Lab08-Computational Complexity

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2019.

- * If there is any problem, please contact TA Jiahao Fan or TA Mingran Peng. * Name:田雪飞 Student ID:515030910347 Email: 13487426939@qq.com
- 1. **Solution.** The following is the process of solution.
 - **a.** In this case, the set of state is $Q = \{q_S, q_1, q_2, q_3, q_4, q_H\}$.

we use q_1 to find \square , then convert q_1 to q_2 . If q_2 find 1 from left to right, then convert q_2 to q_3 and convert 1 to \square , turn direction around. If q_3 find 1 from right to left, then convert q_3 to q_2 and convert 1 to \square , turn direction around, ; Repeat until q_2 find \triangleleft then turn direction around, and convert q_2 to q_4 , Then we use q_4 to find 1 and turn direction aroundp and convert q_4 to q_{H} .

```
Begin: use q_1 to find \square, and convert q_1 to q_2, q_2 point to 1 on the left of \square. \langle q_S, \triangleright \rangle \to \langle q_1, \triangleright, R \rangle. \langle q_1, 1 \rangle \to \langle q_1, 1, R \rangle. \langle q_1, 1 \rangle \to \langle q_2, \square, R \rangle. Loop: use q_2, q_3 to convert 1 to \square one by one alternately. \langle q_2, \square \rangle \to \langle q_2, \square, R \rangle. \langle q_2, \square \rangle \to \langle q_3, \square, L \rangle. \langle q_3, \square \rangle \to \langle q_3, \square, L \rangle. \langle q_3, 1 \rangle \to \langle q_3, \square, L \rangle. End: use q_4 to find 1 on the left of \square and p_4 point to next cell. \langle q_2, \triangleleft, \rangle \to \langle q_4, \triangleleft, L \rangle. \langle q_4, \square \rangle \to \langle q_4, \triangleleft, L \rangle. \langle q_4, \square, \rangle \to \langle q_4, \square, R \rangle.
```

b.The state transition diagram in txf_homework_08.vsdx like following picture.

Figure 1: The state transition diagram

 ${f c.}$ Whole process from initial to final configurations.

:

- 2. What is the "certificate" and "certifier" for the following problems?
 - (a) PARTITION: Given a finite set A and a size $s(a) \in \mathbb{Z}$ for each $a \in A$, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$?
 - (b) CLIQUE: Given a graph G = (V, E) and a positive integer $K \leq |V|$, is there a subset $V' \subseteq V$ with $|V'| \ge K$ such that every two vertices in V' are joined by an edge in E?
 - (c) ZERO-ONE INTEGER PROGRAMMING: Given an integer $m \times n$ matrix A and an integer m-vector b, is there an integer n-vector x with elements in the set $\{0,1\}$ such that $Ax \leq b$?

Solution. The following is process of solution.

a. Certificate: Note that such a certificate exist only if $\sum_{a \in A'} s(a)$ is equal to $\frac{1}{2} \sum_{a \in A} s(a)$; example: A = 1, 2, 1, 1, 2, 3, 5, 6, 7, 8; A' = 1, 2, 1, 2, 3.

Certifier: convert the size of each $a \in A$ to a sequence $s(a_1), s(a_2), \ldots, s(a_n)$ and sort the sequence;

```
Algorithm 1: certifier
```

```
Input: A sorted sequence s(a_1), s(a_2), \ldots s(a_n)
   Output: Yes or No
 1 sum \leftarrow 0;
2 if \sum_{1}^{n} = odd then
    return false;
 4 else
       for i to n do
            sum=0;
 6
            for j to n do
 7
                sum + = s(a_j)

if sum = \frac{1}{2} \sum_{a \in A} s(a) then
 8
 9
10
                    return true
```

11 return false

b. Certificate: Check every k vertices and judge whether every two vertices are connected with each other;

Certifier: There exist k vertices in which every two vertices are connected.

- c. Certificate: A m × n matrix A and an integer m-vector b and an integer n-vector x. Certifier: Ax < b.
- 3. SUBSET SUM: Given a finite set A, a size $s(a) \in \mathbb{Z}$ for each $a \in A$ and an integer B, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) = B$?

KNAPSACK: Given a finite set A, a size $s(a) \in \mathbb{Z}$ and a value $v(a) \in \mathbb{Z}$ for each $a \in A$ and integers B and K, is there a subset $A' \subseteq A$ such that $\sum_{a \in A'} s(a) \leq B$ and $\sum_{a \in A'} v(a) \geq K$?

