Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 24

Math 237 – Linear Algebra Fall 2017

Version 3 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standard A1.

Mark:

Let $T: \mathbb{R}^3 \to \mathbb{R}$ be the linear transformation given by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_2 + 3x_3\end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R} .

Standard A2.

Determine if $D: \mathbb{R}^{2\times 2} \to \mathbb{R}$ given by $D\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$ is a linear transformation or not.

Standard M1.

Mark:

Let

$$C = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} \qquad \qquad D = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix} \qquad \qquad E = \begin{bmatrix} 2 & 0 \\ 0 & -1 \\ 1 & -1 \end{bmatrix}$$

Determine which of the six products CD, CE, DC, DE, EC, ED can be computed, and compute them.

Standard M2.	Ма	rk:			
Determine if the matrix	$\begin{bmatrix} 3 \\ 2 \\ 0 \\ 1 \end{bmatrix}$	$ \begin{array}{c} -1 \\ 1 \\ 1 \\ -2 \end{array} $	0 1 1 0	$\begin{bmatrix} 4 \\ -1 \\ 3 \\ 0 \end{bmatrix}$	is invertible

Standard M3.

Find the inverse of the matrix $\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix}.$

 ${\bf Additional\ Notes/Marks}$