Frame Synchronization and Channel Coding

Chapter 8

Introduction

We will cover the topics of **frame synchronization** and channel coding.

It requires that the signal has been timing and frequency corrected.

Once **frame synchronization** has been **completed** we can fully **decode data** over our wireless link.

Once decoded, we can move on toward channel coding,

Where are we now?

Figure 8.1 Receiver block diagram.

8.1 O Frame, Where Art Thou?

It is assumed that the available **samples represent single symbols** and are **corrected for timing, frequency, and phase offsets**.

The **start of a frame** will still be **unknown**, **we need to perform** an additional **correction** or estimation.

Mathematically, this is simply an **unknown delay in our signal** y:

$$u[n] = y[n-p]$$

Where $p \in Z$. Once we have an estimate \hat{p} we can extract data from the desired frame, demodulated to bits, and perform any additional channel decoding or source decode originally applied to the signal.

8.1 O Frame, Where Art Thou?

There are various way to accomplish this estimation but the implemented algorithm we will use is based on using cross-correlation.

Depending on the **receiver structure** and **waveform** it may be **possible** to perform **frame synchronization after demodulation**.

This **cannot** be used **if symbols** are **required** downstream **for an equalizer** or if the **preamble contains** configuration **parameters** for **downstream modulation**. (Like IEEE 802.11 or packet-based systems).

The **common method** of **determining** the **start** of a given **frame** is with the **use** of **markers**, even in wired networking.

In the case of wireless signals, this problem becomes more difficult.

Figure 8.2 Example received frame in AWGN with an unknown sample offset.

Due to the **high** degree of **noise** content in the signal, **specifically** designed **preamble sequences** are **appended** to frames before modulation.

Such **sequences** are **known** exactly **at the receiver** and have certain qualities that make frame estimation accurate.

Figure 8.3 Common frame structure of wireless packet with preamble followed by header and payload data.

Let's study a **technique** for **estimation** of the **start** of a **known sequence** starting at an **unknown sample in time**. (Before studying the common sequences used.)

Consider:

- A set of N different binary sequences b_n , where $n \in [1, ..., N]$, each of length L.
- An additional binary sequence d.
- We want to determine how similar d is to the existing N sequences.

The use of a **cross correlation** would **provide** us the **appropriate estimate**, which we perform as

$$C_{d,b}(k) = \sum_{m} d^*(m)b_n(m+k)$$

When $d = b_n$ for a given n, $C_{d,b}$ will be maximized compared with the other n-1 sequences, and produce a peak at L_{th} index at least.

We use this concept to build our frame start estimator.

- Utilized in preambles for narrowband communications.
- They have unique autocorrelation properties that have minimal or ideal off-peak correlation.
- For a sequence a(i) the autocorrelation functions are defined as

$$c(k) = \sum_{i=1}^{N-k} a(i)a(i+k)$$

Such that

$$|c(v)| \le 1, \quad 1 \le v < N.$$

• Only nine sequences are known $N \in [1, 2, 3, 4, 5, 7, 11, 13]$

```
Table 8.1 Barker Codes from comm.BarkerCode

N Code

1 -1, +1

2 -1, +1

3 -1, -1, +1

4 -1, -1, +1, -1

5 -1, -1, -1, +1, -1

7 -1, -1, -1, +1, +1, -1, +1

11 -1, -1, -1, +1, +1, -1, +1, +1, -1, +1

13 -1, -1, -1, -1, -1, +1, +1, -1, +1, -1

14 -1, -1, -1, -1, -1, +1, +1, -1, +1

15 -1, -1, -1, -1, -1, +1, +1, -1, -1

16 -1, -1, -1, -1, -1, +1, -1

17 -1, -1, -1, -1, -1

18 -1, -1, -1, -1, -1

19 -1, -1, -1, -1

10 -1, -1, -1, -1

11 -1, -1, -1, -1

11 -1, -1, -1, -1

12 -1, -1, -1

13 -1, -1, -1

14 -1

15 -1

16 -1

17 -1

17 -1

17 -1

18 -1

19 -1

19 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10 -1

10
```

Let's look at some MATLAB code on barker_code.m and barker_code_variable_length.m files.

