					Io		Ioi
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2 i \sqrt{2} k}{(\alpha_{0}-4 \beta_{1})(1+2 k^{2})^{2}}$	0	$-\frac{4k^2}{(\alpha_0\!-\!4\beta_1)(1\!+\!2k^2)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_{0}-4\beta_{1})(1+2k^{2})}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_1^{\#1}\!$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2k^2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	-	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{\alpha eta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{#1} + ^{\alpha\beta}$	$\sigma_{1^{^{-}}}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

	$\omega_{0}^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	$\frac{1}{2}\left(\alpha_0-4\beta_1\right)$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
$f_{0+}^{#1}$ †	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	$-4 \beta_1 k^2$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{#1}$ †	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$

Lagrangian density	$-rac{1}{2}lpha_0\omega_{lpha\chieta}\omega^{lphaeta\chi}-rac{1}{2}lpha_0\omega^{lphaeta}_{$	$2\beta_1 \omega_{\alpha}^{\ X\delta} \omega_{\chi\delta}^{\ \alpha} - 2\beta_1 \omega_{\alpha}^{\ X} \partial_{\beta} f^{\alpha\beta} - 2\beta_1 \omega_{\alpha}^{\ \delta} \partial_{\beta} f^{\alpha\beta} - \alpha_0 f^{\alpha\beta} \partial_{\beta} \omega_{\alpha}^{\ X} +$	$\alpha_0 \partial_\beta \omega^{\alpha\beta}_{\alpha} + \frac{2}{3} \alpha_3 \partial^\alpha \omega^{\beta\zeta}_{\chi} \partial_\beta \omega^{\chi}_{\zeta\alpha} + 2 \beta_1 \omega^{\chi}_{\beta \chi} \partial^\beta f^{\alpha}_{\alpha} +$	$2\beta_1 \omega_{\beta}^{\delta} \delta^{\beta} f^{\alpha}_{\alpha} - 2\beta_1 \delta_{\beta} f^{\chi}_{\chi} \delta^{\beta} f^{\alpha}_{\alpha} + \alpha_0 f^{\alpha\beta} \delta_{\chi} \omega_{\alpha\beta}^{\chi} -$	$\alpha_0 f^{\alpha}_{\ \alpha} \partial_{\chi} \omega^{\beta \chi}_{\ \beta^{-\frac{2}{3}}} \alpha_3 \partial_{\beta} \omega_{\zeta \alpha}^{\ \chi} \partial_{\chi} \omega^{\beta \zeta \alpha}_{\ \beta^{-\frac{1}{3}}} \alpha_3 \partial_{\beta} \omega_{\zeta \alpha}^{\ \chi} \partial_{\chi} \omega^{\zeta \alpha \beta}_{\ \gamma} +$	$4\beta_1\omega_{\alpha\chi\beta}\partial^\chi f^{\alpha\beta} + \beta_1\partial_\chi f_{\beta}^{\ \delta}\partial^\chi f_{\delta}^{\ \beta} + \beta_1\partial_\chi f^{\delta}_{\ \beta}\partial^\chi f_{\delta}^{\ \beta} +$	$\frac{2}{3} \alpha_3 \partial_\chi \omega^{\beta \zeta \alpha} \partial^\chi \omega_{\zeta \alpha \beta} + \frac{1}{3} \alpha_3 \partial_\chi \omega^{\zeta \alpha \beta} \partial^\chi \omega_{\zeta \alpha \beta} + 4 \beta_1 \partial^\beta f^\alpha_{\ \alpha} \partial_\delta f_{\ \beta}^{\ \delta} -$	$2\beta_1 \partial_{\beta} f_{\chi}^{\ \beta} \partial_{\delta} f^{\chi \delta} + \tfrac{2}{3} \alpha_3 \partial^{\beta} \omega_{\alpha}^{\ \delta \zeta} \partial_{\delta} \omega_{\zeta\beta}^{\ \alpha} - \tfrac{2}{3} \alpha_3 \partial^{\beta} \omega_{\alpha}^{\ \zeta \delta} \partial_{\delta} \omega_{\zeta\beta}^{\ \alpha} -$	$\beta_1 \partial^X f_{\zeta}^{\ \beta} \partial^\zeta f_{\beta\chi} - \beta_1 \partial^X f_{\zeta}^{\ \beta} \partial^\zeta f_{\chi\beta} + \beta_1 \partial^X f_{\delta\zeta} \partial^\zeta f^{\delta}_{\ \chi} - \beta_1 \partial^X f_{\zeta\delta} \partial^\zeta f^{\delta}_{\ \chi}$	Added source term: $\left f^{lphaeta} \; \iota_{lphaeta} \; \iota_{lphaeta} \; \sigma_{lphaeta\chi} ight.$
--------------------	--	--	--	---	---	---	--	--	---	---

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$

Source constraints					
SO(3) irreps	#				
$\tau_{0+}^{\#2} == 0$	1				
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3				
$\tau_{1^{-}}^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3				
Total #:					

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}lphaeta\chi}^{\#1}$
$\omega_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_2^{#1} \dagger^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4} + \beta_1$

_	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{8\beta_1}{\alpha_0^2 - 4\alpha_0\beta_1}$	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i}{\alpha_0} \frac{\sqrt{2}}{k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{2}{\alpha_0 - 4\beta_1 + 2\alpha_3 k^2}$

	$\omega_{1}^{\#1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{4}\left(\alpha_0-4\beta_1\right)$	$\frac{\alpha_0 - 4\beta_1}{2\sqrt{2}}$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{4} (\alpha_0 - 4 \beta_1)$	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	$-\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$
$\omega_{1}^{#2} + \alpha$	0	0	0	$-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$\frac{1}{2}\bar{i}(\alpha_0-4\beta_1)k$	0	0	0

?
$$J^{P} = 0 - ?$$
?
$$? \overline{k^{\mu}} = ?$$
?

?	Massive partic	le
	Pole residue:	$-\frac{1}{\alpha_3} > 0$
	Polarisations:	1
	Square mass:	$-\frac{\alpha_0-4\beta_1}{2\alpha_3}>0$
	Spin:	0
	Parity:	Odd
		0

Unitarity conditions $\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$