Package 'serosv'

October 18, 2024

```
Description An easy-to-use and efficient tool to estimate infectious diseases parameters using serolog-
     ical data. Implemented models include SIR models (ba-
     sic sir model(), static sir model(), mseir model(), sir subpops model()), parametric model()
     els (polynomial_model(), fp_model()), nonparametric models (lp_model()), semiparamet-
     ric models (penalized splines model()), hierarchical models (hierarchical bayesian model()).
     The package is based on the book ``Modeling Infectious Disease Parameters Based on Serologi-
     cal and Social Contact Data: A Modern Statistical Perspec-
     tive" (Hens, Niel & Shkedy, Ziv & Aerts, Marc & Faes, Christel & Damme, Pierre & Beu-
     tels, Philippe., 2013) <doi:10.1007/978-1-4614-4072-7>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 3.4.0)
RoxygenNote 7.3.1
Imports deSolve, dplyr, ggplot2, locfit, magrittr, methods, mgcv,
     mixdist, patchwork, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1),
     rstan (\geq 2.18.1), rstantools (\geq 2.4.0), boot, stats4
Suggests covr, knitr, rmarkdown, bookdown, testthat (>= 3.0.0)
Collate 'data.R' 'mseir_model.R' 'sir_basic_model.R'
     'sir_static_model.R' 'sir_subpops_model.R'
     'fractional_polynomial_models.R' 'polynomial_models.R'
     'utils.R' 'weibull_model.R' 'nonparametric.R'
     'semiparametric_models.R' 'mixture_model.R'
     'hierarchical_bayesian_model.R' 'serosv.R' 'stanmodels.R'
     'plots.R' 'compute_ci.R'
Config/testthat/edition 3
URL https://oucru-modelling.github.io/serosv/,
     https://github.com/OUCRU-Modelling/serosv
```

Title Model Infectious Disease Parameters from Serosurveys

Type Package

Version 1.0.1

2 Contents

VignetteBuilder knitr		
Biarch true		
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)		
SystemRequirements GNU make		
BugReports https://github.com/OUCRU-Modelling/serosv/issues		
NeedsCompilation yes		
Author Anh Phan Truong Quynh [aut, cre], Nguyen Pham Nguyen The [aut], Long Bui Thanh [aut], Tuyen Huynh [aut], Thinh Ong [aut] (https://orcid.org/0000-0001-6772-9291), Marc Choisy [aut] (https://orcid.org/0000-0002-5187-6390)		
Maintainer Anh Phan Truong Quynh <anhptq@oucru.org></anhptq@oucru.org>		
Repository CRAN		
Date/Publication 2024-10-18 10:50:01 LITC		

Contents

serosv-package
compute_ci
compute_ci.fp_model
compute_ci.lp_model
compute_ci.mixture_model
compute_ci.penalized_spline_model
compute_ci.weibull_model
estimate_from_mixture
est_foi
farrington_model
find_best_fp_powers
fp_model
hav_be_1993_1994
hav_be_2002
hav_bg_1964
hbv_ru_1999
hcv_be_2006
hierarchical_bayesian_model
lp_model
mixture_model
mseir_model
mumps_uk_1986_1987
parvob19_be_2001_2003
parvob19_ew_1996
part/ob10 ft 1007 1008

serosv-package 3

	parvob19_it_2003_2004	25
	parvob19_pl_1995_2004	26
	pava	27
	penalized_spline_model	
	plot.estimate_from_mixture	28
	plot.farrington_model	29
	plot.fp_model	30
	plot.hierarchical_bayesian_model	30
	plot.lp_model	31
	plot.mixture_model	31
	plot.mseir_model	32
	plot.penalized_spline_model	32
	plot.polynomial_model	33
	plot.sir_basic_model	33
	plot.sir_static_model	34
	plot.sir_subpops_model	34
	plot.weibull_model	35
	plot_gcv	35
	polynomial_model	36
	rubella_mumps_uk	37
	rubella_uk_1986_1987	38
	set_plot_style	38
	sir_basic_model	39
	sir_static_model	40
	sir_subpops_model	41
	tb_nl_1966_1973	43
	transform_data	44
	vzv_be_1999_2000	44
	vzv_be_2001_2003	45
	vzv_parvo_be	46
	weibull_model	47
Index		48

Description

serosv-package

An easy-to-use and efficient tool to estimate infectious diseases parameters using serological data. Implemented models include SIR models (basic_sir_model(), static_sir_model(), mseir_model(), sir_subpops_model()), parametric models (polynomial_model(), fp_model()), nonparametric models (lp_model()), semiparametric models (penalized_splines_model()), hierarchical models (hierarchical_bayesian_model()). The package is based on the book "Modeling Infectious Disease Parameters Based on Serological and Social Contact Data: A Modern Statistical Perspective" (Hens, Niel & Shkedy, Ziv & Aerts, Marc & Faes, Christel & Damme, Pierre & Beutels, Philippe., 2013) doi:10.1007/9781461440727.

serosv: model infectious disease parameters

4 compute_ci

Author(s)

Maintainer: Anh Phan Truong Quynh <anhptq@oucru.org>

Authors:

- Nguyen Pham Nguyen The <nguyenpnt@oucru.org>
- · Long Bui Thanh
- Tuyen Huynh <tuyenhn@oucru.org>
- Thinh Ong <thinhop@oucru.org> (ORCID)
- Marc Choisy <mchoisy@oucru.org> (ORCID)

See Also

Useful links:

- https://oucru-modelling.github.io/serosv/
- https://github.com/OUCRU-Modelling/serosv
- Report bugs at https://github.com/OUCRU-Modelling/serosv/issues

compute_ci

Compute confidence interval

Description

Compute confidence interval

Usage

```
compute_ci(x, ci = 0.95, le = 100, ...)
```

Arguments

x - serosv models

ci - confidence interval

le - number of data for computing confidence interval

... - arbitrary argument

Value

confidence interval dataframe with 4 variables, x and y for the fitted values and ymin and ymax for the confidence interval

compute_ci.fp_model 5

compute_ci.fp_model

Compute confidence interval for fractional polynomial model

Description

Compute confidence interval for fractional polynomial model

Usage

```
compute_ci.fp_model(x, ci = 0.95, le = 100, ...)
```

Arguments

x - serosy models
ci - confidence interval

le - number of data for computing confidence interval

... - arbitrary argument

Value

confidence interval dataframe with 4 variables, x and y for the fitted values and ymin and ymax for the confidence interval

compute_ci.lp_model

Compute confidence interval for local polynomial model

Description

Compute confidence interval for local polynomial model

Usage

```
compute\_ci.lp\_model(x, ci = 0.95, ...)
```

Arguments

x - serosy modelsci - confidence interval... - arbitrary arguments

Value

confidence interval dataframe with 4 variables, x and y for the fitted values and ymin and ymax for the confidence interval

```
compute_ci.mixture_model
```

