

- PROGRAM - 5

AIM:

Program to implement k-NN classification using any standard dataset available in the public domain and find the accuracy of the algorithm.

DATASET:

```
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

df = pd.read_csv('/content/sonar_csv.csv')

df.head()
```

₽		attribute_1	attribute_2	attribute_3	attribute_4	attribute_5	attribute_6	attribu
	0	0.0200	0.0371	0.0428	0.0207	0.0954	0.0986	0
	1	0.0453	0.0523	0.0843	0.0689	0.1183	0.2583	0
	2	0.0262	0.0582	0.1099	0.1083	0.0974	0.2280	0
	3	0.0100	0.0171	0.0623	0.0205	0.0205	0.0368	0
	4	0.0762	0.0666	0.0481	0.0394	0.0590	0.0649	0

```
, [בסס4בסכם.ש- ,סשס/סד/ב.ש
[0.70353822, 0.42163039, 1.05561832, ..., -0.47240644,
-0.44455424, -0.41985233],
[-0.12922901, 0.60106749, 1.72340448, ..., 1.30935987,
 0.25276128, 0.25758223],
[1.00438083, 0.16007801, -0.67384349, ..., 0.90652575,
-0.03913824, -0.67887143],
[0.04953255, -0.09539176, 0.13480381, ..., -0.00759783,
-0.70402047, -0.34015415],
[-0.13794908, -0.06497869, -0.78861924, ..., -0.6738235]
-0.29860448, 0.99479044]])
```

a = pd.DataFrame(s,columns = df.columns[:-1])

	attribute_1	attribute_2	attribute_3	attribute_4	attribute_5	attribute_6	attr:
0	-0.399551	-0.040648	-0.026926	-0.715105	0.364456	-0.101253	0
1	0.703538	0.421630	1.055618	0.323330	0.777676	2.607217	1
2	-0.129229	0.601067	1.723404	1.172176	0.400545	2.093337	1
3	-0.835555	-0.648910	0.481740	-0.719414	-0.987079	-1.149364	-0
4	2.050790	0.856537	0.111327	-0.312227	-0.292365	-0.672796	-0
203	-0.456232	-0.116681	-0.705146	-0.779738	-0.647842	0.990954	1
204	0.136733	-0.861801	-0.366036	0.054026	0.014392	-0.148740	-0
205	1.004381	0.160078	-0.673843	-0.531979	-0.723629	0.212502	0
206	0.049533	-0.095392	0.134804	0.148821	-1.055648	0.522865	0
207	-0.137949	-0.064979	-0.788619	-0.575067	-0.970839	-1.200244	-0

208 rows × 60 columns

TRAINING AND TESTING:

from sklearn.model_selection import train_test_split

```
x = a
y = df['Class']
```

- 0 Rock
- 1 Rock
- Rock

```
NUCK
     3
            Rock
            Rock
            . . .
     203
            Mine
     204
            Mine
     205
           Mine
     206
           Mine
     207
           Mine
     Name: Class, Length: 208, dtype: object
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = .3,random_state=42)
from sklearn.neighbors import KNeighborsClassifier
c = KNeighborsClassifier(n_neighbors=1)
c.fit(x_train,y_train)
     KNeighborsClassifier(n neighbors=1)
pred=c.predict(x test)
from sklearn.metrics import classification report, confusion matrix
print(confusion_matrix(y_test,pred))
print(classification_report(y_test,pred))
     [[32 3]
      [ 2 26]]
                   precision recall f1-score
                                                   support
             Mine
                        0.94
                                  0.91
                                            0.93
                                                        35
             Rock
                        0.90
                                  0.93
                                            0.91
                                                        28
         accuracy
                                            0.92
                                                        63
        macro avg
                     0.92
                                  0.92
                                            0.92
                                                        63
     weighted avg
                        0.92
                                  0.92
                                            0.92
                                                        63
#analyzing better k value through iterations.
error_rate=[]
for i in range(1,40):
 k = KNeighborsClassifier(n_neighbors=i)
 k.fit(x_train,y_train)
 pred_i= k.predict(x_test)
 error_rate.append(np.mean(pred_i!= y_test))
```

```
plt.figure(figsize=(10,6))
plt.plot(range(1,40),error_rate,color='blue',linestyle='dashed',marker='s',markerfacecolor='o
plt.title('Error Rate vs k values')
plt.xlabel('k')
plt.ylabel('Error Rate')
```

Text(0, 0.5, 'Error Rate')

RESULT:

The program executed successfully and obtained the output.

- PROGRAM - 6

AIM:

Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm

DATASET:

Iris.csv

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as s

dataset=pd.read_csv('/content/Iris (1).csv')
```

dataset.head()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object

```
dtypes: float64(4), int64(1), object(1)
     memory usage: 7.2+ KB
from sklearn.preprocessing import StandardScaler
scalar=StandardScaler()
scalar.fit(dataset.drop('Species',axis=1))
     StandardScaler()
x=scalar.transform(dataset.drop('Species',axis=1))
Х
     array([[-1.72054204e+00, -9.00681170e-01, 1.03205722e+00,
             -1.34127240e+00, -1.31297673e+00],
            [-1.69744751e+00, -1.14301691e+00, -1.24957601e-01,
             -1.34127240e+00, -1.31297673e+00],
            [-1.67435299e+00, -1.38535265e+00,
                                                 3.37848329e-01,
             -1.39813811e+00, -1.31297673e+00],
            [-1.65125846e+00, -1.50652052e+00,
                                                 1.06445364e-01,
             -1.28440670e+00, -1.31297673e+00],
            [-1.62816394e+00, -1.02184904e+00,
                                                 1.26346019e+00,
             -1.34127240e+00, -1.31297673e+00],
            [-1.60506942e+00, -5.37177559e-01,
                                                 1.95766909e+00,
             -1.17067529e+00, -1.05003079e+00],
            [-1.58197489e+00, -1.50652052e+00,
                                                8.00654259e-01,
             -1.34127240e+00, -1.18150376e+00],
            [-1.55888037e+00, -1.02184904e+00,
                                                 8.00654259e-01,
             -1.28440670e+00, -1.31297673e+00],
            [-1.53578584e+00, -1.74885626e+00, -3.56360566e-01,
             -1.34127240e+00, -1.31297673e+00],
            [-1.51269132e+00, -1.14301691e+00,
                                                 1.06445364e-01,
             -1.28440670e+00, -1.44444970e+00],
            [-1.48959680e+00, -5.37177559e-01,
                                                1.49486315e+00,
             -1.28440670e+00, -1.31297673e+00],
            [-1.46650227e+00, -1.26418478e+00,
                                                8.00654259e-01,
             -1.22754100e+00, -1.31297673e+00],
            [-1.44340775e+00, -1.26418478e+00, -1.24957601e-01,
             -1.34127240e+00, -1.44444970e+00],
            [-1.42031323e+00, -1.87002413e+00, -1.24957601e-01,
             -1.51186952e+00, -1.44444970e+00],
            [-1.39721870e+00, -5.25060772e-02, 2.18907205e+00,
             -1.45500381e+00, -1.31297673e+00],
            [-1.37412418e+00, -1.73673948e-01,
                                                 3.11468391e+00,
             -1.28440670e+00, -1.05003079e+00],
            [-1.35102965e+00, -5.37177559e-01,
                                                 1.95766909e+00,
             -1.39813811e+00, -1.05003079e+00],
```

[-1.32793513e+00, -9.00681170e-01, 1.03205722e+00,

_

