

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Lunes 19 de mayo de 2014 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

•	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
L		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,000	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
	·			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
	F			25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	Número atómico	Elemento Masa atómica relativa		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 N d 144,24	92 U 238,03
	Número	Elen Masa atóm		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
	<u> </u>			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	+	**
2		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

1. siguientes valores de masa atómica relativa?

Elemento	Cu	S	Н	О
Masa atómica relativa	64	32	1	16

- A. 160
- B. 178
- C. 186
- D. 250
- Se añade un exceso de carbonato de calcio a una solución que contiene 0,10 moles de HCl(aq). 2. ¿Qué masa de carbonato de calcio reacciona, y qué masa de dióxido de carbono se forma?

Masa de un mol de
$$CaCO_3 = 100 g$$

Masa de un mol de
$$CO_2 = 44 g$$

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

	CaCO ₃ (s) / g	CO ₂ (g) / g		
A.	10	4,4		
B.	10	2,2		
C.	5,0	2,2		
D.	5,0	4,4		

- 3. ¿Para qué compuestos la fórmula empírica es la misma que la fórmula molecular?
 - I. Metano
 - II. Eteno
 - III. Etanol
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 4. ¿Cuál es la configuración electrónica abreviada del ion cobalto(II), Co²⁺?
 - A. $[Ar] 3d^7$
 - B. $[Ar] 4s^2 3d^5$
 - C. [Ar] $4s^2 3d^7$
 - D. $[Ar] 4s^1 3d^6$
- 5. ¿Qué enunciado describe correctamente el espectro de emisión atómica del hidrógeno?
 - A. Es un espectro continuo que converge a elevada frecuencia.
 - B. Es un espectro de líneas que converge a elevada frecuencia.
 - C. Es un espectro continuo que converge a baja frecuencia.
 - D. Es un espectro de líneas que converge a baja frecuencia.

- **6.** ¿Qué ecuación representa la segunda energía de ionización del potasio?
 - A. $K(g) \to K^{2+}(g) + 2e^{-}$
 - B. $K^{+}(g) \to K^{2+}(g) + e^{-}$
 - C. $K(s) \to K^{2+}(g) + 2e^{-}$
 - D. $K^{+}(s) \to K^{2+}(g) + e^{-}$
- 7. ¿Qué par de elementos presenta la mayor diferencia de electronegatividad?
 - A. Mg y O
 - B. Li y F
 - C. KyF
 - D. Li y I
- **8.** ¿Qué enunciados explican por qué se usa un catalizador en el proceso de contacto (que se muestra a continuación)?

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$

- I. Un catalizador disminuye la energía de activación.
- II. Un catalizador desplaza la posición de equilibrio hacia el producto.
- III. Un catalizador permite que se alcance la misma velocidad a menor temperatura.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

9. ¿Qué propiedades tienen los compuestos iónicos típicos?

	Punto de fusión	Conductividad del sólido		
A.	elevado	buena		
B.	bajo	buena		
C.	elevado	pobre		
D.	bajo	pobre		

- **10.** ¿Cuál es la diferencia entre la fuerza y la longitud del enlace carbono-oxígeno en el butanal y en el 1-butanol?
 - A. El enlace en el butanal es más fuerte y más largo que en el 1-butanol.
 - B. El enlace en el butanal es más débil y más corto que en el 1-butanol.
 - C. El enlace en el butanal es más débil y más largo que en el 1-butanol.
 - D. El enlace en el butanal es más fuerte y más corto que en el 1-butanol.
- 11. ¿Qué alótropos del carbono presentan hibridación sp²?
 - I. Diamante
 - II. Grafito
 - III. C₆₀ fulereno
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- 12. ¿Qué molécula tiene forma de bipirámide trigonal?
 - A. PCl₃
 - B. SiCl₄
 - C. PCl₅
 - D. SF₆
- 13. ¿Qué diagrama representa el enlace en el SiO₂?

A.

В.

C.

D.

14. ¿Cuál es el valor de ΔH para la reacción exotérmica representada por el siguiente diagrama?

- A. y-z
- B. z-y
- C. x-z
- D. z-x

15. ¿Qué combinación de variación de entalpía y variación de entropía produce una reacción no espontánea a **todas** las temperaturas?

