NÁSKOK DÍKY ZNALOSTEM

PROFINIT

NDBI047
Aplikace bigdat v Data Science

Storage, Hive

Osnova přednášky

- Hadoop a HDFS opakování
- Formáty ukládání dat v Hadoopu
- Komprese
- Hive
- Shrnutí

Hadoop a HDFS – opakování

Hadoop – opakování

- distribuované ukládání
- distribuované zpracování
- velké soubory
- Důležité komponenty (pro nás):
 - HDFS
 - Hive (Impala)
 - MapReduce
 - Spark

HDFS – opakování

- distribuovaný file system
- Namenode vs Datanode
- replikace (3 by default)
- uživatel nevidí, kde je který soubor fyzicky
- preferovány velké soubory

Formáty pro ukládání

Typy souborů

- Binární
 - exporty zdrojových systémů (CDRs telco)
 - videa, obrázky, zvukové záznamy
- Textové
 - prostý text
 - CSV
 - XML
 - JSON

Formáty pro ukládání

- › Binární beze změny
- > Prostý text beze změny
- "Tabulární" řádkově orientované úložiště
 - CSV nenese informaci o schématu
 - Avro (<u>https://avro.apache.org/</u>) ve skutečnosti nástroj na serializaci, obsahuje schéma
- "Tabulární" sloupcově orientované úložiště v metadatech obsaženo schéma
 - RCfile
 - ORC (https://orc.apache.org/)
 - Parquet (<u>https://parquet.apache.org/</u>)
- Ostatní
 - SequenceFile

SequenceFile

- Řešení problému s mnoha malými soubory
- Umožňuje ukládat data ve formátu key/value (key: název souboru, value: obsah souboru)
- › Umožňuje blokové rozdělení/blokovou kompresi
- Umožňuje přidávání dat

Řádkově a sloupcově orientované úložiště

Rowld	Empld	Lastname	Firstname	Salary
001	10	Smith	Joe	40000
002	12	Jones	Mary	50000
003	11	Johnson	Cathy	44000
004	22	Jones	Bob	55000

- přístup po řádcích mazání, úprava
- přístup po sloupcích analýza
- > Reprezentace úložiště

řádkově

sloupcově

001:10,Smith,Joe,40000; 002:12,Jones,Mary,50000; 003:11,Johnson,Cathy,44000; 004:22,Jones,Bob,55000;

10:001,12:002,11:003,22:004;

Smith:001,Jones:002,Johnson:003,Jones:004;

Joe:001,Mary:002,Cathy:003,Bob:004;

40000:001,50000:002,44000:003,55000:004;

Sloupcově orientované úložiště – pro a proti

- > Výhody
 - Možnost rychle číst jen sloupce, které potřebuji
 - Efektivnější komprese
 - Skvělé pro OLAP použití
- Nevýhody
 - Práce s jedním záznamem a full scan jsou pomalé
 - Nelze snadno modifikovat záznam
 - Náročný pro zápis
 - Vstupní data → bloky řádků → po sloupcích
 - Blok řádků se musí vejít do bloku HDFS
 - Špatné pro OLTP použití

Příklad: ORC

Sloupcově orientovaná úložiště – druhy

- > RCFile jen historické aplikace
- ORC Optimized Row Columnar file format
 - vše, co RCFile + něco navíc
 - ukládá metadata/statistiky (average, max, count...)
 - může obsahovat i indexy
 - načítá jen potřebná data optimalizuje dotaz
- > Parquet velmi podobné, jednodušší/lightweight

Komprese

Komprese

Proč?

Výrazně zrychlí přístup k datům

Jak?

- Gzip/Zlib
 - základní v Hadoopu
 - typicky s formátem ORC
- Bzip2
- LZO
- Snappy
 - typicky s formátem Parquet
 - nižší účinnost, ale nejrychlejší

Kompresní algoritmy - srovnání

Algoritmus	Rychlost	Účinnost	"Splittable"
GZIP/ZLib		~	
BZip2		~	~
LZO	~		~
Snappy	~		

- "Splitovatelnost"
 - kompresní algoritmus vytváří bloky, které lze samostatně dekomprimovat
 - vhodné pro paralelní zpracování
- Kompatibilita
 - Ne každý formát a každý nástroj podporuje libovolnou kompresi!
 (Např. v Impala nelze použít ORC)

Hive

- https://hive.apache.org/
- Snaha přivést SQL do světa Hadoopu
- Nástroj pro dotazování a manipulaci s daty
- Vlastní jazyk HQL (variace na SQL)
- Exekuce dotazů jiné komponenty (MapReduce, Tez, Spark)
- > Poměrně vyspělý a mocný nástroj

Hive – ukládání dat

- DB tabulka = adresář
 - může obsahovat více souborů i další podadresáře
 - data se interpretují podle zadaného schématu
- Externí vs. interní tabulka
 - externí tabulka link na existující adresář, vlastníkem je kdokoliv
 - managed (též interní) tabulka adresář ve větvi HDFS vyhrazené pro Hive, vlastníkem je Hive
- > Lze použít různé formáty dat i způsoby komprese
 - Parquet, Avro, CSV, ORC, ...
 - Gzip, Snappy, ...
- Metadata jsou uložena v Metastore
 - klasická relační DB MySQL, PostgreSQL
 - umístění souborů, statistiky, práva

