Quantum sea - Classifying water molecules and sodium ions in protein structures

Team Name: Lindwurm (Sangwoo Park)

shadow1229@snu.ac.kr (or shadow1229@naver.com)

Protein is also a molecule.

• Even though protein shows incredible functions, but it is still a molecule.

 Understanding the physics behind protein would help to understand its function.

GPCR in complex with a negative allosteric modulator (PDB ID: 4OR2)

Understanding physics behind the protein would help to know interactions / dynamics of the protein.

Why we need quantum computer?

- Interaction of the protein is governed by Gibbs free energy.
 - To know Gibbs free energy, we should know the entropy term.
 - It means, we should know every possible state of the protein. Quite exponential!

 Maybe we need new method which is exponentially faster than classical ones!

Protein could have a lot of structural states. (PDB ID: 2L27, NMR structure)

However, It's bit early.

- Correct algorithm for predicting free energy of the protein...
 - Would use full superposition like Grover search...?
 - Actually we don't have an algorithm yet!
- Fidelity / # of qubits are not enough for the prediction... yet!
 - Variational Quantum Eigensolver, Quantum Machine learning is available though...

Ju, Yi-Lin & Tsai, I-Ming & Kuo, Sy-Yen. (2007). 10.1109/TCSI.2007.907845.

It's state-of-the-art, but we need more! (From IONQ's website.)

Lots of limitations

- Limitations of quantum computer
- Limitations of time (5 days)
- Limitations of myself
 - I think I'm still a beginner in QC area. (sorry!)
 - Scoring 7500 pts in QHack coding challenge might not enough...

- In this presentation, I'll try to solve toy problem.
 - With Quanvolutional Neural Network

- X-ray crystallography:
 - The method for obtaining high-res structure of a protein
 - Uses diffraction of X-ray due to electrons in the protein
 - small molecules, atoms or ions with the same number of electrons are likely to produce similar peaks.
 - H₂O: 10 electrons, Na⁺: 10 electrons
- However...
 - H₂O: 0 net charge / Na⁺ : positive net charge
 - H₂O binding structure != Na⁺ binding structure

Please forget this NMR model. I will use X-ray crystallographic models only.

- The problem in this project:
 - Input: Voxelized 3D image of the structure of C,N,O atoms from proteins or other compounds exclude water, where H_2O / Na^+ exists at the center.
 - Size of the input: A cube size of 16Å and grid spacing of 0.5Å.
 - Output: which one exists at the center, Water, or sodium ions?

Carbon
Oxygen
Nitrogen
Water molecule or sodium ion

Training / Validation set:

• Training set: protein structures nearby 400 water molecules and 400 sodium ions, gathered from PDBBind v2019 refined set.

• To train roatational invariance, 100 rotations were done for each structure (total 80000 structures. 800 structures per epoch)

(Inputs for epoch N == Inputs for epoch N+100)

Training / Validation set (cont.):

• Validation set: protein structures nearby 54 water molecules and 54 sodium ions, gathered from PDBBind v2019 refined set.

- Yes, this set is not big enough and it contains some low resolution structures too.
 - No additional R-free, B-factor cutoff were applied
 - Need larger set for sodium ions. (This is the major reason of small set size.)

Pattern recognition for protein structures

One simple way: using convolutional neural network

And Quanvolutional neural network will be used for QML version!

Quanvolutional neural network

From pennylane's tutorial: https://pennylane.ai/qml/demos/tutorial_quanvolution.html

Networks used in this project (1/3) CNN:

Networks used in this project (2/3)

Quanvolutional Neural Network:

Quanvolutional Layer: # of wires: 4

(To reduce wires, two quanvolutions were done.)

Quantum Circuit:

- 0. Starts with |0>
- 1. RX (π *O density)
- 2. RY (π *N density)
- 3. RZ (π *C density)
- 4. Randomlayer (circuit layer:2. rotations: 4)

Measurement: <Z>

Networks used in this project (3/3)

Trainable Quanvolutional Neural Network:

Loss functions / Optimizers

Loss function: Cross Entropy loss (Batchsize = 4)

- Optimizer: Adam optimizer
 - CNN / QUANV : learning rate = 0.0001
 - Trainable QUANV : learning rate = 0.03

Results – Loss (1/2)

(maybe) Due to limited amount of rotations(=100) in training set, Both CNN and QUANV shows overtraining after 400 epoch.

Results – Loss (2/2)

Trainable Quanvolutional Neural Network was not trained well, even though learning rate was higher than other two methods.

(Maybe I need to learn more about optimizers in Quantum Machine Learning.)

Results – Validation set accuracy

	Overall accuracy	Water accuracy	Sodium ion accuracy
CNN - 400 epochs (Not overtrained yet)	81.5% (88 / 108)	85.2% (46 / 54)	77.8% (42 / 54)
CNN - 1000 epochs (Overtrained)	77.8% (84 / 108)	87.0% (47 / 54)	68.5% (37 / 54)
QUANV - 400 epochs (Not overtrained yet)	66.7% (72 / 108)	68.5% (37 / 54)	64.8% (35 / 54)
QUANV - 1000 epochs (Overtrained)	61.1% (66 / 108)	64.8% (35 / 54)	57.4% (31 / 54)
Trainable QUANV (111 epochs)	55.6% (60 / 108)	27.8% (15 / 54)	83.3% (45 / 54)

Conclusion

- Machine learning can specify H₂O / Na⁺!
 - From CNN's accuracy, which is about 80%!
- However, quanvolution based method showed worse accuracy.
 - 55.6% for trainable quany, 61~67% for non-trainable quany
 - Maybe different network design, loss function, optimization method would be necessary to show higher performance.
 - But, still better than random guessing!

What can be done further?

- Prepare better training / test set
 - Larger and high-resolution (low R-free, B-factor, etcetc) set
 - Use more atom types rather than using C, N, O only.
- Use better optimization method for quanvolution, or try to use QGCNN
 - Embedding will be done for nearby atoms, rather than nearby voxels

What can be done further? (cont.)

- Try to apply rotational equivariance concept in the network
 - Most of computation were consumed for learning rotation!
 - Building 100 rotated input structure for each target, training 1000 epochs...
 - SE(3)-CNN-like network would be helpful for this problem.
 - What could be QML-version of SE(3)-CNN?
- And the most important one:
 - Try to think about the method about free E estimation with quantum computer – This is the true problem!!

Thanks for reading this presentation!

Acknowledgements:

```
    Seoklab (<a href="https://seoklab.org">https://seoklab.org</a>)
    Pennylane (<a href="https://pennylane.ai">https://pennylane.ai</a>)
    AWS Braket (<a href="https://console.aws.amazon.com/braket/">https://console.aws.amazon.com/braket/</a>)
    IBM Quantum (<a href="https://guantum-computing.ibm.com/">https://guantum-computing.ibm.com/</a>)
```

BEMANI SOUND TEAM