KU Leuven

Faculty of Psychology and Educational Sciences

THE EFFECT OF MISSING DATA ON THE ESTIMATION BIAS, VARIANCE, AND STATISTICAL POWER IN MULTILEVEL AUTOREGRESSIVE(1) MODELS

Master's thesis submitted for the degree of Master of Science in Master of Psychology: Theory and Research by

Benjamín Šimsa

Supervisor: Prof. Dr. Eva Ceulemans Co-supervisors: Dr. Ginette Lafit, Jordan Revol

Contents

Introduction	2
Multilevel AR(1) model	4
Assumptions of the MLAR(1) model	4
Estimation procedures	5
Evidence from simulation studies	5
Methods	7
Simulation procedure	7
Reproducibility and code/data availability	11
Results	12
Simulation A	12
Outcome: Estimation bias (MSE)	12
Outcome: Standard error	13
Outcome: Statistical power	16
Simulation B	20
Outcome: Estimation bias (MSE f)	20
Outcome: Standard error	20
Outcome: Statistical power	22
Supplementary analysis: No person-mean centering	25
Discussion	30
Directions for future research	32
Limitations	32
References	34
Appendix 1: Full results from Simulation A	38
Appendix 2: Full results from Simulation B	49

Introduction

In recent years, the focus in diverse subfields of psychology has been shifting towards complexity, dynamics and a within-person perspective (Hamaker, 2012). Among other things, this shift has been facilitated by the growing availability of smartphones and wearables. These devices allow researchers to use the Experience sampling method (ESM) to collect intensive longitudinal data with a high level of ecological validity (Myin-Germeys et al., 2018). Intensive longitudinal data consist of several repeated measurements per day, nested within individual participants (Larson & Csikszentmihalyi, 2014). The use of intensive longitudinal data considerably broadens the extent of research questions psychological researchers can investigate and statistical analyses they can conduct. Importantly, the multilevel structure of intensive longitudinal data allows scientists to investigate both within-person dynamic processes and the individual differences therein between persons (Wright & Zimmermann, 2019). One of the new research avenues that emerged with the growing popularity of intensive longitudinal data is the study of affect dynamics (for an overview, see Houben et al., 2015). The dynamic affect measures make use of the structure of intensive longitudinal data to take the fluctuating nature of affect/emotions into account.

There are two main approaches to capture affect dynamics: fitting models to the data (such as the first-order multilevel autoregressive (MLAR) model, Koval et al. 2021), and computing within-person descriptive statistics (for instance, aurocorrelation). Both the MLAR(1) model and the within-person autocorrelation estimates target emotional inertia: the degree to which affective states linger (Kuppens & Verduyn, 2017).

Although some degree of inertia is to be expected in human emotional experiences, a high level of emotional inertia (i. e., a high temporal persistence of emotional states) has been linked to psychological maladjustment (Kuppens et al., 2010). A negative emotion process with a high inertia can get caught in a self-reinforced feedback loop (also called *critical slowing down*, Leemput 2014). This causes the process to be partially resistant to both external influences and inner processes, including emotional regulation (Koval et al., 2015).

The evidence about the association between emotional inertia and the well-being/psychopathology spectrum has grown steadily over the last two decades. A recent meta-analysis indicated an association between emotional inertia (of both positive and negative emotions) and psychological well-being/psychopathology (Houben et al., 2015). Specifically, higher emotional inertia has been linked to lower well-being and higher ocurrence of depressive symptoms (Brose et al., 2015), bipolar disorder (Mneimne et al., 2018), and lower response of depression and anxiety symptoms to cognitive-behavioral therapy (Bosley et al., 2019). However, more recent evidence suggests that the association of inertia (of both positive and negative affect) and psychopathology/well-being is only limited when the mean affect intensities are taken into account (Bos et al., 2019; Bosley et al., 2019; Dejonckheere, 2019; Koval et al., 2013).

Despite the popularity of the MLAR(1) models in psychological research, there are several questions

about their statistical properties that remain unanswered. One of them is the effect of missing observations on their estimation performance. This is a pressing issue, given that the presence of missing data in intensive longitudinal datasets is more of a rule than an exception: the average compliance in ESM studies is around 79% (SD = 13.64%; Wrzus & Nebauer 2022). Furthermore, study compliance is associated with study and participant characteristics (Wrzus & Neubauer, 2022). Financial incentives for participation were found to be associated with increased compliance, and longer ESM questionnaires are associated with lower compliance (Eisele et al., 2020; Vachon et al., 2019). Participants with psychotic disorders tend to have lower compliance compared to general population, while the opposite is true for participants with depressive disorders (Rintala et al., 2019; Vachon et al., 2019). Higher positive affect, lower negative affect, lower stress, and less alcohol use are linked to higher compliance (Rintala et al., 2019, 2020).

While Ji et al. (2018) show that the presence of data missing completely at random (MCAR), missing at random (MAR) and not missing at random (MNAR) leads to a considerable bias in point estimates of cross-lagged and autoregressive parameters in multilevel vector autoregressive models when list-wise deletion is used, no similar evidence is available about the MLAR(1) model.

The MCAR missingness pattern assumes that the participants miss responding to beeps randomly, and each beep has the same probability of being missed, regardless on any other factors (e.g., whether the previous beep was missed, or the intensity of the emotion measured by ESM). However, many different missing data scenarios can arise in ESM research. For instance, participants could be more likely to miss a series of beeps when they attend a social event. This will result in a block of consecutive missing datapoints, where neither the starting point nor the endpoint of the missing block depend on the intensity of the emotion. Alternatively, probability of an observation being missing can depend on the value of the emotion process itself. For example, a participant can miss responding to an ESM measure of a positive mood because they are not feeling well enough or be less likely to answer an ESM beep in situations that make them feel very good (e.g., they might skip responding an ESM beep when celebrating). For an illustration on how these missingness pattern can manifest itself, see 1.

The goal of the present thesis is to investigate whether compliance (i. e., the inverse of the proportion of missing data within each participant of an ESM study) and the different patterns of missingness described in the previous paragraph (MCAR; missing in a block; extreme observations missing) have an effect on estimation bias, variability, and statistical power of the multilevel AR(1) model. In the following part, I will describe the multilevel autoregressive model and its assumptions into more details, and summarize the already available evidence about its statistical properties from simulation studies.

Multilevel AR(1) model

In this subchapter, I will describe the mathematical basis and assumptions of the first-order multilevel autoregressive model with random intercepts and random autoregressive effects, which will be the focus of the simulation part of the thesis. The notation used by Lafit et al. (2020) will be adhered to throughout the thesis.

The MLAR model consists of two levels: the within-person Level 1 and the between-person Level 2. At Level 1, described by Equation (1) (Lafit et al., 2020), each participant's first-order autoregressive process is modelled: The person-specific autoregressive parameter γ_{1i} quantifies to what degree the process value esm_{it} of participant i at time t depends on the lagged process value $esm_{i,t-1}$. The person-specific intercept γ_{0i} represents the expected process value esm_{it} when the lagged variable $esm_{i,t-1}$ equals 0 (Jongerling et al., 2015). The innovation ϵ_{it} (i.e., residuals, the part of the process variance that is not explained by the lagged variable $esm_{i,t-1}$) is assumed to be independent and coming from a normal distribution with mean of 0 and variance σ_e^2 (Lafit et al., 2020). The model used in the present thesis assumes the innovation variance to be identical for all participants.

$$esm_{it} = \gamma_{0i} + \gamma_{1i} * esm_{i,t-1} + \epsilon_{it} \tag{1}$$

In the multilevel AR(1) model, the person-specific autoregressive effects γ_{1i} and the person-specific intercepts γ_{0i} are allowed to vary between participants. The Level 2 of the MLAR(1) model describes this between-person variability. The Level 2 is defined in Equation (2). Each person-specific autoregressive effect γ_{1i} is a sum of a fixed effect β_{10} and a person-specific random effect ν_{1i} . The random effects ν_{1i} themselves come from a normal distribution with mean of 0 and variance $\sigma_{\nu_1}^2$ (Lafit et al., 2020). The same holds for the person-specific intercepts γ_{0i} : they are a sum of a fixed effect β_{00} and a random effect ν_{0i} that comes from $N(0, \sigma_{\nu_0}^2)$.

$$\gamma_{0i} = \beta_{00} + \nu_{0i}
\gamma_{1i} = \beta_{10} + \nu_{1i}$$
(2)

Assumptions of the MLAR(1) model

In this part, the assumptions of the MLAR(1) model will be explained.

Stationarity. The MLAR(1) model is used to model stable processes in which no temporal trends (i.e., changes in the process mean over time) are present. As such, it assumes weak stationarity: the (person-specific) process mean, innovation variance, and autoregressive parameter are assumed to not change through the time series (Rovine & Walls, 2006). For this reason, the person-specific autoregressive effects γ_{1i} are assumed to be bounded by -1 and 1, as autoregressive effects larger than 1 (or lower than -1) cause a change in the process mean (Krone et al., 2016).

Equally spaced measurements. The time-periods that elapsed between each pair of consecutive measurement occasions are assumed to be equal in the following simulation study. In real-life ESM data, the lagged value of the last ESM observation of each day is usually set as missing to account for the fact that the gap between the last night ESM beep and the first morning beep is much larger than the time-gap between the other ESM observations.

Estimation procedures

In the following subchapter, I will present two most-used approaches to estimating the MLAR (1) model in psychology: the maximum likelihood estimation (MLE) and Bayesian Markov Chain Monte Carlo (MCMC) estimation.

Maximum likelihood estimation (MLE). Thanks to its availability in standard software, such as the *nlme* R package (Pinheiro et al., 2022), ML is the most popular approach to estimating MLAR(1) models (Jongerling et al., 2015). The Full Maximum Likelihood method, which includes the regression coefficients and the variance components in the likelihood, is usually used for the estimation in combination with the Broyden-Fletcher-Goldfarb-Shanno algorithm, specifically designed to estimate stationary autocorrelation parameters (Krone et al., 2016).

Bayesian estimation. Bayesian MCMC represents a flexible way to estimate the MLAR(1) model (Krone et al., 2016). In the context of missing observations, it allows to avoid list-wise deletion of observation-pairs when either the outcome or the predictor are missing by using the estimated autoregressive parameter to estimate the value of the missing observations (Krone et al., 2016).

Missing observations and estimation. The presence of missing values in an intensive longitudinal dataset decreases the number of observations per participant (or, more specifically, the number of observation-pairs that can be used for the estimation of the model). This is especially true for the MLE estimation method, which deals with missing data in autoregressive models through list-wise deletion (Krone et al., 2016). As such, it can be expected that lower compliance (i. e., lower proportion of ESM beeps that the given participant answered) will make estimation bias more severe.

Evidence from simulation studies

Multiple simulations about the statistical properties of the MLAR(1) model have been conducted. In this subchapter, I will summarise the most important findings.

Jongerling et al. (2015) investigated the effect of modelling innovation variance as fixed (identical for all participants) instead of random. They found that modelling innovation as fixed when it differs across participants leads to a considerable bias in the estimation of the fixed AR effect. There is an upward bias (overestimation) present when the correlation between the individual AR effects and individual innovation variances is positive, and vice versa. Additionally, Jongerling et al. point out that using the person-means to center the lagged predictor variable leads to a downward bias in the estimation of the fixed AR effect.

The effect of person-mean centering the predictor on the estimation performance of the MLAR model was further studied by Hamaker & Grasman (2015). Their simulation study confirmed that person-mean centering leads to an underestimation of the fixed autoregressive effect, especially when the number of time points per participant (T.obs) is low. Still, they recommend using person-mean centering when one is interested in the effect of a between-person predictor on inertia.

In their simulation study comparing the maximum likelihood and Bayesian approaches to estimating the MLAR model, Krone et al. (2016) show that the two estimation procedures have a very similar performance. Furthermore, a higher T.obs leads to more precise estimates, while the effect of N on the estimation performance is small. They also show that a higher variance of the random AR effects leads to a worse estimation precision and that the estimation bias gets smaller when the real fixed AR effect increases. Liu (2017) assessed how violating the normality of the random AR effect distribution influences the estimation performance of the MLAR model. The different distributions of the random AR effects were found to only have a small effect on the estimation performance.

While the simulation studies mentioned above provide an extensive body of evidence about the statistical properties of the MLAR model under different conditions, several questions remain unanswered. One of them is the effect of missing observations on estimation performance. The presence of missing values in an intensive longitudinal dataset decreases the number of observations per participant (or, more specifically, the number of observation-pairs that can be used for the estimation of the model). As such, it can be expected that lower compliance (i. e., lower proportion of ESM beeps that the given participant answered) will make estimation bias more severe. Additionally, different patterns of missingness might have different consequences on the estimation performance. Ji et al. (2018) show that the presence of data missing completely at random (MCAR), missing at random (MAR) and not missing at random (MNAR) leads to a considerable bias in point estimated of cross-lagged and autoregressive parameters in vector autoregressive models when list-wise deletion is used. However, no similar evidence is available about the MLAR(1) model.

Methods

The goal of the present exploratory simulation study is to assess the effects of four different patterns of missing data (data missing completely random, data missing in blocks, and two patterns of data missing dependent on process value; see Figure 1) and compliance on estimation performance and bias, standard error, and statistical power for the estimation of the fixed autoregressive effect in the MLAR(1) model. No apriori hypotheses were tested. Apart from the missingness patterns and compliance, we manipulated the number of participants, the number of timepoints per participant, the simulated fixed autoregressive effect, and the variance of random AR effects. The values of the manipulated variables for both studies are reported in Table 1. The values of the manipulated variables were set considering realistic research questions in psychology.

Simulation procedure

The study followed the general principles of the Monte Carlo simulation procedure described by Lane & Hennes (2018).

Simulation conditions. Two simulation studies, Simulation A and Simulation B, were carried out to investigate the research questions. In Simulation A, no random autoregressive effects were simulated and estimated (i.e., each subject's time-series in the simulation had the same simulated autoregressive effect, and only fixed autoregressive effects were estimated). In Simulation B, random autoregressive effects were simulated and estimated (with the random effects variance set to either 0.05 or 0.1). Both random and fixed intercepts were estimated in Simulations A and B. The multilevel autoregressive model estimated in Simulation A is defined in Equation (3), while Equation (4) describes the model estimated in Simulation B.

$$esm_{it} = \gamma_{0i} + \gamma_{1i} * esm_{i,t-1} + \epsilon_{it}$$

$$\gamma_{0i} = \beta_{00} + \nu_{0i}$$

$$\gamma_{1i} = \beta_{10}$$

$$(3)$$

$$esm_{it} = \gamma_{0i} + \gamma_{1i} * esm_{i,t-1} + \epsilon_{it}$$

$$\gamma_{0i} = \beta_{00} + \nu_{0i}$$

$$\gamma_{1i} = \beta_{10} + \nu_{1i}$$
(4)

Simulation A followed a $4 \times 2 \times 3 \times 4 \times 3$ factorial design (yielding 288 simulation conditions in total), and Simulation B followed a $4 \times 2 \times 2 \times 4 \times 2 \times 2$ design (256 conditions in total). 1,000 replicates per cell (i.e., a combination of simulation conditions) were simulated. As such, 544,000 datasets were generated (and the same number of models was estimated) in this simulation study. The manipulated variables are listed in Table 1, and the parameters that remained fixed throughout all simulation conditions are reported in Table 2.

Table 1: Values of the manipulated parameters used in the two simulation studies

Manipulated parameter	Simulation A	Simulation B
Missingness pattern	MCAR, block, extreme-onesided, extreme-twosided	MCAR, block, extreme-onesided, extreme-twosided
Simulated fixed AR effect	0.3, 0.5, 0.7	0.3, 0.7
Variance of random AR effects	-	0.05, 0.1
Compliance	0.4,0.6,0.8,1	0.4,0.6,0.8,1
Number of participants (N)	20, 50	20, 50
Timepoints per participant (T.obs)	20, 50, 100	50, 100

Table 2: Parameters used for the two simulation studies.

Simulation parameter	Simulation A	Simulation B
Fixed intercept	0	0
Variance of random intercepts	3	3
Innovation variance	3	3
Correlation between random	0	0
intercepts and random slopes		
Significance threshold	0.05	0.05
Simulation replicates per cell	1000	1000

Data generation. First, for each of the simulation conditions (i.e., combination of the parameters listed below), 1,000 synthetic datasets were generated. Each dataset contained observations from N simulated participants. A temporally dependent time-series of length T.obs was generated as nested within each simulated participant via a recursive equation. Additionally, for each time-series, a burn-in period with 1,000 observation was generated and later discarded. The within-person error (innovation) vector ϵ_i was generated from a $N(0, \sigma)$ distribution with σ set to 3 in all simulations. The fixed intercept β_{00} was set to 0 across all conditions. The random intercepts ν_{0i} for each simulated time-series were sampled from a N(0, 3) distribution in both studies. In Simulation A, only fixed autoregressive effects β_{10} were simulated and manipulated, while both fixed and random autoregressive effects $\nu_1 i$ were included in Simulation B. No night gaps were assumed in the simulations. For an overview of the values of all manipulated simulation parameters, please refer to Table 1.

Each time-series was then generated using Equation (1). The initial value was generated as a sum of the person-specific intercept γ_{0i} and the innovation ϵ_{ij} , and the following observations were calculated by multiplying the value of the time-series at t-1 by the person-specific autoregressive effect γ_{1i} and adding the person-specific intercept γ_{0i} and the innovation ϵ_{ij} . Subsequently, after removing the burn-in datapoints, the first-order lagged version of the time-series was generated, setting the first lagged value as missing.

The non-manipulated simulation parameters $(\beta_{00}, \sigma_{\nu 0}, \sigma, \rho_{\nu})$ were set following a simulation design from Hamaker & Grasman (2015).

Introduction of missing values. Secondly, missing data were introduced to each of the generated datasets according to the missing data pattern and compliance of the given simulation condition. Four different missingness patterns (corresponding to the hypothetical ESM study scenarios described in the Introduction) were introduced to the data: a) data missing completely at random (MCAR); b) data missing in blocks of consecutive observations; c) lowest (100%-compliance) observations set as missing, and d) highest and lowest (100%-compliance)/2 observations set as missing (for an illustration of the different missing data patterns, see Figure 1).

It can be expected that the different missingness patterns will differ in their effects on the simulation outcomes (estimation bias, standard error, power). This is because with identical proportion of missing data, datasets with different missingness patterns will have different proportions of effective observation-pairs (i.e., proportion of timepoints for which both the observation at t and the observation at t-1 are not missing) used to estimate the autoregressive effect. Figure 1 illustrates the four different missingness patterns on the same ESM time-series.

Fitting a multilevel autoregressive model. After missing values were introduced to the data, a MLAR(1) model was fitted to each of the simulated datasets using the lme function from the nlme R package (Pinheiro et al., 2022) with the value of the time-series at t as the outcome, the lagged (t-1) value of the time-series as the predictor, and the participant number as the grouping variable. We then extracted relevant parameters from the models that converged successfully. Missing values were treated by list-wise deletion. The restricted maximum log-likelihood method with the Broyden-Fletcher-Goldfarb-Shanno optimization algorithm was used to estimate the model.

Following the recommendations by Hamaker & Grasman (2015), the predictor (lagged variable) in the simulation will be person-mean centered (i. e., the observed mean of each respective participant's ESM process was subtracted from the value of the lagged variable at each timepoint). Although person-mean centering results in an underestimation of the autoregressive effect (Hamaker & Grasman, 2015), it allows for a clearer interpretation of the within-person effects in multilevel models (Enders & Tofighi, 2007; Hamaker & Muthén, 2020). As a supplementary analysis, we also conducted the simulations without person-mean centering the predictor.

Simulation outcomes. Estimation bias (MSE), the standard error of the estimation, and the statistical power to estimate the fixed autoregressive effect β_{10} were the focal outcomes of the study. Additionally, we examined the effect of the manipulated variables on the proportion of models that successfully converged and the bias in the estimation of the person-mean used for centering of the predictor (lagged) variable.

Estimation bias was computed as the difference between the real (simulated) fixed autoregressive effect β_{10} and the estimated fixed autoregressive effect $\hat{\beta_{10}}$ in each simulation replicate. As such, the dataset with estimation bias contained 1,000 rows per simulation condition.

Standard error (SE) and statistical power were calculated for each simulation condition (i.e., 1 row per

Figure 1: Illustration of the four different missingness pattern used in the simulation study. The blue dots represent observed datapoints, while the light gray dots represent missing values. Compliance is 0.7 in all four patterns.

condition). Statistical power was calculated as the proportion of simulation replicates (within the given simulation condition) in which the p-value for the estimated fixed autoregressive effect $\hat{\beta}_{10}$ was below the significance threshold ($\alpha = 0.05$) and the number of simulation replicates that converged successfully.

The bias in the estimation of the person-mean of the time-series was computed as the average difference between the real process mean μ_i (5) and the observed person-mean $\hat{\mu_i}$ (computed after the missing data were introduced).

$$\mu_i = \frac{\beta_{00} + \nu_{0i}}{1 - (\beta_{10} + \nu_{1i})} \tag{5}$$

Reproducibility and code/data availability

The simulations were conducted in R version 4.2.1 (R Core Team, 2021). The study was conducted with emphasis on reproducibility of the results (Pawel et al., 2022). As such, we provide all data (simulation results) used for the reported analyses, as well as the full reproducible R code for the simulations (including the custom functions created for the purposes of the study), and the code used to generate the plots and result tables (available at https://github.com/benjsimsa/AR-missing-simulations) The repository also includes a sessionInfo document that lists the versions of the packages used for the study. The present thesis was written using R Markdown (Allaire et al., 2022).

Additionally, the *renv* R package (Ushey, 2022) was used to set up a reproducible R environment and improve reproducibility by creating a project-local package library. For reproducible file referencing, the R package *here* (Müller, 2020) was used. For more information about the custom functions, simulation code, and the structure of the GitHub repository itself, please refer to the file README.md in the repository.

