Made By: Kenan Gazwan

TreesICS202-Summary

King Fahd University of Petroleum and Minerals

(Trees)

✓ Definition of a Tree

A tree is a finite set of nodes together with a finite set of edges (arcs) that define parent-child relationships.

- An edge is a connection between a parent and its child.
- A path from one node to another is a list of nodes such that each is the parent of the next node in the list.
- The length of the path = number of edges

Trees Properties:

- ✓ It has one designated node, called the root, that has no parent.
- ✓ Every node, except the root, has exactly one parent.
- ✓ A node may have zero or more children.
- ✓ There is a unique directed path from the root to each node.

Ordered tree: A tree in which the children of each node are linearly ordered (usually from left to right).

Ancestor of a node v: Any node, including v itself, on the path from the root to the node.

Proper ancestor of a node v: Any node, excluding v, on the path from the root to the node.

Descendant of a node v: Any node, including v itself, on any path from the node to a leaf node.

Proper descendant of a node v: Any node, excluding v, on any path from the node to a leaf node.

Subtree of a node v: A tree rooted at a child of v.

Degree: the number of subtrees of a node (the number of children).

Leaf: a node with degree 0 (has no children).

Nonterminal or internal node: a node with degree greater than 0.

Siblings: nodes that have the same parent.

Size: the number of nodes in a tree.

Level (or depth) of a node v: The length of the path from the root to node v.

[Remember!! | length of path = number of edges]

Height of a node v: The length of the <u>longest</u> path from v to a leaf node.

- o The height of a nonempty tree is the height of its root.
- The height of an empty tree is -1.

✓ Importance of Trees

Trees are very important data structures in computing. They are suitable for:

- Hierarchical structure representation
 - File directory
 - Organizational structure of an institution
 - Class inheritance tree
- Problem representation
 - o Expression tree
 - Decision tree
- Efficient algorithmic solutions
 - Search trees
 - Efficient priority queues via heaps

✓ General Trees & Their Representations

There is no limit to the number of children that a node can have.

General Tree as Linked List:

Representation 1:

Each Node Consists of:

- Ref to Subtree 1 (Child)
- Ref to Subtree 2 (Child)
- Ref to Subtree 3 (Child)
- Data

Representation 2:

Each Node Consists of:

- Ref to Subtree (Child)
- Ref to Next (Sibling)
- Data

✓ N-ary Trees

It follows that the degree of each node in an N-ary tree is at most N.

- √ 2-ary (binary) tree
- √ 3-ary (ternary) tree

✓ Binary Tree

- A binary tree is an N-ary tree for which N = 2
- A binary tree is either:
 - 1. An empty tree, or
 - 2. A tree consists of a root node and at most two non-empty binary subtrees.

Classification of Binary Tree:

Perfect binary tree

- o A binary tree in which each level k, $k \ge 0$, has 2^k nodes.
- All the leaf nodes are at the same depth, and all non-leaf nodes have two children.

• Decision tree (full binary tree)

- A binary tree in which every node is either a leaf node or an internal node with two children.
- Num of leaves = Num of internal nodes + 1

• Complete binary tree

- 1. Each level $k, k \ge 0$, other than the last level, contains the maximum number of nodes for that level, that is 2^k .
- 2. The last level may or may not contain the maximum number of nodes.
- 3. The nodes in the last level are filled from left to right.

Binary Tree Properties of *n*-nodes and height-*h*:

Maximum Height	n-1	
Minimum Height	$\lceil log(n+1) \rceil - 1$	
Maximum Number of Nodes	$2^{h+1}-1$	
Minimum Number of Nodes	h+1	

Binary Tree Traversal:

The process of systematically <u>visiting</u> all the nodes in a tree and <u>performing</u> a certain process.

A traversal starts at the root of the tree and visits every node in the tree exactly once.

Traversal Methods:

- 1. Breadth-First Traversal (or Level-order Traversal).
- 2. Depth-First Traversal:
 - Pre-order traversal
 - In-order traversal (for binary trees only)
 - Post-order traversal

1) Breadth-First Traversal

Breadth-First Process:

- Start from the top node.
- Then go one level down.
- Go through all of the children nodes from left to right
- Repeat the process until every level is visited.

• <u>Breadth-First Implemented by Queue:</u>

- o Enqueue the root node of the tree.
- O While the queue is not empty:
 - Dequeue a node from the queue
 - Output the data field of this node.
 - If the left child of the node is not empty: Enqueue the left child.
 - If the right child of this node is not empty: Enqueue the right child.

