TD2 STATISTIQUES 2 / HPC - BIG DATA 2023

Exercice 1:

Rappel:

La densité d'un vecteur aléatoire gaussien \mathbf{Y} de dimension n, de matrice de variance-covariance inversible Γ et de vecteur espérance μ a pour expression :

$$f(\mathbf{Y}) = \frac{1}{(2\pi)^{\frac{n}{2}} \sqrt{\det(\Gamma)}} \exp\left(-\frac{1}{2}^{t} (\mathbf{Y} - \boldsymbol{\mu}) \Gamma^{-1} (\mathbf{Y} - \boldsymbol{\mu})\right)$$

On considère un modèle linéaire gaussien hétéroscédastique de dimension q, défini par :

$$Y = X\beta + e$$
, avec $e \sim N_n(0, \sigma^2 \Omega)$,

 σ^2 constante inconnue et $\Omega = \text{diag}(1,...,i,...,n)$, matrice diagonale.

La variance de la ième composante du vecteur ${\bf e}$ vaut dont $V[e_i]=i.\sigma^2$, pour i=1,...,n.

1. Donner la loi suivie par le vecteur aléatoire Y.

En déduire l'expression de la fonction de vraisemblance du vecteur Y notée $L(\beta, \sigma^2; Y)$ en fonction de $||M(Y-X\beta)||^2$, M étant une matrice à définir (indépendante de σ^2).

2. En maximisant la log-vraisemblance $\ln(L(\beta, \sigma^2; Y))$, montrer que les estimateurs du maximum de vraisemblance $\hat{\beta}_{\text{MV}}$ et $\hat{\sigma}^2_{\text{MV}}$ des paramètres β et σ^2 du modèle sont solutions du système :

$$||\mathbf{M}(\mathbf{Y}-\mathbf{X}\boldsymbol{\beta})||^2 = n\sigma^2$$

 $|^t\mathbf{X}\mathbf{M}^2(\mathbf{Y}-\mathbf{X}\boldsymbol{\beta}) = \mathbf{0}$

On considérera que la matrice 'XM2X est définie positive.

3. En déduire les expressions de $\hat{\beta}_{\text{MV}}$ et $\hat{\sigma}^{2}_{\text{MV}}$. L'estimateur $\hat{\beta}_{\text{MV}}$ est-il biaisé ?

Exercice 2:

On considère le modèle suivant :

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + e_i$$
 pour $i = 1,...,n$

Les e_i sont supposés indépendantes, identiquement distribuées suivant une loi normale centrée de variance σ^2 constante et inconnue.

On suppose également que :

$$\begin{split} \sum_{i=1}^{n} x_{ij} &= 0 & \sum_{i=1}^{n} x_{ij}^{2} &= n & \text{pour } j = 1,2,3 \\ \sum_{i=1}^{n} x_{i1} x_{i2} &= 0 & \sum_{i=1}^{n} x_{i1} x_{i3} &= 0 & \sum_{i=1}^{n} x_{i2} x_{i3} &= n\theta & \text{avec } -1 < \theta < 1 \\ \text{On note} & S_{o} &= \sum_{i=1}^{n} y_{i} & \text{et} & S_{j} &= \sum_{i=1}^{n} y_{i} x_{ij} & \text{pour } j = 1,2,3 \end{split}$$

- 1. Matriciellement le modèle s'écrit : $\mathbf{Y} = \mathbf{T}\boldsymbol{\beta} + \mathbf{e}$. Expliciter la matrice T et le vecteur $\boldsymbol{\beta}$. Quelle est la dimension q du modèle?
- 2. Ecrire les estimateurs des moindres carrés $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ et $\hat{\beta}_3$ explicitement en fonction de S_0 , S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7 , S_8 , S_8 , S_9 , S_9
- 3. Montrer que : $\|\mathbf{Y} \mathbf{T}\hat{\boldsymbol{\beta}}\|^2 = {}^{\mathrm{t}}\mathbf{Y}\mathbf{Y} {}^{\mathrm{t}}\mathbf{Y}\mathbf{T} ({}^{\mathrm{t}}\mathbf{T}\mathbf{T})^{-1} {}^{\mathrm{t}}\mathbf{T}\mathbf{Y}$ Montrer alors que : $\|\mathbf{Y} \mathbf{T}\hat{\boldsymbol{\beta}}\|^2 = \sum_{i=1}^n y_i^2 \frac{1}{n} \left(S_o^2 + S_1^2 + \frac{S_2^2 2\theta S_2 S_3 + S_3^2}{1 \theta^2} \right)$ En déduire l'expression d'un estimateur non biaisé de σ^2 .
- 4. Ecrire un test explicite (c'est-à-dire exprimé autant que possible à partir de quantités définies précédemment) de l'hypothèse nulle H₀: β₁=0 contre l'alternative H₁: β₁≠0 (donner : la statistique du test, sa loi sous H₀ et la règle de décision au niveau α avec puis sans exploitation de la p_value).

