15CSE302 Database Management Systems Lecture 24 Dependency Preserving

B.Tech /III Year CSE/V Semester

DBMS Team
Dr G Jeyakumar
Bindu K R
Dr Priyanka Kumar
R. Manjusha
Department of CSE
Amrita School of Engineering

LTPC 2023

Slides Courtesy: Jason Brown

Syllabus

Brief Recap of Previous Lecture

Chase method -Lossless Join Decomposition

Today we'll discuss

Dependency Preserving

Desirable properties of Decomposition

When we decompose a relation schema R with a set of functional dependencies F into $R_1, R_2, ..., R_n$, these properties should be satisfied

■ Non-additive (Lossless) join decomposition:

Otherwise decomposition would result in information loss.

Dependency preservation:

Otherwise, checking updates for violation of functional dependencies may require computing joins, which is expensive.

No redundancy:

The relations R_i preferably should be in either Boyce-Codd Normal Form or 3NF.

Dependency Preservation

Slides Courtesy: Jason Allen

Why Do We Preserve The Dependency?

We would like to check easily that updates to the database do not result in illegal relations being created.

It would be nice if our design allowed us to check updates without having to compute natural joins.

Dependency Preserving : Definition

A decomposition $D = \{R_1, R_2, ..., R_n\}$ of R is dependency-preserving with respect to F if the union of the projections of F on each R_i in D is equivalent to F; that is

if
$$(F_1 \cup F_2 \cup ... \cup F_n)^{\dagger} = F^{\dagger}$$

Dependency Preserving : Definition

In Layman's Term each Functional Dependency specified in F either appears directly in one of the relations in the decomposition.

Dependency Preserving

- It is not necessary that all dependencies from the relation R appear in some relation R_i.
- It is sufficient that the union of the dependencies on all the relations R_i be equivalent to the dependencies on R.

Property of Dependency-Preservation

If a decomposition is not dependency-preserving, therefore, that dependency is lost in the decomposition.

- R(A B C D)
- FD_1 : A \rightarrow B
- \blacksquare FD₂: B \rightarrow C
- \blacksquare FD₃: C \rightarrow D
- **Decomposition:**
 - $R_1(A B C)$

 $R_2(C D)$

- FD₁: A → B
 FD₂: B → C
 FD₃: C → D
- R₂(C_{FD₃}D)

- \blacksquare FD₁: A \rightarrow B
- FD_2 : B \rightarrow C
- FD_3 : $C \rightarrow D$

- Has all 3 functional dependencies!
- Therefore, it's preserving the dependencies

- R(A B C D)
- **■** FD₁: A → B
- \blacksquare FD₂: B \rightarrow C
- \blacksquare FD₃: C \rightarrow D
- Decomposition:

 $R_1(A C D)$

 $R_2(BC)$

- FD_1 : $A \rightarrow B$
- FD₂: B → C
 FD₃: C → D

- FD_1 : A \rightarrow B
- FD_2 : B \rightarrow C
- FD_3 : $C \rightarrow D$

Does not support FD_1 : A \rightarrow B Therefore, it does not preserve the dependencies

- R(ABCDE)
- FD_1 : A → B
- FD_2 : $BC \rightarrow D$
- Decomposition:
 - R₁(A C E)

 $R_2(B C D)$

 $R_3(AB)$

```
    FD₁: A → B
    FD₂: BC → D
```

FD₁: A → B
 FD₂: BC → D

 $R_2(BCD)$

- FD₁: A → B
 FD₂: BC → D
 - R₃(A, B)

```
FD<sub>1</sub>: A \rightarrow B
FD<sub>2</sub>: BC \rightarrow D
```

$$R_{3}(A C E)$$
 $R_{3}(A B)$

Has all 2 functional dependencies!
Therefore, it's preserving the dependencies

Exercise Problem

R(A, B, C, D, E, F) FD_1 : D \rightarrow A, B FD_2 : $C \rightarrow E, F$ **Decomposition:** $R_1(A, C, D)$ $R_2(A, D, B)$ $R_3(D, E, F)$ $R_4(C, E, F)$

Answer

Yes!

This is a dependency-preservation

Example 4 Check if it is Lossless Decomposition and Dependency Preservation

```
Consider the following relationship: R (A,B,C,D)

and following dependencies:

A -> BCD

BC -> AD

D -> B
```

Consider the following relationship: R (A,B,C,D)

and following dependencies:

A -> BCD

BC -> AD

D -> B

Above relationship is already in 3rd NF. Keys are A and BC.

Hence, in the functional dependency, A -> BCD, A is the super key. in second relation, BC -> AD, BC is also a key. but in, D -> B, D is not a key.

Hence we can break our relationship R into two relationships R1 and R2.

Breaking, table into two tables, one with A, D and C while the other with D and B.

