19 BUNDESREPUBLIK

DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 40 03 587 A 1

DEUTSCHES PATENTAMT

②1 Aktenzeichen:

Anmeldetag:

P 40 03 587.5 7. 2. 90

(3) Offenlegungstag:

8. 8. 91

(51) Int. Cl.⁵:

C 07 D 471/04

C 07 D 498/04 C 07 D 215/38 A 01 N 43/90 // (C07D 471/04, 221:00,235:00) (C07D 498/04,221:00, 263:00) C07D 215/40 (A01N 43/90,43:60, 43:86,33:18,47:10, 43:66,37:18, 47:28, 31:08,43:08,35:06, 43:40,39:02,43:54)

E 40 03 587 A

① Anmelder:

BASF AG, 6700 Ludwigshafen, DE

(72) Erfinder:

Brill, Gunter, Dr., 6733 Hassloch, DE; Hagen, Helmut, Dr., 6710 Frankenthal, DE; Wuerzer, Bruno, Dr., 6701 Otterstadt, DE; Westphalen, Karl-Otto, Dr., 6720 Speyer, DE

- (3) 3H-Imidazo[4,5-h](Oxazolo[5,4-h])chinoline, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses
- Die Erfindung betrifft 3H-Imidezo[4,5-h](Oxezolo[5,4-h])chinoline der Formel

in der

 ${\sf R}^1$ für Wasserstoff, Halogen, Carboxyl oder gegebenenfalls substituiertes Alkyl,

R² für Wasserstoff, Halogen, Hydroxy, Alkoxy, Alkylthio, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Cycloalkyl, einen gegebenenfalls substituierten Benzyl-, Phenethyl-, Phenyl- oder Naphthylrest oder einen gegebenenfalls substituierten 5- oder 6gliedrigen heterocyclischen Ring mit einem oder zwei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff und

X für Sauerstoff oder den Rest N-R³, wobei R³ Wasserstoff, gegebenenfalls substituieres Alkyl, Alkenyl, Alkinyl, Cycloalkyl oder gegebenenfalls substituiertes Benzyl bedeutet, stehen

Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses.

Beschreibung

Die Erfindung betrifft 3H-Imidazol[4,5-h](Oxazolo[5,4-h])chinoline, Verfahren zur ihrer Herstellung, Herbizide, die diese Verbindungen als Wirkstoffe enthalten, sowie ein Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses mit diesen Wirkstoffen.

Substituierte 3H-Imidazo[4,5-h](Oxazolo[5,4-h])chinoline wurden bereits beschrieben (J. Fluorine Chem. Bd. 20, S. 573-580 (1982); ibid. Bd. 41, S. 277-288 (1988)); derartige Verbindungen mit herbiziden Eigenschaften sind allerdings nicht bekannt.

Es wurde nun gefunden, daß 3H-Imidazo[4,5-h](Oxazolo[5,4-h])chinoline der Formel

 $\mathbb{R}^{2} \xrightarrow{\mathbb{N}} \mathbb{N}^{1}$

in der

10

15

 R^1 für Wasserstoff, Halogen, Carboxyl oder gegebenenfalls durch $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Alkylthio oder Halogen substituiertes $C_1 - C_6$ -Alkyl,

 R^2 für Wasserstoff, Halogen, Hydroxy, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, einen gegebenenfalls mit Halogen, Hydroxy, Acetoxy, Cyano, C_1-C_4 -Alkoxy oder C_1-C_4 -Alkylthio substituierten C_1-C_6 -Alkylrest, einen gegebenenfalls durch C_1-C_4 -Alkyl substituierten C_3-C_6 -Cycloalkylrest, einen gegebenenfalls durch Nitro, Amino, Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkyl, Acylamino oder Acyloxy substituierten Benzyl-, Phenethyl-, Phenyl- oder Naphthylrest oder einen gegebenenfalls durch Nitro, C_1-C_4 -Alkyl oder Halogen substituierten 5- oder 6-gliedrigen heterocyclischen Ring mit einem oder zwei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff und

X für Sauerstoff oder den Rest $N-R^3$, wobei R^3 Wasserstoff, gegebenenfalls durch Halogen, Amino, Monooder Dialkylamino, Hydroxy, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylacyloxy substituiertes C_1-C_6 -Alkyl, C_2-C_6 -Alkenyl, C_2-C_6 -Alkinyl, C_3-C_6 -Cycloalkyl oder gegebenenfalls durch Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl oder C_1-C_4 -Alkoxy substituiertes Benzyl bedeutet,

stehen, herbizide Wirkung haben und gegenüber Kulturpflanzen selektiv sind.

Die C_1-C_6 -Alkylreste für R^1 , R^2 und R^3 in Formel I können unverzweigt oder verzweigt sein und beispielsweise Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, n-Pentyl oder n-Hexyl bedeuten. Entsprechendes gilt für Alkoxy-, Alkylthio-, Halogenalkyl-, Alkylamino-, Alkylhydroxy-, Alkylalkoxy- und Alkylacyloxyreste. Geeignete Substituenten der Alkylreste für R^1 und R^2 sind Halogen, wie Chlor, Brom oder Fluor, Hydroxy, wie Hydroxymethyl oder 1-Hydroxyethyl, C_1-C_4 -Alkoxy oder C_1-C_4 -Alkylthio, wie Methoxy, Ethoxy, Methylthio oder Ethylthio. Beispiele für solche Reste sind Trichlormethyl, Difluormethyl, Trifluormethyl, Chlormethyl, Methoxymethyl, 1-Methoxyethyl, Methylthiomethyl, Ethylthiomethyl. Bevorzugt sind Reste mit 1 bis 4 Kohlenstoffatomen.

Halogen in Substituenten der Formel I bedeutet beispielsweise Fluor, Chlor oder Brom.

Beispiele für C_3 — C_6 -Cycloalkylreste für R^2 und R^3 sind Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl. Die Reste für R^2 können zusätzlich durch C_1 — C_4 -Alkyl, insbesonder Methyl oder Ethyl, substituiert sein.

Die Benzyl-, 1-Phenethyl-, 2-Phenethyl-, Phenyl-, 1-Naphthyl- und 2-Naphthylreste für R² können einfach oder mehrfach substituiert sein. Beispiele für Substituenten sind Nitro, Amino, Halogen, wie Fluor, Chlor, Brom, C₁—C₄-Alkyl, vorzugsweise Methoxy oder Ethoxy, C₁—C₄-Alkylthio, vorzugsweise Methylthio, C₁—C₄-Halogenalkyl, wie Trifluormethyl, Acylamino mit 1 bis 4 C-Atomen in der Acylgruppe, beispielsweise Formyl, Acetyl, Propionyl, n-Butyryl oder i-Butyryl und Acyloxy mit 2 bis 5 C-Atomen in der Acylgruppe, beispielsweise Acetyloxy, Propionyloxy, n-Butyryloxy oder i-Butyryloxy.

Beispiele für heterocyclische Reste für R^2 sind Pyrrolyl, Furyl, Thienyl, Thiazolyl, Isothiazolyl, Oxazolyl, Isooxazolyl, Pyrazolyl, Imidazolyl, Pyridyl, Pyrimidyl, Pyrazinyl, Pyridazinyl. Diese Reste können durch Nitro, C_1-C_4 -Alkyl, vorzugsweise Methyl oder Ethyl, oder durch Halogen, wie Chlor, Brom oder Fluor, substituiert sein.

 R^3 im Rest -NR³ steht für Wasserstoff, $C_1 - C_6$ -Alkyl, vorzugsweise $C_1 - C_4$ -Alkyl, insbesondere Methyl oder Ethyl, $C_2 - C_6$ -Alkenyl, insbesondere Vinyl oder Allyl, $C_2 - C_6$ -Alkinyl, insbesondere Propargyl, einen gegebenenfalls durch Halogen, Amino, $C_1 - C_4$ -Mono- oder $C_1 - C_4$ -Dialkylamino, Hydroxy-, $C_1 - C_4$ -Alkoxy- oder $C_1 - C_4$ -Alkylacyloxy substituierten $C_1 - C_4$ -Alkylrest, beispielsweise 2-Chlorethyl, 3-Chlor-n-propyl, 2-Aminoethyl, 2-Methylaminoethyl, 2-Dimethylaminoethyl, 2-Hydroxyethyl, 3-Acetoxypropyl oder 2-Methoxypropyl oder einen gegebenenfalls durch Halogen, $C_1 - C_4$ -Alkyl, $C_1 - C_4$ -Halogenalkyl odere $C_1 - C_4$ -Alkoxy substituierten Benzylrest bedeuten, beispielsweise 4-Chlor-benzyl, 4-Trifluormethyl-benzyl, 4-Methyl-benzyl, 4-Methoxy-benzyl oder 2,4-Dichlor-benzyl.

Man erhält die 3H-Imidazo[4,5-h]chinoline der Formel I durch Umsetzung von 7,8-Diamino-chinolinen der Formel

in an sich bekannter Weise mit Carbonsäuren der Formel

R²-COOH (III)

oder Orthoestern der Formel

 $R^2-C(OR^4)_3$ (IV)

in der R⁴ C₁ - C₄-Alkyl bedeutet.

Die Umsetzung verläuft sehr gut bei einer Temperatur im Bereich von 80 bis 120°C in Anwesenheit von Polyphosphorsäure, bei 80 bis 95°C in Salzsäure unterschiedlicher Konzentration oder bei 70 bis 100°C unter Wirkung von 3 bis 6 Äquivalenten IV. Die Menge an III beträgt zweckmäßigerweise 1,1 Mol, bezogen auf 1 Mol II. Größere Überschüsse an III stören nicht.

5

15

60

65

Die Oxazolo[5,4-h]chinoline der Formel I erhält man entsprechend den 3H-Imidazol[4,5-h]chinolinen durch Umsetzung von 7-Hydroxy-8-amino-chinolinen der Formel

mit Carbonsäuren der Formel III oder Orthoestern der Formel IV. Die für die Synthese der 3H-Imidazo[4,5-h]chinoline angegebenen Reaktionsbedingungen gelten entsprechend.

Die Diaminochinoline II bzw. die Aminohydroxychinoline V können, ausgehend von 7-Chlorchinolinen der Formel VI, in der R¹ die für Formel I genannten Bedeutungen hat, leicht erhalten werden. Die Synthese verläuft in an sich bekannter Weise gemäß folgendem Reaktionsschema:

a)
$$C1 \longrightarrow R^1 \longrightarrow C1 \longrightarrow R^1 \longrightarrow R^1$$

b)
$$C1 \longrightarrow R^1 \longrightarrow C1 \longrightarrow R^1 \longrightarrow H_3CO \longrightarrow NO_2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

Synthesebeispiele

Beispiel 1

3-Methyl-7-chlor-3H-imidazo[4,5-h]chinolin

24,9 g (0,12 mol) 8-Amino-3-chlor-7-methylaminochinolin werden mit 107 g (0,72 mol) Triethylorthoformiat versetzt und 30 min auf 100°C erhitzt. Man läßt anschließend successiv auf 0°C abkühlen und saugt den Niederschlag (32 g) ab. Die Mutterlauge wird im Vakuum eingeengt und der Rückstand aus einer Essigester/Pe-

trolether-Mischung umkristallisiert. Die so erhaltenen vereinten Feststoffe sind identisch.

Ausbeute: 48,5 g (82%); Fp.: 188 bis 189°C.

5

Beispiel 2

2-Methyl-3-ethyl-7-chlor-3H-imidazo[4,5-h]chinolin

14 g (64 mmol) 8-Amino-3-chlor-7-ethylaminochinolin werden mit 42 g (0,26 mol) Triethylorthoacetat versetzt und 1 Stunde bei 100°C gerührt. Man läßt auf Raumtemperatur kommen, evaporiert überschüssigen Orthoester und kristallisiert den Rückstand aus Essigester um.

Ausbeute: 7,7 g (49%); Fp.: 145 bis 148°C.

Beispiel 3

2-(4-Chlorphenyl)-3-ethyl-7-chlor-3H-imidazo[4,5-h]chinolin

Ein Gemisch bestehend aus 4,1 g (20 mmol) 8-Amino-3-chlor-7-ethylaminochinolin, 3,1 g (20 mmol) 4-Chlor-benzoesäure und 20 ml Polyphosphorsäure wird 1 Stunde auf 120°C erhitzt. Man läßt auf 90°C abkühlen und gibt langsam 100 g Eis in die Lösung. Danach gießt man auf 200 g Eis und stellt mit konzentrierter Natronlauge einen pH-Wert von 12 ein. Man saugt den Niederschlag ab, wäscht gründlich mit warmen Wasser nach, trocknet bei 70°C im Vakuum und kristallisiert aus Essigester um.

Ausbeute: 5,5 g (80%); Fp.: 110 bis 112°C.

30

20

Beispiel 4

2,7-Dimethyloxazolo[5,4-h]chinolin

3,48 g (20 mmol) 8-Amino-7-hydroxy-3-methylchinolin werden mit 16,2 g (100 mmol) ortho-Essigsäuretriethylester versetzt und 1 Stunde auf 100°C erwärmt. Man läßt anschließend auf Raumtemperatur abkühlen, versetzt das Reaktionsgemisch unter gutem Rühren mit 50 ml Petrolether und saugt den Niederschlag ab.

Ausbeute: 3,05 g (77%); Schmp.: 132 bis 134° C.

40

Beispiel 5

2-(4-Chlorphenyl)-7-chloroxazolo[5,4-h]chinolin

Ein Gemisch bestehend aus 3,89 g (20 mmol) 8-Amino-3-chlor-7-hydroxy-chinolin, 3,44 g (22 mmol) 4-Chlor-benzoesäure und 20 ml Polyphosphorsäure wird 2 Stunden auf 120°C erhitzt. Man läßt auf 90°C abkühlen, addiert vorsichtig 100 g Eis und 500 ml Wasser. Die so erhaltene Suspension wird mit konzentrierter Natronlauge auf pH 12 gestellt, der Niederschlag wird abgesaugt, mit Wasser gründlich salzfrei gewaschen und im Vakuum bei 60°C getrocknet. Nach dem Umkristallisieren aus Essigester verbleiben 3,2 g (51%); Schmp.: > 250°C.

