# İstanbul Teknik Üniversitesi Elektrik ve Elektronik Fakültesi Elektronik ve Haberleşme Mühendisliği



Yapay Sinir Ağları

## Ödev-2

# Dersi Veren Öğretim Üyesi

Prof. Dr. Neslihan Serap ŞENGÖR

# Öğrenci Grubu 3

Yunus Örük 040170083 Yusuf Demirel 040180033

#### MULTILAYER PERCEPTRON (MLP)

Çok katmanlı algılayıcılar XOR problemine çözüm üretmek üzere yapılan çalışmalar sonucunda ortaya çıkmıştır. Özellikle sınıflandırma problemlerinde etkin olarak çalışmaktadır. Tek bir katmana sahip oldukları durumlarda "vanilla" sinir ağları olarak adlandırılmaktadırlar.



| AOR                  |                      |        |  |  |  |  |
|----------------------|----------------------|--------|--|--|--|--|
| Input x <sub>1</sub> | Input x <sub>2</sub> | Output |  |  |  |  |
| 0                    | 0                    | 0      |  |  |  |  |
| 0                    | 1                    | 1      |  |  |  |  |
| 1                    | 0                    | 1      |  |  |  |  |
| 1                    | 1                    | 0      |  |  |  |  |

XOR

Çok katmanlı algılayıcılar en az üç katmandan oluşmaktadırlar. Giriş katmanı, gizli katman ve çıkış katmanı. Giriş düğümleri haricinde diğer katmanlardaki düğümler doğrusal olmayan bir aktivasyon fonksiyonu kullanmaktadır. Her katman ardından gelen katmana bağlanmaktadır. Çıkış katmanı veriyi işleyerek ağın çıkışını belirler. Çoklu algılayıcılar eğitim için backpropagation adı verilen denetimli bir öğrenme tekniği kullanır. Çok katmanlı algılayıcıları doğrusal algılayıcılardan ayıran özellik çok katmanlı olmaları ve doğrusal olmayan aktivasyon fonksiyonu kullanmalarıdır. Doğrusal olarak sınıflandırılmayan veriler bu şekilde sınıflandırılabilmektedir.

#### Soru 1.1

**A)** Öncelikle eğitim kümesi ödev dosyası içinde verilen python kodu fonksiyonlaştırılarak oluşturuldu. Eğitim kümesi için 4 sınıf ve her sınıf için 4 adet gri gürültü eklenmiş örüntü ve 4 adet pixel hatalı olan örüntüler belirlendi. Her bir sınıf için 8 örüntü ve toplamda ise 32 adet örüntü eğitim kümesi için belirlenmiş oldu. Test kümesi için her bir sınıftan 2 adet gri gürültülü ve 2 adet pixel hatalı örüntü seçildi. Böylece her sınıf için 4 ve toplamda 16 adet veriden oluşan test kümesi oluşturuldu.

#### Oluşturulan 4 adet temiz örüntü



Hamming katsayısı: 1000



Hamming katsayısı: 0100





Hamming katsayısı: 0010

Hamming katsayısı: 0001

### Oluşturulan örüntülerin gri gürültü ve pixel hatalarına örnekler





**B**) Verilerimizi kod kullanarak eğitmeden önce algoritmayı daha iyi anlayabilmek ve daha rahat yazabilmek için kodun kullanacağı algoritmayı kâğıt üzerinde modelledik.

Elimizdeki veriler 5\*10'luk boyutta resimler olduğu için giriş vektörü 50+1(bias) olacak şekilde 51 elemanlı bir vektör olarak belirledik. Katman sayımızı 3 ve katmanlardaki nöronları sırasıyla 8 6 ve 4 olarak seçtik. Giriş verilerimiz 0 ve 1 arasında olduğu için aktivasyon fonksiyonu da olarak sigmoid olarak seçtik. Üstteki tasarım seçenekleri belirlendikten sonra algoritmanın ileri yol hesabı sekilde görüldüğü gibi yapıldı.

