1/7/22, 3:31 PM Lending_club - Jupyter Notebook

Lending Club Case Study- Exploratory Data Analysis

Project Brief

This assignment will give an idea about how real business problems are solved using EDA. In this case study it will develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimise the risk of losing money while lending to customers.

Business Objectives

This company is the largest online loan marketplace, facilitating personal loans, business loans, and financing of medical procedures. Borrowers can easily access lower interest rate loans through a fast online interface.

Like most other lending companies, lending loans to 'risky' applicants is the largest source of financial loss (called credit loss). The credit loss is the amount of money lost by the lender when the borrower refuses to pay or runs away with the money owed.

In other words, the company wants to understand the driving factors (or driver variables) behind loan default, i.e. the variables which are strong indicators of default. The company can utilise this knowledge for its portfolio and risk assessment.

In other words, borrowers who default cause the largest amount of loss to the lenders. In this case, the customers labelled as 'charged-off' are the 'defaulters'.

If one is able to identify these risky loan applicants, then such loans can be reduced thereby cutting down the amount of credit loss. Identification of such applicants using EDA is the aim of this case study.

In [1]: # Importing the necessary modules
 import numpy as np
 import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns
import warnings

import warnings
warnings.filterwarnings('ignore')

supress scientific notation of values
pd.options.display.float_format = '{:.2f}'.format

increasing max number of columns and rows displayed with pandas.
pd.set_option('display.max_columns', 150)

pd.set_option('display.max_rows', 100)

Dataset

It contains the complete loan data for all loans issued through the time period 2007 to 2011.

In [2]: # Loading data set file in to data frame.
data = pd.read csv('loan.csv')

data = pd.read_csv('loan.csv')
data.head(3)

																Borrower												
) 1077501	1296599	5000	5000	4975.00 mon	36 10.65% ths	162.87 E	3 B2	NaN 10-	years RI	NT 24000.00	Verified D	Dec-11 Fully P	Paid r	n https://lendingclub.com/bro	owse/loanDetail.acti	added on 12/22/11 cre > I need to upgra	dit_card Com	outer 860xx	AZ 27.69	0	Jan-85	1	NaN	NaN	3	0 136	8648 83.70%	(
l 1077430	1314167	2500	2500	2500.00 mon	60 15.27% ths	59.83 C	C C4	Ryder <	1 year RI	NT 30000.00	Source Verified D	Dec-11 Charged	d Off r	n https://lendingclub.com/bro		Borrower added on 12/22/11 > I plan to use t	car	bike 309xx	GA 1.00	0	Apr-99	5	NaN	NaN	3	O 1f	1687 9.40%	
2 1077175	1313524	2400	2400	2400.00 mon	36 ths 15.96%	84.33	C C5	NaN 10-	years RI	NT 12252.00	Not Verified D	Dec-11 Fully P	Paid r	n https://lendingclub.com/bro	owse/loanDetail.acti	NaN small_b	ousiness e	real state 606xx ness	IL 8.72	0	Nov-01	2	NaN	NaN	2	0 29	2956 98.50%	

In [3]: # Lower rows of data frame
data.tail(3)

Out[3]: id member_id loan_amnt funded_amnt funded_amnt_inv term int_rate installment grade sub_grade emp_title emp_length home_ownership annual_inc verification_status issue_d loan_status pymnt_plan url title zip_code addr_state dti delinq_2yrs earliest_cr_line inq_last_6mths mths_since_last_delinq mths_since_last_record open_acc pub_rec revol_bal revol_util to desc purpose n https://lendingclub.com/browse/loanDetail.acti... 0.00 9698 **39714** 90395 Consolidation 7.43% 155.38 n https://lendingclub.com/browse/loanDetail.acti... 0.00 **39715** 90376 5000 5000 MORTGAGE Jul-07 0.00 85607 0.70% 89243 200000.00 Fully Paid MD 3.72 Nov-88 < 1 year I plan to consolidate 36 months 13.75% Consolidation n https://lendingclub.com/browse/loanDetail.acti... 11.00 Jun-07 over debt_consolidation 4175 51.50% \$7,000 of debt: a c...

Understanding the Dataset

In [4]: # shape of data frame
print(data.shape)

stats of the given dataset
data.describe()

(39717, 111)

Out[4]: id member_id loan_amnt funded_amnt funded_amnt_inv installment annual_inc dti delinq_2yrs inq_last_6mths mths_since_last_delinq mths_since_last_record open_acc pub_rec revol_bal total_acc out_prncp_inv total_rec_int total_pymnt_total_pymnt_total_pymnt_amnt collections_12_mths_ex_med mths_since_last_major_derog policy_code annual_inc_joint delinq_2yrs inq_last_6mths mths_since_last_delinq mths_since_last_major_derog policy_code annual_inc_joint delinq_2yrs inq_last_filest_fil **count** 39717.00 39717.00 39717.00 39717.00 39717.00 39717.00 14035.00 39717.00 39717.00 39717.00 39717.00 39717.00 39661.00 0.00 39717.00 0.00 11219.44 10947.71 10397.45 0.87 35.90 69.70 12153.60 11567.15 9793.35 2263.66 1.36 95.22 12.41 2678.83 0.00 NaN 1.00 0.06 13382.53 50.99 850463.56 1.07 7065.52 7.29 688.74 148.67 4447.14 0.00 7187.24 7128.45 8942.67 2608.11 0.00 500.00 500.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NaN 1.00 **min** 54734.00 70699.00 15.69 4000.00 0.00 5500.00 5400.00 0.00 18.00 22.00 5576.93 5112.31 4600.00 662.18 0.00 0.00 218.68 0.00 1.00 **50%** 665665.00 850812.00 10000.00 9600.00 0.00 1.00 34.00 90.00 0.00 9899.64 9287.15 8000.00 1348.91 0.00 0.00 0.00 546.14 0.00 NaN 1.00 8850.00 0.00 0.00 1.00 52.00 0.00 0.00 0.00 NaN **75**% 837755.00 1047339.00 15000.00 15000.00 104.00 16534.43 15798.81 13653.26 2833.40 3293.16 1.00 120.00 0.00 NaN **max** 1077501.00 1314167.00 35000.00 35000.00 35000.00 1305.19 6000000.00 29.99 11.00 8.00 129.00 4.00 149588.00 90.00 6311.47 58563.68 58563.68 35000.02 23563.68 180.20 29623.35 7002.19 36115.20 NaN 1.00

Data Cleaning

In [5]: # Finding percentage of null or missing values
null_perc = round(100*(data.isnull().sum()/len(data.index)), 2)

Printing columns which have more than 0% missing values
null_perc[null_perc > 0]

