Основы машинного обучения

Лекция 10

Логистическая регрессия и метод опорных векторов

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2025

Логистическая регрессия: простое объяснение

Логистическая регрессия

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с b(x) > 0.9
- 10% невозвращённых кредитов нормально

- Баннерная реклама
- b(x) вероятность, что пользователь кликнет по рекламе
- c(x) прибыль в случае клика
- c(x)b(x)— хотим оптимизировать

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

Будем говорить, что модель b(x) предсказывает вероятности, если среди объектов с b(x) = p доля положительных равна p.

Линейный классификатор

$$a(x) = sign \langle w, x \rangle$$

• Обучим как-нибудь — например, на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Может, $\langle w, x \rangle$ сойдёт за оценку?

Линейный классификатор

- Переведём выход модели на отрезок [0, 1]
- Например, с помощью сигмоиды:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

Сигмоида

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

• Как обучать?

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$
- То есть задача сделать отступы на всех объектах максимальными

$$y_i\langle w, x_i\rangle \to \max_w$$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} \rightarrow \min_{w}$$

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен 1
- Если $y_i=+1$, то заменить $\sigma(\langle w,x_i\rangle)=1$ на $\sigma(\langle w,x_i\rangle)=0.5$ так же плохо, как заменить $\sigma(\langle w,x_i\rangle)=0.5$ на $\sigma(\langle w,x_i\rangle)=0$
- Надо строже!

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен $-\log 0 = +\infty$
- Достаточно строго
- Функция потерь называется **log-loss**

$$L(y,z) = -[y = 1] \log z - [y = -1] \log(1 - z)$$

Логистическая регрессия

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log \left(1 - \sigma(\langle w, x_i \rangle) \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(1 - \frac{1}{1 + \exp(-\langle w, x \rangle)} \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_i = -1] \log \left(\frac{1}{1 + \exp(\langle w, x \rangle)} \right) \right\} =$$

$$\sum_{i=1}^{\ell} \left\{ [y_i = 1] \log (1 + \exp(-\langle w, x \rangle)) + [y_i = -1] \log (1 + \exp(\langle w, x \rangle)) \right\} =$$

$$\sum_{i=1}^{\ell} \log (1 + \exp(-y_i \langle w, x_i \rangle))$$

Калибровочная кривая

- Разобьём отрезок [0,1] на n корзинок $[0,t_1],[t_1,t_2],\dots,[t_{n-1},1]$ это ось X
- Для каждого отрезка $[t_i, t_{i+1}]$ берём объекты, для которых $b(x) \in [t_i, t_{i+1}]$
- Считаем среди объектов долю положительных, откладываем её на оси Y

Калибровочная кривая

Метод опорных векторов

Hinge loss

• Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \max(0, 1 - y_i \langle w, x_i \rangle) \to \min_{w}$$

Какой классификатор лучше?

