Университет ИТМО

Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №4 (УИР 4) "Исследование сетевых моделей массового обслуживания" по дисциплине "Моделирование"

Выполнили:

Студенты группы Р3334

Баянов Р. Д.

Кузнецов Д. А.

Вариант:4/4

Преподаватель:

Авксентьева Е. Ю.

Санкт-Петербург 2024 г.

Содержание

Цель работы	
Постановка задачи	
Результаты варьирования параметров	5
Результаты исследований ЗСеМО	7
Граф ЗСеМО	7
Имитационная модель ЗСеМО	9
Результаты	11
Анализ результатов	12
Результаты исследований РСеМО	13
Граф РСеМО	13
Имитационная модель PCeMO	14
Результаты	16
Анализ результатов	17
Результаты сравнительного анализа	18
Вывол	19

Цель работы

Исследовать свойства системы, моделируемой в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

Постановка задачи

Вариант 4/4 (A/B):

Структурные параметры ЗСеМО

Вариант (А)	К-во	Коли	чество пр	Номер	Тип		
	заявок п	У1	У2	У3	У4	Номер узла	Тип модели
4	3	1	2	3	-	1	M1

Параметры узлов СеМО

Вариант (В)	Вероя	тности пе	ередач	Средние длительности обслуживания, с				
	p_{10}	p_{12}	p_{13}	b_1	b_2	b_3	b_4	
4	0,5	0,25	0,1	5	8,5	5	-	

Модель М1:

Модель М1

В последующих разделах будет более детальное описание данной модели. Проанализируем как ведёт себя наша модель, определим критическое число заявок M^* , устраним "узкое место", преобразуем нашу замкнутую сеть в разомкнутую и снова проведём моделирование. В конце сравним полученные результаты. А также получим зависимости характеристик сети от параметров сети.

Также допустим изменения во варианте в силу того, что в данном варианте не в каждом узле сумма вероятности передач равна 1. В узле 1 сумма не равна 1. Изменим вероятность p_{13} с 0,1 до 0,25, чтобы сеть соответствовала линейной сети массового обслуживания.

Также обозначим допущение, что во всех узлах расположена очередь с неограниченной ёмкостью, чтобы исключить потерю заявок.

Результаты варьирования параметров

Vonateranyanyany	(Крил	гич. Чис.	ло = 6)	(Предельная инт. = 9 с)			
Характеристики СеМО	Число	заявок в	s CeMO	Инт-ть потока в PCeMO			
Celvio	3	5	6	0,1	2	10	
Длина очереди	1,373	3,326	4,324	486056,2 9	19837,60 9	58,348	
Число заявок	97129 0	99949 1	100050	10000	10000	10000	
Время ожидания	14,12 9	33,26 3	43,398	96096,87 4	65487,21	590,396	
Время пребывания	30,88 7	50,02	59,970	97312,20 4	68822,54	60000,57	
Производительно сть	0,097	0,099	0,1	0,102	0,98	0,1	

Запишем формулы для нахождения характеристик сети, зная характеристики отдельно узлов сети.

$$L = \sum_{j=1}^n l_j$$
 — средняя длина очереди, где l_j

– средняя длина очереди в каждом узле отдельно

$$M = \sum_{j=1}^{n} m_{j}$$
 — число заявок, где m_{j} — число заявок в каждом узле

$$W = \sum_{j=1}^{n} a_j w_j$$
 — среднее время ожидания заявок в сети, где w_j

- среднее время ожидания заявок в узле и a_j
- коэффициент передачи узла

$$U = \sum_{j=1}^n a_j u_j$$
 — среднее время пребывания заявки в сети, где u_j

- среднее время пребывания заявки в узле и a_i
- коэффициент передачи узла

$$\lambda = \frac{N_0}{T}$$
 — производительность, где N_0 — кол

- во заявок, прошедших через узел "0" и T общее время моделирования

Результаты исследований ЗСеМО

Граф ЗСеМО

Граф с обозначенными вероятностями перехода и средним временем обслуживания каждого из узлов:

Теперь посчитаем коэффициенты передач для узлов сети с помощью системы:

$$\begin{cases} a_0 = 1 \\ a_0 = p_{10}a_1 \\ a_1 = p_{01}a_0 + p_{21}a_2 + p_{31}a_3 - \text{подставим } a_0 = 1. \\ a_2 = p_{12}a_1 \\ a_3 = p_{13}a_1 \end{cases}$$

$$\begin{cases} 1 = p_{10}a_1 \\ a_1 = p_{01}1 + p_{21}a_2 + p_{31}a_3 - \text{подставим вероятности перехода в систему.} \\ a_2 = p_{12}a_1 \\ a_3 = p_{13}a_1 \end{cases}$$

$$\begin{cases} 1 = 0.5a_1 \\ a_1 = 1 + a_2 + a_3 \\ a_2 = 0.25a_1 \\ a_3 = 0.25a_1 \end{cases}$$

