Гомотопии

Определение 1. Пусть X, Y — топологические пространства, f, g — два непрерывных отображения X в Y. Отображения f и g называются гомотонными, если существует такое непрерывное отображение $F: [0,1] \times X \to Y$, что F(0,x) = f(x), F(1,x) = g(x) для любого $x \in X$. Отображение F называется гомотонией, связывающей f c g.

Задача 1. Докажите, что гомотопность отображений — отношение эквивалентности.

Задача 2. Докажите, что любые два непрерывных отображения из X в Y гомотопны, если **a)** X — любое, Y = [0,1]; **б)** X — любое, $Y = \mathbb{R}$; **в)** X = [0,1], Y — линейно связное.

Определение 2. Пусть X — метрическое пространство, a,b — две его точки, f(t),g(t) — два пути с началом в точке a и концом в точке b. Пути f и g называются гомотопными, если существует такое непрерывное отображение $F:[0,1]\times[0,1]\to X$, что $F(0,t)=f(t), F(1,t)=g(t), F(\tau,0)=a, F(\tau,1)=b$ для любых $t,\tau\in[0,1]$. Отображение F называется гомотопией, связывающей f c g.

Напоминание. Мы обозначаем через S^1 окружность единичного радиуса в плоскости \mathbb{R}^2 с центром в начале координат, причем саму плоскость мы отождествляем со множеством комплексных чисел \mathbb{C} . Таким образом,

$$S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \} = \{ e^{2\pi i t} \mid t \in [0, 1] \}.$$

Задача 3. Пусть f, g — два пути в X. Определим отображение h окружности S^1 в X, положив

$$h\left(e^{2\pi it}\right) = \left\{ \begin{array}{ll} f(2t), & \text{при } 0\leqslant t\leqslant 1/2, \\ g(2-2t), & \text{при } 1/2\leqslant t\leqslant 1. \end{array} \right.$$

Докажите, что пути f и g гомотопны тогда и только тогда, когда отображение h гомотопно постоянному отображению (то есть, переводящему окружность S^1 в одну точку).

Степень отображения

Степенью непрерывного отображения окружности в себя называется, говоря неформально, число раз, которое окружность на себя «наматывается» при этом отображении. Для того, чтобы дать точное определение, нам понадобится некоторая подготовка.

Определение 3. Пусть $f: X \to S^1$ и $g: X \to \mathbb{R}$ — непрерывные отображения метрического пространства X. Отображение g называется nodнятием отображения f на \mathbb{R} , если $f(x) = e^{2\pi i g(x)}$ для любого $x \in X$.

Задача 4. Пусть $X = [0, 1], f(x) = e^{2\pi i x}$. Опишите все поднятия отображения f на \mathbb{R} .

Задача 5. Пусть $X = S^1$, f(x) = x. Существует ли поднятие у этого отображения?

Задача 6. Пусть f — некоторый путь в окружности S^1 , то есть непрерывное отображение $f:[0,1]\to S^1$.

- а) Докажите, что у пути f существует поднятие на прямую $\mathbb R.$
- **б)** Пусть g_1, g_2 поднятия f на \mathbb{R} . Докажите, что $g_1(t) g_2(t) = k$, где k некоторая целая константа.

Указание. Рассмотрите сначала путь f, лежащий в полуокружности; затем воспользуйтесь равномерной непрерывностью непрерывной функции на отрезке.

Определение 4. Пусть $h: S^1 \to S^1$ — непрерывное отображение. Рассмотрим путь $f(t) = h(e^{2\pi i t})$ и его поднятие g(t). Число g(1) - g(0) называется *степенью отображения* h.

Задача 7. Докажите, что степень отображения $h: S^1 \to S^1$ определена корректно (то есть не зависит от выбора поднятия).

Задача 8. Чему равна степень отображения $h(z) = z^n$, где n — целое число?

Задача 9. Пусть $h: S^1 \to S^1$ — непрерывное отображение, $w_0 \in S^1$. Назовем точку $z_0 \in S^1$ положительным прообразом точки w_0 , если $h(z_0) = w_0$ и при проходе z через z_0 против часовой стрелки значение h(z) проходит через w_0 в том же направлении. Строго последнее условие записывается так: для всех z из некоторой окрестности точки z_0 комплексное число $h(z)/w_0$ имеет мнимую часть того же знака, что и мнимая часть z/z_0 . Аналогично определяем отрицательный прообраз точки w_0 (при проходе через него против часовой стрелки h(z) проходит через w_0 по часовой стрелке).

Предположим, что у точки w_0 конечное число прообразов, причем все они либо положительные, либо отрицательные. Докажите, что степень отображения h равна разности числа положительных прообразов точки w_0 и числа ее отрицательных прообразов.

