Modelling of COVID-19 epidemic and INTERVENTIONS WITHIN IDP CAMPS

Dr. Eduard Campillo-Funollet, PhD, Univ. of Sussex (UK) JORDAN KLEIN, MPH, PRINCETON UNIV. (USA) Dr. Alberto Pascual-García, PhD, ETH-Zürich (Switzerland) Dr. Jennifer Villers, PhD, Princeton Univ. (USA) CHAMSY SARKIS, PAX SYRIANA FOUNDATION

July 16^{th} , 2020

MOTIVATION

Between December 2019 and March 2020, 1M new IDP → Informal settlements HIGH DENSITY and no management

~700 camps with 600 person per camp on average (log-normal)

80% family-sized tents (~7 people)

Most of the informal camps have no management.

Source: UN- REACH REPORT, JANUARY-MARCH 2020

Between December 2019 and March 2020, 1M new IDP → Informal settlements

HIGH DENSITY and no management

~700 camps with 600 person per camp on average (log-normal)

80% family-sized tents (~7 people)

Most of the informal camps have no management.

NO POSSIBLE lockdown

50% no access to electricity

External water, with 25% not have enough drinking water

External letrines, and 10% households have 1 member disable/elderly.

360% drop of Syrian pound (no access to goods) → high motility to work

Source: UN- REACH REPORT, JANUARY-MARCH 2020

Between December 2019 and March 2020, 1M new IDP → Informal settlements

HIGH DENSITY and no management

~700 camps with 600 person per camp on average (log-normal)

80% family-sized tents (~7 people)

Most of the informal camps have no management.

NO POSSIBLE lockdown

50% no access to electricity

External water, with 25% not have enough drinking water

External letrines, and 10% households have 1 member disable/elderly.

360% drop of Syrian pound (no access to goods) → high motility to work

HIGH comorbidity

10% population has chronic diseases, 17% of them have no access to medicines.

Source: UN- REACH REPORT, JANUARY-MARCH 2020

Figure 6 Scenario One predicted severe cases

The health system in NW Syria would be unable to cope by the beginning of week 8; as such, severe cases could become critical and mortality could increase

Highlights

Modelling

- Comparmental models.
- Age-structured.
- Deterministic, stochastic.
- Parameters estimated for IDPCs.

Strategies

- Self-distancing
- Shielding, lockdown
- Isolation
- Combined strategies

Main conclusions

- Remark 1
- Remark 2
- Combined strategies have a greater effect.

THE MODEL

Hariri et al. The COVID-19 forecast in NW Syria. MedRxiv (2020)

Population Pyramid in NW of Syria

Population Pyramid in NW of Syria

Population Pyramid in NW of Syria

Parameter	Description	Value	Distribution	Reference
$1/\delta_E + 1/\delta_P$	Duration of incubation period	5.2 (95% CI:	Lognormal	[1]
	in days	4.1-7.0)		
$1/\delta_E$	Duration of latency in days	$1/\delta_E + 1/\delta_P - 1/\delta_P$		[2]
$1/\delta_P$	Duration of preclinical	2.3 (95% CI:	Gompertz	[2]
	infectiousness in days	0.8 - 3.0)		
$1/\gamma_A = 1/\gamma_I$	Duration of clinical $(1/\gamma_I)$ and	7		[2, 3]
	subclinical $(1/\gamma_A)$ infectiousness			
	in days			
$1/\eta$	Delay from symptoms onset to	7 (IQR: 4-8)	Gamma	[4]
	hospitalization in days			
$1/\alpha$	Delay from symptoms onset to	10 (IQR: 6-12)	Gamma	[4]
	ICU (here death) in days			
$1/\gamma_H$	Delay from hospitalization to	10 (IQR: 7-14)	Gamma	[4]
	recovery in days			
f	Fraction of infected people who	0.84 (95% CI:	Binomial	[5]
	develop symptoms	0.8 - 0.88)		
h_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring hospitalization	comorbidity-		
	but not ICU	dependent		
g_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring ICU	comorbidity-		
		dependent		

Parameter	Description	Value	Distribution	Reference
$1/\delta_E + 1/\delta_P$	Duration of incubation period	5.2 (95% CI:	Lognormal	[1]
	in days	4.1-7.0)		
$1/\delta_E$	Duration of latency in days	$1/\delta_E + 1/\delta_P - 1/\delta_P$		[2]
$1/\delta_P$	Duration of preclinical	2.3 (95% CI:	Gompertz	[2]
	infectiousness in days	0.8 - 3.0)		
$1/\gamma_A = 1/\gamma_I$	Duration of clinical $(1/\gamma_I)$ and	7		[2, 3]
	subclinical $(1/\gamma_A)$ infectiousness			
	in days			
$1/\eta$	Delay from symptoms onset to	7 (IQR: 4-8)	Gamma	[4]
	hospitalization in days			
$1/\alpha$	Delay from symptoms onset to	10 (IQR: 6-12)	Gamma	[4]
	ICU (here death) in days			
$1/\gamma_H$	Delay from hospitalization to	10 (IQR: 7-14)	Gamma	[4]
	recovery in days			
f	Fraction of infected people who	0.84 (95% CI:	Binomial	[5]
	develop symptoms	0.8 - 0.88)		
h_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring hospitalization	comorbidity-		
	but not ICU	dependent		
g_i	Fraction of symptomatic	Age- and		[6, 7]
	people requiring ICU	comorbidity-		
		dependent		

