### QBUS 6840 Lecture 5

# **Exponential Smoothing**

Professor Junbin Gao

The University of Sydney Business School

### Outline

### **Exponential smoothing**

- Simple Exponential Smoothing
- Trend Corrected Exponential Smoothing (Holt's Linear Trend Method)

### Reading

- Online Textbook Sections 7.1-7.2
   (https://otexts.org/fpp2/expsmooth.html); and/or
- BOK Sec 8.1-8.3

### Exponential smoothing methods

- In simple terms, exponential smoothing forecasts are weighted averages of previous observations. The weights decay exponentially as we go further into the past.
- Useful when parameters or components are changing with time.

Naïve Method

$$\widehat{y}_{T+1|1:T} = y_T$$

Overall Average Method

$$\widehat{y}_{T+1|1:T} = \frac{1}{T} \sum_{t=1}^{T} y_t = \frac{1}{T} (y_T + y_{T-1} + \dots + y_1)$$

Something between two extremes

$$\widehat{y}_{T+1|1:T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots + \alpha (1-\alpha)^{T-1} y_1$$

$$= \alpha y_T + (1-\alpha) [\alpha y_{T-1} + \alpha (1-\alpha) y_{T-2} + \dots + \alpha (1-\alpha)^{T-2} y_1]$$

$$= \alpha y_T + (1-\alpha) \widehat{y}_{T|1:T-1}$$

Weighted average form

$$\widehat{y}_{t+1|1:t} = \alpha y_t + (1 - \alpha)\widehat{y}_{t|1:t-1}$$

The forecast at time t+1 is equal to a weighted average between the most recent observation  $y_t$  and the most recent forecast  $\hat{y}_{t|1:t-1}$ .

### Two Alternative Forms

The Component Form

$$I_t = \alpha y_t + (1 - \alpha)I_{t-1}, \qquad 0 \le \alpha \le 1.$$
  
$$\widehat{y}_{t+1|1:t} = I_t.$$

 $l_t$  is called the level (or the smoothed value) of the series at time t. We first calculate the level  $l_t$ , then use it as the forecast  $\widehat{y}_{t+1|1:t}$ .

The Error Correction Form

$$\widehat{y}_{t+1|1:t} = I_t.$$

$$I_t = \alpha y_t + (1 - \alpha)I_{t-1} = I_{t-1} + \alpha (y_t - I_{t-1})$$

$$= I_{t-1} + \alpha \varepsilon_t$$

where  $\varepsilon_t = y_t - l_{t-1} = y_t - \hat{y}_{t|1:t-1}$  is the forecast error at time t.

## Explanation: Simple exponential smoothing



# S&P 500 Closing Price (Lecture05\_Example01.py)

Exponential smoothing with  $\alpha=0.05$ 



## S&P 500 Closing Price (Lecture05\_Example01.py)

Exponential smoothing with lpha=0.1



### Visitor arrivals in Australia

#### Exponential smoothing with lpha=0.1



### Visitor arrivals in Australia

Exponential smoothing with  $\alpha = 0.5$ 



# Simple exponential smoothing Weights

Specify an initial value  $l_0$  (an estimate or a guess, e.g., the average of  $y_1, y_2, y_3$ ).

$$I_1 = \alpha y_1 + (1 - \alpha)I_0$$

$$I_2 = \alpha y_2 + (1 - \alpha)I_1 = \alpha y_2 + (1 - \alpha)\alpha y_1 + (1 - \alpha)^2 I_0$$

$$l_3 = \alpha y_3 + (1 - \alpha)l_2 = \alpha y_3 + (1 - \alpha)\alpha y_2 + (1 - \alpha)^2 \alpha y_1 + (1 - \alpha)^3 l_0$$

# Simple exponential smoothing Weights

$$l_4 = \alpha y_4 + (1 - \alpha)l_3$$
  
=  $\alpha y_4 + (1 - \alpha)\alpha y_3 + (1 - \alpha)^2 \alpha y_2 + (1 - \alpha)^3 \alpha y_1 + (1 - \alpha)^4 l_0$   
:

$$I_{t} = \alpha y_{t} + (1 - \alpha)I_{t-1}$$
  
= \alpha y\_{t} + (1 - \alpha)\alpha y\_{t-1} + (1 - \alpha)^{2} \alpha y\_{t-2} + \dots + (1 - \alpha)^{t-1} \alpha y\_{1}  
+ (1 - \alpha)^{t} I\_{0}

A WMA smoother (is moving?)

