Chapter 1

Functions: limits and continuity

Key Results

- General notion of functions
- Informal definition of the limit of functions
- Some rules of limits

Terminology (review)

- The symbol y = f(x) denotes the statement "y is a function of x".
- A function represents a rule that assigns a unique value y to each value x.
- Input *x* and output *y*. Input-output process.
- x is the independent variable.
- y is the dependent variable.

Domain, Codomain, Range

Symbolically,

$$f: D \longrightarrow \mathbb{R}$$

 $x \longmapsto y = f(x)$

- *D* is domain set of inputs.
- **R** is codomain indicates that output values of *f* are real numbers.
- actual collection of y values is the range.

Composition

Consider two functions

$$f(x) = x - 7$$
 and $g(x) = x^2$
 $(f \circ g)(2) = f(g(2)) = f(4) = -3$
 $(g \circ f)(2) = g(f(2)) = g(-5) = 25$

For most functions f and g,

$$f \circ g \neq g \circ f$$

Limits

Consider the function

$$f(x) = \frac{\sin(x)}{x}$$
x cannot be zero

• Describe the behaviour of f as x tends to 0.

• Note that f is defined for every nonzero value of x.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Note that

$$\frac{\sin(0)}{0} = \frac{0}{0}$$

does not make sense. It is undefined.

How to study the values of f for values of x close to 0?

plot the graph of
$$\frac{\sin(x)}{x}$$

When x gets closer and closer to 0 from either side,

$$\frac{\sin(x)}{x}$$
 approaches 1

Write

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Read as

"the limit of $\frac{\sin(x)}{x}$ as x tends to 0 is equal to 1"

Informal Definition

• If f(x) gets arbitrarily close to L when x is sufficiently close to x_0 , then L is the limit of f(x) as x tends to x_0 .

• Write

$$\lim_{x \to x_0} f(x) = L$$

Rules of Limits

Suppose

$$\lim_{x \to a} f(x) = L \text{ and } \lim_{x \to a} g(x) = L'$$

Then

(i)
$$\lim_{x \to a} (f \pm g)(x) = L \pm L';$$

(ii)
$$\lim_{x \to a} (fg)(x) = LL'$$

(iii)
$$\lim_{x \to a} \frac{f}{g}(x) = \frac{L}{L'}$$
 provided $L' \neq 0$;

(iv)
$$\lim_{x\to a} kf(x) = kL$$
 for any real number k .