Homework 2

Problem 13.4 Let P be a partition $P = \{t_0, \dots, t_n\}$ such that the ratio $r = t_i/t_{i-1}$ is equal for $1 \le i \le n$. Then we have

$$t_i = a\left(c\right)^{\frac{i}{n}}.$$

for c = b/a.

Proof. Note that

$$\frac{b}{a} = \frac{t_n}{t_0} = \frac{t_n}{t_{n-1}} \cdot \frac{t_{n-1}}{t_{n-2}} \cdot \dots \cdot \frac{t_1}{t_0} = r^n$$

so $r = (b/a)^{1/n} = c^{1/n}$. In a similar fashion,

$$\frac{t_i}{a} = r^i$$

so

$$t_i = ar^i = a\left(c\right)^{\frac{i}{n}}.$$

If $f(x) = x^p$ then show

$$U(f,P) = (b^{p+1} - a^{p+1})c^{p/n} \cdot \frac{1}{1 + c^{1/n} + \dots + c^{p/n}}$$

and find a similar statement about L(f, P).

Proof. We have

$$U(f,P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1})$$

$$= \sum_{i=1}^{n} \left(ac^{i/n} \right)^p \left(ac^{i/n} - ac^{(i-1)/n} \right)$$

$$= a^{p+1} (1 - c^{-1/n}) \sum_{i=1}^{n} \left(c^{(p+1)/n} \right)^i$$

$$= a^{p+1} (1 - c^{-1/n}) c^{(p+1)/n} \sum_{i=0}^{n-1} \left(c^{(p+1)/n} \right)^i$$

$$= a^{p+1} (1 - c^{-1/n}) c^{(p+1)/n} \frac{1 - c^{p+1}}{1 - c^{(p+1)/n}}$$

$$= a^{p+1} (1 - c^{(p+1)}) c^{(p+1)/n} \frac{1 - c^{-1/n}}{1 - c^{(p+1)/n}}$$

$$= (a^{p+1} - b^{(p+1)}) c^{(p+1)/n} \frac{1 - c^{-1/n}}{1 - c^{(p+1)/n}}$$

$$= (a^{p+1} - b^{(p+1)}) c^{p/n} \frac{c^{1/n} - 1}{1 - c^{(p+1)/n}}$$

$$= (b^{p+1} - a^{p+1}) c^{p/n} \frac{1}{1 + c^{1/n} + \dots + c^{p/n}}.$$

A similar proofs shows that

$$L(f,P) = (b^{p+1} - a^{p+1}) \frac{1}{1 + c^{1/n} + \dots + c^{p/n}}.$$

Show that

$$\int_{a}^{b} x^{p} dx = \frac{b^{p+1} - a^{p+1}}{p+1}.$$

Proof. We take

$$\lim_{n \to \infty} (b^{p+1} - a^{p+1}) c^{p/n} \frac{1}{1 + c^{1/n} + \dots + c^{p/n}} = \frac{b^{p+1} - a^{p+1}}{p+1}$$

because $\lim_{n\to\infty} c^{i/n} = 1$.

Problem 13.11 Which functions have the property that every lower sum equals every upper sum?

Proof. We have

$$\sum_{i=1}^{n} m_i(t_i - t_{i-1}) = \sum_{i=1}^{n} M_i(t_i - t_{i-1})$$

and so $m_i = M_i$ for all $1 \le i \le n$ regardless of our partition. But then f must be constant on [a; b].

Which functions have the property that some upper some equals some other lower sum?

Proof. Let P_1 and P_2 be partitions on [a;b]. Then if $L(f,P_1)=U(f,P_2)$ and P contains both P_1 and P_2 then we have $L(f,P_1) \leq L(f,P) \leq U(f,P) \leq U(f,P_2) = L(f,P_1)$ so L(f,P) = U(f,P) which means f is constant again.

Which continuous functions have the property that all lowers sums are equal?

Proof. Only constant functions again. If not, then we can choose a minimum value, m, on [a;b] and take a partition such that f is greater than m on some interval. Then the lower sum will be greater than m(b-a) but if we just use one interval then L(f, [a;b]) = m(b-a).

Which integrable functions have the property that all lower sums are equal?

Proof. Problem 13.30 shows that f is continuous at infinitely many points on [a;b] which means that we can use the above proof to show that f must be constant everywhere.

Problem 13.15 Show

$$\int_{1}^{a} \frac{1}{t} dt + \int_{1}^{b} \frac{1}{t} dt = \int_{1}^{ab} \frac{1}{t} dt.$$

Proof. Let $P = \{t_0, \ldots, t_n\}$ be a partition of [1, a]. We have $b\inf\{1/t \mid t_{i-1} \le x \le t_i\} = \inf\{1/t \mid bt_{i-1} \le x \le bt_i\}$. Let P' and m'_i correspond to the second inf. Then

$$L(f, P') = \sum_{i=1}^{n} m'_{i}(bt_{i} - bt_{i-1}) = \sum_{i=1}^{n} bm'_{i}(t_{i} - t_{i-1}) = \sum_{i=1}^{n} m_{i}(t_{i} - t_{i-1}) = L(f, P).$$

Thus the interval [1; a] has been mapped to the interval [b; ab] but since f(t) = 1/t we still have

$$\int_1^a \frac{1}{t} dt = \int_b^{ab} \frac{1}{t} dt.$$

But then

$$\int_{1}^{a} \frac{1}{t} dt + \int_{1}^{b} \frac{1}{t} dt = \int_{1}^{b} \frac{1}{t} dt + \int_{b}^{ab} \frac{1}{t} dt = \int_{1}^{ab} \frac{1}{t} dt.$$

