6 Week 6:

6.1 The vector product

Definition 6.1. The *vector product* or the *cross product* of the vectors \overrightarrow{a} , $\overrightarrow{b} \in \mathcal{V}$ is a vector, denoted by $\overrightarrow{a} \times \overrightarrow{b}$, which is defined to be zero if \overrightarrow{a} , \overrightarrow{b} are linearly dependent (collinear), and if \overrightarrow{a} , \overrightarrow{b} are linearly independent (noncollinear), then it is defined by the following data:

- 1. $\overrightarrow{a} \times \overrightarrow{b}$ is a vector orthogonal on the two-dimensional subspace $\langle \overrightarrow{a}, \overrightarrow{b} \rangle$ of \mathcal{V} ;
- 2. if $\overrightarrow{a} = \overrightarrow{OA}$, $\overrightarrow{b} = \overrightarrow{OB}$, then the sense of $\overrightarrow{a} \times \overrightarrow{b}$ is the one in which a right-handed screw, placed along the line passing through O orthogonal to the vectors \overrightarrow{a} and \overrightarrow{b} , advances when it is being rotated simultaneously with the vector \overrightarrow{a} from \overrightarrow{a} towards \overrightarrow{b} within the vector subspace $\langle \overrightarrow{a}, \overrightarrow{b} \rangle$ and the support half line of \overrightarrow{a} sweeps the interior of the angle \overrightarrow{AOB} (Screw rule).
- 3. the *norm* (*magnitude* or *length*) of $\overrightarrow{a} \times \overrightarrow{b}$ is defined by

$$||\overrightarrow{a} \times \overrightarrow{b}|| = ||\overrightarrow{a}|| \cdot ||\overrightarrow{b}|| \sin(\overrightarrow{a}, \overrightarrow{b}).$$

Remark 6.1. 1. The norm (magnitude or length) of the vector $\overrightarrow{a} \times \overrightarrow{b}$ is actually the area of the parallelogram constructed on the vectors \overrightarrow{a} , \overrightarrow{b} .

2. The vectors \overrightarrow{a} , $\overrightarrow{b} \in \mathcal{V}$ are linearly dependent (collinear) if and only if $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$.

Proposition 6.1. *The vector product has the following properties:*

- 1. $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}, \forall \overrightarrow{a}, \overrightarrow{b} \in \mathcal{V};$
- 2. $(\lambda \overrightarrow{a}) \times \overrightarrow{b} = \overrightarrow{a} \times (\lambda \overrightarrow{b}) = \lambda (\overrightarrow{a} \times \overrightarrow{b}), \forall \lambda \in \mathbb{R}, \overrightarrow{a}, \overrightarrow{b} \in \mathcal{V};$
- 3. $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}, \forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \in \mathcal{V}.$

6.2 The vector product in terms of coordinates

If [i,j,k] is an orthonormal basis, observe that $i \times j \in \{-k,k\}$. We say that the orthonormal basis [i,j,k] is *direct* if $i \times j = k$. If, on the contrary, $i \times j = -k$, we say that the orthonormal basis [i,j,k] is *inverse*.

Therefore, if $[\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}]$ is a direct orthonormal basis, then $\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}$, $\overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}$, $\overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}$ and obviously $\overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = \overrightarrow{0}$.

Proposition 6.2. If $[\vec{i}, \vec{j}, \vec{k}]$ is a direct orthonormal basis and $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$, then

$$\overrightarrow{a} \times \overrightarrow{b} = (a_2b_3 - a_3b_2) \overrightarrow{i} + (a_3b_1 - a_1b_3) \overrightarrow{j} + (a_1b_2 - a_2b_1) \overrightarrow{k}, \tag{6.1}$$

or, equivalently,

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_2 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_2 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_1 & a_2 \\ b_2 & b_2 \end{vmatrix} \overrightarrow{k}$$

$$(6.2)$$

Proof. Indeed,

$$\vec{a} \times \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k})$$

$$= a_1b_1 \vec{i} \times \vec{i} + a_1b_2 \vec{i} \times \vec{j} + a_1b_3 \vec{i} \times \vec{k}$$

