

XERCISE - 01

CHECK YOUR GRASP

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

The roots of the quadratic equation (a + b - 2c) x^2 - (2a - b - c) x + (a - 2b + c) = 0 are -1.

(A)
$$a + b + c & a - b + c$$

(B)
$$1/2 \& a - 2b + c$$

(C)
$$a - 2b + c & 1/(a + b - 2c)$$

(D) none of these

If the A.M. of the roots of a quadratic equation is $\frac{8}{5}$ and A.M. of their reciprocals is $\frac{8}{7}$, then the quadratic 2. equation is -

(A)
$$5x^2 - 8x + 7 = 0$$

(B)
$$5x^2 - 16x + 7 = 0$$

(B)
$$5x^2 - 16x + 7 = 0$$
 (C) $7x^2 - 16x + 5 = 0$ (D) $7x^2 + 16x + 5 = 0$

If $\sin \alpha \& \cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$ then -3.

(A)
$$a^2 - b^2 + 2ac = 0$$

(B)
$$a^2 + b^2 + 2ac = 0$$

(C)
$$a^2 - b^2 - 2ac = 0$$

(D)
$$a^2 + b^2 - 2ac = 0$$

If one root of the quadratic equation $px^2 + qx + r = 0$ ($p \neq 0$) is a surd $\frac{\sqrt{a}}{\sqrt{a} + \sqrt{a - b}}$, where p, q, r; a, b are all rationals then the other root is -

(A)
$$\frac{\sqrt{b}}{\sqrt{a}-\sqrt{a-b}}$$

(B) a +
$$\frac{\sqrt{a(a-b)}}{b}$$

(C)
$$\frac{a + \sqrt{a(a - b)}}{b}$$

(D)
$$\frac{\sqrt{a} - \sqrt{a - b}}{\sqrt{b}}$$

A quadratic equation with rational coefficients one of whose roots is $tan\left(\frac{\pi}{12}\right)$ is -5.

(A)
$$x^2 - 2x + 1 = 0$$

(B)
$$x^2 - 2x + 4 = 0$$

(B)
$$x^2 - 2x + 4 = 0$$
 (C) $x^2 - 4x + 1 = 0$ (D) $x^2 - 4x - 1 = 0$

(D)
$$x^2 - 4x - 1 = 0$$

 $ax^2 + bx + c = 0$ has real and distinct roots α and $\beta(\beta > \alpha)$. Further a > 0, b < 0 and c < 0, then

(A)
$$0 < \beta < |\alpha|$$

(B)
$$0 < |\alpha| < \beta$$

(C)
$$\alpha + \beta < 0$$

(A)
$$0 < \beta < |\alpha|$$
 (B) $0 < |\alpha| < \beta$ (C) $\alpha + \beta < 0$ (D) $|\alpha| + |\beta| = \left|\frac{b}{a}\right|$

If the roots of $(a^2 + b^2) x^2 - 2b (a + c) x + (b^2 + c^2) = 0$ are equal then a, b, c are in 7.

(D) none of these

If a $(b - c) x^2 + b (c - a) x + c (a - b) = 0$ has equal root, then a, b, c are in

(D) none of these

Let p, $q \in \{1, 2, 3, 4\}$. Then number of equation of the form $px^2 + qx + 1 = 0$, having real roots, is

(B) 9

(C) 7

If the roots of the quadratic equation $ax^2 + bx + c = 0$ are imaginary then for all values of a, b, c and $x \in R$, the expression $a^2x^2 + abx + ac$ is -

(A) positive

(B) non-negative

(C) negative

(D) may be positive, zero or negative

11. If x, y are rational number such that $x + y + (x - 2y)\sqrt{2} = 2x - y + (x - y - 1)\sqrt{6}$, then

(A) x and y connot be determined

(B)
$$x = 2$$
, $y = 1$

(C)
$$x = 5$$
, $y = 1$

(D) none of these

- **12.** Graph of the function $f(x) = Ax^2 BX + C$, where
 - $A = (\sec\theta \cos\theta) (\csc\theta \sin\theta)(\tan\theta + \cot\theta),$
 - $B = (\sin\theta + \csc\theta)^2 + (\cos\theta + \sec\theta)^2 (\tan^2\theta + \cot^2\theta) \&$
 - C = 12, is represented by

- The equation whose roots are the squares of the roots of the equation $ax^2 + bx + c = 0$ is
 - (A) $a^2x^2 + b^2x + c^2 = 0$

(B) $a^2x^2 - (b^2 - 4ac)x + c^2 = 0$

(C) $a^2x^2 - (b^2 - 2ac)x + c^2 = 0$

- (D) $a^2x^2 + (b^2 ac)x + c^2 = 0$
- **14.** If $\alpha \neq \beta$, $\alpha^2 = 5\alpha 3$, $\beta^2 = 5\beta 3$, then the equation whose roots are $\alpha/\beta \& \beta/\alpha$, is
- (A) $x^2 + 5x 3 = 0$ (B) $3x^2 + 12x + 3 = 0$ (C) $3x^2 19x + 3 = 0$
- **15.** If α , β are the roots of the equation $x^2 3x + 1 = 0$, then the equation with roots $\frac{1}{\alpha 2}$, $\frac{1}{\beta 2}$ will be
 - (A) $x^2 x 1 = 0$
- (B) $x^2 + x 1 = 0$
- (C) $x^2 + x + 2 = 0$
- (D) none of these
- **16.** If $x^2 11x + a$ and $x^2 14x + 2a$ have a common factor then 'a' is equal to

- 17. The smallest integer x for which the inequality $\frac{x-5}{x^2+5x-14} > 0$ is satisfied is given by -
 - (A) 7

- The number of positive integral solutions of the inequation $\frac{x^2(3x-4)^3(x-2)^4}{(x-5)^5(2x-7)^6} \le 0$ is -
 - (A) 2

(B) 0

(C) 3

- The value of 'a' for which the sum of the squares of the roots of $2x^2 2$ (a 2) x a 1 = 0 is least is -19. (B) 3/2
- If the roots of the quadratic equation $x^2 + 6x + b = 0$ are real and distinct and they differ by atmost 4 then the least value of b is -
 - (A) 5

(B) 6

(C) 7

(D) 8

- The expression $\frac{x^2 + 2x + 1}{x^2 + 2x + 7}$ lies in the interval ; $(x \in R)$ -
 - (A) [0, -1]
- (B) $(-\infty, 0] \cup [1, \infty)$
- (C) [0, 1)
- (D) none of these
- If the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ are real & less than 3 then -22.

