

Autonomous Navigation of UAV Using Deep Reinforcement Learning

School of Automation Science and Electronic Engineering
Beihang University

—BEIJING, CHINA—

• Abstract

Autonomous navigation of unmanned aerial vehicles (UAV) can be seen as a process that robots make a plan how to safely and quickly reach the target location. Traditional navigation methods rely heavily on environment information and manual design, making them difficult to adapt new environment. In the paper, we aim to apply deep reinforcement learning (DRL) on autonomous navigation, learning optimal control policy through interaction with environment.

The main work of the paper was shown as follows: 1) Theoretical basis of deep reinforcement learning was given. 2) Vision-based autonomous navigation task using Deep Q-Network method was discussed. 3) Deep Deterministic Policy Gradient was improved to solve the same problem, enabling the UAV to take depth image as input and act in continuous space. 4) Simulations in AirSim support the idea of autonomous navigation through DRL methods.

Keywords: deep reinforcement learning, autonomous navigation, depth image, continuous action, simulation

CONTENTS

- 01 Introduction
- 02 Background
- 03 Simulation
- 04 Results
- 05 Discussions
- 06 Future

CONTENTS

- 01 Introduction
- 02 Background
- 03 Simulation
- 04 Results
- 05 Discussions
- 06 Future

- Autonomous UAV Navigation
- Application of autonomous unmanned aerial vehicle (UAV)
 - Drone delivery: delivering goods in cities
 - Rescue mission: carrying medical supplies
 - Aerial photography: capturing and recording views

Autonomous UAV Navigation

• Navigation: a UAV makes a plan on how to safely and quickly reach target location

1. Introduction

- Autonomous UAV Navigation
- Challenges

-BEIJING, CHINA----

• Deep Reinforcement Learning

Reinforcement Learning:

Autonomously learn optimal behavior through trail-and-error interactions with environment.

Applications

- Play Games: Atari, Go, ...
- Explore worlds: 3D worlds, Labyrinth, ...
- Control physical system: manipulate, walk, ...
- Interact with users: recommend, optimise, ...

• Deep Reinforcement Learning

CONTENTS

- 01 Introduction
- 02 Background
- 03 Simulation
- 04 Results
- 05 Discussions
- 06 Future

2. Background

BEIHANG UNIVERSITY

—BEIJING, CHINA——

Agent and Environment

- At each step t the agent:
 - \triangleright Receives an observation o_t
 - \triangleright Selects an action a_t following a policy π
 - \triangleright Receives scalar reward r_t
 - \triangleright Transitions to next state S_{t+1}
- Policy π is a behaviour function selecting actions given states

$$a = \pi(s)$$

• Value function $Q^{\pi}(s,a)$ is expected future reward

$$Q^{\pi}(s,a) = E \left[r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots \mid s, a \right]$$

• Value function decomposes into a Bellman equation

$$Q^{\pi}(s,a) = \mathbf{E}_{s',a'} \left[r + \gamma Q^{\pi}(s',a') \mid s,a \right] \longrightarrow \text{Policy-based RL}$$

Optimal value function selects maximum value over all decisions

$$Q^*(s,a) = E_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a\right] \longrightarrow \text{Value-based RL}$$

Agent and Environment

- Value-based RL
 - \triangleright Estimate the optimal value function $Q^*(s,a)$
 - > This is the maximum value achievable under any policy

- Policy-based RL
 - \triangleright Search directly for the optimal policy π^*
 - ➤ This is the policy achieving maximum future reward

Value-based Reinforcement Learning

• Represent value function by deep Q-network with weights w

$$Q(s,a,w) \approx Q^*(s,a) = E_{s'} \left[r + \gamma \max_{a'} Q^*(s',a',w) \mid s,a \right]$$

• Define objective function by mean-squared error between Q-target and Q-network

$$L(w) = E\left[\left(\frac{r + \gamma \max_{a} Q(s', a', w) - Q(s, a, w)}{target}\right)^{2}\right]$$

• Optimise objective end-to-end by stochastic gradient descent (SGD)

$$\frac{\partial L(w)}{\partial w} = E \left[\left(r + \gamma \max_{a} Q(s', a', w) - Q(s, a, w) \right) \frac{\partial Q(s, a, w)}{\partial w} \right]$$

–BEIJING, CHINA——

Value-based Reinforcement Learning

Deep Q-Network

DQN provides a stable solution to deep value-based RL

- 1.Use experience replay
 - Break correlations in data
 - Learn from all past policies
 - Using off-policy Q-learning
- 2. Freeze target Q-network
 - Avoid oscillations
 - Break correlations between Q-network and target
 - Periodically update Q target using parameter w $r + \gamma \max_{a} Q(s', a', w^{-}) \leftarrow w$
- 3. Clip rewards or normalize network adaptively to sensible range
 - Robust gradients

- Value-based Reinforcement Learning
- Deep Q-Network in Atari

Mnih, V, et al. "Playing Atari with Deep Reinforcement Learning." *Computer Science* (2013). Mnih, V, et al. "Human-level Control Through Deep Reinforcement Learning." *Nature* 518.7540(2015):529.