50

65

Beispiel 6

3,7-Dimethyl-2-trifluormethyl-3H-imidazo[4,5-h]chinolin

Ein Gemisch bestehend aus 5,61 g (30 mmol) 8-Amino-3-methyl-7-methylaminochinolin und 3,02 ml (40 mmol)
Trifluoressigsäure in 40 ml einer 4N Salzsäure wird 2 h auf 95°C erwärmt. Man läßt anschließend auf Raumtemperatur abkühlen, gießt auf 250 g Eis, stellt mit konz. Natronlauge auf pH 9 und saugt den Niederschlag ab. Man trocknet das Rohprodukt und kristallisiert aus Essigester/Petrolether um.

60 Ausbeute: 4,8 g (63%); Schmp.: 233-235°C.

Beispiel 7

3-Ethyl-2-hydroxyimidazo[4,5-h]chinolin

22,4 g (0,12 mol) 8-Amino-7-ethylaminochinolin werden mit 9 g (0,15 Mol) Harnstoff vermischt und unter gutem Rühren 2 h auf 160°C erhitzt. Man läßt auf 140°C abkühlen und tropft langsam 50 ml Wasser hinzu. Nach

weiterem Abkühlen auf 100°C addiert man nochmals 100 ml Wasser. Der Niederschlag wird abgesaugt, nochmals mit heißem Wasser nachgewaschen und im Vakuum getrocknet.

Ausbeute: 21,6 g (85%); Schmp.: $> 250^{\circ}$ C.

5

Beispiel 8

2,7-Dichlor-3-methylimidazo[4,5-h]chinolin

10 ntaauf

7 g (30 mmol) 7-Chlor-2-hydroxy-3-methylimidazo[4,5-h]chinolin werden mit 7 g (33,6 mmol) Phosphorpentachlorid und 35 ml (0,38 mol) Phosphoroxytrichlorid versetzt. Man refluxiert das Gemisch 15 h, läßt danach auf Raumtemperatur abkühlen, gießt auf 500 g Eis, stellt mit konz. Natronlauge einen neutralen pH-Wert ein und saugt vom ausgefallenen Niederschlag ab. Nach dem Trocknen und Umkristallisieren aus Ethanol erhält man 2,8 g (37%) Produkt; Schmp.: 211 bis 213°C.

Die in den Synthesebeispielen wiedergegebenen Vorschriften eignen sich unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen der Formel I. Beispiele für solche Verbindungen sind in den folgenden Tabellen aufgeführt. Sie lassen aufgrund ihrer nahen strukturellen Beziehungen zu den in den Synthesebeispielen genannten Verbindungen eine gleichartige Wirkung erwarten.

20

25

30

35

40

45

50

55

60

Tabelle 1

|--|

10	. <u></u> .				
	₩r.	R1	R 2	R 3	Fp [°C]
15	9	н	н	CH ₃	135 - 137
	10	н	CH ₃	CH ₃	238 - 239
20	11	н	CH(CH ₃) ₂	CH ₃	173 - 174
	12	н	Cyclopropyl	CH ₃	-
25	13	H	c1—(¯)—	CH ₃	209 - 211
30	14	н	c1	СН₃	-
35	15	н	C1	СН ₃	205 - 207
40	16	н	СН2-ОСН3	CH ₃	112 - 114
	17	н	сн(сн ₃)осн ₃	CH 3	78 - 80
45	18	н	CH ₂ C1	CH ₃	78 - 80
	19	н	CHF ₂	CH ₃	199 - 201
50	20	н	CF ₃	CH ₃	182 - 184
	21	н	он	CH ₃	> 250
55	22	Н	C1	CH ₃	-
	23	н	СН3	C 2H5	150 - 153
60	24	н	CH(CH ₃) ₂	C 2H5	58 - 61
	25	н	CH30CH2	C 2H5	80 - 82

Nr.	R1	R 2	R3	Fp [°C]	
26	Н	CF ₃	C ₂ H ₅	174 - 177	5
7	н	он	C 2H5	> 250	
27	н	сı	C 2H5	-	10
28	н	СН3	CH2CH2CH3	109 - 111	
29	н	CH3OCH2	CH2CH2CH3	Öl	15
30	н	CF ₃	CH2CH2CH3	190 - 192	
31	н	CH ₃	CH ₂ CH(CH ₃) ₂	105 - 108	20
32	н	CHF 2	CH2CH(CH3)2	145 - 146	
33	н	CF ₃	CH ₂ CH(CH ₃) ₂	210 - 212	25
34	н	СН3	Cyclopropyl	224 - 226	
35	н	CF ₃	Cyclopropyl	-	30
36	СНз	н	н	-	
37	CH ₃	СН3	н	-	35
38	СН 3	СН(СН3) 2	н	92 - 95	
39	CH ₃	c1—()	н	-	40
40	CH ₃	C1	н	152 - 153	45
41	СН3	cí Cì	н	-	50
42	CH3	СН 3	CH ₃	173 - 175	55
6	CH ₃	CF ₃	СН3	233 - 235	
43	CH ₃	СН 3	C 2H5	213 - 216	60

