Genetic algorithm(s)

- Developed: USA in the 1970's
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete optimization
- · Attributed features:
 - not too fast
 - good solver for combinatorial problems
- · Special:
 - many variants, e.g., reproduction models, operators
 - formerly: the GA, nowdays: a GA, GAs

Evolutionary Computing

Senetic algorithms

Genetic algorithms

- The simple genetic algorithm
- Other GAs by different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

Evolutionary Computing

Genetic algorithms

Simple genetic algorithm (SGA)

- The first GA, being "standard" for many years
- Formerly quoted as THE genetic algorithm
- Nowdays one uses the term A genetic algorithm, the SGA is just one of them

Here we consider

- · representation
- variation operators (crossover, mutation)
- selection
- reproduction cycle: generational model
- x² example

Evolutionary Computing

Genetic algorithms

Genetic operators: 1-point crossover

- Choose a random point on the two parents
- Split parents at this crossover point
- Create children by exchanging tails

Evolutionary Computing

Genetic algorithms

Genetic operators: n-point crossover

- Choose n random crossover points
- Split along those points
- Glue parts, alternating between parents

Evolutionary Computing

Genetic operators: uniform crossover

- · Assign 'heads' to one parent, 'tails' to the other
- · Flip a coin for each gene of the first child
- Make an inverse copy of the gene for the second child

	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
parents	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		_																
	0	1	0	0	1	0	1	1	0	0	0	1	0	1	1	0	0	1
children	0	1	0	0	1		1			0		1		1	1		0	1

Crossover OR mutation?

- Decade long debate: which one is better / necessary / main-background
- Answer (at least, rather wide agreement):
 - $\boldsymbol{-}$ it depends on the problem, but
 - in general, it is good to have both
 - both have another role
 - mutation-only-EA is possible, xover-only-EA would not work

Evolutionary Computing Genetic algorithms 9

Crossover OR mutation? (cont'd)

Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using information

There is co-operation AND competition between them

Crossover is explorative, it makes a big jump to an area somewhere "in between" two (parent) areas

Mutation is exploitative, it creates random *small* diversions, thereby staying near (i.e., in the area of) the parent

Evolutionary Computing Genetic algorithms 10

Crossover OR mutation? (cont'd)

- Only crossover can combine information from two parents
- Only mutation can introduce new information (alleles)
- Crossover does not change the allele frequencies of the population (thought experiment: 50% 0's on first bit in the population, ?% after performing n crossovers)
- To hit the optimum you often need a 'lucky' mutation.

Evolutionary Computing Genetic algorithms

11

Generational GA reproduction cycle

- Select parents for the mating pool (size of mating pool = population size)
- 2. Shuffle the mating pool
- 3. For each consecutive pair apply crossover with probability $\ensuremath{p_{\rm c}}$
- 4. For each new-born apply mutation (bit-flip with probability p_{m})
- 5. Replace the whole population by the resulting mating

Evolutionary Computing

Genetic algorithms

Generational GA reproduction cycle Generation t+1 Generation t Mating pool child₁(2,4) string1 string2 string2 string4 mut(child₂(2,4)) string3 string2 string2 string4 string1 mut(string1) Notes:
• Offspring can be: clone, pure mutant, pure crossing, mutated crossing • Generational replacement: whole population deleted/replaced To be discussed: no survival of the fittest here?

An example after Goldberg '89 (1)

- Simple problem: max x² over {0,1,...,31}
- GA approach:
 - Representation: binary code, e.g. 01101 \leftrightarrow 13
 - Population size: 4
 - 1-point xover, no mutation (just an example!)
 - Roulette wheel selection
 - Random initialisation
- One generational cycle with the hand shown

Evolutionary Computing Genetic algorithms 15

String number	Initial population	\boldsymbol{x} value	f(x)	$pselect_i$	Expected count	Actual count
	(Randomly generated)	$\begin{pmatrix} \text{Unsigned} \\ \text{integer} \end{pmatrix}$	(x^2)	$\left(rac{f_i}{{}^{\Sigma}f} ight)$	$\left(rac{f_i}{\overline{f}} ight)$	(From rou- lette wheel)
1	01101	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1\ 0\ 0\ 1\ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4.0
Average			293	0.25	1.00	1.0
Max			576	0.49	1.97	2.0

An example after Goldberg '89 (3) Mating pool Mate Crossover New x Value f(x)after reproduction site population (Randomly) (Randomly) selected (x^{2}) shown 0110|1 1100 | 0 $1 \; 1 \; 0 \; 0 \; 1 \\$ 625 11 | 000 4 2 11011 27 729 10 | 011 256 10000 439729 Evolutionary Computing Genetic algorithms 17

