

IEL – protokol k projektu

Veranika Saltanava xsalta01

18. prosince 2022

Obsah

1	Příklad 1	2
	1.1 Výpočet R_{ekv}	2
	1.2 Výpočet U_{R2}	4
	1.3 Výpočet	5
2	Příklad 2	7
	2.1 Theveninův teorém	7
	2.2 Napětí naprázdno mezi svorkami A,B	7
	2.3 Odpor mezi svorkami A,B	7
	2.4 Výpočet	8
3	Příklad 3	9
	3.1 Nahrazení napěťového zdroje	9
	3.2 Uzlová napětí	9
	3.3 Převedení soustavy rovnic do matice napětí	10
	3.4 Výpočet	11
4	Příklad 4	12
5	Příklad 5	13
	5.1 Sestavení diferenciální rovnice	13
	5.2 Kontrola	15
6	Shrnutí výsledků	16

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Výpočet R_{ekv}

Sečtení seriově zapojených napětových zdrojů

$$U = U_1 + U_2$$

Zjednodušení paralelně zapojených resistorů $R_2,\,R_3$ na R_{23}

$$R_{23} = \frac{R_2 * R_3}{R_2 + R_3}$$

Zjednodušení seriově zapojených resistorů $R_6\ R_8$ na R_{68}

$$R_{68} = R_6 + R_8$$

Transfigurace trojúhelník \rightarrow hvězda

$$R_a = \frac{R_7 * R_{68}}{R_5 + R_7 + R_{68}}$$

$$R_b = \frac{R_5 * R_7}{R_5 + R_7 + R_{68}}$$

$$R_c = \frac{R_5 * R_{68}}{R_5 + R_7 + R_{68}}$$

Sečtení seriově zapojených rezistorů

$$R_{23c} = R_{23} + R_c$$

$$R_{b4} = R_4 + R_b$$

Sečtení paralelně zapojených rezistorů

$$R_{23cb4} = \frac{R_{23c} * R_{b4}}{R_{23c} + R_{b4}}$$

Sečtením sériových odporů získáme $R_{ekv}\colon$

$$R_{ekv} = R_{23cb4} + R_a + R_1$$

Výpočet U_{R2}

S R_{ekv} nyní můžeme vypočítat celkový proud v obvodu pomocí Ohmova zákona:

$$I = \frac{U}{R_{ekv}}$$

Postupně rozkladámé obvod v opačném pořadí. Rezistory zapojený seriově, to znamená, že jimi protéká stejný proud. Výpočítáme napětí na odporu R_{23cb4}

$$U_{r23cb4} = I * R_{23cb4}$$

Rezistory R_{23c} a R_{rb4} mají paralelné zapojení, a proto budou mít stejné napětí

$$U_{r23c} = U_{rb4} = U_{r23cb4}$$

$$I_{23c} = \frac{U_{r23c}}{R_{23} + R_c}$$

Rezistory R_{23} a R_c mají seriové zapojení, a proto jimi protéká stejný proud

$$I_{23} = I_c = I_{23c}$$

$$U_{r23} = I_{23} * R_{23}$$

Rezistory R_2 a R_3 mají paralelné zapojení, a proto budou mít stejné napětí

$$U_{r2} = U_{r3} = U_{r23}$$

$$I_{r2} = \frac{U_{r2}}{R_2}$$

Výpočet

$$U = 125 + 65 = 190[V]$$

$$R_{23} = \frac{660 * 100}{660 + 100} = 261.9048[\Omega]$$

$$R_{68} = 815 + 225 = 1050[\Omega]$$

$$R_a = \frac{330 * 1050}{300 + 330 + 1050} = 206.2500[\Omega]$$

$$R_b = \frac{300 * 330}{300 + 330 + 1050} = 58.9286[\Omega]$$

$$R_c = \frac{300 * 1050}{300 + 330 + 1050} = 187.5000[\Omega]$$

$$R_{23c} = 261.9048 + 187.5 = 449.4048[\Omega]$$

$$R_{b4} = 250 + 58.9286 = 308.9286[\Omega]$$

$$R_{23cb4} = \frac{449.4048 * 308.9286}{449.4048 + 308.9286} = 183.0778[\Omega]$$