	Nr.	R1	R2	R 3	Fp [°C]
5	44	CH ₃	СН(СН3)2	C ₂ H ₅	132 - 133
	45	C 2H5	СН 3	CH ₃	114 - 118
10	46	C ₂ H ₅	CF ₃	СН3	159 - 161
	47	CH(CH ₃) ₂	CF ₃	СН3	149 - 150
15	48	Cl	н	н	-
	49	cı	CH ₃	н	273 - 275
20	50	cı	CH(CH ₃) ₂	H .	215
25	51	cı	C1	н	180 - 182
30	52	с1	c1	н	118 - 121
35	53	C1	c1—(¯)—	н	116 - 119
	54	cı	CF ₃	н	234 - 239
40	1	cı	н	СН3	188 - 189
	55	cı	СН3	CH ₃	167
45	56	cı	C 2H5	СН3	98 - 101
•	57	C1	CH2CH2CH3	СН3	129
50	58	C1	CH(CH ₃) ₂	СН3	142 - 144
	59	C1	CH ₂ CH(CH ₃) ₂	СН3	113
55	60	сı	CH(CH ₃)C ₂ H ₅	СН3	126 - 128
•	61	C1	(CH ₂) ₅ CH ₃	СН3	128
60	62	cı	Cyclopropyl	CH ₃	48 - 50

DE 40 03 587 A1

Nr.	R1	R 2	R 3	Fp [°C]	
63	Cl	Cyclobutyl	CH ₃	143 - 145	5
64	сι	2-Methylcyclopropyl	СН3	174 - 177	į.
65	сі	Cyclopentyl	СН3	142 - 144	10
66	Cl	Benzyl	CH ₃	194 - 196	
67	Cl	C1 CH2	CH ₃	209 - 211	15
		cı -			20
68	Cl	СН₂	CH ₃	161 - 163	
69	Cl	C1-CH2	CH ₃	170 - 173	25
70	cı	CH ₂ CH ₂	CH ₃	170 - 173	30
71	cι	CH ₂	СН3	-	35
72	cı	CH ₂	CH ₃	-	40
73	cı	c1—{_}	СН3	170 - 172	-
	·	ci .			45
74	cı		CH ₃	165 - 168	50
75	c1	C _{C1}	СН3	231 - 232	
76	cı	c1————————————————————————————————————	СН3	> 250	55

DE 40 03 587 A1

j	Nr.	R1	R 2	R 3	Fp [°C]
5	7,7	Cl	C1 C1	CH ₃	238 - 240
15	78	cı	c) cl	СН₃	170 - 172
20	79	Cl	NO ₂	СН ₃	· -
25	80	Cl	0 ₂ N-	СН3	-
30	81	cı	ОН	СН3	-
35	82	Cl	OCH ₃	CH ₃	177 - 179
40	83	Cl	NH ₂	CH ₃	216 - 217
45	84	cı	CH3	СН₃	-
50	85	cı	CH 3	СН 3	196 - 198
	86	cı	CH ₃ ————	СН ₃	190 - 191
55	87	C1		СН3	-
60	88	Cl		СН3	165

DE 40 03 587 A1

Nr.	R1	R 2	R 3	Fp [°C]	
89	Cl	Ū s. ↓	СН3	95 - 96	5
90	cı	[s]	СН 3	204 - 205	10
91	Cl	CH2OCH3	CH ₃	138 - 140	15
92	Cl	CH2OC6H5	CH ₃	237 - 240	15
93	cı	CH ₂ SCH ₃	CH ₃	145 - 148	20
94	Cl	CH ₂ C1	CH ₃	> 250	
95	Cl	CH2CN	CH ₃	-	25
96	cı	O II CH₂OCCH₃	CH ₃	-	
97	Cl	сн(сн3)он	СН 3	65 - 66	30
98	cı	сн(сн3)осн3	CH ₃	132 - 135	
99	Cl	CHF 2	CH ₃	215 - 216	35
100	cı	CHC12	СН3	110 - 115	
101	cı .	CF ₃	CH ₃	173 - 175	40
102	Cl	CC1 ₃	СН3	247 - 250	
103	Cl	SH	СН3	> 250	45
8	cı	Cl	СН3	210 - 213	
104	Cl	осн ₃	CH ₃	-	50
105	cı	CF ₃	CH=CH ₂	-	
2	Cl	н	C ₂ H ₅	215 - 217	55
106	Cl	СН3	C 2H5	145 - 148	
107	Cl	C 2H5	C 2H5	138 - 140	60

DE 40 03 587 A1

	Nr.	Ŗ1	R2	R3	Fp [°C]
5	108	Cl	CH(CH ₃) ₂	C 2H5	127 - 130
	109	сı	Cyclopropyl	C 2H5	146 - 148
10	110	cı	CH ₂ Cl	C 2H5	> 250
	111	Cl	CH 20CH 3	C ₂ H ₅	72 - 74
15	112	Cl	CF ₃	C 2H5	140 - 143
	113	Cl	он	C 2H5	> 250
20	114	Cl	cı	C 2H5	-
25	115	Cl	C1	C ₂H5	198
30	116	Cl	c1	C ₂ H ₅	155 - 156
35	3	Cl	c1—()	C ₂ H ₅	110 - 112
40	117	сı	[s]	C 2H5	112 - 114
	118	cı	н	CH ₂ CH ₂ CH ₃	96 - 98
45	119	Cl	CH ₃	CH2CH2CH3	128 - 130
	120	Cl	СН ₂ ОСН ₃	CH2CH2CH3	142 - 144
50	121	cı	CF ₃	CH ₂ CH ₂ CH ₃	178 - 181
	122	Cl	СН3	CH ₂ -CH=CH ₂	138 - 140
55	123	cı	н	CH ₂ CH(CH ₃) ₂	111 - 113
	124	cı	СН3	CH ₂ CH(CH ₃) ₂	123 - 125
60	125	C1	CF ₃	CH ₂ CH(CH ₃) ₂	152 - 155

Nr.	R1	R 2	R 3	Fp [°C]	
126	cı	н	Benzyl	163	5
127	cı	Снз	Benzyl	-	
128	Cl	н	Cyclopropyl	130 - 132	10
129	cı	CH ₃	Cyclopropyl	229 - 231	
130	Cl	C 2H5	Cyclopropyl	-	15
131	cı	CHF 2	Cyclopropyl	180 - 183	
132	Cl	CF ₃	Cyclopropyl	-	20
133	cı	н	Cyclopentyl	-	
134	c1	CH ₃	Cyclopentyl	167 - 170	25
135	cı	СН 3	CH₂CH₂OH	245 - 247	
136	Cl	СН 20СН 3	CH ₂ CH ₂ OH	> 250	30
137	cı	CF ₃	CH2CH2OH	243 - 245	
138	cı	он	СН 2СН 2ОН	227 - 229	35
139	сı	СН3	0 Сн ₂ сн ₂ оссн ₃	Harz	• 40
140	cı	СН 20СН 3	CH2CH(CH3)OH	190 - 192	10
141	cı	CF ₃	сн₂сн(сн₃)он	197 - 200	45
142	сı	он	сн₂сн(сн₃)он	232 - 233	
143	Cl	CH ₃	O CH2CH(CH3)OCCH3	Harz	50
144	cı	CH ₂ 0CH ₃	CH2CH2CH2OH	159 - 162	
145	Cl	CF ₃	CH2CH2CH2OH	150 - 153	55
146	cı	он	CH ₂ CH ₂ CH ₂ OH	> 250	
147	cı	CF ₃	CH2CH2CH2OCCH3	149 - 151	60

Nr.	R1	R2	R3	Fp [°C]
148	Cl	CF ₃	CH 2CH 2C1	172 - 174
149	сı	CF ₃	CH2CH(CH3)Cl	161 - 162
150	cı	он	CH2CH2CH2C1	213 - 215

Tabelle 2

$$R^2$$
 N R^1 (Ib)

10

	r	, , , , , , , , , , , , , , , , , , , 	T	10
Nr.	ŖΊ	R2	Fp [°C]	
151	н	CH ₃	155 - 156	15
152	н	C 2H5	92 - 93	
153	cı	н	138	20
154	Cl	СН3	162 - 164	
155	Сl	~	164	25
156	Cl	- €	232	30
5	Cl	- ∕}cı	> 250	35
157	СН3	н	115 - 117	40
4	CH ₃	СН3	132 - 134	
158	CH ₃	C 2H5	79 - 80	45
159	CH ₃	-√_> c1	144 - 146	50
160	СНз	~ €	130 - 131	55
161	СН3	— C1	243 - 245	60

Die 3H-Imidazo[4,5-h] (Oxazolo[5,4-h])chinoline I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall mög-

lichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen I eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z. B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Was-

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, -Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren. z. B. Lignin-, Phenol-, Naphthalin- und Dibtuylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracatat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z. B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kieselsäuren. Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calciumund Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoff und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,1 und 95 Gew.-%, vorzugsweise zwischen 0,5 und 90 Gew.-%, Wirkstoff.

Beispiele für Formulierungen sind:

I. Man vermischt 90 Gewichtsteile der Verbindung Nr. 82 mit 10 Gewichtsteilen N-Methyl-α-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.

II. 20 Gewichtsteile der Verbindung Nr. 35 werden in einer Mischung gelöst, die aus 80 Gewichtsteilen Xylol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0.02 Gew.-% des Wirkstoffs enthält.

III. 20 Gewichtsteile der Verbindung Nr. 36 werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

IV. 20 Gewichtsteile des Wirkstoffs Nr. 49 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser enthält man eine wäßrige Dispersion, die 0,02 Gew.-% des Wirkstoffs enthält.

V. 20 Gewichtsteile des Wirkstoffs Nr. 35 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigen Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält.

