ECE311S: Dynamic Systems and Control Problem Set 2

Problem 1

You are given a nonlinear system

$$\begin{split} \dot{x}_1 &= -x_1 + u \\ \dot{x}_2 &= -2x_2 + x_3 \\ \dot{x}_3 &= e^{x_1}x_2 + u \\ y &= x_1 + x_2. \end{split}$$

- (i) Setting u = 1, find the equilibrium point of the system.
- (ii) Find a linearized model of the system about the equilibrium point you found in part (i).

Main Properties of the Laplace Transform

Memorize this table of Laplace transform pairs

f(t)	F(s)
$\delta(t)$	1
1 (t)	1/s
t 1 (t)	$1/s^{2}$
$t^k 1(t)(k \text{ integer})$	$k!/s^{k+1}$
$e^{at}1(t)$	$\frac{1}{s-a}$
$t^k e^{at} 1(t)$	$\frac{k!}{(s-a)^{k+1}}$
$\sin(at)1(t)$	$\frac{a}{s^2 + a^2}$
$\cos(at)1(t)$	$\frac{s}{s^2 + a^2}$

where $\mathbf{1}(t)$ denotes the unit step, i.e.

$$\mathbf{1}(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

The following is a list of the main properties of Laplace transforms. Using these properties you'll be able to solve Problems 1 and 2 without computing any integral. Throughout the following we denote $F(s) := \mathcal{L}\{f(t)\}$, $G(s) := \mathcal{L}\{g(t)\}$.

P1: Linearity
$$(\forall c_1, c_2 \in \Re)$$
 $\mathcal{L}\{c_1 f(t) + c_2 g(t)\} = c_1 F(s) + c_2 G(s)$.

P2: Differentiation
$$\mathcal{L}\left\{\frac{d}{dt}f(t)\right\} = sF(s) - f(0^{-}).$$

P3: Integration
$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{1}{s}F(s).$$

P4: Convolution
$$\mathcal{L}\{f(t)\star g(t)\}=F(s)G(s).$$

P5: Time shift Let
$$T > 0$$
. Then, $\mathcal{L}\{f(t-T)\mathbf{1}(t-T)\} = e^{-Ts}F(s)$.

P6: Shift in
$$s$$
 $\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$.

P7: Multiplication by
$$t$$
 $\mathcal{L}\{tf(t)\}=-\frac{dF(s)}{ds}$.

Problem 2

Find the Laplace transform of each of the following time-signals.

1.
$$f(t) = 3t^2 e^{-t} \cdot \mathbf{1}(t)$$

2.
$$f(t) = \sin t \cos t \cdot \mathbf{1}(t)$$

3.
$$f(t) = \sin(t-3) \cdot \mathbf{1}(t)$$

4.
$$f(t) = \sin(t-3) \cdot \mathbf{1}(t-3)$$

$$5. f(t) = t\sin(t-3)\mathbf{1}(t)$$

6.
$$f(t) = (t-3)e^{t-3}\mathbf{1}(t)$$

7.
$$f(t) = (t-3)e^{t-3}\mathbf{1}(t-3)$$

8.
$$f(t) = te^{-at} + 2t\cos t$$

$$9. f(t) = t^2 + e^{-at} \sin bt$$

Problem 3

Find the inverse Laplace transform of each of the following functions.

1.
$$F(s) = \frac{s^2 + s + 1}{(s+1)(s+2)(s+3)}$$
 (1)

2.
$$F(s) = \left(\frac{s^2 + s + 1}{(s+1)(s+2)(s+3)}\right)e^{-s}$$
 (2)

3.
$$F(s) = \frac{e^{-2s}}{s-3} \tag{3}$$

4.
$$F(s) = \frac{e^{1-s}}{s}$$
 (4)
5. $F(s) = \frac{1}{s^6}$ (5)

5.
$$F(s) = \frac{1}{s^6}$$
 (5)

6.
$$F(s) = \frac{10}{s(s+1)(s+10)}$$
 (6)

6.
$$F(s) = \frac{10}{s(s+1)(s+10)}$$
7.
$$F(s) = \frac{1}{s(s+2)^2}$$
(6)

8.
$$F(s) = \frac{2(s+2)}{(s+1)(s^2+4)}$$
 (8)

Problem 4

Given $F(s) = \frac{2-s}{(s-1)(s+2)}$, find $\lim_{t\to+\infty} f(t)$.

Problem 5

Find the solution y(t) to each of the following differential equations

1.
$$\ddot{y} + 2\dot{y} + 5y = \exp(-t)\mathbf{1}(t)$$

$$y(0) = \dot{y}(0) = 0$$

$$2. \quad \ddot{y} - y = \mathbf{1}(t)$$

$$y(0) = 1, \dot{y}(0) = 1$$

3.
$$y^{(4)} + 4y^{(3)} + 8y^{(2)} + 8y^{(1)} + 4y = 3\dot{u} + 4u$$
 $y(0) = \dot{y}(0) = \dots = y^{(3)}(0) = 0$

$$y(0) = \dot{y}(0) = \dots = y^{(3)}(0) = 0$$

4.
$$\ddot{y} + \dot{y} + 3y(t) = 0;$$

$$y(0) = \alpha, \dot{y}(0) = \beta$$