Policy-based Reinforcement Learning

- Represent policy by deep network $a = \pi(s, u)$ with weights u
- Define objective function as total expected future reward

$$J(u) = E \left[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \right]$$

- Optimise objective end-to-end by SGD
 - i.e. Adjust policy parameters u to achieve more reward
- The gradient of the policy is given by

$$\frac{\partial J(u)}{\partial u} = E_s \left[\frac{\partial Q^{\pi}(s,a)}{\partial u} \right] = E_s \left[\frac{\partial Q^{\pi}(s,a)}{\partial a} \frac{\partial \pi(s,u)}{\partial u} \right]$$

• Policy gradient is the direction that most improves Q

-BEIJING, CHINA-

Policy-based Reinforcement Learning

• Deep Deterministic Policy Gradient

DDPG Actor-Critic

- Actor is a policy $\pi(s,u)$ with parameters u: $s \to \dots \to a$
- Critic is value function Q(s, a, w) with parameters w

$$Q(s,a,w) \approx Q^{\pi}(s,a) = E_{s',a'}[r + \gamma Q^{\pi}(s',a',w) | s,a]$$

Critic estimates value of current policy by Q-learning

$$\frac{\partial L(w)}{\partial w} == E \left[\left(r + \gamma Q(s', \pi(s'), w) - Q(s, a, w) \right) \frac{\partial Q(s, a, w)}{\partial w} \right]$$

Actor updates policy in direction that improves Q

$$\frac{\partial J(u)}{\partial u} == E_s \left[\frac{\partial Q^{\pi}(s, a, w)}{\partial a} \frac{\partial \pi(s, u)}{\partial u} \right]$$

- 1.Use experience replay for both actor and critic
- 2. Freeze target Q-network to avoid oscillations
- 3. Clip rewards or normalize network adaptively to sensible range

–BEIJING, CHINA

- Policy-based Reinforcement Learning
- DDPG for Continuous Control

More details in course: CS 294

Lillicrap, et al. "Continuous Control with Deep Reinforcement Learning." *arXiv:1509.02971*(2015).

CONTENTS

- 01 Introduction
- 02 Background
- 03 Simulation
- 04 Results
- 05 Discussions
- 06 Future

3. Simulation

BEIHANG UNIVERSITY —BEIJING, CHINA—

• Tools

• Requirements:

- 1. Physical realistic simulation with minimal model errors
- 2. Controllable and modifiable environment
- 3. Interface to environment (e.g., receive command and send data)

Flight Gear Gazebo AirSim

3. Simulation

BEIHANG UNIVERSITY —BEIJING, CHINA—

• Tools

• AirGym

AirSim

OpenAI Gym

Air Gym

Render the environment Provide API to send data and receive commands Model the navigation task
Train the agent using reinforcement
learning algorithm

3. Simulation

BEIHANG UNIVERSITY —BEIJING, CHINA—

• Problem Formulation

- AirGym-v4
 - Information

Data	Meaning
p_x	Agents global x position
p_{y}	Agents global y position
p_z	Agents global z position
Ψ	Yaw angle relation to initial orientation
Depth Image	Depth image in camera (256×144)
Collided	Boolean collision info

160m*120m*15m

Problem Formulation

- Navigation task
 - (0m, 0m, 0m) >>>>> (150m, 0m, 0m)
 - the UAV has to reach the goal in minimum amount of time without colliding with any obstacle.

