THE WIDE ROLE OF INFORMATICS AT UNIVERSITIES

THE AUTHOR

1. Introduction

In the 1970s with the advent of the personal computer we entered into the Digital or Information Age. However it has only been in this century with the ubiquity of the internet, the smartphone, and the internet of things that digital has become truly pervasive. How do universities respond to this massive change? Informatics Europe established in 2018 a new working group to investigate what universities are doing to ensure that non-informatics teaching and research is informed by best practice in Informatics.

To better understand the state of affairs on this topic and discover best practices at European Universities, the working group conducted an online survey. We invited heads and members of Informatics/Computer Science/IT Departments (Schools, Faculties, Institutes) to complete a questionnaire in autumn 2018. The request to fill out our survey was sent to all Informatics Europe members and it was also publicly available from the Informatics Europe website. For the location of the respondents see Figure 1. Forty eight universities from nineteen countries filled it out (see Table 2 in Appendix B).

FIGURE 1. Location of Respondents

Our survey was wide ranging. We wanted to understand how universities valued interdisciplinary research, about teaching Informatics to non-specialist students, what happens in practice with hiring and supporting interdisciplinary academics. We wanted to know about how Data Science in particular fits into universities and finally the structures in place to support interdisciplinary work. The survey questions are in Appendix A.

How Informatics (also called Computer Science or Computing) should position itself in a university is a political decision. The extremes range from primarily being a service department to being primarily a research area that is isolated from other departments.

2. Research

Luis Caires

FIGURE 2. University attitude towards Interdisciplinary research

2.1. When compared with single disciplinary research, does your university encourage or discourage interdisciplinary research?

FIGURE 3. Does your Informatics department encourage or discourage interdisciplinary research?

2.2. Department attitude towards Interdisciplinary research.

Are there interdisciplinary areas of research where your university could (should) enter but aren't due to lack of university support?

<u>Data Science</u>: Applied Statistics, Bioinformatics, Biomedical Data Science, Data Analysis, Digital Health, Predictive/Precision Medicine

<u>Smart Cities</u>: Data-driven Economy, Smart Building, Remote Sensing, , Energy Management <u>Other areas</u>: Design Interaction, Game Research, Quantum Computing, Informatics for Environmental Sciences

n=37

FIGURE 4. Are there interdisciplinary areas of research where your university could enter but aren't due to lack of university support?

2.3. University support.

2.4. Additional support.

FIGURE 5. Are there other players who have helped increase the interdisciplinary research in your university?

2.5. Final thoughts.

3. Teaching

Inmaculada Garcia Fernandez

3.1. **Joint degrees.** 30% of the universities do not run a joint degree that includes Informatics (see Figure 6). Within this group of universities, some specified that all their programs entail technical aspects of IT, such as programming or data base technology. At some of these universities there are plans for some joint programmes, e.g. a Data Science BSc programme that joins CS, Maths and Industrial Engineering, and an MSc in Game Design and Production jointly with the Arts School, but these are collaborative initiatives in new directions, where the CS Department is one of the partners or the Business School has their own small Informatics programme for the new degree.

The remaining 70% of the universities run joint degrees, the most popular joint degrees including Informatics are Business and Economics (Business Informatics; CS and Business; Computing and Economics; Information systems combining Informatics and Business Administration; CS and Management; Informatics and Economics; Informatics and Finance; Economics and Business Informatics; Data Science and Entrepreneurship) followed by Mathematics and Statistics (Informatics and Mathematics; Data Science; Informatics and Applied Mathematics; Informatics and Statistics), Natural and

Does your university run joint degrees (e.g. X and Informatics, Informatics and X, X with Informatics, Informatics with X). If yes, what are they?

n=46

Figure 6. Does your university run joint degrees?

Life Sciences (Bioinformatics; Informatics and Natural Sciences; CS and Physics; AI for Biomedicine; Precision Medicine; Geoinformatics; Chemistry and Informatics; Biology and Informatics; Informatics Health) and Engineering (Computational Engineering; Computer Engineering; Electronics and Information Engineering; Informatics and Electronics; Informatics and Telecommunications; Informatics and Cybernetics; Informatics and Mechatronics; Informatics and Aerospace Engineering; Informatics and Civil Engineering; Informatics and Industrial Engineering). Joint degrees in informatics plus Arts, Design and Media (Technical Communication; Design Informatics; CS and communication, CS and design; ICT and media; Informatics and information science; Informatics and library science) or Law, Political and Social Sciences (Law and Informatics; Social sciences and Informatics; Data mining for political sciences; Informatics and Psychology; Data science and society; Cognitive Science and AI) are not very frequent at the consulted universities, they represent only the 11% of the cases. Table ?? summarizes the joint degrees (BSc. and MSc) offered by one or more universities and the countries where they are located.

3.2. Plans for changes in joint degrees. In general, the situation is quite stable for those universities that are currently offering joint degrees (see Figure 7). Most of the universities not already offering joint degrees show a significative interest in running new joint degrees. The most popular joint degrees to be run in the future are in the subject of Mathematics and Statistics for which at least eight universities have shown interest (IT University of Copenhagen, University of Edinburgh, University of

Level	Joint title	Countries
BSc	Economy and Computer Science	Spain, Switzerland
BSc	Economics and Business Informatics Italy, Switzerland	
BSc	Business informatics	Austria, Czech, Germany
		Italy, Switzerland, UK, Denmark
BSc	Informatics and Management Italy, UK	
BSc	bioinformatics, Czech, Denmark, Italy, Switzerlan	
BSc	Geoinformatics Italy	
BSc	informatics and Mathematics Netherlands, Spain, UK	
BSc	Informatics and Statistics Spain	
BSc	Informatics and Physics	Spain, UK
BSc	Law and informatics	Czech
BSc	Social sciences and informatics	Czech
BSc	Technical Communication	Germany, Denmark
BSc	Computational Engineering	Germany
BSc	Cybernetic	Germany
BSc	Mechatronic	Germany
BSc	INFOTech	Germany
BSc	Information Science /Library science	Germany
BSc	Data Science	Italy, Spain
BSc	ICT and Media	Italy
BSc	Data Science and Entrepreneurship	Netherlands
BSc	Data Science and Society	Netherlands
BSc	Cognitive Science and Art. Intellig.	Netherlands
BSc	Informatics Health	Spain
BSc	Informatics and Engineering Spain, UK	
MSc	Data mining with political Sc.	Italy
MSc	Informatics and Psychology	Italy
MSc	Comput. Sc. and Engineering	Switzerland
MSc	Bioinformatics	Switzerland
MSc	Design Informatics	UK, Denmark

Table 1. Joint degrees (BSc and MSc) and countries

Oviedo, Aalborg University, Paderborn University, University of Malaga, University of Southern Denmark, Humboldt-Universität zu Berlin, followed by the subject of Natural and Life Sciences (University of Bern, University of Stuttgart, University of Lugano, Humboldt-Universität zu Berlin and Law, social and political sciences (RWTH Aachen, Eötvös Loránd University, University of Edinburgh, University of Stuttgart, Paderborn University) and finally the area of Business and Economics (University of Edinburgh, University of Bari Aldo Moro, Tilburg University).

FIGURE 7. Are there plans to run new joint degrees or to close down joint degrees?

FIGURE 8. Who teaches the Informatics component of non-Informatics degrees?

3.3. Teachers for external departments. The results of the survey indicate that half of the universities (50%) give the responsibility of teaching informatics subjects to non-informatics degree students to members of the Informatics department (see Figure 8). In an additional 21% of the universities, the responsibility of teaching Informatics is shared among the Informatics department and other departments involved in the joint degree; some of the universities specify that only the general/basic informatics subjects of non-Informatics degrees are taught by academics in the Informatics department (for example programming) but when the subject is related to any particular contents of the

degree and the informatics, then the subject is taught by the teachers with profile related with the specific degree. For example, the Bioinformatics of the Biotechnology degree is taught by Chemists. In other universities, informatics component of non-informatics degree programmes is sometimes taught by the informatics department, especially the more advanced levels. Some of the informatics departments have not enough human resources to acquire teaching responsibilities for non-Informatics degrees. A significative percentage of the universities consulted (29%) recognize that informatics components of joint degrees are taught by other departments such as Physics, Mathematics, Economics, etc., depending on the subject of the joint degree.

FIGURE 9. What training do teachers of Informatics outside of the Informatics department have?

3.4. Training of Informatics teachers outside of an Informatics department. 27% of the respondents reported that all Informatics taught in their university was taught by members of the Informatics department (see Figure 9). Additionally, 22% of the answers specify that informatics is taught by Computer Scientists. Most of the universities participating in the survey recognize that some of the people who teach informatics for students of non-informatics degree do not have a background in Computer Science (51%). Usually, when the Informatics subjects are taught by non Computer Scientists, the teachers have a background formation in the same degree the students are following; e.g. electrical engineers in the Electrical Engineering Schools, Economics/Management people at the Business School, Physicists or Engineers in Robotics or Industrial Engineering degrees. Additionally, in some universities the basic informatics courses are taught by non Computer Scientists.

3.5. Final thoughts. The range of the answers is really broad. For some universities there exists a clear discipline-responsibility (e.g. Paderborn University), but in others there are no clear policy about which department teaches informatics in non-informatics programmes (e.g. RWTH Aachen); lack of human resources prevents the informatics departments from being in charge of teaching informatics subjects in non-informatics degree programmes (e.g. Utrecht University, Universit Roma Tre, University of Bari "Aldo Moro", Tilburg University)

4. Data Science

Eduard Groller

FIGURE 10. Data science is part of what discipline?

4.1. Data Science's home department.

Has the rise of the Data Science area changed the perception of Informatics overall in your university?

FIGURE 11. Has the perception of Informatics changed with the rise of Data Science?

4.2. Perception of Informatics.

4.3. Final thoughts.

5. STRUCTURE

Susan Eisenbach Chris Sadler

Does your university set up centres for interdisciplinary work?

If yes, for what are these centres?

n=46

FIGURE 12. What are the interdisciplinary centres?

5.1. **Interdisciplinary centres.** 28% of respondents say their university does not have real interdisciplinary centres (see Figure 12). Of those who commented on why the lack of centres only Aalto University actually replied that their management was averse to setting up additional administrative structures. The rest just said there were informal groupings, but nothing officially supported. 46% of all of the interdisciplinary centres are set up primarily for research and only 18% for teaching. The rest are primarily involved with industry.

There are a broad range of centres in the different universities – clearly what expertise is in a university and what the structure of the different departments/schools/faculties impacts which centres are set up in addition to the existing primary structures. The most common centres mentioned with a significant Informatics component are in Computational Science (Delft, Aachen, Southern Denmark, Catalunya, Aalborg), Data Science (Imperial College, P Milano, Lugano, Paderborn, Tilburg), Life Science (Babes-Bolyai, Edinburgh, Humboldt, Lugano, Masaryk, Tarfu), Digital Society (ETH, Zurich, Sofia), Energy (Delft, ETH, TU Wien), and Security(Edinburgh, Imperial, P Milano). There were two universities with the following centres: Biomedical Engineering (EPFL,

Catalunya), Environment/Climate (ETH, Humboldt), Medical Imaging (ETH, Imperial), and Complex Systems (TU Wien, Utrecht). There are a wide range of centres which only mentioned at one university: Health (Delft), FinTech (Zurich), Digital Humanities (Eötvös Loránd), Robotic Surgery (Imperial), Cognitive Ageing (Edinburgh), Bioinformatics (P Milano), and Geoinformatics (P Milano),

FIGURE 13. Why were the centres created?

