Startup Database and Recommendation Engine

K Iwasaki kaiwasaki@berkeley.edu

Table of Contents

Introduction

- Problem
- Project Overview

Data collection and preprocessing

- Data Collection and Preprocessing Scheme
- Data Collection and Preprocessing Approach
- Data Scraping
- Data Extraction: Company Name from Article
- Data Extraction: Company Address
- Data Extraction: Industry Attributes

Data Exploration and Visualization

- Data Exploration to Recommendation Generation
- Summary Statistics, Variable Category, and NAs
- Univariate analysis
- Bivariate analysis

Recommendation Engine

- Recommendation Engine KNN
- Feature Transformation and Engineering
- Recommendation Output

Closing

Future Development

Problem: Finding Good Startup is Hard

For job seekers, finding a startup that matches their interests is hard because:

Overwhelming information available online

So many information sources to check

Need to synthesize information

Need to check information frequently

So many texts to read

Job seekers are highly biased

Frustration, Time waste, Not finding company that matches your interests

Project Overview: Finding the Best Startup For You

Create end-to-end solution from data collection, to database generation, to generation of recommendation for startups that matches your interests.

Data Collection/Preprocessing

10 articles x 100 pages

~300 searches

~ 300 company profiles

Startup Database

Company name
Company size
Money raised
Industry
Description
HQ Location

...

Recommendation Engine

Data Exploration and Visualization

Data Collection and Preprocessing Scheme

Scrape the articles about Series C fundraising from TechCrunch (article.csv)

Preprocessing 1. Extract

Preprocesisng2. Extract company names

Preprocessing3. Extract funding_round and money_raised

Scrape the website links to LinkedIn Company Profiles from Google Search (linkedin link list.csv)

Preprocessing4. Merge the two CSV files Preprocessing5. Validate company names

Scrape the company profile for each company from LinkedIn (linkedin_profiles.csv)

Preprocessing6. Merge the two CSV files

Preprocessing7. Extract locations

Preprocessing8. Assign industry attributes

Data Collection and Preprocessing Approach

Think what information we want for the database and for the recommendation engine

Company name Company size Money raised Industry Description HQ Location

...

Write codes and extract information from the target source

```
S:\Users\K\Desktop\Project\UOB_HUNTING_MADE_EASY\startup_db_recommendation\data_collection_preprocessing\get_company_address_from_... —
File Edit Selection Find View Goto Tools Project Preferences Help
                                                 selenium import webdriver
▶ □ webscraping
▶ Ĉ¬ bank account
                                                            t BeautifulSoup
▶ □ desktop database
▶ ☐ LeetCode
► CTCI
                                             def get link to bloomberg(company name)

▼ B JOB_HUNTING_MADE_EASY

                                                driver = webdriver.PhantomJS(executable_path = r'C:\Users\K\phantomjs-2.1.1
  ▶ ြ backup
                                                   f len(company_name.split(" ")) > 1:
                                                     company_name = company_name.split(" ")
search_key_words = '{}+{}+bloomberg+snapshot'.format(company_name[0], c
    ▶ ☐ .ipynb_checkpoints
     ▶ Ĉ¬ pvcache
                                                      .
search_key_words = '{}+bloomberg+snapshot'.format(company_name)
        A algo testing.ipynb
        በት article.csv
                                                 url = 'https://www.google.com/search?source=hp&q={}'.format(search key words
        A article_after_processing1.cs
        article_after_processing10.0
                                                driver.get(url)
        A article after processing2.cs
        article_after_processing3.cs
        article_after_processing4.cs
        (4) article after processing5.cs
                                                 links = driver.find_elements_by_xpath("//h3[@class='r']/a[@href]")
        article_after_processing6.cs
        article_after_processing7.cs
        P article after processing8.cs
                                                 link = links[0].get_attribute('href')
                                                 regex = re.compile(r'www\.bloomberg\.com/research/stocks/private/snapshot\
        ( company_profile.csv
        ባ countries_w_gdp.csv
                                                 privcapid = re.search(regex, link).group(1)
        get_company_address.py
                                                 driver.quit()
        get_company_founded_fro
        get_country_from_wiki.py
        get_link_to_linkedin_from_g
        get_location_from_compan
                                                    print (result)
        get_profile_from_linkedin.p
        get_seriesC_news_from_tect
        ghostdriver.log
        linkedin_link_list.csv
                                                            "not found"
```

