



2/44

6/44

terry consistent was Content to the content to the

There are two natural ways to specify the outcome of a game.

- 1. Describe the physical situation that results.
- 2. Describe how much  $\mbox{\bf utility}$  each player gets from that result.

 Utility
 Ordinal and Cardinal Utility
 Dominance Arguments
 Some Famous Cames 0000000000

 Utility
 00000000000
 0000000000
 0000000000

- We are usually going to be focused on the second.
- That's because we want to know what makes sense from the players' perspectives.
- And just knowing the physical outcomes doesn't tell us that.

4/44

tably Conference Arguments Constructed Matter
Conference Arguments Constructed Construction
Conference Arguments

- It's not score.
- The players are aiming to maximise their own number, not maximise the difference between the numbers.



Figure: A memorable scoreboard

5/44

### Compared Com

- The players would prefer a 3-4 result (i.e., 3 for them, 4 for other player) to a 2-1 result.
- So this is very much unlike soccer, even though the numbers will often feel a lot like soccer scores.

| Utility      | Ordinal and Cardinal Utility | Dominance Arguments | Some Famous Games |
|--------------|------------------------------|---------------------|-------------------|
| What is Util | itv                          |                     |                   |

- It's not money, for two distinct reasons.
- First, the players might care how much money the other players get.

7/44

Utility and Altruism

Consider these three situations

- 1. Billy gets \$90, Suzy gets \$100.
- 2. Billy gets \$100, Suzy gets nothing.
- 3. Billy gets \$110, Suzy gets \$100.

How do you order these in terms of utility to Billy, from highest to lowest?

Utility and Altruism

- We don't know given just this description.
- If Billy wants Suzy to get money, he might prefer option 1 to option 2.
- If Billy wants Suzy to not have money, he might prefer option 2 to option 3.

What is Utility

Desirated and Carden Maley

Desirated Association of Carden

Desirated Ass

- It's not money, for two distinct reasons.
- Second, getting twice as much money typically doesn't produce twice as much utility.

Utility Control and Constrain Utility

What is Utility

It is, more or less, desirability.

Outcome O<sub>1</sub> has more utility for player X than outcome O<sub>2</sub> iff X prefers to be in O<sub>1</sub> than O<sub>2</sub>.

11/44 12/44

### **Utility and Numbers**

- Now you might have noticed something odd there.
- · We are trying to define this numerical quantity, but we've just told you something about when it is bigger or smaller.
- Surely we need to say something more, like how much bigger or smaller it is in different situations.

| Unility 00000000000 | Ordinal and Cardinal Utility | Dominance Arguments | Some Famous Games |
|---------------------|------------------------------|---------------------|-------------------|
|                     |                              |                     |                   |
|                     |                              |                     |                   |
| Ordinal and Card    | linal Utility                |                     |                   |
|                     |                              |                     |                   |
|                     |                              |                     |                   |

Utility

A utility function (for a particular agent) is a mapping U from situations to numbers satsifying this constraint.

15/44

•  $U(S_1) > U(S_2)$  iff the agent is better off in  $S_1$  than in  $S_2$ .

Welfare

This isn't part of the formal theory, but we usually implicitly assume (at least in our narratives), the following principle.

The agent is better off in  $\mathcal{S}_1$  than in  $\mathcal{S}_2$  iff, given a choice and assuming they are fully informed, they prefer being in  $\mathcal{S}_1$  to  $S_2$ .

That is, we'll usually speak as if a radically subjectivist view of welfare

is correct. I've been doing this already, and I'm going to keep doing it.

**Ordinal Utility** 

- When we say that we're working with ordinal utility functions, really the only principle that applies is the one from two slides back.
- · Higher utilities are better, i.e., are preferred.
- The term ordinal should make you think of 'orders'; all an ordinal utility function does is provide a rank ordering of the outcomes.

Two Functions

So if we're working in ordinal utility, these two functions describe the same underlying reality.

