Lab 3.1: RDD básico

Detalhes do método reduce()

- reduce(f: (T, T) ⇒ T): Reduzir elementos usando a função f()
 - f() processa dois elementos da RDD, retorna apenas um.
 - Por exemplo, fazendo a adição de dois números
 - Retorno: Um único elemento
 - f() é aplicada repetidamente, até que sobre apenar um elemento (o resultado)
- Exemplos:

M Elements

reduce

1 Element

```
> val numbers = sc.parallelize (List(1,2,3,4))

// Reduzir fazendo a soma de todos os elementos juntos
> numbers.reduce ( (a,b)=> a+b)
// Ou numbers.reduce(_+_)
res16: Int = 10

// Reduzir fazendo a multiplicação de todos os elementos (fatorial)
> numbers.reduce ( (a,b)=> a*b) // Ou reduce(_*_)
res19: Int = 24
```


Detalhes do método flatMap()

- flatMap(f: (T) ⇒ TraversableOnce[U]): aplica a função f para todos os elementos, e então, expande o resultado
 - f retorna um objeto que pode ser iterado (e.g. uma coleção)
 - Os elementos de cada iteração são combinados e formam uma RDD "expandida"


```
> val numbers = sc.parallelize (List(1,2,3))

// Mapear cada número para criar uma lista de 3 números
> val mapped = numbers.flatMap(a=> List(a-1, a, a+1))
mapped: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[4] at flatMap at <console>:23

> mapped.collect // 9 elementos - 3 para cada elemento original res14: Array[Int] = Array(0, 1, 2, 1, 2, 3, 2, 3, 4)
```


Detalhes do método union()

- union(other: RDD[T]): RDD[T]: Retorna a união de duas RDDs
 - Recebe como parâmetro duas RDDs
 - Dados duplicados estão incluídos (podem ser removidos com o método distinct())


```
> val odds = sc.parallelize (List(1,3,5,7))
> val evens = sc.parallelize (List(2,4,6,8))

// Criar a união
> val all = odds.union(evens)
all: org.apache.spark.rdd.RDD[Int] = UnionRDD[2] at union at <console>:25
> all.collect.sorted
res20: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8)
```


Resumo de Transformações em RDD

RDD $r = \{1,2,3,3\}$

Transformação	Descrição	Exemplo	Resultado
map(func)	Aplicar uma função em cada elemento	r.map(x => x*2)	{2,4,6,6}
filter(func)	Filtra todos os elementos e retorna apenas os que possuem o resultado da função = true	r.filter(x=> x % 2 == 1)	{1,3,3}
distinct	Remover dados duplicados	r.distinct()	{1,2,3}
flatMap	Funciona como o Map, mas um elemento pode retornar mais de um resultado		
mapPartitions	Funciona como o Map, mas executa em toda a partição, não em cada elemento		

Resumo de Transformações em RDD

RDD r1 = {1,2,3,3}

RDD $r2 = \{2,4\}$

Transformação	Descrição	Exemplo	Resultado
union(RDD)	Une dois RDDs (dados duplicados estão incluídos)	r1.union(r2)	{1,2,3,3,2,4}
intersection (RDD)	Retorna elementos em comum entre dois RDDs	r1.intersection(r2)	{2}
subtract(RDD)	Tira os elementos em comum entre dois RDDs	r1.subtract(r2)	{1,3,3}
sample	Obtém uma amostra dos dados de uma RDD		

Resumo de Ações em RDD

- Ações retornam valores, não RDDs
 - e.g. o método count() retorna um Long
 - Acionam as execuções do DAG

RDD $r = \{1,2,3,3\}$

Action	Description	Example	Result
count()	Conta todos os registros de uma RDD	r.count()	4
first()	Obtem o primeiro registro de uma RDD	r.first ()	1
take(n)	Obtem as primeiras N linhas	r.take(3)	[1,2,3]
collect()	Coletar todos os registros de uma RDD Isso que dizer que todos os dados vão para a memória de uma única máquina, então MUITO CUIDADO!	r.collect()	[1,2,3,3]
saveAsTextFile()	Salvar em um File System		
	Muito mais— veja a documentação		

