Assignment 5

Arthur Araujo Galdino dos Santos

Available at: https://github.com/araujoarthur/metcompA/tree/main/tarefa5

1st Step

Define packages used

```
In [1]: using DataFrames using CairoMakie
```

2nd Step

Define position, acceleration and speed functions and the *T* constant

```
In [2]: position(t,T) = -25 * (t + T*e^(-t/T)) + 325 # e is a built-in variable i acceleration(t,T) = -e^(-t/T)/T speed(t,T) = -25 * (1 - e^(-t/T))
T = 5

Out[2]: 5
```

3rd Step

Build and show the dataframe

```
In [3]: data = DataFrame(TIME=0:0.5:10)
  data.POSITION = position.(data.TIME, T)
  data.ACCELERATION = acceleration.(data.TIME, T)
  data.SPEED = speed.(data.TIME, T)
  data
```

 $Out[3]: 21 rows \times 4 columns$

	TIME	POSITION	ACCELERATION	SPEED
	Float64	Float64	Float64	Float64
1	0.0	200.0	-0.2	-0.0
2	0.5	199.395	-0.180967	-2.37906
3	1.0	197.659	-0.163746	-4.53173
4	1.5	194.898	-0.148164	-6.47954
5	2.0	191.21	-0.134064	-8.242
6	2.5	186.684	-0.121306	-9.83673
7	3.0	181.399	-0.109762	-11.2797
8	3.5	175.427	-0.0993171	-12.5854
9	4.0	168.834	-0.0898658	-13.7668
10	4.5	161.679	-0.0813139	-14.8358
11	5.0	154.015	-0.0735759	-15.803
12	5.5	145.891	-0.0665742	-16.6782
13	6.0	137.351	-0.0602388	-17.4701
14	6.5	128.434	-0.0545064	-18.1867
15	7.0	119.175	-0.0493194	-18.8351
16	7.5	109.609	-0.044626	-19.4217
17	8.0	99.7629	-0.0403793	-19.9526
18	8.5	89.6646	-0.0365367	-20.4329
19	9.0	79.3376	-0.0330598	-20.8675
20	9.5	68.8039	-0.0299137	-21.2608
21	10.0	58.0831	-0.0270671	-21.6166

4th Step

Build graphics

Building raw data graphics:

```
In [4]: graphTotal = Figure(backgroundcolor=:white, resolution=(700,500))
    graphAcTem = Axis(graphTotal[1,1], title="Acceleration x Time", ylabel="A
    graphSpTem = Axis(graphTotal[1,2], title="Speed x Time", ylabel="Speed (m
    graphPosTem = Axis(graphTotal[2,1:2], title="Position x Time", ylabel="Polines!(graphAcTem, data.TIME, data.ACCELERATION)
    lines!(graphSpTem, data.TIME, data.SPEED, color=:red)
    lines!(graphPosTem, data.TIME, data.POSITION)
```

Out[4]: Lines{Tuple{Vector{Point{2, Float32}}}}

Building ascending acceleration and speed graphs

```
In [5]: graphTotalPositive = graphTotal = Figure(backgroundcolor=:white, resoluti
    graphAcTem = Axis(graphTotal[1,1], title="Acceleration x Time", ylabel="A
    graphSpTem = Axis(graphTotal[1,2], title="Speed x Time", ylabel="Speed (m
    graphPosTem = Axis(graphTotal[2,1:2], title="Position x Time", ylabel="Polines!(graphAcTem, data.TIME, -data.ACCELERATION)
    lines!(graphSpTem, data.TIME, -data.SPEED, color=:red)
    lines!(graphPosTem, data.TIME, -data.POSITION)
```

Out[5]: Lines{Tuple{Vector{Point{2, Float32}}}}

Graphics

E -100 -200 -200 -200 -200 -200 Time(s)

In [7]: graphTotalPositive

In []: