GSOE9210 Engineering Decisions

Victor Jauregui

vicj@cse.unsw.edu.au
www.cse.unsw.edu.au/~gs9210

Victor Jauregui

Engineering Decisions

Risk attitudes and Utility

- Risk preferences and bets
 - Bets and odds
 - Expected monetary value
- 2 Utility of money
- Risk attitudes

Outline

- Risk preferences and bets
 - Bets and odds
 - Expected monetary value
- 2 Utility of money
- 3 Risk attitudes

Victor Jauregui

Engineering Decisions

Risk preferences and bets

Bets and odds

Introduction to risk preference

- Class poll: You have \$1000. Would you risk it to play 'double or nothing' on the toss of a fair coin? *i.e.*, to win \$2000 on heads, and \$0 on tails?
- Measured in dollars, $v_{\$}(\$x) = x$, the two have equal *Bayes* value; *i.e.*, $v_{\$}(\$1000) = 1000 = V_B([\frac{1}{2}:\$2000|\frac{1}{2}:\$0])$
- Most people prefer a certain \$1000 over an even chance at \$2000 or \$0; i.e., prefer \$1000 to $[\frac{1}{2}:\$2000|\frac{1}{2}:\$0]$
- Which value function, v, would satisfy:

$$V_B([\$1000]) = v(\$1000) > V_B([\frac{1}{2}:\$2000|\frac{1}{2}:\$0])$$

Money bets and odds

Example (Betting)

Alice has \$4\$ to bet on the toss of a fair coin to win \$10\$ on heads.

Should Alice gamble?

$$\ell_{\overline{\mathsf{G}}} = [\$4]$$

$$\ell_{\mathsf{G}} = [\frac{1}{2} : \$10|\frac{1}{2} : \$0]$$

Definition (Expected monetary value)

The expected monetary value (EMV) of a lottery, denoted $V_{\$}$, is the *Bayes* value of the lottery when outcomes are valued in $(i.e., v = v_{\$})$.

$$V_{\$}(\ell_{\overline{\mathsf{G}}}) = 4$$

$$V_{\$}(\ell_{\mathsf{G}}) = \frac{1}{2}v_{\$}(h) + \frac{1}{2}v_{\$}(t)$$

$$= \frac{1}{2}(10) + \frac{1}{2}(0)$$

$$= 5$$

Victor Jauregui

Engineering Decisions

Expected monetary value

Risk preferences and bets

Expected monetary value

Definition (Fair bet)

A two-way gamble/bet is fair for an agent if the expected monetary value for the corresponding lottery is no less than the value of not gambling; i.e.,

$$V_{\$}(\ell_{\mathsf{G}}) = E(v_{\$}) \geqslant V_{\$}(\ell_{\overline{\mathsf{G}}})$$

• The bet Alice was offered was fair—indeed 'favourable'—for Alice; i.e., $V_{\$}(\ell_{\mathsf{G}}) > V_{\$}(\ell_{\overline{\mathsf{G}}})$

Bets, stakes, and odds

Example (The races)

Alice is at the races and she's offered odds of '13 to 2' (13:2) on a horse by a bookmaker; *i.e.*, for every \$2 she puts in (her *stake*), the bookmaker puts in \$13, and the winner takes the entire *pool* (\$15 = \$13 + \$2).

Should Alice gamble? i.e., is the bet favourable for Alice?

Victor Jauregui Engineering Decisions

Expected monetary value

Bets, stakes, and odds

Definition (Favourable bet)

A bet is *favourable* to an agent if the value of the corresponding lottery for the agent is greater than that of not gambling. It is *unfavourable* if it is neither fair nor favourable.

Theorem (Fair bets)

Let a be agent A's stake and b be B's stake in a bet in which p is A's probability of winning. The bet is fair iff:

$$\frac{a}{b} = \frac{p}{1-p}$$

Bets: subjective belief

• Suppose Alice believes that her horse has a 20% chance of winning:

$$V_{\$}(\ell_{\mathsf{G}}) = \frac{1}{5}(15) + \frac{4}{5}(0) = \$3$$

 $V_{\$}(\ell_{\overline{\mathsf{G}}}) = \$2.$

 Alice considers bet to be favourable based on her beliefs about her chances of winning

Exercises

- Prove the theorem on fair bets.
- For what probabilities of winning should Alice bet on her horse?

Victor Jauregui Engineering Decisions

Betting example

Example (Betting)

A bookmaker (B) offers Alice (A) odds '4 to 1' (4:1) on her team—a strong underdog—to win a football match. Alice has \$10 to bet on her team.

- The 'bookie' puts up \$4 for every \$1 Alice bets, so bookie has to put \$40 into pool to match Alice's \$10
- Alice's outcomes: balance of \$50 or \$0, depending on whether her team wins or loses
- a bet is fair overall if it is fair to both parties

Fair bets for odds

The decision tree for the two-way bet:

where G means Alice's agrees to gamble, and p_A is the probability that Alice wins $(p_A + p_B = 1)$

Fair odds (in \$):

$$p_A(50) + (1 - p_A)(0) \geqslant 10$$

i.e. $p_A \geqslant \frac{10}{40+10} = \frac{1}{5}$

In general, a bet is fair for A if:

$$p_A \geqslant \frac{x_A}{x_A + x_B}$$

where

 x_A is A's stake (\$10)

 x_B is B's stake (\$40).

Victor Jauregui

Engineering Decisions

Risk preferences and bets

Expected monetary value

Utility of bets

- At odds 4:1 Alice should be if she believes chances of her team winning exceed 1 in 5 ... Suppose Alice needs \$10 to buy dinner; should Alice gamble?
- Alice's risk preference: I'll gamble (risk going hungry) only if I believe my team's chances are at least even (i.e., greater than 1 in 2)
- Alice indifferent between certain \$10 and $\ell = [\frac{1}{2}: \$50|\frac{1}{2}: \$0]$:

$$\begin{split} u(\$10) &= U([\frac{1}{2}:\$50|\frac{1}{2}:\$0]) = E_u(\ell) \\ &= V_B([\frac{1}{2}:\$50|\frac{1}{2}:\$0]) \quad \text{using } u \text{ rather than } v_\$ \\ &= \frac{1}{2}u(\$50) + \frac{1}{2}u(\$0) \end{split}$$

• What does u look like?

Outline

- Risk preferences and bets
 - Bets and odds
 - Expected monetary value
- 2 Utility of money
- 3 Risk attitudes

Victor Jauregui

Engineering Decisions

Utility of money

Utility of money

Fix u scale:

$$u(\$0) = 0$$

$$u(\$50) = 1$$

Possible gambles lie on diagonal:

$$U(\left[\frac{1}{2}:\$50\right]^{\frac{1}{2}}:\$0]) = \frac{1}{2}u(\$50) + \frac{1}{2}u(\$0) = \frac{1}{2}$$

$$U([p:\$50|(1-p):\$0]) = p$$

Utility for money

On Alice's utility scale the monetary outcomes are arranged as follows:

Question

What properties do typical utility functions for money have?

Utility values should increase with increasing money

Victor Jauregui

Engineering Decisions

Utility of money

Functions on ordered sets

Definition (Monotonic increasing function)

A real-valued function $f: \mathbb{R} \to \mathbb{R}$ is monotonically increasing, or non-decreasing, iff for any $x, y \in \mathbb{R}$, if $x \geqslant y$, then $f(x) \geqslant f(y)$.

Examples: the following are non-decreasing functions on \mathbb{R} : $f(x) = \frac{1}{10}x$, f(x) = x, f(x) = c, for any fixed $c \in \mathbb{R}$

Exercise

Does this imply the converse; *i.e.*, if $f(x) \ge f(y)$, then $x \ge y$?

Strictly increasing functions

Definition (Strictly increasing function)

A real-valued function $f: \mathbb{R} \to \mathbb{R}$ is *strictly increasing* iff for any $x, y \in \mathbb{R}$, if x > y, then f(x) > f(y).

Examples:
$$f(x) = \frac{1}{10}x$$
, $f(x) = x$, $f(x) = 3x + 2$, $f(x) = x^2$, $f(x) = \log_2 x$

Victor Jauregui

Engineering Decisions

Utility of money

Utility for money

How much money is $\left[\frac{1}{2}\$50\right]$ worth to Alice? \$10 ×c

The EMV of $[\frac{1}{2}\$50]$ is \$25. How much of that amount is Alice willing to give up for a certain \$10? Up to \$25 - \$10 = \$15

Definition (Certainty equivalent)

An agent's certainty equivalent for a lottery is the value x_c for which the agent would be indifferent between it and the lottery; i.e., $u(x_c) = U(\ell)$.

