Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №4.3.2

Дифракция на ультразвуковой волне в жидкости

Маршрут Х

21 февраля 2019 г. 28 февраля 2019 г.

Работу выполнил Ринат Валиев, 711 гр.

Под руководством В.В. Лобачёва

Постановка эксперимента

Цель работы: изучить дифракцию света на синусоидальной акустической решетке и фазовую решетку методом темного поля.

Оборудование: оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор ультразвуковой частоты, линза, вертикальная нить на рейтере, микроскоп.

Схема установки

Рис. 1: Схема установки для наблюдения дифракции на акустической решетке

Теоретическая часть

Изменение показателя преломления жидкости (фаза световых колебаний):

$$n = n_0(1 + a \cdot \cos(Kx))$$

где $K=2\pi/\Lambda$ — волновое число для УЗ-волны. Условие чистой фазовой решетки:

$$a \ll \left(\frac{\Lambda}{L}\right)^2$$

где L – толщина слоя жидкости.

Условие максимумов в дифракционной картине:

$$\Lambda \cdot \sin(\psi_m) = m\lambda$$

Расстояние от центрального до *т*-го максимума:

$$l_m = \frac{mf\lambda}{\Lambda}$$

Скорость распространения волны при известной частоте кварцевого излучателя:

$$v = \Lambda \nu$$

Выполнение работы

Определение скорости УЗ-волны по дифракционной картине

Красный цвет:

$$\lambda = (6400 \pm 200) \text{ Å}$$
 $F = 30 \text{ cm}$

1. Оценим по порядку величины длину УЗ-волны как удвоенное расстояние между максимумами дифракционных картин, наблюдаемых при помощи микроскопа.

$$\nu = 1.08 \; \mathrm{M}\Gamma$$
ц $\lambda/2 = 1.43 \cdot 10^{-3} \; \mathrm{M}$

Тогда v = 1544 м/с – скорость УЗ-волны.

2. Измерим положения x_m дифракционных максимумов с помощью микрометра для нескольких частот. Данные занесем в таблицу.

ν, КΓц	1008	1014	1060	1076
m	x_m			
-4	24	64	35	35
-3	56	97	69	69
-2	91	130	102	104
-1	123	163	137	138
0	156	196	172	171
1	191	229	205	206
2	222	262	238	240
3	254	295	273	272
4	288	328	308	307

Таблица 1: Положения максимумов дифракционных картин для разных частот

3. Построим графики зависимостей из таблицы 1.

Рис. 2: Зависимость $x_m = f(m)$ при $\nu = 1008$ КГц

Рис. 3: Зависимость $x_m = f(m)$ при $\nu = 1014$ КГц

Рис. 4: Зависимость $x_m=f(m)$ при $\nu=1060$ КГц

Рис. 5: Зависимость $x_m = f(m)$ при $\nu = 1076$ КГц

4. Из графиков (рис. 2-5) определим наклон, а по нему длину и скорость УЗ-волны в воде. Результаты представим в таблице:

ν, МΓц	Δx , дел	Λ , mm	<i>v</i> , м/с
1.008	33.00	1.456	1466
1.014	33.00	1.454	1474
1.060	34.07	1.411	1496
1.076	33.93	1.391	1497

Таблица 2: Скорость УЗ-волны в жидкости

Усредняя полученные результаты из таблицы 2:

$$v = (1484 \pm 50) \text{m/c}, \qquad \varepsilon = 3.4\%$$

Определение скорости звука методом темного поля

1. Снимем зависимость расстояния и количества темных полос от частоты УЗволны.

ν, МГц	Δl , дел	N, iiit	Λ , mm
1.1028	330	4	1.395
1.1659	310	14	1.310
1.2265	340	16	1.258
1.2749	327	16	1.209

Таблица 3: Темные полосы УЗ-волны в жидкости

2. Построим зависимость $\Lambda = f(1/\nu)$ и по нему найдем скорость УЗ-волны в воде (данные из таблицы 3):

Рис. 6: Зависимость $\Lambda = f(1/\nu)$

3. Из графика (рис. 6) получаем:

$$v = (1480 \pm 60) \text{ m/c}, \qquad \varepsilon = 4\%$$

Итоги

Была изучена дифракция света на синусоидальной решетке вертикальной щели.

Была вычислена скорость УЗ-волны в воде тремя способами:

1.
$$v = 1544 \text{ m/c}$$

2.
$$v = (1484 \pm 50) \text{ m/c}, \quad \varepsilon = 3.4\%$$

3.
$$v = (1480 \pm 60) \text{ m/c}, \quad \varepsilon = 4\%$$

$$v_{\rm табл}=1488~{\rm m/c}$$
при $T=22^{\circ}{\rm C}$