

Universidade Federal do Amazonas

Instituto de Computação Programa de Pós-Graduação em Informática Grupo de Interesse em Sistemas Embarcados

EXTRAÇÃO DESCENTRALIZADA DE CONHECIMENTO ASSOCIATIVO PARA INTERNET DAS COISAS

Prof. Dr. Raimundo Barreto Márcio André da Costa Alencar

Manaus, 25 de março de 2019

AGENDA

INTRODUÇÃO	-	Contextualização
PROBLEMÁTICA	II	Definição do problema e objetivos
MÉTODO PROPOSTO	Ш	Descrição dos componentes e arquitetura geral
EXPERIMENTOS	IV	Métodologia de avaliação
RESULTADOS	V	Apresentação dos resultados
CONCLUSÃO	VI	Considerações Finais

Contextualização

- O que é "Internet of Things" ?

Ш

Ш

IV

V

V

Contextualização

- O que é "Internet of Things" ? Não há uma definição universal mas, simplificando, é o cenário onde as "coisas" estão conectadas!

Contextualização

 Há aproximadamente 1 bilhão de dispositivos conectados diariamente. Até 2020 haverá mais de 50 bilhões (IDC - 2011)

Contextualização

- Muitos deles estarão em nossas casas e trabalhos

Contextualização

- Muitos deles estarão em nossas casas e trabalhos
- Estar conectado não é o suficiente, é preciso inteligência!

Como prover inteligência aos dispositivos IoT?

V

П

Como prover inteligência aos dispositivos IoT?

É necessário que estes sejam capazes de identificar atividades, padrões, tendências e/ou correlações implícitas entre as atividades dos dispositivos que compõem o ambiente inteligente

Como prover inteligência aos dispositivos IoT?

É necessário que estes sejam capazes de identificar atividades, padrões, tendências e/ou correlações implícitas entre as atividades dos dispositivos que compõem o ambiente inteligente

Mas para isso é necessário considerar os seguintes pontos:

Como prover inteligência aos dispositivos IoT?

É necessário que estes sejam capazes de identificar atividades, padrões, tendências e/ou correlações implícitas entre as atividades dos dispositivos que compõem o ambiente inteligente.

- Arquitetura: Centralizada / Descentralizada
- Tipo de inteligência: Que informções extrair?
- Limitações dos dispositivos: Muito/Poucos Recursos
- Custo/Benefício: Soluções caras ou econômicas

Estado da arte em reconhecimento de padrões

- Redes Neurais (Aprendizagem profunda)

П

VI

Estado da arte em reconhecimento de padrões

- Redes Neurais (Aprendizagem profunda)
- Alto custo computacional (armazenamento/processamento)

 (CHEN et al., 2015; ROSE et al., 2015; MOONS e VERHELST, 2017)

Estado da arte em reconhecimento de padrões

- Redes Neurais (Aprendizagem profunda)
- Alto custo computacional (armazenamento/processamento)

 (CHEN et al., 2015; ROSE et al., 2015; MOONS e VERHELST, 2017)
- Centralização / Dependência

1

V

Estado da arte em reconhecimento de padrões

- Redes Neurais (Aprendizagem profunda)
- Alto custo computacional (armazenamento/processamento)

 (CHEN et al., 2015; ROSE et al., 2015; MOONS e VERHELST, 2017)
- Centralização / Dependência

V

Estado da arte em reconhecimento de padrões

- Redes Neurais (Aprendizagem profunda)
- Alto custo computacional (armazenamento/processamento)

 (CHEN et al., 2015; ROSE et al., 2015; MOONS e VERHELST, 2017)
- Centralização / Dependência

V

Estado da arte em reconhecimento de padrões

- Redes Neurais (Aprendizagem profunda)
- Alto custo computacional (armazenamento/processamento)

 (CHEN et al., 2015; ROSE et al., 2015; MOONS e VERHELST, 2017)
- Centralização / Dependência
- Dispositivos com muitos recursos (alto custo/dispercício)

Como prover inteligência aos dispositivos IoT...

Considerando:

- Ambiente descentralizado
- Dispositivos de baixo custos:
 - Limitações de processamento e armazenamento
- Extração de conhecimento deste ambiente

Mineração de dados!

Uma estratégia para contornar tais limitações é através da mineração de dados, especialmente a **análise associativa**, que buscam identificar padrões similares em um conjunto dados de modo que satisfaça critérios mínimos de suporte e confiabilidade

(TAN et al. 2006; CHEN et al. 2015; LI et al. 2018;

NAZERFARD 2018; KIREEV et al. 2019)

П

Mineração de dados!

Embora cada dispositivo tenha um padrão singular de uso

(HEIERMAN et al., 2003; CHEN et al., 2012; GONZALES e AMFT, 2015;

PAL et al., 2017; KIREEV et al 2018; NAZERFARD 2018;).

П

Mineração de dados!

Embora cada dispositivo tenha um padrão singular de uso, alguns deles possuem similaridades que podem ser exploradas para correlacioná-los

(HEIERMAN et al., 2003; CHEN et al., 2012; GONZALES e AMFT, 2015; PAL et al., 2017; KIREEV et al 2018; NAZERFARD 2018;).

Informações Preliminares

É importante assimilar bem os componentes e especificações do método para melhor compreensão da visão geral da arquitetura

П

Ш

Informações Preliminares

É importante assimilar bem os componentes e especificações do método para melhor compreensão da visão geral da arquitetura

Logo, tenha em mente que:

- Arquitetura: Descentralizada (tudo embarcado)
- Tipo de inteligência: Extração de correlações
- Dispositivos: Baixo custo (Poucos Recursos). Ex. ESP8266-01
- **Desafio:** Obter um conhecimento global baseado em decisões locais

Comportamento dos dispositivos

Cada dispositivo controla um **único objeto** e deve declarar **dois**

conjuntos bem definidos (discretos): Conjunto de estados ${\it S}=$

 $\{s_1,s_2,...s_k\}$ que representa suas interações com o ambiente e o

conjunto de ações $A=\{a_1,a_2,...,a_i\}$ que permite transitar entre os |S|

estados dos dispositivo

Ш

Comportamento dos dispositivos

Cada dispositivo controla um único objeto e deve declarar dois conjuntos bem definidos (discretos): Conjunto de estados $S = \{s_1, s_2, ... s_k\}$ que representa suas interações com o ambiente e o conjunto de ações $A = \{a_1, a_2, ..., a_i\}$ que permite transitar entre os |S| estados dos dispositivo. Ex.: Dispositivos binário (lâmpada)

$$S = \{off, on\}$$

 $A = \{switch \ off, switch \ on\}$

Ш

Armazenamento embarcado

Seja $T = \{t_1, t_2, ... t_i\}$ um conjunto finito de intervalos de tempos

discretos (slots), é possível definir uma base de dados embarcada

em forma de matriz $M_{ij} = A \times T$ onde cada elemento $c_{xy} \in M_{ij}$ é um

contador para a ação $a_x \in A$ no slot $t_y \in T$

Armazenamento embarcado

VI

Seja $T=\{t_1,t_2,...t_j\}$ um conjunto finito de intervalos de tempos discretos (slots), é possível definir uma base de dados embarcada em forma de matriz $M_{ij}=A\times T$ onde cada elemento $c_{xy}\in M_{ij}$ é um contador para a ação $a_x\in A$ no slot $t_v\in T$

i: num de elementos em A(|A|); j: num de elementos em T(|T|); c_{xy} : contador para cada ação a_x no slot t_y ;

Armazenamento embarcado

contador para a ação $a_x \in A$ no slot $t_y \in T$

IV

	c_{11}	• • •	c_{1j}
$M_{ij} =$:	•••	:
- 7	c_{i1}	• • •	c_{ij}

i: num de elementos em
$$A(|A|)$$
;
j: num de elementos em $T(|T|)$;
 c_{xy} : contador para cada ação a_x no slot t_y ;

