FULL FRIENDLY INDEX SETS AND FULL PRODUCT-CORDIAL INDEX SETS OF TWISTED CYLINDERS*

Wai Chee Shiu^{1,†} and Sin-Min Lee^{2,‡}

¹Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, China ²Department of Computer Science, San José State University, San José, CA 95192, USA

Abstract

Let G=(V,E) be a connected simple graph. A labeling $f:V\to\mathbb{Z}_2$ induces two edge labelings $f^+,f^*:E\to\mathbb{Z}_2$ defined by $f^+(xy)=f(x)+f(y)$ and $f^*(xy)=f(x)f(y)$ for each $xy\in E$. For $i\in\mathbb{Z}_2$, let $v_f(i)=|f^{-1}(i)|,\ e_{f^+}(i)=|(f^+)^{-1}(i)|$ and $e_{f^*}(i)=|(f^*)^{-1}(i)|$. A labeling f is called friendly if $|v_f(1)-v_f(0)|\leq 1$. For a friendly labeling f of a graph G, the friendly index of G under f is defined by $i_f^+(G)=e_{f^+}(1)-e_{f^+}(0)$. The set $\{i_f^+(G)\mid f$ is a friendly labeling of $G\}$ is called the full friendly index set of G. Also, the product-cordial index of G under f is defined by $i_f^*(G)=e_{f^*}(1)-e_{f^*}(0)$. The set $\{i_f^*(G)\mid f$ is a friendly labeling of $G\}$ is called the full product-cordial index set of G. In this paper, we will determine full friendly index sets and full product-cordial index sets of twisted cylinders.

2000 Mathematics Subject Classification: Primary 05C78; Secondary 05C25.

Keywords: Friendly labeling, friendly index set, product-cordial index, product-cordial index set, permutation cubic graph, twisted cylinders.

1. Introduction

In this paper, all graphs are simple and connected. All undefined symbols and concepts may be looked up from [1]. Let G=(V,E) be a connected simple graph. A labeling $f:V\to\mathbb{Z}_2$ induces two edge labelings $f^+,f^*:E\to\mathbb{Z}_2$ defined by $f^+(xy)=f(x)+f(y)$ and $f^*(xy)=f(x)f(y)$ for each $xy\in E$. For $i\in\mathbb{Z}_2$, let $v_f(i)=|f^{-1}(i)|,e_{f^+}(i)=|(f^+)^{-1}(i)|$ and $e_{f^*}(i)=|(f^*)^{-1}(i)|$. A labeling f is called *friendly* if $|v_f(1)-v_f(0)|\leq 1$. For a friendly labeling f

^{*}Received: Oct. 6, 2011; Accepted: Dec. 1, 2011.

This work is partially supported by FRG, Hong Kong Baptist University.

[†]E-mail address: wcshiu@hkbu.edu.hk (Corresponding author)

[‡]E-mail address: lee.sinmin35@gmail.com

of a graph G, the *friendly index* of G under f is defined by $i_f^+(G) = e_{f^+}(1) - e_{f^+}(0)$. The set

$$FFI(G) = \{i_f^+(G) \mid \text{is a friendly labeling of } G\}$$

is called the *full friendly index set* of G. The set of the absolute value of all friendly indices of G is called the *friendly index set* of G. Also the *product-cordial index* of G under G is defined by $i_f^*(G) = e_{f^*}(1) - e_{f^*}(0)$. The set

$$FPCI(G) = \{i_f^*(G) \mid f \text{ is a friendly labeling of } G\}$$

is called the *full product-cordial index set* of G. The set of the absolute value of all product-cordial indices of G is called the *product-cordial index set* of G. Throughout this paper, we will use the term 'labeling' to mean a vertex labeling whose values are taken from \mathbb{Z}_2 . Note that $i_f^+(G)$ and $i_f^*(G)$ can be extended to any labeling.

