泛做表格 姓名:于纪平

试题编号	名称	题目大意	算法讨论	时空复杂度
2000 A	Abbott's Revenge	有一个 9×9 的网格地图,要求从某个点沿某个方向出发,最终到达终点。从每条边的某个方向走过去,只能到达给定的若干条相邻的边。输出到终点的最短路径或输出无法到达。	由于在原图的每个点会有 4 种朝向,彼此不同且互不影响,所以考虑。将原图的每个点拆成 4 个点,分别代表到达该点时身体的朝向。我们可以用有序三元组(x,y,z)表示一个状态,即当前的坐标为(x,y),方向朝 z(0≤z≤3)。这样,在所有允许进行转移的状态表示的点之间连一条边权为 1 的边,原问题便转化为了在新图上求最短路的问题。由于图的边权均为 1,我们可以通过 BFS 直接求解。	时间: O(N^2) 空间: O(N^2)
2006 G	Pilgrimage	有若干人参加了旅行,大家有共有财产,共有 N 个操作,分为 4 种:加入 k 个人且每个人交纳原来平均每人的钱数;退出 k 个人同时每个人拿走自己的一份钱;从每个人收 k 元钱;从公共财产拿出 k 元使用。已知在全过程中,所有的除法从未发生涉及分数的情况,求一切可能的初始人数。数据规模:N≤50,k≤2000,T(每个文件的输入数据个数)≤30000。	对于每一次 IN 操作,我们可以得到一个信息: 从上次 IN 之后到这次 IN 之前,所有的 PAY 操作的k值总和,除以上一次 IN 之后时当时的人数,余数为 0。 设初始人数为x,则对于每次 IN 操作,我们能够得到 1 个方程。形式为: a mod (x + b) = 0,其中 a 与 b 均为常数。事实上,a 为从上次 IN 操作之后到现在的 PAY 操作的k值总和,b 为在此之前所有 IN 操作的k值总和。总计有O(N)个方程。 对于每个方程,我们需要用 O(k^0.5)的时间处理,则对于 N 个方程,我们就可以在O(Nk^0.5)的时间内统计出每个x符合的方程个数,再从最小值到 O(Nk)(x可能取到的最大值)枚举x扫一遍即可。总的时间复杂度为 O(Nk)。用 STL 可以优化到O(Nk^0.5)。	时间: O(Nk^0.5) 空间: O(Nk^0.5)
2011	Mummy	坐标网格上有n个木乃伊, 你站在原点处的	二分答案 a 将问题转化为:是否存在一种方案,使得	时间:
20111	Madness	小正方形。你与木乃伊轮流行动: 你可以选择移	经过a个回合之后,你不与任何一个木乃伊相遇。这等价	O(nlog^2n)

		动到邻接的 8 个格子之一或不动,然后每个木乃伊移动到邻接的 8 个格子之一,使得他与你的欧几里得距离最小。求在你与某个木乃伊相遇之前,能经过的最大回合数,或输出存在永不相遇的策略。 数据规模: n≤10^5, xi , yi ≤10^6。	于,你的范围中存在一个格子,它不在任何一个木乃伊的范围中,其中的范围均为边长 2a+1 的正方形。 所以将静态二维问题转化为动态一维问题,用扫描线法和线段树维护。将每个正方形的纵向边按照 x 坐标排序,而在 y 坐标方向开一维数组。从左向右一次扫描每条纵向边,如果当前扫到的是左边界,则在对应的坐标上进行区间减 1。只要当前的横坐标在你的正方形范围之中,且当前列的数组中最小值为 0,就说明全局的最小值为 0。	空间: O(x)
1999 A	Bee Breeding	求该图中i与j的距离(最短路)。i,j≤10000。	预处理出 10000 个点每个点的位置,对于每次询问直接输出距离。	时间: O(i+Q) 空间: O(i)
2000 E	Internet Bandwidth	有 N 个电脑由 M 条双向电缆连接,求从 S 到 T 的带宽。 N≤1000, M≤N(N-1)/2	直接做最大流算法。注意是无向边。	时间: O(N^2*M) 空间: O(N+M)
2010 B	Barcodes	给出 Code-11 的编码规则(码表),及检验字符的规则 C 与 K 的公式,给出一个条形码的	首先枚举窄区间的宽度依次判断是否在误差容许范围内。如果不存在合法的长度直接输出错误信息。然后依	时间: O(len)

