1

What is claimed is:

1	I.	An	apparatus	comprising:

- a plurality of processing units;
- a monitor to obtain a plurality of monitor values from said plurality of
- 4 processing units, wherein said monitor is to transfer a process from a first
- 5 processing unit of said plurality of processing units to a second processing
- 6 unit of said plurality of processing units in response to said plurality of
- 7 monitor values.
 - 2. The apparatus of claim 1 wherein said monitor is to transfer the process from the first
- 2 processing unit to the second processing unit in response to a first one of said
- plurality of monitor values being greater than a second one of said plurality of
- 4 monitor values over a period of time.
- 1 3. The apparatus of claim 2 wherein said monitor obtains a monitor value by at least one
- 2 of the set consisting of:
- 3 receiving a temperature indicator;
- 4 estimating an activity level;
- 5 receiving a power consumption estimate.
- 4. The apparatus of claim 1 wherein each of said plurality of processing units is one of a
- 2 set consisting of:

3	a core of a multi-core processor;
4	an execution unit of a processor;
5	a separate processor unit.
1	5. The apparatus of claim 1 wherein said monitor is further to increase and decrease a
2	voltage level depending on a total power consumption or temperature level of said
3	plurality of processing units.
1	6. The apparatus of claim 1 wherein said monitor comprises:
2	an exchange module to exchange processes between ones of said plurality of
3	processing units.
1	7. The apparatus of claim 1 wherein said monitor comprises:
2	a move module to move one process from one of said plurality of processing units
3	to another one of said plurality of processing units that is idle.
1	8. The apparatus of claim 6 wherein said monitor further comprises:
2	a move module to move one process from one of said plurality of processing units
3	to another one of said plurality of processing units that is idle;
4	a sum module to throttle processing of one or more of said plurality of processing
5	units if a sum total of power consumption of said plurality of processing units
6	exceeds a selected total power consumption metric;
7 .	a shutdown module to shut down one or more of said plurality of processing units

42390.P10915 -20-

2

3

4

9. The apparatus of claim 1 further comprising: 1

2 a cache coupled to said plurality of processing units, wherein said monitor is to swap processes between said first processing unit and said second processing 3 4 unit by saving a first plurality of state variables from said first processing unit in said cache and saving a second plurality of state variables from said second 5 processing unit in said cache and restoring said second plurality of state 7 variables to said first processing unit from said cache and restoring said first 8 plurality of state variables to said second processing unit from said cache.

- 10. The apparatus of claim 9 wherein said cache, said first processing unit, and said second processing unit are integrated on a single integrated circuit die, and wherein said cache is physically positioned between said first processing unit and said second processing unit.
- 1 11. The apparatus of claim 1 wherein said first processing unit and said second 2 processing unit are coupled to receive power from different power wells and are 3 capable of being independently operated at different voltages and frequencies under
- control of the monitor. 4
- 1 12. A multi-core processor comprising:
- 2 a first core having first instruction fetch and execute logic and a plurality of first

3	core state variables;
4	a second core having second instruction fetch and execute logic and a plurality of
5	second core state variables;
6	a cache that is accessible to both said first core and said second core for read and
7	write accesses;
8	a monitor to monitor temperature and/or power consumption of said first core and
9	said second core, and, in response to a selected metric being reached by one of
0	said first core and said second core, to trigger storage of said plurality of first
1	core state variables and said plurality of second core state variables in said
2	cache and restoring of said plurality of second core state variables to said first
3	core and restoring of said plurality of first core state variables to said second
4	core.

- 1 13. The multi-core processor of claim 12 wherein said first core and said second core are coupled to independently controllable power supplies which are controllable by said monitor.
- 1 14. The multi-core processor of claim 13 wherein said first core and said second core are independently operable at different frequencies under control of said monitor.
- 1 15. The multi-core processor of claim 14 wherein said selected metric comprises at least 2 one of the set consisting of:

-22-

a level of processing activity;

42390.P10915

4		a temperature level.
1	16.	A system comprising:
2		a plurality of processing units, each processing unit to track its power
3		consumption, and to support a process move procedure;
4	- 4,	a monitor to receive monitor information from each of said plurality of processing
5		units and to re-allocate processes to different ones of said plurality of
6		processing units in response to the monitor information received from the
7		plurality of processing units;
8		a memory coupled to said plurality of processing units to store instructions for
9		execution by said plurality of processing units.
1	17.	The system of claim 16 wherein said monitor comprises:
2		a power-aware scheduler to schedule tasks for specific ones of said plurality of
3		processing units in response to said monitor information received from said
4	•	plurality of processing units.
1	18.	The system of claim 17 wherein said power-aware scheduler is chosen from the set

consisting of: 2 3

an operating system scheduler that is stored in said memory during operation;

a hardware scheduler.

