Housekeeping

Today I'll be attending the FIT staff/student representative meeting from 1–2pm, so won't be available in my usual contact hours. I'll make myself available from 3–4pm instead.

MAT1830

Lecture 11: Sets

Sets - why should you care?

- Sets are an important data structure when programming.
- ▶ Sets are very important concepts CS and maths.
- ▶ Set notation is used a lot in writing about CS and maths.
- ► The standard approach to building maths up from logic is based on sets. (Caring optional here.)

Sets are vital in expressing mathematics for-

mally and are also very important data structures in computer science. A set is basically just an unordered collection

of distinct objects, which we call its elements or members. Note that there is no notion of order for a set, even though we often write down its

elements in some order for convenience. Also, there is no notion of multiplicity: an object is either in a set or not - it cannot be in the set

multiple times.

Sets A and B are equal when every element of A is an element of B and vice-versa.

11.1 Set notation

- - $x \in S$ means x is an element of set S. • $\{x_1, x_2, x_3, \ldots\}$ is the set with elements x_1, x_2, x_3, \ldots • $\{x: P(x)\}$ is the set of all x with property

 $\{1, 1, 1\} = \{1\}$

Example. $17 \in \{x: x \text{ is prime}\} = \{2, 3, 5, 7, 11, 13, \ldots\}$ $\{1,2,3\} = \{3,1,2\}$

For a finite set S, we write |S| for the number of elements of S.

$\{\mathsf{book}, \mathsf{pen}, \{\mathsf{freddo}, \{\}\}\}$

Questions Let $S = \{a, \{a\}, \{b\}, \{a, b, c\}\}.$

Is $a \in S$? Yes

Is $b \in S$? No

Is $\{a, b\} \in S$? No

Is $\{a\} \in S$? Yes

Questions

Let
$$R = \{a, b, c\}$$
. What is $|R|$?

Let
$$S = \{a, \{a\}, \{b\}, \{a, b, c\}\}$$
. What is $|S|$?

Let
$$T = \{0, 1, 2, \dots, 100\}$$
. What is $|T|$? 101

What is
$$|\{\}|$$
? 0

Question 11.1

E(x): "x is even"

F(x): "5 divides x"

(Assume we're working in the integers ≥ 0 .)

What is the set $\{x : E(x) \land F(x)\}$?

The set containing all multiples of 10, that is $\{0, 10, 20, 30, \ldots\}$.

Write a formula for the set $\{5, 15, 25, 35, \ldots\}$.

 $\{x: \neg E(x) \wedge F(x)\}.$

11.2 Universal set

The idea of a "set of all sets" leads to logical difficulties. Difficulties are avoided by always working within a local "universal set" which includes only those objects under consideration.

For example, when discussing arithmetic it might be sufficient to work just with the numbers $0, 1, 2, 3, \ldots$ Our universal set could then be taken as

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\},\,$$

and other sets of interest, e.g. $\{x: x \text{ is prime}\}$, are parts of \mathbb{N} .

Russel's paradox (* not assessable)

Cantor's Set Building Rule For every property P(x) there exists a set $\{x : P(x)\}$.

IS WRONG.

Russel's Paradox Consider that set $R = \{x : x \notin x\}$. Is $R \in R$?

If $R \in R$ then $R \notin R$ by definition of R. If $R \notin R$ then $R \in R$ by definition of R. AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK.

HEY, GÖDEL - WE'RE COMPIUNG A COMPREHENSIVE LIST OF FETISHES. WHAT TURNS YOU ON?			
ANYTHING NOT ON YOUR LIST.			
UHΗΜ. \			
	R		
\bigwedge	\bigwedge		

Important sets

```
\begin{array}{ll} \mathbb{N} & \text{natural numbers} & \{0,1,2,\ldots\} \\ \mathbb{Z} & \text{integers} & \{\ldots,-2,-1,0,1,2,\ldots\} \\ \mathbb{Q} & \text{rational numbers} & \{\frac{a}{b}:a,b\in\mathbb{Z},b\neq0\} \\ \mathbb{R} & \text{real numbers} \\ \emptyset & \text{empty set} & \{\} \end{array}
```

11.3 Subsets

We say that A is a *subset* of B and write $A \subseteq B$ when each element of A is an element of B.

Example. The set of primes forms a *subset* of \mathbb{N} , that is $\{x : x \text{ is prime}\} \subseteq \mathbb{N}$.

Formally $A \subseteq B$ if $\forall x (x \in A \rightarrow x \in B)$.

