Assignment 4 Due: 24-05-2024

Q1

(a) We are given $r = 4, k = 11, \lambda = 2$, assume that these are parameters for a balanced design, by *Theorem 4.10*:

$$bk = vr \implies 11b = 4v$$

$$\lambda(v-1) = r(k-1) \implies 2(v-1) = 4(11-1) \implies 2v-2 = 40 \implies v = 21$$

Contradiction as this implies $b = \frac{4\cdot21}{11}$ which is not an integer as neither 4 nor 21 have a prime factor of 11. Thus, no balanced block design has these parameters.

(b) We are given b = 30, r = 6, k = 5, assume that these are parameters for a balanced design, by *Theorem 4.10*:

$$bk = vr \implies 30 \cdot 5 = 6v \implies v = 25$$

$$\lambda(v-1) = r(k-1) \implies \lambda(24) = 6(4) \implies \lambda = 1$$

Using Construction 4.24 with the field $\mathbb{F} = \mathbb{Z}_5$, we can construct an affine plane of order 5.

From the proof of *Theorem 4.38*, an affine plane of order n = 5 with is a balanced block design with parameters:

$$(v,b,r,k,\lambda)=(n^2,n^2+n,n+1,n,1)=(25,30,6,5,1)$$

Thus we can construct affine plane which is a BIBD satisfying the given parameters.

(c) We are given $v = 46, b = 10, \lambda = 2$, assume that these are parameters for a balanced design, by *Theorem 4.10*:

$$bk = vr \implies 10k = 46r \implies k = 4.6r$$

$$\lambda(v-1) = r(k-1) \implies 2(46-1) = r(k-1) \implies 0 = 4.6r^2 - r - 90$$

Solving for possible values of r using the quadratic equation:

$$r = \frac{1 \pm \sqrt{1 + 4 \cdot 4.6 \cdot 90}}{2 \cdot 4.6} = \frac{1 \pm \sqrt{1657}}{2 \cdot 4.6}$$

Which has no integer solutions as $40^2 < 1657 < 41^2$, hence 1657 is not a perfect square and therefore $\sqrt{1657}$ must be irrational.

Since *r* must be an integer, this is a contradiction so no balanced block design has these parameters.

Q2

Assume that there is a BIBD for v = b = 40 with parameters (v, b, r, k, λ) . Then since vr = bk we have k = r. Thus:

$$\lambda(v-1) = r(k-1) \implies 39\lambda = r(r-1) = k(k-1)$$

Since the design is incomplete, $r, k, \lambda \le 39$. We can factorise $39 = 3 \cdot 13$ and $\lambda = \lambda_1 \lambda_2$. This gives the following cases:

Solving for λ in each of these cases:

Case A	Case B
$\lambda_1 = 1 \implies \lambda_2 = 38$ $\lambda_1 \ge 2 \implies \lambda > 39$ $\implies \lambda \in \{38\}$	$\lambda_1 = 1 \implies \lambda_2 = 4$ $\lambda_1 = 2 \implies \lambda_2 = 25/3 \notin \mathbb{Z}$ $\lambda_1 \ge 3 \implies \lambda > 39$ $\implies \lambda \in \{4\}$
Case C	
$\lambda_2 = 1 \implies \lambda_1 = 14/3 \notin \mathbb{Z}$	Case D
$\lambda_2 = 2 \implies \lambda_1 = 9$ $\lambda_2 = 3 \implies \lambda_1 = 40/3 \notin \mathbb{Z}$	$\lambda_2 \ge 1 \implies \lambda > 39$
$\lambda_2 \ge 3 \implies \lambda > 39$	$\implies \lambda \in \emptyset$
$\implies \lambda \in \{18\}$	

So we must have $\lambda \in \{4, 18, 38\}$.

(a) Since $\lambda = 2$, by Theorem 4.10:

$$\lambda(v-1) = r(k-1) \implies v-1 = \frac{r(k-1)}{2}$$

Therefore:

$$v \le \binom{r}{2} + 1 = \frac{r(r-1)}{2} + 1 \iff v - 1 \le \frac{r(r-1)}{2} \iff \frac{r(k-1)}{2} \le \frac{r(r-1)}{2} \iff r \le k$$

Thus, it suffices to show that $r \le k$. Assume for contradiction that r > k. Then by:

$$vr = bk \implies v < b$$

However, since the design is incomplete, v > k so by *Theorem 4.10*, we expect $b \ge v$. Thus, we have a contradiction.

