

非线性动力学应用于结构疲劳分析与评估

贾军波 Aker Solutions

2020年6月16日

$$\begin{aligned} &D_{j,q} = \frac{\tau(8\lambda_0)^{\frac{m}{2}}}{A} \cdot \sqrt{\frac{\lambda_2}{\lambda_0}} \cdot \Gamma(\frac{2+m}{2}) \\ &D_{total} = \sum_{j} \sum_{q} \left(\Psi_{j,q} \cdot D_{j,q} \right) \\ &L_{total} = \frac{1}{D_{total}} \text{ years} \end{aligned}$$

40多年的漂浮式基础设计经验

Confidential © 2014 Aker Solutions Slide 5 06 February 2018 Preferred partner

动态电缆工程实例 Dynamic Power Cables

■ GirRI (安哥拉)

Water depth: 1500mManufactured: Q2 2014Installed: Q1 2016

Cables: 3x300mm² 18/30kV
 Length: 12km single helix

■ Goliat (挪威)*

Water depth: 370mManufactured: Q3 2013

Installed: Q2 2014

Cables: 4x1600mm2 6/10(12)kV

Length: 1750m

■ Ichthys (澳大利亚)*

Water depth: 250mManufactured: Q3 2014

Installed: 2015

Cables: 3x500mm² 18/30kV

Length: 5000m, dynamic in both ends

■ Cascade & Chinook (美国墨西哥湾)

Water depth: 2700mManufactured: 2010

Installed: 2014

Cables: 9x150mm² 12/20kV

Length: 3km

Offshore Wind Solutions

^{*}the design is tuned to meet a high weight to outer diameter ratio to avoid clashing with neighboring risers and are operating in harsh environment with extreme wave and current conditions.

Plan for presentation

- Background
- Fatigue analysis procedure
- Structural and wave modelling for a prototype jacket structure
- Sensitivity analysis of the fatigue life influenced by the numerical and modelling parameters
- Statistical and frequency check of the structure's response
- Recommendations and conclusions for modelling and analysis practice

Fatigue Accidents

Eschede accident, 3rd of June 1998, speed before crash: 200 km/h, 102 dead, 88 injured, cracks in the wheel tire on the first middle car caused by vibrations

Capsizing of *Alexander Kielland*, 1980, 123 dead, fatigue of brace —> loss of column —> flooding into deck —> capsizing

Sinking of *MS Estonia* occurred on 28th of September 1994, 852 dead, fatigue of bow door visor locking devices due to repeated bow wave loadings

Fatigue due to Vortex Induced Vibration

Stochastic Fatigue Analysis of Gullfaks C

Modulus of principal stress transfer function at shell element surface

Wind and Wave Induced Fatigue — Nonlinear dynamics

Analysis procedure

Wave descriptions

$$S_{JONSWAP}(\omega) = \frac{A}{\omega^5} e^{-\frac{D}{\omega^4}} \cdot \gamma^{\delta}$$

$$\xi(x,t) = \sum_{n=1}^{N} a_n \cos(k_n x - \omega_n t + \gamma_n)$$

$$a_n = \sqrt{2\Delta S(\omega_n)}$$

Wave statistics J. Jin / Applied Ocean Research 30 (2008) 189-198

Table 2 Scatter diagram divided into 22 blocks (duration: 3 h)