M_{ij} :	=
------------	---

	00:00	01:00	02:00		21:00	22:00	23:00
switch off	10	2	1	•••	26	0	12
switch on	2	2	0		34	5	7

Seja $T = \{t_1, t_2, ... t_i\}$ um conjunto finito de intervalos de tempos

discretos (slots), é possível definir uma base de dados embarcada

em forma de matriz $M_{ij} = A \times T$ onde cada elemento $c_{xy} \in M_{ij}$ é um

Padrão de ações

Padrão de ações

$$\forall c_{xy} \in M_{ij} \ temos \ c_{xy} = \begin{cases} \log \frac{c_{xy}}{|A|} & se \ |A| \ge c_{xy} \\ 0 & se \ |A| < c_{xy} \end{cases}$$

Evita valores de inferiores à 1 para não gerar resultados negativos em transformações futuras

Padrão de ações

 \mathbf{M}_{ij}

	00:00	01:00	02:00		21:00	22:00	23:00
switch off	10	2	1		26	0	12
switch on	2	2	0	•••	34	5	7

Padrão de ações

		,

 M_{ij}

 M_{ij}

IV

VI

	00:00	01:00	02:00		21:00	22:00	23:00
switch off	10	2	1	•••	26	0	12
switch on	2	2	0		34	5	7

		00:00	01:00	02:00		21:00	22:00	23:00
SW	itch off	3,32	1	0		4,70	0	3,58
sw	itch on	1	1	0	•••	5,09	2,32	2,81

Padrão de ações

			00:00	01:00	02:00	 21:00	22:00	23:00
	M_{ij}	switch off	10	2	1	 26	0	12
	····ıj	switch on	2	2	0	 34	5	7
			00:00	01:00	02:00	 21:00	22:00	23:00
V	M _{ij} '	switch off	<u>3,32</u>	1	0	 4,70	0	<u>3,58</u>
1	ו	switch on	1	1	0	 <u>5,09</u>	2,32	2,81
/ //								
/	Padrã	io de	00:00	01:00	02:00	 21:00	22:00	23:00
	ações		SWITCH OFF	-	-	 SWITCH ON	SWITCH ON	SWITCH OFF

Minerando correlações

Padrão do Dispositivo 1

00:00	01:00	02:00	 21:00	22:00	23:00
SWITCH OFF	-	-	 SWITCH ON	SWITCH ON	SWITCH OFF

Minerando correlações

Padrão do Dispositivo 1

> Padrão do Dispositivo 2

00:00	01:00	02:00	•••	21:00	22:00	23:00	
SWITCH OFF	-	-		SWITCH ON	SWITCH ON	SWITCH OFF	
00:00	01:00	02:00		21:00	22:00	23:00	
CLOSE DOOR	CLOSE DOOR	-		OPEN DOOR	CLOSE DOOR	CLOSE DOOR	

Ш

Minerando correlações

Padrão do Dispositivo 1

Ш

Padrão do Dispositivo 2

·

Base de Transações (D)

00:00	01:00	02:00	 21:00	22:00	23:00
SWITCH OFF	-	-	 SWITCH ON	SWITCH ON	SWITCH OFF
00:00	01:00	02:00	 21:00	22:00	23:00
CLOSE DOOR	CLOSE DOOR	-	 OPEN DOOR	CLOSE DOOR	CLOSE DOOR
00:00	01:00	02:00	 21:00	22:00	23:00
SWITCH OFF	-	-	 SWITCH ON	SWITCH ON	SWITCH OFF
CLOSE DOOR	CLOSE DOOR	-	 OPEN DOOR	CLOSE DOOR	CLOSE DOOR

Minerando correlações

Padrão do Dispositivo 1

> Padrão do Dispositivo 2

Base de Transações (D)