### Choice of initial level

- We left  $l_0$  unspecified above.
- How should we set it?
  - Use the average of very initial observations, i.e.,  $y_1, y_2, y_3$  etc., or even simply  $y_1$
  - Take  $l_0$  as a parameters, and use an algorithm to estimate it.

Some notes

- Useful when level is changing, but not too much.
- Weights all previous observations in smoothing.
- Weights decrease exponentially.
- Weights add to 1 (always, check it!).
- Low  $\alpha$  reveals trend-cycle; Higher  $\alpha$  reveals seasonality.
- Also called EWMA (exponentially weighted moving average)

### Simple exponential forecasting: Theoretical Model

• The basic model:

$$I_t = \alpha y_t + (1 - \alpha)I_{t-1}, \qquad 0 \le \alpha \le 1.$$

and

$$y_{t+1} = I_t + \varepsilon_{t+1}$$
, with  $\varepsilon_{t+1} \sim N(0, \sigma^2)$ .

- We assume all  $\varepsilon_t$ 's are independent of each other
- The level is the underlying mechanism, where the next observation is "noised" current level.
- What is about when  $\alpha = 1$ ?

### Simple exponential forecasting

Formal statistical model: Estimating Parameters

• Recall the basic model:

$$y_{t+1} = I_t + \varepsilon_{t+1}$$
  
$$I_t = \alpha y_t + (1 - \alpha)I_{t-1}.$$

• We can chose  $\alpha$  (and  $l_0$ ) by minimising

$$SSE = \sum_{t=1}^{n} (y_t - l_{t-1})^2$$
$$= \sum_{t=1}^{n} (y_t - \alpha y_{t-1} - (1 - \alpha) l_{t-2})^2.$$

A big picture note

Muth (1960) showed that EWMA forecasts are minimum MSE for the following statistical model

$$y_t = \mu_t + \varepsilon_t; \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_e^2)$$
$$\mu_{t+1} = \mu_t + \xi_t \quad \xi_t \sim \mathcal{N}(0, \sigma_{\xi}^2)$$

where  $\{\varepsilon_t\}$  and  $\{\xi_t\}$  are two independent Gaussian white noise series. This is an example of state-space models. We re-visit this in later lectures.

The initial value  $\mu_1$  is either given or follows a known distribution, and is independent of  $\{\varepsilon_t\}$  and  $\{\xi_t\}$ .

## Simple exponential smoothing: Analysis

#### Error correction formulation

 The basic model for the level can be rewritten in terms of errors

$$I_t = \alpha y_t + (1 - \alpha)I_{t-1}$$
  
=  $I_{t-1} + \alpha(y_t - I_{t-1})$   
=  $I_{t-1} + \alpha \varepsilon_t$ .

The next observation is

$$y_{t+1} = I_t + \varepsilon_{t+1} = I_{t-1} + \alpha \varepsilon_t + \varepsilon_{t+1} = \cdots$$
$$= I_0 + \alpha \varepsilon_1 + \cdots + \alpha \varepsilon_t + \varepsilon_{t+1}$$

Similarly

$$y_{t+2} = I_{t+1} + \varepsilon_{t+2} = I_t + \alpha \varepsilon_{t+1} + \varepsilon_{t+2}$$
$$= I_{t-1} + \alpha \varepsilon_t + \alpha \varepsilon_{t+1} + \varepsilon_{t+2} = \cdots$$
$$= I_0 + \alpha \varepsilon_1 + \cdots + \alpha \varepsilon_t + \alpha \varepsilon_{t+1} + \varepsilon_{t+2}$$

### Simple exponential smoothing: Analysis

#### Forecast equations

 The forecast is defined as the average over all possible uncertainty [Carefully understand the meaning of this!]

$$\widehat{y}_{t+h|1:t} := E(y_{t+h}|y_{1:t}), \qquad l_t = l_{t-1} + \alpha \varepsilon_t$$

• We have already observed up to time t, so  $l_t$  is certain. Uncertainty occurs after this time point, e.g.,  $\varepsilon_{t+1}$ 

$$\widehat{y}_{t+1|1:t} = E(I_t + \varepsilon_{t+1}|y_{1:t}) \quad [\text{Note: } y_{t+1} = I_t + \varepsilon_{t+1}]$$

$$= E(I_t) + E(\varepsilon_{t+1}|y_{1:t}) = I_t + E(\varepsilon_{t+1}) = I_t + 0 = I_t$$

where we have used the assumption  $\varepsilon_{t+1} \sim N(0, \sigma^2)$ , i.e.,  $E(\varepsilon_{t+1}) = 0$ .

So, similarly

$$\widehat{y}_{t+2|1:t} = E(I_{t+1} + \varepsilon_{t+2}|y_{1:t}) = I_{t+1}$$

Is this correct?

