Indian Institute of Technology Kharagpur Department of Electrical Engineering

Subject No.: <u>EE60020</u>	_		or Signal Processing
Date of Assignment: $\underline{12 \text{ Fe}}$ Assignment Number: $\underline{2}$		1 hour 50 mins	ster: Spring 2023-24 Full points: $\underline{140}$
Name:		Roll No:	
1. Here \mathcal{I} is an image in RG with each pixel in it.	B representation	format and Ω is the	class labels associated
$\mathcal{I} = \begin{bmatrix} (1,3,1) & (\\ (3,1,2) & (\end{bmatrix}$	(2,2,1) $(5,6,6)$ $(1,3,3)$ $(4,4,4)$	$ \begin{array}{c} (6,5,5) \\ (4,6,4) \end{array}] \mathbf{\Omega} = \begin{bmatrix} \omega_1 \\ \omega_1 \end{bmatrix} $	$egin{array}{ccc} \omega_1 & \omega_0 & \omega_0 \ \omega_1 & \omega_0 & \omega_0 \ \end{array}$
When each pixel is represented as $\mathbf{X} \in \mathbb{R}^{D \times D}$	ented as a sample N^{N} , then	e $\mathbf{x}_i \in \mathbb{R}^{D \times 1}$ such that	t the complete dataset
(a) (4 points) Write \mathbf{X} co	orresponding to \mathcal{I}	7?	
$\mathbf{X} = \begin{bmatrix} \underline{} \\ \underline{} \end{bmatrix}$			
(b) (6 points) When solv probability (MAP) en multivariate Normal of	mploying the max	ximum likelihood esti	g maximum aposteriori imation (MLE) with a
(c) (9 points) Compute t		$\begin{bmatrix} \mathbf{\Sigma}_{u_0} ? \end{bmatrix}^{\top}$	
(, (1) F]	

(d) (9 points) Compute the covariance matrix Σ_{ω_1} ?

$$oldsymbol{\Sigma}_{\omega_1} = egin{bmatrix} & --- & --- \ --- & --- \end{bmatrix}$$

(e) (12 points) Compute the square of the Mahalanobis distance for the class ω_0 for the sample $\mathbf{x} = (2, 2, 2)$?

$$d_{\omega_0} = (\mathbf{x} - \boldsymbol{\mu}_{\omega_0})^{\top} \boldsymbol{\Sigma}_{\omega_0}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\omega_0}) = \begin{bmatrix} \underline{} & \underline{} \\ \underline{} \end{bmatrix} \begin{bmatrix} \underline{} & \underline{} \end{bmatrix}$$

(f) (12 points) Compute the square of the Mahalanobis distance for the class ω_1 for the sample $\mathbf{x} = (2, 2, 2)$?

$$d_{\omega_1} = (\mathbf{x} - \boldsymbol{\mu}_{\omega_1})^{\top} \boldsymbol{\Sigma}_{\omega_1}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\omega_1}) = \begin{bmatrix} \underline{} & \underline{} \\ \underline{} \end{bmatrix} \begin{bmatrix} \underline{} & \underline{} \end{bmatrix}$$

(g) (1 point) Compute the prior probability per class

$$p(\Omega = \omega_0) =$$
, $p(\Omega = \omega_1) =$

(h) (2 points) Compute the likelihood of the sample $\mathbf{x}=(2,2,2)$ for class ω_0

$$p(\mathbf{x}|\Omega = \omega_0) = \frac{1}{(2\pi)^{\frac{D}{2}} |\mathbf{\Sigma}_{\omega_0}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}d_{\omega_0}\right) = \underline{\qquad}$$

$$D = \underline{\qquad}, \quad |\mathbf{\Sigma}_{\omega_0}| = \underline{\qquad}, \quad d_{\omega_0} = \underline{\qquad}$$

(i) (2 points) Compute the likelihood of the sample $\mathbf{x} = (2, 2, 2)$ for class ω_1

$$p(\mathbf{x}|\Omega = \omega_1) = \frac{1}{(2\pi)^{\frac{D}{2}} |\mathbf{\Sigma}_{\omega_1}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}d_{\omega_1}\right) = \underline{\qquad}$$
$$|\mathbf{\Sigma}_{\omega_1}| = \qquad , \quad d_{\omega_1} = \underline{\qquad}$$

(j) (1 point) Find the evidence for the sample $\mathbf{x} = (2, 2, 2)$

$$p(\mathbf{x}) = p(\Omega = \omega_0)p(\mathbf{x}|\Omega = \omega_0) + p(\Omega = \omega_1)p(\mathbf{x}|\Omega = \omega_1) = \underline{\hspace{1cm}}$$

