Claims

1. A compound of formula (I),

$$\begin{array}{c|c}
R^{1} & Q = X \\
 & Z \\
 & Z \\
 & Z
\end{array}$$

$$\begin{array}{c|c}
R^{5} & Q \\
 & Z \\
 & Z
\end{array}$$

$$\begin{array}{c|c}
R^{5} & Q \\
 & Z
\end{array}$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1, 2 or 3 and when n is 0 then a direct bond is intended;

t is 0, 1, 2, 3 or 4 and when t is 0 then a direct bond is intended;

each Q is nitrogen or —CS;

15

5

each X is nitrogen or —

each Y is nitrogen or —CS;

20 each Z is nitrogen or -CH;

 R^1 is $-C(O)NR^8R^9$, $-N(H)C(O)R^{10}$, $-C(O)-C_{1-6}$ alkanediylSR¹⁰, $-NR^{11}C(O)N(OH)R^{10}$, $-NR^{11}C(O)C_{1-6}$ alkanediylSR¹⁰, $-NR^{11}C(O)C=N(OH)R^{10}$ or another Zn-chelating-group

wherein R⁸ and R⁹ are each independently selected from hydrogen, hydroxy,

C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl or aminoaryl;

R¹⁰ is independently selected from hydrogen, C₁₋₆alkyl, C₁₋₆alkylcarbonyl, arylC₁.

6alkyl, C₁₋₆alkylpyrazinyl, pyridinone, pyrrolidinone or methylimidazolyl;

 R^{11} is independently selected from hydrogen or C_{1-6} alkyl;

30

35

R² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, di(C₁₋₆alkyl)amino, hydroxyamino or naphtalenylsulfonylpyrazinyl;

each R³ independently represents a hydrogen atom and one hydrogen atom can be replaced by a substituent selected from aryl;

 R^4 is hydrogen, hydroxy, amino, hydroxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, arylC₁₋₆alkyl, aminocarbonyl, hydroxycarbonyl, aminoC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, hydroxycarbonylC₁₋₆alkyl, hydroxyaminocarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylamino C_{1-6} alkyl or di $(C_{1-6}$ alkyl)amino C_{1-6} alkyl;

5

R⁵ is hydrogen, C₁₋₆alkyl, C₃₋₁₀cycloalkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl or aryl;

is a radical selected from

10

(a-2)

(a-3)

(a-4)

(a-6)

15

(a-13)

(a-16)

٦,

_)

$$(a-41) \qquad (a-42) \qquad (a-43) \qquad (a-44)$$

$$(a-41) \qquad (a-42) \qquad (a-43) \qquad (a-44)$$

$$(a-45) \qquad (a-46) \qquad (a-47) \qquad (a-48)$$

$$(a-49) \qquad (a-50) \qquad (a-51)$$

wherein each s is independently 0, 1, 2, 3, 4 or 5;

each R⁶ and R⁷ are independently selected from hydrogen; halo; hydroxy; amino; nitro; trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy; C₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkylo

 $C_{1\text{-}6}alkyloxycarbonyl; C_{1\text{-}6}alkylsulfonyl; cyanoC_{1\text{-}6}alkyl; hydroxyC_{1\text{-}6}alkyl; hydroxyC_{1\text{-}6}alkyloxy; hydroxyC_{1\text{-}6}alkylamino; aminoC_{1\text{-}6}alkyloxy; di(C_{1\text{-}6}alkyl)aminocarbonyl; di(hydroxyC_{1\text{-}6}alkyl)amino; (aryl)(C_{1\text{-}6}alkyl)amino; di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyloxy; di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl; arylsulfonyl; arylsulfonylamino; di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkylaminoC_{1\text{-}6}alkyl; arylsulfonyl; arylsulfonylamino; di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkylaminoC_{1\text{-}6}alkyl; arylsulfonyl; arylsulfonylamino; di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkylaminoC_{1\text{-}6}alkyl; arylsulfonyl; arylsulfonylamino; di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkylaminoC_{1\text{-}6}alkyl; arylsulfonylamino; di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkylaminoC_$

aryloxy; aryloxy C_{1-6} alkyl; aryl C_{2-6} alkenediyl; di(C_{1-6} alkyl)amino; di(C_{1-6} alkyl)amino C_{1-6} alkyl; di(C_{1-6} alkyl)amino(C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)amino; di(C_{1-6} alkyl)amino C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)amino C_{1-6} alkyl)

aminosulfonylamino(C₁₋₆alkyl)amino; aminosulfonylamino(C₁₋₆alkyl)aminoC₁₋₆alkyl; di(C₁₋₆alkyl)aminosulfonylamino(C₁₋₆alkyl)amino; di(C₁₋₆alkyl)aminosulfonylamino(C₁₋₆alkyl)aminoC₁₋₆alkyl; cyano; thiophenyl; thiophenyl substituted with di(C₁₋₆alkyl)aminoC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkylpiperazinylC₁₋₆alkyl,

hydroxy C_{1-6} alkylpiperazinyl C_{1-6} alkyl,
hydroxy C_{1-6} alkyloxy C_{1-6} alkylpiperazinyl C_{1-6} alkyl,

_

- di(C₁₋₆alkyl)aminosulfonylpiperazinylC₁₋₆alkyl,
- C_{1-6} alkyloxypiperidinyl, C_{1-6} alkyloxypiperidinyl C_{1-6} alkyl, morpholinyl C_{1-6} alkyl, hydroxy C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl, or di(hydroxy C_{1-6} alkyl)amino C_{1-6} alkyl; furanyl; furanyl substituted with hydroxy C_{1-6} alkyl; benzofuranyl; imidazolyl;
- oxazolyl; oxazolyl substituted with aryl and C₁₋₆alkyl; C₁₋₆alkyltriazolyl; tetrazolyl; pyrrolidinyl; pyrrolyl; piperidinylC₁₋₆alkyloxy; morpholinyl; C₁₋₆alkylmorpholinyl; morpholinylC₁₋₆alkyloxy; morpholinylC₁₋₆alkyl; morpholinylC₁₋₆alkylamino; morpholinylC₁₋₆alkylaminoC₁₋₆alkyl; piperazinyl; C₁₋₆alkylpiperazinyl; C₁₋₆alkylpiperazinylC₁₋₆alkyloxy; piperazinylC₁₋₆alkyl;
- naphtalenylsulfonylpiperazinyl; naphtalenylsulfonylpiperidinyl; naphtalenylsulfonyl; C₁₋₆alkylpiperazinylC₁₋₆alkyl; C₁₋₆alkylpiperazinylC₁₋₆alkylamino; C₁₋₆alkylpiperazinylC₁₋₆alkylaminoC₁₋₆alkyl; C₁₋₆alkylpiperazinylsulfonyl; aminosulfonylpiperazinylC₁₋₆alkyloxy; aminosulfonylpiperazinylC₁₋₆alkyl; di(C₁₋₆alkyl)aminosulfonylpiperazinyl;
- di(C₁₋₆alkyl)aminosulfonylpiperazinylC₁₋₆alkyl; hydroxyC₁₋₆alkylpiperazinyl; hydroxyC₁₋₆alkylpiperazinylC₁₋₆alkyl; C₁₋₆alkyloxypiperidinyl; C₁₋₆alkyloxypiperidinylC₁₋₆alkyl; piperidinylaminoC₁₋₆alkylamino; piperidinylaminoC₁₋₆alkylaminoC₁₋₆alkyl; (C₁₋₆alkylpiperidinyl)(hydroxyC₁₋₆alkyl)aminoC₁₋₆alkylamino;
- $(C_{1-6}alkylpiperidinyl)(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkylaminoC_{1-6}alkyl;\\ hydroxyC_{1-6}alkylpiperazinyl;\\ hydroxyC_{1-6}alkyloxyC_{1-6}alkylpiperazinylC_{1-6}alkyl;\\ (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)amino; (hydroxyC_{1-6}alkyl)(C_{1-6}alkyl)aminoC_{1-6}alkyl;\\ hydroxyC_{1-6}alkylaminoC_{1-6}alkyl; di(hydroxyC_{1-6}alkyl)aminoC_{1-6}alkyl;\\$
- pyrrolidinyl C_{1-6} alkyl; pyrrolidinyl C_{1-6} alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl substituted with two substituents selected from C_{1-6} alkyl or trihalo C_{1-6} alkyl; pyridinyl; pyridinyl substituted with C_{1-6} alkyloxy, aryloxy or aryl; pyrimidinyl; tetrahydropyrimidinylpiperazinyl; tetrahydropyrimidinylpiperazinyl C_{1-6} alkyl; quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents
- independently selected from halo, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, hydroxyC₁₋₄alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxyC₁₋₄alkyloxy, C₁₋₄alkyloxycarbonyl, aminoC₁₋₄alkyloxy, di(C₁₋₄alkyl)aminoC₁₋₄alkyloxy, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl,
- $\begin{aligned} \text{di}(C_{1\text{-}4}\text{alkyl}) \text{amino} C_{1\text{-}4}\text{alkylamino} C_{1\text{-}4}\text{alkyl}, & \text{di}(C_{1\text{-}4}\text{alkyl}) \text{amino}(C_{1\text{-}4}\text{alkyl}) \text{amino}(C_{1\text{-}4}\text{alkyl}) \text{amino} C_{1\text{-}4}\text{alkyl}, \\ & \text{di}(C_{1\text{-}4}\text{alkyl}) \text{amino} C_{1\text{-}4}\text{alkyl}(C_{1\text{-}4}\text{alkyl}) \text{amino}, \\ & \text{di}(C_{1\text{-}4}\text{alkyl}) \text{amino} C_{1\text{-}4}\text{alkyl}(C_{1\text{-}4}\text{alkyl}) \text{amino} C_{1\text{-}4}\text{alkyl}, \end{aligned}$