# Simple exponential smoothing: Analysis

#### Forecast equations

 The forecast is defined as the average over all possible uncertainty [Carefully understand the meaning of this!]

$$\widehat{y}_{t+h|1:t} := E(y_{t+h}|y_{1:t}), \qquad I_t = I_{t-1} + \alpha \varepsilon_t$$

• We have already observed up to time t, so  $l_t$  is certain. Uncertainty occurs after this time point, e.g.,  $\epsilon_{t+1}$ 

$$\widehat{y}_{t+1|1:t} = E(I_t + \varepsilon_{t+1}|y_{1:t}) \quad [\text{Note: } y_{t+1} = I_t + \varepsilon_{t+1}]$$

$$= E(I_t) + E(\varepsilon_{t+1}|y_{1:t}) = I_t + E(\varepsilon_{t+1}) = I_t + 0 = I_t$$

where we have used the assumption  $\varepsilon_{t+1} \sim N(0, \sigma^2)$ , i.e.,  $E(\varepsilon_{t+1}) = 0$ .

Similarly

$$\widehat{y}_{t+2|1:t} = E(I_{t+1} + \varepsilon_{t+2}|y_{1:t}) = E(I_t + \alpha \varepsilon_{t+1}|y_{1:t}) = I_t$$

$$\vdots$$

$$\widehat{y}_{t+h|1:t} = E(I_{t+h-1} + \varepsilon_{t+h}|y_{1:t}) = E(I_{t+h-2} + \alpha \varepsilon_{t+h-1}|y_{1:t}) = I_t$$

Hence the forecast is always  $l_t$  after time t.

#### Variance for interval forecasts

Recall the model again:

$$y_{t+1} = I_t + \varepsilon_{t+1}, \qquad I_t = I_{t-1} + \alpha \varepsilon_t$$

Consider the variance of the new observation

$$\begin{aligned} \mathsf{Var}(y_{t+1}|y_{1:t}) &= \mathsf{Var}(I_t + \varepsilon_{t+1}|y_{1:t}) \\ &= \mathsf{Var}(I_t) + \mathsf{Var}(\varepsilon_{t+1}|y_{1:t}) \\ &= 0 + \sigma^2 = \sigma^2. \quad \mathsf{Why?} \end{aligned}$$

Similarly

$$\begin{aligned} \operatorname{Var}(y_{t+2}|y_{1:t}) &= \operatorname{Var}(I_{t+1} + \varepsilon_{t+2}|y_{1:t}) = \operatorname{Var}(I_t + \alpha\varepsilon_{t+1} + \varepsilon_{t+2}|y_{1:t}) \\ &= \operatorname{Var}(I_t) + \operatorname{Var}(\alpha\varepsilon_{t+1}) + \operatorname{Var}(\varepsilon_{t+2}|y_{1:t}) \\ &= 0 + \frac{\alpha^2}{\alpha^2} \operatorname{Var}(\varepsilon_{t+1}) + \operatorname{Var}(\varepsilon_{t+2}|y_{1:t}) \\ &= \alpha^2 \sigma^2 + \sigma^2 = \sigma^2 (1 + \alpha^2) \end{aligned}$$

Variance for interval forecasts

$$\begin{aligned} \mathsf{Var}(y_{t+3}|y_{1:t}) &= \mathsf{Var}(I_{t+2} + \varepsilon_{t+3}|y_{1:t}) \\ &= \mathsf{Var}(I_{t+1} + \alpha \varepsilon_{t+2} + \varepsilon_{t+3}|y_{1:t}) \\ &= \mathsf{Var}(I_{t} + \alpha \varepsilon_{t+1} + \alpha \varepsilon_{t+2} + \varepsilon_{t+3}|y_{1:t}) \\ &= \sigma^{2}(1 + 2\alpha^{2}) \end{aligned}$$

$$\begin{aligned} \mathsf{Var}(y_{t+h}|y_{1:t}) &= \mathsf{Var}(I_{t+h-1} + \varepsilon_{t+h}|y_{1:t}) \\ &= \mathsf{Var}(I_{t+h-2} + \alpha \varepsilon_{t+h-1} + \varepsilon_{t+h}|y_{1:t}) \\ &= \mathsf{Var}(I_t + \sum_{i=1}^{h-1} \alpha \varepsilon_{t+h-i} + \varepsilon_{t+h}|y_{1:t}) \\ &= \sigma^2(1 + (h-1)\alpha^2) \end{aligned}$$

Forecasting: collecting the results

$$\widehat{y}_{t+h|1:t} = \mathsf{E}(y_{t+h}|y_{1:t}) = I_t$$

$$Var(y_{t+h}|y_{1:t}) = \sigma^2(1 + (h-1)\alpha^2)$$

What happens as *h* increases?

