Politechnika Warszawska

Zakład Podstaw Konstrukcji

Projektowanie

mgr inż. Grzegorz Kamiński grzegorz kaminski@pw.edu.pl

18 kwietnia 2023 Wersja 1.22

Częstość drgań własnych zespołu wału zależy od:

- * wymiarów i rozmieszczenia mas na wale,
- * sposobu podparcia wału i jego własności sprężystych.

Wały sprawdza się na drgania w celu wyznaczenia krytycznej prędkości obrotowej, przy której może wystąpić rezonans. Występuje on wówczas, gdy częstotliwość drgań wymuszonych pokrywa się z częstotliwością drgań własnych albo jest ich krotnością.

Dla przypadku drgań giętnych gdy wał jest gładki i pracuje poziomo:

- * K współczynnik zależny od sposobu zamocowania; K = 1, jeśli wał jest podparty, K = 1,3, jeśli jest utwierdzony,
- * $f_Q[m]$ strzałka statycznego ugięcia wału pod ciężarem Q.

Krytyczna prędkość kątowa ω_{kr} wynosi:

$$\omega_{kr} = \sqrt{\frac{C}{m}} \left[\frac{rad}{s} \right]$$

*
$$C - \operatorname{sztywność}$$
 giętna wału $C = \frac{Q}{f_Q}$,

*
$$m - \max_{g} odkształcająca wał $m = \frac{Q}{g}$.$$

Przybliżona wartość pierwszej prędkości krytycznej układu wielomasowego wynosi:

$$\omega_{1kr} = \sqrt{\frac{g \cdot \sum_{i=1}^{n} Q_i \cdot y_i}{\sum_{i=1}^{n} Q_i \cdot y_i^2}} \left[\frac{rad}{s}\right]$$

- * $Q_i[N]$ ciężary tarcz,
- * $y_i[m]$ ugięcie w punktach przyłożenia sił Q_i dowolnej płaszczyźnie).

Krytyczna prędkość obrotowa, w przypadku występowania drgań skrętnych:

$$\omega_{kr} = \frac{30}{\pi} \cdot \sqrt{\frac{c}{\theta}} \left[\frac{obr}{min} \right] \tag{4}$$

- * c sztywność skrętna wału (dla wału kształtowego sztywność zastępcza)
- * θ momenty bezwładności mas drgających,
- * l długość wału (lub jego odcinków),
- * *J_o* biegunowy moment bezwładności przekroju wału (lub przekrojów odcinków wału).

Niebezpieczny zakres prędkości obrotowej wynosi od $0.85 \cdot n_{kr}$ do $1.25 \cdot n_{kr}$.

Drgania skrętne są niebezpieczne, gdy różnica częstości drgań własnych i wymuszonych wynosi mniej niż $15\% \div 20\%$.

P<mark>olit</mark>echnika Warszawska

Jaka powinna być średnica wału z osadzonym na nim kołem o ciężarze $Q=600\,N$, jeżeli krytyczna prędkość obrotowa ma spełnić warunek $n_{kr}\leq 2400\,obr/min$. Wał będzie wykonany ze stali ($E=2.06\cdot 10^6\,MPa$). Dane wymiary: $a=200\,mm$, $b=100\,mm$

Statyczna wartość strzałki ugięcia wynosi (przypadek elementarny):

$$f_Q = \frac{Q \cdot b^2}{3 \cdot \mathbf{E} \cdot J} \cdot (a + b)$$

Sztywność wału:

$$C = \frac{Q}{f_Q} = \frac{3 \cdot E \cdot J}{b^2 \cdot (a+b)} = \frac{3 \cdot E \cdot \pi \cdot d^4}{64 \cdot b^2 \cdot (a+b)}$$

$$C = 1.01 \cdot 10^{13} \cdot d^4 \left[\frac{N}{m} \right]$$

Jednocześnie:

$$C = \frac{\omega_{kr}^2 \cdot m}{30} \cdot \frac{Q}{30}$$

Politechnika
Warszawska
$$extbf{C} = 38.6 \cdot 10^5 \left[rac{ extbf{N}}{ extbf{m}}
ight]$$

Porówn<mark>uj</mark>ąc wyznaczono średnicę

$$d=0,0249\,\mathrm{m}$$

 $38.6 \cdot 10^5 \le 1.01 \cdot 10^{13} \cdot d^4$

Ostatecznie średnica wynosi d = 25 mm.

