CHAPTER 6

Diagnostics for Leverage and Influence

Importance of Detecting Influential Observations

Leverage Point:

- unusual x-value;
- very little effect on regression coefficients.

Figure 6.1 An example of a leverage point.

Importance of Detecting Influential Observations

 Influence Point: unusual in y and x;

Figure 6.2 An example of an influential observation.

Leverage

The hat matrix is:

$$H = X(X'X)^{-1}X'$$

The diagonal elements of the hat matrix h_{ii} – standardized measure of the distance of the *i*th observation from the center of the x.

Leverage

- The average size of the hat diagonal is p/n.
- Traditionally, any h_{ii} > 2p/n indicates a leverage point.
- Appropriate for large n; otherwise consider large as compared to other values
- An observation with large h_{ii} and a large residual is likely to be influential

Treatment of Influential Observations

Discard if:

- there is an error in recording a measured value;
- the sample point is invalid; or,
- the observation is not part of the population that was intended to be sampled

Do not discard if:

the influential point is a valid observation

Treatment of Influential Observations

- Robust estimation techniques
 - These techniques offer an alternative to deleting an influential observation
 - Observations are retained but downweighted in proportion to residual magnitude or influence.

Measure of Influence

- Reading materials
- Optional

Example 6-1. The Delivery Time Data

The model of interest is

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

TABLE 3.2 Delivery Time Data for Example 3.1

Observation	Delivery Time (Minutes)	Number of Cases	Distance (Feet)
Number	y	x_1	x_2
1	16.68	7	560
2	11.50	3	220
3	12.03	3	340
4	14.88	4	80
5	13.75	6	150
6	18.11	7	330
7	8.00	2	110
8	17.83	7	210
9	79.24	30	1460
10	21.50	5	605
11	40.33	16	688
12	21.00	10	215
13	13.50	4	255
14	19.75	6	462
15	24.00	9	448
16	29.00	10	776
17	15.35	6	200
18	19.00	7	132
19	9.50	3	36
20	35.10	17	770
21	17.90	10	140
22	52.32	26	810
23	18.75	9	450
24	19.83	8	635
25	10.75	4	150

Example 6-1 Excel Output

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.980
R Square	0.960
Adjusted R Square	0.956
Standard Error	3.259
Observations	25

ANOVA

	df	SS	MS	F	Significance F
Regression	2	5550.811	2775.405	261.235	4.68742E-16
Residual	22	233.732	10.624		
Total	24	5784.543			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 99.0%	Upper 99.0%
Intercept	2.341	1.097	2.135	0.044	0.067	4.616	-0.750	5.433
Number of Cases, x ₁	1.616	0.171	9.464	3.25E-09	1.262	1.970	1.135	2.097
Distance, x ₂ (ft)	0.014	0.004	3.981	0.001	0.007	0.022	0.004	0.025

TABLE 3.3 Observations, Fitted Values, and Residuals for Example 3.1

Observation	-		
Number	y_i	$\hat{\mathbf{y}}_i$	$e_i = y_i - \overline{y}_i$
1	16.68	21.7081	-5.0281
2	11.50	10.3536	1.1464
3	12.03	12.0798	-0.0498
4	14.88	9.9556	4.9244
5	13.75	14.1944	-0.4444
6	18.11	18.3996	-0.2896
7	8.00	7.1554	0.8446
8	17.83	16.6734	1.1566
9	79.24	71.8203	7.4197
10	21.50	19.1236	2.3764
11	40.33	38.0925	2.2375
12	21.00	21.5930	-0.5930
13	13.50	12.4730	1.0270
14	19.75	18.6825	1.0675
15	24.00	23.3288	0.6712
16	29.00	29.6629	-0.6629
17	15.35	14.9136	0.4364
18	19.00	15.5514	3.4486
19	9.50	7.7068	1.7932
20	35.10	40.8880	-5.7880
21	17.90	20.5142	-2.6142
22	52.32	56.0065	-3.6865
23	18.75	23.3576	-4.6076
24	19.83	24.4028	-4.5728
25	10.75	10.9626	-0.2126

