Read Chapter 3, sections 5 and 6 of Rosenlicht. Problems:

- 1 Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be three sequences of real numbers with $a_n \leq b_n \leq c_n$ for all n. Prove that if $\{a_n\}$, $\{c_n\}$ converge and if they converge to the same number L, then $\{b_n\}$ converges to L as well. Here and in the rest of this homework assignment \mathbb{R} is given the standard metric unless noted otherwise.
- Suppose $\{x_n\}$, $\{y_n\}$ are two Cauchy sequences of rational numbers (the set \mathbb{Q} of the rationals is given the standard metric). Prove that their sum $\{x_n + y_n\}$ and product $\{x_n y_n\}$ are also Cauchy.
- **3** Suppose a sequence $\{s_n\}$ of real numbers is bounded: there is M > 0 so that $|s_n| < M$ for all n.
- (a) Prove that there is a subsequence $\{s_{n_k}\}$ that converges to $\liminf s_n$.
- (b) Prove that the limit L of any convergent subsequence of $\{s_n\}$ satisfies

$$\liminf s_n \leq L \leq \limsup s_n$$
.

4 Recall that two metrics d, d' on a set E are equivalent if there are $c_1, c_2 > 0$ so that

$$c_1 d(x, y) \le d'(x, y) \le c_2 d(x, y)$$

for all $x, y \in E$ (see lecture 8).

- (a) Prove that the relation of being equivalent is in fact an equivalence relation on the set of all metrics on the set E.
- (b) Prove that if d, d' are two equivalent metrics on a set E then $C \subset E$ is bounded with respect to d if and only if it is bounded with respect to d'.
- (c) Prove that if d, d' are two equivalent metrics on a set E then a sequence $\{s_n\}$ in E is Cauchy with respect to d if and only if it's Cauchy with respect to d'.
- **5** Let (E,d) be a metric space. Recall that the function $\bar{d}: E \times E \to [0,\infty)$ defined by

$$\bar{d}(x,y) = \min\{1, d(x,y)\}.$$

is a metric.

- (a) Prove that a sequence $\{s_n\}$ is Cauchy with respect to d if and only if it's Cauchy with respect to \bar{d} .
- (b) Show that in general the metrics d and \bar{d} are not equivalent.
- (c) Consider \mathbb{R} with the standard metric d: d(x,y) = |x-y|. Is it true that every sequence $\{s_n\}$ in \mathbb{R} which is bounded with respect to \bar{d} has a convergent subsequence? Is (\mathbb{R}, \bar{d}) complete?
- **6** Let $\{s_n\}$ be a sequence in \mathbb{R}^n which is bounded with respect to the Euclidean metric d_2 (and hence with respect to d_1 and d_{∞} by problem **4**). Prove that $\{s_n\}$ has a convergent subsequence.
- 7 Let $f: X \to Y$ be a function between two sets and $d: Y \times Y \to [0, \infty)$ a metric. Prove that

$$d':X\times X\to [0,\infty), \qquad d'(x,y):=d(f(x),f(y))$$

is a metric on X if and only if f is injective.