Friendly index set was initiated by Lee and Ng in 2004 [6]. More about friendly index sets of graphs can be found in [3,4,9]. Full friendly index set was first introduced by Shiu and Kwong [10] in 2007 (published in 2008). The friendly index sets or full friendly index sets of the graphs $P_m \times P_n$, $C_m \times C_n$ and $C_m \times P_n$ were found [8,10,12–14,16]. Recently Gao determined the full friendly index set of $P_m \times P_n$, but he used the terms 'edge difference set' instead of 'full friendly index set' and 'direct product' instead of 'Cartesian product' in [2]. Friendly index is related to the eigenvalues of a graph (interested readers please see [15]).

The full product-cordial index set was first introduced by Shiu and Kwong in 2011 [11]. They determined full product-cordial index set of torus and cycles. They also showed the relationship between the product-cordial index and the friendly index of regular graphs. More about product-cordial index sets of graphs can be found in [5,7]. Following is a result shown in [11].

Lemma 1.1 ([11, Corollary 2.3]). Let f be a friendly labeling of G with q edges. If G is an r-regular graph of even order. Then $i_f^*(G) = -(q + i_f^+(G))/2$.

So, it suffices to deal with either friendly index or product-cordial index of a graph.

For a fixed labeling f, a vertex v is called a k-vertex if f(v) = k, similarly an edge e is called a k-edge if $f^+(e) = k$, and an edge is called an (i, j)-edge if it is incident with an i-vertex and a j-vertex. We define the number of (i, j)-edges by $E_f(i, j)$.

Lemma 1.2 ([13, Lemma 2.1]). Let f be any labeling of a graph G with q edges. If the degree sum of 1-vertices is s, then $i_f^+(G) = 2s - 4E_f(1,1) - q$.

Lemma 1.3 ([13, Corollary 2.2]). Let f be any labeling of a graph G with q edges. If the degree sum of 1-vertices is s, then $E_f(0,0) = q - s + E_f(1,1)$.

Corollary 1.1 ([13, Corollary 2.3]). Let f be a friendly labeling of a graph G with q edges. If G is regular of even order, then $i_f^+(G) = q - 4E_f(1,1)$ and $E_f(0,0) = E_f(1,1)$.

2. Extreme Friendly Indices of Twisted Cylinders

A special class of cubic graphs is the class of permutation cubic graphs. For $m \ge 3$, a permutation cubic graph on 2m vertices is defined by taking two vertex-disjoint cycles on

m vertices and adding a perfect matching between the vertices of the two cycles. Namely, let two cycles be $C = x_1x_2\cdots x_mx_1$ and $C^* = y_1y_2\cdots y_my_1$ and let $\sigma \in \mathfrak{S}_m$, the permutation group on the set $\{1,2,\ldots,m\}$. The permutation cubic graph $\mathcal{P}(m;\sigma)=(V,E)$ is a simple graph with $V=\{x_1,\ldots,x_m,y_1,\ldots,y_m\}$ and $E=E(C)\cup E(C^*)\cup \{x_iy_{\sigma(i)}\mid 1\leq i\leq m\}$. Throughout this paper, we shall keep the above notation.

The *twisted cylinder* is a particular permutation cubic graph on 4n vertices $(n \ge 2)$. Namely, the twisted cylinder $TC(2n) = \mathcal{P}(2n;\sigma)$, where $\sigma = (1,2)(3,4)\cdots(2n-1,2n)$ (the product of n transpositions).

From Corollary 1.1, if f is a friendly labeling of TC(2n), then $i_f^+(TC(2n)) = 6n - 4E_f(1,1)$. If we label x_{2i} and y_{2i} by 1 for $1 \le i \le n$ and others by 0, then all edges of TC(2n) are (1,0)-edges. We shall denote this labeling by f_{\max} , since it induces the friendly index attaining the maximum value. That is $i_{\max}^+(TC(2n)) = 6n$. The next question is what the maximum number of (1,1)-edges can be made.

