2B Linear Algebra

True/False

- a) Every $n \times n$ matrix A is the change-of-basis matrix for some change of basis for \mathbb{R}^n .
- b) If the change-of-basis matrix from a basis \mathcal{B} to another basis \mathcal{B}' is diagonal, then the coordinate vector of each vector with respect to \mathcal{B}' is a scalar multiple of its coordinate vector with respect to \mathcal{B} .
- c) If $\mathcal B$ is an ordered basis for a vector space V, then the change-of-basis matrix from $\mathcal B$ to $\mathcal B$ is the identity.
- d) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then T_A is the function that assigns to each vector $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ the vector $\mathbf{y} = (x_1 + x_2, x_2) \in \mathbb{R}^2$.
- e) Let $A \in M_{2\times 3}(\mathbb{R})$. Then T_A is a function from \mathbb{R}^2 to \mathbb{R}^3 .
- f) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation then range $(T) = \mathbb{R}^m$.
- g) If $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear then T(u+v) = T(u) T(v).
- h) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear then T(2u) = T(u) + T(u).
- i) For all linear transformations $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^n$, we have $S \circ T = T \circ S$.
- j) Let A and B be two $n \times n$ matrices over \mathbb{R} . If AB = BA then $T_A \circ T_B = T_B \circ T_A$.
- k) Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear transformation. Then $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is linear.
- l) A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if it is a matrix transformation.

Solutions to True/False

a) F b) F c) T d) T e) F f) F g) F h) T i) F j) T k) T l) T

Tutorial Exercises

T1

a) You are given that $\mathcal{B}: e_1, e_1 + e_2, e_1 + e_3, e_1 + e_4$ is an ordered basis for the vector space $V = \mathbb{R}^4$. Find the vector $v \in \mathbb{R}^4$ so that the coordinate vector of v with respect to the basis \mathcal{B} is

$$[v]_{\mathcal{B}} = egin{bmatrix} 2 \ 0 \ 1 \ 4 \end{bmatrix}$$

¹ True/False Questions

Every Exercise Sheet will have a section containing true/false questions. They are designed to test your understanding from lectures. You should look at your lecture notes and/or the textbook to help you answer these questions, but you should not need to write anything to work out the solution.

- b) Find the coordinate vector for the vector w = (-2, 3, -5, 1) with respect to the ordered basis \mathcal{B} for \mathbb{R}^4 given in (a).
- c) Find the change-of-basis matrix $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}$ from \mathcal{B} to \mathcal{E} where \mathcal{E} is the standard basis for V. Use the matrix $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}$ to check your answer to (a). Now find the change-of-basis matrix from \mathcal{E} to \mathcal{B} , and use this matrix to check your answer to (b).

Solution -

a) This coordinate vector means that

$$v = 2e_1 + 0(e_1 + e_2) + 1(e_1 + e_3) + 4(e_1 + e_4)$$

$$= 2(1,0,0,0) + 0(1,1,0,0) + 1(1,0,1,0) + 4(1,0,0,1)$$

$$= (2,0,0,0) + (0,0,0,0) + (1,0,1,0) + (4,0,0,4)$$

$$= (7,0,1,4).$$

b) We need to find the scalars c_1, c_2, c_3, c_4 so that

$$w = c_1 e_1 + c_2 (e_1 + e_2) + c_3 (e_1 + e_3) + c_4 (e_1 + e_4)$$

This equation is

$$(-2,3,-5,1) = c_1(1,0,0,0) + c_2(1,1,0,0) + c_3(1,0,1,0) + c_4(1,0,0,1)$$

which holds if and only if

$$(-2,3,-5,1) = (c_1 + c_2 + c_3 + c_4, c_2, c_3, c_4)$$

By comparing components, we get immediately that $c_2 = 3$, $c_3 = -5$ and $c_4 = 1$. Substituting these values into the equation $c_1 + c_2 + c_3 + c_4 = -2$ from the first component we get $c_1 = -1$. Thus the coordinate vector of w with respect to the basis \mathcal{B} is

$$[w]_{\mathcal{B}} = \begin{bmatrix} -1 \\ 3 \\ -5 \\ 1 \end{bmatrix}.$$

c) We want to write the vectors in \mathcal{B} in terms of the standard basis \mathcal{E} , and the change of basis matrix from \mathcal{B} to \mathcal{E} that we obtain is

$$\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The calculations on which this answer is based is:

We have

$$e_1 = 1e_1 + 0e_2 + 0e_3 + 0e_4$$

$$e_1 + e_2 = 1e_1 + 1e_2 + 0e_3 + 0e_4$$

$$e_1 + e_3 = 1e_1 + 0e_2 + 1e_3 + 0e_4$$

$$e_1 + e_4 = 1e_1 + 0e_2 + 0e_3 + 1e_4$$

so the columns of $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}$ are given by

$$[e_1]_{\mathcal{E}} = egin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}, \quad [e_1 + e_2]_{\mathcal{E}} = egin{bmatrix} 1 \ 1 \ 0 \ 0 \end{bmatrix}, \quad [e_1 + e_3]_{\mathcal{E}} = egin{bmatrix} 1 \ 0 \ 1 \ 0 \end{bmatrix}, \quad [e_1 + e_4]_{\mathcal{E}} = egin{bmatrix} 1 \ 0 \ 0 \ 1 \end{bmatrix}$$

To use $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}$ to check (a), the key calculation is that

$$\begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{bmatrix}
2 \\
0 \\
1 \\
4
\end{bmatrix} =
\begin{bmatrix}
7 \\
0 \\
1 \\
4
\end{bmatrix}.$$
(1)

Use the fact that $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}[v]_{\mathcal{B}}=[v]_{\mathcal{E}}$. By equation (??), we get $[v]_{\mathcal{E}}=\begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Since \mathcal{E} is the standard

basis for \mathbb{R}^4 this means v = (7,0,1,4).

The change-of-basis matrix from \mathcal{E} to \mathcal{B} is the inverse of $\mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}$, so

$$\mathcal{P}_{\mathcal{B}\leftarrow\mathcal{E}} = \mathcal{P}_{\mathcal{E}\leftarrow\mathcal{B}}^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

To use $\mathcal{P}_{\mathcal{B}\leftarrow\mathcal{E}}$ to check your answer to (b), the key calculation is that

$$\begin{pmatrix}
1 & -1 & -1 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{bmatrix}
-2 \\
3 \\
-5 \\
1
\end{bmatrix} =
\begin{bmatrix}
-1 \\
3 \\
-5 \\
1
\end{bmatrix}.$$
(2)

Use the fact that $\mathcal{P}_{\mathcal{B}\leftarrow\mathcal{E}}[w]_{\mathcal{E}}=[w]_{\mathcal{B}}$. We have $[w]_{\mathcal{E}}=\begin{bmatrix} -2\\3\\-5\end{bmatrix}$ so by equation (??), $[w]_{\mathcal{B}}=\begin{bmatrix} -1\\3\\-5\\1\end{bmatrix}$.

Consider ordered bases $\mathcal{B}:(1,2),(3,-1)$ and $\mathcal{C}:(2,-2),(4,3)$ T2 for \mathbb{R}^2 .

- a) Find the change of basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ from \mathcal{B} to \mathcal{C} .
- b) Find the coordinate vector of (5, -1) with respect to the old basis

В.

c) Find the coordinate vector of (5, -1) with respect to the new basis C, and verify that your answer can be obtained by multiplying together your answers to (a) and (b).

Solution =

a) Write the old basis vectors in terms of the new to produce the columns of the change-of-basis matrix. That is, we solve the equations

$$(1,2)$$
 = $a_1(2,-2) + a_2(4,3)$
 $(3,-1)$ = $b_1(2,-2) + b_2(4,3)$.

