#### 1

# Assignment 14

## KUSUMA PRIYA EE20MTECH11007

Download codes from

https://github.com/KUSUMAPRIYAPULAVARTY/ assignment14

### 1 QUESTION

Let p, m, n be positive integers and F a field.Let **V** be the space of  $m \times n$  matrices over F and **W** the space of  $p \times n$  matrices over F.Let **B** be a fixed  $p \times m$  matrix and let T be the linear transformation from V into W defined by T(A) = BA. Prove that T is invertible if and only if p = m and **B** is an invertible  $m \times m$  matrix.

2 Solution

$$T(\mathbf{A}) = \mathbf{B}\mathbf{A} \tag{2.0.1}$$

So, **B** is the transformation matrix. **B** is invertible if

1) T is one to one mapping, that is

$$\mathbf{BA} = \mathbf{BA'} \tag{2.0.2}$$

$$\implies \mathbf{A} = \mathbf{A}' \tag{2.0.3}$$

2) T must be onto, that is range( $\mathbf{B}$ )= $\mathbf{W}$ 

## 2.1 Case 1

Let us assume that T is invertible with  $T^{-1}$  from  $\mathbf{W}$  to  $\mathbf{V}$ 

For  $C \in W$ 

$$T^{-1}(\mathbf{C}) = \mathbf{B}^{-1}\mathbf{C} = \mathbf{A} \tag{2.1.1}$$

$$\mathbf{C} = \mathbf{B}\mathbf{A} \tag{2.1.2}$$

Consider the following

$$T^{-1}(\mathbf{C}) = \mathbf{B}^{-1}(\mathbf{B}\mathbf{A}) = \mathbf{A}$$
 (2.1.3)

$$\implies \mathbf{B}^{-1}\mathbf{B} = \mathbf{I}_{m \times m} \tag{2.1.4}$$

$$T(\mathbf{A}) = \mathbf{B}(\mathbf{B}^{-1}\mathbf{C}) = \mathbf{C} \tag{2.1.5}$$

$$\implies \mathbf{B}\mathbf{B}^{-1} = \mathbf{I}_{n \times n} \tag{2.1.6}$$

where **I** is the identity matrix.

But

$$BB^{-1} = B^{-1}B = I (2.1.7)$$

So, from (2.1.4), (2.1.6), (2.1.7)

$$p = m \tag{2.1.8}$$

**So.B** is an invertible  $m \times m$  matrix

2.2 Case 2

Consider p = m and **B** is an invertible  $m \times m$ matrix.

Verifying if T is onto,

Let the set of matrices  $\{A_1, A_2, \dots, A_{mn}\}$  be the basis

Any matrix  $A \in V$  can be written as

$$\mathbf{A} = \sum_{i=1}^{mn} \mathbf{A}_i \tag{2.2.1}$$

The set  $\mathbf{M} = \{\mathbf{B}\mathbf{A}_1, \mathbf{B}\mathbf{A}_2, \dots, \mathbf{B}\mathbf{A}_{mn}\}\$ lie in  $\mathbf{W}$ 

$$c_1(\mathbf{BA}_1) + c_2(\mathbf{BA}_2) + \ldots + c_{mn}(\mathbf{BA}_{mn}) = \mathbf{0}$$
 (2.2.2)

$$\implies$$
 **B** $(c_1$ **A**<sub>1</sub> +  $c_2$ **A**<sub>2</sub> + ... +  $c_{mn}$ **A**<sub>mn</sub> $) = \mathbf{0}$  (2.2.3)

Since **B** is non-singular,

$$(c_1\mathbf{A}_1 + c_2\mathbf{A}_2 + \ldots + c_{mn}\mathbf{A}_{mn}) = \mathbf{0}$$
 (2.2.4)

$$\implies c_1, c_2, \dots, c_{mn} = 0$$
 (2.2.5)

because  $\{A_1, A_2, \dots, A_{mn}\}$  are linearly independent So,M forms basis for W

Any vector  $C \in W$  can be written as

$$\mathbf{C} = \sum_{i=1}^{mn} \mathbf{B} \mathbf{A}_i \tag{2.2.6}$$

$$=\mathbf{B}(\sum_{i=1}^{mn}\mathbf{A}_i)\tag{2.2.7}$$

$$=$$
 **BA** (from (2.2.1)) (2.2.8)

So,range(B)=W

Consider the matrix  $A, A' \in V$  such that

$$\mathbf{BA} = \mathbf{BA'} \tag{2.2.9}$$

$$\mathbf{B}^{-1}(\mathbf{B}\mathbf{A}) = \mathbf{B}^{-1}(\mathbf{B}\mathbf{A}') \tag{2.2.10}$$

$$(\mathbf{B}^{-1}\mathbf{B})\mathbf{A} = (\mathbf{B}^{-1}\mathbf{B})\mathbf{A}' \tag{2.2.11}$$

$$\implies \mathbf{A} = \mathbf{A}' \tag{2.2.12}$$

So, T is invertible.

#### 2.3 Conclusion

From case 1,case 2 T is invertible if and only if p = m and **B** is an invertible  $m \times m$  matrix.

### 2.4 Example

Let p = m = 3, n = 4 Let  $T : \mathbf{V} \to \mathbf{W}$  adds row 2 to row 3 for a matrix  $\mathbf{A} \in \mathbf{V}$ 

The elementary matrix that performs this is

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \tag{2.4.1}$$

Let 
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 4 & 9 & 2 & 6 \end{pmatrix}$$
 (2.4.2)

$$T(\mathbf{A}) = \mathbf{B}\mathbf{A} \tag{2.4.3}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 4 & 9 & 2 & 6 \end{pmatrix}$$
 (2.4.4)

$$= \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 5 & 12 & 8 & 13 \end{pmatrix} \tag{2.4.5}$$

The inverse transformation  $T^{-1}: \mathbf{W} \to \mathbf{V}$  subtracts row2 from row 3 for a matrix  $\mathbf{C} \in \mathbf{W}$  and is

performed by elementary matrix

$$\mathbf{U} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \tag{2.4.6}$$

Let 
$$\mathbf{C} = \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 5 & 12 & 8 & 13 \end{pmatrix}$$
 (2.4.7)

$$T^{-1}(\mathbf{C}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 5 & 12 & 8 & 13 \end{pmatrix}$$
(2.4.8)

$$= \begin{pmatrix} 1 & 2 & 2 & 5 \\ 1 & 3 & 6 & 7 \\ 4 & 9 & 2 & 6 \end{pmatrix}$$
 (2.4.9)

$$= \mathbf{A} \quad (2.4.10)$$

Also, 
$$\mathbf{UB} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 (2.4.11)

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (2.4.12)$$

$$\mathbf{BU} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \quad (2.4.13)$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (2.4.14)$$

$$\implies \mathbf{B}^{-1} = \mathbf{U} \quad (2.4.15)$$

So, T is invertible and  $\mathbf{B}$  is an invertible  $3\times3$  matrix.