Compute confidence interval for mixture model

Description

Compute confidence interval for mixture model

Usage

```
compute_ci.mixture_model(x, ci = 0.95, ...)
```

Arguments

x - serosv mixture_model object

ci - confidence interval ... - arbitrary arguments

Value

list of confidence interval for susceptible and infected. Each confidence interval is a list with 2 items for lower and upper bound of the interval.

```
compute_ci.penalized_spline_model
```

Compute confidence interval for penalized_spline_model

Description

Compute confidence interval for penalized_spline_model

Usage

```
compute_ci.penalized_spline_model(x, ci = 0.95, ...)
```

Arguments

x - serosy modelsci - confidence interval... - arbitrary arguments

Value

list of confidence interval for seroprevalence and foi Each confidence interval dataframe with 4 variables, x and y for the fitted values and ymin and ymax for the confidence interval

```
compute_ci.weibull_model
```

Compute confidence interval for Weibull model

Description

Compute confidence interval for Weibull model

Usage

```
compute_ci.weibull_model(x, ci = 0.95, ...)
```

Arguments

```
x - serosv modelsci - confidence interval... - arbitrary argument
```

Value

confidence interval dataframe with 4 variables, x and y for the fitted values and ymin and ymax for the confidence interval

```
{\it estimate\_from\_mixture} \quad {\it Estimate\ seroprevalence\ and\ foi\ by\ combining\ mixture\ model\ and\ regression}
```

Description

```
Refers to section 11.2 - 11.4
```

Usage

```
estimate_from_mixture(
   age,
   antibody_level,
   threshold_status = NULL,
   mixture_model,
   s = "ps",
   sp = 83,
   monotonize = TRUE
)
```

8 est_foi

Arguments

age - vector of age

antibody_level - vector of the corresponding raw antibody level

threshold_status

- sero status using threshold approach in line listing (optional, for visualization

and comparison only)

mixture_model - mixture_model object generated by serosv::mixture_model()

s - smoothing basis used to fit antibody level

sp - smoothing parameter

- whether to monotonize seroprevalence (default to TRUE)

Value

a list of class estimated_from_mixture with the following items

df the dataframe used for fitting the model

info a fitted "gam" model for mu(a)

sp seroprevalence foi force of infection

threshold_status

serostatus using threshold method only if provided

See Also

[mgcv::gam()] for more information about the fitted gam object

est_foi

Estimate force of infection

Description

Estimate force of infection

Usage

```
est_foi(t, sp)
```

Arguments

t - time (in this case age) vector

sp - seroprevalence vector

Value

computed foi vector

farrington_model 9

farrington_model

The Farrington (1990) model.

Description

Refers to section 6.1.2.

Usage

```
farrington_model(
   age,
   start,
   pos = NULL,
   tot = NULL,
   status = NULL,
   fixed = list()
)
```

Arguments

age the age vector.

start Named list of vectors or single vector. Initial values for optimizer.

pos the positive count vector (optional if status is provided).

tot the total count vector (optional if status is provided).

status the serostatus vector (optional if pos & tot are provided).

fixed Named list of vectors or single vector. Parameter values to keep fixed during

optimization.

Value

a list of class farrington_model with 5 items

datatype type of datatype used for model fitting (aggregated or linelisting)

df the dataframe used for fitting the model

info fitted "glm" object sp seroprevalence foi force of infection

See Also

[stats::glm()] for more information on the fitted glm object

Examples

```
df <- rubella_uk_1986_1987
model <- farrington_model(
   df$age, pos = df$pos, tot = df$tot,
   start=list(alpha=0.07,beta=0.1,gamma=0.03)
   )
plot(model)</pre>
```

 $find_best_fp_powers$

Returns the powers of the GLM fitted model which has the lowest deviance score.

Description

Refers to section 6.2.

Usage

```
find_best_fp_powers(age, pos, tot, p, mc, degree, link = "logit")
```

Arguments

age the age vector.

pos the pos vector.

tot the tot vector.

p a powers sequence.

mc indicates if the returned model should be monotonic. degree the degree of the model. Recommended to be ≤ 2 .

link the link function. Defaulted to "logit".

Value

list of 3 elements:

p The best power for fp model.
deviance Deviance of the best fitted model.

model The best model fitted

```
df <- hav_be_1993_1994
best_p <- find_best_fp_powers(
df$age, df$pos, df$tot,
p=seq(-2,3,0.1), mc=FALSE, degree=2, link="cloglog"
)
best_p</pre>
```

fp_model 11

fp_model	A fractional polynomial model.	

Description

Refers to section 6.2.

Usage

```
fp_model(age, p, pos = NULL, tot = NULL, status = NULL, link = "logit")
```

Arguments

age	the age vector.
р	the powers of the predictor.
pos	the positive count vector (optional if status is provided).
tot	the total count vector (optional if status is provided).
status	the serostatus vector (optional if pos & tot are provided).
link	the link function for model. Defaulted to "logit".

Value

```
a list of class fp\_model with 5 items
```

datatype	type of data used for fitting model (aggregated or linelisting)
df	the dataframe used for fitting the model
info	a fitted glm model
sp	seroprevalence
foi	force of infection

See Also

[stats::glm()] for more information on glm object

```
df <- hav_be_1993_1994
model <- fp_model(
  df$age, pos = df$pos, tot = df$tot,
  p=c(1.5, 1.6), link="cloglog")
plot(model)</pre>
```

12 hav_be_1993_1994

hav_be_1993_1994

Hepatitis A serological data from Belgium in 1993 and 1994 (aggregated)

Description

A study of the prevalence of HAV antibodies conducted in the Flemish Community of Belgium in 1993 and early 1994

Usage

```
hav_be_1993_1994
```

Format

A data frame with 3 variables:

```
age Age group
```

pos Number of seropositive individuals

tot Total number of individuals surveyed

Source

Beutels, M., Van Damme, P., Aelvoet, W. et al. Prevalence of hepatitis A, B and C in the Flemish population. Eur J Epidemiol 13, 275-280 (1997). doi:10.1023/A:1007393405966

```
# Reproduce Fig 4.1 (upper left panel), p. 63
age <- hav_be_1993_1994$age
pos <- hav_be_1993_1994$pos
tot <- hav_be_1993_1994$tot
plot(
   age, pos / tot,
   pty = "s", cex = 0.06 * tot, pch = 16, xlab = "age",
   ylab = "seroprevalence", xlim = c(0, 86), ylim = c(0, 1)
)</pre>
```

hav_be_2002

hav_be_2002

Hepatitis A serological data from Belgium in 2002 (line listing)

Description

A subset of the serological dataset of Varicella-Zoster Virus (VZV) and Parvovirus B19 in Belgium where only individuals living in Flanders were selected

