On commencera chaque exercice par un schéma. Dans tous les exercices, on prendra l'indice de l'air égal à 1,000.

Exercices d'application : Réfractomètre, émergence du prisme, à la pêche, catadioptre, fibre optique.

Culture en sciences physiques : Émergence du prisme, construction de Descartes, lame, arcen-ciel, réfraction atmosphérique.

Corrigés en TD: Réfractomètre, à la pêche, fibre optique, arc-en-ciel.

Exercice 1 : Réfractomètre de Pulfrich

On étudie un dispositif permettant de mesurer l'indice de réfraction d'un objet. Un rayon lumineux provenant d'un milieu d'indice inconnu N tombe sur un prisme (indice n, angle A, placé dans l'air, d'indice 1) sous une incidence rasante (ie pratiquement dans le plan du dioptre comme indiqué sur le schéma). Il émerge du prisme en faisant l'angle i' avec la normale à la face de sortie.

- 1. Établir une relation entre A, i' N et n.
- 2. Quel angle choisiriez-vous pour déterminer facilement N? Application numérique pour n=1,73 et $i'=30^\circ$.
- 3. Quel intérêt ce dispositif présente-t-il par rapport à la mesure du minimum de déviation dans un prisme?

Exercice 2 : Lame à face parallèles

Un rayon lumineux tombe avec un angle i sur une lame de verre d'indice n=1,5, d'épaisseur e=1 mm à faces parallèles placée dans l'air (attention la figure ci-contre est délibérément fausse).

- 1. Faire un dessin et représenter le chemin suivi par les deux premiers rayons réfléchis. Donner l'expression de la distance $\Delta_{\rm r}$ les séparant en fonction de i, e et n. Application numérique pour $i=20^\circ$.
- 2. On considère maintenant le premier rayon transmis. Calculer le déplacement Δ_t induit par la lame. Faire également l'application numérique.

Exercice 3: Dispositif catadioptrique

Un «coin de cube» est un ensemble de 3 miroirs accolés perpendiculairement deux à deux. Un rayon lumineux, caractérisé par son vecteur directeur \vec{k} , vient s'y réfléchir. Trouver la direction du faisceau après qu'il a subi une réflexion sur chacune des faces^a. Un tel coin de cube a été déposé sur la face visible de la Lune par la mission Apollo XI. Quelle est à votre avis son utilité?

^aIndication: choisir un repère dont les axes sont les normales aux trois plans et y décomposer les vecteurs unitaires dirigeant les rayons.

Exercice 4 : f Construction de Descartes d'un rayon réfracté

- On considère un rayon lumineux tombant avec un angle i sur un dioptre plan. Déterminer une construction géométrique du rayon réfracté en utilisant des cercles dont le centre est le point d'impact du rayon incident sur le dioptre et dont les rayons sont les indices des milieux séparés par le dioptre.
- 2. Retrouver la condition de réfraction limite.

Réflexion totale et réfraction

Exercice 5: Fibre optique à saut d'indice

On considère une fibre optique à saut d'indice dont les indices sont notés :

- n_c pour le cœur,
- ng pour la gaine.

- 1. (a) Établir l'expression du demi-angle au sommet du cône d'admission, noté α_{\max} en fonction des indices n_c et n_g si la fibre est plongée dans l'air.
 - (b) En déduire la valeur de n_g si on souhaite réaliser $\alpha_{\rm max}=30^\circ$ pour $n_c=1,516$ On considère cette condition réalisée pour la suite.
 - (c) On plonge l'autre extrémité de la fibre dans l'eau. Déterminer le demi-angle au sommet du cône de lumière qui émerge de la fibre dans l'eau.
- 2. Le matériau dont est formée le cœur présente de la dispersion : dans le domaine visible, l'indice est donné par :

$$n = n_0 + \frac{B}{\lambda^2}$$
 avec : $n_0 = 1,5046$; $B = 4,2 \cdot 10^{-3} \,\mu\text{m}^2$.

On injecte un cône lumineux de demi-angle au sommet α_{max} comprenant des rayonnements entre 380 nm et 750 nm. Quelles seraient les caractéristiques du faisceau émergent si l'indice de la gaine ne présentait pas de dispersion et était toujours égal à la valeur déterminée à la question .

3. On injecte une impulsion de durée $\tau=1\,\mathrm{ns}$ d'un rayonnement quasi-monochromatique de longueur d'onde moyenne $\lambda_0=611\,\mathrm{nm}$ avec un angle $\alpha=50^\circ$. Déterminer la longueur maximale L_{max} de la fibre pour laquelle la durée 1 ns de l'impulsion a été multipliée par 2.

