Linear Differential Equation with constant coefficient

- Sanjay Singh
- Research Scholar
- UPTU, Lucknow

The *n*th order linear differential equation with constant coefficient

The Differential Equation of the form

$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = Q$$

Example

$$\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 2y = \sin 5x$$

If
$$\frac{d}{dx} = D$$

$$F(D)y = Q$$

Where
$$F(D) = a_o D^n + a_1 D^{n-1} + a_2 D^{n-2} + \dots + a_{n-1} D + a_n$$

Example
$$\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 2y = \sin 5x$$
$$\Rightarrow (D^3y + 3D^2y - 6Dy + 2y) = \sin 5x$$
$$\Rightarrow (D^3 + 3D^2 - 6D + 2)y = \sin 5x$$
$$\Rightarrow F(D)y = \sin 5x$$
$$\Rightarrow F(D)y = \sin 5x$$
$$\therefore F(D) = (D^3 + 3D^2 - 6D + 2)$$

Auxiliary Equation(A.E.)

Suppose L.D.E. is
$$F(D)y = Q$$

 $A.E.$ is $F(m) = 0$
 OR $a_o m^n + a_1 m^{n-1} + a_2 m^{n-2} + \dots + a_{n-1} m + a_n = 0$
 $Example$ $\frac{d^3 y}{dx^3} + 3 \frac{d^2 y}{dx^2} - 6 \frac{dy}{dx} + 2y = \sin 5x$
 $\Rightarrow (D^3 + 3D^2 - 6D + 2)y = \sin 5x \Rightarrow F(D)y = \sin 5x$
 $\therefore F(D) = (D^3 + 3D^2 - 6D + 2)$
 $\therefore F(D) = (D^3 + 3D^2 - 6D + 2)$
 $\therefore F(D) = (D^3 + 3D^2 - 6D + 2)$
 $\therefore F(D) = (D^3 + 3D^2 - 6D + 2)$

Complementary Function (C.F.) of L.D.E.

A function of 'x' which satisfies the L.D.E F(D)y = 0 is known as complementary function of L.D.E.

Particular Integral (P.I.) of L.D.E.

A function of 'x' which satisfies the L.D.E. F(D)y = Q is known as particular integral of L.D.E.

General Solution of L.D.E.

The general solution of L.D.E F(D)y = Q is given by

$$y = C.F. + P.I$$

General Solution of L.D.E.

Suppose L.D.E. is F(D)y=Q

Complete Solution:

Where

$$y = C.F + P.I$$
 $C.F \longrightarrow Complementary Function$

P.I --> Particular Integral

Complementary Function

A function of 'x' which satisfies the L.D.E F(D)y = 0

is known as complementary function of L.D.E.

Determination of C.F.

- Consider the L.D.E. F(D)y = 0
- Write A.E. of L.D.E. F(m) = 0

$$\Rightarrow a_0 m^n + a_1 m^{n-1} + a_2 m^{n-2} + \dots + a_{n-1} m + a_n = 0$$

- Solve A.E.
- Suppose $m_1, m_2, m_3, \dots, m_n$ are the 'n' roots of the auxiliary equation.

Case I: (Roots are real)

W If
$$m_1, m_2, m_3, \dots, m_n$$
 are distinct
then $C.F = c_1 e^{m_1 x} + c_2 e^{m_2 x} + c_3 e^{m_3 x} + \dots + c_n e^{m_n x}$

Determination of C.F.

#

Consider the L.D.E. F(D)y = Q

Write A.E. of L.D.E.
$$F(m) = 0$$

i.e.
$$a_0 m^n + a_1 m^{n-1} + a_2 m^{n-2} + \dots + a_{n-1} m + a_n = 0$$

Solve A.E. Suppose $m_1, m_2, m_3, \ldots, m_n$ are the 'n' roots of the auxiliary equation.

