Simply Complex

책 / 게임이론과 진화 다이내믹스 4부

드디어 다 봤습니다. 4부의 제목은 "선택단위의 문제: 집단선택과 개체선택"입니다. 집단선택에 관하여 <u><이타적 인간의 출현>에 관한 글</u>에서 말한 적이 있는데 다시 보니 너무 간략하게 써놨네요. 죄수의 딜레마 게임을 하는 개인들이 서로 다른 집단에 속해 있을때 집단 수준에서 선택이 일어난다면 이타적/협조하는 개체가 많을수록 집단의 보수/적합도가 높아지므로 이타적 행위가 진화적으로 안정할 수 있다는 얘기입니다. 4부에서는이 내용을 좀더 수학적으로 표현하고 논의합니다.

가장 중요한 건 <u>프라이스 방정식(Price equation)</u>입니다. (연결해놓은 위키피디아가 눈에 들어오지 않네요;;;) 차근차근 풀어봅시다. 개체수가 각각 n_1 , n_2 인 두 집단을 생각합니다. 집단 1에서 C 전략을 갖는 개체의 비율을 p_1 (즉 C 전략을 갖는 개체수는 p_1n_1 이고이걸 n^C 1으로 씁니다), 집단 2에서 C 전략을 갖는 개체의 비율을 p_2 라고 합시다. 각 집단 내에서 각 경기자들은 랜덤하게 한 놈을 붙잡아 죄수의 딜레마 게임을 한 번 합니다. 그렇게 얻은 (기대)보수에 비례하여 개체수가 변합니다. 변한 후의 개체수나 비율에는 작은따옴표(prime)를 붙이겠습니다.

$$n_1'^C = \pi_1^C n_1^C: \; n_1^C = p_1 n_1, \; \pi_1^C = 1 + p_1 (b-c) + (1-p_1)(-c) \ n_1'^D = \pi_1^D n_1^D: \; n_1^D = (1-p_1) n_1, \; \pi_1^D = 1 + p_1 b$$

각 전략이 게임에서 얻은 보수에 기본 보수 명목으로 1씩 더했습니다. 즉 게임으로부터 얻은 보수가 0이라면 그 전략의 개체수는 이전과 동일하게 유지하겠다는 말입니다.

$$n_1' = n_1'^C + n_1'^D = [p_1\pi_1^C + (1-p_1)\pi_1^D]n_1 \equiv \pi_1n_1 = [1+p_1(b-c)]n_1$$

 π_1 은 집단 1의 평균보수입니다. p_1 은 음수가 아니고 b-c는 양수이므로 C를 갖는 개체가 사라지지 않는 이상 집단 1의 개체수는 세대가 지날수록 늘어나기만 합니다.

$$p_1' = rac{n_1'^C}{n_1'} = rac{p_1 \pi_1^C}{p_1 \pi_1^C + (1-p_1) \pi_1^D}$$

$$\Delta p_1 \equiv p_1' - p_1 = -rac{p_1(1-p_1)c}{1+p_1(b-c)} < 0$$

집단 2에서도 같은 일이 일어납니다. 각 집단에서는 D의 평균보수가 C의 평균보수보다 언제나 c만큼 크니까 당연히 C를 가진 개체수의 비율이 줄어듭니다. 그런데 두 집단 전 체를 보면 얘기가 조금 달라지는데, 편의상 n_1 과 n_2 가 모두 n_1 이라고 합시다.

$$ar{p} = rac{n_1^C + n_2^C}{n_1 + n_2} = rac{p_1 + p_2}{2}$$

$$ar{p}' = rac{n_1'^C + n_2'^C}{n_1' + n_2'} = rac{p_1 \pi_1^C + p_2 \pi_2^C}{\pi_1 + \pi_2}$$

rss | a p

Seldon의 복잡계/통계물리 (모 바일에서는 수식이 깨져보일 수 있습니다.)

