A Kernel for Hierarchical Parameter Spaces

August 23, 2013

Consider a D-dimensional input space $\mathcal X$ with an associated DAG structure $\mathcal D$ over the dimensions $1,\ldots,D$, where each input dimension is only active under some instantiations of its ancestor dimensions in $\mathcal D$. We specify a kernel for $\mathcal X$ as a product over individual kernels for each dimension i. Each of these individual kernels is specified using an isometric embedding into a Euclidean space ($\mathbb R^2$ for continuous-valued parameters, and $\mathbb R^m$ for categorical-valued parameters with m choices). We restrict dimensions that are parents in $\mathcal D$ to be categorical-valued. Leaf dimensions in $\mathcal D$ can be continuous-valued or categorical-valued.

1 Continuous Dimensions

Let's first consider a continuous-valued input dimension i with upper and lower bounds U_i and L_i , respectively. We define a delta function δ_i that maps complete inputs $\underline{x} \in \mathcal{X}$ to true if dimension i is active in the context of the instantiation of i's ancestors in \underline{x} , and to false otherwise. Let d_E denote the Euclidean distance metric in \mathbb{R}^2 . We define a metric $d_i^{(cont)}$ on \mathcal{X} and an isometric embedding $f_i^{(cont)}$ of $(\mathcal{X}, d_i^{(cont)})$ into (\mathbb{R}^2, d_E) :

$$d_i{}^{(cont)}(\underline{x},\underline{x}') = \left\{ \begin{array}{ll} 0 & \text{if } \delta_i(\underline{x}) = \delta_i(\underline{x}') = \text{false} \\ w_i & \text{if } \delta_i(\underline{x}) \neq \delta_i(\underline{x}') \\ w_i \sqrt{2} \sqrt{1 - \cos(\pi \frac{x_i - x_i'}{U_i - L_i})} & \text{otherwise.} \end{array} \right\}$$

$$f_i{}^{(cont)}(\underline{x}) \quad = \quad \left\{ \begin{array}{ll} [0,0]^{\mathsf{T}} & \text{if } \delta_i(\underline{x}) = \text{ false} \\ w_i [\sin \pi \frac{x_i}{U_i - L_i}, \cos \pi \frac{x_i}{U_i - L_i}]^{\mathsf{T}} & \text{otherwise.} \end{array} \right\}$$

Proposition 1. Embedding $f_i^{(cont)}$ is an isometric embedding of $(\mathcal{X}, d_i^{(cont)})$ into (\mathbb{R}^2, d_E) .

Proof. Consider two inputs $\underline{x},\underline{x}'\in\mathcal{X}$. We need to show that $d_i{}^{(cont)}(\underline{x},\underline{x}')=d_E(f_i{}^{(cont)}(\underline{x}),f_i{}^{(cont)}(\underline{x}'))$. We use the abbreviation $\alpha=\pi\frac{x_i}{U_i-L_i}$ and $\alpha'=\pi\frac{x_i'}{U_i-L_i}$ and consider the following three possible cases of dimension i being active or inactive in x and x'.

Case 1: $\delta_i(\underline{x}) = \delta_i(\underline{x}') = \text{false.}$ In this case, we trivially have

$$d_E(f_i^{(cont)}(\underline{x}), f_i^{(cont)}(\underline{x}')) = d_E([0, 0]^\mathsf{T}, [0, 0]^\mathsf{T}) = 0 = d_i^{(cont)}(\underline{x}, \underline{x}').$$

Case 2: $\delta_i(\underline{x}) \neq \delta_i(\underline{x}')$. In this case, we have

$$d_E(f_i{}^{(cont)}(\underline{x}), f_i{}^{(cont)}(\underline{x}')) = d_E([\sin\alpha, \cos\alpha]^\mathsf{T}, [0, 0]^\mathsf{T}) = \sqrt{w_i^2(\sin^2\alpha + \cos^2\alpha)} = w_i = d_i(\underline{x}, \underline{x}'),$$
 and symmetrically for $d_E([0, 0]^\mathsf{T}, [\sin\alpha, \cos\alpha]^\mathsf{T}).$

