TABLE I
AVERAGE PREQUENTIAL ACCURACY (STANDARD DEVIATION) ACROSS 30 RUNS FOR THE SYNTHETIC DATA STREAMS WITH GRADUAL DRIFTS

	Avances Description Assurance (Standard Deviction)														
Average Prequential Accuracy (Standard Deviation)								Nememyi Post Hoc Test Friedman p-value							
Data	Across 30 Runs For The Synthetic Data Streams								p-value						
Stream								Test	CDCMS	CDCMS	CDCMS	CDCMS	CDCMS	CDCMS	
Sucam	CDCMS	HTNB	OzaBag	DP	OAUE	RCD	DDD	p-value	vs	vs	vs	vs	vs	vs	
								1	HTNB	OzaBag	DP	OAUE	RCD	DDD	
G: 1	87.737%	67.745%	75.283%	88.3%	85.92%	87.806%	87.786%	-2.2E 16	2 25 00		0.00074	0.17700	0.01706	0.12520	
Sine1	(6.109%)	(22.178%)	(23.252%)	(5.958%)	(9.998%)	(6.026%)	(7.341%)	<2.2E-16	2.3E-08	0.00034	0.00074	0.17789	0.91/26	0.13530	
G: 0	92.692%	65.555%	74.39%	91.689%	89.968%	90.39%	91.632%	-2.2E 16	C OF 1.4	2 OF 14	0.06065	1.05.11	2.25.06	0.12520	
Sine2	(7.666%)	(26.393%)	(26.552%)	(7.935%)	(12.008%)	(8.643%)	(9.236%)	<2.2E-16	6.3E-14	2.9E-14	0.06265	1.6E-11	2.2E-06	0.13530	
A 1	89.53%	74.003%	71.998%	85.268%	89.707%	85.634%	87.293%	≠2.0E.1€	1.7E 10	7 (F 14	2.05.07	0.0062	0.0020	0.2575	
Agr1	(8.576%)	(11.758%)	(12.03%)	(10.152%)	(9.193%)	(8.302%)	(10.867%)	<2.2E-16	1.7E-12	7.6E-14	2.9E-07	0.8962	0.0020	0.3575	
42	78.494%	67.301%	68.304%	71.877%	80.458%	73.954%	74.09%	<0.0E 16	5 OF 14	C 5TC 10	1 (E 0(0.55200	0.10000	0.10000	
Agr2	(11.311%)	(12.327%)	(12.175%)	(9.767%)	(9.153%)	(10.229%)	(11.955%)	<2.2E-16	3.2E-14	0.5E-12	1.0E-00	0.33289	0.10088	0.10088	
A ~m2	82.895%	70.068%	70.295%	75.833%	83.413%	78.58%	77.759%	<2.2E 16	9.2E 14	1.4E-13	2.70.05	0.553	0.074	0.026	
Agr3	(9.108%)	(8.178%)	(8.731%)	(7.616%)	(9.116%)	(9.037%)	(10.457%)	<2.2E-10	0.2E-14	1.4E-13	2.7E-03	0.555	0.074	0.020	
Agr4	81.187%	69.749%	67.592%	75.46%	82.505%	77.783%	77.647%	∠2.2E 16	1.6E 11	4.9E-14	1.6E.06	0.55280	0.22020	0.02721	
Ag14	(11.45%)	(14.208%)	(14.072%)	(12.894%)	(10.119%)	(11.093%)	(13.051%)	<2.2E-10	1.0E-11	4.9E-14	1.0E-00	0.33269	0.22920	0.03731	
SEA1	87.591%	86.117%	86.581%	86.879%	87.168%	86.71%	87.525%	∠2.2E 16	7.5E 14	6.8E-14	2.0E.05	0.02110	4.6E 10	0.00114	
SEAT	(1.488%)	(2.239%)	(2.777%)	(1.709%)	(2.505%)	(1.855%)	(1.652%)	<2.2E-10	7.3E-14	0.6E-14	2.0E-03	0.03110	4.0E-10	0.96114	
SEA2	86.841%	85.036%	85.733%	86.296%	86.713%	86.033%	86.738%	<2.2F 16	6.7E 14	1.0E-13	0.00015	0.59364	7.3E-09	0.96311	
SEAZ	(1.652%)	(3.392%)	(3.62%)	(1.854%)	(2.579%)	(1.965%)	(1.964%)	<2.2E-10	0./E-14						
STA1	98.268%	86.462%	86.782%	98.183%	96.898%	97.783%	98.132%	∠2 2E-16	7.0F-14	4.7E-13	0.4720	5.7E-07	0.0040	1.0000	
SIAI	(4.193%)	(14.325%)	(13.774%)	(4.306%)	(7.258%)	(4.91%)	(4.466%)	2.2E-10	7.0E-14						
STA2	98.155%	78.25%	78.511%	98.079%	96.842%	97.713%	97.949%	∠2.2E 16	7.0F.14	4.9E-14	0.5936	3.7E 11	4.2E-06	0.0144	
31A2	(4.623%)	(16.809%)	(16.635%)	(4.65%)	(7.484%)	(5.402%)	(5.028%)	2.2E-10	7.0E-14	4.7E-14	0.5930	3.7E-11	4.2E-00	0.0144	

