What are Diffusion Models? p.d.f. 0.35 0.30 0.25 0.20 0.15 0.10 0.05 Discriminator Generator GAN: Adversarial (0/1 $D(\mathbf{x})$ training $G(\mathbf{z})$ -10 10 这俩不太主流 Encoder Decoder VAE: maximize $q_{\phi}(\mathbf{z}|\mathbf{x})$ $p_{\theta}(\mathbf{x}|\mathbf{z})$ 但是VAE被latent diffusion model用过 variational lower bound Inverse Flow Flow-based models: \mathbf{z} $f^{-1}(\mathbf{z})$ $f(\mathbf{x})$ Invertible transform of distributions Diffusion models: $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ Gradually add Gaussian (\mathbf{x}_T) noise and then reverse $q(\mathbf{x}_t|\mathbf{x}_{t-1})$ $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$ is unknown

Forward Process 加噪过程

通过应用一个扩散过程,将噪声样本逐渐传播到整个数据空间。这个过程可以使用一系列的扩散步骤来实现,每个步骤都会对噪声样本进行一定程度的扩散。

在扩散过程中,噪声样本会逐渐与真实数据混合,形成一个经过加噪处理的样本。

核心在于

- 1.怎么描述这个过程
- 2.怎么快速的获取加过T次噪声之后的结果
- 1. 扩散过程建模 Denoising Diffusion Probabilistic Models

我们将这个过程表征为一个在当前图像像素上正态分布(大数定律)偏离的过程

$$\underline{q(\mathbf{x}_t|\mathbf{x}_{t-1})} = \overline{\mathcal{N}(\mathbf{x}_t;\sqrt{1-eta_t}\mathbf{x}_{t-1}, \underline{eta_t}\mathbf{I})} \quad q(\mathbf{x}_{1:T}|\mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

因为这样的一个条件概率的形式,连乘之后就可以 表征从初始状态X0到任意状态XT的结果

基于条件概率的一个条件概率描述,表征在当 $\beta_1 < \beta_2 < \cdots < \beta_T$ 这个表征了打乱的程度,从0到T打乱程度逐渐变大,预设的前图像中加正态分布噪声的过程。

这个过程也可以通过动力学方法进行表征(我觉得更好理解,Langevin dynamics) Generative Modeling by Estimating Gradients of the Data Distribution 这个地方的德尔塔就是上边的β

$$\mathbf{x}_t = \mathbf{x}_{t-1} + rac{\delta}{2} \overline{
abla_{\mathbf{x}} \log p(\mathbf{x}_{t-1})} + \overline{\sqrt{\delta} \epsilon_t}, \quad ext{where } \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

这边用了一个类似于重参数的 方法把正态分布写在外边了

表征当前时刻图像变化的方向

2. T时刻结果的快速获取

我们刚刚说的那个重参数方法, 具体可以当动力学理解

这边推理用的全都是一维标准正态分布

$$\mathbf{x}_{t} = \sqrt{\alpha_{t}}\mathbf{x}_{t-1} + \sqrt{1 - \alpha_{t}}\epsilon_{t-1}$$
 ;where $\epsilon_{t-1}, \epsilon_{t-2}, \dots \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $= \sqrt{\alpha_{t}\alpha_{t-1}}\mathbf{x}_{t-2} + \sqrt{1 - \alpha_{t}\alpha_{t-1}}\bar{\epsilon}_{t-2}$;where $\bar{\epsilon}_{t-2}$ merges two Gaussians (*). $= \dots$ $= \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}}\epsilon$ 这边是用了一个简单的数学归纳法,感兴 $q(\mathbf{x}_{t}|\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}, (1 - \bar{\alpha}_{t})\mathbf{I})$ 趣可以推一下,是match的,之前推过

这边这一步两个point

- 1. 把表达式一的Xt-1换成Xt-1的扩展表达式,很自然的就有前边一项
- 2. 后边这个是相当于两个正态分布相加,相当于方差的部分相加,然后 $\sqrt{(1-\alpha_t)+\alpha_t(1-\alpha_{t-1})}=\sqrt{1-\alpha_t\alpha_{t-1}}$.

