微积分 A (1)

姚家燕

第 12 讲

在听课过程中,

严禁使用任何电子产品!

吉林大学王尊同学的爱情诗

爱就像
$$\lim_{x\to\infty} (1+\frac{1}{x})^x = e$$
,

两个人如同 x 相隔万里,

两颗心却如 $\frac{1}{x}$ 无限接近,

所以我们的爱 e 直都在!

第3章函数的导数

§1. 导数与微分的概念

定义 1. 假设 $f:(a,b)\to\mathbb{R}$ 为函数, $x_0\in(a,b)$. 若 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ 存在 (并且 有限),则称f在点 x_0 处可导,上述极限被称为 函数 f 在点 x_0 处的导数, 被记作 $f'(x_0)$, 或者 $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0}$, $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0)$, $\mathrm{D}_x f(x_0)$, \mathfrak{S} .

若 f 在 (a,b) 的每点处可导, 则称 f 在 (a,b) 上可导, 由此得到的函数 f' 称为 f 的导函数.

单侧导数 (左、右可导)

左导数:
$$f'_{-}(x_0) := \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$
.

右导数:
$$f'_+(x_0) := \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
.

评注

- 函数 f 是否在点 x_0 处可导仅与 f 在 x_0 的 邻域内的性质有关.
- 函数 f 在点 x_0 处可导当且仅当 f 在该点的 左、右导数存在 (有限) 且相等.
- 曲线 y = f(x) 在点 (x_0, y_0) 处的切线方程为

$$y - y_0 = f'(x_0)(x - x_0).$$

切线与法线

设曲线 Γ 在点 (x_0, y_0) 有切线, 该切线与 x 轴 夹角为 α , 则切线的方程为 $\frac{y-y_0}{x-x_0} = \tan \alpha$, 也即 $y - y_0 = \tan \alpha \cdot (x - x_0)$. 过这一点的法线是与 切线垂直的直线, 它与 x 轴的夹角等于 $\alpha + \frac{\pi}{2}$, 从而法线的方程为 $\frac{y-y_0}{x-x_0} = \tan(\alpha + \frac{\pi}{2})$, 也即

$$x - x_0 = -\tan\alpha \cdot (y - y_0).$$

例 1. 设函数 f 在点 x_0 可导. 求曲线 y = f(x)

在点 $(x_0, f(x_0))$ 处的切线方程与法线方程.

解: 曲线在点 $(x_0, f(x_0))$ 切线的斜率为 $f'(x_0)$, 故所求切线方程为 $y - f(x_0) = f'(x_0)(x - x_0)$, 讲而可知相应的法线方程为

$$x - x_0 = -f'(x_0)(y - f(x_0)).$$

命题 1. 若 f 在点 x_0 可导,则 f 在该点连续.

证明: 事实上, 我们有

$$\lim_{x \to x_0} (f(x) - f(x_0))$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0)$$

$$= f'(x_0) \times 0 = 0.$$

注: 反过来, 连续性并不蕴含着可导性.

例 2. 常值函数的导数等于 0.

例 3. $\forall x \in \mathbb{R}$, 令 $\pi(x) = x$, 则 $\pi'(x) \equiv 1$. 此时 也常将之记作 x' = 1.

例 4. 若
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$
 求 $f'(0)$.

解: 由导数定义以及夹逼原理可得

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0.$$

例 5. 求证: f(x) = |x| 在点 x = 0 处不可导.

证明: 由题设可知

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{x}{x} = 1,$$

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1,$$

故所证结论成立.

注: 上述函数 f 在点 x=0 处连续, 但不可导.

例 6. $\forall a > 0$, 求证: $(a^x)' = a^x \log a$.

证明: $\forall x \in \mathbb{R}$, 令 $f(x) = a^x$. 则

$$f'(x) = \lim_{y \to x} \frac{a^y - a^x}{y - x} = \lim_{y \to x} a^x \cdot \frac{a^{y - x} - 1}{y - x} = a^x \log a.$$

例 7. $\forall a > 0$, 求证: $(\log_a x)' = \frac{1}{x \log a}$.

证明: $\forall x > 0$, $\Leftrightarrow f(x) = \log_a x$. 则

$$f'(x) = \lim_{y \to x} \frac{\log_a y - \log_a x}{y - x} = \lim_{y \to x} \frac{\log(1 + \frac{y - x}{x})}{(y - x)\log a}$$
$$= \lim_{y \to x} \frac{\frac{y - x}{x}}{(y - x)\log a} = \frac{1}{x\log a}.$$

注: 特别地, $(e^x)' = e^x$, $(\log x)' = \frac{1}{x}$.

例 8. 设 $k \in \mathbb{N}^*$. $\forall x \in \mathbb{R}$, 令 $f(x) = x^k$. 求证:

$$f'(x) = kx^{k-1}.$$

证明: 仅需考虑 $k \ge 2$. 若 $x \ne 0$, 则我们有

$$f'(x) = \lim_{y \to x} \frac{y^k - x^k}{y - x} = x^k \lim_{y \to x} \frac{(1 + \frac{y - x}{x})^k - 1}{y - x}$$
$$= x^k \lim_{y \to x} \frac{k \cdot \frac{y - x}{x}}{y - x} = kx^{k-1}.$$

另外 $f'(0) = \lim_{y \to 0} \frac{y^k}{y} = 0$. 故所证成立.

例 9. 求证: $(\sin x)' = \cos x$.

证明: $\forall x \in \mathbb{R}$, 令 $f(x) = \sin x$. 则

$$f'(x) = \lim_{y \to x} \frac{\sin y - \sin x}{y - x}$$
$$= \lim_{y \to x} \frac{2\sin \frac{y - x}{2}\cos \frac{y + x}{2}}{y - x} = \cos x.$$

注: 同理可证 $(\cos x)' = -\sin x$.

作业题: 第 3.1 节第 73 页第 2 题第 (1), (3) 题, 第 3 题, 第 74 页第 9 题.

定义 2. 假设 $f:(a,b)\to\mathbb{R}$ 为函数, $x_0\in(a,b)$. 称 f 在点 x_0 处可微, 若 $\exists A\in\mathbb{R}$ 使得

$$f(x_0 + h) - f(x_0) = Ah + o(h) \quad (h \to 0).$$

此时还称线性函数 $h \mapsto Ah$ 为 f 在点 x_0 处的 微分, 记作 $\mathrm{d}f(x_0)$ 或 $\mathrm{d}y|_{x=x_0}$.

若函数 f 在 (a,b) 的每一点处可微,则称之在 (a,b) 上可微.

评注

- 微分 $df(x_0)$ 就是曲线 y = f(x) 在点 x_0 处的 切线, 而导数 $f'(x_0)$ 则是该切线的斜率.
- 微分是函数在点 x₀ 处的增量的线性部分.
- 微分 $\mathrm{d}f(x_0)$ 是一个函数使得 $\forall h \in \mathbb{R}$, 均有 $\mathrm{d}f(x_0)(h) = Ah$.

例 10. $\forall x \in \mathbb{R}$, 定义 $\pi(x) = x$. 则 $\forall x_0, h \in \mathbb{R}$,

$$\pi(x_0 + h) - \pi(x_0) = h,$$

故 $d\pi(x_0)(h) = h = \pi(h)$. 也即 $d\pi(x_0) = \pi$. 通常将 $d\pi$ 记作 dx. 于是 $\forall x_0 \in \mathbb{R}$, 均有 $dx(x_0) = \pi$. 出于简化记号. 该式常被写成

 $\mathrm{d}x = \pi$.

定理 1. 函数 f 在点 x_0 处可微当且仅当 f 在该点处可导. 此时 $\mathrm{d}f(x_0) = f'(x_0)\,\mathrm{d}x$.

证明: f 在点 x_0 可微当且仅当 $\exists A \in \mathbb{R}$ 使得

$$f(x_0 + h) - f(x_0) = Ah + o(h) \quad (h \to 0),$$

而这等价于说 $A = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$, 也即 f 在

点 x_0 处可导且 $A = f'(x_0)$. 此时 $\forall h \in \mathbb{R}$,

$$df(x_0)(h) = Ah = f'(x_0)h = f'(x_0) dx(h).$$

于是我们有 $\mathrm{d}f(x_0) = f'(x_0)\,\mathrm{d}x$.

§2. 求导法则

定理 1. (导数的四则运算) 如果 $f,g:(a,b)\to\mathbb{R}$ 在点 $x_0 \in (a,b)$ 处可导, 则

(1)
$$\forall \lambda, \mu \in \mathbb{R}$$
, 我们有

$$(\lambda f + \mu g)'(x_0) = \lambda f'(x_0) + \mu g'(x_0).$$

(2)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$$

(3)
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$
, $\stackrel{\text{Zi}}{=} g(x_0) \neq 0$.

推论.
$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{(g(x_0))^2}$$
.

证明: (1) 由函数极限的四则运算法则可知

$$(\lambda f + \mu g)'(x_0)$$

$$= \lim_{x \to x_0} \frac{(\lambda f + \mu g)(x) - (\lambda f + \mu g)(x_0)}{x - x_0}$$

$$= \lambda \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \mu \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= \lambda f'(x_0) + \mu g'(x_0).$$

(2) 由于 g 在点 x_0 处可导, 因此连续. 则由函数

极限的四则运算法则可知

$$(fg)'(x_0) = \lim_{x \to x_0} \frac{(fg)(x) - (fg)(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{(f(x) - f(x_0))g(x) + f(x_0)(g(x) - g(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{(f(x) - f(x_0))f(x) + f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \cdot g(x) + f(x_0) \cdot \frac{g(x) - g(x_0)}{x - x_0} \right)$$

 $= f'(x_0)g(x_0) + f(x_0)g'(x_0).$

(3) 由于g在点 x_0 处可导,因此连续.再由函数极限的四则运算法则可知

$$\left(\frac{f}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{f(x)g(x_0) - g(x)f(x_0)}{(x - x_0)g(x)g(x_0)}$$

$$= \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{(x - x_0)}g(x_0) - f(x_0)\frac{g(x) - g(x_0)}{x - x_0}}{g(x)g(x_0)}$$

$$= \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}.$$

多个函数的情形

利用数学归纳法, 我们可以将上述结论推广到多个函数. 特别地, 我们有

$$\bullet \left(\sum_{k=1}^{n} f_k\right)'(x_0) = \sum_{k=1}^{n} f_k'(x_0).$$

•
$$\left(\prod_{k=1}^n f_k\right)'(x_0) = \sum_{k=1}^n f_k'(x_0) \prod_{\substack{1 \le i \le n \ i \ne k}} f_i(x_0).$$

例 1. $\forall x \in \mathbb{R} \setminus \{0\}$, $\diamondsuit f(x) = \frac{\log x}{x} + e^x \sin x$, 则

$$f'(x) = \frac{(\log x)'x - (\log x)x'}{x^2} + (e^x)'\sin x + e^x(\sin x)'$$

$$= \frac{\frac{1}{x} \cdot x - \log x}{x^2} + e^x\sin x + e^x\cos x$$

$$= \frac{1 - \log x}{x^2} + e^x\sin x + e^x\cos x.$$

例 2.
$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$
$$= \frac{(\sin x)' \cos x - (\sin x)(\cos x)'}{\cos^2 x}$$
$$= \frac{\cos x \cdot \cos x - (\sin x)(-\sin x)}{\cos^2 x}$$
$$= \cos^2 x + \sin^2 x \qquad 1$$

$$=\frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

例 3. $(\sec x)' = \left(\frac{1}{\cos x}\right)' = -\frac{(\cos x)'}{\cos^2 x} = \frac{\sin x}{\cos^2 x}$.

例 4.
$$(\cot x)' = (\frac{\cos x}{\sin x})' = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$$
.

例 5.
$$(\csc x)' = \left(\frac{1}{\sin x}\right)' = -\frac{\cos x}{\sin^2 x}$$
.

例 6.
$$(\operatorname{sh} x)' = \frac{1}{2}(e^x - e^{-x})' = \operatorname{ch} x$$
.

例 7.
$$(\operatorname{ch} x)' = \frac{1}{2}(e^x + e^{-x})' = \operatorname{sh} x$$
.

作业题: 求 th x, cth x 的导数.

复合函数求导法则—链式法则

定理 2. 如果 $g:(a,b) \to (c,d)$ 在点 $x_0 \in (a,b)$ 可导, 而 $f:(c,d) \to \mathbb{R}$ 在点 $u_0 = g(x_0)$ 处可导, 则复合函数 $f \circ g:(a,b) \to \mathbb{R}$ 在点 x_0 可导, 且 $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$.

证明: $\forall u \in (c,d)$, 定义

$$F(u) = \begin{cases} \frac{f(u) - f(u_0)}{u - u_0}, & \stackrel{\text{red}}{=} u \neq u_0, \\ f'(u_0), & \stackrel{\text{red}}{=} u = u_0. \end{cases}$$

由导数定义可知 F 在点 u_0 连续. 又 g 在点 x_0 可导, 因此连续, 再由连续函数复合法则可得

$$\lim_{x \to x_0} F(g(x)) = F(g(x_0)) = f'(g(x_0)).$$

$$\nabla \forall x \in (a, d) \quad f(x) \quad F(x) = F(x)(x_0) \quad \forall t \in (a, d) \quad f(x) = f(x_0)$$

又 $\forall u \in (c,d)$, $f(u) - f(u_0) = F(u)(u - u_0)$. 故

$$(f \circ g)'(x_0) = \lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} F(g(x)) \cdot \frac{g(x) - g(x_0)}{x - x_0}$$

$$= F(g(x_0))g'(x_0) = f'(g(x_0))g'(x_0).$$

与"约分"类似的链式法则

若记 y = f(u), u = g(x), 则链式法则可表述成

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0} = \frac{\mathrm{d}y}{\mathrm{d}u}\Big|_{u=u_0} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}\Big|_{x=x_0},$$

更为简单地, 人们通常也将之简写成

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

一阶微分的形式不变性 (复合求导法则)

若
$$y = f(u)$$
, 则 $dy = f'(u) du$.

若
$$u = g(x)$$
, 则 $y = f \circ g(x)$, 从而我们有

$$dy = (f \circ g)'(x) dx = f'(g(x))g'(x) dx.$$

但 du = g'(x) dx, 故 dy = f'(u) du 依然成立,

只是此时 u 表示函数 u = g(x).

例 8. 设 $y = \log(\tan x^2)$, 求 dy.

M:
$$dy = \frac{1}{\tan x^2} d(\tan x^2)$$

= $\frac{1}{\tan x^2} \cdot \frac{1}{\cos^2 x^2} dx^2 = \frac{2x dx}{\sin x^2 \cdot \cos x^2}$.

例 9. 设
$$\alpha \neq 0$$
, $f(x) = x^{\alpha} (x > 0)$. 求 $f'(x)$.

解:
$$f'(x) = (e^{\alpha \log x})' = e^{\alpha \log x} (\alpha \log x)'$$

= $x^{\alpha} \cdot \frac{\alpha}{-} = \alpha x^{\alpha - 1}$.

例 10. 求 $f(x) = \sqrt{x} + x^2 \log x \ (x > 0)$ 的导数.

$$\mathbf{\widetilde{H}}: \quad f'(x) = (x^{\frac{1}{2}})' + (x^2 \log x)' \\
= \frac{1}{2}x^{-\frac{1}{2}} + (x^2)' \log x + x^2(\log x)' \\
= \frac{1}{2}x^{-\frac{1}{2}} + 2x \log x + x^2 \cdot \frac{1}{x} = \frac{1}{2}x^{-\frac{1}{2}} + 2x \log x + x.$$

例 11. 设 u, v 为可导函数并且 u(x) > 0. 定义 $f(x) = u(x)^{v(x)}$, 求 f'(x).

$$\mathbf{\widetilde{R}}: f'(x) = \left(e^{v(x)\log u(x)}\right)' = e^{v(x)\log u(x)}(v(x)\log u(x))'$$
$$= u(x)^{v(x)}\left(v'(x)\log u(x) + v(x)\frac{u'(x)}{u(x)}\right).$$

例 12. $\forall x \in \mathbb{R} \setminus \{0\}$, $\diamondsuit f(x) = \log |x|$. 求 f'(x).

解: 当 x > 0 时, $f(x) = \log x$, 则 $f'(x) = \frac{1}{x}$. 当 x < 0 时, $f(x) = \log(-x)$, 则

$$f'(x) = \frac{1}{-x} \cdot (-x)' = \frac{1}{x}.$$

于是 $\forall x \in \mathbb{R} \setminus \{0\}$, 均有 $f'(x) = \frac{1}{x}$.

例 13. 若 g 可导且 $g \neq 0$, 令 $f(x) = \log |g(x)|$.

则 $f'(x) = \frac{1}{g(x)} \cdot g'(x) = \frac{g'(x)}{g(x)}$.

例 14. 设 $f(x) = \log |x + \sqrt{x^2 + a}|$. 则

$$f'(x) = \frac{(x + (x^2 + a)^{\frac{1}{2}})'}{x + \sqrt{x^2 + a}} = \frac{1 + \frac{1}{2}(x^2 + a)^{-\frac{1}{2}} \cdot (x^2 + a)'}{x + \sqrt{x^2 + a}}$$
$$= \frac{1 + x(x^2 + a)^{-\frac{1}{2}}}{x + \sqrt{x^2 + a}} = \frac{\sqrt{x^2 + a} + x}{(x + \sqrt{x^2 + a})\sqrt{x^2 + a}} = \frac{1}{\sqrt{x^2 + a}}.$$

例 15. 求 $y = f_1 \cdots f_n$ 的导数, 其中 $f_k(x) \neq 0$.

解: $\log |y| = \sum_{k=1}^{n} \log |f_k|$. 于是 $\frac{y'}{y} = \sum_{k=1}^{n} \frac{f'_k}{f_k}$, 进而

 $y' = y \sum_{k=1}^{n} \frac{f'_k}{f_k} = \sum_{k=1}^{n} f_1 \cdots f_{k-1} f'_k f_{k+1} \cdots f_n.$

例 16. 设 $f(x) = \left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} \left(x^2(2x+3)\right)^{\frac{1}{3}}$,求 f'(x).

解: $\log |f(x)| = \frac{1}{2}(\log |x+1| - \log |x-1|)$ + $\frac{1}{3}(2\log |x| + \log |2x+3|)$.

两边求导立刻可得

$$\frac{f'(x)}{f(x)} = \frac{1}{2} \left(\frac{1}{x+1} - \frac{1}{x-1} \right) + \frac{1}{3} \left(2 \cdot \frac{1}{x} + \frac{2}{2x+3} \right)$$
$$= \frac{1}{1-x^2} + \frac{2(x+1)}{x(2x+3)}.$$

故 $f'(x) = \left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} \left(x^2(2x+3)\right)^{\frac{1}{3}} \left(\frac{1}{1-x^2} + \frac{2(x+1)}{x(2x+3)}\right).$

/ 63

例 17. 求 $f(x) = \frac{(1+x)(1-2x)}{(1-3x)(1+4x)}$ 的导数.

$$\mathbf{\widetilde{H}}: f'(x) = f(x) \cdot \left(\frac{(1+x)'}{1+x} + \frac{(1-2x)'}{1-2x} - \frac{(1-3x)'}{1-3x} - \frac{(1+4x)'}{1+4x}\right)$$

$$= \frac{(1+x)(1-2x)}{(1-3x)(1+4x)} \left(\frac{1}{1+x} + \frac{2}{2x-1} + \frac{3}{1-3x} - \frac{4}{1+4x}\right).$$

反函数求导法则

定理 3. 设函数 $f:(a,b) \to (c,d)$ 为双射, 它在点 x_0 可导且 $f'(x_0) \neq 0$. 若 $f^{-1}:(c,d) \to (a,b)$ 在点 $y_0 = f(x_0)$ 连续, 则反函数 f^{-1} 在点 y_0 处可导. 并目我们还有

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

证明: 由于 f 为单射, 那么 $\forall x \in (a,b) \setminus \{x_0\}$,

均有 $f(x) \neq f(x_0)$, 此时定义 $G(x) = \frac{x-x_0}{f(x)-f(x_0)}$.

而 $\lim_{y \to y_0} f^{-1}(y) = f^{-1}(y_0) = x_0$, $\lim_{x \to x_0} G(x) = \frac{1}{f'(x_0)}$, 由复合函数极限法则得 $\lim_{y \to y_0} G(f^{-1}(y)) = \frac{1}{f'(x_0)}$,

也即 $\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{1}{f'(x_0)}$, 因此 f^{-1} 在点 y_0

可导且 $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

注: 令
$$y = f(x)$$
, 则 $x = f^{-1}(y)$, 从而 $\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{2}}$.

反三角函数

- 反正弦: 正弦函数 $y = \sin x$ 在 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 上为严格递增, 其值域为 [-1,1]. 由连续函数的反函数定理可知, 其反函数是一个从 [-1,1] 到 $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ 的连续函数, 记作 $x = \arcsin y$.
- 反余弦: 余弦函数 $y = \cos x$ 在 $[0,\pi]$ 上严格递减, 值域为 [-1,1]. 由连续函数的反函数定理可知, 其反函数是从 [-1,1] 到 $[0,\pi]$ 的连续函数, 记作 $x = \arccos y$.

- 反正切: 正切函数 $y = \tan x$ 在 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上为严格递增, 值域为 $(-\infty, +\infty)$. 由连续函数反函数定理可知, 其反函数是从 $(-\infty, +\infty)$ 到 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 的连续函数, 记作 $x = \arctan y$.
- 反余切: 余切函数 $y = \cot x$ 在 $(0,\pi)$ 上严格 递减, 值域为 $(-\infty, +\infty)$. 由连续函数反函数 定理知, 其反函数是从 $(-\infty, +\infty)$ 到 $(0,\pi)$ 的 连续函数, 记作 $x = \operatorname{arccot} y$.

例 18. 令 $f(x) = \sin x$, 那么 $f'(x) = \cos x$, 并且 $f^{-1}(y) = \arcsin y$. 于是当 $y \neq \pm 1$ 时, 我们有

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(\arcsin y)} = \frac{1}{\cos(\arcsin y)}$$

$$= \frac{1}{\sqrt{1 - \sin^2(\arcsin y)}} = \frac{1}{\sqrt{1 - y^2}},$$
故 $(\arcsin y)' = \frac{1}{\sqrt{1 - y^2}},$ 由此可得
$$(\arccos y)' = (\frac{\pi}{2} - \arcsin y)' = -\frac{1}{\sqrt{1 - y^2}}.$$

例 19. 求函数 $y = x + \log x$ 的反函数的导数.

解:
$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}} = \frac{1}{1+\frac{1}{x}} = \frac{x}{x+1}.$$

例 20.
$$(\arctan x)' \stackrel{x=\tan y}{=} \frac{1}{(\tan y)'_y} = \frac{1}{\frac{1}{\cos^2 y}}$$

$$= \cos^2 y = \frac{\cos^2 y}{\sin^2 y + \cos^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + x^2}.$$

$$(\operatorname{arccot} x)' = (\frac{\pi}{2} - \arctan x)' = -\frac{1}{1 + x^2}.$$

作业题: 第 3.2 节第 83 页第 2 题第 (2), (10) 题, 第 4 题第 (4), (5) 小题, 第 5 题第 (4) 小题,

第 6 题第 (2), (6) 小题, 第 84 页第 7.(2) 题

基本初等函数的导数公式

- (c)' = 0 (c 为常数).
- $(e^x)' = e^x$, $(a^x)' = a^x \log a \ (a > 0, \ a \neq 1)$.
- $(\log x)' = \frac{1}{x}$, $(\log_a x)' = \frac{1}{x \log a} \ (a > 0, \ a \neq 1)$.
- $(x^k)' = kx^{k-1} \ (k \in \mathbb{N}^*).$
- $(x^{-k})' = -kx^{-k-1} \ (k \in \mathbb{N}^*, \ x \neq 0).$
- $(x^{\alpha})' = \alpha x^{\alpha-1} \ (\alpha \in \mathbb{R} \setminus \mathbb{Z}, \ x > 0).$

基本初等函数的导数公式(续)

- $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$, $(\tan x)' = (\tan x)' = \frac{1}{\cos^2 x}$, $(\cot x)' = (\cot x)' = -\frac{1}{\sin^2 x}$.
- $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$, $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$, $(\arctan x)' = \frac{1}{1+x^2}$, $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$.

定理 4. 初等函数在其自然定义域的<mark>内部</mark>可导, 其导函数也为初等函数.

隐函数的求导

考虑方程 f(x,y) = 0. 设 f 可导, $f(x_0,y_0) = 0$, 且在点 (x_0, y_0) 的某邻域内可由此将 y 确定成 关于 x 的可导函数 y = y(x), 也即存在点 x_0 的 某邻域 $B(x_0)$ 使得 $\forall x \in B(x_0)$, f(x, y(x)) = 0. 于是由复合函数求导法则可得

$$\frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x))y'(x) = 0,$$

其中 $\frac{\partial f}{\partial x}$ 表示在 f(x,y) 中仅仅对 x 求导, 而 $\frac{\partial f}{\partial y}$ 表示在 f(x,y) 中仅仅对 y 求导. 于是我们有

$$y'(x) = -\frac{\frac{\partial f}{\partial x}(x,y(x))}{\frac{\partial f}{\partial y}(x,y(x))}.$$

例 21. 假设 y = y(x) 由方程 $xy - e^x + e^y = 0$ 来确定. 求 y'(x).

解: 将方程对 x 求导得 $y + xy' - e^x + e^y y' = 0$, 从而我们有 $y' = \frac{e^x - y}{e^y + x}$.

例 22. 求椭圆曲线 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 在点 (x_0, y_0) 的 切线方程, 其中 $y_0 \neq 0$.

解: 将上述方程所确定的隐函数记为 y = y(x).

将方程两边对 x 求导可得

$$0 = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right) = \frac{2x}{a^2} + \frac{2yy'}{b^2},$$

由此可得 $y' = -\frac{b^2x}{a^2y}$. 故所求切线方程为 $y - y_0 = -\frac{b^2x_0}{a^2y_0}(x - x_0)$.

例 23. 求解平面曲线 $x^2 + y \cos x - 2e^{xy} = 0$ 在点 (0,2) 处的切线方程.

解: 将上述方程所确定的隐函数记为 y = y(x). 将方程两边对 x 求导可得

$$2x + y'\cos x - y\sin x - 2e^{xy}(y + xy') = 0,$$

则 $y' = \frac{2ye^{xy} + y\sin x - 2x}{\cos x - 2xe^{xy}}$. 从而 $y'|_{(0,2)} = 4$, 进而所求 切线方程为 y - 2 = 4x.

作业题: 第3.2节第84页第8.(1)题,第9.(1)题.

由参数方程所确定的函数的求导

考虑平面曲线方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
, $t \in (a,b)$. 设函数 $x(t), y(t)$ 关于参数 t 可导并且 $x'(t) \neq 0$. 则在局部上, 参数 t 可反过来看成是 x 的函数, 也即 $t = t(x)$. 于是由反函数求导可得 $\frac{dt}{dx} = \frac{1}{\frac{dx}{dt}}$. 另外 $y = y(t(x))$ 也可以被看成是 x 的函数.

