

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alcassedan, Virginia 22313-1450 www.emplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/561,270	01/23/2006	Hirobumi Furihata	074273-0242	5886
22428 7590 12/09/2010 FOLEY AND LARDNER LLP SUITE 500			EXAMINER	
			LAM, VINH TANG	
3000 K STREET NW WASHINGTON, DC 20007			ART UNIT	PAPER NUMBER
***************************************	WASHINGTON, DC 20007			
			MAIL DATE	DELIVERY MODE
			12/09/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/561,270 FURIHATA ET AL. Office Action Summary Examiner Art Unit VINH LAM 2629 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 13 October 2010. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-20 is/are pending in the application. 4a) Of the above claim(s) 4.5.&13-18 is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-3, 6-12, & 19-20 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on 19 December 2005 is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

U.S. Patent and Trademark Office PTOL-326 (Rev. 08-06)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date 09/23/2010.

Notice of Draftsperson's Patent Drawing Review (PTO-948)

3) Information Disclosure Statement(s) (PTO/SB/06)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

5) Notice of Informal Patent Application

Page 2

Application/Control Number: 10/561,270

Art Unit: 2629

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the invention thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act of 1999 (AIPA) and the Intellectual Property and High Technology Technical Amendments Act of 2002 do not apply when the reference is a U.S. patent resulting directly or indirectly from an international application filed before November 29, 2000. Therefore, the prior art date of the reference is determined under 35 U.S.C. 102(e) prior to the amendment by the AIPA (pre-AIPA 35 U.S.C. 102(e)).

 Claims 1-3, 6-12, and 19 are rejected under 35 U.S.C. 102(e) as being anticipated by Nose et al. (US Patent No. 7206003).

Regarding Claim 1, (Currently Amended) Nose et al. teach a controller/driver comprising:

a work memory (Col. 8, Ln. 45-68, FIG. 1, i.e. first display memory 7a);

Art Unit: 2629

a graphic engine (Col. 8, Ln. 45-68, FIG. 1, i.e. memory control circuit 6) converting externally received image data (Col. 8, Ln. 45-68, FIG. 1, i.e. 8-bit data from 1) into first bitmap data (Col. 9, Ln. 27-34, FIG. 1, i.e. higher order 4 bits), and storing said first bitmap data into said work memory (Col. 9, Ln. 27-34, FIG. 1);

a display memory (Col. 9, Ln. 35-41, FIG. 1, i.e. second selector 9) receiving and storing second bitmap data developed from said first bitmap data stored in said work memory (Col. 9, Ln. 35-41, FIG. 1, i.e. second selector 9 transferring data from 7a to 12); and

a driver circuit (Col. 8, Ln. 45-68, FIG. 1, i.e. data line drive circuit 13) which receives said second bitmap data from said display memory, and drives, a display panel in response to said second bitmap data received from said display memory (Col. 8, Ln. 45-68, FIG. 1),

wherein said first bitmap data includes a plurality of line data each including a plurality of pixel data associated with a line of pixels of an image represented by said second bitmap data to be displayed on said display panel (Col. 9, Ln. 41-44, FIG. 1, i.e. Hx4bit), and

wherein said data transfer of said first bitmap data from said work memory to said display memory is performed (Col. 8, Ln. 45-68, FIG. 1, i.e. inherently because it's indicative of gate line drive circuit 5 with a timing control signal) such that each of said plurality of line data is transferred at the same time in parallel from said work memory to said display memory (FIG. 3, i.e. inherently because it's indicative of transferring Hx4bit data in parallel from 7a to 12).

Art Unit: 2629

Regarding Claim 2, (Original) Nose et al. teach the controller/driver according to claim 1, wherein said image data is described in a vector format (Col. 2, Ln. 8-11, i.e. image file).

Regarding Claim 3, (Previously Presented) **Nose et al.** teach the controller/driver according to claim 1, wherein said image data includes compressed image data (Col. 2. Ln. 8-11, i.e. image file).

Regarding Claim 6, (Previously Presented) Nose et al. teach the controller/driver according to claim 1, further comprising:

a latch receiving said line data from said work memory, and temporally storing said received line data (Col. 8, Ln. 45-68, FIG. 1, i.e. latch 12).