VI. 3 Gewichtsteile des Wirkstoffs Nr. 37 werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew.-% des Wirkstoffs enthält.

VII. 30 Gewichtsteile des Wirkstoffs Nr. 58 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit

VIII. 20 Gewichtsteile des Wirkstoffs Nr. 52 werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondensates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

35

40

45

50

55

60

Die Applikation kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadien 0,001 bis 4, vorzugsweise 0,01 bis 2 kg/ha.

5

Zur Verbreitung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Verbindungen I mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Phenoxy- bzw. Heteroaryloxy-phenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrationen zugesetzt werden.

In Anbetracht der Vielseitigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel noch in einer großen Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

Botanischer Name	Deutscher Name	
Allium cepa	Küchenzwiebel	25
Ananas comosus	Ananas	
Arachis hypogaea	Erdnuß	
Asparagus officinalis	Spargel	
Avena sativa	Hafer	30
Beta vulgaris spp. altissima	Zuckerrübe	
Beta vulgaris spp. rapa	Futterrübe	
Beta vulgaris spp. esculenta	Rote Rübe	
Brassica napus var. napus	Raps	35
Brassica napus var. napobrassica	Kohlrübe	33
Brassica napus var. rapa	Weiße Rübe	
Brassica rapa var. silvestris	Rüben	
Camellia sinensis	Teestrauch	
Carthamus tinctorius	Saflor — Färberdistel	40
Carya illinoinensis	Pekannußbaum	
Citrus limon	Zitrone	
Citrus maxima	Pampelmuse	
Citrus reticulata	Mandarine	45
Citrus sinensis	Apfelsine, Orange	43
Coffea arabica (Coffea canephora, Coffea liberica)	Kaffee	
Cucumis melo	Melone	
Cucusmis sativus	Gurke	
Cynodon dactylon	Bermudagras	50
Daucus carota	Möhre	
Elaeis guineensis	Ölpalme	
Fragaria vesca	Erdbeere	
Glycine max	Sojabohne	55
Gossypium hirsutum (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium)	Baumwolle	
Helianthus annuus	Sonnenblume	
Helianthus tuberosus	Topinambur	
Hevea brasiliensis	Parakautschukbaum	60
Hordeum vulgare	Gerste	
Humulus lupulus	Hopfen	
Ipomoea batatas	Süßkartoffeln	
Juglans regia	Walnußbaum	
Lactuca sativa	Kopfsalat	65
Lens culinaris	Linse	
Linum usitatissimum	Faserlein	

	. Lycopersicon lycopersicum	Tomate
	Malus spp.	Apfel
	Manihot esculenta	Maniok
	Medicago sativa	Luzerne
5	Mentha piperita	Pfefferminze
	Musa spp.	Obst- und Mehlbanane
	Nicotiana tabacum (N. rustica)	Tabak
	Olea europaea	Ölbaum
10	Oryza sativa	Reis
	Panicum miliaceum	Risphenhirse
	Phaseolus lunatus	Mondbohne
	Phaseolus mungo	Erdbohne
15	Phaseolus vulgaris	Buschbohnen
	Pennisetum glaucum	Perl- oder Rohrkolbenhirse
	Petroselinum crispum spp. tuberosum	Wurzelpetersilie
	Picea abies	Rotfichte
	Abies alba	Weißtanne
20	Pinus spp.	Kiefer
	Pisum sativum	Gartenerbse
	Prunus avium	Süßkirsche
	Prunus domestica	Pflaume
25	Prunus dulcis	Mandelbaum
	Prunus persica	Pfirsich
	Pyrus communis	Birne
	Ribes sylvestre	Rote Johannisbeere
30	Ribes uva-crispa	Stachelbeere
	Ricinus communis	Rizinus
	Saccharum officinarum	Zuckerrohr
	Secale cereale	Roggen
35	Sesamum indicum	Sesam
	Solanum tuberosum	Kartoffel
	Sorghum bicolor (s. vulgare)	Mohrenhirse
	Sorghum dochna	Zuckerhirse
	Spinacia oleracea	Spinat
	Theobroma cacao	Kakaobaum
	Trifolium pratense	Rotklee
	Triticum aestivum	Weizen
	Triticum durum	Hartweizen
	Vaccinium corymbosum	Kulturheidelbeere
	Vaccinium vitis-idaea	Preißelbeere
45	Vicia faba	Pferdebohnen
	Vigna sinensis (V. unguiculata)	Kuhbohne
	Vitis vinifera	Weinrebe
	Zea mays	Mais

Anwendungsbeispiele

50

Die herbizide Wirkung der 3H-Imidazo[4,5-h] (Oxazolo[5,4-h])chinoline der Formel I auf das Wachstum der Testpflanzen wird durch folgende Gewächshausversuche gezeigt.

Als Kulturgefäße dienen Plastikblumentöpfe mit 300 cm³ Inhalt und lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen werden nach Arten getrennt flach eingesät.

