MAT-042: Test de hipótesis

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Decidir lanzando una moneda¹

 $^{^{1}}$ Harvey Dent, o "Dos Caras", un enemigo de Batman.

Ejemplo de juguete: Problema de Monty Hall²

Puerta Nº 1

Puerta Nº 2

Puerta Nº 3

²conocido también como "el Problema del presentador"

Problema de Monty Hall: ¿Debe cambiar su elección?³

Puerta Nº 1

Puerta Nº 2

Puerta Nº 3

³¿Que opinan? La respuesta NO es intuitiva...

Problema de Monty Hall: ¿Debe cambiar su elección?⁴

Puerta Nº 2

Puerta Nº 3

⁴¿Quiere ganar el auto? hagamos unos (pocos) cálculos...

Para el problema original (3 puertas cerradas), considere:

$$C = \{ \mathsf{abrimos} \ \mathsf{la} \ \mathsf{puerta} \ \mathsf{que} \ \mathsf{tiene} \ \mathsf{el} \ \mathsf{auto} \}.$$

$$\overline{C} = \{ \text{abrimos la puerta que tiene una cabra} \},$$

$$P(C) = \frac{1}{3}, \qquad P(\overline{C}) = 1 - \frac{1}{3} = \frac{2}{3}.$$

- ▶ El presentador abre la puerta N° 3, y hay una cabra... 😌
- ▶ Una vez que se ha abierto la puerta, ¿Cuál es la probabilidad de ganar el auto?
- Pregunta: ¿Debemos cambiar nuestra elección inicial?

Para el problema original (3 puertas cerradas), considere:

$$C = \{ abrimos \ la \ puerta \ que \ tiene \ el \ auto \}.$$

$$\overline{C} = \{ \text{abrimos la puerta que tiene una cabra} \},$$

$$P(C) = \frac{1}{3}, \qquad P(\overline{C}) = 1 - \frac{1}{3} = \frac{2}{3}.$$

- ▶ El presentador abre la puerta N° 3, y hay una cabra... 😌
- ▶ Una vez que se ha abierto la puerta, ¿Cuál es la probabilidad de ganar el auto?
- Pregunta: ¿Debemos cambiar nuestra elección inicial?

Para el problema original (3 puertas cerradas), considere:

$$C = \{ abrimos \ la \ puerta \ que \ tiene \ el \ auto \}.$$

 $\overline{C} = \{ \text{abrimos la puerta que tiene una cabra} \},$

$$P(C) = \frac{1}{3}, \qquad P(\overline{C}) = 1 - \frac{1}{3} = \frac{2}{3}.$$

- ▶ El presentador abre la puerta N° 3, y hay una cabra... 😌
- ▶ Una vez que se ha abierto la puerta, ¿Cuál es la probabilidad de ganar el auto?
- Pregunta: ¿Debemos cambiar nuestra elección inicial?

Para el problema original (3 puertas cerradas), considere:

$$C = \{ \text{abrimos la puerta que tiene el auto} \}.$$

$$\overline{C} = \{ \text{abrimos la puerta que tiene una cabra} \},$$

$$P(C) = \frac{1}{3}, \qquad P(\overline{C}) = 1 - \frac{1}{3} = \frac{2}{3}.$$

- ▶ El presentador abre la puerta N° 3, y hay una cabra... 😌
- ▶ Una vez que se ha abierto la puerta, ¿Cuál es la probabilidad de ganar el auto?
- Pregunta: ¿Debemos cambiar nuestra elección inicial?

- Aunque parezca extraño: ¡El presentador nos está ayudando!
- ► Abrir una puerta, modifica las probabilidades de ganar el auto... © en nuestro beneficio.⁵
- ► En el problema modificado (presentador abre una puerta), considere:

 $A = \{ \mathsf{Ud.} \ \mathsf{elige} \ \mathsf{la} \ \mathsf{puerta} \ \mathsf{con} \ \mathsf{el} \ \mathsf{premio} \ \mathsf{antes} \ \mathsf{de} \ \mathsf{cambiar} \ \mathsf{de} \ \mathsf{opción} \}$

 $B = \{\mathsf{Ud.\ elige\ la\ puerta\ con\ el\ premio\ después\ de\ cambiar\ de\ opción}\}.$

Usando el Teorema de probabilidad total,

$$P(A) = P(B \cap A) + P(B \cap \overline{A}) = P(B|A) P(A) + P(B|\overline{A}) P(\overline{A})$$
$$= 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3},$$

es decir, tenemos un 66.6% de chance de ganar un auto

⁵Aunque no nos demos cuenta, esta información es muy relevante!

