

AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph beginning on line 2 of page 26 as follows:

--An exemplary embodiment of the present invention is illustrated herein by modifying the Gag protein wild-type sequences obtained from the AF110965 and AF110967 strains of HIV-1, subtype C. (see, for example, Korber et al. (1998) *Human Retroviruses and Aids*, Los Alamos, New Mexico: Los Alamos National Laboratory; Novitsky et al. (1999) *J. Virol.* 73(5):4427-4432, for molecular cloning of various subtype C clones from Botswana). Gag sequence obtained from other Type C HIV-1 variants may be manipulated in similar fashion following the teachings of the present specification. Such other variants include, but are not limited to, Gag protein encoding sequences obtained from the isolates of HIV-1 Type C, for example as described in Novitsky et al., (1999), *supra*; Myers et al., *infra*; Virology, 3rd Edition (W.K. Joklik ed. 1988); *Fundamental Virology*, 2nd Edition (B.N. Fields and D.M. Knipe, eds. 1991); *Virology*, 3rd Edition (Fields, BN, DM Knipe, PM Howley, Editors, 1996, Lippincott-Raven, Philadelphia, PA and on the World Wide Web (Internet), for example at <http://hiv-web.lanl.gov/cgi-bin/hivDB3/public/wdb/ssampublic> and <http://hiv-web.lanl.gov>.--

Please amend the paragraph beginning on page 69, line 1 as follows:

--Furthermore selected B- and/or T-cell epitopes can be added to the Gag-polymerase constructs within the deletions of the RT- and INT-coding sequence to replace and augment any epitopes deleted by the functional modifications of RT and INT. Alternately, selected B- and T-cell epitopes (including CTL epitopes) from RT and INT can be included in a minimal VLP formed by expression of the synthetic Gag or synthetic GagProt cassette, described above. (For descriptions of known HIV B- and T-cell epitopes see, HIV Molecular Immunology Database CTL Search Interface; Los Alamos Sequence Compendia, 1987-1997; available on the Internet, address: <http://hiv-web.lanl.gov/immunology/index.html>).--

Please amend the paragraph beginning on line 5 of page 70 as follows:

--To construct a DHFR cassette, the EMCV IRES (internal ribosome entry site) leader was PCR-amplified from pCite-4a+ (Novagen, Inc., Milwaukee, WI) and inserted into pET-23d (Novagen, Inc., Milwaukee, WI) as an *Xba-Nco* fragment to give pET-EMCV. The *dhfr* gene was PCR-amplified from pESN2dhfr to give a product with a Gly-Gly-Gly-Ser (SEQ ID NO:30) spacer in place of the translation stop codon and inserted as an *Nco-BamH1* fragment to give pET-E-DHFR. Next, the attenuated *neo* gene was PCR amplified from a pSV2Neo (Clontech, Palo Alto, CA) derivative and inserted into the unique *BamH1* site of pET-E-DHFR to give pET-

USSN 09/475,704
PP01631.002
2302-1631

E-DHFR/Neo_(m2). Finally the bovine growth hormone terminator from pCDNA3 (Invitrogen, Inc., Carlsbad, CA) was inserted downstream of the *neo* gene to give pET-E-DHFR/Neo_(m2)BGHt. The EMCV-*dhfr/neo* selectable marker cassette fragment was prepared by cleavage of pET-E-DHFR/Neo_(m2)BGHt.--