$$R_{ekv} = 183.4048 + 206.25 + 510 = 899.3278[\Omega]$$

$$I = \frac{190}{899.3278} = 0.2113[A]$$

$$U_{r23cb4} = 0.2113 * 183.0778 = 38.6786[V]$$

$$U_{r23c} = U_{rb4} = 38.3786[V]$$

$$I_{23c} = \frac{183.0778}{261.9048 + 187.5} = 0.0861[A]$$

$$I_{23} = I_c = 0.0861[A]$$

$$U_{r23} = 0.0861 * 261.9048 = 22.5412[V]$$

$$U_{r2} = U_{r3} = 22.5412[V]$$

$$I_{r2} = \frac{261.9048}{500} = 0.0451[A]$$

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
G	180	250	315	615	180	460

Theveninův teorém

Libovolný obvod sestavený z lineárních prvků (ideální zdroje, rezistory) lze vůči libovolným dvěma svorkám A,B nahradit obvodem skutečného zdroje napětí.

Napětí naprázdno mezi svorkami A,B

Sečtení seriově zapojených odporů

$$R_{123} = R_1 + R_2 + R_3$$

 $U_0=\mathrm{napěťový}$ dělič, vypočítáme hodnotu napětí podle vzorce

$$U_0 = U * \frac{R_4}{R_{123} + R_4}$$

Odpor mezi svorkami A,B

Překreslíme obvod bez R_5 a nahradíme napěťové zdroje zkratem

Spočítáme R_i mezi A,B. R_{123} a R_4 jsou zapojený paralelně

$$Ri = \frac{R_{123} * R_4}{R_{123} + R_4}$$

$$I_{R5} = \frac{U_0}{Ri + R5}$$

$$U_5 = I_5 * R_5$$

Výpočet

$$R_{123} = 250 + 315 + 615 = 1180[\Omega]$$

$$U_0 = 180 * \frac{180}{1180 + 180} = 23,8235[\Omega]$$

$$Ri = \frac{1180 * 180}{1180 + 180} = 156,1765[\Omega]$$

$$I_{R5} = \frac{23,8235}{156,1765 + 460} = 0,0387[A]$$

$$U_5 = 0,0387 * 460 = 17,7852[V]$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
В	150	0.7	0.8	49	45	61	34	34

Nahrazení napěťového zdroje

Nahradíme napěťový zdroj za proudový. Pro náhradu napěťového zdroje platí:

$$I_z = G_1 * U$$

$$G_1 = \frac{1}{R_1}, G_2 = \frac{1}{R_2}, G_3 = \frac{1}{R_3}, G_4 = \frac{1}{R_4}, G_5 = \frac{1}{R_5}$$

Uzlová napětí

Za pomoci metody uzlových napětí si můžeme spočítat napětí $U_A,\,U_B,\,U_C.$

$$I_{r1} - I_{r2} - I_{r3} = 0$$
$$I_{r2} - I_{r4} - I_{2} = 0$$
$$I_{r4} - I_{2} - I_{r5} = 0$$

$$\begin{split} I_1 = & < zad{\acute{a}n\'i} >, \ I_2 = < zad{\acute{a}n\'i} > \\ I_{r3} = G_3 * U_a \\ I_{r4} = G_4 * (U_b - U_c) \\ I_{r2} = G_2 * (U_a - U_b) \\ I_{r5} = G_5 * U_c \end{split}$$

$$G_1(U - U_a) - G_2(U_a - U_b) - G_3(U_a - 0) = 0$$

$$G_2(U_a - U_b) - G_4(U_b - U_c) = I_2$$

$$G_4(U_b - U_c) - G_5 * U_c = I_1 - I_2$$

A:

$$G_1U - G_1U_a - G_2U_a + G_2U_b - G_3U_A = 0$$

 $-U_a(G_1 + G_2 + G_3) + G_2U_b = -UG_1$
 $U_a(G_1 + G_2 + G_3) - U_bG_2 = UG_1 \leftarrow$

B:

$$G_2U_a - G_2U_b - G_4U_b - G_3U_a = 0$$

 $U_aG_2 - U_b(G_2 + G_4) = UG_1 \leftarrow$

C:
$$G_4U_b - G_4U_c - G_5U_c = I_1 - I_2$$

$$0 * U_a + U_bG_4 - U_c(G_4 + G_5) = I_1 - I_2 \leftarrow$$

$$\begin{cases} U_a(G_1 + G_2 + G_3) - U_b G_2 = UG_1, \\ U_a G_2 - U_b (G_2 + G_4) = UG_1, \\ 0 * U_a + U_b G_4 - U_c (G_4 + G_5) = I_1 - I_2. \end{cases}$$