35

 $aminosulfonylamino(C_{1-4}alkyl)amino,\\$ $aminosulfonylamino(C_{1-4}alkyl)aminoC_{1-4}alkyl,\\$ $di(C_{1-4}alkyl)aminosulfonylamino(C_{1-4}alkyl)amino,\\$ $di(C_{1-4}alkyl)aminosulfonylamino(C_{1-4}alkyl)aminoC_{1-6}alkyl, cyano,$

- piperidinyl C_{1-4} alkyloxy, pyrrolidinyl C_{1-4} alkyloxy, aminosulfonylpiperazinyl, aminosulfonylpiperazinyl C_{1-4} alkyl, di $(C_{1-4}$ alkyl)aminosulfonylpiperazinyl, di $(C_{1-4}$ alkyl)aminosulfonylpiperazinyl C_{1-4} alkyl, hydroxy C_{1-4} alkylpiperazinyl, hydroxy C_{1-4} alkylpiperazinyl C_{1-4} alkyl, C_{1-4} alkyloxypiperidinyl, C_{1-4} alkyloxypiperidinyl C_{1-4} alkyl, hydroxy C_{1-4} alkyloxy C_{1-4} alkylpiperazinyl,
- hydroxyC₁₋₄alkyloxyC₁₋₄alkylpiperazinylC₁₋₄alkyl,

 (hydroxyC₁₋₄alkyl)(C₁₋₄alkyl)amino, (hydroxyC₁₋₄alkyl)(C₁₋₄alkyl)aminoC₁₋₄alkyl,

 di(hydroxyC₁₋₄alkyl)amino, di(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkyl, furanyl, furanyl

 substituted with -CH=CH-CH=CH-, pyrrolidinylC₁₋₄alkyl, pyrrolidinylC₁₋₄alkyloxy,

 morpholinyl, morpholinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyl,
- morpholinylC₁₋₄alkylamino, morpholinylC₁₋₄alkylaminoC₁₋₄alkyl, piperazinyl, C₁₋₄alkylpiperazinyl, C₁₋₄alkylpiperazinylC
- piperidinylaminoC₁₋₄alkylaminoC₁₋₄alkyl,

