Chapitre III: relations binaires, points fixes et induction

Stéphane Le Roux leroux@lsv.fr

ENS Paris-Saclay

2018-2019

Relations binaires

Définition

Soit un ensemble E. On appelle relation binaire sur E toute partie de $E \times E$.

Notations

Soit une relation binaire $R \subseteq E \times E$. En fonction du contexte, on dénote $(x,y) \in R$ aussi par R(x,y) ou xRy.

Remarques

- Un graphe orienté est une relation binaires sur un ensemble *E*, et réciproquement.
- Soient deux ensembles E et F. On peut aussi définir des relations binaires comme parties de E × F, mais la plupart des objets que nous étudions dans ce chapitre n'ont pas de sens dans ce cadre trop général.

Propriétés de base

Définitions

Soit une relation binaire R sur un ensemble E. On dit que R est

- réflexive si $\forall x \in E$, xRx
- symétrique si $\forall x, y \in E, xRy \Rightarrow yRx$
- transitive si $\forall x, y, z \in E$, $(xRy \land yRz) \Rightarrow xRz$. (ou de manière plus concise : $xRyRz \Rightarrow xRz$)
- totale si $\forall x, y \in E, xRy \vee yRx$

Proposition

- Toute relation totale est aussi réflexive.
- Toute relation symétrique et totale est universelle, i.e. égale à $E \times E$.

Relations d'équivalence

Définition

- \bullet Une relation d'équivalence \sim est une relation binaire réflexive, symétrique et transitive.
- Pour tout $x \in E$, on note $[x] := \{y \in E | x \sim y\}$, la classe d'équivalence de x.
- La relation binaire "a le même cardinal" (sur un ensemble d'ensembles) est une relation d'équivalence.
- Soit $f: E \to F$ une application. Pour tout $x, y \in E$, on note $x \sim y$ si f(x) = f(y). Alors \sim est une relation d'équivalence. Ses classes d'équivalence sont les préimages $f^{-1}[z]$ pour $z \in F$.

Caractérisation des classes d'équivalence

Soit $\{E_i\}_{i\in I}$ une partition de E. $(E_i \neq \emptyset, \cup_i E_i = E$ et

$$E_i \cap E_j \neq \emptyset \Rightarrow i = j.$$

Pour tout $x, y \in E$, on note $x \sim y$ s'il existe $i \in I$ tel que $x, y \in E_i$. Alors \sim est une relation d'équivalence. Ses classes d'équivalence sont les E_i pour $i \in I$.

Lemme

- $\forall x \in E, x \in [x]$
- $\forall x, y \in E$, $[x] \cap [y] \neq \emptyset \in E \Rightarrow x \sim y$
- $\forall x, y \in E, \quad x \sim y \Rightarrow [x] = [y]$

Corollaire et définition

- Les classes d'équivalence d'une relation d'équivalence sur *E* constituent une partition de *E*.
- L'ensemble de ces classes est appelé l'ensemble quotient et est noté E/\sim .

Symétrie et antisymétrie des relations binaires

Définitions

Soit une relation binaire R sur un ensemble E. On dit que R est

- réflexive si $\forall x \in E$, xRx
- symétrique si $\forall x, y \in E, xRy \Rightarrow yRx$
- antisymétrique si $\forall x, y \in E, (xRy \land yRx) \Rightarrow x = y$
- transitive si $\forall x, y, z \in E$, $(xRy \land yRz) \Rightarrow xRz$
- totale si $\forall x, y \in E, xRy \vee yRx$
- Lien entre la symétrie et l'antisymétrie ?
- Une relation peut-elle être ni symétrique ni antisymétrique ?
- Une relation peut-elle être à la fois symétrique et antisymétrique ?

Ordres

- réflexive si $\forall x \in E$, xRx
- symétrique si $\forall x, y \in E, xRy \Rightarrow yRx$
- antisymétrique si $\forall x, y \in E, xRyRx \Rightarrow x = y$
- transitive si $\forall x, y, z \in E$, $xRyRz \Rightarrow xRz$
- totale si $\forall x, y \in E, xRy \lor yRx$
- Un préordre est une relation réflexive et transitive.
- Un ordre (partiel) est un préordre antisymétrique.
- Un ordre total est un ordre qui est total.
- La comparaison usuelle \leq dans les entiers/réels est un ordre total.
- La divisibilité | dans les entiers naturels est un ordre.
- La divisibilité | dans les entiers relatifs est un préordre.
- La comparaison des ensembles via leurs cardinaux est un préordre (total si on admet qu'il existe une injection entre deux ensembles).

