Relational Algebra

School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Fall 2007

Database Schema Used in Examples

Relational Algebra

- the relational algebra consists of a set of operators
- relational algebra is closed
 - each operator takes as input zero or more relations
 - each operator defines a single output relation in terms of its input relation(s)
 - relational operators can be composed to form expressions that define new relations in terms of existing relations.

Some Relational Operators

R is a relation name and E is a relational algebra expression

Some Relational Operators (cont'd)

- Relation Name: R
- Selection: $\sigma_{condition}(E)$
 - result schema is the same as E's
 - result instance includes a subset of the tuples of E
- Projection: $\pi_{attributes}(E)$
 - result schema includes only the specified attributes
 - result instance would have as many tuples as E, except that duplicates are eliminated

Some Relational Operators (cont'd)

- Rename: $\rho(R(\overline{F}, E))$
 - ullet is a list of terms of the form oldname
 ightarrow newname
 - returns the result of E with columns renamed according to \overline{F} .
 - remembers the result as R for future expressions
- Product: $E_1 \times E_2$
 - result schema has all of the attributes of E_1 and all of the attributes of E_2
 - result instance includes one tuple for every pair of tuples (one from each expression result) in E_1 and E_2
 - sometimes called cross-product or Cartesian product
 - renaming is needed when E_1 and E_2 have common attributes

Cross Product Example

R	
AAA	BBB
a_1	b_1
a.	h.

 $\begin{bmatrix} a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} b_3 \\ b_3 \end{bmatrix}$

 $egin{array}{c|c} S & & & & & \\ \hline CCC & DDD & & & & \\ \hline c_1 & d_1 & & & \\ c_2 & d_2 & & & \\ \hline \end{array}$

$R \times S$

10 / 2			
AAA	BBB	CCC	DDD
a_1	b_1	c_1	d_1
a_2	b_2	c_1	d_1
a_3	b_3	c_1	d_1
a_1	b_1	c_2	d_2
a_2	b_2	c_2	d_2
a_3	b_3	c_2	d_2

Select, Project, Product Examples

- Note: Use *Emp* to mean the Employee relation, *Proj* the project relation
- Find the last names and hire dates of employees who make more than \$100000.

$$\pi_{LastName,HireDate}(\sigma_{Salary>100000}(Emp))$$

• For each project for which department E21 is responsible, find the name of the employee in charge of that project.

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(\sigma_{RespEmp=EmpNo}(Emp \times Proj)))$$

Joins

- Natural join (R ⋈ S) is a very commonly used operator which can be defined in terms of selection, projection, and Cartesian product.
- The result of $R \bowtie S$ can be formed by the following steps
 - $oldsymbol{0}$ form the cross-product of R and S
 - 2 eliminate from the cross product any tuples that do not have matching values for all pairs of attributes common to R and S
 - 3 eliminate any duplicate attributes
- Natural join is special case of equijoin, a common and important operation.

 $Proj \bowtie_{(RespEmp=EmpNo)} Emp$

Example: Natural Join

- Consider the natural join of the Project and Department tables, which have attribute DeptNo in common
 - the schema of the result will include attributes ProjName, DeptNo, RespEmp, MajProj, DeptName, MgrNo, and AdmrDept
 - the resulting relation will include one tuple for each tuple in the Project relation (why?)

Set-Based Relational Operators

- Union $(R \cup S)$:
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear either in R or in S or in both
- Difference (R S):
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear in R and that do not appear in S
- Intersection $(R \cap S)$:
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear in both R and S
- Union Compatible:
 - · Same number of fields.
 - 'Corresponding' fields have the same type

Relational Division

X		
A	В	C
a_1	b_1	c_1
a_1	b_1	c_2
a_1	b_2	c_2
a_2	b_1	c_1
a_2	b_1	c_2
a_2	b_2	c_2
a_3	b_1	c_1

Division is the Inverse of Product

R	
A	
a_1	
a_2	

Algebraic Equivalences

• This:

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(\sigma_{RespEmp=EmpNo}(E\times P)))$$

• is equivalent to this:

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(E \bowtie_{RespEmp=EmpNo} P))$$

• is equivalent to this:

$$\pi_{\textit{ProjNo}, \textit{LastName}}(E \bowtie_{\textit{RespEmp} = \textit{EmpNo}} \sigma_{\textit{DeptNo} = \textit{E21}}(P))$$

• is equivalent to this:

$$\pi_{ProjNo,LastName}($$
 $($ $\pi_{LastName,EmpNo}(E))\bowtie_{RespEmp=EmpNo}($ $($ $\pi_{ProjNo,RespEmp}(\sigma_{DeptNo=E21}(P))))$

• More on this topic later when we discuss database tuning...

Relational Completeness

Definition (Relationally Complete)

A query language that is at least as expressive as relational lagebra is said to be relationally complete.

- The following languages are all relationally complete:
 - safe relational calculus
 - relational algebra
 - SQL
- SQL has additional expressive power because they capture duplicate tuples, unknown values, aggregation, ordering, ...