Sentiment Analysis

ÖAW AI Winter School 2023

Thomas E. Kolb

PhD Student / Research Assistant CDL - RecSys @ TU Wien

thomas.kolb@tuwien.ac.at

Introduction

Introduction (cont.)

©Twitter/@NoeWehrtSich polarizing action

Introduction (cont.)

possible connection between polarizing action and change in media reporting

Introduction (cont.)

possible connection between polarizing action and change in media reporting

Example of a research question (RQ) requiring sentiment analysis:

RQ: To what extent is it possible to predict the polarization* of politicians over time in different news media outlets?

*by analysing their corresponding sentiment

polarizing action

Introduction to Sentiment Analysis

"Sentiment analysis (SA), also called <u>Opinion Mining</u> (OM) is the task of extracting and analyzing people's opinions, sentiments, attitudes, perceptions, etc., toward different entities such as topics, products, and services." [1]

[1] Marouane Birjali, Mohammed Kasri, & Abderrahim Beni-Hssane (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134.

Still Interesting?

According to Google Trends (https://trends.google.com/trends/)

Towards the State of the Art

Sentiment Analysis on SST-2 Binary classification (https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary)

Dataset: SST (<u>Stanford Sentiment Treebank</u>) = benchmark dataset

- 8 out of the top 10
 performing algorithms
 are transformer based
 approaches (e.g. BERT)
- Previous approaches often based on CNN / LSTM
- Early approaches were often based on dictionaries

Applications of Sentiment Analysis

- User reviews (products, movies, music, ...)
- News domain (comments section, forum, ...)
- Analysis of user generated content (social media e.g. Twitter)
- ..

The results can be used to create recommendations for users or to analyse public opinion on a specific event (COVID-19, elections, ...).

Pre-Processing Based on the Example of fast Text

Pre-processing always depends on the planned application and the method used!

"FastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices." [2]

[2] https://fasttext.cc/

Pre-Processing Based on the Example of fast Text (cont.)

- Data Cleanup (punctuation, upper to lowercase, emoticons, stopwords, spell checking, ...)
- Splitting up the data set into train-, test- and validation data set
- epochs, learning rate
- word n-grams

https://fasttext.cc/docs/en/supervised-tutorial.html#making-the-model-better

Pre-Processing Based on the Example of **fastText** (cont.)

Frameworks

- Natural Language Toolkit (NLTK) (https://www.nltk.org/)
- spaCy (<u>https://spacy.io/</u>)

But often basic approaches like "sed", "awk", "sort" (= Linux packages) can help a lot if the data set is very big.

Sentiment Analysis Techniques

- Machine Learning Approaches
- Lexicon Based Approaches
- Hybrid Approaches
- Other Approaches

Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. https://doi.org/10.1016/j.knosys.2021.107134

Sentiment Ai

- Machine Lear
- Lexicon Based
- Hybrid Approx
- Other Approach

Levels of Sentiment Analysis

- Document level
- Sentence level
- Phrase level (e.g. aspect based sentiment analysis)

Phrase level extraction often requires named entity recognition to get a specific phrase around a target e.g. a politician name.

Which level to use is always domain and task dependent!

P. Balaji, O. Nagaraju and D. Haritha, "Levels of sentiment analysis and its challenges: A literature review," 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC), Chirala, Andhra Pradesh, India, 2017, pp. 436-439, doi: 10.1109/ICBDACI.2017.8070879.

Evaluation Metrics

Accuracy
$$Accuracy = \frac{TN + TP}{TN + TP + FP + FN}$$

Precision $Precision = \frac{TP}{TP + FP}$

Recall $Recall = \frac{TP}{TP + FN}$

F1 $F1 = \frac{2*Precision*Recall}{Precision + Recall}$

Walber, CC BY-SA 4.0, via Wikimedia Commons

Saxena, A., Reddy, H., Saxena, P. (2022). Introduction to Sentiment Analysis Covering Basics, Tools, Evaluation Metrics, Challenges, and Applications. In: Biswas, A., Patgiri, R., Biswas, B. (eds) Principles of Social Networking. Smart Innovation, Systems and Technologies, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-16-3398-0_12

Evaluation Metrics (cont.)

There are many more relevant metrics in this area e.g.:

- Cohen's Kappa: measure inter-rater reliability (two raters)
- Fleiss Kappa: measure inter-rater reliability (any number of raters)
- ...

https://en.wikipedia.org/wiki/Fleiss%27_kappa https://en.wikipedia.org/wiki/Cohen%27s_kappa

Application in Research

DYSEN Project

Dynamic **Se**ntiment Analysis as Emotional Compass for the Digital Media Landscape

RQ: How do print media report about the Viennese politicians?

Aim of the project: Develop a tool that can detect change of emotional polarization of politicians in Austrian Newspapers

DYSEN Project (cont.)

Data Collection & Preprocessing

Linguistic annotated Austrian Media Corpus (Ransmayr et al., 2017); contains around 45 million articles by covering the print media landscape of Austria **Extraction criteria**:

- National & regional print media related to Vienna between 1996 and 2017
- Text areas limited to area extraction around politician names with around 60 tokens (legal limitation / copyright of the amc corpora)

Politician archive of Vienna (POLAR) of the Vienna City and State Archives¹

 Politicians which were active between the 13th and 20th parliamentary term (1983 to 2020)

AMC and POLAR are combined to extract text areas around Viennese politicians

¹https://polar.wien.at

Crowd Sourcing: Austrian Media Corpus

- Each item labelled ≥ 3 times
- Majority vote (equal number per class = rated as neutral)
- Three classes: positive, neutral, negative
- Quality control (≥75% correct)
- Two annotation runs (1st 70 annotators; Fleiss-Kappa: <u>0,295</u>, 2nd 88 annotators; Fleiss-Kappa: <u>0,283</u>)

