7 класс

7.1 Длина удава. Отдыхая на одном экзотическом острове, экспериментатор Глюк взял напрокат скутер, основная шкала спидометра которого была проградуирована в привычных для местного населения единицах измерения скорости — «удавах в минуту».

Хозяин проката, желая пойти навстречу иностранным туристам, выяснил, что по принятой в Европе системе единиц (СИ) скорость должна измеряться в «метрах в секунду», и рядом с местной шкалой нанес «общепринятую» европейскую (см. рисунок). Определите:

- на какую максимальную скорость (в км/ч) рассчитана экзотическая шкала спидометра скутера?
- чему равны (в км/ч) показания спидометра на рисунке?
- какова длина местных удавов, выраженная в метрах?

7.2 На речке. Двигаясь вниз по реке, лодка под мостом обогнала плот. Через некоторое время она доплыла до пристани, быстро развернулась и, с прежней относительно воды скоростью, поплыла вверх по течению, где снова встретила плот на расстоянии $S_1 = 1~100~\mathrm{M}$ от моста. Если бы с момента первой встречи с плотом лодка плыла с вдвое большей скоростью относительно воды, то их вторая встреча произошла на расстоянии $S_2 = 600~\mathrm{M}$ от моста. Определите во сколько раз скорость лодки v больше скорости течения реки u, и на каком расстоянии S от моста находится пристань.

7.3 Стержень. Половина (по длине) длинного стержня имеет линейную плотность $\lambda_1 = 60 \text{ г/дм}$, а вторая половина $\lambda_2 = 20 \text{ г/дм}$. Стержень разрезали поперек на две равные по массе части. Чему оказались равны средние линейные плотности получившихся частей?

Примечание: Линейной плотностью протяженных тел λ называют массу единицы их длины.

7.4 Окаменевшая жидкость. Если в сосуд объемом V_0 , доверху заполненный жидкостью, опускать камни плотностью $\rho = 2,2$ г/см³, то в зависимости от их объема V ($V < V_0$) средняя плотность содержимого сосуда будет изменяться, как показано на графике. Определите объем сосуда V_0 и плотность жидкости ρ_0 .

7.1. Длина удава

Возможное решение

Приложив к рисунку линейку, можно определить, что скорости 14 м/с соответствует 87 уд/мин, откуда переводной коэффициент шкал скоростей $0,159 \div 0,161$ (уд/мин)/(м/с). Следовательно, 90 уд/мин = $90 \times 14 \times 3,6/87 = 52$ км/ч, а показания спидометра $55 \text{ уд/мин} = 55 \times 14 \times 3,6/87 = 32$ км/ч (здесь учтено, что 1 м/c = 3,6 км/ч). Так как 1 мин = 60 c, то $1 \text{ удав} = 14 \times 60/87 = 9,7$ м.

7.2. На речке

Возможное решение

Время движения лодки от моста до пристани $t=\frac{S}{\upsilon+u}$. Так как в системе отсчета плота скорость лодки не меняется, то таким же будет и время возвращения лодки к плоту. За все время отсутствия лодки плот проплывет расстояние $S_1=\frac{2Su}{\upsilon+u}$. Если скорость лодки возрастет в 2 раза, то плот проплывет $S_2=\frac{2Su}{2\upsilon+u}$. Пусть скорость лодки в k раз больше скорости течения реки. Тогда $S_1=\frac{2S}{k+1}$, а $S_2=\frac{2S}{2k+1}$. Откуда k=5, а S=3300 м.

7.3.Стержень

Возможное решение

Так как длины частей стержня одинаковы, а линейные плотности отличаются в 3 раза, во столько же раз отличаются и их массы. Пусть масса всего стержня 4m, тогда массы каждой из разрезанных частей 2m, а линия разреза отсекает две трети тяжелой половины. Следовательно, линейная плотность однородной короткой части равна $\lambda_I = \lambda_1 = 60$ г/дм, а среднюю линейную плотность длинной составной части можно рассчитать по формуле:

$$\lambda_{II}=rac{\dfrac{l}{6}\lambda_{1}+\dfrac{l}{2}\lambda_{2}}{\dfrac{2}{3}l}=30$$
 г/дм, где l – длина всего стержня.

7.4.Окаменевшая жидкость

Возможное решение

Проще всего решать задачу не аналитически, а продлить (экстраполировать) график до объема 0 дм^3 и до плотности $2,2 \text{ г/см}^3$. В первом случае мы получим плотность жидкости 0.8 г/см^3 , а во втором – объем сосуда 14 дм^3 .

