

Introduction to Data Science

Lecture 24 Review for Final Exam Zicheng Wang

- Final Exam: May 15th, 8:30-10:30am, Location TBA
- Zero tolerance policy when it comes to cheating so, DON'T CHEAT
- Missing the final exam without prior notification to and approval of the instructors will automatically result in the "0" grade for the exam.
- You can bring one calculator, one non-electronic dictionary, one sheet of A4 paper with notes. Please note that any content on this sheet must be handwritten by yourself.

Probability

Probability Terminologies

- Random Experiment: a repeatable procedure
- Sample space: set of all possible outcomes Ω .
- Event: a subset of the sample space.
- Probability mass function (discrete), $P(\omega)$: gives the probability for each outcome $\omega \in \Omega$
- Probability density function (continuous), f(x): $P(a \le X \le b) = \int_a^b f(x) dx$

Probability Distributions

- Bernoulli Distribution: take value 1 with probability p and value 0 with probability 1 p. Mean= p. Variance= p(1 p).
- Binomial Distribution: the number of success in N independent experiments (for each experiment, the probability of success is p). Mean= Np. Variance=Np(1-p).
- Geometric Distribution: the number of experiments needed to get the first success (for each experiment, the probability of success is p). Mean= 1/p. Variance= $(1-p)/p^2$.

Probability Distributions

• Uniform Distribution: with the same likelihood, X takes a value within [a, b] where b > a. f(x) = 1/(b - a) for $x \in [a, b]$, and f(x) = 0 otherwise. Mean= (a + b)/2. Variance= $(b - a)^2/12$.

• Normal Distribution: Mean= μ . Variance= σ^2 .

$$f(x;\mu,\sigma) = rac{1}{\sigma\sqrt{2\pi}}\,\exp\!\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$
 .

Cumulative Distribution Function

• The CDF of a discrete random variable X is

$$F(x) = P(X \le x) = \sum_{\tilde{x} \le x} f(\tilde{x})$$

CDF for continuous random variable is defined as:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

✓
$$0 \le F(x) \le 1$$

✓ If $x \le y$, then $F(x) \le F(y)$

For both discrete and continuous RVs

Mean and Variance

- Discrete:
 - ✓ Probability mass function.
- Continuous
 - ✓ Probability density function.

Summation ↔ **Integration**

Mean

$$E[X] = \sum x f(x)$$

Variance

$$Var[X] = \sum (x - E[X])^2 f(x)$$

Mean

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$$

Expectation

•
$$E[\sum_i C_i X_i] = \sum_i C_i E[X_i]$$

•
$$E[C] = C$$

•
$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Conditional Probability

- Given the realization of event A, the probability of event B may change
- (Conditional probability) If A and B are events with P(B)>0, then the conditional probability of A given B, denoted by P(A|B), is defined as $P(A|B) = \frac{P(A \cap B)}{P(B)}$
- (Independence) Two events A and B are called independent if and only if $P(A \cap B) = P(A)P(B)$ $P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A)$

Statistics

Maximum Likelihood Estimate

• Given a model with an unknown parameter θ

- Given samples: X_1 , X_2 ..., X_n
- The probability that the models generates the samples is called **likelihood**. $L(\theta) = P(X_1, X_2, ..., X_n | \theta)$
- To determine the best $\theta \in \Theta$, we choose $\hat{\theta}$ such that $L(\theta)$ is maximized at $\theta = \hat{\theta}$. Maximum likelihood estimate (MLE)

Likelihood Function

- Given a model with an unknown parameter θ
- Given samples: X_1 , X_2 ,..., X_n

Continuous RV model:

- Likelihood: $L(\theta) = \Pi_i f(X_i | \theta)$
- Log-Likelihood: $l(\theta) = \sum_{i} \log(f(X_i | \theta))$

f: the model's probability density function (PDF)

Discrete RV model:

- Likelihood: $L(\theta) = \Pi_i P(X_i | \theta)$
- Log-Likelihood: $l(\theta) = \sum_{i} \log(P(X_i | \theta))$

P: the model's probability mass function (PMF)

Example

- Suppose heights of students follow a normal distribution.
 - \circ Given parameter μ , the model is $N(\mu, 1)$
- Samples: $X_1, X_2, ..., X_n$

•
$$L(\mu) = \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{-\frac{1}{2}\sum_i (X_i - \mu)^2}$$

•
$$l(\mu) = \text{Log L}(\mu) = -\frac{1}{2} \sum_{i} (X_i - \mu)^2 - \frac{n}{2} \log 2\pi$$

•
$$l'(\mu) = \sum_i (X_i - \mu) = 0$$
 $\widehat{\mu} = \overline{X}$.

problems in Hmw 2, Lecture 11

Hint: Go through all homework

Linear Regression

- $Y \sim N(\beta_0 + \beta_1 X, \sigma^2)$
 - Given the observation of X
 - \circ Y follows a normal distribution with mean $\beta_0 + \beta_1 X$
- Regression analysis: knowing β_0 , β_1 , σ^2 , you can predict X given Y

MLE: choose the best β_0 , β_1

MLE:
$$\widehat{\beta_1} = \frac{\Sigma_i (X_i - \overline{X}) \ (Y_i - \overline{Y})}{\Sigma_i (X_i - \overline{X})^2}$$

$$\widehat{\beta_0} = \overline{Y} - \widehat{\beta_1} \overline{X}$$

Optimization

Optimization problem in standard form

- \triangleright $x \in \mathbb{R}^n$ is the optimization variable
- $ightharpoonup f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

Line Segment

• Let $x_1 \neq x_2$ be two points in \mathbb{R}^n . Points of the form

$$x = \theta x_1 + (1 - \theta) x_2$$

where $\theta \in [0, 1]$, form the line segment between x_1 and x_2 .

$$heta = 1.2$$
 $heta = 1$
 $heta = 0.6$
 $heta = 0$
 $heta = 0$
 $heta = -0.2$

Convex Set

Set C is a convex set if the line segment between any two points in C lies in C.

• Formal definition: A set C is convex if $\forall x_1, x_2 \in C, \forall \theta \in [0,1]$ $\theta x_1 + (1-\theta)x_2 \in C$.

Remark: In this lecture, I will use **bold** form to represent a high dimension point. Without bold form, it represents a scalar

Convex Set Examples

- The empty set \emptyset , the singleton set $\{x_0\}$, and the complete space R are convex sets.
- An interval of $[a,b] \subset R$ is a convex set
- In R^n the set $H := \{x \in R^n : a_1x_1 + \dots + a_nx_n = c\}$ is a convex set
- Half spaces, e.g., $H := \{(x, y) : y \le ax + b\}$ are convex sets
- A disk with center (0,0) and radius c is a convex subset of R^2

Remark: In this lecture, I will use **bold** form to represent a high dimension point. Without bold form, it represents a scalar

Steps for Showing the Convexity of a Set

Prove H: = $\{(x, y): y = ax + b\}$ is a convex set

For any (x_1, y_1) and (x_2, y_2) in H,

- $y_1 = ax_1 + b$ $y_2 = ax_2 + b$ 1. Use the assumption that $(x_1, y_1), (x_2, y_2) \in H$
- $\theta(x_1, y_1) + (1 \theta)(x_2, y_2) = (\theta x_1 + (1 \theta)x_2), \theta y_1 + (1 \theta)y_2$
- Then for any $\theta \in [0,1]$ 2. Characterize the new point within the line segment
 - $\theta y_1 + (1 \theta)y_2 = a(\theta x_1 + (1 \theta)x_2) + b$
 - 3. Use (1) and (2) to show that the new point is in H

Property of Convex Sets

Lemma: If both S_1 and S_2 are convex sets, then $S_1 \cap S_2$ is also a convex set.