#### Algoritma ileri yol hesabı



Ardından verilerimizi doğru olarak sınıflandıracak ağırlık değerlerini bulabilmek adına backward propagation yöntemi kullanarak yerel gradyent hesabını yaptık.

#### Yerel gradyent hesapları



Yerel gradyentler hesaplandıktan sonra ağırlık güncellemelerini gradyentlerin yardımıyla hesapladık. Son olarak ise ağırlık güncellemelerimize momentum terimini de ekledik ve böylece kodu yazmaya hazır hale geldik.

## Ağırlık güncellemek için gerekli olan formüller



Durdurma koşulunu 1 epoktaki her bir iterasyondaki hataların ortalamasının 0.01'den küçük gelmesi olarak seçtik. Öğrenme hızı ve momentum terimi katsayılarını her bir katman için farklı değerler verecek şekilde ayarladık. Verilerimizi ağa vermeden önce ise her bir 50+1'lik verimize 4 basamaklı binary Hamming katsayıları atadık.

#### Katmanlardaki momentum ve learning rate değerleri

```
momentum1 = 0.3 #Eğitim ağının ilk katmanındaki momentum değeri momentum0 = 0.9 #Eğitim ağının 2. katmanındaki momentum değeri momentum0 = 0.9 #Eğitim ağının son katmanındaki momentum değeri learning_rate1 = 0.15 #Eğitim ağının ilk katmanındaki learning değeri learning_rate2 = 0.30 #Eğitim ağının 2. katmanındaki learning değeri learning_rate0 = 0.45 #Eğitim ağının son katmanındaki learning değeri
```

```
w1 = np.ones((katman1_norön,51))*0.1  #1. katman ilk ağırlık değerleri
w2 = np.ones((katman2_norön,katman1_norön+1))*0.1  #2. katman ilk ağırlık değerleri
w0 = np.ones((4,katman2_norön+1))*0.1  #3. katman ilk ağırlık değerleri
"Momentum terimi için oluşturulmuş w(k-1) terimleri"
w1_older = np.random.random_sample((katman1_norön,51))*0.1+0.01  #Mome
w2_older = np.random.random_sample((katman2_norön,katman1_norön+1))*0.1+0.01
w0_older = np.random.random_sample((4,katman2_norön+1))*0.1+0.01
```

Eğitime başlamadan önce seçilen ilk ağırlık değerleri (büyüklükleri 0.1) ve momentum teriminin ilk elemanı için rastgele seçilmiş 0.01 ve 0.11 arasındaki ağırlık değerleri bu şekilde belirlendi.

Katmanlardaki Nöron sayılarının etkileri

C)

| 1. katman Nöron s. | 2. katman Nöron s. | Eğitmek için gereken epok sayısı | Ortalama hata |
|--------------------|--------------------|----------------------------------|---------------|
| 2                  | 2                  | Tam eğitim yok                   | 0.5           |
| 4                  | 4                  | 354                              | 0.0099        |
| 4                  | 2                  | Tam eğitim yok                   | 0.324         |
| 2                  | 4                  | 409                              | 0.0098        |
| 3                  | 3                  | 372                              | 0.0098        |
| 4                  | 3                  | 430                              | 0.0098        |
| 8                  | 6                  | 314                              | 0.0098        |
| 10                 | 10                 | 286                              | 0.0097        |
| 30                 | 20                 | 276                              | 0.0097        |
| 30                 | 30                 | 304                              | 0.0096        |
| 50                 | 50                 | Tam eğitim yok                   | 15.99         |
| 40                 | 40                 | Tam eğitim yok                   | 15.99         |
| 35                 | 35                 | 489                              | 0.0099        |

Tabloda görüldüğü üzere katmanlardaki nöron sayıları belirli bir miktara gelesiye kadar sinir ağı eğitim yapamıyor. Ayrıca 4,2 nöronlu ve 2,4 nöronlu örneklere baktığımızda ise her bir katmandaki nöron sayılarının da etkin olduğunu gözlemleyebiliyoruz. Belirli bir nöron sayısı miktarından sonra ise sinir ağı doygunluğa ulaşıyor ve yerel gradyentler 0'a yakınsıyor. Dolayısıyla eğitim gerçekleşmiyor.

