

DISCIPLINA: Banco de Dados 1

Prof. GIOVANI Volnei Meinerz

Aula 06 - Modelo Relacional

Objetivos da Aula

- Modelo de Dados
- Tipos de Modelos de Dados
- Aprofundando na Abordagem Relacional
- Blocos Básicos do Modelo Relacional
- Terminologias
- Características das Tabelas
- → Chaves

Modelo de Dados

→ O que é?

Abstração de um objeto ou evento da realidade

 Descrição formal (normalmente gráfica) da estrutura que armazenará os dados do usuário final

Modelo de Dados (cont.)

→ Finalidade

 Auxiliar na compreensão das complexidades de um problema específico de um determinado domínio de negócio

 Permitir a representação das estruturas de dados e suas características, relações e restrições

Modelo de Dados (cont.)

- Características gerais
 - → A modelagem de dados é um processo iterativo e progressivo
 - → Inicia-se com uma compreensão simples
 - → Posteriormente, amplia-se o nível de detalhes do modelo
 - Contém todas as instruções para a criação (física) de um banco de dados que atenda as necessidades do usuário final
 - Facilita a interação e a comunicação entre o projetista, o programador de aplicação e o usuário final

Tipos de Modelos de Dados

Abordagem Hierárquica

Abordagem em Rede

Abordagem Orientada a Objetos

→ Abordagem *NoSQL*

Abordagem Relacional

Abordagem Hierárquica

- Desenvolvida na década de 1960 para gerenciar grandes quantidades de dados
 - → Foguete Apollo, que aterrissou na Lua em 1969

Utilizada pelo IBM IMS (<u>link</u>)

- > Estrutura lógica organizada na forma de árvore
 - Estrutura top down

Abordagem Hierárquica (cont.)

- Estrutura contém níveis de segmentos
- Somente relacionamentos 1:M
- Implementação e manutenção complexa

Abordagem em Rede

- > Representa uma evolução da abordagem hierárquica
 - Melhora o desempenho dos bancos de dados
 - Impõe um padrão

- → Criado o DBTG (Database Task Group, o Grupo de Trabalho sobre Bancos de Dados)
 - → Encarregado de definir especificações-padrão para promover um ambiente que padronizasse a criação de um banco de dados sob essa abordagem
 - → CODASYL DBTG 1971 primeiro relatório contendo especificações padrão para a modelagem de um banco de dados em rede

Abordagem em Rede (cont.)

- → Um nó-filho pode estar vinculado a vários nós-pais (M:N)
- → Percurso não se inicia sempre no mesmo ponto (não existe mais "raiz")
- → Relacionamento é chamado de conjunto

Abordagem Orientada a Objetos

→ Incorpora conceitos do paradigma da Orientação a Objetos

Dados residem em objetos, que possuem métodos e propriedades

Objetos se relacionam via composição ou herança

- → Tentativa de uso pelo Jasmin, da CA
 - > Não evoluiu, por questões de baixo desempenho

Abordagem Orientada a Objetos (cont.)

→ Os modelos de dados orientados a objetos são representados por diagramas de classe em UML (*Unified Modeling Language*, ou seja, Linguagem de Modelagem Unificada)

Abordagem NoSQL

→ Significa not only SQL

Proposta em 1998

→ Uso motivado por startups que não dispunham de recursos para investir em grandes SGBDs

> Representa uma alternativa à abordagem relacional

→ Foco no armazenamento no grande volume de dados, escalabilidade, disponibilidade, desempenho

Abordagem NoSQL (cont.)

