CMPT 413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Finite-state transducers

- Many applications in computational linguistics
- Popular applications of FSTs are in:
 - Orthography
 - Morphology
 - Phonology

- Other applications include:
 - Grapheme to phoneme
 - Text normalization
 - Transliteration
 - Edit distance
 - Word segmentation
 - Tokenization
 - Parsing

Orthography and Phonology

• Orthography: written form of the language (affected by morpheme combinations)

```
move + ed → moved
swim + ing → swimming <u>S W IH1 M IH0 NG</u>
```

• Phonology: change in pronunciation due to morpheme combinations (changes may not be confined to morpheme boundary)

intent IH2 N T EH1 N T + ion

→ intention IH2 N T EH1 N CH AH0 N

Orthography and Phonology

- Phonological alternations are not reflected in the spelling (orthography):
 - Newton Newtonian
 - maniac maniacal
 - electric electricity

- Orthography can introduce changes that do not have any counterpart in phonology:
 - picnicpicnicking
 - happy happiest
 - gooey gooiest

Segmentation and Orthography

- To find entries in the lexicon we need to segment any input into morphemes
- Looks like an easy task in some cases:

```
looking → look + ing

rethink → re + think
```

• However, just matching an affix does not work:

```
*thing \rightarrow th + ing
*read \rightarrow re + ad
```

• We need to store valid stems in our lexicon what is the stem in *assassination* (*assassin* and not 2013-01-3*nation*)

Porter Stemmer

- A simpler task compared to segmentation is simply stripping out all affixes (a process called **stemming**, or finding the stem)
- Stemming is usually done without reference to a lexicon of valid stems
- The Porter stemming algorithm is a simple composition of FSTs, each of which strips out some affix from the input string
 - input=..ational, produces output=..ate (relational → relate)
- -input=..V..ing, produces output= ϵ (motoring \rightarrow motor)

Porter Stemmer

- False positives (stemmer gives incorrect stem): $doing \rightarrow doe, policy \rightarrow police$
- False negatives (should provide stem but does not): $European \rightarrow Europe$, $matrices \rightarrow matrix$
- I'm a rageaholic. I can't live without rageahol. Homer Simpson, from The Simpsons
- Despite being linguistically unmotivated, the Porter stemmer is used widely due to its simplicity (easy to implement) and speed

Segmentation and orthography

More complex cases involve alterations in spelling

```
foxes \rightarrow fox + s [ e-insertion ]
loved \rightarrow love + ed [e-deletion]
flies \rightarrow fly + s [ y to i, e-insertion ]
panicked → panic + ed [ k-insertion ]
chugging → chug + ing [ consonant doubling ]
*singging \rightarrow sing + ing
impossible \rightarrow in + possible [n to m]
```

- Called *morphographemic* changes.
- Similar to but not identical to changes in pronunciation due to morpheme combinations

Morphological Parsing with FSTs

- Think of the process of decomposing a word into its component morphemes in the reverse direction: as *generation* of the word from the component morphemes
- Start with an abstract notion of each morpheme being simply combined with the stem using concatenation
 - Each stem is written with its part of speech, e.g. cat+N
 - Concatenate each stem with some suffix information,
 e.g. cat+N+PL
- e.g. cat+N+PL goes through an FST to become *cats* (also 2013-01-3) works in reverse!)

Morphological Parsing with FSTs

- Retain simple morpheme combinations with the stem by using an intermediate representation:
 - e.g. cat+N+PL becomes cat^s#
- Separate rules for the various spelling changes. Each spelling rule is a different FST
- Write down a separate FST for each spelling rule

```
foxes:: fox^s# [e-insertion FST]
loved:: love^ed# [e-deletion FST]
flies:: fly^s# [y to i, e-insertion FST]
panicked:: panic^ed# [k-insertion FST] (arced::arc^ed#)??
etc.
```

Lexicon FST (stores stems)

m o u s e : irreg-sg-noun-form

m i c e : irreg-pl-noun-form

Compose the above lexicon FST with some inflection FST

This machine relates intermediate forms like fox^s# to underlying lexical forms like fox+N+PL