Out[5]: emp_title 6.19 emp_length 2.71 32.58 desc title 0.03 mths_since_last_delinq 64.66 mths_since_last_record 92.99 revol_util 0.13 0.18 last_pymnt_d next_pymnt_d 97.13 0.01 last_credit_pull_d collections_12_mths_ex_med 0.14 mths_since_last_major_derog 100.00 annual_inc_joint 100.00 100.00 dti_joint verification_status_joint 100.00 100.00 tot_coll_amt tot_cur_bal 100.00 100.00 open_acc_6m open_il_6m 100.00 100.00 open_il_12m open_il_24m 100.00 mths_since_rcnt_il 100.00 total_bal_il 100.00 il_util 100.00 open_rv_12m 100.00 open_rv_24m 100.00 100.00 max_bal_bc 100.00 all_util total_rev_hi_lim 100.00 inq_fi 100.00 100.00 total_cu_tl 100.00 inq_last_12m acc_open_past_24mths 100.00 avg_cur_bal 100.00 100.00 bc_open_to_buy 100.00 bc_util chargeoff_within_12_mths 0.14 mo_sin_old_il_acct 100.00 mo_sin_old_rev_tl_op 100.00 100.00 mo_sin_rcnt_rev_tl_op mo_sin_rcnt_tl 100.00 100.00 mort_acc 100.00 mths_since_recent_bc mths_since_recent_bc_dlq 100.00 100.00 mths_since_recent_inq 100.00 mths_since_recent_revol_delinq 100.00 num_accts_ever_120_pd num_actv_bc_tl 100.00 num_actv_rev_tl 100.00 num_bc_sats 100.00 100.00 num_bc_tl 100.00 num_il_tl 100.00 num_op_rev_tl 100.00 num_rev_accts num_rev_tl_bal_gt_0 100.00 num_sats 100.00 num_tl_120dpd_2m 100.00 num_tl_30dpd 100.00 100.00 num_tl_90g_dpd_24m 100.00 num_tl_op_past_12m pct_tl_nvr_dlq 100.00 100.00 percent_bc_gt_75 pub_rec_bankruptcies 1.75 tax_liens 0.10 tot_hi_cred_lim 100.00 total_bal_ex_mort 100.00

dtype: float64

In [6]: # Removing columns which has more than 30% null values in it

print(data.shape)
data.drop(null_perc[null_perc > 30].index, axis=1, inplace=True)
print(data.shape)

100.00

100.00

(39717, 111) (39717, 53)

total_bc_limit

total_il_high_credit_limit

In [7]: # Finding number of unique values in each column
data.nunique().sort_values().head(20)

Out[7]: tax_liens delinq_amnt chargeoff_within_12_mths acc_now_delinq application_type policy_code collections_12_mths_ex_med initial_list_status pymnt_plan term pub_rec_bankruptcies verification_status loan_status pub_rec home_ownership grade inq_last_6mths 11 delinq_2yrs 11 emp_length 14

We have to remove these columns, as these columns have only one unique value in all the rows, which will not give any usefull outcome.

'tax_liens', 'delinq_amnt', 'chargeoff_within_12_mths', 'acc_now_delinq', 'application_type', 'policy_code', 'collections_12_mths_ex_med', 'initial_list_status', 'pymnt_plan'

In [8]: #Dropping Columns with only one values.
print(data.shape)
data = data.drop(['tax liens', 'deling a

data = data.drop(['tax_liens', 'delinq_amnt', 'chargeoff_within_12_mths', 'acc_now_delinq', 'application_type', 'policy_code', 'collections_12_mths_ex_med', 'initial_list_status', 'pymnt_plan'],axis=1)
print(data.shape)

(39717, 53) (39717, 44)

purpose
dtype: int64

2/18

sub_grade object emp_length object home_ownership object annual_inc float64 verification_status object issue_d datetime64[ns] loan_status object object purpose zip_code object addr_state object dti float64 delinq_2yrs int64 datetime64[ns] earliest_cr_line inq_last_6mths int64 open_acc int64 int64 pub_rec revol_bal int64 revol_util float64 total_acc int64 total_pymnt float64 total_pymnt_inv float64 last_pymnt_amnt float64 float64 pub_rec_bankruptcies dtype: object

Derived Variables

create new columns from date type columns

• we are deriving new columns of weekday, month & year from the existing "issue_d" column. • Creating Approved Loan amount ratio which is a ratio of Funded Amount by investor to Requested Loan amount.

In [21]: # issue_d column data['issue_d_year'] = data.issue_d.dt.year data['issue_d_month'] = data.issue_d.dt.strftime('%b') data['issue_d_weekday'] = data.issue_d.dt.weekday # data type conversion of year and weekday data['issue_d_year'] = data['issue_d_year'].astype(object) data['issue_d_weekday'] = data['issue_d_weekday'].astype(object) # earliest_cr_line data['earliest_cr_line_year'] = data.earliest_cr_line.dt.year data['earliest_cr_line_month'] = data.earliest_cr_line.dt.strftime('%b') # data type conversion of year and weekday data['earliest_cr_line_year'] = data['earliest_cr_line_year'].astype(object)

data['approved_loan_amnt_ratio'] = round(data.funded_amnt_inv*100/data.loan_amnt,2) In [22]: # Converted date formats for analysis

approved_loan_amnt_ratio

print(data.shape) data.head(3)

(36800, 37) Out[22]: id loan_amnt funded_amnt funded_amnt_inv

data.dtypes int64 int64 int64 float64 object float64 int_rate installment float64 grade object sub_grade object emp_length object home_ownership object float64 annual_inc verification_status object datetime64[ns] issue_d loan_status object object purpose zip_code object addr_state object dti float64 delinq_2yrs int64 earliest_cr_line datetime64[ns] inq_last_6mths int64 open_acc int64 int64 pub_rec revol_bal int64 float64 revol_util total_acc int64 total_pymnt float64 float64 total_pymnt_inv float64 last_pymnt_amnt pub_rec_bankruptcies float64 issue_d_year object issue_d_month object issue_d_weekday object earliest_cr_line_year object earliest_cr_line_month object float64 approved_loan_amnt_ratio dtype: object

Univariate Analysis Univariate analysis explores each variable in a data set separately. These are the possible driver variables. loan_amnt funded_amnt funded_amnt_inv term int_rate installment grade sub_grade emp_length home_ownership annual_inc verification_status loan_status purpose addr_state dti earliest_cr_line pub_rec pub_rec_bankruptcies issue_d_year issue_d_month

Loan Amount

issue_d_weekday earliest_cr_line_year earliest_cr_line_month approved_loan_amnt_ratio

The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.

```
In [23]: #Increasing the figure size of plot
         plt.figure(figsize=(12,4))
#Setting subplot index
plt.subplot(1,2,1)
          #Histogram plot
          sns.distplot(a=data.loan_amnt, rug=True)
          plt.subplot(1,2,2)
          #Box plot
          sns.boxplot(data=data.loan_amnt)
          #Single title for both subplots.
          plt.suptitle('Loan Amount distribution')
          plt.show()
```


In [24]: # Stats of Laon amount data.loan_amnt.describe(percentiles=[0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99])

```
Out[24]: count 36800.00
              11149.54
        mean
        std
               7369.86
                500.00
        min
        5%
                2400.00
        10%
                3200.00
        25%
                5500.00
        50%
75%
               10000.00
               15000.00
        90%
               22000.00
        95%
               25000.00
        99%
               35000.00
        max
               35000.00
```

Name: loan_amnt, dtype: float64

Observations:

More number of people took loan amount of 10000, and also meadian of distribution is 10000. very less people took more than 30000 loan amount.

funded_amnt

The total amount committed to that loan at that point in time.

In [25]: plt.figure(figsize=(12,4)) plt.subplot(1,2,1) sns.distplot(a=data.funded_amnt, rug=True) plt.subplot(1,2,2) sns.boxplot(data=data.funded_amnt) plt.suptitle('Funded Amount distribution') plt.show()

In [26]: # Stats of funded amount data.funded_amnt.describe(percentiles=[0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99])

Out[26]: count 36800.00 10880.79 mean 7109.16 std min 500.00 5% 2400.00 10% 3200.00 25% 5400.00 50% 9600.00 75% 15000.00 90% 20375.00 95% 25000.00 99% 35000.00

35000.00 max Name: funded_amnt, dtype: float64

plt.subplot(1,2,1)

plt.subplot(1,2,2)

Observations:

Funded amount data behaves similar to loan Amount, that means Lender approved most of Applied loan amount.

funded_amnt_inv The total amount committed by investors for that loan at that point in time.

In [27]: plt.figure(figsize=(12,4))

sns.distplot(a=data.funded_amnt_inv, rug=True)

sns.boxplot(data=data.funded_amnt_inv) plt.suptitle('Funded Amount Invested distribution') plt.show() Funded Amount Invested distribution 0.00010

In [28]: #Stats of funded_amnt_inv data.funded_amnt_inv.describe(percentiles=[0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99])

Out[28]: count 36800.00 10439.06 mean std 7008.52 min 0.00 5% 2000.00 10% 3000.00 25% 50% 5000.00 9000.00 75% 14350.00 90% 20000.00 95% 24655.82 99% 34725.00 max 35000.00 Name: funded_amnt_inv, dtype: float64

Observations:

Funded amount investment data behaves similar to loan Amount, that means Lender approved most of the Applied loan amount.

Approved Loan Amount Ratio

In [29]: plt.figure(figsize=(20,5)) plt.subplot(1,2,1) sns.distplot(a=data.approved_loan_amnt_ratio) plt.subplot(1,2,2) sns.boxplot(data=data.approved_loan_amnt_ratio) plt.suptitle('Approved Loan Amount Ratio distribution') plt.show()

3/18

Observations: 70% of Borrowers got 100% loan amount from investors.

Interest Rate

Observations:

From the above plots and statistics of interest rates we can conclude that most of the interest rates lies between 9% to 14.5%. Some borrowers took loan at higher rates of interest i.e., 22.5%

Installment

The monthly payment owed by the borrower if the loan originates.

In [31]: installment = data.installment plt.figure(figsize=(12,4)) plt.subplot(1,2,1) sns.distplot(a=installment, rug=True) plt.subplot(1,2,2)

sns.boxplot(data=installment) plt.suptitle('Installment Amount distribution') plt.show()

Observations:

Most representative value of Installment amount is around 250 to 300.

installment

annual_inc

The self-reported annual income provided by the borrower during registration.

In [32]: var1 = data.annual_inc

plt.figure(figsize=(12,4)) plt.subplot(1,2,1) sns.distplot(a=var1, rug=True) plt.subplot(1,2,2)

sns.boxplot(data=var1) plt.suptitle('Annual income distribution') plt.show()

DTI

A ratio calculated using the borrower's total monthly debt payments on the total debt obligations, excluding mortgage and the requested LC loan, divided by the borrower's self-reported monthly income.

In [33]: var1 = data.dti

plt.figure(figsize=(12,4))
plt.subplot(1,2,1) sns.distplot(a=var1, rug=True) plt.subplot(1,2,2)

sns.boxplot(data=var1) plt.suptitle('Debt to Income distribution')

0 5 10 15 20 25 30 dti

Observations:

There are no outliers and the distribution is much similar to normal distribution. All the loans are given to barrower's who have Debt to Income ration less than 30.

Pub rec Number of Public derogatory records

In [34]: var = 'pub_rec'

#Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index()

plt.xlabel(var) plt.ylabel('Proportion')

sns.barplot(x='index', y=var, data=prob_df)

plt.title(var+' Distribution') Out[34]: Text(0.5, 1.0, 'pub_rec Distribution')

pub_rec Distribution

Observations:

Near about 90% borrower's having no public derogatory records.

pub_rec

pub_rec_bankruptcies

Number of public record bankruptcies

In [35]: var = 'pub_rec_bankruptcies' #Probability / Percentage of each values

prob_df = data[var].value_counts(normalize=True).reset_index() sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var) plt.ylabel('Proportion') plt.title(var+' Distribution')

Out[35]: Text(0.5, 1.0, 'pub_rec_bankruptcies Distribution')

Observations:

99% borrowers have not went bankrupt.

Loan issue date (issue_d)

The month which the loan was funded

In [36]: var = 'issue_d_year' #Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index() plt.figure(figsize=(20,12)) plt.subplot(2,2,1) sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var) plt.ylabel('Proportion') plt.title(var+' Distribution') var = 'issue_d_month' #Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index() plt.subplot(2,2,2) sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var) plt.ylabel('Proportion') plt.title(var+' Distribution') var = 'issue_d_weekday' #Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index() plt.subplot(2,2,3) sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var) plt.ylabel('Proportion')

plt.title(var+' Distribution')

plt.show() issue_d_year Distribution 0.4 0.2 -2009 2007 2010 2008 issue_d_year issue_d_weekday Distribution 0.150 -0.125 -0.100 0.075 -0.050 -0.025 -

issue_d_weekday

Observations:

The lending club has doubling loan issues every year. There are more issues of loan in last 3 months every end of the ear i.e., Oct, Nov and Dec. Lending club has issued more loans on tuesday and thursday than other week days.

Erliest Credit line (earliest_cr_line)

The month the borrower's earliest reported credit line was opened

In [37]: plt.figure(figsize=(20,5))
 plt.subplot(2,1,1)
 sns.countplot(data.earliest_cr_line_year)
 plt.title('Count vs Earliest cr line year')
 plt.xticks(rotation=90)
 plt.xlabel('Year')
 plt.ylabel('Count')
 plt.figure(figsize=(20,5))
 plt.subplot(2,1,2)
 sns.countplot(data.earliest_cr_line_month)
 plt.title('Count vs Earliest cr line month')
 plt.xlabel('Months')
 plt.ylabel('Count')
 plt.show()

Observations:

Many of Loan borrowers of Lender have got earlier credit line in 2000 year, and also most have got earlier credit line on end of the year i.e., Oct, Nov, Dec

Term

The number of payments on the loan. Values are in months and can be either 36 or 60.

In [38]: var = 'term'
#Probability / Percentage of each values
prob_df = data[var].value_counts(normalize=True).reset_index()
sns.barplot(x='index', y=var, data=prob_df)

plt.xlabel(var)

plt.ylabel('Proportion')
plt.title(var+' Distribution')
plt.show()

term Distribution

0.7 - 0.6 - 0.5

Observations:

Borrowers have taken 36 months tenure more than 60 months.

Grade

In [39]: | var = 'grade'

LC assigned loan grade

#Probability / Percentage of each values
prob_df = data[var].value_counts(normalize=True).reset_index()
sns.barplot(x='index', y=var, data=prob_df)
plt.xlabel(var)
plt.ylabel('Proportion')
plt.title(var+' Distribution')
plt.show()
grade Distribution

Observations:

Most borrowers fall under A and B grades then other grades

Sub Grade

LC assigned loan subgrade

In [40]: plt.figure(figsize=(20,4)) sns.countplot(data.sub_grade, order=data.sub_grade.value_counts().index) plt.title('Count vs Sub Grade') plt.xlabel('Sub Grade')

Employment length

Employment length in years. Possible values are between 0 and 10 where 0 means less than one year and 10 means ten or more years.

var = 'emp_length'

In [41]: plt.figure(figsize=(10,4))

#Probability / Percentage of each values

prob_df = data[var].value_counts(normalize=True).reset_index() sns.barplot(x='index', y=var, data=prob_df)

All sub grades are gradually decrEses from A TO G.

plt.xlabel(var) plt.ylabel('Proportion') plt.title(var+' Distribution') plt.show()

Observations:

Borrowers are mostly 10+ years emploment length.

Home Ownership

The home ownership status provided by the borrower during registration. Our values are: RENT, OWN, MORTGAGE, OTHER.

In [42]: var = 'home_ownership' #Probability / Percentage of each values

prob_df = data[var].value_counts(normalize=True).reset_index()
#Plotting percentage proporation vs home ownership sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var)

plt.ylabel('Proportion') plt.title(var+' Distribution') plt.show()

Observations:

The loan borrowers are mostly having rented and mortgage houses.

Verification Status

Indicates if income was verified by LC, not verified, or if the income source was verified

In [43]: var = 'verification_status' #Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index()

sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var) plt.ylabel('Proportion') plt.title(var+' Distribution') plt.show()

Observations:

Majority of loans were given without verification of applicants income.

verification_status

Loan Status

Current status of the loan

In [44]: plt.figure(figsize=(10,4))

var = 'loan_status' #Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index() sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var)

plt.ylabel('Proportion') plt.title(var+' Distribution') plt.show()

loan_status Distribution 0.8 -0.2 -0.1 -Charged Off Fully Paid

loan_status

Observations:

85% of borrowers has paid the loan fully. where are 14% are defaulted the loan.

Purpose

A category provided by the borrower for the loan request.

In [45]: plt.figure(figsize=(12,4))

var = 'purpose' #Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index() sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var) plt.xticks(rotation=90)

plt.ylabel('Proportion') plt.title(var+' Distribution') plt.show()

Observations:

More number of people took loan for debt consolidation and a very few people took for renewable energy

Borrower's State

The state provided by the borrower in the loan application

In [46]: plt.figure(figsize=(20,4)) var = 'addr_state' #Probability / Percentage of each values prob_df = data[var].value_counts(normalize=True).reset_index() sns.barplot(x='index', y=var, data=prob_df) plt.xlabel(var) plt.ylabel('Proportion')

Observations:

Most of the borrowers are from CA and NY

Segmented Univariate Analysis

Segmented univariate analysis can show the change metric in pattern across the different segments of the same variable. following are the variables on which we are applying ssegmented analysis.

Loan Amount Funded Amount Intrest Rate Anual Income DTI

Public record Public Record Bankcurapcy inq_last_6mths

Approval loan amount ratio

localhost:8888/notebooks/Downloads/NEHA/MODULE 2 - STATISTIC ESSENTIALS/LENDING CLUB CASE STUDY/Lending_club.ipynb#Observations-

In [47]: plt.figure(figsize=(20,5)) plt.subplot(121) sns.boxplot(x='term', y=data.loan_amnt, data=data) plt.title('Terms vs Loan Amount') plt.subplot(122) plt.title('Grade vs Loan Amount')

1/7/22, 3:31 PM

#Finding grades with sorted alphabetical order grade_ord = data.grade.unique() grade_ord.sort()

sns.boxplot(x='grade', y=data.loan_amnt, order = grade_ord, data=data) Out[47]: <AxesSubplot:title={'center':'Grade vs Loan Amount'}, xlabel='grade', ylabel='loan_amnt'>

Observations:

Higher amount loans have high tenure i.e, 60 months. Grade 'F' and 'G' have taken max loan amount. As Grades are decreasing the loan amount is increasing.

60 months

In [48]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='home_ownership', y=data.loan_amnt, data=data) plt.title('home_ownership vs Loan Amount')

plt.subplot(122) plt.title('verification_status vs Loan Amount')

36 months

verification_status_ord = data.verification_status.unique() verification_status_ord.sort()

sns.boxplot(x='verification_status', y=data.loan_amnt, order = verification_status_ord, data=data)

Out[48]: <AxesSubplot:title={'center':'verification_status vs Loan Amount'}, xlabel='verification_status', ylabel='loan_amnt'>

MORTGAGE

home_ownership

Charged Off

home_ownership vs Loan Amount 35000 -30000 -25000 -E 20000 -

Observations:

B 15000 -

10000

5000 -

More borrowers are from MORTAGE and also the median loan amount also high for MORTAGE owned borrowers. And most of borrowers are verified for borrowing loan >9k

OTHER

In [49]: | sns.boxplot(x='loan_status', y=data.loan_amnt, data=data) plt.title('loan_status vs Loan Amount')

Out[49]: Text(0.5, 1.0, 'loan_status vs Loan Amount')

RENT

Observations:

Charged Off loans have higher amounts than Fully Paid ones.

Fully Paid

In [50]: plt.figure(figsize=(20,5))

sns.boxplot(x='purpose', y=data.loan_amnt, data=data) #Rotating x values 90 for better visibility

loan_status

plt.xticks(rotation=90) plt.title('purpose vs Loan Amount')

Out[50]: Text(0.5, 1.0, 'purpose vs Loan Amount')

Observations:

More loan amount is from the Small bussiness.

In [51]: plt.figure(figsize=(20,5))

sns.boxplot(x='emp_length', y=data.loan_amnt, data=data) plt.title('emp_length vs Loan Amount')

Out[51]: Text(0.5, 1.0, 'emp_length vs Loan Amount')

Observations:

More borrowers are from 10+ years and least is <1 year

In [52]: *#Issue_d* plt.figure(figsize=(20,5))

plt.show()

plt.subplot(121) sns.boxplot(x=data.issue_d_year, y=data.loan_amnt, data=data)

plt.title('Issued year vs Loan Amount') plt.subplot(122) sns.boxplot(x=data.issue_d_month, y=data.loan_amnt, data=data) plt.title('Issued month vs Loan Amount')

Issued year vs Loan Amount 35000 -30000 -25000 -불 20000 -<u>8</u> 15000 -10000 -5000 -

2009

issue_d_year

2010

2007

The median loan amount in each year did not change much but the distribution is more spread as the years increase, which means people have taken different loan amounts in each year. In December, people have taken heigher amounts as distribution goes high above median.

2011

In [53]: #earliest_cr_line plt.figure(figsize=(20,6))

plt.subplot(211) sns.boxplot(x=data.earliest_cr_line_year, y=data.loan_amnt, data=data)

plt.xticks(rotation=90) plt.title('Earliest Credit Line year vs Loan Amount') plt.figure(figsize=(20,6))

2008

plt.subplot(212) sns.boxplot(x=data.earliest_cr_line_month, y=data.loan_amnt, data=data) plt.title('Earliest Credit Line month vs Loan Amount')

Observations:

Borrowers who go earliest credit line in 1966 got wide spreaded amount of loans than others.

localhost:8888/notebooks/Downloads/NEHA/MODULE 2 - STATISTIC ESSENTIALS/LENDING CLUB CASE STUDY/Lending_club.ipynb#Observations-

In [54]: plt.figure(figsize=(20,5))

funded_amnt

plt.subplot(121) sns.boxplot(x='term', y=data.funded_amnt, data=data)

plt.title('Terms vs funded amount') plt.subplot(122) plt.title('Grade vs funded amount') grade_ord = data.grade.unique()

grade_ord.sort() sns.boxplot(x='grade', y=data.funded_amnt, order = grade_ord, data=data)

Out[54]: <AxesSubplot:title={'center':'Grade vs funded amount'}, xlabel='grade', ylabel='funded_amnt'>

Observations:

More borrowers lies between 60 months tenure. Grades F & G lies in more funded amount.

In [55]: #*Issue_d*

plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x=data.issue_d_year, y=data.funded_amnt, data=data)
plt.title('Issued year vs Funded Amount')

plt.subplot(122)

plt.show()

sns.boxplot(x=data.issue_d_month, y=data.funded_amnt, data=data)
plt.title('Issued month vs Funded Amount')

Observations:

Year 2009,2010,2011 have pritty much same funded amount.

In [56]: sns.boxplot(x='loan_status', y=data.funded_amnt, data=data)

plt.title('loan_status vs Funded amnt') Out[56]: Text(0.5, 1.0, 'loan_status vs Funded amnt')

Observations:

Funded amount for charged off is slightly more than fully paid.

In [57]: plt.figure(figsize=(20,5))

sns.boxplot(x='purpose', y=data.funded_amnt, data=data) plt.title('purpose vs funded amount')

Out[57]: Text(0.5, 1.0, 'purpose vs funded amount')

Observations:

Funded amount is more for small buisness purpose than other purposes.

