

Learning To Rank Hotels To Maximize Purchases

Abstract

- Many customers search and purchase hotels online.
- Companies such as Expedia make their profit from purchases made through their sites.
- The ultimate goal top of the list are the hotels that are most likely to be purchased by the user.

The Challenge

- Kaggle Predictive Modeling competitions.
- Expedia hotel ranking challenge through Kaggle.
- Data set used provided by Expedia.

Searching at Expedia

The Data

- Each query shows multiple samples
- Each sample represents a hotel.
- A sample provides information on the hotel's cost, ratings etc.
- There are features that describe the search query and user history – same for all samples in query.

The Data

orop_locat p	prop_locat p	rop_brancprop	_revie pro	p_starrating	prop_id	prop_cou visitor_	_his visitor_hi	st_visitor_loc site_i	id	date_time	srch_i	id
0.1238	2.56	1	4	4	53341	219 NULL	NULL	187	12	04/04/2013 08:32		
0.1028	2.83	1	4	4	56880	219 NULL	NULL	187	12	04/04/2013 08:32		
NULL	2.2	1	0	3	59267	219 NULL	NULL	187	12	04/04/2013 08:32		
0.0377	2.2	0	3.5	3	59526	219 NULL	NULL	187	12	04/04/2013 08:32		
0.0206	2.2	1	3	2	68914	219 NULL	NULL	187	12	04/04/2013 08:32		
0.1255	2.4	1	4.5	3	74474	219 NULL	NULL	187	12	04/04/2013 08:32		
0.2544	3.22	0	4	4	3625	219 NULL	NULL	219	5	31/12/2012 08:59		
NULL	2.71	0	4	4	11622	219 NULL	NULL	219	5	31/12/2012 08:59		
0.1924	3.22	1	4.5	5	11826	219 NULL	NULL	219	5	31/12/2012 08:59		
0.3729	3.26	0	4	3	22824	219 NULL	NULL	219	5	31/12/2012 08:59		
0.2508	3.09	0	4.5	5	37581	219 NULL	NULL	219	5	31/12/2012 08:59		
0.1692	3.09	1	4	4	39993	219 NULL	NULL	219	5	31/12/2012 08:59		
0.3582	3.26	0	4.5	4	46162	219 NULL	NULL	219	5	31/12/2012 08:59		
0.1417	3.09	1	4.5	4	49152	219 NULL	NULL	219	5	31/12/2012 08:59		
0.3246	3.26	0	4.5	4	56063	219 NULL	NULL	219	5	31/12/2012 08:59		
0.0149	1.1	1	4.5	4	56472	219 NULL	NULL	219	5	31/12/2012 08:59		
0.0823	1.61	0	4.5	0	58696	219 NULL	NULL	219	5	31/12/2012 08:59		
NULL	1.95	0	2	0	10759	100 NULL	NULL	100	14	05/06/2013 12:27		
IULL	1.95	0	5	0	22135	100 NULL	NULL	100	14	05/06/2013 12:27		
IULL	1.95	1	0	2	52376	100 NULL	NULL	100	14	05/06/2013 12:27		
IULL	1.95	1	4	3	104251	100 NULL	NULL	100	14	05/06/2013 12:27		
IULL	1.95	1	4.5	2	118866	100 NULL	NULL	100	14	05/06/2013 12:27		
0.0321	1.39	1	3.5	3	10250	219 NULL	NULL	219	5	20/03/2013 17:50		
IULL	0	1	4.5	4	13252	219 NULL	NULL	219	5	20/03/2013 17:50		
0 2251	2.83	1	4	4	22756	219 NH H	NHILI	219	5	20/03/2013 17:50		

Modeling

- Rank(query,hotel) = q^TAh
- s.t:
 - q is the query features vector
 - h is the hotel features vector

Complexity And Difficulties

- Multi class problem purchased, clicked, neither.
- Non-coherent data some examples might be missing details that other has.
- Different features have different representation.
- Evaluation metric is NDCG order is important.
 - See Appendix 1.

Pre Processing

Goals

- Unified representation of different types of features.
- Compensating missing data.
- Creating New features.
- Flexibility easy to modify.

- Transforming into unified binary representation.
- Limit predetermined value to define number of quantization levels.
- Boundaries thresholds values for quantization.
- New features Average, Median, Variance, Abs stars diff.