- (C) $3 < a \le 4$
- (D) a > 4
- 23. The number of integral values of m, for which the roots of $x^2 - 2mx + m^2 - 1 = 0$ will lie between -2 and 4 is $-2mx + m^2 - 1 = 0$ (B) 0(D) 1
- 24. If the roots of the equation, $x^3 + Px^2 + Qx 19 = 0$ are each one more than the roots of the equation $x^3 - Ax^2 + Bx - C = 0$, where A, B, C, P & Q are constants then the value of A + B + C =
 - (A) 18

- (D) none
- **25.** If α , β , γ , δ are roots of $x^4 100x^3 + 2x^2 + 4x + 10 = 0$, then $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ is equal to -
 - (A) $\frac{2}{5}$

(C) 4

(D) $-\frac{2}{5}$

- **26.** Number of real solutions of the equation $x^4 + 8x^2 + 16 = 4x^2 12x + 9$ is equal to -
 - (A) 1

(B) 2

(C) 3

(D) 4

- **27.** The complete solution set of the inequation $\sqrt{x+18} < 2-x$ is -
 - (A) [-18, -2]
- (B) $(-\infty, -2) \cup (7, \infty)$ (C) $(-18, 2) \cup (7, \infty)$
- (D) [-18, -2)
- **28.** If $\log_{1/3} \frac{3x-1}{x+2}$ is less than unity then x must lie in the interval -
 - (A) $(-\infty, -2) \cup (5/8, \infty)$

(B) (-2, 5/8)

(C) $(-\infty, -2) \cup (1/3, 5/8)$

- (D) (-2, 1/3)
- **29.** Exhaustive set of value of x satisfying $\log_{|x|}(x^2 + x + 1) \ge 0$ is -
 - (A) (-1, 0)

(B) $(-\infty, 1) \cup (1, \infty)$

(C) $(-\infty, \infty) - \{-1, 0, 1\}$

- (D) $(-\infty, -1) \cup (-1, 0) \cup (1, \infty)$
- **30.** Solution set of the inequality, $2 \log_2(x^2 + 3x) \ge 0$ is -
 - (A) [-4, 1]
- (B) $[-4, -3) \cup (0, 1]$
- (C) $(-\infty, -3) \cup (1, \infty)$
- (D) $(-\infty, -4) \cup [1, \infty)$

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- **31.** If α is a root of the equation 2x(2x + 1) = 1, then the other root is -
 - (A) $3\alpha^3 4\alpha$
- (B) $-2\alpha(\alpha + 1)$
- (C) $4\alpha^3 3\alpha$
- (D) none of these
- **32.** If $b^2 \ge 4ac$ for the equation $ax^4 + bx^2 + c = 0$, then all roots of the equation will be real if -
 - (A) b > 0, a < 0, c > 0

(B) b < 0, a > 0, c > 0

(C) b > 0, a > 0, c > 0

- (D) b > 0, a < 0, c < 0
- **33.** Let α , β be the roots of $x^2 ax + b = 0$, where $a \& b \in \mathbb{R}$. If $\alpha + 3\beta = 0$, then -
 - (A) $3a^2 + 4b = 0$
- (B) $3b^2 + 4a = 0$
- (C) b < 0
- (D) a < 0

- **34.** For $x \in [1, 5]$, $y = x^2 5x + 3$ has -
 - (A) least value = -1.5

(B) greatest value = 3

(C) least value = -3.25

- (D) greatest value = $\frac{5 + \sqrt{13}}{2}$
- **35.** Integral real values of x satisfying $\log_{1/2}(x^2 6x + 12) \ge -2$ is -

(D) 5

- If $\frac{1}{2} \le \log_{0.1} x \le 2$, then -
 - (A) the maximum value of x is $\frac{1}{\sqrt{10}}$
- (B) x lies between $\frac{1}{100}$ and $\frac{1}{\sqrt{10}}$
- (C) x does not lie between $\frac{1}{100}$ and $\frac{1}{\sqrt{10}}$
- (D) the minimum value of x is $\frac{1}{100}$

CHECK	CHECK YOUR GRASP ANSWER KEY							EX	EXERCISE-1	
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	В	Α	С	С	В	В	С	С	Α
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	В	В	С	С	Α	Α	D	С	В	Α
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	С	Α	С	Α	D	Α	D	Α	D	В
Que.	31	32	33	34	35	36				
Ans.	B,C	B,D	A,C	B,C	A,B,C	A,B,D	_			

EXERCISE - 02

BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- 1. The equation whose roots are $\sec^2 \alpha \& \csc^2 \alpha$ can be -
 - (A) $2x^2 x 1 = 0$
- (B) $x^2 3x + 3 = 0$
- (C) $x^2 9x + 9 = 0$
- (D) $x^2 + 3x + 3 = 0$
- If $\cos \alpha$ is a root of the equation $25x^2$ + 5x 12 = 0, 1 < x < 0, then the value of $\sin 2\alpha$ is -2.
 - (A) 12/25
- (B) -12 / 25
- (C) 24 / 25
- (D) 24 / 25
- If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude and opposite in sign, then -3.
 - (A) p + q = r

- (B) p + q = 2r
- (C) product of roots = $-\frac{1}{2}(p^2 + q^2)$
- Graph of $y = ax^2 + bx + c = 0$ is given adjacently. What conclusions can be drawn 4. from this graph -

(A) a > 0

(B) b < 0

(C) c < 0

- (D) $b^2 4ac > 0$
- 5. If a, b, c are real distinct numbers satisfying the condition a + b + c = 0 then the roots of the quadratic equation $3ax^2 + 5bx + 7c = 0$ are -
 - (A) positive
- (B) negative
- (C) real and distinct
- (D) imaginary
- The adjoining figure shows the graph of $y = ax^2 + bx + c$. Then -6.
 - (A) a > 0

(B) b > 0

(C) c > 0

(D) $b^2 \le 4ac$

- If $x^2 + Px + 1$ is a factor of the expression $ax^3 + bx + c$ then -7.
 - (A) $a^2 + c^2 = -ab$
- (B) $a^2 c^2 = -ab$
- (C) $a^2 c^2 = ab$
- (D) none of these
- The set of values of 'a' for which the inequality (x-3a) $(x-a-3) \le 0$ is satisfied for all x in the interval $1 \le x \le 3$ 8.
- (B) (0, 1/3)
- (C) (-2, 0)
- Let p(x) be the cubic polynomial $7x^3 4x^2 + K$. Suppose the three roots of p(x) form an arithmetic progression. 9. Then the value of K, is -
 - (A) $\frac{4}{21}$

- (B) $\frac{16}{147}$
- (C) $\frac{16}{441}$
- (D) $\frac{128}{1323}$
- If the quadratic equation $ax^2 + bx + 6 = 0$ does not have two distinct real roots, then the least value of 10. 2a + b is -

(C) - 6

- If p & q are distinct reals, then 2 $\{(x-p)(x-q)+(p-x)(p-q)+(q-x)(q-p)\}=(p-q)^2+(x-p)^2+(x-q)$ 11. is satisfied by -
 - (A) no value of x

- (B) exactly one value of x (C) exactly two values of x (D) infinite values of x
- The value of 'a' for which the expression $y = x^2 + 2a \sqrt{a^2 3} x + 4$ is perfect square, is -12.
 - (A) 4

(B) $\pm \sqrt{3}$

 $(C) \pm 2$

(D) $a \in (-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$

- Set of values of 'K' for which roots of the quadratic $x^2 (2K 1)x + K(K 1) = 0$ are -13.
 - (A) both less than 2 is $K \in (2, \infty)$

- (B) of opposite sign is $K \in (-\infty, 0) \cup (1, \infty)$
- (C) of same sign is $K \in (-\infty, 0) \cup (1, \infty)$
- (D) both greater than 2 is $K \in (2, \infty)$

- 14. The correct statement is / are -
 - (A) If $x_1 \& x_2$ are roots of the equation $2x^2 6x b = 0$ (b > 0), then $\frac{x_1}{x_2} + \frac{x_2}{x_1} < -2$
 - (B) Equation $ax^2 + bx + c = 0$ has real roots if a < 0, c > 0 and $b \in R$
 - (C) If $P(x) = ax^2 + bx + c$ and $Q(x) = -ax^2 + bx + c$, where $ac \neq 0$ and $a, b, c \in R$, then P(x).Q(x) has at least two real roots.
 - (D) If both the roots of the equation $(3a + 1)x^2 (2a + 3b)x + 3 = 0$ are infinite then $a = 0 \& b \in \mathbb{R}$
- 15. If $\alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 < \alpha_5 < \alpha_6$, then the equation $(x - \alpha_1)(x - \alpha_3)(x - \alpha_5) + 3(x - \alpha_2)(x - \alpha_4)(x - \alpha_6) = 0$ has -
 - (A) three real roots

(B) no real root in $(-\infty, \alpha_1)$

(C) one real root in (α_1, α_2)

- (D) no real root in (α_5, α_6)
- Equation $2x^2 2(2a + 1)x + a(a + 1) = 0$ has one root less than 'a' and other root greater than 'a', if 16.
 - (A) $0 \le a \le 1$
- (B) $-1 \le a \le 0$
- (C) a > 0
- The value(s) of 'b' for which the equation, $2\log_{1/25}(bx + 28) = -\log_5(12 4x x^2)$ has coincident roots, 17.
 - (A) b = -12
- (B) b = 4
- (C) b = 4 or b = -12 (D) b = -4 or b = 12

- For every $x \in R$, the polynomial $x^8 x^5 + x^2 x + 1$ is -18.
 - (A) positive

(B) never positive

(C) positive as well as negative

- (D) negative
- 19. If α , β are the roots of the quadratic equation $(p^2 + p + 1) x^2 + (p 1) x + p^2 = 0$ such that unity lies between the roots then the set of values of p is -
 - (A)

- (B) $p \in (-\infty, -1) \cup (0, \infty)$ (C) $p \in (-1, 0)$
- (D) (-1, 1)
- Three roots of the equation, $x^4 px^3 + qx^2 rx + s = 0$ are tanA, tanB & tanC where A, B, C are the 20. angles of a triangle. The fourth root of the biquadratic is -
 - (A) $\frac{p-r}{1-q+s}$
- (B) $\frac{p-r}{1+q-s}$
- (C) $\frac{p+r}{1-q+s}$
- (D) $\frac{p+r}{1+q-s}$

- If $\log_{\left(\frac{x^2-12x+30}{10}\right)} \left(\log_2 \frac{2x}{5}\right) > 0$ then x belongs to interval -

 - (A) $(\frac{5}{2}, 6 + \sqrt{6})$ (B) $(\frac{5}{2}, 6 \sqrt{6})$ (C) $(6, 6 + \sqrt{6})$
- (D) $(10, \infty)$

BRAIN	TEASERS			A	NSWER	KEY	EXERCISE			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	C,D	B,C	A,B,C,D	С	B,C	С	В	D	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	С	С	A,B,C	A,B,C	A,C,D	В	Α	С	Α
Que.	21									
Ans.	B,D									

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

TRUE / FALSE

- 1. If a, b, $c \in Q$, then roots of $ax^2 + 2(a + b)x (3a + 2b) = 0$ are rational.
- 2. The necessary and sufficient condition for which a fixed number 'd' lies between the roots of quadratic equation $f(x) = ax^2 + bx + c = 0$; (a, b, c \in R), is f(d) < 0.
- 3. If $0 then the quadratic equation, <math>(\cos p 1)x^2 + x \cos p + \sin p = 0$ has real roots.
- **4.** The necessary and sufficient condition for the quadratic function $f(x) = ax^2 + bx + c$, to take both positive and negative values is, $b^2 > 4ac$, where a, b, $c \in R$ & $a \ne 0$.

