

Comissão de Exame de Admissão **EXAME DE QUÍMICA - 2022**

2. Confira o seu o3. Para cada ques	duração de 120 minutos e colódigo de candidatura; stão assinale apenas a alterna o o uso de qualquer dispositivo		elemóveis, etc.).		
	Teoria ató	mica e estrutura da matéria			
A. contém as partículas de ca		ário. A electrosfera é a região do áto C. contém neutrões D. contém protões e neutrões	mo que:		
2. Das espécies químicas se são:	eguintes: ₁₉ K ⁺ , ₁₇ Cl ⁻ , ₅₀ Sn, ₉ F, ₁	₁₆ S ²⁻ e ₃₅ Br. As espécies que poden	n formar, entre sí, uma ligação covalente		
	. ₁₆ S ²⁻ com ₁₉ K+	C. ₉ F com ₉ F e ₃₅ Br e ₃₅ Br	D. 50 Sn com 50 Sn.		
Sabendo que o ião plumboso		ar, o solo, os rios e os alimentos. xicidade, os electrões mais energéti C. 4f ¹⁴	O número atómico (Z) do chumbo é 82. cos estão no subnível? D. 5d ¹⁰		
A. Seu isótopo de massa 23 B. Fica com 10 electrões qua	contém 12 neutrões ando se torna catião neiro nível e 9 electrões no se	cterísticas mencionadas abaixo, exc gundo nível	epto:		
• •	•	periódica, se encontra no 4° período C. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d$			
• •	•	D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d$	•		
		linâmica (Termoquímica)			
•	•	as seguintes situações, excepto:			
A. o sentido em que uma rea B. a extensão a que uma rea		C. a velocidade da reacçãoD. a variação da entalpia de un	D. a variação da entalpia de uma reacção		
7. Uma afirmação que traduz A. as reacções espontâneas B. a energia é conservada no	•	C. a entropia do universo está	aumentando continuamente ma função da entalpia e da entropia		
8. Calcule a variação de entr S°[Ag ₂ O] = 121.3 J/K·mol,		eacção: $2Ag_2O_{(s)} \rightarrow 4Ag_{(s)} + O_{2(g)}$ of $S^{\circ}[O_{2(g)}] = 205.1 \text{ J/K} \cdot \text{mol.}$			
A. –205.1 J/K	B. –126.4 J/K	C. +126.4 J/K	D. +132.9 J/K		
•	ção a todas as temperaturas, o B. positivo, negativo	então ΔS é e ΔH é C. zero, positivo	 D. negativo, zero		

10. Acima de que temperatura espera-se que uma reacção se torne espontânea se $\Delta H = +322 \text{ kJ}$ e $\Delta S = +531 \text{ J/K?}$

C. 606 K

D. a reação será espontânea a qualquer temperatura

A. 171 K

B. 209 K

11. Todas as seguintes relações termodinâmicas são verdadeiras, excepto:

A.
$$\Delta G^{\circ}_{sys} = \Delta H^{\circ}_{sys} - \Delta T S^{\circ}_{sys}$$

C. $\Delta S^{\circ}_{univ} = \Delta S^{\circ}_{sys} + \Delta S^{\circ}_{surr}$

B.
$$\Delta G^{\circ}_{sys} = -RT \ln(K)$$

D. $\Delta H = \Delta H^{\circ}_{sys} + RT \ln(K)$

Soluções e Estequiometria

12. Qual é a máxima massa, em gramas, de nitrato de sódio que pode ser dissolvida em 50 g de água, a 10°C?

A. 80

B. 40

C. 35

- D. 20
- **13.** Uma solução aquosa de brometo de cálcio tem concentração igual a 10,0 g/L e densidade praticamente igual a 1,00 g/mL. A sua molaridade, normalidade e título são, respectivamente:

A. 0.10; 0.05; 0.01

- B. 0,05; 0,10; 0,01
- C. 0.05; 0.025; 0.01
- D. 0,083; 0,166; 0,1
- **14.** Tem-se 200 mL de solução 0,2N de ácido sulfúrico. Deste volume, 50 mL são substituídos por água destilada. A nova solução tem normalidade igual a:

A. 0,24

B. 0,15

C. 0,12

- D. 0,30
- **15.** Que massa de hidróxido de sódio sólido se deve adicionar a 500 mL de solução 0,1 N deste hidróxido, para se obter uma solução 0,5 N? (Admita que o volume da solução não se altera com a adição do hidróxido de sódio).