In [58]: plt.figure(figsize=(20,5))

sns.boxplot(x='emp_length', y=data.funded_amnt, data=data)

plt.title('emp_length vs funded amount') Out[58]: Text(0.5, 1.0, 'emp_length vs funded amount')

emp_length

Observations:

Funded amount is higher for 10+ years emp length.

int_rate

In [59]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x='term', y=data.int_rate, data=data)

plt.title('Term vs Interest Rate') plt.subplot(122)

plt.title('Grade vs Interest Rate') grade_ord = data.grade.unique()

grade_ord.sort() sns.boxplot(x='grade', y=data.int_rate, order = grade_ord, data=data)

Out[59]: <AxesSubplot:title={'center':'Grade vs Interest Rate'}, xlabel='grade', ylabel='int_rate'>

Observations:

The interest rates are higher for Higher tenure loans. And Also Interest Rates are Higher as Grades are Lowering from A TO G.

In [60]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='home_ownership', y=data.int_rate, data=data) plt.title('home_ownership vs Interest Rate')

plt.subplot(122) plt.title('verification_status vs Interest Rate') verification_status_ord = data.verification_status.unique()

verification_status_ord.sort() sns.boxplot(x='verification_status', y=data.int_rate, order = verification_status_ord, data=data)

Out[60]: <AxesSubplot:title={'center':'verification_status vs Interest Rate'}, xlabel='verification_status', ylabel='int_rate'>

Observations:

Barrowers with Own and Mortgage got loans with less interest rates. And the non verified Barrowers got less interest rates compared to Verified and Source Verified barrowers.

In [61]: sns.boxplot(x='loan_status', y=data.int_rate, data=data) plt.title('loan_status vs Interest Rate')

Out[61]: Text(0.5, 1.0, 'loan_status vs Interest Rate')

Observations:

Higher the interest rate more the chance of Defaulting the loan.

In [62]: plt.figure(figsize=(20,5)) sns.boxplot(x='purpose', y=data.int_rate, data=data) plt.xticks(rotation=90)

plt.title('purpose vs Interest Rate')

Observations:

Small Business, Debt Consolidation and House loans are given with more interest rates compare to others.

In [63]: plt.figure(figsize=(20,5))

sns.boxplot(x='emp_length', y=data.int_rate, data=data) plt.title('emp_length vs Interest Rate')

Out[63]: Text(0.5, 1.0, 'emp_length vs Interest Rate')

Observations:

There is not such relation found between Employment length and interest rate.

In [64]: *#Issue_d* plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x=data.issue_d_year, y=data.int_rate, data=data) plt.title('Issued year vs Interest Rate')

plt.subplot(122) sns.boxplot(x=data.issue_d_month, y=data.int_rate, data=data) plt.title('Issued month vs Interest Rate')

2009

issue_d_year

Observations: As the years of business increase the interest rates are getting more different, median of of interest rate is bit same in all the years

2010

2011

annual_inc

In [65]: plt.figure(figsize=(20,5)) plt.subplot(121)

2008

sns.boxplot(x='term', y=data.annual_inc, data=data)
plt.title('Terms vs annual income')
plt.yscale('log')

plt.subplot(122) plt.title('Grade vs annual income')

2007

grade_ord = data.grade.unique() grade_ord.sort()

sns.boxplot(x='grade', y=data.annual_inc, order = grade_ord, data=data) plt.yscale('log')

Observations: Annual income is higher for lower grades(F & G).

In [66]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='home_ownership', y=data.annual_inc, data=data)
plt.title('home_ownership vs annual income') plt.yscale('log')
plt.subplot(122)

plt.title('verification_status vs annual income')
verification_status_ord = data.verification_status.unique()

verification_status_ord.sort() sns.boxplot(x='verification_status', y=data.annual_inc, order = verification_status_ord, data=data)

9/18

Observations: The home ownership status for mortage has higher income. The income source was verfied for most of the borrowers who had higher annual incomes.

In [67]: sns.boxplot(x='loan_status', y=data.annual_inc, data=data) plt.title('loan_status vs annual income')

Observations: Current status of the loan is Fully paid for most of the borrower's who had higher annual incomes. In [68]: plt.figure(figsize=(20,5)) sns.boxplot(x='purpose', y=data.annual_inc, data=data) plt.xticks(rotation=90) plt.title('purpose vs annual income')

Observations:

A category belonging to Renewable energy, small business and home improvements have higher annual income provided by the borrower for the loan request.

In [69]: plt.figure(figsize=(20,5))

sns.boxplot(x='emp_length', y=data.annual_inc, data=data) plt.title('Employee length vs Annual income') plt.yscale('log')

Observations:

The borrowers who has higer income have taken loans for 10+ years of duration.

In [70]: *#Issue_d* plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x=data.issue_d_year, y=data.annual_inc, data=data)
plt.title('Issued year vs Annual Income of Barrower')

plt.yscale('log') plt.subplot(122)

sns.boxplot(x=data.issue_d_month, y=data.annual_inc, data=data)
plt.title('Issued month vs Annual Income of Barrower')

plt.yscale('log') plt.show()

Observations:

Annual income has no impact with the month.

In [71]: #earliest_cr_line plt.figure(figsize=(20,6))

plt.subplot(211) sns.boxplot(x=data.earliest_cr_line_year, y=data.annual_inc, data=data)

plt.xticks(rotation=90) #for better analysis plotting on log scale of y values

plt.yscale('log')

plt.title('Issued year vs Loan Amount') plt.figure(figsize=(20,6))

plt.subplot(212) sns.boxplot(x=data.earliest_cr_line_month, y=data.annual_inc, data=data)
plt.title('Issued month vs Loan Amount')

plt.yscale('log')

earliest_cr_line_month

Observations: There is not particular pattern in the annual income and earliest Credit line year and month.

DTI Debt to Income Ratio

In [72]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x='term', y=data.dti, data=data) plt.title('Terms vs dti')

plt.subplot(122) plt.title('Grade vs dti')

grade_ord = data.grade.unique() grade_ord.sort()

sns.boxplot(x='grade', y=data.dti, order = grade_ord, data=data)

Out[72]: <AxesSubplot:title={'center':'Grade vs dti'}, xlabel='grade', ylabel='dti'>

Observations:

DTI is bit high for people who got tenure of 60 months. A Grade barrowers are having low DTI than Other grades. DTI should be low for having high repayment percentage.

In [73]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='home_ownership', y=data.dti, data=data) plt.title('home_ownership vs dti') plt.subplot(122)

plt.title('verification_status vs dti')

verification_status_ord = data.verification_status.unique()
verification_status_ord.sort()

sns.boxplot(x='verification_status', y=data.dti, order = verification_status_ord, data=data) Out[73]: <AxesSubplot:title={'center':'verification_status vs dti'}, xlabel='verification_status', ylabel='dti'>

Observations:

People in Other home ownership has less DTI than others. This is may be bacause other people have mortgage and home loans.

In [74]: | sns.boxplot(x='loan_status', y=data.dti, data=data) plt.title('loan_status vs dti')

Out[74]: Text(0.5, 1.0, 'loan_status vs dti')

Observations:

Borrowers with high DTI has bit more probability to default

In [75]: plt.figure(figsize=(20,5)) sns.boxplot(x='purpose', y=data.dti, data=data) plt.xticks(rotation=90) plt.title('purpose vs dti')

Out[75]: Text(0.5, 1.0, 'purpose vs dti')

Observations:

Borrowers who took loan for credit card and debt consolidation purpose has more DTI than other purposes.