 (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylamino,

 (C₁₋₄alkylpiperidinyl)(hydroxyC₁₋₄alkyl)aminoC₁₋₄alkylaminoC₁₋₄alkyl,

 pyridinylC₁₋₄alkyloxy, hydroxyC₁₋₄alkylamino, hydroxyC₁₋₄alkylaminoC₁₋₄alkyl,

 di(C₁₋₄alkyl)aminoC₁₋₄alkylamino, aminothiadiazolyl,
- aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino; each R⁶ and R⁷ can be placed on the nitrogen in replacement of the hydrogen;
 - aryl in the above is phenyl, or phenyl substituted with one or more substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl, cyano or hydroxycarbonyl.
 - 2. A compound as claimed in claim 1 wherein n is 0, 1 or 2; t is 0, 1, 2 or 3; each Q is

 —C≤; R¹ is –C(O)NH(OH) or –NR¹¹C(O)C=N(OH)R¹⁰ wherein R¹⁰ is
 arylC₁-6alkyl and R¹¹ is hydrogen; R² is hydrogen, C₁-6alkyl or
 naphtalenylsulfonylpyrazinyl; each R³ independently represents a hydrogen atom;
 R⁴ is hydrogen, hydroxy, hydroxyC₁-6alkyl or C₁-6alkyloxy; R⁵ is hydrogen, C₁6alkyl, hydroxyC₁-6alkyl or C₁-6alkyloxyC₁-6alkyl; is a radical selected

20

from (a-1), (a-7) or (a-20); each s is independently 0 or 1; each R^6 is independently selected from hydrogen; thiophenyl; furanyl; benzofuranyl; phenyl; or phenyl substituted with one substituents independently selected from C_{1-6} alkyl, C_{1-6} alkyloxy, hydroxy C_{1-4} alkyl, C_{1-4} alkylsulfonyl or di(C_{1-4} alkyl)amino and each R^7 is independently selected from hydrogen.

3. A compound according to claim 1 wherein t is 0;

R¹ is -C(O)NR⁸R⁹, -C(O)-C₁₋₆alkanediylSR¹⁰, -NR¹¹C(O)N(OH)R¹⁰,
-NR¹¹C(O)C₁₋₆alkanediylSR¹⁰, -NR¹¹C(O)C=N(OH)R¹⁰ or another Zn-chelating-group wherein R⁸ and R⁹ are each independently selected from hydrogen, hydroxy,

group wherein R⁸ and R⁹ are each independently selected from hydrogen, hydroxy, hydroxyC₁₋₆alkyl or aminoC₁₋₆alkyl;

R² is hydrogen, halo, hydroxy, amino, nitro, C₁₋₆alkyl, C₁₋₆alkyloxy, trifluoromethyl or di(C₁₋₆alkyl)amino;

 R^4 is hydrogen, hydroxy, amino, hydroxy C_{1-6} alkyl, C_{1-6} alkyl,

15 C_{1-6} alkyloxy, aryl C_{1-6} alkyl, aminocarbonyl, amino C_{1-6} alkyl,

 C_{1-6} alkylamino C_{1-6} alkyl or di(C_{1-6} alkyl)amino C_{1-6} alkyl;

R⁵ is hydrogen;

is a radical selected from

(a-1), (a-3), (a-4), (a-5), (a-6), (a-7), (a-8), (a-9), (a-10), (a-11), (a-12), (a-13), (a-14), (a-15), (a-16), (a-17), (a-18), (a-19), (a-20), (a-21), (a-22), (a-23), (a-24), (a-25), (a-26), (a-28), (a-29), (a-30), (a-31), (a-32), (a-33), (a-34), (a-35), (a-36), (a-37), (a-38), (a-39), (a-40), (a-41), (a-42), (a-44), (a-45), (a-46), (a-47), (a-48) or (a-51);

each s is independently 0, 1, 2, 3 or 4;

