Exercise 1 (multiplicative one-time pad).

We may also define a "multiplication $\mod p$ " variation of the one-time pad. This is a cipher $\mathcal{E} = (E, D)$, defined over (K, M, C), where

$$K := M := C := \{1, \dots, p-1\},\$$

where p is a prime. Encryption and decryption are defined as follows:

$$E(k, m) := k \cdot m \mod p$$
 ; $D(k, c) := k^{-1} \cdot c \mod p$.

Here, k^{-1} denotes the multiplicative inverse of k modulo p. Verify the correctness property for this cipher and prove that it is perfectly secure.

Exercise 2 (Chain encryption).

Let $\mathcal{E}=(E,D)$ be a perfectly secure cipher defined over (K,M,C) where K=M. Let $\mathcal{E}'=(E',D')$ be a cipher where encryption is defined as

$$E'((k_1, k_2), m) := (E(k_1, k_2), E(k_2, m)).$$

Show that \mathcal{E}' is perfectly secure.