Problem 13.27 Let f be integrable on [a;b]. Then for all $\varepsilon > 0$ there exists continuous functions $g \le f \le h$ with

$$\int_{a}^{b} h - \int_{a}^{b} g < \varepsilon.$$

Proof. Let $P = \{t_0, \dots, t_n\}$ be a partition of [a; b] and let $\varepsilon > 0$. First create step functions on [a; b] where the value of each function on the ith interval equals m_i or M_i respectively. Then the integral for each step function is just the lower and upper sum for f, the difference of which we know is less than ε . Now connect the step functions by making a line from $f(t_{i-1})$ to m_i at some value in $[t_{i-1}; t_i]$ so that a triangle is formed. Do this for the upper step function as well. The area of one of these triangles is $1/2(m_i - m_{i-1})(b_i)$ where b_i is the necessary value on $[t_{i-1}; t_i]$. But since there are a finite number of intervals we can take b_i small enough such that

$$frac12\sum_{i=1}^{n}(M_{i}-M_{i-1})B_{i}-frac12\sum_{i=1}^{n}(m_{i}-m_{i-1})b_{i}<\varepsilon-U(f,P)+L(f,P).$$

Problem 13.30 Let $P = \{t_0, \ldots, t_n\}$ be a partition of [a; b] with U(f, P) - L(f, P) < b - a. Show that for some i we have $M_i - m_i < 1$.

Proof. Note that

$$1 > \frac{U(f,P) - L(f,P)}{b-a} = \frac{\sum_{i=1}^{n} M_i(t_i - t_{i-1}) - \sum_{i=1}^{n} m_i(t_i - t_{i-1})}{b-a} = \frac{(b-a)\left(\sum_{i=1}^{n} M_i - \sum_{i=1}^{n} m_i\right)}{b-a} = \sum_{i=1}^{n} M_i - \sum_{i=1}^{n} m_i$$

and so there must exists i such that $M_i - m_i < 1$.

Show that there are numbers a_1 and b_1 such that $a < a_1 < b_1 < b$ and $\sup\{f(x) \mid a_1 \le x \le b_1\} - \inf\{f(x) \mid a_1 \le x \le b_1\} < 1$.

Proof. From before we know there exists i such that $M_i - m_i < 1$. But then if we let $[a_1; b_1] = [t_{i-1}; t_i]$ we're done so long as $i \neq 1$ and $i \neq n$. In the case where i = 1 we have $a_1 \in [a; b_1]$ and we already know that since $[a; a_1] \subseteq [a; b_1]$ we have $\sup\{f(x) \mid a_1 \leq x \leq b_1\} \leq \sup\{f(x) \mid a \leq x \leq b_1\}$ and a similar statement holds for inf and in the case where i = n.

Show that there are numbers a_2 and b_2 with $a_1 < a_2 < b_2 < b_1$ and $\sup\{f(x) \mid a_2 \le x \le b_2\} - \inf\{f(x) \mid a_2 \le x \le b_2\} < 1/2$.

Proof. Choose a partition P of $[a_1; b_1]$ such that $U(f; P) - L(f, P) < (b_1 - a_1)/2$. Then $M_i - m_i < 1/2$ for some i. Choose $[a_2; b_2] = [t_{i-1}; t_i]$ unless i = 1 or i = n in which case we use a similar method as above. \square

Find a sequence of intervals $I_n = [a_n; b_n]$ such that $\sup\{f(x) \mid x \in I_n\} - \inf\{f(x) \mid x \in I_n\} < 1/n$.

Proof. Let $x \in I_n$ for all n. We know x exists from the Nested Interval Theorem. Then $x \neq a_n$ and $x \neq b_n$ for all n because $x \in [a_{n+1}; b_{n+1}]$ and $a_n < a_{n+1} < b_{n+1} < b_n$. For $\varepsilon > 0$ there exists some n such that $1/n < \varepsilon$ and so there exists n such that

$$\sup\{f(x) \mid x \in I_n\} - \inf\{f(x) \mid x \in I_n\} < \varepsilon/2.$$

Thus if $\delta = \min(x - a_n, x - b_n)$ then for all $y \in [a; b]$ with $|x - y| < \delta$ we have $|f(x) - f(y)| < \varepsilon$.

Show that f is continuous at infinitely many points in [a; b].

Proof. We have f is continuous at some point for every interval contained in [a; b] since f is integrable on each interval. There are infinitely many of these.

Problem 13.39 Let f and g be integrable on [a; b]. Show

$$\left(\int_{a}^{b} fg\right)^{2} \leq \left(\int_{a}^{b} f^{2}\right) \left(\int_{a}^{b} g^{2}\right).$$

Proof. Note that for all $c \in \mathbb{R}$ we have

$$0 \le \int_a^b (f - cg)^2 = c^2 \int_a^b g^2 - 2c \int_a^b fg + \int_a^b f^2$$

and from the quadratic formula we have

$$4\left(\int_a^b f^2\right)\left(\int_a^b g^2\right) \ge 4\left(\int_a^b fg\right)^2.$$

Problem 14.7 Find all continuous functions f such that

$$\int_0^x f = (f(x))^2 + C$$

for some constant C.

Proof. If we differentiate f^2 we have f(x) = 2f(x)f'(x) which means that for all $x \neq 0$ we have f'(x) = 0 for the equality to hold. Then f is constant on intervals where f is nonzero and since f is continuous it must be constant everywhere. Thus for all x we have

$$\int_0^x c = c^2 + C$$

so $cx = c^2 + C$ which can only be true if c = 0.