

XTS – TcSoftDrive

Agenda | XTS- TcSoftDrive

- 1. Short XTS basics
- 2. XTS Accuracy
- 3. XTS IPC & capabilities
- 4. Scope for Mover monitoring
- 5. TcSoftdrive structure & parameter
- 6. Tuning

each Motor module has

- 15 Coils → 15 current set-values
 - → 15 current act-values
- 2 Byte Status & 2 Byte Control
 - → 32 Byte Process Image

each Sensor Module has

- 32 Position Sensors
- 2 Byte Status & 2 Byte Control
 - → 66 Byte Process Image Input

EtherCAT data size

98 Byte

M1 Box 1 (CU2508) 1001 CU2508 □ 2 MotorModule (AT2001-0250) 1002 AT2001-0250 32.0 32.0						Number
2 MotorModule (AT2001-0250) 1002 AT2001-0250 32.0 32.0			CU2508	1001	Box 1 (CU2508)	, 1
	32.0	32.0	AT2001-0250	1002	MotorModule (AT2001-0250)	9 2
SensorModule (AT2001-5250) 1003 AT2001-5250 66.0 2.0 0	2.0 0	66.0	AT2001-5250	1003	SensorModule (AT2001-5250)	9 3

per Frame max. data size of 1500 Byte

per Module (Motor & Sensor)
data size of 98 Byte

3m XTS-Track → 12 Modules

12 x 98 Byte = **1176 Byte Data**

Full Frame size = <u>1264 Byte Data</u>

Frame runtime = $103 \mu s$

<u></u> 1			Type	In Size	Out Size	E-Bus (m
	Box 1 (CU2508)	1001	CU2508			
₽ 2	MotorModule (AT2001-0250)	1002	AT2001-0250	32.0	32.0	
⊆ 3	SensorModule (AT2001-5250)	1003	AT2001-5250	66.0	2.0	0

XTS – Basic Timing

XTS – TwinCAT integration

- From the point of view of application programming, a mover looks like a "standard" servo NC axis.
- New standard tasks are available:
 - Collision avoidance CA
 - Group building
 - Synchronous mechanisms
- Runs on powerful Beckhoff Standard IPCs with EtherCAT-Port
- Simulation mode is possible for TcSoftDrive

XTS – TcSoftDrive control loop structure

TcSoftDrive with Scope Symbol Variables and cyclic variables to & from TwinCAT and PLC

Agenda | XTS- TcSoftDrive

- 1. Short XTS basics
- 2. XTS Accuracy
- 3. XTS IPC & capabilities
- 4. Scope for Mover monitoring
- 5. TcSoftdrive structure & parameter
- 6. Tuning

XTS - Definition of Accuracy

Start Position Target Position Ideal Positioning High Accuracy High Repeatability Low accuracy with high repeatability Low Accuracy **High Repeatability** can be compensated. Low Accuracy Low repeatability cannot be Low Repeatability compensated

XTS - Position Accuracy (Sensor Rev. 18)

XTS Datasheet	
Absolute Position Accuracy	± 250µm (within one straight Module) *
Tested but not specified Accuracy	
Achievable Position Accuracy	± 150µm (within one straight Module) **

^{*} Typical achievable absolute accuracy, this can become larger due to thermal expansion of the module ($\Delta\vartheta \ge 30$ °C) or Parallelism of the flag to the encoder module and the orthogonality of the Encoder Flag to the Motor Module.

^{**} typically achievable accuracy in a straight module between 15 - 235mm (Encoder flag completely in a single module) a parallel and orthogonal Encoder flag and a thermal expansion of while in operation ($\Delta \theta \le 15$ °C)

XTS Datasheet	
Position accuracy while at speed	± 150µm @ 1.5m/s (in a straight module) *
Tested but not specified Accuracy	
Position accuracy while at speed in the curve	± 400µm @ 1m/s (in a 180° Curve Module) **

^{*} the synchronization accuracy is very dependent on the mechanical stiffness and the load on the mover and the controller settings. The mechanical displacement between the modules also plays an important role

^{**} the deviation in the curve can be much, much worse if the center of gravity is not directly between the magnets of the mover