Learning rate ve momentum değeri etkileri (Katman sayıları 8,6,4 şeklindedir)

| momentum1 | momentum2 | momentum0 | l_rate1 | I_rate2 | I_rate0 | Epok sys |
|-----------|-----------|-----------|---------|---------|---------|----------|
| 0.3       | 0.6       | 0.9       | 0.15    | 0.30    | 0.45    | 287      |
| 0.9       | 0.6       | 0.3       | 0.45    | 0.3     | 0.15    | -        |
| 0.8       | 0.5       | 0.2       | 0.45    | 0.3     | 0.15    | -        |
| 0.7       | 0.4       | 0.1       | 0.45    | 0.3     | 0.15    | -        |
| 0.9       | 0.6       | 0.3       | 0.15    | 0.3     | 0.45    | -        |
| 0.7       | 0.4       | 0.1       | 0.15    | 0.3     | 0.45    | -        |
| 0.5       | 0.5       | 0.5       | 0.15    | 0.3     | 0.45    | -        |
| 0.5       | 0.6       | 0.7       | 0.15    | 0.3     | 0.45    | -        |
| 0.4       | 0.5       | 0.6       | 0.15    | 0.3     | 0.45    | -        |
| 0.6       | 0.7       | 0.8       | 0.15    | 0.3     | 0.45    | 371      |
| 0.1       | 0.5       | 0.9       | 0.15    | 0.3     | 0.45    | 348      |
| 0.1       | 0.1       | 0.1       | 0.15    | 0.3     | 0.45    | -        |
| 0.3       | 0.3       | 0.3       | 0.15    | 0.3     | 0.45    | -        |
| 0.4       | 0.4       | 0.4       | 0.15    | 0.3     | 0.45    | -        |
| 0.5       | 0.7       | 0.9       | 0.15    | 0.3     | 0.45    | 238      |
| 0.7       | 0.8       | 0.9       | 0.15    | 0.3     | 0.45    | 232      |
| 0.9       | 0.9       | 0.9       | 0.15    | 0.3     | 0.45    | 454      |
| 0.8       | 0.8       | 0.8       | 0.15    | 0.3     | 0.45    | 373      |
| 0.5       | 0.7       | 0.9       | 0.2     | 0.4     | 0.6     | 209      |
| 0.5       | 0.7       | 0.9       | 0.9     | 0.9     | 0.9     | 85       |
| 0.5       | 0.7       | 0.9       | 0.45    | 0.3     | 0.15    | 335      |
| 0.5       | 0.7       | 0.9       | 0.1     | 0.1     | 0.1     | -        |

<sup>(-</sup> işareti eğitim başarılı değil demektir)

İlk 18 denemeden görüldüğü üzere momentum değerleri azdan çoğa doğru gittiği zaman eğitim daha hızlı gerçekleşiyor. Çoktan aza doğru gittiğinde ise eğitim neredeyse gerçekleşmiyor. Hepsinin aynı olduğu durumlarda ise yüksek momentum değerlerinde eğitim gerçekleşiyor ancak düşük momentum değerlerinde eğitim olmuyor.

Eğitim hızında ise 0.15,0.3,0.45 ve 0.45,0.3,0.15 e bakıldığında anlaşılan farklı katmanların eğitim hızlarının farklı olması eğitim için gerekli epok sayısını etkiliyor. Genel olarak yapılabilecek yorum ise eğitim hızı arttığında gerekli epok sayısı azalıyor azaldığında ise gerekli epok sayısı artıyor.

