Hodnocení úspěšnosti učícího algoritmu

jak můžeme zjistit, zda $h \approx f$?

Hodnocení úspěšnosti učícího algoritmu

```
jak můžeme zjistit, zda h \approx f? \left\{ \begin{array}{l} {\rm dop \check{r}edu-pou\check{z}\acute{t}\ v\check{e}ty\ Teorie\ komputačního\ u\check{c}en\acute{t}} \\ {\rm po\ nau\check{c}en\acute{t}-kontrolou\ na\ jin\acute{e}\ tr\acute{e}novac\acute{t}} \\ {\rm sad\check{e}} \end{array} \right.
```

Hodnocení úspěšnosti učícího algoritmu

dopředu - použít věty Teorie komputačního učení jak můžeme zjistit, zda $h \approx f$? $\left\langle\begin{array}{c} \text{dopředu} - \text{použít věty Teorie komputačního učení}\\ \text{po naučení} - \text{kontrolou na jiné trénovací}\\ \text{sadě} \end{array}\right.$

používaná metodologie (cross validation):

- 1. vezmeme velkou množinu příkladů
- rozdělíme ji na 2 množiny trénovací a testovací
- 3. aplikujeme učící algoritmus na trénovací sadu, získáme hypotézu *h*
- 4. změříme procento příkladů v testovací sadě, které jsou správně klasifikované hypotézou *h*
- 5. opakujeme kroky 2–4 pro různé velikosti trénovacích sad a pro náhodně vybrané trénovací sady

křivka učení – závislost velikosti trénovací sady na úspěšnosti

Hodnocení úspěšnosti učícího algoritmu – pokrač.

tvar křivky učení závisí na

- je hledaná funkce realizovatelná × nerealizovatelná funkce může být nerealizovatelná kvůli
 - chybějícím atributům
 - omezenému prostoru hypotéz
- naopak nadbytečné expresivitě např. množství nerelevantních atributů

Induktivní učení – shrnutí

- učení je potřebné pro neznámé prostředí (a líné analytiky ©)
- učící se agent výkonnostní komponenta a komponenta učení
- metoda učení závisí na typu výkonnostní komponenty, dostupné zpětné vazbě, typu a reprezentaci části, která se má učením zlepšit
- u učení s dohledem cíl je najít nejjednodušší hypotézu přibližně konzistentní s trénovacími příklady
- učení formou rozhodovacích stromů používá míru informace
- kvalita učení přesnost odhadu změřená na testovací sadě

Obsah

- 1 Učení
 - Učící se agent
 - Komponenta učení
 - Induktivní učení
- 2 Rozhodovací stromy
 - Atributová reprezentace příkladů
 - Rozhodovací stromy
 - Vyjadřovací síla rozhodovacích stromů
 - Prostor hypotéz
 - Učení ve formě rozhodovacích stromů
- Hodnocení úspěšnosti učícího algoritmu
 - Induktivní učení shrnutí
- 4 Neuronové sítě
 - Neuron
 - Počítačový model neuronové sítě
 - Aktivační funkce
 - Logické funkce pomocí neuronové jednotky

Neuron

 $mozek-10^{11}$ neuronů >20 typů, 10^{14} synapsí, 1ms-10ms cyklus nosiče informace – signály= "výkyvy" elektrických potenciálů (se šumem)

neuron – mozková buňka, která má za úkol sběr, zpracování a šíření signálů

Počítačový model – neuronové sítě

1943 – McCulloch & Pitts – matematický model neuronu spojené do neuronové sítě – schopnost tolerovat šum ve vstupu a učit se

jednotky v neuronové síti – jsou propojeny vazbami (links)

(units)

- vazba z jednotky j do i propaguje aktivaci aj jednotky j
- každá vazba má číselnou váhu $W_{j,i}$ (síla+znaménko)

Počítačový model – neuronové sítě

1943 – McCulloch & Pitts – matematický model neuronu spojené do neuronové sítě – schopnost tolerovat šum ve vstupu a učit se

jednotky v neuronové síti – jsou propojeny vazbami (links)

– vazba z jednotky i do i propag

- vazba z jednotky j do i propaguje aktivaci aj jednotky j
- každá vazba má číselnou váhu $W_{j,i}$ (síla+znaménko)

funkce jednotky i:

- 1. spočítá váženou \sum vstupů = in_i
- 2. aplikuje aktivační funkci g
- 3. tím získá výstup a;

$$a_i = g(in_i) = g(\sum_j W_{j,i}a_j)$$

Aktivační funkce

účel aktivační funkce:

- ullet jednotka má být aktivní (pprox +1) pro pozitivní příklady, jinak neaktivní pprox 0
- aktivace musí být nelineární, jinak by celá síť byla lineární

Aktivační funkce

účel aktivační funkce:

- ullet jednotka má být aktivní (pprox +1) pro pozitivní příklady, jinak neaktivní pprox 0
- aktivace musí být nelineární, jinak by celá síť byla lineární

změny prahové váhy $W_{0,i}$ nastavují nulovou pozicí – nastavují práh aktivace

Logické funkce pomocí neuronové jednotky

jednotka McCulloch & Pitts sama umí implementovat základní Booleovské funkce

⇒ kombinacemi jednotek do sítě můžeme implementovat libovolnou Booleovskou funkci

