

TALLER DE ALGORITMOS

ESTRUCTURA DE CONTROL SECUENCIAL

Abel García Nájera Karen Miranda Campos Saúl Zapotecas Martínez

Universidad Autónoma Metropolitana Unidad Cuajimalpa

26 de octubre de 2023

EXPRESIONES

Aritméticas

Compuestas por operadores aritméticos que actúan sobre operandos numéricos, de la cual se obtiene un resultado numérico.

1

EXPRESIONES

Aritméticas

Compuestas por operadores aritméticos que actúan sobre operandos numéricos, de la cual se obtiene un resultado numérico.

Relacionales

Compuestas por operadores relacionales que actúan sobre operandos del mismo dominio, de la cual se obtiene un resultado lógico.

EXPRESIONES

Aritméticas

Compuestas por operadores aritméticos que actúan sobre operandos numéricos, de la cual se obtiene un resultado numérico.

Relacionales

Compuestas por operadores relacionales que actúan sobre operandos del mismo dominio, de la cual se obtiene un resultado lógico.

Lógicas

Compuestas por operadores lógicos que actúan sobre operandos de tipo lógico, de la cual se obtiene un resultado lógico.

ı

OPERADORES

Aritméticos	
Símb.	Uso
+	Suma
-	Resta
*	Mult.
/	División
MOD	Residuo

OPERADORES

Aritméticos		
	Símb.	Uso
	+	Suma
	-	Resta
	*	Mult.
	/	División
	MOD	Residuo

Relacionales		
	Símb.	Uso
	=	Igual que
	\neq	Diferente que
	<	Menor que
	\leq	Menor o igual que
	>	Mayor que
	\geq	Mayor o igual que

Aritméticos	
Símb.	Uso
+	Suma
-	Resta
*	Mult.
/	División
MOD	Residuo

Relacionales	
Símb.	Uso
=	Igual que
\neq	Diferente que
<	Menor que
\leq	Menor o igual que
>	Mayor que
\geq	Mayor o igual que

Lógicos	
Símb.	Uso
\wedge	Υ
V	0
\neg	NO

ASIGNACIÓN

Asignación

Es la forma de dar un valor específico a un identificador.

ASIGNACIÓN

Asignación

Es la forma de dar un valor específico a un identificador.

La asignación se representa con el símbolo:

ASIGNACIÓN

Asignación

Es la forma de dar un valor específico a un identificador.

La asignación se representa con el símbolo:

Regla

 $identificador \leftarrow valor$

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Se compran tres artículos con precios \$x1, \$x2 y \$x3. La compra se hace con una tarjeta de débito que tiene un saldo inicial de \$y. ¿Cuál es el saldo de la tarjeta después de la compra?

Respuesta:

$$saldo = y - (x1 + x2 + x3)$$

Ejemplo

Se compran tres artículos con precios \$x1, \$x2 y \$x3. La compra se hace con una tarjeta de débito que tiene un saldo inicial de \$y. ¿Cuál es el saldo de la tarjeta después de la compra?

Respuesta:

saldo
$$= y - (x1 + x2 + x3)$$
 iii incorrecto!!!

Ejemplo

Se compran tres artículos con precios \$x1, \$x2 y \$x3. La compra se hace con una tarjeta de débito que tiene un saldo inicial de \$y. ¿Cuál es el saldo de la tarjeta después de la compra?

Respuesta:

$$saldo \leftarrow y - (x1 + x2 + x3)$$

RESOLUCIÓN DE PROBLEMAS

Algoritmo

Un algoritmo es una serie de pasos finita, precisa e inambigua que permite resolver un problema dado de manera sistemática.

Esos pasos se pueden representar de diferentes maneras.

EJEMPLO

Perro

8

PROBLEMA

Deseo hornear una magdalenas

•

EJEMPLO

Receta para hacer Magdalenas

Ingredientes:

- · 100g de harina
- · 3g de polvo para hornear
- · 1/2 taza de aceite
- · 1 cucharada de vainilla
- · 3 huevos
- · 120g de azúcar

Utensilios:

- · Una taza medidora
- · Un molde para hornear
- · Una cuchara

EJEMPLO

Modo de preparación

- Vertir los huevos en un recipiente junto con el azúcar y batir durante 5 minutos. Agregar el aceite y la vainilla, después la harina poco a poco y el polvo para hornear sin dejar de revolver.
- 2. Precalentar el horno a 220°C.
- 3. Untar mantequilla sobre el molde de las magdalenas y vertir la mezcla con un espesor de 2 cm.
- Meter al horno durante 5 minutos a una temperatura de 220°C y después otros 10 minutos a 200°C.
- 5. Sacar del molde y dejar enfriar.

