EJEMPLO 10 En el ejemplo 3 demostramos que las rectas

$$L_1$$
: $x = 1 + t$ $y = -2 + 3t$ $z = 4 - t$
 L_2 : $x = 2s$ $y = 3 + s$ $z = -3 + 4s$

son oblicuas. Calcule la distancia entre ellas.

SOLUCIÓN Puesto que las dos rectas $L_{\rm 1}$ y $L_{\rm 2}$ son oblicuas, puede pensarse que están en los planos paralelos P_1 y P_2 . La distancia entre L_1 y L_2 es la misma que la distancia entre P_1 y P_2 , la cual puede calcularse como en el ejemplo 9. El vector normal común para ambos planos debe ser ortogonal a $v_1 = \langle 1, 3, -1 \rangle$ (la dirección de L_1) y $v_2 = \langle 0, 1, 4 \rangle$ (la dirección de L_2). Así que un vector normal es

$$\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 0 & 1 & 4 \end{vmatrix} = 13\mathbf{i} - 4\mathbf{j} + \mathbf{k}$$

Si hacemos que s=0 en las ecuaciones de L_2 , obtenemos el punto (0,3,-3) sobre L_2 , y por consiguiente una ecuación para P, es

$$13(x-0) - 4(y-3) + 1(z+3) = 0$$
 o $13x - 4y + z + 15 = 0$

Si ahora hacemos t=0 en la ecuación para L_1 , encontramos el punto (1,-2,4) sobre P_1 . Por lo que la distancia entre L_1 y L_2 es la misma que la distancia entre (1, -2, 4) a 13x - 4y + z + 15 = 0. Por la fórmula 8, esta distancia es

$$D = \frac{|13(1) - 4(-2) + 1(4) + 15|}{\sqrt{13^2 + (-4)^2 + 1^2}} = \frac{40}{\sqrt{186}} \approx 2.9$$

EJERCICIOS 11.5

1-4 a Calcule la ecuación vectorial y las ecuaciones paramétricas para la recta que pasa por el punto dado y es paralela al vector a.

1.
$$(3, -1, 8)$$
, $a = \langle 2, 3, 5 \rangle$

2.
$$(-2, 4, 5)$$
, $a = (3, -1, 6)$

3.
$$(0,1,2)$$
, $a = 6i + 3j + 2k$

4.
$$(1, -1, -2)$$
, $a = 2i - 7k$

5-10

Determine las ecuaciones paramétricas y las simétricas para la recta que pasa por los puntos dados.

6.
$$(-1,0,5)$$
, $(4,-3,3)$

7.
$$(3, 1, -1)$$
, $(3, 2, -6)$

8.
$$(3,1,\frac{1}{2}), (-1,4,1)$$

9.
$$\left(-\frac{1}{2}, 1, 1\right)$$
. $(0.5 - 8)$

9.
$$\left(-\frac{1}{3}, 1, 1\right)$$
, $(0, 5, -8)$ 10. $(2, -7, 5)$, $(-4, 2, 5)$

11. Muestre que la recta que pasa por los puntos (2, -1, -5) y (8, 8, 7) es paralela a la recta que pasa por los puntos (4, 2, -6) y (8, 8, 2).

12. Demuestre que la recta que pasa por los puntos (0, 1, 1) y (1, -1, 6)es perpendicular a la que pasa por los puntos (-4, 2, 1) y (-1, 6, 2). 13. (a) Encuentre las ecuaciones simétricas para la línea que pasa por el punto (0, 2, -1) y es paralela a la recta con las ecuaciones paramétricas x = 1 + 2t, y = 3t, y z = 5 - 7t.

(b) Determine los puntos en los que la recta requerida en el inciso (a) se cruza con los planos coordenados.

-

I

14. (a) Encuentre las ecuaciones paramétricas de la recta que pasa por (5, 1, 0) y que es perpendicular al plano 2x - y + z = 1.

(b) ¿En qué puntos esta recta cruza a los planos coordenados?

15-18 \blacksquare Determine si las rectas L_1 y L_2 son paralelas, obliguas, o se cruzan. Si se cruzan, encuentre el punto de intersección.

15.
$$L_1$$
: $\frac{x-4}{2} = \frac{y+5}{4} = \frac{z-1}{-3}$, L_2 : $\frac{x-2}{1} = \frac{y+1}{3} = \frac{z}{2}$

16.
$$L_1$$
: $\frac{x-1}{2} = \frac{y}{1} = \frac{z-1}{4}$, L_2 : $\frac{x}{1} = \frac{y+2}{2} = \frac{z+2}{3}$

17.
$$L_1$$
: $x = -6t$, $y = 1 + 9t$, $z = -3t$
 L_2 : $x = 1 + 2s$, $y = 4 - 3s$, $z = s$

$$= x = 1 \div t, y = 2 - t, z = 3t$$

 $= x = 2 - s, y = 1 + 2s, z = 4 + s$

Encuentre la ecuación del plano que pasa por el punto dado exector normal que se especifica.

