FinRipple: Aligning Large Language Models with Financial Market for Event Ripple Effect Awareness

Yuanjian Xu¹, Jianing Hao¹, Kunsheng Tang², Jingnan Chen¹, Anxian Liu¹, Peng Liu¹, Guang Zhang¹

¹ The Hong Kong University of Science and Technology (Guangzhou)

² University of Science and Technology of China Email: {yxu085, jhao768}@connect.hkust-gz.edu.cn

INTRODUCTION

Background

- Traditional methods use static single-company analysis, missing crossentity ripple effects.
- LLMs lack market structure awareness and cannot model dynamic inter-company relationships essential for ripple effect analysis.

Contributions

- FinRipple first formulates the "ripple effect prediction" task and provides an open-source benchmark with unified evaluation standards.
- The framework integrates classical asset pricing theory with LLMs, achieving strong performance in excess return prediction with high interpretability.
- Rigorous validation demonstrates real-world applicability in asset pricing and portfolio management, with transparent reasoning pathways for causal relationships.

FinRipple

The propagator $\Phi_{e_t, heta}$ maps event-context pairs to forward shock distributions $\Phi_{e_t, heta}$:

 $\mathcal{R}(Z,\,\epsilon) = \underbrace{\frac{Z\cdot\epsilon}{\|Z\|\|\epsilon\|}}_{ ext{direction match}} + \lambda \underbrace{\frac{\sum_{j=1}^{|\mathcal{C}_{t+\Delta t}|}\min(|Z_j|,|\epsilon_j|)}{\|\epsilon\|_1}}_{ ext{magnitude coverage}}$

 \mathcal{C}_t captures the universe of public firms $\ \mathcal{E}_t$ captures the event space

Event-Context

Shock Magnitudes

ANALYSIS

Reward function:

Model	RAG			Zero-Shot			ICL			FinRipple/w-o alignment			FinRipple		
	Coef.	p-value	\mathbf{R}^2	Coef.	p-value	\mathbf{R}^2	Coef.	p-value	\mathbf{R}^2	Coef.	p-value	\mathbf{R}^2	Coef.	p-value	\mathbf{R}^2
llama2-7b-chat	0.012	0.452	0.009	0.031	0.601	0.012	0.042	0.503	0.018	0.047	0.510	0.019	0.150*	0.030	0.083
llama2-13b-chat	0.103	0.305	0.054	0.079	0.349	0.039	0.098	0.281	0.061	0.102	0.287	0.058	0.242**	0.009	0.193
llama3-8b-instruct	0.091	0.318	0.047	0.072	0.402	0.037	0.107	0.254	0.058	0.110	0.249	0.060	0.278**	0.004	0.251
vicuna-7b-chat	0.118	0.247	0.063	0.102	0.298	0.052	0.129	0.198	0.081	0.125	0.205	0.074	0.330***	0.001	0.310
vicuna-13b-chat	0.248*	0.032	0.248	0.148	0.149	0.082	0.176	0.098	0.102	0.171*	0.040	0.108	0.395***	0.000	0.340
Phi-3.5-mini-instruct	0.082	0.395	0.032	0.065	0.498	0.019	0.094	0.347	0.052	0.096	0.340	0.045	0.245**	0.006	0.155
gemma-2-9b-it	0.097	0.298	0.048	0.083	0.354	0.038	0.112	0.245	0.063	0.109	0.252	0.061	0.290***	0.001	0.215
GPT 3.5	0.083	0.398	0.028	0.062	0.051	0.075	0.056**	0.004	0.112	/	/	/	/	1	/
GPT o1-preview	0.152	0.342	0.047	0.119	0.392	0.056	0.192	0.229	0.082	/	/	/	/	/	1
GPT 4o-mini	0.124	0.312	0.042	0.312*	0.013	0.035	0.104	0.879	0.103	/	/	/	/	1	/

Financial Market Shocks

Portofolio Management

Knowledge Inject Analysis

Refusal-to-Answer Rate

Case Study

CONCLUSION

We present FinRipple, a novel training framework that empowers LLMs to analyze and predict the ripple effects of sudden events in financial markets. By constructing a timevarying financial KG and integrating it into the LLM using adapters, we align the model with the dynamic market structure without retraining from scratch. Our rigorous validation showcases FinRipple's strong potential in real-world applications like asset pricing and portfolio construction.