In [76]: plt.figure(figsize=(20,5))

sns.boxplot(x='emp_length', y=data.dti, data=data) plt.title('emp_length vs dti')

Out[76]: Text(0.5, 1.0, 'emp_length vs dti')

Observations:

The dti is much similar for borrowers with all the employment length.

pub_rec

Number of derogatory public records

In [77]: #Finding proportation of values in each value of category df = data.groupby(['pub_rec', 'term'], as_index=False)['id'].count() df['proportion'] = df.groupby('pub_rec').transform(lambda x: x/x.sum()) df.head(3)

Out[77]:

pub_rec term id proportion

0 0 36 months 26152 **1** 0 60 months 8719

2 1 36 months 1349

In [78]: plt.figure(figsize=(20,5)) plt.subplot(121) sns.barplot(x='pub_rec', y='proportion', hue='term', data=df)

plt.title('Terms vs Public records') df = data.groupby(['pub_rec', 'grade'], as_index=False)['id'].count()

0.72

df['proportion'] = df.groupby('pub_rec').transform(lambda x: x/x.sum()) plt.subplot(122) plt.title('Grade vs Public records')

grade_ord = data.grade.unique() grade_ord.sort()

sns.barplot(x='pub_rec', y='proportion', hue='grade', data=df)

Out[78]: <AxesSubplot:title={'center':'Grade vs Public records'}, xlabel='pub_rec', ylabel='proportion'>

Observations:

Borrowers higher public derogatory records took loan for 36 months tenure. A grade people are having less derogatory records than the other grades. B,C,D, graded people are having high pub_recs.

In [79]: plt.figure(figsize=(20,5)) plt.subplot(121)

df = data.groupby(['pub_rec', 'home_ownership'], as_index=False)['id'].count()

df['proportion'] = df.groupby('pub_rec').transform(lambda x: x/x.sum())
sns.barplot(x='pub_rec', y='proportion', hue='home_ownership', data=df) plt.title('Home ownership vs Public records')

df = data.groupby(['pub_rec', 'verification_status'], as_index=False)['id'].count() df['proportion'] = df.groupby('pub_rec').transform(lambda x: x/x.sum())

plt.subplot(122) sns.barplot(x='pub_rec', y='proportion', hue='verification_status', data=df)

plt.title('Verification status vs Public records')

Out[79]: Text(0.5, 1.0, 'Verification status vs Public records')

Observations: Borrowers with 4 public Derogatory records are high in mortgage owned house category and also Not verified Catogry.

In [80]: #Proportion of values for each category df = data.groupby(['pub_rec', 'loan_status'], as_index=False)['id'].count()

df['proportion'] = df.groupby('pub_rec').transform(lambda x: x/x.sum()) plt.figure(figsize=(12,5))

sns.barplot(x='pub_rec', y='proportion', hue='loan_status', data=df)

sns.countplot(data.pub_rec, hue='loan_status', data=data) plt.yscale('log') plt.suptitle('loan status vs Public records')

Out[80]: Text(0.5, 0.98, 'loan status vs Public records')

Observations:

There is increase in deafulted loans for borrowers with derogatory records from 0 to 2. Most borrowers are in 0 pub_rec category.

In [81]: plt.figure(figsize=(20,5)) sns.countplot(data.pub_rec, hue='purpose', data=data) plt.title('Purpose vs Public records')

> credit_card car 14000 small_business other wedding

Observations:

There is high amount of debt cansolidation borrowers.

In [82]: plt.figure(figsize=(20,5))

#Proportion of values for each category df = data.groupby(['pub_rec', 'emp_length'], as_index=False)['id'].count() df['proportion'] = df.groupby('pub_rec').transform(lambda x: x/x.sum())

plt.subplot(121) sns.barplot(x='pub_rec', y='proportion', hue='emp_length', data=df) plt.title('Employee length vs Public records')

Out[82]: Text(0.5, 1.0, 'Employee length vs Public records')

Employee length vs Public records 0.5 - emp_length

Observations:

There is more number of 3 year & 7 year emp lenth borrowers.

pub_rec_bankruptcies

Number of public record bankruptcies

In [83]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.countplot(data.pub_rec_bankruptcies, hue='term', data=data) plt.title('Terms vs Public record bankruptcies')

plt.subplot(122) plt.title('Grade vs Public record bankruptcies')

grade_ord = data.grade.unique() grade_ord.sort()

sns.countplot(data.pub_rec_bankruptcies, hue='grade', data=data) Out[83]: <AxesSubplot:title={'center':'Grade vs Public record bankruptcies'}, xlabel='pub_rec_bankruptcies', ylabel='count'>

Observations:

36 months tenure borrowers are in large amount than 60 months tenure. Grades B,C,A are higher than other grades when compared with pub rec bankcruptcies.

In [84]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.countplot(data.pub_rec_bankruptcies, hue='home_ownership', data=data) plt.title('Home ownership vs Public record bankruptcies')

plt.subplot(122) plt.title('Verification status vs Public record bankruptcies')

verification_status_ord = data.verification_status.unique() verification_status_ord.sort() sns.countplot(data.pub_rec_bankruptcies, hue='verification_status', data=data)

Out[84]: <AxesSubplot:title={'center':'Verification status vs Public record bankruptcies'}, xlabel='pub_rec_bankruptcies', ylabel='count'>

pub_rec_bankruptcies

12/18

Observations:

Mortage & rent type of borrowers are in large scale. Most of are not verified one as per the plot.

pub_rec_bankruptcies

In [85]: sns.countplot(data.pub_rec_bankruptcies, hue='loan_status', data=data) plt.title('loan status vs Public record bankruptcies')

Out[85]: Text(0.5, 1.0, 'loan status vs Public record bankruptcies')

Observations:

Most borrower are of fully paid status.

In [86]: plt.figure(figsize=(20,5)) sns.countplot(data.pub_rec_bankruptcies, hue='purpose', data=data)

plt.title('Purpose vs Public record bankruptcies')

Observations:

ther is large amount of borrower belongs to debt consolidation category.

In [87]: plt.figure(figsize=(20,5))

sns.countplot(data.pub_rec_bankruptcies, hue='emp_length', data=data) plt.title('Employee length vs Public record bankruptcies')

Out[87]: Text(0.5, 1.0, 'Employee length vs Public record bankruptcies')

Observations:

There is largeamount of borrowers belong to 10 + year category of emp length.

In [88]: plt.figure(figsize=(20,5)) sns.countplot(data.inq_last_6mths, hue='loan_status', data=data)

plt.title('# inquiries in last 6 months vs Loan Status')

inq_last_6mths

Approval Loan Amount Ratio

In [89]: plt.figure(figsize=(20,5))

sns.boxplot(x='emp_length', y=data.approved_loan_amnt_ratio, data=data) plt.title('emp_length vs Approval Loan Amount Ratio')

Out[89]: Text(0.5, 1.0, 'emp_length vs Approval Loan Amount Ratio')

Observations:

There is not much relation between approval of loan amount ratio and employment length

In [90]: plt.figure(figsize=(20,5))

sns.boxplot(x='purpose', y=data.approved_loan_amnt_ratio, data=data) plt.title('Purpose vs Approval Loan Amount Ratio')

Out[90]: Text(0.5, 1.0, 'Purpose vs Approval Loan Amount Ratio')

Observations:

The Funded amount by investors is lower than requested loan amount in education and small business purposes.

In [91]: plt.figure(figsize=(20,5))

sns.boxplot(x='home_ownership', y=data.approved_loan_amnt_ratio, data=data) plt.title('Home Ownership vs Approval Loan Amount Ratio')

Out[91]: Text(0.5, 1.0, 'Home Ownership vs Approval Loan Amount Ratio')

Observations:

Borrowers with Other home ownership are having less approved ratio which mean they got less amount than request amount.

Bivariate Analysis

Bivariate analysis is one of the simplest forms of quantitative analysis. It involves the analysis of two variables, for the purpose of determining the empirical relationship between them.

Term vs Loan Status

In [92]: #Proportion of values for each category

df = data.groupby(['term', 'loan_status'], as_index=False)['id'].count() df['proportion'] = df.groupby('term').transform(lambda x: x/x.sum()) sns.barplot(x='term', y='proportion', hue='loan_status', data=df, hue_order = ['Fully Paid', 'Charged Off'])

plt.title('Term vs Loan status') Out[92]: Text(0.5, 1.0, 'Term vs Loan status')

Observations:

There are more proportion of borrowers defaulted loan in 60 months term then 36 months. Also the Fully Paid rate is higher in 36 months tenure.

