TD1 Hacheur série en variateur de vitesse pour MCC

Préliminaires :

Le moteur alimenté par le hacheur a les caractéristiques suivantes :

- l'excitation est réalisée à l'aide d'aimants permanents,
- le moment du couple résistant de la charge entraînée est constant,
- la f.é.m. E s'écrit $E = K_e \Omega$ avec $K_e = 0.613 \text{ V.s.rad}^{-1}$,
- tension nominale : $U_n = 200 \text{ V}$,
- intensité du courant nominal : I_n = 15 A,
- résistance de l'induit : $R_a = 0.50 \Omega$.
- 1 Pour le point nominal de fonctionnement du moteur, déterminer la vitesse de rotation N_n (en tr/min).

Soit le montage suivant où U_r est une tension continue constante : $U_r = 265 \text{ V}$.

L'interrupteur unidirectionnel T_r , considéré comme parfait, est commandé périodiquement: Pendant la période T débutant à l'instant 0, il est fermé pour $0 < t < \alpha T$, et il est ouvert pour $\alpha T < t < T$.

La diode D est également considérée comme idéale.

L représente l'inductance globale de l'induit de la machine et d'une bobine de lissage, R représente la somme de la résistance de l'induit R_a et de celle de la bobine ($R_b = 0.80 \Omega$).

- 2 En électronique de puissance, comment réalise-t-on un interrupteur T_r commandable périodiquement ? Quels sont les défauts de tels interrupteurs ?
- 3 On suppose que le courant traversant le moteur est bien lissé et que son intensité i_M est sensiblement constante : $i_M = 15$ A.

Pour chacun des deux intervalles de temps composant une période :

- dessiner un schéma équivalent au montage et ne comportant que des éléments conducteurs,
- préciser les valeurs de u, i_{Tr} et i_D,
- exprimer la tension u_L en fonction de U_r, E, R et i_M.

Exprimer la valeur moyenne U de u(t) en fonction de U_r et de α .

4 - Montrer que, dans le cas général, la valeur moyenne de la tension u_L aux bornes d'une inductance pure L parcourue par un courant périodique d'intensité i(t) est nulle.

5 - On obtient le point nominal du moteur pour la valeur α_n de α .

Calculer α_n en admettant que la valeur moyenne de la tension u_L est nulle.

Pour $\alpha = \alpha_n$, calculer les valeurs u_{L1} et u_{L2} prises par u_L au cours du temps.

Vérifier que la valeur moyenne <u_L> de u_L est bien nulle.

- 6 Le moteur restant chargé, comme indiqué au début de l'énoncé, on désire ramener sa vitesse à $n_1 = 1000$ tr/min. Montrer que l'intensité moyenne $\langle i_M \rangle$ reste constante. Quelle valeur faut-il donner à α pour obtenir $N = N_1$?
- 7 D'une manière générale, au cours d'une séance d'essais consacrée à l'étude d'un moteur à courant continu à excitation indépendante et constante fonctionnant en régime permanent
 - comment agit-on sur l'intensité du courant induit ?
 - comment agit-on sur la fréquence de rotation N?
- 8 Dans cette question, on tient compte de la variation de $i_M(t)$ mais on fait l'approximation suivante : le terme variable $R.i_M(t)$ est remplacé par sa valeur moyenne c'est-à-dire $R< i_M>$.

Le fonctionnement de la machine est tel que :

$$\langle i_M \rangle = 15 \text{ A}$$
; L = 26.5 mH; T = 1.0 ms; $\alpha = 0.80$.

8.1. Ecrire l'équation différentielle régissant l'évolution de l'intensité i_M du courant dans le moteur quand l'interrupteur T_r est fermé.

On note I_{min} la valeur de i_M à l'instant t=0, en déduire l'expression de $i_M(t)$ pour $0 < t < \alpha T$.

8.2. Ecrire l'équation différentielle à laquelle satisfait $i_M(t)$ pour $\alpha T < t < T$.

On note I_{max} la valeur de i_M à l'instant $t = \alpha T$.

En posant $t' = t - \alpha T$, écrire l'expression de $i_M(t')$ pendant cet intervalle de temps.

- 8.3. Exprimer la variation de courant $\Delta I = I_{max} I_{min}$ en fonction de α , T, U_r et L en régime permanent. Application numérique : calculer ΔI .
- 9 On se propose de résoudre la question précédente sans effectuer aucune approximation, avec les mêmes données numériques.
 - 9.1. Ecrire et résoudre l'équation différentielle à laquelle satisfait $i_M(t)$ pour $0 < t < \alpha T$. En déduire une première relation entre I_{min} et I_{max} .
 - 9.2. Ecrire et résoudre l'équation différentielle à laquelle satisfait $i_M(t)$ pour $\alpha T < t < T$. En déduire une deuxième relation entre I_{min} et I_{max} .
 - 9.3. Calculer $\Delta I' = I_{max} I_{min}$, comparer ce résultat à la valeur ΔI précédemment trouvée et conclure.