160m*120m*15m

Problem Formulation

Action Space

- ➤ UAV flies at fixed level (6m) and at constant speed (4m/s)
- Discrete actions in DQN: $a_t \in \{-1, 0, +1\}$
 - ➤ 1) go straight: Move in direction of current heading with 4m/s for 1 s
 - \triangleright 2) yaw left: Rotate left with 30° /s for 1 s~=30°
 - \triangleright 3) yaw right: Rotate right with 30° /s for 1 s~=30°
- Continuous actions in DDPG: $a_t \in [-1, +1]$
 - ightharpoonup Angle to rotate: $\theta_t = a_t \times 30^\circ / s$
 - \triangleright E.g.: '-1': Rotate left with 30° /s for 1 s~=30°
 - \rightarrow '+1': Rotate right with 30° /s for 1 s~=30°

-BEIJING, CHINA----

Problem Formulation

• State Representation

Depth image processed

Goal information encoded

State representation

$$\phi = \arctan\left(\frac{g_x - p_x}{g_y - p_y}\right) - \psi$$

Problem Formulation

Reward Function

$$r = \begin{cases} 10 & if \quad success == TRUE \\ -10 & if \quad collided == TRUE \\ -0.1 + \Delta d_{t-1} - \Delta d_t - |\phi| & otherwise \end{cases}$$

CONTENTS

- 01 Introduction
- 02 Background
- 03 Simulation
- 04 Results
- 05 Discussions
- 06 Future

• DQN Agent

- The network architecture of DQN consists of 3 convolutional and 2 fully-connect layers
- Input state is a depth image with 30*100 pixels
- Output is Q(s,a) for 3 different actions

BEIHANG UNIVERSITY —BEIJING, CHINA—

• DQN Agent

• Hyperparameters and Platform

Plat	form
Ubuntu16.04 + Python 3.5 + C	CUDA + CuDnn + GTX1080TI
Parameter	Value
Training Steps	10,000
Memory Capacity	2,000
Batch Size	32
Discount Factor	0.9
Learning Rate	0.0025
Exploitation probability	1 to 0.1

Layer	Output Shape	Parameter.No
State Input	(None, 1, 30, 100)	
Con2d_1	(None, 32, 7, 25)	544
Con2d_2	(None, 15, 3, 64)	14,464
Con2d_3	(None, 15, 3, 64)	4,160
Flatten	(None, 2880)	0
Dense_1	(None, 512)	1,475,072
Dense_2	(None, 3)	1,539
Total		1,495,779

- DQN Agent
- Video

• DQN Agent

- Results
 - The cumulative reward starts to increase after 2000 steps when the memory is full
 - There still exists failures because of the bad experience
 - Evaluation: success: 90%, average reward: 15

Training process

Evaluation

BEIHANG UNIVERSITY

BEIJING, CHINA—

• DDPG Agent

Network Architecture

Actor network

With image input and action output

Critic network

Pre-process state input with CNN Pre-process action input with FN Concatenate two pre-process information and output the policy

BEIHANG UNIVERSITY

-BEIJING, CHINA----

• DDPG Agent

• Hyperparameters and Platform

Plat	form
Ubuntu16.04 + Python 3.5 + C	CUDA + CuDnn + GTX1080TI
Parameter	Value
Training Steps	10,000
Memory Capacity	2,000
Batch Size	32
Discount Factor	0.9
Learning Rate	$[10^{-4}, 10^{-3}]$
Exploitation probability	1 to 0.1
OU Process Mean	0
OU Process Variance	0.5
OU Process inertia	0.15
Soft Target Update Factor	10-2

Critic Network	Output Shape	Parameter.No
State Input	(None, 1, 30, 100)	
Con2d_1	(None, 32, 7, 25)	544
Con2d_2	(None, 15, 3, 64)	14,464
Con2d_3	(None, 15, 3, 64)	4,160
Flatten	(None, 2880)	0
Dense_1	(None, 512)	1,475,072
Dense_2	(None, 3)	1,539
Total		1,495,779

Actor Network	Output Shape	Parameter.No
State Input	(None, 1, 30, 100)	
Con2d_1	(None, 32, 7, 25)	544
Con2d_2	(None, 15, 3, 64)	14,464
Con2d_3	(None, 15, 3, 64)	4,160
Dense_1	(None, 512)	1,475,072
Action Input	(None, 1)	
Dense_2	(None, 512)	1024
Merge_1	(None, 512)	0
Dense_3	(None, 512)	262,656
Dense_4	(None, 1)	513
Total		1,758,433

BEIHANG UNIVERSITY —BEIJING, CHINA—

- DDPG Agent
- Video

• DDPG Agent

- Results
 - The cumulative reward tend to be relatively stable
 - Evaluation: success: 87%, average reward: 14.5

Training process

Evaluation

BEIHANG UNIVERSITY

-BEIJING, CHINA----

• Comparison

DQN

DDPG

Training Process

Evaluation

BEIHANG UNIVERSITY —BEIJING, CHINA—

Comparison

- DQN Agent: able to reach the goal
- DDPG Agent: path is much smoother

CONTENTS

- 01 Introduction
- 02 Background
- 03 Simulation
- 04 Results
- 05 Discussions
- 06 Future

Advantages && Disadvantages

Advantage

Provide a solution in autonomous navigation without building a map

Disadvantage

- 1. State representation: insufficient
- 2. Reward: hard to define
- 3. Training time: too long

5. Discussion

BEIHANG UNIVERSITY —BEIJING, CHINA—

• Future Work

1. Extensions to multi-UAV system

2. Taking safe navigation into account

3. Transfer to real world

5. Discussion

BEIHANG UNIVERSITY —BEIJING, CHINA—

Conclusion

We applied deep reinforcement learning on autonomous navigation of UAV within a 3D simulated environment.