Решив данную систему, получим значения коэффициентов передач:

$$a_1 = 2$$
; $a_2 = 0.5$; $a_3 = 0.5$; $a_0 = 1$

Имитационная модель ЗСеМО

```
**********************
***********
           МОДЕЛЬ ЗСеМО М1
*************************
**********
           ИСХОДНЫЕ ДАННЫЕ
***********************
**********
RN bEQU 553 ; ГЕНЕРАТОР ДЛЯ ЭКСПОНЕНЦИАЛЬНОГО
РАСПРЕДЕЛЕНИЯ
t b1 EQU 5 ; СРЕДНЕЕ ВРЕМЯ ОБСЛУЖИВАНИЯ ПЕРВОГО УЗЛА
t_b2 EQU 8.5 ; СРЕДНЕЕ ВРЕМЯ ОБСЛУЖИВАНИЯ ВТОРОГО УЗЛА
t b3 EQU 5 ; СРЕДНЕЕ ВРЕМЯ ОБСЛУЖИВАНИЯ ТРЕТЬЕГО
VЗПА
num requests EQU 3;
* Параметры гипоэкспоненциального распределения (Эрланга):
           ; порядок распределения Эрланга
k erl EOU 2
               ; номер первого генератора для распределения
RN erl1
      EOU 31
Эрланга 2-го порядка
RN erl2
       EQU 125 ; номер второго генератора для распределения
Эрланга 2-го порядка
Erl 2 VARIABLE
   (Exponential(RN erl1,0,t a/2))+(Exponential(RN erl2,0,t a/2));
сл. величина по закону Эрланга 2-го порядка
******************
***********
uzel2 STORAGE 2 ; КО-ВО ПРИБОРОВ ВО ВТОРОМ УЗЛЕ
uzel3 STORAGE 3 ; КОЛ-ВО ПРИБОРОВ В ТРЕТЬЕМ УЗЛЕ
Tw 1 QTABLE 1,0,0.5,30 ;время ожидания в узле 1
Tw 2 QTABLE 2,10,10,30 ;время ожидания в узле 2
Tw 3 QTABLE 3,0,0.5,30 ;время ожидиания в узле 3
T U TABLE
           M1.40.40.30
                      ;время пребывания в сети
**********
           МОДЕЛЬ
***********************
**********
   GENERATE
               "num requests ; формирование в нулевой ометн
времени М заявок
Met 1
       MARK
                  ; отметка момента поступления заявки в сеть
Met QUEUE
           1:
   SEIZE
           1:
   DEPART
```

```
ADVANCE (Exponential(RN b,0,t b1));
*ADVANCE
          V$Erl 2;
   RELEASE 1:
   TRANSFER
             .25,,Met 2;
   TRANSFER
             .333,,Met 3;
   TABULATE
             T U;
             ,Met 1
   TRANSFER
Met 2
     QUEUE 2;
   ENTER
          uzel2;
   DEPART
   ADVANCE (Exponential(RN b,0,t b2));
   LEAVE
         uzel2;
   TRANSFER
             ,Met;
* * * * * *
Met 3
      QUEUE 3;
   ENTER
          uzel3;
   DEPART
          3;
   ADVANCE (Exponential(RN b,0,t b3));
   LEAVE
          uzel3;
   TRANSFER
             ,Met;
GENERATE 10000000;
TERMINATE 1;
*******************
***********
```

Результаты

Мы нашли критическое кол-во заявок M = 6, прик котором производительность сети не изменяется с заданной точностью. Попробуем теперь оставить это же кол-во заявок в сети, но при этом исправим "узкое место". Очевидно, что для нашей системы это 1 узел. Так как в этом узле меньше всего приборов и не очень быстрое время обслуживания. Также все узлы приходящие из узлов 2 и 3 перманентно переходят в узел 1. Поэтому попробуем увеличить кол-во приборов в 1 узле на 2. Теперь в 1 узле будет 3 прибора. Промоделируем и посмотрим, что поменялось и сравним 3СеМО с экспоненциальным распределением и 3СеМО с распределением Эрланга 2-го порядка в узле номер 1.

