A Gentle Introduction to Gradient Boosting

Gradient Boosting

- a powerful machine learning algorithm
- ▶ it can do
 - regression
 - classification
 - ranking
- won Track 1 of the Yahoo Learning to Rank Challenge

Outline of the Tutorial

- 1 What is Gradient Boosting
- 2 A brief history
- 3 Gradient Boosting for regression
- 4 Gradient Boosting for classification
- 5 A demo of Gradient Boosting
- 6 Relationship between Adaboost and Gradient Boosting
- 7 Why it works

Note: This tutorial focuses on the intuition. For a formal treatment, see [Friedman, 2001]

Gradient Boosting = Gradient Descent + Boosting

Adaboost

Figure: AdaBoost. Source: Figure 1.1 of [Schapire and Freund, 2012]

Gradient Boosting = Gradient Descent + Boosting

Adaboost

Figure: AdaBoost. Source: Figure 1.1 of [Schapire and Freund, 2012]

- ► Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- ▶ In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- ► In Adaboost, "shortcomings" are identified by high-weight data points.

Gradient Boosting = Gradient Descent + Boosting

Adaboost

$$H(x) = \sum_{t} \rho_t h_t(x)$$

Figure: AdaBoost. Source: Figure 1.2 of [Schapire and Freund, 2012]

Gradient Boosting = Gradient Descent + Boosting

Gradient Boosting

- ► Fit an additive model (ensemble) $\sum_t \rho_t h_t(x)$ in a forward stage-wise manner.
- In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- ► In Gradient Boosting, "shortcomings" are identified by gradients.
- Recall that, in Adaboost, "shortcomings" are identified by high-weight data points.
- ▶ Both high-weight data points and gradients tell us how to improve our model.

Why and how did researchers invent Gradient Boosting?

A Brief History of Gradient Boosting

- ▶ Invent Adaboost, the first successful boosting algorithm [Freund et al., 1996, Freund and Schapire, 1997]
- ► Formulate Adaboost as gradient descent with a special loss function[Breiman et al., 1998, Breiman, 1999]
- ► Generalize Adaboost to Gradient Boosting in order to handle a variety of loss functions [Friedman et al., 2000, Friedman, 2001]

Gradient Boosting for Different Problems

Difficulty:

regression ===> classification ===> ranking

Let's play a game...

You are given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, and the task is to fit a model F(x) to minimize square loss.

Suppose your friend wants to help you and gives you a model F. You check his model and find the model is good but not perfect.

There are some mistakes: $F(x_1) = 0.8$, while $y_1 = 0.9$, and $F(x_2) = 1.4$ while $y_2 = 1.3...$ How can you improve this model?

Let's play a game...

You are given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, and the task is to fit a model F(x) to minimize square loss.

Suppose your friend wants to help you and gives you a model F. You check his model and find the model is good but not perfect.

There are some mistakes: $F(x_1) = 0.8$, while $y_1 = 0.9$, and $F(x_2) = 1.4$ while $y_2 = 1.3...$ How can you improve this model?

Rule of the game:

▶ You are not allowed to remove anything from *F* or change any parameter in *F*.

Let's play a game...

You are given $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, and the task is to fit a model F(x) to minimize square loss.

Suppose your friend wants to help you and gives you a model F. You check his model and find the model is good but not perfect.

There are some mistakes: $F(x_1) = 0.8$, while $y_1 = 0.9$, and $F(x_2) = 1.4$ while $y_2 = 1.3...$ How can you improve this model?

Rule of the game:

- ▶ You are not allowed to remove anything from *F* or change any parameter in *F*.
- ▶ You can add an additional model (regression tree) h to F, so the new prediction will be F(x) + h(x).

Simple solution:

You wish to improve the model such that

$$F(x_1) + h(x_1) = y_1$$

 $F(x_2) + h(x_2) = y_2$
...
 $F(x_n) + h(x_n) = y_n$

Simple solution:

Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
...
 $h(x_n) = y_n - F(x_n)$

Simple solution:

Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
...
 $h(x_n) = y_n - F(x_n)$

Can any regression tree h achieve this goal perfectly?

Simple solution:

Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
...
 $h(x_n) = y_n - F(x_n)$

Can any regression tree h achieve this goal perfectly? Maybe not....

Simple solution:

Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
...
 $h(x_n) = y_n - F(x_n)$

Can any regression tree h achieve this goal perfectly? Maybe not....

But some regression tree might be able to do this approximately.

Simple solution:

Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
...
 $h(x_n) = y_n - F(x_n)$

Can any regression tree h achieve this goal perfectly? Maybe not....

But some regression tree might be able to do this approximately. How?

Simple solution:

Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
...
 $h(x_n) = y_n - F(x_n)$

Can any regression tree h achieve this goal perfectly? Maybe not....

But some regression tree might be able to do this approximately. How?

Just fit a regression tree h to data

$$(x_1, y_1 - F(x_1)), (x_2, y_2 - F(x_2)), ..., (x_n, y_n - F(x_n))$$

Simple solution:

Or, equivalently, you wish

$$h(x_1) = y_1 - F(x_1)$$

 $h(x_2) = y_2 - F(x_2)$
...
 $h(x_n) = y_n - F(x_n)$

Can any regression tree h achieve this goal perfectly? Maybe not....

