

Key Points

Traditional sumList is inherently sequential:

$$\operatorname{sumList}[] = 0 \quad \operatorname{sumList}(a:x) = a + \operatorname{sumList}x$$

Divide-and-conquer cannot be applied efficiently on standard lists.

Solution

 Use Balanced Trees to support divide-andconquer strategies and enable parallelism.

Goals

- Relate parallel algorithms to balanced trees.
- Implement recursive parallel functions on these trees.
- Address the lack of concrete implementations for balanced Shunt Trees.

PRELIMINARIES

Core concept:

- Greek letters (α, β, γ) for type variables (polymorphism)
- Identity Function:

 $id :: \forall \alpha . \alpha \rightarrow \alpha$

Haskell Constructs:

- Single and Join: Basic constructors for Join Lists
- Associative operators \oplus, \otimes enable parallel recombination.

Why Join Lists?

 Join Lists transform sequential lists into binary tree structures, enabling parallel processing.

List Homomophisms

Consider list aggregating opetions, like sum, max, and etc:

 If we abstracting out the concrete computation, we obtain a skeleton as following:

$$h:: \forall \beta. (\beta \to \beta \to \beta) \to (A \to \beta) \to [A] \to \beta$$

Let's say we have a function (\bigoplus) s.t. $\beta \to \beta \to \beta$ and a function f s.t $A \to \beta$

Then we can define:

$$h(\oplus)f[a] = fa$$

$$h(\oplus)f(x+y) = h(\oplus)fx \oplus h(\oplus)fy$$

Assuming that.

• \oplus is associative: g(g(x, y), z) = g(x, g(y, z))

Example

• Sum x = h(+) id x

Definition: a Polymorhpic function

$$h:: \forall \beta. (\beta \to \beta \to \beta) \to (A \to \beta) \to [A] \to \beta$$

Is to be a list-homomorphism scheme if it satisfies

$$h(++)(\lambda a \to [a]) x = x$$

for any list x

 This ensure that this list aggregation structure doesn't not duplicate, discard, or disorder elements

Join Lists

Definition:

data $\overline{\text{JList }\alpha} = \overline{\text{Single }\alpha} \mid \overline{\text{Join}}(\overline{\text{JList }\alpha})(\overline{\text{JList }\alpha})$

Conversion:

From Join List back to sequential list:

$$j2l (Single a) = [a]$$
 $j2l (Join l r) = j2l l + +j2l r$

<u>Parallel Sum Example:</u>

- sumJ:
 - $\operatorname{sumJ}(\operatorname{Single} a) = a \quad \operatorname{sumJ}(\operatorname{Join} l r) = \operatorname{sumJ} l + \operatorname{sumJ} r$
- Steps
 - Split list into subtrees
 - · Compute sums in parallel
 - Combine results: efficient divide-and-conquer

Balancing Join Lists

Why Balance Matters

- Balanced Join Lists ensure O(log N) height.
- Supports efficient divide-and-conquer parallel operations.

Techniques for Balancing

- Use any self-balancing binary tree that stays balanced after modification. i.e. Biased Search Trees, etc..
- Ropes: Efficient for frequent concatenations.

Example

Join (Join (Single 3) (Single 5)) (Join (Single 2) (Single

Step 1: Compute (3+5) and (2+7) in parallel.

Step 2: Combine results: (3+5) + (2+7)=17

Shunt Trees

we will see how the Shunt Contraction Scheme enables efficient and parallel processing of tree structures, in order to introduce Shunt Tree Strutures.

Binary Tree Structure:

A binary tree consists of.

- Leaves (Tip): Values A
- Internal nodes (Bin): Connect two subtrees and hold values

Equation:

data Tree $\alpha \beta = \text{Tip } \alpha \mid \text{Bin (Tree } \alpha \beta) \beta \text{ (Tree } \alpha \beta)$

Shunt Trees The Challenge

The Challenge arise when we are talking about parallelization

- Unbalanced (list-like) trees require O(h) steps, where h
 is the height.
- Parallelizing operations on trees requires reducing the tree depth.

How to address the issue?
Here is where Shunt and Tree Contraction Concepts comes into play

Shunt Trees The Shunt Operation

The Shunt operation perform the following:

- 1. Removes a leaf and its parent node.
- 2. Connects the subtree directly to its grandparent node.

Formal equation:

shunt $\forall \alpha, \beta$. Tree $\alpha \beta \rightarrow$ Tree $\alpha \beta$

shunt $(Bin t_{\underline{}} (Tip_{\underline{}})) = t$ and shunt $(Bin (Tip_{\underline{}}) t_{\underline{}}) = t$

Figure 2. A Shunt operation applied to the star-marked leaf.

Shunt Trees Shunt Contraction Scheme

The scs function generalizes the Shunt operation, allowing us to:

- 1. Process leaves using $A \rightarrow \alpha$.
- 2. Process internal nodes using $B \rightarrow \beta$.
- 3. Combine intermediate results with Shunt $\alpha \beta$

Equation:

scs ::
$$\forall \alpha, \beta. (A \to \alpha) \to (B \to \beta) \to \text{Shunt } \alpha\beta \to \text{Tree } AB \to \alpha$$

Shunt Trees Example

Let's use scs to compute the sum of values in a tree

- 1. Leaves: Processed with identity (id)
- 2. Nodes: Aggregated using the function add3

Code:

sumTree = scs id id (add3, add3, add3)

where add 3bac = b + a + c

To ensure that the tree is reconstructed correctly during the Shunt contraction, we use two key concepts

- 1. Hole: Creates a context with a "hole" that represents a missing subtree.
- 2. Connect. Combines a context with subtrees to reconstruct the tree.

Definitions:

- Hole: $\forall \alpha, \beta.\beta \rightarrow \text{Context } \alpha \beta$ $\text{hole } a = \lambda(l, r) \rightarrow \text{Bin l a r}$
- · Connect.

connect :: $\forall \alpha, \beta$. Shunt (Tree $\alpha \beta$) (Context $\alpha \beta$) connect = (ψ_L, ψ_R, ψ_N)

Shunt Trees Building Shunt Trees

Shunt Trees are derived structures that

- 1. Reduce the tree depth.
- 2. Support parallelization of operations.

Definition:

 $\mathbf{data} \ \mathbf{ST} \ \alpha \beta = \mathbf{T} \ \alpha$ $| \mathbf{N} \ (\mathbf{ST} \ \alpha \beta) \ (\mathbf{ST}_{\bullet} \ \alpha \beta) \ (\mathbf{ST} \ \alpha \beta)$

data $ST_{\bullet} \ \alpha \beta = H_{\bullet} \beta$

 $| L_{\bullet} (ST_{\bullet} \alpha \beta) (ST_{\bullet} \alpha \beta) (ST \alpha \beta) |$

 $|R_{\bullet}| (ST \alpha \beta) (ST_{\bullet} \alpha \beta) (ST_{\bullet} \alpha \beta)$

With $ST \cdot$ for Context, ST for binary tree

Shunt Trees Balancing Trees

Definition:

Balancing is necessary to reduce tree height and fully exploit parallelism.

The contraction algorithm reduces tree height to $O(\log N)$

Theorem:

Execution time: $O(\frac{N}{p} + \log P)$

Main Work Done

Implementing and formally verifying aggregation operations: like sum, ...

Progress

Progress

Building the core functionality for both structures and balancing

Join Lists (both unbalanced and balanced version)

Implemented and verified operations as supported in Stainless List

Implemented

Implemented

Base Structure for Shunt Trees:
Established the
foundation/structure and core
for further development and
verification

