Linear Classification: Regression & LDA for Classification (and final remarks on the Lasso & Dantzig)

MATH 697 AM:ST

October 17th, 2017

(Today we wrap up "linear" regression, and start with classification)

Cutting space with hyperplanes

Given two affine functions $\ell_1(x)$ and $\ell_2(x)$, they define two halfspaces

$$\{x \mid \ell_1(x) > \ell_2(x)\}\$$
and $\{x \mid \ell_1(x) < \ell_2(x)\}\$

which result from dividing in space by the hyperplane $\{x \mid \ell_1(x) = \ell_2(x)\}.$

Cutting space with hyperplanes

Given three affine functions $\ell_1(x)$, $\ell_2(x)$ and $\ell_3(x)$, we may consider the sets

$$\{x \mid \ell_1(x) > \ell_2(x) \text{ and } \ell_1(x) > \ell_3(x)\}$$

$$\{x \mid \ell_2(x) > \ell_1(x) \text{ and } \ell_2(x) > \ell_3(x)\}$$

$$\{x \mid \ell_3(x) > \ell_1(x) \text{ and } \ell_3(x) > \ell_2(x)\}$$

How complicated can these sets be? Are there any special configurations?

Cutting space with hyperplanes

Given three affine functions $\ell_1(x)$, $\ell_2(x)$ and $\ell_3(x)$, we may consider the sets

$$\{x \mid \ell_1(x) > \ell_2(x) \text{ and } \ell_1(x) > \ell_3(x)\}$$

$$\{x \mid \ell_2(x) > \ell_1(x) \text{ and } \ell_2(x) > \ell_3(x)\}$$

$$\{x \mid \ell_3(x) > \ell_1(x) \text{ and } \ell_3(x) > \ell_2(x)\}$$

How complicated can these sets be? Are there any special configurations?

In each case above, the resulting set* is a **convex** angle, being the **intersection** of two halfspaces.

*except for a few degenerate cases

Warmup Cutting space with hyperplanes

If we start varying the functions ℓ_1, ℓ_2, ℓ_3 , how do these three sets change?

Well, by changing the ℓ_i 's, can we obtain?

- 1. an empty set?
- 2. a bounded set?
- 3. repeated sets?

Cutting space with hyperplanes

In general, if we have K affine functions ℓ_1, \ldots, ℓ_m , what can be said about the sets

$$\{x \mid \ell_k(x) > \ell_j(x) \ \forall \ j \neq k\}$$

for k = 1, 2, ..., m?

The (Grouped) Lasso

In this instance, we think of the predictors $\beta \in \mathbb{R}^p$ and their coefficients as divided in K subgroups, so that

$$\beta = (\beta_1, \dots, \beta_K), \ \beta \in \mathbb{R}^{p_k}$$

where $p_1 + \dots + p_K = p$

Then, one seeks to minimize

$$|\mathbf{y} - \beta_0 \mathbf{1} - \sum_{k=1}^K \mathbf{X}_k \beta_k|_{\ell^2}^2 + \lambda \sum_{k=1}^K \sqrt{p_k} |\beta_k|_{\ell^1}$$

The minimizers for this problem then tend to be sparse both at the group level ($\beta_j = 0$) and at the individual level (the non-zero β_j 's tend to have a few coefficients equal to zero).

The Lasso + Gauss

The Gauss-Lasso estimator aims to take advantage of the variable selection feature of the Lasso, while mitigating the Lasso's underlying bias.

Given a set of indices $\mathcal{I} \subset [1, \ldots, p]$ let $\pi_{\mathcal{I}}$ be given by

$$\pi_{\mathcal{I}}: \mathbb{R}^p \mapsto \mathbb{R}^p, \ \pi_{\mathcal{I}}(x)_i = x_i \chi_{\mathcal{I}}(i)$$

i.e. π is the orthogonal projection onto the space of vectors whose only nonzero coordinates are those whose indices are in \mathcal{I} .

