Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:41 2021 Program finished at Tue Jun 1 18:49:26 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3770262112

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	S	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	S	*	s	0	0	0	0	0	0	0	0	0
3 PortRen	0	S	*	s	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	s	*	S	0	0	0	0	0	0	0
5 BodegaH	0	0	0	s	*	S	0	0	0	0	0	0
6 Davenpo	0	0	0	0	S	*	S	0	0	0	0	0
7 VistaDe	0	0	0	0	0	S	*	s	0	0	0	0
8 HazardR	0	0	0	0	0	0	S	*	S	0	0	0
9 Refugio	0	0	0	0	0	0	0	s	*	s	0	0
10 Carpint	0	0	0	0	0	0	0	0	s	*	s	0

11 WhitePo	0	0	0	0	0	0	0	0	0	s	*	s	
12 LaJolla	0	0	0	0	0	0	0	0	0	0	s	*	
Order of param	eters:												
1	Θ_1							lispla					
2	Θ_2						<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
3	Θ_3						<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
4	Θ_4							lispla					
5	Θ_5							lispla					
6	Θ_6							lispla					
7	Θ_7							lispla					
8	Θ_8							lispla					
9	Θ_9							lispla					
10	Θ_{10}							lispla					
11	Θ_{11}							lispla					
12	Θ_{12}				_			lispla	-				
13	$ V _{2->1}$	=	M				<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
24	$M_{1->2}$	=	M	2-/	₁ [s]								
25	M $_{3->2}$	=	M	5 /	₂ [s]		<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
36	M $_{2->3}$	=	M		₂ [s]								
37	M _{4->3}	=	M	4->	₃ [s]		<c< td=""><td>lispla</td><td>ayed:</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed:	>			
48	M 3->4	=	M	4-/	₃ [s]								
49	M 5->4	=	M	5 /	₄ [s]		<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
60	M _{4->5}	=	M		₄ [s]			P 1 -					
61	M 6->5	=	M	6->	₅ [s]	ı	<c< td=""><td>lispla</td><td>ayea</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayea	>			
72	M 5->6	=	M	0-/	_{.5} [s]	ı		l' l .					
73	M 7->6	=	M	/ /	6 [s]	ı	<0	lispla	ayea	>			
84	M 6->7	=	M	1-/	6 [s]	1		امماد	d				
85	M _{8->7}	=	IVI N/I	8->	7 [s]		<0	lispla	ayeu:	>			
96 97	/>0	=	IVI IVI	8->	₇ [s]			liople	avod.				
108	M 9->8	_	IVI	9->	[s] 8	 	<0	lispla	ayeu:				
109	M _{8->9}		IVI	9->	[s] _{8.}	[[<i>ر</i> ر	lispla	אסעי	_			
120	10-29		IVI	10-	[s] [e]	 	<0	uspie	ay C U.				
121	9-210		M	10-	[s] [e]	 	~~	lispla	אפלי	_			
132	11-/1		NΛ	11–	[s] [s]	[[~(iispic	ay c u.				
133	10-/1		NΛ	11-	[s] [s]	 	~^	lispla	aved.	>			
144	12-/1		M	12-	[s] [و]	 	ν.	iiohic	ay C U.				
	IVI _{11->1}	2	171	12-	>1 [s]	I							
Mutation rate am	nong loci:												Mutation rate is constant
Analysis strategy	y:												Bayesian inference
	•												,

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

Print data:

outfile.txt
bayesfile

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03429
1	Θ_2	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03272
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02204
1	Θ_4	0.00001	0.00001	0.01001	0.08001	0.20001	0.09001	0.03333
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02553
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01822
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01001
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01191
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00396
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01745
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01694
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01248
1	M _{2->1}	0.0	10000.0	19000.0	28000.0	40000.0	23000.0	19823.1
1	M _{1->2}	0.0	10000.0	19000.0	28000.0	40000.0	23000.0	19823.1
1	M _{3->2}	2000.0	28000.0	45000.0	54000.0	64000.0	39000.0	36329.0
1	M _{2->3}	2000.0	28000.0	45000.0	54000.0	64000.0	39000.0	36329.0
1	$M_{4->3}$	0.0	2000.0	21000.0	36000.0	48000.0	37000.0	60776.7
1	M _{3->4}	0.0	2000.0	21000.0	36000.0	48000.0	37000.0	60776.7
1	M _{5->4}	6000.0	18000.0	37000.0	44000.0	70000.0	55000.0	63411.1
1	M _{4->5}	6000.0	18000.0	37000.0	44000.0	70000.0	55000.0	63411.1
1	M _{6->5}	0.0	4000.0	21000.0	34000.0	44000.0	31000.0	46372.9
1	M _{5->6}	0.0	4000.0	21000.0	34000.0	44000.0	31000.0	46372.9
1	M _{7->6}	0.0	36000.0	49000.0	58000.0	72000.0	41000.0	38541.5
1	M _{6->7}	0.0	36000.0	49000.0	58000.0	72000.0	41000.0	38541.5
1	M _{8->7}	20000.0	28000.0	43000.0	56000.0	66000.0	53000.0	60023.5
1	M _{7->8}	20000.0	28000.0	43000.0	56000.0	66000.0	53000.0	60023.5
1	M _{9->8}	0.0008	20000.0	33000.0	46000.0	78000.0	43000.0	43256.0
1	M _{8->9}	8000.0	20000.0	33000.0	46000.0	78000.0	43000.0	43256.0
1	M _{10->9}	32000.0	44000.0	59000.0	76000.0	122000.0	71000.0	73697.9
1	M _{9->10}	32000.0	44000.0	59000.0	76000.0	122000.0	71000.0	73697.9
1	M _{11->10}	0.0	0.0	5000.0	14000.0	54000.0	43000.0	44140.7
1	M _{10->11}	0.0	0.0	5000.0	14000.0	54000.0	43000.0	44140.7
1	M _{12->11}	40000.0	48000.0	63000.0	76000.0	84000.0	73000.0	79040.9
1	M _{11->12}	40000.0	48000.0	63000.0	76000.0	84000.0	73000.0	79040.9

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:45:41]

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:45:41]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2244.774139	(1a)
	-2151.004804	(1b)
Harmonic mean	-1888.268859	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	664/4302	0.15435
Θ_2	543/4343	0.12503
Θ_3	1044/4305	0.24251
\mathbf{D}_{A}	670/4404	0.15213
) ₅	938/4313	0.21748
06	886/4491	0.19728
) ₇	1075/4374	0.24577
) ₈	942/4301	0.21902
$\mathbf{O}_{\mathbf{Q}}$	720/4371	0.16472
) ₁₀	1743/4441	0.39248
) ₁₁	1733/4511	0.38417
12	996/4358	0.22855
1 2->1	4392/4392	1.00000
1 1−>2	4392/4392	1.00000
1 3->2	4483/4483	1.00000
1 2->3	4483/4483	1.00000
A _{4->3}	4455/4455	1.00000
1 3->4	4455/4455	1.00000
1 5->4	4344/4344	1.00000
1 4->5	4344/4344	1.00000
1 6->5	4451/4451	1.00000
1 5->6	4451/4451	1.00000
1 7->6	4338/4338	1.00000
1 6->7	4338/4338	1.00000
1 8->7	4527/4527	1.00000
1 7->8	4527/4527	1.00000
1 9->8	4413/4413	1.00000
1 _{8->9}	4413/4413	1.00000
1 _{10->9}	4489/4489	1.00000
1 9->10	4489/4489	1.00000
11->10	4347/4347	1.00000
10->11	4347/4347	1.00000
12->11	4416/4416	1.00000
1 11->12	4416/4416	1.00000
Senealogies	36334/150343	0.24167

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.89663	170.66
Θ_2	0.90713	146.87
Θ_3^2	0.85667	235.48
Θ_4°	0.89204	171.99
) ₅	0.85995	226.27
06	0.87043	209.15
) ₇	0.83238	274.77
) ₈	0.81928	312.36
$\mathbf{p}_{\mathbf{q}}$	0.88487	205.87
Θ_{10}	0.71468	500.48
9 ₁₁	0.72757	475.51
12	0.88446	193.84
M ¹² _{2->1}	0.80392	329.10
1 1−>2	0.80392	329.10
$M_{3->2}$	0.84476	252.86
1 2->3	0.84476	252.86
A 4->3	0.81335	314.97
1 3->4	0.81335	314.97
1 _{5->4}	0.84450	256.15
4->5	0.84450	256.15
1 6->5	0.85372	239.94
1 5->6	0.85372	239.94
1 7->6	0.83153	277.89
1 6->7	0.83153	277.89
1 8->7	0.85418	239.01
1 7->8	0.85418	239.01
1 _{9->8}	0.85224	241.99
A _{8->9}	0.85224	241.99
1 10->9	0.89496	167.26
10->9 1 _{9->10}	0.89496	167.26
11->10	0.82953	282.89
11->10	0.82953	282.89
10->11	0.87179	207.53
A 11->12	0.87179	207.53
n[Prob(D G)]	0.97980	30.71

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run