Results

Simulation A

The descriptive results for all 288 conditions included in Simulation A are reported in Table 16 (see Appendix).

Outcome: Estimation bias (MSE)

ANOVA. We used a $4 \times 2 \times 3 \times 4 \times 3$ factorial Type I ANOVA (with estimation bias as an outcome and number of participants, number of time points per participant, missingness type, compliance, and the simulated fixed autoregressive effect, as well as their two-ways interactions, as predictors) to assess which of the manipulated factors had a considerable influence on estimation bias. The results from every simulation run (i. e., 1,000 results per condition = 288,000 rows) were combined into a single dataset for the analysis. Given the very large sample size (which would make even negligible differences significant) and the exploratory character of the analysis, p-values and significance thresholds were not used make inferences. Instead, we used a threshold of 0.14 for the partial ω^2 , indicating a large effect size (Field et al., 2012). This cutoff will be used for all ANOVA results throughout the Results section. The partial ω^2 was chosen as the less biased alternative to partial η^2 (Okada, 2013). The results and effect sizes are reported in Table 3.

Four main effects above the effect size threshold of 0.14 were found: the main effect of missingness type ($\omega^2=0.73$), compliance ($\omega_p^2=0.63$), the number of time points per participant ($\omega_p^2=0.26$), and the simulated fixed slope ($\omega_p^2=0.14$). Furthermore, the interaction between the missingness type and compliance ($\omega_p^2=0.54$) had an effect size above the cut-off.

The main effects of missingness type and compliance are visualised in Figure 2 and Figure 3 (respectively), while the interaction between missingness type and compliance is depicted in Figure 4.

Figure 2 shows that while the underestimation of the fixed slopes is fairly low (although still considerable) when the observations are missing completely at random or in block, it becomes severe when only the most extreme values (both at one side and at both sides) are missing. Additionally, the underestimation of the fixed slopes becomes more severe as the compliance gets lower.

The average estimation bias when compliance is 0.8 (i.e., roughly the average compliance of ESM studies in psychology) is -0.13. As a consequence, many estimates of emotional inertia in psychological research could be seriously downward biased. Furthermore, the estimates are slightly biased even when compliance is 1 (i. e., there are no missing data; average bias: -0.04). This is in line with the findings about estimation bias caused by person-mean centering in multilevel autoregressive models (Hamaker & Grasman, 2015).

Zooming in on the interaction between compliance and missingness type (Figure 4) suggests that the effect of compliance on estimation bias is dramatically more severe for the two conditions in which the most extreme values of the process were set as missing (as compared to the other two conditions, i. e., data

Figure 2: The effect of compliance on the bias in estimation of the fixed slopes.

MCAR and missing in blocks). In the worst-case scenario (low compliance of 0.4; the most extreme values at both sides missing), the average estimation bias was -0.48. Given that the average simulated fixed slope was 0.5, these results imply that even rather large autocorrelations can be estimated as close to 0 in studies in which the compliance is low and the missingness pattern is non-random. At the same time, the results concerning data MCAR and missing in blocks are encouraging. Even in a low-compliance (0.4) condition, the average estimation bias was -0.08 for the former and -0.09 for the latter.

The average estimation bias for all combinations of missingness type and compliance (averaged over the different values of the number of participants, time points per participant and simulated fixed slope) is reported in Table 4.

Outcome: Standard error

Descriptive statistics. The average standard errors for the different combinations of number of participants, time points per participant and compliance are reported in Table 5.

ANOVA. To examine the effect of the manipulated parameters on the standard error of the estimation of the fixed slopes, we combined the results for each condition (1,000 simulation runs) into a single row. As such, the dataset used for the following analyses had 288 rows in total. A a $4 \times 2 \times 3 \times 4 \times 3$ factorial Type I ANOVA was used to analyse the data. The full ANOVA results and effect sizes are reported in Table 6.

The main effects of the number of participants ($\omega_p^2 = 0.68$), number of time points per participant ($\omega_p^2 = 0.68$) and compliance ($\omega_p^2 = 0.66$) crossed the cut-off for effect size.

Figure 3: The effect of compliance on the bias in estimation of the fixed slopes.

Figure 4: The effect of the interaction between missingness type and compliance on the bias in estimation of the fixed slopes.

Table 3: ANOVA results, simulation A. Outcome: Estimation bias

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	0.11	0.11	32.53	< 0.001	0.00
T.obs	1	354.93	354.93	101753.95	< 0.001	0.26
$miss_type$	3	2657.10	885.70	253921.29	< 0.001	0.73
compliance	1	1706.99	1706.99	489377.69	< 0.001	0.63
B1_sim	1	169.00	169.00	48449.29	< 0.001	0.14
N:T.obs	1	0.02	0.02	4.40	0.0360	0.00
N:miss_type	3	0.00	0.00	0.31	0.8216	0.00
$T.obs:miss_type$	3	14.11	4.70	1348.32	< 0.001	0.01
N:compliance	1	0.03	0.03	8.09	0.0044	0.00
T.obs:compliance	1	22.78	22.78	6529.83	< 0.001	0.02
miss_type:compliance	3	1157.71	385.90	110634.77	< 0.001	0.54
$N:B1_sim$	1	0.03	0.03	8.41	0.0037	0.00
$T.obs:B1_sim$	1	1.75	1.75	502.84	< 0.001	0.00
$miss_type:B1_sim$	3	148.38	49.46	14179.70	< 0.001	0.13
$compliance: B1_sim$	1	59.28	59.28	16994.38	< 0.001	0.06
Residuals	287974	1004.48	0.00		NA	

Table 4: Simulation A. Average bias in estimation of the fixed slope for each combination of missingness type and compliance.

		Missingness type								
compliance	block	$extreme_oneside$	${\tt extreme_twosided}$	mcar						
0.4	-0.09	-0.36	-0.48	-0.08						
0.6	-0.07	-0.26	-0.37	-0.06						
0.8	-0.05	-0.17	-0.24	-0.05						
1.0	-0.04	-0.04	-0.04	-0.04						

Table 5: Simulation A. Average standard error in the estimation of the fixed slope for each combination of number of participants, number of time points/participant, and compliance.

		Compliance							
N	T.obs	0.4	0.6	0.8	1				
	20	0.14	0.08	0.06	0.05				
20	50	0.07	0.05	0.04	0.03				
	100	0.05	0.03	0.02	0.02				
	20	0.06	0.04	0.03	0.02				
100	50	0.03	0.02	0.02	0.01				
	100	0.02	0.01	0.01	0.01				

Table 6: ANOVA results, simulation A. Outcome: Standard error

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	0.06	0.06	625.92	< 0.001	0.68
T.obs	1	0.06	0.06	621.16	< 0.001	0.68
$miss_type$	3	0.00	0.00	14.11	< 0.001	0.12
compliance	1	0.05	0.05	556.59	< 0.001	0.66
B1_sim	1	0.00	0.00	21.75	< 0.001	0.07
N:T.obs	1	0.01	0.01	91.92	< 0.001	0.24
N:miss_type	3	0.00	0.00	2.13	0.096	0.01
$T.obs:miss_type$	3	0.00	0.00	1.48	0.220	0.00
N:compliance	1	0.01	0.01	82.89	< 0.001	0.22
T.obs:compliance	1	0.01	0.01	114.06	< 0.001	0.28
miss_type:compliance	3	0.00	0.00	13.31	< 0.001	0.11
$N:B1_sim$	1	0.00	0.00	3.14	0.078	0.01
$T.obs:B1_sim$	1	0.00	0.00	1.37	0.243	0.00
$miss_type:B1_sim$	3	0.00	0.00	0.20	0.895	0.00
$compliance: B1_sim$	1	0.00	0.00	1.55	0.214	0.00
Residuals	262	0.03	0.00		NA	

Additionally, the interaction between the number of time points per participant and compliance ($\omega_p^2 = 0.28$), number of participants and time points per participants ($\omega_p^2 = 0.07$), and between the number of participants and compliance ($\omega_p^2 = 0.22$) was found.

Figure 5 depicts the interaction between the number of time points per participant and compliance, while Figure 6 shows the interaction between the number of participants and compliance.

Outcome: Statistical power

Descriptive statistics. The statistical power for each combination of the manipulated parameters is reported in Table 16. As an illustration, the effects of compliance, missingness type, the number of participants and the number of time points per participant when the simulated fixed slope is 0.3 are visualised in Figure 7. Consistent with the results about estimation bias, statistical power is the lowest in the two conditions with the most extreme datapoints missing. For the conditions with data missing completely at random and data missing in consecutive blocks, power is very high even when the compliance is low for most conditions (except for the two conditions with T = 20).

A peculiar pattern is worth pointing out in the plot: in the two conditions with T=20 and the most extreme data missing at both sides (green dashed line), the statistical power is higher when compliance is 0.4 compared to when compliance is 0.6. This counterintuitive result is likely due to the fact that the underestimation is the most severe when the most extreme values at both sides are missing. As such, some of the estimates of the fixed slope will be negative, and their magnitude will be large enough for them to reach statistical significance.

ANOVA. A $4 \times 2 \times 3 \times 4 \times 3$ factorial Type I ANOVA was used to analyse the effect of the

Figure 5: The effect of the interaction between number of time points and compliance on standard error of estimation of the fixed slopes. Simulation A.

Figure 6: The effect of the interaction between number of participants and compliance on standard error of estimation of the fixed slopes. Simulation A.

Figure 7: Simulation A. Statistical power to detect the fixed slope for all combinations of compliance, missingness type, number of participants and time points per participant when the simulated fixed slope is 0.3.

Table 7: ANOVA results, simulation A. Outcome: Power to detect the fixed slope

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	0.42	0.42	20.32	< 0.001	0.06
T.obs	1	1.21	1.21	58.92	< 0.001	0.17
$miss_type$	3	3.36	1.12	54.56	< 0.001	0.36
compliance	1	4.47	4.47	217.19	< 0.001	0.43
B1_sim	1	1.35	1.35	65.78	< 0.001	0.18
N:T.obs	1	0.08	0.08	3.80	0.0524	0.01
$N:miss_type$	3	0.10	0.03	1.66	0.1753	0.01
$T.obs:miss_type$	3	0.34	0.11	5.49	0.0011	0.04
N:compliance	1	0.22	0.22	10.93	0.0011	0.03
T.obs:compliance	1	0.79	0.79	38.66	< 0.001	0.12
miss_type:compliance	3	3.12	1.04	50.65	< 0.001	0.34
$N:B1_sim$	1	0.09	0.09	4.25	0.0403	0.01
$T.obs:B1_sim$	1	0.24	0.24	11.50	< 0.001	0.04
$miss_type:B1_sim$	3	0.44	0.15	7.19	< 0.001	0.06
$compliance: B1_sim$	1	0.76	0.76	37.10	< 0.001	0.11
Residuals	262	5.39	0.02		NA	

manipulated parameters (288 conditions in total) on statistical power. The results are reported in Table 7.

Four main effect above the cut-off for the effect size were found: the effect of compliance ($\omega_p^2=0.43$), of missingness type ($\omega_p^2=0.36$), simulated fixed slope ($\omega_p^2=0.18$), and the effect of the number of time points per participant ($\omega_p^2=0.17$).

Simulation B

In Simulation B, random AR effects were included both in the data generating procedure and in the estimated models. The variance of random AR effects $(\sigma_{\nu 1}^2)$ was manipulated as an additional simulation factor (2 values: 0.05 and 0.1). For an overview of all manipulated and fixed simulation parameters, please refer to Table 1. The descriptive results for all 256 simulation conditions are reported in Table 17 in the Appendix.

Outcome: Estimation bias (MSE f)

To evaluate the effect of the number of participants, number of time points per participant, missingness type, compliance, the variance of random AR effects, and the simulated fixed autoregressive effect on the bias in the estimation of the fixed AR effect in Simulation B, a $4 \times 2 \times 2 \times 4 \times 2 \times 2$ factorial Type I ANOVA was used. The results from every simulation run (256 conditions * 1000 runs per condition) were combined into a single dataset. An identical inference criterion ($\omega_p^2 \geq 0.14$) as in the analysis of Simulation A was used. The ANOVA results are listed in Table 8.

Interestingly, compared to the results from Simulation A (see Table 3), the effect of T.obs on estimation bias ($\omega^2 = 0.03$) is much smaller and does not reach the effect size threshold. The three main effects that do reach the cut-off in Simulation B are the effect of missingness type ($\omega_p^2 = 0.65$), compliance ($\omega_p^2 = 0.48$), and the real fixed AR effect ($\omega_p^2 = 0.46$). The only interaction that reached the cut-off was the interaction between missingness type and compliance ($\omega_p^2 = 0.45$). The interaction is visualised in Figure 8. The pattern of the interaction is very similar to the pattern of the interaction between missingness type and compliance in Simulation A (see Figure 4). Interestingly, when compared to the results of Simulation A, the average estimation bias is slightly worse for the MCAR and block missingness types and slightly less severe for the two conditions with the extreme values missing (compare Table 9 and Table 4). However, the overall conclusion remains the same as in Simulation A: there is a considerable downward estimation bias that becomes more severe the lower the compliance rate is, and it is most severe for the condition in which the most extreme data at both sides are missing.

Outcome: Standard error

ANOVA. The results of the $4 \times 2 \times 2 \times 4 \times 2 \times 2$ factorial ANOVA used to assess the influence of the manipulated factor on the standard error are reported in Table 11. Compared to Simulation A, more main effects of the manipulated factors crossed the effect-size cut-off: the effect of number of participants $(\omega_p^2 = 0.93)$, compliance $(\omega_p^2 = 0.53)$, number of time points per participant $(\omega_p^2 = 0.33)$, and the value of the simulated fixed AR effect $(\omega_p^2 = 0.28)$. Additionally, the interaction between compliance and the number of time points per participant $(\omega_p^2 = 0.18)$ crossed the threshold.

Figure 9 illustrates the main effect of N (as the most important factor) on standard error, while Figure 10 shows the interaction between compliance and T.obs. While the results are comparable to

Table 8: ANOVA results, simulation B. Outcome: Estimation bias

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	0.00	0.00	1.29	0.2560	0.00
T.obs	1	28.12	28.12	8767.51	< 0.001	0.03
miss_type	3	1493.35	497.78	155190.54	< 0.001	0.65
compliance	1	733.78	733.78	228764.02	< 0.001	0.48
$sigma_v1$	1	42.47	42.47	13241.70	< 0.001	0.05
B1_sim	1	674.23	674.23	210200.86	< 0.001	0.46
N:T.obs	1	0.07	0.07	21.59	< 0.001	0.00
N:miss_type	3	0.18	0.06	19.21	< 0.001	0.00
T.obs:miss_type	3	0.94	0.31	97.58	< 0.001	0.00
N:compliance	1	0.00	0.00	0.02	0.8977	0.00
T.obs:compliance	1	1.80	1.80	560.85	< 0.001	0.00
miss_type:compliance	3	670.81	223.60	69710.89	< 0.001	0.45
$N:B1_sim$	1	0.02	0.02	6.91	0.0086	0.00
$T.obs:B1_sim$	1	0.33	0.33	101.81	< 0.001	0.00
$miss_type:B1_sim$	3	115.05	38.35	11955.97	< 0.001	0.12
compliance:B1_sim	1	40.01	40.01	12473.08	< 0.001	0.05
Residuals	251520	806.77	0.00		NA	

Figure 8: Simulation B: The effect of the interaction between missingness type and compliance on the bias in estimation of the fixed slopes.

Table 9: Simulation B. Average bias in estimation of the fixed slope for each combination of missingness type and compliance.

		Missingness type								
compliance	block	$extreme_oneside$	${\tt extreme_twosided}$	mcar						
0.4	-0.10	-0.27	-0.40	-0.06						
0.6	-0.08	-0.21	-0.32	-0.06						
0.8	-0.07	-0.16	-0.21	-0.06						
1.0	-0.06	-0.06	-0.06	-0.06						

Table 10: ANOVA results, simulation B. Outcome: Standard error

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	0.0711	0.0711	3420.8496	< 0.001	0.9314
T.obs	1	0.0025	0.0025	122.3644	< 0.001	0.3251
$miss_type$	3	0.0008	0.0003	12.5061	< 0.001	0.1205
$sigma_v1$	1	0.0029	0.0029	140.9331	< 0.001	0.3570
compliance	1	0.0060	0.0060	288.9439	< 0.001	0.5333
B1_sim	1	0.0021	0.0021	99.0254	< 0.001	0.2801
N:T.obs	1	0.0004	0.0004	17.6323	< 0.001	0.0619
N:miss_type	3	0.0001	0.0000	2.0403	0.109	0.0122
T.obs:miss_type	3	0.0002	0.0001	2.8127	0.040	0.0211
N:compliance	1	0.0007	0.0007	32.7145	< 0.001	0.1118
T.obs:compliance	1	0.0012	0.0012	58.1185	< 0.001	0.1848
miss_type:compliance	3	0.0008	0.0003	12.7376	< 0.001	0.1226
$N:B1_sim$	1	0.0003	0.0003	15.0306	< 0.001	0.0527
$T.obs:B1_sim$	1	0.0001	0.0001	3.1628	0.077	0.0085
$miss_type:B1_sim$	3	0.0013	0.0004	21.4078	< 0.001	0.1955
$compliance: B1_sim$	1	0.0001	0.0001	2.4630	0.118	0.0058
Residuals	225	0.0047	0.0000		NA	

Simulation A, the SE is slightly higher for the same N/T.obs combinations in Simulation B.

Outcome: Statistical power

Descriptive statistics. The statistical power for each combination of the manipulated parameters in Simulation B is reported in Table 17 (in the Appendix). The effects of compliance, missingness type, the number of participants and the number of time points per participant when the simulated fixed slope is 0.3 are shown in Figure 11. For the sake of clarity, only the results for simulation conditions in which the $\sigma_{\nu 1}^2 = 0.1$ are visualised.

ANOVA. A $4 \times 2 \times 2 \times 4 \times 2 \times 2$ factorial Type I ANOVA was used to analyse the effect of the manipulated parameters on statistical power. The results are reported in Table 12.

Missignness type ($\omega_p^2 = 0.4$) together with compliance ($\omega_p^2 = 0.38$) were the two main effects with the largest influence on the statistical power to detect the fixed AR effect. The value of the simulated AR effect

Table 11: Simulation B. Average standard error in the estimation of the fixed slope for each combination of number of participants, number of time points/participant, and compliance.

			Compliance						
N	T.obs	0.4	0.6	0.8	1				
20	50	0.08	0.07	0.06	0.06				
20	100	0.06	0.06	0.05	0.05				
100	50	0.04	0.03	0.03	0.03				
100	100	0.03	0.03	0.02	0.02				

Figure 9: The effect of the number of participants on the standard error of estimation of the fixed slopes. Simulation B.

Figure 10: The effect of the interaction between number of time points per participant and compliance on standard error of estimation of the fixed slopes. Simulation B.

Figure 11: Simulation B. Statistical power to detect the fixed AR effect for the 4 combinations of compliance, missingness type, number of participants and time points per participant when the simulated fixed slope is 0.3 and the variance of random AR effects is 0.1.

Table 12: ANOVA results, simulation B. Outcome: Power to detect the fixed AR effect

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	0.39	0.39	39.88	< 0.001	0.13
T.obs	1	0.09	0.09	9.60	0.0022	0.03
as.factor(sigma_v1)	1	0.00	0.00	0.01	0.9124	0.00
miss_type	3	1.69	0.56	57.89	< 0.001	0.40
compliance	1	1.53	1.53	157.25	< 0.001	0.38
B1_sim	1	1.08	1.08	111.34	< 0.001	0.30
N:T.obs	1	0.07	0.07	7.36	0.0072	0.02
$N:miss_type$	3	0.14	0.05	4.71	0.0033	0.04
T.obs:miss_type	3	0.02	0.01	0.75	0.5212	0.00
N:compliance	1	0.17	0.17	16.99	< 0.001	0.06
T.obs:compliance	1	0.05	0.05	4.81	0.0293	0.01
miss_type:compliance	3	1.73	0.58	59.43	< 0.001	0.41
$N:B1_sim$	1	0.16	0.16	16.50	< 0.001	0.06
$T.obs:B1_sim$	1	0.04	0.04	4.03	0.0460	0.01
$miss_type:B1_sim$	3	0.76	0.25	25.98	< 0.001	0.23
$compliance: B1_sim$	1	0.76	0.76	78.10	< 0.001	0.23
Residuals	225	2.19	0.01		NA	

has a large effect ($\omega_p^2=0.3$) as well. Three interactions crossed the effect size threshold: missingness type*compliance ($\omega_p^2=0.41$), missingness type*simulated fixed AR ($\omega_p^2=0.23$), and compliance*simulated fixed AR ($\omega_p^2=0.23$).

Supplementary analysis: No person-mean centering

To investigate whether the results presented above hold when the predictor (i.e., the lagged variable) is not person-mean centered, we conducted a supplementary analysis. All parameters were identical to Simulation A, except for the fact that the predictor was not person-mean centered. We found that both the standard error and the bias in the estimation of the fixed autoregressive effect is considerably smaller when the predictor is not person-mean centered.

Estimation bias. In an ANOVA with the bias in the estimation of the fixed autoregressive effect as the outcome (Table 13), only the effect of the number of beeps per participant, missingness type, and the interaction between missingness type and compliance exceeded the effect size cut-off.

In contrast to the results of Simulation A, the effect of the manipulated factors on estimation bias is much smaller. Moreover, Figure 12 shows that while there is still slight underestimation when the most extreme values are missing, the magnitude of the underestimation is much smaller than in Simulation A. Additionally, when the observations are missing completely at random or in blocks, a slight overestimation of the fixed autoregressive effect occurs. The estimation becomes very precise as compliance gets higher (Figure 13).

