Indian Institute of Technology Madras PH1020, 2018 Tutorial-6

1. Consider a plane boundary between two media of permeability μ_1 and μ_2 , as shown in Figure 1. Find the relation between the angles θ_1 and θ_2 . Assume that the media are linear with \vec{B} and \vec{H} in the same direction.

Figure 1

- **2.** A sphere of a linear magnetic material of susceptibility χ_m is placed in an otherwise uniform magnetic field \vec{B}_0 . Determine the new field inside the sphere.
- **3.** A long straight wire of radius a is made of a homogeneous, linear magnetic material with a susceptibility χ_m . A uniformly distributed current I flows down the wire. Determine
 - (a) the magnetic filed at a distance s from the axis of the wire and
 - (b) the net bound current flowing in the wire.
- **4.** An infinitely long straight wire located along the z-axis carries a steady current I in the positive z-direction. A copper rod is located on the y-axis, such that its ends are at y = a and y = b. The rod moves with a constant velocity $\vec{v} = v_0 \hat{e}_z$. Find the emf induced in the rod.
- **5.** A long circular cylinder of radius a carries
 - (a) a uniform magnetisation M parallel to it's axis. Find the magnetic field due to M inside and outside the cylinder.
 - (b) a magnetisation $\mathbf{M} = \frac{M_0 s^2}{a^2} \hat{\phi}$ where $M_0 > 0$ is a constant, s is the distance from the axis, and $\hat{\phi}$ is the usual azimuthal unit vector.

Find J_b, K_b and the magnetic field B due to M inside and outside the cylinder.