

Course Overview

Sunglok Choi, Assistant Professor, Ph.D. Computer Science and Engineering Department, SeoulTech sunglok@seoultech.ac.kr | https://mint-lab.github.io/

Lecture Information

- When
 - 109075/21001: Thursday 09:00 12:50 in Korean
 - 109075/21002: Thursday 13:00 16:50 in English
- Where
 - Offline: 319 Mirae Hall
 - Online: SeoulTech e-Class and Zoom
- Lecturer: Sunglok Choi
 - E-mail: <u>sunglok@seoultech.ac.kr</u>
 - Online meeting is available if you ask through e-mail or e-Class message in advance.
 - Office: 327 Mirae Hall
- Textbook: Course slides
- Online references: https://github.com/mint-lab/know-where/
 - Please refer *Programming (Python)* and *Machine Learning and Deep Learning* categories

Course Objective

- This course aims to improve mathematical reasoning and programming skill essential for students in computer science and engineering
- To fulfill this objective, this course has five small missions as follows:
 - To understand open-source software (shortly OSS), OSS licenses, and version control systems
 - To learn Python programming language and build its experience by its applications
 - To understand essential mathematical concepts using Python and its OSS
 - To understand and apply machine learning and deep learning using Python and its OSS
 - To start your own OSS project

"Let's start to build your career portfolio!"

Course Objective

- Career portfolio [Wikipedia] [NamuWiki]
 - A collection of your works and projects (to apply for jobs or graduate universities)
 - e.g. Tae Hwan Jung (a.k.a. graykode): Homepage, Github

Projects

Al Product NLP Deep Learning

Natural Language Processing

nlp-tutorial

nlp-roadmap

ROADMAP(Mind Map) and KEYWORD for students those who have interest in learning NLP stars 2.5k

Github Reddit

distribution-is-all-you-need

The basic distribution probability Tutorial for Deep Learning Researchers stars 1.1k

Github

ai-docstring

A tool that AI automatically recommends commit messages.

Image: <u>Tae Hwan Jung's homepage</u> (retrieved on June 24th, 2021)

Motivation

- How to estimate your skill set and proficiency (for entering a company or graduate school)
 - It's your Github repository these days.

Motivation

- Make your (intermediate) works blossom!
 - e.g. Your homework assignments, your term projects, ...

내가 그의 이름을 불러 주기 전에는 그는 다만 하나의 몸짓에 지나지 않았다.

내가 그의 이름을 불러 주었을 때 그는 나에게로 와서 꽃이 되었다.

- 김춘수의 '꽃' 中

(Tentative) Weekly Schedule

Week	Lectures (2-3 hr)	Practice (1-2 hr)
01	Introduction	Practice with Git, Github, and Markdown
02	Python: Basic	Practice with Python
03	Python: Beginner to Intermediate	Practice with Python
04	Python: Applications	Practice with Python Standard Libraries
05	Python Meets Math: Calculus	Practice with SymPy and Matplotlib
06	Python Meets Math: Linear Algebra	Practice with NumPy
07	Python Meets Math: Optimization	Practice with SciPy
08	Python Meets Math: Probability and Statistics	Practice with SciPy
09	Machine Learning: Classification	Practice with scikit-learn
10	Machine Learning: Regression and Clustering	Practice with scikit-learn
11	Midterm Examination	
12	Deep Learning: Deep Neural Networks	Practice with PyTorch
13	Deep Learning: Convolutional Neural Networks	Practice with PyTorch
14	Deep Learning: Recurrent Neural Networks	Practice with PyTorch
15	Term Project Presentation	

(Tentative) Weekly Schedule

Week	Lectures (2-3 hr)	Practice (1-2 hr)
01	Introduction	
02	Python: Basic	Practice with Git, Github, and Markdown
03	Python: Beginner to Intermediate	Practice with Python
04	Python: Applications	Practice with Python
05	Python Meets Math: Calculus	Practice with Python Standard Libraries
06	Python Meets Math: Linear Algebra	Practice with SymPy and Matplotlib
07	Python Meets Math: Optimization	Practice with NumPy
08	Python Meets Math: Probability and Statistics	Practice with SciPy
09	Machine Learning: Classification	Practice with SciPy
10	Machine Learning: Regression and Clustering	Practice with scikit-learn
11	Midterm Examination	
12	Deep Learning: Deep Neural Networks	Practice with PyTorch
13	Deep Learning: Convolutional Neural Networks	Practice with PyTorch
14	Deep Learning: Recurrent Neural Networks	Practice with PyTorch
15	Term Project Presentation	

Grading Policy

Examination (20%)

Mid-term exam will be at the 11th week. (cf. no final exam)

Lab/homework assignments (40%)

- Lab and homework assignments will be given almost every week (roughly 12 times).
- Their difficulty is very easy if you follow my lectures and practices.
- Their deadline is generally within roughly 1 week.

Term project (30%)

- Your OSS project with your desired topic (open probably at Github)
- You can perform the project individually or as a team.
 - (In case of teams) Their difficulty score will be considered with the number of members.
- **Presentation** (a short video; 1-2 min) is necessary at the end of this semester.
- Online exhibition will be held after this semester.

Attendance (10%)

- Please let me know your absence due to public affairs though e-mail to be recognized as attendance.

Grading Policy

- Grading: As good as possible until the school's guideline
 - Percentile
 - Korean course: A+ 10%, A0 30%, B+ 50%, B0 70%
 - English course: A+ 20%, A0 40%, B+ 60%, B0 80%
 - Average
 - Korean course: Max 3.30
 - English course: Max 3.60
 - Your final score and rank will be opened at the end of semester.
 - Please check your score and claim it within the given deadline.