CSE 417T Introduction to Machine Learning

Instructor: Chien-Ju Ho

Plan for Today

- Welcome and introduction
- What's the class about?
- Logistics

- Lecture
 - Setting up the learning problem
 - Perceptron learning algorithm

What is Machine Learning?

What Machine Learning Can Do?

Example: Credit Card Approval

Input: customer information

age	32 years
gender	male
salary	40,000
debt	26,000
years in job	1 year
years at home	3 years
• • •	• • •

Output: a prediction

Will the customer be a good customer for the bank?

A brute-force solution

- Build a large table that maps all possible attribute combinations to a prediction
- Not really feasible at scale
 - Possible attribute combinations could be infinite
 - Storage, computation
- How to come up with the table?

A "Machine Learning" Approach

Hypothesis / Model (Some math function)

Data

(Historical Customer Data)

Find a hypothesis that "fits" the data (The process requires a lot of computation)

What is Machine Learning?

"learning from data"

"using a set of observations to uncover an underlying pattern"

Use scenarios of machine learning

- A pattern exists
- No analytical solution: We cannot pin it down mathematically
- We have data on it

More Formally (For Supervised Learning)

- Formulation: (credit card approval example)
 - input (features): $\vec{x} = (x_1, x_2, ..., x_d) \in X$ (customer's information)
 - output (label): $y \in Y$ (good/bad customer)
 - unknown target function: $f: X \to Y$ (ideal credit approval formula)
 - data $(\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N)$ (historical records)
 - goal: learn a g close to f (formula to be used)
- Two central questions
 - What can we say about how close g is to f?
 - How do we learn *g*?

Note on notations:

We interchangeably use (bold font) x and \vec{x} to denote a column vector in this course.

The former is used in the textbook. the later is for the convenience of writing.

TRAINING EXAMPLES

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$

(historical records of credit customers)

Given by the learning problem

Goal of learning

UNKNOWN TARGET FUNCTION $f:\mathcal{X}\mapsto\mathcal{Y}$ (ideal credit approval formula) $y_n = f(\mathbf{x}_n)$

TRAINING EXAMPLES

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$

(historical records of credit customers)

(set of candidate formulas)

Given by the learning problem

FINAL **HYPOTHESIS**

 $g \approx f$

(learned credit approval formula)

Goal of learning

$$f: \mathcal{X} \mapsto \mathcal{Y}$$

(ideal credit approval formula)

TRAINING EXAMPLES

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$

Course Plan

- First half of the semester: Foundations
 - Focus on linear models
 - Fundamental components of many other models
 - Discuss the theoretical foundations of machine learning
 - Heavy use of probability, linear algebra, and optimization

- Second half of the semester: Techniques
 - Discuss different learning models

Course Plan

- Foundations
 - What's machine learning
 - Feasibility of learning
 - Generalization
 - Linear models
 - Non-linear transformations
 - Overfitting and how to avoid it
 - Regularization
 - Validation

- Techniques
 - Nearest neighbors
 - Decision tree
 - Support vector machine
 - Boosting
 - Random forest
 - Neural networks
 - •

Types of Learning

- Supervised learning (the focus of this course)
 - Given training data (input, correct output)
 - Try to predict the output for data not seen before
- Unsupervised learning
 - Given data in the form of (input)
 - Find patterns in data
- Reinforcement learning
 - Learn how to act, based on rewards for actions

Supervised Learning

 Given data with (input, correct output), learn a pattern that can predict previously unseen data

Unsupervised Learning (more in 517A)

• Suppose you only have the feature vectors but no labels. Still want to describe the data in some useful way.

Reinforcement Learning (more in 412A)

- Agent interacts with the world by taking actions
- Feedback is in the form of rewards (or costs)
- Agent must learn a policy, which maps from the state of the world to an action
- Major challenges:
 - Exploration / exploitation
 - Delayed reward / credit assignment

Course plans (focus on supervised learning)

Logistics

Websites

- Course website: http://chienjuho.com/courses/cse417t
- Piazza for discussion
- Gradescope for homework submissions
- You are responsible for following the announcements on website and Piazza

TA and Office Hours

- There will be several graduate/undergraduate TAs
- Office hours will be announced in the 2nd week and start in the 3rd week

Course Information: Textbooks

- Learning From Data
 - Y. Abu-Mostafa, M. Magdon-Ismail, and H-T Lin.
 - http://amlbook.com/
 - We will go through this book in the first half of the semester.

- Computer Age Statistical Inference: Algorithms, Evidence, and Data Science.
 - B. Efron and T. Hastie
 - https://web.stanford.edu/~hastie/CASI/
 - We will reference a few sections as the course materials. The PDF file is freely available on their website

Course Information: Grading

- Homework assignments (5 to 6): 50%
 - Mix of programming and pencil-and-paper problems
 - Worst score discounted by 50%
 - Programming language: Python
 - We don't teach how to program Python
 - 5 total late days, no more than 2 on any one assignment
- Two exams: 50% (25% each)
 - One in the middle of the semester (sometime in mid-to-late October)
 - One on the last lecture of the semester
 - Each exam covers around half of the materials. No separate final exam.
 - More details will be announced later

Course Information: Academic Integrity

- Take a look at the syllabus
 - Collaborations
 - You are encouraged to discuss homework with other students
 - Must write your own solutions
 - Must cite all external sources (including other students)
 - Other accommodation resources
 - Academic integrity
 - **Zero tolerance** on the violation
 - Will be reported to the university
 - There will be permanent record if found guilty

Course Information

- Questions not covered in the syllabus?
 - Ask me!
 - Generally, I don't grant individual exceptions
 - Can I do extra work to get more points?
 - I have another exam this week, can I get an additional day for the assignment?
 - I work really hard but can't finish the assignment on time. Can I get an additional day for the assignment?
 - I work really hard. Can I get higher grades?
 - **No** to all the above.
 - Exceptions: family/medical emergencies
 - Rule of thumb:
 - I only say yes if I feel comfortable giving the same treatment to everyone in the class.

