University of Wrocław: Algorithms for Big Data (Fall'19) 27/01/2020

Lecture 14: Caching

Lecturer: Przemysław Uznański Scribe: -

1 Cache-aware algorithms

DAM model:

• CPU

• cache (with fast access) of size M, M/B blocks of size B

• memory/disk (with slow access) of size ∞

Cost is associated with number of memory accesses. Assume CPU cost is negligible, and actual cost comes from moving things to i from cache.

Example 1: scanning N consecutive memory cells takes N/B memory transfers.

Example 2: Accessing random N memory cells takes N memory transfers.

Example 3: Binary search: $\log(N/B)$ (not really any significant gain)

- 1. B-trees, with branching factor $\Theta(B)$. Tree depth is $\log_B N$.
- 2. B^{ε} -trees: each node is a buffer of size B, with B^{ε} pivots. Insert amortizes and costs $\frac{\log_B N}{\varepsilon B^{1-\varepsilon}}$, queries cost $\frac{\log_B N}{\varepsilon}$. Deletes by tombstones.
- 3. Sorting $\mathcal{O}(\frac{N}{B}\log_{M/B}\frac{N}{B})$ by M/B-way mergesort.

2 Cache-oblivious algorithms

Desing of cache-aware algorithms requires fine-tuning to parameters of the model. In modern systems we have many levels of caching...

The cache-oblivious model: do the algorithm that works well for (almost) any setting of parameters, as algorithm does not know B or M.

- Automatic block transfers triggered by word access with offline optimal block replacement.
- FIFO or LRU is 2-competetive given cache of $2 \times$ size.
- In fact it is OK to show that ANY caching strategy kind-of works.

Adapts to multi-level hierarchy.

Search trees: $\mathcal{O}(\log_B N)$. Static search tree - simulate B-tree on classic binary tree via memory placement. Take full binary tree on N nodes, cut it in half (height), so top is \sqrt{N} nodes (call it T) and bottom is \sqrt{N} trees $(T_1, \ldots, T_{\sqrt{N}})$. Place in memory: place T, then $T_1, \ldots, T_{\sqrt{N}}$, call recursively (van Emde Boas layout).

Analysis: cut in half until height piece size $\leq B$. So its also $\geq \sqrt{B}$. Height of a piece is between $\log B$ and $\frac{1}{2}\log B$. Number of pieces along path to root is $\leq \frac{\log N}{\frac{1}{2}\log B}$, and each piece is on at most 2 blocks.

COLA (Cache-Oblivious Lookahead Array):

- $\log N$ levels
- i-th level contains 2^i elements, either completely full or completely empty
- each level is sorted

Insert: $\frac{\log N}{B}$ amortized. Naive searches: bin-search in each level, so $\log^2 N$. Refine by adding lookahead pointers: each fourth element from level i is preserved in level i+1, with pointer. Then searching incurs $\log N$ cost.