**D**) Katman sayıları 8,6,4- momentum 0.5,0.7,0.9 – learning rate 0.2,0.4,0.6

## Gerçek değerler

# Tahmin edilen değerler

| 1 | 0 | 0 | 0 |
|---|---|---|---|
| 1 |   |   |   |
| 0 |   | 1 |   |
| 0 | 1 |   |   |
| 0 | 1 |   |   |
| 0 |   | 1 |   |
| 0 |   | 1 |   |
| 1 |   |   |   |
| 0 |   |   | 1 |
| 0 | 1 |   |   |
| 0 |   |   | 1 |
| 0 | 1 |   |   |
| 0 |   |   | 1 |
| 0 |   | 1 |   |
| 1 |   |   |   |
| 0 |   |   | 1 |

| 0.882563   | 0.0593271   | 0.075636    | 1.73857e-06 |
|------------|-------------|-------------|-------------|
| 0.872516   | 0.0460216   | 0.0942448   | 1.31091e-06 |
| 0.0836358  | 0.000150153 | 0.938781    | 1.10538e-08 |
| 0.0715022  | 0.864141    | 0.000220907 | 0.062464    |
| 0.0977823  | 0.872084    | 0.000267315 | 0.0391819   |
| 0.0774384  | 0.000133451 | 0.944434    | 9.9898e-09  |
| 0.0713574  | 0.00012063  | 0.948637    | 9.30665e-09 |
| 0.896187   | 0.0894293   | 0.0523008   | 2.77642e-06 |
| 0.00190224 | 0.127655    | 4.62808e-05 | 0.939458    |
| 0.0885537  | 0.870108    | 0.000251266 | 0.0455432   |
| 0.00180782 | 0.120491    | 4.53753e-05 | 0.943678    |
| 0.0430201  | 0.826591    | 0.000169736 | 0.12565     |
| 0.00184    | 0.122912    | 4.56883e-05 | 0.942249    |
| 0.0720499  | 0.000121059 | 0.948569    | 9.27554e-09 |
| 0.902282   | 0.101986    | 0.0464774   | 3.17878e-06 |
| 0.00179603 | 0.119796    | 4.52278e-05 | 0.944231    |

Tahmin değerleri istenen ortalama hata değeri düşürülerek daha iyi hale getirilebilir.

#### E değerin 0.01 yerine 0.001 seçilirse

| 1 |   |   |   |
|---|---|---|---|
| 1 |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   | 1 |   |
|   |   | 1 |   |
|   |   |   |   |
|   |   |   |   |
|   | 1 |   |   |
|   |   | 1 |   |
|   |   |   |   |
| 0 | 0 | 1 | 0 |

| 0.0261641   | 0.0146733   | 0.00014476  | 0.961573    |
|-------------|-------------|-------------|-------------|
| 0.000230368 | 0.97955     | 2.59386e-05 | 0.0362332   |
| 0.000213949 | 0.981954    | 2.52412e-05 | 0.0327667   |
| 0.0336221   | 0.0100137   | 0.000163791 | 0.965334    |
| 0.965258    | 1.04554e-06 | 0.0235741   | 0.0288955   |
| 0.967022    | 7.82921e-07 | 0.0304128   | 0.020754    |
| 0.000214292 | 0.98189     | 2.52537e-05 | 0.032914    |
| 0.0257539   | 0.0151164   | 0.000144369 | 0.959989    |
| 0.0234821   | 2.32761e-08 | 0.974874    | 3.97788e-05 |
| 0.0272767   | 2.57152e-08 | 0.970177    | 4.66405e-05 |
| 0.0402466   | 0.00758621  | 0.000177661 | 0.968796    |
| 0.96299     | 1.01429e-06 | 0.0252678   | 0.0267795   |
| 0.000228207 | 0.979864    | 2.58368e-05 | 0.0358649   |
| 0.0237769   | 2.37823e-08 | 0.974234    | 4.06538e-05 |
| 0.96462     | 8.29178e-07 | 0.0299592   | 0.0214965   |
| 0.0255319   | 2.54305e-08 | 0.971531    | 4.47984e-05 |

**Soru 1.2** 

Veriler iris.data dosyasından okunduktan sonra eğitim ağına sunuldu. Yani soru 1.1'deki kurulmuş olan ağda ufak değişikler yapılarak çözüldü.

Iris Setosa'ya 100, Iris Versicolor'a 010, Iris Virginica'ya 001 Hamming değerleri verilerek ağa sunuldu.