Rank SVM

$$\arg\min_{A,\xi_{i},\zeta_{j}} \left\{ \frac{1}{2} \|A\|^{2} + C1 \sum_{i=1}^{n} \xi_{i} + C2 \sum_{j=1}^{m} \zeta_{j} \right\}$$

s.t:
$$\forall i \in [1, n], \forall j \in [1, m]$$

$$q^{T} A h_{2} - q^{T} A h_{1} \geq 1 - \xi_{i}$$

$$q^{T} A h_{1} - q^{T} A h_{0} \geq 1 - \zeta_{j}$$

$$\xi_{i} \geq 0, \zeta_{j} \geq 0$$

Solution with Matpower – a matlab package.

Setbacks

- Memory complexity O(n²) at best ⊗
- High time complexity (empirically).
- Not optimizing NDCG evaluation metric directly.

Data Filtering

- Max no. of unclicked hotels (Max_Hotels).
 - Max no. of queries without bound was 9000.
 - Max no. of queries with Max_Hotels=5 was 18000
- Ignoring less effective features.

Algorithm 1 - Ranking SVM Choosing C1/C2 Ratio

Algorithm 1 - Ranking SVM Choosing C1,C2 values

Limit

Algorithm 1 - Ranking SVM Divide & Conquer - Explained

- Break into smaller similar problems.
- Select a feature to divide the train set into disjoint sets.
- Solve for each set separately.
- Feature selected Site ID.

Divide & Conquer – Results

Concept

- Perceptron-like algorithm, without classifying.
- Find non-complying hotels.
- Update ranking matrix to reinforce correct ranking.
- Use updated matrix if NDCG value improves.

Training algorithm - SwitchRank

- 1. Choose train and test sets each query has a q_vec and h_mat
- 2. Set ranking matrix A to a default value
- 3. $t_max = \{maximum \text{ iterations allowed to avoid overfitting}\}$
- 4. $k = \{\text{max iterations allowed with no change in } NDCG_max\}$
- 5. $\alpha = \{\text{step factor scalar}\}\$
- 6. t = 0
- 7. k count = 0
- 8. $NDCG_max = calc_NDCG(test_set, A)$
- 9. While $k_count < k$ and $t < t_max$ do
 - (a) randomly choose a query from the train_set
 - (b) $A_temp = update_A(q_vec, h_mat, A, method, \alpha)$
 - (c) $NDCG_temp = calc_NDCG(test_set, A_temp)$
 - (d) if $NDCG_temp > NDCG_max$ then
 - i. $NDCG_max = NDCG_temp$
 - ii. $A = A_temp$
 - iii. $k_count = 0$
 - (e) else $k_count++$

$$method - A_new = update_A(q_vec, h_mat, A, method, \alpha)$$

- 1. if uncomplying couple of hotels (h1,h2) found {h2 above h1}
 - (a) diff = h1 h2 {substract hotels' features values}
 - (b) $A_new = A + \alpha \cdot (diff^T q_vec)^T$;
 - (c) if $method = full_query_rank$

i.
$$A_new = A + \alpha \cdot (diff^T q_vec)^T$$

- (d) return A_new
- 2. else return A

Full query ranking example

Iteration 1 the order is:	Iteration 2 the orde	r is: Iteration 3 tl	the order is:	Iteration 4 the ord	ler is: Iteration 5 the order is:
index click purch rank	index click purch r	ank index click	purch rank	index click purch	rank index click purch rank
5 1 0 70.00	26 1 1 72	2.45 26 1	1 70.70	25 1 0 7	71.40 26 1 1 72.45
6 0 0 70.00	\bigcirc 6 0 0 72	1.40 8 0	0 70.00	26 1 1	71.05 11 0 0 71.05
8 0 0 70.00	27 0 0 72	1.40 10 0	0 70.00	10 0 0	70.70 10 0 0 70.70
10 0 0 70.00	11 0 0 71	1.05 11 0	0 70.00	27 0 0 7	70.70 27 0 0 70.70
11 0 0 70.00	13 0 0 73	1.05 16 0	0 70.00	11 0 0 7	70.35 6 0 0 70.35
13 0 0 70.00	10 0 0 70	0.70 27 0	0 70.00	6 0 0 7	70.00 19 0 0 70.35
15 0 0 70.00	16 0 0 70	0.70 5 1	0 69.65	19 0 0 7	70.00 21 0 0 70.00
16 0 0 70.00	19 0 0 70	0.70 15 0	0 69.65	20 0 0 7	70.00 25 1 0 70.00
19 0 0 70.00	21 0 0 70	0.70 19 0	0 69.65	21 0 0 6	69.65 13 <u>0 0 69.65</u>
20 0 0 70.00	25 1 0 70	0.35 20 0	0 69.65	5 1 0 6	59.65 5 1 0 68.95
21 0 0 70.00	8 0 0 70	0.00 21 0	0 69.65	15 0 0 6	69.65 16 0 0 68.95
25 1 0 70.00	31 0 0 69	9.30 25 1	0 69.65	13 0 0 6	59.30 20 0 0 68.95
26 1 1 70.00	15 0 0 68	3.95 31 0	0 69.65	31 0 0 6	69.30 15 0 0 68.60
27 0 0 70.00	20 0 0 68	3.25 6 0	0 69.30	16 0 0 6	68.95 31 0 0 68.60
31, 0 0 70.00	5 1 0 67	7.55 Semestrial Project - Ex	0 69.30 xpedia Hotel Rankin	8 0 0 6	8 0 0 68.25
A 1			The said in other marrier	0	

