Open Tools for Advanced Packaging STCO

Student: Zhichao Chen

Advisor: Puneet Gupta

Affiliation: UCLA

YAP: Yield Modeling for Advanced Packaging

Github: https://github.com/nanocad-lab/YAP

GUI: http://nanocad.ee.ucla.edu:8081/yap_gui/

- Zhichao Chen

- Traditional yield models are inadequate for addressing the complexities inherent in hybrid bonding technology.
- The first published yield model for hybrid bonding technology accounting for multiple failure mechanisms:
 - Overlay errors, particle defects, Cu recess variations

Misalignment caused by overlay errors

Voids caused by particle defects

Delamination/Open caused by too high/low Cu recess

YAP: Yield Modeling for Advanced Packaging

Github: https://github.com/nanocad-lab/YAP

GUI: http://nanocad.ee.ucla.edu:8081/yap_gui/

- Zhichao Chen

- YAP achieves virtually identical accuracy while offering over 10,000x faster runtime.
- Perform case studies to:
 - Show impacts of each input parameter (chiplet size, pitch, particle density,).
 - Compare W2W & D2W hybrid bonding.

Date: Wednesday, June 25, 11:15am - 11:30am PDT

Site: 3003. Level 3

Session: Welcome to the Silicon Rodeo: Wrangling Transistors, Taming Yield, and Riding the 3D Packaging Frontier

Github: https://github.com/nanocad-lab/CATCH - Alexander Graening

- Fully parameterized with system definition plus "library files" defining various processes.
- Case studies to show impacts of each parameter.
- Deployed at IMEC and Analog Devices for their internal use.

Github: https://github.com/nanocad-lab/CATCH - Alexander Graening

File Structure:

- System definition:
 - Structured around a Chip object definition.
 - Each Chip contains Chip specific parameters and library references.
 - Chips may be stacked on top or bottom of the root Chip.
 - XML file format.

Github: https://github.com/nanocad-lab/CATCH | - Ale

- Alexander Graening

File Structure:

- Netlist definition:
 - Netlist is defined as connections between Chip objects with a defined IO type.
 - Connections are defined by a bandwidth or a count.
 - The IO area is added to die area.

Github: https://github.com/nanocad-lab/CATCH - Alexander Graening

File Structure:

- Library Files
 - Assembly process
 - IO Type
 - Wafer process
 - Test process
 - Layer definitions
 - Via/Wire definitions
 - Material definitions
 - ...