But some regression tree might be able to do this approximately. How?

Just fit a regression tree h to data $(x_1, y_1 - F(x_1)), (x_2, y_2 - F(x_2)), ..., (x_n, y_n - F(x_n))$ Congratulations, you get a better model!

Simple solution:

 $y_i - F(x_i)$ are called **residuals**. These are the parts that existing model F cannot do well.

The role of h is to compensate the shortcoming of existing model F.

Simple solution:

 $y_i - F(x_i)$ are called **residuals**. These are the parts that existing model F cannot do well.

The role of h is to compensate the shortcoming of existing model F.

If the new model F + h is still not satisfactory,

Simple solution:

 $y_i - F(x_i)$ are called **residuals**. These are the parts that existing model F cannot do well.

The role of h is to compensate the shortcoming of existing model F.

If the new model F+h is still not satisfactory, we can add another regression tree...

Simple solution:

 $y_i - F(x_i)$ are called **residuals**. These are the parts that existing model F cannot do well.

The role of h is to compensate the shortcoming of existing model F.

If the new model F + h is still not satisfactory, we can add another regression tree...

We are improving the predictions of training data, is the procedure also useful for test data?

Simple solution:

 $y_i - F(x_i)$ are called **residuals**. These are the parts that existing model F cannot do well.

The role of h is to compensate the shortcoming of existing model F.

If the new model F + h is still not satisfactory, we can add another regression tree...

We are improving the predictions of training data, is the procedure also useful for test data?

Yes! Because we are building a model, and the model can be applied to test data as well.

Simple solution:

 $y_i - F(x_i)$ are called **residuals**. These are the parts that existing model F cannot do well.

The role of h is to compensate the shortcoming of existing model F.

If the new model F + h is still not satisfactory, we can add another regression tree...

We are improving the predictions of training data, is the procedure also useful for test data?

Yes! Because we are building a model, and the model can be applied to test data as well.

How is this related to gradient descent?

Gradient Descent

Minimize a function by moving in the opposite direction of the gradient.

$$\theta_i := \theta_i - \rho \frac{\partial J}{\partial \theta_i}$$

Figure: Gradient Descent. Source: http://en.wikipedia.org/wiki/Gradient_descent

How is this related to gradient descent?

Loss function $L(y, F(x)) = (y - F(x))^2/2$

We want to minimize $J = \sum_i L(y_i, F(x_i))$ by adjusting $F(x_1), F(x_2), ..., F(x_n)$.

Notice that $F(x_1), F(x_2), ..., F(x_n)$ are just some numbers. We can treat $F(x_i)$ as parameters and take derivatives

$$\frac{\partial J}{\partial F(x_i)} = \frac{\partial \sum_i L(y_i, F(x_i))}{\partial F(x_i)} = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} = F(x_i) - y_i$$

So we can interpret residuals as negative gradients.

$$y_i - F(x_i) = -\frac{\partial J}{\partial F(x_i)}$$

How is this related to gradient descent?

$$F(x_i) := F(x_i) + h(x_i)$$

$$F(x_i) := F(x_i) + y_i - F(x_i)$$

$$F(x_i) := F(x_i) - 1 \frac{\partial J}{\partial F(x_i)}$$

$$\theta_i := \theta_i - \rho \frac{\partial J}{\partial \theta_i}$$

How is this related to gradient descent?

For regression with **square loss**,

 $residual \Leftrightarrow negative gradient$

fit h to residual \Leftrightarrow fit h to negative gradient

update F based on residual ⇔ update F based on negative gradient

How is this related to gradient descent?

For regression with square loss,

 $residual \Leftrightarrow negative gradient$

fit h to residual \Leftrightarrow fit h to negative gradient update F based on residual \Leftrightarrow update F based on negative gradient So we are actually updating our model using **gradient descent**!

How is this related to gradient descent?

For regression with **square loss**,

 $residual \Leftrightarrow negative gradient$

fit h to residual \Leftrightarrow fit h to negative gradient

 $update F based on residual \Leftrightarrow update F based on negative gradient$

So we are actually updating our model using **gradient descent**! It turns out that the concept of **gradients** is more general and useful than the concept of **residuals**. So from now on, let's stick with gradients. The reason will be explained later.

Regression with square Loss

Let us summarize the algorithm we just derived using the concept of gradients. Negative gradient:

$$-g(x_i) = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} = y_i - F(x_i)$$

start with an initial model, say, $F(x) = \frac{\sum_{i=1}^{n} y_i}{n}$ iterate until converge:

calculate negative gradients $-g(x_i)$

fit a regression tree h to negative gradients $-g(x_i)$

$$F := F + \rho h$$
, where $\rho = 1$

Regression with square Loss

Let us summarize the algorithm we just derived using the concept of gradients. Negative gradient:

$$-g(x_i) = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} = y_i - F(x_i)$$

start with an initial model, say, $F(x) = \frac{\sum_{i=1}^{n} y_i}{n}$ iterate until converge:

calculate negative gradients $-g(x_i)$ fit a regression tree h to negative gradients $-g(x_i)$ $F := F + \rho h$, where $\rho = 1$

The benefit of formulating this algorithm using gradients is that it allows us to consider other loss functions and derive the corresponding algorithms in the same way.

Loss Functions for Regression Problem

Why do we need to consider other loss functions? Isn't square loss good enough?

Loss Functions for Regression Problem

Square loss is:

- √ Easy to deal with mathematically
- × Not robust to outliers Outliers are heavily punished because the error is squared. Example:

Уi	0.5	1.2	2	5 *
$F(x_i)$	0.6	1.4	1.5	1.7
$L = (y - F)^2/2$	0.005	0.02	0.125	5.445

Consequence?

Loss Functions for Regression Problem

Square loss is:

- √ Easy to deal with mathematically
- × Not robust to outliers Outliers are heavily punished because the error is squared. Example:

Уi	0.5	1.2	2	5 *
$F(x_i)$	0.6	1.4	1.5	1.7
$L = (y - F)^2/2$	0.005	0.02	0.125	5.445

Consequence?

Pay too much attention to outliers. Try hard to incorporate outliers into the model. Degrade the overall performance.

Loss Functions for Regression Problem

Absolute loss (more robust to outliers)

$$L(y,F) = |y - F|$$

Loss Functions for Regression Problem

Absolute loss (more robust to outliers)

$$L(y,F) = |y - F|$$

Huber loss (more robust to outliers)

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2 & |y-F| \le \delta \\ \delta(|y-F|-\delta/2) & |y-F| > \delta \end{cases}$$

Loss Functions for Regression Problem

Absolute loss (more robust to outliers)

$$L(y,F) = |y - F|$$

Huber loss (more robust to outliers)

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2 & |y-F| \le \delta \\ \delta(|y-F|-\delta/2) & |y-F| > \delta \end{cases}$$

Уi	0.5	1.2	2	5 *
$F(x_i)$	0.6	1.4	1.5	1.7
Square loss	0.005	0.02	0.125	5.445
Absolute loss	0.1	0.2	0.5	3.3
Huber loss($\delta = 0.5$)	0.005	0.02	0.125	1.525

Regression with Absolute Loss

Negative gradient:

$$-g(x_i) = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} = sign(y_i - F(x_i))$$

start with an initial model, say, $F(x) = \frac{\sum_{i=1}^{n} y_i}{n}$ iterate until converge: calculate gradients $-g(x_i)$

$$F := F + \rho h$$

Regression with Huber Loss

Negative gradient:

$$-g(x_i) = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

$$= \begin{cases} y_i - F(x_i) & |y_i - F(x_i)| \le \delta \\ \delta sign(y_i - F(x_i)) & |y_i - F(x_i)| > \delta \end{cases}$$

start with an initial model, say, $F(x) = \frac{\sum_{i=1}^{n} y_i}{n}$ iterate until converge:

calculate negative gradients $-g(x_i)$

$$F := F + \rho h$$

Regression with loss function *L*: general procedure

Give any differentiable loss function L

start with an initial model, say $F(x) = \frac{\sum_{i=1}^{n} y_i}{n}$ iterate until converge:

calculate negative gradients $-g(x_i) = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$

$$F := F + \rho h$$

Regression with loss function L: general procedure

Give any differentiable loss function L

start with an initial model, say $F(x) = \frac{\sum_{i=1}^{n} y_i}{n}$ iterate until converge:

calculate negative gradients $-g(x_i) = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$ fit a regression tree h to negative gradients $-g(x_i)$

$$F := F + \rho h$$

In general,

 $negative \ gradients
ot presiduals$

We should follow negative gradients rather than residuals. Why?

Negative Gradient vs Residual: An Example

Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2 & |y-F| \le \delta \\ \delta(|y-F|-\delta/2) & |y-F| > \delta \end{cases}$$

Update by Negative Gradient:

$$h(x_i) = -g(x_i) = \begin{cases} y_i - F(x_i) & |y_i - F(x_i)| \le \delta \\ \delta sign(y_i - F(x_i)) & |y_i - F(x_i)| > \delta \end{cases}$$

Update by Residual:

$$h(x_i) = y_i - F(x_i)$$

Difference: negative gradient pays less attention to outliers.

Summary of the Section

- Fit an additive model $F = \sum_t \rho_t h_t$ in a forward stage-wise manner.
- ▶ In each stage, introduce a new regression tree *h* to compensate the shortcomings of existing model.
- ► The "shortcomings" are identified by negative gradients.
- For any loss function, we can derive a gradient boosting algorithm.
- Absolute loss and Huber loss are more robust to outliers than square loss.

Things not covered

How to choose a proper learning rate for each gradient boosting algorithm. See [Friedman, 2001]

Problem

Recognize the given hand written capital letter.

- Multi-class classification
- ▶ 26 classes. A,B,C,...,Z

Data Set

- http://archive.ics.uci.edu/ml/datasets/Letter+ Recognition
- ▶ 20000 data points, 16 features

Feature Extraction

1	horizontal position of box	9	mean y variance
2	vertical position of box	10	mean x y correlation
3	width of box	11	mean of x * x * y
4	height of box	12	mean of x * y * y
5	total number on pixels	13	mean edge count left to right
6	mean x of on pixels in box	14	correlation of x-ege with y
7	mean y of on pixels in box	15	mean edge count bottom to top
8	mean x variance	16	correlation of y-ege with x

Feature Vector= (2, 1, 3, 1, 1, 8, 6, 6, 6, 6, 6, 5, 9, 1, 7, 5, 10)Label = G

Model

- ▶ 26 score functions (our models): F_A , F_B , F_C , ..., F_Z .
- \triangleright $F_A(x)$ assigns a score for class A
- scores are used to calculate probabilities

$$P_A(x) = \frac{e^{F_A(x)}}{\sum_{c=A}^{Z} e^{F_c(x)}}$$

$$P_B(x) = \frac{e^{F_B(x)}}{\sum_{c=A}^{Z} e^{F_c(x)}}$$
...
$$P_Z(x) = \frac{e^{F_Z(x)}}{\sum_{c=A}^{Z} e^{F_c(x)}}$$

predicted label = class that has the highest probability

Loss Function for each data point

Step 1 turn the label y_i into a (true) probability distribution $Y_c(x_i)$ For example: $y_5 = G$, $Y_A(x_5) = 0$, $Y_B(x_5) = 0$, ..., $Y_G(x_5) = 1$, ..., $Y_Z(x_5) = 0$

4 D > 4 P > 4 B > 4 B > B 9 9 P

Figure: true probability distribution

Loss Function for each data point

- Step 1 turn the label y_i into a (true) probability distribution $Y_c(x_i)$ For example: $y_5 = G$,
 - $Y_A(x_5) = 0, Y_B(x_5) = 0, ..., Y_G(x_5) = 1, ..., Y_Z(x_5) = 0$
- Step 2 calculate the predicted probability distribution $P_c(x_i)$ based on the current model $F_A, F_B, ..., F_Z$.

$$P_A(x_5) = 0.03, P_B(x_5) = 0.05, ..., P_G(x_5) = 0.3, ..., P_Z(x_5) = 0.05$$

Figure: predicted probability distribution based on current model

Loss Function for each data point

- Step 1 turn the label y_i into a (true) probability distribution $Y_c(x_i)$ For example: $y_5 = G$, $Y_A(x_5) = 0$, $Y_B(x_5) = 0$, ..., $Y_G(x_5) = 1$, ..., $Y_Z(x_5) = 0$
- Step 2 calculate the predicted probability distribution $P_c(x_i)$ based on the current model $F_A, F_B, ..., F_Z$. $P_A(x_5) = 0.03, P_B(x_5) = 0.05, ..., P_G(x_5) = 0.3, ..., P_Z(x_5) = 0.05$
- Step 3 calculate the difference between the true probability distribution and the predicted probability distribution. Here we use KL-divergence

Goal

- minimize the total loss (KL-divergence)
- for each data point, we wish the predicted probability distribution to match the true probability distribution as closely as possible

Figure: true probability distribution

Figure: predicted probability distribution at round 0

Figure: predicted probability distribution at round 1

Figure: predicted probability distribution at round 2

Figure: predicted probability distribution at round 10

Figure: predicted probability distribution at round 20

Figure: predicted probability distribution at round 30

Figure: predicted probability distribution at round 40

Figure: predicted probability distribution at round 50

Figure: predicted probability distribution at round 100

Goal

- minimize the total loss (KL-divergence)
- for each data point, we wish the predicted probability distribution to match the true probability distribution as closely as possible
- we achieve this goal by adjusting our models $F_A, F_B, ..., F_Z$.

Gradient Boosting for Regression: Review

Regression with loss function *L*: general procedure

Give any differentiable loss function L

start with an initial model *F* iterate until converge:

calculate negative gradients $-g(x_i) = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$

$$F := F + \rho h$$

Differences

- \triangleright $F_A, F_B, ..., F_Z$ vs F
- ▶ a matrix of parameters to optimize vs a column of parameters to optimize

$F_A(x_1)$	$F_B(x_1)$	 $F_Z(x_1)$
$F_A(x_2)$	$F_B(x_2)$	 $F_Z(x_2)$
$F_A(x_n)$	$F_B(x_n)$	 $F_Z(x_n)$

▶ a matrix of gradients vs a column of gradients

$\frac{\partial L}{F_A(x_1)}$	$\frac{\partial L}{F_B(x_1)}$	 $\frac{\partial L}{F_Z(x_1)}$
$\frac{\partial L}{F_A(x_2)}$	$\frac{\partial L}{F_B(x_2)}$	 $\frac{\partial L}{F_Z(x_2)}$
$\frac{\partial L}{F_A(x_n)}$	$\frac{\partial L}{F_B(x_n)}$	 $\frac{\partial L}{F_Z(x_n)}$

```
start with initial models F_A, F_B, F_C, ..., F_Z
iterate until converge:
    calculate negative gradients for class A: -g_A(x_i) = -\frac{\partial L}{\partial F_A(x_i)} calculate negative gradients for class B: -g_B(x_i) = -\frac{\partial L}{\partial F_B(x_i)}
    calculate negative gradients for class Z:-g_Z(x_i)=-\frac{\partial L}{\partial F_Z(x_i)}
    fit a regression tree h_A to negative gradients -g_A(x_i)
    fit a regression tree h_B to negative gradients -g_B(x_i)
    fit a regression tree h_Z to negative gradients -g_Z(x_i)
     F_{\Delta} := F_{\Delta} + \rho_{\Delta} h_{\Delta}
     F_R := F_\Delta + \rho_R h_R
     F_7 := F_A + \rho_7 h_7
```

```
start with initial models F_A, F_B, F_C, ..., F_Z
iterate until converge:
   calculate negative gradients for class A: -g_A(x_i) = Y_A(x_i) - P_A(x_i)
   calculate negative gradients for class B: -g_B(x_i) = Y_B(x_i) - P_B(x_i)
   calculate negative gradients for class Z:-g_Z(x_i)=Y_Z(x_i)-P_Z(x_i)
   fit a regression tree h_A to negative gradients -g_A(x_i)
   fit a regression tree h_B to negative gradients -g_B(x_i)
   fit a regression tree h_Z to negative gradients -g_Z(x_i)
   F_{\Delta} := F_{\Delta} + \rho_{\Delta} h_{\Delta}
   F_R := F_\Delta + \rho_R h_R
   F_{Z} := F_{\Delta} + \rho_{Z}h_{Z}
```

-0.04 -0.04 -0.04

-0.04 -0.04 0.96 -0.04 -0.04 -0.04 -0.04

-0.04

-0.04

round 0

0.96

-0.04 -0.04 -0.04 -0.04

-0.04

-0.04

-0.04

-0.04

-0.04 -0.04 -0.04 -0.04

$$h_{A}(x) = \begin{cases} 0.98 & \textit{feature } 10 \textit{ of } x \leq 2.0 \\ -0.07 & \textit{feature } 10 \textit{ of } x > 2.0 \end{cases}$$

$$h_{B}(x) = \begin{cases} -0.07 & \textit{feature } 15 \textit{ of } x \leq 8.0 \\ 0.22 & \textit{feature } 15 \textit{ of } x > 8.0 \end{cases}$$

$$\dots$$

$$h_{Z}(x) = \begin{cases} -0.07 & \textit{feature } 8 \textit{ of } x \leq 8.0 \\ 0.82 & \textit{feature } 8 \textit{ of } x > 8.0 \end{cases}$$

$$F_{A} := F_{A} + \rho_{A}h_{A}$$

$$F_{B} := F_{B} + \rho_{B}h_{B}$$

$$\dots$$

$$F_{Z} := F_{Z} + \rho_{Z}h_{Z}$$

round 1

	1	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0				
	2	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	3	D	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	4	N	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0				
	5	G	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
																																_
A	F_B	F	2	F_D	F_E	F	F	F_G	F_H	F	-	F_J	F		F_L	F_M	F	N	Fo	F_P	F,	2	F_R	Fs	FT	F	EU	F_V	F _W	F_X	F _Y	L
.08	-0.07	-0.0	06	-0.07	-0.02	-0.	02 -	-0.08	-0.02	2 -0.	.03	-0.03	-0.0	16 -	-0.04	-0.08	-0.0	08	-0.07	-0.07	-0.	02	-0.04	-0.04	0.59	-0	.01	-0.07	-0.07	-0.05	-0.06	
.08	0.23	-0.0	06	-0.07	-0.02	-0.	02	0.16	-0.02	-0.	.03	-0.03	-0.0)6 -	-0.04	-0.08	-0.0	80	-0.07	-0.07	-0.	02	-0.04	-0.04	-0.0	7 -0	.01	-0.07	-0.07	-0.05	-0.06	ŀ
.08	0.23	-0.0	06	-0.07	-0.02	1-0	02 -	-0.08	-0.02	2 -0.	03	-0.03	-0.0	16 -	-0.04	-0.08	-01	08	-0.07	-0.07	-0	02	-0.04	-0.04	-0.0	7 -0	01	-0.07	-0.07	-0.05	-0.06	

	_). I D	. I D.	· P _D	D_	D_	D. I	P _H	D. 1	D. T D	I D	. P _M	P _N	Po	P _P	Po	P _R	D. E)_ D	ıı Pv	P _W	P _X	D.,	D_		
5	G	-0.08	0.23	-0.06	-0.07	-0.02	-0.02	0.16	-0.02	-0.03	-0.03	-0.06	-0.04	-0.08	-0.08	-0.07	-0.07	-0.02	-0.04	-0.04	-0.07	-0.01	-0.07	-0.07	-0.05	-0.06	-0.07
4	N	-0.08	-0.07	-0.06	-0.07	-0.02	-0.02	0.16	-0.02	-0.03	-0.03	0.26	-0.04	-0.08	0.3	-0.07	-0.07	-0.02	-0.04	-0.04	-0.07	-0.01	-0.07	-0.07	-0.05	-0.06	-0.07
3	D	-0.08		-0.06									-0.04		-0.08			-0.02				-0.01				-0.06	
2	T	-0.08	0.23	-0.06	-0.07	-0.02		0.16		-0.03					-0.08	-0.07						-0.01		-0.07	-0.05	-0.06	-0.07
1	1 1	-0.08	-0.07		-0.07								-0.04				-0.07		-0.04			-0.01		-0.07	-0.05	-0.06	-0.07