TABLE 6.1 Statistics for Detecting Influential Observations for the Soft Drink Delivery Time Data

Observation	(-)	(1-)	(-)	(d)	(e) ·	(f)	(-)
Observation i	(a) h _{ii}	(b) <i>D_i</i>	(c) DFFITS _i	Intercept DFBETAS _{0, i}	Cases DFBETAS _{1, i}	Distance DFBETAS _{2, i}	(g) COVRATIO
1	0.10180	0.10009	-0.5709	-0.1873	0.4113	-0.4349	0.8711
2	0.07070	0.00338	0.0986	0.0898	-0.0478	0.0144	1.2149
3	0.09874	0.00001	-0.0052	-0.0035	0.0039	-0.0028	1.2757
4	0.08538	0.07766	0.5008	0.4520	0.0883	-0.2734	0.8760
5	0.07501	0.00054	-0.0395	-0.0317	-0.0133	0.0242	1.2396
6	0.04287	0.00012	-0.0188	-0.0147	0.0018	0.0011	1.1999
7	0.08180	0.00217	0.0790	0.0781	-0.0223	-0.0110	1.2398
8	0.06373	0.00305	0.0938	0.0712	0.0334	-0.0538	1.2056
9	0.49829	3.41835	4.2961	-2.5757	0.9287	1.5076	0.3422
10	0.19630	0.05385	0.3987	0.1079	-0.3382	0.3413	1.3054
11	0.08613	0.01620	0.2180	-0.0343	0.0925	-0.0027	1.1717
12	0.11366	0.00160	-0.0677	-0.0303	-0.0487	0.0540	1.2906
13	0.06113	0.00229	0.0813	0.0724	-0.0356	0.0113	1.2070
14	0.07824	0.00329	0.0974	0.0495	-0.0671	0.0618	1.2277
15	0.04111	0.00063	0.0426	0.0223	-0.0048	0.0068	1.1918
16	0.16594	0.00329	-0.0972	-0.0027	0.0644	-0.0842	1.3692
17	0.05943	0.00040	0.0339	0.0289	0.0065	-0.0157	1.2192
18	0.09626	0.04398	0.3653	0.2486	0.1897	-0.2724	1.0692
19	0.09645	0.01192	0.1862	0.1726	0.0236	-0.0990	1.2153
20	0.10169	0.13246	-0.6718	0.1680	-0.2150	-0.0929	0.7598
21	0.16528	0.05086	-0.3885	-0.1619	-0.2972	0.3364	1.2377
22	0.39158	0.45106	-1.1950	0.3986	-1.0254	0.5731	1.3981
23	0.04126	0.02990	-0.3075	-0.1599	0.0373	-0.0527	0.8897
24	0.12061	0.10232	-0.5711	-0.1197	0.4046	-0.4654	0.9476
25	0.06664	0.00011	-0.0176	-0.0168	0.0008	0.0056	1.2311

Example 6.1 The Delivery Time Data

 Examine Table 6.1. If some possibly influential points are removed here is what happens to the coefficient estimates and model statistics:

Run	$\hat{\boldsymbol{\beta}}_0$	$\hat{\boldsymbol{\beta}_1}$	$\hat{\boldsymbol{\beta}}_2$	MS_{Res}	R^2
9 and 22 in	2.341	1.616	0.014	10.624	0.9596
9 out	4.447	1.498	0.010	5.905	0.9487
22 out	1.916	1.786	0.012	10.066	0.9564
9 and 22 out	4.643	1.456	0.011	6.163	0.9072

Measures of Influence

- The influence measures discussed here are those that measure the effect of deleting the ith observation.
 - 1. Cook's D_i , which measures the effect on $\hat{\beta}$
 - 2. DFBETAS_{i(i)}, which measures the effect on β_j
 - 3. DFFITS, which measures the effect on \hat{Y}_i
 - 4. COVRATIO_i, which measures the effect on the variance-covariance matrix of the parameter estimates.

Measures of Influence: Cook's D

$$D_{i}(X'X, pMS_{Res}) = D_{i} = \frac{(\hat{\beta}_{(i)} - \hat{\beta})'X'X(\hat{\beta}_{(i)} - \hat{\beta})}{pMS_{Res}}$$
$$= \frac{r_{i}^{2} Var(\hat{y}_{i})}{pVar(e_{i})} = \frac{r_{i}^{2}}{p} \frac{h_{ii}}{(1 - h_{ii})}$$

- What contributes to D_i:
 - How well the model fits the ith observation, yi
 - How far that point is from the remaining dataset
- Large values of D_i indicate an influential point, usually if D_i > 1.

Measures of Influence: Cook's D

- To interpret Cook's distance measure:
 - \circ Relate D_i to the F(p, n-p) distribution and compute the percentile value
 - olf percentile less than 20 percent *i*th case has little influence
 - If percentile near 50 percent than ith case has a major influence

TABLE 6.1 Statistics for Detecting Influential Observations for the Soft Drink Delivery Time Data

Observation	(a)	(b)	(c)	(d) Intercept	(e) Cases	(f) Distance	(g)
i	h_{ii}	D_i	$DFFITS_i$	$DFBETAS_{0,i}$	$DFBETAS_{1,i}$	$DFBETAS_{2,i}$	COVRATIO
1	0.10180	0.10009	-0.5709	-0.1873	0.4113	-0.4349	0.8711
2	0.07070	0.00338	0.0986	0.0898	-0.0478	0.0144	1.2149
3	0.09874	0.00001	-0.0052	-0.0035	0.0039	-0.0028	1.2757
4	0.08538	0.07766	0.5008	0.4520	0.0883	-0.2734	0.8760
5	0.07501	0.00054	-0.0395	-0.0317	-0.0133	0.0242	1.2396
6	0.04287	0.00012	-0.0188	-0.0147	0.0018	0.0011	1.1999
7	0.08180	0.00217	0.0790	0.0781	-0.0223	-0.0110	1.2398
8	0.06373	0.00305	0.0938	0.0712	0.0334	-0.0538	1.2056
9	0.49829	3.41835	4.2961	-2.5757	0.9287	1.5076	0.3422
10	0.19630	0.05385	0.3987	0.1079	-0.3382	0.3413	1.3054
11	0.08613	0.01620	0.2180	-0.0343	0.0925	-0.0027	1.1717
12	0.11366	0.00160	-0.0677	-0.0303	-0.0487	0.0540	1.2906
13	0.06113	0.00229	0.0813	0.0724	-0.0356	0.0113	1.2070
14	0.07824	0.00329	0.0974	0.0495	-0.0671	0.0618	1.2277
15	0.04111	0.00063	0.0426	0.0223	-0.0048	0.0068	1.1918
16	0.16594	0.00329	-0.0972	-0.0027	0.0644	-0.0842	1.3692
17	0.05943	0.00040	0.0339	0.0289	0.0065	-0.0157	1.2192
18	0.09626	0.04398	0.3653	0.2486	0.1897	-0.2724	1.0692
19	0.09645	0.01192	0.1862	0.1726	0.0236	-0.0990	1.2153
20	0.10169	0.13246	-0.6718	0.1680	-0.2150	-0.0929	0.7598
21	0.16528	0.05086	-0.3885	-0.1619	-0.2972	0.3364	1.2377
22	0.39158	0.45106	-1.1950	0.3986	-1.0254	0.5731	1.3981
23	0.04126	0.02990	-0.3075	-0.1599	0.0373	-0.0527	0.8897
24	0.12061	0.10232	-0.5711	-0.1197	0.4046	-0.4654	0.9476
25	0.06664	0.00011	-0.0176	-0.0168	0.0008	0.0056	1.2311

Measures of Influence: DFFITS and DFBETAS

DFBETAS – measures how much the regression coefficient changes in standard deviation units if the *i*th observation is removed

$$DFBETAS_{j,i} = \frac{\hat{\beta}_{j} - \hat{\beta}_{j(i)}}{\sqrt{S_{(i)}^{2}C_{jj}}}$$

where $\hat{\beta}_{j(i)}$ is an estimate of the *j*th coefficient when the *i*th observation is removed

- Large DFBETAS indicates ith observation has considerable influence
- In general, $|DFBETAS_{j,i}| > 2/\sqrt{n}$

Measures of Influence: DFFITS and DFBETAS

DFFITS – measures the influence of the *i*th observation on the fitted value, again in standard deviation units.

$$DFFITS_{i} = \frac{\hat{y}_{i} - \hat{y}_{(i)}}{\sqrt{S_{(i)}^{2} h_{ii}}}$$

- Cutoff: If $|\mathrm{DFFITS_i}| > 2\sqrt{p/n}$, the point is most likely influential
- For small and medium size data sets consider a case influential if DFFITS greater than 1

TABLE 6.1 Statistics for Detecting Influential Observations for the Soft Drink Delivery Time Data

Observation	(-)	(1-)	(-)	(d)	(e) ·	(f)	(-)
Observation i	(a) h _{ii}	(b) <i>D_i</i>	(c) DFFITS _i	Intercept DFBETAS _{0, i}	Cases DFBETAS _{1, i}	Distance DFBETAS _{2, i}	(g) COVRATIO
1	0.10180	0.10009	-0.5709	-0.1873	0.4113	-0.4349	0.8711
2	0.07070	0.00338	0.0986	0.0898	-0.0478	0.0144	1.2149
3	0.09874	0.00001	-0.0052	-0.0035	0.0039	-0.0028	1.2757
4	0.08538	0.07766	0.5008	0.4520	0.0883	-0.2734	0.8760
5	0.07501	0.00054	-0.0395	-0.0317	-0.0133	0.0242	1.2396
6	0.04287	0.00012	-0.0188	-0.0147	0.0018	0.0011	1.1999
7	0.08180	0.00217	0.0790	0.0781	-0.0223	-0.0110	1.2398
8	0.06373	0.00305	0.0938	0.0712	0.0334	-0.0538	1.2056
9	0.49829	3.41835	4.2961	-2.5757	0.9287	1.5076	0.3422
10	0.19630	0.05385	0.3987	0.1079	-0.3382	0.3413	1.3054
11	0.08613	0.01620	0.2180	-0.0343	0.0925	-0.0027	1.1717
12	0.11366	0.00160	-0.0677	-0.0303	-0.0487	0.0540	1.2906
13	0.06113	0.00229	0.0813	0.0724	-0.0356	0.0113	1.2070
14	0.07824	0.00329	0.0974	0.0495	-0.0671	0.0618	1.2277
15	0.04111	0.00063	0.0426	0.0223	-0.0048	0.0068	1.1918
16	0.16594	0.00329	-0.0972	-0.0027	0.0644	-0.0842	1.3692
17	0.05943	0.00040	0.0339	0.0289	0.0065	-0.0157	1.2192
18	0.09626	0.04398	0.3653	0.2486	0.1897	-0.2724	1.0692
19	0.09645	0.01192	0.1862	0.1726	0.0236	-0.0990	1.2153
20	0.10169	0.13246	-0.6718	0.1680	-0.2150	-0.0929	0.7598
21	0.16528	0.05086	-0.3885	-0.1619	-0.2972	0.3364	1.2377
22	0.39158	0.45106	-1.1950	0.3986	-1.0254	0.5731	1.3981
23	0.04126	0.02990	-0.3075	-0.1599	0.0373	-0.0527	0.8897
24	0.12061	0.10232	-0.5711	-0.1197	0.4046	-0.4654	0.9476
25	0.06664	0.00011	-0.0176	-0.0168	0.0008	0.0056	1.2311

A Measure of Model Performance

 Information about the overall precision of estimation can be obtained through another statistic, COVRATIO_i

$$COVRATIO_{i} = \frac{\left| \left(\mathbf{X}'_{(i)} \mathbf{X}_{(i)} \right)^{-1} S_{(i)}^{2} \right|}{\left| \left(\mathbf{X}' \mathbf{X} \right)^{-1} M S_{\text{Res}} \right|}$$
$$= \frac{\left(S_{(i)}^{2} \right)^{p}}{M S_{\text{Res}}^{p}} \left(\frac{1}{1 - h_{ii}} \right)$$

A Measure of Model Performance

Cutoffs and Interpretation

- If COVRATIO_i > 1, the *i*th observation improves the precision.
- If COVRATIO_i < 1, ith observation can degrade the precision.
- Cutoffs: COVRATIO_i > 1 + 3p/n
 or COVRATIO_i < 1 3p/n; (the lower limit is really only good if n > 3p).

