PA1 ANALYSIS REPORT

Oluwafemi Ajeigbe

09-29-2022

EE 524 ADVANCED COMPUTER ARCHITECTURE

INTRODUCTION & OBJECTIVES

A benchmark test is designed to mimic a particular type of workload on a component or system to assess a program's performance (or a set of programs). The benchmarks' times depend on software, hardware, or the computer's architecture. Benchmarking can be used to measure differing performances across different systems. A code is usually tested on different computer architectures to see how it performs. In the case of this assignment, we were asked to measure how the performance would scale up with parallel threads used in a multi-core system. I carried out this test on four benchmark programs; fluidanimate, blackscholes, basicmaths, and qsort, and below are some of the data points generated after the test.

EVALUATION

ENVIRONMENTAL SETUP

The benchmark was run on an ODROID board with Linux using *perf*. Perf is a profiler tool for Linux-based systems that abstracts CPU hardware differences in Linux performance measurements and presents a simple command-line interface. The output for each benchmark run was stored on text files; I used the SCP command to move the text from the board to the sig server and then to my PC. A Python script was used to read the lines of this text data onto a data frame. I then exported this data to an excel sheet.

RESULTS AND DISCUSSIONS

Figures 1,2,3,4,5 below show the average performance counters per 1000 instructions. These are plots that show the performance of each benchmark on the following metrics.

- The average execution times,
- The average branch misprediction rate
- and The L1 and L2 cache refill rates.

In Figure 1, we notice that the fluidanimate benchmark had the longest execution times per 1000 instructions when measured against varying core numbers. Figure 2 shows that the basicmaths benchmark had the highest branch misprediction rates per 1000 instructions when measured against varying core numbers. Figure 3 posits that blackscholes had about the highest L1 data cache refill rate per 1000 instructions when measured against varying core numbers. Figure 4 suggests that the blackscholes benchmark also had about the highest L1 instruction cache refill rate per 1000 instructions when measured against varying core numbers, which helped scale down the execution time as compared to the fluidanimate benchmark. Finally, figure 5 shows that the fluidanimate benchmark has the highest L2 data cache refill rate.

Figure 1: Average Execution time Per Cores

Figure 2: Average BranchMisPredictions Versus Core Types

Figure 3: L1 Data Cache Refill Versus Core Types

Figure 4: L1 Instruction Cache Refill Versus Core Types

Figure 5: L2 Data Cache Refill Versus Core Types

BENCHMARK RESULTS:

- 1. <u>FLUIDANIMATE:</u> With the fluidanimate benchmark test, there were a couple of observations:
 - a. The throughput was way better when we tested the program against four cores and four threads. It seems these patterns occurred with both core types. This posits that the higher the cores-threads, the faster the execution time. For example, ARM 15: 4 threads and 4,5,6,7 (4 cores) used about 2 seconds to execute the exact instructions "4 threads and 4 (1 core)" executed in 6 seconds. The trend observed from the data points suggests that the more cores and threads, the faster the execution time. This means the system could perform parallel instruction execution (because of the threads) on multiple cores (increased core number). This pattern was consistent with both core types; ARM7 (0,1,2,3) and ARM15(4,5,6,7).
 - b. The branch misprediction rate was a little different for both core types. With ARM7= 12 and ARM15= 8. Better branch prediction means less time wasted speculatively executing instructions that never actually need to be executed. This was why the ARM15 cores (4 threads 4 cores) performed better (1.9secs) in terms of execution times than ARM7 (4 threads 4 cores) (4secs).
 - c. L1 and L2 cache refill rates were also almost constant across the two core types.
 - d. As compared to blackscholes, the execution times was way higher even with about the same instruction size.

Figure 6: Fluidanimate A7

Figure 7: Fluidanimate A15

- 2. <u>BLACKSCHOLES:</u> With the blackscholes benchmark test, the observations are shown with the fluidanimate benchmark.
 - a. The throughput was also better when we tested the program against four cores and four threads. It seems these patterns occurred with both core types; ARM7 (0,1,2,3) and ARM15(4,5,6,7). This suggests that the higher the coresthreads, the faster the execution time. For example, ARM 7: 4 threads and 4,5,6,7 (4 cores) used about 0.5 seconds to execute the exact instructions "4 threads and 4 (1 core)" executed in 1.2 seconds. The trend observed from the data points suggests that the more cores and threads, the faster the execution time. This means the system could perform parallel instruction execution (because of the threads) on multiple cores (increased core number).
 - b. The branch misprediction rate was higher in the ARM 7 (13) core type than on the ARM 15(3) core type. Better branch prediction means less time wasted speculatively executing instructions that never actually need to be executed. This was why the ARM 15 cores (4 threads 4 cores) performed better (0.19secs) in terms of execution times than ARM 7 (4 threads 4 cores) (0.54secs).
 - c. L1 and L2 cache refill rates were also almost constant across the two core types.

Figure 8: Blackscholes A7

Figure 8: Blackscholes A15

- 3. BASICMATHS: With this benchmark test, there were a couple of observations:
 - a. Varying (increasing) the cores did not increase or reduce the execution times. However, the execution time on ARM7(2.0) per core was more than the execution time on ARM15(0.9) per core. It seems the CPI on ARM 15 was faster.
 - b. The branch misprediction rate did not vary much with varying core numbers. However, the ARM7 (22.4) misprediction rate was way higher than the ARM15 (9).
 - c. The L1 and L2 cache refills were almost the same across the cores. Also, the ARM 15 had more L1 Data Cache refill when tested with four cores than the others.

Figure 9: Basicmaths A7 & A15

- 4. QSORT: With the QSORT benchmark test, there were a couple of observations:
 - a. Varying (increasing) the cores did not increase or reduce the execution times. However, the execution time on ARM7 per core was more than the execution time on ARM15 per core.
 - b. The branch misprediction rate did not vary much with varying core numbers. However, the ARM7 misprediction rate was way higher than the ARM15.
 - c. The L1 and L2 cache refills had almost the same value across the core numbers. However, there were more L1 data cache refills on the ARM15 than on the ARM7.

Figure 10: Qsort A7 & A15

APPENDIX

DATA POINTS

Core Type	Thread Number	Core Number	Instruction	Cycles	Branch_Mispredictions	L1D_cache_refill	L1I_Cache_Refill	L2D_Cache_Refill	Execution_Time	Benchmark
A15	1	4	36901083517	37247670618	8.354590957	3.199179864	0.003932649	1.221378942	19.66440152	Fluidanimate
	1	4,5 4.5.6	36901083825 36901084069	36486851265	8.355099518 8.349326741	3.23959697 3.309231967	0.004350496 0.003740414	1.220741028 1.226405379		Fluidanimate Fluidanimate
	1			37116575223	8.349693882	3.228286637	0.003740414	1.218014187		Fluidanimate
	2	4,3,0,7	37850985190		9.037532602	3.313639976	0.007466825	1.30073038		Fluidanimate
	2	4,5	37817488252		9.031605635	3.282583237	0.007400823	1.247932271		Fluidanimate
	2	4,5,6	37820293994	41253602556	9.024333295	3.315097146	0.006971918	1.253487374		Fluidanimate
	2	4,5,6,7	37822589743	40577087170	9.011867387	3.287523783	0.006542959	1.251151714		Fluidanimate
	4	4	38941094053	51715235877	8.787619566	3.182974217	0.010211064	1.344214647	6.7663293	Fluidanimate
	4	4,5	38905653522	45034712189	8.81165565	3.270780709	0.008945315	1.304665091		Fluidanimate
	4	4,5,6	38961767408		8.802312219	3.251687225	0.009013426	1.319661275		Fluidanimate
	4	-/-/-/-		46386267807	8.845893383	3.269424595	0.008195008	1.318958268		Fluidanimate
А7	1	0	36901402161		12.19874231	2.469356185	0.025684453	1.415269238		Fluidanimate
	1	0,1	36899025775 36900460888	23785702131	12.20540732 12.20747467	2.472982726 2.485004806	0.01551985 0.015626273	1.41495098		Fluidanimate
	1	0,1,2 0,1,2,3	36900460888	23627668365	12.20747467	2.508748386	0.015862724	1.416985084 1.4191073		Fluidanimate Fluidanimate
	2	0,1,2,3		26374823935	12.28506827	2.52629401	0.013802724	1.44821191		Fluidanimate
	2	0,1	37805566820	23432925630	12.2953183	2.507236913	0.022326932	1.426433174		Fluidanimate
	2		37782136901		12.29739724	2.531155457	0.022671507	1.430951082	13.51675696	Fluidanimate
	2			23380898441	12.29337911	2.534864625	0.023805192	1.429324048		Fluidanimate
	4		38942834592		12.15867793	2.485079793	0.032748164	1.468026367		Fluidanimate
	4	0,1	38890053595		12.1635524	2.510662367	0.027338027	1.471247745	7.201298944	Fluidanimate
	4	0,1,2	38945570053	25146065730	12.14575728	2.487962299	0.026640617	1.47833269	5.545916585	
	4	-1-1-1-	38714686890	24631052154	12.21455825	2.510082206	0.02634703	1.50150885		Fluidanimate