- 1	•	y	'A	' B	, c	' D	' E	1 F	1 G	' Н	,,	,,	, K	, r	, W	' N	' 0	1 P	, O	* R	15	, , ,	' U	' V	' W	' X	1 Y	1 ' Z
[1	Т	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04						0.04					0.04	0.04	0.04	0.04	0.04	0.04
ſ	2	_		0.05														0.04						0.04	0.04		0.04	
	3	D	0.04	0.05	0.04			0.04																0.04	0.04			
ſ	4	Ν	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.04	0.05	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Ī	5	G	0.04	0.05	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
[

i	y	Y_A —	Y _B -	Yc-	$Y_D -$	Y _E -	Y_F —	Y_G -	$Y_H -$	Y1 -	$Y_J -$	$Y_K -$	Y_L -	$Y_{M}-$	$Y_N -$	Y0-	Yp-	$Y_Q -$	Y_R -	Y_S —	Y_T —	$Y_U -$	$Y_V -$	Y_W-	$Y_X -$	$Y_Y -$	Y_Z —
		P_A	PB	Pc	P_D	PE	P_F	P_G	P_H	Pı	P_J	P_K	PL	P_M	PN	Po	PP	PQ	P_R	Ps	P_T	Pu	P_V	P_W	Px	PY	Pz
1	Т	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	0.93	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
2	1	-0.04	-0.05	-0.04	-0.04	-0.04	-0.04	-0.05	-0.04	0.96	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
3	D	-0.04	-0.05	-0.04	0.96	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
4	N	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.05	-0.04	-0.04	-0.04	-0.05	-0.04	-0.04	0.95	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
5	G	-0.04	-0.05	-0.04	-0.04	-0.04	-0.04	0.95	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04

$$h_A(x) = \begin{cases} 0.37 & \textit{feature } 10 \textit{ of } x \leq 2.0 \\ -0.07 & \textit{feature } 10 \textit{ of } x > 2.0 \end{cases}$$

$$h_B(x) = \begin{cases} -0.07 & \textit{feature } 14 \textit{ of } x \leq 5.0 \\ 0.22 & \textit{feature } 14 \textit{ of } x > 5.0 \\ \dots \\ h_Z(x) = \begin{cases} -0.07 & \textit{feature } 8 \textit{ of } x \leq 8.0 \\ 0.35 & \textit{feature } 8 \textit{ of } x > 8.0 \end{cases}$$

$$F_A := F_A + \rho_A h_A$$

$$F_B := F_B + \rho_B h_B$$

$$\dots$$

$$F_Z := F_Z + \rho_Z h_Z$$

round 2

	1	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0				
	2	_	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	3	D	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	4	N	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0				
	5	G	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
4	F_B	F,	c	F_D	FE	F	F	F_G	F_H	F	-	Fj	F		F_L	F_M	F,	V	Fo	F_P	F	Q	F_R	FS	FT	F	U	F_V	Fw	F_X	F_Y	ĺ
15	-0.14	-0.	12	-0.14	-0.03	0.2	28 -	0.14	-0.04	1.	49	-0.07	-0.1	11 -	-0.08	-0.14	-0.3	17 -	0.13	-0.13	-0.0	04	-0.11	-0.07	1.05	0.	19	0.25	-0.16	-0.09	0.33	ĺ
15	0.16	-0.		-0.14	-0.03			0.33	-0.04			-0.07	-0.1		-0.08	-0.14	-0.3		0.13	-0.13			-0.11	-0.07	-0.11			-0.15	-0.16	-0.09	-0.13	ĺ

- 1	y	F _A	F _B	l Fc	F _D	l FE	l FF	FG	F _H	F _I	F.J	F_K	l FL	F_M	FN	F _O	Fp.	FQ	F _R	Fs	FT	ŀυ	F _V	F _W	Fχ	FY	FZ
1	Т	-0.15	-0.14	-0.12	-0.14	-0.03	0.28	-0.14	-0.04	1.49	-0.07	-0.11	-0.08	-0.14	-0.17	-0.13	-0.13		-0.11	-0.07	1.05	0.19	0.25	-0.16	-0.09	0.33	-0.14
2	1	-0.15	0.16	-0.12	-0.14	-0.03	-0.08	0.33	-0.04	-0.07	-0.07	-0.11	-0.08	-0.14	-0.17	-0.13	-0.13	-0.04	-0.11	-0.07	-0.11	-0.07	-0.15	-0.16	-0.09	-0.13	-0.14
3	D	-0.15	0.16	-0.12	-0.14	-0.03	-0.08	0.1	-0.04	-0.07	-0.07	-0.11	-0.08	-0.14	-0.17	-0.13	-0.13	-0.04	0.19	-0.07	-0.11	-0.07	-0.15	-0.16	-0.09	-0.13	-0.14
4	N	-0.15	-0.14	-0.12	-0.14	-0.03	-0.08	0.1	-0.04	-0.07	-0.07	0.46	-0.08	-0.14	0.5	-0.13	-0.13	-0.04	-0.11	-0.07	-0.11	-0.07	-0.15	0.25	-0.09	-0.13	-0.14
5	G	-0.15	0.16	-0.12	-0.14	-0.03	-0.08	0.33	-0.04	-0.07	-0.07	-0.11	-0.08	-0.14	-0.17	-0.13	-0.13	-0.04	0.19	-0.07	-0.11	-0.07	-0.15	-0.16	-0.09	-0.13	-0.14

