ЗАДАЧИ ЗА УПРАЖНЕНИЯ

- **1.** Да се направи математически модел и да се реши разгледаната задача, ако:
 - а) производството на завода в Детройт е 1300 автомобила;
 - б) заявката на склада в Денвър е 2000 автомобила.
- 2. Фармацевтична компания произвежда даден препарат в три завода, разположени в ЛА (1), Атланта (2) и Ню Йорк (3), чиито месечен производствен капацитет не надхвърля съответно 10000, 12000 и 14000 kg. Всеки месец компанията трябва да изпраща продукцията си в четири района на САЩ Източен (1), Среден запад (2), Южен (3) и Западен (4) в количества съответно 9000, 6000, 6000 и 13000 kg. Разходите за производство и транспорт на 1 kg препарат (в долари) от заводите до районите са дадени в таблица 1.

Таблица 1. Разходи за производство и транспорт на 1 kg препарат (в долари)

	Източен	Среден Запад	Южен	Западен
ЛА	5,00	3,50	4,20	2,20
Атланта	3,20	2,60	1,80	4,80
Ню Йорк	2,50	3,10	3,30	5,40

Да се формулира и реши линейна оптимизационна задача, с чиято помощ произведената продукция да бъде транспортирана при минимални сумарни разходи и нуждите на отделните райони да бъдат задоволени.

3. В таблица 2 са посочени разстоянията между Бостон, Чикаго, Далас, ЛА и Маями. Всеки от тези градове се нуждае от 40 000 kWh електроенергия. Чикаго, Далас и Маями могат да произвеждат по 70 000 kWh. Преносът на 1000 kWh на разстояние 100 мили струва 4 долара.

Таблица 2. Разстояния между градовете (в мили)

	Бостон	Чикаго	Далас	ЛА	Маями
Чикаго	983	0	1205	2112	1390
Далас	1815	1205	0	801	1332
Маями	1539	1390	1332	2757	0

Да се формулира и реши линейна оптимизационна задача, с чиято помощ произведената електроенергия да бъде транспортирана при минимални сумарни разходи и нуждите на отделните градове да бъдат задоволени.

4. Всеки ден северна, централна и южна Калифорния използват по 100 милиона галона вода. Северна и централна Калифорния са осигурени със 120 милиона галона вода всяка, докато южна Калифорния е осигурена само с 40 милиона галона. Разходите за транспорт на един милион галона вода между отделните райони са дадени в таблица 3.

Таблица 3. Разходи за транспорт на 1 милион галона вода (в долари)

	Северна	Централна	Южна
Северна	5000	7000	10 000
Централна	7000	5000	6000
Южна	10 000	6000	5000

Търсенето на вода не може да бъде задоволено напълно. Затова всеки недоставен милион галона вода влече след себе си разходите, показани в таблица 4.

Таблица 4. Разходи за недоставяне на 1 милион галона вода (в долари)

Северна	Централна	Южна
6000	5500	9000

Да се формулира и реши линейна оптимизационна задача, с чиято помощ да бъде разпределена водата в Калифорния, като сумарните разходите за транспорт и недоставяне на вода да бъдат минимални.