R1(A,B,C,D,E) **R2(B,F)** CANDIDATE KEY IS B $A \rightarrow BCDE$ $BC \rightarrow ADE$ \blacksquare D \rightarrow E **R1** 2NF R2(A,B,C,D)R3(D,E)

Normalisation

Steps

- > 1NF
- Removing repeating groups
- > 2NF
- Remove partial dependencies
- > 3NF
- Remove transitive dependencies
- > BCNF
- - Remove non-candidate key dependencies

Project Code	Project Title	Project Manager	Project Budget	Employee No.	Employee Name	Department No.	Department Name	Hourly Rate
PC010	Pensions System	M Phillips	24500	S10001	A Smith	L004	IT	22.00
PC010	Pensions System	M Phillips	24500	S10030	L Jones	L023	Pensions	18.50
PC010	Pensions System	M Phillips	24500	S21010	P Lewis	L004	IT	21.00
PC045	Salaries System	H Martin	17400	S10010	B Jones	L004	IT	21.75
PC045	Salaries System	H Martin	17400	S10001	A Smith	L004	IT	18.00
PC045	Salaries System	H Martin	17400	S31002	T Gilbert	L028	Database	25.50
PC045	Salaries System	H Martin	17400	S13210	W Richards	L008	Salary	17.00
PC064	HR System	KLewis	12250	S31002	T Gilbert	L028	Database	23.25
PC064	HR System	KLewis	12250	S21010	P Lewis	L004	IT	17.50
PC064	HR System	K Lewis	12250	S10034	B James	L009	HR	16.50

1NF Tables: Repeating Attributes Removed

Project Code	Employee No.	Employee Name	Department No.	Department Name	Hourly Rate
PC010	S10001	A Smith	L004	ΙΤ	22.00
PC010	S10030	L Jones	L023	Pensions	18.50
PC010	S21010	P Lewis	L004	IT	21.00
PC045	S10010	B Jones	L004	IT	21.75
PC045	S10001	A Smith	L004	IT	18.00
PC045	S31002	T Gilbert	L028	Database	25.50
PC045	S13210	W Richards	L008	Salary	17.00
PC064	S31002	T Gilbert	L028	Database	23.25
PC064	S21010	P Lewis	L004	IT	17.50
PC064	S10034	B James	L009	HR	16.50

Project Code	Project Title	Project Manager	Project Budget
PC010	Pensions System	M Phillips	24500
PC045	Salaries System	H Martin	17400
PC064	HR System	K Lewis	12250
ndu K. D. Dont of	CCL Amrita Cabaal		

2NF Tables: Partial Key Dependencies Removed

Project Code	Project Title	Project Manager	Project Budget
PC010	Pensions System	M Phillips	24500
PC045	Salaries System	H Martin	17400
PC064	HR System	K Lewis	12250

Employee No.	Employee Name
S10001	A Smith
S10030	L Jones
S21010	P Lewis
S10010	B Jones
S31002	T Gilbert
S13210	W Richards
S10034	B James

Department No.	Department Name
L004	IT
L023	Pensions
L004	IT
L004	IT
L028	Database
L008	Salary
L009	HR

Project Code	Employee No.	Hourly Rate
PC010	S10001	22.00
PC010	S10030	18.50
PC010	S21010	21.00
PC045	S10010	21.75
PC045	S10001	18.00
PC045	S31002	25.50
PC045	S13210	17.00
PC064	S31002	23.25
PC064	S21010	17.50
PC064	S10034	16.50

References

- Hillyer Mike, MySQL AB. <u>An Introduction to Database Normalization</u>, http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html, accessed October 17, 2006.
- Microsoft. <u>Description of the database normalization basics</u>, http://support.microsoft.com/kb/283878, accessed October 17, 2006.
- Wikipedia. <u>Database Normalization.</u>
 http://en.wikipedia.org/wiki/Database_normalization.html, accessed October 17, 2006.
 https://www.db-book.com/db6/index.html
- https://www.youtube.com/watch?v=mfVCesoMaGA&list=PLroEs25KGvwzmvlxYHRhoGTz9w8 LeXek0&index=22

Reference

- Chen, Y. (2005). "Decomposition". Retrieved on March 21, 2010 from http://www.cs.sjsu.edu/faculty/lee/cs157/Decomposition_YuHungChen.ppt
- Kamel, A. "Chapter 11Relational Database Design Algorithms" Retrieved on March 22, 2010 from http://www.cord.edu/faculty/kamel/08F-330/Presentations/ch11.pdf
- Lee, S. "Huffman code and Lossless Decomposition". Retrieved on March 21, 2010 from http://www.cs.sjsu.edu/~lee/cs157b/29SpCS157BL14HuffmanCode&LosslessDecomposition.ppt
- Zaiane, O. (1998) "Dependency Preservation". Retrieved on March 21, 2010 from http://www.cs.sfu.ca/CC/354/zaiane/material/notes/Chapter7/node8.html

Summary

- Normalization basics
- Anomalies

Next Lecture

Functional dependency

Thank You

Happy to answer any questions!!!