Feuille 5 : Applications linéaires

Exercice 1

Parmi les fonctions suivantes, déterminer celles qui sont des applications linéaires :

- 1. La fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ donnée par f(x,y) = (0,2y).
- **2.** La fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ donnée par f(x,y) = (x+3,y).
- 3. La fonction $f: \mathbb{R}^* \to \mathbb{R}^*$ donnée par f(x) = 1/x. 4. La fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ donnée par $f(x,y) = (y^2, x y)$.
- **5.** La fonction $f: \mathbb{R}^3 \to \mathbb{R}^2$ donnée par f(x,y,z) = (x+z,y+z).

Exercice 2

Soient $f, g : \mathbb{R} \to \mathbb{R}$ des applications linéaires.

Montrer que $x \mapsto f(x) + g(x)$ est linéaire et que $x \mapsto f(x)g(x)$ n'est pas linéaire.

Exercice 3. La Trace matricielle

Pour une matrice carré réelle $A = (a_{i,j})_{1 \leq i,j \leq n}$, on définit l'application trace par $Tr(A) = \sum_{i=1}^{n} a_{i,i}$.

1. Posons

$$A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Calculer Tr(A), Tr(B) et Tr(A+B).

2. Montrer que l'application trace est linéaire.

Exercice 4.

Soit f l'homothétie de rapport $\alpha \in \mathbb{R}^*$ de \mathbb{R}^2 dans \mathbb{R}^2 donnée par $f(x,y) = \alpha(x,y)$.

- 1. Montrer que c'est une application linéaire.
- **2.** Déterminer $\ker f$.
- 3. Soit $(x', y') \in \mathbb{R}$, représenter graphiquement son antécédent par f. En déduire $\mathrm{Im} f$.

Exercice 5.

Soit R_{θ} la rotation d'angle $\theta \in [0, 2\pi]$ dans \mathbb{R}^2 .

- 1. Vérifier graphiquement que $R_{\theta}(\lambda x) = \lambda R_{\theta}(x)$.
- **2.** Vérifier graphiquement que $R_{\theta}(x+y) = R_{\theta}(x) + R_{\theta}(y)$.
- **3.** Que peut-on en déduire sur R_{θ} ?

Exercice 6.

Soit f une application linéaire de \mathbb{R}^n dans \mathbb{R}^n tel que $f^2(=f\circ f)=f$ (on dit que f est un projecteur).

- 1. Montrer que $\mathrm{Id}_{\mathbb{R}^n}-f$ est aussi un projecteur.
- **2.** Montrer que $\ker(\mathrm{Id}_{\mathbb{R}^n} f) = \mathrm{Im} f$.
- 3. En déduire que $\ker f$ et $\operatorname{Im} f$ sont supplémentaires.
- **4.** Soit p définie sur \mathbb{R}^2 par p(x,y)=(x,x).
 - (i) Montrer que c'est une projection.
 - (ii) Déterminer graphiquement sur quelle droite projette p
- (iii) Déterminer graphiquement sur quelle droite projette $\mathrm{Id}-p$

Exercice 7.

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (-2x + y + z, x - 2y + z).

- 1. Montrer que f est linéaire.
- **2.** Donner une base de $\ker(f)$. En déduire le rang de f.

3. Donner une base de Im(f).

Exercice 8.

Soit $f: \mathbb{R}^4 \to \mathbb{R}$ l'application définie par $f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4$.

On note $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

- 1. Calculer l'image des vecteurs de la base canonique par f. En déduire le rang de f.
- **2.** Déterminer la dimension de ker(f) et en donner une base.

Exercice 9.

Soit Φ la fonction définie sur l'ensemble des fonctions définies et continues sur $\mathbb R$ donnée par

$$\Phi: f \longmapsto \left(x \mapsto \int_0^x f(t)dt\right).$$

- 1. Montrer que Φ est linéaire.
- 2. Déterminer son noyau.
- 3. Déterminer son image.

Exercice 10.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On considère la fonction définie dans l'espace des suites et donnée par

$$f((u_n)_{n\in\mathbb{N}}) = (u_{n+2} - u_{n+1} - 2u_n)_{n\in\mathbb{N}}$$

- 1. Montrer que f est une application linéaire.
- **2.** Quelle relation doit vérifier les coefficients u_{n+2}, u_{n+1} et u_n de la suite $(u_n)_{n\in\mathbb{N}}$ pour être dans le noyau de f?

Rq. pour une base de noyau, cf l'exercice du TD Espaces vectoriels sur les suites récurrentes linéaires d'ordre 2.

Exercice 11.

Soit $y: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 . On considère l'application définie dans l'espace des fonctions de classe C^1 , à valeur dans l'espace des fonctions continues et donnée par

$$f(y) = y' + y$$

- 1. Montrer que f est une application linéaire.
- 2. Déterminer toutes les fonctions y de classe C^1 telles que y' + y = 0.
- **3.** En déduire une base du noyau de f.

Exercice 12.

Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit $f : \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie pour tout $u = (x, y, z) \in \mathbb{R}^3$ par f(u) = (6x - 4y - 4z, 5x - 3y - 4z, x - y).

- **1.** Déterminer un vecteur $a \in \mathbb{R}^3$, non nul, tel que $\ker(f) = Vect(a)$.
- **2.** Soit $b = e_1 + e_2$ et $c = e_2 e_3$.
 - a. Calculer f(b) et f(c).
 - b. En déduire que $\{b,c\}$ est une base de Im(f). (On peut utiliser une autre méthode.)
- **3.** Déterminer une ou plusieurs équations caractérisant Im(f) (i.e. pour $(x, y, z) \in \text{Im} f$ avoir des relations entre x, y, z).
- **4.** A-t-on $\ker(f) \oplus \operatorname{Im}(f) = \mathbb{R}^3$?

Exercice 13.

Soit $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 et $\mathcal{B}' = (f_1, f_2, f_3)$ la base canonique de \mathbb{R}^3 . Soit $u : \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie par

$$u(e_1) = f_1 - f_2 + 2f_3; \ u(e_2) = 2f_1 + f_2 - 3f_3; \ u(e_3) = 3f_1 - f_3; \ u(e_4) = -f_1 - 2f_2 + 5f_3.$$

- 1. Déterminer l'image par u du vecteur $x = (x_1, x_2, x_3, x_4)$.
- **2.** Déterminer une base de ker(u) et sa dimension.
- **3.** Déterminer une base de Im(u) et le rang de u.

Exercice 14.

Soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ (= l'ensemble des polynômes de degré 2).

Soit $u: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ défini par u(P) = P + (1 - X)P'.

- 1. Montrer que u est une application linéaire. De plus, montrer que $\operatorname{Im}(f) \subset \mathbb{R}_2[X]$.
- **2.** Déterminer ker(u).
- **3.** Déterminer $\dim(\ker(u))$ et le rang de u.
- **4.** Calculer l'image de la base canonique de $\mathbb{R}_2[X]$ par u. En déduire une base de $\mathrm{Im}(u)$.

Exercice 15.

Soit E un \mathbb{R} -espace vectoriel de dimension finie p. Soit f une application linéaire de E dans E.

- **1.** Soit k un entier. Montrer que ker $f^k \subset \ker f^{k+1}$.
- **2.** Comparer $\dim(\ker f^k)$ et $\dim(\ker f^{k+1})$.
- **3.** Soit k un entier. Montrer que $\operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k$.
- **4.** Comparer $\dim(\operatorname{Im} f^k)$ et $\dim(\operatorname{Im} f^{k+1})$.

Question hors-TD. Déterminer la monotonie de la suite entière $(\dim(\ker f^k))_k$. En déduire qu'à partir d'un certain rang k_0 la suite est constante. (Idem pour $(\dim(\operatorname{Im} f^k))_k$)

Exercice 16. - Question de cours

Soit $u: E \to E$ une application linéaire. Montrer que $[u \text{ est injective}] \Leftrightarrow [\ker u = \{0_E\}].$

Exercice 17.

Soit f une application linéaire de \mathbb{R}^n dans \mathbb{R}^m .

- 1. Montrer que si $v_1, v_2, ..., v_p$ engendrent \mathbb{R}^n alors $f(v_1), f(v_2), ..., f(v_p)$ engendrent $\mathrm{Im}(f)$.
- **2.** Montrer que si $f(v_1), f(v_2), ..., f(v_p)$ forment un système libre alors $v_1, v_2, ..., v_p$ est libre aussi.
- 3. Montrer que si f est injective et si $v_1, ..., v_p$ est un système libre alors $f(v_1), ..., f(v_p)$ est libre aussi.

Exercice 18.

Soit $u: E \to E$ une application linéaire et λ un réel. Soit $E_{\lambda} = \ker(u - \lambda i d_E)$.

- 1. Calculer u(x) pour $x \in E_{\lambda}$. Montrer que E_{λ} est un sous-espace vectoriel de E.
- **2.** Soit $F \subset E$ un sous-espace vectoriel de E. Montrer que u(F) est un sous-espace vectoriel de E.
- **3.** Si $\lambda \neq 0$, montrer que $u(E_{\lambda}) = E_{\lambda}$.

Exercice 19.

Soient E, F, G des \mathbb{R} -espaces vectoriels, avec f une application linéaire de E dans F et g une application linéaire de F dans G.

1. Montrer que $[\operatorname{Im} f \subset \ker g] \Leftrightarrow [g \circ f(x) = 0 \ \forall x \in E].$

Exercice 20.

Soit $u: E \to E$ une application linéaire, E étant un espace vectoriel de dimension n pair. Montrer que les deux assertions suivantes sont équivalentes :

(a)
$$u^2(x) = 0$$
 pour tout $x \in E$ et $n = 2\dim(\operatorname{Im}(u))$. (b) $\operatorname{Im}(u) = \ker(u)$.