

UNLP. Facultad de Informática

Fundamentos de Teoría de la Computación

Temario

- Lógica de Enunciados. El Sistema Formal L: axiomas y regla de inferencia. Demostración de teoremas y deducciones en L.

Bibliografía

- Hamilton. Lógica para matemáticos. Capítulo 2.
- Pons, Rosenfeld, Smith. Lógica para Informática. Capítulo 1.

Ejercicios

1. Dada la siguiente secuencia de fbfs de \mathscr{L} .

a-
$$((\neg p) \to (\neg (q \to r))) \to ((q \to r) \to p)$$

b- $((\neg p) \to (\neg (q \to r)))$
c- $((q \to r) \to p)$

Analizar si se trata de una demostración en \mathcal{L} de la forma $\Gamma \vdash_{\mathcal{L}} A$ para algún conjunto Γ de fbfs y alguna fbf A. En ese caso:

- i- Describir al conjunto Γ y a la fbf A y explicar cada paso de la secuencia (es decir, axiomas y reglas de inferencia).
- ii- Decir si $\mathscr A$ es un teorema de $\mathscr L$
- iii- Decir si \(\mathref{A} \) es tautología
- 2. Sean \mathscr{A} , \mathscr{B} y \mathscr{C} tres fórmulas bien formadas (fbfs) del sistema formal \mathscr{L} . Dar una demostración sintáctica en \mathscr{L} de los siguientes teoremas. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas. Intente resolverlos sin usar el metateorema de la deducción y luego usándolo.

i-
$$\vdash_{\mathscr{L}} ((\neg \mathscr{A} \to \mathscr{A}) \to \mathscr{A})$$

ii- $\vdash_{\mathscr{L}} ((\mathscr{A} \to \mathscr{B}) \to (\neg \mathscr{B} \to \neg \mathscr{A}))$

3. Sean \mathscr{A} , \mathscr{B} y \mathscr{C} tres fórmulas bien formadas (fbfs) del sistema formal \mathscr{L} . Dar una demostración sintáctica en \mathscr{L} de las siguientes deducciones. Justificar cada paso en la derivación, indicando cuales son los axiomas instanciados y las reglas de inferencia utilizadas.

i-
$$\{((\mathscr{A} \to \mathscr{B}) \to \mathscr{C}), \mathscr{B}\} \vdash_{\mathscr{L}} (\mathscr{A} \to \mathscr{C})$$

4. Sea Γ un conjunto de *fbfs* del C. de Enunciados. Se sabe que $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$. ¿Es cierto que para todo Γ_i tal que $\Gamma_i \subset \Gamma, \Gamma_i \vdash_{\mathscr{L}} \mathscr{A}$?. Fundar.

UNLP. Facultad de Informática

Fundamentos de Teoría de la Computación

Curso 2022.

Práctica 10

- 5. Sean Γ y Γ_0 conjuntos de *fbfs* del C. de Enunciados. ¿Es cierto que para todo Γ existe algún $\Gamma_0 \subseteq \Gamma$ tal que si $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$ entonces $\Gamma_0 \vdash_{\mathscr{L}} \mathscr{A}$?. Fundar.
- 6. Sean \mathscr{A}, \mathscr{B} y \mathscr{C} fbfs del C. de Enunciados. Sea Γ un conjunto de fbfs del C. de Enunciados. Se sabe que $\Gamma \cup \{\mathscr{A}, \mathscr{B}\} \vdash_{\mathscr{L}} \mathscr{C}$ y también se sabe que $\Gamma \vdash_{\mathscr{L}} \mathscr{A}$.
 - i- ¿Es cierto que $\Gamma \vdash_{\mathscr{L}} (\mathscr{C} \to \mathscr{B})$?. Fundar.
 - ii- ¿Es cierto que $\vdash_{\mathscr{L}} (\mathscr{A})$?. Fundar.