2) Depth-First Traversal

Name	The Process for Each Node	Code		
Preorder (N-L-R)	Visit the node. Visit the left subtree, if any Visit the right subtree, if any	<pre>void preorderTraversal(Node node) { if(node == null) return; System.out.print(node.data + " "); preorderTraversal(node.left); preorderTraversal(node.right); }</pre>		
Inorder (L-N-R)	Visit the left subtree, if any . Visit the node. Visit the right subtree, if any.	<pre>void inorderTraversal(Node node) { if(node == null) return; inorderTraversal(node.left); System.out.print(node.data + " "); inorderTraversal(node.right); }</pre>		
Postorder (L-R-N)	Visit the left subtree, if any Visit the right subtree, if any Visit the node.	<pre>void postorderTraversal(Node node) { if(node == null) return; postorderTraversal(node.left); postorderTraversal(node.right); System.out.print(node.data + " "); }</pre>		

Traversing Expression Trees:

- A <u>Preorder</u> traversal produces a <u>prefix</u> expression.
- An <u>Inorder</u> traversal produces an <u>infix</u> expression.
- A <u>Postorder</u> traversal produces a <u>postfix</u> expression.

Binary Tree Insertion:

The key is inserted at the first position available in level order traversal.

Binary Tree Deletion:

The deleted node is replaced by the last leaf node.

✓ Binary Search Tree (BST)

A binary search tree (BST) is a binary tree that is empty or that satisfies the BST ordering property:

- The key of each node is greater than each key in the left subtree, if any, of the node.
- The key of each node is less than each key in the right subtree, if any, of the node.
- o Each key in a BST is unique. (No duplication)

COMMON MISUNDERSTANDING!

- In the key of each node is greater than the key of the left *child* of that node.
- ✓ The key of each node is greater than the keys of the left *Subtree* of that node.

BST Traversal & Properties:

- o Inorder traversal (L-N-R) of BST produces the output sorted in increasing order.
- Reverse Inorder traversal (R-N-L) of BST produces the output sorted in decreasing order.

BST (Search):

- Compare the key with tree nodes:
 - A match is found, or
 - o If the key is less than the node, go left subtree and recheck.
 - o If the key is greater than the node, go right subtree and recheck.
 - if the key is not found, throw an exception....
- Repeat this procedure until a match is found, or return <u>false</u>, <u>null</u>, or <u>throw an</u> exception.

BST (Insertion):

- By the BST ordering property, a new node is always inserted as a leaf node.
- The insert method recursively finds an appropriate empty subtree to insert the new key:
- If the key has already existed in the tree, an exception must be thrown. (No duplication in BST)

BST (Deletion):

There are three cases:

- 1) The node to be deleted is a leaf node.
- 2) The node to be deleted has one non-empty subtree.
- 3) The node to be deleted has two non-empty subtrees.

1) The node to be deleted is a leaf node:

• Delete the node by making the parent reference of that leaf node = null:

2) The node to be deleted has one non-empty subtree.

• Delete the node by replacing its value and references by the child value and references :

3) The node to be deleted has two non-empty subtree.

Two methods to delete node x:

Method(1): Deletion by Copying:

- Replace the key being deleted with its immediate successor to the node x.
- Delete that successor node.

(Same can be done by replacing the key being deleted with its immediate predecessor)

immediate successor:

The minimum key in the right subtree of x. immediate predecessor:

The maximum key in the left subtree of x

Method(2): Deletion by Merging:

Taking one subtree out of the two subtrees of deleted node and then attaching
it to the another subtree in a way that does not affect the BST property:

BSTs as Priority Queues:

By using insert and deleteMax or deleteMin, a BST can be used as a priority queue in which the keys of the elements are distinct.

Why BST?

BSTs provide good logarithmic time performance in the best and average cases. Worst case is O(n).

Operation	Retrieval or Search	Insertion	Deletion	Traversal
BST	O(log n)	$O(\log n)$	$O(\log n)$	O (n)

BSTs are used:

- for indexing in databases.
- to implement various searching and sorting algorithms.
- to implement dictionaries, dynamic sets, and lookup tables.

Average case complexities (linear data structures & BSTs):

Data Structure	Retrieval or Search	Insertion	Deletion	Traversal
BST	O(log n)	$O(\log n)$	$O(\log n)$	O (n)
Sorted Array	$oldsymbol{O(log\ n)}$ (Using Binary Search Tree)	0 (n)	0 (n)	0 (n)
Unsorted Array	0 (n)	0(1)	O (n)	O (n)
Sorted Linked List	0 (n)	O (n)	O (n)	O (n)
LinkedList	0 (n)	0(1)	O (n)	O (n)

(BST worst execution time for each of the above operations is O(n) when the tree is linear (i.e., degenerate)).

Disadvantages of Binary Search Trees:

- The overall shape of the tree depends on the order of insertion. It might become linear or degenerate (Worst Scenario)
- The plain implementation of Binary Search Tree is not much used since it cannot guarantee logarithmic complexity.