Statistics 2

Regression Modeling with Categorical Predictors: Code Variables

Casper Albers & Jorge Tendeiro Lecture 8, 2019 – 2020

Overview

Context

Example

Code variables – Two groups

Code variables – More than two groups

Literature for this lecture

Read:

Agresti, Section 12.1

Context

- ▶ So far, we only used continuous predictors in multiple regression.
- ▶ The multiple regression model can be extended to incorporate categorical predictors.

Example

- ► Gender (e.g., male, female, other).
- Political party (democrat, independent, republican).
- Clinical trial (new treatment, standard treatment, placebo).

Today we learn how to incorporate this type of predictors into multiple regression models.

Example – Preventing flashbacks

James et al. (2015) studied whether playing a computer game (Tetris) could prevent intrusive memories (flashbacks) related to a traumatic event from occurring, via a reactivation-reconsolidation mechanism¹.

- ► Dependent variable
 - $y = N_INTR = Number of intrusive memories over the next seven days$
- ► Independent variables
 - TIME, with two levels:
 - ightharpoonup 1 = morning
 - ≥ 2 = afternoon
 - CONDITION, with four levels:
 - ▶ 1 = No-task control
 - 2 = Reactivation + Tetris
 - ► 3 = Tetris only
 - 4 = Reactivation only

¹James, E. L., Bonsall, M. B., Hoppitt, L., Tunbridge, E. M., Geddes, J. R., Milton, A. L., & Holmes, E. A. (2015). Computer game play reduces intrusive memories of experimental trauma via reconsolidation-update mechanisms. *Psychological Science*, *26*, 1201-1215. doi: 10.1177/0956797615583071

	TIME		
	1	2	
Valid	30	42	
Mean	4.267	3.690	
Std. Deviation	3.352	3.382	

Question: Is there an effect of TIME on N_INTR? Equivalently, how can we regress N_INTR on TIME?

	N_INTR						
	1	2	3	4			
Valid	18	18	18	18			
Mean	5.111	1.889	3.889	4.833			
Std. Deviation	4.227	1.745	2.888	3.330			

Question: Is there an effect of CONDITION on N_INTR? Equivalently, how can we regress N_INTR on CONDITION?

Code variable = An artificial variable indicating group membership.

A categorical variable with two levels requires one code variable with two possible values.

Example (coding provided in data set):

$$z_i = \begin{cases} 1 & \text{if TIME} = MORNING \\ 2 & \text{if TIME} = AFTERNOON \end{cases}$$

- Any two different values could be used as codes:
 The test of the effect is invariant to the coding used.
- However, the interpretation of the effect (e.g., via regression coefficients or confidence intervals) does depend on the coding used.
- ► The most common coding system uses 0s and 1s: Dummy coding system.

$$z_i = \begin{cases} 0 & \text{if TIME} = MORNING \\ 1 & \text{if TIME} = AFTERNOON \end{cases}$$

Let's entertain the idea of regressing the DV on the code variable z and see where that takes us:

Population regression line: $\mu_y = \alpha + \beta_1 z$.

- The regression model describes how the population mean of y, μ_y , depends on the values of z (say, z_1 and z_2).
- The values of z define two subpopulations (e.g., morning and afternoon for predictor TIME):
 - In both groups *y* is normally distributed.
 - Means: μ_1 and μ_2 .
 - **Constant** σ .

Continuous IV: Many subpopulations defined by the IV.

Code variable: Two subpopulations.

$$\left(\mu_{\mathsf{y}} = \alpha + \beta_1 \mathsf{z}\right)$$

Two groups defined by the values of z:

$$z_i = \begin{cases} z_1 & \text{if person } i \text{ in group } 1 \\ z_2 & \text{if person } i \text{ in group } 2. \end{cases}$$

Plugging this into the regression equation:

Group 1:
$$\mu_1 = \alpha + \beta_1 \times z_1$$

Group 2:
$$\mu_2 = \alpha + \beta_1 \times z_2$$

The parameters α and β_1 , together with z, define the mean values in each group (i.e., μ_1 and μ_2).

Interpret regression parameters α , β_1

$$\begin{cases} \mu_1 = \alpha + \beta_1 \times z_1 \\ \mu_2 = \alpha + \beta_1 \times z_2 \end{cases}$$

Solve system of equations with respect to α , β_1 .

▶ This allows interpreting α and β_1 in terms of group mean values.

The mathematical solution is not beautiful (note: You DON'T need to know how to manually derive this!):

$$\begin{cases} \alpha = \frac{z_2\mu_1 - z_1\mu_2}{z_2 - z_1} \\ \beta_1 = \frac{\mu_2 - \mu_1}{z_2 - z_1} \end{cases}$$

Bahhh, this looks horrible.

It pays off to use simple codes, say, $z_1 = 0$, $z_2 = 1$.

This is why the dummy coding system is so popular:

$$z_i = \begin{cases} 0 & \text{if person } i \text{ in group } 1\\ 1 & \text{if person } i \text{ in group } 2. \end{cases}$$

For the dummy coding system,

$$\left\{ \begin{array}{l} \alpha = \frac{z_2\mu_1 - z_1\mu_2}{z_2 - z_1} \\ \beta_1 = \frac{\mu_2 - \mu_1}{z_2 - z_1} \end{array} \right. \quad \underset{(z_1 = 0, z_2 = 1)}{\longrightarrow} \left\{ \begin{array}{l} \alpha = \mu_1 \\ \beta_1 = \mu_2 - \mu_1 \end{array} \right.$$

Hey, this looks neat!

- ightharpoonup = Mean of group 1 (i.e., the group coded with 0s: Reference group).
- β_1 = Difference between the mean of group 2 and the mean of the reference group.

Estimate the parameters using the corresponding sample quantities:

$$\widehat{y} = a + b_1 z$$
, with $a = \overline{y}_1, b = \overline{y}_2 - \overline{y}_1$.

	TIME		
	1	2	
Valid	30	42	
Mean	4.267	3.690	
Std. Deviation	3.352	3.382	

Using dummy codes, thus 0 = morning, 1 = afternoon (predictor TIME01):

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	4.267	0.615		6.935	< .001
	TIME01	-0.576	0.806	-0.085	-0.715	0.477

$$a = \overline{y}_1 = 4.267.$$

$$b_1 = \overline{y}_2 - \overline{y}_1 = 3.690 - 4.267 = -0.577.$$

Example - Preventing flashbacks (TIME)

What would happen had we used the original predictor TIME (1 = morning, 2 = afternoon)?

$$\left\{ \begin{array}{ll} \alpha = \frac{z_2\mu_1-z_1\mu_2}{z_2-z_1} & \longrightarrow \\ \beta_1 = \frac{\mu_2-\mu_1}{z_2-z_1} & (z_1=1,z_2=2) \end{array} \right. \left. \left\{ \begin{array}{ll} \alpha = 2\mu_1-\mu_2 \\ \beta_1 = \mu_2-\mu_1 \end{array} \right. \right.$$

	TIME		
	1	2	
Valid	30	42	
Mean	4.267	3.690	
Std. Deviation	3.352	3.382	

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	4.843	1.336		3.625	< .001
	TIME	-0.576	0.806	-0.085	-0.715	0.477

$$a = 2\overline{y}_1 - \overline{y}_2 = 2 \times 4.267 - 3.690 = 4.844.$$

$$b_1 = \overline{y}_2 - \overline{y}_1 = 3.690 - 4.267 = -0.577.$$

Statistics 2 (2019-20) Lecture 8 14

Example – Preventing flashbacks (TIME)

 $\mathsf{Different}\ \mathsf{coding}\ \mathsf{system} \Longrightarrow \mathsf{Different}\ \mathsf{parameters} \Longrightarrow \mathsf{Different}\ \mathsf{interpretation}.$

But: Test (not C.I.!!) of the 'time' effect remains unaffected!

Codes 0, 1

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	4.267	0.615		6.935	< .001
	TIME01	-0.576	0.806	-0.085	-0.715	0.477

Codes 1, 2

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	4.843	1.336		3.625	< .001
	TIME	-0.576	0.806	-0.085	-0.715	0.477

Codes -3, 7

Coues	-5, 1					
Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	4.094	0.458		8.938	< .001
	TIME-3+7	-0.058	0.081	-0.085	-0.715	0.477

What t-test is this?

Recall that

$$\beta_1 = \frac{\mu_2 - \mu_1}{z_2 - z_1}.$$

Note that

$$\underline{\beta_1 = 0} \Longleftrightarrow \frac{\mu_2 - \mu_1}{z_2 - z_1} = 0 \Longleftrightarrow \mu_2 - \mu_1 = 0 \Longleftrightarrow \underline{\mu_2 = \mu_1}.$$

Therefore, testing $\mathcal{H}_0: \beta_1 = 0$ is equivalent to testing $\mathcal{H}_0: \mu_1 = \mu_2$.

▶ But this is the independent samples *t*-test!!

Thus, the independent samples *t*-test and regression with a binary code variable are linked.

	t	df	р
N_INTR	0.715	70	0.477

Statistics 2 (2019-20) Lecture 8 16/30

Independent samples t-test as a regression model

Test the difference between two groups: \mathcal{H}_0 : $\mu_1 = \mu_2$.

Independent samples t-test:

ightharpoonup Compute s_p and

$$t = \frac{\overline{y}_2 - \overline{y}_1}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}.$$

► Compare t with $t_{0.05(2);n_1+n_2-2}^*$.

Regression:

- Create a code variable with values 0 and 1 (or any other pair of values!).
- ▶ Compute $b_1 = \overline{y}_2 \overline{y}_1$ and SE_{b_1} .
- ▶ Test \mathcal{H}_0 through $t = b_1/SE_{b_1}$.
- ► Compare t with $t_{0.05(2);n_1+n_2-2}^*$.

Both statistical procedures are equivalent.

Q: What about CIs for regression parameters?

A: Cls, just like the associated regression parameters, must be interpreted in light of the coding variable used.

$$\left\{ \begin{array}{ll} \alpha = \frac{z_2\mu_1-z_1\mu_2}{z_2-z_1} & \longrightarrow \\ \beta_1 = \frac{\mu_2-\mu_1}{z_2-z_1} & (z_1=0,z_2=1) \end{array} \right. \left. \left\{ \begin{array}{ll} \alpha = \mu_1 \\ \beta_1 = \mu_2-\mu_1 \end{array} \right. \right.$$

Codes 0. 1

						95% CI	
	Unstd. Coef.	SE	Std. Coef.	t	р	Lower	Upper
(Intercept)	4.267	0.615		6.935	< .001	3.040	5.494
TIME01	-0.576	0.806	-0.085	-0.715	0.477	-2.183	1.030

- α = 4.267, 95%*CI* = (3.040, 5.494):
 - We are 95% confident that μ_1 lies between 3.040 and 5.494.
- $\beta_1 = -0.576$, 95%*CI* = (-2.183, 1.030): Estimate and inference for $(\mu_2 \mu_1)$:

We are 95% confident that $(\mu_2 - \mu_1)$ lies between -2.183 and 1.030.

Code variables - More than two groups

- In general, a categorical variable with g levels $(g \ge 2)$ requires (g 1) code variables.
- ▶ There are many ways of choosing a set of (g-1) code variables.
- ▶ Just like we saw when g = 2, the following two rules-of-thumb apply:
 - Testing the 'effect' of the categorical predictor on y does not depend on the coding system.
 - Interpreting this effect (by means of regression coefficients and CIs) does depend on the coding system.

We will focus on the dummy coding system.

Example – Preventing flashbacks (CONDITION)

CONDITION	Group	<i>z</i> ₁	Z 2	Z 3
1 = No-task control	1	1	0	0
2 = Reactivation + Tetris	2	0	1	0
3 = Tetris only	3	0	0	1
4 = Reactivation only	4	0	0	0

The code variables function as group identifiers:

- z₁: Identifier for subjects in Group 1.
- z₂: Identifier for subjects in Group 2.
- z₃: Identifier for subjects in Group 3.

