Importing the Dependencies

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings("ignore")

# Loading the dataset
credit_card_data = pd.read_csv('/content/creditcard.csv')

# Displaying first 5 rows of the dataset
credit_card_data.head()
```

	Time	V1	V2	V3	V4	V5	V6	V7	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.0986
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.0851
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.2476
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.3774
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.2705
5 rows × 31 columns									

Dataset informations
credit_card_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	Time	284807 non-null	float64
1	V1	284807 non-null	float64
2	V2	284807 non-null	float64
3	V3	284807 non-null	float64
4	V4	284807 non-null	float64
5	V5	284807 non-null	float64
6	V6	284807 non-null	float64
7	V7	284807 non-null	float64
8	V8	284807 non-null	float64
9	V9	284807 non-null	float64
10	V10	284807 non-null	float64
11	V11	284807 non-null	float64

```
12 V12
          284807 non-null float64
          284807 non-null float64
13 V13
14 V14
          284807 non-null float64
         284807 non-null float64
15 V15
16 V16
         284807 non-null float64
          284807 non-null float64
17 V17
          284807 non-null float64
18 V18
         284807 non-null float64
19 V19
         284807 non-null float64
20 V20
         284807 non-null float64
21 V21
         284807 non-null float64
22 V22
23 V23
         284807 non-null float64
          284807 non-null float64
24 V24
25 V25
         284807 non-null float64
26 V26
         284807 non-null float64
27 V27
         284807 non-null float64
       284807 non-null float64
28 V28
29 Amount 284807 non-null float64
          284807 non-null int64
30 Class
```

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

Checking the number of missing values
credit_card_data.isnull().sum()

Time	0
V1	0
V2	0
V3	0
V4	0
V5	0
V6	0
V7	0
V8	0
V9	0
V10	0
V11	0
V12	0
V13	0
V14	0
V15	0
V16	0
V17	0
V18	0
V19	0
V20	0
V21	0
V22	0
V23	0
V24	0
V25	0
V26	0
V27	0
V28	0
Amount	0
Class	0
dtype:	int64

Distribution of legit transactions & fraudulent transactions
credit_card_data['Class'].value_counts()

0 2843151 492

Name: Class, dtype: int64

This Dataset is highly unblanced

```
sb.countplot(data = credit_card_data, x = 'Class')
plt.title('Class Distributions \n (0: No Fraud || 1: Fraud)', fontsize = 14)
```

Text(0.5, 1.0, 'Class Distributions \n (0: No Fraud | 1: Fraud)')

Class Distributions (0: No Fraud || 1: Fraud)

0 --> Normal Transaction

1 --> fraudulent transaction

Statistical measures of the data
legit.Amount.describe()

```
284315.000000
count
mean
            88.291022
std
           250.105092
min
             0.000000
25%
             5.650000
50%
            22.000000
            77.050000
75%
max
         25691.160000
```

Name: Amount, dtype: float64

fraud.Amount.describe()

```
count
          492.000000
          122.211321
mean
std
          256.683288
min
            0.000000
25%
            1.000000
50%
            9.250000
75%
          105.890000
         2125.870000
max
```

Name: Amount, dtype: float64

Comparing the values for both transactions
credit_card_data.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	
Clas	s							
0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.00
1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.56
2 rows × 30 columns								

Under-Sampling

Building a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions

Number of Fraudulent Transactions --> 492

- 1. List item
- 2. List item

```
legit_sample = legit.sample(n = 492)
```

Concatenating two DataFrames

```
new_dataset = pd.concat([legit_sample, fraud], axis=0)
```

new_dataset.head()

	Time	V1	V2	V3	V4	V5	V6	1
202612	134415.0	1.848186	-1.477551	0.896678	1.200279	-2.055843	0.804574	-1.89194
282560	170990.0	2.054361	-0.122642	-1.245717	0.189567	0.132497	-0.620765	0.05958
263618	161038.0	0.079717	1.052143	-1.718368	-0.870788	2.580570	-0.006619	1.47206
29800	35634.0	-1.903809	-0.753779	1.207583	0.334182	1.174934	-0.602482	1.01950
102601	68276.0	1.315431	-1.775045	1.496520	-1.002987	-2.341170	0.685621	-2.05970
5 rows × 31 columns								

```
new_dataset['Class'].value_counts()
```

```
0 492
```

1 492

Name: Class, dtype: int64

```
ax = sb.countplot(data = new_dataset, x = "Class", width = 0.3)
ax.set_title("Distribution of Transaction")
plt.xlabel("Type of Transaction")
plt.ylabel("Number of Transaction")
for i in ax.containers:
    ax.bar_label(i)
plt.show()
```


new_dataset.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	
Class								
0	96698.682927	-0.051099	-0.160891	0.084828	0.054956	0.026079	-0.018868	0.01
1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.56
2 rows × 30 columns								

Splitting the data into Features & Targets

169142.0 -1.927883

279863

