MULTIPLE LINEAL REGRESSION

Ejercicio 1: Se realizó un estudio a 12 estudiantes para ver cómo influyen las calificaciones del examen y el número de clases que los estudiantes pierden en la calificación de la materia de estadística. Los datos son:

Estudiante	Calificación de estadística (y)	Calificación del examen (x_1)	Clases perdidas (x_2)	x_1^2	x_2^2	$x_1 \cdot x_2$	$x_1 \cdot y$	$x_2 \cdot y$
1	85	65	1	4.225	1	65	5.525	85
2	74	50	7	2.500	49	350	3.700	518
3	76	55	5	3.025	25	275	4.180	380
4	90	65	2	4.225	4	130	5.850	180
5	85	55	6	3.025	36	330	4.675	510
6	87	70	3	4.900	9	210	6.090	261
7	94	65	2	3.025	4	130	6.110	188
8	98	70	5	4.900	25	350	6.860	490
9	81	55	4	3.025	16	220	4.455	324
10	91	70	3	4.900	9	210	6.370	273
11	76	50	1	2.500	1	50	3.800	76
12	74	55	4	3.025	16	220	4.070	296
	1.011	725	43	44.475	195	2.540	61.685	3.581

$$\begin{tabular}{lll} \textit{M\'etodo matricial:} & \begin{pmatrix} n & \Sigma x_1 & \Sigma x_2 \\ \Sigma x_1 & \Sigma x_1 \cdot \Sigma x_1 & \Sigma x_1 \cdot \Sigma x_2 \\ \Sigma x_2 & \Sigma x_2 \cdot \Sigma x_1 & \Sigma x_2 \cdot \Sigma x_2 \\ \end{pmatrix} = \begin{pmatrix} n & \Sigma x_1 & \Sigma x_2 \\ \Sigma x_1 & \Sigma x_1^2 & \Sigma x_1 \cdot x_2 \\ \Sigma x_2 & \Sigma x_2 \cdot x_1 & \Sigma x_2^2 \\ \end{pmatrix} = \begin{pmatrix} 12 & 725 & 43 \\ 725 & 44.475 & 2.540 \\ 43 & 2.540 & 195 \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix}$$

COLUMN 1:

$$\frac{Row_1}{12} : \begin{pmatrix} 1 & 725/_{12} & 43/_{12} \\ 725 & 44.475 & 2.540 \\ 43 & 2.540 & 195 \end{pmatrix} = \begin{pmatrix} 1/_{12} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow Row_1 \cdot (-725) + Row_2 : \begin{pmatrix} 1 & 725/_{12} & 43/_{12} \\ 0 & 8.075/_{12} & -695/_{12} \\ 43 & 2.540 & 195 \end{pmatrix} = \begin{pmatrix} 1/_{12} & 0 & 0 \\ -725/_{12} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow Row_1 \cdot (-43) + Row_3 : \begin{pmatrix} 1 & 725/_{12} & 43/_{12} \\ 0 & 8.075/_{12} & -695/_{12} \\ 0 & -695/_{12} & 491/_{12} \end{pmatrix} = \begin{pmatrix} 1/_{12} & 0 & 0 \\ -725/_{12} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

COLUMN 2:

$$\frac{Row_2}{\left(8.075\right/12\right)} \cdot \begin{pmatrix} 1 & 725\right/_{12} & 43\right/_{12} \\ 0 & 1 & -139\right/_{1.615} \\ 0 & -695\right/_{12} & 491\right/_{12} \end{pmatrix} = \begin{pmatrix} 1/_{12} & 0 & 0 \\ -29/_{323} & 12/_{8.075} & 0 \\ -43/_{12} & 0 & 1 \end{pmatrix} \rightarrow Row_2 \cdot \begin{pmatrix} -725/_{12} \end{pmatrix} + Row_3 \cdot \begin{pmatrix} 1 & 0 & 2.837/_{323} \\ 0 & 1 & -139/_{1.615} \\ 0 & -695/_{12} & 491/_{12} \end{pmatrix} = \begin{pmatrix} 1.779/_{323} & -29/_{323} & 0 \\ -29/_{323} & 12/_{8.075} & 0 \\ -43/_{12} & 0 & 1 \end{pmatrix} \rightarrow Row_2 \cdot \begin{pmatrix} 695/_{12} \end{pmatrix} + Row_3 \cdot \begin{pmatrix} 1 & 0 & 2.837/_{323} \\ 0 & 1 & -139/_{1.615} \\ 0 & 0 & 11.606/_{323} \end{pmatrix} = \begin{pmatrix} 1.779/_{323} & -29/_{323} & 0 \\ -29/_{323} & 12/_{8.075} & 0 \\ -2.837/_{323} & 139/_{1.615} & 1 \end{pmatrix}$$