Standard error. The results from ANOVA with Standard error of estimation (when estimating the

Figure 12: Supplementary analysis (no person-mean centering): The effect of missignness type on estimation bias

Table 13: ANOVA results, supplementary analysis (no person-mean centering of the predictor). Outcome: Estimation bias

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	18.79	18.79	924.46	< 0.001	0.00
T.obs	1	2122.67	2122.67	104427.39	< 0.001	0.27
$miss_type$	3	1146.68	382.23	18804.07	< 0.001	0.16
compliance	1	610.86	610.86	30052.04	< 0.001	0.09
B1_sim	1	8.00	8.00	393.36	< 0.001	0.00
N:T.obs	1	7.14	7.14	351.43	< 0.001	0.00
N:miss_type	3	0.76	0.25	12.51	< 0.001	0.00
T.obs:miss_type	3	319.91	106.64	5246.11	< 0.001	0.05
N:compliance	1	12.73	12.73	626.34	< 0.001	0.00
T.obs:compliance	1	1264.44	1264.44	62205.42	< 0.001	0.18
miss_type:compliance	3	259.36	86.45	4253.09	< 0.001	0.04
$N:B1_sim$	1	0.62	0.62	30.46	< 0.001	0.00
$T.obs:B1_sim$	1	40.76	40.76	2005.07	< 0.001	0.01
$miss_type:B1_sim$	3	41.20	13.73	675.69	< 0.001	0.01
$compliance: B1_sim$	1	12.11	12.11	595.87	< 0.001	0.00
Residuals	286923	5832.23	0.02		NA	

Figure 13: Supplementary analysis (no person-mean centering): The effect of the interaction between compliance and number of timepoints on estimation bias.

fixed autoregressive effect) are reported in Table 14. The main effects of the number of timepoints per participants and missingness type, as well as the interaction between compliance and the number of timepoints, crossed the effect size cut-off ($\omega_p^2 > 0.14$).

The standard errors in the estimation of fixed AR effect are considerably smaller when person-mean centering is used (Table 15) compared to Simulation A (Table 5). Figure ?? illustrates the interaction between compliance and the number of timepoints.

Taken together, these results suggest that the results of MLAR(1) models obtained without person-mean centering the predictor are more robust to the presence of missing value with regards to estimation bias and standard error (i.e., the estimation bias and standard error are much lower when the predictor is not person-mean centered). Still, both the magnitude and the direction of the bias depend on the type of missingness.

Table 14: ANOVA results, supplementary analysis. Outcome: Standard error

	Df	Sum Sq	Mean Sq	F value	p-value	Partial omega-squared
N	1	0.03	0.03	1032.24	< 0.001	0.78
T.obs	1	0.01	0.01	267.88	< 0.001	0.48
miss_type	3	0.00	0.00	6.19	< 0.001	0.05
comp_mean	1	0.01	0.01	170.27	< 0.001	0.37
B1_sim	1	0.01	0.01	311.30	< 0.001	0.52
N:T.obs	1	0.00	0.00	46.53	< 0.001	0.14
$N:miss_type$	3	0.00	0.00	0.88	0.452	0.00
$T.obs:miss_type$	3	0.00	0.00	3.75	0.012	0.03
N:comp_mean	1	0.00	0.00	33.31	< 0.001	0.10
$T.obs:comp_mean$	1	0.00	0.00	18.65	< 0.001	0.06
miss_type:comp_mean	3	0.00	0.00	6.14	< 0.001	0.05
$N:B1_sim$	1	0.00	0.00	38.90	< 0.001	0.12
$T.obs:B1_sim$	1	0.00	0.00	78.37	< 0.001	0.21
$miss_type:B1_sim$	3	0.00	0.00	1.89	0.131	0.01
$comp_mean:B1_sim$	1	0.00	0.00	51.01	< 0.001	0.15
Residuals	261	0.01	0.00		NA	

Table 15: Supplementary analysis, no person-mean centering. Average standard error in the estimation of the fixed slope for each combination of number of participants, number of time points/participant, and compliance.

		Compliance					
N	T.obs	0.4	0.6	0.8	1		
	20	0.05	0.05	0.05	0.04		
20	50	0.05	0.04	0.03	0.03		
	100	0.04	0.03	0.02	0.02		
	20	0.02	0.02	0.02	0.02		
100	50	0.02	0.02	0.02	0.01		
	100	0.02	0.01	0.01	0.01		

Discussion

We conducted two Monte Carlo simulation studies to address a gap in knowledge about the influence of missing data on the estimation performance of the multilevel autoregressive model. In Simulation A, we only estimated and simulated fixed autoregressive effects (together with both fixed and random intercepts), while in Simulation B, both fixed and random autoregressive effects were simulated and estimated. Three outcomes were evaluated in both simulations: the estimation bias, standard error of the simulations, and statistical power. Four values of compliance and four missingness patterns (data MCAR, data missing in a block of consecutive observations, the highest values missing, and the highest and lowest values missing) were varied across the simulations. The other manipulated factors included the number of participants, the number of time points per participant, the simulated value of the fixed AR effect, and the variance of the random AR effects.

The two parameters related to missing data (compliance and missingness pattern) emerged as very important factors influencing all three outcomes. In both simulations, missingness type and compliance (and the interaction between the two) were the factors with the largest effect on the bias in the estimation of the fixed AR effect. Similarly, both missingness type and compliance had a strong influence on the statistical power to detect the fixed AR effect in both simulations. With regards to the standard error of the simulation results, compliance was found to have a very large effect (more so in Simulation A than in Simulation B), while the effect of missingness type was only moderate.

Our results corroborate the conclusions about the importance of the number of time points per participant for precise estimation of the autoregressive effects (Hamaker & Grasman, 2015; Krone et al., 2016). In general, the estimation bias became considerably less severe as the ESM time-series length per participant increased. *T.obs* also had a large effect on statistical power. However, our simulations show that the context of missingness matters: when the compliance is low and the data are missing MCAR or in blocks, the underestimation of the fixed AR effect caused by the missing data (and the negative consequences for statistical power) becomes less severe very quickly as *T.obs* increases. On the other hand, when the missingness is dependent on the value of the process itself (i. e., the most extreme observations are missing), increasing compliance appears to be more important for estimation precision and statistical power than the length of the time-series. In other words, it can be said that the presence of missing data exacerbates Nickell's bias (Nickell, 1981) - an estimation bias introduced by person-mean centering in multilevel models.

While Krone et al. (2016) found that estimation bias becomes smaller as the simulated fixed AR effect becomes larger, we found an opposite pattern: estimation bias was larger as the simulated fixed AR effect became larger.

Overall, there was always some degree of estimation bias present in the simulations, ranging from very severe (when T.obs and compliance were low, and the missingness of data was dependent on the process value) to mild (when compliance was high and the data were missing either MCAR or in block). This bias

in estimation might be one of the driving forces behind the low value added by estimates of emotional inertia to the prediction of psychopathology and well-being, pointed out by Dejonckheere et al. (2019). Additionally, while the simulation studies did not explicitly assess the bias in the estimation of individual autoregressive effects, the results suggest that some individual differences in inertia estimates might not be caused by real differences in inertia, but due to the bias caused by missingness: for two individual participants with an identical real autoregressive parameter but different compliance and missingness patterns, the inertia estimates can vary considerably.

The supplementary simulation shows that the estimation bias is considerably less severe (and the standard errors are smaller) when the predictor is not person-mean centered. These results suggest that while not person-mean centering the predictor makes the interpretation of the autoregressive parameters and the intercepts more challenging, it might be the optimal choice when the number of observations and/or the compliance is low. However, as Hamaker & Grasman (2015) point out, the choice between centering and not centering the predictor should primarily be guided by the researchers' goals. If the researchers aim to obtain itnerpretable intercepts or investigating how a Level 2 predictor influences the autoregression, person-mean centering might still be preferable. On the other hand, the results of the present thesis support Hamaker and Grasman's (2015) claim that if the focal point of interest is the fixed autoregressive parameter, it is better to avoid person-mean centering the predictor.

Our results have several implications for the design choices in psychological research using the multilevel autoregressive model to estimate emotional inertia. First, in line with previous simulation studies, we recommend for researchers to focus on increasing T.obs rather than N in order to increase the statistical power and the precision of the inertia estimates. In other words, for optimal statistical performance, it is more effective to make the data collection period longer (or schedule more beeps per day) than to collect data from more participants. Secondly, while the time-series length is important, researchers should aim to design their ESM studies in a way that will make compliance as high as possible. According to recent evidence about compliance in ESM studies, these design choices include providing financial incentives to participants (Wrzus & Neubauer, 2022) and including less items in ESM questionnaires (Eisele et al., 2020). Furthermore, the results suggest that the potential presence of missing data should be accounted for in power analyses for ESM studies. In an ideal case, a researcher should have an idea about what the average compliance in their study could be and what missingness patterns might be present in the data. Of course, this is not entirely feasible, as it might be difficult to estimate the average compliance, and real-life ESM data will likely include a mixture of different missing data patterns, both at the within- and between-person level. Still, to avoid overestimating statistical power for planned studies, it is advisable to include several different missing data scenarios in the power simulations as a sensitivity check.

Directions for future research

The present thesis provides evidence about estimation bias being made more severe by lower compliance and by patterns of missingness that depend on the process value itself. Nonetheless, the insight into the mechanisms driving this bias remains limited. Several plausible explanations of the bias arise. First, the estimation bias was the most severe when the most extreme observations at both ends of the ESM process distribution were missing. This finding can be linked to the evidence about tails (i. e., the extreme ends) of distributions containing the most information about the scale of the distribution (Zheng & Gastwirth, 2002). However, further investigation is needed to provide more understanding about whether the tails also provide crucial information about the autoregressive effect.

Secondly, the different bias values for different missingness patterns could be partly caused by the fact that the number of "effective" observation-pairs (i. e., pairs of current and lagged values where both values are not missing) used to estimate the autoregressive parameters differs between the missignness patterns. For example, the number of effective observation-pairs will be larger when the data are MCAR than when they are missing in a block. However, the results of the present thesis seem to contradict this explanation. On the one hand, estimation bias was found to be very similar when data are MCAR and missing in blocks (although the two missingness patterns come with a very different number of observation-pairs). On the other hand, the estimation bias was much larger for the conditions with the most extreme values set as missing, compared to the condition with data MCAR (even though the number of effective observation-pairs is generally higher for the "extreme" conditions than when data are MCAR). As such, this explanation of estimation bias appears to be less plausible than the explanation described in the previous paragraph.

Limitations

First, while the two simulation studies include a wide range of scenarios and parameter combinations, our results are far from comprehensive, and they largely depend on the simulation parameters. However, the reproducible code available from the GitHub repository

(https://github.com/benjsimsa/AR-missing-simulations) provides a sufficient framework for an interested reader to rerun the analyses with different parameters and modify the code to better fit the peculiarities of their specific study sample and research questions.

Furthermore, the results depend on several assumptions, which were problematised as being too simplistic in previous research. We assumed that the innovation variance σ was identical for all the participants, and that the random intercepts (and random slopes in Simulation B) came from a normal distribution. Additionally, we only focused on normally distributed affective processes. While a normal distribution can be assumed for ESM measures of positive emotions, negative affective processes are usually heavily right-skewed in the general population (Haslbeck et al., 2022). Additionally, we assumed that the analysed ESM time-series are measured without any error; however, recent evidence shows that this is very often not the case in real-world research (Dejonckheere et al., 2022; Schuurman & Hamaker, 2019), and

unreliability can lead to further attenuation of the estimated parameters (Wenzel & Brose, 2022). While person-mean centering was carried out using observed means in the simulations we conducted, different ways of person-mean centering, such as using latent person-means, might be more appropriate (Gistelinck et al., 2021). Another assumption of the present simulations that is unlikely to hold in real-world data is the homogeneity of compliances and missing data patterns within each simulated dataset. In the real world, it can be expected for different missingness patterns to be present in the data at both the between- and within-person level.

Finally, although we took steps to make the simulations reproducible by making all code and results publicly available, using R packages *here* and *renv*, and reporting the sessionInfo for every simulation, a large number of packages with many dependencies were used, which might be detrimental to reproducibility in the long term.

References

- Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., & Iannone, R. (2022). *Rmarkdown: Dynamic documents for r.* https://github.com/rstudio/rmarkdown
- Bos, E. H., Jonge, P., & Cox, R. F. A. (2019). Affective variability in depression: Revisiting the inertia-instability paradox. British Journal of Psychology, 110(4), 814–827. https://doi.org/10.1111/bjop.12372
- Bosley, H. G., Soyster, P. D., & Fisher, A. J. (2019). Affect Dynamics as Predictors of Symptom Severity and Treatment Response in Mood and Anxiety Disorders: Evidence for Specificity. *Journal for Person-Oriented Research*, 5(2), 101–113. https://doi.org/10.17505/jpor.2019.09
- Brose, A., Schmiedek, F., Koval, P., & Kuppens, P. (2015). Emotional inertia contributes to depressive symptoms beyond perseverative thinking. *Cognition and Emotion*, 29(3), 527–538. https://doi.org/10.1080/02699931.2014.916252
- Dejonckheere, E. (2019). Complex affect dynamics add limited information to the prediction of psychological well-being. *Nature Human Behaviour*, 3, 17.
- Dejonckheere, E., Demeyer, F., Geusens, B., Piot, M., Tuerlinckx, F., Verdonck, S., & Mestdagh, M. (2022).

 Assessing the reliability of single-item momentary affective measurements in experience sampling.

 Psychological Assessment. https://doi.org/10.1037/pas0001178
- Eisele, G., Vachon, H., Lafit, G., Kuppens, P., Houben, M., Myin-Germeys, I., & Viechtbauer, W. (2020). The Effects of Sampling Frequency and Questionnaire Length on Perceived Burden, Compliance, and Careless Responding in Experience Sampling Data in a Student Population. Assessment, 29(2), 16.
- Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. *Psychological Methods*, 12(2), 121–138. https://doi.org/10.1037/1082-989X.12.2.121
- Field, A., Miles, J., & Field, Z. (2012). Discovering statistics using r (2012). *Great Britain: Sage Publications*, Ltd, 958.
- Gistelinck, F., Loeys, T., & Flamant, N. (2021). Multilevel Autoregressive Models when the Number of Time Points is Small. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 15–27. https://doi.org/10.1080/10705511.2020.1753517
- Hamaker, E. L. (2012). Why researchers should think" within-person": A paradigmatic rationale.
- Hamaker, E. L., & Grasman, R. P. P. (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. *Frontiers in Psychology*, 5. https://doi.org/10.3389/fpsyg.2014.01492
- Hamaker, E. L., & Muthén, B. (2020). The fixed versus random effects debate and how it relates to centering in multilevel modeling. *Psychological Methods*, 25(3), 365–379. https://doi.org/10.1037/met0000239
- Haslbeck, J. M. B., Ryan, O., & Dablander, F. (2022). Multimodality and Skewness in Emotion Time Series. https://doi.org/10.31234/osf.io/qudr6

- Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The relation between short-term emotion dynamics and psychological well-being: A meta-analysis. *Psychological Bulletin*, 141(4), 901.
- Ji, L., Chow, S.-M., Schermerhorn, A. C., Jacobson, N. C., & Cummings, E. M. (2018). Handling Missing Data in the Modeling of Intensive Longitudinal Data. Structural Equation Modeling: A Multidisciplinary Journal, 25(5), 715–736. https://doi.org/10.1080/10705511.2017.1417046
- Jongerling, J., Laurenceau, J.-P., & Hamaker, E. L. (2015). A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance. *Multivariate Behavioral Research*, 50(3), 334–349. https://doi.org/10.1080/00273171.2014.1003772
- Koval, P., Burnett, P. T., & Zheng, Y. (2021). Emotional Inertia: On the Conservation of Emotional Momentum (C. E. Waugh & P. Kuppens, Eds.; pp. 63–94). Springer International Publishing. https://doi.org/10.1007/978-3-030-82965-0_4
- Koval, P., Butler, E. A., Hollenstein, T., Lanteigne, D., & Kuppens, P. (2015). Emotion regulation and the temporal dynamics of emotions: Effects of cognitive reappraisal and expressive suppression on emotional inertia. *Cognition and Emotion*, 29(5), 831–851. https://doi.org/10.1080/02699931.2014.948388
- Koval, P., Pe, M. L., Meers, K., & Kuppens, P. (2013). Affect dynamics in relation to depressive symptoms: Variable, unstable or inert? *Emotion*, 13(6), 1132–1141. https://doi.org/10.1037/a0033579
- Krone, T., Albers, C. J., & Timmerman, M. E. (2016). Comparison of Estimation Procedures for Multilevel AR(1) Models. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00486
- Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional Inertia and Psychological Maladjustment. Psychological Science, 21(7), 984–991. https://doi.org/10.1177/0956797610372634
- Kuppens, P., & Verduyn, P. (2017). Emotion dynamics. Current Opinion in Psychology, 17, 22–26. https://doi.org/10.1016/j.copsyc.2017.06.004
- Lafit, G., Adolf, J., Dejonckheere, E., Myin-Germeys, I., Viechtbauer, W., & Ceulemans, E. (2020).
 Selection of the Number of Participants in Intensive Longitudinal Studies: A User-friendly Shiny App
 and Tutorial to Perform Power Analysis in Multilevel Regression Models that Account for Temporal
 Dependencies. https://doi.org/10.31234/osf.io/dq6ky
- Lane, S. P., & Hennes, E. P. (2018). Power struggles: Estimating sample size for multilevel relationships research. *Journal of Social and Personal Relationships*, 35(1), 7–31. https://doi.org/10.1177/0265407517710342
- Larson, R., & Csikszentmihalyi, M. (2014). The experience sampling method (p. 2134). Springer.
- Leemput, I. A. van de, Wichers, M., Cramer, A. O. J., Borsboom, D., Tuerlinckx, F., Kuppens, P., Nes, E.
 H. van, Viechtbauer, W., Giltay, E. J., Aggen, S. H., Derom, C., Jacobs, N., Kendler, K. S., Maas, H. L.
 J. van der, Neale, M. C., Peeters, F., Thiery, E., Zachar, P., & Scheffer, M. (2014). Critical slowing down as early warning for the onset and termination of depression. *Proceedings of the National Academy of Sciences*, 111(1), 87–92. https://doi.org/10.1073/pnas.1312114110
- Liu, S. (2017). Person-specific versus multilevel autoregressive models: Accuracy in parameter estimates at

- the population and individual levels. British Journal of Mathematical and Statistical Psychology, 70(3), 480–498. https://doi.org/10.1111/bmsp.12096
- Mneimne, M., Fleeson, W., Arnold, E. M., & Furr, R. M. (2018). Differentiating the everyday emotion dynamics of borderline personality disorder from major depressive disorder and bipolar disorder. Personality Disorders: Theory, Research, and Treatment, 9(2), 192–196. https://doi.org/10.1037/per0000255
- Müller, K. (2020). Here: A simpler way to find your files. https://CRAN.R-project.org/package=here
- Myin-Germeys, I., Kasanova, Z., Vaessen, T., Vachon, H., Kirtley, O., Viechtbauer, W., & Reininghaus, U. (2018). Experience sampling methodology in mental health research: new insights and technical developments. World Psychiatry, 17(2), 123–132. https://doi.org/10.1002/wps.20513
- Nickell, S. (1981). Biases in dynamic models with fixed effects. *Econometrica*, 49(6), 1417. https://doi.org/10.2307/1911408
- Okada, K. (2013). Is omega squared less biased? A comparison of three major effect size indices in one-way ANOVA. Behaviormetrika, 40(2), 129147.
- Pawel, S., Kook, L., & Reeve, K. (2022). Pitfalls and potentials in simulation studies. http://arxiv.org/abs/2203.13076
- Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B., Ranke, J., Team, R. C., & Team, M. R. C. (2022). *Package 'nlme'*.
- R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Rintala, A., Wampers, M., Myin-Germeys, I., & Viechtbauer, W. (2019). Response compliance and predictors thereof in studies using the experience sampling method. *Psychological Assessment*, 31(2), 226–235. https://doi.org/10.1037/pas0000662
- Rintala, A., Wampers, M., Myin-Germeys, I., & Viechtbauer, W. (2020). Momentary predictors of compliance in studies using the experience sampling method. *Psychiatry Research*, 286, 112896. https://doi.org/10.1016/j.psychres.2020.112896
- Rovine, M. J., & Walls, T. A. (2006). Multilevel autoregressive modeling of interindividual differences in the stability of a process. *Models for Intensive Longitudinal Data*, 124147.
- Schuurman, N. K., & Hamaker, E. L. (2019). Measurement error and person-specific reliability in multilevel autoregressive modeling. *Psychological Methods*, 24(1), 70–91. https://doi.org/10.1037/met0000188
- Ushey, K. (2022). Renv. Project environments. https://CRAN.R-project.org/package=renv
- Vachon, H., Viechtbauer, W., Rintala, A., & Myin-Germeys, I. (2019). Compliance and Retention With the Experience Sampling Method Over the Continuum of Severe Mental Disorders: Meta-Analysis and Recommendations. *Journal of Medical Internet Research*, 21(12), e14475. https://doi.org/10.2196/14475
- Wenzel, M., & Brose, A. (2022). Addressing measurement issues in affect dynamic research: Modeling

- emotional inertia's reliability to improve its predictive validity of depressive symptoms. Emotion. https://doi.org/10.1037/emo0001108
- Wright, A. G. C., & Zimmermann, J. (2019). Applied ambulatory assessment: Integrating idiographic and nomothetic principles of measurement. *Psychological Assessment*, 31 (12), 1467–1480. https://doi.org/10.1037/pas0000685
- Wrzus, C., & Neubauer, A. B. (2022). Ecological Momentary Assessment: A Meta-Analysis on Designs, Samples, and Compliance Across Research Fields. *Assessment*, 1–22. https://doi.org/10.1177/10731911211067538
- Zheng, G., & Gastwirth, J. (2002). Do tails of symmetric distributions contain more fisher information about the scale parameter? Sankhyā: The Indian Journal of Statistics, Series B, 289300.

