BUILDING A PREDICTIVE MODEL

AN EXAMPLE OF A PRODUCT RECOMMENDATION ENGINE

Alex Lin
Senior Architect
Intelligent Mining
alin@intelligentmining.com

Outline

- Predictive modeling methodology
- o k-Nearest Neighbor (kNN) algorithm
- Singular value decomposition (SVD) method for dimensionality reduction
- Using a synthetic data set to test and improve your model
- Experiment and results

The Business Problem

• Design product recommender solution that will increase revenue.

How Do We Increase Revenue?

Example

• Is this recommendation effective?

Predictive Model

Framework

What Data to Use?

- Explicit data
 - Ratings
 - Comments
- Implicit data
 - Order history / Return history
 - Cart events
 - Page views
 - Click-thru
 - Search log
- In today's talk we only use Order history and Cart events

Predictive Model

What Features to Use?

- We know that a given product tends to get purchased by customers with similar tastes or needs.
- Use user engagement data to describe a product.

user engagement vector

Data Representation / Features

• When we merge every item's user engagement vector, we got a m x n item-user matrix

	users												
		1	2	3	4	5	6	7	8	9	10		n
items	1	1		.25			1				.25		
	2							.25					
	3	1			.25				1				
	4		.25			1			.25	1			
				1				1					
	m												

Data Normalization

• Ensure the magnitudes of the entries in the dataset matrix are appropriate

	users												
		1	2	3	4	5	6	7	8	9	10		n
items	1	.5		.9			.92				.49		
	2							.79					
	3	.67			.46				.73				
	4		.39			.82			.76	.69			
	:			.52				.8					
	m												

• Remove column average – so frequent buyers don't dominate the model

Data Normalization

- Different engagement data points (Order / Cart / Page View) should have different weights
- Common normalization strategies:
 - Remove column average
 - Remove row average
 - Remove global mean
 - Z-score
 - Fill-in the null values

Predictive Model

Which Algorithm?

• How do we find the items that have similar user engagement data?

	users													
		1	2	3	4	5	6	7	8	9	10		n	_
items	1	1		.25			1				1			
	2							1						
	17	1			1		1		.25		.25			
	18		1			.25	1		1	1				
				.25				1						,
	m													

• We can find the items that have similar user engagement vectors with kNN algorithm

k-Nearest Neighbor (kNN)

• Find the k items that have the most similar user engagement vectors

		users											
		1	2	3	4	5	6	7	8	9	10		n
items	1	.5		1			1				1		
	2		1					.5			1		
	3	1			1				1	1			
	4		1			.5		1		1			
	::			.5				1					
	m				1					.5			_

• Nearest Neighbors of Item 4 = [2,3,1]

Similarity Measure for kNN

 users

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 ...
 n

 2
 1
 1
 .5
 1
 1
 1

 4
 1
 .5
 1
 1
 1

Jaccard coefficient:

$$sim(a,b) = \frac{(1+1)}{(1+1+1) + (1+1+1+1) - (1+1)}$$

Cosine similarity: $sim(a,b) = \cos(\vec{a},\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot \|\vec{b}\|} = \frac{(1*1+0.5*1)}{\sqrt{(1^2+0.5^2+1^2)*(1^2+0.5^2+1^2+1^2)}}$

• Pearson Correlation:

$$corr(a,b) = \frac{\sum_{i} (r_{ai} - \overline{r_{a}})(r_{bi} - \overline{r_{b}})}{\sqrt{\sum_{i} (r_{ai} - \overline{r_{a}})^{2} \sum_{i} (r_{bi} - \overline{r_{b}})^{2}}} = \frac{m \sum_{i} a_{i} b_{i} - \sum_{i} a_{i} \sum_{i} b_{i}}{\sqrt{m \sum_{i} a_{i}^{2} - (\sum_{i} a_{i})^{2} \sqrt{m \sum_{i} b_{i}^{2} - (\sum_{i} b_{i})^{2}}}}$$

$$= \frac{match_{-} cols * Dotprod(a,b) - sum(a) * sum(b)}{\sqrt{match_{-} cols * sum(a^{2}) - (sum(a))^{2}} \sqrt{match_{-} cols * sum(b^{2}) - (sum(b))^{2}}}$$

k-Nearest Neighbor (kNN)

Predictive Model

o Ver. 1: kNN

Cosine Similarity – Code fragment

// find the Top K nearest neighbors here

```
long i cnt = 100000; // number of items 100K
long u cnt = 2000000; // number of users 2M
double data[i cnt][u cnt]; // 100K by 2M dataset matrix (in reality, it needs to be malloc allocation)
double norm[i_cnt];
// assume data matrix is loaded
// calculate vector norm for each user engagement vector
for (i=0; i<i_cnt; i++) {
  norm[i] = 0;
  for (f=0; f<u_cnt; f++) {
    norm[i] += data[i][f] * data
                               1. 100K rows x 100K rows x 2M features --> scalability problem
  norm[i] = sqrt(norm[i]);
                                   kd-tree, Locality sensitive hashing,
                                   MapReduce/Hadoop, Multicore/Threading, Stream Processors
                               2. data[i] is high-dimensional and sparse, similarity measures
// cosine similarity calculation
                                   are not reliable --> accuracy problem
for (i=0; i<i cnt; i++) { // loop
 for (j=0; j<i_cnt; j++) { // loop
                                   This leads us to The SVD dimensionality reduction!
    dot product = 0;
    for (f=0; f<u_cnt; f++) { // loop thru entire user space 2M
       dot product += data[i][f] * data[i][f];
    printf("%d %d %lf\n", i, j, dot product/(norm[i] * norm[j]));
                                                                                                      20
```