将函数 y = y(t(x)) 关于 x 求导,则我们有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{y'(t)}{x'(t)}.$$

同样地, 如果 $y'(t) \neq 0$, 局部上, 我们也可以将 x

看成是 y 的函数. 此时我们则有

$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{x'(t)}{y'(t)}.$$

例 24. 考虑曲线的极坐标方程

$$\left\{ \begin{array}{ll} x(\theta) \ = \ r(\theta)\cos\theta \\ y(\theta) \ = \ r(\theta)\sin\theta \end{array} \right., \quad \theta \in (a,b).$$

若 $x(\theta), y(\theta)$ 均可导且 $x'(\theta) \neq 0$, 求 $\frac{dy}{dx}$.

解: 由题设可知

$$x'(\theta) = r'(\theta)\cos\theta - r(\theta)\sin\theta$$
, $y'(\theta) = r'(\theta)\sin\theta + r(\theta)\cos\theta$,

由此立刻可得 $\frac{dy}{dx} = \frac{y'(\theta)}{x'(\theta)} = \frac{r'(\theta)\sin\theta + r(\theta)\cos\theta}{r'(\theta)\cos\theta - r(\theta)\sin\theta}$.

例 25. (旋轮线, 摆线, 速降线) 求由参数方程

$$x = a(t - \sin t), \ y = a(1 - \cos t) \ (0 < t < 2\pi)$$

给出的函数 y = y(x) 的导数.

解:
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a\sin t}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}$$
.

解:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-3a(\cos^2 t)\sin t}{3a(\sin^2 t)\cos t} = -\cot t.$$

作业题: 第 3.2 节第 84 页第 10 题第 (4) 小题.

§3. 高阶导数

- 若函数 $f:(a,b) \to \mathbb{R}$ 可导, 并且它的导函数 $f':(a,b) \to \mathbb{R}$ 在点 x_0 处也可导, 则称 f 在点 x_0 处二阶可导, 将 $(f')'(x_0)$ 记为 $f''(x_0)$, 也记作 $\frac{d^2 f}{dx^2}(x_0)$.
- 若 f' 在 (a,b) 上可导, 则称 f 在 (a,b) 上为 二阶可导, 并将它的导函数 (f')' 记作 f''.

• 若已定义了 n 阶导数 $f^{(n)}$ (也记作 $\frac{d^n f}{dx^n}$), 则将 $f^{(n)}$ 的导数称为 f 的 n+1 阶导数, 记作 $f^{(n+1)}$, 即 $f^{(n+1)} = (f^{(n)})'$, 也可写成 $\frac{d^{n+1} f}{dx^{n+1}} = \frac{d}{dx} (\frac{d^n f}{dx^n}).$

- 若 f 在 (a,b) 上 n 阶可导且 $f^{(n)}$ 连续, 那么 称 f 为 n 阶连续可导, 也称为 $\mathcal{C}^{(n)}$ 类函数. 所有这样函数组成的集合, 记作 $\mathcal{C}^{(n)}(a,b)$.
- 例如, f 为 $\mathcal{C}^{(1)}$ 类是指 f 为可导且 f' 连续, 此时也称 f 为<mark>连续可导</mark>.

- 通常也将 $\mathscr{C}(a,b)$ 记作 $\mathscr{C}^{(0)}(a,b)$.
- 若 f 在 (a,b) 上有任意阶导数, 那么称 f 为 无穷可导, 也称为 $\mathcal{C}^{(\infty)}$ 类函数. 所有这样的 函数组成的集合, 记作 $\mathcal{C}^{(\infty)}(a,b)$.
- 我们在任意区间上都可以定义类似的概念, 例如 $\mathcal{C}^{(n)}[a,b]$ 和 $\mathcal{C}^{(\infty)}[a,b]$, 在端点处只需 考虑相应的单侧导数和单侧连续性.
- 定理 1. 初等函数在其定义域的内部无穷可导.

基本的高阶求导公式

设 $n \ge 1$ 为整数, $\alpha \in \mathbb{R}$, 则

•
$$(x^{\alpha})^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1)x^{\alpha - n}$$
,

•
$$(e^{\alpha x})^{(n)} = \alpha^n e^{\alpha x}$$
, 其中 α 可以为复数,

•
$$(\log(1+x))^{(n)} = (-1)^{n-1}(n-1)!(1+x)^{-n}$$
,

•
$$\sin^{(n)}(x) = \sin(x + \frac{n\pi}{2}), \cos^{(n)}(x) = \cos(x + \frac{n\pi}{2}).$$

注:由函数方程(隐函数、反函数)或者参变量表示的函数,也可以计算它们的高阶导数.

例 1. 设 $y = \frac{1}{r^2 - r - 2}$, 求 $y^{(n)}$.

解: 由题设知
$$y = \frac{1}{(x-2)(x+1)} = \frac{1}{3} \left(\frac{1}{x-2} - \frac{1}{x+1} \right)$$
, 故

解: 由题设知
$$y = \frac{1}{(x-2)(x+1)} = \frac{1}{3} \left(\frac{1}{x-2} - \frac{1}{x+1} \right)$$
, 故
$$y^{(n)} = \frac{1}{3} \left((x-2)^{-1} \right)^{(n)} - \frac{1}{3} \left((x+1)^{-1} \right)^{(n)}$$

$$= \frac{1}{3} (-1)(-1-1) \cdots \left(-1 - (n-1) \right) (x-2)^{-1-n}$$

$$-\frac{1}{3} (-1)(-1-1) \cdots \left(-1 - (n-1) \right) (x+1)^{-1-n}$$

$$= \frac{(-1)^n}{3} n! \left((x-2)^{-1-n} - (x+1)^{-1-n} \right).$$

例 2. 求 $y''|_{(1,1)}$, 而 y 由 $(x^2 + y^2)^2 = 4xy$ 确定.

解: 在函数方程两边对 x 求导可得

$$2(x^2+y^2)(x^2+y^2)'=(4xy)'=4y+4xy'$$
,

故
$$2(x^2 + y^2)(2x + 2yy') = 4y + 4xy'$$
. 从而就有 $y' = \frac{x^3 + xy^2 - y}{x - x^2y - y^3}$, 进而立刻可得

$$y'' = \frac{(3x^2 + y^2 + 2xyy' - y')(x - x^2y - y^3) - (x^3 + xy^2 - y)(1 - 2xy - x^2y' - 3y^2y')}{(x - x^2y - y^3)^2},$$

于是 $y'|_{(1,1)} = -1$, 进而知 $y''|_{(1,1)} = -6$.

例 3. 如果函数 y = f(x) 二阶可导且其反函数 $x = f^{-1}(y)$ 也二阶可导, 求 $\frac{d^2x}{du^2}$.

解: 方法 1. 由反函数定理可得 $\frac{dx}{dy} = \frac{1}{f'(x)}$, 于是

$$\frac{\mathrm{d}^2 x}{\mathrm{d}y^2} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{1}{f'(x)} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{f'(x)} \right) \cdot \frac{\mathrm{d}x}{\mathrm{d}y}$$

$$= -\frac{1}{(f'(x))^2} \cdot f''(x) \cdot \frac{1}{f'(x)}$$

$$= -\frac{f''(x)}{(f'(x))^3}.$$

方法 2. 将 y = f(x) 对 y 求导, 则 $1 = f'(x) \frac{dx}{dy}$, 由此立刻可得

$$0 = \frac{\mathrm{d}f'(x)}{\mathrm{d}y} \cdot \frac{\mathrm{d}x}{\mathrm{d}y} + f'(x) \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)$$
$$= f''(x) \cdot \frac{\mathrm{d}x}{\mathrm{d}y} \cdot \frac{\mathrm{d}x}{\mathrm{d}y} + f'(x) \frac{\mathrm{d}^2x}{\mathrm{d}y^2},$$

于是我们有

$$\frac{\mathrm{d}^2 x}{\mathrm{d}y^2} = -\frac{f''(x)}{(f'(x))^3}.$$

例 4. 由参数方程 x = x(t), y = y(t) 来求 $\frac{d^2y}{dx^2}$.

解: 首先我们有 $\frac{dy}{dx} = \frac{y'(t)}{x'(t)}$, 由此立刻可得

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{y'(t)}{x'(t)} \right) = \frac{d}{dt} \left(\frac{y'(t)}{x'(t)} \right) \cdot \frac{dt}{dx}
= \frac{y''(t)x'(t) - y'(t)x''(t)}{(x'(t))^{2}} \cdot \frac{1}{x'(t)}
= \frac{y''(t)x'(t) - y'(t)x''(t)}{(x'(t))^{3}}.$$

例 5. 设
$$y = y(x)$$
 由参数方程 $\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$ 来确定, 求 $\frac{d^2y}{dx^2}$.

解: 由于
$$\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{a \sin t}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}$$
, 则
$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d}{dt}(\frac{dy}{dx}) \cdot \frac{dt}{dx} = \frac{d}{dt}(\frac{\sin t}{1-\cos t}) \cdot \frac{1}{x'(t)}$$

$$= \frac{(\cos t)(1-\cos t) - (\sin t)(\sin t)}{(1-\cos t)^2} \cdot \frac{1}{a(1-\cos t)}$$

$$= \frac{\cos t - 1}{a(1-\cos t)^3} = -\frac{1}{a(1-\cos t)^2}.$$

谢谢大家!