K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Cascode Amplifier

Numerical 1

Calculate the values of R_C , R_1 , R_2 for the circuit shown in figure 1. Assume $V_{CC}=9V$, $R_3=18k\Omega,\,V_{C_1}=3V,\,V_{C_2}=6V,\,I_C=1mA,\,R_E=200\Omega$

Figure 1: Circuit for Numerical 1

Solution:

DC Anaylsis:

During DC analysis, capacitors become open circuit.

The DC equivalent circuit is shown in figure 2

$$\beta_1 = \beta_2 = 100$$

$$I_{C_1} = I_{C_2} = I_{E_1} = I_{E_2}$$

Applying KVL to outer loop of figure 2 we get,

$$V_{CC} - I_C R_C - V_{C_2} = 0$$

$$R_C = \frac{V_{CC} - V_{C_2}}{I_C} = \frac{9V - 6V}{1mA}$$

$$R_{C}=3K\Omega$$

$$V_{E_1} = I_E R_E = 1mA \times 200\Omega$$

Figure 2: Thevenin's Equivalent Circuit

$$\begin{aligned} \mathbf{V_{E_1}} &= \mathbf{0.2V} \\ V_{BE_1} &= V_{B_1} - V_{E_1} \\ V_{B_1} &= V_{BE_1} + V_{E_1} = 0.7V + 0.2V \\ \mathbf{V_{B_1}} &= \mathbf{0.9V} \\ V_{B_1} &= \frac{R_3}{R_1 + R_2 + R_3} \times V_{CC} \\ 0.9V &= \frac{18k}{R_1 + R_2 + 18k} \times 9V \\ R_1 &+ R_2 + 18k = \frac{18k \times 9V}{0.9V} \\ R_1 &+ R_2 + 18k = 180k \\ \mathbf{R_1} &+ \mathbf{R_2} &= \mathbf{162k} \end{aligned} \qquad(1)$$

 $V_{E_2}=3V$

$$V_{BE_2} = V_{B_2} - V_{E_2}$$

$$V_{B_2} = V_{BE_2} + V_{E_2} = 0.7V + 3V$$

$$V_{B_2} = 3.7V$$

$$V_{B_2} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} \times V_{CC}$$

$$3.7V = \frac{R_2 + 18k}{162k + 18k} \times 9V \qquad \text{(From (1))}$$

$$R_2 + 18k = 74k$$

$$\mathbf{R_2} = \mathbf{56k\Omega}$$

$$R_1 + R_2 = 162k$$

$$R_1 = 162k - R_2 = 162k - 56k$$

$$\mathbf{R_1} = \mathbf{106k\Omega}$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 3: Circuit Schematics: Results

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
$I_{C_1} = I_{E_1}$	0.9mA	1mA
$I_{C_2} = I_{E_2}$	0.9mA	1mA
V_{B_1}	0.8V	0.9V
V_{E_1}	0.18V	0.2V
V_{B_2}	3.5V	3.7V
V_{E_2}	3V	3V
V_{C_1}	2.89V	3V

Table 1: Numerical 1

Numerical 2

A two stage circuit is shown in figure 4, its E-MOSFET parameters are $k_{n_1}=k_{n_2}=0.8mA/V^2$, $V_{TN_1}=V_{TN_2}=0.8V$

- a) Calculate the DC parameters of the circuits
- b) Calculate the input impedance of the circuit
- c) Calculate the output impedance of the circuit
- d) Calculate the voltage gain of the circuit

Figure 4: Circuit for Numerical 2

Solution:

DC Anaylsis: During DC analysis, capacitors become open circuit.

The DC equivalent circuit is shown in figure 5

$$R_T = R_1 + R_2 + R_3 = 100k + 24k + 12k$$

 $R_T=136k\Omega$

$$V_{G_1} = \frac{R_3}{R_T} \times V_{DD} = \frac{12k}{136k} \times 18V$$

 $V_{G_1}=1.588V\\$

$$V_{G_2} = \frac{R_2 + R_3}{R_T} \times V_{DD} = \frac{24k + 12k}{136k} \times 18V$$

$$V_{\mathbf{G_2}} = 4.764V$$

Figure 5: DC Equivalent Circuit

$$\begin{split} V_{GS_1} &= V_{G_1} - V_{S_1} \\ V_{GS_1} &= 1.588V - I_{D_1} \times 1k \\ I_{D_1} &= k_{n_1}(V_{GS_1} - V_{TN_1})^2 \\ I_{D_1} &= 0.8 \times 10^{-3}(V_{GS_1} - 0.8V)^2 \\ \text{Substituting (2) in (1) we get,} \\ V_{GS_1} &= 1.588 - 0.8 \times 10^{-3} \times 10^3(V_{GS_1} - 0.8)^2 \\ V_{GS_1} &= 1.588 - 0.8(V_{GS_1}^2 - 1.6V_{GS_1} + 0.64) \\ V_{GS_1} &= 1.588 - 0.8V_{GS_1}^2 + 1.28V_{GS_1} - 0.512 \\ 0.8V_{GS_1}^2 &= 0.28V_{GS_1} - 1.076 = 0 \\ \text{Solving the above quadratic equation we get,} \\ V_{GS_1} &= 1.3478V \quad \text{or } V_{GS_1} &= -0.9978V \\ \mathbf{V}_{GS_1} &= 1.3478V \quad \text{or } V_{GS_1} &> V_{TN_1}) \end{split}$$

