Enhancing Document Retrieval

FINE-TUNING TEXT EMBEDDING FOR RAG

QUICK RECAP

CONCEPT

- Text Embedding
- Semantic Search
- BERT
- Sentence BERT
- Bi-encoder

TEXT EMBEDDING

An embedding is a vector (list) of numbers.

TEXT EMBEDDING

Distance between two vectors measures their relatedness.

Small distances suggest high relatedness

Large distances suggest low relatedness

TEXT EMBEDDING USE CASE

Turn text into numbers, unlocking use cases like search.

Embeddings are commonly used for:

- Semantic Search (where results are ranked by relevance to a query string) (our focus)
- Clustering (where text strings are grouped by similarity)
- Recommendations (where items with related text strings are recommended)
- Anomaly detection (where outliers with little relatedness are identified)
- Diversity measurement (where similarity distributions are analyzed)
- Classification (where text strings are classified by their most similar label)

SEMANTIC SEARCH

- Embeds Documents into a vector space
- Does the same with the query
- Finds the closest embeddings, ensuring high semantic similarity between the query and documents.

BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS

SENTENCE BERT (SBERT)

BI-ENCODER

Bi-Encoders produce for a given sentence a sentence embedding.

We pass to a BERT independently the sentences A and B, which result in the sentence embeddings u and v

These sentence embedding can then be compared using cosine similarity

FINE-TUNING

- Why Fine-tuning
- Dataset
- Loss Function
- Training Arguments
- Evaluator
- Trainer

Dataset

Learn how to prepare the data for training.

Loss Function

Learn how to prepare and choose a **loss** function.

Training Arguments

Learn which training arguments are useful.

Evaluator

Learn how to **evaluate** during and after training.

Trainer

Learn how to start the **training** process.

WHY FINE-TUNING

Finetuning models often heavily **improves** the **performance** of the **model** on **your use case**, because each task requires a **different notion of similarity**.

For example, given news articles:

- "Apple launches the new iPad"
- "NVIDIA is gearing up for the next GPU generation"

Then the following use cases, we may have different notions of similarity:

- a model for **classification** of news articles as Economy, Sports, **Technology**, Politics, etc., should produce **similar embeddings** for these texts.
- a model for **semantic textual similarity** should produce **dissimilar embeddings** for these texts, as they have **different meanings.**
- a model for **semantic search** would **not need a notion for similarity** between two documents, as it should only compare **queries and documents**.

Pair of Question and Document

The dataset has the following format {"question": "<question>", "context": "<relevant context to answer>"} {"question": "<question>", "context": "<relevant context to answer>"} {"question": "<question>", "context": "<relevant context to answer>"}

LOSS FUNCTION

MultipleNegativesRankingLoss

$$\mathcal{L} = -\log \left(rac{\exp(ext{sim}(\mathbf{a},\mathbf{p})/ au)}{\sum_{i=1}^{N} \exp(ext{sim}(\mathbf{a},\mathbf{n}_i)/ au)}
ight)$$

Where:

- **a** is the anchor (query) embedding.
- p is the positive (target) embedding.
- \mathbf{n}_i are the negative embeddings.
- sim(u, v) is the similarity function, often the dot product or cosine similarity between embeddings u and v.
- $oldsymbol{ au}$ is a temperature parameter that controls the scaling of the similarities.
- N is the number of negative samples.

LOSS FUNCTION

MultipleNegativesRankingLoss

pairs [(a1, b1), ..., (an, bn)]

- (ai, bi) are similar sentences
- (ai, bj) are dissimilar sentences

The distance between (a1, b1) is reduced
The distance between (a1, b2...5) will be increased

LOSS FUNCTION

Matryoshka loss

Matryoshka loss function to determine not just the quality of your full-size embeddings, but also the quality at various different embeddings

For example, output dimensionalities are 768, 512, 256, 128, and 64.

The loss values for each dimensionality are added together, resulting in a final loss value

The optimizer will then try and adjust the model weights to lower this loss value.

INFORMATION RETRIEVAL EVALUATOR

Example Scenario

- Total documents in dataset: 20
- Total relevant documents in dataset: 10
- Documents retrieved by system: 5
- Relevant documents retrieved by system: 3
- Example Query: has **10** relevant documents in the dataset.

Example Top K document retrieved

- @1: [Relevant]
- @3: [Relevant, Irrelevant, Relevant]
- @5: [Relevant, Irrelevant, Relevant, Irrelevant, Irrelevant]

Metric	Definition	@1 Calculation	@1 Result	@3 Calculation	@3 Result	@5 Calculation	@5 Result
Accuracy	Measures if at least one relevant document is in the top k.	(Relevant doc in top- 1?) / (Total queries)	1 / 1 = 100%	(Relevant doc in top- 3?) / (Total queries)	1 / 1 = 100%	(Relevant doc in top- 5?) / (Total queries)	1 / 1 = 100%
Precision	Measures the proportion of relevant documents in the top k.	(Relevant docs in top- 1) / 1	1 / 1 = 100%	(Relevant docs in top- 3) / 3	2 / 3 = 66.67%	(Relevant docs in top- 5) / 5	2 / 5 = 40%
Recall	Measures the proportion of relevant documents retrieved out of the total relevant documents.	(Relevant docs in top- 1) / 10	1 / 10 = 10%	(Relevant docs in top- 3) / 10	2 / 10 = 20%	(Relevant docs in top- 5) / 10	2 / 10 = 20%

CONSIDERATIONS

• Better context length (8192) -> Nomic Embed

 LLM Embedding -> (Salesforce/SFR-Embedding-Mistral, https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)

ColBERT Model (contextual late interaction) -> jinaai/jina-colbert-v1-en

MY TIPS

- OpenAI Embedding is a good start
- Dataset matters the most (as always)
- Fine-tuned model on proprietary data always outperform open/general model
- Most of mine time improving RAG is to improve internal search engine (hybrid search, retrieval + rerank,...)

Thank you!