$12n_{0474} \ (K12n_{0474})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -23u^{13} + 80u^{12} + \dots + 26b - 109, \ 31u^{13} - 92u^{12} + \dots + 78a + 269,$$

$$u^{14} - 2u^{13} - 10u^{12} + 20u^{11} + 38u^{10} - 77u^9 - 66u^8 + 147u^7 + 36u^6 - 140u^5 + 27u^4 + 57u^3 - 26u^2 - u + 3 \rangle$$

$$I_2^u = \langle b, \ a - u + 1, \ u^2 - u - 1 \rangle$$

$$I_3^u = \langle b + a + u + 1, \ a^2 + 2au + 2a + u + 4, \ u^2 + u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 20 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -23u^{13} + 80u^{12} + \dots + 26b - 109, \ 31u^{13} - 92u^{12} + \dots + 78a + 269, \ u^{14} - 2u^{13} + \dots - u + 3 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.397436u^{13} + 1.17949u^{12} + \dots - 0.858974u - 3.44872 \\ 0.884615u^{13} - 3.07692u^{12} + \dots - 2.34615u + 4.19231 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.487179u^{13} - 1.89744u^{12} + \dots - 3.20513u + 0.743590 \\ 0.884615u^{13} - 3.07692u^{12} + \dots - 2.34615u + 4.19231 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.487179u^{13} - 1.89744u^{12} + \dots - 3.20513u + 0.743590 \\ 0.346154u^{13} - 0.769231u^{12} + \dots + 0.0384615u + 1.42308 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{4} + 3u^{2} - 1 \\ -u^{6} + 4u^{4} - 3u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.10256u^{13} + 2.82051u^{12} + \dots + 4.35897u - 2.05128 \\ 0.576923u^{13} - 0.615385u^{12} + \dots - 0.269231u - 0.961538 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.474359u^{13} + 1.29487u^{12} + \dots - 1.08974u + 0.512821 \\ -0.461538u^{13} + 1.69231u^{12} + \dots + 4.61538u - 1.23077 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} - 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{63}{13}u^{13} - \frac{179}{13}u^{12} - \frac{466}{13}u^{11} + 122u^{10} + \frac{977}{13}u^9 - \frac{5058}{13}u^8 + \frac{190}{13}u^7 + \frac{7016}{13}u^6 - \frac{3311}{13}u^5 - \frac{2929}{13}u^4 + \frac{2999}{13}u^3 - \frac{571}{13}u^2 + \frac{20}{13}u - \frac{105}{13}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{14} + 25u^{13} + \dots + 2882u + 121$
c_2, c_5	$u^{14} + 3u^{13} + \dots - 22u - 11$
c_3, c_4, c_9	$u^{14} - u^{13} + \dots - 8u - 4$
c_6, c_7, c_{10} c_{11}, c_{12}	$u^{14} - 2u^{13} + \dots - u + 3$
c ₈	$u^{14} + u^{13} + \dots - 560u - 100$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{14} - 65y^{13} + \dots - 4823786y + 14641$
c_2, c_5	$y^{14} - 25y^{13} + \dots - 2882y + 121$
c_3, c_4, c_9	$y^{14} + 9y^{13} + \dots - 96y + 16$
c_6, c_7, c_{10} c_{11}, c_{12}	$y^{14} - 24y^{13} + \dots - 157y + 9$
c ₈	$y^{14} - 51y^{13} + \dots - 79200y + 10000$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.099960 + 0.007934I		
a = 0.373480 + 0.438522I	-1.42237 + 2.30354I	-14.5680 - 3.7918I
b = 0.255413 - 1.041350I		
u = -1.099960 - 0.007934I		
a = 0.373480 - 0.438522I	-1.42237 - 2.30354I	-14.5680 + 3.7918I
b = 0.255413 + 1.041350I		
u = 0.698450 + 0.454350I		
a = 0.59750 - 1.75057I	-3.03395 - 1.06008I	-15.9574 + 4.7668I
b = 0.525011 + 0.607663I		
u = 0.698450 - 0.454350I		
a = 0.59750 + 1.75057I	-3.03395 + 1.06008I	-15.9574 - 4.7668I
b = 0.525011 - 0.607663I		
u = 0.374314 + 0.322623I		
a = -1.30508 + 1.63203I	3.32563 - 1.11189I	-8.52416 + 6.18288I
b = -0.001324 - 1.295280I		
u = 0.374314 - 0.322623I		
a = -1.30508 - 1.63203I	3.32563 + 1.11189I	-8.52416 - 6.18288I
b = -0.001324 + 1.295280I		
u = -1.45521 + 0.41134I		
a = -0.39517 - 1.54570I	-10.11530 + 4.52944I	-16.6083 - 3.1417I
b = -0.742220 + 1.181770I		
u = -1.45521 - 0.41134I		
a = -0.39517 + 1.54570I	-10.11530 - 4.52944I	-16.6083 + 3.1417I
b = -0.742220 - 1.181770I		
u = -0.298678		
a = -0.459084	-0.507849	-19.4340
b = -0.324104		
u = 1.73659 + 0.13204I		
a = 0.081098 - 0.265527I	-11.60050 + 1.36524I	-17.2554 - 2.6511I
b = -0.786012 + 0.736054I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.73659 - 0.13204I		
a = 0.081098 + 0.265527I	-11.60050 - 1.36524I	-17.2554 + 2.6511I
b = -0.786012 - 0.736054I		
u = 1.88375 + 0.14746I		
a = 0.37986 - 1.43767I	17.0667 - 7.6448I	-16.3310 + 2.7970I
b = 0.67581 + 1.59079I		
u = 1.88375 - 0.14746I		
a = 0.37986 + 1.43767I	17.0667 + 7.6448I	-16.3310 - 2.7970I
b = 0.67581 - 1.59079I		
u = -1.97719		
a = -0.337623	12.0675	-18.0770
b = 1.47076		

