

系统工程导论

开课单位:清华大学自动化系 主讲教师:胡坚明 副教授

模块一:系统建模

定性建模方法

解释结构模型方法

进入今天课程

- 系统工程导论

(國) 消華大学

·内容和重点·

■本章内容

- . al=
- 解释结构建模 (Interpretive Structure Modeling, ISM)
- 应用举例

系统工程导论

0

() 拼華大学

引言

■背景

- 系统由要素构成,要素之间存在逻辑关系(支持,包含,制约等等),并可以用一定的 数学模型描述
- 要了解系统中各要素之间的关系,需要建立系统的结构模型
- 补充材料:
 - http://en.wikipedia.org/wiki/Class_diagram
 - 第三章-能力数据结构化描述与建模方法分析.pdf

系统工程导论

解释性结构建模 -

■结构模型

•定义:

使用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型。

解释性结构建模 ·

(國) 清華大学

■结构模型

- •基本性质:
 - 结构模型是一种几何模型。结构模型使用由节点和有向边构成的图来描述一个系统的结构。
 - ① 节点——系统要素, 有向边——要素之间的关系。
 - ② "关系"可以是"影响"、"取决于"、"先于"、"需要"、"导致"等
 - 结构模型是一种以定性分析为主的模型。

系统工程导论

6

解释性结构建模

(國) 消華大学

■结构模型

- •基本性质:
 - 结构模型还可以用矩阵形式来描述。

S1 S2 S3 S4 S5 $S1 \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ S2 0 0 1 0 0 83 1 1 0 0 0 S4 1 0 0 0 0 0 有向图 S5 0 0 1 1 0

矩阵表示

• 结构模型作为对系统进行描述的形式,处在数学模型和逻辑分析两种形式之间。因此,可用于 处理宏观或微观,定性或定量,抽象或具体的有关问题

系统工程导论。

解释性结构建模

■结构模型化技术

- •结构模型化技术是指建立结构模型的方法论。
- •几种描述:
 - John Warfield(1974): 结构模型法是"在仔细定义的模型中,使用图形和文字来描述一个复杂 事件 (系统或研究领域) 的结构的一种方法论。"
 - Mick Mclean & P. Shephed (1976): 结构模型 "着重于一个模型组成部分的选择和清楚地表示 出各组成部分间的相互作用。"
 - Dennis Cearlock (1977): 结构模型强调 "确定变量之间是否有联结以及其连接的相对重要性, 而不是建立严格的数学关系以及精确地确定其系数。"

系统工程导论

解释性结构建模-

(家) 扩華大学 Tsinghua University

■解释结构模型法(ISM)

- •基本解释结构模型法概述
- •ISM解决的问题及问题定义
- •有向图的矩阵表示
- •有向图的可达矩阵
- •基于可达矩阵对变量做层次划分
- •分块确定骨架图

系统工程导论

10

解释性结构建模——ISM概述 -

(国) 拼華大学

■ISM方法

- •ISM是美国John Warfield教授于1973年开发的
- •主要功能:分析复杂的社会经济系统
- •特点:把复杂的系统分解为若干子系统(要素),利用人们的实践经验和知识,以及计算机的帮助,最终将系统构造成一个多级递阶的结构模型。
- 可以把模糊不清的思想、看法转化为直观的具有良好结构关系的模型。

系统工程导论 •

■图的基本概念

解释性结构建模——ISM概述

- •瑞士数学家欧拉 (Euler) 于1736年发表首篇图论方面的论文。
- •图论已被广泛应用于运筹学、管理科学、系统工程等领域
 - (1) 有向连接图
- •指由若干节点和有向边连接而成的图形。
- •节点的集合是S,有向边的集合为E,则可以将有向连接图表示为:

系统工程导论

解释性结构建模——ISM概述

() 扩華大学 =

■图的基本概念

(1) 有向连接图

(2) 回路

•在有向连接图的两个节点之间的边 多于一条时,则该两节点的边构成回路。

解释性结构建模——ISM概述

() () () () ()

