Credit Card Market Summary Overview

- 1. **Impact from COVID19 affecting most metrics**: accounts/cards, transactions volume especially overseas & balances
- 2. Continued area of concern accounts / cards on issue (low acquisition + high churn rate)

Executive Summary

More and more credit card customers are leaving the bank. The business wants to find **a way of predicting** which customers are most likely to stop using their credit card product in order to proactively check in on the customer to provide them better services in order to convince them to change their minds.

Our objectives are to:-

- identify any **significant influential factors** that lead to a customer's decision of leaving the bank.
- leverage on the results from the model and explore
 possibility of reaching out to customers to recover
 the relationship.
- quantify the benefits gained from using the model vs. natural attrition.

Methodology 🏝

Data Exploration 🐣

A Quick Glance

What do we know about the data?

- 1. Data consists of **10,127** customers.
- 2. There are **20** features and grouped into **8** broad category:-

Relative Index measures the strength/weakness within each features and compare them between existing and churned customers.

Model Results

T - treat outliers / missing values & data transformation

A - apply principal component analysis (PCA) on correlated features

S - synthesize minority oversampling tech (SMOTE) on imbalanced dataset

T - test & tune using 2 or more machine learning algorithms

E - ensure no over/under-fitting & consistent results between train & test

SUMMARY Classification Model	Test Dataset	
	Accuracy	AUC
	Score	Score
Logistic Regression	0.861	0.599
Random Forest	0.885	0.649
XGBoost	0.930	0.836

Significant Influential Factors

Variable Importance Plot (in descending order)

SHAP Value (Red = Positive Impact, Blue = Negative Impact)

Projected Benefits

Card Base: 1.3mil

Monthly attrition: 6K

Cost of acquiring: \$225

Cost of maintaining: \$155

Salvage rate: ~3% (2K)

If we are able to salvage **2K** custs. per month by...

Possible Offers:

- 1. Appreciation vouchers
 - 2. Annual fee waiver
 - 3. Cash reward
- 4. New product offering
 - 5. SMART Plan

Synopsis

Data showed **distinct characteristics** between **existing** and **churned** customers.

1

Model has >80% predictive capability when predicting customer's likelihood to leave the bank.

2

It is cheaper to retain an existing customer than acquiring a new one. By **targeting customers who are likely to churn,** we maybe able to salvage **2K** customers.

3

Propose to deploy using **test-and-control** groups (i.e. A/B testing) to gauge model effectiveness and constantly improve the model through **different offers** and/or adding various touchpoints like digital side of things, geo-locations, behaviour score or creating bespoke **customer segmentation** via clustering.

Conclusion

If you interested on how the models are constructed, please find details in the following link:

https://github.com/ucdcsl55/projects

Thank you.

Appendix

Feature	Description
Customer_Age	Demographic variable - Customer's Age in Years
Gender	Demographic variable - M=Male, F=Female
Dependent_count	Demographic variable - Number of dependents
Education_Level	Demographic variable - Educational Qualification of the account holder
Marital_Status	Demographic variable - Married, Single, Divorced, Unknown
Income_Category	Demographic variable - Annual Income Category of the account holder
Card_Category	Product Variable - Type of Card (Blue, Silver, Gold, Platinum)
Months_on_book	Period of relationship with bank
Total_Products_Holding	Total no. of products held by the customer
Months_Inactive_12_mon	No. of months inactive in the last 12 months
Contacts_Count_12_mon	No. of Contacts in the last 12 months
Credit_Limit	Credit Limit on the Credit Card
Total_Revolving_Bal	Total Revolving Balance on the Credit Card
Avg_Open_To_Buy	Open to Buy Credit Line (Average of last 12 months)
Total_Trans_Amt	Total Transaction Amount (Last 12 months)
Total_Trans_Ct	Total Transaction Count (Last 12 months)
Avg_Utilization_Ratio	Average Card Utilization Ratio
Total_Amt_Chng_Q4_Q1	Change in Transaction Amount (Q4 over Q1)
Total_Ct_Chng_Q4_Q1	Change in Transaction Count (Q4 over Q1)

Evolution of XGBoost

Appendix

Evolution of XGBoost Algorithm from Decision Trees

trees