

Escuela Superior de Cómputo

Sensor AD590

Práctica

Materia:	
	Instrumentación
Grupo:	
	3CM13
Profesor:	
	Martínez Díaz Juan Carlos
Alumno:	
	Castro Cruces Jorge Eduardo
Boleta:	
	2015080213
Fecha:	

Miércoles, 31 de marzo de 2021

CONTENIDO

Objetivo general: 3	,
Objetivos específicos:	;
INTRODUCCIÓN	ŀ
Descripción de la Práctica:4	ŀ
Sensor AD590:	ŀ
DESARROLLO	,
Instrucciones:	,
Datos:	,
Obtención de la ecuación del Circuito Acondicionador de Señal (CAS):	į
Diseño de Circuito Acondicionador de Señal:	,
SIMULACIÓN	
Tablas comparativas de los resultados Teóricos vs Reales (Medidos Simuladamente):	,
RESULTADOS	į
Tabla comparativa de ambos resultados: Teóricos vs Reales(Medidos Simuladamente):13	,
CONCLUSIÓN	ŀ

OBJETIVOS

Objetivo general:

• Mostrar la temperatura en base al sensor AD590.

Objetivos específicos:

- Comprender el funcionamiento de sensor AD590, así como poder realizar una sustitución simulada del mismo.
- Formar una ecuación para poder relacionar la temperatura el voltaje de salida.
- Realizar un sistema que interprete la temperatura ambiental en sistema binario.
- Adaptar la señal de salida del sensor para que esta misma sea interpretada por el convertidor Analógico-Digital.

INTRODUCCIÓN

Descripción de la Práctica:

Esta practica consiste en recibir una señal analógica y convertirla a digital, en este caso, obtener la temperatura, acondicionar la señal, convertir la señal de analógica a digital y mostrarla mediante un sistema digital de 8 bits.

Sensor AD590:

El AD590 es un sensor de temperatura en un encapsulado que produce una corriente de salida proporcional a la temperatura. El dispositivo es insensible a las caídas de voltaje en líneas largas debido a su salida de corriente de alta impedancia.

Sensor AD590 3-Pin TO-52 (Mera ejemplificación)

- Especificaciones:
 - o Corriente lineal de salida de 1uA/°K.
 - o Rango de temperatura -55°C a 150°C.
 - o Alimentación de 4V a 30V.
- Circuito de calibración:

Circuito de calibración del Sensor AD590

DESARROLLO

Instrucciones:

Diseñe un circuito acondicionador de señal (CAS), que sirva para conectar el sensor de temperatura AD590 y un convertidor analógico - digital, el rango de medición del sensor es de 0 grados centígrados a 100 grados centígrados. La entrada del convertidor analógico - digital es de 0V a 5V. 0 grados corresponde a 0V y 100 grados a 5V.

Datos:

- La señal del sensor está entre 273 μA y 323 μA.
- Sensibilidad del sensor de temperatura AD590: 1 μA/°K.

Temperatura	Corriente
(°C)	salida (μA)
0	273
25	298
50	323
100	373

Tabla de relación de incremento de Temperatura vs Corriente

Gráfica de incremento de Temperatura vs Corriente del sensor AD590

Obtención de la ecuación del Circuito Acondicionador de Señal (CAS):

Sabiendo que:

$$y = mx + b$$
 ecuación de la línea recta

Procedemos a calcular la pendiente:

$$m = \frac{Y_2 - Y_1}{X_2 - X_1}$$

ecuación de la pendiente

Sustituyendo los valores dados anteriormente:

$$m = \frac{5 - 0}{0.273 \cdot 0.373} = \frac{5}{0.1} = 50$$

Procedemos a calcular b:

$$y = mx + b \cdots b = y - mx$$

Evaluamos la función con los valores anteriores:

$$b = 5 - 50(0.373)$$
$$b = -13.65$$

Finalmente, evaluamos en la ecuación inicial de la recta:

$$y = 50x - 13.65 = 5(10x - 2.73)$$

Realizamos un cambio de variable para expresar la ecuación en términos de del Circuito Acondicionador de Señan(CAS):

$$V_o = 5(10V_t - 2.73V)$$

La gráfica de la ecuación es la siguiente:

