# 《芯片设计自动化与智能优化》 Routing

The slides are partly based on Prof. David Z. Pan's lecture notes at UT Austin.

Yibo Lin

**Peking University** 

#### Outline

- What is routing
- Tree generation
  - Minimum Steiner tree
  - FLUTE
  - SALT

#### Routing

- Maze routing
- Speedup maze routing
- Global routing and detailed routing
- Sequential routing
- Concurrent routing

## What is Routing





# What is Routing



Netlist



Placement and Routing

## What is Routing



[Curtesy Umich]



A zoom-in 3D view [curtesy samyzaf]

#### **Challenging problem**

- 10+ metal layers
- Millions of nets
- May be highly congested
- Minimize wirelength

#### Routing Problem Formulation

- Apply it <u>after floorplanning/placement</u>
- Input
  - Netlist
  - Timing budget for, typically, critical nets
  - Locations of blocks and locations of pins

#### Output

Geometric layouts of all nets

#### Objective

- Minimize the total wire length, the number of vias, or just completing all connections without increasing the chip area.
- Each net meets its timing budget



#### The Routing Constraints

- Placement constraint
- Number of routing layers
- Delay constraint
- Meet all geometrical constraints (design rules)
- Physical/Electrical/Manufacturing constraints:
  - Crosstalk
  - Process variations, yield, or lithography issues?





#### Steiner Tree

- For a multi-pin net, we can construct a spanning tree to connect all the pins together.
- But the wire length will be large.
- Better use Steiner Tree:

A tree connecting all pins and some additional nodes (Steiner nodes).

Rectilinear Steiner Tree:

Steiner tree in which all the edges run horizontally and vertically.



#### Routing Problem is Very Hard

- Minimum Steiner Tree Problem:
  - Given a net, find the Steiner tree with the minimum length.
  - This problem is NP-hard!
- May need to route tens of thousands of nets simultaneously without overlapping.
- Obstacles may exist in the routing region.

#### Outline

- What is routing
- **■** Tree generation
  - Minimum Steiner tree
  - FLUTE
  - SALT

#### Routing

- Maze routing
- Global routing and detailed routing
- Sequential routing
- Concurrent routing

#### Steiner Tree based Algorithms

- For multi-pin nets.
- Find Steiner tree instead of shortest path.
- Construct a Steiner tree from the minimum spanning trees (MST)



#### **FLUTE Overview**

- Solve Rectilinear Steiner minimal tree (RSMT) problem:
  - Given pin positions, find a rectilinear Steiner tree with minimum WL
- Basic idea:
  - LUT to handle small nets
  - Net breaking technique to recursively break large nets
- Handling of small nets (with a few pins) is extremely well:
  - Optimal and extremely efficient for nets up to 7 pins
- So FLUTE is especially suitable for VLSI applications:
  - Over all 1.57 million nets in 18 IBM circuits [ISPD 98]
    - Average error is 0.72%
    - Runtime faster than minimum spanning tree algorithm

## Preliminary

- $\blacksquare$  A net is a set of n pins
- Degree of a net is the number of pins in it
- Consider routing along <u>Hanan</u> grid
- **Define edge lengths**  $h_i$  and  $v_i$ :



## Wirelength Vector (WV)

Observation: WL can be written as a linear combination of edge lengths with positive integral coefficients



- WL can be expressed as a vector of the coefficients
- Called Wirelength Vector

#### Potentially Optimal WV (POWV)

- To find optimal wirelength, can enumerate all WVs
- However, most WVs can never produce optimal WL



Potentially Optimal Wirelength Vector (POWV) is a WV that may produce the optimal wirelength

## # of POWVs is Very Small

- For any net,
  - # of possible routing solutions is huge
  - # of WVs is much less
  - # of POWVs is very small
- For example, only 2 POWVs for the net below:



#### Sharing of POWVs Among Nets

- To find optimal WL, we can pre-compute all POWVs and store them in a lookup table
- However, there are infinite number of different nets

- We try to group together nets that can share the same set of POWVs
- ► For example, these two nets share the same set of POWVs:



#### Grouping by Vertical Sequence

 $\blacksquare$  Define vertical sequence  $s_1s_2...s_n$  to be the list of pin indexes sorted in y-coordinate



Lemma: The set of all degree-n nets can be divided into n! groups according to the vertical sequence such that all nets in each group share the same set of POWVs

## Steps in FLUTE WL Estimation

1. Input a net



2. Find  $h_i$ 's and  $v_i$ 's



3. Find vertical sequence



4. Get POWVs from LUT

5. Find WL for each POWV and return the best

HPWL + 
$$h_2 = 22$$
  $\leftarrow$  return  
HPWL +  $v_2 = 26$ 

- Remark:
- One RSMT topology can also be pre-computed and stored for each POWV
- Impractical for high-degree nets (degree >= 9)
  - Other technique to break down high-degree nets

