Laboratory 4

Thévenin Equivalent Circuits

Objectives

Understand Thévenin equivalents

Equipment and components

- A computer
- Matlab software

Preliminary

- 1. Read section 4.10, 4.11, 4.12, and 4.13 of the textbook.
- 2. Compute the theoretical calculations related to this lab and fill in Table 1

Procedure

- 1. The purpose of this lab is to find the Thévenin equivalent for the following circuit (Problem 4.64 in Assignment 3) by using different ways.
- 2. Open Matlab and create Simulink model of the circuit shown below by following the procedure in Lab 1
- 3. Fill up your simulation results in Table 1.

Table 1 Thevenin Equivalent Circuit

	Calculation Results	Simulation Results
V_{Th}		
R_{Th}		

Are the simulation results consistent with your calculation results?

- 4. Remove the 60 V voltage source and then add a test voltage source across the terminals **a** and **b** in the above circuit. Create the Simulink model of the following circuit.
- 5. Try the different values of the test source, measure the I_{test} and fill it up in Table 2
- 6. Calculate R_{Th} by using $R_{Th} = \frac{V_{test}}{I_{test}}$

Table 2 Test Voltage Source and Thevenin Resistance

V_{test}	1 V	5 V	10 V	100 V
I_{test}				
R_{Th}				

What is your conclusion for the results?

- 7. Short the terminals a and b. Create the Simulink model of the following circuit.
- 8. Measure the current $i_{\it SC}$ and fill up the simulation in Table 3

Table 3 Short Circuit Current and Thevenin Resistance

I_{sc}	
V_{Th} (from Table 1)	
R_{Th}	

What is your conclusion of the result?

9. Add a 8 Ω resistor to the circuit as shown in the circuit below and create a Simulink model find current in the resistor.

10. Add the 8 Ω resistor to the Thevenin equivalent circuit you found in Steps 1, 2, and 3 as shown in the circuit below and calculate the current i.

Are the two currents in Step 9 and Step 10 same? What is your conclusion about your findings?

Questions and conclusions

• Summarize your findings and explanations in response to the questions posed in this lab.