6520 Project

Minjia Jia and Joia Zhang

Fall 2023

```
set.seed(6520)
```

Simulate data for regression and classification

```
# simulate data: regression
n = 100 \# sample size
p = 200 # number of predictors
# beta
k = round(0.05*p, 0) # number of nonzero coefficients
sd_beta = 0.01
nonzero_indexes = sample.int(n=p, size=k)
beta = rep(0, p)
beta[nonzero_indexes] = rnorm(n=k, mean=100, sd=sd_beta)
sum(which(beta !=0) != sort(nonzero_indexes)) # test that we made the right indexes nonzero
## [1] 0
beta = as.matrix(beta)
X = matrix(rnorm(n=n*p, mean=0, sd=5), nrow=n)
# epsilon
E = matrix(rnorm(n=n, mean=0, sd=1), nrow=n)
# y
Y = X%*\%beta + E
# note that in the online setting, each t^th row of X and Y is for time t
# simulate data: classification
# X, beta same as above
\# probs = 1/(1+exp(-X%*\%beta))
# Y = rbinom(n=n, size=1, prob = probs) # Bernoulli
```

OGD

```
# Online gradient descent for regression
my_OGD = function(type, X, Y, lr, beta_0) {
    n = nrow(X)
    p = ncol(X)
    betahats = matrix(nrow=n, ncol=p)
    betahats[1, ] = beta_0
    for (t in 1:(n-1)) {
        x_t = as.matrix(X[t, ])
        beta_t = as.matrix(betahats[t, ])
        y_t_hat = t(beta_t)%*%x_t
        Y_t = Y[t]
        betahats[t+1, ] = beta_t - lr*as.numeric(y_t_hat-Y_t)*x_t
}
return(betahats)
}
```

```
betahats = my_OGD(X=X, Y=Y, lr=0.0000001, beta_0=runif(n))
plot(betahats[n, ] - beta, main="Differences between last estimate and true beta")
```

Differences between last estimate and true beta


```
sum(abs(betahats[n, ] - beta) > 0.5*mean(beta[nonzero_indexes])) == k
## [1] TRUE
```

```
mean(betahats[n, nonzero_indexes]) - mean(betahats[n, -nonzero_indexes])

## [1] 0.1164616

temp = matrix(rep(beta, n), nrow=n, ncol=p, byrow=T)
temp2 = betahats - temp
plot(rowMeans(temp2^2), main="Error")
```

Error

plot(beta[nonzero_indexes], betahats[n, nonzero_indexes], main="K non-zero indexes for estimated and tr

K non-zero indexes for estimated and true betas

plot(beta, main="True betas")

True betas

plot(betahats[n,], main="Estimated betas")

Estimated betas


```
# function for online gradient descent (OGD)
# type: "classification" or "regression"
# X: rows are observations, columns are predictors
# Y: response variable
# learning rate (constant)
# beta_0: initialization for the estimate
# N: number of iterations for each data point (each row of X, Y)
# returns betahats for each data point and its N interations as a 3D array
my_OGD = function(type, X, Y, lr, beta_0, N) {
  if (type!='classification'&&type!='regression') {
    stop("Argument 'type' must be 'classification' or 'regression'")
  }
  n = nrow(X)
  betahats = array(data=rep(NA, n*p*N), dim = c(N, p, n)) # n arrays that are each Nxp arrays
  betahats[1, , ] = beta_0 # initialize
  if (type=='classification') {
  } else {
    # type is regression
   for (k in 1:n) { # for each data point (each row of X, Y)
      for (i in 1:(N-1)) { # for each iteration
      d_{loss} = 2*as.matrix(betahats[i, , k])%*%as.matrix(t(X[k, ]))%*%as.matrix(X[k, ])-2*as.matrix(X[k, ]))
      betahats[i+1, , k] = betahats[i, , k] - lr*d_loss
      } # end for i
   \} # end for k
```

```
return(betahats)
} # end else for regression
}
```

```
# use my_OGD on generated data
betahats = my_OGD(type="regression", X=X, Y=Y, lr=0.00001, beta_0=rep(0, p), N=100)
```