Zum Zwecke der Nachauflaufbehandlung werden entweder direkt gesäte oder in den gleichen Gefäßen aufgewachsene Pflanzen ausgewählt oder sie werden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt.

Je nach Wuchsform werden die Testpflanzen bei einer Wuchshöhe von 3 bis 15 cm dann mit den in Wasser als Verteilungsmittel suspendierten oder emulgierten Wirkstoffen, die durch fein verteilende Düsen gespritzt werden, behandelt. Die Aufwandmenge für die Nachauflaufbehandlung beträgt 1,0 kg Wirkstoff/ha.

Die Versuchsgefäße werden im Gewächshaus aufgestellt, wobei für wärmeliebende Arten wärmere Bereiche (20 bis 35°C) und für solche gemäßigter Klimate 10 bis 20°C bevorzugt werden. Die Versuchsperiode erstreckt sich über 2 bis 4 Wochen. Während dieser Zeit werden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wird ausgewertet.

Bewertet sind nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzen sich aus folgenden Arten zusammen:

Lateinischer Name

Deutscher Name

Cassia tora

Ipomoea spp.

Prunkwindenarten

Lamium amplexicaule

Stengelumfassende Taubnessel

Bei einer Aufwandmenge von 1,0 kg Wirkstoff/ha lassen sich im Nachauflaufverfahren mit dem Wirkstoff Nr. 1 breitblättrige unerwünschte Pflanzen sehr gut bekämpfen, wobei der Wirkstoff gleichzeitig verträglich ist für die Kulturpflanze Mais.

Patentansprüche

1.3H-lmidazo[4,5h] (Oxazolo[5,4h]) chinoline der Formel

15

20

5

in der

 R^1 für Wasserstoff, Halogen, Carboxyl oder gegebenenfalls durch Hydroxy, $C_1 - C_4$ -Alkoxy, $C_1 - C_4$ -Alkylthio oder Halogen substituiertes $C_1 - C_6$ -Alkyl.

(I)

est, rch nno 30

 R^2 für Wasserstoff, Halogen, Hydroxy, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, einen gegebenenfalls mit Halogen, Hydroxy, Acetoxy, Cyano, C_1-C_4 -Alkoxy oder C_1-C_4 -Alkylthio substituierten C_1-C_6 -Alkylrest, einen gegebenenfalls durch C_1-C_4 -Alkyl substituierten C_3-C_6 -Cycloalkylrest, einen gegebenenfalls durch Nitro, Amino, Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkyl, Acylamno oder Acyloxy substituierten Benzyl-, Phenethyl-, Phenyl- oder Naphthylrest oder einen gegebenenfalls durch Nitro, C_1-C_4 -Alkyl oder Halogen substituierten 5- oder 6-gliedrigen heterocyclischen Ring mit einem oder zwei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff und X für Sauerstoff oder den Rest $N-R^3$, wobei R^3 Wasserstoff, gegebenenfalls durch Halogen, Amino, Monooder Dialkylamino, Hydroxy, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylacyloxy substituiertes C_1-C_6 -Alkyl, C_2-C_6 -Alkenyl, C_2-C_6 -Alkinyl, C_3-C_6 -Cycloalkyl oder gegebenenfalls durch Halogen, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl oder C_1-C_4 -Alkoxy substituiertes Benzyl bedeutet,

ch

35

40

2. Verfahren zur Herstellung von 3H-Imidazo[4,5-h]chinolinen der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man 7,8-Diaminochinoline der Formel

 $\begin{array}{c|c} R^3 - N & R^1 \\ N & NH_2 \end{array}$

45

in an sich bekannter Weise mit Carbonsäuren der Formel

R²-COOH (III)

50

oder Orthoestern der Formel

 $R^2C(OR^4)_3$ (IV)

55

in der R4 C1 - C4-Alkyl bedeutet, umsetzt.

3. Verfahren zur Herstellung von Oxazolo[5,4-h]chinolinen der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß man 7-Hydroxy-8-amino-chinoline der Formel

 $HO \longrightarrow R^1$ NH_2 (V)

65

60

in an sich bekannter Weise mit Carbonsäuren der Formel

R2-COOH (III)

40 03 587 A1

oder Orthoestern der Formel

 $R^2-C(OR^4)_3$ (IV)

in der R⁴ C₁ — C₄-Alkyl bedeutet, umsetzt.
4. Herbizid, enthaltend ein 3H-Imidazo[4,5-h] (Oxazolo[5,4-h])chinolin der Formel I gemäß Anspruch 1.
5. Herbizid enthaltend inerte Zusatzstoffe und ein 3H-Imidazo[4,5-h] (Oxazolo[5,4-h])chinolin der Formel I gemäß Anspruch 1.

6. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man die Pflanzen und/oder ihren Standort mit einer herbizid wirksamen Menge eines 3H-Imidazo[4,5-h] (Oxazolo[5,4-h])chinolins der Formel I gemäß Anspruch 1 behandelt.