Definition (Risk premium)

The *risk premium* of an agent for lottery ℓ is the difference between the EMV of the lottery and the certainty equivalent: $V_{\$}(\ell) - x_c$.

Repeated trials

Example (Alice and Bob)

Alice and her twin, Bob, have \$10 each and they are offered, separately, 4to 1 odds on a team in two different football matches (e.g., home and away). They believe the team has a 2 in 5 chance of winning each match.

Should Alice bet?

In terms of the individual outcomes of Alice and Bob:

$$\ell_{AB} = \left[\frac{9}{25} : (\$0,\$0)|\frac{6}{25} : (\$0,\$50)|\frac{6}{25} : (\$50,\$0)|\frac{4}{25} : (\$50,\$50)\right]$$

If Alice and Bob share the risk/gain then:

$$(\$x,\$y) \sim \$\left(\frac{x+y}{2}\right)$$
 i.e. $u_A(x,y) = u_A\left(\frac{x+y}{2}\right)$

So for Alice:

$$\ell_A = \left[\frac{9}{25} : \$0\right| \frac{6}{25} : \$25\right| \frac{6}{25} : \$25\left| \frac{4}{25} : \$50\right]$$
$$= \left[\frac{9}{25} : \$0\right| \frac{12}{25} : \$25\left| \frac{4}{25} : \$50\right]$$

Victor Jauregui Engineering Decisions

Utility of money

Repeated trials

Where does ℓ_A fit in in the scheme of things?

$$\ell_A = \left[\frac{9}{25} : \$0\right] \frac{12}{25} : \$25\right] \frac{4}{25} : \$50$$

$$V_{\$}(\ell_A) = \frac{12}{25}(25) + \frac{4}{25}(50) = 20$$

$$U_A(\ell_A) = \frac{9}{25}(0) + \frac{12}{25}u_A(\$25) + \frac{4}{25}(1)$$

$$= 0 + \frac{12}{25}(\frac{9}{10}) + \frac{4}{25} = \frac{4}{25}(\frac{37}{10})$$

$$> \frac{4}{25}(\frac{35}{10}) = \frac{14}{25} > \frac{1}{2} = u_A(\$10)$$

Alice should bet, sharing the risk and the winnings!

Repeated trials

- The individual bets are favourable for both Alice and Bob
- Despite this neither Alice nor Bob would take their respective individual bets
- However, they should bet together over multiple bets/trials

Victor Jauregui Engineering Decisions

Risk attitudes

Outline

- Risk preferences and bets
 - Bets and odds
 - Expected monetary value
- 2 Utility of money
- Risk attitudes

Risk attitudes

Definition (Risk attitudes)

An agent is:

- risk averse iff its certainty equivalent is less than the lottery's expected value; i.e., it values the lottery to be worth less than the expected value.
- risk seeking (risk prone) iff its certainty equivalent is greater than the lottery's expected value.
- risk-neutral otherwise.

Exercises

- What is Alice's certainty equivalent for the lottery with Bob?
- The risk premium in what range if the agent is: risk averse? risk seeking? risk neutral?

Victor Jauregui Engineering Decisions

Risk attitudes

Risk attitudes

More generally:

Definition (Risk averse)

An agent is risk averse if its utility function is concave down.

Definition (Risk seeking)

An agent is risk seeking if its utility function is concave up (convex).

Definition (Risk neutral)

An agent is *risk neutral* if its utility function both concave down and up; *i.e.*, linear.

Concave and convex functions

Definition (Concave and convex)

A function $f: \mathbb{R} \to \mathbb{R}$ is *concave down* in the interval [a, b] if for all $x,y\in [a,b]$, and all $\lambda\in [0,1]$, $f(\lambda x+(1-\lambda)y)\geqslant \lambda f(x)+(1-\lambda)f(y)$, and concave up (or convex) if $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$.

Engineering Decisions

Risk attitudes

Summary: risk attitudes and utility

- Not all quantities (e.g., \$) accurately represent preference over outcomes
- Expected values on these quantities may not accurately represent preference
- Measure preference in terms of utility; agent must calibrate utilities against uncertain outcomes (lotteries)
- An agent's utility is personal/subjective; i.e., particular to him. Different agents may have different utilities for the same 'outcome'
- Utility functions are non-decreasing; this means that over many trials Bayes utilities approach expected values
- The shape of an agent's utility curve/function determines its risk attitude