Now let's try to see how we can **estimate the delay** in our signal \hat{p}

- 1. We have a received signal r[n] and a Barker corde a[n]
- 2. The received signal r[n] is of length L_r
- The Barker corde a[n] is of length L_a
- 4. We will use **MATLAB's** xcorr function
- 5. MATLAB's xcorr function will pad L_r - L_a zeros to a[n] to perform the cross-correlation
- 6. The cross correlation will be of size 2L_r-1
- 7. The **offset position** will be at

$$\hat{p} = \underset{k}{\operatorname{argmax}} C_{ra}(k) - L_{r_1}$$

Let's look at some MATLAB code on barkerBits13.m

Some notes on the cross-correlation estimation

- For better performance the FFT can be used.
- The correlation inflates the data processed since the sequences must be of equal length.
- A more efficient implementation would be to utilize a filter.

$$y[n] = \sum_{i=0}^{N} b_i u[n-i],$$

Where $\mathbf{b_i}$ are the **filter taps** and $\mathbf{u[n]}$ is our **received signal** that contains the sequence of interest.

Some notes on the cross-correlation estimation

- For better performance the FFT can be used.
- The correlation inflates the data processed since the sequences must be of equal length.
- A more efficient implementation would be to utilize a filter.

Replace bi with the sequence of interest, but in reverse order.

$$y[n] = \sum_{i=0}^{N} b_i u[n-i],$$

Hardware efficient!

Where b_i are the **filter taps** and u[n] is our **received signal** that contains the sequence of interest.

8.2.1 Signal Detection

We can define a minimum received power or power sensitivity.

Sensitivity will be **based** on some **source waveform** and **cannot be generalized** in most cases.

Sensitivity should **never** be **given on its own**, **unless** given with respect to **some standard transmission**.

Must have **some knowledge** or reference to the **source signal**.

In the IEEE 802.11ac standard it is the minimum received signal power to maintain a packet error rate of 10%, for a give modulation and coding scheme

Let's define an hypothesis testing framework for detecting our signal.

A simple binary hypothesis test:

 \mathcal{H}_0 : no signals,

 \mathcal{H}_1 : signals exist,

Let's define an hypothesis testing framework for detecting our signal.

A simple binary hypothesis test:

$$\mathcal{H}_0: r[n] = n[n],$$

$$\mathcal{H}_1: r[n] = x[n] + n[n],$$

where r[n] is the received signal, n[k] is the noise in the RF environment, and x[n] is the signal we are trying to detect.

Let's define an hypothesis testing framework for detecting our signal.

To decide between \mathcal{H}_0 or \mathcal{H}_1 we create a decision rule.

```
if r in \Gamma_1:

\mathscr{H} = \mathscr{H}_1

else if in \Gamma_1^{C}:

\mathscr{H} = \mathscr{H}_0
```

In the context of packet detection, **thresholding** is actually the **implementation of a decision rule**.

Sensing errors are inevitable due to:

- additive noise,
- limited observations,
- randomness of the observed data

Which gives rise to **two types of error**:

- Error Type I or False Alarm: there are actually no signals in the channel, but the testing detects an occupied channel.
- Error Type II or Missed Detection: there exist signals in the channel, but the testing detects only a vacant channel.

Confusion Matrix

The performance of a detector can be characterized by two parameters

Probability of **false alarm** (PF)

$$P_F = P\{\text{Decide } \mathcal{H}_1 | \mathcal{H}_0\}$$

Type I Error

Probability of missed detection (PM) Type II Error

$$P_M = P\{\text{Decide } \mathcal{H}_0 | \mathcal{H}_1\}$$

Type II Error

Another frequently used parameter is the **probability of detection** (PD)

$$P_D = 1 - P_M = P\{\text{Decide } \mathcal{H}_1 | \mathcal{H}_1\}$$

- Characterizes the detector's ability to identify the primary signals in the channel.
- PD is usually referred to as the power of the detector.

- Ideally we would like the probability of false alarm to be as low as possible, and at the same time, their probability of detection as high as possible.
- In a real-world situation, this is not achievable, because these two
 parameters are constraining each other. (See the Receiver Operating
 Characteristic curve in the next slide).
- The detection problem is a trade-off, which depends on how the Type I and Type II errors should be balanced.

Receiver Operating Characteristic (ROC)

Figure 8.6 A typical receiver operating characteristic, where the x-axis is the probability of false alarm (P_F) , and the y-axis is the probability of detection (P_D) .

In conclusion:

The **detection becomes a thresholding problem** for our correlator.