■图的基本概念

- (3) 环
- •某节点的有向边直接与 该节点相连接,则构成环。

(4) 树

•在图论中,树(Tree)是一种无向图(undirected graph),其中任意两个顶点间存在唯一一条路径。或者说,只要没有回路的连通图就是树。

系统工程导论。

14

解释性结构建模——ISM概述

(国) (首華大学

■图的基本概念

- (5) 关联树
- •在节点上带有加权值 W, 而在边上有关联值 r 的树称作关联树。

解释性结构建模——ISM概述

(国) 拼華大学

■图的矩阵表示法

- (1) 邻接矩阵(adjacency matrix)
- •这是图的基本的矩阵表示,它用来描述图中各节点两两之间的关系。邻接矩阵 A 的元素a_i定义为:

$$a_{ij} = \begin{cases} 1 & S_i \mathbf{R} S_j & \mathbf{R} \\ 0 & S_i \mathbf{R} S_j & \mathbf{R} \end{cases}$$
 R表示 $S_i \Rightarrow S_j$ 沒有关系

系统工程导论

解释性结构建模——ISM概述 ————

■图的矩阵表示法

- (1) 邻接矩阵(adjacency matrix)
- •矩阵 A 的元素全为零的行所对应的节点称为汇点,即只有有向边进入而没有 离开该节点。如S1。
- •矩阵 A 的元素全为零的列所对应的节点称为源点,即只有有向边离开而没有进入该节点。如S4。
- •对应每一节点的行中,其元素值为1的数量,就是离开该节点的有向边数。
- •对应每一节点的列中,其元素值为1的数量,就是进入该节点的有向边数。

系统工程导论

17

解释性结构建模——ISM概述

(题) 消華大学

■图的矩阵表示法

(1) 邻接矩阵(adjacency matrix)

系统工程导论。

18

解释性结构建模——ISM概述 -

■图的矩阵表示法

- (2) 可达矩阵(reachability matrix)
- •是指用矩阵形式来描述有向连接图各节点之间,经过一定长度的通路后可以到达的程度。
- •可达矩阵具有推移律特性

即:当 S_i 经过长度为 1 的通路直达 S_k ,而 S_k 经过长度为 1 的通路直达 S_i ,那么, S_i 经过长度为 2的通路必可到达 S_i 。

系统工程导论

解释性结构建模——ISM问题 -

■问题实例

例1: 建立系统工程问题的目标体系

和基本目的有关的具体目标可能很多

目标1

目标2

目标3

目标5

目标6

目标7

目标8

目标4

某些目标对其它目标有贡献

系统工程导论

解释性结构建模──ISM问题 ■问题实例 例2: 制定人口控制综合策略模型 影响人口增长的因素很多,经专家小组讨论,确定以下因素: (1) 社会保障 (2) 老年服务 (3) 生育欲望 (4) 平均寿命 (5) 医疗保健水平 (6) 生育能力 (7) 计划生育政策 (8) 社会思想习惯 (9) 营养水平 (10) 污染 (11) 国民收入 (12) 出生率 (13) 死亡率 (14) 总人口 各因素直接存在什么关系? 什么结构?

系统工程导论

解释性结构建模——ISM问题

(国) 消華大学。

■确定骨架图的步骤

- •确定邻接矩阵
- •计算可达矩阵
- •做层次划分
- •确定骨架图

系统工程导论

33

(國) 清華大学 解释性结构建模--矩阵表示 邻接矩阵运算规则 逻辑加 逻辑乘 矩阵运算 (取小) (取大) $1 \times 1 = 1$ 1+1=1 矩阵乘 $1 \times 0 = 0$ 1+0=1矩阵加 $0 \times 1 = 0$ 0+1=10+0=0 $0 \times 0 = 0$ 系统工程导论 35

