Estatística

13- Testes não-paramétricos

Página da FEG: www.feg.unesp.br/~marcela

Teste de Aderência

IDÉIA:

descobrir qual é a Distribuição de uma Variável Aleatória X, a partir de uma amostra: {X₁, X₂, ..., X_n}

Problema:

Seja X: nº que sai na jogada de um dado

i	1	2	3	4	5	6	Total
$f_i = O_i$	185	239	206	188	174	208	1200

A partir da amostra, existe evidência estatística para afirmar que o dado é honesto, ou seja, que X tem Distribuição Equiprovável ???

TESTE DE HIPÓTESES:

H₀: X tem Distribuição Equiprovável H₁: Tal não ocorre

X equiprovável entãop P(X i) = -Logo, espera-se que em 1200 jogadas saia 200 vezes cada número: E $_{i}$ p_{i} 1200 \times 200

O que ocorre

i	1	2	3	4	5	6	Total
$f_i = O_i$	185	239	206	188	174	208	1200
Ei	200	200	200	200	200	200	1200
O _i - E _i	-15	39	6	-12	-26	8	

TESTE DE HIPÓTESES:

H₀: X tem Distribuição EquiprovávelH₁: Tal não ocorre

i	1	2	3	4	5	6	Total
$f_i = O_i$	185	239	206	188	174	208	1200
Ei	200	200	200	200	200	200	1200
O _i - E _i	-15	39	6	-12	-26	8	0
₹	1,13	7,61	0,18	0,72	3,38	0,32	13,33

$$\sum_{i=1}^{kQ} \frac{|E_i|^2}{|E_i|} = \chi^2_{Calculado}$$

Critério: Rejeitar H_0 se $\chi^2_{\text{Calculado}}$ for grande!

$$\chi^2_{\text{Calculado}}$$
 for grande!

$$v = - -$$

$$v = - - = 5$$

k : número de classes

m : número de parâmetros estimados,

Distribuições χ^2 - valores de $\chi^2_{v,P}$ onde $P = P(\chi^2_v \ge \chi^2_{v,P})$

P	0,995	0,05	0,025	0,01	0,005	0,001
<u>V</u>			,			
1	3,93E-05	3,841	5,024	6,635	7,879	10,828
2	0,0100	5,991	7,378	9,210	10,597	13,816
3	0,0717	7,815	9,348	11,345	12,838	16,266
4	0,207	9,488	11,143	13,277	14,860	18,467
5	0,412	11,070	12,833	15,086	16,750	20,515
6	0,676	12,592	14,449	16,812	18,548	22,458
7	0,989	14,067	16,013	18,475	20,278	24,322
8	1,344	15,507	17,535	20,090	21,955	26,124
9	1,735	16,919	19,023	21,666	23,589	27,877
10	2,156	18,307	20,483	23,209	25,188	29,588

Teste de Aderência pelo Método χ^2

Exemplo: amostra de tamanho n = 100

N° defeitos	0	1	2	3	4	5	6	7	8	•••
Nº aparelhos (f _i)	25	35	18	13	4	2	2	1	0	•••

Testar: H₀: Distribuição do nº de defeitos é *Poisson*

H₁: Tal não ocorre

$$p_r = P(X = r) = \frac{\mu^r * e^{-\mu}}{r!}$$
 (r=0,1,2,...)

Parâmetro da Poisson μ estimado por:

$$\bar{x} = \frac{\sum x_i * f_i}{n} = \frac{0*25 + ... + 7*1}{100} = 1,55$$

$$p_1 = P(X = 1) = \frac{(1,55)^1 * e^{-1,55}}{1!} = 1,55 * e^{-1,55} = 0,329$$

X	O	р	E	$(O_i - E_i)^2 / E_i$			
0	25	0,212	21,2	0,618			
1	35	0,329	32,9	0,134			
2	18	0,255	25,5	2,206			
3	13	0,132	13,2	0,003			
4	4	0,051	5,1				
5	2 9	0,016	1,6 7,2	0,450			
6	2	0,004	0,4				
7	1	0,001	0,1				
$\mathbf{\Sigma}$	100	1,0	100	$3,474 = \chi^2_{v}$			
	E _i ≥5 (exigência)						

$$v = k - 1 - m = 5 - 1 - 1 = 3$$

2. Teste de Independência (tabelas de contingência)

Exemplo: (Ex 01, p. 135-40, COSTA NETO)

Opiniões de homens e mulheres sobre determinado Projeto de Lei:

Sexo	Favor	Contra	Indiferente	Total
Homens	33	12	15	60
Mulheres	7	20	13	40
Total	40	32	28	100

H₀: Existe independência entre opinião e sexo

H₁: Tal não ocorre, ou seja, o sexo influencia na opinião

	Opinia	Opinião (Ho Verdadeiro)						
Sexo	Favor	Contra	Indiferente	Total				
Homens	24			60				
Mulheres	16			40				
Total	40	32	28	100				