Transformação Mais Complexa

- A API do RDD tem consideravelmente mais capacidade
 - Em particular, operações em pares de chave/valor
 - Estes são geralmente usados para agregação (agrupamento, contagem, etc.)
- Vamos primeiramente apresentar a API de DataFrame/Dataset
 - Possue uma interface simples
- Iremos introduzir operações mais complexas
 - Focando na API de DataFrame/Dataset
 - Fornecendo alguns exemplos de programação com a API do RDD

MINI-LAB: Reveja a documentação do RDD

Você encontra a documentação no site do Apache Spark

Mini-Lab

- Busque por http://spark.apache.org/docs/latest/
 - Na barra superior, clique em "API Docs | Scala"
 - No painel esquerdo, encontre o pacote org.apache.spark.rdd
 - Dica: Clique em "display packages only" para recolher a lista de pacotes
 - Procure por org.apache.spark.rdd e clique em "Show" para expandir
 - Dentro desse pacote, clique na entrada RDD
 - Como alternativa, pode pesquisar por RDD no filtro de pesquisa no canto superior esquerdo
 - Isso te leva para a documentação da API do RDD
- Reveja a API do RDD brevemente
 - Em especial, veja os métodos map(), filter(), count(), and take()

Lab 3.2: RDD na prática

Perguntas de Revisão

- O que é RDD?
- O que acontece quando você executa uma transformação em uma RDD?
- Onde ficam alocados os dados de uma RDD?
- Quais são algumas das transformações típicas usadas com RDDs?

Resumo

- RDD: Resilient Distributed Dataset
 - Coleção de elementos distribuídos e particionados pelos nós do cluster
 - Abstração de dados do Spark Core
- RDDs suportam transformações e ações
 - Transformações criam uma nova RDD a partir de outra RDD (e.g. Mapear dados)
 - São executados no modelo lazy criam um DAG que executa apenas quando ocorre uma ação nessa nova RDD
 - Ações (e.g. Coletar) extraem informações acionam a execução do DAG

Resumo

- Os dados de um RDD são particionados entre um Cluster Spark
 - Cada nó possue uma parte do dado, e cada task de cada nó processa apenas o que há nesse nó
- Operações comuns em um RDD:
 - filter: Filtrar os elementos de um RDD
 - map: Aplicar uma função em cada element de um RDD
 - collect: Coletar todos os dados.

Parte 4: Spark SQL, DataFrames, e Datasets

- Introdução
- SparkSession e Carregamento/Armazenamento de dados
- Introdução à DataFrame/Dataset
- Query DSL
- Datasets
- Métodos flatMap, explode, split

Parte 4.1: Introdução

Limitações do RDD

- API de baixo nível
 - Você específica o "Como" não o "O que"
 - A API possui pouca habilidade para lidar com formatos de dados comuns
 - e.g. JSON
- Opaco para o Spark (usa lambdas arbitrárias)
 - As consultas não podem ser facilmente otimizadas pelo Spark
 - Não é difícil escrever transformações ineficientes
- Sem suporte para consultas semelhantes a SQL
 - Limita a aplicabilidade
 - SQL é bem conhecido

Introdução ao Spark SQL

- Componente responsável pelo processamento de dados estruturados
 - Construído com base no Spark Core
- Suporta schema/estrutura para os dados no Spark
 - Estruturados como tabelas/linhas/colunas
 - Carrega dados de muitos tipos de origens
- Serve uma API de alto nível para processamento dos dados
 - Dataset/DataFrame
 - SQL
- Otimiza a execução, visando aumentar a performance
 - Catalyst: Otimizador de queries
 - Tungsten: Otimizador de uso de CPU/Memória
 - Desempenho estável entre as API's (Scala, Python, R, Java...)

