

Semiconductors

Book S3

1985

Small-signal transistors

SMALL-SIGNAL TRANSISTORS

	page
Selection guide Audio and general purpose applications H.F. applications Switching applications P-N-P-N devices	3 5
Type number survey (alpha-numerical)	9
Conversion list (conventional type number to SMD type number)	. 13
General Type designation Rating system Letter symbols SOAR curves s-parameters TO-92 variant transistors on tape Soldering recommendations for SOT-37 envelopes	. 19 . 21 . 27 . 45 . 47
Device data in alpha-numerical sequence	. 51
Accessories	. 691
Index of all devices in comison duston Data Handles also	602

SMALL SIGNAL TRANSISTORS

pe number survey (alpha-numerical)	
ice data in alpha-numerical sequence	

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BI UE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The bl	ue series of data handbooks con	nprises: one de made anom assignment analyst According to analyst									
T1	Tubes for r.f. heating										
T2a	Transmitting tubes for commu	nications, glass types									
T2b	Transmitting tubes for commu	nications, ceramic types									
Т3	Klystrons, travelling-wave tube	es, microwave_diodes									
ET3	Special Quality tubes, miscella	neous devices (will not be reprinted)									
T4	Magnetrons for microwave hea	OMPONENTS AND MATERIALS gnit									
T5	Cathode-ray tubes Instrument tubes, monitor and	display tubes, C.R. tubes for special applications									
Т6	Geiger-Müller tubes										
T7		ator tubes, dry reed contact units, thyratrons, industrial n-voltage rectifying tubes, associated accessories									
Т8	Picture tubes and components Colour TV picture tubes, black and white TV picture tubes, colour monitor tubes for data graphic display, monochrome monitor tubes for data graphic display, components for colour television, components for black and white television and monochrome data graphic display										
Т9	Photo and electron multipliers Photomultiplier tubes, phototubes, single channel electron multipliers, channel electron multiplier plates										
T10	Camera tubes and accessories										
T11	Microwave semiconductors and	components									
T12	Vidicons and Newvicons										
T13	Image intensifiers	Data collations on these subjects are available now.									
T14	Infrared detectors	Data Handbooks will be published in 1985.									
T15	Dry reed switches										

Black and white TV picture tubes, monochrome data graphic display tubes, deflection units

Monochrome tubes and deflection units

T16

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1	Diodes Small-signal germanium diodes, small-signal si voltage reference diodes, tuner diodes, rectific	, , , , , , , , , , , , , , , , , , , ,	W),
S2a	Power diodes		
S2b	Thyristors and triacs	ICs for digital systems in radio, audio and	
S3	Small-signal transistors		
S4a	Low-frequency power transistors and hybrid		
S4b	High-voltage and switching power transistors		
S5	Field-effect transistors		
S6	R.F. power transistors and modules		
S7	Surface mounted semiconductors	Signetics analogue circuits	
S8	Devices for optoelectronics Photosensitive diodes and transistors, light-emsensitive devices, photoconductive devices.	itting diodes, displays, photocouplers, infrar	ed
S9	Power MOS transistors	Microprocessors, microcomputers and peri	
S10	Wideband transistors and wideband hybrid IC	modules	
S11	Microwave semiconductors	(to be published in 1	1985)
S12	Surface acoustic wave devices		-

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXIST	ING SERIES 1.1 >) sepoib totaluper enetlov asboib nocilla langia-li		
IC1	Bipolar ICs for radio and audio equipment		
IC2	Bipolar ICs for video equipment		
IC3	ICs for digital systems in radio, audio and video equ	ipment and triacts and triacts	
IC4	Digital integrated circuits CMOS HE4000B family		
IC5	Digital integrated circuits — ECL ECL10 000 (GX family), ECL100 000 (HX family),	dedicated designs	
IC6	Professional analogue integrated circuits		
IC7	Signetics bipolar memories		
IC8	Signetics analogue circuits	Surface mounted semiconductors	
IC9	Signetics TTL logic		
IC10			
IC11	Microprocessors, microcomputers and peripheral cir	cuitry englaters 2017 pavos	

FW		

IC01N	Radio, audio and associated systems Bipolar, MOS	
IC02N	Video and associated systems Bipolar, MOS	
IC03N	Telephony equipment Bipolar, MOS	
IC04N	HE4000B logic family CMOS	
IC05N	HE4000B logic family uncased integrated circuits CMOS	(published 1984)
IC06N	PC54/74HC/HCU/HCT logic families HCMOS	
IC07N	PC54/74HC/HCU/HCT uncased integrated circuits HCMOS	
IC08N	10K and 100K logic family ECL	(published 1984)
IC09N	Logic series TTL	(published 1984)
IC10N	Memories MOS, TTL, ECL	
IC11N	Analogue - industrial	C12 Variable resistors and test twit
IC12N	Semi-custom gate arrays & cell libraries ISL, ECL, CMOS	
IC13N	Semi-custom integrated fuse logic IFL series 20/24/28	
IC14N	Microprocessors, microcontrollers & peripherals Bipolar, MOS	
IC15N	Logic series FAST TTL	(published 1984)

Note

Books available in the new series are shown with their date of publication.

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

hydraid ICa	
Timot sign country	
Ferroxcube potcores, square cores and cross cores	
Ferroxcube for power, audio/video and accelerators	
Synchronous motors and gearboxes	
Variable capacitors	
Variable mains transformers	
Quartz crystal units, temperature compensated crystal oscillators, compact integrated of quartz crystal cuts for temperature measurements	oscillators
Connectors	
Non-linear resistors Voltage dependent resistors (VDR), light dependent resistors (LQR), negative temperat coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC)	ture
Variable resistors and test switches	
Fixed resistors assigned that at event step motiva-image	
Electrolytic and solid capacitors	
Ceramic capacitors*	
	-
Microprocessors, microcontrollers & peripherals	
Stepping motors and associated electronics	
D.C. motors	
Piezoelectric ceramics	
Wire-wound components for TVs and monitors	
	PLC modules, PC20 modules, HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input de hybrid ICs Television tuners, video modulators, surface acoustic wave filters Loudspeakers Ferroxcube potcores, square cores and cross cores Ferroxcube for power, audio/video and accelerators Synchronous motors and gearboxes Variable capacitors Variable mains transformers Piezoelectric quartz devices Quartz crystal units, temperature compensated crystal oscillators, compact integrated of quartz crystal cuts for temperature measurements Connectors Non-linear resistors Voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperatuce coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC) Variable resistors Electrolytic and solid capacitors Ceramic capacitors* Permanent magnet materials Stepping motors and associated electronics D.C. motors Piezoelectric ceramics

viii

^{*} Film capacitors are included in Data Handbook C22 which will be published in 1985. The September 1982 edition of C15 should be retained until C22 is issued.

SELECTION GUIDE

SELECTION GUIDE

Transistors for audio and general purpose applications

8.2	page	23 23	67	71	77	21	8 2	31	93	6666	107	113	121	129	131	133	145
80 80	ba	00 00 00								7				-	-		
	remarks	low-noise type		hearing aids, watches				low-noise type	hearing aids, watches	driver and output stages	driver and output stages	Ant. 21976 angle surfer	class-6 audio output stage		output stage	driver stage audio amplifier	
3 8	ren	lov	ă.	hea				lov	hea	dri	dri	-	Cla		onı	dri	
81	dB typ.	222,	0 00 0 7 0 10	7	2	OI I	1	1,2	2	1	- 11	1	1	100	91.	2	
CHARACTERISTICS	fT MHz typ.	> 300	> 50	150	> 20	88	150	00	90	100	200	09	09	150	150	300	
ACTER	lc mA	2	100	0,2	100		2		0,2	100	100	200	200	150	150	2	
CHAR	hFE at (hfe)	(125–500) (125–900) (240–900)	40-250	80-550	40-250	(75-260)	(125-500)	(125-500)	50-400	100-600	100-600	85-375	85-375	60-340	60-340	(125–500) (125–900) (125–900)	
9	Tamb	25	45*	45	45*	og og	25	68	45	25	25	25	25	25	25	25	
RATINGS	Ptot at mW	300	3700	20	3700		300		20	800	800	800	800	800	800	200	
RAT	IC mA	100	1000	20	1000	8	100	8000	20	200	200	1000	1000	1000	1000	100	
	VCEO	45 20 20	40	20	40	45	25	20	20	45 60 25	45 60 25	20	20	20	20	65 45 30	30
81 01	envelope	TO-18	TO-39	SOT-42	TO-39	87-07	TO-18	TO-85 A91	SOT-42	TO-92 var.	TO-92 var.	TO-92 var.	TO-92 var.	TO-92 var.	TO-92 var.	TO-92 var.	
n p n	polarity	u-d-u	n-q-n	n-q-n	d-u-d	200	d-u-d	0.0.0	d-u-d	d-u-d	u-d-u	n-p-n	d-u-d	n-p-n	d-u-d	u-d-u	
SMB30	type number	BC107 BC108 BC109	BC140 BC141	BC146	BC160 BC161	BC177	BC178	BC179	BC200	BC327 BC327A BC328	BC337 BC337A BC338	BC368	BC369	BC375	BC376	BC546 BC547 BC548	BC549

Transistors for audio and general purpose applications

SCENIX SCENIX	7-0-5	TO-82 //8//				3				n.	Pillowe Williams sought waving	
type number	polarity	envelope	VCEO	lc mA	Ptot a	at Tamb	hFE at (h _{fe})	IC mA	fT MHz typ.	dB typ.	remarks	page
BC556 BC557 BC558	d-u-d	TO-92 var.	65 45 30	100	200	25	(75–500)	2	150	2	driver stage audio amp.	157
BC559 BC560	d-u-d	TO-92 var.	30	100	500	25	(125–500)	2	150	1,2	low-noise types	163
BC635 BC637 BC639	n-p-n	TO-92 var.	45 60 80	1000	1000	25	40-250 40-160 40-160	150	130	ı	driver stage	171
BC636 BC638	d-u-d	TO-92 var.	45	1000	1000	25	40-250	150	20	ю	driver stage	177
BC640	0-0-0	810-03	80	007			40-160		8	2 1		177
BCY56 BCY57	u-d-u	TO-18	45	100	300	25	100-450 200-800	2	100	1,5	low-noise types	183
BCY58 BCY59	n-q-n	TO-18	32	200	330	45	(125–700)	7	280	2	switching	187
BCY70 BCY71 BCY72	d-u-d	TO-18	40 45 25	200	350	25	> 100	10	450	2,0	low-noise types	197
BCY78 BCY79	d-u-d	T0-18	32	200	345	45	(125–700)	2	180	2	switching	217
BCY87* BCY88* BCY89*	d-u-d	T0-71	40	30	150	25	100-450	0,05	> 10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	pre-stages of differential amplifier long-tailed pairs	225 225 225
2N929 2N930	u-d-u	TO-18	45	30	300	25	100-350	10	80	2,5	low-level, low-noise amplifier	593

ons	
catic	
appli	
urpose	
neral p	
g b	
o an	
audic	
for	
sistors	
ran	

														_		
GI SS	page	637	675 675 675 675	679 679 681 681	683	689		page	233	247	255	259	265			
	remarks	low-level, low noise amplifiers	large-signal, low-noise, low-power	small-signal, low-power	high-voltage driver	high-voltage driver	Augrus politic	remarks	gain-controlled TV i.f. amp.	output video i.f. amp.	a.m. mixers and i.f. amp. in a.m./f.m. receivers	r.f. stages in f.m. front-ends	large signal, i.f. amp.			
S	F dB typ.	4 %	888	9554	∞ ∞	0 8		f MHz	35		0,2	100				
ISTIC	fT MHz typ.	80	× 150 × 150 × 150 × 150	>250	>100	>100	ISTIC	fт F at AHz dB typ. typ.	က		3,5	8	<u> </u>			
CHARACTERISTICS	lc mA	10	90	~ ~ ~	9 9	0 0	CHARACTERISTICS	fT MHz typ.	400	550	380	450	>500			
HARA	at I			00) 00) 80)			IARA	Cre pF typ.	0,20	0,30	0,34	0,10*	1,6			
5	hFE (hfe)	<500	40-120 40-120 00-300 00-300	50-200 120-480 50-200 20-480)	40-180 60-240	60-250	Ö	t IC	15	7	-	4	10			
8	Tamb	25	25	25 (1	25	25	8	hFE at	>10	>38	67-220 36-125	typ. 50	>40			
	at							Tamb	25	25	25	45	25			
SDI	Ptot mW	360	800	350	625	625	RATINGS	RATINGS	RATINGS	ot at	0	0	9	0	0	
RATINGS	IC mA	*09	000	200	009	009				RATI	Ptot mW	25 500	25 500	25 250	25 250	0 200
3	VCEO	09	80 80 80 80	30 25 30 25	120	140		VCEO IC	30 2	25 2	40 2	30 2	15 100			
-	>		0 0 0	0 8 8 B			8 8 <u>8 8</u>	>>								
	envelope	TO-18	TO-39	TO-92 TO-92	T0-92	T0-92	ations	envelope	TO-92 var.	TO-92 var.	TO-92 var.	TO-92 var.	TO-92 var.			
	polarity	u-d-u	d-u-d	d-u-d	d-u-d	u-d-u	h.f. applic	polarity	n-d-n	n-p-n	n-d-n	d-u-d	n-p-n			
SM3501	type number	2N2483 2N2484	2N4030 2N4031 2N4032 2N4033	2N4123 2N4124 2N4125 2N4126	2N5400 2N5401	2N5550 2N5551	* I _{CM} . Transistors for h.f. applications	type number	BF198	BF199	BF240 BF241	BF324	* Cbr			

Transistors for h.f. applications	or h.t. ap	plications	GI GI	RA	RATINGS	8	944	공	ARAC	CHARACTERISTICS	TICS		.gma 3.1, tungta aprali	88
type number polarity envelope	polarity	envelope	VCEO	LC MA	Ptot at mW	Tamb	hFE at	lc mA	Cre	ft MHz	F at db N	MHz	remarks	page
BF420	n-q-n	TO-92 var.	300 ₩	20	830	25	> 50	25	1,0	09 <			- 278 E 27 C 28 E 28 E 27 C 27	269
BF421	d-u-d	TO-92 var.	300 ₽	20	830	25	> 50	25	1,1	09 <			output viduo i.i. amp.	275
BF422	n-p-n	TO-92 var.	250	20	830	25	> 50	25	1,0	09 <			class-B video output	269
BF423	d-u-d	TO-92 var.	250	20	830	25	> 50	25	1,1	09 <			class-B video output	275
BF450 BF451	d-u-d	TO-92 var.	40	25	250	45	62-200	-	0,35	325	2	100	mixer stages in a.m. receivers and i.f.stages for a.m./f.m.	281
BF483 BF485 BF487	n-p-n	TO-92 var.	250 300 350	100	830	25	> 50	25	4,	> 70	8		video output	285 285 285
BF494	n-p-n	TO-92 yar.	20	30	300	75	typ. 115	-	0,85	260	4	100	osc.,i.f. amp. in a.m./f.m.	289
SMERS	10.5	10 83											receivers	88
BF495	u-d-u	TO-92 var.	20	30	300	75	typ. 67	-	0,85	200	4	100	f.m.tuners, i.f.amp. in a.m./f.m.receivers and a.m.input stages car radios	297
BF496	n-p-n	TO-92 var.	20	20	300	75	> 12	2	0,80	220	2	100	gain-controlled v.h.f. amp.	305
BF926	d-u-d	TO-92 var.	20	25	250	45	> 30	-	0,5	350	2	200	mixer/osc. in v.h.f./u.h.f.	309
BF936	d-u-d	TO-92 var.	20	25	250	45	> 25	-	6,0	350	2	200	mixer/osc. in v.h.f./u.h.f.	311
BF939	d-u-d	TO-92 var.	25	20	225	22	> 16	2	0,7	750	2,5	200	gain-controlled v.h.f. amp.	313
BF967	d-u-d	SOT-37	30	20	160	22	> 15	m	0,45	900	4	800	gain-controlled v.h.f. amp.	317
BF970	d-u-d	SOT-37	35	30	160	22	> 25	3	0,475	900	4,7	800	self-osc. u.h.f. mixer stage	363
BF979	d-u-d	SOT-37	20	30*	140	22	> 20	10	0,65	1350	4,5	800	r.f. stages in u.h.f. tuners	325
BFR54	n-q-n	TO-92 var.	15	*005	200	25	> 40	10		> 500			freq. multipliers	329
BFY50 BFY51 BFY52	n-p-n	TO-39	35	1000	2000	**09	1123	150		140			general purpose industrial and switching applications	349 349 349
BFY55	n-d-n	TO-39	35	1000	800	25	> 40	150		09 <				419
2N2297	n-q-n	TO-39	35	1000	800	25	40-120 150	150		09 <				625
For data on tetrode-MOS-FET types for v.h.f./u.h.f. applications see Handbook Field-effect transistors.	etrode-M	OS-FET typ book Field-er	es for v.l ffect trai	h.f./u.h. nsistors.	4 :								► VCER.	R. ** Tmb.

November 1984

Polarity envelope VCEO IC Ptot at Tamb hFE at IC fT foff at IC ns mA mW mW mW mW mW mW mW	envelope	VCEO										
n-p-n TO-18 32 to 45 80-1000 10 280 800 10 p-n-p TO-18 45 to 200 350 25 to 100 10 450 420 10 p-n-p TO-18 45 to 200 345 45 to 200 80-1000 10 450 10 p-n-p TO-39 300 to 200 500 50** 50-150 10 70 125 to 20 10 p-n-p TO-39 to 250 500 to 50** 40-150 to 200 70 to 125 to 200 10 500 to 50** 40-150 to 200 70 to 125 to 200 10 p-n-p TO-39 to 30		5>		Ptot at mW	Tamb			fT MHz typ.	toff at ns max.		remarks	page
TO-18 45 200 350 25 > 100 10 450 420 10 TO-39 300 500 5000 50** 50-150 10 70 125 500 TO-39 300 5000 50** 40-150 2000 > 70 125 500 TO-39 30 1000 5000 50** typ. 123 150 160 5000 TO-92 var. 60* 1000 800 25 > 2000 500 500 500 TO-92 var. 100 100 500 25 > 2000 500 500 500 TO-92 var. 100 100 500 25 > 2000 500 500 500 TO-92 var. 100 500 25 > 2000 500 500 500 500 1000 15 TO-92 var. 100 100 500 25 > 200 4 > 60 1000 500 TO-92 var. 100 500 25 > 200 50 500 500 500 15 TO-92 var. 100 500 25 > 2000 500 500 500 1000 500 15 TO-92 var. 100 500 25 > 2000 500 500 500 500 1000 15 TO-92 var. 100 500 25 > 2000 500 500 500 500 500 500 500 500 50	TO-18	32	200	330	45	80-1000	10	280	800	10	and containing the second seco	187
p-n-p TO-18 45 200 350 25 > 100 10 450 10 p-n-p TO-39 30 50 500 50** 50-150 10 70 125 500 n-p-n TO-39 30 500 5000 50** 50-150 10 70 125 500 n-p-n TO-39 30 1000 5000 50** 40-150 200 70 120 500 n-p-n TO-39 30 1000 5000 50** 40-150 200 70 150 500 n-p-n TO-92 var. 60* 1000 800 25 >2000 500 150 500 n-p-n TO-92 var. 100 800 25 >2000 4 >60 1500 500 n-p-n TO-32 var. 100 500 25** >2000 4 >60 1000 500 50 50 50 1000 <td>10-65 ANY</td> <td>40</td> <td>0000</td> <td></td> <td>8 1</td> <td>00-120</td> <td>8</td> <td></td> <td>420</td> <td>10</td> <td>profotost spation april</td> <td>197</td>	10-65 ANY	40	0000		8 1	00-120	8		420	10	profotost spation april	197
p-n-p TO-18 32 brack 200 345 45 80-1000 10 180 800 10 p-n-p TO-39 300 500 50** 50-150 10 70 125 500 n-p-n TO-39 60 2000 5000 25** 40-150 2000 > 70 120 500 n-p-n TO-39 30 1000 5000 50** typ. 123 150 150 500 n-p-n TO-92 var. 60* 1000 800 25 >2000 500 150 500 n-p-n TO-92 var. 100 100 800 25 >2000 4 >60 1000 500 n-p-n TO-92 var. 100 100 500 25** >2000 4 >60 1000 500 n-p-n TO-92 var. 100 500 25** >2000 4 >60 1000 500 p-n-p TO-9	10-18	45 25	200	320	25	> 100	10	450	420	10	BCY71 is low-noise version	197
p-n-p TO-39 300 250 500 50** 50-150 10 70 125 500 n-p-n TO-39 60 2000 50** 40-150 2000 70 120 5000 n-p-n TO-39 30 1000 5000 50** typ. 123 150 1500 5000 n-p-n TO-92 var. 60* 1000 800 25 >2000 500 1500 500 n-p-n TO-92 var. 60* 1000 500 25 >2000 50 1500 500 n-p-n TO-92 var. 100 500 25** >2000 4 >60 1000 500 n-p-n TO-92 var. 100 500 25** >2000 50 1000 500 p-n-p TO-92 var. 1000 5000 25** >2000 500 1000 500 p-n-p TO-92 var. 100 500 25** >2000 50	TO-18	32	200		45	80-1000	10	180	800	10	amplifying and switching	217
n-p-n TO-39 60 2000 50** 40-150 2000 > 70 1200 5000 n-p-n TO-39 30 1000 5000 50** typ. 112 140 360 150 n-p-n TO-92 var. 60* 1000 800 25 >2000 500 150 500 n-p-n TO-92 var. 60* 1000 800 25 >2000 500 150 500 n-p-n TO-92 var. 100 500 25 * 2000 500 1000 150 n-p-n TO-92 var. 1000 5000 25** >2000 1000 500 n-p-n TO-92 var. 1000 5000 25** >2000 500 1000 500 p-n-p TO-39 60* 1000 5000 25** >2000 500 500 p-n-p TO-92 var. 100 500 25** >2000 50 1500 500	10-39	300	200	2000	**09	50-150	10	70	125	200		337
n-p-n TO-39 35 1000 500* 50** typ. 1123 150 140 360 150	TO-39	.09	2000	2000	25**	40-150	2000	> 70	1200	2000	inverter and switching regulators 371	371
n-p-n TO-39 30 1000 500* 50** typ. 123 150 160 360 150 n-p-n TO-92 var. 60* 1000 800 25 >2000 500 1500 500 n-p-n TO-92 var. 60* 1000 800 25 >2000 500 1500 500 n-p-n TO-92 var. 100 100 500 25 >2000 4 >60 1000 100 n-p-n TO-39 60* 1000 5000 25** >2000 500 1500 500 p-n-p TO-92 var. 100 5000 25** >2000 500 1500 500 1500	10.38	35			8	typ. 112	88	140		502	yery nigh speed core-driving	349
n-p-n TO-92 var. 60* 1000 800 25 >2000 500 1500 500 500 1500 500 1500 500 1500 500 1500	10-39	30	1000	2000	**05	typ. 123 typ. 142	150	160	360	150	general purpose	349
p-n-p TO-92 var. 60* [60*] 1000 800 25 >2000 500 1500 500 n-p-n TO-92 var. 100 100 500 25 > 20 4 > 60 1000 15 n-p-n TO-39 60* [60* [1000] 500 1000 500 25** >2000 500 1000 500 p-n-p TO-39 60* [1000] 500 25** >2000 500 1500 500 p-n-p TO-92 var. 100 500 25 > 30 25 > 50	TO-92 var.	45* 60* 80*	1000	800	25	>2000	200	2 8 7 7	1500	200	Darlington transistors	463 463 463
n-p-n TO-92 var. 100 100 500 25 > 20 4 > 60 1000 15 15 15 15 15 15 15 15 15 15 15 15 15	TO-92 var.	45* 60* 80*	1000	800	25	>2000	200	8 18	1500	200	Darlington transistors	469 469 469
n-p-n TO-39 60* 80* 60* 1000 1000 500 25** 500 >2000 500 1000 500 p-n-p TO-39 60* 80* 1000 500 25** 600 >25** 80* 1500 500 p-n-p TO-92 var. 100 100 500 25 >30 25 >50	TO-92 var.	100	100	200	25	> 20	4	09 <	1000	15	driver for numerical indicator tube	475
р-п-р TO-39 60* 80* 1000 5000 25** >2000 500 1500 500 р-п-р TO-92 var. 100 100 500 25 > 30 25 > 50	10-39	45* 60* 80*	1000	2000	25**	>2000	200	8	1000	200	Darlington transistors	479 479 479
p-n-p TO-92 var. 100 100 500 25 > 30 25 > 50	TO-39	45* 60* 80*	1000	2000	25**	>2000	200	2 1 2	1500	200	Darlington transistors	487 487 487
			100		25	> 30	25	> 50			general purpose	495
Tcase·		0-92 var. 0-92 var. 0-39 0-92 var.		60* 80* 100 100 45* 60* 80* 1000 80* 1000	60* 1000 80*	60% 1000 800 80% 1000 500 45% 1000 5000 80% 1000 5000 80% 1000 5000	60* 1000 800 25 >26 80* 1000 500 25 >26 45* 1000 5000 25 >26 80* 1000 5000 25** >26 80* 1000 5000 25** >26 100 100 5000 25** >26	60* 1000 800 25 >2000 500 80* 100 500 25 20 4 45* 1000 5000 25** >2000 4 80* 1000 5000 25** >2000 500 80* 1000 5000 25** >2000 500 80* 100 500 25** >2000 500 80* 100 500 25 >30 25	60* 1000 800 25 >2000 500 80* 100 500 25 20 4 45* 1000 5000 25** >2000 4 80* 1000 5000 25** >2000 500 80* 1000 5000 25** >2000 500 80* 1000 500 25** >2000 500 80* 100 500 25 >30 25	60* 1000 800 25 >2000 500 80* 100 500 25 > 20 4 > 60 45* 1000 5000 25** >2000 500 45* 45* 1000 5000 25** >2000 500 80* 1000 5000 25** >2000 500 80* 100 500 25 > 30 25 > 50	60* 1000 800 25 >2000 500 1500 80* 1000 25 > 20 4 > 60 1000 45* 1000 500 25** > 2000 500 1000 80* 1000 500 25** > 2000 500 1000 80* 1000 500 25** > 2000 500 1500 80* 100 500 25** > 30 25 > 50 100 100 500 25 > 30 25 > 50	60* 1000 800 25 >2000 500 1500 500 100 100 500 25 > 20 4 > 60 1000 1500

		10.00 mar	100	RAT	RATINGS	94	0	HARA	CHARACTERISTICS	LICS		detracted britishess	8
type number polarity envelope	polarity	envelope	VCEO	IC MA	Ptot at mW	Tamb	hFE	at IC	f† MHz	toff at	IC MA	remarks	page
0800			320						typ.	max.			487
BSV15			40										499
BSV16	d-u-d	TO-39	09	1000	2000	25*	40-250	100	> 20	650	100	general purpose	499
BSV17			80										499
BSV64	n-q-n	TO-39	09	2000	2000	*09	> 40	2000	100	1200	2000	high-current saturation charac-	509
BSW66A	3	LC 85 79L	100	98		3		7	8	000	Qi	teristics	515
BSW67A	n-p-n	TO-39	120	1000	2000	25*	> 30	200	130	006	200	general purpose	515
SOWOOA		10000	001	989				8					515
BSX19 BSX20	n-q-n	TO-18	15	200**	360	25	20- 60 40-120	10	> 400	10 60		high-speed saturated switching and h.f. amplifier applications	523
BSX45	30	10 83 181	40	1000		B	40-250	008		1800	008		545
BSX46	n-p-n	TO-39	09	1000	6250	*52	40-250	100	> 20	850	100	general purpose	545
01/10/			3 4	-			201101	8		0	,		040
55.X38			40						450	09			199
BSX60 BSX61	u-d-u	TO-39	30	1000	800	25	30- 90	200	475	100	200	very high speed core-driving purposes	557
PH2222:R			30						> 250				573
PH2222A;R	n-p-n	TO-92 var.	40	800	625	25	> 75	10	> 300	285	150		573
PH2369	n-p-n	TO-92 var.	15	**009	200	25	40-120	10	> 500	18	10		577
PH2907;R PH2907A;R	d-u-d	TO-92 var.	40	009	625	25	100-300	150	> 200	100	150		587
PH5415	d-u-d	TO-92 var.	200	1000	200	25	30-150	90	> 15			BCALL B DA 10180 Aution	591
PH5416	d-u-d	TO-92 var.	300	1000	200	25	30-120	20	> 15		9	nign-voltage switching	591
2N1613	n-q-n	TO-39	(20)	**009	800	25	40-120	150	09 <	8	9	d.c. and high-speed amplifiers	597
2N1711	u-d-u	TO-39	(20)	1000**	800	25	100-300	150	> 70				609
2N1893	n-q-n	TO-39	80	200	3000	25*	40-120	150	> 50				609
2N2219 2N2219A	u-d-u	TO-39	30	800	800	25	100-300	150	> 250	285	150	high-speed switching	613
													_

case.

type number polarity				117	RALINGS	,	5			CHARACIERISTICS			
	polarity	envelope	VCEO (VCER)	LC H	Ptot at mW	Tamb (Tcase)	hFE at	lc mA	fT MHz typ.	toff ns max.	at IC	nA remarks	page
2N2222 2N2222A	n-q-n	TO-18	30	800	200	25	100-300	150	250	285	150	high-speed switching	619
2N2368 2N2369	u-d-u	TO-18	15	500*	360	25	20- 60 40-120	0 0 0 0 0	> 400	13	10	very high speed saturated switching	629
2N2369A	n-d-n	TO-18	15	200	360	25	> 40	10	> 500	18	10	very high speed saturated switching	633
2N2904 2N2904A	d-u-d	TO-39	40	009	009	25	40-120	150 >	> 200	100	150	high-speed switching and driver applications	641
2N2905 2N2905A	d-u-d	TO-39	40	009	009	25	100-300	150 >	> 200	100	150	high-speed switching and driver applications	649
2N2906 2N2906A	d-u-d	TO-18	40	009	400	25	40-120	150 >	> 200	100	150	high-speed switching and driver applications	653
2N2907 2N2907A	d-u-d	TO-18	40	009	400	25	100-300	150 >	> 200	100	150	high-speed switching and driver applications	657
2N3019 2N3020	u-d-u	TO-39	80	0001	800	25	100-300	150 > >	00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00 < 00			amplifiers and medium-speed switching	661
2N3053	n-d-n	TO-39	40	700	2000	(22)	50-250	150 >	> 100	1	ı	medium-speed switching	665
2N3903 2N3904	n-p-n	TO-92	40	200	350	25	50-150	01 V V	> 250	225	01	high-speed saturated switching	607
2N3905 2N3906	d-u-d	TO-92	40	200	350	25	50-150	10	> 200	260	10		671
2N4030	10-92	8	09	77		8		> 200				200	675
2N4031	d-u-d	TO-39	-	000	800	25	> 25	2000	> 100	400	200	large signal, low-noise, low-power	675
2N4033			80				> 70	< 000	> 150				675
2N5400 2N5401	d-u-d	TO-92	120	009	625	25	> 40	00	> \ \ \ 100			high-voltage switching	683
2N5415 2N5416	d-u-d	TO-39	300	000	1000	20	30-150	20 0	> 15	**058	20	high-voltage general purpose amplifier applications	685
2N5550 2N5551	n-d-n	TO-92	140	09	625	25	09 8	0 0 0 0	> 100			high-voltage switching	689

* I_{CM}. ** Typical value.

Page			9	300	RATINGS	S	2	CHA	\RACT	CHARACTERISTICS	S		- posse		
170-72 70 175 2,5 20 5 25 80 characteristics measured 10-92 var, 70 175 2,5 20 5 2 80 with R _G = 10 kΩ 164 switches	type number	envelope	VGA V	0100	IAF A	03	l A/dt λ/μs	l _p μΑ max.				iarks		bac	eg e
For the sequence Color For 175 2,5 20 5 2 80 with RG = 10 kΩ 180 1	BRY39	TO-72	70	175	8	10	20	2	25	80	chai	racteristics measured	SWIG G-WID	43	LC)
VCBO IE	BRY56	TO-92 var,		175			20	2	2	80	with	h RG = $10 \text{ k}\Omega$		45	6
envelope VCBO IE Prot at analyse Tamb VAK max. max. max. max. max. max. max. max.	Silicon contro	alled switches	200												
envelope VCBO mA mA mA mA mV mV at Tamb VAR mV mV mA				4	MATING	S		0	HARA	CTERIS	TICS		_		
TO-72 50 175 2,5 275 25 1,4 1,0 — — characteristics measured TO-72 70 175 2,5 275 2,5 1,4 1,0 1,5 8 with RG = 10 kΩ ade RATINGS CHARACTERISTICS at T _j = 25 °C Harvelope T TSM TSM M TSM M TSM M M M M M M M M M	type number		VCBC	7		IM Ptc	y at Ta	oC V		A		remarks		bac	ge
TO-72 70 175 2,5 275 25 1,4 1,0 1,5 8 with RG = 10 kΩ ade RATINGS CHARACTERISTICS at T _j = 25 °C CHARACTERISTICS at T _j = 25 °C envelope IT ITRM ITSM dIT/dt VGKT IGKT VGAT IGA IQA Ranks TO-72 250 2,5 3 20 0,5 1 -1 -100 3 VRRMmax = 70 V	BR101	TO-72	20	175	ğ	8					ı	characteristics measured	8	43	_
A Lyas CHARACTERISTICS at T _j = 25 °C envelope IT LTRM LTSM AlT/dt A/μs V GKT VGKT VGKT VG AT VGAT VGAT VGAT VGAT VGAT VGAT VG	BRY39	TO-72	70	175	_	-		25 1,4				with $R_G = 10 k\Omega$		44	-
envelope IT TRM TSM M TSM M TSM M TSM M M M M M M M M M	Thyristor tetr	apo.													
envelope 17 17RM 47/4 VGKT 1GKT VGAT 1GAT 1GAT 48 μs μs μs μs μs μs μs μ				9	SATING	S	CHAR	ACTER	ISTIC	Sat Tj =	25 oC	and business and the paper of the	Tea direction		
TO-72 250 2,5 3 20 0,5 1 -1 -100 3 VRRMmax = 70 V	type number			ITRM	ITSM A	dIŢ/dt A/μs	VGKT V min.				T tq µs max.	remarks	100	bać	ge
NAME	BRY39	TO-72	250	2,5	m	20	9'0	-	-	-		VRRMmax = 70 V	16 de 18	45	-
SM3335 CALL LOTE 30 999 BOO SE (400-301 404 350 350 450 pillo-charg and charge and charg															
Serial Serial Anni						8-									

P-N-P-N DEVICES

TYPE NUMBER SURVEY

TYPE MUMBER SURVEY

In this alphanumeric list we present all small-signal transistors mentioned in this handbook.

type number		envelope	VCEO V	IC mA	page	type number	•	envelope	VCEO	IC mA	page
BC107	n	TO-18	45	100	53	BC638	р	TO-92 var.	60	1000	177
BC108	n	TO-18	20	100	53	BC639	Sn	TO-92 var.	80	1000	171
BC109	n	TO-18	20	100	53	BC640	р	TO-92 var.	80	1000	177
BC140	n	TO-39	40	1000	67	BCY56	n	TO-18	- 045	100	183
BC141	n	TO-39	60	1000	67	BCY57	n	TO-18	20	100	183
BC146	n	SOT-42	20	50	71	BCY58	n	TO-18	32	200	187
BC160	p	TO-39	40	1000	77	BCY59	n	TO-18	45	200	187
BC161	p	TO-39	60	1000	77	BCY70	р	TO-18	40	200	197
BC177	p	TO-18	45	100	81	BCY71	р	TO-18	45	200	197
BC178	p	TO-18	25	100	81	BCY72	р	TO-18	25	200	197
BC179	p	TO-18	20	100	81	BCY78	р	TO-18	32	200	217
BC200	p	SOT-42	20	50	93	BCY79	р	TO-18	45	200	225
BC327	р	TO-92 var.	45	500	99	BCY87	n	TO-71	40	30	225
BC327A	p	TO-92 var.	60	500	99	BCY88	n	TO-71	40	30	225
BC328	p	TO-92 var.	25	500	99	BCY89	n °	TO-71	40	30	225
BC337	n	TO-92 var.	45	500	107	BF198	n	TO-92 var.	30	25	233
BC337A	·n	TO-92 var.	60	500	107	BF199	n	TO-92 var.	25	25	247
BC338	n	TO-92 var.	25	500	107	BF240	n	TO-92 var.	40	25	255
BC368	n	TO-92 var.	20	1000	113	BF241	n	TO-92 var.	40	25	255
BC369	p	TO-92 var.	20	1000	121	BF324	р	TO-92 var.	30	25	259
BC375	n	TO-92 var.	20	1000	129	BF370	n	TO-92 var.	15	_100	265
BC376	p	TO-92 var.	20	1000	131	BF420	n	TO-92 var.	300**	-50	269
BC546	n	TO-92 var.	65	100	133	BF421	p	TO-92 var.	300**	100	275
BC547	n	TO-92 var.	45	100	133	BF422	o n	TO-92 var.	250	50	269
BC548	n	TO-92 var.	30	100	133	BF423	p	TO-92 var.	250	100	275
BC549	n	TO-92 var.	30	100	145	BF450	р	TO-92 var.	40	25	281
BC550	n	TO-92 var.	45	100	145	BF451	p	TO-92 var,	40	25	281
BC556	p	TO-92 var.	65	100	157	BF483	n	TO-92 var.	250	100	285
BC557	p	TO-92 var.	45	100	157	BF485	n	TO-92 var.	300	100	295
BC558	p	TO-92 var.	30	100	157	BF487	0 n	TO-92 var.	350	100	285
BC559	p	TO-92 var.	30	100	163	BF494	n	TO-92 var.	20	30	289
BC560	p	TO-92 var.	45	100	163	BF495	n	TO-92 var.	20	30	297
BC635	n	TO-92 var.	45	1000	171	BF496	n	TO-92 var.	20	20	305
BC636	p	TO-92 var.	45	1000	177	BF926	р	TO-92 var.	20	25	309
BC637	l n	TO-92 var.	60	1000	171	BF936	р	TO-92 var.	20	25	311

^{*} ICM.

▲ n = n-p-n; p = p-n-p.

^{**} VCER-

TYPE NUMBER SURVEY

type number	A .	envelope	V _{CEO}	IC mA	page	type number	•	envelope	V _{CEO}	IC mA	page
BF939	р	TO-92 var.	25	20	313	BSX45	n	TO-39	40	1000	545
BF967	p	SOT-37	30	20	317	BSX46	n	TO-39	60	1000	545
BF970	р	SOT-37	35	30	323	BSX47	n	TO-39	80	1000	545
BF979	p	SOT-37	30	30*	325	BSX59	n	TO-39	45	1000	557
BFR54	n	TO-92 var.	15	500*	329	BSX60	n	TO-39	30	1000	557
BFT44	p	TO-39	300	500	337	BSX61	n	TO-39	45	1000	557
BFT45	р	TO-39	250	500	337	BSY95A	n	TO-18	15	100	569
BFX29	p	TO-39	60	600	345	PH2222;R	n	TO-92 var.	30	800	573
BFX30	p	TO-39	65	600	359	PH2222A	n	TO-92 var.	40	800	573
BFX34	n	TO-39	60	2000	371	PH2222AR		TO-92 var.	40	800	573
BFX84	n	TO-39	60	1000	377	PH2369	n	TO-92 var.	15	500*	577
BFX85	n	TO-39	60	1000	377	PH2907;R	р	TO-92 var.	40	600	587
BFX86	n	TO-39	35	1000	377	PH2907A	p	TO-92 var.	60	600	587
BFX87	p	TO-39	50	600	345	PH2907AR		TO-92 var.	60	600	587
BFX88	p	TO-39	40	600	345	PH5415	p	TO-92 var.	200	1000	591
BFY50	n	TO-39	35	1000	349	PH5416	р	TO-92 var.	300	1000	591
BFY51	n	TO-39	30	1000	349	2N929	n	TO-18	45	30	593
BFY52	n	TO-39	20	1000	349	2N930	n	TO-18	45	30	593
BFY55	n	TO-39	35	1000	419	2N1613	n	TO-39	50**	1000*	597
BR101	p ¹	TO-72	50	175	431	2N1711	n	TO-39	50**	1000	605
BRY39	p ¹	TO-72	70	175	435	2N1893	n	TO-39	80	500	609
BRY56	p ¹	TO-92 var.	70	175	459	2N2219	n	TO-39	30	800	613
BSR50	n	TO-92 var.	45**	1000	463	2N2219A	n	TO-39	40	800	613
BSR51	n	TO-92 var.	60**	1000	463	2N2222	n	TO-18	30	800	619
BSR52	n	TO-92 var.	80**	1000	463	2N2222A	n	TO-18	40	800	619
BSR60	р	TO-92 var.	45**	1000	469	2N2297	n	TO-39	35	1000	625
BSR61	p	TO-92 var.	60**	1000	469	2N2368	n	TO-18	15	500*	629
BSR62	p	TO-92 var.	80**	1000	469	2N2369	n	TO-18	15	500*	629
BSS38	n	TO-92 var.	100	100	475	2N2369A	n	TO-18	15	200	633
BSS50	n	TO-39	45**	1000	479	2N2483	n	TO-18	60	50*	637
BSS51	n	TO-39	60**	1000	479	2N2484	n	TO-18	60	50*	637
BSS52	n	TO-39	80**	1000	479	2N2904	р	TO-39	40	600	641
BSS60	р	TO-39	45**	1000	487	2N2904A	р	TO-39	60	600	641
BSS61	р	TO-39	60**	1000	487	2N2905	р	TO-39	40	600	649
BSS62	р	TO-39	80**	1000	487	2N2905A	р	TO-39	60	600	649
BSS68	р	TO-92 var.	100	100	495	2N2906	р	TO-18	40	600	653
BSV15	р	TO-39	40	1000	499	2N2906A	р	TO-18	60	600	653
BSV16	р	TO-39	60	1000	499	2N2907	р	TO-18	40	600	657
BSV17	p	TO-39	80	1000	499	2N2907A	р	TO-18	60	600	657
BSV64	n	TO-39	60	2000	509	2N3019	n	TO-39	80	1000	600
BSW66A	n	TO-39	100	1000	515	2N3020	n	TO-39	80	700	661
BSW67A	n	TO-39	120	1000	515	2N3053	n	TO-39	40	700	665
BSW68A	n	TO-39	150	1000	515	2N3903	n	TO-92	40	200	667
BSX19	n	TO-18	15	500*	523	2N3904	n	TO-92	40	200	667
BSX20	n	TO-18	15	500*	523	2N3905	р	TO-92	40	200	671

^{*} ICM-

^{**} VCER-

 $A = n-p-n; p = p-n-p; p^1 = p-n-p-n.$

type number		envelope	V _{CEO}	I _C	page	
2N3906	р	TO-92	40	200	671	
2N4030	p	TO-39	60	1000	675	
2N4031	p	TO-39	80	1000	675	
2N4032	p	TO-39	60	1000	675	
2N4033	p	TO-39	80.	1000	675	
2N4123	n	TO-92	30	200	679	
2N4124	n	TO-92	25	200	679	
2N4125	p	TO-92	30	200	681	
2N4126	p	TO-92	25	200	681	
2N5400	p	TO-92	120	600	683	
2N5401	p	TO-92	150	600	683	
2N5415	p	TO-39	200	1000	685	
2N5416	p	TO-39	300	1000	685	
2N5550	n	TO-92	160	600	689	
2N5551	n	TO-92	180	600	689	

	1000		
889			

CONVERSION LIST

conventional to microminiature type

conventional type	microminiature type	conventional type	microminiature type	conventional type	microminiature type
BA243	BAT18	BC177B	BC857B	BC368	BC868
BA314	BAS17		BCW70	BC369	BC869
BA481	BAT17	BC178	BC858	BC546	BC846
BA482	BAT18		BCW29/30		BCV71/72
BAV19	BAS19	BC178A	BC858A	BC546A	BC846A
BAV20	BAS20		BCW29		BCV71
BAV21	BAS21	BC178B	BC858B	BC546B	BC846B
BAW62	BAS16		BCW30		BCV72
	BAV70	BC179	BC859	BC547	BC847
	BAV99		BCF29/30		BCW71/72/81
	BAW56	BC179A	BC859A	BC547A	BC847A
BB405	BBY31		BCF29		BCW71
3B809	BBY40	BC179B	BC859B	BC547B	BC847B
BC107	BC847	00/18:	BCF30	0030	BCW72
FCR	BCW71/72	BC200/01	BC859B	BC547C	BC847C
BC107A	BC847A	50200,01	BCF29	200170	BCW81
100	BCW71	BC200/02	BC859B/C	BC548	BC848
3C107B	BC847B	00200,02	BCF29/30	nnae	BCW31-33
01075	BCW72	BC200/03	BC859C	BC548A	BC848A
3C108	BC848	50200,00	BCF30	9.5.937	BCW31
0100	BCW31-33	BC327	BC807	BC548B	BC848B
3C108A	BC848A	50027	BCX17	500105	BCW32
0100	BCW31	BC327-16	BC807-16	BC548C	BC848C
3C108B	BC848B	BC327-25	BC807-25	8.17X	BCW33
000	BCW32	BC327-40	BC807-40	BC549	BC849
3C109	BC849	BC327A	50007 40	81.183	BCF32/33
70100	BCF32/33	BC328	BC808	BC549B	BC849B
3C109B	BC849B	50020	BCX18	D0040B	BCF32
01000	BCF32	BC328-16	BC808-16	BC549C	BC849C
3C109C	BC849C	BC328-25	BC808-25	500400	BCF33
000	BCF33	BC328-40	BC808-40	BC550	BC850
3C146/01	BC849B	BC337	BC817	D0000	BCF81
01.0701	BCF32	50007	BCX19	BC550B	BC850B
3C146/02	BC849B/C	BC337-16	BC817-16	BC550C	BC850C
170/02	BCF32/33	BC337-25	BC817-10	BC556	BC856
3C146/03	BC849C	BC337-29	BC817-40	20000	BCW89
20.40,00	BCF33	BC338	BC818	BC556A	BC856A
BC177	BC857	50000	BCX20	DOGGOOM	BCW89
30177	BCW69/70	BC338-16	BC818-16	BC556B	BC856B
BC177A	BC857A	BC338-25	BC818-25	BC557	BC857
JO177A	BCW69	BC338-40	BC818-40	BC997	BCW69/70
	DCMOS	BC330-40	DC010-40		DCW09/70

CONVERSION LIST

conventional type	microminiature type	conventional type	microminiature type	conventional type	microminiatur type
		TELLING	MANUAL MA		
BC557A	BC857A	BCY56	BC850B	BF241	
	BCW69	ominiature type	BCF70	BF324	BF824
BC557B	BC857B	BCY57	BC849	BF410A	BF510
	BCW70		BCF32/33	BF410B	BF511
BC557C	BC857C	BCY58	BC849	BF410C	BF512
BC558	BC858	80.43	BCW60 fam.	BF410D	BF513
	BCW29/30	BCY58-VII	BCW60A	BF419	BST40
BC558A	BC858A	BCY58-VIII	BC849B	BF420	BF620
	BCW29	W70	BCW60B		BF820
BC558B	BC858B	BCY58-IX	BC849B	BF421	BF621
	BCW30	CW29/30	BCW60C		BF821
BC558C	BC858C	BCY58-X	BC849C	BF422	BF622
BC559	BC859	:W29	BCW60D	1820	BF822
SAME	BCF29/30	BCY59	BC850	BF423	BF623
BC559A	BC859A	DEWE	BCX70 fam.	8120	BF823
DOJJJA	BCF29	BCY59-VII	BCX70G	BF450	BF550
BC559B	BC859B	BCY59-VIII	BC850B	BF451	D1 330
DCSSSB	BCF30	DC 1 33-VIII	BCX70H	BF457	BST40
BC559C	BC859C	BCY59-IX	BC850B	BF458	BST40
BC560	BC860	BC 1 59-1X	BCX70J	BF459	BST39
BC560		DOVED Y			
DOFOOA	BCF70	BCY59-X	BC850C	BF469	BF622
BC560A	BC860A	DO1/20	BCX70K	BF470	BF623
BC560B	BC860B	BCY70	BC860	BF471	BF620
BASS	BCF70	0/8698	BCF70	BF472	BF621
BC560C	BC860C	BCY71	BC860	BF494	BFS19
BC635	BCX54	08980	BCF70	BF494B	BFS19
BC635-6	BCX54-6	BCY72	BC859	BF494C	BFS19
BC635-10	BCX54-10	1807	BCF29/30	BF495	BFS18
BC635-16	BCX54-16	BCY78	BC859	BF495C	BFS18
BC636	BCX51	91-7083	BCW61 fam.	BF495D	BFS18
BC636-6	BCX51-6	BCY78-VII	BC859A	BF606A	BF660
BC636-10	BCX51-10	3807-40	BCW61A	BF819	BST40
BC636-16	BCX51-16	BCY78-VIII	BC859A/B	BF857	BST40
BC637	BCX55	8083	BCW61B	BF858	BST40
BC637-6	BCX55-6	BCY78-IX	BC859B	BF859	BST39
BC637-10	BCX55-10	81-8093	BCW61C	BF869	BF622
BC637-16	BCX55-16	BCY78-X	BC859C	BF870	BF623
BC638	BCX52	08.8083	BCW61D	BF871	BF620
BC638-6	BCX52-6	BCY79	BC860	BF872	BF621
BC638-10	BCX52-10	50170	BCX71 fam.	BF926	BF660
BC638-16	BCX52-16	BCY79-VII	BC860A	BF936	BF536
BC639	BCX56	DO133-VII	BCX71G	BF939	D1 000
BC639-6	BCX56-6	BCY79-VIII	BC860A/B	BF960	BF989
BC639-10	BCX56-10	DC1/9-VIII	BCX71H	BF964	BF994
BC639-10 BC639-16	BCX56-10 BCX56-16	DCV70 IV			
		BCY79-IX	BC860B	BF966	BF996
BC640	BCX53	DE400	BCX71J	BF967	BF767
BC640-6	BCX53-6	BF198	D.F.O.O.	BF970	BF569
BC640-10	BCX53-10	BF199	BFS20	BF979	BF579
BC640-16	BCX53-16	BF240		BF980	BF990

CONVERSION LIST

conventional type	microminiature type	conventional type	microminiature type	conventional type	microminiature type
BF981	BF991	BSS68	BSS63	2N2368	BSV52
BF982	BF992	BSV15	BSR30/31	2N2369	BSV52
BFQ23	BFT93	BSV15-6	BSR30	2N2369A	BSV52
BFQ24	BFT93	BSV15-10		2N2483	
BFQ34	BFQ18A	BSV15-16		2N2484	
BFQ51	BFT92	BSV16	BSR30/31	2N2894A	BSR12
BFQ52	BFT92	BSV16-6	BSR30	2N2905	BSR15
BFR54	BSV52	BSV16-10	BSR30/31	2N2905A	BSR16
BFR90	BFR92A	BSV16-16	BSR31	2N2907	BSR15
BFR91	BFR93A	BSV17	BSR32/33	2N2907A	BSR16
BFR96	BFQ19	BSV17-6	BSR32	2N3019	BSR43
BFT24	BFT25	BSV17-10	BSR32/33	2N3020	BSR42
BFT44	BST16	BSX19	BSV52	2N3053	BSR40/41
BFT45	BST15/16	BSX20	BSV52	2N3903	BSR17
BFW11	BFR30	BSX45	BSR40/41	2N3904	BSR17A
BFW12	BFR31	BSX45-6	BSR40	2N3905	BSR18
BFW13	BFT46	BSX45-10	BSR40/41	2N3906	BSR18A
BFW16A	BFQ17	BSX45-16	BSR41	2N4030	BSR30
BFW30	BFR53	BSX46	BSR40/41	2N4031	BSR31
BFW92	BFS17	BSX46-6	BSR40	2N4031 2N4032	BSR32
BFW93	BFR53	BSX46-10	BSR40/41	2N4032 2N4033	BSR33
BFX29	BSR16	BSX46-16	BSR41	2N4123	BSR17
BFX30	BSR16	BSX40-10	BSR42/43	2B4124	BSR18
BFX84	BSR40	BSX47-6	BSR42	2N4856	BSR56
BFX85	BSR41	BSX47-10	BSR42/43	2N4857	BSR57
BFX86	BSR41	BSY95A	BSV52	2N4858	BSR58
BFX87	BSR16	BZX55	BZX84	2N5415	BST15
BFX88	BSR15	BZX79	BZX84	2N5415 2N5416	BST16
BFY50	BSR40	BZV85	BZV49	BD135	BCX54
BFY51	BSR40	PH2222	BSR13	BD135	BCX54-6
BFY52	BSR40	PH2222A	BSR14	BD135-0 BD135-10	BCX54-10
BFY55	BSR40	PH2369	BSV52	BD135-10 BD135-16	BCX54-10 BCX54-16
BFY90	BFS17	PH2907	BSR15		
BR101	BRY62	PH2907A	BSR16	BD136	BCX51
BRY39	BRY62	1N4148		BD136-6	BCX51-6
BRY56	BRY61	1114148	BAS16	BD136-10	BCX51-10
	BST50		BAV70	BD136-16	BCX51-16
BSR50			BAV99	BD137	BCX55
BSR51	BST51	011000	BAW56	BD137-6	BCX55-6
BSR52	BST52	2N929	BC850	BD137-10	BCX55-10
BSR60	BST60	2N930	BC850	BD137-16	BCX55-16
BSR61	BST61	0114040	BCF81	BD138	BCX52
BSR62	BST62	2N1613	BSR40	BD138-6	BCX52-6
BSS38	BSS64	2N1711	BSR41	BD138-10	BCX52-10
BSS50	BST50	2N1893	BSR42	BD138-16	BCX52-16
BSS51	BST51	2N2219	BSR13	BD139	BCX56
BSS52	BST52	2N2219A	BSR14	BD139-6	BCX56-6
BSS60	BST60	2N2222	BSR13	BD139-10	BCX56-10
BSS61	BST61	2N2222A	BSR14	BD139-16	BCX56-16
BSS62	BST62	2N2297	BSR40	BD140	BCX53

CONVERSION LIST

microminiature type		conventional type microminiature type BDW57 BCX55 BDW58 BCX52 BDW59 BCX56 BDW60 BCX53 BDX42 BST50		conventional type microminiature type BDX43 BST51 BDX44 BST52 BDX45 BST60 BDX46 BST61 BDX47 BST61	
		3SVS2			
					• 88X(98
					0888

GENERAL

Type designation Rating systems Letter symbols SOAR curves s-parameters

GENERAL

Type designation
Rating systems
Letter symbols
SOAR curves
s-personeters

PRO ELECTRON TYPE DESIGNATION CODE FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices — as opposed to integrated circuits —, multiples of such devices and semiconductor chips.

"Although not all type numbers accord with the Pro Electron system, the following explanation is given for the ones that do."

A basic type number consists of:

TWO LETTERS FOLLOWED BY A SERIAL NUMBER

FIRST LETTER

The first letter gives information about the material used for the active part of the devices.

- A. GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
- B. SILICON or other material with band gap of 1,0 to 1,3 eV.
- C. GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
- R. COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER

The second letter indicates the function for which the device is primarily designed.

- A. DIODE; signal, low power
- B. DIODE; variable capacitance
- C. TRANSISTOR; low power, audio frequency (R_{th i-mb} > 15 °C/W)
- D. TRANSISTOR; power, audio frequency (Rth i-mb ≤ 15 °C/W)
- E. DIODE: tunnel
- F. TRANSISTOR; low power, high frequency (Rth j-mb > 15 °C/W)
- G. MULTIPLE OF DISSIMILAR DEVICES MISCELLANEOUS; e.g. oscillator
- H. DIODE; magnetic sensitive
- L. TRANSISTOR; power, high frequency (Rth i-mb ≤ 15 °C/W)
- N. PHOTO-COUPLER
- P. RADIATION DETECTOR; e.g. high sensitivity phototransistor
- Q. RADIATION GENERATOR; e.g. light-emitting diode (LED)
- R. CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (Rth j-mb > 15 °C/W)
- S. TRANSISTOR; low power, switching (Rth i-mb > 15 °C/W)
- T. CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (Rth i-mb ≤ 15 °C/W)
- U. TRANSISTOR; power, switching (Rth i-mb ≤ 15 °C/W)
- X. DIODE: multiplier, e.g. varactor, step recovery
- Y. DIODE; rectifying, booster
- Z. DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

TYPE DESIGNATION

SERIAL NUMBER

Three figures, running from 100 to 999, for devices primarily intended for consumer equipment,* One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for industrial/professional equipment.*

This letter has no fixed meaning except W, which is used for transient suppressor diodes.

VERSION LETTER

It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.

SUFFIX

Sub-classification can be used for devices supplied in a wide range of variants called associated types. Following sub-coding suffixes are in use:

1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE NUMBER

The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage

- A. 1% (according to IEC 63: series E96)
- B. 2% (according to IEC 63: series E48)
- C. 5% (according to IEC 63: series E24)
- D. 10% (according to IEC 63: series E12)
- E. 20% (according to IEC 63: series E6)

The number denotes the typical operating (Zener) voltage related to the nominal current rating for the whole range.

The letter 'V' is used instead of the decimal point.

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER

The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage V_B. The letter 'V' is used as above.

3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS: ONE NUMBER

The NUMBER indicates the rated maximum repetitive peak reverse voltage (VRRM) or the rated repetitive peak off-state voltage (VDRM), whichever is the lower. Reversed polarity is indicated by letter R, immediately after the number.

- 4. RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (-) The NUMBER indicates the depletion layer in um. The resolution is indicated by a version LETTER.
- 5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke (/).

The NUMBER indicates how many basic devices are assembled into the array.

^{*} When these serial numbers are exhausted the serial number for consumer types may be extended to four figures, and that for industrial types to three figures.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission (IEC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.

Note

This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.

Note

Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their interpretation.

Note

The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

RATING SYSTEMS

DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

21

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES

based on IEC Publication 148

LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

Basic letters

The basic letters to be used are:

I, i = current
V, v = voltage
P, p = power.

Lower-case basic letters shall be used for the representation of instantaneous values which vary with time.

In all other instances upper-case basic letters shall be used.

Subscripts

A, a	Anode terminal			
(AV), (av)	Average value			
B, b	Base terminal, for MOS devices: Substrate			
(BR)	Breakdown			
С, с	Collector terminal			
D, d	Drain terminal			
E, e	Emitter terminal			
F, f	Forward			
G, g	Gate terminal			
K, k	Cathode terminal			
M, m	Peak value			
0,0	As third subscript: The terminal not mentioned is open circuited			
R, r	As first subscript: Reverse. As second subscript: Repetitive.			
	As third subscript: With a specified resistance between the terminal not mentioned and the reference terminal.			
(RMS), (rms)	R.M.S. value			
	(As first or second subscript: Source terminal (for FETS only)			
S, s	As second subscript: Non-repetitive (not for FETS)			
	As third subscript: Short circuit between the terminal not mentioned and the reference terminal			
X, x	Specified circuit			
Z, z	Replaces R to indicate the actual working voltage, current or power of voltage reference and voltage regulator diodes.			

Note: No additional subscript is used for d.c. values.

February 1974

Upper-case subscripts shall be used for the indication of:

a) continuous (d.c.) values (without signal)

Example I_B

b) instantaneous total values

Example iB

c) average total values

Example IB(AV)

d) peak total values

Example I_{BM}

e) root-mean-square total values

Example I_{B(RMS)}

Lower-case subscripts shall be used for the indication of values applying to the varying component alone:

a) instantaneous values

Example ib

b) root-mean-square values

Example Ib(rms)

c) peak values

Example I_{bm}

d) average values

Example Ib(av)

Note: If more than one subscript is used, subscript for which both styles exist shall either be all upper-case or all lower-case.

Additional rules for subscripts

Subscripts for currents

Transistors: If it is necessary to indicate the terminal carrying the current, this should be done by the first subscript (conventional current flow from the external circuit into the terminal is positive).

Examples: IB, iB, ib, Ibm

Diodes:

To indicate a forward current (conventional current flow into the anode terminal) the subscript F or f should be used; for a reverse current (conventional current flow out of the anode terminal) the subscript R or r should be used.

Examples: IF, IR, iF, If(rms)

Subscripts for voltages

Transistors: If it is necessary to indicate the points between which a voltage is meas-

ured, this should be done by the first two subscripts. The first subscript indicates the terminal at which the voltage is measured and the second the reference terminal or the circuit node. Where there is no possibility of confusion, the second subscript may be emitted.

confusion, the second subscript may be omitted.

Diodes: To indicate a forward voltage (anode positive with respect to cathode), the

subscript F or f should be used; for a reverse voltage (anode negative with respect to cathode) the subscript R or r should be used.

Subscripts for supply voltages or supply currents

Supply voltages or supply currents shall be indicated by repeating the appropriate terminal subscript.

Note: If it is necessary to indicate a reference terminal, this should be done by a third subscript

Subscripts for devices having more than one terminal of the same kind

If a device has more than one terminal of the same kind, the subscript is formed by the appropriate letter for the terminal followed by a number; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{B2} = continuous (d.c.) current flowing into the second base terminal

V_{B2-E} = continuous (d.c.) voltage between the terminals of second base and emitter

Subscripts for multiple devices

For multiple unit devices, the subscripts are modified by a number preceding the letter subscript; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.

Examples: I_{2C} = continuous (d.c.) current flowing into the collector terminal of the second unit

V_{1C-2C} = continuous (d.c.) voltage between the collector terminals of the first and the second unit.

Application of the rules

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d.c.) current and a varying component.

LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

Definition

For the purpose of this Publication, the term "electrical parameter" applies to four-pole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.

Basic letters

The following is a list of the most important basic letters used for electrical parameters of semiconductor devices.

B, b = susceptance; imaginary part of an admittance

C = capacitance

G, g = conductance; real part of an admittance

H, h = hybrid parameter

L = inductance

R, r = resistance; real part of an impedance

X, x = reactance; imaginary part of an impedance

Y, y = admittance;

Z,z = impedance;

Upper-case letters shall be used for the representation of:

- a) electrical parameters of external circuits and of circuits in which the device forms only a part;
- b) all inductances and capacitances.

Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).

Subscripts

General subscripts

The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

$$\begin{array}{lll} F,\,f &=& \text{forward; forward transfer} \\ l,\,i\,\,(\text{or 1}) &=& \text{input} \\ L,\,1 &=& \text{load} \\ O,\,o\,\,(\text{or 2}) &=& \text{output} \\ R,\,r &=& \text{reverse; reverse transfer} \\ S,\,s &=& \text{source} \\ &=& \text{Examples: } Z_{\text{C}},\,h_{\text{f}},\,h_{\text{F}} \end{array}$$

The upper-case variant of a subscript shall be used for the designation of static (d.c.) values.

Examples: h_{FE} = static value of forward current transfer ratio in commonemitter configuration (d.c. current gain) R_E = d.c. value of the external emitter resistance.

Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point.

The lower-case variant of a subscript shall be used for the designation of small-signal values.

Examples:
$$h_{fe}$$
 = small-signal value of the short-circuit forward current transfer ratio in common-emitter configuration
$$Z_{e} = R_{e} + jX_{e} = small-signal value of the external impedance$$

Note: If more than one subscript is used, subscripts for which both styles exist shall either be all upper-case or all lower-case

Examples:
$$h_{FE}$$
, y_{RE} , h_{fe}

Subscripts for four-pole matrix parameters

The first letter subscript (or double numeric subscript) indicates input, output, forward transfer or reverse transfer

Examples:
$$h_{1}$$
 (or h_{11})
 h_{1} (or h_{21})
 h_{1} (or h_{21})
 h_{1} (or h_{12})

A further subscript is used for the identification of the circuit configuration. When no confusion is possible, this further subscript may be omitted.

Examples:
$$h_{fe}$$
 (or h_{21e}), h_{FE} (or h_{21E})

Distinction between real and imaginary parts

If it is necessary to distinguish between real and imaginary parts of electrical parameters, no additional subscripts should be used. If basic symbols for the real and imaginary parts exist, these may be used.

Examples:
$$Z_i = R_i + jX_i$$

 $y_{fe} = g_{fe} + jb_{fe}$

If such symbols do not exist or if they are not suitable, the following notation shall be used:

faired with the solution is a

Examples: Re
$$(h_{ib})$$
 etc. for the real part of h_{ib}

Im (h_{ib}) etc. for the imaginary part of h_{ib}

TRANSISTOR SAFE OPERATING AREA

If a power transistor is to give reliable service, four operating limits must be observed:

- Maximum collector current.
- Maximum collector-emitter voltage.
- Maximum power dissipation.
- Second breakdown limit.

These limits are all specified in the data sheets; the purpose here is to enable designers to make the best use of that information.

Collector current

Maximum collector current I_{Cmax} is specified in the data sheets for d.c. operation. For pulsed operation a higher collector current I_{Cmax} is permitted, for a defined maximum pulse length (usually 10 ms) and duty factor (usually 0,01).

For power switching transistors I_{Csat} is given; this is the value at which switching times and saturation voltage is measured.

Collector-emitter voltage

Maximum collector-emitter voltage V_{CEO} is also specified in the data sheets, but no extension is allowed for pulsed operation. In the case of power transistors specifically designed for switching inductive loads some extension may be allowed, but then only under specified conditions of collector current, base-emitter voltage and emitter-base resistance as stated in the relevant data sheets.

Power dissipation

Maximum power dissipation P_{tot max} is specified in the data sheets for a given mounting base temperature. This is usually 25 °C but may be any, much higher temperature. P_{tot max} applies up to the stated temperature; above it derating must be applied. A power derating curve of the form shown in Fig. 1a and 1b given in the data sheets. With it, maximum allowable power dissipation can be calculated for any mounting base temperature up to T_{i max}.

versus mounting base temperature

Ptot
(%)

100

50

100

Tmb (°C) 200

maximum permissible dissipation

150

Fig. 1 Power derating curve.

(a)

(b)

Total power dissipation is given by

The second term can usually be disregarded, so $P_{tot} \approx I_C V_{CE}$. Heat dissipated in the collector-base junction flows through the thermal resistance between junction and mounting base, see Fig. 2.

7Z89359

Fig. 2 Heat transport in a transistor with power dissipation constant with respect to time.

By analogy with Ohm's law, under steady-state conditions (d.c. operation)

$$P_{tot} = \frac{T_j - T_{mb}}{R_{th i-mb}}.$$

There are two limitations to P_{tot}

- When T_{mb} ≤ T_{mb spec}

$$P_{tot \, max} = \frac{\Delta T_{j\text{-mb} \, max}}{R_{th \, j\text{-mb}}}.$$

- when $T_{mb} > T_{mb}$ spec

$$P_{tot max} = \frac{\Delta T_{j max} - T_{mb}}{R_{th j mb}}$$

T_{mb spec} being the mounting base temperature at which P_{tot max} is specified in the data sheets, and

$$\Delta T_{j-mb \, max} = T_{j \, max} - T_{mb \, spec}$$

For pulsed operation a higher dissipation is permitted, because

- the junction does not have time to heat up fully unless the pulses are so long as to approximate steady-state conditions;
- the junction has time wholly or partly to cool down in the interval between pulses, except with very high duty factors.

Analogy with

$$P_{tot} = \frac{T_j - T_{mb}}{R_{th j-mb}}$$

yields

$$P_{tot M} = \frac{T_j - T_{mb}}{Z_{th j-mb}}$$

where $P_{tot\,M}$ is the total pulsed power and $Z_{th\,j\text{-mb}}$ is the thermal impedance between junction and mounting base. Thermal impedance depends on pulse duration t_p and duty factor $\delta = t_p/T$. T is the pulse period. A family of curves of thermal impedance against pulse duration with duty factor as parameter is shown in Fig. 3.

Fig. 3 A typical family of Z_{th j-mb} curves for a power transistor.

Similar limitations apply as in the steady-state conditions:

(a) When T_{mb} ≤ T_{mb} spec

$$P_{tot\ M\ max} = \frac{T_{j\text{-mb}\ max}}{Z_{th\ j\text{-mb}}}$$

(b) When $T_{mb} > T_{mb \, spec}$

$$P_{tot M max} = \frac{T_{j max} - T_{mb}}{Z_{th j mb}}.$$

In essence, at or below $T_{mb\,spec}$ there is a fixed limit to $P_{tot\,M\,max}$; above $T_{mb\,spec}$, $P_{tot\,M\,max}$ declines linearly with increasing mounting base temperature. As illustrated in Fig. 4, for non-rectangular pulses

$$P_{tot \, max} \cdot t_p = \int_{t_1}^{t_2} P \cdot t_p.$$

Fig. 4.

Second breakdown

In the forward-biased condition second breakdown is thermally triggered. Consider the chip as a large number of elemental transistors in parallel, some of which will have a lower forward voltage drop than others. Current will tend to concentrate in these, raising their temperature and further lowering their forward voltage drop. Current will concentrate still further, leading to local overheating and eventually to a short circuit between emitter and collector. This effect is independent of mounting base temperature, which is related to the average junction temperature. Under reverse-bias conditions, when V_{CE} is greater than V_{CEOmax} , the chance of second breakdown is always present. This is a particular hazard in timebase and converter applications.

THE SOAR BOUNDARIES

The four limits just described form the boundaries of the Safe Operating ARea. Figure 5 shows a SOAR plotted on a log-log grid. The right-hand boundary is formed by V_{CEOmax} , which extends up to a collector current of about 300 mA. Above this point, as I_C is increased V_{CE} must be reduced to prevent second breakdown.

The upper boundary is formed by I_{Cmax} , which extends to where the product of I_{Cmax} and V_{CE} equals the maximum allowable power dissipation. From this point I_{C} must be reduced with increasing V_{CE} , thus forming the maximum power dissipation boundary. The maximum power dissipation boundary normally intersects the second breakdown boundary at some point. However, for values of T_{mb} above T_{mbspec} , $P_{tot\,max}$ must be reduced (as shown by the broken line in Fig. 5), so that the boundary of maximum power dissipation intersects the second breakdown boundary at a lower point. With high values of T_{mb} , the second breakdown boundary may be excluded altogether.

Fig. 5 A typical SOAR graph with boundaries named.

EXTENDING THE SOAR FOR SINGLE-SHOT AND REPETITIVE PULSED OPERATION

The data sheets for power transistors contain, apart from the d.c. SOAR, a set of curves that apply under specific pulse conditions. These will cover some 90% of applications. In addition to these, SOAR curves can be constructed by the circuit designer for specific operating conditions. The various extensions dealt with below will refer to Figs 5, 6 and 8.

^ICMmax

The extent to which the I_C boundary can be extended for pulse operation depends on pulse duration and duty factor, the limit being I_{CMmax} , which applies at a duty factor of 0,01 and a pulse length of 20 ms or less. Together the I_{CMmax} and V_{CEOmax} boundaries form a rectangle that in no circumstance should be exceeded. Moreover, the rectangle may be reduced by further restrictions imposed by power dissipation and second breakdown. The example shown in Fig. 6 is for an I_{CMmax} of 12 A and a V_{CEOmax} of 60 V.

Fig. 6 Maximum collector current and collector-emitter voltage boundaries.

P_{tot max}

The Ptot max boundary given in the data sheet usually applies to:

$$T_{mb}$$
 = 25 °C; δ = 0,01 and t_{p} = a range of values, say, 5 μ s to 2 ms.

For any deviations from these values a new $\mathsf{P}_{tot\,max}$ boundary must be constructed. From

$$P_{totMmax} = \frac{T_{j max} - T_{mb}}{Z_{th j - mb}};$$

 $T_{j\;max}$ is stated in the data sheets; $Z_{th\;j\cdot mb}$ can be read from the curve, similar to Fig. 3, also given in the data sheets. Thus $P_{tot\,Mmax}$ can be calculated and an appropriate boundary can be drawn in the SOAR curve parallel to the $P_{tot\,max}$ line. An example will illustrate this. Assume:

$$T_{j \text{ max}} = 150 \text{ °C}; T_{mb \text{ spec}} = 25 \text{ °C}; t_{p} = 0.2 \text{ ms and } \delta = 0.1.$$

From Fig. 7, $Z_{th j-mb}$ = 0,42 K/W for the given values of t_p and δ .

$$P_{\text{tot M max}} = \frac{150 - 80}{0,42} = 166 \text{ W}.$$

Thus from an arbitary point (say 8.3 A, 20 V) we can draw a line parallel to the $P_{tot max}$ line (see Fig. 6).

Fig. 7 Transient thermal impedance for example.

Second breakdown

The permissible extension to the second breakdown boundary is found with the aid of two multiplying factors:

My - the voltage multiplying factor

M₁ - the current multiplying factors.*

Curves for these two factors are given in the data sheets as functions of pulse time with duty factor as parameter (see Fig. 8).

Fig. 8 Second breakdown multiplying factors as a function of pulse time, with duty factor as a parameter.

 $\rm M_V$ is used to calculate the point on the $\rm V_{CEO_{max}}$ boundary at which voltage derating must commence as $\rm I_C$ increases. Similarly, $\rm M_I$ is used to calculate the point on the $\rm I_{CMmax}$ line at which current derating must commence as $\rm V_{CE}$ increases.

^{*} Prior to 1973 M $_{V}$ was known as M $_{SB(I)}$ and M $_{I}$ as M $_{SB(V)}$.

Referring to Fig. 9, where B is the point on the V_{CEOmax} boundary at which voltage derating commences, B' can be calculated by:

$$I_{C(B')} = I_{C(B)} \times M_1.$$

Similarly for IC; although here A, the point on the IC curve at which current derating commences, is first determined by extending the second breakdown boundary to where the two would intersect if $P_{tot\,max}$ did not intervene. A' is then given by

Fig. 9 Construction of the pulse operating area.

An example is worked in Fig. 9 for t_p = 0,2 ms and δ = 0,1. From Fig. 8, M_V = 2,4 and M_I = 7,3:

$$I_{C(B')} = 0.22 \times 7.3 = 1.6 \text{ A}$$

 $V_{CE(A')} = 13 \times 2.4 = 31 \text{ V}.$

These two points are then joined as in Fig. 9.

PULSE TRAINS AND COMPOSITE WAVEFORMS

Straightforward techniques exist for calculating the thermal and second breakdown effects of pulse trains and composite waveforms.

Thermal considerations

Consider a train of rectangular pulses as shown in Fig. 10. The junction will alternately heat and partly cool until a steady-state temperature is reached as shown in the lower part of Fig. 10. To approximate the final junction temperature only the effects of the first two or three pulses need be considered.

Fig. 10 The heating effect of three equidistant, equal-magnitude pulses. T $_{j~av}$ is the average junction temperature. P = 100 W, t $_p$ = 100 μs ; T = 1 ms and δ = 0,1.