꼬리표

007 스카이폴 0차원 10년 10년 후 11월 12월 1381 17대 대통령선거 18대 국회의원선거 18대 총선 1년 1종 오류 1주년 1차원 1차원 n-벡터 모형 2007년 2013 20대 투표율 20세기 소년 23 2변수 함수 2종 오류 30 3525 30 3월 3주년 3차원 가상공간 3차원 이징 모형 40대 5년 5월1일 6년전 75일 80대 20법칙

창고

Select Archi	ve '
	SEARCH

이웃

엮인글

$$ar{p}' - ar{p} > 0
ightarrow rac{(p_1 - p_2)^2}{(p_1 + p_2)(2 - p_1 - p_2)} > rac{c}{b}$$

맨 아래 식은 두 집단 전체의 C 전략을 가진 개체의 비율이 시간에 따라 커지는 조건입니다. 각 집단에서는 C의 비율이 줄어드는데 두 집단을 합쳐보면 C의 비율이 늘어나는 경우가 존재한다는 말입니다. (문득 책 <알을 낳는 개>에 나오는 <u>심슨의 모순</u>이 떠오릅니다.) 또한 p₁과 p₂의 차이가 클수록 C의 비율이 더 커집니다. 앞서 말했듯이 각 집단의 개체수는 항상 늘어나고 C의 비율은 항상 줄어들지만, C의 개체수는 경우에 따라 다릅니다. C의 개체수가 늘어나려면 그 집단의 p가 c/b보다 커야 합니다. p₁이 c/b보다 작고, p₂가 c/b보다 큰 상황에서, 두 값의 차이가 위 부등식을 만족시킨다면 집단 1의 C 개체수의 손실을 집단 2의 C 개체수의 증가로 보충하고도 남는 상황도 충분히 가능합니다.

한 가지 짚을 점은 바(bar)를 씌운 p'은 단순히 p'₁과 p'₂의 평균이 아니라, p'₁과 p'₂ 각각의 분자의 합을 분모의 합으로 나눈 값으로 정의됩니다. p'₁과 p'₂의 평균으로 정의한다면 바 씌운 p'이 커질 이유가 전혀 없을 뿐 아니라 사실 올바른 정의도 아닙니다.

위 마지막 결과를 조금 다르게 써보겠습니다. 부등호 왼쪽의 분자는 p₁과 p₂의 분산에 비례합니다. 이 분산을 var(p)로 쓰겠습니다.

$$var(p) = rac{p_1^2 + p_2^2}{2} - \left(rac{p_1 + p_2}{2}
ight)^2 = rac{(p_1 - p_2)^2}{4}$$

집단 1에서 1명을 골랐을 때 C일 확률은 p₁이겠죠. 조금 다르게 말하면, 각 개인에게 a라는 값을 부여하는데 C라면 1, D라면 0을 줍니다. 이러한 확률변수 a의 평균과 분산은 다음처럼 계산됩니다.

$$\bar{a}_1 = p_1, \ var(a_1) = p_1 - p_1^2$$

집단 1임을 나타내기 위해 a에도 첨자 1을 붙였습니다. 이 결과는 당연히 집단 2에도 적용됩니다. 그러면 저 위에 쓴 부등식은 다음처럼 다시 씌어집니다.

$$\frac{var(p)}{var(p) + \frac{1}{2}[var(a_1) + var(a_2)]} > \frac{c}{b}$$

이걸 프라이스 방정식이라 부른다네요. "이건 부등식인데?"라고 하실 분들이 있을 것 같은데, 맞습니다. 위에 위키피디아 링크한 거 보시면, 바 씌운 p의 변화량을 p들의 분산과 a의 분산들로 표현한 방정식이 프라이스 방정식이고 바 씌운 p의 변화량이 0보다 크다는 조건을 다시 정리한 게 바로 위 식입니다. 책에는 안나오지만 위 식을 한 번 더 정리해주겠습니다.

$$\frac{var(p)}{\frac{1}{2}[var(a_1) + var(a_2)]} > \frac{c}{b-c}$$

다시 처음으로 돌아가서 '선택'의 과정을 봅시다. 개체선택이란 보수(또는 적합도)가 높은 개체가 더 많은 자손을 남겨서 살아남고, 보수가 낮은 개체가 더 적은 자손을 남겨서 도태되는 과정입니다. 개체 사이의 보수의 분산이 클수록 선택이 더 강하게/빠르게 일어나겠죠. 그리고 집단선택이란 보수가 높은 집단이 번성하고 보수가 낮은 집단은 도태

