Functions: A Comprehensive Chapter

Prepared for 2nd-Year Students

September 2, 2025

Contents

1	Fun	actions	3
	1.1	Introduction	3
	1.2	Formal Definition	3
	1.3	Types of Functions	3
		1.3.1 Injective (One-to-One) Functions	3
		1.3.2 Surjective (Onto) Functions	4
		1.3.3 Bijective Functions	4
		1.3.4 Identity Function	5
		1.3.5 Constant Function	5
		1.3.6 Projection Function	6
		1.3.7 Inverse Function	6
	1.4	Composition of Functions	6
	1.5	Special Properties	6
	1.6	Applications	6
	1.7	Summary Table	7
2	Fun	actions — Exercises and Practice	8

Chapter 1

Functions

1.1 Introduction

A function is a rule that assigns to every element of a set (called the domain) exactly one element of another set (called the codomain). Functions are fundamental in mathematics and computer science because they describe transformations, processes, and mappings.

Examples:

- A vending machine button \rightarrow a drink.
- A student roll number \rightarrow a student record.
- f(x) = 2x + 1, mapping real numbers to real numbers.

1.2 Formal Definition

A function f from set A to set B, denoted $f: A \to B$, is a relation such that:

- 1. Each $a \in A$ is associated with exactly one $b \in B$.
- Domain: The set A.
- Codomain: The set B.
- Range: The set of all actual outputs.

1.3 Types of Functions

1.3.1 Injective (One-to-One) Functions

A function is **injective** if different inputs map to different outputs. Formally:

$$f(a_1) = f(a_2) \implies a_1 = a_2$$

Examples:

- 1. f(x) = 2x + 3 from \mathbb{R} to \mathbb{R} .
- 2. Roll number \rightarrow student (unique).

3.
$$f: \{1, 2, 3\} \rightarrow \{a, b, c, d\}$$
 with $f(1) = a, f(2) = b, f(3) = c$.

1.3.2 Surjective (Onto) Functions

A function is **surjective** if every element of the codomain has at least one preimage. Formally, for each $y \in B$, there exists $x \in A$ such that f(x) = y.

Surjectivity ensures that the codomain is completely covered. In practice, surjective mappings arise in cases like mapping students to their birth months, where every month must appear at least once. Such functions are important in linear algebra (onto transformations) and logic.

Examples:

- 1. $f(x) = x^3 : \mathbb{R} \to \mathbb{R}$.
- 2. Students \rightarrow their birth month (all months covered).
- 3. $f: \mathbb{Z} \to \{0, 1\}, f(n) = n \mod 2$.

1.3.3 Bijective Functions

A function is **bijective** if it is both injective and surjective. That is, every element of the codomain has exactly one preimage, and no two inputs map to the same output.

Bijective mappings create a perfect "pairing" between the domain and codomain. They are invertible: every bijective function has an inverse. Bijective functions appear in seat allocations (one seat per student, one student per seat), cryptographic keys, and database records.

Examples:

- 1. f(x) = x + 5 on \mathbb{R} .
- 2. Students \leftrightarrow Seats (one-to-one).
- 3. $f: \{1,2,3\} \to \{a,b,c\}, f(1) = a, f(2) = b, f(3) = c.$

1.3.4 Identity Function

The **identity function** is defined by f(x) = x for all x in the domain. It simply returns each input unchanged. It is important because it acts as the neutral element under function composition, much like 0 for addition or 1 for multiplication.

Examples:

- 1. f(x) = x on \mathbb{R} .
- 2. Student \rightarrow same student.
- 3. On $\{a, b, c\}$: f(a) = a, f(b) = b, f(c) = c.

1.3.5 Constant Function

A **constant function** maps every element of the domain to the same codomain element. For instance, f(x) = 5 returns 5 for all x. While simple, constant functions appear in default values, uniform assignments, and flat-rate systems. They collapse all inputs into one output.

Examples:

- 1. f(x) = 5 for all x.
- 2. Every student \rightarrow grade "A".
- 3. $\{1,2,3\} \rightarrow \{k\}$.

1.3.6 Projection Function

A **projection function** extracts one component from a tuple. For example, $\pi_1(x, y) = x$ returns the first coordinate. Projections are useful in computer science (database queries), geometry (dimensional reduction), and ordered data handling.