H, (m)	T _p (s)																		
	2	4.5	5.5	6.5	7.5	8.5	9.5	10.5	11.5	12.5	13.5	14.5	15.5	16.5	17.5	18.5	19.5	20>	
0.25	25	14	18	14	24	17	8	9	5	0	2	3	1	1	6	2	0	7	156
0.75	79	235	408	539	496	488	426	225	111	46	16	7	6	3	2	0	2	17	3106
1.25	71	466	896	1223	1227	1219	911	626	470	252	108	70	36	12	13	2	2	49	7653
1.75	3	134	768	1342	1443	1288	1143	854	618	404	205	129	44	21	10	3	4	21	8434
	H.	T_p	P _p	H,	T _p	P _b	H_{x}	T _p	P _b	H.	T,	P _b	H,	T,	P _b				
	1.4 m	55	0.06	1.5 m	7.55	0.178	1.5 m	10.3 s	0.103	1.6 m	13.1 s	0.024	1.5 m	16.1s	0.003				
2.25	0	22	292	1013	1328	1359	1056	921	669	431	188	186	56	27	17	5	1	16	7587
2.75	1	2	79	491	1037	1276	1031	795	678	479	208	193	81	35	13	3	2	8	6412
3.25	0	1	16	189	701	1038	896	729	532	386	235	197	97	40	15	4	1	5	5082
3.75	0	0	3	57	318	814	767	562	447	371	193	168	89	50	17	3	0	3	3862
	H,	T _p	P _b	H,	T,	P _b	H_{x}	T _p	P _b	H,	T,	P _b	H_{\star}	T,	P _b				
	2.4 m	5.4 s	0.008	2.9 m	7.8 \$	0.184	3 m	10.3 s	0.173	3.1 m	13.2 s	0.062	3.2 m	16 s	0.01				
4.25	1	0	1	11	130	568	731	500	341	306	146	142	G7	29	25	4	3	2	3007
4.75	0	0	0	3	44	329	533	444	337	248	122	95	40	31	20	2	4	1	2253
5.25	0	0	0	1	15	112	339	396	280	195	121	98	31	26	16	5	2	0	1637
5.75	0	0	0	1	4	46	193	244	224	138	73	70	27	15	15	3	0	1	1054
				H,	T,	P_{k}	H,	T _p	p_{o}	H,	Т,	P _p	$H_{\rm h}$	T,	P _e				
				4.6 m	8.3 s	0.024	4.9 m	10.4 s	0.087	4.9 m	13.2 s	0.033	4.9 m	16.2 s	0.007				
6.25	0	0	0	0	0	18	91	177	156	125	65	51	20	15	7	1	2	2	730
6.75	0	0	0	0	1	1	34	108	137	106	46	40	14	5	1	2	0	0	495
7.25	0	0	0	0	0	1	11	53	93	74	50	30	14	7	8	0	1	0	342
7.75	0	0	0	0	0	0	1	29	61	63	27	19	6	3	1	1	0	1	212
							Hx	T_p	P _b	H,	T,	P _b	H_{x}	T,	P _p				
							6.7 m	10.8 s	0.018	6.9 m	13.2 s	0.013	6.8 m	16.1s	0.002				
8.25	0	0	0	0	0	1	0	14	31	43	24	13	6	5	1	0	0	0	138
8.75	0	0	0	0	0	0	0	8	19	27	17	8	7	1	0	0	0	0	87
9.25	0	0	0	0	0	0	0	2	5	18	13	9	2	1	1	0	0	0	51
9.75	0	0	0	0	0	0	0	1	2	7	7	4	3	3	0	0	0	0	27
							H.	T _p	P _e	H.	T,	$p_{\rm p}$	$H_{\rm s}$	Tp	$\mu_{\rm p}$				
							8.6 m	11.2 s	0.002	8.8 m	13.2 s	0.004	8.9 m	16 s	0.001				
10.25	0	0	0	0	0	0	0	0	3	3	7	4	4	1	0	0	0	0	22
10.75	0	0	0	0	0	0	0	0	0	3	I	2	0	0	0	0	0	0	6
11.25	0	0	0	0	0	0	0	0	0	4	2	1	0	0	0	0	0	0	7
11.75	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	T
										H _s	T,	p_{b}							
										10.7 m	13.4 s	0.001							
12.25	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	2
12.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
13.25	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
13.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
										H _e	T _p	P _b							
										12.8 m	13.0 s	0.00004							

Wave statistics

Block	$H_s[m]$	$T_p[s]$	P_b	Block	$H_s[\mathbf{m}]$	$T_p[s]$	P_b
1	1.4	5.0	0.060	12	4.9	10.4	0.087
2	1.5	7.5	0.178	13	4.9	13.2	0.033
3	1.5	10.3	0.103	14	4.9	16.2	0.007
4	1.6	13.1	0.024	15	6.7	10.8	0.018
5	1.5	16.1	0.003	16	6.9	13.2	0.013
6	2.4	5.4	0.008	17	6.8	16.1	0.002
7	2.9	7.8	0.184	18	8.6	11.2	0.002
8	3.0	10.3	0.173	19	8.8	13.2	0.004
9	3.1	13.2	0.062	20	8.9	16.0	0.001
10	3.2	16.0	0.010	21	10.7	13.4	0.001
11	4.6	8.3	0.024	22	12.8	13.0	0.00004

The wave directional probability

Jacket structure modelling

Height (jacket part): 181 m

Water depth: 157.35 m

Weight: 12904 tonnes (topside) and 7100 tonnes(jacket)

Material: steel

1789 beam elements model

Structure-ground connections: linear springs (Norsok)

- Marine growth
- Splash zone
- Buoyance effects
- HHT-α method for time integration
- SCF: Efthymiou equations

