REACTION DE QUELQUE METAUX AVEC LES SOLUTION ACIDES ET BASIQUES

I) ACTION DE L'ACIDE CHLORHYDRIQUE SUR LES METAUX :

L'acide chlorhydrique ou chlorure d'hydrogène est une solution acide de formule ionique (H⁺ + Cl⁻) obtenue par la dissolution de l'acide chlorhydrique HCl dans l'eau pure.

1) Action sur le fer :

a) Expérience :

Dans un tube à essai grand modèle, contenant le poudre de Fer (Fe); on ajoute environ 5 cm³ d'acide chlorhydrique de pH=2, et on le bouche.

Quand la pression est forte on approche une flamme à l'orifice du tube.

b) Observation:

- > Pendant, la réaction, on observe :
 - ✓ Une vive effervescence et dégagement des bulles.
 - ✓ La solution devient verte.
 - ✓ Disparation d'une partie de fer.
- ➤ On entend une petite détonation à l'approche de l'allumette enflammée près de l'orifice du tube.
- ➤ Lorsqu'on mesure le pH de la solution on voit que la valeur est augmentée.

c) Analyse de la solution après la transformation :

On prend deux quantités de la solution obtenue on ajoute a à une quantité du nitrate d'argent et à l'autre quantité de la soude :

On observe la formation d'un précipité blanc et un précipité vert, ce qui preuve la présence des ions de chlorure Cl⁻ et de fer II Fe²⁺.

d) Interprétation :

- ➤ l'effervescence montre qu'une réaction chimique s'est produite entre le fer et l'acide chlorhydrique.
- Les bulles prouvent qu'un gaz se dégage.
- ➤ La détonation qui se produit en présence d'une flamme montre que le gaz dégagé est le dihydrogène de formule H₂.
- ➤ L'augmentation du pH explique la disparition des ions H⁺. donc ils ont réagit.
- ➤ D'après le test d'identification des ions, on déduit que la formule ionique de la solution verte est (Fe²⁺ + 2Cl⁻). C'est la solution de chlorure de fer II.

e) Conclusion:

Le fer réagit avec la solution d'acide chlorhydrique. Au cour de cette réaction les réactifs sont le fer <u>Fe</u> et les ions d'hydrogène $\underline{\mathbf{H}}^+$, et les produits sont le gaz dihydrogène $\underline{\mathbf{H}}_2$ et la solution de chlorure de fer II $(\underline{\mathsf{Fe}^{2^+}} + 2\mathsf{Cl}^-)$ dont :

> Le bilan littéral est :

Fer + acide chlorhydrique → dihydrogène + solution de chlorure de fer II

- Equation bilan de la réaction :
 - Fe + 2(H⁺ + Cl⁻) \longrightarrow (Fe²⁺ + 2Cl⁻) + H₂
- > Equation simplifié :
- ightharpoonup Fe + 2H⁺ \longrightarrow Fe²⁺ + H₂

REMARQUE:

Les ions chlorure n'ont pas réagit, ce sont des ions spectateurs, ils n'interviennent donc pas dans la réaction, donc on peut les éliminer de l'équation ce qui donne l'équation simplifié.

2) Action sur le zinc :

a) Expérience:

Dans un tube à essai grand modèle, contenant grenailles de zinc (Zn); on ajoute environ 5 cm³ d'acide chlorhydrique de pH=2, et on le bouche.

Quand la pression est forte on approche une flamme à l'orifice du tube

b) Observation:

- Pendant, la réaction, on observe :
 - ✓ Une vive effervescence et dégagement des bulles.
 - ✓ Disparation d'une partie de zinc.
- ➤ On entend une petite détonation à l'approche de l'allumette enflammée près de l'orifice du tube.
- ➤ Lorsqu'on mesure le pH de la solution on voit que la valeur est augmentée.
- Quand on ajoute la solution de nitrate d'argent à une quantité de la solution produite on observe la formation d'un précipité blanc qui noircie à l'exposé de la lumière.
- Quand on ajoute la solution de soude à une autre quantité de la solution produite on observe la formation d'un précipité blanc.

b) Interprétation :

- ➤ l'effervescence montre qu'une réaction chimique s'est produite entre le zinc et l'acide chlorhydrique.
- > Les bulles prouvent qu'un gaz se dégage.
- ➤ La détonation qui se produit en présence d'une flamme montre que le gaz dégagé est le dihydrogène de formule H₂.