$$+ a_2b_1 \vec{j} \times \vec{i} + a_2b_2 \vec{j} \times \vec{j} + a_2b_3 \vec{i} \times \vec{k}$$

$$+ a_3b_1 \vec{k} \times \vec{i} + a_3b_2 \vec{k} \times \vec{j} + a_3b_3 \vec{k} \times \vec{k}$$

$$= a_1b_2 \vec{k} - a_1b_3 \vec{j} - a_2b_1 \vec{k} + a_2b_3 \vec{i} + a_3b_1 \vec{j} - a_3b_2 \vec{i}$$

$$= (a_2b_3 - a_3b_2) \vec{i} + (a_3b_1 - a_1b_3) \vec{j} + (a_1b_2 - a_2b_1) \vec{k}$$

One can rewrite formula (6.1) in the form

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 (6.3)

the right hand side determinant being understood in the sense of its cofactor expansion along the first line.

Remark 6.2. If $R = (O, \vec{i}, \vec{j}, \vec{k})$ is the direct Cartesian orthonormal reference system behind the equations of the line

$$(\Delta) \left\{ \begin{array}{l} A_1 x + B_1 y + C_1 z + D_1 = 0 \\ A_2 x + B_2 y + C_2 z + D_1 = 0, \end{array} \right.$$

then we can recover the director parameters (4.10) of Δ , in this particular case of orthonormal Cartesian reference systems, by observing that $\overrightarrow{n}_1 \times \overrightarrow{n}_2$ is a director vector of Δ , where

$$\overrightarrow{n_1} = A_1 \overrightarrow{i} + B_1 \overrightarrow{j} + C_1 \overrightarrow{k}$$

$$\overrightarrow{n_2} = A_2 \overrightarrow{i} + B_2 \overrightarrow{j} + C_2 \overrightarrow{k}.$$

Recall that

$$\overrightarrow{n}_1 \times \overrightarrow{n}_2 = \begin{vmatrix} \overrightarrow{j} & \overrightarrow{j} & \overrightarrow{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix} = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} \begin{vmatrix} \overrightarrow{j} + \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix} \begin{vmatrix} \overrightarrow{j} + \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \begin{vmatrix} \overrightarrow{k} \end{vmatrix}.$$

Note however that the director parameters were obtained before for arbitrary Cartesian reference systems (See (4.10)).

6.3 Applications of the vector product

• The area of the triangle ABC. $S_{ABC} = \frac{1}{2} || \overrightarrow{AB} || \cdot || \overrightarrow{AC} || \sin \widehat{BAC} = \frac{1}{2} || \overrightarrow{AB} \times \overrightarrow{AC} ||$. On the other hand

$$\overrightarrow{AB} \times \overrightarrow{AC} = \left| \begin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_B - x_A & y_B - x_A & z_B - z_A \\ x_C - x_A & y_C - x_A & z_C - z_A \end{array} \right|,$$

as the coordinates of \overrightarrow{AB} and \overrightarrow{AC} are $(x_B - x_A, y_B - x_A, z_B - z_A)$ and $(x_C - x_A, y_C - x_A, z_C - z_A)$ respectively. Thus,

$$4S_{_{ABC}}^{2} = \left|\begin{smallmatrix} y_{_{B}} - y_{_{A}} & z_{_{B}} - z_{_{A}} \\ y_{_{C}} - y_{_{A}} & z_{_{C}} - z_{_{A}} \end{smallmatrix}\right|^{2} + \left|\begin{smallmatrix} z_{_{B}} - z_{_{A}} & x_{_{B}} - x_{_{A}} \\ z_{_{C}} - z_{_{A}} & x_{_{C}} - x_{_{A}} \end{smallmatrix}\right|^{2} + \left|\begin{smallmatrix} x_{_{B}} - x_{_{A}} & y_{_{B}} - y_{_{A}} \\ x_{_{C}} - x_{_{A}} & y_{_{C}} - y_{_{A}} \end{smallmatrix}\right|^{2}.$$

