EDA Report: Cryptocurrency Liquidity Prediction for Market Stability

1. Introduction

This EDA explores historical cryptocurrency market data with a focus on understanding **liquidity** patterns, price volatility, and volume trends. The goal is to extract meaningful features that contribute to liquidity prediction for enhanced market stability.

2. Dataset Overview

We use a historical dataset containing the following columns:

- timestamp: Datetime of the record
- price: Cryptocurrency price (e.g., BTC/USDT)
- volume: Trading volume
- order book spread: Bid-ask spread (used as liquidity proxy)
- market cap: Total market capitalization
- num trades: Number of trades executed

```
python
Copy code
import pandas as pd
df = pd.read csv('data/crypto data.csv')
df.info()
df.describe()
```

3. Data Cleaning & Preprocessing

- Missing Values: Checked and removed rows with NaN.
- **Data Types**: Converted timestamp to datetime.
- **Indexing**: Set timestamp as the index for time-series analysis.

```
python
Copy code
df['timestamp'] = pd.to datetime(df['timestamp'])
df.set index('timestamp', inplace=True)
df = df.dropna()
```

✓ 4. Time Series Plots

```
→ Price over Time
```

```
python
Copy code
import matplotlib.pyplot as plt
df['price'].plot(figsize=(12, 5), title='Price Over Time')
plt.ylabel("Price")
plt.show()
Volume over Time
python
Copy code
df['volume'].plot(figsize=(12, 5), title='Volume Over Time',
color='orange')
plt.ylabel("Volume")
plt.show()
Order Book Spread (Liquidity Proxy)
python
Copy code
df['order book spread'].plot(figsize=(12, 5), title='Bid-Ask
Spread (Liquidity)')
plt.ylabel("Spread")
plt.show()
```

5. Volatility Analysis

Calculated using rolling standard deviation of returns:

```
python
Copy code
df['returns'] = df['price'].pct_change()
df['volatility'] = df['returns'].rolling(window=5).std()
df['volatility'].plot(title='Rolling Volatility (5-period)')
plt.show()
```

6. Correlation Matrix

To identify strong relationships between features:

```
python
```

Copy code

```
import seaborn as sns
corr = df.corr()
plt.figure(figsize=(8,6))
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title("Correlation Matrix")
plt.show()
```

Observation: Strong correlation often exists between price, volume, and market cap. Spread shows an inverse correlation with volume in many cases, suggesting lower liquidity during low trading activity.

7. Feature Ideas from EDA

From the analysis, we propose using:

- Rolling Mean/STD of Volume: liquidity signal
- Volatility: market uncertainty indicator
- Bid-Ask Spread: direct liquidity proxy
- **Returns**: price movement patterns

8. Conclusion

This EDA confirms the presence of meaningful indicators for modeling cryptocurrency liquidity. The derived features will feed into the ML pipeline to predict high or low liquidity periods — a key component for maintaining market stability.