Detector de secuencia

Diseñar un circuito secuencial asíncrono que tiene dos entradas (X0 y X1), una salida (Z0).

- La salida Z0 va de cero a uno cuando detecta la secuencia X0X1X0X1, una vez detectada la secuencia, la salida Z0 permanece en uno.
- La salida Z0 va de uno a cero si detecta la secuencia X0X1X0.
- considerar superposición

Diagrama de estados

Tabla de estados

Х	Q2 Q1 Q0	Q2+ Q1+ Q0+	Z	C2 C1 C0
0	000	001	0	001
0	001	001	0	000
0	010	011	0	001
0	011	001	0	010
0	100	011	0	111
0	101	110	1	011
0	110	110	1	000
0	111	XXX	X	XXX
1	000	000	0	000
1	001	010	0	011
1	010	000	0	010
1	011	1000	1	111
1	100	101	1	001
1	101	101	1	000
1	110	100	1	010
1	111	XXX	X	XXX

Mapas para Z0

Z0 = X0[(Q2*Q0)+(Q2*Q1)] + X1[(Q1*Q0)+(Q2)]

Mapas para C2

$$C2 = XD[(Q2*\sim Q1*\sim Q0)] X1[(Q1*Q0)]$$

Mapas para C1

$$C1 = X0[(Q1*Q0)+(Q2*\sim Q1)]+X1[(\sim Q2*Q0)+(Q1)]$$

Mapas para C0

 $CO = XD[(\sim Q2*\sim Q0)+(Q2*\sim Q1)]+X1[(Q2*\sim Q1*\sim Q0)+(\sim Q2*Q0)]$