L'irréflexivité

Définitions

Soit une relation binaire R sur un ensemble E. On dit que R est

- irréflexive si $\forall x \in E, \neg(xRx)$
- Lien entre la réflexivité et l'irréflexivité ?
- Une relation peut-elle être ni réflexive ni irréflexive ?
- Une relation peut-elle être à la fois réflexive et irréflexive ?

Ordres stricts

Définitions

Soit une relation binaire R sur un ensemble E. On dit que R est

- irréflexive si $\forall x \in E, \neg(xRx)$
- asymétrique si $\forall x, y \in E, xRy \Rightarrow \neg(yRx)$
- trichotomique si $\forall x, y \in E$, $xRy \lor yRx \lor x = y$, et seul un des trois cas est vrai.
- Un ordre (partiel) strict est une relation transitive et irréflexive.
- Un ordre total strict (ou strict total) est une relation transitive et trichotomique (mais pas total!)

Exemples

- La comparaison usuelle < dans les entiers/réels est un ordre total strict.
- La conjunction de | et de ≠ dans les entiers naturels est un ordre strict.

Ordres stricts (II)

Définitions

Soit une relation binaire R sur un ensemble E. On dit que R est

- irréflexive si $\forall x \in E, \neg(xRx)$
- asymétrique si $\forall x, y \in E, xRy \Rightarrow \neg(yRx)$
- trichotomique si $\forall x, y \in E$, $xRy \lor yRx \lor x = y$, et seul un des trois cas est vrai.
- Un ordre (partiel) strict est une relation transitive et irréflexive.
- Un ordre total strict (ou strict total) est une relation transitive et trichotomique (mais pas total!)

Propositions

- Toute relation asymétrique est irréflexive et antisymétrique.
- Tout ordre strict est asymétrique.
- Toute relation trichotomique est asymétrique.
- Tout ordre total strict est un ordre strict.

Rappels

- réflexive si $\forall x \in E$, xRx
- symétrique si $\forall x, y \in E, xRy \Rightarrow yRx$
- antisymétrique si $\forall x, y \in E, xRyRx \Rightarrow x = y$
- transitive si $\forall x, y, z \in E$, $xRyRz \Rightarrow xRz$
- totale si $\forall x, y \in E, xRy \vee yRx$
- irréflexive si $\forall x \in E, \neg(xRx)$
- asymétrique si $\forall x, y \in E, xRy \Rightarrow \neg(yRx)$
- trichotomique si $\forall x, y \in E$, $xRy \lor yRx \lor x = y$, et seul un des trois cas est vrai.

Relation vide

La relation binaire vide sur un ensemble E non-vide est-elle (Oui/Non)

réflexive	
symétrique	
transitive	
totale	
irréflexive	
antisymétrique	
asymétrique	
trichotomique	

Relation universelle

La relation binaire universelle sur un ensemble E non-vide est-elle

réflexive	
symétrique	
transitive	
totale	
irréflexive	
antisymétrique	
asymétrique	
trichotomique	

Relation vide et relation universelle

Soit E un ensemble.

La relation binaire vide sur E

- est irréflexive, symétrique, antisymétrique, asymétrique, transitive.
- n'est pas réflexive, totale, trichotomique.

La relation binaire universelle sur E

- est réflexive, symétrique, transitive, totale,
- n'est pas irréflexive, antisymétrique, asymétrique, trichotomique.

Intersection/conjonction de relations

Définition

Soit $(R_i)_{i \in I}$ une famille de relations binaires sur un ensemble E. Soit $R = \bigcap_{i \in I} R_i$. Autrement dit, xRy ssi xR_iy pour tout $i \in I$.

