MACHINE LEARNING MEETS CRYPTOLOGY

- Assume we are some members of a hospital
- We want to predict the probability our patient develops type II diabetes from measurements such as their age, gender, blood sugar level
- How can we do this?
- We can train a machine learning model on pre-existing data

Age	Gender	Blood (sugar) level	Has type 2 diabetes?
•••	•••		•••
•••	•••	•••	•••
		•••	•••

DESIRED PATIENT'S AGE, GENDER, BLOOD SUGAR LEVEL

TRAINED MACHINE LEARNING MODEL

PREDICTION OF HAVING TYPE 2 DIABIETES

- However, we may not have the **time** to train the model nor the **expertise** (e.g., some algorithms may be better suited than others)
- Solution?
- Ask a third party to provide an already trained machine learning model fit for our desires

- Is it safe/ethical/legal to give sensitive patient information to a thirdparty?
- Solution: CryptoNets
- Theory of slides related to CryptoNets is from (Gilad-Bachrach, 2016)

CRYPTONETS BRIEF CONCEPT

- A CryptoNet is a neural network that can be applied to encrypted data
- Now onwards we assume the following: we have a trained neural network which we refer to as NNI (e.g., which can take as inputs age, gender,... and returns as an output probability of developing type II diabetes)
- We also assume this neural network is hosted by a third-party
- A CryptoNet gives us the ability to do as follows

CRYPTONETS BRIEF CONCEPT

CRYPTONETS – STRUCTURE OF NNI

There is always an **input** and an **output** layer

There can be $n \ge 0$ hidden layers

Each **node** is a **function** of the nodes with an **edge** into this node from the **previous layer** (excluding the input nodes)

For example, common functions used in neural networks are:

Rectified linear value: $x_3 = \max(0, x_1)$

Sigmoid:
$$x_6 = \frac{1}{1 + e^{-x_3}}$$

Convolution: $x_5 = w_1 x_1 + w_2 x_2$

Mean Pooling: $x_7 = \frac{x_1 + x_2}{2}$

Max Pooling: $x_7 = \max(x_1, x_2)$

CRYPTONETS – ENCRYPTION SCHEME

enc(x) is usually a levelled homomorphic encryption scheme

Levelled Homomorphic Encryption

Homomorphic Encryption, Fully Homomorphic Encryption

Rings and Groups

GROUPS AND RINGS

• A group is a set G with an operation *

 $(\mathbb{Z},+)$ is a group

 $(\mathbb{Z},*)$ is not a group

• Group $\forall a, b, c \in G$		
Closure	$a*b \in G$	
Commutative	a * b = b * a	
Associative	(a*b)*c = a*(b*c)	
Identity	$\forall a \in G \ \exists \ e \in G \ s.t. \ a*e = e*a = a$	
Inverse	$\forall a \in G \exists b \in G \text{ s.t. } a * b = b * a = e$	

GROUPS AND RINGS

- A ring a set R with operation (+,*)
- A ring is an abelian group under +
- Under * closure and associativity hold (commutativity can hold but not necessary)
- Distributivity: a * (b + c) = a * b + a * c

$$(\mathbb{Z}, +, *)$$
 is a ring

Set of odd integers is not a ring

• Group $\forall a,b,c \in G$		
Closure	$a*b \in G$	
Commutative	a * b = b * a	
Associative	(a*b)*c = a*(b*c)	
Identity	$\forall a \in G \ \exists \ e \in G \ s.t. \ a*e = e*a = a$	
Inverse	$\forall a \in G \; \exists \; b \in G \; s. t. a * b = b * a$	

HOMOMORPHIC ENCRYPTION, FULLY HOMOMORPHIC ENCRYPTION

- Let enc: $E \rightarrow D$ denote the encryption function
- Let $m_1, m_2 \in E$

Homomorphic	Fully Homomorphic
Group homomorphism i.e., $(E, *_E), (D, *_D)$ are groups	Ring homomorphism i.e., $(E, +_E, *_E), (D, +_D, *_D)$ are rings
$enc(m_1 *_E m_2) = enc(m_1) *_D enc(m_2)$	$enc(m_1 +_E m_2) = enc(m_1) +_D enc(m_2),$ $enc(m_1 *_E m_2) = enc(m_1) *_D enc(m_2)$

