Mathematik für die Informatik B -Hausaufgabenserie 7

Henri Heyden, Ali Galip Altun stu240825, stu242631

Aufgabe 1

Beh.: Für $n \in even_1$ ist f differenzierbar und für $n \in odd$ ist f differenzierbar für alle x > 0.

Bew.: Für ein beliebiges $n \in \mathbb{N}_1$ gilt, dass es entweder in $odd = \{2a+1 | a \in \mathbb{N}\}$ oder in $even_1 = \{2a | 2a \ge 1 \land a \in \mathbb{N}\}$ liegt.

Wir schreiben $even_1$, da n aus \mathbb{N}_1 gesucht sind.

Hiermit können wir die folgenden Fallunterscheidungen für ein zu überprüfendes n eröffnen:

A: Es gelte $n \in odd$ und **B**: Es gelte $n \in even_1$.

Beide Fälle werden wir im Folgenden betrachten:

Erster Fall: A

Gelte $n \in odd$ ließe sich n schreiben als 2a+1 für $a \in \mathbb{N}$. Dann gelte für f_n folgendes:

$$f_n(x) = \sqrt{x}^n$$
 | $n \in odd$
 $= \sqrt{x}^{2a+1}$ | Potenzgesetze
 $= \sqrt{x} \cdot \sqrt{x}^{2a}$ | Vereinfache
 $= \sqrt{x} \cdot x^a$

Dann gilt: $f_n(x)' = \frac{1}{2\sqrt{x}} \cdot x^a + \sqrt{x} \cdot ax^{a-1}$ nach der Ableitung der Wurzel (3.45), der Ableitung eines Polynoms (3.42) und der Produktregel (3.41). Bemerke, dass gilt: $\lim_{x\to 0} f_n(x)' = +\infty$ gilt (folgt aus den Kombinationssätzen), und somit konvergiert der Differenzenquotient von f_n nicht an der Stelle 0, womit f_n an dieser Stelle für $n \in odd$ nicht differenzierbar ist. x = 0 ist die einzige Stelle bei der f_n nicht differenzierbar ist, da für x > 0, $f_n(x)' \in \mathbb{R}$ gilt, was aus den verwendeten Operationen in $f_n(x)'$ folgt.

Zweiter Fall: B

Gelte $n \in even_1$ ließe sich n schreiben als 2a für $a \in \mathbb{N}_1$. Dann gelte für f_n folgendes:

$$f_n(x) = \sqrt{x}^n$$
 $| n \in even_1$
 $= \sqrt{x}^{2a}$ $| Vereinfache$
 $= x^a$

Nach der Ableitung eines Polynoms (3.42) ist dann f_n in jeder Stelle differenzierbar mit $f_n(x)' = a \cdot x^{a-1}$ für $n \in even_1$.

Aus beiden Fallunterscheidungen folgt somit, dass für $n \in even_1$ ist f differenzierbar und für $n \in odd$ ist f differenzierbar für alle x > 0,

Aufgabe 2

Beh.: Sei $\Omega \subseteq \mathbb{R}$ und $f : \Omega \to \mathbb{R}$ und $x \in \Omega$ ein HP von Ω . Dann gilt: f ist differenzierbar (1)

$$\iff \exists q \in \mathbb{R}^{\Omega}, q \text{ ist stetig in } x : \forall \xi \in \Omega : f(\xi) = f(x) + q(\xi) \cdot (\xi - x)$$
 (2)

Bew.: Um die Äquivalenz beider Aussagen zu zeigen, werden wir den Beweis aufteilen in die Richtungen $(1) \Longrightarrow (2)$ und $(2) \Longrightarrow (1)$.

Richtung $(1) \Longrightarrow (2)$

Sei also angenommen: $\lim_{\xi \to x} \frac{f(\xi) - f(x)}{\xi - x} \in \mathbb{R}$.

Wir wissen nach Satz 3.36, dass hiermit f stetig ist.

Definiere folgende Funktionen:

 $h: \Omega \to \mathbb{R}, \xi \mapsto f(\xi) - f(x)$ und $\tilde{h}: \Omega \to \mathbb{R}, \xi \mapsto \xi - x$. Dann sind h und \tilde{h} stetig in x nach Satz 3.20 und der Differenzierbarkeit von Polynomen.

