Example 50.3. Let J, φ_1 and φ_2 be the functions defined on \mathbb{R} by

$$J(x) = x$$

$$\varphi_1(x) = -x$$

$$\varphi_2(x) = x - 1.$$

In this case

$$U = \{x \in \mathbb{R} \mid -x \le 0, x - 1 \le 0\} = [0, 1].$$

Since the constraints are affine, they are automatically qualified for any $u \in [0, 1]$. The system of equations and inequalities shown above becomes

$$1 - \lambda_1 + \lambda_2 = 0$$
$$-\lambda_1 x + \lambda_2 (x - 1) = 0$$
$$-x \le 0$$
$$x - 1 \le 0$$
$$\lambda_1, \lambda_2 \ge 0.$$

The first equality implies that $\lambda_1 = 1 + \lambda_2$. The second equality then becomes

$$-(1 + \lambda_2)x + \lambda_2(x - 1) = 0,$$

which implies that $\lambda_2 = -x$. Since $0 \le x \le 1$, or equivalently $-1 \le -x \le 0$, and $\lambda_2 \ge 0$, we conclude that $\lambda_2 = 0$ and $\lambda_1 = 1$ is the solution associated with x = 0, the minimum of J(x) = x over [0,1]. Observe that the case x = 1 corresponds to the maximum and not a minimum of J(x) = x over [0,1].

Remark: Unless the linear forms $(\varphi'_i)_u$ for $i \in I(u)$ are linearly independent, the $\lambda_i(u)$ are generally not unique. Also, if $I(u) = \emptyset$, then the KKT conditions reduce to $J'_u = 0$. This is not surprising because in this case u belongs to the relative interior of U.

If the constraints are all affine equality constraints, then the KKT conditions are a bit simpler. We will consider this case shortly.

The conditions for the qualification of nonaffine constraints are hard (if not impossible) to use in practice, because they depend on $u \in U$ and on the derivatives $(\varphi'_i)_u$. Thus it is desirable to find simpler conditions. Fortunately, this is possible if the nonaffine functions φ_i are *convex*.

Definition 50.6. Let $U \subseteq \Omega \subseteq V$ be given by

$$U = \{ x \in \Omega \mid \varphi_i(x) \le 0, \ 1 \le i \le m \},\$$

where Ω is an open subset of the Euclidean vector space V. If the functions $\varphi_i \colon \Omega \to \mathbb{R}$ are convex, we say that the constraints are *qualified* if the following conditions hold: