МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра физики

ОТЧЕТ по индивидуальному домашнему заданию №1 по дисциплине «Общая физика» вариант 21

Студент гр. 2307	Стукен В.А.
Преполаватель	Харитонский П.В.

Санкт-Петербург 2022

1. Прямые измерения:

Требуется определить среднюю величину расстояния между двумя пучностями ультразвуковой волны в акустическом резонаторе с помощью линейки с ценой деления 1 мм:

Ход работы:

- 1. Устранить из выборки очевидные промахи(описки):
- Для начала располагаем выборку по возрастанию, получаем следующее:

	6,9	16,9	17,0	17,1	17,2
--	-----	------	------	------	------

• Находим размах выборки как разность между максимальным элементом выборки и минимальным:

$$R = l_{max} - l_{min} = 17,2 - 16,9 = 0,3$$

- Из таблицы берём коэффициент $U_{P,N}$ для P=95% и N=5 $U_{P,N}=0.64$
- По очереди сравниваем разность между двумя соседними элементами выборки с произведением $U_{P,N}*R=0.64*0.3=0.192$

$$l_5 - l_4 = 17.2 - 17.1 = 0.1 > 0.192$$

 $l_4 - l_3 = 17.1 - 17.0 = 0.1 > 0.192$
 $l_3 - l_2 = 17.0 - 16.9 = 0.1 > 0.192$
 $l_2 - l_1 = 16.9 - 16.9 = 0.0 > 0.192$

- На основе полученных данных делаем вывод, что выборка не содержит грубых промахов
- Вычисляем выборочное среднее: $\bar{l} = \frac{\sum_{i=1}^{N} l_i}{N} = 17,02$
- Вычисляем выборочное среднеквадратичное отклонение:

$$s_l = \sqrt{\frac{\sum (l_l - \bar{l})^2}{N - 1}} = 0,13038$$

- Вычисляем выборочное СКО среднего: $S_{\bar{l}} = \frac{S_l}{\sqrt{N}} = 0.0583$
- Задаемся доверительной вероятностью Р = 95%
- Определяем случайную погрешность $\Delta l = t_{P,N} * s_{\bar{l}}$ $t_{P,N} = 2.8$ для P = 0.95 и N = 5

$$\Delta l = t_{P.N} * s_{\bar{l}} = 2.8 * 0.0583 = 0.16324$$

- Определяем приборную погрешность θ_l : Прибор измерения линейка с ценой деления 1мм, ее приборная погрешность равна половине цены деления, т.е. 0.5мм = 0.05см
- Рассчитываем полную погрешность измерения:

$$\Delta ar{l} = \sqrt{ heta_l^2 + (\Delta l)^2} = 0$$
,1707 см

• Определяем значение относительной погрешности:

$$\delta_l = \frac{\Delta \bar{l}}{\bar{l}} * 100\% = 1,0029\%$$

• Записываем окончательное значение величины x в виде $l=17{,}02\pm0{,}17$ см, P=95% , $\delta_l=1{,}0029\%$

							Таблица 1.
l_i	16,9	17,1	17,2	,	16,9	17,0	$ heta_l = 0$,05см
$l_{\uparrow i}$	16,9	16,9	17,0)	17,1	17,2	$\bar{l} = 17,02$ cm
							$R=\ l_{\uparrow N}-l_{\uparrow 1}=0.3$ cm
$U_i = l_{i+1} - l_i$	0	(0,1	0,	1	0,1	$U_i < U_{P,N} * R =$
$\Delta l_i = l_i - \bar{l}$	-0,12	-0,12	-0,0	2	0,08	0,18	$\sum \Delta l_i = 0$
$(\Delta l_i)^2$	0,0144	0,014	14 0,00	04	0,0064	0,0324	$\sum (\Delta l_i)^2 = 0.068$

$$s_l = \sqrt{\frac{\sum \left(l_l - \bar{l}\right)^2}{N - 1}} = 0,13038$$
 $\Delta l = t_{P,N} * s_{\bar{l}} = 0,16324$
 $\Delta \bar{l} = \sqrt{\theta_l^2 + (\Delta l)^2} = 0,1707 \text{ cm}$
 $l = 17,02 \pm 0,17\text{cm}$
 $\delta_l = \frac{\Delta \bar{l}}{\bar{l}} * 100\% = 1,0029\%$
 $P = 95\%$
 $N = 5$

2. Косвенные измерения:

Сила сопротивления F_c движения снаряда диаметром d, пропорциональна квадрату его скорости $F_c = C_\pi \frac{\rho S V^2}{2}$ воздуха, S — площадь поперечного сечения. Определить коэффициент лобового сопротивления C_π , зависящий от скорости движения.

d ,мм	204	203	204	205	204	$ heta_d=$ 0,5 мм
V, M/c	382	380	388	386	384	$ heta_v = 1 \mathrm{m/}c$
F, H	802	812	808	814	805	$\theta_d = 1 \text{ H}$

Ход работы:

ullet По формулам прямых измерений определим значения ar d, $\Delta ar d$, ar V, $\Delta ar V$, ar F, $\Delta ar F$

$$ar{d} = 204 \mathrm{mm} = 0,204 \mathrm{m}$$
 $s_d = \sqrt{\frac{\sum (d_i - ar{d})^2}{N-1}} = 0,707 \mathrm{mm}$ $S_{ar{d}} = \frac{S_d}{\sqrt{N}} = 0,316 \mathrm{mm}$ $\Delta d = t_{P,N} * s_{ar{d}} = 2,8 * 0,316 = 0,8848 \mathrm{mm}$ $\Delta ar{d} = \sqrt{\theta_d^2 + (\Delta d)^2} = 1,016 \mathrm{mm}$

$$ar{V} = 384 \text{ m/c}$$

$$s_V = \sqrt{\frac{\sum (V_i - \bar{V})^2}{N - 1}} = 4,69 \text{m/c}$$

$$S_{\bar{V}} = \frac{S_V}{\sqrt{N}} = 2,097 \text{m/c}$$

$$\Delta V = t_{P,N} * s_{\bar{V}} = 2,8 * 2,097 = 5,8716 \text{m/c}$$

$$\Delta \bar{V} = \sqrt{\theta_V^2 + (\Delta V)^2} = 5,956 \text{m/c}$$

$$\bar{F} = 808,2 \text{ H}$$

$$s_F = \sqrt{\frac{\sum (F_i - \bar{F})^2}{N - 1}} = 4,9193 \text{ H}$$

$$S_{\overline{F}} = \frac{F}{\sqrt{N}} = 2.2 \text{ H}$$

$$\Delta F = t_{P,N} * s_{\bar{F}} = 2.8 * 2.2 = 6.16 \text{ H}$$

$$\Delta \bar{F} = \sqrt{\theta_F^2 + (\Delta F)^2} = 6.24 \text{ H}$$

• Рассчитаем значение функции $\overline{C_{\scriptscriptstyle \Pi}} = C_{\scriptscriptstyle \Pi}(\bar{d}, \bar{V}, \bar{F})$:

Для этого сначала выразим коэффициент сопротивления $\mathcal{C}_{\scriptscriptstyle \Pi}$ через данные величины:

$$C_{\pi} = \frac{2F_c}{\rho SV^2} = \frac{8F_c}{\rho \pi d^2 V^2}$$

В полученную формулу подставим средние значения и получим значение $\overline{\mathcal{C}_n}$:

$$\overline{C_{\scriptscriptstyle \Pi}} = \frac{8\overline{F}}{\rho\pi\bar{d}^2\bar{V}^2} = 1195,98$$

• Вычислим значения частных производных от функции:

A)
$$a_d = \frac{dC_{\pi}}{dd}\Big|_{\bar{d}\ \bar{V}\ \bar{F}} = \frac{-2}{\bar{d}^3} * \left(\frac{8\bar{F}}{\rho\pi\bar{V}^2}\right) = -2,741$$

Б)
$$a_V = \frac{dC_{\pi}}{dV}\Big|_{\bar{d},\bar{V},\bar{F}} = \frac{-2}{\bar{V}^3} * \left(\frac{8\bar{F}}{\rho\pi\bar{d}^2}\right) = -1,45 * 10^{-3}$$

B)
$$a_F = \frac{dC_{\pi}}{dF}\Big|_{\bar{d},\bar{V},\bar{F}} = \frac{8}{\rho\pi\bar{d}^2\bar{V}^2} = 3,4598 * 10^{-3}$$

• Вычислим полную погрешность Δf функции по формуле

$$\Delta \overline{C_{\pi}} = \sqrt{(a_d \Delta \bar{d})^2 + (a_V \Delta \bar{V})^2 + (a_F \Delta \bar{F})^2} = 0.0234$$

