NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI

Faglig kontakt under eksamen: Institutt for materialteknologi, Gløshaugen Førsteamanuensis Hilde Lea Lein, tlf. 73 55 08 80

EKSAMEN I EMNE TMT4110 KJEMI - løsningsforslag

Oppgave 1.

Det er kun ett riktig svar for hver deloppgave. Sett derfor kun ett kryss. Dersom to eller flere svar avgis, bedømmes denne deloppgaven med null poeng.

i) Hva er definisjonen på en Brønsted-Lowry-syre?
a) Proton donorx
b) Proton akseptor
c) Elektron donor
d) Elektron akseptor.
,
ii) Hvilket av følgende utsagn er ikke en av termodynamikkens lover?
a) Den totale energien i universet er konstant
b) En spontan prosess er en prosess der entropien i universet øker
c) En reaksjon er spontan hvis $\Delta G > 0$
d) Entropien for en perfekt krystall ved 0 K er null
iii) Hva er elektronkonfigurasjonen til S?
a) [Ne] $3s^23p^6$
b) [Ne] $3s^23p^4$
c) [Ar] $3s^23p^4$
d) [Ar] $3s^23p^6$
iv) Hva menes med en heterogen likevekt?
a) Likevekt som inneholder bare væsker
b) Likevekt hvor $K = 1$
c) En likevekt som inneholder produkter/reaktanter i flere aggregattilstander x
d) En likevekt som sakte innstilles (lav reaksjonshastighet)
v) Hvilken av følgende beskriver en likevektssituasjon?
a) $\Delta H^o = T \Delta S^o$.
b) $\Delta G^{o} = 0$
c) $\Delta C_p = 0$
d) $\Delta G = 0$ x

vi) Hva er ikke riktig beskrivelse for et kompleks:	
a) Et kompleks består av et sentralatom omgitt av ligander	🗆
b) Stabiliteten avhenger av likevektskonstanten for dannelsen av komplekset (K _f)	
c) Mange komplekser er fargede.	
d) Ladningen på sentralatomet kalles koordinasjonstallet til kompleksionet	
vii) Hvilken monomer er teflon bygd opp av?	
a) C ₂ H ₄	🗆
b) C ₂ H ₂ F ₂	
c) C ₂ F ₄	
d) C ₂ Cl ₄	
viii) Hva er riktig for en brenselscelle?	
a) En brenselscelle er en galvanisk celle hvor reaktantene blir kontinuerlig tilført	x
b) Elektolytten må være et fast stoff	
c) Oksidasjonen skjer ved katoden	
d) Strøm benyttes for å lage et reaksjonsprodukt	
ix) Metallet brukes i legeringer blant annet fordi det bidrar til hardhet. Mineralene til lett gjenkjennelige pga sine rosa/lilla farger. Elementet brukes også til å oppnå en dy noe som ble gjort ved Blaafarveverket på Modum i Buskerud. Saltene er giftige, mer livsviktig og finnes bl.a. i vitamin B12. Hvilket element? a) Mn	yp blå farge, n metallet er
b) Co	
c) Ni	
d) Cr.	
x) Navnet på elementet kommer fra latin og betyr "himmelblå". Det er det mest	et oksiderer
ustabile grunnstoffet etter F, og smelter om du (teoretisk sett) holder det i hånden. D raskt i luft og danner et farlig superoksid på overflata. Elementet inngår i standardm (atomur) og definisjonen av et sekund. Uran i atomreaktorstaver blir bl.a. spalte isotopene til elementet. Denne isotopen er radioaktiv og pga en relativ lang halverindette en stor miliøtrussel ved ulykker i atomkraftverk. Hvilket element?	et til en av
raskt i luft og danner et farlig superoksid på overflata. Elementet inngår i standardm (atomur) og definisjonen av et sekund. Uran i atomreaktorstaver blir bl.a. spalte isotopene til elementet. Denne isotopen er radioaktiv og pga en relativ lang halverin dette en stor miljøtrussel ved ulykker i atomkraftverk. Hvilket element?	et til en av ngstid utgjør
raskt i luft og danner et farlig superoksid på overflata. Elementet inngår i standardm (atomur) og definisjonen av et sekund. Uran i atomreaktorstaver blir bl.a. spalte isotopene til elementet. Denne isotopen er radioaktiv og pga en relativ lang halverin dette en stor miljøtrussel ved ulykker i atomkraftverk. Hvilket element? a) Rn	et til en av ngstid utgjør □
raskt i luft og danner et farlig superoksid på overflata. Elementet inngår i standardm (atomur) og definisjonen av et sekund. Uran i atomreaktorstaver blir bl.a. spalte isotopene til elementet. Denne isotopen er radioaktiv og pga en relativ lang halverin dette en stor miljøtrussel ved ulykker i atomkraftverk. Hvilket element? a) Rn	et til en avngstid utgjør
raskt i luft og danner et farlig superoksid på overflata. Elementet inngår i standardm (atomur) og definisjonen av et sekund. Uran i atomreaktorstaver blir bl.a. spalte isotopene til elementet. Denne isotopen er radioaktiv og pga en relativ lang halverin dette en stor miljøtrussel ved ulykker i atomkraftverk. Hvilket element? a) Rn	et til en av ngstid utgjør □ x

