DIALOG(R) File 351: Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv.

010777599 **Image available** WPI Acc No: 1996-274552/199628

XRPX Acc No: N96-230944

Electron-emitting element for exposure system - has carbon material deposited in gap formed between electrodes on insulating substrate

Patent Assignee: CANON KK (CANO)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week JP 8115652 A 19960507 JP 94278556 A 19941019 199628 B

Priority Applications (No Type Date): JP 94278556 A 19941019

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 8115652 A 17 H01J-001/30

Abstract (Basic): JP 8115652 A

The element has an insulating substrate (1) on which a pair of electrodes (2,2') with opposite polarities are formed. The electrodes are sepd. by a gap, made by ion beam convergence, that is equal to or less than 500 nm. Carbon-material (3) is deposited in the gap.

ADVANTAGE - Simplifies mfg. process with good emissions of electron with high reliability and uniform characteristics. Produces high quality image since irregularity in brightness of electron source is eliminated.

Dwg.1/12

Title Terms: ELECTRON; EMIT; ELEMENT; EXPOSE; SYSTEM; CARBON; MATERIAL; DEPOSIT; GAP; FORMING; ELECTRODE; INSULATE; SUBSTRATE

Derwent Class: V05

International Patent Class (Main): H01J-001/30

International Patent Class (Additional): H01J-029/46; H01J-031/12;

H01J-031/15

File Segment: EPI

Manual Codes (EPI/S-X): V05-D01; V05-D05C5

				*;	
					49
			,		
		, ·			·
				,	

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-115652

(43)公開日 平成8年(1996)5月7日

(51) Int.Cl.4		識別記号	庁内整理番号	FΙ	技術表示箇所			
H01J	1/30	Α			60,71190,73 visig17]			
	29/46	В						
	31/12	В						
	31/15	С						
				審査請求	未請求 請求項の数18 FD (全 17 頁)			
(21)出願書	身	特顯平6-278556		(71)出職人	000001007			
					キヤノン株式会社			
(22)出顧日		平成6年(1994)10月	119日		東京都大田区下丸子3丁目30番2号			
				(72)発明者	•			
			•		東京都大田区下丸子3丁目30番2号 キヤ			
					ノン株式会社内			
				(72)発明者	石崎 明美			
					東京都大田区下丸子3丁目30番2号 キヤ			
					ノン株式会社内			
				(72)発明者	養場 利明			
					東京都大田区下丸子3丁目30番2号 キヤ			
			•		ノン株式会社内			
				(74)代理人	弁理士 豊田 菩雄 (外1名)			
•								

(54) 【発明の名称】 電子放出素子及びその製造方法、該電子放出素子を用いた電子覆並びに画像形成装置

(57)【要約】

【目的】 製造工程が繁雑でなく、均一な電子放出特性 を有する電子放出素子を提供する。

【構成】 絶縁性基板1上に、素子電極2及び2'をつ ながった形状で形成し、収束イオンビームにより500 nm以下の微小間隙しを形成し、炭化水素ガスを含む雰 囲気下で熱処理することにより炭素を主成分とする堆積 物3を上記微小間隙に堆積させてなる電子放出素子。

【特許請求の範囲】

【請求項1】 少なくとも、絶縁性基板と、該絶縁性基板上に形成された微小間隙を介して対向する一対の電極と、前記微小間隙に堆積された炭素を主成分とする堆積物からなることを特徴とする電子放出素子。

【請求項2】 微小間隙が500 nm以下であることを 特徴とする請求項1記載の電子放出素子。

【請求項3】 炭素を主成分とする堆積物が、繊維状カーボンの集合体であることを特徴とする請求項1又は2 記載の電子放出素子。

【請求項4】 繊維状カーボンが、グラファイト又はアモルファスカーボンもしくはこれらの混合物からなることを特徴とする請求項3記載の電子放出素子。

【請求項5】 絶縁性基板上に、微小間隙を介して対向する一対の電極を形成する工程と、該電極間間隙に炭素を主成分とする堆積物を堆積させる工程を有することを特徴とする電子放出素子の製造方法。

【請求項6】 炭素を主成分とする堆積物の堆積工程 が、炭素化合物の熱分解工程であることを特徴とする請求項5記載の電子放出素子の製造方法。

【請求項7】 炭素化合物が炭化水素であることを特徴とする請求項6記載の電子放出素子の製造方法。

【請求項8】 炭化水素がエチレンであることを特徴と する請求項7記載の電子放出素子の製造方法。

【請求項9】 炭素化合物の熱分解工程が、炭素化合物を含む雰囲気中で加熱する工程であることを特徴とする請求項6~8のいずれかに記載の電子放出素子の製造方法、

【請求項10】 炭素を主成分とする堆積物の堆積工程が、電極間間隙に金属微粒子を形成する工程と、炭素化 30合物を熱分解して上記金属微粒子を核として繊維状カーボンを堆積させる工程からなることを特徴とする請求項 5~9のいずれかに記載の電子放出素子の製造方法。

【請求項11】 金属微粒子の形成工程が、当該金属の 有機錯体溶液を電極間隙に塗布する工程と、該有機金属 錯体を焼成して金属酸化物とする工程と、該金属酸化物 を還元凝集させる工程からなることを特徴とする請求項 10記載の電子放出素子の製造方法。

【請求項12】 金属酸化物の還元凝集工程が、水素ガスを含む雰囲気に曝露、或いは該雰囲気中での熱処理工 40程であることを特徴とする請求項11記載の電子放出素子の製造方法。

【請求項13】 繊維状カーボンの堆積工程が、エチレンガスを含む雰囲気中でエチレンの熱分解温度以上で熱処理する工程であることを特徴とする請求項10~12のいずれかに記載の電子放出素子の製造方法。

【請求項14】 金属酸化物の還元凝集工程をエチレン ガスを含む雰囲気中でエチレンの熱分解温度未満で熱処 理して行ない、続けて同じ雰囲気中でエチレンの熱分解 温度以上に加熱して継椎状カーボンの堆積工程を行なう 50 ことを特徴とする請求項10~12のいずれかに記載の電子放出素子の製造方法。

【請求項15】 請求項1~4のいずれかに記載の電子 放出素子を複数個並列に配置し結線してなる素子列を少 なくとも1列以上有してなることを特徴とする電子源。

【請求項16】 請求項1~4のいずれかに記載の電子 放出素子を複数配個列してなる素子列を少なくとも1列 以上有し、該素子を駆動するための配線がマトリクス配 置されていることを特徴とする電子源。

10 【請求項17】 少なくとも、請求項15記載の電子 源、画像形成部材、及び情報信号により各電子放出素子 から放出される電子線を制御する制御電極を有すること を特徴とする画像形成装置。

【請求項18】 少なくとも、請求項16記載の電子源と画像形成部材とを有することを特徴とする画像形成装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子放出素子と、該素 20 子を複数個配置してなる電子源、及び該電子源を用いて 構成した表示装置や露光装置等の画像形成装置に関し、 更には、上記電子放出素子の製造方法に関する。

[0002]

【従来の技術】従来、電子放出素子として熱電子源と冷 陰極電子源の2種類が知られており、冷陰極電子源に は、電界放出型(以下FE型と記す)、金属/絶縁層/ 金属型(以下MIM型と記す)や表面伝導型等がある。 【0003】上記FE型の例としては、ダブリューピィ ダイク アンド ダブリュ ダブリュ ドラン著「フ ィールド エミッション」アドバンス イン エレクト ロンフィジックス、8、89(1956)(W. P. D yke & W. W. Dolan" Field emi ssion", Advance in electro n Physics) 或いはシィ エィ スピント「フ ィジカル プロパティズ オブ シン-フィルム フィ ールド エミッション カソーズ ウィズモリブデニウ ム コーンズ」ジャーナル オブ アプライド フィジ クス, 47, 5248 (1976) (C. A. Spin dt" PHYSICAL Properties of thin-film field emission cathodes with molybdeniu m cones" J. Appl. Phys.) 等が知ら れている.

【0004】またMIM型の例としては、シィ エィミード「ザ トンネルーエミッション アンプリファイア」ジャーナル オブ アプライド フィジクス、3 2、646(1961)(C. A. Mead"The tunnel-emission amplifier"J. Appl. Phys.)等が知られている。

【0005】また、表面伝導型電子放出素子の例として

は、エム アイ エリンソン、レィディオ エンジニア リング エレクトロン フィジクス, 10(1965) (M. I. Elinson, Radio Eng. El ectron Phys.)等がある。

[0006]

【発明が解決しようとする課題】上記に挙げたような電 子放出素子を複数個用いて表示装置等を形成する場合、 各素子の電子放出特性が均一であること、及び均一な素 子の作製に繁雑な工程を伴わないことが要求される。従 って、電子放出素子においては、こういった要求や更な 10 る製造工程の簡略化、より優れた素子を達成するべく鋭 意検討されている。

【0007】本発明の目的は、上記のような状況におい て、繁雑な工程を伴わずに均一な電子放出特性を示す信 頼性の高い電子放出素子を提供することであり、更に、 該電子放出素子を用いて電子源、更には画像形成装置を 構成することにある。

[0008]

【課題を解決するための手段及び作用】請求項1~4の 発明は、上記目的を達成した電子放出素子であって、絶 20 緑性基板上に、微小間隙を介して一対の電極を設け、該 微小間隙に炭素を主成分とする堆積物を有することに特 徴を有する。

【0009】請求項5~14の発明は、上記電子放出素 子の製造方法であって、絶縁性基板上に、微小間隙を設 けて一対の電極を形成し、該微小間隙に炭素を主成分と する堆積物を堆積させることを特徴とする。

【0010】請求項15及び16の発明は上記電子放出 素子を複数個配置したことを特徴とする電子源であり、 ことを特徴とする画像形成装置である。

【0011】以下本発明を詳細に説明する。

【0012】図1は本発明の電子放出素子の基本的な構 成を示す図である。図中、1は絶縁性基板、2、2 は 素子電極、3は炭素を主成分とする堆積物である。

【0013】基板1としては、例えば石英ガラス、Na 等の不純物含有量を減少させたガラス、青板ガラス、青 板ガラスにスパッタ法等によりSiO2 を積層した積層 体、アルミナ等のセラミックス等が挙げられる。

【0014】対向する素子電極2,2'の材料として は、一般的導体材料が用いられ、例えばNi、Cr、A u、Mo、W、Pt、Ti、AI、Cu、Pd等の金属 あるいは合金及びPd、Ag、Au、RuOz、Pd-Ag等の金属あるいは金属酸化物とガラス等から構成さ れる印刷導体、Inz Os - SnOz 等の透明導電体及 びポリシリコン等の半導体導体材料等から適宜選択され る。

【0015】素子電極間隙し、素子電極長さWは、応用 される形態等によって設計される。

【0016】素子電極長さWは、電極の抵抗値や電子放 50 一ボン形成時の核となることを見出した。従って本発明

4 出特性を考慮すると、好ましくは数μm~数百μmであ り、また素子電極厚dは、数百A~数µmである。

【0017】素子電極間隙しは、微小であり、好ましく は500nm以下である。

【0018】本発明の電子放出素子の製造方法について 図2に基づいて説明する。尚、図2において図1と同じ 符号は同じ部材を示すものである。

【0019】(A) 基板1を洗剤、純水及び有機溶剤に より十分に洗浄した後、真空蒸着法、スパッタ法等によ り素子電極材料を堆積させた後、フォトリソグラフィー 技術により基板1の面上に素子電極2,2'がつながっ た状態を形成する(図2(a))。

【0020】(B)次に、収束イオンビーム(FIB) により、所定の間隙しを素子電極2、2 間に形成する (図2(b))。間隙しの形成は、上記FIBの他に、 フォトリソグラフィーのプロセスを用いて形成する方 法、或いは、基板1に段差を設けておいて間隙を形成す る方法などが可能である。

【0021】(C)炭素を主成分とする堆積物を間隙L に堆積する。本発明において、該堆積物は、好ましくは 繊維状カーボンであり、グラファイト或いはアモルファ スカーボンからなる。

【0022】繊維状カーボンは、ベンゼンなどの炭化水 素やCOを気相で微粒子を触媒として熱分解した時に生 成するもので、不規則な曲折を示したり、くびれを伴う 場合もある (例えば、アール ティ ケイ ベーカー アンド ピィ エス ハリス:ケミストリィ アンド フィジクス オブ カーボン Vol、14 p84~ 165, フィリップ エル ウォーカー ジュニア ア 請求項17及び18の発明はそれぞれの電子源を用いた 30 ンド ピーター エィスローワー編,マーセル ディー カー インク(R. T. K. Baker and P. S. Harris: Chemistry and Ph ysics of Carbon, Philip L. Walker Jr. and Petere A.T hrower, MARCEL DEEKER, in

> 【0023】Feなどの金属表面の、炭化水素ガスの分 解反応における触媒活性は古くから研究されており、エ チレンの分解についても多くの報告がある(例えば、矢 40 ケ崎えり子・岩崎康裕「遷移金属表面におけるエチレン の化学」:表面 第29巻879~891頁 1991 年)。

【0024】Feの微粒子がある場合には、炭化水素の 存在する雰囲気中で熱処理することにより、微粒子を核 にして繊維状カーボンが形成されることは上記の通り良 く知られている。このFe 微粒子はフェライト基板の一 部などのFe 化合物を還元して形成したものである。本 発明者等は、電子放出素子の分野において広く用いられ ているPdからなる微粒子でも、Feと同様に繊維状力 において、Pdを繊維状カーボン形成の核として用いる と、プロセス最高温度を450℃以下に抑えることがで き (Feを用いた場合には950~1000℃であ る)、他の部材への影響や、製造コストの面から好まし

【0025】具体的には、Pd等用いる金属の有機錯体 溶液を塗布し、加熱焼成して金属酸化物とした後、水素 ガスを含む雰囲気中に曝露するか或いは該雰囲気中で熱 処理することにより、金属酸化物を還元凝集させ金属微 粒子21とする(図2(c))。

【0026】本発明において、カーボンの形成核として は、上記FeやPdの他にNiが好ましく用いられ、ま た、微粒子の形状をとる必要もなく、突起等繊維状カー ボンの成長の特異点となる形状であれば同様の効果が得 られる。

【0027】上記金属敞粒子を核として、繊維状カーボ ンを堆積させる(図2(d))。堆積方法は、前記した ように、炭化水素等炭素化合物を熱分解すれば良く、例 えば、エチレンガスを含む雰囲気中でエチレンの熱分解 以上の温度で熱処理を行なえばよい。エチレンの他に も、メタン、プロパン、プロピレンなどの炭化水素ガ ス、或いはエタノールやアセトンなどの有機溶剤の蒸気 を用いることも可能である。

【0028】本発明者等は400℃以下では繊維状カー ボンが形成されないことを確認した。一方、高温側では 十分広い範囲で形成可能であり、900℃の熱処理で後 述の実施例と同様の繊維状カーボンが形成される。しか しながら、上記したように、高温では素子の他の部材が 影響を受けるため、900℃以下での熱処理が好まし い。実際には、電極や基板の耐熱温度から設定すればよ 30 V)

【0029】また、上記金属微粒子の還元工程を、例え ばエチレンガスを含む雰囲気中でエチレンの熱分解温度 未満で行ない、続いてエチレンの熱分解温度以上の熱処 理を行なうことにより、金属微粒子の還元工程と繊維状 カーボンの堆積工程を連続して行なうことができ、製造 工程の簡素化の上で好ましい.

【0030】尚、表面に熱酸化膜を形成したシリコン基 板に後述する実施例と同様の工程でPd微粒子を形成し てなるPd粒子分散膜をエチレン雰囲気中熱処理した試 料を走査電子顕微鏡で観察したところ、繊維状カーボン が観察された。これがカーボンであることはX線光電子 分光(XPS)分析、ラマン分光分析により確認した。 また、この繊維状カーボンを、透過電子顕微鏡により観 察したところ、格子像が観察され結晶性を持つことがわ かった。但し、格子像は非常に乱れており、結晶性は悪

【0031】図3は、電子放出素子の電子放出特性を測 定するための測定評価系の一例を示す概略構成図で、ま ずこの測定評価系を説明する。

【0032】図3において、図1と同じ符号は同じ部材 を示す。また、31は素子に素子電圧Vrを印加するた めの電源、30は素子電極2,21間を流れる素子電流 11を測定するための電流計、34は放出電流 16を捕捉 するためのアノード電極、33はアノード電極34に電 圧を印加するための高圧電源、32は放出電流 Ieを測 定するための電流計、35は真空装置、36は排気ポン プである。

【0033】電子放出素子及びアノード電極34等は真 10 空装置35内に設置され、この真空装置35には不図示 の真空計等の必要な機器が具備されていて、所望の真空 下で電子放出素子の測定評価ができるようになってい

【0034】排気ボンプ36は、ターボボンプ、ロータ リーポンプ等からなる通常の高真空装置系と、イオンポ ンプ等からなる超高真空装置系とから構成されている。 また、真空装置35全体及び電子放出素子の基板1は、 ヒーターにより200℃程度まで加熱できるようになっ ている。

20 【0035】以下に述べる電子放出素子の基本特性は、 上記測定評価系のアノード電極34の電圧を1kV~1 0kVとし、アノード電極34と電子放出素子の距離H を2~8mmとして行った測定に基づくものである。

【0036】まず、放出電流 I。及び秦子電流 Ifと、 素子電圧Vf との関係の典型的な例を図4に示す。尚、 図4において、放出電流 Ie は素子電流 If に比べて著 しく小さいので、任意単位で示されている。

【0037】図4から明らかなように、本発明の電子放 出素子は、放出電流1。に対する次の3つの特徴的特性 を有する。

【0038】まず第1に、電子放出素子はある電圧(し きい値電圧と呼ぶ:図5中のVth)以上の素子電圧Vf を印加すると急激に放出電流 [。が増加し、一方しきい 値電圧Vin以下では放出電流I。が殆ど検出されない。 即ち、放出電流Ieに対する明確なしさい値電圧Vthを 持った非線形素子である。

【0039】第2に、放出電流 Ie が素子電圧Vr に対 して単調増加する特性 (MI特性と呼ぶ)を有するた め、放出電流 Le は素子電圧Vr で制御できる。

【0040】第3に、アノード電極34(図3参照)に 捕捉される放出電荷は、素子電圧Vr を印加する時間に 依存する。即ち、アノード電極34に捕捉される電荷量 は、素子電圧Vfを印加する時間により制御できる。

【0041】放出電流 I。が素子電圧Vt に対してMI 特性を有すると同時に、素子電流 Ir も素子電圧Vr に 対してMI特性を有する場合もある。このような電子放 出素子の特性の例が図4の実線で示す特性である。一 方、図4に破線で示すように、素子電流 11 は素子電圧 Vr に対して電圧制御型負性抵抗特性 (VCNR特性と

50 呼ぶ)を示す場合もある。いずれの特性を示すかは、電

子放出素子の製法及び測定時の測定条件等に依存する。 但し、素子電流 If が素子電圧Vf に対してVCNR特 性を有する電子放出素子でも、放出電流 I。は素子電圧 V:に対してMI特性を有する。

【0042】次に、本発明の電子源における電子放出素 子の配列について説明する。

【0043】本発明の電子源における電子放出素子の配 列方式としては、並列に電子放出素子を配列し、個々の 素子の両端(両素子電極)を配線(共通配線とも呼ぶ) にて夫々結線した行を複数行配列した梯型配置と、m本 10 は、その構成元素の一部あるいは全部が同一であって のX方向配線の上にn本のY方向配線を層間絶縁層を介 して設置し、電子放出素子の一対の素子電極に夫々X方 向配線、Y方向配線を接続した配置方式が挙げられる。 これを以後単純マトリクス配置と呼ぶ。まず、この単純 マトリクス配置について詳述する。

【0044】前述した電子放出素子の基本的特性によれ ば、単純マトリクス配置された電子放出素子における放 出電子は、しきい値電圧を超える電圧では、対向する素 子電極間に印加するパルス状電圧の波高値とパルス幅で 制御できる。一方、しきい値電圧以下では殆ど電子は放 20 る。 出されない。従って、複数の電子放出素子を配置した場 合においても、個々の素子に上記パルス状電圧を適宜印 加すれば、入力信号に応じて電子放出素子を選択し、そ の電子放出量が制御でき、単純なマトリクス配線だけで 個別の電子放出素子を選択して独立に駆動可能となる。

【0045】単純マトリクス配置はこのような原理に基 づくもので、本発明の電子源の一例である、この単純マ トリクス配置の電子源の構成について図5に基づいて更 に説明する。

【0046】図5において基板1は既に説明したような 30 ガラス板等であり、この基板1上に配列された電子放出 素子54の個数及び形状は用途に応じて適宜設定される ものである。

【0047】m本のX方向配線52は、大々外部端子D x1, Dz2, ……, Dzaを有するもので、基板 1上に、真 空蒸着法、印刷法、スパッタ法等で形成した導電性金属 等である。また、複数の電子放出素子54にほぼ均等に 電圧が供給されるように、材料、膜厚、配線幅が設定さ れている。

【0048】n本のY方向配線53は、夫々外部端子D 40 y:, Dy2,, Dynを有するもので、X方向配線52 と同様に作成される。

【0049】これらm本のX方向配線52とn本のY方 向配線53間には、不図示の層間絶縁層が設置され、電 気的に分離されて、マトリクス配線を構成している。 尚、このm、nは共に正の整数である。

【0050】不図示の層間絶縁層は、真空蒸着法、印刷 法、スパッタ法等で形成されたSiOz等であり、X方 向配線52を形成した基板1の全面或は一部に所望の形 状で形成され、特に、X方向配線52とY方向配線53 50 ている。しかし、リアプレート61は主に基板1の強度

8 の交差部の電位差に耐え得るように、膜厚、材料、製法 が適宜設定される。

【0051】更に、電子放出素子54の対向する素子電 極(不図示)が、m本のX方向配線52と、n本のY方 向配線53と、真空蒸着法、印刷法、スパッタ法等で形 成された導電性金属等からなる結線55によって電気的 に接続されているものである。

【0052】ここで、m本のX方向配線52と、n本の Y方向配線53と、結線55と、対向する素子電極と も、また夫々異なっていてもよく、前述の素子電極の材 料等より適宜選択される。これら素子電極への配線は、 素子電極と材料が同一である場合は素子電極と総称する 場合もある。また、電子放出素子54は、基板1或いは 不図示の層間絶縁層上どちらに形成してもよい。

【0053】また、詳しくは後述するが、前記又方向配 線52には、X方向に配列された電子放出素子54の行 を入力信号に応じて走査するために、走査信号を印加す る不図示の走査信号印加手段が電気的に接続されてい

【0054】一方、Y方向配線53には、Y方向に配列 された電子放出素子与4の列の各列を入力信号に応じて 変調するために、変調信号を印加する不図示の変調信号 発生手段が電気的に接続されている。更に、各電子放出 素子54に印加される駆動電圧は、当該電子放出素子5 4に印加される走査信号と変調信号の差電圧として供給 されるものである。

【0055】次に、以上のよっな単純マトリクス配置の 本発明の電子源を用いた本発明の画像形成装置の一例 を、図6~図8を用いて説明する、尚、図6は表示パネ ル81の基本構成図であり、図7は蛍光膜64を示す図 であり、図8は図6の表示パネル81で、NTSC方式 のテレビ信号に応じてテレビジョン表示を行うための駆 動回路の一例を示すブロック図である。

【0056】図6において、1は上述のようにして電子 放出素子を配置した電子源の基板、61は基板1を固定 したリアプレート、66はガラス基板63の内面に蛍光 膜64とメタルバック65等が形成されたフェースプレ ート、62は支持枠であり、リアプレト61、支持枠6 2及びフェースプレート66にフリットガラス等を塗布 し、大気中あるいは窒素中で、400~500℃で10 分以上焼成することで封着して外囲器68を構成してい る。

【0057】図6において、52、53は、電子放出素 子54の一対の素子電極2,2'と接続されたX方向配 線及びY方向配線で、夫々外部端子Dx1~Dxn, Dyi~ Dynを有している。

【0058】外囲器68は、上述の如く、フェースープ レート66、支持枠62、リアプレート61で構成され を補強する目的で設けられるものであり、基板1自体で十分な強度を持つ場合は別体のリアプレート61は不要で、基板1に直接支持枠62を封着し、フェースプレート66、支持枠62、基板1にて外囲器68を構成してもよい。また、フェースプレート66、リアプレート61の間にスペーサーと呼ばれる不図示の支持体を更に設置することで、大気圧に対して十分な強度を有する外囲器68とすることもできる。

【0059】蛍光膜64は、モノクロームの場合は蛍光体72のみからなるが、カラーの蛍光膜64の場合は、10蛍光体72の配列により、ブラックストライプ(図7(a))あるいはブラックマトリクス(図7(b))等と呼ばれる黒色導伝材71と蛍光体72とで構成される。ブラックストライプ、ブラックマトリクスが設けられる目的は、カラー表示の場合必要となる三原色の各蛍光体72間の塗り分け部を黒くすることで混色等を目立たなくすることと、蛍光膜74における外光反射によるコントラストの低下を抑制することである。黒色導伝材71の材料としては、通常良く用いられている黒鉛を主成分とする材料だけでなく、導電性があり、光の透過及20び反射が少ない材料であれば他の材料を用いることもできる。

【0060】ガラス基板73に蛍光体72を塗布する方法としては、モノクローム、カラーによらず、沈澱法や印刷法が用いられる。

【0061】また、図6に示されるように、蛍光膜64の内面側には通常メタルバック65が設けられる。メタルバック65の目的は、蛍光体72(図7参照)の発光のうち内面側への光をガラス基板63側へ鏡面反射することにより輝度を向上すること、電子ビーム加速電圧を、30印加するための電極として作用すること、外囲器68内で発生した負イオンの衝突によるダメージからの蛍光体72の保護等である。メタルバック65は、蛍光膜64の作製後、蛍光膜64の内面側表面の平滑化処理(通常フィルミングと呼ばれる)を行い、その後A1を真空蒸着等で堆積することで作製できる。

【0062】フェースプレート66には、更に蛍光膜64の導電性を高めるため、蛍光膜64の外面側に透明電極(不図示)を設けてもよい。

【0063】前述の封着を行う際、カラーの場合は各色 蛍光体72と電子放出素子64とを対応させなくてはい けないため、十分な位置合わせを行なう必要がある。

【0064】外囲器68内は、不図示の排気管を通じ、10の-7torr程度の真空度にされ、封止される。また、外囲器68の封止を行う直前あるいは封止後に、ゲッター処理を行うこともある。これは、外囲器68内の所定の位置に配置したゲッター(不図示)を加熱し、蒸着膜を形成する処理である。ゲッターは通常Ba等が主成分であり、該蒸着膜の吸着作用により、例えば1×10-5~1×10-7torrの真空度を維持するためのも

のである。

【0065】上述の表示パネル81は、例えば図8に示されるような駆動回路で駆動することができる。尚、図8において、81は表示パネル、82は走査回路、83は制御回路、84はシフトレジスタ、85はラインメモリ、86は同期信号分離回路、87は変調信号発生器、V,及びV。は直流電圧源である。

10

【0066】図8に示されるように、表示パネル81は、外部端子DェーへDェー、外部端子DェーへDェーの内の及び高圧端子Hvを介して外部の電気回路と接続されている。この内、外部端子DェーへDェーには前記表示パネル81内に設けられている電子放出素子、即ちm行n列の行列状にマトリクス配置された電子放出素子群を1行(n素子ずつ)順次駆動して行くための走査信号が印加される。【0067】一方、外部端子DェーへDェーには、前記走査信号により選択された1行の各電子放出素子の出力電子ビームを制御するための変調信号が印加される。また、高圧端子Hvには、直流電圧源V。より、例えば10kVの直流電圧が供給される。これは電子放出素子より出力される電子ビームに、蛍光体を励起するのに十分なエネルギーを付与するための加速電圧である。

【0068】走査回路82は、内部にm個のスイッチング素子(図8中S1~Saで模式的に示す)を備えるもので、各スイッチング素子S1~Saは、直流電圧電源 Vxの出力電圧もしくは0V(グランドレベル)のいずれか一方を選択して、表示パネル81の外部端子Dx1~Dxaと電気的に接続するものである。各スイッチング素子S1~Saは、制御回路83が出力する制御信号Tscanに基づいて動作するもので、実際には、例えばFETのようなスイッチング機能を有する素子を組み合わせることにより容易に構成することが可能である。

【0069】本例における前記直流電圧源V. は、前記電子放出素子の特性(しきい値電圧)に基づき、走査されていない電子放出素子に印加される駆動電圧がしきい値電圧以下となるような一定電圧を出力するよう設定されている。

【0070】制御回路83は、外部より入力される画像信号に基づいて適切な表示が行われるように、各部の動作を整合させる働きを持つものである。次に説明する同期信号分離回路86より送られる同期信号Tsyncに基づいて、各部に対してTscan、Tsft 及びTary の各制御信号を発生する。

【0071】同期信号分離回路86は、外部から入力されるNTSC方式のテレビ信号から、同期信号成分と輝度信号成分を分離するための回路で、よく知られているように、周波数分離(フィルター)回路を用いれば、容易に構成できるものである。同期信号分離回路86により分離された同期信号は、これもよく知られるように、垂直同期信号と水平同期信号よりなる。ここでは、説明50の便宜上Tsyncとして図示する。一方、前記テレビ信号

から分離された画像の輝度信号成分を便宜上DATA信 号と図示する、このDATA信号はシフトレジスタ84 に入力される。

【0072】シフトレジスタ84は、時系列的にシリア ル入力される前記DATA信号を、画像の1ライン毎に シリアル/パラレル変換するためのもので、前記制御回 路83より送られる制御信号Tsft に基づいて作動す る。この制御信号Tstt は、シフトレジスタ84のシフ トクロックであると言い換えてもよい。また、シリアル /パラレル変換された画像1ライン分(電子放出素子の 10 A/D変換器を設けることで行える。 n素子分の駆動データに相当する)のデータは、Iai~ Ianのn個の並列信号として前記シフトレジスタ84よ り出力される。

【0073】ラインメモリ85は、画像1ライン分のデ ータを必要時間だけ記憶するための記憶装置であり、制 御回路83より送られる制御信号Tory に従って適宜 I ai~ Lanの内容を記憶する。記憶された内容は、Lata ~ 1 a n として出力され、変調信号発生器87に入力さ ns.

ara ~ Tara の各々に応じて、電子放出素子の各々を適 切に駆動変調するための信号源で、その出力信号は、端 子Dy: ~Dy: を通じて表示パネル81内の電子放出素子 に印加される。

【0075】前述したように、電子放出素子は電子放出 に明確なしきい値電圧を有しており、しきい値電圧を超 える電圧が印加された場合にのみ電子放出が生じる。ま た、しきい値電圧を超える電圧に対しては電子放出素子 への印加電圧の変化に応じて放出電流も変化して行く、 電子放出素子の材料、構成、製造方法を変えることによ 30 り、しきい値電圧の値や印加電圧に対する放出電流の変 化度合いが変わる場合もあるが、いずれにしても以下の ことがいえる。

【0076】即ち、電子放出素子にパルス状の電圧を印 加する場合、例えばしきい値電圧以下の電圧を印加して も電子放出は生じないが、しきい値電圧を超える電圧を 印加する場合には電子放出を生じる。その際、第1には 電圧バルスの波高値を変化させることにより、出力され る電子ビームの強度を制御することが可能である。第2 には、電圧パルスの幅を変化させることにより、出力さ 40 れる電子ビームの電荷の総量を制御することが可能であ ٥.

【0077】従って、入力信号に応じて電子放出素子を 変調する方式としては、電圧変調方式とパルス幅変調方 式とが挙げられる。電圧変調方式を行う場合、変調信号 発生器87としては、一定の長さの電圧パルスを発生す るが、入力されるデータに応じて適宜パルスの波高値を 変調できる電圧変調方式の回路を用いる。また、パルス 幅変調方式を行う場合、変調信号発生器87としては、

12 ータに応じて適宜バルス幅を変調できるバルス幅変調方 式の回路を用いる。

【0078】シフトレジスタ84やラインメモリ85 は、デジタル信号式のものでもアナログ信号式のもので もよく、画像信号のシリアル/パラレル変換や記憶が所 定の速度で行えるものであればよい。

【0079】デジタル信号式を用いる場合には、同期信 号分離回路86の出力信号DATAをデジタル信号化す る必要がある。これは同期信号分離回路86の出力部に

【0080】また、これと関連して、ラインメモリ85 の出力信号がデジタル信号かアナログ信号かにより、変 調信号発生器87に設けられる回路が若干異なるものと なる。

【0081】即ち、デジタル信号で電圧変調方式の場 合、変調信号発生器87には、例えばよく知られている D/A変換回路を用い、必要に応じて増幅回路等を付け 加えればよい。また、デジタル信号でバルス幅変調方式 の場合、変調信号発生器87は、例えば高速の発振器及 【0074】変調信号発生器87は、前記画像データI 20 び発振器の出力する波数を計数する計数器(カウンタ) 及び計数器の出力値と前記メモリの出力値を比較する比 較器(コンパレータ)を組み合わせた回路を用いること で容易に構成することができる。更に、必要に応じて、 比較器の出力するパルス幅変調された変調信号を電子放 出素子の駆動電圧にまで電圧増幅するための増幅器を付 け加えてもよい。

> 【0082】一方、アナログ信号で電圧変調方式の場 合、変調信号発生器87には、例えばよく知られている オペアンプ等を用いた増幅回路を用いればよく、必要に 応じてレベルシフト回路等を付け加えてもよい。また、 アナログ信号でパルス幅変調方式の場合、例えばよく知 られている電圧制御型発振回路(VCO)を用いればよ く、必要に応じて電子放出素子の駆動電圧にまで電圧増 幅するための増幅器を付け加えてもよい。

> 【0083】以上のような表示パネル81及び駆動回路 を有する本発明の画像形成装置は、端子Dui~Dua及び Dyl~Dynから電圧を印加することにより、必要な電子 放出素子から電子を放出させることができ、高圧端子H vを通じて、メタルバック55あるいは透明電極 (不図 示) に高電圧を印加して電子ビームを加速し、加速した 電子ビームを蛍光膜54に衝突させることで生じる励起 発光によって、NTSC方式のテレビ信号に応じてテ レビジョン表示を行うことができるものである。

【0084】尚、以上説明した構成は、表示等に用いら れる本発明の画像形成装置を得る上で必要な概略構成で あり、例えば各部材の材料等、詳細な部分は上述の内容 に限られるものではなく、画像形成装置の用途に適する よう、適宜選択されるものである。また、入力信号とし てNTSC方式を挙げたが、本発明に係る画像形成装置 一定の波高値の電圧パルスを発生するが、入力されるデ 50 はこれに限られるものではなく、PAL、SECAM方 式等の他の方式でもよく、更にはこれらよりも複数の走 査線からなるTV信号、例えばMUSE方式を初めとす る高品位TV方式でもよい。

【0085】次に、前述の梯型配置の電子源及びこれを 用いた本発明の画像形成装置の一例について図9及び図 10を用いて説明する。

【0086】図9において、1は基板、54は電子放出 素子、94は電子放出素子54を接続する共通配線で1 O本設けられており、各々外部端子D1~D10を有して いる。

【0087】電子放出素子54は、基板1上に並列に複 数個配置されている。これを素子行と呼ぶ。そしてこの 素子行が複数行配置されて電子源を構成している。

【0088】各素子行の共通配線94(例えば外部端子 D1 と D2 の共通配線 94) 間に適宜の駆動電圧を印加 することで、各素子行を独立に駆動することが可能であ る。即ち、電子ビームを放出させたい素子行にはしきい 値電圧を超える電圧を印加し、電子ビームを放出させた くない素子行にはしきい値電圧以下の電圧を印加するよ うにすればよい。このような駆動電圧の印加は、各素子 20 行間に位置する共通配線D2 ~D9 について、夫々相隣 接する共通配線94、即ち夫々相隣接する外部端子D2 とDa , D4 とD5 , D6 とD7 , D8 とDa の共通配 線94を一体の同一配線としても行うことができる。

造を示す図である。 【0090】図10中92はグリッド電極、93は電子 が通過するための開口、D1~Daは各電子放出素子に 電圧を印加するための外部端子、G1~G1はグリッド 30

【0089】図10は、本発明の電子源の他の例であ

る、上記梯型配置の電子源を備えた表示パネル91の構

電極92に接続された外部端子である。また、各素子行 間の共通配線94は一体の同一配線として基板1上に形 成されている。

【0091】尚、図10において図6と同じ符号は同じ 部材を示すものであり、図6に示される単純マトリクス 配置の電子源を用いた表示パネル81との大きな違い

は、基板1とフェースプレート66の間にグリッド電極 92を備えている点である。

【0092】基板1とフェースプレート66の間には、 上記のようにグリッド電極92が設けられている。この 40 グリッド電極92は、電子放出素子54から放出された 電子ビームを変調することができるもので、梯型配置の 素子行と直行して設けられたストライプ状の電極に、電 子ビームを通過させるために、各電子放出素子54に対 応して1個ずつ円形の開口93を設けたものとなってい

【0093】グリッド電極92の形状や配置位置は、必 ずしも図10に示すようなものでなければならないもの ではなく、 開口93をメッシュ状に多数設けることもあ の周囲や近傍に設けてもよい。

【0094】外部端子D1~D。及びG1~G。は不図 示の駆動回路に接続されている。そして、素子行を1列 ずつ順次駆動(走査)しで行くのと同期してグリッド電 極92の列に画像1ライン分の変調信号を印加すること により、各電子ビームの蛍光膜64への照射を制御し、 画像を1ラインずつ表示することができる。

14

【0095】以上のように、本発明の画像形成装置は、 単純マトリクス配置及び梯型配置のいずれの本発明の電 10 子源を用いても得ることができ、上述したテレビジョン 放送の表示装置のみならず、テレビ会議システム、コン ピューター等の表示装置として好適な画像形成装置が得 られる。更には、感光ドラムとで構成した光プリンター の露光装置としても用いることができるものである。

[0096] 【実施例】

[実施例1]本発明第1の実施例として、図1に示した 電子放出素子を作製した。

【0097】先ず、メタルマスクを用いて、石英ガラス 基板上に厚さ5nmのTi、及び厚さ30nmのPtを 真空蒸着し素子電極を形成した。次に素子電極間をFI Bにより局所的に除去してL=240nm、W=100 μmの間隙を形成した。

【0098】次に、有機Pd錯体溶液 (CCP423 0: 奥野製薬株式会社製を酢酸ブチルで3倍に希釈した もの)をスピンナーコートした後、大気中30℃で熱 処理、更に窒素で希釈した2%水素気流中で180℃の 熱処理を行なった。この段階で素子表面にはφ=3~7 nmの微粒子が形成された。

【0099】続いて、窒素希釈した0.1%エチレン気 流中で500℃で10分間熱処理した。これを走査電子 顕微鏡で観察すると、電極間隙中に直径10~25 nm 程度で、屈曲しながら繊維状に伸びた多数の繊維状カー ボンが形成されていることがわかった。尚、素子電極上 には、Pd微粒子も繊維状カーボンも見られず、Pd微 粒子はPt電極に吸収されたものと思われる。

【0100】上記のようにして作製した電子放出素子の I。及びIrを、図3に示した測定評価系により測定し た。

【0101】その結果、Leは徐々に増加し、Lfは一 端急激に減少した後、徐々に増加し、約600秒で飽和 に達した。この時 Ie は0.5 MA、It は0.5 mA 程度であった。

【0102】[実施例2]素子電極間の間隙を500 n mとする以外は実施例1と同様にして電子放出素子を作 製し、1。及び1gを測定した。1。及び1gはそれぞ れ約400秒で飽和し、その値は実施例1の電子放出素 子とほぼ同じであった。

【0103】走査電子顕微鏡による観察では、実施例1 り、またグリッド電極92を、例えば電子放出素子54 50 と同様に、間隙中に多数の繊維状カーボンが形成されて いる様子が観察された。但し、間隙中央部ではやや疎になっていた。

【0104】[実施例3]実施例1と同様にして素子電極、及び該電極間の間隙を形成し、有機Pd錯体溶液を塗布、300℃で焼成を行なった後、窒素で希釈したの、1%エチレン気流中で180℃で10分間の熱処理を行ない、引き続き450℃に昇温して10分間の熱処理を行なった。この電子放出素子の電気的特性は実施例1とほぼ同様であった。

【0105】[比較例1]実施例1と同様の工程で素子 10電極及び電極間隙を形成し、Pd微粒子を形成した後、エチレン雰囲気中での熱処理工程を省いて、I。及び1fを測定した。その結果、I。、If共に観測されなかった。

【0106】 「比較例2】電極間隙を900nmとする 以外は実施例1と同様にして電子放出素子を作製し、I 、及び1rを測定したところ、Ic、Irとも全く観測 されなかった。

【0107】この電子放出素子を走査電子顕微鏡で観察したところ、素子電極の端面付近には繊維状カーボンが 20 形成されているが、間隙の中央部には存在せず、両方のカーボン間の間隔が大きく開いていることがわかった。これは、有機Pd溶液を塗布した際、表面張力により電極端面付近に溶液が集まり、中央付近は少なくなるために、Pd微粒子が間隙中央部に形成されず、従って、これを核として堆積する繊維状カーボンが堆積しにくかったものと推測される。そのため、カーボン間の間隙が広く、I。、Ifが観測されなかった、即ち素子電極間に電流が流れず電子放出が行なわれなかったものと推測される

【0108】[実施例4]単純マトリクス配線により電子放出素子を配置した電子源を作製した。その手順を以下に示す。

【0109】洗浄した青板ガラスの基板上に真空蒸着法により厚さ5nmのCr、厚さ60nmのAuを順次積層した後、フォトレジスト(AZ1370: ヘキスト社製)をスピンナーにより回転塗布、ベークした後、フォトマスク像を露光、現像して、下配線のレジストパターンを形成し、Au/Cr積層膜をウエットエッチングして下配線を形成した。

【0110】厚さ0.1µmのシリコン酸化膜からなる 層間絶縁層を高周波スパッタ法により形成した。

【0111】堆積したシリコン酸化膜上にコンタクトホールを形成するためのフォトレジストパターンを作り、これをマスクとして層間絶縁層をエッチングしてコンタクトホールを形成した。エッチングはCF4 とH2 ガスを用いたRIE (Reactive Ion Etching)法によった。

【0112】素子電極となるべきパターンをフォトレジ る画像情報を表示できるスト(RD-2000N-41:日立化成社製)で形成 50 そのブロック図を示す。

し、真空蒸着法により厚さ5nmのTi、厚さ100nmのNiを順次積層した。フォトレジストパターンを有機溶剤で溶解し、Ni/Ti堆積膜をリフトオフし業子電極を形成した。

16

【0113】素子電極の上に上配線のフォトレジストパターンを形成した後、厚さ5nmのTi、厚さ100nmのAuを順次真空蒸着法により堆積し、リフトオフにより不要の部分を除去して上配線を形成する。

【0114】コンタクトホール部分以外をカバーするようにレジスト膜を形成し、真空蒸着法により厚さ5 nmのTi、厚さ500 nmのAuを順次積層した。リフトオフにより不要部分を除去することにより、コンタクトホールを埋め込んだ。

【0115】実施例1と同様に、FIBにより素子電極間に間隙を形成した。更に、実施例1と同様にして、有機Pd錯体溶液をスピンナーで塗布し、大気中300℃で焼成してPdOとし、更にN2 -2%H2 混合ガス気流中で180℃10分間の熱処理を行ないPd敞粒子を形成した。

0 【0116】実施例1と同様に、0.01%C2 H2気流中で500℃10分間の熱処理を行ない、繊維状カーボンを形成した。高分解能SEM(走査型電子顕微鏡)によりこの電子源の電子放出素子を観察したところ、熱処理により、素子電極上のPd微粒子は電極中に拡散したらしく、素子電極上には微粒子も繊維状カーボンも見られなかった。

【0117】この電子源に図11に示すように引き出し電極と蛍光板を取り付け、全ての電子放出素子を時間順次に走査駆動した。図11の系を説明する。図中111 は真空槽であり、不図示の排気系により、5×10⁻⁵ Pa以下に排気されている。112は窓、114は電子放出部(電極間隙)、電極、配線などからなる素子本体である。115、116はX方向及びY方向ラインの駆動用配線である。117は前記配線に適当なパルスを印加するドライバーである。118は引き出し電極で、アルミニウム製の枠に透明電極のITO薄膜を形成したガラスを嵌め込み、その下面に蛍光体を塗布したものである。

【0118】電子放出素子に、駆動電圧14V、半選択 10 電圧7Vとなるようにドライバー117で矩形波パルス を印加した。引き出し電圧は5kVである。

【0119】窓112を通して、電子放出による蛍光体の発光を目視で観察したところ、本実施例の電子源においては、素子間での輝度のばらつきが小さく、電子放出特性の均一性が高いことが確認された。

【0120】[実施例5]実施例4の電子源に、図6に示すように画像形成部材を組み合わせ、例えばテレビジョン放送をはじめとする種々の画像情報源より提供される画像情報を表示できる表示装置を構成した。図12にそのブロック図を示す

【0121】図中120はディスプレイパネル、121はディスプレイパネルの駆動回路、122はディスプレイコントローラ、123はマルチプレクサ、124はデコーダ、125は入出力インターフェース回路、126はCPU、127は画像生成回路、128、129及び130は画像メモリインターフェース回路、131は画像入力インターフェース回路、132及び133はTV信号受信回路、134は入力部である。(尚、本表示装置は、例えばテレビジョン信号のように映像情報と音声情報の両方を含む信号を受信する場合には、当然映像の10表示と同時に音声を再生するものであるが、本発明の特徴と直接関係しない音声情報の受信、分離、再生、処理、記憶などに関する回路やスピーカーなどについては説明を省略する。)

【0122】以下、画像信号の流れに沿って各部を説明してゆく。

【0123】先ず、TV信号受信回路133は、例えば電波や空間光通信などのような無線伝送系を用いて伝送されるTV画像信号を受信するための回路である。受信するTV信号の方式は特に限られるものではなく、例え 20ば、NTSC方式、PAL方式、SECAM方式などの諸方式でも良い。また、これらよりさらに多数の走査線よりなるTV信号(例えばMUSE方式をはじめとするいわゆる高品位TV)は、大面積化や大画素数化に適した前記ディスプレイパネルの利点を生かすのに好適な信号源である。TV信号受信回路133で受信されたTV信号は、デコーダ124に出力される。

【0124】また、画像TV信号受信回路132は、例えば同軸ケーブルや光ファイバーなどのような有線伝送系を用いて伝送されるTV画像信号を受信するための回 30路である。前記TV信号受信回路133と同様に、受信するTV信号の方式は特に限られるものではなく、また本回路で受信されたTV信号もデコーダ124に出力される

【0125】また、画像入力インターフェース回路13 1は、例えばTVカメラや画像読取スキャナーなどの画 像入力装置から供給される画像信号を取り込むための回 路で、取り込まれた画像信号はデコーダ124に出力さ れる。

【0126】また、画像メモリインターフェース回路130は、ビデオテープレコーダー(以下VTRと略す)に記憶されている画像信号を取り込むための回路で、取り込まれた画像信号はデコーダ124に出力される。

【0127】また、画像メモリインターフェース回路1 29は、ビデオディスクに記憶されている画像信号を取り込むための回路で、取り込まれた画像信号はデコーダ 124に出力される。

【0128】また、画像メモリーインターフェース回路 128は、いわゆる静止画ディスクのように、静止画像 データを記憶している装置から画像信号を取り込むため 50 18

の回路で、取り込まれた静止画像データはデコーダ12 4に出力される。

【0129】また、入出力インターフェース回路125 は、本表示装置と、外部のコンピュータ、コンピュータ ネットワークもしくはプリンタなどの出力装置とを接続 するための回路である。画像データや文字・図形情報の 入出力を行なうのはもちろんのこと、場合によっては本 表示装置の備えるCPU126と外部との間で制御信号 や数値データの入出力などを行なうことも可能である。 【0130】また、画像生成回路127は、前記入出力 インターフェース回路125を介して外部から入力され る画像データや文字・図形情報や、或いはCPU156 より出力される画像データや文字・図形情報に基づき表 示用画像データを生成するための回路である。本回路の 内部には、例えば画像データや文字・図形情報を蓄積す るための書き換え可能メモリや、文字コードに対応する 画像パターンが記憶されている読み出し専用メモリや、 画像処理を行なうためのプロセッサなどをはじめとして 画像の生成に必要な回路が組み込まれている。

0 【0131】本回路により生成された表示用画像データは、デコーダ124に出力されるが、場合によっては前記入出力インターフェース回路125を介して外部のコンピュータネットワークやプリンターに出力することも可能である。

【0132】また、CPU126は、主として木表示装置の動作制御や、表示画像の生成、選択、編集に関わる作業を行なう。

【0133】例えば、マルチアレクサ123に制御信号を出力し、ディスプレイパネルに表示する画像信号を適宜選択したり組み合わせたりする。また、その際には表示する画像信号に応じてディスプレイパネルコントローラ122に対して制御信号を発生し、画面表示周波数や走査方法(例えばインターレースかノンインターレースか)や一画面の走査線の数など表示装置の動作を適宜制御する。

【0134】また、前記画像生成回路127に対して画像データや文字・図形情報を直接出力したり、或いは前記入出力インターフェース回路125を介して外部のコンピュータやメモリをアクセスして画像データや文字・図形情報を入力する。

【0135】尚、CPU126は、むろんこれ以外の目的の作業にも関わるものであっても良い。例えば、パーソナルコンピュータやワードプロセッサなどのように、情報を生成したり処理する機能に直接関わっても良い。【0136】或いは、前述したように入出力インターフェース回路125を介して外部のコンピュータネットワークと接続し、例えば数値計算などの作業を外部機器と協同して行なっても良い。

【0137】また、入力部134は、前記CPU126 に使用者が命令やプログラム、或いはデータなどを入力

するためのものであり、例えばキーボードやマウスの 他、ジョイスティック、パーコードリーダー、音声認識 装置など多様な入力機器を用いることが可能である。 【0138】また、デコーダ124は、前記127ない し133より入力される種々の画像信号を3原色信号、 または輝度信号とI信号、Q信号に逆変換するための回 路である。尚、同図中に点線で示すように、デコーダ1 2.4は内部に画像メモリを備えるのが望ましい。これ は、例えばMUSE方式をはじめとして、逆変換するに 際して画像メモリを必要とするようなテレビ信号を扱う 10 ためである。また、画像メモリを備えることにより、静 止画の表示が容易になる、或いは前記画像生成回路12 7及びCPU126と協同して画像の間引き、補間、拡 大、縮小、合成をはじめとする画像処理や編集が容易に 行なえるようになるという利点が生まれるからである。 【0139】また、マルチプレクサ123は前記CPU 126より入力される制御信号に基づき表示画像を適宜 選択するものである。即ち、マルチプレクサ123はデ コーダ124から入力される逆変換された画像信号のう ちから所望の画像信号を選択して駆動回路121に出力 20 する。その場合には、一画面表示時間内で画像信号を切

【0140】また、ディスプレイパネルコントローラ122は、前記CPU126より入力される制御信号に基づき駆動回路121の動作を制御するための回路である。

る画像を表示することも可能である。

り換えて選択することにより、いわゆる多画面テレビの ように、一画面を複数の領域に分けて領域によって異な

【0141】先ず、ディスプレイパネルの基本的な動作に関わるものとして、例えばディスプレイパネルの駆動 30 用電源(不図示)の動作シーケンスを制御するための信号を駆動回路121に対して出力する。

【0142】また、ディスプレイパネルの駆動方法に関わるものとして、例えば画面表示周波数や走査方法(例えばインターレースかノンインターレースか)を制御するための信号を駆動回路121に対して出力する。

【0143】また、場合によっては表示画像の輝度、コントラスト、色調、シャープネスといった画質の調整に関わる制御信号を駆動回路121に対して出力する場合もある。

【0144】また、駆動回路121は、ディスプレイバネル120に印加する駆動信号を発生するための回路であり、前記マルチプレクサ123から入力される画像信号と、前記ディスプレイパネルコントローラ122より入力される制御信号に基づいて動作するものである。

【0145】以上、各部の機能を説明したが、図12に 例示した構成により、本表示装置においては多様な画像 情報源より入力される画像情報をディスプレイパネル1 20に表示することが可能である。即ち、テレビジョン 放送をはじめとする各種の画像信号はデコーダ124に おいて逆変換された後、マルチプレクサ123において 適宜選択され、駆動回路121に入力される。一方、ディスプレイコントローラ122は、表示する画像信号に 応じて駆動回路121の動作を制御するための制御信号 を発生する。駆動回路121は、上記画像信号と制御信号に基づいてディスプレイパネル120に駆動信号を印加する。これにより、ディスプレイパネル120におい て画像が表示される。これらの一連の動作は、CPU1 26により続括的に制御される。

【0146】また、本表示装置においては、前記デコーダ124に内蔵する画像メモリや、画像生成回路127及びCPU126が関与することにより、単に複数の画像情報の中から選択したものを表示するだけでなく、表示する画像情報に対して、例えば拡大、縮小、回転、移動、エッジ強調、間引き、補間、色変換、画像の縦横比変換などをはじめとする画像処理や、合成、消去、接続、入れ替え、はめ込みなどをはじめとする画像編集を行なうことも可能である。また、本実施例の説明では、特に触れなかったが、上記画像処理や画像編集と同様に、音声情報に関しても処理や編集を行なうための専用回路を設けても良い。

【0147】従って、本表示装置は、テレビジョン放送の表示機器、テレビ会議の端末機器、静止画像及び動画像を扱う画像編集機器、コンピューターの端末機器、ワードプロセッサをはじめとする事務用端末機器、ゲーム機などの機能を一台で兼ね備えることが可能で、産業用或いは民生用として極めて応用範囲が広い。

【0148】尚、上記図12は、電子放出素子を電子源とするディスプレイバネルを用いた表示装置の構成の一 例を示したに過ぎず、これのみに限定されるものでないことは言うまでもない。例えば図12の構成要素のうち使用目的上必要のない機能に関わる回路は省いても差し支えない。またこれとは逆に、使用目的によってはさらに構成要素を追加しても良い。例えば、本表示装置をテレビ電話機として応用する場合には、テレビカメラ、音声マイク、照明機、モデムを含む送受信回路などを構成要素に追加するのが好適である。

【0149】本表示装置においては、とりわけ電子放出素子を電子源とするディスプレイパネルの薄型化が容易40なため、表示装置の奥行きを小さくすることができる。それに加えて、電子放出素子を電子源とするディスプレイバネルは大画面化が容易で輝度が高く視野角特性にも優れるため、本表示装置は臨場感あふれ迫力に富んだ画

【0150】更に、本発明の電子源は各電子放出索子間での電子放出特性が均一であるため、形成される画像の画質が高く、また高精細な画像の表示も可能である。 【0151】

像を視認性良く表示することが可能である。

20に表示することが可能である。即ち、テレビジョン 【発明の効果】以上説明したように、本発明によれば、 放送をはじめとする各種の画像信号はデコーダ124に 50 良好な電子放出特性を示す電子放出素子を信頼性高く提

供することができ、該素子の作製に当たり、特に繁雑な 工程や効果な素材を用いることもない。従って、当該素 子を複数用いてなる本発明の電子源、更に画像形成装置 においては、各素子によって形成される輝点の輝度が均 一でむらがないため、高品質な画像の形成が可能とな る。

【図面の簡単な説明】

- 【図1】本発明の電子放出素子の基本構成図である。
- 【図2】本発明の電子放出素子の製造工程例を示す図である。
- 【図3】本発明の電子放出素子の電子放出特性を評価するための測定評価系を示す図である。
- 【図4】木発明の電子放出素子の電子放出特性を示す図である。
- 【図5】本発明の単純マトリクス電子源の模式図であ る
- 【図6】本発明の画像形成装置の一実施態様を示す図で ある。
- 【図7】本発明の画像形成装置に用いる蛍光膜を示す図である。
- 【図8】本発明の画像形成装置の一実施態様のブロック 図である。
- 【図9】本発明の梯子型電子源の模式図である。
- 【図10】梯子型電子源を用いた本発明の画像形成装置 を示す図である。
- 【図11】本発明の電子源の測定評価系を示す図である。
- 【図12】本発明の実施例4の画像形成装置の応用例の ブロック図である。

【符号の説明】

- 1 絶縁性基板
- 2,2' 素子電極
- 3 炭素を主成分とする堆積物
- 21 金属微粒子
- 信旅軍 0 6
- 31 電源
- 32 電流計
- 33 高圧電源
- 34 アノード電極
- 35 真空装置
- 36 排気ポンプ
- 52 X方向配線
- 53 Y方向配線
- 54 電子放出素子

- 55 結線
- 61 リアプレート
- 62 支持枠
- 63 ガラス基板
- 64 蛍光膜
- 65 メタルバック
- 66 フェースプレート
- 68 外囲器
- 71 黒色導伝材
- 10 72 蛍光体
 - 81 表示パネル
 - 82 走査回路
 - 83 制御回路
 - 84 シフトレジスタ
 - 85 ラインメモリ
 - 86 同期信号分離回路
 - 87 変調信号発生器
 - 92 グリッド電極
 - 93 開口
- 20 94 共通配線
 - 111 真空槽
 - 112 窓
 - 114 素子本体
 - 115 X方向駆動用配線
 - 116 Y方向駆動用配線
 - 117 ドライバー
 - 118 引き出し電極
 - 119 電源
 - 120 ディスプレイパネル
- 30 121 駆動回路
 - 122 ディスプレイパネルコントローラ
 - 123 マルチプレクサ
 - 124 デコーダ
 - .125 入出力インターフェース
 - 126 CPU
 - 127 画像生成回路
 - 128 画像メモリーインターフェース
 - 129 画像メモリーインターフェース
 - 130 画像メモリーインターフェース
- 40 131 画像入力メモリーインターフェース
 - 132 TV信号受信回路
 - 133 TV信号受信回路
 - 134 入力部
 - 130 ディスプレイパネル

【図10】

【図12】

				•
	,			
	,			
		4:		;

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application :

(51)Int.CI.

H01J 1/30

H01J 29/46

H01J 31/12

H01J 31/15

(21)Application number: 06-278556

(71)Applicant: CANON INC

(22)Date of filing:

19.10.1994

(72)Inventor: KISHI FUMIO

ISHIZAKI AKIYOSHI

AEBA TOSHIAKI

(54) ELECTRON EMISSION ELEMENT, ITS MANUFACTURE, AND ELECTRON SOURCE AND IMAGE FORMING DEVICE USING IT

[Patent number]

2903290

[Date of registration]

26.03.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(57)Abstract:

PURPOSE: To simplify fabrication processes and to provide a uniform electron emission characteristic by forming on an insulating substrate a pair of electrodes facing each other with a microclearance between them, and forming an electron emission element from a sediment accumulated in the clearance and composed chiefly of carbon.

CONSTITUTION: An element electrode material is accumulated on an insulating substrate 1 and then a predetermined cliarance L is formed between element electrodes 2, 2' by means of a convergent ion beam. A

sediment 3 composed mainly of carbon is accumulated in the clearance L. The sediment 3 is preferably fibrous carbons, consisting of graphite or amorphous carbons. The fibrous carbons are produced by heat decomposition of hydrocarbons, such as benzene, or CO in a gaseous phase with the use of particles of Fe, etc., as catalysts. The use of Pd as the nuclei for formation of the fibrous carbons is desirable since the maximum process temperature can then be lowered to 450°C or less. Ni can also be used in addition to Fe and Pd.

LEGAL STATUS

[Date of request for examination]

19.06.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

Date of se

[Patent number]

2903290

.[Date of registration]

26.03.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-115652

(43)公開日 平成8年(1996)5月7日

技術表示箇所	FI	識別記号 庁内整理番号	1.°	(51) Int.CL*
i		. A	J 1/30	H01J
		В	29/46	
		В	31/12	
		C	31/15	
未請求 請求項の数18 FD (全 17 頁)	審査請求			
000001007	(71)出顧人	特顯平6-278556	番号	(21)出顧番
キヤノン株式会社			- •	(,,
東京都大田区下丸子3丁目30番2号		平成6年(1994)10月19日	B	(22)出頭日
岸 文夫	(72)発明者			
東京都大田区下丸子3丁目30番2号 キヤ				
ノン株式会社内				
石崎 明美	(72)発明者			
東京都大田区下丸子3丁目30番2号 キヤ		*	•	
ノン株式会社内		•		
要場 利明	(72)発明者	,		
東京都大田区下丸子3丁目30番2号 キヤ				
ノン株式会社内				
弁理士 豊田 善雄 (外1名)	(74)代理人	•		

(54) 【発明の名称】 電子放出素子及びその製造方法、該電子放出素子を用いた電子源並びに画像形成装置

(57) 【要約】

【目的】 製造工程が繁雅でなく、均一な電子放出特性を有する電子放出来子を提供する。

【構成】 絶縁性基板1上に、素子電極2及び2、をつながった形状で形成し、収束イオンピームにより500 nm以下の微小間隙しを形成し、炭化水素ガスを含む雰囲気下で熱処理することにより炭素を主成分とする堆積物3を上記微小間隙に堆積させてなる電子放出来子。

【特許請求の範囲】

【請求項1】 少なくとも、絶縁性基板と、該絶縁性基板上に形成された微小関膜を介して対向する一対の電板と、前記微小関膜に堆積された炭素を主成分とする堆積物からなることを特徴とする電子放出来子。

【請求項2】 微小例啟が500nm以下であることを 特徴とする請求項1記載の電子放出漢子。

【請求項3】 炭素を主成分とする堆積物が、繊維状力ーポンの集合体であることを特徴とする請求項1又は2記載の電子放出来子。

【請求項4】 繊維状カーボンが、グラファイト又はアモルファスカーボンもしくはこれらの混合物からなることを特徴とする請求項3配義の電子放出業子。

【請求項5】 絶縁性基板上に、微小間隙を介して対向する一対の電極を形成する工程と、該電極間間隙に炭素を主成分とする堆積物を堆積させる工程を有することを特徴とする電子放出来子の製造方法。

【請求項6】 炭素を主成分とする堆積物の堆積工程 が、炭素化合物の熱分解工程であることを特徴とする請求項5記載の電子放出素子の製造方法。

【請求項7】 炭素化合物が炭化水素であることを特徴とする請求項6記載の電子放出素子の製造方法。

【請求項8】 炭化水素がエチレンであることを特徴とする請求項7記載の電子放出素子の製造方法。

【請求項9】 炭素化合物の熱分解工程が、炭素化合物を含む雰囲気中で加熱する工程であることを特徴とする 請求項6~8のいずれかに記載の電子放出素子の製造方法。

【請求項10】 炭素を主成分とする堆積物の堆積工程が、電極間間隙に金属微粒子を形成する工程と、炭素化 30合物を熱分解して上記金属微粒子を核として繊維状カーボンを堆積させる工程からなることを特徴とする請求項5~9のいずれかに記載の電子放出素子の製造方法。

【翻求項11】 金属微粒子の形成工程が、当該金属の有機維体溶液を領極関限に塗布する工程と、該有機金属維体を焼成して金属酸化物とする工程と、該金属酸化物を還元凝集させる工程からなることを特徴とする翻求項10記載の電子放出素子の製造方法。

【請求項12】 金属酸化物の選元凝集工程が、水素ガスを含む雰囲気に曝露、或いは該雰囲気中での熱処理工 40程であることを特徴とする請求項11記載の電子放出素子の製造方法。

【詩求項13】 繊維状カーボンの堆積工程が、エチレンガスを含む雰囲気中でエチレンの熱分解温度以上で熱処理する工程であることを特徴とする請求項10~12のいずれかに記載の電子放出来子の型流方法。

【請求項14】 金属酸化物の還元凝集工程をエチレンガスを含む雰囲気中でエチレンの熱分解温度未満で熱処理して行ない、続けて同じ雰囲気中でエチレンの熱分解温度以上に加熱して繊維状カーボンの堆積工程を行なう 50

ことを特徴とする請求項10~12のいずれかに記載の 電子放出来子の製造方法。

【請求項15】 請求項1~4のいずれかに記載の電子 放出素子を複数個並列に配置し結婚してなる素子列を少なくとも1列以上有してなることを特徴とする電子源。

【関求項16】 端求項1~4のいずれかに記載の電子 放出素子を複数配個列してなる素子列を少なくとも1列 以上有し、該来子を駆動するための配線がマトリクス配 置されていることを特徴とする電子額。

10 【請求項17】 少なくとも、請求項15記載の電子 源、國像形成部材、及び情報信号により各電子放出来子 から放出される電子線を制御する制御電極を有すること を特徴とする國像形成装置。

【請求項18】 少なくとも、請求項16記載の電子面 と画像形成部材とを有することを特徴とする画像形成装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、電子放出素子と、該案子を複数個配置してなる電子版、及び該電子版を用いて構成した表示装置や腐光装置等の函像形成装置に関し、更には、上記電子放出素子の製造方法に関する。

[0002]

【従来の技術】従来、電子放出素子として熱電子源と冷陰循電子源の2種類が知られており、冷陰循電子源には、電界放出型(以下FE型と記す)、金属/絶縁層/金属型(以下MIM型と記す)や表面伝導型等がある。

【0003】上記FE型の例としては、ダブリュ ビィダイク アンド ダブリュ ダブリュ ドラン著「フィールド エミッション」アドバンス イン エレクトロンフィジックス、8、89(1956)(W. P. Dyke & W. W. Dolan" Field emission", Advance in electron Physics) 或いはシィ エィ スピント「フィジカル プロパティズ オブ シンーフィルム フィールド エミッション カソーズ ウィズモリブデニウム コーンズ」ジャーナル オブ アプライド フィジクス、47、5248(1976)(C. A. Spindt" PHYSICAL Properties of

thin-film field emission cathodes with molybdenlum cones J. Appl. Phys.)等が知られている。

【0004】またMIM型の例としては、シィ エィミード「ザ トンネルーエミッション アンプリファイア」ジャーナル オブ アプライド フィジクス。32、646(1961)(C. A. Mead The tunnel-emission amplifier" J. Appl. Phys.)等が知られている。【0005】また、表面伝導型電子放出案子の例として

は、エム アイ エリンソン, レィディオ エンジニア リング エレクトロン フィジクス, 10 (1965) (M. I. Elinson, Radio Eng. El ectron Phys.)等がある。

[0006]

【発明が解決しようとする課題】上記に挙げたような電子放出来子を複数個用いて表示装置等を形成する場合、各案子の電子放出特性が均一であること、及び均一な業子の作製に繁雑な工程を伴わないことが要求される。従って、電子放出来子においては、こういった要求や更な 10 る製造工程の簡略化、より優れた来子を達成するべく鋭音検討されている。

【0007】本発明の目的は、上記のような状況において、繁雑な工程を伴わずに均一な電子放出特性を示す信頼性の高い電子放出来子を提供することであり、更に、該電子放出来子を用いて電子源、更には画像形成装置を構成することにある。

[0008]

【課題を解決するための手段及び作用】請求項1~4の 発明は、上記目的を達成した電子放出業子であって、絶 20 緑性基板上に、微小間隙を介して一対の電極を設け、該 微小間隙に炭素を主成分とする堆積物を有することに特 微を有する。

【0009】請求項5~14の発明は、上記電子放出素子の製造方法であって、始縁性基板上に、微小間隙を設けて一対の電極を形成し、該微小間隙に炭素を主成分とする堆積物を堆積させることを特徴とする。

【0010】請求項15及び16の発明は上記電子放出 森子を複数個配置したことを特徴とする電子派であり、 請求項17及び18の発明はそれぞれの電子派を用いた 30 ことを特徴とする画像形成装置である。

【0011】以下本発明を詳細に説明する。

【0012】図1は本発明の電子放出来子の基本的な構成を示す図である。図中、1は絶縁性基板、2,2°は 素子電板、3は炭素を主成分とする堆積物である。

【0013】基板1としては、例えば石英ガラス、Na等の不純物含有量を減少させたガラス、育板ガラス、育板ガラスにスパッタ法等によりS102を積層した積層体、アルミナ等のセラミックス等が挙げられる。

【0014】対向する素子電極2,2'の材料としては、一般的導体材料が用いられ、例えばNi、Cr、Au、Mo、W、Pt、Tl、Al、Cu、Pd等の金属あるいは合金及びPd、Ag、Au、RuO2、Pd-Ag等の金属あるいは金属酸化物とガラス等から構成される印刷導体、ln,O3-SnO2等の透明導電体及びポリシリコン等の半導体等体材料等から適宜選択される。

【0015】素子電極間隙し、素子電極長さWは、応用される形態等によって設計される。

【0016】素子電極長さWは、電極の抵抗値や電子放 50 一ポン形成時の核となることを見出した。従って本発明

出特性を考慮すると、好ましくは数 μ m~数百 μ mであり、また来子電板厚dは、数百 Λ ~数 μ mである。

【0017】素子電極間放しは、微小であり、好ましくは500nm以下である。

【0018】本発明の電子放出来子の製造方法について 図2に基づいて説明する。尚、図2において図1と同じ 符号は同じ部材を示すものである。

【0019】(A) 基板1を洗剤、純水及び有機溶剤により十分に洗浄した後、真空蒸着法、スパッタ法等により素子電板材料を堆積させた後、フォトリソグラフィー技術により基板1の面上に素子電極2, 2°がつながった状態を形成する(図2(a))。

【0020】(B) 次に、収束イオンピーム(F1B) いにより、所定の間隙Lを来子電極2、2 間に形成する(図2(b))。間隙Lの形成は、上記F1Bの他に、フォトリソグラフィーのプロセスを用いて形成する方法、或いは、基板1に段差を設けておいて間隙を形成する方法などが可能である。

[0021] (C) 炭素を主成分とする堆積物を間隙しに堆積する。本発明において、該堆積物は、好ましくは 繊維状カーポンであり、グラファイト或いはアモルファ スカーポンからなる。

【0022】 繊維状カーボンは、ペンゼンなどの炭化水素やCOを気相で微粒子を触媒として熱分解した時に生成するもので、不規則な曲折を示したり、くびれを伴う場合もある(例えば、アール ティ ケイ ペーカーアンド ピィ エス ハリス:ケミストリィ アンドフィジクス オブ カーボン Vol. 14 p84~165,フィリップ エル ウォーカー ジュニア アンド ピーター エィスローワー編、マーセル ディーカー インク (R. T. K. Baker and P. S. Harris: Chemistry and Physics of Carbon, Philip L. Walker Jr. and Petere A. Thrower, MARCEL DEEKER, in

[0023] Feなどの金属表面の、炭化水素ガスの分解反応における触媒活性は古くから研究されており、エチレンの分解についても多くの報告がある(例えば、矢ケ崎えり子・岩崎康裕「連移金属表面におけるエチレン、の化学」:表面 第29巻879~891頁 1991年)

【0024】Feの敬粒子がある場合には、炭化水素の存在する雰囲気中で熱処理することにより、微粒子を核にして繊維状カーボンが形成されることは上記の通り良く知られている。このFe微粒子はフェライト基板の一部などのFe化合物を選元して形成したものである。本発明者等は、電子放出素子の分野において広く用いられているPdからなる微粒子でも、Feと同様に繊維状カーボン形成時の技となることを見出した。従って本発明

において、Pdを繊維状カーポン形成の核として用いる と、プロセス最高温度を450℃以下に抑えることがで き (Feを用いた場合には950~1000℃であ る)、他の部材への影響や、製造コストの面から好まし

【0025】具体的には、Pd等用いる金属の有機媒体 溶液を強布し、加熱焼成して金属酸化物とした後、水素 ガスを含む雰囲気中に曝露するか成いは該雰囲気中で熱 処理することにより、金属酸化物を還元凝集させ金属微 粒子21とする(図2(c)).

【0026】本発明において、カーポンの形成核として は、上記FeやPdの他にNIが好ましく用いられ、ま た、微粒子の形状をとる必要もなく、突起等繊維状カー ポンの成長の特異点となる形状であれば同様の効果が得

【0027】上記金属微粒子を核として、繊維状カーボ ンを堆積させる(図2(d))。堆積方法は、前記した ように、炭化水素等炭素化合物を熱分解すれば良く、例 えば、エチレンガスを含む雰囲気中でエチレンの熱分解 以上の沮度で熱処理を行なえばよい。エチレンの他に 20 も、メタン、プロバン、プロピレンなどの炭化水素ガ ス、或いはエタノールやアセトンなどの有機溶剤の蒸気 を用いることも可能である。

【0028】本発明者等は400℃以下では繊維状力一 ポンが形成されないことを確認した。一方、高温側では 十分広い範囲で形成可能であり、900℃の熱処理で後 述の実施例と同様の繊維状カーボンが形成される。しか しながら、上記したように、高温では素子の他の部材が 影響を受けるため、900℃以下での熱処理が好まし い。実際には、電極や基板の耐熱温度から設定すればよ 30 を有する。

【0029】また、上記金属微粒子の遺元工程を、例え ばエチレンガスを含む雰囲気中でエチレンの熱分解温度 未満で行ない、続いてエチレンの熱分解温度以上の熱処 理を行なうことにより、金属領粒子の選元工程と繊維状 カーボンの堆積工程を連続して行なうことができ、製造 工程の簡素化の上で好ましい。

【0030】尚、表面に熱酸化膜を形成したシリコン基 板に後述する実施例と同様の工程でPd微粒子を形成し てなるPd粒子分散膜をエチレン雰囲気中熱処理した試 40 料を走査電子顕微鏡で観察したところ、繊維状カーポン が観察された。これがカーボンであることはX線光電子 分光 (XPS) 分析、ラマン分光分析により確認した。 また、この繊維状カーポンを、透過電子顕微鏡により観 察したところ、格子像が観察され結晶性を持つことがわ かった。但し、格子像は非常に乱れており、結晶性は悪 Ļ١.

【0031】図3は、電子放出素子の電子放出特性を翻 定するための測定評価系の一例を示す複略構成図で、ま ずこの測定評価系を説明する。

【0032】図3において、図1と同じ符号は同じ部材 を示す。また、31は来子に来子電圧V」を印加するた めの電源、30は素子電板2,2°間を流れる素子電流 11を測定するための電流計、34は放出電流 1.を抽記 するためのアノード電極、33はアノード電極34に電 圧を印加するための高圧電源、3.2は放出電流 1.を測 定するための電流計、35は真空装置、36は排気ポン プである.

【0033】電子放出来子及びアノード電極34等は真 10 空装置35内に設置され、この真空装置35には不図示 の真空計等の必要な機器が具備されていて、所望の真空 下で電子放出来子の測定評価ができるようになってい

【0034】排気ポンプ36は、ターポポンプ、ロータ リーポンプ等からなる通常の高真空装置系と、イオンポ ンプ等からなる超高真空装置系とから構成されている。 また、真空装置35全体及び電子放出来子の基板1は、 ヒーターにより200℃程度まで加熱できるようになっ ている。

【0035】以下に述べる電子放出来子の基本特性は、 上記測定評価系のアノード電極34の電圧を1kV~1 0kVとし、アノード電板34と電子放出素子の距離H。 を2~8mmとして行った測定に基づくものである。

【0036】まず、放出電流1、及び素子電流1、と、 素子電圧V, との関係の典型的な例を図4に示す。尚、 図4において、放出電流1、は素子電流1、に比べて著 しく小さいので、任意単位で示されている。

【0037】図4から明らかなように、本発明の電子放 出来子は、放出電流 1。に対する次の3つの特徴的特性

【0038】まず第1に、電子放出衆子はある電圧(し きい値電圧と呼ぶ:図5中のVn)以上の素子電圧Vィ を印加すると急激に放出電流 1、が増加し、一方しきい 植電圧 V.、以下では放出電流 1。 が殆ど検出されない。 即ち、放出電流 I。に対する明確なしきい値電圧 Vinを 持った非線形束子である。

[0039] 第2に、放出電流1. が未子電圧V, に対 して単調増加する特性 (M 1 特性と呼ぶ) を有するた め、放出電流I、は素子電圧V,で制御できる。

【0040】第3に、アノード電極34 (図3参照) に 捕捉される放出電荷は、素子電圧V」を印加する時間に 依存する。即ち、アノード電板34に捕捉される電荷量 は、素子電圧V、を印加する時間により制御できる。

【0041】故出電流1、が末子電圧V。に対してMI。 特性を有すると同時に、東子電流 1、も東子電圧 V, に 対してM1特性を有する場合もある。このような電子放 出来子の特性の例が図4の実験で示す特性である。一 方、図4に破線で示すように、素子電流1, は素子電圧 V. に対して電圧制御型負性抵抗特性(VCNR特性と

50 呼ぶ) を示す場合もある。いずれの特性を示すかは、電

子放出素子の製法及び測定時の測定条件等に依存する。 但し、来子電流」、が来子電圧V、に対してVCNR特 性を有する電子放出業子でも、放出電流1、は業子電圧 Vi に対してM 1 特性を有する。

【0042】次に、本発明の電子頭における電子放出素 子の配列について説明する。

【0043】本発明の電子頭における電子放出漢子の配 列方式としては、並列に電子放出索子を配列し、個々の 素子の両端(両素子電板)を配線(共通配線とも呼ぶ) のX方向配線の上にn本のY方向配線を層間絶縁層を介 して設置し、電子放出素子の一対の素子電極に夫々X方 向配線、Y方向配線を接続した配置方式が挙げられる。 これを以後単純マトリクス配置と呼ぶ、まず、この単純 マトリクス配置について詳述する。

【0044】前述した電子放出素子の基本的特性によれ は、単純マトリクス配置された電子放出来子における放 出電子は、しきい値電圧を超える電圧では、対向する素 子電極間に印加するパルス状電圧の波高値とパルス幅で 制御できる。一方、しきい値電圧以下では殆ど電子は放 20 る。 出されない。従って、複数の電子放出素子を配置した場 合においても、個々の素子に上記パルス状態圧を適宜印 加すれば、入力信号に応じて電子放出素子を選択し、そ の電子放出量が制御でき、単純なマトリクス配線だけで 個別の電子放出素子を選択して独立に駆動可能となる。

【0045】単純マトリクス配置はこのような原理に基 づくもので、本発明の電子派の一例である、この単純マ トリクス配置の電子派の構成について図5に基づいて更 に説明する。

【0046】図5において基板1は既に説明したような 30 ガラス板等であり、この基板1上に配列された電子放出 案子54の個数及び形状は用途に応じて適宜設定される ものである.

【0047】m本のX方向配線52は、夫々外部端子D 11, D.2,, D. を有するもので、基板1上に、真 空蒸着法、印刷法、スパッタ法等で形成した導電性金属 等である。また、複数の電子放出素子54にほぼ均等に 電圧が供給されるように、材料、膜厚、配線幅が設定さ れている.

【0048】n本のY方向配線53は、夫々外部端子D 71, D11,, D1.を有するもので、X方向配線52 と同様に作成される。

【0049】これら加本のX方向配線52とn本のY方 向配線5.3間には、不図示の層間絶縁層が設置され、電 気的に分離されて、マトリクス配線を構成している。 尚、このm、nは共に正の整数である。

【0050】不図示の層間絶録層は、真空蒸着法、印刷 法、スパッタ法等で形成されたSiO2等であり、X方 向配線52を形成した基板1の全面或は一部に所望の形 の交差部の電位差に耐え得るように、原厚、材料、製法 が適宜設定される。

【0051】更に、電子放出素子54の対向する素子量 獲 (不図示) が、m本のX方向配線52と、n本のY方 向配線53と、真空蒸着法、印刷法、スパッタ法等で形 成された導電性金属等からなる結線5.5によって電気的 に接続されているものである。

【0052】ここで、m本のX方向配線52と、n本の Y方向配線53と、結線55と、対向する素子電極と にて夫々結束した行を複数行配列した梯型配置と、m本 10 は、その構成元素の一部あるいは全部が同一であって も、また夫々異なっていてもよく、前述の素子電極の材 科等より適宜選択される。これら素子電極への配線は、 素子電極と材料が同一である場合は素子電極と総称する 場合もある。また、電子放出素子54は、基板1或いは 不図示の層間絶録層上どちらに形成してもよい。

> 【0053】また、詳しくは後述するが、前記X方向配 線52には、X方向に配列された電子放出素子54の行 を入力信号に応じて走査するために、走査信号を印加す る不図示の走査信号印加手段が電気的に接続されてい

> 【0054】一方、Y方向配線53には、Y方向に配列 された電子放出案子54の列の各列を入力信号に応じて 変調するために、変調信号を印加する不図示の変調信号 発生手段が電気的に接続されている。更に、各電子放出 素子54に印加される駆動電圧は、当該電子放出素子5 4に印加される走査信号と変調信号の差電圧として供給 されるものである.

【0055】次に、以上のような単純マトリクス配置の 本発明の電子源を用いた本発明の画像形成装置の一例 を、図6~図8を用いて説明する。尚、図6は表示パネ ル81の基本構成図であり、図7は蛍光膜64を示す図 であり、図8は図6の表示パネル81で、NTSC方式 のテレビ信号に応じてテレビジョン表示を行うための駆 動回路の一例を示すプロック図である。

【0056】図6において、1は上述のようにして電子 放出来子を配置した電子源の基板、61は基板1を固定 したリアプレート、66はガラス基板63の内面に蛍光 膜64とメタルバック65等が形成されたフェースプレ ート、62は支持枠であり、リアプレト61、支持枠6 2及びフェースプレート66ピプリットガラズ等を墜布 し、大気中あるいは空業中で、400~500℃で10 分以上焼成することで封着して外囲器68を構成してい

[0057] 図6において、52、53は、電子放出素 子54の一対の素子電極2, 2°と接続されたX方向配 線及びY方向配線で、夫々外部端子D.1~D.1. D.1~ D,,を有している。

【0058】外囲器68は、上述の如く、フェースープ レート66、支持枠62、リアプレート61で構成され 状で形成され、特に、X方向配線52とY方向配線53 50 ている。しかし、リアプレート61は主に基板1の強度

を補強する目的で設けられるものであり、基板1自体で 十分な強度を持つ場合は別体のリアブレート61は不要 で、基板1に直接支持枠62を封着し、フェースプレー ト66、支持枠62、基板1にて外囲器68を構成して もよい。また、フェースブレート66、リアブレート6 1の間にスペーサーと呼ばれる不図示の支持体を更に設 置することで、大気圧に対して十分な強度を有する外囲 器68とすることもできる。

【0059】 蛍光膜64は、モノクロームの場合は蛍光 体12のみからなるが、カラーの蛍光膜64の場合は、 蛍光体 7 2 の配列により、ブラックストライプ (図 7 (a)) あるいはブラックマトリクス(図7(b))等 と呼ばれる黒色導伝材71と蛍光体72とで構成され る。ブラックストライプ、ブラックマトリクスが設けら れる目的は、カラー表示の場合必要となる三原色の各強 光体72間の強り分け部を黒くすることで混色等を目立 たなくすることと、蛍光膜74における外光反射による コントラストの低下を抑制することである。黒色導伝材 71の材料としては、通常良く用いられている黒鉛を主 成分とする材料だけでなく、導電性があり、光の透過及 20 び反射が少ない材料であれば他の材料を用いることもで

【0060】ガラス基板73に蛍光体72を塗布する方 法としては、モノクローム、カラーによらず、沈敬法や 印刷法が用いられる。

【0061】また、図6に示されるように、蛍光膜64 の内面側には通常メタルバック65が設けられる。メタ ルバック65の目的は、蛍光体72(図7参照)の発光 のうち内面倒への光をガラス基板63側へ鎖面反射する ことにより輝度を向上すること、電子ビーム加速電圧を 30 印加するための電極として作用すること、外囲器68内 で発生した負イオンの衝突によるダメージからの蛍光体 72の保護等である。メタルバック65は、蛍光膜64 の作製後、強光膜 6 4 の内面側表面の平滑化処理 (通常 フィルミングと呼ばれる)を行い、その後A]を真空蒸 着等で堆積することで作製できる。

【0062】フェースプレート66には、更に蛍光膜6 4の導電性を高めるため、蛍光膜64の外面側に透明電 極(不図示)を設けてもよい。

【0063】前述の封着を行う際、カラーの場合は各色 40 蛍光体72と電子放出素子64とを対応させなくてはい けないため、十分な位置合わせを行なう必要がある。

【0064】外囲器68内は、不図示の排気管を通じ、 100~11011程度の真空度にされ、封止される。ま た、外囲器68の封止を行う改前あるいは封止後に、ゲ ッター処理を行うこともある。これは、外囲器68内の 所定の位置に配置したゲッター(不図示)を加熱し、森 着膜を形成する処理である。ゲッターは通常Ba等が主 成分であり、該蒸着膜の吸着作用により、例えば1×1

のである.

【0065】上述の表示パネル81は、例えば図8に示 されるような駆動回路で駆動することができる。尚、図 8において、81は表示パネル、82は走査回路、83 は制御回路、84はシフトレジスタ、85はラインメモ り、86は同期信号分解回路、87は変調信号発生器、 V、及びV。は直流電圧源である。

10

【0066】図8に示されるように、表示パネル81 は、外部端子D.1~D.1、外部端子D,1~D,1及び高圧 10 常子H vを介して外部の電気回路と接続されている。こ の内、外部滑子D·1~D·cは前記表示パネル81内に 設けられている電子放出来子、即ちm行n列の行列状に マトリクス配置された電子放出来子群を1行(ヵ来子ず。 つ) 順次駆動して行くための走査信号が印加される。

【0067】一方、外部端子Dn~Dneには、前記走査 信号により選択された1行の各電子放出素子の出力電子 ビームを制御するための変調信号が印加される。また、 高圧端子Hvには、直流電圧版V。より、例えば10k Vの直流電圧が供給される。これは電子放出案子より出 力される電子ピームに、蛍光体を励起するのに十分なエ ネルギーを付与するための加速電圧である。

【0068】走査回路82は、内部に加御のスイッチン グ素子(図8中S;~S。で模式的に示す)を備えるも ので、各スイッチング素子S。~S。は、直流電圧電源 V.の出力電圧もしくは0V (グランドレベル) のいず れか一方を選択して、表示パネル81の外部端子Dir~ D...と電気的に接続するものである。 各スイッチング素 子S、~S、は、制御回路83が出力する制御信号下 ,,,,に基づいて動作するもので、実際には、例えばFE Tのようなスイッチング機能を有する索子を組み合わせ ることにより容易に構成することが可能である。

【0069】本例における前記直流電圧原V。 は、前記 **電子放出素子の特性(しきい値電圧)に基づき、走査さ** れていない電子放出来子に印加される駆動電圧がしきい は電圧以下となるような一定電圧を出力するよう設定さ れている.

【0070】制御回路83は、外部より入力される画像 信号に基づいて適切な表示が行われるように、各部の動 作を整合させる働きを持つものである。次に説明する阿 期信号分離回路86より送られる同期信号 T. . . . 、 に基づ いて、各部に対してT...。、T.I. 及びT...。の各制理 信号を発生する。

【0071】同期信号分解回路86は、外部から入力さ れるNTSC方式のテレビ信号から、同期信号成分と輝 度信号成分を分離するための回路で、よく知られている ように、周波数分離(フィルター)回路を用いれば、容 易に構成できるものである。 同期信号分離回路 8 6によ り分離された同期信号は、これもよく知られるように、 垂直同期信号と水平同期信号よりなる。ここでは、説明 0.3~1×10~torrの真空度を維持するためのも 50 の便宜上T.,...として図示する。一方、前紀テレビ信号 から分離された画像の輝度信号成分を便宜上DATA信 号と図示する。このDATA信号はシフトレジスタ84 に入力される。

【0072】シフトレジスタ84は、時系列的にシリア ル入力される前記DATA信号を、画像の1ライン毎に シリアル/パラレル変換するためのもので、前配制御回 路83より送られる制御信号T... に基づいて作動す る。この制御信号T.,, は、シフトレジスタ84のシフ トクロックであると言い換えてもよい。また、シリアル /パラレル変換された画像1ライン分(電子放出来子の 10 n 素子分の駆動データに相当する)のデータは、1m~ 1..のn個の並列信号として前記シフトレジスタ84よ り出力される。

【0073】ラインメモリ85は、画像1ライン分のデ 一夕を必要時間だけ記憶するための記憶装置であり、制 御回路83より送られる制御信号T...,に従って適宜1 11~11.の内容を記憶する。記憶された内容は、11.1 ~1. 。として出力され、変調信号発生器87に入力さ

い」 ~1... の各々に応じて、電子放出業子の各々を適 切に駆動変調するための信号源で、その出力信号は、端 子D,,~D,,を通じて表示パネル81内の電子放出素子

【0075】前述したように、電子放出素子は電子放出 に明確なしきい値電圧を有しており、しきい値電圧を超 える電圧が印加された場合にのみ電子放出が生じる。ま た、しきい値電圧を超える電圧に対しては電子放出素子 への印加爾圧の変化に応じて放出電流も変化して行く。 電子放出楽子の材料、構成、製造方法を変えることによ 30 り、しきい値電圧の値や印加電圧に対する放出電流の変 化度合いが変わる場合もあるが、いずれにしても以下の ことがいえる。

【0076】即ち、電子放出素子にバルス状の電圧を印 加する場合、例えばしきい値順圧以下の電圧を印加して も電子放出は生じないが、しきい値電圧を超える電圧を 印加する場合には電子放出を生じる。その際、第1には 電圧パルスの波高値を変化させることにより、出力され る電子ビームの強度を制御することが可能である。第2 には、電圧パルスの幅を変化させることにより、出力さ 40 れる電子ピームの電荷の総量を制御することが可能であ る。

【0077】従って、入力信号に応じて電子放出来子を 変調する方式としては、低圧変調方式とパルス幅変調方 式とが挙げられる。電圧変調方式を行う場合、変調信号 発生器87としては、一定の長さの電圧パルスを発生す るが、入力されるデータに応じて適宜パルスの波高値を 変調できる電圧変調方式の回路を用いる。また、バルス 幅変調方式を行う場合、変調信号発生器87としては、

ータに応じて適宜パルス幅を変調できるパルス幅変調方 式の回路を用いる。

12

【0078】シフトレジスタ84やラインメモリ85 は、デジタル信号式のものでもアナログ信号式のもので もよく、画像信号のシリアル/パラレル変換や記憶が所 定の速度で行えるものであればよい。

【0079】デジタル信号式を用いる場合には、同期信 号分離回路86の出力信号DATAをデジタル信号化す る必要がある。これは同期信号分離回路86の出力部に A/D交換器を設けることで行える。

【0080】また、これと関連して、ラインメモリ85 の出力信号がデジタル信号かアナログ信号かにより、変 調信月発生器87に設けられる回路が若干異なるものと

【0081】即ち、デジタル信号で電圧変調方式の場 合、変調信号発生器87には、例えばよく知られている D/A変換回路を用い、必要に応じて増幅回路等を付け 加えればよい。また、デジタル信号でパルス幅変調方式 の場合、変調信号発生器87は、例えば高速の発振器及。 [0074] 変調信号発生器87は、前記画像データ 1 20 び発振器の出力する被数を計数する計数器 (カウンタ) 及び計数器の出力値と前記メモリの出力値を比較する比 校器(コンパレータ)を組み合わせた回路を用いること で容易に構成することができる。更に、必要に応じて、 比較器の出力するパルス幅変調された変調信号を電子放 出来子の駆動電圧にまで電圧増幅するための増幅器を付 け加えてもよい。

> 【0082】一方、アナログ信号で電圧変調方式の場 合、変調信号発生器87には、例えばよく知られている。 オペアンブ等を用いた増幅回路を用いればよく、必要に 応じてレベルシフト回路等を付け加えてもよい。また、 アナログ信号でパルス幅変調方式の場合、例えばよく知 られている電圧制御型発振回路(VCO)を用いればよ く、必要に応じて電子放出素子の駆動電圧にまで電圧増 幅するための増幅器を付け加えてもよい。

[0083]以上のような表示パネル81及び駆動回路 を有する本発明の画像形成装置は、端子Dii~Die及び D,1~D,.から電圧を印加することにより、必要な電子 放出素子から電子を放出させることができ、高圧烷子H vを通じて、メタルパック55あるいは透明電極(不図) **宗) に高見圧を印加して電子にいるを加速し、加速した・・・・・・** 電子ピームを蛍光膜54に衝突させることで生じる励起 ・発光によって、NTSC方式のテレビ信号に応じてテ レビジョン表示を行うことができるものである。

【0084】尚、以上説明した構成は、表示等に用いら れる本発明の画像形成装置を得る上で必要な概略構成で あり、例えば各部材の材料等、詳細な部分は上述の内容 に限られるものではなく、画像形成装置の用途に適する よう、適宜選択されるものである。また、入力信号とし てNTSC方式を挙げたが、本発明に係る画像形成装置 一定の被高値の賃圧パルスを発生するが、入力されるデ 50 はこれに限られるものではなく、PAL、SECAM方

式等の他の方式でもよく、更にはこれらよりも複数の走 査験からなるTV信号、例えばMUSE方式を初めとす る高品位TV方式でもよい。

【0085】次に、前述の様型配置の電子源及びこれを 用いた本発明の画像形成装置の一例について図9及び図 10を用いて説明する。

[0086] 図9において、1は基板、54は電子放出 来子、94は電子放出来子54を接続する共通配線で1 0本設けられており、各々外部菓子Di~Dioを有して

【0087】電子放出来子54は、基板1上に並列に複数個配置されている。これを来子行と呼ぶ、そしてこのネ子行が複数行配置されて電子顔を構成している。

【0088】各来子行の共通配線94(例えば外部端子D, とD, の共通配線94)間に適宜の駆動電圧を印加することで、各来子行を独立に駆動することが可能である。即ち、電子ビームを放出させたい来子行にはしきい値電圧を超える電圧を印加し、電子ビームを放出させたくない来子行にはしきい値電圧以下の電圧を印加するようにすればよい。このような駆動電圧の印加は、各来子の行間に位置する共通配線D: ~D, について、夫々相降接する共通配線94、即ち夫々相降接する外部端子D: とD, 、D, とD, の共通配線94を一体の同一配線としても行うことができる。

【0089】図10は、本発明の電子頭の他の例である、上記様型配置の電子頭を備えた表示パネル91の構造を示す図である。

【0090】図10中92はグリッド電極、93は電子が通過するための開口、Di~D。は各電子放出来子に電圧を印加するための外部漢子、Gi~G。はグリッド 30電極92に接続された外部漢子である。また、各来子行間の共通配線94は一体の同一配線として基板1上に形成されている。

【0091】尚、図10において図6と同じ符号は同じ 部材を示すものであり、図6に示される単純マトリクス 配置の電子液を用いた表示パネル81との大きな違い は、基板1とフェースプレート66の間にグリッド電極 92を備えている点である。

【0092】基板1とフェースプレート66の間には、上記のようにグリッド電極92が設けられている。この 40 グリッド電極92は、電子放出来子54から放出された電子ビームを変調することができるもので、様型配置の案子行と直行して設けられたストライブ状の電極に、電子ビームを通過させるために、各電子放出来子54に対応して1個ずつ円形の閉口93を設けたものとなっている。

【0093】グリッド電極92の形状や配置位置は、必ずしも図10に示すようなものでなければならないものではなく、閉口93をメッシュ状に多数数けることもあり、またグリッド電極92を、例えば電子放出来子5450

の周囲や五傍に設けてもよい。

【0094】外部端子D: ~D。及びG: ~G。は不図示の駆動回路に接続されている。そして、業子行を1列ずつ順次駆動(走査)して行くのと同期してグリッド電価92の列に関係1ライン分の変調信号を印加することにより、各電子ピームの強光膜64への照射を制御し、四像を1ラインずつ表示することができる。

14

【0095】以上のように、本発明の国像形成装置は、 単純マトリクス配置及び様型配置のいずれの本発明の電 30 子顔を用いても得ることができ、上述したテレビジョン 放送の表示装置のみならず、テレビ会議システム、コン ビューター等の表示装置として好適な画像形成装置が得 られる。更には、感光ドラムとで構成した光ブリンター の電光装置としても用いることができるものである。

[0096]

【実施例】

[実施例1] 本発明第1の実施例として、図1に示した 電子放出素子を作製した。

【0097】先ず、メタルマスクを用いて、石英ガラス 基板上に厚さ5nmのTi、及び厚さ30nmのPtを 真空蒸着し素子電極を形成した。次に素子電極間をFI Bにより局所的に除去してL=240nm、W=100 umの間度を形成した。

【0098】次に、有機Pd増体溶液(CCP4230: 奥野製薬株式会社製を酢酸プチルで3倍に希釈したもの)をスピンナーコートした後、大気中300℃で熱処理、更に窒素で希釈した2%水素気流中で180℃の熱処理を行なった。この段階で素子表面にはΦ=3~7nmの微粒子が形成された。

20 【0099】続いて、空楽希釈した0.1%エチレン気 流中で500でで10分間熱処理した。これを走査電子 顕微鏡で観察すると、電極間隙中に直径10~25nm 程度で、屈曲しながら繊維状に伸びた多数の繊維状力ー ポンが形成されていることがわかった。尚、来子電極上 には、Pd微粒子も繊維状カーポンも見られず、Pd微 粒子はPt電低に吸収されたものと思われる。

【0100】上記のようにして作製した電子放出来子の 」。及び】、を、図3に示した測定評価系により測定した

7 【0101】その結果、1.は徐々に増加し、1.は一、 「成急激に減少した後、徐々に増加し、約600秒で度和 に達した。この時1.は0、5μA、1,は0.5mA 程度であった。

【0102】 [実施例2] 素子電極間の間隙を500nmとする以外は実施例1と同様にして電子放出来子を作製し、1.及び1,を測定した。1.及び1.はそれぞれ約400秒で飽和し、その値は実施例1の電子放出来子とほぼ同じであった。

【0103】走査電子顕微鏡による観察では、実施例1 と同様に、関膜中に多数の繊維状カーボンが形成されて いる様子が観察された。但し、間隙中央部ではやや殊に なっていた。

[0104] [実施例3] 実施例1と同様にして素子電極、及び該電極間の間隙を形成し、有機P d 解体溶液を塗布、300℃で焼成を行なった後、空楽で希釈したの、1%エチレン気流中で180℃で10分間の熱処理を行ない、引き続き450℃に昇温して10分間の熱処理を行なった。この電子放出楽子の電気的特性は実施例1とほぼ同様であった。

【0105】【比較例1】実施例1と同様の工程で素子 10 電極及び電極間隙を形成し、Pd微粒子を形成した後、エチレン雰囲気中での熱処理工程を省いて、1。及び1,を測定した。その結果、1,、1,共に観測されなかった。

【0106】【比較例2】電極間隙を900nmとする 以外は実施例1と同様にして電子放出素子を作製し、1 、及び1、を測定したところ、1、、1、とも全く観測 されなかった。

【0107】この電子放出素子を走査電子顕微鏡で観察したところ、素子電極の端面付近には繊維状カーポンが 20 形成されているが、間隙の中央部には存在せず、両方のカーポン間の間隔が大きく開いていることがわかった。これは、有機Pd溶液を塗布した際、表面張力により電極端面付近に溶液が集まり、中央付近は少なくなるために、Pd微粒子が間隙中央部に形成されず、従って、これを核として堆積する繊維状カーポンが堆積しにくかったものと推測される。そのため、カーボン間の間隙が広く、1。、1。が観測されなかった、即ち素子電極間に電流が流れず電子放出が行なわれなかったものと推測される

[0108] [実施例4] 単純マトリクス配線により電子放出来子を配置した電子源を作製した。その手順を以下に示す。

【0109】洗浄した育板ガラスの基板上に真空蒸着法により厚さ5nmのCr、厚さ60nmのAuを順次積層した後、フォトレジスト(AZ1370:ヘキスト社製)をスピンナーにより回転整布、ベークした後、フォトマスク像を解光、現像して、下配線のレジストパターンを形成し、Au/Cr積層膜をウェットエッチングして下配線を形成した。

【0110】厚さ0.1µmのシリコン酸化膜からなる 層間絶縁層を高周波スパッタ法により形成した。

【0111】堆積したシリコン酸化膜上にコンタクトホールを形成するためのフォトレジストパターンを作り、これをマスクとして層間絶縁層をエッチングしてコンタクトホールを形成した。エッチングはCF。とHz ガスを用いたRIE (Reactive lon Etching) 法によった。

【0 1 1 2】素子電極となるべきパターンをフォトレジ ろ函像情報を表示できる表 スト(R D - 2 0 0 0 N - 4 1:日立化成社製)で形成 50 そのプロック図を示す。

16

し、真空蒸煮法により厚さ5 nmのTi、厚さ100 nmのNiを順次積層した。フォトレジストパターンを存 機溶剤で溶解し、Ni/Ti堆積膜をリフトオフし業子 電極を形成した。

【0113】 赤子電極の上に上配線のフォトレジストバーターンを形成した後、厚さ5nmのTi、厚さ100nmのAuを順次真空蒸着法により堆積し、リフトオフにより不要の部分を除去して上配線を形成する。

(0114) コンタクトホール部分以外をカバーするようにレジスト膜を形成し、真空蒸滑法により厚さ5nmのTi、厚さ500nmのAuを順次積層した。リフトオフにより不要部分を除去することにより、コンタクトホールを埋め込んだ。

【0115】実施例1と同様に、FIBにより案子電極間に間隙を形成した。更に、実施例1と同様にして、有機Pd関体溶液をスピンナーで塗布し、大気中300℃で焼成してPdOとし、更にNz-2%Hz混合ガス気流中で180℃10分間の熱処理を行ないPd微粒子を形成した。

【0116】実施例1と同様に、0.01%C₂ H₂ 気流中で500℃10分間の熱処理を行ない、繊維状カーポンを形成した。高分解能SEM(走変型電子顕微鏡)によりこの電子源の電子放出来子を観察したところ、熱処理により、来子電極上のPd 微粒子は電極中に拡散したらしく、来子電極上には微粒子も接継状カーポンも見られなかった。

【0117】この電子派に図11に示すように引き出し 電極と蛍光板を取り付け、全ての電子放出案子を時間順 次に走査駆動した。図11の系を説明する。図中111 30 は真空槽であり、不図示の排気系により、5×10・P a以下に排気されている。112は窓、114は電子放 出部(電極間隙)、電極、配線などからなる素子本体で ある。115、116はX方向及びY方向ラインの駆動 用配線である。117は前記配線に適当なバルスを印加 するドライバーである。118は引き出し電極で、アル ミニウム製の枠に透明電極の1TO薄膜を形成したガラ スを嵌め込み、その下面に蛍光体を塗布したものであ る。

【0]]8]電子放出素子に、取動電圧]4V、半選択 電圧7Vとなるようにドライバー・1]7で矩形液パルスー・ を印加した。引き出し電圧は5kVである。

【0119】窓112を通して、電子放出による強光体の発光を目視で観察したところ、本実施例の電子源においては、素子間での輝度のばらつきが小さく、電子放出特性の均一性が高いことが確認された。

[0120] [実施例5] 実施例4の電子面に、図6に 示すように画像形成部材を組み合わせ、例えばテレビジョン放送をはじめとする種々の画像情報源より提供され る画像情報を表示できる表示装置を構成した。図12に そのブロック図を示す。

【0 1 2 1】図中120はディスプレイパネル、121 はディスプレイパネルの駆動回路、122はディスプレ イコントローラ、123はマルチプレクサ、124はデ コーダ、125は入出カインターフェース回路、126 はCPU、127は画像生成回路、128、129及び 130は画像メモリインターフェース回路、131は画 像入力インターフェース回路、132及び133はTV 信号受信回路、134は入力部である。(尚、本表示装 置は、例えばテレビジョン信号のように映像情報と音声 情報の両方を含む信号を受信する場合には、当然映像の 10 表示と同時に音声を再生するものであるが、本発明の特 徴と直接関係しない音声情報の受信、分解、再生、処 理、記憶などに関する回路やスピーカーなどについては 説明を省略する。)

【0122】以下、画像信号の流れに沿って各部を説明 してゆく.

【0123】先ず、TV信号受信回路133は、例えば 電波や空間光通信などのような無線伝送系を用いて伝送 されるTV画像信号を受信するための回路である。受信 するTV信号の方式は特に限られるものではなく、例え 20 ば、NTSC方式、PAL方式、SECAM方式などの **踏方式でも良い。また、これらよりさらに多数の走査線** よりなるTV信号(好えばMUSE方式をはじめとする いわゆる高品位TV)は、大面積化や大面素数化に適し た前記ディスプレイパネルの利点を生かすのに好適な信 号頭である。TV信号受信回路133で受信されたTV 信号は、デコーダ124に出力される。

【0124】また、画像TV信号受信回路132は、例 えば同軸ケーブルや光ファイバーなどのような有線伝送 系を用いて伝送されるTV画像信号を受信するための回 30 路である。前記TV信号受信回路133と同様に、受信 するTV信号の方式は特に限られるものではなく、また 本回路で受信されたTV信号もデコーダ124に出力さ

【01-25】また、画像入力インターフェース回路13 1は、例えばTVカメラや画像銃取スキャナーなどの画 像入力装置から供給される画像信号を取り込むための回 路で、取り込まれた画像信号はデコーダ124に出力さ

【0126】また、画像メモリインターフェース回路】 40 30は、ビデオテープレコーダー (以下VTRと略す) に記憶されている画像信号を取り込むための回路で、取 り込まれた画像信号はデコーダ124に出力される。

【0127】また、函像メモリインターフェース回路1 29は、ビデオディスクに記憶されている画像信号を取 り込むための回路で、取り込まれた画像信号はデコーダ 124に出力される。

【0128】また、画像メモリーインターフェース回路 128は、いわゆる静止面ディスクのように、静止画像 の回路で、取り込まれた静止画像データはデコーダ12

【0129】また、入出カインターフェース回路125 は、本表示装置と、外部のコンピュータ、コンピュータ ネットワークもしくはプリンタなどの出力装置とを接続 するための回路である。 西像データや文字・図形情報の 入出力を行なうのはもちろんのこと、場合によっては本 表示装置の構えるCPU126と外部との間で制御信号 や数値データの入出力などを行なうことも可能である。

【0130】また、画像生成回路127は、前紀入出力 インターフェース回路125を介して外部から入力され る画像データや文字・図形情報や、或いはCPU156 より出力される国際データや文字・図形情報に基づき表・ 示用画像データを生成するための回路である。本回路の 内部には、例えば画像データや文字・図形情報を蓄積す るための書き換え可能メモリや、文字コードに対応する 函像パターンが記憶されている読み出し専用メモリや、 函像処理を行なうためのプロセッサなどをはじめとして 画像の生成に必要な回路が組み込まれている。

【0131】本回路により生成された表示用画像データ は、デコーダ124に出力されるが、場合によっては前 記入出力インターフェース回路125を介して外部のコ ンピュータネットワークやプリンターに出力することも 可能である。

【0132】また、CPU126は、主として本表示装 間の動作制御や、表示画像の生成、選択、編集に関わる 作業を行なう。

【0133】 何えば、マルチプレクサ123に制御信号 を出力し、ディスプレイパネルに表示する画像信号を適 宜選択したり組み合わせたりする。また、その際には表 示する画像信号に応じてディスプレイパネルコントロー ラ122に対して制御信号を発生し、画面表示周波数や 走査方法(何えばインターレースかノンインターレース か)や一面面の走査線の数など表示装置の動作を適宜制 御する。

【0134】また、前配國像生成回路127に対して西 像データや文字・図形情報を直接出力したり、或いは前 記入出力インターフェース回路125を介して外部のコ ンピュータやメモリをアクセスして画像データや文字・ 図形情報を入力する。

【0135】尚、CPU126は、むろんこれ以外の目 的の作業にも関わるものであっても良い。例えば、バー ソナルコンピュータやワードプロセッサなどのように、 情報を生成したり処理する機能に直接関わっても良い。

【0136】或いは、前述したように入出カインターフ ェース回路125を介して外部のコンピュータネットワ 一クと接続し、例えば数値計算などの作業を外部接器と 協同して行なっても良い。

[0137] また、入力部134は、前紀CPU126 データを記憶している装置から画像信号を取り込むため 50 に使用者が命令やプログラム、或いはデータなどを入力 するためのものであり、何えばキーポードやマウスの 他、ジョイスティック、パーコードリーダー、音声認識 装置など多様な入力機器を用いることが可能である。

【0138】また、デコーダ124は、前記127ないし133より入力される種々の画像信号を3原色信号、または輝度信号と1信号、Q信号に逆変換するための回路である。尚、同図中に点貌で示すように、デコーダ124は内部に画像メモリを構えるのが望ましい。これは、何えばMUSE方式をはじめとして、逆変換するに際して画像メモリを必要とするようなテレビ信号を扱う10ためである。また、画像メモリを構えることにより、静止画の表示が容易になる、或いは前記画像生成回路127及びCPU126と協同して画像の間引き、補間、拡大、縮小、合成をはじめとする画像処理や編集が容易に行なえるようになるという利点が生まれるからである。

【0139】また、マルチプレクサ123は前記CPU126より入力される制御信号に基づき表示画像を適宜選択するものである。即ち、マルチプレクサ123はデコーダ124から入力される逆変換された画像信号のうちから所望の画像信号を選択して駆動回路121に出力20する。その場合には、一画面表示時間内で画像信号を切り換えて選択することにより、いわゆる多面面テレビのように、一画面を複数の領域に分けて領域によって異なる画像を表示することも可能である。

【0140】また、ディスプレイパネルコントローラ122は、前記CPU126より入力される制御信号に基づき駆動回路121の動作を制御するための回路である。

【0141】先ず、ディスプレイパネルの基本的な動作 に関わるものとして、例えばディスプレイパネルの駆動 30 用電源(不図示)の動作シーケンスを制御するための信 号を駆動回路121に対して出力する。

【0142】また、ディスプレイパネルの駆動方法に関わるものとして、例えば画面表示周波数や走査方法(例えばインターレースかノンインターレースか)を制御するための信号を駆動回路121に対して出力する。

【0143】また、場合によっては表示画像の輝度、コントラスト、色調、シャープネスといった画質の調整に関わる制御信号を駆動回路121に対して出力する場合もある。

【0144】また、駆動回路121は、ディスプレイバネル120に印加する駆動信号を発生するための回路であり、前記マルチプレクサ123から入力される画像信号と、前記ディスプレイバネルコントローラ122より入力される制御信号に基づいて動作するものである。

【0145】以上、各部の機能を説明したが、図12に 例示した構成により、本表示装置においては多様な画像 情報源より入力される画像情報をディスプレイパネル1 20に表示することが可能である。即ち、テレビジョン 放送をはじめとする各種の画像信号はデコーダ124に おいて逆変換された後、マルチプレクサ123において 適宜選択され、駆動回路121に入力される。一方、ディスプレイコントローラ122は、表示する画像信号に 応じて駆動回路121の動作を制御するための制御信号 を発生する。駆動回路121は、上紀画像信号と制御信 号に基づいてディスプレイパネル120に駆動信号を印 加する。これにより、ディスプレイパネル120におい て画像が表示される。これらの一連の動作は、CPU1 26により統括的に制御される。

【0146】また、本表示装置においては、前記デコーダ124に内蔵する関像メモリや、画像生成回路127及びCPU126が関与することにより、単に複数の画像情報の中から選択したものを表示するだけでなく、液示する画像情報に対して、何えば拡大、縮小、回転、移動、エッジ強調、関引き、補間、色変換、画像の縦横比変換などをはじめとする画像処理や、合成、消去、接続、入れ替え、はめ込みなどをはじめとする画像超集を行なうことも可能である。また、本実施例の説明では、特に触れなかったが、上記画像処理や画像編集と同様に、音声情報に関しても処理や弱集を行なうための専用回路を設けても良い。

【0147】従って、本表示装置は、テレビジョン放送の表示提器、テレビ会議の端末提器、静止面像及び動画像を扱う画像編集機器、コンピューターの端末機器、ワードプロセッサをはじめとする事務用端末機器、ゲーム機などの機能を一台で兼ね備えることが可能で、産業用或いは民生用として極めて応用範囲が広い。

【0148】尚、上記図12は、電子放出素子を電子液とするディスプレイパネルを用いた表示装置の構成の一例を示したに過ぎず、これのみに限定されるものでないことは言うまでもない。例えば図12の構成要素のうち使用目的上必要のない機能に関わる回路は省いても差し支えない。またこれとは逆に、使用目的によってはさらに構成要素を追加しても良い。例えば、本表示装置をテレビ電話機として応用する場合には、テレビカメラ、音声マイク、照明機、モデムを含む送受信回路などを構成要素に追加するのが好適である。

【0149】本表示装置においては、とりわけ電子放出 来子を電子派とするディスプレイパネルの等型化が容易 なため、表示装置の奥行きを小さくすることができる。 それに加えて、電子放出業子を電子派とするディスプレ イパネルは大画面化が容易で輝度が高く視野角特性にも 優れるため、本表示装置は臨場感あふれ泊力に富んだ画 像を視認性良く表示することが可能である。

【0150】更に、本発明の電子級は各電子放出素子間での電子放出特性が均一であるため、形成される画像の画質が高く、また高精細な画像の表示も可能である。

[0151]

20に表示することが可能である。即ち、テレビジョン 【発明の効果】以上説明したように、本発明によれば、 放送をはじめとする各種の画像信号はデコーダ124に 50 良好な電子放出特性を示す電子放出来子を信頼性高く提 供することができ、該案子の作製に当たり、特に繁雄な工程や効果な案材を用いることもない。従って、当該業子を複数用いてなる本発明の電子源、更に画像形成装置においては、各案子によって形成される輝点の輝度が均一でむらがないため、高品質な画像の形成が可能となる。

【図面の簡単な説明】

- 【図1】本発明の電子放出案子の基本構成図である。
- 【図2】本発明の電子放出素子の製造工程例を示す図で ある。
- 【図3】本発明の電子放出素子の電子放出特性を評価するための測定評価系を示す図である。
- 【図4】 本発明の電子放出素子の電子放出特性を示す図である。
- 【図5】 本発明の単純マトリクス電子頭の模式図である。
- 【図6】本発明の画像形成装置の一実施娘様を示す図である。
- 【図7】 本発明の画像形成装置に用いる蛍光膜を示す図 である。
- 【図8】 本発明の画像形成装置の一実施娘様のプロック 図である。
- 【図9】本発明の梯子型電子額の模式図である。
- 【図10】梯子型電子液を用いた本発明の画像形成装置を示す図である。
- 【図】1】本発明の電子級の測定評価系を示す図である。
- 【図12】本発明の実施例4の画像形成装置の応用例の ブロック図である。

【符号の説明】

- 1 絶縁性基板
- 2. 2 素子電極
- 3 炭素を主成分とする堆積物
- 21 金属微粒子
- 30 電流計
- 3 1 電源
- 32 電流計
- 33 高圧重源
- 34 アノード電極
- 35 真空装置
- 36 排気ポンプ
- 52 X方向配線
- 53 Y方向配線
- 5 4 電子放出素子

- 5.5 結線
- 61 リアブレート
- 62 支持枠
- 63 ガラス基板
- 64 蛍光膜
- 65 メタルパック
- 66 フェースプレート
- 68 外囲器
- 71 黑色等伝材
- 10 72 蛍光体:
 - 81 表示パネル
 - 82 走查回路
 - 83 制御回路
 - 84 シフトレジスタ
 - 85 ラインメモリ
 - 86 同期信号分解回路
 - 87 变调信号発生器
 - 92 グリッド電極
 - 93 開口
- 20 94 共通配線
 - 111 真空槽
 - 112 2
 - 114 案子本体
 - 115 X方向駆動用配線
 - 116 Y方向駆動用配線
 - 117 ドライバー
 - 118 引き出し電極
 - 119 電源
 - 120 ディスプレイバネル
- 30 121 駆動回路
 - 122 ディスプレイパネルコントローラ
 - 123 マルチプレクサ
 - 124 デコーダ
 - 125 入出力インターフェース
 - 126 CPU
 - 127 画像生成回路
 - 128 面像メモリーインターフェース
 - 129 画像メモリーインターフェース
 - 130 画像メモリーインターフェース
- 40 131 画像入力メモリーインターフェース
 - 132 TV信号受信回路
- 133 TV信号受信回路
 - 134 入力部
 - 130 ディスプレイパネル

[図10]

[図12]

- (19) Japan Patent Office (JP)
- (12) Publication of Unexamined Patent Application (A)
- (11) Japanese Patent Laid-Open Number: Hei 8-115652
- (43) Laid-Open Date: Heisei 8-5-7 (May 7, 1996)
- (51) Int.Cl.⁶ Identification Code FI Technology manifestation part

H 01J

1/30 A

29/46 B

31/12 B

31/15 C

Request for Examination: No request to be done

Number of Claims: 18 FD (17 pages in total)

- (21) Application Number: Hei 6-278556
- (22) Filed: Hei 6-10-19 (October 19, 1994)
- (71) Applicant: 000001007

Canon, Inc.

3-30-2 Shimomaruko, Ota-ku, Tokyo

(72) Inventor: Fumio Kishi

3-30-2 Shimomaruko, Ota-ku, Tokyo

in Canon, Inc.

(72) Inventor: Akemi Ishizaki

3-30-2 Shimomaruko, Ota-ku, Tokyo

in Canon, Inc.

(72) Inventor: Toshiaki Aiba

3-30-2 Shimomaruko, Ota-ku, Tokyo

in Canon, Inc.

(74) Agent: Patent Attorney; Yoshio Toyoda (and one other)

			•
			•
	•		
•			

(54) [Title of the Invention] Electron Emission Device, Method of Manufacturing the Same, and Electron Source and Image Forming Apparatus using Electron Emission Device

(57) [Abstract]

[Object] To provide an electron emission device having a uniform electron emission characteristic, which is manufactured by simple manufacturing processes.

[Constitution] An electron emission device formed in such a manner that device electrodes 2 and 2' are formed on an insulating substrate 1 to a shape in which the electrodes 2 and 2' are connected to each other, minute intervals L of 500 nm or less are formed by focused ion beam, and a deposit 3 essentially containing carbon is formed in the minute interval by thermal treatment at atmosphere containing hydrocarbon gas.

[What is claimed is]

[Claim 1] An electron emission device characterized by at least comprising an insulating substrate; a pair of electrodes formed on the insulating substrate, the pair of electrodes facing to each other so as to interpose a minute gap therebetween; and a deposit deposited in the minute gap, the deposit essentially containing carbon.

[Claim 2] The electron emission device according to claim 1, wherein the minute gap is 500 nm or less.

[Claim 3] The electron emission device according to claim 1 or 2, wherein the deposit essentially containing carbon is an aggregate formed of a fibrous material.

[Claim 4] The electron emission device according to claim 3, wherein the fibrous carbon is formed of graphite, amorphous carbon or mixture of graphite and amorphous carbon.

[Claim 5] A method of manufacturing an electron emission device is characterized by comprising a step of forming a pair of electrodes on an insulating substrate, the pair of electrodes facing to each other so as to interpose a minute gap therebetween; and a step of depositing a deposit in the minute gap, the deposit essentially containing carbon.

[Claim 6] The method of manufacturing an electron emission device according to claim 5, the depositing step of the deposit essentially containing carbon is a thermal decomposition step of carbon compound.

			, ,
		3.6	•
	1.		

[Claim 7] The method of manufacturing an electron emission device according to claim 6, wherein the carbon compound is hydro carbon.

[Claim 8] The method of manufacturing an element emission device according to claim 7, wherein the hydrocarbon is ethylene.

[Claim 9] The method of manufacturing an element emission device according to any one of claims 6 to 8, wherein the decomposition step of the carbon compound is a heating step at atmosphere containing the carbon compound.

[Claim 10] The method of manufacturing an electron emission device according to any one of claims 5 to 9, the deposition step of the deposit essentially containing the carbon comprises a step of forming metal fine particles in the inter-electrode minute gap; and a step of depositing fibrous carbon by use of the metal fine particles as a nucleus by thermally decomposing the carbon compound.

[Claim 11] The method of manufacturing an electron emission device according to claim 10, wherein the step of forming the metal fine particles comprises a step of coating organic complex solution of the metal onto the inter-electrode gap; a step of baking the organic metal complex to convert the organic metal complex to metal oxide; and a step of reducing the metal oxide and aggregating the metal oxide.

[Claim 12] The method of manufacturing an electron emission device according to claim 11, wherein the step of reducing and aggregating the metal oxide is a step of exposing the metal oxide at atmosphere containing hydrogen gas or a step of thermally heating the metal oxide at this atmosphere.

[Claim 13] The method of manufacturing an electron emission device according to any one of claims 10 to 12, wherein the deposition step of the fibrous carbon is a step of performing a thermal treatment at a thermal decomposition temperature or more of ethylene at atmosphere containing the ethylene.

[Claim 14] The method of manufacturing an electron emission device according to any one of claims 10 to 12, wherein the step of reducing and aggregating the metal oxide is performed by thermally treatment for the metal oxide at a thermal decomposition temperature or less of ethylene at atmosphere containing ethylene gas, and subsequently heating the metal oxide to the thermal decomposition temperature or more of ethylene at the same atmosphere, thus performing the deposition step of the fibrous carbon.

[Claim 15] An electron source is characterized by comprising at least one device

					٠.
					•
		ŝ,			

array which is constituted by arranging the plurality of electron emission devices claimed in any one of claims 1 to 4 in parallel and coupling the plurality of electron emission devices to each other.

[Claim 16] An electron source is characterized by comprising at least one device array which is constituted by arranging the plurality of electron emission devices claimed in any one of claims 1 to 4, wherein wirings for driving the devices are matrix-arrayed.

[Claim 17] An image formation apparatus is characterized by comprising the electron source claimed in claim 15, an image formation member, and a control electrode for controlling an electron beam emitted from each electron emission device by an information signal.

[Claim 18] An image formation apparatus is characterized by comprising the electron source claimed in claim 16 and an image formation member.

[Detailed Description of the Invention]

[0001]

[Field of Industrial Application] The present invention relates to an electron emission device, an electron source constituted by arranging the plurality of electron emission devices, and an image formation apparatus such as a display device and an exposure apparatus, which are constituted by use of the electron source, and furthermore, to a method of manufacturing the foregoing electron emission device.

[0002]

[Prior Art] Two kinds of thermoelectron source and cold cathode electron source have been heretofore known as an electron emission device, and there have been a field emission type (hereinafter referred to as a FE type) cold cathode electron source, a metal/insulating layer/metal type (hereinafter referred to as a MIM type) cold cathode electron source and a surface conduction type cold cathode electron source.

[0003] As an example of the FE type, "Field emission", Advance in electron Physics, 8, 89 (1956) by W. P. Dyke & W. W. Dolan, and "PHYSICAL Properties of thin-film field emission cathodes with molybdenium cones" J. Appl. Phys. 47, 5248 (1976) by C. A. Spindt and the like have been known.

[0004] Furthermore, as an example of MIM type, "The tunnel-emission amplifier", J. Appl. Phys., 32, 646(1961) by C. A. Mead and the like has been known.

				•
		÷		
			*	
*	120			
				;
				1

[0005] Furthermore, as an example of the surface conduction type electron emission device, the one has been described in Radio Eng. 10 (1965) Electron Phys. by M. I. Elinson.

[0006]

[Subjects to be Solved by the Invention] When the display device and the like are constructed by use of the plurality of electron emission devices as described above, uniformity of electron emission characteristics of the devices is required, and uncomplicated processes for the fabrication of the devices showing the uniform electron emission property is required. Accordingly, as to the electron emission device, eager examinations have been conducted to meet such a demand, and to achieve further simplification of the manufacturing steps and more excellent device.

[0007] An object of the present invention is to provide an electron emission device with high reliability, which shows a uniform electron emission property without accompanying complicated processes, and further another object of the present invention is to constitute an electron source by use of the electron emission device, and an image formation apparatus.

[8000]

[Means for Solving the Subjects and Operation] The invention defined in claims 1 to 4 is an electron emission device which achieves the above described object, and characterized in that a pair of electrodes are provided on an insulating substrate so as to interpose a minute gap therebetween; and a deposit is provided in the minute gap, the deposit essentially containing carbon. [0009] The invention defined in claims 5 to 14 is a manufacturing method of the foregoing electron emission device, and is characterized in that a pair of electrodes is provided on an insulating substrate so as to interpose a minute gap therebetween; and a deposit is provided in the minute gap, the deposit essentially containing carbon.

[0010] The invention defined in claims 15 and 16 is an electron source characterized in that the plurality of electron emission devices are arranged, and the invention defined in claim 17 and 18 is an image formation apparatus characterized by using the respective electron sources.

[0011] The present invention will be described in detail below.

[0012] Fig. 1 is a drawing showing a basic constitution of an electron emission device of the present invention. In the drawing, reference numeral 1 denotes

		•
	*	
		į

an insulating substrate; 2 and 2', a device electrode; and 3, a deposit essentially containing carbon.

UU U404 1004

[0013] As the substrate 1, enumerated are, for example, quartz glass, glass in which the content of impurities such as Na is reduced, soda lime glass, a stacked body in which SiO₂ is stacked on the soda lime glass by a sputtering method or like, ceramics such as alumina and the like.

[0014] As a material of the device electrodes 2 and 2' facing to each other, a general conductive material is used. A printing conductor composed of a metal including, for example, Ni, Cr, Au, Mo, W, Pt, Ti, Al, Cu, Pd and the like or alloy of these metals, a metal including Pd, Ag, Au, RuO₂, Pd-Ag and the like or metal oxide of these metals, glass and the like, a transparent conductor such as In₂O₃-SnO₂ and a semiconductor material such as polysilicon are properly selected.

[0015] The device electrode gap L and the device electrode length W are designed according to a type applied and the like.

[0016] The device electrode length W should preferably be several μ m to several hundred μ m in consideration of the resistivity of the electrode and the electron emission characteristic. The thickness d of the device electrode should preferably be several hundred Å to several μ m.

[0017] The gap L between the device electrodes should be minute, and should preferably be equal to 500 nm or less.

[0018] Descriptions for a method of manufacturing an electron emission device of the present invention will be made based on Fig. 2. Note that in Fig. 2, the same reference numerals as those in Fig. 1 shows the same member.

[0019] (A) After the substrate 1 is fully washed out by a cleaning material, pure water and organic solvent, a device electrode material is deposited thereon by a vacuum deposition method, a sputtering method or the like. Afterward, a state where the device electrodes 2 and 2' are communicated with each other is formed on the plane of the substrate 1 by use of a photolithography technique (Fig. 2(a)).

[0020] (B) Next, a predetermined gap L is formed between the device electrodes 2 and 2' by use of a focused ion beam (FIB) (Fig. 2(b)). The gap L can be formed by a method by use of processes of photolithograpy or by a method in which a step difference is previously provided in the substrate 1, in addition to the foregoing FIB.

					•
	d.	Ÿ			
				· ;	

[0021] (C) A deposit essentially containing carbon is deposited in the gap L. In the present invention, the deposit should preferably be fibrous carbon, which is formed of graphite or amorphous carbon.

****** 3404 1304=

[0022] The fibrous carbon is generated when hydrocarbon such as benzene and CO are thermally decomposed at a vapor phase by use of fine particles as catalyst, and the fibrous carbon shows irregular bending, and may accompany constrictions (for example, R. T. K. Baker and P. S. Harris: Chemistry and Physics of Carbon, Vol. 14 p84 to 165 by Philip L. Walker Jr. and Petere A. Thrower, MARCEL DEEKER, inc.).

[0023] Catalyst activity in the decomposition reaction of hydrocarbon gas on the surface of a metal such as Fe has been investigated from a long time ago, and there have been many reports as to the decomposition of ethylene (for example, "Chemistry of ethylene on surface of transition metal" by Eriko Yagazaki & Yasuhiro Iwasaki, Surface, Vol. 29, pp 879 to 891, 1991).

[0024] In the case where fine particles of Fe exist, the fact that the fibrous carbon is formed around the nucleus of the fine particles by performing the thermal treatment at the atmosphere in which the hydrocarbon exist has been well known as described above. The Fe fine particles are formed by reducing a Fe compound forming a part of a ferrite substrate. The inventors of the present invention found that fine particles formed of Pd widely used in a field of the electron emission device serve also as the nucleus in forming the fibrous carbon similarly to Fe. Accordingly, in the present invention, when Pd is used as the nucleus for forming the fibrous carbon, it is possible to control the process maximum temperature to 450 °C or less (when Fe is used, the process maximum temperature ranges from 950 to 1000 °C). Therefore, Pd is preferable in terms of influences on other members and manufacturing cost.

[0025] To be concrete, after organic metal complex solution using Pd and the like is coated and thermally baked, thus converting the solution to a metal oxide, the metal oxide is exposed to atmosphere containing hydrogen gas or subjected to a thermal treatment at this atmosphere, and hence the metal oxide is reduced and aggregated. Thus, metal fine particles 21 are produced (Fig. 2(c)).

[0026] In the present invention, as the nucleus for forming the fibrous carbon, Ni is preferably used in addition to the foregoing Fe and Pd, The nucleus needs not to assume a shape of fine particles. The same effects can be obtained if it is forms, such as a projection shape, which is a singular point of a growth of

		•	•
			-
ž.			

the fibrous carbon.

2500 0404 toU4=

[0027] The fibrous carbon is deposited by using the foregoing metal fine particles as the nucleus (Fig. 2(d)). The deposition method in which carbon compound such as hydrocarbon is thermally decomposed as described above at atmosphere containing ethylene gas may be employed. For example, the carbon compound may be subjected to the thermal treatment at atmosphere containing ethylene gas at a temperature higher than the thermal decomposition of ethylene. In addition to ethylene, hydrocarbon gas such as methane, propane and propylene and vapor of organic solvent such as methanol and acetone can be used.

[0028] The inventors of the present invention confirmed that the fibrous carbon is not formed at a temperature of 400 $^{\circ}$ C or less. On the other hand, at a temperature higher than 400 $^{\circ}$ C, it is possible to form the fibrous carbon over a fully wide range. The fibrous carbon similar to that of an embodiment to be described later is formed by a thermal treatment at 900 $^{\circ}$ C. However, as described above, since other members of the device are affected by the thermal treatment at the high temperature, a thermal treatment carried out at a temperature lower than 900 $^{\circ}$ C or less is preferable. Actually, the temperature of the thermal treatment should be set based on a heat-resistant temperature of the electrode and the substrate.

[0029] Moreover, the reduction step of the foregoing metal fine particles is, for example, performed at a temprature lower than the thermal decomposition temperature of ethylene at atmosphere containing ethylene gas, and subsequently a thermal treatment at the thermal decomposition temperature or more of ethylene is performed, whereby the reduction step of the metal fine particles and the deposition step of the fibrous carbon can be conducted continuously, and this is preferable in terms of simplification of the manufacturing steps.

[0030] When a sample was observed by a scanning electron microscope, which was obtained by thermally treating a Pd particle-dispersed film at ethylene atmosphere, in which Pd fine particles were formed, by the similar step as that of an embodiment to be described later, on a silicon substrate having a surface on which a thermal oxide film was formed, the fibrous carbon was observed. It was confirmed by an X-ray photoelectron spectrometry (XPS) and a RAMAN spectrometry that this was carbon. Moreover, when the fibrous carbon was

		1 .
		i.
i i		
		4

observed by a transmission electron microscope, a lattice image was observed, and the fibrous carbon possesses crystallinity. Note that the lattice image is very distorted, and the crystallinity is poor.

[0031] Fig. 3 is a schematic constitution view showing an example of a measurement evaluation system for measuring an electron emission characteristic of the electron emission device, and descriptions of the measurement evaluation system will be made.

[0032] In Fig. 3, the same reference numerals as those of Fig. 1 denote the same members. Reference numeral 31 denotes a power source for applying a device voltage V_f to the device; 30, a current meter for measuring a device current I_f flowing between the device electrodes 2 and 2'; 34, an anode electrode for capturing an emission current I_e; 33, a high voltage power source for applying a voltage to the anode electrode 34; 32, a current meter for measuring the emission current I_e; 35, a vacuum apparatus; and 36, an air exhaustion pump.

[0033] The electron emission device, the anode electrode 34 and the like are installed in the vacuum apparatus 35. In this vacuum apparatus 35, necessary instruments such as a vacuum meter (not shown) are provided, so that measurement evaluations of the electron emission device can be performed under a desired vacuum.

[0034] The air exhaustion pump 36 is constituted by an ordinary high vacuum apparatus system composed of a turbo pump, a rotary pump and the like, and a ultra high vacuum apparatus system composed of an ion pump and the like. Moreover, the measurement evaluation system is designed so that the whole of the vacuum apparatus 35 and the substrate 1 of the electron emission device can be heated to about 200 °C by a heater.

[0035] The basic characteristic of the electron emission device, which is to be described below, is based on measurement conducted in such a manner that a voltage of the anode electrode 34 of the foregoing measurement evaluation system is set to 1 kV to 10 kV, and the distance H between the anode electrode 34 and the electron emission device is set to 2 to 8 mm.

[0036] First, a typical example of a relation of the emission current I_e and the device current I_f with the device voltage V_f is shown in Fig. 4. Note that in Fig. 4, since the emission current I_e is significantly smaller than the device current I_f, both are represented by an arbitrary unit.

[0037] As is clear from Fig. 4, the electron emission device of the present

	 . –
•	
	1

invention has the following three pathognomonic characteristics for the emission current I_e.

[0038] First of all, when the device voltage V_f equal to a certain voltage (referred to as a threshold voltage: V_{th} in Fig. 5) or more is applied to the electron emission device, the emission current I_e rapidly increases. On the other hand, when a voltage less than the threshold voltage V_{th} is applied thereto, the emission current I_e is not almost detected. Specifically, this electron emission device is a non-linear device having a clear threshold voltage V_{th} for the emission current I_e .