Les propriétés suivantes sont-elles préservées par intersection ? (Non / Oui, dès que l'une des R_i a la propriété / Oui, si toutes les R_i ont la propriété.)

	non	oui, si une des R_i	oui, si toutes les R_i
réflexivité			
symétrie			
transitivité			
totalité			
irréflexivité			
antisymétrie			
asymétrie			
trichotomie			

Intersection/conjonction de relations

Proposition

Soit $(R_i)_{i \in I}$ une famille de relations binaires sur un ensemble E. Soit $R = \bigcap_{i \in I} R_i$. Autrement dit, xRy ssi xR_iy pour tout $i \in I$.

- Si une des R_i est irréflexive/asymétrique/antisym, alors R aussi.
- ullet Si toutes les R_i sont réflexives/symétriques/transitives, alors R aussi.
- l'intersection ne préserve ni la totalité ni la trichotomie.

Corollaire

L'intersection de relations d'équivalence/de préordres/d'ordres (stricts) est une relation d'équivalence/un préordre/un ordre (strict).

Remarque

L'union de relations a moins de propriétés (mais réflexivité, irréflexivité et symétrie sont préservées).

Restriction de domaine

Définition

Soit R une relation binaire sur un ensemble E. Pour tout $F \subseteq E$, on note R_F le restriction de R à F, i.e. la relation $R \cap (F \times F)$ sur F.

 $F \times F$ est la relation universelle sur F, mais pas sur $E \supsetneq F$.

Proposition

Si R est réflexive, alors R_F l'est aussi. Si R est symétrique/transitive/totale/antisymétrique/irréflexive/asymétrique/trichotomique, alors R_F l'est aussi.

- Soit R transitive sur $E: \forall x, y, z \in E$, $xRyRz \Rightarrow xRz$. Soit $F \subseteq E$, alors $\forall x, y, z \in F$, $xRyRz \Rightarrow xRz$, i.e. R_F est transitive. (Explication informelle : x, y et z sont quantifiés universellement.)
- On définit R sur $\{0,1\}$ par xRy si $x \neq y$. Alors R vérifie $\forall x \exists y, xRy$, mais si on prend $F := \{0\}$, alors R_F ne vérifie plus la formule.

Relation inverse

Définition

Soit R une relation binaire sur un ensemble E. Son inverse est $R^{-1} := \{(y, x) \in E \times E \mid (x, y) \in R\}$. Autrement dit, xRy ssi $yR^{-1}x$.

Dans beaucoup de cas, R^{-1} est plutôt représentée par le symbole "miroir" de R. Par exemple, on écrit \geq plutôt que \leq^{-1} .

Proposition

Si R est réflexive, alors R^{-1} aussi. Si R est symétrique, transitive, totale, antisymétrique, irréflexive, asymétrique, ou trichotomique, alors R^{-1} aussi.

- Une relation binaire R sur E est symétrique si $\forall y, x \in E$, $yRx \Rightarrow xRy$, i.e. $\forall y, x \in E$, $xR^{-1}y \Rightarrow yR^{-1}x$, i.e. R^{-1} est symétrique. (Explication informelle : x et y sont quantifiés de la même manière.)
- (\mathbb{N}, \leq) vérifie $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, x \leq y$, mais \leq^{-1} (i.e. \geq) non.

Éléments extrémaux

Définitions

Soient (E, \leq) un ensemble ordonné, i.e. \leq est un ordre sur E.

- $x \in E$ est un plus grand élément de E si $\forall y \in E, y \leq x$.
- $x \in E$ est un élément maximal de E si $\forall y \in E, x \leq y \Rightarrow x = y$.
- Les éléments minimaux et le plus petit élément sont définis comme les éléments maximaux et le plus grand élément de \mathbb{R}^{-1} .
- $(\llbracket 0, n \rrbracket, \leq)$ a un plus grand élément n et un plus petit élément 0.
- ([2,9],|) a les minima 2,3,5,7 et les maxima 5,6,7,8,9. Le seul élément non-extrémal est 4.
- ullet (\mathbb{N},\leq) a un plus petit élément 0 mais pas de plus grand élément.
- ullet $(\mathbb{N}, |)$ a un plus petit élément 1 et un plus grand élément 0.

Éléments extrémaux (II)

Proposition

Quand il existe, le plus grand élément est unique et est l'unique élément maximal.

La réciproque est fausse

Soit $E=\mathbb{N}\cup\{0'\}$ où $0'\notin\mathbb{N}$. Soit \leq l'ordre usuel sur les entiers étendu à $\mathbb{N}\cup\{0'\}$. Alors, 0' est l'unique élément maximal de $(\mathbb{N}\cup\{0'\},\leq)$, mais il n'y a pas de plus grand élément.

Propositions

- Tout ensemble ordonné fini et non-vide admet un élément maximal.
- Si un ensemble ordonné fini admet un unique élément maximal, alors c'est un plus grand élément.
- Si toute partie finie d'un ensemble ordonné admet un plus grand élément, alors c'est un ordre total.

Bornes supérieures et inférieures

Définitions

Soient (E, \leq) un ensemble ordonné, $F \subseteq E$ et $x \in E$.

- x est un majorant de F si $y \le x$ pour tout $y \in F$.
- Quand l'ensemble des majorants de F a un plus petit élément, on l'appelle la borne supérieure de F, notée sup F.
- Les minorants et bornes inférieures de \leq , notée inf, sont les majorants et bornes supérieures de \geq , i.e. \leq^{-1} .

L'ensemble $\{x \in [0,2] \cap \mathbb{Q} \mid x^2 \le 2\}$ n'a pas de borne supérieure dans \mathbb{Q} .

Propositions

- Le plus grand élément d'une partie en est la borne supérieure.
- Un majorant dans une partie en est le plus grand élément.

Bornes supérieures et inférieures (II)

Définitions

Soient (E, \leq) un ensemble ordonné, $F \subseteq E$ et $x \in E$.

- x est un majorant de F si $y \le x$ pour tout $y \in F$.
- Quand l'ensemble des majorants de F a un plus petit élément, on l'appelle la borne supérieure de F, notée sup F.
- Soient $(E, \leq) := (\mathbb{N}, |)$ et $F := \{n_1, \ldots, n_k\} \subseteq \mathbb{N}$. Alors le $\operatorname{ppcm}(n_1, \ldots, n_k)$ est la borne supérieure de F et le $\operatorname{pgcd}(n_1, \ldots, n_k)$ est la borne inférieure de F.
- Soient $(E, \leq) := (\mathcal{P}(X), \subseteq)$ et $F := \{Y_i\}_{i \in I} \subseteq \mathcal{P}(X)$. Alors $\bigcup_{i \in I} Y_i$ est la borne supérieure de F et $\bigcap_{i \in I} Y_i$ est la borne inférieure de F.

Intersection et éléments extrémaux

Proposition

L'intersection d'ordres préserve les éléments extrémaux.

Remarque

L'intersection d'ordres peut générer de nouveaux éléments extrémaux. Elle ne préserve donc pas l'existence d'un plus petit/grand élément (ni de borne inférieure et supérieure).

Produit cartésien de relations binaires

∃ence du + grand él. dans l'ensemble ∃ence de + grands él. dans les parties

Définition

asymétrie trichotomie

Soit $(E_i)_{i \in I}$ une famille d'ensembles. Pour tout $i \in I$, soit $R_i \subseteq E_i \times E_i$. Pour tout $x, y \in E := \prod_i E_i$ on pose xRy si $x_iR_iy_i$ pour tout $i \in I$.

Produit cartésien de relations binaires

Proposition

Soit $(E_i)_{i \in I}$ une famille d'ensembles. Pour tout $i \in I$, soit $R_i \subseteq E_i \times E_i$. Pour tout $x, y \in E := \prod_i E_i$ on pose xRy si $x_iR_iy_i$ pour tout $i \in I$.

- Si une des R_i est irréflexive/asymétrique/antisym, alors R aussi.
- Si toutes les R_i sont réflexives/symétriques/transitives/ont un plus grand élément dans leur domaine, alors R aussi.
- l'intersection ne préserve ni la totalité, ni la trichotomie, ni l'existence de plus grands éléments dans les parties du domaine.

Corollaire

Le produit cartésien de préordres est un préordre, d'ordres (stricts) est un ordre (strict), de relations d'équivalence est une relations d'équivalence.

Dans la définition, on pourrait remplacer " $x_iR_iy_i$ pour tout $i \in I$ " par $x_iR_iy_i$ pour au moins un $i \in I$, mais c'est moins intéressant.

