HW 5

Question 3:

Solve the following questions from the Discrete Math zyBook:

- a) Exercise 4.1.3, sections b, c
 - 1. Exercise 4.1.3, section b
 - i. $f(x) = 1/(x^2-4)$ is not well defined for x = 2 and x = -2, therefore $f(x) = 1/(x^2-4)$ is not a function from R to R
 - 2. Exercise 4.1.3, section c
 - i. $f(x) = \sqrt{x^2}$ is a function from R to R. Its range is all real numbers greater than or equal to 0.
 - 1. Range = $\{x \in R: x \ge 0\}$
- b) Exercise 4.1.5, sections b, d, h, i, l
 - 1. Exercise 4.1.5, section b
 - i. {4, 9, 16, 25}

1.
$$\{2^2, 3^2, 4^2, 5^2\}$$

- 2. Exercise 4.1.5, section d
 - i. {0, 1, 2, 3, 4, 5}
 - 1. $\{0,1\}^5$ can have any range of 1's from 0 to 5

a.
$$00000 = 0$$

b.
$$00001 = 1$$

c.
$$00011 = 2$$

d.
$$00111 = 3$$

e.
$$01111 = 4$$

f.
$$111111 = 5$$

- 3. Exercise 4.1.5, section h
 - i. $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

1. A x A =
$$\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

a.
$$f(1, 1) = (1, 1)$$

b.
$$f(1, 2) = (2, 1)$$

c.
$$f(1, 3) = (3, 1)$$

d.
$$f(2, 1) = (1, 2)$$

e.
$$f(2, 2) = (2, 2)$$

f.
$$f(2, 3) = (3, 2)$$

g.
$$f(3, 1) = (1, 3)$$

h.
$$f(3, 2) = (2, 3)$$

i.
$$f(3, 3) = (3, 3)$$

- 4. Exercise 4.1.5, section i
 - i. $\{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$
 - 1. A x A = $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
 - a. f(1, 1) = (1, 2)
 - b. f(1, 2) = (1, 3)
 - c. f(1, 3) = (1, 4)
 - d. f(2, 1) = (2, 2)
 - e. f(2, 2) = (2, 3)
 - f. f(2, 3) = (2, 4)
 - g. f(3, 1) = (3, 2)
 - h. f(3, 2) = (3, 3)
 - i. f(3, 3) = (3, 4)
- 5. Exercise 4.1.5, section 1
 - i. $\{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$
 - 1. $P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$
 - a. $f(\emptyset) = \emptyset$
 - b. $f(\{1\}) = \emptyset$
 - c. $f({2}) = {2}$
 - d. $f({3}) = {3}$
 - e. $f({1,2}) = {2}$
 - f. $f({1,3}) = {3}$
 - g. $f({2,3}) = {2,3}$
 - h. $f({1, 2, 3}) = {2, 3}$

Question 4:

- I. Solve the following questions from the Discrete Math zyBook:
 - a) Exercise 4.2.2, sections c, g, k
 - 1. Exercise 4.2.2, section c
 - i. h: $Z \rightarrow Z$. h(x) = x^3

1. The function is one-to-one

- a. If we assume $f(x_1) = f(x_2)$ we can show that $x_1 = x_2$
- b. $f(x_1) = f(x_2)$ is equivalent to $(x_1)^3 = (x_2)^3$
- c. If we take the cubed root of both we prove $x_1 = x_2$ therefore the function is one-to-one.

2. The function is not onto

- a. The cubed root of y = x
- b. However, some y values will result in x values that aren't in the domain as they are not integers
- c. For example, the cubed root of 3 is not an integer.
- d. Conversely there is no integer x such that $x^3 = 3$, which is an integer within the target.
- 2. Exercise 4.2.2, section g
 - i. $f: Z \times Z \rightarrow Z \times Z$, f(x, y) = (x+1, 2y)

