CReM: practical structure generation and optimization

Pavel Polishchuk

Institute of Molecular and Translational Medicine Palacky University

pavlo.polishchuk@upol.cz

Abilities & issues:

Reaction-based vs. fragment-based

Reaction-based

Fragment-based

Prerequisites: reaction rules set database of building blocks

database of fragments

molecules are more likely to be feasible

• not all moves are allowed

usually only increase complexity

• some molecules can be unreachable

do not control synthetic feasibility

• many moves are allowed

arbitrary direction of exploration

• cover larger chemical space

Chemically reasonable mutations (CReM)

Polishchuk J Cheminform (2020) 12:28 https://doi.org/10.1186/s13321-020-00431-w

Journal of Cheminformatics

SOFTWARE Open Access

CReM: chemically reasonable mutations framework for structure generation

Pavel Polishchuk*

Abstract

Structure generators are widely used in de novo design studies and their performance substantially influences an outcome. Approaches based on the deep learning models and conventional atom-based approaches may result in invalid structures and fail to address their synthetic feasibility issues. On the other hand, conventional reaction-based approaches result in synthetically feasible compounds but novelty and diversity of generated compounds may be limited. Fragment-based approaches can provide both better novelty and diversity of generated compounds but the issue of synthetic complexity of generated structure was not explicitly addressed before. Here we developed a new framework of fragment-based structure generation that, by design, results in the chemically valid structures and provides flexible control over diversity, novelty, synthetic complexity and chemotypes of generated compounds. The framework was implemented as an open-source Python module and can be used to create custom workflows for the exploration of chemical space.

Keywords: De novo structure generation, De novo design, Matched molecular pairs

CReM is ...

CReM is ... not a Swiss army knife

Chemically reasonable mutations (CReM)

DB of replacements

environment (radius = 3)	fragments	
	A	

interchangeable fragments

Polishchuk, P., CReM: chemically reasonable mutations framework for structure generation. J. Cheminf. 2020, 12 (1), 28.

Chemically reasonable mutations (CReM)

Generated structures are always chemically valid!

CReM features & applications

- use a custom (in-house) fragment database to generate more synthetically accessible compounds enriched with specific chemotypes
- choose larger radiuses to make replacements more conservative and resulting to more synthetically accessible compounds
- specify the size of replaced and replacing fragments to control granularity of steps in chemical space
- specify atoms to protect or replace to direct structural modifications
- specify the topological distance between attachment points in a linker

- 1. Scaffold decoration
- 2. Enumeration of analog series
- 3. Hit expansion
- 4. Lead optimization
- 5. De novo design

GROW

max_atoms=2

Radius 1

NH₂

GROW max_atoms=2

 NH_2 NH_2 NH_2 NH_2 NH_2 NH₂ NH_2 NH_2 NH_2 'NH₂ NH₂ H₂N' **GROW** max_atoms=2 NH₂ NH_2 NH_2 NH_2

Radius 3

 NH_2

GROW

Radius of chemical context

Radius 4

Generated new chemotypes will have a size greater than a selected radius

CReM DB - no amides

Generated new chemotypes will have a size greater than a selected radius

CReM DB - no amides

context

fragment

Synthetic accessibility of compounds

Ertl, P.; Schuffenhauer, A., Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. *Journal of Cheminformatics* **2009**, 1, 8. (10.1186/1758-2946-1-8)

Synthetic accessibility of compounds

ChEMBL22 (1.55 M)

BMS
Dundee
Glaxo
Inpharmatica
PAINS
IAMS
SA ≤ 2.5
•
J
SA ≤ 2
3A 2 2

CReM DB	n (fragmented molecules)	n (distinct fragments, 12 atoms)	
all	818 174	988 585	
SA2.5 (SA ≤ 2.5)	338 422	272 988	
SA2 (SA ≤ 2)	67 970	55 498	

Estimated size of covered chemical space

CReM DB	radius	size
all	3	2.8×10 ¹⁷
SA2.5	3	4.2×10 ¹⁶
SA2	2	8.4×10 ¹⁶
SA2	3	1.8×10 ¹⁵
SA2	4	2.7×10 ¹³

Pre-compiled CReM databases (zenodo)

https://qsar4u.com/pages/crem.php

Synthetic accessibility of compounds

MUTATE

	radius 1	radius 2	radius 3	radius 4	radius 5
ChEMBL SA2.5	329	327	323	288	288
ChEMBL SA2	161	158	154	123	123