- Aunque parezca extraño: ¡El presentador nos está ayudando!
- ► Abrir una puerta, modifica las probabilidades de ganar el auto... en nuestro beneficio.⁵
- ► En el problema modificado (presentador abre una puerta), considere:

 $A = \{ Ud. \text{ elige la puerta con el premio antes de cambiar de opción} \},$

 $B = \{ \mathsf{Ud. elige \ la \ puerta \ con \ el \ premio \ después \ de \ cambiar \ de \ opción} \}.$

Usando el Teorema de probabilidad total,

$$P(A) = P(B \cap A) + P(B \cap \overline{A}) = P(B|A) P(A) + P(B|\overline{A}) P(\overline{A})$$
$$= 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3},$$

es decir, tenemos un 66.6% de chance de ganar un auto

⁵Aunque no nos demos cuenta, esta información es muy relevante!

- Aunque parezca extraño: ¡El presentador nos está ayudando!
- ► Abrir una puerta, modifica las probabilidades de ganar el auto... © en nuestro beneficio.⁵
- ► En el problema modificado (presentador abre una puerta), considere:

 $A = \{ Ud. elige la puerta con el premio antes de cambiar de opción \},$

 $B = \{ \mathsf{Ud. \ elige \ la \ puerta \ con \ el \ premio \ después \ de \ cambiar \ de \ opción} \}.$

▶ Usando el Teorema de probabilidad total,

$$\begin{split} \mathsf{P}(A) &= \mathsf{P}(B \cap A) + \mathsf{P}(B \cap \overline{A}) = \mathsf{P}(B|A)\,\mathsf{P}(A) + \mathsf{P}(B|\overline{A})\,\mathsf{P}(\overline{A}) \\ &= 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3}, \end{split}$$

es decir, tenemos un 66.6% de chance de ganar un auto!

⁵Aunque no nos demos cuenta, esta información es muy relevante!

Problema de Monty Hall: Comentarios

- Este es un problema donde la intuición nos engaña.
- Tomamos una decisión (cambiar o no de puerta) en base al cálculo de probabilidades.
- ► Note que, aún podemos equivocarnos... (hay un 33.3% de chances de ganar una cabra!)

En Estadística:

Deseamos usar los datos disponibles para tomar mejores decisiones.

Parecer de un juez:

¿La evidencia dada por el fiscal es suficiente para declarar culpable al acusado?

El juez tiene 2 opciones:

- Declarar al acusado culpable.
- Declarar al acusado inocente.

En términos científicos (o estadísticos)⁶, debemos plantear las siguientes hipótesis

 H_0 : el acusado es inocente.

 H_1 : el acusado es culpable.

Así, el fiscal debe probar que el acusado es culpable, más allá de toda duda razonable

⁶Estadísticos suelen considerar $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$

Parecer de un juez:

¿La evidencia dada por el fiscal es suficiente para declarar culpable al acusado?

El juez tiene 2 opciones:

- Declarar al acusado culpable.
- Declarar al acusado inocente.

En términos científicos (o estadísticos)⁶, debemos plantear las siguientes hipótesis:

 H_0 : el acusado es inocente.

 H_1 : el acusado es culpable.

Así, el fiscal debe probar que el acusado es culpable, más allá de toda duda razonable.

⁶Estadísticos suelen considerar $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$

De este modo, en el juicio puede ocurrir lo siguiente:

Decisión	El acusado es		
	inocente	culpable	
preso	falso positivo	OK	
libre	OK	falso negativo	

En la nomenclatura de test de hipótesis, tenemos

Decisión	El acusado es	
	H_0 es verdadero	H_1 es verdadero
rechazar H_0		
aceptar H_0	OK	

De este modo, en el juicio puede ocurrir lo siguiente:

Decisión	El acusado es		
	inocente	culpable	
preso	falso positivo	OK	
libre	OK	falso negativo	

En la nomenclatura de test de hipótesis, tenemos:

Decisión	El acusado es		
	H_0 es verdadero	H_1 es verdadero	
rechazar H_0	error tipo I	OK	
aceptar H_0	OK	error tipo II	

¿Cómo luce una regla de decisión?

Considere el criterio para aprobar una asignatura.