Notes:

Every set is a subset of itself.

{} is a subset of every set.

Questions Let $S = \{a, \{a\}, \{b\}, \{a, b, c\}\}.$

Is $\{b\} \subseteq S$? No

Is $\{a\} \subseteq S$? Yes

Is $\{a, b\} \subseteq S$? No

Is $\{\{a\},\{b\}\}\subseteq S$? Yes

11.4 Characteristic functions

A subset A of B can be specified by its *characteristic function* χ_A , which tells which elements of B are in A and which are not.

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Example. The subset $A = \{a, c\}$ of $B = \{a, b, c\}$ has the characteristic function χ_A with

$$\chi_A(a) = 1, \quad \chi_A(b) = 0, \quad \chi_A(c) = 1.$$

We also write this function more simply as

$$a$$
 b c

In fact we can list all characteristic functions on $\{a, b, c\}$, and hence all subsets of $\{a, b, c\}$, by listing all sequences of three binary digits:

${\it characteristic\ function}$		cteristic function	subset
a	b	c	
0	0	0	{}
0	0	1	$\{c\}$
0	1	0	$\{b\}$
0	1	1	$\{b,c\}$
1	0	0	{a}
1	0	1	$\{a,c\}$
1	1	0	$\{a,b\}$
1	1	1	$\{a,b,c\}$
1		1	$ \begin{cases} \{a, c\} \\ \{a, b\} \\ \{a, b, c\} \end{cases} $

We could similarly list all the subsets of a four-element set, and there would be $2^4=16$ of them, corresponding to the 2^4 sequences of 0s and ls.

In the same way, we find that an n-element set has 2^n subsets, because there are 2^n binary sequences of length n. (Each of the n places in the sequence can be filled in two ways.)

11.5 Power set

The set of all subsets of a set U is called the power set $\mathcal{P}(U)$ of U.

Example. We see from the previous table that $\mathcal{P}(\{a,b,c\})$ is the set

$$\{\{\},\{c\},\{b\},\{b,c\},\{a\},\{a,c\},\{a,b\},\{a,b,c\}\}.$$

If U has n elements, then $\mathcal{P}(U)$ has 2^n elements.

(The reason $\mathcal{P}(U)$ is called the "power" set is probably that the number of its elements is this power of 2. In fact, the power set of U is sometimes written 2^U .)

Question 11.2 How many subsets does $\{2, 5, 10, 20\}$ have?

 $2^4 = 16$

```
Question What is \mathcal{P}(\{2,5,10,20\})?
```

```
{ {}, {5}, {10}, {20}, {2,5}, {2,10}, {2,20}, {5,10}, {5,20}, {10,20}, {2,5,10}, {2,5,20}, {2,10,20}, {5,10,20}, {2,5,10,20} }.
```

11.6Sets and properties

subset

We mentioned at the beginning that $\{x: P(x)\}\$ stands for the set of objects x with property P.

Thus sets correspond to properties. Properties of the natural numbers $0, 1, 2, 3, \ldots$, for example, correspond to subsets of the set $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$. Thus the

$$\{0, 2, 4, 6, \ldots\} = \{n \in \mathbb{N} : n \text{ is even}\},\$$

corresponds to the property of being even.

 $\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, \ldots\}$ corresponds to the property of being prime. The power set $\mathcal{P}(\mathbb{N})$ corresponds to all possible properties of natural numbers.

Question 11.3 Consider the sets

$$\begin{cases} x: 0 < x < 1 \\ x: 0 < x < \frac{1}{2} \\ x: 0 < x < \frac{1}{3} \\ x: 0 < x < \frac{1}{4} \end{cases}$$

Do they have an element in common?

No.

Suppose they had r in common. Then r > 0, so there is a (big) natural number n such that $r > \frac{1}{n}$. But then r is not in the set $\{x : 0 < x < \frac{1}{n}\}$. Contradiction.

11.7* What are numbers?

"Everything is a set" in mathematics. This claim can illustrated by defining the numbers $0, 1, 2, 3, \ldots$ as particular sets, starting with the empty set. This definition is due to von Neumann.

$$\begin{array}{rcl}
0 & = & \{\} \\
1 & = & \{0\} \\
2 & = & \{0,1\} \\
& \vdots \\
n+1 & = & \{0,1,2,\dots,n\}
\end{array}$$

We are not going to use this definition in this course. Still, it is interesting that numbers *can* be defined in such a simple way.

(* not assessable)