Each equation gives a system of two equations in two unknowns which we can solve to give

$$[(1,2)]_{\mathcal{C}} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -\frac{5}{14} \\ \frac{3}{7} \end{bmatrix} \quad \text{and} \quad [(3,-1)]_{\mathcal{C}} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{13}{14} \\ \frac{2}{7} \end{bmatrix}, \quad \text{hence} \quad P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{pmatrix} -\frac{5}{14} & \frac{13}{14} \\ \frac{3}{7} & \frac{2}{7} \end{pmatrix}$$

b) Here we solve the system of two equations in two unknowns coming from the equation

$$(5,-1) = c_1(1,2) + c_2(3,-1).$$

You can show that

$$[(5,-1)]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \frac{2}{7} \\ \frac{11}{7} \end{bmatrix}.$$

c) Here we solve the system of two equations in two unknowns coming from the equation

$$(5,-1) = c_1'(2,-2) + c_2'(4,3).$$

You can show that

$$[(5,-1)]_{\mathcal{C}} = \begin{bmatrix} c_1' \\ c_2' \end{bmatrix} = \begin{bmatrix} \frac{19}{14} \\ \frac{4}{7} \end{bmatrix}.$$

It remains to notice that

$$[(5,-1)]_{\mathcal{C}} = \begin{bmatrix} c'_1 \\ c'_2 \end{bmatrix} = \begin{bmatrix} \frac{19}{14} \\ \frac{4}{7} \end{bmatrix} = \begin{pmatrix} -\frac{5}{14} & \frac{13}{14} \\ \frac{3}{7} & \frac{2}{7} \end{pmatrix} \begin{bmatrix} \frac{2}{7} \\ \frac{11}{7} \end{bmatrix} = P_{\mathcal{C} \leftarrow \mathcal{B}} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P_{\mathcal{C} \leftarrow \mathcal{B}} [(5,-1)]_{\mathcal{B}}$$

as required.

Suppose that \mathcal{B} and \mathcal{C} are ordered bases for a 3-dimensional

vector space
$$V$$
 and that $[v]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. If the change-of-basis matrix

from B to C is

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

find $[v]_{\mathcal{C}}$.

Solution =

We just need to compute that

$$[v]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[v]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 1 & 1 & 2 \end{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ 9 \\ 9 \end{bmatrix}.$$

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
- a) Prove that $T(\mathbf{0}) = \mathbf{0}$.
- b) Prove that for all $v, v' \in \mathbb{R}^n$, T(v v') = T(v) T(v').
- c) Prove by induction on k that for all $v_1, \ldots, v_k \in \mathbb{R}^n$ and all $c_1,\ldots,c_k\in\mathbb{R}$,

$$T(c_1v_1 + \cdots + c_nv_k) = c_1T(v_1) + \cdots + c_kT(v_k).$$

- Solution -

a) Since T is linear, $T(\lambda \mathbf{0}) = \lambda T(\mathbf{0})$ for all $\lambda \in \mathbb{R}$. But $\lambda \mathbf{0} = \mathbf{0}$ for any $\lambda \in \mathbb{R}$, and $0w = \mathbf{0}$ for any $w \in \mathbb{R}^m$. Thus putting $\lambda = 0$ we obtain

$$T(\mathbf{0}) = T(0\mathbf{0}) = 0T(\mathbf{0}) = \mathbf{0}.$$

Alternatively,

$$T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}).$$

Now subtract $T(\mathbf{0})$ from both sides to obtain $\mathbf{0} = T(\mathbf{0})$.

b) The key is to note that v - v' = v + (-1)v'. Then as T is linear we have

$$T(v - v') = T(v + (-1)v') = T(v) + T((-1)v') = T(v) + (-1)T(v') = T(v) - T(v').$$

c) When k = 1 the statement is that $T(c_1v_1) = c_1T(v_1)$, which holds since T is linear. Assume the statement is true for $k \ge 1$. Then, for any scalars c_1, \ldots, c_{k+1} and vectors v_1, \ldots, v_{k+1} we have

$$T(c_1v_1 + \dots + c_{k+1}v_{k+1}) = T((c_1v_1 + \dots + c_kv_k) + c_{k+1}v_{k+1})$$