XTS Datasheet	
Stand Still Repeatablity	± 10µm (unidirectional) *

^{*} repeatability for the encoder flag the stand still repeatability may fail due to the defects in the rail system or a Roller developing a flat spot or bearing failure or thermal extension

XTS - Position Accuracy measurements

Absolute Position Accuracy measured against an very precise optical encoder

XTS - Position Accuracy while moving

Measurement in the straight section at 1.5m/s with a tuned 12 Roller mover and no load

→Position deviation in Lag Distance is less than ± 60µm

XTS - Increasing Accuracy best Practices

Possible solutions if the accuraccy is not sufficient	
Absolute accuracy of all Movers	 Adapt the target position of the commands from the PLC based on previously measured and stored values. Mechanically position the tooling at the processing station, e.g. a pin to center the tooling. Use an External encoder feedback such as a laser distance sensor or a highly accurate quick Vision System - a balance during positioning would thereby therefore Possible
Absolute Accuracy between movers	 Position offset in the NC. Each mover must be teached and a unique identification required External encoder or a laser distance sensor or a highly accurate quick Vision System - a correction during positioning would thereby also possible
Positional accuracy over several modules / synchronization accuracy	 Setting a position offset in TcloXts drivers per module (very time consuming) Sometimes AREA control parameters in TcSoftDrive can be adjusted to ensure a smoother ride Sometimes an additional counter-weight mass on the Mover can help bring the center of gravity to the middle of the magnets, thus improving the synchronous accuracy and travel through the curve

Agenda | XTS-TcloXts

- 1. Short XTS basics
- 2. XTS Accuracy
- 3. XTS IPC & capabilities
- 4. Scope for Mover monitoring
- 5. TcSoftdrive structure & parameter
- 6. Tuning

XTS IPC & capabilities

Performance class

XTS – IPC C6930 Core™ i7 application examples

XTS – Capabilities coming soon

- Maximum circumference of 18 m
- Maximum 80 movers on a track

Restrictions are purely due to data gathering and processing requirements

The mover count and circumference will continue to increase in coming years

Agenda | XTS- TcSoftDrive

- 1. Short XTS basics
- 2. XTS Accuracy
- 3. XTS IPC & capabilities
- 4. Scope for Mover monitoring
- 5. TcSoftdrive structure & parameter
- 6. Tuning

XTS TcSoftDrive – Signal selection for monitoring

XTS TcSoftDrive – Setup Motor-Parameter for monitoring

BECKHOFF

Change Parameter Motor. Type 1 → 2
Variable Debug2 will be filled with InfeedPower

XTS Object Context Parameter (Init) Parameter (Online) Data Area Interfaces Interface Pointer Data Pointer Value CS Unit Type Name Online AdsPort 0x015e 0x015e WORD ▼ tlAlways TraceLevelMax tlAlways TcTraceLevel HardwareModulo 3000.0 LREAL 3000.0 mm OperationMode 8 UDINT 12.0 LREAL MaxCurrentOutput 12.0 EmergencyRamp mm/s^2 LREAL 10000.0 10000.0 EmergencyTimeOut LREAL 0.5 StandstillSwitchTime 0.1 LREAL 0.1 [...] 1 (Array Elements) + ControlAreas SoftDriveMotorPara .Type UDINT UDINT .Poles LREAL orqueConstant 8.0 8.0 Nm/A .Inertia 0.35 0.35 kgcm^2 LREAL .NominalCurrent 3.7 3.7 LREAL LREAL .EIThermalTimeCon... 33.0 33.0 LREAL .RatedSpeed 12000.0 12000.0 rpm .VoltageConstant 0.118 0.118 V/rpm LREAL .WindingResistance... 1.1 LREAL 1.1 Ohm Expand All ✓ Show Online Values Show Hidden Parameter Collapse All

set "Show Hidden Parameter" first

▼ □ ×

XTS TcSoftDrive – Trigger settings for monitoring

XTS TcSoftDrive – Power monitoring example

Position [mm]

Velocity [mm/s]

Infeed Power [W]

Mover Current [A]
(this is different to the infeed current on the 48V DC!!!)