The Lasso + Gauss

Then, the Gauss–Lasso estimator $\hat{\beta}^{GL}$ is defined as follows: let

$$I(\beta) := \{ i \mid \hat{\beta}_i \neq 0 \}$$

Then one takes the **projection**

$$\hat{\beta}^{\mathrm{GL}} = \pi_{\mathcal{I}(\hat{\beta}^{\mathrm{L}})}(\hat{\beta})$$

The Dantzig Selector $p \gg N$

Let us consider one last time the problem of finding β such that

$$y = X \cdot \beta +$$
 (as small an error as possible)

in the situation where, the input space dimension, p, is much larger than the sample size, N.

As soon as p > N, we have that

 $\mathbf{X}^t\mathbf{X}$ cannot be invertible!

and least squares starts running into problems.

In 2007, Candes and Tao proposed an estimator that tries to deal with this problem.

The Dantzig Selector $p \gg N$

One considers a matrix of inputs \mathbf{X} and a vector of scalar observations \mathbf{y} (both random or not), then for a given parameter s > 0 one defines the Dantzig estimator,

$$\hat{\beta}^{\mathrm{D}} := \operatorname{argmin} \{ |\beta|_{\ell^{1}} \mid |\mathbf{X}^{t}(\mathbf{X}\beta - \mathbf{y})|_{\infty} \leq s \}$$

This is, like the Lasso, given by a convex optimization problem with finitely many linear constraints.

The Dantzig Selector $p \gg N$

Besides p >> N, the estimator $\hat{\beta}^{\mathrm{D}}$ works specially well at estimating linear models of the form

$$\mathbf{y} = \mathbf{X}\beta_0 + \bar{\varepsilon}$$

where **X** is allowed to be random and one assumes that $\bar{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_N)$ is a Gaussian vector (independent of **X**) whose coordinates are mean zero, uncorrelated, and with common variance σ^2 .

The Dantzig estimator is in many ways similar to the Lasso.

Example

Assume that p = N and that $\mathbf{X} = \mathbf{I}$, then, one can check that

$$\hat{\beta}^{\mathrm{D}} = \mathcal{S}_s(\mathbf{y})$$

Indeed, in this case the constraint

$$|\mathbf{X}^t(\mathbf{X}\beta - \mathbf{y})|_{\infty} \le s$$

reduces to the constraints

$$|\beta_i - \mathbf{y}_i| \le s$$
, for $i = 1, 2, \dots$

The Dantzig estimator is in many ways similar to the Lasso.

Example

...which in turn become

$$|\beta_i - (\beta_0)_i - \varepsilon_i| \le s$$
, for $i = 1, 2, \dots$

these constraints are uncoupled between the different variables, so one simply minimizes each $|\beta_i|$ independently, yielding

$$\hat{\beta}_i^{\mathrm{D}} = \mathcal{S}_s(\mathbf{y}_i)$$

How does the Dantzig selector behave in general?

Define the vector

$$\mathbf{y} = \mathbf{X}\beta_0 + \bar{\varepsilon}$$

for some $\beta_0 \in \mathbb{R}^p$, a **X** which is deterministic, and $\bar{\varepsilon}$ a Gaussian in \mathbb{R}^N with i.i.d. entries, mean zero, and common variance σ^2 .

Then, of course, we want to estimate β_0 from \mathbf{y} ...

Since p >> N, one should expect there to be lots of vectors β' such that $\mathbf{X}\beta' = \mathbf{y}$.

One of the main observations of Candes and Tao is that for certain classes of matrices \mathbf{X} , there are only a few such β' which are also **sparse**.

Given k < p a vector is said to be k-sparse if it has **at most** k **non-zero coefficients**.

The Dantzig Selector UUP Matrices

Indeed, Candes and Tao noted a property shared by random matrices \mathbf{X} which arise as the input matrices of a set of N i.i.d. normal vectors. This is known as the Uniform Uncertainty Principle property.

