

实验名称 RLC 电路暂态特性的研究

一、预习

- 1. RC、RL 串联电路暂态过程电压表达式,以及时间常数 τ 的表达式是什么?
- 2. RLC 串联电路的暂态过程(三种阻尼过程)电压表达式、时间常数 τ 表达式是什么?
- 3. 请绘制数字示波器、信号发生器观测 RC、RL 和 RLC 串联电路的的连接线路示意图。

答。L RC串联电路、

范电:
$$U_{c}(t) = E(1-e^{-\frac{t}{Rc}})$$
, 放电: $U_{c}(t) = Ee^{-\frac{t}{Rc}}$. 时间常为 $t = Rc$.

RL年联电路: $U_{L}(t) = Ee^{-\frac{R}{L}t}$ 放电: $U_{L}(t) = -Ee^{-\frac{R}{L}t}$. 时间常为 $t = \frac{L}{R}$.

2、RLC解射路元明。

① 大阳尼、 R <
$$\frac{4L}{c}$$
 时,有以ctl= E $\left[1-\sqrt{\frac{4L}{4L-R^2C}}e^{-\frac{t}{c}}\cos(\omega t + \varphi)\right]$,就中 $t=\frac{2L}{R}$ (下间) $\omega = \sqrt{\frac{L}{LC}}\int_{1-\frac{R^2C}{4L}}^{1-\frac{R^2C}{4L}}$ ② 拉阳尼、 R> $\frac{4L}{c}$ 时,可以ctl= E $\left[1-\sqrt{\frac{4L}{R^2C-4L}}e^{-\frac{t}{c}}\sin h(\beta t + \varphi)\right]$,我中 $\beta = \sqrt{\frac{R^2C}{4L}}$ ③ 临界阳尼、 R= $\sqrt{\frac{4L}{C}}$ 时,有 Ucltl= E $\left[1-(1+\frac{t}{c})e^{-\frac{t}{c}}\right]$

RLC串联电路放电时。

① RPPR:
$$R < \int_{-\frac{\pi}{4L}}^{4L} \theta f$$
, $f(kct) = E \int_{-\frac{\pi}{4L}}^{4L} e^{-\frac{t}{\epsilon}} \cos(\omega t + \varphi)$, $\hat{\chi} \phi \tau = \frac{2L}{R} (FB)$
① PPRR: $R > \int_{-\frac{\pi}{4L}}^{4L} \theta f$, $f(kct) = E \int_{-\frac{\pi}{4L}}^{4L} e^{-\frac{t}{\epsilon}} \sin h(\beta t + \varphi)$, $\hat{\chi} \phi \beta = \int_{-\frac{\pi}{4L}}^{R^2} \int_{-\frac{\pi}{4L}}^{R^2} e^{-\frac{t}{\epsilon}} \sin h(\beta t + \varphi)$, $\hat{\chi} \phi \beta = \int_{-\frac{\pi}{4L}}^{R^2} \int_{-\frac{\pi}{4L}}^{R^2} e^{-\frac{t}{\epsilon}} \sin h(\beta t + \varphi)$.

③ 临界阻: R= \(\frac{4L}{c}\) 时,有 \(\lambda c\) = E \((1+\frac{t}{c}\)) e \(^{-\frac{t}{c}}\).

二、原始数据记录

1. RC 串联电路的暂态特性(使用方波信号进行实验,可取 $V_{pp}=10V$)

R=500Ω 方波信号周期 T=(\$0.0 \(\mu \) 80.0 M 77% 0 MS 3.005

				(从左至左)
0.022uF	10uF	100uF	470uF	(MZIN)
		- 0 0 p	· , • p	
. 2 2 4.5	t Ones	60.0mg	272ns	
(z, 0)	3,00,00			
	0.022μF 2 , 0 μs		0.022μF 10μF 100μF 2.0 μs 5,80ms 60,0ms	

 $C=100\,\mu\text{F}$ 方波信号周期 $T=60.0\,\text{ms}$ %0.0ms 770.0ms

τ R	10Ω	50Ω	100Ω	500Ω	(从左至右)
时间常数τ	6,00 ms	looms	14,4ms	60,000	

2. *RL* 串联电路的暂态特性(使用方波信号进行实验,可取 V_{pp} =10V)

L= 10 mH 方波信号周期 T= 1 ~S 150 ps (110 ps (ルルを全た)

Rs = 50 n

τ R	100Ω	500Ω	900Ω
时间常数τ	60,0 Jus	17.6 MS	9.60 jus

 $R=1000 \Omega$ 方波信号周期 T=0.8 ms (从左至右)

τ L	10 mH	50 mH	100mH
时间常数τ	9.20,45	44.8 MS	90.0 Ms

测量 L 分别为 10、50、100 mH 时, 对应的电感电阻 6、50 33.60 73、5ル

3. RLC 串联电路的暂态特性(使用方波信号进行实验,可取 $V_{pp}=10V$)

电容 L=10mH,C=0.022uF,信号源内阻 R_S =50 Ω

- (1) 调节电阻箱电阻 R 电阻箱 电阻 R 电阻衡数值,观察记录 3 种不同阻尼状态波形,临界阻值测量值 R_0 = (3 δ 0 Ω
 - (2) 测量欠阻尼情况下充电振荡波形的峰值 U_{ct_i} 及相应的时间 t_i

Ucti/V	18.4	16.2	14.6	132	12.4	// . 8	11、レ	10.8	10.6
t _i /μs	44.0	134.0	226.0	31810	410,0	201'0	5940	6840	778.0

$$E = \begin{array}{c|c} & O & V \\ \hline & \begin{pmatrix} V_{PP} \end{pmatrix} \end{pmatrix}$$
, $R_{\text{e}\text{B}\text{B}\text{B}} = \begin{array}{c|c} O & O \\ \hline & \begin{pmatrix} V_{PP} \end{pmatrix} \end{pmatrix}$

教师	姓名
签字	

三、数据处理

- 1. 记录各项实验任务过程中的 R、C 和 L 各参数值,示波器观察到的波形,以及时间常数 τ ,并与理论值相比较。
- 2. 在 RLC 串联电路中,测量欠阻尼情况下 U_C 充电时振荡波形峰值 U_{ct_l} 和 t_i ,采用最小二乘法或作图法求出 $\ln \left(E-U_C\right) \sim t$ 的斜率,计算时间常数 τ ,并与理论值 $\tau = \frac{2L}{R} \ (R=R_{\text{电阻}} + R_S + R_L)$ 进行比较,分析误差产生的原因。

解: 1. 根据第二部分所记录的原始数据有:

RC 串联电路暂态特性(V _{pp} =10V)		时间常	所用方波周期	
$R(\Omega)$	C (µF)	观测值	理论值	////11///1000/100/701
	0.022	12.0μs	12.1µs	180.0μs
500	10	5.80ms	5.5ms	80.0ms
300	100	60.0ms	55ms	770.0ms
	470	272ms	258.5ms	3.00s
10		6.00ms	6ms	60.0ms
50	100	10.0ms	10ms	80.0ms
100	100	14.4ms	15ms	150.0ms
500		60.0ms	55ms	770.0ms

与理论值的误差均在10%之内。大都比计算的理论值大些。

RL 串联电路暂	态特性(V _{pp} =10V)	时间常	时间常数τ		
$R(\Omega)$	L (mH)	观测值	理论值		
	10	9.20μs	9.47µs	0.8ms	
1000	50	44.8μs	46.1µs	1ms	
	100	90.0µs	89.0µs	1.4ms	
100		60.0µs	63.9µs	1ms	
500	10	17.6µs	17.97µs	250μs	
900		9.60µs	10.45µs	110μs	

与理论值的误差均在10%之内。大都比计算的理论值小些。

2. 峰值时
$$U_C = E\left(1 + \sqrt{\frac{4L}{4L - R^2C}}e^{-\frac{t}{\tau}}\right)$$
 \Rightarrow $U_C - E = E\sqrt{\frac{4L}{4L - R^2C}}e^{-\frac{t}{\tau}}$, 两边取对数得
$$\ln(U_C - E) = \ln E\sqrt{\frac{4L}{4L - R^2C}} - \frac{t}{\tau} \,, \ \,$$
 得若斜率为 k ,则时间常数表达式: $\tau = -\frac{1}{k}$ 。

作出的图形如下图所示:

可求得图线方程为 $\ln(U_C - E) = -0.00363t + 2.32$ (t 的单位为 μ s, $\ln(E - U_C)$ 的单位为V)

根据斜率
$$k$$
 求出时间常数 $\tau = -\frac{1}{k} = 275.48 \mu s = 0.275 ms$

理论值
$$\tau = \frac{2L}{R} = \frac{2 \times 10 \times 10^{-3}}{6.5 + 50} = 0.354 \,\mathrm{ms}$$
。

计算值与理论值误差较大,有可能是电源内阻、电感、电容寄生电阻的估算值取值不当。从 RC 电路、RL 电路的数据中也可以看出,上述三个内阻可能比我们估计的值更大。电阻箱的 接触电阻也是引起误差的可能原因。

四、实验现象分析及结论

第一,对于 RC 或 RL 一阶电路,换路后电容电压或电感电流不跃变,随后电容电压或电感电流按照指数规律变化,指数项 $e^{\frac{-L}{\tau}}$ 中的 τ 表征了储能元件(电感和电容)的状态变化快慢,称为时间常数。对于 RL 电路, $\tau=\frac{L}{R}$; 对于 RC 电路, $\tau=RC$.

第二,对于 RLC 串联电路,当电路中电阻取值和 $2\sqrt{L/C}$ 大小关系不同时,可能出现欠阻尼、临界阻尼和过阻尼三种情况。

第三,在不同取值下 RC、RL 电路的时间常数和 RLC 振荡电路的时间常数计算见第三部分:达到临界阻尼时,电阻箱电阻的取值为 1380Ω (见第二部分)。

五、讨论题

- 1. 在 RC 和 RL 电路中,固定方波频率 f 而改变 R 的阻值,为什么会有各种不同的波形?若固定 R 而改变方波频率 f,会得到类似的波形吗?为什么?
- 2. 在 RLC 电路中, 为什么要适当调节方波频率才能观测到阻尼振荡的波形?如果频率很高,

将会发生什么样的情况? 试观察。

- 答: 1. ①因为改变 *R* 的阻值将改变时间常数,时间常数不同,储能元件状态改变的快慢也不同,电路中各处电压和电流的变化速率也就不同,所以会观察到不同的波形。【根据我们推导出的一阶、二阶电路暂态过程中各处电压电流方程也可看出这一点】
- ②不会。只要方波的周期(准确地说是周期的一半)比达到稳态(或者接近稳态)所需要的时间长得多,所观察到的充放电波形就都是极为相近的,只不过是维持稳态(或接近稳态,波形平稳部分)的时间更长些。但若方波的周期很短,导致系统尚未达到或接近稳态,外界激励就改变了,那么波形就会发生比较大的变化了。
- 2. 适当调节方波频率,才能使电路在方波在由高(低)电平向低(高)电平转化前,已经很接近稳态。这样在换路(激励改变)后,才能观察到电路从一个近似的稳态开始改变的过程。

方波频率很高时,高低电平的改变很频繁,导致系统的暂态过程还未完成(系统尚未达到稳态),外界激励就改变了,系统被迫转向新的稳态,则波形没有稳态情形,而是一直在两个稳态(若允许状态改变时间无限长,电路可达到的状态)之间(并且达不到两个稳态)变化。