Soma de Séries

1) Soma de série geométrica

$$\sum_{1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots = \frac{a}{1 - r}$$

a é o primeiro termo da série e $r=rac{a_{n+1}}{a_n}$

2) Soma de série telescópica

Se $a_n = b_n - b_{n+1}$, a série $\sum a_n$ se diz telescópica, então:

$$s_n = a_1 + a_2 + a_3 + a_4 + \dots + a_{n-1} + a_n$$

$$= (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + (b_4 - b_5) + \dots + (b_{n-1} - b_n) + (b_n - b_{n+1})$$

$$= (b_1 - b_{n+1})$$

Portanto, existe o limite de s_n se e somente se existe o limite de b_{n+1} , então:

 $\lim_{n\to\infty} s_n = b_1 - \lim_{n\to\infty} b_{n+1} = 0$. Substituindo o segundo termo por $\lim_{n\to\infty} b_n = 0$, temos portanto:

$$\sum_{1}^{\infty} a_n = b_1 - \lim_{n \to \infty} b_n$$

Critérios de Convergência de Séries

1) Condição necessária à convergência de uma série:

Se uma série é convergente, então: $\lim_{n \to \infty} a_n = 0$

- 2) Consequência: se não ocorrer $\lim_{n \to \infty} a_n = 0$, então a_n é divergente.
- 3) Critério da comparação: Seja 0 ≤ a_n ≤ b_n:

Se $\sum b_n$ é convergente, então $\sum a_n$ é convergente.

Se $\sum b_n$ é divergente, então $\sum a_n$ é divergente.

4) Critério da comparação por limite: Sejam $a_n \ge 0$, $b_n > 0$ e $\lim_{n \to \infty} \frac{a_n}{b_n} = L$

Se $0 < L < \infty$, então $\sum a_n$ e $\sum b_n$ são ambas divergentes ou convergentes.

Se L=0 e $\sum b_n$ é convergente, então $\sum a_n$ é convergente.

Se \mathbf{L} = ∞ e $\sum b_n$ é divergente, então $\sum a_n$ é divergente.

5) Critério de razão ou D'Lambert:

Se $\sum a_n$ é uma série de termos positivos e $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$

Se L < 1, então $\sum a_n$ é convergente.

Se L > 1 ou $L = \infty$, então $\sum a_n$ é divergente.

6) Critério da raiz ou de Cauchy:

Seja $\sum a_n$ um série de termos positivos e $\lim_{n\to\infty} \sqrt[n]{a_n} = L$

Se L < 1, então $\sum a_n$ é convergente.

Se L > 1 ou $L = \infty$, então $\sum a_n$ é divergente.

- 7) Critério de Leibniz: Seja (a_n) uma sequência que obedece a condição de que $\lim_{n\to\infty}(a_n)=0$, para a qual existe um índice N, tal que $n\ge N$ e $a_n\ge a_{n+1}\ge 0$, então a série $\sum (-1)^{n-1}a_n$ é convergente.
- 8) A série $\sum c_n(x-x_o)^n$ ocorre somente se:
 - a. A série é absolutamente convergente para todo x real.
 - b. A série é convergente apenas para $x = x_0$.
 - c. Existe um (único) número positivo R tal que a série é (absolutamente) convergente, se $|x-x_0| < R$ e divergente se $|x-x_0| > R$.

O número R é denominado de raio de convergência da série $\sum c_n(x-x_o)^n$. No caso: a) o raio de convergência é infinito ($R=\infty$), no caso b) o raio de convergência é 0 (R=0).

O conjunto dos x para os quais a série converge é denominado de intervalo de convergência (IC).

9) Série de Taylor em função de f em torno de a:

$$f(x) = \sum_{n\geq 0} \frac{f^n(a)}{n!} (x-a)^n =$$

$$= \frac{f(a)}{0!} (x-a)^0 + \frac{f'(a)}{1!} (x-a)^1 + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$