

โครงงานย่อย

วิชา Business Data Analytic เรื่อง ทำนายค่าเหนื่อยนักกีฬาบาสเกตบอลโดยใช้ Multiple Regression

จัดทำโดย

เขตโสภณ ขุนพารเพิง 60070127 ภูวนัตถ์ โลกเจริญลาภ 60070154

นำเสนอโดย

อ.วารุนี บัววิรัตน์

หลักสูตรวิทยาศาสตรบัณฑิต
สาขาวิทยาการข้อมูลและการวิเคราะห์เชิงธุรกิจ
คณะเทคโนโลยีสารสนเทศ
สถาบันเทคโนโลยพระจอมเกล้าคุณทหารลาดกระบัง
ปีการศึกษา 2561

คำนำ

รายงานวิชา Business Data Analytics เล่มนี้จัดทำเพื่อศึกษาค้นคว้าวิธีทำเพื่อทำนายค่าหนึ่งจากหลายๆ ตัวแปรซึ่งผู้จัดทำได้รับมอบหมายจากอาจารย์ผู้สอนให้ศึกษาเพิ่มเติมจาก เอกสาร อินเตอร์เน็ต และแหล่งข้อมูล ต่างๆ เพื่อนำสิ่งที่ค้นคว้ามาทำเป็นรายงานเพื่อเป็นประโยชน์ในการเรียนการสอนของตนเองและอาจารย์ต่อไป

ผู้จัดทำได้ทำการศึกษาข้อมูลเกี่ยวกับนักกีฬาบาสเก็ตบอล และนำข้อมูลนำมาเป็นข้อมูลในการ ทำ Model นี้ โดยหาความสัมพันธ์ของตัวแปรต่างๆ ที่ผู้จัดทำสนใจ ซึ่งผู้จัดทำหวังเป็นอย่างยิ่งว่ารายงานเล่มนี้จะ เป็นประโยชน์ต่อผู้ที่สนใจและผู้ที่นำไปใช้ให้เกิดประโยชน์ตามสิ่งที่หวัง

ผู้จัดทำ

สารบัญ

ความเป็นมา	1
วัตถุประสงค์	2
สมมุติฐาน	2
ข้อมูล	2
การเก็บข้อมูล	3-5
การวิเคราะห์ข้อมูล	6-10
สรุปผลการวิเคราะห์	10
ประโยชน์ที่ได้	10

ความเป็นมา

ในปัจจุบันการแข่งขันกีฬามีอิทธิพลมากต่อมูลค่าต่างๆ เช่น Brand สินค้าต่างๆ จึงทำให้ต้องเลือกนักกีฬา ที่เหมาะซึ่งเราก็อยากทราบว่าค่าเหนื่อยของนักกีฬานั้นมีตัวแปรอะไรบ้างถึงทำให้ค่าเหนื่อยนั้นมากขึ้นการที่ค่า เหนื่อยของนักกีฬาเยอะนั้นทำให้ทราบอยู่แล้วว่านักกีฬาคนนั้นจะต้องเก่งไม่งั้นก็ไม่มีทีมไหนที่จะให้ค่าเหนื่อยสูงยิ่ง ค่าเหนื่อยสูงก็ทำให้รู้ว่านักกีฬาคนนั้นเก่งทำให้การที่ให้นักกีฬาคนนั้นเป็น Brand Ambassador ให้กับ Brand จะ ทำให้มูลค่าของ Brand เราสูงขึ้น

วัตถุประสงค์

• ต้องการที่จะทราบว่าค่าเหนื่อย (Salary) ของนักบาสเกตบอลนั้นมีตัวแปรใดบ้างที่มีความสัมพันธ์ในการ เพิ่มหรือลดค่าเหนื่อยของนักบาสแต่ละคน และสามารถที่จะทำนายค่าเหนื่อยของนักบาสตามตัวแปรที่มีได้

กำหนดสมมติฐาน

สมมติฐาน (เงื่อนไข)

- 1. e_i และ e_i เป็นอิสระกัน
- 2. ตัวแปรอิสระ X ต้องไม่มีความสัมพันธ์กันเอง เพื่อป้องกันการเกิด Multicollinearity สมมติฐาน
 - 1. ทดสอบว่าตัวแปรค่าเหนื่อย (Salary) มีความสัมพันธ์กับตัวแปรอื่นๆหรือไม่ที่ $\pmb{\alpha}=0.05$
 - 2. ทดสอบว่ามีตัวแปรใดบ้างที่อยู่ในสมการ