Na wale transmisyjnym o stałej średnicy $d=40\,mm$ osadzono koło pasowe o ciężarze $Q=600\,N$. Pozostałe wymiary podano na rysunku. Obliczyć krytyczną liczbę obrotów wału oraz zakres obrotów niebezpiecznych. Masę samego wału pominąć. Dane wymiary: $a=800\,mm,b=200\,mm$

Krytyczną prędkość obrotową wyznaczono stosując:

$$n_{kr} \cong \frac{30 \cdot k}{\sqrt{f_Q}}$$

Wartość strzałk<mark>i u</mark>gięcia <mark>ele</mark>ment<mark>ar</mark>nego u<mark>kł</mark>adu:

$$f_Q = \frac{Q \cdot a^2 \cdot b^2}{3 \cdot (a+b) \cdot E \cdot J} = \frac{Q \cdot a^2 \cdot b^2}{3 \cdot (a+b) \cdot E} \cdot \frac{64}{\pi \cdot d^4}$$

$$f_Q = 1.98 \cdot 10^{-4} \,\mathrm{m}$$

Stąd:

$$n_{kr} = 2132 \frac{obr}{min}$$

Zakres niebezpiecznej prędkości obrotowej wynosi:

$$n_{nieb} = 1706 \div 2665 \frac{obr}{min}$$

Obliczenia sprowadzają się do określenia wartości rzeczywistego współczynnika bezpieczeństwa δ:

$$\delta \equiv \frac{\delta_{\sigma} \cdot \delta_{\tau}}{\sqrt{\delta_{\sigma}^2 + \delta_{\tau}^2}}$$

- * δ_{σ} współczynnik bezpieczeństwa dla zginania, obliczany tak jakby wał był obciążony tylko momentem zginającym,
- * δ_{τ} współczynnik bezpieczeństwa dla skręcania, obliczany tak jakby wał był obciążony tylko momentem skręcającym.

Dla wahadłowego cyklu obciążenia:

$$\delta_{\sigma} = \frac{\mathbf{Z}_{go} \cdot \varepsilon_{g}}{\beta_{g} \cdot \sigma_{na}} \tag{6}$$

$$\delta_{ au} = rac{Z_{so} \cdot arepsilon_s}{eta_s \cdot au_{na}}$$

- * $\beta_{g,s} = f(\alpha_k, \eta_k)$ współczynniki działania karbu przy zginaniu ub skrecaniu,
- * $\varepsilon_{g,s} = f(Z_o, d, \alpha_k)$ współczynniki wielkości przedmiotu przy zginaniu lub skręcaniu,
- * σ_{na} , τ_{na} nom<mark>in</mark>alne amplitudy naprężeń,
- $_{\text{Politechnikok}}^{*}$ $\overset{\alpha_{k}}{-}$ współczynnik kształtu karbu,

 $\eta_k - w$ spółczynnik wrażliwości materiału na działanie karbu.

W przypadku cykli niesymetrycznych sposób obliczania rzeczywistego współczynnika bezpieczeństwa zależy od:

- * sposobu, w jaki zmienia się wartość naprężeń przy przeciążeniach (przy niezmiennym współczynniku stałości obciążenia κ bądź przy stałej wartości naprężenia średniego σ_m),
- * ewentualnego ograniczenia maksymalnych naprężeń rozważanego cyklu granicą plastyczności R_{eg} , R_{es} .

Zalecane wartości graniczne rzeczywistego współczynnika bezpieczeństwa:

- * $\delta = 1,3 \div 1,5$ w przypadku dokładnych obliczeń, jednorodnego materiału, dokładnego wykonania,
- * $\delta = 1.5 \div 1.7$ dla przeciętnych warunków pracy,
- * $\delta=1.7\div2.5$ przy zmniejszonej dokładności obliczeń, dla przypadków statycznie niewyznaczalnych, niekorzystnych warunków pracy, szczególnie odpowiedzialnych konstrukcji.

Sprawdzić wartość rzeczywistego współczynnika bezpieczeństwa δ w przekroju wału maszynowego, przedstawionego na rysunku. Założyć, że rzeczywisty współczynnik bezpieczeństwa może mieć wartość $\delta \geq 2,0$. Wał wykonano ze stali C45, dla której $Z_{so}=183$ MPa, $Z_{go}=310$ MPa, $R_{es}=200$ MPa, $R_m=700$ MPa.