A. 0,8 g

B. 1,0

C. 4,0 g

- D. 8,0g
- **16.** Uma solução preparada dissolvendo-se 0,25 mol de CaSO₄ que se encontra 85% dissociado contém:

A. 3,1.10²³ partículas dispersas

C. 31.10²² partículas dispersas

B. 2,78425.10²³ partículas dispersas

- D. 27,8425.10²² partículas dispersas
- 17. Uma solução preparada dissolvendo-se $0,25 \, mol$ de $CaSO_4$ que se encontra 85% exerce uma pressão osmótica de:

A. 7,534 Kpa

- B. 763,918 Pa
- C. 763,918 atm
- D. 763,918 Kpa
- **18.** Queimando 0.51 do gás Butano (C_4H_{10}) num fogão com rendimento de combustão de 96.5%, o volume de vapor de água produzida, se medido a 1000°C e 1atm, será de (ArH = 1; ArC = 12):

A. 11,245 l

B. 2,4125 I

C. 2,5 I

D. 11,6525 I

Cinética e equilíbrio químico

19. O dióxido de carbono é um gás formado pela reacção entre os gases monóxido de carbono e oxigénio, conforme a seguinte equação química: $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$

Sabendo-se que em 5 minutos de reacção foram consumidos 2,5mol de CO, qual é a taxa de desenvolvimento da reacção de acordo com o consumo de O₂?

A. 0,2 mol . min-1

- B. 1,5 mol . min-1
- C. 2,0 mol . min⁻¹
- D. 0,25 mol . min-1
- 20. Sobre os factores que influenciam a velocidade de uma reacção química é incorrecto afirmar que:
- A. Quanto maior a concentração dos reagentes, maior a velocidade da reacção
- B. Quanto maior a superfície de contacto, maior a velocidade da reacção
- C. Quanto maior a pressão, maior a velocidade da reação
- D. A presença de um catalisador mantém constante a velocidade da reação
- 21. Observe a representação gráfica do desenvolvimento de uma reacção química hipotética, que relaciona a energia e o caminho reacional. Assinale a alternativa que substitui correctamente (1), (2), (3) e (4), respectivamente.

- A. substratos, calor liberado, estado máximo de energia e final da reacção
- B. reagentes, energia de activação, complexo activado e produtos
- C. reagentes, energia cinética, catalisador e substratos
- D. reagentes, calor absorvido, energia térmica e produtos

22. Considere a seguinte reacção hipotética. aA + bB → cC + dD. Observe a seguir a variação da concentração de A e C. Com base nas informações fornecidas na questão, qual é, respectivamente, a taxa de consumo de A e a taxa de formação de C no intervalo entre 5 e 25 min?

Tempo (s)	0	5	10	15	20	25
Consumo de A (mol/L)	7,5	6,0	4,5	3,0	2,5	1,0
Formação de C (mol/L)	0	0,5	1,0	1,5	2,0	2,5

A. 0,3 mol.L $^{-1}$.s $^{-1}$ e 0,1 mol.L $^{-1}$.s $^{-1}$ B. - 0,1 mol.L $^{-1}$.s $^{-1}$ e 0,3 mol.L $^{-1}$.s $^{-1}$ C. - 0,25 mol.L $^{-1}$.s $^{-1}$ e 0,1 mol.L $^{-1}$.s $^{-1}$

D. 0,1 mol.L⁻¹.s⁻¹ e 0,3 mol.L⁻¹.s⁻¹

23. Observe a equação de equilíbrio seguinte: $2NO_{2(g)} \leftrightarrow N_2O_{4(g)}$

Quando o equilíbrio acima é alcançado, a pressão é 2 atm e há 50% de NO₂ em volume. O valor da constante de equilíbrio em pressões parciais (Kp) deve ser:

A. 0,2

B 0 25

C. 1

D. 0,5

24. Numa solução aquosa 0,100 mol/L de um ácido monocarboxílico a 25°C, o ácido está 3,7% dissociado após o equilíbrio ter sido atingido. Assinale a opção que contém o valor correcto da constante de dissociação desse ácido nessa temperatura.

A. 1,4

B. 1,4×10⁻³

C.1,4×10⁻⁴

D. 3,7×10⁻²

25. Analise o diagrama a seguir que mostra as variações de concentração em mol/L de NO₂ e N₂O₄ até atingirem o equilíbrio, dado pela reacção 2 NO₂ ↔ N₂O₄. Determine a alternativa que indica o valor correcto de Kc nessas condições:

A. 0,25

B. 0,5

C. 2,5

D. 2

Diagrama de reacção em equilíbrio químico

Equilíbrio iónico e Reacções Redox

26. O P^H de uma solução de Al(NO₃)₃ a 2,5.10⁻⁵ mol/l (Ka[Al(H_2O)₆]³⁺=1,4.10⁻⁵ mol/l) é:

A. 4,8539

B. 4,7280

C. 4.6021

D. 1,87.10⁻⁵

27. Em três recipientes X, Y e Z estão contidas soluções básicas desconhecidas de concentração 0,1 mol/L. Medindo o pH das três soluções com papel indicador universal, obtiveram-se os seguintes valores, respectivamente: pH = 8, pH = 10 e pH = 13. Assinale a afirmação CORRECTA:

A. No frasco Z, está contida uma base forte

C. Kb da base X é maior que Kb da base Y

B. Concentração de OH- de Z é igual a 10-13 mol/L

D. A base X está completamente ionizada

28. Juntando 300 ml de uma solução 1.5 M AqNO3 a 450 ml de uma solução 2.5 M NaCl.

A. Haverá formação de precipitado de NaNO₃

B. Haverá formação de precipitado de AgCl

C. Não haverá formação de nenhum precipitado

D. Não é possível juntar estas substâncias, muito menos em solução

29. A produção do metal manganês é realizada a partir de uma reacção de simples troca com carvão e minério pirolusita (MnO_2) : $MnO_2 + C \rightarrow Mn + CO_2$

Podemos afirmar que o(s) agente(s) redutor(es) dessa equação é(são):

A. MnO₂

B. MnO₂ e CO₂

C. CO₂

D. C

30. Pilhas e baterias são dispositivos tão comuns na nossa sociedade. As semi-reacções descritas a seguir ilustram o que ocorre numa pilha de óxido de prata. Pode afirmar-se que esta pilha

 $Zn_{(s)} + OH_{(aq)}^{-} \rightarrow ZnO_{(s)} + H_2O_{(l)} + e^{-} // Ag_2O_{(s)} + H_2O_{(l)} + e^{-} \rightarrow Ag_{(s)} + OH_{(aq)}^{-}$

A. é uma pilha ácida

C. tem como reacção da célula a seguinte reacção: Zn_(s) + Ag₂O_(s)→ZnO_(s) + 2Ag_(s)

B. apresenta o óxido de prata como o ânodo

D. apresenta o zinco como o agente oxidante

processo de recuperação de d	cobre puro, tenha-se elec éctrica de intensidade igual	trolisado uma solução de	rte dos metais sucateados. Suponha que, num e sulfato de cobre (II) (CuSO ₄) durante 3 h, puro recuperada é de aproximadamente (F = 96					
A. 0,02g	B. 0,04g	C. 2,40g	D. 35,5g					
32. Considere as semirreacções $Pb^{2+} + 2e^{-} \rightarrow Pb \ (E^{\circ} = -0,13) // Ag^{\circ}$			stantes da tabela e a pilha a seguir: a:					
ponte salina Pb (NO ₃) ₂ 1M	Ag	 A. na ponte salina, os ele prata para o eléctrodo de o B. o eléctrodo de prata é o C. a diferença de potencia D. a equação global da pil Pb + 2 Ag* — Pb 	ânodo da célula é 0,54 V na é:					
33. A pilha alcalina apresenta vantagens sobre uma pilha de Leclanché (zinco-carvão). Considerando que uma pilha alcalina seja constituída por uma barra de manganês puro, outra de zinco poroso e uma pasta contendo KOH, a ddp inicial da pilha e a equação global da reacção que nela ocorre, são: $(Mn^{2+} + 2e^- \rightarrow Mn^0 E^\circ = -118V)$ $(Zn^{2+} + 2e^- \rightarrow Zn^0 E^\circ = -0.76V$ A. $0,42V$ e $Mn^0 + Zn^{2+} \rightarrow Mn^{2+} + Zn^0 \rightarrow Mn^0 + Zn^{2+}$ B.1,60V e $Mn^{2+} + Zn^0 \rightarrow Mn^0 + Zn^{2+} \rightarrow Mn^{2+} + Zn^0$								
Química Orgânica								
34. Substituindo os hidrogénios o A. Aldeído	da água por radicais Alquila B. Éter	ou Arila obtém-se: C. Éster	D. Amina					
35. Pertence à classe das amina A. Um dos átomos de hidrogénic C. Um dos átomos de hidrogénic	do NH₃ por um radical alqu	ila B. Um dos áto	o de: nos de hidrogénio do NH3 por um radical acila de Hidrogénio do NH3 por um radical alquilidina					
36. Dos compostos 1-Buteno; 2-A. 1-Buteno e 2-Buteno B. 2-Buteno e 1,1-Dicloroetano	Buteno; 1,1-Dicloroetano; 1	,2-Dicloroeteno, os que nã C. 1,1-Dicloroetar D. 1,2-Dicloroeten						
37. Na reacção: 2CH ₃ – CH ₂ – Cl A fórmula do composto represen A. C ₆ H ₁₄ Hexano		"A" + 2Nal oficial são, respectivamento C. C ₆ H ₁₂ Hexeno-						
38. O metal que caracteriza os c A. Alumínio	ompostos de Grignard é o: B. Chumbo	C. Magnésio	D. Sódio					
39. O nome do composto	Δ	Metil-acetato de propila						

A. Metil-acetato de propila

B. Propanoato de isopropila

C. Etil-isopropil cetona

D. Metil pentanona

40. Na equação: CH₃–NH₂ + CH₃–COOH → CH₃—COOCH₃ + NH₃ Ш I۷

Os Compostos I e III pertencem, respectivamente, às séries:

D. Amidas e Éteres B. Amidas e Ésteres A. Aminas e Éteres C. Aminas e Ésteres