17/44 18/44

| Utility<br>00000000000 | Ordinal and Cardinal Utility | Dominance Arguments | Some Famous Games |
|------------------------|------------------------------|---------------------|-------------------|
| Cardinal LII           | -ili+v                       |                     |                   |

- In cardinal utility theory, the differences between the numbers matter.
- The numbers now express quantities, and the two functions from the previous slide do not represent the same underlying reality.

Cardinal Utility (Detail)

- There is a fussy point here that's worth going over.
- Even cardinal utility functions don't come with a scale.
- So two functions with different numbers in them can still express the same underlying reality.

44

Ordinal and Cardinal Utility

Dominance Arguments

Some Famous Games

#### Cardinal Utility (Detail)

The standard way to put this is that (cardinal) utility is defined only up to a **positive, affine transformation**. That means that if  $U_1$  and  $U_2$  are related by the following formula, then they represent the same state of affairs.

$${\it U}_2({\it o}) = {\it a}{\it U}_1({\it o}) + {\it b}$$
 where  ${\it a}>0$ 

21/44

Defined and Central Willing Designance Arguments Some Entral Central Control Control

#### Celsius and Farenheit

- The main real world cases of scales that are related in this way are temperature scales.
- To convert between Celsius and Farenheit you use the formula  ${\it F}=1.8{\it C}+32.$
- But the scales are just two ways of representing the same physical reality.

22/4

### Cardinal Utility (Detail)

- So there is no such thing as one outcome being twice as good as another.
- But we can say a lot of things about differences.

Cardinal Utility (Detail)

- If the difference between O<sub>1</sub> and O<sub>2</sub> is the same as the difference between O<sub>2</sub> and O<sub>3</sub>, that will stay the same under any positive affine transformation.
- Indeed, for any k, if the difference between O<sub>1</sub> and O<sub>2</sub> is k times
  the difference between O<sub>2</sub> and O<sub>3</sub>, that will stay the same under
  any positive affine transformation.

23/44 24/44

Dominance Arguments

### A Simple Game

|      | Left | Right |
|------|------|-------|
| Up   | 4, 1 | 2, 0  |
| Down | 3, 0 | 1, 1  |

Here's how to read this table.

- 1. Two players, call them Row and Column.
- 2. Row chooses the row, Column chooses the column - between them they choose a cell.
- 3. Each cell has two numbers the first is Row's payout, the second is Column's payout.

| Utility<br>0000000000 | Ordinal and Cardinal Utility | Dominance Arguments | Some Famous Games |
|-----------------------|------------------------------|---------------------|-------------------|
| Strong Do             | minance                      |                     |                   |

|      | Left | Right |
|------|------|-------|
| Up   | 4, 1 | 2, 0  |
| Down | 3, 0 | 1, 1  |

- Whatever Column does, Row is better off playing Up rather than Down.
- We say that Up **strongly dominates** Down.

| Utility    | Ordinal and Cardinal Utility | Dominance Arguments | Some Famous Games |
|------------|------------------------------|---------------------|-------------------|
| 0. 5       |                              |                     |                   |
| Strong Doi | MINANCA                      |                     |                   |

|        | Left | Right |
|--------|------|-------|
| Up     | 4, 1 | 2, 0  |
| Middle | 5, 0 | 0, 0  |
| Down   | 3, 0 | 1, 1  |

- Adding options doesn't change things.
- Up still dominates Down, even if it isn't always best.

27/44

| Utility    | Ordinal and Cardinal Utility | Dominance Arguments 0000●0000 | Some Famous Games |
|------------|------------------------------|-------------------------------|-------------------|
| Strong Dor | minance                      |                               |                   |

|        | Left | Right |
|--------|------|-------|
| Up     | 3, 1 | 0, 0  |
| Middle |      | 2, 0  |
| Down   | 0, 0 | 3, 1  |

- This is **not** a case of dominance.
- Even though Middle is never the highest value, it isn't dominated by any one option.

|  | 000000000 | 0000000000 |
|--|-----------|------------|

Strategy  $\mathcal{S}_1$  strongly dominates strategy  $\mathcal{S}_2$  if for any strategy  $\mathcal{S}$  by the other player(s), if S is played, then  ${\rm S}_1$  returns a higher payoff than  ${\rm S}_2.$ 

29/44 30/44

### Weak Dominance

Strategy  $S_1$  weakly dominates strategy  $S_2$  if for any strategy S by the other player(s), if S is played, then  $S_1$  returns a payoff that is at least as high  $S_2$ , and for some strategy by the other player(s),  $S_1$  returns a higher payoff than  $S_2$ .