= $T(c_1v_1 + \dots + c_kv_k) + T(c_{k+1}v_{k+1})$

since T is linear and so T(v + v') = T(v) + T(v') for any vectors v and v', in particular for $v = c_1 v_1 + \cdots + c_k v_k$ and $v' = c_{k+1} v_{k+1}$. The inductive hypothesis implies that

$$T(c_1v_1 + \cdots + c_kv_k) = c_1T(v_1) + \cdots + c_kT(v_k)$$

and the linearity of *T* implies that

$$T(c_{k+1}v_{k+1}) = c_{k+1}T(v_{k+1}).$$

Therefore

$$T(c_1v_1 + \cdots + c_{k+1}v_{k+1}) = c_1T(v_1) + \cdots + c_kT(v_k) + c_{k+1}T(v_{k+1})$$

as required.

T5 For each of the the following functions, determine whether it is a linear transformation. If it is a linear transformation you should prove this, and if it is not a linear transformation you should give a counterexample.

- a) $T: \mathbb{R} \to \mathbb{R}$ given by T(x) = ax, where $a \in \mathbb{R}$.
- b) $T: \mathbb{R} \to \mathbb{R}$ given by T(x) = ax + b, where $a, b \in \mathbb{R}$ and $b \neq 0$.
- c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (|x|, |y|).
- d) $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by T(x, y, z) = (y, z, x).
- e) $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by T(w, x, y, z) = (3w, 2x, y).
- f) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ given by $T(x, y, z) = (z^2, x + y)$.
- g) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ given by T(x,y) = (y-1, x+2y, 2x+y).
- h) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$ given by T(x,y) = (7x, x y, 2y, 2x 5y).

Solution —

- a) Let $x, y \in \mathbb{R}$. Then T(x + y) = a(x + y) = ax + ay = T(x) + T(y). Now let $x \in \mathbb{R}$ and let c be a scalar. Then T(cx) = a(cx) = c(ax) = cT(x). Therefore T is linear.
- b) We have T(1) = a + b and T(2) = 2a + b. But $2T(1) = 2(a + b) = 2a + 2b \neq 2a + b = T(2)$ since $b \neq 0$. Thus T is not linear. Alternatively, use T6(a): since $T(0) = b \neq 0$, the function T is not linear.
- c) We have T(1,1) = (1,1) and T(-1,-1) = (1,1), so T(1,1) + T(-1,-1) = (2,2). But

$$T((1,1) + (-1,-1)) = T(0,0) = (0,0) \neq (2,2) = T(1,1) + T(-1,-1).$$

So *T* is not linear.

d) Let $(x, y, z), (x', y', z') \in \mathbb{R}^3$. Then

$$T((x,y,z) + (x',y',z')) = T(x+x',y+y',z+z')$$

$$= (y+y',z+z',x+x')$$

$$= (y,z,x) + (y',z',x')$$

$$= T(x,y,z) + (x',y',z').$$

Now let $(x, y, z) \in \mathbb{R}^3$ and let $c \in \mathbb{R}$. Then

$$T(c(x, y, z)) = T(cx, cy, cz) = (cy, cz, cx) = c(y, z, x) = cT(x, y, z).$$

Therefore *T* is a linear transformation.

e) Let $(w, x, y, z), (w', x', y', z') \in \mathbb{R}^4$. Then

$$T((w,x,y,z) + (w',x',y',z')) = T(w+w',x+x',y+y',z+z')$$

$$= (3(w+w'),2(x+x'),y+y')$$

$$= (3w+3w',2x+2x',y+y')$$

$$= (3w,2x,y) + (3w',2x',y')$$

$$= T(w,x,y,z) + T(w',x',y',z').$$

Now let $(w, x, y, z) \in \mathbb{R}^4$ and let $c \in \mathbb{R}$. Then

$$T(c(w,x,y,z)) = T(cw,cx,cy,cz) = (3(cw),2(cx),cy) = (c(3w),c(2x),cy) = c(3w,2x,y) = cT(w,x,y,z).$$

Therefore *T* is a linear transformation.

f) We have

$$T(2(0, 0, 1)) = T(0, 0, 2) = (4, 0),$$

however

$$2T(0, 0, 1) = 2(1, 0) = (2, 0).$$

So *T* is not a linear mapping since $T(2(0, 0, 1)) \neq 2T(0, 0, 1)$.

