Some Practice Problems from Fraleigh

Thobias K. Høivik

March 9, 2025

These are some practice problems, primarily to work on proof writing.

Problem 44 — Page 67

Let G be a cyclic group with generator a, and let G' be a group isomorphic to G. If $\varphi: G \to G'$ is an isomorphism, show that, for every $x \in G$, $\varphi(x)$ is completely determined by the value $\varphi(a)$. That is, if $\varphi: G \to G'$ and $\psi: G \to G'$ are two isomorphisms such that $\varphi(a) = \psi(a)$, then $\varphi(x) = \psi(x)$ for all $x \in G$.

Proof. Let $G = \langle a \rangle = \{e, a, a^2, \dots\}$ be a cyclic group generated by a isomorphic to G' via the arbitrary isomorphisms:

$$\varphi:G\to G'\wedge \psi:G\to G'$$

where

$$\varphi(a) = \psi(a)$$

Given that G is cyclic with a as generator we deduce

$$\forall x \in G \quad \exists n \in \mathbb{Z} : x = a^n$$

$$\therefore \varphi(x) = \varphi(a^n) = \varphi(aa \dots a)$$

which, by the structure preserving property of group isomorphisms yields

$$\varphi(aa \dots a) = \varphi(a^n) = \varphi(a)^n = \varphi(a)\varphi(a) \dots \varphi(a)$$

which means that $\varphi(x)$ can be written in terms of $\varphi(a)$ alone. Furthermore, recall

$$\varphi(a) = \psi(a)$$

meaning

$$\varphi(a)\varphi(a) = \psi(a)\psi(a)$$

$$\varphi(a)\varphi(a)\dots\varphi(a) = \psi(a)\psi(a)\dots\psi(a)$$

$$\varphi(a)^n = \psi(a)^n$$

$$\varphi(a^n) = \psi(a^n)$$

$$\varphi(x) = \psi(x)$$

Problem 45 — Page 67

Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has order n.

Proof. Take a and b to be arbitrary elements of G, with $|ab| = n \neq \infty$, then

$$|ab| = n \Rightarrow (ab)^n = e$$

 $(ab)^n = e$
 $(ab)(ab)\dots(ab) = e$

by associativity of group operations:

$$a(ba)(ba) \dots (ba)b = e$$

$$a(ba)^{n-1}b = e$$

$$(ba)^{n-1}b = a^{-1}$$

$$(ba)^{n-1} = a^{-1}b^{-1}$$

$$(ba)^{n-1}b = a^{-1}b^{-1}b$$

$$(ba)^{n-1}b = a^{-1}$$

$$(ba)^{n-1}ba = a^{-1}a$$

$$(ba)^{n-1}(ba) = e$$

$$(ba)^{n} = e$$

thus |ba| = n.