G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumer

Introducción

. .

Análisis

Banco de filtros

Implementacio

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias M.Santiago S.Lautaro Andres V.Xavier

Universidad Nacional del Comahue Buenos Aires 14000, Neuquen G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Marco Teórico

Análisis

multiresolución

Implementaci

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros 1 Resumen

2 Introducción

3 Marco Teórico

Análisis multiresolución

■ Banco de filtros

Umbralización

4 Implementación

5 Resultados

■ Imágenes de prueba

Parámetros óptimos

Comparación de filtros

Resumen

Introducción

Marco Teórico
Análisis
multiresolución
Banco de filtros

Implementaci

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros

Resumen

Los objetivos de esta presentación son:

- Dar una introducción a las funciones wavelets y transformada wavelet.
- Estudiar y utilizar distintos umbrales para el filtrado de ruido.
- Utilizar la transformada wavelet para filtrar ruido en imágenes.
- Comparar este método de filtrado con otros.

Introducción a la transformada wavelet

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Análisis multiresolución

Resultados

Imágenes de prueba Parámetros óptimo Comparación de filtros Imágenes reales

Analogía con Fourier

Fourier
$$\to X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$$
 (1)

Wavelet
$$\to X(a,b) = \int_{-\infty}^{+\infty} x(t) \overline{\psi_{a,b}(t)} dt$$
 (2)

G.Isaias, M.Santiago S.Lautaro Andres, V. Yavier

Resume

Introducción

miroduccio

Análisis

multiresolución

Umbralización

Implementacio

Resultados

Imágenes de prueba Parámetros óptimo Comparación de

G.Isaias, M.Santiag S.Lautaro Andres, V.Xavier

Resume

Introducción

Marco Teór

Analisis multiresolución

Banco de filtro

Implementaci

Resultados

Parámetros óptimo Comparación de filtros

G.Isaias, M.Santiag S.Lautaro Andres, V.Xavier

Resume

Introducción

.

IVIAICO ICOI

Analisis

Banco de filtro

Umbralización

implementacio

Resultados

Parámetros óptim

filtros

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumen

Introducción

Marco Teór

Análisis

multiresolución

anco de filtros

Implementaci

Resultados

Imágenes de prueba Parámetros óptimo Comparación de filtros

Imágenes reales

WAVELET TRANSFORM

Credit: Rowan University

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumer

Introducción

Marco Teório

Análisis multiresolución

Banco de filtros

Implementaci

Resultados

Imágenes de prueba Parámetros óptimos Comparación de

Resultados

Imágenes de prueba
Parámetros óptimos
Comparación de
filtros

Matemáticamente...

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}}\psi\left(\frac{t-b}{a}\right) \quad a,b \in \mathbb{R} \quad ; a \neq 0.$$
 (3)

Si a = 2 y b = 1:

$$\psi_{j,k}(t) = 2^{-j/2}\psi(2^{-j}t - k) \tag{4}$$

Las funciones $\{\psi_{j,k}\}_{\{j,k\}\in\mathbb{Z}}$ forman una base ortonormal de $L^2(\mathbb{R})$.

Análisis multiresolución

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducciór

Análisis multiresolución

lmplementac

Resultados

≺esultados Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales Un análisis multiresolución para $L^2(\mathbb{R})$ consiste en una secuencia de subespacios cerrados de $L^2(\mathbb{R})$, $\{V_j\}_{j\in\mathbb{Z}}$, una función una función $\phi\in V_0$ tal que se cumplan las siguientes condiciones:

i. Los espacios V_j están anidados, es decir:

$$...\subset V_{-1}\subset V_0\subset V_1...$$

ii.
$$\overline{\cup_{j\in\mathbb{Z}}V_j}=L^2(\mathbb{R})$$
 y $\cap j\in\mathbb{Z}V_j=0$

iii. Para todo
$$j \in \mathbb{Z}$$
, $V_{j-1} = D(V_j)$

iv.
$$f \in V_0 \to T_k f \in V_o$$
, $\forall k \in \mathbb{Z}$

v. $\{T_k\phi\}_{k\in\mathbb{Z}}$ es una base ortonormal de V_0

Análisis multiresolución

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumer

Introducción

Marco Teórico

Análisis multiresolución Banco de filtros

Implementac

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales Se define a W_j como el complemento ortogonal de V_j en V_{j-1}

$$V_{j-1} = V_j \oplus W_j \tag{5}$$

$$A_{j-1}(t) = A_j(t) + D_j(t)$$
 (6)