ข้อมูล

ข้อมูลที่มีคือ ข้อมูลของนักบาสเกตบอลในลีกอเมริกา ที่มีชื่อลีกว่า NBA (National Basketball Association) โดยเก็บข้อมูลของนักบาสในฤดูกาล (2017-2018) เพื่อมาเปรียบเทียบกับฤดูกาล (2016-2017) เพราะต้องการที่จะทำนายถึงค่าเหนื่อยที่จะได้รับในฤดูกาลถัดไปของนักบาสเกตบอล NBA

การเก็บข้อมูล

เก็บข้อมูลจาก เว็บไซต์ https://www.basketball-reference.com/contracts/players.html โดยใช้
วิธี Web Scraping ผ่านโค้ดภาษา R จาก GitHub : https://github.com/koki25ando/NBA-Players-201718-dataset ซึ่งเลือกเก็บมาจากนักบาสเก็ตบอลของฤดูกาล (2016 - 2017) และ นักบาสเก็ตบอลของฤดูกาล (2017 - 2018) แต่ตัวข้อมูลที่จะเลือกใช้ในการทำนายนั้นจะเป็นของฤดูกาล (2017 - 2018) จัดการกับข้อมูลต่างๆ (ซึ่งมีทั้งค่า Missing Value และอื่นๆ) และทำการ Export ออกมาเป็น ไฟล์ .csv โดยใช้ภาษา R ดังนี้

1. โหลดข้อมูลและเตรียมข้อมูลเข้า Rstudio และดูองค์ประกอบของข้อมูลดังรูปที่ (1),(2)

```
# PREPARATION
# Require packages
library(data.table)
library(corrplot)
library(GGally)
library(tidyverse)
library(PerformanceAnalytics)
library(plotly)
# Data Preparation
salary.table <- read.csv("nba/NBA_season1718_salary.csv")</pre>
ss <- read.csv("nba/Seasons_Stats.csv")</pre>
          รูปที่ (1) : แสดงการ import data นักกีฬาบาสเก็ตบอลปี 2017, 2018
$ BPM
        : num NA NA NA NA NA NA NA NA NA ...
$ VORP : num NA ...
       : int 144 102 174 22 21 1 340 5 226 125 ...
$ FG
$ FGA : int 516 274 499 86 82 4 936 16 813 435 ...
      : num 0.279 0.372 0.349 0.256 0.256 0.25 0.363 0.313 0.278 0.287 ...
$ FG.
      : int NA ...
$ X3PA : int NA ...
$ X3P. : num NA ...
$ X2P : int 144 102 174 22 21 1 340 5 226 125
$ X2PA : int 516 274 499 86 82 4 936 16 813 435 ...
$ X2P. : num 0.279 0.372 0.349 0.256 0.256 0.25 0.363 0.313 0.278 0.287 ...
$ eFG. : num 0.279 0.372 0.349 0.256 0.256 0.25 0.363 0.313 0.278 0.287 ...
       : int 170 75 90 19 17 2 215 0 209 132 ...
$ FTA : int 241 106 129 34 31 3 282 5 321 209 ...
$ FT.
      : num 0.705 0.708 0.698 0.559 0.548 0.667 0.762 0 0.651 0.632 ...
```

รูปที่ (2) : องค์ประกอบของข้อมูล

2. เมื่อเห็นว่าองค์ประกอบของข้อมูลมีตัวแปรที่เป็น NA (Null) เยอะพอสมควรเลยทำ Data Cleaning ดังรูปที่ (3)

รูปที่ (3) : รูปแสดงการ Cleaning ข้อมูล

3. นำ Data มา Merge รวมกัน และดูว่าข้อมูลมีความสัมพันธ์กันหรือไม่ (ทั้งในเชิงลบและเชิงบวก หรือก็คือ ค่าสหสัมพันธ์ของข้อมูล ใกล้ -1.0 หรือ 1.0 หรือไม่) ดังรูปที่ (4)

รูปที่ (4) : Correlation แสดงความสัมพันธ์ของข้อมูล

Result:

ข้อมูลที่ได้มีความสัมพันธ์กันซะส่วนมาก (Correlation เข้าใกล้ 1.0)