		信息 (方向不一定,且可能有误差),尝试对其	次判断是否可能是正读或反读。判断之后,需要再判断条	空间:
		进行解码。	码的长度是否合法,解码出的信息是否符合检验字符并输	O(len)
			出。	
2005 I	Workshops	w个会议,每个会议有参加人数与持续时间两种属性。r个房间,每个房间有可容纳人数与可用时间两种属性。只有两种属性均不超过房间的会议才能被安排。求最少不被安排的会议数,和在此基础上最少不被安排的参加人数。w≤1000,r≤1000,人数≤100,时间≤300。	建费用流图:从S向每个会议连边,容量为1,费用为0;从每个房间向T连边,容量为1,费用为0。对于能匹配的会议和房间,连容量为1,费用为(最大人数-此会议参加人数)的边。做最小费用最大流就是所求的解。这种算法已足以通过本题,然而如果用二维线段树建图进一步优化,可以得到效率更高的算法。	时间: O((w+r)w^2 r^2) 空间: O(wr)
1999 E	Trade on Verweggistan	有若干组商品,每组商品有若干个,价格不同,对于每组商品可以买从头开始的任意多个。最后,对于所有买入的商品以 10 元每件的价格卖出,求最大总获利,和在此基础上所有可能的总购买数量。 商品组数 w 不超过 50,每组商品数 b 不超过 20。	先将所有的价格都减去 10 求出获利,对于每组商品,处理处其前缀和的最大值,即为最大获利。所有前缀和等于这个最大值的数量都是合法的。最后再进行一次简单dp 就可以求出在此基础上所有可能的总购买数量。	时间: O(w^2b^2) 空间: O(wb)
1998 E	Petri Net Simulation	有 NP 个库所,每个库所有若干个令牌;有 NT 个变换法则,每个法则的秒数如下:从若干 的库所中各取出 1 个令牌(前提是其中的令牌是 足够的),然后再若干个库所中个加上 1 个令牌。每个时刻会有随机的一个变换法则生效,求 NT 时刻之后每个库所的状态。保证答案是唯一的。 NP≤100, NT≤100, NF≤1000。	由于答案是唯一的,所以直接按题意模拟:对于每个时刻,依次遍历所有变换法则,判断是否可行,可行则进行操作。	时间: O(NT*NF*N P) 空间: O(NF*NP)
2001 B	Say Cheese	无穷大的奶酪中有一只小虫要与另一只小虫会合,另一只小虫不动,而它每 10 秒可以穿过 1 毫米的奶酪。奶酪中有若干个球形空间,通	建图:新图两点间距离是通过两个球形空间所需最短时间。在新图上做 Dijkstra 算法,求出两点间最短路。	时间: O(n^2) 空间:

		过这些不需要时间。求会合的最短时间。		O(n^2)
		n≤100。		
2003 H	A Spy in the Metro	给出水平直线上 N 个车站和各段间行车时间与列车时刻表。一个人在时刻 0 来到了最左边的车站,希望在时刻 T 到达最右边的车站,且最小化不在车上的时间,求这个时间。 N≤50, T≤200,数据组数≤1500。	设 f[i][j]表示,在第 i 时刻时位于第 j 个车站时,则在此之后最小的不在车上的时间。转移决策为等待 1 个时刻,或(如果可能)向左或向右坐车到下一站。据此转移即可,答案为 f[0][1]。	时间: O(NT) 空间: O(NT)
2002 A	Ballons in a Box	给出一个长方体和 n 个点,每次可以选择一个点为中心,将其扩展成一个尽可能大的球,且使其在长方体的内部,在其他球的外部(不相交)。允许不扩展任何一个点。最小化长方体被球占据剩下的最体积。 n≤6,坐标范围在 1000 以内。	n很小,可以考虑直接枚举所有方案。枚举出方案以后,可以按题意顺序模拟。"尽可能大"即是取该点与已有球的距离与长方体的面的距离的最小值。只需输出所有方案的最优解。	时间: O(n!) 空间: O(n)
2013 F	Low Power	有 2nk 个数,要平均分成 2n 堆,再将 2n 堆 两两组合成 n 组,最小化每组中两堆数的最小值之差的最大值。 2nk≤10^6。	将 2nk 个数排序,则显然每组中两堆数的最小值在 2nk 个数当中是相邻的。最小的数必然是某堆的最小值,所以第 2 小的数一定要与其配对。同理,在第 1 小~第 2k+2 小的剩下的数之中,另一对相邻之差最小的数就应该是第二对堆中最小值以此类推直至取完 n 组堆中最小值。将原序列排序后差分,在差分序列上维护线段树,记录区间最小值可以解决。(当然,堆也可以)	时间: O(nklognk) 空间: O(nk)
2005 E	Lots of Sunlight	自东向西的一条直线上排列着 n 个公寓,每个公寓有若干层房间。每个房间的宽度和高度是一定的。已知太阳在 5 点 37 分升起,在下午 6 点 17 分落下。给出若干个房间,求他们各自能够被阳光直射的时间范围。	对于每个房间,它东边的楼的遮挡影响了上午看到太阳的时间,西边的楼的遮挡影响了下午看到太阳的时间。 根据三角函数算出角度,进而推出时间。	时间: O(n) 空间: O(n)
2001 F	A Major Problem	给出一个起始调式和目标调式,将给出的一	打表出每个调式中每个音符的位置,对于每次询问直	时间:

		些起始调式的音符转换到目标调式的对应位置。 或输出起始调式,目标调式,或给出音符的不合 法信息。	接查表。	O(1) 空间: O(1)
2005 J	Zones	给出 n 个集合中的元素个数,和它们所有的 m 个交集的元素个数。现从 n 个集合中选出 k 个,使它们并集的元素个数最多,输出字典序最小的方案。 n≤20, m≤10。	n 很小,可以考虑枚举所有 C(n,k)个方案。对于每个方案,如果 O(nm)计算并集元素个数,时间上可能会有压力,可以压位后 O(n+m)计算。	时间: O(2^n*n) 空间: O(n+m)
1999 C	A Dicey Problem	给出一个标准的正方体骰子,和一个 R×C 的 网格地图,每个格子中写有一个 1~6 的点数或-1。给定骰子的初始位置和朝向,每次可以将骰子滚动到与其顶面数字相同的相邻的格子上,或相邻的写有-1 的格子上。输出一种方案使得它在若干次滚动后回到起点,或输出无解信息。保证方案唯一。 地图规模不超过 10×10。	用(x,y,u,f)记录一个状态,它表示: 当前位置在(x,y), 骰子项面的数字为 u,前面的数字为 f。从初始状态开始 BFS,记录前驱,搜到(x,y,*,*)时输出方案。	时间: O(RC) 空间: O(RC)
2007 J	Tunnels	给出一个无向图,求删除最少数量的边,使 得从点1到点0没有路径。	由于最大流等于最小割,所以可以直接使用 SAP 算法求解。	时间: O(V^2*E) 空间: O(V+E)
2007 A	Consanguine Calculations	给出父、母、子的 ABO 血型和 Rh 表现型中的两个,求另一个人所有可能的表现型。	根据生物知识打表出所有可能的方案,对于每次询问直接输出。	时间: O(1) 空间: O(1)
2008 F	Glenbow Museum	一个直角多边形可以用 R 与 O 表示, 依次表示每个角的凹凸, R 代表凸, O 代表凹。例如	显然合法的 L 必然是大于等于 4 的偶数。又由于多边形的外角和为 4 个直角,所以 R 的个数必然比 O 的个数	时间: O(1)

		RRRR 代表矩形。一个表示序列合法,是指存在	多4个。而存在一个点能够看遍整个多边形等价于不存在	空间:
		一种符合它的多边形,使得其内部有一个点能够	两个连续的 O,正推和反推的结论都是显然的。所以,转	O(1)
		看到多边形的全部边界。给出序列的长度L,求	化为求长度为L的01串,使得1比0多4个,且O不相	
		这个长度的合法序列个数。	邻。易得答案为 C(r,4)+C(r-1,4), 其中 r 为 R 的个数。	
		L≤1000°		
		给出一个省略了乘号,加号和减号的等式,		时间:
	According to	将其补全使得其结果等于 2000。合法的表达式	数据范围很小,考虑在每两个数之间填上乘号,加号,	O(4^n)
2000 B	Bartjens	中,数字没有前导零,减号只作为二元运算符,	减号或者不填,进行一次表达式计算验证是否为 2000。注	空间:
	,	不含括号。按字典序输出所有可能的方案。	意,中间没有运算符的表达式是不合法的。	O(n)
		表达式的长度 n 不超过 9。		
		有 n 个飞机,每个飞机有一个起飞时间区间		时间:
2009 A	A Careful	[ai,bi],须在此区间内的某个时间起飞。求飞机起	二分答案之后暴力枚举飞机的起飞顺序, 检验方案是	O(n!logai)
	Approach	飞时间间隔最小值的最大值,精确到秒。	否合法的方法是显然的。	空间:
		n≤8, ai,bi≤1440。		O(n)
2002 C	Crossing the	坐标平面上有 n 个绿洲,有一个起点和终		时间:
	Desert	点,有随身携带物品重量上限。每走1单位长度	二分答案之后,设 d[i]为到达 i 点拥有的最大食物数	O(n^2logU)
		消耗1单位食物和水,而绿洲能无限补充水。求	量,跑 dijkstra 算法。	空间:
		在起点购买食物的最小数量。	里,眨 ujnsua 开心。	O(u)
		n≤20 ∘		O(II)
2005 C	The Traveling	求一个无向图的包含某些关键点的连通子		时间:
	Judges Problem	图的方案,要求子图中的点尽量少的基础上字典	妆光 乙圆 中 幼 世 上 老 山 具 小 丛 라树	O(n^2*2^n)
		序最小。	枚举子图中的节点求出最小生成树,更新答案。	空间:
		n≤20 。		O(n^2)
2008 J	The Sky is the	给出若干座等腰三角形山,这些山的并的天	可能成为天际线端点的坐标为三角形边的两两交点,	时间:
	Limit	际线长度。	共 O(n^2)个,对于每一小段可以 O(n)暴力算出其天际线长	O(n^3)
		n≤100 ∘	度。	空间:

				O(n^2)
2009 H	The Ministers' Major Mess	有 n 个议案和 m 个大臣,每个大臣投了 k 个议案通过或不通过,现要使每个大臣都有大于一半的投票被实现,输出每个议案一定会通过或一定不能通过或不一定,或输出无解。 n≤100, m≤500, k≤4。	对于每个大臣的投票,可以确定出若干组关系,格式大致为"如果 A 通过了那么 B 一定不通过"。将每个议案通过与不通过各建一个点,上述关系每个连一条有向边,在图上从每个点开始搜索,如果没有搜索出矛盾情况则说明这个点所代表的方案可行。若真假均不可行则无解。	时间: O(n^3+m) 空间: O(n^2)
2012 C	Bus Tour	给出一个无向图,其中两个特殊点 A 和 B。 要求将剩下的点分成尽量等大的两个集合 S 和 T,使回路 A→S→T→B→S→T→A 的最短路最短。 求这个最小值。 n≤20。	先用状态压缩动态规划预处理出所有集合的最小权 哈密顿路,再枚举两个集合求最小答案。	时间: O(n^4*2^n) 空间: O(n^2*2*n)
2001 A	Airport Configuration	给出飞机场的规划方案和客流指数计算公 式,求客流指数。	按照题中给出的公式模拟。	时间: O(n^2) 空间: O(n)
2006 I	Degrees of Separation	给出 P 个人的关系(无向图),求两个人的最大距离。 P≤50。	用 Floyd 算法算出每两点间最短路,再枚举计算答案。	时间: O(P^3) 空间: O(P^2)
2000 F	Page Hopping	给出网页间的跳转关系(强连通的有向图), 求所有网页对的平均距离。 n≤100。	用 Floyd 算法算出每两点间最短路,再统计答案。	时间: O(n^3) 空间 O(n^2)
2003 F	Combining Images	给出两幅图像的十六进制四分树编码,求它 们的交的十六进制四分树编码。	先将十六进制编码转换为二进制,再递归处理四个子 树。	时间: O(n) 空间:

				O(n)
2003 I	The Solar System	给出绕同一天体运行的第一个行星的半长 轴,半短轴,周期和第二个行星的半短轴和半长 轴,求第二个行星在某个时刻的位置。	利用物理学知识列出方程,再通过二分解方程。	时间: O(logU) 空间: O(1)
1999 H	flooded!	给出一个地段的每个方格的高度,和下雨的量,求积水的高度和百分比。 地段大小不超过30×30。	二分答案代入检验。	时间: O(nmlogU) 空间: O(nm)
2003 D	Eurodiffusion	坐标网格上有若干个国家,每个国家是一个平行与坐标轴的矩形区域,每个格子是一个城市。一开始,每个城市有 100 万本国硬币;每次每个城市将自己各国硬币的千分之一分别送给自己四连通相邻的城市,求经过多长时间各个国家的所有城市都拥有了所有国家的硬币。	按照题意模拟即可。	时间: O(RC*Ans) 空间: O(RC)
2003 J	Toll	给出一个有向图,顶点上有字母。需要从某个顶点向另一个点运送 p 件货物,每经过一个小写字母顶点货物减少 1 个,大写字母顶点货物减少 1/20 (至少 1 个)。求出发时须携带的最少货物数量。	二分答案,然后在图上跑 dijkstra 算法,检验是否符合题意。	时间: O(n^2logp) 空间: O(n)
2004 E	Intersecting Dates	给出若干日期区间,求这些区间的并的补与另一些区间的并的交。 日期范围在 1700 年到 2100 年之间。	直接枚举 400 年以内的所有元素,判断是否属于这个集合。注意闰年。	时间: O(nT) 空间: O(T)
2005 F	Crossing Streets	给出平面上若干平行于坐标轴的线段。求从 起点到终点的路径最少穿越的线段次数。	离散化后进行 bfs。	时间: O(n^2)

