialize the first row and column of table c. Next, the recursion tree of REC_{-c}(n, n) has exactly one internal node for each nonbase case, that is, for each pair of indices i, j, with $1 \le i, j \le n$, therefore, there are exactly n^2 internal nodes. For each internal node, we perform one sum, one subtraction and one product. In summary, letting $T_c(n)$ denote the complexity of the memoized code, we obtain: $T_c(n) = 3n^2 + n$.