KHOA ĐIỆN-ĐIỆN TỬ Bộ Môn Cơ Sở KỸ Thuật Điện Tử

CHUONG 2: CÁC LOẠI TRANSISTOR (TT)

JFET (JUNCTION FET – Transistor trường có chuyển tiếp pn)

Cấu tạo, kí hiệu

JFET kênh N

JFET kênh P

2. Nguyên lý hoạt động

Để JFET hoạt động phân cực cho GS và DS)

 I_{DSS} : dòng điện I_{D} khi ngắn mạch GS (short)

V_P: điện áp nghẽn (thắt kênh)

 r_0 : điện trở cực máng nguồn khi

$$V_{GS} = 0$$

 $I_D(mA)$

Vùng điện trở:

$$r_d = rac{r_0}{\left(1 - rac{V_{GS}}{V_P}
ight)^2}$$

Vùng thắt kênh:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$0 \le I_D \le I_{DSS}$$
$$V_P \le V_{GS} \le 0$$

 $I_D = I_S$

$$I_G = 0$$

TOSHIBA Field Effect Transistor Silicon N Channel Junction Type

2SK30ATM

Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Gate-drain voltage	V_{GDS}	-50	V
Gate current	lg	10	mA
Drain power dissipation	P_{D}	100	mW
Junction temperature	Tj	125	೧
Storage temperature range	T _{stg}	-55~125	°C

- SOURCE
- 2. GATE
- 3. DRAIN

JEDEC	TO-92	
JEITA	SC-43	
TOSHIBA	2-5F1C	

CÁC MẠCH PHÂN CỰC CHO JFET

Mạch phân cực cố định

$$I_G = 0$$
, $I_D = I_S$

Mạch vòng GS

$$V_{GS} = -V_{GG} \quad (*)$$

Thế (*) vào phương trình Shockley

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Mạch vòng DS

$$V_{DS} = V_{DD} - I_{D.}R_{D}$$

Mạch tự phân cực

$$I_G = 0$$
, $I_D = I_S$

Mạch vòng GS $V_{GS} = -I_D.R_S$

$$V_{GS} = -I_D.R_S$$

Thế V_{GS} vào phương trình Shockley

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \qquad V_i \qquad V_i$$

 I_{D1}, I_{D2}

Chọn nghiệm thoả $0 \le I_D \le I_{DSS}$

$$0 \le I_D \le I_{DSS}$$

$$V_P \le V_{GS} \le 0$$

Mạch vòng DS

$$V_{DS} = V_{DD} - I_{D}.(R_D + R_S)$$

NUFET

Mạch tự phân cực - Vd

Mạch phân cực dùng cầu phân áp

$$I_{G} = 0, I_{D} = I_{S}$$

$$V_{G} = \frac{R_{2}}{R_{1} + R_{2}} V_{DD} \quad V_{GS} = -(I_{D}.R_{S} - V_{G})$$

Thế V_{GS} vào phương trình Shockley

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

 I_{D1}, I_{D2}

Chọn nghiệm thoả $0 \le I_D \le I_{DSS}$

$$0 \le I_D \le I_{DSS}$$

$$V_P \le V_{GS} \le 0$$

Mạch vòng DS

$$V_{DS} = V_{DD} - I_{D}.(R_D + R_S)$$

 $^{\mathsf{V}}$ DD

NUFET

Đường tải DC (DCLL-DCLoad Line)

Biểu diễn quan hệ $I_D = f(V_{DS})|_{(DC)}$

$$\mathbf{I_{D}} = \mathbf{f}(\mathbf{V_{DS}})|_{(\mathbf{DC})}$$

> Xây dựng bằng cách áp dụng ĐL Kirchhoff cho

mach vòng DS

Xét đáp ứng DC

Mạch vòng DS

$$-V_{DD} + I_{D}R_{D} + V_{DS} + I_{S}R_{S} = 0$$

$$\rightarrow I_D = \frac{V_{DD}}{R_D + R_S} - \frac{1}{R_D + R_S} V_{DS} \qquad (DCLL)$$

ÚNG DỤNG

Mạch khuếch đại dùng JFET

Kiểu CG (Common Gate- G chung): vào S ra D

Kiểu CS (Common Source – S chung): vào G ra D

Kiểu CD (Common Drain – D chung): vào G ra S

Common Sorce JFET Amplifier

Mạch ngắt dẫn dùng JFET (switch)

TRANSISTOR TRƯỜNG BẮN DẪN OXIT KIM LOẠI - MOSFET (METAL OXIDE SEMICONDUCTOR FET)

D-MOSFET – Depletion Mosfet (Mosfet kênh có sẵn)

b. Nguyên lý hoạt động

Tương tự như JFET, E-MOSFET cũng dùng các dạng mạch phân cực: Cố định, Tự phân cực, Phân cực dùng cầu phân áp.

Luru ý:
$$V_P \le V_{GS}$$
 (loại N) $0 \le I_D$ $I_D = I_S$ $I_G = 0$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

E-MOSFET – Enhanced Mosfet (Mosfet kênh chưa có

V_T: điện áp ngưỡng (threshold)

c. Mạch phân cực

Mạch phân cực hồi tiếp

$$I_G = 0 \rightarrow V_D = V_G$$

$$V_{DS} = V_{GS}$$

$$V_{GS} = V_{DD} - I_D R_D \quad (*)$$

Thế (*) vào phương trình $I_D = k(V_{GS} - V_{Th})^2$

Thế vào (*) chọn nghiệm I_D sao cho $V_T \le V_{GS}$

Mạch vòng DS

Mạch phân cực dùng cầu phân áp

$$I_G = 0 \rightarrow V_G = \frac{R_2 V_{DD}}{R_1 + R_2}$$

$$V_{GS} = V_G - I_D R_S \qquad (*)$$

Thế (*) vào phương trình $I_D = k(V_{GS} - V_{Th})^2$

$$I_D = k (V_{GS} - V_{Th})^2$$

Thế vào (*) chọn nghiệm I_D sao cho $V_T \le V_{GS}$

Mạch vòng DS

$$V_{DS} = V_{DD} - I_D(R_S + R_D)$$

$$(I_D = I_S)$$

ÚNG DỤNG

Mạch đóng ngắt dùng E- MOSFET

Mạch khuếch đại dùng E- MOSFET

18 watt Mosfet Amplifier Circuit