### Alcohol related assaults in NSW

#### Forecasting



Are the forecasts reasonable?

### **Explanation: Including Trend Information**



$$l_{t} = \alpha y_{t} + (1 - \alpha)(l_{t-1} + b_{t-1} \times 1), \qquad 0 \le \alpha \le 1$$

$$(= \alpha y_{t} + (1 - \alpha)\hat{y}_{t}|1:t-1))$$

$$b_{t} = \beta(l_{t} - l_{t-1}) + (1 - \beta)b_{t-1}, \qquad 0 \le \beta \le 1$$

$$\widehat{y}_{t+1|1:t} = I_t + b_t \times \mathbf{1}.$$

$$I_{t} = \alpha y_{t} + (1 - \alpha)(I_{t-1} + b_{t-1}), \qquad 0 \le \alpha \le 1$$

$$(= \alpha y_{t} + (1 - \alpha)\widehat{y}_{t|1:t}))$$

$$b_{t} = \beta(I_{t} - I_{t-1}) + (1 - \beta)b_{t-1}, \qquad 0 \le \beta \le 1$$

$$\widehat{y}_{t+1|1:t} = I_t + b_t.$$

$$y_{t+1} = I_t + b_t + \varepsilon_{t+1}$$

$$I_t = \alpha y_t + (1 - \alpha)(I_{t-1} + b_{t-1})$$

$$b_t = \beta(I_t - I_{t-1}) + (1 - \beta)b_{t-1}$$

$$\varepsilon_{t+1} \sim N(0, \sigma^2)$$

We can choose  $\alpha$  and  $\beta$  by minimising

$$SSE(\alpha, \beta) = \sum_{t=2}^{n} (y_t - l_{t-1} - b_{t-1})^2$$

You have opportunity to try this in Assignment 1!

# Visitor arrivals in Australia: Lecture05\_Example02.py Original series (2010-2016)



# Visitor arrivals in Australia: Lecture05\_Example02.py

Seasonally adjusted series (2010-2016)



Error correction formulation

The basic model for the trend corrected exponential smoothing can be written in many ways. We can express all the components in terms of errors:

$$I_{t} = \alpha y_{t} + (1 - \alpha)(I_{t-1} + b_{t-1})$$

$$= I_{t-1} + b_{t-1} + \alpha(y_{t} - I_{t-1} - b_{t-1})$$

$$= I_{t-1} + b_{t-1} + \alpha \varepsilon_{t}$$

$$y_{t+1} = I_{t-1} + b_{t-1} + b_t + \alpha \varepsilon_t + \varepsilon_{t+1}$$
$$= I_t + b_t + \varepsilon_{t+1}$$

Error correction formulation

$$b_{t} = \beta(I_{t} - I_{t-1}) + (1 - \beta)b_{t-1}$$

$$= b_{t-1} + \beta(I_{t} - I_{t-1} - b_{t-1})$$

$$= b_{t-1} + \beta\alpha\varepsilon_{t} \text{ from } I_{t} = I_{t-1} + b_{t-1} + \alpha\varepsilon_{t}$$

$$(= b_{t-1} + \beta\alpha(y_{t} - I_{t-1} - b_{t-1}))$$

Error correction formulation

$$\begin{aligned} I_t &= I_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \beta \alpha \varepsilon_t \\ y_{t+1} &= I_t + b_t + \varepsilon_{t+1} \\ &= I_{t-1} + 2b_{t-1} + \alpha (1+\beta)\varepsilon_t + \varepsilon_{t+1} ) \end{aligned}$$

Forecasting equations

$$\widehat{y}_{t+1|1:t} := E(y_{t+1}|y_{1:t}) 
= E(I_t + b_t + \varepsilon_{t+1}|y_{1:t}) 
= I_t + b_t 
(= \alpha y_t + (1 - \alpha)(I_{t-1} + b_{t-1})) 
(= I_{t-1} + 2b_{t-1} + \alpha(1 + \beta)\varepsilon_t)$$

$$\widehat{y}_{t+2|1:t} = E(I_{t+1} + b_{t+1} + \varepsilon_{t+2}|y_{1:t}) 
= E(I_t + 2b_t + \alpha(1 + \beta)\varepsilon_{t+1} + \varepsilon_{t+2}|y_{1:t}) 
= I_t + 2b_t$$

Trick: We iteratively expand the formula until we arrive the time point all are known.

