Modelos de Computación: Relación de problemas 3

David Cabezas Berrido

Ejercicio 27. Expresiones regulares para los lenguajes sobre $\{0,1\}$:

a) Palabras con número de símbolos 0 múltiplo de 3.

$$(1*01*01*01*)*$$

b) Palabras que contienen como subcadena a 1100 ó a 00110.

$$(0+1)^*(1100+00110)(0+1)^*$$

c) Palabras en las que cada cero forma parte de una subcadena de 2 ceros y cada 1 forma parte de una subcadena de 3 unos.

$$(00+111)^*$$

d) Palabras en las que el número de ocurrencias de la subcadena 011 es menor o igual que el de ocurrencias de la subcadena 110.

Este lenguaje no es regular, luego no existe una expresión regular para el mismo.

Ejercicio 29. Encontrar gramática tipo 3 o autómata finito que reconozca el lenguaje.

• $L_1 = \{u \in \{0, 1\}^* : u \text{ no contiene la subcadena '0101'}\}$

 \bullet $L_2=\{0^i1^j0^k:i\geq 1,\ k\geq 0,\ i \text{ impar},\ k \text{ múltiplo de 3 y } j\geq 2\}$

1

Diseñar el AFD minimal que reconoce $(L_2 \cap L_1)$.

El autómata sin minimizar (sólo agrupando los estados de error) es el siguiente.

Tiene sólo dos estados indistinguibles: q_0p_0 y q_1p_0 , luego el autómata minimal es el que resulta de agrupar ambos estados.

Podemos apreciar que este autómata es isomorfo al que hemos diseñado para L_2 , lo cual ocurre porque $L_2 \subset L_1$ (es claro que las palabras de L_2 no tienen a '0101' como subcadena).

Ejercicio 45. $A = \{0, 1, +, =\}$, probar que el lenguaje

$$ADD = \{x = y + z \mid x, y, z \text{ son números en binario y la suma es correcta}\}$$

no es regular.

Probaré que ADD no satisface el lema de bombeo. Sea $n \in \mathbb{N}$, la palabra $1^n = 0 + 1^n$ está en el lenguaje y tiene longitud $2n + 3 \ge n$. Tomamos una descomposición cualquiera de la forma uvw con $|uv| = l \le n$ y $|v| \ge 1$, por lo tanto $v = 1^k$ para algún $k \ge 1$.

La palabra uv^2w será $1^{l-k}1^{2k}1^{n-l}=0+1^n$, que simplificando queda $1^{n+k}=0+1^n$. Como $k\geq 1$, el valor númerico de 1^{n+k} será estrictamente mayor que el de 1^n , por lo tanto la palabra uv^2w no está en ADD (la suma no es correcta).

Resumiendo, dado un valor de n cualquiera, podemos encontrar en el lenguaje una palabra z de longitud mayor que n tal que para toda descomposición de z de la forma uvw, la palabra uv^2w no está en el lenguaje. Luego ADD no es regular.

 $\boldsymbol{Ejercicio}$ 46. La mezcla perfecta de dos lenguajes L_1 y L_2 sobre un alfabeto A se define como

$$\{w \mid w = a_1b_1a_2b_2\dots a_kb_k \text{ donde } a_1\dots a_k \in L_1, \ b_1\dots b_k \in L_2, \ a_i, b_i \in A\}$$

Demostrar que si L_1 y L_2 son regulares, su mezcla perfecta lo es.

Ejercicio 47. Minimizar el autómata.

No hay estados inaccesibles.

Usando el algoritmo visto en clase, he obtenido que las parejas de estados indistinguibles son (q_1, q_4) , (q_2, q_5) y (q_3, q_6) .

El autómata minimal será el resultante de agrupar cada una de las parejas.