FILL IN THE BLANKS

- 2. If $x^2 4x + 5 \sin y = 0$, $y \in (0, 2\pi)$ then $x = \dots \& y = \dots$.

MATCH THE COLUMN

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **ONE OR MORE** statement(s) in **Column-II**.

1. Consider the equation $x^2 + 2(a - 1)x + a + 5 = 0$, where 'a' is a parameter. Match of the real values of 'a' so that the given equation has

	Column-I		Column-II
(A)	imaginary roots	(p)	$\left(-\infty, -\frac{8}{7}\right)$
(B)	one root smaller than 3 and other root greater than 3	(q)	(-1, 4)
(C)	exactly one root in the interval (1, 3) & 1 and 3 are	(r)	$\left(-\frac{4}{3}, -\frac{8}{7}\right)$
	not the root of the equation		
(D)	one root smaller than 1 and other root greater than 3	(s)	$\left(-\infty, -\frac{4}{3}\right)$

ASSERTION & REASON

These questions contains, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- **1.** Statement-I: If equation $ax^2 + bx + c = 0$; (a, b, c \in R) and $2x^2 + 3x + 4 = 0$ have a common root, then a:b:c=2:3:4.

Because

Statement-II: If p + iq is one root of a quadratic equation with real coefficients then p - iq will be the other root; p, $q \in R$, $i = \sqrt{-1}$

(A) A

(B) B

(C) C

(D) D

2. Statement-I: If f(x) is a quadratic expression such that f(1) + f(2) = 0. If -1 is a root of f(x) = 0 then the other root is $\frac{8}{5}$.

Because

Statement-II: If $f(x) = ax^2 + bx + c$ then sum of roots $= -\frac{b}{a}$ and product of roots $= \frac{c}{a}$

(A) A

Statement-I: If a + b + c > 0 and a < 0 < b < c, then the roots of the equation 3. a(x - b)(x - c) + b(x - c)(x - a) + c(x - a)(x - b) = 0 are of both negative.

Statement-II: If both roots are negative, then sum of roots < 0 and product of roots > 0

(C) C

Statement-I: Let $(a_1, a_2, a_3, a_4, a_5)$ denote a re-arrangement of (1, -4, 6, 7, -10). Then the equation 4. $a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5 = 0$ has at least two real roots.

Because

Statement-II: If $ax^2 + bx + c = 0$ and a + b + c = 0, (i.e. in a polynomial the sum of coefficients is zero) then x = 1 is root of $ax^2 + bx + c = 0$.

Statement-I: If roots of the equation $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c = 1$. 5.

Statement-II: If a, b, c are odd integer then the roots of the equation 4 abc $x^2 + (b^2 - 4ac)x - b = 0$ are real and distinct.

(A) A

(B) B

(C) C

(D) D

COMPREHENSION BASED QUESTIONS

Comprehension # 1

If α , β , γ be the roots of the equation $ax^3 + bx^2 + cx + d = 0$. To obtain the equation whose roots are $f(\alpha)$, $f(\beta)$, $f(\gamma)$, where f is a function, we put $y = f(\alpha)$ and simplify it to obtain $\alpha = g(y)$ (some function of y). Now, α is a root of the equation $ax^3 + bx^2 + cx + d = 0$, then we obtain the desired equation which is $a\{g(y)\}^3 + b\{g(y)\}^2 + c\{g(y)\} + d = 0$

For example, if α , β , γ are the roots of $ax^3 + bx^2 + cx + d = 0$. To find equation whose roots are

$$\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$$
 we put $y = \frac{1}{\alpha} \implies \alpha = \frac{1}{y}$

As α is a root of $ax^3 + bx^2 + cx + d = 0$

we get
$$\frac{a}{y^3} + \frac{b}{y^2} + \frac{c}{y} + d = 0 \implies dy^3 + cy^2 + by + a = 0$$

This is desired equation.

On the basis of above information, answer the following questions :

If α , β are the roots of the equation $ax^2 + bx + c = 0$, then the roots of the equation $a(2x + 1)^2 + b(2x + 1)(x - 1) + c(x - 1)^2 = 0$ are-

(A)
$$\frac{2\alpha+1}{\alpha-1}$$
, $\frac{2\beta+1}{\beta-1}$

$$(A) \ \frac{2\alpha + 1}{\alpha - 1} \ , \ \frac{2\beta + 1}{\beta - 1} \qquad \qquad (B) \ \frac{2\alpha - 1}{\alpha + 1} \ , \ \frac{2\beta - 1}{\beta + 1} \qquad \qquad (C) \ \frac{\alpha + 1}{\alpha - 2} \ , \ \frac{\beta + 1}{\beta - 2}$$

(C)
$$\frac{\alpha+1}{\alpha-2}$$
, $\frac{\beta+1}{\beta-2}$

(D)
$$\frac{2\alpha+3}{\alpha-1}$$
, $\frac{2\beta+3}{\beta-1}$

If α , β are the roots of the equation $2x^2 + 4x - 5 = 0$, the equation whose roots are the reciprocals of 2α - 3 and 2β - 3 is -

(A)
$$x^2 + 10x - 11 = 0$$

(B)
$$11x^2 + 10x + 1 = 0$$

(C)
$$x^2 + 10x + 11 = 0$$

(D)
$$11x^2 - 10x + 1 = 0$$

If α , β are the roots of the equation $px^2 - qx + r = 0$, then the equation whose roots are 3.

$$\alpha^2 + \frac{r}{p}$$
 and $\beta^2 + \frac{r}{p}$ is-

(A)
$$p^3x^2 + pq^2x + r = 0$$

(B)
$$px^2 - qx + r = 0$$

(C)
$$p^3x^2 - pq^2x + q^2r = 0$$

(D)
$$px^2 + qx - r = 0$$

If α , β , γ are the roots of the equation $x^3 - x - 1 = 0$, then the value of $\Pi\left(\frac{1+\alpha}{1-\alpha}\right)$ is equal to -

$$(A) -7$$

(B)
$$-5$$

$$(C) = 3$$

Comprehension # 2

Let
$$(a + \sqrt{b})^{Q(x)} + (a - \sqrt{b})^{Q(x)-2\lambda} = A$$
, where $\lambda \in N$, $A \in R$ and $a^2 - b = 1$

$$\therefore (a + \sqrt{b}) (a - \sqrt{b}) = 1 \implies (a + \sqrt{b}) = (a - \sqrt{b})^{-1} \text{ and } (a - \sqrt{b}) = (a + \sqrt{b})^{-1}$$

ie,
$$(a \pm \sqrt{b}) = (a + \sqrt{b})^{\pm 1}$$
 or $(a - \sqrt{b})^{\mp 1}$

By substituting $(a + \sqrt{b})^{Q(x)}$ as t in the equation we get a quadratic in t.