(k) (2 points) Find the posterior probability for each class for the sample $\mathbf{x} = (2, 2, 2)$

$$P(\Omega = \omega_0 | \mathbf{x}) = \frac{p(\Omega = \omega_0)p(\mathbf{x}|\Omega = \omega_0)}{p(\mathbf{x})} = \underline{\qquad}, \quad P(\Omega = \omega_1 | \mathbf{x}) = \underline{\qquad}$$

- 2. Considering the dataset and class labels provide earlier in Q. 1 we build a Binary Decision Tree (BDT)
 - (a) (5 points) Compute the histogram $(q(\cdot))$, prior probability $(p(\cdot))$ and Entropy $(H(\cdot))$ for the samples of **X** arriving at the root node n_0 of the BDT

$$q(\omega_{0};n_{0}) = \underline{\hspace{0.5cm}}, \quad q(\omega_{1};n_{0}) = \underline{\hspace{0.5cm}}$$

$$p(\omega_{0};n_{0}) = \frac{q(\underline{\hspace{0.5cm}};n_{0})}{q(\underline{\hspace{0.5cm}};n_{0}) + q(\underline{\hspace{0.5cm}};n_{0})} = \underline{\hspace{0.5cm}}$$

$$p(\omega_{1};n_{0}) = \frac{q(\underline{\hspace{0.5cm}};n_{0})}{q(\underline{\hspace{0.5cm}};n_{0}) + q(\underline{\hspace{0.5cm}};n_{0})} = \underline{\hspace{0.5cm}}$$

$$H(n_{0}) = p(\underline{\hspace{0.5cm}};n_{0}) \log_{2} \left(p(\underline{\hspace{0.5cm}};n_{0})\right) + p(\underline{\hspace{0.5cm}};n_{0}) \log_{2} \left(p(\underline{\hspace{0.5cm}};n_{0})\right) = \underline{\hspace{0.5cm}} \text{bits}$$

(b) (15 points) Let us consider the samples at node n_j to be bifurcated using axis aligned split function defined as

$$S(\mathbf{x}; \phi_{n_j}, \theta_{n_j}) = \begin{cases} 1 & \text{if } x^{(\phi_{n_j})} > \theta_{n_j} \\ 0 & \text{otherwise} \end{cases}$$

where $\mathbf{x} = [x^{(0)}, x^{(1)}, \cdots, x^{(d)}, \cdots, x^{(D-1)}], \ \phi_{n_j} \in \{0, 1, \cdots, d, \cdots, D-1\}, \ \theta_{n_j} \in \mathbb{R};$ such that $S(\mathbf{x}; \phi_{n_j}, \theta_{n_j}) = 1$ is associated with bifurcation of the samples to the right child of n_j denoted by $n_j \to R$, and $S(\mathbf{x}; \phi_{n_j}, \theta_{n_j}) = 0$ is associated with bifurcation of the samples to the left child of n_j denoted by $n_j \to L$. We consider a set of randomly chosen axis denoted by $\{\phi_{(k)}\}$ from which an optimal one would represent ϕ_{n_j} , and also a set of values $\{\theta_{(k),l}\}$ from which an optimal one would represent θ_{n_j} . When $\phi_{(k=0)} = 0$ and $\theta_{(k=0),l=0} = 2$, compute the following

$$\begin{split} q(n_0 \to L, \phi_{(k=0)}, \theta_{(k=0),l=0}) &= \underline{\hspace{1cm}}, \quad q(n_0 \to R, \phi_{(k=0)}, \theta_{(k=0),l=0}) = \underline{\hspace{1cm}}, \\ q(\omega_0; n_0 \to L, \phi_{(k=0)}, \theta_{(k=0),l=0}) &= \underline{\hspace{1cm}}, \quad q(\omega_1; n_0 \to L, \phi_{(k=0)}, \theta_{(k=0),l=0}) = \underline{\hspace{1cm}}, \\ q(\omega_0; n_0 \to R, \phi_{(k=0)}, \theta_{(k=0),l=0}) &= \underline{\hspace{1cm}}, \quad q(\omega_1; n_0 \to R, \phi_{(k=0)}, \theta_{(k=0),l=0}) = \underline{\hspace{1cm}}, \\ p(n_0 \to L, \phi_{(k=0)}, \theta_{(k=0),l=0}) &= \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}) + q(\underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}, \\ p(n_0 \to R, \phi_{(k=0)}, \theta_{(k=0),l=0}) &= \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}) + q(\underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}, \\ p(\omega_0; n_0 \to L, \phi_{(k=0)}, \theta_{(k=0),l=0}) &= \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}, \\ p(\omega_1; n_0 \to L, \phi_{(k=0)}, \theta_{(k=0),l=0}) &= \underline{\hspace{1cm}}, \quad \underline{\hspace{1cm}}, \quad$$