We define a friendly labeling of TC(2n) by $f_{\min}(x_i) = f_{\min}(y_i) = 1$ for $1 \le i \le n$ and $f_{\min}(x_i) = f_{\min}(y_i) = 0$ for $n + 1 \le i \le 2n$. Then we get that

$$E_{f_{\min}}(1,1) = \begin{cases} 3n-2, & n \text{ is even;} \\ 3n-3, & n \text{ is odd.} \end{cases}$$

Suppose g is a friendly labeling of TC(2n). Let G be the subgraph of TC(2n) induced by all 1-vertices. So G contains 2n vertices. Suppose there are v_i vertices of degree i in G, $0 \le i \le 3$. By Handshaking Lemma, we have $2E_g(1,1) = 2n - v_0 + v_2 + 2v_3 \le 2n + v_2 + 2v_3$. In order to maximize $E_g(1,1)$, v_0 must be zero. If all vertices of G lie on G or G, then G and G are G and G and G and G and G are G and G and G are G and G are G and G and G are G are G and G are G are G and G are G and G are G are G and G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G and G are G are G and G are G are G and G are G and G are G are G and G are G and G are G and G are G and G are G and G are G are G and G are G and G are G are G and G are G and G are G are G and G are G are G and G are G are G are G and G are G and G are G and G are G are G are G are G are G and G are G and G are G are G are G are G are G and G are G are G and G are G are G and G are G are G are G and G are G are G are G and G are G are G and G are G and G are G are G are G are G are G are G and G are G

For the case $n \ge 3$, in order to maximize $E_g(1,1)$ by finding a friendly labeling g, we may assume that both C and C^* contain 1-vertices. Thus, there are at least two 1-vertices, which lie on C (respectively C^*), of degree less than 3 in G. Hence $v_3 \le 2n-4$. So we have to maximize $E_g(1,1) = n + v_2/2 + v_3$ subject to $0 \le v_2 + v_3 \le 2n$ and $v_3 \le 2n-4$. It is easy to see that $E_g(1,1) = 3n-2$ is the algebraically maximum value only when $v_3 = 2n-4$ and $v_2 = 4$.

Suppose g is a friendly labeling with $E_g(1,1)=3n-2$, $n\geq 3$. Then both C and C^* contain 1-vertices, $v_2=4$ and $v_3=2n-4$. Hence the graphs $H=G\cap C$ and $H^*=G\cap C^*$ contain exactly two vertices of degree one, respectively, where G was defined above. That means H and H^* are paths. Without loss of generality, we may assume $H=x_1x_2\cdots x_k$ and $H^*=y_1y_2\cdots y_h$, where $2n>k\geq h>0$ and h+k=2n. Since x_k is of degree 2 in G and $k\geq h$, x_k is adjacent to y_{k-1} in G. This implies $k-1\leq h$ and hence k=h=n. Since x_n is adjacent to y_{n-1} , n must be even.

So when n is even, the labeling f_{\min} defined above attaches the maximum number of (1,1)-edges. Hence we have

Theorem 2.1. Suppose n is even. Then the maximum and minimum values of the friendly index of TC(2n) are 6n and -6n+8, respectively.

Now suppose n is odd. By the discussion before Theorem 2.1, $E_g(1,1) \le 3n-3$ for every friendly labeling g. It is attached by putting $g = f_{\min}$. So we have

Theorem 2.2. Suppose n is odd. Then the maximum and minimum values of the friendly index of TC(2n) are 6n and -6n+12, respectively.

3. Full Friendly Index Sets of Twisted Cylinders

In this section, we will determine the full friendly index sets of twisted cylinders. Firstly, we show a non-existence case.

Lemma 3.1 ([10, Corollary 2 or 5] [13, Lemma 2.9]). *In a cycle, the number of* 1-edges *must be even under any labeling.*

Corollary 3.1. In an even cycle, the numbers of 1-edges and 0-edges are even under any labeling.

