AN 2003-639267 [61] WPIDS

N2003-508593 DNC C2003-175179 DNN

ΤI Epoxy resin curable composition for epoxy resin laminated sheet, contains

specific amount of multivalent epoxy compound.

DC A21 A85 L03 U14 V04

(ASAE) ASAHI DENKA KOGYO KK PA

CYC

PΙ JP 2003082061 Α 20030319 (200361)* 12<--

JP 2003082061 A JP 2001-273987 20010910 ADT

PRAI JP 2001-273987 20010910

AN 2003-639267 [61] WPIDS

AB JP2003082061 A UPAB: 20030923

NOVELTY - An epoxy resin curable composition contains 3-100 mass% of a

multivalent epoxy compound.

DETAILED DESCRIPTION - An epoxy resin curable composition contains

3-100 mass% of a multivalent epoxy compound of formula (I). FORMULA (I),

PAGE 2

R1-R10 = hydrogen, (cyclo)alkyl, cycloalkenyl or 4-glycidyloxyphenyl, or may form a bicyclohexane where

substituent bond mutually, for a bicyclo structure where non-adjacent

substituents bond.

At least one of R1-R10 is alkyl or 4-glycidyloxyphenyl. An INDEPENDENT CLAIM is included for an epoxy resin laminated sheet

using the curable composition.

USE - For an epoxy resin laminated sheet (claimed) used for a

multilayered printed wiring board.

ADVANTAGE - The curable composition forms cured substance with high

glass transition temperature, tensile strength and tensile

curable composition has excellent electrical property, high mechanical

strength and low water absorption.

Dwg.0/0

This Page Blank (usptc)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-82061 (P2003-82061A)

(43)公開日 平成15年3月19日(2003.3.19)

(51) Int.Cl. ⁷		識別記号	FΙ					テーマコート*(参考)
C 0 8 G	59/04		C 0 8 G	59/0	04			4 J 0	02
	59/24			59/2	24			4 J O	3 6
C 0 8 K	5/5399	•	C08K	5/5	5399			5 E 3	4 3
C 0 8 L	63/00		C08L	63/0	00	·	C	5 E 3	4 6
H 0 5 K	3/18		H05K	3/1	18		D)	
		審査請求	未請求請求	求項の	数 8	OL	(全 12 頁	〔) 最終	頁に続く
(21)出願番		特願2001-273987(P2001-273987)	(71)出願		000000				
				九	但電化:	工業株	式会社		
(22)出願日		平成13年9月10日(2001.9.10)		東	東京都	荒川区	東尾久7丁	目2番35年	寻
			(72)発明	者者	奇藤	誠一			
				見	東京都	荒川区	東尾久7丁	目2番36年	身 旭電
				1	化工業	株式会	社内		
			(72)発明	者系	英 典	裕			
				耳	東京都	荒川区)	東尾久7丁	目2番36年	身 旭電
				1	化工業	株式会	社内		
			(74)代理	人 1	00076	532			
		•		ŧ	炉理士	羽鳥	修		
								最終	頁に続く

(54) 【発明の名称】 硬化性組成物

(57)【要約】

【課題】 高いガラス転移温度、優れた電気特性、機械強度、低い吸水率を有するエポキシ樹脂積層板用硬化性組成物を提供する。

*【解決手段】 エポキシ樹脂の3~100質量%が下記 一般式(I)で表される多価エポキシ化合物であるエポ キシ樹脂積層板用硬化性組成物。

* [任1]

CH₂CH-CH₂O

R1

R2

R9

R9

(1)

(式中、R1からR10は各々独立に水来原子、アルキル基、シクロアルキル基、シクロアルケニル基、4-グリシジルオキシフェニル基を表すか、又は隣接する 置換基が互いに結合してビシクロヘキセンを形成するか、隣接していない置換基 が互いに結合してビシクロ構造を形成し、但し、R1からR10のいずれか一つ はアルキル基又は4-グリシジルオキシフェニル基である。)

【特許請求の範囲】

* キシ樹脂積層板用硬化性組成物。

【請求項1】 エポキシ樹脂の3~100質量%が下記 一般式(I)で表される多価エポキシ化合物であるエポ*

1

【化1】

CH₂CH-CH₂O
$$R_{10}$$
 R_{10} R_{1

(式中、R1からR10は各々独立に水来原子、アルキル基、シクロアルキル基、シクロアルケニル基、4ーグリシジルオキシフェニル基を表すか、又は隣接する 置接基が互いに結合してピシクロヘキセンを形成するか、隣接していない置接基 が互いに結合してピシクロ構造を形成し、但し、R1からR10のいずれか一つ はアルキル基又は4ーグリシジルオキシフェニル基である。)