Acceleration [mm/s²]

FollowingError [mm]

Agenda | XTS- TcSoftDrive

- 1. Short XTS basics
- 2. XTS Accuracy
- 3. XTS IPC & capabilities
- 4. Scope for Mover monitoring
- 5. TcSoftdrive structure & parameter
- 6. Tuning

- - - Enc
 - ▶ ¾ Drive
 - Inputs
 - Outputs
 - SoftDrive 1
 - SoftDriveCmdFromTC
 - SoftDriveActualToTC
 - Data Pointer
 - Interpolator_Obj1 (CTcSdInterpolator)
 - SoftDriveEncoder_Obj2 (CTcSdEncoder)
 - PositionControl_Obj3 (CTcSdPositionControl)
 - VelocityControl_Obj4 (CTcSdVelocityControl)
 - Filter_Obj5 (CTcSdFilter)
 - FeedForward_Obj6 (CTcSdFeedForward)

- General SoftDrive Parameter
 - Parameter for Interpolator
 - Parameter for Position calculation
 - Parameter for Position Control
 - Parameter for Velocity Control
 - Parameter for Filter settings
 - Parameter for feedforward control

- ∡ াু Axes
 - - ▶ K Enc
 - ▶ ➡I Drive
 - 🕨 📙 Inputs
 - Outputs
 - SoftDrive 1
 - ▶ SoftDriveCmdFromTC
 - SoftDriveActualToTC
 - Data Pointer
 - Interpolator_Obj1 (CTcSdInterpolator)
 - SoftDriveEncoder_Obj2 (CTcSdEncoder)
 - PositionControl_Obj3 (CTcSdPositionControl)
 - VelocityControl_Obj4 (CTcSdVelocityControl)
 - Filter_Obj5 (CTcSdFilter)
 - FeedForward_Obj6 (CTcSdFeedForward)

XTS TcSoftDrive - General SoftDrive Parameter

BECKHOFF

▲ Mover 1 Enc ▶ ¾ Drive Inputs Outputs ■ SoftDrive 1 ▶ ■ SoftDriveCmdFromTC SoftDriveActualToTC Data Pointer Interpolator_Obj1 (CTcSdInterpolator) SoftDriveEncoder_Obj2 (CTcSdEncoder) PositionControl_Obj3 (CTcSdPositionControl) VelocityControl_Obj4 (CTcSdVelocityControl) Filter_Obj5 (CTcSdFilter) FeedForward_Obj6 (CTcSdFeedForward)

XTS TcSoftDrive - 32 different control areas

- 1 up to 32 different control areas
- Different parameter for position and velocity control
- Different current limit could be set in Feedforward module

To use a certain control area [X].IsEnabled

must be set to TRUE and Activate Configuration

-
٠ -

Name	Value	Online
HardwareModulo	3000.0	3000.0
OperationMode	8	8
MaxCurrentOutput	120.0	12.0
EmergencyRamp	40000.0	40000.0
EmergencyTimeOut	0.5	0.5
StandstillSwitchTime	0.1	0.1
ControlAreas	[]	[]
[0].IsEnabled	TRUE ▼	TRUE
[0].reserved	0	0
[0].StartPosition	1000.0	1000.0
[0].EndPosition	1500.0	1500.0
[0].TransitionLength	40.0	40.0

XTS TcSoftDrive - Interpolator

First_XTS_Project ▼ 🗆 ×									
Object	Context Parame	eter (Init)	Interfaces						
	Name			Value			CS	Туре	P
-	General							31-	
	InterpolatorT	ype		INTERP	OLATION_P	OLYN 💌		Inter	0
-	Advanced								
	TraceLevelMa	эх		tlAlway	s	•		TcTra	0
Sho	w Online Values	✓ Sho	w Hidden Pa	rameter	Expand A	ll Col	lapse All		