Referring to Fig. 10, where P = 100 W, t_p = 100 μs and δ = 0,1, the first pulse causes the junction to heat up; at the end of the pulse it starts to cool down until the second pulse recommences the heating cycle. We can replace the first pulse with a *continuous* heating pulse at t_0 and a *continuous* cooling pulse starting at t_1 . Similarly for the second pulse, we can superimpose a continuous heating pulse starting at t_2 and a cooling pulse starting at t_3 . Repeating this for successive pulses allows us to calculate T_j for any point in the pulse train. For instance, the cumulative change in junction temperature at the end of the third pulse is:

$$\Delta T_i = \Delta T_{h1} - \Delta T_{c1} + \Delta T_{h2} - \Delta T_{c2} + \Delta T_{h3}$$

where the subscripts h and c refer to heating and cooling respectively. With times taken from Fig. 10,

$$T_{h1} = PZ_{th(2,1 ms)}$$

$$T_{h2} = PZ_{th}(1,1 \text{ ms})$$

$$T_{h3} = PZ_{th}(0.1 \text{ ms})$$

and

$$T_{c1} = -PZ_{th}(2.0 \text{ ms})$$

$$T_{c2} = -PZ_{th(1,0 ms)}$$

Taking values for Z_{th} from Fig. 11 we get

$$\Delta T_i = 100(0.58 - 0.56 + 0.51 - 0.51 + 0.32) = 34$$
 °C.

Fig. 11 Curve of $Z_{th j-mb} = f(t_p)$.

The same procedure can be used for long or continuous pulse trains, but calculating for a large number of pulses is very tedious. A sufficiently close approximation can be made by calculating for two pulses, assuming that the first is preceded by a continuous pulse of P_{av} as shown in Fig. 12. By this method

$$\Delta T_i = \Delta T_{hav} + \Delta T_{h1} - \Delta T_{c1} + \Delta T_{h2}$$
.

The calculations are then made as before. To remove any doubt as to the closeness of the approximation the effect of a third pulse can be calculated. Composite waveforms can be treated similarly: divide the composite waveform into equivalent rectangular pulses and calculate the junction temperature accordingly.

Figure 13 shows the current, voltage and power waveforms of the out put transistor in a television receiver vertical output stage. Ptot has been divided into four equivalent rectangular parts having the same peak values and energy content as the original waveform.

$$\begin{split} P_{tot\,av} &= P_1\delta_1 + P_2\delta_2 + P_3\delta_3 + P_4\delta_4 \\ &= (16\times0,003) + (13\times0,11) + \\ &+ (5,2\times0,66) + (40\times0,0007) \\ &= 4,936\;W. \end{split}$$

Assuming that the $R_{th\ j-mb}$ for the transistor is 2,5 K/W, the average rise in mounting base temperature will be about 12,5 °C.

Fig. 13 Power waveforms showing their division into rectangular pulses and the junction temperature variations which they cause.

Using the same method as for pulse trains, peak temperatures at the end of each pulse can be calculated by

$$T_{i-mb}(t1) = P_{av}R_{th j-mb} - P_{av}Z_{th j-mb}(16,1 ms) + P_{1}Z_{th}(16,1 ms)$$

For the temperature at the end of the second pulse (t₂) two further terms are added:

$$-P_1Z_{th}(16.04 \text{ ms}) + P_2Z_{th}(16.04 \text{ ms})$$

For t3 yet another two terms:

$$-P_3Z_{th(13,02 ms)} + P_4Z_{th(13,03 ms)}$$

For each successive pulse a negative term (end of the previous pulse) and a positive term (start of the succeeding pulse) are added. Calculated temperatures are shown in Table 1: note that the highest temperature is reached at the end of pulse 2 (t₃). Eyen assuming a T_{mb} of 100 °C, T_j will remain within the $T_{i\,max}$ of 150 °C specified for this transistor.

TABLE 1 Calculated temperatures for the power waveform of Fig. 13.

time	t ₁	t ₂	t ₃	t ₄	t ₅	$t_6(t_s)$	
ΔT_{j-mb}	8,54	11,34	18,1	12,76	12,3	8,54	oC

EXAMPLE OF A SOAR CALCULATION

To illustrate the foregoing we will take the example of a BU426A transistor operating in a 200 W switched-mode power supply (SMPS).

Waveforms of collector current, collector-emitter voltage and power dissipation are shown in Figs 14, 15 and 16. These are translated into an equivalent rectangular pulse train in Fig. 17. This will enable us to calculate peak junction temperature at any instant.

Fig. 14 Collector-current and collector-emitter voltage waveforms of a BU426A transistor in a 200 W SMPS.

Fig. 15 Waveforms during turn-on and turn-off (lower part).

The duration of this equivalent pulse train is then given by

$$\mathbf{t_p'} = \frac{P_{tot\,av} \times T}{P_M'} \text{ and } \delta' = \frac{\mathbf{t_p'}}{T}.$$

First, from Fig. 17, heating and cooling pulses are plotted as in Fig. 18. Parameters are then tabulated as shown:

 $P_{turn-off} = 56 W$ $t_{p off} = 0.6 \mu s$ $\delta_{off} = 0.03$

turn-on saturation turn-off power loss power loss

7Z89363

Fig. 16 Power loss and resultant rectangular power pulses.

Fig. 17.

Fig. 18.

From Fig. 17 we can determine δ_p and t_p for each condition and from the BU426 data sheets the relevant Z_{th} .

	p1	p2	рЗ	p4	р5	unit
t	18,8	16,6	14,4	13,8	0,8	μs
δ	0,94	0,83	0,72	0,7	0,04	
Z _{th}	1,05	0,95	0,85	0,8	0,06	K/W

From

$$\begin{split} \Delta T_j &= \Delta T_{h1} - \Delta T_{c1} + \Delta T_{h2} - \Delta T_{c2} + \Delta T_{h3} \\ \Delta T_{j\text{-mb}(ta)} &= (P_{sat} \times Z_{th(tp1)}) - (P_{sat} \times Z_{th(tp2)}) + \\ &+ (P_{turn\text{-}off} \times Z_{th(tp3)}) - (P_{turn\text{-}off} \times Z_{th(tp4)}) + (P_{on} \times Z_{th(tp\text{ on})}) \\ \Delta T_{i\text{-}mb(ta)} &= 10(1,05-0,95) + 56(0,83-0,8) + 66(0,06) = 7,76 \text{ K}. \end{split}$$

Thus, at time t_a the peak junction temperature is 7,76 K higher than the average mounting base temperature. The $\Delta T_{i\text{-mb}}$ arising from the other power pulses can be calculated in the same way.

Average mounting base temperature depends on the size of the heatsink, ambient temperature (T_a) and average dissipation.

From

$$\begin{aligned} & P_{tot \, av} = P_1 \delta_1 + P_2 \delta_2 + P_3 \delta_3 + P_4 \delta_4 \\ & P_{tot \, av} = \delta_{on} \times P_{on} + \delta_{sat} \times P_{sat} + \delta_{turn-off} \times P_{off} \\ & = 0.04 \times 66 + 0.11 \times 10 + 0.03 \times 56 = 5.4 \, \text{W}. \end{aligned}$$

Assuming a maximum mounting base temperature of 100 °C and an ambient temperature of 60 °C the thermal resistance of the heatsink required will be

$$R_{th mb-a} = \frac{T_{mb} - T_a}{P_{tot av}} = \frac{100 - 60}{5.4} = 7.4 \text{ K/W}.$$

If this is the case, the peak junction temperature at the end of the turn-on power pulse will be 107,76 °C, which is well within the maximum allowable junction temperature of 150 °C.

The pulse SOAR can be calculated using M_I , M_V and Z_{th} factors as described earlier. The turn-on, saturation and turn-off power pulses should be combined into a single pulse of amplitude P' equal to the highest amplitude power pulse (here, P_{OD}) and duration t_D' .

$$P_{tot av} = P' = 66 W.$$

$$\delta' = \frac{5.4}{66} = 0.082.$$

$$t'_{p} + \delta' T = 1,64 \mu s.$$

From the BU426A data, for this power pulse Z $_{th~j-mb}$ = 0,10 K/W; M $_{l}$ \approx 12; M $_{V}$ \approx 7,5; VCE(A') = 7,5 \times 12 = 90 V; IC(B') = 12 \times 40 = 480 mA.

$$P_{\text{tot max}} = \frac{T_j - T_{\text{mb}}}{Z_{\text{th i-mb}}} = \frac{150 - 100}{0.1} = 500 \text{ W}.$$

The relevant pulse SOAR is shown in Fig. 19, in which the operating point for the full cycle has also been plotted. It can be seen that it remains well within the SOAR.

Fig. 19 Safe Operating ARea BU426A at $T_{mb} \le 73$ °C.

- I Region of permissible d.c. operation.
- II Permissible extension for repetitive pulse operation.
- III Area of permissible operation during turn-on in single-transistor converters, provided R_{BE} \leqslant 100 Ω and t_p \leqslant 0,6 $\mu s.$
- IV Repetitive pulse operation in this region is permissible, provided $V_{BE} \le 0$ and $t_p \le 2$ ms.
- (1) Ptot max and Ppeak max lines.
- (2) Second-breakdown limits (independent of temperature).

$$P_{\text{tot max}} = \frac{T_1 - T_{\text{mb}}}{Z_{\text{th}} \cdot m_{\text{tot}}} = \frac{160 - 100}{0.1} = 500 \text{ W}.$$

The relevant pulse SOAR is shown in Fig. 19, in which the operating point for the full cycle has also been plotted. It can be seen that it remains well within the SOAR.

- Fig. 18 Sale Démissing Alice S-BARRA at T.,, a K 73 Pc
 - 1 Region of perceleptor due objection.
- rollinge salug subirgion tof notingme statistical i
- Area of permissible operation during two-op in single transistor convertent, provided figg $\leq 100.\Omega$ and $t_{\rm H} \leq 0.8$ ps.
- Frepartive pulse opportion in this region is perinted bit, provided $V_{\rm BB} < 0$ and $t_{\rm B} < 2$ ms
 - land _{John Seac} Three _{Karn} Jac¹¹ 411
 - (2) Sectional-broadcalance Freeholds (Sectional and American value)

SCATTERING PARAMETERS

In distinction to the conventional h, y and z-parameters, s-parameters relate to travelling wave conditions. The figure below shows a two-port network with the incident and reflected waves a_1 , b_1 , a_2 and b_2 .

$$a_1 = \frac{V_{i1}}{\sqrt{Z_0}}$$

$$a_2 = \frac{V_{i2}}{\sqrt{Z_0}}$$

$$b_1 = \frac{V_{r1}}{\sqrt{Z_0}}$$

$$b_2 = \frac{V_{r2}}{\sqrt{Z_0}}$$

 $\mathbf{Z}_{_{\mathrm{O}}}$ = characteristic impedance of the transmission line in which the two-port is connected.

Vi = incident voltage

V_r = reflected (generated) voltage

The four-pole equations for s-parameters are:

$$b_1 = s_{11}a_1 + s_{12}a_2$$

 $b_2 = s_{21}a_1 + s_{22}a_2$

Using the subscripts i for 11, r for 12, f for 21 and o for 22, it follows that:

$$s_{i} = s_{11} = \frac{b_{1}}{a_{1}} \begin{vmatrix} a_{2} = 0 \\ a_{2} = 0 \end{vmatrix}$$

$$s_{r} = s_{12} = \frac{b_{1}}{a_{2}} \begin{vmatrix} a_{1} = 0 \\ a_{2} = 0 \end{vmatrix}$$

$$s_{f} = s_{21} = \frac{b_{2}}{a_{1}} \begin{vmatrix} a_{2} = 0 \\ a_{2} = 0 \end{vmatrix}$$

$$s_{o} = s_{22} = \frac{b_{2}}{a_{2}} \begin{vmatrix} a_{1} = 0 \\ a_{1} = 0 \end{vmatrix}$$

 $^{^{}m 1}$) The squares of these quantities have the dimension of power.

The s-parameters can be named and expressed as follows:

- s_i = s₁₁ = Input reflection coefficient.

 The complex ratio of the reflected wave and the incidence of the reflected wave and the reffected wave and the reflected wave and the reflected wave and th
 - The complex ratio of the reflected wave and the incident wave at the input, under the conditions $\rm Z_1$ = $\rm Z_0$ and V $_{\rm S2}$ = 0.
- $\rm s_r$ = $\rm s_{12}$ = Reverse transmission coefficient. The complex ratio of the generated wave at the input and the incident wave at the output, under the conditions $\rm Z_S$ = $\rm Z_O$ and $\rm V_{S1}$ = 0.
- s_f = s_{21} = Forward transmission coefficient. The complex ratio of the generated wave at the output and the incident wave at the input, under the conditions z_1 = z_0 and v_{s2} = 0
- $s_{_{\rm O}}$ = s_{22} = Output reflection coefficient. The complex ratio of the reflected wave and the incident wave at the output, under the conditions $Z_{_{\rm S}}$ = $Z_{_{\rm O}}$ and $V_{_{\rm S}1}$ = 0.

TO-92 VARIANT TRANSISTORS ON TAPE

MECHANICAL DATA

Dimensions in mm

Learn State of the	0 1 1		Specifications			D	
Item	Symbol	min.	nom.	max.	tol.	Remarks	
Body width	A ₁	4,0		4,8			
Body height	Α	4,8		5,2			
Body thickness	T	3,9		4,2			
Pitch of component	P	ristana Ta	12,7		± 1		
Feed hole pitch	Po		12,7		± 0,3	Cumulative pitch error 1,0 mm/20 pitch	
Feed hole centre to component centre	P ₂		6,35		± 0,4	To be measured at bottom of clinch	
Distance between outer leads	F		5,08		+ 0,6 -0,2		
Component alignment	Δh		0	1		At top of body	
Tape width	W		18		± 0,5		
Hold-down tape width	Wo		6		± 0,2		
Hole position	W ₁		9		+ 0,7 -0,5		
Hold-down tape position	W ₂		0,5		± 0.2		
Lead wire clinch height	Ho		16		± 0,5		
Component height	H ₁	patter	9111U TO 1	32,25			
Length of snipped leads	L			11,0			
Feed hole diameter	Do		4	omio s	± 0,2		
Total tape thickness	t			1,2		t ₁ 0,3-0,6	
					+ 0,4	DROPOUTS	
Lead-to-lead distance	F ₁ , F ₂	ni atomia	2,54	lmun be	-0,1	to to 28,0 to murnissm A	
Clinch height	H ₂	st den ave	bsbivos t	3	ed yen	Mineriocinias svituosenna	
Pull-out force	(p)	6N					

PACKING

The transistors are supplied on tape in boxes (ammopack) or on reels. The number per reel is 1600 and per ammobox 2000*.

Fig. 2 Dimensions (in mm) of reel and box.

DROPOUTS

A maximum of 0,5% of the specified number of transistors in each packing may be missing. Up to 3 consecutive components may be missing provided the gap is followed by 6 consecutive components.

TAPE SPLICING

Slice the carrier tape on the back and/or front so that the feed hole pitch (P_O) is maintained (see Fig. 3).

Fig. 3 Jointing tape with splicing patch.

* The ammobox has 80 layers of 25 transistors each.

Each layer contains 25 transistors plus one empty position in order to fold the layer correctly.

The ammobox is accessible from both sides enabling the user to choose between "normal" (see Fig. 2) and "reverse" tape.

SOLDERING RECOMMENDATIONS SOT-37

Fig. 1

Solder temperature

Solder-to-case distance

Soldering time

Soldering time

Transistors in SOT-37 envelopes may be mounted with leads flat (Fig. 1) or bent (Figs 2 and 3). Different soldering procedures apply for the different styles of mounting.

FLAT-LEAD MOUNTING

Soldering by hand

Avoid putting any force on the leads during or just after soldering.

Solder the three leads one at a time, *not* simultaneously.

Proceed from one lead to the adjacent lead, *not* to the opposite one.

BENT-LEAD MOUNTING

If leads are bent, all three may be soldered simultaneously if desired.

Fig. 2 Solder temperature max. 300 °C Soldering time max. 10 s

printed circuit

board

300 °C

5 s

2 mm

max.

max.

min.

DIP OR WAVE SOLDERING

When dip or wave soldering, the maximum allowable temperature of the solder is 260 °C. This temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the lead projections, but the temperature of the body must not exceed the specified storage maximum.

max.

5 s

TRANSISTOR DATA

TRANSSTOR BATA

A.F. SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in TO-18 metal envelopes with the collector connected to the case.

The BC107 is primarily intended for use in driver stages of audio amplifiers and in signal processing circuits of television receivers.

The BC108 is suitable for multitude of low-voltage applications e.g. driver stages or audio preamplifiers and in signal processing circuits of television receivers.

The BC109 is primarily intended for low-noise input stages in tape recorders, hi-fi amplifiers and other audio-frequency equipment.

QUICK REFERENCE DATA

			BC107	BC108	BC109	
Collector-emitter voltage (V _{BE} = 0)	VCES	max.	50	30	30	V
Collector-emitter voltage (open base)	VCEO	max.	45	20	20	V
Collector current (peak value)	CM	max.	200	200	200	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300	300	300	mW
Junction temperature	Ti	max.	175	175	175	oC
Small-signal current gain at $T_j = 25$ °C $I_C = 2$ mA; $V_{CE} = 5$ V; $f = 1$ kHz	h _{fe}	> <	125 500	125 900	240 900	
Transition frequency at f = 35 MHz I_C = 10 mA; V_{CE} = 5 V Noise figure at R_S = 2 k Ω	fT	typ.	300	300	300	MHz
I _C = 200 μA; V _{CE} = 5 V f = 30 Hz to 15 kHz	F	typ.	et in fre	edate so	1,4	dB dB
f = 1 kHz; B = 200 Hz	F	typ.	2	2	1,2	dB

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected

to case

4,8 max 12,7 min 7259420.1

Accessories: 56246 (distance disc).

Products approved to CECC 50 002-076/078, available on request.

Dimensions in mm

RATINGS I imiting values in accordance with	ho Abaaluta Mar	· i · · · · · · · · · · ·		TEG 104)
RATINGS Limiting values in accordance with t	ne absolute Mai			IBC109
Collector-base voltage (open emitter)	V _{CBO} max		30	30 V
Collector-emitter voltage (V _{BE} = 0)		. 50	30	30 V
Collector-emitter voltage (open base)	V _{CEO} max	. 45	20	20 V
Emitter-base voltage (open collector)	V _{EBO} max	. 6	5	5 V
Currents				
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	100	mA
Collector current (peak value)	I_{CM}	max.	200	mA
Emitter current (peak value)	$-I_{EM}$	max.	200	mA
Base current (peak value)	I_{BM}	max.	200	mA
Power dissipation				
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	300	mW
Temperatures				
Storage temperature	T_{stg}	-65 to	0 +175	°C
Junction temperature	Ti		175	I INTERNATION
				d instant
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0.5	^o C/mW
From junction to case	R _{th} j-c	=	0.2	oC/mW
CHARACTERISTICS	T: = 25 0C upl	ace other	rwige	pecified
Collector cut-off current	$T_j = 25$ °C unle	292 01116	iwise s	specified
I _E = 0; V _{CB} = 20 V; T _j = 150 °C	Lanc	<	15	Δ
-E -, CB = -, 1 100 C	I_{CBO}	_	10	MA

$I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$

Base-emitter voltage 1)

$$I_C = 10 \text{ mA}$$
; $V_{CE} = 5 \text{ V}$

V_{BE}	typ. 550 to		mV mV
VDE	<	770	mV

 $^{^{\}rm l}\mbox{)VBE}$ decreases by about 2 mV/°C with increasing temperature.

mV

CHARACTERISTICS (continued)

T_i = 25 °C unless otherwise specified

Saturation voltages 1)

$$I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$$

$$I_{\rm C}$$
 = 100 mA; $I_{\rm B}$ = 5 mA

typ. 900

Knee voltage

$$I_C$$
 = 10 mA; I_B = value for which I_C = 11 mA at V_{CE} = 1 V

Collector capacitance at f = 1 MHz

$$I_E = I_e = 0$$
; $V_{CB} = 10 \text{ V}$

$$C_c$$
 typ. 2.5 pF $<$ 4.5 pF

Emitter capacitance at f = 1 MHz

$$I_C = I_c = 0$$
; $V_{EB} = 0.5 \text{ V}$

Transition frequency at f = 35 MHz

$$I_{\rm C}$$
 = 10 mA; $V_{\rm CE}$ = 5 V

BC107 |

2

10

Small signal current gain at f = 1 kHz

Small signal current gain at f = 1 kHz

$$I_{C} = 2 \text{ mA}$$
; $V_{CE} = 5 \text{ V}$

Noise figure at R_S = 2 kΩ

$$\frac{\text{BC107}}{\text{hfe}} = \frac{\text{BC108}}{\text{S00}} = \frac{\text{BC109}}{\text{g00}}$$
 $\frac{\text{BC108}}{\text{p00}} = \frac{\text{BC108}}{\text{g00}} = \frac{\text{BC109}}{\text{g00}}$

$$I_{C} = 200 \,\mu\text{A}; \, V_{CE} = 5 \,\text{V}$$

¹⁾ $V_{\mbox{\footnotesize{BEsat}}}$ decreases by about 1.7 mV/°C with increasing temperature.

CHARACTERISTICS (continued)	T_{j}	= 25 0	C unle	ss otherv	wise spe	ecified
D.C. current gain			C107A C108A	BC107B BC108B BC109B		
$I_{\rm C}$ = 10 μ A; $V_{\rm CE}$ = 5 V	h_{FE}	> typ.	90	40 150	100 270	
$I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$	$h_{ m FE}$	> typ. <	110 180 220	200 290 450	420 520 800	
h parameters at f = 1 kHz (common emit	er)				9881	
I _C = 2 mA; V _{CE} = 5 V Input impedance	h _{ie}		1.6 2.7 4.5	3.2 4.5 8.5	6 8.7 15	$k\Omega$
Reverse voltage transfer ratio	hre	typ.	1.5	2	3	10-4
Small signal current gain	h_{fe}	> typ. <	125 220 260	240 330 500	450 600 900	
Output admittance	hoe	typ.	18 30	30 60	60 110	$\mu\Omega^{-1}$ $\mu\Omega^{-1}$

Typical behaviour of collector current versus collector-emitter voltage

Typical behaviour of collector current versus collector-emitter voltage

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in TO-39 metal envelopes for general purpose applications, P-N-P complements are BC160 and BC161.

QUICK REFERENCE DATA

			E	3C140	BC141	Inequet spanot
Collector-emitter voltage (open base)	VCEO	max.		40	60	- V
Collector current (d.c.)	l _C	max.			MATER	Α
Total power dissipation up to T _{case} = 45 °C	Ptot	max.		3,7	, sidms o	W
Junction temperature	Ti	max.		175	5	oC
Transition frequency at $f = 20 \text{ MHz}$ $I_C = 50 \text{ mA}$; $V_{CE} = 10 \text{ V}$	f _T	>		50)	MHz
			BC140-6 BC141-6	BC14 BC14	7 7 7 7 7	BC140-16 BC141-16
D.C. current gain I _C = 100 mA; V _{CE} = 1 V	hFE	> <	40 100	6	1 00	100 250

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case.

maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Limiting values in accordance with the Abso	iute waxim	um Syste	m (IEC I	BC1	40 BC14	11
	Collector-base voltage (open emitter)		V _{CB}	0	max. 80		
	Collector-emitter voltage (open base)		VCE		max. 40		
	Emitter-base voltage (open collector)		VEB		max.		
	Collector current (d.c.)		Ic		max.	1	Α
	Base current (d.c.)		I _B		max.	100	mA
	Total power dissipation up to T _{case} = 45 °C		P _{tot}		max.	3,7	W
	Storage temperature		T _{stq}		-65 to +	175	oC
	Junction temperature		₃o∀Tj		max.	175	oC
-00	THERMAL RESISTANCE						
	From junction to ambient in free air	,	R _{th}	i-a	_ neits	200	K/W
	From junction to case		R _{th}		= 00.0	35	K/W
	CHARACTERISTICS		611)				
	CHARACTERISTICS						
	T _{amb} = 25 °C unless otherwise specified						
	Collector cut-off current VBF = 0; VCF = 60 V	CES	typ.		10		nΑ
	THE STATE SO T	CES	<		100		nA
	$V_{BE} = 0$; $V_{CE} = 60 \text{ V}$; $T_{amb} = 150 \text{ °C}$	ICES	typ.		10 100		μA
	Base-emitter voltage		typ.		1,2	-	V
	I _C = 1 A; V _{CE} = 1 V	V_{BE}	<		1,8		V
	Saturation voltage		typ.		0.6		V
	$I_C = 1 \text{ A}; I_B = 100 \text{ mA}$	V_{CEsat}	<		1,0		V
	Transition frequency at f = 20 MHz				,	30.07	
	$I_C = 50 \text{ mA}; V_{CE} = 10 \text{ V}$	fT	>		50		MHz
	Collector capacitance at f = 1 MHz				-4/		_
	I _E = I _e = 0; V _{CB} = 10 V	C _C	<		25		pF
	Emitter capacitance at f = 1 MHz IC = Ic = 0; VFB = 0,5 V	Ce	<		80		pF
	C & S, VEB S,S V	e	2		80		- pr
					BC140-10		
	D.C. current gain $I_C = 100 \mu A$; $V_{CF} = 1 \text{ V}$	hee	turo.	BC141-6 28	BC141-10 40	BC141-	16
	1C = 100 μΑ, VCE = 1 V	hFE	typ.				
	$I_C = 100 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	typ.	40 63	63 100	100	
	at only for 12,7 mm.	MATERIAL PROPERTY.	<	100	160	250	
	I _C = 1 A; V _{CE} = 1 V	hFE	typ.	15	20	30	

 $T_{amb} = 25$ °C

Switching times

 $I_{Con} = 100 \text{ mA}$; $I_{Bon} = -I_{Boff} = 5 \text{ mA}$

Turn-on time

Turn-off time

250 ns ton 850 ns toff

O -5V O +20V

200Ω

Fig. 2 Test circuit.

Pulse generator:

 $t_D = 10 \,\mu s$ Pulse duration

Rise time $t_r \leq 15 \text{ ns}$

Fall time t_f ≤ 15 ns

 $Z_s = 50 \Omega$ Source impedance

Oscilloscope:

 $t_r \leq 15 \text{ ns}$ Rise time

 $Z_i \, \geqslant 100 \, k\Omega$ Input impedance

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a miniature plastic envelope designed for hearing aids, watches, etc. P-N-P complement is BC200.

QUICK REFERENCE DATA

			BC146/01	BC146/02	BC146/03	
Collector-base voltage (open emitter)	V _{CBO}	max.	20	20	20	V
Collector-emitter voltage (open base)	VCEO	max.	20	20	20	V
Collector current (d.c.)	IC	max.	50	50	50	mA
Total power dissipation up to T _{amb} = 45 °C	P _{tot}	max.	50	50	50	mW
Junction temperature	Τj	max.	125	125	125	oC
D.C. current gain $I_C = 0.2$ mA; $V_{CE} = 0.5$ V	h _{FE}	> <	80 200	140 350	280 550	
Noise figure at $R_S = 2 k\Omega$ $I_C = 0.2 \text{ mA}$; $V_{CE} = 5 \text{ V}$ Bandwidth: $f = 30 \text{ Hz to } 15 \text{ kHz}$	F	typ.	2	1,5 4,0	2	dB dB

MECHANICAL DATA

Fig. 1 SOT-42.

Dimensions in mm

Coloured dot on top of the black body indicates hFE group:

BC146/01 red BC146/02 yellow BC146/03 green

MOUNTING INSTRUCTIONS

To avoid damaging the transistor, welded or soldered connections must be made with care; the following general recommendations should be observed:

- 1. The temperature of the soldering iron must be less than 250 $^{\rm o}{\rm C}$ and the soldering time less than 3 seconds at a lead length of not less than 1,5 mm.
- To keep the heat capacity low, the smallest possible amount of solder should be used.
- 3. If the plastic capsule of the transistor makes contact with any other structure, care must be taken that its temperature never exceeds 125 $^{\rm O}$ C.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

THE THEORY IN THE THEORY IN THE CONTRACTOR	** ***** ***	10 1100	Oldeo Hinit	indin Oyo	(11)	3 10 1)
Voltages						
Collector-base voltage (open emitter)	ram,		V _{CBO}	max.	20	V
Collector-emitter voltage (open base)			VCEO	max.	20	V
Emitter-base voltage (open collector)			v_{EBO}	max.	4	V
Currents						
Collector current (d.c.)			$I_{\mathbb{C}}$	max.	50	mA
Collector current (peak value)			I_{CM}	max.	50	mA
Power dissipation						
Total power dissipation up to $T_{amb} = 45$	°C		P _{tot}	max.	50	mW
Temperature						
Storage temperature			T _{stg}	-65 to	+125	°C .
Junction temperature			Tj	max.	125-	oC.
THERMAL RESISTANCE						
From junction to ambient in free air			R _{th j-a}	=21	1,6	^o C/mW

CHARACTERISTICS

T_j = 25 °C unless otherwise specified

Base-em	itter	vol	tage
---------	-------	-----	------

$I_{\rm C}$	=	0,	2	mA;	VCE	=	0,	5	V
I_{C}	=		2	mA;	v_{CE}	=		1	V

$$V_{\mathrm{BE}}$$
 typ. 570 mV V_{BE} typ. 630 mV

Knee voltage

$$I_C$$
 = 2 mA; I_B = value for which I_C = 2, 2 mA at V_{CE} = 1 V

Collector capacitance at f = 1 MHz

$$I_{E} = I_{e} = 0$$
; $V_{CB} = 5 \text{ V}$

$$C_c$$
 typ.

Transition frequency

$$I_C = 2 \text{ mA}$$
; $V_{CE} = 5 \text{ V}$

fT.	fram
- 1	typ.

D.C. current gain	BC146	/0	1	/02	/03
$I_{\rm C}$ = 0, 2 mA; $V_{\rm CE}$ = 0,5 V	$h_{ m FE}$		115	220 140 to 350	380 280 to 550
$I_C = 2 \text{ mA}; V_{CE} = 1 \text{ V}$	h_{FE}	>	100	140	280
Noise figure					
I_{C} = 0, 2 mA; V_{CE} = 5 V R_{S} = 2 $k\Omega$ Bandwidth: f = 30 Hz to 15 kHz	F	typ.	2	1,5	2 dB - dB
h parameters at f = 1 kHz					
$I_{\rm C}$ = 0, 2 mA; $V_{\rm CE}$ = 0, 5 V					3400
Input impedance	hie	typ.	20	30	45 kΩ
Reverse voltage transfer ratio	hre	typ.	15	25	40 10-4
Small-signal current gain	h _{fe}	typ.	130	220	380
Output admittance	hoe	typ.	15	20	35 μA/V

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in TO-39 metal envelopes for general purpose applications. N-P-N complements are BC140 and BC141.

QUICK REFERENCE DATA

				В	C160	BC161	
Collector-emitte	er voltage (open base)	-V _{CEO}	max.		40	60	V
Collector currer	nt (d.c.)	-I _C	∍max.		1	MATRIZES	A
Total power dis up to T _{case} =	45 °C	P _{tot}	max.		3,7		w
Junction tempe	rature	Tj	max.		175		oC
	vency at $f = 20 \text{ MHz}$ $C_{CE} = 10 \text{ V}$	fT	>		50		MHz
				BC160-6 BC161-6	BC160 BC161	/	60-16 61-16
D.C. current gai -I _C = 100 m	n A; -V _{CE} = 1 V	hFE	> <	40 100	63 160	90.00	00

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case.

0,86 max

> 1,0 max

> > 5,08

9,4 max 8,5 max 0,51 max

maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Dimensions in mm

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

TRANSISTORS	AIVATICE	PI ANAR	BC16	0 BC16	1
Collector-base voltage (open emitter)		-V _{CBO}	max. 40	60	V
Collector-emitter voltage (open base)		-V _{CEO}	max. 40	60	V
Emitter-base voltage (open collector)		-V _{EBO}	max. 5	5	V
Collector current (d.c.)		-I _C	max.	18 bo	Α
Base current (d.c.)		-I _B	max.	100	mA
Total power dissipation up to T _{case} = 45 °C		P _{tot}	max.	3,7	W
Storage temperature		T _{stg}	-65 to -	175	oC
Junction temperature		T _j (masd	max.	175	oC .
THERMAL RESISTANCE	.xam . O				
From junction to ambient in free air		R _{th j-a}	= noits	200	K/W
From junction to case		R _{th j-c}	= 910	35	K/W
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specfied					
Collector cut-off current $V_{BE} = 0$; $-V_{CE} = -V_{CEOmax}$	-I _{CES}	typ.	10 100		nA nA
$V_{BE} = 0$; $-V_{CE} = -V_{CEOmax}$; $T_{amb} = 150 {}^{\circ}\text{C}$	-I _{CES}	typ.	10	ning man 100 mA;	μΑ μΑ
Base-emitter voltage $-I_C = 1 A; -V_{CE} = 1 V$	-V _{BE}	typ.	1,0		V
Saturation voltage		typ.	0.6		V
$-I_C = 1 A; -I_B = 100 \text{ mA}$	$-V_{CEsat}$	<	1,0	-	V
Transition frequency at $f = 20 \text{ MHz}$ $-I_C = 50 \text{ mA}; -V_{CE} = 10 \text{ V}$	fT	>	50		MHz
Collector capacitance at f = 1 MHz					
$I_E = I_e = 0; -V_{CB} = 10 \text{ V}$	C_{c}	<	30		pF
Emitter capacitance at $f = 1 \text{ MHz}$ $I_C = I_c = 0; -V_{EB} = 0,5 \text{ V}$	Ce	<	180		pF
D.C. current gain		BC160- BC161-	- 1		
$-I_C = 100 \mu\text{A}; -V_{CE} = 1 \text{V}$	hFE	typ. 46	80	BC161-1	0
O THE PART OF	7.2	> 40	63	100	
$-I_C = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE	typ. 63	100	160	
	somitisup at his	< 100	160	250	
$-I_C = 1 A; -V_{CE} = 1 V$	hFE	typ. 15	20	30	

 $T_{amb} = 25$ °C

Switching times

 $-I_{Con} = 100 \text{ mA}; -I_{Bon} = I_{Boff} = 5 \text{ mA}$

Turn-on time

Turn-off time

500 ns ton < 650 ns toff

Fig. 2 Test circuit.

Pulse generator:

Pulse duration

 $t_D = 10 \,\mu s$

Rise time

 $t_r \leq 15 \text{ ns}$

Fall time

 $t_f \leq 15 \text{ ns}$

Source impedance

 $Z_s = 50 \Omega$

Oscilloscope:

Rise time

t_r ≤ 15 ns

Input impedance

 $Z_i \ge 100 \, k\Omega$

A.F. SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in TO-18 metal envelopes with the collector connected to the case.

The BC177 is a high-voltage type and primarily intended for use in driver stages of audio amplifiers and in signal processing circuits of television receivers.

The BC178 is suitable for a multitude of low-voltage applications e.g. driver stages or audio preamplifiers and in signal processing circuits of television receivers.

The BC179 is primarily intended for low-noise input stages in tape recorders, hi-fi amplifiers and other audio-frequency equipment.

Moreover, they are intended as complementary types for the BC107, BC108 and BC109.

QUICK REFERENCE DATA

			BC177	BC178	BC179	
Collector-emitter voltage (+ V _{BE} = 1 V)	-V _{CEX}	max.	50	30	25	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	45	25	20	V
Collector current (peak value)	-ICM	max.	200	200	200	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300	300	300	mW
Junction temperature	Τj	max.	175	175	175	oC
Small-signal current gain at $T_j = 25$ °C $-1_C = 2$ mA; $-V_{CE} = 5$ V; $f = 1$ kHz	h _{fe}	> <	75 260	75 500	125 500	
Transition frequency at f = 35 MHz $-I_C$ = 10 mA; $-V_{CE}$ = 5 V Noise figure at R _S = 2 k Ω	fΤ	typ.	150	150	150	MHz
$-I_C = 200 \mu A; -V_{CE} = 5 V$ f = 30 Hz to 15 kHz	F	typ.		30 <u>1</u> 00	- 1,2 4,0	dB dB
f = 1 kHz; B = 200 Hz	F	<	10	10	4,0	dB

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected to case

Accessories: 56246 (distance disc).

Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134).

KATINGS Emitting values in accordance with the	ie Absolute iv	iaximum	Loys	tem (IEC 134).
Voltages		В	C177	BC1	78 BC179
Collector-base voltage (open emitter)	-V _{CBO}	max.	50	30	25 V
Collector-emitter voltage (+V _{BE} = 1 V)	-V _{CEX}	max.	50	30	25 V
Collector-emitter voltage (open base)	-VCEO	max.	45	25	20 V
Emitter-base voltage (open collector)	$-v_{\rm EBO}$	max.	5	5	5 V
Currents		t bobruir	ENDO:		Ne Suc 179
Collector current (d.c.)	$-I_C$	max.		100	mA
Collector current (peak value)	-I _{CM}	max.		200	mA
Emitter current (peak value)	I_{EM}	max.		200	mA
Power dissipation					
Total power dissipation up to T_{amb} = 25 °C	P _{tot}	max.		300	mW
Temperatures					
Storage temperature	T _{stg}	-65	to -	+175	oC
Junction temperature	Tj	max.		175	°C
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th} j-a	=		0.5	oC/mW
From junction to case	R _{th} j-c	=		0.2	oC/mW
CHARACTERISTICS					
Collector cut-off current					HUEST
$I_E = 0$; $-V_{CB} = 20 \text{ V; } T_j = 25 \text{ oc}$	-I _{CBO}	typ.		100	nA
T _j = 150 °C	-I _{CBO}	<			μΑ
Base-emitter voltage 1)					MOL LA
$-I_{\rm C}$ = 2 mA; $-V_{\rm CE}$ = 5 V; $T_{\rm j}$ = 25 °C	-V _{BE}	typ.	00 to	650 750	

 $^{^{\}rm 1})$ -V $_{\rm BE}$ decreases by about 2 mV/oC with increasing temperature.

T_i = 25 °C unless otherwise specified

Saturation voltages

$$-I_C$$
 = 10 mA; $-I_B$ = 0.5 mA $-V_{CEsat}$ $typ. 75$ mV $-V_{BEsat}$ $typ. 700$ mV $-I_C$ = 100 mA; $-I_B$ = 5 mA $-V_{CEsat}$ $typ. 700$ mV $-V_{CEsat}$ $typ. 250$ mV $-V_{BEsat}$ $typ. 850$ mV

Knee voltage

$$-I_C$$
 = 10 mA; $-I_B$ = value for which $-V_{CEK}$ typ. 250 mV < 600 mV < 600 mV

Collector capacitance at f = 1 MHz

$$I_E = I_e = 0$$
; $-V_{CB} = 10 \text{ V}$ C_c typ. 4.0 pF

Transition frequency at f = 35 MHz

Noise figure at Rs = $2 \text{ k}\Omega$

$$Olse Figure at KS = 2 KS^2$$

$$-I_C = 200 \mu A; -V_{CE} = 5 V$$

$$f = 30 Hz to 15 kHz$$

$$F typ.$$

1.2 dB

dB

D.C. current gain	
$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$	
Small signal current gain at f = 1 kHz	
$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$	

		BC177	BC177A	BC177B
		BC178	BC178A	BC178B
			BC179A	BC179B
hFE	typ.	140	180	290
	>	75	125	240
h _{fe}	<	260	260	500

Typical behaviour of collector current versus collector-emitter voltage

Typical behaviour of base current versus junction temperature

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a miniature plastic envelope designed for hearing aids, watches, etc. N-P-N complement is BC146.

QUICK REFERENCE DATA

		BC200/01	BC200/02	BC200/03	
Collector-base voltage (open emitter) -VCB	o max.	20	20	20	V
Collector-emitter voltage (open base) -VCE		20	20	20	V
Collector current (d.c.)	max.	50	50	50	mA
Total power dissipation up to $T_{amb} = 45 ^{\circ}\text{C}$ P_{tot} Junction temperature T_{i}	max.	50 125	50 125	50 125	mW oC
D.C. current gain $-I_C = 0.2 \text{ mA}; -V_{CE} = 0.5 \text{ V}$ h _{FE}	> <	50 105	85 200	165 400	
Noise figure at R _S = $2 \text{ k}\Omega$ $-\text{I}_{\text{C}}$ = 0,2 mA; $-\text{V}_{\text{CE}}$ = 5 V Bandiwtdh: f = 30 Hz to 15 kHz	typ.	2	1,5 4,0	2 -	dB dB

MECHANICAL DATA

Fig. 1 SOT-42.

Dimensions in mm

Coloured dot on top of the black body indicates hee group:

BC200/01 red BC200/02 yellow BC200/03 green

The flat side is blue to distinguish from BC146.

MOUNTING INSTRUCTIONS

To avoid damaging the transistor, welded or soldered connections must be made with care; the following general recommendations should be observed:

- 1. The temperature of the soldering iron must be less than 250 $^{\rm oC}$ and the soldering time less than 3 seconds at a lead length of not less than 1,5 mm.
- 2. To keep the heat capacity low, the smallest possible amount of solder should be used.
- 3. If the plastic capsule of the transistor makes contact with any other structure, care must be taken that its temperature never exceeds $125\ ^{o}C$.

RATINGS Limiting values in accordance with the Ab	solute Maximu	m System ((IEC	134)
Voltages				
Collector-base voltage (open emitter)	-V _{CBO}	max.	20	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	20	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	V
Currents				
Collector current (d.c.)	-IC	max.	50	mA
Collector current (peak value)	-I _{CM}	max.	50	mA
Power dissipation				
Total power dissipation up to T_{amb} = 45 ^{o}C	P _{tot}	max.	50	mW
Temperatures				
Storage temperature	T_{stg}	-65 to -	+125	oC
Junction temperature	Tj	max.	125	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th} j-a	=	1,6	oC/mW

< 100 nA

typ. 580 mV

typ. 650 mV

typ. 5 pF

typ .- 90 MHz

/03

/02

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

-VBE

 $-V_{BE}$

COL	lector	cut-off	curren

$$I_{E}$$
 = 0; $-V_{CB}$ = 20 V $-I_{CBO}$
 I_{E} = 0; $-V_{CB}$ = 20 V; T_{j} = 125 °C $-I_{CBO}$

Base-emitter voltage

$$-I_C = 0.2 \text{ mA}; -V_{CE} = 0.5 \text{ V}$$

 $-I_C = 2 \text{ mA}; -V_{CE} = 1 \text{ V}$

Knee voltage

$$-I_C = 2 \text{ mA}$$
; $-I_B = \text{value for which}$

$$-I_C$$
 = 2 mA; $-I_B$ = value for which $-I_C$ = 2,2 mA at $-V_{CE}$ = 1 V

-V _{CEK}	typ.	200	mV

BC200

Collector capacitance at f = 1 MHz

I - I - 0. -V - 5 V

1E - 1e	- 0, - v CB	- 3 V			
Transition	frequency	at f =	100	MHz	

$$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$$

D.C. current gain

$-I_C = 0.2 \text{ mA}; -V_{CE} = 0.5 \text{ V}$
$-I_C = 2 \text{ mA}$; $-V_{CE} = 1 \text{ V}$
h parameters at f = 1 kHz
-I _C = 0,2 mA; -V _{CE} = 0,5 V Input impedance Reverse voltage transfer ratio Small-signal current gain
Output admittance

Noise figure

$$-I_C$$
 = 0,2 mA; $-V_{CE}$ = 5 V;
 R_s = 2 k Ω
Bandwidth: f = 30 Hz to 15 kHz

h_{FE} typ. 75 140 250 165 to 400 175 h_{FE} 2 60 100 100 175 h_{Re} typ. 12 15 20 kΩ h_{re} typ. 13 25 40 10-4 h_{fe} typ. 75 140 250 h_{oe} typ. 13 18 33
$$\mu\Omega^{-1}$$

/01

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in plastic TO-92 variant envelopes, primarily intended for use in driver and output stages of audio amplifiers.

The BC327, BC327A, BC328 are complementary to the BC337, BC337A and BC338 respectively.

QUICK REFERENCE DATA

					BC327	BC327A	BC328	э вкаб
Collector-e	emitter voltage (V _{BE} =	0)	-VCES	max.	50	60	30	٧
Collector-e	emitter voltage (open b		-V _{CEO}	max.	45	60	25	٧
Collector o	current (peak value)		-I _{CM}	max.		1000		mΑ
Total power	er dissipation up to Ta	mb = 25 °C	P _{tot}	max.		800		mW
Junction to	emperature		Tj	max.		150		oC
Transition	frequency at f = 35 M	Hz						
$-I_{C} = 1$	$0 \text{ mA; } -V_{CE} = 5 \text{ V}$		fŢ	typ.		100		MHz

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

and the state of t	viaxiiiiuiii e	Jystell.	1 (120 13	+/		
			BC327	BC327A	BC328	
Collector-emitter voltage (V _{BE} = 0)	-V _{CES}	max.	50	60	30	V
Collector-emitter voltage (open base) -I _C = 10 mA Emitter-base voltage (open collector)	-V _{CEO}	max.	26401	60 5	25 5	V V
		max.	<u> </u>	3		V
Collector current (d.c.)	-IC	max.		500		mA
Collector current (peak value)	-ICM	max.		1000		mA
Emitter current (peak value)	IEM	max.		1000		mA
Base current (d.c.)	-IB	max.		100		mA
Base current (peak value)	-I _{BM}	max.		200		mA
Total power dissipation at T _{amb} = 25 °C up to T _{amb} = 25 °C	P _{tot}	max.		625 800		mW mW*
Storage temperature	T _{stg}		-65 t	to + 150		oc
Junction temperature	Tj	max.		150		oC
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}	=		0,2		K/mW
From junction to ambient	R _{th j-a}	=		0,156		K/mW

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for collector lead min. 10 mm x 10 mm.

CHARACTERISTICS					
T _j = 25 °C unless otherwise	specified				
Collector cut-off current					
$I_E = 0; -V_{CB} = 20 V; T_j$		СВО	<	100	
$I_E = 0; -V_{CB} = 20 V; T_j$	= 150 °C	-ICBO	<	5	μΑ
Emitter cut-off current $I_C = 0$; $-V_{EB} = 5 V$		-lebo	<	10	μΑ
Base emitter voltage*					.,
$-I_C = 500 \text{ mA; } -V_{CE} =$	1 V	-V _{BE}	<	1,2	V
Saturation voltage $-I_C = 500 \text{ mA}; -I_B = 50$) mA	-V _{CEsat}	<	700	mV 🖛
D.C. current gain	11/	h	>	40	
$-I_C = 500 \text{ mA}; -V_{CE} =$		hFE		0 600	
$-I_C = 100 \text{ mA;} -V_{CE} =$		hFE		0 400	
	BC327A	hFE	1001	0 400	
	BC327-16) BC328-16)	hFE	100 t	o 250	
	BC327-25 BC328-25	hFE	160 1	o 400	
	BC327-40) BC328-40)	hFE	250 t	o 600	
Transition frequency at f = -I _C = 10 mA;V _{CE} = 5		f _T	typ.	100	MHz
Collector capacitance at f =				in h	
$I_E = I_e = 0; -V_{CB} = 10 $		C _c	typ.	8	pF
D.C. current gain ratio of m					
BC327/BC337; BC328/B I _C = 100 mA; V _{CE} = 1		hFE1/hFE	2 typ.	1,25 1,40	

 $^{^{\}ast}$ –VBE decreases by about 2 mV/°C with increasing temperature.

Fig. 2.

Fig. 8.

APPLICATION INFORMATION

2,8 W transformerless audio-frequency amplifier with matched pair BC328/BC338 in complementary class-B output stage up to T_{amb} = 45 $^{\rm o}$ C.

Fig. 9.

Performance at $V_S = 24 \text{ V}$; $R_L = 25 \Omega$				
Collector quiescent current of BC338	Ica	typ.	1	mΑ
Input voltage for P _L = 50 mW	Vi	typ.	8	mV
Input voltage for P _L = 2,8 W	Vi	typ.	67	mV
Output power at $f = 1 \text{ kHz}$; $d_{tot} = 10\%$	PL	typ.	2,8	W
Frequency response (3 dB)		70 to 16	000	Hz

This amplifier needs no external cooling fin, provided each output transistor is mounted with its leads not longer than 3 mm. The collector lead must, in addition, be soldered to a copper area of at least $10 \text{ mm} \times 10 \text{ mm}$.

APPLICATION INFORMATION (continued)

Fig. 10.

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in plastic TO-92 variant envelopes, primarily intended for use in driver and output stages of audio amplifiers.

The BC337, BC337A, BC338 are complementary to the BC327, BC327A and BC328 respectively.

QUICK REFERENCE DATA

					BC337	BC337A	BC338	
Collector-en	nitter voltage (V _{BE} = 0)		V-CES	max.	50	60	30	V
Collector-en	nitter voltage (open base)		VCEO	max.	45	60	25	V
Collector cu	rrent (peak value)		ICM	max.		1000	density of the second	mA
Total power	dissipation up to $T_{amb} =$	25 °C	P _{tot}	max.		800		mW
Junction ten	nperature		Tj	max.		150		oC
	requency at f = 35 MHz nA; V _{CE} = 5 V		fΤ	typ.		100		MHz

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BC337	BC337A	BC338	
Collector-emitter voltage (V _{BE} = 0)	VCES	max.	50	60	30	V
Collector-emitter voltage (open base) IC = 10 mA Emitter-base voltage (open collector)	V _{CEO} V _{EBO}	max.	45 5	60 5	25 5	V
Collector current (d.c.)	I _C	max.	100 815 81	500	337, 80	mA
Collector current (peak value)	ICM	max.		1000		mA
Emitter current (peak value)	-I _{EM}	max.		1000		mA
Base current (d.c.)	IB	max.		100		mΑ
Base current (peak value)	¹ BM	max.		200		mA
Total power dissipation at $T_{amb} = 25$ °C up to $T_{amb} = 25$ °C	P _{tot}	max. max.		625 800		mW mW*
Storage temperature	T _{stg}		-65 t	o + 150		oC
Junction temperature	T_{j}	max.		150		oC
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}	=		0,2		K/mW
From junction to ambient	R _{th j-a}	= .		0,156		K/mW

 $^{^*}$ Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for collector lead min. 10 mm \times 10 mm.

CHARACTERISTICS					
$T_i = 25$ °C unless other	wise specified				
Collector cut-off curren					
I _E = 0; V _{CB} = 20 V;		СВО	<	100	nA
$I_E = 0$; $V_{CB} = 20 \text{ V}$;		ICBO	<	5	μΑ
Emitter cut-off current					
$I_C = 0; V_{EB} = 5 V$		EBO	<	10	μA
Base emitter voltage*					
$I_C = 500 \text{ mA; } V_{CE} =$	1 V	V _{BE}	<	1,2	V
Saturation voltage		V	<	700	mV
I _C = 500 mA; I _B = 50) mA	VCEsat		700	ΠV
D.C. current gain I _C = 500 mA; V _{CE} =	1 V	hFE	>	40	
I _C = 100 mA; V _{CF} =		hee		o 600	
IC TOO MA, VCE	BC337A	hFE		o 400	
	BC337-16				
	BC338-16	hFE	100 t	o 250	
	BC337-25 \	h	160 +	o 400	
	BC338-25	hFE	100 t	0 400	
	BC337-40 BC338-40	hFE	250 t	o 600	
Transition frequency at I _C = 10 mA; V _{CE} = 5		fΤ	typ.	200	MHz
Collector capacitance at					
$I_E = I_e = 0; V_{CB} = 10$	O V	C _C	typ.	5	pF
D.C. current gain ratio of					
BC327/BC337; BC32		h/h	typ.	1,25	
$ I_C = 100 \text{ mA}; V_{CE} $	= 1 V	hFE1/hFE2	<	-1,40	

^{*} VBE decreases by about 2 mV/°C with increasing temperature.

BC337 BC337A BC338

Fig. 7.

APPLICATION INFORMATION, see BC327; BC328.

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant, intended for low-voltage, high-current I.f. applications. BC368/BC369 is the matched complementary pair suitable for class-B audio output stages up to 3 W.

QUICK REFERENCE DATA

VCES	max.	25	V	
VCEO	max.	20	V	
ICM	max,	2	Α	
P _{tot}	max.	1	W	
Tj	max.	150	oC	
hFE				
fT	typ.	60	MHz	-
	VCEO ICM Ptot Tj	VCEO max. ICM max, Ptot max. Tj max. hfE 85 to	VCEO max. 20 ICM max. 2 Ptot max. 1 Tj max. 150 hfE 85 to 375	VCEO max. 20 V ICM max, 2 A Ptot max. 1 W Tj max. 150 °C hFE 85 to 375

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum S	System (IEC 124)		
Collector-emitter voltage (V _{BE} = 0) Collector-emitter voltage (open base)	V _{CES}	max.	25 V
Emitter-base voltage (open collector)	V _{CEO}	max.	20 V
Collector current (d.c.)	VEBO	max.	5 V
Collector current (peak value)	lC .	max.	1 A
Base current (d.c.)	CM	max.	2 A
Base current (peak value)	I _B	max.	100 mA
Total power dissipation	IBM	max.	200 mA

at $T_{amb} = 25$ °C (in free air) up to $T_{amb} = 25$ °C* Ptot max. 0,8 W Ptot max. Storage temperature 1 W Tstg -65 to + 150 °C Junction temperature T_i max. 150 °C

THERMAL RESISTANCE

From junction to ambient in free air From junction to ambient* From junction to case	R _{th j-a} R _{th j-a} R _{th j-c}	= 1	156 °C/W 125 °C/W 60 °C/W

Transistor mounted on printed-circuit board, maximum lead length 4 mm, mounting pad for collector

CHARACTERISTICS				
T _i = 25 °C unless otherwise specified				
Collector cut-off current IE = 0; V _{CB} = 25 V IE = 0; V _{CB} = 25 V; T _j = 150 °C	I _{CBO}	< <		μA mA
Emitter cut-off current I _C = 0; V _{EB} = 5 V	I _{EBO}	<	10	μΑ
Base-emitter voltage $I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$ $I_C = 1 \text{ A}; V_{CE} = 1 \text{ V}$	V _{BE} V _{BE}	typ.	0,62	V V
Collector-emitter saturation voltage $I_C = 1 \text{ A}$; $I_B = 100 \text{ mA}$	V _{CEsat}	<	0,5	V
D.C. current gain I _C = 5 mA; V _{CE} = 10 V I _C = 500 mA; V _{CE} = 1 V I _C = 1 A; V _{CE} = 1 V	hFE hFE hFE	> 85 >	50 to 375 60	
Collector capacitance at f = 450 kHz I _E = I _e = 0; V _{CB} = 5 V	C _c	typ.	27	рF
Cut-off frequency $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$	fhfe	typ.	400	kHz
Transition frequency at $f = 35 \text{ MHz}$ $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$	fT	typ.	60	MHz
D.C. current gain ratio of matched pair BC368/BC369 $ I_C = 500 \text{ mA}$; $ V_{CE} = 1 \text{ V}$	h _{FE1} /h _{FE2}	<	1,4	

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a plastic TO-92 variant, intended for low-voltage, high-current l.f. applications. BC368/BC369 is the matched complementary pair suitable for class-B output stages up to 3 W.

QUICK REFERENCE DATA

Collector-emitter voltage (V _{BE} = 0)	-V _{CES}	max.	25	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	20	V
Collector current (peak value)	-I _{CM}	max.	2	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1	W
Junction temperature	Tj	max.	150	oC
D.C. current gain	300			
$-I_C = 500 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE	85 t	o 375	
Transition frequency at f = 35 MHz $-I_C = 10 \text{ mA}$; $-V_{CE} = 5 \text{ V}$	f _T	typ.	60	MHz

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Emiliary variation in accordance with the Absolute maximum bysi	com (120 10 1)			
Collector-emitter voltage (VBE = 0)	-V _{CES}	max.	25	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	20	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	V
Collector current (d.c.)	-I _C	max.	1	Α
Collector current (peak value)	-I _{CM}	max.	2	Α
Base current (d.c.)	-I _B	max.	100	mA
Base current (peak value)	-I _{BM}	max.	200	mA
Total power dissipation at $T_{amb} = 25$ °C (in free air) up to $T_{amb} = 25$ °C*	P _{tot}	max.	0,8	W W
Storage temperature	T _{stg}	-65 to +	150	oC
Junction temperature	Тј	max.	150	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	= Am	156	°C/W
From junction to ambient*	R _{th j-a}		125	oc/W
From junction to case	R _{th j-c}	2	60	oC/M

^{*} Transistor mounted on printed-circuit board, maximum lead length 4 mm, mounting pad for collector lead min. 10 mm x 10 mm.

CHARACTERISTICS				
T _j = 25 °C unless otherwise specified				
Collector cut-off current IE = 0; -VCB = 25 V IE = 0; -VCB = 25 V; T _j = 150 °C	-ICBO -ICBO	< <		μA mA
Emitter cut-off current I _C = 0; -V _{EB} = 5 V	-I _{EBO}	<	10	μΑ
Base-emitter voltage $-I_C = 5 \text{ mA}; -V_{CE} = 10 \text{ V}$ $-I_C = 1 \text{ A}; -V_{CE} = 1 \text{ V}$	−V _{BE} −V _{BE}	typ.	0,62	V V
Collector-emitter saturation voltage -I _C = 1 A; -I _B = 100 mA	-V _{CEsat}	<	0,5	V
D.C. current gain -I _C = 5 mA; -V _{CE} = 10 V -I _C = 500 mA; -V _{CE} = 1 V -I _C = 1 A; -V _{CE} = 1 V	hFE hFE hFE	> 85 >	50 to 375 60	
Collector capacitance at f = 450 kHz IE = Ie = 0; -VCB = 5 V	C _C	typ.	45	pF
Cut-off frequency -I _C = 10 mA; -V _{CE} = 5 V	fhfe	typ.	350	kHz
Transition frequency at f = 35 MHz -I _C = 10 mA; -V _{CE} = 5 V	f _T	typ.	60	MHz
D.C. current gain ratio of matched pair BC368/BC369 $ I_C $ = 500 mA; $ V_{CE} $ = 1 V	h _{FE1} /h _{FE2}	<	1,4	

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant, intended for low-voltage, high-current l.f. applications. BC375/BC376 is the matched complementary pair suitable for output stages up to 2 W.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	25	V
Collector-emitter voltage (open base)	VCEO	max.	20	V
Collector current (peak value)	ICM	max.	1,5	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	800	mW
Junction temperature	Ti	max.	150	oC
D.C. current gain $I_C = 150 \text{ mA}$; $V_{CE} = 1 \text{ V}$	hFE		60 to 340	
Transition frequency at $f = 35 \text{ MHz}$ $I_C = 150 \text{ mA}$; $V_{CE} = 1 \text{ V}$	fT	typ.	150	MHz

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum System (IEC 134) Collector-base voltage (open emitter) V_{CBO} max. 25 V Collector-emitter voltage (open base) 20 V **VCEO** max. Emitter-base voltage (open collector) 5 V **VEBO** max. Collector current (d.c.) 1 A 1C max. Collector current (peak value) 1.5 A 1CM max. Base current (d.c.) 1B max. 100 mA Base current (peak value) max. 200 mA BM Total power dissipation at Tamb = 25 °C (in free air) Ptot 625 mW max. up to Tamb = 25 °C* 800 mW Ptot max. Storage temperature -65 to +150 °C Tsta Junction temperature 150 °C Τį max. THERMAL RESISTANCE From junction to ambient in free air 200 K/W Rth j-a From junction to ambient * 156 K/W Rth i-a From junction to case 95 K/W Rth j-c CHARACTERISTICS T_i = 25 °C unless otherwise specified Collector cut-off current IE = 0; VCB = 20 V 100 nA 1CBO $I_E = 0$; $V_{CB} = 20 \text{ V}$; $T_i = 150 \text{ }^{\circ}\text{C}$ 1CBO 5 µA Emitter cut-off current $I_C = 0; V_{EB} = 5 V$ < **IEBO** 10 µA Base-emitter voltage** Ic = 5 mA; VcE = 10 V 650 mV VBE typ. $I_C = 700 \text{ mA}; V_{CE} = 1 \text{ V}$ 1000 mV V_{BE} Collector-emitter saturation voltage 250 mV typ. $I_C = 700 \text{ mA}$; $I_B = 70 \text{ mA}$ **VCEsat** 500 mV D.C. current gain $I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$ 55 hFF $I_C = 150 \text{ mA}; V_{CE} = 1 \text{ V}$ 60 to 340 hFE $I_C = 700 \text{ mA}; V_{CF} = 1 \text{ V}$ 35 HEE Transition frequency at f = 35 MHz $I_C = 150 \text{ mA}$; $V_{CF} = 1 \text{ V}$ fT 150 MHz typ. D.C. current gain ratio of matched pair BC375/BC376 $|I_C| = 150 \text{ mA}; |V_{CE}| = 1 \text{ V}$ hFE1/hFE2

^{*} Transistor mounted on printed-circuit board, maximum lead length 4 mm, mounting pad for collector lead minimum 10 mm x 10 mm.

^{**} VBE decreases by about 2 mV/K with increasing temperature.

P-N-P transistor in a plastic TO-92 variant, intended for low-voltage, high-current l.f. applications. BC375/BC376 is the matched complementary pair suitable for output stages up to $2\,\mathrm{W}$.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		-V _{CBO}	max.	25	V
Collector-emitter voltage (open base)		-VCEO	max.	20	V
Collector current (peak value)		-I _{CM}	max.	1,5	A
Total power dissipation up to T _{amb} = 25 °C	,	P _{tot}	max.	800	mW
Junction temperature		Tj	max.	150	oC
D.C. current gain $-I_C = 150 \text{ mA}; -V_{CE} = 1 \text{ V}$		hFE	6	0 to 340	
Transition frequency at f = 35 MHz $-I_C$ = 150 mA; $-V_{CE}$ = 1 V		f _T	typ.	150	MHz

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute	Maximum System (IEC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	25	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	20	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	V
Collector current (d.c.)	-IC	max.	1	Α
Collector current (peak value)	-I _{CM}	max.	1,5	Α
Base current (d.c.)	-IB	max.	100	mA
Base current (peak value)	-IBM	max.	200	mA
Total power dissipation at T _{amb} = 25 °C (in free air)	P _{tot}	max.	625	mW
up to T _{amb} = 25 °C*	P _{tot}	max.	800	mW
Storage temperature	T _{stg}	-65 to +		
Junction temperature	T_{j}	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	3.5	200	K/W
From junction to ambient *	R _{th j-a}	Tag vorsaups	156	K/W
From junction to case	R _{th j-c}		95	K/W
CHARACTERISTICS				
T _i = 25 °C unless otherwise specified				
Collector cut-off current				
$I_E = 0$; $-V_{CB} = 20 \text{ V}$ $I_E = 0$; $-V_{CB} = 20 \text{ V}$; $T_i = 150 \text{ °C}$	−lCBO	< <	100 5	nΑ μΑ
Emitter cut-off current I _C = 0; -V _{EB} = 5 V	-I _{EBO}	<	10	μΑ
Base-emitter voltage **		A		
$-I_C = 5 \text{ mA}; -V_{CE} = 10 \text{ V}$ $-I_C = 700 \text{ mA}; -V_{CE} = 1 \text{ V}$	−VBE −VBE	- / 1		mV mV
Collector-emitter saturation voltage $-I_C = 700 \text{ mA}$; $-I_B = 70 \text{ mA}$	-V _{CEsat}	, ,		mV mV
D.C. current gain $-I_C = 5 \text{ mA}; -V_{CE} = 10 \text{ V}$ $-I_C = 150 \text{ mA}; -V_{CE} = 1 \text{ V}$ $-I_C = 700 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE hFE hFE	> 60 to	55 340 35	
Transition frequency at f = 35 MHz $-I_C$ = 150 mA; $-V_{CE}$ = 1 V	f _T	typ.	150	MHz
D.C. current gain ratio of matched pair BC375/8				
$ I_C = 150 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE1/hFE2	> <	2	

^{*} Transistor mounted on printed-circuit board, maximum lead length 4 mm, mounting pad for collector lead minimum 10 mm \times 10 mm.

^{**} $-V_{BE}$ decreases by about 2 mV/K with increasing temperature.

General purpose n-p-n transistors in a plastic TO-92 variant, especially suitable for use in driver stages of audio amplifiers.

QUICK REFERENCE DATA

			В	C546	BC547	BC548
Collector-emitter voltage (V _{BE} = 0)		VCES	max.	80	50	30 V
Collector-emitter voltage (open base)	MoJ	VCEO	max.	65	45	30 V
Collector current (peak value)		ICM	max.	200	200	200 mA
Total power dissipation up to $T_{amb} = 25$ °C		P _{tot}	max.	500	500	500 mW
Junction temperature		Ti	max.	150	150	150 °C
Small-signal current gain I _C = 2 mA; V _{CE} = 5 V; f = 1 kHz		h _{fe}	> <	125 500	125 900	125 900
Transition frequency I _C = 10 mA; V _{CE} = 5 V		fT	typ.	300	300	300 MHz
Noise figure at R _S = 2 k Ω I _C = 200 μ A; V _{CF} = 5 V					9'8116'9	durba semba
f = 1 kHz; B = 200 Hz		F	typ.	2	2	2 dB
					1	1

MECHANICAL DATA

Fig. 1 TO-92 variant.

 $\pmb{\mathsf{RATINGS}} \ \ \mathsf{Limiting} \ \mathsf{values} \ \mathsf{in} \ \mathsf{accordance} \ \mathsf{with} \ \mathsf{the} \ \mathsf{Absolute} \ \mathsf{Maximum} \ \mathsf{System} \ \mathsf{(IEC134)}$

		BC546	BC547	BC54	8
Voltage		WALIST	10011	8	
Collector-base voltage (open emitter)	V _{CBO} max	. 80	50	30	V
Collector-emitter voltage ($V_{\rm BE}$ = 0)	V _{CES} max	. 80	50	30	V
Collector-emitter voltage (open base)	V _{CEO} max.	. 65	45	30	V
Emitter-base voltage (open collector)	V _{EBO} max	. 6	6	5	V
Current					
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{_{C}}$	max	vi majir	100	mA
Collector current (peak value)	$^{\mathrm{I}}$ CM	max	m) spatin	200	mA
Emitter current (peak value)	$-I_{\mathrm{EM}}$	max	alles sient	200	mA
Base current (peak value)	I_{BM}	max	an dealer	200	mA
Power dissipation					
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max		500	mW
Temperature					
Storage temperature	Tstg		-65 to	+150	°C
Junction temperature	T_j	max		150	°C
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=		0,25	OC/mV
From junction to case	R _{th j-c}	=		0, 15	°C/mW

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

Collector cut-off current

$$I_E = 0$$
; $V_{CB} = 30 \text{ V}$
 $I_E = 0$; $V_{CB} = 30 \text{ V}$; $T_j = 150 \text{ }^{\circ}\text{C}$

$$I_{CBO}$$
 < 15 nA I_{CBO} < 5 μ A

Base-emitter voltage 1)

$$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V}$$

$$I_{\rm C} = 10 \text{ mA}; V_{\rm CE} = 5 \text{ V}$$

Saturation voltage 2)

$$I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$$

$$v_{BH}$$

200

mV

$$I_C = 100 \text{ mA}; I_B = 5 \text{ mA}$$

$$V_{\rm CEsat}$$
 typ. 200 mV $V_{\rm BEsat}$ typ. 900 mV

Knee voltage

$$I_C$$
 = 10 mA; I_B = value for which I_C = 11 mA at V_{CE} = 1 V

Collector capacitance at f = 1 MHz

$$I_E = I_e = 0; V_{CB} = 10 \text{ V}$$

$$C_c$$
 typ. 2,5 pF
 $<$ 4.5 pF

Emitter capacitance at f = 1 MHz

$$I_C = I_C = 0$$
; $V_{EB} = 0.5 \text{ V}$

Transition frequency at f = 35 MHz

$$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$$

$$f_{\rm T}$$

¹⁾ V_{RE} decreases by about 2 mV/OC with increasing temperature.

²⁾ V_{BEsat} decreases by about 1,7 mV/°C with increasing temperature.

CHARACTERISTICS	(continued)
-----------------	-------------

 $T_{\dot{1}}$ = 25 o C unless otherwise specified

		BC546	BC547	BC548
			· v. bs =	n=V:0===1
h_{fe}	> <	125 500	125 900	125 900
				nottimo-essi
		7 V		Low 2 risk.
E	typ.	2	2	2 dB
T.	<	10	10	10 dB
		BC546A	BC546B	
		BC547A	BC547B	BC547C
		BC548A	BC548B	BC548C
,				
${\rm h_{FE}}$	typ.	90	150	270
	>	110	200	420
h_{EE}	typ.	180	290	520
		220	450	800
	F	hfe < F typ. hFE typ.	h _{fe} > 125 500 F typ. 2 10 BC546A BC547A BC548A h _{FE} typ. 90 h _{FE} typ. 110 h _{FE} typ. 180	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Typical behaviour of base current versus junction temperature

May 1973

N-P-N transistors in plastic TO-92 variants, primarily intended for low-noise input stages in tape recorders, hi-fi amplifiers and other audio-frequency equipment.

QUICK REFERENCE DATA

			BC549	BC550	
Collector-emitter voltage (V _{BE} = 0)	V _{CES}	max	30	50	V
Collector-emitter voltage (open base)	VCEO	max	30	45	V
Collector current (peak value)	ICM	max	200	200	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max	500	500	mW
Junction temperature	Ti	max	150	150	oC
Small-signal current gain $I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $f = 1 \text{ kHz}$	h _{fe}	> 01	240 900	240 900	
Transition frequency $I_C = 10 \text{ mA}$; $V_{CE} = 5 \text{ V}$	fT	typ	300	300	MHz
Noise figure at R _S = 2 k Ω I _C = 200 μ A; V _{CF} = 5 V			grad		
f = 30 Hz to 15 kHz	F	typ <	1,4		dB dB
f = 1 kHz; B = 200 Hz	F	typ	1,2	1	dB
f = 10 Hz to 50 Hz (equivalent noise voltage)	Vn	<	ri pris m brigi	0,135	μV

MECHANICAL DATA

Fig. 1 TO-92 variant.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

			BC549	BC550	
Voltage PROTEIRMART JAI			HOUL	NE .	
Collector-base voltage (open emitter)	$v_{\rm CBO}$	max.	30	50	V
Collector-emitter voltage ($V_{BE} = 0$)	v_{CES}	max.	30	50	V
Collector-emitter voltage (open base)	v_{CEO}	max.	30	45	V
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max,	5	5	V QUICK RE
Current					
Collector current (d.c.)	I_C	max.		100	mA
Collector current (peak value)	I_{CM}	max.		200	mA
Emitter current (peak value)	$-I_{\mathrm{EM}}$	max.		200	mA
Base current (peak value)	I_{BM}	max.		200	mA
Power dissipation					
Total power dissipation up to $T_{amb} = 25{}^{o}\mathrm{C}$	P _{tot}	max.		500	mW
Temperature					
Storage temperature	T_{stg}		-65	to +150	°C
Junction temperature	Tj	max.		150	· °C
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th} j-a	o-peron :		0,25	OC/mW
From junction to case	R _{th i-c}	==		0, 15	OC/mW

CHARACTERISTICS

Tj = 25 ^OC unless otherwise specified

Collector cut-off curre

$$I_E = 0$$
; $V_{CB} = 30 \text{ V}$
 $I_E = 0$; $V_{CB} = 30 \text{ V}$; $T_i = 150 \, {}^{O}\text{C}$

$$I_{CBO}$$
 < 15 nA
 I_{CBO} < 5 μ A

Base emitter voltage

$$I_{C} = 2 \text{ mA}; V_{CE} = 5 \text{ V}$$

 $I_{C} = 10 \text{ mA}; V_{CE} = 5 \text{ V}$

$$egin{array}{llll} V_{
m BE} & & {
m typ.} & 660 & {
m mV} \\ & & 580 \ {
m to} \ 700 & {
m mV} \\ V_{
m BE} & < & 770 & {
m mV} \\ \end{array}$$

Saturation voltages 2)

$$I_C = 10 \text{ mA}; I_B = 0,5 \text{ mA}$$

$$I_C = 100 \text{ mA}$$
; $I_B = 5 \text{ mA}$

$$V_{\mathrm{CEsat}}$$
 typ. 200 mV V_{BEsat} typ. 900 mV

Knee voltage

$$I_{C}$$
 = 10 mA; I_{B} = value for which I_{C} = 11 mA at V_{CE} = 1 V

Collector capacitance at f = 1 MHz

$$I_E = I_e = 0$$
; $V_{CB} = 10 \text{ V}$

typ.

Emitter capacitance at f = 1 MHz

$$I_C = I_c = 0$$
; $V_{EB} = 0,5 \text{ V}$

Transition frequency at f = 35 MHz

$$I_C = 10 \text{ mA}$$
; $V_{CE} = 5 \text{ V}$

$$f_{\rm T}$$

Ce

9

pF

pF

¹⁾ VBE decreases by about 2 mV/OC with increasing temperature.

²⁾ $V_{\rm BE}$ decreases by about 1,7 mV/°C with increasing temperature.

CHARACTERISTICS (continued)		$T_i = 25$ °C	unless oth	nerwise sp	ecified
		,	BC549	BC550	
$\frac{\text{Small signal current gain}}{I_{\text{C}} = 2 \text{ mA; V}_{\text{CE}} = 5 \text{ V}}$	h _{fe}	> <	240 900	240 900	
Noise figure at $R_S = 2 k\Omega$					
$I_{\rm C}$ = 200 μA ; $V_{\rm CE}$ = 5 V f = 30 Hz to 15 kHz	F	typ.	1,4	1, 4	dB dB
f = 1 kHz; B = 200 Hz	F	typ.	1,2	1 4	dB dB
Equivalent noise voltage at $R_S = 2 \text{ k}\Omega$				at a Am and	
$I_{\rm C}$ = 200 μA ; $V_{\rm CE}$ = 5 V	,				
$f = 10 \text{ Hz to } 50 \text{ Hz}; T_{amb} = 25 ^{\circ}\text{C}$	V _n	max.	-	0,135	μV
			BC549B BC550B	BC549C BC550C	
D.C. current gain					
I _C = 10 μA; V _{CE} = 5 V	h_{FE}	typ.	150	270	
$I_C = 2$ mA; $V_{CE} = 5$ V	${\rm h_{FE}}$	> typ.	200 290 450	420 520 800	

General purpose p-n-p transistors in plastic TO-92 envelopes, especially suitable for use in driver stages of audio amplifiers.

QUICK REFERENCE DATA

			BC556	BC557	BC558	
Collector-emitter voltage (+ V _{BE} = 1 V)	-V _{CEX}	max.	80	50	30	V
Collector-emitter voltage (open base)	-ACEO	max.	65	45	30	V
Collector current (peak value)	-I _{CM}	max.		200		mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.		500		mW
Junction temperature	Tj	max.		150		oC
Small-signal current gain $-I_C = 2 \text{ mA;} -V_{CE} = 5 \text{ V; f} = 1 \text{ kHz}$	h _{fe}		7	5 to 900		
Transition frequency at f = 35 MHz -I _C = 10 mA; -V _{CE} = 5 V	f _T	typ.		200		MHz
Noise figure at R _S = 2 k Ω -I _C = 200 μ A; -V _{CF} = 5 V						
f = 1 kHz; B = 200 Hz	F	<		10		dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BC556	BC557	BC558
collector-base voltage (open emitter)	-V _{CBO}	max.	80	50	30
Collector-emitter voltage (+ V _{BE} = 1 V)	$-V_{CEX}$	max.	80	50	30
Collector-emitter voltage (open base)	-V _{CEO}	max.	65	45	30
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	5
Collector current (d.c.)	-I _C	max.		100	
Collector current (peak value)	-ICM	max.		200	
mitter current (peak value)	IEM	max.		200	
Base current (peak value)	-I _{BM}	max.		200	
Total power dissipation	0301				
up to T _{amb} = 25 °C	P _{tot}	max.		500	
torage temperature	T _{stg}		65	to + 150	
unction temperature	Tj	max.		150	
THERMAL RESISTANCE					
rom junction to ambient in free air	R _{th j-a}	=		250	
rom junction to case	R _{th} j-c	=		150	
CHARACTERISTICS					
j = 25 °C unless otherwise specified.					
Collector cut-off current		typ.		1	
$I_E = 0; -V_{CB} = 30 \text{ V}; T_j = 25 \text{ °C}$	-ICBO	<		15	
$T_j = 150 \text{°C}$	-ICBO	<		4	
Base-emitter voltage* -IC = 2 mA; -VCF = 5 V	-V _{BE}	typ.	00	650	-
-I _C = 10 mA; -V _{CF} = 5 V	-V _{BE}	<	00	00 to 750 820	
faturation voltages**	, PE				
$-I_C = 10 \text{ mA}; -I_B = 0.5 \text{ mA}$	-V _{CEsat}	typ.		60	
	-V _{BEsat}	< typ.		300 750	
		typ.		180	
$-I_C = 100 \text{ mA}; -I_B = 5 \text{ mA}$	$-V_{CEsat}$	<		650	
	$-V_{BEsat}$	typ.		930	

 $⁻V_{\mbox{\footnotesize{BE}}}$ decreases by about 2 mV/K with increasing temperature. $-V_{\mbox{\footnotesize{BE}}sat}$ decreases by about 1,7 mV/K with increasing temperature.

