ACTL2102 Week 1 - Stochastic Processes, Simulation

Tadhg Xu-Glassop 2025T3

Hello!

My name is Tadhg (tie - gh) and I am the tutor for ACTL2102 this term ! This is my first time teaching this course, and I have taught ACTL2131 and ACTL3142 in the past.

Hello!

My name is Tadhg (tie - gh) and I am the tutor for ACTL2102 this term! This is my first time teaching this course, and I have taught ACTL2131 and ACTL3142 in the past.

This course is quite mathematical compared to other ACTL courses, so I highly recommend trying to derive the results in the lectures yourself to ensure your understanding (particularly for Mod 3 and 4).

Hello!

My name is Tadhg (tie - gh) and I am the tutor for ACTL2102 this term ! This is my first time teaching this course, and I have taught ACTL2131 and ACTL3142 in the past.

This course is quite mathematical compared to other ACTL courses, so I highly recommend trying to derive the results in the lectures yourself to ensure your understanding (particularly for Mod 3 and 4).

ACTL2102 is especially nice because a lot of the harder content is much easily understood "intuitively" as opposed to understanding it rigorously, and so a lot of the harder questions in this course can be solved using intuition rather than following these methods. I will try to show all of these methods, and explain the content as intuitively as possible :p

Stochastic Processes

Definition (Stochastic Process)

A **stochastic process** is a collection of random variables X(t) for $t \in T$, where T is the *index set*.

X(t) can take any value in the state space S. Both T and S can be discrete or continuous.

Examples

- Price of stock at time t.
- Dead or Alive status of policyholder at any time throughout the year.
- Dead or Alive status of policyholder at start of the year.

Feature of a Stochastic Process

Definition (Independent Increments)

A stochastic process has independent increments if $X(t + \tau) - X(\tau)$ is independent of X(s) for all $s \le \tau$.

Feature of a Stochastic Process

Definition (Independent Increments)

A stochastic process has independent increments if $X(t + \tau) - X(\tau)$ is independent of X(s) for all $s \le \tau$.

Definition (Stationary Increments)

A stochastic process has stationary increments if $X(t_2 + \tau) - X(t_1 + \tau)$ has the same distribution as $X(t_2) - X(t_1)$ for all possible t_1, t_2 and $\tau \geq 0$.

Feature of a Stochastic Process

Definition (Independent Increments)

A stochastic process has independent increments if $X(t + \tau) - X(\tau)$ is independent of X(s) for all $s \le \tau$.

Definition (Stationary Increments)

A stochastic process has stationary increments if $X(t_2 + \tau) - X(t_1 + \tau)$ has the same distribution as $X(t_2) - X(t_1)$ for all possible t_1, t_2 and $\tau \geq 0$.

Definition (Markov Property)

A stochastic process has the Markov Property if

$$\mathbb{P}(X(t_n) \mid X(t_{n-1}), X(t_{n-2}), \dots, X(t_1)) = \mathbb{P}(X(t_n) \mid X(t_{n-1})).$$

Monte Carlo Simulation

Monte Carlo Simulation Method

Suppose we have some random variable \mathbf{X} and we wish to estimate the expected value of some $\mathbf{Y} = g(\mathbf{X})$. Then, a possible estimator can be found by;

- 1. Simulate **X** *n* times,
- 2. Using each simulation, set $\mathbf{Y}^{(i)} = g(\mathbf{X}^{(i)})$,
- 3. Taking the average of all simulated $\mathbf{Y}^{(i)}$ yields an estimate for the mean of \mathbf{Y} .

This should be intuitive, as this is an application of the the law of large numbers!

Inverse Transform Method

Inverse Transform Method

Suppose X has CDF F_X . Then, if $U \sim \mathrm{Unif}(0,1)$, then $F_X^{-1}(U)$ has the same distribution as X.

So, if we want to simulate some random variable X with CDF F,

- 1. Find F^{-1} ,
- 2. Simulate U from Unif(0,1),
- 3. Set $\tilde{X} := F^{-1}(U)$ and this is a simulated value for X.

Acceptance Rejection Method

Acceptance Rejection Method

Suppose X has PDF f_X and Y has PDF g_y . Further, suppose we can simulate Y with other methods, but can't for X. Then, we can simulate X with the following method,

- 1. Find some C such that $C \ge \frac{f(y)}{g(y)}$ for all y.
- 2. Simulate U from $\mathrm{Unif}(0,1)$ and \tilde{Y} using the simulation method,
- 3. If $U \leq \frac{f(\tilde{Y})}{Cg(\tilde{Y})}$, then set $\tilde{X} := \tilde{Y}$ and this is a simulated value of X. Otherwise, go back to 2.

Simulating Discrete Random Variables

If X is a discrete random variable, then

$$X = \begin{cases} x_1 & \text{wp } p_1, \\ x_2 & \text{wp } p_2, \\ \vdots & \\ x_k & \text{wp } p_k. \end{cases}$$

Simulating Discrete Random Variables

If X is a discrete random variable, then

$$X = \begin{cases} x_1 & \text{wp } p_1, \\ x_2 & \text{wp } p_2, \\ \vdots & \\ x_k & \text{wp } p_k. \end{cases}$$

So, a method for simulating X after generating U from $\mathrm{Unif}(0,1)$ is to set

$$X = \begin{cases} x_1 & \text{if } U \leq p_1, \\ x_2 & \text{if } p_1 < U \leq p_1 + p_2, \\ \vdots & \\ x_k & \text{if } \sum_{i=1}^{k-1} p_i < U \leq \sum_{i=1}^k p_i. \end{cases}$$

This works as U is equally likely to be any number on [0,1], so the probability $\tilde{X}=x_k$ is p_k in the above process.