Por otro lado:

$$V_J = V_K \oplus W_K \oplus ... \oplus W_{J+1}, \ J < K \tag{7}$$

Finalmente:

$$x(t) = A_J(t) + \sum_{j=-\infty}^{J} D_j(t)$$
 (8)

Análisis multiresolución

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumer

Introduccior

Marco Teórico

Análisis
multiresolución

Banco de l

Implementa

Imágenes de prueba Parámetros óptimos

Imagenes real

ightarrow Vemos ejemplo en el toolbox de Matlab Para continuar:

$$A_j(t) = \sum_{k \in \mathbb{Z}} \beta_{j,k} \phi_{j,k}(t)$$
 (9)

Donde:

$$\beta_{j,k} = \langle x(t), \phi_{j,k}(t) \rangle \tag{10}$$

$$D_{j}(t) = \sum_{k \in \mathbb{Z}} \alpha_{j,k} \psi_{j,k}(t)$$
 (11)

Donde:

$$\alpha_{j,k} = \langle x(t), \psi_{j,k}(t) \rangle \tag{12}$$

La función $\psi \in L^2(\mathbb{R})$ y $\{T_k\psi\}_{k\in\mathbb{Z}}$ son una base ortonormal de W_0

¿Cómo solucionamos el inconveniente del producto interno?

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Marco Teórico

Análisis

multiresolución

Banco de filtros Umbralización

Implementa

Resultado

Imágenes de prueba Parámetros óptimos Comparación de filtros Estrategia: Algoritmo que relacione las bases ortonormales y la idea de banco de filtros.

Si partimos de la ecuación 5 y recordamos como se descomponían estas funciones, tenemos el inconveniente de los productos internos.

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales

Reescribiendo la ecuación 5

$$A_{j}(t) = \sum_{k \in \mathbb{Z}} a_{k}^{j} \phi_{j,k}(t)$$
 (13)

$$D_j(t) = \sum_{k \in \mathbb{Z}} d_k^j \psi_{j,k}(t)$$
 (14)

con

$$a_k^j = \langle A_j(t), \phi_{j,k}(t) \rangle \tag{15}$$

$$d_k^j = \langle A_j(t), \psi_{j,k}(t) \rangle \tag{16}$$

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumer

Introduccior

Marco Teóri

Análisis multiresolución

Banco de filtros Umbralización

Implementació

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales Podemos obtener $a^j y \ d^j$ a partir de A_{j-1} , partiendo del producto interno de A_{j-1} y las funciones de escala y wavelet

$$< A_{j-1}(t), \psi_{j,k}(t) > = < A_j(t) + D_j, \psi_{j,k}(t) >$$
 (17)

$$< A_{j-1}(t), \phi_{j,k}(t) > = < A_j(t) + D_j, \phi_{j,k}(t) >$$
 (18)

Implementaci

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales A su ves sabemos que:

$$A_{j-1}(t) = \sum_{k \in \mathbb{Z}} a_k^{j-1} \phi_k^{j-1}(t)$$
 (19)

con lo que obtenemos que:

$$a_k^j = \sum_{p \in \mathbb{Z}} a_p^{j-1} < \phi_{j-1,p}, \phi_{j,k} >$$
 (20)

$$d_{k}^{j} = \sum_{p \in \mathbb{Z}} a_{p}^{j-1} < \phi_{j-1,p}, \psi_{j,k} >$$
 (21)

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumei

Introduccion

Marco Teório

multiresolución

Banco de filtros

Offibralizacion

Implementac

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales Pero tanto los productos internos de $<\phi_{j-1,p},\phi_{j,k}>$ $<\phi_{j-1,p},\psi_{j,k}>$, son productos internos de funciones conocidas que ya fueron calculadas por lo cual podríamos tomarlo como coeficientes conocidos más aún como coeficientes de filtros.

$$\sqrt{2}a_{p-2k} = \langle \phi_{j-1,p}(t), \phi_{j,k}(t) \rangle$$
 (22)

$$\sqrt{2}b_{p-2k} = \langle \phi_{j-1,p}(t), \psi_{j,k}(t) \rangle$$
 (23)