Eigen-analysis

Mode number	Eigen- period (s)	Remarks						
1	4.173	The first global flexural vibration along the east-west direction (Y).						
2	4.115	The first global flexural vibration along the south-north direction (X).						
3	2.454	The first global torsional vibration mode.						
4	1.193	A global flexural vibration along the east-west direction.						
5	1.189	A local vibration of centralizer on the topside.						
6	1.091	A global flexural vibration along the south-north direction						
7	1.018	A local vibration at the horizontal frames at EL -150 m.						
8	0.990	A global flexural vibration along the south-north direction						
9	0.940	A local vibration of centralizer						
10	0.902	A global flexural vibration along the east-west direction						

Parameters for investigation

Eigen-analysis γ Directional wave effects

Yes N=30, 40, 60, 120, 240Time step length $\Delta t=0.1$ s, 0.2 s, 0.25 s, 0.75 s

Significant wave height

Modal wave period

4.1 Yes N=30

- 2. Soil-structure flexibility
- 3. Structural inertia effects
- 4. Statistical and frequency check of the structural response
- 5. Gravity effects
- 6. Natural period

The fatigue life calculations

	Node number	Brace (element	Elevation	Position description	Fatigue life (year	rs)
Element608032 10803 10804 Element307082		number)	(m)		γ=2 (N=30, Δt=0.25 s)	$\gamma = 4.1$ (N=30, $\Delta t = 0.25 \text{ s}$
Element10754 10754 10704	10201	40240	- 150	A leg joint at the bottom	443	468
Element30612	10503	30410	- 93	A leg joint	197	202
Element90617	30553	30512	- 78	A face joint	115	119
Element30512	20627	90617	- 63	conductor support	101	105
	10704	30612	- 36	A leg joint	73	76
10503	10754	10754	- 35	A leg joint	1031	1047
Element30410	10803	307082	- 11	A leg joint	52	60
	10804	608032	- 11	A leg joint	40	37

Influence from the wave enhancement and the wave directions

Influence from the number of sample inputs N

- The trend of the variation of the fatigue damage due to the variation of the sample inputs *N* can not be identified.
- The ratio of total computation time for *N*= 30, 40, 60, 120, and 240 is 1 : 1.07 : 1.18 : 1.47 : 2.09.

Influence from the time step length

"Rule of thumb" for deciding time step:

Fixed offshore structures: 10% x min (Tsm,TLm)

Joint 10754, Hs=2.4 m Tp=5.4 s

Statistical check of the structural response

	$Hs=2.4 \text{ m } T_p=5.4 \text{ s (block 6)}$			$Hs=4.6 \text{ m } T_p=8.3 \text{ s (block 11)}$			$Hs=6.7 \text{ m } T_p=10.8 \text{ s (block 15)}$		
	Axial force	In plane bending	Outplane bending	Axial force	In plane bending	Outplane bending	Axial force	In plane bending	Outplane bending
V(resp)	2.00E+11	1.14E+08	5.73E+08	2.98E+11	6.50E+08	6.98E+08	1.67E+11	1.36E+09	6.69E+08
K3 (偏 度)	-0.00125	-0.1136	0.03366	-0.0158	-0,0493	0,044997	-0.14341	-0.17397	0.024856
K4(峰 度)	1.88289	2.78655	2.10527	2.00316	3.944466	2.27622	4.152773	4,223641	4.675471

- Slight nonGaussian distribution is observed due to the nonlinear effects, dampings and numerical noises.
- •The fatigue damage is directly related to the variance of the structural response.

Check in the frequency windows

Influence from the soil-structure flexibility and the inertia effects

10803 10804 Element307082
Element10754 [10754] 10704
Element30612
Element30512 30553
10503 10503 Element30410
10201
Static case 15/11

Joint number	Elevation (m)	8 v /							
	(111)	Consider both the soil- structure flexibility and the inertia effects	The bottom of the jacket is fully fixed	Ignoring the inertia effects of the structure					
10201	- 150	711	NA	3849					
10503	- 93	283	335	554					
30553	- 78	162	178	392					
20627	- 63	155	166	187					
10704	- 36	94	94	131					
10754	- 35	2335	1540	2.47×10 ⁶					
10803	- 11	55	56	74					
10804	- 11	65	42	119947					

- For a first estimation, the structure-soil connection can be modelled as rigid for soft jacket structures
- The inertia effects are significant on the fatigue damage