Case 3: $\delta_i(\underline{x}) = \delta_i(\underline{x}') = \text{true.}$ We have:

$$d_{E}(f_{i}^{(cont)}(\underline{x}), f_{i}^{(cont)}(\underline{x}')) = d_{E}(w_{i}[\sin\alpha, \cos\alpha]^{\mathsf{T}}, w_{i}[\sin\alpha', \cos\alpha']^{\mathsf{T}})$$

$$= w_{i}\sqrt{(\sin\alpha - \sin\alpha')^{2}(\cos\alpha - \cos\alpha')^{2}}$$

$$= w_{i}\sqrt{\sin^{2}\alpha - 2\sin\alpha\sin\alpha' + \sin^{2}\alpha' + \cos^{2}\alpha - 2\cos\alpha\cos\alpha' + \cos^{2}\alpha'}$$

$$= w_{i}\sqrt{(\sin^{2}\alpha + \cos^{2}\alpha) + (\sin^{2}\alpha' + \cos^{2}\alpha') - 2(\sin\alpha\sin\alpha' + \cos\alpha\cos\alpha')}$$

$$= w_{i}\sqrt{1 + 1 - 2\cos(\alpha - \alpha')}$$

$$= w_{i}\sqrt{1 - \cos(\pi\frac{x_{i} - x_{i}'}{U_{i} - L_{i}})} = d_{i}(\underline{x}, \underline{x}'),$$
(1)

where (1) follows from the previous line by using the identity

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$
.

Define $\kappa \colon \mathbb{R}^+ \to \mathbb{R}$ as a semi-positive definite function over Euclidean space. By this, we mean that $K \in \mathbb{R}^{N \times N}$, defined by

$$K_{m,n} = \kappa (d_E(\underline{y}_m, \underline{y}_n)), \quad \text{for } \underline{y}_m, \underline{y}_n \in \mathbb{R}^P, \quad m, n = 1, \dots, N,$$
 (2)

is positive semi-definite. A popular example of such a κ is the exponentiated quadratic, for which $\kappa(\delta) = \sigma^2 \exp(-\frac{1}{2}\frac{\delta^2}{\lambda^2})$; another popular choice is the rational quadratic, for which $\kappa(\delta) = \sigma^2 (1 + \frac{1}{2\alpha}\frac{\delta^2}{\lambda^2})^{-\alpha}$.

Proposition 2. $\kappa(d_i^{(cont)}(\cdot,\cdot))$ is a positive semi-definite covariance function over input space \mathcal{X} .

Proof. We require that $K \in \mathbb{R}^{N \times N}$ defined by

$$K_{m,n} = \kappa \left(d_i^{(cont)}(\underline{x}_m, \underline{x}_n) \right), \quad \text{for } \underline{x}_m, \underline{x}_n \in \mathcal{X}, \quad m, n = 1, \dots, N,$$

is positive semi-definite. Now, from above,

$$K_{m,n} = \kappa \Big(d_E(f_i^{(cont)}(\underline{x}_m), f_i^{(cont)}(\underline{x}_n)) \Big)$$
$$= \kappa \Big(d_E(\underline{y}_m, \underline{y}_n) \Big)$$

where $\underline{y}_m = f_i^{(cont)}(\underline{x}_m)$ and similar for \underline{x}_m . Then, by assumption that κ is semi-positive definite function over Euclidean space, K is positive semi-definite.