1. The function is one-to-one

- a. If we look at the function f(x, y), we see that it results in an ordered pair comprised of two functions which are one-to-one
 - i. x + 1
 - 1. If we assume $f(x_1) = f(x_2)$ we can show that $x_1 = x_2$
 - 2. $f(x_1) = f(x_2)$ is equivalent to $(x_1 + 1) = (x_2 + 1)$
 - 3. If we subtract 1 from both sides, we prove $x_1 = x_2$ therefore the function is one-to-one.
 - ii. 2y
- 1. If we assume $f(y_1) = f(y_2)$ we can show that $y_1 = y_2$
- 2. $f(y_1) = f(y_2)$ is equivalent to $2y_1 = 2y_2$
- 3. If we divide both sides by 2, we prove $y_1 = y_2$ therefore the function is one-to-one.
- b. Therefore, every unique combination of x, y will result in a unique ordered pair for f(x, y)

2. The function is not onto

- a. The y value in the target's ordered pair is determined by the function 2y, which means each y value in the range will be even
- b. In this case x = y/2 for some x in the y coordinate of the domain
- c. However, some y values will result in x values that aren't in the domain as they are not integers
- d. For example, if y = 1, 1/2 is not an integer.
- e. Conversely there is no integer x such that 2x = 1.
- f. Furthermore, there is no combination of x, y such that f(x,y) = f(1,1)
- g. Therefore, f(x,y) will not have y values in the ordered pair that are odd and so the target of all integers does not equal the range of this function.

- 3. Exercise 4.2.2, section k
 - i. $f: Z^+ \times Z^+ \to Z^+, f(x, y) = 2^x + y.$

1. The function is not one-to-one

- a. The function is not one-to-one because different ordered pairs in the domain result in the same target value
 - i. For example, f(1, 4) and f(2, 2) both result in 6.

2. The function is not onto

- a. The range of the function f does not equal the target of the function
- b. The domain is that of positive integers (≥ 1), therefore the smallest values that can be entered into the function f(x,y) are 1 and 1
- c. This results in $2^1 + 1 = 3$
- d. The range of the function is every integer \geq to 3
- e. However, the target of the function is every integer ≥ 1
- f. Therefore, there are elements in the target (1 and 2) that are not in the range of the function, and therefore it is not onto.
- b) Exercise 4.2.4, sections b, c, d, g
 - 1. Exercise 4.2.4, section b
 - i. f: $\{0, 1\}^3 \rightarrow \{0, 1\}^3$

1. The function is not one-to-one

- a. f(000) and f(100) = 100
- 2. The function is not onto
 - a. There is no x value in $\{0, 1\}^3$ such that f(x) = 000
- 2. Exercise 4.2.4, section c
 - i. $\{0, 1\}^3 \rightarrow \{0, 1\}^3$
 - 1. $\{0, 1\}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
 - a. f(000) = 000
 - b. f(001) = 100
 - c. f(010) = 010
 - d. f(011) = 110
 - e. f(100) = 001
 - f. f(101) = 101
 - g. f(110) = 011
 - h. f(111) = 111

2. The function is one-to-one

a. For each unique value x in $\{0, 1\}^3$, f(x) results in a unique y

3. The function is onto

a. The range and target of the function are equal as can be seen in bullet 1

- 3. Exercise 4.2.4, section d
 - i. $\{0, 1\}^3 \rightarrow \{0, 1\}^4$
 - 1. $\{0, 1\}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
 - a. f(000) = 0000
 - b. f(001) = 0010
 - c. f(010) = 0100
 - d. f(011) = 0110
 - e. f(100) = 1001
 - f. f(101) = 1011
 - g. f(110) = 1101
 - h. f(111) = 1111

2. The function is one-to-one

a. For each unique value x in $\{0, 1\}^3$, f(x) results in a unique y

3. The function is not onto

- a. The range and target of the function are not equal
- b. There is no x value in $\{0, 1\}^3$ such that f(x), results in 1000
- 4. Exercise 4.2.4, section g

i.
$$A = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
 and let $B = \{1\}$. f: $P(A) \rightarrow P(A)$. For $X \subseteq A$, $f(X) = X - B$

1. The function is not one-to-one

a.
$$f(\{1,2\})$$
 and $f(\{2\}) = \{2\}$ so $f(x_1) = f(x_2)$, but x_1 and x_2 are not equal

- 2. The function is not onto
 - a. $\{1\}$ is not in the range of f but is part of the target P(A)