【請求項2】 上記一般式(I)で表わされる多価エポキシ化合物10~80質量%及び一般式(I)以外のエポキシ化合物20~90質量%をエポキシ樹脂とする請求項1記載のエポキシ樹脂積層板用硬化性組成物。

【請求項3】 上記一般式(I)におけるR1からR1 0のいずれか1個はアルキル基である請求項1又は2記載のエポキシ樹脂積層板用硬化性組成物。

【請求項4】 上記上記一般式(I)で表されるエポキシ化合物を10~80質量%及び上記一般式(I)以外※

※のエポキシ化合物20~90質量%からなるエポキシ樹脂100質量部と硬化剤10~200質量部からなる請求項2又は3記載のエポキシ樹脂積層板用硬化性組成物

【請求項5】 上記一般式(I)以外のエポキシ化合物が、下記一般式(II)で表される請求項2~4のいずれかに記載のエポキシ樹脂積層板用硬化性組成物。

【化2】

【化3】

(式中、 R_{11} 及び R_{12} は各々独立に水素原子又は炭素原子数 $1\sim3$ のアルキル基を表す。)

【請求項6】 上記一般式(I)で表されるエポキシ化合物を含むエポキシ樹脂100質量部に対してリン系難燃剤を5~100質量部配合してなる請求項1~5のいずれかに記載のエポキシ樹脂積層板用硬化性組成物。

★【請求項7】 上記リン系難燃剤が、下記一般式(II I)で表されるリン酸アマイド化合物である請求項6記 載のエポキシ樹脂積層板用硬化性組成物。

(式中、 R_{13} 、 R_{14} 及び R_{16} は水素原子、炭素原子数 $1\sim 8$ のアルキル基、シクロアルキル基又はハロゲン原子を表し、 Z_1 及び Z_2 は直接結合、炭素原子数 $1\sim 4$ のアルキレン基、アルキリデン基を表し、環Aは炭素原子数 $6\sim 1$ 8のアリーレン基、シクロアルキレン基又はアリーレンーアルキレン(アルキリデン)ーアリーレン基を表す。)

【請求項8】 請求項1~7のいずれかに記載のエポキシ樹脂積層板用硬化性組成物を用いたエポキシ樹脂積層板。

【発明の詳細な説明】

[0001]

50 【発明の技術分野】本発明は、特定のエポキシ化合物を

含むエポキシ樹脂積層板用硬化性組成物に関し、より詳 細には、1,1-ビス(4-グリシジルオキシフェニ ル) シクロヘキサンのシクロヘキサンが置換基を有する エポキシ化合物を必須成分とする硬化性組成物からな り、ガラス転移温度が高く、電気特性、機械強度に優れ たビルドアップ用硬化性組成物に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】プリン ト配線基板の高密度化方法であるフルアディティブ法に おいては、使用されるメッキレジストが最終的に配線間 の絶縁層にもなるため多層化時の配線のズレ等を防止す ることが可能となり、高アスペクト比の配線を有するプ リント配線板を多層化するのに適している。

【0003】絶縁層としてプリント配線基板に残存する 上記メッキレジストは、高度に集積化された配線による 発熱や絶縁層の薄層化、導体層と絶縁層との接着強度の 低下に対応できる高いガラス転移温度、体積固有抵抗、 機械特性及び低い吸水率を有することが要求される。

【0004】絶縁層にエポキシ樹脂を用いることは広く 知られており、ドイツ特許107798号明細書には、 2, 2-ビス(3, 4-エポキシシクロヘキシル)プロ パンと酸無水物による硬化物が記載されている。また、 特開平2-225580号公報には、2, 2-ビス (3, 4-エポキシシクロヘキシル) プロパンとカチオ ン系光重合開始剤による硬化物が記載されている。しか し、2、2ービス(3、4ーエポキシシクロヘキシル)

プロパンを無水フタル酸や光重合開始剤で硬化させた場

*【0005】また、ビスフェノールAのジグリシジルエ ・ーテル等の多価フェノール骨格を有するエポキシ化合物 と酸無水物等による硬化物はガラス転移温度が低く、ビ ルドアップ用には実用的でなかった。

【0006】また、米国特許3298998号公報に は、1,1-ビス(4-グリシジルオキシフェニル)シ クロヘキサンがエポキシ樹脂に用いられることが記載さ れている。しかし、エポキシ樹脂積層板に用いることは 記載されておらず、シクロヘキサンが置換基を有するこ とで優れた積層板が得られることは全く予想もされてい なかった。

【0007】従って、本発明の目的は、高いガラス転移 温度、優れた電気特性、機械強度、低い吸水率を有する エポキシ樹脂積層板用硬化性組成物を提供することにあ る。

[0008]