	1		2895980742	3632525595	3.749853895	3.139922699	0.742569625	0.212172682	1.872647518	
	1	4,5	2895981048	3598659059	3.738826378	3.07405131	0.712205858	0.222445286	1.847720442	
	1	4,5,6	2895981351	3631602667	3.753234689	3.10065947	0.758511445	0.207913286	1.877361801	
	1	4,5,6,7	2895981760	3620207306	3.727264383	3.347955018 3.109709487	1.147638559	0.237457412	1.857045703	
	2	4.5	2895982954 2895983260	3555200087 3570454671	3.738742655 3.760324452	3.109709487	0.662507928 0.770198052	0.186862058 0.207478409	0.91166834 0.562969807	
A15	2	4,5,6	2895983563	3618498523	3.739904974	3.334444224	0.691725381	0.204579775		Blacksholes
	2		2895983955	3559125874	3.751042536	3.212109187	0.743606215	0.170310796	0.562796888	
	4		2895987426	3603823130	3.772351554	3.263084609	0.752982436	0.157533948	0.466303628	
	4		2895987732	3587410511	3.749910452	3.244721042	0.689557709	0.143983115	0.285197499	
	4	4,5,6	2895988076	3590101843	3.740017701	3.339032164	0.719113458	0.123773069	0.245282027	Blacksholes
	4	4,5,6,7	2895988384	3542531618	3.718792655	3.25069628	0.682838144	0.168605073	0.192227807	Blacksholes
А7	1	0	2895703130	2327188298	13.73198468	4.048556479	1.625095572	0.994277568	4.934777795	
	1	0,1	2894830686	2283258010	13.75041813	3.650313316	1.571206227	0.997567612	4.823753895	
	1	0,1,2	2898325736	2346178270	13.71998064	3.812334432	1.555429379	0.995786279	5.031252904	
	1	0,1,2,3	2899317134	2365177310	13.76470556	4.134026087	1.645493098	1.007751779	5.029360524	
	2		2898541861 2895800033	2327190479 2303286377	13.73458331 13.7567411	3.843077152 4.003118609	1.547035676 1.580690177	0.992514445 0.996099627	2.431166291 1.479614891	
	2	0,1,2	2897878119	2244262723	13.74420203	3.91193149	1.589930682	0.995808616	1.451082122	
	2	0,1,2,3	2900609880	2291205606	13.72373213	3.930384461	1.536379538	0.995587521	1.519768988	
	4	0	2899456597	2221572088	13.72840508	4.035587455	1.584722233	0.991000292		Blacksholes
	4	0,1	2897492693	2201853389	13.74893683	3.996755204	1.573726603	0.944128352	0.720553835	
	4	0,1,2	2896096100	2300505049	13.75284738	4.136992093	1.542370319	0.93377714	0.616720996	Blacksholes
	4	0,1,2,3	2896159375	2497368740	13.75915543	4.041492365	1.587666195	0.999054826	0.537259954	Blacksholes
A15		4	1884218125	1695861359	9.529343814	0.105135563	1.11107943	0.002333417	0.94782332	
		4,5	1884218429	1742835324	9.697883776	0.15198521	1.112416144	0.002465213	0.98028653	
		4,5,6	1884218734	1681068082	9.549220238	0.126446749	1.094468473	0.002297681	0.933669626	
		4,5,6,7	1884219081	1705507060	9.809742147	0.519376264	1.096803102	0.002231517	0.942828724	
		0 0,1	1886857026 1885421919	971116034.3 997885483.7	22.38507639 22.40147466	0.079050328 0.070521262	1.07168604 1.069842766	0.010445943 0.010181099	2.063047139	
A7		0,1	1885421919 1884928680	947490835.7	22.40147466 22.42015314	0.070521262	1.069842766	0.010181099 0.009782156	2.085706989 2.083836922	
		0,1,2,3	1886461463	951189417.7	22.37513929	0.100804074	1.067988952	0.010431877	2.037007755	
		4	302512314	276868821.7	4.139711373	1.145047603	0.122540466	0.259174023	0.158164156	
		4,5	302512618	273817090	4.132812734	1.143346248	0.122052209	0.257107733	0.155222211	
A15		4,5,6	302512923	268101413	4.133625062	1.16631932	0.122881803	0.252652567	0.151613169	
		4,5,6,7	302513270	273519743	4.134390534	1.172275848	0.123122974	0.252362483	0.154964934	
		0	303202170.7	166049473	14.58831904	1.56836718	0.223841845	0.544447509	0.40326281	Qsort
A7		0,1	301564584.3	173450669.7	14.51821565	1.562198253	0.203357213	0.547819633	0.372029741	Qsort
A/		0,1,2	302223931.3	155734308	14.43885327	1.506248467	0.203168336	0.554174072	0.339112963	Qsort
		0,1,2,3	304052370.3	188279207.7	14.49199358	1.531817253	0.203358608	0.535055852	0.409313131	Qsort