Note that if the columns of X are orthonormal vectors, then

$$|\mathbf{X}\beta|_2 = |\beta|_2 \ \forall \ \beta \in \mathbb{R}^p$$

That is, **X** places \mathbb{R}^p inside \mathbb{R}^N via an isometry.

Of course, if \mathbb{R}^p is placed inside \mathbb{R}^N isometrically, we must necessarily have $p \leq N$. **X** cannot be an isometry if p > N!.

How can we relax this?

1. Ask that now, one has instead the inequalities

$$(1 - \delta)|\beta|_2 \le |\mathbf{X}\beta|_2 \le (1 + \delta)|\beta|_2 \ \forall \ \beta \in \mathbb{R}^p$$

for some $\delta \in (0,1)$ (typically $\delta \approx 0$).

2. The above is still too strong! Instead, ask

$$(1-\delta)|\beta|_2 \le |\mathbf{X}\beta|_2 \le (1+\delta)|\beta|_2$$

but only for those β 's which are k-sparse.

The Dantzig Selector UUP Matrices

If a matrix **X** satisfies the last condition, it is said to have the Uniform Uncertainty Principle (UUP) of order k with constant δ .

This condition is also known as the Restricted Isometry Property (RIP).

The Dantzig Selector UUP Matrices

Theorem (Candes, Tao 2007)

Assume that β_0 is k-sparse and **X** satisfies the UUP with this k and some $\delta \in (0, 1)...$

There is a constant C (determined by \mathbf{X} alone) such that, if we choose $s = \sqrt{2(1+a)\log(p)}$, then

$$\|\beta_0 - \beta^{\mathrm{D}}\|_{\ell^2} \le C_1^2(2(1+a)\log(p))k\sigma^2$$

with probability larger than $1 - \left(\sqrt{\pi \log(p)}p^a\right)^{-1}$.

Some remarks:

- 1. Observe that in the absence of randomness, that is, $\sigma = 0$, then this theorem says we recover the **exact** solution.
- 2. For non-zero σ , by making a larger, we get an exponential improvement in our estimate of the probability, with only an increase in the size of our error that is linear with respect to a.
- 3. The estimate's dependence in p is logarithmic.
- 4. The constant C_1 can actually be computed explicitly in terms of the UUP constants for \mathbf{X} .

Linear Regression: A Summary (Part I)

- 1. Standard least squares produce unbiased estimators, however, by going beyond strictly linear estimators, one usually can get lower error at the expense of non-zero bias.
- 2. Shrinkage methods, such as Ridge and Lasso, are good models that provide better generalization error even though they are unbiased.
- 3. The Lasso in particular is good at producing sparse solutions. However, they all have a bias towards zero, with non-zero components decaying in size (and this, is often an undesirable feature).

Linear Regression: A Summary (Part II)

- 4. The Lasso acts via the shrinkage operator applied to the least squares solution when the matrix X is orthogonal.
- 5. In general, one can use many of the standard linear program algorithms to approximate the Lasso solution (coordinate descent, simplex method).
- 6. By using Lasso as a **subset selection** mechanism, one can often get rid of the decay of the non-zero components by running least squares on just the dimensions with non-zero components.
- 7. The Dantzig selector is a powerful estimator in cases where one has relatively high dimensional data in comparison to the number of data points.

Classification

The topics in linear classification we discuss will be as follows

- 1. Regression with indicator matrices
- 2. Linear discriminants for Gaussian mixtures
- 3. Logistic regression
- 4. The perceptron and optimally separating hyperplanes

The methods will not be linear in the sense of a resulting linear equation, but linear in that the boundaries between two adjacent classes in the input space \mathbb{R}^p will be a portion of a hyperplane, thus given by a linear relation.

Classification: Statistical Decision Theory

Let us recall a few things:

If we are given a random variable X (in \mathbb{R}^p), and $G: \mathbb{R}^p \mapsto \mathcal{G}$ then, for any \hat{G} meant to estimate G, we have the expected prediction error

$$EPE = \mathbb{E}[L(G, \hat{G}(x))]$$

where L(g, g') is the loss function.

Classification: Statistical Decision Theory

Let us recall a few things:

For classification, the most popular L is the 0-1 function,

$$L(g, g') = 1$$
 if $g = g', = 0$ otherwise.

As we know, minimizing the EPE amounts to minimizing the **conditional** EPE,

$$\hat{G} = \underset{h}{\operatorname{argmin}} \mathbb{E}[L(G, g) \mid X = x]$$

Classification: Statistical Decision Theory

Let us recall a few things:

But,

$$\mathbb{E}[L(G, k \mid X = x] = 1 - \mathbb{P}[G = k \mid X = x]$$

This is how we derived the Bayes classifier

$$\hat{G}(x) = \underset{\cdot}{\operatorname{argmax}} \mathbb{P}[G = k \mid X = x]$$

Classification: Discriminant Functions

One way to perform classification is by deciding on **discriminant functions**, these are scalar functions

$$\delta_k(x)$$
 $k=1,\ldots,K$.

Such that the class $\mathcal{G}_k = \{x \mid G(x) = k\}$ is characterized by

$$\mathcal{G}_k = \{\delta_k(x) > \delta_\ell(x) \ \forall \ \ell \neq k\}$$

The set $\{x \mid \delta_k(x) = \delta_\ell(x)\}$ is called the decision boundary between \mathcal{G}_k and \mathcal{G}_ℓ , and it is in general a (p-1)-dimensional hypersurface.

Classification: Discriminant Functions

Statistical decision theory provides an important example: if our data is given by a probability distribution, then we can use for $\delta_k(x)$ the posterior distributions

$$\delta_k(x) := \mathbb{P}(G = k \mid X = x)$$

As such, the Bayes classifier simply assigns to x whichever class is most likely, conditioning on X=x.

Classification: Discriminant Functions

Example: Gaussian mixture

Figure credit: Hastie-Tibshirani-Friedman

Ellipses: region of 95% probability for each Gaussian. Thick lines: decision boundaries.

Dotted lines: decision boundaries for two Gaussians.

An obvious thing to do, is to think of classification as a regression problem where the target function takes only the values $\{1, \ldots, K\}$.

Of course, linear regression will hardly ever return a function which takes these values exactly.

A better version of this idea involves doing K different regressions instead of just one.

How so?

Instead of G, consider the indicator functions for the K classes

$$\chi_k(x) = \begin{cases} 1 & \text{if } G(x) = k \\ 0 & \text{otherwise} \end{cases}$$

Then, run a linear regression for each function χ_k , and then classify x according to which of these k estimators returned the largest number.

In other words, let $\hat{\chi}_k$ be the least squares estimator for χ_k , then set

$$\hat{G}(x) = \operatorname*{argmax}_{k} \hat{\chi}_{k}(x)$$

In other words, the $\hat{\chi}_k$ are used as discriminant functions.

We are given data $(x_i, (Y_{ik})_i)$ where $x_i \in \mathbb{R}^p$ and

$$Y_{ik} = \begin{cases} 1 & \text{if } G(x_i) = k \\ 0 & \text{otherwise} \end{cases}$$

Denote by **Y** the $N \times K$ matrix made out of the Y_{ik} . This matrix is made out of 1's and 0's, and it has exactly one non-zero component in each row. This is known as the **indicator matrix**.

A column of Y represents a measurement of N data points, for one of the k-th indicator functions.

Applying least squares for each "indicator function" then, we obtain

$$\hat{\mathbf{Y}} = \mathbf{X}(\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$$
$$\hat{\mathbf{B}} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$$

Note that these are matrices on the left, not vectors!

Given $x \in \mathbb{R}^p$, then

$$\hat{\chi}(x) = \hat{\mathbf{B}}^t(1, x) \in \mathbb{R}^K$$

The vector $\hat{\chi}(x)$ is usually far from $\chi(x) = (\chi_1(x), \dots, \chi_K(x))$, the indicator vector.