_ i		y	P_A	P_B	P_C	P_D	P_E	P_F	P_G	P_H	P_I	P_J	P_K	P_L				P_P			P_S	P_T	P_U	P_V	P_W	P_X	P_Y	P_Z
	П	Т	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.03	0.15	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.09	0.04	0.04	0.03	0.03	0.05	0.03
- 12	7	Ι	0.04																								0.04	
_ [3	П																											
- 4	П																										0.03	
	· T	G	0.03	0.05	0.04	0.04	0.04	0.04	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.05	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04
	- [

ī	у	$Y_A -$	$Y_B -$	Y _C -	$Y_D -$	Y _E -	Y_F —	$Y_G -$	$Y_H -$	Y1 -	$Y_J -$	$Y_K -$	Y_L -	$Y_{M}-$	$Y_N -$	Y ₀ -	Yp-	$Y_Q -$	Y_R -	Y_S —	Y_T —	$Y_U -$	$Y_V -$	Y_W-	$Y_X -$	$Y_Y -$	$Y_Z -$
		P_A	P_B	Pc	P_D	PE	P_F	P_G	PH	Pı	P_J	P_K	PL	P_M	PN	Po	PP	PQ	P_R	Ps	PT	Pu	P_V	P_W	Px	PY	Pz
1	Т	-0.03	-0.03	-0.03	-0.03	-0.03	-0.04	-0.03	-0.03	-0.15	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	0.91	-0.04	-0.04	-0.03	-0.03	-0.05	-0.03
2		-0.04	-0.05	-0.04	-0.04	-0.04	-0.04	-0.06	-0.04	0.96	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
3	D	-0.04	-0.05	-0.04	0.96	-0.04	-0.04	-0.05	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.05	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
4	N	-0.03	-0.03	-0.03	-0.03	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04		-0.04		0.94	-0.03	-0.03	-0.04	-0.04	-0.04	-0.04	-0.04	-0.03	-0.05	-0.04	-0.03	-0.03
5	G	-0.03	-0.05	-0.04	-0.04	-0.04	-0.04	0.94	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.03	-0.04	-0.04	-0.04	-0.05	-0.04	-0.04	-0.04	-0.04	-0.03	-0.04	-0.04	-0.04

round 100

	1	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0				
	2	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	3	D	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	4	N	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0				
	5	G	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
A	F_B	F	0	F_D	F_E	F _F		F_G	F_H	F	1	Fj	F		F_L	F_M	F	N	Fo	F_P	F,	Q	F_R	F_S	FT	Fu	/	F_V	F _W	F_X	F _Y	Γ
26	-2.7	-2.		-2.22	-2.48	-0.3	1 -	2.77	-1.19			0.1	-1.4	49 -	-1.02	-1.64	-0.		-2.4	-3.57	-0		-2.45	-0.2	4.61			-0.71	-1.21	-0.24	0.49	
		-2.2	29	-1.8	0.45	-0.4	3 2	2.14	-1.56	1.	19	1.09	-1.	5	-0.5	-3.64	-3.	98	-0.39	-2.3	1.4	12	-0.59	0.27	-2.88	-1.9	16	-1.67	-4.38	-2.06	-2.95	Γ
	0.10																															

		' A	, B		' D	' E		, ,	' H					, M	, N	. 0	' '	, Q	' K				' V	' W			
1	Т	-3.26	-2.7	-2.2	-2.22	-2.48	-0.31	-2.77		2.77	0.1	-1.49	-1.02	-1.64	-0.8	-2.4	-3.57	-0.9	-2.45	-0.2	4.61	0.5	-0.71	-1.21	-0.24	0.49	
2		-1.64	-1.09	-2.29	-1.8	0.45	-0.43	2.14	-1.56	1.19	1.09	-1.5		-3.64		-0.39			-0.59					-4.38		-2.95	
3	D	-2.45	0.18	-3.01	0.18	-2.79	-1.7	-2.21	0.43	-1.12	0.32	0.67	-2.16	-2.91	-2.76	-1.92	-3.04	-1.47	-0.48	-1.48	-1.25	-2.25	-3.23	-4.38	0.17	-2.95	-2.65
4	N	-3.95	-3.38	-0.22	-0.94	-1.33	-1.38	-1.22	-0.12	-2.33	-3.13	0.58	-0.65	-0.25	2.96	-2.84	-1.82	0.19	0.55	-1.22	-1.25	0.45	-1.8	0.11	-0.69	-1.6	-3.78
5	G	-3.14	-0.04	-2.37	-0.78	0.02	-2.68	2.6	-1.48	-1.93	0.42	-1.44	-1.45	-3.36	-3.98	-0.94	-3.42	1.84	1.44	0.62	-1.25	-1.33	-4.41	-4.71	-2.62	-2.15	-1.09
	_										o I (_			-			

