9.2 利用分式化与乘积可交换以及 Dedekind 整环中理想可分解为素理想的乘积, 我们可以看出这个等式是一个局部性质. 不失一般性我们可以假设 A 是一个离散赋值环,v 为其离散赋值. 由理想的乘积定义显然有 $c(fg) \subseteq c(f)c(g)$. 假设 A 的极大理想 m 由 x 生成, 记 $f(x) = a_0 + a_1x + \cdots + a_nx^n, g(x) = b_0 + b_1x + \cdots + b_mx^m, a_i, b_j \in A$. 由假设 A 中理想 $c(f) = x^s A, c(g) = x^t A,$ 那么 v(x) = 1, $\min\{v(a_0), v(a_1), \cdots v(a_n)\} = s$, $\min\{v(b_0), v(b_1), \cdots, v(b_m)\} = t$,则存在 $0 \le n_0 < n$, $0 \le m_0 < m$ 使得 $v(a_{n_0}) = s$, $v(b_{m_0}) = t$,并且 $\forall i < n_0, j < m_0, v(a_i) > s$, $v(b_i) > t$. 此时 $x^{n_0+m_0}$ 在多项式 fg 中的系数为

$$c_{n_0+m_0} = \sum_{i+j=n_0+m_0} a_o b_j$$

这里我们约定 $a_i = b_j = 0$ 如果 i > n 或 j > m. 那么 $v(a_{n_0}b_{m_0}) = s + t$, 并且由 n_0, m_0 的选取可知其他项的值严格大于 s + t. 因此 $v(c_{n_0+m_0}) = s + t$, 这说明 $c(fg) \supseteq c_{n+0+m_0}A = x^{s+t}A = c(f)c(g)$.

9.5 利用 Chap3.EX13,Chap7EX16, 我们有 M 为平坦模 \Leftrightarrow 对于任意素理想 $\mathfrak{p},M_{\mathfrak{p}}$ 自由 \Leftrightarrow 对于任意素理想 $\mathfrak{p},M_{\mathfrak{p}}$ 无扭.

9.6 取 A 的一个素理想 \mathfrak{p} ; 那么 $M_{\mathfrak{p}}$ 是主理想整环 $A_{\mathfrak{p}}$ 上的有限生成扭型模. 如果 $Ann(M) \neq 0$, 由于 M 是一个扭子模, 那么 $Ann(M) = \mathfrak{p}_{1}^{n_{1}} \cdots \mathfrak{p}_{m}^{n_{m}}, n_{i} > 0$, 然而 $Supp(M) = V(Ann(M)) = \{\mathfrak{p}_{1} \cdots \mathfrak{p}_{m}\}$. 由主理想整环上的扭模分解给出

$$M_{\mathfrak{p}} = \bigoplus_{i=1}^{t} A_{\mathfrak{p}}/(\mathfrak{p}A_{\mathfrak{p}})^{m_i} = \bigoplus_{i=1}^{t} (A/\mathfrak{p}^{m_i})_{\mathfrak{p}}$$

记 D 为右边的模, 实际上 $D_{\mathfrak{p}} = D$. 这是由于如果 A 是 Dedekind 整环, \mathfrak{p} , \mathfrak{q} 为 A 的非零素理想, 对于 m > 0 有, $(A/\mathfrak{p}^m)_{\mathfrak{p}} \simeq A/\mathfrak{p}^m$, $(A/\mathfrak{p}^m)_{\mathfrak{q}} = 0$. 对每个 $\mathfrak{p}_i \in Supp(M)$, 记 D_i 为相应的给出 $M_{\mathfrak{p}}$ 如上式分解的 D, 那么 $(D_i)_{\mathfrak{p}_i} = \delta_{ij}D_i$. 令

$$D = \bigoplus_{i=1}^{t} D_i$$

观察合成

$$M \to \bigoplus_{\mathfrak{p} \neq 0} M_{\mathfrak{p}} \xrightarrow{\simeq} \bigoplus_{i=1}^{m} D_{i}$$