Restricted annotators by:

- Current Country of Residence (Germany, Austria, Switzerland)
- Nationality (Germany, Austria, Switzerland)
- First Language (German)

DERSTANDARD 1 Million Posts Corpus (Schabus et al., 2017)

- Posts from 2015 to 2016
- 3599 posts with sentiment annotated by employed forum annotators

Austriacisms

Based on:

- "Variantenwörterbuch des Deutschen" (VWB; words specific to Austria) (Ammon et al., 2016)
- Austriacism list of Wikipedia¹
- 1600 words checked by the whole project team

¹https://de.wikipedia.org/wiki/Liste_von_austriacismen_

Preselection survey

- 1600 words
- Quality control (≥75% correct)
- Four options (positive, neutral, negative, unknown)

Main survey

- Best-worst-scaling (BWS) method
- 1074 tuples
- Quality control (≥75% correct)
- 34 annotators

	Item1	Item2	Item3	Item4	Bestltem	Worstltem
0	Rodel	Knödelakademie	Keiler	Gelenksbeschwerden	Rodel	Gelenksbeschwerden
1	brennheiß	Stornoversicherung	Scherz(e)l	sich ausgehen	sich ausgehen	brennheiß
2	Steireranzug	Causa	Pönale	Lokalaugenschein	Lokalaugenschein	Steireranzug
3	Alumnat	Beiwagerl	Servus	kiefeln	Servus	kiefeln
4	Patschenkino	Aufnahmestopp	Straßenerhalter	Marmeladinger	Straßenerhalter	Aufnahmestopp
•••						
4412	ferten	Ermäßigungsausweis	Halbpreispass	versumpern	Ermäßigungsausweis	versumpern
4413	Zuhaus	Bramburi	Mistbauer	Beiwagerl	Zuhaus	Mistbauer
4414	Oja!	ludeln	Rettung	gar	Oja!	ludeln
4415	Stützlehrer	Mascherl	Einspänner	grauslich	Mascherl	grauslich
4416	Jausenbrot	enthaften	versperren	Schubhaft	Jausenbrot	Schubhaft
4417 rows × 6 columns						

Restricted annotators by:

- Current Country of Residence (Austria)
- Nationality (Austria)
- First Language (German)

Labeled dataset after main survey

Methods (Dictionary Based)

...for generating sentiment scores

SPLM method

(Almatarneh & Gamallo, 2018)

Used for: amc & DerStandard datasets

... based on a labelled (positive, neutral, negative) dataset

Best-Worst-Scaling (BWS) method

(Kiritchenko & Mohammad, 2017)

Used for: Austriacism list ... based on tuple pairs (best, worst) of words

Spearman correlation:

0.9159 (+/- 0,0051) by applying split-half reliability

Sentiment score word lists based on...

... AMC & standard posts (SPLM)

	word	Tag	D		
0	geben	V	0.001057		
1	Frau	n	0.001028		
2	Jahr	n	0.000979		
3	neu	а	0.000957		
4	Mann	n	0.000844		
8924	Pilz	n	-0.000920		
8925	Westenthaler	n	-0.000994		
8926	ÖVP	n	-0.001003		
8927	Peter	n	-0.001078		
8928	Flüchtling	n	-0.001189		
8929 rows × 4 columns					

... Austriacisms (BWS)

	word	tag	short-tag	score	scaled
0	fesch	ADJ	а	0.882	0.910217
1	Zuckerl	NOUN	n	0.879	0.907121
2	Topfenpalatschinke	NOUN	n	0.857	0.884417
3	leiwand	ADJ	a	0.853	0.880289
4	Ersparnis	NOUN	n	0.844	0.871001
533	Schussattentat	NOUN	n	-0.844	-0.871001
534	Exekution	NOUN	n	-0.848	-0.875129
535	speiben	VERB	V	-0.875	-0.902993
536	Brandleger	NOUN	n	-0.879	-0.907121
537	Fotze	NOUN	n	-0.969	-1.000000
538 rows × 5 columns					

Evaluation

Model	Accuracy	Precision	Recall	F1
DummyClassifier v1 (stratified)	0,52	0,54	0,51	0,52
DummyClassifier v2 (uniformly gen. pred.)	0,52	0,54	0,57	0,56
BERT (dbmdz/bert-base-german-cased) Finetuned with the AMC dataset	0,78	0,82	0,76	0,79
ALPIN (dictionary based approach)	0.70	0.74	0.70	0.72

preprocessing:

- Model specific (stratified k-fold,train/test/validation)
- Different tokenization requirements
- Encoding
- ...

Web Application¹

The ALPIN Sentiment Dictionary: Austrian Language Polarity in Newspapers

Kolb, T. E., Kern, B. M., Sekanina, K., Wissik, T., Neidhardt, J., Baumann, A., (2022) The ALPIN Sentiment Dictionary: Austrian Language Polarity in Newspapers.

https://zenodo.org/record/5857151

Ongoing Work

Detection of sentiment in user comments of a large Austrian news company to ...

... identify the change of positivity or negativity within the commentary section over time.

... investigation potential polarization over time towards a certain topic (e.g. the topic "Coronavirus")

Beyond Sentiment Analysis: What's next?

Detection of ...

... emotions

... hate speech

... toxicity

... populism

Many very recent research topics in this field can be found here:

https://semeval.github.io/

Summary?

- Introduction to sentiment analysis
- Applications and challenges of sentiment analysis
- Sentiment analysis techniques
- Evaluation metrics
- Applications in research
- Future topics

RecSys

Dipl.-Ing. Thomas E. Kolb

Research Unit of Data Science

thomas.kolb@tuwien.ac.at

https://recsys-lab.at