Example 6.4 The Delivery Time Data

Column g of Table 6.1 contains the values of $COVRATIO_i$ for the soft drink delivery time data. The formal recommended cutoff for $COVRATIO_i$ is $1 \pm 3p/n = 1 \pm 3(3)/25$, or 0.64 and 1.36. Note that the values of $COVRATIO_9$ and $COVRATIO_{22}$ exceed these limits, indicating that these points are influential. Since $COVRATIO_9 < 1$, this observation degrades precision of estimation, while since $COVRATIO_{22} > 1$, this observation tends to improve the precision. However, point 22 barely exceeds its cutoff, so the influence of this observation, from a practical viewpoint, is fairly small. Point 9 is much more clearly influential.

TABLE 6.1 Statistics for Detecting Influential Observations for the Soft Drink Delivery Time Data

Observation	(-)	(1-)	(-)	(d)	(e) ·	(f)	(-)
Observation i	(a) h _{ii}	(b) <i>D_i</i>	(c) DFFITS _i	Intercept DFBETAS _{0, i}	Cases DFBETAS _{1, i}	Distance DFBETAS _{2, i}	(g) COVRATIO
1	0.10180	0.10009	-0.5709	-0.1873	0.4113	-0.4349	0.8711
2	0.07070	0.00338	0.0986	0.0898	-0.0478	0.0144	1.2149
3	0.09874	0.00001	-0.0052	-0.0035	0.0039	-0.0028	1.2757
4	0.08538	0.07766	0.5008	0.4520	0.0883	-0.2734	0.8760
5	0.07501	0.00054	-0.0395	-0.0317	-0.0133	0.0242	1.2396
6	0.04287	0.00012	-0.0188	-0.0147	0.0018	0.0011	1.1999
7	0.08180	0.00217	0.0790	0.0781	-0.0223	-0.0110	1.2398
8	0.06373	0.00305	0.0938	0.0712	0.0334	-0.0538	1.2056
9	0.49829	3.41835	4.2961	-2.5757	0.9287	1.5076	0.3422
10	0.19630	0.05385	0.3987	0.1079	-0.3382	0.3413	1.3054
11	0.08613	0.01620	0.2180	-0.0343	0.0925	-0.0027	1.1717
12	0.11366	0.00160	-0.0677	-0.0303	-0.0487	0.0540	1.2906
13	0.06113	0.00229	0.0813	0.0724	-0.0356	0.0113	1.2070
14	0.07824	0.00329	0.0974	0.0495	-0.0671	0.0618	1.2277
15	0.04111	0.00063	0.0426	0.0223	-0.0048	0.0068	1.1918
16	0.16594	0.00329	-0.0972	-0.0027	0.0644	-0.0842	1.3692
17	0.05943	0.00040	0.0339	0.0289	0.0065	-0.0157	1.2192
18	0.09626	0.04398	0.3653	0.2486	0.1897	-0.2724	1.0692
19	0.09645	0.01192	0.1862	0.1726	0.0236	-0.0990	1.2153
20	0.10169	0.13246	-0.6718	0.1680	-0.2150	-0.0929	0.7598
21	0.16528	0.05086	-0.3885	-0.1619	-0.2972	0.3364	1.2377
22	0.39158	0.45106	-1.1950	0.3986	-1.0254	0.5731	1.3981
23	0.04126	0.02990	-0.3075	-0.1599	0.0373	-0.0527	0.8897
24	0.12061	0.10232	-0.5711	-0.1197	0.4046	-0.4654	0.9476
25	0.06664	0.00011	-0.0176	-0.0168	0.0008	0.0056	1.2311

R code

influence.measures(model1)