Started on Tuesday, 5 September 2023, 6:15 PM

State Finished

Completed on Tuesday, 5 September 2023, 7:00 PM

Time taken 44 mins 51 secs

Grade 9.00 out of 15.00 (**60**%)

Question 1

Incorrect

Mark 0.00 out of 2.00

Let h(t) be given by

$$h(t) = egin{cases} rac{t}{2} & 0 \leq t \leq 2 \ 0 & Otherwise \end{cases}$$

Let y(t) = h(t) * h(-t) (where * denotes convolution).

y(t) has a maximum value of $\boxed{ exttt{0.5}}$

The maximum value of y(t) occurs at t=iggle 2

Your answer is incorrect.

Question 2

Incorrect

Mark 0.00 out of 1.00

 $u_1(t)$ is defined as $u_1(t)=rac{d\delta(t)}{dt},$ and $f(t)=\exp(-2t)u(t)$. Then $\int_{-\infty}^\infty f(au)u_1(1- au)d au$ is

Select one:

- \bigcirc -2 e^{-2}
- 0 1
- \circ $-e^{-2}$
- Incomplete question or none of the options is correct.
- \bigcirc 2 e^{-2}

Your answer is incorrect.

The correct answer is: $-2e^{-2}$

Question 3

Correct

Mark 1.00 out of 1.00

Let y[n] denote the convolution of h[n] and g[n], where $h[n]=(1/2)^nu[n]$ and g[n] is a causal sequence. If y[0]=1 and y[1]=1/2, then g[1] equals

Select one:

- Incomplete question or none of the options is correct.
- 3/2
- ____1
- 1/2
- 0

Your answer is correct.

The correct answer is: 0

Question 4

Correct

Mark 1.00 out of 1.00

Let ω_0 denote an arbitrary frequency. Which one of the following is an eigen function of the class of all continuous-time, linear, (not necessarily real) time-invariant system (u(t) denotes unit-step function)?

Select one:

- $igcup \exp(j\omega_0 t)u(t)$ only
- More than one option is correct.
- $= \exp(j\omega_0 t)$ only
 - 4
- $-\cos(\omega_0 t)$ only
- $= \sin(\omega_0 t)$ only

Your answer is correct.

The correct answer is: $\exp(j\omega_0 t)$ only

Question 5

Correct

Mark 1.00 out of 1.00

The result of the convolution

$$x(-t) * \delta(-t - t_0)$$

Select one:

- a. $x(-t-t_0)$
 - **√**
- b. \(x(t-t_0)\)
- c. \(x(t+t_0)\)
- d. \(x(-t+t_0)\)
- e. Incomplete question or none of the options is correct.

Your answer is correct.

The correct answer is: $(x(-t-t_0))$

Question 6

Correct

Mark 1.00 out of 1.00

In the figure shown below, (b=1), (a=1) and (D) denotes a delay element. Further, (x[n]=u[n]) and (y[-1]=0) The output (y[n]) at (n=5) is

Answer: 0

The correct answer is: 0

Question 7 Incorrect Mark 0.00 out of 2.00	Consider the difference equation (with zero initial conditions) relating input \(x[n]\) and output \(y[n]\) of a system as follows: \(y[n]-\frac{1}{2}y[n-1]=x[n]\). If \(x[n]=\left(\dfrac{1}{2}\right)^n u[n]\), then the particular solution (part of the output due to the input \(x[n]\)) alone) at \(n=3\) has a value (HINT: you must first find the homogenous component - the output due to zero input) Answer: 0.5
	The correct answer is: 0.375
Question 8 Correct Mark 1.00 out of 1.00	Consider a discrete -time signal \(x[n]=\begin{cases} n, & 0 \leq n \leq 10 \\ 0, \text{otherwise} \end{cases} \). If \(y[n]\) is the convolution of \(x[n]\) with itself, the value of \(y[4]\) is Answer:
	The correct answer is: 10
Question 9 Correct Mark 1.00 out of 1.00	Let $\(h(t)=u(t)-u(t-6)\)$ be the impulse response of an LTI system. Let $\(q(t)=u(t)-2u(t-3)+u(t-6)\)$. If $\(x(t)=q(-t)\)$ is the input be the input to such a system, the output $\(y(t)\)$ at $\(t=6\)$ is
	The correct answer is: 0

Question 10

Incorrect

Mark 0.00 out of 1.00

Consider the parallel combination of two LTI systems as shown in the figure. The impulse response of the systems are:

 $\hline (h_1(t)=2 \hline (t+2)-3\hline (t+1)\hline (t$

 $\hline (h_2(t) = \hline (t-2)\hline (t-2$

If the input (x(t)) is a unit-step signal, then the energy of (y(t)) is

Answer: 6

The correct answer is: 7

Question 11

Correct

Mark 1.00 out of 1.00

A linear time-invariant system with input (x[n]) and output (y[n]) and impulse response $(h[n]=\left(\frac{1}{5}\right)^nu[n])$ can not in reality be implemented because the convolution $(y[n]=\left(\frac{n-0}{\infty}\right)^{\frac{n+1}{5}\right)^nu[n]}$ since it requires infinite number of products and summations to generate one sample of the output (y[n]).

Select one:

True

False

The correct answer is 'False'.