Exercice 3:

Soit Y une variable aléatoire expliquée avec la variable X par le modèle multiplicatif suivant :

$$Y_i = e_i^* \cdot \exp(\beta_0 + \beta_1 X_i + \beta_2 X_i^2) \quad \text{, avec i variant de 1 à 5.}$$
 (modèle 1)

 e_i * est un terme d'erreur aléatoire strictement positif ; β_0 , β_1 et β_2 les paramètres inconnus du modèle. On dispose d'une archive de 5 mesures Y_i du prédictand Y ainsi que des mesures correspondantes de la variable $X: X_1 = -2$, $X_2 = -1$, $X_3 = 0$, $X_4 = 1$ et $X_5 = 2$.

- 1. Proposer une fonction f de Y_i permettant de se ramener à un modèle linéaire gaussien classique (**modèle 2**). On suppose que les variables aléatoires réelles e_i , images des e_i * par f, sont indépendantes et identiquement distribuées suivant la loi Normale $N(0,\sigma^2)$, σ^2 étant un paramètre inconnu.
- 2. Matriciellement le **modèle 2** s'écrit : $\mathbf{f}(\mathbf{Y}) = \mathbf{T}\boldsymbol{\beta} + \mathbf{e}$, où $\mathbf{f}(\mathbf{Y})$ (resp. \mathbf{e}) est le vecteur de IR⁵ de composantes $\mathbf{f}(\mathbf{Y}_i)$ (resp. \mathbf{e}_i), et où $\boldsymbol{\beta}$ est le vecteur de IR³ des paramètres du modèle. Expliciter la matrice \mathbf{T} et le vecteur des paramètres $\boldsymbol{\beta}$.
- 3. Expliciter la matrice ^t**TT** puis calculer son inverse et l'exprimer sous la forme :

$$({}^{t}TT)^{-1} = \frac{1}{70} \begin{pmatrix} a & 0 & d \\ 0 & b & 0 \\ d & 0 & c \end{pmatrix}$$
 a, b, c et d étant 4 entiers relatifs à déterminer.

Soit $\hat{\beta}$ l'estimateur des moindres carrés de β . Exprimer les composantes $\hat{\beta}_0$, $\hat{\beta}_1$ et $\hat{\beta}_2$ du vecteur $\hat{\beta}$ en fonction des données de l'archive. Expliciter la loi de $\hat{\beta}$ en fonction de β , σ^2 et T. Les différents estimateurs sont-ils indépendants ?

- 4. Donner l'expression de l'estimateur $\hat{\sigma}^2$ de σ^2 en fonction des données de l'archive.
- 5. On se demande si le terme quadratique du modèle a vraiment un intérêt. On souhaite alors tester au niveau α l'hypothèse H_0 : « le coefficient β_2 est nul » contre l'hypothèse H_1 : « le coefficient β_2 est non nul ». Décrire le test envisagé : statistique du test, loi suivie par cette statistique sous H_0 , règle de décision en exploitant la p-value du test.
- 6. Après estimation du **modèle 2**, celui-ci permettrait obtenir des estimations du prédictand f(Y) notées $f(Y_i)^* = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2 X_i^2$. Comment déduiriez-vous simplement les estimations Y_i^* de la variable d'intérêt Y à partir des estimations $f(Y_i)^*$?
- 7. En exploitant les informations fournies ci-dessous, expliquer quel problème introduirait la démarche proposée à la question 6. Quel serait alors d'après vous la meilleure façon d'obtenir les estimations Y_i* de la variable Y à partir du **modèle 2**?

Une variable aléatoire Z > 0 suit une loi log-normale de paramètres μ et σ^2 si la variable $\ln(Z)$ suit une loi normale de mêmes paramètres et on a les espérances suivantes : $E[\ln(Z)] = \mu$ et $E[Z] = \exp(\mu + \sigma^2/2)$.