7 класс

Критерии оценивания

	критерии оценивания		
7.1 Дл	ина удава		
1.	Сравнение шкал производится для хорошо совпадающих делений	2 балла	
2.	Найдено отношение скоростей 0,159 ÷ 0,161 (уд/мин)/(м/с)	2 балла	
3.	Найдено значение максимальной скорости 51 ÷ 53 км/ч	2 балла	
4.	Определены показания спидометра 31 ÷ 33 км/ч	2 балла	
5.	Найдена длина удава 9,6 ÷ 9,8 м	2 балла	
7.2 На речке			
1.	Выражение для времени движения лодки от моста до пристани	1 балл	
2.	Учет равенства времен удаления и возвращения лодки от плота	2 балла	
3.	Выражение для смещения плота за время отсутствия лодки	2 балла	
4.	Выражение для смещения плота во второй ситуации	1 балл	
5.	Найдено отношение скоростей	2 балла	
6.	Получен численный ответ для расстояния до пристани с указанием		
	единиц измерений	2 балла	
7.3 Стержень			
1.	Выражены массы частей через длины и линейную плотность	2 балла	
2.	Определено место разреза стержня	2 балла	
3.	Получен численный ответ с указанием единиц измерений для		
	линейной плотности короткой части	2 балла	
4.	Получен численный ответ с указанием единиц измерений для		
	линейной плотности длинной составной части	4 балла	
7.4 O _F	саменевшая жидкость		
1.	Учет линейности быстроты изменения средней плотности		
	от изменения добавленного объема (экстраполяция).	2 балла	
2.	Идея нахождения плотности при нулевом добавленном объеме	2 балла	
3.	Найдена плотность жидкости (численное значение и единицы измерения)	2 балла	
4.	Идея нахождения объема сосуда, заполненного только камнями	2 балла	
5.	Найден объем сосуда (численное значение и единицы измерения)	2 балла	

8 класс

- **8.1 Ни два, ни полтора...** Автомобиль проехал треть пути со скоростью v = 46 км/ч. Затем четверть времени всего движения он ехал со скоростью в полтора раза превышающей среднюю на всем пути. На последнем участке автомобиль ехал со скоростью 2v. Определите максимальную скорость автомобиля.
- **8.2 Проволока.** Длинная проволока состоит из трех частей, соединенных последовательно друг за другом. Первая часть длиной в четверть от длины всей проволоки имеет линейную плотность $\lambda_1 = 30\,$ г/дм. Вторая часть массой в треть от массы всей проволоки имеет линейную плотность λ_2 . Масса третьей части равна сумме масс первых двух. Определите среднюю линейную плотность λ_{cp} всей проволоки. Какая минимальная линейная плотность λ_2 может быть у второй части проволоки?

Примечание: Линейной плотностью протяженных тел λ называют массу единицы их длины.

8.3. Жидкое равновесие. Прямоугольный легкий сосуд с жидкостью массой m помещен на однородный рычаг массой 3m. В жидкость опущено тело массой 2m, не касающееся дна

сосуда и удерживаемое нитью, перекинутой через блок (см. рисунок). Какой массы $m_{\rm x}$ груз необходимо подвесить к противоположному концу нити, для равновесия всей системы? Трения в осях рычага и блока нет. Необходимые расстояния можно взять из рисунка.

8.4 Быстрее, но медленнее. Чайник с водой при температуре $t_0 = 20^{\circ}$ С нагрелся на газовой горелке до $t_1 = 40^{\circ}$ С за время $\tau_1 = 2$ мин. Желая ускорить нагрев, половину воды вылили, и еще через $\tau_2 = 1$ мин температура воды достигла $t_2 = 55^{\circ}$ С. Так как и это показалось медленным, вылили еще половину оставшейся воды, но при этом случайно задели кран горелки, вдвое убавив ее мощность. Через какое время τ_3 чайник все-таки нагреется до $t_3 = 100^{\circ}$ С? Потерями тепла в окружающую среду можно пренебречь.

8.1. Ни два, ни полтора...

Возможное решение

Из условия не очевидно, на каком участке (втором или третьем) скорость больше. По определению средняя скорость на всем пути $\upsilon_{cp} = \frac{S}{t}$, где S – все пройденное расстояние, а

$$t$$
 – все время движения. Тогда скорость на втором участке $\frac{3}{2} \nu_{cp} = \frac{S_2}{\frac{1}{4} t}$, и пройденное на этом

участке расстояние $S_2=3S/8$, а длина оставшегося третьего участка равна 7S/24. Время движения на первом и третьем участке $\frac{3}{4}t=\frac{S}{3\upsilon}+\frac{7S}{48\upsilon}$, откуда $\upsilon=\frac{23}{36}\frac{S}{t}$, или

 $v_{\rm cp}=36v/23=72$ км/ч, а $3v_{\rm cp}/2=108$ км/ч, что больше 2v=92 км/ч. Окончательно, максимальная скорость $3v_{\rm cp}/2=108$ км/ч.

