03-Framework.pdf.1, 04-Error.pdf.2, 04-Error.pdf.5, 04-Error.pdf.7, 05-PCA.1, 05-PCA.2, 05-PCA.3

03-Framework.pdf.1

03Framework.1

April 20, 2018

```
In [10]: function [res] = NN(data)
          n = size(data)(1); m = size(data)(2);
          res = zeros(1,n);
          for i = 1:n
            dist = sum(((data - data(i,:)).*(data - data(i,:)))');
            dist(i) = realmax;
            [mini, res(i)] = min(dist);
          end
          toc
        end
In [11]: x = rand(5000, 10);
In [12]: tic
        res1 = NN(x)
        toc
Elapsed time is 3.28171 seconds.
res1 =
 Columns 1 through 11:
   4566
         2526 1862 1366 3082 4625 1791 2433 3549 1687
                                                                      4092
 Columns 12 through 22:
   3089
                2906
                      1708
                             2248 4976 2211 4509 3580 4897
Elapsed time is 4.04794 seconds.
In [17]: addpath /home/lanfangzhou/Downloads/Softwares/vlfeat-0.9.21/toolbox
In [16]: pkg list
Package Name | Version | Installation directory
```

```
control | 3.0.0 | /usr/share/octave/packages/control-3.0.0
general | 2.0.0 | /usr/share/octave/packages/general-2.0.0
image *| 2.6.1 | /usr/share/octave/packages/image-2.6.1
```

In [18]: vl_setup

In [30]: vl_version verbose

error: invalid use of script /home/lanfangzhou/Downloads/Softwares/vlfeat-0.9.21/toolbox/misc/vl

Since we cannot get octave with version 3.x to install now because of lots of problems, and octave4 is not compatible with vlfeat, the following tasks are impractical for me.

04-Error.pdf.2

(a)

find
$$\beta \in R^d$$
 to minimize $\sum_{i=1}^n (y_i - x_i^T \beta)^2$

(b)

find $\beta \in R^d$ to minimize $(y - X\beta)^T (y - X\beta)$

(c)

We first calculate the derivative of the objective

$$\frac{d((y - X\beta)^{T}(y - X\beta))}{d\beta} = -2X^{T}(y - X\beta)$$

Let it = 0:

$$\beta = (X^T X)^{-1} X^T y$$

Which is the optimal value.

(d)

No. When
$$d > n$$
, $rank(X^TX) \le rank(X) = d < n = size(X^TX)$

(e) The regularizer will decrease the $norm_2$ of β , i.e, decrease the magnitude of β .

(f)

find $\beta \in R^d$ to minimize $(y - X\beta)^T (y - X\beta) + \lambda \beta^T \beta$ We first calculate the derivative of the objective

$$\frac{d((y-X\beta)^T(y-X\beta)) + \beta^T\beta}{d\beta} = -2X^T(y-X\beta) + 2\lambda\beta$$

Let it = 0:

$$\beta = (X^T X + \lambda I)^{-1} X^T y$$
 (if $X^T X + \lambda I$ is invertible)

(g) The parameter λ will make the matrix more likely to be invertible, and definitely invertible when $\lambda \to +\infty$.

(h) No. For the definition of the cost function, the optimal value for λ is when $\lambda \to 0$, which is not what we want.

04-Error.pdf.5

(a)(b)

AUC-PR: $(r_i - r_{i-1}) \frac{p_i + p_{i-1}}{2}$ AP: $(r_i - r_{i-1}) p_i$

index	label	score	precision	recall	AUC-PR	AP
0			1.0000	0.0000	-	-
1	1	1.0	1.0000	0.2000	0.2000	0.2000
2	2	0.9	0.5000	0.2000	0.0000	0.0000
3	1	0.8	0.6667	0.4000	0.1167	0.1667
4	1	0.7	0.7500	0.6000	0.1417	0.1333
5	2	0.6	0.6000	0.6000	0.0000	0.0000
6	1	0.5	0.6667	0.8000	0.1267	0.1333
7	2	0.4	0.5714	0.8000	0.0000	0.0000
8	2	0.3	0.5000	0.8000	0.0000	0.0000
9	1	0.2	0.5556	1.0000	0.1111	0.1056
10	2	0.1	0.5000	1.0000	0.0000	0.0000
					0.6962	0.7389

(c)

newAUC: 0.6907 newAP: 0.7333

(d)

```
In [34]:
           1 function x = AUC(label, score)
                   [tmp, pos] = sort(score, 'descend');
label = label(pos);
                  n = length(score);
                  precision = zeros(1, n); recall = zeros(1, n);
           6
                  x = 0.0;
                  TP = 0;
                  P = length(find(label == 1));
           8
                   for i = 1:n
                       if label(i) == 1
          10
          11
                           TP++;
          12
                       end
          13
                       precision(i) = TP / i;
          14
                       if P == 0
          15
                            recall(i) = 0
          16
          17
                           recall(i) = TP / P;
          18
                       end
          19
                  end
          20
          21
                   for i = 1:n
          22
                       if (i > 1)
          23
                           x += (recall(i) - recall(i-1)) * (precision(i) + precision(i-1)) / 2;
          24
          25
                           x += (recall(i) - 0) * (precision(i) + 1.0) / 2;
          26
                       end
          27
                  end
          28 end
          executed in 66ms, finished 23:52:13 2018-04-20
In [35]:
           1 label = [1,2,1,1,2,1,2,2,1,2];
           2 score = 1.0:-0.1:0.1;
           3 AUC(label, score)
```

executed in 16ms, finished 23:52:15 2018-04-20 ans = 0.69056

04-Error.pdf.7

(a)

$$p(x,y) = \begin{cases} 0.5 \cdot \frac{1}{\sqrt{2\pi \cdot 0.5}} e^{-\frac{(x+1)^2}{0.5^2}}, & y=1\\ 0.5 \cdot \frac{1}{\sqrt{2\pi \cdot 0.5}} e^{-\frac{(x-1)^2}{0.5^2}}, & y=2 \end{cases}$$

(b)

1°

One solution is:

$$f(x) = argmax_y p(y|x)$$

$$= argmax_y \frac{p(x|y)p(y)}{p(x)}$$

$$= argmax_y p(x|y)$$

The cost:

$$\begin{split} E_{(x,y)}[c_{y,f(x)}] &= 0.5E_x[c_{1,f(x)}] + 0.5E_x[c_{2,f(x)}] \\ &= 0.5(Pr(f(x) = 2|y = 1) + Pr(f(x) = 1|y = 2)) \\ &= 0.5(\int_{f(x)=2}^{+\infty} p(x|y = 1) + \int_{f(x)\neq 2}^{+\infty} p(x|y = 2)) \\ &= 0.5(\int_{-\infty}^{+\infty} \min(p(x|y = 1), p(x|y = 2)) \\ &\geq 0.5(Pr(x \geq 0|y = 1) + Pr(x \leq 0|y = 2)) \\ &\text{the minimum is obtained when } f(x) \text{ is set as above.} \\ &\text{Under this solution, the cost is:} \\ &= 0.5(Pr(x \geq 0|y = 1) + Pr(x \leq 0|y = 2)) \\ &= 2(1 - \Phi(2)) \text{ } (\Phi \text{ is cdf of normal distribution.}) \\ &\approx 2(1 - 0.97725) \\ &= 0.045500 \end{split}$$

2° In a multi-class classification problem, also true.