Oppgave 2

a)
$$ZnO(s) + C(s) \longrightarrow Zn(g) + CO(g)$$

$$\Delta H^{o} \text{ (kJ/mol) } -350 \text{ 0} \text{ 130 } -111$$

$$\Delta G^{o} \text{ (kJ/mol) } -320 \text{ 0} \text{ 94 } -137$$

$$S^{o} \text{ (J/Kmol) } 44 \text{ 6 } \text{ 161 } \text{ 198}$$

$$\Delta H^{o} = 130 + (-111) - (-350) - 0 = \underline{369 \text{ kJ/mol}}$$

$$\Delta S^{o} = 161 + 198 - 44 - 6 = \underline{309 \text{ J/mol}}$$

$$\Delta G^{o} = 94 + (-137) - (-320) - 0 = \underline{277 \text{ kJ/mol}}$$

- b)
 - i) $\Delta S_r^o > 0$ \rightarrow Siden fast stoff omdannes til gass forventes økning i entropien.
 - ii) $\Delta H_r > 0 \rightarrow$ Endoterm reaksjon, noe som gjør at flere produkter dannes ved høy temperatur.

Produkter i gassfase: Økt trykk → mer reaktanter.

Høy temperatur og lavt trykk forskyver dermed likevekten mot høyre.

c)
$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o} = -RT \ln K$$

 $25 \text{ °C: } \ln K = -\frac{\Delta H^{o} - T\Delta S^{o}}{RT} = -\frac{369 \cdot 10^{3} \text{ J/mol} - 298 \text{ K} \cdot 309 \text{ J/K}}{8,31451 \text{ J/Kmol} \cdot 298 \text{ K}} = -111,76$
 $\underline{K} = 2,90 \cdot 10^{-49}$
 $1100 \text{ °C: } \ln K = -\frac{\Delta H^{o} - T\Delta S^{o}}{RT} = -\frac{369 \cdot 10^{3} \text{ J/mol} - 1373 \text{ K} \cdot 309 \text{ J/K}}{3,31451 \text{ J/Kmol} \cdot 1373 \text{ K}} = 4,84$
 $\underline{K} = 3,99$

<u>Større likevektskonstant, K, ved økt temperatur gir flere produkter, noe som stemmer overens med svaret i c).</u>

d)
$$K = \frac{P_{CO} \cdot P_{Zn}}{[ZnO][C]} = P_{CO} \cdot P_{Zn} = 126,5$$

 $P_{CO} = P_{Zn} = \sqrt{126,5} = \underline{11,2atm}$

e)
$$\Delta S_{tot} > 0$$

$$\Delta S_r \text{ er ukjent}$$

$$\Delta G_r < 0$$

$$\Delta G_r^{\circ} \text{ er ukjent}$$

Oppgave 3

a)
Vi skiller mellom primære-, sekundære- og tertiære alkoholer etter antall
hydrokarbonfragmenter som er koblet til karbonet som OH-gruppet er bundet til:

Alkohol:

Oksidasjonsprodukt:

Primær:
$$R - \stackrel{H}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}}{\stackrel{}}}} C = 0$$

Sekundær: $R - \stackrel{H}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}}} C = 0$

Tertiær: $R - \stackrel{R''}{\stackrel{}{\stackrel{}{\stackrel{}}}} C = 0$

Oksidasjonsprodukter:

Primær alkohol → aldehyd (→karbolsyre)

Sekundær alkohol → keton

Tertiær alkohol → kan ikke oksideres

b) Kondensasjonsreaksjon: Et lite molekyl, for eksempel H₂O dannes under reaksjonen Eksempel:

- c) i) 4-metyl-1-penten
 - ii) 3-metylbutanal

d)

Oppgave 4

a) i)

b)
$$E^{o}$$

$$Pb^{2+} + 2e^{-} \longrightarrow Pb(s)$$

$$Ni^{2+} + 2e^{-} \longrightarrow Ni(s)$$

$$-0.13 \text{ V}$$

$$(\text{snu denne delrx})$$

$$-0.13 \text{ V}$$

Totalreaksjon: $Ni(s) + Pb^{2+} \longrightarrow Ni^{2+} + Pb(s)$ 0,11 V

$$E^{o} = 0.24 \text{ V} + (-0.13 \text{ V}) = 0.11 \text{ V}$$

Anode (oksidasjon): $Ni(s) \longrightarrow Ni^{2+} + 2e^{-}$ Katode (reduksjon): $Pb^{2+} + 2e^{-} \longrightarrow Pb(s)$

c)
$$E = E^{o} - \frac{0,0592}{n} \log Q \text{ hvor } Q = \frac{\left[Ni^{2+}\right]}{\left[Pb^{2+}\right]}$$
$$E = 0,11V - \frac{0,0592}{2} \log \frac{0,5}{0,1} = \underbrace{0,0893V}_{======}$$

d) Na₂SO₄ (s) som er et lettløselig salt tilsettes:

$$Na^{^{+}}\left(aq\right)+SO^{2^{-}}\left(aq\right)\leftrightarrow Na_{2}SO_{4}\left(s\right)$$

Na⁺ vil løses i vannet og ikke reagere videre. Da får vi:

$$Pb^{2+}(aq) + SO^{2-}(aq) \leftrightarrow PbSO_4(s)$$
 $K_{sp} = 1,6 \cdot 10^{-8}$

[Pb²⁺] vil avta og dermed vil Q øke og cellepotensialet minke iht Nernst likning.

e) Først må man finne ved hvilken [Pb²⁺] potensialet mellom de to halvcellene er null:

$$0 = 0.11V - \frac{0,0592}{2} \log \left(\frac{0,5}{[Pb^{2+}]} \right)$$
$$\log \left(\frac{0,5}{[Pb^{2+}]} \right) = \frac{0,11 \cdot 2}{0,0592} = 3,16$$
$$\frac{0,5}{[Pb^{2+}]} = 5202.5$$
$$[Pb^{2+}] = 9,61 \cdot 10^{-5}M$$

Dvs konsentrasjonen av blyioner i cella når E = 0, $[Pb^{2+}]_{slutt}$

Man må også tilsette en liten mengde "ekstra" Na_2SO_4 siden en liten del $[Pb^{2+}]$ vil til enhver tid være løst når fast $PbSO_4$ er tilstede. Man finner likevektskonsentrasjonen av $[SO^{2-}]$:

$$K_{sp} = [Pb^{2+}][SO^{2-}] = 1,6 \cdot 10^{-8}$$
$$[SO^{2-}] = \frac{1,6 \cdot 10^{-8}}{9,6 \cdot 10^{-5}}$$
$$[SO^{2-}] = 1,667 \cdot 10^{-4} M$$

Dvs at det må tilsettes denne mengden salt for å opprettholde likevekten ved E=0V.

