Mesh Model:

Air flow model without injection Boundary Conditions:

ch3oh	0	-
	0 -	
0.7	0.21	_

Convergence:

Contour of axial velocity:

Contour of Temperature:

Contour of Species:

Contour of CH₃OH

Contour of O_2

Velocity at x = 5d, 10d, and 20d:

Model with droplet injection; with and without evaporation:

Injection Model Specifications

Convergence:

Contour of Temperature:

Contour of Species:

Contour of CH₃OH

Contour of O₂

Droplet Histogram:

X = 10d

Droplet tracking graph:

Particle Diameter

Particle Temperature

Report of Mass and Energy Balance:

	Mass Flow Rate	
1.2369894e-06	inlet injectortip	
0.0004964833	inlet jet	
0.011933179	inlet pressure farstream	
0.013023025	inlet pressure sedcondary	
-0.025475453	outlet	
1.751545e-05	DPM Mass Source	
-4.0131467e-06	Net	
FT4.1	Total Heat Transfer Rate	
[W]		
0.0023168773	inlet injectortip	
	inlet_injectortip inlet jet	
0.0023168773		
0.0023168773 262.25823	inlet_jet	
0.0023168773 262.25823 22.350808	inlet_jet inlet_pressure_farstream	
0.0023168773 262.25823 22.350808 24.392085	inlet_jet inlet_pressure_farstream inlet_pressure_sedcondary	

Mass Balance Report

Energy Balance report

Mass Fraction of CH₃OH:

Summary:

The flow's maximum velocity is approximately 110 m/s, which falls short of Mach 0.3, where the velocity reaches 170.08 m/s.

When droplet particles are introduced, they absorb energy from the surrounding fluid, leading to a drop in temperature near the axis line.

Along the axis line, the injection of droplets causes a reduction in flow velocity compared to scenarios lacking injection. This decline may stem from droplets absorbing energy from nearby particles, triggering evaporation and subsequently reducing velocity in the surrounding region.

Increasing the reference pressure will diminish the evaporation rate as the thermal energy required to surpass the boiling point escalates.

Lowering pressure and elevating temperature will amplify the evaporation rate. Moreover, a heightened inlet mass flow rate will bolster evaporation.