Task 6: K-means

Objective: K-means clustering an instance of Unsupervised ML

#Read data

df = spark.read.csv("/home/s_kante/spark/data/Task6/Wine.csv", header='true')

#Replace IsDeveloper value with integer 1 or 0

df1 = df.select(df.Alcohol.cast("float"), df.Malic_Acid.cast("float"), df.Ash.cast("float"), df.Ash_Alcanity.cast("float"), df.Magnesium.cast("float"), df.Total_Phenols.cast("float"), df.Flavanoids.cast("float"), df.Nonflavanoid_Phenols.cast("float"), df.Proanthocyanins.cast("float"), df.Color_Intensity.cast("float"), df.Hue.cast("float"), df.OD280.cast("float"), df.Proline.cast("float"))

#Create feature vector

from pyspark.ml.feature import VectorAssembler assembler = VectorAssembler(inputCols=["Alcohol", "Malic_Acid", "Ash", "Ash_Alcanity", "Magnesium", "Total_Phenols", "Flavanoids", "Nonflavanoid_Phenols", "Proanthocyanins", "Color_Intensity", "Hue", "OD280", "Proline"], outputCol="features") combined = assembler.transform(df1) vector_df = combined.select(combined.features)

#Let the algorithm figure out different clusters

from pyspark.ml.clustering import KMeans kmeans = KMeans().setK(3) model = kmeans.fit(vector_df)

#Predict

predict = model.transform(vector_df)
predict.show()