

شناسایی آماری الگو مروری بر آمار و احتمال

محمدجواد فدائى اسلام

شاخصهای گرایش مرکزی:

۱ –میانگین

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + ... + x_n)$$
الف-میانگین حسابی

$$G=\sqrt[n]{x_1x_2\ \dots x_n}=\sqrt[n]{\prod_{i=1}^n x_i}$$
 ب- میانگین هندسی

۲- میانه

٣- نما (مد)

شاخصهای گرایش مرکزی:

۲- میانه

ويژگىھا:

الف- میانه مشاهدات را به دو بخش مساوی تقسیم می کند.

ب- منحصر به فرد است.

ج- تحت تأثیر دادههای پرت قرار نمی گیرد.

د- محاسبه آن ساده است.

٣- نما (مد)

نمای یک مجموعه، عددی است که در آن مجموعه بیش از بقیه تکرار شده باشد.

شاخص های پراکندگی

۱ – دامنه

$$R = x_{max} - x_{min}$$

۲–واریانس

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

٣-انحراف معيار

۴–متغیرهای استاندارد

۲- ویژگیهای واریانس

- ا واریانس عدد ثابت C برابر با صفر است.
- حاگر مقدار ثابت a را به مشاهدات اضافه یا از آنها کم کنیم واریانس تغییر ایمی کند.
- ۳- اگر مشاهدات در مقدار ثابت K ضرب یا برآن تقسیم شود واریانس جدید از ضرب یا تقسیم واریانس قدیم در K^2 بدست می آید

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

٣- انحراف معيار

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$z_i = \frac{x_i - \bar{x}}{s}$$

۴- متغیرهای استاندارد

ویژگیهای متغیرهای استاندارد:

۱ – میانگین متغیرهای استاندارد برابر صفر است.

۲- واریانس متغیرهای استاندارد برابر با ۱ است.

۳- متغیرهای استاندارد فاقد واحد اندازه گیری هستند.

اشد. مقدار Z_i می تواند، منفی، صفر یا مثبت باشد.

فضاى نمونه

- مجموعه ای از همه برآمدهای ممکن یک تجربه تصادفی را فضای نمونه می گویند. و آن را با علامت S نمایش می دهند.
 - یک سکه را آنقدر پرتاب می کنیم تا رو (H) ظاهر شود. فضای نمونه را بنویسید.

$$S = \{H, TH, TTH, \dots\}$$

که S گسسته و نامتناهی شمارا است

۰ پیشامد

• هر زیرمجموعه از فضای نمونه را یک پیشامد گویند.

احتمال

$$P(A) = \frac{\text{تعداد حالات مساعد}}{\text{تعداد حالات کل}} = \frac{n(A)}{n(S)}$$

مفهوم كلاسيك:

مفهوم فراوانی: احتمال یک پیشامد، برابر با نسبت دفعاتی است که پیشامدهای از یک نوع، در تکرار زیاد رخ خواهند داد، احتمال به مفهوم فراوانی تلقی میشود.

تابع احتمال

تابعی را که به هر پیشامد، عددی در بازه (۱٬۰) نسبت دهد و در سه اصل زیر صدق کند تابع احتمال گویند.

اصل اول: احتمال هر پیشامد بزرگتر یا مساوی صفر است. $P(A) \geq 0, \forall A \subset S$

اصل دوم: احتمال فضای نمونه S برابر با ۱ است. P(S)=1

اصل سوم: در صورت استقلال پیشامدها داریم. $P[A_1 \cup A_2 \dots] = P(A_1) + P(A_2) + \cdots$

قوانين احتمال

قضیه: احتمال مجموعه تهی برابر صفر است.
$$P(\phi) = 0$$

قضیه: اگر
$$A'$$
 متمم پیشامد A باشد آنگاه $P(A')=1-P(A)$

$$P(A) \leq P(B)$$
 قضیه: اگر $A \subset B$ باشد آنگاه

$$0 \le P(A) \le 1$$
 قضیه: اگر A یک پیشامد باشد آنگاه

احتمال ...