5.2. Purpose of interdisciplinary centres. 45% of all of the interdisciplinary centres are set up primarily for research and only 18% for teaching (see Figure 13). The rest are primarily involved with industry collaboration or consultancy.

FIGURE 14. Which entity control the interdisciplinary centres?

5.3. Ownership of interdisciplinary centres. Of the 36 respondents, 21 (or 58%) are independent entities within their university, 12 (or 1/3) are co-owned by the departments that are involved and the rest have a single department that owns them (see Figure 14). It is surprising that so many are separate entities as this means if they are not self-funding money will be an issue.

FIGURE 15. Where are the centres located?

5.4. Location of interdisciplinary centres. More than half of the respondents report that the centres they are reporting on are located 'elsewhere' on campus (see Figure 15). although a significant minority described the centres as 'virtual' implying that they actually had no physical location. One contributor distinguished between a large centre that had its own space, and smaller ones that were embedded in departments. Others spoke of large buildings that accommodated many different groups such that a nearby centre may not be associated with a department.

Figure 16. Who funds interdisciplinary centres?

5.5. Funding of interdisciplinary centres. Only 25% of the interdisciplinary centres reported on are funded entirely externally, the funding of the rest being equally split

between entirely internal and mixed sources of funding (see Figure 16). In the majority of cases where funding is entirely internal, the bulk of the actual cash seems to come from central funds with departments providing resources 'in kind'. Frequently, time-limits are expressed (five and six years are mentioned) after which the centre is expected to be self-financing. For the universities that reported on (entirely or partially) external funding, in many cases only government and EU programmes were explicitly cited as sources of funds.

FIGURE 17. Are there changes planned for setting up or closing centres?

- 5.6. Planning for changing interdisciplinary centres. A quarter of respondents report on plans to set up new centres (see Figure 17). Some describe a notion of continuous evolution of interdisciplinary work. Only AI was explicitly mentioned as a target for the development of new centres. Other respondents, although not explicitly planning a new centre, mention the issue of the periodic review of existing centres citing various options including merging centres and/or creating new centres.
- 5.7. **Drivers for new activities.** Nearly one third of respondents reported on internal drivers and pressures bearing on innovative activity (see Figure ??). Amongst the drivers, academic curiosity of staff and students was cited alongside a need for research collaboration. Pressures included demands to increase students enrolment, to modify the curriculum and university initiatives to set up a centre. One university also mentioned limitations of student numbers and limitations on joint degrees that inhibited their development goals.

The other respondents addressed external drivers and pressures. The most significant cited pressure concerned the societal influence of globalisation together with an associated driver on universities to promote innovation and technology transfer (47%). The next most significant pressure is the search for funding driven by government initiatives (30%) whilst other respondents observed the expanding role of Informatics in other disciplines and the pressure on Informatics departments to support these disciplines (20%). Finally, one respondent mentioned competition between universities as an external pressure.

What are the drivers or pressures (both internal to the department /school/ faculty/ university and external to the university) that you see on the horizon that may lead to new activity?

FIGURE 18. What are the drivers for new centres?

Is substantial interdisciplinary work undertaken by academics without any

FIGURE 19. How much support is provided for interdisciplinary work?

5.8. Support for interdisciplinary work. Respondents were evenly split over this question (see Figure 19) although several of those who claimed institutional support were rather equivocal - "I would guess so" and "Some departments ...". Respondents who reported no institutional support divided into those who stipulated some form of external support and those who did it "as a hobby" (25%).

FIGURE 20. Interdisciplinary hirings

5.9. **Strategic vision.** More than half of the respondents reported on centres created from strategic initiatives (see Figure 20). Many of these were oriented towards Informatics themes (FinTech, Crypto-currencies, Data Science) but several other types of centre were mentioned (Learning and Education, Cultural Heritage, Sustainability and Energy).