Exercice 6 : / À la pêche

Un pécheur utilise le dispositif représenté ci-contre : un hameçon est placé à une profondeur h sous un flotteur qu'on modélisera comme un disque mince de rayon R. À quelle condition l'hameçon est-il invisible de la surface ? On prendra n=1,33 pour l'indice de l'eau.

Exercice 7 : Prisme à réflexion totale

On considère le prisme de la figure ci-dessous, d'indice n, dont la pointe forme un angle de 90°.

- 1. Le prisme est plongé dans l'air d'indice $n_0 \simeq 1,000$. On constate qu'un rayon lumineux arrivant sous incidence normale ressort du prisme parallèlement à lui-même après avoir subi deux réflexions totales sur les faces de la pointe. En déduire que l'indice du prisme doit être supérieur à une valeur n_{\min} .
- n
- 2. La pointe du prisme est maintenant plongée dans de l'eau, d'indice $n_1 = 1,33$.
 - (a) La direction du rayon émergent du prisme par la face supérieure est-elle modifiée ?
 - (b) On constate qu'il n'y a maintenant plus réflexion totale : on observe des rayons émergents dans l'eau. En déduire que l'indice du prisme est inférieur à une autre valeur n_{max}.
 - (c) Déterminer la direction des rayons émergents dans l'eau pour n = 1,52 et préciser la déviation du rayon quand il parvient dans l'eau. Réaliser un schéma des différentes réflexions et réfractions.
 - (d) Quelle caractéristique du rayon émergent par la face supérieure est-elle modifiée quand le prisme est plongé dans l'eau? Proposer une utilisation de ce dispositif comme détecteur de niveau d'eau.

Exercice 8: Propagation dans une fibre optique à gradient d'indice

On considère un milieu dans lequel l'indice n varie avec la distance à l'axe : il diminue de façon continue avec |z| (voir figure). On note r_c le rayon du cœur.

1. Retrouver que la quantité $n(z) \sin[i(z)]$, où i(z) est l'angle que fait le rayon avec \overrightarrow{e}_z est une constante (on utilisera les notations du cours). En déduire l'équation différentielle décrivant la trajectoire du rayon lumineux, ie l'expression de $\frac{dx}{dz}$ en fonction de z. On considérera que le rayon part du point (z=0;x=0) dans la direction des z croissants (voir schéma).

2. Résoudre cette équation dans le cas où $n(z)^2 = n_0^2 - k|z|$. On la mettra sous la forme $\frac{dx}{dz} = \frac{A}{\sqrt{1-z/z_1}}$ où A et z_1 sont des constantes à exprimer en fonction des données du problème et on montrera qu'une primitive de $\frac{1}{\sqrt{1-z/z_1}}$ est $-2z_1\sqrt{1-z/z_1}$. Quelle est la nature de la trajectoire?

Exercice 9 : Conditions d'émergence d'un prisme 🗠

- Quel phénomène peut empêcher un rayon lumineux de sortir d'un prisme d'indice n plongé dans un milieu d'indice 1?
- 2. On désigne par A l'angle au sommet du prisme. Déterminer les valeurs entre lesquelles doit être compris l'angle d'incidence i pour qu'un rayon émerge. On posera $\frac{1}{n}$ = arcsin $\frac{1}{n}$
- En déduire une valeur limite pour l'angle A pour qu'un rayon émerge et déterminer les valeurs de l'angle d'émergence i' en fonction de i. On prêtera attention au cas A = θ_l. Déterminer les valeurs des angles remarquables pour des indices usuels.

Optique atmosphérique (traités en TD)

Exercice 10 : Réfraction atmosphérique &

On étudie dans cet exercice un effet de l'atmosphère sur les observations astronomiques. L'indice de l'air varie en effet avec l'altitude et les rayons lumineux en provenance d'une étoile se propagent dans un milieu inhomogène avant d'atteindre le sol.

- 1. On modélise l'atmosphère par un empilement de couches horizontales d'indice variable ⁱⁱ. L'indice vaut $n_S = 1,000293$ au niveau du sol et $n_{\infty} = 1$ en dehors de l'atmosphère.
 - (a) Illustrer par un schéma la courbure des rayons traversant l'atmosphère.
 - (b) Justifier qu'en notant i(z) l'angle par rapport à la verticale d'un rayon à l'altitude z où l'indice est n(z), la quantité n(z) sin i(z) est une constante au cours de la traversée de l'atmosphère.
- On s'intéresse à la position d'une étoile (par exemple Proxima du Centaure) E vue par un observateur O situé à la surface de la Terre. Celle-ci est déterminée par la distance zénithale α, c'est-à-dire l'angle formé par la verticale (axe Oz) et la direction OE.