Also a + ar + ar²......
$$\infty = \frac{a}{1-r}$$
 where -1 < r < 1

On the basis of above information, answer the following questions :

Solution of $(2+\sqrt{3})^{x^2-2x+1} + (2-\sqrt{3})^{x^2-2x-1} = \frac{4}{2\sqrt{3}}$ are-

(A)
$$1 \pm \sqrt{3}$$
, 1

(B)
$$1 \pm \sqrt{2}$$
 . 1

(A)
$$1 \pm \sqrt{3}$$
, 1 (B) $1 \pm \sqrt{2}$, 1 (C) $1 \pm \sqrt{3}$, 2 (D) $1 \pm \sqrt{2}$, 2

(D)
$$1 \pm \sqrt{2}$$
, 2

The number of real solutions of the equation $(15 + 4\sqrt{14})^t + (15 - 4\sqrt{14})^t = 30$ are -2. where $t = x^2 - 2|x|$

3. If $\left(\sqrt{(49+20\sqrt{6})}\right)^{\sqrt{a\sqrt{a\sqrt{a....\infty}}}} + (5-2\sqrt{6})^{x^2+x-3-\sqrt{x\sqrt{x\sqrt{x....\infty}}}} = 10$ where a = x^2 - 3, then x is -

(A)
$$-\sqrt{2}$$

(B)
$$\sqrt{2}$$

$$(C) -2$$

MISCELLANEOUS TYPE QUESTION

ANSWER KEY

EXERCISE

- True / False
 - **1**. T **2**. F
- **3**. T
- **4**. T
- Fill in the Blanks
 - **1**. 1/2
- **2.** $x = 2 \& y = \pi/2$
- **3**. –2
- Match the Column
 - 1. (A) \rightarrow (q), (B) \rightarrow (p, r, s), (C) \rightarrow (r), (D) \rightarrow (s)
- Assertion & Reason
 - **2**. A
- **3**. D
- **4**. A **5**. B
- Comprehension Based Questions
 - Comprehension # 1 :
- **1**. C
- **2**. B
- **3**. C

4. D

- Comprehension # 2:
- **1**. B
- **2**. C **3**. D

EXERCISE - 04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

- If α , β are the roots of the equation $x^2 2x + 3 = 0$ obtain the equation whose roots are $\alpha^3 3\alpha^2 + 5\alpha^2 2$, 1. $\beta^3 - \beta^2 + \beta + 5$.
- 2. If one root of the equation $ax^2 + bx + c = 0$ be the square of the other, prove that $b^3 + a^2c + ac^2 = 3abc$.
- Show that if p, q, r & s are real numbers & pr = 2 (q + s), then at least one of the equations $x^2 + px + q = 0$, $x^2 + rx + s = 0$ has real roots.
- Let a, b, c, d be distinct real numbers and a and b are the roots of quadratic equation $x^2 2cx 5d = 0$. If c and d are the roots of the quadratic equation $x^2 - 2ax - 5b = 0$ then find the numerical values of a + b + c + d.
- Find the product of the real roots of the equation, $x^2 + 18x + 30 = 2\sqrt{x^2 + 18x + 45}$ 5.
- Find the range of values of a, such that $f(x) = \frac{ax^2 + 2(a+1)x + 9a + 4}{x^2 8x + 32}$ is always negative. 6.
- Find the values of 'a' for which $-3 < \frac{x^2 + ax 2}{x^2 + x + 1} < 2$ is valid for all real x. 7.
- If the quadratic equations $x^2 + bx + ca = 0 \& x^2 + cx + ab = 0$ have a common root, prove that the equation 8. containing their other roots is $x^2 + ax + bc = 0$.
- The equation $x^2 ax + b = 0 & x^3 px^2 + qx = 0$, where $b \neq 0$, $q \neq 0$, have one common root & the second 9. equation has two equal roots. Prove that 2(q + b) = ap.

Find the solutions of following inequations: (10 to 14)

10.
$$\frac{(x-2)(x-4)(x-7)}{(x+2)(x+4)(x+7)} > 1$$

11.
$$(x^2 - x - 1)(x^2 - x - 7) < -5$$
.

12.
$$(x^2-2x)(2x-2)-9\frac{2x-2}{x^2-2x} \le 0$$

13.
$$\frac{1}{x-2} + \frac{1}{x-1} > \frac{1}{x}$$

13.
$$x-2$$
 $x-1$ x

$$\frac{20}{(x-3)(x-4)} + \frac{10}{x-4} + 1 > 0$$
Since $\frac{20}{(x-3)(x-4)}$ Find the solutions of following in $\frac{20}{x^2}$ Find the solutions of following in $\frac{20}{x^2}$

Find the solutions of following miscellaneous inequations: (15 to 20)

15.
$$|x^2 - 2x - 3| \le |x^2 - x + 5|$$

$$\sum_{0}^{6} \sum_{0}^{6} 16. \quad x - 3 \le \sqrt{x^2 + 4x - 5}$$

18.
$$\left(\frac{3}{4}\right)^{6x+10-x^2} < \frac{27}{64}$$

- **19.** $\log_{1/2} (x + 1) > \log_2 (2 x)$.
- **20.** $\log_{2} 2 \cdot \log_{2} 2 \cdot \log_{2} 4x > 1$.
- Find all values of a for which the inequality (a + 4) x^2 2ax + 2a 6 < 0 is satisfied for all $x \in R$.
- Find all values of a for which both roots of the equation $x^2 6ax + 2 2a + 9a^2 = 0$ are greater than 3.

