

Grundlagen der Mathematik und Informatik

Aufbaukurs: Fit für Psychologie WiSe 2022/23

Belinda Fleischmann

Inhalte basieren auf Einführung in Mathematik und Informatik von Dirk Ostwald, lizenziert unter CC BY-NC-SA 4.0

 ${\sf Selbstkontrollfragen} \, + \, {\sf L\"osungen}$

(4) Funktionen

Selbstkontrollfragen

- 1. Erläutern Sie die Komponenten der Funktionsschreibweise $f:D \to Z, x \mapsto f(x)$.
- 2. Definieren Sie die Begriffe Bildmenge, Wertebereich, und Urbildmenge einer Funktion.
- 3. Definieren Sie die Begriffe Surjektivität, Injektivität, und Bijektivität einer Funktion.
- 4. Erläutern Sie, warum $f:\mathbb{R} \to \mathbb{R}, x \mapsto f(x):=x^2$ weder injektiv noch surjektiv ist.
- 5. Erläutern Sie, warum $f:[0,\infty[\to [0,\infty[,x\mapsto f(x):=x^2 \text{ bijektiv ist.}$
- 6. Erläutern Sie die Komponenten der Schreibweise $g \circ f : D \to S, x \mapsto (g \circ f)(x)$.
- 7. Definieren Sie den Begriff der inversen Funktion.
- 8. Geben Sie die inverse Funktion von x^2 auf $[0, \infty[$ an.
- 9. Definieren Sie den Begriff der linearen Abbildung.
- 10. Definieren Sie die Begriffe der univariat-und multivariat-reellwertigen Funktion.
- 11. Definieren Sie Begriff der multivariaten vektorwertigen Funktion.
- 12. Skizzieren Sie die konstante Funktion für a:=1 und die Identitätsfunktion.
- 13. Für a=2 und b=3, skizzieren Sie die linear Funktion f(x)=ax+b.
- 14. Skizzieren Sie die Funktionen $f(x) := (x-1)^2$ und $g(x) := (x+3)^2$.
- 15. Skizzieren Sie die Exponential- und Logarithmusfunktionen.
- 16. Geben Sie Exponentialeigenschaften der Exponentialfunktion an.
- 17. Geben Sie die Logarithmeneigenschaften der Logarithmusfunktion an.

SKF 1. Funktionsschreibweise

Erläutern Sie die Komponenten der Funktionsschreibweise $f:D\to Z, x\mapsto f(x).$

- $f:D \to Z$ wir gelesen wird als "die Funktion f bildet alle Elemente der Menge D eindeutig auf Elemente in Z ab' '
- x → f(x) wird gelesen wird als "x, welches ein Element von D ist, wird durch die Funktion f auf f(x) abgebildet, wobei f(x) ein Element von Z ist"

SKF 2. Bild- und Urbildmenge

Definieren Sie die Begriffe Bildmenge, Wertebereich, und Urbildmenge einer Funktion.

Es sei $f: D \to Z, x \mapsto f(x)$ eine Funktion und es seien $D' \subseteq D$ und $Z' \subseteq Z$.

Die Bildmenge von D' ist definiert als

$$f(D') := \{z \in Z | \mathsf{Es} \; \mathsf{gibt} \; \mathsf{ein} \; x \in D' \; \mathsf{mit} \; z = f(x) \}$$

Die Bildmenge umfasst all die Elemente der Zielmenge, die ihren Urpsrung in D' haben.

- Der Wertebereich von f ist gegeben durch $f(D) \subseteq Z$.
- Urbildmenge von Z' ist definiert als

$$f^{-1}(Z') := \{x \in D | f(x) \in Z'\}$$

Die Urbildmenge umfasst die Werte der Definitionsmenge, die auf einen Wert in Z' abbilden.

SKF 3. Funktionseigentschaften

Definieren Sie die Begriffe Surjektivität, Injektivität, und Bijektivität einer Funktion.

Definition (Injektivität, Surjektivität, Bijektivität)

Es sei $f: D \to Z, x \mapsto f(x)$ eine Funktion.

- Die Funktion f heißt injektiv, wenn es zu jedem Bild $z \in f(D)$ genau ein Urbild $x \in D$ gibt. Äquivalent gilt, dass f injektiv ist, wenn aus $x_1, x_2 \in D$ mit $x_1 \neq x_2$ folgt, dass $f(x_1) \neq f(x_2)$ ist.
- Die Funktion f heißt surjektiv, wenn f(D) = Z gilt, wenn also jedes Element der Zielmenge Z ein Urbild in der Definitionsmenge D hat.
- Die Funktion f heißt bijektiv, wenn f injektiv und surjektiv ist.

SKF 4. Funktionseigenschaften

Erläutern Sie, warum $f:\mathbb{R}\to\mathbb{R}, x\mapsto f(x):=x^2$ weder injektiv noch surjektiv ist.

 $f:\mathbb{R} \to \mathbb{R}, x \mapsto f(x):=x^2$ ist nicht injektiv, verschiedene Urbilder auf das gleiche Bild abbilden.

