Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Christian Ivicevic Sommersemester 2015 Studentisches Tutorium Zusatzmaterial 17. Februar 2015

Theoretische Informatik

- Inhaltliche Vorschläge für das erweiterte Gedächtnis zur Klausur -

Maschinenmodelle

- Typ 3: DFA, NFA, ϵ -NFA, RE, r-CFG, l-CFG
- Typ 2: CFG, PDA
- Typ 0: TM, WHILE, GOTO, μR

Ardens Lemma

$$X \equiv \alpha X | \beta \Rightarrow X \equiv \alpha^* \beta$$
$$X = AX \cup B \Rightarrow X = A^* B \text{ für } \epsilon \not\in A$$
mit $\emptyset^* = \{\epsilon\}, \ \alpha | \emptyset = \alpha, \ \alpha \emptyset = \emptyset$

Synthesealgorithmus für die Chomsky-Normalform (CNF)

- Nützlichkeitstest
- ϵ -Elimination
- Kettenproduktionen eliminieren
- bestimmte Terminale ersetzen
- Ketten packen

Ackermann-Funktion

$$a(0,n) = n+1$$

$$a(m+1,0) = a(m,1)$$

$$a(m+1,n+1) = a(m,a(m+1,n))$$

PR-Schema

$$f(0, \overline{x}) = g(\overline{x})$$

$$f(m+1, \overline{x}) = h(f(m, \overline{x}), m, \overline{x})$$

μ -rekursive Umkehrfunktionen

Sei eine Funktion $f: \mathbb{N} \to \mathbb{N}$ gegeben, dann lässt sich mit $h(n, m) = 1 \div \operatorname{eq}(f(n), m)$ eine μ -rekursive Umkehrfunktion f^{-1} zu f konstruieren mit $f^{-1}(m) = (\mu h)(m)$.

Satz von Rice

Sei $F = \{f : \Sigma^* \to \Sigma^* \mid f \text{ ist berechenbar und besitzt die Eigenschaft...} \}$ eine Funktionenmenge, dann ist die Menge $C_F = \{w \in \Sigma^* \mid \varphi_w \in F\}$ entscheidbar, falls F trivial ist, d.h. $F = \emptyset$ oder $F = \text{alle berechenbaren Funktionen gilt (bzw. <math>C_F = \emptyset$ oder $C_F = \Sigma^*$).

Problem $A \in \mathcal{NP}$

Zwei Alternativen:

- Gödelisiere eine gültige Belegung als Zertifikat. Ein Verifikator prüft nun, dass die Belegung tatsächlich Der Verifikator ist offensichtlich polynomiell beschränkt.
 Hierbei den Satz an das aktuelle Problem anpassen.
- 2. Beweis durch Reduktion von A auf ein beliebiges (oder gegebenes!) \mathcal{NP} -vollständiges Problem.

Beispiel: $A \leq_p SAT$. Das bedeutet, dass SAT mindestens so hart ist wie A.

Problem A ist \mathcal{NP} -hart

Polynomielle Reduktion eines \mathcal{NP} -vollständigen Problems, z.B. SAT, auf $A: SAT \leq_p A$.

Problem A ist \mathcal{NP} -vllständig

Hierzu muss gezeigt werden, dass $A \in \mathcal{NP}$ gilt und A zudem \mathcal{NP} -hart ist.

Abbildung 1: \mathcal{P} und \mathcal{NP} -Hierarchie

Abbildung 2: Berechenbarkeitsmodelle und ihre Transformationsrichtungen

Abbildung 3: Berechenbarkeit und Entscheidbarkeit

Abbildung 4: Hierarchie der wichtigsten Sprachen und Probleme