D.	NT 1	
Reg.	Number:	

Continuous Assessment Test (CAT) – I - AUGUST 2024

Programme	:	B. Tech. (ECE/ECM)	Semester	:	FS 2024-25
Course Code & Course Title	:	BECE320E Embedded C Programming	Class Number	:	CH2024250102674
Faculty	:	Prof. Srinivasan R	Slot	:	E1
Duration	:	90 Minutes	Max. Marks	:	50

General Instructions:

- Write only your registration number on the question paper in the box provided and do not write other information.
- Only non-programmable calculator without storage is permitted.

Answer all question

Answer an questions.				
Q. No	Sub Sec.	Description	Marks	Blooms Taxonomy Level
1.	(a)	Write appropriate declarations in C and assign the given initial values for each variable or array. (i) Integer variables: u = 421 (octal), y = fa01 (hexadecimal) (ii) One-dimensional character array: message = "We are safe." (iii) Double precision variable: reading1 = 3.56218 × 10 ⁻⁴	3	L1
(b	(b)	Evaluate the following expression in C. float value = $(i - 3 * j)$ % $(c + 2 * d) / (x - y)$ if int i=10, j=5; float x = 0.005, y = -0.01; char c = 'c', d = 'd'. ASCII value of 'c' = 99, 'd' = 100	2	L2
	(a)	What is the output of the following code? #include <stdio.h> int main() { int k, num = 65; k = (num > 5 ? (num <= 10 ? 100 : 200) : 500); printf ("%c %d\n", num, k); return 0; }</stdio.h>	2	L1
2.	(b)	What is the output of the following code? #include <stdio.h> int main () { printf("Hello!\bHow are you?\n"); printf("I\tam feeling good.\n"); printf("I am feeling\r good\n"); printf("\nI am feeling \\\'good\'\n"); return 0; }</stdio.h>	3	L2
3.	(a)	Write a C program to read the age of 100 persons and count the number of persons in the age group 50 to 60. Use for and continue statements.	5	L3

	(b)	Write a C program using do-while loop to ask the user to enter numbers continuously until 0 and print the count of positive and negative numbers at the end of the program.	5	L3
4.		Write a C program to print a diamond pattern of numbers for a given number of rows using appropriate loops. e.g. For n=3, the pattern is 1 123 12345 123	10	L3
5.		What is the output of the following code? #include <stdio.h> void main () { int a, b = 0, d=0; static int c[10] = {2, 3, 8, 0, 1, 4, 5, 6, 9, 7}; for (a = 0; a < 10; ++a){ if ((c[a] % 2) == 1) { b += c[a]; printf("%d, ",c[a]); } } if(a % 2 == 0) d += a; printf("\n%d\n", b); printf("%d", d); }</stdio.h>	5	L4
6.		<pre>What is the output of the following code? #include <stdio.h> #include <string.h> char *p = "Hello world"; int main(void) { int t; printf("%d\n",*p); printf("%c\n",*p+1); printf("%c\n",*(p+1)); for(t=strlen(p)-1; t>1; t) printf("%c", p[t]); return 0; }</string.h></stdio.h></pre>	5	L2
7.		The Chebyshev polynomials of the first kind can be calculated using the following recurrence relations: $T_0(x) = 1$, $T_1(x) = x$, $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$ for n=2, 3, 4,and x is any floating point number between -1 and 1. Write a C program to generate the first n Chebyshev polynomials. The values of n and x should be input parameters. The code should check that n is a positive integer and x is between -1 and 1 only. ***********************************	10	L3