Lime or light grey in the column of Data Stream means that synthetic data stream consists of recurring concepts. Cells with bold text represent the best accuracy (or approaches have no significant difference with best one) in data stream. Coloured Nemenyi p-value cells represent that there is significant difference (p-value \leq 0.05) and the proposed approach performed better (lime or light grey) / worse (orange or dark grey) based on the mean and standard deviation of its prequential accuracy. Nemenyi p-value cells in white represent no significant difference.

AVERAGE PREQUENTIAL ACCURACY (STANDARD DEVIATION) ACROSS 30 RUNS FOR THE SYNTHETIC DATA STREAMS WITH ABRUPT DRIFTS

AVERA	AVERAGE FREQUENTIAL ACCURACY (STANDARD DEVIATION) ACROSS 30 RUNS FOR THE STATHETIC DATA STREAMS WITH ABRUPT DRIFTS														
	Average Prequential Accuracy (Standard Deviation)								Nememyi Post Hoc Test						
Data	Across 30 Runs For The Synthetic Data Streams								p-value						
Stream	CDCMS	HTNB	OzaBag	DP	OAUE	RCD	DDD		CDCMS	CDCMS	CDCMS	CDCMS	CDCMS	CDCMS	
								p-value	VS	VS	VS	VS	vs	vs	
									HTNB	OzaBag	DP	OAUE	RCD	DDD	
Sine1	90.248%	74.35%	78.58%	89.374%	86.846%		88.54%	<2.2E-16	6 3F-14	4.9E-14	0.00122	2.4E-11	0.28928	8.6E-05	
Silier	(1.586%)		/	` /	(9.164%)	(1.827%)	(6.961%)		0.5L 11						
Sine2	95.894%	65.559%		91.557%	91.593%	94.061%	93.755%	<2.2E-16	6.3E-14	4.9E-14	1.6E-11	1.6E-06	0.22920	0.03731	
Sinc2	` /	\	(/	` /	(9.918%)	(4.032%)	(7.22%)							0.03731	
Agr1	90.31%	76.283%		87.209%	90.666%	86.706%	88.805%	<2.2F-16	8 2F-14	1.7E-13	0.00620	0 59364	1.6F-06	0.59364	
71511	` /	\	(10.802%)	. ,		(9.617%)	1	0.2E 11	11,2 10	0.00020	0.0000	1.02 00			
Agr2	79.528%	67.575%		72.668%	81.807%	74.711%	75.038%	< 2.2E-16	4.9E-14	1.6E-11	1.6E-06	0.55289	0.03110	0.25817	
11812	` /	` /	\	\	(8.609%)	\ /	. /	(2.22 10	,2 1.	1.02 11	1.02 00	0.00207	0.00110	0.20017	
Agr3	83.888%	69.972%	70.404%	76.95%	84.499%	77.986%	79.789%	< 2.2E-16	8.2E-14	1.7E-13	3.0E-06	0.55289	0.02581	0.22920	
11810	(,	(8.402%)	(8.892%)	(8.428%)	(8.921%)	(9.576%)	· /	(2.22 10	0.22 1.	1172 10	5.0 <u>2</u> 00	0.00207	0.02001	0.22,20	
Agr4	80.775%	71.867%	70.141%	78.063%	82.984%	77.679%	78.324%	< 2.2E-16	3.7E-11	5.2E-14	0.15553	0.47195	8 6E-05	0.02581	
1181	(12.21%)		\	· /	(10.584%)	\ /		(2.22 10	517 2 11	0.22 1.	0.10000	011/1/0	0.02 00	0.02001	
SEA1	87.569%	86.136%	86.58%	86.434%	87.378%		87.538%	< 2.2E-16	6.7E-14	8.6E-05	1.0E-13	0.1555	1.6E-08	1.0000	
SE211	(1.528%)	(2.467%)	(2.974%)	(1.893%)	(2.551%)	(1.633%)	(,	\2.2B 10	0.7L 11	0.0L 03	1.0L 13	0.1555	1.0L 00	1.0000	
SEA2	86.935%	85.05%	85.773%	85.976%	86.953%		86.884%	<2.2E-16	6.6E-14	4.2E-12	0.00122	0.99994	3.3E-08	0.71190	
OL: 12	(1.761%)	(3.605%)	(3.856%)	(2.514%)	(2.667%)	(2.105%)	(2.08%)								
STA1	99.936%	90.324%	90.142%	99.904%	98.129%	99.945%	98.964%	<2.2E-16	1.0F-11	5.0F-14	0.5529	1.6E-06	0.5529	0.0062	
GIAI	,	\	(11.639%)	` /	(5.867%)	(0.203%)			1.0L-11	3.0L-14	0.5527	1.02-00	0.3327	0.0002	
STA2	99.953%	86.898%		99.893%	98.004%	99.946%	99.024%	<2.2E-16	6.6F-14	5.0F-1/	0.0077	2.4E-11	0.6340	2.2E-06	
51A2	(0.156%)	(15.764%)	(16.241%)	(0.3%)	(6.281%)	(0.161%)	(3.2%)	Z.2E-10	0.0E-14	3.0E-14	0.0077	2.715-11	0.0340	2.215-00	

Lime or light grey in the column of Data Stream means that synthetic data stream consists of recurring concepts. Cells with bold text represent the best accuracy (or approaches have no significant difference with best one) in data stream. Coloured Nemenyi p-value cells represent that there is significant difference (p-value ≤ 0.05) and the proposed approach performed better (lime or light grey) / worse (orange or dark grey) based on the mean and standard deviation of its prequential accuracy. Nemenyi p-value cells in white represent no significant difference.

AVERAGE PREQUENTIAL ACCURACY (STANDARD DEVIATION) ACROSS 30 RUNS FOR THE REAL WORLD DATA STREAMS

	1	Average P	requential	Accuracy	(Standard	Deviation)		Nememyi Post Hoc Test							
Data Stream	Across 30 Runs For The Real World Data Streams								p-value						
								Test	CDCMS	CDCMS	CDCMS	CDCMS	CDCMS	CDCMS	
	CDCMS	HTNB	OzaBag	DP	OAUE	RCD	DDD	p-value	vs	vs	VS	VS	VS	vs	
										OzaBag		OAUE	RCD	DDD	
KDD	99.738%	99.65%	99.728%	99.65%	99.663%	99.65%	99.717%	<2.2E 16	4 OE 14	0.4225	4 OE 14	1 6E 06	4 OE 14	0.0117	
Cup 99	(0.191%)	(0.291%)	(0.278%)	99.65% (0.291%)	(1.073%)	(0.291%)	(0.277%)	₹2.2E-10	4.715-14	0.4323	4.715-14	1.0L-00	4.7L-14	0.0117	
Power	10.24/%	14.833%	14.907%	14.03/%	10.23/%	13.84%	14.838%	<0.0E 16							
Supply	(4.115%)	(3.359%)	(3.28%)	(3.671%)	(4.523%)	(3.226%)	(3.303%)		8.0L-07	0.01172	1.215-13	0.99903	0.1L-14	2.2E-00	
Sancor	89.38%	56.283%	71.126%	83.504% (16.628%)	92.332%	53.402%	85.838%	<2.2E-16	1 6F 11	1.6E.06	0.0062	0.5520	4 OF 14	0.5520	
Schsor	(8.867%)	(17.35%)	(15.96%)	(16.628%)	(7.306%)	(18.793%)	(12.99%)	2.2E-10	1.0E-11	1.02-00	0.0002	0.5529	4.70-14	0.5529	

Cells with bold text represent the best accuracy (or approaches have no significant difference with best one) in data stream. Coloured Nemenyi p-value cells represent that there is significant difference (p-value ≤ 0.05) and the proposed approach performed better (lime or light grey) / worse (orange or dark grey) based on the mean and standard deviation of its prequential accuracy. Nemenyi p-value cells in white represent no significant difference.