Formatos de dados suportados

- Pode carregar dados de diferentes tipos de origens
 - Por padrão já suporta muitos tipos de dados
 - Muitos outros padrões podem ser suportados com o uso de bibliotecas externas
 - Pode inferir a estrutura do schema para alguns formatos

DataFrames e Datasets

- Coleções de dados distribuídos (como as RDDs)
 - DataFrame: Adiciona informações de schema
 - Dataset: Possue schema, e adiciona segurança de tipo em tempo de compilação
- Query DSL (Domain Specific Language)
 - API abrangente de consultas filter, map, groupBy, etc.
 - Interface simples e muito fluente
- Consultas em SQL são 100% suportadas
 - Sintaxe familiar para os desenvolvedores
 - Necessita de mais recurso em alguns casos
 - e.g. processar muitas agregações em uma única consulta

Exemplo de processamento simples

- Considere um arquivo com dados de pessoas
 - Nome, gênero, e idade
 - Devemos encontrar a media da idade para cada gênero?
- Nós vamos ilustrar isso usando RDDs e DataFrames
 - RDDs vão usar um arquivo TXT (indicado abaixo)
 - DataFrames vão usar um arquivo JSON (indicado abaixo)

```
John M 35
Jane F 40
Mike M 20
Sue F 52

{"name": "John", "gender": "M", "age": 35 }
{"name": "Jane", "gender": "F", "age": 40 }
{"name": "Mike", "gender": "M", "age": 20 }
{"name": "Sue", "gender": "F", "age": 52 }
```


Exemplo de processamento com RDDs

- Abaixo, nós calculamos a média de idades com RDDs
 - Não é a única forma, e também não é a melhor
- Mas, podemos identificar algumas "dores":
 - Implementação complexa
 - Pelo fato de que o RDD n\u00e3o infere o tipo e nem a estrutura do dado, temos que fazer isso.

Exemplo de processamento com DataFrame

- Abaixo, nós calculamos a média usando um DataFrame
- Percebeu a diferença?
 - Implementação muito mais simples
 - O Spark entende os detalhes dos dados e pode otimizar

Exemplo de processamento com SQL/DataFrame

- Abaixo, calculamos a média usando DataFrames e SQL
- Mais simples até mesmo que o exemplo anterior
 - Mais pessoas entendem SQL
 - O Spark entende os detalhes dos dados e pode otimizar

Exemplo de processamento com DataSet

- Abaixo, calculamos a média usando DataSets
 - Parecido com DataFrames mas com segurança de tipo
 - Usa função lambda para agrupar

```
> val folksDF=spark.read.json("people.json") // Obter o dado
// Declarar uma classe para representar o dado
> case class Person (name: String, gender: String, age: Long)
// Utilizar a classe
> val folksDS=folksDF.as[Person]
> folksDS: org.apache.spark.sql.Dataset[Person] = [age: bigint... ]
// Obter a média dos grupos
> folksDS.groupByKey(T => T.gender).agg(avg($"age").as[Double]).show
+----+
|value|avg(age)|
   F| 46.0|
     M \mid 27.5 \mid
```


O otimizador Catalyst

- Otimizador de queries em dados estruturados
 - Trabalha com Dataset, DataFrame, e SQL
 - Automáticamente transforma as queries visando aumentar a performance
- Fácilmente extendido para suportar:
 - Novas origens de dados semi-estruturados (e.g JSON)
 - Fontes de dados "inteligentes" na qual é possível enviar filtros (e.g. HBase)
 - Funções e tipos definidos pelo client
- O Catalyst infere o schema do dado e a querie
 - Fornecendo muitas oportunidades de otimização
 - Operações "lazily evaluated", ou seja, a sequência completa pode ser analisada para otimizações
 - Lambdas não podem ser analisadas (elas são opacas)

Performance altamente melhorada

- A performance do DataFrame é muito melhor que o RDD
- Performance parecida entre as linguagens (e.g. Scala and Python)
 - Elas criam planos de execução parecidos

Runtime for an example aggregation workload (secs)

O otimizador Tungsten

- Melhora consideravelmente a performance de CPU/Memória do Spark
 - CPU/memory estão cada vez mais se tornando gargalos
 - I/O, performance de rede, e armazenamento de dados são bons no Spark
 - O desempenho fica mais perto dos limites de hardware
- Armazena dados em memória em formato binário em modo "offheap"
 - Diferente do modo de armazenamento de objetos em Java(on-heap)
 - Reduz o uso da memória "heap" e elimina o Garbage Collector (GC)
 - Pode operar diretamente com o objeto binário (sem desserialização)
 - Compreende e otimiza em diferentes caches (L1, L2, ...)
- Gera códigos para avaliação de expressão
 - Sem a necessidade de desserialização para muitas operações