00:00	01:00	02:00	 21:00	22:00	23:00
SWITCH OFF	-	-	 SWITCH ON	SWITCH ON	SWITCH OFF
00:00	01:00	02:00	 21:00	22:00	23:00
CLOSE DOOR	CLOSE DOOR	-	 OPEN DOOR	CLOSE DOOR	CLOSE DOOR
00:00	01:00	02:00	 21:00	22:00	23:00
SWITCH OFF	-	-	 SWITCH ON	SWITCH ON	SWITCH OFF
CLOSE DOOR	CLOSE DOOR	-	 OPEN DOOR	CLOSE DOOR	CLOSE DOOR

Combinações das ações (Regras) SWITCH OFF ⇒ CLOSE DOOR SWITCH OFF ⇒ OPEN DOOR SWITCH ON ⇒ OPEN DOOR SWITCH ON ⇒ CLOSE DOOR

Minerando correlações

Padrão do Dispositivo 1

> Padrão do Dispositivo 2

Base de Transações (D)

00:00	01:00	02:00		21:00	22:00	23:00
SWITCH OFF	-	-		SWITCH ON	SWITCH ON	SWITCH OFF
00:00	01:00	02:00	•••	21:00	22:00	23:00
CLOSE DOOR	CLOSE DOOR	-		OPEN DOOR	CLOSE DOOR	CLOSE DOOR
00:00	01:00	02:00	•••	21:00	22:00	23:00
SWITCH OFF	-	-		SWITCH ON	SWITCH ON	SWITCH OFF
CLOSE DOOR	CLOSE DOOR	-		OPEN DOOR	CLOSE DOOR	CLOSE DOOR

Combinações das ações (Regras) SWITCH OFF ⇒ CLOSE DOOR SWITCH OFF ⇒ OPEN DOOR SWITCH ON ⇒ OPEN DOOR SWITCH ON ⇒ CLOSE DOOR

Quais regras são Regras mais interessantes!?

Minerando correlações

Uma regra de associação, correlaciona a **Ação X** do **Dispositivo 01** à

Ação Y do Dispositivo 02 e expressa sua relevância baseada nas

seguintes métricas:

Minerando correlações

Uma regra de associação, correlaciona a **Ação X** do **Dispositivo 01** à **Ação Y** do **Dispositivo 02** e expressa sua relevância baseada nas seguintes métricas:

$$Support = \frac{freq(X,Y)}{|D|}$$

$$Regra X \Rightarrow Y \longrightarrow Lift = \frac{freq(X,Y) \times |D|}{freq(X) \times freq(Y)}$$

$$Confidence = \frac{freq(X,Y)}{freq(X)}$$

Minerando correlações

Uma regra de associação, correlaciona a **Ação X** do **Dispositivo 01** à **Ação Y** do **Dispositivo 02** e expressa sua relevância baseada nas seguintes métricas:

$$Support = \frac{freq(X,Y)}{|D|}$$

$$Regra X => Y \longrightarrow Lift = \frac{freq(X,Y) \times |D|}{freq(X) \times freq(Y)}$$

$$Confidence = \frac{freq(X,Y)}{freq(X)}$$

Minerando correlações

Uma regra de associação, correlaciona a **Ação X** do **Dispositivo 01** à **Ação Y** do **Dispositivo 02** e expressa sua relevância baseada nas seguintes métricas:

$$Regra X => Y \longrightarrow Lift = \frac{freq(X,Y) \times |D|}{freq(X) \times freq(Y)}$$

$$Confidence = \frac{freq(X,Y)}{freq(X)}$$

Esta abordagem define que |D| = |T| para comparar, de forma justa, regras de bases de transações com tamanhos diferentes

Minerando correlações

deve combinar seu padrão de ação com o de cada dispositivo na

rede, extrair as regras e comparar com as já obtidas até que reste

apenas as mais relevantes

D01 : AÇÕES (a, b)

D02 : AÇÕES (c, d)

Minerando correlações

Para obter as regras mais relevantes para suas ações, o dispositivo deve combinar seu padrão de ação com o de cada dispositivo na rede, extrair as regras e comparar com as já obtidas até que reste apenas as mais relevantes

