

Modulo 2.1 Internet of Things

Materiale didattico realizzato sulla base della lezione di:

Ignazio Infantino, Sensori, attuatori, elaborazione intelligente dei dati sensoriali Luigi Cerfeda, Strumenti e tecnologie per lo sviluppo di soluzioni IoT: introduzione a Zerynth

Stefano Giordano, Introduzione all'IoT e 5G

Sommario

Sintesi	1
Internet of Things	3
Introduzione all'IoT: gli elementi di base	3
Una premessa: sicurezza e privacy	3
Definizioni e tipologie	5
I modelli di elaborazione del dato	10
Intelligenza artificiale nell'IoT	12
Piattaforme di elaborazione dei dati sensoriali	15
Le reti di telecomunicazione	16
La nascita di Internet	16
Le reti sviluppate dall'uomo	17
Le differenze tra le reti e la convergenza futura delle tecnologie	19
La Commutazione	20
Le reti e l'Internet of Things	
Le reti mobili cellulari	24
Applicazioni reali dell'IoT	28
Appendice: Introduzione a Zerynth	30
Storia e presentazione azienda	
L'IoT in Zerynth	30
Caso d'uso	32

Nota: le definizioni riportate nelle note a piè pagina sono tratte da Wikipedia.

Sintesi

Introduzione all'IoT

Con Internet of Things si intende l'estensione del concetto di Internet al mondo degli oggetti e luoghi concreti.

Gli oggetti (smart):

- 1. si rendono riconoscibili (identificazione);
- 2. comunicano dati su loro stessi (connessione);
- 3. accedono a dati o informazioni aggregate di altri (capacità di elaborare dati).

In particolare, risulta rilevante la problematica della sicurezza e privacy: qualsiasi tipo di device, essendo connesso ad una rete, diventa un punto di attacco potenziale. Le regole base per prevenirlo sono password e cifratura.

Per poterlo comprendere il mondo dell'IoT, è necessario conoscere alcuni elementi:

	sensori, dispositivi input di rilevamento che raccolgono informazioni dall'ambiente
	fisico;
	attuatori, dispositivi output per controllare un processo, seguire un'azione o
	influenzare le condizioni dell'ambiente esterno;
	microcontrollori, dispositivi elettronici integrati su singolo circuito elettronico che
	contengono RAM, CPU e tutto ciò che serve a svolgere le funzionalità tipiche di un
	microprocessore per pc, ma in sistemi embedded (per applicazioni specifiche di
	controllo digitale);
	gateway, un nodo centrale che raccoglie i dati e permette di utilizzare al minimo le
	risorse per la comunicazione;
	carrier, il tipo di rete che permette la connessione ad internet e trasferimento di dati
	(vedi Wi-Fi, 5G, etc.) ad un server di storage che, a sua volta, organizza i dati e li
	fornisce agli output.
ara	digma che sta dietro l'IoT è quello di avere Agenti Intelligenti. Essi possono seguire
ers	i modelli di calcolo:

II pa diversi modelli di caicoio:

Edge computing. Si tratta di un mod	ello distribuito	dove	l'elaborazione	dei	dati
avviene più vicino possibile a dove i dat	i vengono richi	esti (in	prossimità del s	enso	ore).
È largamente adottato nell'ambito de	II'IOT;				

Cloud computing. Si tratta di un paradigma di erogazione di servizi offerti su richiesta
da un fornitore a un cliente finale attraverso la rete internet (come l'archiviazione,
l'elaborazione o la trasmissione dati). È usato per i dati meno 'time-sensitive'.

Reti di telecomunicazioni

Internet of Things è da considerarsi come una rete di telecomunicazioni. Ma cosa sappiamo di queste ultime?

Partendo dalle origini di **Internet** (rete di dati), nato dall'elitario Arpanet (con il protocollo IP), ed arrivando all'attuale www, ovvero protocollo http per la connessione, in questa dispensa si racconta l'evoluzione della rete di dati e, in parallelo, di quella telefonica. La rete telefonica presenta come requisito fondante l'interattività e come caratteristica principale (relativa alla variante digitale) un bit rate variabile che ha comportato, negli anni, una

spasmodica ricerca di alternative al collegamento classico (**commutazione di circuito**), in quanto poco efficiente.

La soluzione trovata è la **commutazione a pacchetto** (adatta sia alla rete di dati che alla rete telefonica grazie al *Voice over IP*), che può però comportare congestione dei buffer di dati, motivo per cui risulta necessario il controllo di congestione (*Congestion Control*). Questo aspetto rischia di inficiare l'interattività: infatti, per lungo tempo, la soluzione è stata utilizzata solo per la rete di dati tra calcolatori (internet) e non per i telefoni, dove tale requisito è fondamentale.

