Lecture 1 Introduction to Data Visualisation

DTS204TC Data Visualisation

 Computer-based visualisation (vis) systems provide visual representations of datasets designed to help people carry out tasks more effectively.

- Computer-based vis systems provide visual representations of datasets designed to help people carry out tasks more effectively.
 - Data management and data analysis

[Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Barsky, Munzner, Gardy, and Kincaid. IEEE TVCG (Proc. InfoVis) 14(6):1253-1260, 2008.]

- Computer-based vis systems provide visual representations of datasets designed to help people carry out tasks more effectively.
 - People: Visualisation is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.
 - vis is not necessary when fully automatic solution exists and is trusted
 - Many analysis problems are ill-specified
 - Possibilities
 - long-term use for end users (ex: exploratory analysis of scientific data)
 - presentation of known results (ex: published papers)
 - **>** ...

- Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.
 - External representation: replace cognition with perception

- Computer-based visualisation systems provide visual representations of datasets designed to help people carry out tasks more effectively.
 - o Why vision?
 - human visual system is high-bandwidth channel to brain
 - sound: lower bandwidth and different semantics
 - touch/haptics: impoverished record/replay capacity
 - taste, smell: no viable record/replay devices

- Computer-based visualisation systems provide visual representations of datasets designed to help people carry out tasks more effectively.
- Difference between vis and statics: vis represents all the data and presents more details
 - statics methods lose information, details matter

Identical statistics	
x mean	9
x variance	10
y mean	7.5
y variance	3.75
x/y correlation	0.816

Challenges and Limitations

- computational limits
 - computation time, system memory
- display limits
 - o pixels are precious & most constrained resource
 - o information density: ratio of space used to encode info vs unused whitespace
 - trade off between clutter and wasting space
 - find sweet spot between dense and sparse
- human limits
 - o human time, human memory, human attention

- Domain situation
 - o who are the target users?

Abstraction

- what is shown? data abstraction
- why is the user looking at it? task abstraction

• Idiom

- o How is it shown?
 - Visual encoding idiom: how to draw
 - Interaction: how to manipulate

Algorithm

- Domain situation
 - who are the target users?
- Abstraction
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
- Idiom
 - o How is it shown?
 - Visual encoding idiom: how to draw
 - Interaction: how to manipulate
- Algorithm