Theorem 3.1. Suppose g is a friendly labeling of TC(2n) for $n \ge 2$. Then $E_g(1,1) \ne 1$.

*Proof*Suppose g is a friendly labeling of TC(2n) such that $E_g(1,1) = 1$. Note that $E_g(1,1) = E_g(0,0) = 1$ (Corollary 1.1). Let this edge be e. Hence e is a 0-edge.

- **Case 1.** Suppose $e \in E(C)$ or $e \in E(C^*)$. Without loss of generality, we may assume $e = x_1x_2 \in E(C)$ or $e = x_2x_3 \in E(C)$. For the first case, since C and $x_1x_2y_1y_2x_1$ are even cycles with only common edge e, by Corollary 3.1 each of them contains another 0-edge, which must be a (0,0)-edge. For the last case, since C and $x_2x_3y_4y_3y_2y_1x_2$ are even cycles with only common edge e, we obtain a similar result. Then $E_g(0,0) \ge 2$ which is a contradiction.
- **Case 2.** Suppose $e \notin E(C) \cup E(C^*)$. Without loss of generality, we may assume $e = x_1y_2$. Two even cycles $x_1x_2y_1y_2x_1$ and $x_1x_2x_3x_4y_3y_2x_1$ have two common edges e and x_1x_2 . Since x_1x_2 is not a (0,0)-edge, similar to Case 1 each of these two even cycles contains another 0-edge, which must be a (0,0)-edge. Hence $E_g(0,0) \ge 2$ which is a contradiction.

Lemma 3.2 ([13, Lemma 2.7]). Let f be a labeling of a graph H such that $E_f(1,1) = k$. Suppose $uv \notin E(H)$, f(u) = 1 and f(v) = 0. Let u is adjacent to a 1-vertices, and v is adjacent to b 1-vertices. Let g be a labeling obtained from f by swapping the labels of u and v. Then $E_g(1,1) = k - a + b$.

Lemma 3.3 ([13, Lemma 2.8]). Let f be a labeling of a graph H such that $E_f(1,1) = k$. Suppose $uv \in E(H)$, f(u) = 1 and f(v) = 0. Let u is adjacent to a 1-vertices, and v is adjacent to b 1-vertices. Let g be a labeling obtained from f by swapping the labels of u and v. Then $E_g(1,1) = k - a + b - 1$.

Procedure A. Start from the initial labeling f_{max} , for $1 \le i \le n$, swap the labels of y_{2i-1} and y_{2i} to get the labeling f_i .

Then by Lemma 3.3 $E_{f_1}(1,1)=2$, $E_{f_i}(1,1)=E_{f_{i-1}}(1,1)+1$ for $2 \le i \le n-1$, and $E_{f_n}(1,1)=n$.

Procedure B. Start from the labeling f_n , for $1 \le i \le n$, swap the labels of y_{2i-1} and x_{2i-1} to get the labeling g_i .

Then by Lemma 3.2 $E_{g_1}(1,1) = n+1$, $E_{g_i}(1,1) = E_{g_{i-1}}(1,1) + 1$ for $2 \le i \le n$. Note that $E_{g_n}(1,1) = 2n$.

Procedure C. Start from the labeling g_n , for $1 \le i \le n$, swap the labels of y_i and x_{n+i} to get the labeling h_i .

Then by Lemma 3.2 $E_{h_1}(1,1) = 2n-1$, $E_{h_i}(1,1) = E_{h_{i-1}}(1,1) + 1$ for $2 \le i \le n-1$. And $E_{h_n}(1,1) = 3n-2$ if n is even, $E_{h_n}(1,1) = 3n-3$ if n is odd.

After performing Procedures A, B and C, we obtain the following theorem.

Theorem 3.2. The full friendly index set of TC(2n) is

$$\{6n-4j \mid 0 \le j \le 3n-2, j \ne 1\}$$
 if n is even, $\{6n-4j \mid 0 \le j \le 3n-3, j \ne 1\}$ if n is odd.

