4.6, 4.7 TEST ms

 $CH_3CH=CH_2 + HCl + AlCl_3 \rightarrow (CH_3)_2 \stackrel{\top}{C} H (1) \quad AlCl_4 \stackrel{\top}{(1)}$ 1. (a) (i) Type of substitution electrophilic or alkylation (1) (ii) Mechanism **(1)** $^{+}$ CH(CH₃)₂ \rightarrow CH(CH₃)₂ **(1)** 6 $CH_3CH_2CH^{\frac{1}{2}}$ or primary carbonium ion (1) (b) less stable or 1 & 2 inductive effects (1) than $(CH_3)_2CH^+$ or secondary (1) 3 CH₃CHClCH₃ (1) (c) 1 [10] 2. $\Delta H = -119.6 \times 3$ (1) (a) $= -358.8 \text{ kJ mol}^{-1}$ (1) benzene is more stable or of lower energy (1) (b) due to delocalisation (1) [4] **3.** Lone pair on N (1) (a) 2 accepts a proton (1) Lone pair less available (1) (b) 2 due to delocalisation (1) (c) (i) Nucleophilic substitution or alkylation (1) Compound 1 (ii) $(CH_3CH_2)_2NH$ (1) Compound 2 $(CH_3CH_2)_3N(1)$ Compound 3 $(CH_3CH_2)_4N^+Br^-$ 4 **Equation** $CH_3CN + 2H_2 \rightarrow CH_3CH_2NH_2$ (1) (d) only one product formed (1) 2 Reason [10]

- 4. (a) (i) cone HNO_3 1
 cone H_2SO_4 1
 allow 1 for both acids if either cone missing $HNO_3 + 2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ 2HSO_4^-$ or $HNO_3 + H_2SO_4 \rightarrow NO_2^+ + H_2O + HSO_4^-$
 - (ii) electrophilic substitution CH₃

$$CH_3$$
 $M1$
 H
 NO_2
 $M3 \text{ arrow}$

horseshoe must not extend beyond C2 to C6 but can be smaller \pm must not be too close to Cl

3

1

4

1

(b) Sn or Fe / HC1 (cone or dil or neither) or Ni / H₂ not NaBH₄ LiAlH₄

(e)

- $\begin{array}{ccc} \text{(c)} & \text{(1)} & \text{NH}_3 & & 1 \\ & \text{Use an excess of ammonia} & & 1 \end{array}$
 - (ii) nucleophilic substitution 1

M3 structure

$$C_6H_5$$
— CH_2 — Cl
 C_6H_5 - CH_2 — H
 C_6H_5 - CH_2 — CH_2 — CH_2
 C_6H_5 - CH_2 — CH_2
 C_6H_5
 C_6

- (d) <u>lone pair</u> on N less available (in correct context) 1 <u>delocalised</u> into the ring (Q of L) 1
- ignore Br
 + must be on N or outside a
 square bracket
- (f) $\begin{array}{c} & & \\ &$

5. (a)

$$CH_{3}CH_{2} \xrightarrow{Br} CH_{3}CH_{2} \xrightarrow{H} H^{(\bullet)} :NH_{3})$$

$$(1) :NH_{3} \qquad (1) \qquad H^{(\bullet)} M4 \qquad (1)$$

$$M3$$

Further reaction / substitution / formation of II° / III° amines etc (1) use an excess of NH₃ (1)

6

5

(b) repels nucleophiles (such as
$$NH_3$$
) (1)

 $\frac{\text{Sn/HCl}}{\text{(1)}}$

$$\begin{array}{cccc} \text{CH}_2 \text{SO}_4 & \text{(1)} \\ \text{20} - 60^{\circ} \text{ C} & \text{(1)} \end{array}$$

Notes

(a) allow SN1

penalise: Br^- intead of NH_3 removing H^+ for M4 not contamination with *other amines* (this is in the question) not diamines

(b) allow because NH₃ is a nuclephile or benzene is (only) attacked by electrophiles

or C–Br bond (in bromobenzene) is stronger / less polar or Br lp delocalized

 HNO_3 / H_2SO_4 without either conc scores (1) allow $20-60^\circ$ for (1) (any 2 ex 3)

allow name or structure of nitrobenzene

other reducing agents: Fe or Sn with HCl (conc or dil or neither)

not conc H₂SO₄ or conc HNO₃

allow Ni/H2

Not NaBH₄ or LiAlH₄

ignore wrong descriptions for reduction step e.g. hydrolysis or hydration

[11]

Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) Structures

penalise sticks (i.e. — C —) <u>once per paper</u>

Penalise once per paper

$$\begin{array}{c} \underline{\text{allow}} \ \text{CH}_3\text{--} \text{ or --CH}_3 \text{ or } \text{CH}_3 \\ \text{or } \ \text{H}_3\text{C}\text{--} \end{array}$$