Iteração 01 D01 x D02

Ш

(ad) ac / bd

Armazenar as regras ac e bd

Ш

Minerando correlações

Para obter as regras mais relevantes para suas ações, o dispositivo deve combinar seu padrão de ação com o de cada dispositivo na rede, extrair as regras e comparar com as já obtidas até que reste apenas as mais relevantes.

bd por be

D01 : AÇÕES (a, b) D02 : AÇÕES (c, d)

DO3: AÇÕES (e, f)

Minerando correlações

regras ac e bd

Ш

Para obter as regras mais relevantes para suas ações, o dispositivo deve combinar seu padrão de ação com o de cada dispositivo na rede, extrair as regras e comparar com as já obtidas até que reste apenas as mais relevantes.

a regra

ac por ay

a regra

bd por be

D02 : AÇÕES (c, d) D03 : AÇÕES (e, f) DN-1: AÇÕES (y, z)

D01 : AÇÕES (a, b)

Usando as regras

Baseado na regra, o Dispositivo O1 pode soliticar que o Dispositivo

02 mude de estado para satisfazer a regra de correlação no slot

atual

V

Usando as regras

Baseado na regra, o Dispositivo 01 pode soliticar que o Dispositivo 02 mude de estado para satisfazer a regra de correlação no slot atual

REGRAS NO DISPOSITIVO 01
SWITCH ON \Rightarrow CLOSE DOOF

00:00	SWITCH OFF
01:00	-
02:00	-
21:00	SWITCH ON
22:00	SWITCH ON
23:00	SWITCH OFF

00:00	CLOSE DOOR
01:00	CLOSE DOOR
02:00	-
21:00	OPEN DOOR
22:00	CLOSE DOOR
23:00	CLOSE DOOR

Usando as regras

Baseado na regra, o Dispositivo 01 pode soliticar que o Dispositivo 02 mude de estado para satisfazer a regra de correlação no slot atual

REGRAS NO DISPOSITIVO 01

Ш	SWITCH ON \Rightarrow CLOSE DOOR
IV	

00:00	SWITCH OFF
01:00	-
02:00	-
21:00	SWITCH ON
22:00	SWITCH ON
23:00	SWITCH OFF

00:00	CLOSE DOOR
01:00	CLOSE DOOR
02:00	-
•••	
21:00	
21.00	OPEN DOOR
22:00	OPEN DOOR CLOSE DOOR

Usando as regras

Baseado na regra, o Dispositivo O1 pode soliticar que o Dispositivo O2 mude de estado para satisfazer a regra de correlação no slot atual

REGRAS NO DISPOSITIVO 01

SWITCH ON \Rightarrow CLOSE DOOR

Usando as regras

Baseado na regra, o Dispositivo O1 pode soliticar que o Dispositivo O2 mude de estado para satisfazer a regra de correlação no slot atual

REGRAS NO DISPOSITIVO 01

Usando as regras

Baseado na regra, o Dispositivo O1 pode soliticar que o Dispositivo O2 mude de estado para satisfazer a regra de correlação no slot atual

REGRAS NO DISPOSITIVO 01

Visão geral

Dispositivos seguem especificações da *Web Thing Model* e compartilham um mesmo grupo de *multicast*

Visão geral

Dispositivos seguem especificações da **Web Thing Model** e compartilham um mesmo grupo de **multicast**

 Tratador de estímulos: Interage com o ambiente. Identifica entradas e gera saídas do dispositivo, Disponibiliza as ferramentas para controlar o estado do dispositivo, acessar o padrão de ações e gerenciar as regras de correlação, além de outras personalizações

Visão geral

Dispositivos seguem especificações da **Web Thing Model** e compartilham um mesmo grupo de **multicast**

 Controlador de estados: Realiza a mudança de estado se o estímulo for uma ação válida. Analisa a ação mais provável de ocorrer no slot antes de incrementer o contador. Informa ao Tratador de Estimulos se deve ou não disparar uma requisição para o dispositivo remoto