2 Categorical Dimensions

Next, let's consider a categorical-valued input dimension i with m_i possible values $V_i = \{v_{i,1}, \ldots, v_{i,m_i}\}$. As in the continuous case, we define a delta function δ_i that maps complete inputs $\underline{x} \in \mathcal{X}$ to true if dimension i is active in the context of the instantiation of i's ancestors in \underline{x} , and to false otherwise. Let $d_E^{m_i}$ denote the Euclidean distance metric in \mathbb{R}^{m_i} . We define a metric $d_i^{(cat)}$ on \mathcal{X} and an isometric embedding of $(\mathcal{X}, d_i^{(cat)})$ into $(\mathbb{R}^{m_i}, d_E^{m_i})$:

$$d_i^{(cat)}(\underline{x},\underline{x}') = \begin{cases} 0 & \text{if } \delta_i(\underline{x}) = \delta_i(\underline{x}') = \text{false} \\ w_i & \text{if } \delta_i(\underline{x}) \neq \delta_i(\underline{x}') \\ w_i \sqrt{2} \mathbb{I}_{x_i \neq x_i'} & \text{otherwise.} \end{cases}$$

$$f_i{}^{(cat)}(\underline{x}) = \left\{ \begin{array}{ll} \underline{0} \in \mathbb{R}^{m_i} & \text{if } \delta_i(\underline{x}) = \text{ false} \\ w_i\underline{e_j} & \delta_i(\underline{x}) = \text{ true and } x_i = v_{i,j}, \end{array} \right\}$$

where $\underline{e_i} \in \mathbb{R}^{m_i}$ is zero in all dimensions except j, where it it 1.

Proposition 3. Embedding $f_i^{(cat)}$ is an isometric embedding of $(\mathcal{X}, d_i^{(cat)})$ into $(\mathbb{R}^{m_i}, d_E^{(m_i)})$.

Proof. Consider two inputs $\underline{x},\underline{x}'\in\mathcal{X}$. As in the proof of Proposition 1, we need to show that $d_i{}^{(cat)}(\underline{x},\underline{x}')=d_E{}^{m_i}(f_i{}^{(cat)}(\underline{x}),f_i{}^{(cat)}(\underline{x}'))$ and consider the following cases.

Case 1: $\delta_i(\underline{x}) = \delta_i(\underline{x}') = \text{false.}$ In this case, we trivially have

$$d_E^{m_i}(f_i^{(cont)}(\underline{x}), f_i^{(cont)}(\underline{x}')) = d_E^{m_i}(\underline{0}, \underline{0}) = 0 = d_i^{(cont)}(\underline{x}, \underline{x}').$$

Case 2: $\delta_i(\underline{x}) \neq \delta_i(\underline{x}')$. In this case, we have

$$d_E^{m_i}(f_i^{(cat)}(\underline{x}), f_i^{(cat)}(\underline{x}')) = d_E^{m_i}(w_i \underline{e_i}, \underline{0}) = w_i = d_i(\underline{x}, \underline{x}'),$$

and symmetrically for $d_E(\underline{0}, w_i \underline{e_i})$.

Case 3: $\delta_i(\underline{x}) = \delta_i(\underline{x}') = \text{true. If } x_i = x_i' = v_{i,j}, \text{ we have } x_i' = v_{i,j}$

$$d_E^{m_i}(f_i^{(cat)}(\underline{x}), f_i^{(cat)}(\underline{x}')) = d_E^{m_i}(w_i\underline{e_i}, w_i\underline{e_i}) = 0 = d_i^{(cat)}(\underline{x}, \underline{x}')$$

If $x_i = v_{i,j} \neq v_{i,j'} = x'_i =$, we have

$$d_E(f_i^{(cat)}(\underline{x}), f_i^{(cat)}(\underline{x}')) = d_E^{m_i}(w_i\underline{e_j}, w_i\underline{e_{j'}}) = w_i\sqrt{2} = d_i^{(cat)}(\underline{x}, \underline{x}')$$

Proposition 4. $\kappa(d_i^{(cat)}(\cdot,\cdot))$ is a positive semi-definite covariance function over input space \mathcal{X} .

Proof. This is a trivial extension to the proof of Proposition 2. \Box

FH: missing - the trivial part where we multiply together all the kernels to define a PSD kernel for the whole space.