Forecasting equations

$$\widehat{y}_{t+3|1:t} = E(I_{t+2} + b_{t+2} + \varepsilon_{t+3}|y_{1:t}) 
= E((I_{t+1} + b_{t+1} + \alpha\varepsilon_{t+2}) + (b_{t+1} + \beta\alpha\varepsilon_{t+2}) + \varepsilon_{t+3}) 
= E(I_{t+1} + 2b_{t+1} + \alpha(1+\beta)\varepsilon_{t+2} + \varepsilon_{t+3}) 
= E((I_t + b_t + \alpha\varepsilon_{t+1}) + 2(b_t + \beta\alpha\varepsilon_{t+1}) + \alpha(1+\beta)\varepsilon_{t+2} + \varepsilon_{t+3}) 
= E(I_t + 3b_t + \alpha(1+2\beta)\varepsilon_{t+1} + \alpha(1+\beta)\varepsilon_{t+2} + \varepsilon_{t+3}) 
= I_t + 3b_t 
\vdots 
\widehat{y}_{t+b|1:t} = I_t + bb_t$$

Variance for interval forecasts

$$\begin{aligned} \mathsf{Var}(y_{t+1}|y_{1:t}) &= \mathsf{Var}(I_t + b_t + \varepsilon_{t+1}|y_{1:t}) \\ &= \sigma^2 \\ \\ \mathsf{Var}(y_{t+2}|y_{1:t}) &= \mathsf{Var}(I_{t+1} + b_{t+1} + \varepsilon_{t+2}|y_{1:t}) \\ &= \mathsf{Var}(I_t + 2b_t + \alpha(1+\beta)\varepsilon_{t+1} + \varepsilon_{t+2}|y_{1:t}) \\ &= \sigma^2(1 + \alpha^2(1+\beta)^2) \end{aligned}$$

Variance for interval forecasts

$$\begin{split} \mathsf{Var}(y_{t+3}|y_{1:t}) &= \mathsf{Var}(I_{t+2} + b_{t+2} + \varepsilon_{t+3}|y_{1:t}) \\ &= \mathsf{Var}(I_{t+1} + 2b_{t+1} + \alpha(1+\beta)\varepsilon_{t+2} + \varepsilon_{t+3}|y_{1:t}) \\ &= \mathsf{Var}(I_t + 3b_t + \alpha(1+2\beta)\varepsilon_{t+1} + \alpha(1+\beta)\varepsilon_{t+2} + \varepsilon_{t+3}|y_{1:t}) \\ &= \mathsf{Var}(\alpha(1+2\beta)\varepsilon_{t+1} + \alpha(1+\beta)\varepsilon_{t+2} + \varepsilon_{t+3}|y_{1:t}) \\ &= \alpha^2(1+2\beta)^2\sigma^2 + \alpha^2(1+\beta)^2\sigma^2 + \sigma^2 \\ &= \sigma^2(1+\alpha^2(1+\beta)^2 + \alpha^2(1+2\beta)^2) \\ \\ \mathsf{Var}(y_{t+h}|y_{1:t}) &= \mathsf{Var}\left(I_t + hb_t + \alpha\sum_{i=1}^{h-1}(1+i\beta)\varepsilon_{t+i} + \varepsilon_{t+h}|y_{1:t}\right) \\ &= \sigma^2\left(1+\alpha^2\sum_{i=1}^{h-1}(1+i\beta)^2\right) \\ &= \sigma^2\left(1+\alpha^2\left(\frac{\beta^2}{6}h(h-1)(2h-1) + (\beta h+1)(h-1)\right)\right) \end{split}$$

(I used the formula for the sum of an arithmetic progression to get to the last step)

Forecasting: collecting the results

$$\widehat{y}_{t+h|1:t} = \widehat{l}_t + h\widehat{b}_t$$

$$Var(y_{t+h}|y_{1:t}) = \sigma^2 \left( 1 + \alpha^2 \left( \frac{\beta^2}{3} h(h-1)(h-2) + (\beta+1)h - 1 \right) \right)$$

What happens as *h* increases?

### Alcohol related assaults in NSW

Forecasting the seasonally adjusted series (last 12 months)



### Comparison

What criteria should we use to compare SES and TCES?

### Alcohol related assaults in NSW

Forecasting the seasonally adjusted series (last 12 months)



### Alcohol related assaults in NSW

Forecasting the seasonally adjusted series (last 12 months)

#### One month ahead forecasts

|      | SES  | TCES |
|------|------|------|
| RMSE | 70.9 | 63.5 |
| MAE  | 56.5 | 55.8 |
| MAPE | 6.2  | 6.0  |