Full query ranking example

9emetrial 68;25- Expedia Hotel Ranking 6

Iteration 6 the order is: index click purch rank

CA CHER PUTCH TOTAL						
5	1	0	70.70			
26	1	1	70.70			
20	0	0	70.00			
10	0	0	69.65			
25	1	0	69.65			
27	0	0	69.65			
11	0	0	69.30			
15	0	0	69.30			
6	0	0	68.95			
19	0	0	68.95			
31	0	0	68.95			
21	0	0	68.60			
13	0	0	68.25			
8	0	0	68.25			
16	0	0	68.25			

Iteration 7 the order is: index click purch rank

26	1	1	73.15
27	0	0	71.05
10	0	0	70.35
11	0	0	70.35
6	0	0	70.35
25	1	0	70.00
19	0	0	69.65
13	0	0	69.30
21	0	0	69.30
16	0	0	68.95
5	1	0	68.25
15	0	0	68.25
20	0	0	68.25
31	0	0	68.25
_	_	_	

Iteration 8 the order is: index click purch rank

idex click purch rank						
	26	1	1	71.40		
	5	1	0	70.35		
<	11	0	0	69.65		
	10	0	0	69.65		
	20	0	0	69.65		
	6	0	0	68.95		
	15	0	0	68.95		
	19	0	0	68.95		
<	25	1	0	68.95		
	27	0	0	68.95		
	21	0	0	68.60		
	31	0	0	68.60		
	13	0	0	68.25		
	8	0	0	67.90		

Iteration 9 the order is: index click purch rank

26	1	1	70.70
5	1	0	70.35
25	1	0	70.35
20	0	0	70.0 0
15	0	0	69.65
10	0	0	69.30
27	0	0	69.30
31	0	0	68.95
6	0	0	68.60
11	0	0	68.25
8	0	0	67.90
16	0	0	67.90
19	0	0	67.90
13	0	0	67.55
21	Λ	Λ	67 55

Cross Training

- Train on smaller parts.
- Calculate performance with average matrix.

Choosing alpha factor

Choosing K

Deteriorate limit (K)

NDCG Vs. K (deteriorate limit)

Algorithm	NDCG at Kaggle	Details
Best Score	0.54075	Best score reached on Kaggle by competitors.
Position Benchmark	0.49748	Properties ranked according to the position they were shown on Expedia.com
SVM-Rank	0.47546	Algorithm 1
SwitchRank	0.46805	Algorithm 2
Basic Python Benchmark	0.40356	Some basic benchmark created for competitors use
Random Order Benchmark	0.34958	Properties are recommended in a random order

- Combining different algorithms.
- Finding a better quantization method.
- Creating more features.
- Divide & Conquer with different features.

Evaluation Metric NDCG

NDCG - Normalized Discounted Cumulative Gain

$$DCG_{k} = \sum_{i=1}^{k} \frac{2^{rel_{i}} - 1}{\log_{2}(i+1)}$$

• Where K is the maximum number of entities that can be recommended and rel_i is the graded relevance of entity i.

$$rel_i \in \{0, 1, 5\}$$

- $IDCG_k$ is the maximum possible (ideal) DCG_k for a given set.
- The final score is calculated by:

$$nDCG_k = \frac{DCG_k}{IDCG_k}$$