

DEPARTAMENTO ACADÊMICO DE MATEMÁTICA

ÁLGEBRA LINEAR

Profa. Dra. Diane Rizzotto Rossetto

LISTA 3 - Espaços Vetoriais

Questão 1: Seja $\mathbb R$ o conjunto dos números reais. Definamos a soma e a multiplicação por escalar em $\mathbb R$ por

$$u \oplus v = uv$$

$$\alpha\odot u=\alpha+u$$

. Verifique se $\mathbb R$ é ou não um espaço vetorial em relação a essas operações.

Questão 2: Seja $\mathbb R$ o conjunto dos números reais. Defina a soma e a multiplicação por escalar por

$$u \oplus v = u - v$$

$$\alpha \odot u = \alpha u$$

, respectivamente. Verifique se $\mathbb R$ é ou não um espaço vetorial em relação a essas operações.

Questão 3: Seja $\mathbb V$ o conjunto de todos os pares ordenados de números reais. Definamos a adição e a multiplicação por escalar em $\mathbb V$ por

$$(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

$$\alpha \odot (x_1, x_2) = (\alpha x_1, x_2)$$

V é um espaço vetorial com estas operações? Justifique.

Questão 4: Determine quais dos conjuntos W abaixo são subespaços vetoriais (Justifique).

a)
$$\mathbb{W} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_3 = 1\}$$

b)
$$\mathbb{W} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = x_2 = x_3\}$$

c)
$$\mathbb{W} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 = x_1 + x_2\}$$

d)
$$\mathbb{W} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 = x_1 \text{ ou } x_3 = x_2\}$$

Questão 5: O conjunto $\mathbb{W}=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\ \text{e}\ 2x+y=0\}$ com as operações usuais é espaço vetorial?

Questão 6: O conjunto $\mathbb{W}=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\ \text{e}\ 2x+y=0\}$ com as operações usuais de \mathbb{R}^3 é espaço vetorial?

Questão 7: Considere os conjuntos $\mathbb{W}_1 = \{u \in \mathbb{R}^3 \mid u = (0,0,0) + t(1,2,3), \forall t \in \mathbb{R}\}$ e $\mathbb{W}_2 = \{u \in \mathbb{R}^3 \mid u = (1,1,1) + t(1,1,1), \forall t \in \mathbb{R}\}$. O conjunto $\mathbb{W} = \mathbb{W}_1 + \mathbb{W}_2$ é subespaço vetorial de \mathbb{R}^3 ? Interprete o conjunto \mathbb{W} geometricamente.

Questão 8: Quais dos subconjuntos do \mathbb{R}^2 , com as operações usuais, são subespaços vetoriais?

a)
$$\{(x,y) \in \mathbb{R}^2 \mid x \ge 0\}.$$

b)
$$\{(x,y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\}.$$

c)
$$\{(x,y) \in \mathbb{R}^2 \mid x=0\}.$$

Questão 9: Seja $A=\{(1,1,-2,4),(1,1,-1,2),(1,4,-4,8)\}\subset \mathbb{R}^4.$

a) Determine o subespaço S gerado por A, ou seja,

$$S = span\{(1, 1, -2, 4), (1, 1, -1, 2), (1, 4, -4, 8)\}.$$

- b) O vetor (2,1,-1,2) pertence a S?
- c) O vetor (0,0,1,1) pertence a S?
- Questão 10: Seja $\mathbb{W} = \{X \in \mathbb{R}^4 \mid AX = \overline{0}\}$, para cada matriz A abaixo, encontre um conjunto de geradores para o espaço W.

a)
$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 1 \\ 2 & 1 & 3 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 6 & -2 \\ -2 & 1 & 2 & 2 \end{bmatrix}$$

Questão 11: Em cada item, determine se o espaço gerado pelo conjunto de indicados é o espaço vetorial \mathbb{R}^3 .

a)
$$v_1 = (1,0,0), v_2 = (0,1,1)$$
 e $v_3 = (1,0,1)$.

b)
$$v_1 = (2, 1, -2), v_2 = (3, 2, -2) e v_3 = (2, 2, 0).$$

Questão 12: Em cada item, determine se a afirmação é verdadeira ou falsa e justifique sua resposta.

- a) O vetor (2,6,6) pertence ao espaço gerado pelo conjunto de vetores (-1,2,3) e (3,4,2).
- b) O vetor (-9, -2, 5) pertence ao espaço gerado conjunto de vetores (-1, 2, 3) e (3, 4, 2).

Questão 13: Quais dos seguintes vetores é combinação linear de conjunto formado pelos vetores $v_1 = (5, -3, 1)$, $v_2 = (0,4,3)$ e $v_3 = (-10,18,7)$?

a)
$$(10, -2, 5)$$

c)
$$(-2,-1,1)$$
 d) $(-1,2,3)$

d)
$$(-1, 2, 3)$$

Questão 14: Os vetores $v_1=(5,-3,1)$, $v_2=(0,4,3)$ e $v_3=(-10,18,7)$ formam um conjunto LD ou L.I.? Caso sejam LD, escreva um deles como combinação linear dos outros.

Questão 15: Determine se os conjuntos de vetores abaixo são linearmente dependentes ou linearmente independentes. Justifique.

a)
$$S = \{(2,0), (1,0)\}$$

b)
$$S = \{(1,0,1), (0,1,0), (1,2,2)\}$$

Questão 16: Para quais valores de λ o conjunto de vetores $\{(3,1,0),(\lambda^2+2,2,0)\}$ é LD?

Questão 17: Suponha que $\{v_1, v_2, v_3\}$ é um conjunto linearmente independente de vetores de \mathbb{R}^n . Responda se $\{w_1, w_2, w_3\}$ é linearmente dependente ou independente nos seguintes casos:

a)
$$w_1 = v_1 + v_2, w_2 = v_1 + v_3$$
 e $w_3 = v_2 + v_3$;

b)
$$w_1 = v_1, w_2 = v_1 + v_3$$
 e $w_3 = v_1 + v_2 + v_3$.

Questão 18: Se os vetores não nulos u, v e w formam um conjunto LD, então w é uma combinação linear de u

2

Questão 19: Considere a matriz

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{bmatrix}.$$

Encontre os valores de λ tais que o sistema linear homogêneo $(A - \lambda I_n)X = \overline{0}$ tem solução não trivial e, para estes valores de λ , encontre uma base para o espaço solução.

Questão 20: Sejam $v_1 = (4, 2, -3)$, $v_2 = (2, 1, -2)$ e $v_3 = (-2, -1, 0)$

- a) Os vetores v_1 , v_2 e v_3 formam um conjunto LI ou LD?
- b) Os vetores v_1 e v_2 formam um conjunto LI ou LD?.
- c) Qual a dimensão do subespaço gerado por v_1 , v_2 e v_3 , ou seja, do conjunto das combinações de v_1 , v_2 e v_3 .
- d) Descreva geometricamente o subespaço gerado por v_1 , v_2 e v_3

Questão 21: Dados $v_1 = (2, 1, 3)$ e $v_2 = (2, 6, 4)$:

- a) Os vetores v_1 e v_2 geram o \mathbb{R}^3 ? Justifique.
- b) Seja v_3 um terceiro vetor do \mathbb{R}^3 . Quais as condições sobre v_3 para que $\{v_1, v_2, v_3\}$ seja uma base de \mathbb{R}^3 ?
- c) Encontre um vetor v_3 que complete junto com v_1 e v_2 uma base do \mathbb{R}^3 .

Questão 22: Dê exemplos de:

- a) Três vetores: v_1 , v_2 e v_3 , sendo $\{v_1\}$ L.I., $\{v_2,v_3\}$ L.I., v_2 e v_3 não são múltiplos de v_1 e $\{v_1,v_2,v_3\}$ LD.
- b) Quatro vetores: v_1,v_2,v_3 e v_4 , sendo $\{v_1,v_2\}$ L.I., $\{v_3,v_4\}$ L.I., v_3 e v_4 não são combinação linear de v_1 e v_2 e $\{v_1,v_2,v_3,v_4\}$ LD.

Questão 23: Quais são as coordenadas de x=(1,0,0) em relação à base

$$\mathcal{B} = \{(1,1,1), (-1,1,0), (1,0,-1)\}?$$

Questão 24: Considere os subespaços de \mathbb{R}^4 , $\mathbb{W}_1=\{(x,y,z,w)\in\mathbb{R}^4\mid x+y=0\ \mbox{e}\ z-w=0\}\ \mbox{e}\ \mathbb{W}_2=\{(x,y,z,w)\in\mathbb{R}^4\mid x-y-z+w=0\}$.

- a) Determine $\mathbb{W}_1 \cap \mathbb{W}_2$.
- b) Exiba uma base para $\mathbb{W}_1 \cap W_2$.
- c) Determine $\mathbb{W}_1 + \mathbb{W}_2$.
- d) $\mathbb{W}_1 + \mathbb{W}_2$ é soma direta? Justifique.
- e) $\mathbb{W}_1 + \mathbb{W}_2 = \mathbb{R}^4$? Justifique.