- The distance from one point to a straight line.
 - (a) The distance $\delta(A, BC)$ from the point $A(x_A, y_A, z_A)$ to the straight line BC, where $B(x_B, y_B, z_B)$ and $C(x_C, y_C, z_C)$. Since

$$S_{ABC} = \frac{||\overrightarrow{BC}|| \cdot \delta(A, BC)}{2}$$

it follos that

$$\delta^{2}(A, BC) = \frac{4S_{ABC}^{2}}{||BC||^{2}}.$$

Thus, we obtain

$$\delta^{2}(A,BC) = \frac{\begin{vmatrix} y_{B} - y_{A} & z_{B} - z_{A} \\ y_{C} - y_{A} & z_{C} - z_{A} \end{vmatrix}^{2} + \begin{vmatrix} z_{B} - z_{A} & x_{B} - x_{A} \\ z_{C} - z_{A} & x_{C} - x_{A} \end{vmatrix}^{2} + \begin{vmatrix} x_{B} - x_{A} & y_{B} - y_{A} \\ x_{C} - x_{A} & y_{C} - y_{A} \end{vmatrix}^{2}}{(x_{C} - x_{B})^{2} + (y_{C} - y_{B})^{2} + (z_{C} - z_{B})^{2}}.$$

(b) The distance from $\delta(A,d)$ from one point $A(A_A,y_A,z_A)$ to the straight line

$$d: \frac{x - x_0}{p} = \frac{y - y_0}{q} = \frac{z - z_0}{r}.$$

 $\delta(A,d) = \frac{||\stackrel{\rightarrow}{d} \times \stackrel{\rightarrow}{A_0A}||}{||\stackrel{\rightarrow}{d}||},$

where $A_0(x_0, y_0, z_0) \in \delta$. Since

 $\overrightarrow{d} \times \overrightarrow{A_0 A} = \begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\
p & q & r \\
x_A - x_0 & y_A - y_0 & z_A - z_0
\end{vmatrix} \overrightarrow{j} + \begin{vmatrix}
\overrightarrow{v} & \overrightarrow{q} & \overrightarrow{k} \\
y_A - y_0 & z_A - z_0
\end{vmatrix} \overrightarrow{j} + \begin{vmatrix}
\overrightarrow{v} & \overrightarrow{q} & \overrightarrow{k} \\
y_A - y_0 & z_A - z_0
\end{vmatrix} \overrightarrow{j} + \begin{vmatrix}
\overrightarrow{v} & \overrightarrow{q} & \overrightarrow{k} \\
z_A - z_0 & x_A - x_0
\end{vmatrix} \overrightarrow{j} + \begin{vmatrix}
\overrightarrow{v} & \overrightarrow{q} & \overrightarrow{k} \\
z_A - z_0 & y_A - y_0
\end{vmatrix} \overrightarrow{k}$

it follows that

$$\delta(A,d) = \frac{\sqrt{\begin{vmatrix} q & r \\ y_A - y_0 z_A - z_0 \end{vmatrix}^2 + \begin{vmatrix} r & p \\ z_A - z_0 x_A - x_0 \end{vmatrix}^2 + \begin{vmatrix} p & q \\ x_A - x_0 y_A - y_0 \end{vmatrix}^2}{\sqrt{p^2 + q^2 + r^2}}.$$

(6.4)

6.4 The double vector (cross) product

The double vector (cross) product of the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is the vector $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) \neq (\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}$ Proposition 6.3.