Produit lexicographique d'ordres

Définition

Pour tout $n \in \mathbb{N}$, soit un ordre (i.e. partiel) \leq_n sur un ensemble E_n . Pour $x, y \in E := \prod_n E_n$ on pose $x \leq_{\text{lex}} y$ si x = y ou bien si $x_k \leq_k y_k$, où $k := \min\{i \in I \mid x_i \neq y_i\}$.

Proposition

Le produit lexicographique d'ordres (totaux) est un ordre (total).

On peut étendre l'ordre lexicographique aux mots de longueur arbitraire (finie ou infinie) dont la n-ième lettre éventuelle est un élément de E_n . En général, on considère le cas particulier où les E_i et \leq_n sont les mêmes. On parle alors d'ordre lexicographique de l'ordre original.

Treillis

Définition

- Un treillis est un ensemble ordonné dans lequel toute paire d'éléments a une borne supérieure et une borne inférieure.
- Un treillis complet est un ensemble ordonné dans lequel toute partie admet une borne supérieure et une borne inférieure.
- Un ordre total est un treillis. Le maximum de deux éléments est leur borne supérieure.
- L'ensemble vide est un treillis, mais tout treillis complet est non-vide.
- $(\mathbb{N}, |)$ est un treillis complet de plus petit (grand) élément 1 (0).
- $(\mathbb{N}^*, |)$ est un treillis mais pas complet car aucune partie infinie de \mathbb{N}^* n'admet de borne supérieure. (Et \emptyset n'a pas de borne inférieure.)
- $(\mathcal{P}(X), \subseteq)$ est un treillis complet.

Treillis (II)

Définition

- Un treillis est un ensemble ordonné dans lequel toute paire d'éléments a une borne supérieure et une borne inférieure.
- Un treillis complet est un ensemble ordonné dans lequel toute partie admet une borne supérieure et une borne inférieure.

Proposition

- Un treillis complet est un treillis.
- Toute partie finie non-vide d'un treillis a une borne supérieure.
- Soit (E, \leq) un ensemble ordonné dont toute partie admet une borne supérieure. Alors (E, \leq) est un treillis complet.

Application croissante et point fixe

Définitions

Soient (E, \leq) un ensemble ordonné.

- Une application $f: E \to E$ est dite croissante si $\forall x, y \in E, x \le y \Rightarrow f(x) \le f(y)$.
- Un point fixe d'une application $f: E \to E$ est un $x \in E$ tel que f(x) = x.

Théorème de Knaster-Tarski

Lemme de Knaster-Tarski

Soient (E, \leq) un treillis complet et f une application croissante de E. Alors f a un plus petit point fixe et un plus grand point fixe.

Lemme

Soient (E, \leq) un treillis complet et $a, b \in E$ tels que $a \leq b$. Alors $([a, b], \leq)$ est aussi un treillis complet, où $[a, b] := \{x \in E | a \leq x \leq b\}$.

Théorème de Knaster-Tarski

Soient (E, \leq) un treillis complet et f une application croissante de E. Alors l'ensemble des points fixes de f constituent un treillis complet.

Soit $f:[0,2] \rightarrow [0,2]$, telle que f(x):=x/2 si $x \le 1$ et sinon f(x):=x. Soient $F:=\{0\}\cup [1,2]$ l'ensemble des points fixes de f et F':=[1,2].

Alors $\inf_{F} F' = 0$ et $\inf_{[0,2]} F' = 1$.

Théorème de (Anne) Davis

Théorème

Soient (E, \leq) un treillis. Les deux propositions suivantes sont équivalentes.

- Le treillis est complet.
- Toute application croissante de E dans E a un point fixe.

Il existe une preuve du théorème de Cantor-Bernstein qui utilise le lemme de Knaster-Tarski, i.e. l'implication haut-bas du théorème de Davis.

Relations bien fondées

Définition

Soit R une relation binaire sur E. S'il n'existe pas de suite $(x_n)_{n\in\mathbb{N}}$ de E telle que $x_{n+1}Rx_n$ pour tout $n\in\mathbb{N}$, on dit que R est bien fondée.

- $(\mathbb{N}, <)$ et $(\mathbb{N}, |)$ (divisibilité stricte) et $\{(n, n+1) \in \mathbb{N} \times \mathbb{N} \mid n \in \mathbb{N}\}$ sont bien fondées.
- $(\mathbb{Z}, <)$ et ([0,1], <) ne sont pas bien fondées.
- Soit $A := \{ n^k \mid k, n \in \mathbb{N} \land k \le n \}$ un arbre sur l'alphabet \mathbb{N} . Pour tout $u, v \in A$, on pose uRv si v est un préfixe propre de u. Alors R est bien fondée.

Proposition

Si R est bien fondée et $R' \subseteq R$, alors R' est bien fondée.

La définition peut varier un peu pour les ordres : (\mathbb{N}, \leq) est bien fondé en tant qu'ordre mais pas en tant que relation, car $0 \geq 0 \geq 0 \geq \ldots$

Relations bien fondées (II)

Définition

Soit R une relation binaire sur un ensemble E. Pour tout $y \in E$, soit $Ry := \{x \in E \mid xRy\}$ l'ensemble des antécédents de y. Soit $acc_R : \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ $A \mapsto A \cup \{y \in E \mid Ry \subseteq A\}$

Proposition

La fonction acc_R est croissante dans le treillis complet $(\mathcal{P}(E), \subseteq)$.

Proposition

Soit R sur un ensemble E. Les assertions suivantes sont équivalentes.

- R est bien fondée.
- **2** Pour toute partie non vide $F \subseteq E$, il existe $x \in F$ tel que $Rx \cap F = \emptyset$.
- 3 E est le plus petit point fixe de acc_R
- Si une partie $P \subseteq E$ vérifie $\forall x \in E$, $(Rx \subseteq P \Rightarrow x \in P)$, alors P = E.

Preuve par récurrence/induction

Proposition (rappel)

R est bien fondée ssi pour toute partie $P \subseteq E$, si *P* vérifie $\forall x \in E$, $(Rx \subseteq P \Rightarrow x \in P)$, alors P = E.

Reformulation

On suppose : si tous les antécédents de $x \in E$ ont une propriété P donnée, alors x aussi. On conclut : tous les éléments de E ont la propriété.

Principe de récurrence sur N

- Rappel : Soit P une partie de $\mathbb N$ telle que $0 \in P$ et pour tout $n \in \mathbb N$, si $n \in P$ alors $n+1 \in P$. Alors $P = \mathbb N$.
- Reformulation : On suppose que si tous les antécédents de $n \in \mathbb{N}$ ont une propriété P donnée, alors n aussi. On conclut que tous les éléments de \mathbb{N} ont la propriété.
- La relation bien fondée sous-jacente est telle que mR(m+1) pour tout $m \in \mathbb{N}$. Pour la récurrence forte, la relation sous-jacente est <.

Définition de fonctions par récursivité

Proposition

Soient R une relation bien fondée sur un ensemble E, un ensemble A, et une fonction f prenant deux arguments, un $x \in E$ et une fonction de Rx vers A, et renvoyant un élément de A. Il existe une unique fonction $g: E \to A$ telle que $g(x) := f(x, g|_{Rx})$ pour tout $x \in E$.

S'il faut évaluer g en un nombre infini d'antécédents de x avant de pouvoir évaluer g en x, ça peut être un problème d'un point de vue algorithmique.

Proposition

Si Rx est fini pour tout $x \in E$, alors évaluer la fonction en un point ne nécessite qu'un nombre fini d'évaluations préalables.

Comparer la proposition précédente avec le Lemme de König.

Théorème du point fixe de Kleene

Définition

Soient E et F deux ensembles ordonnés. $f: E \to F$ est continue au sens de Scott si pour toute suite croissante $(x_n)_{n\in\mathbb{N}}$ admettant une borne supérieure, $(f(x_n))_{n\in\mathbb{N}}$ en admet aussi une et $\sup_{n\in\mathbb{N}} f(x_n) = f(\sup_{n\in\mathbb{N}} x_n)$.

Proposition

Toute application continue au sens de Scott est croissante.

Théorème du point fixe de Kleene

Soit (E, \leq) une ensemble ordonné muni d'un plus petit élément \bot et tel que toute suite croissante $(x_n)_{n\in\mathbb{N}}$ admet une borne supérieure. Soit $f: E \to E$ continue au sens de Scott. Alors f admet un plus petit point fixe, la borne supérieure de la suite $(f^n(\bot))_{n\in\mathbb{N}}$.