Suponga que usted ha obtenido las siguientes notas en (por ejemplo) MAT-032:

$$\mathbf{x} = \{x_1, x_2, x_3\} = \{68, 32, 70\}.$$

De este modo, el profesor calcula su promedio obteniendo: $\overline{x}=56$. Por tanto,

$$\overline{x} \geq 55$$
, es decir, Ud. ha aprobado.

Podemos reescribir lo anterior como la siguiente regla de decisión:

- ▶ Si $\overline{x} \in [55, 100]$, el alumno es aprobado.
- En caso contrario, el alumno reprueba la asignatura.

Objetivo:

Usar la evidencia en los datos para concluir en favor de alguna hipótesis de interés.

Esencialmente, se debe crear una regla de decisión, tal que

$$\alpha = \mathsf{P}(\mathsf{rechazar}\ H_0|H_0\ \mathsf{es}\ \mathsf{verdadero}),$$

$$\beta = \mathsf{P}(\mathsf{aceptar}\ H_0|H_1\ \mathsf{es}\ \mathsf{verdadero}),$$

además $\pi=1-\beta$ es llamado potencia del test.

Observación:

Evidentemente, deseamos crear reglas de decisión tal que α y β sean lo más pequeños posible. 8

Malas noticias...

Lamentablemente, la minimización de ámbos, α y β es un problema infactible

 $^{^8}$ y análogamente que tenga una alta potencia $\pi=1-eta$

Objetivo:

Usar la evidencia en los datos para concluir en favor de alguna hipótesis de interés.

Esencialmente, se debe crear una regla de decisión, tal que

$$\alpha = \mathsf{P}(\mathsf{rechazar}\ H_0|H_0\ \mathsf{es}\ \mathsf{verdadero}),$$

$$\beta = \mathsf{P}(\mathsf{aceptar}\ H_0|H_1\ \mathsf{es}\ \mathsf{verdadero}),$$

además $\pi=1-\beta$ es llamado potencia del test.

Observación:

Evidentemente, deseamos crear reglas de decisión tal que α y β sean lo más pequeños posible. 8

Malas noticias... 🕃

Lamentablemente, la minimización de ámbos, α y β es un problema infactible

⁸y análogamente que tenga una alta potencia $\pi = 1 - \beta$.

Objetivo:

Usar la evidencia en los datos para concluir en favor de alguna hipótesis de interés.

Esencialmente, se debe crear una regla de decisión, tal que

$$\alpha = \mathsf{P}(\mathsf{rechazar}\ H_0|H_0\ \mathsf{es}\ \mathsf{verdadero}),$$

$$\beta = \mathsf{P}(\mathsf{aceptar}\ H_0|H_1\ \mathsf{es}\ \mathsf{verdadero}),$$

además $\pi=1-\beta$ es llamado potencia del test.

Observación:

Evidentemente, deseamos crear reglas de decisión tal que α y β sean lo más pequeños posible. 8

Malas noticias... 😉

Lamentablemente, la minimización de ámbos, α y β es un problema infactible.

⁸y análogamente que tenga una alta potencia $\pi = 1 - \beta$.

- ▶ No todo son malas noticias, podemos fijar α (error tipo I) y escoger el test más potente (aquél con menor β)
- La regla de decisión será del tipo

Rechazar H_0 si: $T(\mathbf{X}) \in C$,

donde C representa la región de rechazo.

Recuerde que:

Test de hipótesis está basado en argumentos probabilísticos...

(es decir, aún podemos equivocarnos!)9

 $^{^{9}}$ Aunque los estadísticos solemos no equivocarmos tanto! \odot

Test de hipótesis

Sea X_1,\ldots,X_n muestra aleatoria desde $f(x;\pmb{\theta})$ con $\pmb{\theta}\in\Theta\subset\mathbb{R}^p.$ Suponga que deseamos probar

$$H_0: \boldsymbol{\theta} \in \Theta_0, \qquad \text{versus} \qquad H_1: \boldsymbol{\theta} \in \Theta_1,$$
 (1)

donde $\Theta = \Theta_0 \cup \Theta_1$ tal que $\Theta_0 \cap \Theta_1 = \emptyset$.¹⁰

Sea $0 < \alpha < 1$ y considere

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i; \boldsymbol{\theta}), \qquad \boldsymbol{\theta} \in \Theta.$$

El test más potente de tamaño α para probar $H_0: \pmb{\theta} \in \Theta_0$ es dado por el estadístico de razón de verosimilitudes (LR) dado por

$$\Lambda = \frac{\max\limits_{\boldsymbol{\theta} \in \Theta_0} L(\boldsymbol{\theta})}{\max\limits_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta})} = \frac{L(\widetilde{\boldsymbol{\theta}})}{L(\widehat{\boldsymbol{\theta}})},$$

donde $\widetilde{\boldsymbol{\theta}}$ denota el MLE de $\boldsymbol{\theta}$ sujeto a la restricción $H_0: \boldsymbol{\theta} \in \Theta_0$. Finalmente, rechazamos H_0 si y sólo si Λ es pequeño (< k).