i arcsin est la fonction définie sur [-1;1] et à valeurs dans $[-\pi/2;\pi/2]$ telle que pour tout $x \in [-\pi/2;\pi/2]$: $\arcsin(\sin(x)) = x$. Elle est croissante sur [-1;1]. ii On néglige ici pour simplifier la courbure de la Terre

- (a) Justifier qu'on peut considérer que le faisceau arrivant sur Terre est constitué de rayons parallèles.
- (b) Montrer que l'observateur voit E à une distance zénithale apparente α' qu'on exprimera en fonction de n_S et α . Oue vaut-il pour $\alpha = 10^{\circ}, 50^{\circ}$.
- Peut-on considérer le Soleil comme ponctuel? On le caractérise par son diamètre angulaire θ, l'angle entre les deux rayons extrêmes du disque solaire parvenant sur Terre.
 - (a) Calculer θ en l'absence d'atmosphère.
 - (b) Calculer en présence d'atmosphère le diamètre angulaire apparent quand le soleil est au zénith. Sa forme est-elle modifiée?
 - (c) En considérant maintenant la courbure de la Terre, expliquer qualitativement par un schéma la forme aplatie du soleil à son coucher.
 - (d) On rappelle que la dispersion de l'atmosphère courbera d'avantage les rayons de plus courte longueur d'onde. De quel couleur devrait paraître le Soleil juste à l'instant de son coucher.

Données Rayon terrestre $R_T = 6.4 \cdot 10^6$ m, rayon solaire $R_S = 6.96 \cdot 10^8$ m, distance Terre-Proxima du Centaure $D = 4.0 \cdot 10^{16}$ m, distance Terre-Soleil $d = 1.5 \cdot 10^{11}$ m.

Exercice 11: Arc en ciel &

Le phénomène de l'arc en ciel a été expliqué par Descartes dans *Le Discours de la Méthode* en 1637 grâce aux lois de Snell et Descartes. Nous en présentons ici une interprétation simplifiée. Nous allons voir qu'il peut être compris en considérant les réflexions et réfractions subies par un rayon lumineux frappant une goutte d'eau.

Pour alléger les notations, et éviter d'introduire plusieurs orientations d'angles, on utilisera ici des angles non orientés.

- Exprimer la déviation D subie par le rayon incident en fonction de l'angle d'incidence i et de l'angle du premier rayon réfracté r.
- 2. (a) Dériver, par rapport à i, l'expression de D obtenue et la relation de Snell et Descartes en faisant apparaître $\frac{dr}{di}$.
 - (b) En déduire $\frac{dD}{di}$ en fonction de $\cos i$, $\cos r$ et n, puis une relation entre $\cos i$ et $\cos r$ quand $\frac{dD}{di} = 0$.

- (c) Déterminer, en élevant cette relation au carré, la valeur de $\sin(i)$ pour laquelle la déviation D est extrêmale. On notera avec un indice e les valeurs des angles correspondants (i_e, r_e, D_e) . Calculer, pour $i = i_e$, l'angle $\alpha_e = \pi D_e$ pour une goutte d'eau d'indice n = 1,33.
- (d) Interpréter la présence de cet extremum en terme de quantité de lumière reçue par l'œil de l'observateur.
- On suppose maintenant que la répartition des gouttes dans l'atmosphère est uniforme. On considère le soleil ponctuel.
 - (a) On néglige pour l'instant la dispersion de l'eau (n = cst). Montrer que les gouttes qui apparaissent brillantes à l'observateur sont situées sur un cône de centre l'observateur, d'axe la direction Soleil-observateur et de demi-angle au sommet α.
 - (b) i. Montrer que $\frac{d\alpha_e}{dn} = -\frac{4}{n} \tan r_e$. En déduire le signe de cette expression et expliquer la répartition des couleurs dans un arc en ciel en considérant la dispersion de l'eau.
 - ii. Estimer la variation d'angle entre l'arc rouge et l'arc violet, pour lesquels l'indice vaut respectivement $1,33-510^{-3}$ et $1,33+510^{-3}$. On pourra utiliser un calcul de l'incertitude sur α_e en fonction de l'incertitude sur n.

On pourra utiliser cette simulation.

MPSI2, Louis le Grand Lois de Snell et Descartes Semaine du 9 au 16 septembre

Correction de l'exercice 1

1. On utilise les formules du prisme :

géométrie :
$$A = t + t'$$
 Descartes
$$\begin{cases} N = n \sin t \\ \sin t' = n \sin t' \end{cases}$$

On obtient alors:

$$\sin i' = n \sin t' = n \sin(A - t) = n (\sin A \cos t - \sin t \cos A) = \sin A \sqrt{n^2 - N^2} - N \cos A.$$

Correction de l'exercice 2

Faire bien attention que pour une lame de verre placée dans l'air le rayon réfracté dans le verre se rapprochera de la normale au dioptre air-verre lors de la première réfraction.