Toute suite croissante admet une borne sup = forme faible de complétude. Continuité au sens de Scott = plus fort que la croissance.

Différence entre Knaster-Tarski et Kleene

Un point fixe difficile à approximer par le bas

$$f: [0,2] \to [0,2]$$

$$x \mapsto \begin{cases} \frac{1+x}{2} \text{ si } x \in [0,1[\\ \frac{2+x}{2} \text{ si } x \in [1,2] \end{cases}$$

La fonction f est croissante, $([0,2], \leq)$ est un treillis complet, le théorème de Knaster-Tarski s'applique donc.

Cependant, le seul point fixe de f est 2, alors que $\sup\{f^n(0)\}_{n\in\mathbb{N}}=1$, car $f^n(0)=1-\frac{1}{2^n}$ pour tout $n\in\mathbb{N}$.

Proposition

Pour les fonctions dont l'ensemble de départ est \mathbb{R} , la continuité de Scott équivaut à la croissance et la continuité à gauche.

Définition par induction des arbres binaires entiers finis

Ce sont les arbres finis dont chaque noeud a zéro ou deux enfants.

Définition par induction

Soit $\Sigma = \{ [, \star,] \}$ un alphabet à trois lettres. Pour tout $A \subseteq \Sigma^*$, on note $[A \star A] := \{ [x \star y] \in \Sigma^* \mid x, y \in A \}$. Soit

$$g: \mathcal{P}(\Sigma^*) \rightarrow \mathcal{P}(\Sigma^*)$$

 $A \mapsto A \cup \{[]\} \cup [A \star A]$

La fonction g est Scott continue, i.e. $\sup\{g(A_n)\}_{n\in\mathbb{N}}=g(\sup\{A_n\}_{n\in\mathbb{N}})$ (à prouver), donc $B:=\sup\{g^n(\emptyset)\}_{n\in\mathbb{N}}$ est le plus petit point fixe de g.

Par définition, B est l'ensemble des arbres binaires entiers finis. Cette définition s'exprime simplement par $B := [] \mid [B \star B]$

La relation bien fondée sous-jacente R est définie par $xR[x \star y]$ et $yR[x \star y]$ pour tout $x, y \in B$.

Principe de preuve par induction structurelle

Idée : exploiter la structure de la définition par induction $B := [] \mid [B \star B]$ qui vient de la fonction $g : \mathcal{P}(\Sigma^*) \to \mathcal{P}(\Sigma^*)$ $A \mapsto A \cup \{[]\} \cup [A \star A]$

Cheminement vers un principe de preuve utilisable

- Si P est un point fixe de g, alors $B \subseteq P$.
- ② Si P vérifie $[] \in P$ et $[P \star P] \subseteq P$, alors P est un point fixe de g.
- **3** Donc, si P vérifie $[] \in P$ et $x, y \in P \Rightarrow [x \star y] \in P$, alors $B \subseteq P$.

Principe utilisable:

- On suppose que l'arbre [] vérifie une propriété *P*,
- et que si deux arbres x, y vérifient P, alors $[x \star y]$ aussi.

On conclut que tous les arbres vérifient P.

Ce n'est pas une récurrence sur la taille de l'arbre, mais sur sa structure.

Définition de fonctions par induction structurelle

Même idée

On exploite la structure de la définition par induction $B := [] \mid [B \star B]$.

Exemple

Les arbres de B sont différents des arbres définis comme ensembles clos par préfixes. Cependant, la fonction t ci-dessous traduit un arbre de B en un arbre sur l'alphabet $\{0,1\}$.

$$\begin{array}{cccc} t: & \mathcal{B} & \rightarrow & \mathcal{P}(\{0,1\}^*) \\ & & [] & \mapsto & \{\epsilon\} \\ & & [x \star y] & \mapsto & 0.t(x) \cup 1.t(y) \end{array}$$

où $0.t(x) := \{0w \mid w \in t(x)\}.$

Exemple de preuve par induction structurelle

Proposition (informelle)

Tout arbre binaire entier fini a une feuille de plus que de noeuds internes.

$$f: B \to \mathbb{N} \qquad i: B \to \mathbb{N}$$

$$[] \mapsto 1 \qquad [] \mapsto 0$$

$$[x \star y] \mapsto f(x) + f(y) \qquad [x \star y] \mapsto 1 + i(x) + i(y)$$

- f calcule le nombre de feuilles d'un arbre donné.
- i calcule le nombre de noeuds internes d'un arbre donné.