HOMOMORPHIC ENCRYPTION, FULLY HOMOMORPHIC ENCRYPYION

 $m_1, m_2 \in E$

 $m_1 + m_2 \in E$

 $enc(m_1+m_2)\in D$

 $enc(m_1) \in D$

 $enc(m_2) \in D$

 $enc(m_1) + enc(m_2) \in D$

LEVELLED HOMOMORPHIC ENCRYPTION

- Let enc: $E \rightarrow D$ denote the encryption function
- Let $m_1, m_2 \in E$

Fully Homomorphic

Ring homomorphism i.e., $(E, +_E, *_E), (D, +_D, *_D)$ are rings

$$enc(m_1 +_E m_2) = enc(m_1) +_D enc(m_2),$$

 $enc(m_1 *_E m_2) = enc(m_1) *_D enc(m_2)$

Levelled Homomorphic

Ring homomorphism i.e., $(E, +_E, *_E), (D, +_D, *_D)$ are rings

As long as $enc(m_1)$, $enc(m_2)$ encrypt with small enough errors $enc(m_1 +_E m_2) = enc(m_1) +_D enc(m_2)$, $enc(m_1 *_E m_2) = enc(m_1) *_D enc(m_2)$

Know in advance complexity of arithmetic circuit applied to the data Efficiency's sake

AN EXAMPLE – SETUP AND KEY GENERATION

Give as an example the encryption scheme used in [1]

For example: n = 3, t = 6

$$x^6 + 10x = 1 + 4x$$

NOTE: not every element in R_q^n is invertible

So, steps 1, 2 and 3 are iterated until corresponding f has an inverse

$$n=3$$
 , $t=6$
$$x^6+10x=1+4x$$
 Do example on board

$$enc: R_t^n \to R_q^n$$
where $R_t^n = \mathbb{Z}_t[x]/(x^n + 1)$

KEY GENERATION:

1.
$$f',g \in \mathbb{R}_q^n$$

2. PRIVATE KEY: f = f't + 1

3. PUBLIC KEY: $h = tgf^{-1}$

AN EXAMPLE – ENCRYPTION SCHEME

 $e, s \in \mathbb{R}_q^n$ are noise with small absolute coefficients

AN EXAMPLE – ENCRYPTION SCHEME

- Last box decrypts to m_1m_2 under the secret key f^2
- Can modify the result so instead decrypts to the secret key f by a process called relinearisation

Let
$$m_1, m_2 \in R_t^n = \mathbb{Z}_t[x]/(x^n + 1)$$

Let $c_1 = enc(m_1), c_2 = enc(m_2)$

$$c_1 + c_2 = \left\lfloor \frac{q}{t} \right\rfloor (m_1 + m_2) + (e_1 + e_2) + h(s_1 + s_2)$$
$$= enc(m_1 + m_2)$$

$$\frac{t}{q}c_1c_2 = \left[\frac{q}{t}\right]m_1m_2 + e' + h^2s_1s_2$$

CRYPTONETS

ENCODINGS / DECODINGS

- NNI does computations on \mathbb{R} , taking as input \mathbb{R}
- The encryption scheme mentioned takes in as input $R_t^n = \mathbb{Z}_t[x]/(x^n + 1)$
- Hence need a mapping from one to the other
- Encoding: E: $\mathbb{R} \to R_t^n$
- Decoding: $D: \mathbb{R}^n_t \to \mathbb{R}$

EXAMPLES

ENCODINGS / DECODINGS

- NNI does computations on $\mathbb R$
- CryptoNets do computations in R_q^n
- Could convert w_1, w_2 to elements in R_t^n using previous examples
- Easier way exists plain operations

CRYPTONETS SUMMARY

- Two hospitals want to determine which one of them is 'better' than the other (e.g., from a combination of mortality rates, patient satisfaction and more)
- But they do not want to reveal these details to one another
- They both only want to obtain the information of which hospital is better
- Solution?