- 23. Find all the values of the parameter 'a' for which both roots of the quadratic equation $x^2 - ax + 2 = 0$ belong to the interval (0, 3).
- Find the values of K so that the quadratic equation $x^2 + 2$ (K 1) x + K + 5 = 0 has at least one positive root.
- If $a \le b \le c \le d$ then prove that the roots of the equation ; (x a)(x c) + 2(x b)(x d) = 0 are real & distinct.
- Two roots of a biquadratic $x^4 18x^3 + kx^2 + 200x 1984 = 0$ have their product equal to (-32). Find the value

CONCEPTUAL SUBJECTIVE EXERCISE

EXERCISE-4(A)

1
$$\mathbf{y}^2 - 3\mathbf{y} + 2 = 0$$

6.
$$a \in \left(-\infty, -\frac{1}{2}\right)$$

7.
$$-2 \le a \le 1$$

10.
$$(-\infty, -7) \cup (-4, -2)$$
 11. $(-2, -1) \cup (2, 3)$

12.
$$(-\infty, -1] \cup (0, 1] \cup (2, 3]$$

13.
$$\left(-\sqrt{2},0\right) \cup \left(1,\sqrt{2}\right) \cup (2,+\infty)$$
 14. $(-\infty,-2) \cup (-1,3) \cup (4,+\infty)$

14.
$$(-\infty, -2) \cup (-1, 3) \cup (4, +\infty)$$

16.
$$(-\infty, -5] \cup [1, \infty]$$

16.
$$(-\infty, -5] \cup [1, \infty)$$
 17. $\left[-\frac{1}{2}, -\frac{1}{4} \right] \cup \left(\frac{3}{4}, 1 \right]$

19.
$$-1 < x < \frac{1-\sqrt{5}}{2} \text{ or } \frac{1+\sqrt{5}}{2} < x < 2$$

20.
$$2^{-\sqrt{2}} \le x \le 2^{-1}$$
; $1 \le x \le 2^{\sqrt{2}}$

21. For all
$$a \in (-\infty, -6)$$

22. For all
$$a \in (11/9, +\infty)$$

23.
$$2\sqrt{2} \le a < \frac{11}{3}$$

24. K
$$\leq$$
 -1

26.
$$k = 86$$

ERCISE - 04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

- If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the nth power of the other, then show that 1. $(ac^n)^{1/(n+1)} + (a^nc)^{1/(n+1)} + b = 0.$
- Let $P(x) = x^2 + bx + c$, where b and c are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25$ and 2. $3x^4 + 4x^2 + 28x + 5$, find the value of P(1).
- Find the true set of values of p for which the equation : $p.2^{\cos^2 x} + p.2^{-\cos^2 x} 2 = 0$ has real roots. 3.
- 4. If the coefficients of the quadratic equation $ax^2 + bx + c = 0$ are odd integers then prove that the roots of the equation cannot be rational number.
- 5. If the three equations $x^2 + ax + 12 = 0$, $x^2 + bx + 15 = 0$ and $x^2 + (a + b) x + 36 = 0$ have a common positive root, find a and b and the roots of the equations.
- If the quadratic equation $ax^2 + bx + c = 0$ has real roots, of opposite sign in the interval (-2,2) then prove that 6.

$$1 + \frac{c}{4a} - \left| \frac{b}{2a} \right| > 0.$$

- Show that the function $z = 2x^2 + 2xy + y^2 2x + 2y + 2$ is not smaller than 3. 7.
- For a \leq 0, determine all real roots of the equation $x^2 2a \mid x a \mid -3a^2 = 0$. 8.
- The equation $x^n + px^2 + qx + r = 0$, where $n \ge 5 \& r \ne 0$ has roots $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ 9.

Denoting $\sum_{i=1}^{n} \alpha_i^k$ by S_k .

- Calculate S₂ & deduce that the roots cannot all be real. (a)
- Prove that $S_n + pS_2 + qS_1 + nr = 0$ & hence find the value of S_n .
- Find the values of 'b' for which the equation $2\log_{\frac{1}{25}}(bx+28)=-\log_5(12-4x-x^2)$ has only one solution. 10.
- Solve the inequality : $\log_3 \frac{|x^2 4x| + 3}{|x^2 + |x 5|} \ge 0$

SES
\Box
ě
X
2.E
\sim
÷
g.
ō
ã
٠.
22
չ
~
፵
_
윭
÷
ō.
~
μs
ō
₹
ξ
જ્
_
-g
2
₹
Ó,
٩
ш
5
₽
.0
×
4
-
0
2

BRAIN STORMING	SUBJECTIVE	EXERCISE	ANSWER	KEY	EXERCISE-4(B)

- **2.** P(1) = 4 **3.** [4/5, 1] **5.** a = -7, b = -8; (3, 4); (3, 5) and (3, 12) **8.** x = (1 $\sqrt{2}$) a or ($\sqrt{6}$ -1) a **9.** (a) S₂ = 0, (b) S_n = -nr **10.** (- ∞ , -14) \cup {4} \cup [$\frac{14}{3}$, ∞]

11.
$$x \le \frac{-2}{3}, \frac{1}{2} \le x \le 2$$

EXERCISE - 05 [A]