```
X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
print(X)
                 Time
                             ٧1
                                        V2
                                                  V3
                                                             V4
                                                                       V5
                                                                                 V6
             134415.0
                       1.848186 -1.477551 0.896678
     202612
                                                      1.200279 -2.055843
     282560
             170990.0
                       2.054361 -0.122642 -1.245717
                                                      0.189567
                                                                 0.132497 -0.620765
     263618
             161038.0
                       0.079717
                                  1.052143 -1.718368 -0.870788
                                                                 2.580570 -0.006619
     29800
              35634.0 -1.903809 -0.753779
                                            1.207583
                                                      0.334182
                                                                 1.174934 -0.602482
                                            1.496520 -1.002987 -2.341170
     102601
              68276.0
                       1.315431 -1.775045
                                                                           0.685621
```

1.125653 -4.518331

1.749293 -1.566487 -2.010494

```
Credit Card Fraud Detection.ipynb - Colaboratory
     280143 169347.0 1.378559 1.289381 -5.004247
                                                    1.411850
                                                              0.442581 -1.326536
     280149 169351.0 -0.676143 1.126366 -2.213700 0.468308 -1.120541 -0.003346
     281144 169966.0 -3.113832 0.585864 -5.399730 1.817092 -0.840618 -2.943548
     281674 170348.0 1.991976 0.158476 -2.583441 0.408670 1.151147 -0.096695
                                       V9
                  V7
                            V8
                                                     V20
                                                               V21
                                                                         V22
     202612 -1.891948
                      0.444322
                                1.536617
                                           ... -0.662056 -0.226271
    282560 0.059581 -0.148058 0.338940
                                          ... -0.209856 -0.271204 -0.687048
    263618 1.472063 -0.168286 -0.821654
                                          . . .
                                               0.084802 0.223777 0.647916
     29800
             1.019538 -0.034677 -0.670700
                                                0.763076 0.301158
                                                                   0.047469
    102601 -2.059707 0.395977 -0.494474
                                          ... -0.301429 -0.172451
                                                                    0.170433
     279863 -0.882850
                      0.697211 -2.064945
                                          . . .
                                               1.252967
                                                         0.778584 -0.319189
    280143 -1.413170 0.248525 -1.127396
                                          ... 0.226138 0.370612 0.028234
     280149 -2.234739 1.210158 -0.652250
                                          ... 0.247968 0.751826 0.834108
                                               0.306271 0.583276 -0.269209
     281144 -2.208002 1.058733 -1.632333
     281674 0.223050 -0.068384 0.577829
                                           ... -0.017652 -0.164350 -0.295135
                 V23
                           V24
                                     V25
                                                V26
                                                          V27
                                                                    V28
                                                                        Amount
     202612 0.172092 -0.129436 -0.302338 -0.466334
                                                    0.147297 -0.007813
                                                                          58.42
    282560 0.271569 -0.497120 -0.270115 0.208619 -0.076075 -0.075428
                                                                           0.99
     263618 0.020418 3.515344 -0.556051 0.332389
                                                                          16.00
                                                     0.148672
                                                               0.294834
     29800
             0.253887 -0.607248
                                0.972496 -0.313825 -0.092791
                                                               0.095467
                                                                         250.00
    102601 -0.093914 0.028818 0.347013 -0.044191 0.095635 0.025081
                                                                          49.00
                                      . . .
                                                          . . .
                                                                            . . .
     279863 0.639419 -0.294885
                                0.537503
                                          0.788395
                                                    0.292680
                                                               0.147968
                                                                         390.00
     280143 -0.145640 -0.081049
                                0.521875 0.739467
                                                    0.389152
                                                               0.186637
                                                                           0.76
     280149 0.190944 0.032070 -0.739695 0.471111
                                                               0.194361
                                                                          77.89
                                                    0.385107
     281144 -0.456108 -0.183659 -0.328168 0.606116
                                                     0.884876 -0.253700
                                                                         245.00
     281674 -0.072173 -0.450261 0.313267 -0.289617 0.002988 -0.015309
                                                                          42.53
     [984 rows x 30 columns]
print(Y)
     202612
              0
     282560
               0
     263618
               0
     29800
              0
     102601
               0
     279863
              1
     280143
               1
```

Split the data into Training data & Testing Data

Name: Class, Length: 984, dtype: int64

280149

281144

281674

1

1

1

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, rand
print(X.shape, X train.shape, X test.shape)
     (984, 30) (787, 30) (197, 30)
```

Model Training

```
Logistic Regression
```

```
model = LogisticRegression()

# Training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)

v LogisticRegression
LogisticRegression()
```

Model Evaluation

Accuracy Score

Model's Accuracy: 90.35%