	i	y	P_A	P_B	P_C	P_D	P_E	P_F	P_G	P_H	P_I	P_J	P_K	P_L	P_M	P_N	Po	P_P	P_Q	P_R	P_S	P_T	P_U	P_V	P_W	P_X	P_Y	P_Z
Γ	1	Т	0	0	0	0	0	0.01	0	0	0.13	0.01	0	0	0	0	0	0	0	0	0.01	0.79	0.01	0	0	0.01	0.01	0
ſ	2	П	0.01	0.01	0		0.06				0.12		0.01	0.02	0	0	0.03	0		0.02	0.05		0.01	0.01	0	0	0	0.01
Γ	3	D	0.01	0.11	0	0.11	0.01	0.02	0.01	0.14	0.03	0.12		0.01	0	0.01	0.01	0					0.01	0	0	0.11	0	0.01
Γ	4	N	0	0	0.02	0.01	0.01	0.01	0.01	0.03	0	0	0.05	0.02	0.02	0.59	0	0	0.04	0.05	0.01	0.01	0.05	0.01	0.03	0.02	0.01	0
Ī	5	G	0	0.03	0	0.01	0.03	0	0.42	0.01	0	0.05	0.01	0.01	0	0	0.01	0	0.19	0.13	0.06	0.01	0.01	0	0	0	0	0.01
[

[i]	у	Y_A —	$Y_B -$	Y _C -	$Y_D -$	Y _E -	Y_F —	Y_G -	$Y_H -$	Y1 -	$Y_J -$	$Y_K -$	Y_L -	$Y_{M}-$	$Y_N -$	Y ₀ -	Y_P —	$Y_Q -$	Y_R —	Y _S -	$Y_T -$	$Y_U -$	$Y_V -$	Y_W-	$Y_X -$	$Y_Y -$	Y_Z -
		P_A	P_B	Pc	PD	PE	P_F	P_G	PH	Pı	P_J	P_K	PL	P_M	PN	Po	P_P	PQ	P_R	Ps	P_T	Pu	P_V	P_W	Px	PY	Pz
1	Т	-0	-0	-0	-0	-0	-0.01	-0	-0	-0.13	-0.01	-0	-0	-0	-0	-0	-0	-0	-0	-0.01	0.21	-0.01	-0	-0	-0.01	-0.01	-0
2	_	-0.01	-0.01	-0	-0.01	-0.06	-0.02	-0.32	-0.01	0.88	-0.11	-0.01	-0.02	-0	-0	-0.03	-0	-0.16	-0.02	-0.05	-0	-0.01	-0.01	-0	-0	-0	-0.01
3	D	-0.01	-0.11	-0	0.89	-0.01	-0.02	-0.01	-0.14	-0.03	-0.12	-0.17	-0.01	-0	-0.01	-0.01	-0	-0.02	-0.05	-0.02	-0.03	-0.01	-0	-0	-0.11	-0	-0.01
4	Ν	-0	-0	-0.02	-0.01	-0.01	-0.01	-0.01	-0.03	-0	-0	-0.05	-0.02	-0.02	0.41	-0	-0	-0.04	-0.05	-0.01	-0.01	-0.05	-0.01	-0.03	-0.02	-0.01	-0
5	G	-0	-0.03	-0	-0.01	-0.03	-0	0.58	-0.01	-0	-0.05	-0.01	-0.01	-0	-0	-0.01	-0	-0.19	-0.13	-0.06	-0.01	-0.01	-0	-0	-0	-0	-0.01

Things not covered

- ▶ How to choose proper learning rates. See [Friedman, 2001]
- ▶ Other possible loss functions. See [Friedman, 2001]

References I

Breiman, L. (1999).

Prediction games and arcing algorithms.

Neural computation, 11(7):1493–1517.

Breiman, L. et al. (1998).

Arcing classifier (with discussion and a rejoinder by the author).

The annals of statistics, 26(3):801–849.

Freund, Y. and Schapire, R. E. (1997).

A decision-theoretic generalization of on-line learning and an application to boosting.

Journal of computer and system sciences, 55(1):119–139.

Freund, Y., Schapire, R. E., et al. (1996). Experiments with a new boosting algorithm. In *ICML*, volume 96, pages 148–156.

References II

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Special invited paper. additive logistic regression: A statistical view of boosting.

Annals of statistics, pages 337–374.

Friedman, J. H. (2001).

Greedy function approximation: a gradient boosting machine.

Annals of Statistics, pages 1189–1232.

Schapire, R. E. and Freund, Y. (2012). Boosting: Foundations and Algorithms. MIT Press.