Московский Физико-Технический Институт (государственный университет)

Работа 5.4.2

Цель работы:

С помощью магнитного спектрометра исследовать энергетический спектр β - частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию.

1 Описание работы

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. Бета-активные ядра встречаются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая самыми тяжелыми ядрами. Период полураспада β - активных ядер изменяется от ничтожных долей секунды до 10^{18} лет. Выделяющаяся при единичном акте β - распада энергия варьируется от 18 кэВ до 13,4 МэВ.

В данной работе мы будем иметь дело с электронным распадом

$${}_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

при котором кроме электрона испускается антинейтрино. Освобождающаяся при β -распаде энергия делится между электроном, антинейтрино и дочерним ядром, однако доля энергии, передаваемой ядру, исчезающе мала по сравнению с энергией, уносимой электроном и антинейтрино. Практически можно считать, что эти две частицы делят между собой всю освобождающуюся энергию. Поэтому электроны могут иметь любое значение энергии от нулевой до некоторой максимальной, которая равна энергии, освобождающейся при β -распаде, являющейся важной физической величиной.

Вероятность dw того, что при распаде электрон вылетит с импульсом в интервале d^3p , а антинейтрино с импульсом в интервале d^3k , пропорциональна произведению этих дифференциалов. Но мы должны еще учесть закон сохранения энергии, согласно которому импульсы p и k электрона и антинейтрино связаны соотношением

$$E_e - E - ck = 0, (2)$$

где E_e - максимальная энергия электрона, кинетическая энергия электрона E связана с его импульсом обычным релятивистским соотношением

$$E = c\sqrt{p^2 + m^2c^2} - mc^2, (3)$$

а через ck обозначена энергия антинейтрино с импульсом k. Условие можно учесть введением в выражение для dw δ - функции

$$\delta(E_e - E - ck). \tag{4}$$

Таким образом, вероятность dw может быть записана в виде

$$dw = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}}, \tag{5}$$

где D — некоторый коэффициент пропорциональности, $d\Omega_e$, $d\Omega_{\tilde{\nu}}$ — элементы телесных углов направлений вылета электрона и нейтрино. Вероятность dw непосредственно связана с β -спектром, поскольку для большого числа N_0 распадов число dN распадов с вылетом электрона и антинейтрино с импульсом соответственно от p до p+dp и от k до k+dk определяется соотношением

$$dN = N_0 dw (6)$$

Коэффициент D в формуле (5) можно считать для рассматриваемых нами так называемых разрешенных фермиевских типов распадов с хорошей точностью константой (разрешенными называются такие переходы, при которых не изменяются ни момент, ни четность состояния ядра). В этом случае величину dw из (6) можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино.

После умножения на полное число распадов N проинтегрированное выражение приобретает смысл числа электронов dN, вылетающих из ядра с импульсом, абсолютная величина которого лежит между p иp+dp:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$
 (7)

Чтобы получить распределение электронов по энергиям, надо в (7) перейти от dp к dE:

$$dE = \frac{c^2 p}{E + mc^2} dp,\tag{8}$$

после чего выражающая форму β — спектра величина N(E)=dN/dE приобретает вид

$$\frac{dN}{dE} = N_0 B c p (E + mc^2) (E_e - E)^2 = N_0 B \sqrt{E(E + 2mc^2)} (E_e - E)^2 (E + mc^2)$$
(9)

где $B = (16\pi^2/c^4)D$. В нерелятивистском приближении, которое и имеет место с нашем случае, выражение (9) упрощается, и мы имеем

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2. \tag{10}$$

Выражение (10) приводит к спектру, имеющему вид широкого колокола (рис 1). Кривая плавно отходит от нуля и столь же плавно, по параболе, касается оси абсцисс в области максимальной энергии электронов E_e .

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант (энергия которого равна разности энергий начального и конечного уровней), либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Конверсия чаще всего происходит на оболочках K или L. На спектре, представленном на рис. 1, видна монохроматическая линия, вызванная электронами конверсии. Ширина этой линии в нашем случае является чисто аппаратурной, по ней можно оценить разрешающую силу спектрометра.

2 Экспериментальная установка

Для определения энергии β -частиц в работе используется магнитный спектрометр, схема которого показана на рисунке 2 слева. Электроны испускаются радиоактивным источником и попадают в магнитное поле катушки, ось которой параллельна OZ. Траек-

тории электронов сходятся в одной точке — фокусе, где и установлен сцинтилляционный счетчик, сигналы которого усиливаются фотоумножителем и регистрируются пересчетным прибором. Фокусное расстояние f магнитной линзы связано с током в катушке I и импульсом p_e регистрируемых частиц следующим образом:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2}$$

При неизменной геометрии установки, увеличивая и уменьшая силу тока, можно фокусировать электроны разных импульсов, причем

$$p_e = kI, (11)$$

где k — коэффициент пропорциональности, являющийся параметром установки.

Рис. 2: слева — схема β -спектрометра; справа — блок-схема установки для изучения спектра

В β -спектрометре установлены диафрагмы для ограничения углов вылета частиц из источника и свинцовый фильтр для защиты от прямого попадания γ -лучей.

Число частиц N, регистрируемых на установке, равно: $N \approx W \cdot \Delta p_e$, где Δp_e - разрешающая способность спектрометра. Дифференцируя выражение для форуса магнитной линзы, получим: $\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$, то есть $\Delta p_e \propto p_e$. Таким образом, для количества частиц справедлива формула:

$$N = CW(p_e)p_e (12)$$

Здесь C - некоторая константа.

3 Выполнение работы

- 1. Включим пересчетный прибор, высоковольтный выпрямитель и вакуумметр. Если показания вакуумметра заметно превышают 0,1 Тор, включим форвакуумный насос и откачаем спектрометр. Затем отключим насос, не забыв соединить его с атмосферой.
- 2. Установим рабочее напряжение на ФЭУ.
- 3. Для того, чтобы убедиться, что β -спектрометр действительно работает убедимся, что скорость счета зависит от величины тока в катушке.
- 4. Выключим ток в линзе и с точностью 2-3% измерим фоновый счет спектрометра. Измерения фона повторим в середине и в конце опыта.

Работа 5.4.2 4 B B B O Д

Таблица 1: Результаты линейной аппроксимации.

	$a, 10^5 * c^{1/2} \cdot c^{3/2} \cdot $ кэ $B^{-5/2}$	$b, 10^5 * c^{1/2} \cdot c^{3/2} \cdot $ кэ $B^{-3/2}$
Величина	-0,0966	58,0
Погрешность	0,0046	1,8

- 5. Проведем предварительные измерения, изменяя силу тока в фокусирующей катушке каждый раз на 0,2 A и записывая число счетов за 100 с. Затем уточним измерения в области спада спектральной кривой и в районе конверсионного пика, изменяя ток с шагом в 0,1 A.
- 6. Занесем получившиеся данные в таблицу и также добавим в таблицу откалиброванные значения с учетом того, что $p_{conv} \cdot c = 1013, 5$ кэВ, а энергия электроново внутренней конверсии ^{137}Cs равна $E_{conv} = 624$ кэВ. Сила тока, при которой наблюдается конверсионный пик равна 4,25 А. Зная это запишем данные в таблицу:

По полученным данным построим спектр β -распада атома ¹³⁷Cs:

- 7. Сдвиг графика по оси ординат сделаем на величину радиационного фона при I=5 А. По этим данным построим откалиброванный график N(p):
- 8. Определим максимальную энергию β -спектра. Для этого мы отложим по оси ординат величину $\sqrt{N}/p^{3/2}$, а по оси абсцисс энергию β -частиц (с учётом того, что энергия электронов внутренней конверсии ¹³⁷Cs равна 634, кэВ). В таком случае мы задействуем большинство экспериментальных точек, и прежде всего точки середины β -спектра, которые измерены с наилучшей точностью.

Ясно, что
$$E_m=-\frac{b}{a}$$
 и $\sigma_{E_m}=E_m\sqrt{\left(\frac{\sigma_a}{a}\right)^2+\left(\frac{\sigma_b}{b}\right)}$, откуда $E_m=(600\pm34)$ кэВ.

4 Вывод

В ходе лабораторной работы с помощью магнитного спектрометра мы исследовали энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$. Калибровку спектрометра осуществили по энергии электронов внутренней конверсии.

Также мы определили максимальную энергию $E_m=600$ кэВ вылетающих электронов при β -распаде ядря 137 Cs методом Ферми-Кюри с ошибкой в 5,6%.

 Работа 5.4.2
 4 ВЫВОД

U	I,(A)	N,(1/c)	p_conv * с, кэВ	E_conv, кэВ
1,3	0,20	0,60	47,7	29,36
2,8	0,40	0,68	95,4	58,73
4,2	0,60	0,69	143,1	88,09
5,6	0,80	0,79	190,8	117,46
7,0	1,00	1,17	238,5	146,82
8,5	1,20	2,03	286,2	176,19
9,8	1,40	4,08	333,9	205,55
11,3	1,60	6,13	381,6	234,92
12,8	1,80	7,62	429,2	264,28
14,3	2,00	9,79	476,9	293,65
16,9	2,20	12,15	524,6	323,01
17,4	2,40	12,50	572,3	352,38
19,0	2,60	11,66	620,0	381,74
20,3	2,80	10,78	667,7	411,11
22,4	3,00	8,34	715,4	440,47
23,3	3,20	6,62	763,1	469,84
24,9	3,40	4,32	810,8	499,20
26,8	3,60	2,34	858,5	528,56
28,3	3,80	2,09	906,2	557,93
29,8	4,00	3,22	953,9	587,29
31,6	4,10	9,63	977,7	601,98
32,3	4,15	12,38	989,7	609,32
31,3	4,20	14,65	1001,6	616,66
34,3	4,25	16,25	1013,5	624,00
34,0	4,30	13,59	1025,4	631,34
32,9	4,40	10,38	1049,3	646,02
35,6	4,50	4,43	1073,1	660,71
34,8	4,60	1,57	1097,0	675,39
36,3	4,80	0,62	1144,7	704,75
38,3	5,00	0,51	1192,4	734,12

Рис. 3: Измеренные данные

 Работа 5.4.2
 4 ВЫВОД

Рис. 4: Спектр β -распада атома ^{137}Cs

Рис. 5: Спектр $\beta\text{-распада атома }^{137}Cs$

 Работа 5.4.2
 4 ВЫВОД

Рис. 6: График Ферми-Кюри.