【課題を解決するための手段】本発明者らは、上記の現 状に鑑み鋭意検討を行った結果、1,1ービス(4ーグ リシジルオキシフェニル)シクロヘキサンのシクロヘキ 20 サンが置換基を有するエポキシ化合物を用いることで、 上記目的が達成されることを見出し、本発明に到達し た。

【0009】即ち、本発明は、エポキシ樹脂の3~10 0質量%が下記一般式(I)で表される多価エポキシ化 合物であるエポキシ樹脂積層板用硬化性組成物を提供す るものである。

[0010]

【化4】

(式中、R1からR10は各々独立に水素原子、炭素原子数1~18のアルキル 基、シクロアルキル基、シクロアルケニル基、4-グリシジルオキシフェニル基 を表すか、又は隣接する置換基が互いに結合してビシクロヘキセンを形成するか、 隣接していない置換基が互いに結合してピシクロ構造を形成し、但し、R1から R10のいずれか一つはアルキル基又は4-グリシジルオキシフェニル基であ る。)

[0011]

【発明の実施の形態】以下に、本発明を詳細に説明す

【0012】上記一般式 (I) におけるR1からR10 で表されるアルキル基としては、メチル、エチル、プロ ピル、ブチル、第二ブチル、第三ブチル、ペンチル、ヘ キシル、ヘプチル、オクチル、ノニル、デシル、ウンデ シル、ドデシル、トリデシル、テトラデシル、ペンタデ シル、ヘキサデシル、ヘプタデシル、オクタデシル等が 50

挙げられる。より具体的には、下記の構造等が挙げられ る。

[0013]

【化5】

【0014】シクロアルキル基としては、シクロプロピ ル、シクロペンチル、シクロヘキシル等が、シクロアル ケニルとしてはシクロヘキセニル等が挙げられる。より 具体的には下記の構造等が挙げられる。

[0015]

【化6】

【0016】隣接しているR1からR10が互いに結合 してシクロヘキセニル基を表す場合は、下記の構造等が 挙げられる。

[0019]

【化8】

【0020】上記一般式(I)で表されるエポキシ化合 物としては、より具体的には、以下の化合物No. 1~ 8が挙げられる。

[0021]

[0024]

[0025]

【0029】本発明のエポキシ樹脂に用いられる他のエポキシ化合物としては、芳香族エポキシ化合物、脂環族エポキシ化合物、脂肪族エポキシ化合物等が用いられる。

【0030】芳香族エポキシ化合物としては、例えば、ハイドロキノン、レゾルシノール、ビスフェノールA、ビスフェノールF、4,4'ージヒドロキシビフェニル、ノボラック、テトラブロモビスフェノールA等の多価フェノールのグリシジルエーテル化合物、上記多価フェノールのエチレンオキサイド、プロピレンオキサイド付加ポリエーテル化合物のグリシジルエーテル化合物が挙げられる。

【0031】脂環族エポキシ化合物としては、少なくとも1個以上の脂環族環を有する多価アルコールのポリグリシジルエーテル又はシクロヘキセンやシクロペンテン環含有化合物を酸化剤でエポキシ化することによって得られるシクロヘキセンオキサイドやシクロペンテンオキサイド含有化合物が挙げられる。例えば、水素添加ビスフェノールAジグリシジルエーテル、3,4ーエポキシシクロヘキシルメチルー3,4ーエポキシー1ーメチルシクロヘキシルー3,4ーエポキシークロヘキシメチルー6ーメチルー3,4ーエポキシシクロヘキシメチルー6ーメチルー3,4ーエポキシシクロヘキシメチルー6ーメチルー3,4ーエポキシシクロヘキシメチルー6ーメチルー3,4ーエポキシシクロヘキシメチルー6ーメチルー3,4ーエポキシシクロヘキシメチルー6ーメチルー3,4ーエポキシシクロ

ヘキサンカルボキシレート、3,4-エポキシー3-メ チルシクロヘキシルメチルー3,4-エポキシー3-メ チルシクロヘキサンカルボキシレート、3,4-エポキ 30シー5-メチルシクロヘキシルメチルー3,4-エポキ シー5-メチルシクロヘキサンカルボキシレート、ビス (3,4-エポキシシクロヘキシルメチル)アジペート、メチレンビス(3,4-エポキシシクロヘキサン)、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、ジシクロペンタジエンジエポキサイド、 エチレンビス(3,4-エポキシシクロヘキサンカルボ キシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジー2-エチルヘキ シル等が挙げられる。

【0032】脂肪族エポキシ化合物としては、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジルアクリレート又はグリシジルメタクリレートのビニル重合により合成したホモポリマー、グリシジルアクリレート又はグリシジルメタクリレートとその他のビニルモノマーとのビニル重合により合成したコポリマー等が挙げられる。代表的な化合物として、1、4ーブタンジオールジグリシジルエーテル、1、6ーヘキサンジオールジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロ

パンのトリグリシジルエーテル、ソルビトールのテトラ グリシジルエーテル、ジペンタエリスリトールのヘキサ グリシジルエーテル、ポリエチレングリコールのジグリ シジルエーテル、ポリプロピレングリコールのジグリシ ジルエーテル等の多価アルコールのグリシジルエーテ ル、またプロピレングリコール、トリメチロールプロパ ン、グリセリン等の脂肪族多価アルコールに1種又は2 種以上のアルキレンオキサイドを付加することにより得 られるポリエーテルポリオールのポリグリシジルエーテ ル、脂肪族長鎖二塩基酸のジグリシジルエステルが挙げ 10 られる。さらに、脂肪族高級アルコールのモノグリシジ ルエーテルやフェノール、クレゾール、ブチルフェノー ル、また、これらにアルキレンオキサイドを付加するこ とによって得られるポリエーテルアルコールのモノグリ シジルエーテル、高級脂肪酸のグリシジルエステル、エ ポキシ化大豆油、エポキシステアリン酸オクチル、エポ*

* キシステアリン酸ブチル、エポキシ化ポリブタジエン等 が挙げられる。

【0033】上記多価エポキシ化合物のうち、多価フェノールのグリシジルエーテル化合物やシクロへキセンオキサイドやシクロペンテンオキサイド構造を有するポリエポキシ化合物は、高いガラス転移温度を有するエポキシ樹脂が得られるので好ましい。また、エポキシ化ポリブタジエン等のゴム成分を有するエポキシ化合物は得られるエポキシ樹脂に柔軟性を付与するのでガラス転移温度等の他の物性への影響が小さい範囲で用いることが好ましい。また、下記一般式(II)で表されるエポキシ化合物は特にガラス転移温度の高いエポキシ樹脂が得られるので好ましい。

[0034]

【化17】

(式中、 R_{11} 及び R_{12} は各々独立に水素原子又は炭素原子数 $1\sim3$ のアルキル基を表す。)

【0035】R₁₁ とR₁₂ で表されるアルキル基としては、メチル、エチル、プロピル、ブチル等が挙げられる。

【0036】上記一般式(I)で表される化合物は、エポキシ樹脂積層板用硬化性組成物に用いるエポキシ樹脂の3~100質量%が好ましい。3質量%未満では上記一般式(I)で表される化合物を用いた効果が得られない。また、硬化剤や他の併用物により硬化物の物性は変化するが、上記一般式(I)で表される化合物を10~80質量%を用いることが特に好ましい。10質量%以上用いることで、上記一般式(I)で表される化合物を用いる効果が顕著となり、80質量%より多く用いると得られる硬化物が脆くなって基板の組み立て及び最終製品の使用時に衝撃等で絶縁層が剥離又は破損することがあるので好ましくない。

【0037】本発明のエポキシ樹脂積層板用硬化性組成物は硬化剤により硬化してエポキシ樹脂積層板となる。 硬化剤としては、潜在性硬化剤、酸無水物、ポリアミン 40 化合物及びポリフェノール化合物等が挙げられる。

【0038】潜在性硬化剤としては、ジシアンジアミド、ヒドラジド、イミダゾール化合物、アミンアダクト、スルホニウム塩、オニウム塩、ケチミン、酸無水物、三級アミン等が挙げられる。これら潜在性硬化剤は、一液型の硬化性組成物を与え、取り扱いが容易なので好ましい。

【0039】酸無水物としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水 50

物、マレイン酸無水物、コハク酸無水物等が挙げられる。

【0040】ポリアミン化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族ポリアミン、メンセンジアミン、イソホロンジアミン、ビス(4ーアミノー3ーメチルシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキシル)メタン、ビス(アミノメチル)2,4,8,10ーテトラオキサスピロ [5,5] ウンデカン等の脂環族ポリアミン、 $m-キシレンジアミン等の芳香環を有する脂肪族アミン、<math>m-フェニレンジアミン、2,2-ビス(4ーアミノフェニル)プロパン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、<math>\alpha$, α ービス(4ーアミノフェニル)-p-ジイソプロピルベンゼン等の芳香族ポリアミンが挙げられる。

【0041】ポリフェノール化合物としては、例えば、フェノールノボラック、o-クレゾールノボラック、tーブチルフェノールノボラック、ジシクロペンタジエンクレゾール、テルペンジフェノール、テルペンジカテコール、1,1,3-トリス(3-第三ブチルー4-ヒドロキシー6-メチルフェニル)ブタン、ブチリデンビス(3-第三ブチルー4-ヒドロキシー6-メチルフェニル)等が挙げられる。フェノールノボラックは得られるエポキシ樹脂の電気特性、機械強度が積層板に適しているので好ましい。