Převedení soustavy rovnic do matice napětí

Nyní si převedeme soustavu do matic ve formě:

$$Ax = B$$

kde A je matice vodivostí, x je matice napětí, které chceme vypočítat a B je matice proudů. Pro výpočet si musíme rovnici matic upravit do tvaru:

$$x = A^{-1}B$$

$$\begin{pmatrix} G_1 + G_2 + G_3 & -G_2 & 0 \\ G_2 & -G_2 - G_4 & G_4 \\ 0 & G_4 & -G_5 - G_4 \end{pmatrix} * \begin{pmatrix} U_a \\ U_b \\ U_c \end{pmatrix} = \begin{pmatrix} UG_1 \\ I_2 \\ I_1 - I_2 \end{pmatrix}$$

$$\begin{pmatrix} U_a \\ U_b \\ U_c \end{pmatrix} = \begin{pmatrix} G_1 + G_2 + G_3 & -G_2 & 0 \\ G_2 & -G_2 - G_4 & G_4 \\ 0 & G_4 & -G_5 - G_4 \end{pmatrix}^{-1} * \begin{pmatrix} UG_1 \\ I_2 \\ I_1 - I_2 \end{pmatrix}$$

Nacházíme Ua, Ub, Uc

$$U_{r4} = U_b - U_c$$
$$I_{r4} = \frac{U_4}{R_4}$$

Výpočet

$$G_1 = \frac{1}{49} = 0.0204[S]$$

$$G_2 = \frac{1}{45} = 0.0222[S]$$

$$G_3 = \frac{1}{61} = 0.0164[S]$$

$$G_4 = \frac{1}{34} = 0.0294[S]$$

$$G_5 = \frac{1}{34} = 0.0294[S]$$

$$\begin{pmatrix} U_a \\ U_b \\ U_c \end{pmatrix} = \begin{pmatrix} 0.0204 + 0.0222 + 0.0164 & -0.0222 & 0 \\ 0.0222 & -0.0224 - 0.0294 & 0.0294 \\ 0 & 0.0294 & -0.0294 - 0.0294 \end{pmatrix}^{-1} * \begin{pmatrix} 150 * 0.0204 \\ 0.8 \\ 0.7 - 0.8 \end{pmatrix}$$

$$U_a = 57.1704[V]$$

$$U_b = 14.0937[V]$$

$$U_c = 8.7469[V]$$

$$U_{r4} = 14.0937 - 8.7469 = 5.3469[V]$$

$$I_4 = \frac{5.3469}{34} = 0.1573[A]$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [\mathrm{mH}]$	C_1 [μ F]	C_2 [µF]	f [Hz]
F	2	3	12	10	170	80	150	90	65

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L\ =\ f(t).$ Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R\left[\Omega\right]$	$i_L(0)$ [A]
	G	10	50	25	7
	R				
			7 :		
t = 0 s			∐'∟		
s	70		Y L		
5 \	V				
			\approx		
υ _† /			Γ		
) [=)				

Sestavení diferenciální rovnice

Rovnice pro proud na cívce i_L :

$$i_L' = \frac{U_L}{L} \tag{1}$$

Napětí na cívce si můžeme vyjádřit pomocí 2. Kirchoffova zákona:

$$U_R + U_L = U$$

$$U_L = U - U_R \tag{2}$$

Podle Ohmova zákona máme:

$$U_R = i_L * R \tag{3}$$

Dosadíme 2. a 3. rovnice do 1.:

$$i_L^{'} = \frac{U - i_L * R}{L}$$

Vzniklou diferenciální rovnici upravíme:

$$Li'_{L} + Ri_{L} = U, (4)$$

$$i_L(0) = i_{Lp}$$

Dosadíme hodnoty:

$$50i_L' + 25i_L = 10 (5)$$

Podívejme se na obecný tvar rovnice pro cívku, jestli už máme co potřebujeme:

$$i_L(t) = K(t) * e^{\lambda t} \tag{6}$$

Chybí nam λ a K(t), tak musíme tyto proměnné najít a vypočítat. Řešíme characteristickou rovnici pro λ $(i_L^{'}=\lambda,\,i_L=1)$:

$$L\lambda + R = 0$$

$$\lambda = -\frac{R}{L} \tag{7}$$

Dosadíme hodnoty:

$$\lambda = -\frac{25}{50} = -\frac{1}{2}$$

Dosadíme λ do 6. rovnice (Obecná rovnice pro cívku)

$$i_L(t) = K(t) * e^{-\frac{1}{2}t}$$
 (8)