		n≤500。		空间:
				O(n^2)
2005 H	The Great Wall	n×n 的棋盘网格中放了 n 个棋子, 求最小移		时间:
	Game	动次数使得n个棋子在同一直线上。	 枚举直线位置做最小权二分图匹配。	O(n^5)
			次宇且线位且似取小权二方图匹乱。 	空间:
				O(n^2)
2009 B	My Bad	给出一个逻辑电路,和它的若干组输入输		时间:
		出。可能有一个逻辑门的输出总是相反,总是0	 枚举错误类型按题意带入验证。	O(ng)
		或总是 1。试图找出错误。	仅午旬 庆天至	空间:
		n≤8,g≤19。		O(n+g)
2009 F	Deer-Proof Fence	给出平面上 n 个点, 求一个围栏的建造方		时间:
		案,使得围栏外的点离每个点的距离至少为 m,	枚举 n 个点可能被划分成的所有集合组,用凸包算出	O(n*2^n)
		且围栏总长度最小。求这个长度。	答案取最优值。	空间:
		n≤9。		O(2^n)
2011 C	Ancient	给出六个象形文字和一个图片,识别图片中		时间:
	Messages	的文字。	象形文字的拓扑区别在于内部洞的数量。搜到一个文	O(WH)
			字数其中的洞数即可。	空间:
				O(WH)
2010 G	The Islands	给出平面上 n 个点,要求从最左端的点向右		时间:
		走到最右端的点最后再回到最左端,且不能以同	用 O(n^2)的状态数进行动态规划。	O(n^2)
		一水平方向经过某两个点。求最短路。	713 0(11 2713 / 1013 / 1	空间:
		n≤100。		O(n^2)
2011 J	Pyramids	n 层高金字塔需要 n*n+(n-1)*(n-1)++1*1块		时间:
		石头,矮金字塔需要 n*n+(n-2)*(n-2)+块石头。	可以证明,答案不会很大(最大约为7),预处理出每	O(N*Ans)
		现有 N 块石头,要求所有石头必须用上,金字塔	种金字塔需要的石头块数,然后做背包。	空间:
		数尽可能少且两两不同,至少两层,最大的尽可		O(N*Ans)

		能大,然后次大的尽可能大		
		求这样的一个方案。		
2012 L	Takeover Wars	两个公司,每个有若干子公司,每个子公司 有一个价值。两个公司轮流行动,每次可以将自 己的两个子公司合并成一个大的,价值为原价值 之和;或是用自己的某个子公司消灭对方价值更 低的子公司;或是什么都不做。问哪一方能将对 方全部消灭。	显然的策略是,如果自己价值最大的子公司比对方的 大则消灭之,否则合并自己两个价值最大的子公司。这可 以用单调队列实现。	时间: O(n) 空间: O(n)
2012 E	infiltration	给出一个竞赛图,选出其中最少的顶点使得剩下的所有顶点都有来自选择的顶点的边。 n≤75。	由竞赛图可知答案是 O(logn)的,所以在能暴搜的范围内暴搜,暴搜之外的范围构造。	时间: O(n^4) 空间: O(n)
2013 A	Self-Assembly	给出 n 个四边形分子,具有相同字母而正负相反的边可以配对相接,求用这些分子是否可以构成无穷结构。 n≤40000。	给每种字母正负组合建立一个点,对于每个分子中,如果存在(x,y)两条互异的边,就建立(x,y')一条边。在图中搜索有没有环。	时间: O(52^4) 空间: O(52)
2013 C	Surely You Congest	给出一个 n 个城市, m 条道路的无向图, 其中点 1 是终点。有 c 个乘客初始位置在城市,每个人都选择某条最短路同时出发,但是每条路同时只能供一个人通过,且不能堵塞。求能够沿最短路通过的人数。 n≤25000, m≤50000, c≤1000。	先用堆优化 dijkstra 算法计算出每个点的最短路。按最短路分层,每层内部做最大流。答案为各层最大流量之和。	时间: O((n+m)log n)+T(最大 流) 空间: O(n+m+c)
2013 D	Factors	设 f(k)为 k 的质因子排列方案数,已知 f(k)=n 求最小的 k。 n,k≤2^63。	直接通过剪枝搜索得出所有 k 的答案, 对于每次询问直接输出结果。	时间: 未证明 空间: 未证明

