

РА върху мултимножества

- Мултимножество (bag)
 - за разлика от множествата един елемент може да се среща повече от 1 път an element may appear more than once.
 - Multiset , bag
- Пример: {1,2,1,3}
- Редът в мултимножеството не е от значение.
 - {1,2,1} = {1,1,2} като мултимножества,
 - но [1,2,1] <> [1,1,2] като списъци.

2

Защо се използват мултимножества?

- SQL на практика работи върху мултимножества.
 - SQL елиминира дубликатите при явно посочване
- Някои оператори (проекция) са много по-ефективни върху мултимножества, отколкото върху множества.

Операции върху мултимножества

 Обединение, сечение и разлика особености при мултимножества.

4

Фбединение на мултимножества

- Обединение един кортеж се среща толкова пъти в обединението на 2 мултимножества, колкото е сумата от срещанията му във всяко от мултимножествата.
- Пример: $\{1,2,1\} \cup \{1,1,2,3,1\} = \{1,1,1,1,1,2,2,3\}$

5

Сечение на мултимножества

- Сечение един кортеж се среща в сечението на на 2 мултимножества, толкова пъти, колкото е минимумът от срещанията му във всяко от мултимножествата.
- Пример: $\{1,2,1\} \cap \{1,2,3\} = \{1,2\}.$

6

Разлика на мултимножества

- Разлика един кортеж се среща толкова пъти в разликата на мултимножествата A - B, колкото е броят на срещанията му в А минус броят на срещанията му в В.
- Пример 1: $\{1,2,1,1\} \{1,2,3\} = \{1,1\}$.
- Пример 2: {1,2,3} {1,2,1,1} = ?

Bag Laws != Set Laws

- Някои, но не всички алгебрични закон, които важат за множества не важат за мултимножества.
- Пример: комутативен закон при обединение $(R \cup S = S \cup R)$ важи и при множества.

Разлика в операциите върху мултимножества и множества

- Множества: обединение -> ($S \cup S = S$).
- Мултимножества: ако x се среща nпъти в S, ще се среща 2n пъти в $S \cup S$.
- **■** *S* ∪ *S* <>*S*

Операции върху мултимножества

- Селекция прилага се за всеки кортеж, еднакъв ефект при множества и мултимножества.
- Проекция при мултимножества дубликатите не се елиминират.
- Декартово п-ние (и съединение) всеки кортеж от едната релация се свързва с всеки кортеж от другата, независимо от това дали се повтарят кортежите или не.

10

Пример: селекция

$$\sigma_{A+B<5}(R) = A B$$
1 2

R(

Α,	В	
1	2	
5	6	
1	2	

$$\pi_A(R) = A$$
1
5

Пример: проекция

Пример: декартово п-ние

$$R \times S = \begin{array}{|c|c|c|c|c|c|}\hline A & R.B & S.B & C\\\hline 1 & 2 & 3 & 4\\ 1 & 2 & 7 & 8\\ 5 & 6 & 3 & 4\\ 5 & 6 & 7 & 8\\ 1 & 2 & 3 & 4\\ 1 & 2 & 7 & 8\\ \hline \end{array}$$

Пример: Theta-Join върху мултимножества

14

¬Релационна алгебра

Допълнителни оператори

15

Допълнителни оператори

- 1. DELTA (δ) = отстраняване на дубликати от мултимножества.
- $TAU(\tau) = сортиране на кортежи.$
- *э. Разширена проекция*: артитметични операции, преименуване на колони.
- 4. GAMMA (χ) = групиране и агрегиране.
- 5. Външно свързване: предотвратява "висящи кортежи" = кортежи, които не участват в свързването.

16

Отстраняване на дубликати

- R1 := $\delta(R2)$
- R1 съдържа само по едно копие на всеки кортеж, който се среща в R2 повече от един път.

Пример: Отстраняване на дубликати

$$\delta(R) = \begin{bmatrix} A & B \\ 1 & 2 \\ 3 & 4 \end{bmatrix}$$

18

Сортиране

- R1 := τ_{L} (R2).
 - L списък от атрибути на R2.
- R1 списък от кортежите на R2, сортирани първо по първия атрибут на списъка L, после по втория атрибут на L и т.н.
- TAU е единственият оператор, чийто резултат е списък от кортежи, а не множество от кортежи

19

Разширена проекция

- Използвайки същия π_L оператор, позволяваме списъкът L да съдържа произволни изрази от атрибутите:
 - 1. Единичен атрибут на R
 - $_{2}$. Израз: **x** -> **y** (преименуване на атрибута **x** в **y**)
 - 3. Аритметика върху атрибутите: *A+B*.

..

Агрегиращи оператори

- Агрегиращите оператори се прилагат върху целите колони и дават единичен резултат
- Примери:
 - SUM
 - AVG
 - MIN and MAX.
 - COUNT

23

4

Оператор за групиране

- $R1 := \gamma_{L}(R2)$.
- ∠ списък от елементи, които са:
 - 1. Индивидуални атрибути (*grouping* attributes).
 - 2. AGG(A), където AGG е агрегиращ оператор и A е атрибут.

Приложение на GAMMA,(R)

- Групираме R спрямо всички групиращи атрибути от списъка L.
- Във всяка група изчисляваме AGG(A)за всяко агрегиране върху списъка L.
- Резултатът с-жа един кортеж за всяка група:
 - 1. Групиращи атрибути и
 - Техните групови агрегации.

Пример: групиране/агрегиране

 $\gamma_{A,B,AVG(C)}(R) = ??$

I – групиране в R:

A	В	C
1	2	3
1	2	5
4	5	6

II – средна стойност на C в групата

Α	В	AVG(C)
1	2	4
4	5	6

Външно свързване (Outerjoin)

- $\blacksquare R \bowtie_{\mathcal{C}} S.$
- lacktriangle Кортежите от R , които не могат да образуват двойка (да се свържат) с кортеж от S се наричат "висящи" (dangling).
 - Аналогично за *S*.
- Outerjoin (^ல) запазва висящите кортежи, като ги включва в резултата, допълвайки ги с NULL values.

Пример: външно свързване

$$R = \begin{bmatrix} A & B \\ 1 & 2 \\ 4 & 5 \end{bmatrix}$$

S = В

(1,2) се свързва с (2,3), но остават 2 висящи кортежа.

 $R \stackrel{\circ}{\bowtie} S =$

Α	В	С
1	2	3
4	5	NULL
NULL	6	7

Оператори на релационната алгебра

SELECT	σ	INTERSECT	Λ
PROJ	π	MINUS	_
*	×	TAU	τ
JOIN	×	DELTA	δ
RENAME	ρ	GAMMA	γ
UNION	U	OUTERJOIN	×