Fig. 3 $-V_{CE} = 5 \text{ V}; T_i = 25 \text{ °C}.$

Fig. 5 $-V_{CE} = 5 \text{ V; } I_{C} = 10 \text{ mA.}$

Fig. 7 $-V_{CE} = 5 \text{ V; } I_{C} = 0.1 \text{ mA.}$

Fig. 4 $-V_{CE} = 5 \text{ V}$; $I_{C} = 50 \text{ mA}$.

Fig. 6 $-V_{CE} = 5 \text{ V}$; $I_{C} = 1 \text{ mA}$.

Fig. 8 $-V_{CE} = 5 \text{ V}; T_j = 25 \text{ °C};$ f = 35 MHz.

Fig. 9 $-V_{CE} = 5 \text{ V}; T_i = 25 \text{ °C}.$

Fig. 10 $\frac{-I_C}{-I_B}$ = 20; T_j = 25 °C.

Fig. 11 $\frac{-I_C}{-I_B}$ = 20; T_j = 25 °C.

Z. 11g. 15.

For Figs 12, 13, 14 and 15 the following conditions apply: $-V_{CE} = 5 \text{ V}$; f = 1 kHz; $T_i = 25 \text{ °C}$.

Fig. 15.

Fig. 14.

Fig. 16 f = 1 MHz; $T_j = 25 \text{ °C}$.

P-N-P transistors in a plastic TO-92 variant, primarily intended for low-noise input stages in tape recorders, hi-fi amplifiers and other audio-frequency equipment.

QUICK REFERENCE DATA

			BC559	BC560
Collector-emitter voltage (+ V _{BE} = 1 V)	V _{CEX}	max.	30	50 V
Collector-emitter voltage (open base)	-Vceo	max.	30	45 V
Collector current (peak value)	-I _{CM}	max.	200	200 mA
Total power dissipation up to $T_{amb} = 25 {}^{\circ}\text{C}$	P _{tot}	max.	500	500 mW
Junction temperature	Tj	max.	150	150 °C
Small-signal current gain $-I_C = 2 \text{ mA}$; $-V_{CE} = 5 \text{ V}$; $f = 1 \text{ kHz}$	h _{fe}	> <	125 900	125 900
Transition frequency $-I_C = 10 \text{ mA;} -V_{CE} = 5 \text{ V}$	f_{T}	typ.	200	200 MHz
Noise figure at R _s = $2 k\Omega$ $-I_C = 200 \mu A$; $-V_{CE} = 5 V$ f = $30 Hz$ to $15 kHz$	F	typ.	1,2	1 dB 3 dB
f = 1 kHz; B = 200 Hz	F	<	4	4 dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BC559 BC560	
Collector-base voltage (open emitter)	-V _{CBO}	max.	30 50	V
Collector-emitter voltage (+ V _{BE} = 1 V)	$-V_{CEX}$	max.	30 50	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	30 45	V
Emitter-base voltage (open collector)	-V _{CBO}	max.	5 5	V
Collector current (d.c.)	-1c	max.	100	mA
Collector current (peak value)	-ICM	max.	200	mA
Emitter current (peak value)	IEM	max.	200	mΑ
Base current (peak value)	IBM	max.	200	mA
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	500	mW
Storage temperature	T_{stq}		-65 to +150	oC
Junction temperature	Тј	max.	150	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	250	K/W
From junction to case	R _{th j-c}	=	150	K/W
CHARACTERISTICS	T _j = 2	5 °C ur	nless otherwise spec	cified
Collector cut-off current			DESCRIPTION OF	
$I_E = 0$; $-V_{CB} = 30 \text{ V}$; $T_j = 25 \text{ °C}$	-ICBO	typ.	15	nA nA
T _j = 150 °C	-I _{CBO}	<	4	μΑ
Base-emitter voltage*				
$-1_{C} = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$	$-V_{BE}$	typ.	650 600 to 750	mV mV
$-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$	$-V_{BE}$	<	820	mV
Saturation voltages**				
$-I_C = 10 \text{ mA}; -I_B = 0.5 \text{ mA}$	-V _{CEsat}	typ.	60	mV
			300	mV
	-V _{BEsat}		750	mV
$-I_C = 100 \text{ mA}; -I_B = 5 \text{ mA}$	V _{CEsat}	τyp. <	180 650	mV mV
	-V _{BEsat}	typ.	930	mV

 $^{^{*}}$ -V_{BE} decreases by about 2 mV/K with increasing temperature.

^{** -}VBEsat decreases by about 1,7 mV/K with increasing temperature.

Knee voltage

$$-I_C = 10 \text{ mA}$$
; $-I_B = \text{value for which}$
 $-I_C = 11 \text{ mA at } -V_{CE} = 1 \text{ V}$

250 mV 600 mV

Collector capacitance at f = 1 MHz

$$I_E = I_e = 0$$
; $-V_{CB} = 10 \text{ V}$

Transition frequency at f = 35 MHz $-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ B}$

Small-signal current gain at f = 1 kHz

$$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$$

Noise figure at $R_S = 2 k\Omega$

$$-I_C = 200 \,\mu\text{A}; -V_{CE} = 5 \,\text{V}$$

f = 30 Hz to 15 kHz

$$f = 1 \text{ kHz}; B = 200 \text{ Hz}$$

Equivalent noise voltage at R_S = $2 k\Omega$

$$-I_C = 200 \mu A; -V_{CE} = 5 V$$

f = 10 Hz to 50 Hz; $T_{amb} = 25 \, {}^{o}C$

D.C. current gain

$$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$$

fT

hfe

	BC559		BC300		
F	typ.	1,2	1	dB	
	>	4	3	dB	
F	typ.	1	1	dB	
'	<	4	4	dB	

	В	C560	BC560A	BC560B	BC560C
hFE	> <	125 900	125 250	220 470	420 800

Fig. 3 $-V_{CE} = 5 \text{ V}; T_i = 25 \text{ }^{\circ}\text{C}.$

Fig. 5 $-V_{CE} = 5 \text{ V}$; $I_{C} = 10 \text{ mA}$.

Fig. 7 $-V_{CE} = 5 \text{ V}$; $I_{C} = 0.1 \text{ mA}$.

Fig. 4 $-V_{CE} = 5 \text{ V}$; $I_{C} = 50 \text{ mA}$.

Fig. 6 $-V_{CE} = 5 \text{ V}; I_{C} = 1 \text{ mA}.$

Fig. 8 $-V_{CE} = 5 \text{ V}; T_j = 25 \text{ °C};$ f = 35 MHz.

Fig. 9 $-V_{CE} = 5 \text{ V}; T_j = 25 \text{ °C}.$

Fig. 10 $\frac{-I_C}{-I_B}$ = 20; T_j = 25 °C.

Fig. 11 $\frac{-I_C}{-I_B}$ = 20; T_j = 25 °C.

7285699A h_{re}
BC559C
BC560C
BC560B

10⁻³
BC559A
BC560A
BC560A

Fig. 12.

Fig. 13

For Figs 12, 13, 14 and 15 the following conditions apply: $-V_{CE} = 5 \text{ V}$; f = 1 kHz; $T_i = 25 \text{ °C}$.

Fig. 14.

Fig. 16 f = 1 MHz; $T_j = 25 \text{ °C}$.

10

- V_{CB} (V)

Fig. 17.

Fig. 19.

N-P-N transistors in a plastic TO-92 variant, primarily intended for use in driver stages of audio amplifiers. P-N-P complements are BC636, BC638 and BC640.

QUICK REFERENCE DATA

			BC635	BC637	BC639
Collector-base voltage (open emitter)	V _{CBO}	max.	45	60	100 V
Collector-emitter voltage (open base)	VCEO	max.	45	60	80 V
Collector-emitter voltage ($R_{BE} = 1 \text{ k}\Omega$)	VCER	max.	45	60	100 V
Collector-current (peak value)	ICM	max.	1,5	1,5	1,5 A
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	1	1	1 W
Junction temperature	Tj	max.	150	150	150 °C
D.C. current gain I _C = 150 mA; V _{CE} = 2 V	hFE	>	40 250	40 250	40 250
Fransition frequency I _C = 10 mA; V _{CE} = 5 V	fΤ	typ.	130	130	130 MHz

MECHANICAL DATA

Fig. 1 TO-92 variant.

Dimensions in mm

BC635; BC637; BC639

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

				LANAR	BC635	BC637	BC63	9
Collector-base voltage (op	en emitter)		V_{CBO}	max.	45	60	100	V
Collector-emitter voltage (open base)		V_{CEO}	max.	45	60	80	V
Collector-emitter voltage	(R _{BE} = 1 k	Ω)	VCER	max.	45	60	100	V
Collector-emitter voltage	$(R_{BE} = 0)$		VCES	max.	45	60	100	V
Emitter-base voltage (oper	n collector)		V_{EBO}	max.	5	5	5	٧
Collector current (d.c.)			1 _C	max.		1		Α
Collector current (peak va	lue)		¹ CM	max.		1,5		Α
Emitter current (peak valu	ie)		oso-leM	max.		1,5		Α
Base current (d.c.)			ogo IB	max.		100		mΑ
Base current (peak value)			¹ BM	max.		200		mΑ
Total power dissipation at up to T _{amb} = 25 °C	T _{amb} = 25	o C	P _{tot}	max. max.		0,8		W W*
Storage temperature			T _{stg}		-65 to	+ 150		oC
Junction temperature			T_{j}	max.		150		oC
THERMAL RESISTANCE	E (1)							
From junction to ambient	in free air		R _{th j-a}	=		156		KΛ
From junction to ambient			R _{th j-a}	= ,		125		K/V
From junction to case			R _{th j-c}	=		60	i u ma	K/V

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for collector lead min. 10 mm \times 10 mm.

CHARACTERISTICS			
T _i = 25 °C unless otherwise specified			
Collector cut-off current IE = 0; V _{CB} = 30 V IE = 0; V _{CB} = 30 V; T _i = 150 °C	ICBO	< <	100 nA 10 μA
Emitter cut-off current I _C = 0; V _{EB} = 5 V	I _{EBO}	<	10 μΑ
Base-emitter voltage $I_C = 500 \text{ mA}$; $V_{CE} = 2 \text{ V}$	V _{BE}	<	1 V
Saturation voltage I _C = 500 mA; I _B = 50 mA	V _{CEsat}	<	0,5 V
D.C. current gain I _C = 5 mA; V _{CE} = 2 V	hFE	>	25
$I_C = 150 \text{ mA}; V_{CE} = 2 \text{ V}^*$	hFE	> <	40 250 •
I _C = 500 mA; V _{CE} = 2 V	hFE	>	25
Transition frequency at f = 35 MHz I _C = 10 mA; V _{CE} = 5 V	f _T	typ.	130 MHz
D.C. current gain ratio of matched pairs I _C = 150 mA; V _{CE} = 2 V			
BC635/BC636, BC637/BC638 and BC639/BC640	h _{FE1} /h _{FE2}	typ.	1,3 1,6
		-	
BC635-6 BC637-6 BC639-6	hFE	> <	40 100
BC635-10 BC637-10 BC639-10	hFE	> <	63 160
BC635-16 BC637-16	hFE	>	100 250

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

P-N-P transistors in a plastic TO-92 variant, primarily intended for use in driver stages of audio amplifiers. N-P-N complements are BC635, BC637 and BC639.

QUICK REFERENCE DATA

				BC636	BC638	BC640	
Collector-base voltage (open emitt	er	-V _{CBO}	max.	45	60	100	V
Collector-emitter voltage (open ba	se)	-VCEO	max.	45	60	80	V
Collector-emitter voltage (RBE = 1	1 kΩ)	-V _{CER}	max.	45	60	100	V
Collector-current (peak value)		-I _{CM}	max.	1,5	1,5	1,5	A
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	1	1	dena T o	W
Junction temperature		Ti	max.	150	150	150	oC
D.C. current gain $-I_C = 150 \text{ mA}$; $-V_{CE} = 2 \text{ V}$		hFE	> <	40 250	40 250	40 250	THE S
Transition frequency -I _C = 10 mA; -V _{CE} = 5 V		f _T	typ.	50	50	50	MHz

MECHANICAL DATA

Fig. 1 TO-92 variant.

Dimensions in mm

BC636; BC638; BC640

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Emiliary variation in accordance with the hose	Tareo Triantitiani	.,		,	
			BC636	BC638	BC640
Collector-base voltage (open emitter)	-V _{CBO}	max.	45	60	100 V
Collector-emitter voltage (open base)	-VCEO	max.	45	60	80 V
Collector-emitter voltage (R _{BE} = 1 k Ω)	-VCER	max.	45	60	100 V
Collector-emitter voltage (-V _{BE} = 0)	-V _{CES}	max.	45	60	100 V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	5 V
Collector current (d.c.)	-IC	max.		1	Α
Collector current (peak value)	-ICM	max.		1,5	Α
Emitter current (peak value)	1EM	max.		1,5	Α
Base current (d.c.)	-1B	max.		100	mA
Base current (peak value)	-IBM	max.		200	mA
Total power dissipation at T _{amb} = 25 °C	P _{tot}	max.		0,8	W
up to T _{amb} = 25 °C	Ptot	max.		1	W*
Storage temperature	T _{stg}		-65 to	+ 150	oC
Junction temperature	Tj	max.		150	oC
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=		156	K/V
From junction to ambient	R _{th j-a}	=		125	K/V
From junction to case	R _{thj-c}	=		60	. K/V

^{*} Transistor mounted on printed circuit board, max. lead length 4 mm, mounting pad for collector lead min. 10 mm x 10 mm.

CHARACTERISTICS			
T _i = 25 °C unless otherwise specified			
Collector cut-off current I _E = 0; -V _{CB} = 30 V I _E = 0; -V _{CB} = 30 V; T _j = 150 °C	-I _{CBO}	< <	100 nA 10 μA
Emitter cut-off current $I_C = 0$; $-V_{EB} = 5 \text{ V}$	-I _{EBO}	<	10 μΑ
Base-emitter voltage $-I_C = 500 \text{ mA}; -V_{CE} = 2 \text{ V}$	-V _{BE}	<	1 V
Saturation voltage $-I_C = 500 \text{ mA}$; $-I_B = 50 \text{ mA}$	V _{CEsat}	<	0,5 V
D.C. current gain -I _C = 5 mA; -V _{CE} = 2 V	hFE	>	25
$-I_C = 150 \text{ mA}; -V_{CE} = 2 \text{ V*}$	hFE	> <	40 250
$-I_C = 500 \text{ mA}; -V_{CE} = 2 \text{ V}$	hFE	>	25
Transition frequency at $f = 35 \text{ MHz}$ $-I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$	fT	typ.	50 MHz
D.C. current gain ratio of matched pairs C = 150 mA; VCE = 2 V			
BC635/BC636, BC637/BC638 and BC639/BC640	h _{FE1} /h _{FE2}	typ.	1,3 1,6
* BC636-6 BC638-6 BC640-6	hFE	> <	40 100
BC636-10 BC638-10 BC640-10	hFE	> <	63 160
BC636-16 BC638-16 BC640-16	hFE	> <	100 250

BC636; BC638; BC640

Fig. 3.

Fig. 4.

January 1983

BC636; BC638; BC640

Fig. 8.

N-P-N transistors in TO-18 metal envelopes with the collector connected to the case.

They are intended for general purpose very high-gain low level and low-noise applications. Moreover, they are also suitable for low-speed switching applications.

QUICK REFERENCE DATA

			BCY56	BCY57	
Collector-base voltage (open emitter)	V _{CBO}	max.	45	25	V
Collector-emitter voltage (open base)	VCEO	max.	45	20	V
Collector current (d.c.)	l _C	max.	100	100	mA
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	300	300	mW
Junction temperature	Ti	max.	175	175	oC
D.C. current gain at $T_j = 25$ °C $I_C = 10 \mu A$; $V_{CE} = 5 V$	hFE	>	40	100	
$I_C = 2 \text{ mA}$; $V_{CE} = 5 \text{ V}$	hFE	> <	100 450	200 800	
Transition frequency I _C = 0,5 mA; V _{CE} = 5 V	fT	typ.	85	100	MHz
Noise figure at R _S = 2 k Ω I _C = 200 μ A; V _{CE} = 5 V f = 30 Hz to 15,7 kHz	F	typ.	1,5 5,0	1,5 5,0	dB dB

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected to case

Dimensions in mm

Accessories 56246 (distance disc).

Products approved to CECC 50 002-164, available on request.

RATINGS	(Limiting	values)	1)

Voltages		B	CY561	BCY57
Collector-base voltage (open emitter)	VCBO	max.	45	25 V
Collector-emitter voltage (open base)	v_{CEO}	max.	45	20 V
Emitter-base voltage (open collector)	v_{EBO}	max.	5	5 V
Currents			tor gen la tor la	hebratní s tstius osta
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	100	mA
Collector current (peak value)	I_{CM}	max.	100	mA
Power dissipation				
Total power dissipation up to T_{amb} = 25 ^{o}C	P _{tot}	max.	300	mW
Temperatures				
Storage temperature	T_{stg}	-65 to	+175	°C
Junction temperature	Тi	max.		
THERMAL RESISTANCE	,			
	р., .	=	0.5	OC/mW
From junction to ambient in free air	R _{th} j-a			C (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
From junction to case	R _{th} j-c	=	0.2	°C/mW
CHARACTERISTICS $T_j =$	25 °C unle	ess other	rwise	specified
Collector cut-off current				
I_E = 0; V_{CB} = 20 V	I_{CBO}	<	100	nA
Emitter cut-off current				
I _C = 0; V _{EB} = 5 V	I_{EBO}	<	100	nA
Base-emitter voltage 2)				
I _C = 2 mA; V _{CE} = 5 V	v_{BE}	typ. 600 t		mV mV
Collector-emitter saturation voltage				
$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$	V _{CEsat}	typ.	80	mV
I_C = 100 mA; I_B = 10 mA	VCEsat	typ.	200	mV
1) I imiting realized according to the Absolute	Marriman	Creaters	00 4	ofined :-

¹⁾ Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

 $^{^2)\,} V_{\rm BE}$ decreases with about 2 mV/°C at increasing temperature.

CHARACTERISTICS (continued)

 T_i = 25 $^{\rm O}{\rm C}$ unless otherwise specified

Knee voltage

$$I_C$$
 = 10 mA; I_B = value for which

$$I_C = 10 \text{ mA}$$
; $I_B = \text{value for which}$
 $I_C = 11 \text{ mA}$ at $V_{CE} = 1 \text{ V}$

$$V_{\rm CEK}$$
 typ. 300 mV $<$ 600 mV

D.C. current gain		BCY56	BCY57
$I_{\rm C}$ = 10 μA ; $V_{\rm CE}$ = 5 V	h_{FE}	> 40	100
I_C = 2 mA; V_{CE} = 5 V	$h_{\rm FE}$	typ. 200 100 to 450	400 200 to 800
I_C = 10 mA; V_{CE} = 5 V	${\tt h}_{\rm FE}$	> 100	200
Transition frequency			
I_{C} = 0.5 mA; V_{CE} = 5 V	f_{T}	typ. 85	100 MHz
I_C = 10 mA; V_{CE} = 5 V	f_{T}	typ. 250	350 MHz
h parameters at f = 1 kHz			
I_C = 2 mA; V_{CE} = 5 V			
Input impedance	h_{ie}	typ. 3.5	7.5 kΩ
Reverse voltage transfer	h_{re}	typ. 1.75	$3.5 \ 10^{-4}$
Small signal current gain	hfe	typ. 250 125 to 500	500 240 to 900
Output admittance	h_{oe}	typ. 17.5	35 $\mu\Omega^{-1}$
Collector capacitance at f = 1 MHz			
$I_E = I_e = 0$; $V_{CB} = 5 V$	C_{c}	typ. 4.5	4.5 pF
Noise figure			
$I_C = 200 \mu A$; $V_{CE} = 5 V$; $R_S = 2 k\Omega$			
f = 30 Hz to 15.7 kHz	F	typ. 1.5 < 5	1.5 dB 5 dB

N-P-N transistors in TO-18 metal envelopes with the collector connected to the case, for use in amplifier and switching applications.

QUICK REFERENCE DATA

			BCY58	BCY59		
Collector-emitter voltage (open base)	VCEO	max.	32	45	True	٧
Collector current (d.c.)	-IC	max.	200	200		mA
Total power dissipation up to T _{amb} = 45 °C up to T _{case} = 45 °C	P _{tot}	max.	330 1000	330 1000		mW mW
Junction temperature	Tj	max.	200	200		oC
		BCY58-\BCY59-\		IX IX	X	
Small-signal current gain at T_j = 25 °C I_C = 2 mA; V_{CE} = 5 V; f = 1 kHz	h _{fe}		25 175 50 350	250 500	350 700	язи
Transition frequency at f = 100 MHz I _C = 10 mA; V _{CE} = 5 V	fT	typ.	28	10		MHz
Noise figure at R _S = $2 \text{ k}\Omega$ I _C = $200 \mu\text{A}$; V _{CE} = 5 V f = 1 kHz ; B = 200 Hz	F	typ.		2		dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Collector connected to case

Accessories 56246 (distance disc).

Products approved to CECC 50 002-030/031, available on request.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages SHOTEIRMART LADVATI			BCY58	BCY59	
Collector-emitter voltage ($V_{BE} = 0$)	v_{CES}	max.	32	45	V
Collector-emitter voltage (open base)	VCEO	max.	32	45	V
Emitter-base voltage (open collector)	v_{EBO}	max.	moltsoilge 7	7	V
Currents			ATAG BOYS	88938	
Collector current	I_C	max.	200	mA	
Base current	I_{B}	max.	50	mA	
Power dissipation					
Total power dissipation up to T_{case} = 45 ^{o}C	P_{tot}	max.	1000	mW	
Temperatures					
Storage temperature	T _{stg}	- 65	to +200	ОС	
Junction temperature	Tj	max.	200	οС	
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	= 1	0.45	°C/n	ıW
From junction to case	R _{th j-c}	=	0.15	°C/m	ıW

Collector cut-off currents				BCY58	BCY59	
Corrector cut-off currents					DC 107	
$V_{CE} = 32 \text{ V}; V_{BE} = 0$		ICES	typ. <	0.2		nA nA
$V_{CE} = 45 \text{ V}; V_{BE} = 0$		ICES	typ.	nonation v	0.2	nA nA
$V_{\rm CE}$ = 32 V; $V_{\rm BE}$ = 0; $T_{\rm j}$ = 150 $^{\rm o}$ C		ICES	typ.	0.2		μΑ μΑ
v_{CE} = 45 V; v_{BE} = 0; T_j = 150 o C		ICES	typ.	3071	0.2	μΑ μΑ
Emitter cut-off current	,			3377		
$I_C = 0$; $V_{EB} = 5 \text{ V}$		IEBO	<	10	10	nA
Collector-emitter breakdown voltage						
$I_B = 0$; $I_C = 2 \text{ mA}$		V(BR)CEO	>	32	45	V
Emitter-base breakdown voltage				8608		
$I_{C} = 0$; $I_{E} = 1 \mu A$		V(BR)EBO	>	7	7	V
Base emitter voltage						
I _C = 10 μA ; V _{CE} = 5 V		VBE	typ.		0.5	V
$I_C = 20 \mu A$; $V_{CE} = V_{CEO max}$; $T_j = 1$	100 °C	VBE	>		0.2	V
$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V}$		v_{BE}	typ.	0.55 to	0.62 0.70	V V
$I_C = 10 \text{ mA}$; $V_{CE} = 1 \text{ V}$		V_{BE}	typ.		0.70	V
$I_{\rm C}$ = 100 mA; $V_{\rm CE}$ = 1 V		v_{BE}	typ.		0.76	V
Saturation voltages						
I _C = 10 mA; I _B = 0.25 mA		VCEsat	typ.	50 to	100 350	mV mV
		V _{BEsat}	typ.	600 to	700 850	mV mV
I_C = 100 mA; I_B = 2.5 mA		VCEsat	typ.	150 to	250 700	mV mV
		V _{BEsat}	typ.		875	mV

CHARACTERISTICS (contin	ued)		Т	j = 25 °C ur	aless othe	rwise spe	ecified
Collector capacitance at f	= 1 MHz						Collector
$I_{E} = I_{e} = 0; V_{CB} = 10 \text{ V}$			Сс	typ.		.0	pF pF
Emitter capacitance at f =	1 MHz						
$I_{C} = I_{c} = 0; V_{EB} = 0.5 \text{ V}$			Се	typ.		10 15	pF pF
Transition frequency at f =	100 MHz						
$I_{\rm C}$ = 10 mA; $V_{\rm CE}$ = 5 V			$f_{\rm T}$	> typ.	_	50 80	MHz MHz
Noise figure at $R_S = 2 \text{ k}\Omega$ $I_C = 200 \mu\text{A}$; $V_{CE} = 5 \text{V}$,				
f = 1 kHz; B = 200 Hz			F	typ.		6	dB dB
				BCY58VIII BCY59VIII	BCY58IX BCY59IX		
D.C. current gain		-		an at li	v owobile	end gapd	
$I_{C} = 10 \ \mu A; \ V_{CE} = 5 \ V_{CE}$	h_{FE}	> typ.	20	20 95	40 190	100 300	
$I_C = 2$ mA; $V_{CE} = 5$ V	$^{ m h}_{ m FE}$	> typ. <	120 170 220	180 250 310	250 350 460	380 500 630	Base emi
		>	80	120	160	240	
$I_C = 10 \text{ mA}; V_{CE} = 1 \text{ V}$	$^{\rm h}_{ m FE}$	typ.	250	300 400	390 630	550 1000	
$I_C = 100 \text{ mA}; V_{CE} = 1 \text{ V}$	h_{FE}	>	40	45	60	60	
h parameters at f = 1 kHz					V I + ED	7 (Am ()0	
$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V}$			1 /	0.5	0.0	rgatiov ne	Saturatio
Input impedance	h _{ie}	typ.	1.6 2.7 4.5	2.5 3.6 6.0	3. 2 4. 5 8. 5	4. 5 7. 5 12	kΩ kΩ kΩ
Reverse voltage transfer	ratio h _{re}	typ.	1.5	2	3	3	10-4
Small signal current gain	h _{fe}	> typ. <	125 200 250	175 260 350	250 330 500	350 520 700	
Output admittance	h _{oe}	typ.	18 30	24 50	30 60	50 100	μΑ/V μΑ/V

CHARACTERISTICS (continued)

mA				
delay time	td	typ.	35	ns
rise time	tr	typ.	50	ns
turn on time	+	typ.	85	ns
turn on time	on	<	150	ns
storage time	ts	typ.	400	ns
fall time	tf	typ.	80	ns
turn off time	t _{off}	typ.	480 800	ns ns
delay time	td	typ.	5	ns
rise time	tr	typ.	50	ns
turn on time	ton	typ.	55 150	ns
storage time	ts	typ.	250	ns
fall time	tf	typ.	200 -	ns
turn off time	t _{off}	typ.	450 800	ns
TUT C	R		+ 10V	
			Oscillo	scope
R2				
T -				
	rise time turn on time storage time fall time turn off time 10 mA delay time rise time turn on time storage time fall time turn off time	delay time td rise time tr turn on time ton storage time ts fall time toff turn off time toff turn on time ton storage time tr turn on time ton storage time ts fall time tf turn off time toff	delay time t_d typ. rise time t_r typ. turn on time t_{on} $\stackrel{typ.}{<}$ storage time t_s typ. fall time t_f typ. turn off time t_{off} $\stackrel{typ.}{<}$ delay time t_r typ. turn on time t_r typ. turn on time t_{on} $\stackrel{typ.}{<}$ storage time t_s typ. fall time t_s typ. fall time t_s typ. turn off time t_{off} $\stackrel{typ.}{<}$	delay time t_d typ. 35 rise time t_r typ. 50 turn on time t_{on} typ. 85 turn on time t_{on} < 150 storage time t_s typ. 400 fall time t_f typ. 80 turn off time t_{off} < 800 10 mA delay time t_d typ. 5 rise time t_r typ. 50 turn on time t_{on} < 150 storage time t_s typ. 250 fall time t_f typ. 200 - turn off time t_{off} < 800

P-N-P transistors in TO-18 metal envelopes intended for general purpose industrial applications. The BCY71 is a low noise version.

QUICK REFERENCE DATA

			8S = 6 = E	CY70	BCY71	BCY7	2
Collector-base voltage	ge (open emitter)	-V _{CBO}	max.	50	45	30	V
Collector-emitter vol	tage (open base)	-VCEO	max.	40	45	25	V
Collector current (pe	eak value)	-ICM	max.	35	200	HAL R	mA
Total power dissipat	ion up to T _{amb} = 25 °C	P _{tot}	max.		350		mW
Junction temperatur	e	Ti	max.		200		oC
D.C. current gain $-I_C = 10 \text{ mA}; -V$	CE = 1 V	hFE	>		100		
Transition frequency $-I_C = 10 \text{ mA; } -V$		fT	>		250		MHz

12,7 min

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Collector connected to case.

Products approved to CECC 50 002-079/081, available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			,					
				MAJI	BCY70	BCY71	BCY7	2
Collector-base voltage (open e	mitter)		-V _{CBO}	max.	50	45	30	V
Collector-emitter voltage (ope	n base)		$-V_{CEO}$	max.	40	45	25	V
Emitter-base voltage (open col	lector)		$-V_{EBO}$	max.	5,0	5,0	5,0	V
Collector current (d.c.)			-Ic	max.	nois	200	vel a zi l	m
Collector current (peak value)			$-I_{CM}$	max.		200		m
Emitter current (peak value)			IEM	max.		200		m
Total power dissipation up to	$T_{amb} = 25$	5 °C	P _{tot}	max.		350		m
Storage temperature			T _{stg}		-65 to	+ 200		0
Junction temperature			$_{\mathcal{J}}^{T_{j}}$	max.		200		0
THERMAL RESISTANCE								
From junction to ambient in f	ree air		R _{th j-a}	mb = 25		500		K
From junction to case			R _{th j-c}	=		150		K

Fig. 2 Maximum permissible power dissipation as a function of ambient temperature.

CHARACTERISTICS

$T_i = 25$ °C	unless	otherwise	specified
---------------	--------	-----------	-----------

08			BCY70	BCY71	BCY7	2
Collector cut-off current I _E = 0; -V _{CB} = -V _{CBOmax}	-ICBO	typ.	10 500	10 500	10 500	nA nA
$I_E = 0; -V_{CB} = 40 \text{ V}$	-I _{CBO}	typ.	0,5 10	0,5 50	01-0	nA nA
$I_E = 0$; $-V_{CB} = 40 \text{ V}$; $T_j = 100 ^{\circ}\text{C}$	-I _{CBO}	typ.	0,1 0,5	0,1 2,0	101 =	μΑ μΑ
$I_E = 0; -V_{CB} = 25 \text{ V}$	-I _{CBO}	typ.	V =1 =	30\=-;A	0,5 50	nA nA
$I_E = 0$; $-V_{CB} = 25 \text{ V}$; $T_j = 100 \text{ °C}$	-I _{CBO}	typ.	TA O	e eonetion ≃ eoV—	0,1 2,0	μA μA
$-V_{CE} = 50 \text{ V}; -V_{EB} = 3.0 \text{ V}$	-ICEX	typ.	1,0 20	no Tonesi n pay	3 = 3 1 =	nA nA
Emitter cut-off current I _C = 0; -V _{EB} = 4,0 V	-I _{EBO}	typ.		0,3 10		nA nA
$I_C = 0; -V_{EB} = 4,0 \text{ V}; T_j = 100 ^{\circ}\text{C}$	-I _{EBO}	typ.		20 2,0		nA μA
I _C = 0; -V _{EB} = 5,0 V	-I _{EBO}	typ.		5,0 500		nA nA
Saturation voltages $-I_C = 10 \text{ mA}$; $-I_B = 1.0 \text{ mA}$	-V _{CEsat}	typ.		95 250	enugii 100 - 100 (mV mV
	$-V_{BEsat}$	typ.	600	750 to 900		mV mV
$-I_C = 50 \text{ mA}; -I_B = 5.0 \text{ mA}$	-V _{CEsat}	typ.		190 500	10,1 × 32 = dr	mV mV
	-V _{BEsat}	typ.		860 1200		mV mV
Knee voltage (see Fig. 3)						
$-I_C = 10 \text{ mA}$; $-I_B = \text{value for which}$ $-I_C = 11 \text{ mA at} - V_{CE} = 1 \text{ V}$	-VCEK	typ.		270 600		mV mV

D.C. current gain $-I_C = 10 \mu A; -V_{CE} = 1,0 \text{ V}$	hFE	> typ.	60 245		
$-I_C = 0.1 \text{ mA}; -V_{CE} = 1.0 \text{ V}$	hFE	> typ.	80 270		
$-I_C = 1.0 \text{ mA}; -V_{CE} = 1.0 \text{ V}$	hFE	> typ.	100 300		
$-I_C = 10 \text{ mA}; -V_{CE} = 1,0 \text{ V}$	hFE	> typ.	100 290		
$-I_C = 10 \text{ mA}; -V_{CE} = 1,0 \text{ V}$ BCY71	hFE	<	400		
$-I_C = 50 \text{ mA}; -V_{CE} = 1,0 \text{ V}$	hFE	> typ.	45 175		
Collector capacitance at f = 1 MHz $I_E = I_e = 0$; $-V_{CB} = 10 V$	Cc	typ.	4,5 6,0		pF pF
Emitter capacitance at f = 1 MHz I _C = I _c = 0; -V _{EB} = 1,0 V	C _e	typ.	6,0 8,0		pF pF
		BCY	70 BCY71	BCY7	2
Transition frequency at $T_{amb} = 25 {}^{\circ}\text{C}$ -I _C = 10 mA; -V _{CE} = 20 V; f = 100 MHz	fT	> 250 typ. 450		250 450	MHz MHz
$-I_C = 100 \mu A; -V_{CE} = 20 V; f = 10,7 MHz$	f_{T}	>	15 30	V0	MHz MHz
Noise figure $-I_C = 100 \mu A$; $-V_{CE} = 5.0 V$ f = 10 Hz to 10 kHz; R _S = 2.0 k Ω	F	typ. 2,0 < 6,0		2,0 6,0	dB dB
-I _C = 1,0 mA; -V _{CE} = 10 V; f = 1 kHz; T _{amb} = 25 °C Input impedance	h _{ie}	> - typ < -	2,0 4,0 12,0	n 0a =	kΩ kΩ kΩ
Reverse voltage transfer ratio	h _{re}	typ. − < −	2,1 20,0	sparko	10 ⁻⁴ 10 ⁻⁴
Small-signal current gain	h _{fe}	> - typ < -	150 325 400		
Output admittance	h _{oe}	> - typ < -	10 20 60	_	μΑ/\ μΑ/\ μΑ/\

Switching times of the BCY70 and BCY72.				
$-I_C = 10 \text{ mA}$; $-I_{Bon} = +I_{Boff} = 1 \text{ mA}$ delay time	t _d	typ.	23 35	
rise time	t _r	typ.	25 35	
turn-on time	ton	typ.	48 65	
storage time	t _S	typ.	270 350	
fall time	tf	typ.	50 80	
turn-off time	toff	typ.	320 420	

Fig. 5 Switching waveforms.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 18.

Fig. 20 $-I_C/-I_B = 10$; typical values.

Fig. 21 $-I_C/-I_B = 20$; typical values.

Fig. 23.

Fig. 24 $-I_C/-I_B = 10$; typical values.

Fig. 25 $-I_C/-I_B = 20$; typical values.

Fig. 28.

Fig. 29.

Fig. 30.

See also the graph and text on next page.

Determination of total noise figure

Total noise at f < 15 kHz includes flicker noise and white noise.

The relationship is as follows: noise factor = 1 + flicker noise factor + white noise factor.

The flicker noise factor can be derived from the curves of the graph above, the white noise factor from the curves of the graph on preceding page.

Example:

Assume a BCY71 operating at f = 200 Hz; I_E = 200 μ A with a source resistance R_S = 10 k Ω . From the graph on this page it follows that at I_E = 200 μ A with R_S = 10 k Ω the product of frequency and flicker noise factor is 110. Since the frequency is 200 Hz, the flicker noise factor is 110/200 = 0,55. It follows that at I_E = 200 μ A with R_S = 10 k Ω the white noise figure is 0,9 dB, representing a factor of 1,23. Thus the total noise factor = 0,55 + 1,23 = 1,78 or 2,5 dB.

Fig. 32.

Fig. 33.

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in TO-18 metal envelopes, intended for use in amplifier and switching applications.

QUICK REFERENCE DATA

				BCY78	BCY79)	
Collector-emitter voltage (open base)	-V _{CEO}	max.		32	45	3 au 3	V
Collector current (d.c.)	-1 _C	max.		20	00		mA
Total power dissipation	96 St						
up to T _{amb} = 45 °C up to T _{case} = 45 °C	P _{tot}	max.		34 100	15 00		mW mW
Junction temperature	Tj	max.		20	00		oC
			8-VII	VIII	IX	X	
max, 200 °C		BCY/	9-VII	VIII	IX	97 110	Bonn
Small-signal current gain —I _C = 2 mA; —V _{CE} = 5 V	h _{fe}	> <	125 250	175 350	250 500	350 700	
Transition frequency at f = 35 MHz $-I_C = 10 \text{ mA; } -V_{CF} = 5 \text{ V}$	f⊤	typ.	0	18	30		MHz
Noise figure at R _S = 2 k Ω -I _C = 200 μ A; -V _C F = 5 V	,						
f = 1 kHz; B = 200 Hz	F	typ.			2		dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Collector connected to case

Accessories: 56246 (distance disc).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				BCY78 B	CY79	
Collector-emitter voltag	$e(V_{BE} = 0)$	-V _{CES}	max.	32	45	V
Collector-emitter voltag	e (open base)	-V _{CEO}	max.	32	45	V
Emitter-base voltage (open collector)		-V _{EBO}	max.	5	5	V
Currents				NCE DATA	FERE	
Collector current (d.c.)		$-I_C$	max.	200		mA
Base current (d.c.)		-I _B	max.	20		mA
Power dissipation						
Total power dissipation u	ip to T _{amb} = 45 °C	P _{tot}	max.	345		mW
7 345 mW 1000 mW	ip to T _{case} = 45 °C	P _{tot}	max.	1000		mW
Temperatures						
Storage temperature		T_{stg}		-65 to 200		°C
Junction temperature		Тj	max.	200		°C
THERMAL RESISTANCE						
From junction to ambien	t in free air	R _{th} j-a	= HM 8	0,45		°C/mW
From junction to case		R _{th j-c}	=	0, 15		°C/mW

CHARACTERISTICS	T _{amb} = 25 °C u	nless o	otherw	ise spe	cified
Collector cut-off currents		E	CY78	BCY79	Collec
$V_{BE} = 0$; $-V_{CE} = 25 \text{ V}$	-I _{CES}	typ.	2 20	0 = -,1	nA nA
$V_{BE} = 0$; $-V_{CE} = 35 \text{ V}$	-I _{CES}	typ.	00=10 	2 20	nA nA
$V_{BE} = 0$; $-V_{CE} = 25 \text{ V}$; $T_{amb} = 150 ^{o}\text{C}$	-I _{CES}	<	10	-	μΑ
$V_{BE} = 0$; $-V_{CE} = 35 \text{ V}$; $T_{amb} = 150 ^{o}\text{C}$	-I _{CES}	<	2 L M	10	μΑ
$V_{BE} = 0$; $-V_{CE} = -V_{CEOmax}$	-I _{CES}	<	100	100	nA
$-V_{EB} = 0.2 \text{ V}; -V_{CE} = -V_{CEOmax}; T_{amb} = 100$	°C -ICEX	<	20	20	μΑ
Emitter cut-off current					
$I_{C} = 0$; $-V_{EB} = 4 \text{ V}$	$-I_{\mathrm{EBO}}$	<	20	20	nA
Collector-emitter breakdown voltage				41.01	
$V_{\rm BE}$ = 0; $-I_{\rm C}$ = 10 μA	-V _{(BR)CES}	>	32	45	V
$I_B = 0$; $-I_C = 2 \text{ mA}$	-V _{(BR)CEO}	>	32	45	V
Emitter-base breakdown voltage					
$I_C = 0$; $-I_E = 1 \mu A$	-V(BR)EBO	>		5	V
Base-emitter voltage					
$-I_{\rm C}$ = 10 μA ; $-V_{\rm CE}$ = 5 V	$-v_{BE}$	typ.	55	50	mV
$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$	$-V_{BE}$	typ. 600		50_	mV mV
$-I_C = 10 \text{ mA}; -V_{CE} = 1 \text{ V}$	$-v_{BE}$	typ.	68	30	mV
$-I_C = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$	$-V_{\mathrm{BE}}$	typ.	75	50	mV
Saturation voltages					Sme
$-I_C = 10 \text{ mA}; -I_B = 250 \mu\text{A}$	-V _{CEsat}	typ.	12 2.5		mV mV
	-V _{BE} sat	typ.	70 to 85		mV mV
$-I_{\rm C}$ = 100 mA; $-I_{\rm B}$ = 2,5 mA	-V _{CEsat}	typ.	40 80		mV mV
	-V _{BEsat}	typ. 700	85 to 120		mV mV
Transition frequency at f = 35 MHz					
$-I_{\rm C} = 10 \text{ mA}; -V_{\rm CE} = 5 \text{ V}$	f_{T}	typ.	18	80	MHz

CHARACTERISTICS (continued)	Tamb	= 25 0	C unle	ess of	herw	ise sp	ecified
Collector capacitance at f = 1 MHz							
$I_E = I_e = 0; -V_{CB} = 10 \text{ V}$	$C_{\mathbf{c}}$	typ.					
Emitter capacitance at f = 1 MHz							
$I_C = I_c = 0; -V_{EB} = 0,5 \text{ V}$	C _e .	typ.					,
Noise figure at $R_S = 2 \text{ k}\Omega$							
$-I_{C}$ = 200 μA ; $-V_{CE}$ = 5 V f = 1 kHz; B = 200 Hz	F	typ.					
D.C. current gain	,		8-VII 9-VII		IX	X	
$-I_{\rm C} = 10 \ \mu A \ ; -V_{\rm CE} = 5 \ V$	h_{FE}	> typ.	140	30 200	40 270	100 340	
$-I_{C} = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$	h_{FE}	> typ. <	120 170 220	180 250 310	350	380 500 630	
$-I_C = 10 \text{ mA}; -V_{CE} = 1 \text{ V}$	h_{FE}	> typ. <	180 -	260	160 360 630	240 500 1000	
$-I_C = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$	h_{FE}	>	40	45	60	60	
h-parameters at f = 1 kHz				ao'	- ;	huj 01	
$-I_C = 2 \text{ mA}; -V_{CE} = 5 \text{ V}$						-	
Input impedance	hie	typ.	2,7		4,5		
Reverse voltage transfer ratio	h_{re}	typ.	1,5	2	2	3	10-4
Small-signal current gain	h_{fe}	> typ. <	125 200 250	260	250 330 500	350 520 700	= OI-

50 μA/V

24

30

30 | 50 | 60 | 100 μA/V

18

typ.

hoe

Output admittance

CHARACTERISTICS (continued)

itching times					
$-I_{Con} = 10 \text{ mA}; -I_{Bon} = I_{Boff} = 1 \text{ mA}$ R1 = R2 = 5 k Ω ; R ₁ = 990 Ω					
$V_B = 3,6 \text{ V}$	delay time	td	typ.	35	r
	rise time	tr	typ.	50	r
	turn-on time $(t_d + t_r)$	ton	typ.	85 150	I
	storage time	ts	typ.	400	ľ
	fall time	tf	typ.	80	I
	turn-off time $(t_S + t_f)$	toff	typ.	480 800	18 T
$I_{Con} = 100 \text{ mA}; -I_{Bon} = I_{Boff} = 10 \text{ mA}$ R1 = 500 \Omega; R2 = 700 \Omega; R _L = 98 \Omega					
$V_B = 5 \text{ V}$	delay time	td	typ.	5	1
	rise time	tr	typ.	50	I
	turn-on time (t_d+t_r)	ton	typ.	55 150	r
	storage time	t_{S}	typ.	250	r
	fall time	$t_{\mathbf{f}}$	typ.	200	ľ
	turn-off time $(t_S + t_f)$	toff	typ.	450 800	n

Test circuit:

N-P-N SILICON PLANAR DUAL TRANSISTORS FOR DIFFERENTIAL AMPLIFIERS

Matched dual n-p-n transistors in a TO-71 metal envelope with all leads insulated from the case. They are primarily intended for differential amplifier applications in general industrial service; e.g. instrumentation and control.

Products are divided into three types according to their matching accuracy.

The BCY87 and BCY88 are intended for applications in pre-stages of differential amplifiers where low offset, drift and noise are of prime importance. The BCY89 is for second stages, long-tailed pairs and more general purposes.

QUICK REFERENCE DATA

Ratings Collector-base voltage (open emitter) 45 V V_{CBO} max Collector-emitter voltage (open base) VCEO max 40 V Total power dissipation up to Tamb = 25 °C Ptot 150 mW max 175 °C Junction temperature max

Characteristics of the complete device with collector-base voltage of 10 V and sum of emitter currents from 10 to 100 μ A.

Ratio of collector current	te at			BCY87	BCY88	BCY89	
V _{1B-1E} = V _{2B-2E}	08 <	11C/12C	0	,9-1,11	0,8-1,25	0,67-1,5	
Base current difference at V1B-1E = V2B-2E	t	1 _{1B} -1 _{2B}	<	25	80	300 nA	
Equivalent differential vo change with temperatu		$\left \frac{\Delta V}{\Delta T} \right $	<	3	V 01 6	10 μV/ος)
Equivalent differential cu change with temperatu		$\left \frac{\Delta 1}{\Delta T} \right $	<	0,5	2	10 nA/°C	;

MECHANICAL DATA

TO-71

All leads insulated from the case

Accessories: 56263 (cooling fin).

Dimensions in mm

^{*} $T_{amb} = -20$ °C to +90 °C.

RATINGS see page 7

CHARACTERISTICS of the individual transistors

 T_{amb} = 25 o C unless otherwise specified

Collector cut-off currents		tner	BCY87	BCY88	BCY89	They are
I _E = 0; V _{CB} = 20 V; T _{amb} = 90 °C	ICBO	<	5	20	a nodayı bivit ası	nA
I_E = 0; V_{CB} = 20 V	I_{CBO}	<	ntended orime in	ens 88YO	10	nA
D.C. current gain				.8980	pury lense	
$I_C = 5 \mu A$; $V_{CB} = 10 \text{ V}$	$h_{\rm FE}$	>	80	TAG_30A	38333	
$I_C = 50 \mu\text{A}; V_{CB} = 10 \text{V}$	h_{FE}	> <	100 450	100 450	100 450	
$I_C = 500 \ \mu A; \ V_{CB} = 10 \ V$	h_{FE}		(esset ne drife T	120 600	en-Ptet plestimen	
$I_C = 10 \text{ mA}; V_{CB} = 10 \text{ V}$	$h_{\rm FE}$	> <	_	_ 950	100 600	
Transition frequency					ц 001 от	
$-I_E = 50 \mu\text{A}; V_{CB} = 10 \text{V}$	f_{T}	>	10	10	10	MHz
$-I_{\rm E}$ = 500 $\mu{\rm A}$; $V_{\rm CB}$ = 10 V	f_{T}	>	50	50	50	MHz
Collector capacitance at f = 1 MHz					EA = BI	
$I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C_{c}	<	3.5	3.5	3.5	pF
Noise figures			1		melliko m	
I_C = 50 μ A; V_{CE} = 5 V; R_S = 10 k Ω Bandwidth 10 Hz to 15 kHz	F	<	3	4	4	dB
1 kHz spot noise figure I _C = 50 μA; V _{CE} = 5 V; R _S = opt.	F	<	4	5	5	dB -
Bandwidth = 200 Hz						

CHARACTERISTICS of the complete device.

These characteristics are valid under the following conditions:

- a. Collector-base voltage of both transistors not exceeding 10 V (V1C-1B = V2C-2B \leq 10 V)
- b. Sum of the emitter currents from 10 to 100 μA –(I $_{1E}$ + I $_{2E})$ = 10 to 100 μA

MATCHING CHARACTERISTICS

Ratio of collector curr	ents	BCY87	BCY88	BCY89
$v_{1B-1E} = v_{2B-2E}$	I_{1C}/I_{2C}	0.9-1.11	0.8-1.25	0.67-1.5
Difference between bas	se-emitter voltages		-	
$I_{1C} = I_{2C}$	$V_{1B-1E} - V_{2B-2E}$	< 3	6	10 mV
Difference between bas	se currents			
$v_{1B-1E} = v_{2B-2E}$	I _{1B} -I _{2B}	< 25	80	300 nA
D.C. current gain ration I _{1C} = I _{2C}	o h _{1FE} /h _{2FE}	0.9-1.11	0.8-1.25	a 366-198 300

Illustration of matching characteristics:

$$\begin{split} \frac{I_{2E}}{I_{1E}} &= \exp. \ \frac{q}{KT} \cdot \Delta V_{BE} \\ \frac{I_{2E}}{I_{1E}} &= measured \ at \ \Delta V_{BE} = 0 \\ \Delta V_{BE} &= neasured \ at \ \frac{I_{2E}}{I_{1E}} = 1 \end{split}$$

CHARACTERISTICS of the complete device (continued)

Equivalent circuit for drift

In the equivalent circuit the transistors are considered to be drift free. All temperature coefficients are concentrated in the voltage source $\frac{\Delta V}{\Delta T}$ and in the current source $\frac{\Delta I}{\Delta T}$.

It should be noted that the differential current change given is only valid when the source resistances are almost equal; the differential voltage change only when the base-emitter voltages are almost equal.

Block symbol of test amplifier

The test amplifier, used in the tests on page 5, is described on pages 6 and 7. It is represented by the following amplifier symbol:

CHARACTERISTICS of the complete device (continued)

Equivalent differential voltage change with temperature

to ensure a uniform temperature			BCY87	BCY88	BCY89	
$T_{amb} = -20 \text{ to } +90 ^{\circ}\text{C}$	$\left \frac{\Delta V}{\Delta T} \right $	typ.	. 1	2 6	4 10	μV/oC μV/oC
Equivalent differential current chang	e with ter	npera	ture		02	
$T_{amb} = -20 \text{ to } +90 ^{\circ}\text{C}$	$\left \frac{\Delta I}{\Delta T} \right $	<	0.5	2	10	nA/°C
		-[$\frac{\Delta I}{\Delta T}$			
R2=10kΩ 1%		TV8YC	8	N ALEL	R2=10kΩ	19/0
	Tell	R _S =5	0kΩ 1%		171	-
	%	S1	TH	-		
RV1 (25k(J))	R1=100.0.1%	R _S =5	0kΩ 1%	R ₂	V1 5kΩ)	-O-
7,208414	ED/46 -	S2				Recorder
	Ļ	5	QM.		720	98412
NOTE			=			
To prevent contact potentials,		-1	v 0	+	1V	

Amplification factor determined by feedback circuit: $\frac{R2}{R1}$ = 100 Output voltage against time is recorded.

The temperature of the amplifier is adjusted to T_1 between -20 and +90 °C. When it has stabilized, the output voltage is brought to zero ($\left|VT_1\right|<1$ mV)^1). The amplifier temperature is then adjusted to T_2 between -20 and +90 °C. When it has stabilized the output voltage can be read off.

$$\text{Then: } \frac{\Delta V}{\Delta T} = \frac{V_{T2} - V_{T1}}{T_2 - T_1} \cdot \frac{R1}{R2} \quad \text{or } \frac{\Delta I}{\Delta T} = \frac{V_{T2} - V_{T1}}{T_2 - T_1} \cdot \frac{R1}{R2} \cdot \frac{1}{2RS}$$

 $\frac{\Delta V}{1}$: adjusted by RVI

connections should be soldered.

For $\frac{\Delta I}{\Delta T}$: first by RV1 with S1 and S2 closed, then by RV2 with the switches open.

Differential test-amplifier

The test amplifier (including feedback resistors, source-resistors and biasing-resistors) should be mounted in a small box to ensure a uniform temperature throughout.

 $^{^{1}}$) Relative temperature coefficient $< 10^{-5}/^{\circ}C$

²⁾ The device at the input is the device under test

Performance of the test amplifier				
Open loop voltage gain ($Z_L = 10 \text{ k}\Omega$)	G_{v}	typ.	105	
Frequency at which $G_V = 1$	f_1	typ.	10	MHz
Max. common mode input voltage range			+10	V
Max. output current			<u>+</u> 2.5	mA
Max. output voltage			±10	V
Input resistance	R_i		100	$k\Omega$
Output resistance	Ro	typ.	20	$\mathbf{k}\Omega$
Common mode rejection ratio			105	
RATINGS (Limiting values) 1) Voltages (each transistor) Collector-base voltage (open emitter) Collector-emitter voltage (open base)	10 ⁶ 10 ⁷	max.	08 f (H	z) 10 ⁹
I _C = 10 mA	VCEO	max.	40	V
Emitter-base voltage (open collector)	V _{EBO}	max.	5	V
Currents (each transistor)	220			
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	30	mA
Total power dissipation up to Tamb = 25 °C	P _{tot}	max.	150	mW
Temperatures				
Storage temperature	$T_{ m stg}$	max.	175	οС
Junction temperature	Tj	max.	175	oC
THERMAL RESISTANCE				
From junction to ambient	R _{th} j-a	=	1	°C/mW
	tii j-a			J, 111 VV

¹⁾ Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

	001 (eb)
	of the contraction is a 2007 to
	Voltages (each transistor) Collector-base voltage (open emitter) Collector-coatter voltage (open base)
	Voltages (each transistor) Collector-base voltage (open emitter) Collector-enitter voltage (open base) 10 = 10 mA
	Voltages (each transistor) Collector-base valtage (open emitter) Collector
	Voltages (each transistor) Collector-base voltage (open emitter) Collector 10 ** 10 mA Contrar-base voltage (open base) Contrarts (each transistor)
	Voltages (each transistor) Collector-base valtage (open emitter) Collector confitter voltage (open base) Lg = 10 mA Contracts (each transistor) Contracts (each transistor) Collector current (d.e.)
	Voltages (each transistor) Collector-base voltage (open emitter) 16 = 10 mA Emitter-base voltage (open base) Carrents (each transistor) Collector current (d.c.) Total power dissipation up to Tamb = 25 qC
	Voltages (each transistor) Collector-base voltage (open emitter) LG = 10 mA Emitter-base voltage (open base) Contracts (each transistor) Collector current (3.c.) Total power dissipation up to Tamb = 25 op
	Voltages (each transistor) Collector-base voltage (open emitter) 1G = 10 mA Emitter-base voltage (open haue) Corrects (each transistor) Collector current (a.c.) Total power dissipation up to Tamb = 25 qQ Temperatures Scorage temporature
	Voltages (each transistor) Colisctor-base voltage (open emitter) LG = 10 mA Emitter-base voltage (open base) Carrents (each transistor) Coliscior current (d.c.) Total power dissipation up to Tamb = 25 QC Temperatures Storage temperature [unction temperature]
	Collector-base voltage (open eminer) Collector-coninter voltage (open base) Lo 10 mA Eminer-base voltage (open collector) Carrents (each transistor) Collector current (d.c.) Total power dissipation up to Tamb = 25 occ Temperatures

publication 134.

SILICON PLANAR TRANSISTOR

N-P-N transistor in a plastic TO-92 variant. The BF198 has a very low feedback capacitance and is intended for use in the forward gain control stage of the television i.f. amplifier.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	40	V
Collector-emitter voltage (open base)	VCEO	max.	30	V
Collector current (d.c.)	1 _C	max.	25	mA
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	500	mW
Junction temperature	T _j	max.	150	oC
Transition frequency at f = 100 MHz $I_C = 4$ mA; $V_{CE} = 10$ V	f _T	typ.	400	MHz
Feedback capacitance at $f = 10,7$ MHz $I_C = 1$ mA; $V_{CE} = 10$ V	-C _{re}	typ.	200	fF
Max. unilateralized power gain $I_C = 4 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $f = 35 \text{ MHz}$ $f = 45 \text{ MHz}$	G _{UM} G _{UM}	typ.	1 1 1	dB dB
Gain control range	ΔG_{tr}	typ.	60	dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

Dimensions in mm

RATINGS	Limiting	values	in	accordance with the Absolute Maximum S	ystem	(IEC 134)
---------	----------	--------	----	--	-------	-----------

V	ol	ta	g:e	es
			<u> </u>	

Collector-base voltage (open emitter)	v_{CBO}	max.	40	V	
Collector-emitter voltage (open base)	v_{CEO}	max.	30	V	
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	4	V	

Currents

Collector current (d.c.)	$I_{\mathbf{C}}$	max.	25	mA	
Collector current (peak value)	I_{CM}	max.	25	mA	

Power dissipation

Total power dissipation up to $T_{amb} = 25$ ^{o}C	P _{tot}	max.	500	mW
--	------------------	------	-----	----

Temperatures

Storage temperature	T_{stg}	-65 to	+150	°C
Junction temperature	T_{j}	max.	150	°C

THERMAL RESISTANCE

From junction to ambient in free air	$R_{th j-a} =$	0.25	°C/mW

CHARACTERISTICS

 T_{amb} = 25 ^{o}C unless otherwise specified

CHARACIERISTICS	amb	O dilloc	o ourer	TOO DE	,0011100
Base current at about 50 dB gain control					
$I_C = 6 \text{ mA}; V_{CE} = 2 \text{ V}$		I_B	<	270	μА
I_C = 15 mA; V_{CE} = 5 V		I_B	<	1.5	mA
Base current					
$I_C = 4 \text{ mA}; V_{CE} = 10 \text{ V}$		I_{B}	typ.	60 150	μΑ μΑ
Base-emitter voltage 1)					
$I_C = 4 \text{ mA}$; $V_{CE} = 10 \text{ V}$		v_{BE}	typ.	760 850	mV mV
Feedback capacitance at f = 10.7 MHz					
$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$	C to say and	-C _{re}	typ.	200	fF
Transition frequency at f = 100 MHz					
$I_C = 4 \text{ mA}$; $V_{CE} = 10 \text{ V}$		f_{T}	typ.	400	MHz
Noise figure					
$I_C = 4 \text{ mA}; V_{CE} = 10 \text{ V}$ $G_S = 10 \text{ mA/V}; f = 35 \text{ MHz}; B_S = 0$		F	typ.	3	dB
y parameters (common emitter)					
$I_C = 4 \text{ mA}$; $V_{CE} = 10 \text{ V}$					
		<u>f</u>	= 35	45	MHz
Input conductance	gie	typ.	3.2	4.8	mA/V
Input capacitance	Cie	typ.	37	35	pF
Feedback admittance	yre	typ.	47	60	μA/V
Phase angle of feedback admittance	φ_{re}	typ.	268°	268 ⁰	
Transfer admittance	Уfе	typ.	105	100	mA/V
Phase angle of transfer admittance	φ_{fe}	typ.	3400	3400	
Output conductance	g _{oe}	typ.	50	60	μA/V
Output capacitance	Coe	typ.	1.3	1.3	pF
Maximum unilateralized power gain					
Maximum unilateralized power gain $G_{UM} \text{ (in dB)} = 10 \log \frac{ \text{yfe} ^2}{4g_{ie}g_{oe}}$					
$I_C = 4 \text{ mA}; V_{CE} = 10 \text{ V}$	G_{UM}	typ.	42	39	dB
1) VBE decreases by about 1.7 mV/°C with	increasing	temper	ature.		

Equivalent gain control transistor

To ensure an almost constant input admittance and an output conductance that varies little with gain control, we recommend that where a BF198 is used in a gain controlled i.f. stage, a series base capacitor of 22 pF and a bias resistor of $1~\mathrm{k}\Omega$ be used.

The transistor with these additional components is effectively an "equivalent transistor" for gain control purposes, the signal handling capability of which may be expressed in terms of voltage. (Without these components the varying input admittance means that the signal handling capability can only be expressed in terms of power).

The signal handling capability of the equivalent transistor as a function of ΔG_{tr} (the reduction in transducer gain with gain control) will be found on Figs. 3 to 6.

- a. Voltage versus ΔG_{tr} curves for a γ distortion of 5% are below.
- b. Voltage versus $\Delta G_{\mbox{tr}}$ curves for an in-band cross modulation factor of 1% are on Figs. 5 and 6.

Graphs of the y-parameters are on Figs. 13 to 28.

Fig. 3

Fig. 4

Fig. 7

Fig. 8

June 1971

y-parameters of the equivalent gain control transistor, including base capacitor and base resistor as shown on Fig. 2 (dashed curves apply to the transistor only).

240

y-parameters of the equivalent gain control transistor, including base capacitor and base resistor as shown on Fig. 2 (dashed curves apply to the transistor only).

y-parameters of the equivalent gain control transistor, including base capacitor and base resistor as shown on Fig. 2 (dashed curves apply to the transistor only).

y-parameters of the equivalent gain control transistor, including base capacitor and base resistor as shown on Fig. 2 (dashed curves apply to the transistor only).

APPLICATION INFORMATION

First stage of an i.f. amplifier

Basic circuit with voltage gain control: $R_E + R_C = 3.9 \text{ k}\Omega$; $-V_{EE} = 25 \text{ V}$ current gain control: $R_E + R_C = -1 \text{ k}\Omega$; $-V_{EE} = 20 \text{ V}$

Transducer gain

output power in load RL

f = 36.4 MHz; I_C = 4 mA; $R_E + R_C$ = 3.9 kQ; $-V_{EE}$ = 25 V G_{tr} typ. 25.5 dB

Gain control range (see also upper graphs next page)

 ΔG_{tr} typ.

60 dB

Fig. 32

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant envelope.

The BF199 has a very low feedback capacitance and is intended for use in the output stage of a vision i.f. amplifier.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	40	V
Collector-emitter voltage (open base)	VCEO	max.	25	V
Collector current (d.c.)	IC	max.	25	mΑ
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	500	mW
Junction temperature	Ti	max.	150	οС
Transition frequency at $f = 100 \text{ MHz}$ $I_C = 5 \text{ mA}$; $V_{CE} = 10 \text{ V}$	f _T	typ.	550	MHz
Feedback capacitance at f = 10,7 MHz $I_C = 1$ mA; $V_{CE} = 10$ V	C _{re}	typ.	340	fF
Maximum unilateral power gain $I_C = 7 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $f = 35 \text{ MHz}$	GUM	typ.	44,4	
Video detector output voltage	Vo	typ.	7,7	V

MECHANICAL DATA

Fig. 1 TO-92 variant.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages				
Collector-base voltage (open emitter)	v_{CBO}	max.	40	V
Collector-emitter voltage (open base)	VCEO	max.	25	V
Emitter-base voltage (open collector)	V_{EBO}	max.	4	V
Currents				
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	25	mA
Collector current (peak value)	ICM	max.	25	mA
Power dissipation				
Total power dissipation up to $T_{amb} = 25 {}^{o}C$	P _{tot}	max.	500	mW
Temperatures				
Storage temperature	Tstg	-65 to	+150	°C
Junction temperature	T_j	max.	150	°C
THERMAL RESISTANCE				

Rth j-a

0.25

From junction to ambient in free air

 $I_C = 7 \text{ mA; } V_{CE} = 10 \text{ V}$

ΙΒ	typ.	60 μA 185 μA
V _{BE}	typ.	775 mV 925 mV
fT	typ.	550 MHz
C _{re}	typ.	340 fF
9ie	typ.	5,5 mA/V
Cie	typ.	55 pF
y _{re}	typ.	75 μA/V
$arphi_{re}$	typ.	268°
Yfe	typ.	220 mA/V
φfe	typ.	3380
goe	typ.	80 μA/V
Coe	typ.	2,0 pF
men (dire) agenter sense ant our susses Ant S = antistica antir 3 Dear	V _{BE} f _T C _{re} gie Cie Yre φ _{re} Yfe φfe goe	TB VBE Typ. VBE Typ. Typ.

G_{UM} typ. 44,4 dB

 $^{^{\}ast}~\text{V}_{\text{BE}}$ decreases by about 1,7 mV/K with increasing temperature.

APPLICATION INFORMATION

Output stage of television video i.f. amplifier with the BF199 transistor, followed by a video detector circuit.

APPLICATION INFORMATION (continued)

Video detector output voltage at f = 38.9 MHz 1)

$$I_C = 7.2 \text{ mA}$$
; $V_{CE} = 16.6 \text{ V}$

$$V_O$$
 $\stackrel{>}{typ}$ $\stackrel{6}{7.7}$ V

Transducer gain at f = 36.4 MHz

$$G_{tr}$$
 (in dB) = 10 log $\frac{\text{output power in load } R_L}{\text{available power from source with } R_S}$

$$I_C = 7.2 \text{ mA}$$
; $V_{CE} = 16.6 \text{ V}$

Gtr typ. 25.5 dB

Tuning frequency for all tuned circuits is 37 MHz

 $^{^1)}$ The output voltage V_O is difined as the voltage across the 2.7 k $\!\Omega$ detector load R_L for 30% synchronisation pulse compression.

H.F. SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in a plastic envelope, recommended for a.m. mixers and i.f. amplifiers in a.m./f.m. receivers.

QUICK REFERENCE DATA

Collector-base voltage (open emitte	r)	V _{CBO}	max.	nichtoto	40	V
Collector-emitter voltage (open base	e)	VCEO	max.		40	V
Collector current (d.c.)		1 _C	max.		25	mΑ
Total power dissipation up to Tamb	= 45 °C	P _{tot}	max.		250	mW
Junction temperature		T _i both	max.		150	oC
				BF240	BF241	
Base current I _C = 1 mA; V _{CE} = 10 V		IB		4,5-15	8-28	μA
Transition frequency I _C = 1 mA; V _{CE} = 10 V		fT	typ.	380	350	MHz
Feedback capacitance at f = 1 MHz I _C = 1 mA; V _{CE} = 10 V		-C _{re}	<		0,34	pF
Noise figure						
$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$ $R_S = 200 \Omega; f = 0.2 \text{ MHz}$		F	<		3,5	dB

MECHANICAL DATA

RA		

NATINGS					
Limiting values in accordance with the Absolute Maximum	System (IE	C 134)			
Collector-base voltage (open emitter)	VCBO	max.		40	V
Collector-emitter voltage (open base)	VCEO	max.		40	V
Emitter-base voltage (open collector)	VEBO	max.		4	V
Collector current (d.c.)	Ic	max.		25	mΑ
Total power dissipation up to T _{amb} = 45 °C	P _{tot}	max.		250	mW
Storage temperature	T _{stg}		-65 to	+ 150	oC
Junction temperature	Тј	max.		150	оС
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	ngqo) i		420	K/V
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Collector cut-off current				100	
$I_E = 0; V_{CB} = 20 \text{ V}$	CBO	<		100	nA
Base-emitter voltage I _C = 1 mA; V _{CE} = 10 V	V_{BE}	typ.	650	700 to 740	
Base current			BF240	BF241	
I _C = 1 mA; V _{CE} = 10 V	I _B		4,5-15	8-28	μA
Transition frequency at f = 100 MHz I _C = 1 mA; V _{CE} = 10 V	f_{T}	typ.	380	350	МН
Feedback capacitance at f = 1 MHz I _C = 1 mA; V _{CE} = 10 V	C _{re}	typ.	0,27 0,34	0,27	
Noise figure			ATAO J	ANICA TO 92	HOE L.I
$R_S = 200 \Omega$; $f = 0,2 MHz$	F	typ.	1,5 3,5	2,0 3,5	

CHARACTERISTICS (continued)

 $T_i = 25$ $^{\circ}C$ unless otherwise specified

y parameters (common emitter) Lead length = 3 mm

I_C = 1 mA; V_{CE} = 10 V

			BF2	240	BF	241	
	f	=	0,45	10,7	0,45	10,7	MHz
Input conductance	gie	typ.	0, 2	0,3	0, 4	0,5	mA/V
Input capacitance	Cie	typ.	17	14	23	19	pF
Transfer admittance	Yfe	typ.	37	37	37	37	mA/V
Phase angle of transfer admittance	φ_{fe}	typ.	00	00	0°	00	
Output conductance	goe	< -	8, 3	10,5	8,3	10,5	$\mu A/V$
Output capacitance	Coe	typ.	1	1	1	1	pF
Feedback admittance	Yre	typ.	0,75	18	0,75	18	$\mu A/V$
Phase angle of feedback admittance	φ_{re}	typ.	2700	270°	270°	270°	

 $I_C = 4 \text{ mA}$; $V_{CE} = 10 \text{ V}$; f = 35 MHz (BF240, BF241)

Input conductance	gie	typ.	4	mA/V
Input capacitance	Cie	typ.	25	pF
Transfer admittance	Уfe	typ.	125	mA/V
Output conductance	goe	typ.	62	μA/V
Output capacitance	Coe	typ.	1	pF

H.F. SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a plastic envelope especially intended for r.f. stages in f.m. front-ends in common base configuration.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	30	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	30	V
Collector current (d.c.)	-IC	max.	25	mA
Total power dissipation up to T _{amb} = 45 °C	P _{tot}	max.	250	mW
Junction temperature	Tj	max.	150	oC
Base current $-I_C = 4 \text{ mA}; -V_{CE} = 10 \text{ V}$	1 _B	typ.	80 160	μΑ μΑ
Transition frequency -I _C = 4 mA; -V _{CE} = 10 V	fT	typ.	450	MHz
Noise figure at f = 100 MHz $-I_C = 2 \text{ mA}$; $-V_{CE} = 10 \text{ V}$; $G_S = 16,7 \text{ mA/V}$	F	typ.	3	dB
Feedback capacitance at f = 1 MHz VEB = 0; -VCB = 10 V	C_{rb}	typ.	0,1	pF

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

DAT	INIOO
BAI	INGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	-V _{CBO}	max.	30	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	30	V
Emitter-base voltage (open collector)	$-V_{EBO}$	max.	4	V
Collector current (d.c.)	-IC	max.	25	mΑ
Total power dissipation up to T _{amb} = 45 °C	P _{tot}	max.	250	mW
Storage temperature	Teta	-65 to +	150	oC

Τj

THERMAL RESISTANCE

Junction temperature

From junction to ambient in free air $R_{th j-a} = 420 \text{ K/W}$

CHARACTERISTICS			T_{j}	= 25 °C
Collector cut-off current				
I _E = 0;-V _{CB} = 30 V	-I _{CBO}	<	50	nA
Emitter cut-off current				
$I_{C} = 0$; $-V_{EB} = 4 \text{ V}$	-I _{EBO}	<	10	μΑ
Base current				
$-I_{\rm C} = 4 \text{ mA}; -V_{\rm CE} = 10 \text{ V}$	-I _B	typ.	80 160	μA μA
$-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$	-IB	typ.	22	μA
Base-emitter voltage				
$-I_{C} = 4 \text{ mA}; -V_{CE} = 10 \text{ V}$	-V _{BE}	typ.	0,76	V
Transition frequency at f = 100 MHz				
$-I_{C} = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$	f_{T}	typ.	350	MHz
$-I_{C} = 4 \text{ mA}; -V_{CE} = 10 \text{ V}$	f_{T}	typ.	450	MHz
$-I_{\rm C}$ = 8 mA; $-V_{\rm CE}$ = 10 V	f_{T}	typ.	440	MHz
Feedback capacitance at f = 1 MHz				
$V_{EB} = 0; -V_{CB} = 10 \text{ V}$	c_{rb}	typ.	0,1	pF
Noise factor at f = 100 MHz				
$-I_{\rm C} = 2 \text{ mA}; -V_{\rm CE} = 10 \text{ V};$				
$G_S = 16,7 \text{ mA/V}$	F	typ.	3	dB
$-I_{\rm C} = 5 \text{ mA}; -V_{\rm CE} = 10 \text{ V};$				
$G_S = 6,7 \text{ mA/V}; -jB_S = 5 \text{ mA/V}$	F	typ.	3,5	dB
y-parameters (common base) at f = 100 MHz				
$-I_C = 4 \text{ mA}; -V_{CB} = 10 \text{ V}$				
Input conductance	gib	typ.	125	mA/V
Input capacitance	-C _{ib}	typ.	64	pF
Transfer admittance	y _{fb}	typ.	100	mA/V
Phase angle of transfer admittance	$\varphi_{ ext{fb}}$	typ.	1470	
Output conductance	gob	typ.	40	μA/V
Output capacitance	Cob	typ.	1,25	pF
Feedback admittance	Уrb	typ.	220	μA/V
Phase angle of feedback admittance	$-\varphi_{ m rb}$	typ.	850	
		7		

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant envelope, intended for use in large-signal handling i.f. preamplifiers of TV receivers in combination with surface acoustic wave filters.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	40	V
Collector-emitter voltage (open base)	VCEO	max.	15	V
Collector current (d.c.)	1 _C	max.	100	mΑ
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	500	mW
Junction temperature	Ti	max.	150	oC
D.C. current gain $I_C = 10 \text{ mA}$; $V_{CE} = 1 \text{ V}$	hFE	>	40	
Transition frequency at f = 100 MHz $I_C = 40 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	>	490	MHz
Voltage gain at f = 36 MHz (see Fig. 4) $I_C = 20 \text{ mA}$; $V_{CE} \approx 10.4 \text{ V}$	G _V	typ.	24	dB
Interference voltage for K = 1% (see Fig. 4)	V(int)rms	typ.	120	mV

MECHANICAL DATA

Fig. 1 TO-92 variant.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	VCBO	max.	40	V
Collector-emitter voltage (open base)	VCEO	max.	15	V
Emitter-base voltage (open collector)	VEBO	max.	4,5	V
Collector current (d.c.)	IC	max.	100	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	500	mW
Storage temperature	Tstg	-65 to +	150	oC
Junction temperature	TiTAG	max.	150	oC

THERMAL RESISTANCE

From junction to ambient in free air

Fig. 2 Power dissipation derating curve as a function of ambient temperature.