→ Modelos *NoSQL*, subdivididos pela forma como armazenam os dados

Orientados a	Característica	SGBD
Grafos	Armazena os dados nos nós do grafo (vértices). As arestas guardam o relacionamento existente entre os nós	Neo4j Infinite Graph ArangoDB
Documentos	Armazena coleções de documentos (atributos e valores). Não possui esquema (conjunto de atributos/valores de documento A # B)	MongoDB CouchDB DocumentDB
Colunas	Armazenamento dos dados respeita uma indexação tripla (linha, coluna e timestamp). Linhas e colunas identificadas por chaves. Timestamp permite diferenciar versões	Cassandra Bigtable Hypertable
Chave-valor	Armazena quaisquer valores indexados por uma chave. Valores podem ser recuperados a partir de suas chaves	DynamoDB Redis

Tipos de Modelos de Dados (cont.)

→ Vantagens e desvantagens dos 4 tipos de modelos anteriores serão objeto de questão em lista de exercício

Abordagem Relacional

- → Proposta por *E. F. Codd* em 1970
- → Consiste de uma coleção de tabelas, com nome exclusivo

Abordagem Relacional (cont.)

- → A simplicidade conceitual do modelo relacional é conseguida à custa da sobrecarga do computador
- → A partir de 1980, modelo foi implantado em diversos sistemas comerciais
- Principal modelo de dados para o desenvolvimento de aplicações de armazenamento e processamento de dados
 - Abordagem amplamente utilizada (link)
- → Redundâncias são resolvidas via Normalização, ainda que as custas de perda de desempenho
- → Dispõe de uma poderosa linguagem de consulta

Blocos Básicos do Modelo Relacional

> Também conhecidos como componentes e/ou elementos

- → Entidades
- Atributos
- → Relacionamentos
- → Restrições

Entidades

- → Algo sobre o qual serão coletados e armazenados dados
 - Pessoa
 - → Local
 - Objeto
 - Evento
- Representa um tipo particular de algo do mundo real
 - → CLIENTE
 - → FATURA
 - → PINTOR
 - → PINTURA
 - → ALUNO
 - → DISCIPLINA

Atributos

- Características de uma entidade
- Propriedades descritivas de uma entidade

Exemplo

- → CLIENTES
 - Nome
 - → Sobrenome
 - → Telefone
 - Endereço
 - Limite de crédito

→ Relacionamentos

- Descrevem uma associação entre as entidades
- 3 tipos
 - → 1:1 (um-para-um)
 - 1:M (um-para-muitos)
 - M:N (muitos-para-muitos)

→ Exemplo

- Uma LOJA é gerenciada por um único FUNCIONARIO e um FUNCIONARIO pode gerenciar apenas uma LOJA (1:1)
- Um PINTOR faz várias PINTURAS, mas cada uma é criada por apenas um artista (PINTOR) (1:M)
- → Um ALUNO pode matricular-se em várias disciplinas e uma DISCIPLINA pode ter vários alunos nela matriculados (M:N)

- → Restrições
 - Limitação imposta aos dados
 - Ajudam a assegurar a integridade dos dados
 - Expressas na forma de regras
 - → "O salário de um funcionário possui valores entre 6.000 e 350.000"
 - → "A média da nota de um aluno deve estar entre 0,0 e 10,0"
 - → "Cada turma deve ter um e somente um professor"

Terminologias

Características das Tabelas

Consideremos a seguinte modelagem

Características das Tabelas (cont.)

- A tabela é vista como uma estrutura bidimensional composta de linhas e colunas
- → Cada linha é composta por um conjunto de campos
- → Cada coluna representa um atributo, identificado por um nome (no cabeçalho da tabela)
- Cada intersecção entre linha e coluna representa um único valor (monovalorado)

	DEP_CODIGO	DEP_NOME
•	1	Departamento Acadêmico de Mecânica
	2	Departamento Acadêmico de Computação
	3	Departamento Acadêmico de Elétrica
	4	Departamento de Matemática
*	NULL	NULL

Características das Tabelas (cont.)