Usage

```
hav_be_2002
```

Format

A data frame with 2 variables:

```
age Age of individual
```

seropositive If the individual is seropositive or not

Source

Thiry, N., Beutels, P., Shkedy, Z. et al. The seroepidemiology of primary varicella-zoster virus infection in Flanders (Belgium). Eur J Pediatr 161, 588-593 (2002). doi:10.1007/s0043100210532

Examples

```
# Reproduce Fig 4.1 (upper right panel), p. 63
library(dplyr)
df <- hav_be_2002 %>%
    group_by(age) %>%
    summarise(pos = sum(seropositive), tot = n())
plot(
    df$age, df$pos / df$tot,
    pty = "s", cex = 0.06 * df$tot, pch = 16, xlab = "age",
    ylab = "seroprevalence", xlim = c(0, 86), ylim = c(0, 1)
)
```

hav_bg_1964

Hepatitis A serological data from Bulgaria in 1964 (aggregated)

Description

A cross-sectional survey conducted in 1964 in Bulgaria. Samples were collected from schoolchildren and blood donors.

14 hbv_ru_1999

Usage

```
hav_bg_1964
```

Format

A data frame with 3 variables:

```
age Age grouppos Number of seropositive individuals
```

tot Total number of individuals surveyed

Source

Keiding, Niels. "Age-Specific Incidence and Prevalence: A Statistical Perspective." Journal of the Royal Statistical Society. Series A (Statistics in Society) 154, no. 3 (1991): 371-412. doi:10.2307/2983150

Examples

```
# Reproduce Fig 4.1 (lower panel), p. 63
age <- hav_bg_1964$age
pos <- hav_bg_1964$pos
tot <- hav_bg_1964$tot
plot(
    age, pos / tot,
    pty = "s", cex = 0.08 * tot, pch = 16, xlab = "age",
    ylab = "seroprevalence", xlim = c(0, 86), ylim = c(0, 1)
)</pre>
```

hbv_ru_1999

Hepatitis B serological data from Russia in 1999 (aggregated)

Description

A seroprevalence study conducted in St. Petersburg (more information in the book)

Usage

```
hbv_ru_1999
```

Format

A data frame with 4 variables:

```
age Age grouppos Number of seropositive individualstot Total number of individuals surveyedgender Gender of cohort (unsure what 1 and 2 means)
```

hcv_be_2006

Source

Mukomolov, S., L. Shliakhtenko, I. Levakova, and E. Shargorodskaya. Viral hepatitis in Russian federation. An analytical overview. Technical Report 213 (3), 3rd edn. St Petersburg Pasteur Institute, St Petersburg, 2000.

Examples

```
# Reproduce Fig 4.2, p. 65
library(dplyr)
hbv_ru_1999$age <- trunc(hbv_ru_1999$age / 1) * 1
hbv_ru_1999$age[hbv_ru_1999$age > 40] <- trunc(
    hbv_ru_1999$age[hbv_ru_1999$age > 40] / 5
) * 5
df <- hbv_ru_1999 %>%
    group_by(age) %>%
    summarise(pos = sum(pos), tot = sum(tot))
plot(
    df$age, df$pos / df$tot,
    cex = 0.05 * df$tot, pch = 16, xlab = "age",
    ylab = "seroprevalence", xlim = c(0, 72)
)
```

hcv_be_2006

Hepatitis C serological data from Belgium in 2006 (line listing)

Description

A study of HCV infection among injecting drug users. All injecting drug users were interviewed by means of a standardized face-to-face interview and information on their socio-demographic status, drug use history, drug use, and related risk behavior was recorded

Usage

hcv_be_2006

Format

A data frame with 3 variables:

dur Duration of injection/Exposure time (years)seropositive If the individual is seropositive or not

Source

Mathei, C., Shkedy, Z., Denis, B., Kabali, C., Aerts, M., Molenberghs, G., Van Damme, P. and Buntinx, F. (2006), Evidence for a substantial role of sharing of injecting paraphernalia other than syringes/needles to the spread of hepatitis C among injecting drug users. Journal of Viral Hepatitis, 13: 560-570. doi:10.1111/j.13652893.2006.00725.x

Examples

```
# Reproduce Fig 4.3, p. 66
library(dplyr)
# snapping age to aggregated age group
# (credit: https://stackoverflow.com/a/12861810)
groups <- c(0.5:24.5)
range <- 0.5
low <- findInterval(hcv_be_2006$dur, groups)</pre>
high <- low + 1
low_diff <- hcv_be_2006$dur - groups[ifelse(low == 0, NA, low)]</pre>
high_diff <- groups[ifelse(high == 0, NA, high)] - hcv_be_2006$dur</pre>
mins <- pmin(low_diff, high_diff, na.rm = TRUE)</pre>
pick <- ifelse(!is.na(low_diff) & mins == low_diff, low, high)</pre>
hcv_be_2006$dur <- ifelse(</pre>
  mins <= range + .Machine$double.eps, groups[pick], hcv_be_2006$dur</pre>
hcv_be_2006 <- hcv_be_2006 %>%
  group_by(dur) %>%
  summarise(tot = n(), pos = sum(seropositive))
plot(
  hcv_be_2006$dur, hcv_be_2006$pos / hcv_be_2006$tot,
  cex = 0.1 * hcv_be_2006$tot, pch = 16,
  xlab = "duration of injection (years)"
  ylab = "seroprevalence", xlim = c(0, 25), ylim = c(0, 1)
)
```

hierarchical_bayesian_model

Hierarchical Bayesian Model

Description

Refers to section 10.3

Usage

```
hierarchical_bayesian_model(
   age,
   pos = NULL,
   tot = NULL,
   status = NULL,
   type = "far3",
   chains = 1,
   warmup = 1500,
   iter = 5000
)
```

lp_model 17

Arguments

age	the age vector
pos	the positive count vector (optional if status is provided).
tot	the total count vector (optional if status is provided).
status	the serostatus vector (optional if pos & tot are provided).
type	type of model ("far2", "far3" or "log_logistic")
chains	number of Markov chains
warmup	number of warmup runs
iter	number of iterations

Value

a list of class hierarchical_bayesian_model with 6 items

datatype type of datatype used for model fitting (aggregated or linelisting)

df the dataframe used for fitting the model

type type of bayesian model far2, far3 or log_logistic

info parameters for the fitted model

sp seroprevalence foi force of infection

Examples

```
df <- mumps_uk_1986_1987
model <- hierarchical_bayesian_model(age = df$age, pos = df$pos, tot = df$tot, type="far3")
model$info
plot(model)</pre>
```

lp_model A local polynomial model.

Description

Refers to section 7.1. and 7.2.

lp_model

Usage

```
lp_model(
    age,
    pos = NULL,
    tot = NULL,
    status = NULL,
    kern = "tcub",
    nn = 0,
    h = 0,
    deg = 2
)
```

Arguments

age the age vector.

pos the positive count vector (optional if status is provided).

tot the total count vector (optional if status is provided).

status the serostatus vector (optional if pos & tot are provided).

kern Weight function, default = "tcub". Other choices are "rect", "trwt", "tria", "epan",

"bisq" and "gauss". Choices may be restricted when derivatives are required; e.g.

for confidence bands and some bandwidth selectors.

nn Nearest neighbor component of the smoothing parameter. Default value is 0.7,

unless either h is provided, in which case the default is 0.

h The constant component of the smoothing parameter. Default: 0.

deg Degree of polynomial to use. Default: 2.

Value

a list of class lp_model with 6 items

datatype type of datatype used for model fitting (aggregated or linelisting)

df the dataframe used for fitting the model

pi fitted locfit object for pi eta fitted locfit object for eta

sp seroprevalence foi force of infection

See Also

[locfit::locfit()] for more information on the fitted locfit object

mixture_model 19

Examples

```
df <- mumps_uk_1986_1987
model <- lp_model(
   df$age, pos = df$pos, tot = df$tot,
   nn=0.7, kern="tcub"
   )
plot(model)</pre>
```

mixture_model

Fit a mixture model to classify serostatus

Description

Refers to section 11.1 - 11.4

Usage

```
mixture_model(
   antibody_level,
   breaks = 40,
   pi = c(0.2, 0.8),
   mu = c(2, 6),
   sigma = c(0.5, 1)
)
```

Arguments

antibody_level - vector of the corresponding raw antibody level

breaks - number of intervals which the antibody_level are grouped into

pi - proportion of susceptible, infected

mu - a vector of means of component distributions (vector of 2 numbers in ascending

order)

sigma - a vector of standard deviations of component distributions (vector of 2 number)

Value

a list of class mixture_model with the following items

df the dataframe used for fitting the model

info list of 3 items parameters, distribution and constraints for the fitted model

susceptible fitted distribution for susceptible infected fitted distribution for infected

20 mseir_model

Examples

```
df <- vzv_be_2001_2003[vzv_be_2001_2003$age < 40.5,]
data <- df$VZVmIUml[order(df$age)]
model <- mixture_model(antibody_level = data)
model$info
plot(model)</pre>
```

mseir_model

MSEIR model

Description

Refers to section 3.4.

Usage

```
mseir_model(a, gamma, lambda, sigma, nu)
```

Arguments

a age sequence
 gamma time in maternal class.
 lambda time in susceptible class.
 sigma time in latent class.

nu time in infected class.

Value

list of class mseir_model with the following parameters

parameters list of parameters used for fitting the model

output matrix of proportion for each compartment over time

```
model <- mseir_model(
  a=seq(from=1,to=20,length=500), # age range from 0 -> 20 yo
  gamma=1/0.5, # 6 months in the maternal antibodies
  lambda=0.2, # 5 years in the susceptible class
  sigma=26.07, # 14 days in the latent class
  nu=36.5 # 10 days in the infected class
)
model
```

mumps_uk_1986_1987

Mumps serological data from the UK in 1986 and 1987 (aggregated)

Description

a large survey of prevalence of antibodies to mumps and rubella viruses in the UK. The survey, covering subjects from 1 to over 65 years of age, provides information on the prevalence of antibody by age

Usage

```
mumps_uk_1986_1987
```

Format

A data frame with 3 variables:

```
age Age group
```

pos Number of seropositive individuals

tot Total number of individuals surveyed

Source

Morgan-Capner P, Wright J, Miller C L, Miller E. Surveillance of antibody to measles, mumps, and rubella by age. British Medical Journal 1988; 297:770 doi:10.1136/bmj.297.6651.770

```
# Reproduce Fig 4.4 (left panel), p. 67
age <- mumps_uk_1986_1987$age
pos <- mumps_uk_1986_1987$pos
tot <- mumps_uk_1986_1987$tot
plot(age, pos / tot,
   cex = 0.008 * tot, pch = 16, xlab = "age", ylab = "seroprevalence",
   xlim = c(0, 45), ylim = c(0, 1)
)</pre>
```

parvob19_be_2001_2003 Parvo B19 serological data from Belgium from 2001-2003 (line listing)

Description

A seroprevalence survey testing for parvovirus B19 IgG antibody, performed on large representative national serum banks in Belgium, England and Wales, Finland, Italy, and Poland. The sera were collected between 1995 and 2004 and were obtained from residual sera submitted for routine laboratory testing.

Usage

```
parvob19_be_2001_2003
```

Format

A data frame with 5 variables:

```
age Age of individual
seropositive If the individual is seropositive or not
year Year surveyed
gender Gender of individual
parvouml Parvo B19 antibody units per ml
```

Source

MOSSONG, J., N. HENS, V. FRIEDERICHS, I. DAVIDKIN, M. BROMAN, B. LITWINSKA, J. SIENNICKA, et al. "Parvovirus B19 Infection in Five European Countries: Seroepidemiology, Force of Infection and Maternal Risk of Infection." Epidemiology and Infection 136, no. 8 (2008): 1059-68. doi:10.1017/S0950268807009661

```
# Reproduce Fig 4.5 (left upper panel), p. 68
library(dplyr)
df <- parvob19_be_2001_2003 %>%
    group_by(age) %>%
    summarise(pos = sum(seropositive), tot = n())
plot(df$age, df$pos / df$tot,
    cex = 0.02 * df$tot, pch = 16, xlab = "age", ylab = "seroprevalence",
    xlim = c(0, 82), ylim = c(0, 1)
)
```

parvob19_ew_1996 23

parvob19_ew_1996 Parvo B19 serological data from England and Wales in 1996 (line listing)

Description

A seroprevalence survey testing for parvovirus B19 IgG antibody, performed on large representative national serum banks in Belgium, England and Wales, Finland, Italy, and Poland. The sera were collected between 1995 and 2004 and were obtained from residual sera submitted for routine laboratory testing.