Hint: Go through homework problems

1.6, 2.2, 2.3, 2.7, 2.8 and similar

problems in Hmw 3

Convex Function

Definition: A function $f(x): \mathbb{R}^n \to \mathbb{R}$ is **convex** if (1) its domain is a convex set, and

(2) for any $x_1, x_2 \in dom(f)$ and any $0 \le \lambda \le 1$, we have

$$f(\mathbf{z}) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

where $\mathbf{z} = \lambda x_1 + (1 - \lambda)x_2$.

Function f evaluated at the combination of two points x_1, x_2 is no larger than the same combination of $f(x_1)$ and $f(x_2)$

Concave Function

Definition: A function $f(x): R^n \to R$ is **concave** if (1) the domain of f is a convex set, and (2) for any $x, y \in dom(f)$ and any $0 \le \lambda \le 1$, we have

$$f(\mathbf{z}) \ge \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

where $z = \lambda x + (1 - \lambda)y$.

If f is concave, then -f is convex!

If f is convex, then -f is concave!

Second Order Condition

Suppose f is a twice continuously differentiable function. Then f is convex if and only if

- (1) dom(f) is a convex set
- (2) for any $x \in \text{dom}(f)$, any unit vector e satisfying that there exists $\epsilon > 0$ such that $x + \epsilon e \in \text{dom}(f)$,

$$\frac{d^2f(\boldsymbol{x}+\theta\boldsymbol{e})}{d\theta^2}(0) \ge 0$$

One dimension: $f''(x) \geq 0$

Examples

Convex

- f(x) = ax + b (also concave)
- $f(x) = x^2$
- $f(x) = e^x$

Concave

- $f(x) = -x^2$
- $f(x) = \log(x)$ on $(0, +\infty)$
- $f(x) = \sin(x)$ on $[0, \pi]$

Convex Function VS. Convex Set

- $C = \{x: f(x) \le r\}$ is a convex set if f(x) is a convex function
 - C is also called a sublevel set of f(x)

- $C = \{(x, y) : y \ge f(x)\}$ is a convex set if and only if f(x) is a convex function.
 - C is also called the epigraph of f(x)

Application

Prove a unit disk, e.g., $H := \{(x, y): x^2 + y^2 \le 1\}$ is a convex set.

We consider $f(x) = \sum_i a_i x_i^2$ with $a_i > 0$. Given any point y, any unit vector e and any θ

$$g(\theta) = f(\mathbf{y} + \theta \mathbf{e}) = \sum_{i} a_i (y_i + \theta e_i)^2$$

Then $g''(0) = \sum_{i} 2a_{i}e_{i}^{2} \ge 0$. So f(x) is a convex function.

 $\{x: f(x) \le r\}$ forms a ball/disk or an ellipsoid, so it is a convex set.

Operations Preserving Convexity

If $f_1, ..., f_m$ are convex functions, then $f(x) = \max\{f_1(x), ..., f_m(x)\}$ is also convex.

Maximum of a set of convex functions

If $f_1, f_2, ..., f_n$ are convex functions, and $w_1, w_2, ..., w_n \ge 0$, then $f = w_1 f_1 + w_2 f_2 + \cdots + w_n f_n$ is also a convex function.

Nonnegative weighted sums of convex functions

Hint: Go through homework problems

3.1, 3.2, 3.3, 3.6, 3.8, 5.1 and similar

problems in Hmw 3

Convex Optimization Problem

minimize
$$f(x)$$

subject to $g_i(x) \le 0, i = 1, ..., m$
 $h_i(x) = 0, i = 1, ..., n$

A convex optimization problem needs to satisfy the following two conditions:

- Its feasible set is a convex set.
- Its objective function is a convex function.

Why Convex Optimization Problem?

