Titre: Théorème de Grothendieck

Recasages: 201,205,208,234

Thème: Analyse fonctionnelle. Intégration.

Références : Rudin - Analyse fonctionnelle (p.118)

<u>Théorème</u> 1. Soient (X, A, μ) un espace mesuré de mesure totale finie, $1 \leq p < \infty$, et $F \subset L^p(X)$ un sous-espace vectoriel fermé, inclus dans $L^{\infty}(X)$. Alors F est de dimension finie.

On peut supposer que $\mu(X) = 1$ quitte à normaliser μ par $\mu(X)$.

Étape 1 : On a par hypothèse une inclusion $\iota: (F, \|.\|_p) \hookrightarrow (L^{\infty}(X), \|.\|_{\infty})$. On montre que le graphe de ι est fermé dans $F \times L^{\infty}(X)$.

Soit $(f_n, \iota(f_n))$ une suite du graphe de ι , qui converge vers $(f,g) \in F \times L^{\infty}(X)$, ceci est par définition équivalent à dire que $(f_n)_{n \in \mathbb{N}}$ converge vers f pour la norme $\|.\|_p$ et vers g pour la norme $\|.\|_{\infty}$. Cependant, on a dans une espace probabilisé $\|.\|_p \leqslant \|.\|_{\infty}$, donc $\|f_n - g\|_p \leqslant \|f_n - g\|_{\infty}$, et $(f_n)_{n \in \mathbb{N}}$ converge vers g dans $L^p(X)$, on a alors f = g dans $L^p(X)$ par unicité de la limite. Comme F est fermé dans $L^p(X)$, on a $f = g \in L^p(X)$ et donc $g = \iota(f) \in L^{\infty}(X)$, le graphe de ι est bien fermé.

Par le théorème du graphe fermé, ι et continue : il existe donc une constante M>0 telle que $\|f\|_{\infty} \leq M \|f\|_p$ pour $f \in F$.

Étape 2 : Montrons qu'il existe $\widetilde{M} > 0$ telle que $||f||_{\infty} \leqslant \widetilde{M} ||f||_{2}$ pour $f \in F$.

- Le cas p=2 provient directement de la première étape.
- Si $1 \leq p < 2$, pour $f \in L^2(X)$, on a, par l'inégalité de Hölder

$$||f||_p^p = \int_X |f|^p d\mu \leqslant \left(\int_X (|f|^p)^{2/p} d\mu\right)^{p/2} \left(\int_X d\mu\right)^{p/(2-p)} = ||f||_2^p$$

d'où $||f||_{\infty} \leq M ||f||_{p} \leq M ||f||_{2}$ pour $f \in F$ en particulier.

- Si p > 2, pour $f \in F$, on a

$$|f|^p = |f|^{p-2}|f|^2 \le ||f||_{\infty}^{p-2}|f|^2$$

presque surement. En intégrant cette inégalité, on obtient $||f||_p^p \leqslant ||f||_\infty^{p-2} ||f||_2^2$, et donc

$$||f||_{\infty}^{p} \leq M^{p} ||f||_{\infty}^{p-2} ||f||_{2}^{2} \Rightarrow ||f||_{\infty} \leq M^{p/2} ||f||_{2}$$

On a bien le résultat souhaité dans tous les cas.

Etape 3: Soit $(\varphi_1, \dots, \varphi_n)$ une famille orthonormée de $F \subset L^2(X)$, nous montrons que n est majorée par une constante fixée, qui bornera alors la dimension de F. Considérons Q une partie dense et dénombrable de B la boule unitée fermée de \mathbb{C}^n , pour $c = (c_1, \dots, c_n) \in Q$, on pose $f_c = \sum_{i=1}^n c_i \varphi_i$, on a par construction $||f_c||^2 \leqslant 1$, et donc $||f||_{\infty} \leqslant \widetilde{M}$ par l'étape précédente. Par définition de $||.||_{\infty}$, il existe un $X_c \in A$, de complémentaire négligeable, tel que $|f(x)| \leqslant \widetilde{M}$ pour tout $x \in X_c$. On pose $\Omega := \bigcap_{c \in Q} X_c$, qui est de complémentaire négligeable comme intersection dénombrable d'éléments de complémentaires négligeables. Pour $x \in \Omega$, on a

- L'application $g_x : c \mapsto |f_c(x)|$ est continue sur B.
- Pour tout $c \in Q$, on a $g_x(c) | \leqslant \widetilde{M}$.

Par densité de $Q, g_x(c) \leqslant \widetilde{M}$ sur B, d'où

$$\forall x \in \Omega, \sum_{i=1}^{n} |\varphi_i(x)|^2 \leqslant \widetilde{M}$$

En intégrant cette inégalité, on obtient $n\leqslant \widetilde{M}^2$, ce qui termine la démonstration.