Probability Assignment

EE22BTECH11022-Garikapati Sai Harshith

Question: Find P(E|F) for

1) E: tail appears on one coin.

F: head appears on one coin.

2) E: no tail appears.

F: no head appears.

Solution: The random variables X_1 and X_2 are shown in Table 1.

$X_1 = 0$	First coin shows Tail.
$X_1 = 1$	First coin shows Head.
$X_2 = 0$	Second coin shows Tail.
$X_2 = 1$	Second coin shows Head.

TABLE 1: Definition of X_1 and X_2 .

Since the coins are fair.

$$P_{X_1 X_2}(k, m) = \frac{1}{4} \tag{1}$$

From (1), the ranges of k and m are $\{0,1\}$ and $\{0,1\}$ respectively. So, total four different k,m combinations.

1) E: Here one coin is tail and other is head. We are required to find $Pr(X_1 + X_2 = 1)$. Thus, from (1).

$$Pr(E) = Pr(X_1 + X_2 = 1)$$

$$= Pr(X_1 = 0, X_2 = 1) + Pr(X_1 = 1, X_2 = 0)$$

$$=\frac{1}{2}\tag{4}$$

F: Here one coin is head and other is tail. We are required to find $Pr(X_1 + X_2 = 1)$. Thus, from (1).

$$Pr(F) = Pr(X_1 + X_2 = 1)$$

$$= Pr(X_1 = 0, X_2 = 1) + Pr(X_1 = 1, X_2 = 0)$$
(6)

$$=\frac{1}{2}\tag{7}$$

EF: Here one coin is head and other is tail. We are

required to find $Pr(X_1 + X_2 = 1)$. Thus, from (1).

$$Pr(EF) = Pr(X_1 + X_2 = 1)$$

$$= Pr(X_1 = 0, X_2 = 1) + Pr(X_1 = 1, X_2 = 0)$$
(9)

$$=\frac{1}{2}\tag{10}$$

$$= \frac{1}{2}$$

$$\Pr(E|F) = \frac{\Pr(EF)}{\Pr(F)}$$
(10)

$$=\frac{\frac{1}{2}}{\frac{1}{2}}\tag{12}$$

$$=1 \tag{13}$$

2) E: no tail appears. We are required to find $Pr(X_1 \neq 0, X_2 \neq 0)$. Thus, from (1).

$$Pr(E) = Pr(X_1 \neq 0, X_2 \neq 0)$$
 (14)

$$= \Pr(X_1 = 1, X_2 = 1) \tag{15}$$

$$=\frac{1}{4}\tag{16}$$

F: no head appears. We are required to $Pr(X_1 \neq 1, X_2 \neq 1)$. Thus, from (1).

$$Pr(F) = Pr(X_1 \neq 1, X_2 \neq 1)$$
 (17)

$$= \Pr(X_1 = 0, X_2 = 0) \tag{18}$$

$$=\frac{1}{4}\tag{19}$$

EF: coins should show neither head nor tail. From Table 1, we have coins showing head or tail. So, this is an impossible event

$$\Pr(EF) = 0 \tag{20}$$

$$Pr(E|F) = \frac{Pr(EF)}{Pr(F)}$$
 (21)

$$=\frac{0}{\frac{1}{4}}\tag{22}$$

$$=0 (23)$$