CHARACTERISTICS			
T _i = 25 °C unless otherwise specified			
Collector cut-off current I _E = 0; V _{CB} = 20 V	СВО	<	400 nA
I _E = 0; V _{CB} = 20 V; T _i = 125 °C	ICBO	<	30 μΑ
Emitter cut-off current I _C = 0; V _{EB} = 2 V	IEBO	<	100 nA
D.C. current gain IC = 10 mA; VCE = 1 V	hFE	>	40
Transition frequency at f = 100 MHz $I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	>	500 MHz
$I_C = 40 \text{ mA}; V_{CE} = 10 \text{ V}$	fT	>	490 MHz
Collector capacitance at f = 1 MHz I _E = I _e = 0; V _{CB} = 10 V	C_{c}	typ.	2,2 pF 3,5 pF
Emitter capacitance at $f = 1 \text{ MHz}$ $I_C = I_C = 0$; $V_{EB} = 1 \text{ V}$	C _e	<	4,5 pF
Feedback capacitance at f = 1 MHz I _C = 0; V _{CE} = 10 V	c_{re}	typ.	1,6 pF 2,2 pF

Fig. 3 $V_{CE} = 10 \text{ V}$; $T_j = 25 \text{ °C}$.

APPLICATION INFORMATION

(1) Test instrument load.

Fig. 4 Large-signal handling i.f. preamplifier for surface acoustic wave filter.

Performance			
Supply voltage	V _{CC}	=	12 V
Collector current	1 _C	=	20 mA
Measuring frequency	fi	=	36 MHz
Input impedance	Zi	typ.	50 Ω//1 pF
Output impedance	Z _o	<	100 Ω
Voltage gain $G_{V} \text{ (in dB)} = 20 \log \frac{V_{O}}{V_{i}}$	G _v	typ.	24 dB
Interference voltage for K = 1%*	V(int)rms	typ.	120 mV

^{*} Input terminal voltage at 50 Ω internal resistance of signal generator, interference frequency 40 MHz, 80% modulated with 1 kHz.

SILICON EPITAXIAL TRANSISTORS

N-P-N transistors in plastic TO-92 variant envelope primarily intended for class-B video output stages in colour television and professional monitor equipment, P-N-P complements are BF421 and BF423.

QUICK REFERENCE DATA

			BF420	BF422	
Collector-base voltage (open emitter)	V _{CBO}	max.	300	250	V
Collector-emitter voltage	VCER	max.	300	requiat s	V
	 VCEO	max.	Bruchere	250	V
Collector current (peak value)	I _{CM}	max.	DMATE 1	00	mA
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	8	30	mW
Junction temperature	Ti	max.	1	50	oC
D.C. current gain at $T_j = 25$ °C $I_C = 25$ mA; $V_{CE} = 20$ V	hFE	>		50	
Transition frequency I _C = 10 mA; V _{CE} = 10 V	fΤ	>	T consents V-000 -	60	MHz
Feedback capacitance at $f = 1 \text{ MHz}$ $I_C = 0$; $V_{CE} = 30 \text{ V}$	C _{re}	<	1	,6	pF

MECHANICAL DATA

Fig. 1 TO-92 variant.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

/
/
/
/
nΑ
nΑ
mW
C
C
Α
A
Α
/
ЛHz
F

^{*} Transistor mounted on a printed-circuit board, mounting pad for collector lead minimum 10 mm x 10 mm; maximum length 4 mm.

^{**} The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at VCE = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of the signal.

Fig. 2 Thermal impedance from junction to ambient versus pulse duration. Maximum lead length 3 mm; mounting pad for collector lead minimum 10 mm \times 10 mm.

Fig. 3 $V_{CE} = 20 \text{ V}$; $T_j = 25 \text{ °C}$.

Fig. 4 $V_{CE} = 10 \text{ V}$; $T_j = 25 \text{ °C}$; f = 35 MHz.

Fig. 5 $I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$.

Fig. 6 $V_{CB} = 200 V$.

Fig. 7 $I_C = 0$; f = 1 MHz; $T_j = 25 \,^{\circ}\text{C}$.

Fig. 8 $V_{CE} = 20 \text{ V}$; $T_j = 25 \text{ °C}$.

the pro- for the day a 30 h, or stort

SILICON EPITAXIAL TRANSISTORS

P-N-P transistors in plastic TO-92 variant envelope primarily intended for class-B video output stages in colour television and professional monitor equipment, N-P-N complements are BF420 and BF422.

QUICK REFERENCE DATA

			BF421	BF423	
Collector-base voltage (open emitter)	-V _{CBO}	max.	300	250	V
Collector-emitter voltage	-V _{CER}	max.	300	reconst e	٧
	-VCEO	max.	sustan	250	٧
Collector current (peak value)	-1 _{CM}	max.	10	0	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	83	0	mW
Junction temperature	Tj	max.	15	0	oC
D.C. current gain at $T_j = 25$ °C -1 C = 25 mA; $-V$ CE = 20 V	hFE	>	5	0	
Transition frequency $-I_C = 10 \text{ mA}$; $-V_{CE} = 10 \text{ V}$	fT	>	6	0	MHz
Feedback capacitance at $f = 1 \text{ MHz}$ -I _C = 0; -V _{CE} = 30 V	C _{re}	<	1,	6	pF

MECHANICAL DATA

Fig. 1 TO-92 variant.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BF421	BF423	
Collector-base voltage (open emitter)	-V _{CBO}	max.	300	250	V
Collector-emitter voltage $R_{BE} = 2.7 \text{ k}\Omega$	-V _{CER}	max.	300		V
I _B = 0	-VCEO	max.	itzsig ni e loug bos r	250	٧
Emitter-base voltage (open collector)	$-V_{EBO}$	max.		5	V
Collector current (d.c.)	-IC	max.	50)	mA
Collector current (peak value)	-ICM	max.	100)	mA
Total power dissipation up to T _{amb} = 25 °C*	P _{tot}	max.	830)	mW
Storage temperature	T _{stg}	-	65 to + 150)	oC
Junction temperature	Tj	max.	150)	oC
THERMAL RESISTANCE					
From junction to ambient*	R _{th j-a}	= 010	150)	K/W
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified.					
Collector cut-off currents			BF421	BF423	
$I_E = 0; -V_{CB} = 200 \text{ V}$	-I _{CBO}	<	10	10	nA
$R_{BE} = 2.7 \text{ k}\Omega; -V_{CE} = 200 \text{ V}; T_j = 150 \text{ °C}$	-ICER	<	10	10	μΑ
Emitter cut-off current					
$I_C = 0; -V_{EB} = 5 V$	-IEBO	<	10)	μΑ
D.C. current gain -I _C = 25 mA; -V _{CE} = 20 V	hFE	>	50	ADMA	
High-frequency knee voltage**	1.			-	
$-I_C = 25 \text{ mA}; T_j = 150 ^{\circ}\text{C}$	-VCEK	typ.	20		V
Transition frequency -I _C = 10 mA; -V _{CF} = 10 V	fT	>	60		MHz
Feedback capacitance at f = 1 MHz					
-I _C = 0; -V _{CE} = 30 V	Cre	<	1,6		pF

Transistor mounted on a printed-circuit board, mounting pad for collector lead minimum 10 mm x 10 mm; maximum length 4 mm.

^{**} The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at V_{CE} = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of the signal.

Fig. 2 Thermal impedance from junction to ambient versus pulse duration. Maximum lead length 3 mm; mounting pad for collector lead minimum 10 mm \times 10 mm.

Fig. 7 $I_C = 0$; f = 1 MHz; $T_i = 25$ °C.

Fig. 8 Typical values at $-V_{CE}$ = 20 V; T_j = 25 °C.

Fig. 8 Typical values at -VCE = 20 V; T_I = 25 °C

H.F. SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in a plastic envelope intended for h.f. and i.f. applications in radio receivers, especially for mixer stages in a.m. receivers and i.f. stages in a.m./f.m. receivers with negative earth.

QUICK REFERENCE DATA

Collector-base voltage (open em	nitter)	-V _{CBO}	max.	40	V
Collector-emitter voltage (open	base)	-V _{CEO}	max.	40	V
Collector current (d.c.)		-Ic	max.	25	mΑ
Total power dissipation up to T	amb = 45 °C	P _{tot}	max.	250	mW
Junction temperature		Ti	max.	150	oC
Base current $-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$	BF450:	-I _B		5 to 16	
Au 01 > (80)	BF451:	-IB		11 to 33	μΑ
Transition frequency -I _C = 1 mA; -V _{CE} = 10 V		fT	typ.	325	MHz
Noise figure at $f = 100 \text{ kHz}$ $-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V};$	R _S = 300 Ω	Fy or =	typ.	2	dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

	GS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Emiliand Adiaco in accordance Attail the	borato maximam by stom (120 101)	
Collector-base voltage (open emitter)	-V _{CBO} max. 40	V
Collector-emitter voltage (open base)	-V _{CEO} max. 40	V
Emitter-base voltage (open collector)	-V _{EBO} max. 4	V
Collector current (d.c.)	−l _C max. 25	mA
Total power dissipation up to Tamb =	°C P _{tot} max. 250	mW
Storage temperature	T_{stg} $-65 \text{ to} + 150$	$^{\circ}\text{C}$
Junction temperature		oC
THERMAL RESISTANCE		
From junction to ambient in free air	$R_{th j-a} = 420$	K/V
CHARACTERISTICS	ower dissipation up to Tamb = 45 °C	
T _j = 25 °C		
Collector cut-off current	Direction of the second services	- A
I _E = 0; -V _{CB} = 30 V I _E = 0; -V _{CB} = 40 V	CDO	nΑ μΑ
Emitter cut-off current	(CB)	BUR
I _C = 0; -V _{EB} = 4 V	-I _{EBO} < 10	μΑ
Base current $-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$	BF450 —I _B < 5 to 16 BF451 —I _B < 11 to 33	

 $-V_{BE}$

700 mV

Base-emitter voltage $-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$

CHARACTERISTICS (continued)			7	$\Gamma_{\rm j}$ = 25 $^{\rm o}$ C
Transition frequency at f = 100 MHz				
$-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$	f_{T}	typ.	325	MHz
Feedback capacitance at f = 1 MHz				
$-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$	Cre	typ.	0,35	pF
Noise figure at f = 100 kHz				
$-I_C = 1 \text{ mA}$; $-V_{CE} = 10 \text{ V}$; $R_S = 300 \Omega$	F	typ.	2	dB
y-parameters (common emitter)				
$-I_C = 1 \text{ mA; } -V_{CE} = 10 \text{ V}$				

			BF	450	BF	451	
	f	=	0,45	10,7	0, 45	10,7	MHz
Input conductance	gie	typ.	0, 3	0,4	0,7	0,8	mA/V
Input capacitance	Cie	typ.	20	13	30	20	pF
Transfer admittance	y _{fe}	typ.	37	37	37	37	mA/V
Phase angle of transfer admittance	φ_{fe}	typ.	0°	00	00	00	
Output conductance	goe	typ.	8	10	8	10	μA/V
Output capacitance	Coe	typ.	1	1	1	1	pF
Feedback admittance	yre	typ.	1	24	1	24	µA/V
Phase angle of feedback admittance	φ_{re}	typ.	270°	270°	270°	270°	

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in TO-92 variant envelope and intended for use in video output stages in black-andwhite and in colour television receivers.

QUICK REFERENCE DATA

			BF483	BF485	BF487	
Collector-base voltage (open emitter)	V _{CBO}	max.	300	350	400	٧
Collector-emitter voltage (open base)	VÇEO	max.	250	300	350	٧
Collector current (peak value)	I _{CM}	max.		100		mA
Total power dissipation (free air)	P _{tot}	max.		830		mW
D.C. current gain $I_C = 25 \text{ mA}$; $V_{CE} = 20 \text{ V}$	hFE	>		50		
Transition frequency —IE = 10 mA; V _{CB} = 10 V	fT		7	0 to 110		MHz
Junction temperature	Tj	max.		150		oC
	-					

MECHANICAL DATA

Fig. 1 TO-92 variant.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		ANAF	BF483	BF485	BF487	_
Collector-base voltage (open emitter)	V _{CBO}	max.	300	350	400	V
Collector-emitter voltage (open base)	VCEO	max.	250	300	350	V
Emitter-base voltage (open collector)	V _{EBO}	max.	Ingingy)	5	redalenan	V
Collector current				streter tuo		e ed int
d.c.	C	max.		50		mA
peak value	CM	max.		100		mΑ
Total power dissipation in free air up to T _{amb} = 25 °C	P _{tot}	max.		830		mW
Storage temperature	T _{stg}		-65	to + 150		oC
Junction temperature	T _j	max.		150		oC
THERMAL RESISTANCE						
From junction to ambient when mounted on a p.c. board and mounting pad for collector lead minimum 10 mm x 10 mm and maximum lead length 4 mm	R _{th} j-a	max.		150		K/W
CHARACTERISTICS						
T _i = 25 °C unless otherwise specified						
Collector cut-off current						
I _E = 0; V _{CB} = 300 V	ICBO	<		20	v seior	nA
Collector-emitter cut-off current $V_{CE} = 250 \text{ V}; R_{BE} = 2,7 \text{ k}\Omega;$						
$T_{j} = 150 {}^{\circ}\text{C}$	CER	<		20		μΑ
Emitter cut-off current IC = 0; VEB = 5 V	IEBO	<		10 -	-	μΑ
High-frequency knee voltage I _C = 25 mA; T _j = 150 °C	VCEK	=		20		٧
D.C. current gain I _C = 25 mA; V _{CE} = 20 V I _C = 40 mA; V _{CE} = 20 V	hFE	≥		50 20		
Transition frequency	S, 2 mox -e-		_	0 110		MIL
$-I_E = 10 \text{ mA}; V_{CB} = 10 \text{ V}$	fΤ		/	0 to 110		MHz
Feedback capacitance at f = 1 MHz I _E = 0; V _{CB} = 30 V	C _{re}	<		1,4		pF

Fig. 2 Maximum permissible power dissipation.

Fig. 3 $V_{CE} = 10 \text{ V}$; f = 100 MHz; typical values.

Fig. 4 $T_i = 25$ °C; $V_{CE} = 20$ V; typical values.

Fig. 5 $I_E = 0$; f = 1 MHz.

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant intended for h.f. applications in radio and television receivers; it is especially recommended for f.m. tuners, low noise a.m. mixer-oscillators with high source impedance and i.f. amplifiers in a.m./f.m. receivers where a high current gain is of importance.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	30	V
Collector-emitter voltage (open base)	VCEO	max.	20	V
Collector current (d.c.)	IC	max.	30	mA
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max.	300	mW
Junction temperature	Tj	max.	150	oC
D.C. current gain at $T_j = 25$ °C $I_C = 1$ mA; $V_{CE} = 10$ V	h _{FE} V 0	typ.	115	
Transition frequency $I_C = 1 \text{ mA; } V_{CE} = 10 \text{ V}$	f _T SV 0	typ.	260	MHz
Noise figure at $f = 100 \text{ MHz}$ $I_C = 1 \text{ mA; } V_{CE} = 10 \text{ V; } G_S = 10 \text{ mA/V}$	MM 8 0 = 1 m	typ.	4	dB
Conversion noise figure at f = 1 MHz $I_C = 1 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $G_S = 1.2 \text{ mA/V}$	F _c	typ.	2	dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	VCBO	max.	30	V	
Collector-emitter voltage (open base)	VCEO	max.	20	V	
Emitter-base voltage (open collector)	VEBO	max.	5	V	
Collector current (d.c.)	Ic	max.	30	mA	
Collector current (peak value)	ICM	max.	30	mΑ	
Total power dissipation up to T _{amb} = 75 °C	Ptot	max.	300	mW	
Storage temperature	T _{stg}	-65 to +	150	oC.	
Junction temperature	Tj	max.	150	oC	

THERMAL RESISTANCE

From junction to ambient in free air $R_{th\,j-a} = 0,25$ °C/mW

CHARACTERISTICS

 $T_j = 25$ °C Base-emitter voltage 1)

 $I_C = 1 \text{ mA}$; $V_{CE} = 10 \text{ V}$ Base current

I_C = 1 mA; V_{CE} = 10 V²)

Feedback capacitance at f = 0,45 MHz $I_C = 1$ mA; $V_{CE} = 10$ V

V_{BE} 0,65 to 0,74 V

4,5 to 15 μ A typ. 8,7 μ A

C_{re} typ. 0,85 pF

1) $V_{\mbox{\footnotesize{BE}}}$ decreases by about 1,7 mV/K with increasing temperature. 2) BF494B

IB

1B

4,5 to 10 µA

CHARACTERISTICS (continued)				T _i = 25 °C
Transition frequency				
$I_{\rm C}$ = 1 mA; $V_{\rm CE}$ = 10 V	f_{T}	typ.	260	MHz
Noise figure				
$I_{C} = 1 \text{ mA}; V_{CE} = 10 \text{ V}$				
$G_S = 2 \text{mA/V}; f = 0, 2 \text{MHz}$	F	typ.	1,5	dB
$G_S = 1.5 \text{ mA/V}; f = 1.0 \text{ MHz}$	F	typ.	1,2	dB
$G_S = 10 \text{mA/V}; f = 100 \text{MHz}$	F	typ.	4	dB
Conversion noise figure				
I _C = 1 mA; V _{CE} = 10 V				
$G_S = 0.6 \text{mA/V}; f = 0.2 \text{MHz}$	Fe	typ.	3	dB
$G_S = 1, 2 \text{ mA/V}; f = 1, 0 \text{ MHz}$	Fc	typ.	2	dB
y parameters at f = 100 MHz (common base)				
I _C = 1 mA; V _{CE} = 10 V (lead length = 3 mm)				
Input conductance	gib	typ.	32	mA/V
Input susceptance	-b _{ib}	typ.	3	mA/V
Feedback admittance	yrb	typ.	500	μA/V
Phase angle of feedback admittance	$\varphi_{\mathtt{rb}}$	typ.	272°	
Transfer admittance	Уfb	typ.	33	mA/V
Phase angle of transfer admittance	$\varphi_{ ext{fb}}$	typ.	150°	
Output conductance	gob	typ.	22	·µA/V
Output susceptance	b _{ob}	typ.	1,1	mA/V
y parameters (common emitter)				
IC = 1 mA; V _{CE} = 10 V (lead length = 3 mm)	f = 10,	7 MHz	f = 0, 4	15 MHz
Input conductance	gie <	0,64	0,54	mA/V
Output conductance	goe <	13,5	11,5	μA/V

July 1972

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant intended for h.f. applications in radio and television receivers; it is especially recommended for f.m. tuners, i.f. amplifiers in a.m./f.m. receivers where a low transistor output conductance is of importance, a.m. input stages of car radios where a low noise figure at low source impedance is required.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	30	V
Collector-emitter voltage (open base)	VCEO	max.	30	V
Collector current (d.c.)	I _C	max.	30	mA
Total power dissipation up to $T_{amb} = 75$ °C	P _{tot}	max.	300	mW
Junction temperature	Tj	max.	150	oC
D.C. current gain at $T_j = 25$ °C $I_C = 1$ mA; $V_{CE} = 10$ V	hFE	typ.	67	
Transition frequency I _C = 1 mA; V _{CE} = 10 V	f _T	typ.	200	MHz
Noise figure				
$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$ $G_S = 20 \text{ mA/V}; f = 1 \text{ MHz}$	F	typ.	3,5	dB
$G_S = 10 \text{ mA/V}$; $f = 100 \text{ MHz}$	Haller St. Ven E. L. sund	typ.	4	dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

	RATINGS				
	Limiting values in accordance with the Absolute Maximum System	m (IEC 134)			
	Collector-base voltage (open emitter)	V _{CBO}	max.	30	V
	Collector-emitter voltage (open base)	V _{CEO}	max.	20	V
	Emitter-base voltage (open collector)	V _{EBO}	max.	5	V
	Collector current (d.c.)	Ic	max.	30	mA
	Collector current (peak value)	^I CM	max.	30	mA
	Total power dissipation up to T _{amb} = 75 °C	Ptot	max.	300	mW
	Storage temperature	T _{stg}	-65 to +	150	oC
	Junction temperature	Тј	max.	150	oC
	THERMAL RESISTANCE				
	From junction to ambient in free air	R _{th j-a}	a lov 191	0,25	oC/mW
	CHARACTERISTICS				
	T _i = 25 °C				
	Base-emitter voltage 1)				
	$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$	V_{BE}	0,65 to	0,74	V
-	Base current $I_C = 1 \text{ mA}$; $V_{CE} = 10 \text{ V}^{-2}$	IB	8 t typ.	to 28	μA μA

 c_{re}

0,85 pF

typ.

1) $V_{\mbox{\footnotesize{BE}}}$ decreases by about 1,7 mV/K with increasing temperature. 2) BF495C 8 to 15 μA I_B BF495D 13 to 28 μA

Feedback capacitance at f = 0,45 MHz $I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$

CHARACTERISTICS (continued)				$T_j = 25$
Transition frequency				
$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}$	f_{T}	typ.	200	MHz
Noise figure				
$I_C = 1 \text{ mA}$; $V_{CE} = 10 \text{ V}$				
$G_S = 20 \text{ mA/V}; f = 1 \text{ MHz}$	F	typ.	3,5	dB
$G_S = 10 \text{ mA/V}; f = 100 \text{ MHz}$	F	typ.	4	dB
Conversion noise figure				
I _C = 1 mA; V _{CE} = 10 V				
$G_S = 1, 2 \text{ mA/V}; f = 0, 2 \text{ MHz}$	Fc	typ.	4	dB
$G_S = 1,5 \text{ mA/V}; f = 1 \text{ MHz}$	Fc	typ.	2,5	dB
y parameters at f = 100 MHz (common base)				
$I_{C} = 1 \text{ mA}; V_{CE} = 10 \text{ V (lead length} = 3 \text{ mm)}$				
Input conductance	gib	typ.	34	mA/V
Input susceptance	-b _{ib}	typ.	1	mA/V
Feedback admittance	y _{rb}	typ.	490	µA/V
Phase angle of feedback admittance	φ_{rb}	typ.	272°	61
Transfer admittance	y _{fb}	typ.	34	mA/V
Phase angle of transfer admittance	$\varphi_{ ext{fb}}$	typ.	1440	
Output conductance	gob	typ.	12	μA/V
Output susceptance	bob	typ.	1,1	mA/V
parameters (common emitter)				
I _C = 1 mA; V _{CE} = 10 V (lead length = 3 mm)	f = 10,	7 MHz	f = 0,	45 MHz
Input conductance	gie <	0,96	0,86	mA/V
Output conductance	goe <	9,5	7,0	$\mu A/V$

July 1972

SILICON PLANAR TRANSISTOR

N-P-N transistor in a plastic TO-92 variant intended for v.h.f. applications, e.g. as gain controlled preamplifier in v.h.f. television and f.m. tuners.

QUICK REFERENCE DATA

$-I_E = 3 \text{ mA}$; $V_{CB} = 10 \text{ V}$; $f = 200 \text{ MHz}$	F	typ.	2,7	dB
Noise figure at optimum source admittance $-I_E = 2 \text{ mA}$; $V_{CB} = 10 \text{ V}$; $f = 100 \text{ MHz}$	F	typ.	2	dB
$-1_E = 3 \text{ mA}$; $V_{CB} = 10 \text{ V}$; $f = 200 \text{ MHz}$	GUM	typ.	27	dB
Maximum unilateral power gain $-I_E = 3 \text{ mA}; V_{CB} = 10 \text{ V}; f = 50 \text{ MHz}$	GUM	typ.	34	dB
Transition frequency $-I_E = 2 \text{ mA}$; $V_{CB} = 10 \text{ V}$	f _T	typ.	550	MHz
Junction temperature	T_{j}	max.	150	oC
Total power dissipation up to T _{amb} = 75 °C	Ptot	max.	300	mW
Collector current (d.c.)	IC	max.	20	mA
Collector-emitter voltage (open base)	VCEO	max.	20	V
Collector-base voltage (open emitter)	VCBO	max.	30	V

MECHANICAL DATA

Fig. 1 TO-92 variant

RATINGS					
Limiting values in accordance with the Absolute Maximum System	(IEC 134)				
Collector-base voltage (open emitter)	Vсво	max.	30	V	
Collector-emitter voltage (open base)	VCEO	max.	20		
Collector-emitter voltage (R _{BF} \leq 1 k Ω)	VCER	max.	30		
Emitter-base voltage (open collector)	VEBO	max.		V	
Collector current (d.c.)	IC	max.		mA	
Collector current (peak value)	ICM	max.		mA	
Total power dissipation up to T _{amb} = 75 °C	Ptot	max.	300	mW	
Storage temperature	T _{sta}	-65 to			
Junction temperature	Tj	max.	150		
THERMAL DEGICTANCE	J				
THERMAL RESISTANCE	T.est.ess				
From junction to ambient in free air	R _{th j-a}	=	250	K/W	
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified				- 31-	
Base current		vog Isratel	ing r	umba	
$-1_E = 2 \text{ mA}$; $V_{CB} = 10 \text{ V}$	I _B	typ.	150	μΑ	
-I _E = 12 mA; V _{CB} = 7 V	IR	≥ noV o		mA	
Emitter-base voltage	ios soriuos i	mumizgo :	16 6111	gif est	
$-I_E = 2 \text{ mA}; V_{CB} = 10 \text{ V}$	-V _{EB}	typ.	0,84	V	
$-I_E = 12 \text{ mA}; V_{CB} = 7 \text{ V}$	-V _{EB}	< 80 %	1,0	V	
Transition frequency					
$-I_E = 2 \text{ mA; } V_{CB} = 10 \text{ V}$	fŢ	typ.	550	MHz	
$-1_{E} = 4 \text{ mA}; V_{CB} = 5 \text{ V}$	fT	<	530	MHz	
Feedback capacitance at f = 10,7 MHz	0	typ.	-0,8	pF	
I _C = 1 mA; V _{CE} = 10 V	C_{re}	<	1,0	pF	
Noise figure at optimum source admittance	_				
$-I_E = 3 \text{ mA; } V_{CB} = 10 \text{ V; } f = 50 \text{ MHz}$	F	typ.	1,9		
$-I_E = 3 \text{ mA}$; $V_{CB} = 10 \text{ V}$; $f = 200 \text{ MHz}$	F	typ.	2,5		
$-I_E = 2 \text{ mA}$; $V_{CB} = 10 \text{ V}$; $f = 100 \text{ MHz}$	F	typ.	2,0	dB	
Maximum unilateral power gain (common base)					
G_{UM} (in dB) = 10 log $\frac{ Y_{fb} ^2}{4g_{UB}}$					
49ib9ob			0.4	10	

GUM

GUM

GUM

typ.

typ.

typ.

34 dB

27 dB

30 dB

 $-1_E = 3 \text{ mA}; V_{CB} = 10 \text{ V}; f = 50 \text{ MHz}$

 $-1_E = 3 \text{ mA}$; $V_{CB} = 10 \text{ V}$; f = 200 MHz

 $-I_E = 2 \text{ mA}$; $V_{CB} = 10 \text{ V}$; f = 100 MHz

y-parameters at f = 100 MHz (common base) IC = 2 mA; VCF = 10 V			
0			00 4/1/
Input conductance	gib	typ.	66 mA/V
Input susceptance	-bib	typ.	15 mA/V
Feedback admittance	Yrb	typ.	190 mA/V
Phase angle of feedback admittance	φ_{rb}	typ.	280°
Transfer admittance	Yfb	typ.	66 mA/V
Phase angle of transfer admittance	φ_{fb}	typ.	155°
Output conductance	gob	typ.	15 μA/V
Output susceptance	bob	typ.	660 μA/V
y-parameters at f = 50 MHz (common base) $-I_E = 3$ mA; $V_{CB} = 10$ V			
Input conductance	gib	typ.	9,5 mA/V
Input susceptance	-bib	typ.	12 mA/V
Feedback admittance	Yrb	typ.	100 μA/V
Phase angle of feedback admittance	φ_{rb}	typ.	2700
Transfer admittance	Yfb	typ.	95 mA/V
Phase angle of transfer admittance	Ψfb	typ.	160°
Output conductance	gob	typ.	10 μA/V
Output susceptance	bob	typ.	350 μA/V
y-parameters at f = 200 MHz (common base) -I _E = 3 mA; V _{CB} = 10 V			
Input conductance	gib	typ.	70 mA/V
Input susceptance	-bib	typ.	46 mA/V
Feedback admittance	Yrb	typ.	340 μA/V
Phase angle of feedback admittance	Ψrb	typ.	275°
Transfer admittance	Yfb	typ.	85 mA/V
Phase angle of transfer admittance	φ_{fb}	typ.	130°
Output conductance	gob	typ.	75 μA/V
Output susceptance	b _{ob}	typ.	1,3 mA/V

	,		
rameter admiretance			

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a TO-92 envelope intended for use as preamplifier, mixer and oscillator in v.h.f. and u.h.f. tuners.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	30 V
Collector-emitter voltage (open base)	-VCEO	max.	20 V
Collector current (d.c.)	-I _C	max.	25 mA
Total power dissipation up to T _{amb} = 45 °C	P _{tot}	max.	250 mW
Junction temperature	Ti	max.	150 °C
Transition frequency at f = 100 MHz $I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	fT	typ.	350 MHz
Noise figure at $f = 200 \text{ MHz}$ $I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	F V 07 =	<	6 dB
Transducer gain (common base) IE = 3 mA; -VCB = 10 V	G _{tr}	>	14 dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

Dimensions in mm

		IG	

RATINGS					
Limiting values in accordance with the Absolute Maximum Syst	tem (IEC 134)				
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	٧	
Collector-emitter voltage (open base)	-V _{CEO}	max.	20	V	
Emitter-base voltage (open collector)	$-V_{EBO}$	max.	4	V	
Collector current (d.c.)	-Ic	max.	25	mA	
Total power dissipation up to T _{amb} = 45 °C	P _{tot}	max.	250	mW	
Storage temperature	T _{stg}	-65 to +	150	oC	
Junction temperature	Tj	max.	150	oC	
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	b) triamus	420	K/W	
CHARACTERISTICS					
T _{amb} = 25 °C					
Collector cut-off current I _E = 0; -V _{CB} = 20 V	-I _{CBO}	<	50	nA	
Base current $I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$		<	33	μΑ	
Collector-base breakdown voltage open emitter; $-I_C = 10 \mu A$	-V _(BR) CBO	>	30	V	
Collector-emitter breakdown voltage open base; -I _C = 2 mA	-V(BR)CEO	CAL D	20	V	
Emitter-base breakdown voltage open collector; $-I_E = 10 \mu A$	-V(BR)EBO	62 variant	4	V	
Transition frequency at f = 100 MHz $I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	fT	typ.	350	MHz	
I _E = 5 mA; -V _{CB} = 10 V	fT	typ		MHz	
Feedback capacitance at f = 1 MHz	· ×	400 to	/00	WHZ	
$I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	C _{re}	typ.	0,5	pF	
Noise figure at $f = 200 \text{ MHz}$ $I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	F	typ.		dB dB	
Transducer gain (common base) at f = 200 MHz $I_F = 3 \text{ mA}$; $-V_{CR} = 10 \text{ V}$; $R_S = 60 \Omega$; $R_L = 920 \Omega$	G _{tr}	>	14	dB	
nom .	· · · · /34	typ.	17,5	aR	

P-N-P transistor in a TO-92 envelope intended for use in h.f. amplifiers and also in mixer and oscillator stages in v.h.f. and u.h.f. television receivers.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO} max. 30	V
Collector-emitter voltage (open base)	-V _{CEO} max. 20	V
Collector current (d.c.)	−I _C max. 25	mA
Total power dissipation up to T _{amb} = 45 °C	P _{tot} max. 250	mW
Junction temperature	T _j max. 150	oC
D.C. current gain $I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	h _{FE} > 25	
Transition frequency at f = 100 MHz $I_E = 1 \text{ mA}$; $-V_{CB} = 10 \text{ V}$	f _T typ. 350	MHz
Noise figure at $f = 200 \text{ MHz}$ $I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	F = 01 = 01 < = 000 6	dB
Transducer gain (common base) IE = 3 mA; -V _{CB} = 10 V; f = 200 MHz	G _{tr} - 34 14	dB

MECHANICAL DATA

Fig. 1 TO-92 variant.

Dimensions in mm

RATINGS				
Limiting values in accordance with the Absolute Maximum S	System (IEC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	V
Collector-emitter voltage (open base)	-VCEO	max.	20	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	4	V
Collector current (d.c.)	-I _C	max.	25	mΑ
Total power dissipation up to T _{amb} = 45 °C	P _{tot}	max.	250	mΨ
Storage temperature	T _{stg}	-65 to	o +150	$\circ C$
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	itter veits	420	K/V
CHARACTERISTICS				
T _{amb} = 25 °C				
Collector cut-off current I _F = 0; -V _{CB} = 20 V	-I _{CBO}	<	50	nA
Base current	СВО			
$I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	-I _B	<	38	μΑ
Collector-base breakdown voltage open emitter; $-I_C = 10 \mu A$	-V(BR)CBO	>	30	V
Collector-emitter breakdown voltage open base; -I _C = 2 mA	-V(BR)CEO		20	V
Emitter-base breakdown voltage	(BR)CEO	20 v		2
open collector; $-I_E = 10 \mu\text{A}$	-V(BR)EBO	>	4	V
D.C. current gain	(51.7250			
$I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	hFE	>	25	
Transition frequency at f = 100 MHz				
$I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}$	fT	typ.	350	MH
Feedback capacitance at f = 1 MHz I _E = 1 mA; -V _{CB} = 10 V		typ.	0,9	n E
Noise figure at f = 200 MHz	C _{re}	typ.	0,9	þΓ
$I_E = 1 \text{ mA}; -V_{CB} = 10 \text{ V}; R_S = 50 \Omega$	F	typ.		dB dB
Transducer gain (common base) at f = 200 MHz		>	14	dB
$I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}; R_S = 60 \Omega; R_L = 920 \Omega$	G _{tr}	typ.	17,5	

P-N-P transistor in a TO-92 envelope intended for application as a gain controlled preamplifier in v.h.f. tuners.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	30	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	25	V
Collector current (d.c.)	-I _C	max.	20	mΑ
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	225	mW
Junction temperature	T _j	max.	150	oC
Transition frequency at $f = 100 \text{ MHz}$ $I_E = 2 \text{ mA}; -V_{CB} = 10 \text{ V}$	f_{T}	typ.	750	MHz
Noise figure at f = 200 MHz I_E = 2 mA; $-V_{CB}$ = 10 V R_S = 60 Ω ; R_L = 1 k Ω	F	typ.	2,5	dB
Transducer gain (common base) $I_E = 2 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 200 \text{ MHz}$ $R_S = 60 \Omega; R_L = 1 \text{ k}\Omega$	G _{tr}	typ.	16	dB

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

RATINGS				
Limiting values in accordance with the Absolute Maximu	m System (IEC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	25	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	3	· V
Collector current (d.c.)	-I _C	max.	20	mA
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	225	mW
➤ Storage temperature	T _{stg}	-65 to	+150	oC
Junction temperature	T _j ATAO	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	riev tetri	420	K/W
CHARACTERISTICS				
T _{amb} = 25 °C				
Collector cut-off current I _E = 0; -V _{CB} = 15 V	-I _{CBO}	<	100	nA
Emitter cut-off current I _C = 0; -V _{EB} = 1 V	-I _{EBO}	<	100	nA
Base current $I_E = 2 \text{ mA}; -V_{CB} = 10 \text{ V}$	−I _B	typ.	55 125	μΑ μΑ
$-I_C = 9 \text{ mA}; -V_{CE} = 4 \text{ V}$	-IB	<		mA
Collector-base breakdown voltage open emitter; $-I_C = 10 \mu A$	−V _(BR) CBO	> 0 1 A	30	٧
Collector-emitter breakdown voltage open base; $-I_C = 1 \text{ mA}$	-V _(BR) CEO	2 variant.	25	٧
Emitter-base breakdown voltage open collector; $-I_E = 10 \mu A$	−V _{(BR)EBO}	>	3	٧
Transition frequency at f = 100 MHz IF = 2,0 mA; -V _{CB} = 10 V	fT	typ.	750	MHz
I _E = 6,5 mA; –V _{CB} = 5,5 V Feedback capacitance at f = 500 kHz	fT	<	200	MHz
I _E = 0; -V _{CB} = 10 V	C _{re}	typ.	0,7	pF
I _E = 0; -V _{CB} = 10 V	C _{rb}	typ.	135 160	
Noise figure at f = 200 MHz $I_F = 2 \text{ mA}; -V_{CR} = 10 \text{ V}; R_S = 60 \Omega; R_I = 1 \text{ k}\Omega$	F	typ.	2,5	dB
Transducer gain (common base) at f = 200 MHz			4	dB
I E = 2 mA; $-V_{CB}$ = 10 V; R _S = 60 Ω ; R _L = 1 k Ω	G _{tr}	typ.	16	dB

Fig. 2 $-V_{CB} = 10 \text{ V}$; f = 100 MHz; $T_{amb} = 25 \text{ °C}$.

Fig. 3 Circles of constant noise figure. $-V_{CB} = 10 \text{ V}; I_E = 2 \text{ mA}; f = 200 \text{ MHz}; T_{amb} = 25 ^{\circ}\text{C}; typical values.}$

Fig. 4 -V $_{CC}$ = 12 V; R $_{C}$ = 1 k Ω ; R $_{L}$ = 920 Ω ; R $_{S}$ = 60 Ω ; f = 200 MHz; T $_{amb}$ = 25 °C.

P-N-P transistor in a plastic T-package, primarily intended for application as gain controlled preamplifier in u.h.f. television tuners.

QUICK REFERENCE DATA

A A			
Collector-base voltage (open emitter)	-V _{CBO}	max.	30 V
Collector-emitter voltage (open base)	-VCEO	max.	30 V
Collector current (d.c.)	-IC	max.	20 mA
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	160 mW
Junction temperature	Tj	max.	150 °C
Transition frequency at $f = 100 \text{ MHz}$ $I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}$	f _T	typ.	900 MHz
Noise figure (common base) I $_{E}$ = 3 mA; $_{-}$ V $_{CB}$ = 10 V; f = 800 MHz R $_{S}$ = 60 Ω ; R $_{L}$ = 500 Ω	F	typ.	4 dB
Transducer gain (common base) IE = 3 mA; -VCB = 10 V; f = 800 MHz			
$R_S = 60 \Omega$; $R_L = 500 \Omega$	G _{tr}	typ.	13 dB

MECHANICAL DATA Fig. 1 SOT-37. Connections

1. Emitter 2. Base

3. Collector

(1) = type number marking.

Products approved to CECC 50 002-127, available on request.

RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximum Sys	tem (IEC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	30	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	3	V
Collector current (d.c.)	-IC	max.	20	mA
Base current (d.c.)	-IB	max.	5	mΑ
Total power dissipation up to T _{amb} = 55 °C	Ptot	max.	160	mW
Storage temperature	T _{stg}	-55 to	+150	oC
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	- Yonsups	600	K/W
CHARACTERISTICS				
T _{amb} = 25 °C				
Collector cut-off current I _E = 0; -V _{CB} = 15 V	-I _{CBO}	<	100	nA
Emitter cut-off current I _C = 0; -V _{EB} = 1 V	-I _{EBO}	<	100	nA
Collector-base breakdown voltage open emitter; –I _C = 10 µA	-V(BR)CBO	(>,r,r,a	30	V
Collector-emitter breakdown voltage open base; -I _C = 1 mA	-V(BR)CEO	377.	-30	V
Emitter-base breakdown voltage open collector; $-I_E = 10 \mu A$	-V(BR)EBO	>	3	V
D.C. current gain I _E = 3 mA; –V _{CE} = 10 V	hFE	> typ	15 60	
$I_E = 7 \text{ mA}; -V_{CE} = 4 \text{ V}$	hFE	>	10	
Transition frequency at f = 100 MHz $I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}$	fT	typ. 700 to	900 1100	MHz MHz
$I_E = 7 \text{ mA}; -V_{CB} = 5 \text{ V}$	fT	<	200	MHz
Feedback capacitance at f = 500 kHz IE = 1 mA; -VCB = 10 V	C _{re}	typ.	0,45	pF
I _E = 0; -V _{CB} = 10 V	C _{rb}	typ.	115 140	
Noise figure (common base) $I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 800 \text{ MHz}$ $R_S = 60 \Omega; R_L = 500 \Omega$	F	typ.	4	dB dB
Transducer gain (common base) $I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 800 \text{ MHz}$ $R_S = 60 \Omega; R_L = 500 \Omega$	G _{tr}	>	11	dB
,	riging.	typ.	13	dB

Fig. 2 $-V_{CB} = 10 \text{ V}$; f = 100 MHz; $T_{amb} = 25 \text{ °C}$.

Fig. 3 $-V_{CC} = 12 \text{ V}$; $R_C = 1 \text{ k}\Omega$; f = 100 MHz; $T_{amb} = 25 \text{ °C}$.

Fig. 4 Circles of constant noise figure.

Fig. 5 Circles of constant noise figure.

Measuring conditions:

Fig. 4 $-V_{CB}$ = 10 V; I_E = 3 mA; f = 200 MHz; T_{amb} = 25 °C; typical values.

Fig. 5 $-V_{CB}$ = 10 V; I_{E} = 3 mA; f = 800 MHz; T_{amb} = 25 °C; typical values.

Fig. 6 $-V_{CC}$ = 12 V; R_{C} = 1 $k\Omega$; R_{L} = 500 Ω ; f = 800 MHz; T_{amb} = 25 °C.

Conditions for Figs 7 to 10: $I_E = 3 \text{ mA}$; $-V_{CB} = 10 \text{ V}$; $T_{amb} = 25 \text{ °C}$; typical values.

Dimensions in mm

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a plastic T-package intended for application as self-oscillating mixer stage in u.h.f. tuners.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	40	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	35	V
Collector current (d.c.)	-I _C	max.	30	mA
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	160	mW
Junction temperature	Τį	max.	150	oC
Transition frequency at f = 100 MHz	,	90	000	
$I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}$	1.L	typ.	900	MHz

MECHANICAL DATA

Fig. 1 SOT-37.

Connections

- 1. Emitter
- 2. Base
- 3. Collector

(1) = type number marking.

-	-	 	-	
		N		

RATINGS				
Limiting values in accordance with the Absolute Maximum System (IEC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	40	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	35	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	3	V
Collector current (d.c.)	-Ic	max.	30	mA
Emitter current (d.c.)	I _E	max.	35	mA
Total power dissipation up to $T_{amb} = 55$ °C	Ptot	max.	160	mW
Storage temperature	T _{stg}	-55 to +	150	oC
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	nsokelb re	600	K/W
CHARACTERISTICS				
T _{amb} = 25 °C				
Collector cut-off current I _E = 0; -V _{CB} = 20 V	-1сво	<	100	nA
Emitter cut-off current I _C = 0; -V _{EB} = 1 V	-I _{EBO}	<	100	nA
D.C. current gain $-I_C = 3 \text{ mA}; -V_{CB} = 10 \text{ V}$	hFE	> typ.	25 50	
Transition frequency at f = 100 MHz $I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}$	fT	typ. 750 to	900	MHz MHz
$I_E = 7 \text{ mA; } -V_{CB} = 5 \text{ V}$	fT	> typ.	400	MHz MHz
Feedback capacitance at $f = 1 \text{ MHz}$ $I_E = 0$; $-V_{CB} = 10 \text{ V}$	C _{rb}	typ	110 140	
$I_E = 1 \text{ mA}; -V_{CB} = 5 \text{ V}$	Cre	typ.	475	fF
Noise figure at R _S = 60Ω I _E = 3 mA ; $-\text{V}_{CB}$ = 10 V ; f = 200 MHz	F	typ.	2,6	dB
$I_E = 3 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 800 \text{ MHz}$	F	typ.	4,7 6,0	
Transducer gain (common base) at f = 800 MHz I _E = 3 mA; $-V_{CB}$ = 10 V; R _S = 60 Ω ; R _L = 500 Ω	G _{tr}	> typ.	13,0 14,5	

P-N-P transistor in a subminiature plastic T-package, primarily intended for application in r.f. stages in u.h.f. tuners using p-i-n diode attenuators.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	20	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	20	V
Collector current (peak value)	-ICM	max.	30	mA
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	140	mW
Junction temperature	Tj	max.	125	oC
Transition frequency at $f = 100 \text{ MHz}$ $I_E = 10 \text{ mA}; -V_{CB} = 10 \text{ V}$	f _T	typ.	1350	MHz
Noise figure (common base) I $_{E}$ = 10 mA; $-V_{CB}$ =10 V; f = 800 MHz R $_{S}$ = 60 Ω ; R $_{L}$ = 500 Ω	F	typ.	4,5	dB
Transducer gain (common base) I _E = 10 mA; $-V_{CB}$ = 10 V; f = 800 MHz R _S = 60 Ω ; R _L = 500 Ω	G _{tr}	typ.	16	dB

MECHANICAL DATA

Fig. 1 SOT-37.

Connections

- 1. Emitter
- 2. Base
- 3. Collector

(1) = type number marking.

RAT	N(

RATINGS				
Limiting values in accordance with the Absolute Maximur	m System (IEC 134)			
Collector-base voltage (open emitter)	-V _{CBO}	max.	20	V
Collector-emitter voltage (open base)	-VcEO	max.	20	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	3	V
Collector current (peak value)	-I _{CM}	max.	30	mΑ
Base current (d.c.)	-IB	max.	10	mA
Total power dissipation up to T _{amb} = 55 °C	P _{tot}	max.	140	mW
Storage temperature	T _{stg}	-55 t	o +125	oC
Junction temperature	Tj (sutav st	max.	125	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	enulishisq =	500	K/W
CHARACTERISTICS				
$T_{amb} = 25 {}^{\circ}C$				
Collector cut-off current I _E = 0; -V _{CB} = 15 V	· -I _{CBO}	<	100	nA
Emitter cut-off current I _C = 0; -V _{EB} = 1 V	-I _{EBO}	<	100	nA
Collector-base breakdown voltage open emitter; $-1_C = 10 \mu A$	-V(BR)CBO	>	20	V
Collector-emitter breakdown voltage open base; -I _C = 1 mA	−V(BR)CEO	>	20	V
Emitter-base breakdown voltage open collector; $-I_E = 10 \mu A$	−V(BR)EBO	>	3	V
D.C. current gain $I_F = 2 \text{ mA}; -V_{CB} = 10 \text{ V}$	h	>	15	
I _F = 10 mA; -V _{CB} = 10 V	hFE	>	20	
Transition frequency at f = 100 MHz	hFE		20	
I _E = 10 mA; -V _{CB} = 10 V	fT	typ.	1350	MHz
I _E = 15 mA; -V _{CB} = 5 V	fT	typ.	1000	MHz
Feedback capacitance at f = 500 kHz				
$I_E = 0; -V_{CB} = 10 \text{ V}$	C _{re}	typ.	0,65	рF
$I_E = 0; -V_{CB} = 10 \text{ V}$	C _{rb}	typ.	120	fF
Noise figure (common base) $I_E = 10 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 800 \text{ MHz}$ $R_S = 60 \Omega; R_L = 500 \Omega$	F	typ.	4,5 6,0	
Transducer gain (common base)				
$I_E = 10 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 800 \text{ MHz}$ $R_S = 60 \Omega; R_L = 500 \Omega$	G _{tr}	typ.	16	dB

Fig. 2 $-V_{CB} = 10 \text{ V}$; $T_i = 25 \text{ °C}$.

 $T_{amb} = 25$ °C; typical values.

Fig. 3 $I_E = 10 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 200 \text{ MHz}; Fig. 4 <math>I_E = 10 \text{ mA}; -V_{CB} = 10 \text{ V}; f = 800 \text{ MHz};$ T_{amb} = 25 °C; typical values.

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant envelope primarily intended for use in active probes, frequency multipliers and linear amplifiers.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	40	٧
Collector-emitter voltage (open base)	VCEO	max.	15	V
Collector current (peak value)	¹ CM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	500	mW
D.C. current				
$I_C = 10 \text{ mA}$; $V_{CE} = 1 \text{ V}$	hFE	>	40	
Transition frequency at f = 100 MHz	ment	in Mada	E00	MALL-
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	fT V		500	IVIHZ

MECHANICAL DATA

AL DATA Dimensions in mm

Fig. 1 TO-92 variant.

RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximum System (IE	C 134)			
Collector-base voltage (open emitter)	VCBO	max.	40	V
Collector-emitter voltage (V _{BE} = 0)	VCES	max.	40	V
Collector-emitter voltage (open base)	V _{CEO}	max.	15	V
Emitter-base voltage (open collector)	VEBO	max.	4,5	V
Collector current (peak value; $t_p = 10 \mu s$)	ICM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	500	mW
Storage temperature	T _{stg}	-65 to +	150	oC
Junction temperature	Tj nego) e	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	eg) inemu Insoluth e	250	K/W
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Collector cut-off current				
I _E = 0; V _{CB} = 20 V I _E = 0; V _{CB} = 20 V; T _i = 125 °C	СВО	<	400	
Emitter cut-off current	СВО	TAG JAS	30	μΑ
I _C = 0; V _{EB} = 2 V	IEBO	<	100	nA
Saturation voltage	V _{CEsat}	<	0,25	V
$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$	VBEsat	0,70 to	,	
Knee voltage			*	
$I_C = 45 \text{ mA}; I_B = \text{value for which}$.,	1-1	0.0	
$I_C = 50 \text{ mA at V}_{CE} = 2 \text{ V}$	VCEK	<	0,8	V
D.C. current gain IC = 10 mA; VCE = 1 V	hFE	>	40	
Transition frequency at f = 100 MHz	2.0			
$I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	>	500	MHz
$I_C = 40 \text{ mA}; V_{CE} = 10 \text{ V}$	fT	>	490	MHz
Collector capacitance at f = 1 MHz				
$I_E = I_e = 0; V_{CB} = 5 V$	C _c	<	4	pF
Emitter capacitance at $f = 1 \text{ MHz}$ $I_C = I_C = 0$; $V_{EB} = 1 \text{ V}$	0		4.5	
	Ce		4,5	рr
Maximum unilateral power gain (y _{re} assumed to be zero)				
G_{UM} (in dB) = 10 $log \frac{ y_{fe} ^2}{4g_{ie}g_{oe}}$				
I _C = 10 mA; V _{CE} = 10 V; f = 200 MHz	G_{UM}	typ.	19	dB

Fig. 2 $V_{CE} = 1 \text{ V}; T_j = 25 \text{ °C}.$

Fig. 4 $V_{CB} = 10 \text{ V}$; $T_{amb} = 25 \, ^{o}\text{C}$; typical values.

Fig. 5 $V_{CB} = 10 V$; $T_{amb} = 25 \, {}^{\circ}\text{C}$; typical values.

Fig. 6 V_{CB} = 10 V; T_{amb} = 25 °C; typical values.

Fig. 7 $V_{CB} = 10 \text{ V}$; $T_{amb} = 25 \text{ °C}$; typical values.

Fig. 8 V_{CB} = 10 V; T_{amb} = 25 °C; typical values.

Fig. 9 $V_{CB} = 10 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; typical values.

Fig. 10 $V_{CB} = 10 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; typical values.

Fig. 11 V_{CB} = 10 V; $-I_E$ = 2 to 10 mA; T_{amb} = 25 °C

Fig. 11 Vos = 10 V: -ig = 2 to 10 mA; Temb = 25 °C

Dimensions in mm

SILICON P-N-P HIGH-VOLTAGE TRANSISTORS

Planar epitaxial transistors in TO-39 metal envelopes, intended as general purpose amplifiers and switching devices in industrial and telephone applications.

QUICK REFEREN	NCE DATA			24.104 10	
			BFT44	BFT45	
Collector-base voltage (open emitter)	-V _{CBO}	max.	300	250	V
Collector-emitter voltage (open base)	$-v_{\rm CEO}$	max.	300	250	V
Collector current (d.c.)	-I _C	max.	0,	5	Α
Total power dissipation up to T _{case} = 50 °C	P _{tot}	max.	5,	0	W
Junction temperature	Тj	max.	20	0	оС
D.C. current gain -I _C = 10 mA; -V _{CE} = 10 V	hFE		50 to 15	0	
Transition frequency at f = 35 MHz $-I_C$ = 15 mA; $-V_{CE}$ = 10 V	f_{T}	typ.	7	0	MHz

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case

max. lead diameter is guaranteed only for 12,7 mm

Accessories: 56245 (distance disc).

October 1979 337

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			BFT44	BFT45	
Collector-base voltage (open emitter)	-V _{CBO}	max.	300	250	V
Collector-emitter voltage (open base)	$-v_{\rm CEO}$	max.	300	250	V
Emitter-base voltage (open collector)	$-v_{\mathrm{EBO}}$	max.	5	5	V

Current

Collector current	(d.c.)	-I _C	max.	0,5	Α

Power dissipation

Total power dissipation up to $T_{case} = 50$ °C P_{tot} max. 5,0 W

Temperatures

Storage temperature	T_{stg}	-65 to	+200	°C
Junction temperature	$T_{\mathbf{j}}$	max.	200	°C

THERMAL RESISTANCE

From junction to ambient in free air	$R_{th j-a} =$	200	°C/W
From junction to case	R _{th j-c} =	30	°C/W

CHARACTERISTICS

Collector cut-off current

$$I_E = 0$$
; $-V_{CB} = 200 \text{ V}$

$$I_B = 0$$
: $-V_{CE} = 200 \text{ V}$: $T_i = 125 \, {}^{\circ}\text{C}$

Emitter cut-off current

$$I_{C} = 0$$
; $-V_{EB} = 3 \text{ V}$

Collector-emitter sustaining voltage

$$-I_C = 10 \text{ mA}: I_B = 0: L = 25 \text{ mH}$$

Test circuit for V_{CEOsust}

T_i = 25 °C unless otherwise specified

$$-I_{CBO}$$
 $= < 1 - 1 = 5$ $= \mu$ A

$$-I_{\text{CEO}}$$
 < 300 μA

$$-I_{EBO}$$
 < 5 μA

Oscilloscope display for VCEOsust

Saturation voltages

$$-I_{C} = 10 \text{ mA}; -I_{B} = 1 \text{ mA}$$

$$-I_C = 100 \text{ mA}; -I_B = 10 \text{ mA}$$

$$-I_{\rm C}$$
 = 500 mA: $-I_{\rm B}$ = 100 mA

BFT44
BFT45

V

30

D.C. current gain

$$-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$$

$$-I_C = 10 \text{ mA}; -V_{CE} = 10 \text{ V}$$

$$-I_C = 100 \text{ mA}; -V_{CE} = 10 \text{ V}$$

Collector capacitance at f = 1 MHz

$$I_{E} = I_{e} = 0 : -V_{CB} = 20 \text{ V}$$

$$C_{c}$$

2)

¹⁾ $-V_{CC} = 0$ to 50 V; f = 400 Hz; $\delta = 0.5$ (see also test circuit).

²⁾ Measured under pulse conditions: $t_D = 300 \, \mu s$; $\delta \le 0,02$.

CHARACTERISTICS (continued)

 $T_j = 25$ $^{\circ}C$

Transition frequency at f = 35 MHz

$$-I_C = 15 \text{ mA}; -V_{CE} = 10 \text{ V}$$

f_T typ. 70 MHz

Switching times

$$-I_{Con} = 50 \text{ mA}; -I_{Bon} = I_{Boff} = 5 \text{ mA (test circuit 1)}$$

 $t_{\rm on}$ typ. 125 ns $t_{\rm off}$ typ. 850 ns

$$-I_{Con}$$
 = 500 mA; $-I_{Bon}$ = I_{Boff} = 100 mA (test circuit 2)

$$t_{on}$$
 typ. 125 ns t_{off} typ. 125 ns

Test circuit 1

Test circuit 2

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in TO-39 metal envelopes for general industrial applications.

QUICK REFERENCE DATA

			BFX29	BFX87	BFX88	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	50	40	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	60	50	40	V
Collector current (peak value)	-IeM	max.	600	600	600	mA
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	600	600	600	mW
D.C. current gain $-I_C = 10 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	> typ.	50 125	40 125	40 125	
Transition frequency at f = 100 MHz $-I_C = 50$ mA; $-V_{CE} = 10$ V	f _T	>	100	100	100	MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-071, available on request.

RATINGS

Limiting values of operation according to the absolute maximum system.

		 			,
Electrical		BFX29	BFX87	BFX88	
-V _{CBO} max.		60	50	40	v
-V _{CEO} max.		60	50	40	v
-V _{EBO} max.		5.0	4.0	4.0	V
-I _C max.				600	mA
-I _{CM} max.				600	mA
I _{EM} max.				600	mA
Ptot max. (Tan	ab ≤25°C)			600	mW
Temperature					
000 008		113			Alsed the
T range			30.8	-65 to +200	°C
T max.				+200	°C

THERMAL CHARACTERISTIC

sHM .	R th(j-amb)	292	degC/V
	th(j-amb)		

ELECTRICAL CHARACTERISTICS (T, = 25°C unless otherwise stated)

	` 1				,	
	,		Min.	Typ.	Max.	
-I _{CBO}	Collector cut-off current					
CBO	$-V_{CB} = 60V, I_{E} = 0$	BFX29	-	1.0	500	nA
	$-V_{CB} = 50V, I_{E} = 0$	BFX87	-	1.0	500	nA
	$-V_{CB} = 40V, I_{E} = 0$	BFX88	-	1.0	500	nA
	$-V_{CB} = 50V, I_{E} = 0$	BFX29	-	0.5	50	nA -
	$-V_{CB} = 40V, I_{E} = 0$	BEX87	-	0.5	50	nA
	$-V_{CB} = 30V, I_{E} = 0$	BFX88	-	0.5	50	nA
	$-V_{CB} = 50V, I_{E} = 0,$					
	$T_j = 100^{\circ}C$	BFX29	-	0.03	2.0	μ A
	$-V_{CB} = 40V, I_{E} = 0,$					
	$T_j = 100^{\circ}C$	BFX87	101_101	0.03	2.0	μΑ
	$-V_{CB} = 30V, I_{E} = 0,$					
	$T_j = 100^{\circ}C$	BFX88	-	0.03	2.0	μΑ
-I _{EBO}	Emitter cut-off current					
EBO	$-V_{EB} = 5.0V, I_{C} = 0$	BFX29	-	30	500	nA
	$-V_{EB} = 4.0V, I_{C} = 0$	BFX87,88	-	2.0	500	nA
	$-V_{EB} = 3.0V, I_{C} = 0$	BFX29,87	,			
	ED C	BFX88	The state of	1.0	100	nA

			Min.	Typ.	Max.	
h _{FE}	Static forward current transfer ratio					
	$-I_C = 0.1 \text{mA}, -V_{CE} = 10 \text{V}$	BFX29	20	90	-	
	$-I_{C} = 1.0 \text{mA}, -V_{CE} = 10 \text{V}$	BFX29,87 BFX88	40	105	atti no-a	
	$-I_C = 10$ mA, $-V_{CE} = 10$ V	BFX29 BFX87,88	50 40	125 125	-	
	$-I_{C} = 50 \text{mA}, -V_{CE} = 10 \text{V}$	BFX29	50	125	m07 = 1	
	$-I_C = 150 \text{ mA}, -V_{CE} = 10 \text{ V}$	BFX29,87 BFX88	40	90	-	
	$-I_{C} = 500 \text{mA}, -V_{CE} = 10 \text{V}$	BFX87,88	25	40	shegmt ti	
-V _{CE(sat)}	Collector-emitter saturat voltage	ion				
	$-I_C = 150 \text{mA}, -I_B = 15 \text{mA}$		-	0.15	0.40	V
-V _{BE(sat)}	Base-emitter saturation voltage					
	$-I_C = 30 \text{mA}, -I_B = 1.0 \text{mA}$		nant .	0.77	0.90	V
	$-I_C = 150 \text{mA}, -I_B = 15 \text{mA}$		C101 - 11	1.05	1.30	V
C _{tc}	Collector capacitance -V _{CB} =10V, I _E =I _e =0, f=	1.0MHz	dered of 5 s exces	6.0	12	pF
c _{te}	Emitter capacitance -V _{EB} =2.0V, I _C =I _c =0, f	=1.0MHz	ly to 1	18	30	pF
f_{T}	Transition frequency -I _C =50mA, -V _{CE} =10V,					
	$f = 100 \mathrm{MHz}, \mathrm{T_{amb}} = 25^{\circ}\mathrm{C}$		100	360	ne senno nent, so	MHz

Saturated switching times (see test circuits)

			Min.	Тур.	Max.	
ton	Turn-on time		s esxañ v	25	60	ns
toff	Turn-off time		BEX38	55	150	ns

h-parameters

Measured	1 at $-I_C = 10 \text{mA}$, $-V_{CE} = 10 \text{V}$, $f = 1$.0kHz,	$T_{amb} = 25^{\circ}$	C	
		Min.	Typ.	Max.	0
h _{ie}	Input impedance	BEXE	600	Ame	Ω
h re	Voltage feedback ratio	-	1.50	-	×10 ⁻⁴
h _{fe}	Forward current transfer ratio	- 1013	155	-	
h _{oe}	Output admittance	-	104	,A#108	μmho

SOLDERING AND WIRING RECOMMENDATIONS

- When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.
- 2. Transistors may be dip-soldered at a solder temperature of 245°C for a maximum soldering time of 5 seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes.
- Care should be taken not to bend the leads nearer than 1.5mm from the seal.
- 4. If devices are stored at temperatures above 100°C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux.

TEST CIRCUITS

Fig.1

Saturated turn-off switching time

Fig.2

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS PLOTTED AGAINST PULSE DURATION

TYPICAL VARIATION OF COLLECTOR CUT-OFF CURRENT
WITH JUNCTION TEMPERATURE

TYPICAL OUTPUT CHARACTERISTICS AT LOW AND HIGH
COLLECTOR-EMITTER VOLTAGES

TYPICAL TRANSFER AND MUTUAL CHARACTERISTICS

Typical base current versus junction temperature

TYPICAL VATIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH COLLECTOR CURRENT AND JUNCTION TEMPERATURE

TYPICAL VARIATION OF COLLECTOR-EMITTER SATURATION VOLTAGE WITH COLLECTOR CURRENT

TYPICAL VARIATION OF COLLECTOR CAPACITANCE WITH COLLECTOR-BASE VOLTAGE

TYPICAL VARIATION OF TRANSITION FREQUENCY WITH COLLECTOR CURRENT

TYPICAL INPUT IMPEDANCE AND TYPICAL VOLTAGE FEEDBACK RATIO PLOTTED AGAINST COLLECTOR CURRENT

TYPICAL FORWARD CURRENT TRANSFER RATIO AND TYPICAL OUTPUT ADMITTANCE PLOTTED AGAINST COLLECTOR CURRENT

SILICON PLANAR EPITAXIAL TRANSISTOR

P-N-P transistor in a TO-39 metal envelope intended for switching applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CB}	o max.	65	V
Collector-emitter voltage (open base)	-V _{CE}	max.	65	V
Collector current (peak value)	-I _{CM}	max.	600	mΑ
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	600	mW
D.C. current gain $-1_C = 10 \text{ mA}; -V_{CE} = 0.4 \text{ V}$	h _{FE}	typ. 50 to	90	
Storage time $-I_{Con} = 100 \text{ mA}$; $-I_{Bon} = I_{Boff} = 10 \text{ mA}$	t_{S}	<	250	ns

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case

Dimensions in mm

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 004-083, available on request.

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

-V _{CBO} max.	65	V
-V _{CEO} max.	65	V
-V _{EBO} max.	5.0	S OT S OV
-I _C max.	600	mA
-I _{CM} max.	600	mA
-I _{EM} max.	600	mA
$P_{tot} = \text{max.} (T_{amb} \le 25^{\circ} \text{C})$	600	

Temperature

emperature	up to Torres = 25 °C 1	
T min.	-65	°C comment of O.O.
T max.	200	30 V-oC m 01 = 31-
T max.	200	C emit edinoss
30) > 31		

THERMAL CHARACTERISTIC

ELECTRICAL CHARACTERISTICS (T $_{i} = 25^{\circ}$ C unless otherwise stated)

		Min.	Typ.	Max.		
-I	Collector cut-off current					
CBO	$-V_{CB} = 65V, I_{E} = 0$	-	1.0	500	nA	
	$-V_{CB} = 50V, I_{E} = 0$		0.5	50	nA	
	$-V_{CB} = 50V, I_{E} = 0,$					
	$T_j = 100^{\circ}C$	- 1		2.0	μΑ	
-I	Emitter cut-off current					
EBO	$-V_{EB} = 5.0V, I_{C} = 0$	-	30	500	nA	
	$-V_{EB} = 3.0V, I_{C} = 0$	-	1.0	100	nA	
-V _{BE(sat)}	Base-emitter saturation					
DE(Sat)	voltage					
	$-I_{C} = 30 \text{mA}, -I_{B} = 1.0 \text{mA}$	-	0.77	0.90	V	
	$-I_C = 150 \text{mA}, -I_B = 15 \text{mA}$	-	1.05	1.30	V	
$^{\rm h}_{ m FE}$	Static forward current transfer ratio					
	$-I_C = 1.0 \text{mA}, -V_{CE} = 0.4 \text{V}$	40	80	-		
	$-I_C = 10 \text{mA}, -V_{CE} = 0.4 \text{V}$	50	90	200		
	$-I_C = 50 \mathrm{mA}, -V_{CE} = 0.4 \mathrm{V}$	20	92	-		
	$-I_C = 150 \text{mA}, -V_{CE} = 0.4 \text{V}$	10	50	30 of bevo		

		Min.	Тур.	Max.	
C _{te}	Collector capacitance $-V_{CB} = 10V$, $I_E = I_e = 0$,				
	f = 1.0 MHz	-	6.0	12	pF
c _{te}	Emitter capacitance $-V_{EB} = 2.0V$, $I_{C} = I_{c} = 0$,				
	f = 1.0 MHz	-	18	30	pF
Saturated sy	vitching times (see page 4)				
$-I_C = 100 \text{mA}$	$I_{\text{Bon}} = I_{\text{Boff}} = 10 \text{mA}, V_{\text{EE}} = 10 \text{mA}$	10V, V _{BI}	= 2.0	V	
t _d	Delay time	-	9	15	ns
tr	Rise time	-	18	40	ns
ton	Turn-on time $(t_d + t_r)$	-	27	50	ns
ts	Storage time	(To)8	95	250	ns
tf	Fall time	-	30	50	ns
toff	Turn-off time (ts+tf)	-	125	290	ns

SOLDERING AND WIRING RECOMMENDATIONS

- When using a soldering iron, transistors may be soldered directly into the circuit, but heat conducted to the junction should if possible be kept to a minimum by the use of a thermal shunt.
- 2. Transistors may be dip-soldered at a solder temperature of 245°C for a maximum soldering time of 5 seconds. The case temperature during soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a transistor mounted flush on a board having punched-through holes, or spaced at least 1.5mm above a board having plated-through holes.
- Care should be taken not to bend the leads nearer than 1.5mm from the seal.
- 4. If devices are stored at temperatures above 100°C before incorporation into equipment, some deterioration of the external surface is likely to occur which may make soldering into the circuit difficult. Under these circumstances the leads should be retinned using a suitable activated flux.

Saturated switching times

Test circuit

TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS
PLOTTED AGAINST PULSE DURATION

Pulse duration (s)

TYPICAL VARIATION OF COLLECTOR CUT-OFF CURRENT WITH JUNCTION TEMPERATURE

TYPICAL OUTPUT CHARACTERISTICS AT LOW AND HIGH COLLECTOR-EMITTER VOLTAGES

-VCE(V)

TYPICAL TRANSFER AND MUTUAL CHARACTERISTICS

Typical input characteristics

Typical base current versus junction temperature

TYPICAL VARIATION OF STATIC FORWARD CURRENT TRANSFER RATIO WITH COLLECTOR CURRENT AND JUNCTION TEMPERATURE

TYPICAL VARIATION OF BASE-EMITTER SATURATION VOLTAGE WITH COLLECTOR CURRENT AND $\mathbf{I_C}/\mathbf{I_B}$ RATIO

TYPICAL VARIATION OF COLLECTOR CAPACITANCE WITH COLLECTOR-BASE VOLTAGE

TYPICAL VARIATION OF STORAGE TIME WITH JUNCTION TEMPERATURE

TYPEGAL VARIATION OF COLLECTOR CAPACITANCE WITH COLLECTOR-BASE VOLTAGE

TYPECAL VAREATION OF STORAGE TAME WITH ADMOTON TEMPLIFICATION

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a TO-39 metal envelope primarily intended for use as high-current switching device, e.g. inverters and switching regulators.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	120	V
Collector-emitter voltage (open base)	VCEO	max.	60	V
Collector current (peak value)	¹ CM	max.	5,0	Α
Total power dissipation up to T _{case} = 25 °C	P _{tot}	max.	5,0	W
Junction temperature	Ti	max.	200	oC
D.C. current gain I _C = 2 A; V _{CE} = 2 V	hFE	40 to	150	
Transition frequency at $f = 35 \text{ MHz}$ $I_C = 0.5 \text{ A; } V_{CE} = 5 \text{ V}$	fT	>	70	MHz
Turn-off time when switched from I _C = 5 A; I _B = 0,5 A to cut-off				
with $-I_{BM} = 0.5 A$	toff	<	1,2	μs

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56254 (distance disc).

Products approved to CECC 50 004-025, available on request.

Voltages				
Collector-base voltage (open emitter)	V_{CBO}	max.	120	V
Collector-emitter voltage (open base)	v_{CEO}	max.	60	V
Emitter-base voltage (open collector)	v_{EBO}	max.	6	V
Currents				
Collector current (d.c.)	$I_{\mathbb{C}}$	max.	2.0	A
Collector current (peak value)	I_{CM}	max.	5.0	A
Base current (d.c.)	I_{B}	max.	1.0	A
Power dissipation				
Total power dissipation up to T_{case} = 25 ^{o}C	Ptot	max,	5.0	W
up to $T_{amb} = 25$ °C	P _{tot}	max.	0.87	W
Temperatures				
Storage temperature	T _{stg}	-55 to	+200	°C
Junction temperature	Tj	max.	200	oC
THERMAL RESISTANCE				ECHANIC
Frm junction to ambient in free air	R _{th j-a}	=	200	°C/W
From junction to case	R _{th j-c}	=	35	°C/W

CHARACTERISTICS

T _j = 25 °C unless otherwise specified		
Collector cut-off current VEB = 0; VCE = 60 V	ICES	< 10 μΑ
Emitter cut-off current I _C = 0; V _{EB} = 4 V	IEBO	typ. 0,01 μA < 10 μA
Saturation voltage I _C = 5 A; I _B = 0,5 A	V _{CEsat}	typ. 0,77 V < 1,0 V typ. 1,43 V < 1,8 V
D.C. current gain I _C = 1,0 A; V _{CE} = 2,0 V I _C = 1,5 A; V _{CE} = 0,6 V I _C = 2,0 A; V _{CE} = 2,0 V	hFE hFE	typ. 130 typ. 60 typ. 110 40 to 150
Collector capacitance at $f = 1 \text{ MHz}$ $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C _c	typ. 36 pF < 100 pF
Emitter-capacitance at f = 1 MHz $I_C = I_c = 0$; $V_{EB} = 0.5 \text{ V}$ Transition frequency at f = 35 MHz $I_C = 0.5 \text{ A}$; $V_{CE} = 5 \text{ V}$	C _e	typ. 440 pF ← > 70 MHz typ. 100 MHz
Turn on time when switched from $-V_{BE} = 2.0 \text{ V}$ to $I_{C} = 5 \text{ V}$; $I_{B} = 0.5 \text{ A}$ with $I_{BM} = 0.5 \text{ A}$	ton	typ. 0,2 μs < 0,6 μs
Turn off time when switched from $I_C = 5 \text{ A}$; $I_B = 0.5 \text{ A}$ to $-V_{BE} = 2.0 \text{ V}$ with $-I_{BM} = 0.5 \text{ A}$	toff	typ. 0,34 μs

Safe Operation Area with the transistor forward biased

I Region of permissible d.c. operation

II Permissible extension for repetitive pulsed operation

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in TO-39 metal envelopes for general purpose industrial applications.

QUICK REFERENCE DATA

			BFX84	BFX85	BFX86	
Collector-base voltage (open emitter)	V_{CBO}	max.	100	100	40	V
Collector-emitter voltage (open base)	V_{CEO}	max.	60	60	35	V
Collector current (peak value)	ICM	max.	1,0	1,0	1,0	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	800	800	800	mW
Total power dissipation up to T _{case} = 100 °C	P _{tot}	max.	2,86	2,86	2,86	W
D.C. current gain $I_C = 150 \text{ mA}$; $V_{CE} = 10 \text{ V}$	hFE	> typ.	30 112	70 142	70 142	
Transition frequency at f = 35 MHz I_C = 50 mA; V_{CE} = 10 V; T_{amb} = 25 °C	fT	>	50	50	50	MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 004-100, available on request.

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

	BFX84	BFX85	BFX86	
V _{CBO} max.	100	100	40	v
V _{CE} max. (cut-off, I _C ≤1mA)	100	100	40	V
V _{CEO} max.	60	60	35	V
V _{EBO} max.		6.0		V
I max.		1.0		A
I _{CM} max.		1.0		A
-I _E max.	050	1.0		A
-I _{EM} max.		1.0		. A
IB max.		100		mA
±I max.		100		mA
P _{tot} max. T _{amb} ≤25°C		800		mW
T _{case} ≤25°C		5.0		W
T _{case} > 25, < 100 °C		2.86		W

Temperature

T _{stg}	-65 to +200	00
T max.	200	0

THERMAL CHARACTERISTICS

R _{th(j-amb)} in free air	220	degC/W
R _{th(j-case)}	35	degC/W

BFX84

ELECTRICAL CHARACTERISTICS (T $_{\rm j} = 25\,^{\rm o}{\rm C}$ unless otherwise stated)

	in and in the state of the stat	Min.	Тур.	Max.	
I _{CBO}	Collector cut-off current) BOITS	10	500	nA
	V _{CB} =100V, I _E =0	-			
	$V_{CB} = 100V, I_{E} = 0, T_{j} = 100^{\circ}C$	equency	0.5	30	μΑ
	$V_{CB} = 80V, I_{E} = 0$	0.5=	2.0	50	nA
	$V_{CB} = 80V, I_{E} = 0, T_{j} = 100^{\circ}C$	as = drai	0.1	2.5	μ A
$^{\rm I}{_{\rm EBO}}$	Emitter cut-off current $V_{EB} = 6.0V, I_{C} = 0$	_ 80	10	500	nA
	$V_{EB} = 5.0V, I_{C} = 0$	(B(eff)	2.0	50	nA
	$V_{EB} = 5.0V, I_{C} = 0, T_{j} = 100^{\circ}C$	- (8)	0.1	2.5	μ A
$^{\rm h}_{ m FE}$	Static forward current				
	transfer ratio I _C =10mA, V _{CE} =10V	20	80	selfi ,	
	$_{\rm C}^{\rm C}$ = 150mA, $_{\rm CE}^{\rm E}$ = 10V	30	112	TOT	
	$I_C = 500 \text{mA}, V_{CE} = 10 \text{V}$	20	70	Tolk	
	I _C =1.0A, V _{CE} =10V	15	35	Hart.	
- şn	088				
VCE(sat)	Collector-emitter saturation voltage				
	$I_{C} = 10 \text{mA}, I_{B} = 1.0 \text{mA}$	-	0.15	0.20	V
	I _C =150mA, I _B =15mA	-30	0.15	0.35	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	-dmi	0.35	1.00	V
	I _C =1.0A, I _B =100mA	-	0.66	1.60	V
V _{BE(sat)}	Base-emitter saturation				
	voltage I _C =10mA, I _B =1.0mA	g = - dess	0.69	1.2	V
	C B I = 150mA, I = 15mA	_	0.92	1.3	V
	$I_C = 500 \text{mA}, I_B = 50 \text{mA}$	_	1.15	1.5	V
			1.40	2.0	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$		1.40	2.0	٧
C _{Te}	Collector capacitance $V_{CB} = 10V$, $I_{E} = I_{e} = 0$,				
	f = 1.0 MHz		7.0	12	pF

BFX84

ELECTRICAL CHARACTERISTICS (contd.)

