International Rectifier

Si4435DY

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel

Description

These P-channel HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications..

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infrared, or wave soldering techniques.

Absolute Maximum Ratings

Parameter		Max.	Units	
V _{DS}	Drain- Source Voltage	-30	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-8.0		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-6.4	A	
I _{DM}	Pulsed Drain Current ①	-50		
P _D @T _A = 25°C	Power Dissipation	2.5	W	
P _D @T _A = 70°C	Power Dissipation	1.6		
	Linear Derating Factor	0.02	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
$T_{J,}T_{STG}$	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	50	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.019		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.015	0.020	Ω	V _{GS} = -10V, I _D = -8.0A ②
TVDS(on)	Static Brain to Gource Off Resistance		0.026	0.035	12	V _{GS} = -4.5V, I _D = -5.0A ②
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
g _{fs}	Forward Transconductance		11		S	$V_{DS} = -15V, I_D = -8.0A$
1	Drain-to-Source Leakage Current			-10	. \	$V_{DS} = -24V, V_{GS} = 0V$
I _{DSS}				-10	μA	$V_{DS} = -15V$, $V_{GS} = 0V$, $T_{J} = 70$ °C
lass	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
I _{GSS}	Gate-to-Source Reverse Leakage			100	11/	V _{GS} = 20V
Qg	Total Gate Charge		40	60		$I_D = -4.6A$
Q _{gs}	Gate-to-Source Charge		7.1		nC	$V_{DS} = -15V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		8.0			V _{GS} = -10V ②
t _{d(on)}	Turn-On Delay Time		16	24		V _{DD} = -15V, V _{GS} = -10V ②
t _r	Rise Time		76	110	ns	$I_D = -1.0A$
t _{d(off)}	Turn-Off Delay Time		130	200	115	$R_G = 6.0\Omega$
t _f	Fall Time		90	140		$R_D = 15\Omega$
C _{iss}	Input Capacitance		2320			V _{GS} = 0V
Coss	Output Capacitance		390		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		270			f = 1.0kHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			-2.5		MOSFET symbol
I _{SM}	Pulsed Source Current				A	showing the integral reverse
J	(Body Diode) ①		-50	-50		p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -2.5A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		34	51	ns	$T_J = 25^{\circ}C, I_F = -2.5A$
Q _{rr}	Reverse Recovery Charge		33	50	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\ \, \textbf{3} \ \, \text{Surface mounted on FR-4 board}, \ t \leq \ \, \text{5sec}.$
- ② Pulse width \leq 300 μ s; duty cycle \leq 2%.

Si4435DY

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

0.20 0.10 $^{-V}GS(th)$, Variace (V) 0.00 Id = -250µA -0.10 -0.20 -0.30 -0.40 -25 25 50 75 100 125 -50 T_J , Temperature ($^{\circ}$ C)

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Typical Vgs(th) Variance Vs. Juction Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

International

TOR Rectifier

Si4435DY

SO-8 Package Details

- NOTES:
 - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
 - 2. CONTROLLING DIMENSION : INCH.
 - 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 - 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
 - (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.006).
 - 6 DIMENSIONS IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE..

DIM	INC	HES	MILLIMETERS			
	MIN	MAX	MIN	MAX		
Α	.0532	.0688	1.35	1.75		
A1	.0040	.0098	0.10	0.25		
В	.014	.018	0.36	0.46		
С	.0075	.0098	0.19	0.25		
D	.189	.196	4.80	4.98		
Е	.150	.157	3.81	3.99		
е	.050	BASIC	1.27	1.27 BASIC		
e1	.025	BASIC 0.635 BA		BASIC		
Н	.2284	.2440	5.80	6.20		
K	.011	.019	0.28	0.48		
L	0.16	.050	0.41	1.27		
θ	0°	8°	0°	8°		
DECOMMENDED ECOTODINT						

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101

Si4435DY

SO-8 Tape and Reel

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

International IOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 FI. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 10/99