Banco de filtros Umbralización

Implementa

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales Por lo que se definen los coeficientes de los filtros

$$[LD]_n = \sqrt{2}a_{-n} \tag{24}$$

$$[HD]_n = \sqrt{2}b_{-n} \tag{25}$$

Donde LD es un filtro pasa bajos y HD es un filtro pasa altos. Por lo que reescribimos a a_k^j y d_k^j

$$a_k^j = \sum_{p \in \mathbb{Z}} a_p^{j-1} [LD]_{2k-p}$$
 (26)

$$d_k^j = \sum_{p \in \mathbb{Z}} a_p^{j-1} [HD]_{2k-p}$$
 (27)

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Marco Teóri

Análisis

Banco de filtros

Implementaci

Resultados

Imágenes de prueb Parámetros óptimo Comparación de filtros

Gráficamente lo visualizamos

Figura: Descomposición con banco de filtros para 1D.

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducció

Análisis

multiresolución

Banco de filtros

Umbralización

_ . . .

Resultados

Parámetros óptimos Comparación de filtros Imágenes reales Para el caso de imágenes, la descomposición en 2D se ve como un doble filtrado

Figura: Descomposición con banco de filtros para 2D.

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducció

Maura Taku

Análisis

Banco de filtros

Umbralización

Implementaci

Resultados

Imagenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales Es posible realizar el proceso inverso y recuperar la señal original

Figura: Recomposición con banco de filtros para 2D.

Umbralización

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducció

meroducció

Análisis multiresolución

Umbralización

Implementac

Resultados

Imágenes de prueb.
Parámetros óptimo
Comparación de
filtros

Figura: Modos de umbralización más utilizados

Umbralización

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Marco Teórico

Análisis
multiresolución

Banco de filtros

Umbralización Implementaci

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros Imágenes reales Algoritmos para el cálculo del umbral au:

- VisuShrink
- LevelShrink
- BayesShrink
- NormalShrink
- AWT(Adaptative Wavelet Treshholding)

Pseudocódigo parámetros óptimos

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

rtesume

Introducción

Marco Teórico

Análisis
multiresolución

Banco de filtros

Implementación

Imágenes de prueba Parámetros óptimos Comparación de filtros

- Leer todas las imágenes de una carpeta y normalizar sus valores entre 0 y 1.
- Agregar ruido gaussiano con $\mu = 0$ y varianza σ .
- Seleccionar el parámetro a variar, y dejar constante el resto de parámetros.
- Transformar la imagen utilizando la transformada de wavelet.
- Calcular los umbrales para cada nivel segun el umbral seleccionado.
- Aplicar el modo (soft hard) y eliminar las componentes menores al umbral.
- Aplicar la antitransformada.
- Calcular el PSNR y el SSIM.

Lenna - $\sigma = 0.3$

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumei

Introducció

.. _ ..

Análisis multirosolución

mutalesolucion

Umbralizaciór

impiementacio

rtesurtados

Imágenes de prueba

Parámetres éntir

Comparación de

House - $\sigma = 0.3$

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumen

Introducció

Marco Teór

Análisis

D 1 Ch

Umbralización

Implementació

Resultados

Imágenes de prueba

Comparación d

IIILIOS

Wave - $\sigma = 0.3$

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumer

Introducciór

iviarco Teol

multiresolución

Banco de filtros

Implementació

Imágenes de prueba

Comparación de

Comparación de Niveles

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Análisis multiresolución

Banco de filtros

mplementaci

Resultados Imágenes de prueba Parámetros óptimos Comparación de filtros

PSNR	noise	1	2	4	6
Lenna	17.65	23.92	27.03	22.29	22.29
House	19.87	22.90	25.58	24.57	23.51
Wave	18.63	23.34	26.70	24.71	24.65
SSIM	noise	1	2	4	6
Lenna	0.518	0.742	0.856	0.847	0.808
House	0.620	0.806	0.882	0.839	0.814
Wave	0.586	0.761	0.839	0.820	0.803

Comparación de Niveles

Filtrado de ruido en imágenes con transformada de wavelet

Parámetros óptimos

Comparación de niveles 2 - 6

Filtrado de ruido en imágenes con transformada de wavelet

Parámetros óptimos

Comparación de modos

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Análisis

Banco de filtros

mplementaci

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros

PSNR noise soft hard 27.03 Lenna 17.65 21.41 House 19.87 25.58 20.20 26.70 Wave 18.63 20.85 SSIM soft noise hard 0.856 Lenna 0.518 0.757 House 0.620 0.882 0.789 0.839 Wave 0.586 0.755

Comparación de modos

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducció

.....