Singular Value Decomposition (SVD)

$$A = U \times S \times V^{T}$$

$$A_k = U_k \times S_k \times V_k^T$$

- Low rank approx. Item profile is $U_k * \sqrt{S_k}$
- Low rank approx. User profile is $\sqrt{S}_k * V_k^T$
- Low rank approx. Item-User matrix is $U_k * \sqrt{S_k} * \sqrt{S_k} * V_k^T$

Reduced SVD

$$A_k = U_k \times S_k \times V_k^T$$

• Low rank approx. Item profile is $U_{k} * \sqrt{S_{k}}$

SVD Factor Interpretation

SVD Dimensionality Reduction

$$U_k * \sqrt{S_k}$$
 <----- latent factors ----> # of users

rank
10

items

Need to find the most optimal low rank!!

Missing values

- Difference between "0" and "unknown"
- Missing values do NOT appear randomly.
- Value = (Preference Factors) + (Availability) (Purchased elsewhere) (Navigation inefficiency) etc.
- Approx. Value = (Preference Factors) +/- (Noise)
- Modeling missing values correctly will help us make good recommendations, especially when working with an extremely sparse data set

Singular Value Decomposition (SVD)

- Use SVD to reduce dimensionality, so neighborhood formation happens in reduced user space
- SVD helps model to find the low rank approx. dataset matrix, while retaining the critical latent factors and ignoring noise.
- Optimal low rank needs to be tuned
- SVD is computationally expensive
- SVD Libraries:
 - Matlab [U, S, V] = svds(A, 256);
 - SVDPACKC http://www.netlib.org/svdpack/
 - SVDLIBC http://tedlab.mit.edu/~dr/SVDLIBC/
 - GHAPACK http://www.dcs.shef.ac.uk/~genevieve/ml.html

Predictive Model

• Ver. 2: SVD+kNN

• Why do we use synthetic data set?

 So we can test our new model in a controlled environment

- 16 latent factors synthetic e-commerce data set
 - Dimension: 1,000 (items) by 20,000 (users)
 - 16 user preference factors
 - 16 item property factors (non-negative)
 - Txn Set: n = 55,360 sparsity = 99.72 %
 - Txn+Cart Set: n = 192,985 sparsity = 99.03%
 - Download: http://www.IntelligentMining.com/dataset/

```
    user_id
    item_id
    type

    10
    42
    0.25

    10
    997
    0.25

    10
    950
    0.25

    11
    836
    0.25

    11
    225
    1
```

Item property factors 1K x 16 matrix

User preference factors 16 x 20K matrix

Purchase Likelihood score
1K x 20K matrix

	X ₁₁	X_{12}	X_{13}	X_{14}	X_{15}	X_{16}
	X_{21}	X_{22}	X_{12}	X_{24}	X_{25}	X_{26}
items	X_{31}	X_{32}	X_{33}	X_{34}	X_{35}	X_{36}
ns	X_{41}	X_{42}	X_{43}	X_{44}	X_{45}	X ₄₆
	X_{51}	X_{52}	X_{53}	X_{54}	X_{55}	X ₅₆
•			110	0.74.0		

users

$$X_{32} = (a, b, c) \cdot (x, y, z) = a * x + b * y + c * z$$

 X_{32} = Likelihood of Item 3 being purchased by User 2

User 1 purchased Item 4 and Item 1

Experiment Setup

- Each model (Random / kNN / SVD+kNN) will generate top 20 recommendations for each item.
- Compare model output to the actual top 20 provided by synthetic data set
- Evaluation Metrics :
 - Precision %: Overlapping of the top 20 between model output and actual (higher the better)

• Quality metric: Average of the actual ranking in the model output (lower the better)

1	2	368	62	900	510
---	---	-----	----	-----	-----

• kNN vs. Random (Control)

• Precision % of SVD+kNN

Quality of SVD+kNN

• The effect of using Cart data

• The effect of using Cart data

Outline

- Predictive modeling methodology
- ok-Nearest Neighbor (kNN) algorithm
- Singular value decomposition (SVD) method for dimensionality reduction
- Using a synthetic data set to test and improve your model
- Experiment and results

References

- J.S. Breese, D. Heckerman and C. Kadie, "Empirical Analysis of Predictive Algorithms for Collaborative Filtering," in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI 1998), 1998.
- B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-based collaborative filtering recommendation algorithms," in Proceedings of the Tenth International Conference on the World Wide Web (WWW 10), pp. 285-295, 2001.
- B. Sarwar, G. Karypis, J. Konstan, and J. Riedl "Application of Dimensionality Reduction in Recommender System A Case Study" In ACM WebKDD 2000 Web Mining for E-Commerce Workshop
- Apache Lucene Mahout http://lucene.apache.org/mahout/
- Cofi: A Java-Based Collaborative Filtering Library <u>http://www.nongnu.org/cofi/</u>

Thank you

• Any question or comment?