- g) Note that $T(0, 0) = (-1, 0, 0) \neq (0, 0, 0)$, so *T* is not a linear map by T6(a).
- h) For $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}$ we have

$$\begin{split} T\big(\lambda(x_1,y_1) + (x_2,y_2)\big) &= T(\lambda x_1 + x_2, \lambda y_1 + y_2) \\ &= \big(7(\lambda x_1 + x_2), (\lambda x_1 + x_2) - (\lambda y_1 + y_2), 2(\lambda y_1 + y_2), 2(\lambda x_1 + x_2) - 5(\lambda y_1 + y_2)\big) \\ &= (7\lambda x_1 + 7x_2, \lambda x_1 + x_2 - \lambda y_1 - y_2, 2\lambda y_1 + 2y_2, 2\lambda x_1 + 2x_2 - 5\lambda y_1 - 5y_2) \\ &= (7\lambda x_1, \lambda x_1 - \lambda y_1, 2\lambda y_1, 2\lambda x_1 - 5\lambda y_1) + (7x_2, x_2 - y_2, 2y_2, 2x_2 - 5y_2) \\ &= \lambda(7x_1, x_1 - y_1, 2y_1, 2x_1 - 5y_1) + (7x_2, x_2 - y_2, 2y_2, 2x_2 - 5y_2) \\ &= \lambda T(x_1, y_1) + T(x_2, y_2). \end{split}$$

This is enough to show that T is a linear map, because special cases include the two defining properties of a linear map, namely

$$T((x_1, y_1) + (x_2, y_2)) = T(x_1, y_1) + T(x_2, y_2)$$

 $T(\lambda(x_1, y_1)) = \lambda T(x_1, y_1).$

Find the standard matrix [T] for each function T in T_5 which is a linear transformation.

The linear maps are from parts a), d), e) and h).

For part a), we have $T : \mathbb{R} \to \mathbb{R}$ so [T] will be the 1×1 matrix [a].

For part d), we have
$$T(e_1) = T(1,0,0) = (0,0,1)$$
, $T(e_2) = T(0,1,0) = (1,0,0)$ and $T(e_3) = (1,0,0)$

T(0,0,1) = (0,1,0). The standard matrix for T is the matrix [T] with ith column given by $T(e_i)$:

$$[T] = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

For part e), we have $T(e_1) = T(1,0,0,0) = (3,0,0)$, $T(e_2) = T(0,1,0,0) = (0,2,0)$, $T(e_3) = T(0,0,1,0) = (0,0,1)$ and $T(e_4) = T(0,0,0,1) = (0,0,0)$. The standard matrix for T is the matrix [T] with ith column given by $T(e_i)$:

$$[T] = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

For part h), we have $T(e_1) = T(1,0) = (7,1,0,2)$ and $T(e_2) = T(0,1) = (0,-1,2,-5)$. The standard matrix for T is the matrix [T] with ith column given by $T(e_i)$:

$$[T] = \begin{bmatrix} 7 & 0 \\ 1 & -1 \\ 0 & 2 \\ 2 & -5 \end{bmatrix}.$$

T₇ Let

$$A = \begin{pmatrix} 4 & 3 \\ 2 & -1 \\ 0 & 9 \end{pmatrix}$$

and let T_A be the corresponding matrix transformation.

a) Determine the m and n so that $T_A : \mathbb{R}^n \to \mathbb{R}^m$.

b) For $x = (x_1, ..., x_n) \in \mathbb{R}^n$, find a formula for $T_A(x) \in \mathbb{R}^m$.