【0042】上記の各種硬化剤は、エポキシ化合物の組成に応じて反応基がおおむね当量になることが好ましく、エポキシ樹脂100質量部に対して10~200質

量部用いることが好ましい。

【0043】本発明で使用されるカチオン系光開始剤とは、エネルギー線照射によりカチオン重合を開始させる物質を放出させることが可能な化合物であり、特に好ましいものは、照射によってルイス酸を放出するオニウム塩である複塩又はその誘導体である。かかる化合物の代表的なものとしては、下記の一般式

[A] " [B] "

で表される陽イオンと陰イオンの塩を挙げることができる。

【0044】ここで陽イオン [A] [□] はオニウムである のが好ましく、その構造は、例えば、下記の一般式、 [(R [□]) _{•Q}] [□]

で表すことができる。

【0045】更にここで、 R^{19} は炭素数が $1\sim60$ であり、炭素原子以外の原子を幾つ含んでもよい有機の基である。 $aは1\sim5$ なる整数である。a個の R^{19} は各々独立で、同一でも異なっていてもよい。また、少なくとも1つは、芳香環を有する上記の如き有機の基であることが好ましい。QはS、N、Se、Te、P、As、Sb、Bi、O、I、Br、Cl、F、N=Nからなる群から選ばれる原子あるいは原子団である。また、陽イオン[A] 19 中のQの原子価を q としたとき、m=a-q なる関係が成り立つことが必要である(但し、N=Nは原子価0として扱う)。

【0046】また、陰イオン[B] は、ハロゲン化物 錯体であるのが好ましく、その構造は、例えば、下記一 般式

 $[LX_b]$

で表すことができる。

【0048】上記一般式で表される陰イオン [LX。] の具体例としては、テトラフルオロボレート (BF₄)、ヘキサフルオロフォスフェート (PF₆)、ヘキサフルオロアンチモネート (SbF₆)、ヘキサフルオロアルセネート (AsF₆)、ヘキサクロロアンチモネート (SbCl₆)等が挙げられる。

【0049】また、陰イオンB゜は、

[LX₁₋₁ (OH)]

で表される構造のものも好ましく用いることができる。 L、X、bは上記と同様である。また、その他用いることができる陰イオンとしては、過塩素酸イオン (CIO
、)、トリフルオロメチル亜硫酸イオン (CF₃SO₃) 、フルオロスルホン酸イオン(FSO₃)、トルエン スルホン酸陰イオン、トリニトロベンゼンスルホン酸陰 イオン等が挙げられる。

12

【0050】本発明では、この様なオニウム塩の中でも、下記のイ)~ハ)の芳香族オニウム塩を使用するのが特に有効である。これらの中から、その1種を単独で、又は2種以上を混合して使用することができる。

【0051】イ)フェニルジアゾニウムヘキサフルオロホスフェート、4-メトキシフェニルジアゾニウムヘキ サフルオロアンチモネート、4-メチルフェニルジアゾニウムへキコウムへキサフルオロホスフェート等のアリールジアゾニウム塩

【0052】ロ)ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-メチルフェニル)ヨードニウムヘキサフルオロホスフェート、ジ(4-tertーブチルフェニル)ヨードニウムヘキサフルオロホスフェート等のジアリールヨードニウム塩

【0053】ハ)トリフェニルスルホニウムヘキサフル オロアンチモネート、トリス (4-メトキシフェニル) スルホニウムヘキサフルオロホスフェート、ジフェニル -4-チオフェノキシフェニルスルホニウムヘキサフル オロアンチモネート、ジフェニルー4-チオフェノキシ フェニルスルホニウムヘキサフルオロホスフェート、 4. 4'ービス(ジフェニルスルフォニオ)フェニルス ルフィドービスーヘキサフルオロアンチモネート、4、 4'-ビス(ジフェニルスルフォニオ)フェニルスルフ ィドービスーヘキサフルオロホスフェート、4,4'-ビス [ジ(6-ヒドロキシエトキシ) フェニルスルホニ オ]フェニルスルフィドービスーヘキサフルオロアンチ モネート、4, 4'ービス[ジ(6ーヒドロキシエトキ シ)フェニルスルホニオ]フェニルスルフィドービスー ヘキサフルオロホスフェート、4-[4'-(ベンゾイ ル)フェニルチオ]フェニルージー(4-フルオロフェ ニル)スルホニウムヘキサフルオロアンチモネート、4 - [4'-(ベンゾイル)フェニルチオ]フェニルージ (4-フルオロフェニル)スルホニウムヘキサフルオ ロホスフェート等のトリアリールスルホニウム塩等が好 ましい。