The simple GA

- Has been subject of many (early) studies
- Is often used as benchmark for novel GAs
- Shows many shortcomings, e.g.
 - Representation is too restrictive
 - Mutation & crossovers only applicable for bit-string & integer representations
 - Selection mechanism sensitive for converging populations with close fitness values
 - Generational population model can be improved with explicit survivor selection

Evolutionary Computing Genetic algorithms 18

Other representations

Variations on standard bit string encoding:

• Gray coding

Three types of non-standard representation:

- Floating point variables
- Order based (permutations)
- Trees (see at Genetic Programming)

Evolutionary Computing

Genetic algorithms

Gray coding

Hamming distance (HD) of two bit strings a, $b \in \, \{0,1\}^L$

$$HD(a,b) = \sum_{i=1}^{L} |a_i - b_i|$$

= # different bits

= # 1point mutations needed to change a into b

Problem with standard coding:

consecutive integers are mapped on strings with Hamming distance > 1, e.g.: 5=101, 6=110

Disadvantage from GA point of view: small genotypic changes \neq small phenotypic changes

olutionary Computing

Genetic algorithm

Pseudo code for Gray coding 1

Bit string $b_1, ..., b_m$ transformed into Gray code $g_1, ..., g_m$

```
int[] binaryToGray (int[] b) {
   g[1] = b[1];
   for (k=2; k<=m; k++) {
      g[k] = xor(b[k-1], b[k]);
   }
return g;
}</pre>
```

Evolutionary Computing

Genetic algorithms

21

23

Pseudo code for Gray coding 2

Gray code $g_1,\,...,\,g_m$ transformed into bit string $b_1,\,...,\,b_m$

```
int[]grayToBinary (int[] g) {
   value = g[1];
   b[1] = value;
   for (k=2; k<=m; k++) {
        if (g[k] == 1)
            value = !value;
   b[k] = value;
   }
   return b;
}</pre>
```

Evolutionary Computing

Genetic algorithms

Illustration of Gray coding for m = 3

Gray coding: consecutive integers mapped on strings with $\ensuremath{\mathsf{HD}}$ =1

Advantage in GAs: small genotypic changes lead to small phenotypic changes (smooth mapping)

Integer	Standard	Gray
0	000	000
1 1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100
neighbours	H.D. = 3	H.D. = 1

Evolutionary Computing

Genetic algorithms

Real valued problems

- Many problems occur as real valued problems, e.g. continuous parameter optimisation f: Rⁿ → R
- Illustration: Ackley's function (often used in EC)

$$f(\overline{x}) = -c_1 \cdot exp\left(-c_2 \cdot \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}\right)$$
$$-exp\left(\frac{1}{n} \cdot \sum_{i=1}^n cos(c_3 \cdot x_i)\right) + c_1 +$$
$$c_1 = 20, c_2 = 0.2, c_3 = 2\pi$$

24

22

Evolutionary Computing

Genetic algorithms

Real valued problems

Options for solving real valued problems with GAs:

- · Mapping real values on bit strings
- Mapping real values on floating point variables

Evolutionary Computing

Genetic algorithms

Mapping real values on bit strings

 $z \in [x,y] \subseteq \mathbb{R}$ represented by $\{a_1,...,a_i\} \in \{0,1\}^L$

- [x,y] → {0,1}^L must be invertible (one phenotype per genotype)
- $\Gamma: \{0,1\}^L \to [x,y]$ defines the representation

$$\Gamma(a_1,...,a_L) = x + \frac{y - x}{2^L - 1} \cdot (\sum_{j=0}^{L-1} a_{L-j} \cdot 2^j) \in [x, y]$$

- Only 2^L values out of infinite are represented
- L determines possible maximum precision of solution
- High precision → long chromosomes (slow evolution)

Evolutionary Computing

Genetic algorithm

Mapping real values on floating point variables

- Precision is an implicit choice (depends on computer)
- Genotype: vector $(x_1,\,...,\,x_k)$ with $x_i\in\,\mathbb{R}$
- · New genetic operators might be needed
 - Old bit-flip mutation does not work
 - Old crossovers (n-point, uniform) do work
 - New crossovers can be invented to utilize possibilities of new representation better

Evolutionary Computing

Genetic algorithms

27

29

Genetic operators for real valued GAs

- Arithmetical crossovers based on averaging corresponding genes from different parents
 - Single arithmetic crossover
 - Whole arithmetic crossover
 - Simple crossover
- Mutation: random new value between some upper and lower bound
 - Uniform mutation
 - Non-uniform mutation