Proposition

Pour tout $x \in B$, on a f(x) = i(x) + 1.

Clôture transitive

- Soit R une relation binaire vue comme un graphe orienté. On voudrait définir et calculer une relation binaire R^+ telle que xR^+y ssi il existe un chemin de x à y en suivant les arêtes orientées de R.
- Par exemple, soit $E := \{0,1,2,3\}$ et $R := \{(0,1),(1,2),(2,3)\}$. Pour tout $x,y \in \{0,1,2,3\}$, on voudrait xR^+y ssi x < y.
- R⁺ sera transitive, car s'il existe un chemin de x à y et un chemin de y à z, alors il existe un chemin de x à z.

Définition

Soit R une relation binaire sur un ensemble E. Soit

$$t_R: \mathcal{P}(E \times E) \rightarrow \mathcal{P}(E \times E)$$

 $Q \mapsto Q \cup R \cup Q^2$

où
$$Q^2 := \{(x,z) \in E \times E \mid \exists y \in E, xQyQz\}.$$

La fonction t_R est continue au sens de Scott pour l'inclusion (à prouver), soit R^+ son plus petit point fixe.

Clôture transitive (II)

$$t_R: \mathcal{P}(E \times E) \rightarrow \mathcal{P}(E \times E)$$

 $Q \mapsto Q \cup R \cup Q^2$

où $Q^2 := \{(x,z) \in E \times E \mid \exists y \in E, xQyQz\}.$

soit $R^+ := \bigcup_{n \in \mathbb{N}} t_R^n(\emptyset)$ le plus petit point fixe de t_R .

Soient $E:=\{0,1,2,3\}$ et $R:=\{(0,1),(1,2),(2,3)\}$. Calculons $t^n_R(\emptyset)$

Proposition

- Les points fixes de t_R sont les relations transitives contenant R. En outre, R^+ est la plus petite (i.e. l'intersection) de ces relations.
 - Si R est transitive, alors $R^+ = R$.
 - $(R^+)^+ = R^+$ • $R \subset S \Rightarrow R^+ \subset S^+$

Preuve par induction structurelle

Principe pour la clôture transitive

On décrit la construction de ${\it R}^+$ par des règles d'inférence ci-dessous.

$$\frac{xRy}{xR^+y} \qquad \frac{xR^+y \quad yR^+z}{xR^+z}$$

À cette construction est associé un principe de preuve par induction : Soit $Q \subseteq E \times E$ vérifiant les deux propriétés ci-dessous.

- R ⊆ Q
- $\forall x, y, z \in E, xQyQz \Rightarrow xQz$

Alors $R^+ \subseteq Q$.

Clôture transitive "à droite"

Définition

Pour toute relation binaire R on définit sa "clôture transitive à droite".

$$\frac{xRy}{xR^dy} \qquad \frac{xR^dy \quad yRz}{xR^dz}$$

 R^d est le plus petit point fixe de d_R ci-dessous.

$$d_R: \mathcal{P}(E \times E) \rightarrow \mathcal{P}(E \times E)$$

 $Q \mapsto Q \cup R \cup QR$

Si $Q \subseteq E \times E$ vérifie les deux propriétés ci-dessous, alors $R^d \subseteq Q$.

- R ⊆ Q
- $\forall x, y, z \in E, xQyRz \Rightarrow xQz$

Proposition

Pout toute relation binaire R, on a $R^d = R^+$.

Théorème de Bourbaki-Witt et lemme de Zorn

Définition

Soit (E, \leq) un ensemble ordonné. Une chaîne de E est une partie C de E telle que \leq_C est un ordre total.

Théorème

Soit (E, \leq) un ensemble ordonné tel que toute chaîne non vide admet une borne supérieure. Soit $f: E \to E$ une application telle que $x \leq f(x)$ pour tout $x \in E$.

Alors pour tout $a \in E$, il existe un point fixe de f au-dessus de a.

Lemme de Zorn

Soit (E, \leq) un ensemble ordonné dans lequel toute chaîne admet une borne supérieure. Alors E a un élément maximal.