Boyne Smelters Economic Impact on the Gladstone Region and Queensland

Patrick O'Callaghan and John Mangan AIBE, University of Queensland

Aluminium Industry and Boyne Smelters (BSL)

Australia: energy-abundant & fully integrated Aluminium supply chain

• One of only three countries in the world along with Brazil and Venezuela.

Qld: Weipa Bauxite is shipped to Gladstone for Alumina refining and Aluminium Smelting at BSL (much of this supply chain is Rio Tinto)

BSL: consumes 1/8 of Qld's electricity

- Recent Smelter closures: Kurri Kurri 2012
- Near miss at Tiwai Point, New Zealand in 2020-2021:
 "Clean" aluminium: from hydroelectric power (alumina from Gladstone)
 Needed a deal to keep it open with reduced price for electricity
- Subsidies due to high energy prices (and subsidies in other countries)
- Qld Energy and Jobs Plan:
 - Sustaining heavy industry in Qld is a key part of the transition

Gladstone, Central Queensland

- Central Qld: the energy powerhouse of Qld: 4600MW (but coal-fired)
 - **Central QREZ**: Qld Energy plans for renewables
- Gladstone (SA3, 2018-19): contains capital, Gladstone, of Central Qld \$15.5bn aggregate output: approx. 25% of Central Qld, 2% Qld

29k FTE: approx. 28% of Central Qld, 1.3% of Qld

63k population: highly skilled, but aging with 0.7% growth

- Multi-commodity deep-water port plus rail and road infrastructure
- Gladstone is Qld's regional manufacturing hub:

\$5.5bn to \$6bn Manufacturing output: of which approx. \$1bn is BSL

4k to 4.5k Manufacturing FTE employees: of which 1k at BSL

Heavy industry: Alumina, Aluminium Ammonia, Cement, LNG, Oil refinery

Growth industries: ag-tech, alumina for batteries, aquaculture, Mining Serv., green {...}

Computable
Inter-{regional, sectoral and temporal} Euler
General Eq'm
Model overview

Forward-looking dynamics: for 19 ANZSIC divisions in the Gladstone region:

Supply = Demand (output = med + con + inv + xpo) at each time

Output is a function of kap, lab, med (including imports) and a fixed factor.

Capital depreciates and is optimally replenished to grow the economy.

Balanced growth paths: via technological growth and optimisation

Growth rate is similar for output and capital: each sector grows in range 1% to 2%

Technological progress is fixed-factor augmenting

Euler eq'ns: novel application at the multisectoral level
 Testable: ``value of capital today'' = ``expected value of capital tomorrow''

• Absent in intersectoral models: CoPS; Atalay; Cesa-Bianchi et al; Baqaee—Farhi

More uncertainty and change means Euler eq'ns less likely to hold

- If some Euler eq'ns don't hold, then sectoral shocks more likely to propagate.
- When they don't hold: greater adaptive capacity as capital is already misallocated.

The data

Data sources:

Jobs in Australia ABS data: labour per sector for Gladstone 2019. Input-output flows between sectors: ABS tables 5 and 8 for Australia Investment flows between sectors:

- investment flows tables from the US Bureau of Economic Analysis
- ABS Gross Fixed Capital Formation by Industry by type of Asset

BLADE: output per sector for Gladstone 2019

Gladstone Port data for Bauxite, Alumina, Aluminium and Coal

• Eg. Bauxite imports

Rio Tinto accounts

Studies on aluminium production e.g.

Gagne and Nappi 2000, Best Available Techniques 2017

Data: initial conclusions

- Amrun mines: Gladstone Bauxite imports less than half of Weipa production
- QAL and Yarwun: Alumina sales to BSL is 15% of total output No obvious major threats to overall supply chain: Rio Tinto is majority owner

Allows us to focus more on broader Gladstone economic impact

- BSL is between one-quarter and one-sixth of the manufacturing sector
- 80% of Aluminium is exported via Gladstone port
- Subsidy is likely to be over \$250 million

Data: regionalising the Australian input-output table

- Modify certain parameters to match estimates e.g. Utilities flows to Manufacturing
- Within-model tuning of parameters to approximate observed Gladstone proportions for variables such as *output* and *labour remittances*.

Experiments and shocks

Experiment Type (1): Euler eq'ns hold

1st phase: tune parameters to regionalise and satisfy Euler eq'ns

2nd phase: tune capital to obtain a balanced growth path

3rd phase: continue along same path and generate

- ``status quo'' path
- ``shock'' (BSL closure) path

Experiment Type (2): Euler eq'ns needn't hold.

- Three phases as above
- Intended to capture Gladstone as an economy in transition with major uncertain changes relating to emissions targets given its current industry.