Evolutionary Computing

Genetic algorithms

28

Single arithmetic crossover

- Parents: \(\lambda_1, ..., \dots_n \) and \(\lambda_1, ..., \dots_n \rangle \)
- child₁ is:

$$\langle x_1, ..., x_k, a \cdot y_k + (1-a) \cdot x_k, ..., x_n \rangle$$

The parameter a can

- be constant: uniform arithmetical crossover
- vary (e.g. depend on the age of the population): nonuniform crossover

Evolutionary Computing

Whole arithmetic crossover

- Parents: $\langle x_1,...,x_n \rangle$ and $\langle y_1,...,y_n \rangle$
- child₁ is:

$$a \cdot \overline{x} + (1-a) \cdot \overline{y}$$

The parameter a can

- be constant: uniform arithmetical crossover
- vary (e.g. depend on the age of the population): nonuniform crossover

Evolutionary Computing

Genetic algorithms

Simple crossover

- Parents: $\langle x_1,...,x_n \rangle$ and $\langle y_1,...,y_n \rangle$
- child₁ is:

$$\langle x_1, ..., x_k, a \cdot y_{k+1} + (1-a) \cdot x_{k+1}, ..., a \cdot y_n + (1-a) \cdot x_n \rangle$$

The parameter a can

- be constant: uniform arithmetical crossover
- vary (e.g. depend on the age of the population): nonuniform crossover

Evolutionary Computing

Genetic algorithms

33

35

Floating point mutations 1

General scheme of floating point mutations

$$\overline{x} = \langle x_1, ..., x_l \rangle \rightarrow \overline{x}' = \langle x'_1, ..., x'_l \rangle$$
$$x_i, x'_i \in [LB_i, UB_i]$$

Uniform mutation:

 x'_i drawn randomly (uniform) from $[LB_i, UB_i]$

Evolutionary Computing

Genetic algorithms

Floating point mutations 2

Non-uniform mutation:

- t is the number of the current generation
- T is the maximum generation number

$$x_i' = \begin{cases} x_i + \Delta(t, UB_i - x_i) & \text{if a random digit is 0} \\ x_i - \Delta(t, x_i - LB_i) & \text{if a random digit is 1} \end{cases}$$

$$\Delta(t, y) = y \cdot (1 - r^{(1 - \frac{t}{T})^b})$$

- $r \in [0,1]$ is a random number and
- b is a parameter (b = 5 used)
- if t increases then the chance for a small $\Delta(t,y)$ increases

Evolutionary Computing

Genetic algorithms

hms

Bit vs. float: experimental comparison (1)

- After Michalewicz'96
- Experiments on one single problem only just to illustrate
- Function to be minimised (dynamic control problem):

 $f(\overline{u}) = \left(x_N^2 + \sum_{k=0}^{N-1} (x_k^2 + u_k^2)\right)$

With:

- $x_0 = 100$
- $x_{k+1} = x_k + u_k (k = 0, 1, ..., N 1)$
- N = 45
- $u_i \in$ [-200, 200] $\subset \mathbb{R}$

Evolutionary Computing

Genetic algorithms

Bit vs. float: experimental comparison (2)

Representation:

- Floating point: vector of 45 floats (ū)
- Bit string: 30 bits per variable \Rightarrow 1350 bits

Experimental setup:

Averaged over	10 independent runs
# function evaluations	20.000
Crossover rate (p_c)	constant 0.25
Mutation rate (p_m)	varying (see table)
Population size	60

Mutation rate (p_m) that determines the prob. of chrom. update

	Pro	Probability of chromosome's update								
Repr.	0.6	0.7	0.8	0.9	0.95					
Bit, p _m	0.00047 0.00068 0.00098 0.0015 0.0023									
Float, pm	0.014	0.012	0.03	0.045	0.061					

Evolutionary Computing

Genetic algorithms

Bit vs. float: experimental comparison (3)

Mutation rate (p_m) that determines the prob. of chrom. update

	Probability of chromosome's update								
Repr.	0.6	0.7	0.8	0.9	0.95				
Bit, p_m	0.00047	0.00068	0.00098	0.0015	0.0021				
Float, p_m	0.014	0.012	0.03	0.045	0.061				

Results with 1-point xover, uniform mutation:

	Proba	Probability of chromosome's update								
Repr.	0.6	dev.								
Bits	42179	46102	29290	52769	30573	31212				
Floats	46594	41806	47454	69624	82371	11275				

Lowest function value found, averaged over 10 runs

Evolutionary Computing Genetic algorithms

Bit vs. float: experimental comparison (4)

Results with 1-point xover, non-uniform mutation

	Pro chromo	standard deviation		
Representation	0.8	0.8 0.9		
Bits	35265	40256		
Floats	20561	26164	2133	

