Machine Learning – Products

Most Famous Applications

recommendations

assistants (speech recognition)

and many more ...

When to Use ML (= Learning from Data)

automation

too complex for rules

from wikipedia

examples: object recognition, all applications from previous slide

complexity / uncertainty

too complex for humans

examples: protein structure predictions (AlphaFold), demand forecasting

more scientific use cases: medicine (imaging, diagnosis, drug design), particle physics (analysis of collider experiments), material science (material properties and design of new materials), ...

Taxonomy of ML Models

Supervised Learning

Target Quantity

- known in training: labeled samples or observations from past
- to be **predicted** for unknown cases (e.g., future values)

Features

input information that is

- correlated to target quantity
- known at prediction time

Example: Spam Filtering

Classify emails as spam or no spam

use accordingly labeled emails as training set

use information like
occurrence of specific
words or email length
as features

features x1 and x2 spam, no spam

Algorithmic Families

linear (parametric) models

neural networks: non-linear just by means of activation functions

deep learning: many hidden layers

computer vision: CNN

NLP: transformer

nearest neighbors (local methods, instance-based learning) – non-parametric models

with k = 3, • with k = 5, •

kernel/support-vector machines: linear model (maximum-margin hyperplane) with kernel trick

decision trees: rule learning

often used in ensemble methods

- bagging: random forests
- boosting: gradient boosting

mainly used for structured data

MACHINE LEARNING

unsupervised and reinforcement learning can both be cast as supervised-learning

Ladder of Generalization

Discriminative vs Generative Models

discriminative models:

prediction/estimation of labels (classification) or numerical values (regression)

examples for discriminative tasks:

- object recognition
- demand forecasting

generative models:

generation of new data according to data distribution seen in training

source

Text Generation

This decade: Generative Al

How it works

Generative AI is built by using supervised learning $(A \rightarrow B)$ to repeatedly predict the next word.

My favorite food is a bagel with cream cheese and lox.

Input (A)	Output (B)
My favorite food is a	bagel
My favorite food is a bagel	with
My favorite food is a bagel with	cream

When we train a very large AI system on a lot of data (hundreds of billions of words) we get a Large Language Model like ChatGPT.

Large Language Models (LLM)

special class of generative models

new paradigm for ML workflow:

prompt engineering (low/no code)

instead of classic training (fit) and inference (predict) steps

→ multi-task (and multi-modal) models instead of narrow use cases of discriminative models

Under the Hood: Foundation Models

LLMs: transformer models with hundreds of billions of parameters self-supervised (pre-)training on vast data sets

→ huge foundation models (impossible to train yourself)

10²⁴ GPT-3 LaMDA AlphaZero Whisper ViT 1MWh AlphaGo GPT-2 BERT Transformer ResNet GPT 10¹⁸ AlexNet GoogLeNet 2015 2020 Year Source

usage options:

- typical: in-context learning via prompt (potentially giving few examples for task at hand and add retrieval augmentation or tool usage)
- for special case and high-quality requirements: fine-tuning on specific tasks and data sets (example: chatbot like ChatGPT via reinforcement learning from human feedback)

Google's

Gemini:

Prompt

Here's a solution to a Physics problem by a student.

23. A skier slides down the frictionless slope as shown. What is the skier's speed at the bottom?

Solution:

The conservation of energy means that the onegy of the skies is some at the beginning and at the end.

$$\Rightarrow mgL = \frac{1}{2}mV^{2}$$

 $\Rightarrow V = \sqrt{2gL} = \sqrt{2 \times 9.81 \times 80} = 39.6 \text{ m.s}^{-1}$

Try to reason about the question step by step.

Did the student get the correct answer? If the solution is wrong, please explain what is wrong and solve the problem.

Make sure to use LaTeX for math and round off the final answer to two decimal places.

Response

The student did not get the correct answer. The student made a mistake in the calculation of the potential energy at the start of the slope. The potential energy at the start of the slope is given by mgh, where m is the mass of the skier, g is the acceleration due to gravity, and h is the height of the slope. The student used the length of the slope, L, instead of the height, H, in the calculation of the potential energy.

The correct solution is:

The conservation of energy means that the total energy of the skier is the same at the beginning and at the end of the slope.

At the start of the slope, the skier has only potential energy, which is given by mgh.

At the end of the slope, the skier has only kinetic energy, which is given by $\frac{1}{2}$ mv^2

Therefore, we can write:

$$mgh = \frac{1}{2}mv^2$$

Canceling out the mass m on both sides, we get:

$$gh = \frac{1}{2}v^2$$

Solving for v, we get:

$$v = \sqrt{2gh}$$

Substituting the given values, we get:

$$v = \sqrt{2 \times 9.81 \times 40} = 28.01 \text{ m/s}$$

Therefore, the skier's speed at the bottom of the slope is 28.01 m/s.

