1 Aire-Co's dehumidifiers

Decision Variable X_{ij} : The number of dehumidifiers produce at plant i = 1: Atlanta (units) in month $j \to \{1, 2, 3\}$

 Y_i : The number of dehumidifiers held in inventory after month $i \rightarrow \{1,2,3\}$ finite in $\{u_i\}$

Objective Function MIN: 400 x11 + 400 x12 + 400 x13 + 360 x21 + 360 x22 + 360 x23 + 30 y1 + 30 y2 + 30 y3

Subject to $X_{ij} \leq 300 \quad V_i V_j \rightarrow \text{dissidning.}$ $\sum_{i=1}^{3} (400 x_{ij} + 360 x_{aj} + 30 y_i)$ $y_1 = x_{11} + x_{21} - 300$

 $y_2 = y_1 + x_{12} + x_{22} - 400$ Inventory

 $y_3 = y_2 + x_{13} + x_{23} - 500$ X41 + X21 = 300]

X12 + X22 ≥ 400 } Demand x₁₃ + x₁₃ ≥ 500 J

> $X_{ij} \ge 0 \quad V_i V_i$ $y_i \ge 0 \ V_i$

Plant Atlanta Phoenix Production 400 360 Cost (\$/unit)

Each plant's limit: 300 units/month

Inventory cost: \$30 per unit each month

Demand: 300, 400, 500 units (3 month)

Goal: Minimize cost

Optimal Solution An X1 = 0, X1 = 100, X1 = 200, X21 = 300, X22 = 300, X23 = 300, Y1 = 0, Y2 = 0, Y3 = 0

Objective Function Value no F(x) = \$444000

Decision Variable:	1st Month	2nd Month	3rd Month		
Atlanta Produce (units)	0	100	200		
Phoenix Produce (units)	300	300	300		
Inventory (units)	0	0	0		
Objective Function:					
Minimize cost:	444000				
Subject to:	1st Month	2nd Month	3rd Month		
Maximum Atlanta production	0	100	200	<=	300
Maximum Phoenix production	300	300	300	<=	300
Y1	0	=	0		
Y2	0	=	0		
Y 3	0	=	0		
X ₁₁ + X ₂₁	300	>=	300		
X ₁₂ + X ₂₂	400	>=	400		
X ₁₃ + X ₂₃	500	>=	500		
	1st Month	2nd Month	3rd Month		
V.,	0	100	200	>=	0
Xij	300	300	300	>=	0

2. Investment Plan

Decision Variable Xi: The number of money to allocate to investment i { 1: bonds, 2: mortgages, 3: car loans, 4: personal loans} <\$>

0

0

0

Objective Function MAX: 0.1 x, + 0.085 x, + 0.095 x, + 0.125 x,

Subject to X4 = 0.25 (650000) - restrict personal loans

 $x_2 - x_4 \ge 0 \longrightarrow \text{more invest in mortgages}$

 $x_1 - x_4 \stackrel{\wedge}{=} 0 \rightarrow \text{more invest in bonds}$

 $x_1 + x_2 + x_3 + x_4 \le 650000 \rightarrow assets available$

 $x_i \ge 0 \quad \forall_i$

Optimal Solution 10 X,= 325000, X4= 162500, X3= 0, X4= 162500

Objective Function Value no F(x) = \$66625

Decision variable:	investment
Bonds (\$)	325000
Home Mortgages (\$)	162500
Car Loans (\$)	0
Personal Loans (\$)	162500

Objective Function:

66625 Maximize return:

Subject to:			
X4	162500	<=	162500
X2 - X4	0	>=	0
X1 - X4	162500	>=	0
$X_1 + X_2 + X_3 + X_4$	650000	<=	650000
X ₁	325000	>=	0
X ₂	162500	>=	0
Хз	0	>=	0
X4	162500	>=	0

```
3. Weedwacker Company's lawn trimmers
 Decision Variable Xi: The number of lawn trimmers produce type i {1: electric, 2: gas} (units)
                   yi: The number of lawn trimmers bought type i {1: electric, 2: gas} <units>
Objective Function MIN: 55x, +82x, +67y, +95y,
 Subject to X, + y, ≥ 30000 )
                                                                                Decision Variable: Electric
                                                                                    Produce (units) 30000
              Xa + ya = 15000
                                                                                     Bought (units)
         02x1+0.4x2 4 10000
         0.3 X + 0.5 X = 15000 Hours Available
         0.1x_{*} + 0.1x_{*} \leq 5000
                   X_i \ge 0 \ \forall_i
                  y_i = 0 \ \forall_i
Optimal Solution 10 X,= 30000, X2= 10000, Y,= 0, Y2= 5000
```

0 ' '			
Objective Function:			
Minimize cost:	2945000		
Subject to:			
X ₁ + Y ₁	30000	>=	30000
X ₂ + Y ₂	15000	>=	15000
0.2X ₁ + 0.4X ₂	10000	<=	10000
0.3X ₁ + 0.5X ₂	14000	<=	15000
0.1X ₁ + 0.1X ₂	4000	<=	5000
X1	30000	>=	0
X2	10000	>=	0
Y1	0	>=	0
Y ₂	5000	>=	0

Gas

10000

5000

0

4. Electrotech Corporation's profit

Decision Variable Xi: The number of electrical devices produce type i { 1: generators 2: alternators Objective Function MAX: 250 x + 150 x,

Subject to 2x,+ 3x2 = 260 (wiring time)

Objective Function Value fig F(x) = \$2945000

 $X_{*}+2X_{*} \le 140$ (testing time) X, ≥ 0

X2 ≥ 0

Optimal Solution file X, = 130, X2 = 0 Objective Function Value no F(x) = \$ 32500

Decision Variable:	Produce
Generator (units)	130
Alternator (units)	0
011 11 5 11	

Objective Function: 32500 Maximize profit:

Subject to:			
Wiring time	260	<=	260
Testing time	130	<=	140
X1	130	>=	0
X ₂	0	>=	0