Contents

1	Section 4.1			
	1.1	Theorem 1	1	
	1.2	Division Algorithm	1	
	1.3	Modulus Algorithm	2	
	1.4	Remarks	2	
2	Section 4.2			
	2.1	Theorem 1	2	
	2.2	Example	2	
3	Section 4.3			
	3.1	Prime Factorization	3	
	3.2	Greatest Common Divisor	3	
	3.3	Least Common Multiple	3	
	3.4	Example 4.3.9	3	
	3.5	4.3.40	3	
4	Section 4.4			
	4.1	Theorem 1	5	
	4.2	Chinese Remainder Theorem	5	
		4.2.1 Example	5	
	4.3	Method of Back Substitution	6	
	4.4	Fermat's Little Theorem	6	
		4.4.1 Example	6	

1 Section 4.1

1.1 Theorem 1

Proof:

$$a|b \implies b = a \cdot m$$

 $a|c \implies c = a \cdot n$

For some $m, n \in \mathbb{Z} \implies m+n \in \mathbb{Z}$. Then b+c=am+an=a(m+n) : a|b+c.

1.2 Division Algorithm

The function $\operatorname{\mathbf{div}}$ is called the division algorithm.

$$\operatorname{div}(a,d) = a \operatorname{div} d = \left\lfloor \frac{a}{d} \right\rfloor$$
 (1)

$$\operatorname{div}: \mathbb{Z} \times \mathbb{Z}^+ \implies \mathbb{Z} \tag{2}$$

The function receives a dividend and divisor and produces the quotient.

1.3 Modulus Algorithm

The function **mod** is called the modulus algorithm.

$$\operatorname{mod}(a,d) = a \operatorname{mod} d = a - \left| \frac{a}{d} \right| \tag{3}$$

where $a = d \cdot q + r$.

$$mod: \mathbb{Z} \times \mathbb{Z}^+ \implies \mathbb{Z} \tag{4}$$

The function receives a dividend and divisor and produces the remainder.

$$a \equiv b \pmod{m} \iff m \mid (a - b) \tag{5}$$

1.4 Remarks

1.

$$\mathbb{Z}_m (Z \mod m)$$

$$Z_m = \{0_m, 1_m, 2_m, \cdots, (m-1)_m\}$$

where 0_m is a set

- $r \in 0_m$ if $r \equiv 0 \pmod{m}$
- $r \in 1_m$ if $r \equiv 1 \pmod{m}$

2 Section 4.2

2.1 Theorem 1

Let b be an integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0, \tag{6}$$

where k is a nonnegative integer, a_0, a_1, \dots, a_k are nonnegative integers less than b, and $a_k \neq 0$.

2.2 Example

When $b = 10, a_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

$$7254887 = 7 \cdot 10^6 + 2 \cdot 10^5 + 5 \cdot 10^4 + 4 \cdot 10^3 + 8 \cdot 10^2 + 8 \cdot 10^1 + 7 \cdot 10^0$$

3 Section 4.3

3.1 Prime Factorization

$$24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^{3} \cdot 3^{1} \cdot 5^{0}$$

$$36 = 2 \cdot 2 \cdot 3 \cdot 3 = 2^{2} \cdot 3^{2} \cdot 5^{0}$$

$$60 = 2 \cdot 2 \cdot 3 \cdot 5 = 2^{2} \cdot 3^{1} \cdot 5^{1}$$

$$\gcd = 2^{\min} \cdot 3^{\min} \cdot 5^{\min}$$

$$\gcd = 2^{2} \cdot 3^{1} \cdot 5^{0}$$

3.2 Greatest Common Divisor

 $d = \gcd(a, b)$ if $d \ge x$ for all x such that $x \mid a \& x \mid b$.

3.3 Least Common Multiple

m = lcm(a, b) if $m \le y$ for all y such that $a \mid y \& b \mid y$.

3.4 Example 4.3.9

x = -1 is a solution to $x^m + 1 = 0$ if m is odd.

$$x^{m} + 1 = (x+1) (x^{m-1} - x^{m-2} + x^{m-3} - x^{m-4} + \dots - x + 1)$$

$$a^{m} + 1 = (a+1) (a^{m-1} - a^{m-2} + \dots - a + 1)$$

$$a$$
 is great than $1 \implies a+1 > 1$
 x is at least $3 \implies a+1 < a^m+1$

 $\therefore 1 < a + 1 < a^m + 1$

3.5 4.3.40

Using the method followed in Example 17, express the greatest common divisor of each of these pairs of integers as a linear combination of these integers.