```
-1.34127240e+00, -1.18150376e+00],
[-1.30484061e+00, -1.73673948e-01,
                                    1.72626612e+00,
-1.17067529e+00, -1.18150376e+00],
[-1.28174608e+00, -9.00681170e-01,
                                    1.72626612e+00,
-1.28440670e+00, -1.18150376e+00],
[-1.25865156e+00, -5.37177559e-01,
                                    8.00654259e-01,
-1.17067529e+00, -1.31297673e+00],
[-1.23555703e+00, -9.00681170e-01,
                                    1.49486315e+00,
-1.28440670e+00, -1.05003079e+00],
[-1.21246251e+00, -1.50652052e+00,
                                    1.26346019e+00,
-1.56873522e+00, -1.31297673e+00],
[-1.18936799e+00, -9.00681170e-01,
                                    5.69251294e-01,
-1.17067529e+00, -9.18557817e-01],
[-1.16627346e+00, -1.26418478e+00, 8.00654259e-01,
-1.05694388e+00, -1.31297673e+00],
[-1.14317894e+00, -1.02184904e+00, -1.24957601e-01,
-1.22754100e+00, -1.31297673e+00],
[-1.12008441e+00, -1.02184904e+00, 8.00654259e-01,
-1.22754100e+00, -1.05003079e+00],
[-1.09698989e+00, -7.79513300e-01,
                                    1.03205722e+00,
-1.28440670e+00, -1.31297673e+00],
[-1.07389537e+00, -7.79513300e-01, 8.00654259e-01,
-1.34127240e+00, -1.31297673e+00],
```

newdataset=pd.DataFrame(x,columns=dataset.columns[:-1])

newdataset

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	-1.720542	-0.900681	1.032057	-1.341272	-1.312977
1	-1.697448	-1.143017	-0.124958	-1.341272	-1.312977
2	-1.674353	-1.385353	0.337848	-1.398138	-1.312977
3	-1.651258	-1.506521	0.106445	-1.284407	-1.312977
4	-1.628164	-1.021849	1.263460	-1.341272	-1.312977
145	1.628164	1.038005	-0.124958	0.819624	1.447956
146	1.651258	0.553333	-1.281972	0.705893	0.922064
147	1.674353	0.795669	-0.124958	0.819624	1.053537
148	1.697448	0.432165	0.800654	0.933356	1.447956
149	1.720542	0.068662	-0.124958	0.762759	0.790591

150 rows × 5 columns

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	-1.720542	-0.900681	1.032057	-1.341272	-1.312977
1	-1.697448	-1.143017	-0.124958	-1.341272	-1.312977
2	-1.674353	-1.385353	0.337848	-1.398138	-1.312977
3	-1.651258	-1.506521	0.106445	-1.284407	-1.312977
4	-1.628164	-1.021849	1.263460	-1.341272	-1.312977
145	1.628164	1.038005	-0.124958	0.819624	1.447956
146	1.651258	0.553333	-1.281972	0.705893	0.922064
147	1.674353	0.795669	-0.124958	0.819624	1.053537
148	1.697448	0.432165	0.800654	0.933356	1.447956
149	1.720542	0.068662	-0.124958	0.762759	0.790591

150 rows × 5 columns

У

0	Iris-setosa
1	Iris-setosa
2	Iris-setosa
3	Iris-setosa
4	Iris-setosa
	• • •
145	Iris-virginica
146	Iris-virginica
147	Iris-virginica
148	Iris-virginica
149	Iris-virginica

Name: Species, Length: 150, dtype: object

 $X_{\text{train}}, X_{\text{test}}, Y_{\text{train}}, Y_{\text{test}} = \text{train_test_split}(x, y, \text{stratify} = y, \text{test_size} = 0.5, \text{random_state} = 90)$ x. shape

(150, 5)

dataset values are continuous use quotient classifier. dataset values are in type of yes/no,true/false Bernoullie classifier. multinomial

```
from sklearn.naive_bayes import GaussianNB,BernoulliNB,CategoricalNB
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.metrics import accuracy score
scores=[]
classifier=GaussianNB()
classifier.fit(X_train,Y_train)
y_pred=classifier.predict(X_test)
scores.append(accuracy_score(Y_test,y_pred))
cm=confusion_matrix(Y_test,y_pred)
cm
     array([[25, 0, 0],
            [ 0, 25, 0],
            [ 0, 0, 25]])
print(classification_report(Y_test,y_pred))
     [[25 0 0]
     [ 0 25 0]
      [ 0 0 25]]
                      precision
                                   recall f1-score
                                                      support
         Iris-setosa
                           1.00
                                     1.00
                                               1.00
                                                           25
     Iris-versicolor
                           1.00
                                     1.00
                                               1.00
                                                           25
      Iris-virginica
                           1.00
                                     1.00
                                               1.00
                                                           25
                                                           75
            accuracy
                                               1.00
                                               1.00
           macro avg
                           1.00
                                     1.00
                                                           75
                                                           75
        weighted avg
                           1.00
                                     1.00
                                               1.00
```

RESULT:

The program executed successfully and obtained the output.

PROGRAM - 7

AIM:

Program to implement linear and multiple regression techniques using any standard dataset available in the public domain and evaluate its performance.

DATASET:

```
Salary_Data
#Simple Linear Regression
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df=pd.read csv('/content/sample data/Salary Data.csv')
df.head()
   YearsExperience Salary
               1.1 39343.0
0
1
               1.3 46205.0
2
               1.5 37731.0
3
               2.0 43525.0
               2.2 39891.0
x=df.iloc[:,:-1].values
y=df.iloc[:,:-1].values
# split the dataset into training set and testing set
from sklearn.model selection import train test split
x test,x train,y test,y train=train test split(x,y,test size=0.3,rando
m state=30)
# fit the training dataset
from sklearn.linear model import LinearRegression
regsr=LinearRegression()
regsr.fit(x train,y train)
LinearRegression()
y pred=regsr.predict(x test)
#visualize
plt.scatter(x train,y train,color='red')
plt.plot(x train,regsr.predict(y train),color='green')
plt.title("salary VS experience")
plt.xlabel("experience")
```

```
plt.ylabel("salary")
plt.show()
```



```
# visualizing the test results
plt.scatter(x_test,y_test,color='red')
plt.plot(x_test,regsr.predict(y_test),color='green')
plt.title("salary VS experience")
plt.xlabel("experience")
plt.ylabel("salary")
plt.show()
```


Multiple Linear Regression

print(v_pred)

```
ds=pd.read csv('/content/sample data/combined cycle powerplant.csv')
ds.head()
      ΑT
                      AΡ
                             RH
                                     PΕ
                                480.48
0
   8.34
         40.77
                1010.84
                          90.01
  23.64
         58.49
                1011.40
                         74.20 445.75
1
2
  29.74
         56.90
                1007.15
                          41.91
                                 438.76
                1007.22
                         76.79
3
  19.07
         49.69
                                 453.09
                1017.13 97.20
   11.80
         40.66
                                 464.43
u=ds.drop('PE',axis=1).values
v=ds['PE'].values
from sklearn.model selection import train test split
u train,u test,v train,v test =
train test split(u,v,test size=0.3,random state=45)
#fitting
from sklearn.linear_model import LinearRegression
rgr=LinearRegression()
rgr.fit(u_train,v_train)
LinearRegression()
v_pred=rgr.predict(u_test)
```

```
[451.12275809 472.67973273 434.23317529 ... 479.20120415 470.80190333
 437.269909791
#take the values of first row in u and compare our predicted v values
with actual v value
rgr.predict([[23.64
                      ,58.49,
                                 1011.40.
                                           74.20]])
array([445.23162503])
from sklearn.metrics import r2 score
r2 score(v test, v pred)
0.9270483924843018
# visualize
plt.figure(figsize=(15,10))
plt.scatter(v test, v pred)
plt.title("actual VS predicted")
plt.xlabel("actual")
plt.ylabel("predicted")
```


#print prdedicted values of our model
pred_ds=pd.DataFrame({'Actual value':v_test ,'Predicted
value':v_pred})
pred ds

Text(0, 0.5, 'predicted')

	Actual value	Predicted value
0	449.23	451.122758
1	474.70	472.679733
2	434.18	434.233175
3	436.70	442.479946
4	477.27	481.164400
2866	465.26	462.625918
2867	441.71	442.161640
2868	477.51	479.201204
2869	467.62	470.801903
2870	438.52	437.269910

[2871 rows x 2 columns]

RESULT:

The program executed successfully and obtained the output.