The **objective** becomes **determining a reference** or criteria **for validating a peak**, which **can be** radically **different over time**.

Operate regardless of the input scaling.

Normalizing

A common technique to aid with this thresholding process is to **self-normalize** the **received signal** between $\in [0, 1]$.

A simple way to accomplish this operation is to scale our cross-correlation metric $C_{y,x}$ by the mean energy of the input signal x by implementing a moving average filter.

The moving averaging would be modeled as:

$$u_{ma}[n] = \sum_{i=0}^{N} u[n-i]$$

Where N is the length of the preamble or sequence of interest

Finally we can define our detector as:

$$\mathcal{H}_0: \frac{y[n]}{u_{ma}[n]} < T \text{ no signals,}$$

$$\mathcal{H}_1: \frac{y[n]}{u_{ma}[n]} \geq T$$
 signals exist,

Where:

- T is our threshold value.
- y[n] our cross correlation
- $u_{ma}[n]$ our moving average

8.2.1 Signal Detection

Let's look at some MATLAB code on findSignalStartTemplate.m

8.2.2 Alternative Sequences

Besides Barker sequences, there are **other sequences** that have similar properties of **minimal cross correlation except at specific instances**.

- Used for LTE synchronization and channel sounding operations
- Constant amplitude
- Zero circular autocorrelation
- Low correlation between different sequences
- Limited correlation between themselves (useful in a multiaccess environment where many users can transmit signals.)

The sequence numbers are generated as

$$s_n = exp\left(-j\frac{\pi k n (n+1+2q)}{L}\right)$$

Where:

- L is the sequence length,
- n is the sequence index,
- q an integer,
- k is a coprime number with L

Check function called Zadoff_Chu in chapter 8

- Used for channel estimation and synchronization within the preamble of IEEE 802.11ad packets.
- They are sequences of bipolar symbols with minimal autocorrelation properties.
- These sequences come in **complementary pairs** that are typically denoted as **Ga**_n and **Gb**_n, where n is the sequence length.
- IEEE 802.11ad uses pairs Ga₃₂, Ga₆₄, and Gb₆₄
- G_a and G_b autocorrelation can be performed in parallel in hardware.
- Depending of a packet type, a correlator bank can be used to identify that specific structure, conditioning the processing receiver to a specific decoder path.

Some mathematical properties:

$$R_{Ga}[n] + RGb[n] = 2N$$

$$R_{Ga}[0] + RGb[0] = 0$$

Where R is the autocorrelation of G_a and G_h and N is the number of samples.

Some mathematical properties:

A complementary pair G_a, G_b may be encoded as polynomials

$$G_a[z] = a[0] + a[1]z + \ldots + a[N-1]z^{N-1}$$

and similarly for $G_h(z)$.

The complementarity property of the sequences is equivalent to the condition

$$|A[z]|^2 + |B[z]|^2 = 2N$$

Check Matlab function called wlanGolaySequence

8.3 Putting the Pieces Together

We have all the necessary pieces to build a wireless receiver that can handle carrier offsets, timing mismatches, and random packet delay.

Figure 8.9 Complete receiver processing flow to recover transmitted frames. The relative sample rates are defined by R_n .

8.4 Channel Coding

The primary **purpose of channel coding** is to **increase efficiency**, the better the system can correct the inevitable errors introduced by wireless transmission the more efficient it will be. Specific benefits include:

- Reduced error rates and retransmission
- Increased capacity
- Increased throughput
- Reduced power usage

8.4.1 Repetition Coding

One of key building blocks of any communication system is the **forward error correction** (FEC), where **redundant data is added** to the transmitted stream to make it more robust to channel errors.

Each transmitted bit is **repeated R** times.

MATLAB has the *repmat* function, which takes an input vector u and a repetition factor R.

8.4.2 Interleaving

A repetition code is not robust when a large quantity of data is corrupted in contiguous blocks.

Example: Suppose we have this data

data = 101101

By using a repetition code of 4, we expect

1111000011111111100001111

But we get

111100 - - - - - - - - - 1100001111

8.4.2 Interleaving

Interleaving is an approach where **binary data is reordered** such that the **correlation** existing **between the individual bits** within a specific sequence is significantly **reduced**.