[0039] Secondly, since the electron emission device has a characteristic (referred to as a MI characteristic) that the emission current I_e increases monotonously relative to the device voltage V_f , the emission current I_e can be controlled by the device voltage V_f .

[0040] Thirdly, the emission charges captured at the anode electrode 34 (see Fig. 3) depend on a time for which the device voltage V_f is applied. Specifically, the charge amount captured by the anode electrode 34 can be controlled by a time for which the device voltage V_f is applied.

[0041] The emission current I_e has the MI characteristic relative to the device voltage V_f and, at the same time, also the device current I_f sometimes has the MI characteristic relative to the device voltage V_f . An example of such a characteristic of the electron emission device is the characteristic indicated by the solid lines in Fig. 4. On the other hand, as shown by the dotted line in Fig. 4, the device current I_f may show a voltage control type negative resistance characteristic (referred to as a VCNR characteristic) relative to the device voltage V_f . Which characteristic the electron emission device shows depends on a manufacturing method of the electron emission device, measurement conditions and the like. However, in the electron emission device in which the device current I_f shows the VCNR characteristic relative to the device voltage V_f , the emission current I_e has the MI characteristic relative to the device voltage V_f .

[0042] Next, the arrangement of the electron emission devices in the electron source of the present invention will be described.

[0043] As the arrangement style of the electron emission devices in the electron source of the present invention, enumerated are a ladder type array in which the electron emission device are arrayed in parallel, and a plurality of columns

		ÿ.,

are arrayed, each column being composed of the plurality of electron emission devices, both terminals (both device electrodes) of which are respectively coupled by a wiring (referred also to as a common wiring), and an array style in which n-pieces Y-direction wirings are placed on m-pieces X-direction wirings so as to interpose an interlayer insulating layer therebetween, and the X-direction wirings and the Y-direction wirings are respectively coupled to a pair of device electrodes of the electron emission device. This is hereinafter referred to as a simple matrix array style. First, descriptions of this simple matrix array will be made in detail.

₩US SHOL /SUA=

[0044] According to the basic characteristic of the foregoing electron emission device, the emission electrons in the electron emission device, each of which is arrayed with the simple matrix array style, can be controlled, in a voltage range exceeding the threshold voltage, by a peak value of a pulse-like voltage and a pulse width thereof, which is applied between the device electrodes facing each other. On the other hand, below the threshold voltage, electrons are not almost emitted. Accordingly, even in the case where the plurality of electron emission devices are arrayed, if the foregoing pulse-like voltage is appropriately applied to the respective device, an electron emission device is selected in accordance with an input signal, and the selected electron emission device can be controlled. Thus, the individual electron emission device is selected to be independently driven only with the simple matrix wiring.

[0045] The simple matrix array is based on such a principle, and an example of the electron source of the present invention. The constitution of the electron source with this simple matrix array will be further described based on Fig. 5.

[0046] In Fig. 5, the substrate 1 is made of the glass plate and the like as described above, and the number and shape of the electron emission devices 54 arrayed on the substrate 1 are suitably set according to the use.

[0047] The m-pieces X-direction wirings 52 have external terminals D_{x1} , D_{x2} ,, and D_{xm} , respectively, and are made of a conductive metals or the like formed by use of a vacuum deposition method, a printing method, a sputtering method or the like on the substrate 1. Moreover, a material, thickness and width of the wirings are set so that a voltage is evenly supplied to the plurality of electron emission devices 54.

[0048] The n-pieces Y-direction wirings 53 have external D_{y_1} , D_{y_2} ,....., and D_{y_n} , respectively, and are formed similarly to the X-direction wirings 52.

		•

[0049] An interlayer insulating layer (not shown) is formed between the m-pieces X-direction wirings 52 and the n-pieces Y-direction wirings 53, and the wirings are electrically isolated from each other, thus constituting the matrix wiring. Note that both of m and n are a positive integer.

[0050] The interlayer insulating layer (not shown) is SiO₂ and the like, which are formed by use of a vacuum deposition method, a printing method, a sputtering method or the like, and is formed on the entire surface of the substrate 1 or a part thereof, in which the X-direction wirings 52 are formed, so as to have a desired shape. Particularly, the film thickness, material and manufacturing method of the interlayer insulating layer are suitably set so as to be capable of withstanding a potential difference at crossing portions of the X and Y-direction wirings 52 and 53.

[0051] Moreover, the device electrodes (not shown) of the electron emission device 54, which face each other, are electrically coupled by the m-pieces X-direction wirings 52, the n-pieces Y-direction wiring s 53 and the coupling lines 55 made of a conductive metal, which are formed by use of the vacuum deposition method, the printing method, the sputtering method or the like.

[0052] Herein, the m-pieces X-direction wirings 52, the n-pieces Y-direction wirings 53, the couple lines 55, and the device electrodes facing to each other may be formed by the same material or different materials in the parts of their constituent components or the total thereof, and the materials of them are suitably selected from the foregoing ones of the device electrodes. The wirings coupled to the device electrodes are sometimes generally called a device electrode when the wirings have the same material as that of the device electrode. In addition, the electron emission device 54 may be formed either on the substrate 1 or an interlayer insulating layer (not shown).

[0053] Moreover, to be described in detail, scanning signal application means (not shown) for applying a scanning signal is coupled to the foregoing X-direction wirings 52 in order to scan the column of the electron emission device 54 arrayed in the X-direction in accordance with the input signal.

[0054] On the other hand, to modulate each column of the electron emission devices 54 arrayed in the Y-direction, modulation signal generation means (not shown) for applying a modulating signal is electrically coupled to the Y-direction wirings 53. Moreover, a driving voltage applied to each of the electron emission devices 54 is supplied as a voltage difference between the

			,
	ė		

scanning signal and the modulating signal, which are applied to the electron emission device 54.

÷,

[0055] Next, an example of an image formation apparatus using the electron source of the present invention adopting the foregoing simple matrix array will be described by use of Figs. 6 to 8. Fig. 6 is a basic constitutional view of a display panel 81, Fig. 7 is a drawing showing a fluorescent film 64, and Fig. 8 is a block diagram showing an example of a driving circuit for performing a television displaying in accordance with a TV signal of a NTSC system.

[0056] In Fig. 6, reference numeral 1 denotes a substrate of the electron source in which the electron emission devices are arrayed in the above described manner; 61, a rear plate fixing the substrate 1; 66, a face plate in which a fluorescent film 64, a metal back 65 and the like are formed on the interior surface of a glass substrate 63; and 62, a supporting frame. A casing 68 is constituted by coating flit glass or the like onto the rear plate 61, the supporting frame 62 and the face plate 66 and by baking them in the air or nitrogen gas at $400 \, \text{°C}$ to $500 \, \text{°C}$ for ten minutes or more.

[0057] In Fig. 6, reference numerals 52 and 53 are the X and Y-direction wirings coupled to the pair of device electrodes 2 and 2' of the electron emission device 54 respectively, and the X and Y-direction wirings 52 and 53 have the external terminals D_{xx} to D_{xxm} , and D_{yx} to D_{yxm} , respectively.

[0058] The casing 68 is constituted by the face plate 66, the supporting frame 62 and the rear plate 61, as described above. However, the rear plate 61 is principally provided with the intention for the reinforcement of the strength of the substrate 1. When the substrate 1 itself possesses sufficient strength, the rear plate 61 as a separate member is unnecessary. The supporting frame 62 may be hermetically attached to the substrate 1, thus constituting the casing 68 by the face plate 66, the supporting frame 62 and the substrate 1. Moreover, a supporting body (not shown) called a spacer is further provided between the face plate 66 and the rear plate 61, whereby the casing 68 having a sufficient strength against the air can be produced.

[0059] Although the fluorescent film 64 is formed of only fluorescent substance 72 in the case of monochrome, the fluorescent film 64 is constituted by a black conductive material 71 and a fluorescent substance 72 called a black stripe (Fig. 7(a)) or a black matrix (Fig. 7(b)) according to the array of the fluorescent substance 72 in the case of the color fluorescent film 64. The object to provide

					·-·
æ.					
		٠.			
	•				
				4	

the black stripe and the black matrix is to make color mixture and the like inconspicuous by blackening the boundary between the fluorescent substances 72 of three primaries, which are necessary for color displaying. Another object is to suppress the decrease of contrast owing to external reflection in the fluorescent film 74. As the material of the black conductive member 71, not only a material essentially containing graphite ordinarily widely used but also other materials can be used as long as the materials are conductive and show less light transmittance and reflection.

2000 0402 1004=

[0060] As the method to coat the fluorescent substance 72 on the glass substrate 73, a deposition method and a printing method are used irrespective of monochrome displaying and color displaying.

[0061] Furthermore, as shown in Fig. 6, the metal back 65 is ordinarily provided on the interior surface side of the fluorescent film 64. The metal back 65 is used for the purpose of enhancing luminance by mirror-reflecting light among light emitted by the fluorescent substance 72 (see Fig. 7) to the glass substrate 63 side, which is to be propagated toward the inside, of acting as an electrode for applying an electron beam acceleration voltage, and protecting the fluorescent substance 72 from damages by collisions of negative ions generated within the casing 68. The metal back 65 can be prepared in such a manner that after the preparation of the fluorescent film 64, the interior surface of the fluorescent film 64 is subjected to a smoothing treatment (usually called filming), and then Al is deposited by use of a vacuum deposition and the like.

[0062] To enhance the conductivity of the fluorescent film 64, in the face plate 66, a transparent electrode (not shown) may be provided on the outer surface side of the fluorescent film 64.

[0063] When the foregoing hermetic attachment is conducted, since the fluorescent substance 72 of each color and the electron emission device 64 must correspond to each other in the case of color displaying, it is necessary to perform full position alignment.

[0064] Inside of the casing 68 is made to be a vacuum of about 10-7 Torr through an air exhaustion pipe (not shown), and sealed. Furthermore, immediately before or after the casing 68 is sealed, a gettering treatment is sometimes performed. This is a treatment in which a getter (not shown) arranged at a predetermined position in the casing 68 is heated to form a deposition film. The getter usually contains Ba and the like essentially, and

ž.			

serves to maintain a vacuum of, for example, 1×10^{-5} to 1×10^{-7} Torr by the absorption function of the deposition film.

[0065] The foregoing display panel 81 can be driven by, for example, a driving circuit as shown in Fig. 8. Note that in Fig. 8, reference numeral 81 denotes a display panel; 82, a scanning circuit; 83, a control circuit; 84, a shift register; 85, a line memory; 86, a synchronous signal separation circuit; 87, a modulation signal generator; and V_x and V_a , DC voltage source.

[0066] As shown in Fig. 8, the display panel 81 is electrically coupled to an external electric circuit through the external terminals D_{x1} to D_{xm} , the external terminals D_{y1} to D_{yn} and the high voltage terminal Hv. Among these external terminals, a scanning signal is applied to the external terminals D_{x1} to D_{xm} , the scanning signals being for sequentially driving an electron emission device group one column by one column (n devices by n devices), in which the electron emission devices provided in the foregoing display panel 81 are matrix-arrayed in the form of matrix of m-columns and n-rows.

[0067] On the other hand, a modulation signal is applied to the external terminals D_{y_1} to D_{y_n} , the modulation signal being for controlling an output electron beam of each electron emission device in one column selected by the foregoing scanning signal. Moreover, a DC voltage of, for example, 10 kV is supplied to the high voltage terminal Hv from the DV voltage source Va. This is an acceleration voltage for imparting energy to the electron beam output from the electron emission device, the energy being sufficient for the electron beam to excite the fluorescent substance.

[0068] The scanning circuit 82 comprises m switching elements therein (represented by S_1 to S_m in Fig. 8 schematically). Each of the switching elements S_1 to S_m selects one of an output voltage of the DC voltage power source V_x and oV (ground level), and electrically coupled to the corresponding one of the external terminals D_{x1} to D_{xm} of the display panel 81. Each of the switching elements S_1 to S_m is operated based on the control signal T_{scan} output by the control circuit 83, and actually can be constituted easily by combining devices having a switching function like, for example, FETs.

[0069] The foregoing DC voltage source V_x in this example is set based on the characteristic of the foregoing electron emission device (threshold voltage) so that a driving voltage applied to an electron emission device which is not being scanned is the threshold voltage or less.

		-3
		(<u>,</u>)

[0070] The control circuit 83 has a function to adjust operations of the sections of the circuit so that a proper displaying is carried out based on the image signal input from the outside. Based on a synchronous signal T_{sync} sent from the synchronous signal separation circuit 86 to be described below, control signals T_{scan}, T_{sft} and T_{mry} are generated for the sections of the circuit.

WOU 0402 1006

[0071] The synchronous signal separation circuit 86 is a circuit for separating a synchronous signal component and a luminance signal component from the television signal of the NTSC system input from the outside, and, as well known, can be constituted with the use of a frequency separation (filter) circuit. As is well known, the synchronous signal separated by the synchronous signal separation circuit 86 is composed of a vertical synchronous signal and a horizontal synchronous signal. Herein, for convenience's sake of an explanation, the synchronous signal is illustrated as T_{sync}. On the other hand, the luminance signal component of the image separated from the foregoing television signal is illustrated as a DATA signal for convenience's sake. This DATA signal is input to a shift register 84.

[0072] The shift register 84 serial/parallel-converts the foregoing DATA signal, which is serial-input thereto time-sequentially, for one line of the image, and operates based on the control signal T_{sft} sent from the foregoing control circuit 83. This control signal T_{sft} may be said alternatively as a shift clock of the shift register 84. Furthermore, the data equivalent to one line of the image (equivalent to driving data of the n electron emission devices), which has been subjected to the serial/parallel conversion, is output from the foregoing shift register 84 as n-pieces parallel signals I_{d1} to I_{dn}.

[0073] The line memory 85 is a storage device for storing data of one line of the image for a period of time required, and properly stores contents of I_{d1} to I_{dn} in accordance with the control signal T_{mry} sent from the control circuit 83. The stored contents are output as I_{d1} to I_{dn} , and input to the modulation signal generator 87.

[0074] The modulation signal generator 87 is a signal source for performing a drive modulation for each of the electron emission devices properly in accordance with the corresponding one of the foregoing image data $I_{d'i}$ to $I_{d'in}$, and the output signals from the modulation signal generator 87 are applied to the electron emission devices in the display panel 81 through the terminals D_{yi} to D_{yi} .

			•
			•
		e e	
	÷		

[0075] As described above, the election emission device has a clear threshold voltage in the electron emission, and emits electrons on when a voltage exceeding the threshold voltage is applied thereto. Moreover, an emission current changed depending on the change of the application voltage to the electron emission device relative to the voltage exceeding the threshold voltage. Although the degree of the change of the emission current relative to the value of the threshold voltage and the application voltage may change by altering a material, constitution and manufacturing method of the electron emission device, the following can be derived any way.

MAN 0407 1907=

[0076] Specifically, when the pulse-like voltage is applied to the electron emission device, the electron emission does not occur even when, for example, the voltage equal to the threshold voltage or less is applied. However, when the voltage exceeding the threshold voltage is applied, the election emission occurs. At this time, first, by changing the peak value of the voltage pulse, it is possible to control the intensity of the electron beam output. Secondly, by changing the width of the voltage pulse, it is possible to control the total amount of the charges of the electron beam output.

[0077] Accordingly, as a method of modulating the electron emission device in accordance with the input signal, enumerated are a voltage modulation method and a pulse width modulation method. When the voltage modulation method is performed, the modulation signal generator 87 generates a voltage pulse of a constant length, and a circuit adopting the voltage modulation method capable of modulating the peak value of the pulse properly in accordance with data input thereto is used. Moreover, when the pulse width modulation method is performed, the modulation signal generator 87 generates a voltage pulse of a constant peak value, a circuit adopting the pulse width modulation method capable of modulating the pulse width in accordance with data input thereto is used.

[0078] The shift register 84 and the line memory 85 may adopt a digital signal system or an analog signal system. Any kind of shift register and line memory will do as long as they can perform a serial/parallel conversion of an image signal and storing of the image signal at a predetermined speed.

[0079] When the digital signal system is employed, the output signal DATA of the synchronous signal separation circuit 86 needs to be converted a digital signal. This can be performed by providing an A/D converter in an output

,			
	÷		

VO/ UZ/ UZ 10.28 F.UZ

Tokkaihei 8-115652

section of the synchronous signal separation circuit 86.

[0080] Moreover, in association with this, the circuit provided in the modulation signal generator 87 differs a little depending on whether the output signal of the line memory 85 is a digital signal or an analog signal.

[0081] Specifically, in the case of the digital signal and the voltage modulation method, for example, a D/A conversion circuit that has been well known is used as the modulation signal generator 87, and an amplification circuit and the like may be added if necessary. In addition, in the case of the digital signal and the pulse width modulation method, the modulation signal generator 87 can be easily constituted by use of a circuit obtained by combining a high speed oscillator, a counter for counting the number of waves output by the oscillator, and a comparator for comparing an output value of the counter and an output value of the foregoing memory. Moreover, an amplifier may be added thereto if necessary, which amplifies the voltage of the modulation signal, which is output from the comparator and is modulated with respect to its pulse width, to a voltage for driving the electron emission signal.

[0082] On the other hand, in the case of the analog signal and the voltage modulation method, for example, an amplification circuit using an operational amplifier and the like, which have been well known, may be used as the modulation signal generator 87. A level shift circuit and the like may be added if necessary. Moreover, in the case of the analog signal and the pulse width modulation method, a voltage control type oscillation circuit (VCO), for example, which has been well known, may be used. An amplifier for amplifying a voltage of the modulation signal to a voltage for driving the electron emission device, if necessary.

[0083] The image forming apparatus of the present invention, which has the display panel 81 and the driving circuit as described above, can emits electrons from necessary electron emission devices by applying the voltage from the terminals D_{x1} to D_{xm} and D_{y1} to D_{yn} , and applies a high voltage to the metal back 55 or the transparent electrode (not shown) through the high voltage terminal Hv to accelerate an electron beam. The image forming apparatus can performs television displaying in accordance with a television signal of the NTSC system by excitation/light emission caused by allowing the accelerated electron beam to collide against the fluorescent film 54.

[0084] The above described constitution is a schematic constitution necessary

		•	
	•		

00/04/04 TO.49 1.041

Tokkaihei 8-115652

for obtaining the image forming apparatus of the present invention used for the displaying and the like. Detailed portions such as materials of each member are not limited to the above, and properly selected so as to be suitable for the use of the image forming apparatus. Moreover, the NTSC system is enumerated as the input signal. However, the input signal is not limited to this in the image forming apparatus of the present invention, and other systems such as a PAL system and a SECAM system will do. Moreover, a high quality TV system from a MUSE system down will do, which adopts a TV signal composed of scanning lines of the larger number than the PAL and SECM systems and the like.

4VU UTUL 1UUL~

[0085] Next, an example of the electron source adopting the foregoing ladder type array and the image forming apparatus of the present invention using the electron source will be described by use of Fig. 9 and Fig. 10.

[0086] In Fig. 9, reference numeral 1 denotes a substrate; 54, electron emission devices; and 94, common wirings for coupling the electron emission devices 54, the common wirings 94 being provided by ten and having external terminals D1 to D10, respectively.

[0087] The electron emission devices 54 are arrayed in parallel in plural number on the substrate 1. This is called a device column. Then, the device column is arrayed in plural number, thus constituting the electron source.

[0088] By applying a proper driving voltage between the common wirings 94 (for example, the common wiring 94 of the external terminals D₁ and D₂) of each device column, it is possible to drive each device column independently. Specifically, a voltage exceeding the threshold voltage may be applied to a device column desired to emit an electron beam therefrom, and a voltage lower than the threshold voltage may be applied to a device column desired not to emit the electron beam. With respect to the common wirings D₂ to D₉ arrayed between the device columns, the application of such a driving voltage can be performed while treating the adjacent common wirings 94, that is, the common wirings 94 for the external terminals D₂ and D₃, D₄ and D₅, D₆ and D₇, and D₈ and D₉ as united one wiring.

[0089] Fig. 10 is a drawing showing a structure of the display panel 91 comprising the electron source of the foregoing ladder type array, which is another example of the electron source of the present invention.

[0090] In Fig. 10, reference numeral 92 denotes a grid electrode; 93, an

	•
•	

opening for allowing electrons to pass therethrough; D_1 to D_m , external terminals for applying voltages to respective electron emission devices; and G_1 to G_n , external terminals coupled to the grid electrode 92. The common wirings 94 between the device columns are formed on the substrate 1 as united one wiring.

[0091] In Fig. 10, the same reference numerals as those in Fig. 6 denote the same members. The display panel of Fig. 10 differs greatly from the display panel 81 using the electron source adopting the simple matrix array shown in Fig. 6 in that the grid electrode 92 is provided between the substrate 1 and the face plate 66.

[0092] The grid electrode 92 is provided between the substrate 1 and the face plate 66 as described above. The grid electrode 92 can modulate an electron beam emitted from the electron emission device 54, and has a structure that the circular opening 93 is by one provided one by one so as to correspond to each electron emission device 54 to allow the electron beam to pass through the stripe-shaped electrode provided perpendicularly to the ladder-arrayed device column.

[0093] The shape and arrangement position of the grid electrodes 92 are not limited to Fig. 10, and the openings 93 may be provided in the form of mesh in plural. The grid electrode 92 may be provided, for example, around the electron emission device 54 or near the electron emission device.

[0094] The external terminals D₁ to D_m, and G₁ to G_n are coupled to a driving circuit (not shown). A modulation signal equivalent to one line of the image is applied to the column of the grid electrodes 92 in synchronization with the sequential driving (scanning) of the device column one by one, whereby irradiation of the electron beam onto the fluorescent film 64 can be controlled and the image can be displayed one line by one line.

[0095] As described above, the image forming apparatus of the present invention can be obtained by use of the electron source of the present invention, which adopts any one of the simple matrix array and the ladder type array. The image forming apparatus suitable for display devices of television conference system, computers and the like, in addition to display devices of the foregoing television broadcasting, can be obtained. Moreover, the image forming apparatus of the present invention can be used also as an exposing apparatus incorporated in an optical printer, which is provided with a

	·		٠
		·	
			*

photosensitive drum.

[0096]

[Embodiments]

[Embodiment 1] As a first embodiment of the present invention, the electron emission device shown in Fig. 1 was fabricated.