Appendix 1: Full results from Simulation A

Table 16: Simulation A. Full results.

Marcia M	Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
black 0.3 0.4 20 100 0.267 1,000 0.03 0.40 0.10 0.20 0.130 0.743 0.09 0.170 black 0.3 0.4 100 20 0.130 0.723 0.02 0.072 0.072 black 0.3 0.4 100 100 0.266 1.00 0.02 0.078 0.012 black 0.3 0.4 20 20 0.175 0.02 0.078 0.012 black 0.3 0.6 20 20 0.023 1.00 0.022 0.002 black 0.3 0.6 100 20 0.253 1.00 0.012 0.002 black 0.3 0.6 100 20 0.253 1.00 0.013 0.012 black 0.3 0.6 100 20 0.233 1.00 0.013 0.012 black 0.3 0.8 20 10 0.20	block	0.3	0.4	20	20	0.129	0.242	0.110	-0.171
black 0.3 0.4 100 20 0.130 0.743 0.40 0.170 black 0.3 0.4 100 50 0.28 1.000 0.024 0.070 black 0.3 0.4 100 100 0.26 0.175 0.002 0.016 0.018 black 0.3 0.6 0.0 20 0.175 0.002 0.078 0.125 black 0.3 0.6 20 0.0 0.233 1.00 0.022 0.002 black 0.3 0.6 100 0.0 0.233 1.00 0.033 0.01 0.002 black 0.3 0.6 100 0.0 0.233 1.00 0.033 0.003 0.003 0.002 black 0.3 0.8 20 20 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	block	0.3	0.4	20	50	0.226	0.982	0.054	-0.074
block 0.3 0.4 100 50 0.228 1.000 0.024 0.000 block 0.3 0.4 100 100 0.266 1.000 0.016 0.003 block 0.3 0.6 20 20 0.175 0.602 0.78 0.125 block 0.3 0.6 20 30 0.235 1.000 0.029 0.024 block 0.3 0.6 20 100 0.278 1.000 0.035 0.012 block 0.3 0.6 100 50 0.253 1.00 0.013 0.047 block 0.3 0.6 100 100 0.253 1.00 0.013 0.007 block 0.3 0.8 100 100 0.263 1.00 0.013 0.007 block 0.3 0.8 20 100 0.284 1.00 0.025 0.003 block 0.3 0.8 10	block	0.3	0.4	20	100	0.267	1.000	0.036	-0.033
Block 10	block	0.3	0.4	100	20	0.130	0.743	0.049	-0.170
block 0.3 0.6 20 20 0.175 0.602 0.078 0.125 block 0.3 0.6 20 50 0.233 1.00 0.042 0.047 block 0.3 0.6 20 100 0.278 1.00 0.029 0.035 0.012 block 0.3 0.6 100 0.0 0.23 1.00 0.019 0.035 0.021 block 0.3 0.6 100 0.0 0.23 1.00 0.013 0.022 block 0.3 0.6 100 0.0 0.23 1.00 0.013 0.023 block 0.3 0.8 20 100 0.29 0.899 0.03 0.03 0.003 block 0.3 0.8 20 10 0.20 0.009 0.003 0.003 0.003 block 0.3 0.8 10 20 0.20 0.20 0.00 0.00 0.00	block	0.3	0.4	100	50	0.228	1.000	0.024	-0.072
block 0.3 0.6 20 50 0.253 1.000 0.042 0.007 block 0.3 0.6 20 100 0.278 1.000 0.029 0.022 block 0.3 0.6 100 20 0.179 0.999 0.035 0.012 block 0.3 0.6 100 100 0.253 1.000 0.019 0.047 block 0.3 0.6 100 100 0.203 0.899 0.633 0.001 block 0.3 0.8 20 0.0 0.264 1.000 0.036 0.001 block 0.3 0.8 20 100 0.264 1.000 0.025 0.001 block 0.3 0.8 100 0.0 0.266 1.000 0.016 0.003 block 0.3 0.8 100 0.0 0.203 1.000 0.01 0.001 block 0.3 0.1 0.0	block	0.3	0.4	100	100	0.266	1.000	0.016	-0.034
block 0.3 0.6 20 100 0.278 1,000 0.029 -0.022 block 0.3 0.6 100 20 0.179 0.099 0.035 -0.121 block 0.3 0.6 100 50 0.253 1,000 0.019 -0.047 block 0.3 0.6 100 100 0.278 1,000 0.013 0.022 block 0.3 0.6 100 100 0.298 1,000 0.013 0.03 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033	block	0.3	0.6	20	20	0.175	0.602	0.078	-0.125
block 0.3 0.6 100 20 0.179 0.999 0.035 0.121 block 0.3 0.6 100 50 0.233 1.000 0.019 0.047 block 0.3 0.6 100 100 0.278 1.000 0.013 0.022 block 0.3 0.8 20 50 0.264 1.000 0.036 0.036 block 0.3 0.8 20 50 0.264 1.000 0.036 0.036 block 0.3 0.8 20 20 0.224 1.000 0.025 0.001 block 0.3 0.8 100 20 0.210 1.000 0.011 0.001 block 0.3 0.8 100 20 0.230 0.092 0.051 0.001 block 0.3 1.0 20 100 0.283 1.000 0.022 0.001 block 0.3 1.0 100 <td>block</td> <td>0.3</td> <td>0.6</td> <td>20</td> <td>50</td> <td>0.253</td> <td>1.000</td> <td>0.042</td> <td>-0.047</td>	block	0.3	0.6	20	50	0.253	1.000	0.042	-0.047
Block 10,3 10,6 100 100 10,253 1,000 0,019 1,000 1	block	0.3	0.6	20	100	0.278	1.000	0.029	-0.022
block 0.3 0.6 100 100 0.278 1.000 0.013 -0.022 block 0.3 0.8 20 20 0.209 0.899 0.063 -0.091 block 0.3 0.8 20 50 0.264 1.000 0.036 -0.036 block 0.3 0.8 20 100 0.284 1.000 0.025 -0.016 block 0.3 0.8 100 20 0.210 1.000 0.028 -0.009 block 0.3 0.8 100 50 0.266 1.000 0.016 -0.034 block 0.3 0.8 100 100 0.283 1.000 0.011 -0.017 block 0.3 1.0 20 20 0.230 0.992 0.051 -0.072 block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 <	block	0.3	0.6	100	20	0.179	0.999	0.035	-0.121
block 0.3 0.8 20 20 0.209 0.899 0.063 -0.091 block 0.3 0.8 20 50 0.264 1.000 0.036 -0.036 block 0.3 0.8 20 100 0.284 1.000 0.025 -0.016 block 0.3 0.8 100 20 0.210 1.000 0.028 -0.000 block 0.3 0.8 100 50 0.266 1.000 0.016 -0.034 block 0.3 0.8 100 100 0.283 1.000 0.011 -0.017 block 0.3 1.0 20 20 0.230 0.992 0.051 -0.070 block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 10 20 0.230 0.273 1.000 0.014 -0.027 block 0.5 <	block	0.3	0.6	100	50	0.253	1.000	0.019	-0.047
block 0.3 0.8 20 50 0.264 1.000 0.036 -0.036 block 0.3 0.8 20 100 0.284 1.000 0.025 -0.016 block 0.3 0.8 100 20 0.210 1.000 0.028 -0.090 block 0.3 0.8 100 50 0.266 1.000 0.016 -0.034 block 0.3 0.8 100 100 0.283 1.000 0.011 -0.017 block 0.3 0.0 20 20 0.230 0.992 0.051 -0.070 block 0.3 1.0 20 50 0.273 1.000 0.022 -0.012 block 0.3 1.0 20 20 0.230 1.000 0.023 -0.022 block 0.3 1.0 100 0.0 0.287 1.000 0.010 -0.034 block 0.5 0.4 <t< td=""><td>block</td><td>0.3</td><td>0.6</td><td>100</td><td>100</td><td>0.278</td><td>1.000</td><td>0.013</td><td>-0.022</td></t<>	block	0.3	0.6	100	100	0.278	1.000	0.013	-0.022
block 0.3 0.8 20 100 0.284 1.000 0.025 -0.016 block 0.3 0.8 100 20 0.210 1.000 0.028 -0.098 block 0.3 0.8 100 50 0.266 1.000 0.016 -0.034 block 0.3 0.8 100 100 0.283 1.000 0.011 -0.017 block 0.3 1.0 20 20 0.230 0.992 0.051 -0.071 block 0.3 1.0 20 100 0.283 1.000 0.031 -0.027 block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 100 20 0.230 0.273 1.000 0.014 -0.027 block 0.3 1.0 100 100 0.287 1.000 0.010 -0.013 block 0.5	block	0.3	0.8	20	20	0.209	0.899	0.063	-0.091
block 0.3 0.8 100 20 0.26 1.000 0.028 0.029 0.000 0.00	block	0.3	0.8	20	50	0.264	1.000	0.036	-0.036
block 0.3 0.8 100 50 0.266 1.000 0.016 -0.034 block 0.3 0.8 100 100 0.283 1.000 0.011 -0.017 block 0.3 1.0 20 20 0.230 0.992 0.051 -0.070 block 0.3 1.0 20 50 0.273 1.000 0.031 -0.027 block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 100 20 0.233 1.000 0.023 -0.070 block 0.3 1.0 100 50 0.273 1.000 0.014 -0.027 block 0.3 1.0 100 0.0 0.287 1.000 0.014 -0.014 block 0.5 0.4 20 50 0.415 1.000 0.051 -0.085 block 0.5 0.4 <	block	0.3	0.8	20	100	0.284	1.000	0.025	-0.016
black 0.3 0.8 100 100 0.283 1.000 0.011 -0.017 block 0.3 1.0 20 20 0.230 0.992 0.051 -0.070 block 0.3 1.0 20 50 0.273 1.000 0.021 -0.027 block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 100 20 0.230 1.000 0.023 -0.070 block 0.3 1.0 100 50 0.273 1.000 0.014 -0.027 block 0.3 1.0 100 100 0.287 1.000 0.010 -0.013 block 0.5 0.4 20 50 0.415 1.000 0.051 -0.085 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.031 block 0.5 0.4 <	block	0.3	0.8	100	20	0.210	1.000	0.028	-0.090
block 0.3 1.0 20 20 0.230 0.992 0.051 -0.070 block 0.3 1.0 20 50 0.273 1.000 0.031 -0.027 block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 100 20 0.230 1.000 0.023 -0.070 block 0.3 1.0 100 50 0.273 1.000 0.014 -0.027 block 0.3 1.0 100 0.028 0.287 1.000 0.014 -0.027 block 0.3 0.4 20 20 0.334 0.840 0.105 -0.166 block 0.5 0.4 20 50 0.415 1.000 0.051 -0.083 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.033 -0.034 block 0.5	block	0.3	0.8	100	50	0.266	1.000	0.016	-0.034
block 0.3 1.0 20 50 0.273 1.000 0.031 -0.027 block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 100 20 0.230 1.000 0.023 -0.070 block 0.3 1.0 100 50 0.273 1.000 0.014 -0.027 block 0.3 1.0 100 100 0.287 1.000 0.010 -0.013 block 0.5 0.4 20 20 0.334 0.840 0.105 -0.085 block 0.5 0.4 20 50 0.415 1.000 0.051 -0.085 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.033 block 0.5 0.4 100 100 0.339 1.000 0.047 -0.161	block	0.3	0.8	100	100	0.283	1.000	0.011	-0.017
block 0.3 1.0 20 100 0.288 1.000 0.022 -0.012 block 0.3 1.0 100 0.00 0.00 0.00 0.00 0.00 0.	block	0.3	1.0	20	20	0.230	0.992	0.051	-0.070
block 0.3 1.0 100 20 0.230 1.000 0.023 -0.070 block 0.3 1.0 100 50 0.273 1.000 0.014 -0.027 block 0.3 1.0 100 100 0.287 1.000 0.010 -0.013 block 0.5 0.4 20 50 0.415 1.000 0.051 -0.085 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.039 block 0.5 0.4 100 20 0.339 1.000 0.047 -0.161	block	0.3	1.0	20	50	0.273	1.000	0.031	-0.027
block 0.3 1.0 100 50 0.273 1.000 0.014 -0.027 block 0.3 1.0 100 100 0.287 1.000 0.010 -0.013 block 0.5 0.4 20 20 0.334 0.840 0.051 -0.085 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.039 block 0.5 0.4 100 20 0.339 1.000 0.047 -0.161	block	0.3	1.0	20	100	0.288	1.000	0.022	-0.012
block 0.3 1.0 100 100 0.287 1.000 0.010 -0.013 block 0.5 0.4 20 20 0.334 0.840 0.105 -0.166 block 0.5 0.4 20 50 0.415 1.000 0.051 -0.085 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.039 block 0.5 0.4 100 20 0.339 1.000 0.047 -0.161	block	0.3	1.0	100	20	0.230	1.000	0.023	-0.070
block 0.5 0.4 20 20 0.334 0.840 0.105 -0.168 block 0.5 0.4 20 50 0.415 1.000 0.051 -0.085 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.039 block 0.5 0.4 100 20 0.339 1.000 0.047 -0.161	block	0.3	1.0	100	50	0.273	1.000	0.014	-0.027
block 0.5 0.4 20 50 0.415 1.000 0.051 -0.085 block 0.5 0.4 20 100 0.461 1.000 0.033 -0.039 block 0.5 0.4 100 20 0.339 1.000 0.047 -0.161	block	0.3	1.0	100	100	0.287	1.000	0.010	-0.013
block 0.5 0.4 20 100 0.461 1.000 0.033 -0.039 block 0.5 0.4 100 20 0.339 1.000 0.047 -0.161	block	0.5	0.4	20	20	0.334	0.840	0.105	-0.166
block 0.5 0.4 100 20 0.339 1.000 0.047 -0.161	block	0.5	0.4	20	50	0.415	1.000	0.051	-0.085
	block	0.5	0.4	20	100	0.461	1.000	0.033	-0.039
block 0.5 0.4 100 50 0.418 1.000 0.023 -0.082	block	0.5	0.4	100	20	0.339	1.000	0.047	-0.161
	block	0.5	0.4	100	50	0.418	1.000	0.023	-0.082

Table 16: Simulation A. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
block	0.5	0.4	100	100	0.461	1.000	0.015	-0.039
block	0.5	0.6	20	20	0.365	0.997	0.074	-0.135
block	0.5	0.6	20	50	0.445	1.000	0.039	-0.055
block	0.5	0.6	20	100	0.474	1.000	0.026	-0.026
block	0.5	0.6	100	20	0.370	1.000	0.033	-0.130
block	0.5	0.6	100	50	0.446	1.000	0.018	-0.054
block	0.5	0.6	100	100	0.474	1.000	0.012	-0.026
block	0.5	0.8	20	20	0.396	1.000	0.059	-0.104
block	0.5	0.8	20	50	0.459	1.000	0.033	-0.041
block	0.5	0.8	20	100	0.481	1.000	0.022	-0.019
block	0.5	0.8	100	20	0.399	1.000	0.026	-0.101
block	0.5	0.8	100	50	0.460	1.000	0.015	-0.040
block	0.5	0.8	100	100	0.481	1.000	0.010	-0.019
block	0.5	1.0	20	20	0.416	1.000	0.048	-0.084
block	0.5	1.0	20	50	0.468	1.000	0.029	-0.032
block	0.5	1.0	20	100	0.485	1.000	0.020	-0.015
block	0.5	1.0	100	20	0.416	1.000	0.021	-0.084
block	0.5	1.0	100	50	0.469	1.000	0.013	-0.031
block	0.5	1.0	100	100	0.485	1.000	0.009	-0.015
block	0.7	0.4	20	20	0.565	0.997	0.092	-0.135
block	0.7	0.4	20	50	0.606	1.000	0.044	-0.094
block	0.7	0.4	20	100	0.654	1.000	0.028	-0.046
block	0.7	0.4	100	20	0.570	1.000	0.041	-0.130
block	0.7	0.4	100	50	0.610	1.000	0.020	-0.090
block	0.7	0.4	100	100	0.655	1.000	0.013	-0.045
block	0.7	0.6	20	20	0.569	1.000	0.065	-0.131
block	0.7	0.6	20	50	0.638	1.000	0.034	-0.062
block	0.7	0.6	20	100	0.670	1.000	0.022	-0.030
block	0.7	0.6	100	20	0.574	1.000	0.029	-0.126

Table 16: Simulation A. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
block	0.7	0.6	100	50	0.639	1.000	0.015	-0.061
block	0.7	0.6	100	100	0.670	1.000	0.010	-0.030
block	0.7	0.8	20	20	0.585	1.000	0.052	-0.115
block	0.7	0.8	20	50	0.653	1.000	0.028	-0.047
block	0.7	0.8	20	100	0.678	1.000	0.019	-0.022
block	0.7	0.8	100	20	0.588	1.000	0.023	-0.112
block	0.7	0.8	100	50	0.655	1.000	0.013	-0.045
block	0.7	0.8	100	100	0.678	1.000	0.008	-0.022
block	0.7	1.0	20	20	0.599	1.000	0.042	-0.101
block	0.7	1.0	20	50	0.663	1.000	0.024	-0.037
block	0.7	1.0	20	100	0.682	1.000	0.017	-0.018
block	0.7	1.0	100	20	0.600	1.000	0.019	-0.100
block	0.7	1.0	100	50	0.664	1.000	0.011	-0.036
block	0.7	1.0	100	100	0.682	1.000	0.007	-0.018
${\tt extreme_oneside}$	0.3	0.4	20	20	-0.053	0.056	0.139	-0.353
${\tt extreme_oneside}$	0.3	0.4	20	50	0.053	0.106	0.076	-0.247
${\tt extreme_oneside}$	0.3	0.4	20	100	0.086	0.388	0.051	-0.214
extreme_oneside	0.3	0.4	100	20	-0.061	0.168	0.062	-0.361
extreme_oneside	0.3	0.4	100	50	0.055	0.383	0.034	-0.245
extreme_oneside	0.3	0.4	100	100	0.087	0.964	0.023	-0.213
extreme_oneside	0.3	0.6	20	20	0.043	0.076	0.088	-0.257
${\tt extreme_oneside}$	0.3	0.6	20	50	0.111	0.557	0.052	-0.189
extreme_oneside	0.3	0.6	20	100	0.131	0.943	0.036	-0.169
extreme_oneside	0.3	0.6	100	20	0.042	0.191	0.040	-0.258
extreme_oneside	0.3	0.6	100	50	0.113	0.997	0.023	-0.187
$extreme_oneside$	0.3	0.6	100	100	0.133	1.000	0.016	-0.167
${\tt extreme_oneside}$	0.3	0.8	20	20	0.119	0.445	0.066	-0.181
extreme_oneside	0.3	0.8	20	50	0.166	0.983	0.039	-0.134
extreme_oneside	0.3	0.8	20	100	0.181	1.000	0.027	-0.119

Table 16: Simulation A. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
extreme_oneside	0.3	0.8	100	20	0.119	0.966	0.029	-0.181
$extreme_oneside$	0.3	0.8	100	50	0.167	1.000	0.018	-0.133
${\tt extreme_oneside}$	0.3	0.8	100	100	0.182	1.000	0.012	-0.118
extreme_oneside	0.3	1.0	20	20	0.230	0.992	0.051	-0.070
$extreme_oneside$	0.3	1.0	20	50	0.273	1.000	0.031	-0.027
$extreme_oneside$	0.3	1.0	20	100	0.288	1.000	0.022	-0.012
${\tt extreme_oneside}$	0.3	1.0	100	20	0.230	1.000	0.023	-0.070
${\tt extreme_oneside}$	0.3	1.0	100	50	0.273	1.000	0.014	-0.027
extreme_oneside	0.3	1.0	100	100	0.287	1.000	0.010	-0.013
extreme_oneside	0.5	0.4	20	20	0.023	0.063	0.127	-0.477
$extreme_oneside$	0.5	0.4	20	50	0.160	0.622	0.069	-0.340
${\tt extreme_oneside}$	0.5	0.4	20	100	0.202	0.986	0.046	-0.298
${\tt extreme_oneside}$	0.5	0.4	100	20	0.021	0.074	0.057	-0.479
extreme_oneside	0.5	0.4	100	50	0.163	1.000	0.031	-0.337
$extreme_oneside$	0.5	0.4	100	100	0.205	1.000	0.021	-0.295
$extreme_oneside$	0.5	0.6	20	20	0.163	0.486	0.084	-0.337
$extreme_oneside$	0.5	0.6	20	50	0.244	0.998	0.048	-0.256
${\tt extreme_oneside}$	0.5	0.6	20	100	0.270	1.000	0.033	-0.230
extreme_oneside	0.5	0.6	100	20	0.162	0.982	0.038	-0.338
${\tt extreme_oneside}$	0.5	0.6	100	50	0.248	1.000	0.022	-0.252
${\tt extreme_oneside}$	0.5	0.6	100	100	0.272	1.000	0.015	-0.228
${\tt extreme_oneside}$	0.5	0.8	20	20	0.268	0.983	0.063	-0.232
extreme_oneside	0.5	0.8	20	50	0.325	1.000	0.037	-0.175
extreme_oneside	0.5	0.8	20	100	0.343	1.000	0.026	-0.157
extreme_oneside	0.5	0.8	100	20	0.269	1.000	0.028	-0.231
extreme_oneside	0.5	0.8	100	50	0.327	1.000	0.017	-0.173
extreme_oneside	0.5	0.8	100	100	0.345	1.000	0.011	-0.155
${\tt extreme_oneside}$	0.5	1.0	20	20	0.416	1.000	0.048	-0.084
extreme_oneside	0.5	1.0	20	50	0.468	1.000	0.029	-0.032

