Devoir Maison nº 6

Exercice (facultatif) - Grand théorème de Fermat pour n=4

Le but de cet exercice est de prouver qu'il n'existe pas de solutions dans \mathbb{Z} non triviales (i.e. avec $XYZ \neq 0$) à l'équation $X^4 + Y^4 = Z^4$. On se place dans un premier temps dans \mathbb{N} : on raisonne par l'absurde et on suppose qu'il existe trois entiers naturels X, Y, Z tous non nuls solutions de cette équation, et on veut arriver à une absurdité.

- 1. Justifier qu'il existe x, y, z dans \mathbb{N}^* avec x et y premiers entre eux tels que $x^4 + y^4 = z^2$. On pourra utiliser et généraliser l'exercice 15 du poly.
- 2. D'après l'exercice 49, il existe u et v dans \mathbb{N}^* premiers entre eux tels que

$$x^{2} = u^{2} - v^{2}, y^{2} = 2uv, z = u^{2} + v^{2}$$
 ou $x^{2} = 2uv, y^{2} = u^{2} - v^{2}, z = u^{2} + v^{2}$

On supposera dans la suite qu'on est dans le premier cas. Justifier que u et v sont de parité différente. En étudiant la congruence de x^2 modulo 4, prouver que u est impair et v pair : il existe donc $w \in \mathbb{N}^*$ tel que v = 2w.

- 3. En exprimant y^2 en fonction de u et de w, prouver que u et w sont des carrés (on pourra utiliser l'exercice 15 du poly).
- 4. Justifier que x et v sont premiers entre eux. Calculer $x^2 + v^2$, et en déduire qu'il existe b et c premiers entre eux tels que v = 2bc et $u = b^2 + c^2$.
- 5. Justifier qu'il existe x_1 et y_1 dans \mathbb{N}^* premiers entre eux tels que $b=x_1^2$ et $c=y_1^2$.
- 6. Exhiber une solution (x_1, y_1, z_1) avec $x_1y_1z_1 \neq 0$, à l'équation $x^4 + y^4 = z^2$, avec $0 < z_1 < z$, et aboutir à une absurdité.
- 7. Justifier que l'équation de Fermat n'admet aucune solution non triviale dans \mathbb{Z} .

Problème - Presque le théorème des nombres premiers

Si $n \in \mathbb{N}$, $\pi(n)$ désigne le nombre de nombres premiers inférieurs ou égaux à n. Le but de ce problème est de donner une version faible du théorème des nombres premiers. Le théorème des nombres premiers est un résultat difficile stipulant que $\pi(n) \sim \frac{n}{\ln(n)}$ (nous verrons les équivalents au second semestre) c'est-à-dire que

$$\pi(n) \times \frac{\ln(n)}{n} \xrightarrow[n \to +\infty]{} 1$$

Nous nous contenterons dans ce devoir d'un résultat plus faible : le but de ce devoir est de prouver que, pour tout $n \geq 9$,

$$\ln(2) \times \frac{n}{\ln(n)} \le \pi(n) \le e \times \frac{n}{\ln(n)}$$

Commençons par quelques notations:

- Comme en classe, on note \mathbb{P} l'ensemble des nombres premiers.
- Dans tous le sujet, la lettre p désignera exclusivement un nombre premier, y compris lorsque la lettre p est utilisée comme indice d'une somme ou d'un produit. Par exemple, si x est un réel quelconque, la notation $\sum_{p \le x} \frac{1}{p}$ désigne la

somme des inverses des nombres premiers p inférieurs ou égaux à x. Par conséquent, on fera bien attention à ne jamais appeler un indice p sauf lorsque cela désignera un nombre premier.

- Pour tout entier $n \ge 0$, on note $\pi(n)$ le nombre de nombres premiers inférieurs ou égaux à n. Par exemple, $\pi(0) = \pi(1) = 0$, $\pi(2) = 1$, $\pi(3) = \pi(4) = 2$ etc. Cela va sans dire mais je le dis quand même : $\pi(n)$ n'a absolument aucun rapport avec le nombre π !
- Pour tout $n \ge 1$, on note $\Delta_n = PPCM(1, 2, ..., n)$.
- Étant donnés un entier $n \ge 1$ et un nombre premier p, on rappelle que la valuation p-adique de n, notée $v_p(n)$, est l'exposant de p dans la décomposition en produit de facteurs premiers de n. Par exemple, si on prend $n=350=2\times 5^2\times 7$, on a $v_2(n)=v_7(n)=1$, $v_5(n)=2$ et $v_p(350)=0$ pour tout nombre premier $p\ne 2,5,7$.
- On rappelle les propriétés suivantes :

Page 1/3 2023/2024

MP2I Lycée Faidherbe

* Pour tout $n \geq 1$, la suite $(v_p(n))_{p \in \mathbb{P}}$ ne contient qu'un nombre fini de termes non nuls, de sorte que l'on peut écrire

$$n = \prod_{p \in \mathbb{P}} p^{v_p(n)}$$

ce produit pouvant être alors considéré comme un produit fini. Cette écriture n'est alors rien d'autre que la décomposition en produit de facteurs premiers de n.

- * Pour tous n, m entiers naturels non nuls et $p \in \mathbb{P}$, on a : $v_p(nm) = v_p(n) + v_p(m)$.
- * Enfin, pour tous a et b entiers naturels non nuls, $v_p(a \vee b) = \max(v_p(a), v_p(b))$.

Les deux dernières propriétés se généralisent aisément à un plus grand nombre d'entiers.