1. On a $\Delta_r = \cos i IE_1$. Comme par ailleurs $IE_1 = 2e \tan t$ et $n \sin t = \sin i$, on obtient, après calculs : $\Delta_r = \frac{2e \sin i \sqrt{1-\sin^2 i}}{\sqrt{n^2-\sin^2 i}} = 0,44 \, \text{mm}$.

Correction de l'exercice 3

Notons \vec{k} le vecteur unitaire dirigeant le rayon incident et k_x , k_y et k_z ses coordonnées dans la base \vec{e}_x , \vec{e}_y , \vec{e}_z . Le rayon va se réfléchir sur chacun des plans yOz (resp. xOz, xOy) au point M_x (resp. M_y , M_z). Au cours de la réflexion sur la face orthogonale à \vec{e}_x , le nouveau vecteur unitaire, \vec{k}_1 conserve les coordonnées sur \vec{e}_y et \vec{e}_z et celle sur \vec{e}_x change de signe. En effet, on a alors $\vec{k}_1 - \vec{k} = 2k_x \vec{e}_x$: le vecteur \vec{k}_1 vérifie bien la relation vectorielle de la réflexion : $\vec{k}_1 - \vec{k} \propto \vec{e}_x$, et conserve sa norme.

On en conclut immédiatement qu'au cours des trois réflexions, les signes de chacune des trois composantes de \vec{k} seront opposées : le rayon repartira exactement en sens inverse.

De tels dispositifs catadioptriques sont utilisés sur les pédales de vélo, dans les peintures de signalisation routière...

Correction de l'exercice 4

On trace deux cercles concentriques, de centre le point d'incidence (M) et de rayons R_i (cercle \mathscr{C}_i pour le rayon incident) et R_t (cercle \mathscr{C}_t pour le rayon réfracté) tels que $R_i/R_t = n_1/n_2$. L'intersection A_i du prolongement du rayon incident I (angle i) avec \mathscr{C}_i permet de déterminer le point B tel que $MB = n_1 \sin i$. L'intersection de A_iB avec \mathscr{C}_t donne le point A_t par où passe le rayon réfracté T puisqu'il assure $n_2 \sin t = MB = n_1 \sin i$.

On a représenté sur le schéma le cas de la réfraction vers un milieu moins réfringent : on retrouve la réflexion totale pour le deuxième rayon incident (I^l) pour lequel on ne peut pas déterminer le point A_t .

Correction de l'exercice 5

1. (a) Comme vu en cours, on a : $\sin(\alpha_{\text{max}}) = \sqrt{n_c^2 - n_g^2}$, soit :

$$n_g = \sqrt{n_c^2 - \sin(\alpha)^2} = 1{,}431.$$
 (1)

- (b) On doit étudier la réfraction entre la fibre et l'eau, d'indice $n_e = 1,33$ Pour éviter de passer de sin à cos, on peut imaginer (c'est la transitivité de la troisième loi de Snell et Descartes qui le permet) qu'il y a une couche d'air fictive entre les deux, dont l'épaisseur peut être choisie nulle.
 - À la sortie dans l'air on obtient un cône de 1/2-angle au sommet α_{max} ,
 - À la réfraction entre l'air et l'eau, on émergera dans l'eau avec un cône formant le 1/2-angle au sommet α'_{max} tel que :

$$\sin(\alpha_{\max}) = n_e \sin(\alpha'_{\max}) \rightarrow \sin(\alpha'_{\max}) = \sqrt{(n_c/n_e)^2 - (n_g/n_e)^2} \rightarrow \alpha'_{\max} = 22^\circ.$$

2. Si la gaine ne présentait pas de dispersion (ce qui ne sera certainement pas le cas), l'angle α_{max} donné par la formule 1 varierait entre :

$$\alpha_{\text{max}}(380 \,\text{nm}) = 33.5^{\circ}$$
 et: $\alpha_{\text{max}}(750 \,\text{nm}) = 29.2^{\circ}$ avec: $\alpha_{\text{max}}(611 \,\text{nm}) = 30^{\circ}$

Toutes les longueurs d'onde inférieures à 611 nm seraient transmises à l'identique mais celles supérieures ne seraient transmises que dans un cône de demi-angle au sommet plus réduit, de 29,2° pour 750 nm par exemple.