## SALT – Steiner Shallow-Light Tree Algorithm



## SALT – Steiner Shallow-Light Tree Algorithm

- Trade-offs between path length and tree weight
  - Path length: implies wire delay
  - Tree weight: implies routing resource usage (routability), power consumption, cell delay and wire delay
- Spanning/Steiner  $(\bar{\alpha}, \bar{\beta})$ -shallow-light tree (SLT) T
  - Shallowness  $\alpha = \max\{\frac{d_T(r,v)}{d_G(r,v)} | v \in V \setminus \{r\}\} \le \bar{\alpha}$ 
    - $d_G(r, v)$ : distance from v to root r on graph/metric G
  - Lightness  $\beta = \frac{w(T)}{w(MST(G))} \le \bar{\beta}$

[ICCAD2017 Best Paper]

## SALT – Steiner Shallow-Light Tree Algorithm

|                     | Shallowest                       | Lightest                       | Shallow-light           |
|---------------------|----------------------------------|--------------------------------|-------------------------|
| Spanning            | Spanning SPT $(O(m + n \log n))$ | $MST\left(O(m+n\log n)\right)$ | Spanning SLT            |
| Steiner             | Steiner SPT (NP-hard)            | SMT (NP-hard)                  | Steiner SLT             |
| Rectilinear Steiner | RSMA (NP-hard)                   | RSMT (NP-hard)                 | Rectilinear Steiner SLT |



**Spanning SPT** 

$$\alpha = \frac{13}{13}, \beta = \frac{182}{39}$$
  $\alpha = \frac{13}{13}, \beta = \frac{54}{39}$ 

**RSMA** 

$$\alpha = \frac{13}{13}, \beta = \frac{54}{39}$$

RMST/RSMT

$$\alpha = \frac{39}{13}, \beta = \frac{39}{39}$$

**Spanning SLT** 

$$\alpha = \frac{17}{13}, \beta = \frac{61}{39}$$

Steiner SLT

$$\alpha = \frac{17}{13}, \beta = \frac{61}{39}$$
  $\alpha = \frac{17}{13}, \beta = \frac{44}{39}$ 

#### **Previous Work**

- Spanning  $(1 + \epsilon, O(\frac{1}{\epsilon}))$ -SLT
  - ABP/BRBC  $(1 + 2\epsilon, O(\frac{2}{\epsilon}))$  [Awerbuch, TR'91] [Cong, TCAD'92]
  - KRY  $(1 + \epsilon, O(\frac{2}{\epsilon}))$  [Khuller, SODA'93, Algorithmica'95]
- Steiner  $(1 + \epsilon, O(\log \frac{1}{\epsilon}))$ -SLT
  - ES  $(1 + 2\epsilon, 4 + 2 \left\lceil \log \frac{1}{\epsilon} \right\rceil)$  [Elkin, FOCS'11, SICOMP'15]
  - PD combines SPT and MST [Alpert, TCAD'95]
  - Bonn trades off between cell and wire delay [Scheifele, ICCAD'16, Algorithmica'17]

#### **SALT**

Steiner SLT on a general graph

$$-(1+\epsilon,2+\left\lceil\log\frac{2}{\epsilon}\right\rceil)$$
-SLT

- Runtime complexity
  - $-O(n^2) \rightarrow O(n \log n)$  in Manhattan space

#### SALT

- lacktriangle Construct **MST**  $T_M$
- lacktriangle Identify **breakpoints** B during **DFS** on  $T_M$ , which results to forest F
- Obtain Steiner SPT  $T_B$  on  $G[B \cup \{r\}]$ , and  $T = F \cup T_B$  is the output



# SALT – DFS and Breakpoints

- Make sure  $d_T(r, v) \le \bar{\alpha} \cdot d_G(r, v)$ 
  - Breakpoints will be connected to r by shortest paths
  - Other vertexes also benefit



## SALT – Light Steiner SPT $T_B$

- A full balanced binary tree
- Constructed level-by-level from bottom
- Merge neighboring vertexes pair by pair into Steiners in each level
  - Determine Steiner by minimizing edge weights while preserving shortest paths
  - Select a light matching for pairing up along (Hamiltonian) circle





# SALT – Example on Manhattan Space



#### **Rectilinear SALT**

- $\blacksquare$  Construct **RSMT**  $T_M$  by **FLUTE** [Chu, TCAD2008]
- Get breakpoints B and forest F
- Obtain **RSMA**  $T_B$  on  $G[B \cup \{r\}]$  by **CL** [Cordova,TR1994], and  $T = F \cup T_B$  is the output



## Comparison between Different Algorithms



## Summary for Tree Generation

- Minimum Steiner tree
  - NP problem
- **■** FLUTE
  - LUT-based method
  - Work well on nets with degrees <= 7</p>
- SALT
  - Balance shallowness and lightness

#### Outline

- What is routing
- Tree generation
  - Minimum Steiner tree
  - FLUTE
  - SALT

#### Routing

- Maze routing
- Global routing and detailed routing
- Sequential routing
- Concurrent routing

#### Maze Routing Problem

- Input
  - A planar rectangular grid graph.
  - ─ Two points S and T on the graph.
  - Obstacles modeled as blocked vertices.
- Objective
  - Find the shortest path connecting S and T.
- This technique can be used in global or detailed routing problems.

## Grid Graph



**Area Routing** 



Grid Graph (Maze)



Simplified Representation

# Maze Routing



## Lee's Algorithm

- Basic idea
- A Breadth-First Search (BFS) of the grid graph.
- Always find the shortest path possible.
- Consists of two phases:
  - Wave Propagation
  - Retrace

| S <sub>0</sub> | 1 | 2 | 3              |
|----------------|---|---|----------------|
| 1              | 2 | 3 |                |
|                | 3 | 4 | 5              |
| 5              | 4 | 5 | <sup>T</sup> 6 |

#### **Wave Propagation**

- At step k, all vertices at Manhattan-distance k from S are labeled with k.
- A Propagation List (FIFO) is used to keep track of the vertices to be considered next.



#### Retrace

- Trace back the actual route.
- Starting from *T*.
- At vertex with k, go to any vertex with label k-1.

| So  | 1   | 2      | 3              |
|-----|-----|--------|----------------|
| - 🕇 | -2← | _<br>ე |                |
|     | 3   | 4      | 5              |
| 5   | 4   | 5←     | <sup>⊤</sup> 6 |

Final labeling

# How many grids visited using Lee's algorithm?

| 13 | 12 | 11 | 10 |    |    | 7  | 6  | 7  | 7  |    |   | 9 | 10 |    |    |    |
|----|----|----|----|----|----|----|----|----|----|----|---|---|----|----|----|----|
| 12 | 11 | 10 | 9  |    |    | 6  | 5  | 6  | 7  |    |   | 8 | 9  | 10 | 11 | 12 |
| 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  |    |    |    |   | 7 | 8  | 9  | 10 | 11 |
| 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  |    |    |    |   | 6 | 7  | 8  | 9  | 10 |
|    |    | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 2  | 3  | 4 | 5 | 6  | 7  | 8  | 9  |
|    |    | 6  | 5  | 4  | 3  | 2  | 1  | S  | 1  | 2  | 3 | 4 | 5  | 6  | 7  | 8  |
| 9  | 8  | 7  | 6  |    |    | 3  | 2  | 1  | 2  | 3  | 4 | 5 | 6  | 7  | 8  | 9  |
| 10 | 9  | 8  | 7  |    |    |    |    |    | 3  |    | 5 | 6 | 7  | 8  | 9  | 10 |
| 11 | 10 | 9  | 8  | 9  | 10 |    |    |    |    | 7  | 6 | 7 | 8  | 9  | 10 | 11 |
| 12 | 11 |    |    | 10 | 11 | 12 | 11 | 10 | 9  | 8  |   |   | 9  | 10 | 11 | 12 |
| 13 | 12 |    |    | 11 | 12 | 13 | 12 | 11 | 10 | 9  |   |   | 10 | 11 | 12 | 13 |
|    |    |    |    | 12 | 13 |    | 13 | 12 | 11 | 10 |   |   | 11 | 12 | 13 |    |
|    |    |    |    | 13 |    |    |    | 13 | 12 | 11 |   |   | 12 | 13 |    |    |
|    |    |    |    |    |    |    |    |    | 13 | 12 | T |   | 13 |    |    |    |
|    |    |    |    |    |    |    |    |    |    | 13 |   |   |    |    |    |    |
|    |    |    |    |    |    |    |    |    |    |    |   |   |    |    |    |    |

#### Time and Space Complexity

- lacktriangle For a grid structure of size  $w \times h$ :
  - Time per net = O(wh)
  - Space =  $O(wh \log wh)$  ( $O(\log wh)$  bits are needed to store each label.)
- For a  $4000 \times 4000$  grid structure:
  - 24 bits per label
  - Total 48 Mbytes of memory!

# Improvement to Lee's Algorithm

- Improvement on memory:
  - Aker's Coding Scheme
- Improvement on run time:
  - Starting point selection
  - Double fan-out
  - Framing
  - Hadlock's Algorithm
  - Soukup's Algorithm

### Aker's Coding Scheme to Reduce Memory Usage

- For the Lee's algorithm, labels are needed during the retrace phase.
- But there are only two possible labels for neighbors of each vertex labeled i, which are, i-1 and i+1.
- So, is there any method to reduce the memory usage?
- One bit (independent of grid size) is enough to distinguish between the two labels.