Sexo	Favor	Contra	Indiferente	Total
Homens	33	12	15	60
Mulheres	7	20	13	40
Total	40	32	28	100

	Opinia			
Sexo	Favor	Contra	Indiferente	Total
Homens	24	19,2	16,8	60
Mulheres	16	12,8	11,2	40
Total	40	32	28	100

O_{ij}	$E_{ij} = n*p_i*p_i$	O_{ij} - E_{ij}	$(O_{ij} - E_{ij})^2 / E_{ij}$
33	24,0	9,0	3,375
12	19,2	-7,2	2,700
15	16,8	-1,8	0,193
7	16,0	-9,0	5,063
20	12,8	7,2	4,050
13	11,2	1,8	0,289
100	100		$15,670 = \chi^2_{v}$

$$v = (r - 1) * (s - 1) = (2 - 1) * (3 - 1) = 2$$

Testar: H₀:Distribuição de X é N(100;5)

H₁: Tal não ocorre

98,5	93,6	101,2	106,4	106,0	108,7	89,1	98,8	105,5
96,5	91,5	90,8	95,1	96,1	89,4	97,2	98,0	100,7
98,4	98,1	106,7	99,6	99,1	97,4	109,9	104,3	111,9
108,3	91,9	102,7	104,5	109,6	99,6	97,4	103,4	98,1
92,8	95,8	92,4	98,2	99,8	100,1	98,4	111,0	91,3
87,1	107,2	93,6	96,7	103,8	102,3	104,4	103,0	93,1
103,5	101,6	95,3	98,8	100,7	102,8	100,7	95,4	109,4
100,4	104,1	104,3	96,8	95,4	105,6	94,0	92,2	103,6

			observado	esperado
media=	99,80	100105	29	34,13
dp=	5,43			

Tabela A6.2 Distribuição pormal — valores de $P(0 \le Z \le z_0)$

Zo	0	1	2	3
0,0	0,0000	0,0040	0,0080	0,0120
0,1	0,0398	0,0438	0,0478	0,0517
0,2	0,0793	0,0832	0,0871	0,0910
0,3	0,1179	0,1217	0,1255	0,1293
0,4	0,1554	0,1591	0,1628	0,1664
0,5	0,1915	0,1950	0,1985	0,2019
0,6	0,2257	0,2291	0,2324	0,2357
0,7	0,2580	0,2611	0,2642	0,2673
0,8	0,2881	0,2910	0,2939	0,2967
0,9	0.3159	0,3186	0,3212	0,3238
1,0	0,3413	0,3438	0,3461	0,3485
		$\Delta \mathcal{D} \mathcal{C} \mathcal{C} \mathcal{E}$	Δ	α
1,	0.3643	0,3665	0,3686	0,3708
1,2	0,3849	0,3869	0,3686 0 ,3888	0,3708
1 1	1			
1,2	0,3849	0,3869	0,3888	0,3907
1,2 1,3	0,3849 0,4032	0,3869 0,4049	0,3888 0,4066	0,3907 0,4082
1,2 1,3 1,4	0,3849 0,4032 0,4192	0,3869 0,4049 0,4207	0,3888 0,4066 0,4222	0,3907 0,4082 0,4236
1,2 1,3 1,4 1,5 1,6	0,3849 0,4032 0,4192 0,4332	0,3869 0,4049 0,4207 0,4345	0,3888 0,4066 0,4222 0,4357	0,3907 0,4082 0,4236 0,4370
1,2 1,3 1,4	0,3849 0,4032 0,4192 0,4332 0,4452	0,3869 0,4049 0,4207 0,4345 0,4463	0,3888 0,4066 0,4222 0,4357 0,4474	0,3907 0,4082 0,4236 0,4370 0,4484
1,2 1,3 1,4 1,5 1,6 1,7	0,3849 0,4032 0,4192 0,4332 0,4452 0,4554	0,3869 0,4049 0,4207 0,4345 0,4463 0,4564	0,3888 0,4066 0,4222 0,4357 0,4474 0,4573	0,3907 0,4082 0,4236 0,4370 0,4484 0,4582
1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9	0,3849 0,4032 0,4192 0,4332 0,4452 0,4554 0,4641	0,3869 0,4049 0,4207 0,4345 0,4463 0,4564 0,4649	0,3888 0,4066 0,4222 0,4357 0,4474 0,4573 0,4656	0,3907 0,4082 0,4236 0,4370 0,4484 0,4582 0,4664
1,2 1,3 1,4 1,5 1,6 1,7 1,8	0,3849 0,4032 0,4192 0,4332 0,4452 0,4554 0,4641 0,4713	0,3869 0,4049 0,4207 0,4345 0,4463 0,4564 0,4649 0,4719	0,3888 0,4066 0,4222 0,4357 0,4474 0,4573 0,4656 0,4726	0,3907 0,4082 0,4236 0,4370 0,4484 0,4582 0,4664 0,4732