Usage

```
parvob19_ew_1996
```

Format

```
A data frame with 5 variables:

age Age of individual

seropositive If the individual is seropositive or not
year Year surveyed
gender Gender of individual
parvouml Parvo B19 antibody units per ml
```

Source

MOSSONG, J., N. HENS, V. FRIEDERICHS, I. DAVIDKIN, M. BROMAN, B. LITWINSKA, J. SIENNICKA, et al. "Parvovirus B19 Infection in Five European Countries: Seroepidemiology, Force of Infection and Maternal Risk of Infection." Epidemiology and Infection 136, no. 8 (2008): 1059-68. doi:10.1017/S0950268807009661

```
# Reproduce Fig 4.5 (right upper panel), p. 68
# NB: This figure will look different to that of in the book, since we
# believe that the original authors has made some errors in specifying
# the sample size of the dots.
library(dplyr)

df <- parvob19_ew_1996 %>%
    mutate(age = round(age)) %>%
    group_by(age) %>%
    summarise(pos = sum(seropositive), tot = n())
plot(df$age, df$pos / df$tot,
    cex = 0.02 * df$tot, pch = 16, xlab = "age", ylab = "seroprevalence",
    xlim = c(0, 82), ylim = c(0, 1)
)
```

parvob19_fi_1997_1998 Parvo B19 serological data from Finland from 1997-1998 (line listing)

Description

A seroprevalence survey testing for parvovirus B19 IgG antibody, performed on large representative national serum banks in Belgium, England and Wales, Finland, Italy, and Poland. The sera were collected between 1995 and 2004 and were obtained from residual sera submitted for routine laboratory testing.

Usage

```
parvob19_fi_1997_1998
```

Format

A data frame with 5 variables:

age Age of individual

seropositive If the individual is seropositive or not

year Year surveyed

gender Gender of individual

parvouml Parvo B19 antibody units per ml

Source

MOSSONG, J., N. HENS, V. FRIEDERICHS, I. DAVIDKIN, M. BROMAN, B. LITWINSKA, J. SIENNICKA, et al. "Parvovirus B19 Infection in Five European Countries: Seroepidemiology, Force of Infection and Maternal Risk of Infection." Epidemiology and Infection 136, no. 8 (2008): 1059-68, doi:10.1017/S0950268807009661

```
# Reproduce Fig 4.5 (left bottom panel), p. 68
# NB: This figure will look different to that of in the book, since we
# believe that the original authors has made some errors in specifying
# the sample size of the dots.
library(dplyr)

df <- parvob19_fi_1997_1998 %>%
    mutate(age = round(age)) %>%
    group_by(age) %>%
    summarise(pos = sum(seropositive), tot = n())
plot(df$age, df$pos / df$tot,
    cex = 0.07 * df$tot, pch = 16, xlab = "age", ylab = "seroprevalence",
    xlim = c(0, 82), ylim = c(0, 1)
)
```

parvob19_it_2003_2004 Parvo B19 serological data from Italy from 2003-2004 (line listing)

Description

A seroprevalence survey testing for parvovirus B19 IgG antibody, performed on large representative national serum banks in Belgium, England and Wales, Finland, Italy, and Poland. The sera were collected between 1995 and 2004 and were obtained from residual sera submitted for routine laboratory testing.

Usage

```
parvob19_it_2003_2004
```

Format

A data frame with 5 variables:

```
age Age of individual
seropositive If the individual is seropositive or not
year Year surveyed
gender Gender of individual
parvouml Parvo B19 antibody units per ml
```

Source

MOSSONG, J., N. HENS, V. FRIEDERICHS, I. DAVIDKIN, M. BROMAN, B. LITWINSKA, J. SIENNICKA, et al. "Parvovirus B19 Infection in Five European Countries: Seroepidemiology, Force of Infection and Maternal Risk of Infection." Epidemiology and Infection 136, no. 8 (2008): 1059-68. doi:10.1017/S0950268807009661

```
# Reproduce Fig 4.5 (middle bottom panel), p. 68
# NB: This figure will look different to that of in the book, since we
# believe that the original authors has made some errors in specifying
# the sample size of the dots.
library(dplyr)

df <- parvob19_it_2003_2004 %>%
   group_by(age) %>%
   summarise(pos = sum(seropositive), tot = n())
plot(df$age, df$pos / df$tot,
   cex = 0.07 * df$tot, pch = 16, xlab = "age", ylab = "seroprevalence",
   xlim = c(0, 82), ylim = c(0, 1)
)
```

parvob19_pl_1995_2004 Parvo B19 serological data from Poland from 1995-2004 (line listing)

Description

A seroprevalence survey testing for parvovirus B19 IgG antibody, performed on large representative national serum banks in Belgium, England and Wales, Finland, Italy, and Poland. The sera were collected between 1995 and 2004 and were obtained from residual sera submitted for routine laboratory testing.

Usage

```
parvob19_pl_1995_2004
```

Format

```
A data frame with 5 variables:

age Age of individual

seropositive If the individual is seropositive or not
year Year surveyed
gender Gender of individual
parvouml Parvo B19 antibody units per ml
```

Source

MOSSONG, J., N. HENS, V. FRIEDERICHS, I. DAVIDKIN, M. BROMAN, B. LITWINSKA, J. SIENNICKA, et al. "Parvovirus B19 Infection in Five European Countries: Seroepidemiology, Force of Infection and Maternal Risk of Infection." Epidemiology and Infection 136, no. 8 (2008): 1059-68, doi:10.1017/S0950268807009661

```
# Reproduce Fig 4.5 (right bottom panel), p. 68
# NB: This figure will look different to that of in the book, since we
# believe that the original authors has made some errors in specifying
# the sample size of the dots.
library(dplyr)
df <- parvob19_pl_1995_2004 %>%
    mutate(age = round(age)) %>%
    group_by(age) %>%
    summarise(pos = sum(seropositive), tot = n())
plot(df$age, df$pos / df$tot,
    cex = 0.07 * df$tot, pch = 16, xlab = "age", ylab = "seroprevalence",
    xlim = c(0, 82), ylim = c(0, 1)
)
```

pava 27

pava

Monotonize seroprevalence

Description

Monotonize seroprevalence

Usage

```
pava(pos = pos, tot = rep(1, length(pos)))
```

Arguments

pos the positive count vector.
tot the total count vector.

Value

computed list of 2 items pail for original values and pai2 for monotonized value

```
penalized_spline_model
```

Penalized Spline model

Description

Penalized Spline model

Usage

```
penalized_spline_model(
   age,
   pos = NULL,
   tot = NULL,
   status = NULL,
   s = "bs",
   link = "logit",
   framework = "pl",
   sp = NULL
)
```

Arguments

age the age vector

tot the total count vector (optional if status is provided).
tot the total count vector (optional if status is provided).
status the serostatus vector (optional if pos & tot are provided).

s smoothing basis to use link link function to use

framework which approach to fit the model ("pl" for penalized likelihood framework, "glmm"

for generalized linear mixed model framework)

sp smoothing parameter

Value

a list of class penalized_spline_model with 6 attributes

datatype type of datatype used for model fitting (aggregated or linelisting)

df the dataframe used for fitting the model

framework either pl or glmm

info fitted "gam" model when framework is pl or "gamm" model when framework is

glmm

sp seroprevalence foi force of infection

See Also

[mgcv::gam()], [mgcv::gamm()] for more information the fitted gam and gamm model

Examples

```
data <- parvob19_be_2001_2003
model <- penalized_spline_model(data$age, status = data$seropositive, framework="glmm")
model$info$gam
plot(model)</pre>
```

```
plot.estimate_from_mixture
```

plot() overloading for result of estimate_from_mixture

Description

plot() overloading for result of estimate_from_mixture

plot.farrington_model 29

Usage

```
## S3 method for class 'estimate_from_mixture' plot(x, ...)
```

Arguments

x the mixture_model

... arbitrary params.