• z.B. gilt für
$$x_1 = 2 \neq -2 = x_2$$
, dass $f(x_1) = 2^2 = 4 = (-2)^2 = f(x_2)$.

Weiterhin ist f auch nicht surjektiv, weil nicht jedes Element der Zielmenge ein Urbild in der Definitionsmenge hat.

• z.B. $f(x) = -1 \in \mathbb{R}$ kein Urbild unter f hat.

SKF 5. Funktionseigentschaften

Erläutern Sie, warum $f:[0,\infty[\to [0,\infty[,x\mapsto f(x):=x^2 \text{ bijektiv ist.}]$

f ist injektiv, weil es zu jedem Bild $z\in f(D)$ genau ein Urbild $x\in D$ gibt. Formal ausgedrückt, gilt $f(x_1)\neq f(x_2)$ für $x_1,x_2\in D$, mit $x_1\neq x_2$.

f ist surjektiv, weil jedes Element der Zielmenge Z ein Urbild in der Definitionsmenge D hat.

Weil f injektiv und surjektiv, ist f auch bijektiv.

SKF 6. Verkettete Funktion

Erläutern Sie die Komponenten der Schreibweise $g\circ f:D\to S,x\mapsto (g\circ f)(x).$

- q o f bezeichnet die Funktion.
- $g \circ f : D \to S$ wir gelesen wird als "die Funktion $g \circ f$ bildet alle Elemente der Menge D eindeutig auf Elemente in S ab".
- $x \mapsto (g \circ f)(x)$ wird gelesen wird als "x, welches ein Element von D ist, wird durch die Funktion $g \circ f$ auf $(g \circ f)(x)$ abgebildet, wobei $(g \circ f)(x)$ ein Element von S ist".
- $(g \circ f)(x)$ bezeichnet ein Element in S.

Definieren Sie den Begriff der inversen Funktion.

Definition (Inverse Funktion)

Es sei $f:D \to R, x \mapsto f(x)$ eine bijektive Funktion. Dann heißt die Funktion f^{-1} mit

$$f^{-1} \circ f : D \to D, x \mapsto (f^{-1} \circ f)(x) := f^{-1}(f(x)) = x$$
 (1)

inverse Funktion (oder Umkehrfunktion) von f.

Geben Sie die inverse Funktion von x^2 auf $[0, \infty[$ an.

Die inverse Funktion von $f(x):=x^2=:y$ ist $f^{-1}(y)=\sqrt{y}$

Zur Veranschaulichung

SKF 9. Lineare Abbildung

Definieren Sie den Begriff der linearen Abbildung.

Definition (Lineare Abbildung)

Eine Abbildung $f:D\to R, x\mapsto f(x)$ heißt $\mathit{lineare Abbildung},$ wenn für $x,y\in D$ und einen Skalar c gelten, dass

$$f(x+y) = f(x) + f(y) \text{ und } f(cx) = cf(x).$$
 (2)

Eine Abbildung, für die obige Eigenschaften nicht gelten, heißt nicht-lineare Abbildung.

SKF 10. Funktionenarten

Definieren Sie die Begriffe der univariat-und multivariat-reellwertigen Funktion.

· univariate reellwertige Funktionen sind definiert als

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto f(x).$$

• multivariate reellwertige Funktionen sind definiert als

$$f: \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x) = f(x_1, ..., x_n).$$

Definieren Sie Begriff der multivariaten vektorwertigen Funktion.

multivariate vektorwertige Funktionen sind definiert als

$$f: \mathbb{R}^n \to \mathbb{R}^m, x \mapsto f(x) = \begin{pmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_m(x_1, ..., x_n) \end{pmatrix}.$$

SKF 12. Konstante und Identitätsfunktion

Skizzieren Sie die konstante Funktion für a:=1 und die Identitätsfunktion.

Für a=2 und b=3, skizzieren Sie die linear Funktion f(x)=ax+b.

Skizzieren Sie die Funktionen $f(x) := (x-1)^2$ und $g(x) := (x+3)^2$.

SKF 15. Exponential- und Logarithmusfunktion

Skizzieren Sie die Exponential- und Logarithmusfunktionen.

SKF 16. Exponentialfunktion

Geben Sie Exponentialeigenschaften der Exponentialfunktion an.

- $\exp(x + y) = \exp(x) \exp(y)$
- $\exp(x y) = \frac{\exp(x)}{\exp(y)}$
- $\exp(x) \exp(-x) = 1$

Geben Sie die Logarithmeneigenschaften der Logarithmusfunktion an.

$$\begin{array}{ll} \text{Wertebereich} & x \in]0,1[\ \Rightarrow \ln(x) \in]-\infty,0[\\ & x \in]1,\infty[\Rightarrow \ln(x) \in]0,\infty[\\ \text{Monotonie} & x < y \Rightarrow \ln(x) < \ln(y) \\ \text{Spezielle Werte} & \ln(1) = 0 \text{ und } \ln(e) = 1. \\ \text{Logarithmeneigenschaften} & \ln(xy) = \ln(x) + \ln(y) \\ & \ln(x^c) = c \ln(x) \\ & \ln\left(\frac{1}{x}\right) = -\ln(x) \end{array}$$