Since errors usually occur across a consecutive series of bits, interleaving a bit sequence prior to transmission and deinterleaving the intercepted sequence at the receiver **allows** for the **dispersion of bit errors across the entire sequence**, thus minimizing its impact on the transmitted message.

A simple interleaver will **mix** up the **repeated bits** to **make** the **redundancy** in the data even **more robust to error**. It reorders the duplicated bits among each other to ensure that **at least one redundant copy** of each **will arrive** even if a series of bits are lost.

8.4.2.1 Block Interleaving

8.4.2.1 Convolutional Interleaving

Figure 8.11 Schematic of a convolutional interleaver. (From [13].)

8.4.2.1 Convolutional Interleaving

X12	X8	X4	XO
X13	X9	X5	X1
X14	X10	X6	X2
X15	X11	X7	X3

->

->

Z^-1

Z^-2

Z^-3

->

 t_1 t2

X0

0

0

X4

X1

0

tз

X8 X12

X9

X6

X3

X5

X2

0

X13

X10

X7

0

0

X14

0

0

X11 | X15

Memory Bank

Conmutator

8.4.3 Encoding

Besides interleaving multiple copies of data, we can instead **encode** the **data** into **alternative sequences** that **introduce redundancy**.

Many encoding schemes can introduce redundancy without increases in data.

For example, in the case of repetitive coding that duplicates every bit with R = 2, this number is usually inverted in FEC discussions as a rate of 1/2, a **convolutional encoding** scheme can introduce **rates closer to 1**.

Channel encoding is a **mathematically complex** area in information theory.

8.4.3 Encoding

Encoders can typically be categorized into two basic types:

Block encoders:

They work on specific predefined groups or blocks of bits

Convolutional type encoders:

 They work on streams of data of indeterminate size but can be made to work on blocks of data if necessary.

8.4.3 Block Code -Reed-Solomon (RS)

- Linear-block-code developed in the 1960s.
- RS codes work by inserting symbols into a given frame or block of data,
 which are then used to correct symbol errors that occur.
- If we define **M** as the length of a given frame, sometimes called the message length, and define **E** as the encoded frame then we can correct up to $\lfloor \frac{E-M}{2} \rfloor$ messages.
- The symbols you can encode with a RS can be integers between $[0, 2^N 1]$ where N is the exponent of our finite Galois field $GF(2^N)$

8.4.3 Block Code -Reed-Solomon (RS)

```
K>> m = 3; % Number of bits per symbol
K>> n = 2^m - 1; % Codeword length K>> k = 3; % Message length
K >> msg = gf([2 7 3; 4 0 6], m)
msg = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
K>> code = rsenc(msg,n,k)
code = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)
Array elements =
```

MATLAB example of a Reed-Solomon encoder

8.4.3 Block Code -Bose Chaudhuri Hocquenghem (BCH)

- Relies on the concept of Galois fields.
- Better at correcting errors that do not occur in groups.
- Correct more errors than RS for the same amount of parity bits.
- Require more computational power to decode than RS.

8.4.3 Block Code -Bose Chaudhuri Hocquenghem (BCH)

```
>> M = 4;
>> n = 2^M-1; % Codeword length
>> k = 5; % Message length
>> nwords = 1; % Number of words to encode
>>
>> msgTx = gf(randi([0 1],nwords,k))
msgTx = GF(2) array.
Array elements =
  0 1 1 0 0
>> enc = bchenc(msgTx,n,k)
enc = GF(2) array.
Array elements =
     1 1 0 0 1 0 0 0 1 1 1 1 0 1
```

MATLAB example of a BCH encoder

8.4.3 Block Code -Low Density Parity Check Codes (LDPC)

- **Complex** in hardware.
- Can approach the theoretical Shannon limit for certain redundancy rates unlike RS and BCH.
- When utilizing LDPC the implementor must select a parity matrix which the
 encoder and decoder will utilize, and the characteristics of this matrix will
 determine performance of the code.
- You need to encode a significant amount of bits compared to the other codes to utilize LPDC efficiently in many cases.

8.4.3 Convolutional Code

- Redundancy is introduced by the succession of information passed through the encoder/decoder.
- Creates dependency on consecutive symbols or bits.

