This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

SEQUENCE LISTING

<120> Compositions and Methods of Using Capsid Protein From Flaviviruses and Pestiviruses
<130> Upn-4105
<140> 09/971,980 <141> 2001-10-04
<150> 60/237,885 <151> 2000-10-04
<160> 73
<170> PatentIn version 3.1
<210> 1 <211> 5864 <212> DNA <213> Artificial Sequence
<220> <223> Plasmid
<400> 1 qacqqatcqq gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg 60
ccqcataqtt aagccaqtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120
cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180
ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt 240
gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata 300
tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360
cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420
attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480
atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540
atgcccagta catgacetta tgggaettte etaettggea gtacatetae gtattagtea 600
tegetattae catggtgatg eggttttgge agtacateaa tgggegtgga tageggtttg 660
actcacgggg atttccaagt ctccaccca ttgacgtcaa tgggagtttg ttttggcacc 720
aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg 780
gtaggegtgt aeggtgggag gtetatataa geagagetet etggetaaet agagaaecea 840
ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt 900
taagettgee gecaceatgg actggaeetg gateetgtte etggtggeeg eegecaeeeg 960
cgtgcacagc tctaagaaac caggaggccc cggcaagagc cgcgccgtga acatgctgaa 1020
gcgcggcatg ccccgcgtgc tgagcctgat tggcctgaag cgcgccatgc tgagcctgat 1080
cgacggcaag ggccccatac gcttcgtgct ggccctgctg gccttcttcc gcttcaccgc 1140
cattgccccc accegegecg tgctggaccg ctggegegge gtgaacaage agacegecat 1200
gaagcacctg ctgagcttca agaaggagct gggcaccctg accagcgcca tcaaccgccg 1260
cagcagcaag cagaagaagc gcggcggcaa gaccggcatt gccgtgatga ttggcctgat 1320
cgccagcgtg ggcgcggccg ctcgaggtca cccattcgaa ggtaagccta tccctaaccc 1380

tctcctcggt ctcgattcta cgcgtaccgg tcatcatcac catcaccatt gagtttaaac 1440 ccgctgatca gcctcgactg tgccttctag ttgccagcca tctgttgttt gcccttccc 1500 cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc ctttcctaat aaaatgagga 1560 aattgcatcg cattgtctga gtaggtgtca ttctattctg gggggtgggg tggggcagga 1620 cagcaagggg gaggattggg aagacaatag caggcatgct ggggatgcgg tgggctctat 1680 ggcttctgag gcggaaagaa ccagctgggg ctctaggggg tatccccacg cgccctgtag 1740 cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta cacttgccag 1800 egecetageg eeegeteett tegetttett eeetteettt etegeeaegt tegeeggett 1860 1920 teccegteaa getetaaate ggggeateee tttagggtte egatttagtg etttaeggea cctcgacccc aaaaaacttg attagggtga tggttcacgt agtgggccat cgccctgata 1980 gacggttttt cgccctttga cgttggagtc cacgttcttt aatagtggac tcttgttcca 2040 aactggaaca acactcaacc ctatctcggt ctattctttt gatttataag ggattttggg 2100 gatttcggcc tattggttaa aaaatgagct gatttaacaa aaatttaacg cgaattaatt 2160 2220 ctgtggaatg tgtgtcagtt agggtgtgga aagtccccag gctccccagg caggcagaag tatgcaaagc atgcatctca attagtcagc aaccaggtgt ggaaagtccc caggctcccc 2280 2340 agcaggcaga agtatgcaaa gcatgcatct caattagtca gcaaccatag tcccgcccct 2400 aactoogooo atooogoooo taactoogoo cagttoogoo cattotoogo oocatggotg actaatttt tttatttatg cagaggccga ggccgcctct gcctctgagc tattccagaa 2460 gtagtgagga ggcttttttg gaggcctagg cttttgcaaa aagctcccgg gagcttgtat 2520 atccattttc ggatctgatc aagagacagg atgaggatcg tttcgcatga ttgaacaaga 2580 tggattgcac gcaggttctc cggccgcttg ggtggagagg ctattcggct atgactgggc 2640 2700 acaacagaca atcggctgct ctgatgccgc cgtgttccgg ctgtcagcgc aggggcgccc 2760 ggttcttttt gtcaagaccg acctgtccgg tgccctgaat gaactgcagg acgaggcagc geggetateg tggetggeea egaegggegt teettgegea getgtgeteg aegttgteae 2820 tgaagcggga agggactggc tgctattggg cgaagtgccg gggcaggatc tcctgtcatc 2880 2940 tcaccttgct cctgccgaga aagtatccat catggctgat gcaatgcggc ggctgcatac 3000 gettgateeg getacetgee cattegacea ceaagegaaa categeateg agegageaeg 3060 tactcggatg gaagecggte ttgtcgatea ggatgatetg gacgaagage atcagggget egegeeagee gaactgtteg eeaggeteaa ggegegeatg eeegaeggeg aggatetegt 3120 3180 cgtgacccat ggcgatgcct gcttgccgaa tatcatggtg gaaaatggcc gcttttctgg 3240 atteategae tgtggcegge tgggtgtgge ggacegetat caggacatag egttggetae ccgtgatatt gctgaagagc ttggcggcga atgggctgac cgcttcctcg tgctttacgg 3300 tategooget eccgattege agegeatege ettetatege ettettgaeg agttettetg 3360 3420 agegggacte tggggttege gaaatgaceg accaagegae geecaacetg ceateacgag 3480 atttcgattc caccgccgcc ttctatgaaa ggttgggctt cggaatcgtt ttccgggacg 3540 ccggctggat gatcctccag cgcggggatc tcatgctgga gttcttcgcc cacccaact