4. Export ข้อมูลออกมาเป็น .csv และนำเข้าไปใช้ใน SPSS ต่อไป สรุปได้ว่าข้อมูลที่ได้มีความสัมพันธ์กันมาก

```
# export as csv
write.csv(stats_salary_regression, file = "nba_salary_regresssion.csv")
```

รูปที่ (5) : แสดงการ Export ไฟล์เป็น CSV เพื่อทำใน SPSS

5. ได้ข้อมูลที่เหลือดังรูปที่ (6)

В	С	D	Е	F	G	Н	I
salary17_18	MPG	PPG	APG	RPG	TOPG	BPG	SPG
1312611	7.409091	2.181818	0.181818	1.636364	0.454545	0.590909	0.045455
2116955	13.75385	4.953846	1.923077	1.061538	1.015385	0.138462	0.384615
5504420	28.725	12.7375	1.875	5.0625	1.1125	0.5	0.8
7319035	29.06557	8.721311	1.622951	7.393443	1.540984	0.721311	0.983607
27734405	32.25	14	4.955882	6.823529	1.705882	1.279412	0.764706
9769821	14.10606	8.106061	0.863636	4.212121	0.5	0.242424	0.287879
6.00E+06	15.06383	7.361702	0.489362	6.212766	0.787234	0.680851	0.574468
10845506	15.54762	6.738095	0.714286	2.857143	0.833333	0.119048	0.428571
5725000	15.51471	5.970588	0.588235	1.264706	0.485294	0.117647	0.544118
4187599	20.25974	7.961039	0.571429	6.623377	1.324675	1.272727	0.480519

รูปที่ (6) : รูปแสดงข้อมูลหลังจากจัดการข้อมูล

ซึ่งได้แก่

• Salary17_18 : ค่าเหนื่อย (รายได้) ของนักบาสเกตบอล

• MPG : Minutes Played Per Game

• PPG : Points Per Game

• APG : Assists Per Game

• RPG : Total Rebounds Per Game

• TOPG: Turnovers Per Game

• BPG : Blocks Per Game

• SPG : Steals Per Game

การวิเคราะห์ข้อมูล

ใช้วิธี Multiple Linear Regression ในการวิเคราะห์ข้อมูลเพื่อทำนายหารายได้ข้องนักบาสเกตบอลใน ฤดูกาล (2017 - 2018)

- 1. ใช้ข้อมูลที่ Export มาจาก Rstudio ชื่อ nba_salary_regresssion.csv
- 2. ทำ Multiple Linear Regression
 - a. Analyze > Regression > Linear
 - b. Method = "Enter"
 - c. ย้ายตัวแปร Salary ไปใว้ช่อง dependent และเลือกทุกตัวแปรที่เหลือไปไว้ใน ช่อง Indepenents
 - d. ปุ่ม Statistics เลือก Estimates, Model fit, Collinearity diagnostics, Durbin-Watson และกด Continue
 - e. ปุ่ม Plots ย้าย "*ZRESID" ไป Y และ "*ZPRED" ไป X และกด Continue
 - f. ปุ่ม Save ตรง Predicted

Values เลือก Unstandardized ตรง Residuals เลือก Unstandardized และกด Include the covariance matrix และกด Continue

- g. กด OK
- 3. ตรวจสอบว่า e_i และ e_i เป็นอิสระกันดังรูปที่ (7)

Model Summary^b

			Adjusted R	Std. Error of the	
Model	R	R Square	Square	Estimate	Durbin-Watson
1	.747ª	.558	.551	\$5,078,459.882	1.913

- a. Predictors: (Constant), SPG, BPG, PPG, APG, RPG, MPG, TOPG
- b. Dependent Variable: salary17 18

รูปที่ (7) : รูปแสดงการตรวจสอบความเป็นอิสระกัน

สรุป ค่า Durbin-Watson 1.913 มีค่าใกล้ 2 จึงยอมรับ H_0 หรือค่าความคลาดเคลื่อนเป็นอิสระต่อกัน

4. ทดสอบว่าเกิด Multicollinearity ในตัวแปร X หรือไม่ ดังรูปที่ (8)