Partie I - Minoration de la fonction π

1. On se donne dans cette question et la suivante deux entiers naturels a et b vérifiant $1 \le b \le a$ et on pose

$$I(b,a) = \int_0^1 x^{b-1} (1-x)^{a-b} \, \mathrm{d}x$$

- (a) Expliciter I(1, a) en fonction de a.
- (b) Soit $y \in [0; 1[$. À l'aide du binôme de Newton, montrer que :

$$\int_0^1 (1 - x + xy)^{a-1} dx = \sum_{k=1}^a {a-1 \choose k-1} y^{k-1} I(k, a)$$

(c) En calculant maintenant directement l'intégrale, prouver que

$$\int_0^1 (1 - x + xy)^{a-1} \, \mathrm{d}x = \frac{1}{a} \sum_{k=1}^a y^{k-1}$$

(d) En admettant que deux fonctions polynomiales qui coïncident en une infinité de points ont les mêmes coefficients, prouver que :

$$I(b,a) = \frac{1}{a\binom{a-1}{b-1}} = \frac{1}{b\binom{a}{b}}$$

2. (a) Montrer que

$$I(b,a) = \sum_{k=0}^{a-b} (-1)^k \binom{a-b}{k} \frac{1}{k+b}$$

- (b) En déduire que $I(b,a) \times \Delta_a \in \mathbb{N}$. On rappelle que Δ_a est le PPCM des entiers $1,2,\ldots,a$.
- (c) Prouver finalement que l'entier $b \binom{a}{b}$ divise l'entier Δ_a .

On se donne dans la suite un entier $n \geq 9$.

- 3. (a) Justifier que Δ_{2n} divise Δ_{2n+1} . En déduire que les entiers $n \binom{2n}{n}$ et $(2n+1) \binom{2n}{n}$ divisent l'entier Δ_{2n+1} .
 - (b) Justifier que n et 2n+1 sont premiers entre eux. En déduire que $n(2n+1)\binom{2n}{n}$ divise Δ_{2n+1} .
- 4. (a) On rappelle (cf. exercice 44 du chapitre 3) que, pour tout $k \in [0; 2n]$

$$\binom{2n}{k} \le \binom{2n}{n}$$

Montrer que $(2n+1)\binom{2n}{n} \geq 4^n$. On pourra développer l'égalité $4^n = (1+1)^{2n}$.

- (b) En déduire que $\Delta_{2n+1} \ge n4^n$.
- (c) Montrer que $\Delta_n \geq 2^n$ (on rappelle que $n \geq 9$). Cette inégalité est-elle encore vraie pour n = 7 et n = 8?
- 5. (a) Justifier que

$$\Delta_n = \prod_{p \le n} p^{v_p(\Delta_n)}$$

Page 2/3 2023/2024

MP2I Lycée Faidherbe

- (b) Soit $p \in \mathbb{P}$. En utilisant le fait que $v_p(\Delta_n) = \max(v_p(1), \dots, v_p(n))$, montrer que $p^{v_p(\Delta_n)} \le n$.
- (c) En déduire que $\Delta_n \leq n^{\pi(n)}$.
- 6. Montrer que pour tout $n \geq 7$, on a :

$$\pi(n) \ge \ln(2) \times \frac{n}{\ln(n)}$$

Pour quels entiers $n \in \{2; 3; 4; 5; 6\}$ cette inégalité est-elle encore vraie? On pourra utiliser la calculatrice dans cette question.

Partie II - Majoration de la fonction π

- 1. (a) Montrer que pour tout $m \in \mathbb{N}$, $\binom{2m+1}{m} \le 4^m$.
 - (b) Soit p un nombre premier vérifiant m+1 . Montrer que <math>p divise $\binom{2m+1}{m}$. En déduire que

$$\prod_{m+1$$

- (c) Montrer par récurrence que pour tout $n \geq 2$, $\prod_{p \leq n} p \leq 4^n$.
- 2. (a) Soit $k \ge 2$. Montrer que $\int_{k-1}^k \ln(t) dt \le \ln(k) \le \int_k^{k+1} \ln(t) dt$. On s'inspirera du dessin :

- (b) En déduire que $\ln(k-1) \le \int_{k-1}^k \ln(t) \, \mathrm{d}t \le \ln(k)$.
- (c) Montrer que pour tout $m \ge 2$ on a $\ln((m-1)!) \le m \ln(m) m + 1 \le \ln(m!)$ (on pourra utiliser librement le fait que $x \mapsto x \ln(x) x$ est une primitive de la fonction ln). En déduire que

$$e\left(\frac{m}{e}\right)^m \le m! \le me\left(\frac{m}{e}\right)^m$$

3. Déduire de ce qui précède que, pour tout $n \geq 2$, on a $\pi(n)! \leq 4^n$ puis que :

$$\pi(n) \times \ln(\pi(n)) - \pi(n) \le n \ln(4)$$

4. On souhaite montrer, à partir du résultat précédent, que pour tout entier $n \geq 3$, on a :

$$\pi(n) \le e \times \frac{n}{\ln(n)}$$

Pour cela, on raisonne par l'absurder et on suppose qu'il existe un entier $n_0 \ge 3$ tel que $\pi(n_0) > e \times \frac{n_0}{\ln(n_0)}$.

(a) Donner le tableau de variations de $f: x \mapsto x \ln(x) - x \sin[1; +\infty[$. En déduire que :

$$\frac{e - \ln(4)}{e} < \frac{\ln(\ln(n_0))}{\ln(n_0)}$$

(b) Montrer que la fonction $x \mapsto \frac{\ln(x)}{x}$ est majorée par e^{-1} sur \mathbb{R}_+^* et conclure.

Page 3/3 2023/2024