

Automatic Brain Segmentation for PET/MR Dual-Modal Images Through a Cross-Fusion Mechanism 有代码

Hongyan Tang, Zhenxing Huang, Wenbo Li, Yaping Wu, Jianmin Yuan, Yang Yang, Yan Zhang, Jing Qin, Hairong Zheng, Dong Liang, Meiyun Wang, and Zhanli Hu

BIOMEDICAL AND HEALTH INFORMATICS

A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY THE IEEE COMMUNICATIONS SOCIETY

TECHNICALLY COSPONSORED BY THE IEEE COMPUTER SOCIET

VOLUM

NUMBER 3

IJBHA9

H. Tang, Z. Huang, W. Li, Y. Wu, J. Yuan, Y. Yang, Y. Zhang, J. Qin, H. Zhen D. Liang, M. Wang, Z. Hu, "Automatic Brain Segmentation for PET/MR Dual-modal Images through a Cross-Fusion Mechanism"

U.S. National Library of Medicine

研究背景与意义

医学影像分析要求

PET/MR成像系统具有优势

现有的方法存在局限性

存在的问题?

依赖人工手动标注,费时费力,并且对图像的质量和噪声敏感

传统的方法

无法整合PET和MR 两种模态的信息

基于单模态深度学习的方法

MRI

融合方法简单 (拼接两种模态信息)

融合双模态信息的方

法: 分割区域有限和

融合双模态信息的方法

研究现状

单模态医学图像分割方法

未充分利用PET的<mark>功能代谢信息</mark>与 MR的高分辨率<mark>结构信息</mark>的互补性

 双模态融合的方法 分割目标区域较少,模态融合方式 较为简单(如通道拼接)

研究方法 残差块 $H\times W\times D$ H×W×D×48 H×W×D×48 Res Block Mask PET Res Block Cross **Fusion** Hidden Feature $\frac{H}{4} \times \frac{W}{4} \times \frac{D}{4} \times 96$ ➤ Res Block UX-Net Block $\frac{H}{8} \times \frac{W}{8} \times \frac{D}{8} \times 192$ → Res Block $\frac{H}{4} \times \frac{W}{4} \times \frac{D}{4} \times 192$ Res Block $\frac{H}{4} \times \frac{W}{4} \times \frac{D}{4} \times 192$ Cross Concatenation $\frac{H}{16} \times \frac{W}{16} \times \frac{D}{16} \times 384$ Fusion Res Block Res Block $\times \frac{W}{2} \times \frac{D}{2} \times 48$ Residual Block Res Block $\frac{H}{8} \times \frac{W}{8} \times \frac{D}{8} \times 384$ Cross **Fusion** Out Block → Res Block Out Block Res Block $\frac{H}{16} \times \frac{W}{16} \times \frac{D}{16} \times 768$ Cross Transpose Conv Fusion

本文提出的分割网络结构

(a) The proposed segmentation network

编码器(Encoder=UX-Net Block+Cross Fusion)

UX-Net Block

深度卷积

$$\hat{z_i^1} = LN(DWC(V_i))$$

$$z_{i}^{1} = PWC\left(GELU\left(PWC\left(\hat{z}_{i}^{1}\right)\right)\right) + V_{i}$$

点卷积

 $z_i^2 = LN(DWC(z_i^1))$

$$z_{i}^{2} = PWO\left(GELU\left(PWC\left(\hat{z_{i}^{2}}\right)\right)\right) + z_{i}^{1}$$

编码器(Encoder=UX-Net Block+Cross Fusion)

$$CA_2 = softmax \left(\frac{Q_2 K_2^T}{\sqrt{C}}\right) V_2 + y$$

 $= Conv3 \left(concat \left(CA_1, CA_2 \right) \right)$

Conv4(f) + f

缩放因子

解码器(Decoder)

以第三层解码器为示例:

 $u_3 = upsampling(d_4)$

 $d_3 = ResBlock\left(concat\left(e_2, u_3\right)\right)$

 $e_0 = ResBlock\left(concat\left(x_1, x_2\right)\right)$

 $d_1 = decoder1(e_0, d_2)$

 $out = OutBlock(d_1)$ 最终结果

SOUTH-CENTRAL MINZU UNIVERSITY

Loss Function

Dice系数损失和交叉熵损失

$$L_{dice} = 1 - \frac{1}{C} \sum_{k=1}^{C} \frac{2 \sum_{i=1}^{N} p_{ik} g_{ik}}{\sum_{i=1}^{N} p_{ik} + \sum_{i=1}^{N} g_{ik}}$$