Lowest function value found, averaged over 10 runs

Non-uniform mutation mechanism adapted for bit representaion

Evolutionary Computing

Genetic algorithms

40

42

Bit vs. float: experimental comparison (5)

Result with other operators

New operators

- Bit string representation: multi-point crossover
- Float representation: multi-point arithmetical crossover

Results:

		obability osome's		standard deviation	Best
Repr.	0.7	0.8			
Bits	23814	19234	27456	6078	16188.2
Floats	16248	16798	16198	54	16182.1

Lowest function value found, averaged over 10 runs

Evolutionary Computing

Genetic algorithms

41

Bit vs. float: experimental comparison (6)

Time performance (experiments with the new operators)

	Number of variables								
Repr.	5 15 25 35								
Bits	1080	3123	5137	7177	9221				
Floats	184	398	611	823	1072				

Speed results (CPU time in sec.) for various problem sizes

		Number of bits per element								
Repr.	5	5 10 20 30 40 50								
Bits	4426	4426 5355 7438 9219 10981 12734								
Floats			1072 (constan	it)					

Speed results for various precisions for bit string representation

Evolutionary Computing

Bit vs. float: experimental comparison (7)

Conclusions about float representation:

- More 'natural' representation (one variable ↔ one gene)
- No Hamming cliffs
- Better solution accuracy (with float specific operators)
- More consistent (smaller standard deviation)

Evolutionary Computing

Genetic algorithms

Order based representation

- · Ordering/sequencing problems form a special type
- Task is (or can be solved by) arranging some object in a certain order
- · Example: sort algorithm
- Example: Travelling Salesman Problem (TSP)

Evolutionary Computing

Order based representation TSP example · Problem: · Given n cities. · Find a complete tour with minimal length. · Encoding: • Label the cities 1, 2, ..., n. One complete tour is one permutation (e.g. for n =4 [1,2,3,4], [3,4,2,1] are OK) Search space is BIG: for 30 cities there are $30! \approx 10^{32}$ possible tours Evolutionary Computing

Genetic operators for order based representation

Old crossovers can be be applied, but they can lead to inadmissible genotypes (i.e. without corresponding phenotype).

Example: children of two permutations are not permutations

Evolutionary Computing

Genetic algorithms

Genetic operators for order based representation

Genetic algorithms

Some mutation operators for order based representations:

- · swap two alleles
- · shift a couple of alleles (with wrapping around at the end)
- invert a substring

Some crossover operators for order based representations:

- · order1 (treated here)
- order2
- · pmx: partially mapped crossover (treated here)
- cycle (treated here)
- position
- edge crossover (special for TSPs)

Evolutionary Computing

Genetic algorithms

47

Order 1 crossover

Informal procedure:

- 1. Choose an arbitrary part from the first parent.
- 2. Copy this part to the first child.
- 3. Copy the numbers that are not in the first part, to the first child:
 - starting right from cut point of the copied part,
 - using the order of the second parent
 - and wrapping around at the end.
- 4. Analogous for the second child, with parent roles

Evolutionary Computing

Genetic algorithms

48

Partially Mapped Crossover (PMX)

Informal procedure:

- 1. Make a copy of the first parent.
- 2. Choose an arbitrary part from the second parent.
- 3. Map this part on the copy, maximising matches.
- 4. Non-matching alleles of the copy are shifted to the left (replacing double alleles).
- 5. Analogous for the second child, with parent roles reversed.

Evolutionary Computing

Genetic algorithms

Partially Mapped Crossover (PMX) example 9 7 3 1 8 2 4 6 5 Parent 1 4 3 5 8 6 7 9 1 2 Parent 2 Part of Parent 2 9 7 3 1 8 2 4 6 5 Copy of Parent 1 9 7 3 5 8 6 4 6 5 Copy + Part 9 7 3 5 8 6 4 1 2 Child 1 Evolutionary Computing Genetic algorithms 51

Cycle crossover

Basic idea:

Each allele comes from one parent together with its position.

Informal procedure:

- 1. Make a cycle of alleles from P1 in the following way.
 - (a) Start with the first allele of P1.
 - (b) Look at the allele at the same position in P2.
 - (c) Go to the position with the same allele in P1. (d) Add this allele to the cycle.

 - (e) Repeat step b through d until you arrive at the first allele of P1.
- 2. Put the alleles of the cycle in the first child on the positions they have in the first parent.

Evolutionary Computing

Genetic algorithms

Genetic operators (9)

Informal procedure (coninued):

- 3. Fill the rest of the positions with the alleles in the corresponding positions at the second parent.
- 4. Analogous for the second child, with parent roles

Evolutionary Computing

Genetic algorithms

53

