10/549302 JC05 Rec'd PCT/PTO 1 5 SEP 2005

SEQUENCE LISTING

			U-20-110-				001
	<110>	Wyeth Holdings (Corporation	ר			
	<120>	MUTANT CHOLERA E	HOLOTOXIN A	AS AN ADJUVA	ANT AND AN A	ANTIGEN CARRI	ER
	<130>	AM100485					
	<160>	8					
	<170>	PatentIn version	n 3.2				
	<210><211><211><212><213>	1 720 DNA Vibrio cholerae					
	<400>	1					
		gata agttatatcg o	ggcagattct	agacctcctg	atgaaataaa	gcagtcaggt	60
	ggtctta	atgc caagaggaca q	gagtcactac	tttgaccgag	gtactcaaat	gaatatcaac	120
	ctttate	gatc atgcaagagg a	aactcagacg	ggatttgtta	ggcacgatga	tggatatgtt	180
	tccacct	caa ttagtttgag a	aagtgcccac	ttagtgggtc	aaactatatt	gtctggtcat	240
	tctact	att atatatatgt t	tatagccact	gcacccaaca	tgtttaacgt	taatgatgta	300
	ttagggg	gcat acagteetea t	ccagatgaa	caagaagttt	ctgctttagg	tgggattcca	360
	tactcc	caaa tatatggatg c	gtatcgagtt	cattttgggg	tgcttgatga	acaattacat	420
	cgtaata	aggg gctacagaga t	agatattac	agtaacttag	atattgctcc	agcagcagat	480
	ggttato	ggat tggcaggttt c	cctccggag	catagagctt	ggagggaaga	gccgtggatt	540
	catcato	gcac cgccgggttg t	gggaatgct	ccaagatcat	cgatgagtaa	tacttgcgat	600
	gaaaaaa	accc aaagtctagg t	gtaaaattc	cttgacgaat	accaatctaa	agttaaaaga	660
	caaatat	ttt caggetatca a	atctgatatt	gatacacata	atagaattaa	ggatgaatta	720
<210> 2 <211> 240 <212> PRT <213> Vibrio cholerae							
	<400>	2					
	Asn Asp 1	o Asp Lys Leu Tyr 5	Arg Ala A	sp Ser Arg 10	Pro Pro Asp	Glu Ile 15	
	Lys Glr	n Ser Gly Gly Leu 20	_	arg Gly Gln 5	Ser Glu Tyr 30	Phe Asp	

Arg Gly Thr Gln Met Asn Ile Asn Leu Tyr Asp His Ala Arg Gly Thr 35 40 45

Gln Thr Gly Phe Val Arg His Asp Asp Gly Tyr Val Ser Thr Ser Ile 55 Ser Leu Arg Ser Ala His Leu Val Gly Gln Thr Ile Leu Ser Gly His 70 75 Ser Thr Tyr Tyr Ile Tyr Val Ile Ala Thr Ala Pro Asn Met Phe Asn 85 90 Val Asn Asp Val Leu Gly Ala Tyr Ser Pro His Pro Asp Glu Gln Glu 105 Val Ser Ala Leu Gly Gly Ile Pro Tyr Ser Gln Ile Tyr Gly Trp Tyr 115 Arg Val His Phe Gly Val Leu Asp Glu Gln Leu His Arg Asn Arg Gly 130 135 Tyr Arg Asp Arg Tyr Tyr Ser Asn Leu Asp Ile Ala Pro Ala Ala Asp 160 150 Gly Tyr Gly Leu Ala Gly Phe Pro Pro Glu His Arg Ala Trp Arg Glu 165 170 Glu Pro Trp Ile His His Ala Pro Pro Gly Cys Gly Asn Ala Pro Arg 180 185 Ser Ser Met Ser Asn Thr Cys Asp Glu Lys Thr Gln Ser Leu Gly Val 195 200 Lys Phe Leu Asp Glu Tyr Gln Ser Lys Val Lys Arg Gln Ile Phe Ser 210 Gly Tyr Gln Ser Asp Ile Asp Thr His Asn Arg Ile Lys Asp Glu Leu 225 230 <210> 3 <211> 20 <212> DNA <213> Artificial

C. . . .

<220>

<400> 3

<223> Synthetic oligo

aagttatata aggcagattc

20

```
f... * *
```

```
<210> 4
<211> 18
<212> DNA
<213> Artificial
<220>
<223> Synthetic nucleotide sequence
<400> 4
cagattctaa acctcctg
                                                                       18
<210> 5
<211> 22
<212> DNA
<213> Artificial
<220>
<223> synthetic oligo
<220>
<221> misc_feature
<222>
      (9) . . (9)
<223> nucleotide variation
<400> 5
gacagagtna gtactttgac cg
                                                                       22
<210> 6
<211> 22
<212> DNA
<213> Artificial
<220>
<223> synthetic oligo
<220>
<221> misc_feature
<222> (8)..(8)
<223> nucleotide variation
<220>
<221> misc feature
<222> (14)..(14)
<223> nucleotide variation
<400> 6
cagatganca agangtttct gc
                                                                      22
<210> 7
<211> 22
<212> DNA
<213> Artificial
<220>
<223> synthetic oligo
```

```
<220>
<221> misc_feature
<222> (8)..(8)
<223> nucleotide variation

<220>
<221> misc_feature
<222> (14)..(14)
<223> nucleotide variation

<400> 7
cagatganca agangttct gc

<210> 8
<211> 7
<212> PRT
<213> Homo sapiens

<400> 8

Asp Ala Glu Phe Arg His Asp
1 5
```

22

at or a second