- **a**)
- b)
- **c**)
- d)
- **e**)
- f)

- **g)** 2002, 2339
 - (a) Show that gcd(x, y) = 1.
 - (b) Find $x, y \in \mathbb{Z}$, such that 2002x + 2339y = 1.
 - By the Euclidean Algorithm

$$2339 = 2002 \cdot 1 + 337$$

$$2002 = 337 \cdot 6 + 317$$

$$337 = 317 \cdot 1 + 20$$

$$317 = 20 \cdot 15 + 17$$

$$20 = 17 \cdot 1 + 3$$

$$17 = 3 \cdot 5 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2$$

$$\begin{split} 1 &= 3 - 2 \cdot 1 \\ &= 3 - (16 - 3 \cdot 5) \\ &= 3 \cdot 6 - 17 \\ &= (20 - 17 \cdot 1) \cdot 6 + (-1) \cdot 17 \\ &= 20 \cdot 6 + (-7) \cdot 17 \\ &= 20 \cdot 6 + (-7)(317 - 20 \cot 15) \\ &= 20 \cdot 111 + (-7) \cdot 317 \\ &= (337 - 317 \cdot 10) \cdot 111 + (-7) \cdot 317 \\ &= 317 \cdot 111 + (-118) \cdot 317 \\ &= 317 \cdot 111 + (-118)(2002 - 337 \cdot 6) \\ &= 317 \cdot 819 + (-118) \cdot 2002 \\ &= (2339 - 2002 \cdot 1) \cdot 819 + (-118) \cdot 2002 \\ &= 2339 \cdot 819 + (-937) \cdot 2002 \\ &= -937, y = 819 \end{split}$$

- h)
- **i**)

4 Section 4.4

4.1 Theorem 1

$$ax + b = c$$

$$a^{-1} \cdot ax = c - b \cdot a^{-1}$$

$$x = (c - b) \cdot a^{-1}$$

$$4x + 2 \equiv 1 \pmod{9}$$

$$4x \equiv -1 \pmod{9}$$

$$4x \equiv 8 \pmod{9}$$

$$7 \cdot (4x \equiv 8 \pmod{9})$$

$$x \equiv 56 \pmod{9}$$

$$x \equiv 2 \pmod{9}$$

4.2 Chinese Remainder Theorem

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$
$$x \equiv a_3 \pmod{m_3}$$

Where x is the same and mod m_i is pair-wise relatively prime.

Let $m = m_1, m_2, \cdots m_n$

$$M_i = \frac{m}{m_i} \tag{7}$$

 y_i as inverse of $M_i \mod m_i$

$$x = a_1 M_1 y_1 + a_2 M_2 y_2 + \dots + a_n M_n y_n \tag{8}$$

4.2.1 Example

$$x \equiv 1 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

$$x \equiv 3 \pmod{4}$$

$$m = 5 \cdot 7 \cdot 4 = 140$$

$$M_1 = \frac{140}{5} = 28$$

$$M_2 = \frac{140}{7} = 20$$

$$M_2 = \frac{140}{4} = 35$$

$$y_1 \cdot 28 = 1 \pmod{5} = 2$$

$$y_2 \cdot 20 = 1 \pmod{7} = 6$$

$$y_3 \cdot 35 = 1 \pmod{4} = 3$$

$$x = 1 \cdot 28 \cdot 2 + 2 \cdot 20 \cdot 6 + 3 \cdot 35 \cdot 3$$

$$= 611 = 51 \pmod{140}$$

4.3 Method of Back Substitution

$$x \equiv 1 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

$$x \equiv 3 \pmod{4}$$

$$x \equiv 1 \pmod{5}$$

$$\implies x = 5t + 1$$

Then $x \equiv 2 \pmod{7}$ becomes

$$5t + 1 \equiv 2 \pmod{7}$$
$$3 \cdot 5t \equiv 1 \pmod{7} \cdot 3$$
$$t \equiv 3 \pmod{7}$$
$$\implies \qquad t = 7s + 3$$
$$\implies \qquad c = 5(7s + 3) + 1$$
$$= 355 + 16$$

Then $x \equiv 3 \pmod{4}$ becomes

$$355 + 16 \equiv 3 \pmod{4}$$

 $355 \equiv 3 \pmod{4}$
 $35 \equiv 3 \pmod{4}$
 $s \equiv 9 \pmod{4}$
 $s \equiv 1 \pmod{4}$
 $s = 4r + 1$
 $x = 35(4r + 1) + 16 = 140r + 51$

4.4 Fermat's Little Theorem

4.4.1 Example

$$a=7$$

$$p=13 \implies p-1=12$$

$$121=12\cdot 10+1$$

$$7^{p-1}\equiv 1 \text{mod } 13$$

$$7^{121} \mod 13$$

 $\equiv 7^{12 \cdot 10 + 1} \mod 13$
 $\equiv 7^{12 \cdot 10} \cdot 7 \mod 13$
 $\equiv (7^{p-1})^{10} \cdot 7 \mod 13$
 $\equiv 1^{10} \cdot 7 \mod 13$
 $= 7 \mod 13$