МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ТОЭ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Теоретические основы электротехники»

Тема: исследование линейных резистивных цепей

Студент гр. 1302	 Новиков Г.В.
Преподаватель	 Соседов Н.А.

Санкт-Петербург

Цель работы

Экспериментальное исследование линейных разветвленных резистивных цепей с использованием методов наложения, эквивалентного источника и принципа взаимности.

Основные теоретические положения:

В работе анализируют резистивную цепь с источниками постоянного напряжения U и тока I. Схема цепи представлена на рис.1.

рис. 1. Исследуемая цепь

В цепи U=4 В (или U=2 В — по указанию преподавателя), $I\cong 2$ мА (или $I\cong 1$ мА), $R_1=R_2=1.5$ кОм, $R_3=R_4=1.5$ кОм. Для определения токов и напряжений ветвей используют некоторые методы анализа сложных цепей, сущность которых изложена далее.

рис. 2. Цепи для определения токов методом наложения

<u>Метод наложения.</u> Реакцию цепи на действие нескольких источников определяют как алгебраическую сумму реакций на действие каждого источника

в отдельности. Метод наложения применительно к задаче определения токов в исследуемой цепи поясняет рис. 2, согласно которому $I_1=I_1'-I_1^{"}$, $I_2=I_2^{"}-I_2'$, $I_3=I_3'+I_3^{"}$, $I_4=I_4'+I_4^{"}$.

Метод эквивалентного источника напряжения. По отношению к одной из ветвей линейную цепь с несколькими источниками можно представить одним эквивалентным ИН U_0 с последовательно соединенным сопротивлением R_0 . По отношению к ветви с сопротивлением R_3 рассматриваемую цепь (рис. 1) можно представить схемой, приведенной на рис. 3, a.

рис. 3. схемы, для расчёта тока I_3 методом наложения Из схемы видно, что

$$I_3 = \frac{U_0}{R_0 + R_3},$$

где U_0 — напряжение между выводами A и B ветви 3 при ее обрыве (рис.3, δ); R_0 — выходное (эквивалентное) сопротивление цепи со стороны рассматриваемой ветви при исключении источников в схеме на рис.3, δ (это сопротивление можно также найти по формуле $R_0 = \frac{U_0}{I_{\rm K}}$, где $I_{\rm K}$ —

ток

короткого замыкания ветви 3).

<u>Принцип взаимности.</u> Если ИН (единственный в цепи), действуя в одной ветви линейной электрической цепи, вызывает ток в другой ветви, то тот же источник после его переноса во вторую ветвь вызовет в первой ветви такой же ток. Принцип взаимности поясняет рис. 4.

Рис. 4. Иллюстрация принципа взаимности

Обработка результатов

1. Исследование цепи при питании ее от двух источников Проверка полученных данных с помощью уравнений Кирхгофа:

$$I_3 - I_1 - I_2 = 0.58 - 0.29 - 0.29 = 0$$

 $I_4 + I_2 - I = 0.74 + 0.29 - 1.03 = 0$
 $U - U_1 - U_3 = 2 - 0.44 - 1.69 = -0.13 \approx 0$
 $U_4 - U_2 - U_3 = 2.15 - 0.44 - 1.69 = 0.02 \approx 0$

2. Определение токов ветвей методом наложения:

Включены источники	I ₁ , мА	I ₂ , мА	I ₃ , мА	I ₄ , мА
U	0.65	0.26	0.39	0.26
I	0.38	0.58	0.2	0.51
U, I	0.27	0.33	0.59	0.77
Из 2.2.1	0.29	0.29	0.58	0.74

5

Значения из 2 опытов примерно совпадают.

3. Определение тока ветви сопротивлением R_3 методом эквивалентного источника:

Расчет МЭИН:

Ток, рассчитанный с помощью МЭИН: 0,547

Ток в
$$2.2.1\ I_{3,1}=0.58$$

Ток в данном опыте $I_{3,3}=0.57$

Относительная погрешность І₃:

$$\delta_{I_3}{}' = \frac{|0.57 - 0.58|}{0.58} \cdot 100\% = 1,72\%$$

Абсолютная погрешность:

$$\Delta I = 0.58 - 0.57 = 0.01 \text{ (MA)}$$

4. Экспериментальная проверка принципа взаимности:

Абсолютная погрешность:

$$\Delta I = 0.37 - 0.37 = 0 \text{ (MA)}$$

Значения совпали.

Вывод: в лабораторной работе была исследована разветвлённая резистивная цепь методом наложения, методом эквивалентного источника, а также были проверены полученные значения напряжений и токов цепи с помощью уравнений Кирхгофа и был экспериментально проверен принцип взаимности. Все найденные значения совпадают с результатами эксперимента 2.2.1 (с учетом погрешностей).

Ответы на вопросы:

1. Каковы результаты контроля данных в 2.2.1?

Проверка полученных данных с помощью уравнений Кирхгофа показала, что экспериментальные данные верны с учётом погрешности.

2. Изменятся ли токи ветвей, если одновременно изменить полярность напряжения ИН и направление тока ИТ на противоположные?

Значения токов не изменятся, но изменятся их направления.

- **3.** Чему равно напряжение между узлами «*C*» и «*D*» цепи? $U_{C-D} = I_1 * R_1 I_2 * R_2 = 0,29 * 1.5 0,29 * 1.5 = 0 \text{ B}$
- **4.** Как изменить напряжение ИН, чтобы ток I_I стал равен нулю? Преобразуем схему и применим метод контурных токов:

Ответ: 1,2 В.

5. Почему рис. 2.4, σ при $U = U_0$ реализует схему метода эквивалентного источника напряжения (рис. 2.3, a)?

Потому что при $U = U_0$ на R_3 будет подано напряжение U, и эквивалентное сопротивление схемы будет таким же как и в расчёте по МЭИН в 2.2.3.

6. Чему будет равен ток I_I , если ИН поместить в ветвь 4, а ИТ отключить?

Ответ: 0,29 мА.

7. Как проконтролировать результаты экспериментов в 2.2.2, 2.2.3 и 2.2.4?

Результаты данных экспериментов можно проконтролировать сравнив их с теоритическими расчётами или сравнив их с результатом эксперимента 2.2.1.