

MACHINE LEARNING

LESSON 02:

Linear Regression

Prepared by Dr. Dona Valy

EXAMPLE

Land price prediction

Supervised Learning

Regression Problem: predict continuous valued output

TRAINING SET

Notations:

- ullet m = number of training examples
- x = input variable / feature
- $y = \frac{1}{2}y = \frac{1}{$
- (x, y) = one training example
- $(x^{(i)}, y^{(i)}) = \text{the } i^{th} \text{ training example}$

Example: training set of land price

Size in m ² (x)	Price in 1000 USD (y)
90	2.1
130	3.9
210	4.5

MODEL REPRESENTATION

COST FUNCTION

Size in m ² (x)	Price in 1000 USD (y)
90	2.1
130	3.9
210	4.5
	•••

•Hypothesis: h(x) = ax + b where a and b are called **parameters**

How to choose a and b?

COST FUNCTION (CONT.)

• Hypothesis: h(x) = ax + b

$$a = 1$$

 $b = 0$

$$a = 0$$
$$b = 1.5$$

$$a = 2.5$$

 $b = -0.5$

COST FUNCTION (CONT.)

•Choose a and b so that h(x) is close to y for the training examples (x, y)

For each
$$(x^{(i)}, y^{(i)})$$
:
Minimize $|h(x^{(i)}) - y^{(i)}|$

$$\Rightarrow$$
 Minimize $\frac{1}{m}\sum_{i=1}^{m}|h(x^{(i)})-y^{(i)}|$

Squared Error Function:

$$J(a,b) = \frac{1}{m} \sum_{i=1}^{m} \left(h(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\Rightarrow \min_{a,b} J(a,b)$$

GRADIENT DESCENT

Have some function J(a, b)Want $\min_{a,b} J(a, b)$

Algo Outline:

- •Start with some value of a and b
- *Keep changing a and b to reduce J(a,b) until hopefully we end up at a minimum

GRADIENT DESCENT (CONT.)

repeat until convergence {

$$grad_a = \frac{\partial}{\partial a} J(a, b)$$

$$grad_b = \frac{\partial}{\partial b} J(a, b)$$

$$a += -\alpha . grad_a$$

$$b += -\alpha. grad_b$$

}

Learning Rate

$$J(a,b) = \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

Partial Derivative

$$\Rightarrow \frac{\partial}{\partial a} J(a,b) = \frac{2}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)}).x^{(i)}$$
$$\frac{\partial}{\partial b} J(a,b) = \frac{2}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})$$

GRADIENT DESCENT (CONT.)

- Things to consider:
 - ullet Choosing the learning rate lpha
 - Global minimum vs local minimum

EXERCISE 2.1

Given a dataset of land price as illustrated in the table on the right, find a linear regression model which fits the data. Train the model using the gradient descent algorithm.

Size in m ² (x)	Price in 1000 USD (y)
90	7.1
130	10.9
210	19.2
300	28
350	32.8
420	39.9
480	46.1
530	51
640	62.2
710	68.9

LR WITH MULTIPLE VARIABLES

Example: training set of land price

Size in m^2 (x_1)	Distance from the city center in Km (x_2)	Price in 1000 USD (y)
90	5	2.1
130	1	3.9
210	2.6	4.5
•••	•••	•••

Notation:

n = number of features

•
$$x^{(i)}$$
 = input features of the i^{th} example

$$\mathbf{x}_{\mathbf{j}}^{(i)} = \text{value of feature } j \text{ of the } i^{th} \text{ example}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

LR WITH MULTIPLE VARIABLES

- •Hypothesis: $h(x)=ax_1+bx_2+c$ or $h(x)=\theta_0+\theta_1x_1+\theta_2x_2$ or $h(x)=\sum_{j=0}^n\theta_jx_j$ where $x_0=1$ and n=2
- *Cost function: $J(\theta_0, \theta_1, \dots, \theta_n) = J(\theta) = \frac{1}{\mathrm{m}} \sum_{i=1}^m \left(h(x^{(i)}) y^{(i)}\right)^2$
- Gradient descent:

```
repeat until convergence {  grad_{\theta_j} = \frac{\partial}{\partial \theta_j} J(\theta) = \frac{2}{\mathrm{m}} \sum_{1}^{m} \left( h \big( x^{(i)} \big) - y^{(i)} \big). x_j^{(i)} \\ \theta_j += -\alpha. grad_{\theta_j}  }
```

Do this for all j = 0..n

FEATURE SCALING

- Make sure all features are on a similar scale
- Solution:
 - Replace x_j with $\frac{x_j \mu_j}{s_j}$
- mean $\mu_j = \frac{1}{m} \sum_{i=1}^m \mu_j^{(i)}$
- s_i standard deviation or simply max min

POLYNOMIAL REGRESSION

- •Linear: $h(\theta) = \theta_0 + \theta_1 x$
- Polynomial:

$$h(\theta) = \theta_0 + \theta_1 x + \theta_2 x^2$$
Let's denote $x_1 = x, x_2 = x^2$

$$\Rightarrow h(\theta) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Other polynomial examples:

$$\bullet h(\theta) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$h(\theta) = \theta_0 + \theta_1 x + \theta_2 \sqrt{x}$$

EXERCISE 2.2

Given a dataset of land price:

- Build a linear regression which predicts the land price using both the land_area and the distance_to_city feature. (See the dataset in 'land_price_1.csv')
- 2. Using only the distance feature, build a model with hypothesis $h(x) = \theta_0 + \theta_1 x + \theta_2 \sqrt{x}$ to predict the land price. (See the dataset in 'land_price_2.csv')