		Min.	Typ.	Max.	
f_{T}	Transition frequency I _C = 50mA, V _{CE} = 10V,		1 .V08 = 8		
	$f = 35MHz$, $T_{amb} = 25^{\circ}C$	50	140	o ^v -	MHz
Saturat	ed switching times				
	150mA, $I_{B(on)} = -I_{B(off)} = 15mA$, = 10V, $-V_{BE(off)} = 2.0V$				
t _d	Delay time	inoutue l	15	1818-	ns
tr	Rise time	-	40	1811	ns
ton	Turn-on time	_ 810	55	0-	ns
ts	Storage time	_30	300	-	ns
t _f	Fall time	_XO	60	-	ns
toff	Turn-off time	- 3	360	0-	ns
h-para	meters				
h _{fe}	$I_{C} = 1.0 \text{mA}, V_{CE} = 5.0 \text{V},$				
7	$f=1.0kHz$, $T_{amb}=25^{\circ}C$	10	65	-	-
h _{ie}		Ameol =	750	- 1	Ω
h _{re}	$I_{C} = 10 \text{mA}, V_{CE} = 5.0 \text{V},$	Hart-hee	0.85	5.0	×10 ⁻⁴
h _{fe}	$f=1.0kHz$, $T_{amb} = 25^{\circ}C$	15	80	100	
hoe		-	35	80	$\mu \mathrm{mho}$

	ARACTERISTICS (1, -25 C unit	Min.	Typ.	Max.	
ICBO	Collector cut-off current $V_{CB} = 100V, I_{E} = 0$	vome:	10	500	nA
	$V_{CB} = 100V, I_{E} = 0, T_{j} = 100^{\circ}C$	1047	0.5	30	μA
	$V_{CB} = 80V, I_{E} = 0$	= 2 6 °c	2.0	50	nA
	$V_{CB} = 80V, I_{E} = 0, T_{j} = 100^{\circ}C$	-	0.1	2.5	μΑ
IEBO	Emitter cut-off current $V_{EB} = 6.0V$, $I_{C} = 0$	(Mo)	10	500	nA
	V _{EB} =5.0V, I _C =0	- "	2.0	50	nA
	$V_{EB}^{EB} = 5.0V, I_{C} = 0, T_{j} = 100^{\circ}C$	-	0.1	2.5	μΑ
h _{FE}	Static forward current				
	transfer ratio $I_C = 10 \text{mA}, V_{CE} = 10 \text{V}$	50	90	a-man/I	
	$I_C = 150 \text{mA}, V_{CE} = 10 \text{V}$	70	142	- Storage	
	$I_C = 500 \text{mA}, V_{CE} = 10 \text{V}$	30	90	- C	
	$I_C = 1.0A$, $V_{CE} = 10V$	15	50	-	
V CE(sat)	Collector-emitter saturation				
	voltage I _C =10mA, I _B =1.0mA	/0.0 = 3	0.15	0. 20	V
	I _C = 150mA, I _B = 15mA	_ d	0.15	0.35	V
	I _C =500mA, I _B =50mA	_	0.35	1.00	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$	Vσ.8=	0.66	1.60	V
V BE(sat)	Base-emitter saturation				
	voltage $I_C = 10 \text{mA}, I_B = 1.0 \text{mA}$	-	0.69	1.2	V
	I _C = 150mA, I _B = 15mA	-	0.92	1.3	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	-	1.15	1.5	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$	-	1.40	2.0	V
$^{\mathrm{C}}$ Tc	Collector capacitance $V_{CB} = 10V$, $I_{E} = I_{e} = 0$,				
	f=1.0MHz	-	7.0	12	pF

BFX85/BFX86

ELECTRICAL CHARACTERISTICS (contd.)

	gand dy'i nise				
		Min.	Typ.	Max.	
f _T	Transition frequency I _C = 50mA, V _{CE} = 10V,				
	6411.0		185	= 65Y	MHz
Saturat	ed switching times				
	$150 \text{mA}, I_{B(\text{on})} = -I_{B(\text{off})} = 15 \text{mA}$ = 10V, $-V_{BE(\text{off})} = 2.0 \text{V}$, inerrum 0			
t _d Au	Delay time	0, 47, -10	15	V	ns
t	Rise time	triogram	40	l elifite	ns
ton	Turn-on time	-	55	cramete	ns
ts	Storage time	VOC	300	221	ns
tf	Fall time	VUI	60	201 - 31	ns
toff	Turn-off time	AOL	360		ns
h-parar	meters				
h _{fe}	$I_{C} = 1.0 \text{mA}, V_{CE} = 5.0 \text{V},$				
V	$f=1.0kHz$, $T_{amb}=25^{\circ}C$	20	65		400
h _{ie}		Som A	750	0081	Ω
h _{re}	$I_{C} = 10 \text{mA}, V_{CE} = 5.0 \text{V},$	Amb	0.85	5.0	< 10 ⁻⁴
h _{fe}	$f=1.0kHz$, $T_{amb} = 25^{\circ}C$	25	80	s-es518	
h _{oe}	2.1 80.0	Amo.	35	80	μmho

BFX86

ELECTRICAL CHARACTERISTICS (T $_{\rm j} = 25\,^{\rm o}{\rm C}$ unless otherwise stated)

	j 20 0 unic	Min.	Typ.	Max.	
I _{CBO}	Collector cut-off current $V_{CB}^{=40V, I_{E}^{=0}}$	_	10	500	nA
	$V_{CB}^{=40V}$, $I_{E}^{=0}$, $T_{j}^{=100}$ C	-	0.5	30	μ A
	$V_{CB}^{=30V}$, $I_{E}^{=0}$	07.9	2.0	50	nA
	$V_{CB}^{CB} = 30V, I_{E}^{E} = 0, T_{j}^{E} = 100^{\circ}C$	-	0.1	2.5	μΑ
T	Emitter cut-off current				
IEBO	$V_{EB} = 6.0V$, $I_C = 0$	- 1	10	500	nA
	$V_{EB}^{=5.0V, I_{C}^{=0}}$	- [2.0	50	nA
	$V_{EB} = 5.0V, I_{C} = 0, T_{j} = 100^{\circ}C$	-	0.1	2.5	μA
$^{\rm h}{}_{ m FE}$	Static forward current transfer ratio				
	$I_{C} = 10 \text{mA}, \ V_{CE} = 10 \text{V}$	50	90	(moles I s	
	$I_{C} = 150 \text{mA}, \ V_{CE} = 10 \text{V}$	70	142	0.5-	
	$I_{C} = 500 \text{mA}, \ V_{CE} = 10 \text{V}$	30	90	- "	
	$I_{C} = 1.0A, V_{CE} = 10V$	15	50	#1012 0 JOANS	
V CE(sat)	Collector-emitter saturation voltage				
	$I_{C} = 10 \text{mA}, I_{B} = 1.0 \text{mA}$	-	0.15	0.20	V
	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	-	0.15	0.35	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	-	0.35	1.00	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$	-	0.66	1.60	V
V _{BE(sat)}	Base-emitter saturation voltage				
	$I_{C} = 10 \text{mA}, I_{B} = 1.0 \text{mA}$	-	0.69	1.2	V
	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	- V	0.92	1.3	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	E	1.15	1.5	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$	-	1.40	2.0	V
$^{\mathrm{C}}_{\mathrm{Te}}$	Collector capacitance $V_{CB} = 10V$, $I_{E} = I_{e} = 0$,				
	f = 1.0 MHz	-	7.0	12	pF

MEASUREMENT OF SATURATED SWITCHING TIMES

Test circuit

Switching waveforms

 $\begin{array}{c} \text{MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST} \\ \text{AMBIENT TEMPERATURE} \end{array}$

TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS
PLOTTED AGAINST PULSE DURATION

COLLECTOR AND EMITTER CUT-OFF CURRENTS PLOTTED AGAINST JUNCTION TEMPERATURE

TYPICAL OUTPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

TYPICAL TRANSFER, MUTUAL AND INPUT CHARACTERISTICS

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED
AGAINST COLLECTOR CURRENT AND JUNCTION TEMPERATURE

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST JUNCTION TEMPERATURE

TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT

TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

TYPICAL BASE-EMITTER SATURATION VOLTAGE
PLOTTED AGAINST JUNCTION TEMPERATURE

TYPICAL COLLECTOR CAPACITANCE PLOTTED AGAINST COLLECTOR-BASE VOLTAGE

TYPICAL h-PARAMETERS NORMALISED AT IC = 10mA

P-N-P SILICON PLANAR EPITAXIAL TRANSISTORS

For data of these transistors please refer to type BFX29.

P-N-P SILICON PLANAR EPITAXIAL TRANSISTORS

For data of these transistors please refer to type BFX29

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in TO-39 metal envelopes intended for general purpose industrial applications.

QUICK REFERENCE DATA

			BFY50	BFY51	BFY52	
Collector-base voltage (open emitter)	V _{CBO}	max.	80	60	40	V
Collector-emitter voltage (open base)	VCEO	max.	35	30	20	\vee
Collector current (peak value)	I _{CM}	max.	1,0	1,0	1,0	Α
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.	800	800	800	mW
Total power dissipation up to T _{case} = 100 °C	P _{tot}	max.	2,86	2,86	2,86	W
D.C. current gain I _C = 150 mA; V _{CE} = 10 V	h _{FE}	> typ.	30 112	40 123	60 142	
Transition frequency at f = 35 MHz $I_C = 50 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $T_{amb} = 25 ^{\circ}\text{C}$	fT	>	60	50	50	MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-089, available on request.

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical TOTEIZMAST DAIXATISE SAMAIS MODULE

	I	3FY50	BFY51	BFY52	
		80	60	40	v
off, I _C ≤1n	nA)	80	60	40	v
		35	30	20	SEE VINCE DAY
			6.0		V
			1.0		A
			1.0		on species A time
			1.0		outer Jeag) A amos
			1.0		A D
			100		mA
			100		mA
≤25°C			800		mW
≤25°C			5.0		W
>25, <10	00°C		2.86		W
		-(65 to +200		°C
			200		°C
	oayaa aa aa aa aa aa aa aa aa aa aa aa aa	off, I _C ≤1mA)	off, I _C ≤1mA) 80 35 35 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

T

T _{stg}	-65 to +200	°C
T max.	200	°c

THERMAL CHARACTERISTICS

R _{th(j-amb)} in free air	220	degC/W
Rth(j-case)	35	degC/W

BFY50

ELECTRICAL CHARACTERISTICS (T, = 25° C unless otherwise stated)

CIRICAL CH	ARACTERISTICS (1, -25 C unit	ess otne		tea)	
		Min.	Typ.	Max.	
I _{CBO}	Collector cut-off current	moo) 80	10	500	nA
	$V_{CB} = 80V, I_{E} = 0$	_			
	$V_{CB} = 80V, I_{E} = 0, T_{j} = 100^{\circ}C$	Your	0.5	30	μΑ
	$V_{CB} = 60V, I_{E} = 0$,V01 =	2.0	50	nA
	$V_{CB} = 60V, I_{E} = 0, T_{j} = 100^{\circ}C$	50 5 2=	0.1	2.5	μΑ
I _{EBO}	Emitter cut-off current				
220	$V_{EB} = 6.0V, I_{C} = 0$	_		500	
	$V_{EB} = 5.0V, I_{C} = 0$	7(0)	2.0	50	nA
	$V_{EB} = 5.0V, I_{C} = 0, T_{j} = 100^{\circ}C$	A.6 . E	0.1	2.5	μΑ
$^{ m h}_{ m FE}$	Static forward current transfer ratio				
	$I_{C} = 10 \text{mA}, \ V_{CE} = 10 \text{V}$	20	80	Riser	
	$I_{C} = 150 \text{mA}, V_{CE} = 10 \text{V}$	30	112	-page	
	$I_C = 500 \text{mA}, \ V_{CE} = 10 \text{V}$	20	70	Storag	
	$I_{C} = 1.0A, V_{CE} = 10V$	15	35	it that	
V _{CE(sat)}	Collector-emitter saturation voltage				
	$I_C = 10 \text{mA}, I_B = 1.0 \text{mA}$	-	0.15	0.20	V
	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	70 2 = 2	0.15	0.20	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$) ² 25 ° (15 ° (0.35	0.70	V
	I _C =1.0A, I _B =100mA	-	0.66	1.00	v
V _{BE(sat)}	Base-emitter saturation voltage				
	I _C = 10mA, I _B = 1.0mA	200	0.69	1.2	V
	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	-	0.92	1.3	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	-	1.15	1.5	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$	-	1.40	2.0	v
C _{Tc}	Collector capacitance $V_{CB} = 10V$, $I_{E} = I_{e} = 0$,				,
	f = 1.0 MHz	-	7.0	12	pF

BFY50

ELECTRICAL CHARACTERISTICS (contd.)

		Min.	Typ.	Max.	
f	Transition frequency				
f _T	$I_{C} = 50 \mathrm{mA}, \ V_{CE} = 10 \mathrm{V},$				
	$f = 35MHz$, $T_{amb} = 25^{\circ}C$	60	140	Ta5V	MHz
Saturate	ed switching times				
	$50 \text{mA}, I_{B(\text{on})} = -I_{B(\text{off})} = 15 \text{mA};$				
$-v_{\rm EE}$	$=10V, -V_{BE(off)} = 2.0V$				
t _d	Delay time	toward to	15	311 <u>218</u>	ns
tr	Rise time	V01 =	40	0.05	ns
ton	Turn-on time	V01 =	55	1	ns
ts	Storage time	Vot -	300	-	ns
tf	Fall time	701=	60	-	ns
toff	Turn-off time	-	360	-	ns
h-paran	neters				
h _{fe}	$I_{C} = 1.0 \text{mA}, V_{CE} = 5.0 \text{V},$				-
	$f=1.0kHz$, $T_{amb}=25^{\circ}C$	10	65	06-7	
V					
h _{ie}		-	750	-	Ω
h _{re}	$I_C = 10 \text{mA}, \ V_{CE} = 5.0 \text{V},$	aoti <u>e</u> rula	0.85	5.0	×10 ⁻⁴
h _{fe}	$f = 1.0 \text{kHz}, T_{amb} = 25^{\circ}\text{C}$	15	80	1,-10	
h _{oe}		15m.k	35	80	$\mu \mathrm{mho}$

BFY51 ${\tt ELECTRICAL\ CHARACTERISTICS\ (T}_i = 25^{\circ} {\tt C\ unless\ otherwise\ stated)}$

CTRICAL CE	ARACTERISTICS (T = 25 C un	less otne	rwise sta	tea)	
		Min.	Typ.	Max.	
$^{\mathrm{I}}_{\mathrm{CBO}}$	Collector cut-off current				
ODO	$V_{CB} = 60V, I_{E} = 0$	-	10	500	nA
	$V_{CB} = 60V, I_{E} = 0, T_{j} = 100^{\circ}C$	-	0.5	30	μ A
	$V_{CB} = 40V, I_{E} = 0$	vor≃.	2.0	50	nA
	$V_{CB} = 40V, I_{E} = 0, T_{j} = 100^{\circ}C$	5°55 = 1	0.1	2.5	μA
$\mathbf{I}_{\mathrm{EBO}}$	Emitter cut-off current				
EBO	$V_{EB} = 6.0V, I_{C} = 0$	-	10	500	nA
	$V_{EB} = 5.0V, I_{C} = 0$	(ale)8	2.0	50	nA
	$V_{EB} = 5.0V, I_{C} = 0, T_{j} = 100^{\circ}$	Vecs	0.1	2.5	μΑ
$^{ m h}_{ m FE}$	Static forward current				
	transfer ratio $I_C = 10 \text{mA}, V_{CE} = 10 \text{V}$	30	85	1080/1	
	$I_C = 150 \text{mA}, V_{CE} = 10 \text{V}$	40	123	-curt-	
	$I_{C} = 500 \text{mA}, V_{CE} = 10 \text{V}$	25	79	Storas	
	$I_{C} = 1.0A, V_{CE} = 10V$	15	40	Pall	
V _{CE(sat)}	Collector-emitter saturation				Bo
O LI (Dav)	voltage		0, 15	0. 20	V
	I _C =10mA, I _B =1.0mA	V0.8			- 1
	$I_C = 150 \text{mA}, I_B = 15 \text{mA}$	_ 30 30 = 30	0.15	0.35	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	- 0	0.35	1.00	V
	$I_C = 1.0A, I_B = 100mA$	-	0.66	1.60	V
V _{BE(sat)}	Base-emitter saturation voltage				
	I _C =10mA, I _B =1.0mA	900 <u>0</u> = 100	0.69	1.2	V
	$I_C = 150 \text{mA}, I_B = 15 \text{mA}$	-	0.92	1.3	V
	$I_C = 500 \text{mA}, I_B = 50 \text{mA}$	_	1.15	1.5	V
	I _C =1.0A, I _B =100mA	-	1.40	2.0	V
C _{Tc}	Collector capacitance $V_{CB} = 10V$, $I_{E} = I_{e} = 0$,				
	f=1.0MHz	-	7.0	12	pF

BFY51/BFY52

ELECTRICAL CHARACTERISTICS (contd.)

	- 10 800				
		Min.	Typ.	Max.	
$^{\mathrm{f}}\mathrm{_{T}}$	Transition frequency I _C = 50mA, V _{CE} = 10V,				
	$f = 35MHz$, $T_{amb} = 25^{\circ}C$	50	31- VON	EBV	MHz
Satura	ted switching times				
	$= 150 \text{mA}, \ I_{\text{B(on)}} = -I_{\text{B(off)}} = 15 \text{mA}$ $= 10 \text{V}, \ -\text{V}_{\text{BE(off)}} = 2.0 \text{V}$, 0=			
E	E BE(off)				
t _d	Delay time	merch	15	otted	ns
t	Rise time	- v0.c=	40	150071	ns
ton	Turn-on time	V0.E = _	55	0 - O	ns
ts	Storage time	. VOT =	300	08 = <u>C.1</u>	ns
t _f	Fall time	Vox =	60	.1===1	ns
toff	Turn-off time	erenten med	360	9	ns
h-para	umeters				
h _{fe}	$I_{C} = 1.0 \text{mA}, V_{CE} = 5.0 \text{V},$				
	$f=1.0kHz$, $T_{amb}=25^{\circ}C$	20	65	0 1 _C = 50	
h _{ie}		Amoor	750	I=oI	Ω
h _{re}	$I_{C} = 10 \text{ mA}, \ V_{CE} = 5.0 \text{ V},$	abur-tion	0.85	5.0	×10 ⁻⁴
h _{fe}	$f = 1.0 \text{kHz}, T_{amb} = 25^{\circ} \text{C}$	25	80	n – 11	
h _{oe}		= 15mA	35	80	$\mu \mathrm{mho}$

BFY52

ELECTRICAL CHARACTERISTICS (T $_{\rm i} = 25\,^{\rm O}{\rm C}$ unless otherwise stated)

CTRICAL CI	HARACTERISTICS (T = 25°C unle	ss othe	rwise sta	ted)	
	VQI=V_	Min.	Typ.	Max.	
I_{CBO}	Collector cut-off current				
CBO	$V_{CB} = 40V, I_{E} = 0$	-	10	500	nA
	$V_{CB} = 40V, I_{E} = 0, T_{j} = 100^{\circ}C$	670	0.5	30	μΑ
	$V_{CB} = 30V, I_{E} = 0$		2.0	50	nA
	$V_{CB} = 30V, I_{E} = 0, T_{j} = 100^{\circ}C$	-	0.1	2.5	μ A
I_{EBO}	Emitter cut-off current				
EBO	$V_{EB} = 6.0V, I_C = 0$	-	10	500	nA
	$V_{EB} = 5.0V, I_{C} = 0$	-	2.0	50	nA
	$V_{EB} = 5.0V, I_{C} = 0, T_{j} = 100^{\circ}C$	-	0.1	2.5	μ A
$^{\rm h}_{ m FE}$	Static forward current transfer ratio				
	$I_{C} = 10 \text{mA}, V_{CE} = 10 \text{V}$	30	90	(no) <u>8</u>	
	$I_{C} = 150 \text{mA}, V_{CE} = 10 \text{V}$	60	142	City City	
	$I_{C} = 500 \text{mA}, \ V_{CE} = 10 \text{V}$	30	90	amriolevan	
	$I_{C} = 1.0A, V_{CE} = 10V$	15	50	-	
V _{CE(sat)}	Collector-emitter saturation voltage				
	$I_{C} = 10 \text{mA}, I_{B} = 1.0 \text{mA}$	- 1	0.15	0.20	V
	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	-	0.15	0.35	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	-	0.35	1.00	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$	-	0.66	1.60	V
V _{BE(sat)}	Base-emitter saturation voltage				
	$I_{C} = 10 \text{mA}, I_{B} = 1.0 \text{mA}$	- 1/	0.69	1.2	V
	$I_{C} = 150 \text{mA}, I_{B} = 15 \text{mA}$	- /	0.92	1.3	V
	$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$	-4	1.15	1.5	V
	$I_{C} = 1.0A, I_{B} = 100 \text{mA}$	-	1.40	2.0	V
$^{\mathrm{C}}\mathrm{_{Tc}}$	Collector capacitance $V_{CB} = 10V$, $I_E = I_e = 0$,				
	$f = 1.0 \mathrm{MHz}$	-	7.0	12	pF

MEASUREMENT OF SATURATED SWITCHING TIMES

Test circuit

Switching waveforms

MAXIMUM TOTAL DISSIPATION PLOTTED AGAINST AMBIENT TEMPERATURE

TRANSIENT THERMAL RESISTANCE FOR VARIOUS DUTY FACTORS PLOTTED AGAINST PULSE DURATION

COLLECTOR AND EMITTER CUT-OFF CURRENTS PLOTTED AGAINST JUNCTION TEMPERATURE

TYPICAL OUTPUT CHARACTERISTICS

TYPICAL OUTPUT CHARACTERISTICS

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST COLLECTOR CURRENT AND JUNCTION TEMPERATURE

TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO PLOTTED AGAINST JUNCTION TEMPERATURE

TYPICAL TRANSITION FREQUENCY PLOTTED AGAINST COLLECTOR CURRENT

Typical collector capacitance versus collector-base voltage

normalised at 25°C

TYPICAL COLLECTOR-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

TYPICAL BASE-EMITTER SATURATION VOLTAGE PLOTTED AGAINST COLLECTOR CURRENT

BFY50 BFY51 BFY52

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in TO-39 metal case with the collector connected to the case. It is primarily intended for use in high frequency and very high frequency oscillators and amplifiers as well as for output stages of servo amplifiers.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	Ol (entry)	√cво	max.	80	V
Collector-emitter voltage (open base)	gi-	√CEO	max.	35	V
Collector current (d.c.)	ul- (anti-	С	max.	1	Α
Total power dissipation up to $T_{amb} = 25$	oC .	tot	max.	800	mW
Junction temperature	(± rysq osla	Γj	max.	200	oC
D.C. current gain at $T_j = 25$ °C $I_C = 150$ mA; $V_{CE} = 10$ V	up to Tamb = 40 °C Pa	PFE .	>	40	
Transition frequency $I_C = 50 \text{ mA}$; $V_{CE} = 10 \text{ V}$	ap to T _{amb} = 25 °C . Po	fτ	>	60	MHz
Collector-emitter saturation voltage $I_C = 1 \text{ A}$; $I_B = 100 \text{ mA}$,	√CEsat	<	1	٧

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Dimensions in mm

RATINGS (Limiting values) 1)

W	0	lto	cr	0	c
v	v.	LLC	×	C	0

Collector-base voltage (open emitter)	VCBO	max.	80	V
Collector-emitter voltage (open base)	VCEO	max.	35	V
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	7	V

Currents

Collector current (d.c.)	$I_{\mathbf{C}}$	max.	1 A
Collector current (peak value)	I_{CM}	max.	1 A
Emitter current (d.c.)	$-I_{ m E}$	max.	1 A
Emitter current (peak value)	$-I_{\mathrm{EM}}$	max.	1 A

Power dissipation (See also page 4)

Tower dissipation (see also page 4)				
Total power dissipation up to T _{amb} = 40 °C	Ptot	max.	4	W
Total power dissipation without cooling fin				
up to $T_{amb} = 25$ °C	Ptot	max.	0.8	W

Temperatures

Storage temperature	T_{stg}	-65 to	+200	°С
Junction temperature	$T_{\mathbf{j}}$	max.	200	°C

THERMAL RESISTANCE

From junction to ambient in free air	R _{th j-a}	=	0.22	oC/mW
From junction to case	Rth j-c	=	0.035	^o C/mW

 $^{^{}m I}$) Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

CHARACTERISTICS
Collector cut-off cu

 T_j = 25 °C unless otherwise specified

	Coll	ector	cut-off	current
--	------	-------	---------	---------

$I_{\rm E}$ = 0; $V_{\rm CB}$ = 60 V	I_{CBO}	<	10	nA
I_E = 0; V_{CB} = 60 V; T_j = 150 $^{\rm o}$ C	I_{CBO}	<	10	μA
Emitter cut-off current				
$I_C = 0; V_{EB} - 5 V$	I_{EBO}	<	10	nA
Saturation voltages				
I_C = 150 mA; I_B = 15 mA	V _{CEsat}	<	0.2	V
$I_C = 1 \text{ A}; I_B = 100 \text{ mA} ^{-1})^2$	${ m ^{V}CE}_{ m SE}$ sat		1.0	
Sustaining voltage				
$I_C = 30 \text{ mA}; I_B = 0^{-2}$	V _{CEOsust}	>	35	V
D.C. current gain ²)				
I_C = 10 mA; V_{CE} = 10 V	$h_{ m FE}$	>	30	
I_C = 150 mA; V_{CE} = 10 V	$h_{ m FE}$	40 t	to 120	
I_C = 1 A; V_{CE} = 10 V	00 h _{FE}	>	15	
Feedback time constant				
I_C = 10 mA; V_{CB} = 10 V; f = 4 MHz	r_b C_c	<	800	ps
Collector capacitance at f = 500 kHz				
$I_{\rm E}$ = $I_{\rm e}$ = 0; $V_{\rm CB}$ = 10 V	C_{c}	<	12	pF
Emitter capacitance at f = 500 kHz				
$I_C = I_c = 0$; $V_{EB} = 0.5 \text{ V}$	$C_{\mathbf{e}}$	<	80	pF

 f_T

60 MHz

Transition frequency

 I_C = 50 mA; V_{CE} = 10 V

¹⁾ Measured with a lead length of 1 cm.

 $^{^2)}$ Measured under pulsed conditions to avoid excessive dissipation. Pulse duration = 300 $\mu s;$ duty cycle δ < 0.01

SILICON CONTROLLED SWITCH

The BR101 is a planar p-n-p-n switch in a TO-72 metal envelope, intended for time base circuits and other television applications. It is also suitable as trigger device for thyristors. It is an integrated p-n-p/n-p-n transistor pair of which all electrodes are accessible. The collector of the n-p-n transistor is connected to the case.

QUICK REFERENCE DATA

p-n-p transistor	mitter current (peak value)	peak er	evis	decipol
Emitter-base voltage (open collector)	-V _{EBO}	max.	50	٧
n-p-n transistor				
Collector-base voltage (open emitter)	V _{CBO}	max.	50	V
Repetitive peak emitter current (peak value)	-I _{ERM}	max.	2,5	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	275	mW
Junction temperature	Tį	max.	150	oC
Forward on-state voltage $I_A = 50 \text{ mA}$; $I_{AG} = 0$; $R_{KG-K} = 10 \text{ k}\Omega$	VAK	<	1,4	٧
Holding current $I_{AG} = 10 \text{ mA}; -V_{BB} = 2 \text{ V}; R_{KG-K} = 10 \text{ k}\Omega$	H	<	1,0	mA

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

Collector of the n-p-n transistor (ag = anode gate) connected to the case

Accessories: 56246 (distance disc).

Voltages		p	-n-p	n-p-n		
Collector-base voltage (open emitter)	v_{CBO}	max.	-50	50	V	
Collector-emitter voltage ($R_{\rm BE}$ = 10 k	V_{CER}	max.		50	V	

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Collector-emitter voltage ($R_{BE} = 10 \text{ k}\Omega$)	$v_{\rm CER}$	max.	-	50	V
Collector-emitter voltage (open base)	VCEO	max.	-50	6 si T01	V
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	-50	5 1) V

Currents Emitter current (d.c.)

Emitter current (d.c.)	1E	max.	1/5	-1/5	m.P.
Repetitive peak emitter current (peak value)					
$t_p = 10 \ \mu s$; $\delta = 0.01$	$I_{\rm ERM}$	max.	2,5	- 2,5	A
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	-	175 2) mA

Collector current (peak value)	I_{CM}	max.	- 175	mA
Power dissipation				

Total power dissipation up to $T_{amb} = 25$ °C.

Total polici	diobapation up to	ann - 20	0	101	max.	2/0	111 44
en 00 031							

Temperatures

Storage temperature	T_{stg}	-65 to	+200	°C
Operating junction temperature	$T_{\mathbf{j}}$	max.	150	$^{\rm o}{ m C}$

THERMAL RESISTANCE

From junction to ambient	R _{th} j-a	=	0,45	OC/mW
--------------------------	---------------------	---	------	-------

¹⁾ Exceeding of this voltage is allowed during the discharge of a capacitor of max. $390\,\mathrm{pF}$, provided the charge does not exceed $50\,\mathrm{nC}$.

²⁾ Provided the IE rating will not be exceeded.

MEANING OF SYMBOLS, used in the schematic presentation of the S.C.S.

2 transistors equivalent circuit n-p-n transistor + p-n-p transistor

p-n-p-n S.C.S. equivalent circuit

S.C.S. symbol

CHARACTERISTICS

 T_j = 25 o C unless otherwise specified

Individual N-P-N transistor

Collector cut-off current

$$V_{CE} = 50 \text{ V}; R_{BE} = 10 \text{ k}\Omega$$

$$V_{CE} = 50 \text{ V}; R_{BE} = 10 \text{ k}\Omega; T_i = 150 \text{ }^{O}\text{C}$$

$$I_{CER}$$
 < 0,5 μA
 I_{CER} < 50 μA

Emitter cut-off current

$$I_{\rm C} = 0$$
; $V_{\rm EB} = 5~{\rm V}$; $T_{\rm j} = 150~{\rm ^oC}$

$$I_{EBO}$$
 < 50 μA

Individual N-P-N transistor				
Saturation voltages				
$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$	V _{CEsat} V _{BEsat}	<	500 900	mV mV
D.C. current gain				
I_C = 10 mA; V_{CE} = 2 V	h_{FE}	>	50	
Transition frequency				
$I_C = 10 \text{ mA}; V_{CE} = 2 \text{ V}$	f_{T}	typ.	300	MHz
Collector capacitance	name was 4			
$I_{E} = I_{e} = 0$; $V_{CB} = 20 \text{ V}$	Cc	<	5	pF
Emitter capacitance				
$I_C = I_c = 0; V_{EB} = 1 V$	Ce	<	25	pF
Individual P-N-P transistor				
Collector cut-off current				
$I_{\rm B} = 0$; $-V_{\rm CE} = 50~{\rm V}$; $T_{\rm j} = 150~{\rm ^{O}C}$	-I _{CEO}	<	50	μΑ
Emitter cut-off current				
$I_{\rm C} = 0$; $-V_{\rm EB} = 50 \text{ V}$; $T_{\rm j} = 150 ^{\rm o}{\rm C}$	$-I_{\mathrm{EBO}}$	<	50	μΑ
D.C. current gain				
$I_{E} = 1 \text{ mA}; V_{CB} = 0$	h_{FE}	0,25 t	0 2,5	
Combined device				
Forward on-state voltage at R _{KG-K} = 10 kΩ				
$I_A = 50 \text{ mA}; I_{AG} = 0$	VAK	<	1,4	V
$I_A = 1 \text{ mA}$; $I_{AG} = 10 \text{ mA}$	v_{AK}	<	1,2	V
Holding current at R _{KG-K} = 10 kΩ				
$I_{AG} = 10 \text{ mA}; -V_{BB} = 2 \text{ V}$	IH	<	1,0	mA

PROGRAMMABLE UNIJUNCTION TRANSISTOR

The BRY39 is a planar p-n-p-n trigger device in a TO-72 metal envelope, intended for use in switching applications such as motor control, oscillators, relay replacement, timers, pulse shaper etc.

QUICK REFERENCE DATA

Gate-anode voltage	V _{GA}	max.	70 V
Anode current (d.c.) up to T _{case} = 85 °C	IA	max.	250 mA
Operating junction temperature	Тį	max.	150 °C
Peak point current V _S = 10 V; R _G = 10 k Ω	lp	<	5 μΑ
Valley point current $V_S = 10 \text{ V}$; $R_G = 10 \text{ k}\Omega$	ly	>	25 μΑ

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

Anode gate (ag) connected to case

Accessories: 56246 (distance disc).

RATINGS

Limiting values in	accordance	with the	Absolute	Maximum	System	(IEC 134)
--------------------	------------	----------	----------	---------	--------	-----------

, ,				
Gate-anode voltage	VGA	max.	70	V
Anode current (d.c.) up to T _{amb} = 25 °C	IA	max.	175	mA
Anode current (d.c.) up to T _{case} = 85 °C	IA	max.	250	mA
Repetitive peak anode current $t = 10 \mu s$; $\delta = 0.01$	IARM	max.	2,5	А
Non-repetitive peak anode current $t = 10 \mu s; T_j = 150 ^{\circ}\text{C}$	I _{ASM}	max.	3	Α
Rate of rise of anode current up to $I_A = 2.5 A$	$\frac{dI_A}{dt}$	max.	20	A/μs
Storage temperature	T _{stg}	-65 to +	200	oC
Operating junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	Inamus	450	K/W
From junction to case	R _{th j-c}	= 98	150	K/W
	,			

EXPLANATION OF SYMBOLS

For application of the BRY39P as a programmable unijunction transistor only the anode gate is used. To simplify the symbols the term gate instead of anode gate will be used.

Fig. 2.

Fig. 3.

CHARACTERISTICS

 $T_{amb} = 25$ °C

Peak point current

 $V_S = 10 \text{ V}; R_G = 10 \text{ k}\Omega$

 $V_S = 10 \text{ V}$; $R_G = 1 \text{ M}\Omega$

Valley point current

 $V_S = 10 \text{ V}; R_G = 10 \text{ k}\Omega$

 $V_S = 10 \text{ V}; R_G = 1 \text{ M}\Omega$

 I_P < 5 μA

P < 1 μA

ly > 25 μA

l_V < 50 μA

Fig. 4 Practical test circuit:

- 1. Remove BCY71 during measurement of Ip.
- 2. Value of R1 depends on the voltage range of voltmeter.

Fig. 5 BRY39P with "program" resistors R1 and R2.

Fig. 6 Equivalent test circuit for characteristics testing.

Gate-anode leakage current (see Fig. 7)

IK = 0; VGA = 70 V

Gate-cathode leakage current (see Fig. 8)

VAK = 0; VGK = 70 V

Offset voltage (see Figs 9 and 16)

 $V_{offset} = V_P - V_S (I_A = 0)$

IGAO < 10 nA IGKS 100 nA

Fig. 7.

Fig. 8.

Anode voltage $I_A = 100 \, \text{mA}$

Peak output voltage (see Figs 10 and 11)

 $V_{AA} = 20 \text{ V}; C = 0.2 \mu\text{F}$

Rise time (see Figs 10 and 11)

 $V_{AA} = 20 \text{ V; C} = 10 \text{ nF}$

Fig. 9.

< 1,4 V

VoM 6 V

tr 80 ns

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

SILICON CONTROLLED SWITCH

The BRY39 is a planar p-n-p-n switch in a TO-72 metal envelope, intended for switching applications. It is an integrated p-n-p/n-p-n transistor pair, with all electrodes accessible.

QUICK REFERENCE DATA

p-n-p transistor				
Emitter-base voltage (open collector)	-V _{EBO}	max.	70	V
n-p-n transistor				
Collector-base voltage (open emitter)	V _{CBO}	max.	70	V
Repetitive peak emitter current	-I _{ERM}	max.	2,5	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	275	mW
Operating junction temperature	Ti	max.	150	ос
Forward on-state voltage $I_A = 50 \text{ mA}$; $I_{AG} = 0$; $R_{KG-K} = 10 \text{ k}\Omega$	VAK	<	1,4	٧
Holding current $I_{AG} = 10 \text{ mA}; -V_{BB} = 2 \text{ V}; R_{KG-K} = 10 \text{ k}\Omega$	IH	<	1,0	mA
Turn-on time	ton	<	0,25	μs
Turn-off time	tq	<	5,0	μs

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-72.

Collector of the n-p-n transistor (ag = anode gate) connected to the case

Accessories: 56246 (distance disc).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			p-n-p	n-p-n		
Collector-base voltage (open emitter)	V _{CBO}	max.	-70	70	V	
Collector-emitter voltage ($R_{BE} = 10 \text{ k}\Omega$)	VCER	max.	_	70	V	
Collector-emitter voltage (open base)	VCEO	max.	-70	si Rey	V	
Emitter-base voltage (open collector)	VEBO	max.	-70	5	V	
Collector current (d.c.) *	l _C	max.	2011/13/6	175	mA	
Collector current (peak value) **	ICM	max.	_	175	mΑ	
Emitter current (d.c.)	I _E	max.	175	-175	mA	
Repetitive peak emitter current	IERM	max.	2,5	-2,5	Α	
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	2	75	mW	
Storage temperature	T _{stg}	-65	to + 20	00	oC	
Operating junction temperature	Ti	max.	15	50	oC	
THERMAL RESISTANCE	Tamb = 21					
From junction to ambient in free air	R _{th j-a}	=	45	50	K/W	

Provided the I_E rating is not exceeded.

^{**} During switching on, the device can withstand the discharge of a capacitor of maximum value of 500 pF. This capacitor is charged when the transistor is in cut-off condition, with a collector supply voltage of 160 V and a series resistance of 100 k Ω .

SYMBOLS AND EQUIVALENT CIRCUIT

Fig. 2 Two transistor equivalent circuit.

Fig. 3 P-N-P-N silicon controlled switch structure.

Fig. 4 Silicon controlled switch symbol.

CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

Individual n-p-n transistor

Collector cut-off current				
$V_{CE} = 70 \text{ V}; R_{BE} = 10 \text{ k}\Omega$	CER	<	100	nΑ
$V_{CE} = 70 \text{ V}; R_{BE} = 10 \text{ k}\Omega; T_j = 150 \text{ °C}$	ICER	<	10	μΑ
Emitter cut-off current				
$I_C = 0$; $V_{EB} = 5 \text{ V}$; $T_j = 150 \text{ °C}$	I _{EBO}	<	10	μΑ
Saturation voltages	VCEsat	<	500	mV
$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$	VBEsat		900	mV
D.C. current gain				
$I_C = 10 \text{ mA}$; $V_{CE} = 2 \text{ V}$	hFE	>	50	
Transition frequency				
$I_C = 10 \text{ mA}$; $V_{CE} = 2 \text{ V}$	fT	typ.	300	MHz

Collector capacitance	0	<	E nE	
$I_E = I_e = 0$; $V_{CB} = 20 \text{ V}$	Cc		5 pF	
Emitter capacitance			05 5	
$I_{C} = I_{c} = 0; V_{EB} = 1 V$	Ce	<	25 pF	
Individual p-n-p transistor				
Collector cut-off current				
$I_B = 0$; $-V_{CE} = 70 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$	-ICEO	<	10 μA	
Emitter cut-off current				
$I_C = 0; -V_{EB} = 70 \text{ V}; T_j = 150 \text{ °C}$	-IEBO	<	10 μΑ	
D.C. current gain				
$I_E = 1 \text{ mA}; V_{CB} = 0$	hFE	0,25 to	2,5	
Combined device				
Forward on-state voltage at $R_{KG-K} = 10 \text{ k}\Omega$				
$I_A = 50 \text{ mA}; I_{AG} = 0$	VAK	<	1,4 V	
$I_A = 50 \text{ mA}; I_{AG} = 0; T_j = -55 ^{\circ}\text{C}$	V_{AK}	<	1,9 V	
$I_A = 1 \text{ mA}; I_{AG} = 10 \text{ mA}$	V_{AK}	<	1,2 V	
Holding current at $R_{KG-K} = 10 \text{ k}\Omega$ (see Fig. 5)				
$I_{AG} = 10 \text{ mA}; -V_{BB} = 2 \text{ V}$	1 _H	<	1,0 mA	
740				

Fig. 5.

444

Switching times (see Figs 6 to 11)

Turn-on time when switched from $-V_{KG-K} = 0.5 \text{ V to} + V_{KG-K} = 4.5 \text{ V}$ $R_{KG-K} = 1 \text{ k}\Omega$

 $R_{KG-K} = 10 k\Omega$

Fig. 6.

Turn-off time (see also Figs 8 and 9)

$$R_{KG-K} = 1 k\Omega$$

$$R_{KG-K} = 10 k\Omega$$

$$R_{KG-K} = 10 \text{ k}\Omega; T_i = 125 \text{ °C}$$

Fig. 8.

Fig. 7 Pulse duration increased until dashed curve disappears.

tq	<	5 μs	5
tq	<	8 μs	6
tq	<	15 μs	

Fig. 9 Capacitance increased until at C = C_{opt} dashed curve disappears.

Fig. 22 Thermal impedance from junction to ambient versus pulse duration.

Fig. 23.

Fig. 24.

THYRISTOR TETRODE

The BRY39 is a planar p-n-p-n trigger device in a TO-72 metal envelope, intended for use in low-power switching applications such as relay and lamp drivers, sensing network for temperature and as a trigger device for thyristors and triacs.

QUICK REFERENCE DATA

Repetitive peak voltages	V _{DRM} = V _{RRM}	max.	70	V
Average on-state current	IT(AV)	max.	250	mA
Non-repetitive peak on-state current	^I TSM	max.	3	Α

MECHANICAL DATA

Dimensions in mm

Fig.1 TO-72; Anode gate connected to case.

Accessories supplied on request: 56246 (distance disc).

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Anod	e	to	car	tł	abor

Anode to cathode				
Non-repetitive peak voltages	V _{DSM} = V _{RSM}	max.	70	V*
Repetitive peak voltages	$V_{DRM} = V_{RRM}$	max.	70	V*
Continuous voltages	$V_D = V_R$	max.	70	V*
Average on-state current up to T _{case} = 85 °C in free air up to T _{amb} = 25 °C	IT(AV) IT(AV)	max.	250 175	mA mA
Repetitive peak on-state current $t = 10 \mu s$; $\delta = 0.01$	ITRM	max.	2,5	Α
Non-repetitive peak on-state current $t = 10 \mu s$; $T_j = 150 ^{\circ}C$ prior to surge	ITSM	max.	3	Ä
Rate of rise of on-state current after triggering to I _T = 2.5 A	$\frac{dI_T}{dt}$	max.	20	A/μs
Cathode gate to cathode				
Peak reverse voltage	VRGKM	max.	5	V
Peak forward current	IFGKM	max.	100	mA
Anode gate to anode				
Peak reverse voltage	VRGAM	max.	70	V
Peak forward current	IFGAM	max.	100	mA
Temperatures				
Storage temperature	T _{stg}	-65 to	+200	oC
Operating junction temperature	Тј	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	450	K/W
From junction to case	R _{th j-c}	=	150	K/W

^{*}These ratings apply for zero or negative bias on the cathode gate with respect to the cathode, and when a resistor R \leqslant 10 $k\Omega$ is connected between cathode gate and cathode.

CHARACTERISTICS

	thode

On-state	vol	tage	

$$I_T = 100 \text{ mA}; T_i = 25 \, {}^{\circ}\text{C}$$

$$V_R = 70 \text{ V}; T_j = 25 \text{ °C}$$

 $T_i = 150 \text{ °C}$

$$V_D = 70 \text{ V}; T_j = 25 \text{ °C}$$

 $T_i = 150 \text{ °C}$

Holding current

$$R_{GK} = 10 \text{ k}\Omega; R_{GA} = 220 \text{ k}\Omega; T_i = 25 \text{ °C}$$

Cathode gate to cathode

$$V_D = 6 V; T_j = 25 °C$$

Anode gate to anode

$$V_D = 6 \text{ V}; T_j = 25 \text{ °C}$$

Current that will trigger all devices
$$V_D = 6 \text{ V}$$
; $R_{GK} = 10 \text{ k}\Omega$; $T_j = 25 \text{ °C}$

$$\frac{dV_D^*}{dt}$$

$$I_R$$
 < 2 μA

^{*}Measured under pulse conditions to avoid excessive dissipation.

^{**}The dV_D/dt is unlimited when the anode gate lead is returned to the supply voltage through a current limiting resistor.

Switching characteristics

Gate-controlled turn-on time (t_{gt} = t_d + t_r) when switched from V_D = 15 V to I_T = 150 mA; I_{GK} = 5 μ A; dI_{GK}/dt = 5 μ A/ μ s; T_i = 25 °C

Circuit-commutated turn-off time when switched from I_T = 150 mA to V_R = 15 V; -dI_T/dt = 3 A/µs; dV_D/dt = 70 V/µs; V_D = 15 V

Fig.2 Gate-controlled turn-on time definition.

< 3 μs

tq

Fig.3 Circuit-commutated turn-off time definition.

APPLICATION INFORMATION

Sensing network

 R_S must be chosen in accordance with the light, temperature, or radiation intensity to be sensed; its resistance should be of the same order as that of the potentiometer.

In the arrangement shown, a decline in resistance of R_S triggers the thyristor, closing the relay that activates the warning system. If the positions of R_S and the potentiometer are interchanged, an increase in the resistance of R_S triggers the thyristor.

APPLICATION INFORMATION

Semine hetwork

Rig must be chasen in sepordance with the fight, temperature, or radiation interesty to be sensed, its messauce should be of the some order as that of the notantiometer.

the arrangement shows, a decline in resistance of Hg triggers the thyristor, closing the celay that the maximum system. If the positions of Rg and the potentiometer are interchatiged, an increase in the resistance of Hg triggers the thyristor.

Dimensions in mm

PROGRAMMABLE UNIJUNCTION TRANSISTOR

Silicon planar p-n-p-n trigger device in a plastic TO-92 variant, intended for use in switching applications such as motor control, oscillators, relay replacement, timers, pulse shaper etc.

QUICK REFERENCE DATA

Gate-anode voltage	VGA	max.	70	V	
Anode current (average)	I _A (AV)	max.	175	mA	
Total power dissipation up to T _{amb} = 75 °C	P _{tot}	max.	300	mW	
Junction temperature	Tj	max.	150	oC	
Peak point current $V_S = 10 \text{ V}$; $R_G = 10 \text{ k}\Omega$	Pineida				
Valley point current $V_S = 10 \text{ V}$; $R_G = 10 \text{ k}\Omega$	lv	>	50	μΑ	

MECHANICAL DATA

diameter within 2,5 max is uncontrolled

RATINGS

	-,	,			
>	Gate-anode voltage	VGA	max.	70	V
	Anode current (average)	I _A (AV)	max.	175	mA
	Repetitive peak anode current $t_p = 10 \ \mu s$; $\delta = 0.01$	IARM	max.	2,5	A
	Non-repetitive peak anode current				
	$t_p = 10 \mu s$	IASM	max.	3,0	Α
	Rate of rise of anode current up to $I_A = 2.5 A$	$\frac{dI_A}{dt}$	max.	20	A/μs
	Total power dissipation up to $T_{amb} = 75$ °C	P _{tot}	max.	300	mW
	Storage temperature	T _{stg}	-65 to +	150	оС
	Junction temperature	Tj	max.	150	oC
	THERMAL RESISTANCE				
	From junction to ambient in free air	R _{th j-a}	2 08 (V	250	K/W

Fig. 2 Maximum permissible power dissipation as a function of ambient temperature.

CHARACTERISTICS

 $T_{amb} = 25$ °C

Peak point current (see Fig. 10)

 $V_S = 10 \text{ V}$; $R_G = 10 \text{ k}\Omega$

 $V_S = 10 \text{ V}; R_G = 100 \text{ k}\Omega$

Valley point current (see Fig. 10)

 $V_S = 10 \text{ V}$; $R_G = 10 \text{ k}\Omega$

 $V_S = 10 \text{ V}; R_G = 100 \text{ k}\Omega$

 I_P < 5 μA

Ip < 2 μA

V > 50 μA

 $I_V > 5 \mu A$

Fig. 3 Measuring circuit for I_P and I_V by means of value of R1. R1 = $\frac{1}{I_A}$ (that is maximum voltage drop over R1 is 1 V). Internal resistance of oscilloscope is 10 M Ω .

Fig. 4 BRY56 with "program" resistors R1 and R2.

Fig. 5 Equivalent test circuit for characteristics testing.

Gate-anode leakage current (see Fig. 6) IK = 0; VGA = 70 V < 10 nA GAO Gate-cathode leakage current (see Fig. 7) $V_{AK} = 0; V_{GK} = 70 V$ GKS < 100 nA I_{GKS} T.U.T. IGAO Fig. 6. Fig. 7. Anode-cathode voltage $I_A = 100 \, \text{mA}$ VAK 1,4 V Peak output voltage (see Figs 8 and 9) $V_{AA} = 20 \text{ V; } C = 10 \text{ nF}$ VoM 6 V Offset voltage (see Fig. 10) $V_{offset} = V_{P}-V_{S}$ (I_A = 0) Rise time (see Fig. 9) $V_{AA} = 20 \text{ V; C} = 10 \text{ nF}$ 80 ns Vo 7261196 VOM 90% 1,5 ΜΩ 16kΩ T.U.T. Fig. 9. c= V_O 20Ω 27kΩ m 7Z82610 IA Fig. 8. Fig. 10. Ip V_{AK} VS VP

N-P-N DARLINGTON TRANSISTORS

Silicon planar transistors in plastic TO-92 envelopes, intended for industrial switching applications e.g. print hammer, solenoid, relay and lamp driving.

P-N-P complements are the BSR60, BSR61 and BSR62.

QUICK REFERENCE DATA

			BSR50	BSR51	BSR52	
Collector-base voltage (open emitter)	VCBO	max.	60	80	90	V -
Collector-emitter voltage (see Fig. 5)	VCER	max.	45	60	80	٧
Collector current (average)	C(AV)	max.		1,0	temperat	Α
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max.		0,8		W
Junction temperature	Ti	max.		150		oC
Collector-emitter saturation voltage $I_C = 0.5 A$; $I_B = 0.5 mA$	VCEsat	<		1,3		V
D.C. current gain $I_C = 150 \text{ mA}$; $V_{CE} = 10 \text{ V}$	hFE	>		1000		
I _C = 500 mA; V _{CE} = 10 V	hFE	>		2000		
Turn-off time when switched from I _{Con} = 500 mA; I _{Bon} = 0,5 mA to						
cut-off with $-I_{Boff} = 0.5 \text{ mA}$	toff	<		1,5		μs

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant, for circuit diagram see Fig. 2.

RATINGS

				BSR50	BSR51	BSR52	
 Collector-base voltage (open	emitter)	V _{CBO}	max.	60	80	90	V
Collector-emitter voltage (se	e Fig. 5)	VCER	max.	45	60	80	V
Emitter-base voltage (open o	ollector)	VEBO	max.	5	5	5	V
Collector current (average)		IC(AV)	max.	8SR60, 88	1,0	amplemen	А
Collector current (peak value	e)	ICM	max.		2,0		Α
Base current (d.c.)		IB	max.		0,1		Α
Total power dissipation							
up to $T_{amb} = 25$ °C		Ptot	max.		0,8		W
up to T _{amb} = 25 °C *		Ptot	max.		1,0		W
Storage temperature		T _{stg}		-65 to	+ 150		oC
Junction temperature **		Ti	max.		150		oc
THERMAL RESISTANCE *	*	1019					
From junction to ambient in	free air	R _{th j-a}	=		156		K/\

Fig. 2 Circuit diagram.

Transistor mounted on printed-circuit board, maximum lead length 3 mm, mounting pad for collector lead minimum 10 mm x 10 mm.

^{**} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

	ACT		

$T_j = 25 ^{\circ}C$					
Collector cut-off voltage					
$I_E = 0$; $V_{CB} = 45 \text{ V}$	BSR50	ICBO	<	50	nΑ
$I_E = 0$; $V_{CB} = 60 \text{ V}$	BSR51	ICBO	<	50	nΑ
$I_E = 0$; $V_{CB} = 80 \text{ V}$	BSR52	ICBO	<	50	nΑ
Emitter cut-off current					
$I_C = 0$; $V_{EB} = 4 V$		IEBO	<	50	nΑ
Saturation voltages		V _{CEsat}	<	1,3	V
$I_C = 0.5 \text{ A}; I_B = 0.5 \text{ mA}$		VBEsat	<	1,9	
		VCEsat	<	1,6	V
I _C = 1,0 A; I _B = 1,0 mA	BSR51	VBEsat	<	2,2	V
I _C = 1,0 A; I _B = 4,0 mA	BSR50; BSR52	VCEsat	<	1,6	V
1C - 1'0 V' 1B - 4'0 111V	B3N30, B3N32	V_{BEsat}	<	2,2	V
D.C. current gain					
$I_C = 150 \text{ mA}; V_{CE} = 10 \text{ V}$		hFE	>	1000	
$I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$		hFE	>	2000	
Small-signal current gain at f = 35 MHz					
$I_C = 500 \text{ mA}; V_{CE} = 5 \text{ V}$		h _{fe}	typ.	10	
Switching times see page 4.					

Switching times (see Figs 3 and 4)

 I_{Con} = 500 mA; I_{Bon} = $-I_{Boff}$ = 0,5 mA Turn-on time

 t_{on} typ. 0,4 μ s t_{off} < 1,5 μ s

Fig. 3 Test circuit for 500 mA switching.

Fig. 4 Switching waveforms.

Fig. 6 Maximum permissible power dissipation as a function of ambient temperature.

Fig. 7 $T_i = 25$ °C.

Fig. 8.

P-N-P DARLINGTON TRANSISTORS

Silicon planar transistors in plastic TO-92 envelopes, intended for industrial applications e.g. print hammer, solenoid, relay and lamp driving.

N-P-N complements are the BSR50, BSR51 and BSR52.

QUICK REFERENCE DATA

			BSR60	BSR61	BSR62		
			D31100	DONOT	DONOZ		
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	90	V	-
Collector-emitter voltage (see Fig. 6)	-V _{CER}	max.	45	60	80	V	
Collector current (average)	-IC(AV)	max.	1,0	1,0	1,0	Α	
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,8	0,8	0,8	W	
Junction temperature	Ti	max.	150	150	150	оС	
Collector-emitter saturation voltage $-I_C = 0.5 \text{ A}; -I_B = 0.5 \text{ mA}$	-V _{CEsat}	<	1,3	1,3	1,4	V	
D.C. current gain -I _C = 150 mA; -V _{CF} = 10 V	hFF	>		1000			
-I _C = 500 mA; -V _{CE} = 10 V	hFE	>		2000			
Turn-off time when switched from $-I_{Con} = 500 \text{ mA}$; $-I_{Bon} = 0.5 \text{ mA}$ to cut-off with $+I_{Boff} = 0.5 \text{ mA}$	^t off	\ \		1,5		μs	
5011	011			,			

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant, for circuit diagram see Fig. 2.

RATINGS

			BSR60	BSR61	BSR62		
 Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	90	V	
Collector-emitter voltage (see Fig. 6)	$-V_{CER}$	max.	45	60	80	V	
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	5	V	
Collector current (average)	-IC(AV)	max.	35R50, 85	1,0	negislame	Α	
Collector current (peak value)	-ICM	max.		2,0		Α	
Base current (d.c.)	-IB	max.		0,1		Α	
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.		0,8		W	
up to T _{amb} = 25 °C *	Ptot	max.		1,0		W	
Storage temperature	T _{stg}		-65 to	+ 150		oC	
Junction temperature **	Tj	max.		150		oC	
THERMAL RESISTANCE **							
From junction to ambient in free air	R _{th j-a}	=		156		K/W	

Fig. 2 Circuit diagram.

Transistor mounted on printed-circuit board, maximum lead length 3 mm, mounting pad for collector lead minimum 10 mm x 10 mm.

Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHAR	ACTE	RIST	TICS

Switching times see page 4.

T _j = 25 °C					
Collector cut-off current			900	117 no m	
$I_E = 0$; $-V_{CB} = 45 \text{ V}$	BSR60	-ICBO	< 111	50	
$I_E = 0$; $-V_{CB} = 60 \text{ V}$	BSR61	-ICBO	<	50	
$I_E = 0; -V_{CB} = 80 \text{ V}$	BSR62	-ICBO	<	50	nΑ
Emitter cut-off current I _C = 0; -V _{EB} = 4 V		-I _{EBO}	<	50	nΑ
Saturation voltages	DCDC0, DCDC1	$-V_{CEsat}$	<	1,3	V
$-I_C = 0.5 \text{ A}; -I_B = 0.5 \text{ mA}$	BSR60; BSR61	-V _{BEsat}	<	1,9	V
$-1_{C} = 0.5 \text{ A}; -1_{B} = 0.5 \text{ mA}$	BSR62	-V _{CEsat}	<	1,4	V
-1C 0/2 V' 1B - 0/2 IIIV	0.138	-V _{BEsat}	<	2,0	V
-I _C = 1,0 A; -I _B = 1,0 mA	BSR61	-V _{CEsat}	<	1,6	
, , , , , , , , , , , , , , , , , , ,	501101	$-V_{BEsat}$	<	2,2	
$-I_C = 1.0 \text{ A}; -I_B = 4.0 \text{ mA}$	BSR60	-V _{CEsat}	<	1,6	
, , , , , , , , , , , , , , , , , , ,	208	-V _{BEsat}	<	2,2	
$-I_C = 1,0 A; -I_B = 4,0 mA$	BSR62	-V _{CEsat}	<	1,8	
ha man say and an and and		-V _{BEsat}	000	2,4	V
D.C. current gain $-I_C = 150 \text{ mA}$; $-V_{CE} = 10 \text{ V}$		hee	7	1000	
-I _C = 500 mA; -V _{CE} = 10 V		hFE	>	2000	
Small-signal current gain at f = 35 MHz		h.	tr. (10)	10	
$-I_C = 500 \text{ mA}; -V_{CE} = 5 \text{ V}$		hfe	typ.	10	

Switching times (see Figs 3 and 4)

-I_{Con} = 500 mA; -I_{Bon} = + I_{Boff} = 0,5 mA Turn-on time

 t_{on} < 1,0 μ s t_{off} < 1,5 μ s

Fig. 3 Test circuit for 500 mA switching.

Fig. 4 Switching waveforms.

Fig. 6 Maximum permissible power dissipation as a function of ambient temperature.

Fig. 7 $T_j = 25$ °C.

Fig. 8.

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a plastic TO-92 variant. It is primarily intended for general purpose switching and as driver for numerical indicator tubes.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	120	٧	
Collector-emitter voltage (open base)	VCEO	max.	100	V	
Collector current (peak value)	I _{CM}	max.	250	mA	
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	500	mW	
Junction temperature	Ti	max.	150	oC	
D.C. current gain I _C = 4 mA; V _{CE} = 1 V	hFE	> typ.	20 80		
Transition frequency at f = 35 MHz $I_C = 4$ mA; $V_{CE} = 10$ V		V 09 = 8		MHz	
Turn-off time $I_{Con} = 15 \text{ mA}$; $I_{Bon} = 1 \text{ mA}$; $-I_{Boff} = 1 \text{ mA}$	toff	08 = 30\ <			

Note

The BSS38 may be operated in the breakdown region up to V_{CE} = 160 V, provided P_{tot} at T_{amb} = 85 °C does not exceed 100 mW.

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

INGS

The state of the s				
Limiting values in accordance with the Absolute Maximum S	ystem (IEC 134)			
Collector-base voltage (open emitter)	VCBO	max.	120	V*
Collector-emitter voltage (open base)	VCEO	max.	100	V*
Emitter-base voltage (open collector)	V _{EBO}	max.	5	V
Collector current (d.c. or averaged over any 20 ms period)	I _{C(AV)}	max.	100	mA
Collector current (peak value)	ICM	max.	250	mA
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	500	mW
Storage temperature	T _{stg}	-65 to	+ 150	oC
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	n=lisqle	0,25	°C/mW
CHARACTERISTICS				
T _i = 25 °C unless otherwise specified				
Collector cut-off current $IE = 0$; $V_{CB} = 90 \text{ V}$ $IE = 0$; $V_{CB} = 90 \text{ V}$; $T_j = 150 \text{ °C}$ $V_{BE} = 0$; $V_{CE} = 80 \text{ V}$; $T_j = 85 \text{ °C}$	I _{CBO} I _{CBO} I _{CES}	< 30 <	200 50 20	μΑ
Emitter cut-off current I _C = 0; V _{EB} = 4 V I _C = 0; V _{EB} = 4 V; T _j = 150 °C	IEBO IEBO	A; IBon * < < < < < > <	200 50	nΑ μΑ
Saturation voltages $I_C = 4 \text{ mA}$; $I_B = 0.4 \text{ mA}$	V _{CEsat} V _{BEsat}	< <	0,7	
I _C = 50 mA; I _B = 15 mA	V _{CEsat}	<taq< td=""><td>3,0</td><td></td></taq<>	3,0	
D.C. current gain $I_C = 4 \text{ mA; } V_{CE} = 1 \text{ V}$	h _{FE}	typ.	20 80	
$I_C = 10 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	typ.	80	

^{*} The BSS38 may be operated in the breakdown region up to V_{CE} = 160 V, provided P_{tot} at T_{amb} = 85 °C does not exceed 100 mW.

CHARACTERISTICS (continued)

Transition frequency at f = 35 MHz I _C = 4 mA; V _{CE} = 10 V	fT	>	60 MHz
Collector capacitance at $f = 1 \text{ MHz}$ $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C _c	<	4,5 pF
Emitter capacitance at $f = 1 \text{ MHz}$ $I_C = I_c = 0$; $V_{EB} = 0.5 \text{ V}$	C _e	<	17 pF
Switching time Turn-off time when switched from			
I _{Con} = 15 mA; I _{Bon} = 1 mA to cut-off with -I _{Boff} = 1 mA Test circuit for measuring turn-off time:	toff	<	1 μs

Pulse generator:

CHARACTERISTICS (continued)

Pales generator:

N-P-N DARLINGTON TRANSISTORS

Silicon planar transistors in TO-39 metal envelopes, intended for industrial switching applications e.g. print hammer, solenoid, relay and lamp driving.

P-N-P complements are the BSS60, BSS61 and BSS62.

QUICK REFERENCE DATA

				BSS50	BSS51	BSS52	
Collector-base voltage (open emitter)		V _{CBO}	max.	60	80	90	V
Collector-emitter voltage (see Fig. 4)		VCER	max.	45	60	80	٧
Collector current (d.c.)		lc	max.		1,0	nsomid 6	Α
Total power dissipation							
up to T _{amb} = 25 °C		P _{tot}	max.		0,8		W
up to T _{case} = 25 °C		Ptot	max.		5,0		W
Collector-emitter saturation voltage							
$I_C = 1.0 \text{ A}; I_B = 1.0 \text{ mA}$	BSS51	V CEsat	<		1,6		V
I _C = 1,0 A; I _B = 4,0 mA BSS50; I	BSS52	V_{CEsat}	<		1,6		V
D.C. current gain							
$I_C = 500 \text{ mA}$; $V_{CE} = 10 \text{ V}$		hFE	>		2000		
Turn-off time when switched from							
I_{Con} = 500 mA; I_{Bon} = 0,5 mA to cut-off with $-I_{Boff}$ = 0,5 mA		^t off	typ.		1,5		μs

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 004-073, available on request.

RATINGS

				BSS50	BSS51	BSS52	
 Collector-base voltage (or	en emitter)	V _{CBO}	max.	60	80	90	V
Collector-emitter voltage	(see Fig. 4)	VCER	max.	45	60	80	V
Emitter-base voltage (ope	n collector)	VEBO	max.	5,0	5,0	5,0	٧
Collector current (d.c.)		Ic	max.	.08888 es	1,0	mslamoo	Α
Collector current (peak va	alue)	^I CM	max.		2,0		Α
Base current (d.c.)		IB	max.		0,1		Α
Total power dissipation							
up to $T_{amb} = 25 {}^{\circ}C$		Ptot	max.		8,0		W
up to T _{case} = 25 °C		P _{tot}	max.		5,0		W
Storage temperature		T _{stg}		-65 to	+ 200		oC
Junction temperature *		Тј	max.		200		oC
THERMAL RESISTANCE	E * :xism						
From junction to ambient	t in free air	R _{th j-a}	=		220		K/
From junction to case		R _{th j-c}	=		35		K/

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CLI	ARA	CT	ED	CT	201
Un	ANA	もし 1	EB	101	LO

T _i = 25 °C unless otherwise specified					
Collector cut-off current					
$I_E = 0$; $V_{CB} = 45 \text{ V}$	BSS50	СВО	<	50	nΑ
1 _E = 0; V _{CB} = 60 V	BSS51	ІСВО	<	50	nA
I _E = 0; V _{CB} = 80 V	BSS52	СВО	<	50	nΑ
Emitter cut-off current					
$I_C = 0$; $V_{EB} = 4,0 V$		^I EBO	<	50	nΑ
Base-emitter voltage					
$I_C = 150 \text{ mA}; V_{CE} = 10 \text{ V}$		V_{BE}	1,3 to	0 1,65	V
$I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$		V_{BE}	1,4 to	0 1,75	V
Saturation voltages		V _{CEsat}	<	1,3	V
$I_C = 500 \text{ mA}; I_B = 0.5 \text{ mA}$		VBEsat	<	1,9	
I_C = 500 mA; I_B = 0,5 mA; T_j = 200 °C		V_{CEsat}	<	1,3	V
I _C = 1,0 A; I _B = 1,0 mA	BSS51	V _{CEsat}	< <	1,6 2,2	
I _C = 1,0 A; I _B = 1,0 mA; T _j = 200 °C	BSS51	V _{BEsat}	<	2,3	
		VCEsat	<	1,6	V
$I_C = 1.0 \text{ A}; I_B = 4.0 \text{ mA}$	BSS50; BSS52	VBEsat	<	2,2	V
$I_C = 1.0 \text{ A}; I_B = 4.0 \text{ mA}; T_j = 200 \text{ °C}$	BSS50; BSS52	VCEsat	<	1,6	V
D.C. current gain					
$I_C = 150 \text{ mA}; V_{CE} = 10 \text{ V}$		hFE	>	1000	
$I_C = 500 \text{ mA}$; $V_{CE} = 10 \text{ V}$		hFE	>	2000	
Small-signal current gain at f = 35 MHz I _C = 500 mA; V _{CE} = 5 V		h _{fe}	typ.	10	

Turn-off time

Switching times (see Figs 2 and 3)		
$I_{Con} = 500 \text{ mA}$; $I_{Bon} = -I_{Boff} = 0.5 \text{ mA}$		
Turn-on time	t _{on} typ.	0,4 μs
Turn-off time	toff typ.	1,5 µs
$I_{Con} = 1,0 A$; $I_{Bon} = -I_{Boff} = 1,0 mA$ Turn-on time	ton typ.	0.4 us

1,5 µs

toff

Fig. 2 Test circuit for 500 mA switching.

Fig. 3 Switching waveforms.

Fig. 4.

Fig. 6.

Fig. 10.

Fig. 12.

P-N-P DARLINGTON TRANSISTORS

Silicon planar transistors in TO-39 metal envelopes, intended for industrial switching applications e.g. print hammer, solenoid, relay and lamp driving.

N-P-N complements are the BSS50, BSS51 and BSS52.

QUICK REFERENCE DATA

			BSS60	BSS61	BSS62	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	90	V -
Collector-emitter voltage (see Fig. 4)	-VCER	max.	45	60	80	V
Collector current (d.c.)	-Ic	max.		1,0	mai noli	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.		0,8		W
up to T _{case} = 25 °C	Ptot	max.		5,0		W
Collector-emitter saturation voltage						
$-I_C = 1.0 \text{ A}; -I_B = 1.0 \text{ mA}$ BSS61	-V _{CEsat}	<		1,6		V
$-1_C = 1.0 \text{ A}; -1_B = 4.0 \text{ mA}$ BSS60; BSS62	$-V_{CEsat}$	<		1,6		V
D.C. current gain $-I_C = 500 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>		2000		
Turn-off time when switched from -I _{Con} = 500 mA; -I _{Bon} = 0,5 mA						
to cut-off with -I _{Boff} = 0,5 mA	toff	typ.		1,5		μ s

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm

Accessories: 56245 (distance disc).

Products approved to CECC 50 004-074, available on request.

RATINGS

					BSS60	BSS61	BSS62	
 - Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	90	V
Collector-emitter voltag	e (see Fig. 4))	-VCER	max.	45	60	80	V
Emitter-base voltage (or	en collector)	-V _{EBO}	max.	5,0	5,0	5,0	V
Collector current (d.c.)			$-I_{C}$	max.		1,0	emelamo	Α
Collector current (peak	value)		$-I_{CM}$	max.		2,0		Α
Base current (d.c.)			-IB	max.		0,1		Α
Total power dissipation up to T _{amb} = 25 °C			P _{tot}	max.		0,8		W
up to T _{case} = 25 °C			Ptot	max.		5,0		W
Storage temperature			T _{stg}		-65 to	+ 200		oC
Junction temperature *			T_j	max.		200		oC
THERMAL RESISTAN	CE *							
From junction to ambie	nt in free air	ism	R _{th j-a}	=		220		K/W
From junction to case			R _{th j-c}	=		35		K/W

^{*} Based on maximum average junction temperature in line with common industrial practice. The resulting higher junction temperature of the output transistor part is taken into account.

CHARACT	TER	ICT	22
ULIMITAGE		1011	CO

T _j = 25 °C unless otherwise specified				
Collector cut-off current				
I _E = 0; -V _{CB} = 45 V	BSS60	-I _{CBO}	< 0.0	50 nA
$I_E = 0; -V_{CB} = 60 \text{ V}$	BSS61	-I _{CBO}	<	50 nA
$I_E = 0; -V_{CB} = 80 \text{ V}$	BSS62	-I _{CBO}	<	50 nA
Emitter cut-off current				
$I_C = 0; -V_{EB} = 4,0 V$		-I _{EBO}	<	100 nA
Saturation voltages		-V _{CEsat}	<	1,3 V
$-I_C = 500 \text{ mA}; -I_B = 0.5 \text{ mA}$		-V _{BEsat}	<	1,9 V
$-I_C = 500 \text{ mA}; -I_B = 0.5 \text{ mA}; T_j = 200 \text{ °C}$		-V _{CEsat}	<	1,3 V
-I _C = 1,0 A; -I _B = 1,0 mA	BSS61	$-V_{CEsat}$	<	1,6 V
, , , , , , B	50001	$-V_{BEsat}$	<	2,2 V
$-I_C = 1.0 \text{ A}; -I_B = 1.0 \text{ mA}; T_j = 200 \text{ °C}$	BSS61	$-V_{CEsat}$	<	1,6 V
-I _C = 1,0 A; -I _B = 4,0 mA	BSS60; BSS62	$-V_{CEsat}$	<	1,6 V
-1C - 1,0 A, -1B - 4,0 IIIA	B3300, B3302	-V _{BEsat}	<	2,2 V
$-I_C = 1,0 A; -I_B = 4,0 mA; T_j = 200 °C$	BSS60; BSS62	$-V_{CEsat}$	<	1,6 V
D.C. current gain				
$-I_C = 150 \text{ mA}; -V_{CE} = 10 \text{ V}$		hFE 208	>	1000
$-1_{C} = 500 \text{ mA}; -V_{CE} = 10 \text{ V}$		hFE	>	2000
Small-signal current gain at f = 35 MHz		Am 008 -		
$-I_C = 500 \text{ mA}; -V_{CE} = 5 \text{ V}$		h _{fe}	typ.	10

Switching times (see Figs 2 and 3)			
$-I_{Con}$ = 500 mA; $-I_{Bon}$ = I_{Boff} = 0,5 mA Turn-on time	t _{on}	typ.	0,4 μs
Turn-off time	toff	typ.	1,5 μs
$-I_{Con}$ = 1,0 A; $-I_{Bon}$ = I_{Boff} = 1,0 mA Turn-on time	^t on	typ.	0,4 μs
Turn-off time	toff	typ.	1,5 μs

Fig. 2 Test circuit for 500 mA switching.

Fig. 3 Switching waveforms.

Fig. 4.

Fig. 5.

Fig. 6 Thermal impedance as a function of pulse duration.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

HIGH-VOLTAGE P-N-P TRANSISTOR

Silicon planar epitaxial transistor in a plastic TO-92 variant. It is intended for anode switching in dynamically driven numerical indicator tubes and as general purpose switching device.

QUICK REFERENCE DATA

Collector-emitter voltage ($R_{BE} = 10 \text{ k}\Omega$)	-VCER	max.	110 V
Collector-emitter voltage (open base)	-V _{CEO}	max.	100 V
Collector current (d.c.)	-Ic	max.	100 mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	500 mW
Junction temperature	Tj	max.	150 °C
D.C. current gain at $T_j = 25$ °C $-I_C = 25$ mA; $-V_{CE} = 5$ V	hFE	>	30
Transition frequency at $f = 35 \text{ MHz}$ $-I_C = 25 \text{ mA}; -V_{CE} = 5 \text{ V}$	fT	>	50 MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92 variant.

Voltages				
Collector-base voltage (open emitter)	-V _{CBO}	max.	110	V
Collector-emitter voltage (R _{BE} = 10 kΩ)	-V _{CER}	max.	110	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	100	V
Emitter-base voltage (open collector)	$-v_{EBO}$	max.	6	V
Current				
Collector current (d.c.)	$-I_{\mathbf{C}}$	max.	100	mA
Power dissipation				
Total power dissipation up to T_{amb} = 25 ^{o}C	P _{tot}	max.	500	mW
Temperatures				
Storage temperature	T _{stg}	-65 to	+150	оС
Junction temperature	$T_{\mathbf{j}}$	max.	150	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	= ATA	0,25	°C/m
CHARACTERISTICS	$T_i = 25$ °C un	less othe	erwise	specifie
Collector cut-off current				
I_E = 0; $-V_{CB}$ = 100 V; T_j = 70 o C	-I _{CBO}	<	10	μΑ
Saturation voltages				
$-I_C = 25 \text{ mA}; -I_B = 2.5 \text{ mA}$	-V _{CE} sat -V _{BE} sat	< <	250 900	mV mV
D.C. current gain				
$-I_{\rm C}$ = 10 mA; $-V_{\rm CE}$ = 5 V	$h_{ m FE}$	>	30	
$-I_C = 25 \text{ mA}; -V_{CE} = 5 \text{ V}$	${\tt h_{FE}}$	> × × × × ×	30	
Collector capacitance at f = 1 MHz				
$I_{\rm E} = I_{\rm e} = 0; -V_{\rm CB} = 10 \text{ V}$	Cc	<	5	pF
Transition frequency at f = 35 MHz				
-I _C = 25 mA; -V _{CE} = 5 V	f_{T}	>	50	MHz

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in TO-39 metal envelopes with the collector connected to the case. These transistors are intended for general industrial applications.