Lexical	Ş	f	0	X	+N	+PL		3
Intermediate	5	f	0	X	٨	S	#	3

- The label *other* means pairs not use anywhere in the transducer.
- \bullet Since # is used in a transition, q_0 has a transition on # to itself
- States q_0 and q_1 accept default pairs like (cat^s #, cats#)

13

• State $q_5^{2013-01-31}$ rejects incorrect pairs like $(fox^{\Lambda}s\#, foxs\#)$

e-insertion FST

• Run the e-insertion FST on the following pairs:

```
      (fir#, fir#)
      (fizz^s#, fizzs#)

      (fir^s#, firs#)
      (fizz^s#, fizzes#)

      (fir^s#, fires#)
      (fizz^ing#, fizzing#)
```

- Find the state the FST reaches after attempting to accept each of the above pairs
- Is the state a final state, i.e. does the FST accept the pair or reject it

- We first use an FST to convert the lexicon containing the stems and affixes into an intermediate representation
- We then apply a spelling rule that converts the intermediate form into the surface form
- **Parsing**: takes the surface form and produces the lexical representation
- Generation: takes the lexical form and produces the surface form
- But how do we handle multiple spelling rules?

Method 1: Composition

FST composition:

creates one FST for all rules

Lexicon

write one
FST for
each spelling
rule: each FST
has to provide
input to next
stage

Method 2: Intersection

Intersecting/Composing FSTs

- Implement each spelling rule as a separate FST
- We need slightly different FSTs when using Method 1 (composition) vs. using Method 2 (intersection)
 - In Method 1, each FST implements a spelling rule if it matches, and transfers the remaining affixes to the output (composition can then be used)
 - In Method 2, each FST computes an equal length mapping from input to output (intersection can then be used). Finally compose with lexicon FST and input.
- In practice, composition can create large FSTs

Motivation for using FSTs

- We have provided a formal device of FSTs that enables "finite-state" translations
- Translations of this kind are useful in many different contexts in computational linguistics (and beyond)
- But why use such a theoretically well-defined model -- why not use common programming language devices for translation?

REGEX v.s. FST

- The common method for string translations is the REGEX extension of regular expressions: allows match & replace
- For example, to perform *e-insertion* we would:

```
> infstem = 'fox+N+PL'
> inter = re.sub('\+N\+PL$', '^s#', infstem)
> inter == 'fox^s#'
> final = re.sub('([sxz])\^s\#', r'\les', inter)
> final == 'foxes'
```

- Seems simple enough -- why bother with FSTs?
- REGEX algorithms are exponential-time, FSTs are linear time -- sometimes theory is useful in practice!
- Can we retain the useful notation of REGEX expressions?

• Context dependent rewrite rules:

$$\alpha \rightarrow \beta / \lambda _{-} \rho$$

- (λ α ρ → λ β ρ; that is α becomes β in context λ $_$ ρ)
- $-\alpha$, β, λ, ρ are regular expressions, α = input, β = output
- e.g. $\alpha = (a|b)$ means input is either a or b, and $\beta = (a|b)$ means the output is ambiguous: should be either a or b
- How to apply rewrite rules:
 - Consider rewrite rule: $a \rightarrow b / ab$ ba
 - Apply rule on string ababababa
 - Three different outcomes are possible:
 - abbbabbaba (left to right, iterative)
 - ababbbabbba (right to left, iterative)

Input: kikukuku

from (R. Sproat slides)

kikikiki

u → i / i C* ___ kikukuku
kikukuku
kikikuku
kikikuku
kikikiku
kikikiku

output of one application *feeds* next application

left to right application

u → i / i C* ___ kikukuku
kikukuku
kikukuku
kikukuku
kikukuku
kikikuku

right to left application

u → i / i C* ___ kikukuku kikukuku kikukuku kikikuku

simultaneous application (context rules apply to input string only)

• Example of the e-insertion rule as a rewrite rule:

$$\varepsilon \rightarrow e / (x \mid s \mid z)^{\wedge} _ s\#$$

- Rewrite rules can be optional or obligatory
- Rewrite rules can be ordered wrt each other
- This ensures exactly one output for a set of rules