Visão geral

Dispositivos seguem especificações da *Web Thing Model* e compartilham um mesmo grupo de *multicast*

 Coletor de padrão: Identifica os demais dispositivos na rede por meio do grupo de multicast e coleta o padrão remoto dos dispositivos

GRUPO DE MULTICAST OUTROS REQUISIÇÃO/RESPOSTA DE PADRÃO REMOTO(Pr) DISPOSITIVOS COLETOR DE PADRÃO BASE DE CORRELAÇÕES API **ESTÍMULOS** NAVEGADORES / LÓGICOS FUSOR SUGESTOR EXTRATOR TRATADOR APLICATIVOS DE **ESTÍMULOS ESTÍMULOS** USUÁRIOS / FÍSICOS CONTROLADOR DE ← GERADOR DE PADRÃO GPIO's **ESTADOS** BASE DE DADOS (Mii)

Visão geral

Dispositivos seguem especificações da **Web Thing Model** e compartilham um mesmo grupo de **multicast**

Extrator: Realiza a análise associativa na base de transação (D) gerada pelo Fusor e atualiza as regras mais relevantes na base de correlações

GRUPO DE MULTICAST OUTROS REQUISIÇÃO/RESPOSTA DE PADRÃO REMOTO(Pr) DISPOSITIVOS COLETOR DE PADRÃO BASE DE CORRELAÇÕES API **ESTÍMULOS** NAVEGADORES / LÓGICOS ► EXTRATOR FUSOR SUGESTOR TRATADOR APLICATIVOS DE **ESTÍMULOS ESTÍMULOS** USUÁRIOS / FÍSICOS CONTROLADOR DE GPIO's ← GERADOR DE PADRÃO **EVENTOS ESTADOS** BASE DE DADOS (Mii)

Visão geral

Dispositivos seguem especificações da **Web Thing Model** e compartilham um mesmo grupo de **multicast**

- Sugestor: Apresenta as regras identificadas ao usuário possibilitando o gerenciamento das mesmas. Indica ao Tratador de Estímulos qual consequente (dispositivo remoto e ação correlata) da regra solicitada
- GRUPO DE MULTICAST OUTROS REQUISIÇÃO/RESPOSTA DE PADRÃO REMOTO(Pr) DISPOSITIVOS COLETOR DE PADRÃO BASE DE CORRELAÇÕES API **ESTÍMULOS** NAVEGADORES / LÓGICOS SUGESTOR ► EXTRATOR • FUSOR TRATADOR APLICATIVOS DE **ESTÍMULOS ESTÍMULOS** USUÁRIOS / FÍSICOS CONTROLADOR DE ← GERADOR DE PADRÃO GPIO's **EVENTOS ESTADOS** BASE DE DADOS (Mii)

П

Métodologia de Avalicação

Identificar o quão confiável é o método proposto em relação a análise associativa centralizada

- Análise centralizada feita pela *lib* "aRules" no s*oftware* R (HAHSLER *et al*. 2011)
- Base de transações única (fusão de todos os padrões de ações)
- Identificar se as regras extraídas pelo MAKE também são as mais relevantes extraídas pelo aRules
- Regras iguals (hit). Regras diferentes (miss)

Parâmetros dos experimentos

- Base de dados: Uma matriz para cada dia da semana;
- Slots: Intervalos de 15 minutos (|T|=96)
- Limiares Mínimos: Support (1%), Lift (1.1), Confidence (90%);

Parâmetros dos experimentos

- Base de dados: Uma matriz para cada dia da semana;
- Slots: Intervalos de 15 minutos (|T|=96)
- Limiares Mínimos: Support (1%), Lift (1.1), Confidence (90%);
- Extrações realizadas para os intevalos:
 - Intervalo I: Diariamente;
 - Intervalo II: Semanas alternadas
 - Intervalo III: Três semanas não e uma semana sim

