TRIGONOMETRY

Chapter 05

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

HELICO MOTIVACIÓN

¿EN LA ANTIGÜEDAD, CÓMO SE MIDIÓ EL RADIO DE LA TIERRA?

¿ QUÉ SE ENTIENDE POR RAZÓN TRIGONOMÉTRICA DE UN ÁNGULO AGUDO?

Es el COCIENTE entre las longitudes de dos lados de un triángulo rectángulo, con respecto a uno de sus ángulos interiores agudos.

α: Ángulo interior agudo de referencia

H: Longitud de la hipotenusa

CO: Longitud del cateto opuesto a q

CA: Longitud del cateto adyacente a α

Teorema de Pitágoras: $H^2 = (CA)^2 + (CO)^2$

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO α

senα	cosα	tanα	cotα	secα	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

MÉTODO NEMOTÉCNICO: "COCA COCA HELADA HELADA"

EJEMPLO: Calcula las razones trigonométricas (RT) de α

senα	cosa	tanα	cota	seca	csca
$\sqrt{2}$	$\sqrt{7}$	$\sqrt{2}$	$\sqrt{7}$	3	3
3	3	$\frac{\overline{\sqrt{7}}}{}$	${\sqrt{2}}$	${\sqrt{7}}$	$\overline{\sqrt{2}}$

Si sen $\alpha = \frac{3}{5}$ y α es un ángulo agudo de un triángulo rectángulo, efectúe : $M = 1 + \cot^2 \alpha$

RESOLUCIÓN

Dato:
$$sen \alpha = \frac{3}{5} = \frac{co}{H}$$

$$3 = CO$$

Teorema de Pitágoras :

$$H^2 = (CA)^2 + (CO)^2$$

$$5^2 = (CA)^2 + (3)^2$$

$$25 = (CA)^2 + 9$$

Luego:
$$M = 1 + \left(\frac{4}{3}\right)^2$$

$$M = \frac{9}{9} + \frac{16}{9}$$

$$M = \frac{25}{9}$$

Siendo $tan\alpha = 2,4$ y α es un ángulo agudo, efectúe :

 $P = csc\alpha + cot\alpha$

RESOLUCIÓN

$$\tan \alpha = \frac{co}{cA}$$
 $\csc \alpha = \frac{H}{co}$ $\cot \alpha = \frac{cA}{co}$

Dato:

$$\tan \alpha = \frac{24}{10} = \frac{12}{5} = \frac{00}{000}$$

Teorema de Pitágoras:

$$H^2 = (CA)^2 + (CO)^2$$
 $H^2 = (5)^2 + (12)^2 = 25 + 144$
 $H = \sqrt{169}$ \longrightarrow $H = 13$

Luego:
$$P = \frac{13}{12} + \frac{5}{12} = \frac{18}{12}$$

$$\therefore \mathbf{P} = \frac{3}{2}$$

Del gráfico, calcule el valor de x, si tan $\alpha = \frac{8}{5}$.

RESOLUCIÓN

Dato: $\tan \alpha = \frac{8}{5}$

Luego:
$$\frac{5x+1}{4x-2} = \frac{8}{5}$$

$$5(5x+1) = 8(4x-2)$$

$$25x + 5 = 32x - 16$$

$$21 = 7x$$

$$\dot{x} = 3$$

En un triángulo rectángulo ABC, recto en C; sabiendo que tanA = $\frac{2}{3}$, calcule E = senB . senA

RESOLUCIÓN

Graficamos el ⊾ACB:

Recordamos que :

$$\tan \alpha = \frac{C0}{CA} \qquad \text{sen}\alpha = \frac{C0}{H}$$

$$\text{Dato: } \tan A = \frac{2}{3} = \frac{a}{b}$$

Teorema de Pitágoras:

$$c^2 = 2^2 + 3^2 = 4 + 9$$
 $c = \sqrt{13}$

Luego: E = senB.senA

$$\mathsf{E} = \left(\frac{3}{\sqrt{13}}\right) \left(\frac{2}{\sqrt{13}}\right)$$

En un triángulo rectángulo ABC (m \angle C = 90°), se sabe que tanA = $\frac{5}{12}$ y la longitud de la hipotenusa es 39 m. Calcule el perímetro del triángulo ABC.

RESOLUCIÓN

Graficamos el ⊾ACB:

Teorema de Pitágoras:

$$c^2 = a^2 + b^2 = (5k)^2 + (12k)^2$$

 $c^2 = 25k^2 + 144k^2 = 169k^2$
 $c = 13k$

Dato: $13 k = 39 m \implies K = 3 m$

Luego:
$$2p = 5k + 12k + 13k$$

 $2p = 30k = 30 (3 m)$

Irene le prometió a José que por ser el mes de aniversario de su matrimonio, le prepararía una pizza de forma triangular como representa la figura.- Si para preparar la pizza, Irene invirtió : M = 25 ($sen\theta + cos\theta$) soles . Calcule cuánto gastó Irene para engreír a su esposo .

RESOLUCIÓN

Teorema de Pitágoras:

$$H^2 = (CA)^2 + (CO)^2$$

$$H^2 = (24)^2 + (7)^2$$

$$H^2 = 576 + 49$$

$$H = \sqrt{625}$$
 $H = 25$

Gastó: M = 25 (
$$\frac{7}{25}$$
+ $\frac{24}{25}$) soles

$$M = 31 \text{ soles}$$

Irene gastó 31 soles.

Una escalera de 400 cm de longitud descansa sobre una pared lisa, tal como muestra la figura .- Halle la distancia del pie de la escalera a la base de la pared .- Considere $\cot \alpha = \frac{7}{24}$.

RESOLUCIÓN

Teorema de Pitágoras:

$$H^2 = CA^2 + CO^2 = (7k)^2 + (24k)^2$$

$$H^2 = 49 k^2 + 576 k^2 = 625 k^2$$

$$H = 25 k$$

Dato:
$$25 k = 400 cm$$
 K = 16 cm

Luego:
$$CA = 7 k = 7 (16 cm)$$

