CSENIONGI	DATABASE MANAGEMENT SVSTEMS	_	-	۵	L T P S J	_	ပ	
2021120		m	0	2	0	3 0 2 0 0	4	
Pre-requisite None	None							
Co-requisite	None							
Preferable	MATH1041. Discrete Mathematics							
exposure								

Course Description:

This course provides fundamental and practical knowledge on database concepts by means of organizing the information, storing and retrieve the information in an efficient and a flexible way from a well-structured relational model. This course ensures that every student will gain experience in creating data models and database design

Course Educational Objectives:

- Focus the role of a database management system in an organization and construct ER Diagram
 - Demonstrate basic database concepts, including the structure and operation of the relational data model and basic database queries using SQL
- Applying advanced database queries using Structured Query Language (SQL)
- Evaluating logical database design principles and database normalization
- Demonstrate the concept of a database transaction, concurrency control, and data object locking and protocols

9 hours, P - 6 hours Introduction to DBMS and Database Design UNIT 1

DBMS structure, Types of Databases – Hierarchical, Network, Relational, Key-Value, Object Introduction to DBMS: File system vs DBMS, advantages of DBMS, storage data, queries, Oriented, XML DB

Overview of File Structures in database

Data base Design: data models, the importance of data models.

E-R model: Entities, attributes and entity sets, relationship and relationship set, mapping cardinalities, keys, features of ER model, conceptual database design with ER model.

9 hours, P	hours
Relational Model and Basic SQL	
UNIT 2	

Relational model: Integrity constraints over relations and enforcement, querying relation data, logical database design, views, destroying/altering tables and views.

Basic SQL: Introduction to SQL, Basic SQL Queries: DML, DDL, DCL, TCL

3 Advances SQL and PL/SQL

9 hours, P - 6 hours

Structured Query Language (SQL): Select Commands, Union, Intersection, Except, Nested Queries, Aggregate Operators, Null values, Relational set operators, SQL join operators

Relational Algebra(RA): Selection, Projection, Set operations, Joins

Relational Calculus (TRC, DRC): Tuple Relational Calculus, Domain Relational Calculus

PL/SQL, Assertions, Triggers

9 hours, P - 6 hours **Schema Refinement and Normal Forms**

Schema Refinement and Normal Forms: Introduction to Schema Refinement, Functional

Dependencies, Reasoning about Functional Dependencies. Normal Forms, Properties of

Decomposition, Normalization, different types of dependencies.

9 hours, P - 6 hours Introduction to Transaction Management, **Concurrency Control and Crash Recovery** Introduction to Transaction Management: ACID properties, Transactions and Schedules, Concurrent Execution of Transactions, Lock-Based Concurrency Control.

Management, Lock Conversions, Dealing with Deadlocks, Concurrency control without ç Concurrency Control: 2PL, Serializability and Recoverability, Introduction locking. Crash Recovery: Aries, Recovering from a System Crash.

DBMS LAB

- 1. Developing a sample ER model for the specified database.
- 2. Create a database and learn to set various constraints (can use Sailors example from textbook1, University example from textbook2)
- 3. Familiarization of SQL DDL commands-create, alter, drop, rename and truncate
- 4. Use of DML commands-select, insert, update and delete
 - 5. Use of different of operators for nested sub-queries.
- 6. Use of Joins
- 7. Use of grouping functions
- 8. Creating Views
- 9. PL/SQL programming environment
- 10. Declaring triggers and use of cursors.

Lab infrastructure

- 1. Oracle Server and Client System
- 2. SQL Server
- 3. MS Access

Textbooks:

1. Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, McGraw-Hill, 3e, 2014

Note: File Structure refer Chapter 8

2. H.F.Korth and A.silberschatz, Database System Concepts, McGraw-Hill, 6e, 2011

References:

- 1. D. Ullman, Principles of Database and Knowledge Base Systems, Vol 1,1/e, Computer Science Press, 1990.
- 2. RamezElmasri, Shamkant B. Navathe, Fundamentals of Database Systems, Pearson Education, 7e, 2016.

Course Outcomes:

After successful completion of the course the student will be able to:

- 1. Understand database design principles
- 2. Apply data Modelling using E-R diagrams
- . Create refined data models using normalization
- 4. Build database queries using Structured Query Language
- 5. Understand the transaction management and concurrency control

CO-PO Mapping:

P01	CO1 3	CO2	603	CO4	502
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3			2	33	
P03		3	2		3
P04		2			
P05					2
P06	П				
P07					
P08					
P09		2			
PO10					
P011					
P012					7
PS01	2			2	
PS02		2			7
PS03			\leftarrow		

Note: 1 - Low Correlation 2 - Medium Correlation 3 - High Correlation

APPROVED IN:

ACADEMIC COUNCIL: 22nd AC (01-04-2022) BOS: 06-09-2021

SDG No. & Statement:

SDG Justification: