Permit Numbers 9654A, PSDTX833M3, and N60M2

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission Point No.	Source Name (2)	Air Contaminant Name (3)	Emission	Rates
(1)			lbs/hour	TPY (4)
1A*	No. 1 Recovery Furnace ESP Stack	VOC(6)	19.60	85.84
	r arriage Eer Glask	NO _X	88.71	337.53
		SO ₂	408.58	1566.62
		PM(7)	59.62	261.15
		PM ₁₀ (8)	43.03	188.46
		PM _{2.5} (8)	39.42	172.68
		со	266.61	1167.76
		TRS(6)	16.78	73.49
		HAPS	19.23	82.88
		H ₂ SO ₄	0.67	2.93
1B*	No. 2 Recovery Furnace ESP Stack	VOC(6)	19.60	85.84
	r arriage Eer Glask	NOx	88.71	337.53
		SO ₂	408.58	1566.62
		PM(7)	59.62	261.15
		PM ₁₀ (8)	43.03	188.46
		PM _{2.5} (8)	39.42	172.68
		со	266.61	1167.76
		TRS(6)	16.78	73.49
		HAPS	19.23	82.88
		H ₂ SO ₄	0.67	2.93

2**	Bark Boiler Scrubber Stack	VOC(6)	11.15	41.70
	Stack	NO _X	108.62	406.12
		SO ₂	7.44	32.22
		PM(7)	55.76	208.49
		PM ₁₀ (9)	55.76	208.49
		PM _{2.5} (9)	55.76	208.49
		со	262.40	981.12
		TRS(6)	0.06	0.23
		H ₂ SO ₄	0.53	1.93
		NH₃	16.19	70.93
2A	No. 1 PFI Boiler Stack	VOC(6)	1.63	7.13
	Studie	NO _X	45.30	198.41
		SO ₂	0.79	0.93
		РМ	2.25	10.06
		PM ₁₀	2.25	10.06
		PM _{2.5}	2.25	10.06
		со	70.00	306.60
3#	No. 1 Dissolving Tank Scrubber Stack	VOC(6)	0.83	3.64
	Tarik Gordosor Glack	NO _X	1.15	5.06
		SO ₂	0.29	1.26
		PM(7)	11.54	50.55
		PM ₁₀ (9)	10.36	45.40
		PM _{2.5} (9)	10.36	45.40
		СО	0.46	2.02
		TRS(6)	0.35	1.52

		NH ₃	0.82	3.59
4#	No. 2 Dissolving Tank Scrubber Stack	VOC(6)	0.83	3.64
	Talik Schubber Stack	NO _X	1.15	5.06
		SO ₂	0.29	1.26
		PM(7)	11.54	50.55
		PM ₁₀ (9)	10.36	45.40
		PM _{2.5} (9)	10.36	45.40
		СО	0.46	2.02
		TRS(6)	0.35	1.52
		NH ₃	0.82	3.59
9	Lime Silo Scrubber Stack	РМ	0.53	0.68
	Stack	PM ₁₀	0.53	0.68
		PM _{2.5}	0.53	0.68
	No. 1 Slaker Scrubber Stack ^{A1}	VOC(6)	0.01	0.01
	Scrubber Stack	PM(7)	0.34	1.49
		PM ₁₀ (9)	0.34	1.49
		PM _{2.5} (9)	0.34	1.49
		TRS(6)	0.01	0.01
		NH ₃	7.53	12.19
11***	Lime Kiln Scrubber Stack	VOC(6)	1.01	3.36
	Stack	NO _X	43.09	147.77
		SO ₂	7.00	24.24
		PM(7)	31.58	104.78
		PM ₁₀ (9)	27.28	90.53
		PM _{2.5} (9)	27.28	90.53

		СО	2.99	9.92
		TRS(6)	6.11	20.28
		H ₂ SO ₄	0.46	1.53
13	No. 2 Slaker Scrubber Stack ^{A1}	VOC(6)	0.01	0.01
	Scrubber Stack	PM(7)	0.34	1.49
		PM ₁₀ (9)	0.34	1.49
		PM _{2.5} (9)	0.34	1.49
		TRS(6)	0.01	0.01
		NH ₃	7.35	12.19
16/17	Brown Stock Washers A and B ^{B1}	VOC(6)	19.66	7.86
	Washers A and B	TRS(6)	0.39	0.16
27	Brine Storage Tank	VOC(6)	<0.01	<0.01
		TRS(6)	<0.01	<0.01
30	No. 1 Tall Oil Storage Tank ^{A2}	VOC(6)	0.21	0.05
	Storage Talik	TRS(6)	0.02	0.01
31	No. 2 Tall Oil Storage Tank ^{A2}	VOC(6)	0.21	0.05
	Storage Parik	TRS(6)	0.02	0.01
32	Turpentine Storage Tank ^{B2}	VOC(6)	0.03	0.12
36	No. 5 White Liquor Tank Vent ^{A3}	VOC(6)	0.25	1.10
	Talik Volit	TRS(6)	0.59	2.60
39##	South Mud Tank			
40##	North Mud Tank			
41	No. 3 Green Liquor Clarifier	VOC(6)	<0.01	0.01
	Siamor	TRS(6)	0.02	0.06
	L		L	L

43##	Weak Wash Storage Tank			
44##	Scrubber Water Clarifier			
45	No. 1 White Liquor Storage Tank ^{A3}	VOC(6)	0.25	1.10
	Otorage Tarix	TRS(6)	0.59	2.60
46	No. 2 White Liquor Storage Tank ^{A3}	VOC(6)	0.25	1.10
	Storage Fails	TRS(6)	0.59	2.60
47	No. 1 Green Liquor Storage Tank ^{A5}	VOC(6)	0.02	0.08
	Storage Fails	TRS(6)	0.09	0.40
49	No. 2 Green Liquor Clarifier	VOC(6)	<0.01	0.01
	Clarine	TRS(6)	0.02	0.06
50	Green Liquor Equalization Tank	VOC(6)	<0.01	<0.01
	Equalization Tank	TRS(6)	<0.01	<0.01
51	No. 3 Green Liquor Storage Tank ^{A5}	VOC(6)	0.02	0.08
	Storage Talik	TRS(6)	0.09	0.40
56	"A" Blend Tank ^{A4,B3}	VOC(6)	0.08	0.28
		TRS(6)	0.01	0.03
57	"B" Blend Tank ^{A4,B3}	VOC(6)	0.03	0.12
		TRS(6)	<0.01	0.01
58	Reject Tank ^{B3}	VOC(6)	0.10	0.11
		TRS(6)	<0.01	<0.01
61	"A" High Density Storage Tank ^{A6}	VOC(6)	0.33	1.43
	Stolage Latik	TRS(6)	0.21	0.93
62	"B" High Density Storage Tank ^{A6}	VOC(6)	0.33	1.43
	Stolage Latik	TRS(6)	0.21	0.93
63	No. 1 Weak Black Liquor Storage Tank	VOC(6)	0.35	1.55

		TRS(6)	0.10	0.44
64	No. 2 Weak Black Liquor Storage Tank	VOC(6)	0.35	1.55
	Enquoi Otorage Farm	TRS(6)	0.10	0.44
65	Black Liquor Swing Tank	VOC(6)	0.35	1.55
	Tank	TRS(6)	0.24	1.04
66	No. 1 Heavy Black Liquor Storage Tank	VOC(6)	0.04	0.16
	Enquoi Otorage Farm	TRS(6)	0.17	0.74
67	No. 2 Heavy Black Liquor Storage Tank	VOC(6)	0.04	0.16
	Enquoi Otorage Farm	TRS(6)	0.17	0.74
68	Boilout Tank	VOC(6)	0.35	1.55
		TRS(6)	0.24	1.03
72	Gasoline Tank	voc		0.30
80	Wood Yard (5)	PM	7.17	16.33
		PM ₁₀	2.89	6.69
		PM _{2.5}	<0.01	0.02
81	Truck Traffic Fugitives (5)	PM		123.69
	r agilives (5)	PM ₁₀		34.37
		PM _{2.5}		3.44
88	No. 1 Causticizer	TRS(6)	1.30	4.31
		NH ₃	4.47	14.82
89	No. 2 Causticizer	TRS(6)	1.30	4.31
		NH ₃	4.47	14.82
90	No. 3 Causticizer	TRS(6)	1.30	4.31
		NH ₃	4.47	14.82
91	No. 4 Causticizer	TRS(6)	1.30	4.31
	L			

		NILI	4.47	14.82
		NH₃		
92	No. 5 Causticizer	TRS(6)	1.30	4.31
		NH ₃	4.47	14.82
93 - 98	Wastewater Collection and	VOC(6)	26.45	96.54
	Treatment (5)	TRS(6)	3.64	13.30
99**	Power Boiler No. 3 Stack	VOC(10)	2.54	9.95
		NO _x	21.00	91.98
		SO ₂	1.59	1.44
		РМ	3.13	13.71
		PM ₁₀	3.13	13.71
		PM _{2.5}	3.13	13.71
		со	37.80	165.56
100	Chemi-Washer (5) ^{B5}	VOC(6)	0.01	0.04
		TRS(6)	<0.01	0.02
101 – 130, 132 - 158 167 - 172, 174 – 175	Nos. 1 & 2 Linerboard Machines	VOC(6)	27.66	88.84
(11)		TRS(6)	0.42	1.55
159 – 166, 173 (12)	Secondary Fiber System	VOC(6)	0.34	1.24
192##	Lime Kiln Precoat Filter			
193##	Precoat Mud Filter Vacuum Pump West			
194##	Precoat Mud Filter Vacuum Pump East			
205	No. 4 White Liquor Storage Tank ^{A3}	VOC(6)	0.25	1.10
		TRS(6)	0.59	2.60
210	West Black Liquor Storage Tank	VOC(6)	0.35	1.55
	ziolago raint	TRS(6)	0.24	1.03

211	Center Black Liquor Storage Tank	VOC(6)	0.35	1.55
	C.o.o.go . a.m.	TRS(6)	0.24	1.03
212	East Black Liquor Storage Tank	VOC(6)	0.35	1.55
	Clorage raine	TRS(6)	0.24	1.03
213##	Eco-Filter White Liquor Feed tank			
214##	White Liquor Eco- Filter			
215##	Eco-Filter White Liquor Standpipe			
216##	Eco-Filter Lime Mud Dilution Tank			
217##	Eco-Filter Mud Washer			

218##	Eco-Filter Weak Wash Standpipe			
221	No. 2 Dry Bottom Mix Tank	VOC(6)	0.46	2.00
		SO ₂	0.07	0.32
		TRS(6)	0.61	2.68
222	No. 1 Dry Bottom Mix Tank	VOC(6)	0.46	2.00
	TAIN TAIN	SO ₂	0.07	0.32
		TRS(6)	0.61	2.68
224	Lime Mud Reclaim System (5)	РМ	0.02	0.05
		PM ₁₀	0.01	0.03
		PM _{2.5}	<0.01	<0.01
225	No. 2 Fuel Oil Tank	voc		0.01
232##	Green Liquor Dregs Filter and Vacuum Pump			
235	Liquor Loading (5)	VOC(6)	1.04	3.64

	1			1
275	Clean Condensate Collection Tank	VOC(6)	0.01	<0.01
278	Turpentine Loading (5)	VOC(6)	0.27	0.10
279	Fuel Oil Day Tank	voc	0.07	0.01
280	Fuel Oil Storage Tank	voc	0.07	0.04
281	Pet Coke Silo Stack	РМ	0.26	1.13
		PM ₁₀	0.26	1.13
		PM _{2.5}	0.26	1.13
282	Bark Boiler Ash Bin	РМ	0.26	1.13
		PM ₁₀	0.26	1.13
		PM _{2.5}	0.26	1.13
283	Cooling Tower No. 1	VOC(6)	0.98	4.30
284	Cooling Tower No. 2	VOC(6)	0.09	0.38
286	Caustic Solution Tank			
	Tarik	NaSH/Na ₂ S###	0.04	0.04
NCG-FUG1	Switching LVHC and HVLC NCG Venting	voc	145.00	0.25
	For Bypass and Preventative	TRS	0.06	<0.01
	Maintenance (5)(13)	Acetone	2.40	0.02
P-VBURNER	Propane Vaporizer Burner	VOC(6)	0.16	0.04
	Burrer	NO _X	2.56	0.67
		SO ₂	0.10	0.03
		РМ	0.14	0.04
		PM ₁₀	0.14	0.04
		PM _{2.5}	0.14	0.04
		СО	1.47	0.38

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

 PM_{10} - total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide H₂SO₄ - sulfuric acid

TRS - total reduced sulfide

HAP - hazardous air pollutants as listed in § 112(b) of the Federal Clean Act or Title 40 Code

of

Federal regulations Part 63, Subpart C

NH₃ - ammonia

 $\begin{array}{lll} \text{NaSH} & - \text{ sodium hydrosulfide} \\ \text{Na}_2 S & - \text{ sodium sulfide} \\ \end{array}$

