Trabalho final Mineração de dados

Tuning do parâmetro de dificuldade das questões do ENEM utilizando PLN

Augusto Souza Nunes Lucas Garzeri de Melo Lucas Schimidt Coelho 11913019 Lucca Baptista da Silva Ferraz 13688134 Lua Nardi Quito 11371270

Sumário

INTRODUÇÃO

• Descrição do problema

SOBRE OS DADOS

• Dados utilizados e tratamentos feitos

ANÁLISE EXPLORATÓRIA

- Wordcloud
- BERTopic

METODOLOGIAS

- Extração de features lingúisticos
- Word2Vec
- BERT
- Similaridade entre os embeddings
- Regressões

RESULTADOS

Introdução

Em 2009 o enem se tornou um exame cuja principal função é avaliar quais alunos devem ingressar nas faculdades - se tornando um vestibular nacional. E, por consequência, se tornou uma política educacional de enorme impacto social.

Processo de criação das questões:

- Alto custo do processo completo
- Custos adicionais com impressão, logística, aplicação e correção

Pré-teste

2009

- Custo: R\$ 939,5 mil
- 1 etapa
- 48 mil estudantes
- 10 municípios

2010

- Custo: R\$ 6,1 milhões
- 4 etapas
- 100 mil estudantes
- 40 municípios

O GLOBO

Custos para pré-testar itens do Enem podem chegar a R\$ 6 milhões

BRASÍLIA - O Instituto Nacional de Estudos e Pesquisas Educacionais (Inep) pagará R\$ 6,1...

G O Globo/Nov 4, 2011

ML3: Modelo logístico de 3 parâmetros

$$P(X_{ij} = 1 \mid \theta_j, a_i, b_i, c_i) = c_i + \frac{(1 - c_i)}{1 + e^{-a_i(\theta_j - b_i)}}$$

- $i = 1, \ldots, I$ (itens)
- $j = 1, \dots, n$ (indivíduos)
- $X_{ij} = 1$, se indiv j acerta o item i, e $X_{ij} = 0$, c.c.
- \bullet θ_j é o nível do traço latente do indiv j
- a_i parâmetro de discriminação do item i, derivada no ponto de inflexão
- b_i parâmetro de dificuldade do item i, se $b_i = \theta_j$, $P(X_{ij} = 1 \mid \theta_j, a_i, b_i, c_i) = \frac{(1+c_i)}{2}$
- c_i parâmetro de acerto ao acaso ("chute") do item i

Símbolo	Significado
X_{ij}	Resposta do aluno j ao item i: $1 = acerto$, $0 = erro$
θ_{j}	Habilidade (traço latente) do indivíduo j
a_i	Discriminação: quanto o item distingue entre alunos com diferentes níveis de
	habilidade
b_i	Dificuldade: nível de habilidade onde a chance de acerto é aproximadamente
	50%
c_{i}	Probabilidade de acerto ao acaso (chute)

Table 1: Significados dos parâmetros do modelo logístico de 3 parâmetros (TRI)

Objetivo

- Verificar a capacidade de predizer a dificuldade dos itens de Ciências da Natureza a partir de suas características textuais, utilizando métodos computacionais.
- Analisar os métodos propostos no <u>artigo</u> e propor novos métodos
- Reduzir os custos da prova
- Aumentar a segurança do processo

<u>É possível calibrar os itens do Enem sem pré-teste?</u>

Sobre os dados

- Dados de questões de prova e dados dos itens das provas
- Anos de coleta 2009 2023
- 675 questões de CN
- 23 features

#	Column	Non-Null Count	Dtype
0	numero	675 non-null	float64
1	enunciado	675 non-null	object
2	Α	675 non-null	object
3	В	675 non-null	object
4	С	675 non-null	object
5	D	675 non-null	object
6	E	675 non-null	object
7	CO_POSICAO	675 non-null	float64
8	SG_AREA	675 non-null	object
9	CO_ITEM	675 non-null	float64
10	TX_GABARITO	675 non-null	object
11	CO_HABILIDADE	630 non-null	float64
12	IN_ITEM_ABAN	675 non-null	float64
13	TX_MOTIVO_ABAN	16 non-null	object
14	NU_PARAM_A	659 non-null	object
15	NU_PARAM_B	659 non-null	float64
16	NU_PARAM_C	659 non-null	float64
17	TX_COR	675 non-null	object
18	CO_PROVA	675 non-null	float64
19	ANO	675 non-null	float64
20	TP_LINGUA	0 non-null	float64
21	IN_ITEM_ADAPTADO	450 non-null	float64
22	TP_VERSAO_DIGITAL	0 non-null	float64

Parâmetro de dificuldade da questão

nı	mero	enunciado	А	В	С	D	E	CO_POSICAO	SG_AREA	CO_ITEM	•••	TX_MOTIVO_ABAN	NU_PARAM_A	NU_PARAM_B	NU_PARAM_C	TX_COR	CO_PROVA	ANO
0	1.0	A atmosfera terrestre é composta pelos gases\n	reduzir o calor irradiado pela Terra mediante	promover a queima da biomassa vegetal, respons	reduzir o desmatamento, mantendo-se, assim, o\	aumentar a concentração atmosférica de H2O,\nm	remover moléculas orgânicas polares da atmosfe	1.0	CN	60083.0		NaN	138076	-1.70677	14199.0	AZUL	49.0	2009.0
1	2.0	Considere que, no sistema de coordenadas xOy,	Concentração média de álcool no sangue ao long	Variação da frequência da ingestão de álcool a	Concentração mínima de álcool no sangue a part	Estimativa de tempo necessário para metaboliza	Representação gráfica da distribuição de frequ	2.0	CN	60084.0		NaN	214163	0.62043	9837.0	AZUL	49.0	2009.0
2		Estima-se que haja atualmente no mundo 40\nmil	induzir a imunidade, para proteger o organismo	ser capaz de alterar o genoma do organismo por	produzir antígenos capazes de se ligarem ao ví	ser amplamente aplicada em animais, visto que	estimular a imunidade, minimizando a transmiss	3.0	CN	60085.0		NaN	92339	2.07704	30865.0	AZUL	49.0	2009.0
3	4.0	Em um experimento, preparou-se um conjunto de\	os genótipos e os fenótipos idênticos.	os genótipos idênticos e os fenótipos diferentes.	diferenças nos genótipos e fenótipos.	o mesmo fenótipo e apenas dois genótipos difer	o mesmo fenótipo e grande variedade de genótipos.	4.0	CN	60086.0		NaN	123281	0.11500	34173.0	AZUL	49.0	2009.0
4	5.0	Na linha de uma tradição antiga, o astrônomo\n	Ptolomeu apresentou as ideias mais valiosas, p	Copérnico desenvolveu a teoria do heliocentris	Copérnico viveu em uma época em que a pesquisa	Kepler estudou o planeta Marte para atender às	Kepler apresentou uma teoria científica que, g	5.0	CN	60087.0		NaN	121819	0.21694	21795.0	AZUL	49.0	2009.0

Tratamento de questões com imagem

- Provas Ledor
- LLM's para questões diferentes (ChatGPT, DeepSeek, Gemini)

O eixo de rotação da Terra apresenta uma inclinação em relação ao plano de sua órbita em torno do Sol, interferindo na duração do dia e da noite ao longo do ano.

Prova azul (sem acessibilidade)

Descrição da imagem: Representação esquemática do globo terrestre em 21 de dezembro. O globo é representado por um círculo dividido ao meio por uma linha vertical, com a incidência direta de raios solares ao meio-dia, representados por setas horizontais da esquerda para a direita. A metade esquerda representa a parte iluminada (dia) e a metade direita representa a parte sombreada (noite). O eixo de rotação da Terra está inclinado em relação à vertical e é representado por uma reta com a metade superior na parte sombreada e a metade inferior na parte iluminada. Perpendicularmente ao eixo de rotação estão indicados, de cima para baixo, o Polo Norte, com o Círculo Polar Ártico, o Trópico de Câncer, a Linha do Equador, o Trópico de Capricórnio e o Polo Sul, com o Círculo Polar Antártico.

Prova Laranja - Ledor (com acessibilidade)

Microdados

- Não utilizados em nossa análise
- Dados do participante (12)
- Dados da escola (7)
- Dados do local de aplicação da prova (4)
- Dados da prova objetiva (21)
- Dados da redação (7)
- Dados do questionário socioeconômico (25)

Ano +	Número de inscritos (confirmados)			
2024	4 325 960 ^[1]			
2023	3 933 970 ^[2]			
2022	3 409 682 ^[3]			
2021	4 004 764 ^[4]			
2020	5 783 357 ^[5]			
2019	5 095 308 ^[6]			
2018	5 513 662 ^[7]			
2017	6 731 186 ^[8]			
2016	8 627 371 ^[8]			
2015	7 792 025 ^[8]			
2014	8 722 290 ^[8]			
2013	7 173 574 ^[9]			
2012	5 791 332 ^[9]			
2011	5 380 857 ^[9]			
2010	4 626 094 ^[9]			
2009	4 148 721 ^[9]			

Estatísticas Descritivas

	Tam. Enunciado	Tam. Total Questão	NU_PARAM_B
Contagem	677.0	677.0	657.0
Média	688.35	892.96	123.27
Desvio Padrão	338.6	396.27	134.63
Mínimo	3.0	18.0	-639.0
1º Quartil (25%)	463.0	613.0	32.21
Mediana (50%)	610.0	804.0	120.77
3º Quartil (75%)	832.0	1072.0	179.36
Máximo	2412.0	3169.0	957.0

Histogramas

Teste de normalidade e Correlação

```
Teste de normalidade Shapiro-Wilk para NU_PARAM_B:
Estatística = 0.805
p-valor = 2.065e-27
→ A distribuição de NU_PARAM_B NÃO é normal.
```

Correlação entre Tamanho Total e Dificuldade: Correlação de Pearson: 0.027 (p-valor: 4.880e-01)

Questão mais fácil e mais difícil

- Parâmetro B: -1.80092
- Prova 2011

QUESTÃO 88

Certas espécies de algas são capazes de absorver rapidamente compostos inorgânicos presentes na água, acumulando-os durante seu crescimento. Essa capacidade fez com que se pensasse em usá-las como biofiltros para a limpeza de ambientes aquáticos contaminados, removendo, por exemplo, nitrogênio e fósforo de resíduos orgânicos e metais pesados provenientes de rejeitos industriais lançados nas águas. Na técnica do cultivo integrado, animais e algas crescem de forma associada, promovendo um maior equilíbrio ecológico.

SORIANO, E. M. Filtros vivos para limpar a água. Revista Ciência Hoje. V. 37, nº 219, 2005 (adaptado).

A utilização da técnica do cultivo integrado de animais e algas representa uma proposta favorável a um ecossistema mais equilibrado porque

- os animais eliminam metais pesados, que são usados pelas algas para a síntese de biomassa.
- 3 os animais fornecem excretas orgânicos nitrogenados, que são transformados em gás carbônico pelas algas.
- as algas usam os resíduos nitrogenados liberados pelos animais e eliminam gás carbônico na fotossíntese, usado na respiração aeróbica.
- as algas usam os resíduos nitrogenados provenientes do metabolismo dos animais e, durante a síntese de compostos orgânicos, liberam oxigênio para o ambiente.
- as algas aproveitam os resíduos do metabolismo dos animais e, durante a quimiossíntese de compostos orgânicos, liberam oxigênio para o ambiente.

- Parâmetro B: 2.99298
- Prova 2009

Questão 23

Cerca de 1% do lixo urbano é constituído por resíduos sólidos contendo elementos tóxicos. Entre esses elementos estão metais pesados como o cádmio, o chumbo e o mercúrio, componentes de pilhas e baterias que são perigosos à saúde humana e ao meio ambiente Quando descartadas em lixos comuns, pilhas e baterias vão para aterros sanitários ou lixões a céu aberto, e o vazamento de seus componentes contamina o solo, os rios e o lencol freático, atingindo a flora e a fauna. Por serem bioacumulativos e não biodegradáveis, esses metais chegam de forma acumulada aos seres humanos, por mejo da cadeia alimentar. A legislação vigente (Resolução CONAMA nº 257/1999) regulamenta o destino de pilhas e baterias após seu esgotamento energético e determina aos fabricantes e/ou importadores a quantidade máxima permitida desses metais em cada tipo de pilha/bateria porém o problema ainda persiste

Acesso em: 11 iul. 2009 (adaptado).

