

DIC测量系统监测下的试件应变分布特征

汇报人: 赵琛 1630643

指导老师: 孙飞飞 教授

- 1)试验仪器
- 2)正面角焊缝焊缝区域应变发展特征
- 3)不同加载角度的角焊缝焊缝区域应变发展特征
- 4)侧面角焊缝焊缝区域应变发展特征

试验仪器

本试验在同济大学南校区的结构实验室进行,加载机采用液压伺服控制的MTS多功能试验机,加载能力为2000kN。加载全程采用0.5mm/min 的位移控制来模拟静力加载过程,应变及位移数据每秒采集一个点。

ARAMIS Digitai Image Correlation (DIC) -ARAMIS 三维光学全场变形和应变测量分析系统 (简称 "DIC 测量系统") 是一种全新的应变位移测量手段。在物理力学性能测试中,使用 DIC 系统,有助于深入了解材料和零件的力学行为和性能,特别适用于测量瞬时和局部应变。DIC 技术采用非接触测量方式,适用于各种材料的静态和动态试验,获取完整的力学性能参数。

图 15 MTS 多功能试验机

图 16 DIC 试验机

试验仪器

ARAMIS系统配置包括如下图 所示:1) 测量相机:CCD和CMOS相机、不同的相机分辨率、可调图像尺寸、可按不同测试要求自定义采集频率、稳定并经过计量的镜头;2) 测量头:可调节或固定的相机安装架、集成照明光源、集成激光导航,方便确定测量位置;3) 测量控制器:为相机、照明光源和激光定位器提供电源、触发器、同步相片采集、模拟信号输入和输出;4) 台式/便捷式图形工作站。

测量相机

相机安装架

台式工作站

DIC精度校核

ARAMIS系统的技术特点: (1) 非接触测量、(2) 适合于各种材料、

(3) 不受试样的几何形状限制、(4) 二维和三维测量、(5) 便携、灵活、(6) 全场测量、(7) 高精度、(8) 满足高温测试、(9) 高速测试、(10) 试样制备简单、(11) 方便地与各种测试设备集成、(12) 测量范围从小尺寸试样到大型零件、(13) 应变范围从微应变到大应变。

力-时间

应变-时间

变形载体制备

图 4.3 喷雾模板₽

图 4.4 油漆笔画出图案₽ 图 4.5 白漆

小尺度试件散斑制作

宏观尺度下散斑制作

图 4.5 白漆打底黑漆散斑₽

正面角焊缝焊缝区域应变发展特征

A区域靠近试件竖直方向加载过程中的受拉边,D区域靠近试件竖直方向加载过程中的受剪边

各点应变随时间变化趋势

正面角焊缝焊缝区域应变发展特征

图 4.8 t1=475s 时,试件处于弹性阶段₽

图 4.9 t2=600s 时,试件处于弹塑性阶段₽

图 4.10 t3=659s 时,试件达到极限荷载的应变分布↔

图 4.11 t4=663s 时,试件达到断裂荷载的应变分布₽

不同加载角度的角焊缝焊缝区域应变发展特征

(e) 30 4 试件₽

(f) 15_2 试件₽

- 4

试件应变发展特征汇总

表 4.1 试件应变发展情况汇总↔

 试件	率先出现塑	率先出现	全面进入	最大应变	最大应变	最大应	断裂	Ç
	性发展的点	塑性发展	塑性阶段	产生的点	产生的区	变	时刻	
编号₹	焦↩	的区域↩	的时间₽	焦↩	域₽	(%) ₽	(s) 🕫	
90_5₽	13, 12, 110	D⊎	475s₽	1, 11, 120	D₽	10.40₽	665₽	þ
75_3₽	13 , 1 , 84	C&D₽	470s₽	10, 11, 80	C₽	13.70₽	631₽	ø
60_2₽	1, 10, 60	B&C₽	524s₽	1, 11, 80	B₽	9.32₽	682.5₽	ø
45S_1₽	6,7,80	B₽	530s₽	8,5,9₽	B₽	8.21₽	682.5₽	ø
45D_3₽	4,2,9₽	B&A₽	696s₽	3, 7, 6₽	A₽	20.39₽	816.5₽	ø
30_4₽	6,9,10, 120	B&C₽	680s₽	10, 6, 70	B&A₽	10.93₽	852₽	÷
15_2₽	1, 8, 110	B&C₽	544s₽	8,9,5₽	B₽	15.24	626₽	ø
00_1₽	1, 2, 30	0	412s₽	19, 20, 18, 17₽	0	9.22₽	5124	t)

试件应变发展特征汇总

90-5应变率随时间变化情况

45D-3应变率随时间变化情况

75-3应变率随时间变化情况

30-4应变率随时间变化情况

60-2应变率随时间变化情况

15-2应变率随时间变化情况

侧面角焊缝焊缝区域应变发展特征

图 4.13 试件 00_1 焊缝区域应变测点和分区布置₽

断裂时刻各测点的应变值

侧面角焊缝焊缝区域应变发展特征

图 4.16 试件 00_2 力位移曲线

图 4.14 试件 00_1 力位移曲线

图 4.17 试件 00_2 焊缝区域应变发展规律↩

图 4.15 试件 00_1 焊缝区域应变发展规律↩

谢谢!