Machine Learning Unit 5

Decision Trees

Exercise 1: Decision Trees

Construct by hand decision trees corresponding to each of the following Boolean formulas. The examples $(\mathbf{x},c)\in D$ consist of a feature vector \mathbf{x} where each component corresponds to one of the Boolean variables (A,B,\ldots) used in the formula, and each example corresponds to one interpretation (i.e. assignment of 0/1 to the Boolean variables). The target concept c is the truth value of the formula given that interpretation. Assume the set D contains examples with all possible combinations of attribute values.

Hint: It may be helpful to write out the set D for each formula as a truth table.

- (a) $A \wedge \neg B$
- (b) A XOR B
- (c) $A \vee (B \wedge C)$
- (d) $(A \wedge B) \vee (C \wedge D)$

Exercise 2: Impurity Functions

Let D be a set of examples over a feature space \mathbf{X} and a set of classes $C = \{c_1, c_2, c_3, c_4\}$, with |D| = 24. Consider the following illustration of two possible decision trees, T_1 and T_2 – the colors represent the classes present in each document set D(t) associated with a node t of a tree; the numbers denote how many examples of each class are present.

- (a) First, consider only the first split that each of the two trees makes: compute $\Delta\iota(D,\{D(t_{1,1}),D(t_{1,2})\})$ and $\Delta\iota(D,\{D(t_{2,1}),D(t_{2,2})\})$ with (1) the misclassification rate $\iota_{misclass}$ and (2) the entropy criterion $\iota_{entropy}$ as splitting criterion.
 - Interpret the results: which of $\{D(t_{1,1}), D(t_{1,2})\}\$ or $\{D(t_{2,1}), D(t_{2,2})\}\$ is the better first split?
- (b) If we compare T_1 and T_2 in terms of their misclassification rate on D, which one is the better decision tree?
- (c) Assuming the splits shown are the only possibilities, which of T_1 or T_2 would the ID3 algorithm construct, and why?

Exercise 3: Decision Trees

Given is the following dataset to classifiy whether a dog is dangerous or well-behaved in character:

Color	Fur	Size	Character (C)
brown	ragged	small	well-behaved
black	ragged	big	dangerous
black	smooth	big	dangerous
black	curly	small	well-behaved
white	curly	small	well-behaved
white	smooth	small	dangerous
red	ragged	big	well-behaved

(a) Use the ID3 algorithm to determine a decision tree, where the attributes are to be chosen with the maximum average information gain *iGain*:

$$\textit{iGain}(D,A) \equiv H(D) \ - \sum_{a \in A} \frac{|D_a|}{|D|} \cdot H(D_a) \quad \text{with} \quad H(D) = -p_{\oplus} \log_2(p_{\oplus}) - p_{\ominus} \log_2(p_{\ominus})$$

(b) Classify the new example (Color=black, Fur=ragged, Size=small) using your decision tree.