Case I: (Roots are real)

If
$$m_1^{\mu}$$
, m_2 , m_3 ,, m_n are arbitation then then $C.F = c_1 e^{m_1 x} + c_2 e^{m_2 x} + c_3 e^{m_3 x} + \dots + c_n e^{m_n x}$

If
$$m_1 = m_2 = k(say)$$
 and m_3, m_{4, \dots, m_n} are distinct then
$$C.F = (c_1 + c_2 x)e^{kx} + c_3 e^{m_3 x} + c_4 e^{m_4 x} + \cdots + c_n e^{m_n x}$$

If
$$m_1 = m_2 = m_3 = k(say)$$
 and m_4, m_5, \dots, m_n are distinct then
$$C.F = (c_1 + c_2 x + c_3 x^2)e^{kx} + c_4 e^{m_4 x} + c_5 e^{m_5 x} + \cdots + c_n e^{m_n x}$$

If
$$m_1 = \alpha + \sqrt{\beta} \ m_2 = \alpha - \sqrt{\beta} \ and \ m_3, m_4, \dots, m_n$$
 are distinct then
$$C.F = e^{\alpha x} (c_1 \cosh \beta x + c_2 \sinh \beta x) + c_3 e^{m_3 x} + c_4 e^{m_4 x} + c_8 e^{m_n x}$$

If
$$m_1 = m_2 = \alpha + \sqrt{\beta}$$
, $m_3 = m_4 = \alpha - \sqrt{\beta}$, and m_5, \dots, m_n are distinct then
$$C.F = e^{\alpha x} [(c_1 + c_2 x) \cosh \beta x + (c_3 + c_4 x) \sinh \beta x)] + c_5 e^{m_5 x} + \dots + c_n e^{m_n x}$$

Case II: (Roots are comlex)

If
$$m_1 = \alpha + i\beta$$
, $m_2 = \alpha - i\beta$ and $m_3, m_4, ..., m_n$ are real and distinct then
$$C.F = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x 0 + c_3 e^{m_3 x} + c_4 e^{m_4 x} ... + c_n e^{m_n x}$$

If $m_1 = m_2 = \alpha + i\beta$, $m_3 = m_4 = \alpha - i\beta$ and $m_5, ..., m_n$ are real and distinct then $C.F = e^{\alpha x} [(c_1 + xc_2)\cos\beta x + (c_3 + xc_4)\sin\beta x] + c_5 e^{m_3 x} + + c_n e^{m_n x}$

Determination of P.I.

P.I. of L.D.E.
$$F(D)y=Q$$
 is given by $\frac{1}{F(D)}Q$

Thus P.I. =
$$\frac{1}{F(D)}Q$$

Case 1: Swhen
$$Q = e^{ax}$$

$$P.I = \frac{1}{F(D)}e^{ax} = \frac{1}{F(a)}e^{ax}, \ F(a) \neq 0$$

If
$$F(a) = 0$$
 then

$$P.I = \frac{1}{F(D)}e^{ax} = x\frac{1}{F'(a)}e^{ax}, \ F'(a) \neq 0$$

if
$$F'(a) = 0$$
 then

then $P.I. = \frac{1}{F(D)} e^{ax}$, $F(a) = 0$
 $= x \frac{1}{F'(D)} e^{ax}$, $F'(a) = 0$
 $= x^2 \frac{1}{F''(a)} e^{ax}$, $F''(a) \neq 0$

Case II: when $Q = \sin ax \ or \ \cos(ax + b)$

$$P.I = \frac{1}{[F(D)]} Sin(ax+b)$$

$$= \frac{1}{[F(D)]_{D^2 = -a^2}} Sin(ax+b), \quad [F(D)]_{D^2 = -a^2} \neq 0$$

if
$$[F'(D)]_{D^2=-a^2}=0$$

$$P.I = \frac{1}{[F(D)]} Sin(ax+b), \quad [F(D)]_{D^2=-a^2} = 0$$

$$= x \frac{1}{[F'(D)]_{D^2=-a^2}} Sin(ax+b), \quad [F'(D)]_{D^2=-a^2} \neq 0$$

if
$$[F'(D)]_{D^2 = -a^2} = 0$$

$$P.I = \frac{1}{[F(D)]} Sin(ax+b), \quad [F(D)]_{D^2=-a^2} = 0$$

$$= x \frac{1}{[F'(D)]} Sin(ax+b), \quad [F'(D)]_{D^2=-a^2} = 0$$

$$= x^2 \frac{1}{[F''(D)]_{D^2=-a^2}} Sin(ax+b), \quad [F''(D)]_{D^2=-a^2} \neq 0$$

