Convex Optimization: Reading Notes 4

GKxx

May 2, 2022

1 Lagrange duality

Definition 1.1 (Lagrangian). For an optimization problem

$$\begin{aligned} & \min \quad f_0(x) \\ & \text{s.t.} \quad f_i(x) \leqslant 0, \quad i=1,\cdots,m, \\ & \quad h_i(x)=0, \quad i=1,\cdots,p, \end{aligned} \tag{1}$$

with variable $x \in \mathbb{R}^n$, domain $\mathcal{D} = \bigcap_{i=0}^m \mathbf{dom} \, f_i \cap \bigcap_{i=1}^p h_i$ and optimal value \mathfrak{p}^* , we define its Lagrangian to be

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x),$$

with domain

$$\operatorname{\mathbf{dom}} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p.$$

The variables λ_i and ν_i are called the Lagrangian multipliers or dual variables.

Definition 1.2 (Lagrange dual function). For the optimization problem defined as in (1), the Lagrange dual function is

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu).$$

Remark 1.3. The Lagrange dual function is concave.

Proposition 1.4 (Lower bound property). $g(\lambda, \nu) \leq p^*$ for every $\lambda \succeq 0$.

Proof. Suppose the optimal value p^* is achieved at $x = \tilde{x}$. For every $\lambda \succeq 0$, we have that

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) \leqslant L(\tilde{x},\lambda,\nu) = f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x),$$

where $f_i(x) \leq 0$ and $h_j(x) = 0$ for every $i = 1, \dots, m, j = 1, \dots, p$, so

$$q(\lambda, \nu) \leq f_0(\tilde{\chi}).$$

Definition 1.5 (Dual feasibility). A pair (λ, ν) is referred to as dual feasible if $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom } g$.

Remark 1.6 (Conjugate function). The conjugate function of f is

$$f^*(y) = \sup_{x} (y^T x - f(x)).$$

Proposition 1.7. For an optimization problem with linear constraints

min
$$f_0(x)$$

s.t. $Ax \leq b$
 $Cx = d$

the Lagrangian is

$$L(x, \lambda, \nu) = f_0(x) + \lambda^{\mathsf{T}}(Ax - b) + \nu^{\mathsf{T}}(Cx - d),$$

and the Lagrange dual function is

$$g(\lambda, \nu) = \inf_{x} \left(f_0(x) + \left(A^T \lambda + C^T \nu \right)^T x \right) - b^T \lambda - d^T \nu$$

= $f_0^* \left(-A^T \lambda - C^T \nu \right) - b^T \lambda - d^T \nu$.

Remark 1.8. The Lagrange dual problem is convex.

Definition 1.9 (Lagrange dual problem). For an optimization problem in the form of (1), the Lagrange dual problem is

$$\max \quad g(\lambda, \nu)$$
s.t. $\lambda \succ 0$.

The optimal value is denoted by d^* . The difference p^*-d^* is called the duality gap.

Example 1.10 (Linear program). The Lagrange dual of a linear program

is

$$\max - b^{\mathsf{T}} \lambda$$
s.t. $A^{\mathsf{T}} \lambda + c = 0$ (3)
$$\lambda \succeq 0.$$

Proof. The Lagrangian of problem (2) is

$$L(x,\lambda) = c^{\mathsf{T}}x + \lambda^{\mathsf{T}}(Ax - b),$$

so the Lagrange dual function is

$$g(\lambda) = \inf_{x} (c + A^{T} \lambda)^{T} x - b^{T} \lambda.$$

Note that unless $c+A^T\lambda=0$, the infimum of a linear function $(c+A^T\lambda)^Tx$ is $-\infty$. Therefore

$$g(\lambda) = \begin{cases} -b^T \lambda, & A^T \lambda + c = 0, \\ -\infty, & \text{otherwise.} \end{cases}$$

Therefore, the dual problem is

$$\begin{aligned} \max & -b^T \lambda \\ \mathrm{s.t.} & A^T \lambda + c = 0 \\ & \lambda \succ 0. \end{aligned}$$

Theorem 1.11 (Weak duality). $d^* \leq p^*$. It follows directly from the lower bound property.

Definition 1.12 (Strong duality). If $d^* = p^*$ for some problem, we say that the strong duality holds.

Definition 1.13 (Slater's condition). For a convex problem

$$\begin{aligned} & \min \quad f_0(x) \\ & \text{s.t.} \quad f_i(x) \leqslant 0, \quad i = 1, \cdots, m \\ & \quad Ax = b \end{aligned}$$

with domain \mathcal{D} , we say that the Slater's condition holds if there exists $x \in \mathbf{relint} \, \mathcal{D}$ such that $f_i(x) < 0$ for every $i = 1, \dots, m$. Such a point is also called strictly feessible.

Definition 1.14 (Refined Slater's condition). The refined Slater's condition does not require affine inequalities to hold with strict inequality.

Theorem 1.15. Both the Slater's condition and its refined condition imply strong duality.

Proof. We consider the convex problem of the form (4). Assume that the matrix A has full rank, otherwise we can eliminate some of the equality constraints that are expressible as linear combinations of other constraints. We further assume that the domain \mathcal{D} has nonempty interior, which means **relint** $\mathcal{D} = \mathbf{int} \mathcal{D}$. Suppose that Slater's condition holds.

Define

$$\mathcal{A} = \{(u, v, t) \mid \exists x \in \mathcal{D} \text{ s.t. } f(x) \leq u, Ax - b = v, f_0(x) \leqslant t\},\$$

and

$$\mathcal{B} = \{(0,0,s) \in \mathbb{R}^m \times \mathbb{R}^p \times \mathbb{R} \mid s < p^*\}.$$

It is easy to see by definition that \mathcal{A} and \mathcal{B} are convex. Pick $(u,v,t)\in\mathcal{A}\cap\mathcal{B}$, so that $\exists x\in\mathcal{D} \text{ s.t. } f_0(x)\leqslant t<\mathfrak{p}^*,$ which is impossible. This shows that \mathcal{A} and \mathcal{B} are disjoint. By the separating hyperplane theorem, there exist $(\tilde{\lambda},\tilde{\nu},\mu)\neq 0$ and α such that

$$\forall (u, v, t) \in \mathcal{A}, \quad \tilde{\lambda}^T u + \tilde{v}^T v + \mu t \geqslant \alpha,$$

and

$$\forall (u,v,t) \in \mathcal{B}, \quad \tilde{\lambda}^T u + \tilde{\nu}^T v + \mu t = \mu t \leqslant \alpha.$$

Note that for every $(u, v, t) \in \mathcal{A}$, any (u', v, t') satisfying $u' \succ u, t' > t$ is also in \mathcal{A} . Therefore, $\tilde{\lambda} \succeq 0$ and $\mu \geqslant 0$ must hold, otherwise $\tilde{\lambda}^T u + \tilde{v}^T v + \mu t$ would not be bounded below by α .

Since $\mu \geq 0$ and for every $s < p^*$ we have $\mu s \leq \alpha$, it follows that $\mu p^* \leq \alpha$, so we obtain

$$\mu p^* \leqslant \alpha \leqslant \tilde{\lambda}^T u + \tilde{\nu}^T \nu + \mu t$$

for every $(u, v, t) \in A$. This gives that for every $x \in \mathcal{D}$,

$$\mu p^* \leqslant \alpha \leqslant \sum_{i=1}^m \tilde{\lambda}_i f_i(x) + \tilde{\nu}^T (Ax - b) + \mu f_0(x).$$

When $\mu > 0$, the above leads to

$$L\left(x,\frac{\tilde{\lambda}}{\mu},\frac{\tilde{\nu}}{\mu}\right)\geqslant\frac{\alpha}{\mu}\geqslant p^*$$

for any $x \in \mathcal{D}$. Therefore

$$g\left(\frac{\tilde{\lambda}}{\mu},\frac{\tilde{\nu}}{\mu}\right) = \inf_{x} L\left(x,\frac{\tilde{\lambda}}{\mu},\frac{\tilde{\nu}}{\mu}\right) \geqslant p^{*},$$

but the weak duality theorem says that

$$g(\lambda, \nu) \leqslant p^*, \quad \forall \lambda \succeq 0, \nu.$$

Hence $g\left(\frac{\tilde{\lambda}}{\mu},\frac{\tilde{\nu}}{\mu}\right)=p^*,$ so the strong duality holds.

If $\mu = 0$, the Slater's condition gives that for some $\tilde{x} \in \text{int } \mathcal{D}$,

$$f_i(\tilde{x}) < 0, i = 1, \dots, m$$
, and $A\tilde{x} - b = 0$.

Therefore

$$0\leqslant\alpha\leqslant\sum_{i=1}^{m}\tilde{\lambda}_{i}f_{i}\left(\tilde{x}\right),$$

but $\tilde{\lambda} \succeq 0$ and $f_i(\tilde{x}) < 0$ holds for every i. This implies $\tilde{\lambda} = 0$, so $\tilde{v}^T(Ax - b) \geqslant 0 \, \forall x \in \mathcal{D}$. From $(\tilde{\lambda}, \tilde{v}, \mu) \neq 0$ and $\tilde{\lambda} = 0$, $\mu = 0$ we obtain $\tilde{v} \neq 0$. Since $\tilde{x} \in \mathbf{int} \, \mathcal{D}$ and $\tilde{n}u^T(A\tilde{x} - b) = 0$, there must be some $x \in D$ with $\tilde{v}^T(Ax - b) < 0$ unless $\tilde{v}^TA = 0$, while this contradicts the assumption that A has full rank.

Theorem 1.16. Strong duality also holds for problems with a quadratic objective and one quadratic inequality constraint, provided that Slater's condition holds.

2 Optimality conditions

Theorem 2.1 (Complementary slackness). Suppose that the strong duality holds. If x^* is primal optimal and (λ^*, ν^*) is dual optimal, then

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

Proof. We have that

$$\begin{split} f(x^*) &= g(\lambda^*, \nu^*) = \inf_x L(x, \lambda^*, \nu^*) \\ &\leqslant L(x^*, \lambda^*, \nu^*) = f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*) \leqslant f_0(x^*). \end{split}$$

Since $h_i(x^*) = 0, i = 1, \dots, p$, it follows that

$$\sum_{i=1}^m \lambda_i^* f_i(x^*) = 0,$$

while $\lambda_i^* \geqslant 0$, $f_i(x^*) \leqslant 0$. Therefore

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \cdots, m.$$

Definition 2.2 (Karush-Kuhn-Tucker conditions). Suppose $f_0, f_1, \dots, f_m, h_1, \dots, h_p$ are differentiable. For x, λ, ν , the KKT conditions are

- 1. Primal feasible: $f_i(x)\leqslant 0, i=1,\cdots, m$ and $h_i(x)=0, i=1,\cdots, p.$
- 2. Dual feasible: $\lambda \succeq 0$.
- 3. Complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \cdots, m$.
- 4. $\nabla_x L(x, \lambda, \nu) = 0$, i.e.

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0.$$

Theorem 2.3. When strong duality holds, any primal optimal $\tilde{\mathbf{x}}$ and dual optimal $\left(\tilde{\lambda}, \tilde{\mathbf{v}}\right)$ must satisfy the KKT conditions.

Theorem 2.4. For convex problems, if $(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\mathbf{v}})$ satisfy the KKT conditions, then $\tilde{\mathbf{x}}$ is primal optimal and $(\tilde{\boldsymbol{\lambda}}, \tilde{\mathbf{v}})$ is dual optimal, with zero duality gap.