Hive - HQL

- DDL (Data Definition Language)
 - CREATE [EXTERNAL] TABLE
 - DROP TABLE
 - TRUNCATE TABLE
 - ALTER TABLE
- > DML (Data Manipulation Language)
 - LOAD DATA
 - INSERT INTO TABLE, INSERT OVERWRITE TABLE
- Query
 - SELECT
- Nelze obecně
 - UPDATE
 - DELETE
 - (až na specifické případy tabulek s podporou ACID)

Loady a inserty dat

- 1 tabulka = 1 až N souborů
- Každý INSERT vytvoří vždy aspoň jeden nový soubor!
 - nedává tedy smysl INSERTovat záznam po záznamu
 - vždy INSERT z tabulky (INSERT SELECT, např. pomocí externí tabulky)
- > Připomínka: mnoho malých souborů škodí

Partitioning (velmi důležité)

- > Příklad:
 - Data chodí s časovým razítkem a jejich velmi mnoho (např. tel. hovory)
 - Typicky mě ale zajímají jen údaje za konkrétní den/měsíc...
- Partitioning
 - Logické rozdělení struktury tabulky do podadresářů
 - S každou lze pracovat samostatně
 - Dynamický (automatický) nebo statický (ruční) partitioning

Hive – další možnosti

- Indexy
 - podpora pro indexy, možnost psát vlastní indexery
 - ale moc se nevyužívají kvůli povaze HDFS
- Bucketing
 - rozděluje data do definovaného počtu "kyblíčků" podle zvoleného sloupce
 - využití např. pro zrychlení JOINu
- Příliš mnoho partitions a bucketů může znamenat velmi malé soubory
- > Při návrhu partitions/buckets je třeba být uvážlivý. Prakticky nelze změnit jinak než reloadem dat!

Hive – Execution engine

- > Původně se využíval MapReduce
 - pomalé
 - intenzivní zápisy na disk
 - ale paměťově nenáročné
- Dnes Hive umožňuje nastavit "execution engine"
 - MapReduce (Hive on MapReduce)
 - Tez (Hive on Tez)
 - Spark (Hive on Spark)

Hive – příklad

Hive - příklad

> Vytvoříme externí tabulku vázanou na zdrojové soubory

```
CREATE EXTERNAL TABLE IF NOT EXISTS ap temp (
   ACC KEY BIGINT,
   PROD ID VARCHAR (255),
   START DATE TIMESTAMP,
   PROD DESCR VARCHAR (255)
ROW FORMAT
   DELIMITED FIELDS TERMINATED BY ','
   LINES TERMINATED BY '\n'
STORED AS TEXTFILE
LOCATION '/data/input/acc';
```

Hive - příklad

> Vytvoříme prázdnou optimalizovanou tabulku

```
CREATE TABLE IF NOT EXISTS ap (

ACC_KEY BIGINT,

PROD_ID VARCHAR(255),

START_DATE TIMESTAMP)

PARTITIONED BY (PROD_DESCR VARCHAR(255))

CLUSTERED BY (ACC_KEY) INTO 32 BUCKETS

STORED AS ORC tblproperties
 ("orc.compress"="ZLIB");
```

Hive - příklad

Nahrajeme data do optimalizované tabulky

```
INSERT OVERWRITE TABLE ap
PARTITION (PROD DESCR)
SELECT
ACC KEY,
 PROD ID,
 START_DATE,
 PROD DESCR
FROM ap_temp;
DROP TABLE ap temp;
```

Shrnutí + Co se jinam nevešlo

Schema evolution

- Změna schématu souboru v průběhu života
- Typicky chceme
 - přidat sloupec
- Někdy je i možné
 - přejmenovat sloupec
 - odstranit sloupec (zpravidla jen v metadatech)
- Podpora schema evolution záleží na formátu souboru i použitém nástroji – vždy je třeba nastudovat
- Podporované formáty alespoň pro přidávání sloupců
 - Avro
 - ORC
 - Parquet

Shrnutí

- Vždy se rozmýšlet, co je třeba, podle požadovaného použití
 - každý nástroj nabízí jinou míru flexibility!
- Snažit se maximálně těžit ze sloupcově orientovaných úložišť
 - např. analytické "SQL-like" úlohy
- > Použít řádkově orientované úložiště tam, kde je nutný full scan
- Programování (MapReduce) a SQL dotazování (Hive) se musí přizpůsobit světu Hadoopu
- Soubory v databázi Hive je třeba mít rozumně velké ideálně velikost HDFS bloku (po kompresi)
- > Partitioning je základ optimalizace v Hive
 - ale nepřehánět je dobré mít zhruba odhad velikosti partition

Díky za pozornost

PROFINIT NÁSKOK DÍKY ZNALOSTEM

Profinit EU, s.r.o.

Tychonova 2, 160 00 Praha 6 | Telefon + 420 224 316 016

Twitter
twitter.com/Profinit_EU

Facebook facebook.com/Profinit.EU

Youtube Profinit EU