CLAIMS

1. A compound of the formula

5 wherein the bond between carbon atoms 22 and 23 is a single or double bond;

m is 0 or 1;

R₁ is C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl; and either

(A) R_2 is $-N(R_3)R_4$, and

(1) X is O, wherein

10

 R_3 is hydrogen, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, aryl or heterocyclyl, and

15

 R_4 is mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, unsubstituted and mono- to trisubstituted heterocyclyl, unsubstituted and mono- to pentasubstituted aryl, NH_2 , NHC_1 - C_{12} alkyl, $N(C_1$ - C_{12} alkyl)₂, C_1 - C_6 alkyl- $N(C_1$ - C_{12} alkyl)₂, $-C_1$ - C_6 alkyl- $N^+(C_1$ - C_{12} alkyl)₃, SO_2NH_2 , $SO_2NHC_6H_5$, SO_2 Phenyl, SO_2 Benzyl, OH, $-OC_1$ - C_{12} alkyl, $-OC_1$ - C_{12} alkynyl; or

20

(2) X is S, wherein

5

10

 R_3 is hydrogen, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl; aryl or heterocyclyl, and

 R_4 is hydrogen, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, unsubstituted and mono- to trisubstituted heterocyclyl, unsubstituted and mono- to pentasubstituted aryl, NH_2 , NHC_1 - C_{12} alkyl, $N(C_1$ - C_{12} alkyl)₂, SO_2NH_2 , $SO_2NHC_6H_5$, SO_2 Phenyl, SO_2 Benzyl, OH or OC_1 - OC_1 2alkyl; or

- (3) X is O or S, wherein R₃ and R₄ together are a three- to seven-membered alkylene or a four- to seven-membered alkenylene bridge, in which a CH₂ group may be replaced by O, S, C=O or NR₆; or
- 15 (B) R_2 is OR_5 and X is O or S, wherein R_5 is C_1 - C_{12} alkyl, mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl;

in which the substituents of the alkyl-, alkenyl-, alkynyl-, alkylene-, alkenylene-, 20 heterocyclyl-, aryl- and cycloalkyl-radicals mentioned under R₃, R₄ and R₅ are selected from the group consisting of OH, halogen, halo-C₁-C₂alkyl, CN, SCN, NO₂, C₂-C₆alkynyl, C₃-C₈cycloalkyl which is unsubstituted or substituted by one to three methyl groups; norbornylenyl; C₃-C₈cycloalkenyl which is unsubstituted or substituted by one to three methyl groups; C₃-C₈halocycloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂alkoxyC₁-C₁₂alkoxy, C₃-C₈cycloalkoxy, C₁-C₁₂alkylthio, C₃-C₈cycloalkylthio, C₁-C₁₂haloalkylthio, C₁-C₁₂alkylsulfinyl, C₃-25 C₈cycloalkylsulfinyl, C₁-C₁₂haloalkylsulfinyl, C₃-C₈halocycloalkylsulfinyl, C₁-C₁₂alkylsulfonyl, C₃-C₈cycloalkylsulfonyl, C₁-C₁₂haloalkylsulfonyl, C₃-C₈halocycloalkylsulfonyl, C₂-C₈alkenyl, C_2 - C_8 alkynyl, -N(R₆)₂, wherein the two R₆ are independent of each other; -C(=O)R₇, $-O-C(=O)R_8$, $-NHC(=O)R_7$, $-S-C(=S)R_8$, $-P(=O)(OC_1-C_6alkyl)_2$, $-S(=O)_2R_{11}$; $-NH-S(=O)_2R_{11}$, 30 -OC(=0)-C₁-C₆alkyl-S(=0)₂R₁₁; aryl, benzyl, heterocyclyl, aryloxy, benzyloxy, heterocyclyloxy, arylthio, benzylthio, heterocyclylthio; and also aryl, heterocyclyl, aryloxy, benzyloxy, heterocyclyloxy, arylthio, benzylthio or heterocyclylthio which, depending on the possibilities of substitution on the ring, are mono- to pentasubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₃-C₈cycloalkyl, 35 C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio, C₁-C₁₂haloalkylthio,