Exercice 4:

On considère le modèle linéaire gaussien $Y = X\beta + e$, avec $e \sim N_n(0, \sigma^2 I_n)$, β étant un vecteur de dimension q et X une matrice de dimension (n,q), supposée de plein rang avec n>q. On notera par la suite $\hat{\beta}$ et $\hat{\sigma}^2$ les estimateurs des moindres carrés respectivement de β et σ^2 . On définit le vecteur des résidus estimés ϵ par $Y = Y^* + \epsilon$, avec $Y^* = X\hat{\beta}$ = vecteur des valeurs ajustées de Y par le modèle.

- 1. Rappeler sans démonstration les expressions des estimateurs des moindres carrés $\hat{m{\beta}}$ et $\hat{\sigma}^2$.
- 2. Quelle est l'interprétation géométrique de Y*? Faire un schéma représentant Y, Y* et E.

On notera par la suite $\Pi_{\mathcal{Q}}$ et $\Pi_{\mathcal{Q}^{\perp}}$ les matrices de projection orthogonale respectivement sur les sous-espaces vectoriels \mathcal{Q} et \mathcal{Q}^{\perp} .

- 3. Calculer les espérances et matrices de variance-covariance des vecteurs $\hat{m{eta}}$, ${f Y}^*$ et ${f \epsilon}$.
- 4. Le modèle est de dimension 3 et on dispose de 13 observations du prédictand . On donne :

$${}^{t}XX = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 & 2 \\ 0 & 2 & 2 \end{pmatrix} \qquad {}^{t}XY = \begin{pmatrix} 10 \\ -5 \\ 3 \end{pmatrix} \qquad {}^{t}YY = 152.5$$

Calculer \hat{eta} , puis $\hat{\sigma}^2$.

- 5. En déduire une estimation de la matrice de variance-covariance de $\hat{\beta}$. Les estimateurs des composantes de β sont-ils indépendants ? Calculer le MSE des valeurs ajustées par ce modèle.
- 6. Le modèle exploite 2 prédicteurs X_1 et X_2 de la façon : $Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 \, X_{i1}. X_{i2} + e_i \ , \ avec \ i=1,\dots,13.$

Quelle sera alors l'impact, sur l'estimation du prédictand, d'une variation $\Delta X_1 = +3$ unités du prédicteur X_1 , le prédicteur X_2 restant constant et égal à 2 ?

Exercice 5:

On dispose d'une série chronologique de n moyennes annuelles de pression atmosphérique, relative à une station météorologique. Les archives mentionnent de manière peu explicite un changement d'emplacement de la station de mesure à la fin de l'année k. On cherche à vérifier si ce changement a entraîné un biais significatif des mesures, dû à la modification éventuelle d'altitude du baromètre. Pour cela, on modélise la série temporelle de la manière suivante :

Soit Y_i la moyenne des pressions pour l'année i, avec i = 1,...,n. On écrit le modèle sous la forme :

$$\begin{aligned} Y_i &= m + e_i & pour \ i &= 1, \dots, k \\ Y_i &= m + \delta + e_i & pour \ i &= k+1, \dots, n \end{aligned}$$

Les paramètres m et δ sont inconnus. δ représente le biais éventuellement introduit dans les mesures suite au changement de site. Les résidus e_i sont supposés indépendants et identiquement distribués chacun selon la loi normale $N(0,\sigma^2)$, σ^2 étant un paramètre inconnu.

Matriciellement le modèle s'écrit : $Y = T\beta + e$

On introduira les quantités suivantes : $\bar{Y}_k = \frac{1}{k} \sum_{i=1}^k Y_i$ et $\bar{Y}_{n-k} = \frac{1}{n-k} \sum_{i=k+1}^n Y_i$

- 1. Etablir les expressions, en fonction de \overline{Y}_k et \overline{Y}_{n-k} , des estimateurs des moindres carrés \hat{m} et $\hat{\delta}$ des paramètres m et δ du modèle.
- 2. Ces estimateurs sont-ils indépendants ? Donner leurs variances.
- 3. Etablir l'expression de l'estimateur $\hat{\sigma}^2$ de σ^2 en fonction de \overline{Y}_k et \overline{Y}_{n-k} .
- **4.** Proposer en le détaillant un test permettant de conclure sur la significativité d'un éventuel biais (Hypothèses H₀ et H₁, statistique du test, loi suivie sous H₀, règle de décision exploitant la p-value).

Ce test a été réalisé sur les données et a mené à une p-value de 0.06. Conclure quant à la significativité du biais et commenter le résultat sachant que n=20 et k=15.