Definiere eine weitere Funktion:

$$q: \Omega \to \mathbb{R}, \xi \mapsto \begin{cases} \frac{h(\xi)}{h(\xi)} & \xi \neq x \\ f'(x) & \xi = x \end{cases}$$

Zuerst zeigen wir, dass q, wenn $\xi \neq x$ gilt, stetig ist in ξ .

Wenn $\xi \neq x$ gilt, kann $\frac{h(\xi)}{h(\xi)}$ nicht undefiniert sein, also könnte sie stetig sein. Da h und \tilde{h} stetig sind, ist nach Satz 3.20 q auch stetig in ξ im Fall $\xi \neq x$.

Dann gilt für alle $\xi \neq x$ folgendes:

$$q(\xi) = \frac{h(\xi)}{h(\xi)}$$
 | Einsetzen

$$q(\xi) = \frac{f(\xi) - f(x)}{\xi - x}$$
 $|\cdot(\xi - x)|$

$$\iff q(\xi) \cdot (\xi - x) = f(\xi) - f(x)$$

$$\iff f(\xi) = f(x) + q(\xi) \cdot (\xi - x)$$

Somit erfüllt q für $\xi \neq x$ die gewünschten Eigenschaften: (2).

Betrachte somit den anderen Fall: Wir zeigen, dass $q(\xi)$ für $\xi = x$ stetig ist und dann auch die anderen Eigenschaften von (2) gelten.

Wenn $\xi = x$ gilt, gilt folgendes:

$$\lim_{\xi \to x} q(x) = \lim_{\xi \to x} \frac{f(\xi) - f(x)}{\xi - x} = f'(x) = q(\xi) = q(x)$$

Dies macht q stetig in x.

Des Weiteren gilt dann auch

$$f(\xi) = q(\xi) \cdot (\xi - x) + f(x)$$

da $f(\xi) = f(x)$ und $\xi - x = 0$ gelten.

Also gilt für $\xi = x$ die Aussage (2)

Somit gilt für alle $\xi \in \Omega$ die Aussage (2) und diese Richtung ist abgeschlossen.

Richtung $(2) \Longrightarrow (1)$

Sei also angenommen: q ist stetig in x und es gilt: $f(\xi) = f(x) + q(\xi) \cdot (\xi - x)$, $\xi \neq x$.

Betrachte folgende Umformung:

$$f(\xi) = f(x) + q(\xi) \cdot (\xi - x) \qquad | -f(x)|$$

$$\iff f(\xi) - f(x) = q(\xi) \cdot (\xi - x) \qquad | \cdot \frac{1}{\xi - x}, \text{ angenommen } x \neq \xi$$

$$\iff \frac{f(\xi) - f(x)}{\xi - x} = q(\xi)$$

$$\implies \lim_{\xi \to x} \frac{f(\xi) - f(x)}{\xi - x} = \lim_{\xi \to x} q(\xi) \qquad | \text{q ist stetig in } x$$

$$\iff \lim_{\xi \to x} \frac{f(\xi) - f(x)}{\xi - x} = q(x) \in \mathbb{R}$$

Also liegt der Differenzenquotient von f(x) in \mathbb{R} . Somit ist f differenzierbar in x

Angenommen $x = \xi$ gilt, dann können wir beide Seiten nicht durch $\xi - x$ teilen und dieser Beweis funktioniert nicht. Uns wurde in einer Präsenzübung sogar gesagt, dass das dann überhaupt nicht gilt. Deswegen würde ich argumentieren, dass wir ξ so beschränken, dass es nicht x sein darf. Die Begründung aus der Präsenzübung warum $x = \xi$ nicht gelten darf war, dass dann für ein Folgenglied von einer Folge $(\xi_n)_n$, $\xi_n = x$ gelte, was jedoch nicht sein darf, wenn wir einen Funktionslimes betrachten wollen, der etwas für die Differenzierbarkeit aussagen soll, wie bei der Definition von Differenzierbarkeit im

¹Zum Fall $\xi = x$ sagen wir gleich noch etwas

Skript.