Error analysis: Confirm if we get what we want and verify missing data and why

```
IP[y]:
       def clean_up_linked_in_link(link):
    regex = r'https://www\.linkedin\.com/company/'
    regex2 = r'(https:\/\/www\.linkedin\.com/company\\\w+-*\w*
                                                                     IPython
          if isinstance(link, str) and re.search(regex, link)
    return link
           elif isinstance(link, str) and re.search(regex2,link)
              link = re.search(regex2,link)
              return link.group(1)
        data["linkedin_link"] = data.linkedin_link.apply(
           lambda link: clean_up_linked_in_link(link)
        data["Company_at_Linkedin"] = data.linkedin_link.apply(
           lambda company: get_linkedin_company_name(company)
In [5]: mask = data.Company at Linkedin.isnull()
In [6]: data.loc[mask][["title", "Company", "Company_at_Linkedin"]]
                                                                          Company Company at Linkedin
            Quora Wants To Stay Independent, Raises $80M S... Quora Wants To Stay
            Independent, None   68 Big Data Company
            RainStor Raises $12 Million S...
            iPhone Game House ngmoco Raises $25 Million Se... ngmoco
            None   83 Entelo steps up its Al game with $20M.
                                                                           up its Al
                                                                           game with
                                                                           World Buys
         06 Online Game Developer Perfect World Buys C&C M...
                                                                           C&C Media
           Chinese Airbnb Rival Xiaozhu Closes $60M Serie...Xiaozhu
                                                                           ostmates
            None    111 Postmates Picks Up $35M In Series C
           From Spark
            loxus Closes Series C At $21 Million To Bring ... loxus None
            Kids? Game Moshi Monsters Set To Leap Onto The...None
            Edmodoâ?? None
         NEA Leads Educational Network Edmodo$22s $25 M
                                                                           Doggie-
            Doggie-Focused Bark & Co. (BarkBox) Raises $15
                                                                           Bark & Co.
            Khosla And RRE Lead $18.2 Million Series C In ... Khosla And RRE
             .ead None    280 Chinese Video App Develope
```

Tasks: Use Selenium and BeautifulSoup to scrape information the target websites.

get_seriesC_news_from_techcrunch.py

Input: key words "raises Series C" Output: articles in csv file

get_link_to_linkedin_from_google.py

Input: company name
Output: a link to company profile at
LinkedIn

get_profile_from_linkedin.py

Input: a link to company profile
Output: company profiles in csv file

Data Extraction: Company Name from Article Title

Once we collect the articles, next step is extract company names from the article titles. **Challenge:** a company name is irregular: it can be one word, two words, or more. It often is a mix of verb, noun, or others. Below are typical patterns that a company name shows up in an article title.

"Stash raises \$40 million Series C to make investing more approachable"

"Data Storage Company Scale Computing Raises \$17 Million Series C"

"Pivotal confirms Series C round is actually over \$650 million"

"After bump in the road, Movinga raises \$17M Series C"

"Carwow, a UK startup that helps you buy a new car, raises \$39M Series "

"Confirmed: London fintech Curve raises \$10M Series A"

Company names, Key verbs, decorative words

Algorithm for Company Name Extraction

Solution: algorithm to extract a company name, leveraging sentence structures of the articles that are scraped from TechCrunch. Also double-check the company name when googling it later to look for a link for a company profile page at LinkedIn. Check **company_from_title.py for the codes**

Step1:

- Split the sentence by a key verb and keep the head
- Remove ", word word ... ,"
 - If one or two words remained=> done Else: => Step2

Step2:

- Split the sentence by a key noun and keep the tail
 - If one or two words remained=> done Else: => Step2

Step3:

- Split the sentence by "\$" and keep the head
- Split the sentence by "Series" and keep the head

Company address is import input for the recommendation engine because many of us care where we work at.

Challenge: Some companies don't input their company address at LinkedIn. Some companies are based outside of US and thus their addresses have different formatting.

It only says United States for Headquarters.

Solution to extract/revise Company Address

Solution: Multi-step approach: first focus on label countries and then focus on US companies to extract zip code.

- Step1: Complete labeling by countries
 - Country list scraped from Wikipedia --- get_country_from_wiki.py
 - Extract country information from features collected so far
- Step2: Focus on the US companies and get zip code for them For missing or insufficient information
 - Google Search --- get_comnay_address.py
 - Company Website --- get_location_from_company_website.py
 - Bloomberg --- get_company_address_from_Bloomberg.py
- Step3: Gain state, city, geo location from the zip code for US companies

 Use two python modules to capture city and state because both of them have some missing data

Challenges: Industries have been arbitrarily assigned to companies. As a result, there are 49 unique industries for about 300 companies. There are three problems in order for recommendation engine to work:

- 1) Some industries are quite similar thus should be merged.
- 2) Some industries have lots of companies such as Computer Software. They should be split into more smaller segment.
- 3) one industry is not sufficient to describe a nature of a company because its business is often a combination of different elements. For example, the company below is internet x financial service, instead of internet alone

```
data.Industry.unique()
array(['Financial Services', 'Information Technology and Services',
       'Human Resources', 'Computer Software',
       'Logistics and Supply Chain', 'Internet',
       'Computer & Network Security', 'Food & Beverages',
       'Marketing and Advertising', 'Medical Devices', 'E-Learning',
       'Consumer Services', 'Sports', 'Consumer Electronics',
       'Computer Hardware', 'Education Management', 'Apparel & Fashion',
       'Entertainment', 'Consumer Goods', 'Biotechnology',
       'Management Consulting', 'Real Estate', 'Fund-Raising',
       'Commercial Real Estate', 'Food Production', 'Online Media',
       'Mechanical or Industrial Engineering', 'Renewables & Environment',
       'Farming', 'Electrical/Electronic Manufacturing',
       'Leisure, Travel & Tourism', 'Sporting Goods', 'Retail',
       'Semiconductors', 'Cosmetics', 'Insurance', 'Telecommunications',
       'Health, Wellness and Fitness', 'Textiles',
       'Staffing and Recruiting', 'Nanotechnology',
       'Luxury Goods & Jewelry'], dtype=object)
```


Algorithm to Assign Industry Attributes to Each Company

Solution Part1: algorithm to simplify the industry classification by merging some industries so that minor industry labels are eliminated

Industry (Original)	Industry_consolidated (New)									
["Apparel & Fashion", "Consumer Goods", "Consumer Services", "Cosmetics", "Luxury Goods & Jewelry", "Retail", "Leisure, Travel & Tourism", "Sporting Goods", "Textiles"]	Consumers Goods & Services									
["Computer Software"]	Computer Software									
["Computer & Network Security", "Computer Hardware"]	Computer & Network Security & Hardware									
['E-Learning', 'Education Management']	Education									
["Entertainment"]	Entertainment									
["Marketing and Advertising"]	Marketing and Advertising									
["Farming", "Food & Beverages", "Food Production", "Restaurants"]	Food Business									
["Insurance", "Fund-Raising", "Financial Services"]	Financial Services									
["Information Technology and Services"]	Information Technology and Services									
["Internet", "Online Media"]	Internet									
["Commercial Real Estate", "Real Estate"]	Real Estate									
['Health, Wellness and Fitness', 'Medical Devices', "Sports"]	Healthcare_health									
["Human Resources", "Staffing and Recruiting"]	Human Resources									
["Telecommunications", "Renewables & Environment", "Logistics and Supply Chain"]	Infrastructure									
["Semiconductors", "Nanotechnology", "Biotechnology", "Management Consulting", "Electrical/Electronic Manufacturing" "Mechanical or Industrial Engineering"]	Niche									

Algorithm to Assign Industry Attributes to Each Company

Solution Part2: Algorithm to add new features to represent company businesses better based on the key words in appeared in company profiles

```
key_words_dict = {
   "Food Business": ["restaurant", "farm", "greenhouse", "Gastronomie"],
   "Education": ["Online Learning", "Education", "Tutor"],
   "Financial Services": ["payment", "loan", "financ", "fundraising",
              "investing", "lending"],
   "Healthcare_health": ["healthcare", "medical", "genetic", "therapy", "disease",
                 "fitness", "wellness", "welfare", "wearable", "gym"],
   "Human Resources": ["recruit", "workforce", "Human Resource"],
   "Logistics and Supply Chain": ["delivery", "drone",
                                   "transportation", "supply chain"],
   "Entertainment": ["entertainment", "game"],
   "Computer & Network Security & Hardware": ["storage", "backup", "recovery",
   "Real Estate": ["Real Estate"],
   "Marketing and Advertising": ["marketing", "advertising", "advertisement"],
   "commerce": ["eCommerce", "Commerce", "Retail"],
   "mobile" : ["mobile"],
   "app": ["mobile app", "app\s"],
   "analysis": ["analytics", "analysis"],
   "developer": ["developer"],
   "security" : ["fraud", "detection", "protection"],
   "social": ["Social Media"],
   "ds": ["artificial intelligence", "machine learning",
         "deep learning", "big data"],
   "travel": ["Travel"],
   "booking_ticketing": ["booking", "ticket"],
   "Apparel": ["fashion", "clothing", "shoes", "Sporting Goods"],
   "cloud": ["cloud"],
   "API": ["API"],
   "device": ["device"],
   "design": ["design"],
   "enterprise": ["enterprise", "productivity", "collaboration"],
   "robotics_manufacturing": ["Manufact", "robotics", "3d"]
```

Now Database is Set! --- 232 rows by 47 columns

\star : \times \checkmark f_x title																			
A B C D E F	G	H I J K	L M N	O P	Q	R S	T U	V	W X	Υ	Z AA	AB A		AE	AF	AG		AI AJ	
le link excerpt publishe funding money_r									Country State	latitude	longitud Industry_								
	Capital F	45 https://w.capital fl Capital F				2013 {'Lending		FALSE			Financia	0	1 (•		0	0	0	0
rwow, https://teCarwow, ####### Series C \$39 M	Carwow	39 https://w.carwow carwow			carwow	2013 {'carwow n			United Kingdom		Informat	0	0 0) (0	0	0	0	0
ash rai https://teMicro-inv ####### Series C \$40 M	Stash	40 https://w stashinv Stash Inv			Stash is	2015 {'Acorns':	10010 New York			40.7388	-73.9815 Financia	0	0 0) (0 0	0	0	0	0
owing https://teWhateve ####### Series C \$48 M	Move Gu	48 https://w move gui MOVE Gu			MOVE	2011 {'Workab n		FALSE	United Kingdom		Human R	1	0 0) (0	0	0	0	0
hesity https://te Cohesity, 4/4/2017 Series C \$90 M	Cohesity	90 https://w.cohesity Cohesity				2013 {'Rubrik,	95050 Santa Cla			37.354	-121.953 Compute	0	0 0) () 1	0	1	0	0
er bur https://te Berlin's s ####### Series C \$20.2 M		20.2 https://w.movinga Movinga		/wv Sonnenb 201-500		2015 {'Move24	10437	FALSE			Infrastru	0	0 0) (1	0	0	0
anpia napayya compia minimi ocnes o pes m	Leanplur	29 https://w leanplur Leanplur			Leanplur	2012 {'Appboy	94103 San Fran				-122.41 Internet	0	0 1	1 1	1 1	0	0	0	1
	Forter		fraud pre Internet http://		Forter	2013 {'Riskifie	10018 New York		United St NY		-73.9933 Internet	0	1 () (1	0	1	0	1
emSQL https://teIn-memo ####### Series C \$36 M	MemSQL	36 https://w.memsql MemSQL			MemSQL	2011 {'Mesosp	94107 San Fran		United St CA		-122.399 Compute	0	0 0) (1	0	0	0	0
gue Ra https://te Fugue (tr ####### Series C \$20 M	Fugue	20 https://w fugue inc Fugue, Ir		/wv 47 E AII S 51-200	Fugue is	2013 {'Fugue':	21701 Frederick	TRUE	United St MD	39.4242	-77.3669 Compute	0	0 0) (0	0	0	0	0
cial In https://teSocial me###### Series C \$33 M	Brandwa	33 https://w brandwa Brandwa				2007 {'Synthes n			United Kingdom		Internet	0	0 0) 1	1 1	0	0	1	0
esosph https://te Mesosph ####### Series C \$73.5 M	Mesosph	73.5 https://w mesosph Mesosph	Distribut Compute https:/	//n 88 Stever 201-500	Most	2013 {'Docker,	94105 San Fran	TRUE	United St CA	37.789	-122.392 Compute	0	0 0) 1	L 0	0	0	0	0
aeli C https://telf you've ####### Series C \$59 M	Cybereas	59 https://w.cybereas.Cybereas	Security, Compute http://	/wv 200 Clare 201-500	Cyberea	2012 {'Cylance	2116 Boston	TRUE	United St MA	42.3531	-71.0765 Compute	0	0 0) (0	0	1	0	1
oss-Plahttps://teXamarin, ###### Series C \$54 M	Xamarin	54 https://w.xamarin Xamarin	iOS, Andr Compute http://	xa 394 Pacif 201-500	Xamarin	2011 {'Xamarir	94111 San Fran	TRUE	United St CA	37.7959	-122.4 Compute	0	0 1	. 1	L 0	1	0	0	0
staura https://te Deliveror ####### Series C \$70 M	Delivero	70 https://w.deliverocDelivero	Food & B http://	de The River 1001-50	0 Delivero	2012 {'foodora n	ot found	FALSE	United Kingdom		Food Bus	1	0 0) (0 0	0	0	0	0
p, a m https://teMobile a ####### Series C \$12 M	Kiip	12 https://w.kiip Kiip	Marketin http://	/wv 970 Folsc 51-200	84% of	2010 {'Shareth	94107 San Fran	TRUE	United StCA	37.7618	-122.399 Marketin	0	0 1		0 0	0	0	0	0
dia?s Ehttps://teBankBaz:7/2/2015 Series C \$60 M	India?s E	60 https://w.bank.ba.BankBaz	Personal Financia http://	/wv BankBaz: 1001-50	0(BankBaz	2008 {'PolicyBa	60000	FALSE	India		Financia	0	0 0) (0 0	0	0	0	0
ectyl La https://te Fractyl La 9/4/2014 Series C \$40 M	Fractyl La	40 https://w fractyl la Fractyl La	boratorie Medical http://	/wv 17 Hartw Nov-5	0 We are a	2010 ('Corindu	2421 Lexingtor	TRUE	United St MA	42.4287	-71.228 Healthca	0	0 0) (0 0	0	0	0	0
noss R https://te Open sot ####### Series C \$25 M	Zenoss	25 https://w.zenoss.ir.Zenoss	Unified I Informat https:/	//w 11305 For 201-500	We're	2005 ('SolarWi	78726 Austin	TRUE	United StTX	30.4191	-97.8395 Informat	0	0 0) () 1	0	0	0	0
oceler https://teAppceler ####### Series C S15 M	Appceler	15 https://w.appceler.Axway.Ap				2006 {'Axway':	95054 Santa Cla	TRUE	United St CA	37.3986	-121.964 Compute	0	0 1	. 1	1 1	1	0	0	0
bbel R https://teThe Berli 7/8/2015 Series C \$22 M	Babbel	22 https://w.babbel.c.Babbel	E-learnir E-Learnir http://	/wv Max-Bee 201-500	Founde	2007 {'Duoling	10119 New York	FALSE	Germany NY	40.7502	-73.9931 Educatio	0	0 1	. 1	1 0	0	0	0	0
me Re https://teHouzz is ####### Series C \$35 M	Houzz		Interior [Internet http://			2009 {'Airbnb':	94301 Palo Alto				-122.158 Internet	0	1 1) 0	0	0	0	0
nfirme https://teClassPas ####### Series C \$30 M	ClassPas	30 https://w.classpas.ClassPas		/cla 121 West 51-200		2012 {'Blue Ap	10001 New York		United St NY		-73.9992 Consume	0	0 0) () 0	0	0	0	0
m rai https://teeGym.th ####### Series C S45 M	eGvm		Fitness, Sports https:			2010 {'eGym B	80333		Germany		Healthca	0	0 0) (1 1	0	0	0	0
ud Prehttps://tePindrop ####### Series C \$75 M	Pindrop	75 https://w.pindrop Pindrop				2011 {'Ionic Se	30308 Atlanta			33 7717	-84.3726 Compute	0	1 0	1) 0	0	1	0	0
lid Ar https://te Euclid Ar ####### Series C \$20 M	Euclid Ar	20 https://w.euclid Euclid				2010 ('RetailN	94110 San Fran				-122.418 Informat	0	1 0		1 1	0	0	0	0
	Placester	27 https://w.placeste.Placeste				2010 ('Localyti	2110 Boston		United St MA		-71.0483 Internet	0	0 0) 0	0	0	0	0
Startu https://teMagic Le 2/2/2016 Series C \$793.5 M		793.5 https://w.magic.le: Magic.Le		//w 7500 W S 1001-50		2011 ('Oculus'	33322 Fort Laud		United STFL		-80.2712 Consume	0	0 0	, ,	0 0	0	0	0	0
nding I https://teChina Ra ####### Series C \$35 M	China Ra	35 https://w.china.rar.China.Ra				2001 ('é??é??a	20033	FALSE		20.1343	Financia	0	0 1	,) 0	0	0	0	0
owflak https://te/snowflak ####### Series C \$45 M	Snowflak	45 https://w.snowflakSnowflak				2012 {'Snowfla	94401 San Mate			27 5704	-122.316 Compute	0	0 0) 1	0	0	0	0
ursera https://teThe fast- ####### Series C \$49.5 M		49.5 https://w.coursera Coursera				2012 { Showing 2012 { 'Courser	94041 Mountain				-122.075 Internet	0	0 0) 1	0	0	0	0
	Scale Cor	17 https://w.scale.cor.Scale.Cor				2012 { Courser 2007 {'HPE Sim	46225 Indianap				-86.1599 Compute	0	0 0			0	0	0	0
	Rover		0 / 1 / 1 / 1									0	0 (_) (0	_	0	0
t Sittin https://te Rover, th ####### Series C \$12 M		12 https://w rover con Rover.com				2011 {'DogVac	98121 Seattle		United St WA		-122.35 Consume	0	0 0) () 0		0	0	
rvana (https://teThe used ####### Series C \$160 M	Carvana	160 https://w.carvana Carvana				2012 {'DriveTir	85281 Tempe		United St AZ	33.4367	-111.94 Internet	_	1 (, ,	0		-	0
dia?s f https://teFreeChar 2/5/2015 Series C \$80 M	India?s F	80 https://wfreechargFreechar		/wv Swamy V 51-200		2010 {'Paytm':	56003 Mankato				-94.0491 Internet	0	0 0			0	0	0	0
	Zumbox	10 https://w.zumbox Digital P				2007 {'Silicon	90245 El Segun				-118.405 Internet	1	0 0		0	0	0	0	0
	Conducto	20 https://w.conducto.Conducto				2008 {'Conduct	10016 New York				-73.9801 Internet	0	0 0) (0	0	0	0
eClou https://te CareClou ####### Series C \$31.5 M		31.5 https://w.careclou/CareClou				2009 {'Health1	33126 Miami				-80.2962 Informat	0	0 1	. 1	L 0	0	0	0	0
cewor https://te Spicewor ###### Series C \$16 M	Spicewor	16 https://w spicewor Spicewor				2006 {'SolarWi	78746 Austin		United StTX		-97.8299 Internet	0	0 0	•	0 0	0	0	0	0
ora W https://teStartups 4/9/2014 Series C \$80 M	Quora	80 https://w.quora Quora				2009 {'Faceboo	94041 Mountain		United St CA		-122.075 Internet	0			0 0	0	0	0	1
olingc https://teThe popt ###### Series C \$20 M	Duolingo	20 https://w.duolingo Duolingo				2011 {'Babbel'	15206 Pittsburg				-79.9137 Educatio	0	0 1	1 1	L 0	0	0	0	0
aHop https://teSeattle-b ####### Series C \$41 M	ExtraHop	41 https://w extrahop ExtraHop				2007 {'F5 Netw	98101 Seattle	TRUE	United St WA	47.6085	-122.336 Compute	0	0 0		1	0	0	0	1
rovok https://te Ostrovok ####### Series C \$12 M	Ostrovok	12 https://w ostrovok Ostrovok				2010 {'OneTwon			Russia		Internet	0	1 () (0	0	0	0	0
udBe(https://teCloudBe(3/5/2014 Series C \$11.2 M	CloudBee	11.2 https://w.cloudbeeCloudBee	es Compute http://	/wv 2001 Gat 201-500	CloudBee	2010 {'Jenkins	95110 San Jose	TRUE	United St CA	37.3546	-121.919 Compute	1	0 0) (0	0	0	0	0
Rais https://te "One rea ####### Series C \$32.5 M	2tor	32.5 https://w 2u 2U	higher ed Educatio http://	/2u 60 Chelst 1001-50	0(2U	2008 {'Andela'	10011 New York	TRUE	United St NY	40.7465	-74.0094 Educatio	0	0 0) (0	0	0	0	0
itaSo https://teBonitaSo ###### Series C \$13 M	BonitaSo	13 https://w.bonitasoBonitaso	BPM, Wo Compute http://	/wv 76, boule 51-200	Bonitas	2009 {'Bizagi':	92100	FALSE	France		Compute	0	0 0) (0 0	0	0	0	0
zilian https://teBrazilian ###### Series C \$30 M	PSafe	30 https://w psafe tec PSafe Te	App Andr Informat http://	/wv Rua Siqu 51-200	PSafe (w)	2010 {'B2W Dig	22031 Fairfax	FALSE	Brazil VA	38.8642	-77.2578 Informat	0	0 1	. 1	L 0	0	1	0	0
s? Clo https://te Online ki ###### Series C \$14.5 M	thredUP	14.5 https://w.thredup_thredUP	Kids and Apparel (http://	/wv 114 Sans 201-500	thredUP	2009 {'Stitch Fi	94104 San Fran	TRUE	United St CA	37.7911	-122.402 Consume	0	1 0) (0	0	0	0	0
rldStc https://teWorldStc 6/3/2013 Series C \$15 M	WorldStc	15 https://w.worldsto.WorldSto	Multi-nic Internet http://	/wv 3rd Floor 501-100	0 Establis	2004 {'achica': n	ot found	FALSE	United Kingdom		Internet	1	1 0) (0 0	0	0	0	0
	Twitter	35 https://w.twitter Twitter	Real-tim Internet http://	ca 1355 Mar 1001-50	0(Twitter	2006 {'Faceboo	94103 San Fran	TRUE	United StCA	37.7726	-122.41 Internet	0	0 1		0 0	0	0	0	0
th Rai https://teThe cloue ####### Series C \$10 M	rPath	10 https://wrpath rPath	Compute http://	/wv 5430 Wac Nov-5	0 About	2005 ('Caktus (27607 Raleigh	TRUE	United St NC	35.8019	-78.6875 Compute	1	0 0) 1	1 0	0	0	0	0
apchal https://teAmid run ####### Series C \$50 M	Snapchat	50 https://w.snapcharSnapchar	, Inc. Compute http://	/wv 63 Marke 1001-50	0(Experie	2010 {'Instagra	90291 Venice	TRUE	United St CA	33.9962	-118.469 Compute	0	0 0) (0 0	0	0	0	0
Talk Fhttps://teToyTalk, ####### Series C \$15 M	ToyTalk	15 https://w.toytalk.ir.ToyTalk,				2011 {'PullStrii	94108 San Fran				-122.408 Entertain	0	0 0) 1	1 0	0	0	0	1
kApps https://teYesterda ####### Series C \$14 M	KickApps	14 https://w.kickapps.KickApps				2005 ('Joystick	10011 New York				-74.0094 Internet	0	0 0) (0	0	0	1	0
			p =			(,						-	- '			-	-		_

Data Exploration to Recommendation Generation

Data
Exploration/
Visualization

Data exploration is to gain insights for algorithm selection, feature selection, feature transformation through following steps:

- Summary statistics, variable category, NA value detection
- Univariate analysis
- Bivariate analysis

Documentation and codes:

Recommendati on Engine Based on the inputs from the data exploration, we create the recommendation and generate recommendations in the following steps:

- Algorithm Selection
- Feature Transformation and Engineering
- Recommendation Output

Documentation and codes:

Summary Statistics, Variable Category, and NA values

Refer the document for the details: explatory_data_analysis/explatory_data_analysis

```
summary(data[, 1:13])
        published_at funding_round money_raised_float
   1/14/2016 : 3
                            : 12
                                   Min. : 10.00
   7/29/2015 : 3
                    Series B: 48
                                   1st Qu.: 15.00
   11/15/2016: 2
                    series C: 1
                                   Median : 25.00
   11/3/2015 : 2
                    Series C:152
                                   Mean : 41.17
   12/11/2013: 2
                    Series D: 14
                                   3rd Qu.: 45.00
   2/11/2008 : 2
                    Series E: 5
                                         :793.50
    (Other) :218
                                               CompanyName
                                                               CompanySize
##
   2U
                                                            51-200
                                                                     :101
   3D Robotics
                                                            201-500
   aCommerce - Ecommerce Solutions for Southeast Asia: 1
                                                            Nov-50
                                                                    : 27
   Affle
                                                            1001-5000: 21
   App Annie
                                                            501-1000 : 14
   Appear Here
                                                            10,001+ : 2
                                                            (Other) : 3
   (Other)
       Founded
                                     address_check
                                                             Country
                             City
                                                   United States :178
          :1939
                   San Francisco:49
                                     False: 59
   1st Qu.:2007
                                     True :173
                                                   United Kingdom: 17
   Median:2010
                  New York
                                :27
                                                   Germany
         :2009
                  Mountain View:11
                                                   Canada
                                                                 : 4
    3rd Qu.:2012
                                                                 : 4
                   San Mateo
                                                   India
                               : 6
    Max.
          :2017
                   Boston
                                                   Singapore
                                                                 : 4
                   (Other)
                                :85
                                                   (Other)
                                                                 : 17
```

```
# check columns 1:13. Columns 13: have same format.
str(data[, 1:13])
## 'data.frame':
                    232 obs. of 13 variables:
                                   : Factor w/ 209 levels "1/11/2010", "1/14/2016",...: 189 176 160 15
## $ published_at
## $ funding_round
                                   : Factor w/ 6 levels "", "Series B", ...: 4 4 4 4 4 4 4 4 4 4 ...
## $ money_raised_float
                                   : num 45 39 40 48 90 20.2 29 32 36 20 ...
   $ CompanyName
                                   : Factor w/ 232 levels "2U", "3D Robotics", ...: 25 29 185 126 39 12
                                   : Factor w/ 8 levels "10-Jan", "10,001+",..: 4 7 7 7 4 4 7 7 7 7.
## $ CompanySize
   $ Founded
                                   : num 2013 2013 2015 2011 2013 ...
## $ City
                                   : Factor w/ 68 levels "", "Arlington", ..: 1 1 36 1 55 1 52 36 52 2
                                   : Factor w/ 2 levels "False", "True": 1 1 2 1 2 1 2 2 2 2 ...
## $ address_check
                                   : Factor w/ 23 levels "Belgium", "Brazil", ...: 8 22 23 22 23 7 23 2
## $ Country
                                   : num NA NA 40.7 NA 37.4 ...
## $ latitude
## $ longitude
                                   : num NA NA -74 NA -122 ...
                                   : Factor w/ 16 levels "Computer & Network Security & Hardware",...
## $ Industry_consolidated
## $ spc_Logistics.and.Supply.Chain: int 0001000000...
  # show columns with na
 na = lapply(data, function(x) sum(ifelse(is.na(x) | x == "" | x == "not found", TRUE, FALSE)))
 na[na > 0]
 ## $funding_round
  ## [1] 12
  ## $City
  ## [1] 46
  ## $latitude
  ## [1] 46
```

Univariate analysis

Refer the document for the details: explatory_data_analysis/explatory_data_analysis

Refer the document for the details: explatory_data_analysis/explatory_data_analysis

Bivariate analysis

Refer the document for the details: explatory_data_analysis/explatory_data_analysis

25 -

-120

-100

orangered

Recommendation Engine – K-Nearest Neighbor

How the recommendation engine should work:

Given user inputs such as industry, company size, and year founded, it provides a few companies that matches the inputs.

Algorithm choice: K-nearest neighbors (KNN)

Justification for the choice: KNN works well for multi-class problems like this problem where we want to assign the user input to a label (company) as outputs out of all the different labels. It also produces several neighbors which we can use as a secondary recommendations for the user.

How KNN works: A green dot as the user input and other dots are startups in the database. KNN calculates the distance between the green dot and other dots and come up with K dots that are closest to the green dot. The shorter the distance is is, the better matches between the input and the neighbors are. These neighbors become the recommendation.

KNN requires features to be scaled properly because KNN is distance-based algorithm and calculates a selected distance metric between the user inputs and each example of the training data. This implies that KNN only takes a numeric variable and a dummy variable. Thus, I made transformations as followings for the features.


```
In [51]: generate recommendation(train, test.ix[0:0,], x test.ix[0:0,])
         Thank you for providing your interests! Below are the summary of your interests
         Headquarters:
                              San Francisco
         Year founded:
                              2015
         Company size:
                              11-50
         Industry:
                              Education & Internet
         We recommend to check 'Edmodo' that matches your interests!
         About the start up
         Our mission is to connect all learners to the people and resources needed to achieve their full potential. We are the world's 1
         eading global education network that provides communication, collaboration, and coaching tools for all members of the school co
         mmunity. We were founded in 2008 and currently have over 70 million members across 350,000+ schools in 150 countries.
         The investors backing Edmodo are some of the best-recognized firms in the world, including Benchmark Capital, Greylock Venture
         s, Index Ventures, Union Square Ventures, Learn Capital and our Chairman is Reid Hoffman, founder of LinkedIn.
         So join the team that is changing how teachers and students learn - change lives, build your career and rack up the karma.
         Company details
         Website:
                              http://www.edmodo.com
         Headquarters:
                              San Mateo, CA
         Year founded:
                              2008
         Company size:
                              51-200
         Techcrunch article: https://techcrunch.com/2012/07/19/nea-leads-educational-network-edmodos-25-million-series-c/
         We also suggest checking following startups
                         Company Money raised Founded Company Size
                  Varsity Tutors
                                                 2,007
                                                             201-500
                                                                       Saint Louis
                                            50 2,012
                                                             201-500 Mountain View
             Boomerang Commerce
                                           12 2,012
                                                             51-200 Mountain View
         42
                     Engine Yard
                                            19
                                                 2,006
                                                             51-200 San Francisco
                                                 2,009
                                                             201-500 Mountain View
```

Summery of user inputs

Summary of the top recommendation

Secondary recommendations

Future Development

Data collection	Incorporate more data sources such as Glassdoor. Create data pipeline that is based on once a day batch processing from multiple data sources. Improve algorithms for various data extraction works by utilizing existing NLP packages.
Data storage	Store the data in database such as PostgreSQL for better data management and data retrieving capability.
Data preprocessing	Clean up codes and streamline the process. Incorporate better handlings.
Recommendation Engine	Store companies also-viewed for each company profile at linked in Graph DB such as Neo4j and generate startup recommendations based on the DB.
Interface	Create a Web application using Flask and develop GUI to enable users to input their preferences and to view recommendation outputs.