Algoritmi e Strutture Dati Lezione 25

25 novembre 2022

Cammini minimi

G=
$$(V_1 E)$$
 grato orientato

 $\omega: E \rightarrow \mathbb{R}$ funzione peso

 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0 a V_k
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0 a V_k
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0 a V_k
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0 a V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0 a V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0 a V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0 a V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ Cammino da V_0
 $\mathbb{R} = \langle V_0, V_1, ..., V_k \rangle$ $\mathbb{R} = \langle V_0, V_1$

GRAFI PESATI: alone rappresentazioni

LISTA DI ADIACENZA CON PESI

GRAFI PESATI: alone rappresentazioni
MATRICE DEI PESI

PROBLEMI	"CAMMINI MINIMI"	
· Trovare	il cummino minimo tra due vertici	
· Trovare	i commini minimi tra un vectice s	
e totti gl	li altri	
	commini minimi tra ogni coppia	
di. vert	iici	

CAMMINI MINIMI TRA TUTTE LE COPPIE DI VERVICI: L'ALGORATMO DI Floyd & Warshall Supponiano V = qu, v2, ... vn} dij = peso del cammino minimo da vi a vj Problem P: determinare dij i=1,...,n, j=1...,n

determinare d_{ij} (i=1,...,n, j=1,...,n) Problema P: PROGRAMMAZIONE DINAMICA Per K=0,..., n considero il problema vincolato: Problema P(K): determinare dif (i=4,...,n, j=1...,n) dij = pero del cammino minimo da v; a vj che nei passi intermedi visita (vi) esclusivamente vertici di indice < K Albora P = P(n)

Come risolver
$$P(\kappa)$$
?

 $K=0$
 $K=0$
 $K=0$
 $Come$ risolver $P(\kappa)$?

 $Come$ risolver $P(\kappa)$?

ALGORITMO Floys Warshall (GraPo G) -> Matrice Siano Do[1...n, 1...n], ..., Dn[1...n, 1...n] maric: FOR $j \in 1$ TO n DO $di_{s}^{(e)} = 0$ FOR $j \in 1$ THEN $D_{o}(i, j] \in 0$ se (v;, v,) ∈ E e v; ≠ v; ECSE IF (Vi.vs) GE THEN Do (i, i) FOR $K \in 1$ TO n DO $d_{ij}^{(\kappa)} = min \left\{ d_{ij}^{(\kappa-1)}, d_{ik}^{(\kappa-1)} + d_{kj}^{(\kappa-1)} \right\}$ FOR ic 1 PD n Do FOR JE1 TO n DO IF DK-2 [i,K] TO DK-1 [K,j] < DK-2 [i,j] THEN Dr. [i, k] + Dr. [k, j] DR [ij] & DR-1 [ij] RETURN Dn $\mathcal{O}(n^3)$ Temo O(n3) Spario

$$d_{ij}^{(\kappa)} = \min \left\{ d_{ij}^{(\kappa-1)} d_{ik}^{(\kappa-1)} + d_{kj}^{(\kappa-1)} \right\}$$

• per $j = k$:

• per
$$j = k$$
:

 $d_{ik}^{(k)} = min \left\{ d_{ik}^{(k-1)}, d_{ik}^{(k-1)} + d_{ik}^{(k-1)} \right\} = d_{ik}^{(k-2)}$

$$d_{kj}^{(\kappa)} = \min \left\{ d_{kj}^{(\kappa-1)}, d_{kk}^{(\kappa-1)} + d_{kj}^{(\kappa-1)} \right\} = d_{kj}^{(\kappa-1)}$$

$$D_{\kappa-1}[i,\kappa] + D_{\kappa-1}[\kappa,j] = D_{\kappa}[i,\kappa] + D_{\kappa}[\kappa,j]$$

ALGORITMO Floys Warshall (GraPo G) -> Matrice Sia D[1.1, 1.1] una matrice FOR $i \in 1$ TO n DO $di_{\hat{s}}^{(i)} = 0$ FOR $\hat{s} \in 1$ TO n DO $di_{\hat{s}}^{(i)} = 0$ Se (V; V,) EE e V; # V; IF I= THEN D[I, j] < 0 DC:4] ELSE IF (Vi, vj) EE THEN D[i,j] + w(i,j) ELSE D[i,j] < 0 FOR K < 1 70 n DO $d_{ij}^{(\kappa)} = \min \left\{ d_{ij}^{(\kappa-1)}, d_{i\kappa}^{(\kappa-1)} + d_{kj}^{(\kappa-1)} \right\}$ FOR if 1 TO n Do FOR &< 1 TO n DO IF D[i,k] + D[k,j] < D[i,j] THEN [D[i, +] +D[i, K] + D[K, j] RETURN D IF D_K-1[i,K] + D_K-1[K,j] < D_K-1[i,j] THEN D_{κ} [i, f] $\leftarrow D_{\kappa-1}$ [i, κ] + $D_{\kappa-1}$ [κ , f] \mathcal{D}_n ELSE Dr [i, f] + Dr. [i, f] Spario O(n2)

Come ricavare il cammino minimo tra V; e v; ?

Matrice ausiliana P:

Dai valore content: alla fine in P si può cicavere il cammino

ALGORITMO Flogs Warshell (Grafo G)
$$\rightarrow$$
 Matrice.

Siano D[1...n, 1...n] una matrice

FOR i \leftarrow 1 TO n DO

$$d_{ij}^{(r)} = \begin{cases} \omega(v_i, v_j) & \text{se } (v_i, v_j) \in e & v_j v_j \\ 0 & \text{se } v_i = v_j \end{cases}$$

FOR $\dot{\sigma} \leftarrow$ 1 TO n DO

$$d_{ij}^{(r)} = \begin{cases} \omega(v_i, v_j) & \text{se } (v_i, v_j) \in e \\ 0 & \text{set } v_i = v_j \end{cases}$$

$$|f| = \dot{g} \text{ THEN D[i, \dot{g}]} \leftarrow 0$$

ELSE IF $(v_i, v_j) \in e$ THEN D[i, \dot{g}] $\leftarrow \omega(i, \dot{g})$

$$|f| = \mathcal{O}[i, \dot{g}] \leftarrow 0$$

FOR $k \leftarrow$ 1 TO n DO

$$|f| = \mathcal{O}[i, \dot{g}] \leftarrow 0$$

$$|f|$$

PESI NEGATIVI? corretto ande compesiónegativo Fly & & Worshall;