Reverse diffusion process 去噪过程

扩散过程是将加噪样本逐渐还原为噪声样本的过程,即将噪声样本从数据中移除。

通过反复进行扩散和逆扩散过程,最终得到一个接近真实数据分布的样本。这个样本可以用于生成新的数据。 核心在于

- 1.怎么描述这个过程
- 2.怎么简化这个流程-逼近逆过程的均值方差
- 2.为什么要在引入深度学习以及怎么引入
- 1. 去噪过程建模

和刚刚说到的加噪过程一样,正态分布的反分布也是正态分布,因为基于t时刻重建t-1时刻的过程也可以用正态分布描述

$$p_{ heta}(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \quad \overline{p_{ heta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} = \mathcal{N}(\mathbf{x}_{t-1}; \underline{oldsymbol{\mu}_{ heta}(\mathbf{x}_t, t)}, oldsymbol{\Sigma}_{ heta}(\mathbf{x}_t, t))$$

和前边一样的条件概率连城的方式进行重建

这个地方是两个完全位未知的量, 我们可以通过后边的方法去逼近这两个量, 一个均值一个方差

2. 上述过程的数学描述: 找到重建过程的化简形态

利用贝叶斯公式 $P(B|A) = \frac{P(A|B)*P(B)}{P(A)}$ 使用贝叶斯方法可以将一个位未知的把这个表征打开 $P(B|A) = \frac{P(A|B)*P(B)}{P(A)}$ 反向传播过程表征成为全正相传播

上一页的公式化

$$\frac{\mathbf{c} = \mathbf{c} \cdot \mathbf{c} \cdot \mathbf{c}}{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} = q(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{0}) \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})}{q(\mathbf{x}_{t}|\mathbf{x}_{0})}$$
 值得注意的是这个地方的所有XO都是大条件,虽然出现了,但是就放没有出现
$$\propto \exp\left(-\frac{1}{2}\left(\frac{(\mathbf{x}_{t} - \sqrt{\alpha_{t}}\mathbf{x}_{t-1})^{2}}{\beta_{t}} + \frac{(\mathbf{x}_{t-1} - \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0})^{2}}{1 - \bar{\alpha}_{t-1}} - \frac{(\mathbf{x}_{t} - \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0})^{2}}{1 - \bar{\alpha}_{t}}\right)\right)$$
 正向传播全是正态分布,打开之后化简,这个正比带来了后边函数的那个常值
$$= \exp\left(-\frac{1}{2}\left(\frac{\mathbf{x}_{t}^{2} - 2\sqrt{\alpha_{t}}\mathbf{x}_{t}\mathbf{x}_{t-1} + \alpha_{t}\mathbf{x}_{t-1}^{2}}{\beta_{t}} + \frac{\mathbf{x}_{t-1}^{2} - 2\sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_{0}\mathbf{x}_{t-1} + \bar{\alpha}_{t-1}\mathbf{x}_{0}^{2}}{1 - \bar{\alpha}_{t-1}}\right)\right)$$

$$= \exp\left(-\frac{1}{2}\left(\left(\frac{\alpha_{t}}{\beta_{t}} + \frac{1}{1 - \bar{\alpha}_{t-1}}\right)\mathbf{x}_{t-1}^{2} - \left(\frac{2\sqrt{\bar{\alpha}_{t}}}{\beta_{t}}\mathbf{x}_{t} + \frac{2\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}}\mathbf{x}_{0}\right)\mathbf{x}_{t-1} + C(\mathbf{x}_{t},\mathbf{x}_{0})\right)\right)$$
 化简完之后重新写成正态分布的形式 其他的和X过程无关的其他过程的汇总

上边的这个过程拆分,写成标准的正态分布表达式 然后就能提取出他变化量的均值和方差, 方差是β, 均值是μ

$$\tilde{\beta}_t = 1/(\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) = 1/(\frac{\alpha_t - \bar{\alpha}_t + \beta_t}{\beta_t (1 - \bar{\alpha}_{t-1})}) = \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t$$

$$DDPM 后 边走了捷径把这个β省略了 (Loss 归一了) , 所以核心在μ上$$

$$\begin{split} \tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) &= (\frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0) / (\frac{\alpha_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}}) \\ &= (\frac{\sqrt{\alpha_t}}{\beta_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0) \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \cdot \beta_t \\ &= \frac{\sqrt{\alpha_t} (1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}} \beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 \end{split}$$

 $ilde{m{\mu}}_t = rac{\sqrt{lpha_t}(1-ar{lpha}_{t-1})}{1-ar{lpha_t}} \mathbf{x}_t + rac{\sqrt{ar{lpha}_{t-1}}eta_t}{1-ar{lpha}_t} rac{1}{\sqrt{ar{lpha}_t}} (\mathbf{x}_t - \sqrt{1-ar{lpha}_t}m{\epsilon}_t)$ $= \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_t \right)$ 因而只需要用一个模型学习这个即可

 $\mathbf{x}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} (\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_t)$