Diseño de Circuito Acondicionador de Señal:

$$V_o = 5(10V_t - 2.73V)$$
, ecuación del CAS

Comenzamos el diseño proponiendo un divisor de voltaje:

Aplicando la ecuación de divisor de voltaje:

$$V_{x} = \left(\frac{R_{x}}{R_{total}}\right) V_{o}$$

Estamos buscando obtener un voltaje de salida de 0.273v, para lo cual proponemos un resistor de 15k:

$$0.273v = \frac{R_x}{15k + R_x} 15v$$

$$\frac{R_x}{15k + R_x} = 0.0182$$

$$R_x = 0.0182 * (15k + R_x)$$

$$R_x - 0.0182R_x = 273\Omega$$

$$R_x = \frac{273\Omega}{(1 - 0.0182)} \approx 278\Omega$$

La siguiente fase es multiplicar por 50 y restar a Vt:

Para lo cual vamos a acoplar un seguidor de voltaje al circuito anterior:

Acto seguido debemos acoplar un amplificador diferencial con una ganancia en voltaje de 50:

Para calcular el voltaje de salida sumamos ambas entradas aplicando el teorema de superposición:

$$Vo = V_1 + V_2$$

Aplicando la ecuación de divisor de voltaje:

$$V_x = \left(\frac{R_x}{R_{total}}\right) V_0$$

$$V_2 = \left(\frac{500 \text{k}}{10 \text{k}}\right) * (-0.273)$$

$$V_2 = -13.65v$$

Pacificamos la primer fuente

Para calcular el voltaje de salida de la otra fuente, ocupamos la ecuación del voltaje de salida de un amplificador no inversor:

$$V_1 = V_i \left(1 + \frac{R_f}{R_i} \right)$$

De igual forma, aplicamos la ecuación del divisor de voltaje:

$$V_i = \left(\frac{R_5}{R_5 + R_6}\right) V_t$$

Evaluamos la ecuación anterior:

$$V_1 = V_t \left(\frac{R_5}{R_5 + R_6} \right) \left(1 + \frac{R_f}{R_i} \right)$$

Pacificamos la segunda fuente

Teóricamente se deberá tener el siguiente voltaje:

$$V_o = 50(V_t - 0.273V)$$

 $V_o = 50(0.373V - 0.273V)$
 $V_o = 5V$

Circuito Acondicionador de Señal

SIMULACIÓN

Una vez analizado el sensor AD590, obtenido su ecuación y su Circuito Acondicionador de Señal, procedemos a la unión del sensor AD590, el Circuito Acondicionador de Señal y al Convertidor Analógico-Digital, todo esto de forma simulada y con un arreglo de 8 leds a la salida para su visualización.

Diagrama del circuito completo simulado del acondicionamiento de una señal analógica a digital

Tablas comparativas de los resultados Teóricos vs Reales(Medidos Simuladamente):

Temperatura (°C)	Temperatura (°K)	Voltaje de salida del sensor (mV)	Voltaje de salida CAS (V)	Valor en decimal	Salida Digital
0	273	0.273	0	0	00000000
10	283	0.283	0.5	25	00011001
20	293	0.293	1	51	00110011
30	303	0.303	1.5	76	01001100
40	313	0.313	2	102	01100110
50	323	0.323	2.5	128	10000000
60	333	0.333	3	153	10011001
70	343	0.343	3.5	179	10110011
80	353	0.353	4	204	11001100
90	363	0.363	4.5	230	11100110
100	373	0.373	5	255	11111111

Tabla de resultados Teóricos

Temperatura (°C)	Temperatura (°K)	Voltaje de salida del sensor (mV)	Voltaje de salida CAS (V)	Valor en decimal	Salida Digital
0	273	0.273	0.06	3	00000011
10	283	0.283	0.59	30	00011110
20	293	0.292	1.01	52	00110011
30	303	0.302	1.53	78	01001110
40	313	0.312	2.05	105	01101000
50	323	0.323	2.56	131	10000010
60	333	0.333	3.08	157	10011101
70	343	0.343	3.59	183	10110111
80	353	0.351	4	204	11001100
90	363	0.362	4.51	230	11100110
100	373	0.372	5.01	256	11111111

