1. Equation:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = \frac{\partial T}{\partial t} \cdot \frac{\lambda}{C_p \cdot \rho}$$

where:

T – temperature [K],

x, y - characteristic length [m],

t - time[s],

 λ – heat transfer coefficient [W/mK],

Cp - specific heat [J/kgK],

 ρ – density [kg/m3].

2. Initial condition:

Temperature 273 K in each node

```
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
273.
```

3. Boundary conditions:

a. Dirichlet boundary condition

4. Physics parameters:

a. Density = 2712
$$\frac{kg}{m^3}$$
,

b. Specific heat = 1507
$$\frac{J}{KgK}$$
,

c. Thermal conductivity =
$$237 \frac{W}{mK}$$
,

5. Steps:

- a. Time step 0.1 s,
- b. Node size 0.01 *m*.