Solución del problema en LaTeX

Tu nombre

March 18, 2024

1 Solución del problema

Dada la observación clave: $x \mod y < \frac{x}{2}$ si $x \geq y$, y $x \mod y = x$ si x < y. Notamos que mientras mayor sea x, mayor será el rango de valores que se pueden obtener después de una operación mod . Por lo tanto, intuitivamente, queremos asignar valores de a_i más pequeños a números más pequeños en la permutación resultante.

Sin embargo, si a_i satisface $1 \le a_i \le n$, podemos dejarlo allí y usarlo en la permutación resultante (si múltiples a_i satisfacen $1 \le a_i \le n$ y tienen el mismo valor, simplemente elige uno). Supongamos en la solución óptima, cambiamos x a y y cambiamos z a x para algún z > x > y (donde x, y, z son valores, no índices). Entonces, cambiar x a x (es decir, no hacer nada) y cambiar z a y usa 1 operación menos. Y, si es posible cambiar z a x, entonces también debe ser posible cambiar z a y. Sin embargo, si no es posible cambiar z a x, aún podría ser posible cambiar z a y.

Por lo tanto, la solución es la siguiente: ordena el arreglo. Para cada elemento i en el arreglo ordenado:

- Si $1 \le a_i \le n$ y es la primera ocurrencia del elemento con valor a_i , déjalo allí
- De lo contrario, deja que el valor no asignado actual más pequeño en la permutación resultante sea m. Si $m < \frac{a_i}{2}$, podemos asignar el elemento actual al valor m y agregar 1 a la cantidad de operaciones. De lo contrario, produce -1 directamente.

La solución funciona en $O(n \log n)$.