- Secure Multi-Party Computation (SMPC)
- Can execute a protocol by sending bits of information back and forth
- The only new information then obtained is which hospital is better
- In general: some function that needs computing on private inputs and SMPC allows information to be exchanged to compute just the output of the function

SECURE MULTI-PARTY COMPUTATION GENERALISED

- Theory of this slide and following slides inferred from (Zhou, 2024)
- Parties $P_1, ..., P_n$ holding confidential input data $x_1, ..., x_n$
- The parties want to jointly calculate a function of the form $y = f(x_1, ..., x_n)$
- All parties should receive y however no additional information should be disclosed to any parties and outsiders other than what was known before
- ullet y can be calculated satisfying the above requirements by executing a protocol
- We refer to this as Secure Multi-Party Computation (SMPC)
- Algorithmic tools to implement SMPC: secret sharing schemes, homomorphic encryption, garbled circuits etc.

THREATS TO SMPC

	Semi-honest	Malicious	Covert
Adversary type	Follows instructions Analyze protocol later to learn information about input of parties	Deviate from protocol	Can deviate from protocol Detected with a minimum fixed probability Can be penalized to deter such actions

SECURITY REQUIREMENTS

Requirement	Definition
Privacy	Each party learns nothing more than their designated output
Correctness	Correct output
Guarantee of output	Output to honest parties not interrupted by corrupted parties
Independence of Input	Input from corrupted party independent from input of honest parties
Robustness	Computation process resists attempts by adversaries to alter outcome or disrupt computation
Verifiability	System detects if adversary deviating from protocol Takes appropriate actions such as terminating the computation or excluding the adversary
Fairness	No party receives their output before others
Probability to catch deviations	Honest parties have a probability to catch corrupted parties on violations of the protocol

TYPES OF SMPC SYSTEMS

SMPC Type	Data Provider Operation	External Service Operation
Server-side	Data sharing to multiple non- colluding nodes	Most of SMPC operations
Peer-to-peer	Most of SMPC operations	N/A
Server-aided	Most of SMPC operations	Some SMPC operations performed by aiding server

AN EXAMPLE - SECRET SHARING

- Secret sharing: secret divided among a group of parties such that only a specific subset can reconstruct original secret
- An example is additive secret sharing

$$x = (\sum_{i=1}^{n} s_i) \ (mod \ p)$$

SERVICES

SMPC UTILISSED FOR MACHINE LEARNING

Year	Type of service	Algorithmic tool implementing SMPC	SMPC Type	Security Model	Machine Learning Model
2018	Multi-party training	ElGamal-based encryption protocol	Server-aided	Malicious	Not mentioned
2019	Online training Multi-party training	Paillier scheme	Server-aided	Semi-honest	Autoencoders, ANN
2019	Online inference	Additive sharing	Server-side	Semi-honest	Polynomial regression
2019	Online inference	Additive and binary sharing	Peer-to-peer	Malicious	Decision trees, SVM

EXAMPLE III – SETTING THE SCENE

- *n* parties
- D_1, \ldots, D_n
- Dataset vertically partitioned
- Each party only has access to a given selection of attributes
- AIM: Find k-nearest neighbors of some input query x_q without disclosing their private data

Age	Gender	Blood sugar level

K-NN CLASSIFIERS

- $f: \mathbb{R}^n \to V$, $V = \{v_1, ..., v_n\}$
- List of training examples (x, f(x))

$$x_q \in \mathbb{R}^n$$

 $x_1, \dots, x_k \in \mathbb{R}^n$ are k nearest instances in training examples to x_q

$$\hat{f}(x_q) \leftarrow argmax_{v \in V} \sum_{i=1}^{K} \delta(v, f(x_i))$$

THE ISSUE

 Suppose there are 2 parties, 2 attributes and 4 instances/training examples and we are looking for k = 2 nearest neighbors

Age	Gender	$f \colon R^2 \to V$
x_{11}	<i>x</i> ₂₁	1
x_{12}	x_{22}	1
x_{13}	x_{23}	2
x_{14}	x_{24}	2

- x_{ij} refers to the *jth* instance of attribute *i*
- Cannot use previous slide as each party only has access to a portion of the training samples

POSSIBLE SOLUTION

- Theory of following slides inferred from (Zhan, 2005)
- Suppose we have an input query $x_q = [x_{q1}, x_{q2}]$