¹⁰Por ejemplo, podemos considerar $H_0: \theta = \theta_0$, versus $H_1: \theta \neq \theta_0$.

Test de hipótesis

Observación:

Es posible notar que

$$0 < \Lambda < 1$$
,

esto permite encontrar un k para rechazar ${\cal H}_0.$ Además, se suele considerar la estadística

$$\begin{split} LR &= 2\log \Lambda = 2\{\log L(\widetilde{\boldsymbol{\theta}}) - \log L(\widehat{\boldsymbol{\theta}})\} \\ &= 2\{\ell(\widetilde{\boldsymbol{\theta}}) - \ell(\widehat{\boldsymbol{\theta}})\}. \end{split}$$

Usando argumentos asintóticos, es posible mostrar que

$$LR \xrightarrow{\mathsf{D}} \chi^2(\nu).$$

Otros estadísticos (asintóticamente) equivalentemente al test LR son:

- ► Test de Wald.
- Test score o de multiplicadores de Lagrange.
- Test gradiente.

Suponga X_1,\ldots,X_n variables IID desde $\mathsf{N}(\mu,\sigma^2)$ donde $\mu\in\mathbb{R},\,\sigma^2>0$ con σ^2 conocido. Considere

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0,$$

con μ_0 fijo.

En este caso $\Theta_0 = \{\mu_0\}$ y $\Theta = \mathbb{R}$

$$\max_{\mu \in \Theta_0} L(\mu) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2\right\}$$
$$= L(\mu_0).$$

Note que

$$\sum_{i=1}^{n} (x_i - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 + n(\overline{x} - \mu_0)^2.$$

Por otro lado, bajo $H_1: \mu \neq \mu_0$

$$\max_{\mu \in \Theta} L(\mu) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2\right\}$$
$$= L(\widehat{\mu}).$$

De este modo, el estadístico LR adopta la forma

$$\Lambda = \frac{L(\mu_0)}{L(\widehat{\mu})} = \frac{(2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2\right\}}{(2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2\right\}} \\
= \frac{(2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu_0)^2\right]\right\}}{(2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2\right\}} \\
= \exp\left\{-\frac{n}{2} \left(\frac{\overline{x} - \mu_0}{\sigma}\right)^2\right\},$$

y rechazamos $H_0: \mu=\mu_0$ si y solo si Λ es pequeño.

Equivalentemente , podemos rechazar H_0 a un nivel lpha si

$$\frac{n(\overline{X} - \mu_0)^2}{\sigma^2} > k.$$

Es decir, rechazamos H_0 si y sólo si,

$$\left|\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}\right| > z_{1-\alpha/2},$$

donde $z_{1-\alpha/2}$ es un valor cuantil $1-\alpha/2$ de la distribución N(0,1).

Observación:

Debido a la definición del estadístico de prueba:

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).$$

en ocasiones este test de hipótesis es llamado test-Z

Suponga X_1,\ldots,X_n variables IID desde $\mathsf{N}(\mu,\sigma^2)$ donde $\mu\in\mathbb{R},\,\sigma^2>0$ con σ^2 desconocido. Considere la hipótesis

$$H_0: \mu = \mu_0, \qquad H_1: \mu \neq \mu_0,$$

con μ_0 fijo.

En este caso

$$\Lambda = \left(\frac{\widetilde{\sigma}^2}{\widehat{\sigma}^2}\right)^{n/2} = \left\{1 + \frac{n(\overline{x} - \mu_0)}{\sum_{i=1}^n (x_i - \overline{x})^2}\right\}^{-n/2}$$

De este modo, rechazamos H_0 si y sólo si

$$\left|\frac{\overline{X} - \mu_0}{S/\sqrt{n}}\right| > t_{1-\alpha/2}(n-1),$$

donde

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

y $t_{1-\alpha/2}(n-1)$ denota un valor cuantil $1-\alpha/2$ de la distribución t de Student con n-1 grados de libertad.