3. Pour une longueur d'onde de 611 nm, on a vu que $\alpha_{\max} = 30^\circ$ et $n = n_c$. Seuls les rayons avec $\alpha \le \alpha_{\max}$ pour ront se propager. On a par ailleurs établi en cours que la durée de propagation $\Delta \tau$ pour une longueur L vaut : $Ln/(c\cos(\beta))$ avec β l'angle formé dans la fibre par le rayon avec l'axe de la fibre. En raison de la dispersion intermodale, le rayon mettant le plus (resp.) de temps pour progresser de L sera donc celui avec $\alpha = \alpha_{\max}$ (resp. avec $\alpha = 0$). La durée de l'impulsion aura été doublée si le retard du plus lent sur le plus rapide est égal à τ . Comme pour $\alpha = \alpha_{\max}$ on a $\cos(\beta) = n_g/n_c$ d'après la condition de réflexion totale sur la gaine, on a :

$$\tau = \frac{n_c}{c} \left(\frac{1}{\cos(\beta_{\text{max}})} - 1 \right) \rightarrow L = \frac{c n_g \tau}{n_c (n_c - n_g)} = 3.1 \,\text{m}.$$

Correction de l'exercice 6

L'hameçon sera invisible de la surface si tous les rayons qu'il «émet» subissent une réflexion totale à l'interface eau air. Ceci est envisageable, puisque l'air n = 1,00 est moins réfringent que l'eau $(n_e = 1,33)$. Or tous les rayons atteindront la surface de l'eau avec un angle d'incidence supérieur à celui, noté i_0 , du rayon rasant le bord du flotteur, il faut donc que i_0 soit supérieur à l'angle de réfraction limite i_1 vérifiant $n_e \sin i_1 = 1$. Comme on a $\tan i_0 = R/h$, on a donc :

$$\tan i \ge \tan i_l$$
 $\frac{R}{h} \ge \frac{1/n_e}{\sqrt{1 - 1/n_e^2}}$ soit $h \le R\sqrt{n_e^2 - 1} = 0.88 \ R.$

Correction de l'exercice 7

1. Le rayon parvient en incidence normale sur la face supérieure, il n'est donc pas dévié à son entrée. Sur la première face inférieure l'incidence est $i = 45^{\circ}$. La réflexion sera totale si c'est angle est supérieur à l'angle de réfraction limite i_{ℓ} qui vérifie $\sin(i_{\ell}) = n/n_0$. Il faut donc :

$$n \ge n_{\min} = n_0 \sin(45^\circ) = \sqrt{2} \approx 1,41.$$

Dans ces conditions le rayon est complètement réfléchi et une construction géométrique assure qu'il se propage horizontalement jusqu'à la deuxième face inférieure. Il l'atteint avec le même angle de 45° et subit donc une réflexion totale qui le fait remonter verticalement jusqu'à la surface supérieure qu'il atteint en incidence normale et traverse donc sans déviation.

- 2. (a) Les réflexions ne dépendent pas des indices, la trajectoire des rayons réfléchis n'est donc pas modifiée.
 - (b) L'indice du milieu extérieur ayant changé, l'angle de réfraction limite change également et vérifie maintenant $\sin(i'_{\ell}) = \frac{n}{n_1}$. Il n'y a plus réflexion totale si

$$i < i'_{\ell}$$
 soit: $n \le n_{\text{max}} = \frac{n_1}{\sin 45^{\circ}} \simeq 1,89.$

(c) Pour n = 1,52 compris dans l'intervalle $[n_{\min}; n_{\max}]$, il existe un rayon réfracté qui s'éloigne de la normale puisque l'indice du milieu incident est supérieur. L'angle t qu'il forme avec la normale à la surface inférieure inclinée vérifie $n\sin(i) = n_1\sin(i)$. On vérifie géométriquement qu'il forme avec la verticale l'angle (avec une déviation « vers la pointe » pour s'éloigner de la normale) :

$$D = t - i = \arcsin(\frac{n}{n_1}\sin(i)) - i = 8.9^{\circ}.$$

Le rayon réfracté sur la deuxième face inférieur sera dévié du même angle mais vers le haut, toujours pour s'éloigner de la normale.

(d) Dans le cas où le prisme est plongé dans l'air, les réflexions totales assurent que l'intensité du rayon reste constante à chaque réflexion. À l'inverse il perd en intensité à chaque réflexion s'il existe un rayon réfracté. La mesure de l'intensité du rayon qui ressort verticalement du prisme permet donc de détecter s'il est plongé dans l'eau ou dans l'air.