Questão 25: Sejam $\mathcal{B} = \{(1,0),(0,1)\}$, $\mathcal{B}_1 = \{(-1,1),(1,1)\}$, $\mathcal{B}_2 = \{(\sqrt{3},1),(\sqrt{3},-1)\}$ e $\mathcal{B}_3 = \{(2,0),(0,2)\}$ bases ordenadas do \mathbb{R}^2 .

a) Ache as matrizes mudança de base:

- i) $[I]_{\mathcal{B}}^{\mathcal{B}_1}$
- ii) $[I]_{\mathcal{B}_1}^{\mathcal{B}}$
- iii) $[I]_{\mathcal{B}_2}^{\mathcal{B}}$
- iv) $[I]_{\mathcal{B}_2}^{\mathcal{B}}$
- b) Quais são as coordenadas do vetor v=(3,-2) em relação à base:
 - i) \mathcal{B}

- ii) \mathcal{B}_1
- iii) \mathcal{B}_2
- iv) \mathcal{B}_3

c) As coordenadas de um vetor v em relação a base \mathcal{B}_1 são dadas por

$$[v]_{\mathcal{B}_1} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}.$$

Quais são as coordenadas de v em relação à base:

i) *B*

ii) \mathcal{B}_2

iii) \mathcal{B}_3

\Rightarrow Espacos não \mathbb{R}^n

Questão 26: Considere $\mathbb C$ o conjunto dos números complexos. Definamos a adição e a multiplicação por escalar por

$$(a+bi) \oplus (c+di) = (a+c) + (b+d)i$$
$$\alpha \odot (a+bi) = \alpha a + \alpha bi$$

onde $\alpha \in \mathbb{R}$. Mostre que \mathbb{C} , com estas operações, é um espaço vetorial.

Questão 27: Mostre que o espaço $\mathbb{P}_3=\{a_0+a_1x+a_2x^2+a_3x^3\mid a_0,a_1,a_2,a_3\in\mathbb{R}\}$ dos polinômios reais de grau menor ou igual a 3 é um espaço vetorial real, com as operações usuais de soma e multiplicação por escalar.

Questão 28: Para cada um dos espaços vetoriais abaixo, com operações usuais, descreva o vetor nulo.

a) $\mathbb{M}_{3\times2}$

b) \mathbb{P}_3

c) C[a,b]

Questão 29: Determine quais dos conjuntos W abaixo são subespaços vetoriais (Justifique).

- a) \mathbb{W} é o conjunto de todas as matrizes 2×2 diagonais.
- b) \mathbb{W} é o conjunto de todas as matrizes 2×2 triangulares.
- c) $\mathbb W$ é o conjunto de todas as matrizes 2×2 simétricas.
- d) $\mathbb{W} = \{ p \in \mathbb{P}_4 \mid p \text{ possui grau igual a 3} \}$
- e) \mathbb{W} é o conjunto de polinômios de grau até 4 tal que p(0)=0.
- f) $\mathbb{W} \subset C[-1,1]$ tal que as funções em \mathbb{W} satisfazem f(-1)=f(1)

Questão 30: Considere o \mathbb{W} conjunto das matrizes A de ordem 2 de modo que Az=0, com $z=\begin{bmatrix}1&1\end{bmatrix}^{\top}$. \mathbb{W} é um subespaço vetorial? Explique.

Questão 31: Em cada item, determine se a afirmação é verdadeira ou falsa e justifique sua resposta.

a) $\{2, t^2, t, 2t + 3\}$ gera \mathbb{P}_2 .

b) $\{1, t^2, t^2 - 2\}$ gera \mathbb{P}_2 .

Questão 32: Determine se os conjuntos de vetores abaixo são linearmente dependentes ou linearmente independentes. Justifique.

$$\mathsf{a)} \ S = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

b)
$$S = \{p_1, p_2, p_3\} \subseteq \mathbb{P}_4$$
 onde $p_1(x) = x^3 - 5x^2 + 1$, $p_2(x) = 2x^4 + 5x - 6$ e $p_3(x) = x^2 - 5x + 2$

Questão 33: Os polinômios $p(x)=x^3-5x^2+1$, $q(x)=2x^4+5x-6$ e $r(x)=x^2-5x+2$ do \mathbb{P}_4 formam um conjunto linearmente independente.

Questão 34: Obtenha uma base e consequentemente determine a dimensão de cada um dos subespaços de $\mathbb{M}_{3\times3}$ abaixo descritos:

- a) matrizes com traço igual a zero.
- b) matrizes que têm a primeira e a última linhas iguais.

- c) matrizes em que os elementos da segunda linha é igual aos elementos da terceira coluna.
- d) matrizes das quais a soma dos elementos da primeira linha é igual à soma dos elementos da segunda coluna.

Questão 35: Seja $\mathbb V$ o espaço das matrizes reais de ordem 2, e $\mathbb W$ o subespaço gerado por

$$\begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}.$$

Encontre uma base e a dimensão de W.

Questão 36: Seja V o espaço das matrizes reais de ordem 2, e W o subespaço gerado por

$$\begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}.$$

Encontre uma base e a dimensão de W.

