

182				
	LITTOM			PAGE NO.
8.0	b) Sxx = 6x; fyy = 6y; fxy = -3a			
	# 97=0=91			
	1 2x	98	((S(D) & confical
	A x2ay=0=y2ax A (9) Spoints.			
# Far (010):-				where (ato).
	TXX=0=A & FOX(9,9)			
fy y = 1			AC-B2= 36a2-9a270 ~	
		-39 =B:	and A = 6a 7 (A70 ; 970)	
AC-82<0			A A A A A A A A A A A A A A A A A A A	X(A(D; Q(d) ~
	: taddle point		to ano & local minima	
	at (0,0)		9 < 0 \$ Cocal maxima -	
800	fxx= [242(01) fyy=(2x2(0)), fxy=(1xy-8) =			
	A Fox critical points: 25 =0=25			
	the line		4.7	98.
	\$ 5x32-8x-109=0= 545x-10x-82: -			
	A (0(0))			
	(313) Scrietical -			
	(31-3) points.			
L. Carrier	the section			1
\$FOX(010)		Fox (±3, ±	3):-	Fox(±1,71):-
A=C=+	Dj 8=-8.	A= (= 8;	B=28	A=(=-8; B=-
"A(-8270)	ACD	80 A C-R2		fo AC-B2<0 -12-
+ Wcaln	nar, atlow	: Faddl		- faddle point
Max. vel	lue=6.			An e
	-			Since I

q(x,x)= q(x,x)= 3+1x-5x5=5(1+5x+x5) MOW: +(1x)= 3(2-2x)=0 + (2=1) 411181= -10 <0 to 7=1=4 & will be more. courseponden -cen and minima will be forend from boundary conditions. Max value = 4 at(IN) Min. value = -61 at \$10); (019). And 3) (B) 3(8,8) = 58,4 9=1. (\frac{1}{2} \fra 68-1= Y(NE) 7 = A=0) x25 = 1. f(8,4)= f= (4+42) where y25. to fmin = 4; fmax = 314. f(x10) = f = (3x2x) when x25f. f= (6x-1) = 0 = (x=f) = minima. fmin= = at(=10). $fmax = \frac{3+1}{2+2} = \frac{3+1}{2} at \frac{1}{12}$