Memória reduzida / Performance aumentada

Serialization / Deserialization Performance

Estrutura do Spark com DataFrames/Datasets

- Spark SQL é um bloco de construção central
 - Suporta otimizações do Catalyst para outros módulos
 - Outros módulos estão evoluindo
 - GraphX (baseado em RDD) => GraphFrames (baseado em DataFrame)

Resumo

- Spark SQL: API de alto nível para processamento em Spark
 - Trabalha com dados estruturados (e semi-estruturados)
- Possue os componentes:
 - API DataFrame/Dataset
 - API SQL
 - Catalyst (otimizador de query)
 - Tungsten (otimizador de processamento)
- Se tornando a interface principal para desenvolvimento Spark
 - Novos desenvolvimentos baseados no uso de DataFrame/Dataset
 - Incluindo bibliotecas de níveis mais altos, como o processamento em grafos (GraphFrames)
 - APIs continuam evoluindo ainda existe a necessidade de RDDs para alguns casos

Parte 4.2: SparkSession e Carregamento/Armazenamento de dados

Principais tipos de API

- Todos os tipos falados até agora estão em: org.apache.spark.sql
- DataFrame: Coleção distribuída com um schema
 - Sinônimo para Dataset [Row]
- Dataset: Coleção fortemente tipada com schema
- Column: Uma coluna em um DataFrame
 - Usado para criar expressões no Query DSL
- Row: Representa o dado no formato tabular
- SparkSession: Ponto de entrada para o Spark SQL
 - Substitui os antigos objetos SQLContexte HiveContext
 - Pré-criados no Spark shell
- DataFrameReader/Writer: Para carregar/armazenar dados

SparkSession (ponto de entrada da API)

- As habilidades da classe incluem:
 - Ler arquivos de dados (via DataFrameReader)
 - Criar instâncias de DataFrame e Dataset
 - Executar consultas SQL
- Instâncias acessadas a partir de um Builder (uma Fábrica)
 - Builder é parte do objeto SparkSession
 - Mais detalhes em breve
 - Uma sessão é pré-criada no REPL na variável spark
 - getOrCreate() para criar ou retornar uma instância já criada

```
> SparkSession.builder.getOrCreate
org.apache.spark.sql.SparkSession =
org.apache.spark.sql.SparkSession@748321c5
> spark
org.apache.spark.sql.SparkSession =
org.apache.spark.sql.SparkSession@748321c5
```


DataFrameReader

- Interface para carregar dados de uma origem externa
 - Obtida via SparkSession.read()
- Por padrão já suporta leitura de formatos de dados comuns
 - Infere o schema automáticamente
 - json, parquet, csv, jdbc para databases relacionais, hive, entre outros
- Abaixo, o método spark.read() retorna um DataFrameReader
 - json("people.json") carrega dados do arquivo people.json
 - O dado precisa estar no formato de linhas JSON
 - Um objeto JSON por linha, mais algumas outras limitações

val folksDF=spark.read.json("people.json") // Obter o dado

DataFrameReader API

- Métodos para carregar arquivos em formatos específicos
 - csv(path: String): Carrega um arquivo no formato CSV
 - jdbc(...): Carrega dados de um database relacional
 - json(path: String): Carrega um arquivo no formato JSON
 - parquet(path: String): Carrega um arquivo no formato PARQUET
 - text(path: String): Carrega um arquivo no formato TEXTO
 - Entre outros
- Pode-se também explicitar detalhes do formato dos dados
 - **format()**: Específicar o formato do dado
 - Recebe uma classe ou um nome de um formato (e.g json)
 - schema(): Específicar o schema do dado
 - Detalhes do dado (via instâncias StructType/StructField)

val folksDF=spark.read.format("json").schema(...).load("people.json")

DataFrameWriter

- Interface para armazenar dados em uma fonte externa
 - Obtido via SparkSession.write()
 - Habilidades similares ao DataFrameReader
 - Por padrão suporta escritas nos formatos csv, jdbc, json, parquet, e texto
- Abaixo, exemplificamos o armazenamento de dados no formato parquet
 - O dado foi lido no formato JSON
 - Pode-se fácilmente transformar o dado (JSON => parquet)

```
val folksDF=spark.read.json("people.json") // Obter o dado (JSON)

folksDF.write.parquet("people.parquet") // Escrever o dado (parquet)
```