8.2. Проволока

Возможное решение

Средняя линейная плотность всей проволоки равна $\lambda_{cp} = \frac{m}{l}$, где m – масса всей проволоки, а

$$l$$
 — ее длина. По условию масса первой части равна $m_1=\frac{m}{2}-\frac{m}{3}=\frac{m}{6}$. Откуда $\lambda_1=\frac{4m}{6l}=\frac{2}{3}\lambda_{\rm cp}$, или $\lambda_{\rm cp}=3\lambda_1/2=45$ г/дм.

Так как масса второй части проволоки фиксирована, то минимальная линейная плотность λ_2 достигается при максимальной длине второй части. Но она, по условию, не может превысить 3l/4, откуда $\lambda_2 = \frac{4m}{9l} = \frac{4}{9}\,\lambda_{\rm cp} = 20$ г/дм.

8.3. Жидкое равновесие

Возможное решение

Сила давления на дно сосуда F распределена равномерно по всей площади и не зависит от места погружения в жидкость тела 2m. При этом, $F = mg + F_A$, где F_A – сила, противодействующая силе Архимеда, действующей на тело 2m.

Из условия равновесия тела 2m: $T + F_A = 2mg$, где T — сила натяжения нити, которая в свою очередь может быть найдена из условия равновесия груза m_x ($T = m_x g$).

Правило моментов для рычага относительно точки опоры имеет вид: 3mgl = F2l.

Решая систему уравнений, получаем $m_x = 3m/2$.

8.4. Быстрее, но медленнее

Возможное решение

Так как после первого уменьшения массы воды вдвое не произошло увеличения вдвое скорости роста температуры, пренебрегать теплоемкостью чайника нельзя.

Запишем уравнения теплового баланса для трех случаев:

$$N\tau_1 = C_0(t_1 - t_0) + C(t_1 - t_0),$$

$$N\tau_2 = C_0(t_2 - t_1) + \frac{C}{2}(t_2 - t_1),$$

$$\frac{N}{2}\,\tau_3 = C_0(t_3-t_2) + \frac{C}{4}(t_3-t_2)\,,$$
где C_0 и C – теплоемкости чайника и начальной массы воды

соответственно.

Из первых двух уравнений легко получить, что $2C_0 = C$. Тогда из третьего и первого следует, что $\tau_3 = 4,5$ мин.

8 класс Критерии оценивания

8.1 Ни два, ни полтора			
1.	Уравнение для средней скорости на всем пути	1 балл	
2.	Уравнение для средней скорости на втором участке	2 балла	
3.	Выражена длина второго участка	1 балл	
4.	Выражена длина третьего участка	1 балл	
5.	Выражение для времени движения на первом и третьем участке	1 балл	
6.	Получена связь между средней скоростью и скоростью на первом участке	1 балл	
7.	Получено численное значение с указанием единиц измерения для средней		
	скорости	2 балла	
8.	Явно выбрана максимальная скорость	1 балл	
*За решение с неаргументированным правильным ответом баллы не ставятся.			
0.4 II			
-	Ооволока	1 60	
1.	Выражение для средней линейной плотности	1 балл	
2.	Найдена доля массы, соответствующая первой части	1 балл	
3.	Установлена связь средней линейной плотности с линейной	1 60	
4	плотностью первого участка	1 балл	
4.	Найдено численное значение с указанием единиц измерения	2 6	
_	средней линейной плотности	2 балла	
5.	Обоснование минимального значения линейной плотности	1 6	
	второго участка	1 балл	
6.	Найдена максимальная длина второго участка	2 балла	
7.	Найдено численное значение с указанием единиц измерения	2.5	
	минимальной линейной плотности второго участка	2 балла	
8.3. Ж	идкое равновесие		
1.	Учет равномерного распределения силы давления по дну сосуда	1 балл	
2.	Условие равновесия тела 2 <i>m</i>	2 балла	
3.	Условие равновесия тела $m_{\rm x}$	2 балла	
4.	Правило моментов для рычага	3 балла	
5.	Найдено значение $m_{\rm x}$	2 балла	
9.4 Expermed the management			
	обранования на будинисти уната тапиа однасти на йинис	2 50550	
1.	Обоснование необходимости учета теплоемкости чайника	2 балла	
2.	Уравнения теплового баланса для каждого из случаев (по 2 балла)	6 баллов	
3.	Получен численный ответ с указанием единиц измерений	2 балла	