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS

	$(\alpha^2 + \beta^2)$ and $\frac{\alpha\beta}{2}$, then-			[AIEEE-2002]				
	(1) $p = 1$ and $q = 56$		(2) $p = 1$ and $q = -56$					
	(3) $p = -1$ and $q = 56$		(4) $p = -1$ and $q = -56$					
2.			$-b$) = c and c \neq 0, then	n roots of the equation $(x - \alpha)$ [AIEEE-2002]				
	(1) a and c	(2) b and c	(3) a and b	(4) $a + b$ and $b + c$				
3.	If $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta$	$3-3$ then the value of $\frac{c}{\beta}$	$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ (where $\alpha \neq \beta$) is-	[AIEEE-2002]				
	(1) 19/3	(2) 25/3	(3) -19/3	(4) none of these				
4.	The value of a for which as large as the other is	one roots of the quadration	c equation ($a^2 - 5a + 3$) x^4	(3a - 1) x + 2 = 0 is twice [AIEEE-2003]				
	(1) - 2/3	(2) 1/3	(3) - 1/3	(4) 2/3				
5,	If the sum of the roots	of the quadratic equation	$ax^2 + bx + c = 0$ is equal	al to the sum of the square of				
	their reciprocals, then $\frac{a}{c}$	$\frac{1}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in		[AIEEE-2003]				
	(1) geometric progression	n	(2) harmonic progression	l				
	(3) arithmetic-geometric		(4) arithmetic progression	n				
6.	The number of real solu	utions of the equation x^2	$-3 \mid x \mid +2 = 0$, is-	[AIEEE-2003]				
	(1) 4	(2) 1	(3) 3	(4) 2				
7.	The real number x when	n added to its inverse give	es the minimum value of	the sum at x equal to- [AIEEE-2003]				
	(1) 1	(2) -1	(3) -2	(4) 2				
8.	Let two numbers have an quadratic equation-	rithmetic mean 9 and geor	metric mean 4. Then these	e numbers are the roots of the [AIEEE-2004]				
	$(1) x^2 + 18x - 16 = 0$		$(2) x^2 - 18x + 16 = 0$					
	$(3) x^2 + 18x + 16 = 0$		$(4) x^2 - 18x - 16 = 0$					
9.	If $(1 - p)$ is a root of	quadratic equation x^2 +	px + (1 - p) = 0 then its	s roots are- [AIEEE-2004]				
	(1) 0, - 1	(2) - 1, 1	(3) 0, 1	(4) - 1, 2				
10.	If one root of the equat then the value of 'q' is-		4, while the equation x^2	+ $px + q = 0$ has equal roots, [AIEEE-2004]				
	(1) 3	(2) 12	(3) 49/4	(4) 4				
11.	If value of a for which the least value is-	he sum of the squares of t	the roots of the equation >	$x^2 - (a - 2)x - a - 1 = 0$ assume [AIEEE-2005]				
	(1) 2	(2) 3	(3) 0	(4) 1				
12.	If the roots of the equat	tion x^2 - bx + c = 0 be to	wo consecutive integers, t	then $b^2 - 4c$ equals-				
				[AIEEE-2005]				
	(1) 1	(2) 2	(3) 3	(4) -2				
13.	If both the roots of the interval-			less than 5, then k lies in the [AIEEE-2005]				
	(1) [4, 5]	(2) $(-\infty, 4)$	(3) (6, ∞)	(4) (5, 6)				
14.	If the equation $a_n x^n + a_{n-1} x^{n-1} + (n - 1) a_{n-1} x^{n-2}$	$a_1 x^{n-1} + \dots + a_1 x = 0, a_1 \neq \dots + a_1 = 0$ has a posit	$ eq 0, n \ge 2, \text{ has a positive} $ ive root, which is-	root $x = \alpha$, then the equation [AIEEE-2005]				
	(1) equal to α		(2) greater than or equa	l to α				
	(3) smaller than α		(4) greater than α					
			4	i				

If the roots of the equation x^2 – 5x + 16 = 0 are α , β and the roots of the equation x^2 + px + q = 0 are

- 15. All the values of m for which both roots of the equation $x^2 2mx + m^2 1 = 0$ are greater than -2 but less than 4, lie in the interval-
 - $(1) -1 \le m \le 3$
- (2) $1 \le m \le 4$
- (3) -2 < m < 0
- (4) m > 3
- 16. If the roots of the quadratic equation $x^2 + px + q = 0$ are tan 30 and tan 15, respectively then the value of 2 + q p is-
 - $(1) \ 0$

(2) 1

(3) 2

(4) 3

17. If x is real, then maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ is-

[AIEEE-2006]

[AIEEE-2012]

(1) 1

(2) $\frac{17}{7}$

(3) $\frac{1}{4}$

- (4) 41
- 18. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is
 - (1) $(-3, \infty)$

(2) $(3, \infty)$

(3) $(-\infty, -3)$

- $(4) (-3, -2) \cup (2, 3)$
- 19. The quadratic equations $x^2 6x + a = 0$ and $x^2 cx + 6 = 0$ have one root in common. The other roots of the first and second equations are integers in the ratio 4:3. Then the common root is [AIEEE-2008] (1) 1 (2) 4 (3) 3 (4) 2
- **20.** If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is :- [AIEEE-2009]
 - (1) Greater than -4ab

(2) Less than -4ab

(3) Greater than 4ab

- (4) Less than 4ab
- **21.** If α and β are the roots of the equation $x^2 x + 1 = 0$, then $\alpha^{2009} + \beta^{2009} =$ [AIEEE-2010] (1) -2 (2) -1 (3) 1 (4) 2
- **22.** Let for $a \neq a_1 \neq 0$, $f(x) = ax^2 + bx + c$, $g(x) = a_1x^2 + b_1x + c_1$ and p(x)=f(x) g(x). If p(x) = 0 only for x = -1 and p(-2) = 2, then the value of p(2) is:

 [AIEEE-2011]
 - (1) 18

(2) 3

(3) 9

- (4) 6
- 23. Sachin and Rahul attempted to solve a quadratic equation. Sachin made a mistake in writing down the constant term and ended up in roots (4, 3). Rahul made a mistake in writing down coefficient of x to get roots (3, 2). The correct roots of equation are:

 [AIEEE-2011]
 - (1) -4. -3
- (2) 6. 1
- (3) 4. 3
- (4) -6, -1

- 1. The equation $e^{\sin x} e^{-\sin x} 4 = 0$ has : (1) exactly four real roots.
- (2) infinite number of real roots.

(3) no real roots.

(4) exactly one real root.

\SMP\											
vanced	PREVIOUS YEARS QUESTIONS					NSWER	EXERCISE-5 [A]				
JEE-Ad	Que.	1	2	3	4	5	6	7	8	9	10
\Kota\	Ans.	4	3	1	4	2	1	1	2	1	3
\2014	Que.	11	12	13	14	15	16	17	18	19	20
)\Data	Ans.	4	1	2	3	1	4	4	4	4	1
)E6 (E)	Que.	21	22	23	24						
ON.	Ans.	3	1	2	3						

EXERCISE - 05 [B]

JEE-[ADVANCED]: PREVIOUS YEAR QUESTIONS

Let a, b, c be real numbers with a $\neq 0$ and let α , β be the roots of the equation $ax^2 + bx + c = 0$. 1. Express the roots of $a^3x^2 + abcx + c^3 = 0$ in terms of α , β .

