

Model Building

Lecture 14

STA 371G

There is a Primary Care Physician Shortage in Texas!

There is a Primary Care Physician Shortage in Texas!

What might explain this? There are many potential predictors!

- Small counties
- Poverty
- Health insurance

- Unemployment
- Large rural areas
- Something else?

What to do if there a lot of potential predictors

 Previously, we assumed that the explanatory variables were either from a small set or chosen in advance.

What to do if there a lot of potential predictors

- Previously, we assumed that the explanatory variables were either from a small set or chosen in advance.
- However, figuring out what variables to use to predict the number of physicians that a county has, is a critical portion of the analysis in this case.

What to do if there a lot of potential predictors

- Previously, we assumed that the explanatory variables were either from a small set or chosen in advance.
- However, figuring out what variables to use to predict the number of physicians that a county has, is a critical portion of the analysis in this case.
- This type of analysis is an exploratory study.

An exploratory study of the Texas physician shortage

• Exploratory studies are observational studies, in that the variables are observed rather than controlled.

An exploratory study of the Texas physician shortage

- Exploratory studies are observational studies, in that the variables are observed rather than controlled.
- Multicollinearity is much more likely in an exploratory study than in an experiment or a confirmatory study.

An exploratory study of the Texas physician shortage

- Exploratory studies are observational studies, in that the variables are observed rather than controlled.
- Multicollinearity is much more likely in an exploratory study than in an experiment or a confirmatory study.
- Exploratory studies require the most in terms of model selection. Automated tools are helpful, but judgement is still needed!

Population as a predictor of number of physicians

```
plot(counties$Population, counties$Physicians)
popmodel <- lm(counties$Physicians ~ counties$Population)
abline(popmodel)</pre>
```


Transform and Subset the data

The 10 potential x variables

- LandArea: Area in square miles
- PctRural: Percentage rural land
- MedianIncome: Median household income
- Population: Population
- PctUnder18: Percent children
- PctOver65: Percent seniors
- PctPoverty: Percent below the poverty line
- PctUninsured: Percent without health insurance
- PctSomeCollege: Percent with some higher education
- PctUnemployed: Percent unemployed

 Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score).

- Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score).
- This is what the reading assignment calls backward stepwise regression.

- Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score).
- This is what the reading assignment calls backward stepwise regression.
- This method is good, but it is not guaranteed to find to the best model!

- Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score).
- This is what the reading assignment calls backward stepwise regression.
- This method is good, but it is not guaranteed to find to the best model!
- If there are n candidate predictor variables, there are 2ⁿ possible models, and we need to look at ALL of them to be sure that we have found the best model.

- Previously, we built the full model and eliminated the variables in order of largest p-value (or smallest t-score).
- This is what the reading assignment calls backward stepwise regression.
- This method is good, but it is not guaranteed to find to the best model!
- If there are n candidate predictor variables, there are 2ⁿ possible models, and we need to look at ALL of them to be sure that we have found the best model.
- This is where R's automated model building tools help.

How do you decide which model is best?

• All model measuring criteria try to find a balance between the predictive power of the model and the number of variables.

How do you decide which model is best?

- All model measuring criteria try to find a balance between the predictive power of the model and the number of variables.
- No method is ideal in all situations, so it is generally best to use multiple methods and compare the results.

• We have used R^2 and Adjusted- R^2 before.

- We have used R² and Adjusted-R² before.
- R² is not good for comparing models with different numbers of variables because it tends to increase a little with each additional variable just due to randomness.

- We have used R^2 and Adjusted- R^2 before.
- R² is not good for comparing models with different numbers of variables because it tends to increase a little with each additional variable just due to randomness.
- Adjusted- R^2 is better because it multiplies R^2 by a penalty that depends on the number of variables. However, the penalty is somewhat arbitrary.

- We have used R^2 and Adjusted- R^2 before.
- R² is not good for comparing models with different numbers of variables because it tends to increase a little with each additional variable just due to randomness.
- Adjusted- R^2 is better because it multiplies R^2 by a penalty that depends on the number of variables. However, the penalty is somewhat arbitrary.
- AIC (Akaike's Information Criterion) and the very similar BIC (your reading calls it SBC) are other widely used criteria.

- We have used R² and Adjusted-R² before.
- R² is not good for comparing models with different numbers of variables because it tends to increase a little with each additional variable just due to randomness.
- Adjusted- R^2 is better because it multiplies R^2 by a penalty that depends on the number of variables. However, the penalty is somewhat arbitrary.
- AIC (Akaike's Information Criterion) and the very similar BIC (your reading calls it SBC) are other widely used criteria.
- There more, but we won't go into them.

Stepping forwards

The step() function uses the AIC criterion to compare models. You must build the null and the full models first.

```
null <- lm(PhysiciansPer10000~1. data=mcounties)</pre>
full <- lm(PhysiciansPer10000 ~ LandArea + PctRural + MedianIncome
                             + Population + PctUnder18 + PctOver65
                             + PctPovertv + PctUninsured
                             + PctSomeCollege + PctUnemployed,
                             data=mcounties)
stepforwardOut <- step(null, scope=list(lower=null, upper=full),</pre>
                            direction ="forward")
Start: AIC=238.65
PhysiciansPer10000 ~ 1
                Df Sum of Sa RSS
                                       ATC
+ PctSomeCollege 1 150.125 558.67 203.28
+ Population 1 132.562 576.23 208.14
+ PctRural 1 119.850 588.94 211.57
+ PctUnemployed 1 32.121 676.67 233.37
+ MedianIncome
                   30.413 678.38 233.76
```

Check the LINE assumptions

model stepforwardOut's residuals look ok

Examine stepforwardOut

```
# check the summary
#summary(stepforwardOut)
# Check stepForwardOut for multicollinearity
vif(stepforwardOut)
PctSomeCollege
                     PctRural
                                   Pct0ver65
                                                  Population
                                                              PctUnemployed
      1.541539
                     1.911623
                                    1.776352
                                                    1.843085
                                                                   1.125032
  PctUninsured
      1.029993
```


Stepping backwards and both ways

This model looks pretty good, but is it the best? You can also step backward or on both directions.

```
stepbackwardOut <- step(null, scope=list(lower=null, upper=full),</pre>
                       direction ="backward")
Start: AIC=238.65
PhysiciansPer10000 ~ 1
stepbothOut <- step(null, scope=list(lower=null, upper=full),</pre>
                   direction ="both")
Start: ATC=238.65
PhysiciansPer10000 ~ 1
                Df Sum of Sa RSS
                                       ATC
+ PctSomeCollege 1 150.125 558.67 203.28
+ Population
                 1 132,562 576,23 208,14
+ PctRural
          1 119.850 588.9<u>4 211.57</u>
+ PctUnemployed 1 32.121 676.67 233.37
+ MedianIncome
                 1 30.413 678.38 233.76
+ PctPovertv
                   14.337 694.45 237.44
                             708 79 238 65
<none>
```

Best Subsets Regression

Step only uses AIC criterion for comparing models. regsubsets is more flexible about criteria and calculates all possible subsets.

Best Subsets Regression

Step only uses AIC criterion for comparing models. regsubsets is more flexible about criteria and calculates all possible subsets.

```
# Set the plot window up so you can examine the output side by side
layout(matrix(1:2, ncol=2))
#plot(regsubsets.out, scale="adjr2") # use adjusted R^2
#plot(regsubsets.out, scale="bic") # use SBC

# Don't forget to reset the plot window!
layout(matrix(1:1, ncol=1))
```

Look at this interesting plot

Black indicates that a variable is included in the model, while white indicates that it is not.

• Look at multiple statistics. They generally say similar things.

- Look at multiple statistics. They generally say similar things.
- Find the middle ground between an underspecified model and extraneous variables.

- Look at multiple statistics. They generally say similar things.
- Find the middle ground between an underspecified model and extraneous variables.
- Fine tune the model to get a correctly specified model; you may need to transform predictors and/or add interactions.

- Look at multiple statistics. They generally say similar things.
- Find the middle ground between an underspecified model and extraneous variables.
- Fine tune the model to get a correctly specified model; you may need to transform predictors and/or add interactions.
- Think about logical reasons why certain predictors might be useful, don't just focus on p-values.

Be careful of getting too crazy

• A general guideline is that you should not even consider more than one variable for every 10 to 15 cases in your dataset.

Be careful of getting too crazy

- A general guideline is that you should not even consider more than one variable for every 10 to 15 cases in your dataset.
- Otherwise, you can select the ones that happen to fit the data the best and essentially create a spurious correlation!

Be careful of getting too crazy

- A general guideline is that you should not even consider more than one variable for every 10 to 15 cases in your dataset.
- Otherwise, you can select the ones that happen to fit the data the best and essentially create a spurious correlation!
- Rember to check for multicolliearity and the LINE assumptions!