CO5412: Optimización No Lineal I.

Enero-Marzo 2011

TAREA 6

1. Implemente en Matlab el método de gradiente espectral y el de gradiente conjugados para funciones cuadráticas. Encuentre el único minimizador $x^* = (0,...,0)^T$ de la función $q(x) = 0.5x^TAx$, donde A = diag(1,2,...,n). Compare sus resultados con los obtenidos con el método del gradiente o mínimo descenso (Cauchy con búsqueda lineal exacta) para funciones cuadráticas, con n = 100, 200, 500. Use como criterio de parada en todos los casos, $||x_k - x^*||_2 \le 10^{-14}$, y como iterado inicial $x^0 = (.5, .5, ..., .5)^T$. Escoja $\alpha_0 = 1.5$ en el método de gradiente espectral. Haga una tabla de la siguiente forma:

n	Mínimo descenso (Cauchy)	Gradiente Espectral	Gradiente Conjugado
	#de iteraciones	#de iteraciones	#de iteraciones
100			
200			
500			

- 2. Considere la sucesión $\{x^k\}$ generada por el método de gradientes conjugados para minimizar funciones cuadráticas estrictamente convexas. Sea Q el Hessiano de la función a minimizar, $g_i = \nabla f(x^i)$, y d_i la dirección generada en la iteración i. Pruebe que
 - (a) $gen\{g_0, g_1, ..., g_k\} = gen\{g_0, Qg_0, ..., Q^kg_0\}$
 - (b) $gen\{d_0, d_1, ..., d_k\} = gen\{g_0, Qg_0, ..., Q^kg_0\}$
- 3. Consideren el problema de minimizar f(x). Muestre que la dirección d_k en las extensiones del método de gradiente conjugado para el caso no-cuadrático:

$$x_{k+1} = x_k + \alpha_k d_k$$

$$d_k = -\nabla f(x_k) + \beta_{k-1}^i d_{k-1}$$

donde $\alpha_k = \arg \min f(x_k + \alpha x_k)$, es una dirección de descenso para los diferentes escalares β_k^i , con i = FR, PR (FR= Fletcher-Reeves, PR= Polak-Riviere).

1