Sprawozdanie 2

Jan Bronicki 249011

1 Cel ćwiczenia

Zapoznanie się z działaniem tranzystorów NPN oraz PNP.

2 0-10V

2.1 U(V)

Dzielnik napięcia z rezystorami R_2 ora
z $R_5,$ jest potencjometreem $10k\Omega$ sterowany do 99%:

$$U_{wy} = U_{we} \cdot \frac{R_2 + R_5}{R_1 + R_2 + R_5}$$

$$10V = 24V \cdot \frac{10\Omega}{R_1 + 10\Omega}, R_1 = 14\Omega$$

Pobierane jest 20mA, tak więc opór to:

$$R_4 = \frac{10V}{20mA}$$

Rezystor $R_3 = 470\Omega$ stabilizuje wzmacniacz.

Wzmacniacz stabilizuje się na około 7.2V.

2.2 U(R)

Napięcie stabilizuje sisę przy $R_{ob} > 620\Omega$:

$$I_{wy} = \frac{U_{wy}}{R_{ob}}$$

$$I_{wy} = \frac{10V}{620\Omega} \approx 16mA$$

2.3 U(I)

Układ jest w stanie podać maksymalne natężenie około 16mA, w przybliżeniu zgodne z obliczeniami.

3.1 a)

$$\begin{split} &U_{ce}=0.1V,\ U_{be}=0.6V,\ \beta=100,\ I_{b}=1mA,\ R_{3}=10\Omega\\ &I_{c}\beta\cdot I_{b}100mA\\ &I_{c}+I_{b}=101mA\\ &U_{R_{3}}=R_{3}\cdot I_{c}=1.01V \end{split}$$

$$R_1 = \frac{6V - U_{R_3} - 0.6V}{I_b} = \frac{6V - 1.01V - 0.6V}{0.001A} = 4390\Omega$$

$$R_2 = \frac{12V - U_{R_3} - 0.1V}{I_c} = \frac{12V - 1.01V - 0.1V}{0.1A} = 4390\Omega$$

V(n003):	6	voltage
V(n001):	12	voltage
V(n004):	1.81343	voltage
V(n002):	1.18301	voltage
V(n005):	1.00192	voltage
Ic(Q1):	0.0992384	device current
Ib(Q1):	0.000953662	device current
Ie(Q1):	-0.100192	device_current
I(R3):	0.100192	device_current
I(R2):	0.0992384	device current
I(R1):	-0.000953662	device_current
I(V2):	-0.0992384	device_current
I(V1):	-0.000953662	device_current

3.2 b)

$$\begin{split} &U_{ce} = 0.1V, \ U_{bc} = 0.6V, \ \beta = 100, \ I_b = 1mA \\ &I_c = \beta \cdot I_b = 100mA \\ &I_e = I_c + I_b = 101mA \end{split}$$

$$R_1 = \frac{3.3V - 0.6V}{I_b} = \frac{2.7V}{0.001A} = 22700\Omega$$

$$R_2 = \frac{5V - 0.1V}{I_c} = \frac{4.9V}{0.1A} = 49\Omega$$

V(n001):	5	voltage
V(n002):	0.182553	voltage
V(n004):	0.810673	voltage
V(n003):	3.3	voltage
Ic(Q1):	0.0983152	device current
Ib (Q1):	0.000921973	device_current
Ie (Q1):	-0.0992372	device_current
I(R1):	-0.000921973	device current
I(R2):	0.0983152	device_current
I(V2):	-0.0983152	device_current
I(V1):	-0.000921973	device_current

3.3 c)

$$\begin{split} \beta &= 100, \ I_b = 1 mA \\ I_c &= \beta \cdot I_b = 100 mA \\ I_e &= I_c + I_b = 101 mA \end{split}$$

$$R_1 = \frac{U_{R_1}}{I_b} = \frac{2.9V}{0.001A} = 2900\Omega$$

$$R_2 = \frac{5.1V - 0.6V}{I_b} = 4500\Omega$$

$$R_3 = \frac{9V - 0.2V}{I_c} = 88\Omega$$

V(n004):	1.79071	voltage
V(n002):	8	voltage
V(n005):	-7.82985	voltage
V(n001):	-9	voltage
V(n003):	-8.62373	voltage
Ic(Q1):	-0.0042758	device_current
Ib(Q1):	0.0021379	device_current
Ie(Q1):	0.0021379	device_current
I(D1):	-3.23529e-006	device_current
I(R3):	-0.0042758	device_current
I(R2):	-0.0021379	device_current
I(R1):	-0.00214114	device_current
I(V2):	-0.0042758	device_current
I(V1):	-0.00214114	device_current

3.4 d)

$$\begin{split} &U_{ce}=0.1V,\; U_{be}=-0.6V,\; \beta=100,\; I_b=2mA,\; R_4=20\Omega\\ &I_c\beta\cdot I_b=200mA\\ &I_eI_c+I_b=202mA\\ &U_{R_4}=R_4\cdot I_e=4.04V \end{split}$$

$$R_3 = \frac{12V - 0.1V - U_{R_4}}{I_c} \approx 39\Omega$$

$$R_2 = \frac{12V - 3.5V - 0.6V - U_{R_3}}{I_b} = 20\Omega$$

V(n003):	3.5	voltage
V(n004):	3.5	voltage
V(n001):	-12	voltage
V(n002):	-12	voltage
V(p001):	1.36502e-010	voltage
Ic(Q1):	-1.55076e-011	device_current
Ib(Q1):	1.90034e-011	device_current
Ie (Q1):	-3.50004e-012	device_current
I(R1):	3.50004e-012	device_current
I(R2):	-1.55008e-011	device_current
I(R3):	-1.90034e-011	device_current
I(R4):	0.0035	device_current
I(V2):	1.55008e-011	device_current
I(V1):	-0.0035	device current

3.5 e)

Pomiędzy emiterem a bazą nie będzie prądu, taki układ nie zadziała.

3.6 f)

$$\begin{split} &U_{ce} = 0.1V, \ U_{be} = -0.6V, \ \beta = 100, \ I_b = 2mA \\ &I_c = \beta \cdot I_b = 200mA \\ &I_e = I_c + I_b = 202mA \end{split}$$

$$R_3 = \frac{12V - 4.5V - 0.6V}{I_b} = 3450\Omega$$

 R_2 liczymy z dzielnika napięcia:

$$4.5V = \frac{R_2}{R_2 + R_3} \cdot (12V - 0.6V), \ R_2 = 2300\Omega$$

$$R_4 = \frac{12Vv - 5.1V - 0.1V}{I_c} \approx 34\Omega$$

$$R_2 = \frac{3.5V}{I_b} 2250\Omega$$

V(n002):	3.14054	voltage
V(n003):	11.1335	voltage
V(p001):	6.51218	voltage
V(n001):	1	voltage
V(p002):	11.7834	voltage
V(n004):	12	voltage
Ic(Q1):	-0.191535	device current
Ib(Q1):	-0.0023168	device current
Ie (Q1):	0.193852	device current
I (D1):	-0.191535	device current
I(R1):	0.000951351	device current
I(R2):	-0.191535	device current
I(R3):	0.0023168	device current
I(R4):	0.00136545	device current
I(V2):	-0.193852	device current
I(V1):	0.000951351	device_current