Departamento de Estadística, Universidad Nacional

Implementación de modelos ANN para clasificación de objetos astrofísicos identificados por SDSS (Galaxias, Estrellas y Quasars)

Jose Alejandro Ramirez Oscar Julian Layton

Junio 19, 2020

- 1 SDSS (Sloan Digital Sky survey)
- 2 Descripción de la información
- 3 Implementación de los modelos ANN
- 4 Entrenamiento y validación. Modelo 1
- **5** Entrenamiento y validación. Modelo 2
- 6 Entrenamiento y validación. Modelo 3
- Conclusiones

SDSS (Sloan Digital Sky survey)

Figure: Sistema SDSS. Patrick Gaulme

SDSS (Sloan Digital Sky Survey) es un proyecto de investigación espacial que emplea un sistema fotométrico con un espejo primario de 2.5 m de diámetro para capturar y procesar imágenes de objetos astrofísicos.

Figure: Tomado de [4]. Messier 81 (Bode's Galaxy). Esta galaxia se encuentra a unos 12 millones de años luz de distancia en la constelación de la Osa Mayor. SDSS

Figure: Tomado de [4]. Cluster de estrellas m13. SDSS

Figure: Tomado de [4]. Dos galaxias espirales una al lado de la otra. La galaxia espiral M51 y su compañera más débil. SDSS

Figure: Sky Server data. SDSS

Fotometría y espectroscopia

La fotometría y la espectroscopia son ramas de la óptica que se ocupan de la medición y el análisis de las variables físicas asociadas a la luz emitida por una fuente.

- Ascensión y declinación recta: coordenadas astronómicas de un objeto sobre la esfera celeste.
- Flujo luminoso total: cantidad de luz emitida por una fuente de luz, sus unidades en el SI es lúmen.
- Intensidad luminosa: cantidad de flujo luminoso que emite una fuente por unidad de ángulo sólido. Su unidad de medida es candela.
- Desplazamiento al rojo: representa un cambio en la longitud de onda de la radiación por el efecto de una fuente en movimiento.

La esfera celeste

Figure: Tomado de [4]. Sistema de coordenadas ecuatoriales

Los sistemas de adquisición de datos fotométricos, se clasifican segun el ancho de banda.

Banda ancha: FWHM > 500Å

Banda intermedia: FWHM 100-300Å Banda angosta: FWHM 10-100Å

FWHM: Anchura a media altura, dada por la diferencia entre los dos valores extremos de la variable independiente en los que la variable dependiente es igual a la mitad de su valor máximo.

Sistemas fotométricos de banda ancha

Figure: Tomado de [3]. Principales sistemas fotométricos

Sistema fotométrico Sloan ('u','g','r','i','z')

Figure: Tomado de [3]. Curva de transmitancia ('u','g','r','i','z')

Descripción de la información

- El telescopio toma las señales electromagnéticas provenientes de los objetos celestes utilizando un sistema fotométrico de cinco filtros.
- Las señales se procesan por medio de dispositivos de carga acoplada como imagenes (CCD - charge coupled device).
- Las imágenes, se procesan generando listas de datos fotometricos de objetos observados con varias variables.

Descripción de la información

Este conjunto de datos está formado por 10.000 registros de observaciones asociadas a objetos astrofisicos. Cada observación se describe mediante 17 columnas de características y 1 columna de etiqueta que identifica la observación como una estrella, una galaxia o un Quásar.

Table: Variables del conjunto de datos

objid	ra	dec	u
Identificador de objeto	Ascensión recta (banda r)	declinación J2000 (banda r)	Ajuste de magnitud 1
g	r	i	z
Ajuste de magnitud 2	Ajuste de magnitud 3	Ajuste de magnitud 4	Ajuste de magnitud 5
run	camcol	field	specobjid
Número de ejecución 1	columna de cámara	número de campo	Identificador de objeto
class	redshif	plate	mjd
clasificacion	Desplazamiento al rojo	número de placa	MJD de observación
fiberid			
ID de fibra			

Descripción de la información

Figure: Histrograma clasificación

Descripcion de la información

Figure: Tratamiento de la data

Implementacion de los modelos ANN

Se implementaron tres modelos, en el primero se consideran las variables asociadas a la posición del objeto y el corrimiento al rojo, en el segundo las variables asociadas a los filtros del sistema fotométrico y en el tercero una combinación de features usados en los modelos anteriores. Las estructuras diferentes de redes neuronales artificiales secuenciales permiten clasificar objetos astrofísicos observados por el SDSS en Galaxias, Estrellas y Quasars.

- Input: Máximo 7 variables fotométricas (ra, dec, u g, r, i,z)
 y una variable espectral (desplazamiento al rojo).
- Labels: variable "class", para 3 objetos astrofisicos (Galaxias, Estrellas y Quasars)
- Regularizador: Dropout
- Funciones de activación: Relu (capa de entrada y ocultas) y Softmax (capa de salida)

Estructura del modelo 1

Figure: Red neuronal artificial. 1 capa oculta.

Estructura del modelo 2

Figure: Red neuronal artificial. 3 capas ocultas.

Estructura del modelo 3

Figure: Red neuronal artificial. 5 capas ocultas.

Entrenamiento y validación. Modelo 1

Modelo 1:

Modelo 1. Accuracy y funcion de perdida para los conjuntos de entrenamiento y validacion.

Entrenamiento y validación

Modelo 2:

Modelo 2. Accuracy y funcion de perdida para los conjuntos de entrenamiento y validacion.

Entrenamiento y validación

Modelo 3:

Modelo 3. Accuracy y funcion de perdida para los conjuntos de entrenamiento y validacion.

- La clasificación de objetos astrofísicos a través de redes neuronales presentó curvas de aprendizaje apropiadas para los tres modelos planteados.
- Las estructuras de las redes empleadas fueron construidas por uno proceso de agregación de capas y constraste continuo con la métrica de ajuste.