	ΔH	ΔS
A.	+	_
B.	+	+
C.	_	_
D.	_	+

- **16.** ¿Qué ecuación representa la entalpía de red del cloruro de calcio?
 - A. $CaCl(s) \rightarrow Ca^{+}(g) + Cl^{-}(g)$
 - B. $CaCl_2(s) \rightarrow Ca^{2+}(g) + 2Cl^{-}(g)$
 - C. $\operatorname{CaCl}_{2}(g) \rightarrow \operatorname{Ca}^{2+}(g) + 2\operatorname{Cl}^{-}(g)$
 - D. $\operatorname{CaCl}_{2}(s) \rightarrow \operatorname{Ca}^{2+}(aq) + 2\operatorname{Cl}^{-}(aq)$
- 17. ¿En qué reacción se producirá un aumento significativo de la entropía del sistema?
 - A. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - B. $H_2O(g) \rightarrow H_2O(l)$
 - C. $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$
 - D. $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$
- 18. ¿Qué ecuación representa la segunda afinidad electrónica del oxígeno?
 - A. $\frac{1}{2}O_2(g) + 2e^- \rightarrow O^{2-}(g)$
 - B. $O(g) + 2e^{-} \rightarrow O^{2-}(g)$
 - C. $O_2(g) + 4e^- \rightarrow 2O^{2-}(g)$
 - D. $O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$
- 19. ¿Cuál es el aumento de temperatura que se produce cuando se suministran 2100 J de energía a 100 g de agua? (Capacidad calorífica específica del agua = $4,2 \text{ J g}^{-1} \text{ K}^{-1}$.)
 - A. 5 °C
 - B. 278 K
 - C. 0,2 °C
 - D. 20 °C

- **20.** ¿Cuál **no** se verá afectado por un aumento de temperatura?
 - A. Velocidad de reacción
 - B. Frecuencia de las colisiones
 - C. Geometría de las colisiones
 - D. % de moléculas con $E \ge E_a$
- **21.** ¿Qué combinación presenta una expresión de velocidad de segundo orden con las unidades correctas de la constante de velocidad?

	Expresión de velocidad	Unidades de k
A.	velocidad = $k[NH_3][BF_3]$	$mol dm^{-3} s^{-1}$
B.	velocidad = $k[N_2O_5]$	s^{-1}
C.	velocidad = $k[N_2O_5]$	dm³ mol ⁻¹ s ⁻¹
D.	velocidad = $k[CH_3COCH_3][H^+][I_2]^0$	dm³ mol ⁻¹ s ⁻¹

22. ¿Qué par de gráficos muestra una reacción de descomposición de X que obedece a una cinética de primer orden?

A.

[X]

В.

[X]

C

[X]

D.

[X]

23. ¿Cuál es la expresión de la constante de equilibrio, K_c , para esta reacción?

$$2NO(g) + H_2(g) \rightleftharpoons N_2O(g) + H_2O(g)$$

A.
$$K_c = \frac{[N_2O] + [H_2O]}{2[NO] + [H_2]}$$

B.
$$K_{c} = \frac{[NO]^{2} [H_{2}]}{[N_{2}O][H_{2}O]}$$

C.
$$K_c = \frac{[2NO] + [H_2]}{[N_2O] + [H_2O]}$$

D.
$$K_c = \frac{[N_2O][H_2O]}{[NO]^2[H_2]}$$

24. ¿Qué combinación de propiedades es correcta?

	Entalpía de vaporización	Punto de ebullición	Fuerzas intermoleculares	Volatilidad
A.	elevada	elevado	potentes	baja
B.	elevada	bajo	débiles	elevada
C.	pequeña	bajo	débiles	baja
D.	pequeña	elevado	débiles	baja

- 25. ¿Qué compuesto reacciona con óxido de calcio, CaO?
 - A. K₂O
 - B. Na₂O
 - C. SO₂
 - D. MgO

- **26.** ¿Cuál es la base conjugada del fenol, C₆H₅OH?
 - A. $C_6H_4^-$ OH
 - B. $C_6H_5 \mathring{O}H_2$
 - C. C_6H_5 — O^-
 - D. $C_6H_6^+$ —OH
- **27.** ¿Qué compuestos se pueden mezclar en soluciones acuosas de igual volumen y concentración para formar una solución tampón ácida?
 - A. Hidrógenosulfato de sodio y ácido sulfúrico
 - B. Propanoato de sodio y ácido propanoico
 - C. Cloruro de amonio y solución de amoníaco
 - D. Cloruro de sodio y ácido clorhídrico
- 28. ¿Qué enunciados sobre un indicador ácido-base son correctos?
 - I. Puede ser un ácido débil.
 - II. Es una sustancia cuyo par ácido/base conjugado presenta diferentes colores.
 - III. Puede ser una base débil.
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- **29.** ¿Cuál es la expresión de la constante del producto iónico del agua, $K_{\rm w}$?
 - A. $K_{\rm w} = K_{\rm a} \times K_{\rm b}$
 - $B. K_{\rm w} = K_{\rm a} + K_{\rm b}$
 - $C. K_{\rm w} = \frac{K_{\rm a}}{K_{\rm b}}$
 - D. $K_{\rm w} = K_{\rm a} K_{\rm b}$
- **30.** ¿Qué gráfico se obtendría añadiendo HCl(aq) 0,10 mol dm⁻³ a 25 cm³ de NaOH(aq) 0,10 mol dm⁻³?