Now repeat this question for the following matrices:

$$B = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & -5 & 8 \\ 1 & -2 & 17 & 6 \\ 8 & 2 & 3 & 4 \end{pmatrix}.$$

Solution —

For the matrix *A*:

a)
$$m = 3$$
 and $n = 2$.

b) For $x = (x_1, x_2) \in \mathbb{R}^2$ we have

$$T_A(\mathbf{x}) = A\mathbf{x} = \begin{pmatrix} 4 & 3 \\ 2 & -1 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (4x_1 + 3x_2, 2x_1 - x_2, 9x_2) \in \mathbb{R}^3.$$

For the matrix *B*:

a)
$$m = 2$$
 and $n = 2$.

$$T_B(\mathbf{x}) = B\mathbf{x} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (2x_1 - x_2, -x_1 + 2x_2) \in \mathbb{R}^2.$$

For the matrix *C*:

- a) m = 3 and n = 4.
- b) For $x = (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ we have

$$T_C(x) = Cx = \begin{pmatrix} 1 & 2 & -5 & 8 \\ 1 & -2 & 17 & 6 \\ 8 & 2 & 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$= (x_1 + 2x_2 - 5x_3 + 8x_4, x_1 - 2x_2 + 17x_3 + 6x_4, 8x_1 + 2x_2 + 3x_3 + 4x_4) \in \mathbb{R}^3.$$

T8 Let A and B be as in T7.

- a) Find the matrix *AB*.
- b) Determine the k and l so that $T_{AB} : \mathbb{R}^l \to \mathbb{R}^k$. For $\mathbf{x} = (x_1, \dots, x_l) \in \mathbb{R}^l$, find a formula for $T_{AB}(\mathbf{x}) \in \mathbb{R}^k$.
- c) Determine the p and q so that $T_A \circ T_B : \mathbb{R}^q \to \mathbb{R}^p$. For $x = (x_1, \dots, x_q) \in \mathbb{R}^q$, find a formula for $(T_A \circ T_B)(x) \in \mathbb{R}^p$ using the formulas for T_A and T_B in exercise T8. Is your final answer the same as part b)?

Solution

a)

$$AB = \begin{pmatrix} 4 & 3 \\ 2 & -1 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 5 & -4 \\ -9 & 18 \end{pmatrix}.$$

b) k = 3 and l = 2, and for $x = (x_1, x_2) \in \mathbb{R}^2$ we have

$$T_{AB}(\mathbf{x}) = (AB)\mathbf{x} = \begin{pmatrix} 5 & 2 \\ 5 & -4 \\ -9 & 18 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = (5x_1 + 2x_2, 5x_1 - 4x_2, -9x_1 + 18x_2) \in \mathbb{R}^3.$$

c) p = 3 and q = 2, and for $x = (x_1, x_2) \in \mathbb{R}^2$ we have

$$(T_A \circ T_B)(\mathbf{x}) = T_A(T_B(\mathbf{x}))$$

$$= T_A(2x_1 - x_2, -x_1 + 2x_2)$$

$$= (4(2x_1 - x_2) + 3(-x_1 + 2x_2), 2(2x_1 - x_2) - (-x_1 + 2x_2), 9(-x_1 + 2x_2))$$

$$= (5x_1 + 2x_2, 5x_1 - 4x_2, -9x_1 + 18x_2) \in \mathbb{R}^3.$$

Yes, this final answer is the same as in part b).

- Let B be as in T12.
- a) Find the matrix B^{-1} and hence find a formula for $T_{B^{-1}}(x) \in \mathbb{R}^2$, where $x \in \mathbb{R}^2$.
- b) Use the formulas for T_B and $T_{B^{-1}}$ to show that $(T_B \circ T_{B^{-1}})(x) = x$ and $(T_{B^{-1}} \circ T_B)(x) = x$, for all $x \in \mathbb{R}^2$. (This shows that T_B is invertible with inverse $(T_B)^{-1} = T_{B^{-1}}$.)

