Homework 5

A portion of the following problems will be graded according to the provided rubric.

- 1. Rudin pg 78 problem 1
- 2. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in \mathbb{C}^k . Give an example of the following or explain why such a request is impossible.
 - a. Sequences $\{x_n\}$ and $\{y_n\}$ which both diverge, but whose sum $\{x_n + y_n\}$ converges
 - b. Sequences $\{x_n\}$ and $\{y_n\}$ where $\{x_n\}$ converges and $\{y_n\}$ diverges, but whose sum $\{x_n+y_n\}$ converges
- 3. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in \mathbb{R} . Let $\{x_n\}_{n=1}^{\infty}$ be a bounded (not necessarily convergent) sequence and assume $\lim_{n\to\infty}y_n=0$. Show that $\lim_{n\to\infty}x_ny_n=0$.
- 4. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in \mathbb{R}^k . Give an example of each of the following or explain why such a request is impossible.
 - a. A sequence that has a subsequence that is bounded but contains no subsequence that converges.
 - b. A sequence that does not contain 0 or 1 as a term but contains subsequences converging to each of these values.
- 5. Rudin pg 78 problem 3
- 6. Prove the Monotone Convergence Theorem for a decreasing sequence.
- 7. Prove the sequence defined by $x_1 = 1$ and $x_{n+1} = \frac{x_{n+1}}{4}$ converges and find the limit.
- 8. Rudin pg 78 problem 5
- 9. Rudin pg 82 problem 20
- 10. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in \mathbb{R}^k . Give an example of each of the following or explain why such a request is impossible.
 - a. A Cauchy sequence that is not monotone.
 - b. A Cauchy sequence with an unbounded subsequence.
 - c. An unbounded sequence containing a subsequence that is Cauchy.
- 11. Prove that if $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy sequences in \mathbb{C}^k , then $\{x_n+y_n\}_{n=1}^{\infty}$ is Cauchy.
- 12. Prove that if $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are Cauchy sequences in \mathbb{R}^k , then $\{x_ny_n\}_{n=1}^{\infty}$ is Cauchy without using Theorem 3.3.
- 13. Rudin pg 82 problem 23