CSED601 Dependable Computing Lecture 3

Jong Kim
Dept. of CSE
POSTECH

Copyright, 2018 © JKim POSTECH HPC

References

George Candea, Stanford University

http://www.stanford.edu/~candea/teaching/cs444a-fall-2003/slides/Humans.pdf

Study of Internet Failure

Sequel Study

David Oppenheimer, Archana Ganapathi, and David A. Patterson,
 "Why do Internet services fail, and what can be done about it?",
 4th Usenix Symposium on Internet Technologies and Systems (USITS '03), 2003.

Original Study of 1986 Jim Gray Paper

- J. Gray, "Why do computers stop and what can be done about it?",
 Symposium on Reliability in Distributed Software and Database
 Systems (SRDS), 1986.
- Study of classical computer systems and comparison with fault-tolerant computing systems.

Three Types of Internet Service

- Classification based on Service characteristics
 - Online, ReadMostly, Content
- Service architecture
 - Front-end, Network, Backend

Internet Systems Survey

[Oppenheimer et al., 2003]

Attribute	Online	ReadMostly	Content
hits per day	~100 million	~100 million	~7 million
# of nodes	~500 / 2 sites	>2000 / 4 sites	~500 / ~15 sites
front end + middle tier	custom software Solaris SPARC & x86	custom software open-source OS x86	custom software open-source OS x86
back end	NetApp filers	- // -	-//-
period studied	7 months	6 months	3 months
# svc failures	40	21	56

Failure Occurrences

Occurrence X Duration

Why So Painful?

% of component failures resulting in service failures

- Operator errors are the major reason of service failures.
- Not maskable?

Why Not Maskable?

- Survey of e-mail admins [Kakes et al., 2002]
- Breakdown of common and challenging tasks

Consequences

Causes of e-mail service outages

Few Unknown Problems

- Problem is not that hard.

Are Operators Incompetent?

- Combination of reasons
 - Poor training, less knowledge of the system
 - Poor tools (software)
 - Complex recovery procedures

Surprising Trends

Cause	Downtime/month (millions customer-minutes) 1992-1994	Downtime/month (millions customer-minutes) 2000	Trend
Software	15	155	up 933%
Human Error: internal	98	131	up 34%
Human Error: external	100	125	up 25%
Hardware	49	60	up 22%
Overload	314	2	down 99%
Vandalism	5	2	down 60%

- Need better software (self) recovery
- More human error-tolerant systems

Understanding Human Operators

- GEMS (Genetic Error-Modeling System)
 - An attempt to understand origins of human error
 - Distilled by Aaron Brown from 1990 paper
- 3 levels of cognitive task processing
 - Skill-based: familiar, automatic procedural tasks
 - Usually low-level, like knowing to type basic commands
 - Rule-based: tasks approached by pattern-matching from a set of internal problem-solving rules
 - "can ping web server, but no pages → http is hosed"
 - "http is hosed → should reboot the front end"
 - Knowledge-based: tasks approached by reasoning from first principles, when rules and experience don't apply (need to think)

GEMS and Human Errors

- Human error can occur at each level
 - Skill-based: usually errors of inattention or misplaced attention
 - Rule-based: picked inappropriate rule, misdiagnosed state of system, gambling, deficient rules
 - Knowledge-based: incomplete/inaccurate understanding of system, confirmation bias, overconfidence, cognitive strain,
- Human errors can result from operating at wrong level
 - Reluctant to move from rule-based to knowledge-based even if rules aren't working

Error Frequencies

- Raw frequencies in surveys
 - 61% of errors are at skill-based level
 - 27% of errors are at rule-based level
 - 11% of errors are at knowledge-based level
- If we include self-monitoring and self-correction
 - 70% of skill-based errors detected and corrected
 - 50% of rule-based errors detected and corrected
 - 25% of knowledge-based errors detected and corrected

Confidence Time

E-mail admins survey [Kakes et al., 2002]

Automation Irony

- Automation often addresses skill-based + rule-based tasks → complex knowledge-based tasks left for human
 - Under stress (e.g., during service recovery), humans are illsuited to knowledge-based tasks
- Automation hinders understanding and mental modeling
 - Decreases system visibility and increases complexity
 - Operators don't get hands-on control experience