• The difference is that weak dominance allows for ties.

| Utility<br>00000000000 | Ordinal and Cardinal Utility | Dominance Arguments | Some Famous Games |
|------------------------|------------------------------|---------------------|-------------------|
| Two Domir              | nance Notions                |                     |                   |

Strong Dominance

Always better.

Weak Dominance

- Never worse.
- Sometimes better.

31/44

| Utility     | Ordinal and Cardinal Utility | Dominance Arguments | Some Famous Games |
|-------------|------------------------------|---------------------|-------------------|
| 00000000000 | 0000000000                   | 00000000●           |                   |
| Weak Dom    | ninance                      |                     |                   |

|      | Left | Right        |
|------|------|--------------|
| Up   | 4, 1 | 2, 0         |
| Down | 3, 0 | <b>2</b> , 1 |

- I've changed the payoffs in the bottom right cell.
- Now Up does not strongly dominate

  Down
- But it does weakly dominate Down.



33/44

| Utility<br>00000000000 | Ordinal and Cardinal Utility | Dominance Arguments 00000000 | Some Famous Games 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|------------------------|------------------------------|------------------------------|-----------------------------------------------------------|
| Prisoners' [           | Dilemma                      |                              |                                                           |

|        | Соор | Defect |
|--------|------|--------|
| Соор   | 3, 3 | 0, 5   |
| Defect | 5, 0 | 1, 1   |

| Utility<br>000000000000 | Ordinal and Cardinal Utility | Dominance Arguments<br>00000000 | Some Famous Games |
|-------------------------|------------------------------|---------------------------------|-------------------|
| Generic Sy              | mmetric Game                 |                                 |                   |

35/44

## Prisoners' Dilemma

Utility Conditional Confinal Mality Conditional Confinal Mality Conditional Conditional Confinal Mality Conditional Conditiona

X Y
X a, a b, c
Y c, b d, d

Ordinal constraints c > a, d > b

• a > d

Cardinal constraints

• 2a > b + c

|        | Coop | Defect |
|--------|------|--------|
| Coop   | 5, 5 | 0, 4   |
| Defect | 4, 0 | 2, 2   |

1

38/44

### Stag Hunt

# X Y X a, a b, c Y c, b d, d

Ordinal constraints

• a > c, d > b

• a > d

Cardinal constraints

• a + b < c + d

title of the Sexes

Row 4, 1 0, 0
Col 0, 0 1, 4

39/4

| Utility<br>00000000000 | Ordinal and Cardinal Utility | Dominance Arguments 00000000 | Some Famous Games |
|------------------------|------------------------------|------------------------------|-------------------|
| Battle of th           | ne Sexes (relabel            | led)                         |                   |

| relabelled) | Chicken |
|-------------|---------|
|             |         |

|       | Self | Other |
|-------|------|-------|
| Self  | 0, 0 | 4, 1  |
| Other | 1, 4 | 0, 0  |

|         | Attack   | Retreat |
|---------|----------|---------|
| Attack  | -99, -99 | 2, 0    |
| Retreat | 0, 2     | 1, 1    |

41/44





|          | Rock  | Paper | Scissors |
|----------|-------|-------|----------|
| Rock     | 0, 0  | -1, 1 | 1, -1    |
| Paper    | 1, -1 | 0, 0  | -1, 1    |
| Scissors | -1, 1 | 1, -1 | 0, 0     |

We're jumping ahead to section 2.5 of Bonanno.

43/44 44/44