- 1. 遗漏变量的蒙特卡洛实验.
- i. 从分布 N(0,100) 中产生 n=100 个独立的随机数作为 x_i ,从分布 N(0,4) 中产生 n=100 个独立的随机数作为 u_i ,根据公式 $y_i = \beta_0 + \beta_1 x_i + u_i$ 产生 n=100 个 y_i , 其中 $\beta_0 = -20$, $\beta_1 = 3$ 。将 (y_i, x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$ 。
- ii. 从分布 $N(0,\Sigma)$ 中产生 n=100 个独立的随机数对 (x_i,v_i) ,其中 $\Sigma_{11}=100$, $\Sigma_{22}=9$ $\Sigma_{12}=\Sigma_{21}=16$ 。从分布 N(0,4) 中产生 n=100 个独立的随机数作为 u_i ,根据公式 $y_i=\beta_0+\beta_1x_i+u_i+v_i$ 产生 n=100 个 y_i ,其中 $\beta_0=-20$, $\beta_1=3$ 。将 (y_i,x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$ 。
- iii. 从分布 $N(0,\Sigma)$ 中产生 n=100 个独立的随机数对 (x_i,v_i) ,其中 $\Sigma_{11}=100$, $\Sigma_{22}=9$ $\Sigma_{12}=\Sigma_{21}=-16$ 。从分布 N(0,4) 中产生 n=100 个独立的随机数作为 u_i ,根据 公式 $y_i=\beta_0+\beta_1x_i+u_i+v_i$ 产生 n=100 个 y_i ,其中 $\beta_0=-20$, $\beta_1=3$ 。将 (y_i,x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$ 。
- iv. 从分布 $N(0,\Sigma)$ 中产生 n=100 个独立的随机数对 (x_i,v_i) ,其中 $\Sigma_{11}=100$, $\Sigma_{22}=9$ $\Sigma_{12}=\Sigma_{21}=0$ 。从分布 N(0,4) 中产生 n=100 个独立的随机数作为 u_i ,根据公式 $y_i=\beta_0+\beta_1x_i+u_i+v_i$ 产生 n=100 个 y_i ,其中 $\beta_0=-20$, $\beta_1=3$ 。将 (y_i,x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$ 。
- 2. Sample Selection 的蒙特卡洛实验:
- i. 从分布 N(0,100) 中产生 n=200 个独立的随机数作为 x_i ,从分布 N(0,4) 中产生 n=200 个独立的随机数作为 u_i ,根据公式 $y_i=\beta_0+\beta_1x_i+u_i$ 产生 n=200 个 y_i ,

- 其中 $\beta_0 = -20$, $\beta_1 = 3$ 。将 (y_i, x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T = 10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$, $Var(\hat{\beta}_1)$ 。
- ii. 从分布 N(0,100) 中产生 n=200 个独立的随机数作为 x_i ,从分布 N(0,4) 中产生 n=200 个独立的随机数作为 u_i ,根据公式 $y_i=\beta_0+\beta_1x_i+u_i$ 产生 n=200 个 y_i , 其中 $\beta_0=-20$, $\beta_1=3$ 。从 n=200 对 (y_i,x_i) 中随机抽取 100 对 (y_i,x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$, $Var(\hat{\beta}_1)$ 。
- iii. 从分布 N(0,100) 中产生 n=200 个独立的随机数作为 x_i ,从分布 N(0,4) 中产生 n=200 个独立的随机数作为 u_i ,根据公式 $y_i=\beta_0+\beta_1x_i+u_i$ 产生 n=200 个 y_i , 其中 $\beta_0=-20$, $\beta_1=3$ 。保留 $u_i>0$ 时的 (y_i,x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$, $Var(\hat{\beta}_1)$ 。
- iv. 从分布 N(0,100) 中产生 n=200 个独立的随机数作为 x_i , 从分布 N(0,4) 中产生 n=200 个独立的随机数作为 u_i ,根据公式 $y_i=\beta_0+\beta_1x_i+u_i$ 产生 n=200 个 y_i , 其中 $\beta_0=-20$, $\beta_1=3$ 。保留 $u_i<-0.5$ 时的 (y_i,x_i) 作为观测值,可用 OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$, $Var(\hat{\beta}_1)$ 。

3. 测量误差的蒙特卡洛实验:

i. 从分布 N(0,100) 中产生 n=100 个独立的随机数作为 x_i ,从分布 N(0,4) 中产生 n=100 个独立的随机数作为 u_i ,从分布 N(0,1) 中产生 n=100 个独立的随机数作为 v_i ,根据公式 $y_i = \beta_0 + \beta_1 x_i + u_i$ 产生 n=100 个 y_i ,其中 $\beta_0 = -20$, $\beta_1 = 3$,根据公式 $\tilde{x}_i = x_i + v_i$ 产生 n=100 个 \tilde{x}_i 。将 (y_i, \tilde{x}_i) 作为观测值,可用OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可

得到 $\hat{\beta}_1$, 计算 $E(\hat{\beta}_1)$, $Var(\hat{\beta}_1)$ 。

ii. 从分布 N(0,100) 中产生 n=100 个独立的随机数作为 x_i ,从分布 N(0,4) 中产生 n=100 个独立的随机数作为 u_i ,从分布 N(0,1) 中产生 n=100 个独立的随机数作为 v_i ,根据公式 $y_i = \beta_0 + \beta_1 x_i + u_i$ 产生 n=100 个 y_i ,其中 $\beta_0 = -20$, $\beta_1 = 3$,根据公式 $\tilde{y}_i = y_i + v_i$ 产生 n=100 个 \tilde{y}_i 。将 (\tilde{y}_i, x_i) 作为观测值,可用OLS 对 β_1 做估计,得到估计值 $\hat{\beta}_1$ 。重复上面的步骤 T=10000 次,每次都可得到 $\hat{\beta}_1$,计算 $E(\hat{\beta}_1)$, $Var(\hat{\beta}_1)$ 。

4. 互为因果的蒙特卡洛实验:

从分布 N(100,100) 中抽取随机数 x_1 ,根据 $y_i = \beta_0 + \beta_1 x_i + u_i$ 产生 y_1 ,其中 $\beta_0 = 150$, $\beta_1 = -2$, u_i 为从分布 N(0,4) 中抽取的随机数。根据和 $x_{i+1} = \alpha_0 + \alpha_1 y_i + v_i$ 产生 x_2 ,其中 $\alpha_0 = -20$, $\alpha_1 = 4$, v_i 为从分布 N(0,9) 中抽取的随机数。再根据 $y_i = \beta_0 + \beta_1 x_i + u_i$ 产生 y_2 ,于此类推,得到 100 组观测值 (y_i, x_i) 。根据线性模型 $y_i = \gamma_0 + \gamma_1 x_i + u_i$ 估计 $\hat{\gamma}_1$ 。重复上面的步骤 10000 次,计算 $E(\hat{\gamma}_1)$ 。