R⁶ is hydrogen; halo; hydroxy; amino; nitro; trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy; C₁₋₆alkyloxy; C₁₋

 $C_{1\text{-}6}$ alkylsulfonyl; hydroxy $C_{1\text{-}6}$ alkyl; aryloxy; di($C_{1\text{-}6}$ alkyl)amino; cyano; thiophenyl; furanyl; furanyl substituted with hydroxy $C_{1\text{-}6}$ alkyl; benzofuranyl; imidazolyl; oxazolyl; oxazolyl substituted with aryl and $C_{1\text{-}6}$ alkyl;

C₁₋₆alkyltriazolyl; tetrazolyl; pyrrolidinyl; pyrrolyl; morpholinyl;

C₁₋₆alkylmorpholinyl; piperazinyl; C₁₋₆alkylpiperazinyl; hydroxyC₁₋₆alkylpiperazinyl; C₁₋₆alkyloxypiperidinyl; pyrazoly; pyrazolyl substituted with one or two substituents selected from C₁₋₆alkyl or trihaloC₁₋₆alkyl; pyridinyl; pyridinyl substituted with C₁₋₆alkyloxy, aryloxy or aryl; pyrimidinyl; quinolinyl; indole; phenyl; or phenyl substituted with one or two substituents independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy or trifluoromethyl; and

independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy or trifluoromethyl; and R^7 is hydrogen; halo; hydroxy; amino; nitro; trihalo C_{1-6} alkyl; trihalo C_{1-6} alkyloxy; C_{1-6} alkyloxy;

hydroxy C_{1-6} alkyl; aryloxy; di(C_{1-6} alkyl)amino; cyano; pyridinyl; phenyl; or phenyl substituted with one or two substituents independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy or trifluoromethyl.

- 5 4. A compound as claimed in claim 1 wherein
 - R⁸ and R⁹ are each independently selected from hydrogen, hydroxy, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl or aminoaryl;
 - R⁵ is hydrogen, C₁₋₆alkyl, C₃₋₁₀cycloalkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkyl or di(C₁₋₆alkyl)aminoC₁₋₆alkyl;
- 10 (a-9), (a-10), (a-11), (a-12), (a-13), (a-14), (a-15), (a-16), (a-17), (a-18), (a-19), (a-20), (a-21), (a-22), (a-23), (a-24), (a-25), (a-26), (a-27), (a-28), (a-29), (a-30), (a-31), (a-32), (a-33), (a-34), (a-35), (a-36), (a-37), (a-38), (a-39), (a-40), (a-41), (a-42) (a-43) or (a-44);
- each R⁶ and R⁷ are independently selected from hydrogen; halo; hydroxy; amino; nitro; trihaloC₁₋₆alkyl; trihaloC₁₋₆alkyloxy; C₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkyloxy; C₁₋₆alkyloxy; C₁₋₆alkyloxy; C₁₋₆alkylsulfonyl; cyanoC₁₋₆alkyl; hydroxyC₁₋₆alkyl; hydroxyC₁₋₆alkyloxy; hydroxyC₁₋₆alkylamino; aminoC₁₋₆alkyloxy; di(C₁₋₆alkyl)aminocarbonyl; di(hydroxyC₁₋₆alkyl)amino;
- 20 $\text{arylC}_{1\text{-}6}$ alkyl)amino; $\text{di}(C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy; $\text{di}(C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkylamino; arylsulfonyl; arylsulfonylamino; aryloxy; $\text{arylC}_{2\text{-}6}$ alkenediyl; $\text{di}(C_{1\text{-}6}$ alkyl)amino; $\text{di}(C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl; $\text{di}(C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl; cyano; thiophenyl; thiophenyl substituted with
- di(C_{1-6} alkyl)amino C_{1-6} alkyl(C_{1-6} alkyl)amino C_{1-6} alkyl, di(C_{1-6} alkyl)amino C_{1-6} alkyl, C_{1-6} alkylpiperazinyl C_{1-6} alkyl or di(hydroxy C_{1-6} alkyl)amino C_{1-6} alkyl; furanyl; imidazolyl; C_{1-6} alkyltriazolyl; tetrazolyl; pyrrolidinyl; piperidinyl C_{1-6} alkyloxy; morpholinyl; C_{1-6} alkylmorpholinyl; morpholinyl C_{1-6} alkylpiperazinyl C_{1-6} alkylpiperazinyl C_{1-6} alkylpiperazinyl C_{1-6} alkylpiperazinyl C_{1-6} alkyloxy;
- 30 C_{1-6} alkylpiperazinyl C_{1-6} alkyl; C_{1-6} alkylpiperazinylsulfonyl; aminosulfonylpiperazinyl C_{1-6} alkyloxy; aminosulfonylpiperazinyl; aminosulfonylpiperazinyl C_{1-6} alkyl; di $(C_{1-6}$ alkyl)aminosulfonylpiperazinyl; di $(C_{1-6}$ alkyl)aminosulfonylpiperazinyl C_{1-6} alkyl; hydroxy C_{1-6} alkylpiperazinyl C_{1-6} alkyl; C_{1-6} alkylpiperazinyl; hydroxy C_{1-6} alkylpiperazinyl C_{1-6} alkyl; C_{1-6} alkylpiperazinyl;
- 35 C_{1-6} alkyloxypiperidinyl C_{1-6} alkyl; hydroxy C_{1-6} alkylpiperazinyl; hydroxy C_{1-6} alkylpiperazinyl C_{1-6} alkylpiperazinyl C_{1-6} alkyl;