Da får vi at antall mol Na_2SO_4 som må tilsettes er (100 ml = 0.1 l):

$$\begin{split} n_{Na2SO4} &= ([Pb^{2+}]_{start} \cdot [Pb^{2+}]_{slutt} + [SO^{2-}]_{likevekt}) \cdot 0,1 \ 1 = \\ & (0,1 \ M - 9,61 \cdot 10^{-5} \ M + 1,667 \cdot 10^{-4} \ M) \cdot 0,1 \ 1 = \underline{0,01000706 \ mol} \\ & M_{Na2SO4} = 22,99 \cdot 2 + 32,07 + 16 \cdot 4 \ g/mol = 142,05 \ g/mol \\ & m_{Na2SO4} = n_{Na2SO4} \cdot M_{Na2SO4} = 0.01000706 \ mol \cdot 142,05 \ g/mol = \underline{1,4215} \ g \end{split}$$

Oppgave 5

a) Vi har tre mol reaktanter i gassform og ett mol produkter i gassform. Da vil man ved å øke trykket kunne forskyve reaksjonen mot den siden med færrest gassmolekyler, altså mot høyre. K vil være uforandret.

Alternativt kan man senke temperaturen, da en endoterm reaksjon gir fra seg varme. K vil i dette tilfellet øke.

b) i) <u>VSEPR-modellen (Valence Shell Electron Pair Repulsion):</u>

- Enkel metode for å forutsi 3D-strukturen til et molekyl
- Strukturen bestemmes ved å minimere elektronparfrastøtning mellom elektronene som omgir sentralatomet
- De bindende og ikke-bindende elektronparene rundt et atom bør derfor plasseres så langt fra hverandre som mulig
- Molekylstrukturen navngis så utfra atomenes posisjoner
- Frie elektronpar krever mer rom enn bindende elektronpar, noe som vil presse sammen vinklene for bindende elektronpar (som er $< 120^{\circ}$)

ii) NH₃ har totalt 8 valenselektroner:

- Tetraedrisk utgangspunkt
- Ledig elektronpar tar mer plass
- Vinkelen H-N-H er mindre enn 109°
- → Trigonal pyramidal med vinkel H-N-H < 109° (107°)

iii) PCl₅:

- Sentralatomet P vil ha 10 valenselektroner (5 par). Disse plasseres i hjørnene i en trigonal bipyramide hvor alle bindes til Cl.
- → Trigonalt bipyramidet molekyl med ideelle vinkler

SF₆:

- Sentralatomet har 12 valenselektroner (6 par) som alle bindes til F
- → Ideelt oktaedrisk molekyl

XeF₄:

- 6 elektronpar rundt sentralatomet Xe
- 2 ledige elektronpar plasseres aksialt i oktaederet pga lengst avstand mellom dem
- → Plankvadratisk struktur med vinkler på 90°

c) Ionebinding:

Stor forskjell i elektronegativitet fører til (fullstendig) ladningsoverføring fra det ene til det andre atomet slik at ioner (kation og anion) dannes. Atomene bindes sammen ved tiltrekningskreftene mellom de ulike ladningene

Kovalent binding:

Også kalt elektronparbinding, liten forskjell i elektronegativitet gjør at atomer bindes sammen ved å dele et elektronpar. Tiltrekning mellom protoner og elektroner.

d) Kolometri:

Ved kolometri brukes fargeintensiteten til et farget ion/kompleks/forbindelse til å bestemme konsentrasjoner da disse er proporsjonale. Absorbansen måles ved hjelp av et kolorimeter. Standarder (med kjent konsentrasjon) brukes til å lage en kalibreringskurve mellom konsentrasjonen og absorbansen. Konsentrasjonen til den ukjente prøven bestemmes så ved å måle absorbansen i prøven og sammenlikne denne med kalibreringskurven (viktig med samme betingelser dom for kalibreringskurven). Blank prøve må analyseres først for å trekke fra bidrag fra kyvettene og eventuell egenfarge til reagensene.