By exclusion of parts, all subjects scoring 0 on all code variables belong to the last group (reference group).

Population regression equation:

$$\mu_y = \alpha + \beta_1 z_1 + \beta_2 z_2 + \beta_3 z_3.$$

Each set of values $\{z_1, z_2, z_3\}$ (i.e., each row in the table) defines one subpopulation of y values, normally distributed around μ_y with constant σ .

For the dummy coding system:

Interpret regression parameters α , β_i (i = 1, ..., g - 1)

Using the dummy coding system, solve the system of equations with respect to α and β_i (i = 1, ..., g - 1).

▶ This allows interpreting α and the β_i 's in terms of group mean values.

$$\begin{cases} \mu_1 = \alpha + \beta_1 \\ \mu_2 = \alpha + \beta_2 \\ \mu_3 = \alpha + \beta_3 \\ \mu_4 = \alpha \end{cases} \longrightarrow \begin{cases} \beta_1 = \mu_1 - \mu_4 \\ \beta_2 = \mu_2 - \mu_4 \\ \beta_3 = \mu_3 - \mu_4 \\ \alpha = \mu_4 \end{cases}$$

- ightharpoonup α = Mean of group 4 (reference group).
- β_i = Difference between the mean of group i and the mean of the reference group.

Statistics 2 (2019-20) Lecture 8 22/30

Example - Preventing flashbacks (CONDITION)

CONDITION

1 = No-task control

2 = Reactivation + Tetris

3 = Tetris only

 $4 = {\sf Reactivation\ only}$

	N_INTR				
	1	2	3	4	
Valid	18	18	18	18	
Mean	5.111	1.889	3.889	4.833	
Std. Deviation	4.227	1.745	2.888	3.330	

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	4.833	0.749		6.457	< .001
	z1	0.278	1.059	0.036	0.262	0.794
	z2	-2.944	1.059	-0.382	-2.781	0.007
	z3	-0.944	1.059	-0.123	-0.892	0.375

$$a = \overline{y}_4 = 4.833.$$

$$b_1 = \overline{y}_1 - \overline{y}_4 = 5.111 - 4.833 = 0.278.$$

$$b_2 = \overline{y}_2 - \overline{y}_4 = 1.889 - 4.833 = -2.944.$$

$$b_3 = \overline{y}_3 - \overline{y}_4 = 3.889 - 4.833 = -0.944.$$

Example - Preventing flashbacks (CONDITION)

How to retrieve the group means from the regression equation?

	N_INTR					
	1	2	3	4		
Valid	18	18	18	18		
Mean	5.111	1.889	3.889	4.833		
Std. Deviation	4.227	1.745	2.888	3.330		

Level	z_1	z_2	Z 3
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	0

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	4.833	0.749		6.457	< .001
	z1	0.278	1.059	0.036	0.262	0.794
	z2	-2.944	1.059	-0.382	-2.781	0.007
	z3	-0.944	1.059	-0.123	-0.892	0.375

$$\widehat{y} = 4.833 + 0.278z_1 - 2.944z_2 - 0.944z_3$$

- $\overline{y}_1 = 4.833 + 0.278 \times 1 2.944 \times 0 0.944 \times 0 = 5.111$
- $\overline{y}_2 = 4.833 + 0.278 \times 0 2.944 \times 1 0.944 \times 0 = 1.889$
- $\overline{y}_3 = 4.833 + 0.278 \times 0 2.944 \times 0 0.944 \times 1 = 3.889$
- $\overline{y}_4 = 4.833 + 0.278 \times 0 2.944 \times 0 0.944 \times 0 = 4.833$

$\mathsf{Different} \ \mathsf{coding} \ \mathsf{system} \Longrightarrow \mathsf{Different} \ \mathsf{parameters} \Longrightarrow \mathsf{Different} \ \mathsf{interpretation}$