$$H(n_0 \to L, \phi_{(k=0)}, \theta_{(k=0),l=0}) = p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \log_2 \left(p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \right) + p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \log_2 \left(p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \right)$$

$$= \underline{\hspace{0.3cm}} \text{bits}$$

$$H(n_0 \to R, \phi_{(k=0)}, \theta_{(k=0), l=0}) = p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \log_2 \left(p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \right) + p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \log_2 \left(p(\underline{\hspace{0.3cm}}; \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}, \underline{\hspace{0.3cm}}) \right)$$

$$= \underline{\hspace{0.3cm}} \text{bits}$$

(c) (5 points) Find the optimal value of ϕ_{n_0} and θ_{n_0} based on IG(·)(after completing (b) and (d))?

$\phi_{(k=0)} = 0$	$\phi_{(k=1)} = 2$
$\theta_{(k=0),l=0} = 2$	$\theta_{(k=1),l=0} = 3.76$
$IG(\cdot) = \underline{\hspace{1cm}}$	$IG(\cdot) = \underline{\hspace{1cm}}$
$\theta_{(k=0),l=1} = 1.12$	$\theta_{(k=1),l=1} = 2.25$
$IG(\cdot) = \underline{\hspace{1cm}}$	$IG(\cdot) = \underline{\hspace{1cm}}$

$$\phi_{n_0} = \phi_{(k=\underline{\hspace{1cm}})} = \underline{\hspace{1cm}}, \quad \theta_{n_0} = \theta_{(k=\underline{\hspace{1cm}}),l=\underline{\hspace{1cm}}} = \underline{\hspace{1cm}}$$

4 (d) (45 points) Cc

(45 points) Compute the above set of parameters for the following randomly selected splits	above set of paran	neters for the foll	owing randomly se
	$\phi_{(k=0)} = 0$	$\phi_{(k=1)} = 2$	$\phi_{(k=1)} = 2$
	$\theta_{(k=0),l=1} = 1.12$	$\theta_{(k=1),l=0} = 3.76$	$\theta_{(k=1),l=1} = 2.25$
$q(n_0 \to L, \phi_{(k)}, \theta_{(k),l})$			
$q(n_0 \to R, \phi_{(k)}, \theta_{(k),l})$			
$q(\omega_0; n_0 \to L, \phi_{(k)}, \theta_{(k),l})$			
$q(\omega_1; n_0 \to L, \phi_{(k)}, \theta_{(k),l})$			
$q(\omega_0; n_0 \to R, \phi_{(k)}, \theta_{(k),l})$			
$q(\omega_1; n_0 \to R, \phi_{(k)}, \theta_{(k),l})$			
$p(n_0 \to L, \phi_{(k)}, \theta_{(k),l})$			
$p(n_0 \to R, \phi_{(k)}, \theta_{(k),l})$			
$p(\omega_0; n_0 \to L, \phi_{(k)}, \theta_{(k),l})$			
$p(\omega_1; n_0 \to L, \phi_{(k)}, \theta_{(k),l})$			
$p(\omega_0; n_0 \to R, \phi_{(k)}, \theta_{(k),l})$			
$p(\omega_1; n_0 \to R, \phi_{(k)}, \theta_{(k),l})$			
$H(n_0 \to L, \phi_{(k)}, \theta_{(k),l})$			
$H(n_0 \to R, \phi_{(k)}, \theta_{(k),l})$			
$\mathrm{IG}(n_0;\phi_{(k)},\theta_{(k),l})$			

(e) (8 points) Write the set of samples in $n_0 \to L$ and $n_0 \to R$ after bifurcation of samples in n_0 using the optimal split identified in (c).

$n_0 \to L$			$n_0 \to R$				
(,	,)	()
()	(,)
(,)	()
(,)	()
()	()
(,)	()
(,	,)	()
(,)	()

(f) (2 points) Comment on the nature of nodes (strike out the incorrect one within the braces)

 $n_0 \to L$ is a {Decision node} / {Leaf node with $\Omega = \{\omega_0/\omega_1\}$ }

 $n_0 \to R$ is a {Decision node} / {Leaf node with $\Omega = \{\omega_0/\omega_1\}$ }

—— End of assignment. Use the remaining pages for rough work. ——

This page is intentionally left blank for rough work.

This page is intentionally left blank for rough work.