(b) By (a), since $\lambda = 2$:

$$v \le \binom{7}{2} + 1 = 22$$

By Theorem 4.10:

$$\lambda(v-1) = r(k-1) \implies v = \frac{7(k-1)}{2} + 1$$

To have $v \in \mathbb{Z}$, k must be odd, also k > 1, searching for possible values of v:

$$k = 3 \implies v = 8 \implies b = \frac{8 \cdot 7}{3} \notin \mathbb{Z}$$

 $k = 5 \implies v = 15 \implies b = 21$
 $k = 7 \implies v = 22 \implies b = 22$
 $k = 9 \implies v > 22$

So we either have v = 15 or v = 22.

For (v, k) = (22, 7), notice that since r = k, we have b = v and v is even. So by even case of the Bruck-Ryser-Chowla Theorem, $k - \lambda = 5$ should be a perfect square. Since 5 is not a perfect square, there is no BIBD with these parameters.

So if a BIBD does have $\lambda = 2$, r = 7, k > 1, it must have v = 15.

Q4

First we verify that the construction can be performed. Assume that we have a projective plane. By axiom P3, there are at least 4 points, and by P1, any distinct pair of these points is on a unique line. Thus, there is a line ℓ to remove.

We check the axioms for an affine plane hold for the plane constructed by removing a line ℓ :

- A1: Any two distinct points in the constructed plane already existed on some unique line m in the projective plane, we have $m \neq \ell$ otherwise we would have removed the points. Hence, m is present in the constructed plane. As no other lines have become incident with the points, m is the unique line incident with both points.
- Consider any point p and line m' in the constructed plane such that m' is not incident on p. Clearly m' is distinct from ℓ , so by P2, m and ℓ have a unique common point q. Now by P1, q and p lie on a unique line m. Since $p \in m$ but $p \notin \ell$ we must have $m \neq \ell$ and so m is present in the constructed plane. Since q is the only common point of m and m', and is not present in the constructed plane, $m \cap m' = \emptyset$.

It remains to show that m is unique. Assume that there is another line k such that $m \neq k$ while k is also incident on p and has $k \cap m' = \emptyset$.

Since $k \neq m$, k cannot be incident on q as any two points are on a unique common line. By P2 k and m' have a unique common point q', since this point cannot be q, and q is the only point on both m' and ℓ , q' is not on ℓ .

Therefore, q' is in the constructed plane, meaning that $k \cap m' \neq \emptyset$. This is a contradiction, therefore m is unique.

• A3: By P3, the projective plane contains 4 points no 3 of which are collinear. If ℓ is not incident on any of these points, they are in the constructed plane and A3 is satisfied. Otherwise:

Assume that we have 4 points no 3 of which are collinear, then ℓ is incident on at most 2 points.

WLOG, let ℓ be incident on q_1 and possibly q_2 but not p_1, p_2 , since each pair of points is on a unique line, and no three points are collinear.

Let p_3 be the unique common point of the unique lines a_1, a_2 through q_1, p_1 and q_2, p_2 respectively. The lines b_1, b_2 respectively containing q_1, p_2 and q_2, p_1 must also have a unique common point p_4 .

Let $Q = \{q_1, q_2, p_1, p_2\}$ and $P = \{p_1, p_2, p_3, p_4\}$.

Claim: The points p_3, p_4 are distinct and $p_3, p_4 \notin Q$.

First assume $p_3 = p_4$, then a_1, b_1 both contain q_1 and $p_3 = p_4$, since the line containing two points is unique, $a_1 = b_1$. Hence, q_1, p_1, p_2 are all on the line $a_1 = b_1$ and thus collinear. This is a contradiction so $p_3 \neq p_4$.

Next assume that at least one of $p_3, p_4 \in Q$, WLOG (by interchanging p_1, p_2), let $p_3 \in Q$.

We have that q_1, p_1 on a_1 and q_2, p_2 on a_2 . By definition p_3 is on both a_1 and a_2 . Thus, some a_i now contains 3 distinct points in Q, thus there are 3 collinear points in Q4. Contradiction so $p_3, p_4 \notin Q$.

Claim: No three distinct points in *P* are collinear.

Assume that 3 points in P are collinear. Then the collinear points lie on some line m.

However, there two lines x, y from $\{a_1, a_2, b_1, b_2\}$ that each contain at least distinct pairs of the points. Since a unique line contains any two points, both x = m = y. Since x, y contain distinct pairs of points from Q, at least three points must now be on the same line m = x = y and therefore be collinear which is a contradiction.

Claim: Neither of $\{p_3, p_4\}$ are on ℓ .