Correction de l'exercice 8

- 1. Comme vu en cours, on a $\frac{dx}{dz} = \frac{n_0 \sin i_0}{\sqrt{n(z)^2 n_0^2 \sin^2 i_0}}$, en introduisant i_0 l'angle fait par le rayon avec l'axe \vec{e}_z au
- 2. La dépendance de n(z) donnée permet de calculer la primitive de dx/dz selon :

$$\frac{\mathrm{d}x}{\mathrm{d}z} = \frac{n_0 \sin i_0}{\sqrt{n_0^2 - kz - n_0^2 \sin^2 i_0}} = \frac{n_0 \sin i_0}{\sqrt{n_0^2 \cos^2 i_0 - kz}} = \frac{\tan i_0}{\sqrt{1 - \frac{kz}{n_0^2 \cos^2 i_0}}} = \frac{A}{\sqrt{1 - z/z_1}}$$

avec $A = \tan i_0$ et $z_1 = \frac{n_0^2 \cos^2 i_0}{L}$. On peut alors intégrer en $x = 2z_1 \tan i_0 \left(1 - \sqrt{1 - z/z_1}\right)$. On obtient finalement: $z/z_1 = 1 - (x/x_0 - 1)^2$, en posant $x_0 = 2z_1 \tan i_0$. Le rayon décrit une parabole d'axe parallèle à \overrightarrow{e}_z . Remarque: Pour compléter l'étude, il faut vérifier si le sommet de la parabole (on vérifie rapidement que c'est z_1) atteint R. Le rayon y sera alors réfléchi. Par ailleurs, dans la zone z < 0, il faudra changer l'expression de l'indice : $n = n_1^2 + kz$. La courbe sera alors une parabole de concavité tournée dans l'autre sens.

Correction de l'exercice 9

- 1. Si le prisme est plongé dans l'air, il peut se produire une réflexion totale sur la face de sortie si, avec les notations du cours, $n \sin t' = 1$, soit $t' = \theta_1$
- 2. Un rayon émergera donc si $t' \le \theta_1$. Les relations du prisme assurent alors : $t \ge A \theta_1$ et $n \sin t = \sin i$, soit :

$$i \geq i_l = \arcsin\left(n\sin\left(A - \theta_l\right)\right) \quad \text{soit } i \in [0; i_l]$$

puisque arcsin est croissante sur [-1;1]. On remarque que i_I est positif pour $A \ge \theta_I$ et négatif sinon.

- 3. L'angle i_1 n'est défini que si $|n \sin(A \theta_1)| \le 1$.
 - Cette condition est immédiatement vérifiée pour $A \in [0; \theta_I]$ où $n \sin(A \theta_I) \in [-1; 0]$.
 - Pour $A \ge \theta_1$, la condition $0 \le n \sin(A \theta_1) \le 1$ implique $A \theta_1 \le \theta_1$, soit $A \le 2\theta_1$.

Par ailleurs l'angle d'incidence est à chaque fois compris entre i_l , pour lequel $i' = \pi/2$, et $\pi/2$. D'après le principe du retour inverse, l'angle i' de sortie correspondant à $i = \pi/2$ vaut lui aussi i_1 . On peut donc établir le tableau

Correction de l'exercice 10

À la traversée de chacun des dioptres fictifs délimitant deux milieux d'indices différentes, la troisième loi de Descartes assure que $n \sin i$.

On considère deux points $(O_1 \text{ et } O_2)$ de la surface terrestre, distants E_{K} d'environ 1 kilomètre. On peut négliger à cette échelle la courbure de la Terre (de rayon $\mathcal{R}_T \simeq 6400 \,\mathrm{km}$). Un point A quelconque de l'astre E

2. (a) est vu du point O_1 (resp. O_2) sous l'angle α_1 (resp. α_2) tel que sin α_1 = HA/AO_1 (resp. $\sin \alpha_2 = HA/AO_2$). Pour A sur Proxima du Centaure, $AO_1 \simeq AO_2 = 4 \cdot 10^{16} \,\mathrm{m}$ et donc $O_1O_2 \simeq 1 \,\mathrm{km} \ll HO_i$: les deux angles Attention, la figure n'est pas du tout sont pratiquement égaux.

(b) On obtient immédiatement $n_{\infty} \sin \alpha = n_{\rm S} \sin \alpha'$ soit numériquement :

ment :
$$\begin{cases} \alpha = 10,00^{\circ} & \alpha' = 9,997^{\circ} \\ \alpha = 50,00^{\circ} & \alpha' = 49,98^{\circ} \end{cases}$$

3.

(a) Bien que tous les rayons issus d'un point A du soleil parviennent avec le même angle α sur une surface de l'ordre de plusieurs km², la différence de distance zénithale entre deux points distincts du soleil peut être perçue à l'œil : le soleil nous apparaît comme un disque, pas comme un point.