tgtttattgc	agcttataat	ggttacaaat	aaagcaatag	catcacaaat	ttcacaaata	3600
aagcattttt	ttcactgcat	tctagttgtg	gtttgtccaa	actcatcaat	gtatcttatc	3660
atgtctgtat	accgtcgacc	tctagctaga	gcttggcgta	atcatggtca	tagctgtttc	3720
ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	agcataaagt	3780
gtaaagcctg	gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	3840
ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	3900
ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tcgctgcgct	3960
cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	4020
cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	4080
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgccccct	gacgagcatc	4140
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	4200
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	4260
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcaatgctca	cgctgtaggt	4320
atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	4380
agcccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaacccg	gtaagacacg	4440
acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	tatgtaggcg	4500
gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	acagtatttg	4560
gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	tcttgatccg	4620
gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	4680
gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	gctcagtgga	4740
acgaaaactc	acgttaaggg	attttggtca	tgagattatc	aaaaaggatc	ttcacctaga	4800
tccttttaaa	ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	taaacttggt	4860
ctgacagtta	ccaatgctta	atcagtgagg	cacctatctc	agcgatctgt	ctatttcgtt	4920
catccatagt	tgcctgactc	cccgtcgtgt	agataactac	gatacgggag	ggcttaccat	4980
ctggccccag	tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	gatttatcag	5040
caataaacca	gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	ttatccgcct	5100
ccatccagtc	tattaattgt	tgccgggaag	ctagagtaag	tagttcgcca	gttaatagtt	5160
tgcgcaacgt	tgttgccatt	gctacaggca	tcgtggtgtc	acgctcgtcg	tttggtatgg	5220
cttcattcag	ctccggttcc	caacgatcaa	ggcgagttac	atgatccccc	atgttgtgca	5280
aaaaagcggt	tagctccttc	ggtcctccga	tcgttgtcag	aagtaagttg	gccgcagtgt	5340
tatcactcat	ggttatggca	gcactgcata	attctcttac	tgtcatgcca	tccgtaagat	5400
gcttttctgt	gactggtgag	tactcaacca	agtcattctg	agaatagtgt	atgcggcgac	5460
cgagttgctc	ttgcccggcg	tcaatacggg	ataataccgc	gccacatagc	agaactttaa	5520
aagtgctcat	cattggaaaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	ttaccgctgt	5580
tgagatccag	ttcgatgtaa	cccactcgtg	cacccaactg	atcttcagca	tcttttactt	5640
tcaccagcgt	ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	5700
gggcgacacg	gaaatgttga	atactcatac	tcttcctttt	tcaatattat	tgaagcattt	5760
				D 2		

atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa	5820
taggggttcc gcgcacattt ccccgaaaag tgccacctga cgtc	5864
<210> 2 <211> 18 <212> PRT <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 2	
Met Asp Trp Thr Trp Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val 1 5 10 15	
His Ser	
<210> 3 <211> 122 <212> PRT <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 3	
Ser Lys Lys Pro Gly Gly Pro Gly Lys Ser Arg Ala Val Asn Met Leu 1 5 10 15	
Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg Ala 20 25 30	
Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu Ala 35 40 45	
Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala Val	
Leu Asp Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His Leu 70 75 80	
Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn Arg 85 90 95	
Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala Val	
Met Ile Gly Leu Ile Ala Ser Val Gly Ala	

