Adı Soyadı: 11.06.2024

Numarası:

BURSA ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

2023-2024 Bahar Dönemi BMB3022 Bilgisayar Grafikleri

Süre: 90 dakika

BMB3022 Bilgisayar Grafikleri FİNAL SINAVI CÖZÜMLERİ

Sınavda 9 adet klasik soru 75 dakika içerisinde çevaplanaçaktır. Gerekirse hesap makinesi kullanılabilir.

Üç boyutta tanımlı O koordinat sistemindeki bir noktayı O' koordinat sistemine dönüştürecek $^{\rm O}T_{\rm O}$ dönüşümünün bazı dönme ve kayma dönüşümlerinden oluştuğu bilinmektedir. O' koordinat sisteminin aşağıda verilen birim vektörleri kullanılarak $^{\rm O}T_{\rm O}$ dönüşümü nasıl hesaplanır?

İpucu: Bu dönüşüm O' koordinat sisteminin x'-y'-z' eksenlerini O koordinat sişteminin x-y-z eksenlerine çakıştırarak bulunur.

$$\mathbf{u'}_{x} = [0.98, 0.15, 0.09]
\mathbf{u'}_{y} = [-0.17, 0.85, 0.49]
\mathbf{u'}_{z} = [0, -0.5, 0.87]$$

2) Şekillerdeki 3-B dönüşümleri ifade eden üç farklı T dönüşüm matrisini yazınız.

Bir animasyon uygulamasında azalan ivmelenmeyi modelleyebilmek için animasyonun 7. saniyesi ve 8. saniyesinde oluşturulan iki anahtar çerçeve arasına sinθ fonksiyonuna göre 5 ara çerçeve örneklenecektir. Buna göre 3. ara çerçeve hangi açı değeri için kaçıncı saniyede oluşturulur?

(20,0)

4) Şekilde verilen poligonun Sutherland-Hodgman yöntemiyle kırpma penceresi sınırlarına göre kırpılması sonucunda oluşan yeni poligon noktalarını belirleyip kırpılmış poligonu çiziniz.

Not: Noktalar üzerinde saat yönünün tersine çalışınız. Yeni oluşan noktaları şekil üzerine çiziniz ve koordinatlarını hesapla**ma**yınız.

p_6 p_5			
p_2 p_3	p ₁	(21,-9)	
_{p′6} /	p ₂	(35,5)	
(50.0)	p ₃	(40,3)	
// p'1	p ₄	(48,14)	
/	p ₅	(37,8)	
	p ₆	(30,9)	

Sol kırpıcı:	Sağ kırpıcı:	Alt kırpıcı:	Üst kırpıcı:
$p_1 \rightarrow p_2$ (iç-iç): p_2	$p_2 \rightarrow p_3$ (iç-iç): p_3	$p_3 \rightarrow p_4 \text{ (ic-ic): } p_4$	$p_4 \rightarrow p_5$ (dış-iç): p'_4 , p_5
$p_2 \rightarrow p_3 \text{ (iç-iç): } \overline{p}_3$	$p_3 \rightarrow p_4 \text{ (ic-ic): } p_4$	$p_4 \rightarrow p_5 \text{ (ic-ic): } p_5$	$p_5 \rightarrow p_6 \text{ (ic-ic): } p_6$
$p_3 \rightarrow p_4$ (iç-iç): p_4	$p_4 \rightarrow p_5 \text{ (iç-iç): } p_5$	$p_5 \rightarrow p_6 \text{ (iç-iç): } p_6$	$p_6 \rightarrow p'_6$ (iç-iç): p'_6
$p_4 \rightarrow p_5$ (iç-iç): p_5	$p_5 \rightarrow p_6 \text{ (iç-iç): } p_6$	$p_6 \rightarrow p_1 \text{ (iç-dış): } p'_6$	$p'_6 \rightarrow p'_1 \text{ (ic-ic): } p'_1$
$p_5 \rightarrow p_6 \text{ (ic-ic): } p_6$	$p_6 \rightarrow p_1 \text{ (iç-iç): } p_1$	$p_1 \rightarrow p_2 \text{ (diş-iç): } p'_1, p_2$	$p'_1 \rightarrow p_2 \text{ (ic-ic): } p_2$
$p_6 \rightarrow p_1 \text{ (ic-ic): } p_1$	$p_1 \rightarrow p_2 \text{ (iç-iç): } p_2$	$p_2 \rightarrow p_3 \text{ (iç-iç): } p_3$	$p_2 \rightarrow p_3$ (iç-iç): p_3
l			$p_3 \rightarrow p_4$ (iç-dış): p'_3

Sekilde P ve O Bézier kübik serit parçaları ile P seridini olusturmada kullanılan kontrol noktalarının koordinatları verilmektedir. Buna göre P ve Q şerit parçaları arasında aşağıdaki süreklilikleri sağlamak için Q şeridinin kontrol noktalarının koordinatlarının nasıl güncellenmesi gerektiğini hesaplayınız.

