Nama: Nurmala

Kelas: C

Nim: 20.01.013.069

Implementasi dengan python

```
[1] # DOWNLOAD DATASET

| Wget --no-check-certificate \
| https://dicodingacademy.blob.core.windows.net/picodiploma/ml_pemula_academy/rockpaperscissors.zip

--2021-03-19 04:01:04-- https://dicodingacademy.blob.core.windows.net/picodiploma/ml_pemula_academy/rockpape

Resolving dicodingacademy.blob.core.windows.net (dicodingacademy.blob.core.windows.net)... 52,239.197.36

Connecting to dicodingacademy.blob.core.windows.net (dicodingacademy.blob.core.windows.net)| 52,239.197.36 | 144
```

```
2] # UNNIP FILE YANG TELAH DIDOWNLOAD

import zipfile,os

local_zip = 'rockpaperscissors.zip'

zip_ref = zipfile.ZipFile(local_zip, 'r')

# EXTRACT

zip_ref.extractall('file_extracted')

zip_ref.close()

3] from sklearn.model_selection import train_test_split
```

```
[4] base_dir = 'file_extracted/rockpaperscissors/rps-cv-images'
[5] # MELIHAT ISI DIRECTORY
    os.listdir(base_dir)
```

```
[8] import tensorflow as tf
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(100, 150, 3)),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(3, activation='relu'),
    tf.keras.layers.Dense(3, activation='softmax')
])
```

```
# UPLOAD GAMBAR UNTUK DETEKSI GAMBAR
import numpy as np
from google.colab import files
from keras.preprocessing import image import matplotlib.pyplot as plt
import matplotlib.image as mpimg
*matplotlib inline
uploaded = files.upload()
for fn in uploaded.keys():
  path = fn
  img = image.load_img(path, target_size=(100,150))
  imgplot = plt.imshow(img)
  x = image.img_to_array(img)
  x = np.expand_dims(x, axis=0)
  images = np.vstack({x})
classes = model.predict(images, batch_size=10)
  print(fn)
  if classes[0][0]==1:
  print('rock')
elif classes[0][1]==1:
    print('paper')
    print('scissors')
```

