

Bank Marketing virtual internship

Dec-15-2022

Agenda

Background

EDA

Modelling Recommendations

Background

 ABC Bank wants to sell its term deposit product to customers and before launching the product they want to develop a model which can help them in understanding whether a particular customer will buy their product or not (based on customer's past interaction with the bank or other Financial Institutions).

 Goals: ABC Bank wants to use ML models to shortlist customers whose chances of buying the product is more so that their marketing channel (tele marketing, SMS/email marketing etc) can focus only on those customers.

Roadmap

Data info

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41188 entries, 0 to 41187
Data columns (total 21 columns):
    Column
                    Non-Null Count Dtype
                    41188 non-null int64
    age
    job
                    41188 non-null object
    marital
                    41188 non-null object
    education
                    41188 non-null object
    default
                    41188 non-null object
    housing
                    41188 non-null object
                    41188 non-null object
    loan
                    41188 non-null object
    contact
    month
                    41188 non-null object
    day_of week
                    41188 non-null object
    duration
                    41188 non-null int64
    campaign
                    41188 non-null int64
    pdays
                    41188 non-null int64
    previous
                    41188 non-null int64
    poutcome
                    41188 non-null object
    emp.var.rate
                    41188 non-null float64
    cons.price.idx
                    41188 non-null float64
    cons.conf.idx
                    41188 non-null float64
    euribor3m
                    41188 non-null float64
 19 nr.employed
                    41188 non-null float64
 20 y
                    41188 non-null object
dtypes: float64(5), int64(5), object(11)
memory usage: 6.6+ MB
```

```
categorical

['job',
  'marital',
  'education',
  'default',
  'housing',
  'loan',
  'contact',
  'month',
  'day_of_week',
  'poutcome',
  'y']
```

21 features in total11 categorical features

Missing values

data.isnull().sur	n()
age	0
job	0
marital	0
education	0
default	0
housing	0
loan	0
contact	0
month	0
day_of_week	0
duration	0
campaign	0
pdays	0
previous	0
poutcome	0
emp.var.rate	0
cons.price.idx	0
cons.conf.idx	0
euribor3m	0
nr.employed	0
у	0
dtype: int64	

<pre>data.isna().sum()</pre>							
age	0						
job	0						
marital	0						
education	0						
default	0						
housing	0						
loan	0						
contact	0						
month	0						
day_of_week	0						
duration	0						
campaign	0						
pdays	0						
previous	0						
poutcome	0						
emp.var.rate	0						
cons.price.idx	0						
cons.conf.idx	0						
euribor3m	0						
nr.employed	0						
у	0						
dtype: int64							

O Null or NA values

Duplicate rows

```
data.duplicated().value_counts()
```

False 41176

True 12

dtype: int64

12 duplicate rows

Data balance

data['y'].value_counts()

no 36537 yes 4639

Name: y, dtype: int64

Undersampling

Oversampling

Data balance – undersampling and oversampling


```
data_over['y'].value_counts().plot(kind='barh')
<AxesSubplot:>
yes
        5000
              10000 15000
                         20000 25000 30000
    data_over.duplicated().value_counts()
    False
              41175
    True
              31899
    dtype: int64
```

Many duplicate rows for

oversampling

Outlier removal

data_u	ata_under.describe()										
	age	duration	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed	
count	9278.000000	9278.000000	9278.000000	9278.000000	9278.000000	9278.000000	9278.000000	9278.000000	9278.000000	9278.000000	
mean	40.432960	389.552598	2.326471	887.687217	0.312891	-0.489211	93.479128	-40.206585	2.971193	5135.853471	
std	12.025501	360.742255	2.335458	313.304195	0.697914	1.722400	0.631613	5.344737	1.889231	87.171539	
min	17.000000	3.000000	1.000000	0.000000	0.000000	-3.400000	92.201000	-50.800000	0.634000	4963.600000	
25%	31.000000	145.000000	1.000000	999.000000	0.000000	-1.800000	92.893000	-42.700000	1.244000	5076.200000	
50%	38.000000	266.000000	2.000000	999.000000	0.000000	-0.100000	93.444000	-41.800000	4.021000	5191.000000	
75%	48.000000	530.000000	3.000000	999.000000	0.000000	1.400000	93.994000	-36.400000	4.959000	5228.100000	
max	98.000000	4199.000000	43.000000	999.000000	6.000000	1.400000	94.767000	-26.900000	5.045000	5228.100000	

Outlier removal

Outlier removal

Feature Engineering

- 0.8

-0.6

-0.4

-0.2

-0.0

- -0.2

- -0.4

--0.6

Logistic Regression

 SVM

Random Forest

Xgboost

Thank You