【0054】また、その他の好ましいものとしては、 (η⁵-2, 4-シクロペンタジエン-1-イル) [(1, 2, 3, 4, 5, 6, -η) - (1-メチルエチル) ベンゼン] -アイアンーへキサフルオロホスフェート等の鉄-アレーン錯体や、トリス(アセチルアセトナト)アルミニウム、トリス(エチルアセトナトアセタト)アルミニウム、トリス(サリチルアルデヒダト)アルミニウム等のアルミニウム錯体とトリフェニルシラノール等のシラノール類との混合物等も挙げられる。

【0055】これらの中でも実用面と光感度の観点から、芳香族ヨードニウム塩、芳香族スルホニウム塩、鉄ーアレーン錯体を用いることが好ましい。

【0056】これらの光開始剤は安息香酸系又は第三級 アミン系等の公知の光重合促進剤の1種又は2種以上と 組み合わせて用いても良い。光開始剤は、本発明の組成 物中、0.1~30質量%含有していることが好まし い。0.1質量%未満では添加効果が得られないことが あり、30質量%より多いと硬化物の機械強度が低下す ることがある。

【0057】光開始剤を用いる場合の重合に用いる光源 としては、高圧水銀灯、メタルハライドランプ、キセノ ンランプ等の公知の光源を用い、紫外線、電子線、X 線、放射線、高周波等の活性エネルギー線の照射により 上記光開始剤からルイス酸を放出することで、上記エポ キシ化合物を効果させる。これら光源としては、400 n m以下の波長を有する光源が有効である。

【0058】本発明のエポキシ樹脂積層板用硬化性組成 物は、硬化剤と予め混合されて一液型としてもよく、エ ポキシ樹脂組成物と硬化剤の二液型として使用時に混合 して用いても良い。一液型は取り扱いが容易であるが、 硬化反応に熱、光、湿気等を必要とし、二液型は反応性 が高く、混合してから一定時間以内に積層板に成形する 必要があるので取り扱いに問題がある。一液型と二液型 は硬化・使用条件や目的とする樹脂物性に応じて適宜使 い分ける。

【0059】本発明のエポキシ樹脂積層板用硬化性組成 物は、上記エポキシ化合物に種々の硬化促進剤、他の樹 脂、無機充填剤、スクリーン印刷性向上剤、難燃剤、難 燃助剤、分散性改良剤等の通常エポキシ樹脂組成物に用 いられる添加剤を必要に応じて用いることが好ましい。

【0060】上記硬化促進剤としては、トリフェニルホ スフィン、ジアザビシクロウンデセン、2, 4, 6-ト リス (ジメチルアミノメチル) フェノール及び2-エチ ルー4ーメチルイミダゾール、1ーベンジルー2ーメチ ルイミダゾール等のイミダゾール化合物が含まれる。こ れら硬化促進剤は、単独で又は2種以上組み合わせて用 いることができる。硬化促進剤は、エポキシ樹脂の硬化 を促進するに十分な少量で用いられる。

【0061】本発明のエポキシ樹脂積層板用硬化性組成 物に用いられるエポキシ樹脂以外の樹脂としては、ブタ ジエンゴム、ニトリルゴム、ブタジエンースチレンゴ ム、アクリロニトリルーブタジエンゴム、アクリロニト 40 リルーブタジエンースチレンゴム、エチレンープロピレ

ンゴム等の弾性に優れた耐衝撃性を改良するゴムを用い ることが、機械強度の点で好ましい。

【0062】本発明のエポキシ樹脂積層板用硬化性組成 物に含まれる無機充填剤は、エポキシ樹脂組成物に付加 的な難燃剤、耐熱性、耐湿性を付与するためのものであ る。これら充填剤には、タルク、シリカ、アルミナ、水 酸化アルミニウム、水酸化マグネシウム等が含まれ、単 独で又は 2種以上組み合わせて用いることができる。特 にシリカが電気特性に優れるので好ましい。

【0063】本発明のエポキシ樹脂積層板用硬化性組成 物に用いられる難燃剤としては、ハロゲン系難燃剤、リ ン系難燃剤、金属水酸化物等が、難燃助剤としては酸化 アンチモン等のアンチモン化合物、メラミン等の含窒素 化合物、ホウ酸亜鉛等のホウ酸化合物、ポリテトラフル オロエチレンやシリコンポリマー等の滴下防止剤等が挙 げられる。これら難燃剤及び難燃助剤としては高い難燃 性を付与するには硬化剤に対して臭素を5~30質量 %、酸化アンチモンを3~10質量%を添加することが 好ましいが、燃焼時にダイオキシンの発生のないリン系 20 難燃剤が環境への配慮と難燃性の両立として特に好まし く、含窒素化合物の組合せは難燃化効果が顕著である。 【0064】リン系難燃剤としては、フェノール及び/ 又はアルキル置換フェノールとリン酸のエステル化合物 又はフェノール及び/又はアルキル置換フェノールと多 価フェノール(例えば、ハイドロキノン、レゾルシノー ル、ビスフェノールA、ビフェノール、フェノール類と ホルムアルデヒドの縮合物等)とリン酸のエステル化合 物が挙げられ、多価フェノールを用いる場合はフェノー ルのOH基の一部が未反応で存在してもよい。また、上 記フェノール又は多価フェノールをアミン化合物で代替 してリン酸アミド化合物としてもよい。下記一般式 (II I) で表されるリン酸アミド化合物は得られる樹脂のガ ラス転移温度が高く、難燃化効果に優れるので好まし い。リン系難燃剤は、エポキシ樹脂100質量部に対し て5~100質量部用いることが好ましい。5質量部未 満では十分な難燃化効果が得られず、100質量部を超 えて用いると、樹脂組成物のガラス転移温度が著しく低 下する。

