

Secuencia de Siguientes Múltiplos

Ana likes to play with numbers and make sequences with them. Now she is playing making sequences as follows: she first chooses a positive integer m, which will be the first term of the sequence, $a_1 = m$. Then, for all $i \geq 2$, a_i is the smallest multiple of i that is greater than or equal to a_{i-1} . Here are some examples of possible sequences for different values of m:

m	Sequence
1	$1,2,3,4,5,6,7,\ldots$
2	2,2,3,4,5,6,7,
3	3,4,6,8,10,12,
4	4,4,6,8,10,12,
5	5,6,6,8,10,12,
7	7,8,9,12,15,18,
9	9,10,12,12,15,18,

Ana has noticed that, for many values of m, there are two consecutive terms of the sequence that are equal, in other words, there exists an i such that $a_i = a_{i+1}$. The case m = 5 is an example, since $a_2 = a_3 = 6$. But there are other numbers for which this does not happen. For example, for m = 1 or m = 3 the sequence has all terms distinct. These values of m for which the resulting sequence does not have two consecutive equal numbers are called *special* numbers.

Can you help Ana to find the n-th special number?

Input and output

The input consists of a positive integer n.

You must print an integer, the n-th special integer.

Examples

Example 1

Input:

Output:

Example 2

Input:

2

Output:

$1 \le n \le 10^7$. Subtasks

Constraints

- 1. (3 points) n = 5.
- 2. (8 points) $n \leq 20$.
- 3. (9 points) $n \le 500$.
- 4. (65 points) $n \le 10^5$.
- 5. (15 points) No additional restrictions.