Template Week 1 – Bits & Bytes

Student number: 568403 (Kiarash Delavar)

Assignment 1.1: Bits & Bytes Intro:

1- What are Bits & Bytes?

The Bit: is the smallest unit of data in a computer, representing a value of either **0 or 1**. It serves as the basic building block of binary code, the language of computers, where each bit signifies a binary choice such as On or Off or True or False. Bits are fundamental to all digital data representation.

Bytes: A byte consists of 8 bits and is the standard unit used to represent a character of data such as a letter or symbol. It can represent 256 different values (0-255 in decimal) and is commonly used to measure file sizes and memory capacity. Hierarchically, data is often measured in bytes, kilobytes (KB), megabytes (MB), gigabytes (GB), and terabytes (TB).

2- What is a nibble?

Nibble: is a small piece of data in computers that's made up of 4 bits. It's often used to represent a single number or letter in the hexadecimal system (it's like half of a byte).

3- What relationship does a nibble have with a hexadecimal value?

A nibble is 4 bits and each hexadecimal digit is also 4 bits. So one **nibble** can represent exactly one hexadecimal digit.

4- Why is it wise to display binary data as hexadecimal values?

Binary numbers are long and hard to read so it's easier to use hexadecimal. Each hexadecimal digit represents 4 bits, making it a quick way to shorten and understand long binary numbers.

5- What kind of relationship does a byte have with a hexadecimal value?

A byte is 8 bits which is two nibbles. Since each nibble matches one hexadecimal digit a byte can be represented by two hexadecimal digits.

6- An IPv4 subnet is 32-bit, show with a calculation why this is the case.

An IPv4 address is made up of four numbers separated by dots. Each of these four numbers is one octet meaning it has 8 bits. Since there are four octets, an IPv4 address has a total of 8×4=32 bits.

Assignment 1.2: Your favourite colour

1- Hexadecimal colour code: 6e1fab

Assignment 1.3: Manipulating binary data

Colour	Colour code hexadecimaal (RGB)	Big Endian	Little Endian
RED	FF0000	FF 00 00	00 00 FF
GREEN	00FF00	00 FF 00	00 FF 00
BLUE	0000FF	00 00 FF	FF 00 00
WHITE	FFFFFF	FF FF FF	FF FF FF
Favourite (Purple) (previous assignment)	6E1FAB	6E 1F AB	AB 1F 6E

Screenshot modified BMP file in hex editor:

Before editing my favourite colour code:

After editing my favourite colour code:

This is a "BMP" file:

As you can see in the last picture, the white colour is replaced by my favourite colour (purple).

Bonus point assignment - week 1

Convert your student number to a hexadecimal number and a binary number.

```
568403 \div 2 = 284201, remainder 1
284201 \div 2 = 142100, remainder 1
142100 \div 2 = 71050, remainder 0
71050 \div 2 = 35525, remainder 0
35525 \div 2 = 17762, remainder 1
17762 \div 2 = 8881, remainder 0
8881 ÷ 2 = 4440, remainder 1
4440 \div 2 = 2220, remainder 0
2220 ÷ 2 = 1110, remainder 0
1110 \div 2 = 555, remainder 0
555 \div 2 = 277, remainder 1
277 \div 2 = 138, remainder 1
138 \div 2 = 69, remainder 0
69 \div 2 = 34, remainder 1
34 \div 2 = 17, remainder 0
17 \div 2 = 8, remainder 1
8 \div 2 = 4, remainder 0
4 \div 2 = 2, remainder 0
2 \div 2 = 1, remainder 0
1 \div 2 = 0, remainder 1
```

My student number in binary: 10001011010101000011

Explain in detail that the calculation is correct. Use the PowerPoint slides of week 1:

The explanation is in the picture, which I will explain in the classroom.

Ready? Save this file and export it as a pdf file with the name: week1.pdf

Full Name: Kiarash Delavar

Student Number: 568403

Teacher Name: Mr. Manasse Siekmans

Course: IT Fundamentals