#### NORTHWESTERN UNIVERSITY

The Search for the Higgs Boson Decaying into a Z Boson and a Photon

#### A DISSERTATION

# SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Physics and Astronomy

Ву

James Bueghly

EVANSTON, ILLINOIS

June 2020

© Copyright by James Bueghly 2020 All Rights Reserved

#### **ABSTRACT**

The Search for the Higgs Boson Decaying into a Z Boson and a Photon

#### James Bueghly

Since its discovery in 2012 at the Large Hadron Collider (LHC), efforts have been made to measure and characterize the properies of the Higgs boson. Among these efforts have been searches for rare decays of the Higgs predicted by the Standard Model (SM) of particle physics. One such decay is the process  $H \to Z\gamma$ , which is predicted by the SM to have a branching fraction of XX. An observation of this decay mode at a rate deviating from the SM prediction would provide indirect evidence of new physics beyond the SM. Previous searches for  $H \to Z\gamma$  were carried out using proton-proton collision data from Run 1 of the LHC. Run 1 exclusion limits on the process were placed at roughly ten times the SM expectation by the Compact Muon Solenoid (CMS) experiment.

This thesis describes the search for  $H \to Z\gamma$  in the  $\ell\ell\gamma$  final state with the CMS detector using LHC Run 2 proton-proton collision data. The process is not observed, and exclusion limits are placed on the production cross section times branching fraction at XX times the SM expectation.

# Acknowledgements

 ${\it Text for acknowledgments}.$ 

# Table of Contents

| ABSTRACT                                             | 3  |
|------------------------------------------------------|----|
| Acknowledgements                                     | 4  |
| Table of Contents                                    | 5  |
| List of Tables                                       | 6  |
| List of Figures                                      | 7  |
| Chapter 1. Introduction                              | 8  |
| Chapter 2. Theory                                    | 9  |
| 2.1. The Standard Model                              | 9  |
| 2.2. Electroweak Theory                              | 9  |
| 2.3. Spontaneous Symmetry Breaking (Higgs Mechanism) | 9  |
| 2.4. Higgs Production                                | 14 |
| 2.5. Higgs Decay                                     | 14 |
| 2.6. Physics Beyond the Standard Model               | 14 |
| Chapter 3. Results and Interpretation                | 15 |
| References                                           | 16 |

# List of Tables

List of Figures

## CHAPTER 1

# Introduction

introductory text

#### CHAPTER 2

#### Theory

#### 2.1. The Standard Model

#### 2.2. Electroweak Theory

#### 2.3. Spontaneous Symmetry Breaking (Higgs Mechanism)

The electroweak Lagrangian lacking the Higgs term CITE EQUATION is insufficient. In particular, it does not provide an explanation for massive gauge bosons. Experimental evidence for massive gauge bosons dates back to the early? twentieth century. Beta decay experiments indicated charged current interactions mediated by a massive W boson, and later experiments indicated additional neutral current interactions mediated by a massive Z boson (CHECK THIS). Later in the twentieth century (GIVE SPECIFIC DATES/REFS) the W and Z bosons were discovered. Indeed, the W and Z masses have been found to be roughly 80 GeV and 91 GeV respectively. An explanation came in the form of the Higgs mechanism (CITE), which spontaneously breaks the SU(2)xU(1) gauge symmetry of the electroweak Lagrangian. In addition, there arises a real Higgs field accompanied by a massive Higgs boson, and fermion masses are explained via their Yukawa couplings to the Higgs boson. The discovery of the Higgs boson and the subsequent measurements of its properties have provided proof that the Higgs mechanism is indeed a central piece of the Standard Model.

To understand how the Higgs mechanism works, consider the introduction of a complex scalar field  $\Phi$ , which transforms as a doublet under SU(2).