In [93]: plt.figure(figsize=(20,5))

plt.title('Term vs loan amount')

plt.subplot(121) sns.boxplot(x='term', y='loan_amnt', hue='loan_status', data=data)
plt.title('Term vs loan amount')

plt.subplot(122) sns.barplot(x='term', y='loan_amnt', hue='loan_status', data=data, estimator=np.median)

Observations:

Loan amount is not a decider for defaults in both 36 adn 60 months. Borrowers have equal distribtion is both default and non default for 36 and 60 months tenures.

In [94]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='term', y='int_rate', hue='loan_status', data=data) plt.title('Term vs Interest rate')

plt.subplot(122) sns.barplot(x='term', y='int_rate', hue='loan_status', data=data, estimator=np.median) plt.title('Term vs Interest rate') plt.show()

Observations: For higher interest rates the default rate is higher in both 36 and 60 months tenure.

Observations:

Comparitively charge-off are higher when compared with fully-paid for the Debit to income ratio.

Grade

In [96]: #Sorting Grades from A to G grade_ord = data.grade.unique() grade_ord.sort()

> df = data.groupby(['grade', 'loan_status'], as_index=False)['id'].count() df['percentage'] = df.groupby('grade').transform(lambda x: x/x.sum())

plt.figure(figsize=(12,5)) sns.barplot(x='grade', y='percentage', hue='loan_status', data=df, hue_order = ['Fully Paid', 'Charged Off'])

plt.title('Grade vs Loan status')

Out[96]: Text(0.5, 1.0, 'Grade vs Loan status') Grade vs Loan status

Observations:

In [97]: |plt.figure(figsize=(20,5)) plt.subplot(121)

The above graph clearly says the Charged off increases as grades decreases.

sns.boxplot(x='grade', y='loan_amnt', hue='loan_status', data=data, order = grade_ord) plt.subplot(122) sns.barplot(x='grade', y='loan_amnt', hue='loan_status', data=data, estimator=np.median, order = grade_ord) plt.suptitle('Term vs loan amount') plt.show()

Observations:

For lower grades 'F' and 'G' there are more difference between charged-off and fully paid. The lower grade people has taken higher amount of loans and also they are more prone to default the loan.

In [98]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='grade', y='int_rate', hue='loan_status', data=data, order = grade_ord) plt.title('Grade vs Interest Rate')

plt.subplot(122) sns.barplot(x='grade', y='int_rate', hue='loan_status', data=data, order = grade_ord, estimator=np.median) plt.title('Grade vs Interest Rate')

plt.show() Grade vs Interest Rate loan_status Fully Paid Charged Off 20.0 17.5 ± 15.0 12.5 -

Observations:

As grade decreases the interest rate gradually increases. and they are more and more prone to default the loan.

In [99]: plt.figure(figsize=(20,5)) plt.subplot(121)

plt.show()

sns.boxplot(x='grade', y='dti', hue='loan_status', data=data, order=grade_ord) plt.subplot(122)

sns.barplot(x='grade', y='dti', hue='loan_status', data=data, estimator=np.median, order = grade_ord) plt.suptitle('garde vs DTI')

Observations:

There is not much change in dti in each grade and loan status.

Employment Length

In [100]: df = data.groupby(['emp_length', 'loan_status'], as_index=False)['id'].count() df['percentage'] = df.groupby('emp_length').transform(lambda x: x/x.sum())

plt.figure(figsize=(12,5)) sns.barplot(x='emp_length', y='percentage', hue='loan_status', data=df) plt.title('Grade vs Loan status')

Out[100]: Text(0.5, 1.0, 'Grade vs Loan status')

Observations:

There is not big changes or pattern observed defaulters across employment lengths.

In [101]: plt.figure(figsize=(20,6))

plt.subplot(211) sns.boxplot(x='emp_length', y='loan_amnt', hue='loan_status', data=data) plt.figure(figsize=(20,6))

plt.subplot(212) sns.barplot(x='emp_length', y='loan_amnt', hue='loan_status', data=data, estimator=np.median) plt.show()

Observations: Borrowers with higher employment lengths and took more loan amounts got more default rate.

emp_length

Observations:

Irrespective of employment length loans with more interest rates got defaulted more.

In [103]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='emp_length', y='dti', hue='loan_status', data=data) plt.subplot(122)

sns.barplot(x='emp_length', y='dti', hue='loan_status', data=data, estimator=np.median)

plt.suptitle('emp_length vs DTI') plt.show()

emp_length

Observations:

Employment Length and DTI are not showing any patterns towards defaults.

Home Ownership

In [104]: df = data.groupby(['home_ownership', 'loan_status'], as_index=False)['id'].count() df['percentage'] = df.groupby('home_ownership').transform(lambda x: x/x.sum())

emp_length

plt.figure(figsize=(12,5)) sns.barplot(x='home_ownership', y='percentage', hue='loan_status', data=df, hue_order = ['Fully Paid', 'Charged Off'])

plt.title('Home Ownership vs Loan status') Out[104]: Text(0.5, 1.0, 'Home Ownership vs Loan status')

Observations:

plt.show()

There are bit high percentage of defaults are recorded in other home ownership category.

In [105]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x='home_ownership', y='int_rate', hue='loan_status', data=data)

sns.barplot(x='home_ownership', y='int_rate', hue='loan_status', data=data, estimator=np.median) plt.suptitle('home_ownership vs Interest Rate')

loan_status Fully Paid Charged Off 20.0 -17.5 -Ē, 15.0 · 12.5 -

Observations:

RENT

Irrespictive of Home owner ship, when the interest rate is high the dafault rate also high.

home_ownership

OWN

In [106]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x='home_ownership', y='dti', hue='loan_status', data=data) plt.subplot(122)

sns.barplot(x='home_ownership', y='dti', hue='loan_status', data=data, estimator=np.median) plt.suptitle('home_ownership vs DTI') plt.show()

MORTGAGE

home_ownership

MORTGAGE

loan_status Fully Paid Charged Off

Observations:

RENT

Borrowers in other home ownership category has less dti than other categories. There is equal posibility of home owners defaulting for all the home ownerships.

OTHER

OTHER

Address State

plt.subplot(211)

In [107]: charged_off_df = data[data.loan_status.values == 'Charged Off'] plt.figure(figsize=(20,6))

OWN

sns.countplot(x='addr_state', data=charged_off_df, order=charged_off_df.addr_state.value_counts().index) plt.title('Address State vs Charged Off')

fp_df = data[data.loan_status.values == 'Fully Paid'] plt.figure(figsize=(20,6)) plt.subplot(212)

sns.countplot(x='addr_state', data=fp_df, order=fp_df.addr_state.value_counts().index) plt.title('Address State vs Fully Paid')

plt.show() Address State vs Charged Off 1000 -600 -

Observations:

More number of borrowers defaulted in CA , FL and NY states

Verfication Status

In [108]: df = data.groupby(['verification_status', 'loan_status'], as_index=False)['id'].count() df['percentage'] = df.groupby('verification_status').transform(lambda x: x/x.sum()) plt.figure(figsize=(12,5)) sns.barplot(x='verification_status', y='percentage', hue='loan_status', data=df) plt.title('Grade vs Loan status')

Out[108]: Text(0.5, 1.0, 'Grade vs Loan status')

Observations:

There is not a large change in charged of loans for all varification status.