- ➤ L'augmentation du pH explique la disparition des ions H⁺. donc ils ont réagit.
- ➤ D'après le test d'identification des ions on déduit que la solution contient des ions de zinc **Zn**²⁺ et les ions de chlorure **Cl**⁻, d'où la formule ionique de la solution produite est (Zn²⁺ + 2Cl⁻). C'est la solution de chlorure de zinc.

c) Conclusion:

Le réagit avec la solution d'acide chlorhydrique. Au cour de cette réaction les réactifs sont le zinc \underline{Zn} et les ions d'hydrogène \underline{H}^+ , et les produits sont le gaz dihydrogène \underline{H}_2 et la solution de chlorure de zinc $(Zn^{2+} + 2Cl^-)$ dont :

Le bilan littéral est :

zinc + acide chlorhydrique → dihydrogène + solution de chlorure de zinc

Equation bilan de la réaction :

$$Zn + 2(H^{+} + Cl^{-}) \longrightarrow (Zn^{2+} + 2Cl^{-}) + H_2$$

Equation simplifié :

$$ightharpoonup Zn^{2+} + H_2$$

3) Action sur l'aluminium :

Expérience:

Dans un tube à essai grand modèle, contenant le poudre d'aluminium (AI); on ajoute environ 5 cm³ d'acide chlorhydrique de pH=2, et on le bouche.

Quand la pression est forte on approche une flamme à l'orifice du tube.

Observation:

- > Pendant, la réaction, on observe :
 - ✓ Une vive effervescence et dégagement des bulles.
 - ✓ Disparation d'une partie d'aluminium.

- ➤ On entend une petite détonation à l'approche de l'allumette enflammée près de l'orifice du tube.
- ➤ Lorsqu'on mesure le pH de la solution on voit que la valeur est augmentée.
- ➤ Quand on ajoute la solution de nitrate d'argent à une quantité de la solution produite on observe la formation d'un précipité blanc qui noircie à l'exposé de la lumière.
- ➤ Quand on ajoute la solution de soude à une autre quantité de la solution produite on observe la formation d'un précipité blanc.

d) Interprétation :

- L'effervescence montre qu'une réaction chimique s'est produite entre l'aluminium et l'acide chlorhydrique.
- > Les bulles prouvent qu'un gaz se dégage.
- ➤ La détonation qui se produit en présence d'une flamme montre que le gaz dégagé est le dihydrogène de formule H₂.
- L'augmentation du pH explique la disparition des ions H⁺. donc ils ont réagit.
- D'après le test d'identification des ions on déduit que la solution contient les ions d'aluminium Al³⁺ et les ions de chlorure Cl⁻, d'où la formule ionique de la solution produite est (Al³⁺ + 2Cl⁻). C'est la solution de chlorure d'aluminium.

e) Conclusion:

Le réagit avec la solution d'acide chlorhydrique. Au cour de cette réaction les réactifs sont l'aluminium $\underline{\mathbf{AI}}$ et les ions d'hydrogène $\underline{\mathbf{H}}^+$, et les produits sont le gaz dihydrogène $\underline{\mathbf{H}}_2$ et la solution de chlorure d'aluminium $\underline{(\mathbf{AI}^{3+} + 3\mathbf{CI}^-)}$ dont :

Le bilan littéral est :

Aluminium + acide chlorhydrique → dihydrogène + chlorure d'aluminium

Equation bilan de la réaction :

$$2AI + 6(H^{+} + CI^{-}) \longrightarrow 2(AI^{3+} + 3CI^{-}) + 3H_{2}$$

Equation simplifié :

$$\rightarrow$$
 2AI + 6H⁺ \longrightarrow 2AI³⁺ + 3H₂

4) Action sur le cuivre :

a) Expérience:

Dans un tube à essai grand modèle, contenant des tournures de cuivre (Cu); on ajoute environ 5 cm³ d'acide chlorhydrique de pH=2, et on le bouche.

b) Observation:

On ne voit aucun changement dans le tube.

c) Interprétation :

L'acide chlorhydrique ne réagit pas avec le cuivre.

II) ACTION DE LA SOUDE SUR LES METAUX :

- ➤ La soude de nom chimique hydroxyde de sodium et formule ionique (Na⁺ + HO⁻) est une solution basique, on l'obtient par la dissolution de la soude NaOH dans l'eau pure.
- La soude ne réagit pas avec le fer et cuivre.
- La soude réagit avec le zinc et se produit le dihydrogène et le zincate de sodium le bilan de la réaction est :

Zinc + hydroxyde de sodium — dihydrogène + zincate de sodium

La soude réagit avec l'aluminium et se produit le dihydrogène et aluminate de sodium le bilan de la réaction est :

Aluminium + hydroxyde de sodium ----- aluminate de sodium+ dihydrogène