316163260

1c plo

$$V^{\pi}(S) = E \left[\Gamma(S, a) + \gamma \cdot V^{\pi}(S') \right]$$

(ב לבי התוול , מתק"ם:

:72 0/6

$$V^{\pi}$$
 (out) = $\mathbb{P}(stay)[r(out, stay) + \delta \cdot V^{\pi}(out)]$

17

$$V^{T}(\log t) = 4 - V^{T}(\log t) + V^{T}(\log t)$$

$$V^{T}(\log t) = \frac{1}{2} + \frac{6}{20} V^{T}(\log t) + \frac{4}{20} V^{T}(\log t) = \frac{1}{2} + \frac{3}{10} V^{T}(\log t) + \frac{1}{20} V^{T}(\log t) = \frac{1}{2} + \frac{3}{10} V^{T}(\log t) + \frac{1}{20} V^{T}(\log t) = \frac{1}{20} V^{T}(\log t) =$$

$$V^{\pi}(\text{out}) = \frac{33}{19}$$

$V^{\pi}(home) = 3 \cdot \frac{33}{19} - 4 = \frac{99}{19} - 4 = \frac{23}{19}$	
V.	
V t (home) = 23 19	
Out - 8 2:ND 82:28 8:00 N. 1-83 .38	2)
, O KIN (INRN) Stay ->>NIN home > -'KIN, rke >> 32/N (INRN) plen NES	
,0" 1 Switch " " Out 2 " " ,1" " Switch " " home 2 " "	0
.2 " " Stay " " out 3 " " . (Out, stay) -1 (home, switch) 2/16 .04t - 1827 bled 1622 /261	
: INCO (R. CO)KO NKIJEN	3
$V^*(S) = \max_{\alpha} \left\{ \mathcal{E}\left[r(S,\alpha) + \sqrt[4]{S'}\right] \right\}$	
n,94:	
VT (home) = TT (a1 home) (0. \$(1. VT (home))) + TT (a2 home) (1+0.5 (0.2. VT (home) + 0.8.	v ^{T((a,t))) =}
0+1(1+0.1.V T(home) + 0.4.VT(out)) = 1+0.1VT(home) + 0.4V (out)	
0+1(1+0.1.) (home) 0, 4 0 (out)	
0.9 y (home) = 1+0.4 y (out)	
:;}Cn)	
V ^{TL} (out) = τc(a1 out)(2+0.5(0·V ^{TL} (home)+1·V ^{TL} (out))) + τc(a2)out)(0+0.5(1·V ^{TL} (home)+	0·V ^{TC} (04 t)))=
[3]	44.75

1(2+0.91.VT(out))) = 2+0.5.VT(out) V^{TC} (Out) = 4 0.9v T(home) = 1+0.4.4 : N'(N'CO)/W _1K11EN 2:2'3)1 $V^{*}(home) = max \int \mathcal{E}[r(home, a_{1})] + o.s(1 \cdot V^{T}(home)) = 0 + o.sV^{T}(home) = 0.s \cdot \frac{26}{9} = \frac{13}{9}$ $\mathcal{E}[r(home, a_{2})] + o.s(0.2 \cdot V^{T}(home)) + o.s \cdot V^{T}(o.t)) = 1 + o.s(o.2 \cdot \frac{26}{9} + o.s \cdot 4) = \frac{26}{9}$ $V^{*}(out) = \max \left\{ E\left(r\left(out, a_{1}\right)\right) + o.S\left(1 \cdot V^{T}(out)\right) = 2 + o.S.V^{T}(out) = 2 + o.S.Y^{T}(out) = 2 + o$ Alforying the server of the proper of the server of the se 19

. INFO CE M'COILO MEMEN LE MIN 2 ANOR MENJE POLICY -17, AMIG $V^*(home) = 2.8879 \approx \frac{26}{9}$ (۱) نزدارا V * (out) = 3.999 ≈ 4 2 (402 1) 12 DIS (11 CA) 20 Cho 113/11 C/12 The The She I'm College 11/2000 The she will soll 2 > 1/n و ازم کردی از میل میلاد میلادی میلادی کردی و دوام درم کردی میلادی کرد از میلادی کرد ا راجا دی، ۱۸ د محدیک که راجه رونوره و روز کلان کال کالان کالای یا کالا مورد به ومه מזצינות קצב נמון יביא אוצאה מצוינת יותר, אן אים יאתר.