

+1/1/60+

Université d'Orléans, UFR ST Outils pour la physique 10/10/2025

4 0	4 0	40	\Box 0
			4 1
\square 2	$\square 2$	$\square 2$	$\square 2$
$\square 3$	3	$\square 3$	
$\Box 4$	$\Box 4$	4	
\Box 5	\Box 5		\Box 5
6	6	<u></u> 6	6
7	\square 7	\square 7	\square 7
8	8	8	8

← Codez votre numéro d'étudiant ci-contre et inscrivez votre nom et prénom ci-dessous.

Nom et prénom :	
JUPONT	
Marie	

Cours 1 - 3

 $9 \bigcirc 9 \bigcirc 9 \bigcirc 9$

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions faisant apparaître le symbole & peuvent présenter zéro, une ou plusieurs bonnes réponses. Les autres ont une unique bonne réponse.

1 Les nombres complexes

Question 1 Calculer (1-2i)(3+i).

$$\times$$
 5 + 5i

Question 2 Pour $z = -1 + i\sqrt{3}$, déterminer |z| et un argument principal de z.

$$|z| = \sqrt{2}$$
 et $\arg(z) = \frac{3\pi}{4}$

$$|z| = 2 \text{ et } \arg(z) = -\frac{\pi}{3}$$

$$|z|=2 \text{ et } \arg(z)=\frac{2\pi}{3}$$

$$|z| = 2$$
 et $\arg(z) = \frac{\pi}{3}$

0/1

0/1

	Question 3 Resource dans $C: z^2 + 4z + 13 = 0$.
/1	
	Question 4 Soit $z = 4 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$. Écrire z sous forme algébrique $a + ib$.
/1	$\begin{tabular}{ c c c c }\hline & \sqrt{3} + 4i \\ \hline & 4\sqrt{3} + i \\ \hline & 2\sqrt{3} + 2i \\ \hline & 2 + 2\sqrt{3}i \\ \hline \end{tabular}$
	Question 5 Soit $f:\mathbb{C}\to\mathbb{C},\ f(z)=(1+i)z.$ Quelle est l'interprétation géométrique de f ?
	\triangleright Une translation de vecteur $1+i$
75/4.75	Une similitude directe de centre 0, de rapport $\sqrt{2}$ et d'angle $\frac{\pi}{4}$
.75/4.75	Une symétrie par rapport à l'axe réel Une rotation d'angle $-\frac{\pi}{4}$ sans changement d'échelle
	2 Algèbre linéaire
	Question 6 Soit une application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ de rang 2. Quelle est la dimension de son noyau ker f ?
/1	
	Question 7 Soit $A \in M_3(\mathbb{R})$ de rang 2 (donc $\det(A) = 0$). À propos du système $A\mathbf{x} = \mathbf{b}$, laquelle des affirmations suivantes est vraie ?
	Selon b , il y a soit aucune solution, soit une infinité de solutions; il n'y a jamais de solution unique.
/1	☐ Il y a toujours une unique solution pour tout b .
' -	Il y a toujours une infinité de solutions pour tout b.
	☐ Il n'y a jamais de solution, quel que soit b .

- Elle est liée et de rang 1.
- \mathbf{X} Elle est liée et de rang 2.
- \triangleright Elle est libre et forme une base de \mathbb{R}^3 .
- Elle ne génère aucun sous-espace de \mathbb{R}^3 .

Question 9 Soit $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Quelles sont ses valeurs propres ?

X 2, 3, 1

0/1

1/1

1/1

- 2, 3, -1

Question 10 On effectue sur une matrice A l'opération élémentaire sur les lignes $L_2 \leftarrow L_2 + 2L_1$. Quel est l'effet sur $\det(A)$?

- Le déterminant devient nul.
- Le déterminant est multiplié par 2.
- X Le déterminant change de signe.
- Le déterminant est inchangé.