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) VOC and TRS are represented as carbon and H₂S, respectively, unless otherwise indicated.
- (7) PM includes filterable and condensable PM, and compliance will be determined based on the sum of Method 5 and Method 202 (revised 12/1/2010).
- (8) PM_{10} and $PM_{2.5}$ include filterable and condensable PM_{10} and $PM_{2.5}$, respectively, and compliance will be determined based on the sum of Method 201A (revised 12/1/2010) and Method 202 (revised 12/1/2010).
- (9) PM₁₀ and PM_{2.5} include filterable and condensable PM₁₀ and PM_{2.5}, respectively, and compliance will be determined based on the sum of Method 5 and Method 202 (Revised 12/1/2010) until such time that the EPA methods are revised to account for particle size distribution data for wet sources.
- (10) VOC is represented as carbon
- (11) Includes PM1 False Ceiling Exhaust Fan (EPN 167), PM1 Roof Exhaust (EPN 168), PM1 Cleaner Exhaust Southeast (EPN 174), PM1 Cleaner Exhaust Southwest (EPN 175), PM2 Roof Exhausts (EPNs 169, 171, and 175), PM2 5th Section Hood Exhaust Fan (EPN 172), PM Base Sheet Low Density Tank, No. 1 and No. 2 Paper Machine Base Sheet Secondary, PM TS Low Density Chest, Strained White Water Chest Strainers, White Top High Density Storage Chest, Excess White Water Storage Chest, and No. 2 Paper Machine Fourdrinier Low Vacuum Seal Tank.
- (12) Includes SFS Exhaust Fan North (EPN 173), Secondary Fiber Surge Chest, Secondary Fiber Screen Stock
 - Tank, Secondary Fiber Rejects Tank, Secondary Fiber Rejects Tank East, Secondary Fiber White Water Chest North, MD Storage Chest Secondary Fiber, Secondary Fiber Wax Tank, and Feed Tank for Combisorter.
- (13) Emissions resulting from re-routing non-condensible gases between combustion sources [Lime Kiln (EPN 11) and Bark Boiler (EPN 2)].
- A1 = For determination of compliance, the annual emissions should be summed for the No. 1 Slaker (EPN

10) and No. 2 Slaker (EPN 13).

- B1-B6 = Hourly emission rates based on 24-hour averaging time.
- A2 = For determination of compliance, the annual emissions should be summed for the No. 1 Tall Oil Project Number: 161985 and 161986

- Storage Tank (EPN 30) and the No. 2 Tall Oil Storage Tank (EPN 31).
- = For determination of compliance, the annual emissions should be summed for the Nos. 1, 2, 4, and 5
 - White Liguor Storage Tanks (EPNs 36, 45, 46, and 205).
- A4 = For determination of compliance, the annual emissions should be summed for the "A" Blend Tank (EPN 56) and the "B" Blend Tank (EPN 57).
- A5 = For determination of compliance, the annual emissions should be summed for the No. 1 Green Liquor Storage Tank (EPN 47) and the No. 2 Green Liquor Storage Tank (EPN 51).
- A6 = For determination of compliance, the annual emissions should be summed for the "A" High Density Storage Tank (EPN 61) and the "B" High Density Storage Tank (EPN 62).
- * Compliance with TRS and SO₂ short-term emission rates is based on a 12-hour block average. Short-term emission rates for all other pollutants are based on a 24-hour rolling average.
- ** Compliance with CO and NO_X short-term emission rates is based on a 30-day rolling average. Compliance with NH₃ short-term emission rate is based on a 3-hour average. Short-term emission rates for all other
 - with NH₃ short-term emission rate is based on a 3-hour average. Short-term emission rates for all other pollutants are based on a 24-hour rolling average.
- *** Compliance with CO and NO_x short-term emission rate is based on a 30-day rolling average. Compliance with TRS short-term emission rate is based on a 12-hour block average. Short-term emission rates for all other pollutants are based on a 24-hour rolling average.
- # Compliance with PM, PM₁₀, and PM_{2.5} short-term emission rate is based on a 3-hour average.
- ## This piece of equipment is authorized by the permit and is no longer considered a source of emissions.
- ### Emissions conservatively assumed to be 100 percent NaSH or 100 percent Na₂S.

Date:	April 19, 2013
Date.	, (pin ±0, 20±0