Politechnika Warszawska

Wał maszynowy w przekroju przenosi odzerowo-tętniący moment skręcający.

$$\tau_{na} = \tau_{nm} = \frac{\tau_n}{2} = \frac{\mathbf{M}_s \cdot \pi}{64 \cdot \mathbf{d}^3}$$

Współczynnik kształtu karbu znaleziono z wykresu dla $\frac{\rho}{h}$. W Zadaniu $\frac{0.2}{4} = 0.05$, więc $\alpha_k = 4.1$. Dla $\rho = 0.2$ i $R_m = 700$ MPa $\eta_k = 0.58$. Współczynnik oddziaływania karbu wynosi:

$$\beta_k = 1 + \eta_k \cdot (\alpha_k - 1)$$

$$\beta_k = 2,798$$

Zakładając, że wał jest starannie wytoczony $\beta'_p = 1.07$, więc współczynnik spiętrzenia naprężeń w karbie wynosi:

$$\beta = \beta_k + \beta_k' - 1$$

$$\beta = 2,868$$

Współczynnik wielkości określono na podstawie d=35mm i $\alpha_k=4,1$ $\varepsilon=0,735$. Współczynnik bezpieczeństwa wynosi:

$$\delta = \frac{Z_{so}}{\frac{\beta}{\varepsilon} \cdot \tau_{a} + \frac{Z_{so}}{R_{e}} \cdot \tau_{m}}$$

Wartość uznano za niezadowalającą, gdyż:

$$au_{\text{max}} = \frac{ au_{\text{n}} \cdot eta}{\epsilon} = 181,9 \text{MPa}$$

Obniżenie spiętrzenia naprężeń można uzyskać przez:

- * zwiększenie promienia zaokrąglenia dna rowka wpustowego,
- * zastosowanie dwóch rowków wpustowych,
- * wykonanie otworu odciążającego w czopie,
- * zweryfikowanie założeń w odniesieniu do charakterystyki zmian momentu skręcającego,
- * zwiększenie średnicy w przekroju wału maszynowego.

Rozważono zmianę promienia zaokrąglenia rowka wpustowego $r=\rho=0.5$ co spowodowało, że $\alpha_{\bf k}=3.4$ dla $\frac{\rho}{h'}=0.125$, $\eta_{\bf k}=0.67$ dla $\rho=0.5$ i $R_m=700$ MPa. Po tych zmianach $\beta_{\bf k}=2.608$ a $\beta=2.678$ ($\varepsilon=0.738$) Otrzymano niewielką poprawę współczynnika:

$$\delta = \frac{Z_{so}}{\frac{\beta}{\varepsilon} \cdot \tau_a + \frac{Z_{so}}{R_e} \cdot \tau_m}$$

P<mark>olite</mark>chnika Warszawska

$$\delta = 1.729$$

Rozważano wykonanie otworu odciążającego w czopie co spowodowało, że $\alpha_k=2.0$. Po tych zmianach $\beta_k=1.678$ a $\beta=1.74$ ($\varepsilon=0.757$) Zmianie uległy naprężenia nominalne:

$$\tau_{n} = \tau_{n} = \frac{M_{s}}{0.17 \cdot d^{3}} = 54.9 MPa$$

$$au_{na}=rac{ au_n}{2}=27,45$$
MPa

P<mark>olite</mark>chnika Warszawska

Współczynnik bezpieczeństwa wynosi: Z_{so}

$$\delta = \frac{Z_{so}}{\frac{\beta}{\varepsilon} \cdot \tau_a + \frac{Z_{so}}{R_e} \cdot \tau_m}$$

$$\delta = 2,075$$

Spełniono warunek bezpieczeństwa.

P<mark>olit</mark>echnika Warszawska

Bibliografia

A. Dziurski, E. Mazanek, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Łożyska, sprzęgła i hamulce, przekładnie mechaniczne. tom 2. WNT, 2015. isbn: 9788393491360.

L. W. Kurmaz and O. L. Kurmaz. Podstawy konstruowania węzłów i części maszyn: podręcznik konstruowania. Samodzielna Sekcja "Wydawnictwo Politechniki Świetokrzyskiei". 2011. Isbn: 9788388906343.

E. Mazanek, A. Dziurski, and L. Kania. Przykłady obliczeń z podstaw konstrukcji maszyn: Połączenia, sprężyny, zawory, wały maszynowe.
tom 1. WNT, 2005. isbn: 9788320435528.

W. Starego. Poradnik konstruktora przekładni pasowych.