(2.1) 
$$\Phi = \begin{bmatrix} \phi^+ \\ \phi^0 \end{bmatrix}$$

Its contribution to the Lagrangian is given by:

(2.2) 
$$\mathcal{L}_{\mathcal{H}} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - V(\Phi)$$

where the Higgs potential takes the form

(2.3) 
$$V(\Phi) = \mu^2 |\Phi^{\dagger} \Phi| + \lambda (|\Phi^{\dagger} \Phi|)^2.$$

 $D_{\mu}$  is the covariant derivative

(2.4) 
$$D_{\mu} = \partial_{\mu} - \frac{ig}{2} \tau \cdot A_{\mu} - \frac{ig'}{2} B_{\mu} Y.$$

Consider the case that the parameters of the Higgs potential  $\lambda$  and  $\mu$  satisfy the conditions  $\lambda > 0$  and  $\mu^2 < 0$ . Then the shape of the potential is shown in ??. Clearly, there is no minimum of the potential at  $\Phi = 0$ . Rather, an infinite set of minima lie around a circle in the complex plane. Hence, it is said that  $\Phi$  has a nonzero vacuum expectation value (VEV). The value of the VEV in terms of  $\mu$  and  $\lambda$  can be determined by explicitly

minimizing the potential:

$$\frac{\partial}{\partial(\Phi^{\dagger}\Phi)}V(\Phi) = 0$$

$$\mu^{2} + 2\lambda\Big(|\Phi^{\dagger}\Phi|\Big) = 0$$

$$(2.5)$$

$$\mu^{2} + 2\lambda\Big[(\phi^{+})^{2} + (\phi^{0})^{2}\Big] = 0$$

Clearly, this can be minimized in many ways depending on individual values of  $\phi^+$  and  $\phi^0$  in the vacuum. By convention, and without loss of generality, we choose the case in which  $\phi^+=0$ . In this case we obtain the equation

$$\phi^0 = \sqrt{\frac{-\mu^2}{2\lambda}} = \frac{1}{\sqrt{2}}v$$

where we have defined  $v \equiv \sqrt{-\mu^2/\lambda}$ .

The existence of the Higgs VEV has profound implications. To see this, it is helpful to reparameterize the scalar doublet field  $\Phi$  as follows:

(2.7) 
$$\Phi = \frac{1}{\sqrt{2}} e^{i\frac{\tau^a}{2}\theta_a(x)} \begin{bmatrix} 0 \\ v + h(x) \end{bmatrix}$$

As  $\Phi$  is invariant under local SU(2) gauge transformations, the prefactor may be rotated away. This is equivalent to setting  $\theta(x) = 0$  in equation 2.7. This choice of gauge is known as the unitary gauge, and leads to

(2.8) 
$$\Phi = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v + h(x) \end{bmatrix}$$

Given the above form of  $\Phi$ , we can now evaluate the Higgs Lagrangian (equation 2.2), starting with the kinetic term  $(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)$ .

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \left| (\partial_{\mu} - \frac{ig}{2}\tau \cdot A_{\mu} - \frac{ig'}{2}B_{\mu}Y)\Phi \right|^{2}$$

$$= \frac{1}{2} \left| \begin{bmatrix} \partial_{\mu} - \frac{i}{2}(gA_{\mu}^{3} + g'B_{\mu}) & -\frac{ig}{2}(A_{\mu}^{1} - iA_{\mu}^{2}) \\ -\frac{ig}{2}(A_{\mu}^{1} + iA_{\mu}^{2}) & \partial_{\mu} + \frac{i}{2}(gA_{\mu}^{3} - g'B_{\mu}) \end{bmatrix} \begin{bmatrix} 0 \\ v + h(x) \end{bmatrix} \right|^{2}$$

$$= \frac{1}{2} \left| \begin{bmatrix} -\frac{ig}{2}(A_{\mu}^{1} - iA_{\mu}^{2})(v + h(x)) \\ \partial_{\mu}h(x) + \frac{i}{2}(gA_{\mu}^{3} - g'B_{\mu})(v + h(x)) \end{bmatrix} \right|^{2}$$

$$= \frac{1}{2}\partial_{\mu}h(x)\partial^{\mu}h(x) + \frac{1}{8}(gA_{\mu}^{3} - g'B_{\mu})(gA_{\mu}^{3} - g'B^{\mu})(v + h(x))^{2}$$

$$+ \frac{g^{2}}{8}(A_{\mu}^{1} - iA_{\mu}^{2})(A_{\mu}^{1} + iA_{\mu}^{2})(v + h(x))^{2}$$

$$(2.9)$$

With some foreknowledge of the result, let us define the physical gauge fields and their masses as follows:

(2.10) 
$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (A_{\mu}^{1} \mp i A_{\mu}^{2}) \qquad m_{W} = \frac{gv}{2}$$

(2.11) 
$$Z_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} (gA_{\mu}^3 - g'B_{\mu}) \qquad m_Z = \sqrt{g^2 + g'^2} \frac{v}{2}$$

