

Vyhledávání k přibližných nejbližších sousedů pomocí BBD stromů

Approximate k-nearest neighbor search with BBD-trees

Petr Šádek

21.11.2022

Připomenutí – přibližný nejbližší soused

Pro $\varepsilon > 0$ definujeme bod **p** jako $(1 + \varepsilon)$ –přibližného souseda bodu **q** pokud: dist(**p**, **q**) < $(1 + \varepsilon)$ *dist(**pt**, **q**), kde **pt** je nejbližší soused **q**

Vyhledávání k přibližných nejbližších sousedů

- Může být výrazně rychlejší než vyhledávání přesných nejbližších sousedů v závislosti na zvoleném ε
- Implementace využívá BBD strom
 - Pro některé typy dat stačí kd strom
- Použití
 - Fotonové mapy
 - Ve strojovém učení

BBD strom

- Balanced box-decomposition tree vyvážený strom hierarchie obálek
- Podobný kd-stromu
 - Klasické dělení podle rovin kolmých na souřadnicové osy (fair split)

 Obsahuje navíc "smršťující" (shrinking) uzly, které dělí uzel na vnitřní a vnější část

Stavba stromu

- Chceme aby většina uzlů dělila rovinou (fair split), smršťování (shrinking) děláme jen když to je nutno
 - zjištění vzdálenosti od obálky je mnohem jednodušší, také jednodušší reprezentace uzlu
- Postup (midpoint algoritmus):
 - Vždy nejprve dělíme podle osy kde má obálka největší rozměr, dělíme v půlce intervalu
 - Pokud po d/2 děleních nesnížíme počet bodů alespoň na polovinu, pak uděláme smršťování
- Po dokončení stavby stromu nahradíme posloupnosti triviálních uzlů jedním triviálním smršťováním
- Pro většinu dat je výsledný počet vzniklých smršťovacích uzlů malý (5-20%), často stačí použít klasický kd-strom

Smršťování

- Dělím prostor rovinami dokud mi počet bodů neklesne pod 2/3 celkového počtu
- Poté tuto posloupnost dělení nahradím jedním smršťovacím uzlem

Problémy:

- Dělení může být hodně
- Smršťující uzly se mi v hierarchii můžou překrývat

Řešení 1. problému

Řešení 2. problému

() split

Hledání $(1+\pmb{\varepsilon})$ – přibližného nejbližšího souseda

Průchod prioritní frontou podle vzdálenosti obálky

Při průchodu uzly dělícími rovinou:

Hledání $(1 + \varepsilon)$ – přibližného nejbližšího souseda

Zastavíme když je vzdálenost aktuální obálky větší než $r/(1 + \varepsilon)$, kde r je vzdálenost k nejbližšímu dosud nalezenému bodu.


```
Distance 'd' = infinity, approximate nearest neighbor 'N' = none
Insert root node to PQ, dist 0

DO

'node' = take closest one from PQ
IF 'node' is a leaf THEN

Compute distance 'dL' to the closest point in the leaf
Record the nearest neighbor 'N' so far and update 'd' by 'dL' (if 'dL' < 'd')

ELSE /* interior node */
Insert the farther child to PQ (distance d1)
Insert the closer child to PQ (distance d2)

ENDIF

'Dclosest' = the closest node to query in PQ

UNTIL (d / (1+eps) > Dclosest)

Report the approximate nearest neighbor 'N'
```


Hledání $\mathbf{k} (1 + \boldsymbol{\varepsilon})$ – přibližných nejbližších sousedů

- Stejné, jen máme navíc frontu k nejbližších
- Ukončovací podmínku vyhodnocujeme pro bod z prioritní fronty co je nejblíže
- Pouze nesmíme zastavit dokud nenalezneme alespoň k sousedů

Vlastnosti BBD stromu

- Čas stavby: $O(dn \log n)$
- Paměťová náročnost: O(dn)
- Nalezení $(1 + \varepsilon)$ přibližného nejbližšího souseda:

•
$$O\left(\left[1+\frac{6d}{\varepsilon}\right]^d d\log n\right)$$

- Jen horní odhad, ve skutečnosti je v průměru mnohem lepší
- U kd-stromu: $O(2^d \log n)$
- Nalezení k $(1 + \varepsilon)$ přibližných nejbližších sousedů:

•
$$O\left(\left(k + \left[1 + \frac{6d}{\varepsilon}\right]^d\right) d \log n\right)$$

Čas dotazu

- Měřeno pro 100 000 bodů, dimenze 16
- Pro uniformní rozdělení dat stačí klasický kd-strom
 - Podobně u normálního rozdělení
- Pro shluková data se BBD-strom vyplácí

Chyba

- Grafy jsou pro uniformní rozdělení dat
 - Podobné výsledky jsou pro normální rozdělení
- I pro velké arepsilon je poměrně velká šance že se trefíme do nejbližšího souseda

Počet navštívených listů na dotaz

- Horní odhad v článku je: $[1 + 6d/\varepsilon]^d$
- Pro $\varepsilon=1$ a dimenzi 16 by tento odhad byl 10^{31}
- Ve skutečnosti je ale navštíveno jenom zhruba 100 listů

Měření

- T_B čas postavení datové struktury
- T_R průměrný čas na dotaz pro hodně dotazů
- N_TR průměrný počet kroků při průchodu datovou strukturou
- N_Q počet dotazů pro konkrétní testy
- M spotřeba paměti datový struktur
- PERF počet dotazů za sekundu
- N_I počet vnitřních uzlů
- N_L počet listů
- D_MAX maximální hloubka hierarchie
- N_AP průměrný počet bodů v listech

Děkuji za pozornost