Parâmetros dos experimentos

- Base de dados: Uma matriz para cada dia da semana;
- Slots: Intervalos de 15 minutos (|T|=96)
- Limiares Mínimos: Support (1%), Lift (1.1), Confidence (90%);
- Extrações realizadas para os intevalos:
 - Intervalo I: Diariamente;
 - Intervalo II: Semanas alternadas
 - Intervalo III: Três semanas não e uma semana sim
- Entradas: WSU-CASAS (COOCK et al, 2013):
 - Registro de vários dispositivos(valores contínuos e discretos)
 - Entradas exigiram pré processamento;

Exemplo de discretização

Baseado nos registros, obtem-se a média dos registros e considera valores maiores ou iguais à média como "HIGH"e abaixo como

"LOW"

Exemplo de discretização

Baseado nos registros, obtem-se a média dos registros e considera valores maiores ou iguais à média como "HIGH"e abaixo como "LOW"

Limpeza e discretização

Redução massiva no volume de dados que seriam armazenados / processados

DATASET	DISPOSITIVOS	DIAS	REGISTROS	UTILIZADO	REDUÇÃO
hh107	110	371	3.369.689	2.811.279	16,57%
hh123	88	588	2.907.282	2.345.775	10,31%
hh129	86	668	12.303.984	56.523	99,54%
shib009	8	847	3.187.940	90.599	97,16%
tokyo	67	115	802.534	171.483	78,63%

Limpeza e discretização

Redução massiva no volume de dados que seriam armazenados / processados

DATASET	DISPOSITIVOS	DIAS	REGISTROS	UTILIZADO	REDUÇÃO
hh107	110	371	3.369.689	2.811.279	16,57%
hh123	88	588	2.907.282	2.345.775	10,31%
hh129	86	668	12.303.984	56.523	99,54%
shib009	8	847	3.187.940	90.599	97,16%
tokyo	67	115	802.534	171.483	78,63%

Muitos dispositivos com registros contínuos que "não representavam uma mudança de estado", considerando a discretização

Comparação das Análises

Total regras extraídas durante todo o experimento: 23.073

	:				
DATAGET	HITS/N	MISSES POR INTERV	/ALO	TAXAS N	/IÉDIAS
DATASET	I	II	III	HITS	MISS
hh107	3.656/-	3.493/-	5.769/43	99.67	0.33
hh123	1962/-	2.373/-	4.040/15	99.82	0.18
hh129	80/-	54/-	54/-	100	-
shib009	16/-	135/-	75/-	100	-
tokyo	508/-	337/-	473/-	100	-
TOTAL		23.015 / 58		99.75	0.25

Apenas para duas bases de dados registraram valores miss **Taxa media de hits** durante o experimento é de **99.75**%

Regras não identificadas

Avaliando as regras divergentes, observou-se uma ligeira diferença entre as métricas de *support* e *lift* em ambas análises

Antogodonto	Consequente	MAKE (Misses)		aRules (Permissivo)			Contagem	
Antecedente	Consequente	Supp	Conf	\mathbf{Lift}	Supp	Conf	\mathbf{Lift}	Contagem
LS023 (HIGH)	LS021(LOW)	0.5729	0.9821	1.1359	0.5978	0.9821	1.0886	55
LS019 (LOW)	LS021(LOW)	0.7395	0.9861	1.1405	0.7717	0.9861	1.0930	71
LS004 (HIGH)	LS021(LOW)	0.6250	0.9836	1.1376	0.6521	0.9836	1.0902	60

Regras não identificadas

Avaliando as regras divergentes, observou-se uma ligeira diferença entre as métricas de *support* e *lift* em ambas análises

Antecedente	Consequente	MAKE (Misses)			aRules (Permissivo)			Contagem
		Supp	Conf	\mathbf{Lift}	Supp	Conf	\mathbf{Lift}	Contagem
LS023 (HIGH)	LS021(LOW)	0.5729	0.9821	1.1359	0.5978	0.9821	1.0886	55
LS019 (LOW)	LS021(LOW)	0.7395	0.9861	1.1405	0.7717	0.9861	1.0930	71
LS004 (HIGH)	LS021(LOW)	0.6250	0.9836	1.1376	0.6521	0.9836	1.0902	60