(2.12) 
$$A_{\mu} = \frac{1}{\sqrt{g^2 + g'^2}} (g' A_{\mu}^3 + g B_{\mu}) \qquad m_A = 0$$

Then the kinetic term of the Higgs Lagrangian can be recast as

$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \frac{1}{2}\partial_{\mu}h(x)\partial^{\mu}h(x)$$

$$+ \frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu} + m_{W}^{2}W_{\mu}^{+}W^{-\mu}$$

$$+ \frac{v}{4}(g^{2} + g'^{2})Z_{\mu}Z^{\mu}h + \frac{1}{8}(g^{2} + g'^{2})Z_{\mu}Z^{\mu}h^{2}$$

$$+ \frac{v}{4}g^{2}W_{\mu}^{+}W^{-\mu}h + \frac{1}{8}g^{2}W_{\mu}^{+}W^{-\mu}h^{2}$$

$$(2.13)$$

Equation 2.13 provides a great deal of information on the physical ramifications of the Higgs mechanism. The first term is the kinetic term of the physical Higgs boson field. The second and third terms are the mass terms of the Z and W bosons respectively. The fourth and fifth terms show the linear and quadratic couplings of the Z boson to the Higgs boson respectively. Finally, the sixth and seventh terms show the linear and quadratic couplings of the W boson to the Higgs boson respectively. Given the form of equation 2.8, a similar expansion can be carried out on the Higgs potential (equation 2.3). Here, the terms involving the physical Higgs boson are most interesting, so constant terms are dropped.

$$V(\Phi) = \frac{\mu^2}{2} (v+h)^2 + \frac{\lambda}{4} ((v+h)^2)^2$$

$$(2.14) \qquad \to \lambda v^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4$$

The first term is a Higgs mass term, with  $m_H = \sqrt{2\lambda v^2}$ . The second and third terms describe the Higgs trilinear and quartic self-coupling respectively.

The Lagrangian including the Higgs doublet  $\Phi$  can be further extended to incorporate interactions between the Higgs and fermion fields. These interactions, along with the nonzero Higgs VEV, provide a mechanism to generate the fermion masses. The interactions take the form of Yukawa couplings:

(2.15) 
$$\mathcal{L}_{Yukawa} = Y_{ij}^{d} \bar{Q}_{L}^{i} \Phi d_{R}^{j} + Y_{ij}^{u} \bar{Q}_{L}^{i} \tilde{\Phi} u_{R}^{j} + Y_{ij}^{e} \bar{L}_{L}^{i} \Phi e_{R}^{j} + h.c.$$

where

$$\tilde{\Phi} \equiv i\tau_2 \Phi^*$$

Plugging in the unitary gauge  $\Phi$  parameterization of equation 2.8, this evaluates to

(2.17) 
$$\mathcal{L}_{Yukawa} = \frac{Y_{ij}^d}{\sqrt{2}} \bar{d}_L^i(v+h) d_R^j + \frac{Y_{ij}^u}{\sqrt{2}} \bar{u}_L^i(v+h) u_R^j + \frac{Y_{ij}^e}{\sqrt{2}} \bar{e}_L^i(v+h) e_R^j$$

It is worth looking closely at the terms in equation 2.17. For a given fermion type, the first term in the parentheses is a fermion mass term. The second term in the parentheses gives the coupling of the fermion to the Higgs boson. With this in mind, we observe that the fermion mass is given in terms of the couplings and the Higgs vev by

$$(2.18) m_f = \frac{y_f v}{\sqrt{2}}$$

where  $y_f$  is the relevant value taken from the Yukawa coupling matrix. In addition, we see that the strength of the fermion coupling to the Higgs boson is given by  $\frac{m_f}{v}$ . Thus, fermions couple to the Higgs boson with strength directly proportional to their

masses. This result has important consequences in the context of collider experiments, as it regulates the rates of Higgs production and decay related to each fermion-Higgs vertex.

### 2.4. Higgs Production

## 2.5. Higgs Decay

## 2.6. Physics Beyond the Standard Model

## CHAPTER 3

# Results and Interpretation

results text

## References

- $[1]\ A$  bibliographic item. A bibliographic item. A bibliographic item. A bibliographic item.
- [2] Another bibliographic item.
- [3] Yet another bibliographic item.