Given $x \in \mathbb{R}^p$, then

$$\hat{\chi}(x) = \hat{\mathbf{B}}^t(1, x) \in \mathbb{R}^K$$

The vector $\hat{\chi}(x)$ is usually far from $\chi(x) = (\chi_1(x), \dots, \chi_K(x))$, the indicator vector.

Still, the relative sizes of the components of $\hat{\chi}$ may be a good proxy for which is 1 and which is zero, so we set

$$\hat{G}(x) = \operatorname*{argmax}_{k} \hat{\chi}_{k}(x)$$

 $Figure\ credit:\ Hastie-Tibshirani-Friedman$

Now, what are the potential issues in linear regression? There are the general issues of complexity, and the bias-variance trade off.

The following one is specific to classification via regression, although it relates to the more usual questions.

Indicator Matrices and good ol' Regression Masking phenomenon

 $Figure\ credit:\ Hastie-Tibshirani-Friedman$

Masking: An extreme situation is when one of the discriminant functions never dominates, and a class is completely hidden.

One way to enrich linear regression for classification is incorporating extra variables, for instance, quadratic functions of the components of the vector, i.e.

$$X_a X_b$$
 where $a \leq b$

As such, the p-dimensional vector

$$X = (X_1, \dots, X_p) \in \mathbb{R}^p$$

is replaced with the p + p(p+1)/2 dimensional vector

$$(X_1,\ldots,X_p,X_1^2,X_1X_2,\ldots,X_1X_p,X_2^2,X_2X_3,\ldots,X_p^2)$$

This can be thought of as an embedding of our input space in higher dimensions

$$\mathbb{R}^p \mapsto \mathbb{R}^{\tilde{p}}, \ \tilde{p} > p$$

Then, we may perform linear regression in $\mathbb{R}^{\tilde{p}}$ and project our solution back to \mathbb{R}^{p} .

Figure credit: Hastie-Tibshirani-Friedman

Using affine functions to estimate the indicator functions

Figure credit: Hastie-Tibshirani-Friedman

Using quadratic polynomials to estimate the indicator functions

Linear Classification: LDA and basics of Logistic regression

MATH 697 AM:ST

October 19th, 2017

Indicator Matrices and good ol' Regression (Last class)

Now, what are the potential issues in linear regression? There are the general issues of complexity, and the bias-variance trade off.

The following one is specific to classification via regression, although it relates to the more usual questions.

Masking phenomenon (Last class)

Figure credit: Hastie-Tibshirani-Friedman

Masking: An extreme situation is when one of the discriminant functions never dominates, and a class is completely hidden.

One way to enrich linear regression for classification is incorporating extra variables, for instance, quadratic functions

$$X_a X_b$$
 where $a \leq b$

As such, the *p*-dimensional vector

of the components of the vector, i.e.

$$X = (X_1, \ldots, X_p) \in \mathbb{R}^p$$

is replaced with the p + p(p+1)/2 dimensional vector

$$(X_1,\ldots,X_p,X_1^2,X_1X_2,\ldots,X_1X_p,X_2^2,X_2X_3,\ldots,X_p^2)$$

This can be thought of as an embedding of our input space in higher dimensions

$$\mathbb{R}^p \mapsto \mathbb{R}^{\tilde{p}}, \ \tilde{p} > p$$

Then, we may perform linear regression in $\mathbb{R}^{\tilde{p}}$ and project our solution back to \mathbb{R}^{p} .

Figure credit: Hastie-Tibshirani-Friedman

Using affine functions to estimate the indicator functions

Extra variables (Last class)

Figure credit: Hastie-Tibshirani-Friedman

Using quadratic polynomials to estimate the indicator functions

Warmup: Gradient Flows

A differential equation is best thought of as given by a vector field $v: \mathbb{R}^p \mapsto \mathbb{R}^p$

$$\dot{x} = v(x), \ x(0) = x_0.$$

When v is such that for some scalar scalar function f

$$v(x) = -\nabla f(x)$$

then we say the differential equation is a **gradient flow**.