قضیه: اگر
$$B$$
، دو پیشامد دلخواه در S باشند آنگاه: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

قضیه: اگر B ه و C پیشامدهای دلخواه در S باشند آنگاه:

$$P(A \cup B \cup C) =$$

$$P(A) + P(B) + P(C) -$$

$$P(A \cap B) - P(A \cap C) - P(B \cap C) +$$

 $P(A \cap B \cap C)$

احتمال شرطى

احتمال شرطی پیشامد A به شرط وقوع پیشامد B به صورت زیر تعریف میشود

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0$$

وقوع B به این معنی است که فضای حالت S به B کاهش یافته است و

وقوع $A \cap B$ به $A \cap B$ تقلیل یافته است.

احتمال شرطى

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

احتمال شرطى - مثال

دو جعبه قرمز و آبی را در نظر بگیرید که شامل تعدادی سیب و پرتقال به صورت زیر است. جعبهها با احتمال داده شده به صورت تصادفی انتخاب میشود.

$$P(B=r) = \frac{4}{10}, P(B=b) = \frac{6}{10},$$

مطلوب است محاسبه احتمالات زیر:

$$P(F = a|B = r) = 1/4$$

 $P(F = o|B = r) = 3/4$
 $P(F = a|B = b) = 3/4$
 $P(F = o|B = b) = 1/4$

۱۷

دو پیشامد مستقل

دو پیشامد A و B را مستقل گوییم، اگر رخ داد یکی تأثیری در دیگری نداشته باشد یعنی P(A|B) = P(A) و P(B|A) = P(B) . P(B|B) = P(A) بنابراین P(B|B) = P(B) بنابراین

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B) = P(A)P(B)$$

مثال: روآمدن در پرتاب سکه با عدد ۶ آمدن در پرتاب تاس

قضیه احتمال کلی

S
If
$$P(B_i) \neq 0$$
, then
$$P(A \cap B_i) = P(A | B_i)P(B_i)$$

Hence, for the partition $\{B_1, B_2, ..., B_k\}$ of the sample space S, we have $P(A) = P(A \cap B_1) + P(A \cap B_2) + \cdots + P(A \cap B_k)$ or equivalently,

$$P(A) = P(A \mid B_1)P(B_1) + P(A \mid B_2)P(B_2) + \dots + P(A \mid B_k)P(B_k).$$

احتمال كلى - مثال

o
$$P(F = o) = P(F = o|B = r)P(B = r)$$

 $+ P(F = o|B = b)P(B = b) = \frac{3}{4} \times \frac{4}{10} + \frac{1}{4} \times \frac{6}{10} = \frac{9}{20}$
o $P(F = a) = 1 - \frac{9}{20} = \frac{11}{20}$

قضيه بيز

اگر پیشامدهای $A_i = S_i$ ، ..., A_i دو به دو مجزا و $A_i = S_i$ باشد احتمال شرطی هریک از A_i ها به شرط اتفاق پیشامد A_i از A_i برابر با:

$$P(A_i|A) = \frac{P(A_i \cap A)}{P(A)}$$

$$P(A_i|A) = \frac{P(A_i \cap A)}{\sum_{i=1}^k P(A|A_i)P(A_i)}$$

قضیه بیز یکی از مهمترین روابط مورد استفاده در شناسایی الگو است.

قضیه بیز برای طبقهبندی

$$P(w_j \mid x) = \frac{P(x \mid w_j)P(w_j)}{\sum_{k=1}^{N} P(x \mid w_k)P(w_k)} = \frac{P(x \mid w_j)P(w_j)}{P(x)}$$

- که x بردار ویژگی و w_j کلاس j ام است.
- هر کلاسی که $P(w_j|x)$ برای آن حداکثر شود انتخاب می شود. lacksquare
 - هریک از اجزا در رابطه بیز دارای نام خاصی است:
 - prior probability w_j احتمال پیشین کلاس $P(w_j)$ loronomean
- posterior probability x به هنگام کالس w_j احتمال پسین کلاس کالس ام $P(w_j|x)$ ه

احتمال شرطی
$$P(x|w_j)$$
 و ۱۲

قضیه بیز – مثال

o
$$P(B = r | F = o) = \frac{P(F = o | B = r)P(B = r)}{P(F = o)} = \frac{3}{4} \times \frac{4}{10}$$

 $\times \frac{20}{9} = \frac{2}{3}$

$$P(B = b|F = o) = 1 - \frac{2}{3} = \frac{1}{3}$$