QUICK REFERENCE DATA

		В	SV15	BSV1	6 BSV17	
Collector-emitter voltage (open base)	-VCEO	max.	40	60	80	V
Collector current (d.c.)	-IC	max.		1,0	TO THE STREET	Α
Total power dissipation up to T _{amb} = 25 °C up to T _{case} = 25 °C	P _{tot}	max.		0,8 5,0		W
Junction temperature	Ti	max.		200		0(
Transition frequency at $f = 20 \text{ MHz}$ $-1_C = 50 \text{ mA}; -V_{CE} = 10 \text{ V}$	fT	>		50		М
D.C. current gain			BSV1	16-10	BSV15-16 BSV16-16	
$-I_C = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE	40-100	63-	-160	100-250	

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-131, available on request.

Dimensions in mm

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages			BSV15	BSV16	BSV17	
Collector-emitter voltage (open base)	-V _{CEO}	max.	40	60	80	V
Collector-emitter voltage ($V_{BE} = 0$)	-V _{CES}	max.	40	60	90	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	5	V
Currents						
Collector current (d.c.)	$-I_{\mathbf{C}}$		max.	1.0		Α
Base current (d.c.)	-IB		max.	200		mA
Power dissipation						
Total power dissipation up to $T_{amb} = 25$	°C P _{tot}		max.	0.8		W
up to $T_{case} = 25$	°C P _{tot}		max.	5.0		W
up to $T_{mb} = 50$	°C P _{tot}		max.	5.0		W
Temperatures						
Storage temperature	T_{stg}		-65 to	+200		°C
Junction temperature	T_{j}		max.	200		°C
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th} j-	-a	=	220		°C/W
From junction to case	Rth j	-c	= 1	35		°C/W
From junction to mounting base	R _{th} i-	-mb	_ 000	30		°C/W

CHARACTERISTICS	$T_{amb} = 25$ °C	unles	s o	therwi	se spe	ecified
Collector cut-off currents		BSV	15	BSV16	BSV	17
$V_{BE} = 0$; $-V_{CE} = 40 \text{ V}$	-I _{CES}	< 1	00	ning-in	-	nA 🗆
$V_{ m BE}$ = 0; $-V_{ m CE}$ = 40 V; $T_{ m amb}$ = 150 $^{ m o}{ m C}$	-ICES	<	50	_	-	μΑ
$V_{BE} = 0$; $-V_{CE} = 60 \text{ V}$	-l _{CES}	<	-	100	-	nA
$V_{\rm BE} = 0$; $-V_{\rm CE} = 60 \ \rm V$; $T_{\rm amb} = 150 \ ^{\rm o}{\rm C}$	-I _{CES}	<	-	50	00÷	μΑ
$V_{BE} = 0$; $-V_{CE} = 80 \text{ V}$	-ICES	<	-	-	100	nA
v_{BE} = 0; $-v_{CE}$ = 80 V; T_{amb} = 150 o C	-I _{CES}	<	-	- ; <u>A</u> m	50	μΑ
$-v_{BE}$ = 0,2 V; $-v_{CE}$ = 40 V; t_{amb} = 100 °C	-I _{CEX}	<	50	-	-	μΑ
$-v_{BE}$ = 0,2 V; $-v_{CE}$ = 60 V; τ_{amb} = 100 °C	$-I_{\text{CEX}}$	<	-	50	u +	μΑ
$-\mathrm{V_{BE}}$ = 0,2 V; $-\mathrm{V_{CE}}$ = 80 V; $\mathrm{T_{amb}}$ = 100 $^{\mathrm{o}}\mathrm{C}$	-I _{CEX}	<	-	un In q	50	μA
Emitter cut-off current					ti gni	
$I_{\rm C}$ = 0; $-V_{\rm EB}$ = 4 V	$-I_{\rm EBO}$	< !	50	50	50	nA
Breakdown voltages					180	
I_{B} = 0; $-I_{\mathrm{C}}$ = 50 mA; t_{p} = 200 $\mu \mathrm{s}$; δ = 0,01	-V(BR)CEO	> 4	40	60	80	V
V_{BE} = 0; $-I_{\mathrm{C}}$ = 10 $\mu\mathrm{A}$	-V(BR)CES	> 4	40	60	90	V
$I_{\rm C}$ = 0; $-I_{\rm E}$ = 10 $\mu {\rm A}$	-V _{(BR)EBO}	>	5	5	5	V
Base-emitter voltage						
$-I_{C} = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$	$-v_{BE}$	<		1,0		V
$-I_{\rm C} = 500 \text{ mA}; -V_{\rm CE} = 1 \text{ V}$	$-v_{BE}$	typ. 0,		0,85		V V
Saturation voltage						
$-I_{\rm C} = 500 \text{mA}; -I_{\rm B} = 25 \text{mA}$	-V _{CEsat}	<		1,0		V
Collector capacitance at f = 1 MHz						
$I_{E} = I_{e} = 0$; $-V_{CB} = 10 \text{ V}$ BSV15; BSV16	Cc	typ.		20 30		pF pF
$I_E = I_e = 0; -V_{CB} = 10 \text{ V}$ BSV17	Cc	typ.		15 25		pF pF
Emitter capacitance at f = 1 MHz						
$I_C = I_c = 0$; $-V_{EB} = 0,5 \text{ V}$	Ce	typ.		180		pF
Transition frequency at f = 20 MHz						
$-I_{\rm C} = 50 \text{ mA}; -V_{\rm CE} = 10 \text{ V}$	f_{T}	>		50		MHz

CHARACTERISTICS (continued)

Tamb = 25 °C unless otherwise specified

BSV	15-6	BSV15-10	BSV15-16	
BSV	16-6	BSV16-10	BSV16-16	
BSV	17-6	BSV17-10	7-30 = 88V.	
>	15	20	30	
typ.	44	75	120	
tres	60	100	160	

/ 68 = 55

85

D.C. current gain

$$-I_{\rm C}$$
 = 0.1 mA; $-V_{\rm CE}$ = 1 V

$$-I_{C} = 100 \text{ mA}; -V_{CE} = 1 \text{ V}$$

$$-I_{\rm C} = 500 \text{ mA}; -V_{\rm CE} = 1 \text{ V}$$

h parameter at f = 1 kHz

$$-I_{\rm C} = 1$$
 mA; $-V_{\rm CE} = 5$ V

h_{fe} > 20

20

h_{FE} typ. 40

Switching times

Turn-on time

$$-I_{C} = 100 \text{ mA}; -I_{B} = +I_{BM} = 5 \text{ mA}$$

$$t_{on}$$
 < 500 ns

Turn-off time

$$-I_{\rm C} = 100~{\rm mA}; -I_{\rm B} = +I_{\rm BM} = 5~{\rm mA}$$

 t_s tf

Test circuit:

Pulse generator:

Pulse duration $t_D \ge 10 \, \mu s$ $t_{r} \leq 15~\text{ns}$ Rise time Fall time $t_f \leq 15 \text{ ns}$

Source impedance $R_S = 50 \Omega$

Oscilloscope:

Rise time ≤ 15 ns Input impedance $\geq 100 \text{ k}\Omega$

Safe Operating Area with the transistor forward biased

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulse operation

January 1972

January 1972

January 1972

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a TO-39 metal envelope primarily intended for use as a print hammer drive. It has good high current saturation characteristics.

QUICK REFERENCE DATA

			9 3-60	
I _{Con} = 5 A; I _{Bon} = 0,5 A to cut-off with -I _{Boff} = 0,5 A	t _{off}	<	1,2	μs
Turn-off time when switched from				
Transition frequency at $f = 35 \text{ MHz}$ $I_C = 0.5 \text{ A}$; $V_{CE} = 5 \text{ V}$	fT	typ.	100	MHz
D.C. current gain $I_C = 2 \text{ A; V}_{CE} = 2 \text{ V}$	hFE	>	40	
Junction temperature	T_{j}	max.	175	oC
Total power dissipation up to T _{case} = 50 °C	P _{tot}	max.	5,0	W
Collector current (peak value)	ICM	max.	5,0	Α
Collector-emitter voltage (open base)	VCEO	max.	60	V
Collector-base voltagé (open emitter)	VCBO	max.	100	V

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 004-025, available on request.

DATENCO TO THE PARTY OF THE PAR				
RATINGS Limiting values in accordance with the Abso	lute Maxim	um Syste	m (IEC	134)
Voltages				
Collector-base voltage (open emitter)	V_{CBO}	max.	100	V
Collector-emitter voltage ($R_{\rm BE} \le 50~\Omega$)	$v_{\rm CER}$	max.	80	V
Collector-emitter voltage (open base)	V _{CEO}	max.	60	V
Emitter-base voltage (open collector)	VEBO	max.	5	John poor
Currents				
Collector current (d.c.)	$I_{\mathbf{C}}$	max.	2,0	A
Collector current (peak value)	I_{CM}	max.	5,0	A
Base current (d.c.)	I_{B}	max.	1,0	A
Power dissipation				
Total power dissipation up to $T_{\mbox{\scriptsize case}}$ = 50 $^{\mbox{\scriptsize oC}}$	P_{tot}	max.	5,0	W
Temperatures				
Storage temperature	Tstg	-55 to	+175	oC
Junction temperature	Tj	max.	175	oC
THERMAL RESISTANCE				
From junction to case	R _{th j-c}	= ATA	25	°C/W

CH	ARA	CTF	BIS.	TICS

T _j = 25 °C			
Collector cut-off current I _E = 0; V _{CB} = 60 V	СВО	<	10 μΑ
Emitter cut-off current I _C = 0; V _{EB} = 4 V	I _{EBO}	<	10 μΑ
Saturation voltages $I_C = 5 A$; $I_B = 0.5 A$	V _{CEsat} V _{BEsat}	< <	1,0 V 1,8 V
D.C. current gain IC = 2 A; VCE = 2 V	hFE	>	40
Collector capacitance at f = 1 MHz I _E = I _e = 0; V _{CB} = 10 V	C _C	<	80 pF
Transition frequency at f = 35 MHz I _C = 0,5 A; V _{CE} = 5 V	fT	typ.	100 MHz
Switching times I _{Con} = 5 A; I _{Bon} = -I _{Boff} = 0,5 A -V _{BFoff} = 2 V			
turn-on time	ton	<	0,6 μs
turn-off time	toff	<	1,2 μs

Safe Operating Area

- I Region of permissible d.c. operation
- II Permissible extension for repetitive pulsed operation
- III D.C. operation in this region is allowable, provided $R_{\rm BE} \leq 50~\Omega$

512

513

514 April 1971

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors primarily intended for general purpose industrial and switching applications.

QUICK REFERENCE DATA

			BSW66A	BSW67A	BSW68A	
Collector-base voltage (open emitter)	VCBO	max.	100	120	150	٧
Collector-emitter voltage (open base)	VCEO	max.	100	120	150	٧
Collector current (peak value)	¹ CM	max.		2		Α
Total power dissipation up to T _{case} = 25 °C	P _{tot}	max.		5,0		W
Collector-emitter saturation voltage $I_C = 500 \text{ mA}$; $I_B = 50 \text{ mA}$	V _{CEsat}	<		400		mV
D.C. current gain						
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	>		30		
$I_C = 500 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	>		30		
Transition frequency at f = 35 MHz						
$I_C = 100 \text{ mA}; V_{CE} = 20 \text{ V}$	fT	typ.		130		MHz

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case.

Dimensions in mm

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 004-040, available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Tato maxima	0,00	BSW66A	BSW67A	BSW68A	
Collector-base voltage (open emitter)	Vсво	max	. 100	120	150	V
Collector-emitter voltage (open base) *	VCEO	max	. 100	120	150	V
Emitter-base voltage (open collector)	VEBO	max		6	6	V
Collector current (d.c. or average)	l _C	max		1		Α
Collector current (peak value; t _o ≤20 ms)	ICM	max		2		Α
Total power dissipation up to Tamb = 25 °C Tcase = 25 °C	P _{tot}	max.		0,8 5,0		W
Storage temperature	T_{stg}		-65 to	+ 200		oC
Junction temperature	Tj	max		200		oC
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}	=		220		°C/W
From junction to case	R _{th j-c}	=		35		oC/W
CHARACTERISTICS						
T _j = 25 °C unless otherwise specified						
Collector cut-off current	lana	,		100		μΑ
$I_E = 0$; $V_{CB} = V_{CBOmax}$	СВО	<				ROMAR
I _E = 0; V _{CB} = ½V _{CBOmax}	СВО	<		100		nA
$I_E = 0$; $V_{CB} = \frac{1}{2}V_{CBOmax}$; $T_j = 150 ^{\circ}C$	CBO	<		50		μΑ
Emitter cut-off current I _C = 0; V _{EB} = 6 V	^I EBO	<		100		μΑ
I _C = 0; V _{FB} = 3 V	^I EBO	<		100		nA
Collector-emitter breakdown voltage	200		BSW66A	BSW67A	BSW68A	
I _B = 0; I _C = 10 mA	V(BR)CEO	>	100	120	150	V
Saturation voltages						
$I_C = 100 \text{ mA}; I_B = 10 \text{ mA}$	V _{CEsat}	<		150		mV
	V _{BEsat}	<		900		mV
$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$	VCEsat	< <		400		mV V
1 10 4 1 150 4	V _{BEsat}			1,1		
$I_C = 1,0 A; I_B = 150 mA$	VCEsat	< <		1,0		V
	V _{BEsat}			1,4		V

^{*} See Application Information

D.C. current gain		>	30
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	typ.	75
I _C = 100 mA; V _{CE} = 5 V	hFE	> typ.	40 90
I _C = 500 mA; V _{CE} = 5 V	hFE	> typ.	30 80
I _C = 1,0 A; V _{CE} = 5 V	hFE	> typ.	10 15
Collector capacitance at f = 1 MHz			
$I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C _c	<	20 pF
Emitter capacitance at f = 1 MHz			
$I_C = I_c = 0; V_{EB} = 0$	Ce	<	300 pF
Fransition frequency at f = 35 MHz			
I _C = 100 mA; V _{CE} = 20 V	f _T	typ.	130 MHz
Turn-on time (see Fig. 2)			
I _{Con} = 500 mA; I _{Bon} = 50 mA; -V _{BEoff} = 4 V	ton	typ.	0,5 μs
Turn-off time (see Fig. 2)			
$I_{Con} = 500 \text{ mA}; I_{Bon} = -I_{Boff} = 50 \text{ mA}$	toff	typ.	0,9 μs

Fig. 3 Maximum permissible power dissipation versus temperature.

Fig. 4 $I_C/I_B = 10$; $T_j = 25$ °C; typical values.

Fig. 5 $V_{CE} = 5 V$; $T_j = 25 \, {}^{\circ}C$.

Fig. 6 $I_E = I_e = 0$; $T_j = 25$ °C.

Fig. 7 $I_C = I_c = 0$; $T_i = 25$ °C.

Fig. 8 $V_{CB} = V_{CBOmax}$

Fig. 9 V_{CB} = ½V_{CBOmax}.

APPLICATION INFORMATION

Clamped inductive load turn-off capability

With a base-emitter resistance of \geq 330 Ω , i.e. an available reverse base current of \leq 2 mA, and the maximum permitted clamping voltage i.e. the rated V_{CEOmax}, the transistor will be free from secondbreakdown effects when turning off from collector current values up to the rated ICMmax of 2 A. See Figs 10 and 11.

Fig. 10 Test circuit: V_{IM} = 50 V; t_p = 3 ms; $\delta \le$ 0,03. D1 = BY206 or combinations of suitable faster diodes. V_{o} Adjusted to make $V_{(CL)}$ equal to rated V_{CEOmax} (see Fig. 11).

Fig. 11 Waveforms.

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in TO-18 metal envelopes, primarily intended for high-speed saturated switching and h.f. amplifier applications.

QUICK REFERENCE DATA

		BSX19	BSX20	
Collector-base voltage (open emitter)	V _{CBO} m	ax. 40	40	V
Collector-emitter voltage (open base)	V _{CEO} m	ax. 15	15	V
Collector-emitter voltage (V _{BE} = 0)	V _{CES} m	ax. 40	40	V
Collector current (peak value)	I _{CM} m	ax. 500	500	mA
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot} m	ax. 360	360	mW
D.C. current gain at $T_j = 25$ °C $I_C = 10$ mA; $V_{CE} = 1$ V $I_C = 100$ mA; $V_{CE} = 2$ V	hFE hFE >	20 to 60 10	40 to 120 20	
Transition frequency $I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	f _T >	400	500	MHz
Storage time $I_C = I_B = -I_{BM} = 10 \text{ mA}$	t_s	10	13	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Collector connected to case

Accessories: 56246 (distance disc).

RATINGS	(Limiting values)	1)
---------	-------------------	----

RATINGS (Limiting values) 1)					
Voltages					
Collector-base voltage (open emitter)	v_{CBO}	max.	40	V	
Collector-emitter voltage (open base)	v_{CEO}	max.	15	V	
Collector-emitter voltage with V_{BE} = 0	V _{CES}	max.	40	V	
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	4.5	V	
Current					
Collector current (peak value; $t = 10 \mu s$)	I_{CM}	max.	500	mA	
Power dissipation					
Total power dissipation up to $T_{amb} = 25$ ^{o}C	P _{tot}	max.	360	mW	
Temperatures					
Storage temperature	T_{stg}	-65 t	0 +200	$^{\mathrm{o}}\mathrm{C}$	
Junction temperature	Тј	max.	200	°C	
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=	0.48	°C/mW	
From junction to case	R _{th j-c}	=	0.15	OC/mW	

 $^{^{\}rm l}\textsc{)}$ Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

CHARACTERISTICS T _i =	25 °C unless o	therwise	speci	fied
Collector cut-off current				
I_E = 0; V_{CB} = 20 V	I_{CBO}	< 80	400	nA
I_E = 0; V_{CB} = 20 V; T_j = 150 $^{\circ}$ C	I_{CBO}	<	30	μ A
$V_{\rm BE}$ = 0; $V_{\rm CE}$ = 15 V; $T_{\rm i}$ = 55 °C	I _{CES}	<	0.40	μ A
$V_{BE} = 0$; $V_{CE} = 40 \text{ V}$	I_{CES}	<	1.0	μΑ
Emitter cut-off current				
$I_C = 0$; $V_{EB} = 4.5 \text{ V}$	I_{EBO}	<	10	μΑ
Currents at reverse biased emitter junction				
V_{CE} = 15 V;- V_{BE} = 3 V; T_j = 55 °C	$^{\rm I}_{\rm CEX} \\ -{\rm I}_{\rm BEX}$	< <	0.60	,
Sustaining voltages				
I _C = 10 mA; I _B = 0	V _{CEOsust}	>	15	V
$I_{\rm C}$ = 10 mA; $R_{\rm BE}$ = 10 Ω	$v_{CERsust}$	>	20	V
Base-emitter voltage (see also page 8)				
I_C = 30 μ A; V_{CE} = 20 V; T_j = 100 o C	v_{BE}	>	0.35	V
Saturation voltages				
$I_C = 10 \text{ mA}$; BSX19: $I_B = 0.6 \text{ mA}$ BSX20: $I_B = 0.3 \text{ mA}$	V _{CEsat}	< 700	0.3	V
$I_C = 10 \text{ mA}$; $I_B = 1 \text{ mA}$	V _{CEsat} V _{BEsat}	< 0.70 to	0.25 0.85	V V
I _C = 100 mA; I _B = 10 mA	V _{CEsat} V _{BEsat}	< <	0.60 1.50	V V
Collector capacitance at f = 1 MHz				
$I_E = I_e = 0$; $V_{CB} = 5 \text{ V}$	C_{c}	<	4	pF
Emitter capacitance at f = 1 MHz				
$I_{C} = I_{c} = 0; V_{EB} = 1 \text{ V}$	Ce	<	4.5	pF

CHARACTERISTICS (continued) $T_i = 25$ °C unless otherwise specified

		J		
D.C. current gain			BSX19	BSX20
$I_C = 10 \text{ mA}$; $V_{CE} = 1 \text{ V}$		h_{FE}	20 to 60	40 to 120
$I_C = 10 \text{ mA}; V_{CE} = 1 \text{ V}; T_j =$	-55 °C	h_{FE}	> 10	0 1 2 0 20 0 0
I_C = 100 mA; V_{CE} = 2 V		h_{FE}	> 10	20
Transition frequency				V 09 * 80 V ;0 = 40 V
$I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$		f_{T}	> 400 typ.500	500 MHz 600 MHz
Switching times			restime bee	ald expersor to our
Storage time (see also relevant Fig.	gs.)		7 88 - T 38	E = 15 V;-Vgg = 3
$I_C = I_B = -I_{BM} = 10 \text{ mA}$		ts	typ. 5	6 ns 13 ns

Pulse generator:

Rise time

l ns

Pulse duration

300 ns

Duty cycle

δ 0.02

Source impedance

 R_S 50 Ω Oscilloscope:

Input impedance $R_i = 50 \Omega$

Rise time

CHARACTERISTICS (continued)

 T_i = 25 $^{\rm O}$ C unless otherwise specified

Switching times

Turn on time (see also relevant Figs.)

from
$$-V_{BE}$$
 = 1.5 V to I_C = 10 mA; I_B = 3 mA t_{on} < 12 ns from $-V_{BE}$ = 2.25 V to I_C = 100 mA; I_B = 40 mA t_{on} < 7 ns

Turn off time (see also relevant Figs.) 19) from
$$I_C$$
 = 10 mA; I_B = 3 mA $\frac{BSX19}{to cut-off with -I_{BM}}$ = 1.5 mA $\frac{BSX20}{toff}$ < 15 ns from I_C = 100 mA; I_B = 40 mA to cut-off $\frac{BSX19}{toff}$ < 18 ns with $-I_{BM}$ = 20 mA

Pulse generator:

Oscilloscope:

Rise time	t_{r}	<	1	ns	Input impedance	R_i	=	50	Ω
Pulse duration	t	>	300	ns	Rise time	tr	<	1	ns
Duty cycle	δ	<	0.02						
Source impedance	Re	=	50	Ω					

								turn on time			turn off time		
I _C (mA)	I _B (mA)	-I _{BM} (mA)	V _C C (V)	R1;R2 (kΩ)	R3 (Ω)	R4 (Ω)	-V _{BB} (V)	-V _{BE} (V)	V _i (V)	V _{BB} (V)	-V _i (V)		
10 100	3 40	1.5		3.3 0.33						12.0 15.3			

Note

 $^{\rm -I_{BM}}$ is the reverse current that can flow during switching off. The indicated $^{\rm -I_{BM}}$ is determined and limited by the applied cut-off voltage and series resistance.

531

537

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in TO-39 metal envelopes with the collector connected to the case. These transistors are intended for general industrial applications.

QUICK REFERENCE DATA

		В	3SX45	BSX46	BSX47	
Collector-emitter voltage (open base)	VCEO	max.	40	60	80	V
Collector current (d.c.)	Ic	max.		1	IESE SAN	Α
Total power dissipation up to T _{case} = 25 °C	P _{tot}	max.		6,25		W
Junction temperature	Ti	max.		200		oC
Transition frequency at f = 20 MHz $I_C = 50$ mA; $V_{CE} = 10$ V	fT	>		50		MHz
		BSX46-6		X45—10 X46—10 X47—10	BSX45—	
D.C. current gain $I_C = 100 \text{ mA}$; $V_{CE} = 1 \text{ V}$	hFE	> 40	-	63 160	100 250	

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case.

Maximum lead diameter is guaranteed only for 12,7 mm. Accessories: 56245 (distance disc).

Products approved to CECC 50 002-174, available on request.

Dimensions in mm

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		VIA I	BSX45	BSX46	BSX4	7
Collector-emitter voltage (open base)	VCEO	max.	40	60	80	V
Collector-emitter voltage (V _{BE} = 0)	VCES	max.	80	100	120	V
Emitter-base voltage (open collector)	VEBO	max.	7	7	7	V
Collector current (d.c.)	IC	max.	industri	1	Mahala	Α
Base current (d.c.)	I _B	max.		200		mA
Total power dissipation up to T _{case} = 25 °C	Ptot	max.		6,25		W
Storage temperature	T _{stg}		-65 to	+ 200		oC
Junction temperature	Тј	max.		200		оС
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}	=		200		K/W
From junction to case	R _{th j-c}	=		28		K/W

CHARACTERISTICS						
T _{amb} = 25 °C unless otherwise specified			BSX45	BSX46	BSX47	_
Collector cut-off currents $V_{BE} = 0$; $V_{CE} = 60 \text{ V}$	ICES	typ.	1 30	1 30	102	nA nA
V _{BE} = 0; V _{CE} = 60 V; T _{amb} = 150 °C	ICES	typ.	1 10	1 10	-	μA μA
V _{BE} = 0; V _{CE} = 80 V	CES	<	-	-	30	nA
V _{BE} = 0; V _{CE} = 80 V; T _{amb} = 150 °C	ICES	<	_	-	10	μΑ
V _{BE} = 0,2 V; V _{CE} = 60 V; T _{amb} = 100 °C	CEX	<	50	50	-	μΑ
V _{BE} = 0,2 V; V _{CE} = 80 V; T _{amb} = 100 °C	ICEX	<	_	V1=90	50	μΑ
Emitter cut-off current I _C = 0; V _{EB} = 5 V	I _{EBO}	<	10	10	10	nA
Collector-emitter breakdown voltage						
open base; I _C = 50 mA	V(BR)CEO	>	40	60		V
$V_{BE} = 0$; $I_{C} = 100 \mu A$	V(BR)CES	>	80	100	120	V
Emitter-base breakdown voltage open collector; $I_E = 100 \mu A$	V(BR)EBO	>	7	7	7	V
Base-emitter voltage $I_C = 100 \text{ mA; } V_{CE} = 1 \text{ V}$	V _{BE}	<	1	1	1	V
I _C = 500 mA; V _{CE} = 1 V	V_{BE}	> <	0,75 1,50	0,75 1,50	0,75 1,50	V
I _C = 1 A; V _{CE} = 1 V	V _{BE}	typ.	1,30 2,00	1,30 2,00	1,30 2,00	V V
Saturation voltage			0.7	0.7		
$I_C = 1000 \text{ mA}; I_B = 100 \text{ mA}$	V _{CEsat}	typ.	0,7 1,0	0,7 1,0	_	V V
I _C = 500 mA; I _B = 25 mA	V _{CEsat}	typ.	_	_	0,5 0,9	V
Transition frequency at f = 20 MHz $I_C = 50$ mA; $V_{CE} = 10$ V	fT	>	50	50	50	MHz
Collector capacitance at f = 1 MHz I _E = I _e = 0; V _{CB} = 10 V	C _c	<	25	20	15	pF
Emitter capacitance at f = 1 MHz IC = IC = 0; VEB = 0,5 V	Ce	<	80	80	80	pF
Noise figure at $f = 1 \text{ kHz}$ $IC = 100 \mu\text{A}$; $VCF = 10 \text{ V}$	•					
$R_S = 1 k\Omega$; B = 200 Hz	F	typ.	3,5	3,5	3,5	dB

			BSX45-6 BSX46-6 BSX47-6	BSX45-10 BSX46-10 BSX47-10	BSX45-16 BSX46-16
D.C. current gain $I_C = 100 \mu A$; $V_{CE} = 1 \text{ V}$	hFE	> typ.	10 28	15 40	25 90
$I_C = 100 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	> typ.	40 63 100	63 100 160	100 160 250
$I_C = 500 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	> typ.	15 25	25 40	35 60
I _C = 1 A; V _{CE} = 1 V Switching times (see Fig. 2) I _{Con} = 100 mA; I _{Bon} = -I _{Boff} = 5 mA Turn-on time	hFE	typ.	15	200	30
Turn-off time	t _{off}	<		850	ns

Fig. 2 Switching times test circuit.

Pulse generator:		Oscilloscope:			
Pulse duration	$t_p = 10 \mu s$	Rise time	tr	<	15 ns
Rise time	t _r ≤ 15 ns	Input impedance	Zı	>	100 kΩ
Fall time	t _f ≤ 15 ns				
Source impedance	$Z_S = 50 \Omega$				

Fig. 3 Safe Operating ARea; $T_{case} \le 25 \, {}^{\circ}\text{C}^{*}$.

- I Region of permissible d.c. operation.
- II Permissible extension for non-repetitive pulse operation.

 $P(t_{p},o) = \frac{200 - T_{case}}{Z_{th}(t_{p},o)}.$ (For very short forward mode pulse durations, i.e. $t_{p} < 3~\mu s$, assume 3 μs values for Z_{th} .)

^{*} At case temperatures > 25 °C derate constant power portion of boundaries such that:

Fig. 4 Thermal impedance versus pulse duration. Stabilization time is 10 s.

Fig. 5 Maximum permissible power dissipation as a function of temperature.

Fig. 6 $I_C/I_B = 10$; —— typical values; — — limit values at $T_{amb} = 25$ °C.

Fig. 7 $I_C/I_B = 10$; —— typical values; — — — limit values at $T_{amb} = 25$ °C.

Fig. 8 Typical values; $T_j = 25$ °C.

Fig. 9 Typical values; $T_i = 25$ °C.

Fig. 10 V_{CE} = 1 V; —— typical values; ——— limit values at T_{amb} = 25 °C.

Fig. 11 $V_{CE} = 1 V$; —— typical values; ——— limit values at $T_{amb} = 25 \, ^{\circ}C$.

Fig. 12 $V_{CE} = 1 V$; —— typical values; — — limit values at $T_{amb} = 25 \, ^{\circ}C$.

Fig. 13 $V_{CE} = 10 \text{ V}$; f = 20 MHz; $T_i = 25 \text{ °C}$.

Fig. 14 V_{CE} = 1 V; —— typical values; ——— limit values at T_{amb} = 25 °C.

Fig. 15 V_{CBO} = 60 V for BSX45 and BSX46; V_{CBO} = 80 V for BSX47.

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in a TO-39 metal envelope with the collector connected to the case. The BSX59, BSX60 and BSX61 are primarily intended for very high speed core-driving purposes.

QUICK REFERENCE DATA

			BSX59	BSX60	BSX61	
Collector-base voltage (open emitter)	V _{CBO}	max.	70	70	70	V
Collector-emitter voltage (open base)	VCEO	max.	45	30	45	V
Collector current (peak value)	ICM	max.	1	1	1	Α
Total power dissipation up to Tamb = 25 °C	P _{tot}	max.	0,8	0,8	0,8	W
Junction temperature	Ti	max.	200	200	200	oC
D.C. current gain I _C = 500 mA; V _{CE} = 1 V	hFE	>	30	30	30	eaure)
Saturation voltage $I_C = 500 \text{ mA}$; $I_B = 50 \text{ mA}$	V _{CEsat}	<	0,5	0,5	0,7	V
Transition frequency I _C = 50 mA; V _{CE} = 10 V	fT	typ.	450	475	475	MHz
Turn-off time $I_{Con} = 500 \text{ mA}$; $I_{Bon} = -I_{Boff} = 50 \text{ mA}$	toff	<	60	70	100	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case.

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Voltages	TOT DAMA IC	BSX59	BSX60	BSX6	1
Collector-base voltage (open emitter)	V _{CBO} max.	70	70	70	V
Collector-emitter voltage (open base) $I_C = 10 \text{ mA}$	VCEO max.	45	30	45	V
Emitter-base voltage (open collector)	V _{EBO} max.	5	5	5	V
Currents		ATAG	BOUBBE	SERX	
Collector current (d.c.)	$I_{\mathbf{C}}$	ma	x. 1	A	
Collector current (peak value)	I_{CM}	max	x.]	Α	
Emitter current (peak value)	$-I_{\rm EM}$	max	x. 1	A	
Power dissipation					
Total power dissipation up to T_{amb} = 25 $^{\circ}C$	P _{tot}	max	x. 0.8	3 W	
Temperatures					
Storage temperature	T _{stg}	-65	to +200	°C	
Junction temperature	T_{j}	max	x. 200	°C	
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=	220	°C/	/W
From junction to case	R _{thj-c}	-	43	°C/	/W
From junction to mounting base	R _{th j-mb}	.0000	35	°C/	/W

CHARACTERISTICS	T _i =	25 °C	unless	otherwi	ise spe	cified
Collector cut-off current	3		BSX59	BSX60	BSX61	
$I_E = 0$; $V_{CB} = 40 \text{ V}$	I_{CBO}	<	500	500	500	nA
I_E = 0; V_{CB} = 40 V; T_j = 150 $^{\rm o}$ C	I_{CBO}	<	300	300	300	μΑ
Emitter cut-off current						
$I_C = 0$; $V_{EB} = 4 V$	IEBO	<	300	300	500	nA
I_C = 0; V_{EB} = 4 V; T_j = 150 ${}^{o}C$	IEBO	<	50	50	50	μ A
Currents at reverse biased emitter junc	tion				1 . 30	
$-V_{BE}$ = 4 V; V_{CE} = 40 V	$-I_{\text{BEX}}$	<	500 500	500 500	1000 1000	nA nA
$-V_{BE}$ = 4 V; V_{CE} = 40 V; T_j = 150 $^{\circ}$ C	$^{+\mathrm{I}}_{\mathrm{CEX}}$	< <	300 300	300 300	500 500	μA μA
Saturation voltages						
I _C = 150 mA; I _B = 15 mA	${ m V}_{ m CEsat}$	<	0.3	0.3	0.5	V V
	v_{CEsat}	<	0.5	0.5	0.7	V
$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$	v_{BEsat}	>	0.85	0.7	0.7	V V
$I_C = 1 A;$ $I_B = 100 \text{ mA}$	$v_{ m CEsat}$	< <	1.0	1.0	1.3	V V
D.C. current gain			2.0			
I_C = 150 mA; V_{CE} = 1 V	h_{FE}	> typ.	30 70	30 90	30 105	
$I_{\rm C}$ = 500 mA; $V_{\rm CE}$ = 1 V	h_{FE}	> <	30 90	30 90	30 90	
$I_C = 1 A; V_{CE} = 5 V$	$h_{\rm FE}$	> typ.	20 40	25 50	20 55	
Transition frequency						
I_C = 50 mA; V_{CE} = 10 V	f_{T}	> typ.	250 450	250 475	250 475	MHz MHz
Collector capacitance at f = 1 MHz						
$I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C_{c}	typ.	6 10	6 10	6 10	pF pF
Emitter capacitance at f = 1 MHz						
$I_{C} = I_{c} = 0$; $V_{EB} = 0.5 \text{ V}$	Ce	typ.	36 50	36 50	36 50	pF pF

CHARACTERISTICS (continued)

 $T_j = 25$ °C unless otherwise specified

Recovered charge

$$I_C = 500 \text{ mA}$$
; $I_B = 50 \text{ mA}$

BSX60

$$Q_S$$
 < 5 nC

Test circuit:

Adjust C from zero to C_{opt} $Q_s = C_{opt} \cdot V_i$

Pulse generator:

Pulse duration

 $t_p = 10 \mu s$

Duty cycle

 $\delta = 0.02$

16,7 V

37,5 V

24,75

Switching times (see also Figs 4, 11 and 12)			BSX59	BSX60	BSX61	
Turn-on time when switched from $-V_{BE} = 2 \text{ V to I}_{Con} = 500 \text{ mA}$; $I_{Bon} = 50 \text{ mA}$	ton	typ.	17 35	17 40		ns ns
Turn-off time when switched from $I_{Con} = 500 \text{ mA}$; $I_{Bon} = 50 \text{ mA}$ to cut-off with $-I_{Boff} = 50 \text{ mA}^*$	^t off	typ.	45 60	58 70		ns ns

Fig. 4 Switching circuit.

Pulse generator:

 $\begin{array}{lll} \text{Pulse duration} & t_p & \geqslant & 500 \text{ ns} \\ \text{Rise time} & t_r & \leqslant & 5 \text{ ns} \\ \text{Fall time} & t_f & \leqslant & 5 \text{ ns} \\ \text{Output resistance} & R_O & = & 50 \, \Omega \text{ (during pulse, otherwise infinite)} \end{array}$

^{* -}I_{BOff} is the reverse current that can flow during switching off. The indicated -I_{BOff} is determined and limited by the applied cut-off voltage and the series resistance.

- I Region of permissible operation during switching off with -V $_{\rm BB}$ = 4 V; $\rm R_{\rm BE}$ = 39 Ω
- $\ensuremath{\mathsf{II}}$ Permissible extension for repetitive pulsed operation.
 - t1 limits operations with $t_p \leq$ 0.1 $\mu s;\, \delta$ = 0.25
 - t_2 limits operations with $t_p \le 1 \mu s$; $\delta = 0.25$
- III Operation in this area is not allowed.

Fig. 13 $I_C/I_B = 10$; $T_i = 25$ °C; typical values.

Fig. 14 $I_C/I_B = 10$; $T_j = 25$ °C.

Fig. 19 $V_{CE} = 1 \text{ V}$; $T_j = 25 \text{ }^{\circ}\text{C}$; typical values.

Fig. 20 $V_{CE} = 5 \text{ V}$; $T_j = 25 \text{ °C}$; typical values.

Fig. 21 V_{CE} = 5 V; typical values.

Fig. 23 $V_{CE} = 5 V$; typical values.

Fig. 22 V_{CE} = 5 V; typical values.

Fig. 24 f = 100 MHz; $T_j = 25 \text{ }^{\circ}\text{C}$; typ. values.

트린, 24 - F = 100 [남단2] T = 25 트C; ryp. relates.

Santa analysis of 30 a constant

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor in a TO-18 metal envelope intended for general purpose low level switching applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	20	V
Collector-emitter voltage (open base)	V _{CEO}	max.	15	V
Collector current (peak value)	1 _{CM}	max.	200	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	300	mW
D.C. current gain $I_C = 10 \text{ mA}$; $V_{CE} = 0.35 \text{ V}$	hFE	50 to	o 200	
Transition frequency at $f = 100 \text{ MHz}$ $I_C = 10 \text{ mA}$; $V_{CE} = 9.0 \text{ V}$	fT	>	200	MHz
Storage time	t _s	<	50	ns

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected to case

Dimensions in mm

Accessories: 56246 (distance disc).

RATINGS

Limiting values of operation according to the absolute maximum system.

Electrical

V _{CBO} max.	20	V
V _{CEO} max.	15	V
V _{EBO} max.	5.0	V
*I _{C(AV)} max.	100	mA
I _{CM} max.	200	mA
P _{tot} max. (T _{amb} ≤25°C)	300	mW

^{*}Averaged over any 20ms period.

Temperature

T min.	-65	°C
T max.	175	°C
T max. (operating)	175	°C

THERMAL CHARACTERISTIC

R _{th(j-amb)}	0.5	degC/mW
th(j-amb)	0.5	

ELECTRICAL CHARACTERISTICS (T $_{\mathrm{amb}} = 25^{\mathrm{o}}\mathrm{C}$ unless otherwise stated)

		Min.	Max.	
ICBO	Collector cut-off current $V_{CB} = 16V$, $I_{E} = 0$	-	50	nA
V _{BR(CBO)}	Collector-base breakdown voltage $I_C^*=1.0\mu A$	20	-	v
EBO	Emitter cut-off current $V_{EB}^{=1.5V}$, $I_{C}^{=0}$	-	25	nA
V(BR)EBO	Emitter-base breakdown voltage $I_E = 10\mu A$	5.0	-	v
CEO	Collector-emitter cut-off current V _{CE} =12V, I _B =0	_	250	nA
V _(BR) CEO	Collector-emitter breakdown voltage I_c=10mA**	15	_	V
\mathbf{f}_{T}	Transition frequency I _C =10mA, V _{CE} =9.0V,			
	f = 100MHz	200	-	MHz

^{**}Pulsed: Pulse width = $300\mu s$, duty cycle < 2%.

		Min.	Max.		
$^{\rm h}{}_{ m FE}$	Common emitter forward current transfer ratio				
	$I_{C} = 1.0 \text{mA}, V_{CE} = 0.35 \text{V}$	30	-		
	$I_{C} = 10 \text{mA}, V_{CE} = 0.35 \text{V}$	50	200		
V _{CE(sat)}	Collector-emitter saturation voltage				
	$I_C = 10 \text{mA}, I_B = 0.2 \text{mA}$	-	0.35	V	
V _{BE} (sat)	Base-emitter saturation voltage				
	$I_{C} = 10 \text{mA}, I_{B} = 0.2 \text{mA}$	0.67	0.87	V	
C _{ob}	Collector-base capacitance $V_{CB}^{=9.0V, I_{E}^{=0}}$				
	f=1.0MHz	-	6.0	pF	
t_	Storage time				
S	$I_{C} = 10 \text{mA}$	· - ·	50	ns	
	See test circuit on next page				

STORAGE TIME TEST CIRCUIT

Input and output waveforms

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in plastic TO-92 variant envelopes, primarily intended for switching and linear applications.

QUICK REFERENCE DATA

						PH2222; R	PH2222A;	R
Collector-base	e voltage (open e	emitter)	V	СВО	max.	60	75	V
Collector-emi	tter voltage (ope	en base)			max.	30	40	V
Collector cur	rent (d.c.)		IC		max.	800	800	mA
Total power of	dissipation up to	T _{amb} = 25 °C	Pt	ot	max.	625	625	mW
Junction tem	perature		Ti		max.	150	150	oC
	gain at T _j = 25 ^o A; V _{CE} = 10 V	С	hp	Е	> [500]	75	75	
	equency at $f = 10$ A; $V_{CE} = 20 \text{ V}$	00 MHz	fT		>	250	300	MHz
Storage time							02 = ggV ;	
$I_{\text{Con}} = 150$	$mA; I_{Bon} = -I$	Boff = 15 mA	ts		<	H = ameT :	225	ns

MECHANICAL DATA of PH2222 and PH2222A

Dimensions in mm

Fig. 1 TO-92 variant.

The PH2222R and PH2222AR are available on request; they have cbe pinning instead of ebc.

PH2222; R PH2222A; R

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)	V _{CBO}	max	. 60	75	V
Collector-emitter voltage (open base)	VCEO	max	. 30	40	V
Emitter-base voltage (open collector)	V _{EBO}	max	. 5	6	V
Collector current (d.c.)	Ic	max	. 80	00	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max	. 62	25	mW
Storage temperature	T _{stg}		-65 to + 15	50	oC
Junction temperature	Tj	max	. 1!	50	oC
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=	20	00	K/W
CHARACTERISTICS					
$T_j = 25$ °C unless otherwise specified					
Collector cut-off current			PH2222; R	PH2222A; R	
I _E = 0; V _{CB} = 50 V	СВО	<	10	- 97917 9	nA
I _E = 0; V _{CB} = 50 V; T _{amb} = 150 °C	СВО	<	10	I Jam Dara	μΑ
I _E = 0; V _{CB} = 60 V	СВО	<	COCCUTO NA	10	nA
I _E = 0; V _{CB} = 60 V; T _{amb} = 150 °C Emitter cut-off current	ICBO	<	-	10	μΑ

PH2222; R | PH2222A; R

1CBO	<	10	- 9791	nA
СВО	<	10	i Am_Dan	μΑ
СВО	<	erel a nno	10	nA
ІСВО	<	-	10	μΑ
IEBO	<	10	10	nA
ICEY	<	_ (10	nA
	<	- 4	20	nA
V(BR)CBO	>	60	75 .	V
V(BR)CEO	>	30	40	V
V(BR)EBO	>	5	6	V
VCEsat	<	0,4	0,3	V
V	>	-in- 124	0,6	V
v BEsat	<	1,3	1,2	V
V _{CEsat}	<	1,6	1,0	V
V _{BEsat}	<	2,6	2,0	V
	ICBO ICBO ICBO IEBO ICEX —IBEX V(BR)CBO V(BR)CEO V(BR)EBO VCEsat VBEsat VCEsat	CBO CEX CBO CBO	CBO CBO	CBO CBO

^{*} Measured under pulse conditions: $t_p \leqslant 300~\mu s; \, \delta \leqslant 0.02.$

).C. current gain			PH2222; R	PH2222A; R	
I _C = 0,1 mA; V _{CE} = 10 V	hFE	>	35	35	
IC = 1 mA; VCE = 10 V	hFE	>	50	50	
I _C = 10 mA; V _{CE} = 10 V	hFE	>	75	75	
I _C = 10 mA; V _{CE} = 10 V; T _{amb} =		>	vitched from	35	
I _C = 150 mA; V _{CE} = 1 V*	hFE	>	50	50	
00 00		>	100	100	
$I_C = 150 \text{ mA}; V_{CE} = 10 \text{ V*}$	hFE	<	300	300	
$I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V*}$	hFE	>	30	40	
ransition frequency at f = 100 MHz					
$I_C = 20 \text{ mA}; V_{CE} = 20 \text{ V}$	fT	>	250	300	MH
Collector capacitance at f = 100 kHz					
I _E = I _e = 0; V _{CB} = 10 V	C _C	<	8	8	pF
- 00	90				
Emitter capacitance at $f = 100 \text{ kHz}$ $I_C = I_C = 0$; $V_{FR} = 0.5 \text{ V}$	0	<		25	pF
0 00.	C _e			25	þΓ
eedback time constant at f = 31,8 MH				450	
$I_C = 20 \text{ mA}; V_{CE} = 20 \text{ V}$	r _{bb} ' C _{b'c}	<	_	150	ps
-parameters (common emitter)					
$I_C = 1 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ kHz}$		>		2	kΩ
Input impedance	h _{ie}	100	t waveform e	8	kΩ
Reverse voltage transfer ratio	h _{re}	<	_	8	10-4
	77 002 = 7H 175 819 =	>	5 1 20 V 1	50)
Small-signal current gain	h _{fe}	<	_	300	
0	Qecillosopp	>	_	5	μΑ/
Output admittance	hoe	<	-	35	μΑ/
IC = 10 mA; VCF = 10 V; f = 1 kHz					
Input impedance	hie	>	-	0,25	kΩ
		<	_	1,25	kΩ
Reverse voltage transfer ratio	h _{re}		_	4	10-
Small-signal current gain	h _{fe}	>	_	75 375	
	10		_	25	μΑ/
Output admittance	h _{oe}	<	_	200	μΑ/
				200	μΛ
$I_C = 20 \text{ mA}$; $V_{CE} = 20 \text{ V}$; $f = 100 \text{ M}$			0.5		
Small-signal current gain	h _{fe}	>	2,5	3,0	
$I_C = 20 \text{ mA}$; $V_{CE} = 20 \text{ V}$; $f = 300 \text{ M}$	lHz				
Real part of input impedance	Re(h _{ie})	<	60	60	Ω
loise figure at f = 1 kHz					
I _C = 0,1 mA; V _{CE} = 10 V					
$R_G = 1 \text{ k}\Omega$; $B = 1 \text{ Hz}$	F	/		4	dB

^{*} Measured under pulse conditions: $t_{\rm p} \leqslant 300~\mu{\rm s}; \, \delta \leqslant 0.02.$

fall time

Switching times (between 10% and 90% levels) for PH2222A; R

60 ns

oscilloscope

7285736

Fig. 2 Input waveform and test circuit for determining delay time and rise time.

$$V_i = -0.5 \text{ V to} + 9.9 \text{ V}; V_{CC} = +30 \text{ V}; R1 = 619 \Omega; R2 = 200 \Omega.$$

100 µs

Pulse generator: Oscilloscope: pulse duration 200 ns input impedance 100 kΩ rise time 2 ns input capacitance duty factor 0,02 rise time Vi V_{CC} +16,2 V R2 T.U.T. R1 0 R3 time Vo

Fig. 3 Input waveform and test circuit for determining storage time and fall time.

7Z88673

 $V_{CC} = +30 \text{ V}; V_{BB} = -3 \text{ V}; R1 = 1 \text{ k}\Omega; R2 = 200 \Omega; R3 = 20 \text{ k}\Omega; R4 = 50 \Omega; D1 = 1N916.$

Pulse generator: Oscilloscope: $t_f < 5 \text{ ns} \qquad \begin{array}{c} \text{Oscilloscope:} \\ \text{input impedance} & Z_i > 100 \text{ k}\Omega \\ \text{input capacitance} & C_i < 12 \text{ pF} \\ \text{rise time} & t_r < 5 \text{ ns} \end{array}$

-13,8 V

SILICON PLANAR EPITAXIAL SWITCHING TRANSISTOR

N-P-N transistor in a plastic TO-92 variant envelope intended for high-speed switching applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		VCBO	max.	40	V
Collector-emitter voltage (V _{BE} = 0)		VCES	max.	40	V
Collector-emitter voltage (open base)		VCEO	max.	15	V
Collector current (peak value)		ICM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C		Ptot	max.	500	mW
D.C. current gain I _C = 10 mA; V _{CE} = 1 V I _C = 100 mA; V _{CE} = 2 V	peilipegi es	hFE hFE	> >	40 20	
Transition frequency at $f = 100 \text{ MHz}$ $I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	26.90	fT	05 - 80	500	MHz
Storage time $I_{Con} = I_{Bon} = -I_{Boff} = 10 \text{ mA}$		t _s	< 83	13	ns

MECHANICAL DATA

Fig. 1 TO-92 variant.

Dimensions in mm

RATINGS				
Limiting values in accordance with the Absolute Maximum S	ystem (IEC 134)			
Collector-base voltage (open emitter)	VCBO	max.	40	V
Collector-emitter voltage (VBE = 0)	VCES	max.	40	V
Collector-emitter voltage (open base)	VCEO	max.	15	V
Emitter-base voltage (open collector)	VEBO	max.	4,5	٧
Collector current (peak value; $t_p = 10 \mu s$)	ICM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	500	mW
➤ Storage temperature	T _{stg}	-65 to +	150	oC
Junction temperature	Tj	max.	150	oC
THERMAL RESISTANCE				
	D	= 0	250	K/W
From junction to ambient in free air	R _{th j-a}		250	IX/VV
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Collector cut-off current		EggV All	1001	* 01
$I_E = 0$; $V_{CB} = 20 \text{ V}$	CBO	<	400	
I _E = 0; V _{CB} = 20 V; T _j = 125 °C Emitter cut-off current	ICBO	10114	30	μΛ
IC = 0; V _{EB} = 2 V	IEBO	<	100	nA
Saturation voltages	200			
I _C = 10 mA; I _B = 0,3 mA	V _{CEsat}	< (0,30	V
I _C = 10 mA; I _B = 1 mA	VCEsat	< (
C	V _{BEsat}	0,70 to (
$I_C = 100 \text{ mA}; I_B = 10 \text{ mA}$	V _{CEsat} V _{BEsat}		0,60 1,50	
D.C. current gain	* BEsat		,,00	
I _C = 10 mA; V _{CE} = 1 V	hFE	40 to	120	
$I_C = 10 \text{ mA}; V_{CE} = 1 \text{ V}; T_{amb} = -55 \text{ °C}$	hFE	>	20	
$I_C = 100 \text{ mA}; V_{CE} = 2 \text{ V}$	hFE	>	20	
Transition frequency at f = 100 MHz I _C = 10 mA; V _{CF} = 10 V	fT	>	500	MHz
Collector capacitance at f = 1 MHz				
I _E = I _e = 0; V _{CB} = 5 V	C _C	<	4	pF
Emitter capacitance at f = 1 MHz				
$I_C = I_c = 0; V_{EB} = 1 V$	C _e	<	4,5	pF
Switching times				
Storage time (see Fig. 2)				
$I_{Con} = I_{Bon} = -I_{Boff} = 10 \text{ mA}$	t _s	typ.	13	ns ns
			,,,	

Fig. 2 Test circuit and waveforms.

Turn-on time (see Fig. 3)			
from -V _{BEoff} = 1,5 V to I _{Con} = 10 mA; I _{Bon} = 3 mA from -V _{BEoff} = 2,25 V to I _{Con} = 100 mA; I _{Bon} = 40 mA Turn-off time (see Fig. 3)	t _{on}	12 n 7 n	
i_{Con} = 10 mA; I_{Bon} = 3 mA; $-I_{Boff}$ = 1,5 mA I_{Con} = 100 mA; I_{Bon} = 40 mA; $-I_{Boff}$ = 20 mA	t _{off}	18 n 21 n	

Fig. 3 Test circuit and waveforms.

							turn-on time			turn-off time		
I _{Con}	I _{Bon} mA	lBoff mA	VCC	R1 Ω	R2; R3 kΩ	R4 Ω	V _{BB}	V _{BE}	V _i	V _{BB}	V _i	
10 100	3 40	-1,5 -20	3 6	50 56	3,30 0,33	220 0	-3,0 -4,5	-1,50 -2,25	15 20	12,0 15,3	-15 -20	

Fig. 4 $V_{CE} = 1 \text{ V}$; $T_j = 25 \text{ °C}$.

7288010
bie (mA/V)
0
-20
200
400
600
f (MHz)
800

Fig. 7 V_{CB} = 10 V; T_{amb} = 25 °C; typical values.

Fig. 13 $V_{CB} = 10 \text{ V}$; $-I_E = 2 \text{ to } 10 \text{ mA}$; $T_{amb} = 25 \text{ °C}$.

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P medium power transistors in plastic TO-92 variant envelopes, primarily designed for high-speed switching and driver applications for industrial service.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		-V _{CBO}	max.	60	٧
Collector-emitter voltage (open base)	PH2907; R PH2907A; R	-VCEO	max.	40 60	
Collector current (d.c.)		-I _C	max.	600	mA
Total power dissipation up to $T_{amb} = 25$ °C		Ptot	max.	625	mW
Junction temperature		Tj	max.	150	oC
D.C. current gain at $T_j = 25$ °C $-I_C = 150$ mA; $-V_{CE} = 10$ V		hFE	100 to	300	
Transition frequency at f = 100 MHz $-I_C$ = 50 mA; $-V_{CE}$ = 20 V; T_j = 25 °C		fT	>	200	MHz
Storage time $-I_{Con} = 150 \text{ mA}; -I_{Bon} = I_{Boff} = 15 \text{ mA}$		t _S	<	80	ns

MECHANICAL DATA of PH2907 and PH2907A

Dimensions in mm

Fig. 1 TO-92 variant.

The PH2907R and PH2907AR are available on request; they have cbe pinning instead of ebc.

DAT	~11	h. II .	\sim	0
RA ¹	ш	N	G	5

Limiting values in accordance with the Absolute M	laximum System	(IEC 134)			
Collector-base voltage (open emitter)		-V _{CBO}	max.	60	V
Collector-emitter voltage (open base)	PH2907; R	-V _{CEO}	max.	40	V
	PH2907A; R	-ACEO	max.	60	V
Emitter-base voltage (open collector)		-V _{EBO}	max.	5	V
Collector current (d.c.)		-I _C	max.	600	mA
Total power dissipation up to $T_{amb} = 25 {}^{\circ}\text{C}$		P _{tot}	max.	625	mW
Storage temperature		T _{stg}	-65 to +	150	oC
Junction temperature		Tj	max.	150	oC
THERMAL RESISTANCE					
From junction to ambient in free air		R _{th j-a}	= moni	200	K/W

CHARACTERISTICS

011111111111111111111111111111111111111					
T _{amb} = 25 °C unless otherwise specified			2N2907; R	2N2907A	A; R
Collector cut-off current I _E = 0; -V _{CB} = 50 V	-I _{CBO}	<	20	10	nA
I _E = 0; -V _{CB} = 50 V; T _{amb} = 150 °C	-ICBO	<	20	10	μΑ
+ V _{BF} = 0,5 V; -V _{CF} = 30 V	-ICEX	<	50	50	nA
Base current	OLA				
$+ V_{BE} = 0.5 V; -V_{CE} = 30 V$	BEX	<	50	50	nA
Collector-base breakdown voltage					
open emitter; $-I_C = 10 \mu A$	−V(BR)CBO	>	60	60	V
Collector-emitter breakdown voltage*	V/		40	60	V
open base; -I _C = 10 mA	-V(BR)CEO	>	40	60	V
Emitter-base breakdown voltage open collector; $-I_E = 10 \mu A$	-V(BR)EBO	>	5	5	V
Saturation voltages*	-V _{CEsat}	<	0,4	0,4	V
$-I_C = 150 \text{ mA}; -I_B = 15 \text{ mA}$	-V _{BEsat}	<	1,3	1,3	V
$-I_C = 500 \text{ mA}; -I_B = 50 \text{ mA}$	-V _{CEsat}	<	1,6	1,6	V
-1C - 300 mA, -1B - 30 mA	$-V_{BEsat}$	<	2,6	2,6	V
D.C. current gain	dicuit for determ		ns moglevske	1g 2 From	
$-I_C = 0.1 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>	35	75	
$-I_C = 1 \text{ mA; } -V_{CE} = 10 \text{ V}$	hFE	>	50	100	
$-I_C = 10 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>	75	100	
-I _C = 150 mA;V _{CE} = 10 V*	h	>	100	100	
-IC - 190 HIA; -VCE = 10 V	hFE	<	300	300	
$-1_{C} = 500 \text{ mA}; -V_{CE} = 10 \text{ V*}$	hFE	>	30	50	
Collector capacitance at f = 100 kHz			-		0-11001
$I_E = I_e = 0; -V_{CB} = 10 \text{ V}$	C _c	<		8	pF
Emitter capacitance at f = 100 kHz					
$I_C = I_c = 0; -V_{EB} = 2 V$	Ce	<	3	30	pF
Transition frequency at f = 100 MHz	-	_	20	10	MHz
$-I_C = 50 \text{ mA}; -V_{CE} = 20 \text{ V*}$	fT	>	20	0	IVIHZ

^{*} Measured under pulse conditions to avoid excessive dissipation: $t_p \leqslant 300~\mu s;~\delta \leqslant 0.02.$

Turn-on time (see Fig. 2) when switched to $-I_{Con} = 150 \text{ mA}$; $-I_{Bon} = 15 \text{ mA}$ 10 ns delay time 40 ns rise time 45 ns turn-on time ton

Fig. 2 Input waveform and test circuit for determining delay, rise and turn-on time.

Turn-off time (see Fig. 3) when switched from $-I_{Con} = 150 \text{ mA}$; $-I_{Bon} = 15 \text{ mA}$ to cut-off with + IBoff = 15 mA storage time 80 ns 30 ns fall time turn-off time 100 ns toff +15 V -6 V

Fig. 3 Input waveform and test circuit for determining storage, fall and turn-off time.

Pulse generator (see	Figs 2 a	nd 3)			Oscilloscope (see Fi	gs 2 and	3)		
frequency	f	=	150	Hz	rise time	tr	<	5	ns
pulse duration	tn	=	200	ns	input impedance	Zi	<	10	ΩM
rise time	tr	<	2	ns					
output impedance	Zo	=	50	Ω					

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

SILICON P-N-P HIGH-VOLTAGE TRANSISTORS

P-N-P high-voltage small-signal transistors, primarily intended for use in telephony applications and encapsulated in a TO-92 variant envelope.

QUICK REFERENCE DATA

		PH	15415	PH5416	or qu
Collector-base voltage (open emitter)	-V _{CBO}	max.	200	350	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	200	300	V
Collector current	-Ic	max.	1	1	Α
Total power dissipation up to $T_{amb} = 25$ °C	Ptot	max.	500	500	mW
Junction temperature	Ti	max,	150	150	οС
Collector-emitter saturation voltage $-I_C = 50 \text{ mA}$; $-I_B = 5 \text{ mA}$	VCEsat	<	2,5	2,0	V
D.C. current gain	0 = 000		00% -	80 v - 10	
$-I_C = 50 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	> <	30 150	30 120	

MECHANICAL DATA

Dimension in mm

Fig. 1 TO-92 variant.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		PH	5415	PH!	5416	
Collector-base voltage (open emitter)	-V _{CBO}	max.	200		350	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	200		300	٧
Collector current	-I _C	max.		1		Α
Base current	-IB	max.	5	00		mA
Total power dissipation						
up to T _{amb} = 25 °C	P _{tot}	max.	5	00		mW
Junction temperature	Тј	max.	1	50		oC

CHARACTERISTICS

T_{amb} = 25 °C unless otherwise specified

			PH5415	PH5416	
Collector cut-off current I _E = 0; -V _{CB} = 175 V I _E = 0; -V _{CB} = 280 V	-I _{CBO}	<	50	50	μΑ μΑ
Saturation voltages $-I_C = 50 \text{ mA}$; $I_B = 5 \text{ mA}$	−VCEsat −VBEsat	< <	2,5 1,5	2,0 1,5	
D.C. current gain $-I_C = 50 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	> <	30 150	30 120	
Transition frequency	f _T	>	15	15	MHz

N-P-N SILICON PLANAR TRANSISTORS

N-P-N transistors in TO-18 metal envelopes with the collector connected to the case.

These devices are primarily intended for use in high performance, low-level, low-noise amplifier applications both for direct current and for frequencies of up to 100 MHz.

QUICK REFERENCE DATA

			2N929	2N930	
Collector-base voltage (open emitter)	V _{CBO}	max	45	45	٧
Collector-emitter voltage (open base)	VCEO	max	45	45	V
Collector current (peak value)	ICM	max	60	60	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max	300	300	mW
Junction temperature	Ti	max	175	175	oC
D.C. current gain at $T_j = 25$ °C $I_C = 10 \mu A$; $V_{CE} = 5 \text{ V}$	hFE	>	40 120	100 300	
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	> <	100 350	150 600	
Transition frequency I _C = 0,5 mA; V _{CE} = 5 V	fT	typ	80	80	MHz
Noise figure at R _S = 10 k Ω I _C = 10 μ A; V _{CE} = 5 V f = 10 Hz to 15 kHz	F	typ <	2,5 4	2 3	dB dB

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected to case

Dimensions in mm

Accessories: 56246 (distance disc).

RATINGS Limiting values in accordance with	the Absolu	te Maxii	mum S	ystem
Voltages			(IE	C 134)
Collector-base voltage (open emitter)	v_{CBO}	max.	45	V
Collector-emitter voltage (open base)	VCEO	max.	45	V
Collector-emitter voltage at V _{EB} = 0	VCES	max.	45	V
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max.	5	Va assivab assi
Currents				
Collector current (d.c. or average over				
any 50 ms period)	$^{\mathrm{I}}\mathrm{_{C}}$	max.	30	mA
Collector current (peak value)	I_{CM}	max.	60	mA
Emitter current (d.c. or average over				
any 50 ms period)	$^{-1}\mathrm{E}$	max.	35	mA
Emitter current (peak value)	$-I_{\rm EM}$	max.	70	mA
Power dissipation				
Total power dissipation up to T_{amb} = 25 $^{\circ}C$	P_{tot}	max.	300	mW
Temperatures				
Storage temperature	T_{stg}	-65 to	+175	°C
Junction temperature	Ti	max.	175	°C
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0.5	OC/mW
From junction to case	R _{th j-c}	=	0.25	oC/mW

Collector cut-off current					
$I_{\rm E}$ = 0; $V_{\rm CB}$ = 45 V		ICBO	< 10 nA		
$I_B = 0$; $V_{CE} = 5 V$		ICEC	< 2 nA		
V_{EB} = 0; V_{CB} = 45 V		ICES	< 10 nA		
Emitter cut-off current					
$I_C = 0$; $V_{EB} = 5 V$		IEBO	< 10 nA		
Emitter-base voltage					
$-I_E$ = 0.5 mA; V_{CB} = 5 V		-V _{EB} 0.6 to 0.8 V			
Saturation voltages					
I_C = 10 mA; I_B = 0.5 mA		V _{CEsat} < 1			
		$v_{\mathrm{BE}\mathrm{s}}$	at 0.6 to 1 V		
D.C. current gain		2N929	2N930		
I_C = 10 μA ; V_{CE} = 5 V	h_{FE}	40 to 120	100 to 300		
I_C = 10 μA ; V_{CE} = 5 V; T_j = -55 $^{\rm o}C$	h_{FE}	> 10	> 20		
$I_C = 500 \mu A; V_{CE} = 5 V$	h_{FE}	> 60	> 150		
$I_{\rm C}$ = 10 mA; $V_{\rm CE}$ = 5 V	h_{FE}	100 to 350	150 to 600		
Collector capacitance at f = 1 MHz					
$I_E = I_e = 0$; $V_{CB} = 5 V$	C_{c}	< 8	< 8 pF		
Transition frequency					

Cut-off frequency

 I_C = 0.5 mA; V_{CE} = 5 V

 $f_{
m hfe}$ > 200 | > 100 kHz

CHARACTERISTICS (continued)	$r_j = 25 {}^{\circ}\text{C}$	unless other	wise specified	
Noise figure (f = 10 Hz to 15 kHz)		2N929	2N930	
$I_C = 10 \mu A$; $V_{CE} = 5 \text{ V}$; $R_S = 10 \text{ k}\Omega$	F	typ. 2.5 < 4	2 dB 3 dB	
h parameters at f = 1 kHz			Lg = 80 A : n = 81	
$I_C = 1 \text{ mA}$; $V_{CE} = 5 \text{ V}$			54 - 80 V (0 - 82 V	
Input impedance	h _{ie}	typ. 5.0	10.0 kΩ	
Reverse voltage transfer	hre	typ. 2.5	5.5 10-4	
Small signal current gain	h_{fe}	typ. 200 60 to 350	350 150 to 600	
Output admittance	hao	tvp. 14	25 μΩ-1	

SILICON PLANAR TRANSISTOR

N-P-N double diffused transistor in a TO-39 metal envelope designed for a wide variety of applications including d.c. amplifiers, high-speed switching and high-speed amplifiers.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	75	V
Collector-emitter voltage (R _{BE} \leq 10 Ω)	VCER	max.	50	V
Collector current (peak value)	ICM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,8	W
D.C. current gain at $T_j = 25$ °C $I_C = 150$ mA; $V_{CE} = 10$ V	hFE	40 t	o 120	
Transition frequency at $f = 20 \text{ MHz}$ $I_C = 50 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	> 10 CM	60	MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-104, available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Limiting values in accordance with the Absolute Maximum System (12)	0 .0 .,			
Collector-base voltage (open emitter)	VCBO	max.	75	V
Collector-emitter voltage (R _{BE} \leq 10 Ω)	VCER	max.	50	V
Emitter-base voltage (open collector)	VEBO	max.	7	V
Collector current (peak value)*	ICM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,8	W
at T _{case} = 100 °C	Ptot	max.	1,7	W
up to T _{case} = 25 °C	P _{tot}	max.	3,0	W
Storage temperature	T _{stg}	-65 to +	200	oC
Junction temperature	Tj	max.	200	oC
Lead soldering temperature $>$ 1,5 mm from the seating plane; $t_{\mbox{sld}} <$ 10 s.	T _{sld}	max.	300	°C
THERMAL RESISTANCE				
From junction to case	Rth j-c	a = omeups	58,3	K/W

^{*} With the exception of the collector current all other data are Jedec registered.

Fig. 2 Maximum permissible total power dissipation as a function of temperature.

CHARACTERISTICS			
T _{amb} = 25 °C unless otherwise specified			
Collector cut-off current			
$I_E = 0$; $V_{CB} = 60 \text{ V}$	СВО	<	10 nA
$I_E = 0$; $V_{CB} = 60 \text{ V}$; $T_{amb} = 150 ^{\circ}\text{C}$	CBO	<	10 μA
Emitter cut-off current VOSE VOSE			40. 4
$I_{C} = 0; V_{EB} = 5 V$	^I EBO	<	10 nA
Collector-base breakdown voltage open emitter; $I_C = 100 \mu A$	V _(BR) CBO	>	75 V
Collector-emitter breakdown voltage* $I_C = 100 \text{ mA}; R_{BE} \leq 10 \Omega$	V(BR)CER	>	50 V
Emitter-base breakdown voltage			
open collector; $I_E = 100 \mu A$	V(BR)EBO	>	7 V
Saturation voltages*	VCEsat	<	1,5 V
$I_C = 150 \text{ mA}; I_B = 15 \text{ mA}$	VBEsat	<	1,3 V
D.C. current gain			
$I_C = 0.1 \text{ mA}; V_{CE} = 10 \text{ V}$	hFE 0.001	>	20
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}^*$	hFE	>	35
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}; T_{amb} = -55 ^{\circ}\text{C}$	hFE	>	20
$I_C = 150 \text{ mA}; V_{CE} = 10 \text{ V*}$	hFE	40 t	o 120
$I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}^*$	hFE	>	20
Transition frequency at f = 20 MHz		mi 87	
$I_C = 50 \text{ mA}; V_{CE} = 10 \text{ V}$	fT	>	60 MHz
Collector capacitance	0	<	25 pF
$I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C _c		25 pr
Emitter capacitance $I_C = I_c = 0$; $V_{EB} = 0,5 \text{ V}$	Ce	<	80 pF
Noise figure at f = 1 kHz	96		- V1-
$I_C = 0.3 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $R_S = 510 \Omega$; $B = 1 \text{ Hz}$	F assesses	<	12 dB
h-parameters at f = 1 kHz			
Input impedance			
$I_C = 1 \text{ mA}; V_{CB} = 5 \text{ V}$	hib		to 34 Ω
$I_C = 5 \text{ mA}; V_{CB} = 10 \text{ V}$	h _{ib}	4	to 8 Ω
Reverse voltage transfer ratio $I_C = 1 \text{ mA}$; $V_{CE} = 5 \text{ V}$	h _{rb}	<	3 10-4
$I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$	h _{rb}	<	3 10-4
Small-signal current gain			
$I_C = 1 \text{ mA}; V_{CE} = 5 \text{ V}$	h _{fe}	30 t	o 100
$I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$	h _{fe}	35 t	o 150

^{*} Measured under pulse conditions to avoid excessive dissipation: t_p = 300 μ s; $\delta \le$ 0,02.

Output admittance

 $I_C = 1 \text{ mA}; V_{CE} = 5 \text{ V}$

 $I_C = 5 \text{ mA}; V_{CE} = 10 \text{ V}$

 h_{ob} 0,05 to 0,5 μ A/V h_{ob} 0,05 to 0,5 μ A/V

Total switching time (see Figs 3 to 6)

 $t_{on} + t_{off} < 30 \text{ ns}$

Fig. 3 Turn-on plus turn-off measuring circuit. D = BAW62.

7Z82355

Fig. 4 Waveform at "A". Pulse generator: t_r ; $t_f < 1$ ns.

Fig. 5 Waveform at "B".

Fig. 6 Turn-on and turn-off time.

Fig. 7 $T_j = 25$ °C; typical values.

Fig. 8 $I_C/I_B = 10$; typical values.

Fig. 9 $V_{CB} = 60 \text{ V}$.

Fig. 10 $V_{CE} = 10 \text{ V}$; $T_j = 25 \text{ °C}$.

Fig. 11 $V_{CE} = 10 \text{ V}$; $T_j = 25 \text{ }^{\circ}\text{C}$.

Fig. 12 $V_{CE} = 10 \text{ V}$; $T_i = 25 \text{ °C}$.

Fig. 13 $V_{CE} = 10 V$; typical values.

Fig. 14 $V_{CE} = 10 V$; typical values.

SILICON PLANAR TRANSISTOR

N-P-N double diffused transistor in a TO-39 metal envelope designed for a wide variety of applications such as d.c. and wideband amplifiers.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	75	V
Collector-emitter voltage (RBE \leq 10 Ω)	VCER	max.	50	V
Collector current (peak value)	ICM	max.	1,0	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,8	W
D.C. current gain I _C = 150 mA; V _{CE} = 10 V	h _{FE}	100 1	to 300	
Transition frequency at f = 20 MHz $I_C = 50$ mA; $V_{CE} = 10$ V	to for	eidens or	70	MHz

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case

Dimensions in mm

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-104, available on request.

		SE

114111400					
Limiting values in accordance with the Absolute Maximum System (IEC 134)				
Collector-base voltage (open emitter)	VCBO	max.	75	V	
Collector-emitter voltage ($R_{BE} \le 10 \Omega$)	VCER	max.	50	V	
Emitter-base voltage (open collector)	VEBO	max.	7,0	V	
Collector current (peak value)	ICM	max.	1,0	Α	
Total power dissipation					
up to T _{amb} = 25 °C	Ptot	max.	0,8	W	
up to T _{case} = 100 °C	Ptot	max.	1,7	W	
up to T _{case} = 25 °C	Ptot	max.	3,0	W	
Storage temperature	T _{stg}	-65 to +	200	oC	
Junction temperature	Ti	max.	200	oC	
Lead soldering temperature					
$>$ 1,5 mm from the seating plane; t_{sld} $<$ 10 s	T _{sld}	max.	300	oC	
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	aquency_	219	K/W	
From junction to case	Rth i-c	_30 V A	58,3	K/W	

CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Collector cut-off current				
$I_E = 0$; $V_{CB} = 60 \text{ V}$	СВО	<		nA
$I_E = 0$; $V_{CB} = 60 \text{ V}$; $T_{amb} = 150 \text{ °C}$	СВО	<	10	μΑ
Emitter cut-off current $I_C = 0$; $V_{EB} = 5.0 \text{ V}$	IEBO	<	5	nA
Collector-base breakdown voltage open emitter; $I_C = 100 \mu A$	V _(BR) CBO	>	75	٧
Emitter-base breakdown voltage open collector; $I_E = 100 \mu A$	V _{(BR)EBO}	>	7,0	٧
Collector-emitter sustaining voltage * I_C = 100 mA; $R_{BE} \le 10 \Omega$	VCERsust	>	50	V
Saturation voltages * $I_C = 150 \text{ mA}$; $I_B = 15 \text{ mA}$	V _{CEsat} V _{BEsat}	< <	1,5 1,3	
D.C. current gain $I_C = 10 \mu A$; $V_{CE} = 10 V$	hFE	>	20	
$I_C = 0.1 \text{ mA}; V_{CE} = 10 \text{ V}$	hFE	>	35	
$I_C = 10 \text{ mA; } V_{CE} = 10 \text{ V *}$	hFE	>	75	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}; T_{amb} = -55 ^{\circ}\text{C}$	hFE	>	35	
$I_C = 150 \text{ mA; } V_{CE} = 10 \text{ V } *$	hFE	100 to	300	
$I_C = 500 \text{ mA; } V_{CE} = 10 \text{ V *}$	hFE	>	40	
Transition frequency at f = 20 MHz $I_C = 50$ mA; $V_{CE} = 10$ V	fT	>	70	MHz
Collector capacitance $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C _c	<	25	pF
Emitter capacitance $I_C = I_C = 0$; $V_{EB} = 0.5 \text{ V}$	C _e	<	80	pF
Noise figure at f = 1 kHz I_C = 300 μ A; V_{CE} = 10 V; R_S = 510 Ω ; B = 1 Hz	F	<	8,0	dB
h-parameters at f = 1 kHz				
Input impedance				
$I_C = 1.0 \text{ mA}; V_{CB} = 5.0 \text{ V}$	h _{ib}		34	
$I_C = 5.0 \text{ mA}; V_{CB} = 10 \text{ V}$	hib	4,0 to	8,0	25
Reverse voltage transfer ratio $I_C = 1.0 \text{ mA; } V_{CB} = 5.0 \text{ V}$	h _{rb}	<	5,0	10-4
$I_C = 5.0 \text{ mA}; V_{CB} = 10 \text{ V}$	h _{rb}	<	5,0	10-4
Small-signal current gain	h -	E0 +-	200	
$I_C = 1.0 \text{ mA}; V_{CE} = 5.0 \text{ V}$	hfe	50 to		
$I_C = 5.0 \text{ mA}; V_{CE} = 10 \text{ V}$	h _{fe}	70 to	300	

^{*} Measured under pulse conditions to avoid excessive dissipation: $t_p \leqslant$ 300 $\mu s;$ $\delta \leqslant$ 0,02.

