Examen Primera Convocatoria (2014-2015)

Los métodos *binned* para detectar fuentes puntuales de neutrinos cósmicos se basan en dividir el cielo observable en celdas donde la probabilidad de observar sucesos de fondo es constante. Supongamos que dividimos el cielo en 4000 celdas y contamos los sucesos observados en cada una de ellas siendo los resultados los que se muestran en la tabla:

Número de sucesos	0	1	2	3	4
Número de celdas	2758	1023	186	31	2

- a) Calcular el número medio de sucesos observado por celda.
- b) Testear la hipótesis de que los datos vienen descritos por una distribución de Poisson mediante un test de χ^2 al 1% de CL.
- c) Si hubiéramos encontrado una celda con 6 sucesos ¿Con qué rotundidad podríamos decir que se trata de una fuente de neutrinos cósmica?

Events	Cells	Events*Cells	N*Poiss	Poisson	Chi2
0	2758	0,00	2751,9076	0,687977	0,013488
1	1023	1023,00	1029,2135	0,257303	0,037511
2	186	372,00	192,4629	0,048116	0,217025
3	31	93,00	23,9937	0,005998	2,045873
4	2	8,00	2,2434	0,000561	0,02641
N =	4000	1496,00		Chi2 =	2,340308
	Media =	<mark>0,374</mark>			
Events	Cells	Events*Cells	N*Poiss	Poisson	Chi2
Events 0	Cells 2758	Events*Cells 0,00	N*Poiss 2748,7278		Chi2 0,031278
				0,68701	
0	2758	0,00	2748,7278	0,68701	0,031278
0 1	2758 1023	0,00 1023,00	2748,7278 1031,8893	0,68701 0,257908	0,031278 0,076578 0,305219
0 1 2	2758 1023 186	0,00 1023,00 372,00	2748,7278 1031,8893 193,6888	0,68701 0,257908 0,04841	0,031278 0,076578 0,305219
0 1 2 3	2758 1023 186 31	0,00 1023,00 372,00 93,00	2748,7278 1031,8893 193,6888 24,2373	0,68701 0,257908 0,04841 0,006058 0,000569	0,031278 0,076578 0,305219 1,886917
0 1 2 3 4	2758 1023 186 31 2	0,00 1023,00 372,00 93,00 8,00	2748,7278 1031,8893 193,6888 24,2373 2,2747	0,68701 0,257908 0,04841 0,006058 0,000569 4,27E-05	0,031278 0,076578 0,305219 1,886917 0,033176
0 1 2 3 4 5 6	2758 1023 186 31 2 0	0,00 1023,00 372,00 93,00 8,00 0,00	2748,7278 1031,8893 193,6888 24,2373 2,2747 0,1708	0,68701 0,257908 0,04841 0,006058 0,000569 4,27E-05	0,031278 0,076578 0,305219 1,886917 0,033176 0,170788