$$=$$
 $\stackrel{\checkmark}{-}$,5), $\mathbf{n} = \langle 7, 1, 4 \rangle$

$$\underline{}$$
 $-5.1,2), n = (3,-5,2)$

$$=$$
 -2.3), $n = 15i + 9j - 12k$

$$-1,-6,-4$$
), $n = -5i + 2j - 2k$

Determine la ecuación del plano que pasa por el punto dado paralelo al plano que se indica.

$$=$$
 5.5, -2), $x + y - z + 1 = 0$

$$3.0.8$$
), $2x + 5y + 8z = 17$

$$=$$
 -1,3,-8), $3x - 4y - 6z = 9$

$$=$$
 2, -4, 5), $z = 2x + 3y$

Encuentre una ecuación para el plano que pasa a través de

$$=$$
 3,0,0), (1,1,1), (1,2,3)

$$=$$
 $(-1,1,-1), (1,-1,2), (4,0,3)$

$$= (1,0,-3), (0,-2,-4), (4,1,6)$$

$$\pm 1$$
 (2, 1, -3), (5, -1, 4), (2, -2, 4)

E Determine una ecuación para el plano que pasa a través del dado y que contiene a la recta especificada.

$$x = (1, 6, -4); \quad x = 1 + 2t, y = 2 - 3t, z = 3 - t$$

$$(-1, -3, 2); x = -1 - 2t, y = 4t, z = 2 + t$$

$$\equiv (0,1,2); x = y = z$$

35.
$$(-1,0,1)$$
; $x=5t, y=1+t, z=-t$

Encuentre el punto en el que la recta dada intersecta al plano medificado.

$$x = 1 + t$$
, $y = 2t$, $z = 3t$; $x + y + z = 1$

$$x = 5$$
, $y = 4 - t$, $z = 2t$; $2x - y + z = 5$

$$\exists \vec{x}$$
, $x = 1 + 2t$, $y = -1$, $z = t$; $2x + y - z + 5 = 0$

$$32 x = 1 - t, y = t, z = 1 + t; z = 1 - 2x + y$$

Determine los números directores para la recta de intersección de los planos x + y + z = 1 y x + z = 0.

40. Calcule el coseno del ángulo entre los planos x + y + z = 0 y x + 2y + 3z = 1.

41-46 ■ Determine si los planos son paralelos, perpendiculares o ringuna de las dos cosas. Si no son ninguna de las dos cosas, recuentre el ángulo entre ellos.

43.
$$x + 4y - 3z = 1$$
, $-3x + 6y + 7z = 0$

44.
$$2x + 2y - z = 4$$
, $6x - 3y + 2z = 5$

45.
$$2x + 4y - 2z = 1$$
, $-3x - 6y + 3z = 10$

46.
$$2x - 5y + z = 3$$
, $4x + 2y + 2z = 1$

47-48 • (a) Determine las ecuaciones simétricas para la recta de intersección de los planos, y (b) calcule el ángulo entre los planos.

47.
$$x + y - z = 2$$
, $3x - 4y + 5z = 6$

48.
$$x - 2y + z = 1$$
, $2x + y + z = 1$

49-50 \blacksquare Dé las ecuaciones paramétricas para la recta de intersección de los planos.

49.
$$z = x + y$$
, $2x - 5y - z = 1$

50.
$$2x + 5z + 3 = 0$$
, $x - 3y + z + 2 = 0$

- 51. Encuentre una ecuación para el plano que consiste de todos los puntos que están equidistantes de los puntos (1, 1, 0) y (0, 1, 1).
- 52. Determine una ecuación para el plano que consiste de todos los puntos que están equidistantes de los puntos (-4, 2, 1) y (2, -4, 3).
- 53. Encuentre una ecuación para el plano que pasa por la recta de intersección de los planos x + y z = 2 y 2x y + 3z = 1 y pasa por el punto (-1, 2, 1).
- 54. Encuentre la ecuación del plano que pasa por la recta de intersección de los planos x-z=1, y y+2z=3, y que es perpendicular al plano x+y-2z=1.
- 55. Determine la ecuación del plano cuya intersección con el eje x es a, con el eje y es b, y con el eje z es c.
- 56. (a) Encuentre el punto en el que las rectas $\mathbf{r} = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$ y $\mathbf{r} = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle$ se cruzan.
 - (b) Determine una ecuación del plano que contiene esas rectas.
- 57. Dé las ecuaciones paramétricas para la recta que pasa por el punto (0, 1, 2) y que es paralela al plano x + y + z = 2, y perpendicular a las rectas x = 1 + t, y = 1 t, z = 2t.
- 58. Calcule las ecuaciones paramétricas de la recta que pasa por el punto (0, 1, 2), que es perpendicular a la recta x = 1 + t, y = 1 t, z = 2t, y que cruza a esa recta.
- 59. ¿Cuáles de estos cuatro planos son paralelos? ¿Hay algunos que sean idénticos?

$$P_1$$
: $4x - 2y + 6z = 3$ P_2 : $4x - 2y - 2z = 6$
 P_3 : $-6x + 3y - 9z = 5$ P_4 : $z = 2x - y - 3$

60. ¿Cuáles de estas cuatro rectas son paralelas? ¿Hay algunas que sean idénticas?

$$L_1$$
: $x = 1 + t$, $y = t$, $z = 2 - 5t$
 L_2 : $x + 1 = y - 2 = 1 - z$