Lighting - Specular

Ooooh shiny!

Recap

- Last session we looked at the Phong Lighting model
 - We covered the Ambient and Diffuse portions of the equation

$$I_p = k_a i_a + \sum_{m \in lights} (k_d (L_m \cdot N) i_d + k_s (R_m \cdot V)^a i_s)$$
Ambient Diffuse Specular

- This session we will take a quick look at the final part of the equation
 - Specular

berra Institute of Technology /orkplace • Online • Campus | cit.edu.au

Specular Highlights

- Specular highlights are the bright spots of light that appear on shiny objects when the light reflects just right into your eye
 - Think of all those times as a kid you tried to reflect light into your teacher's eyes!
- This light is confined by the law of reflection, in that the reflected light ray makes the same angle with the surface as the incoming light ray
 - If the reflected ray enters the viewer's sight then the specular highlight is added to the final calculated colour at that point

Specular Lighting

Specular lighting is calculated for each light just as diffuse was

$$I_p = k_a i_a + \sum_{m \in lights} (k_d (L_m \cdot N) i_d + k_s (R_m \cdot V)^a i_s)$$
Diffuse Specular

- However it has a few extra bits in the equation
 - Rm is the light vector reflected about the surface normal
 - V is a vector from the surface to the viewer / camera
 - The dot product is also raised to a power a
 - k_s and i_s just refer to the surface material's specular colour and the light's specular colour

Specular Lighting

- To calculate the reflected light vector we simply reflect it around the surface normal
- We then perform a dot product between the light's reflected vector and a vector from the surface to the viewer
 - This value is called the specular term
 - The specular term is clamped between 0 and 1 much like the diffuse term was

Specular Lighting

- We also raise the specular term to a specular power
 - This helps control the intensity of the reflection

Complete Phong Equation

- The specular term is then multiplied with the specular colour
 - Defined as the light's specular colour multiplied with the surface's specular colour
- Finally the calculated specular colour is added along with all other light's specular to the final pixel colour
- Specular lighting helps define shiny surfaces and can mimic glass, plastic, skin, water, etc
 - Also helps highlight shape and texture of a surface

Summary

- Specular highlights add a sense of shine and surface roughness to objects
- The Phong Lighting incorporates a specular term for each light
 - Based on an angle between the view vector and a reflected light vector

http://en.wikipedia.org/wiki/Specular_highlight http://en.wikipedia.org/wiki/Specular_reflection

