Ta có : I thuộc O1O2

Vị trí của $N=\left(k+\frac{1}{2}\right)\lambda,\ I=k\lambda,$ mà N và I là cực tiểu và cực đại gần nhau $\implies k$ là như nhau $\implies NI=\left(k+\frac{1}{2}\right)\lambda-k\lambda=\frac{\lambda}{2}=0.625.$

$$\implies \lambda = 1.25.$$

Mà M là cực đại nhất và gần O_1O_2 nhất O_2 .

Trước tiên, ta tìm các cực tiểu trên đường thẳng O_1O_2 . Vì sóng giao thoa xét trong độ dài khoảng O_1O_2 , nên ta có thể suy ra độ dài O_1O_2 luôn lớn hơn độ dài từ O_1 đến các cực tiểu trong khoảng O_1O_2 .

Gọi độ dài $O_1O_2=L=16$. Ta có:

$$L > \left| \left(K + \frac{1}{2} \right) \lambda \right| \implies -\frac{L}{\lambda} + \frac{1}{2} < K < \frac{L}{\lambda} - \frac{1}{2}$$

Số điểm cực tiểu sẽ là:

$$-12.3 < K < 12.3 \implies$$
 số điểm cực tiểu là 24 điểm.

Vậy điểm cực tiểu thuộc đường tròn tâm O_1 và gần với O_1O_2 nhất sẽ là điểm có K=-12.

Khi đó:

$$d_1 - d_2 = \left(K + \frac{1}{2}\right)\lambda = \left|(-12 + \frac{1}{2}) \cdot 1.25\right| = 14.375.$$

Lại có $d_1 = O_1G = R = 16$.

$$d_2 = d_1 - 14.375 = 16 - 14.375 = 1.625.$$

Vậy khoảng cách từ M đến O_2 ngắn nhất là 1.625.