- Rule 1: $iN \rightarrow im / \underline{\hspace{1cm}} (p \mid b \mid m)$
- Rule 2: $iN \rightarrow in /$
- Consider input *iNpractical* (N is an abstract nasal phoneme)
- Each rule has to be obligatory or we get two outputs: *impractical* and *inpractical*
- The rules have to be ordered wrt to each other so that we get *impractical* rather than *inpractical* as output
- Composition can be used to order the priority of rule application for multiple rewrite rules

Example: Finnish Harmony

<u>Gloss</u>

- sky
- telephone
- plain
- reason
- short
- friendly

Nominative

- taivas
- puhelin
- lakeus
- syy
- lyhyt
- ystävällinen

Partitive

- taivas+ta
- puhelin+ta
- lakeut+ta
- syy+tä
- lyhyt+tä
- ystävällinen+tä

i,*e* are neutral wrt harmony

talossansakaanko 'not in his house either?' kynässänsäkäänkö 'not in his pen either?'

Rewrite Rules

a →
$$\ddot{a}$$
 / [\ddot{a} , \ddot{o} , y] C* ([\ddot{i} ,e] C*)* ____
o → \ddot{o} / [\ddot{a} , \ddot{o} , y] C* ([\ddot{i} ,e] C*)* ____

Long distance effects, but still possible to model as "finite-state" translation

- Context dependent rewrite rules: $\alpha \rightarrow \beta / \lambda _{--} \rho$
- Can express **context sensitive** rules or **regular** relations
- Computational constraints on rewrite rules:
 - Consider rewrite rule: c → acb / a ___ b
 - Apply left to right iteratively on base-form acb
 - Produces a sequence of strings:
 a a a c b b b long-distance effects in morphophonological rules?

- In a rewrite rule: $\alpha \rightarrow \beta / \lambda _{--} \rho$
- Rewrite rules are interpreted so that the **input** α does not match something introduced in the previous rule application
- However, we are free to match the **context** either λ or ρ or both with something introduced in the previous rule application (see previous examples)
- Impose a simple constraint on how rewrite rules are applied: output cannot be re-written

e.g.
$$c \rightarrow acb / a _b$$

• We cannot apply output of a rule as input to the rule itself iteratively:

```
c \rightarrow acb / a \_ b
```

If we allow this, the above rewrite rule will produce a^ncb^n for n >= 1 which is not regular

Why? Because we rewrite the <u>c</u> in a<u>c</u>b which was introduced in the previous rule application

Matching the a_b as left/right context in acb is ok

- Kaplan and Kay constraints:
 - Constraint ensures rewrite rules are equivalent to regular relations
 - Naturally expresses the local nature of "finite-state" translation
 - Under these conditions, these rewrite rules are equivalent to FSTs

Rewrite Rules to FSTs

In this example, V and C are actual symbols in the input

Rewrite rules to FSTs

$$u \rightarrow i / \Sigma^* i C^* _ \Sigma^*$$
 (example from R. Sproat's slides)

- Input: kikukupapu (use left-right iterative matching)
- Mark all possible right contexts
 k>i>k>u>k>u>p>a>p>u>
- Mark all possible left contexts
 k > i <> k <> u > k > u > p > a > p > u >
- Change u to i when delimited by $\langle \rangle$ > k > i $\langle \rangle$ k $\langle \rangle$ i > k > u > p > a > p > u >
- But the next u is not delimited by <> and so cannot be changed even though the rule matches

First try: does not work for iterative matching

Rewrite rules to FSTs

$$u \rightarrow i / \Sigma^* i C^* _ \Sigma^*$$

- Input: kikukupapu
- Mark all possible right contexts
 k > i > k > u > k > u > p > a > p > u >
- Mark all u followed by > with $<_1$ and $<_2$ $k > i > k > <_1 u > k > <_1 u > p > a > p > <_1 u >$ $<_2 u$ $<_2 u$
- Change all u to i when delimited by $<_1 > k > i > k > <_1 i > k > <_1 i > p > a > p > <_1 i > <_2 u <_2 u$

<1 u <2 u is a short-hand for multiple paths in an FST: $u \rightarrow i / \Sigma^* i C^* _ \Sigma^*$

