Курс: "Комбинаторика для начинающих". Неделя 4. Контрольная работа. Комбинаторные тождества.

Александров Алексей, ИУ8-g4

2020г.

Задание 1 *Шестая строчка треугольника Паскаля выглядит следующим образом:*

Ответ: 1 6 15 20 15 6 1

Решение 1 По определению, шестая строчка треугольника Паскаля получается из пятой 1 5 10 10 5 1 суммированием чисел стоящих слева сверху и справа сверху. Получаем следующую строчку: 1 6 15 20 15 6 1.

Задание 2 На дереве висит 10 разных яблок. Сколькими способами можно сорвать нечётное количество яблок?

Ответ:

Решение 2 Из задачи «Наборы из чётного числа символов» мы знаем, что чётное количество яблок можно сорвать $2^{10-1}=2^9=512$ способами. Так как общее количество способов сорвать яблоки равно 2^{10} , то нечётное количество яблок можно сорвать также 512 способами.

Задание 3
$$C$$
умма $C^1_{10}+C^2_{10}+\ldots+C^{10}_{10}=\sum\limits_{i=1}^{10}C^i_{10}$ равна

Ответ: $10^{10} - 1 = 1023$

Решение 3 Мы знаем, что $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$. Подставляя $n{=}10$, получаем, что $C_{10}^0 + C_{10}^1 + C_{10}^2 + \ldots + C_{10}^{10} = 2^{10} = 1024$. Наша сумма получается из данной вычитанием $C_{10}^0 = 1$. Следовательно, ответ равен 1023.

Задание 4 Коэффициент при x^7 в разложении $(1+x)^{11}$ равен:

Ответ: C_{11}^7

Решение 4 По формуле бинома Нъютона коэффициент при x^7 равен $C_{11}^7 = C_{11}^4$.

Задание 5 В наборе из 12 сосудов имеется 5 неразличимых стаканов и 7 различных чашек. Сколькими способами можно выбрать 6 сосудов из 12?

Ответ:

Решение 5 Для каждого фиксированного k существует только один способ выбрать k неразличимых стаканов. Отсюда искомое количество способов равно количеству способов выбрать от 1 до 6 чашек. Искомая сумма равна $C_7^1 + \ldots + C_7^6 = C_7^0 + C_7^1 + \ldots + C_7^6 + C_7^7 - (C_7^0 + C_7^7) = 2^7 - 2 = 128 - 2 = 126.$

Задание 6 Сумма $C^m_{n+m-1} + C^m_{n+m-2} + \ldots + C^m_m \ \forall m \geq 1, \ n \geq 1$ равна:

Ответ: $C_{n+m}^{m+1} = C_{n+m}^{n-1}$

Решение 6 Эта сумма в точности равна сумме чисел в треугольнике Паскаля, расположенных на одной диагонали, начиная с числа C^m_{n+m-1} и више. Эта задача разобрана на видео, и ответ – число, стоящее под C^m_{n+m-1} справа, то есть $C^{m+1}_{n+m} = C^{n-1}_{n+m}$.

Задание 7 Отметьте тождества, выполненные $\forall n \geq k \geq 0$.

Решение 7 $2^n=\sum\limits_{i=0}^n C_n^i$ — верно; $0=C_n^0-C_n^1+\ldots+(-1)^nC_n^n0$ — неверно для n=0; $C_{n-k}^k=C_{n-k}^{n-k}$ — неверно для $n=3,\ k=1$; $C_n^k=C_{n-1}^k+C_{n-1}^{k+1}$ — неверно для $n=4,\ k=1\ (4=C_4^1\neq C_3^1+C_3^2=3+3=6.$