- Any local minimum is also a global minimum.
- Any interior local minimum satisfies the first order condition.

$$abla f(p) = egin{bmatrix} rac{\partial f}{\partial x_1}(p) \ dots \ rac{\partial f}{\partial x_2}(p) \end{bmatrix}$$
 $abla f(x^*) = \mathbf{0}$

Example: Newsvendor Problem

- Suppose you want to start your own blind box business.
- Let D denote the one season (three months) random demand, which follows a uniform distribution in [10,100].
- At the beginning of each season, you place an order Q to Pop Mart, with a cost 10 Yuan for each blind box.
- Each blind box can be sold at a price of 20 Yuan.
- At the end of each season, unsold blind boxes are salvaged, and you get 3
 Yuan for each salvaged box.
- How many blind boxes should you order to maximize your expected profit?

Machine Learning

Supervised Learning

- Supervised machine learning algorithms utilize labeled data for training, where the correct outputs corresponding to input data are already known.
- For all samples, (x^i, y^i) , i=1, ... N, you can observe both the input data x^i and the label y^i

Training data

y=1 (cat)

y=0 (dog)

y=1 (cat)

y=0 (dog)

Supervised Learning

Training data

y=0 (dog)

y=1 (cat)

y=0 (dog)

Learning algorithm (optimization involved)

Classifier $h: X \to \{0,1\}$

For example:

$$h\left(\bigcap_{i \in I} \right)$$

K-Nearest Neighbor Classifier

- Find K training points x_i closest to x.
- If the majority of K-nearest neighbors of x belong to classifier c, label x as c.

The KNN Algorithm

- 1. Load the data
- 2. Set *K* of your choice to be the number of neighbors
- 3. For each new data to be classified
 - Calculate the distances between the new data and all the labeled data.
 - Record the entry (d_i, y_i) , where d_i is the distance between the new data and the ith labeled data, and y_i is the label of the ith data.
 - Sort the these entries with respect to distance (from smallest to largest).
- 5. Pick the first K entries from the sorted collection
- 6. Get the labels of the selected K entries
- 7. Choose the label with the largest frequency

The Choice of K

Overfitting

$$K = 1$$

$$K = 101$$

Overfitting and Underfitting

• A machine learning model is said to **overfit** the data when it learns patterns specific to the training data and make accurate predictions only on the training data.

• A machine learning model is said to **underfit** when it fails to capture the key patterns or relationships between variables in both the training and test data.

Logistic Regression

- Model the conditional probability of the label given the data
- Simplest case (two classes): $y \in \{0, 1\}$
- Logistic regression model:

$$p(y = 1|\mathbf{x}, \boldsymbol{\theta}, b) = \frac{1}{1 + \exp(-(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x} + b))}$$
$$p(y = 0|\mathbf{x}, \boldsymbol{\theta}, b) = \frac{\exp(-(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x} + b))}{1 + \exp(-(\boldsymbol{\theta}^{\mathsf{T}}\mathbf{x} + b))}$$

Train the Logistic Regression Model

- How to find θ and b? MLE
- Given m labeled samples (x^i, y^i) , i = 1, ...m
- Find θ and b such that the likelihood of observing the labeled samples is maximized

$$\max_{\boldsymbol{\theta},b} l(\boldsymbol{\theta},b) := \log \prod_{i=1}^{m} P(y^{i} | \boldsymbol{x}^{i}, \boldsymbol{\theta}, b) = \sum_{i=1}^{m} \log P(y^{i} | \boldsymbol{x}^{i}, \boldsymbol{\theta}, b)$$

Usually, we equivalently maximize the averaged likelihood

$$\max_{\boldsymbol{\theta},b} \frac{1}{m} l(\boldsymbol{\theta},b) := \frac{1}{m} \sum_{i=1}^{m} \log P(y^{i} | \boldsymbol{x}^{i}, \boldsymbol{\theta}, b)$$

Bad news: no closed form solution to the problem

Gradient Descent Method

• Start with an initial point $x^{(0)}$

 $\alpha^{(t)}$: the step size or learning rate

Update our point by the following rule:

$$x^{(t+1)} = x^{(t)} - \alpha^{(t)} f'(x^{(t)})_{cos}$$

- Stopping criteria:
 - $|x^{(t+1)} x^{(t)}| \le \varepsilon$
 - or $|f'(x^{(t)})| \le \varepsilon$

How to select $\alpha^{(t)}$? The selection of $\alpha^{(t)}$ will affect the rate at which we find the local minimizer. A bad selection of $\alpha^{(t)}$ can result in the failure of the algorithm.