Output admittance

 $I_C = 1.0 \text{ mA}; V_{CF} = 5.0 \text{ V}$

 $I_C = 5.0 \text{ mA}; V_{CF} = 10 \text{ V}$

 h_{ob} 0,05 to 0,5 $\mu A/V$

 h_{ob} 0,05 to 0,5 $\mu A/V$

SILICON TRANSISTOR

High voltage n-p-n transistor in a TO-39 metal envelope with the collector connected to the case. It is intended for use in high performance amplifier, oscillator and switching applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	120	V
Collector-emitter voltage (R _{BE} \leq 10 Ω)	VCER	max.	100	V
Collector current (d.c.)	IC	max.	500	mA
Total power dissipation up to T _{case} = 25 °C	P _{tot}	max.	3,0	W
Junction temperature	Ti	max.	200	oC
D.C. current gain				
$I_C = 0.1 \text{ mA}; V_{CE} = 10 \text{ V}$	hFE	>	20	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}; T = -55 \text{ °C}$	hFE	>	20	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	hFF	>	35	
$I_C = 150 \text{ mA}; V_{CE} = 10 \text{ V}$	hFE	40 to	120	

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-104, available on request.

RATINGS (Limiting values) 1)			
Voltages			
Collector-base voltage (open emitter)	v_{CBO}	max. 120	V
Collector-emitter voltage (open base)	v_{CEO}	max. 80	V
Collector-emitter voltage (R _{BE} \leq 10 Ω)	VCER	max. 100	V
Emitter-base voltage (open collector)	$v_{\rm EBO}$	max. 7.0	V
Current			
Collector current (d.c.)	I_C	max. 500	mA
Power dissipation			
Total power dissipation up to $T_{amb} = 25$ °C	P _{tot}	max. 0.8	W
up to $T_{case} = 100 {}^{\circ}C$	P _{tot}	max. 1.7	W
up to $T_{case} = 25$ °C	P _{tot}	max. 3.0	W
Temperatures			
Storage temperature	T _{stg}	-65 to +200	°C
Junction temperature	Tj	max. 200	°C
THERMAL RESISTANCE			
From junction to ambient in free air	R _{th i-a}	= 219	°C/W
From junction to case	R _{th j-c}		OC/W
	3		

610

Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

CHARACTERISTICS T _{amb}	= 25 °C unless othe	rwise	speci	ified
Collector cut-off current				
I _E = 0; V _{CB} = 90 V	I_{CBO}	<	10	nA
I_E = 0; V_{CB} = 90 V; T_{amb} = 150 $^{\rm o}$ C	I_{CBO}	<	15	μ A
Emitter cut-off current				
$I_C = 0$; $V_{EB} = 5 V$	I_{EBO}	<	10	nA
Collector-emitter sustaining voltage 1)				
I_{C} = 100 mA; $R_{BE} \geq$ 10 Ω	V _{CER} sust	>	100	v
$I_C = 30 \text{ mA}; I_B = 0$	${ m V}_{ m CEO}$ sust	>	80	V
Saturation voltages 1)				
I_C = 150 mA; I_B = 15 mA	V _{CE} sat V _{BE} sat		5.0 1.3	
$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$	$^{ m V}_{ m CE}$ sat $^{ m V}_{ m BE}$ sat		1.2	
Breakdown voltages				
I_E = 0; I_C = 100 μA	V(BR) CBO	>	120	V
$I_{C} = 0; I_{E} = 100 \mu\text{A}$	V(BR) EBO	>	7.0	V
D.C. current gain				
$I_C = 0.1 \text{ mA}; V_{CE} = 10 \text{ V}$	$h_{ m FE}$	>	20	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}; T = -55 ^{\circ}\text{C}$	$^{ m h}_{ m FE}$	>	20	
$I_{C} = 10 \text{ mA; } V_{CE} = 10 \text{ V}^{-1}$	${ m h_{FE}}$	>	35	
$I_{\rm C}$ = 150 mA; $V_{\rm CE}$ = 10 V ¹)	${ m h_{FE}}$	40 to	120	

 $^{^{1})}$ Measured under pulsed conditions to avoid excessive dissipation. Pulse duration t \leq 300 μs , duty cycle δ < 0.02

CHARACTERISTICS (continued)	25 °C unless o	therwise sp	ecified
h parameters at f = 1 kHz (common base)			
I _C = 1 mA; V _{CE} = 5 V			
Input impedance	h _{ib}	20 to 30	Ω
Reverse voltage transfer ratio	h _{rb}	1.25	10-4
Output conductance		0.5	
$I_C = 5 \text{ mA}$; $V_{CE} = 10 \text{ V}$	OD		
Input impedance	h _{ib}	4 to 8	Ω
Reverse voltage transfer ratio	h _{rb}	1.50	00± =I
Output conductance	h _{ob}	0.5	
Small signal current gain (common emitter)			
$I_C = 1 \text{ mA}$; $V_{CE} = 5 \text{ V}$; $f = 1 \text{ kHz}$	h _{fe}	30 to 100	
$I_C = 5 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $f = 1 \text{ kHz}$		> 45	
$I_{\rm C}$ = 50 mA; $V_{\rm CE}$ = 10 V; f = 20 MHz	h _{fe}		
Collector capacitance			
$I_{\rm E}$ = $I_{\rm e}$ = 0; $V_{\rm CB}$ = 10 V	C_c	< 15 Au 001	pF
Emitter capacitance			

 $I_{\text{C}} = I_{\text{c}} = 0$; $V_{\text{EB}} = 0.5 \text{ V}$

C_e < 85 pF

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in a TO-39 metal envelope with the collector connected to the case. They are primarily intended for high speed switching. The 2N2219 is also suitable for d.c. and v.h.f./u.h.f. amplifiers.

QUICK REFERENCE DATA

			2N2219	2N2219	Α
Collector-base voltage (open emitter)	V _{CBO}	max.	60	75	V
Collector-emitter voltage (open base)	VCEO	max.	30	40	V
Collector current (d.c.)	Ic	max.	800	800	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,8	0,8	W
Junction temperature	Ti	max.	175	175	oC
D.C. current gain at $T_j = 25$ °C $I_C = 10$ mA; $V_{CE} = 10$ V	hFE	>	75	75	
Transition frequency at f = 100 MHz I _C = 20 mA; V _{CE} = 20 V	fT	>	250	300	MHz
Storage time				BH JAB	
$I_C = 150 \text{ mA}$; $I_B = -I_{BM} = 15 \text{ mA}$	t _S	<	midros or	225	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 004-029, available on request.

RATINGS Limiting	values in accordance with the A	Absolute Maximum System	(IEC 134)
------------------	---------------------------------	-------------------------	-----------

Voltages			2N2219	2N22	19A
Collector-base voltage (open emitter)	V _{CBO}	ma	x. 60	75	V
Collector-emitter voltage (open base)	v_{CEO}	ma	x. 30	40	1) V
Emitter-base voltage (open collector)	$v_{\rm EBO}$	ma	x. 5	6	V
Current					_
Collector current (d.c.)	$I_{\mathbf{C}}$	ma	x. 80	00 m	A
Power dissipation					
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	ma	x. 0.	. 8 W	
up to $T_{case} = 25$ °C	P _{tot}	ma		3 W	
W 8.0 8.0 sam	tot				
Temperatures Storage temperature	т		65 to 120	00	
. 75 37 4 370	T _{stg}		-65 to +20		
Junction temperature	Tj	ma	x. 17	75 °C	
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}		19	90 °C	/W
From junction to case	R _{th} j-c	=	ATA	50 oc	/W
CHARACTERISTICS	T _i = 25 °C ı	ınless	otherwis	se spec	ified
Collector cut-off current	•		2N2219	2N22	19A
$I_{\rm E}$ = 0; $V_{\rm CB}$ = 50 V	I_{CBO}	<	10	-	nA
$I_E = 0$; $V_{CB} = 50 \text{ V}$; $T_{amb} = 150 ^{\circ}\text{C}$	I_{CBO}	<	10	-	μ A
I _E = 0; V _{CB} = 60 V	I_{CBO}	<	/	10	nA
I_E = 0; V_{CB} = 60 V; T_{amb} = 150 °C	I_{CBO}	<	-	10	μ A
Emitter cut-off current					
I _C = 0; V _{EB} = 3 V	$I_{\rm EBO}$	<	10	10	nA
Currents at reverse biased emitter junction				a beel n	
V _{CE} = 60 V; -V _{BE} = 3 V	I _{CEX}	< <	-	10 20	nA nA

 $[\]overline{1}$) Applicable up to I_C = 500 mA

CHARACTERISTICS (continued)	T _j = 25	°C unle	ss ot	herwise spe	cified
Breakdown voltages		2N22	19	2N2219A	h parar
$I_E = 0; I_C = 10 \mu A$	V (BR)CBO	1>V 01	60	75	
$I_B = 0; I_C = 10 \text{ mA}$	V(BR)CEO			you 40	
$I_{\rm C}$ = 0; $I_{\rm E}$ = 10 μA			5	on langing	V
Saturation voltages ¹)				usmimhs ii V :Am 01-	
7 - 1 70 - A - Y - 1 7 - A				0.3	
IC = 150 mA; IB = 15 mA		sfer S	LEBIN	0.6	V
	DESAL			us land.2	
$I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$	V _{CE} sat V _{BE} sat			1.0 V A. 2.0	
D.C. current gain				l signal cur	
I_{C} = 0.1 mA; V_{CE} = 10 V I_{C} = 1 mA; V_{CE} = 10 V	hFE hFE	pedançe	35 50	35 50	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$ $I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}; T_{amb} = -55 ^{\circ}\text{C}$	h _{FE}			35	
$I_{C} = 150 \text{ mA}; V_{CE} = 1 \text{ V}^{-1}$	hFE	> \(\text{\tinit}\\ \text{\ti}}}\\ \text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\ti}\text{\text{\texi}\text{\text{\text{\texi}\text{\text{\ti	50	35 50	
I _C = 150 mA; V _{CE} = 10 V ¹)	hFE			100 to 300	
$I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V} ^{1})$	hFE			40	
Transition frequency at f = 100 MHz				on time wi	
I _C = 20 mA; V _{CE} = 20 V	fT			300	
80 AS > 1	1				
Collector capacitance at f = 100 kHz				circuit	
$I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	Cc	<	8	8	pF
Emitter capacitance at f = 100 kHz					
$I_C = I_c = 0$; $V_{EB} = 0.5 V$	Ce	<	-	25	pF
Feedback time constant at f = 31.8 MHz					
I_C = 20 mA; V_{CE} = 20 V	rb' Cc	<	-	150	ps

¹⁾ Pulse duration \leq 300 μs ; duty cycle \leq 2%.

2N2219 2N2219A

CHARACTERISTICS (continued)

h parameters (common emitter)

I_C = 1 mA; V_{CE} = 10 V; f = 1 kHz Input impedance Reverse voltage transfer ratio Small signal current gain Output admittance

 $I_{C} = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$; f = 1 kHz

Input impedance

Reverse voltage transfer ratio Small signal current gain

Output admittance

 $I_{C} = 20 \text{ mA}$; $V_{CE} = 20 \text{ V}$; f = 100 MHz

Small signal current gain

 $I_C = 20 \text{ mA; } V_{CE} = 20 \text{ V; } f = 300 \text{ MHz}$

Real part of input impedance

Noise figure at f = 1 kHz

 $I_C = 0.1 \text{ mA}$; $V_{CE} = 10 \text{ V}$ $R_G = 1 \text{ k}\Omega$; B = 1 Hz

Switching times for 2N2219A

Turn on time when switched from -VBE = 0.5 V to IC = 150 mA; IB = 15 mA

Delay time Rise time

Test circuit:

Pulse generator:

pulse duration rise time $t_p \le 200 \text{ ns}$ $t_r \le 2 \text{ ns}$

	2N2219A	4	
h _{ie} h _{re}	2 to	8	$k\Omega$ 10^{-4}
h _{fe}	50 to	300	101,
h _{oe}	5 to	35	$\mu\Omega^{-1}$
h _{ie}	0.25 to	1.25	$k\Omega$ 10^{-4}
hfe	75 to		,
hoe	25 to	200	$\mu\Omega^{-1}$
	2N2219	2N2	219A
h _{fe}	> 2.5	3	.0
Re(h _{ie})	< 60	101	60 Ω
		101	

F < - 4 dB

 $t_{
m d}$ < 10 ns $t_{
m r}$ < 25 ns

Oscilloscope:

input resistance
input capacitance

 $R_i > 100 \text{ k}\Omega$ $C_i < 12 \text{ pF}$

rise time $t_r < 5 \text{ ns}$

Switching times for 2N2219A

Turn off time

 $I_C = 150 \text{ mA}; I_B = -I_{BM} = 15 \text{ mA}$

Storage time

Fall time

Test circuit:

60 ns

$$V_{CC} = +30 \text{ V}; V_{BB} = -3 \text{ V}; R1 = 1 \text{ k}\Omega; R2 = 200 \Omega; R3 = 20 \text{ k}\Omega; R4 = 50 \Omega; D1 = 1N916.$$

Pulse generator:

fall time $t_f < 5 \text{ ns}$

Oscilloscope:

input impedance rise time

 $R_i > 100 k\Omega$ input capacitance C; < 12 pF

$$v_{CC} = \pm 30 \text{ V}; v_{BB} = \pm 3 \text{ V}; \text{R1} = 1 \text{ kG}; \text{R2} = 200 \Omega; \text{R3} = 20 \text{ kG}; \text{R4} = 50 \Omega; \text{D1} = 1 \text{ kR16}.$$

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in a TO-18 metal envelope with the collector connected to the case. They are primarily intended for high speed switching. The 2N2222 is also suitable for d.c. and v.h.f./u.h.f. amplifiers.

QUICK REFERENCE DATA

			2N2222	2N2222	2A
Collector-base voltage (open emitter)	VCBO	max.	60	75	V
Collector-emitter voltage (open base)	VCEO	max.	30	40	V
Collector current (d.c.)	1 _C	max.	800	800	mA
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	0,5	0,5	W
Junction temperature	T _i	max.	200	200	oC
D.C. current gain at $T_j = 25$ °C $I_C = 10$ mA; $V_{CE} = 10$ V	hFE	>	75	75	
Transition frequency at f = 100 MHz I _C = 20 mA; V _{CE} = 20 V	fT	>	250	300	MHz
Storage time $I_C = 150 \text{ mA}$; $I_B = -I_{BM} = 15 \text{ mA}$	t_S	<	toernio	225	ns

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected to case

Dimensions in mm

Accessories: 56246 (distance disc).

Products approved to CECC 50 004-030, available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			2N2222	2N2222A	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	75	\
Collector-emitter voltage (open base)	VCEO	max.	30	40*	V
Emitter-base voltage (open collector)	VEBO	max.	5	6	٧
Collector current (d.c.)	IC	max.	80	00	n
Total power dissipation			ALBO ST		
up to $T_{amb} = 25$ °C	P _{tot}	max.	0	,5	V
up to T _{case} = 25 °C	Ptot	max.	1	,2	W
Storage temperature	T _{stg}	-	-65 to + 20	00	0
Junction temperature	Тј	max.	20	00	0
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=	35	50	K
From junction to case	R _{th j-c}	=	14	16	K
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified				gov skin Os	
Collector cut-off current			2N2222	2N2222A	
I _E = 0; V _{CB} = 50 V	ICBO	<	10	_	n
I _E = 0; V _{CB} = 50 V; T _{amb} = 150 °C	ICBO	<	10	AC LYONNE	μ
I _E = 0; V _{CB} = 60 V	СВО	<	_	10	n
I _E = 0; V _{CB} = 60 V; T _{amb} = 150 °C	СВО	<	_	10	μ
Emitter cut-off current	000				
I _C = 0; V _{EB} = 3 V	I _{EBO}	<	10	10	n
Currents at reverse biased emitter junction	!CEX	<	_	10	n.
$V_{CF} = 60 \text{ V}; -V_{BF} = 3 \text{ V}$	· CEX	-			

^{*} Applicable up to $I_C = 500 \text{ mA}$.

CHARACTERISTICS (continued)	Tj = 25 0	Сu	nless oth	nerwise spe	cified
Breakdown voltages		2	2N2222	2N2222A	
$I_{\rm E}$ = 0; $I_{\rm C}$ = 10 μ A	V(BR)CBO	>	60	75	V
$I_{B} = 0$; $I_{C} = 10 \text{ mA}$	V _{(BR)CEO}	>	30	40	V
$I_{\rm C}$ = 0; $I_{\rm E}$ = 10 μA	V(BR)EBO	>	5	6	V
Saturation voltages 1)				O'SAFYOR	
$I_C = 150 \text{ mA}$; $I_B = 15 \text{ mA}$	V _{CEsat} V _{BEsat}	>	0.4	0.3 0.6 1.2	V
I_C = 500 mA; I_B = 50 mA	V _{CEsat} V _{BEsat}	< <		1.0 2.0	V V
D.C. current gain				epΥ:Aπr.0ge	
I _C = 0.1 mA; V _{CE} = 10 V I _C = 1 mA; V _{CE} = 10 V I _C = 10 mA; V _{CE} = 10 V I _C = 10 mA; V _{CE} = 10 V; T _{amb} = -55 °C I _C = 150 mA; V _{CE} = 1 V ¹) I _C = 150 mA; V _{CE} = 10 V ¹) I _C = 500 mA; V _{CE} = 10 V ¹)	hFE hFE hFE hFE hFE hFE	> > >	50 75	35 50 75 35 50 100 to 300 40	
Transition frequency at f = 100 MHz					
I _C = 20 mA; V _{CE} = 20 V	f_{T}	>	250	300	MHz
Collector capacitance at f = 100 kHz					
$I_{\rm E}$ = $I_{\rm e}$ = 0; $V_{\rm CB}$ = 10 V	Cc	<	8	8	pF
Emitter capacitance at f = 100 kHz					
$I_C = I_c = 0$; $V_{EB} = 0.5 \text{ V}$	Ce	<	-	25	pF
Feedback time constant at $f = 31.8 \text{ MHz}$ $I_C = 20 \text{ mA; } V_{CE} = 20 \text{ V}$	r _b 'C _c	<	_	150	ps

 $^{^{1})}$ Pulse duration \leq 300 $\mu\mathrm{s};$ duty cycle \leq 2%.

CHARACTERISTICS (continued)

$T_i = 25$ °C unless otherwise specified

hie

hre hfe

hoe

2N2222A

50 to 300 5 to 35

2 to 8 kΩ < 8 10-4

 $\mu\Omega^{-1}$

h parameters (common emitter)	
-------------------------------	--

I _C =	1 mA; V _{CE} = 10 V; f = 1 kHz
Input i	mpedance
Rever	se voltage transfer ratio
Small	signal current
Output	admittance
T 1	0 m A : Von - 10 V: f - 1 kHa

$$I_C$$
 = 10 mA; V_{CE} = 10 V; f = 1 kHz

I_C = 10 mA; V_{CE} = 10 V; f = 1 kHz
Input impedance
Reverse voltage transfer ratio
Small signal current gain
Output admittance
I_{C} = 20 mA; V_{CE} = 20 V; f = 100 MH:
Small signal current gain
$I_{\rm C}$ = 20 mA; $V_{\rm CE}$ = 20 V; f = 300 MH:

Noise figure at f = 1 kHz

$$I_C = 0.1$$
 mA; $V_{CE} = 10$ V $R_G = 1$ k Ω ; $B = 1$ Hz

Real part of input impedance

Switching times for 2N2222A

Turn on time when switched from $-V_{
m BE}$ = 0.5 V to I $_{
m C}$ = 150 mA; I $_{
m B}$ = 15 mA

Delay time Rise time

Test circuit:

Pulse generator: pulse duration rise time

$$t_p \le 200 \text{ ns}$$

 $t_r \le 2 \text{ ns}$

hie 0.25 to 1.25 k Ω < 4 10-4 hre h_{fe} 75 to 375 25 to 200 $μΩ^{-1}$ hoe 2N2222 2N2222A > 2.5 3.0 hfe $Re(h_{ie}) < 60$ 60 Ω 10 ns t_{d} 25

Oscilloscope: input resistance input capacitance rise time

 $R_i > 100 k\Omega$ C_i < 12 pF $t_r < 5 \text{ ns}$

Switching times for 2N2222A

Turn off time

$$I_C = 150 \text{ mA}$$
; $I_B = -I_{BM} = 15 \text{ mA}$

Storage time

Fall time

Test circuit:

T_i = 25 °C unless otherwise specified

$$t_s$$
 < 220 ns t_f < 60 ns

$$V_{CC}$$
 = + 30 V; V_{BB} = -3 V; R1 = 1 k Ω ; R2 = 200 Ω ; R3 = 20 k Ω ; R4 = 50 Ω ; D1 = 1N916.

Pulse generator:

fall time

 t_f < 5 ns

Oscilloscope:

input impedance

 $R_i > 100 k\Omega$

Switching dates for 2N2222A

smit flo mul

le = 150 mA; la = -lam = 15 mA

g. 11 J.

waste to De

Fluonia sesT

V_{CC} = ± 20 V; V_{RR} = -3 V; R1 = 1 kΩ; R2 = 206 Ω; R3 = 20 kΩ; R4 = 50 Ω; Ω1 = 1 kB18.

Pulse canarator:

HOTE SENIET GETTE

an 3 > yr emit fine

Oscilloscope:

input impedance R₁ > 100 kB input expeditance C₁ < 12 pF, vise time c₂ < 5 ns

SILICON PLANAR EPITAXIAL TRANSISTOR

N-P-N transistor intended for large signal h.f. and v.h.f. amplifier applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	80	V
Collector-emitter voltage (open base)	V _{CEO}	max.	35	V
Collector current (d.c.)	Ic	max.	1,0	Α
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	0,8	W
Junction temperature	Tj	max.	200	oC
D.C. current gain $I_C = 150 \text{ mA}$; $V_{CE} = 10 \text{ V}$	hFE	40	to 120	
Transition frequency at f = 20 MHz I _C = 50 mA; V _{CE} = 10 V	f _T	>	60	MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39; collector connected to case.

Maximum lead diameter is guaranteed only for 12,7 mm. Accessories: 56245 (distance disc).

RA		

Limiting values in accordance with the Absolute Maximum Syst	em (IEC 134)			
Collector-base voltage (open emitter) Collector-emitter voltage (open base) Emitter-base voltage (open collector) Collector current (d.c.)	VCBO VCEO VEBO	max. max. max.		
Total power dissipation up to T _{case} = 25 °C up to T _{case} = 100 °C	P _{tot}	max.	5,0	W
up to T _{amb} = 25 °C Storage temperature Junction temperature	P _{tot} T _{stg}	max65 to	0,8	oC M
THERMAL RESISTANCE From junction to case From junction to ambient in free air	R _{th j-c}	=	swoo st not	K/W

30

15

800 ps

60 MHz

40 to 120

CHARACTERISTICS

$T_{amb} = 25$ °C unless otherwise specified			
Collector cut-off current			
$I_E = 0$; $V_{CB} = 60 \text{ V}$	CBO	<	10 nA
$I_E = 0$; $V_{CB} = 60 \text{ V}$; $T_{amb} = 150 ^{\circ}\text{C}$	СВО	<	10 μΑ
Emitter cut-off current			
$I_C = 0$; $V_{EB} = 5.0 \text{ V}$	1EBO	<	10 nA
Collector-emitter sustaining voltage*			
$I_C = 30 \text{ mA}; I_B = 0$	V _{CEOsust}	>	35 V
Saturation voltages*			
$I_C = 150 \text{ mA}; I_B = 15 \text{ mA}$	V _{CEsat}	<	0,2 V
Ic = 1 A; I _R = 100 mA**	V _{CEsat}	<	1,0 V
IC - 1 A; IB - 100 MA	V _{BEsat}	<	1,6 V
D.C. current gain*			

$I_C = 1.0 A; V_{CE} = 10 V$
Feedback time constant
$I_C = 10 \text{ mA}$; $V_{CB} = 10 \text{ V}$; $f = 4.0 \text{ MHz}$
Collector capacitance at f = 500 kHz
$I_E = I_e = 0; V_{CB} = 10 V$
Emitter capacitance at f = 500 kHz
$I_C = I_c = 0$; $V_{EB} = 0.5 \text{ V}$
Transition frequency at f = 20 MHz
$I_C = 50 \text{ mA}$; $V_{CF} = 10 \text{ V}$

IC = 10 mA; VCE = 10 V

I_C = 150 mA; V_{CE} = 10 V

hFE

hFE

hFE

fT

rbb, Cb'c

 C_{C} < 12 pF C_{e} < 80 pF

^{*} Measured under pulse conditions to avoid excessive dissipation: t_{p} = 300 $\mu s;$ $\delta \leqslant$ 0,01.

^{**} Measured with a lead length of 1 cm.

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in a TO-18 metal envelope with the collector connected to the case. The 2N2368 and 2N2369 are primarily intended for use in very high-speed saturated switching and v.h.f. amplification.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		V _{CBO}	max.	40	٧
Collector-emitter voltage (open base)		VCEO	max.	15	V
Collector current (peak value)		ICM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	360	mW
Junction temperature		Ti	max.	200	oC
D.C. current gain at $T_j = 25$ °C $I_C = 10$ mA; $V_{CE} = 1$ V	2N2368 2N2369	hFE	20 to 40 to		
Transition frequency $I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	2N2368 2N2369	f _T	> >		MHz MHz
Storage time $I_C = I_B = -I_{BM} = 10 \text{ mA}$	2N2368 2N2369	t _s t _s	< <	10 13	

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected to case

Accessories: 56246 (distance disc).

Dimensions in mm

RATINGS	(Limiting values)	1)
---------	-------------------	----

RATINGS (Limiting values) 1)					
Voltages						
Collector-base voltage (open	emitter)	$v_{\rm CBO}$	max.	40	V	
Collector-emitter voltage (ope	en base)	VCEO	max.	15	V	
Collector-emitter voltage with	$h V_{BE} = 0$	VCES	max.	40	V	
Emitter-base voltage (open co	ollector)	VEBO	max.	4.5	V	
Current						
Collector current (peak value	Collector current (peak value; t = 10 μ s)		max.	500	mA	
Power dissipation						
Total power dissipation up to T_{amb} = 25 ^{o}C		P _{tot}	max.	360	mW	
Temperatures						
Storage temperature		T_{stg}	-65 to	+200	°C	
Junction temperature		T_j	max.	200	oC	
THERMAL RESISTANCE						
From junction to ambient in f	ree air	R _{th j-a}	=	0.48	°C/mW	
From junction to case		R _{th j-c}	=	0.145	oC/mW	

¹⁾ Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

CHARACTERISTICS

011111111111111111111111111111111111111				
T _i = 25 °C unless otherwise specified				
Collector cut-off current				
I _E = 0; V _{CB} = 20 V	CBO		,	μΑ
$I_E = 0$; $V_{CB} = 20 \text{ V}$; $T_j = 150 ^{\circ}\text{C}$	ICBO		< 30	μΑ
Sustaining voltage*				
$I_C = 10 \text{ mA}; I_B = 0$	VCEOsust		> 15	V*
Saturation voltages				
$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$	V _{CEsat}		< 0,25	
C 12 mm y 1B	V _{BEsat}		0,7 to 0,85	V
Collector capacitance at f = 140 kHz	100			_
$I_E = I_e = 0; V_{CB} = 5 \text{ V}$	C _c		< 4	рF
D.C. current gain*		2N2368	2N2369	(9)
$I_C = 10 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	20 to 60	40 to 120	
$I_C = 10 \text{ mA}; V_{CE} = 1 \text{ V}; T_j = -55 \text{ °C}$	hFE	> 10	20	
$I_C = 100 \text{ mA}; V_{CE} = 2 \text{ V}$	pEE	> 10	20	
Transition frequency				
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	1T	> 400	500	MHz

^{*} Measured under pulsed conditions to avoid excessive dissipation. Pulse duration $t = 300 \ \mu s$; duty cycle $\delta = 0.01$.

CHARACTERISTICS (continued)

$$T_j = 25$$
 °C
Storage time
 $I_C = I_B = -I_{BM} = 10$ mA

Test circuit*

Turn on time

$$I_C = 10 \text{ mA}; I_B = 3 \text{ mA}; -V_{BE} = 1.5 \text{ V}$$

 t_{on} < 12 ns

Turn off time

$$I_C = 10 \text{ mA}$$
; $I_B = 3 \text{ mA}$; $-I_{BM} = 1.5 \text{ mA}$

Test circuit*

* Pulse generator

 $\begin{array}{llll} \text{Pulse duration} & t & \geqslant & 300 \text{ ns} \\ \text{Duty cycle} & \delta & \leqslant & 0,02 \\ \text{Rise time} & t_r & \leqslant & 1 \text{ ns} \\ \text{Source impedance} & R_S & = & 50 \ \Omega \end{array}$

Oscilloscope

Rise time $t_r \leq 1 \text{ ns}$ Input impedance $R_i = 50 \Omega$

N-P-N transistor in a TO-18 metal envelope primarily intended for high-speed saturated switching and high frequency amplifier applications.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO}	max.	40	V
Collector-emitter voltage (open base)	VCEO	max.	15	V
Collector current (peak value; $t_p = 10 \mu s$)	ICM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	360	mW
Junction temperature	Ti	max.	200	oC
D.C. current gain at $T_j = 25$ °C $I_C = 10$ mA; $V_{CE} = 0.35$ V $I_C = 10$ mA; $V_{CE} = 1.0$ V	h _{FE}	> <	40 120	
Transition frequency at f = 100 MHz $I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fΤ	>	500	MHz
Storage time $I_{Con} = I_{Bon} = -I_{Boff} = 10 \text{ mA}$	t_S	<	13	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Collector connected to case.

Accessories: 56246 (distance disc).

Limiting	values i	n	accordance	with	the	Absolute	Maximum	System	(IEC 13	4)

- The state of the	0 104/			
Collector-base voltage (open emitter)	VCBO	max.	40	V
Collector-emitter voltage (open base)				
$I_C = 0.01 \text{ mA}$ to 10 mA	VCEO	max.	15	V
Collector-emitter voltage (V _{BE} = 0)	VCES	max.	40	V
Emitter-base voltage (open collector)	VEBO	max.	4,5	V
Collector current (d.c.)	IC	max.	200	mΑ
Collector current (peak value; $t_p = 10 \mu s$)	CM	max.	500	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	360	mW
up to T _{case} = 25 °C	P _{tot}	max.	1200	mW
up to T _{case} = 100 °C	P _{tot}	max.	680	mW
Storage temperature	T _{stg}	-65 to	+ 200	oC
Junction temperature	Tj	max.	200	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	= 27	486	K/W
From junction to case	R _{th j-c}	=	146	K/W

T _{amb} = 25 °C unless otherwise specified				
Collector cut-off current V _{BE} = 0; V _{CE} = 20 V	ICES	<	0,4	μΑ
I _E = 0; V _{CB} = 20 V; T _{amb} = 150 °C	СВО	<	30	μΑ
Base current V _{BE} = 0; V _{CE} = 20 V	-I _{BEX}	<	0,4	μΑ
Collector-base breakdown voltage open emitter; $I_C = 10 \mu A$	V(BR)CBO	> '	40	٧
Collector-emitter breakdown voltage V_{BE} = 0; I_{C} = 10 μ A	V(BR)CES	>	40	٧
Emitter-base breakdown voltage open collector; I _E = 10 µA	V(BR)EBO	>	4,5	٧
Collector-emitter sustaining voltage* open base; I _C = 10 mA	VCEOsust	>	15	٧
Saturation voltages $I_C = 10 \text{ mA}$; $I_B = 1.0 \text{ mA}$	VCEsat VBEsat	< 0,70 to	0,20 0,85	
$I_C = 10$ mA; $I_B = 1.0$ mA; $T_{amb} = 125$ °C	VCEsat VBEsat	< >	0,30 0,59	
$I_C = 10 \text{ mA}$; $I_B = 1.0 \text{ mA}$; $T_{amb} = -55 \text{ °C}$	V _{BEsat}	<	1,02	V
I _C = 30 mA; I _B = 3,0 mA	VCEsat VBEsat	< <	0,25 1,15	
I _C = 100 mA; I _B = 10 mA	VCEsat VBEsat	< <	0,50 1,60	
D.C. current gain* $I_C = 10 \text{ mA; } V_{CE} = 0.35 \text{ V}$	hFE	>	40	
$I_C = 10 \text{ mA}; V_{CE} = 0.35 \text{ V}; T_{amb} = -55 \text{ °C}$	hFE	>	20	
$I_C = 10 \text{ mA}; V_{CE} = 1,0 \text{ V}$	hFE	<	120	
$I_C = 30 \text{ mA}; V_{CE} = 0.4 \text{ V}$	hFE	>	30	
$I_C = 100 \text{ mA}; V_{CE} = 1,0 \text{ V}$	hFE	>	20	
Collector capacitance at f = 140 kHz $I_E = I_e = 0$; $V_{CB} = 5.0 \text{ V}$	C _C	<	4,0	pF
Transition frequency at f = 100 MHz $I_C = 10 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	>	500	MHz

^{*} Measured under pulse conditions to avoid excessive dissipation: tp = 300 μ s; $\delta \leqslant$ 0,02.

Storage time (see Figs 2 and 3) $I_{Con} = I_{Bon} = -I_{Boff} = 10 \text{ mA}$

Fig. 2 Storage time test circuit.

V_i
-10 V
+6 V
10 %
VA
0 V
-4 V

 $t_{\rm S}$ < 13 ns

V₀

Fig. 3 Waveforms at input, point A and output.

Turn-on time (see Figs 4 and 5)

$$I_{Con} = 10 \text{ mA}; I_{Bon} = 3 \text{ mA}; -V_{BEoff} = 1,5 \text{ V}$$

Turn-off time (see Figs 4 and 5)

$$t_{on}$$
 < 12 ns

$$t_{\rm off}$$
 < 18 ns

Fig. 4 Turn-on and turn-off test circuit.

Fig. 5 Input and output waveforms.

Pulse generator:

 $\begin{array}{lll} \text{Rise time} & & t_r & \leqslant & 1 \text{ ns} \\ \text{Pulse duration} & & t_p & \geqslant & 300 \text{ ns} \\ \text{Duty factor} & & \delta & \leqslant & 0,02 \\ \text{Source impedance} & & R_S & = & 50 \ \Omega \end{array}$

Oscilloscope:

Rise time $t_r \leq 1$ ns Input impedance $R_i = 50 \Omega$

SILICON PLANAR TRANSISTORS

N-P-N transistors in TO-18 metal envelopes with the collector connected to the case.

These transistors are primarily intended for use in high performance, low-level, low-noise amplifier applications both for direct current and frequencies of up to 100 MHz.

QUICK REFERENCE DATA

			2N2483	2N2484	
Collector-base voltage (open emitter)	V _{CBO}	max	60	60	V
Collector-emitter voltage (open base)	VCEO	max	60	60	٧
Collector current (peak value)	I _{CM}	max	50	50	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max	360	360	mW
Junction temperature	Ti	max	200	200	oC
D.C. current gain at T_j = 25 °C I_C = 10 μ A; V_{CE} = 5 V	hFE	> <	40 120	100 500	
I _C = 1 mA; V _{CE} = 5 V	hFE	>	175	250	
I _C = 10 mA; V _{CE} = 5 V	hFE	<	500	800	
Transition frequency $I_C = 0.5 \text{ mA}$; $V_{CE} = 5 \text{ V}$	fT	typ	80	80	MHz
Noise figure at R _S = 10 k Ω I _C = 10 μ A; V _{CE} = 5 V; B = 15,7 kHz	F	<	4	3	dB

MECHANICAL DATA

Fig. 1 TO-18.

Collector connected to case

Dimensions in mm

Accessories: 56246 (distance disc).

RATINGS (Limiting values) 1)

KATHOO (Elimiting varides)					
Voltages					
Collector-base voltage (open emitter)	V_{CBO}	max.	60	V	
Collector-emitter voltage (open base)	v_{CEO}	max.	60	V	
Emitter-base voltage (open collector)	V_{EBO}	max.	6	V	
Currents					
Collector current (peak value)	$I_{\rm CM}$	max.	50	mA	
Power dissipation					
Total power dissipation up to T_{amb} = 25 °C	P _{tot}	max.	360	mW	
Temperatures					
Storage temperature	Tstg	-65 to	+200	°C	
Junction temperature	Тj	max.	200	°C	
THERMAL RESISTANCE					
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th} j-a	=	0.48	°C/mW	
From junction to case	R _{th} j-c	=	0.15	^o C/mW	

¹⁾ Limiting values according to the Absolute Maximum System as defined in IEC publication 134.

CHARACTERISTICS	Ti:	= 25	°C 111	nlesso	therwise sne	ecified
Collector cut-off current	-)	20	0 4		eller wise spe	cirica
I _E = 0; V _{CB} = 45 V		I_{C}	BO	< ,	10 n	A
I_E = 0; V_{CB} = 45 V; T_i = 150 $^{\rm o}$ C				<	10 μ	
Emitter cut-off current						
IC = 0; VEB = 5 V		In	DO.		10 n	
		тE	BO		10 11	Λ
Base-emitter voltage						
I_C = 0.1 mA; V_{CE} = 5 V		VE	BE	0	.5 to 0.7 V	13km 1 = 5
Collector-emitter saturation voltage						
I _C = 1 mA; I _B = 0.1 mA		V	CEsat	< 1	350 m	ıV
D.C. current gain			2N2	2483	2N2484	
$I_C = 1 \mu A$; $V_{CE} = 5 V$	h	FE.	>		30	
$I_{C} = 10 \mu\text{A}; $	h	₹E	40 t	o 120	100 to 500	
$I_C = 10 \mu A$; $V_{CE} = 5 V$; $T_j = 55 \circ C$	h	₹E	>	10	20	
$I_{C} = 100 \mu\text{A}; $	h	₹E	>	75	175	
$I_{C} = 500 \mu\text{A}; \ V_{CE} = 5 \text{V}$	h	₹E	>	100	200	
$I_{C} = 1 \text{ mA}$; $V_{CE} = 5 \text{ V}$	hj	₹E	>	175	250	
$I_{C} = 10 \text{ mA; } V_{CE} = 5 \text{ V}^{-1}$	hj	₹E	<	500	800	
Collector capacitance at f = 1 MHz						
I _E = I _P = 0; V _{CB} = 5 V	C	-	<	6	6	pF
Emission and a state of the sta	,					
Emitter capacitance at f = 1 MHz						_
$I_C = I_C = 0$; $V_{EB} = 0.5 \text{ V}$	C,	е	<	6	6	pF
Transition frequency						
$I_{C} = 50 \mu\text{A}; V_{CE} = 5 V$	fT	7	>	12	15	MHz
$I_{\rm C}$ = 500 $\mu{\rm A}$; $V_{\rm CE}$ = 5 V	f_{T}		> typ.	60 80	60 80	MHz MHz

¹⁾ Measured under pulsed conditions to prevent excessive dissipation. Pulse duration t $< 300 \,\mu s$; duty cycle $\delta < 0.01$

CHARACTERISTICS (continued) $T_i = 25$ °C unless otherwise specified

Noise figure		2N2483	2N2484
$I_C = 10 \mu\text{A}$; $V_{CE} = 5 \text{V}$; $R_S = 10 \text{k}\Omega$			Ig = 0; Vc8 = 45 V
f = 100 Hz; bandwidth 20 Hz	F	< 15	10 dB
f = 1 kHz; bandwidth 200 Hz	F	< 4	3 dB
f = 10 kHz; bandwidth 2 kHz	F	< 3	2 dB
Wide band: bandwidth 15.7 kHz	F	< 4	3 dB
h parameters at f = 1 kHz			lass-emitter voltage
$I_C = 1 \text{ mA}$; $V_{CE} = 5 \text{ V}$			Tc = 0.1 mA; Vcg = 5
Input impedance Reverse voltage transfer	h _{ie} h _{re}	1.5 to 13 < 8	3.5 to 24 kΩ 8 $10-4$
Small signal current gain Output admittance	h _{fe}	80 to 450 < 30	150 to 900 $\mu\Omega^{-1}$

P-N-P transistors in TO-39 metal envelopes designed primarily for high-speed switching and driver applications for industrial service.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		-V _{CBO}	max.	60	٧
Collector-emitter voltage (open base)	2N2904 2N2904A	-VCEO	max.	40 60	
Collector current (d.c.)		-IC	max.	600	mΑ
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	0,6	W
Junction temperature		Ti	max.	200	oC
D.C. current gain at $T_j = 25$ °C $-I_C = 150$ mA; $-V_{CE} = 10$ V		hFE	40	to 120	
Transition frequency at f = 100 MHz $-I_C$ = 50 mA; $-V_{CE}$ = 20 V; T_j = 25 °C		f _T	>	200	MHz
Storage time $-I_{Con} = 150 \text{ mA}; -I_{Bon} = I_{Boff} = 15 \text{ mA}$		t _s	<	80	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case.

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-102, available on request.

RA		

Limiting values in accordance with the Absolute Maximum System (IEC 134) Collector-base voltage (open emitter) 60 V -VCBO max. Collector-emitter voltage (open base) 40 V 2N2904 -VCEO max. $-I_{\rm C}$ < 100 mA 2N2904A -VCEO 60 V max. 5 V Emitter-base voltage (open collector) -VFBO max. Collector current (d.c.) -Ic 600 mA max. Total power dissipation up to Tamb = 25 °C Ptot max. 0,6 W up to T_{case} = 25 °C 3,0 W Ptot max. -65 to +200 °C Storage temperature Tstq 200 °C

THERMAL RESISTANCE

Junction temperature

From junction to ambient in free air	R _{th j-a}	=	292 K/W
From junction to case	R _{th j-c}	=	58 K/W

Ti

max.

		10004	011000	
	-			
-ICBO	<	20	1	10 nA
-ICBO	<	20	1	10 μΑ
-ICEX	<	50	5	50 nA
BEX	<	50		50 nA
-V(BB)CBO	>	60		30 V
(511,7050				
-V(BR)CEO	>	40	6	60 V
-V(BR)EBO	>	5		5 V
-VCEsst	<	0.4	0	,4 V
-V _{BEsat}	<	1,3		,3 V
	<	1,6	1	,6 V
-V _{BEsat}	<	2,6	2	,6 V
			9 T S 107	
hFE	>	20	4	10
hFE	>	25	4	10
Am 81 = hFE Am 081	>	35	4	10
hee	>	40	4	40
nFE.	<	120	12	20
hFE	>	20	4	10
				o-imat
$C_{\mathbb{C}}$	<		8	pF
C _e	<		30	pF
fΤ	>		200	MH
	-ICBO -ICEX IBEX -V(BR)CBO -V(BR)CEO -V(BR)EBO -VCEsat -VBEsat -VCEsat -VBEsat hfE hfE hfE hfE	-ICBO	-ICBO	-ICBO

^{*} Measured under pulse conditions to avoid excessive dissipation: $t_p \le 300~\mu s$; $\delta \le 0.02$.

```
Turn-on time (see Fig. 2) when switched to -I_{Con} = 150 mA; -I_{Bon} = 15 mA delay time t_d < 10 \text{ ns} rise time t_{r} < 40 \text{ ns} turn-on time t_{on} < 45 \text{ ns}
```


Fig. 2 Input waveform and test circuit for determining delay, rise and turn-on time.

Turn-off time (see Fig. 3) when switched from $-I_{Con}$ = 150 mA; $-I_{Bon}$ = 15 mA to cut-off with $+I_{Boff}$ = 15 mA storage time $t_{s} < 80 \text{ ns}$ fall time $t_{f} < 30 \text{ ns}$ turn-off time $t_{off} < 100 \text{ ns}$

Fig. 3 Input waveform and test circuit for determining storage, fall and turn-off time.

Pulse generator (see	Figs	2 and 3)	Oscilloscope (see Figs	2 and 3	3)		
frequency	f	= 150 Hz	rise time	tr	<	5	ns
pulse duration	tp	= 200 ns	input impedance	Z;	=	10	$M\Omega$
rise time	tr	≤ 2 ns					
output impedance	Zo	$= 50 \Omega$					

Fig. 4 Typical values; T_i = 25 °C.

Fig. 5 Typical values; $T_j = 25$ °C.

Fig. 6 $-V_{CE} = 5.0 \text{ V}$; $T_J = 25 \text{ }^{\circ}\text{C}$.

Fig. 7 $-V_{CE} = 5.0 \text{ V}$; $T_i = 25 \text{ }^{\circ}\text{C}$.

Fig. 8 $-V_{CE} = 5.0 \text{ V}$; $T_i = 25 \text{ }^{\circ}\text{C}$.

P-N-P transistors in TO-39 metal envelopes designed primarily for high-speed switching and driver applications for industrial service.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		-V _{CBO}	max.	60	V
Collector-emitter voltage (open base)	2N2905 2N2905A	-VCEO	max.	40 60	
Collector current (d.c.)		$-I_{C}$	max.	600	mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	0,6	W
Junction temperature		Ti	max.	200	oC
D.C. current gain at $T_j = 25$ °C $-I_C = 150$ mA; $-V_{CE} = 10$ V		hFE	100 to	300	
Transition frequency at f = 100 MHz $-I_C = 50$ mA; $-V_{CE} = 20$ V; $T_i = 25$ °C		fT	>	200	MHz
Storage time					
$-I_{Con} = 150 \text{ mA}; -I_{Bon} = I_{Boff} = 15 \text{ mA}$		ts	<	80	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case.

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-102, available on request.

RATI	MILTER.
11/2/11	1400

Limiting values in accordance with the Absolute Maxim	num System	(IEC 134)			
Collector-base voltage (open emitter)			max.	60	V
Collector-emitter voltage (open base) $-I_{\rm C}$ < 100 mA	2N2905 2N2905A	-VCEO	max. max.	40 60	-
Emitter-base voltage (open collector)		-V _{EBO}	max.	5	V
Collector current (d.c.)		-IC	max.	600	mA
Total power dissipation up to T _{amb} = 25 °C		Ptot	max.	0,6	W
up to T _{case} = 25 °C		P _{tot}	max.	3,0	W
Storage temperature		T _{stg}	-65 to +	200	οС
Junction temperature		Tj	max.	200	oC
THERMAL RESISTANCE					
From junction to ambient in free air		R _{th j-a}	76Q1898870 = -	292	K/W
From junction to case		R _{th i-c}	=	58	K/W

T _{amb} = 25 °C	unless otherwise specified			2N2905	2N290	5A
Collector cut-or		-lone	<	20	10	nΑ
	_B = 50 V; T _{amb} = 150 °C	-ICBO	<		21/2/2012/	μΑ
	V; –V _{CF} = 30 V	-ICBO	<			nΑ
Base current	v; -vCE - 30 v	-ICEX		50	50	n,
	V; -V _{CF} = 30 V	BEX	<	50	50	n/
Collector-base	preakdown voltage ; –I _C = 10 μA	-V(BR)CBO	>	60	60	V
Collector-emitt open base; –	er breakdown voltage* I _C = 10 mA	-V(BR)CEO	>	40	60	V
	eakdown voltage or; -I _E = 10 μA	-V(BR)EBO	>	5	5	V
Saturation volta -I _C = 150 m	ages* A; —I _B = 15 mA	−V _{CEsat} −V _{BEsat}	< <	-,	0,4	
-I _C = 500 m	A; -I _B = 50 mA	-V _{CEsat} -V _{BEsat}	<	.,-	1,6 2,6	
D.C. current ga				25	75	
0	A; -V _{CE} = 10 V	hFE		35	75	
0	$A; -V_{CE} = 10 V$	hFE	>		100	
-IC = 10 m	A; $-V_{CE} = 10 \text{ V}$	hFE	>		100	
$-I_{C} = 150 \text{ m}$	$A; -V_{CE} = 10 V*$	hFE	>		100 300	
$-1_{C} = 500 \text{ m}$	A; -V _{CE} = 10 V*	hFE	>		50	
Collector capac	itance at f = 100 kHz			_		
$I_E = I_e = 0;$	-V _{CB} = 10 V	Cc	<		8	рF
Emitter capacit	ance at f = 100 kHz -V _{EB} = 2 V	C _e	<		30	рF
	uency at f = 100 MHz A; -V _{CE} = 20 V*	f_{T}	>		200	M

^{*} Measured under pulse conditions to avoid excessive dissipation; $t_p \le 300 \ \mu s$; $\delta \le 0.02$.

Turn-on time (see Fig. 2) when switched to $-I_{Con}$ = 150 mA; $-I_{Bon}$ = 15 mA delay time $t_{d} < 10 \text{ ns}$ rise time $t_{r} < 40 \text{ ns}$ turn-on time $t_{on} < 45 \text{ ns}$

Fig. 2 Input waveform and test circuit for determining delay, rise and turn-on time.

Fig. 3 Input waveform and test circuit for determining storage, fall and turn-off time.

Pulse generator (see	Figs	2 a	nd 3)	Oscilloscope (see I	Oscilloscope (see Figs 2 and 3)							
frequency	f	=	150 Hz	rise time	tr	<	5	ns				
pulse duration	tp	=	200 ns	input impedance	Żį	=	10	$M\Omega$				
rise time	tr	\leq	2 ns									
output impedance	Zo	=	50 Ω									

P-N-P medium power transistors in TO-18 metal envelopes designed primarily for high-speed switching and driver applications for industrial service.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		-V _{CBO}	max.	60	V
Collector-emitter voltage (open base)	2N2906 2N2906A	-VCEO	max.	40 60	
Collector current (d.c.)		-I _C	max.	600	mA
Total power dissipation up to T _{amb} = 25 °C		Ptot	max.	0,4	W
Junction temperature		Tį	max.	200	oC
D.C. current gain at $T_j = 25$ °C $-I_C = 150$ mA; $-V_{CE} = 10$ V		hFE	40 1	to 120	
Transition frequency at f = 100 MHz $-I_C$ = 50 mA; $-V_{CE}$ = 20 V; T_j = 25 °C		f _T	>	200	MHz
Storage time $-I_{Con} = 150 \text{ mA}; -I_{Bon} = I_{Boff} = 15 \text{ mA}$		t _s	<	80	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Collector connected to case.

Accessories: 56246 (distance disc).

Products approved to CECC 50 002-103, available on request.

RATINGS

Limiting values in accordance with the Absolute Maximum System	m (IFC 134)	
--	-------------	--

Collector-base voltage (open emitter)		-V _{CBO}	max.	60	V
Collector-emitter voltage (open base) $-I_C < 100 \text{ mA}$	2N2906 2N2906A	-VCEO	max.	40 60	
Emitter-base voltage (open collector)		-V _{EBO}	max.	5	V
Collector current (d.c.)		-Ic	max.	600	mA
Total power dissipation up to T _{amb} = 25 °C		P _{tot}	max.	0,4	w
up to T _{case} = 25 °C		Ptot	max.	1,2	W
Storage temperature		T _{stg}	-65 to +	200	oC
Junction temperature		Tj	max.	200	oC
THERMAL RESISTANCE					
From junction to ambient in free air		R _{th j-a}	=	438	K/W
From junction to case		R _{th j-c}	=	146	K/W

T _{amb} = 25 °C unless otherwise specified			Special - A	f bendhwz d	
Collector cut-off current			2N2906	2N2906A	
$I_E = 0; -V_{CB} = 50 \text{ V}$	-I _{CBO}	<	20	10	nA
$I_E = 0$; $-V_{CB} = 50 \text{ V}$; $T_{amb} = 150 ^{\circ}\text{C}$	-I _{CBO}	<	20	10	μΑ
$+ V_{BE} = 0.5 V; -V_{CE} = 30 V$	-ICEX	<	50	50	nΑ
Base current					
$+ V_{BE} = 0.5 V; -V_{CE} = 30 V$	BEX	<	50	50	nA
Collector-base breakdown voltage					
open emitter; $-I_C = 10 \mu A$	-V(BR)CBO	>	60	60	V
Collector-emitter breakdown voltage*					
open base; -I _C = 10 mA	-V(BR)CEO	>	40	60	V
Emitter-base breakdown voltage					
open collector; $-I_E = 10 \mu A$	V(BR)EBO	>	5	5	V
Saturation voltages*	-V _{CEsat}	<	0,4	0,4	V
$-I_C = 150 \text{ mA}; -I_B = 15 \text{ mA}$	-V _{BEsat}	<	1,3	1,3	V
$-1_{C} = 500 \text{ mA}; -1_{B} = 50 \text{ mA}$	$-V_{CEsat}$	<	1,6	1,6	V
-1C - 300 HIA, -1B - 30 HIA	-V _{BEsat}	<	2,6	2,6	V
D.C. current gain					
$-I_C = 0.1 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>	20	40	
$-I_C = 1 \text{ mA; } -V_{CE} = 10 \text{ V}$	hFE	>	25	40	
$-I_C = 10 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>	35	40	
$-I_C = 150 \text{ mA}; -V_{CE} = 10 \text{ V*}$	hFE	>	40	40	
POI 3	"FE	<	120	120	
$-I_C = 500 \text{ mA}; -V_{CE} = 10 \text{ V*}$	hFE	>	20	40	
Collector capacitance at f = 100 kHz					
$I_E = I_e = 0; -V_{CB} = 10 \text{ V}$	C_{c}	<		8	рF
Emitter capacitance at f = 100 kHz	0			20	-
$I_C = I_c = 0; -V_{EB} = 2 \text{ V}$	C _e	<		30	рF
Transition frequency at $f = 100 \text{ MHz}$ $-1_C = 50 \text{ mA}; -V_{CE} = 20 \text{ V*}$	f _T	>	20	00	MHz

^{*} Measured under pulse conditions to avoid excessive dissipation: $t_{\rm D} \le 300~\mu s$; $\delta \le 0.02$.

```
Turn-on time (see Fig. 2) when switched to -I_{Con} = 150 mA; -I_{Bon} = 15 mA delay time t_{d} < 10 \text{ ns} rise time t_{r} < 40 \text{ ns} turn-on time t_{on} < 45 \text{ ns}
```


Fig. 2 Input waveform and test circuit for determining delay, rise and turn-on time.

```
Turn-off time (see Fig. 3) when switched from -I_{Con} = 150 mA; -I_{Bon} = 15 mA to cut-off with +I_{Boff} = 15 mA storage time t_s < 80 \, \text{ ns} fall time t_f < 30 \, \text{ ns} turn-off time t_{off} < 100 \, \text{ ns}
```


Fig. 3 Input waveform and test circuit for determining storage, fall and turn-off time.

Pulse generator (see Figs 2 and 3)					Oscilloscope (see Figs 2 and 3)							
frequency	f	=	150	Hz	rise time	tr	<	5	ns			
pulse duration	tp	==	200	ns	input impedance	Z;	<	10	ΩM			
rise time	tr	<	2	ns								
output impedance	Za	=	50	Ω								

P-N-P medium power transistors in TO-18 metal envelopes designed primarily for high-speed switching and driver applications for industrial service.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)		-V _{CBO}	max.	60	٧
Collector-emitter voltage (open base)	2N2907 2N2907A	-VCEO	max.	40 60	
Collector current (d.c.)		-IC	max.	600	mΑ
Total power dissipation up to T _{amb} = 25 °C		Ptot	max.	0,4	W
Junction temperature		Ti	max.	200	oC
D.C. current gain at $T_j = 25$ °C $-I_C = 150$ mA; $-V_{CE} = 10$ V		hFE	100	to 300	
Transition frequency at f = 100 MHz $-I_C = 50 \text{ mA}; -V_{CE} = 20 \text{ V}; T_j = 25 ^{\circ}\text{C}$		f _T	>	200	MHz
Storage time -I _{Con} = 150 mA; -I _{Bon} = I _{Boff} = 15 mA		t_{S}	<	80	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-18.

Collector connected to case.

Accessories: 56246 (distance disc).

Products approved to CECC 50 002-103, available on request.

2N2907 2N2907A

		IGS

Limiting values in accordance with the Absolute Maxim	um System	(IEC 134)			
Collector-base voltage (open emitter)		-V _{CBO}	max.	60	V
Collector-emitter voltage (open base)					
$-I_{C} < 100 \text{ mA}$	2N2907	-V _{CEO}	max.	40	
	2N2907A	-ACEO	max.	60	V
Emitter-base voltage (open collector)		-V _{EBO}	max.	5	V
Collector current (d.c.)		-Ic	max.	600	mA
Total power dissipation					
up to T _{amb} = 25 °C		Ptot	max.	0,4	W
up to T _{case} = 25 °C		Ptot	max.	1,2	W
Storage temperature		T _{stg}	-65 to	+200	oC
Junction temperature		Тј	max.	200	oC
THERMAL RESISTANCE					
From junction to ambient in free air		R _{th j-a}	=	438	K/W
From junction to case		R _{th} i-c	=	146	K/W

T _{amb} = 25 °C unless otherwise specified		i Čun	- or bar	lotiva ne	With Labor
Collector cut-off current		_	2N2907	2N290	
$I_E = 0; -V_{CB} = 50 \text{ V}$	-1CBO	<	20	10	nΑ
$I_E = 0$; $-V_{CB} = 50 \text{ V}$; $T_{amb} = 150 \text{ °C}$	-I _{CBO}	<	20	10	μΑ
$+V_{BE} = 0.5 \text{ V}; -V_{CE} = 30 \text{ V}$	-ICEX	<	50	50	n/
Base current					
$+V_{BE} = 0.5 \text{ V}; -V_{CE} = 30 \text{ V}$	1 _{BEX}	<	50	50	nΑ
Collector-base breakdown voltage					
open emitter; $-I_C = 10 \mu A$	−V(BR)CBO	>	60	60	V
Collector-emitter breakdown voltage *					
open base; -I _C = 10 mA	-V(BR)CEO	>	40	60	V
Emitter-base breakdown voltage		_			.,
open collector; $-I_E = 10 \mu A$	−V(BR)EBO	>	5	5	V
Saturation voltages *	$-V_{CEsat}$	<	0,4	0,4	٧
$-I_C = 150 \text{ mA}; -I_B = 15 \text{ mA}$	-V _{BEsat}	<	1,3	1,3	٧
$-I_C = 500 \text{ mA}; -I_B = 50 \text{ mA}$	-V _{CEsat}	<	1,6	1,6	
-1C - 300 IIIA, -1B - 30 IIIA	$-V_{BEsat}$	<	2,6	2,6	V
D.C. current gain				2 819	
$-I_C = 0.1 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>	35	75	
$-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>	50	100	
$-I_C = 10 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	>	75	100	
-I _C =150 mA; -V _{CF} = 10 V *	hFE	>	100	100	
-10-130 mA, -VCE - 10 V	''FE	<	300	300	
$-I_C = 500 \text{ mA}; -V_{CE} = 10 \text{ V} *$	hFE	>	30	50	
Collector capacitance at f = 100 kHz					
$I_E = I_e = 0; -V_{CB} = 10 V_{CB}$	$C_{\mathbb{C}}$	<		8	рF
Emitter capacitance at f = 100 kHz					
$I_C = I_c = 0; -V_{EB} = 2 V$	C _e	<		30	рF
Transition frequency at f = 100 MHz					
$-I_C = 50 \text{ mA}; -V_{CE} = 20 \text{ V} *$	f _T	>	2	200	MI

^{*} Measured under pulse conditions to avoid excessive dissipation: $t_p \le 300 \ \mu s$; $\delta \le 0.02$.

```
Turn-on time (see Fig. 2) when switched to -I_{Con} = 150 mA; -I_{Bon} = 15 mA delay time t_d < 10 \text{ ns} rise time t_r < 40 \text{ ns} turn-on time t_{on} < 45 \text{ ns}
```


Fig. 2 Input waveform and test circuit for determining delay, rise and turn-on time.

Turn-off time (see Fig. 3) when switched from $-I_{Con}$ = 150 mA; $-I_{Bon}$ = 15 mA to cut-off with $+I_{Boff}$ = 15 mA storage time $t_{f} < 30$ ns turn-off time $t_{Off} < 100$ ns

Fig. 3 Input waveform and test circuit for determining storage, fall and turn-off time.

Pulse generator (see	Figs	2 and 3)	Oscilloscope (see	Figs 2	and 3)	
frequency	f	= 150 Hz	rise time	t_r	\leq	5 ns
pulse duration	tp	= 200 ns	input impedance	Z_i	\leq	10 MΩ
rise time	tr	≤ 2 ns				
output impedance	Zo	$=$ 50 Ω				

N-P-N transistors in TO-39 metal envelopes intended for use as amplifiers and in switching circuits.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	VCBO	max.	(.c.b) 1mg	40	V
Collector-emitter voltage (open base)	V_{CEO}	max.		80	V
Collector current (d.c.)	1C	max.		1	Α
Total power dissipation up to T _{amb} = 25 °C up to T _{case} = 25 °C	P _{tot}	max.),8 5,0	W W
Junction temperature	Tį	max.	2	00	oC
Tate -68 to 4200 PC			2N3019	2N3020	
D.C. current gain $I_C = 150 \text{ mA}$; $V_{CE} = 10 \text{ V}$	hFE	> <	100 300	40 120	
Transition frequency at f = 20 MHz				SSS JAN	
$I_C = 50 \text{ mA}; V_{CE} = 10 \text{ V}$	fT	>	100	80	MHz

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case

Dimensions in mm

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-175, available on request.

RATINGS Limiting values in accordance Voltages				,
Collector-base voltage (open emitter)	V _{CBO}	max.	140) V
Collector-emitter voltage (open base)	VCEO	max.		
Emitter-base voltage (open collector)	$v_{ m EBO}$	max.		7 V
Current				
Collector current (d.c.)	$^{\mathrm{I}}\mathrm{_{C}}$	max.	1	. A
Power dissipation				
Total power dissipation up to $T_{amb} = 2$	5 °C P _{tot}	max.	0,8	W
up to $T_{case} = 2$	5 °C P _{tot}	max.	5,0	W
Temperatures			333	
Storage temperature	$T_{ m stg}$	-65 t	0 +200	oC.
unction temperature	T_j	max.		°С
THERMAL RESISTANCE				
from junction to ambient in free air	R _{th j-a}	V 01 0 30	218	°C/V
From junction to case	R _{th j-c}	= ATA	35	°C/W
CHARACTERISTICS	T _{amb} = 25 °C unl	ess other	wise s	T T I
ollector cut-off current	amp - c am	out office	WISC S	pecified
$I_{E} = 0; V_{CB} = 90 \text{ V}$	ICBO	<	10	nA
$I_E = 0$; $V_{CB} = 90 \text{ V}$; $T_{amb} = 150 \text{ oC}$	I _{CBO}	<	10	μА
mitter cut-off current				
$I_C = 0$; $V_{EB} = 5 V$	I _{EBO}	<	10	nA
eakdown voltages				
$I_E = 0; I_C = 100 \mu A$	V(BR)CBO	>	140	V
$I_B = 0; I_C = 30 \text{ mA}$	V(BR)CEO	>	80	v 1)
$I_{\rm C}$ = 0; $I_{\rm E}$ = 100 μ A	V(BR)EBO			V
turation voltages	(DAC)EBO		EH :see	032300-3
$I_{\rm C}$ = 150 mA; $I_{\rm B}$ = 15 mA	V _{CEsat}	<	0,2	V
$I_C = 500 \text{ mA}$; $I_B = 50 \text{ mA}$	V _{BEsat}	<		V 1)
, AD 00 IIII	VCEsat	<	0,5	V 1)

¹⁾ Measured under pulse conditions; t_p = 300 $\mu s; \, \delta \leq 0,01.$

CHARACTERISTICS (continued)	Tamb = 2	5 °C	unless othe	erwise spe	ecified
D.C. current gain 1)			2N3019	2N3020	
I _C = 0, 1 mA; V _{CE} = 10 V	h_{FE}	> <	50	30 100	
$I_C = 10 \text{ mA}; V_{CE} = 10 \text{ V}$	h_{FE}	> <	90	40 120	
$I_{\rm C} = 150 \text{ mA}; V_{\rm CE} = 10 \text{ V}$	h_{FE}	> <	100 300	40 120	
$I_{\rm C}$ = 150 mA; $V_{\rm CE}$ = 10 V; $T_{\rm case}$ = -55 °C	h_{FE}	>	40	-	
$I_{C} = 500 \text{ mA}; V_{CE} = 10 \text{ V}$	h_{FE}	> <	50	30 100	
I_C = 1000 mA; V_{CE} = 10 V	$h_{\rm FE}$	>	15	15	
Transition frequency at f = 20 MHz $I_{C} = 50 \text{ mA; } V_{CE} = 10 \text{ V}$	f_{T}	>	100	80	MHz
Collector capacitance at f = 1 MHz					
$I_E = I_e = 0; V_{CB} = 10 \text{ V}$	C_{c}	<	12	12	pF
Emitter capacitance at f = 1 MHz				(0)	
$I_C = I_C = 0; V_{EB} = 0, 5 \text{ V}$	Се	< '	60	60	pF
Feedback time constant at f = 4 MHz					
$I_C = 10 \text{ mA}; V_{CB} = 10 \text{ V}$	r _{bb} 'C _{b'c}	<	400	400	ps
Small-signal current gain at f = 1 kHz					
$I_C = 1,0 \text{ mA}; V_{CE} = 5 \text{ V}$	h_{fe}	> <	80 400	30 200	
			400	200	
Noise figure at f = 1 kHz					
$I_C = 0, 1 \text{ mA}; V_{CE} = 10 \text{ V}; R_S = 1 \text{ k}\Omega$	F	<	4	-	dB

¹⁾ Measured under pulse conditions: t_p = 300 $\mu s;\,\delta$ $\leq 0,01.$

Measured under pulse conditions ; $t_{\rm p} = 300$ µs; $k \simeq 0.01$.

SILICON PLANAR TRANSISTOR

N-P-N transistor in a TO-39 metal envelope designed for medium speed, saturated and non-saturated switching applications for industrial service.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	V _{CBO} max. 60 V	/
Collector-emitter voltage (open base)	V _{CEO} max. 40 V	/
Collector current (d.c.)	I _C max. 700 m	nΑ
Total power dissipation up to T _{case} = 25 °C	P _{tot} max. 5,0 W	٧
Junction temperature	T _j max. 200 o	C
D.C. current gain I _C = 150 mA; V _{CE} = 10 V	hFE 50 to 250	
Transition frequency at f = 20 MHz IC = 50 mA; VCE = 10 V	f _T > 100 N	ЛΗΖ

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm. Accessories: 56245 (distance disc).

RATINGS

RATINGS				
Limiting values in accordance with the Absolute Maximum System	n (IEC 134)			
Collector-base voltage (open emitter)	Vсво	max.	60	V
Collector-emitter voltage (open base)*	VCEO	max.	40	V
Emitter-base voltage (open collector)	V _{EBO}	max.	5	V
Collector current (d.c.)	Ic	max.	700	mA
Total power dissipation up to T _{case} = 25 °C	P _{tot}	max.	5,0	W
Storage temperature	T _{stg}	-65 to +	200	oC
Junction temperature	Tj	max.	200	oC
THERMAL RESISTANCE				
From junction to case	R _{th j-c}	b) toamus	35	K/W
CHARACTERISTICS				
T _{amb} = 25 °C				
Collector cut-off current V _{CE} = 30 V; -V _{BE} = 1,5 V	ICEX	<	0,25	μΑ
Emitter cut-off current IC = 0; V _{EB} = 4 V	I _{EBO}	<	0,25	μΑ
Collector-base breakdown voltage open emitter; I_C = 100 μ A	V(BR)CBO	>1 HADE	60	V
Collector-emitter breakdown voltage** open emitter; $I_C = 100 \mu A$	V(BR)CEO	>	40	V
$I_{C} = 100 \text{ mA}; R_{BE} = 10 \Omega$	V(BR)CER	>	50	V
Emitter-base breakdown voltage open collector; $I_E = 100 \mu A$	V(BR)EBO	>	5	V
Base-emitter voltage $I_C = 150 \text{ mA}$; $V_{CE} = 2,5 \text{ V}$	VBE	<	1,7	V
Saturation voltages I _C = 150 mA; I _B = 15 mA	V _{CEsat} V _{BEsat}	< <	1,4 1,7	
D.C. current gain $I_C = 150 \text{ mA}$; $V_{CE} = 2,5 \text{ V}$ $I_C = 150 \text{ mA}$; $V_{CE} = 10 \text{ V**}$	hFE hFE	> 50 to	25 250	
Collector capacitance at f = 140 kHz $I_E = I_e = 0$; $V_{CB} = 10 \text{ V}$	C _C	< (mail: bread	15	pF
Emitter capacitance at $f = 140 \text{ kHz}$ $I_C = I_C = 0$; $V_{EB} = 0.5 \text{ V}$	C _e	<	80	pF
Transition frequency at $f = 20 \text{ MHz}$ $I_C = 50 \text{ mA}$; $V_{CE} = 10 \text{ V}$	fT	>	100	MHz

^{*} For I $_{C}$ = 0 to 100 mA (pulse conditions): t $_{p}$ = 300 μ s; δ = 0,018, 0 to 700 mA for shorter pulses. ** Measured under pulse conditions to avoid excessive dissipation: t $_{p}$ = 300 μ s; δ = 0,018.

N-P-N transistors in plastic TO-92 envelopes, primarily intended for high-speed, saturated switching applications for industrial service.

P-N-P complements are 2N3905 and 2N3906.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	Vcво	max.	60	٧
Collector-emitter voltage (open base)	V _{CEO}	max.	40	V
Collector current (d.c.)	lc	max.	200	mA
Total power dissipation at T _{amb} = 25 °C	P _{tot}	max.	350	mW
Junction temperature	notion T j restin	max.	150	oC
		2N3903	2N3904	
D.C. current gain IC = 10 mA; VCE = 1 V	hFE	> 50 < 150	100 300	
Transition frequency at f = 100 MHz I _C = 10 mA; V _{CE} = 20 V	fT	> 250	300	MHz
Storage time $I_{Con} = 10 \text{ mA}$; $I_{Bon} = -I_{Boff} = 1 \text{ mA}$	t _S	< 175	200	ns

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-92.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

	Limiting values in accordance with the Absolute Maximum Sys	stem (IEC	134)			
	Collector-base voltage (open emitter)	VCBO	max.		60	V
	Collector-emitter voltage (open base)	VCEO	max.		40	V
	Emitter-base voltage (open collector)	VEBO	max.		6	V
	Collector current (d.c.)	IC	max.		200	mA
	Total power dissipation at T _{amb} = 25 °C	P _{tot}	max.		350	mW
-	Storage temperature	T _{stq}		-65	to + 150	oC
	Junction temperature	Тј	max.		150	oC
	THERMAL RESISTANCE					
	From junction to ambient in free air	R _{th j-a}	-		357	K/W
	CHARACTERISTICS					
	T _{amb} = 25 °C					
	Currents at reverse biased emitter junction $V_{CE} = 30 \text{ V}; -V_{BE} = 3 \text{ V}$	I _{CEX}	< <			nA nA
	Saturation voltages *					
	$I_C = 10 \text{ mA}; I_B = 1 \text{ mA}$	V _{CEsat} V _{BEsat}	<	65	50 to 850	mV mV
	$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$	V _{CEsat} V _{BEsat}	< <			mV mV
			2N3	3903	2N3904	
	D.C. current gain * $I_C = 0.1 \text{ mA; } V_{CE} = 1 \text{ V}$	hFE	>	20	40	поЗ
	I _C = 1 mA; V _{CE} = 1 V	hFE	>	35	70	
	$I_C = 10 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	> <	50 150	100 300	
	$I_C = 50 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	>	30	60	
	$I_C = 100 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	>	15	30	
	Collector capacitance at 100 kHz \leq f \leq 1 MHz I E = I e = 0; VCB = 5 V	C _c	<	4	4	pF
	Emitter capacitance at 100 kHz \leq f \leq 1 MHz I _C = I _C = 0; V _{EB} = 0,5 V	Ce	<	8	8	pF
	Transition frequency at f = 100 MHz I _C = 10 mA; V _{CE} = 20 V	fT	>	250	300	MHz
	Noise figure at R _S = 1 k Ω I _C = 100 μ A; V _{CE} = 5 V				-	
	f = 10 Hz to 15,7 kHz	F	<	6	5	dB

^{*} Measured under pulse conditions: t_{D} = 300 μ s; δ = 0,02.

2N3904

1 to 10 $k\Omega$

h-parameters (commo	on emitter)
$I_C = 1 \text{ mA}; V_{CE} =$	10 V; f = 1 kHz
Input impedance	
Reverse voltage transf	fer ratio
Small-signal current g	ain
Output admittance	

S

D R

Reverse voltage transfer ratio Small-signal current gain Dutput admittance	h _{re} h _{fe} h _{oe}	50 to 2	00	100 to 400	
Switching times Furn-on time (see Figs 2 and 3) when switched from					
$-V_{\text{BEoff}} = 0.5 \text{ V to } I_{\text{Con}} = 10 \text{ mA}; I_{\text{Bon}} = 1 \text{ mA}$					
Delay time	td	< :	35	35	ns
Rise time	t _d	< :	35	35	ns
V _i (v)					

Fig. 2 Input waveform; $t_r < 1 \text{ ns}$; $t_p = 300 \text{ ns}$; $\delta = 0.02.$

Turn-off time (see Figs 4 and 5) $I_{Con} = 10 \text{ mA}$; $I_{Bon} = -I_{Boff} = 1 \text{ mA}$ Storage time Fall time

Fig. 4 Input waveform; tf < 1 ns; 10 μ s < t_D < 500 μ s; δ = 0,02.

2N3903

1 to 8

hie

Fig. 3 Delay and rise time test circuit; total shunt capacitance of test jig and connectors C_S < 4 pF; scope impedance = 10 M Ω .

2	N3903	2N3904	
ts	< 175	200	ns
tf	< 50	50	ns

Fig. 5 Storage and fall time test circuit; total shunt capacitance of test jig and connectors $C_{\rm S}$ < 4 pF; scope impedance = 10 M Ω .

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in plastic TO-92 envelopes, primarily intended for high-speed, saturated switching applications for industrial service.

N-P-N complements are 2N3903 and 2N3904.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)	-V _{CBO}	max.	40	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	40	V
Collector current (d.c.)	$-I_{C}$	max.	200	mA
Total power dissipation at T _{amb} = 25 °C	P _{tot}	max.	350	mW
Junction temperature	mitter je Tetion	max.	150	oC
	· · · · · ·	2N3905	2N3906	
D.C. current gain $-I_C = 10 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE	> 50 < 150	100 300	1-
Transition frequency at f = 100 MHz $-I_C = 10 \text{ mA}$; $-V_{CE} = 20 \text{ V}$	fΤ	> 200	250	MHz
Storage time $-I_{Con} = 10 \text{ mA}$; $-I_{Bon} = I_{Boff} = 1 \text{ mA}$	t _s	< 200	225	ns

MECHANICAL DATA

Fig. 1 TO-92.