되는 과정입니다. 집단 사이의 보수의 분산이 클수록 집단선택의 세기/속도가 빨라질 겁니다. 이전 결과로부터 각 집단의 보수 π는 p에 비례하므로, 집단들의 보수의 분산은 바로 p값들의 분산, 즉 var(p)에 비례합니다. 내친 김에;;; 각 집단 내에서 개체들의 보수의 분산을 구해봅시다.

$$var(\pi_1) = p_1(1 - p_1)c^2 \propto var(a_1)$$

이제 프라이스 방정식(이라 쓰고 부등식이라 읽는다;;;)이 좀더 분명해졌죠? 집단 사이의 보수의 분산이 클수록, 각 집단 내의 보수의 분산이 작을수록 C의 전체 비율이 커집니다. 다시 말해서, 각 집단 내에서는 이타적 인간에 대한 선택압력이 낮을수록, 집단 사이에서는 선택압력이 클수록 C가 살아남기에 더 유리한 조건이 됩니다.

첫 세대의 p와 그 다음 세대의 p'만 비교해서 얻어진 위 부등식이 세대가 지날수록 항상 성립하지는 않습니다. b=0.3, c=0.1, p₁=0.2, p₂=0.8을 넣고 해보면(360쪽 표 참고) 전체 C 의 비율이 0.5에서 늘어나다가 6세대 이후 다시 줄어들기 시작합니다. p값들이 계속 변 하면서 프라이스 방정식을 더이상 만족시키지 못하기 때문입니다.

13장(369쪽부터)에서는 스미스(John Maynard Smith)의 볏짚 모형(haystack model)과 윌슨(David Sloan Wilson)의 다중수준 선택(multi-level selection)을 다룹니다. 프라이스 방정식의 문제점과 비교해보기 위해 윌슨만 보겠습니다. 프라이스 방정식의 전제는 각 집단 내에서 게임이 이루어질 뿐 아니라 번식(생존/도태)까지 이루어진다는 겁니다. 바 씌운 p'도 그 결과를 취합한 것에 다름 아니죠. 그런데 윌슨은 게임은 각 집단 내에서 이루어지만 번식은 전체 집단에서 이루어지는 경우를 다룹니다.

즉 보수를 비교할 때, 전체 집단의 C의 평균보수(바 씌운 π^{C})와 전체 집단의 D의 평균보수(바 씌운 π^{D})를 비교하여 전자가 더 클 때 C의 전체 비율이 커진다는 조건을 씁니다.

$$ar{\pi}^C = rac{p_1 \pi_1^C + p_2 \pi_2^C}{p_1 + p_2} > ar{\pi}^D = rac{(1-p_1) \pi_1^D + (1-p_2) \pi_2^D}{2-p_1-p_2}$$

그런데 이 조건이 프라이스 방정식과 동일한 결과를 줍니다. 각 집단 내에서 번식한 결과를 취합하는 모형과 (취합을 먼저 한 후) 전체 집단에서 번식하는 모형이 같은 결과를 준다... 왜 그런지는 나중에 생각해보겠습니다.

지금까지 '집단선택'이라고 한 건 개체선택의 "집합적 효과"로서 집단선택 효과가 나타 난다는 논리였는데요, 책에서는 더 직접적인 집단선택 모형을 따로 소개하고 있습니다. 집단 사이에 전쟁이 일어나서 이타적 인간이 많은 집단이 이기는데, 진 집단은 몰살 당해 없어지도록 합니다. 이긴 집단은 세를 두 배로 늘린 후 반으로 쪼개집니다. 즉 높은 이타적 인간의 비율까지 복제되는 거죠.

이외에도 '제도'가 개체선택의 압력을 낮춤으로써 집단선택을 가능하게 한다는 얘기도 있고요, 유유상종 효과에 의해 C의 비율이 높아지는 조건도 실은 프라이스 방정식으로 귀결된다는 논의도 있습니다. 이것으로 이 책이 끝납니다.

	└⇒ Seldon 2010.06.18 00:02 신고 덧글주소 고쳐/지워	
	넵^^	
-		
	이름 입 http://	미비밀
	Comment	

Powered by Daum & Tistory | Skin by IENDEV | Modified by Seldon