Double Integral

Created by Mr. Francis Hung on 20220212. Last updated: 26 February 2023

To evaluate $I = \int_{-\infty}^{\infty} e^{-x^2} dx$

$$I \times I = \int_{-\infty}^{\infty} e^{-x^2} dx \times \int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{\infty} e^{-x^2} dx \times \int_{-\infty}^{\infty} e^{-y^2} dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2} e^{-y^2} dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$$

(a) Areas of plane figures

Area of element $\delta A = \delta x \delta y$

Area of strip
$$=\sum_{y=y_1}^{y=y_2} \delta x \, \delta y$$

Area of all such strips
$$\Rightarrow \sum_{x=a}^{x=b} \left\{ \sum_{y=y_1}^{y=y_2} \delta x \, \delta y \right\}$$

If
$$\delta x \to 0$$
 and $\delta y \to 0$, $A = \int_a^b \int_{y_1}^{y_2} dy dx$

(b) Areas of plane figures bounded by a polar curve $r = f(\theta)$ and radius vectors at $\theta = \theta_1$ and $\theta = \theta_2$.

Small arc of circle of radius r, subtending angle $\delta\theta$ at centre.

$$\therefore \operatorname{Arc} = r \, \delta \theta$$

Area of element $\delta A = r \delta \theta \delta r$

Area of thin sector
$$=\sum_{r=0}^{r=f(\theta)} r \delta \theta \, \delta r$$

$$\therefore \text{ Total area of all such sectors } \triangleq \sum_{\theta=\theta_1}^{\theta=\theta_2} \left\{ \sum_{r=0}^{r=f(\theta)} r \, \delta r \, \delta \theta \right\}$$

$$\therefore \text{ If } \delta r \to 0 \text{ and } \delta \theta \to 0 \qquad \underline{A} = \int_{\theta_1}^{\theta_2} \int_{0}^{r = f(\theta)} r \, dr \, d\theta$$

Using the transformation $x = r \cos \theta$, $y = r \sin \theta$

then $dx dy = r dr d\theta$

when $x \to \infty$, $y \to \infty$ is equivalent to r = 0 to $r \to \infty$, $\theta = 0$ to $\theta = 2\pi$

$$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\left(r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta\right)} r dr d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-r^{2}} r dr$$

$$=2\pi\left(-\frac{1}{2}e^{-r^2}\right)\Big|_{0}^{\infty}=\pi$$

$$\therefore I = \sqrt{\pi}$$

Exercise

Show that $\int_0^\infty \frac{x}{1+x^3} dx = \int_0^\infty \frac{1}{1+x^3} dx$, and hence find the common integral.

Numerical answer: $\frac{2\sqrt{3}\pi}{9}$