If $\alpha^{(t)}$ is not well chosen, we may not meet the stop criteria.

$$f(x) = x^2$$

Suppose
$$\alpha^{(t)} = 1$$
.
 $x^{(t+1)} = x^{(t)} - f'(x^{(t)})$

If
$$x^{(t)} = -3$$

- f'(-3) = -6
- $x^{(t+1)} = 3$

If
$$x^{(t)} = 3$$

- f'(3) = 6
- $x^{(t+1)} = -3$

The updated points will oscillate between 3 and -3

Unsupervised Learning

• Data lacks structured or objective answers, such as labels.

• In other words, for all samples (x^i, y^i) , where i = 1, ... N, you can observe x^i but y^i remains unseen.

Training data

y-1 (cat)

y=0 (deg)

-1 (sat)

y-0 (deg)

Unsupervised Learning

There is no predefined correct output for a given input.

• Instead, the algorithm must interpret the input and make the appropriate decision.

The aim is to examine the data and discern underlying patterns.

K-Means Clustering

- Given m data points, $\{x^1, x^2, ..., x^m\}$
- Find k cluster centers, $\{c^1, c^2, ..., c^k\}$
- And assign each data point i to one cluster, $\pi(i) \in \{1, ..., k\}$
- Such that the sum of the distances from each data point to its respective cluster center is minimized

K-Means Clustering

- Step 1: Initialize k cluster centers, $\{c^1, c^2, ..., c^k\}$, randomly
- Step 2: Do
 - Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center (cluster assignment)

$$\pi(i) = \operatorname{argmin}_{i=1,\dots,k} \|x^i - c^j\|^2$$

Adjust the cluster centers (center adjustment)

$$c^{j} = \frac{1}{|\{i: \pi(i) = j\}|} \sum_{i: \pi(i) = j} x^{i}$$

While any cluster center undergoes changes, go to Step 2

Model Selection: Validation Set Approach

• Divide samples in to training data and test data.

- A set of model to choose {1,2,..., M}. (e.g, KNN, choose K=1,2,...M)
- For each model m,
 - use training data to train model
 - use the learned model to calculate the prediction error for test data. Err_m
- Choose model that has the smallest test error (min Err_m)

K-Fold Validation

• 5-fold cross-validation (blank: training; red: test)

- f_i is fitted by the training data in Fold i.
- For each fold, use test data to test the prediction error.
- Use the average error as the model's prediction error.

Error

Model 1 $h(\theta, X)$	Model 2 $g(\gamma, X)$
$Err_{h}(\boldsymbol{\theta}_1)$	$Err_{g}(\pmb{\gamma}_1)$
$Err_{h}(\boldsymbol{\theta}_2)$	$Err_{g}(oldsymbol{\gamma}_2)$
$\operatorname{Err}_{h}(\boldsymbol{\theta}_3)$	$Err_{g}(oldsymbol{\gamma}_3)$
$Err_{h}({m{ heta}}_4)$	$Err_{g}(oldsymbol{\gamma}_4)$
$\operatorname{Err}_{h}(\boldsymbol{\theta}_5)$	$Err_{g}(\pmb{\gamma}_5)$

Model 1 is better iff.

$$\frac{1}{K} \sum\nolimits_{i} Err_{h}(\theta_{i}) < \frac{1}{K} \sum\nolimits_{i} Err_{g}(\gamma_{i})$$

Hint: Go through homework problems

2.6, 2.7, 2.10, 3.3, 3.4 and similar

problems in Hmw 4