8.4.3 Convolutional Code

• Consider an encoding scheme with R = 2 with a recursive encoder

$$y_{n,1} = (x_n + x_{n-2} + x_{n-3}) + x_{n-1} + x_{n-3}$$

$$y_{n,2} = x_{n-2} + x_{n-3}$$

$$y_{n,2} = x_{n-2} + x_{n-3}$$

$$y_{n,2} = x_{n-2} + x_{n-3}$$

$$y_{n,3} = x_{n-2} + x_{n-3}$$

$$y_{n,2} = x_{n-2} + x_{n-3}$$

$$y_{n,3} = x_{n-2} + x_{n-3}$$

$$y_{n,2} = x_{n-2} + x_{n-3}$$

$$y_{n,3} = x_{n-2} + x_{n-3}$$

$$y_{n,2} = x_{n-2} + x_{n-3}$$

$$y_{n,3} = x_{n-2} + x_{n-3}$$

$$y_{n,2} = x_{n-2} + x_{n-3}$$

$$y_{n,3} = x_{n-2} + x_{n-3}$$

Figure 8.12 Example R = 2 convolutional encoder utilized in 3GPP LTE.

8.4.3 Convolutional Code -Viterbi Algorithm

The concept of the Viterbi/trellis decoder is to trace back through previous decisions made and utilize them to best determine the most likely current bit or sample.

Convolutional Codes: https://www.youtube.com/watch?v=kRlfpmiMCpU

Viterbi Algorithm: https://www.youtube.com/watch?v=dKlf6mQUfnY

8.4.3 Convolutional Code -Viterbi Algorithm

Figure 8.13 Viterbi/trellis decoder lattice diagram.

Figure 8.14 BER results of Viterbi decoder for 16-QAM with increasing traceback length.

8.4.3 Convolutional Code -Turbo Codes

- Introduced in the early 90's.
- Heavily utilized by third and fourth generation cellular standards as their primary FEC scheme.
- Can operate near the Shannon limit for performance but are less
 computationally intensive than LDPC with less correction performance.
- Turbo inherently utilizes the Viterbi algorithm internally for decoding with some additional interleaving, as well as using a set of decoders, and performs likelihood estimation between them.
- Very powerful coding technique as long as you have the resources on your hardware to implement the decoder at the necessary speeds.

8.4.3 Encoding

Modern standards like LTE and IEEE 802.11, will utilize adaptive **Modulation and Coding Schemes (MCSs)**.

- Reduce coding redundancy
- Increase modulation order

8.4.3 Encoding

802.11ac - VHT MCS, SNR and RSSI

VHT MCS	Modulation	Coding	20MHz			40MHz			80MHz				160MHz					
			Data Rate		Min.	DCCI	Data Rate		Min.	RSSI	Data Rate		Min.	peci	Data Rate		Min.	DCCI
			800ns	400ns	SNR	RSSI	800ns	400ns	SNR	Kası	800ns	400ns	SNR	NR RSSI	800ns	400ns	SNR	RSSI
								1 Spat	ial Strea	m								
0	BPSK	1/2	6.5	7.2	2	-82	13.5	15	5	-79	29.3	32.5	8	-76	58.5	65	11	-73
1	QPSK	1/2	13	14.4	5	-79	27	30	8	-76	58.5	65	11	-73	117	130	14	-70
2	QPSK	3/4	19.5	21.7	9	-77	40.5	45	12	-74	87.8	97.5	15	-71	175.5	195	18	-68
3	16-QAM	1/2	26	28.9	11	-74	54	60	14	-71	117	130	17	-68	234	260	20	-65
4	16-QAM	3/4	39	43.3	15	-70	81	90	18	-67	175.5	195	21	-64	351	390	24	-61
5	64-QAM	2/3	52	57.8	18	-66	108	120	21	-63	234	260	24	-60	468	520	27	-57
6	64-QAM	3/4	58.5	65	20	-65	121.5	135	23	-62	263.3	292.5	26	-59	526.5	585	29	-56
7	64-QAM	5/6	65	72.2	25	-64	135	150	28	-61	292.5	325	31	-58	585	650	34	-55
8	256-QAM	3/4	78	86.7	29	-59	162	180	32	-56	351	390	35	-53	702	780	38	-50
9	256-QAM	5/6			31	-57	180	200	34	-54	390	433.3	37	-51	780	866.7	40	-48

8.4.4 BER Calculator

BER is a commonly used **metric** for the **evaluation and comparison of digital communication systems**.

The ratio of bit errors to the total number of bits received can provide us with an approximate BER calculation.