42390.P10915

1	19.	The system of claim 16 wherein said monitor comprises:
2		an exchange module to exchange processes between ones of said plurality of
3		processing units;
4		a move module to move one process from one of said plurality of processing units
5		to another one of said plurality of processing units that is idle;
6		a sum module to throttle processing of one or more of said plurality of processing
7		units if a sum total of power consumption of said plurality of processing units
8		exceeds a selected total power consumption metric;
9		a shutdown module to shut down one or more of said plurality of processing units
10		in a low power mode.
1	20.	A method comprising:
2		monitoring power consumption of a plurality of processing units;
3	i	swapping processes between said plurality of processing units in response to
4		monitoring power consumption of said plurality of processing units.
1	21.	The method of claim 20 wherein swapping comprises:
2	i	exchanging processor state data via a cache memory.
1	22.	The method of claim 20 further comprising:
2		moving a process from a first one of said plurality of processing units to an idle
3		one of said plurality of processing units in response to monitoring power
4		consumption of said plurality of processing units.

42390.P10915

1	23. The method of claim 21 further comprising:
2	reducing power consumption of one or more of said plurality of processing units
3	in response to a sum of power consumed exceeding a selected total power
4	consumption metric;
5	increasing power consumption of said plurality of processing units in response to
6	the sum of power consumed being less than a second selected total power
7	consumption metric.
1	24. The method of claim 23 further comprising:
2	periodically rearranging processes among said plurality of processing units.
1	25. The method of claim 20 further comprising:
2	independently controlling voltages and frequencies for said plurality of processing
3	units in response to monitoring power consumption of the plurality of
4	processing units.
1	26. An apparatus comprising:
2	a plurality of processing units;
3	a module to periodically transfer processes from a first processing unit from
4	said plurality of processing units to a second processing unit from said
5	plurality of processing units.

- 1 27. The apparatus of claim 26 further comprising a thermal monitor to independently
- 2 control voltage levels of said plurality of processing units in response to a plurality of
- 3 temperature levels of said plurality of processing units.
- 1 28. The apparatus of claim 27 wherein said thermal monitor is also to independently
- 2 control clock frequencies for said plurality of processing units in response to said
- 3 plurality of temperature levels.
- 29. An article comprising a machine readable medium storing a plurality of instructions
- which, if executed by a machine, cause the machine to perform operations
- 3 comprising:
- 4 monitoring power consumption and/or thermal levels of a plurality of processing
- 5 units;
- 6 swapping processes between said plurality of processing units in response to
- 7 monitoring power consumption of said plurality of processing units.
- 1 30. The article of claim 29 wherein swapping comprises:
- 2 exchanging processor state data via a cache memory.
- 1 31. The article of claim 29 wherein said operations further comprise:
- 2 moving a process from a first one of said plurality of processing units to an idle
- one of said plurality of processing units in response to monitoring the power
- 4 consumption of said plurality of processing units.

42390.P10915 -26-

4

1	32.	The article of claim 30 wherein said operations further comprise:
2		reducing power consumption of one or more of said plurality of processing units
3		in response to a sum of power consumed exceeding a selected total power
4		consumption metric;
5		increasing power consumption of said plurality of processing units in response to
6		the sum of power consumed being less than a second selected total power
7		consumption metric.
1	33.	The article of claim 32 wherein said operations further comprise:
2		periodically rearranging processes among said plurality of processing units.
1	34.	The article of claim 29 wherein said operations further comprise:
2		independently controlling voltages and frequencies for said plurality of processing
3		units.
1	35.	A method comprising:
2		monitoring temperature levels of a plurality of processing units;
3		swapping processes between said plurality of processing units in response to

1 36. The method of claim 35 wherein swapping comprises:

2 exchanging processor state data via a cache memory.

monitoring temperature levels of said plurality of processing units.

- 1 37. The method of claim 35 further comprising:
- 2 periodically rearranging processes among said plurality of processing units.