Example 3.1. Consider the graph TC(6). Following the procedures A, B and C we have

So
$$FFI(TC(6)) = \{-6, -2, 2, 6, 10, 18\}$$
 and $FPCI(TC(6)) = \{-18, -14, -12, -10, -8, -6\}.$

Example 3.2. Consider the graph TC(8). Following the procedures A, B and C we have

So
$$FFI(TC(8)) = \{-16, -12, -8, -4, 0, 4, 8, 12, 16, 24\},\$$

 $FPCI(TC(8)) = \{-24, -20, -18, -16, -14, -12, -10, -8, -6, -4\}.$

By Lemma 1.1 we have

Corollary 3.2. The full product-cordial index set of TC(2n) is

$$\{-6n+2j \mid 0 \le j \le 3n-2, j \ne 1\}$$
 if n is even, $\{-6n+2j \mid 0 \le j \le 3n-3, j \ne 1\}$ if n is odd.

Corollary 3.3. *The friendly index set of* TC(2n) *is*

$$\{6n-4j \mid 0 \le j \le 3n/2, j \ne 1\}$$
 if n is even, $\{6n-4j \mid 0 \le j \le (3n-1)/2, j \ne 1\}$ if n is odd.

Corollary 3.4. The product-cordial index set of TC(2n) is

$$\{6n-2j \mid 0 \le j \le 3n-2, j \ne 1\}$$
 if n is even, $\{6n-2j \mid 0 \le j \le 3n-3, j \ne 1\}$ if n is odd.

References

- [1] J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan, 1976.
- [2] M. Gao, The edge difference sets of the direct product of two paths (in Chinese), *M. Phil. Thesis*, Fuzhou Unviersity, 2010.
- [3] H. Kwong and S-M. Lee, On friendly index sets of generalized books, *J. Combin. Math. Combin. Comput.*, **66** (2008), 43–58.
- [4] H. Kwong, S-M. Lee and H.K. Ng, On friendly index sets of 2-regular graphs, *Discrete Math.*, **308** (2008), 5522–5532.
- [5] H. Kwong, S-M. Lee and H.K. Ng, On product-cordial index sets of cylinders, *Congr. Numer.*, **206** (2010), 139–150.
- [6] S-M. Lee and H.K. Ng, On friendly index sets of bipartite graphs, *Ars Combin.*, **86** (2008), 257–271.
- [7] E. Salehi, PC-labeling of a graph and its PC-set, *Bull. Inst. Combin. Appl.*, **58** (2010), 112–121.
- [8] E. Salehi and D. Bayot, The friendly index set of $P_m \times P_n$, *Util. Math.*, **81** (2010), 121–130.
- [9] E. Salehi and S-M. Lee, On friendly index sets of trees, *Congr. Numer.*, **178** (2006), 173–183.
- [10] W.C. Shiu and H. Kwong, Full friendly index sets of $P_2 \times P_n$, Discrete Math., **308** (2008), 3688–3693.

- [11] W.C. Shiu and H. Kwong, Product-cordial index and friendly index of regular graphs, *Trans. Combin.*, **1** (2012), 15–20.
- [12] W.C. Shiu and M.H. Ling, Extreme friendly indices of $C_m \times C_n$, Congr. Numer., **188** (2007), 175–182.
- [13] W.C. Shiu and M.H. Ling, Full friendly index sets of Cartesian products of two cycles, *Acta Math. Sinica (English Series)*, **26** (2010), 1233–1244.
- [14] W.C. Shiu and F.S. Wong, Extreme friendly indices of $C_m \times P_n$, Congr. Numer., 197 (2009), 65–75.
- [15] W.C. Shiu and F.S. Wong, Full friendly index sets of cylinder graphs, *Australas. J. Combin.*, **52** (2012), 141–162.
- [16] F.S. Wong, Full friendly index sets of the Cartesian product of cycles and paths, *M. Phil. Thesis*, Department of Mathematics, Hong Kong Baptist University, 2010.