Warmup: Gradient Flows

If x(t) solves $\dot{x} = -\nabla f(x)$ then

$$\frac{d}{dt}f(x(t)) = -|(\nabla f)(x(t))|^2$$

So, as x(t) moves the functional f is decrasing strictly, until x reaches an equilibrium point.

If f is a convex function, then x(t) moves towards a global equilibrium.

Warmup: Gradient Flows

Smooth convex functions

In fact, if f is uniformly strictly convex (it's second derivative is bounded away from zero) then x(t) converges exponentially fast to the minimum.

Theorem

Suppose f is a twice differentiable function such that $D^2f(x) \geq \lambda \mathbb{I}$ for all x, and let x_{∞} denote it's unique (why is it unique?) global minimum. Then, if $\dot{x} = -\nabla f$, we have

$$|x(t) - x_{\infty}| \le e^{-\lambda t} |x(0) - x_{\infty}|$$

Warmup: Gradient Flow Descent

Often, specially in the CS and Statistics literature, the term **Gradient descent** is used to refer to a discretization of a gradient flow.

Roughly speaking, one considers a sequence of points x_k , where x_0 is fixed initialized in some way or another, and then one recursively writes

$$x_{k+1} = x_k - h\nabla f(x_k)$$

where h > 0 is a fixed time step. One typically stops this recursive procedure when $|\nabla f(x_k)|$ becomes smaller than some predetermined threshold.

Warmup: Gradient Flow Descent

(more minima = more problems)

When the functional f is not necessarily convex, and it has multiple local minima, gradient descent can fail rather spectacularly.

Most importantly, as $k \to \infty$ (or $t \to \infty$ for the continuum case) the point x_k will approach one critical point of f, but which of the possibly multiple critical points we converge to will depend on the initialization x_0 .

This is an ever present issue in learning algorithms where one is minimizing a non-convex objective functional depending on a family of weights via gradient descent.

Consider a model where the points $\{x_1, \ldots, x_N\}$ are being drawn in an i.i.d. manner from some underlying probability distribution.

Denoting by X a random variable distributed by this probability distribution, the Bayesian classifier for a given input $x \in \mathbb{R}^p$ is

$$\hat{G}(x) = \operatorname*{argmax}_{k} \mathbb{P}(G = k \mid X = x)$$

 $Figure\ credit:\ Hastie-Tibshirani-Friedman$

Figure credit: Hastie-Tibshirani-Friedman

When the points arise from a mixture of Gaussians, one can determine \hat{G} entirely from linear operations.

For a Gaussian mixture, we have (via Bayes theorem)

$$\mathbb{P}(G = k \mid X = x) = \frac{f_k(x)\pi_k}{\sum_{\ell=1}^K f_\ell(x)\pi_\ell}$$

Therefore

$$\frac{\mathbb{P}(G = k \mid X = x)}{\mathbb{P}(G = \ell \mid X = x)} = \frac{f_k(x)\pi_k}{f_\ell(x)\pi_\ell}$$

Since,

$$f_k(x) = (2\pi)^{-\frac{p}{2}} |\Sigma_k|^{-\frac{1}{2}} e^{-\frac{1}{2}(\Sigma_k^{-1}(x-\mu_k), x-\mu_k)} \pi_k$$

taking the logarithm is advantageous, so

$$\log \left(\frac{\mathbb{P}(G = k \mid X = x)}{\mathbb{P}(G = \ell \mid X = x)} \right)$$

$$= \log \left(\frac{|\Sigma_k|^{-\frac{1}{2}} e^{-\frac{1}{2}(\Sigma_k^{-1}(x - \mu_k), x - \mu_k)} \pi_k}{|\Sigma_\ell|^{-\frac{1}{2}} e^{-\frac{1}{2}(\Sigma_k^{-1}(x - \mu_\ell), x - \mu_\ell)} \pi_\ell} \right)$$

What if all the Σ_k are all equal to some Σ ?.

