Communications et Technologies IoT Dr. Ines AHRIZ

Smart Energy
Monitoring with IoT:
Optimizing Industrial
Power Consumption

Ahmad HUSSEIN Menna KHALED SALIM

18/02/2025

TABLE DES MATIÈRES

1

2

Contexte et enjeux

Problématique

Solution et Architecture

4

5

Exigences fonctionnelles

Conclusion et Perspectives

Contexte et enjeux de la transition énergétique

En France, 25% de l'énergie est consommée par l'industrie.

Le secteur du bâtiment tertiaire ainsi que celui de l'industrie représentent chacun près de 20% des émissions de Gaz à Effet de Serre (GES).

Pourquoi optimiser la consommation énergétique?

Impact environnemental

- Réduction des émissions de CO₂ → Objectif : neutralité carbone d'ici 2050.
- Transition vers des énergies renouvelables pour limiter la pollution.

💰 Impact économique

- L'énergie est une dépense majeure pour l'industrie.
- Une mauvaise gestion peut entraîner jusqu'à 30% de coûts supplémentaires.

📜 Pression réglementaire

- De nouvelles normes contraignent les entreprises à surveiller leur consommation.
- Des sanctions financières en cas de non-respect des règles environnementales.

Le rôle des nouvelles technologies

- L'IoT et l'Industrie 4.0 offrent une meilleure visibilité sur la consommation.
- L'IA permet d'optimiser en temps réel et d'anticiper les gaspillages.

👔 Une gestion énergétique intelligente est aujourd'hui essentielle pour la rentabilité et la durabilité des entreprises.

Un manque de contrôle sur la consommation énergétique industrielle

Le suivi énergétique en temps réel est un enjeu majeur pour l'industrie. Une mauvaise gestion entraîne des pertes financières et opérationnelles importantes.

🌍 Les défis actuels :

- Manque de visibilité en temps réel
- → Impossible de suivre précisément la consommation énergétique des machines.
- **Surconsommation et pertes financières**
- → Jusqu'à 15% d'énergie gaspillés par manque d'optimisation.
- Maintenance réactive au lieu de préventive
- → Détection tardive des pannes, entraînant des coûts imprévus et des pertes de production.
- Absence d'automatisation et d'intelligence énergétique
- → Pas de régulation automatique, pas d'adaptation aux besoins réels.

Compteurs d'énergie:

Intelligents \rightarrow mesurer la consommation d'énergie en temps réel avec une haute précision

Envoyer des données via des protocoles de communication (comme Modbus, MQTT, BACnet, Profibus, Zigbee etc.)

PLC: (Programmable Logic Controllers)

Contrôler divers processus et machines

- → Siemens S7 Series, Schneider Electric Modicon
- = robustesse, environnements difficiles et systèmes complexes

Systèmes plus complexes nécessitant un contrôle local ou des décisions en temps réel : un contrôleur nécessaire Gateway peut suffire : données analysées directement sur le serveur

Passerelle:

Communication entre les capteurs et le système central Collecte des données provenant de multiples machines (via Modbus TCP ou Ethernet), traitement local des données

Connexion facile à des plateformes cloud (comme AWS IoT, Microsoft Azure IoT) pour stocker et analyser les données à distance

Serveur Cloud:

Les données collectées par les compteurs et envoyées à la passerelle sont transmises au serveur où elles sont stockées et analysées.

- Coud privé
- Cloud public (comme AWS, Azure IoT, ou Google Cloud IoT)
- Serveur local
- → scalabilité
- → gestion des données à distance en temps réel
- → sécurité ou de latence réduite.

Interface Utilisateur:

Visualiser et d'interagir avec les données collectées sur la consommation d'énergie.

- → application web
- → mobile

WebSocket : communication bidirectionnelle en TR entre le serveur et l'UI REST API : récupérer des données et envoyer des commandes à partir de l'UI

Parmi les fonctionnalités, nous aurons :

- Affichage de graphes et de tableaux récapitulatifs pour visualiser la consommation d'énergie en temps réel et sur une période donnée.
- Alertes personnalisées en cas de dépassement des seuils de consommation.
- Outils d'analyse pour suivre les tendances de consommation et optimiser l'efficacité énergétique.

Exigences fonctionnelles

Sécurité

Authentification et Autorisation

Chiffrement des données

Gestion des rôles et permissions

Sécurisation des endpoints

Audit et traçabilité

Disponibilité

Haute disponibilité (HA)

Plan de récupération après sinistre (DRP)

Mise à jour sans interruption

Accessibilité

Accès à distance

Compatibilité avec les systèmes existants

API ouverte et extensibilité

Bilan et perspectives

Bilan :

- Réduction des coûts énergétiques et amélioration de l'efficacité.
- Surveillance en temps réel pour une gestion plus proactive.

🔥 Limites :

- Sécurité des données et coût initial d'implémentation.
- Nécessité d'une formation des équipes pour l'adoption des nouvelles technologies.

- IA et Machine Learning pour prédire les pics de consommation.
- Automatisation avancée pour ajuster en temps réel l'utilisation énergétique.

Cioptimisation énergétique s'impose désormais comme un levier essentiel pour garantir une industrie plus performante et durable.

Thank you

Any questions?