XTS TcSoftDrive - Encoder

	Name	Value	CS	Unit	Туре	P
-	General					
	VelocityFeedbackMode	OBSERVER			Velo	0
	PositionFeedbackMode	MODULO_START _▼			Posit	0
	PositionLowPassFilter	500.0		Hz	LREAL	0
	VelocityFilterBandwidth	160.0		Hz	LREAL	0
	StartUpPositionType	PART			Start	0
	Advanced					
	TraceLevelMax	tlAlways <u> </u>			TcTra	0
	CorrectionFactor	0.5			LREAL	0
	SimulationOffset	10.0		mm	LREAL	0
	CommutationErrorVelocity	1000.0		mm/s	LREAL	0

XTS TcSoftDrive - position control

ject	Context Parameter (Init) Interfaces	Interface Pointer				
	Name	Value	CS	Unit	Туре	P
	General					
	PositionLoopType	P_POSITION_STAND			Positi	0
	Кр	0.03		1/s	LREAL	0
	Kp_standstill	0.02		1/s	LREAL	0
	Kp_area	0.02		1/s	LREAL	0
	Kp_area_standstill	0.02		1/s	LREAL	0
	Advanced					
	TraceLevelMax	tlAlways <u>▼</u>			TcTrac	0
	Kp_ffv	1.0		100%	LREAL	0
	PosLoopFilter	75.0		Hz	LREAL	0
	PosLoopFilter_area	75.0		Hz	LREAL	0
	InpositionTn	0.05		S	LREAL	0

XTS TcSoftDrive - parameter for position control

BECKHOFF

Type: P_Position only Kp is used

Type: P_Position_Standstill Kp & Kp_standstill is used

Type: P_Position_Standstill_Areaall parameter are used

XTS TcSoftDrive - velocity control

XTS TcSoftDrive - parameter for velocity control

BECKHOFF

Type: PI_Position only Kp & Tn is used

Type: PI_Velocity_Standstill
 Kp/Kp_standstill &
 Tn/Tn_standstill is used

Type: PI_Velocity_Standstill_Area
 all Kp and Tn are used
 (standstill & area)

XTS TcSoftDrive - parameter for velocity control

- If one integral parameter is set to zero then the calculated value is also reset to zero.
- If an old tmc is used the functionality is backward compatible

XTS TcSoftDrive - filter parameter

XTS TcSoftDrive - Feed Forward

SoftDriveEncoder_Obj2 (CTcSdEncoder)

FeedForward_Obj6 (CTcSdFeedForward)

Filter_Obj5 (CTcSdFilter)

Object7 (CTcSdTuningAssist)

PositionControl_Obj3 (CTcSdPositionControl) VelocityControl_Obj4 (CTcSdVelocityControl)

XTS TcSoftDrive - cyclic variables

From NC / PLC → TcSoftDrive

- Mode: change TcSoftDrive operation mode & the use of the other cmd values
- BipolarCurrentLimit: add the cyclic current limit value
- AdditiveCurrentCmd: set an additional cyclic FFT current value. Functionality depends on the actual Operation mode used for real torque control
- AdditiveCurrentCmd: add an additional cyclic FFT current value
- ExtEncoderPosition: use position data from another source

료 Axes Enc Inputs Outputs SoftDrive 1 SoftDriveCmdFromTC Mode BipolarCurrentLimit AdditiveCurrentCmd Reserve1 ExtEncoderPosition Reserve2 SoftDriveActualToTC ActCurrentCmd ActPowerMonitor Reserve2 ActHwPosModulo ActFollowingError Monitor1 Monitor2 Data Pointer Interpolator_Obj1 (CTcSdInterpolator)

XTS TcSoftDrive - cyclic variables

BECKHOFF

PositionControl_Obj3 (CTcSdPositionControl)
VelocityControl_Obj4 (CTcSdVelocityControl)

FeedForward_Obj6 (CTcSdFeedForward)

Filter_Obj5 (CTcSdFilter)

Object7 (CTcSdTuningAssist)

From TcSoftDrive → NC / PLC

- ActCurrentCmd: actual current command
- ActHWPosModule: actual HW Position
- ActFollowingError: actual Following Error

XTS TcSoftDrive - setting for cyclic data

SoftDriveExternalEncoder

These parameters set the encoder counting direction, the scaling and offset for the external encoder feedback. This external encoder position could also be the position from another XTS mover.

