ST2131 Finals Cheatsheet by Wang Xiuxuan

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Random Variables

Definition 4.1: A random variable, X, is a mapping from the sample space to real numbers.

4.2 **Discrete Random Variables**

Definition 4.2: A random variable is said to be **discrete** if range of X is either **fininite** or **countably infinite**. **Definition 4.3**: The **probability mass function** (pmf) of a discrete random variable X is defined by

$$p_X(x) = \begin{cases} P(X=x), & \text{if } x = x_1, x_2, \cdots \\ 0, & \text{otherwise.} \end{cases}$$

Note that $\sum_{i=1}^{\infty} p_X(x_i) = 1$.

Definition 4.4: The cumulative distribution function (cdf) of a discrete random variable X is defined as $F_X : \mathbb{R} \to \mathbb{R}T$ where $F_X(x) = P(X \le x)$, for $x \in \mathbb{R}$.

Expected Value

Definition 4.5: If X is a discrete random variable having a probability mass function p_X , the **expectation** or **expected value** of X is defined by

$$E(X) = \sum_{x} x p_X(x).$$

Tail Sum Formula: For nonnegative integer-valued random variable X, we have

$$E(X) = \sum_{k=1}^{\infty} P(X \ge k) = \sum_{k=0}^{\infty} P(X > k).$$

Expectation of a Function of a Random Variable

Proposition 4.1 If X is a discrete random variable that takes values x_i , $i \ge 1$, with respective probabilities $p_X(x_i)$, then for any real value function g,

$$E[g(X)] = \sum_i g(x_i) p_X(x_i) \quad \text{or equivalently}$$

$$= \sum_x g(x) p_X(x).$$

Corollary 4.2 Let a and b be constants, then

$$E[aX + b] = aE(X) + b.$$

Variance and Standard Deviation

Definition 4.6 If X is a random variable with mean μ , then the **variance** of X, denoted by Var(X), is defined by

$$Var(X) = E[(X - \mu)^2].$$

Definition 4.7 The **standard deviation** of X, denoted by σ_X or SD(X), is defined by

$$\sigma_X = \sqrt{\operatorname{Var}(X)}.$$

Scaling and shifting:

- $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$.
- SD(aX + b) = |a|SD(X).

Discrete Random Variables Arising from **Repeated Trials**

Bernoulli Random Variable: Be (p), define

$$X = \begin{cases} 1, & \text{if it is a success;} \\ 0 & \text{if it is a failure.} \end{cases}$$

- P(X = 1) = p;
- \bullet E(X) = p;
- P(X = 0) = 1 p;
- Var(X) = p(1-p).

Binomial Random Variable: Bin (n, p), define X as **number of successes** in n Bernoulli (p) trials.

Therefore, X takes values $0, 1, 2, \dots, n$.

- $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$;
- \bullet E(X) = np; • Var(X) = np(1-p);

Geometric Random Variable: Geom (p), define X as number of trials until the first success in a sequence of independent Bernoulli(p) trials.

- $P(X = k) = pq^{k-1}$; $E(X) = \frac{1}{n}$;
- $Var(X) = \frac{1-p}{n^2}$;

Alternative Geometric Distribution: Let X' be the **number of failures** in the Bernoulli (p) trials in order to obtain the first success. Here,

$$X = X' + 1$$

- $P(X' = k) = pq^k$; $E(X') = \frac{1-p}{p}$; $Var(X') = \frac{1-p}{p^2}$;

Negative Binomial Random Variable: NB (r, p), define X to be **number of** Bernoulli (p) **trials** required to obtain r successes. For $k \ge r$, we have:

- $P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r};$ $E(X) = \frac{r}{p};$ $Var(X) = \frac{r(1-p)}{p^2};$

Remark: Geom (p) = NB(1, p).

4.7 **Poisson Random Variable**

Poisson: A random variable X is said to have a **Poisson** distribution with parameter λ if X takes values $0, 1, 2, \cdots$ with probabilities given as:

$$P(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}, \quad \text{for } k = 0, 1, 2, \cdots$$

• $E(X) = \lambda$;

• $Var(X) = \lambda$.

When n is large and λ is moderate, we can use **poisson** to approximate binomial:

$$Bin(n, p) \approx Poisson(np)$$
.

I.e.
$$P(X=k) \approx e^{-\lambda} \frac{\lambda^k}{k!}$$

I.e. $P(X=k) \approx e^{-\lambda} \frac{\lambda^k}{k!}.$ Examples obeying Poisson distribution:

- Number of misprints on a page;
- Number of people in a community living to 100
- Number of wrong telephone numbers that are dialled in a day;
- Number of people entering a store on a given day;
- Number of particles emitted by a radioactive source

These are approximately Poisson because of the Poisson approximation to the binomial distribution.