FIGURE 21. Is there an official strategy to widen the role of Informatics?

5.10. Official strategic vision. Respondents were exactly split on this question (see Figure 21). Of those who answered positively, the emphasis was on multidisciplinarity for about half the respondents. Informatics topics cited by others included Cyber Security, Data-driven Innovation, Intelligent Systems, Applied Computer Science and Digital Humanities. Respondents who answered "No" were not very forthcoming with their comments.

5.11. **Final thoughts.** Nineteen respondents contributed their overall views on the current situation in their universities. One response was wholeheartedly supportive citing good funding, strong collaboration and a sound international reputation as attractive to world-class researchers. Other commentators mentioned limited or non-existent funding

and other, higher priorities (like increased student enrolment) as factors which retarded interdisciplinary inttiatives. Two universities thought that Informatics was too junior a partner in the context of their university to make much impact.

By far the most significant issue concerned the nature of either the central or departmental strategic direction. Three respondents asked for greater freedom for individual researchers to be more creative with ideas, contacts and funding. However, there were ten contributors who asked for better communication between faculties, more structured research management or further internationalisation. A few just wanted more substance to the strategy - "It is only a goal without supporting instruments."; "Still under construction - too early to conclude ...".

APPENDIX A. SURVEY: THE WIDE ROLE OF INFORMATICS AT UNIVERSITIES

(1) Research

- (a) When compared with single disciplinary research, does your university encourage or discourage (or neither) interdisciplinary research? If so how? (e.g. funding, time, physical centres)
 - Encourage
 - Discourage
 - Neither encourage nor discourage
- (b) Does your Informatics department encourage or discourage (or neither) interdisciplinary research? If so how?
 - Encourage
 - Discourage
 - Neither encourage nor discourage
- (c) Are there interdisciplinary areas of research where your university could (should) enter but aren't due to lack of university support? If so what are they?
- (d) Are there other players who have helped increase the interdisciplinary research in your university? For example has a funding body focused a programme on interdisciplinary PhD studentships which academics applied for? If so what external organisations and what programmes have increased interdisciplinary research at your university?
- (e) Please comment on any advantages or disadvantages you perceive of your university's arrangements.

(2) Teaching

- (a) Does your university run joint degrees (e.g. X and Informatics, Informatics and X, X with Informatics, Informatics with X). If yes, what are they?
 - Yes
 - No
- (b) Are there plans to run new joint degrees or to close down joint degrees? If yes what are they?
 - Run new joint degrees
 - Close down joint degrees
 - Neither run nor close down

- (c) Who teaches the Informatics component of non-Informatics degrees? For example, is programming taught to Physicists by members of the Physics department, of the Informatics department or is there a servicing organisation within your university that teaches Physics students to code (or some other mechanism)?
- (d) If Informatics is taught by people not located in an Informatics department are they Computer Scientists by training or research?
 - They are Computer Scientists
 - They are not Computer Scientists
 - Informatics is not taught by people not located in an Informatics department
- (e) Please comment on any advantages or disadvantages you perceive of your university?s arrangements.

(3) People

- (a) Does your university explicitly advertise/hire academics who focus on interdisciplinary research?
 - Yes
 - No
- (b) Are they rooted in a department, have a joint appointment across departments, or rooted in a centre?
 - Rooted in a department
 - Have a joint appointment across departments
 - Rooted in a centre
- (c) How is their quality judged for both appointment and for promotion? For example are they judged according to the criteria of one of the departments or both? Are the people who judge from a single department or both?
- (d) Are there any initiatives planned to hire in interdisciplinary areas?
 - Yes
 - No
- (e) Please comment on any advantages or disadvantages you perceive of your university?s arrangements.