Длительность моделирования 10000000 Количество заявок 6

Характе- ристики	3	СеМО-з	кспонен	щиальн	3СеМО-неэкспоненциальная					
		Узло	Сетев Узловые					Сетевы		
CeMO	У1	У2	У3	У4	ые	У1	У2	У3	У4	e
Загрузка	1	0,213	0,083	-	0,432	1	0,21	0,08	-	0,432
Juipyska	0,909	0,579	0,227	-	0,572	0,91 5	0,58	0,22	-	0,575
Длина	4,304	0,020	0	-	4,324	4,31	0,01	0	-	4,325
очереди	2,726	1,158	0,68	-	4,564	1,08 6	0,31	0,00	-	1,405
Производ	0,1	0,05	0,049	-	0,1	0,1	0,05	0,05	-	0,1
и- тельность	0,273	0,136	0,136	-	0,273	0,27	0,13 7	0,13 7	-	0,274
Время ожидания	21,50	0,396	0,004	-	43,398	21,5	0,27 7	0,00	-	43,256
	2,027	2,391	0,040	-	5,27	1,97 8	2,28	0,03	-	5,116
Время пребыван ия	15,4	19,3	14,2	-	59,970	15	19,5	13,9	-	60,032
	6,8	10,3	7,5	-	21,997	6,7	10,2	7,5	-	21,855

Анализ результатов

Как мы можем заметить, при смене закона распределения времени обслуживания в узле номер 1 характеристики нашей сети меняются не сильно. Можно увидеть, что значения загрузки на узлах и значения средних длин очереди немного отличаются, но совсем не сильно. Так как распределение Эрланга 2-го порядка хоть и должно достаточно сильно разбросать распределение заявок, мы всё же учитываем, что система замкнута и она всегда работает в устоявшемся режиме. И за такое огромное время моделирования сети не расходятся в характеристиках. Ну и самое главное заметим, что значения производительности вообще почти не поменялось.

Но при увеличении кол-ва приборов в 1 узле (в "узком месте") мы заметили прирост производительности в 2.7 раза. Что говорит, нам о том, что первый узел и вправду узкое место. И даже сейчас этот узел является самым загруженным, так как сеть устроена так, что заявки оказываются там чаще всего.

Результаты исследований РСеМО

Граф РСеМО

Граф с обозначенными вероятностями перехода и средним временем обслуживания каждого из узлов:

Так как сеть не поменялось существенно по сравнению с замкнутой сетью, а система уравнений для коэффициентов передач получается из деления точно такой же системы на начальную интенсивность прихода заявок, но с интенсивностями, то можем с уверенностью сказать, что система для интенсивностей остаётся такой же. Начальная интенсивность не равна начальному коэффициенту передач (1), начальная интенсивность равна

$$\lambda_0 = 0.1$$

$$\begin{cases} \lambda_0 = 1 \\ \lambda_0 = p_{10}\lambda_1 \\ \lambda_1 = p_{01}\lambda_0 + p_{21}\lambda_2 + p_{31}\lambda_3 \\ \lambda_2 = p_{12}\lambda_1 \\ \lambda_3 = p_{13}\lambda_1 \end{cases}$$

Интенсивности равны:

$$\lambda_1 = 0.2; \ \lambda_2 = 0.05; \lambda_3 = 0.05; \lambda_0 = 0.1$$

Имитационная модель РСеМО

```
**********************
***********
           МОЛЕЛЬ ЗСеМО М1
************************
**********
           ИСХОДНЫЕ ДАННЫЕ
********************
**********
t a EOU 10
           ; Интенсивность поступления заявок
RN bEQU 553 ; ГЕНЕРАТОР ДЛЯ ЭКСПОНЕНЦИАЛЬНОГО
РАСПРЕДЕЛЕНИЯ
t b1 EQU 5 ; СРЕДНЕЕ ВРЕМЯ ОБСЛУЖИВАНИЯ ПЕРВОГО УЗЛА
t b2 EQU 8.5 ; СРЕДНЕЕ ВРЕМЯ ОБСЛУЖИВАНИЯ ВТОРОГО УЗЛА
t b3 EQU 5 ; СРЕДНЕЕ ВРЕМЯ ОБСЛУЖИВАНИЯ ТРЕТЬЕГО
УЗЛА
          EQU 3;
num requests
* Параметры гипоэкспоненциального распределения (Эрланга):
k erl EOU 2
           ; порядок распределения Эрланга
               ; номер первого генератора для распределения
RN erl1
      EOU 31
Эрланга 2-го порядка
RN erl2 EOU 125
               ; номер второго генератора для распределения
Эрланга 2-го порядка
Erl 2 VARIABLE
   (Exponential(RN erl1,0,t a/2))+(Exponential(RN erl2,0,t a/2));
сл. величина по закону Эрланга 2-го порядка
*******************
**********
uzel1 STORAGE 1
               ; КОЛ-ВО ПРИБОРОВ В ПЕРВОМ УЗЛЕ
uzel2 STORAGE 2 ; KO-BO ПРИБОРОВ ВО ВТОРОМ УЗЛЕ
uzel3 STORAGE 3 ; КОЛ-ВО ПРИБОРОВ В ТРЕТЬЕМ УЗЛЕ
Tw 1 QTABLE 1,0,0.5,30
                   ;время ожидания в узле 1
Tw 2 QTABLE 2,10,10,30 ;время ожидания в узле 2
Tw 3 QTABLE 3,0,0.5,30 ;время ожидиания в узле 3
          M1,40,40,30
T U TABLE
                      ;время пребывания в сети
*************************
**********
           МОДЕЛЬ
***********************
**********
               (Exponential(RN b,0,t a))
   GENERATE
Met 1 OUEUE
               1:
   ENTER
           uzel1:
   DEPART
           1:
```

```
ADVANCE (Exponential(RN b,0,t b1));
*ADVANCE
         V$Erl 2;
   LEAVE
         uzel1:
            .5,,Met 0;
   TRANSFER
   TRANSFER
            .5,,Met 3;
   TABULATE
*************
* * * * * *
    QUEUE 2;
Met 2
         uzel2;
   ENTER
   DEPART
         2:
   ADVANCE (Exponential(RN b,0,t b2));
         uzel2;
   LEAVE
            ,Met 1;
   TRANSFER
Met 3 QUEUE 3;
   ENTER uzel3;
   DEPART
         3;
   ADVANCE (Exponential(RN b,0,t b3));
   LEAVE
        uzel3;
   TRANSFER
            ,Met 1;
      TERMINATE
**********
```