Table 16: Simulation A. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
extreme_oneside	0.5	1.0	20	100	0.485	1.000	0.020	-0.015
extreme_oneside	0.5	1.0	100	20	0.416	1.000	0.021	-0.084
extreme_oneside	0.5	1.0	100	50	0.469	1.000	0.013	-0.031
extreme_oneside	0.5	1.0	100	100	0.485	1.000	0.009	-0.015
$extreme_oneside$	0.7	0.4	20	20	0.136	0.228	0.116	-0.564
${\tt extreme_oneside}$	0.7	0.4	20	50	0.315	0.995	0.061	-0.385
$extreme_oneside$	0.7	0.4	20	100	0.375	1.000	0.041	-0.325
${\tt extreme_oneside}$	0.7	0.4	100	20	0.136	0.714	0.052	-0.564
${\tt extreme_oneside}$	0.7	0.4	100	50	0.325	1.000	0.027	-0.375
extreme_oneside	0.7	0.4	100	100	0.380	1.000	0.018	-0.320
extreme_oneside	0.7	0.6	20	20	0.317	0.967	0.078	-0.383
extreme_oneside	0.7	0.6	20	50	0.429	1.000	0.043	-0.271
$extreme_oneside$	0.7	0.6	20	100	0.462	1.000	0.029	-0.238
${\tt extreme_oneside}$	0.7	0.6	100	20	0.319	1.000	0.035	-0.381
extreme_oneside	0.7	0.6	100	50	0.433	1.000	0.019	-0.267
extreme_oneside	0.7	0.6	100	100	0.465	1.000	0.013	-0.235
extreme_oneside	0.7	0.8	20	20	0.447	1.000	0.058	-0.253
${\tt extreme_oneside}$	0.7	0.8	20	50	0.524	1.000	0.033	-0.176
${\tt extreme_oneside}$	0.7	0.8	20	100	0.546	1.000	0.023	-0.154
extreme_oneside	0.7	0.8	100	20	0.450	1.000	0.026	-0.250
extreme_oneside	0.7	0.8	100	50	0.526	1.000	0.015	-0.174
$extreme_oneside$	0.7	0.8	100	100	0.548	1.000	0.010	-0.152
${\tt extreme_oneside}$	0.7	1.0	20	20	0.599	1.000	0.042	-0.101
$extreme_oneside$	0.7	1.0	20	50	0.663	1.000	0.024	-0.037
extreme_oneside	0.7	1.0	20	100	0.682	1.000	0.017	-0.018
${\tt extreme_oneside}$	0.7	1.0	100	20	0.600	1.000	0.019	-0.100
$extreme_oneside$	0.7	1.0	100	50	0.664	1.000	0.011	-0.036
${\tt extreme_oneside}$	0.7	1.0	100	100	0.682	1.000	0.007	-0.018
${\tt extreme_twosided}$	0.3	0.4	20	20	-0.093	0.127	0.164	-0.393

Table 16: Simulation A. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
extreme_twosided	0.3	0.4	20	50	-0.018	0.074	0.086	-0.318
${\tt extreme_two sided}$	0.3	0.4	20	100	0.007	0.067	0.058	-0.293
${\tt extreme_twosided}$	0.3	0.4	100	20	-0.095	0.280	0.072	-0.395
${\tt extreme_twosided}$	0.3	0.4	100	50	-0.016	0.088	0.038	-0.316
${\tt extreme_two sided}$	0.3	0.4	100	100	0.009	0.063	0.026	-0.291
extreme_twosided	0.3	0.6	20	20	-0.007	0.075	0.094	-0.307
${\tt extreme_twosided}$	0.3	0.6	20	50	0.043	0.122	0.055	-0.257
${\tt extreme_twosided}$	0.3	0.6	20	100	0.056	0.329	0.038	-0.244
${\tt extreme_twosided}$	0.3	0.6	100	20	-0.003	0.067	0.042	-0.303
${\tt extreme_twosided}$	0.3	0.6	100	50	0.043	0.418	0.024	-0.257
${\tt extreme_twosided}$	0.3	0.6	100	100	0.057	0.932	0.017	-0.243
${\tt extreme_twosided}$	0.3	0.8	20	20	0.086	0.252	0.067	-0.214
${\tt extreme_twosided}$	0.3	0.8	20	50	0.120	0.825	0.040	-0.180
${\tt extreme_twosided}$	0.3	0.8	20	100	0.131	1.000	0.028	-0.169
${\tt extreme_twosided}$	0.3	0.8	100	20	0.090	0.839	0.030	-0.210
extreme_twosided	0.3	0.8	100	50	0.121	1.000	0.018	-0.179
${\tt extreme_twosided}$	0.3	0.8	100	100	0.131	1.000	0.012	-0.169
${\tt extreme_twosided}$	0.3	1.0	20	20	0.230	0.992	0.051	-0.070
${\tt extreme_twosided}$	0.3	1.0	20	50	0.273	1.000	0.031	-0.027
${\tt extreme_two sided}$	0.3	1.0	20	100	0.288	1.000	0.022	-0.012
$extreme_two sided$	0.3	1.0	100	20	0.230	1.000	0.023	-0.070
${\tt extreme_twosided}$	0.3	1.0	100	50	0.273	1.000	0.014	-0.027
${\tt extreme_twosided}$	0.3	1.0	100	100	0.287	1.000	0.010	-0.013
${\tt extreme_twosided}$	0.5	0.4	20	20	-0.045	0.091	0.158	-0.545
${\tt extreme_twosided}$	0.5	0.4	20	50	0.019	0.072	0.082	-0.481
$extreme_two sided$	0.5	0.4	20	100	0.037	0.110	0.055	-0.463
extreme_twosided	0.5	0.4	100	20	-0.050	0.143	0.070	-0.550
$extreme_two sided$	0.5	0.4	100	50	0.021	0.112	0.037	-0.479
extreme_twosided	0.5	0.4	100	100	0.040	0.371	0.025	-0.460

Table 16: Simulation A. Full results. (continued)

extreme_twesided 0.5 0.6 20 100 0.116 0.574 0.033 0.984 extreme_twesided 0.5 0.6 100 20 0.080 0.44 0.011 0.422 extreme_twesided 0.5 0.6 100 20 0.080 0.44 0.011 0.420 extreme_twesided 0.5 0.6 100 100 0.129 1.00 0.016 0.037 extreme_twesided 0.5 0.8 20 20 0.017 0.880 0.065 0.288 extreme_twesided 0.5 0.8 20 20 0.017 0.880 0.065 0.288 extreme_twesided 0.5 0.8 20 100 0.256 1.00 0.027 0.222 extreme_twesided 0.5 0.8 100 0 0.250 1.00 0.017 0.236 extreme_twesided 0.5 0.8 100 0 0 0.250 1.00 0.012 0.2	Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
Catterne_twesided	extreme_twosided	0.5	0.6	20	20	0.075	0.144	0.092	-0.425
Caterine_twosided 0.5	${\tt extreme_two sided}$	0.5	0.6	20	50	0.116	0.574	0.053	-0.384
extreme_twosided 0.5 0.6 100 50 0.117 0.998 0.024 -0.383 extreme_twosided 0.5 0.6 100 100 0.129 1.000 0.016 -0.371 extreme_twosided 0.5 0.8 20 20 0.217 0.880 0.065 -0.283 extreme_twosided 0.5 0.8 20 50 0.250 1.000 0.003 -0.242 extreme_twosided 0.5 0.8 20 100 0.258 1.000 0.0027 -0.242 extreme_twosided 0.5 0.8 100 0.02 0.219 1.000 0.029 0.281 extreme_twosided 0.5 0.8 100 0.02 0.219 1.000 0.017 -0.242 extreme_twosided 0.5 0.8 100 0.02 0.029 1.000 0.017 -0.241 extreme_twosided 0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$extreme_two sided$	0.5	0.6	20	100	0.128	0.940	0.036	-0.372
extreme_twosided 0.5 0.6 100 100 0.129 1.000 0.016 -0.371 extreme_twosided 0.5 0.8 20 20 0.217 0.880 0.066 -0.283 extreme_twosided 0.5 0.8 20 100 0.258 1.000 0.039 -0.250 extreme_twosided 0.5 0.8 100 20 0.219 1.000 0.029 -0.242 extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.017 -0.250 extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.012 -0.241 extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.012 -0.241 extreme_twosided 0.5 1.0 20 0.0 0.468 1.000 0.022 -0.032 extreme_twosided 0.5 1.0 100 0.0 0.468 1.000 0.001 0	${\tt extreme_two sided}$	0.5	0.6	100	20	0.080	0.494	0.041	-0.420
extreme_twosided 0.5 0.8 20 0.217 0.880 0.065 0.283 extreme_twosided 0.5 0.8 20 100 0.258 1.00 0.039 -0.250 extreme_twosided 0.5 0.8 20 100 0.258 1.00 0.027 -0.242 extreme_twosided 0.5 0.8 100 20 0.259 1.00 0.017 -0.250 extreme_twosided 0.5 0.8 100 100 0.259 1.00 0.012 -0.250 extreme_twosided 0.5 0.8 100 100 0.259 1.00 0.012 -0.250 extreme_twosided 0.5 1.0 20 20 0.048 1.00 0.048 1.00 0.048 extreme_twosided 0.5 1.0 20 0.0 0.485 1.00 0.03 0.03 extreme_twosided 0.5 1.0 100 0.0 0.485 1.00 0.03 0.03 </td <td>${\tt extreme_two sided}$</td> <td>0.5</td> <td>0.6</td> <td>100</td> <td>50</td> <td>0.117</td> <td>0.998</td> <td>0.024</td> <td>-0.383</td>	${\tt extreme_two sided}$	0.5	0.6	100	50	0.117	0.998	0.024	-0.383
extreme_twosided 0.5 0.8 20 50 0.250 1.000 0.039 -0.250 extreme_twosided 0.5 0.8 20 100 0.258 1.000 0.027 -0.242 extreme_twosided 0.5 0.8 100 20 0.219 1.000 0.029 -0.281 extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.017 -0.240 extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.012 -0.241 extreme_twosided 0.5 1.0 20 20 0.416 1.000 0.029 -0.032 extreme_twosided 0.5 1.0 20 100 0.485 1.000 0.020 -0.015 extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 -0.031 extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 0.031	${\tt extreme_twosided}$	0.5	0.6	100	100	0.129	1.000	0.016	-0.371
extreme_twosided 0.5 0.8 20 100 0.258 1.00 0.027 -0.242 extreme_twosided 0.5 0.8 100 20 0.219 1.00 0.029 -0.281 extreme_twosided 0.5 0.8 100 50 0.250 1.00 0.012 -0.250 extreme_twosided 0.5 0.8 100 100 0.259 1.00 0.012 -0.241 extreme_twosided 0.5 0.10 20 20 0.046 1.00 0.029 -0.032 extreme_twosided 0.5 1.0 20 50 0.468 1.00 0.029 -0.032 extreme_twosided 0.5 1.0 20 100 0.485 1.00 0.029 -0.032 extreme_twosided 0.5 1.0 100 50 0.469 1.00 0.013 -0.031 extreme_twosided 0.5 1.0 100 100 0.485 1.00 0.00 0.01	$extreme_two sided$	0.5	0.8	20	20	0.217	0.880	0.065	-0.283
extreme_twosided 0.5 0.8 100 20 0.219 1.000 0.029 -0.281 extreme_twosided 0.5 0.8 100 50 0.250 1.000 0.017 -0.250 extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.012 -0.241 extreme_twosided 0.5 1.0 20 20 0.416 1.000 0.048 -0.084 extreme_twosided 0.5 1.0 20 50 0.468 1.000 0.029 -0.032 extreme_twosided 0.5 1.0 20 100 0.485 1.000 0.020 -0.015 extreme_twosided 0.5 1.0 100 20 0.469 1.000 0.013 -0.032 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.7 0.4 20 50 0.089 0.234 0.076 0.610<	${\tt extreme_two sided}$	0.5	0.8	20	50	0.250	1.000	0.039	-0.250
extreme_twosided 0.5 0.8 100 50 0.250 1.000 0.017 -0.250 extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.012 -0.241 extreme_twosided 0.5 1.0 20 20 0.416 1.000 0.029 -0.084 extreme_twosided 0.5 1.0 20 100 0.485 1.000 0.029 -0.032 extreme_twosided 0.5 1.0 20 100 0.485 1.000 0.021 -0.084 extreme_twosided 0.5 1.0 100 20 0.469 1.000 0.013 -0.031 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.003 -0.013 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 0.013 extreme_twosided 0.7 0.4 20 20 0.089 0.234 0.076 0.655	${\tt extreme_two sided}$	0.5	0.8	20	100	0.258	1.000	0.027	-0.242
extreme_twosided 0.5 0.8 100 100 0.259 1.000 0.012 0.244 extreme_twosided 0.5 1.0 20 20 0.416 1.000 0.048 0.084 extreme_twosided 0.5 1.0 20 50 0.468 1.000 0.029 0.032 0.032 extreme_twosided 0.5 1.0 20 100 0.485 1.000 0.029 0.032 0.015 extreme_twosided 0.5 1.0 100 100 20 0.416 1.000 0.020 0.021 0.015 0.025	${\tt extreme_two sided}$	0.5	0.8	100	20	0.219	1.000	0.029	-0.281
extreme_twosided 0.5 1.0 20 20 0.416 1.000 0.048 -0.084 extreme_twosided 0.5 1.0 20 50 0.468 1.000 0.029 -0.032 extreme_twosided 0.5 1.0 20 100 0.485 1.000 0.020 -0.015 extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 -0.084 extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 -0.031 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.7 0.4 20 20 0.040 0.089 0.149 -0.660 extreme_twosided 0.7 0.4 20 100 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655<	${\tt extreme_twosided}$	0.5	0.8	100	50	0.250	1.000	0.017	-0.250
extreme_twosided 0.5 1.0 20 50 0.468 1.000 0.029 -0.022 extreme_twosided 0.5 1.0 20 100 0.485 1.000 0.020 -0.015 extreme_twosided 0.5 1.0 100 20 0.416 1.000 0.021 -0.084 extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 -0.015 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.7 0.4 20 20 0.040 0.089 0.149 -0.600 extreme_twosided 0.7 0.4 20 100 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 20 100 0.089 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 0.067<	${\tt extreme_two sided}$	0.5	0.8	100	100	0.259	1.000	0.012	-0.241
extreme_twosided 0.5 1.0 20 100 0.485 1.00 0.020 -0.015 extreme_twosided 0.5 1.0 100 20 0.416 1.000 0.021 -0.084 extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 -0.031 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.7 0.4 20 20 0.040 0.089 0.149 -0.600 extreme_twosided 0.7 0.4 20 100 0.108 0.552 0.051 -0.611 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 100 0.093 0.752 0.034 -0.6	${\tt extreme_two sided}$	0.5	1.0	20	20	0.416	1.000	0.048	-0.084
extreme_twosided 0.5 1.0 100 20 0.416 1.000 0.021 -0.084 extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 -0.031 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.7 0.4 20 20 0.040 0.089 0.149 -0.660 extreme_twosided 0.7 0.4 20 50 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 20 100 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.6 20 20 0.109 0.999 0.023 0.034 </td <td>${\tt extreme_two sided}$</td> <td>0.5</td> <td>1.0</td> <td>20</td> <td>50</td> <td>0.468</td> <td>1.000</td> <td>0.029</td> <td>-0.032</td>	${\tt extreme_two sided}$	0.5	1.0	20	50	0.468	1.000	0.029	-0.032
extreme_twosided 0.5 1.0 100 50 0.469 1.000 0.013 -0.031 extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.7 0.4 20 20 0.040 0.089 0.149 -0.660 extreme_twosided 0.7 0.4 20 50 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 20 100 0.108 0.552 0.051 0.592 extreme_twosided 0.7 0.4 100 20 0.045 0.108 0.552 0.051 0.655 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 0.066 0.655 extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 0.0591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 0.087 0.484 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.093 0.093 0.034 0.0484 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 0.0484 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 0.0484 0.0484 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 0.0484 0.0484 0.0484 0.056 0.056 0.087 0.0484 0.0484 0.056 0.056 0.087 0.0484 0.0484 0.056 0.056 0.087 0.0484 0.0484 0.056 0.056 0.087 0.0484 0.0484 0.056 0.056 0.087 0.0484 0.0484 0.056 0.056 0.087 0.056 0.087 0.0484 0.056 0.056 0.087 0.056 0.087 0.0484 0.056 0.056 0.087 0.056 0.087 0.0484 0.056 0.056 0.087 0.056 0.087 0.0484 0.056 0.056 0.087 0.056 0.056 0.087 0.056 0.056 0.087 0.056	${\tt extreme_twosided}$	0.5	1.0	20	100	0.485	1.000	0.020	-0.015
extreme_twosided 0.5 1.0 100 100 0.485 1.000 0.009 -0.015 extreme_twosided 0.7 0.4 20 20 0.040 0.089 0.149 -0.600 extreme_twosided 0.7 0.4 20 50 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 20 100 0.089 0.132 0.076 -0.611 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 -0.591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 100 0.252 0.992 0.050 -0.448	${\tt extreme_twosided}$	0.5	1.0	100	20	0.416	1.000	0.021	-0.084
extreme_twosided 0.7 0.4 20 20 0.040 0.089 0.149 -0.600 extreme_twosided 0.7 0.4 20 50 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 20 100 0.108 0.552 0.051 -0.655 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 -0.591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 50 0.252 0.992 0.050 -0.448 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 </td <td>${\tt extreme_two sided}$</td> <td>0.5</td> <td>1.0</td> <td>100</td> <td>50</td> <td>0.469</td> <td>1.000</td> <td>0.013</td> <td>-0.031</td>	${\tt extreme_two sided}$	0.5	1.0	100	50	0.469	1.000	0.013	-0.031
extreme_twosided 0.7 0.4 20 50 0.089 0.234 0.076 -0.611 extreme_twosided 0.7 0.4 20 100 0.108 0.552 0.051 -0.592 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 -0.591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 50 0.252 0.992 0.050 -0.448 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478	${\tt extreme_two sided}$	0.5	1.0	100	100	0.485	1.000	0.009	-0.015
extreme_twosided 0.7 0.4 20 100 0.108 0.552 0.051 -0.592 extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 -0.591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 50 0.252 0.992 0.050 -0.448 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478	${\tt extreme_two sided}$	0.7	0.4	20	20	0.040	0.089	0.149	-0.660
extreme_twosided 0.7 0.4 100 20 0.045 0.170 0.066 -0.655 extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 -0.591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 100 0.252 0.992 0.050 -0.448 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.448 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.448 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039	${\tt extreme_twosided}$	0.7	0.4	20	50	0.089	0.234	0.076	-0.611
extreme_twosided 0.7 0.4 100 50 0.093 0.752 0.034 -0.607 extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 -0.591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 100 0.252 0.992 0.050 -0.442 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478	${\tt extreme_twosided}$	0.7	0.4	20	100	0.108	0.552	0.051	-0.592
extreme_twosided 0.7 0.4 100 100 0.109 0.999 0.023 -0.591 extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 50 0.252 0.992 0.050 -0.448 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039	$extreme_two sided$	0.7	0.4	100	20	0.045	0.170	0.066	-0.655
extreme_twosided 0.7 0.6 20 20 0.216 0.656 0.087 -0.484 extreme_twosided 0.7 0.6 20 50 0.252 0.992 0.050 -0.448 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478	$extreme_two sided$	0.7	0.4	100	50	0.093	0.752	0.034	-0.607
extreme_twosided 0.7 0.6 20 50 0.252 0.992 0.050 -0.448 extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478	${\tt extreme_two sided}$	0.7	0.4	100	100	0.109	0.999	0.023	-0.591
extreme_twosided 0.7 0.6 20 100 0.258 1.000 0.034 -0.442 extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478	${\tt extreme_two sided}$	0.7	0.6	20	20	0.216	0.656	0.087	-0.484
extreme_twosided 0.7 0.6 100 20 0.222 0.998 0.039 -0.478	${\tt extreme_twosided}$	0.7	0.6	20	50	0.252	0.992	0.050	-0.448
	extreme_twosided	0.7	0.6	20	100	0.258	1.000	0.034	-0.442
extreme_twosided 0.7 0.6 100 50 0.255 1.000 0.022 -0.445	${\tt extreme_two sided}$	0.7	0.6	100	20	0.222	0.998	0.039	-0.478
	${\tt extreme_twosided}$	0.7	0.6	100	50	0.255	1.000	0.022	-0.445

Table 16: Simulation A. Full results. (continued)

Extreme_twosided	Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
Section Sect	extreme_twosided	0.7	0.6	100	100	0.260	1.000	0.015	-0.440
Extreme_twosided 0.7 0.8 20 100 0.448 1.000 0.024 0.255 centreme_twosided 0.7 0.8 100 20 0.400 1.000 0.027 0.036 0.026 centreme_twosided 0.7 0.8 100 50 0.440 1.000 0.016 0.027 0.255 centreme_twosided 0.7 0.8 100 100 0.448 1.000 0.016 0.024 0.255 centreme_twosided 0.7 0.8 100 0.00 0.448 1.000 0.011 0.025 centreme_twosided 0.7 1.0 20 20 0.59 1.00 0.448 1.000 0.012 0.024 0.033 centreme_twosided 0.7 1.0 20 100 0.682 1.000 0.024 0.033 centreme_twosided 0.7 1.0 20 100 0.682 1.000 0.017 0.019 0.035 centreme_twosided 0.7 1.0 100 0.00 0.00 0.000 1.000 0.019 0.010 0.055 centreme_twosided 0.7 1.0 100 0.00 0.00 0.000 1.000 0.011 0.003 centreme_twosided 0.7 1.0 100 0.00 0.00 0.000 1.000 0.011 0.003 centreme_twosided 0.7 1.0 100 0.00 0.00 0.000 1.000 0.011 0.003 centreme_twosided 0.7 1.0 100 0.00 0.00 0.000 1.000 0.011 0.003 centreme_twosided 0.7 1.0 100 0.00 0.00 0.000 0.000 0.000 0.011 0.003 centreme_twosided 0.7 1.0 100 0.00 0.00 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.0	extreme_twosided	0.7	0.8	20	20	0.398	1.000	0.061	-0.302
Extreme_twosided	extreme_twosided	0.7	0.8	20	50	0.437	1.000	0.035	-0.263
Setterne_twosided	extreme_twosided	0.7	0.8	20	100	0.448	1.000	0.024	-0.252
Extreme_twosided 0.7 0.8 100 100 0.448 1.000 0.011 0.255	extreme_twosided	0.7	0.8	100	20	0.400	1.000	0.027	-0.300
Extreme_twosided 0.7 1.0 20 20 0.599 1.000 0.042 0.003	extreme_twosided	0.7	0.8	100	50	0.440	1.000	0.016	-0.260
Extreme_twosided	extreme_twosided	0.7	0.8	100	100	0.448	1.000	0.011	-0.252
Extreme_twosided 0.7 1.0 20 100 0.682 1.000 0.017 -0.018	extreme_twosided	0.7	1.0	20	20	0.599	1.000	0.042	-0.101
Extreme_twesided 0.7 1.0 100 20 0.600 1.000 0.019 -0.100 extreme_twesided 0.7 1.0 100 100 50 0.664 1.000 0.011 -0.030 extreme_twesided 0.7 1.0 100 100 0.0682 1.000 0.007 -0.018 extreme_twesided 0.7 1.0 100 100 0.682 1.000 0.007 -0.018 extreme_twesided 0.7 1.0 100 0.00 0.007 -0.018 extreme_twesided 0.3 0.4 20 20 0.134 0.139 0.162 -0.160 extreme_twesided 0.3 0.4 20 100 0.272 0.998 0.066 -0.028 extreme_twesided 0.3 0.4 100 20 100 0.272 0.998 0.066 -0.028 extreme_twesided 0.3 0.4 100 20 0.143 0.527 0.072 -0.0156 extreme_twesided 0.3 0.4 100 0.0 0.0 0.001 0.001 0.001 0.001 0.0025 0.0056 0	extreme_twosided	0.7	1.0	20	50	0.663	1.000	0.024	-0.037
Extreme_twosided 0.7 1.0 100 50 0.664 1.000 0.011 -0.030	extreme_twosided	0.7	1.0	20	100	0.682	1.000	0.017	-0.018
terme_twosided 0.7 1.0 100 100 0.682 1.000 0.007 -0.018	extreme_twosided	0.7	1.0	100	20	0.600	1.000	0.019	-0.100
coar 0.3 0.4 20 20 0.134 0.139 0.162 -0.166 coar 0.3 0.4 20 50 0.244 0.800 0.085 -0.056 coar 0.3 0.4 20 100 0.272 0.998 0.056 -0.28 coar 0.3 0.4 100 20 0.143 0.527 0.072 -0.157 coar 0.3 0.4 100 50 0.244 1.000 0.038 -0.056 coar 0.3 0.4 100 100 0.271 1.000 0.025 -0.028 coar 0.3 0.6 20 20 0.197 0.581 0.093 -0.106 coar 0.3 0.6 20 50 0.260 0.999 0.053 -0.046 coar 0.3 0.6 100 20 0.193 0.998 0.041 -0.107 coar 0.3 0.6 100	extreme_twosided	0.7	1.0	100	50	0.664	1.000	0.011	-0.036
near 0.3 0.4 20 50 0.244 0.800 0.085 -0.056 near 0.3 0.4 20 100 0.272 0.998 0.056 -0.028 near 0.3 0.4 100 20 0.143 0.527 0.072 -0.157 near 0.3 0.4 100 50 0.244 1.000 0.038 -0.058 near 0.3 0.4 100 100 0.271 1.000 0.025 -0.028 near 0.3 0.6 20 20 0.197 0.581 0.093 -0.103 near 0.3 0.6 20 50 0.260 0.999 0.053 -0.040 near 0.3 0.6 20 100 0.281 1.000 0.037 -0.016 near 0.3 0.6 100 20 0.193 0.998 0.041 -0.041 near 0.3 0.6 100	extreme_twosided	0.7	1.0	100	100	0.682	1.000	0.007	-0.018
near 0.3 0.4 20 100 0.272 0.998 0.056 -0.028 near 0.3 0.4 100 20 0.143 0.527 0.072 -0.153 near 0.3 0.4 100 50 0.244 1.000 0.038 -0.056 near 0.3 0.4 100 100 0.271 1.000 0.025 -0.026 near 0.3 0.6 20 20 0.197 0.581 0.093 -0.103 near 0.3 0.6 20 50 0.260 0.999 0.053 -0.046 near 0.3 0.6 20 100 0.281 1.000 0.037 -0.018 near 0.3 0.6 100 20 0.193 0.998 0.041 -0.103 near 0.3 0.6 100 50 0.259 1.000 0.024 -0.041 near 0.3 0.8 20	mcar	0.3	0.4	20	20	0.134	0.139	0.162	-0.166
near 0.3 0.4 100 20 0.143 0.527 0.072 -0.157 near 0.3 0.4 100 50 0.244 1.000 0.038 -0.056 near 0.3 0.4 100 100 0.271 1.000 0.025 -0.025 near 0.3 0.6 20 20 0.197 0.581 0.093 -0.103 near 0.3 0.6 20 50 0.260 0.999 0.053 -0.04 near 0.3 0.6 20 100 0.281 1.000 0.037 -0.018 near 0.3 0.6 100 20 0.193 0.998 0.041 -0.107 near 0.3 0.6 100 50 0.259 1.000 0.024 -0.047 near 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 near 0.3 0.8 20	mcar	0.3	0.4	20	50	0.244	0.800	0.085	-0.056
1	mcar	0.3	0.4	20	100	0.272	0.998	0.056	-0.028
near 0.3 0.4 100 100 0.271 1.000 0.025 -0.025 near 0.3 0.6 20 20 0.197 0.581 0.093 -0.103 near 0.3 0.6 20 50 0.260 0.999 0.053 -0.046 near 0.3 0.6 20 100 0.281 1.000 0.037 -0.016 near 0.3 0.6 100 20 0.193 0.998 0.041 -0.107 near 0.3 0.6 100 50 0.259 1.000 0.024 -0.041 near 0.3 0.6 100 100 0.281 1.000 0.016 -0.015 near 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 near 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 near 0.3 0.8 20	mcar	0.3	0.4	100	20	0.143	0.527	0.072	-0.157
near 0.3 0.6 20 20 0.197 0.581 0.093 -0.108 near 0.3 0.6 20 50 0.260 0.999 0.053 -0.040 near 0.3 0.6 20 100 0.281 1.000 0.037 -0.018 near 0.3 0.6 100 20 0.193 0.998 0.041 -0.107 near 0.3 0.6 100 50 0.259 1.000 0.024 -0.041 near 0.3 0.6 100 100 0.281 1.000 0.016 -0.018 near 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 near 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 near 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.4	100	50	0.244	1.000	0.038	-0.056
near 0.3 0.6 20 50 0.260 0.999 0.053 -0.040 near 0.3 0.6 20 100 0.281 1.000 0.037 -0.015 near 0.3 0.6 100 20 0.193 0.998 0.041 -0.107 near 0.3 0.6 100 50 0.259 1.000 0.024 -0.041 near 0.3 0.6 100 100 0.281 1.000 0.016 -0.015 near 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 near 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 near 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.4	100	100	0.271	1.000	0.025	-0.029
mear 0.3 0.6 20 100 0.281 1.000 0.037 -0.018 mear 0.3 0.6 100 20 0.193 0.998 0.041 -0.107 mear 0.3 0.6 100 50 0.259 1.000 0.024 -0.041 mear 0.3 0.6 100 100 0.281 1.000 0.016 -0.018 mear 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 mear 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 mear 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.6	20	20	0.197	0.581	0.093	-0.103
near 0.3 0.6 100 20 0.193 0.998 0.041 -0.107 near 0.3 0.6 100 50 0.259 1.000 0.024 -0.047 near 0.3 0.6 100 100 0.281 1.000 0.016 -0.018 near 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 near 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 near 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.6	20	50	0.260	0.999	0.053	-0.040
mear 0.3 0.6 100 50 0.259 1.000 0.024 -0.047 mear 0.3 0.6 100 100 0.281 1.000 0.016 -0.018 mear 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 mear 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 mear 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.6	20	100	0.281	1.000	0.037	-0.019
near 0.3 0.6 100 100 0.281 1.000 0.016 -0.019 near 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 near 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 near 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.6	100	20	0.193	0.998	0.041	-0.107
near 0.3 0.8 20 20 0.213 0.882 0.066 -0.087 near 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 near 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.6	100	50	0.259	1.000	0.024	-0.041
ncar 0.3 0.8 20 50 0.268 1.000 0.039 -0.032 ncar 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.6	100	100	0.281	1.000	0.016	-0.019
ncar 0.3 0.8 20 100 0.284 1.000 0.027 -0.016	mcar	0.3	0.8	20	20	0.213	0.882	0.066	-0.087
	mcar	0.3	0.8	20	50	0.268	1.000	0.039	-0.032
ncar 0.3 0.8 100 20 0.216 1.000 0.029 -0.084	mcar	0.3	0.8	20	100	0.284	1.000	0.027	-0.016
	mcar	0.3	0.8	100	20	0.216	1.000	0.029	-0.084

Table 16: Simulation A. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
mcar	0.3	0.8	100	50	0.268	1.000	0.018	-0.032
mcar	0.3	0.8	100	100	0.284	1.000	0.012	-0.016
mcar	0.3	1.0	20	20	0.230	0.992	0.051	-0.070
mcar	0.3	1.0	20	50	0.273	1.000	0.031	-0.027
mcar	0.3	1.0	20	100	0.288	1.000	0.022	-0.012
mcar	0.3	1.0	100	20	0.230	1.000	0.023	-0.070
mcar	0.3	1.0	100	50	0.273	1.000	0.014	-0.027
mcar	0.3	1.0	100	100	0.287	1.000	0.010	-0.013
mcar	0.5	0.4	20	20	0.330	0.545	0.157	-0.170
mcar	0.5	0.4	20	50	0.443	1.000	0.079	-0.057
mcar	0.5	0.4	20	100	0.472	1.000	0.052	-0.028
mcar	0.5	0.4	100	20	0.341	0.993	0.069	-0.159
mcar	0.5	0.4	100	50	0.443	1.000	0.035	-0.057
mcar	0.5	0.4	100	100	0.472	1.000	0.023	-0.028
mcar	0.5	0.6	20	20	0.387	0.986	0.087	-0.113
mcar	0.5	0.6	20	50	0.457	1.000	0.049	-0.043
mcar	0.5	0.6	20	100	0.480	1.000	0.033	-0.020
mcar	0.5	0.6	100	20	0.384	1.000	0.039	-0.116
mcar	0.5	0.6	100	50	0.456	1.000	0.022	-0.044
mcar	0.5	0.6	100	100	0.480	1.000	0.015	-0.020
mcar	0.5	0.8	20	20	0.402	1.000	0.062	-0.098
mcar	0.5	0.8	20	50	0.464	1.000	0.036	-0.036
mcar	0.5	0.8	20	100	0.482	1.000	0.025	-0.018
mcar	0.5	0.8	100	20	0.405	1.000	0.028	-0.095
mcar	0.5	0.8	100	50	0.464	1.000	0.016	-0.036
mcar	0.5	0.8	100	100	0.482	1.000	0.011	-0.018
mcar	0.5	1.0	20	20	0.416	1.000	0.048	-0.084
mcar	0.5	1.0	20	50	0.468	1.000	0.029	-0.032
mcar	0.5	1.0	20	100	0.485	1.000	0.020	-0.015

Table 16: Simulation A. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
mcar	0.5	1.0	100	20	0.416	1.000	0.021	-0.084
mcar	0.5	1.0	100	50	0.469	1.000	0.013	-0.031
mcar	0.5	1.0	100	100	0.485	1.000	0.009	-0.015
mcar	0.7	0.4	20	20	0.530	0.911	0.142	-0.170
mcar	0.7	0.4	20	50	0.644	1.000	0.067	-0.056
mcar	0.7	0.4	20	100	0.673	1.000	0.043	-0.027
mcar	0.7	0.4	100	20	0.541	1.000	0.062	-0.159
mcar	0.7	0.4	100	50	0.645	1.000	0.030	-0.055
mcar	0.7	0.4	100	100	0.673	1.000	0.019	-0.027
mcar	0.7	0.6	20	20	0.576	1.000	0.078	-0.124
mcar	0.7	0.6	20	50	0.655	1.000	0.042	-0.045
mcar	0.7	0.6	20	100	0.679	1.000	0.028	-0.021
mcar	0.7	0.6	100	20	0.575	1.000	0.035	-0.125
mcar	0.7	0.6	100	50	0.655	1.000	0.019	-0.045
mcar	0.7	0.6	100	100	0.679	1.000	0.013	-0.021
mcar	0.7	0.8	20	20	0.588	1.000	0.054	-0.112
mcar	0.7	0.8	20	50	0.659	1.000	0.031	-0.041
mcar	0.7	0.8	20	100	0.679	1.000	0.021	-0.021
mcar	0.7	0.8	100	20	0.590	1.000	0.024	-0.110
mcar	0.7	0.8	100	50	0.660	1.000	0.014	-0.040
mcar	0.7	0.8	100	100	0.681	1.000	0.009	-0.019
mcar	0.7	1.0	20	20	0.599	1.000	0.042	-0.101
mcar	0.7	1.0	20	50	0.663	1.000	0.024	-0.037
mcar	0.7	1.0	20	100	0.682	1.000	0.017	-0.018
mcar	0.7	1.0	100	20	0.600	1.000	0.019	-0.100
mcar	0.7	1.0	100	50	0.664	1.000	0.011	-0.036
mcar	0.7	1.0	100	100	0.682	1.000	0.007	-0.018

Appendix 2: Full results from Simulation B

Table 17: Simulation B. Full results.

black 0.3 0.4 20 50 0.21 0.82 0.71 0.087 black 0.3 0.4 20 50 0.213 0.723 0.081 0.087 black 0.3 0.4 20 100 0.243 0.98 0.093 0.088 black 0.3 0.4 20 100 0.222 0.919 0.072 0.081 black 0.3 0.4 100 50 0.223 1.000 0.032 0.073 0.078 black 0.3 0.6 20 50 0.248 0.064 0.022 0.003 block 0.3 0.6 20 50 0.248 0.067 0.075 0.023 block 0.3 0.6 20 50 0.221 0.047 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075	Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
bick 0.3 0.4 20 100 0.264 0.98 0.09 0.00 bick 0.3 0.4 20 100 0.252 0.10 0.072 0.00 bick 0.3 0.4 100 50 0.263 100 0.032 0.07 bick 0.3 0.6 20 100 0.263 100 0.022 0.002 bick 0.3 0.6 20 100 0.237 0.817 0.075 0.003 bick 0.3 0.6 20 100 0.033 0.077 0.003 bick 0.3 0.6 20 100 0.033 0.079 0.003 0.003 bick 0.3 0.6 100 0.0 0.031 0.003 0.003 0.003 bick 0.3 0.6 100 0.0 0.0 0.003 0.003 0.003 bick 0.3 0.8 20 10 0.0	block	0.3	0.4	20	50	0.221	0.852	0.071	-0.079
bick 0.3 0.4 20 100 0.522 0.101 0.072 0.072 0.073 0.072 0.074 0.072 0.074 0.072 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.074 0.075 <td>block</td> <td>0.3</td> <td>0.4</td> <td>20</td> <td>50</td> <td>0.213</td> <td>0.722</td> <td>0.081</td> <td>-0.087</td>	block	0.3	0.4	20	50	0.213	0.722	0.081	-0.087
black 0.3 0.4 100 50 0.226 1.000 0.032 0.000 block 0.3 0.4 100 100 0.233 1.000 0.027 0.000 block 0.3 0.6 20 50 0.248 0.944 0.062 0.000 block 0.3 0.6 20 100 0.278 0.907 0.052 0.000 block 0.3 0.6 20 100 0.283 0.93 0.00 0.000 block 0.3 0.6 100 50 0.251 1.00 0.03 0.00 0.000 block 0.3 0.6 100 50 0.251 1.00 0.03 0.000 0.000 block 0.3 0.6 100 100 0.262 1.00 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	block	0.3	0.4	20	100	0.264	0.985	0.059	-0.036
Book	block	0.3	0.4	20	100	0.252	0.919	0.072	-0.048
block 0.3 0.6 20 50 0.248 0.964 0.062 -0.003 block 0.3 0.6 20 50 0.237 0.847 0.075 -0.033 block 0.3 0.6 20 100 0.278 0.997 0.055 -0.022 block 0.3 0.6 100 0.00 0.21 1.00 0.028 -0.043 block 0.3 0.6 100 50 0.21 1.00 0.034 -0.05 block 0.3 0.6 100 100 0.225 1.00 0.025 -0.025 block 0.3 0.6 100 100 0.225 1.00 0.025 -0.035 -0.035 block 0.3 0.8 20 100 0.23 0.99 0.054 0.007 block 0.3 0.8 20 100 0.23 0.99 0.054 0.007 block 0.3 0.8<	block	0.3	0.4	100	50	0.226	1.000	0.032	-0.074
black 0.3 0.6 20 50 0.237 0.847 0.075 -0.025 block 0.3 0.6 20 100 0.278 0.997 0.055 -0.022 block 0.3 0.6 20 100 0.263 0.953 0.070 -0.037 block 0.3 0.6 100 50 0.251 1.000 0.028 -0.049 block 0.3 0.6 100 50 0.251 1.000 0.025 -0.049 block 0.3 0.6 100 100 0.255 1.000 0.032 -0.032 block 0.3 0.8 20 100 0.263 1.000 0.072 0.034 0.032 -0.034 block 0.3 0.8 20 100 0.233 0.997 0.054 -0.037 block 0.3 0.8 20 100 0.233 0.099 0.054 -0.034 block	block	0.3	0.4	100	100	0.263	1.000	0.027	-0.037
black 0.3 0.6 20 100 0.278 0.997 0.055 -0.028 block 0.3 0.6 20 100 0.263 0.933 0.070 -0.037 block 0.3 0.6 100 50 0.251 1.000 0.028 -0.049 block 0.3 0.6 100 50 0.242 1.000 0.034 0.058 block 0.3 0.6 100 100 0.256 1.000 0.032 0.035 block 0.3 0.6 100 100 0.266 1.000 0.032 0.032 block 0.3 0.8 20 50 0.260 0.999 0.054 0.001 block 0.3 0.8 20 100 0.270 0.996 0.069 0.033 block 0.3 0.8 100 10 0.251 1.000 0.033 0.041 0.003 block 0.3 <th< td=""><td>block</td><td>0.3</td><td>0.6</td><td>20</td><td>50</td><td>0.248</td><td>0.964</td><td>0.062</td><td>-0.052</td></th<>	block	0.3	0.6	20	50	0.248	0.964	0.062	-0.052
block 0.3 0.6 20 100 0.263 0.953 0.070 -0.037 block 0.3 0.6 100 50 0.251 1.000 0.028 -0.049 block 0.3 0.6 100 50 0.242 1.000 0.034 -0.05 block 0.3 0.6 100 100 0.265 1.000 0.032 -0.035 block 0.3 0.8 20 50 0.260 0.999 0.072 -0.035 block 0.3 0.8 20 50 0.250 0.999 0.072 -0.050 block 0.3 0.8 20 100 0.270 0.995 0.069 -0.072 -0.037 block 0.3 0.8 20 100 0.270 0.965 0.069 -0.037 -0.037 block 0.3 0.8 100 100 0.251 1.000 0.021 -0.037 block	block	0.3	0.6	20	50	0.237	0.847	0.075	-0.063
Bole	block	0.3	0.6	20	100	0.278	0.997	0.055	-0.022
block 0.3 0.6 100 50 0.242 1.000 0.034 -0.08 block 0.3 0.6 100 100 0.275 1.000 0.025 -0.025 block 0.3 0.6 100 100 0.265 1.000 0.032 -0.035 block 0.3 0.8 20 50 0.250 0.999 0.072 -0.050 block 0.3 0.8 20 100 0.253 0.997 0.04 -0.072 block 0.3 0.8 20 100 0.270 0.996 0.072 -0.050 block 0.3 0.8 20 100 0.270 0.965 0.069 -0.031 -0.037 block 0.3 0.8 100 50 0.263 1.000 0.023 -0.043 -0.04 block 0.3 0.8 100 100 0.281 1.000 0.031 -0.02 0.03 0.261	block	0.3	0.6	20	100	0.263	0.953	0.070	-0.037
block 0.3 0.6 100 100 0.275 1.000 0.025 -0.025 block 0.3 0.6 100 100 0.265 1.000 0.032 -0.035 block 0.3 0.8 20 50 0.260 0.999 0.072 -0.040 block 0.3 0.8 20 100 0.283 0.997 0.054 -0.070 block 0.3 0.8 20 100 0.283 0.997 0.054 -0.017 block 0.3 0.8 20 100 0.270 0.965 0.069 -0.030 block 0.3 0.8 100 50 0.263 1.000 0.027 -0.037 block 0.3 0.8 100 100 0.281 1.000 0.024 -0.018 block 0.3 0.8 100 100 0.281 1.000 0.031 -0.024 -0.032 block 0.3	block	0.3	0.6	100	50	0.251	1.000	0.028	-0.049
block 0.3 0.6 100 0.265 1.000 0.032 -0.035 block 0.3 0.8 20 50 0.260 0.989 0.059 -0.040 block 0.3 0.8 20 50 0.250 0.999 0.072 -0.054 block 0.3 0.8 20 100 0.283 0.997 0.054 -0.017 block 0.3 0.8 20 100 0.270 0.965 0.069 -0.034 -0.037 block 0.3 0.8 100 50 0.263 1.000 0.027 -0.037 -0.037 block 0.3 0.8 100 100 0.281 1.000 0.024 -0.019 block 0.3 0.8 100 100 0.281 1.000 0.031 -0.024 block 0.3 1.0 20 50 0.288 0.994 0.056 0.031 -0.032 block	block	0.3	0.6	100	50	0.242	1.000	0.034	-0.058
block 0.3 0.8 20 50 0.260 0.989 0.059 -0.040 block 0.3 0.8 20 50 0.250 0.999 0.072 -0.050 block 0.3 0.8 20 100 0.283 0.997 0.054 -0.014 block 0.3 0.8 20 100 0.270 0.965 0.069 -0.034 block 0.3 0.8 100 50 0.263 1.000 0.027 -0.037 block 0.3 0.8 100 100 0.254 1.000 0.024 -0.049 block 0.3 0.8 100 100 0.281 1.000 0.031 -0.024 block 0.3 0.3 0.2 20 50 0.268 0.994 0.056 -0.034 block 0.3 1.0 20 100 0.258 0.998 0.053 -0.017 block 0.3 <	block	0.3	0.6	100	100	0.275	1.000	0.025	-0.025
block 0.3 0.8 20 50 0.250 0.99 0.72 -0.50 block 0.3 0.8 20 100 0.283 0.997 0.054 -0.017 block 0.3 0.8 20 100 0.270 0.965 0.069 -0.034 -0.037 block 0.3 0.8 100 50 0.263 1.000 0.027 0.033 -0.037 -0.038 block 0.3 0.8 100 50 0.254 1.000 0.024 -0.019 block 0.3 0.8 100 100 0.281 1.000 0.031 -0.024 -0.019 block 0.3 0.3 1.0 20 50 0.268 0.994 0.056 -0.032 block 0.3 1.0 20 50 0.258 0.938 0.071 -0.042 block 0.3 1.0 20 100 0.287 0.998 0.033	block	0.3	0.6	100	100	0.265	1.000	0.032	-0.035
block 0.3 0.8 20 100 0.283 0.997 0.054 -0.017 block 0.3 0.8 20 100 0.270 0.965 0.069 -0.030 block 0.3 0.8 100 50 0.263 1.000 0.027 -0.037 block 0.3 0.8 100 100 0.281 1.000 0.024 -0.018 block 0.3 0.8 100 100 0.281 1.000 0.024 -0.019 block 0.3 0.8 100 100 0.281 1.000 0.031 -0.024 block 0.3 1.0 20 50 0.268 0.994 0.056 -0.032 block 0.3 1.0 20 100 0.287 0.998 0.053 -0.012 block 0.3 1.0 20 100 0.273 0.991 0.069 -0.032 block 0.3 1.0	block	0.3	0.8	20	50	0.260	0.989	0.059	-0.040
black 0.3 0.8 20 100 0.270 0.965 0.069 -0.030 block 0.3 0.8 100 50 0.263 1.000 0.027 -0.037 block 0.3 0.8 100 50 0.254 1.000 0.024 -0.018 block 0.3 0.8 100 100 0.281 1.000 0.024 -0.019 block 0.3 0.8 100 100 0.271 1.000 0.031 -0.024 block 0.3 1.0 20 50 0.268 0.994 0.056 -0.032 block 0.3 1.0 20 50 0.258 0.938 0.071 -0.042 block 0.3 1.0 20 100 0.287 0.998 0.053 -0.032 block 0.3 1.0 100 50 0.273 0.971 0.069 -0.026 -0.032 block 0.3	block	0.3	0.8	20	50	0.250	0.909	0.072	-0.050
block 0.3 0.8 100 50 0.263 1.000 0.027 -0.037 block 0.3 0.8 100 50 0.254 1.000 0.033 -0.046 block 0.3 0.8 100 100 0.281 1.000 0.024 -0.019 block 0.3 0.8 100 100 0.271 1.000 0.031 -0.029 block 0.3 1.0 20 50 0.268 0.994 0.056 -0.032 block 0.3 1.0 20 50 0.258 0.938 0.071 -0.042 block 0.3 1.0 20 100 0.287 0.998 0.053 -0.03 block 0.3 1.0 20 100 0.273 0.971 0.069 -0.024 block 0.3 1.0 100 50 0.270 1.000 0.026 -0.032 block 0.3 1.0 <	block	0.3	0.8	20	100	0.283	0.997	0.054	-0.017
block 0.3 0.8 100 50 0.254 1.000 0.033 -0.046 block 0.3 0.8 100 100 0.281 1.000 0.024 -0.019 block 0.3 0.8 100 100 0.271 1.000 0.031 -0.029 block 0.3 1.0 20 50 0.268 0.994 0.056 -0.032 block 0.3 1.0 20 50 0.258 0.938 0.071 -0.042 block 0.3 1.0 20 100 0.287 0.998 0.053 -0.013 block 0.3 1.0 20 100 0.273 0.971 0.069 -0.027 block 0.3 1.0 100 50 0.270 1.000 0.032 -0.032 block 0.3 1.0 100 50 0.261 1.000 0.032 -0.033	block	0.3	0.8	20	100	0.270	0.965	0.069	-0.030
block 0.3 0.8 100 100 0.271 1.000 0.024 -0.019 block 0.3 1.0 20 50 0.258 0.994 0.056 -0.032 block 0.3 1.0 20 50 0.258 0.998 0.071 -0.042 block 0.3 1.0 20 100 0.271 0.009 0.998 0.071 -0.042 block 0.3 1.0 20 100 0.258 0.998 0.053 0.051 0.042 block 0.3 1.0 20 100 0.273 0.998 0.053 0.051 0.027 block 0.3 1.0 20 100 0.273 0.971 0.069 0.027 block 0.3 1.0 100 0.027 0.027 0.027 0.0098 0.003	block	0.3	0.8	100	50	0.263	1.000	0.027	-0.037
block 0.3 0.8 100 100 0.271 1.000 0.031 -0.029 block 0.3 1.0 20 50 0.268 0.994 0.056 -0.032 block 0.3 1.0 20 50 0.258 0.938 0.071 -0.042 block 0.3 1.0 20 100 0.287 0.998 0.053 -0.037 block 0.3 1.0 20 100 0.273 0.971 0.069 -0.027 block 0.3 1.0 100 50 0.270 1.000 0.026 -0.038 block 0.3 1.0 100 50 0.270 1.000 0.026 -0.039	block	0.3	0.8	100	50	0.254	1.000	0.033	-0.046
block 0.3 1.0 20 50 0.268 0.994 0.056 -0.032 block 0.3 1.0 20 50 0.258 0.938 0.071 -0.042 block 0.3 1.0 20 100 0.273 0.971 0.069 -0.027 block 0.3 1.0 100 50 0.270 1.000 0.026 -0.030 block 0.3 1.0 100 50 0.261 1.000 0.032 -0.039	block	0.3	0.8	100	100	0.281	1.000	0.024	-0.019
block 0.3 1.0 20 50 0.258 0.938 0.071 -0.042 block 0.3 1.0 20 100 0.287 0.998 0.053 -0.013 block 0.3 1.0 20 100 0.273 0.971 0.069 -0.027 block 0.3 1.0 100 50 0.270 1.000 0.026 -0.039 block 0.3 1.0 100 50 0.261 1.000 0.032 -0.039	block	0.3	0.8	100	100	0.271	1.000	0.031	-0.029
block 0.3 1.0 20 100 0.287 0.998 0.053 -0.013 block 0.3 1.0 20 100 0.273 0.971 0.069 -0.027 block 0.3 1.0 100 50 0.270 1.000 0.026 -0.030 block 0.3 1.0 100 50 0.261 1.000 0.032 -0.039	block	0.3	1.0	20	50	0.268	0.994	0.056	-0.032
block 0.3 1.0 20 100 0.273 0.971 0.069 -0.027 block 0.3 1.0 100 50 0.270 1.000 0.026 -0.030 block 0.3 1.0 100 50 0.261 1.000 0.032 -0.039	block	0.3	1.0	20	50	0.258	0.938	0.071	-0.042
block 0.3 1.0 100 50 0.270 1.000 0.026 -0.030 block 0.3 1.0 100 50 0.261 1.000 0.032 -0.039	block	0.3	1.0	20	100	0.287	0.998	0.053	-0.013
block 0.3 1.0 100 50 0.261 1.000 0.032 -0.039	block	0.3	1.0	20	100	0.273	0.971	0.069	-0.027
	block	0.3	1.0	100	50	0.270	1.000	0.026	-0.030
block 0.3 1.0 100 100 0.285 1.000 0.024 -0.015	block	0.3	1.0	100	50	0.261	1.000	0.032	-0.039
	block	0.3	1.0	100	100	0.285	1.000	0.024	-0.015

Table 17: Simulation B. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
block	0.3	1.0	100	100	0.274	1.000	0.031	-0.026
block	0.7	0.4	20	50	0.574	1.000	0.059	-0.126
block	0.7	0.4	20	50	0.519	1.000	0.067	-0.181
block	0.7	0.4	20	100	0.614	1.000	0.048	-0.086
block	0.7	0.4	20	100	0.556	1.000	0.058	-0.144
block	0.7	0.4	100	50	0.576	1.000	0.027	-0.124
block	0.7	0.4	100	50	0.522	1.000	0.031	-0.178
block	0.7	0.4	100	100	0.615	1.000	0.022	-0.085
block	0.7	0.4	100	100	0.560	1.000	0.026	-0.140
block	0.7	0.6	20	50	0.600	1.000	0.051	-0.100
block	0.7	0.6	20	50	0.544	1.000	0.060	-0.156
block	0.7	0.6	20	100	0.629	1.000	0.045	-0.071
block	0.7	0.6	20	100	0.570	1.000	0.056	-0.130
block	0.7	0.6	100	50	0.600	1.000	0.023	-0.100
block	0.7	0.6	100	50	0.545	1.000	0.027	-0.155
block	0.7	0.6	100	100	0.629	1.000	0.021	-0.071
block	0.7	0.6	100	100	0.574	1.000	0.025	-0.126
block	0.7	0.8	20	50	0.615	1.000	0.047	-0.085
block	0.7	0.8	20	50	0.558	1.000	0.057	-0.142
block	0.7	0.8	20	100	0.636	1.000	0.044	-0.064
block	0.7	0.8	20	100	0.577	1.000	0.055	-0.123
block	0.7	0.8	100	50	0.613	1.000	0.022	-0.087
block	0.7	0.8	100	50	0.557	1.000	0.026	-0.143
block	0.7	0.8	100	100	0.637	1.000	0.020	-0.063
block	0.7	0.8	100	100	0.581	1.000	0.025	-0.119
block	0.7	1.0	20	50	0.621	1.000	0.045	-0.079
block	0.7	1.0	20	50	0.564	1.000	0.056	-0.136
block	0.7	1.0	20	100	0.640	1.000	0.044	-0.060
block	0.7	1.0	20	100	0.581	1.000	0.055	-0.119

Table 17: Simulation B. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
block	0.7	1.0	100	50	0.620	1.000	0.021	-0.080
block	0.7	1.0	100	50	0.563	1.000	0.025	-0.137
block	0.7	1.0	100	100	0.641	1.000	0.020	-0.059
block	0.7	1.0	100	100	0.585	1.000	0.025	-0.115
extreme_oneside	0.3	0.4	20	50	0.086	0.169	0.084	-0.214
extreme_oneside	0.3	0.4	20	50	0.123	0.301	0.086	-0.177
${\tt extreme_oneside}$	0.3	0.4	20	100	0.129	0.565	0.061	-0.171
extreme_oneside	0.3	0.4	20	100	0.157	0.642	0.066	-0.143
extreme_oneside	0.3	0.4	100	50	0.098	0.731	0.038	-0.202
extreme_oneside	0.3	0.4	100	50	0.131	0.919	0.040	-0.169
extreme_oneside	0.3	0.4	100	100	0.134	0.997	0.028	-0.166
${\tt extreme_oneside}$	0.3	0.6	20	50	0.139	0.620	0.062	-0.161
extreme_oneside	0.3	0.6	20	50	0.161	0.651	0.068	-0.139
${\tt extreme_oneside}$	0.3	0.6	20	100	0.165	0.911	0.049	-0.135
${\tt extreme_oneside}$	0.3	0.6	20	100	0.180	0.885	0.058	-0.120
${\tt extreme_oneside}$	0.3	0.6	100	50	0.144	1.000	0.028	-0.156
extreme_oneside	0.3	0.6	100	50	0.166	0.999	0.031	-0.134
$extreme_oneside$	0.3	0.6	100	100	0.166	1.000	0.023	-0.134
extreme_oneside	0.3	0.6	100	100	0.182	1.000	0.027	-0.118
$extreme_oneside$	0.3	0.8	20	50	0.184	0.915	0.054	-0.116
${\tt extreme_oneside}$	0.3	0.8	20	50	0.192	0.860	0.064	-0.108
$extreme_oneside$	0.3	0.8	20	100	0.202	0.990	0.047	-0.098
extreme_oneside	0.3	0.8	20	100	0.207	0.945	0.058	-0.093
${\tt extreme_oneside}$	0.3	0.8	100	50	0.187	1.000	0.025	-0.113
extreme_oneside	0.3	0.8	100	50	0.196	1.000	0.029	-0.104
${\tt extreme_oneside}$	0.3	0.8	100	100	0.202	1.000	0.022	-0.098
extreme_oneside	0.3	0.8	100	100	0.209	1.000	0.027	-0.091
$extreme_oneside$	0.3	1.0	20	50	0.268	0.994	0.056	-0.032
extreme_oneside	0.3	1.0	20	50	0.258	0.938	0.071	-0.042

Table 17: Simulation B. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
extreme_oneside	0.3	1.0	20	100	0.287	0.998	0.053	-0.013
$extreme_oneside$	0.3	1.0	20	100	0.273	0.971	0.069	-0.027
${\tt extreme_oneside}$	0.3	1.0	100	50	0.270	1.000	0.026	-0.030
extreme_oneside	0.3	1.0	100	50	0.261	1.000	0.032	-0.039
extreme_oneside	0.3	1.0	100	100	0.285	1.000	0.024	-0.015
extreme_oneside	0.3	1.0	100	100	0.274	1.000	0.031	-0.026
$extreme_oneside$	0.7	0.4	20	50	0.325	0.976	0.075	-0.375
${\tt extreme_oneside}$	0.7	0.4	20	50	0.306	0.933	0.078	-0.394
extreme_oneside	0.7	0.4	20	100	0.387	1.000	0.060	-0.313
extreme_oneside	0.7	0.4	20	100	0.360	1.000	0.064	-0.340
${\tt extreme_oneside}$	0.7	0.4	100	50	0.333	1.000	0.035	-0.367
${\tt extreme_oneside}$	0.7	0.4	100	50	0.313	1.000	0.036	-0.387
${\tt extreme_oneside}$	0.7	0.4	100	100	0.390	1.000	0.028	-0.310
extreme_oneside	0.7	0.4	100	100	0.365	1.000	0.030	-0.335
$extreme_oneside$	0.7	0.6	20	50	0.418	1.000	0.061	-0.282
$extreme_oneside$	0.7	0.6	20	50	0.385	0.999	0.065	-0.315
$extreme_oneside$	0.7	0.6	20	100	0.454	1.000	0.054	-0.246
$extreme_oneside$	0.7	0.6	20	100	0.416	1.000	0.059	-0.284
extreme_oneside	0.7	0.6	100	50	0.421	1.000	0.028	-0.279
${\tt extreme_oneside}$	0.7	0.6	100	50	0.387	1.000	0.030	-0.313
${\tt extreme_oneside}$	0.7	0.6	100	100	0.456	1.000	0.025	-0.244
${\tt extreme_oneside}$	0.7	0.6	100	100	0.419	1.000	0.027	-0.281
${\tt extreme_oneside}$	0.7	0.8	20	50	0.498	1.000	0.054	-0.202
extreme_oneside	0.7	0.8	20	50	0.453	1.000	0.060	-0.247
extreme_oneside	0.7	0.8	20	100	0.522	1.000	0.050	-0.178
extreme_oneside	0.7	0.8	20	100	0.473	1.000	0.057	-0.227
extreme_oneside	0.7	0.8	100	50	0.498	1.000	0.025	-0.202
extreme_oneside	0.7	0.8	100	50	0.454	1.000	0.028	-0.246
extreme_oneside	0.7	0.8	100	100	0.524	1.000	0.023	-0.176

Table 17: Simulation B. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
extreme_oneside	0.7	0.8	100	100	0.478	1.000	0.026	-0.222
extreme_oneside	0.7	1.0	20	50	0.621	1.000	0.045	-0.079
extreme_oneside	0.7	1.0	20	50	0.564	1.000	0.056	-0.136
$extreme_oneside$	0.7	1.0	20	100	0.640	1.000	0.044	-0.060
extreme_oneside	0.7	1.0	20	100	0.581	1.000	0.055	-0.119
extreme_oneside	0.7	1.0	100	50	0.620	1.000	0.021	-0.080
extreme_oneside	0.7	1.0	100	50	0.563	1.000	0.025	-0.137
extreme_oneside	0.7	1.0	100	100	0.641	1.000	0.020	-0.059
extreme_oneside	0.7	1.0	100	100	0.585	1.000	0.025	-0.115
${\tt extreme_two sided}$	0.3	0.4	20	50	-0.008	0.053	0.092	-0.308
${\tt extreme_twosided}$	0.3	0.4	20	50	0.009	0.063	0.091	-0.291
$extreme_twosided$	0.3	0.4	20	100	0.021	0.065	0.062	-0.279
extreme_twosided	0.3	0.4	20	100	0.037	0.098	0.063	-0.263
${\tt extreme_twosided}$	0.3	0.4	100	50	0.002	0.069	0.040	-0.298
extreme_twosided	0.3	0.4	100	50	0.023	0.089	0.042	-0.277
extreme_twosided	0.3	0.4	100	100	0.026	0.155	0.027	-0.274
extreme_twosided	0.3	0.4	100	100	0.026	0.155	0.027	-0.274
$extreme_twosided$	0.3	0.4	100	100	0.046	0.349	0.029	-0.254
$extreme_twosided$	0.3	0.6	20	50	0.063	0.182	0.061	-0.237
extreme_twosided	0.3	0.6	20	50	0.079	0.226	0.065	-0.221
${\tt extreme_twosided}$	0.3	0.6	20	100	0.080	0.428	0.045	-0.220
${\tt extreme_twosided}$	0.3	0.6	20	100	0.096	0.462	0.050	-0.204
${\tt extreme_twosided}$	0.3	0.6	100	50	0.069	0.693	0.028	-0.231
${\tt extreme_two sided}$	0.3	0.6	100	50	0.088	0.836	0.030	-0.212
extreme_twosided	0.3	0.6	100	100	0.099	0.988	0.024	-0.201
extreme_twosided	0.3	0.8	20	50	0.141	0.760	0.052	-0.159
${\tt extreme_twosided}$	0.3	0.8	20	50	0.151	0.700	0.061	-0.149
extreme_twosided	0.3	0.8	20	100	0.156	0.959	0.043	-0.144
extreme_twosided	0.3	0.8	20	100	0.162	0.877	0.053	-0.138

Table 17: Simulation B. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
extreme_twosided	0.3	0.8	100	50	0.145	1.000	0.024	-0.155
$extreme_twosided$	0.3	0.8	100	50	0.156	1.000	0.028	-0.144
${\tt extreme_twosided}$	0.3	0.8	100	100	0.155	1.000	0.020	-0.145
${\tt extreme_twosided}$	0.3	0.8	100	100	0.164	1.000	0.025	-0.136
${\tt extreme_two sided}$	0.3	1.0	20	50	0.268	0.994	0.056	-0.032
extreme_twosided	0.3	1.0	20	50	0.258	0.938	0.071	-0.042
${\tt extreme_twosided}$	0.3	1.0	20	100	0.287	0.998	0.053	-0.013
${\tt extreme_twosided}$	0.3	1.0	20	100	0.273	0.971	0.069	-0.027
${\tt extreme_twosided}$	0.3	1.0	100	50	0.270	1.000	0.026	-0.030
${\tt extreme_twosided}$	0.3	1.0	100	50	0.261	1.000	0.032	-0.039
${\tt extreme_twosided}$	0.3	1.0	100	100	0.285	1.000	0.024	-0.015
${\tt extreme_twosided}$	0.3	1.0	100	100	0.274	1.000	0.031	-0.026
${\tt extreme_twosided}$	0.7	0.4	20	50	0.150	0.384	0.089	-0.550
${\tt extreme_two sided}$	0.7	0.4	20	50	0.144	0.363	0.089	-0.556
${\tt extreme_twosided}$	0.7	0.4	20	100	0.178	0.755	0.065	-0.522
extreme_twosided	0.7	0.4	20	100	0.169	0.674	0.068	-0.531
${\tt extreme_twosided}$	0.7	0.4	100	50	0.158	0.959	0.042	-0.542
${\tt extreme_twosided}$	0.7	0.4	100	50	0.154	0.937	0.044	-0.546
${\tt extreme_twosided}$	0.7	0.4	100	100	0.181	1.000	0.032	-0.519
${\tt extreme_twosided}$	0.7	0.4	100	100	0.177	1.000	0.033	-0.523
$extreme_two sided$	0.7	0.6	20	50	0.290	0.981	0.067	-0.410
${\tt extreme_twosided}$	0.7	0.6	20	50	0.268	0.956	0.069	-0.432
${\tt extreme_twosided}$	0.7	0.6	20	100	0.303	1.000	0.056	-0.397
${\tt extreme_twosided}$	0.7	0.6	20	100	0.278	0.996	0.060	-0.422
${\tt extreme_two sided}$	0.7	0.6	100	50	0.289	1.000	0.032	-0.411
$extreme_two sided$	0.7	0.6	100	50	0.270	1.000	0.033	-0.430
${\tt extreme_twosided}$	0.7	0.6	100	100	0.305	1.000	0.026	-0.395
${\tt extreme_twosided}$	0.7	0.6	100	100	0.284	1.000	0.028	-0.416
$extreme_twosided$	0.7	0.8	20	50	0.434	1.000	0.057	-0.266

Table 17: Simulation B. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
extreme_twosided	0.7	0.8	20	50	0.393	1.000	0.062	-0.307
$extreme_twosided$	0.7	0.8	20	100	0.446	1.000	0.053	-0.254
$extreme_two sided$	0.7	0.8	20	100	0.403	1.000	0.058	-0.297
${\tt extreme_twosided}$	0.7	0.8	100	50	0.431	1.000	0.026	-0.269
${\tt extreme_twosided}$	0.7	0.8	100	50	0.394	1.000	0.029	-0.306
${\tt extreme_two sided}$	0.7	0.8	100	100	0.448	1.000	0.024	-0.252
extreme_twosided	0.7	0.8	100	100	0.409	1.000	0.027	-0.291
${\tt extreme_twosided}$	0.7	1.0	20	50	0.621	1.000	0.045	-0.079
$extreme_two sided$	0.7	1.0	20	50	0.564	1.000	0.056	-0.136
$extreme_two sided$	0.7	1.0	20	100	0.640	1.000	0.044	-0.060
${\tt extreme_twosided}$	0.7	1.0	20	100	0.581	1.000	0.055	-0.119
$extreme_two sided$	0.7	1.0	100	50	0.620	1.000	0.021	-0.080
$extreme_two sided$	0.7	1.0	100	50	0.563	1.000	0.025	-0.137
${\tt extreme_twosided}$	0.7	1.0	100	100	0.641	1.000	0.020	-0.059
${\tt extreme_twosided}$	0.7	1.0	100	100	0.585	1.000	0.025	-0.115
mcar	0.3	0.4	20	50	0.255	0.702	0.099	-0.045
mcar	0.3	0.4	20	50	0.251	0.622	0.108	-0.049
mcar	0.3	0.4	20	100	0.281	0.956	0.075	-0.019
mcar	0.3	0.4	20	100	0.268	0.836	0.087	-0.032
mcar	0.3	0.4	100	50	0.256	1.000	0.045	-0.044
mcar	0.3	0.4	100	50	0.248	0.996	0.049	-0.052
mcar	0.3	0.4	100	100	0.283	1.000	0.034	-0.017
mcar	0.3	0.4	100	100	0.276	1.000	0.040	-0.024
mcar	0.3	0.6	20	50	0.265	0.932	0.071	-0.035
mcar	0.3	0.6	20	50	0.248	0.813	0.083	-0.052
mcar	0.3	0.6	20	100	0.284	0.995	0.061	-0.016
mcar	0.3	0.6	20	100	0.270	0.908	0.075	-0.030
mcar	0.3	0.6	100	50	0.264	1.000	0.033	-0.036
mcar	0.3	0.6	100	50	0.256	0.999	0.038	-0.044

Table 17: Simulation B. Full results. (continued)

mear 0.3 0.6 100 100 0.284 1.000 0.028 moar 0.3 0.8 20 50 0.269 0.985 0.061 mear 0.3 0.8 20 50 0.263 0.920 0.074 mear 0.3 0.8 20 100 0.285 0.999 0.055 mear 0.3 0.8 20 100 0.273 0.962 0.071 mear 0.3 0.8 100 50 0.270 1.000 0.028 mear 0.3 0.8 100 100 0.286 1.000 0.025 mear 0.3 0.8 100 100 0.275 1.000 0.032 mear 0.3 1.0 20 50 0.288 0.994 0.056 mear 0.3 1.0 20 50 0.288 0.994 0.056 mear 0.3 1.0 20 100	Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
mear 0.3 0.8 20 50 0.203 0.920 0.071 mear 0.3 0.8 20 100 0.283 0.999 0.055 mear 0.3 0.8 20 100 0.273 0.952 0.071 mear 0.3 0.8 100 50 0.270 1.000 0.028 mear 0.3 0.8 100 50 0.200 1.000 0.028 mear 0.3 0.8 100 100 0.286 1.000 0.025 mear 0.3 0.8 100 100 0.286 1.000 0.025 mear 0.3 1.0 20 50 0.286 1.000 0.032 mear 0.3 1.0 20 100 0.287 0.938 0.031 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 100 50	mcar	0.3	0.6	100	100	0.284	1.000	0.028	-0.016
mear 0.3 0.8 20 100 0.283 0.99 0.051 mear 0.3 0.8 20 100 0.273 0.952 0.071 mear 0.3 0.8 100 50 0.270 100 0.028 mear 0.3 0.8 100 50 0.206 1.00 0.034 mear 0.3 0.8 100 100 0.286 1.00 0.025 mear 0.3 0.8 100 100 0.275 1.00 0.032 mear 0.3 1.0 20 50 0.208 0.994 0.066 mear 0.3 1.0 20 100 0.287 0.998 0.053 mear 0.3 1.0 20 100 0.273 0.991 0.069 mear 0.3 1.0 20 100 0.273 0.991 0.069 mear 0.3 1.0 100 50	mcar	0.3	0.8	20	50	0.269	0.985	0.061	-0.031
mear 0.3 0.8 20 100 0.273 0.952 0.071 mear 0.3 0.8 100 50 0.270 1.000 0.028 mear 0.3 0.8 100 50 0.260 1.000 0.034 mear 0.3 0.8 100 100 0.286 1.000 0.025 mear 0.3 0.8 100 100 0.286 1.000 0.032 mear 0.3 1.0 20 50 0.288 0.994 0.056 mear 0.3 1.0 20 50 0.288 0.994 0.056 mear 0.3 1.0 20 100 0.288 0.938 0.071 mear 0.3 1.0 20 100 0.287 0.998 0.053 mear 0.3 1.0 20 100 0.270 1.000 0.026 mear 0.3 1.0 100 50	mcar	0.3	0.8	20	50	0.263	0.920	0.074	-0.037
mear 0.3 0.8 100 50 0.270 1.000 0.03 mear 0.3 0.8 100 50 0.260 1.000 0.034 mear 0.3 0.8 100 100 0.286 1.000 0.025 mear 0.3 0.8 100 100 0.275 1.000 0.032 mear 0.3 1.0 20 50 0.258 0.938 0.071 mear 0.3 1.0 20 50 0.258 0.938 0.071 mear 0.3 1.0 20 100 0.287 0.998 0.033 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 50 0.261 1.000 0.031 mear 0.7 0.4 20 50	mcar	0.3	0.8	20	100	0.283	0.999	0.055	-0.017
mear 0.3 0.8 100 50 0.260 1.000 0.034 mear 0.3 0.8 100 100 0.286 1.000 0.025 mear 0.3 0.8 100 100 0.275 1.000 0.032 mear 0.3 1.0 20 50 0.288 0.994 0.066 mear 0.3 1.0 20 50 0.288 0.994 0.066 mear 0.3 1.0 20 100 0.287 0.998 0.033 mear 0.3 1.0 20 100 0.273 0.971 0.69 mear 0.3 1.0 20 100 0.273 1.000 0.026 mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 100 0.285 1.000 0.024 mear 0.7 0.4 20 50	mcar	0.3	0.8	20	100	0.273	0.952	0.071	-0.027
mear 0.3 0.8 100 100 0.286 1.000 0.025 mear 0.3 0.8 100 100 0.275 1.000 0.032 mear 0.3 1.0 20 50 0.268 0.994 0.056 mear 0.3 1.0 20 50 0.258 0.938 0.071 mear 0.3 1.0 20 100 0.287 0.998 0.053 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 100 50 0.270 1.000 0.032 mear 0.3 1.0 100 100 0.285 1.000 0.032 mear 0.7 0.4 20 50 0.586 1.000 0.078 mear 0.7 0.4 20 100	mcar	0.3	0.8	100	50	0.270	1.000	0.028	-0.030
mear 0.3 0.8 100 100 0.275 1,000 0.032 mear 0.3 1.0 20 50 0.268 0.994 0.056 mear 0.3 1.0 20 50 0.258 0.938 0.071 mear 0.3 1.0 20 100 0.287 0.998 0.053 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 100 0.285 1.000 0.032 mear 0.3 1.0 100 100 0.285 1.000 0.031 mear 0.7 0.4 20 50 0.578 1.000 0.086 mear 0.7 0.4 20 100	mcar	0.3	0.8	100	50	0.260	1.000	0.034	-0.040
mear 0.3 1.0 20 50 0.268 0.994 0.056 mear 0.3 1.0 20 50 0.258 0.938 0.071 mear 0.3 1.0 20 100 0.287 0.998 0.63 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 50 0.261 1.000 0.032 mear 0.3 1.0 100 50 0.261 1.000 0.032 mear 0.3 1.0 100 100 0.274 1.000 0.031 mear 0.7 0.4 20 50 0.578 1.000 0.058 mear 0.7 0.4 20 100 0.694 1.000 0.058 mear 0.7 0.4 100 50	mcar	0.3	0.8	100	100	0.286	1.000	0.025	-0.014
mear 0.3 1.0 20 50 0.258 0.938 0.071 mear 0.3 1.0 20 100 0.287 0.998 0.053 mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 50 0.261 1.000 0.032 mear 0.3 1.0 100 100 0.285 1.000 0.024 mear 0.3 1.0 100 100 0.274 1.000 0.031 mear 0.7 0.4 20 50 0.526 1.000 0.078 mear 0.7 0.4 20 100 0.659 1.000 0.086 mear 0.7 0.4 20 100 0.604 1.000 0.035 mear 0.7 0.4 100 50	mcar	0.3	0.8	100	100	0.275	1.000	0.032	-0.025
mear 0.3 1.0 20 100 0.287 0.998 0.053 mear 0.3 1.0 20 100 0.273 0.971 0.669 mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 50 0.261 1.000 0.032 mear 0.3 1.0 100 100 0.285 1.000 0.024 mear 0.3 1.0 100 100 0.274 1.000 0.031 mear 0.7 0.4 20 50 0.626 1.000 0.086 mear 0.7 0.4 20 100 0.659 1.000 0.086 mear 0.7 0.4 20 100 0.604 1.000 0.088 mear 0.7 0.4 100 50 0.584 1.000 0.031 mear 0.7 0.4 100 100 <td>mcar</td> <td>0.3</td> <td>1.0</td> <td>20</td> <td>50</td> <td>0.268</td> <td>0.994</td> <td>0.056</td> <td>-0.032</td>	mcar	0.3	1.0	20	50	0.268	0.994	0.056	-0.032
mear 0.3 1.0 20 100 0.273 0.971 0.069 mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 50 0.261 1.000 0.032 mear 0.3 1.0 100 100 100 0.285 1.000 0.024 mear 0.3 1.0 100 100 100 0.285 1.000 0.024 mear 0.3 1.0 100 100 100 0.274 1.000 0.031 mear 0.3 1.0 100 100 100 0.274 1.000 0.031 mear 0.7 0.4 20 50 0.578 1.000 0.086 mear 0.7 0.4 20 100 0.659 1.000 0.086 mear 0.7 0.4 20 100 0.659 1.000 0.058 mear 0.7 0.4 20 100 0.669 1.000 0.058 mear 0.7 0.4 100 0.50 0.06 0.064 1.000 0.068 mear 0.7 0.4 100 0.50 0.638 1.000 0.035 mear 0.7 0.4 100 0.50 0.638 1.000 0.035 mear 0.7 0.4 100 0.50 0.638 1.000 0.035 mear 0.7 0.4 100 0.50 0.664 1.000 0.035 mear 0.7 0.4 100 0.00 0.00 0.664 1.000 0.035 mear 0.7 0.4 100 0.00 0.00 0.664 1.000 0.027 mear 0.7 0.4 100 0.00 0.00 0.664 1.000 0.027 mear 0.7 0.4 100 0.00 0.00 0.664 1.000 0.001 0.001 mear 0.7 0.4 100 0.00 0.00 0.664 1.000 0.001 0.001 mear 0.7 0.4 100 0.00 0.00 0.664 1.000 0.001 0.001 mear 0.7 0.4 100 0.00 0.001 0.00 0.664 1.000 0.001 0.001 mear 0.7 0.6 20 0.5 0.5 0.628 1.000 0.005 0.005 0.001 mear 0.7 0.6 20 0.5 0.5 0.628 1.000 0.005 0.005 0.001 0.0	mcar	0.3	1.0	20	50	0.258	0.938	0.071	-0.042
mear 0.3 1.0 100 50 0.270 1.000 0.026 mear 0.3 1.0 100 50 0.261 1.000 0.032 mear 0.3 1.0 100 100 0.285 1.000 0.024 mear 0.3 1.0 100 100 0.274 1.000 0.031 mear 0.7 0.4 20 50 0.626 1.000 0.078 mear 0.7 0.4 20 50 0.578 1.000 0.086 mear 0.7 0.4 20 100 0.659 1.000 0.058 mear 0.7 0.4 20 100 0.649 1.000 0.088 mear 0.7 0.4 100 50 0.584 1.000 0.035 mear 0.7 0.4 100 100 0.664 1.000 0.027 mear 0.7 0.4 100 100 <td>mcar</td> <td>0.3</td> <td>1.0</td> <td>20</td> <td>100</td> <td>0.287</td> <td>0.998</td> <td>0.053</td> <td>-0.013</td>	mcar	0.3	1.0	20	100	0.287	0.998	0.053	-0.013
mcar 0.3 1.0 100 50 0.261 1.000 0.032 mcar 0.3 1.0 100 100 0.285 1.000 0.024 mcar 0.3 1.0 100 100 0.274 1.000 0.031 mcar 0.7 0.4 20 50 0.626 1.000 0.086 mcar 0.7 0.4 20 100 0.659 1.000 0.058 mcar 0.7 0.4 20 100 0.604 1.000 0.068 mcar 0.7 0.4 20 100 0.638 1.000 0.068 mcar 0.7 0.4 100 50 0.584 1.000 0.035 mcar 0.7 0.4 100 100 0.664 1.000 0.027 mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.4 100 100 </td <td>mcar</td> <td>0.3</td> <td>1.0</td> <td>20</td> <td>100</td> <td>0.273</td> <td>0.971</td> <td>0.069</td> <td>-0.027</td>	mcar	0.3	1.0	20	100	0.273	0.971	0.069	-0.027
mcar 0.3 1.0 100 100 0.285 1.000 0.024 mcar 0.3 1.0 100 100 0.274 1.000 0.031 mcar 0.7 0.4 20 50 0.578 1.000 0.086 mcar 0.7 0.4 20 100 0.659 1.000 0.058 mcar 0.7 0.4 20 100 0.604 1.000 0.068 mcar 0.7 0.4 20 100 0.638 1.000 0.088 mcar 0.7 0.4 100 50 0.584 1.000 0.035 mcar 0.7 0.4 100 100 0.664 1.000 0.037 mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.4 100 100 0.628 1.000 0.037 mcar 0.7 0.4 100 100<	mcar	0.3	1.0	100	50	0.270	1.000	0.026	-0.030
mear 0.3 1.0 100 100 0.274 1.000 0.031 mear 0.7 0.4 20 50 0.626 1.000 0.078 mear 0.7 0.4 20 50 0.578 1.000 0.086 mear 0.7 0.4 20 100 0.659 1.000 0.058 mear 0.7 0.4 20 100 0.604 1.000 0.068 mear 0.7 0.4 20 100 0.604 1.000 0.068 mear 0.7 0.4 100 50 0.638 1.000 0.035 mear 0.7 0.4 100 50 0.584 1.000 0.027 mear 0.7 0.4 100 100 0.664 1.000 0.031 mear 0.7 0.4 100 100 0.610 1.000 0.057 mear 0.7 0.6 20 50	mcar	0.3	1.0	100	50	0.261	1.000	0.032	-0.039
mear 0.7 0.4 20 50 0.626 1.000 0.078 mear 0.7 0.4 20 50 0.578 1.000 0.086 mear 0.7 0.4 20 100 0.659 1.000 0.058 mear 0.7 0.4 20 100 0.604 1.000 0.068 mear 0.7 0.4 100 50 0.638 1.000 0.035 mear 0.7 0.4 100 50 0.584 1.000 0.039 mear 0.7 0.4 100 100 0.664 1.000 0.027 mear 0.7 0.4 100 100 0.610 1.000 0.031 mear 0.7 0.6 20 50 0.628 1.000 0.057 mear 0.7 0.6 20 50 0.628 1.000 0.057 mear 0.7 0.6 20 50	mcar	0.3	1.0	100	100	0.285	1.000	0.024	-0.015
mear 0.7 0.4 20 50 0.578 1.000 0.086 mear 0.7 0.4 20 100 0.659 1.000 0.058 mear 0.7 0.4 20 100 0.604 1.000 0.068 mear 0.7 0.4 100 50 0.584 1.000 0.039 mear 0.7 0.4 100 100 0.664 1.000 0.027 mear 0.7 0.4 100 100 0.610 1.000 0.031 mear 0.7 0.6 20 50 0.628 1.000 0.057 mear 0.7 0.6 20 50 0.628 1.000 0.057 mear 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.3	1.0	100	100	0.274	1.000	0.031	-0.026
mcar 0.7 0.4 20 100 0.659 1.000 0.058 mcar 0.7 0.4 20 100 0.604 1.000 0.068 mcar 0.7 0.4 100 50 0.638 1.000 0.035 mcar 0.7 0.4 100 50 0.584 1.000 0.039 mcar 0.7 0.4 100 100 0.664 1.000 0.027 mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.6 20 50 0.628 1.000 0.057 mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	20	50	0.626	1.000	0.078	-0.074
mcar 0.7 0.4 20 100 0.604 1.000 0.068 mcar 0.7 0.4 100 50 0.584 1.000 0.039 mcar 0.7 0.4 100 100 0.664 1.000 0.027 mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.6 20 50 0.628 1.000 0.057 mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	20	50	0.578	1.000	0.086	-0.122
mcar 0.7 0.4 100 50 0.638 1.000 0.035 mcar 0.7 0.4 100 50 0.584 1.000 0.039 mcar 0.7 0.4 100 100 0.664 1.000 0.027 mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.6 20 50 0.628 1.000 0.057 mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	20	100	0.659	1.000	0.058	-0.041
mcar 0.7 0.4 100 50 0.584 1.000 0.039 mcar 0.7 0.4 100 100 0.664 1.000 0.027 mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.6 20 50 0.628 1.000 0.057 mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	20	100	0.604	1.000	0.068	-0.096
mcar 0.7 0.4 100 100 0.664 1.000 0.027 mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.6 20 50 0.628 1.000 0.057 mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	100	50	0.638	1.000	0.035	-0.062
mcar 0.7 0.4 100 100 0.610 1.000 0.031 mcar 0.7 0.6 20 50 0.628 1.000 0.057 mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	100	50	0.584	1.000	0.039	-0.116
mcar 0.7 0.6 20 50 0.628 1.000 0.057 mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	100	100	0.664	1.000	0.027	-0.036
mcar 0.7 0.6 20 50 0.571 1.000 0.066	mcar	0.7	0.4	100	100	0.610	1.000	0.031	-0.090
	mcar	0.7	0.6	20	50	0.628	1.000	0.057	-0.072
mcar 0.7 0.6 20 100 0.652 1.000 0.048	mcar	0.7	0.6	20	50	0.571	1.000	0.066	-0.129
	mcar	0.7	0.6	20	100	0.652	1.000	0.048	-0.048
mcar 0.7 0.6 20 100 0.593 1.000 0.060	mcar	0.7	0.6	20	100	0.593	1.000	0.060	-0.107

Table 17: Simulation B. Full results. (continued)

Missingness pattern	Simulated fixed AR	Compliance	N participants	Beeps per participant	Estimated fixed AR	Power to detect fixed AR	Fixed AR SE	Fixed AR estimation bias
mcar	0.7	0.6	100	50	0.631	1.000	0.026	-0.069
mcar	0.7	0.6	100	50	0.576	1.000	0.030	-0.124
mcar	0.7	0.6	100	100	0.652	1.000	0.022	-0.048
mcar	0.7	0.6	100	100	0.592	1.000	0.027	-0.108
mcar	0.7	0.8	20	50	0.626	1.000	0.049	-0.074
mcar	0.7	0.8	20	50	0.571	1.000	0.058	-0.129
mcar	0.7	0.8	20	100	0.645	1.000	0.045	-0.055
mcar	0.7	0.8	20	100	0.585	1.000	0.057	-0.115
mcar	0.7	0.8	100	50	0.625	1.000	0.022	-0.075
mcar	0.7	0.8	100	50	0.568	1.000	0.027	-0.132
mcar	0.7	0.8	100	100	0.646	1.000	0.020	-0.054
mcar	0.7	0.8	100	100	0.587	1.000	0.026	-0.113
mcar	0.7	1.0	20	50	0.621	1.000	0.045	-0.079
mcar	0.7	1.0	20	50	0.564	1.000	0.056	-0.136
mcar	0.7	1.0	20	100	0.640	1.000	0.044	-0.060
mcar	0.7	1.0	20	100	0.581	1.000	0.055	-0.119
mcar	0.7	1.0	100	50	0.620	1.000	0.021	-0.080
mcar	0.7	1.0	100	50	0.563	1.000	0.025	-0.137
mcar	0.7	1.0	100	100	0.641	1.000	0.020	-0.059
mcar	0.7	1.0	100	100	0.585	1.000	0.025	-0.115