第i个像素的k类预测结果

> 混合损失函数

$$L = L_{dice} +$$
 起多数

真实值中第i个像素的k类值

实验设置

数据集

 \mathbf{x} \mathbf{x} 自110名受试者的PET/MR脑图像,尺寸大小为256 \mathbf{x} 256 \mathbf{x} 256,所有的图像已经配准(不公开)

对比的方法

- > 基于Transformer: 3DUXNET(2022), SwinUNETR(2021), UNETR(2021), nnFormer(2021)
- ➤ 基于CNN: UNet3D(2016), NestedUNet(2018), ResUNet(2018), VNet(2016)

评估指标

$$Dice = \frac{2 \times TP}{2 \times TP + FP + FN}$$

$$\frac{\text{IoU}}{Jaccard} = \frac{\text{TP}}{\text{TP} + \text{FP} + \text{FN}}$$

$$Precession = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

豪斯多夫距离

$$H(A,B) = \max \left(\sup_{a \in A} \inf_{b \in B}, \sup_{a \in A} \inf_{a \in A} d(b,a) \right)$$

$$Sensitivity = \frac{TP}{TP + FN}$$

实验结果

总体的实验结果

Model	Dice	Jaccard	Sensitivity	Precision	HD
NestedUNet	0.5244 ± 0.0007	0.4119 ± 0.0006	0.4912 ± 0.0005	0.5572 ± 0.0009	10.6827 ± 1.4764
ResUNet	0.5391 ± 0.0005	0.4193 ± 0.0004	0.5184 ± 0.0009	0.5639 ± 0.0007	11.6593 ± 1.3235
VNet	0.5703 ± 0.0004	0.4458 ± 0.0003	0.5382 ± 0.0006	0.5818 ± 0.0005	10.7833 ± 0.4714
nnFormer	0.6342 ± 0.0004	0.5117 ± 0.0004	0.6105 ± 0.0006	0.6403 ± 0.0003	9.0837 ± 0.3506
UNETR	0.7081 ± 0.0002	0.5879 ± 0.0003	0.6978 ± 0.0004	0.6850 ± 0.0002	8.0191 ± 0.2780
SwinUNETR	0.7280 ± 0.0003	0.6114 ± 0.0004	0.7214 ± 0.0004	0.7032 ± 0.0002	6.3914 ± 0.1746
UNet3D	0.7376 ± 0.0003	0.6164 ± 0.0003	0.7353 ± 0.0005	0.7111 ± 0.0002	6.2792 ± 0.1564
3DUXNET	0.7499 ± 0.0003	0.6319 ± 0.0003	0.7524 ± 0.0006	0.7206 ± 0.0003	5.9680 ± 0.1578
Ours	0.8573 ± 0.0001	0.7668 ± 0.0002	0.8500 ± 0.0001	0.8326 ± 0.0003	4.4885 ± 0.1485

最优

- (a) NestedUNet. (b) ResUNet. (c) VNet. (d) nnFormer. (e) UNETR.
- (f) SwinUNETR. (g) UNet3D. (h) 3DUXNET. (i) Ours. (j) GT

全脑分割实验可视化

实验结果

脑部特定区域的分割

- (a) NestedUNet. (b) ResUNet. (c) VNet.
- (f) SwinUNETR. (g) UNet3D. (h) 3DUXNET. (i) Ours.

壳核,海马体和尾状核区域分割

侧脑室区域分割

一致性和相关性分析 脑 Brain-Stem SUV 干 NestedUNet ResUNet VNet nnFormer 3DUXNET GTOurs Left-Hippocampus 左 海 马 体 suv NestedUNet ResUNet nnFormer UNETR SwinUNETR UNet3D 3DUXNET VNet

ResUNet VNet nnFormer 右脑白质 ·致性和相关性分析 Ours 3DUXNET SwinUNET Ours PCC = 0.93y = 0.92x10 NestedUNet ResUNet UNETR 5-15 PCC = 0.62 10 15 10 15 0 SUV 10 **SUV SUV** SUV UNet3D SwinUNETR 3DUXNET Ours 10 SHV VNet ResUNet 15 PCC = 0.92 15 PCC = 0.95 SUV. 5-5 10 SUV SUV 5 10 SUV 右丘脑 3DUXNET SwinUNETR UNet3D 10 SUVSUV

总体的消融实验

消融实验结果

实验结果

融合方法的消融实验

本文提出了一种基于交叉融合机制的自动脑分割方法,该方法整合了多模态PET和MR信息以实现精确的全脑分割,并且该方法有利于脑部疾病的临床诊断和分析。未来将探索该方法在其他模态图像(MR/CT、MR/SPECT等)处理任务中的应用。

