Solutions for Homework #3

Problem 1. We compute directly: for given integers n, m, we have that

$$\begin{split} \partial_{x_1 x_1} u(x_1, x_2) &= \partial_{x_1 x_1} \left(\sin(2\pi n x_1) \sin(2\pi m x_2) \right) \\ &= \partial_{x_1 x_1} \left(\sin(2\pi n x_1) \right) \sin(2\pi m x_2) \\ &= -(2\pi n)^2 \sin(2\pi n x_1) \sin(2\pi m x_2) \\ &= -(2\pi n)^2 u. \end{split}$$

The exact same computation but with x_2 yields

$$\partial_{x_2 x_2} u(x_1, x_2) = -(2\pi m)^2 u$$

Therefore,

$$\Delta u = (-2\pi)^2 (n^2 + m^2) u \text{ in } \Omega.$$

On the other hand, note that since n, m are integers, then $\sin(2\pi nx)$ and $\sin(2\pi mx)$ both vanish for x = 0 or x = 1. It follows that u must be zero whenever at least one of x_1, x_2 is equal to 0 and 1, but this is always the case in the boundary of the square $\Omega = [0, 1] \times [0, 1]$. Therefore the u above is always zero on $\partial\Omega$, regardless of n and m.

Finally, we observe that by denoting $u_{n,m}(x_1,x_2) = \sin(2\pi nx_1)\sin(2\pi mx_2)$ for $(n,m) \in \mathbb{Z}^2$ then we get $\Delta u_{n,m} = \lambda_{n,m}u$, with $\lambda_{n,m} = (-2\pi)^2(n^2 + m^2)$ i.e. an infinite list of "eigenvalues" $\lambda_{n,m}$ for the linear operator Δ , and we are done.

Problem 2. Last time in the 1-d case we were able to integrate by parts to get an integral identity that, when $\lambda \geq 0$, guaranteed that the solution had to be equal to zero everywhere. So, we are going to do exactly the same in this higher dimensional case, using the divergence theorem/Green's identity.

As before: we multiply both sides of the equation by the solution itself, and integrate over Ω . We get

$$\int_{\Omega} u\Delta u \ dx = \lambda \int_{\Omega} u^2 \ dx \ge 0.$$

On the other hand, we have

$$\int_{\Omega} u \Delta u \ dx = \int_{\partial \Omega} u \partial_n u \ d\sigma(x) - \int_{\Omega} |\nabla u|^2 \ dx = -\int_{\Omega} |\nabla u|^2 \ dx$$

where we used that $u \equiv 0$ on $\partial\Omega$ to get that the boundary integral was zero. In conclusion,

$$-\int_{\Omega} |\nabla u|^2 dx = \lambda \int_{\Omega} u^2 dx \ge 0$$

This means that the integral of $|\nabla u|^2$ over Ω must be zero, and since this integrand is nonnegative, that $|\nabla u|^2$ (and thus ∇u) must be zero everywhere in Ω as well, so u must be zero (since it follows it is a constant and we know it is zero on the boundary).

Problem 3. The problem says that v and u are related by

$$v(x) = u(Lx)$$

In coordinates, if $x = (x_1, x_2)$ then $Lx = (l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2)$.

$$v(x_1, x_2) = u(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2)$$

It is all now a matter of computing $v_{x_1x_1}$ and $v_{x_2x_2}$ by two succesive uses of the chain rule. First,

$$\begin{split} \partial_{x_1} v &= l_{11}(\partial_{x_1} u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) + l_{21}(\partial_{x_2} u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) \\ \partial_{x_2} v &= l_{12}(\partial_{x_1} u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) + l_{22}(\partial_{x_2} u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) \end{split}$$

Next.

$$\partial_{x_1x_1}v = l_{11} \left[l_{11}(\partial_{x_1x_1}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) + l_{21}(\partial_{x_1x_2}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) \right] + l_{21} \left[l_{11}(\partial_{x_2x_1}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) + l_{21}(\partial_{x_2x_2}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) \right]$$

and,

$$\partial_{x_2x_2}v = l_{12} \left[l_{12}(\partial_{x_1x_1}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) + l_{22}(\partial_{x_1x_2}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) \right] + l_{22} \left[l_{12}(\partial_{x_2x_1}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) + l_{22}(\partial_{x_2x_2}u)(l_{11}x_1 + l_{12}x_2, l_{21}x_1 + l_{22}x_2) \right]$$

Adding these up, and omitting (for the sake of brevity) the point where are evaluating the second derivatives of u, we arrive at

$$\Delta v(x) = (l_{11}^2 + l_{12}^2)\partial_{x_1x_1}u + (l_{11}l_{21} + l_{12}l_{22})\partial_{x_1x_2}u + (l_{21}l_{11} + l_{22}l_{12})\partial_{x_2x_1}u + (l_{21}^2 + l_{22}^2)\partial_{x_2x_2}u.$$