COLUMN 3:

$$\frac{Row_3}{\left/\left(11.606\right/_{323}\right)} : \begin{pmatrix} 1 & 0 & 2.837/_{323} \\ 0 & 1 & -139/_{1.615} \\ 0 & 0 & 1 \end{pmatrix} : \begin{pmatrix} 1 & 0 & 2.837/_{323} \\ 0 & 1 & -139/_{1.615} \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1.779}{_{323}} & -29/_{323} & 0 \\ -29/_{323} & 12/_{8.075} & 0 \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \rightarrow Row_3 \cdot \begin{pmatrix} 139/_{1.615} \\ -29/_{323} & 12/_{8.075} \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \rightarrow Row_3 \cdot \begin{pmatrix} 139/_{1.615} \\ -29/_{323} & 12/_{8.075} \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \rightarrow Row_3 \cdot \begin{pmatrix} 139/_{1.615} \\ -29/_{323} & 12/_{8.075} \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \rightarrow Row_3 \cdot \begin{pmatrix} 139/_{1.615} \\ -29/_{323} & 12/_{8.075} \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} = \begin{pmatrix} 7.65474 & -6.431/_{58.030} & -2.837/_{11.606} \\ -29/_{323} & 12/_{8.075} & 0 \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \rightarrow Row_3 \cdot \begin{pmatrix} 139/_{1.615} \\ -2.837/_{11.606} \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \rightarrow Row_3 \cdot \begin{pmatrix} 139/_{1.615} \\ -2.837/_{11.606} \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \rightarrow Row_3 \cdot \begin{pmatrix} 139/_{1.615} \\ -2.837/_{11.606} \\ -$$

$$\begin{pmatrix} 7,65474 & -6.431/_{58.030} & -2.837/_{11.606} \\ -6.431/_{58.030} & 491/_{290.150} & 139/_{58.030} \\ -2.837/_{11.606} & 139/_{58.030} & 323/_{11.606} \end{pmatrix} \cdot \begin{pmatrix} \Sigma y = 1.011 \\ \Sigma x_1 \cdot y = 61.685 \\ \Sigma x_2 \cdot y = 3.581 \end{pmatrix} \rightarrow \begin{pmatrix} 7.738,949767 & -6.836,054368 & -875,3486989 \\ -112,0410305 & 104,3850939 & 8,577615027 \\ -247,13113976 & 147,7548682 & 99,66077891 \end{pmatrix} \rightarrow \begin{pmatrix} \boldsymbol{\beta}_0 = \mathbf{27},\mathbf{5467001} \\ \boldsymbol{\beta}_1 = \mathbf{0},\mathbf{921678427} \\ \boldsymbol{\beta}_2 = \mathbf{0},\mathbf{2842495075} \end{pmatrix}$$

- $\text{-}\textit{Ecuación m\'ultiple} : \ y = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n \rightarrow y = \textbf{27}, \textbf{5467001} + \textbf{0}. \ \textbf{921678427} \cdot x_1 + \textbf{0}, \textbf{2842495075} \cdot x_2$
- * Estimación: $\begin{cases} x_1 = 60 \\ x_2 = 4 \end{cases} \rightarrow y = 27,5467001 + 0.921678427 \cdot 60 + 0,2842495075 \cdot 4 = \textbf{83},\textbf{9844}$

Estudiante	Calificación de estadística (y)	Calificación del examen (x_1)	Clases perdidas (x_2)	$\widehat{y} = 27,54+0,92 \cdot x_1 + 0,28 \cdot x_2$	$e = y - \widehat{y}$	e^2	$(\widehat{y} - \overline{y})^2$
1	85	65	1	87,74004736	+2,74004736	7,507859535	12,18043058
2	74	50	7	75,620368	-1,620368	2,625592455	74,47054846
3	76	55	5	5 79,66026112		13,39751147	21,065570299
4	90	65	2	88,02429687	+1,97570313	3,903402858	14,24531686
5	85	55	6	79,94451063	+5,05548937	25,5579277	18,53723872
6	87	70	3	92.91693851	-5,91693851	35,01016133	75,11582314
7	94	65	2	88,02429687	+5,97570313	35,7090279	14,24531686
8	98	70	5	93,48543753	+4,51456247	20,3812743	85,29330637
9	81	55	4	79,37601162	+1,62398838	2,637338258	23,75576273
10	91	70	3	92,91693851	-1,91693851	3,674653251	75,11582314
11	76	50	1	73,91487096	+2,08512904	4,347763113	106,8148923
12	74	55	4	79,37601162	-5,37601162	28,90150094	23,75576273
	1.011	725	43	-	-	$SCE = \sum e^2 = 183,6540$	$SCR = \sum = 544,5959$

$$\rightarrow n = 12 = n^{\circ} \ obs.muestra \#\#\# k = 2 = n^{\circ} \ variables \ independientes \#\#\# \ \bar{y} = \frac{\Sigma y}{n} = \frac{1.011}{12} = 84,25 = Media$$

 \circ SCE = Suma de cuadrados del error \circ SCR = Suma de cuadrados de la regresión

- Error Estándard de la estimación Múltiple $(S_{y_n} ... k) = \sqrt{\frac{SCE}{n (k + 1)}} = \sqrt{\frac{183,6540}{12 (2 + 1)}} = 4,517300794$
- Suma Total de Cuadrados (STC) = SCE + SCR = 183,6540 + 544,5959 = 728,2499831
- Coeficiente de determinación múltiple $(R^2) = \frac{SCR}{STC} = \frac{544,5959}{728,2499} = 0,747814 \approx 74,78\%$
- Coeficiente ajustado de determinación múltiple $\left(R_{ajustado}^2\right) = 1 \frac{(1-R^2)\cdot(n-1)}{n-k-1} = 1 \frac{(1-0.747814)\cdot(12-1)}{12-2-1} = 0.6917733246 \approx \textbf{69.18}\%$
- Coeficiente de correlación múltiple $(R) = \sqrt{R^2} = \sqrt{0.7478145383} = 0.8647627064 \rightarrow Cerca de + 1 = correlación positiva fuerte = estrecha relación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación entre variables de correlación positiva fuerte = estrecha relación entre variables de correlación entre variables de correla$