

Contenido

- Estudios previos
- Sección Mérida
- Seccion El Mimbral
- Sección Rio Brazos
- Evidencias (?)
- La Teoría

Secciones Estudiadas

Localización

Sección Mérida

Columna Litológica

Fm Mito Juan

= =

Sección Mérida

Fm Colón

Asociaciones paleoambientales, definidas en base a análisis de cluster

Sección Mérida

Paleoambientes

- A: Psilatrilete sp & Proxapertites operculatus
- B: Psilamonocolpites sp & Echimonocolpites sp
- C: Psilatricolporites sp & Proteacidites dehaani
- D: Echitriporites trianguliformis & Spinizonocolpites baculatus
- E: Proxapertites maracaiboensis & dinoflagellates

Indicadores del Cretacico

Spinizonocolpites paleobaculatus

Proteacidites dehaani

Spinizonocolpites paleobaculatus.n.sp

GÉNERO: Spinizonocolpites sp. J.Muller, 1968.

ESPECIE: Spinizonocolpites paleobaculatus. n.sp, DiGiacomo &

Caroprese, 1999.

HOLOTIPO: CCG-21 (64/102). Venezuela.

LOCALIDAD TIPO: Qda. San Isidro, Edo. Mérida, Venezuela.

ESTRATO TIPO: Fm. MITO JUAN.

DESCRIPCIÓN: Grano oval alargado, con una exina de 1µ de espesor. Su

superficie se encuentra cubierta por baculas alargadas que en algunos casos se observan ligeramente curvadas. El tamaño de

las baculas oscila entre 2,23-5,5 μ de altura y 0,5-1,1 μ de ancho.

Su parte terminal es redondeada y sus bases son cónicas. El

espaciamiento entre baculas oscila 1,1-5,5 μ de longitud.

El número de baculas en la superficie varía de 16 a 32.

DIMENSIÓN: 28-34 μ. Holotipo 28 μ.

DISTRIBUCIÓN GEOGRÁFICA Y ESTRATIGRÁFICA: Se encuentra distribuido en

el Cretácico superior de los Andes Venezolanos.

AFINIDAD TAXONOMICA: Según J.Muller, 1968, el género Spinizonocolpites tiene afinidad con la palma Nypa.

Lorente, M. A. y Caroprese, C. 2000

Spinizonocolpites paleobaculatus.n.sp

Spinizonocolpites baculatus

Spinizonocolpites paleobaculatus
Lorente, M. A. y Caroprese, C. 2000

K-T Capa Arcilla del Límite

K-T Especies Sobrevivientes

Proxapertites maracaiboensis

Foveotrilete margaritae

Echitriporites trianguliformis

The Committee of the Co

Indicadores del Paleoceno

Spinizonocolpites baculatus

Gemanocolpites macrogemmatus

Pardo et al. 1999 Determinación Paleoclimática % Caolinita (% Clorita+% Ilita)

Difracción de Rayos X

Lorente, M. A. y Caroprese, C. 2000

Paleoclima

Anomalia Iridium

Desaparición
 Proteacidites dehaani

Sección Mérida

50 m de sección del límite K-T no reportada

Faller Laveling Laveling Control of Control

El Mimbral, Mexico

Secciones Adicionales

Sección EL Mimbral

Maren Laretto Largerory A. H. U. I. The harder Services Control Services Control

Columna litológica

Esteril en Palinomorfos

Sección EL Mimbral

Pardo et al. 1999 Determinación Paleoclimática

<u>% Caolinita</u> (% Clorita+% Ilita)

BASED ON KELLER et al, 1997.

ANAMAS ANAMAS ANAMAS ANAMAS ANAMAS ANAMAS ANAMAS ANAMAS COMMENT CONTROL CONTROL ANAMAS COMMENT CONTROL CONTROL ANAMAS COMMENT CONTROL ANAMAS COMMENT CONTROL CONTROL ANAMAS COMMENT CONTROL CONTRO

Brazos River, Texas

Secciones Adicionales

Glaphyrocysta perforata

Disphaerogena monmouthensis

Palinodinium grallator

Columna litológica y paleoambientes

FEET	AGE	FORMATION	LITHOLOGF	ALEOENVIRO	NMENTS
136 134 132 130 128	QUAT	FERNAR	Y		
126 124 122 118 116 116 116 116 116 116 116 116 116	PALEOCENE	KINCAID	(2) (2)	% Pollen	SHALLOW
R 888 888 888 888 844		TRANSITION	a		CONTINENTAL
8865 NOS 4444 886 3 28 28 28 28 28 28 28 28 28 28 28 28 28	MAASTRICHTIAN	CORSICANA		% Dinoflagellates	MARINE

Sección Rio Brazos

Marcadores Daniense

Turbiosphaera Carpatel filosa

cornuta

70% de extinción de especies

Marcadores Maastrichtiense

Svalbardella lidiae

Evidencias?

El efecto acumulativo de múltiples impactos (en un intervalo entre 1 y medio millon de años) favoreció un período relativamente largo de condiciones paleoclimáticas y paleoceánicas inestables, produciendo un incremento significativo en los niveles de extinción.

Existe registro de al menos 7 impactos mayores, hace 65 Ma, la mayor parte de ellos ocurrieron en el hemisferio norte y por encima de los 30 º de latitud norte.

NAME	LATITUDE	LONGITUDE	DIAMETER(Km)	AG E(Ma)
Chicxulub, México Beyenchime -Salaatin , Russia Eagle Butte, Alberta, Canada Gusev, Russia Upheaval Dome, Utah, USA Kamensk, Russia	21°20'N 71°50'N 49°42'N 48°21'N 38°26'N 48°20'N	89°30'W 123°30'E 110°35'W 40°14'E 109°54'W 40°15'E	170,00 8,00 19,00 3,50 5,00	64.98+/-0.05 65.00 65.00 65.00 65.00 65.00+/-2.00
Manson, Iowa	42°35'E	94°31'W	35,00	65.70+/-1.00

Toda la evidencia encontrada en Venezuela soporta la teoria del impacto múltiple, como originador de las extinciones e

el límite K - T