2012 K	Stacking Plates	有 n 堆盘子,每堆不超过 h 个,每次可以将一堆分成两堆或合并两堆,需要上堆的最下盘子不大于下堆的最上盘子,求合并成一堆的最小次数。	对于不同大小的盘子可以直接贪心,对于相同大小的 盘子内部动态规划解决。	时间: O(n^2*h) 空间: O(n^2*h)
1998 A	Crystal clear	给出一个 n 边形, 求阴影部分面积。 n≤25, 坐标范围 P≤250。	枚举网格中的每一个小圆形, 计算它是否被切割, 以 及其有效面积。	时间: O(N*P^2) 空间: O(N+P)
1998 B	Flight Planning	给出一个飞行计划,共有 K 个航段,给出每个航段的距离,速度和每小时消耗燃料与时间的关系,爬升单位高度需要的燃料,高度共有 h 个可能的取值。求最小的总燃料消耗。 K≤100,h≤20。	直接进行显然的动态规划。	时间: O(Kh) 空间: O(Kh)
1998 C	Lead or Gold	给出 n 种合金和 1 种目标合金(共有 3 种元素参与构成),问是否能合成目标合金。 n≤100。	将每种合金看成三维向量,每个射线与平面 x+y+z=1 求交点,再求凸包,判断目标合金的交点是否在凸包之内。	时间: O(nlogn) 空间: O(n)
1999 D	The Fortified Forest	平面上有 n 棵树,每棵树有一个价值,和一个砍倒能造成的围栏长度。现在要砍倒一些树,使得造成的围栏能围住剩下的树,要求在价值最小基础上要求树木的数量最少。	枚举砍倒的树,计算凸包周长,取最优解。	时间: O(n*2^n) 空间: O(n)

		n≤15。		
2004 H	Tree-Lined	给出平面上 n 条线段,端点处和十字路口		时间:
	Streets	50 距离之间可以种树,求能种树的最大数量。	 枚举每对线段计算交点,按照题意做除法。	O(n^2)
		n≤100 ₀	仅午马州戈权订弃义点, 政监险总顺际位。	空间:
				O(n)
1998 D	Page Selection by	每次可以添加一个网页,或进行一次搜索,		时间:
	Keyword	根据提供的计算公式返回若干接近的网页。	 按照题意模拟,注意会卡最简单的哈希。	O(n)
	Matching		(另) (空间:
				O(n)
1998 G	Spatial Structures	给出一个位图,将其转换为四分树的节点表		时间:
		示法,或给出节点表示法求图像。	按照题意递归模拟。	O(n^2)
				空间:
				O(n^2)
1999 G	The Letter	给出若干次邮件发送请求,模拟出 SMTP 邮		时间:
	Carrier's Rounds	件系统的往来数据。	按照题意模拟,注意同一邮件多次发给同一收件人只	O(nlogn)
		总数据量 n 不超过 100000。	处理一次。用 STL 优化减小复杂度。	空间:
				O(n)
2001 H	Professor	给出一个并行比较器网络,计算其运行时	 第一问可以十分简单地递推出来,而第二问可以大量	时间:
	Monotonic's	间,并判断它是否是排序网络。	随机若干组输入数据代入检验,没有出现错误现象就可以	O(T(n+k))
	Network	序列长度 n≤12,比较器个数 k≤150。	判定为排序网络。	空间:
				O(n+k)
2002 E	Island Hopping	给出平面上 n 个点,点上有权,每两点间可		时间:
		以连边,求每个点到点1的路径上最大距离最小	在完全图上做 Floyd 算法,然后模拟计算加权平均数。	O(n^3)
		的边的长度关于点权的加权平均数。		空间:
		n≤50。		O(n^2)
2002 H	Silly Sort	给 n 个不同的数排序,每次可以交换两个	序列可以分成若干内部互相交换可实现排序的集合。	时间:

		数,代价是这两个数之和,求最小代价。	每个集合内部显然应该用内部最小值交换,或是先将全局	O(n)
		n≤1000,每个数≤1000。	最小值换进来,再换回去。比较两种结果取最优。	空间:
				O(n)
2003 A	Building Bridges	城市是 R×C 的网格,有些格子上有建筑,每		时间:
		次可以沿网格边线修建直道连接建筑,求最终最	建图,每个有建筑的网格为点,可以被直接连接的两	O(n^3logn)
		少的连通块数和此时道路的最小长度之和。	个建筑之间连边,做该图的最小生成森林。	空间:
		R,C≤50。		O(n^3)
2005 B	Simplified GSM	给出 B 个信号塔的位置,平面上每个点都会		时间:
	Network	选择最近的信号塔连接。给出 C 个城市的坐标,	 计算出每一对信号塔连线的垂直平分线,切换信号塔	O(B^2*R+C
		由 R 条道路连接和 Q 次询问,每次询问从某个	的位置只可能在垂直平分线上。对于每条道路,枚举这些	^3)
		城市沿道路走到另一个城市切换信号塔的最小	直线中的一条计算出其切换次数,然后做 Floyd 最短路。	空间:
		次数。	The second of th	O(B^2+R+C
		B,C≤50,R≤2500,Q≤10。		^2)
2008 B	Always an Integer	给出一个形如(整系数多项式)/整数的多项		时间:
		式,问当 n 取任意正整数时多项式的值是否恒为	只要在 0≤n≤次数时恒为整数即可。直接暴力代入检	O(n^2)
		整数。	验。	空间:
		多项式次数≤100。		O(n)
2008 A	Air Conditioning		ou	
	Machinery			n-1 1-1
				时间:
		Figure 1 Figure 2 Figure 3	每个管子最多有8个朝向,可以8^6枚举之。	O(8^n) 空间:
		给出左图所示的 6 个弯管,问是否能在给出的长		工吗: O(n)
		方体内部使给出的两个管口连通。		O(II)
		长方体不超过 20×20×20。		
2008 G	Net Loss	给出一个多项式函数, 求在 x=-1,c,1 处分别	若已知三个点的纵坐标,则可以用简单的微积分知识	时间:

		取一个点,使得所连成的折线能最优拟合函数图象。求折线的解析式。 多项式次数≤10。	求出其近似度。可以用遗传算法或模拟退火等确定出三个点的最优纵坐标。	取决于实现 空间: 取决于实现
2008 K	Steam Roller	给出一个网格图,边上有权,出发、结束、 拐弯时边权要临时变为 2 倍,求起点到终点的最 短路。 边长 n 不超过 100。	给每个点加一维状态,即最后走过的方向,或当前处于停止状态。然后做 Dijkstra 最短路。	时间: O(n^2logn) 空间: O(n^2)
2009 E	Fare and Balanced	给出一个从 1 到 n 的 DAG,需要给某些边的边权增加一些,使得 1 到 n 的所有路径边权之和相同,且每条路径至多经过 1 条边权增加的边。求一个方案或输出无解。n≤50000。	预处理出每个点到点 1 和点 n 的最小与最大距离。如果一个点的最小与最大距离不同,则进入它的所有边的边权都应增加,使得到它的距离都恰好等于总距离与它到 n 的距离之差。这可以 O(n)递推解决。	时间: O(n) 空间: O(n)
2010 C	Tracking Bio-bots	给出一个 m×n 的网格图,一些连续的 y 坐标相同的格子是墙,共有 w 个墙。每次可以向着坐标增大的方向走 1 格。求不能走到右上角的非墙格子的数目。 m,n≤10^6, w≤1000。	先将坐标离散化成 O(w)的,然后在新网格图上递推 搜索。	时间: O(w^2) 空间: O(w^2)
2010	Robots on Ice	给出 m×n 的网格(四连通)和其中 3 个有顺序的格子作为签到点。求从(0,0)到(1,0)的哈密顿回路中,四等分点恰好为这 3 个签到点的个数。 m,n≤8。	直接搜索。对于当前点到下一个签到点距离过远、当前没走过的格子不连通、当前有格子度数为0的情况,进行剪枝。	时间: O((mn)!) 空间: O(mn)
2010 J	Sharing Chocolate	有 x×y 的矩形, 求是否有方案将它分成 n 个子矩形, 且每块的大小对应等于 a[i]。 n≤15, x,y≤100。	设 dp(i,S)表示将长度为 i 的矩形,分成状态集合为 S 的子矩形是否可行,然后每次枚举子集递推即可。有用状态并不多,可以采用记忆化搜索,不会超时。	时间: O(4^n) 空间: O(4^n)