Questão 37: Mostre que os polinômios 1, x-1 e x^2-3x+1 formam uma base de \mathbb{P}_2 . Exprima o polinômio $2x^2-5x+6$ como combinação linear dos elementos dessa base.

Respostas

- 1. Não é espaço vetorial, A4 não se verifica.
- 2. Não é espaço vetorial, A1 não se verifica.
- 3. Não
- 4.
- a) Não
- b) Sim
- c) Sim
- d) Não
- 5. Sim pois \mathbb{W} é o conjunto das soluções de um sistema linear homogêneo.
- 6. Sim pois é intersecção de subespaços vetoriais: $\mathbb{W} = \mathbb{W}_1 \cap \mathbb{W}_2$ onde \mathbb{W}_1 e \mathbb{W}_2 são planos que passam pela origem (portanto são subespaços vetoriais de \mathbb{R}^3).
- 7. Sim pois é soma de subespaços vetoriais: $\mathbb{W} = \mathbb{W}_1 + \mathbb{W}_2$ onde \mathbb{W}_1 e \mathbb{W}_2 são retas que passam pela origem (portanto são subespaços vetoriais de \mathbb{R}^3). Geometricamente, \mathbb{W} será um plano.
- 8a. Não é subespaço, por não ser fechado para a multiplicação por escalar.
- 8b. Não é subespaço, por não ser fechado para a multiplicação por escalar.
- 8c. É subespaço.

9.

- a) $S = \{(x, y, z, -2z) | x, y, z \in \mathbb{R}\}.$
- b) Sim.
- c) Não.
- 11.

a) Sim

b) Não

12.

a) F

b) V

13.

a) Sim

b) Sim

c) Não

d) Não

14. Sim. $v_3 = -2v_1 + 3v_3$

15.

a) LD

b) LI

16. $\lambda = \pm 2$

17.

a) LI

b) LI

18. Não necessariamente, o que temos é que algum deles será combinação linear dos demais. Por exemplo $u=(1,0,0),\ v=(2,0,0)$ e w=(0,1,0) são LD, mas w não é CL de u e v.

19. $\lambda=1$, solução geral do SLH: $\{(\alpha,-2\alpha,\alpha)|\alpha\in\mathbb{R}\}$, base $B=\{(1,-2,1)\}$

20.

a) LD

b) LI

c) 2

d) Plano que passa pela origem e é paralelo aos vetores v_1 e v_2 , isto é, plano dado por x-2y=0.

21.

a) Não

b) $\{v_1, v_2, v_3\}$ LI

c) Por exemplo, $v_3 = (0, 0, 1)$

23. $[x]_{\mathcal{B}} = \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$.

24a. $\mathbb{W}_1 \cap W_2 = \{(0,0,z,z) | z \in \mathbb{R}\}.$

24b. $\mathbb{B} = \{(0,0,1,1)\}.$

24c. .

24d. Não, a interseção não é apenas o vetor nulo.

24e. Sim.

25a.

- $\mathsf{i)} \ \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$
- $\text{ii)} \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$
- iii) $\begin{bmatrix} \frac{1}{6} & \frac{1}{2} \\ \frac{1}{6} & -\frac{1}{2} \end{bmatrix}$
- $\text{iv)} \begin{bmatrix} -\frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix}$

25b.

i) $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$

- ii) $\begin{bmatrix} -\frac{5}{2} \\ \frac{1}{2} \end{bmatrix}$
- iii) $\begin{bmatrix} -\frac{1}{2} \\ \frac{3}{2} \end{bmatrix}$
- iv) $\begin{bmatrix} \frac{3}{2} \\ -1 \end{bmatrix}$

25c.

- i) $\begin{bmatrix} -4 \\ 4 \end{bmatrix}$
- ii) $\begin{bmatrix} \frac{4}{3} \\ \frac{8}{3} \end{bmatrix}$
- iii) $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$

28.

 $\mathbf{a}) \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$

- b) $p(t) = 0 + 0t + 0t^2 + 0t^3 = 0$
- c) f(x) = 0

29.

- a) Sim
- c) Sim
- e) Sim

- b) Não
- d) Não
- f) Sim

 $\text{30. } \mathbb{W} = \left\{ \begin{bmatrix} a & -a \\ b & -b \end{bmatrix}, a,b \in \mathbb{R} \right\} \text{ \'e um subespaço de } \mathbb{M}_{2\times 2}.$

31.

a) V

b) F

32.

a) LI

b) LI

33. Sim.

34.

- a) $\dim S = 8$
- b) dim S=6
- c) dim S=6
- d) dim S=8

36. dim $\mathbb{W} = 2$.

37. $2x^2 - 5x + 6 = 5 \cdot 1 + 1 \cdot (x - 1) + 2 \cdot (x^2 - 3x + 1)$.