)

(hydroxyC₁₋₆alkyl)(C₁₋₆alkyl)amino; (hydroxyC₁₋₆alkyl)(C₁₋₆alkyl)aminoC₁₋₆alkyl; pyrrolidinylC₁₋₆alkyloxy; pyrazolyl; thiopyrazolyl; pyrazolyl substituted with two substituents selected from C₁₋₆alkyl or trihaloC₁₋₆alkyl; pyridinyl; pyridinyl substituted with C₁₋₆alkyloxy or aryl; pyrimidinyl; quinolinyl; indole; phenyl; phenyl substituted with one, two or three substituents independently selected from halo, amino, C₁₋₆alkyl, C₁₋₆alkyloxy, hydroxyC₁₋₄alkyl, trifluoromethyl, trifluoromethyloxy, hydroxyC₁₋₄alkyloxy, C₁₋₄alkyloxyC₁₋₄alkyloxy, aminoC₁₋₄alkyloxy, di(C₁₋₄alkyl)aminoC₁₋₄alkyloxy, di(C₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, piperidinylC₁₋₄alkyloxy, pyrrolidinylC₁₋₄alkyloxy, aminosulfonylpiperazinyl, aminosulfonylpiperazinyl, di(C₁₋₄alkyl)aminosulfonylpiperazinyl,

aminosulfonylpiperazinylC₁₋₄alkyl, di(C₁₋₄alkyl)aminosulfonylpiperazinyl, di(C₁₋₄alkyl)aminosulfonylpiperazinyl, di(C₁₋₄alkyl)aminosulfonylpiperazinylC₁₋₄alkyl, hydroxyC₁₋₄alkylpiperazinyl, hydroxyC₁₋₄alkylpiperazinylC₁₋₄alkyl, C₁₋₄alkyloxypiperidinyl, C₁₋₄alkyloxypiperidinylC₁₋₄alkyl, hydroxyC₁₋₄alkyloxyC₁₋₄alkylpiperazinyl,