Problem 4. L being a rotation means that for some θ we have

$$\begin{pmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Substituting these in the formula for Δv obtained in the previous problem,

$$\Delta v(x) = (\cos(\theta)^{2} + \sin(\theta)^{2})\partial_{x_{1}x_{1}}u + (\cos(\theta)\sin(\theta) - \sin(\theta)\cos(\theta))\partial_{x_{1}x_{2}}u + (\sin(\theta)\cos(\theta) - \cos(\theta)\sin(\theta))\partial_{x_{2}x_{1}}u + (\sin(\theta)^{2} + \cos(\theta)^{2})\partial_{x_{2}x_{2}}u = (1)\partial_{x_{1}x_{1}}u + (0)\partial_{x_{1}x_{2}}u + (0)\partial_{x_{2}x_{1}}u + (1)\partial_{x_{2}x_{2}}u = \partial_{x_{1}x_{1}}u + \partial_{x_{2}x_{2}}u.$$

Since the second derivatives of u are being evaluated at the point Lx, we obtain the formula.

Problem 5. We use the chain and Leibniz rule to compute the gradient of the composition of u with the different functions, and the Leibniz rule to compute the divervence. So,

- (a) $\Delta(u^3) = \operatorname{div}(3u^2\nabla u) = 3u^2\Delta u + 6u|\nabla u|^2$
- (b) $\Delta(\sin(u)) = \operatorname{div}(\cos(u)\nabla u) = \cos(u)\Delta u \sin(u)|\nabla u|^2$
- (c) $\Delta(e^u) = \operatorname{div}(e^u \nabla u) = e^u \Delta u + e^u |\nabla u|^2$

Recall: by the chain rule we have that if $u: \Omega \to \mathbb{R}$ and $\phi: \mathbb{R} \to \mathbb{R}$, then $\nabla \phi(u) = \phi'(u) \nabla u$ and by the Leibniz rule we also have for any $\psi: \mathbb{R} \to \mathbb{R}$, $\operatorname{div}(\psi(u) \nabla u) = \psi(u) \Delta u + \psi'(u) |\nabla u|^2$. Combining these two formulas with $\psi = \phi'$, we get

$$\Delta(\phi(u)) = \operatorname{div}\left(\phi'(u)\nabla u\right) = \phi'(u)\Delta u + \phi''(u)|\nabla u|^2.$$

As we wanted.

Problem 6. This one has an short solution if you know what to use: from the previous problem we learned how to get an inequality for $\Delta(\phi(u))$ (using also that $\Delta u = 0$, of course). We get

$$\Delta(\phi(u)) = \phi'(u)\Delta u + \phi''(u)|\nabla u|^2$$
$$= \phi''(u)|\nabla u|^2 \ge 0$$

where we used that $\phi'' \geq 0$. Since $\Delta(\phi(u)) \geq 0$, Problem #3 from Homework II says that $v = \phi(u)$ is subharmonic, i.e. that

$$v(x_0) \le \frac{1}{2\pi r} \int_{\partial D_r(x_0)} v(x) \ d\sigma(x)$$

and

$$v(x_0) \le \frac{1}{\pi r^2} \int_{D_r(x_0)} v(x) \ dx.$$

Problem 7.

(a) Using the divergence theorem/Green's identity, we know that

$$\int_{\Omega} \nabla \phi \cdot \nabla u \, dx = \int_{\partial \Omega} \phi \partial_n u \, d\sigma(x) - \int_{\Omega} \phi \Delta u \, dx = 0$$

The first integral being zero due to $\phi = 0$ on $\partial\Omega$ and the second being zero since $\Delta u = 0$ everywhere in Ω .

(b) This is simply a quadratic expression, in fact, for any $x \in \Omega$,

$$|\nabla(u+\phi)(x)|^2 = |\nabla u(x) + \nabla \phi(x)|^2 = |\nabla u(x)|^2 + 2\nabla u(x) \cdot \nabla \phi(x) + |\nabla \phi(x)|^2$$

Integrating this expression in Ω we get the formula in (b).

(c) If u = v on $\partial \Omega$, then $\phi = u - v$ is a function which vanishes on $\partial \Omega$, and $v = u + \phi$. Then, by part (b),

$$\int_{\Omega} |\nabla v|^2 = \int_{\Omega} |\nabla u|^2 dx + 2 \int_{\Omega} \nabla u \cdot \nabla \phi dx + \int_{\Omega} |\nabla \phi(x)|^2 dx$$
$$= \int_{\Omega} |\nabla u|^2 dx + \int_{\Omega} |\nabla \phi|^2 dx$$
$$\geq \int_{\Omega} |\nabla u|^2 dx$$

where we used the harmonicity of u and (a) to see that the middle integral on the right must be zero. This gives (c).

(d) In the last formula in (c), the only way the \geq can be an equality is if the integral of $|\nabla \phi|^2$ is zero, which can only happen if ϕ itself is zero ($\nabla \phi$ would need to be zero, so ϕ is a constant, and since it is zero on $\partial \Omega$, this constant is zero). But $\phi \equiv 0$ is the same $u \equiv v$, which gives (d).