(4) Data Science

- (a) Which department in your university is seen to own this area? Is it Informatics, Statistics, jointly or somewhere else?
 - Informatics Department

- Statistics Department
- Jointly Informatics and Statistics Department
- Somewhere else (please specify)
- (b) Has the rise of this area changed the perception of Informatics overall in your university?
 - Yes
 - No
- (c) Please comment on any advantages or disadvantages you perceive of your university?s arrangements.
- (5) Structure
 - (a) Does your university set up centres for interdisciplinary work? If yes can you say which they are?
 - \bullet Yes
 - No
 - (b) Are they for research, translation (technology transfer), consultancy, and/or teaching?
 - Research
 - Translation (technology transfer)
 - Consultancy
 - Teaching
 - (c) Are they rooted in a single department (say which one), owned by the departments involved or independent?
 - Rooted in a single department
 - Owned by the departments involved
 - Independent
 - (d) Are they physically located within a department, nearby or elsewhere on campus?
 - Within a department
 - Nearby a department
 - Elsewhere on campus
 - (e) How are any centres funded? Does the university provide any money to startup or are they funded by external money? Does the university provide longer term money?

- (f) Are there plans to set up more centres or to close centres? If so what will they be?
 - Set up more centres
 - Close centres
 - Neither set up nor close
- (g) What are the drivers or pressures (both internal to the department/school/faculty/universit and external to the university) that you see on the horizon that may lead to new activity?
- (h) Is substantial interdisciplinary work undertaken by academics without any institutional or department support?
 - Without any institutional or department support
 - With an institutional or department support
- (i) Are there any centres for interdisciplinary work that have been set up due to a strategic decision by the university or department/school/faculty rather than as supporting activities of existing faculty? If so which centres?
- (j) Does your university have something in their official strategy to widen the role of Informatics or to encourage interdisciplinary research? If so what is it?
- (k) Please comment on any advantages or disadvantages you perceive of your university?s arrangements.
- (1) Is there anything we have missed in the survey that you wish to tell us?

APPENDIX B. THE PARTICIPANTS

	Country	University	
1.	Austria	TU Wien	
2.	Belgium	Université Catholique de Louvain	
3.	Bulgaria	Sofia University St. Kliment Ohridski	
4.	Czech Republic	Masaryk University	
5.	Denmark	Aalborg University	
		IT University of Copenhagen	
		University of Southern Denmark	
6.	Estonia	Tartu University	
7.	Finland	Aalto University	
8.	Germany	RWTH Aachen	
		Humboldt-Universität zu Berlin	
		Paderborn University	
		University of Stuttgart	
9.	Hungary	Eötvös Loránd University	
10.	Ireland	Technological University Dublin	
11.	Italy	University of Bari Aldo Moro	
		Università di Torino	
		Alma Mater Studiorum - Universit di Bologna	
		*Università degli Studi di Milano	
		Politecnico di Milano	
		Università Roma Tre	
		Università degli Studi di Milano-Bicocca	
		*Università degli Studi "G. d' Annunzio" Chieti Pescara	
12.	Latvia	University of Latvia	
10	AT .1 1 1	Transport and Telecommunication University	
13.	Netherlands	Delft University of Technology	
		*Tilburg University	
1.4	Dt1	Utrecht University	
14.	Portugal Romania	Universidade Nova de Lisboa	
15.		Babes-Bolyai Univ. Cluj-Napoca	
16.	Spain	*University of Almeria Universitat Politecnica de Catalunya	
		*University of Extremadura *University Jaume I	
		*University of Málaga	
		*Complutense University of Madrid	
		*University Oviedo	
		*Universidad de Valladolid	
17.	Sweden	Chalmers — Gothenburg University	
18.	Switzerland	University of Bern	
10.	SWIDZGIIGIIG	EPFL	
		University of Lugano	
		ETH Zürich	
		University of Zürich	
19.	UK	Cambridge University	
		University of Edinburgh	
		Imperial College London	
		• 0	
		University of Oxford	

Table 2. Participating Universities – non IE members are marked with (\ast)