SoftDriveExternalDriveScale

This parameter sets the scaling for the output of the actual SoftDrive current command e.g. for use with another drive HW

-	SoftDriveExternalEncoder			
	.InvertExtEncoder	OFF <u>▼</u>		UDINT
	.Reserved	0		UDINT
	.ExtEncoderScale	0.0	mm/lnc	LREAL
	.ExtEncoderOffset	0.0	mm	LREAL
	SoftDriveExternalDriveScaling	1000.0		LREAL
+	IoChildAreaLocation	[,]	2 (Array	
	AreaOwner	00000000		OTCID

Agenda | XTS- TcSoftDrive

- 1. Short XTS basics
- 2. XTS Accuracy
- 3. XTS IPC & capabilities
- 4. Scope for Mover monitoring
- 5. TcSoftdrive structure & parameter
- 6. Tuning

Servo systems typically use a combination (cascaded) of three types of control loops:

- current loop (indirectly via the filter settings)
- velocity loop
- and position loop

To tune the system, we have to tune each loop.

Starting at the first loop (current indirectly via the filter settings)

Tuning Sequence

- 1. Setup Filter Settings
 - I. on the straight section
 - II. on the curve section
- 2. Setup Velocity-Control
 - I. on the straight section
 - II. on the curve section
- 3. Setup Position-Control
 - I. on the straight section
 - II. on the curve section

Tuning Sequence

- 1. Setup Filter Settings
 - I. on the straight section
 - II. on the curve section
- 2. Setup Velocity-Control
 - I. on the straight section
 - II. on the curve section
- 3. Setup Position-Control
 - I. on the straight section
 - II. on the curve section

Tuning Sequence

- 1. Setup Filter Settings
 - I. on the straight section
 - II. on the curve section
- 2. Setup Velocity-Control
 - I. on the straight section
 - II. on the curve section
- 3. Setup Position-Control
 - I. on the straight section
 - on the curve section

- Tuning Sequence
 - 1. Setup Filter Settings
 - I. on the straight section
 - II. on the curve section
 - 2. Setup Velocity-Control
 - I. on the straight section
 - II. on the curve section
 - 3. Setup Position-Control
 - I. on the straight section
 - II. on the curve section

Setup Filter Settings

To determine the Filter Settings there is a Tuning Assist

 The Tuning Assist suggests values to adjust the filters and feedforward parameters

 Typically only the Velocity and Position loops need to be tuned afterwards

Determining Filter Settings using Tuning Assist

- The Tuning Assist (TA) TcCom object is added to the existing TcSoftDrive module (Version ≥ 3.10.43.0)
- The TA function operates in torque mode and generates a short current to the mover, followed by coasting to a stop. The Mover will be driven in both positive and negative directions and two measurements will be taken.

WARNING

Risk of injury from moving movers

When the Tuning Assist function is started the mover starts to move open loop with a jump. There is a risk of injury to body parts. Keep an appropriate safety distance, and stay clear outside of the operating space.

Determining Filter Settings using Tuning Assist

- The response of the system (Mover with tooling) will be measured and a Fast Fourier Transformation (FFT) is used to determine the frequency components
- The result could be visualized with the array bar chart functionality of TwinCAT 3 Scope Views (Version ≥ 3.2.3136 starting with TwinCAT 3.1.4020.14)

WARNING

Risk of injury from moving movers

When the Tuning Assist function is started the mover starts to move open loop with a jump. There is a risk of injury to body parts. Keep an appropriate safety distance, and stay clear outside of the operating space.

Determining Filter Settings using Tuning Assist

■ The behaviour (torsional oscillation) of the mechanical system is analyzed. The normal direction of motion for the application should be used to ensure the best parameterization of the control loops for optimal motion performance.

Determining Filter Settings using Tuning Assist

- The direction of torsional oscillations is shown in the picture on the right by the red double arrow
- The scope view example shows the oscillation response over time when a current is applied to the mover.