Regarding Claim 7, (Previously Presented) Nose et al. teach the controller/driver according to claim 1, further comprising:

a timing controller (Col. 8, Ln. 45-68, FIG. 1, i.e. timing control circuit 11) controlling said work memory, said display memory, and said driver circuit so that said data transfer of said first bitmap data from said work memory to said display memory (Col. 8, Ln. 45-68, FIG. 1) is synchronous with readout of said second bitmap data from said display memory to said driver circuit (FIG. 3, i.e. inherently because it's indicative of transferring 4 bits data in parallel from 7a to 12); and

a memory controller (Col. 8, Ln. 45-68, FIG. 1, i.e. memory control circuit 6) connected to said second input port (FIG. 1, i.e. display memory control signal) of said work memory, said memory controller receiving bit map data from a processor for storage in said display memory (Col. 8, Ln. 45-68, FIG. 1).

Art Unit: 2629

Regarding Claim 8, (Original) Nose et al. teach the controller/driver according to claim 7, wherein said data transfer of said first bitmap data from said work memory to said display memory is initiated in response to activation of a frame synchronization signal indicating to start displaying each image frame (Col. 8, Ln. 45-68, FIG. 1).

Regarding Claim **9**, (Previously Presented) **Nose et al.** teach the controller/driver according to claim 7, wherein said timing controller controls said display memory, and said driver circuit so that said data transfer of said first bitmap data from said work memory to said display memory does not overrun said readout of said second bitmap data from said display memory to said driver circuit (*FIG. 3, i.e. inherently because it's indicative of transferring 4 bits data in parallel from 7a to 12*).

Regarding Claim 10, (Original) Nose et al. teach the controller/driver according to claim 1, wherein said work memory includes:

a plurality of first bit lines (Col. 9, Ln. 14-20, FIG. 1, i.e. H pixels x V pixels x 4bits, 12, and 13),

a plurality of first word lines (Col. 9, Ln. 14-20, FIG. 1, i.e. H pixels x V pixels x 4bits, 12, and 13), and

a plurality of first memory cells disposed at respective intersections of said first bit lines and first word lines to store therein said first bitmap data (Col. 9, Ln. 60-61, FIG. 3, i.e. high order 4 bits "1100" of 7a),

wherein said display memory includes:

Art Unit: 2629

a plurality of second bit lines (Col. 9, Ln. 14-20, FIG. 1, i.e. H pixels x V pixels x 4bits, 12, and 13),

a plurality of second word lines (Col. 9, Ln. 14-20, FIG. 1, i.e. H pixels x V pixels x 4bits, 12, and 13), and

a plurality of second memory cells disposed at respective intersections of said second bit lines and second word lines to store therein said second bitmap data (Col. 9, Ln. 60-61, F/G. 3, i.e. high order 4 bits "1100" output of 9),

wherein a number of said first bit lines is same as that of said second bit lines (Col. 9, Ln. 14-20, FIG. 1, i.e. H pixels x V pixels x 4bits), and

wherein said first bit lines are connected to said second bit lines, respectively (F/G. 1).

Regarding Claim 11, (Original) Nose et al. teach the controller/driver according to claim 10, wherein a number of said first word lines is identical to that of said second word lines (Col. 9, Ln. 14-20, F/G. 1, i.e. H pixels x V pixels x 4bits).

Regarding Claim 12, (Previously Presented) Nose et al. teach the

controller/driver according to claim 10, further comprising a timing controller (Col. 8, Ln. 45-68, FIG. 1, i.e. timing control circuit 11) controlling said work memory (Col. 8, Ln. 45-68, FIG. 1, i.e. first display memory 7a), and said display memory (Col. 9, Ln. 35-41, FIG. 1, i.e. second selector 9), and said driver circuit (Col. 8, Ln. 45-68, FIG. 1), wherein said driver circuit is connected to said second bit lines (FIG. 1), and wherein said timing controller (Col. 8, Ln. 45-68, FIG. 1, i.e. timing control circuit 11) is adapted to deactivate (FIG. 5, i.e. Second Selector Output shown in dashed line

Art Unit: 2629

(Memory Read Select Signal (Select2) Off) said display memory (Col. 9, Ln. 35-41, FIG. 1, i.e. second selector 9) to allow said first bitmap data (Col. 9, Ln. 27-34, FIG. 1, i.e. higher order 4 bits) to be transmitted from said work memory (Col. 8, Ln. 45-68, FIG. 1, i.e. first display memory 7a) to said driver circuit (Col. 8, Ln. 45-68, FIG. 1, i.e. data line drive circuit 13) through said second bit lines (Col. 9, Ln. 14-20, FIG. 1, i.e. H pixels x V pixels x 4bits, 12, and 13).