Modeled the navigation task as reinforcement learning problem in simulator

Employed DQN algorithm to complete the navigation task

Implemented DDPG algorithm to enable UAV act in continuous action space

Demonstrated the validation of these approaches and make comparison

CONTENTS

- 01 Introduction
- 02 Background
- 03 Simulation
- 04 Results
- 05 Discussions
- 06 Future

6. Future

BEIHANG UNIVERSITY

–BEIJING, CHINA

Research Interests

- Autonomous System
- Robotics
- UAV Navigation

	Presented a deterministic policy based actor-critic learning framework (D path planning in the continuous action space.	DPG) for UAV
	 Implemented the reinforcement task on AirSim concerning obstacle avoid 	lance and goal
	reaching. Demonstrated the validation of this approaches yielding high success rate CONTROL ON A DEDUCTION AND ADDRESS TO A DESTRUCTION ADDRESS AD	with relatively
	few steps. (DQN: 94%, DDPG: 87%). ➤ Submitted a paper to Journal of Intelligent & Robotic System (SCI).	
3/2017 - 03/2018	Engineering Project High Precision Servo System	
	Modeled the system as a second-order transfer function through the freque analysis (Bode plot).	ency-domain
	 Designed control algorithm (PID + DOB + ZPETC) to overcome the distr 	urbance caused
	by friction and meet the dynamic requirement. Debugged the software on real time system (XP + RTX) using MFC/C++	
9/2015 - 05/2016	Competition Freescale Cup National Undergraduate Smart Car Compet	tition
	 Completed a four-wheel car engineering production to follow the track with current (20KHz, 10mA). 	ith alternating
	 Designed electromagnetic sensor circuit and integrated electrical control s 	system to ensure
	proper maneuverability of the car. Developed and debugged program in collaboration with peers which exec	cuted Segment
	PID in controlling the speed and direction. (velocity = 1m/s)	
SELECT PUBLICA		2004
Benchun Zhou, V		n Space." [Л].
Journal of Intellige Benchun Zhou, V	ATION Weihong Wang, et.al., "Autonomous Navigation of UAV with Continuous Action	
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 29th Guidance, No Benchun Zhou, V Impact Angle Cons	Weihong Wang, et.al., "Autonomous Navigation of UAV with Continuous Actio on & Robotic Systems, 2018 (SCI under review) Weihong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid	lance." [C] the
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 29th Guidance, No Benchun Zhou, V Impact Angle Cons	Wethong Wang, et.al., "Autonomous Navigation of UAV with Continuous Actioent & Robotic Systems, 2018 (SCI under review) Wethong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid nyigation and Control Conference (GNCC2018). IEEE, 2018 (EI Accept) Wethong Wang, "An Improved Nonsingular Fast Terminal Sliding Mode Guida straints." [C]. the 8th International Conference on Intelligent Control and Informatic E, 2017. (EI Accept)	lance." [C] the
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 29th Guidance, No Benchun Zhou, V Impact Angle Con (ICICIP2017) IEE HONORS AND AV the First Prize Scho	Weihong Wang, et.al., "Autonomous Navigation of UAV with Continuous Action and & Roboite Systems, 2018 (SCI under review) Weihong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid notigation and Control Conference (GNCC2018). IEEE, 2018 (El Accept) Weihong Wang, "An Improved Nonsingular Fast Terminal Sliding Mode Guida Straints," [C]. the 8th International Conference on Intelligent Control and Information, (El Accept) WARDS Starship in Beihang University (Top 3%)	lance." [C] the once Law with on Processing.
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 29th Guidance, No Benchun Zhou, V Impact Angle Cone (ICICIP2017) IEE IONORS AND AV the First Prize Scho utstanding Student i	Wethong Wang, et.al., "Autonomous Navigation of UAV with Continuous Action of & Robotic Systems, 2018 (SCI under review) Wethong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid nyigation and Control Conference (GNCC2018). IEEE, 2018 (EI Accept) Wethong Wang, "An Improved Nonsingular Fast Terminal Sliding Mode Guida straints" [C], the 8th International Conference on Intelligent Control and Information (E, 2017, (EI Accept) WARDS Marship in Beihang University (Top 3%) in Beihang University	lance." [C] the unce Law with on Processing. 2017 2017
