BRIEF ARTICLE

THE AUTHOR

1. Optimality of the AHL Estimator

Consider the problem of estimating the mean of a random variable $X \sim F_X(\mu; \sigma^2)$ using two observations X_1 and X_2 . With probability π , X_1 is drawn from the true distribution F_X and X_2 is noise drawn from the distribution $F_Y(\kappa, \omega^2)$. With probability $1 - \pi$, X_2 is drawn from the correct distribution and X_1 is noise. Under this specification, exactly one of X_1 or X_2 is drawn from the distribution of interest at all times.

Observe that if π is known, we can construct an unbiased estimator using only X_1 ,

$$\hat{\mu}_1 = \frac{X_1}{\pi} - \frac{1-\pi}{\pi}\kappa$$

Similarly, we can construct an unbiased estimator using only X_2 ,

(2)
$$\hat{\mu}_2 = \frac{X_2}{1 - \pi} - \frac{\pi}{1 - \pi} \kappa$$

Compare these to an estimator that uses both X_1 and X_2 ,

$$\hat{\mu} = a_1 X_1 + a_2 X_2 - a_3 \kappa$$

which has the following expectation,

$$E[\hat{\mu}] = (a_1\pi + a_2(1-\pi))\mu + (a_1(1-\pi) + a_2\pi - a_3)\kappa$$

2 THE AUTHOR

so that unbiased, requires

(4)
$$a_1\pi + a_2(1-\pi) = 1 \implies a_2(a_1) = \frac{1}{1-\pi} - \frac{a_1\pi}{1-\pi}$$

(5)
$$a_1(1-\pi) + a_2\pi = a_3 \implies a_3(a_1) = \frac{\pi}{1-\pi} + \frac{a_1 - 2a_1\pi}{1-\pi}$$

Hence we can write $\hat{\mu}$ as a function of a_1 ,

$$\hat{\mu}(a_1) = a_1 X_1 + \left(\frac{1}{1-\pi} - \frac{a_1 \pi}{1-\pi}\right) X_2 - \left(\frac{\pi}{1-\pi} + \frac{a_1 - 2a_1 \pi}{1-\pi}\right) \kappa$$

When $a_1 = \frac{1}{\pi}$, then $\hat{\mu} = \hat{\mu}_1$; and if $a_1 = 0$ then $\hat{\mu} = \hat{\mu}_2$.

We can write:

$$\hat{\mu} = (a_1 \pi) \hat{\mu}_1 + (1 - a_1 \pi) \hat{\mu}_2 + a_1 (1 - \pi) \kappa + \frac{\pi}{1 - \pi} (1 - a_1) \kappa - \left(\frac{\pi}{1 - \pi} + \frac{a_1 - 2a_1 \pi}{1 - \pi} \right) \kappa$$
$$= (a_1 \pi) \hat{\mu}_1 + (1 - a_1 \pi) \hat{\mu}_2 - (a_1 \pi) \kappa$$

Hence any unbiased estimator $\hat{\mu}$ that uses X_1 and X_2 can be written as a linear combination of estimators using only X_1 or X_2 . The problem of finding the minimum variance, unbiased estimator $\hat{\mu}$ reduces to finding d^* that solves

$$\min_{d} \operatorname{Var} \left(d\hat{\mu}_{1} + (1 - d)\hat{\mu}_{2} \right)$$

which is solved by $d^* = 0$ or $d^* = 1$ depending on whether $\text{Var}(\hat{\mu}_1)$ or $\text{Var}(\hat{\mu}_2)$ is smaller.

I now show that $Var(\hat{\mu}_1) > Var(\hat{\mu}_2)$, without loss of generality, except when $\pi = 0.5$, or $\sigma^2 = \omega^2 = (\mu - \kappa)^2$. Observe that,

$$\operatorname{Var}(\hat{\mu}_{1}) = \frac{\operatorname{Var}(X_{1})}{\pi^{2}} = \frac{1}{\pi^{2}} \left(\pi \sigma^{2} + (1 - \pi)\omega^{2} + \pi (1 - \pi)(\mu - \kappa)^{2} \right)$$

$$\operatorname{Var}(\hat{\mu}_{2}) = \frac{\operatorname{Var}(X_{2})}{(1 - \pi)^{2}} = \frac{1}{(1 - \pi)^{2}} \left((1 - \pi)\sigma^{2} + \pi \omega^{2} + \pi (1 - \pi)(\mu - \kappa)^{2} \right)$$

This follows from the law of total variance, with the random variable D = 1 if X_1 is drawn from the correct distribution (and X_2 is drawn from the incorrect distribution), and

D=0 otherwise.

$$Var (X_1) = E[Var (X_1|D)] + Var (E[X_1|D])$$

$$= P(D = 1)\sigma^2 + P(D = 0)\omega^2 + Var (\mu D + \kappa(1 - D))$$

$$= \pi \sigma^2 + (1 - \pi)\omega^2 + \pi(1 - \pi)(\mu - \kappa)^2$$

Similarly,

$$Var(X_2) = (1 - \pi)\sigma^2 + \pi\omega^2 + \pi(1 - \pi)(\mu - \kappa)^2$$

Thus, $\operatorname{Var}(\hat{\mu}_1)$ and $\operatorname{Var}(\hat{\mu}_2)$ can be written as functions of σ^2, ω^2 , and $(\mu - \kappa)^2$,

$$g(\sigma^{2}, \omega^{2}, (\mu - \kappa)^{2}, x) \equiv \frac{1}{x^{2}} \left(x \sigma^{2} + (1 - x) \omega^{2} + x (1 - x) (\mu - \kappa)^{2} \right)$$

$$\operatorname{Var}(\hat{\mu}_{1}) = g(\sigma^{2}, \omega^{2}, (\mu - \kappa)^{2}, \pi)$$

$$\operatorname{Var}(\hat{\mu}_{2}) = g(\sigma^{2}, \omega^{2}, (\mu - \kappa)^{2}, 1 - \pi)$$

Importantly, $\frac{\partial g}{\partial x} < 0$ for $x \in [0,1]$; so there is a unique crossing $\text{Var}(\hat{\mu}_1) = \text{Var}(\hat{\mu}_2)$ when $\pi = 0.5$. The variance is decreasing in the probability that the observation is correct; hence the minimum variance unbiased estimator assigns d = 1 to the observation that has the highest probability of being correct, and applies inverse probability weighting accordingly.

This result holds for L > 2. Pick the $\pi_{i\ell}$ that is maximal and give it full weight. However, there are problems with weighting, especially if no observation has particularly high $\pi_{i\ell}$. Apply threshold

4 THE AUTHOR

So unless $\pi=0.5$ you always weight the more likely match and give it the proper weights. Could do this for every single i in the sample? Divide by π_i and you get the Horwitz Thompson.

They are exactly equal when $\pi=1-\pi$; otherwise they are quadratic as in the plot below. But they are exactly symmetric, so that the optimal estimator will always assign $d_1=1, d_2=0$ or $d_1=0, d_2=1$ depending on whether $\pi>1-\pi$. However, if π is not estimated precisely, the resulting variance explodes. The most conservative way is by treating $\pi=0.5$, which gives the estimate of the mean! Which is the AHL estimator.

Also