$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \underbrace{(\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}}_{c} = \begin{vmatrix} \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{a} \cdot \overrightarrow{c} \end{vmatrix}, \quad \forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \in \mathcal{V}.$$

$$(6.5)$$

Proof. (Sketch) If the vectors \overrightarrow{b} and \overrightarrow{c} are linearly dependent, then both sides are obviously zero. Otherwise one can choose an orthonormal basis $[\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}]$, related to the vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} , such that

 $\overrightarrow{b} = b_1 \overrightarrow{i}, \overrightarrow{c} = c_1 \overrightarrow{i} + c_2 \overrightarrow{j}, \overrightarrow{a} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}.$

For example one can choose \overrightarrow{i} to be \overrightarrow{b} / \parallel \overrightarrow{b} \parallel and \overrightarrow{j} a unit vector in the subspace $\langle \overrightarrow{b}, \overrightarrow{c} \rangle$ which is perpendicular on \overrightarrow{b} . Finally, one can choose $\overrightarrow{k} = \overrightarrow{i} \times \overrightarrow{j}$. By computing the two sides of the equality 6.5, in terms of coordinates and the vectors \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} , one gets the same result.

Corollary 6.4. 1.
$$(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} - (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{a} = \begin{vmatrix} \overrightarrow{b} & \overrightarrow{a} \\ \overrightarrow{c} \cdot \overrightarrow{b} & \overrightarrow{c} \cdot \overrightarrow{a} \end{vmatrix}, \forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \in \mathcal{V};$$

2.
$$\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{0}$$
, $\forall \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \in \mathcal{V}$ (Jacobi's identity).

Proof. While the first identity follows immediately via 6.5, for the Jacobi's identity we get successively:

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$$

$$= (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} + (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} + (\vec{c} \cdot \vec{b}) \vec{a} - (\vec{c} \cdot \vec{a}) \vec{b} = \vec{0} .$$

6.5 Problems

1. **(2p)** Show that $\|\overrightarrow{a} \times \overrightarrow{b}\| \le \|\overrightarrow{a}\| \cdot \|\overrightarrow{b}\|$, $\forall \overrightarrow{a}, \overrightarrow{b}, \in \mathcal{V}$. *Solution.*

2. **(3p)** Let \vec{a} , \vec{b} , \vec{c} be pairwise noncollinear vectors. Show that the necessary and sufficient condition for the existence of a triangle *ABC* with the properties $\vec{BC} = \vec{a}$, $\vec{CA} = \vec{b}$, $\vec{AB} = \vec{c}$ is

$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$$
.

From the equalities of the norms deduce the low of sines. *Solution*.

3. **(3p)** Show that the sum of some outer-pointing vectors perpendicular on the faces of a tetrahedron which are proportional to the areas of the faces is the zero vector. *Solution.*

4. **(2p)** Find the distance from the point P(1,2,-1) to the straight line (d) x = y = z.

5. (**3p)** Find the area of the triangle *ABC* and the lengths of its hights, where A(-1,1,2), B(2,-1,1) and C(2,-3,-2).

$$A_{ABC} = \frac{1}{3} \frac{1}{148} \times A_{C} = \frac{1}{3} \frac{1}{3} \cdot A_{C} = \frac{1}{3} \cdot A_{C} =$$

6. (3p) Let d_1 , d_2 , d_3 , d_4 be pairwise skew straight lines. Assuming that $d_{12} \perp d_{34}$ and $d_{13} \perp d_{24}$, show that $d_{14} \perp d_{23}$, where d_{ik} is the common perpendicular of the lines d_i and d_k .

Solution. A director vector of the common perpendicular d_{ij} is $\overrightarrow{d}_i \times \overrightarrow{d}_j$, where \overrightarrow{d}_r stands for a director vector of d_r . Therefore we have successively:

$$\begin{aligned} d_{12} \perp d_{34} & \Leftrightarrow \overrightarrow{d}_1 \times \overrightarrow{d}_2 \perp \overrightarrow{d}_3 \times \overrightarrow{d}_4 \Leftrightarrow (\overrightarrow{d}_1 \times \overrightarrow{d}_2) \cdot (\overrightarrow{d}_3 \times \overrightarrow{d}_4) = 0 \\ & \Leftrightarrow \begin{vmatrix} \overrightarrow{d}_1 \cdot \overrightarrow{d}_3 & \overrightarrow{d}_1 \cdot \overrightarrow{d}_4 \\ \overrightarrow{d}_2 \cdot \overrightarrow{d}_3 & \overrightarrow{d}_2 \cdot \overrightarrow{d}_4 \end{vmatrix} = 0 \Leftrightarrow (\overrightarrow{d}_1 \cdot \overrightarrow{d}_3) (\overrightarrow{d}_2 \cdot \overrightarrow{d}_4) = (\overrightarrow{d}_1 \cdot \overrightarrow{d}_4) (\overrightarrow{d}_2 \cdot \overrightarrow{d}_3). \end{aligned}$$

