

WARM UP (your brain)

o First start by writing the formulas for all the compounds

Round 1:THE STRONGER ACID moves on!

Use the table to find which acid has the highest K_a

• Round 2: Highest pH moves on!

- o If the acid is combined with its conjugate base, which buffer solution would have a higher pH
- o Assume the concentration of the acid (HA) is 0.10 M and its conjugate base (A-) is 0.10M
- The conjugate base from the most basic buffer solution moves on

- o Calculate formula mass.
- o The winner has the greatest formula mass.

• Round 4: It's a SOLID winner

- When in a solution with Ca²⁺, which compound will precipitate out?
- The precipitate is the winner!
- PROVE YOUR HONOR: Draw the Lewis Dot Diagram of SO₄²-(must use Formal Charge & Resonance for the correct structure)

TABLE 16.1

Acid-Ionization Constants at 25°C*

Substance	Formula	K_a	
Acetic acid	$HC_2H_3O_2$	1.7×10^{-5}	
Benzoic acid	$HC_7H_5O_2$	6.3×10^{-5}	
Boric acid	H_3BO_3	5.9×10^{-10}	
Carbonic acid	H_2CO_3	4.3×10^{-7}	
	HCO ₃	4.8×10^{-11}	
Cyanic acid	HOCN	3.5×10^{-4}	
Formic acid	$HCHO_2$	1.7×10^{-4}	
Hydrocyanic acid	HCN	4.9×10^{-10}	
Hydrofluoric acid	HF	6.8×10^{-4}	
Hydrogen sulfate ion	HSO ₄	1.1×10^{-2}	
Hydrogen sulfide	H_2S	8.9×10^{-8}	
	HS^-	$1.2 \times 10^{-13\dagger}$	
Hypochlorous acid	HClO	3.5×10^{-8}	
Nitrous acid	HNO_2	4.5×10^{-4}	
Oxalic acid	$H_2C_2O_4$	5.6×10^{-2}	18
	$\mathrm{HC_2O_4}^-$	5.1×10^{-5}	10

Work For Round 2 - include both hydrolysis of weak acid and pH calc.

= Hq

pH =

VS

pH =

pH =

VS

pH =

pH =

pH =