Análisis multiresolución

Banco de filtros Umbralización

Implementacio

Resultado

Parámetros óptimos

Comparación de

filtros

Comparación de umbrales

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Marco Teórico

multiresolución Banco de filtros

mplementad

Resultados
Imágenes de prueba
Parámetros óptimos
Comparación de filtros

	PSNR	noise	universal	bayes	level	normal	awt
	Lenna	17.65	25.86	25.71	25.40	27.03	25.24
	House	19.87	22.91	23.32	23.19	25.58	23.41
	Wave	18.63	26.74	26.70	26.86	26.70	25.56
•	SSIM	noise	universal	bayes	level	normal	awt
	Lenna	0.518	0.848	0.847	0.849	0.856	0.838
	House	0.620	0.851	0.850	0.857	0.882	0.849
	Wave	0.586	0.830	0.829	0.833	0.839	0.823

Comparación de umbrales

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumei

Introducció

.. _ .

Análisis multiresolución Banco de filtros

Implementacio

Resultado

Imágenes de prueba Parámetros óptimos Comparación de

Comparación de filtros Imágenes reales

Comparación de la wavelet madre

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

M.... T. (...

Análisis multirecolución

multiresolución Banco de filtros

mplementaci

Resultados

Imágenes de prueba Parámetros óptimos Comparación de filtros

PSNR	noise	haar	db4	sym8
Lenna	17.65	23.44	25.19	27.03
House	19.87	26.38	24.78	25.58
Wave	18.63	24.67	26.87	26.70
SSIM	noise	haar	db4	sym8
Lenna	0.518	0.819	0.853	0.856
House	0.620	0.848	0.875	0.882
Wave	0.586	0.805	0.836	0.839

Comparación de la wavelet madre - db4

Filtrado de ruido en imágenes con transformada de wavelet

Parámetros óptimos

Comparación de la wavelet madre - haar

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiag S.Lautaro Andres, V.Xavier

Resumer

Introducció

Marco Teór

multiresolución

Implementaci

Resultados

Imágenes de prueba Parámetros óptimos

Comparación d filtros

Comparación de la wavelet madre - sym8

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiag S.Lautaro Andres, V.Xavier

Resumer

Introducció

Marco Teór

multiresolución

Implementaci

Resultados

Imágenes de prueba Parámetros óptimos

Comparación d filtros

Parámetros óptimos

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiag S.Lautaro Andres, V Xavier

Resumer

Introducción

Marco Teói

multiresolución

Banco de filtro

Implementació

Resultados

Imágenes de prueba Parámetros óptimos

Comparación d

lmárrones reales

level	wavelet	mode	umbral
6	sym8	soft	normal

Resultado del filtrado

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducción

Análisis multiresolución

multiresolución Banco de filtros

Implementac

Resultados

Imágenes de prueb Parámetros óptimo Comparación de filtros

iltros mágenes reales

	noise	wavelet	wiener	gaussian
Lenna	23.10	23.83	26.30	26.14
House	24.80	25.07	28.28	27.99
Wave	24.21	24.33	27.00	26.86
SSIM	noise	wavelet	wiener	gaussian
Lenna	0.647	0.870	0.843	0.835
House	0.740	0.906	0.895	0.886
Wave	0.693	0.887	0.862	0.853

Wavelet

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resumei

Introducció

Análisis

multiresolución

Banco de filtro

Implementació

Resultados

Imágenes de prue

Comparación de

Wiener

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducció

Análisis

Banco de filtro

Implementaci

Imágenes de prue

Comparación de

Gaussiano

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducció

Marco Teór

multiresolución

Umbralización

Implementació

_ . . .

Imágenes de prue

Comparación de

Principe de gales - 1925

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V.Xavier

Resume

Introducció

Análisis multiresolución

Banco de filtros Umbralización

Implementacio

Resultado

Parámetros óptim Comparación de

Resonancia magnética

Filtrado de ruido en imágenes con transformada de wavelet

G.Isaias, M.Santiago S.Lautaro Andres, V Xavier

Resume

Introducció

.....

Análisis

Banco de filtros

Implementaci

Resultado

Parámetros óptin Comparación de