Tabla de resultados Reales(medidos simuladamente)

RESULTADOS

Tabla comparativa de ambos resultados: Teóricos vs Reales(Medidos Simuladamente):

Valores Teóricos				
Voltaje de salida CAS (V)	Voltaje de salida del sensor (mV)	Valor en decimal	Salida Digital	
0	0.273	0	00000000	
0.5	0.283	25	00011001	
1	0.293	51	00110011	
1.5	0.303	76	01001100	
2	0.313	102	01100110	
2.5	0.323	128	10000000	
3	0.333	153	10011001	
3.5	0.343	179	10110011	
4	0.353	204	11001100	
4.5	0.363	230	11100110	
5	0.373	255	11111111	
Reales(Medidos Simuladamente):				
	Reales(Medid	os Simuladamen	te):	
Voltaje de salida CAS (V)	Reales(Medide Voltaje de salida del sensor (mV)	os <mark>Simuladamen</mark> Valor en decimal	te): Salida Digital	
Voltaje de salida CAS	Voltaje de salida del sensor	Valor en		
Voltaje de salida CAS (V)	Voltaje de salida del sensor (mV)	Valor en decimal	Salida Digital	
Voltaje de salida CAS (V)	Voltaje de salida del sensor (mV) 0.00006	Valor en decimal	Salida Digital	
Voltaje de salida CAS (V) 0.06 0.59	Voltaje de salida del sensor (mV) 0.00006 0.00059	Valor en decimal 3 30	Salida Digital 00000011 00011110	
Voltaje de salida CAS (V) 0.06 0.59 1.01	Voltaje de salida del sensor (mV) 0.00006 0.00059 0.292	Valor en decimal 3 30 52	Salida Digital 00000011 00011110 00110011	
Voltaje de salida CAS (V) 0.06 0.59 1.01 1.53	Voltaje de salida del sensor (mV) 0.00006 0.00059 0.292 0.302	Valor en decimal 3 30 52 78	Salida Digital 00000011 00011110 00110011 01001110	
Voltaje de salida CAS (V) 0.06 0.59 1.01 1.53 2.05	Voltaje de salida del sensor (mV) 0.00006 0.00059 0.292 0.302	Valor en decimal 3 30 52 78 105	Salida Digital 00000011 00011110 00110011 01001110 01101000	
Voltaje de salida CAS (V) 0.06 0.59 1.01 1.53 2.05 2.56	Voltaje de salida del sensor (mV) 0.00006 0.00059 0.292 0.302 0.312 0.00256	Valor en decimal 3 30 52 78 105 131	Salida Digital 00000011 00011110 00110011 01001110 01101000 10000010	
Voltaje de salida CAS (V) 0.06 0.59 1.01 1.53 2.05 2.56 3.08	Voltaje de salida del sensor (mV) 0.00006 0.00059 0.292 0.302 0.312 0.00256 0.00308	Valor en decimal 3 30 52 78 105 131 157	Salida Digital 00000011 00011110 00110011 01001110 01101000 10000010 10011101	
Voltaje de salida CAS (V) 0.06 0.59 1.01 1.53 2.05 2.56 3.08 3.59	Voltaje de salida del sensor (mV) 0.00006 0.00059 0.292 0.302 0.312 0.00256 0.00308 0.00359	Valor en decimal 3 30 52 78 105 131 157 183	Salida Digital 00000011 00011110 00110011 01001110 01101000 10000010 10011101 101101	

Tabla final comparativa de ambos resultados: Teóricos vs Reales(Medidos Simuladamente):

CONCLUSIÓN

Como conclusión, puedo decir que a comparación de mi entrega pasada, que además fue la primera, hay una diferencia abisal desde la calidad del trabajo, hasta el desarrollo del problema; Obviamente, para bien.	
Si comparamos el cursar la materia de instrumentación de forma presencial a como la estamos cursando en este mom (A distancia), no cabe duda que el nivel de dificultad de la materia en presencial no tiene comparación, entonces, lo n	
que podemos hacer es esforzarnos y empeñarse en entregar trabajos de calidad.	
14	