In [109]: plt.figure(figsize=(20,5)) plt.subplot(121)

sns.boxplot(x='verification_status', y='loan_amnt', hue='loan_status', data=data)

sns.barplot(x='verification_status', y='loan_amnt', hue='loan_status', data=data, estimator=np.median) plt.suptitle('Verification Status vs loan amount')

plt.show()

Verification Status vs loan amount

Observations:

There is difference between the verified & source verified borrowers in there loan amount when they are charged off

In [110]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x='verification_status', y='loan_amnt', hue='loan_status', data=data)

sns.barplot(x='verification_status', y='loan_amnt', hue='loan_status', data=data, estimator=np.median) plt.suptitle('Verification Status vs loan amount')

plt.show()

16000 -30000 -14000 25000 -12000 -É 20000 -₹ 10000 · loan_status Fully Paid 8000 -Charged Off <u>8</u> 15000 -6000 -10000 4000 -5000 -

verification_status

Observations:

Verified loans are given more loan amounts compared to others.

Verified

In [111]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x='verification_status', y='int_rate', hue='loan_status', data=data)

Source Verified

verification_status

plt.subplot(122) sns.barplot(x='verification_status', y='int_rate', hue='loan_status', data=data, estimator=np.median) plt.suptitle('Verification Status vs interest rate')

Not Verified

Not Verified

plt.show() 20.0 -17.5 loan_status 15.0 -Fully Paid Charged Off 12.5 -10.0

Observations:

Verified

In [112]: plt.figure(figsize=(20,5))

plt.subplot(121) sns.boxplot(x='verification_status', y='dti', hue='loan_status', data=data)

Irrespective of verification status higher interest rates are incurring default of loan.

Source Verified verification_status

plt.subplot(122) sns.barplot(x='verification_status', y='dti', hue='loan_status', data=data, estimator=np.median) plt.suptitle('verification_status vs DTI')

Observations:

There is slight increase in the dti mean for defaulted loans for all the verification status categories.

Purpose

In [113]: df = data.groupby(['purpose', 'loan_status'], as_index=False)['id'].count() df['percentage'] = df.groupby('purpose').transform(lambda x: x/x.sum()) df = df[df.loan_status == 'Charged Off']

plt.figure(figsize=(12,5)) sns.barplot(x='purpose', y='percentage', data=df)

plt.xticks(rotation=90) plt.title('Purpose vs Loan status (Charged Off)')

Out[113]: Text(0.5, 1.0, 'Purpose vs Loan status (Charged Off)')

Observations:

Charged-off are higher for small_business comparitively.

1/7/22, 3:31 PM Lending_club - Jupyter Notebook

In [114]: df = data.groupby(['purpose', 'loan_status'], as_index=False)['loan_amnt'].median()

plt.suptitle('Purpose vs loan amount') plt.figure(figsize=(20,5))

plt.subplot(211) sns.barplot(x='purpose', y='loan_amnt', hue='loan_status', data= data, order=df[df.loan_status == 'Charged Off'].sort_values(by='loan_amnt').purpose, estimator=np.median) plt.xticks(rotation=90)

plt.figure(figsize=(20,5))

plt.subplot(212) sns.boxplot(x='purpose', y='loan_amnt', hue='loan_status', data= data, order=df[df.loan_status == 'Charged Off'].sort_values(by='loan_amnt').purpose)

<Figure size 432x288 with 0 Axes>

plt.show()

Observations:

Small Business has more defaults when the loan amount is also high.

In [115]: df = data.groupby(['purpose', 'loan_status'], as_index=False)['int_rate'].median() purpose_ord = df[df.loan_status == 'Charged Off'].sort_values(by='int_rate').purpose

plt.suptitle('Purpose vs interest rate') plt.figure(figsize=(20,5))

plt.subplot(211) sns.barplot(x='purpose', y='int_rate', hue='loan_status', data= data, estimator=np.median, order = purpose_ord)

plt.xticks(rotation=90)

plt.figure(figsize=(20,5)) plt.subplot(212)

plt.show()

sns.boxplot(x='purpose', y='int_rate', hue='loan_status', data= data, order = purpose_ord) plt.xticks(rotation=90)

<Figure size 432x288 with 0 Axes>

Observations:

In [116]: df = data.groupby(['purpose', 'loan_status'], as_index=False)['dti'].median() purpose_ord = df[df.loan_status == 'Charged Off'].sort_values(by='dti').purpose

> plt.figure(figsize=(20,5)) plt.suptitle('purpose vs DTI')

plt.subplot(121)

sns.boxplot(x='purpose', y='dti', hue='loan_status', data=data, order=purpose_ord) plt.xticks(rotation=90) plt.subplot(122)

sns.barplot(x='purpose', y='dti', hue='loan_status', data=data, estimator=np.median, order = purpose_ord) plt.xticks(rotation=90) plt.show()

Home loans with high interest rates are mostly defaulted. Even small business and debt consolidation has similar observation.

Observations: Could not find any pattern from this plot.

Loan Amount vs Interest Rate

In [117]: plt.figure(figsize=(20,6)) #scatter plot for analysing distribution sns.scatterplot(x='loan_amnt', y='int_rate', data=data, hue='loan_status')

plt.title('Loan Amount vs Loan interest rate') plt.show()

Observations:

Values are pretty much spread accross all the space. There is not specific pattern found in the spread.

Loan Amount vs Annual income

In [118]: plt.figure(figsize=(20,12))

plt.subplot(211) sns.scatterplot(x='loan_amnt', y='annual_inc', data=data[data.loan_status == 'Charged Off']) plt.yscale('log')
plt.title('Loan Amount vs Loan interest rate (Charged Off)')

plt.subplot(212) sns.scatterplot(x='loan_amnt', y='annual_inc', data=data[data.loan_status == 'Fully Paid'])

plt.yscale('log') plt.title('Loan Amount vs Loan interest rate (Fully Paid)') plt.show()

Loan Amount vs Loan interest rate (Charged Off) loan_amnt Loan Amount vs Loan interest rate (Fully Paid)

30000

35000

Observations: Both Fully paid and Charged Off loans are having similar pattern versus Annual income. We can fit a linear pattern with a line which has very much less slope.

Loan Amount vs DTI

5000

In [119]: plt.figure(figsize=(20,6)) sns.scatterplot(x='loan_amnt', y='dti', data=data, hue='loan_status') plt.title('Loan Amount vs DTI') plt.show()

Observations:

Values are pretty much spread accross all the space. There is not specific pattern found in the spread.

Interest Rate vs DTI

In [120]: plt.figure(figsize=(20,6)) sns.scatterplot(x='int_rate', y='dti', data=data, hue='loan_status')

Observations: Values are spread all accross, but we can see one thing here irrespective of DTI when interest rates are high charged off loans are high.

Correlation Matrix

finding the correlation between the variables of dataset

In [121]: #Finding correlation matric corr_matrix = data.corr() plt.figure(figsize=(20,20))

> #plotting correlatioon matric on a heat map ax = sns.heatmap(corr_matrix, annot = True, cmap='Blues') top, bottom = ax.get_ylim()

ax.set_ylim(top+0.5, bottom-0.5) plt.title("Correlation between Columns")

plt.show()

Observations:

The no. of derogatory public records column is highly correlated with public bankruptcies records. Interest rates are high for people with high revol utilisation.

Conclusion

1. irrespective of DTI when interest rates are high charged off loans are high.

2. Home loans with high interest rates are mostly defaulted. 3. Small Business has more defaults when the loan amount is also high. 4. Charged-off loan status are higher for small_business comparitively.

5. Irrespective of verification status higher interest rates are incurring default of loan.

6. More number of borrowers defaulted in CA , FL and NY states. 7. Irrespictive of Home owner ship, when the interest rate is high the dafault rate also high.

8. Irrespictive of employment length loans with more interest rates got defaulted more. 9. As grade decreases the interest rate gradually increases. and they are more and more prone to default the loan.

10. The lower grade people has taken higher amount of loans and also they are more prone to default the loan. 11. Interest rates are high for people with high revol utilisation.