Getting in Touch

- Please use Piazza as the main communication channel
 - Emails will likely not be responded
- Use public posts in Piazza by default
 - Other students might have the same questions
 - Other students might help answer the questions
- When to use private posts
 - The questions involve disclosing your answers to the homework
 - Most of the time, you can reframe your questions to avoid this
 - The questions are about your personal matter

Is This Course for You?

- This is going to be a very theory-heavy course
 - The "T" in CSE 417T stands for "Theory"
 - There will be A LOT OF math!

We focus on understanding the foundations of machine learning

- If your main goal is to learn how to apply ML to solve problems, this might not be the best course for that.
 - Check out CSE 217A, CSE 412A, ESE 417, BME 440, INFO 558

Is This Course for You?

- Try homework 0 (posted on the website)
 - A subset of questions in homework 1.
 - You should feel comfortable working on these kinds of questions.
 - You should be ready to answer all questions there after the lecture today.
- If you are on the waitlist and want to get enrolled:
 - Complete homework 0
 - A mixture of math and programing questions
 - Explain why you want/need to take this course in this semester
 - Submit via Gradescope by noon next Tuesday (Sep 6)
 - Priorities will be given to students who benefit the most by taking this course this semester (condition on having satisfactory answers to the questions)
- If you are enrolled:
 - Don't submit homework 0 yet, but you should check it out as well
 - The same questions will appear in homework 1
 - It helps you get a better sense of what this course is about

Questions?

Lecture Today

UNKNOWN TARGET FUNCTION

$$f: \mathcal{X} \mapsto \mathcal{Y}$$

(ideal credit approval formula)

TRAINING EXAMPLES

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)$

Linear Hypothesis Space (Perceptron)

- Input $\vec{x} = (x_1, x_2, ..., x_d)$
- Output $y \in \{-1, +1\}$

```
Note that \vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} is a column vector;
```

For convenience, we write $\vec{x} = (x_1, ..., x_d)$

Linear Hypothesis Space (Perceptron)

- Input $\vec{x} = (x_1, x_2, ..., x_d)$
- Output $y \in \{-1, +1\}$

Note that
$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$
 is a column vector;
For convenience, we write $\vec{x} = (x_1, \dots, x_d)$

- A hypothesis h is a linear separator $\vec{w}^T \vec{x} = b$, characterized by
 - weight vector $\overrightarrow{w} = (w_1, ... w_d)$
 - threshold **b**
- $h(\vec{x}) = sign(\sum_{i=1}^{d} w_i x_i b) = sign(\vec{w}^T \vec{x} b)$
 - Predict +1 if $\vec{w}^T \vec{x} > b$
 - Predict -1 if $\vec{w}^T \vec{x} < b$

Linear Hypothesis Space (Perceptron)

- To simplify $h(\vec{x}) = sign(\vec{w}^T\vec{x} b)$, define
 - $x_0 = 1$
 - $w_0 = -b$

- And we implicitly let
 - $\bullet \ \vec{x} = (x_0, x_1, \dots, x_d)$
 - $\overrightarrow{w} = (w_0, w_1, \dots, w_d)$

- A hypothesis can then be written as
 - $h(\vec{x}) = sign(\vec{w}^T \vec{x})$
 - We will interchangeably use h and \vec{w} to express a hypothesis in Perceptron

Perceptron Learning Algorithm (PLA)

- Given a dataset $D = \{(\vec{x}_1, y_1), ..., (\vec{x}_N, y_N)\}$
- Assume the dataset is linearly separable
- How do we learn a hypothesis that separates the data?

- Perceptron Learning Algorithm
 - Initialize $\vec{w}(0) = \vec{0}$
 - For t = 0, ...
 - Find a misclassified data point $(\vec{x}(t), y(t))$ in D
 - That is, $sign(\vec{w}(t)^T \vec{x}(t)) \neq y(t)$
 - If no such data point exists
 - Return $\vec{w}(t)$
 - Else
 - $\vec{w}(t+1) \leftarrow \vec{w}(t) + y(t)\vec{x}(t)$

Notation:

We use $\vec{w}(t)$ to denote the value of \vec{w} at step t of the algorithm.

Similarly, we use $(\vec{x}(t), y(t))$ to denote the data point found at step t.

Some Intuitions

Perceptron Learning Algorithm (PLA)

- Theorem (informal):
 - If a dataset D is linearly separable, PLA find a linear separator that separates the data in D within a finite number of steps.

• HW0:

- Prove Chebyshev's inequality (a form of the law of large numbers)
- Prove the above theorem
- Implement PLA using Python
- Explain why you want/need to take this course this semester