[0065]

【化18】

(式中、R₁₈、R₁₄及びR₁₅は水素原子、炭素原子数1~8のアルキル基、シ クロアルキル基又はハロゲン原子を表し、2,及び22は直接結合、炭素原子数 1~4のアルキレン基、アルキリデン基を表し、環Aは炭素原子数6~18のア リーレン基、シクロアルキレン基又はアリーレン-アルキレン (アルキリデン) -アリーレン基を表す。)

【0066】以上述べた本発明のエポキシ樹脂積層板用 硬化性組成物は、これをプロピレングリコールモノメチ ルエーテル等の好適な有機溶媒で希釈してワニスとな し、これをガラス不織布、ガラス織布等の多孔質ガラス 基材に塗布・含浸させ、加熱するという通常の方法によ りプリプレグを製造することができる。また、このプリ プレグを複数枚重ね合わせ、その積層構造の片面又は両 20 ム板上にナイフコーターを用いて乾燥後の膜厚が30 μ 面に銅箔を重ね合わせた後、これを通常の条件で加熱・ 加圧してガラスエポキシ銅張積層板を得ることができ る。このとき、銅箔を用いなければ、積層板が得られ る。多層板は、銅張積層板(内層板)に回路を形成し、 次いで銅箔をエッチング処理した後、内層板の少なくと も片面にプリプレグ及び銅箔を重ね合わせ、これを例え ば170℃, 40 kg/cm²の圧力で90分間加熱、 加圧するという通常の方法により製造することができ る。さらに、プリント配線板は、銅張積層板もしくは多 層板にスルーホールを形成し、スルーホールメッキを行 30 た。 った後、所定の回路を形成するという通常の方法により 製造することができる。

[0067]

【実施例】以下に、本発明のエポキシ樹脂組成物を具体 的に示す。但し、以下の実施例により本発明は何等制限 されるものではない。

【0068】〔実施例1-1~1-13及び比較例1-1~1-2〕表1~3記載のエポキシ樹脂100質量 部、硬化剤(表1~3記載)、2-エチル-4-メチル イミダゾールをエチレングリコールブチルエーテルアセ テート80質量部を十分に混合し、表面処理アルミニウ mになるように塗布した。80℃で5分間熱乾燥した 後、さらに150℃で30分間ベーキングして硬化物を 得た。得られた硬化物について、ガラス転移温度(以 下、Tg)、引張強度、引張伸びを評価した。結果を表 1~3に示す。但し、各試料化合物及び比較化合物の配 合量は溶媒を除く固形分としての配合であり、配合量は 得られる樹脂組成物のリン含有量が2.0%となるよう 調整した。配合単位は全て質量部基準である。

【0069】ガラス転移温度は、動的粘弾性法で測定し

【0070】引張試験としては、JIS-K6911に より測定した。

[0071]

【表 1】

17	

						1
		実	炮		例	
	1 - 1	1 - 2	1 - 3	1-4	1 - 5	1-6
化合物 No.1	70			30		50
化合物 No.2		70			†	
化合物 No.8			70		30	
エポキシ1 * 1	30	30	30	70	70	†
エポキシ2・2						50
エポキシ3・3						
エポキシ4*4						
エポキシ5 * 5			 	i — —		
比較化合物 1 * 6						
比較化合物 2 * 7						
硬化剂A**	25.7	25.7	29.3	26.2	27.7	33.8
硬化斜B*9	25.7	25.7	29.3	26.2	27.7	00.0
硬化剂C*10						33.8
水酸化マグネシウム	14.1	14.1	14.8	14.2	14.5	31.2
水酸化アルミニウム	14.1	14.1	14.8	14.2	14.5	31.2
シリカ	9.4	9.4	9.9	9.5	9.7	20.8
難燃剤*11	86.8	86.8	38.6	37.0	37.9	40.6
反応触媒 * 1 2	3.6	3.6	4.0	3.6	3.8	4.3
溶媒 * 1 3	80	80	80	80	80	120
ガラス転移温度(℃)	155	158	152	153	150	180
引張強度(MPa)	85	87	84	83	82	85
引張伸び(%)	7.5	7.3	7.6	6.9	7.1	6.0