Similalry

$$\begin{aligned} d_{13} \perp d_{24} & \Leftrightarrow \overrightarrow{d}_1 \times \overrightarrow{d}_3 \perp \overrightarrow{d}_2 \times \overrightarrow{d}_4 \Leftrightarrow (\overrightarrow{d}_1 \times \overrightarrow{d}_3) \cdot (\overrightarrow{d}_2 \times \overrightarrow{d}_4) = 0 \\ & \Leftrightarrow \begin{vmatrix} \overrightarrow{d}_1 \cdot \overrightarrow{d}_2 & \overrightarrow{d}_1 \cdot \overrightarrow{d}_4 \\ \overrightarrow{d}_3 \cdot \overrightarrow{d}_2 & \overrightarrow{d}_3 \cdot \overrightarrow{d}_4 \end{vmatrix} = 0 \Leftrightarrow (\overrightarrow{d}_1 \cdot \overrightarrow{d}_2) (\overrightarrow{d}_3 \cdot \overrightarrow{d}_4) = (\overrightarrow{d}_1 \cdot \overrightarrow{d}_4) (\overrightarrow{d}_3 \cdot \overrightarrow{d}_2). \end{aligned}$$

Therefore we have

$$(\overrightarrow{d}_1 \cdot \overrightarrow{d}_3)(\overrightarrow{d}_2 \cdot \overrightarrow{d}_4) = (\overrightarrow{d}_1 \cdot \overrightarrow{d}_4)(\overrightarrow{d}_2 \cdot \overrightarrow{d}_3) = (\overrightarrow{d}_1 \cdot \overrightarrow{d}_2)(\overrightarrow{d}_3 \cdot \overrightarrow{d}_4),$$

which shows that

$$(\vec{d}_1 \cdot \vec{d}_3)(\vec{d}_2 \cdot \vec{d}_4) - (\vec{d}_1 \cdot \vec{d}_2)(\vec{d}_3 \cdot \vec{d}_4) = 0 \Leftrightarrow \left| \begin{array}{ccc} \vec{d}_1 \cdot \vec{d}_2 & \vec{d}_1 \cdot \vec{d}_3 \\ \vec{d}_4 \cdot \vec{d}_2 & \vec{d}_4 \cdot \vec{d}_3 \end{array} \right| = 0 \Leftrightarrow d_{14} \perp d_{23}.$$

Seminar W6 · Micu-31/03/2021 cross product (rector product)

જ, જો ગલ્લકાજ

- 40', w dep -> 0' x w - 0

of n', n' Nu indep - + + x w ∈ f

- orientation: the screw rule

If the ref. Hystern (0,[i,j',&']) is self-one and direct (for us all the time)

if (a,bhci). if (azibzicz)

- the cross product is anti-commutatine, billinear Walpeir, + U, Wallet: (xv1+ Bv2) xw- dv4 xw+ p-v2xw The distance from a point to a line in 3D

of First Tath or snalp is 1 Py = 1 n ii -1 1 1 Pp o pp is the poperdiculax Take Ase 1, Till JA, E1 to that: A.A. = v'--1 PP height in apack1 =1

Zzebai Considuc the Line:

, and the point P(12,3). Find the eg of the pour from the

point Ponto the Line L.

ー で(ロード,-3)

, then not is it is a director nector of the line?

We now write the ug of the peans IT that is peop to 1 and contains P. Vx 1 11 -1 でに 11 元: 10x - 14y -3を+D=0
PE 11 =110 1 - 14・2・3・3+D=0 -1 D=34+9-10 -1 D=33 ー)