Test LR para la varianza

Suponga X_1,\ldots,X_n variables IID desde $\mathsf{N}(\mu,\sigma^2)$ donde ambos $\mu\in\mathbb{R}$ y $\sigma^2>0$ son desconocidos. Se desea probar la hipótesis

$$H_0: \sigma = \sigma_0, \qquad H_1: \sigma \neq \sigma_0,$$

donde σ_0 es fijo.

El test LR lleva al estadístico de prueba

$$Q = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi^2(n-1).$$

De este modo, rechazamos H_0 si y sólo si

$$Q>\chi^2_{1-\alpha/2}(n-1), \qquad \text{o bien} \qquad Q<\chi^2_{\alpha/2}(n-1)$$

donde

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2},$$

y $\chi^2_{\alpha/2}(n-1)$, $\chi^2_{1-\alpha/2}(n-1)$ denota un valores cuantiles $\alpha/2$ y $1-\alpha/2$ de la distribución chi-cuadrado con n-1 grados de libertad.

Test LR para dos muestras

Sea X_1,\ldots,X_n y Y_1,\ldots,Y_m muestras aleatorias desde $\mathsf{N}(\mu_X,\sigma^2)$ y $\mathsf{N}(\mu_Y,\sigma^2)$, respectivamente y suponga que se desea probar la hipótesis

$$H_0: \mu_X = \mu_Y, \qquad H_1: \mu_X \neq \mu_Y,$$

El test LR es equivalente a rechazar H_0 cuando

$$\left|\frac{\overline{X}-\overline{Y}}{s_p\sqrt{\frac{1}{n}+\frac{1}{m}}}\right| > t_{1-\alpha/2}(n+m-2),$$

donde

$$S_p = \frac{1}{n+m-2} \{ (n-1)s_x^2 + (m-1)s_y^2 \}.$$

Test LR para dos muestras

Sea X_1,\ldots,X_n y Y_1,\ldots,Y_m muestras aleatorias desde $\mathsf{N}(\mu_X,\sigma_X^2)$ y $\mathsf{N}(\mu_Y,\sigma_Y^2)$, respectivamente. Se desea probar la siguiente hipótesis

$$H_0: \sigma_X^2 = \sigma_Y^2, \qquad H_1: \sigma_X^2 \neq \sigma_Y^2.$$

Sea

$$F = \frac{\sum_{i=1}^{m} (y_i - \overline{y})^2 / (m-1)}{\sum_{i=1}^{n} (x_i - \overline{x})^2 / (n-1)} \sim F(m-1, n-1)$$

De este modo, rechazamos H_0 si

$$F \ge F_{1-\alpha}(m-1, n-1),$$

donde $F_{1-lpha}(m-1,n-1)$ denota un valor cuantil 1-lpha desde la distribución F con m-1 y n-1 grados de libertad.

Test LR para dos muestras

Suponga X_1,\ldots,X_n y Y_1,\ldots,Y_m muestras aleatorias desde $\mathrm{Ber}(\theta_1)$ y $\mathrm{Ber}(\theta_2)$, respectivamente. En este caso,

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i, \qquad \hat{\theta}_2 = \frac{1}{m} \sum_{i=1}^m Y_i.$$

Suponga que se desea probar la hipótesis

$$H_0: \theta_1 = \theta_2, \qquad H_1: \theta_1 \neq \theta_2.$$

Sea

$$Z = \frac{\widehat{\theta}_1 - \widehat{\theta}_2}{\sqrt{\widehat{\theta}(1-\widehat{\theta})}\sqrt{\frac{1}{n} + \frac{1}{m}}},$$

donde $\widehat{\theta}=(\sum_{i=1}^n X_i+\sum_{j=1}^m Y_j)/(m+n)$. De este modo, rechazamos H_0 si $|Z|>z_{1-\alpha/2}.$

Test LR para el coeficiente de correlación

Suponga observaciones IID $(X_1,Y_1),\ldots,(X_n,Y_n)$ desde $\mathsf{N}_2(\pmb{\mu},\pmb{\Sigma})$ y considere la hipótesis de interés

$$H_0: \rho = 0, \qquad H_1: \rho \neq 0.$$

Sea

$$r = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\left\{\sum_{i=1}^n (x_i - \overline{x})\sum_{i=1}^n (y_i - \overline{y})\right\}^{1/2}}.$$

De este modo se rechaza H_0 si

$$\left|\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}\right| > t_{1-\alpha/2}(n-2).$$