i.e. $I_{D_1} = k_{n_1}(V_{GS_1} - V_{TN_1})^2$

 $I_{D_1}=0.24mA \\$

 $I_{D_1} = 0.8 \times 10^{-3} (1.3478 - 0.8)^2$

$$I_{D_1} = I_{D_2} = 0.24 mA$$

$$V_{D_2} = V_{DD} - I_{D_2} R_D = 18 - 0.24 mA \times 3.3k$$

$$\mathbf{V_{D_2}=17.2V}$$

$$V_{S_1} = I_{D_1} R_S = 0.24 mA \times 1k$$

$$V_{\mathbf{S}_1} = 0.24V$$

$$V_{S_1G} = V_{GS_2} = V_{G_2} - V_{S_2}$$

$$V_{S_2} = V_{G_2} - V_{GS_2} = 4.764 - 1.3478$$

$V_{\mathbf{S_2}} = 3.416V$

$$V_{DS_2} = V_{D_2} - V_{S_2} = 17.2 - 3.416$$

$$V_{\mathrm{DS_2}} = 13.784 V$$

$$V_{D_1} = V_{S_2} = 3.416 V \,$$

AC Analysis:

Calculation of small signal parameters:

$$g_{m_1} = g_{m_2} = 2k_n(V_{GS} - V_{TN}) = 2 \times 0.8 \times 10^{-3} (1.3478 - 0.8)$$

$$g_{m_1} = g_{m_2} = 0.876 mA/V$$

Small signal equivalent circuit is shown in figure 6

Figure 6: Small Signal Equivalent Circuit

$$g_{m_1} V_{gs_1} = g_{m_2} V_{gs_2}$$

$$R_G = R_2 \parallel R_3 = 24k \parallel 2k$$

$$R_G=8k\Omega$$

Calculation of voltage gain:

$$A_{V_T} = \frac{V_{out}}{V_s} = \frac{V_{out}}{V_{o_1}} \times \frac{V_{o_1}}{V_s}$$

For Stage-1:

$$A_{V_1} = \frac{V_{o_1}}{V_s} = \frac{-V_{gs_2}}{V_{gs_1}}$$

But
$$V_{gs_1} = V_{gs_2}$$

$$\mathbf{A_{V_1}} = -1$$

For Stage-2:

$$A_{V_2} = \frac{V_{out}}{V_{o_1}} = \frac{-g_{m_2}V_{gs_2}R_D}{-V_{gs_2}}$$

$$A_{V_2} = g_{m_2} R_D = 0.876 \times 10^{-3} \times 3.3k$$

$$\mathbf{A_{V_2}} = 2.89$$

The overall voltage gain A_{V_T} :

$$A_{V_T} = A_{V_1} \times A_{V_2} = -1 \times 2.89$$

$$\mathbf{A_{V_T}} = -2.89$$

Input Impedance:

$$Z_i = R_G = R_2 \parallel R_3 = 24k \parallel 2k$$

$$\mathbf{Z_i} = 8k\Omega$$

Output Impedance:

$$Z_i = R_D$$

$$Z_o=3.3\mathrm{k}\Omega$$

Calculation of output voltage:

$$V_o = A_{V_T} \times V_{in} = 2.89 \times 40 mV$$

$$V_o = 115.6 mV$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 7: Circuit Schematics: Results

Output Waveforms:

Figure 8: Input and Output Waveforms for 1^{st} Stage

Figure 9: Input and Output Waveforms for 2^{nd} Stage

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
V_{G_1}	1.588V	1.588V
V_{D_1}	3.41V	3.416V
V_{S_1}	0.24V	0.24V
I_{D_1}	0.24mA	0.24mA
V_{G_2}	4.76V	4.764V
V_{D_2}	17.2V	17.2V
V_{S_2}	3.41V	3.416V
I_{D_2}	0.24mA	0.24mA
Voltage gain of first stage (A_{V_1})	-0.986	4 -1
Voltage gain of second stage (A_{V_2})	2.89	2.89
Overall voltage gain (A_{V_T})	-2.88	-2.89
Input Impedance (Z_i)	_	$8k\Omega$
Output Impedance (Z_o)	-	$3.3k\Omega$
Output voltage (V_o)	114.39mV	115.6mV

Table 2: Numerical 2