Результаты

Проделаем всё ровно то же самое теперь уже для разомкнутой сети. Как и для замкнутой в нашей сети "узким местом" является 1 узел — увеличим кол-во его приборов до 3 с 1.

Количество заявок 10000 Интенсивность 0,1

Характе	РСеМО-экспоненциальная						РСеМО-неэкспоненциальная			
- ристики		Сете	Узловые				Сете-			
CeMO	У1	У2	У3	У4	- вые	У1	У2	У3	У4	вые
2	1	0,207	0,083	-	0,43	1	0,207	0,081	-	0,429
Загрузка	1	0,631	0,252	-	0,628	1	0,632	0,243	-	0,625
Лиина	489327	0,02	0	-	4893 27,02	49369 3,806	0,015	0	-	48932 7,035
Длина очереди	159901 ,232	0,864	0,015	-	1599 02,11 1	16144 5,488	0,749	0,013	-	16114 5,25
Число	10000	10000	10000	-	1000	10000	10000	10000	-	10000
заявок	10000	10000	10000	-	1000	10000	10000	10000	-	10000
Время	48276, 551	0,415	0,005	1	9655 3,33	48687 ,448	0,299	0,001	-	97375, 046
ожидани я	15464, 954	5,878	0,103	-	3093 2,899	15607 ,972	5,146	0,088	-	15508, 328
Время пребыва ния	13546, 456	17043, 53	14987, 678	-	4788 4,857	14534 ,332	16664 ,7879	13583 ,236	-	97435, 797
	10453, 12	10122, 98	10215, 67	-	3087 1,648	15462 ,383	10463	12483 ,238	-	30261, 463

Анализ результатов

Как мы можем заметить, разница между двумя разными распределениями также не сильно отличается, как и в сравнении замкнутой сети. И что самое главное, производительность почти остаётся почти неизменной.

К сожалению, точно такая же попытка, как и в замкнутой сети увеличить ково приборов в первом узле для устранения перегруженности не увенчалась успехом, так как у нас сеть разомкнута и заявки в огромно количестве поступают на сеть и скапливаются. В данном случае нужно прийти к более действенным способам уменьшения вреда от "узкого места".

Результаты сравнительного анализа

Промоделировав нашу сеть в разомкнутом и в замкнутом вариантах, мы можем сделать такие выводы.

Мы определили критическое число заявок в 3CeMO и оно равно 6. Нетрудно догадаться, что производительность CeMO при увеличении кол-ва заявок после критического уровня не изменяется, потому что сеть всегда работает в устоявшемся режиме, что не даёт никак циркулирующим заявкам в системе обрабатываться быстрее после какого-то определённого уровня. И одно и тоже кол-во заявок будет проходить через узел "0".

Также с уверенностью можем сказать, что производительность определяется максимально возможным кол-вом заявок, которые система способна обработать за единицу времени при полной загрузке. Мы также можем определить производительность без подробного моделирования сети, рассмотрев индивидуальную производительность каждого узла по отдельности.

В РСеМО производительность ограничена потоком заявок.

Вывод

Выполнив данную лабораторную работу, мы научились пользоваться имитационным моделированием для анализа на этот раз не систем массового обслуживания, а сетей массового обслуживания. Мы рассмотрели разницу между разомкнутыми и замкнутыми сетями. И определили зависимости характеристик сетей от изменений характеристики узлов и параметров сети.