II.
$$I_2^u = \langle b, \ a - u + 1, \ u^2 - u - 1 \rangle$$

(i) Arc colorings

a) Art colorings
$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u-1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u-1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u-1 \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -14

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
$c_3, c_4, c_8 \ c_9$	u^2
<i>C</i> 5	$(u+1)^2$
c_6, c_7	$u^2 + u - 1$
c_{10}, c_{11}, c_{12}	u^2-u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_8 c_9	y^2
c_6, c_7, c_{10} c_{11}, c_{12}	$y^2 - 3y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -1.61803	-2.63189	-14.0000
b = 0		
u = 1.61803		
a = 0.618034	-10.5276	-14.0000
b = 0		

III.
$$I_3^u = \langle b+a+u+1, \ a^2+2au+2a+u+4, \ u^2+u-1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ -a-u-1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u-1 \\ -a-u-1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u-1 \\ -a-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u+1 \\ a+u+1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -au-a-u-3 \\ 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -16

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_8 c_9	$(u^2+2)^2$
c_6, c_7	$(u^2 - u - 1)^2$
c_{10}, c_{11}, c_{12}	$(u^2+u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4, c_8 c_9	$(y+2)^4$
c_6, c_7, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -1.61803 + 1.41421I	2.30291	-16.0000
b = -1.414210I		
u = 0.618034		
a = -1.61803 - 1.41421I	2.30291	-16.0000
b = 1.414210I		
u = -1.61803		
a = 0.61803 + 1.41421I	-5.59278	-16.0000
b = -1.414210I		
u = -1.61803		
a = 0.61803 - 1.41421I	-5.59278	-16.0000
b = 1.414210I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{14} + 25u^{13} + \dots + 2882u + 121)$
c_2	$((u-1)^2)(u+1)^4(u^{14}+3u^{13}+\cdots-22u-11)$
c_3, c_4, c_9	$u^{2}(u^{2}+2)^{2}(u^{14}-u^{13}+\cdots-8u-4)$
c_5	$((u-1)^4)(u+1)^2(u^{14}+3u^{13}+\cdots-22u-11)$
c_6, c_7	$((u^2 - u - 1)^2)(u^2 + u - 1)(u^{14} - 2u^{13} + \dots - u + 3)$
c ₈	$u^{2}(u^{2}+2)^{2}(u^{14}+u^{13}+\cdots-560u-100)$
c_{10}, c_{11}, c_{12}	$(u^2 - u - 1)(u^2 + u - 1)^2(u^{14} - 2u^{13} + \dots - u + 3)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{14} - 65y^{13} + \dots - 4823786y + 14641)$
c_2, c_5	$((y-1)^6)(y^{14} - 25y^{13} + \dots - 2882y + 121)$
c_3, c_4, c_9	$y^{2}(y+2)^{4}(y^{14}+9y^{13}+\cdots-96y+16)$
c_6, c_7, c_{10} c_{11}, c_{12}	$((y^2 - 3y + 1)^3)(y^{14} - 24y^{13} + \dots - 157y + 9)$
c ₈	$y^{2}(y+2)^{4}(y^{14}-51y^{13}+\cdots-79200y+10000)$