II. Give an example of a function from the set of integers to the set of positive integers that is:

- a) One-to-one, but not onto
 - 1. Piecewise function: f(x) =
 - i. 2|x|, for x < 0
 - ii. 2x + 3, for $x \ge 0$
 - 2. One-to-one
 - i. If the number is negative it will map to a unique even number in Z⁺
 - ii. If the number is greater than or equal to zero it will map to a unique odd number
 - iii. Therefore, no two x's map to the same y
 - 3. Not Onto
 - i. The range of the function will include all positive integers except for 1, which is in the target of $\mathbf{Z}^{\scriptscriptstyle{+}}$
- b) Onto, but not one-to-one
 - 1. y = |x| + 1
 - i. Onto
 - 1. Absolute value of x will reflect the positive of any integer thus mapping it from Z to Z^+
 - 2. The +1 is to ensure 0 also falls within Z^+
 - ii. Not one-to-one because x = -1 and x = 1 both result in 2

- c) One-to-one and onto
 - 1. Piecewise function: f(x) =
 - i. 2|x| + 1, for $x \le 0$
 - ii. 2x, for x > 0
 - 2. One-to-one
 - i. If the number is negative or 0 it will map to a unique odd number in Z⁺
 - ii. If the number is positive it will map to a unique even number
 - iii. Therefore, no two x's map to the same y
 - 3. Onto
 - i. The range of the function will include all positive even and odd integers and therefore equals the target of $Z^{\scriptscriptstyle +}$
- d) Neither one-to-one nor onto
 - 1. $2x^2 + 1$
 - i. Not one-to-one
 - 1. x = -1 and x = 1 both result in 3
 - ii. Not onto
 - 1. Since x is an integer, x^2 is an integer which we can represent as k
 - 2. Therefore, the function is of the form 2k + 1 which will always result in an odd integer
 - 3. Therefore, there is no integer x, such that $2x^2 + 1 = 2$

Question 5:

Solve the following questions from the Discrete Math zyBook:

- a) Exercise 4.3.2, sections c, d, g, i
 - 1. Exercise 4.3.2, section c
 - i. The function has a well-defined inverse
 - 1. The function is a bijection, so it must have a well-defined inverse
 - a. One-to-one
 - I. Assume $f(x_1) = f(x_2)$ and prove $x_1 = x_2$
 - II. $2x_1 + 3 = 2x_2 + 3$
 - III. Subtract three from both sides and then divide by 2
 - IV. $x_1 = x_2$
 - b. Onto
- I. y = 2x + 3
- II. x = (y-3)/2
- III. Since all real numbers are mapped to all real numbers, for each y in the target there exists an x such that x = (y-3)/2
- 2. $f^{-1}(x) = (x-3)/2$
- 2. Exercise 4.3.2, section d
 - i. The function does not have a well-defined inverse, because the function is not one-to-one and therefore not a bijection
 - 1. $f({1})$ and $f({2})$ both equal 1.
- 3. Exercise 4.3.2, section g
 - i. The function has a well-defined inverse
 - 1. f is one-to-one and onto, and therefore it is a bijection
 - a. One-to-one

I.
$$\{0, 1\}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$$

- 1. f(000) = 000
- 2. f(001) = 100
- 3. f(010) = 010
- 4. f(011) = 110
- 5. f(100) = 001
- 6. f(101) = 101
- 7. f(110) = 011
- 8. f(111) = 111
- II. For each unique value x in $\{0, 1\}^3$, f(x) results in a unique y
- b. Onto
 - I. The range of the function equals the target as can be seen above, therefore the function is onto
- 2. f is a bijection, therefore it has a well-defined inverse
- 3. The output of f^{-1} is obtained by taking the input string and reversing the bits. For example, $f^{-1}(011) = 110$

