TD de Maths

Dénombrement

Exercice 1

- La chenille Becky se promène le long d'un grillage plan de taille n × p dont chaque arête est de longueur 1.
 Combien de chemins de longueur minimale peut-elle emprunter pour gagner le point d'arrivée depuis son point de départ ?
- Montrer que pour énumérer les chemins de la chenille Becky, on pouvait en fait énumérer les mots de n+p lettres qui contiennent p fois la lettre « D » et n fois la lettre « B ».

- Combien de mots de 4 lettres peut-on former avec l'alphabet {€,¥,\$} ?
 Les écrire dans l'ordre lexicographique (choisir d'abord un ordre sur l'alphabet lui-même!)
- Au poker, on tire 5 cartes dans un jeu de 32.
 - 1. Combien y-a-t-il de mains contenant 4 cartes de même valeur (un carré)?
 - 2. Combien y-a-t-il de mains contenant un full (un brelan et une paire)?
 - 3. Combien y-a-t-il de mains contenant un brelan (3 cartes de la même valeur + 2 cartes distinctes) ? On proposera deux méthodes distinctes et on comparera les résultats obtenus.
- Combien y a-t-il de mots de 7 lettres contenant le mot OUPS ? (par exemple, BOUPSAR et QIOUPSI).
- Combien y a-t-il d'anagrammes du mot PALINDROME ? du mot ALGEBRE ? du mot ANAGRAMME ?
- Un jeu de tarot contient 78 cartes : 21 atouts, la carte qu'on appelle l'« excuse », et 14 cartes de chacune des 4 couleurs cœur, pique, trèfle et carreau. On distribue 18 cartes à chacun.

Combien y a-t-il de mains possibles?

Combien y a-t-il de mains contenant 9 atouts et 4 trèfles ?

Combien y a-t-il de mains contenant 5 cœurs, 5 piques et au moins 5 atouts ?

Exercice 2

Soient n et p deux naturels.

Montrer que les 2 ensembles ci-dessous ont le même cardinal que l'on notera u_n

$$E = \{(a_1, a_2, ..., a_p) \in \mathbb{N}^p / a_1 + a_2 + ... + a_p = n\}$$

F: ensemble des dispositions de p-1 cases noires parmi n+p-1 cases alignées.

Montrer que pour tout $n \in \mathbb{N}$ et tout $p \geqslant 2$ on a $u_{n,p} = \sum_{k=0}^{n} u_{k,p-1}$.

Comment initialiser cette relation de récurrence ?

Exercice 3

Lors du premier jour de compétition de volley faisant intervenir 2n équipes, on souhaite que chaque équipe fasse un unique match. Combien les organisateurs ont-ils de possibilités pour organiser ce premier jour ? On pourra noter u_n la valeur cherchée.

- 1. Méthode 1 : On prend une équipe et on cherche le nombre d'adversaires possibles, puis on en prend une deuxième équipe ...
- 2. Méthode 2 : On recherchera d'abord le nombre de possibilités pour chacun des *n* matchs.
- 3. Méthode 3 : On commencera par prouver que $u_n = (2n-1)u_{n-1}$.

Exercice 4 Autour du triangle de Pascal

1. (Formule de Pascal généralisée). Soient n et p deux naturels tels que $n \le p$.

Montrer que $\sum_{k=n}^{p} \binom{k}{n} = \binom{p+1}{n+1}$. Interprétation sur le triangle de Pascal.

2. Calculer
$$\sum_{k=0}^{n} {n \choose k}$$
 $\sum_{k=0}^{n} (-1)^{k} {n \choose k}$ $\sum_{k=0}^{n} {2n \choose 2k}$ $\sum_{k=0}^{n} {2n+1 \choose 2k+1}$

3. Montrer
$$\forall n \in \mathbb{N} / \sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$
 (formule de Vandermonde)

Indication : Noter que $(1+X)^{2n} = (1+X)^n (1+X)^n$ et calculer le coefficient de X^n dans $(1+X)^{2n}$ de 2 façons différentes.

4. Formule du capitaine :
$$p \binom{n}{p} = n \binom{n-1}{p-1}$$

On calculera de deux manières le nombre de possibilités manières de former à partir *n* personnes une équipe de *p* d'entre elles dont un capitaine :

- Commencer par choisir les p membres de l'équipe, puis désigner le capitaine parmi eux
- Commencer par choisir le capitaine, puis compléter son équipe.
- 5. Observer. Démontrer.

		1											
		1	1										
		1	2	1									
		1	3	3	1								
1		1	4	6	4	1							
2		1	5	10	10	5	1						
3		1	6	15	20	15	6	1					
5		1	7	21	35	35	21	7	1				
8		1	8	28	56	70	56	28	8	1			
13		1	9	36	84	126	126	84	36	9	1		
21		1	10	45	120	210	252	210	120	45	10	1	
34		1	11	55	165	330	462	462	330	165	55	11	1
55			•	•	•								
89													
144													

Exercice 5

Soit la matrice
$$n \times n$$
 $A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & 1 & 1 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$. Calculer A^2 , A^3 , A^4 . Généraliser.

Exercice 6

Une ligue de football contient 15 clubs.

Pour des raisons de temps, on décide que chaque club ne jouera que la moitié des matchs possibles. Comment organiser le tournoi ?

Comment tracer 5 segments sur une feuille, de telle manière que chaque segment en coupe exactement 3 autres ?

Exercice 7

Si on tronque les sommets d'un icosaedre jusqu'au tiers des côtés, on obtient un icosaèdre tronqué.

Combien a-t-il de faces, d'arêtes et de sommets?

Si on les tronque un peu plus, jusqu'au milieu des côtés,on obtient un icosidodecaedre.

Combien a-t-il de faces, d'arêtes et de sommets?

Exercice 8 - Equations de récurrence.

Résoudre l'équation $u_{n+2}=-u_{n1}+2\,u_n$, $u_0=1,u_1=2$ de deux manières :

- par la méthode de l'équation caractéristique
- par la méthode de la transformée en Z

Exercice 9

Par la méthode de la transformée en Z, résoudre

•
$$u_{n+1} = 3u_n + n^2$$

•
$$u_{n+2} = 4u_{n1} - 4u_n + 2^n$$
, $u_0 = 1, u_1 = 0$

•
$$u_{n+2} = 5u_{n1} - u_n + 1$$
, $u_0 = 1, u_1 = 2$

•
$$u_{n+2} = 3u_{n+1} - u_n + 2n - 2^{n+1}$$
, $u_0 = 1, u_1 = 1$

•
$$u_{n+2} = 4u_{n+1} - 3u_n - 2n + 3^n$$
, $u_0 = 1, u_1 = 1$