Exercice 1. Etudier la convergence simple et la convergence uniforme des suites de fonctions $(f_n)_{n\geq 1}$, $(g_n)_{n\geq 1}$, $(h_n)_{n\geq 1}$ et $(k_n)_{n\geq 1}$ suivantes définies sur les intervalles I spécifiés. Trouver des intervalles sur lesquels il y a convergence uniforme.

$$f_n(x) = \frac{x}{x+n} \operatorname{sur} \mathbb{R}_+, \quad g_n(x) = xne^{-xn} \operatorname{sur} \mathbb{R}_+, \quad h_n(x) = (\sin x)^n \operatorname{sur} \mathbb{R};$$

la fonction $k_n : \mathbb{R} \to \mathbb{R}$ est continue, définie pour tout $n \ge 1$ par $k_n(x) = 0$ si $x \le -1/n$, $k_n(x) = 1$ si $x \ge 1/n$, avec k_n affine sur l'intervalle [-1/n, 1/n].

$$\left| f_{n}(x) \right| = \left| \frac{x}{x+n} \right| = \frac{x}{x+n} \le \frac{x}{n} \Rightarrow f_{n}(x) \rightarrow 0 \quad \forall x$$

mais sup
$$|f_n(x)| \ge f_n(n) = \frac{n}{2n} = \frac{1}{2} + 0 \Rightarrow \text{pas CVU}$$

$$g_n(oc) = (xn)e^{-xn} \rightarrow 0 \quad \forall x > 0 \quad (av exp importe sur poly)$$

$$\sup |g_n| \geqslant g_n(h) = |x e^{-1} = e^{-1} +>0 \Rightarrow \max |g_n(h)| = |x e^{-1} = e^{-1} +>0 \Rightarrow \min |g_n(h)| = |x e^{-1} =$$

le domaine de CVS pour sinha

=
$$\begin{cases} \infty, \sin^n \infty > 0 \end{cases} = \bigcup_{k \in \mathbb{N}} [2k\pi, (2k+1)\pi]$$

$$S_1 n^h x \rightarrow 1$$
 $S_1 n^h x = 1 \iff x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{N}$

Sinha cent sur dom CVS mais limite ne l'est pas > pas CVU

Exercice 2.

Pour $n \in \mathbb{N}$, on définit les fonctions c_n et s_n , de \mathbb{R} dans \mathbb{R} , par $c_n(x) = \cos(nx)$ et $s_n(x) = \sin(nx)$. Quels sont les domaines de convergence simple des suites de fonctions $(c_n)_{n\geq 0}$ et $(s_n)_{n\geq 0}$? (indication : on pourra penser à utiliser les formules $\cos(a+b) = \cdots$ et $\sin(a-b) = \cdots$)

$$a_n \rightarrow L \Rightarrow a_{n+1} \rightarrow L$$
 $a_{2n} \rightarrow L$

On a l'identité trig

COS (n+1) x = COIX COS nx - SINX SINNX

$$C_{n+1} = \cos x C_n - \sin x S_n \Rightarrow S_n = \frac{\cos x C_n - C_{n+1}}{\sin x}$$

$$S_1 \quad C_n \rightarrow L \quad \text{alors} \quad C_{n+1} \rightarrow L$$

 $\Rightarrow \quad S_n \rightarrow \quad (\underline{\cos x - 1}) L = L'$

d même si Sn CV alors Cn CV

On a quissi

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\Rightarrow L = 2L^2 - 1$$

$$\Rightarrow 2L^2 - L - 1 = 0$$

$$\Rightarrow L = 1 \pm 1 + 8 = 1 \pm 3$$

donc Le \$1,-12}

$$Sin2nx = 2Sinnx (aSn) \times -> 2L' L \Rightarrow L' = 2L' L \Rightarrow L' (1-2L) = 0$$

Exercice 4. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{n}\sin(nx)$.

- 1. Étudier la convergence de la suite de fonctions $(f_n)_{n\geq 1}$.
- 2. Étudier la convergence de la suite $(f'_n)_{n\geq 1}$ des dérivées. Que peut-on constater?

$$||f_{n}|| = \sup_{x} |f_{n}(x)| = ||f_{n}(x)|| \leq ||f_{n}(nx)|| \leq ||f_{n}(x)|| > 0$$

$$\Rightarrow CVU \quad \sup_{x} ||R| \Rightarrow CVS$$

$$|f_{n}(x) - 0| = ||f_{n}(x)|| \leq ||f_{n}|| \leq ||f_{n}|$$

Exercice 5. Pour tout $n \in \mathbb{N}^*$, on définit la fonction $f_n : \mathbb{R} \to \mathbb{R}$ par $f_n(t) = \sqrt{t^2 + \frac{1}{n}}$.

- 1. Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ sur \mathbb{R} .
- 2. Étudier la convergence simple et uniforme de la suite de fonctions $(f'_n)_{n\geq 1}$ sur \mathbb{R} .

$$f_{n}(t) \rightarrow \int t^{2} = |t| \quad \text{CVS}$$

$$0 < f_{n}(t) - |t| = \int t^{2} + \frac{1}{n} - \int t^{2} = \frac{t^{2} + \frac{1}{n} - t^{2}}{\int t^{2} + \frac{1}{n} + \int t^{2}} < \frac{\frac{1}{n}}{\frac{1}{n}} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} + \frac{1}{n} + \int t^{2} = \frac{1}{n} \rightarrow 0$$

$$\int t^{2} + \frac{1}{n} + \int t^{2} + \int t^{2} + \frac{1}{n} + \int t^{2} + \int$$

2/
$$f_n'(t) = \frac{t}{|t^2 + 1/n|} \Rightarrow g(t) = \begin{cases} t/|t| & t \neq 0 \\ 0 & t = 0 \end{cases}$$

$$f_n'(t) \quad cont \quad \forall \quad n \geq 1 \quad \text{mais} \quad g(t) \quad ne \quad l'est \quad pas \quad \Rightarrow \quad pas \quad CVU$$