- Todos os valores em uma coluna devem se adequar a um mesmo formato
- → A ordem das linhas e das colunas é insignificante para o SGBD
- → Cada tabela deve apresentar um atributo ou combinação de atributos que identifique cada linha exclusivamente

	TUR_CODIGO	TUR_ANO	TUR_SEMESTRE	DIS_CODIGO	PRO_SIAPE	SAL_CODIGO
•	A11	2015	1	IF31X	111	I204
	A11	2015	2	IF31X	333	I204
	B22	2015	2	IF45Y	444	I204
	B22	2016	1	IF45Y	444	I204
	C33	2015	1	IF76Z	555	P221
	C33	2015	2	IF76Z	555	P221

Chaves

- → No modelo relacional, as chaves são importantes, pois sua utilização garante que cada linha (tupla) da tabela seja exclusiva
- → Em outras palavras, nenhum par de tuplas em uma tabela pode ter o mesmo valor para todos os atributos que compõe a chave

	TUR_CODIGO	TUR_ANO	TUR_SEMESTRE	DIS_CODIGO	PRO_SIAPE	SAL_CODIGO
•	A11	2015	1	IF31X	111	I204
	A11	2015	2	IF31X	333	I204
	B22	2015	2	IF45Y	444	I204
	B22	2016	1	IF45Y	444	I204
	C33	2015	1	IF76Z	555	P221
	C33	2015	2	IF76Z	555	P221

Chaves (cont.)

TIPO DE CHAVE	DEFINIÇÃO
Superchave	Atributo (ou combinação de atributos) que identifica exclusivamente cada linha de uma tabela
Chave candidata (alternativa)	Superchave sem atributos desnecessários
Chave primária	Chave candidata escolhida pelo projetista para identificar exclusivamente linhas dentro de uma tabela. Não pode conter entradas nulas
Chave estrangeira	Atributo (ou combinação de atributos) cujos valores correspondem aos da chave primária na tabela relacionada
Chave composta	Uma chave com vários atributos
Atributo de chave	Qualquer atributo que faça parte de uma chave

Chaves (cont.)

→ Onde estão as chaves primárias e estrangeira(s)?

	PRO_SIAPE	PRO_NOME	PRO_SALARIO	PRO_TEL_RESIDENCIAL_DDD	PRO_TEL_RESIDENCIAL_NRO	DEP_CODIGO
•	111	Hanka	60000.00	43	35239000	1
	222	Tilo	65000.00	NULL	NULL	2
	333	Ekkehart	55000.00	11	754210000	3

l		DEP_CODIGO	DEP_NOME
	•	1	Departamento Acadêmico de Mecânica
		2	Departamento Acadêmico de Computação
		3	Departamento Acadêmico de Elétrica
		4	Departamento de Matemática
	*	NULL	HULL

Chaves (cont.)

→ Há chave composta no modelo a seguir?

→ Se sim, quais são os atributos de chave?

Identificando Atributos Chave

A partir da regra de negócio, foi possível identificar os atributos (em verde)

IDENTIFICADOR	DESCRIÇÃO
RN01	Possibilitar o armazenamento de dados dos professores . Um professor possui uma identificação exclusiva , além de nome , endereços e telefones (ambos atributos obrigatórios). Um professor pode estar vinculado a um departamento, não obrigatoriamente, enquanto à um departamento, vários professores (ao menos um) podem estar vinculados.
RN02	•••

- Agora, é possível definir a chave primária
 - Qual é o atributo a compor a chave primária?
 - Um único atributo garantirá a restrição de integridade de chave?

Definindo a Chave Primária

- Para a tabela PROFESSOR, uma chave primária simples garantirá a restrição de integridade de chave
- → Na notação *Chen*, por meio do brModelo, basta definir o atributo chave como identificador. A elipse se mostrará preenchida na cor azul

Definindo a Chave Primária (cont.)

→ Na notação **Pé de Galinha**, por meio do *Workbench*, basta definir o atributo chave como **PK**. Este, passará a ser precedido por uma representação gráfica na forma de chave (em amarelo)

Resumo da Aula

DISCIPLINA: Banco de Dados 1

Prof. **GIOVANI** Volnei Meinerz

Aula 06 - Modelo Relacional