• Запишем значение в виде $C_{\pi} = \overline{C_{\pi}} \pm \Delta \overline{C_{\pi}}$:

$$C_{\pi} = 1195,98 \pm 0,0234$$

После округления получаем окончательное значение коэффициента лобового сопротивления $C_{\rm n}=1195{,}98\pm0{,}02$

Таблица 2.								
d_i	204	203	204	204		205	$\theta_d=0$,5мм	
$d_{\uparrow i}$	203	204	204	204		205	\bar{d} =204 mm	
							$R = d_{\uparrow N} - d_{\uparrow 1} = 2 \text{ mm}$	
$U_i = d_{i+1} - d_i$	1	()	1		0	$U_i < U_{P,N} * R =$	
$\Delta d_i = d_i - \bar{d}$	-1	0	0		1	1	$\sum \Delta d_i = 0$	
$(\Delta d_i)^2$	1	0	0		1	1	$\sum (\Delta d_i)^2 = 3$	
$S_{ar{d}} = \sqrt{\frac{\sum (d_i - ar{d})^2}{N(N-1)}} = 0,316$ mm; $\Delta d = t_{P,N} * s_{ar{d}} = 0,8848$ mm; $\Delta ar{d} = \sqrt{\theta_d^2 + (\Delta d)^2} = 1,016$ mm								
	1		1	4,00			95%; N = 5	
V_i	382	380	388		386	384	$\theta_V = 1 \text{ m/c}$	
$V_{\uparrow i}$	380	382	384		386	388	$\bar{V} = 384 \text{ m/c}$	
	_			<u> </u>			$R = V_{\uparrow N} - V_{\uparrow 1} = 8 \text{ m/c}$	
$U_i = V_{i+1} - V_i$	2	_ 2	2 2			2	$U_i < U_{P,N} * R =$	
$\Delta V_i = V_i - \bar{V}$	-4	-2	0		2	4	$\sum \Delta V_i = 0$	
$(\Delta V_i)^2$	16	4 0		4	16	$\sum (\Delta V_i)^2 = 40$		
$S_{\overline{V}} = \sqrt{\frac{\sum (V_{\overline{l}} - \overline{V})}{N(N-1)}}$	$\frac{1}{1} = 2,09$	7м/с;	$\Delta V = t_{P,N}$	* S _Ī	₇ = 5,871	l6м/с; <i>∆V</i>	$\bar{V} = \sqrt{\theta_V^2 + (\Delta V)^2} = 5,956$ m/c	
		$V = \overline{V}$	$\pm \Delta \bar{V} =$	384	<u>±</u> 6м/с	P = 959	N = 5	
F_i	802	812	808		814	805	$\theta_V = 1 \text{ H}$	
$F_{\uparrow i}$	802	805	808		812	814	$\bar{F} = 808,2 \text{ H}$	
							$R = F_{\uparrow N} - F_{\uparrow 1} = 12 \text{ H}$	
$U_i = F_{i+1} - F_i$	3	3	3	4		2	$U_i < U_{P,N} * R =$	
$\Delta F_i = F_i - \overline{F}$	-6,2	-3,2	-0,2		3,8	5,8	$\sum \Delta F_i = 0$	
$(\Delta F_i)^2$	38,44	10,24	0,04		14,44	33,64	$\sum (\Delta F_i)^2 = 96.8$	
$S_{\bar{F}} = \sqrt{\frac{\sum (F_{\bar{l}} - \bar{F})^2}{N(N-1)}} = 2.2 H; \Delta F = t_{P,N} * s_{\bar{F}} = 6.16 H; \Delta \bar{F} = \sqrt{\theta_F^2 + (\Delta F)^2} = 6.24 H$								
$F = \bar{F} \pm \Delta \bar{F} = 808.2 \pm 6.2 H; P = 95\%; N = 5$								
$\overline{C_{\pi}} = 0$	$\overline{C_{\pi}} = C_{\pi}(\overline{d}, \overline{V}, \overline{F}) = 1195,98; \ \Delta \overline{C_{\pi}} = \sqrt{(a_d \Delta \overline{d})^2 + (a_V \Delta \overline{V})^2 + (a_F \Delta \overline{F})^2} = 0,0234$							
$C_{\pi} = \overline{C_{\pi}} \pm \Delta \overline{C_{\pi}} = 1195,98 \pm 0,02; P = 95\%; N = 5$								