Derivujeme předchozí rovnice, abychom měli deferenciální tvar rovnice naší cívky, pro dosazení do rovnice 5.

$$i'_{L}(t) = K(t)' * e^{-\frac{1}{2}t} - \frac{1}{2}K(t) * e^{-\frac{1}{2}t}$$
(9)

Dosazujeme 8. a 9. do 5. (do diferenciální rovnice)

$$50(K(t)' * e^{-\frac{1}{2}t} - \frac{1}{2}K(t) * e^{-\frac{1}{2}t}) + 25(K(t) * e^{-\frac{1}{2}t}) = 10$$

$$50K(t)' * e^{-\frac{1}{2}t} - 25K(t) * e^{-\frac{1}{2}t} + 25K(t) * e^{-\frac{1}{2}t} = 10$$

$$50K(t)' * e^{-\frac{1}{2}t} = 10$$

$$K(t)' = \frac{1}{5} * e^{\frac{1}{2}t}$$
(10)

Máme K(t). Teda skoro máme, v obecném tvaru to není derivace, takže to musíme ještě zintegrovat:

$$K(t) = \int \frac{1}{5} * e^{\frac{1}{2}t} dt$$

$$K(t) = \frac{2}{5} * e^{\frac{1}{2}t} + C$$
(11)

Nyní už máme co potřebujeme, tak dosadíme do analytické rovnice a pak provedeme kontrolu:

$$i_L(t) = K(t) * e^{\lambda t}$$

$$i_L(t) = (\frac{2}{5} * e^{\frac{1}{2}t} + C) * e^{-\frac{1}{2}t}$$
$$i_L(t) = \frac{2}{5} + C * e^{-\frac{1}{2}t}$$

Vypočítáme si C dle počateční podmínky v čase t=0

$$i_L(0) = \frac{2}{5} + C * e^{-\frac{1}{2} * 0}$$
$$i_L(0) = \frac{2}{5} + C$$
$$7 = \frac{2}{5} + C$$
$$C = 7 - \frac{2}{5} = \frac{33}{5}$$

Konečná rovnice má tento tvar:

$$i_L(t) = \frac{2}{5} + \frac{33}{5} * e^{-\frac{1}{2}t}$$

${\bf Kontrola}$

Zkontrolujeme si výpočet dosazením těchto rovnic

$$i_{L} = \frac{2}{5} + \frac{33}{5} * e^{-\frac{1}{2}t}$$

$$i_{L}(t)' = \frac{1}{5} * e^{\frac{1}{2}t} - \frac{1}{2}(\frac{2}{5} * e^{\frac{1}{2}t} + \frac{33}{5}) * e^{-\frac{1}{2}t}$$

do diferenciální rovnice:

$$50i'_L + 25i_L = 10$$

$$50(\frac{1}{5} * e^{\frac{1}{2}t} - \frac{1}{2}(\frac{2}{5} * e^{\frac{1}{2}t} + \frac{33}{5}) * e^{-\frac{1}{2}t}) + 25(\frac{2}{5} + \frac{33}{5} * e^{-\frac{1}{2}t}) = 10$$

$$10 - 25(\frac{2}{5} + \frac{33}{5} * e^{-\frac{1}{2}t}) + 10 + 25 * \frac{33}{5} * e^{-\frac{1}{2}t} = 10$$

$$10 - 10 - 25 * \frac{33}{5} * e^{-\frac{1}{2}t} + 10 + 25 * \frac{33}{5} * e^{-\frac{1}{2}t} = 10$$

$$\mathbf{10} = \mathbf{10}$$

Shrnutí výsledků

Příklad	Skupina	Výsl	edky
1	F	$U_{R2} = 22.5412[V]$	$I_{R2} = 0.0451[A]$
2	G	$U_{R5} = 17.7852[V]$	$I_{R5} = 0.0387[A]$
3	В	$U_{R4} = 5.3469[V]$	$I_{R4} = 0.1573[A]$
4	F	$ U_{C_2} =$	$\varphi_{C_2} =$
5	G	$i_L = \frac{2}{5} +$	$\frac{33}{5} * e^{-\frac{1}{2}t}$