(a) **Proof.** Prove $PARTITION \leq_p SUBSET SUM$. In the PARTITION problem: $\sum_{a \in A'} s(a) + \sum_{a \in A - A'} s(a) = \sum_{a \in A} s(a)$, and we assume $\sum_{a \in A} s(a) = N;$ So we can convert $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} \text{ to } \sum_{a \in A} s(a) = \frac{N}{2}$, then let $B = \frac{N}{2}$; So, we can reduce PARTITION to SUBSET SUM.

(b) **Proof.** Prove $SUBSET\ SUM \leq_p KNAPSACK$.

In SUBSET SUM problem: we construct the value of $a \in A$ is v(a) and make v(a)=s(a), and make B = K.

so, we can reduce the question (is there a subset $A'\subseteq A$ such that $\sum_{a\in A'}s(a)=B$) to the question (is there a subset $A'\subseteq A$ such that $\sum_{a\in A'}s(a)\leq B$ and $\sum_{a\in A'}s(a)\geq K.(K=B)$).

So, we can reduces SUBSET SUM to KNAPSACK.

4. 3-SAT: Given a set U of variables, a collection C of clauses over U such that each clause $c \in C$ has |c| = 3, is there a satisfying truth assignment for C?

Prove 3-SAT $\leq_p CLIQUE$.

Proof. We prove this question by two steps.

First step: prove 3-SAT reduces to independent set.

Proof: Given an instance Φ of 3-SAT, we construct an instance (G,K) of independent-set that has an independent set of size k iff Φ is satisfiable.

construct:

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

Figure 2: 3-SAT and Independent set graph.

proof: \Rightarrow Let S be independent set of size k.

- S must contain exactly one vertex in each triangle.
- Set these literals to true and any other variables in a consistent way.
- •Truth assignment is consistent and all clauses are satisfied

proof: \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

Second step: prove Independent set to clique.

construction: we construct the Complementary graph of G is \overline{G} we should prove that if G exists an independent set of size k iff \overline{G} exists an clique of size k.

proof: \Rightarrow If G exists an independent set of size k, then there exists k vertices have no edge in them, obviously, These k vertices must be joined by an edge between every two vertices in \overline{G} , This is a clique of size k in \overline{G} .

proof: \Leftarrow If \overline{G} exists clique with size k.then there exists k vertices must be joined by a edge between every two vertices. Obvoiusly. G must have k vertices which have no edge between any two vertices. so, G have an independent set of size k.

Finally: according to the step 1: $3\text{-}SAT \leq_p Independent \ Set$, step 2: $Independent \ Set \leq_p CLIQUE$. \Box

5. Algorithm class is a democratic class. Denote class as a finite set S containing every students. Now students decided to raise a student union $S' \subseteq S$ with $|S'| \leq K$.

As for the members of the union, there are many different opinions. An opinion is a set $S_o \subseteq S$. Note that number of opinions has nothing to do with number of students.

The question is whether there exists such student union $S' \subseteq S$ with $|S'| \le K$, that S' contains at least one element from each opinion.

We call this problem *ELECTION* problem, prove that it is NP-complete.

Solution. Assume the number of students are N; Number them as $x_1, x_2, x_3 \dots x_n$; and construct a set $\{x_1, x_2, x_3 \dots x_n\}$, Assume there have M opinions, for example: n = 5; and opinions: $1:\{x_1, x_2\}, 2:\{x_2, x_4\}, 3:\{x_3, x_4, x_5\}$; so $S' = \{x_2, x_4\}$ is an example which is satisfied condition. so we can reduce this problem to a SET-COVER problem.

proof: ELECTION \leq_p SET-COVER.

So, ELECTION problem is a NP problem.

Convert: we can number every opinions, for example:opinion $1:\{x_1, x_2\}$,opinon $2:\{x_2, x_4\}$, opinion $3:\{x_3, x_4, x_5\}$; and then we convert it to student $\text{set}:x_1:\{1\}, x_2:\{1, 2\}, x_3:\{3\}$, $x_4:\{3\}, x_5:\{3\}$, the aim is to find sets to cover all opinions. then we just need to find a SET-COVER to solve this problem. So we can convert this question to whether there exist a SET-COVER?

Remark: You need to include your .pdf and .tex files in your uploaded .zip file.