Examples:

- 1. $\pi_1(x,y) = x$.
- 2. Projection $(x, y, z) \mapsto x$.
- 3. $(roll, name) \mapsto roll$.

1.3.7 Inverse Function

If f is bijective, it has an **inverse function** f^{-1} that reverses its action. Inverse functions are critical in solving equations, cryptography, and unit conversions.

Examples:

- 1. f(x) = 2x + 3, inverse $f^{-1}(y) = (y 3)/2$.
- 2. Celsius \leftrightarrow Fahrenheit.
- 3. Seat number \leftrightarrow student.

1.4 Composition of Functions

If $f: A \to B$ and $g: B \to C$, then $(g \circ f)(x) = g(f(x))$. Examples:

- 1. f(x) = 2x, g(x) = x + 3, $(g \circ f)(x) = 2x + 3$.
- 2. Student \rightarrow Roll \rightarrow Marks.
- 3. $km \rightarrow m \rightarrow cm$.

1.5 Special Properties

- Even: f(-x) = f(x), e.g., x^2 , $\cos x$.
- Odd: f(-x) = -f(x), e.g., x^3 , $\sin x$.
- Periodic: repeats, e.g., sine, cosine.

1.6 Applications

- Computer Science: hashing, encryption, programming functions.
- Mathematics: modeling growth/decay, probability distributions.
- Real Life: ticket booking, authentication, currency conversion.

7

1.7 Summary Table

Type	Definition	Example
Injective	Distinct inputs \rightarrow distinct outputs	f(x) = 2x + 1
Surjective	Every codomain element has preimage	$f(n) = n \bmod 2$
Bijective	One-to-one and onto	f(x) = x + 5
Identity	f(x) = x	$Student \rightarrow Student$
Constant	All inputs map to same output	f(x) = 7
Projection	Returns one component	$\pi_1(x,y) = x$
Inverse	Reverses a bijection	Celsius \leftrightarrow Fahrenheit

Chapter 2

Functions — Exercises and Practice

Part A: Solved Questions

Q1. Verify whether $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 3 is injective.

Solution. Assume $f(x_1) = f(x_2)$. Then $2x_1 + 3 = 2x_2 + 3 \Rightarrow x_1 = x_2$. Hence injective.

Q2. Show that $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is surjective.

Solution. Given $y \in \mathbb{R}$, choose $x = \sqrt[3]{y}$. Then f(x) = y. Hence surjective. \square

Q3. Prove $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 5 is bijective.

Solution. Injective: $x_1+5=x_2+5 \Rightarrow x_1=x_2$. Surjective: for any y, take x=y-5. Hence bijective. \Box

Q4. Prove identity f(x) = x on any set A is bijective.

Solution. Injective: $x_1 = x_2$ if $f(x_1) = f(x_2)$. Surjective: for any $y \in A$, f(y) = y. Hence bijective.

Q5. Check injectivity of $f: \mathbb{Z} \to \{0,1\}$, $f(n) = n \mod 2$.

Solution. f(2) = 0 = f(4) with $2 \neq 4$. Not injective.

Q6. Check surjectivity of the same f in Q5.

Solution. Range is $\{0,1\}$ (even $\mapsto 0$, odd $\mapsto 1$). Hence surjective.

Q7. Find the inverse of f(x) = 2x + 3 on \mathbb{R} .

Solution. $y = 2x + 3 \Rightarrow x = \frac{y - 3}{2}$. So $f^{-1}(y) = \frac{y - 3}{2}$.