Next assume that at least one of $p_3, p_4 \in \ell$, WLOG (by interchanging p_1, p_2), let $p_3 \in \ell$.

Since ℓ contains q_1, q_2, p_3 it is the unique line containing any pair those points. Thus, $a_1 = \ell = a_2$. However, if $\ell = a_1 = a_2$ then q_1, q_2, p_1 are all on ℓ and therefore collinear. This is a contradiction so $p_3 \notin \ell$ and $p_4 \notin \ell$.

Thus, there are 4 points $\{p_1, p_2, p_3, p_4\}$ such that no 3 are collinear, and these points will be present in the constructed plane as no point is incident with ℓ . Therefore, A3 will be satisfied for the constructed plane.

Hence, we have shown that the construction is an affine plane by definition.

Consider the set $\{L_1, ..., L_6\}$ of order 7 Latin squares with entries $(L_k)_{ij} = i + kj \mod 7$. Verifying that this is a set of Latin squares:

$$(L_k)_{ij} = (L_k)_{ij'}$$

$$\implies i + kj = i + kj'$$

$$\implies kj = kj'$$

$$\implies j = j' \quad \text{Divide by } k$$

$$(L_k)_{ij} = (L_k)_{i'j}$$

$$\implies i + kj = i' + kj$$

$$\implies i = i'$$

Note that we can divide by k in mod 7 as 1,..., 6 are not zero divisors. So we have shown that in the same row/column, only a single cell holds each value.

Assume that $L_k \neq L_{k'}$ aren't orthogonal, and therefore for $(i, j) \neq (i', j')$:

$$((L_k)_{ij}, (L_{k'})_{ij}) = ((L_k)_{i'j'}, (L_{k'})_{i'j'})$$

$$\implies (i + kj, i + k'j) = (i' + kj', i' + k'j')$$

$$\implies (0, 0) = ((i - i') + k(j - j'), (i - i') + k'(j - j'))$$

$$\implies (i - i') + k(j - j') = (i - i') + k'(j - j')$$

$$\implies k(j - j') = k'(j - j')$$

$$\implies 0 = (k - k')(j - j')$$

However, the only zero divisor in mod 7 is 0, thus either k - k' = 0, or j - j' = 0. Since we assumed $L_k \neq L_{k'} \implies k - k' \neq 0$, we must have j = j'. Therefore:

$$\left(0,0\right) = \left((i-i') + k(j-j'), (i-i') + k'(j-j')\right) \implies 0 = i-i' \implies i = i'$$

This is a contradiction, so each distinct pair L_k , L_k , must be orthogonal by definition. This also verifies that there are 6 distinct Latin squares since a Latin square is not orthogonal with itself.

Thus, $\{L_1, ..., L_6\}$ are a set of 6 MOLS of order 7.

- (a) The square was completed in the following order:
 - The gray cells were given.
 - The blue must be some permutation of 3,4,5 and can be re-ordered by interchanging rows, order chosen WLOG.
 - The violet cells must also be some permutation of 3, 4, 5 distinct from the ordering of the blue cells. There are two options, the other failed to complete the square.
 - The cyan cell, had to be either 1 or 2, since no remaining cells are constrained by a 1 or 2, the choice is made WLOG.
 - Each cell with a single remaining possibility was filled until the square was complete.

1	2	3	4	5
2	1	5	3	4
3	4	1	5	2
4	5	2	1	3
5	3	4	2	1

(b) By *Theorem 4.63*, a Latin square of order 5 has an orthogonal mate if and only if it contains 5 disjoint traversals. Assume that there exist 5 disjoint traversals of some completion.

Consider the top left 2×2 region:

The region contains the following cells:

1	2
2	1

If two cells are in the same traversal, they cannot be in the same row/column, thus they must be diagonal (in the 2×2 region). All diagonal entries are the same, so they cannot be part of the same traversal.

Thus, each cell in the 2×2 region is part of a distinct traversal.

Label the traversals A, B, C, D, E, WLOG we can fix the traversal that each of the cells in the 2×2 region are part of. Since each traversal appears once in each row/column, we can deduce which traversals the cells in each region must be assigned to:

Α	В	C, D, E
С	D	A, B, E
B, D, E	A, C, E	A, A, B, B C, C, D, D, E

Notice that to be a traversal E should contain both cells with values 1 and 2, however none of the E's in first two rows/columns could contain a 1 or 2. This only leaves a single E in the bottom right 3×3 region. So it is impossible for the E traversal to contain both a 1 and 2.

Therefore, it is impossible for any completion to contain 5 distinct traversals and thus no completion has an orthogonal mate.