- (c) Let $y = f(x) = argmax_y p(y|x)$ Bayes risk: 0.045500
- (d)

$$\begin{split} E_{(x,y)}[c_{y,f(x)}] &= 0.5E_x[c_{1,f(x)}] + 0.5E_x[c_{2,f(x)}] \\ &= 0.5(Pr(f(x) = 2|y = 1) + 10Pr(f(x) = 1|y = 2)) \\ &= 0.5(\int_{-\infty}^{+\infty} min(p(x|y = 1), 10p(x|y = 2)) \end{split}$$

Thus

$$f(x) = \begin{cases} 1, & p(x|y=1) \ge 10p(x|y=2) \\ 2, & p(x|y=1) < 10p(x|y=2) \end{cases}$$

05-PCA.1

(a)

Since *U*, *V* are orthogonal:

 $XX^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma (V^TV)\Sigma^TU^T = U(\Sigma\Sigma^T)U^T$ i.e. $(XX^T)U = (\Sigma\Sigma^T)U$

Therefore, the eigenvalues of XX^T are $\sigma_1^2, \sigma_2^2, ..., \sigma_{min(m,n)}^2, 0, ..., 0$ (The number of following 0 is max(0, m-n)), while corresponding eigenvectors are $u_1, u_2, ..., u_m$ ($U = (u_1, u_2, ..., u_m)$)

(b)

Since *U*, *V* are orthogonal:

i.e.
$$(X^TX) = (U\Sigma V^T)^T (U\Sigma V^T) = V\Sigma^T (U^T U)\Sigma V^T = V(\Sigma^T \Sigma)V^T$$

Therefore, the eigenvalues of X^TX are $\sigma_1^2, \sigma_2^2, ..., \sigma_{min(m,n)}^2, 0, ..., 0$ (The number of following 0 is max(0, m-n)), while corresponding eigenvectors are $v_1, v_2, ..., v_n$ ($V = (v_1, v_2, ..., v_m)$)

(c) Equivalent except for number of 0

(d) Eigenvalues of $XX^T(X^TX)$ are square of singular value of X except for number of X.

(e) By calculating the eigenvalues of XX_T (which are almost equivalent).

05-PCA.2

When scale is relatively big, yes. When $scale \ge 0.1$, corr1 usually is more than 0.99. When scale is relatively small, no.

The second one is correct.

05-PCA.3

```
10
5
-10
-10
-5
```

```
n [530]:
               #(b)(c)
               function [coeff, score, X_bar, L_ret, explained] = PCA(X, d = 1, whiten = false)
            3
                    N = size(X)(1); D = size(X)(\overline{2});
            4
                    L ret = ones(1,d);
            5
                    X_bar = mean(X);
                    X_center = X - X_bar;
Cov = (X_center' * X_center) / N;
            6
            8
                    [V, L] = eig(Cov);
                    [L_sort, pos] = sort(diag(L), 'descend');
            9
           10
                    V = V(:,pos); L = diag(L_sort);
                    if whiten == true
   V = V * diag(1./(sqrt(L_sort) + le-12));
           11
           12
           13
                         L_ret = L_sort(1:d);
           14
                    end
           15
                    V = V(:,1:d);
                    coeff = V;
score = X_center * coeff;
           16
           17
           18
                    explained = L_sort(1:d) / sum(L_sort);
           19
               end
          executed in 47ms, finished 20:15:37 2018-04-21
```

```
In [536]:
             1 #With whitening
                [coeff,score,x bar,L,explained]=PCA(x,2,true);
                scatter(score(:,1), score(:,2))
           executed in 246ms, finished 20:16:50 2018-04-21
             3
             2
             D
             -1
             -2
             -3
In [537]:
             1 #With whitening
               [coeff,score,x bar,L,explained]=PCA(x,2,true);
             3 x new = x bar + score * diag(L) * coeff';
             4 scatter(x new(:,1),x new(:,2))
           executed in 248ms, finished 20:16:51 2018-04-21
              0
              -5
```

```
In [538]:
                #Without whitening
             2 [coeff,score,x bar,L,explained]=PCA(x,2,false);
            3 scatter(score(:,1), score(:,2))
           executed in 274ms, finished 20:16:56 2018-04-21
             3
             D
             -2
             -3
In [540]:
               #Without whitening
               [coeff,score,x bar,L,explained]=PCA(x,2,false);
            2
               x_new = x_bar + score * diag(L) * coeff';
               scatter(x_new(:,1),x_new(:,2))
           executed in 254ms, finished 20:18:05 2018-04-21
              0
```