Proof. Suppose $\left(\tilde{x},\tilde{\lambda},\tilde{v}\right)$ satisfy the KKT conditions. The dual feasibility implies that $L\left(x,\tilde{\lambda},\tilde{v}\right)$ is convex in x. Since $\nabla_x L\left(x,\tilde{\lambda},\tilde{v}\right)=0$, it follows that \tilde{x} minimizes $L\left(x,\tilde{\lambda},\tilde{v}\right)$. Therefore

$$g\left(\tilde{\lambda},\tilde{\nu}\right) = \inf_{x} L\left(x,\tilde{\lambda},\tilde{\nu}\right) = L\left(\tilde{x},\tilde{\lambda},\tilde{\nu}\right) = f_{0}\left(\tilde{x}\right) + \sum_{i=1}^{m} \lambda_{i} f_{i}\left(\tilde{x}\right).$$

From the complementary slackness we obtain $g\left(\tilde{\lambda},\tilde{\nu}\right)=f_0\left(\tilde{x}\right)$, therefore strong duality holds, and $\left(\tilde{x},\tilde{\lambda},\tilde{\nu}\right)$ is optimal.

Corollary 2.5. If Slater's condition holds for a convex problem, then $\tilde{\mathbf{x}}$ is optimal if and only if $\exists \left(\tilde{\lambda}, \tilde{\mathbf{v}}\right)$ s.t. $\left(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\mathbf{v}}\right)$ satisfy the KKT conditions.

Definition 2.6 (Active set). The active set at a feasible point x is

$$\mathcal{A}(x) = \{i \mid f_i(x) = 0, 1 \leqslant i \leqslant m\}.$$

Definition 2.7 (LICQ). The linear independence constraint qualification is said to hold at x if the set of active constraint gradients

$$\{\nabla f_{i}(x), \nabla h_{i}(x) \mid i \in \mathcal{A}(x), j = 1, \cdots, p\}$$

is linearly independent at x.

Theorem 2.8. Suppose \mathbf{x}^* is a local optimal at which the LICQ holds. Then there exists Lagrange multipliers $(\lambda^*, \mathbf{v}^*)$ such that $(\mathbf{x}^*, \lambda^*, \mathbf{v}^*)$ satisfies the KKT conditions.

Definition 2.9 (MFCQ). The Mangasarian-Fromovitz constraint qualification is said to hold at x if the set of equality constrait gradients

$$\{\nabla h_i(x) \mid i=1,\cdots,p\}$$

is linearly independent, and there exists d such that

$$\nabla h_i(x)^T d = 0 \ \forall i = 1, \cdots, p, \quad \text{and} \quad \nabla f_i(x)^T d < 0 \ \forall i \in \mathcal{A}(x).$$

Theorem 2.10. LICQ implies MFCQ.

Definition 2.11 (Strong Slater's condition). The strong Slater's condition is satisfied if the set of equality constraint gradients

$$\{\nabla h_i(x) \mid i = 1, \dots, p\}$$

is linearly independent and there exists a feasible point strictly satisfying all inequality constraints, i.e. $\exists x \in \mathcal{D}$ such that

$$f_{\mathfrak{i}}(x)<0, \mathfrak{i}=1,\cdots,m \quad \mathrm{and} \quad h_{\mathfrak{i}}(x)=0, \mathfrak{i}=1,\cdots,p.$$

Theorem 2.12. The Slater's condition (1.13) implies the existence of a nonempty, closed, convex set Λ_* such that for all $(\lambda^*, \nu^*) \in \Lambda_*$, (x, λ^*, ν^*) satisfies the KKT conditions. The strong Slater's condition (2.11) implies the existence of such a Λ_* that is bounded.

For more common and useful CQs and their relationship with KKT conditions, see [1].

References

[1] G. Wachsmuth, "On licq and the uniqueness of lagrange multipliers," *Operations Research Letters*, vol. 41, no. 1, pp. 78–80, 2013.