Level	z_1	z_2	Z 3
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	0

Level	zz_1	zz_2	zz_3
1	0	0	0
2	1	0	0
3	0	1	0
4	0	0	1

						95%	6 CI
	Unstd. Coef.	SE	Std. Coef	t	р	Lower	Upper
(Intercept)	4.833	0.749		6.457	< .001	3.340	6.327
z1	0.278	1.059	0.036	0.262	0.794	-1.835	2.390
z2	-2.944	1.059	-0.382	-2.781	0.007	-5.057	-0.832
z3	-0.944	1.059	-0.123	-0.892	0.375	-3.057	1.168

						95%	6 CI
	Unstd. Coef.	SE	Std. Coef.	t	р	Lower	Upper
(Intercept)	5.111	0.749		6.828	< .001	3.617	6.605
zz1	-3.222	1.059	-0.418	-3.044	0.003	-5.335	-1.110
zz2	-1.222	1.059	-0.159	-1.155	0.252	-3.335	0.890
zz3	-0.278	1.059	-0.036	-0.262	0.794	-2.390	1.835

Code variables - More than two groups

(Exercise: Interpret the regression coefficients based on code variables zz_1 , zz_2 , and zz_3 !)

So interpretation depends on the coding system.

However, testing the effect of the categorical predictor on y does not!

Similarly to the two-group situation, it can be shown that testing

$$\mathcal{H}_0: \mu_1 = \mu_2 = \cdots = \mu_g$$

is equivalent to testing

$$\mathcal{H}_0: \beta_1 = \beta_2 = \cdots = \beta_{g-1} = 0,$$

which is also equivalent to (see lecture 4)

$$\mathcal{H}_0: R^2=0,$$

irrespective of the coding system used.

An *F*-test (recall lecture 4) is used to test this effect:

$$F = rac{MSR}{MSE} = rac{R^2/p}{(1-R^2)/(n-p-1)} \sim_{\mathcal{H}_0} F(p, n-p-1),$$

where p = number of predictors = g - 1.

This is the infamous (as you'll see later in the course) omnibus ANOVA F test.

Example - Preventing flashbacks (CONDITION)

For any coding system, for example,

z_1	z ₂	z 3
1	0	0
0	1	0
0	0	1
0	0	0
	1 0 0	1 0 0 1 0 0

Level	zz_1	zz_2	zz ₃
1	0	0	0
2	1	0	0
3	0	1	0
4	0	0	1

or any other,

the same F test applies:

Model		Sum of Squares	df	Mean Square	F	р
1	Regression	114.8	3	38.27	3.795	0.014
	Residual	685.8	68	10.09		
	Total	800.7	71			

or

$$F(p, n-p-1) = 3.795$$
, where:

$$p = g - 1 = 3$$
;

$$n-p-1=72-3-1=68.$$

In this case, F(3,68)=3.795, p=.014, thus we reject \mathcal{H}_0 at 5% significance level.

Beyond the *F* test

The null hypothesis tested by the F test is quite general ('omnibus'):

$$\mathcal{H}_0: \mu_1 = \mu_2 = \cdots = \mu_g \quad \Longleftrightarrow \quad \mathcal{H}_0: \beta_1 = \beta_2 = \cdots = \beta_{g-1} = 0.$$

Rejecting \mathcal{H}_0 means actually very little:

There is evidence that not all population group means are equal...

(how surprising is that?!)

But we are using regression! So, more focused tests of effects are possible:

$$\mathcal{H}_0: \beta_i = 0$$
 versus $\mathcal{H}_a: \beta_i \neq 0$.

When the predictors are code variables like today, each β_i can be expressed in terms of group means. Therefore, testing $\mathcal{H}_0:\beta_i=0$ can be translated into testing special relations between population group means. These tests are known as contrasts.

Studying contrasts is the next lecture's topic!

Next lecture – Regression Modeling with Categorical Predictors: Multiple comparisons, contrasts

Agresti, Section 12.2