Katman Nöronları: 50,30,3; Momentum: 0.5,0.7,0.9; Learning rate: 0.1,0.2,0.3; Ortalama hata: 0.001 olarak seçildi. Veriler bu sefer gerçek değerler olduğu için az katman sayısı eğitmeye yeterli olmadı. Bu yüzden katman sayısı arttırıldı. Daha karmaşık bir veri kümesi olduğu için yüksek learning rate kullanarak eğitim sonuçları kötü geldiği için düşük learning rate büyüklükleri seçildi. Daha iyi bir eğitim elde edebilmek adına ortalama hata değeri daha düşük seçildi. Son olarak ise eğitim ve test kümeleri belirlendi. Toplamda elimizde olan 150 veri 120 eğitim ve 30 test kümesi olarak 2 ye ayrıldı.

## Gerçek ve Tahmin değerleri

| 0 | 1 | 0 | 0  | 3.815e-05   | 0.546727    | 0.087852    | 0 | 1 | 0 | 15 | 1.90186e-05 | 0.334929    | 0.346037    |
|---|---|---|----|-------------|-------------|-------------|---|---|---|----|-------------|-------------|-------------|
| 1 |   | 0 | 1  | 1           | 0.000412635 | 9.83815e-28 | 0 | 1 |   | 16 | 0.000279231 | 0.901253    | 0.000768282 |
| 1 |   | Ø | 2  | 0.999982    | 0.0282201   | 4.88852e-23 | 0 |   | 1 | 17 | 4.03332e-07 | 0.00222529  | 0.999856    |
| 1 |   | Ø | 3  | 0.999999    | 0.00236589  | 8.74033e-26 | 0 | 1 |   | 18 | 4.73176e-06 | 0.0774604   | 0.941061    |
| 1 |   | 0 | 4  | 0.999999    | 0.00121366  | 1.56337e-26 | 0 | 1 |   | 19 | 0.000154735 | 0.839864    | 0.0032      |
|   |   | 1 | 5  | 2.03165e-06 | 0.0238169   | 0.992275    | 0 |   | 1 | 20 | 6.37666e-07 | 0.00436039  | 0.999555    |
| 1 |   | 0 | 6  | 0.999993    | 0.0121924   | 5.90335e-24 | 0 |   | 1 | 21 | 1.04671e-06 | 0.00884812  | 0.998491    |
|   | 1 | 0 | 7  | 1.16238e-05 | 0.220305    | 0.637355    | 0 |   | 1 | 22 | 3.63847e-07 | 0.00186566  | 0.999889    |
|   | 1 | 0 | 8  | 0.00041234  | 0.927644    | 0.000299705 | 0 |   | 1 | 23 | 3.91256e-07 | 0.00209442  | 0.999867    |
| 1 |   | 0 | 9  | 0.999999    | 0.0027675   | 1.24667e-25 | 0 |   | 1 | 24 | 2.57351e-07 | 0.00113466  | 0.999953    |
|   |   | 1 | 10 | 2.20638e-06 | 0.0271323   | 0.990536    | 0 | 1 |   | 25 | 0.000191819 | 0.863825    | 0.00190724  |
|   |   | 1 | 11 | 1.48416e-06 | 0.0154983   | 0.996417    | 0 | 1 |   | 26 | 0.000507441 | 0.935043    | 0.00018274  |
| 1 |   | 0 | 12 | 0.999998    | 0.00456914  | 4.50209e-25 | 1 |   |   | 27 | 1           | 0.000445685 | 1.17256e-27 |
|   | 1 | Ø | 13 | 3.37966e-05 | 0.504915    | 0.11487     | 0 |   | 1 | 28 | 2.97524e-07 | 0.0013973   | 0.999932    |
|   |   | 1 | 14 | 9.67586e-08 | 0.000271973 | 0.999996    | 1 |   |   | 29 | 1           | 7.84719e-05 | 1.3127e-29  |

(Soldaki değerler gerçek değerler, Sağda bulunanlar ise tahmin değerleri)

#### Soru 2

Sistem tanıma problemini çözebilmek için oluşturduğumuz ağı Billings sisteminin çıkışları ile eğitmemiz gerekir. Çıkış verilerimizin Billings sisteminin çıkışlarından farkını alarak ağırlıkları güncellememiz gerekir. Negatif ve pozitif değerler alabilen Billings sistem çıkışları olduğundan dolayı aktivasyon fonksiyonunun değiştirilmesi gerekir.