Coefficients^a

Unstanda		ardized	Standardized			Collinea	arity	
Coefficients		Coefficients			Statistics			
Мос	del	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-	721376.312		-3.872	.000		
		2792908.716						
	MPG	30564.983	68125.572	.035	.449	.654	.170	5.881
	PPG	686814.910	97014.583	.546	7.080	.000	.171	5.833
	APG	1059086.795	295017.464	.252	3.590	.000	.206	4.848
	RPG	916087.239	177186.897	.295	5.170	.000	.313	3.190
	TOPG	-	818817.759	282	-3.309	.001	.140	7.143
		2709446.696						
	BPG	470136.392	871988.048	.025	.539	.590	.468	2.136
	SPG	631254.518	981145.189	.034	.643	.520	.373	2.680

a. Dependent Variable: salary17_18

รูปที่ (8) : รูปแสดงการทดสอบ Multicollinearity

จากตารางต้องดูจากค่า Tolerance ต้องเข้าใกล้ 1 จึงจะไม่เกิด Multicollinearity หรือดูที่ VIF ต้องเข้า ใกล้ 1 มากยิ่งดี และไม่เกิน 5

5. ดูว่าตัวแปรใดบ้างที่อยู่ในสมการ จากตาราง Coefficients ดังรูปที่ (9)

Coefficients^a

Unstanda		ardized	Standardized			Collinea	arity	
Coefficients		Coefficients			Statistics			
Мос	del	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-	721376.312		-3.872	.000		
		2792908.716						
	MPG	30564.983	68125.572	.035	.449	.654	.170	5.881
	PPG	686814.910	97014.583	.546	7.080	.000	.171	5.833
	APG	1059086.795	295017.464	.252	3.590	.000	.206	4.848
	RPG	916087.239	177186.897	.295	5.170	.000	.313	3.190
	TOPG	-	818817.759	282	-3.309	.001	.140	7.143
		2709446.696						
	BPG	470136.392	871988.048	.025	.539	.590	.468	2.136
	SPG	631254.518	981145.189	.034	.643	.520	.373	2.680

a. Dependent Variable: salary17_18

รูปที่ (9) : รูปแสดงตาราง Coefficients

ดูว่าค่า Sig < 0.05 หรือไม่ หากน้อยกว่าถือว่าอยู่ในสมการ แต่หากมากกว่าให้นำออกจากสมการ สร**ุป** ค่าที่อยู่ในสมการได้แก่ (Constant), PPG, APG, RPG และ TOPG

6. เลือกตัวแปรเข้าสู่สมการใหม่อีกรอบตามตัวแปรที่เหลืออยู่ดังรูปที่ (10)

รูปที่ (10) : รูปแสดงการเลือกตัวแปรที่เหมาะสมเข้าสมการ

7. หาว่าตัวแปรใดบ้างที่อยู่ในสมการตามตาราง Coefficient รูปที่ (11)

Coefficients^a

Unstanda		ardized	Standardized			Colline	arity	
Coefficients		cients	Coefficients			Statist	ics	
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	-	490612.994		-4.875	.000		
		2391914.254						
	PPG	724914.202	73569.394	.576	9.853	.000	.297	3.367
	APG	1145191.329	268005.239	.273	4.273	.000	.249	4.016
	RPG	1021336.617	132310.908	.329	7.719	.000	.560	1.785
	TOPG	-	800658.453	286	-3.434	.001	.146	6.855
		2749070.874						

a. Dependent Variable: salary17_18

รูปที่ (11) : รูปแสดงตาราง Coefficients

จะได้สมการดังนี้ :

Y = -2391914.254 + 724914.202PPG + 1145191.329APG + 1021336.617RPG - 2749070.874TOPG

สรุปผลการวิเคราะห์

ถ้าใน 1 เกมส์เพิ่ม 1 แต้ม จะเพิ่มค่าเหนื่อย \$724914.202

ถ้าใน 1 เกมส์เพิ่ม 1 Assist จะเพิ่มค่าเหนื่อย \$1145191.329

ถ้าใน 1 เกมส์เพิ่ม 1 Rebound จะเพิ่มค่าเหนื่อย \$1021336.617

ถ้าใน 1 เกมส์เสีย Turnover เพิ่ม 1 ครั้ง จะลดค่าเหนื่อย \$2749070.874

(Turnover หมายถึงบุกอยู่แล้วเสียการครองบอล)

ประโยชน์ที่ได้

ในการจ้างผู้เล่นคนนึงการดูค่าความสามารถจะทำให้เราต่อรองถึงค่าจ้างที่เราจะจ้างผู้เล่นคนนั้นต่อได้ ให้เราได้ ทราบว่าความคุ้มที่เราจะจ้างขั้นต่ำควรจะอยู่ที่ราคาเท่าไหร่