- 4. Exercise 4.3.2, section i
 - i. The function has a well-defined inverse
 - 1. f(x, y) is a bijection, therefore it has a well-defined inverse
 - a. One-to-one
 - I. x-
 - 1. Assume $f(x_1) = f(x_2)$, prove $x_1 = x_2$
 - 2. $x_1 + 5 = x_2 + 5$
 - 3. Subtract 5 from both sides
 - 4. $x_1 = x_2$
 - II. y-2
 - 1. Assume $f(y_1) = f(y_2)$, prove $y_1 = y_2$
 - 2. $y_1 2 = y_2 2$
 - 3. Add 2 to both sides
 - 4. $y_1 = y_2$
 - b. Onto
 - I. x+5
 - 1. y = x + 5
 - 2. x = y 5
 - 3. For any given y in the target, there exists an x in the domain such that x = y 5
 - II. y-2 (shown as x-2)
 - 1. y = x 2
 - 2. x = y + 2
 - 3. For any given y in the target, there exists an x in the domain such that x = y + 2
 - 2. $f^{-1}(x, y) = (x-5, y+2)$
- b) Exercise 4.4.8, sections c, d
 - 1. Exercise 4.4.8, section c
 - i. $f \circ h(x) = 2x^2 + 5$
 - 1. $f(x^2 + 1)$
 - 2. $2(x^2+1)+3$
 - 3. $2x^2 + 5$
 - 2. Exercise 4.4.8, section d
 - i. $h o f(x) = 4x^2 + 12x + 10$
 - 1. h(2x + 3)
 - 2. $(2x+3)^2+1$
 - 3. $(4x^2 + 12x + 9) + 1$
- c) Exercise 4.4.2, sections b-d
 - 1. Exercise 4.4.2, section b
 - i. $f \circ h(52) = 121$
 - 1. h(52) = 11
 - 2. f(11) = 121
 - 2. Exercise 4.4.2, section c
 - i. $g \circ h \circ f(4) = 16$
 - 1. f(4) = 16
 - 2. h(16) = 4
 - 3. g(4) = 16

- 3. Exercise 4.4.2, section d
 - i. $[x^2/5]$
- d) Exercise 4.4.6, sections c-e
 - 1. Exercise 4.4.6, section c
 - i. h o f(010) = 111
 - 1. f(010) = 110
 - 2. h(110) = 111
 - 2. Exercise 4.4.6, section d
 - i. The range of h o $f = \{101, 111\}$
 - 1. $\{0, 1\}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
 - a. f(000) = 100
 - b. f(001) = 101
 - c. f(010) = 110
 - d. f(011) = 111
 - e. f(100) = 100
 - f. f(101) = 101
 - g. f(110) = 110
 - f(111) = 111
 - 2. Range of f(x) is {100, 101, 110, 111}
 - 3. h(x) for the strings in the set above is:
 - a. h(100) = 101
 - b. h(101) = 101
 - c. h(110) = 111
 - d. h(111) = 111
 - 3. Exercise 4.4.6, section e
 - i. The range of g o $f = \{001, 101, 011, 111\}$
 - 1. $\{0, 1\}^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
 - a. f(000) = 100
 - b. f(001) = 101
 - c. f(010) = 110
 - d. f(011) = 111
 - e. f(100) = 100
 - f. f(101) = 101
 - g. f(110) = 110
 - h. f(111) = 111
 - 2. Range of f(x) is {100, 101, 110, 111}
 - 3. g(x) for the strings in the set above is:
 - a. g(100) = 001
 - b. g(101) = 101
 - c. g(110) = 011
 - d. g(111) = 111

- e) Extra credit: Exercise 4.4.4, sections c, d
 - 1. Exercise 4.4.4, section c
 - i. Is it possible that f is not one-to-one and g o f is one-to-one?
 - 1. No, it is not possible.
 - a. If f is not one-to-one, then, by definition, there exist elements x_1 and x_2 in the domain of f, such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$
 - b. If $f(x_1) = f(x_2)$ then let us represent both as y.
 - c. If we examine x_1 and x_2 in the following $g(f(x_1))$ and $g(f(x_2))$ and substitute from bullet b we see that for both x_1 and x_2 the result is g(y) and g(y)
 - **d.** Since $x_1 \neq x_2$, but $g(f(x_1)) = g(f(x_2))$ g o f cannot be one to one
 - 2. Exercise 4.4.4, section d
 - i. Is it possible that g is not one-to-one and g o f is one-to-one?
 - 1. Yes, it is possible.

- 2.
- a. g(f(a)) = x
- b. g(f(b)) = y
- c. g(f(c)) = z
- 3. Notice that g is not one to one because g(2) = g(3) = y