#### 3.SORU

\*Bu sorunun çözümünde tensorflow kütüphanesi kullanılmıştır.

İris.data verileri pandas kütüphanesinde bulunan pd.read\_csv komutu yardımıyla sisteme aktarıldı. Sonrasında df.sample komutu verilerimizin karıştırılması için kullanıldı. Bu sayede her denemede farklı bir veri seti üzerinde test etme imkanı oluştu. Değişken verileri X\_Data, tür verileri Y\_Data altında toplandı. Değişken verilerinin 0 ve 1 arasında değerler almaları için veriler içlerindeki maksimum değerlere bölünerek normalizasyon işlemi yapıldı. Tür verileri sırasıyla 0, 1 ve 2 integer değerleri ile eşleştirildi. Train\_test\_split komutu yardımıyla verilerin % 75'i eğitilip kalan % 25'lik kısımda test edildi. Her değişken için bir feature column oluşturuldu ve tek bir array içerisinde toplandı. Sonrasında train\_func, test\_func, predict\_func ve model oluşturulup eğitildi.

| 133 | 0.797468 | 0.636364 | 0.73913  | 0.6  | 133 | 2 |
|-----|----------|----------|----------|------|-----|---|
| 115 | 0.810127 | 0.727273 | 0.768116 | 0.92 | 115 |   |
| 102 | 0.898734 | 0.681818 | 0.855072 | 0.84 | 102 |   |
| 112 | 0.860759 | 0.681818 | 0.797101 | 0.84 | 112 |   |
| 60  | 0.632911 | 0.454545 | 0.507246 | 0.4  | 60  | 1 |
| 55  | 0.721519 | 0.636364 | 0.652174 | 0.52 | 55  | 1 |
| 127 | 0.772152 | 0.681818 | 0.710145 | 0.72 | 127 |   |
| 39  | 0.64557  | 0.772727 | 0.217391 | 0.08 | 39  | 0 |
| 18  | 0.721519 | 0.863636 | 0.246377 | 0.12 | 18  | 0 |
| 100 | 0.797468 | 0.75     | 0.869565 |      | 100 |   |
| 19  | 0.64557  | 0.863636 | 0.217391 | 0.12 | 19  | 0 |
| 126 | 0.78481  | 0.636364 | 0.695652 | 0.72 | 126 |   |
| 147 | 0.822785 | 0.681818 | 0.753623 | 0.8  | 147 |   |
| 146 | 0.797468 | 0.568182 | 0.724638 | 0.76 | 146 |   |
| 132 | 0.810127 | 0.636364 | 0.811594 | 0.88 | 132 |   |
| 113 | 0.721519 | 0.568182 | 0.724638 | 0.8  | 113 |   |
| 79  | 0.721519 | 0.590909 | 0.507246 | 0.4  | 79  | 1 |
| 68  | 0.78481  | 0.5      | 0.652174 | 0.6  | 68  | 1 |
| 8   | 0.556962 | 0.659091 | 0.202899 | 0.08 | 8   | 0 |
| 33  | 0.696203 | 0.954545 | 0.202899 | 0.08 | 33  | 0 |
| 28  | 0.658228 | 0.772727 | 0.202899 | 0.08 | 28  | 0 |
| 88  | 0.708861 | 0.681818 | 0.594203 | 0.52 | 88  | 1 |
| 16  | 0.683544 | 0.886364 | 0.188406 | 0.16 | 16  | 0 |
| 11  | 0.607595 | 0.772727 | 0.231884 | 0.08 | 11  | 0 |
| 10  | 0.683544 | 0.840909 | 0.217391 | 0.08 | 10  | 0 |
| 5   | 0.683544 | 0.886364 | 0.246377 | 0.16 | 5   | 0 |
| 136 | 0.797468 | 0.772727 | 0.811594 | 0.96 | 136 |   |
| 7   | 0.632911 | 0.772727 | 0.217391 | 0.08 | 7   | 0 |
| 54  | 0.822785 | 0.636364 | 0.666667 | 0.6  | 54  | 1 |
| 37  | 0.620253 | 0.704545 | 0.217391 | 0.04 | 37  | 0 |