CReM online

CReM-based applications

CReM-pharm

CReM-pharm: CDK2 example

3RAL

Settings:

- MW ≤ 450, logP ≤ 4, TPSA ≤ 120, RTB ≤ 7
- maximum number of replacements: all
- top 100 compounds by docking score
- a clear trade-off between SA and docking scores
- SA scores are predictably changed with changing of a radius and a fragment database

CReM-pharm example

CDK2 (3RAL)

reference ligand
$$H_2N$$

-11.4 / 3.0 docking score / SA score

- designed compounds have high docking scores and fit to protein pockets
- SA scores are not very sensitive to complexity of pharmacophore models

CReM-dock

CReM-dock

SOFTWARE

Open Access

EasyDock: customizable and scalable docking tool

Guzel Minibaeva¹, Aleksandra Ivanova¹ and Pavel Polishchuk^{1*}

keep the initial pose support different docking tools via

control protein-ligand interactions

EasyDock

Minibaeva and Polishchuk, CReM-dock: de novo design of synthetically feasible compounds guided by molecular docking, https://doi.org/10.26434/chemrxiv-2024-fpzqb-v2

CReM-dock: CDK2 example

Settings:

- CDK2 (2BTR)
- $MW \le 450$, $logP \le 4$, $TPSA \le 120$, $RTB \le 7$
- PLIF hinge region interaction
- maximum number of replacements: 2000
- selection strategy: clustering (25 clusters, top 2 mols)
- 3 independent runs
- top 100 compounds by docking score

- a clear trade-off between SA and docking scores
- SA scores are predictably changed with changing of a radius and a fragment database

CReM-dock: augmentation with QED

Docking

-13.5 / 2.84 / 0.39

$$H_3C$$
 CH_3
 CH_3
 CH_3

-13.8 / 2.92 / 0.45

docking score / SA score / QED

CReM-dock: Csp³-biasing

molecule ranking & fragment sampling

- docking score & no fragment sampling
- docking score + Csp3 (BM) & no fragment sampling
- docking score & fragment sampling
- docking score + Csp3 (BM) & fragment sampling

molecule ranking & fragment sampling

- docking score & no fragment sampling
- docking score + Csp3 (BM) & no fragment sampling
- docking score & fragment sampling

starting fragments

SA2 SA2 Csp3-rich SA2.5 Csp3-rich

-11.7 / 3.32

-11.8 / 4.42 docking score / SA score

-12.3 / 4.39

CReM-dock: selectivity of designed CDK2 inhibitors

CReM-dock vs virtual screening

Chemical space overlap CReM-dock and CReM-pharm

CDK2 (2BTR)

 CReM-dock and CReM-pharm structures generated for the same protein structure do not overlap much. Therefore, it can be suggested to use both approaches to get a greater number of diverse solutions

CReM-dock: fragment expansion

Starting ligand	Target ligand	Similarity of starting and target	Generated molecules most similar to the target one	Similarity to the target ligand	RMSD to the starting ligand, Å
HO Br	HO————————————————————————————————————	0.26	HO Br H	1	1.25
2HB1 K _i = 160 μM	2QBS K _i = 210 nM	0.36	HO Br H	1	1.52
3S1G K _i = 6500 nM	3GC4 H ₃ C H _N H ₁ H ₂ H ₃ C H _N H ₂ K _i = 25 nM	0.32	HN NH ₂	0.63	0.06
CH ₃ HO,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CH ₃ HO,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.22	HOWN OH CH3	0.69	0.86
2ZWZ K _i = 16.3 nM	2ZX9 К _i = 0.054 nM	0.32	HOWN OH CH3	0.69	1.03

CReM-dock: fragment expansion

starting ligand target ligand

Fragments may grow in a proper direction which was previously explored as active

target ligand

most similar ligand

CReM-opt: local chemical space exploration

CReM-pharm

NH CH₃ CH₃

-10.4 **/** 2.56

OH OH OH OH

ChEMBL SA2.5 fragment database, radius 3

CReM-opt

-11.0 **/** 2.69

-10.2 **/ 2.46**

Optimization of tubulin inhibitors

docking	score:	-10.2)

Cell line	IC ₅₀ , μΜ
A549	0.033
CCRF-CEM	0.058
CEM-DNR	0.097
HCT116	0.029
HCT116p53-	0.029
K562	0.029
K562-TAX	0.087
U2OS	0.038
BJ	>50

