

Lecture 3 Question 4

Give an expression for the Grashof number $\mathrm{Gr_L}$ for the given situation in the figure, in terms of known parameters.

The general expression for the Grashof number is $\operatorname{Gr_L} = \frac{\beta g \rho^2 (T_w - T_\infty) L^3}{\eta^2}$, where the characteristic length for the given case is L = 2H, the wall temperature $T_w = 2T_\infty$ and $\nu = \frac{\eta}{\rho}$.

Thus:

$$\mathrm{Gr_L} = \frac{8\beta g T_\infty H^3}{\nu^2}$$