a. Go geometrik sürekliliği

$$P_3 = Q_0 = (6, 5.5)$$

b. Cı parametrik sürekliliği

$$(6, 5.5) - (4, 6) = (2, -0.5)$$

3.
$$(P_3 - P_2) = 3.(Q_1 - Q_0) = (2, -0.5) \rightarrow Q_1 = (8, 5)$$

c. C₂ parametrik sürekliliği

$$(6, 5.5) - (4, 6) = (2, -0.5); (4, 6) - (2, 5) = (2, 1) \rightarrow (2, -0.5) - (2, 1) = (0, -1.5)$$

$$(4, 6)$$
- $(2, 5)$ = $(2, 1)$; $(2, 5)$ - $(1, 2)$ = $(1, 3)$ \rightarrow $(2, 1)$ - $(1, 3)$ = $(1, -2)$

$$P_0 = (1, 2)$$
 $P_2 = (4, 6)$
 $P_4 = (2, 5)$ $P_3 = (6, 5.5)$

$$(Q_1 - 2 Q_1 + Q_1) = (Q_2 - 2 Q_1 + Q_0) = (Q_1 - 1.5) \rightarrow Q_2 + (-16, -10) + (6, 5.5) \rightarrow Q_2 = (10, 3)$$

Önceki soruda verilen şekilde P Bézier kübik şerit parçasının taban fonksiyonları ile temsili ve matris formunda temsili sırasıyla aşağıdaki fonksiyonlara göre verilmektedir.

$$\begin{aligned} \textbf{\textit{P}}(u) &= (1-u)^{3} \textbf{\textit{P}}_{0} + 3u(1-u)^{2} \textbf{\textit{P}}_{1} + 3u^{2}(1-u) \textbf{\textit{P}}_{2} + u^{3} \textbf{\textit{P}}_{3} \\ \textbf{\textit{P}}(u) &= \textbf{\textit{U}} \times \textbf{\textit{M}}_{serit} \times \textbf{\textit{M}}_{geom} \end{aligned}$$

 $P(u) = \underline{U} \times \underline{M_{serit}} \times \underline{M_{geom}}$ Fonksiyonun matris formunda temsili için kullanılacak U üssü parametreler vektörü, $\underline{M_{serit}}$ şerit taban matrisi ve $\underline{M_{geom}}$ geometrik kısıtlar matrisi elemanlarını yazınız.

geometrik kısıtlar matrisi elemanlarını yazınız.
$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \times \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 0 \\ 4 & 6 & 0 \\ 6 & 5 & 5 & 0 \end{bmatrix}$$

$$P(u) = \underbrace{\begin{bmatrix} (1-u)^3 & 3u(1-u)^2 & 3u^2(1-u) & u^3 \end{bmatrix}}_{\text{b. }} \times \begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 0 \\ 4 & 6 & 0 \\ 6 & 5 & 5 & 0 \end{bmatrix} = \begin{bmatrix} (1-u)^3 + 6u(1-u)^2 + 12u^2(1-u) + 6u^3 \\ 2(1-u)^3 + 15u(1-u)^2 + 18u^2(1-u) + 5 \cdot 5u^3 \end{bmatrix}^T$$
b. $u=0.5$ değeri için üretilen ara şerit noktası koordinatını hesaplayınız.

$$u = 0.5 \rightarrow P(u) = \begin{bmatrix} (0.5^{3}) + 6(0.5^{3}) + 12(0.5^{3}) + 6.(0.5^{3}) \\ 2(0.5^{3}) + 15(0.5^{3}) + 18(0.5^{3}) + 5.5.(0.5^{3}) \end{bmatrix}^{T} = \begin{bmatrix} 1/8 + 6/8 + 12/8 + 6/8 \\ 2/8 + 15/8 + 18/8 + 5.5/8 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 25/8 \\ 40.5/8 \end{bmatrix}^{T} = \begin{bmatrix} 3.125 \\ 5.0625 \end{bmatrix}^{T}$$

Üç boyutta bakış sürecine ilişkin verilmiş olan şekilde, dünya koordinat çerçevesinde $P_0 = (3, 4, -2)$ noktasından $P_{ref} = (-1, 0, 2)$ noktasına bakan bir kamera için dünya koordinatlarından bakış koordinatlarına çevrimi sağlayacak $^{
m VC}{
m M}_{
m WC}$ dönüşüm hangi matris çarpımı ile hesaplanır? **Not:** Üst bakış Vektörünün y ekseni ile hizalı olduğunu varsayarak V = (0, 1, 0) alınız.

- Dünya koordinat çerçevesindeki koordinatı P = (50,-30,-40) olan noktanın, bakış koordinat sistemine göre z_{view} koordinatı $z_{vp} = -5$ olan bakış düzlemine projeksiyonu alınacaktır. Buna göre P noktasının bakış düzlemine,
 - ortogonal projeksiyonu alındığında projekte edilmiş nokta koordinatı P_p nedir?

$$P_p = (50, -30, -5)$$

perspektif projeksiyonu alındığında projekte edilmiş nokta koordinatı P_p nedir? **Not:** Projeksiyon referans noktasını $(x_{prp}, y_{prp}, z_{prp}) = (0, 0, 0)$

$$P_p = (50.\frac{-5}{-40}, -30.\frac{-5}{-40}, -5) = (6.25, 3.75, -5)$$

