Hypothesis testing framework

Chapter 7 Summary: One sample tests

https://dzwang 91.github.io/stat 324/

1 State the null hypothesis H_0 and the alternative hypothesis H_A .

2 Choose a significance level α . Typically 0.05, 0.01.

3 Choose a test statistic $T_n(X_1,...,X_n)$ and establish the rejection region.

4 Collect Data $X_1,, X_n$. Two approaches:

• compute the realization of the test statistic. If the test statistic is in the rejection region, we reject H_0 , otherwise we do not reject H_0 .

• compute p-value. If p-value is greater than the given significance level, we do not reject H_0 . Otherwise, we reject H_0 .

1/16 2/16

Tests for population mean

Two-tailed sample mean test

$$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu \neq \mu_0$$

• We collect a sample of size n, $X_1, ..., X_n$ with known population variance σ^2 .

• Test statistic: sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

• Under H_0 , the sampling distribution of \bar{X} is approximately normal distributed with mean μ_0 and standard deviation σ/\sqrt{n} .

• Rejection region: $\bar{X} \geq b$ or $\bar{X} \leq a$ where

$$b = \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ a = \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

ullet If we denote the realization of $ar{X}$ is c, then p-value formula:

$$\operatorname{\mathsf{p-value}} = \mathbb{P}(\bar{X} \geq |c|) + \mathbb{P}(\bar{X} \leq -|c|) = 2\mathbb{P}(\bar{X} \geq |c|)$$

3 / 16

One-tailed sample mean test (left tail)

One-tailed sample mean test (right tail)

$$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu < \mu_0$$

- Assume the population variance σ^2 is known.
- Rejection region: $\bar{X} \leq a$ where

$$a = \mu_0 - \frac{\sigma}{\sqrt{n}}$$

• If we denote the realization of \bar{X} is c, then p-value formula:

$$p$$
-value = $\mathbb{P}(\bar{X} \leq c)$

$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu > \mu_0$

- Assume the population variance σ^2 is known.
- Rejection region: $\bar{X} \geq b$ where

$$b = \mu_0 + \frac{z_{\alpha}}{\sqrt{n}}$$

• If we denote the realization of \bar{X} is c, then p-value formula:

$$p$$
-value = $\mathbb{P}(\bar{X} \geq c)$

5/16

6/16

Z test

• Under H_0 : $\mu = \mu_0$,

$$Z = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}} pprox N(0, 1)$$

• When $H_{\!A}:\mu\neq\mu_0$, the rejection region is

$$Z > z_{\alpha/2}$$
 or $Z < -z_{\alpha/2}$.

• When $H_{\!A}:\mu<\mu_0$, the rejection region is

$$Z<-z_{\alpha}$$
.

• When $H_A: \mu > \mu_0$, the rejection region is

$$Z>z_{\alpha}$$
.

T test

- ullet We collect a sample $X_1,...,X_n$ from a normal distribution, but with unknown variance σ^2
- ullet Test statistic: $T=rac{ar{\chi}-\mu_0}{s/\sqrt{n}},$ where s is the sample standard deviation
- Under $H_0: \mu = \mu_0$, the sampling distribution of $\frac{\bar{X} \mu_0}{s / \sqrt{n}}$ is a t-distribution with degrees of freedom n-1.
- Rejection region:
 - When $H_A: \mu \neq \mu_0$: $T < -t_{\alpha/2,n-1}$ or $T > t_{\alpha/2,n-1}$. When $H_A: \mu < \mu_0$: $T < -t_{\alpha,n-1}$. When $H_A: \mu > \mu_0$: $T > t_{\alpha,n-1}$.
- For a two-sided test,

$$p$$
-value = $\mathbb{P}(T_{n-1} \ge |t_{obs}|) + \mathbb{P}(T_{n-1} \le -|t_{obs}|)$

Test for population median

Sign test

Sign test

Definition

For a random variable X, population median is defined as a parameter m such that

$$P(X \leq m) = \frac{1}{2}$$

- Collect an i.i.d. sample X_1, \ldots, X_n from some population with population median m.
- Step 1:
 - 1 Two-tailed test:

$$H_0: m=m_0 \text{ v.s. } m \neq m_0$$

2 Left-tailed test:

$$H_0: m = m_0 \text{ v.s. } m < m_0$$

3 Right-tailed test:

$$H_0: m = m_0 \text{ v.s. } m > m_0$$

9/16

10 / 16

Sign test

- Step 2: delete data points which are equal to m_0 . Count remaining sample size n^* .
- Step 3: choose test statistic

B = number of data values greater than m_0 in the remaining sample.

- Under H_0 : $m = m_0$, $B \sim \text{Binomial}(n^*, 0.5)$.
- **Step 4**: calculate p-value. Let b be the observation of B.
 - $H_A: m > m_0$:

p-value =
$$P(B \ge b \mid B \sim \mathsf{Binomial}(n^*, 0.5))$$

• $H_A : m < m_0$:

p-value =
$$P(B \le b \mid B \sim \text{Binomial}(n^*, 0.5))$$

• $H_A : m \neq m_0$:

$$p
-value = 2 \times min\{P(B \ge b), P(B \le b)\}.$$

Tests for population proportion

Z test

11 / 16

12 / 16

Tests for population proportion

(W)

ullet Let π be the population proportion. We want to test

(right-tailed test)
$$H_0: \pi = \pi_0, \ v.s. \ H_A: \pi > \pi_0;$$

or

(left-tailed test) $H_0: \pi = \pi_0, \ v.s. \ H_A: \pi < \pi_0;$

or

(two-tailed test) $H_0: \pi = \pi_0, \ v.s. \ H_A: \pi \neq \pi_0.$

- We have data $X_1,...,X_n \sim Ber(\pi)$.
- Under $H_0: \pi = \pi_0$, the sample proportion $P = \frac{\sum_{i=1}^n X_i}{n}$ has

$$\mathbb{E}(P) = \pi_0$$

and

$$Var(P) = \frac{\pi_0(1-\pi_0)}{n}.$$

Power for two-tailed T test: see slides on Chapter 7, part 2

13 / 16

Tests for population proportion

• When $n\pi_0>5$ and $n(1-\pi_0)>5$, the CLT holds:

$$Z = \frac{P - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}.$$

is approximately N(0,1).

• Test statistic:

$$Z = \frac{P - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}.$$

- \bullet P-value: Let P_{obs} be the observed sample proportion.
 - $H_A: \pi > \pi_0$: calculate $z_{obs} = \frac{P_{obs} \pi_0}{\sqrt{\pi_0(1-\pi_0)}}$ and calculate $P(Z > z_{obs})$. $H_A: \pi < \pi_0$: calculate $P(Z < z_{obs})$. $H_A: \pi \neq \pi_0$: calculate $2*P(Z > |z_{obs}|)$.

14 / 16

Power calculation

Sample size calculation

Sample size calculation for two-tailed Z test

- ullet Goal: find the required sample size to achieve power at least 1-eta for the specific simple alternative H_A : $\mu = \mu_1$
- The required sample size:

$$n = \left(\frac{\sigma(z_{\alpha/2} + z_{\beta})}{\mu_1 - \mu_0}\right)^2$$