Múltiplos arquivos de escritas

- O formato de armazenamento para a escrita de um DataFrame é:
 - Pasta para armazenamento com o nome escolhido
 - Múltiplos arquivos com os dados dento da pasta
 - Um arquivo para cada partição, que geralmente vai ser escrito para um File System distribuído (e.g. HFS)
 - É possível escrever tudo em um único arquivo
- Abaixo, um exemplo de escrita para o people.parquet
 - 3 partições

Interfaces fluentes

- Interfaces fluentes foram criadas para tornar o código mais legível e fluido
 - Torna simples a leitura e a escrita
 - Geralmente permite fazer cadeias de chamadas e as vezes usam Builders
- A API do Spark SQL utiliza Interfaces Fluentes
 - Abaixo, um exemplo de Interface Fluente na API do Spark SQL e outro exemplo do não uso de uma Interface Fluente para o mesmo caso

```
val folksDF=spark.read.format("json").schema(...).load("people.json")
```

```
// Exemplo não fluente
val reader = spark.read
reader.setFormat("json")
reader.setSchema(...)
val folksDF=reader.load("people.json")
```


MINI-LAB — Reveja a Documentação

- Acesse a documentação do Spark em:
 - http://spark.apache.org/docs/latest/
 - Busque por org.apache.spark.sql no paínel esquerdo
- Reveja:
 - Classe SparkSession (clique em C perto dele na lista)
 - Reveja os métodos read() e createDataFrame()
 - Objeto SparkSession (clique em O perto dele na lista)
 - Veja os métodos
 - Siga o link para o Builder da classe e reveja-o
 - DataFrameReader e DataFrameWriter
 - · Reveja os métodos que aprendemos nessa aula

Formatos de dados

- O Spark suporta muitos formatos de dados
- Vamos passar por uma breve visão geral dos formatos suportados
- Os formatos suportados:
 - Formatos baseados em linhas e colunas
 - Formatos baseados em Texto (e.g. JSON and CSV)
 - Formatos Binários

Visão geral: Armazenamento baseado em linhas

- Linhas armazenada fisicamente juntas
 - Geralmente bastante indexado (e.g. DB relacional)
 - Uma boa escolha para consultas do tipo "select *"
 - Não é uma boa escolha para agregação (e.g. calcular média)

Visão geral: Armazenamento baseado em colunas

- Armazenamento de colunas fisicamente juntas
 - Otimizado para agregação de uma única coluna select MAX(temp) from sensors;
 - Não é uma boa escolha para buscas do tipo "select *"

Formatos de dados comuns baseados em texto

- Todos são baseados em linhas
- JSON: (JavaScript Object Notation)
 - Formato leve de transferência de dados
 - Leitura via DataFrameReader.json()
 - Automáticamente infere o schema
- CSV: (Comma Separated Values)
 - Formato simples de dados tabulares
 - Leitura via DataFrameReader.csv()
 - Autimáticamente infere o schema
- Formato de texto live
 - Leitura via DataFrameReader.text()
 - Geralmente analisa o texto e aplica um schema manualmente

Parquet

- Formato de dados colunares (um projeto Apache)
 - Armazenamento baseado em binários, compactação efiente
 - O schema é armazenado junto do arquivo (o arquivo é autodescritivo)
 - Muito eficiente para consultas colunares
 - Possui bom suporte no ecossistema Hadoop e em outras ferramentas
- Escolhido como formato padrão em muitos lugares
- Leitura via DataFrameReader.parquet()

Outros formatos

- Avro: Formato binário baseado em linhas (projeto Apache Avro)
 - O schema é armazenado junto de parte do dado
 - Suporta versionamento de schema
 - Suportado pela biblioteca spark-avro externa do Spark
- Formatos baseados no Hadoop (binário / sequencial)
 - Baseados em linhas, pares de chave/valor
 - Suportado por métodos do SparkContext (binaryFile, hadoopFile, newAPIHadoopFile)
 - Baseados em RDD
- Optimized Row Columnar (ORC): Formato hibrido de linhas e colunas
 - Armazena linhas, e dentro de linhas possue-se dados armazenados em formato colunar
 - Comum encontrar em armazenamento de dados do Hive
 - O Spark pode suportar usando as bibliotecas do Hive