解释性结构建模——矩阵表示-

() 清華大学 -

结论

n个变量的邻接矩阵A,当k大于或等于n后,Ak的非对角线上不会有首次为1的元素。

所以

n个变量的有向图,若两个变量 间没有1, 2, ..., n-1次通道, 它们 之间就不会有通道。

所以 研究变量间有无通道,只需看 A, A^2, \dots, A^{n-1}

系统工程导论

41

解释性结构建模——矩阵表示-

(家) 1 著大学

■有向图的可达矩阵R

$$I = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$R = I + A + A^2 + \cdots + A^{n-1}$$

只要变量间存在通道, *R* 的相应元素为 1 若变量间不存在通道, *R* 的相应元素为 0

系统工程导论

42

解释性结构建模——矩阵表示-

■有向图的可达矩阵R

因为
$$(I+A)^2 = (I+A) \times (I+A)$$

 $= I+A+A+A^2 = I+A+A^2$
 $(I+A)^3 = (I+A)^2 \times (I+A)$
 $= (I+A+A^2) \times (I+A)$
 $= I+A+A^2+A+A^2+A^3$
 $= I+A+A^2+A^3$
所以 $R = (I+A)^{n-1}$

系统工程导论

解释性结构建模——矩阵表示-

■有向图的可达矩阵R

如果有m<n-1满足

$$(I+A)^m = (I+A)^{m+1}$$

$$\mathbb{II}: \qquad R = (I + A)^m$$

因为
$$(I+A)^m = (I+A)^{m+1} = (I+A)^m (I+A)$$

= $(I+A)^{m+1} (I+A) = (I+A)^{m+2}$
= $\cdots = (I+A)^{n-1}$

所以
$$R = (I + A)^m$$

系统工程导论

解释性结构建模——层次划分-

再利用以下规则就可确定骨架图

- (1) 同层变量或者互通或者不通 (根据可达矩阵判断)
- (2) 每层变量仅指向<mark>相邻的</mark>上层变量 (根据可达矩阵判断)
- (3) 每层变量不指向下层变量

求骨架图

反复求顶层变量

如何求顶层变量?

系统工程导论

解释性结构建模-一应用举例 -

() 清華大学。

某系统有9个变量。已知:

- ① 从x(5)只能达到x(3)和x(7),而能达到x(5)的只有x(2)、x(6)、 x(7)和x(9);
- ② 从x(6)只能达到x(3)、x(5)和x(7),能达到x(6)的只有x(2);
- ③ 从x(1)只能达到x(3),能达到x(1)的只有x(4)和x(8)。 请确定系统的骨架图。如果信息不够,可以自己补充。

 $A(5) = {3}$

 $A(6) = \{3,5,7\}$

 $A(1)={3}$

 $B(5) = \{7\}$

 $B(6) = \{ \}$

 $B(1) = \{ \}$

 $C(5) = \{1,4,8\}$

 $C(6)=\{1,4,8,9\}$ $C(1)=\{2,5,6,7,9\}$

 $D(5)=\{2,6,9\}$ $D(6)=\{2\}$

 $D(1) = \{4,8\}$

系统工程导论。

77

解释性结构建模--应用举例 **-**

() 清華大学

解:

 $A(5) = {3}$

 $B(5) = \{7\}$

 $C(5) = \{1,4,8\}$

 $D(5) = \{2,6,9\}$

系统工程导论

78

-应用举例 解释性结构建模-

解:

$$A(5)={3}$$
 $B(5)={7}$
 $7 \mapsto 5$
 $1,4$

 $C(5) = \{1,4,8\}$

 $D(5) = \{2,6,9\}$

系统工程导论

79

解释性结构建模--应用举例 -

系统工程导论

本章内容到此结束

- 图的矩阵表示 邻接矩阵和可达矩阵
- 用可达矩阵求骨架图 顶层变量的特征 分块确定骨架图