Sequence:

..... (what sequence?)

(Note: In the sequence, the labels before and after each label must be different in order to tell the forward or the backward directions.)

### Aker's Coding Scheme to Reduce Memory Usage

- For the Lee's algorithm, labels are needed during the retrace phase.
- But there are only two possible labels for neighbors of each vertex labeled i, which are, i-1 and i+1.
- So, is there any method to reduce the memory usage?
- One bit (independent of grid size) is enough to distinguish between the two labels.

| S | 0 | 1 | 0              |
|---|---|---|----------------|
| 0 | 1 | 0 |                |
|   | 0 | 1 | 0              |
| 0 | 1 | 0 | 1 <sub>T</sub> |

Correct?

### Aker's Coding Scheme to Reduce Memory Usage

- For the Lee's algorithm, labels are needed during the retrace phase.
- But there are only two possible labels for neighbors of each vertex labeled i, which are, i-1 and i+1.
- So, is there any method to reduce the memory usage?
- One bit (independent of grid size) is enough to distinguish between the two labels.

| S | 1 | 1 | 0              |
|---|---|---|----------------|
| 1 | 1 | 0 |                |
|   | 0 | 0 | 1              |
| 1 | 0 | 1 | 1 <sub>T</sub> |

#### Schemes to Reduce Run Time

1. Starting Point Selection:





2. Double Fan-Out:



3. Framing:



#### Hadlock's Algorithm to Reduce Run Time

- Detour number
- For a path P from S to T, let detour number d(P) = # of grids directed away from T, then



lacksquare So minimizing L(P) and d(P) are the same.

## Hadlock's Algorithm

- Label vertices with detour numbers.
- Vertices with smaller detour number are expanded first.
- Therefore, favor paths without detour.

| 3 | 2     | 2            | 2 | 2 | 2        | 2 |
|---|-------|--------------|---|---|----------|---|
| 2 | 1     | 1            |   | 2 | 2        |   |
|   | S. O. | 0            |   | 2 |          |   |
| 1 | 0     | 0            |   |   |          |   |
| 1 | Q.    | <del>.</del> |   | 2 | $\vdash$ |   |
| 2 | 1     | <u>ب، اب</u> |   | 2 | 2 2      |   |
| 3 | 2     | 2            | 2 | 2 | ·2       |   |

### Soukup's Algorithm to Reduce Run Time

- Basic idea
- Soukup's Algorithm: BFS+DFS
  - Explore in the direction towards the target without changing direction. (DFS)
  - If obstacle is hit, search around the obstacle. (BFS)
- May get Sub-Optimal solution.

|   | 2 |   |          |       |  |
|---|---|---|----------|-------|--|
| 2 | 1 |   |          |       |  |
| 1 | S | 1 |          |       |  |
| 1 |   | 1 |          |       |  |
| 1 | ė | • | $\times$ | Т     |  |
| 2 | 1 | 1 | X        |       |  |
|   | 2 | 2 |          | <br>• |  |

# How many grids visited using Hadlock's?



# How many grids visited using Soukup's?



#### Multi-Pin Nets

- For a k-pin net, connect the k pins using a rectilinear Steiner tree with the shortest wire length on the maze.
- This problem is NP-Complete.
- Just want to find some good heuristics.

- This problem can be solved by extending the Lee's algorithm:
  - Connect one pin at a time, or
  - Search for several targets simultaneously, or
  - Propagate wave fronts from several different sources simultaneously.

#### Extension to Multi-Pin Nets

#### 1st Iteration

| S <sub>0</sub> | 4 | 2 | <u>3</u> |
|----------------|---|---|----------|
|                | 2 | 3 |          |
|                | 3 | Τ |          |
|                |   |   |          |

#### 2nd Iteration

| <sup>S</sup> 0 | <b>မှ</b> | Ö.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SO |
|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                | 1         | · 🕶 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1  |
|                | 2         | $^{	extstyle 	e$ | 2  |
|                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

## Speedup Maze Routing

- Pattern routing
  - Most nets are simple, e.g., L-shape
  - Can connect >80% nets
  - [NCTUgr, TCAD2013]



- Coarsening search steps
  - Only check grids that can make a turn
  - [Dr.CU, ICCAD2019]



#### Mikami & Tabuchi's Algorithm

- Mikami & Tabuchi, "A computer program for optimal routing of printed circuit connectors," IFIP, H47, 1968.
- Every grid point is an escape point.



#### Line Probing

- ► Keep two lists of line segments, *slist* and *tlist*, for the source and the target respectively.
- If a line segment from *slist* intersects with one from *tlist*, a route is found; else, new line segments are generated from the escape points.



### Line Probing

■ We can use all the grid vertices on the line segments as escape points:



Always find a path but may not be optimal.

### Hightower's Algorithm

- Hightower, "A solution to line-routing problem on the continuous plane," DAC-69.
- · A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.



# Line Probing

■ We can pick just one escape point from each line segment.



May fail to find a path even if one exists.

#### Features of Line-Search Algorithms



• Time and space complexities: O(L), where L is the # of line segments generated.

### Comparison of Algorithms

|                           | l l   | /laze routir | Line search |        |           |
|---------------------------|-------|--------------|-------------|--------|-----------|
|                           | Lee   | Soukup       | Hadlock     | Mikami | Hightower |
| Time                      | O(MN) | O(MN)        | O(MN)       | O(L)   | O(L)      |
| Space                     | O(MN) | O(MN)        | O(MN)       | O(L)   | O(L)      |
| Finds path if one exists? | yes   | yes          | yes         | yes    | no        |
| Is the path shortest?     | yes   | no           | yes         | no     | no        |
| Works on grids or lines?  | grid  | grid         | grid        | line   | line      |

Soukup, Mikami, and Hightower all adopt some sort of line-search operations ⇒ cannot guarantee shortest paths.



# Maze vs A\* routing (I)



# Maze vs A\* routing (II)



#### Shortest Path Based Algorithms

- For 2-terminal nets only.
- Use Dijkstra's algorithm to find the shortest path between the source s and the sink t of a net.
- Different from Maze Routing:
  - The graph need not be a rectangular grid.
  - The edges need not be of unit length.

#### Dijkstra's Shortest Path Algorithm

- Label of vertices = Shortest distance from S.
- Let P be the set of permanently labeled vertices.

- Initially,
  - P = Empty Set.
  - Label of S = 0, Label of all other vertices = infinity.
- While (T is not in P) do
  - Pick the vertex v with the min. label among all vertices not in P.
  - Add v to P.
  - Update the label for all neighbours of v.

## Dijkstra's Algorithm: Example



### Typical Routing Flow – Divide and Conquer



# Typical Routing Flow – Divide and Conquer



**Detailed routing** 



Fine-grain routing, larger solution space Need to handle detailed design rules

### Sequential Routing

- Algorithm:
- 1. Graph modeling of the routing regions
- 2. For each net k:
  - -2.1 Find a route r for net k on the graph.
  - -2.2 For each edge e in r:
    - 2.2.1 capacity(e) = capacity(e) 1
    - 2.2.2 if capacity(e) < 0 then cost(e) =  $\alpha \times$  cost(e)

We can use different methods to do this.

#### Net Ordering

- In sequential approach, we need some net ordering.
- A bad net ordering will increase the total wire length, and may even prevent completion of routing for some circuits which are indeed routable.



#### Criteria for Net Ordering

- Criticality of net critical nets first.
- Estimated wire length short nets first since they are less flexible.
- Consider bounding rectangles (BR):



Which one should be routed first and why? (Note that this rule of thumb is not always applicable.)

## Net Ordering (cont'd)

- Order the nets in the ascending order of the # of pins within their bounding boxes.
- Order the nets in the ascending (or descending??) order of their lengths.
- Order the nets based on their timing criticality.



routing ordering: a(0) -> b(1) -> d(2) -> c(6)

A mutually intervening case:



b prevents routing of a



#### Rip-up and Re-route Scheme

- It is impossible to get the optimal net ordering.
- If some nets are failed to be routed, the rip-up and re-route technique can be applied:



#### Recent Negotiation Congestion based Routers

- Liu, Wen-Hao, et al. "NCTU-GR 2.0: Multithreaded collision-aware global routing with bounded-length maze routing." *IEEE Transactions on computer-aided design of integrated circuits and systems* 32.5 (2013): 709-722.
- Li, Haocheng, et al. "<u>Dr. CU 2.0: A scalable detailed routing framework with correct-by-construction design rule satisfaction</u>." 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2019.
- Murray, Kevin E., et al. "Vtr 8: High-performance cad and customizable fpga architecture modelling." ACM Transactions on Reconfigurable Technology and Systems (TRETS) 13.2 (2020): 1-55.

## Concurrent Approach

- Consider all the nets simultaneously.
- Formulate as an integer program.
- Given

| Nets  | Set of possible routing trees      |  |  |  |
|-------|------------------------------------|--|--|--|
| net 1 | $T_{11}, T_{12}, \ldots, T_{1k_1}$ |  |  |  |
| :     | •                                  |  |  |  |
| net n | $T_{n1}, T_{n2}, \ldots, T_{nk_n}$ |  |  |  |

 $L_{ij}$  = Total wire length of  $T_{ij}$  $C_e$  = Capacity of edge e

Determine variable  $x_{ij}$  s.t.  $x_{ij} = 1$  if  $T_{ij}$  is used  $x_{ij} = 0$  otherwise.

