Appl.No.: 09/754,811

Amendment dated August 16, 2004

Response to Office Action mailed May 14, 2004

Amendments to the Specification:

Please replace the first paragraph on page 5 with the following amended paragraph:

Accordingly, a need has arisen in the art for an improved circuit models for use with simulation and analysis systems.

Please replace the second paragraph on page 11 with the following amended paragraph:

While the enhanced parametric model of Eq. (8) is substantially continuous, this function is only piecewise continuous when $V_o=0$. Therefore, the derivative of this function will not be continuous at this point (step 525). In this case, the cause is that at $V_o=0$, $4 \notin V_o \notin 0$ is identically zero. To avoid this situation, a compensation constant, $-\frac{1}{2} = \frac{1}{2} =$

Please replace the third paragraph on page 11 with the following amended paragraph:

Applying a mathematical identity,

$$(V_0 - \theta)^2 + 4\theta V_0 + 2V_0 \Delta + 2\theta \Delta + \Delta^2 = (V_0 + \theta + \Delta)^2,$$
(10)

an enhanced parametric base model can be defined as:

$$V_{\text{eff}} = V_0 - \frac{1}{2} \left\{ (V_0 - V - \theta - \Delta) + \sqrt{(V_0 - V - \theta)^2 + 4\theta V_0 + 2V_0 \Delta + 2\theta \Delta + \Delta^2} \right\}$$
 (11)

With Δ =0.01, for example, the terms inside the square root other than $(V_0-V-\theta)^2$ will never be zero even though V_0 =0. Recognizing that the overall value within the square root can be negative when the value of V_0 is very small, and that the property dictated by

Appl.No.: 09/754,811

Amendment dated August 16, 2004

Response to Office Action mailed May 14, 2004

Eq. (2a) needs to be fulfilled only when V_0 is positive, the parametric equation model of Eq. 1 can be further refined as:

$$V_{\text{eff}} = V_0 - \frac{1}{2} \left\{ (V_0 - V - \theta - \Delta) + \sqrt{(V_0 - V - \theta)^2 + 4\theta V_0 + 2\sqrt{V_0^2} \Delta + 2\sqrt{\theta^2} \Delta + \Delta^2} \right\}, \tag{12}$$

which is the desired enchanced enhanced continuous parametric model.