Técnicas de Programação

Vinicius A. Matias

May 13, 2021

1 Introdução

Este relatório passa pela definição e análise de complexidade para algoritmos que seguem três técnicas diferentes. O estudo começa pela Divisão e Conquista, seguido de Tentativa e Erro e terminando com Algoritmos Gulosos.

2 Divisão e Conquista

Divisão e Conquista é uma técnica de programação que segue o princípio de indução forte. Nessa abordagem um problema é decomposto em problemas menores (divisão) que conseguem ser resolvidos. A resolução dos subproblemas é feita recursivamente e também é chamada de conquista. O problema final solucionado vem da combinação das conquistas. Um algoritmo conhecido de divisão e conquista e que foi discutido no relatório 2 (Recursão) é o da busca binária, consistindo de dividir o problema no meio (irmos para o lado esquerdo ou direito) e a conquista é a resolução recursiva desses problemas (comparação entre o arranjo e o valor), para na combinação dos resultados retornar a resposta correta.

Um algoritmo de divisão e conquista segue uma equação de recorrência como:

$$T(n) = \begin{cases} \Theta(1), n \le c \\ aT(\frac{n}{b}) + D(n) + C(n), n > c \end{cases}$$

Onde $aT(\frac{n}{b})$ é o custo da conquista. A conquista é formada por a chamadas recursivas, e b é o tamanho da divisão (se dividirmos por 2, b=2):

D(n) é o custo da divisão e C(n) é o custo da combinação. Note que D e C não necessariamente englobarão a operação de interesse.

Uma equação de recorrência para algoritmos de divisão e conquista que dividem o problema inicial em parcelas de tamanhos iguais também pode ser identificada como:

$$T(n) = aT(\frac{n}{h}) + f(n)$$

Onde f(n) é o custo da divisão mais a combinação.

E a imensa maioria dos algoritmos que seguem essa última equação de recorrência podem ter a complexidade assintótica identificada por meio do Teorema Mestre.

2.1 Teorema Mestre

A definição à seguir do teorema mestre provém do livro Algoritmos: Teoria e Prática (Cormen et al., 2012):

Sejam $a \ge 1$ e b > 1 constantes. Seja f(n) uma função, e seja T(n) definida no domínio dos números inteiros não negativos pela recorrência

$$T(n) = aT(n/b) + f(n) .$$

Então, T(n) tem os seguintes limites assintóticos:

- 1. Se $f(n) \in \mathcal{O}(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$.
- 2. Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a})$.
- 3. Se $f(n) \in \Omega(n^{\log ba + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) \in \Theta(f(n))$.

2.2 Exemplos de Aplicação do Teorema Mestre

I -
$$T(n) = 9T(n/3) + n$$

Descobrir a complexidade assintótica da equação de recorrência T(n) = 9T(n/3) + n.

Para utilizar o teorema mestre neste problema, definimos:

$$a = 9,$$

$$b = 3$$

$$f(n) = n$$

Utilizando o teorema mestre, começaremos verificando se $f(n) \in \Theta(n^{\log_b a})$ - cláusula 2.

```
Veja que \Theta(n^{\log_b a}) = \Theta(n^{\log_3 9}) = \Theta(n^2)
E \Theta(n^2) não cresce com a mesma velocidade que f(n), ou seja, f(n) \notin \Theta(n^2)
```

Testando então com a cláusula 1 (notar que f(n) cresce menos que $\Theta(n^2)$ ajuda a escolher esta opção):

Escolhendo um
$$\epsilon = 6$$
, percebemos que $\mathcal{O}(n^{\log_b a - \epsilon}) = \mathcal{O}(n^{\log_3 9 - 6}) = \mathcal{O}(n^{\log_3 3}) = \mathcal{O}(n)$
E $f(n) \in \mathcal{O}(n)$, logo: $T(n) \in \Theta(n^2)$

I -
$$T(n) = 4T(n/2) + n^3$$

$$a = 4; b = 2; f(n) = n^3$$

Verificando a cláusula 2 do Teorema Mestre: $\Theta(n^{\log_2 4}) = \Theta(n^2)$

E $f(n) = n^3 \notin \Theta(n^2)$ (falha da cláusula 2)

Como f(n) cresce mais rápido que $\Theta(n^2)$, buscaremos na cláusula 3 verificar se f(n) obedece o crescimento mínimo para um ϵ

A primeira verificação da terceira cláusula do teorema mestre que verificaremos é se $af(n/b) \le cf(n)$, para alguma constante c < 1:

$$\begin{array}{l} 4*(\frac{n}{2})^3 \leq cn^3 \\ = 4*\frac{n^3}{8} \leq cn^3 \\ = n^3/2 \leq cn^3 \\ = 1/2 \leq c \end{array}$$

Ou seja, a inequação é verdadeira para algum c < 1, como exemplo c = 1/2

Agora verificaremos se $f(n) \in \Omega(n^{\log_b a + \epsilon})$: $\Omega(n^{\log_2 4 + \epsilon})$ $\Omega(n^{\log_2 4 + \epsilon})$, com $\epsilon = 4$

 $\Omega(n^{\log_2 8})$, com $\epsilon = 0$

 $\Omega(n^3)$

 $E f(n) \in \Omega(n^3)$

Logo, $T(n) \in \Theta(f(n)) = T(n) \in \Theta(n^3)$ para n sufficientemente grande.

3 Referências

Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. **Algoritmos: Teoria e Prática**. Tradução da 3a edição americana. Elsevier, 2012.