A.

В.

C.

D.

31. ¿Qué especies son los agentes oxidante y reductor en la siguiente reacción?

$$SO_3^{2-}(aq) + PbO_2(s) + H_2O(l) \rightarrow SO_4^{2-}(aq) + Pb(OH)_2(s)$$

	Agente oxidante	Agente reductor
A.	${\rm PbO}_2$	${ m H_2O}$
B.	SO ₃ ²⁻	PbO ₂
C.	H ₂ O	SO ₃ ²⁻
D.	PbO ₂	SO ₃ ²⁻

32. El cinc es más reactivo que el cobre. En esta pila voltaica, ¿qué especie se reduce y en qué dirección fluyen los iones negativos en el puente salino?

	Especie que se reduce	Dirección del flujo de iones negativos en el puente salino
A.	Cu^{2+}	de la semicelda de cobre a la semicelda de cinc
B.	Cu^{2+}	de la semicelda de cinc a la semicelda de cobre
C.	Zn^{2+}	de la semicelda de cobre a la semicelda de cinc
D.	Zn^{2+}	de la semicelda de cinc a la semicelda de cobre

Véase al dorso

- A. $H_2(g)$, $H^+(aq)$, Pt(s)
- B. $H_2(g)$, $H^+(aq)$, Ni(s)
- C. $H_2(g)$, $HO^-(aq)$, Pt(s)
- D. $H_2(g)$, $HO^-(aq)$, Ni(s)

34. ¿Cuál es el potencial de celda, en V, para la siguiente reacción?

$$I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$$

-16-

$$\frac{1}{2}S_4O_6^{2-}(aq) + e^- \Longrightarrow S_2O_3^{2-}(aq)$$

$$E^{\ominus} = +0,09 \,\mathrm{V}$$

$$I_2(aq) + 2e^- \rightleftharpoons 2I^-(aq)$$

$$E^{\ominus} = +0,54 \,\mathrm{V}$$

- A. +0.63
- B. +0.45
- C. -0.45
- D. -0.63

35. En los mecanismos de las reacciones orgánicas, ¿qué representa una flecha curva?

- A. El movimiento de un par de electrones hacia un nucleófilo
- B. El movimiento de un par de electrones hacia especies cargadas positivamente
- C. El movimiento de un par de electrones hacia afuera de las especies cargadas positivamente
- D. El movimiento de un par de electrones hacia una base de Lewis

21	\circ	. 1 1		, , , .	1	. 1	1 11 6
36.	7 One	propiedades	son carac	teristicas	de iina	serie	nomologa
	(, \lambda uc	propredates	bon carac	corrotto	ac ana	DOLLE	momorosa.

- I. La misma fórmula general
- II. Propiedades químicas similares
- III. Graduación de las propiedades físicas
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

37. ¿Qué mide un polarímetro?

- A. El color de una mezcla de reacción
- B. La polaridad de una molécula
- C. La configuración R o S de una molécula
- D. Rotación de la luz polarizada en un plano

38. ¿Qué compuesto puede existir en forma de estereoisómeros?

- A. 1,2-dicloroetano
- B. 1,1-dicloroeteno
- C. 2-butanol
- D. 2-propanol

¿Cuál es la fórmula estructural del éster formado por reacción del ácido propanoico con **39.** 2-metil-2-butanol en las condiciones apropiadas?

A.

 H_5C_2 C_{---} C_{----} C_{---} C_{-

- **40.** ¿Qué enunciado sobre errores es correcto?
 - A. Un error aleatorio se expresa siempre como porcentaje.
 - В. Un error sistemático se puede reducir realizando más lecturas.
 - C. Un error sistemático se expresa siempre como porcentaje.
 - D. Un error aleatorio se puede reducir realizando más lecturas.