Value

ggplot object

```
\verb|plot.farrington_model|| plot()| overloading for Farrington | model||
```

Description

plot() overloading for Farrington model

Usage

```
## S3 method for class 'farrington_model' plot(x, ...)
```

Arguments

x the Farrington model object.

... arbitrary params.

Value

plot.fp_model

plot() overloading for fractional polynomial model

Description

plot() overloading for fractional polynomial model

Usage

```
## S3 method for class 'fp_model'
plot(x, ...)
```

Arguments

x the fractional polynomial model object.

... arbitrary params.

Value

ggplot object

```
plot. hierarchical\_bayesian\_model \\ plot() overloading for hierarchical\_bayesian\_model
```

Description

plot() overloading for hierarchical_bayesian_model

Usage

```
## S3 method for class 'hierarchical_bayesian_model' plot(x, ...)
```

Arguments

x hierarchical_bayesian_model object created by serosv.

... arbitrary params.

Value

plot.lp_model 31

plot.lp_model

plot() overloading for local polynomial model

Description

plot() overloading for local polynomial model

Usage

```
## S3 method for class 'lp_model' plot(x, ...)
```

Arguments

x the local polynomial model object.

... arbitrary params.

Value

ggplot object

plot.mixture_model

plot() overloading for mixture model

Description

plot() overloading for mixture model

Usage

```
## S3 method for class 'mixture_model'
plot(x, ...)
```

Arguments

x the mixture_model... arbitrary params.

Value

plot.mseir_model

plot() overloading for MSEIR model

Description

```
plot() overloading for MSEIR model
```

Usage

```
## S3 method for class 'mseir_model'
plot(x, ...)
```

Arguments

x the mseir_model object.

... arbitrary params.

Value

ggplot object

```
{\it plot.} {\it penalized\_spline\_model} \\ {\it plot() overloading for penalized spline}
```

Description

plot() overloading for penalized spline

Usage

```
## S3 method for class 'penalized_spline_model' plot(x, ...)
```

Arguments

x the penalized_spline_model object... arbitrary params.

Value

```
\verb"plot.polynomial_model" plot() overloading for polynomial model"
```

Description

```
plot() overloading for polynomial model
```

Usage

```
## S3 method for class 'polynomial_model' plot(x, ...)
```

Arguments

x the polynomial model object

... arbitrary params.

Value

ggplot object

```
plot.sir_basic_model     plot() overloading for SIR model
```

Description

```
plot() overloading for SIR model
```

Usage

```
## S3 method for class 'sir_basic_model'
plot(x, ...)
```

Arguments

```
x the sir_basic_model object.
```

... arbitrary params.

Value

```
ggplot object
```

```
plot.sir_static_model plot() overloading for SIR static model
```

Description

```
plot() overloading for SIR static model
```

Usage

```
## S3 method for class 'sir_static_model'
plot(x, ...)
```

Arguments

```
x the sir_static_model object.
```

... arbitrary params.

Value

ggplot object

```
plot.sir_subpops_model
```

plot() overloading for SIR sub populations model

Description

plot() overloading for SIR sub populations model

Usage

```
## S3 method for class 'sir_subpops_model'
plot(x, ...)
```

Arguments

```
x the sir_subpops_models object.
```

... arbitrary params.

Value

list of ggplot objects, each object is the plot for the corresponding subpopulation

plot.weibull_model 35

plot.weibull_model

plot() overloading for Weibull model

Description

plot() overloading for Weibull model

Usage

```
## S3 method for class 'weibull_model' plot(x, ...)
```

Arguments

x the Weibull model object.

... arbitrary params.

Value

ggplot object

plot_gcv

Plotting GCV values with respect to different nn-s and h-s parameters.

Description

Refers to section 7.2.

Usage

```
plot_gcv(age, pos, tot, nn_seq, h_seq, kern = "tcub", deg = 2)
```

Arguments

age	the age vector.
pos	the pos vector.
tot	the tot vector.#'

nn_seq Nearest neighbor sequence. h_seq Smoothing parameter sequence.

kern Weight function, default = "tcub". Other choices are "rect", "trwt", "tria", "epan",

"bisq" and "gauss". Choices may be restricted when derivatives are required; e.g.

for confidence bands and some bandwidth selectors.

deg Degree of polynomial to use. Default: 2.

36 polynomial_model

Value

plot of gcv value

Examples

```
df <- mumps_uk_1986_1987
plot_gcv(
   df$age, df$pos, df$tot,
   nn_seq = seq(0.2, 0.8, by=0.1),
   h_seq = seq(5, 25, by=1)
)</pre>
```

polynomial_model

Polynomial models

Description

Either 'status' (treated as line-listing dataset) or 'pos' & 'tot' (treated as aggregated dataset) must be provided

Usage

```
polynomial_model(
   age,
   k,
   type,
   pos = NULL,
   tot = NULL,
   status = NULL,
   link = "log"
)
```

Arguments

age the age vector.

k degree of the model.

type name of method (Muench, Giffith, Grenfell).

pos the positive count vector (optional if status is provided).

tot the total count vector (optional if status is provided).

status the serostatus vector (optional if pos & tot are provided).

link link function.

Details

Refers to section 6.1.1

rubella_mumps_uk 37

Value

a list of class polynomial_model with 5 items

datatype type of datatype used for model fitting (aggregated or linelisting)

df the dataframe used for fitting the model

info fitted "glm" object sp seroprevalence foi force of infection

Examples

```
data <- parvob19_fi_1997_1998[order(parvob19_fi_1997_1998$age), ]
aggregated <- transform_data(data$age, data$seropositive)

# fit with aggregated data
model <- polynomial_model(aggregated$t, pos = aggregated$pos, tot = aggregated$tot, type = "Muench")
# fit with linelisting data
model <- polynomial_model(data$age, status = data$seropositive, type = "Muench")
plot(model)</pre>
```

rubella_mumps_uk

Rubella - Mumps data from the UK (aggregated)

Description

Rubella - Mumps data from the UK (aggregated)

Usage

```
rubella_mumps_uk
```

Format

A data frame with 5 variables:

age Age group

NN Number of individuals negative to rubella and mumps

NP Number of individuals negative to rubella and positive to mumps

PN Number of individuals positive to rubella and negative to mumps

PP Number of individuals positive to rubella and mumps

Source

Morgan-Capner P, Wright J, Miller C L, Miller E. Surveillance of antibody to measles, mumps, and rubella by age. British Medical Journal 1988; 297:770 doi:10.1136/bmj.297.6651.770

38 set_plot_style

Description

Prevalence of rubella in the UK, obtained from a large survey of prevalence of antibodies to both mumps and rubella viruses.