Diferença gerada pela adaptação do cálculo das métricas |D| = |T| aRules com |D| < |T| que interfere diretamente em *lift* e supp

Regras não identificadas

Avaliando as regras divergentes, observou-se uma ligeira diferença entre as métricas de support e lift em ambas análises

Antecedente	Consequente	MAKE (Misses)			aRules (Permissivo)			Contagem
		Supp	Conf	\mathbf{Lift}	Supp	Conf	\mathbf{Lift}	Contagem
LS023 (HIGH)	LS021(LOW)	0.5729	0.9821	1.1359	0.5978	0.9821	1.0886	55
LS019 (LOW)	LS021(LOW)	0.7395	0.9861	1.1405	0.7717	0.9861	1.0930	71
LS004 (HIGH)	LS021(LOW)	0.6250	0.9836	1.1376	0.6521	0.9836	1.0902	60

Diferença gerada pela adaptação do cálculo das métricas |D| = |T| aRules com |D| < |T| que interfere diretamente em *lift* e supp

Regras presentes em mais da metade dos s*lots.* Apenas o MAKE identificou como relevante

Mineração descentralizada e embarcada.

O método proposto mostrou-se

Mineração descentralizada e embarcada.

registro análise de dados baseada nas ações do dispositivo apresentou resultados interessantes, tanto redução para a dados quanto para а capacidade de armazenar informações relevantes entre os dispositivos

П

Ш

IV

V

VI

Mineração descentralizada e embarcada.

 O armazenamento de dados em forma de matriz de contadores demonstrou ser uma alternativa viável para dispositivos com poucos recursos podendo ser facilmente dimensionável para se ajustar às limitações do dispositivo

Mineração descentralizada e embarcada.

- As extrações de intervalos de tempos fixos possibilitaram a identificação no padrão de ações de tal forma que foi possível adaptar as correlações ao longo do tempo

TOKYO – INTERVALO III – QUARTA – CHECKPOINT 01 à 05

Observações Importantes

 Dimensionalidade da Matriz (|A|x|T|): A dimensão da matriz deve ser avaliada com cautela já que se o número de slots e/ou o número de ações do dispositivo for elevado, a mesma pode consumir muito espaço (de armazenamento e processamento)

75

Observações Importantes

- Dimensionalidade da Matriz (|A|x|T|): A dimensão da matriz deve ser avaliada com cautela já que se o número de slots e/ou o número de ações do dispositivo for elevado, a mesma pode consumir muito espaço (de armazenamento e processamento).
- Compartilhamento de padrões: Todos os dispositivos devem ser capazes conciliar dois padrões de ações simultaneamente para que seja possível executar a análise associativa. Para matrizes com muitos slots, isso pode ser um problema

Observações Importantes

- Dimensionalidade da Matriz (|A|x|T|): A dimensão da matriz deve ser avaliada com cautela já que se o número de slots e/ou o número de ações do dispositivo for elevado, a mesma pode consumir muito espaço (de armazenamento e processamento).
- Compartilhamento de padrões: Todos os dispositivos devem ser capazes conciliar dois padrões de ações simultaneamente para que seja possível executar a análise associativa. Para matrizes com muitos slots, isso pode ser um problema.
- Descoberta de dispositivos: Protocolo multicast usa UDP

Considerações Finais

- MAKE (eMbedded Associative Knowledge Extraction)

Ambiente descentralizado

✓ Dispositivos autônomos

Mineração de dados dinâmica

Modelo adaptativo

✓ Fácil Integração (WTM)

Universidade Federal do Amazonas

Instituto de Computação Programa de Pós-Graduação em Informática Grupo de Interesse em Sistemas Embarcados

DÚVIDAS

Manaus, 25 de março de 2019

Universidade Federal do Amazonas

Instituto de Computação Programa de Pós-Graduação em Informática Grupo de Interesse em Sistemas Embarcados

OBRIGADO

Manaus, 25 de março de 2019