Case III: when $Q = x^m$, m non negative integer

$$P.I = \frac{1}{F(D)} x^{m}$$

$$= \frac{1}{Lowest \operatorname{deg} ree \operatorname{term} [1 \pm \phi(D)]} x^{m}$$

$$= \frac{1}{LDT} [1 \pm \phi(D)]^{-1} (x^{m})$$

Expending $[1 \pm \phi(D)]^{-1}$ by Binomial theorem *P.I.* can be evaluated

Case IV: when
$$Q = e^{ax} V$$

$$P.I = \frac{1}{F(D)} e^{ax} V = e^{ax} \frac{1}{F(D+a)} V$$

Case V: (General Method), Q is any function of 'x'

$$P.I = \frac{1}{F(D)} Q = \frac{1}{\phi(D)(D - \alpha)} Q$$
$$= \frac{1}{\phi(D)} \left[\frac{1}{(D - \alpha)} Q \right]$$
$$= \frac{1}{\phi(D)} e^{\alpha x} \int e^{-\alpha x} Q \, dx$$

Solution: The d.e. is

The A.E. is

Factorizing

The roots are

$$P.I. = \frac{1}{(D^3 - 3D^2 + 4)}e^{2x} = x\frac{1}{3D^2 - 6D}e^{2x}$$
$$= x^2 \frac{1}{(6D - 6)}e^{2x} = \frac{x^2e^{2x}}{6}.$$

Solution: The d.e. is

The a.e. is

Factorizing

The roots are

Solution: The d.e. is

The a.e. is

Factorizing

The roots are

And

Solution: The d.e. is

The a.e. is

Solution: The d.e. is

The a.e. is

Factorizing

The roots of A.E. are

Solution:

Here

But

and

Legendre's Linear Equations

A Legendre's linear differential equation is of the form

where are constants and

This differential equation can be converted into L.D.E with constant coefficient by substitution

and so on

Note: If then Legendre's equation is known as

Cauchy- Euler's equation

7. Solve

Put Then

Simultaneous Linear Differential Equations

The most general form a system of simultaneous linear differential equations containing two dependent variable x, y and the only independent variable t is

.....(1),

where are constants and and are functions of *t* only.

8. Solve:

Solution: The system is

Eleminating 'y' between Equations (1) and (2), we get

It is L.D.E. with constant coefficient.

Solution of eqn(3) is given by

From (1) and (2),

$$(1)+(2) \Rightarrow 2x'-2x+2y = \sin 2t + \cos 2t$$

$$\Rightarrow 2y = \sin 2t + \cos 2t + 2x - 2x'$$

$$= \sin 2t + \cos 2t + 2 \left[e^t (C_1 \cos t + C_2 \sin t) - \frac{1}{2} \cos 2t \right]$$

$$-2 \left[e^t (C_1 \cos t + C_2 \sin t) + e^t (-C_1 \sin t + C_2 \cos t) + \sin 2t \right] \text{ by using (3)}$$

$$= 2e^t \left[C_1 \cos t + C_2 \sin t - C_1 \cos t - C_2 \sin t + C_1 \sin t - C_2 \cos t \right]$$

$$+ \sin 2t + \cos 2t - \cos 2t - 2\sin 2t$$

$$= 2e^t (C_1 \sin t - C_2 \cos t) - \sin 2t$$

:
$$y = e^t (C_1 \sin t - C_2 \cos t) - \frac{1}{2} \sin 2t$$
....(5)

Equations (5) and (6) give complete solution of given simul taneous equations.