## Integer Programming

Min. 
$$\sum_{i=1}^{n} \sum_{j=1}^{k_i} L_{ij} \times x_{ij}$$
s.t. 
$$\sum_{j=1}^{k_i} x_{ij} = 1 \quad \text{for all } i = 1, ..., n$$

$$\sum_{i,j \text{ s.t. } e \in T_{ij}} x_{ij} \leq C_e \quad \text{for all edge } e$$

$$x_{ij} = 0 \text{ or } 1 \quad \forall i, j$$

## Example



#### Solution



Min. 
$$2x_{11} + 3x_{12} + 3x_{13} + 2x_{21} + 3x_{22} + 3x_{23} + 2x_{31} + 2x_{32}$$

$$\begin{cases} x_{11} + x_{12} + x_{13} = 1; \\ x_{21} + x_{22} + x_{23} = 1; \\ x_{31} + x_{32} = 1; \end{cases}$$
What are the constraints for edge capacity?
$$\begin{cases} x_{1j} = 0 \text{ or } 1 \quad \forall i, j; \quad x_{12} + x_{13} + x_{21} + x_{23} + x_{31} < C_a \end{cases}$$

## Integer Programming Approach

- Standard techniques to solve IP.
- No net ordering. Give global optimum.
- Can be extremely slow, especially for large problems.
- To make it faster, a fewer choices of routing trees for each net can be used. May make the problem infeasible or give a bad solution.
- Determining a good set of choices of routing trees is a hard problem by itself.

## Hierarchical Approach to Speed Up IP

- Large Integer Programs are difficult to solve.
- Hierarchical Approach reduces global routing to routing problems on a 2x2 grid.
- Decompose recursively in a top-down fashion.
- Those 2x2 routing problems can be solved optimally by integer programming formulation.

## Example

Solving a 2xn routing problem hierarchically.



# Types of 2x2 Routing Problems



#### Objective Function of 2x2 Routing

- Possible Routing Trees:
- T11, T12, T21, T22,...., T11,1,..., T11,4
- # of nets of each type: n1, ..., n11
- Determine xij: # of type-i nets using Tij for routing.
- yi: # of type-i nets that fails to route.

$$y_i + \sum_{j} x_{ij} = n_i$$
  $i = 1,...,11$   
Want to minimize  $\sum_{i=1}^{11} y_i$ .

## Constraints of 2x2 Routing



#### Constraints on Edge Capacity:

$$\sum_{i,j \text{ s.t. } a \in T_{ij}} x_{ij} \leq C_a$$

$$\sum_{i,j \text{ s.t. } b \in T_{ij}} x_{ij} \leq C_b$$

$$\sum_{i,j \text{ s.t. } c \in T_{ij}} x_{ij} \leq C_c$$

$$\sum_{i,j \text{ s.t. } d \in T_{ij}} x_{ij} \leq C_d$$

#### Constraints on # of Bends in a Region:

$$\begin{aligned} &\sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } ab} x_{ij} \leq B_{ab} \\ &\sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } bc} x_{ij} \leq B_{bc} \\ &\sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } cd} x_{ij} \leq B_{cd} \\ &\sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } da} x_{ij} \leq B_{da} \end{aligned}$$

#### Pop Quiz

- If you two nets, one with 2 pins, the other with 4 pins with a zero capacity edge
  - What is going to be the result?



$$y_i + \sum_j x_{ij} = n_i \quad i = 1,...,11$$
Want to minimize 
$$\sum_{i=1}^{11} y_i.$$

Type 1



Type 11







## ILP Formulation of 2x2 Routing

$$\begin{aligned} &\text{Min. } \sum_{i=1}^{11} y_i \\ &\text{s.t. } y_i + \sum_j x_{ij} = n_i \quad i = 1, \dots, 11 \\ &x_{ij} \geq 0, \ y_i \geq 0 \quad \forall i, \ j \\ &\sum_{i,j \text{ s.t. } a \in T_{ij}} x_{ij} \leq C_a \quad \sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } ab} x_{ij} \leq B_{ab} \\ &\sum_{i,j \text{ s.t. } b \in T_{ij}} x_{ij} \leq C_b \quad \sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } bc} x_{ij} \leq B_{bc} \\ &\sum_{i,j \text{ s.t. } c \in T_{ij}} x_{ij} \leq C_c \quad \sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } cd} x_{ij} \leq B_{cd} \\ &\sum_{i,j \text{ s.t. } d \in T_{ij}} x_{ij} \leq C_d \quad \sum_{i,j \text{ s.t. } T_{ij} \text{ has a bend in region } da} x_{ij} \leq B_{da} \end{aligned}$$

- $\blacksquare$  Only 39 variables (28  $x_{ij}$  and 11  $y_i$ ) and 19 constraints (plus 38 non-negative constrains).
- Problems of this size are usually not too difficult to solve.

