<u>Course</u> > <u>Lecture 4</u> > <u>Homework 4</u> > scales

Homework 4.2: Separation of time scales

Separation of time scales

1/1 point (graded)

Consider the following system of equations

$$\left\{ egin{aligned} rac{du}{dt} &= f\left(u
ight) - m \ \epsilon rac{dm}{dt} &= -m + c\left(u
ight) \end{aligned}
ight.$$

where $f(u)=-0.5u-2,\ \epsilon>0.$

If dynamics of the variable m is very fast, then it means that \dots

(Note that more than one option may be correct.)

- $\frac{1}{\epsilon} \ll 1$.
- \checkmark the variable m converges to its fixed point very rapidly.
- f(u(t)) can be approximated by c(u(t)) for all times t.
- $lap{\epsilon}\ll 1$ and so $m\left(t
 ight)pprox c\left(u\left(t
 ight)
 ight)$.
- lacksquare the system of two equations can be reduced to one: $rac{du}{dt}=f\left(u
 ight)-c\left(u
 ight)$
- reduced equation is $\epsilon rac{du}{dt} = -f\left(u
 ight) + c\left(u
 ight)$.

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Stability of the fixed point

0/1 point (graded)

Imagine the reduced equation above is written as

$$rac{du}{dt}=-au+b-tanh\left(u
ight)$$

where a, b are real numbers. Which of the following is correct regarding the fixed points of the equation?

- ab > 0 is a necessary condition to have a stable fixed point.
- b > 0 guarantees the existence of at least one stable fixed point.
- If a>0, then the equation has always one fixed point which is stable.
- \bigcirc If b>0, then the equation has always one fixed point which is unstable.

© All Rights Reserved