Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x.

Formulate a language that describes the above problem.

ECE-374-B: Lecture 2 - Regular Languages

Lecturer: Nickvash Kani

January 19, 2023

University of Illinois at Urbana-Champaign

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

$$f(x) = x_0 \cdot x_1 \cdot x_2 \cdot x_3 =$$

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x.

Formulate a language that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
 (1)

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with $\Sigma = \{0,1\}$ and has an output (y) which is the logical AND of all the elements of x.

Formulate a language that describes the above problem.

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
 (1)

This is an example of a regular language which we'll be discussing today.

Strings

Alphabet

An alphabet is a **finite** set of symbols.

Examples of alphabets:

- $\Sigma = \{0, 1\},$
- $\Sigma = \{a, b, c, \ldots, z\}$,
- · ASCII.
- · UTF8.
- $\Sigma = \{\langle \text{moveforward} \rangle, \langle \text{moveback} \rangle, \langle \text{moveleft} \rangle, \langle \text{moveright} \rangle \}$

String Definition

Definition

- 1. A string/word over Σ is a **finite sequence** of symbols over Σ . For example, '0101001', 'string', ' $\langle \text{moveback} \rangle \langle \text{rotate} 90 \rangle$ '
- 2. $x \cdot y \equiv xy$ is the concatenation of two strings
- 3. The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101|=3, $|\epsilon|=0$
- 4. For integer $n \geq 0$, Σ^n is set of all strings over Σ of length n. Σ^* is the set of all strings over Σ . Σ^{-2} Σ^{-1}
- 5. Σ^* set of all strings of all lengths including empty string.

Question: $\{'a','c'\}^* = \{\xi\} \in \{\xi\}^* = \{\xi\}^* \cup \{\xi\}^*$

Emptiness

- \cdot ϵ is a string containing no symbols. It is not a set
- $\{\epsilon\}$ is a set containing one string: the empty string. It is a set, not a string.
- \emptyset is the empty set. It contains no strings.

Question: What is {0} set containing an empty set

Concatenation and properties

- If x and y are strings then xy denotes their concatenation.
- Concatenation defined recursively:

- xy = y if $x = \epsilon$
- xy = a(wy) if x = aw
- xy sometimes written as $x \cdot y$.
- concatenation is associative: (uv)w = u(vw) hence write $uvw \equiv (uv)w = u(vw)$
- not commutative: uv not necessarily equal to vu u≥1 12 ≠21
- The <u>identity</u> element is the empty string ϵ :

$$\epsilon U = U \epsilon = U$$
.

Substrings, prefixes, Suffixes

Definition

v is substring of $w \iff$ there exist strings x, y such that

$$W = XVY$$
.

- If $x = \epsilon$ then v is a prefix of w
- If $y = \epsilon$ then v is a suffix of w

Subsequence

A subsequence of a string w[1...n] is either a subsequence of w[2...n] or w[1] followed by a subsequence of w[2...n].

Example

kapa is a sub-sequence of knapsack

Kaps
Kaps

Subsequence

A subsequence of a string w[1...n] is either a subsequence of w[2...n] or w[1] followed by a subsequence of w[2...n].

Example

kapa is a sub-sequence of knapsack

Question: How many sub-sequences are there in a string |w| = 5?

String exponent

Definition

If w is a string then w^n is defined inductively as follows:

$$w^n = \epsilon \text{ if } n = 0$$

 $w^n = ww^{n-1} \text{ if } n > 0$

Question: (blah)3 = . blah blah blah

Rapid-fire questions -strings

Answer the following questions taking $\Sigma = \{0, 1\}$.

- 1. What is Σ^0 ? $\{\mathcal{E}\}$
- 2. How many elements are there in Σ^n ? Z^n
- 3. If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- 4. Let u be an arbitrary string in Σ^* . What is ϵu ? What is $u\epsilon$?

U

Languages

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Languages

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}.$
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\bar{A} = \Sigma^* \setminus A$.

Set Concatenation

Definition

Given two sets X and Y of strings (over some common alphabet Σ) the concatenation of X and Y is

$$XY = \{xy \mid x \in X, y \in Y\} \tag{2}$$

Question: $X = \{fido, rover, spot\}, Y = \{fluffy, tabby\} \implies$

Σ^* and languages

Definition

15^1 = 2^n element 2.5 n-1

1. Σ^n is the set of all strings of length n. Defined inductively:

$$\Sigma^n = \{\epsilon\} \text{ if } n = 0$$

$$\Sigma^n = \Sigma \Sigma^{n-1}$$
 if $n > 0$

- 2. $\Sigma^* = \bigcup_{n>0} \Sigma^n$ is the set of all finite length strings
- 3. $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Question: Does Σ^* have strings of infinite length?

Rapid-Fire questions - Languages

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- 1. What is \emptyset^0 ? $\{ \in \}$
- 2. If |L| = 2, then what is $|L^4| ? \frac{Z^4}{2} = 16$
- 3. What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ? $\{\epsilon\}$
- 4. For what L is L* finite? $\frac{23}{2}$
- 5. What is \emptyset^+ ? $\{3\}$
- 6. What is $\{\epsilon\}^+$, ϵ^+ ? $\{\epsilon\}^-$

V E. e V e. e. e 14

Terminology Review

Let's review what we learned.

- A character(a, b, c, x) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A alphabet(Σ) is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings

Terminology Review

Let's review what we learned.

- A character(a, b, c, x) is a unit of information represented by a symbol: (letters, digits, whitespace)
- A alphabet(Σ) is a set of characters
- A string(w) is a sequence of characters
- A language(A, B, C, L) is a set of strings
- A grammar(G) is a set of rules that defines the strings that belong to a language

Chomsky Hierarchy

Non-recursively-enumerable

Chomsky Hierarchy

Non-recursively-enumerable

Theorem (Kleene's Theorem)

A language is regular if and only if it can be obtained from finite languages by applying the three operations:

- Union
- Concatenation
- Repetition

a finite number of times.

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively.

Base Case

- ∅ is a regular language.
- $\{\epsilon\}$ is a regular language.
- $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.

Inductive step:

We can build up languages using a few basic operations:

- If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- If L_1, L_2 are regular then L_1L_2 is regular.
- If L is regular, then $L^* = \bigcup_{n \ge 0} L^n$ is regular. The ·* operator name is <u>Kleene star</u>.
- If L is regular, then so is $\overline{L} = \Sigma^* \setminus L$.

Regular languages are closed under operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Laba = LB. LB. LA

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| \le 100\}$. Why?

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Have basic operations to build regular languages.

Important: Any language generated by a finite sequence of such operations is regular.

Lemma

Let L_1, L_2, \ldots , be regular languages over alphabet Σ . Then the language $\bigcup_{i=1}^{\infty} L_i$ is not necessarily regular.

Note: Kleene star (repetition) is a single operation!

Regular Languages - Example

Example: The language $L_{01} = 0'1'|$ for all $i, j \ge 0$ is regular:

All strings that heave a run of
$$0\% = \{0,1\}$$

Concatenated with a run of 1%

Base $10 = \{0\}$
 $1 = \{1\}$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 10\%$
 $10 = 1$

Rapid-fire questions - regular languages

1.
$$L_1 = \left\{ 0^i \mid i = 0, 1, \dots, \infty \right\}$$
. The language L_1 is regular. T/F?

Rapid-fire questions - regular languages

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$. The language L_2 is regular. T/F?

Rapid-fire questions - regular languages

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \left\{0^i \mid i \text{ is divisible by 2, 3, or 5}\right\}$. L_3 is regular. T/F?

Rapid-fire questions - regular languages

- 1. $L_1 = \left\{0^i \mid i = 0, 1, \dots, \infty\right\}$. The language L_1 is regular. T/F?
- 2. $L_2 = \left\{ 0^{17i} \mid i = 0, 1, \dots, \infty \right\}$. The language L_2 is regular. T/F?
- 3. $L_3 = \left\{ 0^i \mid i \text{ is divisible by 2, 3, or 5} \right\}$. L_3 is regular. T/F?
- 4. $L_4 = \{w \in \{0,1\}^* \mid w \text{ has at most 2 1s}\}$. L_4 is regular. T/F?

Regular Expressions

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - dates back to 50's: Stephen Kleene who has a star names after him ¹.

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- ∅ denotes the language ∅
- ϵ denotes the language $\{\epsilon\}$.
- a denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathbf{r_1} + \mathbf{r_2})$ denotes the language $R_1 \cup R_2$
- $(\mathbf{r_1} \cdot \mathbf{r_2}) = r_1 \cdot r_2 = (\mathbf{r_1} \mathbf{r_2})$ denotes the language $R_1 R_2$
- $(r_1)^*$ denotes the language R_1^*

Regular Languages vs Regular Expressions

Pagular Languages

 R_1R_2 regular if both are

R* is regular if R is

Regular Languages	Regulai Expressions
Ø regular	Ø denotes Ø
$\{\epsilon\}$ regular	ϵ denotes $\{\epsilon\}$
$\{a\}$ regular for $a \in \Sigma$	a denote $\{a\}$
$R_1 \cup R_2$ regular if both are	$r_1 + r_2$ denotes $R_1 \cup R_2$

Popular Evnraccions

 $\mathbf{r_1} \cdot \mathbf{r_2}$ denotes $R_1 R_2$

r* denote R*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$ are equivalent if $L(\mathbf{r_1}) = L(\mathbf{r_2})$.

• For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- Two regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$ are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2).$
- Omit parenthesis by adopting precedence order: *,

concatenate, +. Example: $r^*s + t = ((r^*)s) + t$

For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!

Example: (0+1) and (1+0) denotes same language $\{0,1\}$

- Two regular expressions \mathbf{r}_1 and \mathbf{r}_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2)$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

 Omit parenthesis by associativity of each of these operations.

Example:
$$rst = (rs)t = r(st)$$
, $r + s + t = r + (s + t) = (r + s) + t$.

- For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$ are equivalent if $L(\mathbf{r_1}) = L(\mathbf{r_2})$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.
 - **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.
 - **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

- For a regular expression r, L(r) is the language denoted by
 r. Multiple regular expressions can denote the same language!
 - **Example:** (0+1) and (1+0) denotes same language $\{0,1\}$
- Two regular expressions $\mathbf{r_1}$ and $\mathbf{r_2}$ are equivalent if $L(\mathbf{r_1}) = L(\mathbf{r_2})$.
- Omit parenthesis by adopting precedence order: *, concatenate, +.
 - **Example:** $r^*s + t = ((r^*)s) + t$
- Omit parenthesis by associativity of each of these operations.
 - **Example:** rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $\mathbf{r}^+ = \mathbf{r}\mathbf{r}^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.

Some examples of regular expressions

1.
$$(0+1)^*$$
:

2.
$$(0+1)*001(0+1)*$$
: All Ginny with ODI substring

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:

- 1. $(0+1)^*$:
- 2. (0+1)*001(0+1)*:
- 3. $0^* + (0^*10^*10^*10^*)^*$:
- 4. $(\epsilon + 1)(01)^*(\epsilon + 0)$:
 - All strings with alternating O's & ('s
 - No tous consecutive 0's and no
 - two conseer time 1's

1. All strings that end in 1011?

1. All strings that end in 1011?

2. All strings except 11?

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?

strings with at most two o's 1* 0 1* 0 1* + 1*0 1* + 1*

- 1. All strings that end in 1011?
- 2. All strings except 11?
- 3. All strings that do not contain 000 as a subsequence?
- 4. All strings that do not contain the substring 10?

Tying everything together

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
(3)

Formulate the regular expression which describes the above language:

Tying everything together

Consider the problem of a n-input <u>AND</u> function. The input (x) is a string n-digits long with an input alphabet $\Sigma_i = \{0,1\}$ and has an output (y) which is the logical <u>AND</u> of all the elements of x. We knwo the language used to describe it is:

$$L_{AND_N} = \begin{cases} 0|0, & 1|1, \\ 0 \cdot 0|0, & 0 \cdot 1|0, & 1 \cdot 0|0, & 1 \cdot 1|1 \\ \vdots & \vdots & \vdots & \vdots \\ (0 \cdot)^n |0, & (0 \cdot)^{n-1} 1|0, & \dots & (1 \cdot)^n |1 \dots \end{cases}$$
(3)

Formulate the regular expression which describes the above language: $\Sigma = \{0, 1, \cdot \cdot \cdot, \cdot | \cdot \}$

$$r_{AND_N} = ("0\cdot" + "1\cdot")^*0("0\cdot" + "1\cdot")^*"|0" + ("1\cdot")^*"|1"$$
all output 1 instances

Regular expressions in programming

One last expression....

Bit strings with odd number of 0s and 1s

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00+11)^*(01+10)$$
$$(00+11+(01+10)(00+11)^*(01+10))^*$$

Bit strings with odd number of 0s and 1s

The regular expression is

$$(00+11)^*(01+10)$$
$$(00+11+(01+10)(00+11)^*(01+10))^*$$

(Solved using techniques to be presented in the following lectures...)