Prediction of worldwide solar energy resources based on the NASA's meteorological data using Al and deep learning modeling techniques

Yasser El Hari

I. Business Context

II. Problematic

Figure 3: In this example, "Actual Generation" is based on the peak solar production of a 100 MW transmission-tied, single-axis tracker PV plant, as shown in Figure 2. "Curtailed Generation" is based on a forecast that inaccurately predicted lower-than actual plant production.

III. Data visualisation

IV. Data

V. Times series decomposition

VI. ACP and PACP

VII.ARIMA(1, 1, 1)x(0,0,1, 12) (yield to the lowest AIC) model

VIII Validating the model

IX. Visualization of model

Thank you!