- (b) Ouand le soleil est au zénith, les distances zénithales extrêmes sont $-\theta/2$ et $\theta/2$, qui selon la loi du 1. deviennent θ' défini par $n_{\rm S}\sin\theta'/2 = n_{\infty}\sin\theta/2$. On obtient numériquement : $\theta' = 0.5315^{\circ}$. Au zénith, le système présente une symétrie de révolution autour de l'axe vertical et son image après réfraction dans l'atmosphère reste donc circulaire.
- (c) La situation est ici différente car on n'a plus la symétrie de révolution que présentait le soleil au zénith. Notons α_1 et $\alpha_2 \ge \alpha_2$ les angles par rapport au zénith sous lesquels serait vu, dans un plan vertical et en l'absence de réfraction atmosphérique, le soleil. Après réfraction par l'atmosphère, les rayons correspondant arrivent sur le sol avec des incidences α'_1 et α'_1 vérifiant :

$$\sin(\alpha_1') = \frac{\sin(\alpha_1)n_{\infty}}{n_{\infty}} \qquad \sin(\alpha_2') = \frac{\sin(\alpha_1)n_{\infty}}{n_{\infty}}.$$

En raison de la non liénarité de la loi de Snell et Descartes, le rayon α_2 est plus déviéⁱⁱⁱ que le rayon α_1 et la différence $\alpha_2' - \alpha_1'$ est inférieure à $\alpha_2' - \alpha_1'$: le diamètre apparent est donc diminué pour ces rayons.

En revanche les rayons seront moins déviés dans le plan contenant le diamètre «horizontal» du soleil et la droite joignant celui-ci à l'observateur : ce diamètre sera moins diminué et le soleil apparaît donc «aplati» au coucher.

(d) Comme on peut le voir sur le schéma précédent, le soleil paraît encore visible alors qu'il est couché. Comme cet effet sera d'autant plus marqué que l'indice est élevé, les différentes composantes du spectre solaire seront visibles plus ou moins longtemps après le coucher géométrique du soleil à cause de la dispersion de l'atmosphère. Théoriquement, le bleu du soleil devrait être la dernière composante à se coucher et le soleil paraître bleu. Pour des raisons que nous ne détaillerons pas ici, le bleu est très diffusé dans l'atmosphère et le soleil apparaît vert : c'est le fameux «rayon vert».

Correction de l'exercice 11

Remarque préliminaire On étudie ici le traiet d'un rayon particulier : celui qui rentre dans la goutte, y subit une réflexion et en sort. Si on ne traite pas les autres trajets, par exemple celui du rayon qui sort en étant réfracté sans subir de réflexion, c'est pour ne regarder que la cause de l'arc-en-ciel principal.

Pour alléger les écritures et éviter d'introduire plusieurs orientations d'angles, on utilisera ici des angles non orientés.

1. Il faut commencer par souligner les symétries importantes du problème. L'angle r du rayon réfracté avec la normale se conserve à chaque réflexion la réfraction permettant la sortie du rayon après une réflexion se fait donc avec le même angle i avec la normale que pour le rayon inci-

Aux points 1, 2 et 3, les déviations successives sont i-r, $\pi-2r$ et à nouveau i-r. La déviation totale est donc : $D = \pi - 4r + 2i$. La relation de Snell et Descartes s'écrit par ailleurs : $\sin i = n \sin r$, avec n l'indice de l'eau.

1. (a) On dérive cette relation ainsi que celle de Snell et Descartes pour obtenir :

$$\frac{\mathrm{d}D}{\mathrm{d}i} = -4\frac{\mathrm{d}r}{\mathrm{d}i} + 2 \qquad \text{et : } \cos i = n\cos r \frac{\mathrm{d}r}{\mathrm{d}i}.$$

(b) On en déduit :

$$\frac{\mathrm{d}r}{\mathrm{d}i} = \frac{\cos i}{n\cos r} \quad \text{soit} : \frac{\mathrm{d}D}{\mathrm{d}i} = -4\frac{\cos i}{n\cos r} + 2 = 2\left(1 - 2\frac{\cos i}{n\cos r}\right) \quad \text{et} : \frac{\mathrm{d}D}{\mathrm{d}i} = 0 \Leftrightarrow 2\cos i = n\cos r.$$

(c) On simplifie cette condition en l'élevant au carré :

$$4\cos^2 i = n^2\cos^2 r \to 4\left(1-\sin^2 i\right) = n^2\left(1-\frac{\sin^2 i}{n^2}\right)$$
 soit: $\sin i_e = \sqrt{\frac{4-n^2}{3}}$.

Pour n = 1.33, on obtient numériquement $\sin i_e = 0.861$, $\sin r_e = 0.646$; d'où l'angle α_e , complémentaire de la déviation D_e : $\alpha_e = 4r_e - 2i_e = 42.1^\circ$.