Met Ile Gly Leu Ile Ala Ser Val Gly Ala 115 $$\rm 120\$

<210> 4 <211> 5864 <212> DNA <213> Artificial Sequence

<220> <223> Plasmid

<400> 4 gacggatcgg	gagatctccc	gatcccctat	ggtcgactct	cagtacaatc	tgctctgatg	60
ccgcatagtt	aagccagtat	ctgctccctg	cttgtgtgtt	ggaggtcgct	gagtagtgcg	120
cgagcaaaat	ttaagctaca	acaaggcaag	gcttgaccga	caattgcatg	aagaatctgc	180
ttagggttag	gcgttttgcg	ctgcttcgcg	atgtacgggc	cagatatacg	cgttgacatt	240
gattattgac	tagttattaa	tagtaatcaa	ttacggggtc	attagttcat	agcccatata	300
tggagttccg	cgttacataa	cttacggtaa	atggcccgcc	tggctgaccg	cccaacgacc	360
cccgcccatt	gacgtcaata	atgacgtatg	ttcccatagt	aacgccaata	gggactttcc	420
attgacgtca	atgggtggac	tatttacggt	aaactgccca	cttggcagta	catcaagtgt	480
atcatatgcc	aagtacgccc	cctattgacg	tcaatgacgg	taaatggccc	gcctggcatt	540
atgcccagta	catgacctta	tgggactttc	ctacttggca	gtacatctac	gtattagtca	600
tcgctattac	catggtgatg	cggttttggc	agtacatcaa	tgggcgtgga	tagcggtttg	660
actcacgggg	atttccaagt	ctccacccca	ttgacgtcaa	tgggagtttg	ttttggcacc	720
aaaatcaacg	ggactttcca	aaatgtcgta	acaactccgc	cccattgacg	caaatgggcg	780
gtaggcgtgt	acggtgggag	gtctatataa	gcagagctct	ctggctaact	agagaaccca	840
ctgcttactg	gcttatcgaa	attaatacga	ctcactatag	ggagacccaa	gctggctagt	900
taagcttgcc	gccaccatgg	attggacttg	gatcttattt	ttagttgctg	ctgctactag	960
agttcattct	tctaaaaaac	caggtggccc	cggcaagagc	cgcgccgtga	acatgctgaa	1020
gcgcggcatg	ccccgcgtgc	tgagcctgat	tggcctgaag	cgcgccatgc	tgagcctgat	1080
cgacggcaag	ggccccatac	gcttcgtgct	ggccctgctg	gccttcttcc	gcttcaccgc	1140
cattgccccc	acccgcgccg	tgctggaccg	ctggcgcggc	gtgaacaagc	agaccgccat	1200
gaagcacctg	ctgagcttca	agaaggagct	gggcaccctg	accagcgcca	tcaaccgccg	1260
cagcagcaag	cagaagaagc	gcggcggcaa	gaccggcatt	gccgtgatga	ttggcctgat	1320
cgccagcgtg	ggcgcggccg	ctcgaggtca	cccattcgaa	ggtaagccta	tccctaaccc	1380
tctcctcggt	ctcgattcta	cgcgtaccgg	tcatcatcac	catcaccatt	gagtttaaac	1440
ccgctgatca	gcctcgactg	tgccttctag	ttgccagcca	tctgttgttt	gccctcccc	1500
cgtgccttcc	ttgaccctgg	aaggtgccac	tcccactgtc	ctttcctaat	aaaatgagga	1560
aattgcatcg	cattgtctga	gtaggtgtca	ttctattctg	gggggtgggg	tggggcagga	1620
cagcaagggg	gaggattggg	aagacaatag	caggcatgct	ggggatgcgg	tgggctctat	1680
ggcttctgag	gcggaaagaa	ccagctgggg	ctctaggggg	tatccccacg	cgccctgtag	1740
cggcgcatta	agcgcggcgg	gtgtggtggt	tacgcgcagc	gtgaccgcta	cacttgccag	1800
cgccctagcg	cccgctcctt	tcgctttctt	cccttccttt	ctcgccacgt	tcgccggctt	1860
tccccgtcaa	gctctaaatc	ggggcatccc	tttagggttc	cgatttagtg	ctttacggca	1920
cctcgacccc	aaaaaacttg	attagggtga	tggttcacgt	agtgggccat	cgccctgata	1980
gacggttttt	cgccctttga	cgttggagtc	cacgttcttt	aatagtggac	tcttgttcca	2040
aactggaaca	acactcaacc	ctatctcggt	ctattctttt	gatttataag	ggattttggg	2100
gatttcggcc	tattggttaa	aaaatgagct	gatttaacaa	aaatttaacg	cgaattaatt	2160
			-	D E		