WO 2005/021569 PCT/EP2004/009594

- 80 -

 $C_1-C_6alkoxy-C_1-C_6alkyl, \ dimethylamino-C_1-C_6alkoxy, \ C_2-C_8alkenyl, \ C_2-C_8alkynyl, \ phenoxy, \ phenyl-C_1-C_6alkyl, \ methylenedioxy, \ -C(=O)R_7, \ -O-C(=O)-R_8, \ -NH-C(=O)R_8, \ -N(R_{10})_2, \ wherein \ the two \ R_{10} \ are independent of each other; \ C_1-C_6alkylsulfinyl, \ C_3-C_8cycloalkylsulfinyl, \ C_1-C_6haloalkylsulfinyl, \ C_3-C_8cycloalkylsulfonyl, \ C_1-C_6haloalkylsulfonyl \ and \ C_3-C_8halocycloalkylsulfonyl; \ C_1-C_6haloalkylsulfonyl \ and \ C_3-C_8halocycloalkylsulfonyl \ and \ C_3-C_8ha$

 R_6 is H, C_1 - C_8 alkyl, hydroxy- C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, phenyl, benzyl, -C(=O) R_7 , or -CH₂-C(=O)- R_7 ;

5

10

15

20

25

30

 R_7 is H, OH, SH, -N(R_{10})₂, wherein the two R_{10} are independent of each other; C_1 - C_2 -alkyl, C_2 - C_{12} alkenyl, C_1 - C_8 hydroxyalkyl, C_1 - C_1 2haloalkyl, C_1 - C_1 2alkoxy, C_1 - C_1 2haloalkoxy, C_1 - C_1 2alkoxy- C_1 - C_1 2alkoxy- C_1 - C_1 2alkoxy- C_1 - C_1 2alkoxy- C_1 - C_1 2alkylthio, C_2 - C_1 3alkenyloxy, C_2 - C_1 3alkyloxy, C_1 - C_2 3alkyloxy, C_1 - C_3 3alkyloxy, C_1 - C_4 3alkyloxy, C_1 - C_5 4aloalkoxy, C_1 - C_5 4aloalkoxy;

 R_8 is H, C_1 - C_{24} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} hydroxyalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C_1 - C_6 alkoxy- C_1 - C_6 alkyl, $N(R_{10})_2$, wherein the two R_{10} are independent of each other; $-C_1$ - C_6 alkyl- $C(=O)R_{10}$, $-C_1$ - C_6 alkyl- $S(=O)_2R_9$, aryl, benzyl, heterocyclyl; or aryl, benzyl or heterocyclyl which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkoxy, C_1 - C_{12} alkoxy, C_1 - C_{12} alkylthio and C_1 - C_{12} haloalkylthio;

 R_9 is H, OH, C_1 - C_{24} alkyl which is optionally substituted with OH, or -S(=O)₂- C_1 - C_6 alkyl; C_1 - C_{12} alkenyl, C_1 - C_{12} alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy- C_1 - C_6 alkoxy- C_1 - C_6 alkoxy, C_2 - C_8 alkenyloxy, aryl, aryloxy, benzyloxy, heterocyclyl, heterocyclyloxy or -N(R_{10})₂, wherein the two R_{10} are independent of each other;

 R_{10} is H, C_1 - C_6 alkyl, which is optionally substituted with one to five substituents selected from the group consisting of halogen, C_1 - C_6 alkoxy, hydroxy and cyano; C_1 - C_8 -cycloalkyl, aryl, benzyl, heterocyclyl; or aryl, benzyl or heterocyclyl, which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO_2 , C_1 - C_{12} alkyl, C_1 - C_{12} haloalkyl, C_1 - C_{12} alkylthio and C_1 - C_{12} haloalkylthio;

WO 2005/021569 PCT/EP2004/009594

- 81 -

- or, if appropriate, an E/Z isomer, E/Z isomer mixture and/or tautomer thereof, in each case in free form or in salt form.
- 2. A pesticide composition which contains at least one compound of the formula (I) as described in claim 1 as active compound and at least one auxiliary.
- 3. A method for controlling pests wherein a composition as defined in claim 2 is applied to the pests or their habitat.

5

10

15

- 4. A process for preparing a composition as defined in claim 2 which contains at least one auxiliary, wherein the active compound is mixed intimately and/or ground with the auxiliary(s).
- 5. The use of a compound of the formula (I) as defined in claim 1 for preparing a composition as defined in claim 2.
 - 6. The use of a composition as defined in claim 2 for controlling pests.
- 7. A method for protecting plant propagation material against damage by a pest, wherein the propagation material or the location where the propagation material is planted is treated with a composition as defined in claim 2.
 - 8. Plant propagation material treated in accordance with the method defined in claim 7.