| ALGEBRA           | LINEARE -                       | LEZIONE 47                    |
|-------------------|---------------------------------|-------------------------------|
| Titolo nota       |                                 | 30/11/2018                    |
| POLINOMIO CARA-   | TTERISTICO E PO                 | DLINOMIO MINIMO               |
|                   |                                 |                               |
| Sia A mahice n    | xn, e ma p(x) u                 | u polivourio.                 |
| Ha seuso calcolan | e p(A), aioè sostitu            | uire una matrice nel          |
| polivouio.        |                                 |                               |
| Se                |                                 |                               |
| D(x) = (          | aux + au-1 x n-1 L              | + 0, × + 0,                   |
| allora            |                                 |                               |
|                   | $a_{n}A^{n} + a_{n-1}A^{n-1} +$ | 4 0. 4 + 0. 74                |
| 7 (1)             | court , amount ,                |                               |
| 7-1-1-1-25        | ua dei pali al i ta             |                               |
|                   | suo dei poliusuri to            |                               |
| (0000             | ment bollown hon                | completamente nulli)          |
|                   | 2 1 100 1-3                     |                               |
|                   |                                 | nxn è uno sp. vett.           |
| ON' (             | dim. m². Considero              |                               |
|                   |                                 |                               |
|                   |                                 | che 10 !!), quindi non        |
| sies alczod       | lin custip, quiusti             |                               |
|                   |                                 | 202                           |
| Co 70 + C11       | A + Cz A² + + Cm² 1             | 4" =0                         |
|                   |                                 |                               |
| e questo comisp   | souvelle ad un politice         | suis di grado × m3            |
|                   |                                 |                               |
| TEDREMA DI HAN    | MILTON-CAY LEY                  |                               |
|                   |                                 |                               |
| Sia A matrico m   | x M & D (x) 1/3                 | suo poliusumo caratteristico. |
| Allora            |                                 |                               |
| P. (A)            |                                 |                               |
|                   |                                 | Co H 1150 2 2 2               |
| (Se southerson m  | la matrice nel pol.             | Cerati. Viene o)              |

Escupio 
$$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$$
  $\begin{pmatrix} 2-\lambda & 0 \\ 1 & 4-\lambda \end{pmatrix}$ 
 $P(\lambda) = (2-\lambda)(4-\lambda) = \lambda^2 - 6\lambda + 8$ 
 $A^2 = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 6 & 16 \end{pmatrix} \begin{pmatrix} 12 & 0 \\ 6 & 24 \end{pmatrix} + \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ 

La dimostrovione con è semplicissima, frame in an caso, quello in an  $A = A$  diagonalizabile

Dimi Par ipolea esiste  $M$  invertibile tale che

 $D = M^{-1}A$   $M$  and  $A = MDM^{-1}$ 

da questa segue die  $A^k = MD^kM^{-1}$ , ma non serve

Questo che serve è avere una boxe  $\{ y_{1}, \dots, y_{m} \}$  costituta da antovettori, cioè  $A_{1} = \lambda_{1} y_{1}$   $y_{2} = \lambda_{2} y_{3}$   $y_{3} = \lambda_{3} y_{4}$   $y_{4} = \lambda_{4} y_{5}$   $y_{5} =$ 



| Domanda successiva: come sono fatti TUTTI i politi                                                                                                                   | our p(x) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| tali che $p(A) = 0$ ?                                                                                                                                                |          |
|                                                                                                                                                                      |          |
| [Risposta misteriosa] Som tertti e soli i polinoeni n                                                                                                                | ru Hibai |
| di un polinourio speciale, detto                                                                                                                                     |          |
| polinomio minimo di A, perché è                                                                                                                                      | quello   |
| di grado più basso che annulla,                                                                                                                                      |          |
|                                                                                                                                                                      |          |
| Consequenta: il pol. caratteristico è multiplo del pol. m                                                                                                            | ilu'luo  |
|                                                                                                                                                                      |          |
| Come à fatto il poliusurio uninimo?                                                                                                                                  |          |
|                                                                                                                                                                      |          |
| (Pisposta misteriosa)                                                                                                                                                |          |
| · Ha le stesse radici del polinomio caratteristico, s                                                                                                                | Solo     |
| eventualmente con molteplicità univore (ma sempre                                                                                                                    |          |
| (quiudi se le radici del pol. conatt. sous terte di                                                                                                                  |          |
| allora il minimo coincide con il caratteristico)                                                                                                                     | ,        |
| · Se il pol. caratt. La rachici multiple, queste compai                                                                                                              | oles     |
| nel pol- minimo con molleplicità nguale alla                                                                                                                         |          |
| dimensione del più grande blocco di gordan                                                                                                                           |          |
| (quiudi se è diag., tutte le radici hanno molt.                                                                                                                      | 4        |
| nel polinaurio cuinimo)                                                                                                                                              |          |
|                                                                                                                                                                      |          |
| Esempi À matrice 3x3. Pol. caratt. (1-5)3                                                                                                                            |          |
| Quali sous le possibili forme commiche e quali                                                                                                                       | i pol.   |
| univieni corri spondenti                                                                                                                                             |          |
|                                                                                                                                                                      |          |
| $\begin{pmatrix} 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$                                                                                                            |          |
| $\begin{pmatrix} 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ $\begin{pmatrix} 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$ $\begin{pmatrix} 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$ |          |
|                                                                                                                                                                      |          |
| pol. uniu $(\lambda-5)^{2}$ pol. uniu $(\lambda-5)^{3}$ pol. uniu. $(\lambda$                                                                                        | -5)2     |
|                                                                                                                                                                      |          |
|                                                                                                                                                                      |          |