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 29th Guidance, Ne Benchun Zhou, V Impact Angle Cone (ICCIP2017) IEE IONORS AND AV the First Prize Scho tational Scholarship	Wethong Wang, et.al., "Autonomous Navigation of UAV with Continuous Action of & Robotic Systems, 2018 (SCI under review) Wethong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid morigation and Control Conference (GNCC2018). IEEE, 2018 (EI Accept) Wethong Wang, "An Improved Nonsingular Fast Terminal Sliding Mode Guida straints." [C]. The 8th International Conference on Intelligent Control and Informatis E, 2017. (EI Accept) WARDS Starship in Bethang University (Iop 3%) in Bethang University (Iop 3%)	lance." [C] the once Law with on Processing.
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 29th Guidamee, Ne Benchun Zhou, V Impact Angle Conc (ICICIP2017) IEE IONORS AND AV he First Prize Scho utstanding Student i attonal Scholarship attonal Scholarship	Wethong Wang, et.al., "Autonomous Navigation of UAV with Continuous Action of & Robotic Systems, 2018 (SCI under review) Wethong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid nyigation and Control Conference (GNCC2018). IEEE, 2018 (EI Accept) Wethong Wang, "An Improved Nonsingular Fast Terminal Sliding Mode Guida straints" [C], the 8th International Conference on Intelligent Control and Information (E, 2017, (EI Accept) WARDS Marship in Beihang University (Top 3%) in Beihang University	lance." [C] the since Law with on Processing. 2017 2017 2015
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 39th Guidance, N Benchun Zhou, V Impact Angle Cone (ICICIP-2017) IEE IONORS AND AV the First Prize Scho tational Scholarshij attonal Scholarshij attonal Scholarshij attonal Scholarshij	Weihong Wang, et.al., "Autonomous Navigation of UAV with Continuous Actio ont & Roboite Systems, 2018 (SCI under review) Weihong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid oxigation and Control Conference (GNCC2018). IEEE, 2018 (EI Accept) Weihong Wang, "An Improved Nonsingular Fast Terminal Sliding Mode Guida straints." [C] the 8th International Conference on Intelligent Control and Informati EE, 2017. (EI Accept) VARDS Darship in Beihang University (Top 3%) in Beihang University p (Top 2%) p for Encouragement (Top 5%)	ance." [C] the mee Law with on Processing. 2017 2017 2015 2014
Benchun Zhou, V Journal of Intellige Benchun Zhou, V 29th Guidance, N 29th Guidance, N Impact Angle Con- (ICICIP2017) IEE IONORS AND AV the First Prize Scho taitonal Scholarshij attonal Scholarshij attonal Scholarshij	Wethong Wang, et.al., "Autonomous Navigation of UAV with Continuous Action of & Robotic Systems, 2018 (SCI under review) Wethong Wang, et.al., "Neural Q Learning Algorithm based UAV Obstacle Avoid virgation and Control Conference (GNCC2018), IEEE, 2018 (EI Accept) Wethong Wang, "An Improved Nonsingular Fast Terminal Sliding Mode Guida straints." [C], the 8th International Conference on Intelligent Control and Information (EI Accept) WARDS Darship in Beihang University (Top 3%) in Beihang University p (Top 2%) p for Encouragement (Top 5%) Darship in Chongqing University (Top 3%) in Chongqing University	2017 2017 2017 2015 2014 2014

C/C++, Matlab/Simulink, Python, ROS

Familiar with basic algorithm in DRL, such as DQN, DDPG. Familiar with mainstream path planning methods, such as A*, RRT, DWA, etc.

Able to implement control algorithm, such as PID, LQR, etc.

Skilled in hardware design tools, such as AD, Eagle

Able to analyze the stability of the system in time domain and frequency domain

Skilled in embedded system (STM32/Ardnino), with 2 years of practical experience

[Programming Skill]

【Control Algorithm】

[Embedded System]

[Path Planning]

[Reinforcement Learning]

BEIHANG UNIVERSITY

-BEIJING, CHINA----

• Project experience

6. Future

BEIHANG UNIVERSITY —BEIJING, CHINA—

• Career Plan

- Germany
 - Global leader in science and technology
 - Prosperous industrialism
 - Culture and openness

THANKS YOU!