Usage

```
rubella_uk_1986_1987
```

Format

A data frame with 3 variables:

```
age Age group
```

pos Number of seropositive individuals

tot Total number of individuals surveyed

Source

Morgan-Capner P, Wright J, Miller C L, Miller E. Surveillance of antibody to measles, mumps, and rubella by age. British Medical Journal 1988; 297:770 doi:10.1136/bmj.297.6651.770

Examples

```
# Reproduce Fig 4.4 (middle panel), p. 67
age <- rubella_uk_1986_1987$age
pos <- rubella_uk_1986_1987$pos
tot <- rubella_uk_1986_1987$tot
plot(age, pos / tot,
    cex = 0.008 * tot, pch = 16, xlab = "age", ylab = "seroprevalence",
    xlim = c(0, 45), ylim = c(0, 1)
)</pre>
```

set_plot_style

Helper to adjust styling of a plot

Description

Helper to adjust styling of a plot

sir_basic_model 39

Usage

```
set_plot_style(
   sero = "blueviolet",
   ci = "royalblue1",
   foi = "#fc0328",
   sero_line = "solid",
   foi_line = "dashed",
   xlabel = "Age"
)
```

Arguments

ci - color for seroprevalence line
ci - color for confidence interval
foi - color for force of infection line
sero_line - linetype for seroprevalence line
foi_line - linetype for force of infection line
xlabel - x label

Value

list of updated aesthetic values

Description

Refers to section 3.1.3.

Usage

```
sir_basic_model(times, state, parameters)
```

Arguments

times time sequence.

state the initial state of the model.

parameters the parameters of the model.

40 sir_static_model

Details

```
In state:
```

- S: number of susceptible

- I: number of infected

- R: number of recovered

In parameters:

- alpha: disease-related death rate

- mu: natural death rate (= 1/life expectancy)

- beta: transmission rate

- nu: recovery rate

- p: percent of population vaccinated at birth

Value

list of class sir_basic_model with the following items

parameters list of parameters used for fitting the model

output matrix of population for each compartment over time

Examples

```
state <- c(S=4999, I=1, R=0)
parameters <- c(
    mu=1/75, # 1 divided by life expectancy (75 years old)
    alpha=0, # no disease-related death
    beta=0.0005, # transmission rate
    nu=1, # 1 year for infected to recover
    p=0 # no vaccination at birth
)
times <- seq(0, 250, by=0.1)
model <- sir_basic_model(times, state, parameters)
model</pre>
```

sir_static_model

SIR static model (age-heterogeneous, endemic equilibrium)

Description

Refers to section 3.2.2.

Usage

```
sir_static_model(a, state, parameters)
```

sir_subpops_model 41

Arguments

a age sequence.

state the initial state of the system.

parameters the model's parameter.

Details

In state:

- s: proportion susceptible

- i: proportion infected

- r: proportion recovered

In parameters:

- lambda: natural death rate

- nu: recovery rate

Value

list of class sir_static_model with the following items

parameters list of parameters used for fitting the model

output matrix of proportion for each compartment over time

Examples

```
state <- c(s=0.99,i=0.01,r=0)
parameters <- c(
  lambda = 0.05,
  nu=1/(14/365) # 2 weeks to recover
)
ages<-seq(0, 90, by=0.01)
model = sir_static_model(ages, state, parameters)
model</pre>
```

sir_subpops_model

SIR Model with Interacting Subpopulations

Description

Refers to section 3.5.1.

Usage

```
sir_subpops_model(times, state, parameters)
```

42 sir_subpops_model

Arguments

times time sequence.

state the initial state of the model.
parameters the parameters of the model.

Details

In state:

- s: Percent susceptible

- i: Percent infected

- r: Percent recovered

In parameters:

- mu: natural death rate (1/L).

- beta: transmission rate w.r.t population (beta tilde)

- nu: recovery rate

- k: number of subpopulations

Value

list of class sir_subpops_model with the following items

parameters list of parameters used for fitting the model

output matrix of proportion for each compartment over time

Examples

```
k <- 2
state <- c(
  s = c(0.8, 0.8),
  i = c(0.2, 0.2),
  r = c(0, 0)
beta_matrix <- c(
  c(0.05, 0.00),
  c(0.00, 0.05)
parameters <- list(</pre>
  beta = matrix(beta_matrix, nrow=k, ncol=k, byrow=TRUE),
  nu = c(1/30, 1/30),
  mu = 0.001,
  k = k
)
times<-seq(0,10000,by=0.5)
model <- sir_subpops_model(times, state, parameters)</pre>
mode1
```

tb_nl_1966_1973 43

tb_nl_1966_1973	e-
-----------------	----

Description

A study of tuberculosis conducted in the Netherlands. Schoolchildren, aged between 6 and 18 years, were tested using the tuberculin skin test.

Usage

```
tb_nl_1966_1973
```

Format

A data frame with 5 variables:

```
age Age group
pos Number of seropositive individuals
tot Total number of individuals surveyed
gender Gender of cohort (unsure what 0 and 1 means)
birthyr Birth year of cohort
```

Source

Nagelkerke, N., Heisterkamp, S., Borgdorff, M., Broekmans, J. and Van Houwelingen, H. (1999), Semi-parametric estimation of age-time specific infection incidence from serial prevalence data. Statist. Med., 18: 307-320. doi:10.1002/(SICI)10970258(19990215)18:3<307::AIDSIM15>3.0.CO;2-Z

Examples

```
# Reproduce Fig 4.6, p.70
age <- tb_nl_1966_1973$age
birthyr <- tb_nl_1966_1973$birthyr
pos <- tb_nl_1966_1973$pos
tot <- tb_nl_1966_1973$tot
# left panel
plot(age, pos / tot,
    pch = 16, cex = 0.00005 * tot, xlab = "age",
    ylab = "prevalence", xlim = c(6, 18)
)
# right panel
plot(birthyr, pos / tot,
    pch = 16, cex = 0.00005 * tot, xlab = "year", ylab = "prevalence")</pre>
```

44 vzv_be_1999_2000

transform_data

Generate a dataframe with 't', 'pos' and 'tot' columns from 't' and 'seropositive' vectors.

Description

Generate a dataframe with 't', 'pos' and 'tot' columns from 't' and 'seropositive' vectors.

Usage

```
transform_data(t, spos)
```

Arguments

t the time vector.

spos the seropositive vector.