Age	Gender
x_{11}	x_{21}
x_{12}	x_{22}
x_{13}	x_{23}
x_{14}	x_{24}

Distance Portion I
$s_{11} = x_{11} - x_{q1}$
$s_{21} = x_{12} - x_{q1}$
$s_{31} = x_{13} - x_{q1}$
$s_{41} = x_{14} - x_{q1}$

Distance Portion II
$$s_{12} = x_{21} - x_{q2}$$

$$s_{22} = x_{22} - x_{q2}$$

$$s_{32} = x_{23} - x_{q2}$$

$$s_{42} = x_{24} - x_{q2}$$

$$\sum_{i=1}^{2} s_{1i} \qquad \sum_{i=1}^{2} s_{2i} \qquad \sum_{i=1}^{2} s_{3i} \qquad \sum_{i=1}^{2} s_{4i}$$

THE ISSUE

- Privacy of attributes of each party is compromised!
- Query request $x_q = [x_{q1}, x_{q2}]$
- Get $d = x_{11} x_{q1}$
- Party 2 can then learn the attribute of the first instance of party I and repeat this for all instances

THE SOLUTION – HOMOMORPHIC ENCRYPTION

$$enc: E \rightarrow D$$
, $m_1, m_2 \in E$
 $enc(m_1 + m_2) = enc(m_1) * enc(m_2)$

Used within a protocol (given in [11]) allows for distance portions of each party to remain hidden whilst also finding k-nearest neighbors.

Homomorphic

Group homomorphism i.e., $(E, *_E)$, $(D, *_D)$ are groups

$$enc(m_1 *_E m_2) = enc(m_1) *_D enc(m_2)$$

EXAMPLE II CONCLUDED

- Without loss of generality, one of the parties will have:
- $\left[\sum_{l=1}^{2} s_{il} \sum_{l=1}^{2} s_{jl} : i, j \in [1, 4]\right]$
- A corresponding map of +1/-1
- For example, first row, second column being $-1 \Rightarrow \sum_{l=1}^2 s_{1l} < \sum_{l=1}^2 s_{2l}$
- Choose instances S_i with the smallest weights
- These instances have the smallest total distance portions over all attributes
- So, we choose instance I and instance 2 as the 2 nearest neighbors to x_q

	S_1	S_2	S_3	S_4	Weights
S_1	+1	-1	-1	-1	-2
S_2	+1	+1	-1	+1	+2
S_3	+1	+1	+1	+1	+4
S_4	+1	-1	-1	+1	0

TO CONCLUDE...

- Looked at ways machine learning and cryptology intersect, giving motivating examples for the use of each method
- CryptoNets: A NN designed to work over encrypted data and return an encrypted prediction
- **SMPC**: Parties compute a **desired output** from their **inputs**, whilst keeping the **inputs hidden**. Used for many scenarios such as **online inference**, **online training** and **multiparty training**
- K-NN Classifier: Executes a protocol which allows for each party to know the k nearest neighbors of an input query x_q from a collaboration of their inputs, whilst keeping the inputs hidden (vertically portioned dataset)

FUTURE CONSIDERATIONS

- Plethora of ML methods which may require private data (dependent upon scenario)
- For example, some broad ideas:
- Linear regression and non-linear regression can be performed via levelled homomorphic encryption (similar approach to CryptoNets)
- May have some two-dimensional data e.g., $[x_1, x_2]$ and want a third-party service to perform clustering on this data (group similar points together)
- Encrypt the data such that distance between points preserved
- Classify a datapoint into which disease it belongs to, an equivalent form of CryptoNets for classification of a datapoint

THANKS SO MUCH!

REFERENCES

- Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M. and Wernsing, J., 2016, June. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In International conference on machine learning (pp. 201-210). PMLR.
- Zhan, J.Z., Chang, L. and Matwin, S., 2005. Privacy preserving k-nearest neighbor classification. Int. J. Netw. Secur., 1(1), pp.46-51.
- Zhou, I., Tofigh, F., Piccardi, M., Abolhasan, M., Franklin, D. and Lipman, J., 2024.
 Secure Multi-Party Computation for Machine Learning: A Survey. *IEEE Access*.