(d)

La présence de cet extremum indique que les rayons atteignant une goutte avec un angle d'incidence proche de i_e réalisant l'extremum émergeront tous à peu près dans la même direction : il y aura donc une accumulation de lumière dans la direction du rayon émergent correspondant à cette incidence comme on peut le constater sur la figure ci-contre.

Trajet des rayons atteignant une goutte d'eau avec différentes incidences.

iii On peut le constater à l'aide de la construction de Descartes des rayons réfractés. On peut également approximer, pour des angles a et b proches d'un même angle $c : \sin(a) - \sin(b) \simeq (a - b)\cos(c)$ pour exprimer $\alpha_2' - \alpha_1'$ à l'aide de $\alpha_2 - \alpha_1$.

2. (a)

Le soleil, considéré ponctuel, émet des rayons formant tous le même angle avec l'horizontale. Ces rayons atteignent les gouttes de l'atmosphère sous des incidences i variables et subissent tous une déviation différente. Cependant tous les rayons atteignant une goutte sous une incidence proche de i_e sont renvoyés dans la même direction, caractérisée par α_e . La goutte apparaîtra brillante à l'observateur s'il se trouve sur la trajectoire de ce rayon.

Les gouttes pouvant ainsi recevoir un rayon sous l'incidence i_e et le renvoyer, dans l'œil de l'observateur, en le déviant de D_e sont donc situées dans un cône centré sur l'observateur et d'axe la direction des rayons du soleil au point où se situe l'observateur.

Illustration tirée du *Traité des Météores* de Descartes.

 (b) i. Si on considère maintenant la dispersion de l'eau, l'angle α sera différent pour chaque longueur d'onde, on peut en calculer la dérivée par rapport à n, en utilisant encore une fois les formules géométriques et de Descartes :

$$\frac{\mathrm{d}}{\mathrm{d}n} \begin{cases} \alpha_e &= 4r_e - 2i_e \\ n\sin r_e &= \sin i_e \end{cases} \begin{cases} \frac{\mathrm{d}\alpha_e}{\mathrm{d}n} &= 4\frac{\mathrm{d}r_e}{\mathrm{d}n} - 2\frac{\mathrm{d}i_e}{\mathrm{d}n} \\ \sin r_e + n\cos r_e \frac{\mathrm{d}r_e}{\mathrm{d}n} &= \cos i_e \frac{\mathrm{d}i_e}{\mathrm{d}n} \end{cases}$$

$$\mathrm{soit} \quad \frac{\mathrm{d}\alpha_e}{\mathrm{d}n} = -\frac{4}{n}\tan r_e + 2\frac{\mathrm{d}i_e}{\mathrm{d}n} \left(2\frac{\cos i_e}{n\cos r_e} - 1\right) = -\frac{4}{n}\tan r_e,$$

puisque i_e et r_e sont justement définis par $2\cos i_e = n\cos r_e$. On vérifie que $\frac{\mathrm{d}\alpha_e}{\mathrm{d}n} \le 0$. Comme de plus $\frac{\mathrm{d}n}{\mathrm{d}\lambda} \le 0$, on constate que $\frac{\mathrm{d}\alpha}{\mathrm{d}\lambda} \ge 0$: le rouge est bien à l'extérieur de l'arc en ciel et le violet à l'intérieur.

ii. On considère que l'indice varie avec une incertitude-type $\Delta n = 5 \cdot 10^{-3}$. La formule de propagation des erreurs permet de calculer l'incertitude-type sur l'angle α , $\Delta \alpha$ en écrivant : $\Delta \alpha \simeq \frac{\mathrm{d}\alpha}{\mathrm{d}n}(n_0)(n_2-n_1)$. On considère ensuite $n_{rouge}-n_{violet}=2\Delta n$. On obtient ici, pour $n \simeq n_0=1,33$: $\alpha(n_{rouge})-\alpha(n_{violet})\simeq \frac{-4}{n_0}\tan r_{\mathrm{e}}(n_0)\left(n_{rouge}-n_{violet}\right)$. Avec :

$$\tan r_e = \frac{\sin r_e}{\sqrt{1 - \cos^2 r_e}} = \frac{\sqrt{\frac{4/n_0^2 - 1}{3}}}{2\sqrt{\frac{1 - 1/n_0^2}{3}}} = \frac{1}{2}\sqrt{\frac{4 - n_0^2}{n_0^2 - 1}},$$

on obtient finalement : $\alpha(n_{\text{rouge}}) - \alpha(n_{\text{violet}}) \simeq \frac{2}{n_0} \sqrt{\frac{4 - n_0^2}{n_0^2 - 1}} \left(n_{\text{violet}} - n_{\text{rouge}} \right) \simeq 1,25^{\circ}.$