

CÁLCULO DIFERENCIAL E INTEGRAL 1 Exame de recuperação

LEE ∞ LEGI ∞ LEIC-T ∞ LERC

23|06|2012

09:00-10:30 **TESTE**

09:00-12:00 **EXAME**

PRIMEIRA PARTE (CORRESPONDENTE AO PRIMEIRO TESTE)

QUESTÃO 1.1. – Determine, caso existam, os limites das sucessões cujos termos gerais são,

(a)
$$\frac{n-\sqrt{n}}{\sqrt{n^3}+2}$$
 (b) $\sqrt[n]{n^2+n}$ (c) $\frac{2^n+n^2}{3^n-1}$ (d) $\left(\frac{n-2}{n+2}\right)^{2n+3}$

QUESTÃO 1.2. - Considere a sucessão definida por recursão através de,

$$x_0 = 3;$$
 $x_{n+1} = \sqrt{2x_n + 1}$

- 1.2 (a) Mostre que (x_n) é estritamente decrescente.
- 1.2 (b) Sabendo que $x_n > 2$ para todo o $n \in \mathbb{N}$, mostre que (x_n) é convergente e calcule o seu limite.

QUESTÃO 1.3. – Prove, recorrendo ao princípio de indução matemática que para todo o natural $n \ge 1$ se tem,

$$\sum_{k=1}^{n} k(3k+5) = n(n+1)(n+3)$$

QUESTÃO 1.4. – Considere a função $f : \mathbb{R} \to \mathbb{R}$ que, para $x \neq 0$ é definida por

$$f(x) = \frac{\sin(3x)}{x}.$$

_	~
$(\ \ \)$	ÇÕES:
COIA	ÇOE3.

1.1 (a) [0.5]

1.1 (b) [0.5]

1.4 (b) Sabendo que f é contínua em x = 0 determine f(0).

1.4 (a) Mostre que f é contínua em $\mathbb{R} \setminus \{0\}$.

1.1 (c) [0.5]

1.4 (c) Mostre que *f* é uma função limitada.

1.1 (d) [0.5]

1.2 (a) [1.0]

1.2 (b) [1.0]

1.3

[1.0]

f(c) = g(c). (Sugestão: considere a função h(x) = f(x) - g(x).)

1.4 (a) [1.0]

QUESTÃO 1.6. – Indique se são verdadeiras ou falsas (não precisa de justificar):

1.4 (b) [1.0]

1.6 (a) Se $f:]-1, 1[\to \mathbb{R}$ é contínua então f tem necessariamente um máximo.

QUESTÃO 1.5. – Considere duas funções contínuas $f,g:[0,1] \to \mathbb{R}$. Supondo

que f(0) = 0, g(0) = 1, f(1) = 1 e g(1) = 0, mostre que existe $c \in [0, 1]$ tal que

1.4 (c) [0.5]

1.6 (b) Se para todo o $n \in \mathbb{N}$ se tem $f(e^{-n}) = e^n$ então f não pode ser contínua no intervalo [0, 1].

[1.0] 1.5 1.6 (a) [0.5]

1.6 (c) Se $f : \mathbb{R} \to \mathbb{R}$ é uma função tal que f(1/n) = 1 para todo o natural $n \ge 1$

então, necessariamente, f(0) = 1.

1.6 (b) [0.5] 1.6 (c) [0.5]

(SEGUNDA PARTE NO VERSO)

QUESTÃO 2.1. – Calcule, se existirem, os limites seguintes.

(A)
$$\lim_{x \to +\infty} x \ln \left(\frac{x}{x+1} \right)$$
 (B) $\lim_{x \to +\infty} (\cos 1/x)^x$

QUESTÃO 2.2.—Considere a função real de variável real definida por $f(x) = e^{|x|}$. Estude a diferenciabilidade de f no ponto x = o.

QUESTÃO 2.3. - O quadro seguinte contém informação relativa ao sinal da derivada de uma função contínua $f : \mathbb{R} \to \mathbb{R}$, diferenciável em $\mathbb{R} \setminus \{0, 1\}$,

х	-∞	О		1	+∞
f'(x)	_	n.e.	+	n.e	_

- 2.3 (a) Estude *f* do ponto de vista da monotonia.
- 2.3 (b) Indique se existem extremos locais de f e em caso afirmativo diga de que tipo são.

QUESTÃO 2.4. – Considere uma função f de classe $C^5(\mathbb{R})$ (i.e., f tem derivada de ordem 5 contínua). Suponha ainda que o polinómio de Taylor de ordem 4 de f no ponto $a = 0 \notin p_{4,0}(x) = 1 - x^4$.

- 2.4 (a) Verifique se f tem um extremo local no ponto x = 0 e, em caso afirmativo, indique de que tipo de extremo se trata (i.e., se é um máximo ou mínimo local).
- 2.4 (b) Supondo que $|f^{(5)}(x)| \le 1$ para $x \in [0,1]$, mostre que o erro cometido aproximando f(x) por $p_{4,0}(x)$ no intervalo [0,1] não excede uma centésima.

QUESTÃO 2.5. – Calcule

$$\lim_{x \to 1} \frac{\int_{1}^{x^2} \sin^2 t \, dt}{\sin(x-1)}.$$

QUESTÃO 2.6. – Determine a área da região do plano que é limitada pelas curvas $y = e^x$, $y = e^{2x}$ e x = 1.

 $f(x) = \frac{1}{x\sqrt{1+2x}}.$

_	~
('OTA	ÇÕES:
COIN	COE3.

2.1 (A) [1.0] QUESTÃO 2.7. – Calcule uma primitiva da função,

2.3 (b) [0.5] (Sugestão: considere a substituição $1 + 2x = t^2$.)

2.4 (a) [1.0]

2.4 (b) [1.0]

[1.0]

2.6

2.7

2.8

QUESTÃO 2.8. - Considere a série de potências

$$\sum \frac{n}{\sqrt{n^4+1}} (x-2)^n.$$

Indique para que valores de x esta série converge absolutamente, converge simplesmente ou diverge.