1	2 a	2 6	2 B	3	4	5	6 a	6 6	7	8	9

Листок №МS-7

Задача 10. а) Докажите, что у любого непрерывного отображения квадрата $[0,1] \times [0,1]$ в окружность есть поднятие на прямую. 6) Пусть f_1 и f_2 — гомотопные пути в окружности. Докажите, что у них существуют гомотопные поднятия на прямую.

Задача 11. Докажите, что степень отображения $f:S^1 \to S^1$ не меняется при гомотопии.

Задача 12. а) Докажите, что если отображение $f: S^1 \to S^2$ не является сюрьекцией, то оно гомотопно отображению в точку. б) Докажите, что двумерная сфера S^2 не гомеоморфна двумерному тору $T^2 = S^1 \times S^1$.

Задача 13. Отображение окружности в себя называется *нечетным*, если диаметрально противоположные точки переходят в диаметрально противоположные, и *четным*, если диаметрально противоположные точки переходят в одну и ту же точку. Докажите, что степень нечетного отображения — нечетное число, а степень четного отображения — четное число.

Порядок замкнутой кривой относительно точки

Определение 5. 3амкнутой кривой в пространстве X называется путь, у которого конец совпадает с началом.

Определение 6. Пусть γ — замкнутая кривая на плоскости \mathbb{R}^2 , которую мы отождествляем с \mathbb{C} , а P — точка плоскости, не лежащая на кривой γ . Рассмотрим следующее отображение окружности S^1 в себя:

$$e^{2\pi it} \mapsto \frac{\gamma(t) - P}{|\gamma(t) - P|}.$$

Степень этого отображения называется nopядком кривой γ относительно точки P и обозначается $ord_P(\gamma)$.

Задача 14. Нарисуйте кривые γ_1 и γ_2 и найдите их порядки относительно точек (0,0), (1,0) и (-1,0), где $\gamma_1(t) = (\cos(2\pi t) - 1/2, \sin(4\pi t))$ и $\gamma_2(t) = (\cos(2\pi t)/2 + 3\cos(4\pi t)/4, \sin(4\pi t))$.

Задача 15. Пусть γ — замкнутая кривая в плоскости \mathbb{R}^2 , а P — точка плоскости, не лежащая на кривой γ . Проведем произвольный луч l из точки P. Определите понятия положительной и отрицательной точки пересечения луча l с кривой γ так, чтобы было верно утверждение: если существует лишь конечное число точек пересечения луча l с кривой γ , причем все они либо положительны, либо отрицательны, то $\operatorname{ord}_P(\gamma)$ равен разности числа положительных и числа отрицательных точек пересечения.

Задача 16. Пусть f(x) — многочлен степени n с комплексными коэффициентами. Докажите, что порядок кривой $\gamma_R(t) = f(Re^{2\pi it})$ относительно точки $0 \in \mathbb{C}$ при $R \gg 0$ равен n.

Задача 17. Поставим в соответствие каждой замкнутой кривой γ в \mathbb{R}^2 , не проходящей через точку P, отображение $\check{\gamma}: S^1 \to \mathbb{R}^2 \setminus \{P\}$: $\check{\gamma}(e^{2\pi i t}) = \gamma(t).$

Докажите, что если отображения $\check{\gamma}_1$ и $\check{\gamma}_2$ гомотопны, то $\operatorname{ord}_P(\gamma_1) = \operatorname{ord}_P(\gamma_2)$.

Задача 18. Пусть f — непрерывное отображение единичного круга в плоскость, $\gamma(t) = f(e^{2\pi i t})$, P — точка, не лежащая на кривой γ . Докажите, что если $\operatorname{ord}_P(\gamma) \neq 0$, то уравнение f(x) = P имеет решение.

Задача 19. (*Основная теорема алгебры*) Докажите, что любой непостоянный многочлен с комплексными коэффициентами имеет комплексный корень.

Задача 20. Пусть γ — замкнутая кривая на плоскости, P — точка, не лежащая на ней. Докажите, что

- а) если точка P соединена с точкой P' путем, не пересекающим кривую γ , то выполнено равенство: $\operatorname{ord}_P(\gamma) = \operatorname{ord}_{P'}(\gamma)$.
- **б)** найдется такая окрестность точки P, что относительно любой точки из нее порядок γ такой же, как и относительно P.

Задача 21. (H.H.Константинов) Из города A в город B ведут две непересекающиеся дороги. Известно, что две машины, выезжающие по разным дорогам из A и связанные веревкой длины 2, смогли проехать в B, не порвав веревки. Могут ли разминуться, не коснувшись, два круглых воза радиуса 1, центры которых движутся по этим дорогам навстречу друг другу?

Задача 22. На плоскости нарисован граф Γ . Его образ при сдвиге на некоторый вектор длины 1 не пересекается с Γ . По графу ползают два круглых жука диаметром 1 (центр каждого жука все время принадлежит Γ). Могут ли они поменяться местами?

10 a	10 б	11	12 a	12 6	13	14	15	16	17	18	19	20 a	20 6	21	22