

Flavia Timpu ::

Light delivery to trapped ions using integrated photonics

LNQ Meeting - 25.07.2022

Ion traps − 3D geometry

Use electrodes to create a potential well to trap charged particles

Blade trap @ Innsbruck A B 1.13 mm B

PAUL SCHERRER INSTITUT

C. Hempel

ETH zürich

Figure 3.2.: Trap II (2011)

Monolithic trap @ PSI

E. Brücke, made by FemtoPrint

4.5 mm

The ⁴⁰Ca⁺ ion – energy levels

Operations with trapped ions

Light delivery to the ions!

Ion traps -3D geometry

Blade trap @ Innshruck

Light access required!

Challenge: scaling up

Figure 3.2.: Trap II (2011)

C. Hempel

Use electrodes to create a potential well to trap charged particles

Blatt, IQOQI Innsbruck

How to scale up ion traps?

Mehta et al, Nature 586, 2020

How to scale up ion traps?

Integrated light delivery with grating outcouplers

From the light source to the ion

Optical input: Fiber coupled to the chip edge

Waveguide from chip edge to trap position

Taper

Grating outcoupler patterned in taper

Mehta et al, Proc. of SPIE 10933, 2019

How does it work, how is it designed?

Mehta et al, Nature 586, 2020

Curved gratings used to couple light from a Gaussian beam into a waveguide.

$$R(z) \approx z, z \gg z_0$$

Figure 3.1-7 Wavefronts of a Gaussian beam. Saleh, Teich, Fundamentals of Photonics

PAUL SCHERRER INSTITUT

How does it work, how is it designed?

Mehta et al, Nature 586, 2020

- At ion position assume Gaussian beam source with known beam waist, propagation direction
- Beam propagates to grating and couples to it
- 3) Beam focused to tip of taper and couples to the waveguide

For optimal coupling:

- Grating width and beam waist match
- Phase condition for grating stripe center $\Phi = 2\pi m$

PAUL SCHERRER INSTITUT

- Layer-by-layer fabrication starting from a Si wafer
- Dielectric spacers between layers
- No unshielded dielectrics allowed transparent metals for optical access

Fabrication requirements

K. Mehta and G. Beck, TIQI, ETH Zurich

- Gratings with variable period
- Diffraction limited features
- Grating width and aperture depends on wavelength and focus size

Fabrication requirements

Mehta et al, Proc. of SPIE 10933, 2019

- Single mode waveguides
- Waveguide bends optimized for low losses

What is next?

Niffenegger et al, Nature 586, 2020

Fully integrated (low loss) beam delivery

Multiwavelength gratings/Tunable gratings

Custom polarization and intensity profiles

What is next?

Multiplexing

PAUL SCHERRER INSTITUT

Karan Mehta and Beck Gillenhaal, TIQI, ETH Zurich

Summary – integrated optics for trapped ions

- An enginering challenge many interesting devices, but mostly proof-of-principle or not performant enough
 - Extinction ratios: -60 dB ideally
 - Powers: 10-100 μW, but sometimes 10s mW
- Research breakthroughs both devices and materials
 - Going from 10s to 1000s of trapped ions?