Parameter	Description	Value	Distribution	Reference
$1/\delta_E + 1/\delta_P$	Duration of incubation period	5.2 (95% CI:	Lognormal	[1]
	in days	4.1-7.0)		
$1/\delta_E$	Duration of latency in days	$1/\delta_E + 1/\delta_P - 1/\delta_P$		[2]
$1/\delta_P$	Duration of preclinical	2.3 (95% CI:	Gompertz	[2]
	infectiousness in days	0.8 - 3.0)		
$1/\gamma_A = 1/\gamma_I$	Duration of clinical $(1/\gamma_I)$ and	7		[2, 3]
	subclinical $(1/\gamma_A)$ infectiousness			
	in days			
$1/\eta$	Delay from symptoms onset to	7 (IQR: 4-8)	Gamma	[4]
	hospitalization in days			
$1/\alpha$	Delay from symptoms onset to	10 (IQR: 6-12)	Gamma	[4]
	ICU (here death) in days			
$1/\gamma_H$	Delay from hospitalization to	10 (IQR: 7-14)	Gamma	[4]
	recovery in days			
f	Fraction of infected people who	0.84 (95% CI:	Binomial	[5]
	develop symptoms	0.8 - 0.88)		
h_i	Fraction of symptomatic	Age- and	Values mapped	[6, 7]
	people requiring hospitalization	comorbidity-	to individuals	
	but not ICU	dependent	10 years older	
g_i	Fraction of symptomatic	Age- and	Values mapped	[6, 7]
	people requiring ICU	comorbidity-	to individuals	
		dependent	10 years older	

$$\lambda_i = \sum_{j=1}^n \beta_{ij} \frac{P_j + A_j + I_j + H_j}{N_j}$$

With:
$$eta_{ij} = au C_{ij}$$

T is the probability of infection if there is a contact C is the number of contacts between population classes i and j

$$\lambda_i = \sum_{j=1}^n \beta_{ij} \frac{P_j + A_j + I_j + H_j}{N_j}$$

With: $\beta_{ij} = \tau C_{ij}$

T is the probability of infection if there is a contact
C is the number of contacts between population classes i and j

THE RESULTS

Description

 Reduction of contacts between individuals.

- Simple and rapid implementation.
- Educational-based, long-term benefit
- Starting investment then mouth-to-word

Description

 Reduction of contacts between individuals.

Population class	Null model	Reduction 20%	Reduction 50%
Kids	25	20	12.5
Adults	15	11	7.5
Elderly	10	8	5

- Simple and rapid implementation.
- Educational-based, long-term benefit
- Starting investment then mouth-to-word

Description

 Reduction of contacts between individuals.

Population class	Null model	Reduction 20%	Reduction 50%
Kids	25	20	12.5
Adults	15	11	7.5
Elderly	10	8	5

- Simple and rapid implementation.
- Educational-based, long-term benefit
- Starting investment then mouth-to-word

Up to 40% reduction in the the death tolls

Up to 40% delay in the peak of infected population

Strategy 2: Shielding and Lockdown

Description

- Shield of vulnerable population.
- Similar conditions in terms of tents occupancy and distance between tents are considered.
- Vulnerable:
 - Elderly.
 - People with co-morbidities.
 - Carers/family.
- Lockdown when first symptom is detected.

For a total population of 100 persons

80% of the population

- 50 kids (0-18 yo)
- 35 adults
- Meetings between orange and green in « neutral zone »
 (open tent), no more than 4 people at a time (mixed orange/green). No physical contact (mask and gloves, 1.5 meter distance).

Neutral zone

20% of the population

- 0 kid
- 5 elderly (60+)
- 10 middle-aged NCD affected (mainly people 40-60 years old)
- Intra-green zone carers are among the 10 non-elderly NCD
- No unprotected contact with orange zone or external world
- In average, meeting in neutral zone once per week

Strategy 2: Shielding only

Strategy 2: Shielding and Lockdown

Strategy 2: Shielding and Lockdown

Strategy 3: Isolation

Description

Isolation of infected individuals

__

- Remark 1.
- Remark 2.
- Requires quick identification of infected individuals

Shielding intervention and evacuation

Assumptions

Strategy 3: Isolation

Combined strategies

Conclusions

- Remark 1
- Remark 2
- Combined strategies have a greater effect.