Struktury neuronových sítí

- sítě s předním vstupem (feed-forward networks)
 - necyklické
 - implementují funkce
 - nemají vnitřní paměť
- rekurentní sítě (recurrent networks)
 - cyklické
 - vlastní výstup si berou opět na vstup
 - složitější a schopnější
 - výstup má (zpožděný) vliv na aktivaci = paměť
 - Hopfieldovy sítě symetrické obousměrné vazby; fungují jako asociativní paměť
 - Boltzmannovy stroje pravděpodobnostní aktivační funkce

Příklad sítě s předním vstupem

síť 5-ti jednotek – 2 vstupní jednotky, 1 skrytá vrstva (2 jednotky), 1 výstupní jednotka

síť s předním vstupem = parametrizovaná nelineární funkce vstupu

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$

Jednovrstvá síť – perceptron

perceptron

- pro Booleovskou funkci 1 výstupní jednotka
- pro složitější klasifikaci více výstupních jednotek

Vyjadřovací síla perceptronu

perceptron může reprezentovat hodně Booleovských funkcí – AND, OR, NOT, majoritní funkci, ...

$$\sum_{j} W_{j} x_{j} > 0$$
 nebo $\mathbf{W} \cdot \mathbf{x} > 0$

reprezentuje lineární separátor (nadrovina) v prostoru vstupu:

Učení perceptronu

výhoda perceptronu – existuje jednoduchý učící algoritmus pro libovolnou lineárně separabilní funkci

učení perceptronu = upravování vah, aby se snížila chyba na trénovací sadě

Učení perceptronu

výhoda perceptronu – existuje jednoduchý učící algoritmus pro libovolnou lineárně separabilní funkci

učení perceptronu = upravování vah, aby se snížila chyba na trénovací sadě

kvadratická chyba E pro příklad se vstupem x a požadovaným (=správným) výstupem y je

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2$$
, kde $h_{\mathbf{W}}(\mathbf{x})$ je výstup perceptronu

Učení perceptronu

výhoda perceptronu – existuje jednoduchý učící algoritmus pro libovolnou lineárně separabilní funkci

učení perceptronu = upravování vah, aby se snížila chyba na trénovací sadě

kvadratická chyba E pro příklad se vstupem x a požadovaným (=správným) výstupem y je

$$E = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - h_{\mathbf{W}}(\mathbf{x}))^2$$
, kde $h_{\mathbf{W}}(\mathbf{x})$ je výstup perceptronu

váhy pro minimální chybu pak hledáme optimalizačním prohledáváním spojitého prostoru vah

$$\frac{\partial E}{\partial W_i} = Err imes \frac{\partial Err}{\partial W_i} = Err imes \frac{\partial}{\partial W_i} \left(y - g(\sum_{j=0}^n W_j x_j) \right) = -Err imes g'(in) imes x_j$$

pravidlo pro úpravu váhy

$$W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$$
 $\alpha \dots$ učící konstanta (learning rate)

např. $Err = y - h_{W}(x) > 0 \Rightarrow výstup h_{W}(x)$ je moc malý \Rightarrow váhy se musí zvýšit pro pozitivní příklady a snížit pro negativní

úpravu vah provádíme po každém příkladu \to opakovaně až do dosažení ukončovacího kritéria

Učení perceptronu pokrač.

učící pravidlo pro perceptron konverguje ke správné funkci pro libovolnou lineárně separabilní množinu dat

b) učení čekání na volný stůl v restauraci

Vícevrstvé neuronové sítě

vrstvy jsou obvykle úplně propojené počet skrytých jednotek je obvykle volen experimentálně

Vyjadřovací síla vícevrstvých sítí

s jednou skrytou vrstvou – všechny spojité funkce se dvěma skrytými vrstvami – všechny funkce těžko se ovšem pro konkrétní síť zjišťuje její prostor reprezentovatelných funkcí

např.

dvě "opačné" skryté jednotky vytvoří *hřbet*

dva hřbety vytvoří *homoli*

Učení vícevrstvých sítí

pravidla pro úpravu vah:

výstupní vrstva – stejně jako u perceptronu

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$
 kde $\Delta_i = Err_i \times g'(in_i)$

Učení vícevrstvých sítí

pravidla pro úpravu vah:

výstupní vrstva – stejně jako u perceptronu

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$
 $kde \quad \Delta_i = Err_i \times g'(in_i)$

skryté vrstvy – zpětné šíření (back-propagation) chyby z výstupní vrstvy

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
 kde $\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i$

Učení vícevrstvých sítí

pravidla pro úpravu vah:

výstupní vrstva – stejně jako u perceptronu

$$W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$
 $kde \quad \Delta_i = Err_i \times g'(in_i)$

skryté vrstvy – zpětné šíření (back-propagation) chyby z výstupní vrstvy

$$W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$$
 kde $\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i$

problémy učení:

- dosažení lokálního minima chyby
- příliš pomalá konvergence
- přílišné upnutí na příklady → neschopnost generalizovat

Učení vícevrstvých sítí pokrač.

vícevrstvá síť se problém čekání na volný stůl v restauraci učí znatelně líp než perceptron

Neuronové sítě – shrnutí

- většina mozků má velké množství neuronů; každý neuron ≈ lineární prahová jednotka (?)
- perceptrony (jednovrstvé sítě) mají nízkou vyjadřovací sílu
- vícevrstvé sítě jsou dostatečně silné; mohou být trénovány pomocí zpětného šíření chyby
- velké množství reálných aplikací
 - rozpoznávání řeči
 - řízení auta
 - rozpoznávání ručně psaného písma
 - . . .