Value

dataframe in aggregated format

Examples

```
df <- hcv_be_2006
hcv_df <- transform_data(df$dur, df$seropositive)
hcv_df</pre>
```

vzv_be_1999_2000

VZV serological data from Belgium (Flanders) from 1999-2000 (aggregated)

Description

Age-specific seroprevalence of VZV antibodies, assessed in Flanders (Belgium) between October 1999 and April 2000. This population was stratified by age in order to obtain approximately 100 observations per age group.

Usage

```
vzv_be_1999_2000
```

vzv_be_2001_2003 45

Format

A data frame with 3 variables:

```
age Age grouppos Number of seropositive individualstot Total number of individuals surveyed
```

Source

Thiry, N., Beutels, P., Shkedy, Z. et al. The seroepidemiology of primary varicella-zoster virus infection in Flanders (Belgium). Eur J Pediatr 161, 588-593 (2002). doi:10.1007/s0043100210532

Examples

```
# Reproduce Fig 4.7 (left panel), p.71
age <- vzv_be_1999_2000$age
pos <- vzv_be_1999_2000$pos
tot <- vzv_be_1999_2000$tot
plot(age, pos / tot,
    cex = 0.036 * tot, pch = 19, xlab = "age", ylab = "seroprevalence",
    xlim = c(0, 45), ylim = c(0, 1)
)</pre>
```

vzv_be_2001_2003

VZV serological data from Belgium from 2001-2003 (line listing)

Description

The survey is the same as the one used to study the seroprevalence of parvovirus B19 in Belgium, as described above.

Usage

```
vzv_be_2001_2003
```

Format

A data frame with 4 variables:

```
age Age of individualseropositive If the individual is seropositive or notgender Gender of individualVZVmIUml VZV milli international units per ml
```

46 vzv_parvo_be

Source

MOSSONG, J., N. HENS, V. FRIEDERICHS, I. DAVIDKIN, M. BROMAN, B. LITWINSKA, J. SIENNICKA, et al. "Parvovirus B19 Infection in Five European Countries: Seroepidemiology, Force of Infection and Maternal Risk of Infection." Epidemiology and Infection 136, no. 8 (2008): 1059-68. doi:10.1017/S0950268807009661

Examples

```
# Reproduce Fig 4.7 (right panel), p.71
library(dplyr)
df <- vzv_be_2001_2003 %>%
    mutate(age = round(age)) %>%
    group_by(age) %>%
    summarise(pos = sum(seropositive), tot = n())
plot(df$age, df$pos / df$tot,
    cex = 0.036 * df$tot, pch = 19, xlab = "age", ylab = "seroprevalence",
    xlim = c(0, 45), ylim = c(0, 1)
)
```

vzv_parvo_be

VZV and Parvovirus B19 serological data in Belgium (line listing)

Description

VZV and Parvovirus B19 serological data in Belgium (line listing)

Usage

```
vzv_parvo_be
```

Format

A data frame with 7 variables:

gender Gender of individual

```
id ID of individualage Age of individual
```

parvouml Parvo B19 antibody units per ml

parvo_res If an individual is positive for parvovirus B19

VZVmUIml VZV milli international units per ml

vzv_res If an individual is positive for VZV

weibull_model 47

Source

MOSSONG, J., N. HENS, V. FRIEDERICHS, I. DAVIDKIN, M. BROMAN, B. LITWINSKA, J. SIENNICKA, et al. "Parvovirus B19 Infection in Five European Countries: Seroepidemiology, Force of Infection and Maternal Risk of Infection." Epidemiology and Infection 136, no. 8 (2008): 1059-68. doi:10.1017/S0950268807009661

weibull_model

The Weibull model.

Description

Refers to section 6.1.2.

Usage

```
weibull_model(t, status = NULL, pos = NULL, tot = NULL)
```

Arguments

t the time vector.

status the serostatus vector (optional if pos & tot are provided).

pos the positive count vector (optional if status is provided).

tot the total count vector (optional if status is provided).

Value

list of class weibull_model with the following items

datatype type of datatype used for model fitting (aggregated or linelisting)

df the dataframe used for fitting the model

info fitted "glm" object sp seroprevalence foi force of infection

See Also

[stats::glm()] for more information on the fitted "glm" object

Examples

```
df <- hcv_be_2006[order(hcv_be_2006$dur), ]
model <- weibull_model(
   t=df$dur,
   status=df$seropositive
   )
plot(model)</pre>
```

Index

* datasets hav_be_1993_1994, 12 hav_be_2002, 13 hav_bg_1964, 13	mixture_model, 19 mseir_model, 20 mumps_uk_1986_1987, 21
hbv_ru_1999, 14 hcv_be_2006, 15 mumps_uk_1986_1987, 21 parvob19_be_2001_2003, 22 parvob19_ew_1996, 23 parvob19_fi_1997_1998, 24 parvob19_it_2003_2004, 25 parvob19_pl_1995_2004, 26 rubella_mumps_uk, 37	parvob19_be_2001_2003, 22 parvob19_ew_1996, 23 parvob19_fi_1997_1998, 24 parvob19_it_2003_2004, 25 parvob19_pl_1995_2004, 26 pava, 27 penalized_spline_model, 27 plot.estimate_from_mixture, 28 plot.farrington_model, 29
rubella_uk_1986_1987, 38 tb_nl_1966_1973, 43 vzv_be_1999_2000, 44 vzv_be_2001_2003, 45 vzv_parvo_be, 46	<pre>plot.fp_model, 30 plot.hierarchical_bayesian_model, 30 plot.lp_model, 31 plot.mixture_model, 31 plot.mseir_model, 32 plot.penalized_spline_model, 32</pre>
<pre>compute_ci, 4 compute_ci.fp_model, 5 compute_ci.lp_model, 5 compute_ci.mixture_model, 6 compute_ci.penalized_spline_model, 6 compute_ci.weibull_model, 7</pre>	plot.polynomial_model, 33 plot.sir_basic_model, 33 plot.sir_static_model, 34 plot.sir_subpops_model, 34 plot.weibull_model, 35 plot_gcv, 35 polynomial_model, 36
est_foi, 8 estimate_from_mixture, 7	rubella_mumps_uk, 37 rubella_uk_1986_1987, 38
<pre>farrington_model, 9 find_best_fp_powers, 10 fp_model, 11</pre>	<pre>serosv (serosv-package), 3 serosv-package, 3 set_plot_style, 38</pre>
hav_be_1993_1994, 12 hav_be_2002, 13 hav_bg_1964, 13 hbv_ru_1999, 14 hcv_be_2006, 15 hierarchical_bayesian_model, 16	set_plot_style, 38 sir_basic_model, 39 sir_static_model, 40 sir_subpops_model, 41 tb_nl_1966_1973, 43 transform_data, 44
lp_model, 17	vzv_be_1999_2000, 44

INDEX 49

```
vzv_be_2001_2003, 45
vzv_parvo_be, 46
weibull_model, 47
```