Q8.	Show constant $f(x) = 5$ on \mathbb{R} is not injective.	
	Solution. $f(2) = 5 = f(3)$ but $2 \neq 3$. Not injective.	
Q 9.	Show the same constant $f(x) = 5$ is not surjective onto \mathbb{R} .	
	Solution. Range is $\{5\} \neq \mathbb{R}$. Not surjective.	
Q10.	Verify $f: \{1, 2, 3\} \rightarrow \{a, b\}$ with $f(1) = a, f(2) = b, f(3) = b$ is surjective.	
	Solution. Range is $\{a,b\}$, which equals the codomain. Hence surjective (not inj tive).	ec-
Q11.	Compute $(g \circ f)(x)$ for $f(x) = 2x$, $g(x) = x + 3$.	
	Solution. $(g \circ f)(x) = g(2x) = 2x + 3$.	
Q12.	Is $f(x) = x^2$ injective on \mathbb{R} ?	
	Solution. No: $f(2) = f(-2) = 4$ with $2 \neq -2$.	
Q13.	Is $f(x) = x^2$ injective on $[0, \infty)$?	
	Solution. Yes; monotone increasing on $[0, \infty)$, hence injective.	
Q14.	Check injectivity of $f(x) = x $ on \mathbb{R} .	
	Solution. $f(2) = f(-2)$; not injective.	
Q15.	Show $f: \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$, $f(x) = 1/x$ is bijective.	
	Solution. Injective: $1/x_1 = 1/x_2 \Rightarrow x_1 = x_2$. Surjective: given $y \neq 0$, $x = 1$ works. Hence bijective.	./y

Part B: Unsolved Questions

- **U1.** Prove/disprove: $f(x) = x^2 + 1$ is surjective $\mathbb{R} \to \mathbb{R}$.
- **U2.** Is f(x) = 3x + 7 injective on \mathbb{R} ?
- **U3.** Check if $\sin x$ is injective on \mathbb{R} .
- **U4.** Restrict the domain of $\sin x$ to make it injective and find its inverse on that domain.
- **U5.** Find f^{-1} for $f(x) = \frac{x-2}{3}$.
- **U6.** Is $f: \{1, 2, 3\} \to \{a, b\}$ with f(1) = a, f(2) = a, f(3) = a surjective?
- **U7.** Is e^x surjective $\mathbb{R} \to \mathbb{R}$?
- **U8.** Is e^x bijective $\mathbb{R} \to (0, \infty)$?
- **U9.** Prove/disprove: $\tan x$ is injective on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- **U10.** Define a function Students \rightarrow Classrooms; discuss injectivity/surjectivity under realistic constraints.
- **U11.** Find $(f \circ g)(x)$ for $f(x) = x^2$, g(x) = x + 1.
- **U12.** Show $\cos x$ is periodic and find its period.
- **U13.** Is the projection $\pi_1: \mathbb{R}^2 \to \mathbb{R}$, $\pi_1(x,y) = x$ injective?
- **U14.** Is $\pi_2: \mathbb{R}^2 \to \mathbb{R}$, $\pi_2(x,y) = y$ surjective?
- **U15.** Find f^{-1} of $\ln x$ (specify domain/codomain).
- **U16.** Draw a mapping diagram of a surjective but not injective function between finite sets.
- **U17.** Draw a mapping diagram of an injective but not surjective function between finite sets.
- **U18.** Is $f(x) = \sqrt{x}$ injective on $[0, \infty)$?
- **U19.** Is $f(x) = \sqrt{x}$ surjective $[0, \infty) \to \mathbb{R}$?
- **U20.** If f(x) = 2x, g(x) = x + 1, find $(f \circ g)(x)$.
- **U21.** For the same f, g, find $(g \circ f)(x)$.
- **U22.** Prove the identity function on any set is bijective.
- **U23.** Give an example of a constant function that is surjective (specify domain/codomain carefully).
- **U24.** Define a bijection between digits $\{0, 1, \dots, 9\}$ and letters $\{A, \dots, J\}$.
- **U25.** Show that $f(x) = \frac{1}{1 + e^{-x}}$ is neither injective nor surjective as a map $\mathbb{R} \to \mathbb{R}$.

Part C: Multiple Choice Questions (30)