【0072】*1:ビスフェノールA型エポキシ樹脂

*2:1,6-ビス(グリシジルオキシ)ナフタレン

*5:カルボン酸変性NBRとビスフェノールAジグリ

*3:1, 1, 2, 2、-テトラキス (4-グリシジル 20 シジルエーテルの付加物

オキシフェニル) エタン

[0073]

*ル)プロパン

*4:2, 2-ビス(3, 4-エポキシシクロヘキシ *

【化19】 ∙о−сн₂−сн́−сн₂

[0074]

※ ※【化20】

[0075]

★ 【化22】 *9:硬化剤B(三井化学(株) 製:XLC-LL)

【化21】 *8:硬化剤A(住友デュレズ(株)製:PR-53194)

40

[0076]

[0077]

★ 【化 2 3】 *10:硬化剤C(大日本インキ(株)製:フェノライトLA-7055)

[0078]

【化24】 50

19 *11:リン酸アミド系難燃剤

* [0080] 【0079】*12:2-エチル-4-メチルイミダゾ ール 【表2】

*13:エチレングリコールブチルエーテルアセテート*10

		実	施例				
	1 - 7	1 - 8	1 - 9	1 - 10	1-11	1 - 12	
化合物 No.1	50	50	40		100		
化合物 No.2				40		100	
化合物 No.8							
エポキシ1*1							
エポキシ2・8			30		-		
エポキシ3・3	50			30			
エポキシ4・4		50					
エポキシ5 * 5			30	30			
比較化合物 1 * 6							
比較化合物 2 * 7							
硬化剤A * 8	31.4	23.7	34.7	35.5	41.2	41.2	
硬化剂B*9							
硬化剤C*10	31.4	23.7	34.7	35.5			
水酸化マグネシウム	30.4	27.5	15.8	16.0	13.2	13.2	
水酸化アルミニウム	30.4	27.5	15.8	16.0	13.2	13.2	
シリカ	20.2	18.3	10.5	10.6	8.8	8.8	
難燃剤◆11	39.6	35.9	41.4	41.7	34.3	34.3	
反応触媒 * 1 2	4.0	3.2	4.4	4.5	3.5	3.5	
溶媒*1*	120	120	80	80	80	80	
ガラス転移温度 (℃)	190	150	190	200	165	168	
引張強度(MPa)	80	80	90	90	80	85	
引張伸び(%)	5.5	8.5	5.3	5.0	6.8	6.5	

[0081]

【表3】

	実施例		
	1 - 13	1 - 1	1 - 2
化合物 No.1			
化合物 No.2			1
化合物 No.8	100		
エポキシ1・1			
エポキシ2*2			
エポキシ3*3			
エポキシ4*4	_		
エポキシ5 * 5			
比較化合物 1 * 6		100	
比較化合物 2 * 7			100
硬化剤A*8	49.4	41.5	43.0
硬化剂B*9			
硬化剤C*10			
水酸化マグネシウム	13.9	13.2	13.2
水酸化アルミニウム	13.9	13.2	13.2
シリカ	9.3	8.8	8.8
疑燃剤*11	36.3	34.3	34.8
反応触媒 * 1 2	4.1	3.6	3.7
溶媒 * 1 3	80	80	80
ガラス転移温度(℃)	190	140	138
引張強度(MPa)	85	70	65

【0082】実施例1-1~1-13と比較例1-1~ 1-2とを対比すると、実施例1-1~1-13は、ガ 30 ラス転移温度が25~40℃高くなっており、引張強 度、引張伸びのいずれも向上している。また、実施例1 -1~1-10と実施例1-11~1-13の対比から 一般式(I)以外のエポキシ化合物を併用することでガ ラス転移温度や引張強度、引張伸びを改善できることが 判る。

[0083]

【発明の効果】本発明の特定の構造を有するポリエポキ シ化合物をエポキシ樹脂積層板用の硬化性組成物に用い ることで、ガラス転移温度の高い、引張強度や引張伸び 40 に優れたエポキシ樹脂積層板用硬化性組成物が提供でき る。

フロントページの続き

(51) Int. C1. '

識別記号

FΙ

テーマコード(参考)

H 0 5 K 3/46

H 0 5 K 3/46

(72)発明者 福田 芳弘

東京都荒川区東尾久7丁目2番36号 旭電

化工業株式会社内

Fターム(参考) 4J002 CD022 CD051 EW156 FD136

GF00

4J036 AB07 AD11 DA01 DB05 DC02

DC17 FA12 JA08

5E343 AA02 AA11 CC61 CC65 CC67

DD21 ER11 GG13 GG16

5E346 CC09 EE31 HH11