ctgtggaatg	tgtgtcagtt	agggtgtgga	aagtccccag	gctccccagg	caggcagaag	2220
tatgcaaagc	atgcatctca	attagtcagc	aaccaggtgt	ggaaagtccc	caggctcccc	2280
agcaggcaga	agtatgcaaa	gcatgcatct	caattagtca	gcaaccatag	tcccgcccct	2340
aactccgccc	atcccgcccc	taactccgcc	cagttccgcc	cattctccgc	cccatggctg	2400
actaatttt	tttatttatg	cagaggccga	ggccgcctct	gcctctgagc	tattccagaa	2460
gtagtgagga	ggcttttttg	gaggcctagg	cttttgcaaa	aagctcccgg	gagcttgtat	2520
atccattttc	ggatctgatc	aagagacagg	atgaggatcg	tttcgcatga	ttgaacaaga	2580
tggattgcac	gcaggttctc	cggccgcttg	ggtggagagg	ctattcggct	atgactgggc	2640
acaacagaca	atcggctgct	ctgatgccgc	cgtgttccgg	ctgtcagcgc	aggggcgccc	2700
ggttcttttt	gtcaagaccg	acctgtccgg	tgccctgaat	gaactgcagg	acgaggcagc	2760
gcggctatcg	tggctggcca	cgacgggcgt	tccttgcgca	gctgtgctcg	acgttgtcac	2820
tgaagcggga	agggactggc	tgctattggg	cgaagtgccg	gggcaggatc	tcctgtcatc	2880
tcaccttgct	cctgccgaga	aagtatccat	catggctgat	gcaatgcggc	ggctgcatac	2940
gcttgatccg	gctacctgcc	cattcgacca	ccaagcgaaa	catcgcatcg	agcgagcacg	3000
tactcggatg	gaagccggtc	ttgtcgatca	ggatgatctg	gacgaagagc	atcaggggct	3060
cgcgccagcc	gaactgttcg	ccaggctcaa	ggcgcgcatg	cccgacggcg	aggatctcgt	3120
cgtgacccat	ggcgatgcct	gcttgccgaa	tatcatggtg	gaaaatggcc	gcttttctgg	3180
attcatcgac	tgtggccggc	tgggtgtggc	ggaccgctat	caggacatag	cgttggctac	3240
ccgtgatatt	gctgaagagc	ttggcggcga	atgggctgac	cgcttcctcg	tgctttacgg	3300
tatcgccgct	cccgattcgc	agcgcatcgc	cttctatcgc	cttcttgacg	agttcttctg	3360
agcgggactc	tggggttcgc	gaaatgaccg	accaagcgac	gcccaacctg	ccatcacgag	3420
atttcgattc	caccgccgcc	ttctatgaaa	ggttgggctt	cggaatcgtt	ttccgggacg	3480
ccggctggat	gatcctccag	cgcggggatc	tcatgctgga	gttcttcgcc	caccccaact	3540
tgtttattgc	agcttataat	ggttacaaat	aaagcaatag	catcacaaat	ttcacaaata	3600
aagcattttt	ttcactgcat	tctagttgtg	gtttgtccaa	actcatcaat	gtatcttatc	3660
atgtctgtat	accgtcgacc	tctagctaga	gcttggcgta	atcatggtca	tagctgtttc	3720
ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	agcataaagt	3780
gtaaagcctg	gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	3840
ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	3900
ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tcgctgcgct	3960
cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	4020
cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	4080
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgccccct	gacgagcatc	4140
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	4200
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	4260
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcaatgctca	cgctgtaggt	4320

atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 4380 agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 4440 acttategee actggeagea geeactggta acaggattag cagagegagg tatgtaggeg 4500 gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg acagtatttg 4560 gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 4620 qcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 4680 gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga 4740 acqaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga 4800 tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt 4860 ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt 4920 catecatagt tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat 4980 ctggccccag tgctgcaatg ataccgcgag acccacgetc accggetcca gatttatcag 5040 caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct 5100 ccatccaqtc tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt 5160 tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg 5220 cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca 5280 aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt 5340 5400 tatcactcat qqttatqqca qcactqcata attctcttac tqtcatqcca tccqtaaqat qcttttctqt qactqqtqaq tactcaacca agtcattctq agaataqtqt atqcqqcqac 5460 cgagttgctc ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa 5520 aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt 5580 tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt 5640 tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa 5700 gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt 5760 atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa 5820 taggggttcc gcgcacattt ccccgaaaag tgccacctga cgtc 5864

```
<210> 5
```

Met Ser Lys Lys Pro Gly Gly Pro Gly Lys Ser Arg Ala Val Asn Met $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg 20 25 30

Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu
35 40

Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala Page 7 $\,$

<211> 123 <212> PRT

<213> West Nile virus

<400> 5

Val Leu Asp Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His

Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn

Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala 105

Val Met Ile Gly Leu Ile Ala Ser Val Gly Ala

<210> 6 <211> 22 <212> PRT

<213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 6

Ser Lys Lys Pro Gly Gly Pro Gly Lys Ser Arg Ala Val Asn Met Leu

Lys Arg Gly Met Pro Arg 20

<210> 7 <211> 19 <212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 7

Lys Arg Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe

Val Leu Ala

<210> 8 <211> 22 <212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 8

Thr Leu Thr Ser Ala Ile Asn Arg Arg Ser Ser Lys Gln Lys Lys Arg

Gly Gly Lys Thr Gly Ile 20

```
<210> 9
<211> 123
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 9
Met Ser Lys Lys Pro Gly Gly Pro Gly Lys Ser Arg Ala Val Asn Met
Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Thr Gly Leu Lys Arg
Ala Met Leu Ser Leu Ile Asp Gly Arg Gly Pro Thr Arg Phe Val Leu
Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala
Val Leu Asp Arg Trp Arg Ser Val Asn Lys Gln Thr Ala Met Lys His
Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn
Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala
Phe Met Ile Gly Leu Ile Ala Gly Val Gly Ala
<210> 10
<211> 113
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 10
Met Thr Lys Lys Pro Gly Gly Pro Gly Lys Asn Arg Ala Ile Asn Met 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Leu Lys Arg Gly Leu Pro Arg Val Phe Pro Leu Val Gly Val Lys Arg
Val Val Met Ser Leu Leu Asp Gly Arg Gly Pro Val Arg Phe Val Leu
Ala Leu Ile Thr Phe Phe Lys Phe Thr Ala Leu Ala Pro Thr Lys Ala 50 60
Leu Leu Gly Arg Trp Lys Ala Val Glu Lys Ser Val Ala Met Lys His 65 75 80
```

Leu Thr Ser Phe Lys Arg Glu Leu Gly Thr Leu Ile Asp Ala Val Asn

Lys Arg Gly Arg Lys Gln Asn Lys Arg Gly Gly Asn Glu Gly Ser Ile

Met

<210> 11 <211> 114 <212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 11

Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg

Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu

Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala 50 60

Val Leu Asp Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His 80

Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn

Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala

Val Met

<210> 12

<211> 90
<212> PRT
<213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 12

Arg Asn Thr Pro Phe Asn Met Leu Lys Arg Glu Arg Asn Arg Val Ser 10

Thr Val Gln Gln Leu Thr Arg Phe Ser Leu Gly Met Leu Gln Lys Gly

Arg Gly Pro Leu Lys Leu Phe Met Ala Leu Val Ala Phe Leu Arg Phe

Leu Thr Ile Pro Pro Thr Ala Gly Ile Leu Lys Arg Trp Gly Thr Ile 50 55 60						
Lys Lys Ser Lys Ala Ile Asn Val Leu Arg Gly Phe Arg Lys Glu Ile 65 70 75 80						
Gly Arg Met Leu Asn Ile Leu Asn Arg Arg 85 90						
<210> 13 <211> 89 <212> PRT <213> Artificial Sequence						
<220> <223> Novel Sequence						
<400> 13						
Lys Ser Arg Ala Val Asn Met Leu Lys Arg Gly Met Pro Arg Val Leu 1 10 15						
Ser Leu Ile Gly Leu Lys Arg Ala Met Leu Ser Leu Ile Asp Gly Lys 20 25 30						
Gly Pro Ile Arg Phe Val Leu Ala Leu Leu Ala Phe Phe Arg Phe Thr 35 40 45						
Ala Ile Ala Pro Thr Arg Ala Val Leu Asp Arg Trp Arg Gly Val Asn 50 60						
Lys Gln Thr Ala Met Lys His Leu Leu Ser Phe Lys Lys Glu Leu Gly 70 75 80						
Thr Leu Thr Ser Ala Ile Asn Arg Arg 85						
<210> 14 <211> 90 <212> DNA <213> Artificial Sequence						
<220> <223> Novel Sequence						
<pre><400> 14 atggactgga cctggatcct gttcctggtg gccgccgcca cccgcgtgca cagctctaag 60</pre>						
aaaccaggag gccccggcaa gagccgcgcc 90						
<210> 15 <211> 90 <212> DNA <213> Artificial Sequence						
<220> <223> Novel Sequence						
<400> 15 atggattgga cttggatctt atttttagtt gctgctgcta ctagagttca ttcttctaaa 60						
Dago 11						

aaaccag	ggtg gccccggcaa gagccgcgcc	90
<210> <211> <212> <213>	16 88 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ggctcag	16 gcat ggcgcgcttc aggccaatca ggctcagcac gcggggcatg ccgcgcttca	60
gcatgtt	tcac ggcgcggctc ttgccggg	88
<210> <211> <212> <213>	17 90 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ggcctga	17 aage gegecatget gageetgate gaeggeaagg geeceataeg ettegtgetg	60
gccctgo	ctgg ccttcttccg cttcaccgcc	90
<210> <211> <212> <213>	18 89 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ggtgctt	18 ccat ggcggtctgc ttgttcacgc cgcgccagcg gtccagcacg gcgcgggtgg	60
gggcaat	cggc ggtgaagcgg aagaaggcc	89
<210> <211> <212> <213>	19 89 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> ccgccat	19 cgaa gcacctgctg agcttcaaga aggagctggg caccctgacc agcgccatca	60
accgccg	gcag cagcaagcag aagaagcgc	89
<210> <211> <212> <213>	20 81 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400>	20 cacg ctggcgatca ggccaatcat cacggcaatg ccggtcttgc cgccgcgctt	60
cttctgc	ettg etgetgegge g	81

```
<210> 21
<211> 39
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 21
                                                                               39
cccaagettg ccgccaccat ggactggacc tggatcctg
<210> 22
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 22
cccaagcttg ccgccaccat ggattggact tgg
                                                                               33
<210> 23
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 23
atagtttagc ggccgcgccc acgctggcga tcaggcc
                                                                               37
<210> 24
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 24
Lys Gly Pro Ile Arg Phe Val Leu
<210> 25
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 25
Gly Gly Pro Gly Lys Ser Arg Ala
<210> 26
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 26
```

```
Ile Ala Pro Thr Arg Ala Val Leu
<210> 27
<211> 40
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 27
Thr Trp Thr Gly Val Glu Ala Leu Ile Arg Ile Leu Gln Gln Leu Leu
Phe Ile His Phe Arg Ile Gly Cys Arg His Ser Arg Ile Gly Ile Ile
Gln Gln Arg Arg Thr Arg Asn Gly
<210> 28
<211> 43
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 28
Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His Leu Leu Ser
Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn Arg Arg Ser
Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly
<210> 29
<211> 106
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 29
Ala Val Lys Thr Val Ala Ser Ala Leu Gln Phe Gly Val Asp Ala Leu
Glu Arg Gly Leu Ile Asn Thr Val Leu Ser Val Lys Leu Arg His Ala
Pro Pro Met Phe Ile Leu Gln Thr Leu Ala Asp Pro Thr Phe Thr Glu
Arg Gly Phe Ser Lys Thr Val Lys Ser Asp Leu Ile Ala Met Phe Lys
                          55
                                              Page 14
```

Arg His Leu Leu Glu His Ser Phe Phe Leu Asp Arg Ala Glu Asn Met Gly Ser Gly Phe Ser Gln Tyr Ser Arg Leu Ser Glu Met Val Ala Ala Val Ser Gly Glu Ser Val Leu Lys Gly Val <210> 30 <211> 110 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 30 Pro Gly Lys Ser Arg Ala Val Asn Met Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala Val Leu Asp Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala Val Met Ile Gly Leu <210> 31 <211> 106 <212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 31

His Met Met Val Ile Phe Arg Leu Met Arg Thr Asn Phe Leu Ile Lys

Phe Leu Leu Ile His Gln Gly Met His Met Val Ala Gly His Asp Ala 20 25 30

Asn Asp Ala Val Ile Ser Asn Val Ala Gln Ala Arg Phe Ser Gly Leu
35 40

Leu Ile Val Lys Thr Val Leu Asp His Ile Leu Gln Lys Thr Glu Arg Gly Val Arg Leu His Pro Leu Ala Arg Thr Ala Lys Val Lys Asn Glu Val Asn Ser Phe Lys Ala Ala Leu Ser Ser Leu Ala Lys His Gly Glu Tyr Ala Pro Phe Ala Arg Leu Leu Asn Leu <210> 32 <211> 108 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 32 Lys Ser Arg Ala Val Asn Met Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala Val Leu Asp Arg Trp Arg Gly Val Asn Lys Gln Thr Ala Met Lys His Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile Asn Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly Ile Ala Val Met Ile Gly Leu 100 <210> 33 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 33 Lys Pro Asp Gly Ser Glu Cys Leu Pro Ala Ala Pro Asp Gly Ile Arg

Gly Phe Pro Arg 20

```
<210> 34
<211> 20
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 34
Lys Pro Gly Gly Pro Gly Lys Ser Arg Ala Val Asn Met Leu Lys Arg
Gly Met Pro Arg
<210> 35
<211> 23
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 35
Leu Gln Leu Phe Leu Arg Ala Thr Thr Glu Leu Arg Thr Phe Ser Ile
Leu Asn Arg Lys Ala Ile Asp
<210> 36
<211> 24
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 36
Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg Ala Val
Leu Asp Arg Trp Arg Gly Val Asn
             20
<210> 37
<211> 47
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 37
Arg Ser Ala Arg His Pro Trp Arg Ile Arg Phe Gly Ala Pro Gln Ala
Phe Leu Ala Gly Leu Leu Ala Thr Val Ala Val Gly Thr Ala Arg
Ala Gly Leu Gln Pro Arg Ala Asp Met Ala Ala Pro Pro Thr Leu
```