[JEE 2001, Mains, 5 out of 100]

The set of all real numbers x for which $x^2 - |x + 2| + x > 0$, is 2.

(A)
$$(-\infty, -2)$$
 U $(2, \infty)$

(B)
$$(-\infty, -\sqrt{2})$$
 U $(\sqrt{2}, \infty)$

(C)
$$(-\infty, -1)$$
 U $(1, \infty)$

(D)
$$(\sqrt{2}, \infty)$$

[JEE 2002 (screening), 3]

- If $x^2 + (a b)x + (1 a b) = 0$ where $a, b \in R$ then find the values of 'a' for which equation has unequal real 3. [JEE 2003, Mains-4 out of 60] roots for all values of 'b'.
- If one root of the equation $x^2 + px + q = 0$ is the square of the other, then 4.

(A)
$$p^3 + q^2 - q(3p + 1) = 0$$

(B)
$$p^3 + q^2 + q(1 + 3p) = 0$$

(C)
$$p^3 + q^2 + q(3p - 1) = 0$$

(D)
$$p^3 + q^2 + q(1 - 3p) = 0$$

If $x^2 + 2ax + 10 - 3a > 0$ for all $x \in R$, then

$$(A) - 5 \le a \le 2$$

(D)
$$2 \le a \le 5$$

[JEE 2004 (Screening)]

Find the range of values of t for which $2 \sin t = \frac{1 - 2x + 5x^2}{3x^2 - 2x - 1}$, $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. 5.

[JEE 2005(Mains), 2]

6. (a) Let a, b, c be the sides of a triangle. No two of them are equal and $\lambda \in R$. If the roots of the equation $x^2 + 2(a + b + c)x + 3\lambda(ab + bc + ca) = 0$ are real, then

(A)
$$\lambda < \frac{4}{3}$$

(B)
$$\lambda > \frac{5}{3}$$

(C)
$$\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$$

(B)
$$\lambda > \frac{5}{3}$$
 (C) $\lambda \in \left(\frac{1}{3}, \frac{5}{3}\right)$ (D) $\lambda \in \left(\frac{4}{3}, \frac{5}{3}\right)$

[JEE 2006, 3]

- If roots of the equation $x^2 10cx 11d = 0$ are a, b and those of $x^2 10ax 11b = 0$ are c, d, (b) then find the value of a + b + c + d. (a, b, c and d are distinct numbers)
- Let α , β be the roots of the equation x^2 px + r = 0 and $\alpha/2$, 2β be the roots of the equation 7. $x^2 - qx + r = 0$. Then the value of 'r' is

(A)
$$\frac{2}{9}$$
 (p-q)(2q - p)

(B)
$$\frac{2}{9}$$
 (q - p)(2p - q)

(C)
$$\frac{2}{9}$$
 (q - 2p)(2q - p)

(D)
$$\frac{2}{9}$$
 (2p-q)(2q - p)

MATCH THE COLUMN:

(b) Let
$$f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$$

Match the expressions / statements in Column I with expressions / statements in Column II.

Column I

Column II

(A) If
$$-1 \le x \le 1$$
, then $f(x)$ satisfies

(P)
$$0 < f(x) < 1$$

(B) If
$$1 \le x \le 2$$
, the $f(x)$ satisfies

$$(Q) f(x) < 0$$

(C) If
$$3 < x < 5$$
, then $f(x)$ satisfies

$$(R) f(x) > 0$$

(D) If
$$x > 5$$
, then $f(x)$ satisfies

(S)
$$f(x) < 1$$

[JEE 2007, 3+6]

ASSERTION & REASON:

8. Let a, b, c, p, q be real numbers. Suppose α , β are the roots of the equation $x^2 + 2px + q = 0$ and α , $1/\beta$ are the roots of the equation $ax^2 + 2bx + c = 0$, where $\beta^2 \notin \{-1, 0, 1\}$

STATEMENT-1 : $(p^2 - q)(b^2 - ac) \ge 0$

and

STATEMENT-2: $b \neq pa$ or $c \neq qa$

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True

[JEE 2008, 3 (-1)]

- 9. The smallest value of k, for which both the roots of the equation, $x^2 8kx + 16(k^2 k + 1) = 0$ are real, distinct and have values at least 4, is [JEE 2009, 4 (-1)]
- 10. Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$ and $p^3 \neq -q$. If α and β are nonzero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is [JEE 2010, 3]
 - (A) $(p^3 + q)x^2 (p^3 + 2q)x + (p^3 + q) = 0$ (B) $(p^3 + q)x^2 (p^3 2q)x + (p^3 + q) = 0$
 - (C) $(p^3 q)x^2 (5p^3 2q)x + (p^3 q) = 0$ (D) $(p^3 q)x^2 (5p^3 + 2q)x + (p^3 q) = 0$
- 11. Let α and β be the roots of x^2 6x 2 = 0, with $\alpha > \beta$. If $a_n = \alpha^n \beta^n$ for $n \ge 1$, then the value of $\frac{a_{10} 2a_8}{2a_9}$ is
 - a) 1 (B) 2 (C) 3 (D) 4
- (A) 1 (B) 2 12. A value of b for which the equations

$$x^{2} + bx - 1 = 0$$

 $x^{2} + x + b = 0$

have one root in common is -

[JEE 2011]

(A)
$$-\sqrt{2}$$

(B)
$$-i\sqrt{3}$$

(C)
$$i\sqrt{5}$$

(D)
$$\sqrt{2}$$

ANSWER KEY

EXERCISE-5 [B]

1.
$$\gamma = \alpha^2 \beta$$
 and $\delta = \alpha \beta^2$ or $\gamma = \alpha \beta^2$ and $\delta = \alpha^2 \beta$

$$\mathbf{5.} \quad \left[-\frac{\pi}{2}, \, -\frac{\pi}{10} \right] \, \cup \, \left[\frac{3\pi}{10}, \, \frac{\pi}{2} \right]$$