[0097] First, a Ti of a thickness of 5 nm and Pt of a thickness of 30 nm were deposited in vacuum on a quartz glass substrate by use of a metal mask, thus forming a device electrode. Next, the portion between the device electrode was locally removed by FIB, thus forming a gap having a length L of 240 nm and a width W of 100 μ m.

[0098] Next, after organic Pd complex solution (prepared by diluting down CCP 4230 made by Okuno Pharmacy Co. Ltd. with butyl acetate to one third) was spin-coated, and subjected to a thermal treatment in the air at 300 $^{\circ}$ C. Further, a thermal treatment was conducted at 180 $^{\circ}$ C in hydrogen air flow of 2%, which is obtained by diluting the hydrogen air with nitrogen. In this state, fine particles having a diameter ϕ of 3 to 7 nm were formed on the surface of the device in this stage.

[0099] Subsequently, a thermal treatment was conducted for 10 minutes at 500 °C in ethylene air flow of 0.1 %, which is obtained by diluting the ethylene air with nitrogen. When this was observed by a scanning electron microscope, it was found that a large number of fibrous carbons extending fibrously with bending portion and having a diameter of 10 to 25 nm were formed in the gap between the electrodes. Pd fine particles and fibrous carbon were not observed on the device electrode, and the Pd fine particles were considered to be absorbed in a Pt electrode.

[0100] I_e and I_f of the electron emission device fabricated in the above described manner were measured by the measurement evaluation system shown in Fig. 3.

[0101] As a result, while I_e gradually increased, I_f once decreased rapidly, and then increased gradually. Thus, I_f reached to saturation after about 600 seconds. At this time, I_e was about 0.5 μ A, and I_f was about 0.5 mA.

[0102] [Embodiment 2] The electron emission device was fabricated in the same manner as the embodiment 1 except that the gap between the device electrodes was set to 500 nm, and I_e and I_f were measured. I_c and I_f were saturat d after about 400 seconds, respectively, and the values of I_e and I_f were

		,
	•	
	1	q-

almost equal to those of the electron emission device of the embodiment 1.

[0103] In the observation by the scanning electron microscope, similarly to the embodiment 1, it was observed that a large number of fibrous carbons were formed in the gap. Note that the fibrous carbons were few in the center of the gap.

[0104] [Embodiment 3] In a similar manner to that of the embodiment 1, the device electrodes and the gap between the electrodes were formed, and organic Pd complex solution was coated thereon and then, baking at 300 °C was conducted thereon. Thereafter, a thermal treatment was conducted for 10 minutes at 180 °C in 0.1 % ethylene air flow diluted with nitrogen, and subsequently the device electrode and the gap coated with the organic Pd complex solution was heated to 450 °C, thus conducting a thermal treatment for 10 minutes. The electrical characteristic of the electron emission device was almost identical to that of the embodiment 1.

[0105] [Comparison example 1] The device electrodes and the gap between the electrodes were formed according to the steps similar to those of the embodiment 1, and Pd minute particles were formed. Thereafter, the thermal treatment step in ethylene atmosphere was omitted, and I_e and I_f were measured. As a result, both of I_e and I_f were not observed.

[0106] [Comparative example 2] The electron emission device was fabricated in a similar manner to that of the embodiment 1 except that the gaps between the electrodes are set to 900 nm. When I_e and I_f were measured, both of I_e and I_f were not observed at all.

[0107] When this electron emission device was observed by a scanning electron microscope, it was found that though the fibrous carbons were formed near the end of the device electrode, the fibrous carbons do not exist in the center of the gap, and the interval between both of the carbons was large. The reason why above described phenomenon occurred is as follows. When the organic Pd solution was coated, the solution concentrated near the end of the electrode due to surface tension of the solution, and the solution is little near the center of the electrode. As a result, the Pd fine particles were not formed at the center of the gap. Accordingly, it was estimated that the fibrous carbon to be deposited at the fine particles as nucleus was hard to be deposited. Therefore, the gap between the fibrous carbons was wide, and I_e and I_f were not observed. Specifically, a current did not flow between the device electrodes, and it was

estimated that the electron emission did not occur.

[0108] [Embodiment 4] The electron source in which the electron emission devices were arrayed with the simple matrix wiring was fabricated. The procedures are shown below.

[0109] After Cr of a thickness of 5 nm and Au of a thickness of 60 nm were sequentially deposited on the cleaned soda lime glass substrate by a vacuum deposition method. Thereafter, photoresist (AZ1370: made by Hext Co. Ltd.,) was coated while rotating a spinner, and baked. Thereafter, a photomask image was exposed and developed, and a resist pattern of a lower wiring was formed. An Au/Cr deposition stacked film was subjected to wet etching, thus forming the lower wiring.

[0110] An interlayer insulating layer formed of a silicon oxide film having a thickness of 0.1 μ m was formed by use of a high frequency sputtering method. [0111] A photoresist pattern for forming contact holes on the deposited silicon oxide film was formed, and the interlayer insulating layer was etched by use of the photoresist pattern as a mask, thus forming the contact holes. The etching was conducted by a RIE (Reactive Ion Etching) method using CF₄ gas and H₂ gas.

[0112] A pattern which is to be the device electrode was formed by use of a photoresist (RD-2000N-41: made by Hitachi Chemical Co., Ltd.), and Ti of a thickness of 5 nm and Ni of a thickness of 100 nm were sequentially stacked by use of a vacuum deposition method. The photoresist pattern was dissolved by organic solvent, and the Ni/Ti stacked film was lifted off, thus forming the device electrode.

[0113] After a photoresist pattern for an upper wiring was formed on the device electrode, Ti of a thickness of 5 nm and Au of a thickness of 100 nm were sequentially stacked on the device electrode by use of a vacuum deposition method, and unnecessary portions were removed by lifting-off, thus forming the upper wiring.

[0114] A resist film was formed so as to cover the portion other than the contact hole portion, and Ti of a thickness of 5 nm and Au of a thickness of 500 nm were sequentially deposited by use of a vacuum deposition method. By removing the unnecessary portions by the lifting-off, the contact hole was buried.

[0115] Similarly to the embodiment 1, a gap was formed between the device

			·
•)			

electrodes by FIB. Moreover, similarly to the embodiment 1, organic Pd complex solution was coated by a spinner, and baked in the air at 300 $^{\circ}$ C, thus converting the dried organic Pd complex solution to PdO. Moreover, a thermal treatment at 180 $^{\circ}$ C for 10 minutes was conducted in mixed gas flow of N₂ and 2 % H₂, thus forming Pd fine particles.

[0116] Similarly to the embodiment 1, a thermal treatment at 500 $^{\circ}$ C for 10 minutes was conducted in 0.01 $^{\circ}$ C₂H₂ air flow, thus forming fibrous carbon. When the electron emission device of this electron source was observed by a high resolution SEM (scanning type electron microscope), no fine particles and no fibrous carbon were observed. It was estimated that the Pd fine particles on the device electrode were diffused into the electrode due to the thermal treatment.

[0117] An extraction electrode and a fluorescent plate were attached to the electron source as shown in Fig. 11, and all of the electron emission devices were scan-driven in order of time. The system of Fig. 11 will be described. In the drawing, reference numeral 111 denotes a vacuum bath, and the air is exhausted from the vacuum bath 111 to a vacuum of 5 x 10-5 pa or less by an air exhaustion system (not shown). Reference numeral 112 denotes a window, and reference numeral 114 denotes a device body composed of an electron emission portion (inter-electrode gap), an electrode, a wiring and the like. Reference numerals 115 and 116 denote driving wirings for X and Y-direction lines. Reference numeral 117 denotes a driver for applying pulses suitable for the foregoing wiring. Reference numeral 118 denotes an extraction electrode, which is formed in such a manner that glass, on which an ITO thin film of a transparent electrode is formed, is inserted in a frame made of aluminium, and a fluorescent substance is applied to the under plane thereof.

[0118] Rectangular pulses were applied to the electron emission device by the driver 117 so that the driving voltage was 14 V and the half-selection voltage was 7 V. The extraction electrode voltage was 5 kV.

[0119] When luminescence of the fluorescent substance due to the electron emission was observed by eyes through the window 112, it was confirmed that variations of luminance of among the devices was little in the electron source of this embodiment, and uniformity of the electron emission characteristic was high.

[0120] [Embodiment 5] An image forming member was combined with the

electron source of the embodiment 4 as shown in Fig. 6, and a display device capable of displaying image information provided from various image information sources from, for example, a TV broadcasting down was constructed. A block diagram of the display device is shown in Fig. 12.

[0121] In the drawing, reference numeral 120 denotes a display panel; 121, a driving circuit for driving the display panel 120; 122, a display controller; 123, a multiplexer; 124, a decoder; 125, an I/O interface circuit; 126, a CPU; 127, an image generation circuit; 128, 129 and 130, an image memory interface circuit; 131, an image input interface circuit; 132 and 133, a TV signal receiving circuit; and 134, an input section. (Note that as a matter of course, this display device displays an image and simultaneously reproduces voice when the display receives a signal containing both of video information and speed information like a TV signal, and descriptions for circuits concerning receiving, separation, reproduction, processing and storing of the speech information, which do not relates directly to the features of the present invention and a speaker are omitted)

[0122] Each section will be described along the flow of the image signal below.

[0123] First, the TV signal receiving circuit 133 is a circuit for receiving the TV image signal transmitted by use of a radio transmission system such as radio wave and spatial optical communication. A system of the TV signal received is not particularly limited, and various systems such as a NTSC system, a PAL system and a SECAM system will do. Moreover, a TV signal composed of a large number of scanning lines (so called a high quality TV from, for example, a MUSE system down) is a signal source suitable for utilizing the advantages of the foregoing display panel, which fits a large area and a large number of pixels. The TV signal received by the TV signal receiving circuit 133 is output to the decoder 124.

[0124] Furthermore, the image TV signal receiving circuit 132 is a circuit for receiving a TV image signal transmitted by use of a cable transmission system such as a coaxial cable and an optical fiber. A system of the TV signal received is not particularly limited like the foregoing TV signal receiving circuit 133, and also the TV signal received by this circuit is output to the decoder 124.

[0125] Furthermore, the image input interface circuit 131 is a circuit for taking in an image signal supplied from the image input apparatus such as a TV camera and an image reading scanner, and the image signal taken in is output

		. –

to the decoder 124.

[0126] Moreover, the image memory interface circuit 130 is a circuit for taking in an image signal stored in a video tape recorder (hereinafter referred to as a VTR), and the image signal taken in is output to the decoder 124.

[0127] Furthermore, the image memory interface circuit 129 is a circuit for taking in the image signal stored in a video disc, and the image signal taken in is output to the decoder 124.

[0128] Furthermore, the image memory interface circuit 128 is a circuit for taking in an image signal from an apparatus like a still image disc, which stores still image data, and the still image data taken in is output to the decoder 124.

[0129] The I/O interface circuit 125 is a circuit for coupling this display device, an external computer, a computer network, and an output apparatus such as a printer. As a matter of course, the I/O interface circuit 125 inputs/outputs the image data and characters/graphic information. In some cases, the I/O interface circuit 125 can inputs/outputs a control signal and numerical data between the outside of this display device and the CPU 126 provided in this display device.

[0130] Furthermore, the image generation circuit 127 is a circuit for generating display image data based on image data and character/graphic information input thereto from the outside through the foregoing I/O interface circuit 125 and based on image data and character/graphic information output from the CPU 156. In the inside of this circuit, circuits necessary for generating the image from a rewritable memory for storing, for example, image data and character/graphic information, a read only memory storing an image pattern corresponding to a character code, and a processor for an image processing down are incorporated.

[0131] The display image data generated by this circuit is output to the decoder 124, and can be output to an external computer network and a printer through the foregoing I/O interface circuit 125 in some cases.

[0132] Furthermore, the CPU 126 performs an operation control of this display device and operations concerning a generation, selection and edition of the display image.

[0133] For example, the CPU 126 outputs a control signal to the multiplexer 123, properly selects the image signals to be displayed on the display panel, and combines them. Furthermore, at this time, the CPU 126 generates the control

			•
		Ť	
00 . 00			
	*		
	-		

signal to a display panel controller in accordance with the image signal to be displayed, and properly controls an operation of the display device including an image display frequency, a scanning method (for example, an interlace or a non-interlace), and the number of scanning lines of one screen.

AUD UTUE 10UE-

[0134] Furthermore, the CPU 126 directly outputs the image data and the character/graphic information to the foregoing image generation circuit 127, or inputs the image data and the character/graphic information by accessing the external computer and the memory through the foregoing I/O interface circuit 125.

[0135] Note that as a mater of course, the CPU 126 may have to do with operations other than these operations. For example, the CPU 126 may have directly to do with functions to generate and process information like, for example, personal computer and word processors.

[0136] Alternatively, as described above, the CPU 126 is connected to an external computer network through the I/O interface circuit 125, and may perform an operation such as a numerical computation in cooperation with external equipment.

[0137] Moreover, the input section 134 is a circuit for inputting an instruction, a program, or data to the foregoing CPU 126 through the user, and various input devices including, for example, a joy stick, a bar code reader and a voice recognition apparatus in addition to a key board and a mouse can be used as the input section 134.

[0138] Furthermore, the decoder 124 is a circuit for inversely converting various image signals, which are input from the foregoing image generation circuit 127 and the foregoing TV signal receiving circuit 133 to a three primary color signal, a luminance signal, an I signal or a Q signal. Note that as shown by the dotted lines, the decoder 124 should comprise an image memory therein. The reason why the decoder 124 comprises the image memory is to deal with a TV signal requiring the image memory in the inverse conversion. Moreover, this is because, by providing the image memory, advantages that displaying of the still image becomes easier, and advantages that image processing and edition from thinning, an interpolation, an enlargement, a reduction, and synthesis of the image can be performed easily in combination with the foregoing image generation circuit 127 and CPU 126, are created.

[0139] Furthermore, the multiplexer 123 properly selects a display image based

		,

on the control signal input from the foregoing CPU 126. Specifically, the multiplexer 123 selects a desired image signal among the image signals that have been subjected to the inverse conversion, which are input from the decoder 124, and outputs the selected image signal to the driving circuit 121. In this case, the image signal is switched within an image displaying time to select the image signal, whereby the different images can also be displayed in different areas by dividing one screen into the plurality of areas as so called multi-screen TV.

2000 0404 1004=

[0140] Furthermore, the display panel controller 122 is a circuit for controlling an operation of the driving circuit 121 based on the control signal input from the foregoing CPU 126 thereto.

[0141] First, with respect to a basic operation of the display panel, a signal for controlling an operation sequence of, for example, a driving power source (not shown) of the display panel is output to the driving circuit 121.

[0142] Furthermore, with respect to the driving method of the display panel, for example, a signal for controlling, for example, an image display frequency and a scanning method (for example, an interlace or a non-interlace) is output to the driving circuit 121.

[0143] Furthermore, a control signal relating to an adjustment of the image including luminance, contrast, tone and sharpness of the display image is sometimes output to the driving circuit 121 depending on circumstances.

[0144] Furthermore, the driving circuit 121 is a circuit for generating a driving signal which is applied to the display panel 120, and the driving circuit 121 operates based on the image signal input from the foregoing multiplexer 123 and the control signal input from the foregoing display panel controller 122.

[0145] The function of each section is described in the above. It is possible to display the image information input from various image information sources on the display panel 120 in this display device with the constitution shown in Fig. 12. Specifically, after various image signals from the TV broadcasting down is subjected to the reverse conversion in the decoder 124, the image signals are properly selected in the multiplexer 123, and input to the driving circuit 123. On the other hand, the display controller 122 generates the control signal for controlling the operation of the driving circuit 121 in accordance with the image signal to be displayed. The driving circuit 121 applies the driving signal to the display panel 120 based on the foregoing image signal and the control signal.

			÷
			•
î.			

Thus, the image is displayed in the display panel 120. A series of operations are collectively controlled by the CPU 126.

[0146] Furthermore, in this display device, the image memory built in the foregoing decoder 124, the image generation circuit 127 and the CPU 126 participate in the operations of the display device. Therefore, not only the image information selected among the plurality of image information is displayed, but also the image processing for the image information to be displayed including, for example, an enlargement, reduction, rotation, movement, edge emphasis, thinning, interpolation, color conversion, and conversion of an aspect ratio of the image, and image edition including a synthesis, an erasion, a connection, a switch, and fitting can be performed. Although the descriptions of this embodiment did not mention the following, a dedicated circuit for processing and editing voice information may be provided similarly to the foregoing image processing and image edition.

[0147] Accordingly, one unit of this display device can have functions such as a display device of a TV broadcasting, a terminal device of a TV conference, an image edition device dealing with a still picture and a moving picture, a terminal device of a computer, an OA terminal device from a word processor down, and a game machine, and has a very wide application range as industrial and consumer display devices.

[0148] Note that, Fig. 12 shows nothing but an example of the display device using the display panel having the electron emission device as the electron source, and, as a matter of course, limitations are not made to this. For example, circuits concerning unnecessary functions from the viewpoint of intended end-usage may be omitted among the constituent components of Fig. 12. Moreover, on the contrary, constituent components may be added depending on the intended end-usage. For example, when the this display device is applied to a TV telephone, a receiving/transmission circuit and the like including a TV camera, a voice microphone, an illuminator, a modem and the like should preferably added thereto.

[0149] In this display device, since the display panel using the electron emission device as the electron source above all can be easily made to be thin, the depth of the display device can be made to be small. In addition, the display panel using the electron emission device as the electron source can be easily manufactured so as to have a large screen and exhibits high luminance.

			2:		
					().
4.					
		•			
	•				

Furthermore, the display panel is excellent in a characteristic of an angle of field. Accordingly, the display device can display an impressive image exhibiting sense of reality with good visibility.

[0150] Moreover, since the electron source of the present invention shows uniform electron emission characteristic among the electron emission devices, the display device can form a high quality a formed image, exhibits a high quality, and can display an image with a high definition.

[0151]

[Effects of the Invention] As described above, according to the present invention, an electron emission device showing a good electron emission characteristic can provide with high reliability, and particularly complicated steps and effective materials are not used in fabricating the electron emission device. Accordingly, in the electron source of the present invention using the plurality of electron emission device and in the image forming apparatus, since luminance of luminous points formed by the devices are even and uniform, formation of a high quality image is possible.

[Brief Description of the Drawings]

[Figure 1] Fig. 1 is a basic constitutional view of an electron emission device of the present invention.

[Figure 2] Fig. 2 is a drawing showing an example of manufacturing steps of the electron emission device of the present invention.

[Figure 3] Fig. 3 is a drawing showing a measurement evaluation system for evaluating an electron emission characteristic of the electron emission device of the present invention.

[Figure 4] Fig. 4 is a drawing showing the electron emission characteristic of the electron emission device of the present invention.

[Figure 5] Fig. 5 is a schematic view of a simple matrix electron source of the present invention.

[Figure 6] Fig. 6 is a drawing showing an embodiment of an image forming apparatus of the present invention.

[Figure 7] Fig. 7 is a drawing showing a fluorescent film used in the image forming apparatus of the present invention.

[Figure 8] Fig. 8 is a block diagram of the embodiment of the image forming apparatus of the present invention.

[Figure 9] Fig. 9 is a schematic view of a ladder type electron source of the

			•
			•
		•	
		,	

VO/UZ/UZ 10:28 P.U33

Tokkaihei 8-115652

present invention.

[Figure 10] Fig. 10 is a drawing showing an image forming apparatus of the present invention using the ladder type electron source.

[Figure 11] Fig. 11 is a drawing showing a measurement evaluation system of the electron source of the present invention.

[Figure 12] Fig. 12 is a block diagram of an application example of an image forming apparatus of an embodiment 4 of the present invention.

[Explanations of Reference Numerals]

- 1 insulating substrate
- 2, 2' device electrode
- 3 deposit essentially containing carbon
- 21 metal minute particles
- 30 current meter
- 31 power source
- 32 current meter
- 33 high voltage power source
- 34 anode electrode
- 35 vacuum apparatus
- 36 air exhaustion pump
- 52 X-direction wiring
- 53 Y-direction wiring
- 54 electron emission device
- 55 coupling line
- 61 rear plate
- 62 supporting frame
- 63 glass substrate
- 64 fluorescent film
- 65 metal back
- 66 face plate
- 68 casing
- 71 black conductive material
- 72 fluorescent body
- 81 display panel
- 82 scanning circuit
- 83 control circuit

		•
·		

84	shift resister
85	line memory
86	synchronous signal separation circuit
87	modulation signal generator
92	grid electrode
93	opening
94	common wiring
111	vacuum bath
112	window
114	device body
115	X-direction driving wiring
116	Y-direction driving wiring
117	driver
118	extraction electrode
119	power source
120	display panel
121	driving circuit
122	display panel controller
123	multiplexer
124	decoder
125	I/O interface
126	CPU
127	image generation circuit
128	image memory interface
129	image memory interface
130	image input memory interface
131	image memory interface
132	TV signal receiving circuit
133	TV signal receiving circuit
135	input section
130	display panel

				•
			÷	

Fig. 1

Fig. 2

		_
		-
G.		

3/11

Tokkaihei 08-115652

Fig.3

Fig. 4

			•
			S
		•	
<i>*</i>			
· ·			

Tokkaihei 08-115652

Fig. 5

			191	
			4	
	•			

5/11

Fig. 6

63 GLASS SUBSTRATE 64 FLUORESCENT FILM 65 METAL BACK 66 FACE PLATE

	-
	· ·
·	

, .

Tokkaihei 08-115652

Fig. 7

			•
			<u>:</u>

7/11

Fig. 8

Fig. 9

94 COMMON WIRING

	*	4	
	14		
		•1	

Tokkaihei 08-115652

Fig.10

93 OPENING

				2
				-
			-	
			÷	
				i,

Tokkaihei 08-115652

9/11

Fig. 11

		· · · · · · · · · · · · · · · · · · ·
	•	

ale de la comprese de destable de la compania de l

Tokkaihei 08-115652

Fig. 12

125 I/O INTERFACE CIRCUIT

127 IMAGE GENERATING CIRCUIT

128 IMAGE MEMORY INTERFACE CIRCUIT

129 IMAGE MEMORY INTERFACE CIRCUIT

130 IMAGE MEMORY INTERFACE CIRCUIT

131 IMAGE MEMORY INTERFACE CIRCUIT

132 TV SIGNAL RECEIVING CIRCUIT

133 TV SIGNAL RECEIVING CIRCUIT

154 IMPUT SECTION (KEY BOARD, MOUSE AND THE LIKE)

· · ·	•