Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 15

Esercizi svolti

Es. 1. Una funzione di 4 variabili, $f(x_4,x_3,x_2,x_1)$, vale 1 se $x_4 + x_2x_1 = 0$ mentre risulta non specificata (termini don't care) se si verifica la condizione $x_4x_1 = 1$. Progettare la rete che realizza la funzione f sia tramite PLA che tramite multiplexer.

SOLUZIONE:

La tabella della funzione è:

x4	x3	x2	x1	f
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	-
1	0	1	0	0
1	0	1	1	-
1	1	0	0	0
1	1	0	1	-
1	1	1	0	0
1	1	1	1	-

La tabella riorganizzata come mappa di Karnaugh è:

\ x2 x1 x4 x3 \	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	0	х	х	0
10	0	x	х	0

Dalla mappa di Karnaugh si ottiene la seguente espressione per f (i letterali complementati sono sottolineati):

 $f = \underline{x2} x1 + \underline{x4} \underline{x1}$

La realizzazione con PLA si ottiene utilizzando l'espressione minimizzata ed è:

La realizzazione con multiplexer non necessita di minimizzazione, basta fissare gli ingressi ai valori della funzione f e porre sulle linee di controllo le variabili, la cui combinazione determina il valore dell'uscita f. Serve un multiplexer 16 a

N.B. Nella realizzazione seguente i mintermini corrispondenti ai "don't care" sono stati posti a 0.

Es. 2. Si vuole realizzare un circuito combinatorio che realizza la funzione y = x + 3, con x un intero nella rappresentazione in complemento a 2 in [-8, 7] e y espresso nella rappresentazione in complemento a 2 con 4 bit. Si considerino "don't care" i casi in cui la y non è rappresentabile.

Si realizzino tramite PLA le espressioni minime per i due bit meno significativi della funzione, tramite ROM tutta la funzione e tramite MULTIPLEXER 8-a-1 il bit meno significativo.

SOLUZIONE:

La funzione richiesta è:

X ₃	X ₂	X_1	X_0	Y ₃	Y ₂	Y_1	Y ₀
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1

0	1	0	1	X	X	X	X
0	1	1	0	X	X	X	X
0	1	1	1	X	X	X	X
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	1	1	0	1
1	0	1	1	1	1	1	0
1	1	0	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	0	0	0	0	1
1	1	1	1	0	0	1	0

Le SOP minime per i due bit meno significativi sono:

da cui il PLA che le realizza è:

La ROM si ottiene direttamente dalla tabella della funzione:

Infine, per quanto riguarda il MUX, Possiamo utilizzare un multiplexer 8-a-1 usando come segnali di controllo X_0 , X_1 e X_2 . I canali di input del multiplexer sono fissati e corrispondono ai valori di Y_0 nella seconda metà della tabella di verità, che sono uguali a quelli della prima metà a parte i "don't care": **10101010**. Pertanto, in questo caso, la variabile X_3 non viene usata per nulla.

Esercizi da svolgere

Es. 1. Realizzare con PLA la funzione di quattro variabili f(x3, x2, x1, x0) = OR(m2, m3, m4, m9), dont(m0, m1, m6, m11).

Es. 2. Realizzare con multiplexer 4-a-1, secondo lo schema illustrato a lezione, le due funzioni di tre variabili f(a2, a1, a0) = OR(m0, m3, m6, m7) e g(a2, a1, a0) = OR(m2, m4, m5, m6).

Es. 3. Si consideri la seguente funzione booleana:

	x	у	Z	tI	t2	t3	<i>t4</i>
Ī	0	0	0	0	0	0	0
	0	0	1	0	1	1	0
	0	1	0	1	0	0	1
	0	1	1	1	1	1	0
	1	0	0	1	0	0	1
	1	0	1	1	1	0	0
	1	1	0	1	1	0	1
	1	1	1	0	0	0	1

- a) Si realizzi la funzione tramite una ROM.
- b) Si realizzino t1 e t4 tramite un PLA.
- c) Si realizzino t2 e t3 tramite un MUX 4-a-1 e 2-a-1, rispettivamente.