2012 B	Curvy Little Bottles	给出一个横截面处处为圆的瓶子和其半径 与高度之间的多项式关系和一个体积间隔,每隔 一个间隔标刻度,求各刻度的高度。	通过积分计算出体积与高度的关系,对于每个间隔二 分确定对应的高度。	时间: O(logU) 空间:
2007 E	Collecting Luggage	行李传送带是一个 n 边形,给出行李和人的速度和人的初始坐标,求人拿到行李的最早时间。 n≤100。	预处理出多边形两点间最短路。对于询问二分答案, 然后枚举人最后接触到的传送带边界点,计算出距离取最 小值。	O(logU) 时间: O(n^3) 空间: O(n^2)
2013 B	Hey, Better Bettor	赌场有 x%的返还率和 p%的胜率(胜则赢 1 元, 负则输 1 元),赌博结束时若亏了则可以返还 x%的损失。求最优策略下的期望收益。	最优策略显然形如"赢 a 元或输 b 元就停止"。而期望收益关于 a 与 b 都是单峰函数。三分 a 和 b,由数学公式算出答案取最优值。	时间: O(log^2U) 空间: O(1)
2012 I	A Safe Bet	Laser Detected, safe open Beam detected, safe open 给出网格中的 n 个镜子,问是否能射入探测器。如果不能,则统计位置的个数,使得在这个位置插入镜子后能射入探测器。n≤4×10^5,坐标范围 10^6。	预处理出每个镜子的上下左右遇到的第一个镜子。按 此模拟出第一问。如果不能射入,则再从探测器反向模拟 ct一遍。得到了两组横线和竖线。则第一组的横线与第二组 的竖线的交点数与第二组的横线与第一组的竖线的交点 数之和即为答案。这可以用扫描线法快速处理。	时间: O(nlogn) 空间: O(n)
2011 E	Coffee Central	R×C 的坐标网格,两点间距离定义为曼哈顿 距离。有 n 个格子有咖啡馆。q 次询问,每次给	对于每次询问,可以通过预处理前缀和来 O(RC)回答。 注意数组实际被旋转了 45°, 故处理起来会有些不同。	时间: O(qRC)

		出一个 m, 求距离 m 以内咖啡馆最多的个数和		空间:
		字典序最小的最优位置。		O(RC)
		R,C \leq 1000, n \leq 5 \times 10^5, q \leq 20, m \leq 10^6 $_{\circ}$		
2012 D	Fibonacci Words	F(n)的定义为: F(0)="0",F(1)="1",F(n)=F(n-	递归处理这个问题: F(n)中的 10 在 F(n-1)时是 1,其	时间:
		1)+F(n-2)。给出字符串 p 和正整数 n, 求 p 在 F(n)	余的1都是0,遇到连续的0即不存在,末尾的1可能是	O(p)
		出现的次数。	1 也可能是 0。边界为 p =1,此时答案就是斐波那契数列	空间:
		p ≤10^5, n≤100, ans≤2^63。	的一项。可以证明,复杂度是线性的。	O(p)
2011 H	Mining Your Own	给出一个无向连通图,求给最少的点打标		时间:
	Business	记,使得无论摧毁图的哪个点,剩下的每个点都	给原图双连通缩点,则第一问的答案是缩点后树的叶	O(N)
		至少与一个打标记的点连通。求最少标记数和此	子数。第二问是各叶子的点数之积。注意,全图双连通时	空间:
		时的方案数。	答案为 2。	O(N)
		边数 N≤50000。		O(11)
2011 A	To Add or to	给出正整数 a 和 m,每次可以让当前数加 a		时间:
	Multiply	或乘m,设计最短且字典序最小的程序,使得对	枚举乘法的次数,然后加操作要尽量往前放。最终取	O(log^2U)
		于正整数区间[p,q]的每个输入的结果都落在区	最优解。	空间:
		间[r,s]中。	- KV 0 0 0 1 0	O(logU)
		所有数≤10^9。		
2011 K	Trash Removal	给出一个 n 边形, 求将其任意旋转后在 x 轴		时间:
		上的射影长度最小值。	先作出多边形的凸包,则最优方案中必有凸包的某一	O(n^2)
		n≤500。	边垂直于x轴,枚举这条边更新答案。	空间:
				O(n)
2013 H	Матрёшк	给出 n 个套娃排在一行,每次可以合并两个		时间:
	a	相邻的套娃,而合并的代价是打开套娃并马上关	用 O(n^3)的动态规划处理出合并每个区间的套娃的	O(n^3)
		上它的时间总和。求将这些套娃拼成若干个极大	最小代价,最后从头做一遍简单的 O(n^2)动态规划。	空间:
		套娃的最小代价。		O(n)