

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

108. Proposed by F. P. MATZ, M. Sc., Ph. D., Professor of Mathematics and Astronomy, Irving College, Mechanicsburg, Pa.

Prove that the *inclination* of a perfectly rough inclined plane must be $\theta = \sin^{-1}[e^2/(2-e^2)]$, in order that an ellipse of minimum eccentricity e may be capable of resting in equilibrium on the plane.

*** Solutions of these problems should be sent to B. F. Finkel not later than March 10,

AVERAGE AND PROBABILITY.

99. Proposed by E. B. SEITZ.

A point is taken at random in the surface of a given circle, and from it a line equal in length to the radius is drawn, so as to lie wholly in the surface of the circle. Find the chance that the line intersects in a given diameter. [No. 135, *The Analyst.*]

100. Proposed by L. C. WALKER, Associate Professor of Mathematics, Leland Stanford Jr. University, Palo Alto, Cal.

Required the average distance between two points in opposite sides of a regular 2n—gon.

*** Solutions of these problems should be sent to B. F. Finkel not later than March 10.

MISCELLANEOUS.

100. Proposed by F. P. MATZ, M. Sc., Ph. D., Professor of Mathematies and Astronomy, Irving College, Mechanicsburg, Pa.

Determine the maximum value of $(\varphi - \varphi')$, if given electric currents C and C' produce deflections φ and φ' in a tangent galvanometer, so that $\tan \varphi/\tan \varphi' = C/C'$.

101. Proposed by G. B. M. ZERR, A. M., Ph. D., Professor of Chemistry and Physics. The Temple College, Philadelphia, Pa.

A wire is laid along the surface of a right cone semi-vertical angle β so that it cuts the generators everywhere at a constant angle θ . Find the radius of curvature and radius of torsion.

** Solutions of these problems should be sent to J. M. Colaw not later than March 10.

EDITORIAL NOTE.

The Monthly begins the twentieth century with eighth volume. Seven volumes are already completed, and we trust that by the coöperation of its friends it may complete many more volumes.

It is desirable to publish more papers in the future, but only such as are of real value and merit. It is not desirable to publish articles which are mere