<210> 38

<210 50
<211 52
<212 PRT
<213 Artificial Sequence</pre>

<220>

<223> Novel Sequence

<400> 38

Lys His Leu Leu Ser Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala

Ile Asn Arg Arg Ser Ser Lys Gln Lys Lys Arg Gly Gly Lys Thr Gly

Ile Ala Val Met 50

<210> 39 <211> 45 <212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 39

Leu His His Cys Ile Ala Arg Trp Ile Ala Gln Arg Gly Gly Trp Val

Ala Ala Leu Asn Leu Gly Asn Gly Pro Ile Leu Asn Val Leu Val Val

Leu Gly Val Val Leu Leu Gly Gln Phe Val Val Arg Arg

<210> 40 <211> 47 <212> PRT

<213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 40

Leu Lys Arg Gly Met Pro Arg Val Leu Ser Leu Ile Gly Leu Lys Arg

Ala Met Leu Ser Leu Ile Asp Gly Lys Gly Pro Ile Arg Phe Val Leu

Ala Leu Leu Ala Phe Phe Arg Phe Thr Ala Ile Ala Pro Thr Arg

```
<210> 41
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 41
Thr Gly Ala Leu Leu Gln Gly Met Ile Ala Ala Val Asp Thr
<210> 42
<220>
<223> Novel Sequence
<400> 42
Thr Gly Ile Ala Val Met Ile Gly Leu Ile Ala Ser Val Gly Ala
<210> 43
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 43
Gln Thr Glu Asp Ile Arg Asp Val Leu Arg Phe Met Asp Gly Phe Thr
Thr Leu Lys Glu Asn Ile Met Arg Phe Trp Arg Ser Pro Asn Pro Gly
Ser Trp Val Ser Cys Gln Val Leu Leu Ala Leu Leu
<210> 44
<211> 45
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 44
Lys Gln Thr Ala Met Lys His Leu Leu Ser Phe Lys Lys Glu Leu Gly
Thr Leu Thr Ser Ala Ile Asn Arg Arg Ser Ser Lys Gln Lys Lys Arg
Gly Gly Lys Thr Gly Ile Ala Val Met Ile Gly Leu Ile
```

<210> 45

```
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 45
Phe Arg Arg Glu Leu Asp Ala Leu Gly His Glu Leu
<210> 46
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Novel Sequence
<400> 46
Phe Lys Lys Glu Leu Gly Thr Leu Thr Ser Ala Ile
<210> 47
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 47
Asp Ser Phe Lys Lys Gly Leu Pro Arg
<210> 48
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 48
Asn Met Leu Lys Arg Gly Met Pro Arg
<210> 49
<211> 34
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 49
Phe Arg Gln Leu Asp Asn Ser Arg Thr Arg Gln Phe Thr Pro His His
Leu Asn Cys Val Ile Ser Ser Val Tyr Glu Gly Thr Arg Asp Gly Val
```

```
Gly Ala
<210> 50
<211> 37
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 50
Leu Glu Glu Leu Lys Asn Glu Ala Val Arg His Phe Pro Arg Ile Trp
Leu His Ser Leu Gly Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp
Thr Gly Val Glu Ala
        35
<210> 51
<211> 44
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 51
Thr Trp Thr Gly Val Glu Ala Leu Ile Arg Ile Leu Gln Gln Leu Leu
Phe Ile His Phe Arg Ile Gly Cys Arg His Ser Arg Ile Gly Ile Ile
                                   25
Gln Gln Arg Arg Thr Arg Asn Gly Ala Ser Lys Ser
<210> 52
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 52
Asp Phe His Arg Phe Ser Tyr Ile Arg Asp Arg Arg Ala
<210> 53
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 53
Arg His Ser Arg Ile Gly Ile Ile Gln Gln Arg Arg Thr
```

```
5
                                       10
<210> 54
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 54
Glu Phe Gly Asn Thr Phe Ser Val Pro Asp Pro Leu Arg Glu Val Gln
Arg Leu
<210> 55
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 55
Thr Tyr Gly Asp Thr Trp Thr Gly Val Glu Ala Leu Ile Arg Ile Leu
Gln Gln Leu
<210> 56
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 56
Trp Leu Trp Ser Glu Gly Gln Gly Ala Val Phe Tyr
<210> 57
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 57
Arg Ile Trp Leu His Ser Leu Gly Gln His Ile Tyr
               5
<210> 58
<211> 12
<212> PRT
<213> Artificial Sequence
<220>
```

```
<400> 58
Leu Ser Lys Tyr Leu Ser Asp Leu Leu Phe Val Phe
<210> 59
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 59
Leu Ile Arg Ile Leu Gln Gln Leu Leu Phe Ile His Phe
<210> 60
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 60
Ile Gly Ala Val Leu Pro Lys Gly Ser Phe Lys Ser Thr Ile Met Arg
Val Leu Asp Glu Met Glu Val Leu Gly Val Arg Ile Met Pro Arg
<210> 61
<211> 31
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 61
Glu Asp Gln Gly Pro Gln Arg Glu Pro Tyr Asn Asp Trp Thr Leu Glu
Leu Leu Glu Glu Leu Lys Asn Glu Ala Val Arg His Phe Pro Arg
<210> 62
<210> 02
<211> 64
<212> PRT
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 62
Pro Gln Ala Ser Ile Arg Gln Ser Gln Glu Glu Pro Glu Asp Leu Arg
Pro Glu Ile Arg Ile Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe Asn
```