Determining Filter Settings using Tuning Assist

 Add a TuningAssist object to an existing TcSoftDrive

■ Axis 1

BECKHOFF

Manual Config

Determining Filter Settings using Tuning Assist

Set the context task of the TuningAssist object to the same XTS task the TcSoftDrive is using

Activate the configuration and restart TwinCAT

In the Tuning Assist Obj. set the TcSoftDrive automatic parameter to Mode 10 (force mode)

BECKHOFF

Determining Filter Settings using Tuning Assist

 Create a new measurement project and choose "Scope Array Bar Project" as the type

BECKHOFF

Determining Filter Settings using Tuning Assist

Add the array variable
 "SdTaBarChartVar2" to the Scope Axis

BECKHOFF

Determining Filter Settings using Tuning Assist

- Set the properties of the variable "SdTaBarChartVar2":
 - X Offset is set to 60 and
 - X Scale Factor is set to 10

The calculated frequency spectrum by the FFT is always calculated from 60 Hz to 600 Hz in 10 Hz steps

Setup Position Leg Monitoring

 Set the following error monitoring to a high value e.g. 500mm (or disable it)

BECKHOFF

Determining Filter Settings using Tuning Assist

- Process control is done by OnlineWrite and OnlineRead to the parameter "TuningProcess"
- The Online-Value shows the actual state of the "TuningProcess"

Description

Parameter

Tuning Type

Suggested_LoadFilter

Suggested_Friction_Compensation

The Tuning Assist object contain seven parameter

	"Source2" measurement across move direction
Tuning Process	Status and control of the tuning assist procedure; set a new state with an "Online Write" access on this parameter and get the current state with an "Online Read" access on this parameter

Suggestion for the acceleration feedforward gain "KpAccFFT" inside FeedForward Obj6 Suggested KpAccFFT after the complete tuning assist procedure was successful executed Suggested_VeloFilterBandwidth

Suggestion for the "VelocityFilterBandwidth" inside the SoftDriveEncoder Obj2 after the complete tuning assist procedure was successful executed Suggestion for the load filter configuration inside the Filter_Obj5 after the complete

Set the type of calculation – "Method1" measurement in move direction

tuning assist procedure was successful executed and this parameter was requested with an online read on this parameter Suggestion for the parameter "FrictionCompensation" in Ampere, within the Feedforward object of the TcSoftDrive. To avoid following error, when changing the

velocity, due to static friction CurrentPulseTime Set the time for the current pulse in ms. The default is 10ms but with higher load or more friction it is may necessary to increase it. The maximum possible time is 25 ms

 The Suggested parameter of the Tuning Assist

Parameter

Suggested_KpAccFFT

Suggested_LoadFilter

Suggested_VeloFilterBandwidth

BECKHOFF

Name	Value
TraceLevelMax	tlAlways
TuningType	METHODE1
TuningProcess	DONE_FILTER_CALC
Suggested_KpAccFFT	1.6
Suggested_VeloFilterBandwidth	146.0
Suggested_LoadFilter	···
.Туре	BIQUAD
.Usage	ALWAYS
.LowPassFrequency	256.0
.LowPassDamping	0.6
.HighPassFrequency	437.0
.HighPassDamping	0.3

Result of calculation

This graphic shows how the calculation for the filter suggestion is done with one FFT result

- LPF: LowPassFrequency
- HPF: HighPassFrequency
- BW: VelocityFilterBandwidth

Example 2: If the maxima are too far apart, then a second order low pass filter is suggested

Example 1: If the two maxima are close to each other then one Bi-Quad Filter may be used

XTS TcSoftDrive – Tuning Tuning Assist

- Steps / Tips for Tuning Assist
 - Enable the NC axis first and set the following error monitoring in the corresponding NC axis to a high value e.g. 500mm (or disable it)
 - Execute some more measurements e.g. three on the straight and three on the curve and maybe also with / without product on the mover
 - Analyze the spectrum manually as well and try to categorize the FFT with the given examples by yourself
 - Notice the parameter suggestions and try to combine the filter settings
 - Use lowest value for "Suggested_VeloFilterBandwidth"
 - Use lowest value for "Suggested_KpAccFFT" from a straight measurement
 - Use LowpassFilter2 if both filter types are suggested (Lowpass2 & Biquad)
 - Use lowest value for suggested "LowPassFrequency"
 - Use highest value for suggested "HighPassFrequency"

XTS TcSoftDrive – Tuning Velocity Control Loop

Velocity Control Loop

 For velocity control loop a "PI" – Loop is used.

