## **Exercice 1: 6 points (Application Affine et Factorisation)**

- 1 Soit la fonction affine f(x) = 2x + 1
  - a Calculer f(1) puis conclure
  - **b** Résoudre f(x) = 5 puis conclure
- Déterminer le taux d'accroissement de la fonction affine telle que : f(3) = 3 et f(2) = 4
- Factoriser au mieux:

$$\mathbf{A}(x) = x^3 - 8 + 2(x-2)^2$$

4 Factoriser, si possible, les trinômes suivants :

$$\mathbf{B}(x) = -2x^2 + 4x + 6 \qquad \mathbf{C}(x) = x^2 - 8x + 17 \qquad \mathbf{D}(x) = -9x^2 + 6x - 1$$

## Exercice 2 : 4 points (Résolution de systèmes par la méthode de Cramer)

Résolvons chacun des systèmes suivants en utilisant la méthode de Cramer :

a) 
$$\begin{cases} 3x - y + 2 = 0 \\ 3x - y - 1 = 0 \end{cases} \implies \begin{cases} 3x - y = -2 \\ 3x - y = 1 \end{cases}$$

Calcul du déterminant de :
$$\Delta = \begin{vmatrix} 3 & -1 \\ 3 & -1 \end{vmatrix} = (3)(-1) - (3)(-1) = -3 + 3 = 0.$$

$$\Delta_x = \begin{vmatrix} -2 & -1 \\ 1 & -1 \end{vmatrix} = (-2)(-1) - (1)(-1) = 2 + 1 = 3.$$

$$\Delta_y = \begin{vmatrix} 3 & -2 \\ 3 & 1 \end{vmatrix} = (3)(1) - (3)(-2) = 3 + 6 = 9.$$

$$\Delta_y = \begin{vmatrix} 3 & -2 \\ 3 & 1 \end{vmatrix} = (3)(1) - (3)(-2) = 3 + 6 = 9.$$

$$\Delta = 0, \Delta_x \neq 0$$
 et  $\Delta_y \neq 0$ 

 $\Delta = 0, \Delta_x \neq 0$  et  $\Delta_y \neq 0$ Le système n'admet pas de solution.

**b)** 
$$\begin{cases} 2y + x = 5 \\ -y + 7 = 4 \end{cases} \implies \begin{cases} x + 2y = 5 \\ 0 - y = -3 \end{cases}$$

$$\Delta = \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} = (1)(-1) - (0)(2) = -1.$$

Le déterminant est non nul, nous pouvons utiliser la règle de Cramer.

Calcul de 
$$x$$
:  $x = \frac{\Delta_x}{\Delta} = \frac{\begin{vmatrix} 5 & 2 \\ 3 & -1 \end{vmatrix}}{-1} = \frac{(5)(-1) - (3)(2)}{-1} = \frac{-5 - 6}{-1} = \frac{-11}{-1} = 11.$ 

Calcul de  $y$ :  $y = \frac{\Delta_y}{\Delta} = \frac{\begin{vmatrix} 1 & 5 \\ 0 & 3 \end{vmatrix}}{-1} = \frac{(1)(3) - (0)(5)}{-1} = \frac{3}{-1} = -3.$ 

Solution du système :  $S = \{(11, -3)\}$ .

c)  $\begin{cases} 3x - y = 2 \\ 2x - y = 1 \end{cases}$ 

$$\mathbf{c}) \quad \begin{cases} 3x - y = 2\\ 2x - y = 1 \end{cases}$$

$$\Delta = \begin{vmatrix} 3 & -1 \\ 2 & -1 \end{vmatrix} = (3)(-1) - (2)(-1) = -3 + 2 = -1.$$

Calcul de 
$$x$$
:  $x = \frac{\Delta_x}{\Delta} = \frac{\begin{vmatrix} 2 & -1 \\ 1 & -1 \end{vmatrix}}{-1} = \frac{(2)(-1) - (1)(-1)}{-1} = \frac{-2+1}{-1} = \frac{-1}{-1} = 1.$ 

Calcul de 
$$y$$
:  $y = \frac{\Delta_y}{\Delta} = \frac{\begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix}}{-1} = \frac{(3)(1) - (2)(2)}{-1} = \frac{3 - 4}{-1} = \frac{-1}{-1} = 1.$ 

Solution du système :  $S = \{(1, 1)\}$ .

$$\begin{cases} x + y = 3 \\ -y + 4 = x - 2 \end{cases} \implies \begin{cases} x + y = 3 \\ -x - y = -6 \end{cases} \implies \begin{cases} x + y = 3 \\ x + y = 6 \end{cases}$$

Calcul du déterminant de :

$$\Delta = \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix} = (1)(1) - (1)(1) = -1 + 1 = 0.$$

$$\Delta_x = \begin{vmatrix} 3 & 1 \\ 6 & 1 \end{vmatrix} = (3)(1) - (6)(1) = -3 + 6 = 3.$$

$$\Delta_y = \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} = (1)(6) - (1)(3) = -6 + 3 = -3.$$

$$\Delta = 0, \Delta_x \neq 0 \text{ et } \Delta_y \neq 0$$

Le système n'admet pas de solution.

## Exercice 3: 6 points (Équations et inéquations du second degré)

Résoudre dans  $\mathbb{R}$  les inéquations suivantes :

**a)** 
$$-x^2 - x + 2 = 0$$

**a)** 
$$-x^2 - x + 2 = 0$$
 **b)**  $-9x^2 + 12x - 3 = 0$ 

**c)** 
$$-3x^2 + 4x - 2 \le 0$$
 **d)**  $8x^2 + 34x + 21 < 0$ 

**d)** 
$$8x^2 + 34x + 21 < 0$$

**e)** 
$$2x^2 - x - 3 > 0$$
 **f)**  $4 - 9x^2 > 0$ 

**f)** 
$$4 - 9x^2 > 0$$

## **Exercice 4:** 4 points (Union et Intersection d'Intervalles)

**1** On considère I = [-1, 5] et J = [0, 7]. Déterminer  $I \cup J$  et  $I \cap J$ .

2 On considère K=[-7,-3] et L=[1,3]. Déterminer  $K\cup L$  et  $K\cap L$ .