# Multi-Commodity Flow

Strongly NP-Complete for integer flows





## Multi-Commodity Flow based Routing

#### An example

- Capacity of each edge in G is 2
- Each edge in G becomes a pair of bi-directional arcs in F

$$-n_1 = \{a, l\}$$

$$-n_2 = \{i, c\}$$

$$-n_3 = \{d, f\}$$

$$-n_4 = \{k, d\}$$

$$-n_5 = \{g, h\}$$

$$-n_6 = \{b, k\}$$



#### Flow Network

- Each arc has a cost based on its length
  - Let  $x_e^k$  denote a binary variable for arc e w.r.t. net k
  - $-x_e^k$  means net k uses arc e in its route
  - Total number of x-variables:  $16 \times 2 \times 6 = 192$

| arc                | cost | arc    | cost | arc    | cost | arc    | cost |
|--------------------|------|--------|------|--------|------|--------|------|
| $\overline{(a,b)}$ | 4    | (b,a)  | 4    | (b,c)  | 8    | (c,b)  | 8    |
| (d, h)             | 4    | (h, d) | 4    | (e, f) | 5    | (f, e) | 5    |
| (f,g)              | 3    | (g, f) | 3    | (i, j) | 4    | (j, i) | 4    |
| (j, k)             | 5    | (k, j) | 5    | (k, l) | 3    | (l,k)  | 3    |
| (a,d)              | 7    | (d, a) | 7    | (d,i)  | 5    | (i,d)  | 5    |
| (b, e)             | 4    | (e,b)  | 4    | (e,h)  | 3    | (h, e) | 3    |
| (h, j)             | 5    | (j,h)  | 5    | (f,k)  | 8    | (k, f) | 8    |
| (c,g)              | 4    | (g,c)  | 4    | (g,l)  | 8    | (l,g)  | 8    |



#### **ILP Objective Function**

#### Minimize

$$\begin{aligned} &4(x_{a,b}^1+\dots+x_{a,b}^6)+4(x_{b,a}^1+\dots+x_{b,a}^6)+8(x_{b,c}^1+\dots+x_{b,c}^6)+\\ &8(x_{c,b}^1+\dots+x_{c,b}^6)+4(x_{d,h}^1+\dots+x_{d,h}^6)+4(x_{h,d}^1+\dots+x_{h,d}^6)+\\ &5(x_{e,f}^1+\dots+x_{e,f}^6)+5(x_{f,e}^1+\dots+x_{f,e}^6)+3(x_{f,g}^1+\dots+x_{f,g}^6)+\\ &3(x_{g,f}^1+\dots+x_{g,f}^6)+4(x_{i,j}^1+\dots+x_{i,j}^6)+4(x_{j,i}^1+\dots+x_{j,i}^6)+\\ &5(x_{j,k}^1+\dots+x_{j,k}^6)+5(x_{k,j}^1+\dots+x_{k,j}^6)+3(x_{k,l}^1+\dots+x_{k,l}^6)+\\ &3(x_{l,k}^1+\dots+x_{l,k}^6)+7(x_{a,d}^1+\dots+x_{d,d}^6)+7(x_{d,a}^1+\dots+x_{d,a}^6)+\\ &5(x_{d,i}^1+\dots+x_{d,i}^6)+5(x_{i,d}^1+\dots+x_{i,d}^6)+4(x_{b,e}^1+\dots+x_{b,e}^6)+\\ &4(x_{e,b}^1+\dots+x_{e,b}^6)+3(x_{e,h}^1+\dots+x_{e,h}^6)+3(x_{h,e}^1+\dots+x_{h,e}^6)+\\ &5(x_{h,j}^1+\dots+x_{h,j}^6)+5(x_{j,h}^1+\dots+x_{g,h}^6)+8(x_{f,k}^1+\dots+x_{g,c}^6)+\\ &8(x_{k,f}^1+\dots+x_{g,l}^6)+8(x_{l,g}^1+\dots+x_{l,g}^6)+\\ &8(x_{g,l}^1+\dots+x_{g,l}^6)+8(x_{l,g}^1+\dots+x_{l,g}^6)+\end{aligned}$$

#### **ILP Demand Constraint**

- Utilize demand constant
  - $-z_v^k = 1$  means node v is the source of net k (= -1 if sink)
  - Total number of z-constants:  $12\times6=72$

From net  $n_1 = \{a, l\}$ , we have  $z_a^1 = 1$ ,  $z_l^1 = -1$ .

From net  $n_2 = \{i, c\}$ , we have  $z_i^2 = 1$ ,  $z_c^2 = -1$ .

From net  $n_3 = \{d, f\}$ , we have  $z_d^3 = 1$ ,  $z_f^3 = -1$ .

From net  $n_4 = \{k, d\}$ , we have  $z_k^4 = 1$ ,  $z_d^4 = -1$ .

From net  $n_5 = \{g, h\}$ , we have  $z_g^5 = 1$ ,  $z_h^5 = -1$ .

From net  $n_6 = \{b, k\}$ , we have  $z_b^6 = 1$ ,  $z_k^6 = -1$ .

#### **ILP Demand Constraint**

Node a: source of net  $n_1$ 

$$x_{a,b}^{1} + x_{a,d}^{1} - x_{b,a}^{1} - x_{d,a}^{1} = 1$$

$$x_{a,b}^{2} + x_{a,d}^{2} - x_{b,a}^{2} - x_{d,a}^{2} = 0$$

$$x_{a,b}^{3} + x_{a,d}^{3} - x_{b,a}^{3} - x_{d,a}^{3} = 0$$

$$x_{a,b}^{4} + x_{a,d}^{4} - x_{b,a}^{4} - x_{d,a}^{4} = 0$$

$$x_{a,b}^{5} + x_{a,d}^{5} - x_{b,a}^{5} - x_{d,a}^{5} = 0$$

$$x_{a,b}^{6} + x_{a,d}^{6} - x_{b,a}^{6} - x_{d,a}^{6} = 0$$



#### **ILP Demand Constraint**

Node b: source of net  $n_6$ 

$$\begin{aligned} x_{b,a}^1 + x_{b,e}^1 + x_{b,c}^1 - x_{a,b}^1 - x_{e,b}^1 - x_{c,b}^1 &= 0 \\ x_{b,a}^2 + x_{b,e}^2 + x_{b,c}^2 - x_{a,b}^2 - x_{e,b}^2 - x_{c,b}^2 &= 0 \\ x_{b,a}^3 + x_{b,e}^3 + x_{b,c}^3 - x_{a,b}^3 - x_{e,b}^3 - x_{c,b}^3 &= 0 \\ x_{b,a}^4 + x_{b,e}^4 + x_{b,c}^4 - x_{a,b}^4 - x_{e,b}^4 - x_{c,b}^4 &= 0 \\ x_{b,a}^5 + x_{b,e}^5 + x_{b,c}^5 - x_{a,b}^5 - x_{e,b}^5 - x_{c,b}^5 &= 0 \\ x_{b,a}^6 + x_{b,e}^6 + x_{b,c}^6 - x_{a,b}^6 - x_{e,b}^6 - x_{c,b}^6 &= 1 \end{aligned}$$



## **ILP Capacity Constraint**

Each edge in the routing graph allows 2 nets

$$\begin{aligned} x_{a,b}^1 + \cdots x_{a,b}^6 + x_{b,a}^1 + \cdots x_{b,a}^6 &\leq 2 \\ x_{b,c}^1 + \cdots + x_{b,c}^6 + x_{c,b}^1 + \cdots + x_{c,b}^6 &\leq 2 \\ x_{d,h}^1 + \cdots + x_{d,h}^6 + x_{h,d}^1 + \cdots + x_{h,d}^6 &\leq 2 \\ x_{e,f}^1 + \cdots + x_{e,f}^6 + x_{f,e}^1 + \cdots + x_{f,e}^6 &\leq 2 \\ & \cdots \\ x_{h,j}^1 + \cdots + x_{h,j}^6 + x_{j,h}^1 + \cdots + x_{j,h}^6 &\leq 2 \\ x_{f,k}^1 + \cdots + x_{f,k}^6 + x_{k,f}^1 + \cdots + x_{k,f}^6 &\leq 2 \\ x_{c,g}^1 + \cdots + x_{c,g}^6 + x_{g,c}^1 + \cdots + x_{l,g}^6 &\leq 2 \\ x_{q,l}^1 + \cdots + x_{q,l}^6 + x_{l,q}^1 + \cdots + x_{l,q}^6 &\leq 2 \end{aligned}$$



#### **ILP Solution**

■ Min-cost: 108 (= sum of WL), 22 non-zero variable



## Summary of Routing

- Maze routing
  - Lee's algorithm
- Global routing and detailed routing
- Sequential routing
  - Rip-up and reroute
- Concurrent routing
  - Topology selection based ILP
  - Multi-commodity flow

#### Resources

- Survey <u>FLUTE</u> and <u>SALT</u> paper
- Survey NCTUgr 2.0, Dr.CU 2.0, and CU-GR
  - <a href="https://github.com/cuhk-eda/dr-cu">https://github.com/cuhk-eda/dr-cu</a>
  - <a href="https://github.com/cuhk-eda/cu-gr">https://github.com/cuhk-eda/cu-gr</a>