第一关 基本测试

界面设计

	Binary	ACSII
	Double Encryption	Triple Encryption
Enter Text:		
F., 4 1/		
Enter Key:		
	Encrypt	Decrypt
Result:		

图一 用户界面

当 text 为空时,提示"请输入明文!"或"请输入密文!"

图二 提示输入明文

当选择 Binary、Double Encryption 或者 Triple Encryption 后,输入的 text 不是二进制数时,提示"请输入二进制数据!"

图三 提示输入二进制数

当选择 Binary 或者 ACSII 时输入的密钥长度不是 16bit 位,则提示"密钥应为 16bit 位!"

图四 提示密钥为 16bit 位

测试明文: 0110111101101011 密钥: 1010011100111011 生成密文: 0000011100111000

	_		
	Double Encryption	Triple Encryption	
nter Text:			
011011110110101	1		
Inter Key:			
101001110011101	11		
Result:	Encrypt	Decrypt	

图五 加密成功

测试密文: 0000011100111000 密钥: 1010011100111011 生成明文: 01101111011011

	Double Encryption	Triple Encryption	
Enter Text:			
000001110011100	0		
Enter Key:			
101001110011101	1		
Result:	Encrypt	Decrypt	

图六 解密成功

加解密结果均匹配成功。

结果:基本测试通过。

第二关 交叉测试

二进制单重加密

测试明文: 0000111100001111 密钥: 0010110101010101 测试密文: 1110011000000000

Encryption and Decryption

Select form:	Binary
Message:	0000111100001111
Key:	0010110101010101
	Decrypt

图七 另一组二进制单重加密

二进制单重解密

图八 二进制单重解密

匹配成功!

ACSII 加密

测试明文: ABCD

密钥: 1111000011110000

图九 另一组 ACSII 加密

由于加密得到的密文为乱码无法在网页中正常显示, 所以我们采用命令行形式进行验证。根据加密后得到的 ACSII 值对照 ACSII 码表进行查询, 得到所对应的 ACSII 码与另一组的一致。

```
■E\Illat\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\lambda\)e\psi\(\l
```

图十 我们组 ACSII 加密

匹配成功!

双重加密

测试明文: 1001010101110001

密钥: 111100001010100100011010101010101

测试密文: 1111000011001011

Multiple Encryption and Decryption

Select form:	Double en-decryption ~
Message:	1001010101110001
Key:	111100001010100100011010101010
En	ncrypt Decrypt
CipherT	ext: 1111000011001011

图十一 另一组双重加密结果

	Binary	ACSII	
	Double Encryption	Triple Encryption	
Enter Text:			
11110000110010	11		
Enter Key:			
11110000101010	010001101010101001		
	Encrypt	Decrypt	

图十二 我们组双重解密结果

匹配成功!

结果:交叉测试通过

第三关 拓展功能

由于 ACSII 编码中第 0~31 以及第 127 个字符都是不可见的,并且存在部分字符与浏览器不兼容的问题,所以有部分密文无法在网页中正确显示。

输入明文: ER

密钥: 1111000011110000

输出密文: ?b

	Binary	ACSII	
	Double Encryption	Triple Encryption	
Enter Text:			
ER			
Enter Key:			
111100001111000	00		
	Encrypt	Decrypt	

图十三 ACSII 字符串加密

	Binary	ACSII	
	Double Encryption	Triple Encryption	
inter Text:			
?b			
nter Key:			
111100001111000	0		
	Encrypt	Decrypt	
	Encrypt		

图十四 ACSII 字符串解密

匹配成功!

第四关 多重加密

4.1 双重加密

测试明文: 0100101001110100

密钥: 10100111001110111010011100111011

测试密文: 0110111101101011

	Binary	ACSII	
	Double Encryption	Triple Encryption	
Enter Text:			
0100101001110	100		
Enter Key:			
1010011100111	0111010011100111011		
	Encrypt	Decrypt	

图十五 双重加密成功

图十六 双重解密成功

4.2 中间相遇攻击

测试明文: 11111111100000000 测试密文: 0010010010101010

通过中间相遇攻击方法,获得可能的密钥为(数据量较大,仅截取部分数据进行展示):

图十七 中间相遇攻击

取密钥 K1: 1100000000000000, K2: 0011000111100101 进行验证,以密钥 11000000000000000011000111100101 对明文 11111111100000000 进行双重加密,得到加密后的密文为 0010010001010010, 结果一致,中间相遇攻击成功!

图十八 验证中间相遇攻击是否成功

4.3 三重加密

测试明文: 0110111101101011

密钥: 1010011100111011101001110011101110100111011

测试密文: 0011000011111011

	Binary	ACSII
	Double Encryption	Triple Encryption
Enter Text:		
01101111011010	11	
Enter Key:		
10100111001110	111010011100111011101001110	0111011

图十九 三重加密成功

	Binary	ACSII	
	Double Encryption	Triple Encryption	
nter Text:			
00110000111110	011		
nter Key:			
10100111001110	0111010011100111011101001110	0111011	
	Encrypt	Decrypt	

图二十 三重解密成功

第五关 工作模式

基于 S-AES 算法,使用密码分组链(CBC)模式对较长的明文消息进行加密。注意初始向量(16 bits) 的生成,并需要加解密双方共享。在 CBC 模式下进行加密,并尝试对密文分组进行替换或修改,然后进行解密,请对比篡改密文前后的解密结果。

Enter Text			
Littor Toxt			
Enter Key			
Enter IV (le	ave empty for ra	ecrypt	
Result:			

图二十一 CBC 模式界面

在选择加密时, 会自动隐藏初始向量 IV 的输入框, 系统将随机生成唯一的初始向量 IV, 并随着加密结果一同输出; 在选择解密时, 会自动显示初始向量 IV 的输入框, 用户将之前系统给出的初始向量 IV 与密文、密钥一同进行输入, 即可得到解密后的明文。

CBC 模式加密

测试明文: 1010101010101011111000011110000

密钥: 0000111100001111

测试密文: 01111100101110011001101001111001 随机生成的初始向量 (IV): 1100110100100010

1010101	0101010101111100001	1110000	
0000111	00001111		
	Encrypt	Decrypt	
esult:			

图二十二 CBC 模式加密成功

01111100	101110011001101001111001
00001111	00001111
11001101	00100010
esult:	Encrypt

图二十三 CBC 模式解密成功

当密文分组被替换或修改时,我们仍采用以下测试用例:

测试明文: 10101010101010101111000011110000

密钥: 0000111100001111

测试密文: 01111100101110011001101001111001 随机生成的初始向量 (IV): 1100110100100010

将密文修改为 11111100101110011001101001111001,其余条件保持不变。 解密后得到的明文为 011110101010001101110000111110000

11111100	101110011001101001111001
0000111	100001111
1100110 ⁻	100100010
esult:	Encrypt Decrypt

图二十四 替换密文后的解密结果

对比前后明文可得,两次生成的明文不一致,密文被篡改后无法得到正确的明文。