a) We have

$$B^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

and so for $x = (x_1, x_2) \in \mathbb{R}^2$

$$T_{B^{-1}}(x) = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{2}{3}x_1 + \frac{1}{3}x_2, \frac{1}{3}x_1 + \frac{2}{3}x_2 \end{pmatrix} \in \mathbb{R}^2.$$

b) For the first composition we have

$$(T_{B} \circ T_{B^{-1}})(\mathbf{x}) = T_{B}(T_{B^{-1}}(\mathbf{x}))$$

$$= T_{B}\left(\frac{2}{3}x_{1} + \frac{1}{3}x_{2}, \frac{1}{3}x_{1} + \frac{2}{3}x_{2}\right)$$

$$= \left(2\left(\frac{2}{3}x_{1} + \frac{1}{3}x_{2}\right) - \left(\frac{1}{3}x_{1} + \frac{2}{3}x_{2}\right), -\left(\frac{2}{3}x_{1} + \frac{1}{3}x_{2}\right) + 2\left(\frac{1}{3}x_{1} + \frac{2}{3}x_{2}\right)\right)$$

$$= (x_{1}, x_{2})$$

$$= \mathbf{x}.$$

For the second composition we have

$$(T_{B^{-1}} \circ T_B)(\mathbf{x}) = T_{B^{-1}}(T_B(\mathbf{x}))$$

$$= T_{B^{-1}}(2x_1 - x_2, -x_1 + 2x_2)$$

$$= \left(\frac{2}{3}(2x_1 - x_2) + \frac{1}{3}(-x_1 + 2x_2), \frac{1}{3}(2x_1 - x_2) + \frac{2}{3}(-x_1 + 2x_2)\right)$$

$$= (x_1, x_2)$$

$$= \mathbf{x}.$$

Consider the real vector space \mathbb{R}^3 and the ordered basis

$$\mathcal{B}: (1,-1,1), (1,1,0), (2,1,0).$$

Find a formula for the coordinates of a vector $\mathbf{x} = (x, y, z)$ with respect to \mathcal{B} .

Solution =

The coordinate vector of x with respect to the basis \mathcal{B} is

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$$

where the coordinates λ_i are the unique scalars which satisfy

$$(x, y, z) = \lambda_1(1, -1, 1) + \lambda_2(1, 1, 0) + \lambda_3(2, 1, 0),$$

in other words the λ_i are the solutions of the system

$$\lambda_1 + \lambda_2 + 2\lambda_3 = x$$
$$-\lambda_1 + \lambda_2 + \lambda_3 = y$$
$$\lambda_1 = z.$$

Elementary row operations show that

$$\begin{bmatrix} 1 & 1 & 2 & x \\ -1 & 1 & 1 & y \\ 1 & 0 & 0 & z \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 & z \\ 0 & 1 & 0 & -x + 2y + 3z \\ 0 & 0 & 1 & x - y - 2z \end{bmatrix},$$

so the coordinate vector that we're looking for is

$$[x]_{\mathcal{B}} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} z \\ -x + 2y + 3z \\ x - y - 2z \end{bmatrix}.$$

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A = [T]. Prove that range(T) = col(A).

Solution —

We first show that range(T) \subseteq col(A). For this, let $w \in \mathbb{R}^m$ be in range(T). Then by definition of the range, w = T(v) for some $v \in \mathbb{R}^n$. By definition of A, we have T(v) = Av and so Av = w. Let

$$m{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$
 . Then $m{v} = v_1 m{e}_1 + v_2 m{e}_2 + \cdots + v_n m{e}_n$. So

$$w = Av = A(v_1e_1 + v_2e_2 + \dots + v_ne_n) = v_1Ae_1 + v_2Ae_2 + \dots + v_nAe_n.$$

Now Ae_i is the *i*th column of the matrix A, so we have expressed w as a linear combination of the columns of A. Therefore w is in col(A) as required.

We now show that $col(A) \subseteq range(T)$. For this, let $w \in \mathbb{R}^m$ be in col(A) and let the columns of A be a_1, a_2, \ldots, a_n . Then by definition of the column space, there are scalars c_1, c_2, \ldots, c_n so that

$$w = c_1 a_1 + c_2 a_2 + \cdots + c_n a_n.$$

Now the *i*th column of *A* is Ae_i , hence we have $a_i = Ae_i = T(e_i)$. Thus

$$w = c_1 T(e_1) + c_2 T(e_2) + \cdots + c_n T(e_n).$$

As *T* is a linear map, the right-hand side is equal to $T(c_1e_1 + c_2e_2 + \cdots + c_ne_n)$. Let $v = c_1e_1 + c_2e_2 + \cdots + c_ne_n$ $\cdots + c_n e_n$, then we have w = T(v). Thus w is in range(T) as required. We conclude that range(T) = col(A).