Type (a) shock: one-off "MIT shock" agents don't see coming

- One quarter decrease in Manufacturing productivity, capital and exports
- 5/6 decrease in Utilities (energy and water) purchases by Manufacturing
- No decommissioning or replacement activity
- Labour is mobile

Main message: depends on whether Euler Eq'ns hold

Type (b) shock: labour is immobile

• Preferences are Leontief in labour: fixed proportions of each type of labour Main message: the shock is worse and permanent

Type (c) shock: the agents know in advance and can plan for it

• Distinguishes the model from the Centre of Policy Studies approach Main message: it is optimal to build up capital in advance of the closure

Results from experiments:

(1a) (2a)

Experiment-shock (1a): % change relative to status quo, Aggregates

Output permanently down by 10% or \$1.5bn in accordance with productivity shock and fact that BSL Output is 6% of aggregate.

Experiment-shock (2a): % change relative to status quo, Aggregates

Output falls by 1% or \$0.15bn before converging to 0; impact is transitory (unlike the productivity shock). Consumption is up by 1% in the long run

Experiment-shock (1a): % change relative to status quo, Manufacturing

Manufacturing capital immediately returns close to optimal levels: a quick response is optimal.

Experiment-shock (2a): % change relative to status quo, Manufacturing

Manufacturing capital takes much longer to return to previous levels as they were not as efficient.

Experiment-shock (1a): % change relative to status quo, Utilities

Utility price initially fall by 4%;

Consumption up compensating for falls elsewhere; Capital down by 9% in the long run.

Experiment-shock (2a): % change relative to status quo, Utilities

Utilities price down by 10% and remains there;

Capital down by 6% in the long run;

As prop'n of output: imports down from 12.5% to 8%

Experiment-shock (1a): % change relative to status quo, Agriculture

Capital, output, exports, imports and price up Consumption down (Similar pictures for Mining.)

Experiment-shock (2a): % change relative to status quo, Agriculture

Similar, but more extreme with

Capital up by over 15% in the long run.

As prop'n of output: imports up from 10% to 15%

Key takeaways

- Economic impact of BSL closure on Gladstone
 - Output: Aggregate, Manufacturing and Utilities all down and permanently if Euler eq'ns hold
 - Aggregate -\$155m; Manufacturing -\$147m; Utilities -\$45m; Construction -\$23m; Transport -\$4m; ...
 - Agriculture, Mining and Aggregate Consumption rise: but only if Utilities prices fall enough
 - Gladstone is connected to the NEM, so price effect would be small.
- In the context of transition to net zero: capital is out-of-date & lots of uncertainty:
 - Euler eq'ns unlikely to hold, so greater propagation of shocks & opportunity for change
 - In this context, a flexible and mobile workforce is especially valuable.
- BSL is important to Gladstone's economy
 - Transition needs to be handled with care as it is a major consumer of energy
 - Needs a backup supply of energy (currently Gladstone Power Station) and water
 - Early decisions are valuable: e.g. Kurri Kurri closure 2012, power station approved in 2021
- With right energy transition, Gladstone Aluminium is internationally competitive
 <u>June 2022</u>: Rio Tinto calls for clean Gladstone Aluminium by 2030.
 <u>September 2022</u>, Qld Energy Plan: supergrid can keep Gladstone in proximity of power supply

References

- Queensland Government (2022). Energy and Jobs Plan. https://www.epw.qld.gov.au/energyandjobsplan. Retrieved October 2022
- Queensland Government. https://yoursayhpw.engagementhq.com/understand-qrez/news_feed/central . Retrieved October 2022
- Gladstone Regional Council. https://www.gladstone.qld.gov.au/downloads/file/3466/gladstone-region-investment-prospectus . Retrieved October 2022
- Acemoglu, D., & Guerrieri, V. (2008). Capital deepening and nonbalanced economic growth. *Journal of political Economy*, 116(3), 467-498.
- Atalay, E. (2017). How important are sectoral shocks?. *American Economic Journal: Macroeconomics*, 9(4), 254-80.
- Baqaee, D. R., & Farhi, E. (2019). The macroeconomic impact of microeconomic shocks: Beyond Hulten's theorem. Econometrica, 87(4), 1155-1203.
- Dixon, P., & Rimmer, M. T. (2020). *Developing a DSGE consumption function for a CGE model*. Centre of Policy Studies (CoPS), Victoria University.
- Gagné, R., & Nappi, C. (2000). The cost and technological structure of aluminium smelters worldwide. *Journal of Applied Econometrics*, 15(4), 417-432.
- Cusano, G., Rodrigo Gonzalo, M., Farrell, F., Remus, R., Roudier, S., Delgado Sancho, L. (2017). Best Available Techniques (BAT) Reference
 Document for the Non-Ferrous Metals Industries. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)
 (No. JRC107041). Joint Research Centre (Seville site).
- Australian Bureau of Statistics (ABS), 2018-2019. Tables 5 and 8: Industry by Industry Flow Table. Released May 2021.
- Bureau of Economic Analysis (2003). Capital flow data for 1997. https://www.bea.gov/news/2003/capital-flows-us-economy-1997.
- Port of Gladstone, "Trade Statistics Data," https://www.gpcl.com.au/trade- statistics, Retrieved April 2020
- Rio Tinto, (2019). *Annual Report Production, Reserves and Operations*. Retrieved in April 2020. https://www.riotinto.com/invest/reports/annual-report