Normal Mixture in R Markdown

Cosmin Borsa*
11/02/2018

Abstract

This document is a homework assignment for the course Statistical Computing at the University of Connecticut.

1 Normal Mixture

In this section we will now consider a normal mixture of unknown parameters of the normal distribution. The prior probability distribution for the parameters μ_1 and μ_2 is $N(0,10^2)$, while the prior probability distribution for $\frac{1}{\sigma_1^2}$ and $\frac{1}{\sigma_2^2}$ is given by $\Gamma(0.5,10)$. Since $\frac{1}{\sigma_1^2}$ and $\frac{1}{\sigma_2^2}$ are Gamma distributed, the parameters σ_1^2 and σ_2^2 are distributed with Inv-Gamma(0.5, 10). Thus, the probability density function for the Inverse Gamma distributed parameters σ_1^2 and σ_2^2 is given by

$$f_{\rm IG}(x) = \frac{1}{10^{0.5}\Gamma(0.5)} x^{-1.5} e^{-\frac{1}{10x}}$$

All the prior distributions are independent. Thus, for the density function of the mixture normal distributed random variable X with δ as the mixing parameter, we have

$$f(x) = \delta\phi(x|\mu_1, \sigma_1^2) + (1 - \delta)\phi(x|\mu_2, \sigma_2^2)$$

Therefore, we obtain the following mixture distribution for X

$$f(x) = \delta \cdot \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} + (1-\delta) \cdot \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}}$$

Next, we would like to compute the likelihood function for a sample of size n. To do that we are going to let \mathbf{x} be a vector that stores n random variables distributed with the mixture normal distribution. We then have

$$L(\mathbf{x}|\delta, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2) = \prod_{i=1}^n \left(\delta \cdot \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_i - \mu_1)^2}{2\sigma_1^2}} + (1 - \delta) \cdot \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_i - \mu_2)^2}{2\sigma_2^2}} \right)$$

Before we apply the Gibbs sampling, we have to obtain the posterior distribution for the parameters. Let θ be a vector such that $\theta = (\delta, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2)$. Hence, we have

$$p(\theta|\mathbf{x}) \propto L(x|\theta) \cdot \phi(\mu_1|0, 10^2) \cdot \phi(\mu_2|0, 10^2) \cdot f_{\rm IG}(\sigma_1^2) \cdot f_{\rm IG}(\sigma_2^2)$$

^{*}cosmin.borsa@uconn.edu; M.S. in Applied Financial Mathematics, Department of Mathematics, University of Connecticut.

We will now compute the log-posterior distribution

$$\log(p(\theta|x)) = \sum_{i=1}^{n} \log(f(x_i)) + \log(\phi(\mu_1|0, 10^2)) + \log(\phi(\mu_2|0, 10^2)) + \log(f_{IG}(\sigma_1^2)) + \log(f_{IG}(\sigma_2^2))$$

With the log-posterior distribution we can code the Gibbs sampling using the function arms in the R-package HI. Hoewever, before we do that we need to generate some data.

```
library('invgamma')
library('HI')

delta <- 0.7
n <- 100
set.seed(123)
u <- rbinom(n, prob = delta, size = 1)
x <- rnorm(n, ifelse(u == 1, 7, 10), 0.5)</pre>
```

Next, we will implement the log-posterior distribution.

Now, we will code the Gibbs Sampling with using the arms function.

Last, we will plot the histogram of the results for all the parameters.

```
niter <- 2500
nburn <- 100
thetaInit <- c(0.3, 10, 7, 0.25, 0.25)
sim <- mymcmc(niter, thetaInit, x)

plot(ts(sim[,1]))</pre>
```


plot(ts(sim[,2]))

Histogram of the first $\boldsymbol{\mu}$

plot(ts(sim[,3]))

Histogram of the second $\boldsymbol{\mu}$

plot(ts(sim[,4]))

plot(ts(sim[,5]))

From the histograms we can see that the estimated values of the vector θ gives us $\delta = 0.3$, $\mu_1 = 10$, $\mu_2 = 7$, $\sigma_1^2 = 0.25$, and $\sigma_2^2 = 0.25$. To incease the speed of the algorithm, we have choosen these values as the initial vector θ .

2 Acknowledgment

I would like to thank Professor Jun Yan for granting me a deadline extension for this homework assignment.