ALGORITMOS Y SU REPRESENTACIÓN

- En español
- · Fórmulas
- · Diagramas de flujo
- · Pseudocódigo
- Programa

ESPAÑOL

Algoritmos para atarse las agujetas

- Comienza con las agujetas colgando a los lados del zapato. Recoge las agujetas y realiza una "X" con ellos.
- 2. Lleva la agujeta de arriba hacia abajo en la parte inferior de la "X" y pásala a través de ella, luego tira de las agujetas para apretarlas.
- Haz un bucle con la agujeta de la mano derecha. Mantenla bien tensa y luego haz otro lazo con la agujeta de la mano izquierda. Las agujetas se deben parecer a dos orejas de conejo.
- 4. Cruza el lazo derecho delante del izquierdo formando una "X"
- 5. Jala el lazo derecho sobre el izquierdo. Trae el bucle dándole vuelta por la parte inferior de la "X" y tira bien fuerte de las lazo

FÓRMULAS

Pseudocódigo

Algoritmo IMC

```
    leer p, e
```

2:
$$imc \leftarrow p/e^2$$

3: si imc < 18.5 entonces

4:
$$r \leftarrow$$
 "bajo peso"

5: si no si imc > 25 entonces

6:
$$r \leftarrow$$
 "sobrepeso"

7: si no

8: $r \leftarrow$ "peso normal"

9: fin si

10: escribir "Tienes" r

Fin IMC

```
l package main
 4 import "fmt"
 6 func main() {
 7 pi := 3.1416
8 radio := 5.0
9 perimetro := 2.0 * pi *radio
10 superficie := pi * radio * radio
          fmt.Println("Superficie = ", superficie)
          fmt.Println("Perimetro = ",perimetro)
13 }
```

```
Superficie = 78.54
Perimetro = 31.416
Program exited.
```

ALGORITMOS Y SU IMPLEMENTACIÓN

Implementación

Se dice que los algoritmos se implementan o están implementados cuando se elige una forma de representarlos.

ALGORITMOS Y SU IMPLEMENTACIÓN

Implementación

Se dice que los algoritmos se implementan o están implementados cuando se elige una forma de representarlos.

Para este curso:

- · Diagramas de flujo.
- · Pseudocódigo.

EJEMPLO: ÍNDICE DE MASA CORPORAL

$$IMC = \frac{masa}{estatura^2}$$

donde la masa se expresa en kilogramos y el cuadrado de la estatura en metros al cuadrado

PSEUDOCÓDIGO

Algoritmo IMC

- 1: leer peso, estatura
- 2: imc ← peso / (estatura * estatura)
- 3: escribir "El IMC es" imc

Fin IMC

DIAGRAMA DE FLUJO

¿Por qué?'

Si bien es cierto que podemos expresar algoritmos en un lenguaje coloquial, en forma de recetas o de pictogramas, es imperativo expresar los algoritmos de forma que cualquier persona que los lea y los siga llegue al mismo resultado que la persona que escribió esos algoritmos, por lo que es necesario seguir un estándar que permita esto.

¿Por qué?

Si bien es cierto que podemos expresar algoritmos en un lenguaje coloquial, en forma de recetas o de pictogramas, es imperativo expresar los algoritmos de forma que cualquier persona que los lea y los siga llegue al mismo resultado que la persona que escribió esos algoritmos, por lo que es necesario seguir un estándar que permita esto.

Ventaja

Nos permite centrarnos en que la solución sea correcta.

DIAGRAMAS DE FLUJO

Características

Es una manera genérica de representar un algoritmo.

- · Utiliza símbolos para representar acciones a realizar.
- · Utiliza fechas para expresar secuencia y definir el flujo.
- · Son claros y fáciles de entender.
- Ayuda a visualizar la manera en que los datos de entrada se transforman en la salida.
- · Se utilizan en una gran variedad de disciplinas.

PSEUDOCÓDIGO

Características

Es una manera genérica de representar un algoritmo.

- · Utiliza frases en lenguaje común.
- · Las instrucciones están escritas en el idioma nativo del diseñador.
- · Utiliza convenciones similares a las matemáticas.
- · Utiliza sangrías para identificar bloques de instrucciones.
- · Define estructuras básicas con palabras clave.
- · Permite gran detalle de las instrucciones.
- · Cualquier persona lo puede leer.