Influence from the selfweigtht induced load – calculated eigenfrequency

• Stress stiffening effects

Mode number	Eigenperiod (s)							
	With gravity	Without	Diff. (%)					
		gravity						
1	4.173	4.120	1.3					
2	4.115	4.065	1.2					
3	2.453	2.442	0.4					
4	1.203	1.194	0.7					
5	1.193	1.187	0.5					
	NA	1.152	NA					
6	1.090	1.086	0.4					
7	1.014	NA	NA					
8	0.990	0.987	0.3					
9	0.914	0.939	2.7					
10	0.902	0.901	0.1					

Influence from the gravity – results

Node	Position	Fati	gue life (years)
number	description	With selfweight	Without Selfweight	Error
10201	A leg joint at the bottom	443	525	19%
10503	A leg joint	197	185	-6%
30553	A face joint	115	110	-4%
20627	A conductor support	101	117	16%
10704	A leg joint	73	70	-4%
10754	A leg joint	1031	1015	-2%
10803	A leg joint	52	58.3	12%
10804	A leg joint	40	41	3%

 The ignorance of the platform's selfweight is likely to underestimate the the fatigue damage to some extent.

Influence from the selfweight induced load – response time series

for sea state block 19 (Hs=8.8m, Tp=13.2s)

Influence from the selfweight induced load – responses in frequency domain (joint 10803)

Influence from the selfweight induced load – responses statistics

Joint 10803		W	ith gravity load		Without gravity load			
Sea State	Items		In plane	Outplane		In plane	Outplane	
		Axial force	bending	Bending	Axial force	bending	Bending	
		(N)	(N⋅m)	(N·m)	(N)	(N·m)	(N·m)	
Hs=2.9m,	m	-3.08E+06	-3.55E+05	2.03E+04	-8.35E+04	-1.89E+04	-3.18E+04	
Tp=7.8s	k2	8.35E+08	5.89E+07	8.75E+08	1.22E+09	6.92E+07	8.17E+08	
	k3	3.90E-01	1.35E+00	-2.08E-01	2.46E-01	1.28E+00	-2.70E-01	
	k4	7.41E-01	5.89E+00	9.49E-01	2.95E+00	5.37E+00	9.63E-01	
Hs=8.8m,	m	-3.11E+06	-3.53E+05	-1.16E+03	-1.05E+05	-1.55E+04	-4.81E+04	
Tp=13.2s	k2	9.18E+09	3.33E+08	3.59E+09	7.58E+09	3.11E+08	3.37E+09	
	k3	-5.59E-01	-1.77E-01	-2.24E+00	-7.76E-01	-2.08E-01	-2.33E+00	
	k ₄	8.47E+00	4.60E+00	4.49E+01	11.44E+00	4.72E+00	4.59E+01	

Wave Induced Fatigue – Trend of fatigue life estimate varying with natural frequency

Source: Aker Solutions and City University, London

Contributions and conclusions

- Present a practical procedure for calculating fatigue: capable of capaturing nonlinear and non-Gaussian phenomenon.
- Wave spectrum inputs are efficient: fatigue damage is not sensitive to the number of sample frequency points N.
- Fatigue damage is not sensitive to the variation of wave peak enhancement.
- Suggestions on how to decide a decent time step length.
- Slight non-Gaussian response is observed for even inertia dominated response.
- Self-vibration may in a lot of case contribute to the fatigue significantly.
- For fixed offshore structures: fatigue damage is highly influenced by the waves with low modal period.
- Hydrodynamic coefficients defined in Norsok 2007 leads to significant higher fatigue life for inertia dominated offshore structures.
- Variation of drag force coefficient has less influence on the fatigue damage than the inertia coefficient.
- Soil-structure flexibility variation does not significantly influence the critical fatigue damage for the target structure.
- The structural inertia effects are rather significant.
- Ignoring the selfweight of the platform is unconservative to some extent.

Copyright and Disclaimer

Copyright

Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Solutions and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

Disclaimer

This Presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this Presentation are based on current expectations, estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for Aker Solutions ASA and Aker Solutions ASA's (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as "expects", "believes", "estimates" or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for Aker Solutions' businesses, oil prices, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the Presentation. Although Aker Solutions ASA believes that its expectations and the Presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Presentation. Aker Solutions ASA is making no representation or warranty, expressed or implied, as to the accuracy, reliability or completeness of the Presentation, and neither Aker Solutions ASA nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

Aker Solutions consists of many legally independent entities, constituting their own separate identities. Aker Solutions is used as the common brand or trade mark for most of these entities. In this presentation we may sometimes use "Aker Solutions", "we" or "us" when we refer to Aker Solutions companies in general or where no useful purpose is served by identifying any particular Aker Solutions company.

© 2018 Aker Solutions

Offshore Wind Solutions

June 16, 2020 | Slide 33

Aker Solutions