Regarding Claim 19, (Previously Presented) Nose et al. teach the controller/driver according to claim 1, further comprising:

a latch receiving said first bitmap data from said work memory, and temporally storing said first bitmap data (Col. 8, Ln. 45-68, FIG. 1, i.e. latch 12); and

a timing controller (Col. 8, Ln. 45-68, FIG. 1, i.e. timing control circuit 11) for controlling output of data from said latch, wherein said display memory receives said first bitmap data output from said latch (Col. 8, Ln. 45-68, FIG. 1),

wherein said work memory and said display memory are operated at different times due to having said latch provided therebetween (Col. 8, Ln. 45-68, FIG. 1).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) a patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Art Unit: 2629

Claim 20 is rejected under 35 U.S.C. 103(a) as being unpatentable over Nose et al. (US Patent No. 7206003) in view of Patrick et al. (US Patent No. 5644758).

Regarding Claim 20, (Previously Presented) Nose et al. teach the controller/driver according to claim 1, further comprising:

means for transferring said first bitmap data from said work memory to said display memory (Col. 8, Ln. 45-68, FIG. 1); and

means for displaying said second bitmap data output from said display memory on said display panel (Col. 8, Ln. 45-68, FIG. 1).

However, **Nose et al.** do not teach a first rate at which said first bitmap data is transferred from said work memory to said display memory is faster than a second rate at which said second bitmap data is output from said display memory for display on said display panel.

In the same field of endeavor, Patrick et al. further teach a first rate at which said first bitmap data (i.e. non-image data) is transferred from said work memory to said display memory is faster than a second rate at which said second bitmap data (i.e. image data) is output from said display memory for display on said display panel (Col. 2, Ln. 1-10).

It would have been obvious to a person having ordinary skill in the art at the time the invention was made to combine **Nose et al.** teaching of a controller/driver comprising of the graphic engine, work memory, display memory, driver circuit, and of connections among the graphic engine, work memory, display memory, and driver

Art Unit: 2629

circuit with **Patrick et al.** teaching of a first rate at which said first bitmap data is transferred from said work memory to said display memory is faster than a second rate at which said second bitmap data is output from said display memory for display on said display panel to reduce the power consumption and latency of a display.

Response to Arguments/Amendments/Remarks

- Claims 4-5 and 18 are canceled.
- Claims 13 and 15-7 are withdrawn.
- Applicant's arguments, see P. 8-9, filed 10/13/2010, with respect to 35 U.S.C.
 112 1ST & 2ND ¶ Rejections have been fully considered and are persuasive. The Rejections under 35 U.S.C. 112 1ST & 2ND ¶ Rejections have been withdrawn.
- Applicant's arguments filed 10/30/2010 have been fully considered but they are not persuasive.

First of all concerning Claim 1, applicant argues that **Nose et al.**'s *second* selector **9** "...is not used for data storage, and cannot correspond in any way, shape or form to a display memory...". However, the Examiner respectfully disagrees because as shown in FIG. 1:

(i) second selector 9 receives (or to be written to) the High Order 4 bits Image

Data

Art Unit: 2629

(ii) the High Order 4 bits Image Data must be remained (or to be <u>stored</u>) in second selector 9 for a predetermined period of time before released for selection.

(iii) Once selected, the High Order 4 bits Image Data are outputted (or to be read).

The above criteria would define **Nose et al.**'s second selector **9** as a display memory.

Secondly concerning Claim 12, applicant argues that **Nose et al.**'s <u>FIG. 1</u> does not teach

"...said timing controller is adapted to deactivate said display memory...". The Examiner agrees that the citation is a typographical error and should be cited to <u>FIG. 5</u>. Please see the above rejection for detail.

Thirdly concerning Claim 20, applicant argues that **Patrick et al.** do not teach the first bitmap data rate is faster than the first bitmap data rate. However, the Examiner respectfully disagrees because **Patrick et al.** teach

a first rate at which said first bitmap data (i.e. non-image data) is transferred from said work memory to said display memory is faster than a second rate at which said second bitmap data (i.e. image data) is output from said display memory for display on said display panel (Col. 2, Ln. 1-10).

Application/Control Number: 10/561,270 Page 11

Art Unit: 2629

Conclusion

The prior art(s) made of record and not relied upon (is)/are considered pertinent to applicant's disclosure: Chadha, Sanja (US Patent/PGPub. No. 20030184552).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to VINH T. LAM whose telephone number is (571)270-3704. The examiner can normally be reached on M-F (7:00-4:30) EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Amare Mengistu can be reached on (571) 272-7674. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Application/Control Number: 10/561,270 Page 12

Art Unit: 2629

/Vinh T Lam/

Examiner, Art Unit 2629

/Amare Mengistu/

Supervisory Patent Examiner, Art Unit 2629