Page 23

<223> Novel Sequence

Glu Thr Tyr Thr Arg Arg Val Phe Ala Asp Tyr Arg Glu Ala Glu Asp

His Pro Gln Met Val Ile Leu Gln Leu Leu Arg Phe Ile Phe Arg Leu

<210> 63 <211> 68

<212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 63

Asp Gln Gly Pro Gln Arg Glu Pro Tyr Asn Asp Trp Thr Leu Glu Leu

Leu Glu Glu Leu Lys Asn Glu Ala Val Arg His Phe Pro Arg Ile Trp

Leu His Ser Leu Gly Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp

Thr Gly Val Glu Ala Leu Ile Arg Ile Leu Gln Gln Leu Leu Phe Ile

His Phe Arg Ile

<210> 64

<211> 50 <211> 50 <212> PRT <213> Artificial Sequence

<220>

<223> Novel Sequence

<400> 64

Leu Arg Pro Glu Ile Arg Ile Gln Glu Leu Arg Arg Ile Gly Asp Glu

Phe Asn Glu Thr Tyr Thr Arg Arg Ala Phe Ala Asp Tyr Arg Glu Ala

Glu Asp His Pro Gln Met Val Ile Leu Gln Leu Leu Arg Phe Ile Phe

Arg Leu 50

<210> 65

<211> 53
<212> PRT
<213> Artificial Sequence

<220>

<223> Novel Sequence <400> 65 Leu Leu Glu Glu Leu Lys Asn Glu Ala Val Arg His Phe Pro Arg Ile Trp Leu His Ser Leu Gly Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr 20 25 30Trp Thr Gly Val Glu Ala Leu Ile Arg Ile Leu Gln Gln Leu Leu Phe Ile His Phe Arg Ile 50 <210> 66 <211> 48 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 66 Arg Asn Val Ala Arg Gln Leu His Ile Pro Leu Gln Ser Glu Pro Val Val Thr Asp Ala Phe Leu Ala Val Ala Gly His Ile Phe Ser Ala Gly Ile Thr Trp Gly Lys Val Val Ser Leu Tyr Ser Val Ala Ala Gly Leu <210> <211> 52 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 67 Asn Asp Trp Thr Leu Glu Leu Leu Glu Glu Leu Lys Asn Glu Ala Val Arg His Phe Pro Arg Ile Trp Leu His Ser Leu Gly Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp Thr Gly Val Glu Ala Leu Ile Arg Ile Leu Gln Gln Leu 50 <210> 68 <211> 53
<212> PRT
<213> Artificial Sequence

<220> <223> Novel Sequence <400> 68 Trp Thr Leu Asp Phe Leu Arg Glu Arg Leu Leu Gly Trp Ile Gln Asp Gln Gly Gly Trp Asp Gly Leu Leu Ser Tyr Phe Gly Thr Pro Thr Trp Gln Thr Val Thr Ile Phe Val Ala Gly Leu Thr Ala Ser Leu Thr Ile Trp Lys Lys Met Gly <210> 69 <211> 58 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 69 Trp Thr Leu Glu Leu Leu Glu Glu Leu Lys Asn Glu Ala Val Arg His Phe Pro Arg Ile Trp Leu His Ser Leu Gly Gln His Ile Tyr Glu Thr Tyr Gly Asp Thr Trp Thr Gly Val Glu Ala Leu Ile Arg Ile Leu Gln Gln Leu Leu Phe Ile His Phe Arg Ile Gly <210> 70 <211> 24 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence <400> 70 Trp Thr Leu Asp Phe Leu Arg Glu Arg Leu Leu Gly Trp Ile Gln Asp 10 Gln Gly Gly Trp Val Arg Leu Leu <210> 71 <211> 25 <212> PRT <213> Artificial Sequence <220> <223> Novel Sequence