HW3: Tuesday (11/05) Project proposal- lager (") Recap -> Topological transitivity of irrational rotations on T. -> Linear perturbation analysis le.g. Limit ycles (closed isolated orbit)
chaos

F: M = M

of: TM > TM

Evolution of infinite model binus in productations

Maps:

$$V(n) \in T_nM$$
 $V(n) \in T_nM$
 $V(n) \in T_nM$

Linear pertutation evolution \underline{Maps} $\omega_{n+1} = dF(x_n) \omega_n$ Flow $\frac{d\omega(x)}{dt} = dv(x_1)$ Ft. χ_ο , χ_ι , ... to: fixed point $v(x_0) = 0$ F(x0) = x0 Behavior completely understood from +t $aig(dF(x_0))$ $aig(dv(x_0))$ Josephanis / behair of perhuhating -) Stability oround fixed points Ly apuser method for dusymptotie stability of fixed points

Fix:

-> whate do or hit look the around pred pt ? -> Are jixed pt asymptotially stable?

Setting:
$$\frac{dF'(n)}{dt} = v(F^{\dagger}n, t)$$
 $v \in C^{1}(M \times I_{t})$

I unique whit $F'(n)$ in some open set on $M \times I_{t}$.

 $T_t = (0, \infty)$, As $t \to \infty$, $F^t(x)$ unbounded or for t finite, $f^t(x)$ approaches ∂M .