如果这个东西是已知的,那么走这个过程就可以完成图像重建

这两个方程待在一起可以把µ里边的X0替换掉,得到的就是下边的结果

3. 已经知道了均值的表达形式, 怎么学习到我们需要的参数-都是针对每一个小的time step进行的

神经网络 这个地方的Xt就是当前状态下的参数输入

$$\mu_{\theta}(\mathbf{x}_{t},t) = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \mathbf{\epsilon}_{\theta}(\mathbf{x}_{t},t) \right)$$
Thus $\mathbf{x}_{t-1} = \mathcal{N}(\mathbf{x}_{t-1}; \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \mathbf{\epsilon}_{\theta}(\mathbf{x}_{t},t) \right), \Sigma_{\theta}(\mathbf{x}_{t},t))$

$$Xt 时刻的均值和方差,带回逆传播过程之后的结果$$

基于正态分布 这个部分是实方差得归一化 际的噪声值

$$\begin{split} L_t &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1}{2\|\mathbf{\Sigma}_{\theta}(\mathbf{x}_t,t)\|_2^2} \|\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) - \boldsymbol{\mu}_{\theta}(\mathbf{x}_t,t)\|^2} \right] \text{ 上边给的带模型预测的结果,} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1}{2\|\mathbf{\Sigma}_{\theta}\|_2^2} \|\frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \underline{\boldsymbol{\epsilon}_t}\right) - \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)}\right) \|^2 \right]} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1}{2\|\mathbf{\Sigma}_{\theta}\|_2^2} \|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{\alpha_t}}} \left[\overline{\frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)\|^2} \right] + \overline{\frac{1}{\sqrt{1-\bar{\alpha}_t}}} \underline{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t,t)} \\ &= \mathbb{E}_{\mathbf{x}_0,\epsilon} \left[\overline{\frac{1-\alpha_t}{2}} \|\mathbf{x}_t - \mathbf{x}_t - \mathbf{x}_t - \mathbf{x}_t - \mathbf{x}_t$$

这个值是一个常数值, 优化得时候可以把它去掉

Algorithm 1 Training	Algorithm 2 Sampling		
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \mathrm{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: end for 6: return \mathbf{x}_{0}		

Table 1: CIFAR10 results. NLL measured in bits/dim.

				_		
Model	IS	FID	NLL Test (Train)	 Table 2: Unconditional CIFAR10 reverse 		
Conditional				_process parameterizat		
EBM [11] JEM [17] BigGAN [3] StyleGAN2 + ADA (v1) [29]	8.30 8.76 9.22 10.06	37.9 38.4 14.73 2.67		tive ablation. Blank entries were unstable to train and generated poor samples with out-of range scores.		
Unconditional				Objective	IS	FID
Diffusion (original) [53]			< 5.40	$\tilde{\mu}$ prediction (baseline)		
Gated PixelCNN [59] Sparse Transformer [7] PixelIQN [43]	4.60 5.29 6.78	65.93 49.46 38.2	3.03 (2.90) 2.80	L , learned diagonal Σ L , fixed isotropic Σ $\ \tilde{\mu} - \tilde{\mu}_{\theta}\ ^2$	7.28 ± 0.10 8.06 ± 0.09	23.69 13.22 -
EBM [11] NCSNv2 [56]	0.78	$\frac{36.2}{31.75}$		ϵ prediction (ours)		
NCSN [55] SNGAN [39] SNGAN-DDLS [4] StyleGAN2 + ADA (v1) [29] Ours (L , fixed isotropic Σ) Ours ($L_{\rm simple}$)	8.87 ± 0.12 8.22 ± 0.05 9.09 ± 0.10 9.74 ± 0.05 7.67 ± 0.13 9.46 ± 0.11	25.32 21.7 15.42 3.26 13.51 3.17	$\leq 3.70 (3.69)$ $\leq 3.75 (3.72)$	L , learned diagonal Σ L , fixed isotropic Σ $\ \tilde{\epsilon} - \epsilon_{\theta}\ ^2 (L_{\mathrm{simple}})$	7.67 ± 0.13 9.46 ± 0.11	- 13.51 3.17

Figure 6: Unconditional CIFAR10 progressive generation ($\hat{\mathbf{x}}_0$ over time, from left to right). Extended samples and sample quality metrics over time in the appendix (Figs. 10 and 14).

Figure 3: LSUN Church samples. FID=7.89

Figure 4: LSUN Bedroom samples. FID=4.90

Figure 8: Interpolations of CelebA-HQ 256x256 images with 500 timesteps of diffusion.

LDM

