

Übungsskript

Falk Jonatan Strube

Übung von Prof. Dr.-Ing. Beck

4. November 2015

Inhaltsverzeichnis

1 Eingebaute Datentypen

1.1 Zahlentypen

 $\begin{array}{l} \text{Zahl:} \ \underset{8\cdot 10^0}{1} \ \underset{0\cdot 10^1}{0} \ \underset{1\cdot 10^2}{8} \\ \Rightarrow \text{10er-System (Decimal)} \\ \end{array}$

 $\textbf{Zahl: } 0110 \underset{\leftarrow usw. \ 1\cdot 2^2}{1} \underset{0\cdot 2^1}{0} \underset{0\cdot 2^0}{0} = 0 + 0 + 4 + 8 + 0 + 32 + 64 + 0 = 108$

⇒ 2er-System (Binär)

Zahl: 001|101|100 = 108

⇒ 8er-System (Octal)

 $\begin{array}{l} {\bf Zahl: 0110|1100=108} \\ \Rightarrow {\bf 16er\text{-}System \ (Hexa)} \end{array}$

Unterschied: $108_{/10}$, $01101100_{/2}$, $154_{/8}$ (in C gekennzeichnet durch $0154 \rightarrow$ Octalzahl) und $6C_{/16}$ (in

C gekennzeichnet durch 0x6C)

Veranschaulichung

108:2=54	$R\emptyset$
65:2=27	$R\emptyset$
27:2=13	R1
13:2=6	R1
6:2=3	$R\emptyset$
3:2=1	R1
1:2=0	R1

 $\Rightarrow 1101100$ von unten nach oben gelesen

$$108: 16 = 6$$

$$6: 16 = 0$$

$$\Rightarrow 6C$$

$$R12 = RC$$

$$R6$$

Beispielzahl 0x12AB

Speicherblock:

1	2	Α	В	big-endian
В	Α	1	2	
Α	В	1	2	little-endian

Letzte Version ist die, die heutzutage meistens (Intel) verwendet wird: Das niederwertigste Byte liegt auf der niedrigsten Adresse.

2er Komplement positive Zahl: $\boxed{0}$ 110 1100 Negation: 1001 0011

+1

Komplement: $1001\ 0100 = -108 = 0x94$