Jiecao Chen ID:4716311 Due: Due Wed, Feb 20

Question 1

•
$$P(T = true) = \sum_{B} P(T = true|B)P(B) = 0.97 * 0.98 + 0.02 * 0.02 = 0.951$$

•
$$P(T = false) = 1 - 0.951 = 0.049$$

•
$$P(F = empty, S = no) = \sum_{T} P(F = empty) P(S = no|T, F = empty) P(T) = 0.05 * 0.92 * 0.951 + 0.05 * 0.99 * 0.049 = 0.0462$$

•
$$P(S = no) = \sum_{T,F} P(S = no|T, F)P(T)P(F)$$

= $\sum_{T} P(T) \sum_{F} P(S = no|T, F)P(F)$
= $0.049 * (0.05 * 0.99 + 0.95 * 1.00) + 0.951 * (0.05 * 0.92 + 0.95 * 0.01) = 0.1018$

So
$$P(F = empty|S = no) = \frac{P(F = empty, S = no)}{P(S = no)} = \frac{0.0462}{0.1018} = 0.4532$$

Question 2

FIGURE 1. The Chest Clinic network

a. State if the following conditional independence are true or false:

i.
$$t \perp s \mid d$$

Use D-separation or D-connection. In the undirected path t-e-d-b-s-b-s, d is a collider, thus t and s are D-connected, thus $t \perp s \mid d$ is false.

ii.
$$l \perp b \mid s$$

s is not a collider, thus $t \perp s | d$ is true.

iii.
$$a \perp s \mid l, d$$

There are only two undirected paths from a to s, one is a-t-e-d-b-s, all colliders in this path (i.e. l) is in $\{l,d\}$, and all non-colliders are not in $\{l,d\}$, thus $a \perp s | l,d$ is false.

b. We use bold font to stand fixed variables, thus
$$P(\mathbf{s}|\mathbf{a}, \mathbf{x}, \mathbf{b}) = \frac{P(\mathbf{s}, \mathbf{a}, \mathbf{x}, \mathbf{b})}{P(\mathbf{a}, \mathbf{x}, \mathbf{b})} = \sum_{e,t,l} P(\mathbf{s}) P(\mathbf{a}) P(\mathbf{b}|\mathbf{s}) P(\mathbf{x}|e) P(e|t,l) P(t|\mathbf{a}) P(l|\mathbf{s}) = P(\mathbf{s}) P(\mathbf{a}) P(\mathbf{b}|\mathbf{s}) \sum_{t} P(t|\mathbf{a}) \sum_{l} P(l|\mathbf{s}) \sum_{e} P(\mathbf{x}|e) P(e|t,l)$$

$$\begin{aligned} P(\mathbf{a}, \mathbf{x}, \mathbf{b}) &= \sum_{s, e, t, l} P(\mathbf{a}) P(\mathbf{b}|s) P(s) P(s) P(e|t, l) P(t|\mathbf{a}) \\ &= P(\mathbf{a}) \sum_{s} P(\mathbf{b}|s) P(s) \sum_{l} P(l|s) \sum_{t} P(t|\mathbf{a}) \sum_{e} P(\mathbf{x}|e) P(e|t, l) \end{aligned}$$

 ${f c.}$ If will know the value of e, then the computation complexity would significantly decrease. See the following formulas:

$$P(\mathbf{s}|\mathbf{a}, \mathbf{x}, \mathbf{b}, \mathbf{e}) = \frac{P(\mathbf{s}, \mathbf{a}, \mathbf{x}, \mathbf{b}, \mathbf{e})}{P(\mathbf{a}, \mathbf{x}, \mathbf{b}, \mathbf{e})}$$

$$\begin{aligned} P(\mathbf{s}, \mathbf{a}, \mathbf{x}, \mathbf{b}) &= \sum_{e,t,l} P(\mathbf{s}) P(\mathbf{a}) P(\mathbf{b}|\mathbf{s}) P(\mathbf{x}|e) P(e|t, l) P(t|\mathbf{a}) P(l|\mathbf{s}) \\ &= P(\mathbf{s}) P(\mathbf{a}) P(\mathbf{b}|\mathbf{s}) P(\mathbf{x}|\mathbf{e}) \sum_{t} P(t|\mathbf{a}) \sum_{l} P(l|\mathbf{s}) P(\mathbf{e}|t, l) \end{aligned}$$

$$\begin{split} P(\mathbf{a}, \mathbf{x}, \mathbf{b}) &= \sum_{s, e, t, l} P(\mathbf{a}) P(\mathbf{b}|s) P(s) P(\mathbf{x}|e) P(e|t, l) P(t|\mathbf{a}) \\ &= P(\mathbf{a}) P(\mathbf{x}|\mathbf{e}) \sum_{s} P(\mathbf{b}|s) P(s) \sum_{l} P(l|s) \sum_{t} P(t|\mathbf{a}) P(\mathbf{e}|t, l) \end{split}$$
 We no longer need to sum for the variable e .

Question 3

- (a). See the Figure 2
- **(b).** See Table 1.

Table 1. conditional prob table

T	F_G	$P(G = high T, F_G)$
high	faulty	y
high	work	x
normal	faulty	1-y
normal	work	1-x

(c). See Table 2.

FIGURE 2. Nuclear Temperature System Network

Table 2. conditional prob table

G	F_A	$P(A = sound G, F_A)$
high	faulty	0
high	work	1
normal	faulty	0
normal	work	0

(d). we have notations: h-high, w-work, s-sound.
$$P(T = h | F_A = w, F_G = w, A = s) = \frac{P(T = h, F_A = w, F_G = w, A = s)}{P(F_A = w, F_G = w, A = s)}, \text{ where } P(T = h, F_A = w, F_G = w, A = s) = P(T = h)P(F_A = w)P(F_G = w | T = h) \sum_G P(A = s | F_A = w, G)P(G | T = h, F_G = w) P(F_A = w, F_G = w, A = s) = P(F_A = w) \sum_T P(F_G = w | T)P(T) \sum_G P(A = s | F_A = w, G)P(G | T, F_G = w)$$

Question 4

(a). We prove $P(X|\{U_i\}, \{Z_j\}) = P(X|\{U_i\})$ by contradiction: Assume X and $\{Z_i\}$ are D-connected by $\{U_i\}$, then there exist $Z \in \{Z_i\}$ such that there is a undirected path U from Z to X, and all its colliders are in $\{U_i\}$.

FIGURE 3. Counterexample

case 1 $U \cap \{U_i\} = A \neq \emptyset$

Since every node in A is also in $\{U_i\}$, thus they are all non-colliders, in this case, X and $\{Z_i\}$ are D-connected by the path U.

case 2 $U \cap \{U_i\} = \emptyset$

Thus $U \cap \{Y_i\} = A \neq \emptyset$, from the graph, if there is no collider in A, then all arrows in U are in the same direction (either from $Z \leftarrow X$ or $X \leftarrow Z$), but that's not true based on the graph in the question. So, there is at least one collider in U, but it is not in $\{U_i\}$, which contradicts to the assumption there exist $Z \in \{Z_i\}$ such that there is a undirected path U from Z to X, and all its colliders are in $\{U_i\}$.

We therefore have proved that $P(X|\{U_i\},\{Z_j\}) = P(X|\{U_i\})$

(b). $P(X|\{U_i\}, \{Y_j\}, \{Z_j\}) = P(X|\{U_i\}, \{Y_j\})$ is no longer true, consider the following counterexample (see Figure 3):

In this case, $\{U_j\} = \emptyset, Y$ is a collider, thus Z and X are not conditional independent given Y.

FIGURE 4. Counterexample