Well, we have

$$\log \left(\frac{\mathbb{P}(G = k \mid X = x)}{\mathbb{P}(G = \ell \mid X = x)} \right)$$

$$= \log \left(\frac{\pi_k}{\pi_\ell} \right) + \log \left(\frac{e^{-\frac{1}{2}(\Sigma^{-1}(x - \mu_k), x - \mu_k)}}{e^{-\frac{1}{2}(\Sigma^{-1}(x - \mu_\ell), x - \mu_\ell)}} \right)$$

We compute

$$-(\Sigma^{-1}(x - \mu_k), x - \mu_k) + (\Sigma^{-1}(x - \mu_\ell), x - \mu_\ell)$$

$$= 2(\Sigma^{-1}(\mu_k - \mu_\ell), x) - (\Sigma^{-1}\mu_k, \mu_k) + (\Sigma^{-1}\mu_\ell, \mu_\ell)$$

$$= 2(\Sigma^{-1}(\mu_k - \mu_\ell), x) + (\Sigma^{-1}(\mu_\ell + \mu_k), \mu_\ell - \mu_k)$$

and conclude that

$$\log \left(\frac{\mathbb{P}(G = k \mid X = x)}{\mathbb{P}(G = \ell \mid X = x)} \right)$$

is equal to

$$\log\left(\frac{\pi_k}{\pi_\ell}\right) + \frac{1}{2}(\Sigma^{-1}(\mu_k + \mu_\ell), \mu_k - \mu_\ell) + (\Sigma^{-1}(\mu_k - \mu_\ell), x)$$

Further simplification shows that

$$\log \left(\frac{\mathbb{P}(G = k \mid X = x)}{\mathbb{P}(G = \ell \mid X = x)} \right) = \delta_k(x) - \delta_\ell(x)$$

where the discriminant function δ_k is given by

$$\delta_k(x) = \log(\pi_k) + \frac{1}{2}(\Sigma^{-1}\mu_k, \mu_k) + (\Sigma^{-1}\mu_k, x)$$

Practical considerations

Given a training set $\{x_1, \ldots, x_N\}$ with labels $g_i \in \{1, \ldots, K\}$, we have the estimators

$$\hat{\pi}_{k} = \frac{N_{k}}{N}, \quad N_{k} := \#\{i : g_{i} = k\}$$

$$\hat{\mu}_{k} = \frac{1}{N_{k}} \sum_{i:g_{i} = k} x_{i}$$

$$\hat{\Sigma}_{ab} = \frac{1}{N - K} \sum_{k=1}^{K} \sum_{i:g_{k} = k} (x_{i} - \hat{\mu}_{k})_{a} (x_{i} - \hat{\mu}_{k})_{b}$$

Practical considerations

and we have the "estimated" discriminant functions, which are linear

$$\hat{\delta}_k(x) = \log(\hat{\pi}_k) + \frac{1}{2}(\hat{\Sigma}^{-1}\hat{\mu}_k, \mu_k) + (\hat{\Sigma}^{-1}\hat{\mu}_k, x)$$

Then, the classifier is

$$\hat{G}(x) = \operatorname*{argmax}_{k \in K} \hat{\delta}_k(x).$$

Let us go back to the case where we allow $\Sigma_k \neq \Sigma_\ell$, and consider

$$\log \left(\frac{\mathbb{P}(G = k \mid X = x)}{\mathbb{P}(G = \ell \mid X = x)} \right)$$

and we have that is equal to

$$\log\left(\frac{\pi_k}{\pi_\ell}\right) - \frac{1}{2}\log\left(\frac{|\Sigma_k|}{|\Sigma_\ell|}\right) - \frac{1}{2}(\Sigma_k^{-1}(x - \mu_k), x - \mu_k) + \frac{1}{2}(\Sigma_\ell^{-1}(x - \mu_\ell), x - \mu_\ell)$$

there aren't as many cancelations as in the case of a single Σ ...