Uma medida que poderia contribuir para acabar definitivamente com o problema da poluição ambiental por metais pesados relatado no texto seria

- deixar de consumir aparelhos elétricos que utilizem pilha ou bateria como fonte de energia.
- usar apenas pilhas ou baterias recarregáveis e de vida útil longa e evitar ingerir alimentos contaminados, especialmente peixes
- devolver pilhas e baterias, após o esgotamento da energia armazenada, à rede de assistência técnica especializada para repasse a fabricantes e/ou importadores.
- o criar nas cidades, especialmente naquelas com mais de 100 mil habitantes, pontos estratégicos de coleta de baterias e pilhas, para posterior repasse a fabricantes e/ou importadores.
- exigir que fabricantes invistam em pesquisa para a substituição desses metais tóxicos por substâncias menos nocivas ao homem e ao ambiente, e que não seiam bioacumulativas.

BERTOpic

- Grid Search para parâmetros do UMAP e HDBSCAN
 - n_neighbors_list = [5, 10, 15, 30]
 - o min_dist_list = [0.0, 0.1, 0.3]
 - o min_cluster_size_list = [5, 8, 10]
 - min_samples_list = [1, 2, 5]

Topic	Count	Name	Representation	Representative_Docs
-1	59	-1_água_anticorpos_membrana_célula	[água, anticorpos, membrana, célula, glicose,	[moedas despertam interesse colecionadores num
0	45	0_temperatura_água_vazão_umidade	[temperatura, água, vazão, umidade, relativa,	[pessoa lendo manual ducha acabou adquirir cas
1	38	1_machos_fêmeas_peixes_animais	[machos, fêmeas, peixes, animais, espécies, vi	[hermaphroditic demasculinized frogs after exp
2	36	2_carga_positiva_chumbo_reação	[carga, positiva, chumbo, reação, concreto, ca	[aplicações ambientais persulfato remediação á

Metodologias

- Análise de atributos linguísticos
- Modelos contextuais
- Similaridade de texto
- Fine tuned BERT

Extração de atributos linguísticos

A fim de iniciar a análise exploratória, foram extraídos atributos textuais dos enunciados das questões. As métricas aqui calculadas se baseiam no artigo do NILC e avaliam características como inteligibilidade, complexidade textual, coesão e coerência. Todas as métricas foram adaptadas às nuances da língua portuguesa e foram implementadas à partir da biblioteca spaCy, própria para análise morfossintática.

NILC-Metrix: assessing the complexity of written and spoken language in Brazilian Portuguese

NILC-Metrix: assessing the complexity of written and spoken language in Brazilian Portuguese

Sidney Evaldo Leal 1

Magali Sanches Duran 1

Carolina Evaristo Scarton 2

sidleal@gmail.com ma

magali.duran@gmail.com

c.scarton@sheffield.ac.uk

Nathan Siegle Hartmann 3

Sandra Maria Aluísio 1

nathanshartmann@gmail.com

sandra@icmc.usp.br

¹ Instituto de Ciências Matemáticas e de Computação - University of São Paulo, São Paulo, Brazil
² The University of Sheffield, Sheffield, UK
³ Itaú Unibanco, São Paulo, Brazil

Abstract

This paper presents and makes publicly available the NILC-Metrix, a computational system comprising 200 metrics proposed in studies on discourse, psycholinguistics, cognitive and computational linguistics, to assess textual complexity in Brazilian Portuguese (BP). These metrics are relevant for descriptive analysis and the creation of computational models and can be used to extract information from various linguistic levels of written and spoken language. The metrics in NILC-Metrix were developed during the last 13 years, starting in 2008 with Coh-Metrix-Port, a tool developed within the scope of the PorSimples project. Coh-Metrix-Port adapted some metrics to BP from the Coh-Metrix tool that computes metrics related to cohesion and coherence of texts in English. After the end of PorSimples in 2010, new metrics were added to the initial 48 metrics of Coh-Metrix-Port. Given the large number of metrics, we present them following an organisation similar to the metrics of Coh-Metrix v3.0 to facilitate comparisons made with metrics in Portuguese and English. In this paper, we illustrate the potential of NILC-Metrix by presenting three applications: (i) a descriptive analysis of the differences between children's film subtitles and texts written for Elementary School I1 and II (Final Years)2; (ii) a new predictor of textual complexity for the corpus of original and simplified texts of the PorSimples project; (iii) a complexity prediction model for school grades, using transcripts of children's story narratives told by teenagers. For each application, we evaluate which groups of metrics are more discriminative, showing their contribution for each task.

1 Introduction

A set of metrics called NILC-Metrix was developed both in funded projects, involving multiple re-

arXiv:2201.03445v1 [cs.CL] 17 Dec 2

Descrição das métricas

Distribuição e estrutura lexical

Type-Token Ratio

→ Diversidade lexical (palavras únicas/total).

Nº de sentenças

→ Fragmentação do texto.

Tamanho médio das sentenças

→ Indicador de complexidade sintática.

Distribuição morfossintática

Verb-Token Ratio

→ Proporção de verbos.

Noun-Token Ratio

→ Proporção de substantivos.

Adjective-Token Ratio

→ Proporção de adjetivos.

Pronoun-Token Ratio

→ Proporção de pronomes

Fluidez e formalidade

Stopword-Token Ratio

→ Palavras sem conteúdo semântico.

Pausality

→ Proporção de pontuação (indica pausas).

Informalidade

→ Estimada por erros ortográficos

Complexidade e semântica textual

Índice de Brunet

→ Avalia diversidade lexical ajustada ao tamanho.

Gunning-Fog Index

→ Mede inteligibilidade; >12 indica alta complexidade.

Especificidade

→ Proporção de entidades nomeadas (tempo/espaço).

Modelos de linguagem

Arquiteturas estáticas

Geram uma representação vetorial fixa para as palavras, independentemente do contexto em que são inseridas.

Arquiteturas contextuais

Baseadas em mecanismos de autoatenção, geram diferentes representações vetoriais das palavras de acordo com o contexto.

Word2VEC

NILC embeddings

Kavita-ganesan

BERT - Bidirectional encoding representations from transformers

Word2VEC embeddings

BERT embeddings

Similaridade entre os embeddings

Correlação entre similaridade média dos Embeddiings das alternativas e o parâmetro de dificuldade: 0.17752

Similaridade entre os embeddings

Correlação entre similaridade dos embeddings gabarito/enunciado e o parâmetro de dificuldade: -0.2052

Similaridade entre os embeddings

Correlação entre similaridade dos embeddings respostas erradas/ enunciado e o parâmetro de dificuldade: 0.1598

Diferença entre as similaridades enunciado/gabarito e enunciado/respostas erradas

Regressores

Metodologia

Extrair as representações vetoriais das palavras do enunciado e "mapeá-lo' semanticamente, utilizando das dimensões dos embeddings como variáveis independentes de um modelo de regressão.

Modelos de linguagem

Foram utilizados os modelos Word2vec CBOW e Skip-Gram com 50, 100 e 300 dimensões disponibilizados no repositório de embeddings do NILC. Utilizamos, também, para efeito de comparação, os embeddings gerados pela arquitetura BERT nos regressores.

Modelos de regressão

Linear e Lasso.

Pré-processamento

Treino e teste

Para cada ajuste de regressão, foram usados divisões treino-teste padronizadas, permitindo que monitorássemos as métricas de avaliação.

Resultados parciais

CBOW - 300 dimensões

Seguindo o protocolo de vetorização

Regressão linear Regressão lasso

Dados de validação:

MSE: 1,208

Correlação: 0,265

Dados de validação:

MSE: 0,581

Correlação: 0,4192

BERT embeddings

Regressão linear Regressão lasso

Dados de validação:

MSE: 1.899

Correlação: 0,12

Dados de validação:

MSE: 0,594

Corerlação: 0,41

CBOW - 300 dimensões

Sem o protocolo de vetorização

Regressão linear Regressão lasso

Dados de validação:

MSE: 1,101

Correlação: 0,295

Dados de validação:

MSE: 0,610

Correlação: 0,389

Fine tuned BERT

Reinicialização das últimas camadas

Otimização de hiperparâmetros

Diferentes modelos

Resultados

BERTimbau

Dados de validação:

MSE: 0,537

Corerlação: 0,473

Multilingual BERT

Dados de validação:

MSE: 0,552

Corerlação: 0,447

Análise das dimensões da regressão

Próximos passos

Utilizar métodos computacionais para outras etapas do processo?

Muito obrigado!