| 133 | 0.797468 | 0.636364 | 0.73913  | 0.6  | ı | 133 | 2 |
|-----|----------|----------|----------|------|---|-----|---|
| 115 | 0.810127 | 0.727273 | 0.768116 | 0.92 | I | 115 | 2 |
| 102 | 0.898734 | 0.681818 | 0.855072 | 0.84 | Ĭ | 102 | 2 |

(X\_Data,Y\_Data)

Gerçek değerler test sonucu değerleri ile karşılaştırıldığında çok küçük istisnalar dışında aynı sonucu vermektedir.

Sonuçta ağımızın 0.966 doğruluk oranıyla çalıştığını görmekteyiz.

| accuracy     | float32 | 1 | 0.96666664 |
|--------------|---------|---|------------|
| average_loss | float32 | 1 | 0.22654437 |
| global_step  | int64   | 1 | 1000       |
| loss         | float32 | 1 | 6.796331   |

(Results)

|              | precision    | recall       | f1-score     | support |
|--------------|--------------|--------------|--------------|---------|
| 0            | 1.00         | 1.00         | 1.00         | 12      |
| 1 2          | 0.86<br>1.00 | 1.00<br>0.92 | 0.92<br>0.96 | 6<br>12 |
| accuracy     |              |              | 0.97         | 30      |
| macro avg    | 0.95         | 0.97         | 0.96         | 30      |
| weighted avg | 0.97         | 0.97         | 0.97         | 30      |

(Prediction\_report)

| Index | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Index | Species |
|-------|---------------|--------------|---------------|--------------|-------|---------|
| 107   | 0.924051      | 0.659091     | 0.913043      | 0.72         | 107   | 2       |
| 142   | 0.734177      | 0.613636     | 0.73913       | 0.76         | 142   | 2       |
| 81    | 0.696203      | 0.545455     | 0.536232      | 0.4          | 81    | 1       |
| 93    | 0.632911      | 0.522727     | 0.478261      | 0.4          | 93    | 1       |
| 51    | 0.810127      | 0.727273     | 0.652174      | 0.6          | 51    | 1       |
| 143   | 0.860759      | 0.727273     | 0.855072      | 0.92         | 143   | 2       |
| 117   | 0.974684      | 0.863636     | 0.971014      | 0.88         | 117   | 2       |
| 26    | 0.632911      | 0.772727     | 0.231884      | 0.16         | 26    | 0       |
| 67    | 0.734177      | 0.613636     | 0.594203      | 0.4          | 67    | 1       |
| 61    | 0.746835      | 0.681818     | 0.608696      | 0.6          | 61    | 1       |
| 105   | 0.962025      | 0.681818     | 0.956522      | 0.84         | 105   | 2       |
| 139   | 0.873418      | 0.704545     | 0.782609      | 0.84         | 139   | 2       |
| 86    | 0.848101      | 0.704545     | 0.681159      | 0.6          | 86    | 1       |
| 90    | 0.696203      | 0.590909     | 0.637681      | 0.48         | 90    | 1       |
| 13    | 0.544304      | 0.681818     | 0.15942       | 0.04         | 13    | 0       |

(x\_train, y\_train)

Daha sonra prediction ve y\_test verilerinden yararlanılarak Confusion Matrix oluşturuldu.





(y\_test, prediction)

Elde ettiğimiz veriler karşılaştırıldığında Tensorflow kütüphanesi yardımıyla kurduğumuz ağın hata payı kendi oluşturduğumuz ağın hata payına oldukça yakın çıkmaktadır. Bu sayede ağımızın doğru çalıştığını anlamaktayız.