Diese Begründung sehen wir ein und sind deswegen davon überzeugt, dass $(2) \Longrightarrow (1)$, nur für alle $\xi \in \Omega \setminus \{x\}$ gelten kann.²

Insgesamt sind nun beide Richtungen gezeigt, das heißt es gilt was zu zeigen war. $\hfill\Box$

Aufgabe 3

Beh.: Die Aussage aus der Aufgabenstellung gilt nicht, das heißt es existieren $a,b\in\mathbb{R}$ und $f:[a,+\infty]\to[b,+\infty]$ so, dass f differenzierbar und streng monoton steigend ist und gleichzeitig $\lim_{x\to+\infty}f(x)\neq+\infty$ gilt.

Vor.:
$$a = b = 0, f : [a, +\infty] \to [b, +\infty], x \mapsto \frac{x}{x+1}$$

Bew.: Nach Satz 3.42 können wir eine rationale Funktion wie unser f ableiten. Hierfür wenden wir ein mal den Quotenentensatz an und bekommen $f(x)' = \frac{1}{(x+1)^2}$. Dies macht f differenzierbar in jedem Punkt, denn schließlich gilt für jedes x aus unserer Domain $(x \ge 0)$, dass der untere Term der Ableitung nicht 0 werden kann und sonst nimmt die Ableitung auch nur Werte aus \mathbb{R} an.

Nun zeigen wir noch, dass f auch streng monoton steigend ist.

Nach dem Monotoniekriterum in Satz 3.53 zeigen wir, dass für f im Intervall ihrer Domain ihre Ableitung nur Positive Werte annimmt.

Wir zeigen also: $\forall x > 0 : f(x)' > 0$. Betrachte folgende Beobachtung:

Gilt x > 0, dann gilt x + 1 > 0. Dann folgt aus den Regeln in angeordneten

 $^{^2{\}rm Wir}$ haben in der Behauptung dieses Beweises die Aussage nicht bearbeitet, da wir nicht für Verwirrung sorgen wollten.

Körpern, dass $(x+1)^2 > 0$ gilt und daraus, dass $\frac{1}{(x+1)^2} > 0$ gilt.

Somit gilt: $\forall x > 0 : f(x)' > 0$, also ist f streng monoton steigend.

Nun haben wir alle Voraussetzungen (der Aufgabenstellung) erfüllt, also werden wir zeigen, dass $\lim_{x\to+\infty} f(x) \neq +\infty$ für unser f gilt.

Betrachte somit folgende Auflösung des Limetes³:

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{x}{x+1} \qquad \qquad | \text{ Bruchrechnung}$$

$$= \lim_{x\to +\infty} \left(1 - \frac{1}{x+1}\right) \qquad | \text{ Kombinations satze}$$

$$= \lim_{x\to +\infty} 1 - \lim_{x\to +\infty} \frac{1}{x+1} \qquad | \text{ Stetigkeit von } \frac{1}{x+1} \text{ für } x \geq 0$$

$$= 1 - \frac{1}{\lim_{x\to +\infty} (x+1)} \qquad | \text{ Kombinations satz, auswerten, Schreibweise}$$

$$= 1 - \frac{1}{+\infty} \qquad | \text{ Schreibweise}$$

$$= 1 - 0$$

$$= 1$$

Da $1 \neq +\infty$ gilt, ist somit gezeigt, was zu zeigen war.

³Die Gleichheit beim ersten Schritt sieht man leicht, indem man beide Seiten von $\frac{x}{x+1} = 1 - \frac{1}{x+1}$ mit x+1 multipliziert. Der Fall x=-1 tritt unter unseren Bedingungen nicht auf

Ich hab noch eine kleine Frage zu LATEX: Man sieht im vierten Schritt unserer Auswertung in den Schrittbegründungen, dass es eng wird. Die Fußnote 1 hätte ich auch eigentlich lieber in die Umformung selbst gebracht, aber der Platz geht aus. Die wäre kein Problem, wenn es Zeilenumbrüche gäbe in flalign*, aber es scheint nicht so, da die Elemente sonst "von dem Blatt rutschen". Gibt es hierfür eine elegante Lösung? Ich benutze TeX Live.