在 A 的任一非零素理想处做局部化时是一个同构. 所以原来的映射是同构. 9.7 先假设 $\mathfrak{a} = \mathfrak{p}$ 为一素理想, 那么当 n > 0 时, $A/\mathfrak{p}^n \simeq (A/\mathfrak{p}^n)_{\mathfrak{p}} = A_{\mathfrak{p}}/\mathfrak{p}^n A_{\mathfrak{p}}$, 为主理想整环的商环, 自然也是主理想环. 而对于一般的 \mathfrak{a} , 有分解 $\mathfrak{a} = \mathfrak{p}_1^{n_1} \cdots \mathfrak{p}_m^{n_m}$. 注意到

$$A/\mathfrak{a} \simeq \bigoplus_{\mathfrak{p} \neq 0} (A/\mathfrak{a})_{\mathfrak{p}} = \bigoplus_{i=1}^{m} (A/\mathfrak{p}_{i}^{n_{i}})$$

由之前的练习可知 A/\mathfrak{a} 是主理想整环的积, 也是主理想整环.

9.9 如果 $x \equiv x_i \pmod{\mathfrak{a}_i}, x \equiv x_j \pmod{\mathfrak{a}_j}$,那么 $x - x_i \in \mathfrak{a}_i, x - x_j \in \mathfrak{a}_j$,从而 $x_i - x_j \in \mathfrak{a}_i + \mathfrak{a}_j$,亦即 $x_i \equiv x_j \pmod{\mathfrak{a}_i + \mathfrak{a}_j}$ 另一个方向,由提示考虑映射的合成

$$A \stackrel{\phi}{\leftarrow} \bigoplus_{i=1}^{n} A/\mathfrak{a}_{i} \stackrel{\psi}{\rightarrow} \bigoplus_{i < j} A/(\mathfrak{a}_{i} + \mathfrak{a}_{j})$$

这里 $\phi(x) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n)$ 的第 (i, j) 分量等于 $x_i - x_j + \mathfrak{a}_i + \mathfrak{a}_j$. 那么左边的条件等价于说之前的图表是正合列. 注意到这个序列的正合性是个局部性质,通过做关于任一 A 的非零素理想的局部化, 我们可以假设 A 是一个离散赋值环.

在这个假设之下,A 有唯一的极大理想 \mathfrak{m} , 并且 \mathfrak{a}_i 是 \mathfrak{m} 的幂, 即 $\mathfrak{a}_i = \mathfrak{m}^{m_i}$. 我们可以重新排列使得 $m_i \leq m_{i+1}$, 亦即 $\mathfrak{a}_i \supseteq \mathfrak{a}_{i+1}$. 设 $(x_1 + \mathfrak{a}_1, \cdots, x_n + \mathfrak{a}_n) \in \ker \psi$; 那么我们可以得到当 i < j 时 $x_i \equiv x_j \pmod{\mathfrak{a}_i}$. 特别的 $x_n \equiv x_1 \pmod{\mathfrak{a}_1}$, $x_n \equiv x_2 \pmod{\mathfrak{a}_2}$, $\cdots x_n \equiv x_{n-1} \pmod{\mathfrak{a}_{n-1}}$, 这样 $x = x_n$ 为该方程的一个解.

EX1.*M* 为整环 *A* 的可逆理想,则对任意的素理想 $\mathfrak{p} \subset A$,有 $(A:M)_{\mathfrak{p}} = (A_{\mathfrak{p}}:M_{\mathfrak{p}})$ 将 *A*, *M* 视为 *A*-模 Q(A) 的子模,由于 *M* 可逆,所以 *M* 是有限生成的.由阿蒂

亚书上系理 3.15 即可得出结论.

EX2.EX3 暂时没有想法,在下次作业时补上.