-10.0

Cell line	IC ₅₀ , μΜ
A549	8.84
CCRF-CEM	6.46
CEM-DNR	-
HCT116	9.18
HCT116p53-	9.29
K562	2.65
K562-TAX	-
U2OS	6.44
ВЈ	> 50

IC ₅₀ , μΜ	
0.034	
0.018	
0.029	
0.017	
0.021	
0.013	
0.030	
0.018	
>50	

^{*} in collaboration with Miroslav Soural group (UPOL)

Searching for hits in ultra-large libraries guided by de novo design

CACHE challenge #1: LRRK2 and WDR domain

No X-ray of protein-ligand complexes:

- unknown binding site
- unknown conformation of a protein in a bound state

No known active molecules:

- large chemical space to explore

Enamine Stock: 2.5M
Enamine Real Space: 23B

Round 1: strategy 1 (de novo design be CReM-dock)

Round 1: strategy 1 (de novo design pipeline)

Round 1: strategy 1 (de novo design pipeline)

CREM1777121

CREM0329741

CREM1661038

CREM1506273

CREM0340409

CREM1089720

CREM1507777

CREM1468894

- 50 de novo compounds
- SA score < 3
- 11 reconstructed retrosynthetic pathways with AiZynthFinder (2-5 steps)

Round 1: strategy 1 (similarity search)

Rounds 1 & 2: results

- 50 de novo + 100 similar compounds
- 91 compounds were selected (within the budget 9000\$)
- 82 compounds were synthesized
- 8 compounds demonstrated activity ($K_d = 25-117 \mu M$ by SPR)

59, $K_d = 32 \mu M$

- no human decision and compound selection across the whole pipeline
- 1.27 million docking events and 700 short MD simulations were made

$$K_{d} = 56 \mu M$$

69,
$$K_d = 117 \mu M$$

Summary

CReM is highly flexible and can be combined with relevant modeling tools to address different tasks

- scaffold decoration
- fragment expansion
- hit/lead generation/optimization
- de novo design

Synthetic accessibility of generated compounds depends on CReM settings rather than on a computational approach or model/protein complexity

\$ pypistats overall crem

category	percent	downloads
with_mirrors without_mirrors Total	100.00%	31,076 20,819 31,076

Date range: 2025-03-14 - 2025-09-10

The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through INTER_EXCELLENCE II grant LUAUS23262, the e-INFRA CZ (ID:90254), projects ELIXIR-CZ (LM2023055) and CZ-OPENSCREEN (LM2023052)

Links

De novo design / optimization

CReM - Python module for structure generation

CReM-Dock – de novo generation guided by docking

CReM-opt – structure optimization guided by docking

CReM-pharm – de novo generation guided by 3D pharmacophores

Automated pipelines

EasyDock – fully automated distributed molecular docking pipeline

StreaMD – automated pipeline for high-throughput MD simulations

Auxiliary RDKit repositories

rdkit-scripts - various RDKit scripts

https://github.com/DrrDom/crem

https://github.com/ci-lab-cz/crem-dock

(not publicly available yet)

https://github.com/ci-lab-cz/crem-pharm

https://github.com/ci-lab-cz/easydock

https://github.com/ci-lab-cz/streamd

https://github.com/DrrDom/rdkit-scripts

References

- (1) Polishchuk, P. CReM: chemically reasonable mutations framework for structure generation. *Journal of Cheminformatics* **2020**, 12 (1), 28.
- (2) Polishchuk, P. Control of Synthetic Feasibility of Compounds Generated with CReM. *Journal of Chemical Information and Modeling* **2020**, 60 (12), 6074-6080.
- (3) Minibaeva, G.; Polishchuk, P. CReM-dock: de novo design of synthetically feasible compounds guided by molecular docking. *ChemRxiv* **2024**.
- (4) Minibaeva, G.; Ivanova, A.; Polishchuk, P. EasyDock: customizable and scalable docking tool. *Journal of Cheminformatics* **2023**, 15 (1), 102.
- (5) Ivanova, A.; Mokshyna, O.; Polishchuk, P. StreaMD: the toolkit for high-throughput molecular dynamics simulations. *Journal of Cheminformatics* **2024**, 16 (1), 123.

The group of chemoinformatics and drug design

Aleksandra Ivanova

Guzel Minibaeva

Alina Kutlushina

Dinesh Kumar Sriramulu Ph.D.