Goal: Autonomous End-to-End Workflow

Generative Al

Depending on the application, there are currently two dominant approaches for generative AI:

• text generation: LLMs

• image synthesis: diffusion models

Image Synthesis

idea: generate new images as variations of training data

condition generation on text prompts: text-to-image

trade-off between diversity and fidelity

SOTA: (guided) diffusion models

example: DALL-E 2

Application

LLMs are "just" interfaces/translators: transforming one sequence (tokenizable input) into another

discriminative models

 effective for performing numerical and optimization tasks (predictions)

 continue to account for majority of Al value in wide range of industries (e.g., supply chain)

generative models

 not suitable for classical use cases like numerical and optimization tasks

(But LLM agents might use prediction or optimization models as tools.)

 but complimentary: drive value across entire organizations by revolutionizing internal knowledge management systems

(natural user interface)

LLMs in Plain Terms

foundation models:

- compression of the internet
- programming languages of new wave of AI applications (adapted to specific use cases and data)
- These applications will make the internet more interactive.

Application Areas

Examples for Predictive Models: Supply Chain

support of operations research

some examples:

- warehouse operations
- transportation (logistics & mobility)
- retail

(Blue Yonder: demand forecasting, replenishment, pricing, targeting)

slotting:

e.g., using item affinity and order forecasting

Connected Logistics

examples for ML solutions:

- arrival time predictions (aka ETA), for example in Google Maps via Graph Neural Network (GNN)
- reinforcement learning (combined with other methods like GNN) for better generalization in combinatorial optimization problems (e.g., TSP, VRP, ...)
- disruption predictions (also root cause analysis)

Routing: Learning from Skilled Drivers

shortest route:

better route:

Tracking for Yard Management

Robotic Control

different ways:

- reactive control (no ML)
- model predictive control
- imitation learning
- reinforcement learning
- using LLMs (and vision)

generalization with pre-trained vision-language models (RT-2):

grounding with pre-trained skills (SayCan):

Code as Policies:

24

Hype Cycle for Artificial Intelligence, 2023

Generative AI at peak of inflated expectations

still: there is now something to play with

gartner.com

Biggest Business Impacts of Generative Al

customer operations

interactions with customers

marketing & sales

generation of creative content

software engineering

coding assistant

product R&D

generative design (e.g., for chips)

Figure 1. Magic Quadrant for Enterprise Conversational Al Platforms

Coding Assistant

LLM: text-to-code

prominent example: GitHub Copilot

```
1 import tweepy, os # secrets in environment variables
3 def fetch_tweets_from_user(user_name):
       # authentification
       auth = tweepy.OAuthHandler(os.environ['TWITTER_KEY'], os.environ['TWITTER_SECRET'])
       auth.set_access_token(os.environ['TWITTER_TOKEN'], os.environ['TWITTER_TOKEN_SECRET'])
       api = tweepy.API(auth)
       # fetch tweets
       tweets = api.user_timeline(screen_name=user, count=200, include_rts=False)
10
11
       return tweets
   & Copilot
```

Copilot for Knowledge Workers

good job Outlook?"

Fuyu's answer: "Los Angeles"

multi-modal models (text and images) enable image understanding

"Aidan Gillen acted in how many series?"

Fuyu's answer: "2"

source

and execution of high-level user requests

Al Potential

(generative) AI could free up 70% of employees' time

half of today's work activities could be automated between 2030 and 2060

Productivity growth, the main engine of GDP growth over the past 30 years, slowed down in the past decade.

automate white-collar more than blue-collar jobs

Generative AI could have the biggest impact on activities in high-wage jobs; previously, automation's impact was highest in lower-middle-income quintiles.

Source: Conference Board Total Economy database; McKinsey Global Institute analysis

Engineering & Tech Stack

Scientific Python Stack

Deep Learning Frameworks

need for lots of memory and compute ...

laaS, PaaS, SaaS

example for managed service: Azure Kubernetes Service (AKS) for container orchestration

ML in Production

Data Management

not only compute but also cloud-based data storage

data lake: raw data

data warehouse: integrated data

unification of data lake and warehouse: ETL -> ELT

NoSQL example: graph database

Emerging LLM App Stack

LEGEND

era of large-scale models:

Al currently on its engineering peak

What the Future Holds: Autonomous Agents

learning from data

Facts and Fiction

no more Al winters

data is everywhere, plenty of useful ML products

"classical" ML still needed

most value from predictive applications

Generative AI important step

"mirror" to see the world in different light

(probably) still Chinese room

no reliable indication for real understanding

AGI is not here (yet)

but performance of multi-task and multimodal models still improving with scale

Al no (foreseeable) existential risk

more realistic and near-term risk: small number of companies control AI technology