- hydroxyC₁₋₄alkyloxyC₁₋₄alkylpiperazinylC₁₋₄alkyl,

 (hydroxyC₁₋₄alkyl)(C₁₋₄alkyl)amino, (hydroxyC₁₋₄alkyl)(C₁₋₄alkyl)aminoC₁₋₄alkyl,

 pyrrolidinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyloxy, morpholinylC₁₋₄alkyl,

 C₁₋₄alkylpiperazinyl, C₁₋₄alkylpiperazinylC₁₋₄alkyloxy,

 C₁₋₄alkylpiperazinylC₁₋₄alkyl,
- 20 hydroxyC₁₋₄alkylamino, di(hydroxyC₁₋₄alkyl)amino, di(C₁₋₄alkyl)aminoC₁₋₄alkylamino, aminothiadiazolyl, aminosulfonylpiperazinylC₁₋₄alkyloxy, or thiophenylC₁₋₄alkylamino.
- 5. A compound as claimed in claim 1 and 2 wherein n is 1 or 2; t is 0, 1, 2 or 3; each Q is (R¹ is -C(O)NH(OH); R² is hydrogen or C₁₋₆alkyl; each R³ independently represents a hydrogen atom; R⁴ is hydrogen; R⁵ is hydrogen or C₁₋₆alkyloxyC₁₋₆alkyl; is a radical selected from (a-1) or (a-20); each s is independently 0 or 1; and each R⁶ is independently selected from hydrogen; thiophenyl; furanyl; benzofuranyl; phenyl; or phenyl substituted with one substituents independently selected from C₁₋₆alkyl, C₁₋₆alkyloxy, hydroxyC₁₋₄alkyl or di(C₁₋₄alkyl)amino.
- 6. A compound according to claim 1, 2 and 5 selected from compounds No. 13, No. 15, No. 2, No. 5, No. 21, No. 4, No. 24, No. 32, No. 26, No. 36, No. 38, No. 39, No. 40, No. 41, No. 42, No. 43, No. 44 and No. 35.

OH NH	OH NH
\$-NH	j-NH
Co. No. 13	Co. No. 15
HO N N N N S S S S S S S S S S S S S S S	HO-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N
Co. No. 2	Co. No. 5
HO-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	HO, HO, M, O, M, O
.0.7 CH ₃ OH; Co. No. 21	Co. No. 4
HOUNT	N N N N N N N N N N N N N N N N N N N
.0.23 C ₆ H ₁₄ O; Co. No. 24	.0.82 C ₂ HF ₃ O ₂ .0.82 H ₂ O; Co. No. 32
N N OH	HO-NH N H N OH
.0.85 C ₂ HF ₃ O ₂ .1.11 H ₂ O; Co. No. 26	Co. No. 36
HO-NH N H N	HO-NH N H N O
Co. No. 38	Co. No. 39

10

15

20

Ç,	
HO-NH N H N SO	HO-NH N
Co. No. 40	Co. No. 41
HO-NH H-N-SOO	HO-NH N H NO
Co. No. 42	Co. No. 43
HO-NH N H-N-SO	S N N N N N N N N N N N N N N N N N N N
Co. No. 44	Co. No. 35

- 7. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 6.
- 8. A process of preparing a pharmaceutical composition as claimed in claim 7 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 6 are intimately mixed.
- 9. A compound as claimed in any of claims 1 to 6 for use as a medicine.
- 10. Use of a compound as claimed in any of claims 1 to 6 for the manufacture of a medicament for the treatment of proliferative diseases.
- 11. A process for preparing a compound as claimed in claim 1, characterized by reacting an intermediate of formula (II) with an appropriate acid, such as for example, trifluoro acetic acid, yielding a hydroxamic acid of formula (I-a), wherein R^I is -C(O)NH(OH)

- 12. A method of detecting or identifying a HDAC in a biological sample comprising detecting or measuring the formation of a complex between a labelled compound as defined in claim (I) and a HDAC.
- 13. A combination of an anti-cancer agents and a HDAC inhibitor as claimed in any of claims 1 to 6.