

算法基础 Foundation of Algorithms

主讲人 徐云 Fall 2019, USTC

中国科学技术大学 计算机科学与技术系 University of Science and Technology of China DEPARTMENT OF COMPUTER SCIENCE AND TECHNOLOGY

- Part 1 Foundation
- Part 2 Sorting and Order Statistics
- Part 3 Data Structure
- Part 4 Advanced Design and Analysis Techniques
- Part 5 Advanced Data Structures
 - chap 18 B-Tree
 - chap 19 Fibonacci Heaps (Binomial Heaps in v2)
 - chap 20 Van Emde Boas Trees
 - chap 21 Data Structures for Disjoint Sets
- Part 6 Graph Algorithms
- Part 7 Selected Topics
- Part 8 Supplement

Chapter 21 Data Structures for Disjoint Sets

- 21.1 Overview and Ops
- 21.2 Linked List Representation
- 21.3 Disjoint-set Forest

21.1 Overview and Ops

- Disjoint-set Data Structures
- Operations on Disjoint-set
- Application

Disjoint-set Data Structures

- Maintain collection $S=\{S_1, S_2, ..., S_k\}$ of *disjoint* sets with dynamic (changing over time).
 - \square where any S_i and S_j are no any common members.
- Each set is identified by a representative(rep. later).
 - □ which is some member of the set.
- Remark:
 - □ Doesn't matter which member is the rep, we get the same answer as long as if we ask for the rep.

Operations on Disjoint-set

- Make-Set(x): make a new set $S_i = \{x\}$.
- Union(x, y): if $x \in S_x$, $y \in S_y$, then $S=S-S_x-S_y \cup \{S_x \cup S_y\}$
 - \square Rep. of new set is any member of $S_x \cup S_y$
 - \square Destroys S_x and S_y .
- Find-Set(x): return rep. of set containing x.
- Analysis in terms of:
 - \square n = # of elements = # of Make-Set operations.
 - \square *m* = total # of operations.

Application: Dynamic connected components

- Definition: For a graph G=(V, E), vertices u,v are in same connected component if and only if there's a path between them.
- Goal: Connected components partition vertices into equivalence classes.

```
Connected-Components (G) Same-Component (u, v)

for each vertex v \in G.V if Find-Set (u) == \text{Find-Set}(v)

Make-Set (v) return true

for each edge (u, v) \in G.E

if Find-Set (u) \neq \text{Find-Set}(v)

Union (u, v)
```

- Remark: actually implementing,
 - □ each vertex needs a handle (指针) to its rep.,
 - □ Each rep. needs a handle to its vertex.

Application: an Instance

Edge processed			Coll	ection	n of disjoi	nt set	s			
initial sets	{a}	{b}	{c}	{d}	{e}	<i>{f}</i>	{g}	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }
(<i>b</i> , <i>d</i>)	{a}	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		{ <i>e</i> }	{ <i>f</i> }	{ g }	$\{h\}$	$\{i\}$	$\{j\}$
(e,g)	{a}	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		$\{e,g\}$	{ <i>f</i> }		$\{h\}$	$\{i\}$	$\{j\}$
(a,c)	$\{a,c\}$	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		$\{h\}$	$\{i\}$	$\{j\}$
(h,i)	$\{a,c\}$	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		$\{h,i\}$		$\{j\}$
(a,b)	$\{a,b,c,d\}$				$\{e,g\}$	<i>{f}</i>		$\{h,i\}$		$\{j\}$
(e,f)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		$\{j\}$
(<i>b</i> , <i>c</i>)	$\{a,b,c,d\}$				$\{e,f,g\}$			$\{h,i\}$		$\{j\}$
	•		1	(b)						

Chapter 21 Data Structures for Disjoint Sets

- 21.1 Overview and Ops
- 21.2 Linked List Representation
- 21.3 Disjoint-set Forest

21.2 Linked List Representation

- Data Structure Design
- Simple Implementation of Union
- Weighted-Union Heuristic
- Theorem and its Proof

Data Structure Design

- Take the first element as the rep. in a list.
- Make-Set, Find-Set only need O(1).

Simple Implementation of Union (1)

- Union(x, y): append y's list onto end of x's list. Use x's tail pointer to find the end.
 - □ Need to update the pointer to the set rep. for every node on y's list.

Simple Implementation of Union (2)

• If appending a large list onto a small list, it can take a while.

Operation	# objects updated
$\overline{\text{UNION}(x_2,x_1)}$	1
Union (x_3, x_2)	2
Union (x_4, x_3)	3
Union (x_5, x_4)	4
:	:
Union (x_n, x_{n-1})	$\underline{n-1}$
	$\Theta(n^2)$ total

• Amortized time per operation $\theta(n)$.

Weighted-Union Heuristic

- Always append the smaller list to the larger list.
- For any rep. stores the length (i.e. weight) of its list.
- Theorem
 With weighted union, a sequence of m operations on n elements takes O(m+nlogn) time.
 - m is total # of operations of Make-Set, Union, and Find-Set.

Proof of Theorem

- Each Make-Set() and Find-Set() still takes O(1).
- Lets consider the cost of Union():
 - Union cost is mainly the # of pointer updated for any x in smaller set.
 - The times updated of any x have

times updated	size of resulting set
1	<u>≥ 2</u>
2	≥ 4
3	≥ 8
:	:
k	$\geq 2^k$
:	:
$\lg n$	$\geq n$

- So, the total time spent updating object pointers O(nlogn).
- Because there are O(m) for all ops. Therefore, the total time for the entire sequence is O(m+nlogn)

Chapter 21 Data Structures for Disjoint Sets

- 21.1 Overview and Ops
- 21.2 Linked List Representation
- 21.3 <u>Disjoint-set Forest</u>

21.3 Disjoint-set Forest

- Forest Trees
- Some Heuristic Tricks
- Implementation

Forest Trees

- 1 tree per set. And root is representative.
- Each node points only to its parent.
- We known that
 - \square Make-Set(x): O(1).
 - □ Find-Set(x): O(h), where h is the height of tree including x.
 - Union(x, y): the root of the tree including y is pointed to that of x.

Heuristics 1: Union by Rank

- Background: if there is no any good heuristic, it could get a linear chain of nodes.
- Idea: Make the root of the smaller tree (fewer nodes or lower height) into a child of the root of the larger tree.

• Remak:

- □ Don't actually use size.
- Use rank, which is an upper bound on height of node.
- Make the root with the smaller rank as a child of the root with the larger rank.

Heuristics 2: Path Compression

• Idea:

- □ Find path = nodes visited during Find-Set on the trip to the root.
- Make all nodes on the find path direct children of root.

each node has two attributes, p (parent) and rank

Implementation

```
MAKE-SET(x)
```

$$x.p = x$$

$$x.rank = 0$$

Union(x, y)

Link(Find-Set(x), Find-Set(y))

Link(x, y)

if x.rank > y.rank

$$y.p = x$$

else x.p = y

// If equal ranks, choose y as parent and increment its rank.

if
$$x.rank == y.rank$$

$$y.rank = y.rank + 1$$

- Running time (proof in 21.4)
 - □ If use both union by rank and path compression, O(ma(n)).
 - □ This bound is tight, pls see right.
 - How about using one alone?

FIND-SET(x)

if $x \neq x.p$

x.p = FIND-Set(x.p)

return x.p

a pass up to find the root, and a pass down as recursion, such as each node on find path to point directly to root.

n	$\alpha(n)$
0-2	0
3	1
4–7	2
8-2047	3
$2048 - A_4(1)$	4

End of Ch21