...but still, we have

$$\log \left(\frac{\mathbb{P}(G = k \mid X = x)}{\mathbb{P}(G = \ell \mid X = x)} \right) = \delta_k(x) - \delta_\ell(x)$$

where this time, $\delta_k(x)$ are quadratic functions

$$\delta_k(x) = \log(\pi_k) - \frac{1}{2}\log(|\Sigma_k|) - \frac{1}{2}(\Sigma_k^{-1}(x - \mu_k), x - \mu_k)$$

As before, when using this algorithm in practice, we take

$$\hat{\delta}_k(x) := \log(\hat{\pi}_k) - \frac{1}{2}\log(|\hat{\Sigma}_k|) - \frac{1}{2}(\hat{\Sigma}_k^{-1}(x - \hat{\mu}_k), x - \hat{\mu}_k)$$

where $\hat{\pi}_k$, $\hat{\mu}_k$ and $\hat{\Sigma}_k^{-1}$ are the standard estimators, and then

$$\hat{G}(x) = \operatorname*{argmax}_{k} \hat{\delta}_{k}(x).$$

Classification for Gaussian mixtures Examples

Figure credit: Hastie-Tibshirani-Friedman Linear Discriminant Analysis Vs. masking.

Figure credit: Hastie-Tibshirani-Friedman (for comparison) Regression with quadratic functions

 $\label{eq:Figure credit: Hastie-Tibshirani-Friedman}$ (for comparison) and the result via QDA

The regression on the indicator approach to the indicator matrix has a serious drawback: the discriminant functions given by posterior probabilities

$$\mathbb{P}(G = k \mid X = x)$$

are not going to be even close to linear, so our intent to approximate them via linear functions is somewhat misguided. Worse still, the discriminant functions $\delta_k(x)$ obtained in this way won't satisfy

$$0 \le \delta_k$$
 and $\sum_{k=1}^K \delta_k(x) = 1$

This justifies in part the considereration of a logistic transformation, and assuming that

$$\mathbb{P}(G = k \mid X = x) = \frac{e^{L_k(x)}}{1 + \sum_{\ell=1}^{K-1} e^{L_\ell(x)}}$$

and

$$\mathbb{P}(G = K \mid X = x) = \frac{1}{1 + \sum_{j=1}^{K-1} e^{L_j(x)}}$$

where the L_k 's are K-1 affine functions, written as

$$L_k(x) = \beta_{k,0} + (\beta_k, x)$$

Observe that the last probability can be written as

$$\mathbb{P}(G = K \mid X = x) = \frac{e^{L_K(x)}}{1 + \sum_{j=1}^{K-1} e^{L_j(x)}}$$

if we take $L_K(x)$ to be trivial affine function, $L_K(x) \equiv 0$. As such, going forward we think of having actually K affine functions, where

$$L_k(x) = \beta_{K,0} + (\beta_K, x), \ \beta_{K,0} = 0, \ \beta_K = 0.$$

Then, with this convention $\beta_{K,0} = 0$, $\beta_K = 0$ we actually have more succint expression

$$\mathbb{P}(G = k \mid X = x) = \frac{e^{L_K(x)}}{\sum_{j=1}^{K} e^{L_j(x)}}$$

for all $k \in \{1, \dots, K\}$ and all x.

We will analyze this model in greater detail next class, along with Rosenblatt's hyperplane algorithm.

The seventh week, in one slide

- 1. We discussed (briefly) the Lasso combined with Least squares to do subset selection while minimizing bias.
- 2. The Dantzig selector is quite robust at recovering sparse vectors in high dimensional problems.
- 3. One can think of classification in terms of discriminant functions: x is labeled as k if $\delta_k(x) > \delta_j(x)$ for all other j.
- 4. Least squares applied to an indicator matrix produces linear discriminants, however, masking issues may appear.
- 5. LDA is a better alternative for linear classification, specially for data given by Gaussians.