Art Unit: 2871

Amendment filed on: March 15, 2004

Page 2 of 14

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (Currently Amended) A liquid crystal display (LCD), comprising:

a gate line formed on a transparent substrate, edges of said gate line being

substantially straight and even;

a data line crossing said gate line and formed on said transparent

substrate, edges of said data line being substantially straight and even;

an insulating layer electrically insulating said data line from said gate line;

a thin film transistor formed at an intersection of said gate line and said

data line, and connected to said gate line and said data line;

a passivation layer formed over the thin film transistor;

a pixel electrode having portions thereof formed on the surface of the

passivation layer, but not over the thin film transistor; and

a low reflective layer formed on at least a portion of at least one of said gate

line and said data line; and

an upper substrate located above the pixel electrode, wherein an area

between said pixel electrode and said upper substrate, and above said low

reflective layer, is free of any black matrix or light shielding layer.

2. (Original) The LCD of claim 1, wherein said low reflective layer is formed

on a portion of said gate line.

Art Unit: 2871 Amendment filed on: March 15, 2004

Page 3 of 14

3. (Previously Presented) The LCD of claim 2, wherein said low reflective layer is formed on said gate electrode.

4. (Original) The LCD of claim 3, wherein said thin film transistor includes a source electrode and a drain electrode; and

said low reflective layer is formed on said source and drain electrodes.

- 5. (Original) The LCD of claim 4, wherein said low reflective layer has a light reflectivity of 3% or less.
- 6. (Original) The LCD of claim 4, wherein said low reflective layer is formed of CrOx.
 - 7. (Original) The LCD of claim 1, wherein

said thin film transistor includes a gate electrode connected to said gate line; and

said low reflective layer is formed on said gate electrode.

8. (Original) The LCD of claim 1, wherein said thin film transistor includes a source electrode and a drain electrode; and

said low reflective layer is formed on said source and drain electrodes.

Art Unit: 2871 Amendment filed on: March 15, 2004

Page 4 of 14

9. (Original) The LCD of claim 1, wherein said low reflective layer has a light

reflectivity of 3% or less.

10. (Original) The LCD of claim 1, wherein said low reflective layer is formed

of CrOx.

11. (Previously Presented) The LCD of claim 1, wherein said passivation

layer formed over said gate line, said data line, said low reflective layer and said

pixel electrode formed on said passivation layer is connected via a contact hole in

said passivation layer to said thin film transistor.

12. (Original) The LCD of claim 11, wherein said pixel electrode is formed

over a portion of said data line.

13. (Original) The LCD of claim 11, wherein said pixel electrode is formed

over a portion of said gate line.

14. (Original) The LCD of claim 11, further comprising:

a color filter substrate with color filters formed thereon; and

liquid crystal sealed between said color filter substrate and said

transparent substrate.

Art Unit: 2871 Amendment filed on: March 15, 2004

Page 5 of 14

15. (Currently Amended) A method of manufacturing a liquid crystal display, comprising:

forming a gate line and a portion protruding from said gate line to serve as a gate electrode of a thin film transistor on a transparent substrate, edges of said gate line being substantially straight and even;

forming an insulating layer electrically insulating said gate line;

forming a data line over said transparent substrate and crossing said gate line, edges of said data line being substantially straight and even;

forming a passivation layer over the thin film transistor;

forming a pixel electrode with portions thereof on the surface of the passivation layer, but not over the thin film transistor; and

first forming a low reflective layer over at least a portion of at least one of said gate line and said data line.;

forming an upper substrate above the pixel electrode, wherein an area between said pixel electrode and said upper substrate, and above said low reflective layer, is free of any black matrix or light shielding layer.

16. (Original) The method of claim 15, further comprising: second forming a low reflective layer over said gate line.

Art Unit: 2871 Amendment filed on: March 15, 2004

Page 6 of 14

17. (Previously Presented) The method of claim 16, wherein said second forming step forms said low reflective layer over said gate electrode.

18. (Original) The method of claim 15, wherein said forming a gate line step forms a portion protruding from said gate line to serve as a gate electrode of a thin film transistor; and further including,

second forming a low reflective layer over said gate electrode.

19. (Original) The method of claim 15, wherein said forming a data line step forms a portion protruding from said data line to serve as a source electrode of a thin film transistor; and

said first forming step forms said low reflective layer over said source electrode.

- 20. (Original) The method of claim 15, wherein said low reflective layer has a light reflectivity of 3% or less.
- 21. (Original) The method of claim 15, wherein said low reflective layer is formed of CrOx.

Art Unit: 2871 Amendment filed on: March 15, 2004

Page 7 of 14

22. (Currently Amended) A method of manufacturing a liquid crystal display, comprising:

forming a gate line and gate electrode connected thereto on a transparent substrate, edges of said gate line being substantially straight and even;

forming an insulating layer over said gate line and gate electrode;

forming a semiconductor layer over said gate electrode;

forming a data line crossing said gate line, edges of said data line being substantially straight and even, a source electrode connected to said data line and on a first portion of said semiconductor layer, and a drain electrode on a second portion of said semiconductor layer;

forming a low reflective layer over at least a portion of at least one of said gate line and said data line;

forming a passivation layer having a contact hole exposing said drain electrode over said transparent substrate; and

forming a pixel electrode with portions thereof disposed on said passivation layer but not over the thin film transistor, and connected to said drain electrode via said contact hole; and

forming an upper substrate above the pixel electrode, wherein an area between said pixel electrode and said upper substrate, and above said low reflective layer, is free of any black matrix or light shielding.

Art Unit: 2871 Amendment filed on: March 15, 2004

Page 8 of 14

23. (Original) The method of claim 22, wherein said forming a pixel electrode step forms said pixel electrode to overlap a portion of said data line.

- 24. (Original) The method of claim 22, wherein said forming a pixel electrode step forms said pixel electrode to overlap a portion of said gate line.
- 25. (Currently Amended) The method of claim 22, further comprising: forming a color filter on a color filter substrate; and sealing the liquid crystal between said color filter substrate and said transparent substrate.