ESTRUCTURAS DE CONTROL

Paradigma estructurado

Las estructuras de control permite modelar y modificar el flujo de ejecución de las instrucciones de un algoritmo.

Está orientado a mejorar la calidad y la claridad del algortimo.

ESTRUCTURAS DE CONTROL

Teorema del programa estructurado

En 1966, Corrado Böhm y Giuseppe Jacopini¹ demostraron que un algoritmo puede ser escrito utilizando sólo tres tipos de estructuras de control:

- Secuencial
- Selectiva
- · Iterativa

¹Corrado Böhm and Giuseppe Jacopini (1966). "Flow Diagrams, Turing Machines and Languages with Only Two Formation Rules". Communications of the ACM. 9(5):366–371.

ESTRUCTURA DE CONTROL SECUENCIAL

Estructura secuencial

Una estructura secuencial es aquella en la que las instrucciones están una a continuación de la otra, siguiendo una **secuencia única** y sin cambios en el flujo de ejecución.

ESTRUCTURA DE CONTROL SECUENCIAL

Estructura secuencial

Una estructura secuencial es aquella en la que las instrucciones están una a continuación de la otra, siguiendo una **secuencia única** y sin cambios en el flujo de ejecución.

Las instrucciones se ejecutan de manera estrictamente secuencial y cada una de ellas se ejecuta exactamente una vez.

DIAGRAMA DE FLUJO

En un diagrama de flujo, esta estructura se representa mediante un rectángulo por cada instrucción que se debe realizar.

Pseudocódigo

La estructura secuencial en pseudocódigo muestra las instrucciones en una lista comenzado en la instrucción 1 hasta llegar a la *n*-ésima instrucción a realizar, como se muestra en el siguiente ejemplo:

instrucción 1

. . .

instrucción n

Ejemplo

Ejemplo

Ejemplo

Ejemplo

Estado inicial: Las longitudes son números reales.

Datos de entrada: Tres longitudes.

Datos de salida: Se forma o no un triángulo.

Relación entre los datos de entrada y la salida.

La suma de los números reales de dos cualesquiera longitudes es mayor que el tercero.

Escribir la oración como una expresión (aritmética, relacional, lógica o una combinación de ellas).

La suma de los números reales de dos longitudes es mayor que el tercero.

- 1. lado1 + lado2 > lado3
- 2. lado1 + lado3 > lado2
- 3. lado2 + lado3 > lado1

Escribir la oración como una expresión (aritmética, relacional, lógica o una combinación de ellas).

La suma de los números reales de dos cualesquiera longitudes es mayor que el tercero.

¿Cuál es la relación entre las tres expresiones relacionales?

- 1. lado1 + lado2 > lado3
- 2. lado1 + lado3 > lado2
- 3. lado2 + lado3 > lado1

Por lo tanto:

La suma de los números reales de dos cualesquiera longitudes es mayor que el tercero se expresa:

$$\begin{array}{c} (lado1 + lado2 > lado3) \wedge (lado1 + lado3 > lado2) \\ \wedge (lado2 + lado3 > lado1) \end{array}$$

Diagrama de flujo

Pseudocódigo

Algoritmo EsTriángulo

- 1: **leer** l1, l2, l3
- 2: EsTriángulo \leftarrow (l1 + l2 > l3)

$$\wedge$$
 (l1 + l3 > l2)
 \wedge (l2 + l3 > l1)

3: **escribir** "¿Es triángulo?" EsTriángulo **Fin** EsTriángulo

Diseña un algoritmo que calcule el área y el perímetro de un rectángulo.

Pseudocódigo

Algoritmo Rectángulo

- 1: **leer** ancho, largo
- 2: área ← ancho * largo
- 3: $perim \leftarrow 2 * (ancho + largo)$
- 4: escribir "El área es" área
- 5: **escribir** "El perímetro es" *perim* **Fin** Rectángulo

RESUMEN: DIAGRAMAS DE FLUJO

RESUMEN: PSEUDOCÓDIGO

Símbolo	Significado
Algoritmo nombre algoritmo	El nombre y el inicio del algoritmo
Fin nombre algoritmo	Fin del algoritmo
leer identificadores	Recibe los datos de entrada
escribir identificadores	Arroja los datos de salida