- Setup Kp
- Setup Tn

XTS TcSoftDrive - Tuning Velocity Control Loop

- Disable or remove the Tuning assist object (if not already done)
- Set the SoftDrive "OperationMode" parameter in the main object to 9 (cyclic synchronous velocity mode)

XTS TcSoftDrive – Tuning Velocity Control Loop

Velocity Control Loop

 Set the following error monitoring to a high value e.g. 500mm (or disable it)

BECKHOFF

- Switch off the integral part of the velocity control
 - all Tn parameter set to zero

XTS TcSoftDrive - Tuning Velocity Control Loop

- Enable the NC axis and start the service mode "Velo Step Sequence"
- Scope as minimum from the corresponding SoftDrive
 - Act Velocity
 - Set Velocity
 - Set Current
- May reduce the target velocity to avoid current saturation reaching the "MaxCurrentOutput" value (12A default)

XTS TcSoftDrive – Tuning Velocity Control Loop (Kp)

Velocity Control Loop

 Increase (or decrease) the velocity loop gain Kp until the actual velocity reaches

85 - 90 %

of the commanded velocity (e.g. here 500 mm/s)

 Set Kp_standstill parameter to the same value or a bit less e.g. 75%

Set Kp to reach 90% of command velocity

XTS TcSoftDrive – Tuning Velocity Control Loop (Tn)

Velocity Control Loop

Switch on Tn with a large time value
 e.g. 0.2 s
 and reduce this incrementally until the
 actual velocity has a small overshoot
 of

5 – 10% of the command

- Repeat procedure for the curve and use area parameters in case of differences in the straight and curve sections
- Avoid saturating the current output

Set Tn to reach 5 -10 % overshoot

XTS TcSoftDrive – Tuning Velocity Control Loop (Tn)

- Repeat procedure for the curve and use area parameters in case of differences in the straight and curve sections
- Avoid saturating the current output

Set Tn to reach 5 -10 % overshoot

Position Control Loop

For position control loop a
 "P" – Controler is used.

Setup Kp

Position Control Loop

 Set the SoftDrive "OperationMode" parameter in the main object to 8 (cyclic synchronous position mode)

Position Control Loop

 Set the following error monitoring back to "normal" values

Position Control Loop

- Enable the NC axis
 and start the service mode
 "Reversing Sequence" with
 achievable (or necessary) values for
 velocity, acceleration and jerk
- Also scope the following error parameter of the SoftDrive

Position Control Loop

- Increase Kp of position loop to reduce following error as much as possible but stop before getting more noise or oscillation
- Set Kp_standstill parameter to the same value or maybe a bit less e.g. 75%
- Repeat procedure for the curve and use area parameter in case of differences in the straight and curve

XTS | New Freedom in Machine Building

This training material is provided to complement the presented training content. Outside the actual training the material may only be used for internal purposes at the company of the course participant. In addition, the material or extracts thereof may be used in end customer training for products containing Beckhoff products, or for presentations, provided the presentation refers to Beckhoff products. Extracts or copies of the training material must contain the following copyright acknowledgement: "© Beckhoff Automation GmbH & Co. KG".

The same applies to extracts from presentation material. The user of the material is solely responsible for the completeness of extracts and copies. It is explicitly not permitted to offer commercial or free training for Beckhoff products. This applies to training with and or without the training material. The training material must not be edited, manipulated or modified.

Passing on of the aforementioned rights to third parties is not permitted.

Beckhoff Automation GmbH & Co. KG

Contact BECKHOFF

Beckhoff Automation GmbH & Co. KG

Headquarters
Huelshorstweg 20
33415 Verl
Germany

Phone: +49 5246 963-0

E-mail: info@beckhoff.com

Web: www.beckhoff.com

© Beckhoff Automation GmbH & Co. KG 02/2021

All images are protected by copyright. The use and transfer to third parties is not permitted.

Beckhoff®, TwinCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation GmbH. Other designations used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owners.

The information provided in this presentation contains merely general descriptions or characteristics of performance which in case of actual application do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressively agreed in the terms of contract.