大连理工大学

	! 课程名	计算力	方法								
	! ! 授课院()	系): _	数学系	<u> </u>	考试	∃期 <u>:</u>	2006 4	年 12	<u>月 11</u> 日] i	式卷共 <u>8</u> 〕
		_	=	三	四	五	六	七	八		总分
	标准分	2									
	得分										
装		* 200		energy to the	v 10						
订	一、填空(共30分,每空2分)										
线	 (1)误差的来源主要有										
	1		CHILIM		3.43.5 - 1 . 5.23.63.34 - 15						
	(4) 设 $A \in C^{4\times4}$,特征值 $\lambda_1 = \lambda_2 = 2$, $\lambda_3 = \lambda_4 = 3$,特征值 2 是半单的,而特征值 3 损的,则 A 的 Jordan 标准型 $J =$										
	! ! !					-				•	
	(5) 已知 $f(x) = x^2 - 3x$,则 $f[0,1] =, f[-1,0,1] =$										·
	(6) 求 $f(x) = x^3 + x - 1 = 0$ 在 $x = 0.5$ 附近的根 α 的 Newton 迭代公式是:										
			W 10 87556 0			1920					
	; (7) 使用 <i>A</i>	Aitken	加速迭位	弋格式	$x_k = \varphi($	(x_{k-1}) 得	^身 到的:	Steffen	sen 迭代	格式)	b :
	<u> </u>						_,对幂	F 法数列	① {m_k } 的	的加速	公式为:
	ļ										

(8) n+1 点的 Newton-Cotes 求积公式 $I_n(f) = \sum_{k=0}^n A_k f(x_k)$ 的最高代数精度为

(9) 计算u' = -7u (0 $\leq t \leq 1$),u(0) = 1 的数值解的 Euler 求解公式为______,为使计算保持绝对稳定性,步长h 的取值范围______.

二、(10 分) 设 $A = \begin{pmatrix} 4 & 2 \\ -2 & -4 \end{pmatrix}$, 计算 $\|A\|_1$, $\|A\|_2$, $\|A\|_\infty$, $\|A\|_F$, 谱半径 $\rho(A)$, 2-条件数 $cond_2(A)$, 和奇异值.

三、(10 分) 求矩阵
$$A = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 5 & 2 \\ 0 & 2 & 8 \end{pmatrix}$$
 的 Doolittle 分解和 Cholesky 分解.

四、(4 分) 求 Householder 变换矩阵将向量
$$x = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 化为向量 $y = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}$.

五、(12分) 写出解线性方程组的 Jacobi 法,G-S 法和超松弛(SOR)法的矩阵表示形式,并根据迭代法 $x^{(k+1)}=Bx^{(k)}+f$ 对任意 $x^{(0)}$ 和 f 均收敛的充要条件为 $\rho(B)$ < 1,证明若线性方程组 Ax=b 中的 A 为严格对角占优矩阵,则超松弛(SOR)法当松弛因子 $\omega\in(0,1]$ 时收敛.

六、(12 分) 求满足下列插值条件的分段三次多项式([-3,0]和[0,1]),并验证它是不是三次样条函数. f(-3) = -27, f(-2) = -8, f(-1) = -1, f(0) = 0, $x \in [-3,0]$; f(0) = 0, f'(0) = 0, f(1) = 0, f'(1) = 1, $x \in [0,1]$.

七、(12 分)证明区间 [a,b]上关于权函数 $\rho(x)$ 的 Gauss 型求积公式 $I_n(f) = \sum_{k=0}^n A_k f(x_k)$ 中的系数 $A_k = \int_a^b \rho(x) l_k(x) dx$,其中 $l_k(x)$ 为关于求积节点 $x_0, x_1, \cdots x_n$ 的 n 次 Lagrange 插值基函数, $k = 0,1, \cdots n$. 另求 [-1,1] 上以 $\rho(x) \equiv 1$ 为权函数的二次正交多项式 $\psi_2(x)$,并由此构造 Gauss 型求积公式 $\int_{-1}^1 f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$.

八、(10 分)证明线性二步法 $u_{n+2}+(b-1)u_{n+1}-bu_n=\frac{h}{4}[(3+b)f_{n+2}+(3b+1)f_n]$,当 $b\neq -1$ 时为二阶方法,b=-1时为三阶方法,并给出b=-1时的局部截断误差主项.