Exercice 1:5pts

Soient les signaux x(t); y(t) et u(t)

•
$$x(t) = rect \begin{bmatrix} t - \frac{T}{2} \\ T \end{bmatrix}$$
 où $rect(t) = \begin{cases} 1 & -0.5 \le t \le 0.5 \\ 0 & ailleurs \end{cases}$ et $T = 1$

- y(t) est un signal carré obtenu par répétition du signal rect(t) à tous les instants kT_1 avec $T_1 = 2T$; $k \in \mathbb{Z}$
- u(t) est le signal échelon unité

- 3. Justifier que y(t) est à puissance moyenne finie......1pt
- 5. Déterminer la fonction d'autocorrélation de y(t).....1pt

Exercice 2:5pts

Nature signal d'entrée	Nature signal de sortie	Nature du système
Analogique	Analogique	
Numérique	Numérique	

2. Soit la figure 1 ci-dessous : donner l'expression de y(t) en fonction x(t) et h(t)1pt

$$e(t) \longrightarrow Système h(t) \longrightarrow S(t)$$

3. Déterminer la réponse s(t) si on applique le signal $e(t) = e^{-10t}u(t)$ à l'entrée d'un filtre de réponse impulsionnelle h(t)......3pts

$$h(t) = \begin{cases} 5 & 2 \le t \le 5 \\ 0 & ailleurs \end{cases}$$

Exercice 3 5pts

Espace temporel	Espace des valeurs	Nature du signal
continu	continu	
discontinu	discontinu	

3. Déterminer la caractéristique (déterministe, aléatoire) des signaux des figures 1.1 et 1.2 .0.75x2=1.5pts

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Exercice 4 5pts

Soit le signal x(t) représenter dans la figure 1.5

Figure 2

Exercice 1 5pts

1. Soit le système linéaire caractérisé par sa réponse impulsionnelle h(t) et y(t) la réponse du système à une excitation x(t).

$$x(t) = 2 \text{ pour } 0 \le t \le 2 \text{ et } 0 \text{ sinon}; \ h(t) = 2e^{-3t}\Gamma(t)$$

Déterminer et tracer y(t)2+1=3pts

Exercice 2 5pts

Soit le signal suivant : $x(t) = 4\cos(2\pi f_1 t - \frac{\pi}{3}) + 3\cos(2\pi f_2 t) + 1.3\cos(2\pi f_3 t)$

$$f_1 = 300Hz$$
; $f_2 = 450Hz$; $f_3 = 600Hz$

- 2. Soit le système S dont sa fonction de transfert est H(f) telle que :

$$H(f) = \frac{1}{1 + j3.54 \times 10^{-4} f}$$

Exercice3:5pts

- - a. $a(t) = 2\delta(t-1) 0.5\delta(t+3)$;
 - b. $b(t) = 2\delta(t) \delta(t-1)$;
 - c. $c(t) = [1.5\delta(t-1) + 2\delta(t-2) \delta(t-3)].x(t)$
 - d. $d(t) = 2\Gamma(t+1) 2\Gamma(t-3)$

Avec $\delta(t)$ l'impulsion de dirac ; $\Gamma(t)$ signal échelon unité et $x(t) = \cos(2\pi t)$