计算机网络笔记整理

名词解释

缩写	解释	全称
PDU	协议数据单元	Protocol Data Unit
IEEE	电气和电子工程师协会	Institute of Electrical and Electronics Engineers
WLAN	无线局域网	Wireless Local Area Network
UTP	非屏蔽双绞线	Unshielded Twisted Pair
ADSL	非对称数字用户线	Asymmetric Digital Subscriber Line
VPN	虚拟专用网络	Virtual Private Network
CSMA/CD	带冲突检测的载波监听多路 访问	Carrier Sense Multiple Access with Collision Detection
FDMA	频分多路访问	Frequency Division Multiple Access
CDMA	码分多路访问	Code Division Multiple Access
PPP	点对点协议	Point-to-Point Protocol
PPPoE	以太网上的PPP协议	Point-to-Point Protocol over Ethernet
TTL	生存时间	Time to Live
ICMP	互联网控制消息协议	Internet Control Message Protocol
DHCP	动态主机配置协议	Dynamic Host Configuration Protocol
RIP	路由信息协议	Routing Information Protocol
ARP	地址解析协议	Address Resolution Protocol
VLAN	虚拟局域网	Virtual Local Area Network
UDP	用户数据报协议	User Datagram Protocol
ТСР	传输控制协议	Transmission Control Protocol
DNS	域名系统	Domain Name System

常用端口号 (P333)

协议	端口号
TELNET	23
DNS	53
НТТР	80
HTTPS	443
FTP	21
SMTP	25
SNMP	161
SNMP(trap)	162
HTTPS	443

P175 CSMA/CD, CSMA/CA

标准编 号	标准主题	中文注释
IEEE 802.1Q	IEEE Standard for Local and Metropolitan Area Networks — Bridges and Bridged Networks	一种标签协议,用于跨越干线的帧标记其所属的虚 拟局域网(VLAN)
IEEE 802.3	IEEE Standard for Ethernet	关于以太网的系列标准,规范了物理层和介质访问 控制子层的技术内容
IEEE 802.11	Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications	关于无线局域网 (Wi-Fi) 的系列标准,规范了物理 层和介质访问控制子层的技术内容
IEEE 802.15	IEEE Standard for Low-Rate Wireless Networks	系列标准,广泛用于短距离无线传感传输,其中 IEEE 802.15.1 是兼容蓝牙早期版本的标准,而 IEEE 802.15.4 是个人域网规范,也是 ZigBee 的 基础
IEEE 802.16	IEEE Standard for Air Interface for Broadband Wireless Access Systems	关于宽带无线接入系统(WiMax)的空中接口的 技术规范

知识点

计算机网络概念 (P2)

计算机网络是计算机的网络,是为了**共享信息和资源**,使用链路和交换设备将自治的计算机相互连接在一起的系统。

TCP/IP的参考模型 OSI参考模型 (P39 图1-34) (P41)比较

TCP/IP: 网络接口层 网络层 传输层 应用层

OSI: 物理层 数据链路层 网络层 传输层 会话层 表示层 应用层

对应关系: 网络接口层->物理层 数据链路层 网络层->网络层 传输层->传输层

对比方面	OSI 模型	TCP/IP 模型
层数不同	7 层 (物理层、数据链路层、网络层、传输层、会话层、表示层、应用层)	4 层(网络接口层、网际层、传输 层、应用层)
通用性	理论模型,通用性强,独立于具体协议实 现	实用模型,主要围绕 TCP/IP 协议族设计
模型与 协议的 关系	先有模型,后有协议,协议严格按层划分	先有协议,后总结模型,协议设计灵 活性大
服务质量	明确提出不同层次服务质量(QoS)要求,设计较复杂	服务质量依赖具体协议(如 TCP 提供可靠传输,IP 提供尽力而为)
概念清 晰度	概念清晰,功能定义明确,层次划分合理	部分层职责模糊 (如应用层包含 OSI 的表示层和会话层功能)
简单性	理论上完整,但实现复杂	设计简洁,易于实现,工程应用广泛
传输数 据方式 不同	强调面向连接(如会话层)和无连接两种 传输方式	主要通过传输层区分 (TCP: 面向连接, UDP: 无连接)

曼切斯特编码

• 特点: 高电位跳变到低电位表示1, 低电位跳变到高电位表示0

• 优势: 是一种自同步编码, 自身携带时钟信号

传输介质与物理层的关系

物理层是 OSI 模型的第一层,主要负责数据的物理传输,定义了电气、机械、过程和功能等规范,保证比特流能够在各种物理媒介上传输。传输介质则是承载这些比特流的物理通道,是物理层实现传输功能不可或缺的组成部分。

物理层通过标准接口与传输介质交互,不直接规定具体的传输介质类型,而是提供一套通用的电气与信号规范。常见的传输介质包括:**双绞线、同轴电缆、光纤**,以及**无线信道**(如射频、红外、微波等)。

物理层协议规定了如比特编码方式、电平、电压、信号速率、连接器类型、布线标准等内容,而传输介质的物理特性(如带宽、衰减、噪声、传输距离、成本、环境适应性)会直接影响物理层通信的性能与质量。

接入网络技术 (P12)

• PSTN 公共交换电话网络

HFC 窄带接入ADSL: 宽带接入FTTx: 光纤接入

物理层设备 (P17)

层级	设备
物理层	收发器、集线器、中继器
数据链路层	交换机
网络层	路由器

CSMA/CD (P144) CSMA/CA (P153)

• CSMA/CD工作流程: 先听后发、边听边发、冲突停止、延迟重发

• 有线无线区别

区别方面	CSMA/CD (有线)	CSMA/CA (无线)
有线/无线 区别	有线网络 (如以太网)	无线网络(如 Wi-Fi)
是否需要 确认机制	无需确认机制	需要确认机制(如 ACK)
监测到冲 突的处理 方式	发送中监听, 若监测到冲突 立即中断发送, 退避后重传	发送前避免冲突,发送中无法监听,采用 RTS/CTS 机制避免冲突,发送完成后等待确 认

• 相同点: 都是延时重发

交换机计时器作用(P165)

控制MAC地址表项的老化时间,定期清除长时间未使用的地址信息,保持地址表的准确性和有效性。

IEEE 802.1Q VLAN标识符(P168)

12位的VLAN标识符是标签中最重要的字段

标记 \$2^{12} - 2\$ 个 = 4094

基于固定网络基础设备的无线局域网与移动自组织网络的区别 (P173)

• 关键区别: 有无节点

协议

层次	协议
数据链路层	PPP、PPPoE、CSMA/CD、CSMA/CA
网络层	IP、ARP、ICMP、IGP
传输层	TCP、UDP
应用层	SMTP、FTP、POP3、DNS

路由器功能

根据目标IP地址在不同网络之间转发数据包,实现网络互联和路径选择。

专用 IP 地址块

分类	IP 地址范围	用途说明
A 类专用地址	10.0.0.0 — 10.255.255.255	大型私有网络
B 类专用地址	172.16.0.0 — 172.31.255.255	中型私有网络
C 类专用地址	192.168.0.0 — 192.168.255.255	小型私有网络, 如家庭和小型企业网络

• 安全区分 (10分)

。 可能出现的问题

IP 层主要功能

• 核心功能: 路由选择

实现不同网络之间的数据包寻址与转发,提供无连接、不可靠的最佳路径传输服务。

IP 数据报首部

长度范围: 20B-60B固定长度: 20B

TTL

• **丟弃条件**: 当 TTL=0, 丟弃

分片目的 P202

• 目的: 为适应不同网络的MTU大小

• 路由器操作: 分片, 分片后源IP、目的IP不变, MAC地址改变

• 主机: 重组

ARP 请求 (P225)

ARP是将IP地址映射成MAC地址的协议

路由器表信息

信息项	说明
目的网络地址(Destination Network)	目标网络的地址 (例如 192.168.1.0/24)
子网掩码(Netmask) / 前缀长 度(Prefix Length)	定义目标网络的范围
下一跳地址(Next Hop)	数据包应该转发到的下一个路由器的IP地址(如果直连网络,该项可能为空或标记为"直连")
出接口(Outgoing Interface)	本地路由器将数据包转发出去的物理接口(如 GigabitEthernet0/0)
跃点数(Metric)/距离值	用于衡量路径优劣的指标(如 hop count, cost)
协议来源(Routing Protocol)	路由信息的来源(如直连路由、静态路由、动态路由协议: RIP、OSPF、BGP等)
路由更新时间(Age)	动态路由中,记录路由条目的存活时间,超时后会被删除或 更新

外部网关/内部网关 (P269)

内部网关协议 (IGP) : RIP OSPF

外部网关协议 (EGP) : 边界网关协议 (BGP)

TCP/UDP 都是可靠协议 使用校验和

7-18 图 (P386) 电子邮件

Email工作过程

发件人用 Email 客户端(如 Outlook、Foxmail、手机自带邮箱)编辑邮件。

客户端通过 SMTP 协议 把邮件发送到 发件人邮件服务器。

发件人邮件服务器通过 SMTP 协议 把邮件投递到 收件人邮件服务器。

收件人邮件服务器存储邮件。

收件人通过 POP3 或 IMAP 协议 连接收件人邮件服务器,读取/下载邮件到客户端。

发送过程 1: 发件人 → 发件人邮件服务器

- ・ 用户使用 SMTP 客户端 (邮件客户端)。
- 通过 TCP 25端口 (SMTP) 或 587端口 (加密SMTP) 向发件人邮件服务器发送邮件。
- 这个阶段是邮件从用户客户端进入邮件系统。

发送过程 2: 发件人邮件服务器 → 收件人邮件服务器

- · 发件人邮件服务器和收件人邮件服务器之间通过 SMTP 协议通信。
- 由发件人邮件服务器主动发起 TCP 连接到收件人邮件服务器的 SMTP 端口(通常 25 端口)。
- · 邮件内容在 SMTP 协议下传输过去。
- 收件人邮件服务器存储邮件,等用户来收取。

收件过程

• 用户通过 POP3(TCP 110端口) 或 IMAP(TCP 143/993端口) 协议从收件人邮件服务器获取邮件。

论述题 + 计算题 (30分 6个)

层次化结构的意义

简单化 实现多样 有利于竞争 有利于标准化

分组交换的优缺点

优点

• 无连接

分组交换采用无连接方式,数据发送前不需要建立专用的物理连接,通信过程更加灵活高效,特别适合突发性和交互性的数据业务,如网页浏览、即时消息等。

• 共享带宽

网络中的带宽资源是动态共享的,多个用户可以同时利用链路资源,提升了网络的整体资源利用率,避免了电路交换中线路空闲时的资源浪费。

• 存储转发机制

分组在网络中通过存储转发方式传递,每个节点可以临时存储分组,支持异步通信,增强了网络的弹性和适应突发流量的能力。

• 具备抗毁性

网络具备良好的容错能力,分组在传输过程中可以根据网络状态动态选择路径,当某个链路或节点发生故障时,分组可以绕行,保证数据传输的可靠性和健壮性。

缺点

• 乱序性

分组独立传输,每个分组可以选择不同的路径到达目的地,容易导致分组乱序,接收端需要进行排序处理,增加了处理的复杂性。

• 时延不确定

由于分组交换采用存储转发机制,且链路带宽是共享的,分组在传输过程中受到队列长度、网络拥塞等因素影响,导致传输时延不可预测,难以满足实时性要求较高的业务(如语音通话、视频会议)。

IP 互联网的作用

IP互联网的作用

IP互联网的核心作用是为上层应用提供**统一、透明的网络服务**,屏蔽底层物理网络的差异。通过IP协议,应用层程序无需关心所处网络的物理结构(如以太网、无线网、光纤网等),也无需了解数据在底层的传输方式,系统自动实现不同物理网络之间的互联与数据转发。

具体作用包括:

1. 屏蔽底层细节

IP层隐藏了物理网络的实现差异,使应用层程序在使用网络时,不必关心底层是有线网络还是无线网络,保证了上层应用的统一性和可移植性。

2. 实现异构网络互联

IP协议支持不同类型的网络(异构网络)之间的数据传输。通过路由器实现跨网络转发,解决了不同网络结构、分组格式不一致的问题,保证数据可以从一个网络顺利传输到另一个网络。

3. 提供统一的寻址和数据传输机制

无论底层采用何种网络技术,IP层提供了统一的地址空间(IP地址)和标准的数据包格式,支持全球范围内设备的互联通信。

4. 支持大规模互联

通过IP互联网,全球成干上万的异构网络可以互联成统一的互联网,实现跨网络、跨地域的数据传输,支撑现代互联网的广泛应用。

路由选择协议:

- 内部网关协议 (IGP), 是域内的路由选择协议。比如 RIP、OSPF就属于IGP, 在域内选路
- 外部网关协议(EGP)是域间的路由选择协议。比如,边界网关协议(BGP)就是一个EGP,而且整个互联网上也只有这一个EGP。

计算题

不等长 (P326, 14, 6分) (计算题)

1. 子网划分

○ 输入: 掩码、地址块

○ 输出: 网络地址、广播地址

2. CRC循环校验

实验题

• 注意事项:中间两个PC不用设

1 IP地址与默认网关配置

- 能正确为 PC 配置 IP 地址、子网掩码、默认网关
 - PC 机通常通过配置界面或 lipconfig / lifconfig 查看, Cisco Packet Tracer 里直接在 PC 的 Desktop → IP Configuration 配置。
 - 重点是: 哪些PC需要配默认网关, 题目要求你才配!
- 。 能正确为 路由器接口 配置 IP 地址
 - 进入接口模式配置:

```
Router> enable
Router# configure terminal
Router(config)# interface g0/0
Router(config-if)# ip address 192.168.X.X 255.255.255.0
Router(config-if)# no shutdown
```

- 能理解并配置 **交换机三层接口 (如果题目要求)**
 - Layer 3 Switch 配置 VLAN 接口 (SVI) + IP 地址

```
Switch(config)# interface vlan 1
Switch(config-if)# ip address 192.168.x.x 255.255.255.0
Switch(config-if)# no shutdown
```

2 路由配置

- 。 能配置 **静态路由**
 - 典型命令:

```
Router(config)# ip route 目标网络 子网掩码 下一跳地址
例: ip route 192.168.2.0 255.255.255.0 192.168.1.2
```

- 能配置并理解 动态路由协议 (如果考):
 - RIP 配置:

```
Router(config)# router rip
Router(config-router)# version 2
Router(config-router)# network 192.168.1.0
Router(config-router)# network 192.168.2.0
```

■ OSPF 配置 (如果题目考):

```
Router(config)# router ospf 1
Router(config-router)# network 192.168.1.0 0.0.0.255 area 0
```

③ VLAN 及交换机配置 (如果考到)

o VLAN 创建与分配端口:

```
Switch(config)# vlan 10
Switch(config-vlan)# name Sales
Switch(config)# interface fastEthernet 0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
```

o Trunk 配置:

```
Switch(config)# interface g0/1
Switch(config-if)# switchport mode trunk
```

4 基础测试与排错

- 会使用 ping 测试网络连通性:
 - ping 192.168.X.X
- 会使用 show 命令查看配置状态:
 - show ip interface brief → 查看接口状态与IP配置
 - show ip route → 查看路由表
 - show running-config → 查看当前配置
- o 会根据题意 逐步排错,比如:
 - 接口有没有 no shutdown
 - IP 地址有没有配错
 - 路由有没有漏配

静态路由配置示例

```
ip route 192.168.3.0 255.255.255.0 192.168.2.253
# 配置说明:
# - 目标网络: 192.168.3.0/24
# - 下一跳地址: 192.168.2.253
```

```
exit
router rip
network 192.168.1.0
network 192.168.2.0
# 配置说明:
# - 启用 RIP 路由协议
# - 通告网络 192.168.1.0/24 和 192.168.2.0/24
```