Dimensions in mm

	Limiting values in accordance with the Absolute Maximum S		134)			
	Collector-base voltage (open emitter)	-VCBO	max.)UI	9 40	
	Collector-emitter voltage (open base)	-VCEO	max.		40	V
	Emitter-base voltage (open collector)	$-V_{EBO}$	max.		5	V
	Collector current (d.c.)	-IC	max.		200	mA
	Total power dissipation at T _{amb} = 25 °C	P _{tot}	max.		350	mW
-	Storage temperature	T _{stg}		-65	to + 150	oC
	Junction temperature	Tj	max.		150	oC
	THERMAL RESISTANCE					
	From junction to ambient in free air	R _{th j-a}	2000		357	K/W
	CHARACTERISTICS					
	T _{amb} = 25 °C					
	Currents at reverse biased emitter junction	-I _{CEX}	/		50	nA
	$-V_{CE} = 30 \text{ V}; + V_{BE} = 3 \text{ V}$	+ IBEX	<			nA
	Saturation voltages *				050	
	$-I_C = 10 \text{ mA}; -I_B = 1 \text{ mA}$	−V _{CEsat} −V _{BEsat}	<	65	250 50 to 850	mV mV
	008 091 > =4	-V _{CEsat}	<			mV
	$-I_C = 50 \text{ mA}; -I_B = 5 \text{ mA}$	-V _{BEsat}	<			mV
			0110	2005	Levisone	
	D.C. current gain *		2N3	3905	2N3906	
	$-I_C = 0.1 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	>	30	60	
	$-I_C = 1 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	>	40	80	
	$-I_C = 10 \text{ mA}; V_{CF} = 1 \text{ V}$	hee	>	50	100	
	0		<	150	300	
	$-I_C = 50 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	>	30	60	
	$-I_C = 100 \text{ mA}; V_{CE} = 1 \text{ V}$	hFE	>	15	30	
	Collector capacitance at 100 kHz ≤ f ≤ 1 MHz	0	<	4,5	4,5	n.E
	$I_E = I_e = 0; -V_{CB} = 5 \text{ V}$	C _C		4,5	4,5	þr
	Emitter capacitance at 100 kHz \leq f \leq 1 MHz I _C = I _C = 0; -V _{EB} = 0,5 V	C _e	<	10	10	pF
	Transition frequency at f = 100 MHz			200	050	
	$-I_C = 10 \text{ mA}; -V_{CE} = 20 \text{ V}$	fT	>	200	250	MHz
	Noise figure at R _S = 1 k Ω $-I_C$ = 100 μ A; $-V_{CF}$ = 5 V					
	f = 10 Hz to 15,7 kHz	F	<	5	4	dB

^{*} Measured under pulse conditions: t_p = 300 μ s; δ = 0,02.

h-parameters (common emitter)
$-I_C = 1 \text{ mA}; -V_{CE} = 10 \text{ V}; f = 1 \text{ kHz}$
Input impedance
Reverse voltage transfer ratio
Small-signal current gain
Output admittance

Switching times

Turn-on time (see Figs 2 and 3) when switched from $+VBEoff = 0.5 V to -I_{Con} = 10 mA; -I_{Bon} = 1 mA$ Delay time Rise time

Fig. 2 Input waveform; $t_r < 1$ ns; $t_p = 300$ ns; $\delta = 0.02$.

Fig. 4 Input waveform; $t_f < 1$ ns; $10 \mu s < t_p < 500 \mu s$; $\delta = 0.02$.

	2N3906	2N3905	
	2 to 12 0,1 to 10 100 to 400	0,5 to 8 0,1 to 5 50 to 200	h _{ie} h _{re}
μA/V	3 to 60	1 to 40	h _{oe}
	35 35	< 35 < 35	t _d

Fig. 3 Delay and rise time test circuit; total shunt capacitance of test jig and connectors $C_S < 4~pF$; scope impedance = 10 $M\Omega$.

	21	13905	2N3906	
ts	<	200	225	ns
tf	<	60	75	ns

Fig. 5 Storage and fall time test circuit; total shunt capacitance of test jig and connectors $C_S < 4~pF$; scope impedance = 10 M Ω .

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in TO-39 metal envelopes primarily intended for large signal, low-noise, low-power audio frequency applications for industrial service.

QUICK REFERENCE DATA

			2N4030 2N4032	2N4031 2N4033	
Collector-base voltage (open emitter)	-V _{CBO}	max.	60	80	V
Collector-emitter voltage (open base)	-VCEO	max.	60	80	V
Collector current (d.c.)	-Ic	max.		1	Α
Total power dissipation up to T _{amb} = 25 °C	Ptot	max.	(0,8	W
Junction temperature	Ti	max.	2	00	oC
D.C. current gain			2N4030 2N4031	2N4032 2N4033	
$-I_C = 500 \text{ mA}; -V_{CE} = 5 \text{ V}$	hFE	>	25	70	
Transition frequency at f = 100 MHz $I_C = 50 \text{ mA}$; $-V_{CE} = 10 \text{ V}$	fT	>	100	150	MHz

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39.

Collector connected to case

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Products approved to CECC 50 002-131, available on request.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages			2N4030 2N4032	2N403 2N403		
Collector-base voltage (open emitter)	-v _{CBO}	max.	60	80	V	
Collector-emitter voltage (open base)	-V _{CEO}	max,	60	80	V	
Emitter-base voltage (open collector)	-V _{EBO}	max.	5	5	V	
Current						
Collector current (d.c.)	$-I_{\mathrm{C}}$	max.		1	Α	
Power dissipation						
Total power dissipation up to $T_{amb} = 25$	PC P _{tot}	max.	0,8	3	W	
up to T _{case} = 25 °C		max.	4,0)	W	
Temperatures						
Storage temperature	T _{stg}	-65	to +200)	00	;
Junction temperature	Tj	max.	200)	oC	;
THERMAL RESISTANCE						
From junction to ambient in free air	R _{th j-a}	= 101	218	3	oC	C/W
From junction to case	R _{th j-c}	=	44	JADIN	oC	C/W
CHARACTERISTICS	$T_{amb} = 25^{\circ}$	C unles	s otherw	vise spe	ecifi	ed
Collector cut-off current			2N4030 2N4032	2N403 2N403		
$I_E = 0$; $-V_{CB} = 50 \text{ V}$	-I _{CBO}	<	50	-	nA	L
$I_E = 0$; $-V_{CB} = 60 \text{ V}$	-I _{CBO}	<	-	50	nA	
$I_E = 0$; $-V_{CB} = 50 \text{ V}$; $T_{amb} = 150 ^{\circ}\text{C}$	-I _{CBO}	<	50	-	μΑ	
$I_E = 0$; $-V_{CB} = 60 \text{ V}$; $T_{amb} = 150 ^{\circ}\text{C}$	-I _{CBO}	<	-	50	μА	
Emitter cut-off current						
$I_C = 0$; $-V_{EB} = 5 V$	-I _{EBO}	<	10	10	μА	
Breakdown voltages						
$I_E = 0; -I_C = 10 \mu A$	-V _{(BR)CBO}	>	60	80	V	
	, ,					- 1
$I_B = 0$; $-I_C = 10 \text{ mA}$	-V(BR)CEO	>	60	80	V	1)
$I_B = 0$; $-I_C = 10 \text{ mA}$ $I_C = 0$; $-I_E = 10 \mu\text{A}$	-V _(BR) CEO -V _(BR) EBO	>	60 5	80 5	V	

 $^{^{1}\!\!}$) Measured under pulse conditions: t_{p} = 300 $\mu s\,;\,\delta$ $\leq0,01.$

CHARACTERISTICS (continue	ed)	Ta	amb = 25 °C	unl	ess other	wise spe	cifi	ied
Base-emitter voltage					2N4030 2N4032	2N4031 2N4033		
$-I_C = 500 \text{ mA}; -V_{CE} = 0$,5 V		$-v_{BE}$	<	1,1	1, 1	V	1)
$-I_{\rm C}$ = 1000 mA; $-V_{\rm CE}$ = 1	,0 V		$-v_{BE}$	<	1,2	-	V	1
Saturation voltages						on = 500		
$-I_{\rm C} = 150 \text{ mA}; -I_{\rm B} = 15$	mA		-V _{CEsat} -V _{BEsat}	< <	,	0,15 0,90		1
$-I_C = 500 \text{ mA}; -I_B = 50$	mA		-V _{CEsat}	<	0,50	0,50	V	
$-I_C = 1000 \text{ mA}; -I_B = 100$	mA		$-v_{CEsat}$	<	1,00	-	V	
D.C. current gain ¹)					2N4030 2N4031	2N4032 2N4033		
$-I_C = 100 \mu\text{A}$; $-V_{CE} =$	5 V		h_{FE}	>	30	75		
$-I_C = 100 \text{ mA}; -V_{CE} =$	5 V		h_{FE}	> <	40 120	100 300		
$-I_C = 100 \text{ mA}; -V_{CE} =$	5 V; Tamb	= -55 °C	$h_{\rm FE}$	>	15	40		
$-I_C = 500 \text{ mA}; -V_{CE} =$	5 V		h_{FE}	>	25	70		
$-I_{\rm C}$ = 1000 mA; $-V_{\rm CE}$ =	5 V	2N4030	${\tt h}_{\rm FE}$	>	. 1	5		
		2N4031	$h_{ m FE}$	>	1	0		
		2N4032	$h_{\rm FE}$	>	4	0		
		2N4033	h_{FE}	>	2	5		
Collector capacitance at f =	1 MHz							
$I_{E} = I_{e} = 0; -V_{CB} = 10$	V		C_{c}		2	0	pF	100
Emitter capacitance at f = 1	MHz							
$I_{C} = I_{c} = 0$; $-V_{EB} = 0,5$	V		Ce	<	11	0	pF	
Transition frequency at f = 1	00 MHz				2N4030 2N4031			
$-I_C = 50 \text{ mA}; -V_{CE} =$			f_{T}	> <	100 400	150 500	MI MI	

¹⁾ Measured under pulse conditions: t_p = 300 μs ; $\delta \leq 0,01$.

CHARACTERISTICS (continued)

 $T_{amb} = 25$ °C

Switching times 1)

 $-I_{Con} = 500 \text{ mA}; -I_{Bon} = 50 \text{ mA}$

Turn-on time

 t_{on} < 100 ns

$$-I_{Con} = 500 \text{ mA}$$
; $-I_{Bon} = +I_{Boff} = 50 \text{ mA}$

Storage time

< 350 ns

Fall time

t_f < 50 ns

Switching circuit:

Pulse generator:

Rise time

r < 20 ns

Fall time

 $t_f < 20 \text{ ns}$

Pulse duration

 $t_p = 10 \, \mu s$

Duty factor

 $\delta < 0.02$

0 - 0,02

Source impedance

 $Z_S = 50 \Omega$

Oscilloscope:

Rise time

 $t_r = 10 \text{ ns}$

Input impedance

 $Z_{\rm I} > 100~k\Omega$

 $^{^{}l})$ See switching circuit for exact values of $I_{\mbox{\sc Con}};\,I_{\mbox{\sc Bon}}$ and $I_{\mbox{\sc Boff}}.$

SILICON PLANAR EPITAXIAL TRANSISTORS

N-P-N transistors in plastic TO-92 envelopes, primarily intended for low-power, small-signal audio-frequency applications for consumer service.

P-N-P complements are 2N4125 and 2N4126.

QUICK REFERENCE DATA

					2N4123	2N4124	
Collector-ba	ase voltage (open emitter)		V _{CBO}	max.	40	30	V
Collector-er	mitter voltage (open base)		VCEO	max.	30	25	V
Collector cu	urrent (d.c.)		1 _C	max.	200	200	mA
Total power	r dissipation at T _{amb} = 25	oC	P _{tot}	max.	350	350	mW
Junction te	mperature		Ti	max.	150	150	oC
	current gain A; V _{CE} = 10 V; f = 1 kHz		h _{fe}	> <	50 200	120 480	
	requency at f = 100 MHz nA; V _{CE} = 20 V		fT	>	250	300	MHz
$I_{C} = 100$	e at R _S = 1 k Ω μ A; V _{CE} = 5 V to 15,7 kHz		F	<	6	5	dB

MECHANICAL DATA

Fig. 1 TO-92.

Dimensions in mm

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			2N4123	2N4124	
Collector-base voltage (open emitter)	VCBO	max.	40	30	V
Collector-emitter voltage (open base)	VCEO	max.	30	25	V
Emitter-base voltage (open collector)	VEBO	max.		5	V
Collector current (d.c.)	I _C	max.	2	00	m
Total power dissipation at T _{amb} = 25 °C	P _{tot}	max.	ATAC 3	50	m\
Total power dissipation at T _{case} = 25 °C	P _{tot}	max.	10	00	m\
Storage temperature	T _{stg}		-65 to + 1	50	00
Junction temperature	Тј	max.	e nego) es	50	00
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=	3	57	K/
From junction to case	R _{th} j-c	=	te ne 1	25	K/
CHARACTERISTICS					
T _{amb} = 25 °C					
Collector cut-off current I _E = 0; V _{CB} = 20 V	Ісво	<		50	nA
Emitter cut-off current I _C = 0; V _{EB} = 3 V	IEBO	<		50	n/
Saturation voltages *	VCEsat	<	3	00	m'
$I_C = 50 \text{ mA}; I_B = 5 \text{ mA}$	VBEsat	<	9	50	m'
			2N4123	2N4124	
D.C. current gain * IC = 2 mA; VCE = 1 V	hFE	>	50	120	
		<	150	360	
I _C = 50 mA; V _{CE} = 1 V	hFE	>	25	60	
Collector capacitance at $f = 100 \text{ kHz}$ $I_E = I_e = 0$; $V_{CB} = 5 \text{ V}$	C _C	<	4	4	pF
Emitter capacitance at $f = 100 \text{ kHz}$ $I_C = I_C = 0$; $V_{EB} = 0.5 \text{ V}$	C _e	<	8	8	pF
Transition frequency at f = 100 MHz IC = 10 mA; VCF = 20 V	fT	>	250	300	M
Noise figure at Rs = 1 k Ω					
I _C = 100 μA; V _{CE} = 5 V f = 10 Hz to 15,7 kHz	F	<	6	5	dE
Small-signal current gain			50	120	
		>	12	1711	

^{*} Measured under pulse conditions: t_p = 300 μ s; δ = 0,02.

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in plastic TO-92 envelopes, primarily intended for low-power, small-signal audio-frequency applications for consumer service.

N-P-N complements are 2N4123 and 2N4124.

QUICK REFERENCE DATA

			2N4125	2N4126	
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	25	V
Collector-emitter voltage (open base)	-VCEO	max.	30	25	V
Collector current (d.c.)	$-I_{C}$	max.	200	200	mA
Total power dissipation at Tamb = 25 °C	P _{tot}	max.	350	350	mW
Junction temperature	Ti	max.	150	150	oC
Small-signal current gain $-I_C = 2 \text{ mA}; -V_{CE} = 10 \text{ V}; f = 1 \text{ kHz}$	h _{fe}	> <	50 200	120 480	
Transition frequency at f = 100 MHz -I _C = 10 mA; -V _{CE} = 20 V	fT	>	200	250	MHz
Noise figure at R _S = 1 k Ω $-I_C$ = 100 μ A; $-V_{CE}$ = 5 V f = 10 Hz to 15,7 kHz	F	<	5	4	dB

MECHANICAL DATA

Fig. 1 TO-92.

Dimensions in mm

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			2N4125	2N4126	
Collector-base voltage (open emitter)	-V _{CBO}	max.	30	25	٧
Collector-emitter voltage (open base)	-V _{CEO}	max.	30	25	٧
Emitter-base voltage (open collector)	-V _{EBO}	max.	ons for epo	4	٧
Collector current (d.c.)	-I _C	max.	20	00	mA
Total power dissipation at T _{amb} = 25 °C	Ptot	max.	3!	50	mW
Total power dissipation at T _{case} = 25 °C	P _{tot}	max.	100	00	mW
Storage temperature	T_{stg}		-65 to + 19	50	oC
Junction temperature	Тј	max.	19 (200)	50	oC
THERMAL RESISTANCE					
From junction to ambient in free air	R _{th j-a}	=	3	57	K/W
From junction to case	R _{th j-c}	=	12	25	K/V
CHARACTERISTICS					
T _{amb} = 25 °C					
Collector cut-off current $I_E = 0$; $-V_{CB} = 20 \text{ V}$	-I _{CBO}	<	y at f = 100	50	nA
Emitter cut-off current $I_C = 0$; $-V_{EB} = 3 \text{ V}$	-I _{EBO}	<	Van Salit	50	nA
Saturation voltages * $-I_C = 50 \text{ mA}$; $-I_B = 5 \text{ mA}$	−V _{CEsat} −V _{BEsat}	< <		00 50	mV mV
	- DESGL		2N4125	2N4126	
D.C. current gain *					
$-I_C = 2 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE	>	50 150	120 360	
$-1_{C} = 50 \text{ mA}; -V_{CE} = 1 \text{ V}$	hFE	>	25	60	
Collector capacitance at f = 100 kHz I _E = I _e = 0; -V _{CB} = 5 V	C _C	<	4,5	4,5	pF
Emitter capacitance at $f = 100 \text{ kHz}$ $I_C = I_c = 0$; $-V_{EB} = 0.5 \text{ V}$	Ce	<	10	10	pF
Transition frequency at f = 100 MHz -IC = 10 mA; -VCF = 20 V	f _T	>	200	250	МН
Noise figure at R _S = 1 k Ω					
-I _C = 100 μA; -V _{CE} = 5 V f = 10 Hz to 15,7 kHz	F	<	5	4	dB
Small-signal current gain		>	50	120	
$-I_C = 2 \text{ mA}; -V_{CE} = 10 \text{ V}; f = 1 \text{ kHz}$	h _{fe}	-	200	480	

^{*} Measured under pulse conditions: t_p = 300 μ s; δ = 0,02.

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

SILICON P-N-P HIGH-VOLTAGE TRANSISTORS

P-N-P high-voltage small-signal transistors for general purposes and especially in telephony applications and encapsulated in a TO-92 envelope.

N-P-N complements are 2N 5550 and 2N5551.

QUICK REFERENCE DATA

				2N5400	2N5401	
Collector-base voltage (open emitter)		-V _{CBO}	max.	130	160	V
Collector-emitter voltage (open base)		-V _{CEO}	max.	120	150	V
Collector current		-IC	max.	600	600	mA
Total power dissipation up to $T_{amb} = 25$	oC	P _{tot}	max.	625	625	mW
Junction temperature		Tj	max.	150	150	oC
Collector-emitter saturation voltage $I_C = 50 \text{ mA}$; $I_B = 5 \text{ mA}$		V _{CEsat}	max.	0,5	0,5	٧
D.C. current gain $I_C = 10 \text{ mA}$; $V_{CE} = -5 \text{ V}$		h _{FE}	min.	40	60	

MECHANICAL DATA

Fig. 1 TO-92.

Dimensions in mm

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			2N5400	2N5401	
Collector-base voltage (open emitter)	-V _{CBO}	max.	130	160	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	120	150	V
Emitter-base voltage (open collector)	-V _{EBO}	max.	npia-lisma	5	٧
Collector current	-I _C .	max.	60	00	mA
Total power dissipation					
up to $T_{amb} = 25 {}^{\circ}C$	Ptot	max.		25	mW
up to T _{case} = 25 °C	Ptot	max.	100		mW
Junction temperature	T _j	max.		50	°C
Storage temperature	T _{stg}	STIMS	-65 to + 15	00	oC
CHARACTERISTICS					
T _{amb} = 25 °C unless otherwise specified					
Collector cut-off current			2N5400	2N5401	
$I_E = 0; -V_{CB} = 100 \text{ V}$	-ICBO	max.	100	TECTION OF	nA
$I_E = 0$; $-V_{CB} = 120 \text{ V}$ $I_E = 0$; $-V_{CB} = 100 \text{ V}$; $T_{amb} = 100 \text{ °C}$	-ICBO	max.	100	50	nΑ μΑ
I _E = 0; -V _{CB} = 100 V; T _{amb} = 100 °C	−lCBO −lCBO	max.	100	50	μΑ
Emitter cut-off current	CBO			ment gain	ub .0.0
$I_C = 0; -V_{EB} = 4,0 \text{ V}$	-I _{EBO}	max.	50	50	nA
Breakdown voltages				a range	
$I_C = 1.0 \text{ mA}; I_B = 0$	-V(BR)CEO	min.	120	150	V
$I_C = 100 \mu\text{A}; I_E = 0$	-V(BR)CBO	min.	130	160	V
$I_C = 0$; $I_E = 10 \mu\text{A}$	−V(BR)EBO	min.	5,0	5,0	V
Saturation voltages -I _C = 10 mA; -I _B = 1,0 mA	-V _{CEsat}	max.	0.2	0,2	V
-1C - 10 IIIA, -1B - 1,0 IIIA	-VCEsat -VBEsat	max.	1,0	1,0	V
$-I_C = 50 \text{ mA}; -I_B = 5.0 \text{ mA}$	-V _{CEsat}	max.	0,5	0,5	V
04.0 1	-V _{BEsat}	max.	1,0	1,0	V
D.C. current gain					
$I_C = 1.0 \text{ mA}; -V_{CE} = 5 \text{ V}$	hFE	min.	30	50	
$I_C = 10 \text{ mA}; -V_{CE} = 5 \text{ V}$	hFE	min.	40 180	60 240	
$I_C = 50 \text{ mA}; -V_{CF} = 5 \text{ V}$	hFE	max. min.	40	50	
Small-signal current gain					
I _C = 1,0 mA; -V _{CE} = 10 V; f = 1 kHz	h _{fe}	min.	30	40	
10.0	16	max.	200	200	
Output capacitance at f = 1 MHz IF = 0; -VCB = 10 V		may	6	6	pF
2 00	Co	max.	0	0	þг
Transition frequency at f = 100 MHz -I _C = 10 mA; -V _{CE} = 10 V	fT	min.	100	100	MHz
	athin 2,0 minths	max.	400	300	MHz
Noise figure at $R_S = 1 \text{ k}\Omega$					
$I_C = 250 \mu\text{A}; -V_{CE} = 5 \text{V};$	-				I.D.
f = 10 Hz to 15,7 kHz	F	max.	8	8	dB

SILICON P-N-P HIGH-VOLTAGE TRANSISTORS

Transistors in TO-39 metal envelopes with the collector connected to the case. They are intended for high-speed switching and linear amplifier applications in military, industrial and commercial equipment.

QUICK REFERENCE DATA

The state of the s			2N5415	2N5416	1 1010
Collector-base voltage (open emitter)	-V _{CBO}	max.	200	350	V
Collector-emitter voltage (open base)	-V _{CEO}	max.	200	300	V
Collector current (d.c.)	-IC	max.	1	1	Α
Total power dissipation up to Tamb = 50 °C	Ptot	max.	1	1	W
Junction temperature	Tj	max.	200	200	$\circ C$
D.C. current gain $-I_C = 50 \text{ mA}; -V_{CE} = 10 \text{ V}$	h#E	>	30 150	30 120	

MECHANICAL DATA

Fig. 1 TO-39.

Collector connected to case

Dimensions in mm

Maximum lead diameter is guaranteed only for 12,7 mm.

Accessories: 56245 (distance disc).

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		2N5415	2N5416	
$-V_{CBO}$	max.	200	350	V
$-V_{CEO}$	max.	200	300	V
-V _{EBO}	max.	4	6	٧
-Ic	max.	1	231996 NOOS	Α
$-I_B$	max.	0,5	HERER X	A
Ptot	max.	10)	W
P _{tot}	max.			W
	-VCEO -VEBO -IC -IB	-V _{CBO} maxV _{CEO} maxV _{EBO} maxI _C maxI _B maxI _{tot} max.	-V _{CBO} max. 200 -V _{CEO} max. 200 -V _{EBO} max. 4 -I _C max. 1 -I _B max. 0,5 P _{tot} max. 10	-VCBO max. 200 350 -VCEO max. 200 300 -VEBO max. 4 6 -IC max. 1 -IB max. 0,5 Ptot max. 10

Fig. 2.

Storage temperature	T_{stg}	s (parkb -s	65 to + 200	oC
Junction temperature	T_{j}	max.	200	oC
THERMAL RESISTANCE				
From junction to case	R _{th j-c}	=	17,5	K/W
From junction to ambient in free air	R _{th j-a}	=	150	K/W

CHARACTERISTICS

T _{case}	=	25	$^{\circ}C$

case = 25 = C					
Collector cut-off currents			2N5415	2N5416	
$I_E = 0; -V_{CB} = 175 V$	-I _{CBO}	<	50	_	μΑ
$I_E = 0; -V_{CB} = 280 \text{ V}$	-I _{CBO}	<	SECRETAL CONTROL	50	μΑ
$I_B = 0; -V_{CE} = 150 V$	-ICEO	<	50	no to our	μΑ
$I_B = 0; -V_{CE} = 250 \text{ V}$	-ICEO	<	h sa alian Tosan	50	μΑ
Emitter cut-off current					
$I_C = 0; -V_{EB} = 4 V$	-IEBO	<	20	-	μΑ
$I_C = 0; -V_{EB} = 6 V$	-I _{EBO}	<	_	20	μΑ
Sustaining voltage					
$I_B = 0; -I_C = 0 \text{ to } 50 \text{ mA}$	$-V_{CEOsust}$	>	200	300	٧*

Fig. 3 Test circuit for V_{CEOsust}.

Fig. 4 Oscilloscope display for VCEOsust-

Saturation voltages				
	-V _{CEsat}	<	2,5	2,0 V
$-I_C = 50 \text{ mA}; -I_B = 5 \text{ mA}$	-V _{BEsat}	<	1,5	1,5 V
D.C. current gain		>	30	30
$-I_C = 50 \text{ mA}; -V_{CE} = 10 \text{ V}$	hFE	<	150	120
Collector capacitance at f = 1 MHz				
$I_E = I_e = 0; -V_{CB} = 10 \text{ V}$	Cc	<	15	pF
Emitter capacitance at f = 1 MHz				
$I_C = I_c = 0$; $-V_{EB} = -V_{EBOmax}$	Ce	<	75	pF

^{*} Measured under pulse conditions to avoid excessive dissipation.

CHARACTERISTICS (continued)

Transition frequency at f = 5 MHz

$$-I_C = 10 \text{ mA}; -V_{CE} = 10 \text{ V}$$

h-parameters (common emitter)

$$-I_C = 5 \text{ mA}$$
; $-V_{CE} = 10 \text{ V}$
real part of input impedance at f = 1 MHz

small-signal current gain at f = 1 kHz

$$R_e(h_{ie})$$
 < 300 Ω h_{fe} > 25

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

SILICON N-P-N HIGH-VOLTAGE TRANSISTORS

N-P-N high-voltage small-signal transistors for general purposes and especially telephony applications and encapsulated in a TO-92 envelope.

P-N-P complements are 2N5400 and 2N5401.

QUICK REFERENCE DATA

			2N5550	2N5551	
Collector-base voltage (open emitter)	V_{CBO}	max.	160	180	V
Collector-emitter voltage (open base)	V_{CEO}	max.	140	160	V
Collector current	I _C	max.	600	600	mA
Total power dissipation up to T _{amb} = 25 °C	P _{tot}	max.	625	625	mW
Junction temperature	T _j	max.	150	150	oC
Collector-emitter saturation voltage I _C = 50 mA; I _B = 5 mA	V _{CEsat}	max.	0,25	0,20	V
D.C. current gain $I_C = 10 \text{ mA; } V_{CE} = 5 \text{ V}$	h _{FE}	min.	60	80	

MECHANICAL DATA

Fig. 1 TO-92.

Dimensions in mm

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			2N5550	2N5551
Collector-base voltage (open emitter)	V _{CBO}	max.	160	180
Collector-emitter voltage (open base)	V _{CEO}	max.	140	160
Emitter-base voltage (open collector)	V _{EBO}	max.	nie dame o	6
Collector current	ic	max.	60	00
Total power dissipation up to $T_{amb} = 25 {}^{\circ}\text{C}$	P _{tot}	max.	62	25
up to T _{case} = 25 °C	P _{tot}	max.	100	00
Junction temperature	Tj	max.	15	50
Storage temperature	T _{stg}	emino	-65 to + 15	50
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				THIS IS NOT THE
Collector cut-off current			2N5550	2N5551
I _E = 0; V _{CB} = 100 V	CBO	max.	100	
I _E = 0; V _{CB} = 120 V I _E = 0; V _{CB} = 100 V; T _{amb} = 100 °C	CBO	max.	100	50
I _E = 0; V _{CB} = 120 V; T _{amb} = 100 °C	I _{CBO}	max.	100	50
Emitter cut-off current	000			riss inon
I _C = 0; V _{EB} = 4,0 V	IEBO	max.	50	50
Breakdown voltages	.,		4.40	100
I _C = 1,0 mA; I _B = 0 I _C = 100 μA; I _F = 0	V(BR)CEO	min. min.	140 160	160 180
$I_{C} = 0$; $I_{E} = 10 \mu\text{A}$	V(BR)CBO V(BR)EBO	min.	6,0	6,0
Saturation voltages	(0,-00			
$I_C = 10 \text{ mA}; I_B = 1,0 \text{ mA}$	V _{CEsat}	max.	0,15	0,15
$I_C = 50 \text{ mA}$; $I_B = 5.0 \text{ mA}$	VBEsat	max.	1,0	1,0
IC - 30 IIIA, IB - 5,0 IIIA	V _{CEsat} V _{BEsat}	max.	0,25	0,20
D.C. current gain	DESGI			100
$I_C = 1.0 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	min.	60	80
$I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	min. max.	60 250	80 250
$I_C = 50 \text{ mA}; V_{CE} = 5 \text{ V}$	hFE	min.	20	30
Small-signal current gain	- 1,-1,-	min.	50	50
$I_C = 1.0 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ kHz}$	h _{fe}	max.	200	200
Output capacitance at f = 1 MHz				
$I_E = 0$; $V_{CB} = 10 \text{ V}$	Co	max.	6	6
Input capacitance at f = 1 MHz			00	-
I _C = 0; V _{EB} = 0,5 V	Ci	max.	30	30
Transition frequency at f = 100 MHz I _C = 10 mA; V _{CE} = 10 V	fT	min.	100	100
Noise figure at $R_S = 1 \text{ k}\Omega$	'1	max.	300	300
$I_C = 250 \mu\text{A}$; $V_{CF} = 5 \text{V}$; $f = 10 \text{Hz}$ to 15,7 kHz	F	max.	10	8

DISTANCE DISCS

MECHANICAL DATA

Fig. 1 56245 for TO-5 or TO-39.

Insulating material.

Dimensions in mm

TEMPERATURE

Maximum permissible temperature

Fig. 2 56246 for TO-18 or TO-72.

Insulating material.

T max. 100 °C

TEMPERATURE

Maximum permissible temperature

T max. 100 °C

DISTANCE DISCS

MECHANICAL DATA

ig. 1 56245 for TO 5 or TO 39.

meuros diseasor

Maximum permissible remperature

Ladingsian enclared to saint

TEMPERATURE

Maximum permissible temperature

100 °C

191 .xsm

INDEX OF TYPE NUMBERS

The inclusion of a type number in this publication does not necessarily imply its availability.

type no.	book	section	type no.	book	section	type no.	book	section
BA220	S1	SD	BAS29	S7/S1	Mm/SD	BAV101	S7/S1	Mm/SD
BA221	S1	SD	BAS31	S7/S1	Mm/SD	BAV102	S7/S1	Mm/SD
BA223	S1	T	BAS32	S7/S1	Mm/SD	BAV103	S7/S1	Mm/SD
BA281	S1	SD	BAS35	S7/S1	Mm/SD	BAW56	S7/S1	Mm/SD
BA314	S1	Vrg	BAS45	S1	SD	BAW62	S1	SD
BA315	S1	Vrg	BAS56	S1	SD	BAX12	S1	SD
BA316	S1	SD	BAT17	S7/S1	Mm/T	BAX14	S1	SD
BA317	S1	SD	BAT18	S7/S1	Mm/T	BAX18	S1	SD
BA318	S1	SD	BAT54	S1	SD	BAY80	S1	SD
BA423	S1	T	BAT74	S1	SD	BB112	S1	T
BA480	S1	T	BAT81	S1	T	BB119	S1	T
BA481	S1	T	BAT82	S1	T	BB130	S1	T
BA482	S1	T	BAT83	Sl	T	BB204B	S1	T
BA483	S1	T	BAT85	S1	T	BB204G	S1	T
BA484	S1	T	BAT86	S1	T	BB212	S1	T
BA682	S1	T	BAV10	S1	SD	BB405B	S1	T
BA683	S1	T	BAV18	S1	SD	BB417	S1	T
BAS11	S1	SD	BAV19	S1	SD	BB809	S1	T
BAS15	S1	SD	BAV20	S1	SD	BB909A	S1	T
BAS16	S7/S1	Mm/SD	BAV21	S1	SD	вв909в	S1	T
BAS17	S7/S1	Mm/Vrg	BAV23	S7/S1	Mm/SD	ВВУ31	S7/S1	Mm/T
BAS19	S7/S1	Mm/SD	BAV45	S1	Sp	BBY40	S7/S1	Mm/T
BAS20	S7/S1	Mm/SD	BAV70	S7/S1	Mm/SD	BC107	S3	Sm
BAS21	S7/S1	Mm/SD	BAV99	S7/S1	Mm/SD	BC108	S3	Sm
BAS28	S7/S1	Mm/SD	BAV100	S7/S1	Mm/SD	BC109	S3	Sm

Mm = Microminiature semiconductors for hybrid circuits

SD = Small-signal diodes

Sp = Special diodes

T = Tuner diodes

Vrg = Voltage regulator diodes Sm = Small-signal transistors

type no.	book	section	type no.	book	section	type no.	book	sectio
BC140	S3	Sm	BC818	S7	Mm	BCX51	S7	Mm
BC141	S3	Sm	BC846	S7	Mm	BCX52	S7	Mm
BC146	S3	Sm	BC847	S7	Mm	BCX53	S7	Mm
BC160	S3	Sm	BC848	S7	Mm	BCX54	S7	Mm
BC161	S3	Sm	BC849	S7	Mm	BCX55	S7	Mm
BC177	S3	Sm	BC850	S7	Mm	BCX56	S7	Mm
BC178	S3	Sm	BC856	S7	Mm	BCX68	S7	Mm
BC179	S3	Sm	BC857	S7	Mm	BCX69	S7	mm
BC200	S3	Sm	BC858	S7	Mm	BCX70*	S7	Mm
BC264A	S5	FET	BC859	S7	Mm	BCX71*	S7	Mm
BC264B	S5	FET	BC860	S7	Mm	BCY56	S3	Sm
BC264C	S5	FET	BC868	S7	Mm	BCY57	S3	Sm
BC264D	S5	FET	BC869	S7	Mm	BCY58	S3	Sm
BC327;A	S3	Sm	BCF29;R	S7	Mm	BCY59	S3	Sm
BC328	S3	Sm	BCF30;R	S7	Mm	BCY70	S3	Sm
BC337;A	S3	Sm	BCF32;R	S7	Mm	BCY71	S3	Sm
BC338	S3	Sm	BCF33;R	S7	Mm	BCY72	S3	Sm
BC368	S3	Sm	BCF70;R	S7	Mm	BCY78	S3	Sm
BC369	S3	Sm	BCF81;R	S7	Mm	BCY79	S3	Sm
BC375	S3	Sm	BCV61	S7	Mm	BCY87	\$3	Sm
BC376	S3	Sm	BCV62	S7	Mm	BCY88	S3	Sm
BC546	S3	Sm	BCV71;R	S7	Mm	BCY89	S3	Sm
BC547	S3	Sm	BCV72;R	S7	Mm	BD131	S4a	P
BC548	S3	Sm	BCW29;R	S7	Mm	BD132	S4a	P
BC549	S3	Sm	BCW30;R	S7	Mm	BD135	S4a	P
BC550	S3	Sm	BCW31;R	S7	Mm	BD136	S4a	P
BC556	S3	Sm	BCW31;R	S7	Mm	BD136	S4a	P
BC557	S3	Sm	BCW32;R	S7	Mm	BD137	S4a	P
BC558	S3	Sm	BCW55; R	S7	Mm	BD136	S4a	P
BC559	S3	Sm	BCW61*	S7	Mm	BD140	S4a	P
BC560	S3	Sm	BCW69:R	S 7	Mm	BD201	S4a	P
BC635	S3	Sm	BCW70;R	S7	Mm	BD202	S4a	P
BC636	S3	Sm	BCW71;R	S7	Mm	BD202	S4a	P
BC637	S3	Sm	BCW72;R	S7	Mm	BD204	S4a	P
BC638	S3	Sm	BCW81;R	S7	Mm	BD226	S4a	P
BC639	S3	Sm	BCW89;R	S7	Mm	BD227	S4a	P
BC640	S3	Sm	BCX17;R	S7	Mm	BD228	S4a	P
BC807	S7	Mm	BCX18;R	S7	Mm	BD229	S4a	P
BC808	S7	Mm	BCX19;R	S7	Mm	BD230	S4a	P
BC817	S7	Mm	BCX20;R	S7	Mm	BD230	S4a	P

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semicondcutors for hybrid circuits

P = Low-frequency power transistors

Sm = Small-signal transistors

type no.	book	section	type no.	book	section	type no.	book	section
BD233	S4a	P	BD433	S4a	P	BD843	S4a	P
BD234	S4a	P	BD434	S4a	P	BD844	S4a	P
BD235	S4a	P	BD435	S4a	P	BD845	S4a	P
BD236	S4a	P	BD436	S4a	P	BD846	S4a	P
BD237	S4a	P	BD437	S4a	P	BD847	S4a	P
BD238	S4a	P	BD438	S4a	P	BD848	S4a	P
BD239	S4a	P	BD645	S4a	P	BD849	S4a	P
BD239A	S4a	P	BD646	S4a	P	BD850	S4a	P
BD239B	S4a	P	BD647	S4a	P	BD933	S4a	P
BD239C	S4a	P	BD648	S4a	P	BD934	S4a	P
BD240	S4a	P	BD649	S4a	P	BD935	S4a	P
BD240A	S4a	P	BD650	S4a	P	BD936	S4a	P
BD240B	S4a	P	BD651	S4a	P	BD937	S4a	P
BD240C	S4a	P	BD652	S4a	P	BD938	S4a	P
BD241	S4a	P	BD675	S4a	P	BD939	S4a	P
BD241A	S4a	P	BD676	S4a	P	BD940	S4a	P
BD241B	S4a	P	BD677	S4a	P	BD941	S4a	P
BD241C	S4a	P	BD678	S4a	P	BD942	S4a	P
BD242	S4a	P	BD679	S4a	P	BD943	S4a	P
BD242A	S4a	P	BD680	S4a	P	BD944	S4a	P
BD242B	S4a	P	BD681	S4a	P	BD945	S4a	P
BD242C	S4a	P	BD682	S4a	P	BD946	S4a	P
BD243	S4a	P	BD683	S4a	P	BD947	S4a	P
BD243A	S4a	P	BD684	S4a	P	BD948	S4a	P
BD243B	S4a	P	BD813	S4a	P	BD949	S4a	P
BD243C	S4a	P	BD814	S4a	P	BD950	S4a	P
BD244	S4a	P	BD815	S4a	P	BD951	S4a	P
BD244A	S4a	P	BD816	S4a	P	BD952	S4a	P
BD244B	S4a	P	BD817	S4a	P	BD953	S4a	P
BD244C	S4a	P	BD818	S4a	P	BD954	S4a	P
BD329	S4a	P	BD825	S4a	P	BD955	S4a	P
BD330	S4a	P	BD826	S4a	P	BD956	S4a	P
BD331	S4a	P	BD827	S4a	P	BDT20	S4a	P
BD332	S4a	P	BD828	S4a	P	BDT21	S4a	P
BD333	S4a	P	BD829	S4a	P	BDT29	S4a	P
BD334	S4a	P	BD830	S4a	P	BDT29A	S4a	P
BD335	S4a	P	BD839	S4a	P	BDT29B	S4a	P
BD336	S4a	P	BD840	S4a	P	BDT29C	S4a	P
BD337	S4a	P	BD841	S4a	P	BDT30	S4a	P
BD338	S4a	P	BD842	S4a	P	BDT30A	S4a	P

type no.	book	section	type no.	book	section	type no.	book	sectio
вртзов	S4a	р	BDT65B	S4a	р	BDX43	S4a	р
BDT30C	S4a	P	BDT65C	S4a	p	BDX44	S4a	P
BDT31	S4a	P	BDT91	S4a	p	BDX45	S4a	P
BDT31A	S4a	P	BDT92	S4a	P	BDX45	S4a	P
		p	BDT93	S4a	P	BDX47	S4a	P
BDT31B	S4a	P	BD193	34a	r	BDX47	54a	P
BDT31C	S4a	P	BDT94	S4a	P	BDX62	S4a	P
BDT32	S4a	P	BDT95	S4a	P	BDX62A	S4a	P
BDT32A	S4a	P	BDT96	S4a	P	BDX62B	S4a	P
BDT32B	S4a	P	BDV64	S4a	P	BDX62C	S4a	P
BDT32C	S4a	P	BDV64A	S4a	P	BDX63	S4a	P
BDT41	S4a	p	BDV64B	S4a	p	BDX63A	S4a	P
BDT41A	S4a	P	BDV64C	S4a	P	BDX63B	S4a	P
BDT41B	S4a	р	BDV65	S4a	P	BDX63C	S4a	P
BDT41C	S4a	P	BDV65A	S4a	P	BDX64	S4a	P
BDT42	S4a	P	BDV65B	S4a	P	BDX64A	S4a	P
BDT42A	S4a	р	BDV65C	S4a	P	BDX64B	S4a	P
BDT42B	S4a	P	BDV66A	S4a	P 7008	BDX64C	S4a	P
	S4a S4a	P	BDV66B	S4a	p	BDX64C	S4a	P
BDT42C			BDV66C	S4a	P		S4a	P
BDT60	S4a	1			p	BDX65A		P
BDT60A	S4a	P	BDV66D	S4a	P	BDX65B	S4a	P
BDT60B	S4a	P ARGE	BDV67A	S4a	P	BDX65C	S4a	P
BDT60C	S4a	P	BDV67B	S4a	P	BDX66	S4a	P
BDT61	S4a	P	BDV67C	S4a	P	BDX66A	S4a	P
BDT61A	S4a	P	BDV67D	S4a	P	BDX66B	S4a	P
BDT61B	S4a	P	BDV91	S4a	P	BDX66C	S4a	P
BDT61C	S4a	р	BDV92	S4a	p	BDX67	S4a	P
BDT62	S4a	P	BDV93	S4a	p 808	BDX67A	S4a	P
BDT62A	S4a	P	BDV94	S4a	P	BDX67B	S4a	P
BDT62B	S4a	P	BDV95	S4a	P	BDX67C	S4a	P
BDT62C	S4a	P 2008	BDV96	S4a	P	BDX68	S4a	P
DDT62	S4a	р	BDW55	S4a	P	BDX68A	S4a	p
BDT63		P	BDW56	S4a	P	BDX68B	S4a	P
BDT63A	S4a	-	BDW57	S4a S4a	p Cana	BDX68C	S4a	P
BDT63B	S4a		BDW57	S4a	P	BDX66C	S4a	P
BDT63C	S4a			S4a S4a	P	BDX69A	S4a S4a	p
BDT64	S4a	P	BDW59	54a	P	DUADYA	54a	P
BDT64A	S4a	P	BDW60	S4a	P	BDX69B	S4a	P
BDT64B	S4a	P	BDX35	S4a	P	BDX69C	S4a	P
BDT64C	S4a	P	BDX36	S4a	P	BDX77	S4a	P
BDT65	S4a	P	BDX37	S4a	P	BDX78	S4a	P
BDT65A	S4a	P	BDX42	S4a	P	BDX91	S4a	P

P = Low-frequency power transistors

type no.	book	section	type no.	book	section	type no.	book	sectio
BDX92	S4a	P	BF471	S4b	HVP	BF964	S5	FET
BDX93	S4a	P	BF472	S4b	HVP	BF966	S5	FET
BDX94	S4a	P	BF483	S3	Sm	BF967	S3	Sm
BDX95	S4a	P	BF485		Sm	BF970	S3	Sm
BDX96	S4a	P	BF487	S3	Sm	BF979	S3	Sm
BDY90	S4a	P. CTO	BF494	S3	Sm	BF980	S5	FET
BDY90A	S4a	P	BF495	S3	Sm	BF981	S5	FET
BDY91	S4a	P	BF496	S3	Sm	BF982	S5	FET
BDY92	S4a	P	BF510	S7/S5	Mm/FET	BF989	S7/S5	Mm/FE
BF198	S3	Sm	BF511	S7/S5	Mm/FET	BF990	S7/S5	Mm/FE
BF199	S3	Sm	BF512	S7/S5	Mm/FET	BF991	S7/S5	Mm/FE
BF240	S3	Sm	BF513	S7/S5	Mm/FET	BF992	S7/S5	Mm/FE
BF241	S3	Sm	BF536	S7	Mm	BF994	S7/S5	Mm/FE
BF245A	S5	FET	BF550;R	S7	Mm	BF996	S7/S5	Mm/FE
BF245B	S5	FET	BF569	S7	Mm	BFG90A	S10	WBT
BF245C	S5	FET	BF579	S7	Mm	BFG91A	S10	WBT
BF247A	S5	FET	BF620	S7	Mm	BFG96	S10	WBT
BF247B	S5	FET	BF621	S7	Mm	BFP90A	S10	WBT
BF247C	S5	FET	BF622	S7	Mm	BFP91A	S10	WBT
BF256A	S5	FET	BF623	S7	Mm	BFP96	S10	WBT
BF256B	S5	FET	BF660;R	S7	Mm	BFQ10	S5	FET
BF256C	S5	FET	BF689K	S10	WBT	BFQ11	S5	FET
BF324	S3	Sm	BF767	S7	Mm	BFQ12	S5	FET
BF370	S3	Sm	BF819	S4b	HVP	BFQ13	S5	FET
BF410A	S5	FET	BF820	S7	Mm	BFQ14	S5	FET
BF410B	S5	FET	BF821	S7	Mm	BFQ15	S5	FET
BF410C	S5	FET	BF822	S7	Mm	BFQ16	S5	FET
BF410D	S5	FET	BF823	S7	Mm	BFQ17	S7	Mm
BF419	S4b	HVP	BF824	S7	Mm	BFQ18A	S7	Mm
BF420	S3	Sm	BF857	S4b	HVP	BFQ19	S7	Mm
BF421	S3	Sm	BF858	S4b	HVP	BFQ22	S10	WBT
BF422	S3	Sm	BF859	S4b	HVP	BFQ22S	S10	WBT
BF423	S3	Sm	BF869	S4b	HVP	BFQ23	S10	WBT
BF450	S3	Sm	BF870	S4b	HVP	BFQ24	S10	WBT
BF451	S3	Sm	BF871	S4b	HVP	BFQ32	S10	WBT
BF457	S4b	HVP	BF872	S4b	HVP	BFQ33	S10	WBT
BF458	S4b	HVP	BF926	S3	Sm	BFQ34	S10	WBT
BF459	S4b	HVP	BF936	S3	Sm	BFQ34T	S10	WBT
BF469	S4b	HVP	BF939	S3	Sm	BFQ42	S6	RFP
BF470	S4b	HVP	BF960	S5	FET	BFO43	S6	RFP

FET = Field-effect transistors

Mm = Microminiature semiconductors for hybrid circuits

P = Low-frequency power transistors

HVP = High-voltage power transistors RFP = R.F. power transistors and modules

Sm = Small-signal transistors

WBT= Wideband hybrid IC transistors

type no.	book	section	type no.	book	section	type no.	book	sectio
BF051	S10	WBT	BFT45	S3	Sm	BGY23	S6	RFP
BFQ52	S10	WBT	BFT46	S7/S5	Mm/FET	BGY23A	S6	RFP
BFQ53	S10	WBT	BFT92;R	S7 / 53	Mm	BGY32	S6	RFP
BFQ63	S10	WBT	BFT93;R	S7	Mm	BGY33	S6	RFP
BFQ65	S10	WBT	BFW10	S5	FET	BGY35	S6	RFP
BF066	S10	WBT	BFW11	S5	FET	BGY36	S6	RFP
BFQ68	S10	WBT	BFW12	S5	FET	BGY40A	S6	RFP
BFR29	S5	FET	BFW13	S5	FET	BGY40B	S6	RFP
BFR30	S7/S5	Mm/FET	BFW16A	S10	WBT	BGY41A	S6	RFP
BFR31	S7/S5	Mm/FET	BFW17A	S10	WBT	BGY41B	S6	RFP
BFR49	S10	WBT	BFW30	S10	WBT	BGY43	S6	RFP
BFR53;R	S7	Mm	BFW61	S5	FET	BGY45A	S6	RFP
BFR54	S3	Sm	BFW92	S10	WBT	BGY45B	S6	RFP
BFR64	S10	WBT	BFW92A	S10	WBT	BGY46A	S6	RFP
BFR65	S10	WBT	BFW93	S10	WBT	BGY46B	S6	RFP
BFR84	S5	FET	BFX29	S3	Sm	BGY47*	S6	RFP
BFR90	S10	WBT	BFX30	S3	Sm	BGY50	S10	WBM
BFR90A	S10	WBT	BFX34	S3	Sm	BGY51	S10	WBM
BFR91	S10	WBT	BFX84	S3	Sm	BGY52	S10	WBM
BFR91A	S10	WBT	BFX85	S3	Sm	BGY53	S10	WBM
BFR92:R	S7	Mm	BFX86	S3	Sm	BGY54	S10	WBM
BFR92A;R		Mm	BFX87	S3	Sm	BGY55	S10	WBM
BFR93;R	S7	Mm	BFX88	S3	Sm	BGY56	S10	WBM
BFR93A;R		Mm	BFX89	S10	WBT	BGY57	S10	WBM
BFR94	S10	WBT	BFY50	S3	Sm	BGY58	S10	WBM
BFR95	S10	WBT	BFY51	S3	Sm	BGY58A	S10	WBT
BFR96	S10	WBT	BFY52	S3	Sm	BGY59	S10	WBM
BFR96S	S10	WBT	BFY55	S3	Sm	BGY60	S10	WBM
BFR101A;			BFY90	S10	WBT	BGY61	S10	WBT
BFS17;R	S7	Mm	BG2000	S1	RT	BGY65	S10	WBT
BFS18;R	S7	Mm	BG2097	S1	RT	BGY67	S10	WBT
BFS19;R	S7	Mim	BGX11*	S2b	ThM	BGY70	S10	WBT
BFS20;R	S7	Mm	BGX12*	S2b	ThM	BGY71	S10	WBT
BFS21	S5	FET	BGX13*	S2b	ThM	BGY74	S10	WBM
BFS21A	S5	FET	BGX14*	S2b	ThM	BGY75	S10	WBM
BFS22A	S6	RFP	BGX15*	S2b	ThM	BGY93A	S6	RFP
BFS23A	S6	RFP	BGX17*	S2b	ThM	BGY93B	S6	RFP
BFT24	S10	WBT	BGX25	S2a	ThM	BGY93C	S6	RFP
BFT25;R	S7	Mm	BGY22	S6	RFP	BLU20/12	S6	RFP
BFT44	S3	Sm	BGY22A	S6	RFP	BLU30/12		RFP

^{* =} series

Sm = Small-signal transistors

ThM = Thyristor modules

WBM = Wideband hybrid IC modules

WBT = Wideband hybrid IC transistors

RT = Tripler

FET = Field-effect transistors

Mm = Microminiature semiconductors

for hybrid circuits

RFP = R.F. power transistors and modules

type no.	book	section	type no.	book	section	type no.	book	sectio
BLU45/12	S6	RFP	BLW33	S6	RFP	BLX94C	S6	RFP
BLU50	S6	RFP	BLW34	S6	RFP	BLX95	S6	RFP
BLU51	S6	RFP	BLW50F	S6	RFP	BLX96	S6	RFP
BLU52	S6	RFP	BLW60	S6	RFP	BLX97	S6	RFP
BLU53	S6	RFP	BLW60C	S6	RFP	BLX98	S6	RFP
BLU60/12	S6	RFP	BLW76	S6	RFP	BLY85	S6	RFP
BLU97	S6	RFP	BLW77	S6	RFP	BLY87A	S6	RFP
BLU98	S6	RFP	BLW78	S6	RFP	BLY87C	S6	RFP
BLU99	S6	RFP	BLW79	S6	RFP	BLY88A	S6	RFP
BLV10	S6	RFP	BLW80	S6	RFP	BLY88C	S6	RFP
BLV11	S6	RFP	BLW81	S6	RFP	BL Y89A	S6	RFP
BLV20	S6	RFP	BLW82	S6	RFP	BLY89C	S6	RFP
BLV21	S6	RFP	BLW83	S6	RFP	BLY90	S6	RFP
BLV25	S6	RFP	BLW84	S6	RFP	BLY91A	S6	RFP
BLV30	S6	RFP	BLW85	S6	RFP	BLY91C	S6	RFP
BLV30/12	S6	RFP	BLW86	S6	RFP	BLY92A	S6	RFP
BLV31	S6	RFP	BLW87	S6	RFP	BLY92C	S6	RFP
BLV32F	S6	RFP	BLW89	S6	RFP	BLY93A	S6	RFP
BLV33	S6	RFP	BLW90	S6	RFP	BLY93C	S6	RFP
BLV33F	S6	RFP	BLW91	S6	RFP	BLY94	S6	RFP
BLV36	S6	RFP	BLW95	S6	RFP	BLY97	S6	RFP
BLV37	S6	RFP	BLW96	S6	RFP	BPF10	S8	PDT
BLV45/12	S6	RFP	BLW97	S6	RFP	BPF24	S8	PDT
BLV57	S6	RFP	BLW98	S6	RFP	BPW22A	S8	PDT
BLV59	S6	RFP	BLW99	S6	RFP	BPW50	S82	PDT
BL V75/12	S6	RFP	BLX13	S6	RFP	BPX25	S8	PDT
BLV80/28		RFP	BLX13C	S6	RFP	BPX29	S8	PDT
BLV90	S6	RFP	BLX14	S6	RFP	BPX40	S8	PDT
BLV91	S6	RFP	BLX15	S6	RFP	BPX41	S8	PDT
BLV92	S6	RFP	BLX39	S6	RFP	BPX42	S8	PDT
BLV93	S6	RFP	BLX65	S6	RFP	BPX71	S8	PDT
BLV94	S6	RFP	BLX65E	S6	RFP	BPX72	S8	PDT
BLV95	S6	RFP	BLX67	S6	RFP	BPX95C	S8	PDT
BLV96	S6	RFP	BLX68	S6	RFP	BR100/03	S2b	Th
BLV97	S6	RFP	BLX69A	S6	RFP	BR101	S3	Sm
BLV98	S6	RFP	BLX91A	S6	RFP	BRY39	S3	Sm
BLV99	S6	RFP	BLX91CB	S6	RFP	BRY56	S3	Sm
BLW29	S6	RFP	BLX92A	S6	RFP	BRY61	S7	Mm
BLW31	S6	RFP	BLX93A	S6	RFP	BRY62	S7	Mm
	S6	RFP	BLX94A	S6	RFP	BSD10	S5	FET

FET = Field-effect transistors

Mm = Microminiature semiconductors Sm = Small-signal transistors for hybrid circuits

PDT = Photodiodes or transistors

RFP = R.F. power transistors and modules

Th = Thyristors

type no.	book	section	type no.	book	section	type no.	book	sectio
BSD12	S5	FET	BSS63;R	S7	Mm	BT136*	S2b	Tri
BSD20	S5/7	FET	BSS64;R	S7	Mm	BT137*	S2b	Tri
BSD22	S5/7	FET	BSS68	S3	Sm	BT138*	S2b	Tri
BSD212	S5	FET	BSS83	\$5/7	FET/Mm	BT139*	S2b	Tri
BSD213	S5	FET	BST15	S7	Mm Mm	BT149*	S2b	Th
BSD214	S5	FET	BST16	S7	Mm	BT151*	S2b	Th
BSD215	S5	FET	BST39	S7	Mm	BT152*	S2b	Th
BSR12;R	S7	Mm	BST40	S7	Mm	BT153	S2b	Th
BSR13;R	S7	Mm	BST50	S7	Mm	BT155*	S2b	Th
BSR14;R	S7	Mm	BST51	S7	Mm	BT157*	S2b	Th
BSR15;R	S7	Mm	BST52	S7	Mm	BTV24*	S2b	Th
BSR16;R	S7	Mm	BST60	S7	Mm	BTV34*	S2b	Tri
BSR17;R	S7	Mm	BST61	S7	Mm	BTV58*	S2b	Th
BSR17A; R	S7	Mm	BST62	S7	Mm	BTV59*	S2b	Th
BSR18;R	S7	Mm	BST70A	S5	FET	BTV60*	S2Ъ	Th
BSR18A;R	S7	Mm	BST72A	S5	FET	BTW23*	S2b	Th
BSR30	S7	Mm	BST74A	S5	FET	BTW38*	S2b	Th
BSR31	S7	Mm	BST76A	S5	FET	BTW40*	S2b	Th
BSR32	S7	Mm	BST78	S5	FET	BTW42*	S2b	Th
BSR33	S7	Mm	BSV15	S3	Sm	BTW43*	S2b	Tri
BSR40	S7	Mm	BSV16	S3	Sm	BTW45*	S2b	Th
BSR41	S7	Mm	BSV17	S3	Sm	BTW58*	S2b	Th
BSR42	S7	Mm	BSV52;R	S7	Mm	BTW59*	S2b	Th
BSR43	S7	Mm	BSV64	S3	Sm	BTW63*	S2b	Th
BSR50	S3	Sm	BSV78	S5	FET	BTW92*	S2b	Th
BSR51	S3	Sm	BSV79	S5	FET	BTX18*	S2b	Th
BSR52	S3	Sm	BSV80	S5	FET	BTX94*	S2b	Tri
BSR56	S7/S5	Mm/FET	BSV81	S5	FET	BTY79*	S2b	Th
BSR57	S7/S5	Mm/FET	BSW66A	S3	Sm	BTY91*	S2b	Th
BSR58	S7/S5	Mm/FET	BSW67A	S3	Sm	BU208A	S4b	SP
BSR60	S3	Sm	BSW68A	S3	Sm	BU208B	S4b	SP
BSR61	S3	Sm	BSX19	S3	Sm	BU326	S4b	SP
BSR62	S3	Sm	BSX20	S3	Sm	BU326A	S4b	SP
BSS38	S3	Sm	BSX45	S3	Sm	BU426	S4b	SP
38850	S3	Sm	BSX46	S3	Sm	BU426A	S4b	SP
3SS51	S3	Sm	BSX47	S3	Sm	BU433	S4b	SP
BSS52	S3	Sm	BSX59	S3	Sm	BU505	S4b	SP
BSS60	S3	Sm	BSX60	S3	Sm	BU508A	S4b	SP
BSS61	S3	Sm	BSX61	S3	Sm	BU705	S4b	SP
BSS62	S3	Sm	BSY95A	S3	Sm	BU806	S4b	SP

^{* =} series

FET = Field-effect transistors

Mm = Microminiature semiconductors for hybrid circuits

Sm = Small-signal transistors

SP = Low-frequency switching power transistors

Th = Thyristors

Tri = Triacs

type no.	book	section	type no.	book	section	type no.	book	section
BU807	S4b	SP	BUZ23	S9	PM	BUZ80A	S9	PM
BU824	S4b	SP	BUZ24	S9	PM	BUZ83	S9	PM
BU826	S4b	SP	BUZ25	S9	PM	BUZ83A	S9	PM
BUS11;A	S4b	SP	BUZ30	S9	PM	BUZ84	S9	PM
BUS12;A	S4b	SP	BUZ31	S9	PM	BUZ84A	S9	PM
B0312,A	540	OI .	B0231	37	FIL	B0204A	37	111
BUS13;A	S4b	SP	BUZ32	S9	PM	BY228	S1	R
BUS14;A	S4b	SP	BUZ33	S9	PM	BY229*	S2a	R
BUT11;A	S4b	SP	BUZ34	S9	PM	BY249*	S2a	R
BUV82	S4b	SP	BUZ35	S9	PM	BY260*	S2a	R
BUV83	S4b	SP	BUZ36	S9	PM	BY261*	S2a	R
BUV89	S4b	SP	BUZ40	S9	PM	BY329*	S2a	R
BUW11;A	S4b	SP	BUZ41A	S9	PM	BY359*	S2a	R
BUW12;A	S4b	SP	BUZ41A	S9	PM	BY438	S1	R
BUW12;A	S4b	SP	BUZ43	S9	PM	BY448	S1	R
BUW15;A	S4b	SP			PM PM	BY458	S1	R
DUW04	340	SF	BUZ44A	S9	PM	B1436	31	K
BUW85	S4b	SP	BUZ45	S9	PM	BY505	S1	R
BUX46;A	S4b	SP	BUZ45A	S9	PM	BY509	S1	R
BUX47;A	S4b	SP	BUZ45B	S9	PM	BY527	S1	R
BUX48; A	S4b	SP	BUZ45C	S9	PM	BY584	S1	R
BUX80	S4b	SP	BUZ46	S9	PM	BY588	S1	R
BUX81	S4b	SP	BUZ50A	S9	PM	BY609	S1	R
BUX82	S4b	SP	BUZ50B	S9	PM	BY610	S1	R
BUX83	S4b	SP	BUZ53A	S9	PM	BY614	S1	R
BUX84	S4b	SP	BUZ54	S9	PM	BY619	S1	R
BUX85	S4b	SP	BUZ54A	S9	PM	BY620	SI	R
BUX86	S4b	SP	BUZ60	S9	PM	BY7 07	S1	R
BUX87	S4b	SP	BUZ60B	S9	PM	BY708	S1	R
BUX88	S4b	SP	BUZ63	S9	PM	BY709	S1	R
BUX90	S4b	SP	BUZ63B	S9	PM	BY710	S1	R
BUX98	S4b	SP	BUZ64	S9	PM	BY711	S1	R
BUX98A	S4b	SP	BUZ71	S9	PM	BY712	S1	R
BUY89	S4b	SP	BUZ71A	S9	PM	BY713	S1	R
BUZ10	S9	PM	BUZ72	S9	PM	BY714	S1	R
BUZ10A	S9	PM	BUZ72A	S9	PM	BYD13*	S1	R
BUZ11A	S9	PM	BUZ73A	S9	PM	BYD33*	S1	R
DULLI	33	A PA	B02/3A	37	LII		OI.	K
BUZ11A	S9	PM	BUZ74	S9	PM	BYD73*	S1	R
BUZ14	59	PM	BUZ74A	S9	PM	BYM56*	S1	R
BUZ15	S9	PM	BUZ76	S9	PM	BYQ28*	S2a	R
BUZ20	S9	PM JOO	BUZ76A	S9	PM	BYR29*	S2a	R
BUZ21	S9	PM	BUZ80	S9	PM	BYT79*	S2a	R

^{* =} series

PM = Power MOS transistors

R = Rectifier diodes

SP = Low-frequency switching power transistors

type no.	book	section	type no.	book	section	type no.	book	sectio
BYV10	S1	R	BYW95C	S1	R	BZX84*	S7/S1	Mm/Vrs
BYV19*	S2a	R	BYW96D	S1	R	BZX90	S1	Vrf
BYV20*		R	BYW96E	S1	R	BZX91	S1	Vrf
BYV21*	S2a	R	BYX25*	S2a	R	BZX92	S1	Vrf
BYV22*	S2a	R	BYX30*	S2a	R	BZX93	S1	Vrf
BYV23*	S2a	R	BYX32*	S2a	R	BZX94	S1	Vrf
BYV24*	S2a	R	BYX38*	S2a	R	BZY91*	S2a	Vrg
BYV26*	S1	R	BYX39*	S2a	R	BZY93*	S2a	Vrg
BYV27*	S1/S2a		BYX42*	S2a	R	BZY95*	S2a	Vrg
BYV28*	S1/S2a		BYX46*	S2a	R	BZY96*	S2a	Vrg
BYV29*	S2a	R	BYX50*	S2a	R	CNX21	S8	PhC
BYV30*	S2a	R	BYX52*	S2a	R	CNX35	S8	PhC
BYV32*	S2a	R	BYX56*	S2a	R	CNX36	S8	PhC
BYV33*	S2a	R	BYX90G	S1	R	CNX37	S8	PhC
BYV34*	S2a S2a	R	BYX94	S1	R	CNX38	S8	PhC
D.T.T.2.C.*	0.1		BYX96*	S2a	R	CNX44	S8	PhC
BYV36*	S1	R		S2a S2a		CNX48	S8	PhC
BYV39*	S2a	R	BYX97*				S8	PhC
BYV42*	S2a	R	BYX98*	S2a	R	CNX62		
BYV43*	S2a	R	BYX99*	S2a	R	CNY50	S8	PhC
BYV72*	S2a	R	BZD23	S1	Vrg	CNY52	S8	PhC
BYV73*	S2a	R	BZT03	S1	Vrg	CNY53	S8	PhC
BYV79*	S2a	R	BZV10	S1	Vrf	CNY57	S8	PhC
BYV92*	S2a	R	BZV11	S1	Vrf	CNY57A	S8	PhC
BYV95A	S1	R	BZV12	S1	Vrf	CNY62	S8	PhC
BYV95B	Sl	R	BZV13	S1	Vrf	CNY63	S8	PhC
BYV95C	S1	R	BZV14	Sl	Vrf	CQ209S	S8	D
BYV96D	S1	R	BZV37	S1	Vrf	CQ216X	S8	D
BYV96E	S1	R	BZV46	S1	Vrg	CQ216Y	S8	D
BYW25*	S2a	R	BZV49*	S1/S7	Vrg/Mm	CQ327;R	S8	D
BYW29*	S2a	R	BZV55*	S7	Mm	CQ330;R	S8	D
BYW30*	S2a	R	BZV85*	S1	Vrg	CQ331;R	S8	D
BYW31*	S2a	R	BZW03*	S1	Vrg	CQ332;R	S8	D
BYW54	S1	R	BZW14	S1	Vrg	CQ427;R	S8	D
BYW55	S1	R	BZW70*	S2a	TS	CQ430;R	S8	D
BYW56	S1	R	BZW86*	S2a	TS	CQ431;R	S8	D
BYW92*	S2a	R	BZW91*	S2a	TS	CQ432;R	S8	D
BYW93*	S2a	R	BZX55*	S1	Vrg	CQF24	S8	Ph
BYW94*	S2a	R	BZX70*	S2a	Vrg	CQL10A	S8	Ph
BYW95A	S1	R	BZX75*	S1	Vrg	CQL13	S8	Ph
BYW95A	S1	R	BZX79*	S1	Vrg	COL13A	S8	Ph
DIWADD	91	K	Baki J.	31	118	OQUIJA	50	A 11

^{* =} series

PhC = Photocouplers

R = Rectifier diodes

TS = Transient suppressor diodes

Vrf = Voltage reference diodes

Vrg = Voltage regulator diodes

D = Displays

Mm = Microminiature semiconductors for hybrid circuits

Ph = Photoconductive devices

type no.	book	section	type no.	book	section	type no.	book	sectio
COL14A	S8	Ph	COY11B	S8	LED	OSM9210	S2a	St
CQL14B	S8	Ph	COY11C	S8	LED	OSM9215	S2a	St
CQN10	S8	LED	CQY24B(L		LED	OSM9410	S2a	St
CQN11	S8	LED	CQY49B	S8	LED	OSM9415		St
CQT10	S8	LED	CQY49C	S8	LED	OSM9510	S2a	St
CQT11	S8	LED	CQY50	S8	LED	OSM9511	S2a	St
COT12	S8	LED	CQY52	S8	LED	OSM9512	S2a	St
CQV60(L)) S8	LED	COY54A	S8	LED	0SS9110	S2a	St
COV60A(I		LED	CQY58A	S8	LED	OSS9115	S2a	St
CQV61A(I		LED	CQY89A	S8	LED	0SS9210	S2a	St
COV62(L)) S8	LED	CQY94	S8	LED	0SS9215	S2a	St
CQV70(L)) S8	LED	CQY94B(L)S8	LED	0SS9410	S2a	St
COV7OA(I		LED	CQY95B	S8	LED	0SS9415	S2a	St
CQV71A(I		LED	CQY96(L)	S8	LED	PH2222;R	S3	Sm
CQV72(L)		LED	CQY97A	S8	LED	PH2222A;		Sm
CQV80L	S8	LED	OM320	S10	WBM	PH2369	S3	Sm
CQV80AL	S8	LED	OM321	S10	WBM	PH2907; R	S3	Sm
CQV81L	S8	LED	OM322	S10	WBM	PH2907A;	RS3	Sm
COV82L	S8	LED	OM323	S10	WBM	PH2955T	S4a	P
CQW10(L) S8	LED	OM323A	S10	WBM	PH3055T	S4a	P
CQW10A(1)58	LED	OM335	S10	WBM	PH5415	S3	Sm
CQW10B(1	J)S8	LED	OM336	S10	WBM	PH5416	S3	Sm
CQW11A()	L)S8	LED	OM337	S10	WBM	PHSD51	S2a	R
CQW11B(1	L)S8	LED	OM337A	S10	WBM	RPY58A	S8	Ph
CQW12(L		LED	OM339	S10	WBM	RPY76B	S8	Ph
CQW12B(1	L)S8	LED	OM345	S10	WBM	RPY86	S8	I
CQW20A	S8	LED	OM350	S10	WBM	RPY87	S8	I
COW21	S8	LED	OM360	S10	WBM	RPY88	S8	I
CQW22	S8	LED	OM361	S10	WBM	RPY89	S8	I
CQW24(L) S8	LED	OM370	S10	WBM	RPY90*	S8	I
CQW54	S8	LED	OM931	S4a	P	RPY91*	S8	I
CQX10	S8	LED	OM961	S4a	P	RPY93	S8	I
CQX11	S8	LED	OSB9110	S2a	St	RPY94	S8	I
CQX12	S8	LED	OSB9115	S2a	St	RPY95	S8	I
CQX24(L		LED	OSB9210	S2a	St	RPY96	S8	I
CQX51	S8	LED	OSB9215	S2a	St	RPY97	S8	I
CQX54(L) S8	LED	OSB9410	S2a	St	RTC901	S8	LED
COX64(L		LED	OSB9415	S2a	St	RTC902	S8	LED
CQX74(L		LED	OSM9110	S2a	St	RTC903	S8	LED
CQX74Y	S8	LED	OSM9115	S2a	St	RTC904	S8	LED

⁼ Infrared devices associationage listed as Q2

R = Rectifier diodes

Sm = Small-signal transistors

St = Rectifier stacks

WBM = Wideband hybrid IC modules

LED = Light-emitting diodes of langle-flame = M2

P = Low-frequency power transistors

Ph = Photoconductive devices

type no.	book	section	type no.	book	section	type no.	book	sectio
1N821;A	S1	Vrf	1N5062	S1	R	2N3904	S3	Sm
1N823;A		Vrf	1N5832	S2a	R	2N3905	S3	Sm
1N825;A		Vrf	1N5833		R	2N3906	S3	Sm
1N827;A		Vrf	1N5834	S2a	R	2N3924	S6	RFP
1N829;A		Vrf	1N6097	S2a	R	2N3926	S6	RFP
1N914	S1	SD	1N6098	S2a	R	2N3927	S6	RFP
1N916	S1	SD	2N918	S10	WBT	2N3966	S5	FET
1N3879	S2a	R	2N929	S3	Sm	2N4030	S3	Sm
1N3880	S2a	R	2N930	S3	Sm	2N4031	S3	Sm
1N3881	S2a	R	2N1613	S3	Sm	2N4032	S3	Sm
1N3882	S2a	R 220	2N1711	S3	Sm	2N4033	S3	Sm
1N3883	S2a	R	2N1893	S3	Sm	2N4091	S5	FET
1N3889	S2a	R	2N2219	S3	Sm	2N4092	S5	FET
1N3890	S2a	R	2N2219A	S3	Sm	2N4093	S5	FET
1N3891	S2a	R	2N2222	S3	Sm	2N4123	S3	Sm
1N3892	S2a	R	2N2222A	S3	Sm	2N4124	S3	Sm
1N3893	S2a	R	2N2297	S3	Sm	2N4125	S3	Sm
1N3909	S2a	R	2N2368	S3	Sm	2N4126	S3	Sm
1N3910	S2a	R	2N2369	S3	Sm	2N4391	S5	FET
1N3911	S2a	R	2N2369A	S3	Sm	2N4392	S5	FET
1N3912	S2a	R	2N2483	S3	Sm	2N4393	S5	FET
1N3913	S2a	R	2N2484	S3	Sm	2N4427	S6	ACL L
1N4001G	S1	R	2N2904	S3	Sm	2N4856	S5	FET
1N4002G	S1	R	2N2904A	S3	Sm	2N4857	S5	FET
1N4003G	S1	R	2N2905	S3	Sm	2N4858	S5	FET
1N4004G	S1	R	2N2905A	S3	Sm	2N4859	S5	FET
1N4005G	S1	R	2N2906	S3	Sm	2N4860	S5	FET
1N4006G	S1	R	2N2906A	S3	Sm	2N4861	S5	FET
1N4007G	S1	R	2N2907	S3	Sm	2N5400	S3	Sm
1N4148	S1	SD	2N2907A	S3	Sm	2N5401	S3	Sm
1N4150	S1	SD	2N3019	S3	Sm	2N5415	S3	Sm
1N4151	S1	SD	2N3020	S3	Sm	2N5416	S3	Sm
1N4153	S1	SD	2N3053	00	Sm	2N5550	S3	Sm
1N4446	S1	SD	2N3375	S6	RFP	2N5551	S3	Sm
1N4448	S1	SD	2N3553	S6	RFP	61SV	S8	I
1N4531	S1	SD	2N3632	S6	RFP	375CQY/B	S8	Ph
1N4532	SI	SD	2N3822	00	FET	497CQF/A		Ph
1N5059	Sl	R	2N3823	S5	FET	498CQL	S8	Ph
1N5060	S1	R	2N3866	00	RFP	56201d	S4b	A
1N5061	S1	R	2N3903	S3	Sm	562011	S4b	A

A = Accessories

FET = Field-effect transistors

I = Infrared devices

Ph = Photoconductive devices

R = Rectifier diodes

RFP = R.F. power transistors and modules

SD = Small-signal diodes

SM = Small-signal transistors

Vrf = Voltage reference diodes

WBT = Wideband hybrid IC transistors

type no. book section	type no. book section	type no. book section
56245 S3,6,10A 56246 S3,5,10A 56261a S4b A 56264a,b S2a/b A 56295 S2a/b A	56359b S2,S4b A 56359c S2,S4b A 56359d S2,S4b A 56360a S2,S4b A	56378 S2,S4b A 56379 S2,S4b A 56387a,b S4b A
56326 S4b A 56339 S4b A 56352 S4b A 56353 S4b A	56363 S2,S4b A 56364 S2,S4b A 56367 S2a/b A 56368a S2,S4b A 56368b S2,S4b A	
56354 S4b A	56369 S2,S4b A	

Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545. Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 4270888.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.

Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400.

Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.

Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Calle 17, No. 9-21, Of. 202, BOGOTA, D.E., Tel. 57-2347493.

Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 5411 33.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 338 80-00.

Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 9215111.

Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121.

India: PEICO ELECTRONICS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400025, Tel. 4220387/4220311.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Panim Bank Building, 2nd Fl., Jl. Jend. Sudirman, P.O. Box 223, JAKARTA, Tel. 716131 Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bidg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.

Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-4202.

Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411.

Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00.

Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333. New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.

Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200.

Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59.

Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121.

Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 2538811.

South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.

Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.

Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000. Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211.

Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. (02)-5631717.

Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad. No. 78-80. ISTANBUL, Tel. 435910.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633.

United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.

(Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380. (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 360511

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304, Telex 35000 phtcnl

A43

©1985 Philips Export B.V

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands

9398 128 10011