Завдання 2

Микола Коломієць

5 грудня 2023 р.

Зміст

1	задача	2
2	задача	3
3	задача	4
4	задача	Ę
5	задача	6
6	задача	7
7	задача	8
8	задача	ç
9	задача	10
10	задача	11

Умова

Доведіть, що для гладкої задачі опуклого програмування $f o \min_{C}$ має місце:

$$f(x) = \min_{C} f \leftrightarrow x \in C \quad \text{ta} \quad (\nabla f(x), y - x) \geq 0, \quad \forall y \in C$$

Для опуклої функції виконується нерівність (минула дз)

$$f(y) \ge f(x) + (\nabla f(x), y - x),$$

Якщо $\forall y \in C$ маємо $(\nabla f(x), y - x) \geq 0$ то

$$f(y) \ge f(x) + (\nabla f(x), y - x) \ge f(x) \quad \forall y \in C,$$

тобто $f(x) = \min_{C} f$.

Тепер навпаки(зпарва наліво), запишемо тепер наближення першого порядку для f в x:

$$f(x) \le f(y) = f(x) + (\nabla f(x), y - x) + o(||y - x||), \quad \forall y \in C.$$

Оскільки допустима множина C опукла, то разом із точками x та y до неї входять довільні їхні опуклі комбінації, тобто точки вигляду $(1-\lambda)x + \lambda y$, де $\lambda \in (0,1)$. Підставляемо ї у останно нерівність:

$$0 \le \lambda(\nabla f(x), y - x) + o(\lambda ||y - x||), \quad \forall y \in C$$

Спрямовуючи $\lambda \to 0$ бачимо, що знак правої частини визначається перпим доданком (властивості о-малого), а тому маємо нерівність

$$0 \le (\nabla f(x), y - x), \quad \forall y \in C.$$