In questo contesto, è dunque necessario specificare che l'IoT M2M *Communication*, ma di una rete, un'infrastruttura globale che abilita nuovi servizi avanzati grazie all'interconnessione di oggetti fisici e virtuali.

Si giunge a parlare delle **reti mobili**, in particolare della tanto discussa **rete 5G**, ultima evoluzione: è una rete fortemente densificata, con banda larga ad 1 Gbit, ritardo di trasmissione ridotto a 1 millisecondo e permetterà il *massive loT* (1 milione di dispositivi per ogni metro). Tutti questi progressi sono resi possibili dai **due nuovi paradigmi delle telecomunicazioni**: *software define networking* (separazione sosftware e hardware) e *network function virtualization* (macchine virtuali che girano su data centre).

Infine, nella presente dispensa vediamo anche alcune applicazioni di IoT:

- Intelligent trasportation service (geometrie variabili e applicazioni di fluidodinamica al mondo dell'automotive);
- Precise Agricultural Production e in particolare LoRaWAN, soluzione dell'azienda Natech.

Introduzione a Zerynth

Zerynth, startup innovativa che offre una **piattaforma IoT** basata su programmazione dei microcontrollori con linguaggio python, mostra il proprio punto di vista sull'argomento, ponendo l'accento sulla distinzione importante tra linguaggio di programmazione di basso livello (C++, Assembly, etc) e di alto livello (Java, python, Java Script), il quale è più vicino al linguaggio naturale (commentato e ordinato).

La piattaforma Zerynth presenta la funzione di **ponte** tra hardware (ad esempio il suo *4zerobox*) e cloud (*zdm*), abilitando anche una serie di servizi resi da terze parti (quali il servizio di creazione di dashboard dai dati raccolti, fornito da Ubidots).

Nella parte *hands-on* della lezione, sono stati fatti vari esercizi step-bystep (con devicefisico per chi era in aula e virtuale per chi era online).

Internet of Things 3

Internet of Things

Introduzione all'IoT: gli elementi di base

Il termine "Internet of Things" (IoT) è nato da un ricercatore, Kevin Ashton, nel 1999: inizialmente, consisteva nel dare una maggiore capacità ai computer in modo che potessero, in qualche modo, vedere e sentire il mondo. Nel corso del tempo la definizione è stata raffinata e sono stati definiti i principi alla base: esistono degli oggetti che devono essere riconoscibili (identificazione), devono avere la capacità di comunicare dati su loro stessi (connessione) e devono poter accedere a dati aggregati di altri dispositivi (capacità di elaborare i dati).

Questi sono perciò i presupposti per considerare gli oggetti come **smart object** (dispositivi, apparecchiature, impianti e sistemi, materiali e prodotti tangibili, opere e beni, macchine e attrezzature).

Tali oggetti possono essere applicati in diversi contesti: Smart Home/Building, Smart Factory, Smart City, Smart Car, etc. Inoltre, le <u>possibilità di connessione</u> degli smart objects sono diverse:

A corto raggio	
A lungo raggio (ad esempio utilizzando	il 4G e il 5G)

Il settore IoT, attualmente, possiede una grande rilevanza: il suo mercato risulta in costante espansione (in Italia si stimava già dal 2019 che valesse 6,2 Miliardi di euro).

Una premessa: sicurezza e privacy

Un tema importante riguardante l'IoT è relativo alla **sicurezza e privacy**: è sicuramente necessario avere consapevolezza su quali sono i vantaggi nell'introdurre nuove tecnologie, ma anche sapere come trattare aspetti legati alla privacy nel momento di introduzione dei dispositivi IoT, Infatti, si ricevono in continuazione notizie relative ad attacchi informatici nei confronti di numerose aziende attraverso dispositivi IoT in quanto questi ultimi sono fonti di ingenti moli di dati.

"...negli ultimi tre anni qualcosa come un'azienda su 5 ha subito almeno un attacco ai propri ambienti Internet of Things" (società di ricerca Gartner nello studio "Worldwide IoT security spending forecast 2018-2021 per segment").

Qualsiasi tipo di **device**, essendo connesso ad una rete, diventa un **punto di attacco potenziale**. Da tale aspetto conseguono, perciò, alcune **regole base** per prevenirlo:

Password	d e metodi	di autenticazion	ni robuste
----------	------------	------------------	------------

☐ Cifratura (encryption).

Bisogna, in sintesi, avere consapevolezza dei limiti e possibilità di protezione dall'esterno, tenendosi sempre <u>aggiornati</u> su quelli che possono essere <u>nuovi rischi</u> poiché è un mondo molto dinamico. Bisogna quindi fare in modo che tutte le <u>componenti hardware</u> abbiano sempre le <u>componenti software aggiornate</u> al fine di assicurare la massima protezione e il massimo livello di privacy.

Inoltre, anche i *dispositivi di storage* devono essere protetti da accessi indesiderati, non solo i *device per acquisire i dati.*

