

#### RESEARCH ASSISTANT · COMPILERS, DATA STRUCTURES, ALGORITHMS

Office G740, 32 Vassar St. Cambridge, MA 02139

□ (+1) 505-412-5239 | willow@csail.mit.edu | willow-ahrens.io | □ willow-ahrens

# **Education**

### **Massachusetts Institute of Technology**

Cambridge, MA

Ph.D. Computer Science, GPA: 4.9 / 5.0, Advisor: Saman Amarasinghe

Sep. 2016 - Present

- Collaborated on intermediate languages, cost models, compiler passes, and algorithms for state-of-the-art research projects.
- Published 6 papers in top-tier conferences and journals, including PLDI and TOMS.
- Presented at 15+ conferences, workshops, and research groups in academia and industry.
- · Advised 4 undergraduates and 2 masters students. Proposed projects and provided weekly feedback. One student published in SPAA.
- Developed Finch.jl programming language and compiler for sparse and structured arrays.
- Discoved compiler algorithms to automatically adapt programs to input properties.

## **University of California, Berkeley**

Berkeley, CA

BS IN EECS, MINOR IN MATH, GPA: 3.8 / 4.0

Sep. 2012 - May 2016

# **Selected Publications**

#### **Looplets: A Language for Structured Coiteration.**

CGO 2023

W. Ahrens, D. Donenfeld, F. Kjolstad, and S. Amarasinghe.

Feb. 2023

- Published in Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization, in CGO 2023.
- Built the core language and compiler behind Finch tensor tensor compiler. Finch is the first compiler to support convolution over sparse arrays, as well as worst-case optimal joins and variable-width block formats.

### Autoscheduling For Sparse Tensor Algebra With An Asymptotic Cost Model.

PLDI 2022

W. Ahrens, F. Kjolstad, and S. Amarasinghe.

Jun. 2022

- Published in Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation.
- Discovered an asymptotic notation for the runtime of sparse tensor programs.
- Built the first asymptotic autoscheduler for sparse tensor compilers.

## Algorithms for Efficient Reproducible Floating Point Summation.

ACM Trans. Math. Softw.

W. Ahrens, J. Demmel, and H. D. Nguyen.

Jul. 2020

• Published in ACM Transactions on Mathematical Software, vol. 46, no. 3, p. 22:1-22:49, Jul. 2020.

### **Tensor Algebra Compilation with Workspaces.**

CGO 2019

2019

F. KJOLSTAD, W. AHRENS, S. KAMIL, AND S. AMARASINGHE.

• Published in 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), 2019, pp. 180-192.

## A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats.

IPDPS 2018

W. AHRENS, H. XU, AND N. SCHIEFER.

2018

• Published in 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018, pp. 546-556.

#### **Brief Announcement: Sparse Tensor Transpositions.**

SPAA 2020

S. Mueller, W. Ahrens, S. Chou, F. Kjolstad, and S. Amarasinghe.

2020

• Published in Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2020, pp. 559-561.

# Teaching\_

## MIT Course 6.1200 (Mathematics For Computer Science)

Boston, MA

TEACHING ASSISTANT

Sep 2022 - Dec 2022

- Taught 6.1200 (formally 6.042), a proof-based course designed to teach the fundamentals of algorithmic thinking in computer science, with attention given to concepts such as induction, asymptotic analysis, graphs, and probability.
- Led two discussion sections with 30 students each, covering example problems and their solutions.
- With 2 other TAs, staffed the last in-person office hours before homework was due each week, with attendance regularly exceeding 40 students requesting individual attention.

MIT Glass Lab

Cambridge, MA

GLASSBLOWING INSTRUCTOR

Feb 2019 - Present

- Supervised pairs of beginner students one at a time for weekly two-hour sessions.
- Ensured student safety in their first experiences with handling 2400 °F glass in a crowded hot shop.
- Explained critical techniques in glassblowing, including gathering, marvering, blocking, and blowing.

# Honors, Awards, & Committees \_\_\_\_\_

| 2023     | <b>Program Committee</b> , DRAGSTERS (Distributions, Relational Algebra, Graphs, Semi-Rings, Tensors, | Orlando. Fi     |
|----------|-------------------------------------------------------------------------------------------------------|-----------------|
|          | and All That), PLDI                                                                                   | Ortanao, Fi     |
| 2017-202 | 1 <b>CSGF Fellow</b> , DOE Computational Science Graduate Fellow                                      | Washington, D.C |
| 2016     | Warren Y. Dere Design Award, UC Berkeley                                                              | Berkeley, CA    |

## Presentation \_\_\_\_\_

| 2023 | "Sparse Compilers, Sparse Benchmarks", Sparse BLAS Workshop 2023, University of Tennessee | Knoxville, TN       |
|------|-------------------------------------------------------------------------------------------|---------------------|
| 2023 | "Exploring the Design Space of Sparsity Through Compilers", The Sparse Rooflines Group    | Virtual             |
| 2023 | "Exploring the Design Space of Sparsity Through Compilers", Relational Al Virtual Talk    | Virtual             |
| 2023 | "Finch: A Compiler for Sparse and Structured Data", Stanford University                   | Stanford, CA        |
| 2023 | "Finch: A Compiler for Sparse and Structured Data", Lawrence Berkeley National Lab        | Berkeley, CA        |
| 2023 | "Finch: A Compiler for Sparse and Structured Data", University of Washington PLSE Group   | Seattle, WA         |
| 2022 | "An Asymptotic Cost Model for Autoscheduling Sparse Tensor Programs", ADA Symposium       | Ann Arbor, Michigan |
| 2021 | "Contiguous Partitioning: Registers, Caches, and Distributed Memories", DOE CSGF Review   | Washington, D.C.    |
| 2021 | "On Optimal Partitioning for Variable Block Row Format", MIT CRIBB Seminar                | Cambridge, MA       |
| 2018 | "The Tensor Algebra Compiler (taco)", CSAIL Alliances Annual Meeting                      | Cambridge, MA       |
| 2018 | "For-Loops 2.0: Index Notation And The Future Of Array Compilers", JuliaCon 2018          | London, UK          |

# **Reviewing**

| 2022 | Reviewer, Parallel Computing                                    | N/A |
|------|-----------------------------------------------------------------|-----|
| 2020 | Reviewer, IEEE Transactions on Computers                        | N/A |
| 2020 | Reviewer, IEEE Transactions on Computers                        | N/A |
| 2019 | Reviewer, IEEE Transactions on Computers                        | N/A |
| 2021 | Reviewer, IEEE Transactions on Parallel and Distributed Systems | N/A |
| 2020 | Reviewer, IEEE Transactions on Parallel and Distributed Systems | N/A |
| 2019 | Reviewer, IEEE Transactions on Parallel and Distributed Systems | N/A |

# Experience \_\_\_\_\_

## 2022 NSF I-Corps Fall Cohort #2 - South Regional Node Program

Virtual

Entrepreneurial Lead

• Interviewed 100 potential customers to validate the market for tensor algebra compilers.

## **Sandia National Laboratory**

Albuquerque, NM

Aug. 2022 - Nov. 2022

CSGF PRACTICUM INTERN, SUPERVISOR: ERIK BOMAN

May 2019 - Aug 2019

• Discovered algorithms to reorganize sparse matrix nonzeros into dense blocks. Proposed the 1D-VBR sparse matrix format. Julia.

### **Los Alamos National Laboratory**

Los Alamos, NM

RESEARCH INTERN, SUPERVISOR: HAI AH NAM

May 2016 – Aug 2016

• Parallelized a coupled cluster doubles nuclear quantum physics simulation to run on Wolf cluster. C++/MPI.