M1. If f(x) = 2x + 3, then $f^{-1}(x) =$ **b)** 2x - 3 **c)** $\frac{x+3}{2}$ a) $\frac{x-3}{2}$ d) None **M2.** Which is surjective $\mathbb{R} \to \mathbb{R}$? a) x^2 **b**) x^{3} c) e^x $\mathbf{d}) |x|$ M3. The identity function on a nonempty set is always: d) constant a) injective only **b)** surjective only c) bijective M4. A constant function on a nonempty domain is: a) always injective b) never injective c) always bijective d) even **M5.** $f: \mathbb{Z} \to \{0,1\}, f(n) = n \mod 2$ is: a) injective only b) surjective only c) bijective d) neither **M6.** If f is bijective, then f^{-1} exists and is: a) injective only b) surjective only c) bijective d) constant **M7.** If f and g are injective, then $g \circ f$ is: a) injective c) constant d) none b) surjective **M8.** If f and g are surjective, then $g \circ f$ is: **b)** surjective a) injective c) constant d) none **M9.** $(g \circ f)(x)$ for f(x) = 2x, g(x) = x + 1 equals: a) 2x + 1**b)** x + 3c) 2x - 1**d)** x + 2**M10.** A function $f:\{1,2,3\} \rightarrow \{a,b\}$ with images $\{a,b,b\}$ is: a) injective b) surjective c) bijective d) neither **M11.** $f(x) = x^2$ on \mathbb{R} is: a) injective **b)** surjective c) neither d) bijective **M12.** Restricting $f(x) = x^2$ to $[0, \infty)$ makes it: b) surjective $\mathbb{R} \to \mathbb{R}$ c) bijective on \mathbb{R} a) injective d) constant

b) surjective $\mathbb{R} \to \mathbb{R}$ c) neither

d) bijective

M13. f(x) = |x| on \mathbb{R} is:

a) injective

M14.	4. The projection $\pi_1: \mathbb{R}^2 \to \mathbb{R}$, $\pi_1(x,y) = x$ is:			
a)	injective	b) surjective	c) bijective	d) constant
M15.	f(x) = 1/x from 3	$\mathbb{R} \setminus \{0\}$ to itself is:		
a)	injective only	b) surjective only	c) bijective	d) constant
M16.	If f is bijective, t	hen $(f^{-1})^{-1}$ equals:		
a)	f	b) f^{-1}	c) identity	d) constant
M17.	If f is injective by	ut not surjective, then	f^{-1} :	
a)	exists and is inject	ti b e) exists and is surject	ctayedoes not exist	d) is constant
	The range of $f(x)$			
a)	\mathbb{R}	b) $(0, \infty)$	c) $[0,\infty)$	$\mathbf{d)} \ (-\infty, 0)$
		$= \ln x$ has domain:		
a)	\mathbb{R}	$\mathbf{b)} \ (0, \infty)$	c) $[0,\infty)$	d) $(-\infty, 0)$
		he unique g with $g \circ f$		
a)	f	b) f^{-1}	c) constant	d) none
		$= x^2, g(x) = x + 1 \text{ is}$		
•		b) $x^2 + 2x + 1$	c) $x^2 + 2x$	d) $x^2 - 1$
	$(g \circ f)(x)$ for the			
a)	$x^2 + 1$	b) $x^2 + 2x + 1$	c) $x^2 + 2x$	d) $x^2 - 1$
M23.	A bijection between	en finite sets must ha	ve:	
a)	equal cardinalities	b) domain larger	c) codomain larger	d) none
M24.	The identity on a	ny set A is:		
a)	constant	b) bijective	c) surjective only	d) injective only
M25.	A constant functi	on from a nonempty s	set to a singleton is:	
a)	injective	b) surjective	c) bijective	d) none
	_	of two bijections is:		
a)	injective	b) surjective	c) bijective	d) constant
		and g is injective, then		
a)	injective	b) surjective	c) may be neither	d) always bijective
	$f: \mathbb{Z} \to \mathbb{Z}, f(n) =$			
a)	injective only	b) surjective only	c) bijective	d) neither
	$f: \mathbb{R} \to \mathbb{R}, f(x) =$			
a)	injective only	b) surjective only	c) bijective	d) neither
		hen the inverse of f^{-1}		
a)	f	b) identity	c) constant	d) undefined

Answer Key for MCQs

3.54	()	3.54.0	()
M1	(a)	M16	(a)
M2	(b)	M17	(c)
М3	(c)	M18	(b)
M4	(b)	M19	(b)
M5	(b)	M20	(b)
M6	(c)	M21	(a)
M7	(a)	M22	(a)
M8	(b)	M23	(b)
M9	(a)	M24	(b)
M10	(b)	M25	(b)
M11	(c)	M26	(c)
M12	(a)	M27	(c)
M13	(c)	M28	(c)
M14	(b)	M29	(c)
M15	(c)	M30	(a)