Rewrite rules to FSTs

$$k > i > k > <_1 i > k > <_1 i > p > a > p > <_1 i >$$
 $<_2 u$
 $<_2 u$
 $<_2 u$

• Delete > $k i k <_1 i p a p <_1 i$

$$<_2 \mathbf{u} <_2 \mathbf{u}$$

• Only allow i where $<_1$ is preceded by iC*, delete $<_1$ k i k i k i p a p $<_2$ u $<_2$ u $<_2$ u

Allow only strings where <2 is not preceded by iC*,
 delete <2

kikikipapu

Left to right iterative

Rewrite Rules to FST

- Mark right contexts: a > b a > b > b
- Mark a and b before > with $<_1$ and $<_2$ $<_1 a > b <_1 a > <_1 b > b$ $<_2 a$ $<_2 a$ $<_2 b$

 $a \rightarrow b / b _b$ $b \rightarrow a / b$

Input: ababb

- Match <
 1 LHS > and convert to <
 1 RHS >; delete >
 1 b b <
 1 a b
 2 a <
 2 a <
 2 b
- Allow $<_1$ RHS when left context exists; delete $<_1$ $<_1$ b b $<_1$ b $<_1$ a b $=<_2$ a b (b | $<_2$ a) (a | $<_2$ b) b $<_2$ a $<_2$ a $<_2$ b
- Allow <₂ LHS when left context does not exist; delete <₂ a b b a b

Rewrite rules to FST

- For every rewrite rule: $\alpha \rightarrow \beta / \lambda _{p}$:
- FST r that inserts > before every ρ $r = \varepsilon \rightarrow > / \Sigma^* _ \rho$
- FST f that inserts $<_1 \& <_2$ before every α followed by > $f = \varepsilon \rightarrow (\{<_1\} \cup \{<_2\}) / (\Sigma \cup \{>\})^* \underline{\quad \alpha}_>$ where α freely allows > anywhere in α
- FST replace that replaces α with β between <₁ and > and deletes > for replace we write a special cross product FST

Rewrite Rules to FST

FST for replace

Create a new FST by taking the cross product of the languages α and β (every string in α is mapped to every string in β)

Note that while matching α we need to ignore all the instances of >, <₁, <₂ we previously inserted

Rewrite rules to FST

- FST λ_I that only allows all $<_1 \beta$ preceded by λ and deletes $<_1$ $\lambda_I = <_1 \rightarrow \epsilon / \# \Sigma * \lambda _ \epsilon$
 - where # is a symbol marking start of the string and we ignore the $<_2$ symbols in the string
- FST λ_2 that only allows all $<_2 \alpha$ **not** preceded by λ and deletes $<_2$ $\lambda_2 = <_2 \rightarrow \varepsilon$ / #complement($\Sigma^* \lambda$) __ ε
- Final FST = $r \circ f \circ replace \circ \lambda_1 \circ \lambda_2$
- This is only for left-right iterative obligatory rewrite rules: similar construction for other types

Ambiguity (in parsing)

• Global ambiguity: (de+light+ed vs. delight+ed)

foxes → fox+N+PL (I saw two foxes)

foxes → foxes+V+3SG (Clouseau foxes them again)

• Local ambiguity:

assess has a prefix string asses that has a valid analysis: $asses \rightarrow ass+N+PL$

- Global ambiguity results in two valid answers, but local ambiguity returns only one.
- However, local ambiguity can also slow things down since two analyses are considered partway through the string.

Summary

- FSTs can be applied to creating lexicons that are aware of morphology
- FSTs can be used for simple stemming
- FSTs can also be used for morphographemic changes in words (spelling rules), e.g. fox+N+PL becomes foxes
- Multiple FSTs can be composed to give a single FST (that can cover all spelling rules)
- Multiple FSTs that are length preserving can also be run in parallel with the intersection of the FSTs
- Rewrite rules are a convenient notation that can be converted into FSTs automatically
- Ambiguity can exists in the lexicon: both global & local

Extra Slides

other = Σ -[C]'-{n,e}

Length Preserving FST for e-deletion

Stems/Lexicon

move ^ ed movε ε ed

other₁ =
$$\Sigma$$
 - {e,v}

other₂ =
$$\Sigma$$
 - {e,v,^}

