Algorithms for Computational Logic

Summary

Contents

1	SAT and Modeling with SAT 1.1 Cardinality Constraints	
2	Optimization problems and SAT-Based Problem Solving	4
3	Satisfiability Modulo Theories	5
4	Answer Set Programming	6

SAT and Modeling with SAT

1.1 Cardinality Constraints

In order to handle cardinality constraints we have two options: encode the cardinality constraints to CNF and use a SAT solver, or use a pseudo boolean (PB) solver.

1.1.1 AtMost1

- $\sum_{j=1}^{n} x_j = 1$ can be encoded with $\left(\sum_{j=1}^{n} x_j \leq 1\right) \wedge \left(\sum_{j=1}^{n} x_j \geq 1\right)$
- $\sum_{j=1}^{n} x_j \ge 1$ can be encoded with $(x_1 \lor x_2 \lor ... \lor x_n)$
- $\sum_{j=1}^{n} x_j \leq 1$ can be encoded with:
 - Pairwise encoding
 - Sequential counter encoding
 - Bitwise encoding

Sequential Counter

In order to realize this encoding, we need to add new variables s_i for the fact "there is a 1 on some position 1.i":

$$s_i$$
 is true if $\sum_{j=1}^i x_j \ge 1$

Encoding $\sum_{j=1}^{n} x_j \leq 1$ with sequential counter:

$$(\neg x_1 \lor s_1) \land \\ (\neg x_i \lor s_i), i \in 2..n - 1 \land \\ (\neg s_{i-1} \lor s_i), i \in 2..n - 1 \land \\ (\neg x_i \lor \neg s_{i-1}), i \in 2..n$$

If $x_j = 1$, then all s_i variables are assigned and all other x variables must take value 0. There are $\mathcal{O}(n)$ clauses and $\mathcal{O}(n)$ auxiliary variables.

Bitwise Encoding

In bitwise encoding, we represent the constraint $\sum_{j=1}^{n} x_j \leq 1$ by encoding the index of the potential true variable in binary. For this, we add new auxiliary variables:

$$v_0, ... v_r - 1; \ r = \lceil \log n \rceil \text{ (with } n > 1)$$

Each variable x_j is assigned a unique binary number that represents its index. Then, for each variable x_j with binary index representation i, we create clauses that enforce the condition: if $x_j = 1$ then the auxiliary bits $b_1, b_2, ..., b_k$ must match the binary encoding of i. For a variable x_j with binary index i:

$$x_j \rightarrow (b_1^{(i)} \wedge b_2^{(i)} \wedge \dots \wedge b_k^{(i)})$$

Where each $b_l^{(i)}$ is either b_l or $\neg b_l$ depending on weather the l-th bit of i is 1 or 0. For example:

$$x_1 \to (\neg b_1 \land \neg b_2)$$

$$x_2 \to (\neg b_1 \land b_2)$$

$$x_3 \to (b_1 \land \neg b_2)$$

$$x_4 \to (b_1 \land b_2)$$

There are $\mathcal{O}(n \log n)$ clauses and $\mathcal{O}(\log n)$ auxiliary variables.

Optimization problems and SAT-Based Problem Solving

Satisfiability Modulo Theories

Answer Set Programming