Let T be a function from \mathbb{R}^n to \mathbb{R}^m . Prove that T is linear if T₁₂ and only if for all $u, v \in \mathbb{R}^n$ and all scalars $\lambda \in \mathbb{R}$,

$$T(\lambda u + v) = \lambda T(u) + T(v).$$

Assume that *T* is linear. Let $u, v \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then by definition of linearity,

$$T(\lambda u + v) = T(\lambda u) + T(v) = \lambda T(u) + T(v).$$

Now assume that for all $u, v \in \mathbb{R}^n$ and all scalars $\lambda \in \mathbb{R}$,

$$T(\lambda u + v) = \lambda T(u) + T(v).$$

Then in the special case that $\lambda = 1$, we have

$$T(u + v) = T(1u + v) = 1T(u) + T(v) = T(u) + T(v).$$

Thus for all $u, v \in \mathbb{R}^n$, we have T(u+v) = T(u) + T(v). Now in the special case that v = 0, we have

$$T(\lambda u) = T(\lambda u + \mathbf{0}) = \lambda T(u) + T(\mathbf{0}).$$

We would like to deduce that $T(\lambda u) = \lambda T(u)$ since T(0) = 0, but we cannot use T6(a) since we have not yet proved that T is linear. However observe that in the special case $\lambda = 1$ and u = v = 0, we get

$$T(\mathbf{0}) = T(1\mathbf{0} + \mathbf{0}) = 1T(\mathbf{0}) + T(\mathbf{0}) = 2T(\mathbf{0}).$$

Subtract $T(\mathbf{0})$ from both sides of this to get $T(\mathbf{0}) = \mathbf{0}$ as desired. Therefore for all $u \in \mathbb{R}^n$ and all scalars $\lambda \in \mathbb{R}$, we have $T(\lambda u) = \lambda T(u)$. We conclude that T is linear.

- Answer the following questions using the criterion for linearity in T12, rather than any results about matrix transformations.
- a) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ and $S: \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations. Prove that $S \circ T$ is linear.
- b) Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations. Define a map S + T from \mathbb{R}^n to \mathbb{R}^m by

$$(S+T)(\mathbf{x}) = S(\mathbf{x}) + T(\mathbf{x}).$$

Prove that S + T is linear.

c) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let $c \in \mathbb{R}$ be a scalar. Define a map cT from \mathbb{R}^n to \mathbb{R}^m by

$$(cT)(\mathbf{x}) = c(T(\mathbf{x})).$$

Prove that cT is linear.

Solution ——

a) Let $u, u' \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then since both T and S are linear

$$(S \circ T)(\lambda u + u') = S(T(\lambda u + u')) = S(\lambda T(u) + T(u')) = \lambda S(T(u)) + S(T(u')) = \lambda ((S \circ T)(u)) + (S \circ T)(u').$$

Hence $S \circ T$ is linear.

b) Let $u, u' \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then since both T and S are linear

$$(S+T)(\lambda u + u') = S(\lambda u + u') + T(\lambda u + u')$$

$$= \lambda S(u) + S(u') + \lambda T(u) + T(u')$$

$$= \lambda (S(u) + T(u)) + (S(u') + T(u'))$$

$$= \lambda ((S+T)(u)) + (S+T)(u').$$

Hence S + T is linear.

c) Let $u, u' \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$. Then since T is linear

$$(cT)(\lambda u + u') = c(T(\lambda u + u'))$$

$$= c(\lambda T(u) + T(u'))$$

$$= c(\lambda T(u)) + cT(u')$$

$$= \lambda(cT(u)) + cT(u')$$

$$= \lambda((cT)(u)) + (cT)(u').$$

Hence cT is linear.