Εργασία 2η

Consider the real discrete process given by

$$X[k] = \sum_{i=1}^{6} \cos(\omega_i k + \varphi_i), k = 0,1,...,N-1,$$

where $\omega_i=2\pi\lambda_i$, $\lambda_3=\lambda_1+\lambda_2$ and $\lambda_6=\lambda_4+\lambda_5$, $\varphi_3=\varphi_1+\varphi_2$, $\varphi_6=\varphi_4+\varphi_5$ and $\varphi_1,\varphi_2,\varphi_4,\varphi_5$ are independent and uniformly distributed random variables on $[0,2\pi]$. Consider that $\lambda_1=0.12Hz$, $\lambda_2=0.30Hz$, $\lambda_4=0.19Hz$ and $\lambda_5=0.17Hz$ (hence, $\lambda_3=0.42Hz$ and $\lambda_6=0.36Hz$). Moreover, let N=8192 as the data length.

- 1. Construct the X[k].
- 2. Estimate the power spectrum $C_2^x(f)$. Use $L_2 = 128$ max shiftings for autocorrelation.
- 3. Estimate the bispectrum (only in the primary area) $C_3^x(f_1, f_2)$ using
 - a) the indirect method with K = 32 and M = 256. Use L₃ = 64 max shiftings for the third-order cumulants. Use: a₁) rectangular window and a₂) Parzen window.
 - b) the direct method with K = 32 and M = 256. Use J = 0.
- 4. Plot X[k], $C_2^x(f)$, $C_3^x(f_1, f_2)$ (all estimations).
- 5. Compare the estimations of $C_3^x(f_1, f_2)$ amongst $\{a_1, a_2, b\}$ settings. Comment on the comparisons.
- 6. What can you deduce regarding the frequency content from the comparison of $C_2^x(f)$ and $C_3^x(f_1, f_2)$ (all estimations)?
- 7. How the results will change if you repeat the process from 1 to 5 taking into account:
 - a) different segment length: i) K = 16 and M = 512 ii) K = 64 and M = 128?
 - b) 50 realizations of the X[k] and comparing the mean values of the estimated $C_2^x(f)$, $C_3^x(f_1, f_2)$?