浙江大学 2014-2015 学年 秋冬 学期

研究生《计算理论》课程期终考试试卷

考试形式: 闭卷, 考试时间: 2015 年 1 月 20 日, 所需时间: 120 分钟

学号:					专业:			任课教师: 金小刚		
	题序	1	2	3	4	5	6	7	总分	
	得分									
	评卷人									

Zhejiang University Theory of Computation, Fall-Winter 2014 Final Exam

- 1. (24%) Determine whether the following statements are true or false. If it is true write a \bigcirc otherwise a \times in the bracket before the statement.
 - (a) () The complement of any finite language is recursive.
 - (b) () Let L be any language. Then the equivalence class [e] respect to language L (i. e. $x \approx_L y$, if for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$) that either contains no other strings, or contains infinitely many strings.
 - (c) () Let A be a context-free language and $B \subseteq A$, then B is context-free.
 - (d) () The language { " M_1 " " M_2 " | M_1 is a PDA and M_2 is a DFA and $L(M_1) \subseteq L(M_2)$ } is recursive, where " M_1 " and " M_2 " are encodings of PDA M_1 or DFA M_2 , just as Turing machine's encoding.
 - (e) ()There's a function φ such that φ can be computed by some Turing ma chines, yet φ is not a primitive recursive function.
 - (f) () Let A and B be two disjoint, recursively enumerable languages. If $\overline{A \cup B}$ is also be recursively enumerable, then both A and B are decidable.
 - (g) () Let A be a recursive language and B be a recursively enumerable language, then $A \oplus B$ is recursively enumerable, where $A \oplus B = (A B) \cup (B A)$.
 - (h) () Let $H_e = \{\text{``M''} | \text{Turing machine} M \text{ halts on empty string}\}$ and τ_1 and τ_2 are two recursive function. If $H_e \leq_{\tau_1} L$ and $H_e \leq_{\tau_2} \overline{L}$, then L is recursive enumerable but not recursive.
 - (i) () There are some languages that cannot be semi-decided by any Turing machine.
 - (j) () A language L is recursive if and only if it is Turing-enumerable.
 - (k) () For any languages A, B and C. If $A \leq_p C$, $B \leq_p C$ and $C \in \mathbb{P}$, then $A \oplus B \in \mathbb{P}$, where $A \oplus B = (A B) \cup (B A)$.
 - (l) () Let L be a language and $L \in \mathbb{NP}$. If there is a polynomial time reduction from language L to SAT, then L is \mathbb{NP} -complete.

2. (18%) On FA and Regular Languages

Say whether each of the following languages is regular or not regular? Prove your answers.

- (a) $L_1 = \{wxw^R | w \in \{a, b\}^+, \text{ and } x \in \{a, b\}\}.$
- (b) $L_2 = \{wxw^R | w \in \{a, b\}^+, \text{ and } x \in \{a, b\}^+\}.$

3. (18%) On PDA and Context-Free Languages

Let $L_3 = \{a^i b^j c^k | i, j, k \in \mathbb{N} \text{ and } j \le i + k\}.$

- (a) Give a context-free grammar for the language L_3 .
- (b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

Solution: (a)

(b) The PDA $M=(K,\Sigma,\Gamma,\Delta,s,F)$ is defined below:

	$-(q,\sigma,eta)$	(p, γ)
K = {}}		
$\Sigma = \{a, b, c\}$		
$\Gamma = \{$		
s =		
F ={} }		

4. (12%) On Turing Machines

Construct a Turing machine that decides the following language:

$$L_4 = \{uvcww^R | u, v, w \in \{a, b\}^*, \text{ and } |u| = |v|\}$$

When describing the Turing machines above, you can use the elementary Turing machines described in textbook. Always assume that the Turing machines start computation from the configuration $\triangleright \underline{\sqcup} x$ where $x \in \{a, b, c\}^*$ is the input string.

5. (12%) On Undecidability

Let

 $\mathbf{ODD}_{TM} = \{ "M" | M \text{ is a TM, and } L(M) \text{ doesn't contain any string of odd length} \}.$

Classify whether the languages ODD_{TM} and $\overline{ODD_{TM}}$ are recursive, recursively enumerable-but-not-recursive, or non-recursively enumerable, respectively. Prove your answers, but you may not simply appeal to Rice's theorem.

6. (16%) On \mathbb{P} and \mathbb{NP} Problems

Let 4-SAT be the satisfiability formulae in conjunctive normal form(CNF) with exactly four literals per clause, i.e.,

4-**SAT** = {F|F is a Boolean formula in 4-CNF that is satisfiable}.

- (a) Give the definition of the class \mathbb{P} and \mathbb{NP} .
- (b) Show that 4-**SAT** is a \mathbb{NP} problem.
- (c) Show that 4-**SAT** is \mathbb{NP} -Complete by giving a reduction from 3-**SAT**.