Notes on Mathematics

Manvendra Somvanshi

manusomvanshi@hotmail.com

Updated on: October 25, 2022

CONTENTS

	I BASICS	
1	ELEMENTARY SET THEORY	3
2	Relations · · · · · · · · · · · · · · · · · · ·	3
3	Functions	2
4	CATEGORIES	10
	II ABSTRACT ALGEBRA	
1	Introduction	12
2	More on Permutation Group	16
3	Lagrange's Theorem	18
4	HOMOMORPHISM AND NORMAL SUBGROUPS	19
5	Automorphisms	23
6	Free Groups	24
	III ANALYSIS	
1	Construction of Real Numbers	27
2	METRIC SPACES AND EUCLIDEAN SPACE	
	IV	
	SET THEORY AND LOGIC	
1	Symbolic Logic	
	1.1 Sematics of Propositional logic	
	1.2 Syntactics of Propositional logic	
	1.3 Proof Methods	
	1.4 Consistency	
	1.5 Soundness	
	4.0. Opensylate	4.0

2	First Order Logic	14
	2.1 Syntactics	14
	2.2 Axioms, Rules of Inference and Replacement rules	15
	2.3 Proof Methods	16
1	V LINEAR ALGEBRA	47
	VI TOPOLOGY	
	VII MEASURE THEORY	
1	Intuition of Measure	50
2	FORMAL NOTION OF MEASURE	52
3	Caratheodory Theorem	58
4	Lebesgue Measure	64
5	Complete Measures	66
6	Integration	38

1 ELEMENTARY SET THEORY

A set S is a collection of objects. The objects of a set are called the elements. The union of two sets S, T contains elements of both sets, and is written as $S \cup U$. The intersection of two sets contains the common elements of the two sets, and is represented $S \cap U$. The complement of a set $A(\subset S)$ with respect to some set S is represented as A'. The difference of set S from T is defined as $T - S = T \cap S'$. The algebra of these operations is as follows

Commutativity,

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Associativity,

$$A \cap (B \cap C) = (A \cap B) \cap C$$
$$A \cup (B \cup C) = (A \cup B) \cup C$$

Distribution,

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

• De Morgan's rules,

$$(A \cap B)' = A' \cup B'$$
$$(A \cup B)' = A' \cap B'$$

DEFINITION 1.1 The cartesian product of two sets A and B, denoted $A \times B$, is the set of ordered pairs $\{(a,b)|\forall a\in A \text{ and } b\in B\}.$

Other than these operations one can define a set operation called disjoint union, denoted $S \sqcup T$, which is loosely constructed in the following way: we first make copies S' and T' such that $S' \cap T' = \emptyset$ and then take their ordinary union. A more rigourous definition would be constructed later.

2 RELATIONS

DEFINITION 2.1 A relation on a set A is a subset C of the cartesian product $A \times A$. If $(x,y) \in C$ then it is denoted as xCy.

DEFINITION 2.2 An equivalence relation on a set *A* is a relation *C* on *A* such that:

- It is reflexive, i.e. $xCx \forall x \in A$.
- It is symmetric, i.e. if xCy then yCx.
- It is transitive, i.e. if xCy and yCz then xCz.

Generally the symbol \sim is used to denote an equivalence relation. For a given element $x \in A$ we also define a set called the equivalence class as:

$$E = \{ y \mid y \sim x \}$$

Proposition 2.3 Two equivalence classes E and E' are either disjoint or equal.

Proof Let E be the equivalence class of x and E' be the equivalence class of x'. Assuming that $E \cap E'$ is non-empty, for all $y \in E \cap E'$ it follows that $y \sim x'$ and $y \sim x$. From symmetry and transitivity it follows that $x' \sim x$. Hence every element similar to x' will be similar to x. Hence E' = E, whenever $E \cap E'$ is non-empty.

DEFINITION 2.4 A partition of a set A is a collection of disjoint nonempty subsets of A whose union is all of *A*.

Proposition 2.5 Given any partition \mathcal{D} of A, there is a unique equivalence relation C on Asuch that each element of \mathcal{D} is an equivalence class of C.

Proof Consider a relation C defined as: xCy if both x and y belong to the same element of \mathcal{D} . Since x is always in the same element as itself, xCx is true for all x. If xCy, which means x is in the same subset as y. Since the converse is also true, yCx. If x is in the same subset as y and y is in the subset as *z*, then *x* is in the same subset as *z*. Hence *x*C*y* and *y*C*z* imply *x*C*z*. This means that C is an equivalent relation. Each element of \mathcal{D} can be viewed as an equivalence class of \mathcal{C} .

Assume that there exist two equivalence relations C_1 and C_2 such that the set of each their equivalence classes is \mathcal{D} . Let E_1 and E_2 be equivalence classes of x with respect to relations C_1 and C_2 . E_1 and E_2 must be the same since we are claiming that both relations generate the identical collection of sets. Hence if yC_1x then yC_2x which implies that $C_1 = C_2$.

DEFINITION 2.6 The quotient of the set S, denoted S/\sim with respect to the equivalence relation \sim is the set of equivalence classes of *S* with respect to \sim .

3 Functions

DEFINITION 3.1 A rule of assignment is a subset r of the cartesian product $C \times D$ of two sets, having the property that each element of C appears as the first ordinate of at most one ordered pair in r.

From this definition one can easily conclude that, if $r \subset C \times D$ and $(c,d),(c,d') \in r$ then d=d'. One can think of r as assigning an element $c \in C$, the element $d \in D$. The set C is called the domain of r and D is called the image set.

DEFINITION 3.2 A function f is a rule of assignment r, along with a set B which contains the image set of *r*. The domain of *r* is also the domain of *f*. The set *B* is called the range.

A function having a domain A and range B is written as $f: A \to B$. Given an element $a \in A$, f(a) denotes a unique element in B, hence $(a, f(a)) \in r$.

DEFINITION 3.3 Given a function $f: A \to B$ and a subset $A_0 \subset A$, then a restriction of f to A_0 is the mapping $f|A_0:A_0\to B$ with rule:

$$\{(a, f(a)) | a \in A_0\}$$

Definition 3.4 Given functions $f: A \rightarrow B$ and $g: B \rightarrow C$, the composite function is defined as $g \circ f : A \to C$, such that $g \circ f(a) = g(f(a))$. More formally, the rule of the function

$$\{(a,c)|\forall b\in B, \quad f(a)=b \quad \text{and} \quad g(b)=c\}$$

DEFINITION 3.5 A function $f: A \rightarrow B$ is said to be injective if,

$$f(a) = f(a') \implies a = a'.$$

The function is called surjective if for each $b \in B$ there exists an $a \in A$ such that b = f(a). If fis both injective and surjective it is said to be bijective.

Proposition 3.6 For each bijective function $f: A \to B$, there exists a unique function, called the inverse function, $f^{-1}: B \to A$ such that $f \circ f^{-1}$ and $f^{-1} \circ f$ are both identity functions.

Proof Since f is bijective for every $a \in A$ there exists a unique $b \in B$ (from injection), and for every $b \in B$ also there exists an $a \in A$ (from surjectivity). This implies that every $b \in B$ has a unique pre-image in A. Denote this pre-image by $f^{-1}(b)$. The rule of the inverse function is given by:

$$\{(b, f^{-1}(b)) | \forall b \in B\}$$

This proves the existence of inverse. Using the definition of composite function, the rule of the composite function $f \circ f^{-1}$ will be:

$$\{(b,b)|\forall b\in B\}.$$

Hence the composite is the identity function. Similarly the composite function $f^{-1} \circ f$ is also identity.

For proving the uniqueness, consider there exist two inverse functions, f^{-1} and \tilde{f}^{-1} , of f. Hence,

$$f(f^{-1}(b)) = b,$$

 $\implies \tilde{f}^{-1}(f(f^{-1}(b))) = \tilde{f}^{-1}(b),$

But since $\tilde{f}^{-1}(f(a)) = a$,

$$f^{-1}(b) = \tilde{f}^{-1}(b) \quad \forall b \in B$$

Hence the inverse is unique.

Proposition 3.7 The inverse of a bijective function $f: A \to B$ is also bijective.

Proof | Let the inverse be f^{-1} . Let b, b′ ∈ B such that

$$f^{-1}(b) = f^{-1}(b')$$

$$\implies f(f^{-1}(b)) = f(f^{-1}(b'))$$

$$\implies b = b'$$

This shows that f^{-1} is injective. For proof of surjectivity, we can show that for each $a \in A$ there exists a $b(=f(a)) \in B$ such that $a = f^{-1}(b)$. This shows that f^{-1} is also bijective.

Proposition 3.8 Let $f: A \to B$. If there are functions $g: B \to A$ and $h: B \to A$ such that $g(f(a)) = a \ \forall a \in A \ \text{and} \ f(h(b)) = b \ \forall b \in B$, then f is bijective and $g = h = f^{-1}$.

Proof | Let a, a′ ∈ A, such that

$$f(a) = f(a')$$

Using the function *g*,

$$g(f(a)) = g(f(a')),$$

 $\implies a = a'$

hence *f* is an injective function. Now coming to surjectivity. Using the existence of *h*, we can show that for each $b \in B$ there exists $a(=h(b)) \in A$ such that b = f(a). Hence f is a bijective function. For the final part of the proposition, since,

$$f(h(b)) = b,$$

$$\implies g(f(h(b))) = g(b),$$

$$\implies h(b) = g(b) \quad \forall b \in B .$$

And since the inverse is unique, they must also be equal to f^{-1} .

When there exists a bijection $f: A \to B$ then A and B are called *isomorphic*. This is sometimes represented as $A \simeq B$. Using the concept of isomorphism the notion of disjoint union can be made more rigourous.

DEFINITION 3.9 The disjoint union of two sets A and B is determined by constructing sets $A' \simeq A$ and $B' \simeq B$ such that $A' \cup B' = \emptyset$, and then determining the union $A' \cup B'$. Such sets can always be constructed for every set since $\{0\} \times A \simeq A$ and $\{1\} \times B \simeq B$ and $(\{0\} \times A) \cap (\{1\} \times B) = \emptyset.$

A less restrictive notion of invertibility is defined in terms of left-invertible and right-invertible functions. If for a function $f: A \to B$ there exists a $g: B \to A$ such that $g \circ f: A \to A$ is id_A then fis said to be left invertible. Similarly if there exists $h: B \to A$ such that $f \circ h: B \to B$ is id_B then f is called right invertible. The following is more general statement to proposition 3.8.

PROPOSITION 3.10 Let $f: A \rightarrow B$ be a function then:

- 1) *f* is injective if and only if it is left invertible.
- 2) *f* is surjective if and only if it is right invertible.

Proof For statement 1, the foward implication follows from the fact that if f injective then on can construct a $g: B \to A$ as follows: let $p \in B$ be a fixed point and

$$g(b) = \begin{cases} a, \text{ where } f(a) = b \\ p, \text{ when } b \text{ not in image of A.} \end{cases}$$
 (3.1)

Clearly the function $g \circ f(a) = id_A(a) = a$. The backward implication for statement 1, is true because if a *g* exists such that:

$$g \circ f(a) = a \ \forall \ a \in A$$

then,

$$g \circ f(a) = a \neq a' = g \circ f(a') \implies f(a) \neq f(a')$$

which is the contrapositive of the statement required to prove.

Statement 2 can be proven in a similar way. Assuming that f is surjective, it follows that for each b there is at least one $a \in A$ such that f(a) = b. Choosing anyone of these a for each b we can construct the map $h: B \to A$, h(b) = a. Hence it follows that $f \circ h(b) = f(a) = b = id_B(b)$. For the backward implication, assuming that there is an $h: B \to A$ such that $\forall b \in B$, $f \circ h(b) = id_B(b) = b$. Since h(b) = a for some $a \in A$, it follows f(a) = b for some $a \in A$. Hence f is surjective.

There is another way to look at bijective functions using the concept of monomorphisms and epimorphisms. This is a more fundamental and equivalent approach to defining bijections.

DEFINITION 3.11 A function $f: A \rightarrow B$ is said to be a monomorphism if the following holds:

$$\forall Z, \forall \alpha', \alpha'' : Z \rightarrow A, f \circ \alpha' = f \circ \alpha'' \implies \alpha' = \alpha''$$

Proposition 3.12 A function $f: A \to B$ is a monomorphism if and only if it is injective.

Proof Consider first the forward implication. Assuming f is a monomorphism, we know that for all sets Z and α' , $\alpha'': Z \to A$,

$$f \circ \alpha' = f \circ \alpha'' \implies \alpha' = \alpha''$$

if $\alpha'(z) = a$ and $\alpha''(z) = a'$ then the above condition reduces to,

$$f(a) = f(a') \implies a = a'$$

Hence f is injective.

For the backward implication we assume that *f* is an injective function. Then we know that *f* is left-invertible, with inverse g. If,

$$f \circ \alpha' = f \circ \alpha''$$

$$\implies g \circ f \circ \alpha' = g \circ f \circ \alpha''$$

$$\implies \alpha' = \alpha''$$

DEFINITION 3.13 A function $f: A \to B$ is said to be an epimorphism if,

$$\forall Z, \forall \beta', \beta'' : B \rightarrow Z, \beta' \circ f = \beta'' \circ f \implies \beta' = \beta''$$

Proposition 3.14 A function $f: A \to B$ is an epimorphism if and only if it is surjective.

Proof Let's first consider the forward implication:

$$(\forall Z, \beta', \beta'' : B \to Z \beta' \circ f = \beta'' \circ f \implies \beta' = \beta'') \implies (\forall b \in B \exists a \in A \text{ such that } b = f(a))$$

The contraposition of this statment is:

$$(\exists b \in B, \forall a \in A, b \neq f(a)) \implies (\exists Z, \beta', \beta'' : B \to Z \text{ such that } \beta' \neq \beta'' \& \beta' \circ f = \beta'' \circ f)$$

Assuming there exists $b \in B$ such that b is not in the image of f, let $Z = \{0,1\}$, $\beta'(b) = 0$, $\forall b \in B$, and

$$\beta''(b) = \begin{cases} 0, & \text{if } b \text{ is in image of } f \\ 1, & \text{if } b \text{ is not in image of } f \end{cases}$$

Clearly $\beta' \neq \beta''$ but we have $\beta' \circ f = \beta'' \circ f$. Hence the contrapositive is true, therefore proving the forward implication.

For the backward implication, assuming the funciton is surjective we also know that it would be right invertible. Let *h* be the right inverse then,

$$\beta' \circ f = \beta'' \circ f$$

$$\implies \beta' \circ f \circ h = \beta'' \circ f \circ h$$

$$\implies \beta' = \beta''$$

Hence completing the proof.

Diagrams. Diagrams are graphical representations of a collection of sets and how they are operated on by functions. A diagram is said to be *commutative* if taking different paths between sets result in the same function. For example if $f: A \to B$ and $g: B \to C$, then here is a commutative diagram of A, B, C:

For injective functions $a \hookrightarrow is$ used, for surjective functions \twoheadrightarrow is used, and isomorphisms are represented by $\tilde{\rightarrow}$.

Canonical Decomposition. Let $f: A \to B$ be a function on A. Define the equivalence relation \sim on A as $a \sim a'$ iff f(a) = f(a'). A surjection $g: A \twoheadrightarrow A/\sim$ can be defined as $g(a) = [a]_\sim$. Also it is possible to find an injection $h: \operatorname{im} f \hookrightarrow B$, given by h(b) = b. Hence we have a diagram:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \uparrow_h \\
A/\sim & & \text{im}f
\end{array}$$

If we can find an isomorphism $i: A/\sim \tilde{\to} \text{im} f$ then the above diagram will commute. Consider the following proposition:

PROPOSITION 3.15 The function $i: A/\sim \to \operatorname{im} f$ given by $i([a]_{\sim}) = f(a)$ is an isomorphism.

Proof | First we must check if i is a function. Let $[a]_{\sim}$, $[a']_{\sim} \in A/\sim$ then, $[a] = [a'] \implies f(a) = f(a') \implies i([a]_{\sim}) = i([a']_{\sim})$. This means for each $[a]_{\sim}$ there is a unique image.

Injective. If $i([a]_{\sim}) = i([a']_{\sim})$ then f(a) = f(a') by definition of i. Further it implies that $a \sim a'$ by definition of the equivalence relation. Hence a and a' are in the same equivalence class, or $[a]_{\sim} = [a']_{\sim}$.

Surjective. Let $b \in \text{im} f$. Then there exists an $a \in A$ such that f(a) = b. Hence there exists $[a]_{\sim}$ such that $b = i([a]_{\sim})$.

As a result of this proposition we have shown that any function f can be decomposed according to the commutative diagram:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \uparrow \\
A/\sim & \xrightarrow{\sim} & imf
\end{array}$$

This shows that any function can be written as a composition of injections, surjections, and isomorphisms. This decomposition is called the canonical decompositions.

DEFINITION 3.16 Let $f: A \to B$ be a function, and $A_0 \subset A$. Then define,

$$f(A_0) = \{b \mid b = f(a), a \in A_0\},\$$

and

$$f^{-1}(B_0) = \{ a \mid f(a) \in B_0 \}.$$

Note that this definition is for all functions, not just bijective functions.

Proposition 3.17 Let $f: A \to B$ be a function, and let $A_0 \subset A$, $B_0 \subset B$ then,

$$A_0 \subset f^{-1}(f(A_0))$$
 and $f(f^{-1}(B_0)) \subset B_0$

Proof | For the first statement, let $a \in A_0$. Then $f(a) \in f(A_0)$. Which further implies, by definition, that $a \in f^{-1}(f(A_0))$. Hence,

$$\implies A_0 \subset f^{-1}(f(A_0))$$

For the second part of the proposition, let $b \in f(f^{-1}(B_0))$. This means that there exists $a \in f^{-1}(B_0)$ such that b = f(a). Since $a \in f^{-1}(B_0)$, again by definition, $f(a) \in B_0$. Hence $b \in B_0$. Since this is true for any $b \in f(f^{-1}(B_0))$, we conclude that $f(f^{-1}(B_0)) \subset B_0$.

PROPOSITION 3.18 Let $f: A \to B$, A_0 , $A_1 \subset A$, and B_0 , $B_1 \subset B$. Then f^{-1} preserves:

- 1) inclusions
- 2) unions
- 3) intersections
- 4) differences

Proof Preservation of inclusion: let $B_0 \subset B_1$. From the definition it follows that $f^{-1}(B_0) =$ $\{a \mid f(a) \in B_0\}$. Since $B_0 \subset B_1$, if $f(a) \in B_0$ then $f(a) \in B_1$. Hence if $a \in f^{-1}(B_0)$ then $a \in f^{-1}(B_1)$. Hence $f^{-1}(B_0) \subset f^{-1}(B_0)$.

Proof of preservation of unions: the set $f^{-1}(B_0 \cup B_1) = \{a \mid f(a) \in B_0 \cup B_1\}$. While $f^{-1}(B_i) = \{a \mid f(a) \in B_i. \text{ The union } f^{-1}(B_0) \cup f^{-1}(B_1) = \{a \mid f(a) \in B_0 \text{ or } f(a) \in B_1\}, \text{ which is } f^{-1}(B_i) = \{a \mid f(a) \in B_i\}, \text$ the same as $\{a \mid f(a) \in B_0 \cup B_1\}$. Hence the two sides are equivalent.

Proof for intersections and differences is very similar to the one for unions.

Unlike it's inverse f only preserves inclusions and unions. Showing this is pretty easy. Also another property of functions is that $(g \circ f)^{-1}(C_0)$ is equivalent to $f^{-1}(g^{-1}(C_0))$ for functions $f: A \to B$, $g: B \to C$, and set $C_0 \subset C$.

4 CATEGORIES

A category is essentially a collection of 'objects' and of 'morphisms' between these objects, satisfying a list of natural conditions. These objects might be sets, groups, vector spaces, etc. Since there is simply no set of all sets (due to Russell's paradox), this collection of objects is just too 'big' to be called a set. The formal term used is a class of objects. The formal definition of categories is as follows.

DEFINITION 4.1 A category C consists of:

- 1) a class Obj(C) of *objects* of the category.
- 2) for every two objects A, B of C, a set $Hom_C(A, B)$ of morphisms satisfying the following properties:
 - i) for every object A of C there exists (at least) one morphism $1_A \in H_C(A, A)$. This is
 - ii) one can compose morphisms: two morphisms $f \in Hom_C(A, B)$ and $Hom_C(B, C)$ determine a morphism $gf \in Hom_{\mathbb{C}}(A, \mathbb{C})$. For every triplet of objects A, B, C of C there is a function (of sets)

$$\mathsf{Hom}_\mathsf{C}(A,B) \times \mathsf{Hom}_\mathsf{C}(B,C) \to \mathsf{Hom}_\mathsf{C}(A,C)$$

- iii) this composition law is associative.
- iv) the identity morphisms are identities with respect to composition, i.e. if $f \in$ $Hom_{C}(A, B)$ then

$$f1_A = f$$
, $1_B f = f$

v) the sets $Hom_C(A, B)$ and $Hom_C(C, D)$ are disjoint unless A = C and B = D.

One can make morphism diagrams similar to those of set functions. The set of morphisms from an object to itself are known as endomorphisms and are denoted End(A). The subscript C will be dropped from now on, unless it is necassary to use it.

EXAMPLE 4.2 (Sets) As a first example consider the category Set defined as Obj(Set) = the class of all sets, and Hom(A, B) = the set of all set-functions from A to B. We must verifyif this is a category. For every A there is an indentity function $1_A: A \to A$, $1_A(a) = a$. Composition of set-functions is possible, the composition is known to be associative, and the identity function is identity with respect to the composition. The last property is also triially true. Hence Set is indeed a category.

Example 4.3 Consider this example.

Suppose *S* is a set and \sim is a reflexive and transitive relation. Then define a category C as:

- objects are elements of *S*;
- Hom(a,b), where a,b are objects, is the set consisting $(a,b) \in S \times S$ if $a \sim b$, and let $\mathsf{Hom}(a,b) = \emptyset$ otherwise.

Verification that this is a category:

- 1) Since $a \sim a$ using reflexive property, $1_a = (a, a) \in \text{Hom}(a, a)$.
- 2) Given two morphisms $f = (a, b) \in Hom(a, b)$ and $g = (b, c) \in Hom(b, c)$ then using transitivity we know that $a \sim c$ and hence $gf = (a, c) \in \text{Hom}(a, c)$. Hence a composition exists.
- 3) The composition is clearly associative.
- 4) Let $f = (a,b) \in \text{Hom}(a,b)$, and we know that $1_a = (a,a)$ and $1_b = (b,b)$. Clearly $f1_a = (a, b)$ and $1_b f = (a, b)$.
- 5) Since each Hom(a, b) has either one element (a, b) or is empty, any two set of morphisms will be disjont.

As an example of this kind of category consider the set $\{1,2,3\}$ along with the ordering \leq . The following is a commutative diagram of this category:

ABSTRACT ALGEBRA

1 Introduction

DEFINITION 1.1 A group is a pair (G, \cdot) where G is a set and $\cdot : G \times G \to G$ is a binary operation such that:

- 1) G is closed under the operation \cdot .
- 2) · is associative.
- 3) There exists $e \in G$ such that $a \cdot e = e \cdot a = a \ \forall \ a \in G$. This element is called the identity.
- 4) $\forall a \in G \ \exists b \in G$ such that $a \cdot b = b \cdot a = e$. b is called the inverse of a and is represented as

PROPOSITION 1.2 The identity of a group (G, \cdot) is unique.

Proof Let e_1 , e_2 ∈ G be two identities. Since e_1 is an identity:

$$e_1 \cdot e_2 = e_2$$

and since e_2 is an identity:

$$e_1 \cdot e_2 = e_1$$

Thus $e_1 = e_2$.

Proposition 1.3 The inverse of every element of the group (G, \cdot) is unique.

Proof | Let $a_1, a_2 ∈ G$ both be inverse of a. Thus

$$a \cdot a_1 = e$$

$$\implies a_2 \cdot a \cdot a_1 = a_2$$

$$\implies a_1 = a_2.$$

Hence the inverse is also unique.

Proposition 1.4 Let (G,\cdot) be a group and $x,y\in G$, then there exists $w,z\in G$ such that $x = w \cdot y$ and $x = y \cdot z$.

Proof | Just choose $w = x \cdot y^{-1}$ and $z = y^{-1}x$. Then $w \cdot y = x \cdot y^{-1} \cdot y = x$, and $y \cdot z = y \cdot y^{-1} \cdot x = x$

NOTATION 1.5 From now on the product between elements of any group will be written as xy instead of $x \cdot y$.

Proposition 1.6 The inverse of $(xy)^{-1} = y^{-1}x^{-1}$ where $x, y \in G$.

Proof | Let z ∈ G be the inverse of xy. Then:

$$xyz = e$$

$$\implies yz = x^{-1}$$

$$\implies z = y^{-1}x^{-1}$$

Also $zxy = y^{-1}x^{-1}xy = e$.

DEFINITION 1.7 $I_n = \{1, ..., n\}$ where $n \in \mathbb{N}$ and $S_n = \{f : I_n \to I_n \mid \text{where } f \text{ is a bijection. } \}$.

NOTATION 1.8 Since the bijections on I_n can be viewed as permutations we use the following notation: if $1 \rightarrow k_1, 2 \rightarrow k_2, ..., n \rightarrow k_n$ then,

$$f \doteq \begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$$

Also another notation commonly used is as follows. Let $f \in S_3$ be a bijection given by:

$$f \doteq \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

will be represented by (12)(3) or just (12).

PROPOSITION 1.9 (S_n, \circ) is a group (it's called the *Permutation group*).

Proof | Since the composition of two bijections is also a bijection S_n is closed under the composition, and since the composition is associative property 2 is also satisfied. Since the inverse function of a bijection always exists. and is itself a bijection property 4 is satisfied. The identity map is obviously a bijection, thus it is in S_n .

DEFINITION 1.10 The cardinality of a group is called the order.

PROPOSITION 1.11 Let (G, \cdot) be a finite group then $\forall a \in G \exists 0 \le n \le |G|$ such that $a^n = e$.

Proof Let's assume that such an n does not exist. This means that each element $a, a^2, a^3, ...$ is distinct, because if $a^n = a^m \implies a^{n-m} = e$. This contradicts the fact that G is finite. If n > |G|then it would contradict the fact that G has |G| number of elements. Thus $\exists n \leq |G|$ such that $a^n = e$.

Example 1.12 Let n = 3, then $I_3 = \{1, 2, 3\}$. Let the points represent the nodes of an equilateral triangle, as in fig. 1. Now consider the bijections in S_3 such that the triangle remains unchanged. These bijections are rotations about the center of the circle i.e. (123), (132), reflections about the medians i.e. (12), (23), (13), and the identity map, id_3 . All the symmetries of the triangle can be generated by composing (123) and (23) in different ways.

Figure 1: Geometric representation of I_3 .

Example 1.13 Similar to the previous example consider the I_4 to represent a square. Then all the possible bijections in S_4 which take the square to itself are the rotation: (1234), (13)(24), (1432), the reflections about diagonals: (13), (24), reflection along horizontal and vertical: (14)(23), (12)(34), and the identity map: id_4 .

Example 1.14 Let \sim be an equivalence relation on \mathbb{Z} given by $a \sim b \iff a \mod n = a$ b mod n. The group formed by the quotient set, \mathbb{Z}/\sim , under the operation \oplus_n defined as $a \oplus_n b = (a+b) \mod n$ is called the *modulo-n group* and often represented as $(\mathbb{Z}/n\mathbb{Z},+)$. For example the set $\mathbb{Z}/3\mathbb{Z} = \{0,1,2\}$, where technically each element represents an equivalence class of integers with remainder 0, 1, 2.

Example 1.15 Let \otimes_n be an operation on $\mathbb{Z}/n\mathbb{Z}$ such that $a \otimes_n b = (ab) \mod n$. We will abuse notation and just write ab instead of $a \otimes_n b$. Note that $\mathbb{Z}/n\mathbb{Z}$ is not a group under \otimes_n . First reason is that 0 does not have an inverse. Infact any number $a \in \mathbb{Z}/n\mathbb{Z}$ such that $gcd(a, n) \neq 1$ will not have an inverse. This can be shown by contradiction. If $\exists b \in \mathbb{Z}/n\mathbb{Z}$ such that ab = 1 then ab = kn + 1. Now since gcd(a, n) divides ab and n, but does not divide 1, it divides LHS but not RHS leading to a contradiction. If we remove every element whose gcd with n is not 1 from $\mathbb{Z}/n\mathbb{Z}$ then we would get a group under \otimes_n . This group is represented by $((\mathbb{Z}/n\mathbb{Z})^*,\times)$. The cardinality of this group is given by the Euler totient function $\phi(n)$.

DEFINITION 1.16 A group is said to be abelian if the product commutes.

Definition 1.17 A non-empty subset H of a group (G, \cdot) is said to be a subgroup if $(H, \cdot|_{H \times H})$ is a group.

Proposition 1.18 A non-empty subset H of a group (G, \cdot) is a subgroup iff it is closed under $\cdot|_{H\times H}$ and if $a\in H$ then $a^{-1}\in H$.

Proof \mid (\Longrightarrow) If H is assumed to be a subgroup then by definition it is a group and thus is closed, and an inverse exists for each element.

 (\Leftarrow) If *H* is closed and for each $a \in H$ $a^{-1} \in H$ then definitely $e \in H$ since $aa^{-1} = e$. From the fact that G is a group it can be deduced that \cdot is associative and that ae = ea = a and $aa^{-1} = a^{-1}a$.

DEFINITION 1.19 A group (G, \cdot) is said to be cyclic if $G = \{a^n \mid \forall n \in \mathbb{Z}\}.$

Example 1.20 The group $(\mathbb{Z}, +)$ is a cyclic group since $\mathbb{Z} = \{1^n \mid \forall n \in \mathbb{Z}\}$. This is because any element $a \in \mathbb{Z}$ can be written either as the sum 1 + ... + 1 or (-1) + ... + (-1).

Proposition 1.21 Every non-empty finite subset of a group (G, \cdot) that is closed under \cdot is a subgroup of *G*.

Proof | Let $H \subset G$ be non-empty and closed under \cdot . By non-emptyness there is some element $a \in H$. Since H is closed, all the powers of a must be in H as well. Since H is finite, using a similar argument as in proposition 1.11, there exists an n < |H| such that $a^n = e$. This means that $a^{-1} = a^{n-1}$. Thus by *proposition* 1.18 *H* is a subgroup of *G*.

As a direct result of the above proposition one can show that every closed subset of a finite group is a subgroup.

Proposition 1.23 Every subgroup of $(\mathbb{Z}, +)$ is cyclic.

Proof Let $H \subset \mathbb{Z}$ be a subgroup. In the case $H = \{0\}$, H is cyclic. Now consider H to be any non-trivial subgroup. Due to closure if $x \in H$ then $-x \in H$, thus there exists positive integers in H. Let d be the smallest positive integer in H and let $n \in H$. Using the division algorithm one can write n = qd + m where $0 \le m \le d$. Again using closure since $d^q = qd \in H \implies d^{-q} = -qd \in H$. Thus m = n - qd. Since by definition d is the smallest positive number the only way to avoid a contradiction is m = 0. Thus $n = qd = d^q$ and H is cyclic.

Proposition 1.24 Every subgroup of a cyclic group is cyclic.

Proof Let (G, \cdot) be a cyclic group and $H \subset G$ be a non-trivial subgroup (claim is obviously true for trivial subgroup). Let x be the generator for G. Since H will only contain powers of x define a set $K = \{n \mid x^n \in H\}$. If $n, m \in K$ then $x^n, x^m \in H \implies x^{n+m} \in H \implies n+m \in K$. Also If $n \in K$ then $x^n \in H \implies x^{-n} \in H \implies -n \in K$. Thus (K, +) is a subgroup of $(\mathbb{Z}, +)$. By proposition 1.23 K is cyclic. If d generates K then x^d generates H since $x^n \in H \implies n \in K \implies$ $n = qd \implies x^n = (x^d)^q$.

DEFINITION 1.25 Let $X \subset G$ where (G,\cdot) is a group. Then X is said to generate G if $G = \{x_1^{n_1}...x_k^{n_k} \mid \forall x_i \in X, n_i \in \mathbb{Z}\}.$ This is denoted by $G = \langle X \rangle$.

DEFINITION 1.26 The order of an element a of the group (G, \cdot) is defined to be the cardinality of the subgroup generated by a. The order is denoted by $\mathcal{O}(a)$.

Proposition 1.27 Let $a \in G$ where (G, \cdot) is a group. Then the order of a is k iff k is the smallest positive integer such that $a^k = e$.

Proof \mid (\Longrightarrow) Assuming that the subgroup generated by a has k elements, i.e. $\{e, a, a^2, ..., a^{k-1}\}$. By closure a^k must be identified with one of the elements in $\langle a \rangle$. If $a^k = a^n$ where $1 \le n \le k$ then by cancelation $a^{k-1} = a^{n-1}$, implying that $\langle a \rangle$ has cardinality less than k, which contradicts our assumption. Thus the only remaining possibility is that $a^k = e$. Moreover since all a^i $0 \le i \le k-1$ are distinct it follows that k is the smallest positive integer such that $a^k = 1$.

(\iff) Assuming that k is the smallest positive integer such that $a^k = 1$, the subgroup $\langle a \rangle = \{e, a, a^2, ..., a^{k-1}\}$. This follows from the argument that incase $a^n = a^m$ where 0 < m < n < kthen $a^{n-m} = e$ contradicting the fact that k is the smallest such number. Thus all a^m $0 \le m < k$ are distinct forming a subgroup of *k*.

PROPOSITION 1.28 If $a, b \in G$ such that ab = ba then O(ab) = O(a)O(b).

Proof Let $\mathcal{O}(a) = n$ and $\mathcal{O}(b) = m$ and without loss of generality assume that n < m. Consider the subgroup $\langle ab \rangle$. Since $ab \in \langle ab \rangle$ the power $(ab)^n = b^n a^n = b^n \in \langle ab \rangle$. Further it follows $b^n b^{m-n+1} = \bar{b}^{m+1} = b \in \langle ab \rangle$. Similarly it can be shown that $a \in \langle a \rangle$. Thus $\langle ab \rangle = \{a^i b^j \mid 0 \le i < 1\}$ n, $0 \le i < m$ } where I have used the fact that ab = ba (otherwise we would have additional terms like *aba*). Thus the number of elements in $\langle ab \rangle$ is *nm*.

2 More on Permutation Group

DEFINITION 2.1 A 2-cycle is an element of S_n which can be written as (a_1a_2) . A 2-cycle is called a transposition.

DEFINITION 2.2 Two cycles $(a_1...a_k)$, $(b_1...b_\ell) \in S_n$ are said to be disjoint if $a_i \neq b_i$ for all i, j.

Proposition 2.3 Disjoint cycles commute under composition.

Proof | Let $f \doteq (a_1...a_k)$, $g \doteq (b_1...b_\ell)$ be disjoint cycles then consider the composition $g \circ f$. Due to the disjointness any number *m* is either moved by *f* alone, by *g* alone, or not moved at all. If *m* is not moved by both then clearly $f \circ g(m) = g \circ f(m)$. If it is moved by f only, then $\exists j$ such that $f(m) = a_j$. It further follows that $f \circ g(m) = a_j = g(a_j) = g \circ f(m)$. Similarly this can be shown if *m* is only moved by *g*. Therefore $f \circ g = g \circ f$.

Proposition 2.4 Set of all transpositions generates the group S_n .

Proof Any element of S_n can be written as product of cycles. All that remains to be shown is that any cycle can be written as composition of transpositions. Since,

$$(a_1...a_k) = (a_1a_k)...(a_1a_3)(a_1a_2).$$

This completes the proof.

Proposition 2.5 The set $\{(1k) \mid 2 \le k \le n\}$ generates S_n .

Proof | Since any element can be written as a composition of transpositions, all that we need to show is that any transposition can be written in terms of (1k). Since,

$$(ab) = (1a)(1b)(1a).$$

This proof is complete.

PROPOSITION 2.6 The set $\{(kk+1) \mid 1 \le k \le n-1\}$ generates S_n .

Proof | Using the above proposition all we need to show is that (1a) can be written in terms of (kk+1). Since,

$$(1a) = (a-1a)...(23)(12)(23)...(a-1a)$$

. This proof is complete.

Proposition 2.7 The set $\{(12), (12...n)\}$ generates S_n .

Proof | This will be proven by showing that (aa + 1) can be written in terms of (12), (1...n) and their powers. Since the map $(1...n)^{a-1}$ takes $1 \rightarrow a$ and the map $(1...n)^{1-a}$ takes a to 1. Thus,

$$(aa + 1) = (1...n)^{a-1}(12)(1...n)^{1-a}.$$

The compositions works as follows: $a \to 1 \to 2 \to a+1$. This completes the proof.

DEFINITION 2.8 An element of S_n is said to be *even* if it can be written as a product of even number of transpositions. Similarly element is said to be *odd*.

Proposition 2.9 Any element of S_n is either even or odd.

Proof | Define the polynomial *P* as:

$$P(x_1,...,x_n) = \prod_{i=1}^n \prod_{j>i}^n (x_i - x_j)$$

If $\alpha \in S_n$ then define αP as:

$$\alpha P(x_1, ..., x_n) = \prod_{i=1}^n \prod_{j>i}^n (x_{\alpha(i)} - x_{\alpha(j)})$$

The terms in the polynomial αP are the same as P, the only difference would be the order of some may change, introducing a sign. Thus $\alpha P = P$ or $\alpha P = -P$. Clearly if α , $\beta \in S_n$ then the sign change introduced would be the product of the sign change introduced by each. The sign introduced by the transposition (ab) is -1 (the only term that changes sign will be $x_a - x_b$), thus if $\alpha \in S_n$ is odd then α changes P by -1, on the other hand if α is even then it does not change the sign of P. Since α is independent of the way we chose to represent it as products of transpositions, $\alpha P = \pm P$ will also be independent of the representation. Thus if α is even or odd in one representation it must be in all.

DEFINITION 2.10 The set of all even elements of S_n forms a subgroup of order n!/2 called the alternating group A_n .

Proposition 2.11 A_n is generated by 3—cycles.

Proof Every three cycle (abc) can be expressed as (ac)(ab), and thus is even. Any element of A_n can be expressed in terms of products of even number of (1a). Pair the adjacent transpositions in the following way: (1a)(1b) = (1ba). Thus every element can be written as products of 3-cycles.

3 Lagrange's Theorem

DEFINITION 3.1 Let (G, \cdot) be a group and $H \subset G$ be a subgroup then define an equivalence relation \sim on G as follows: $a \sim b \iff ab^{-1} \in H$.

DEFINITION 3.2 Let (G, \cdot) be a group, and H be a subgroup of G then define $Ha = \{ga \mid g \in H\}$, where $a \in G$. H is said to be a right coset in G.

PROPOSITION 3.3 The equivalence class [a] w.r.t. the equivalence relation \sim on (G,\cdot) is the as the set Ha.

Proof | If $b \in [a]$ then

$$ab^{-1} = g \ (\in H),$$

 $\implies b = g^{-1}a \text{ where } g^{-1} \in H \text{ since } H \text{ is a group,}$
 $\implies b \in Ha \implies [a] \subset Ha.$

On the other hand if $b \in Ha$ then,

$$b = ga$$

 $\implies g^{-1} = ab^{-1} \in H$, again since H is a subgroup
 $\implies b \in [a] \implies Ha \subset [a]$.

This completes the proof.

THEOREM 3.4 (Lagrange's Theorem) If G is a finite group and $H \subset G$ is a subgroup then the order of H divides order of G.

Proof We consider the equivalence classes defined above. Let's say there are *k* distinct equivalence classes. Then $G = \bigcup_{i=1}^n Ha_k$, and $Ha_i \cap Ha_j = \emptyset$ if $i \neq j$ (since equivalence classes form a partition of the set). Let $f_a: H \to Ha$ be given by $f_a(g) = ga$. If $f_a(g) = f_a(h)$ then

$$ga = ha$$

$$\implies g = h$$

Thus f_a is injective. Let $h \in Ha$, then $\exists g \in H$ such that h = ga. Thus $ha^{-1} = g \in H$. Hence for any $h \in Ha$ it is possible to find a $g \in H$ (given by ha^{-1}) such that $h = f_a(g)$. Therefore f_a is surjective as well, making f_a a bijection. This means that |H| = |Ha|. Since each Ha_i is disjoint the union has k|H| elements. Thus |G| = k|H|.

The number of right cosets H in G is called the index of H in G, denoted $i_G(H)$. As seen in the proof of Lagrange's theorem $i_G(H) = |G|/|H|$.

COROLLARY 3.6 Every group *G* of prime order, *p*, is cyclic.

Proof From Lagrange's theorem any subgroup H of G can either be $\{e\}$ or G since only 1, p divide p. If H = G and $a \neq e \in G$ then $\langle a \rangle$ forms a subgroup of G different from $\{e\}$. Thus $\langle a \rangle = G$, proving that *G* is cyclic.

COROLLARY 3.7 If $a \in G$, where G is a finite group then $\mathcal{O}(a)$ divides |G|.

Proof | Since $\mathcal{O}(a)$ is the cardinality of the subgroup generated by a, then by Lagrange's theorem it divides |G|.

COROLLARY 3.8 If *G* is a finite group then $a^{|G|} = e$ for all $a \in G$.

Proof | Let $a \in G$ with order k. From Lagrange's theorem |G| = mk. Then $a^{|G|} = (a^k)^m = e^m = mk$

THEOREM 3.9 (Euler) If a is relatively prime to n then $a^{\phi(n)} \mod (n) = 1$, where $\phi(n)$ is the Euler totient function (defined as the number of coprimes of *n*).

Proof | Consider the group $((\mathbb{Z}/n)^*, \times)$). We have already seen that it has a cardinality $\phi(n)$. Then by the above corollary $(a \mod (n))^{\phi(n)} = a^{\phi(n)} \mod (n) = 1$.

Corollary 3.10 (Fermat's Little Theorem) If p is a prime and p does not divide a then $a^{p-1} \mod (p) = 1.$

Proof In Euler's theorem consider the case when n = p. Then the cardinality of the group $((\mathbb{Z}/p), \times)$ is p - 1. Thus $a^{p-1} \mod (n) = 1$.

4 HOMOMORPHISM AND NORMAL SUBGROUPS

DEFINITION 4.1 Let *G* be a group and *A*, $B \subset G$, and $x \in G$. Then we define the following sets:

- 1) $Ax = \{ax \mid a \in A\},\$
- 2) $xA = \{xa \mid a \in A\},\$ 3) $AB = \{ab \mid a \in A, b \in B\}.$

When A is a subgroup then Ax is called the right coset, and xA is called the left coset.

PROPOSITION 4.2 If $A, B \subset G$ and $x, y \in G$, where G is a group, then:

- 1) (Ax)y = A(xy),
- 2) (Ax)B = A(xB),
- 3) (AB)x = A(Bx),
- 4) (AB)C = A(BC).

Proof | It's pretty trivial, follows from the definitions.

PROPOSITION 4.3 If $A, B \subset G$ and $x \in G$, for some group G, then $A \subset B \implies$:

- 1) $Ax \subset Bx$,
- 2) $xA \subset xB$.

Proof | Define a function $f_x : G \to G$ defined as $f_x(g) = gx$. Clearly $f_x(A) = Ax$. Since inclusion is preserved under functions $A \subset B \implies f_x(A) \subset f_x(B) \implies Ax \subset Bx$. Similar proof for the second one.

DEFINITION 4.4 Let G and G' be two groups and $\phi: G \to G'$ then ϕ is called a homomorphism if $\phi(ab) = \phi(a)\phi(b)$, $\forall a,b \in G$. If ϕ is bijective and a homomorphism then it is called a group isomorphism. A group isomorphism from G to itself is called an automorphism.

LEMMA 4.5 Let ϕ be a homomorphism from $G \to G'$ then:

- 1) $\phi(e) = e'$
- 2) $\phi(a^{-1}) = \phi(a)^{-1}, \forall a \in G.$

Proof | Let $a \in G$, since $\phi(a) = \phi(a.e) = \phi(a)\phi(e)$ and $\phi(a) = \phi(e.a) = \phi(e)\phi(a)$ it follows that $\phi(e) = e'$. Similarly it can be shown that $\phi(a^{-1}) = \phi(a)^{-1}$.

Lemma 4.6 If $\phi : G \to G'$ is a homomorphism then $\phi(G)$ is a subgroup of G'.

Proof | If g', h' ∈ φ(G) then ∃ g, h ∈ G s.t. g' = φ(g) & h' = φ(h). Thus g'h' = φ(g)φ(h) = φ(gh) ∈ φ(G). Thus φ(G) is closed. Since $g ∈ G \implies g^{-1} ∈ G \implies φ(g^{-1}) ∈ φ(G) \implies φ(g)^{-1} ∈ G$. Thus φ(G) is a subgroup.

DEFINITION 4.7 Let $\phi: G \to G'$ be a homomorphism then the kernel of ϕ is defined as $\operatorname{Ker}_{\phi} = \{a \in G \mid \phi(a) = e'\}.$

Lemma 4.8 If $w \in \phi(G)$ such that $w = \phi(x)$ then $W := \{y \mid \phi(y) = w\} = \operatorname{Ker}_{\phi} x$.

Proof | Since $\phi(yx^{-1}) = \phi(y)\phi(x^{-1}) = \phi(y)\phi(x)^{-1} = ww^{-1} = e'$. Thus $yx^{-1} \in \operatorname{Ker}_{\phi} \implies y = kx$, $k \in \operatorname{Ker}_{\phi} \implies W \subset \operatorname{Ker}_{\phi} x$. If $y \in \operatorname{Ker}_{\phi} x$ then $y = kx \implies \phi(y) = \phi(k)\phi(x) = w$ thus $\operatorname{Ker}_{\phi} \subset W$.

THEOREM 4.9 If $\phi: G \to G'$ is a homomorphism then:

- 1) Ker $_{\phi}$ is a subgroup of G.
- 2) $g\operatorname{Ker}_{\phi}g^{-1}\subset \operatorname{Ker}_{\phi}$.

Proof | It's trivial:

- 1) $\operatorname{Ker}_{\phi}$ is closed since $\phi(xy) = \phi(x)\phi(y) = e'$ if $x, y \in \operatorname{Ker}_{\phi}$. The inverse exists since $\phi(x^{-1}) = \phi(x)^{-1} = e'$.
- 2) This is true since $\phi(gxg^{-1}) = \phi(g)\phi(x)\phi(g)^{-1} = e'$.

COROLLARY 4.10 A homomorphism $\phi : G \to G'$ is an injection iff $Ker_{\phi} = \{e\}$.

Proof | If the homomorphism is an injection then only one element will be mapped to e', and since $\phi(e) = e'$ must be true the kernel just contains the identity. If the kernel is just identity then it means that only $\phi(e) = e'$. Since for any $w \in G$ we can define a W as in lemma 4.8, $W = \text{Ker}_{\phi}x \implies W = \{x\}$. Thus ϕ is an injection.

DEFINITION 4.11 (Normal subgroups) A subgroup H of group G is said to be normal if Hx = xH, $\forall x \in G$.

Proposition 4.12 A subgroup H is a normal subgroup of group G iff either:

- 1) $xHx^{-1} \subset H$, $\forall x \in G$,
- 2) $HxHy = Hxy, \forall x, y \in G$.

Proof | 1) (←) If $xHx^{-1} \subset H \implies xH \subset Hx$. Also since $x^{-1}Hx \subset H \implies Hx \subset xH$. Thus xH = Hx. (⇒) If $xH = Hx \implies H = x^{-1}Hx$.

- 2) (\Longrightarrow) Since HxHy = H(xH)y = H(Hx)y = (HH)(xy). Since $HH = \{hh' \mid h, h' \in H\}$ and H is a subgroup, it follows that HH = H. Thus HxHy = Hxy if H is normal. (\Longleftrightarrow) If $HxHy = Hxy \implies H(xHx^{-1}) = H \implies xHx^{-1} = H$ which proves that H is normal.
- 🕡 Note that the kernel is always a normal subgroup.

PROPOSITION 4.14 Let G be a group and N be a normal subgroup of G. Define the relation \sim on G as before as $a \sim b \iff ab^{-1} \in N$. Then as seen before Na = [a]. Define a product between equivalence classes as NaNb = Nab. This product is well defined and the collection of all equivalence classes forms a group under this product. The collection of equivalece classes is denoted by G/N, and the group it forms under the product defined is called the Quotient group.

Proof | If Na = Na' and Nb = Nb' then NaNb = Na'Nb', since NaNb = Nab and Na'Nb' = Na'b' it follows that Nab = Na'b'. Thus the product is well defined. Clearly set G/N is closed under this product due to proposition 4.12. The identity of the group is N, and the inverse of Na will be Na^{-1} .

Proposition 4.15 There exists a homomorphism $\phi: G \to G/N$ such that $Ker_{\phi} = N$.

Proof | Consider the most natural map $\phi(g) = Ng$. Then the kernel is $\text{Ker}_{\phi} = \{g \mid \phi(g) = N\}$. Since $Ng = N \implies g \in N$ it follows that $\text{Ker}_{\phi} = N$.

 \bigcirc The order of the quotient group is the same as the index of N in G. From Lagrange's theorem it follows that for finite groups |G/N| = |G|/|N|.

THEOREM 4.17 (First Isomorphism Theorem) If $\phi: G \to G'$ is a surjective homomorphism with kernel $\operatorname{Ker}_{\phi}$ then $G' \simeq G/\operatorname{Ker}_{\phi}$.

Proof | Consider the map ψ : $G/\mathrm{Ker}_{\phi} \to G$ defined by $\psi(\mathrm{Ker}_{\phi}a) = \phi(a)$. We prove that this is a group isomorphism.

- 1) (Well Defined). If $\operatorname{Ker}_{\phi} a = \operatorname{Ker}_{\phi} b$ then $ab^{-1} \in \operatorname{Ker}_{\phi}$. It follows that $\psi(\operatorname{Ker}_{\phi} a) = \phi(a) = \phi(ab^{-1})\phi(b) = \phi(b) = \psi(\operatorname{Ker}_{\phi} b)$. Thus the map is well defined.
- 2) (*Injective*). If $\psi(\text{Ker}_{\phi}a) = \psi(\text{Ker}_{\phi}b)$. Then $\phi(a) = \phi(b) \implies \phi(ab^{-1}) = e'$. Thus $ab^{-1} \in \text{Ker}_{\phi}$ which further implies that $\text{Ker}_{\phi}a = \text{Ker}_{\phi}b$.
- 3) (*Surjective*). Surjectivity of the map can be seen by construction. If $\phi(a) \in G'$ then $\operatorname{Ker}_{\phi} a \in G/\operatorname{Ker}_{v}$ is mapped to $\phi(a)$.
- 4) (*Homomorphism*). Since $\psi(\operatorname{Ker}_{\phi} a \operatorname{Ker}_{\phi} b) = \psi(\operatorname{Ker}_{\phi} a b) = \phi(ab) = \phi(a)\phi(b) = \psi(\operatorname{Ker}_{\phi} a)\psi(\operatorname{Ker}_{\phi} b)$, ψ is a homomorphism.

This completes the proof.

THEOREM 4.18 (Correspondence Theorem) Let $\phi : G \to G'$ be a surjective homomorphism, H' be a subgroup of G' and $H = \phi^{-1}(H')$ then:

- 1) *H* is a subgroup of *G*.
- 2) $\operatorname{Ker}_{\phi} \subset H$
- 3) $H/\mathrm{Ker}_{\phi} \simeq H'$.
- 4) H is normal if H' is normal.

Proof | Let x, y ∈ H then by definition φ(x), φ(y) ∈ H'. This means that φ(x)φ(y) ∈ H' ⇒ φ(xy) ∈ H' since H' is a subgroup and φ is a homomorphism. Therefore xy ∈ H.

If $g \in \operatorname{Ker}_{\phi}$ then $\phi(g) = e' \in H' \implies g \in H$. Thus $\operatorname{Ker}_{\phi} \subset H$. Since $\phi|_{H} : H \to H'$ is a surjective homomorphism, by first isomorphism theorem $H/\operatorname{Ker}_{\phi} \simeq H'$.

Let $g \in H$ and $x \in G$. Since H' is normal $\phi(x)\phi(g)\phi(x)^{-1} \in H' \implies \phi(xgx^{-1}) \in H' \implies xgx^{-1} \in H$. Therefore H is normal.

THEOREM 4.19 (Second Isomorphism Theorem) H, N be a subgroups of G and N be normal. Then:

- 1) *HN* is a subgroup of *G*.
- 2) $H \cap N$ is normal in H.
- 3) $H/H \cap N \simeq HN/N$.

Proof | First two are easy to show. Let $\phi: H \to HN/N$ defined by $\phi(h) = Nh$. This map is clearly a homomorphism. For any $g \in HN$ the coset Ng = N(hn) = N(n'h') = Nh', thus for each $Ng \in HN/N \exists h' \in H \text{ s.t. } \phi(h') = Ng$, meaning that ϕ is onto. Also note that $Ker_{\phi} = H \cap N$. Thus by theorem 4.17 the last statement can be proven.

THEOREM 4.20 (Third Isomorphism Theorem) Let $\phi: G \to G'$ be a surjective homomorphism, N' be a normal subgroup of G' and $N = \phi^{-1}(N')$ then $G/N \simeq G'/N'$ and $G/N \simeq (G/\mathrm{Ker}_{\phi})/(N/\mathrm{Ker}_{\phi}).$

Proof | Firstly from theorem 4.18 it follows that N is normal and that $N/\text{Ker}_{\phi} \simeq N'$. Now let $\psi: G \to G'/N'$ defined by $\psi(g) = N\phi(g)$. Clearly this is a surjective homomorphism. The kernel of this homomorphism is N. Thus by theorem 4.17 it follows that $G/N \simeq G'/N'$. Since $G/\text{Ker}_{\phi} \simeq G'$ and $N/\mathrm{Ker}_{\phi} \simeq N'$, the last part of the theorem follows.

5 AUTOMORPHISMS

DEFINITION 5.1 An automorphism is an isomorphism from a group to itself. Let Aut(G)represent the set of all automorphisms.

Proposition 5.2 Aut(G) is a group under composition.

Proof | It's trivial.

DEFINITION 5.3 The center of group is defined as $Z(G) = \{z \in G \mid \forall g \ zg = gz\}.$

Definition 5.4 The set of all automorphisms of the form $\phi_g : x \mapsto gxg^{-1}$ are called inner automorphisms, and they form a subgroup of the group of automorphisms. It is represented as Inn(G).

Proposition 5.5 The group Inn(G) is isomorphic to a quotient of G.

Proof | Construct a map from G → Inn(G) the following way: ψ : $g \mapsto \phi_g$.

1) Since

$$\psi(gh) = \phi_{gh} = \phi_g \phi_h = \psi(\phi_g) \psi(\phi_h),$$

 ψ is a homomorphism.

- 2) For every $\phi_g \in G$ there exists a ϕ_g , so ψ is surjective.
- 3) The kernel of ψ is:

$$Ker_{\psi} = \{g \mid \psi(g) = \phi_{\epsilon}\} = \{g \mid gxg^{-1} = x, \ \forall \ x \in G\} = Z(G).$$

Thus using the first isomorphism theorem $Inn(G) \simeq G/Z(G)$.

DEFINITION 5.6 Let H and N be groups, and let $\phi: H \to \operatorname{Aut}(N)$ be a homomorphism. Then the semi-direct product $N \rtimes_{\phi} H$ is the set $N \times H$ equiped with the product:

$$(n_1, h_1) \star (n_2, h_2) = (n_1 \phi(h_1)(n_2), h_1 h_2).$$

Proposition 5.7 The semi-direct $N \rtimes_{\phi} H$ is a group.

Proof The closure and associativity part are trivial. The identity element is (e_N, e_H) . The inverse of (n,h) is $(\phi(h^{-1})(n^{-1}),h^{-1})$.

In the case when $\phi: H \to Aut(N)$ *is given by* $\phi(h) = id$ *, the semidirect product is called the direct product.* This is cause $(n_1, h_1)(n_2, h_2) = (n_1 n_2, h_1 h_2)$ in this case.

THEOREM 5.9 Let N, H be subgroups of G. Let N be normal in G, NH = G and $N \cap H = \{e\}$, then $G \simeq N \rtimes_{\phi} H$ where $\phi(h)(n) = hnh^{-1}$.

Proof | Construct the map ψ : $N \rtimes_{\phi} H$ → NH given by $(n,h) \mapsto nh$.

1) Since

$$\psi((n_1, h_1)(n_2, h_2)) = \psi(n_1 h_1 n_2 h_1^{-1}, h_1 h_2) = n_1 h_1 n_2 h_2 = \psi(n_1 h_1) \psi(n_2 h_2),$$

 ψ is a homomorphism.

- 2) For any $nh \in NH$, $(n,h) \in N \rtimes_{\phi} H$ is mapped to nh by ψ . So ψ is surjective.
- 3) The kernel of ψ is:

$$Ker_{\psi} = \{g \in N \rtimes_{\phi} H \mid \psi(g) = e\} = \{(n,h) \mid nh = e\} = N \cap H = \{e\}.$$

Thus $NH \simeq N \rtimes_{\phi} H$, thus $G \simeq N \rtimes_{\phi} H$.

6 FREE GROUPS

Let X be any set. We wish to construct a group using X. We can do this the following way:

- 1) If $X = \emptyset$ then the group $F = \{e\}$.
- 2) For non-empty sets, first choose a set, denoted X^{-1} , which is disjoint from X and $|X| = |X^{-1}|$ (for infinite sets the cardinality should be same).
- 3) Choose a bijection $f: X \to X^{-1}$. Denote the f(x) by x^{-1} .
- 4) Find a set disjoint from $X \cup X^{-1}$ which has cardinality 1. Call the element of this set 1.

DEFINITION 6.1 A word on *X* is a sequence in $X \cup X^{-1} \cup 1$, $(a_1, a_2, ...)$, such that $\exists N$ such that:

$$n > N \implies a_n = 1.$$

DEFINITION 6.2 The constant sequence (1,1,1,...) is called the empty word. We denote it by 1

DEFINITION 6.3 A reduced word is a word such that:

- 1) If $a_n = x$ then $a_{n+1} \neq x^{-1}$ and vice versa.
- 2) If $a_k = 1$ then $a_i = 1$, $\forall i \ge k$.

Notation 6.4 Every reduced word is of the form $(x_1^{n_1},...,x_k^{n_k},1,1,1,...)$ where $x_i \in X$ and $k \in \mathbb{N}$ and $n_i = \pm 1$. Thus we will formally write reduced words as $x_1^{n_1}...x_k^{n_k}$. Let F(X) denote the set of all reduced words of *X*.

DEFINITION 6.5 Define the product of two reduced words as:

$$x_1^{n_1}...x_k^{n_k}y_1^{m_1}...y_i^{m_k}$$

where we remove every occurrence of terms of the form xx^{-1} or $x^{-1}x$. If all occurrences are such, then the product is the empty word 1. If x is a reduced word, we define x1 = 1x = x.

Proposition 6.6 The set F(X) is a group under the above product.

Proof The identity of the group is clearly the empty word. The inverse of a reduced word $x_1^{n_1}...x_k^{n_k}$ is $x_k^{-n_k}...x_1^{-n_1}$. By definition closure is ensured. The only hard part is checking associativity.

To prove associativity, for each $x \in X$ and $n = \pm 1$ define $|x^n| : F \to F$ as:

$$1 \mapsto x^{n}$$

$$x_{1}^{n_{1}}...x_{k}^{n_{k}} \mapsto \begin{cases} x^{n}x_{1}^{n_{1}}...x_{k}^{n_{k}}, & \text{if } x^{n} \neq x_{1}^{-n_{1}} \\ x_{2}^{n_{2}}...x_{k}^{n_{k}}, & \text{otherwise.} \end{cases}$$

Clearly $|x^n|$ is a bijection with inverse $|x^{-n}|$. Let F_0 be the group generated by the set $\{|x| \mid x \in X\}$ under the composition of bijection. Consider the map $\phi:F(X)\to F_0$ given by $1\to \mathrm{id}_F$ and $x_1^{n_1}...x_k^{n_k} \mapsto |x_1^{n_1}|...|x_k^{n_k}|$. Clearly ϕ is surjective with the additional property that $\phi(xy) = \phi(x)\phi(y)$. Since the composition of bijections is associative the preimage of the products in F[X] will also be associative. Moreover ϕ is a group isomorphism between F_0 and F. Also since the preimage of $\{|x| \mid x \in X\}$ is simply X, so we get that $F(x) = \langle X \rangle$.

THEOREM 6.7 Let F(X) be the free group of X and let $i: X \to F(X)$ be the inclusion map. Let G be a group and $f: X \to G$ be some function. Then there exists a unique group homomorphism \tilde{f} such that the following diagram commutes:

$$X \xrightarrow{i} F(X)$$

$$\downarrow f$$

$$\downarrow \tilde{f}$$

$$G$$

Proof | Let $\tilde{f}(x_1^{n_1}...x_k^{n_k}) = f(x_1)^{n_1}...f(x_k)^{n_k}$ and $\tilde{f}(1) = e$, where $n_i = \pm 1$. Since $f(x_i)$ are elements of G, $f(x_i)^{n_i}$ are well defined.

1) Since

$$f(w_1w_2) = f(w_1)f(w_2)$$

it follows that \tilde{f} is a homomorphism.

- 2) Let $x \in X$. Then i(x) is the reduced word x in F(X). Then $\tilde{f}(x) = f(x)$. Thus the diagram commutes.
- 3) Let $g: F(X) \to G$ be another homomorphism such that $g \circ i = f$. Since g is a homomorphism g(1) = e and $g(x^{-1}) = g(x)^{-1}$ for $x \in X$. Thus

$$g(x_1^{n_1}...x_k^{n_k}) = g(x_1^{n_1})...g(x_k^{n_k}) = g(x_1)^{n_1}...g(x_k)^{n_k} = g \circ i(x_1)^{n_1}...g \circ i(x_k)^{n_k} = f(x_1)^{n_1}...f(x_k)^{n_k}$$
$$= \tilde{f}(x_1^{n_1}...x_k^{n_k}).$$

This means that \tilde{f} is unique.

COROLLARY 6.8 Every group *G* is a quotient of the free group.

Proof Let *G* be a group and *X* be the set of generators of *G*. Let $j: X \to G$ be the restriction of identity automorphism of *G*. Then the following diagram commutes due to the above theorem:

where \tilde{f} is a unique homomorphism that takes $x \mapsto x \in G$. Since $G = \langle X \rangle$ we get that \tilde{f} must be a sujection. Then by first isomorphism theorem,

$$G \simeq F(X)/\mathrm{Ker}_{\tilde{f}}$$

DEFINITION 6.9 Let X be a set and F(X) be the free group of X. A group G is said to be defined by the generators $x \in X$ and relations $y \in Y$ if $G \simeq F(X)/N$ where N is a normal subgroup of F(X), and Y generates N. One says that (X|Y) is the presentation of G.

Proposition 6.10 Let G = (X|Y) and H = (X|Y') where $Y \subset Y'$. Then H is isomorphic to a quotient of G.

Proof | Since $Y \subset Y'$, it follows that $\langle Y \rangle \subset \langle Y' \rangle$. By definition the groups generated by Y, Y' are normal. We know that $G \simeq F(X)/\langle Y \rangle$ and $H \simeq F(X)/\langle Y' \rangle$ Thus by third isomorphism thoerem:

$$G/\langle Y' \rangle/\langle Y \rangle \simeq F(X)/\langle Y \rangle/\langle Y' \rangle/\langle Y \rangle \simeq F(X)/\langle Y' \rangle \simeq H.$$

1 CONSTRUCTION OF REAL NUMBERS

DEFINITION 1.1 (Ordered Set) An order on a set *S* is a relation < with the following properties:

- 1) If $x, y \in S$ then either x < y, y < x, or x = y.
- 2) If $x, y, z \in S$, x < y, y < z then x < z.

The set *S* is said to be ordered w.r.t. order <.

DEFINITION 1.2 (Bounds) Let *S* be an ordered set and $E \subset S$ if $\exists \alpha \in S$ such that $x \leq \alpha$, $\forall \alpha \in E$ then α is called an upper bound of E, and E is said to be bounded from above.

Let *S* be an ordered set and $E \subset S$ if $\exists \alpha \in S$ such that $x > \alpha$, $\forall x \in E$ then α is called a lower bound of *E*, and *E* is said to be bounded from below.

A subset bounded from above and below is said to be bounded.

DEFINITION 1.3 (Supremum) Let S be an ordered set and $E \subset S$ be bounded from above. If $\alpha \in x$ such that α is an upper bound of E and $\gamma < \alpha$ implies that γ is not an upper bound. α is called the supremum and written as sup *E*.

DEFINITION 1.4 (Infimum) Let S be an ordered set and $E \subset S$ be bounded from below. If $\alpha \in X$ such that α is a lower bound of E and $\gamma > \alpha$ implies that γ is not an upper bound. α is called the infimum and written as inf *E*.

DEFINITION 1.5 An ordered set *S* is said to have the least-upper-bound property (l.u.b property) if every subset which is bounded from above has a supremum in S.

THEOREM 1.6 Let S be an ordered set with l.u.b property. Then every subset of S which is bounded from below has an infimum in *S*.

Proof | Let $E \subset S$ that is bounded from below and $L = \{\alpha \in S \mid \alpha \leq x, \forall x \in E\}$. Clearly the set Lis bounded from above (since every element of *E* acts as an upper bound). Thus *L* has a supremum in S, $\beta = \sup L$. If $x < \beta$ then x is not an upper bound of L, thus $x \notin E$ (since every $x \in E$ is an upper bound of *L* by definition). Thus if $x \in E$ then $\beta \le x$. This means that β is a lower bound for E. But since by definition it is the largest lower bound β is inf E.

DEFINITION 1.7 (Fields) A field is a triplet, $(F, +, \times)$, where F is a set, and $+, \times : F \times F \to F$ such that:

- 1) (F, +) is an abelian group. The identity of this group is denoted 0.
- 2) $(F \{0\}, \times)$ is an abelian group. The identity of this group is denoted 1.
- 3) The "product" (i.e. \times operator) is distributive over the "addition" (i.e. + operation).

The additive inverse of $a \in F$ is denoted -a and the multiplicative is denoted a^{-1} or 1/a.

Proposition 1.8 (Field Properties) Let $x, y \in F$ then:

- 1) 0.y = 0.
- 2) (-x)y = -(xy).
- 3) (-x)(-y) = xy.

Proof | 1) Using the distribution property y(0+0) = y.0 + y.0. Adding -y.0 on both sides gives us y.0 = 0.

2) Again using distributive property:

$$(-x)y + (x)y = 0$$

$$\implies (-x)y = -(xy)$$

3) In the above property just substituting -y instead of y gives us (-x)(-y) = xy.

DEFINITION 1.9 An ordered field $(F, +, \times)$ is a field with an ordering < on F such that

- 1) $y < z \implies x + y < x + z$.
- 2) If x > 0, $y > 0 \implies xy > 0$.

PROPOSITION 1.10 If $(F, +, \times)$ is an ordered field and then:

- 1) $x > 0 \implies -x < 0$ and vice versa.
- 2) If x > 0 and y < z then xy < xz.
- 3) If x < 0 and y < z then xy > xz.
- 4) If $x \neq 0$ then $x^2 > 0$.
- 5) $0 < x < y \implies 0 < 1/y < 1/x$.

Proof | 1) Since x > 0 and x + (-x) = 0, adding the inverse on boths sides gives 0 > -x (due to property 1 of ordered fields).

2) Since z - y > 0,

$$\implies z - y > 0$$

 $\implies x(z - y) > 0$, (using property 2 of ordered fields)
 $\implies xz > xy$.

- 3) If x < 0 then -x > 0. Applying the same method as above but multiplying -x instead of x gives the result.
- 4) Since x > 0, by property 2 in definition of ordered field we can conclude that $x^2 > 0$.
- 5) Observe that if xy > 0 and x > 0 then either y > 0 or y < 0. If y < 0 then -y > 0 and $-xy > 0 \implies xy < 0$ leading to a contradiction. Thus if xy > 0 and x > 0 then y > 0. Since x > 0 and $x(1/x) = 1 > 0 \implies 1/x > 0$. Since x < y

$$\implies 1 < y(1/x)$$
$$\implies 1/y < 1/x$$

THEOREM 1.11 There exists an ordered field \mathbb{R} with l.u.b. property. More over \mathbb{Q} is field isomorphic to some subset of \mathbb{R} .

To prove this theorem we will explicitly construct a field and show that it both contains Q and has l.u.b property.

DEFINITION 1.12 A cut α is a subset of \mathbb{Q} such that:

- 1) α , α^c are not empty.
- 2) If $p \in \alpha$, $q \in \mathbb{Q}$, and q < p then $q \in \alpha$.
- 3) For each $p \in \alpha$ there exists $r \in \alpha$ such that p < r.

PROPOSITION 1.13 If α is a cut then the following are true:

- 1) If $q \notin \alpha$ then q > p for all $p \in \alpha$.
- 2) If $r \notin \alpha$ and r < s then $s \notin \alpha$.

Proof Both of these follow from 2 in definition 1.12:

- 1) The first statement is just the contrapositive of 2 in definition 1.12.
- 2) If $r \notin \alpha$ then r > p forall $p \in \alpha$. Since $s > r \implies s > p$, $\forall p \in \alpha$. If we assume that $s \in \alpha$ then the third property is violated (i.e. a cut does not have a maximum element). Thus $s \notin \alpha$.

DEFINITION 1.14 Let \mathbb{R} be the collection of all cuts.

Definition 1.15 Let < be a relation on \mathbb{R} defined as $\alpha < \beta \iff \alpha \subseteq \beta$.

Proposition 1.16 The relation < is an ordering on \mathbb{R} .

Proof | First we must prove that either $\alpha < \beta$, $\beta < \alpha$, or $\alpha = \beta$. Assuming that the later two are wrong, $\alpha \neq \beta$ and $\beta \not< \alpha$. The later can be rephrased as $\exists b \in \beta$ such that $b \notin \alpha$. But using 1 in proposition 1.13 then a < b, $\forall a \in \alpha \& b \in \beta$. Further using 2 in definition 1.12 we get that $a \in \alpha \implies a < b \implies a \in \beta$ where $b \in \beta$. Thus $\alpha \leq \beta$. Since we have assumed that $\alpha \neq \beta$, $\alpha < \beta$. Similarly it can be shown that if $\alpha \not< \beta$ and $\alpha \neq \beta$ then $\beta < \alpha$. If we assume that $\beta \not< \alpha$ and $\alpha \not< \beta$, then the former implies that $\alpha \subset \beta$ and the later implies that $\beta \subset \alpha$. Thus $\alpha = \beta$.

Finally if $\alpha < \beta$ and $\beta < \gamma$ then it is clear by definition that $\alpha < \gamma$.

Proposition 1.17 Let *A* be some set, and if α_i , $i \in A$ be cuts then

$$\bigcup_{i\in A}\alpha_i$$

is a cut.

Proof | Since α_i are cuts then clearly $\bigcup_{i \in A} \alpha_i$ is non-empty, and the compliment $\bigcap_{i \in A} \alpha_i^c$ is also non-empty (since cuts cannot be disjoint by the above proposition). If $p \in \bigcup_{i \in A} \alpha_i$ then $p \in \alpha_i$ for some i. It follows that if $q \in \mathbb{Q}$ and q < p then $q \in \alpha_i$ implying that $q \in \bigcup_{i \in A} \alpha_i$. Similarly there exists $r\alpha_i$ such that r > p, implying that $\exists r \in \bigcup_{i \in A} \alpha_i$ such that r > p. Thus $\bigcup_{i \in A} \alpha_i$ is a cut.

Proposition 1.18 The set \mathbb{R} has l.u.b. property.

Proof | Let $A \subset \mathbb{R}$ which is bounded from above. I claim that $\alpha_0 = \bigcup_{\alpha \in A} \alpha$ is the supremum of A. From the above proposition α_0 is a cut. Clearly α_0 is an upper bound for A since if $\alpha \in A$ then $\alpha < \bigcup_{\alpha \in A} \alpha \implies \alpha < \alpha_0$. Let $\gamma < \alpha_0$, then there exists $\alpha \in \alpha_0$ s.t. $\alpha \notin \gamma$. Thus there exists a cut $\alpha \in A$ such that $b \in \alpha$. Again since < is an ordering on \mathbb{R} we must have $\gamma < \alpha$. This shows that α_0 is the least upper bound of A.

DEFINITION 1.19 Define "addition" on \mathbb{R} as $\alpha + \beta = \{a + b \mid a \in \alpha, b \in \beta\}$.

Proposition 1.20 $(\mathbb{R}, +)$ is an abelian group.

Proof We must prove the following: $\alpha + \beta$ is a cut, there exists an identity 0^* such that $\alpha + 0^* = \alpha + 0^* = \alpha$, and that for each α there exists an inverse such that $\alpha + (-\alpha) = 0^* = (-\alpha) + \alpha$. The associativity of the operator follows from the associativity of \mathbb{Q} . Also note that + is commutative again due to commutativity of addition on Q.

Let α , β be cuts. Then clearly $\alpha + \beta$ is non-empty. Since there exists a' > a and b' > b for all $a \in \alpha$ and $b \in \beta$ it follows that a' + b' > a + b implying that $a' + b' \notin \alpha + \beta$. Thus $(\alpha + \beta)^c$ is also nonempty. If $p \in \alpha + \beta$ then p = a + b, $a \in \alpha$, $b \in \beta$. If q .Thus $q = (q - b) + b \in \alpha$. Also since there exists $a' \in \alpha$ and $b' \in \beta$ such that a < a' & b < b'. Hence p < a' + b' and $a' + b' \in \alpha + \beta$. Thus $\alpha + \beta$ is a cut.

Define $0^* = \{r \in \mathbb{Q} \mid r < 0\}$. If $p \in \alpha + 0^*$ then p = a + r where $a \in \alpha$ and r < 0, this implies $p < a \implies p \in \alpha$. Thus $\alpha + 0^* \subset \alpha$. If $p \in \alpha$ then $\exists p' \in \alpha$ s.t. p' > p. Since $p-p'<0 \implies p-p'\in 0^*$. Thus by definition $p=(p-p')+p'\in \alpha+0^*$. Thus $\alpha\subset \alpha+0^*$, and therefore $\alpha = \alpha + 0^*$. The commutativity proves that $\alpha + 0^* = 0^* + \alpha = \alpha$.

Define the inverse of α as $-\alpha = \{ p \in \mathbb{Q} \mid \exists r > 0 \text{ s.t.} - r - p \notin \alpha \}$. If $p \in -\alpha$ then $\exists r > 0 \text{ s.t.}$ $-p-r \notin \alpha$. Since -q-r > -p-r, using 3 in proposition 1.13 we get that $-q-r \notin \alpha \implies q \in -\alpha$. If we set t = p + (r/2) then t > p and $-t - r/2 = -p - r \notin \alpha \implies t \in -\alpha$. Thus $-\alpha$ is a cut. If $p \in \alpha$ and $q \in -\alpha$ then $\exists r > 0$ s.t. $-q - r \notin \alpha$. Using the second property in proposition 1.13, $-q-r>p \implies p+q<-r<0 \implies p+q\in 0^*$. Thus $\alpha+(-\alpha)\subset 0^*$. If $u\in 0^*$ then u<0. Define w = -u/2. Clearly w > 0. Using Archemedian property in Q we know that exists n such that $nw \in \alpha$ but $(n+1)w \notin \alpha$. Let p = -(n+2)w, then $-p - w \notin \alpha$ implying that $p \in -\alpha$. Thus $nw + p = nw - nw - 2w = v \in \alpha + (-\alpha)$. Hence $0^* \subset \alpha + (-\alpha)$, and therefore $\alpha + (-\alpha) = 0^*$.

One can also easily check that the field properties for + are followed.

DEFINITION 1.21 Define a "product" on \mathbb{R}^+ (i.e. set of all cuts $\alpha > 0^*$) as:

 $\alpha\beta = \{ p \in \mathbb{Q} \mid p \le rs, \text{ for some } r \in \alpha, s \in \beta \text{ and } r, s > 0 \}.$

This definition is extended to all α , β in \mathbb{R} in the following way:

$$\alpha\beta = \begin{cases} \alpha\beta, \ \alpha, \beta > 0^* \\ -(-\alpha)(\beta), \ \alpha < 0^* & \& \ \beta > 0^* \\ -(\alpha)(-\beta), \ \alpha > 0^* & \& \ \beta < 0^* \\ (-\alpha)(-\beta), \ \alpha, \beta < 0^* \end{cases}$$

Definition 1.22 Let $1^* = \{ q \in \mathbb{Q} \mid q < 1 \}$.

PROPOSITION 1.23 ($\mathbb{R} - \{0^*\}, \cdot$) forms an abelian group.

Proof It's too tedious, but similar to that of addition (proof by "cause I said so").

Similarly it can be shown that all ordered field properties are followed by this product. Also it can be shown that the product is distributive over addition. Thus $(\mathbb{R}, +, \cdot)$ is indeed an ordered field with least upper bound property. Thus the remaining part is that \mathbb{Q} is isomorphic to some subset of \mathbb{R} . This can be shown by mapping each rational r to the cut $r^* = \{p \in \mathbb{Q} \mid p < r\}$. It can be easily shown that products and additions are preserved under this map. This completes the proof for theorem 1.11.

Corollary 1.24 (Archemedian property) If $0 < x < y \in \mathbb{R}$ then $\exists n \in \mathbb{N}$ such that nx > y.

Proof | Let $A = \{nx \mid n \in \mathbb{N}\}$. If we assume that the corollary is false then y is an upper bound of A. Since \mathbb{R} has l.u.b. property A has a supremum, $a = \sup A$. Since a - 1 < a it is not an upper bound of A. Hence $\exists m \in \mathbb{N}$ such that a - 1 < m. It follows further that a < m + 1 contradicting the fact that a is supremum and that the corollary is false. ■

Corollary 1.25 (Denseness of rationals in reals) Let $x < y \in \mathbb{R}$ then $\exists \ q \in \mathbb{Q}$ such that x < q < y.

Proof | Since y - x > 0 ∃ $n \in \mathbb{N}$ such that n(y - x) > 1 (using archemedian property). Thus ny - nx > 1 meaning that there is an integer m such that nx < m < ny (since there is an integer in every interval of length 1). Dividing by n we get x < m/n < y, proving the claim

2 METRIC SPACES AND EUCLIDEAN SPACE

DEFINITION 2.1 The pair (X, d) is said to be a *metric space* where X is some non-empty set and $d: X \times X \to \mathbb{R}_{>0}$ is a function with the following properties:

- 1) $d(x,y) = 0 \iff x = y$.
- 2) $d(x,y) = d(y,x) \ \forall x,y \in X$.
- 3) $d(x,y) \le d(x,z) + d(z,y)$.

DEFINITION 2.2 Let (X, d) be a metric space. Then:

- 1) A *neighborhood* of a point $x \in X$ is the set $N_r(x) \equiv \{p \mid d(x, p) < r\}$.
- 2) A point p is a *limit point* of set $E \subset X$ if every neighborhood of p contains a $q \neq p$ s.t. $q \in E$.
- 3) If $p \in E$ and p is not a limit point of E then p is called an *isolated point* of E.
- 4) *E* is closed if every limit point of *E* is in *E*.
- 5) p is said to be in the interior of E if $\exists \epsilon > 0$ s.t. $N_{\epsilon}(p) \subset E$.

- 6) *E* is open if every point of *E* is an interior point of *E*.
- 7) *E* is perfect if *E* is closed and every point of *E* is a limit point of *E*.
- 8) *E* is bounded if there exists an $M \in \mathbb{R}$ and $q \in X$ such that d(p,q) < M, $\forall p \in E$.
- 9) *E* is dense in *X* if every point of *X* is either a limit point of *E*, a point in *E*, or both.

PROPOSITION 2.3 A point x is a limit point of $E \subset X$ if and only if there exists a sequence $(x_n) \in E$ which converges to x.

Proof | Suppose x is a limit point. Then every neighborhood $N_{1/n}(x)$ ∃ $x_n(\neq x)$ ∈ E such that $x_n \in N_{1/n}(x)$. Since,

$$d(x_n, x) < 1/n \implies \lim_{n \to \infty} x_n = x.$$

Suppose that there exists a sequence $(x_n) \in E$ such that $x_n \to x$. Let $N_{\epsilon}(x)$ be some neighborhood of x. Since there exists N such that $n > N \implies d(x, x_n) < \epsilon$ it follows that for all n > N, $x_n \in N_{\epsilon}(x)$.

Proposition 2.4 Every neighborhood is open.

Proof | Let $x \in X$ be some point and let $N_r(x)$ be some neighborhood of x. Let $p \in N_r(x)$. Choose $\epsilon < r - d(x, p)$. Then for any $y \in N_{\epsilon}(p)$,

$$d(x,y) \le d(x,p) + d(p,y) < r.$$

Hence every point p is in the interior.

PROPOSITION 2.5 If p is a limit point of E then there are infinitely many points of E in any neighborhood of p.

Proof | Assume that some neighborhood has finitely many points of E, given by the set $S = \{y_1, ..., y_n\}$. Then let $\delta < \min\{d(p, y_i) \mid y_i \in S\}$. Then there exists another point $y \in N_{\delta}(p)$ such that $y \in E$ (since p is a limit point). This is a contradiction, hence there are infinite points in every neighborhood.

COROLLARY 2.6 A finite set of points has no limit points.

Proof | If it had a limit point, then every neighborhood of that point must have infinite points. This isnt possible since it has only finitely many points.

PROPOSITION 2.7 Let $\{E_{\alpha}\}$ be any collection of points then:

$$\bigcap_{\alpha} E_{\alpha}^{c} = \left(\bigcup_{\alpha} E_{\alpha}\right)^{c}.$$

Proof | It's simple. Just show if $x \in A$ then $x \in B$ and the converse, where A, B are the LHS and RHS of the above equation respectively.

Proposition 2.8 A set is open iff it's compliment is closed.

Proof | Suppose E^c is closed. Let $x \in E$ then $x \notin E^c$ which means that x is not a limit point of E^c . Thus there exists a neighborhood N of x such that $N \cap E^c = \emptyset$. Thus $N \subset E$. Thus x has a neighborhood contained in E, making it an interior point. Thus E is open.

Suppose *E* is open. Let *x* be a limit point of E^c . Then for any neighborhood *N* of *x* there exists a point p s.t. $p \in N \cap E^c$. Thus no neighborhood of *x* is contained in *E*, thus *x* is not an interior point of *E* and since by assumption *E* is open it follows that $x \in E^c$. Thus E^c is closed.

COROLLARY 2.9 A set is closed iff it's compliment is open.

Proof | Directly follows from previous proposition.

PROPOSITION 2.10 Let *X* be a metric space and $\{G_{\alpha}\}$ be any collection of subsets, then:

- 1) If $\{G_{\alpha}\}$ is open then $\bigcup_{\alpha} G_{\alpha}$ is open.
- 2) If $\{G_{\alpha}\}$ is closed then $\bigcap_{\alpha} G_{\alpha}$ is closed.
- 3) If the collection $\{G_{\alpha}\}$ is finite and each set is open then $\bigcap_{\alpha=1}^{n} G_{\alpha}$ is open.
- 4) If the collection $\{G_{\alpha}\}$ is finite and each set is closed then $\bigcup_{\alpha=1}^{n} G_{\alpha}$ is closed.

Proof | 1) Let $x \in \bigcup_{\alpha} G_{\alpha}$ then there exists α s.t. $x \in G_{\alpha}$. Since G_{α} is open, every neighborhood N of x is contained in G_{α} and therefore in $\bigcup_{\alpha} G_{\alpha}$. Proving that $\bigcup_{\alpha} G_{\alpha}$ is open.

- 2) Let $x \in X$ be a limit point of $\bigcap_{\alpha} G_{\alpha}$. Then for every neighborhood N of x, $N \cap \bigcap_{\alpha} G_{\alpha}$ has infinitely many points. Thus $N \cap G_{\alpha}$ has infinitely many points (forall α). This means that x is a limit point of every G_{α} . Since G_{α} is closed $x \in G_{\alpha}$, for all α . Therefore $x \in \bigcap_{\alpha} G_{\alpha}$.
- 3) Let $x \in \bigcap_{\alpha=1}^n G_\alpha$ then for each α there exists a neighborhood N_α of x such that $N_\alpha \subset G_\alpha$. Let r be the minimum of the radii of the neighborhoods N_α , then $N_r(x) \subset \bigcap_{\alpha=1}^n G_\alpha$. Thus every x is in the interior of $\bigcap_{\alpha=1}^n G_\alpha$.
- 4) Just use the above proof for compliments, and then use de-morgan law.

DEFINITION 2.11 Let (X,d) be a metric space, $E \subset X$, L be the set of limit points of E then $\bar{E} := E \cup L$ is called the closure of E.

Proposition 2.12 The closure of any set is closed.

Proof It is obvious since every limit point is in the set by definition.

Proposition 2.13 $E = \bar{E}$ iff E is closed.

Proof | If *E* is closed then $L \subset E \implies \bar{E} = E \cup L = E$. If $\bar{E} = E$ then $\bar{E} \cap L = E \cap L$. Since $L \subset \bar{E}$ it follows that $L = E \cap L$. Thus $L \subset E$.

PROPOSITION 2.14 If $E \subset F$ and F is closed then $\bar{E} \subset F$.

Proof Let x be a limit point of E. Since $E \subset F$, it follows that x is also a limit point of F (since it every neighborhood of x would contain a point E which is also in Y). Since F is closed every limit point of *F* is in *F*. Thus if *L* is the set of limit points of *E* then $L \subset F$. Hence $\bar{E} = E \cup L \subset F$.

PROPOSITION 2.15 If $E \subset Y \subset X$ then E is open relative to Y iff $E = G \cap Y$ for some open set in *G* in *X*.

Proof | Suppose that $E = G \cap X$. Let $x \in E$. Then there exists a neighborhood $N_r(x)$ such that $N_r(x) \subset G$. Consider $N = N_r(x) \cap G$. Clearly this is a neighborhood of x relative to Y. Since $N \subset E$, x is an interior point of E.

Suppose *E* is open relative to *Y*. Then $\exists r_x > 0$ s.t. $V_{r_x}(x) := \{p \mid d(x, p) < r_x, p \in Y\} \subset E$. Clearly $V_{r_x}(x) = N_{r_x}(x) \cap Y \subset E$. Let $G = \bigcup_{x \in E} N_{r_x}(x)$. Clearly G is open. Thus $G \cap Y = E$ since $\bigcup_{x\in E} V_{r_x}(x) = E.$

DEFINITION 2.16 A collection $\{G_{\alpha}\}$ is said to be an open coering of $E \subset X$ if G_{α} are covered and $E \subset \bigcup_{\alpha} G_{\alpha}$. A subcovering is a subset of $\{G_{\alpha}\}$ which also covers E.

DEFINITION 2.17 A subset Y of metric space X is said to be compact if every open covering of *Y* contains a finite subcover.

PROPOSITION 2.18 If $K \subset Y \subset X$ then K is compact in X iff K is compact in Y.

Proof Suppose K is compact in X. Let $\{H_{\alpha}\}$ be any open covering of K in Y. Then by the previous theorem each set $H_{\alpha} = G_{\alpha} \cap Y$, where G_{α} is open in X. Since K is compact in X there exists a finite subcover $\{G_1, ... G_n\}$. The collection $\{H_1 = G_1 \cap Y, ..., H_n G_n \cap Y\}$ will be a finite subcover of K in Y. Thus there is a finite subcover of every open cover in Y.

Conversly, suppose that *K* is compact relative to *Y*, then similarly using the same theorem it is possible to construct a finite subcovering of any opern cover of *K* in *X*.

Proposition 2.19 Compact subsets of *X* are closed.

Proof | We will prove that the compliment of a compact subset *K* is open. Let *p* ∈ K^c and *q* ∈ K. Let $\epsilon_q < d(p,q)/2$. Then the union $\bigcup_{q \in K} N_{\epsilon_q}(q)$ is an open covering of K. Since K is compact there some finite $q_1, ..., q_n$ s.t. $\{N_{\epsilon_i}(q_i)\}$ is also a covering of K (I have defined $\epsilon_i = d(p, q_i)$). Let $G = \bigcap_{i=1}^n N_{\epsilon_i}(p)$. G is an open neighborhood of p. Let $x \in G$ then $d(x,p) < d(p,q_i)$, $\forall 1 \le i \le n$. Since:

$$d(p,q_i) \le d(p,x) + d(q_i,x)$$

 $d(p,q_i) < \frac{1}{2}d(p,q_i) + d(q_i,x)$

$$\implies \frac{1}{2}d(p,q_i) < d(q_i,x).$$

Thus $x \notin N_{\epsilon_i}(q_i)$, and thus $x \notin K$. Meaning that $G \cap K = \emptyset$. Since G is an open neighborhood of p, and $G \subset K^c$ it follows that K^c is open.

Proposition 2.20 Closed subsets of compact sets are compact.

Proof | Let $H \subset K$, where K is compact and H is closed. Let Ω be an open cover of H. Then $\Omega \cup \{H^c\}$ is also an open covering of K (this only works since H^c is open). Since K is compact there exists a finite subcovering Φ . If $H^c \in \Phi$ then $\Phi - \{H^c\}$ is a finite subcovering of H. ■

COROLLARY 2.21 If *F* is closed and *K* is compact then $F \cap K$ is compact.

Proof | Since K, H are closed K ∩ H is closed, and a subset of K. Thus it must be compact.

Proposition 2.22 Let $\mathcal{K} = \{K_{\alpha}\}$ be a collection of compact sets such that every subcollection has non-empty intersection. Then $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$.

Proof | Suppose that the intersection is empty. Then there exists $K_1 \in \mathcal{K}$ s.t. $K \cap K_\alpha = \emptyset$ whenever $K_\alpha \neq K_1$. This means that $K_1 \subset K_\alpha^c$. Thus $\{K_\alpha^c\}$ form an open cover of K_1 . This implies that there exists a finite subcover $\{K_{\alpha_i}^c \mid 0 \leq i \leq n\}$ which covers K_1 . Thus $K_1 \cap K_{\alpha_1} \cap ... \cap K_{\alpha_n} = \emptyset$, which is a contradiction to the hypothesis.

Corollary 2.23 If $\{K_n\}$ are compact sets and $K_n \supset K_{n+1}$ then $\bigcap_{n\geq 1} K_n$ is non-empty.

PROPOSITION 2.24 Let $E \subset K$ where K is compact and E is infinite, then E has at least one limit point in K.

Proof | Suppose there exists no limit point of E in K. This means that $\forall q \in K \exists N(q)$ s.t. N(q) has at most one point of E (i.e. q). It is clear that $\{N(q)\}$ forms an open covering of K. Since E is infinite and N(q) only has upto one point of E it is not possible to find a finite subcovering of E. Thus $\{N(q)\}$ has no finite subcovering of E (since $E \subset K$). This is contrary to the fact that E is compact.

Proposition 2.25 If I_n are non-empty intervals in \mathbb{R} and $I_n \supset I_{n+1}$ then $\bigcap_{n\geq 1} I_n$ is non-empty.

Proof | Let $I_n = [a_n, b_n]$. Consider the set $\{a_n\}$. Clearly this in non-empty and bounded above by b_1 . Let the supremum of the set be x. Since

$$a_n < b_m$$

for any m, it follows that $x \leq b_m$. We also know that $a_m \leq x$. Thus $x \in I_m$ for all m.

Corollary 2.26 Let I_n be a sequence of non-empty k—cells such that $I_n \supset I_{n+1}$.

Proof Follows directly from the proposition above.

THEOREM 2.27 Every k—cell is compact.

Proof Let *I* be a k-cell with points $(x_1, ..., x_k)$ such that $a_i \le x_i \le b_i$. Define ϵ as:

$$\epsilon = \left(\sum_{j=1}^{n} (b_j - a_j)^2\right)^{1/2}.$$

Clearly if $x, y \in I$ then $||x - y|| < \epsilon$. Suppose that k-cells are not compact. Then there exists an open cover Ω which does not have a finite subcover of I. Let $c_j = (a_j + b_j)/2$, then cartesian products of $[a_j, c_j]$ and $[c_j, b_j]$ in different combinations produce $2^k k$ -cells. At least one of these k-cells cannot be covered using a finite subcovering of Ω , call this I_1 . Repeat the same process for I_1 to gain I_2 and so on. Thus we have a sequence of k-cells such that:

- 1) $I \supset I_1 \supset I_2 \cdots$;
- 2) Each I_n does not have a finite subcovering in Ω ;
- 3) If $x, y \in I_n$ then $||x y|| < 2^{-n} \epsilon$.

By the above proposition we know that there exists at least one x^* s.t. $x^* \in I_n$ for all n. Since Ω covers I there exists $G \in \Omega$ s.t. $x^* \in G$. Since G is open there exists $f \in G$. This is a contradiction since G alone covers G alone covers G alone covers G alone covers G s.t. G s.t. G covers G alone covers G s.t. G covers G s.t. G s.t.

THEOREM 2.28 (Heine-Borel Theorem) If E is a subset of \mathbb{R}^k then the following are equivalent:

- 1) *E* is bounded and closed.
- 2) *E* is compact.
- 3) Every infinite subset of *E* has a limit point in *E*.

Proof | 2 follows from 1 since every bounded set can be contained inside a k-cell, and the fact that every closed subset of a compact set is compact. 3 follows from 2 due to proposition 2.23. All that is remaining is to show 1 from 3.

If E is not bounded then there is a sequence in $x_1, ..., x_n \in E$ such that $|x_n| > n$ for each n. Clearly this does not have a limit point in \mathbb{R}^k , hence does not have a limit point in E. Thus 3 implies that E must be bounded. If E is not closed then there is a point x_0 which is a limit point of E but not in E. This means that there is a sequence in $(x_n) \in E$ which converges to x_0 . Since every infinite subset of E has a limit point in E, we have a contradiction. Thus E must be closed.

THEOREM 2.29 Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Proof | If *E* is a bounded subset of \mathbb{R}^k then it is contained inside a *k*-cell *I*. Since *I* is compact every limit point of every subset is contained in *I* and thus in \mathbb{R}^k .

DEFINITION 2.30 (Seperable Sets) Two subsets $A, B \subset X$ are said to be separated if $\bar{A} \cap B =$ $A \cap \bar{B} = \emptyset$.

Definition 2.31 (Connected) A subset $A \subset X$ is said to be connect if *cannot* be written as the disjoint union of non-empty seperated sets.

THEOREM 2.32 $E \subset \mathbb{R}$ is connected if and only if $x, y \in E \& x < z < y \implies z \in E$.

Proof | Suppose that *E* is connected and there exist $x, y \in E$ such that there is a $z \in (x, y)$ and $z \notin E$. Then let $A = (-\infty, z) \cap E$ and $B = (z, \infty) \cap E$. Since $A \subset (-\infty, z)$ and $B \subset (z, \infty)$ it follows that Aand *B* are separated. Since $A \cup B = E$, we have arrived at a contradiction.

To prove the converse suppose that *E* is not connected. Then $E = A \cup B$ where *A* and *B* are seperated. Let $x \in A$ and $y \in B$ and w.l.o.g. assume x < y. Let $z = \sup(A \cap [x, y])$. This means that z is a limit point of A and thus $z \in \overline{A}$. Since A and B are separated $z \notin B$. Hence $x \le z < y$.

- 1) If $z \notin A$ then x < z < y and $z \notin E$.
- 2) If $z \in A$; then $z \notin \overline{B}$. Since z is not a limit point of B there is an open neighborhood $(z, z_1) \cap B = \emptyset$. Thus $z_1 \notin B$. Since z is a supremum of $A \cap [x, y]$ and $z_1 \in [x, y]$, it follows that $z_1 \notin A$. Therefore $z < z_1 < y$ but $z \notin E$. This completes the proof.

SET THEORY AND LOGIC

1 Symbolic Logic

DEFINITION 1.1 A *logic system* is defined as being composed of:

- 1) A language, which is:
 - *i*) A collection of symbols.
 - *ii*) A grammer, i.e. a set of rules determining valid statements.
- 2) A collection of axioms.
- 3) Rules for inference.
- 4) A model, i.e. an assignment of truth value to valid statements in the language. We also require the assignment to be such that all axioms are true.

EXAMPLE 1.2 Propositional logic is an example of a logic system, defined as follows:

- 1) Symbols:
 - i) Letters: $P, Q, R, \dots, P_1, P_2, \dots$
 - $ii) \land, \lor, \neg, \rightarrow, \leftarrow, \leftrightarrow, (,).$
- 2) The valid forms in the laguage are:
 - i) Atomic forms: P, Q, R, \cdots
 - *ii*) If *p* is a valid form then $\neg p$ is also a valid form.
 - *iii*) If p,q are valid forms then $(p) \land (q), (p) \lor (q), (p) \rightarrow (q), (p) \leftrightarrow (q)$ are also valid forms.
- 3) The axioms of propositional logic are:
 - *i*) (FL1) $p \rightarrow (q \rightarrow p)$.
 - ii) (FL2) $p \rightarrow (q \rightarrow r) \rightarrow (p \rightarrow q \rightarrow (p \rightarrow r))$.
 - iii) (FL3) $\neg p \rightarrow \neg q \rightarrow (q \rightarrow p)$.
- 4) A valid form q is *infered* from $p_1, ..., p_n$ if q can be written whenever $p_1, ..., p_n$. Denote this by $p_1, ..., p_n \implies q$. The rules of inference are as follows in propositional logic:
 - *i*) $p \rightarrow q$, $p \implies q$ (Modus Ponens).
 - *ii*) $p \rightarrow q$, $\neg q \implies \neg p$ (Modus Tolens).
 - *iii*) $(p \rightarrow q) \land (r \rightarrow s), (p \lor r) \implies (q \lor s)$ (Constructive Dilemma).
 - *iv*) $(p \to q) \land (r \to s)$, $\neg q \lor \neg s \implies \neg p \lor \neg r$ (Destructive Dilemma).
 - $v) p \lor q$, $\neg p \implies q$ (Disjunctive Syllogism).
 - vi) $p \rightarrow q$, $(q \rightarrow r) \implies p \rightarrow r$ (Hypothetical Syllogism).
 - *vii*) p, $q \implies p \land q$ (Conjunction).
 - *viii*) $p \land q \implies p$ (Simplification).
 - $ix) p \implies p \lor q$ (Addition).

Along with these we also have the rules of replacement:

- *i*) $p \land q \land r \iff p \land (q \land r) \text{ and } p \lor q \lor r \iff p \lor (q \lor r).$
- *ii*) $p \land q \iff q \land p \text{ and } p \lor q \iff q \lor p$.
- iii) $p \wedge (q \vee r) = p \wedge q \vee p \wedge r$ and $p \vee (q \wedge r) = p \vee q \wedge p \vee r$.
- iv) $p \rightarrow q \iff \neg q \rightarrow \neg p$.

- $v) p \iff \neg(\neg p).$
- $vi) \neg (p \land q) \iff \neg p \lor \neg q \text{ and } \neg (p \lor q) \iff \neg p \land \neg q.$
- vii) $p \wedge p \iff p$ and $p \vee p \iff p$.
- viii) $p \to q \iff \neg p \lor q$.
- $ix) p \leftrightarrow q \iff (p \rightarrow q) \land (q \rightarrow p).$
- 5) The model in propositional logic assigns each atomic form a value $\{T, F\}$. Given two valid forms p, q every model must satisfy the usual truth table which is assigned to the propositions $p \land q, p \lor q, p \rightarrow q, \neg p$.

The model part of a logic system is called *sematics*. Semantics is essentially assigning meaning to proposition. The inference rules, axioms, and replacement rules fall under *syntactics*.

1.1 Sematics of Propositional logic

DEFINITION 1.4 A tautology is a valid form which is true in all models. For example $q \land \neg q$. Similarly a contradiction is a statement which is false in all models of propositional logic. If a statement isnt a contradiction or tautology then it is called a contingency.

DEFINITION 1.5 Let $p_1, ..., p_{\ell-1}, q$ be valid forms in propositional logic then:

- 1) If *q* is a tautology then write $\models q$.
- 2) We say that $p_1, ..., p_{\ell-1}$ logically implies q if:

$$\models p_1,...,p_{\ell-1} \rightarrow q$$

3) When $p_1, ... p_{\ell-1}$ logically imply q we write:

$$p_1, ..., p_{\ell-1} \models q$$

We call $p_1, ..., p_{\ell-1}$ the premise and q the conclusion.

DEFINITION 1.6 Two statements are logically equivalent if $\vDash p \leftrightarrow q$.

Proposition 1.7 All tautologies are logically equivalent, and all contradictions are logically equivalent.

1.2 Syntactics of Propositional logic

DEFINITION 1.8 A formal proof of q from the premise $p_1, ..., p_{\ell-1}$ is a finite sequence of valid forms $q_0, ..., q_n$ such that:

- 1) q_i is either one of p_i ,
- 2) q_i is one of the axioms,
- 3) q_i follows from $q_0, ..., q_{i-1}$ using rules of inference/replacement rules.

If a formal proof of q exists from premise $p_1,...,p_{\ell-1}$ then we write $p_1,...,p_{\ell-1}\vdash q$.

DEFINITION 1.9 (Given in class) We say $p \implies q$ if $r \vdash p$ then $r \vdash q$.

THEOREM 1.10 $p \implies q$ if and only if $p \vdash q$.

Proof Assuming $p \implies q$, it follows from definition that if $r \vdash p$ then $r \vdash q$. Thus the following proof sequence proves the forward implication: $p \vdash p, p \implies q, p \vdash q$. For the proof in other direction since $p \vdash q$ there is a sequence $p, q_0, ..., q_{n-1}, q$. If $r \vdash p$ there is also a sequence $r, p_0, ..., p_{k-1}, p$. Thus the proof sequence $r, p_0, ..., p_{k-1}, p, q_0, ..., q_{n-1}, q$ is a proof from r to q. Thus $r \vdash q$, completing the proof.

DEFINITION 1.11 Converse of $p \rightarrow q$ is $q \rightarrow p$.

DEFINITION 1.12 Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

Proposition 1.13 $p \rightarrow q \vdash \neg q \rightarrow \neg p$.

Proof

$$q_0: p \rightarrow q$$
, given

$$q_1: (p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$
, FL3

$$q_2: \neg q \rightarrow \neg p$$
, MP.

Similarly it can be shown that the contrapositive implies the statement.

1.3 Proof Methods

LEMMA 1.14 If
$$\vdash q$$
 then $\vdash p \rightarrow q$.

Proof | If $\vdash q$ then there exists a sequence $r_0, ..., r_\ell, q$ where r_i are either axioms or are inferred from $r_0,...,r_{i-1}$. Thus the sequence $r_0,...,r_\ell,q,q\vee\neg p,p\to q$ is a valid proof for $p\to q$. Thus $\vdash p\to q$.

```
THEOREM 1.15 (Deduction) p \vdash q \text{ iff } \vdash p \rightarrow q.
```

Proof | (Backward implication). If $\vdash p \rightarrow q$ then there exists a sequence $r_0, ..., r_\ell, p \rightarrow q$ where r_i are either axioms or are infered from rules of inference/replacement rules. Thus the sequence $r_0, ..., r_l, p \to q, p, q$ is a valid proof of q given the premise p. Thus $p \vdash q$.

(Forward implication). Very long, refer to theorem 1.4.4 of O'Leary for proof.

COROLLARY 1.16 If
$$p_1, ..., p_n, q \vdash r$$
 then $p_1, ..., p_n \vdash q \rightarrow r$.

THEOREM 1.17 (Direct proof) If
$$p_1, ..., p_n, q \vdash r$$
 then $p_1, ..., p_n \implies q \rightarrow r$.

Proof Using deduction the we get $p_1, ..., p_n \vdash q \rightarrow r$ and using the fact that \vdash and \implies are equivalent it follows that $p_1, ..., p_n \implies q \rightarrow r$.

THEOREM 1.18 (Indirect Proof)
$$\neg q \rightarrow (p \land \neg p) \implies q$$
.

Proof

Thus $\neg q \rightarrow (p \land \neg p) \vdash q$ which is equivalent to the claim.

1.4 Consistency

Notation 1.19 $p_0, ... \vdash q$ if any subsequence $p_{i_1}, ... p_{i_k} \vdash q$. If no subsequence proves q then $p_0, \dots \nvdash q$.

DEFINITION 1.20 A sequence of valid forms $p_0, p_1, ...$ is consistent if for every propositional form $q, p_0, p_1, ... \not\vdash q \neg q$. We write this as Con $(p_0, ...)$.

THEOREM 1.21 If p_0 , ... are valid forms then the following are equivalent:

- 1) $Con(p_0,...)$.
- 2) Any subsequence of p_0 , ... is consistent.
- 3) There exists a form p such that $p_0, ... \nvdash p$.

Proof | We prove that $1 \implies 2 \implies 3 \implies 1$.

- 1) Assume that there exists a subsequence $p_{i_1},...,p_{i_n}$ so that $p_{i_1},...,p_{i_n} \vdash q \land \neg q$. Then it means that there is a subsequence such that a contradiction can be derived. Thus $\neg Con(p_0,...)$. Which is a contradiction. Thus every subsequence is consistent.
- 2) If every subsequence is consistent then there is no subsequence which derives the proposition of the form $q \land \neg q$. Thus $p_0, ... \not\vdash q \land \neg q$.

Assume that p_0 , ... is not consistent. Then for all propositions q there exists a subsequence such that $p_{i_1},...,p_{i_n}\vdash q\wedge \neg q$. Thus $p_{i_1},...,p_{i_n},r_0,...,r_\ell,q\wedge \neg q,q$ is a valid proof of q. Which shows that for all propositions q, p_0 , ... $\vdash q$. Which is a contradiction.

DEFINITION 1.22 A sequence p_0 , ... is maximally consistent if Con $(p_0,...)$ and for any $p \neq p_i$ we have $\neg Con(p, p_0, ...)$.

Given any sequence which is not maximally consistent it is possible to construct a sequence which is maximally consistent by just adding all the implications of set in the set.

THEOREM 1.23 Every consistent sequence is a subsequence of maximally consistent sequence.

Proof Let p_0 , ... be a consistent sequence and let q_0 , q_1 , ... be the sequence of all propositional forms. Then define a new sequence in the following way:

$$r_{2k} = p_k, \ 0 \le k$$

$$r_{2k+1} = \begin{cases} q_k, & \text{if } Con(q_i, r_0, ..., r_{2k}, p_0, ...) \\ p_k, & \text{otherwise} \end{cases}$$

Clearly $p_0, p_1, ...$ is a subsequence of $r_0, r_1, ...$ and that $Con(r_0, r_1...)$ by definition. All that remains to show is that the sequence is maximal. Let q be some proposition, then $q = q_i$ for some $i \ge 0$. If $Con(q, r_0, ...)$ then by construction $q = r_i$ for some $i \ge 0$ because it was added at step 2i + 1. Thus if $q \neq r_i$ for some i then $\neg Con(q, r_0, ...)$ (contrapositive of previous statement).

1.5 Soundness

DEFINITION 1.24 A logical system is sound if every theorem is a tautology.

LEMMA 1.25 All axioms of propositional logic are tautologies.

Proof | Easy to check using truth tables.

LEMMA 1.26 If $p \implies q$ then $p \rightarrow q$ is a tautology. Also if $p,q \implies r$ then $p \land q \rightarrow r$ is a tautology.

Proof | To show this we lnotply have to check that all the rules of inference, and the rules of replcaement are tautologies. Since MP implies all the other rules of inference it is enough to check that MP, replacement rules are tautologies. This can be verified to be true by making the truth table for all of them.

LEMMA 1.27 If $p \rightarrow q$ and p are tautologies then q is a tautology.

Proof | If for any valuation function v(p) = T and $v(p \to q) = T$ then from the truth table the only possibility is that v(q) = T, if v is a valid model.

THEOREM 1.28 (Soundness) If $\vdash p$ then $\models p$.

Proof | If \vdash p then by definition there exists a proof sequence $q_0, q_1, ..., q_n = p$ where each q_i is either an axiom, or $q_0, q_1, ...q_{i-1} \implies q_i$ using MP or replacement rules.

- 1) If q_i is an axiom then it is a tautology, by lemma 1.26.
- 2) If q_i is inferred from $q_0, ..., q_{i-1}$ then also it is a tautology because of lemma 1.27.

Since $q_n = p$, it follows that p is a tautology.

COROLLARY 1.29 If $p_1, ..., p_n \vdash q$ then $p_1, ..., p_n \models q$.

Proof This follows from soundeness. The only additional part is that q_i 's in the proof sequence can now be one of p_i . But since we assume $v(p_i) = T$, it does not cause an issue in the proof.

COROLLARY 1.30 Propositional logic is consistent.

Proof | Since every theorem is a tautology, and $p \land \neg p$ is a contradiction it cannot be a theorem. Thus within propositional logic $\nvdash p \land \neg p$.

1.6 Complete

DEFINITION 1.31 A logic system is complete if every tautology is a theorem.

LEMMA 1.32 If
$$\neg Con(\neg q, p_0, ...)$$
 then $p_0, ... \vdash q$.

Proof | If $\neg Con(p_0,...)$ then by theorem 1.21 it is possible to show that $p_0,... \vdash q$. Thus assume $Con(p_0,...)$. Since $\neg Con(\neg q, p_0,...)$ there exists some r such that:

$$\neg q, p_0, ... \vdash r \neg r, \text{ or,}$$

 $\neg q, p_{i_1}, ... p_{i_n} \vdash r \neg r.$

 $\neg q$ must show up in subsequence since the p_i 's are consistent. Thus there is a proof sequence: $p_{i_1},...,p_{i_n}, \neg q, s_0,...,s_k, r \wedge \neg r$. By indirect proof one can show that the subproof $p_{i_1},...,p_{i_n} \vdash q$ is valid. Thus $p_0, ... \vdash q$.

Lemma 1.33 If p_0 , ... is maximally consistent then for any q either $q = p_i$ or $\neg q = p_i$ for some $i \geq 0$.

Proof Since p_0 , ... is consistent both q and $\neg q$ cannot be in the sequence. Thus assume that $\neg q$ is not. Thus by previous lemma we can show that since $\neg Con(\neg q, p_0, ...)$ then $p_0, ... \vdash q$. Since the sequence is maximal it must contain *q*.

HYPOTHESIS 1.34 (Induction hypothesis) Induction on propositional forms states that a property is true for all propositional forms if:

- 1) It is true for all atomic forms.
- 2) If it is true for p,q then it is true for $\neg p$ and $p \to q$. $(p \land q, p \lor q)$ are not included here cause they can be expressed using \neg , \rightarrow).

In proving the later statement we assume that said property holds for p, q. This assumption is called the induction hypothesis.

Lemma 1.35 If $Con(p_0, ...)$ then there exists a valulation function v such that v(p) = T if and only if $p = p_i$ for some i.

Proof | Since any consistent sequence can be extended to a maximally consistent one, let's assume that p_0, \dots is maximally consistent. Let X_0, \dots be sequence of all atomic forms. Then define the valuation function as follows:

$$v(X_i) = \begin{cases} T, & \text{if } X_i = p_j \text{ for some } j \ge 0 \\ F, & \text{otherwise} \end{cases}$$

Clearly, by construction, $v(X_i) = T$ iff $X_i = p_i$ for some i. Assume that v(p) = T iff $p = p_i$ and $v(q) = T \text{ iff } q = p_i \text{ for } i.$

- 1) Assume $v(\neg q) = T$. Then v(q) = F. Thus by induction q is not in the list p_0, \dots Thus $\neg q$ must be in the list (by previous lemma). Hence if $v(\neg q)$ then $\neg q = p_i$ for some *i*.
- 2) Conversely if $\neg q = p_i$ for some i then by consistency q is not in the sequence and hence by induction v(q) = F. Thus $v(\neg q) = T$. Hence $v(\neg q) = T$ iff $\neg q = p_i$ for some i.
- 3) Similarly case by case it can be shown that $v(p \to q) = T$ iff $p \to q = p_i$ for some i.

THEOREM 1.36 Propositional logic is complete.

Proof Let's say that $\not\vdash p$. Then Con(FL1, FL2, FL3, $\neg p$). It follows from the previous lemma that there exists a valuation function such that v(p) = F. Thus $\not\vdash p$ (we have proven the contrapositive).

2 FIRST ORDER LOGIC

2.1 Syntactics

DEFINITION 2.1 The symbols used are:

- 1) Variables: x, y, z...
- 2) Constants: *a*, *b*, *c*...
- 3) Quantifiers: \forall , \exists
- 4) Equals: =
- 5) Connectors: \neg , \land , \lor , \rightarrow .
- 6) Functions: $f(x_1,...x_n)$.
- 7) Relations: $R(x_1, ..., x_n)$.

DEFINITION 2.2 A term is:

- 1) either a variable
- 2) or a constant
- 3) or a function.

DEFINITION 2.3 A formula is:

- 1) $t_1 = t_2$ where t_i are terms
- 3) If *p* is a formula then $\neg p$ is a formula
- 4) If p,q are formulas then any connector between them would be a valid formula.
- 5) $\forall xp$ and $\exists xp$ are formulas.

The rules for terms and formulas gives us the grammar of FOL.

DEFINITION 2.4 (Substitution for terms) If y is a variable then $y \frac{t}{x}$ is defined as:

$$y \frac{t}{x} \iff \begin{cases} t, \text{ if } y = x \\ y, \text{ otherwise.} \end{cases}$$

If *c* is a constant then

$$c\frac{t}{x} \iff c.$$

If *f* is a function then

$$f(x_1,...,x_n)\frac{t}{x} \iff f(x_1\frac{t}{x},...,x_n\frac{t}{x})$$

DEFINITION 2.5 Let t_i be terms and R be an relation. A variable is said to be free if:

- 1) A variable occurance in $t_0 = t_1$ and $R(t_0, ..., t_1)$ is free.
- 2) A variable occurance of $\neg p$ is free if the occurance is free in p.
- 3) A variable occurance in $p \land q$, $p \lor q$, $p \to q$ is free if it is free in both p and q.
- 4) Any occurance of x in $\forall xp$ and $\exists xp$ is bound.
- 5) Any occurance of $x \neq y$ is free in $\forall yp$ and $\exists yp$ if the occurance in p is free.

DEFINITION 2.6 A formula with no free variable is called a sentence.

DEFINITION 2.7 (Substitution in formulas) Let t_i be terms, R be a relation and p,q be valid formulas. Then:

- 1) $(t_0 = t_1)\frac{t}{x} \iff t_0\frac{t}{x} = t_1\frac{t}{x}$. 2) $R(t_0, ..., t_n)\frac{t}{x} \iff R(t_0\frac{t}{x}, ..., t_n\frac{t}{x})$. 3) $(\neg p)\frac{t}{x} \iff \neg(p\frac{t}{x})$. 4) $(p \land q)\frac{t}{x} \iff p\frac{t}{x} \land q\frac{t}{x}$.

- 5) The rules for \vee , \rightarrow follow from the above two.
- 6) When the expression includes quantifier $Q \in \{ \forall, \exists \}$:

$$(Qyp)\frac{t}{x} \iff \begin{cases} Qyp\frac{t}{x}, & \text{if } x \neq y \text{ and } y \text{ is not in } t \\ Qyp, & \text{otherwise.} \end{cases}$$

2.2 Axioms, Rules of Inference and Replacement rules

FOL is built on top of propositional logic in the sense that all sentences can be treated as propositional forms and therefore FL1, FL2, FL3, MP, and all the replacement rules are applicable in FOL. We only need a few more rules to deal with quantifiers, and equality.

AXIOM 2.8 The following are axiom schemas involving quantifiers:

- 1) $\forall x p \rightarrow p \frac{t}{x}$, where x can be substituted with t in p.
- 2) $\forall x(p \to q) \to \forall xp \to \forall xq$
- 3) $p \rightarrow \forall xp$ where *x* does not occur freely in *p*.
- 4) If ϕ is an axiom then $\forall x \phi$ is an axiom.

AXIOM 2.9 The following axioms are for = symbol:

1) x = x.

2) $x = y \rightarrow (p \rightarrow p')$ where x occurs freely in p and p' is obtained by replacing any occurance of x by y.

Proposition 2.10 $x = y \rightarrow y = x$.

Proof | 1) x = x (axiom)

- 2) x = y (given)
- 3) $x = y \rightarrow (x = x \rightarrow y = x)$ (axiom)
- 4) $x = x \rightarrow y = x$ (M.P on 2 and 3)
- 5) y = x (M.P. on 1 and 4)

Proposition 2.11 x = y, $y = z \rightarrow x = z$.

Proof $\mid 1$) y = z (axiom)

- 2) x = y (given)
- 3) $x = y \rightarrow (y = z \rightarrow x = z)$ (axiom)
- 4) $y = z \rightarrow x = z$ (M.P on 2 and 3)
- 5) x = z (M.P. on 1 and 4)

The only additional replacement rule is the Quantifier Negation:

PROPERTY 2.12 (Quantifier Negation) For any formula p,

$$\neg \forall xp \iff \exists x \neg p$$

$$\neg \exists xp \iff \forall x \neg p$$

2.3 Proof Methods

Proof methods like Direct proof, Indirect proof (contradiction) are also valid in FOL. The additional proof methods are:

Proposition 2.13 (Universal Generalization) If $\vdash p(a) \implies \vdash \forall x p(x)$, where a is a some constant.

Proof Suppose that $\vdash p(a)$. Then there is a sequence $r_0, ..., r_n$ such that each r_i :

- 1) Is either an axiom,
- 2) Or is inferred using M.P from some $r_i : p, r_k : t \to r_i$ where j, k < i,
- 3) Or it follows from a replacement rule on r_i , j < i.

Since a proofs are of finite length, it is possible to find a new variable *x* which has not occured in any of r_i . In the case where r_i is an axiom, $\forall x r_i$ is also an axiom. If r_i is derived from MP from t and $t \to r_i$ then using free generalization $t \to \forall xt$, and using universal MP $\forall x(t \to r_i) \to \forall xt \to \forall xr_i$. Thus using MP we get that $\forall xr_i$ is true whenever r_i, r_k is true. Therefore $\vdash \forall xp$. If r_i follows from a replacement rule, then the same replacement rule can be applied on $\forall xr_i$ to get $\forall xr_i$ since replacement rules only act on substrings.

LINEAR ALGEBRA

1 FIELDS

DEFINITION 1.1 (Fields) A field is a triplet, $(F, +, \times)$, where F is a set, and $+, \times : F \times F \to F$ such that:

- 1) (F, +) is an abelian group. The identity of this group is denoted 0.
- 2) $(F \{0\}, \times)$ is an abelian group. The identity of this group is denoted 1.
- 3) The "product" (i.e. \times operator) is distributive over the "addition" (i.e. + operation).

The additive inverse of $a \in F$ is denoted -a and the multiplicative is denoted a^{-1} or 1/a.

Proposition 1.2 (Field Properties) Let $x, y \in F$ then:

- 1) 0.y = 0.
- 2) (-x)y = -(xy).
- 3) (-x)(-y) = xy.

Proof | 1) Using the distribution property y(0+0) = y.0 + y.0. Adding -y.0 on both sides gives us y.0 = 0.

2) Again using distributive property:

$$(-x)y + (x)y = 0$$

$$\implies (-x)y = -(xy)$$

3) In the above property just substituting -y instead of y gives us (-x)(-y) = xy.

DEFINITION 1.3 An ordered field $(F, +, \times)$ is a field with an ordering < on F such that

- $1) \ y < z \implies x + y < x + z.$
- 2) If x > 0, $y > 0 \implies xy > 0$.

Proposition 1.4 If $(F, +, \times)$ is an ordered field and then:

- 1) $x > 0 \implies -x < 0$ and vice versa.
- 2) If x > 0 and y < z then xy < xz.
- 3) If x < 0 and y < z then xy > xz.
- 4) If $x \neq 0$ then $x^2 > 0$.
- 5) $0 < x < y \implies 0 < 1/y < 1/x$.

Proof | 1) Since x > 0 and x + (-x) = 0, adding the inverse on boths sides gives 0 > -x (due to property 1 of ordered fields).

2) Since z - y > 0,

$$\implies z - y > 0$$

$$\implies x(z-y) > 0$$
, (using property 2 of ordered fields) $\implies xz > xy$.

- 3) If x < 0 then -x > 0. Applying the same method as above but multiplying -x instead of x gives the result.
- 4) Since x > 0, by property 2 in definition of ordered field we can conclude that $x^2 > 0$.
- 5) Observe that if xy > 0 and x > 0 then either y > 0 or y < 0. If y < 0 then -y > 0 and $-xy > 0 \implies xy < 0$ leading to a contradiction. Thus if xy > 0 and x > 0 then y > 0. Since x > 0 and x > 0 then y > 0. Since x > 0 and x > 0 then y > 0. Since x > 0 and x > 0 then y > 0.

$$\implies 1 < y(1/x)$$
$$\implies 1/y < 1/x$$

Example 1.5 The following are examples of fields:

- 1) $(\{0,1\},+,\times)$ where 1+1=0. This is called the trivial field.
- 2) $(\mathbb{Q}, +, \times)$
- 3) $(\mathbb{R}, +, \times)$
- 4) $(\mathbb{C}, +, \times)$
- 5) Consider the field $\mathbb{F}_4 = \{0, 1, \omega, \omega^2\}$, with operations given by the following rules:
 - i) 1+1=0 and $1+\omega+\omega^2=0$.
 - ii) $\omega \times \omega^2 = 1$ and $\omega \times \omega = \omega^2$.
- 6) $(\mathbb{Z}/p\mathbb{Z}, \oplus_p, \otimes_p)$, where *p* is prime, is a field.

THEOREM 1.6 If $(F, +, \times)$ is a field then either $\mathbb{Q} \subset F$ or $\mathbb{Z}/p\mathbb{Z} \subset F$. In the former case F is said to have characteristic \mathbb{Q} and in the later it is said to have characteristic p.

DEFINITION 1.7 A field $(F, +, \times)$ is said to be algebraically closed if for each polynomial p(x) with co-efficients in F then $\exists a \in F$ such that p(a) = 0.

THEOREM 1.8 For every field $(F, +, \times)$ is a subfield of an algebraically closed field.

PART VI TOPOLOGY

MEASURE THEORY

1 Intuition of Measure

Consider any interval of \mathbb{R} , (a,b]. Intuitively we define the length of this interval as λ ((a,b]) =b-a. Now is it possible to extend this concept of length to any subset of \mathbb{R} ? For that we would wish to find a function λ such that the following properties are true:

- 1) $\lambda : \mathfrak{P}(\mathbb{R}) \to \mathbb{R}^+$ is a set function.
- 2) If I = (a, b] is any interval in \mathbb{R} then $\lambda(I) = b a$.
- 3) Length of union of two disjoint subsets $A, B \in \mathfrak{P}(\mathbb{R})$ must be the sum of their individual lengths, i.e. $\lambda(A+B) = \lambda(A) + \lambda(B)$. This can be extended to any countable union of pairwise disjoint
- 4) The translation of any subset $A \in \mathfrak{P}(\mathbb{R})$ must have the same length, i.e. $\forall x \in \mathbb{R}$, $\lambda(A+x) =$ $\lambda(A)$.

Conjecture 1.1 The function λ as described above does not exist.

To prove this we must first prove some other propositions. We use the following notations: let \sim be an equivalence relation on \mathbb{R} defined as:

$$x \sim y \text{ if } x - y \in \mathbb{Q}$$

Let [x] denote the equivalence classes of x, and let $\Lambda = \mathbb{R}/\sim$.

Proposition 1.2 The set Λ is uncountable.

Proof Let $\alpha \in \Lambda$ be an equivalence class. Let $x \in \alpha$ be a fixed point. Then for each $y \in \alpha$ it is possible to find a unique rational number given by x - y. Hence α is a countable set. Since the countable union of countable sets is countable, but \mathbb{R} is uncountable, it follows that Λ must be uncountable.

Let $\Omega \subset \mathbb{R}$ be set constructed in the following way: for each $\alpha \in \Lambda$ we know that a point can be found between (0,1); so take one such point from each α and put it in the set Ω . From this construction it is easy to see that $\Omega \subset (0,1)$.

PROPOSITION 1.3 Let $p, q \in \mathbb{Q}$, then either $\Omega + q = \Omega + p$ or $\Omega + q \cap \Omega + p = \emptyset$.

Proof Let's say $\Omega + q \cap \Omega + p \neq \emptyset$. Then for $a, b \in \Omega$ we can find an $x \in \Omega + q \cap \Omega + p$ such that x = a + p = b + q. Hence a - b = q - p for all $a, b \in \Omega$. Since q - p is rational, a - b will also be rational. Hence a and b belong to the same equivalence class. But since we only chose one element from each equivalence class in the construction of Ω , we must have a=b. Hence q=p, making the two sets in question equal.

Hence from this proposition we can say that if $q \neq p$ then $\Omega + q \cap \Omega + p = \emptyset$.

Proposition 1.4 Let λ be a length function as defined above. If $A \subset B \subset \mathbb{R}$ then $\lambda(A) \leq \lambda(B)$.

Proof | Since $B = A \cup (B - A)$, and A and B - A are disjoint,

$$\lambda(B) = \lambda(A \cup (B - A))$$
$$= \lambda(A) + \lambda(B - A)$$
$$\geq \lambda(A)$$

Hence proving our claim.

Now we are ready to prove conjecture 1.1.

proof of conjecture 1.1 Consider the union of sets $\Omega + q$:

$$\bigcup_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} \Omega + q$$

From proposition 1.3 we know that this is a union of disjoint sets. Hence,

$$\lambda \left(\bigcup_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} \Omega + q \right) = \sum_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} \lambda \left(\Omega + q \right)$$

Using property 4 of λ ,

$$\lambda \left(\bigcup_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} \Omega + q \right) = \sum_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} \lambda \left(\Omega \right) = 0$$

Let $x \in (0,1)$. Let $a \in \Omega \cap [x]$. Then we know that x-a=q for some rational q. Since $a \in \Omega$ implies $a \in (0,1)$, the range of q must be -1 < q < 1. Hence x = a+q for some -1 < q < 1 implying that

$$x \in \bigcup_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} \Omega + q$$

further implying that,

$$(0,1) \subset \bigcup_{\substack{q \in \mathbb{Q} \\ -1 < q < 1}} \Omega + q$$

Using proposition 1.4,

$$1 \le \lambda \left(\bigcup_{\substack{q \in \mathbf{Q} \\ -1 < q < 1}} \Omega + q \right)$$

Hence we have arrived at a contradiction. This shows that a function λ with the properties 1,2,3,4 as given above does not exist.

Hence this shows that to construct a general notion of length (called the *measure*) we must let go of one of the four properties: 1,2,3, or 4. Since 2, 3, 4 are essential for a notion of length, we change 1 to be the following:

1) $\lambda : \mathscr{B}(\subset \mathfrak{P}(\mathbb{R})) \to \mathbb{R}^+$ is a set function.

This means that we are discarding the notion that all subsets of \mathbb{R} can be assigned a length.

2 FORMAL NOTION OF MEASURE

DEFINITION 2.1 A class of subsets, \mathscr{A} , of a set Ω is said to be a semi-algebra if:

- 2) closed under finite intersections,
- 3) The compliment of any set in \mathscr{A} can be expressed as unions of finite pairwise disjoint sets

DEFINITION 2.2 A class of subsets, \mathscr{A} , of a set Ω is said to be an algebra if:

- 1) $\Omega \in \mathcal{A}$,
- 2) closed under finite intersections,
- 3) Closed under compliment.

DEFINITION 2.3 A class of subsets, \mathcal{A} , of a set Ω is said to be a σ -algebra if:

- 1) $\Omega \in \mathcal{A}$,
- 2) closed under countable intersections,
- 3) Closed under compliment.

Proposition 2.4 Let Ω be a set and $\mathscr{A}_{\alpha} \subset \mathfrak{P}(\Omega)$ be algebras, where $\alpha \in I$ (no assumptions have been made on *I*). Then

$$\mathscr{A} = \bigcap_{\alpha \in I} \mathscr{A}_{\alpha}$$

is also an algebra.

Proof | Since $\Omega \in \mathscr{A}_{\alpha}$, $\forall \alpha \in I$, implies that $\Omega \in \mathscr{A}$. If $A_1, ..., A_n \in \mathscr{A}$ then $A_1, ..., A_n \in \mathscr{A}_{\alpha}$ for any $\alpha \in I$. Since \mathscr{A}_{α} is an algebra, it follows that $\bigcap_{i=1}^{n} A_{i}$ is in \mathscr{A}_{α} for any $\alpha \in I$; hence it is also in \mathscr{A} . If $A \in \mathscr{A}$ then it is in every \mathscr{A}_{α} and hence its compliment is in every \mathscr{A}_{α} .

The above proposition also applies to σ -algebras as well. Essentially the same argument applies, just that instead of finite sets we have countable intersection, i.e. $n \to \infty$. To denote that something applies to both algebras and σ -algebras we use the notation $(\sigma -)$ algebra.

DEFINITION 2.6 A class $\mathscr C$ of subsets of set Ω is said to *generate* an $(\sigma-)$ algebra $\mathscr A$ if $\mathscr C \subset \mathscr A$ and if for any $(\sigma -)$ alegbra $\mathscr{A}' \supset \mathscr{C}$ implies that $\mathscr{A} \subset \mathscr{A}'$.

Proposition 2.7 Every class $\mathscr{C} \subset \mathfrak{P}(\Omega)$ generates an $(\sigma-)$ algebra.

Proof Let \mathcal{A}_{α} , $\alpha \in I$ be all the $(\sigma-)$ algebras which contain the class \mathscr{C} . Then we know that,

$$\mathscr{A} = \bigcap_{\alpha \in I} \mathscr{A}_{\alpha}$$

is also an $(\sigma -)$ algebra, and it will contain \mathscr{C} . From the definition of intersection it follows that $\mathscr{A} \subset \mathscr{A}_{\alpha}$. Hence \mathscr{A} is the $(\sigma-)$ algebra generated by \mathscr{C} .

Lemma 2.8 If $\mathscr S$ is a semi-algebra and $\mathscr A$ is the algebra generated by $\mathscr S$ then

$$A \in \mathscr{A} \iff \exists$$
 pairwise disjoint $E_1, ..., E_n \in \mathscr{S}$ such that $A = \bigcup_{j=1}^n E_j$

Proof | (⇐) Assuming that *A* is finite union of disjoint sets $E_1, ..., E_n \in \mathcal{S}$ we need to show that $A \in \mathcal{A}$. Since $E_1, ..., E_n$ are in \mathcal{S} it follows that they are also in \mathcal{A} . It further follows that the compliment of each $E_i \in \mathcal{A}$. Since

$$\left(\bigcap_{j=1}^n E_j^c\right)^c = \bigcup_{j=1}^n E_j,$$

and algebras are closed under finite intersections, $A \in \mathcal{A}$.

 (\Longrightarrow) Let \mathscr{B} be the class defined as:

$$\mathscr{B} = \{B \mid \text{where } B = \bigcup_{j=1}^{n} F_j, \ F_j \in \mathscr{S} \text{ are pairwise disjoint.} \}$$

If we can show that \mathscr{B} is an algebra containing \mathscr{S} then by definition of generated algebras $\mathscr{A} \subset \mathscr{B}$. This shows that any element of \mathscr{A} can be expressed as a finite union of disjoint sets. Hence all that remains is to show that \mathscr{B} is an algebra containing \mathscr{S} .

- 1) Clearly by the definition, any element of \mathscr{S} is also in \mathscr{B} . Hence $\mathscr{S} \subset \mathscr{B}$ and hence $\Omega \in \mathscr{B}$.
- 2) Let $B_1, ..., B_n \in \mathcal{B}$ then

$$\bigcap_{j=1}^{n} B_{j} = \bigcap_{j=1}^{n} \bigcup_{i=1}^{m} F_{ji}$$

$$= \bigcup_{i=1}^{m} \bigcap_{j=1}^{n} F_{ji}, \text{ using definition of } \mathscr{B}$$

$$= \bigcup_{i=1}^{m} E_{i}, \text{ where, } E_{i} = \bigcap_{j=1}^{n} F_{ji}$$

Since $\mathscr S$ is closed under finite intersections, this shows that $\mathscr B$ is closed under finite intersections.

3) Let $B \in \mathcal{B}$. Then,

$$B^{c} = \left(\bigcup_{i=1}^{m} F_{i}\right)^{c}$$

$$= \bigcap_{i=1}^{m} F_{i}^{c}$$

$$= \bigcap_{i=1}^{m} \bigcup_{j=1}^{n} E_{ij} \text{ (using property 3 of semi-algebras)}$$

$$= \bigcup_{j=1}^{n} E_{j}, \text{ where } E_{j} = \bigcap_{i=1}^{m} E_{ij}$$

Since $\mathscr S$ is closed under finite intersections, this shows that $\mathscr B$ is closed under compliment.

 \mathcal{B} is indeed an algebra containing \mathcal{S} , hence completing our proof.

Definition 2.9 Let \mathscr{C} be a class of subsets of Ω such that $\emptyset \in \mathscr{C}$, and let $\mu : \mathscr{C} \to \mathbb{R}^+$ be a

- 1) $\mu(\emptyset) = 0$, 2) If $E_1, ..., E_n \in \mathscr{C}$ are pairwise disjoint and if $\bigcup_{j=1}^n E_j \in \mathscr{C}$ then $\mu(\bigcup_{j=1}^n E_j) = \sum_{j=1}^n \mu(E_j)$.

then μ is said to be an additive measure.

Observe that if we have a $A \in \mathscr{C}$ *such that* $\mu(A) < \infty$ *then:*

$$\mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$$
$$\mu(A) = \mu(A) + \mu(\emptyset)$$
$$\implies \mu(\emptyset) = 0$$

Hence the first condition is just a consequence of the second if a subset with finite measure exists. Secondly observe that if $E \subset F \in \mathscr{C}$ and $F - E \in \mathscr{C}$ then:

$$\mu(E \cup F - E) = \mu(F) = \mu(E) + \mu(F - E)$$

this means that $\mu(E) \leq \mu(F)$, the equality being true when $\mu(E) = \infty$. In the case where $\mu(E) < \infty$ we have the identity $\mu(F-E) = \mu(F) - \mu(E)$. This property is called monotonicity.

Observe that if A, B are any sets in \mathscr{C} *and A* \cup *B* \in \mathscr{C} *then additivity implies that* $\mu(A \cup B) \leq \mu(A) + \mu(B)$ *,* since

$$\mu(A \cup B) = \mu(A \cup (B - A)) = \mu(A) + \mu(B - A) \le \mu(A) + \mu(B)$$
. (using monotonicity)

Example 2.12 Let Ω be any non-empty set and let $X_1, X_2, ... \in \Omega$. Also let $a_1, a_2, ... \geq 0$ be some constants. Then define a measure $\mu : \mathscr{C} \subset (\mathfrak{P}(\Omega)) \to \mathbb{R}^+$ as:

$$\mu(A) = \sum_{j \ge 1} a_j 1\{X_j \in A\}$$

where,

$$1\{X_j \in A\} = \begin{cases} 1, & \text{if } X_j \in A \\ 0, & \text{if } X_j \notin A \end{cases}$$

It is easy to see that this measure is indeed additive.

Definition 2.13 Let \mathscr{C} be a class of subsets of Ω such that $\emptyset \in \mathscr{C}$, and let $\mu : \mathscr{C} \to \mathbb{R}^+$ be a function such that:

- 1) $\mu(\emptyset) = 0$, 2) If $E_1, E_2, ... \in \mathscr{C}$ are pairwise disjoint and if $\bigcup_{j \geq 1} E_j \in \mathscr{C}$ then $\mu(\bigcup_{j \geq 1} E_j) = \sum_{j \geq 1} \mu(E_j)$.

then μ is said to be a σ -additive measure.

Example 2.14 Let $\Omega = (0,1)$ and $\mathscr{C} = \{(a,b] \mid 0 \le a < b < 1 \} \cup \{\emptyset\}$. Define a function $\mu : \mathscr{C} \to \mathbb{R}^+$ as:

$$\mu(a,b] = \begin{cases} \infty, & \text{if } a = 0\\ b - a, & \text{if } a \neq 0 \end{cases}$$

Clearly since a subset with finite measure exists $\mu(\emptyset) = 0$. Also since,

$$(a,b] = \bigcup_{j=1}^{n} (a_j, a_{j+1}], \text{ where } a_1 = a \& a_n = b$$

when a = 0, $a_1 = 0$ and hence applying the measure on both sides we get ∞ . When $a \neq 0$, so are none of the a_i and hence:

$$\mu(a,b] = b - a = (a_2 - a_1] + ... + (a_n - a_{n-1}] = \sum_{j=1}^{n} \mu(a_j, a_{j+1}]$$

Hence μ is additive. But it is possible to show that μ is not σ -additive. Consider for example the interval (0,1/2], and let $x_1=1/2,x_2,...$ be a monotonic decreasing sequence in (0,1) which converges to 0. Then

$$(0,1/2] = \bigcup_{j\geq 1} (x_{j+1}, x_j]$$

Clearly $\mu(0, 1/2] = \infty$, but $\mu(x_{i+1}, x_i] = x_{i+1} - x_i$ which is finite.

Definition 2.15 Let \mathscr{C} be a class of subsets of Ω and $\mu:\mathscr{C}\to\mathbb{R}^+$ be any set function. Then,

- 1) μ is said to be *continuous from below* at $E \in \mathscr{C}$ if \forall $(E_n)_{n\geq 1} \in \mathscr{C}$, $E_n \uparrow E \implies \lim \mu(E_n) = \mu(E)$.
- 2) μ is said to be *continuous from above* at $E \in \mathscr{C}$ if \forall $(E_n)_{n\geq 1} \in \mathscr{C}$, $E_n \downarrow E$ and \exists n_0 such that $\mu(E_{n_0}) < \infty$ implies that $\lim \mu(E_n) = \mu(E)$.
- If the condition of existence of n_0 such that $\mu(E_{n_0}) < \infty$ is removed then some unwanted cases arise. For example consider a measure on some class of \mathbb{R} . Consider the sequence of intervals $I_n = [n, \infty)$. Clearly $\bigcup_{n \geq 1} [n, \infty) = \emptyset$, but $\mu(\emptyset) = 0$ while $\mu(I_n) = \infty$, \forall n. This shows that no measure can be continuous from above on \mathbb{R} . This leads us to add the condition of existence of some set in the sequence which has finite measure.

Lemma 2.17 Let \mathscr{A} be an algebra and let $\mu : \mathscr{A} \to \mathbb{R}^+$ be an additive measure, then:

- 1) μ is σ -additive $\implies \mu$ is continuous.
- 2) μ is continuous from below $\implies \mu$ is σ -additive.
- 3) μ is continuous from above at \emptyset and μ is a finite measure $\implies \mu$ is σ -additive.

Proof | 1) Assume μ is σ -additive, let $E \in \mathscr{C}$, and let $(E_n)_{n\geq 1} \in \mathscr{C}$ such that $E_n \uparrow E$. Let $F_1 = E_1$ and $F_n = E_n - E_{n-1}$. Clearly by this definition $\bigcup_{j\geq 1} F_j = \bigcup_{j\geq 1} E_j = E$. Then,

$$\mu\left(\bigcup_{j\geq 1} F_j\right) = \sum_{j\geq 1} \mu(F_j) = \lim_{n\to\infty} \sum_{j\geq 2}^n \left(\mu(E_j) - \mu(E_{j-1})\right) + \mu(E_1) = \lim \mu(E_n)$$

Hence μ is continuous from below.

For proving continuity from above, let $(E_n)_{n\geq 1} \in \mathscr{C}$ such that some $\mu(E_{n_0}) < \infty$ and $E_n \downarrow E$. Let $G_m = E_{n_0} - E_{n_0+m}$ be a sequence of sets, $\bigcup_{m \ge n_0} G_m = E_{n_0} - E$. Using the fact the μ is continuous from below,

$$\lim_{m\to\infty}\mu(G_m)=\mu(E_{n_0})-\mu(E)$$

hence,

$$\lim_{m \to \infty} \mu(E_{n_0}) - \lim_{m \to \infty} \mu(E_{n_0+m}) = \mu(E_{n_0}) - \mu(E)$$

$$\lim_{m \to \infty} \mu(E_{n_0+m}) = \mu(E)$$

This is the same as $\lim \mu(E_n) = \mu(E)$.

2) Assume that μ is continuous from below. Let $E \in \mathcal{C}$ be represented as the union of pairwise disjoint sets E_1, E_2, \dots Let F_1, F_2, \dots be a sequence defined as:

$$F_k = \bigcup_{j=1}^k E_j$$

Clearly F_k is a sequence that conerges to E from below. Using the fact that μ is additive and continuous from below:

$$\mu(E) = \lim_{n \to \infty} \mu(F_n) = \lim_{n \to \infty} \mu\left(\bigcup_{j=1}^n E_j\right) = \lim_{n \to \infty} \sum_{j=1}^n \mu(E_j) = \sum_{j \ge 1} \mu(E_j)$$

Hence μ is σ -additive.

3) Assume that μ is continuous from above at \emptyset . Let $A \in \mathscr{C}$ and let $A_1, A_2, ...$ be pairwise disjoints sets whose union is A. Define the sets E_1 , E_2 , ... as

$$E_n = A - \bigcup_{j=1}^n A_j$$

Clearly $E_n \downarrow \emptyset$. Using finiteness, additivity, and continuity from above at \emptyset ,

$$\lim_{n \to \infty} \mu(E_n) = 0$$

$$\implies \lim_{n \to \infty} \mu\left(A - \bigcup_{j=1}^n A_j\right) = 0$$

$$\implies \mu(A) = \sum_{j \ge 1} \mu(A_j)$$

This completes the proof.

THEOREM 2.18 (Extension Theorem) Let $\mathscr S$ be a semi-algebra, $\mu:\mathscr S o\mathbb R^+$ be an additive measure, and let \mathscr{A} be the algebra generated by \mathscr{S} . Then there exists a $\nu : \mathscr{A} \to \mathbb{R}^+$, called the *extension* of μ , such that:

- 1) $\nu(A) = \mu(A), \ \forall \ A \in \mathscr{S}$. 2) ν is additive.

In addition such a measure on \mathcal{A} is unique.

Proof | Let ν : \mathscr{A} → \mathbb{R}^+ be a function defined in the following way. Using lemma 2.8 we know that for any $A \in \mathscr{A}$ we can find disjoint $E_1, ..., E_n \in \mathscr{S}$ such that $A = \bigcup_{i=1}^n E_i$; then define ν as,

$$\nu(A) = \sum_{j=1}^{n} \mu(E_j)$$

First we must show that ν is well defined, since there can be more than one sequence of pairwise disjoint sets whose union is A. Let $E_1, ..., E_n$ and $F_1, ..., F_m$ be two sequences of pairwise disjoint sets in $\mathscr S$ whose union is A. Then,

$$\nu(A) = \sum_{j=1}^{n} \mu(E_j)$$

and

$$\nu(A) = \sum_{j=1}^{m} \mu(F_j).$$

Since $A = \bigcup_{k=1}^m F_k$

$$\implies E_j = \bigcup_{k=1}^m F_k \cap E_j$$

$$\implies \mu(E_j) = \sum_{k=1}^m \mu(F_k \cap E_j)$$

Hence,

$$\nu(A) = \sum_{j=1}^{n} \sum_{k=1}^{m} \mu(F_k \cap E_j)$$

Similarly it can shown that,

$$\mu(F_j) = \sum_{k=1}^n \mu(E_k \cap F_j)$$

and therefore

$$\sum_{j=1}^{m} \mu(F_j) = \sum_{j=1}^{n} \mu(E_j).$$

Hence ν is well defined.

Clearly for $A \in \mathcal{S}$ we have $\nu(A) = \mu(A)$. For additivity, let $A_1, A_2, ..., A_n$ be pairwise disjoint sets in \mathcal{A} whose union is A. Again from lemma 2.8 for each $A_j = \bigcup_{k=1}^{n_j} E_{jk}$ where $E_{j1}, ..., E_{jn_j} \in \mathcal{S}$ are pairwise disjoint. Let $F_1, ..., F_N$, where $N = \sum_{j=1}^n n_j$, be defined as $F_1 = E_{11}$, $F_2 = E_{12}$ and so on. Then,

$$A = \bigcup_{j=1}^{N} F_j$$

$$\Longrightarrow \nu(A) = \sum_{j=1}^{N} \mu(F_j) = \sum_{j=1}^{n} \sum_{k=1}^{n_j} \mu(E_{jk})$$

since

$$\nu(A_j) = \sum_{j=1}^{n_j} \mu(E_{jk}),$$

$$\implies \nu(A) = \sum_{j=1}^{n} \nu(A_j)$$

Therefore ν is additive.

For uniqueness, let's assume that two such functions v_1 and v_2 exist. From property 1 we know that $\nu_1(A) = \nu_2(A) \forall A \in \mathcal{S}$. Let $A \in \mathcal{A}$ and let $A_1, ..., A_n \in \mathcal{S}$ be pairwise disjoint with union A. Then using additivity

$$\nu_1(A) = \sum_{j=1}^n \nu_1(A_j) = \sum_{j=1}^n \nu_2(A_j) = \nu_2(A)$$

This completes the proof.

This is theorem can be easily generalised for σ -additive measures. The only change in the proof would be considering countably many A_i in the proof of additivity.

3 Caratheodory Theorem

Until now we have shown that extension ν of σ -additive measure μ on semi-algebra $\mathscr S$ is also σ -additive on algebra \mathscr{A} generated by \mathscr{S} . The goal of this section is to show that the extension $\pi: \mathscr{F} \to \mathbb{R}^+$, where \mathscr{F} is the σ -algebra generated by \mathscr{S} is σ -additive and unique. In order to do this we follow the following steps:

- 1) Define a $\pi^* : \mathfrak{P}(\Omega) \to \mathbb{R}^+$ and show that it is something called an *outer measure*.
- 2) Define a class $\mathcal{M} \subset \mathfrak{P}(\Omega)$, and show that it is a σ -algebra.
- 3) Show that $\mathscr{A} \subset \mathscr{M}$. This has the implication that $\mathscr{F} \subset \mathscr{M}$.
- 4) Show that $\pi^*|_{\mathscr{M}}$ is σ -additive and $\pi^*|_{\mathscr{M}} = \nu$. Hence $\pi^*|_{\mathscr{M}}$ is an extension.
- 5) Finally show that this extension is unique.

DEFINITION 3.1 Let $A \subset \Omega$ for some set Ω . Then the collection $\{E_i \subset \Omega \mid i \geq 1\}$ is said to be a covering of A if $A \subset \bigcup_{i>1} E_i$. Note that at least one covering exists for every subset and that

Definition 3.2 Let $\pi^* : \mathfrak{P}(\Omega) \to \mathbb{R}^+$ for some set Ω defined in the following way: let $A \subset \Omega$ and let ${E_i \in \mathcal{A} \mid i \geq 1}$ be a covering of A then

$$\pi^*(A) = \inf_{\{E_i\}} \sum_{i \ge 1} \nu(E_i)$$

This is to be read as infimum of $\sum_{i>1} \nu(E_1)$ over all coverings of A which are in the algebra \mathscr{A} .

Definition 3.3 Let \mathscr{C} be a class of subsets of Ω such that $\emptyset \in \mathscr{C}$, and let $\mu : \mathscr{C} \to \mathbb{R}^+$ be a function such that:

- 2) μ is monotone, i.e. $E \subset F$ where $E, F \in \mathscr{C} \implies \mu(E) \leq \mu(F)$, 3) μ is sub-additive, i.e. $E \in \mathscr{C}$ and $\{E_i \in \mathscr{C} \mid i \geq 1\}$ is a covering of E then $\mu(E) \leq \sum_{i \geq 1} \mu(E_i)$.

Then μ is said to be an outer measure.

Proposition 3.4 The function π^* as defined above is an outer measure.

Proof | Since $\emptyset \subset \Omega$, and it is a subset of every possible covering, clearly for the covering $\{E_i = \emptyset \mid \forall i \geq 1\}$,

$$\sum_{i>1} \nu(E_i) = 0$$

and hence $\pi^*(\emptyset) = 0$.

Let $E \subset F$ where $E, F \in \mathscr{C}$. Let $\{F_j \mid j \geq 1\}$ be a covering of F. Since $E \subset F$ any covering of F is also a covering of E. If $E_j = F \cap F_j$ then $E_j \subset F_j$ and $\bigcup_{j \geq 1} E_j = F \supset E$. Hence $\{E_j\}$ is a covering E. Since ν is a σ -additive measure,

$$\nu(E_j) \le \nu(F_j)$$
 and hence, $\sum_{i>1} \nu(E_i) \le \sum_{i>1} \nu(F_i)$.

Since for every covering of F a covering of E can be constructed in the above manner such that the above inequality is true, hence π^* is monotone.

For sub-additivity let $E \subset \Omega$ and let $\{E_i \in \mathscr{A} \mid i \geq 1\}$ be a covering of E. In the case when $\pi^*(E_i) = \infty$, clearly $\pi^*(E) \leq \pi^*(E_i)$. In the case when $\pi^*(E_i) < \infty \ \forall \ i \geq 1$, for each $\epsilon > 0$ we can find a covering of E_i , say $\{F_{ij} \in \mathscr{A} \mid j \geq 1\}$ such that,

$$\pi^*(E_i) \leq \sum_{i>1} \nu(F_{ij}) \leq \pi^*(E_i) + \frac{\epsilon}{2^i}$$

Hence,

$$\sum_{i\geq 1} \pi^*(E_i) \leq \sum_{j\geq 1} \nu(\bigcup_{j\geq 1} F_{ij}) = \sum_{i\geq 1} \nu(E_i) \leq \sum_{i\geq 1} \pi^*(E_i) + \epsilon$$

Using $\pi^*(E) \leq \sum_{i\geq 1} \nu(E_i)$, we get

$$\pi^*(E) \le \sum_{i>1} \nu(E_i) \le \sum_{i>1} \pi^*(E_i) + \epsilon$$

Since this is true for arbitrary ϵ we conclude that π^* is sub-additive.

DEFINITION 3.5 A set $A \subset \Omega$ is said to be measurable if $\forall E \subset \Omega$,

$$\pi^*(E) = \pi^*(E \cap A) + \pi^*(E \cap A^c)$$

Define \mathcal{M} to be the set of all measurable subsets of Ω .

 $igcolon{igcap}{}$ Using sub-additivity of π^* it is possible to prove that

$$\pi^*(E) \le \pi^*(E \cap A) + \pi^*(E \cap A^c)$$

since $E = (E \cap A) \cup (E \cap A^c)$. Hence showing that A is measurable just boils down to showing

$$\pi^*(E) \ge \pi^*(E \cap A) + \pi^*(E \cap A^c)$$

PROPOSITION 3.7 The alegebra \mathscr{A} of subsets of Ω is a subset of \mathscr{M} .

Proof | Let *A* ∈ \mathscr{A} and let *E* ∈ Ω . If we can show that *A* is measurable, we prove the proposition. Let $\{E_i \in \mathscr{A}\}$ be a covering of *E*, and let $\epsilon > 0$. In the case when $\pi^*(E_i) = \infty$ even for a single *i*, it is

clear that the inequality

$$\pi^*(E) \ge \pi^*(E \cap A) + \pi^*(E \cap A^c)$$
 (3.1)

holds. In the case when $\pi^*(E_i) < \infty$ for all $i \ge 1$ let $\epsilon > 0$. Then

$$\pi^*(E) \le \sum_{i>1} \nu(E_i) \le \pi^*(E) + \epsilon$$

Since $E \cap A \subset \bigcup_{i>1} E_i \cap A$,

$$\pi^*(E \cap A) \le \sum_{i>1} \nu(E_i \cap A)$$

Using similar arguments for A^c

$$\pi^*(E \cap A^c) \le \sum_{i>1} \nu(E_i \cap A^c)$$

Adding these two inequalities

$$\pi^*(E \cap A^c) + \pi^*(E \cap A) \le \sum_{i \ge 1} \nu(E_i)$$

Here I have used the additivity of ν since $E_i \cap A$ and $E_i \cap A^c$ are in the algebra. Using inequality (1):

$$\pi^*(E \cap A^c) + \pi^*(E \cap A) \le \sum_{i>1} \nu(E_i) \le \pi^*(E) + \epsilon$$

Since this is true for arbitrary ϵ , we have

$$\pi^*(E \cap A^c) + \pi^*(E \cap A) \le \pi^*(E)$$

Hence we have shown that *A* is measurable, completing the proof.

Proposition 3.8 \mathcal{M} is a σ -algebra.

Proof | Since every algebra is a subset of \mathcal{M} clearly $\Omega \in \mathcal{M}$. Also it is easy to see that if $A \in \mathcal{M}$ then $A^c \in \mathcal{M}$ since replcaing A by A^c in the condition of measurable set does not change the inequality. The only condition that remains to be checked is closure under countable union. First consider the finite case. Let $A, B \in \mathcal{M}$. We are required to show that $\forall E \subset \Omega$,

$$\pi^*(E) \ge \pi^*(E \cap (A \cup B)) + \pi^*(E \cap (A \cup B)^c).$$

Since

$$\pi^*(E) = \pi^*(E \cap A) + \pi^*(E - A),$$

$$\pi^*(E) = \pi^*(E \cap B) + \pi^*(E - B)$$

Thus

$$\pi^*(E - A) = \pi^*((E - A) \cap B) + \pi^*((E - A) - B)$$

= $\pi^*(E \cap A^c \cap B) + \pi^*(E - (A \cup B)^c),$

implying that

$$\pi^*(E) = \pi^*(E \cap A) + \pi^*(E \cap A^c \cap B) + \pi^*(E - (A \cup B)^c)$$

$$\geq \pi^*(E \cap A \cup B) + \pi^*(E - (A \cup B)^c).$$

The final inequality comes from the sub-additivity of π^* and the fact that $(E \cap A) \cup (E \cup A^c \cup B) = E \cap A \cup B$. Hence $A \cup B \in \mathcal{M}$. Now extending this to the countable case, let $A_j \in \mathcal{M}$, $A = \bigcup_{j \geq 1} A_j$, and $B_n = \bigcup_{j=1}^n A_j$. Using closure under finite unions we can say that

$$\pi^*(E) = \pi^*(E \cap B_n) + \pi^*(E - B_n)$$

Since $B_n \subset A \implies E - B_n \supset E - A$. Hence,

$$\pi^*(E) \ge \pi^*(E \cap B_n) + \pi^*(E - A)$$

Define the sets $F_1 = A_1$, ..., $F_j = A_j - B_{j-1}$, ...; and observe that $F_j \in \mathcal{M}$, $A = \bigcup_{j \ge 1} F_j$, and that these sets are pairwise disjoint. If we define $G_n = \bigcup_{j=1}^n F_j$, then using a similar logic as B_n

$$\pi^*(E) \ge \pi^*(E \cap G_n) + \pi^*(E - A).$$

Using induction one can show that

$$\pi^*(E \cap \bigcup_{j=1}^n F_j) = \sum_{j=1}^n \pi^*(E \cap F_j).$$

For n = 1 it is obviously true. Assuming it to be true for some n,

$$\pi^*(E \cap \bigcup_{j=1}^{n+1} F_j) = \pi^*(E \cap \bigcup_{j=1}^{n+1} F_j \cap F_{n+1}) + \pi^*(E \cap \bigcup_{j=1}^{n+1} F_j \cap F_{n+1}^c)$$

$$= \pi^*(E \cap F_{n+1}) + \pi^*(E \cap \bigcup_{j=1}^{n} F_j)$$

$$= \pi^*(E \cap F_{n+1}) + \sum_{j=1}^{n} \pi^*(E \cap F_j)$$

$$= \sum_{j=1}^{n+1} \pi^*(E \cap F_j).$$

Hence using this property,

$$\pi^*(E) \ge \pi^*(E \cap G_n) + \pi^*(E - A) = \sum_{j=1}^n \pi^*(E \cap F_j) + \pi^*(E - A).$$

Taking the limit $n \to \infty$,

$$\pi^*(E) \ge \sum_{j>1} \pi^*(E \cap F_j) + \pi^*(E - A) \ge \pi^*(E \cap A) + \pi^*(E - A).$$

The final inequality comes from sub-additivity of π^* . This completes the proof that \mathcal{M} is a σ -algebra.

 \bigcirc Since the algebra $\mathscr A$ is a subset of $\mathscr M$ and $\mathscr M$ is a $\sigma-$ algebra it follows that $\mathscr M$ contains the $\sigma-$ algebra generated by $\mathscr A$.

Proposition 3.10 $\pi^*(A) = \nu(A) \ \forall \ A \in \mathscr{A}$.

Proof | Let $A \in \mathscr{A}$. Consider the covering $\{A_1 = A, A_j = \emptyset \ j \ge 2\}$. Then $\pi^*(A) \le \nu(A)$ by definition. The opposite inequality can be proved by constructing sets $F_1 = E_1$, $F_n = E_n - \bigcup_{j=1}^{n-1} E_j$, where $\{E_n \in \mathscr{A}\}$ is some covering of A. As discussed in the previous proof F_j are pairwise disjoint. Since,

$$A \subset \bigcup_{j \ge 1} F_j$$

$$\implies A = \bigcup_{j \ge 1} F_j \cap A$$

$$\implies \nu(A) = \nu(\bigcup_{j \ge 1} F_j \cap A)$$

$$\implies \nu(A) = \sum_{j \ge 1} \nu(F_j \cap A) \le \sum_{j \ge 1} \nu(E_j)$$

The last inequality comes from the fact that $F_j \cap A \subset E_j$. This inequality shows that $\nu(A)$ is infact the infimum of the sum over all coverings of A. Hence $\pi^*(A) = \nu(A)$.

Proposition 3.11 $\pi^*|_{\mathscr{M}}$ is σ -additive.

Proof | It is clear that $\pi(\emptyset) = 0$. Let $A_1, A_2, ... \in \mathcal{M}$ be pairwise disjoint sets and let their union be A. Since \mathcal{M} is a σ -algebra $A \in \mathcal{M}$. Since we have already shown that for any pairwise disjoint sets $F_1, F_2, ... \in \mathcal{M}$ and any $E \subset \Omega$

$$\pi^*(E \cap \bigcup_{j=1}^n F_j) = \sum_{j=1}^n \pi^*(E \cap F_j).$$

Letting E = A and $F_i = A_i$,

$$\pi^*(\bigcup_{j=1}^n A_j) = \pi^*(A \cap \bigcup_{j=1}^n A_j) = \sum_{j=1}^n \pi^*(A \cap A_j) = \sum_{j=1}^n \pi^*(A_j).$$

Since $\bigcup_{j=1}^{n} A_j \subset \bigcup_{j\geq 1} A_j$, using monotonicity of π^*

$$\pi^*(A) \ge \sum_{j=1}^n \pi^*(A_j).$$

Taking the limit

$$\pi^*(A) \ge \sum_{j>1} \pi^*(A_j).$$

Since using sub-additivity we already know that

$$\pi^*(A) \le \sum_{j \ge 1} \pi^*(A_j)$$

it follows that π^* acting on \mathcal{M} is σ -additive.

DEFINITION 3.12 A set Ω is said to be σ -finite with respect to a function μ if there exists a sequence $E_1, E_2, ... \subset \Omega$, such that $E_i \uparrow \Omega \implies \mu(E_i) < \infty$.

DEFINITION 3.13 A class $\mathscr{G} \subset \mathfrak{P}(\Omega)$ is said to be a monotone class if all monotonic sequences of sets converge in \mathscr{G} .

PROPOSITION 3.14 If \mathscr{G}_{α} where $\alpha \in I \subset \mathbb{R}$ are monotone classes then the intersection $\bigcap_{\alpha \in I} \mathscr{G}_{\alpha}$ is also a monotone class.

Proof If A_1, A_2 ... is any monotone sequence in $\bigcap_{\alpha \in I} \mathcal{G}_{\alpha}$ then it is in all \mathcal{G}_{α} and hence converge in all \mathscr{G}_{α} .

Using this proposition one can define the smallest monotone class generated by some class & as the intersection of all the monotone classes containing \mathscr{C} .

Lemma 3.16 Let \mathscr{A} be any algebra of subsets of Ω , \mathscr{G} be the monotone class generated by \mathscr{A} , and let \mathscr{F} be the σ -algebra generated by \mathscr{A} . Then $\mathscr{G} = \mathscr{F}$.

Proof | Let A_j ∈ \mathscr{F} monotonically increase (decrease) to A; since the countable union (intersection) of A_i is in \mathscr{A} so A must also be in \mathscr{F} . Since $\mathscr{A} \subset \mathscr{F}$ it follows that $\mathscr{G} \subset \mathscr{F}$.

All that remains to be shown is $\mathscr{F} \subset \mathscr{G}$. If we can show that \mathscr{G} is an algebra, then for any $A_1, A_2, ... \in \mathcal{G}$ let $B_i = \bigcup_{i=1}^{l} A_i \in \mathcal{G}$ (since if \mathcal{G} is an algebra it will be closed under finite union), it follows that $\bigcup_{j>1} B_j = \bigcup_{j>1} A_j \in \mathscr{G}$ (using the fact that \mathscr{G} is monotone class). To prove that \mathscr{G} is an algebra define $A \in \mathcal{G}$ the class:

$$\mathcal{M}(A) = \{ M \in \mathcal{G} \mid A - M, M - A, A \cap M \in \mathcal{G} \}.$$

Clearly $\mathcal{M}(A) \subset \mathcal{G}$. Let $E_1 \subset E_2 \subset ... \in \mathcal{M}(A)$ converge to some E. Then $E - A = \bigcup_{i>1} (E_i - A)$, but since by definition $E_i - A \in \mathscr{G}$ and $E_i - A \subset E_{i+1} - A$ it follows that $E - A \in \mathscr{G}$ (since \mathscr{G} is monotone class). Similarly it can be shown that A - E and $A \cap E$ are in \mathscr{G} , and thus $E \in \mathscr{M}(A)$. The same argument can be used to show that if $E_1 \supset E_2 \supset ... \in \mathcal{M}(A)$ converges to E then $E \in \mathcal{M}(A)$, hence concluding that $\mathcal{M}(A)$ is a monotone class. $\mathcal{M}(A)$ is also symmetric in the sense that if $A \in \mathcal{M}(B) \iff B \in \mathcal{M}(A)$, because if $A - B, B - A, A \cap B \in \mathcal{G}$ then both $A \in \mathcal{M}(B)$ and $B \in \mathcal{M}(B)$.

Let $A, B \in \mathscr{A}$ then we know that $A - B, B - A, A \cap B \in \mathscr{A}$. Hence $B \in \mathscr{M}(A)$ forall $A, B \in \mathscr{A}$, implying that $\mathscr{A} \subset \mathscr{M}(A) \ \forall \ A \in \mathscr{A}$. Since \mathscr{G} is the smallest monotone class containing \mathscr{A} , $\mathscr{G} \in \mathscr{M}(A) \ \forall \ A \in \mathscr{A}$. Since $M \in \mathscr{A}$ forall $M \in \mathscr{G}$ using the symmetry it implies that $A \in \mathscr{M}(M)$. Hence $\mathscr{A} \in \mathscr{M}(M)$. Therefore $\mathscr{G} = \mathscr{M}(M)$ for all $M \in \mathscr{G}$. This means that \mathscr{G} is closed under finite difference and intersection, proving that it is an algebra. This completes the proof.

THEOREM 3.17 (Uniqueness of Extension) Let $\mu_1, \mu_2 : \mathscr{F} \to \mathbb{R}^+$ be σ -additive functions, where \mathscr{F} is the σ -algebra generated by algebra \mathscr{A} of a set Ω which is σ -finite with respect to μ_1 and μ_2 (with the additional condition that the finite sequence exists in \mathscr{A}), be such that $\mu_1|_{\mathscr{A}} = \mu_2|_{\mathscr{A}}$ then $\mu_1 = \mu_2$.

Proof Let $E_1, E_2, ... \in \mathcal{A}$ be the sequence such that $\mu_1(E_n) < \infty$ and $\mu_2(E_n) < \infty$ for all n and $E_n \uparrow \Omega$. This sequence is gauranteed by the σ -finiteness of Ω . Define $\mathcal{B}_n = \{E \in \mathcal{F} \mid \mu_1(E \cap E_n) = 0\}$ $\mu_2(E \cap E_n)$. Clearly $\mathscr{B}_n \subset \mathscr{F}$. If $E \in \mathscr{A}$ then $E \cap E_n \in \mathscr{A}$ and since $\mu_1|_{\mathscr{A}} = \mu_2|_{\mathscr{A}}$ it follows that $\mathscr{A} \subset \mathscr{B}_n$. Let $A_1, A_1, ... \in \mathscr{B}$ be a sequence monotonically converging to some A. Since

$$\mu_1(A_j \cap E_n) = \mu_2(A_j \cap E_n)$$

$$\implies \mu_1(A \cap E_n) = \mu_2(A \cap E_n)$$

where we have used lemma 2.17 and the finiteness of E_n in case of continuity from above. It follows that \mathscr{B}_n is a monotone class. Since it contains the algebra \mathscr{A} as well it must contain the monotone class generated by \mathscr{A} . Using lemma 3.16 we can conclude that $\mathscr{F} \subset \mathscr{B}_n$ and hence $\mathscr{B}_n = \mathscr{F}$. Let $A \in \mathscr{F}$ then

$$\lim_{n\to\infty} \mu_1(A\cap E_n) = \lim_{n\to\infty} \mu_2(A\cap E_n)$$

$$\implies \mu_1(A) = \mu_2(A)$$

Therefore the extension is unique.

As a result of this theorem we can conclude that the function $\pi^*:\mathscr{F}\to\mathbb{R}^+$ is a $\sigma-$ additive extension of the σ -additive measure $\nu: \mathscr{A} \to \mathbb{R}^+$ on the σ -algebra \mathscr{F} generated by the algebra \mathscr{A} and is uniquely determined. This is known as Caratheodory theorem. The formal statement of this theorem is:

THEOREM 3.18 (Caratheodory Theorem) Let \mathscr{A} be an algebra, $\nu:\mathscr{A}\to\mathbb{R}^+$ be a $\sigma-$ additive measure, and \mathscr{F} be the σ -algebra generated by \mathscr{A} . Then there exists a unique σ -additive measure $\pi: \mathcal{M} \to \mathbb{R}^*$ such that $\pi|_{\mathscr{A}} = \nu$. Explicity this measure is given by restricting the outer measure $\pi^* : \mathfrak{P}(\Omega) \to \mathbb{R}^+$,

$$\pi^*(A) = \inf_{\{E_j \in \mathscr{A}\}} \sum_{j \ge 1} \nu(E_j)$$
, where $\{E_j\}$ is a covering of A

on \mathcal{M} ; i.e. $\pi = \pi^*|_{\mathcal{M}}$.

4 LEBESGUE MEASURE

In this section we define a σ -additive measure on a class of subsets $\mathbb R$ and formalise the notion of length of subsets of \mathbb{R} . The procedure to do this is as follows:

- 1) Construct a semi-algebra \mathscr{S} and a σ -additive measure $\mu: \mathscr{S} \to \mathbb{R}^+$.
- 2) Use theorem theorem 2.18 to construct a σ -additive measure ν on the algebra \mathscr{A} generated by \mathscr{S} .
- 3) Use the caratheodory theorem to determine the σ -measure on \mathscr{F} , the σ -algebra generated by

Definition 4.1 Let $\mathscr{S} = \{\emptyset, \mathbb{R}, (a,b], (a,\infty), (-\infty,b]\}$. It is easy to check that \mathscr{S} is a semi-algebra of subsets of \mathbb{R} . Let $F: \mathbb{R} \to \mathbb{R}$ be a non-decreasing function. Then define $\mu_F: \mathscr{S} \to \mathbb{R}^+$ as:

$$\mu_F(\emptyset) = 0, \quad \mu_F(\mathbb{R}) = F(\infty), \quad \mu_F((a,b]) = F(b) - F(a),$$

$$\mu_F((a,\infty)) = F(\infty) - F(a), \quad \mu_F((-\infty,b]) = F(b) - F(-\infty).$$

Observe that if we construct a function $G: \mathbb{R} \to \mathbb{R}$ given by $G(x) = \lim_{n \to \infty} F(x_n)$ when $-\infty < x < \infty$ and $G(\pm \infty) = F(\pm \infty)$, where $x_n \downarrow x$. It is easy to verify that G is non-decreasing, right continuous and $\mu_G(A) = \mu_F(A)$, $\forall A \in \mathscr{S}$. Hence without loss of generalization it is fair to assume that F is always right continuous. Also observe that μ_F is monotone.

Proposition 4.3 μ_F is a σ -additive measure.

Proof | By definition we have that $\mu_F(\emptyset) = 0$. Consider the interval $(a,b] = \bigcup_{j=1}^n (a_j,b_j]$, where $(a_j,b_j]$ are pairwise disjoint. Then it is always possible to reindex the intervals such that $b_j = a_{j+1}$ when j < n, $a_{n+1} \equiv b_n = b$, and $a_1 = a$ (this uses both the fact that the intervals are disjoint and their union is (a,b]). Since,

$$F(b) - F(a) = F(a_{n+1}) - F(a_1)$$

$$= F(a_{n+1}) - F(a_2) + F(a_2) - F(a_1)$$

$$= (F(a_{n+1}) - F(a_n)) + \dots + (F(a_2) - F(a_1))$$

$$= \sum_{j=1}^{n} F(a_{j+1}) - F(a_j)$$

This sum can again be reindexed such that

$$F(b) - F(a) = \sum_{j=1}^{n} F(b_j) - F(a_j)$$

This implies that

$$\mu_F((a,b]) = \sum_{j=1}^n \mu_F((a_j,b_j])$$

Hence μ_F is additive. Now consider the case when $(a,b] = \bigcup_{j\geq 1} (a_j,b_j]$ where $(a_j,b_j]$ are pairwise disjoint. Using monotonicity and additivity of μ_F

$$\mu_F((a,b]) \ge \mu_F(\bigcup_{j=1}^k (a_j,b_j]) = \sum_{j=1}^k \mu_F((a_j,b_j]).$$

Taking the limit $k \to \infty$,

$$\mu((a,b]) \ge \sum_{j>1} \mu_F((a_j,b_j]).$$

All that remains to be proven is that the \leq ineqality. To prove this fix an $\epsilon > 0$. Choose a c > a such that $F(c) - F(a) < \epsilon$, choose $d_j > b_j$ such that $F(d_j) - F(b_j) < \epsilon/2^j$ and $[c,b] \subset \bigcup_{j \geq 1} (a_j,d_j)$ (such choices are possible since F is continuous from the right). Using Heine-Borel theorem, since [c,b] is closed and bounded and $\{(a_j,d_j)\}$ forms an open cover of [c,b], there exists a finite subcover $\{(a_j,d_j)\mid j\leq k\}$ of [c,b]. Without loss of generality we can assume that $c\in(a_1,d_1)$ and $b\in(a_k,d_k)$. Since,

$$\mu_F((a,b]) = F(b) - F(a) < F(b) - F(c) + \epsilon = \mu_F((b,c]) + \epsilon$$

Then using the montonicity of μ_F ,

$$\mu_{F}((c,b]) \leq \mu_{F}(\bigcup_{j=1}^{k} (a_{j},d_{j}])$$

$$\leq \sum_{j=1}^{k} \mu_{F}((a_{j},d_{j}])$$

$$\leq \sum_{j=1}^{k} F(d_{j}) - F(a_{j})$$

$$< \sum_{j=1}^{k} F(b_j) - F(a_j) + \epsilon$$

$$< \sum_{j\geq 1} F(b_j) - F(a_j) + \epsilon.$$

Thus for any $\epsilon > 0$

$$\sum_{j\geq 1} \mu_F((a_j, b_j]) \leq \mu_F((a, b]) < \sum_{j\geq 1} \mu_F((a_j, b_j]) + 2\epsilon$$

It is easy to show that this is true also for intervals $(-\infty, b]$ and (a, ∞) . This proves σ –additivity.

Using the extension theorem and then caratheodory theorem the function $\mu_F^*: \mathscr{F} \to \mathbb{R}^+$

$$\mu_F^*(A) = \inf \left\{ \sum_j \mu_F(A_j) \mid A_j \in \mathscr{A} \& A \subset \bigcup_{j \ge 1} A_j \right\}$$

is a unique σ -additive extension of μ on the σ -algebra \mathcal{M}_{μ^*} (which is the set of measurable functions w.r.t. μ^*). The measure space $(\mathbb{R}, \mathcal{M}_{\mu^*}, \mu_F^*)$ is called Lebesgue-Stieltjes measure space. In the case when F(a) = a and hence $\mu((a,b]) \equiv \mu_F((a,b]) = b - a$, $(\mathbb{R}, \mathcal{M}_{\mu^*}, \mu^*)$ is called the Lebesgue measure space.

Convention From now on we refer to $(\Omega, \mathcal{F}, \mu)$ a measure space if Ω is some set, \mathcal{F} is some σ -algebra containing Ω , and μ is a σ -additive measure. From now we also adopt the convention of calling σ -additive measures as just measures.

5 COMPLETE MEASURES

DEFINITION 5.1 A measure space $(\Omega, \mathcal{F}, \mu)$ is said to be *complete* if $A \in \mathcal{F}$, $\mu(A) = 0$ and $E \subset A$ imply that $E \in \mathcal{F}$.

DEFINITION 5.2 Let $(\Omega, \mathcal{F}, \mu)$ measure space and $A \in \mathcal{F}$ such that $\mu(A) = 0$. Then subsets of A are said to be *negligible sets*.

Proposition 5.3 If $(\Omega, \mathcal{F}, \mu)$ is a measure space and \mathcal{F}' is defined as

$$\mathscr{F}' = \{ A \cup N \mid A \in \mathscr{F} \& N \subset E \in \mathscr{F} \text{ where } \mu(E) = 0 \}.$$

Then \mathcal{F}' is a σ -algebra.

Proof | Let $A \in \mathscr{F}$ and $E = \emptyset$ (implying that $\mu(E) = 0$) then $A \cup N = A$ where $N \subset E$, hence $A \in \mathscr{F}'$. It further follows that $\mathscr{F} \subset \mathscr{F}'$. This means that $\Omega \in \mathscr{F}'$.

Let $A \in \mathscr{F}'$. Then $A = E \cup N$ where $E \in \mathscr{F}$ and $N \subset H$ such that $\mu(H) = 0$. One can then write $A^c = E^c \cap N^c = (E^c \cap H^c) \cup (E^c \cap (H-N))$. Clearly $E^c \cap H^c \in \mathscr{F}$ and $E^c \cap (H-N) \subset H-N \subset H$. Hence $A^c \in \mathscr{F}'$.

Let $A_1, A_2, ... \in \mathscr{F}'$. Let $A_j = E_j \cup N_j$ where $E_j \in \mathscr{F}$, $N_j \subset H_j$ and $H_j \in \mathscr{F}$ such that $\mu(H_j) = 0$. Then

$$\bigcup_{j\geq 1}A_j=\left(\bigcup_{j\geq 1}E_j\right)\cup\left(\bigcup_{j\geq 1}N_j\right)$$

Since $\bigcup_{j\geq 1} E_j \in \mathscr{F}$, $\bigcup_{j\geq 1} N_j \subset \bigcup_{j\geq 1} H_j$ and $\mu(\bigcup_{j\geq 1} H_j) = \sum_{j\geq 1} \mu(H_j) = 0$, it follows that $\bigcup_{j\geq 1} A_j \in \mathcal{F}$ \mathscr{F}' .

DEFINITION 5.4 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\mathcal{F}' \supset \mathcal{F}$ be a σ -algebra as defined in proposition 5.3. Then define $\mu': \mathscr{F}' \to \mathbb{R}^{\hat{+}}$ as follows. If $A \in \mathscr{F}'$ and $A = E \cup N$ where $A \in \mathscr{F}$ and N is a negligible set then

$$\mu'(A) = \mu(E)$$

PROPOSITION 5.5 μ' is a unique, σ -additive extension of μ .

Proof Let $E \cup N = F \cup M$ where $E, F \in \mathscr{F}$ and $N \subset H, M \subset H'$ where $H, H' \subset \mathscr{F}$ and $\mu(H) = \mu(H') = 0$. Clearly $E \subset E \cup N = F \cup M \subset F \cup H'$. Using monotonicity we have $\mu(E) \le \mu(F)$. Similarly it can be shown that $\mu(F) \le \mu(E)$, implying that $\mu(E) = \mu(F)$. This shows that $\mu'(E \cup N) = \mu(E) = \mu(F) = \mu'(F \cup M)$. Hence μ' is well defined.

Clearly $\mu'(\emptyset) = 0$. Let $A_1, A_2, ... \in \mathscr{F}'$ be pairwise disjoint, and let their representation be $A_i = E_i \cup N_i$ where $E_i \in \mathscr{F}$ and N_i are negligible. By definition $\mu'(A_i) = \mu(E_i)$. Also since A_i are paorwise disjoint so will be E_i . Thus:

$$\mu'(\bigcup_{j\geq 1} A_j) = \mu'(\bigcup_{j\geq 1} E_j \cup \bigcup_{j\geq 1} N_j)$$

$$= \mu(\bigcup_{j\geq 1} E_j)$$

$$= \sum_{j\geq 1} \mu(E_j)$$

$$= \sum_{j\geq 1} \mu'(A_j)$$

Hence μ' is σ -additive.

Let $A \in \mathscr{F}$. Then clearly $\mu'(A) = \mu'(A \cup \emptyset) = \mu(A)$. Thus μ' is an extension of μ . To prove that this is a unique extension let $\mu_1, \mu_2 : \mathscr{F}' \to \mathbb{R}^+$ be σ -additive functions such that $\mu_1(A) = \mu_2(A) = \mu(A) \ \forall \ A \in \mathscr{F}$. Then for some $E \cup N$, where $E, H \in \mathscr{F}$, $N \subset H$, and $\mu(H) = 0$:

$$\mu_1(E \cup N) \le \mu_2(E \cup H) = \mu_2(E) \le \mu_2(E \cup N)$$

Similarly it can be shown that $\mu_1(E \cup N) \ge \mu_2(E \cup N)$. Hence μ' is also unique.

Proposition 5.6 The measure space $(\Omega, \mathcal{F}', \mu')$ is complete.

Proof \mid If $A \in \mathcal{F}'$, $\mu'(A) = 0$, $A = F \cup M$ where $F \in \mathcal{F}$ and M is negligible. Then $\mu(F) = \mu'(A) = 0$. Thus we could simply make the choice $M \subset F$ and hence A = F. Therefore shown that if $\mu'(A) = 0$ then $A \in \mathscr{F}$. Let $E \subset F$. Then we can simply represent E as $\emptyset \cup E$. Since $\emptyset \in \mathscr{F}$ and $E \subset A \in \mathscr{F}$ where $\mu(A) = 0$, it follows that $E \in \mathscr{F}'$.

Proposition 5.7 Let $(\Omega, \mathcal{M}, \pi^*|_{\mathcal{M}})$ be the measure space as defined in theorem 3.18. This is a complete measure space.

Proof | Let B ∈ M, $\pi^*(B) = 0$, and A ⊂ B. For any F ⊂ Ω,

$$F \cap A \subset A \subset B$$
,

hence $\pi^*(F \cap A) \leq \pi^*(B) = 0$. Since $F \cup A^c \subset F \implies \pi^*(F \cup E^c) \leq \pi^*(F)$. Adding these two inequalities we get:

$$\pi^*(F) \ge \pi^*(F \cap A) + \pi^*(F \cap A^c).$$

Thus $A \in \mathcal{M}$.

6 INTEGRATION

In this section we would like to formulate the concept of integral in the context of measure spaces. In the Riemann integral we first partition the domain and then approximate then integral to be:

$$\int f \approx \sum_{k>1} y_k (x_k - x_{k-1})$$

Using a similar concept we would later define an integral, called the Lebesgue integral, where we partition the *y*-axis, take the inverse of that interval to get a set in the domain, and then use a measure to find the "length" of this interval. Then we approximate the integral as follows:

$$\int f \approx \sum_{k>1} y_k \mu(f^{-1}(A_k))$$

See fig. 2 to understand this better. But in order to define this integral the function must have the property that its inverse belongs to the σ -algebra on which the measure μ is defined. For this a new class of functions known as measurable functions is defined which hold this property.

DEFINITION 6.1 Let (X, \mathcal{T}) be a topological space. Then the σ -algebra generated by the open sets of this space is called the *Borel* σ -algebra, and represented $\mathcal{B}(X, \mathcal{T})$.

In the case when $X = \mathbb{R}^n$ and \mathscr{T} is the usual topology on \mathbb{R} , the Borel σ -algebra is simply denoted $\mathscr{B}(\mathbb{R}^n)$.

DEFINITION 6.2 Let $(\Omega, \mathscr{F}, \mu)$ be a measure space, and $f : \Omega \to \mathbb{R}$ be a function Ω then f is said to be \mathscr{F} – measurable, or simply measurable, if $B \in \mathscr{B}(\mathbb{R}) \implies f^{-1}(B) \in \mathscr{F}$.

In general if $(\Omega_1, \mathscr{F}_1, \mu_1)$ and $(\Omega_2, \mathscr{F}_2, \mu_2)$ are measure spaces then $f: \Omega_1 \to \Omega_2$ is said to be $\langle \mathscr{F}_1, \mathscr{F}_2 \rangle$ -measurable if $A \in \mathscr{F}_2 \implies f^{-1}(A) \in \mathscr{F}_1$. Hence \mathscr{F} -measurable functions are just $\langle \mathscr{F}, \mathscr{B}(\mathbb{R}) \rangle$ -measurable.

Lemma 6.3 Let $(\Omega, \mathscr{F}, \mu)$ be a measure space and $f: \Omega \to \mathbb{R}$. Then f is measurable $\iff f^{-1}((-\infty, x]) \in \mathscr{F}$.

Proof | Before we begin proving this lemma, note that $\mathscr{B}(\mathbb{R})$ is the σ -algebra generated by the usual topology \mathscr{T} on \mathbb{R} . Let $\mathscr{C} = \{(-\infty, x] \mid x < \infty\}$ and \mathscr{G} be the σ -algebra generated by \mathscr{C} . Since for any $(-\infty, x]$ the sequence of elements $(-\infty, x_n) \in \mathscr{B}(\mathbb{R})$ where $x_n \downarrow x$ satisfies $(-\infty, x] = \bigcap_{j \geq 1} (-\infty, x_j)$. This shows that $(-\infty, x] \in \mathscr{B}(\mathbb{R})$ (using closure under countable intersection), further implying

(a) Riemann integral (b) Lebesgue integral

Figure 2: Visualization of the integral

that $\mathscr{G} \subset \mathscr{B}(\mathbb{R})$. Similarly it can be shown that any open set (x,y) can be expressed as countable unions and intersections of elements of \mathscr{G} , implying that $\mathscr{B}(\mathbb{R}) \subset \mathscr{G}$. Hence $\mathscr{B}(\mathbb{R}) = \mathscr{G}$.

 (\Longrightarrow) If f is measurable then $A \in \mathscr{B}(\mathbb{R}) \Longrightarrow f^{-1}(A) \in \mathscr{F}$, and since $(-\infty,x] \in \mathscr{B}(\mathbb{R})$ this implies that $f^{-1}((-\infty,x]) \in \mathscr{F}$.

(\iff) Let $\mathscr{M}=\{A\in\mathscr{B}(\mathbb{R})\mid f^{-1}(A)\in\mathscr{F}\}$. Since $\mathbb{R}\in\mathscr{B}(\mathbb{R})$ and $f^{-1}(\mathbb{R})=\{\omega\mid f(\omega)\in\mathbb{R}\}=\Omega\implies\Omega\in\mathscr{M}$. Also observing that f^{-1} preserves countable unions and compliments, if $A,A_1,...\in\mathscr{M}$ then $f^{-1}(A^c)=(f^{-1}(A))^c\in\mathscr{F}$ and $f^{-1}(\bigcup_{j\geq 1}A_j)=\bigcup_{j\geq 1}f^{-1}(A_j)$. This shows that \mathscr{M} is closed under compliments and countable unions. Hence \mathscr{M} is a σ -algebra. Since we are showing the backward implication we assume that $\mathscr{C}\subset\mathscr{M}$. Since \mathscr{M} is a σ -algebra containing \mathscr{C} it follows that $\mathscr{B}(\mathbb{R})\subset\mathscr{M}$. Since by definition of \mathscr{M} it is a subset of $\mathscr{B}(\mathbb{R})$ further follows that $\mathscr{M}=\mathscr{B}(\mathbb{R})$. Thus proving the lemma.

Note that the key to proving the lemma really was showing that $\mathscr{B}(\mathbb{R}) \subset \mathscr{M}$, which required the fact that $\mathscr{B}(\mathbb{R})$ was the σ -algebra generated by \mathscr{C} . Hence this theorem can be easily extended to any class \mathscr{C} which generates the σ -algebra $\mathscr{B}(\mathbb{R})$, in the following sense:

Lemma 6.5 Let $(\Omega, \mathscr{F}, \mu)$ be a measure space, \mathscr{C} be a class of subsets of \mathbb{R} which generates the σ -algebra $\mathscr{B}(\mathbb{R})$, and $f: \Omega \to \mathbb{R}$. Then f is measurable $\iff f^{-1}(A) \in \mathscr{F}$ where $A \in \mathscr{C}$.

Hence lemma 6.3 also holds if $(-\infty, x]$ is replaced with one of $(-\infty, x)$, (x, ∞) , or $[x, \infty)$.

DEFINITION 6.6 Let $(\Omega, \mathscr{F}, \mu)$ be a measure space, $E_1, ..., E_n \in \mathscr{F}$ be pairwise disjoint sets such that $\Omega = \bigcup_{j=1}^n E_j$, and 1_{E_j} be the indicator function of E_j . Then a *simple function* $f: \Omega \to \mathbb{R}$ is a function which can be written as:

$$f(\omega) = \sum_{j=1}^{n} c_j 1_{E_j}(\omega)$$

where $c_j \in \mathbb{R}$.

Proposition 6.7 Simple functions are measurable.

Proof \mid Let *f* : Ω → \mathbb{R} be a simple function expressed as:

$$f(\omega) = \sum_{i=1}^{n} c_{i} 1_{E_{i}}(\omega)$$

The set $f^{-1}((-\infty, x]) = \{\omega \mid f(\omega) \le x\}$ should belong to \mathscr{F} for f to be measurable by lemma 6.3. Notice that $f(\omega) \leq x$ only when $\omega \in E_i$ such that the corresponding $c_i \leq x$. Hence $f^{-1}((-\infty, x]) =$ $\bigcup_{j \mid c_j \leq x} E_j$. Since each $E_j \in \mathscr{F}$ so will be any finite union. Hence $f^{-1}((-\infty, x]) \in \mathscr{F}$.

DEFINITION 6.8 (Integral of Non-negative Simple functions) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let *f* be a non-negative simple function of the form

$$f(\omega) = \sum_{j=1}^{n} c_j 1_{E_j}(\omega), c_j \le 0$$

Then we define:

$$\int f = \sum_{j=1}^{n} c_j \mu(E_j)$$

The non-negative condition was applied to avoid cases like the following: $\mu(E_1) = \mu(E_2) = \infty$ and $c_1 = -c_2$. Then the sum on the RHS would have $\infty - \infty$, which is not well defined.

Proposition 6.9 The integral of non-negative simple function is well defined.

Proof | Let $f : \Omega \to \mathbb{R}$, { $E_1, ..., E_n$ }, { $F_1, ..., F_2$ } ∈ \mathscr{F} be two partitions of Ω , and f be represented as:

$$f(\omega) = \sum_{j=1}^{n} c_k 1_{E_j} = \sum_{j=1}^{n} d_k 1_{F_j}$$

where $c_j, d_j \geq 0$. Consider the case when $E_{j_0} \cap F_{k_0} \neq \emptyset$. If $\omega \in E_{j_0} \cap F_{k_0}$ then $f(\omega) = c_{j_0} = d_{k_0}$. Since

$$\mu(E_j) = \mu(E_j \cap \Omega)$$

$$= \mu(E_j \cap \bigcup_{k=1}^n F_k)$$

$$= \sum_{k=1}^n \mu(E_j \cap F_k),$$

it follows that

$$\int f = \sum_{i=1}^n \sum_{k=1}^n c_j \mu(E_j \cap F_k).$$

Similarly in case of F_i ,

$$\int f = \sum_{j=1}^n \sum_{k=1}^n d_k \mu(E_j \cap F_k).$$

When $E_i \cap F_k = \emptyset$ the corresponding term in the sum is 0, and when $E_i \cap F_k \neq \emptyset$ then $d_i = c_i$. Thus both the sums are equal.

Lemma 6.10 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, $f, g: \Omega \to \mathbb{R}$ be measurable functions, and α be some constant; then

- 1) αf ,
- 2) $f + \alpha$,
- 3) f + g,
- 4) f^2 ,
- 5) 1/f,
- 6) f^{\pm} , where $f^{\pm}(\omega) = \max(\pm f(\omega), 0)$,
- 7) |f|,
- 8) fg

are measurable functions.

Proof From lemma 6.3, in each case we only have to show that the inverse map of $(-\infty, x]$ belongs to \mathscr{F} , given that $A \in \mathscr{B}(\mathbb{R}) \implies f^{-1}(A), g^{-1}(A) \in \mathscr{F}$.

- 1) In this case we need to show that $\{\omega \mid \alpha f(\omega) \leq x\} \in \mathcal{F}$. When $\alpha = 0$, for all $x \geq 0$ the set in question is Ω and when x < 0 it is \emptyset . Both of these are in \mathscr{F} . When $\alpha > 0$, the set $\{\omega \mid \alpha f(\omega) \le 0\}$ $\{x\} = \{\omega \mid f(\omega) \le x/\alpha\} \in \mathcal{F}$. Similarly for $\alpha < 0$, $\{\omega \mid \alpha f(\omega) \le x\} = \{\omega \mid f(\omega) \ge x/\alpha\} \in \mathcal{F}$.
- 2) Using similar logic as above $\{\omega \mid -\infty < f(\omega) + \alpha \le x\} = \{\omega \mid -\infty < f(\omega) \le x \alpha\} \in \mathscr{F}$.
- 3) Consider the set $\{\omega \mid f(\omega) + g(\omega) \le x\}$. Using density of $\mathbb Q$ in $\mathbb R$ we know that it is always possible to find $r \in \mathbb{Q}$ such that $f(\omega) \leq r$ and hence $g(\omega) \leq x - r$. Thus $\{\omega \mid f(\omega) + g(\omega) \le x\} = \bigcup_{r \in \mathbb{N}} \{\omega \mid f(\omega) \le r\} \cap \{\omega \mid g(\omega) \le x - r\}$. Since each $\{\omega \mid f(\omega) \le r\}$ and $\{\omega \mid g(\omega) \leq x - r\}$ is in \mathscr{F} , by closure under countable unions and intersections $\{\omega \mid f(\omega) + g(\omega) \le x\} \in \mathscr{F}.$
- 4) Consider the set $\{\omega \mid f^2(\omega) \le x\}$. In the case when x < 0, the set $\{\omega \mid f^2(\omega) \le x\} = \emptyset \in \mathscr{F}$. In the case when $x \ge 0$, $\{\omega \mid f^2(\omega) \le x\} = \{\omega \mid -\sqrt{x} \le f(\omega) \le \sqrt{x}\} \in \mathscr{F}$.
- 5) Consider the set $\{\omega \mid 1/f(\omega) < x\}$. In the case when x > 0,

$$\{\omega \mid 1/f(\omega) < x\} = \{\omega \mid 1/f(\omega) < 0\} \cup \{\omega \mid 0 < 1/f(\omega) < x\}$$
$$= \{\omega \mid f(\omega) \le 0\} \cup \{\omega \mid 0 < f(\omega) \le 1/x\}$$

Since each set in the RHS is in \mathscr{F} it follows that $\{\omega \mid 1/f(\omega) < x\} \in \mathscr{F}$. When x = 0, $\{\omega \mid 1/f(\omega) < 0\} = \{\omega \mid f(\omega) < 0\} \in \mathcal{F}$. When x < 0 then

$$\{\omega \mid 1/f(\omega) < x\} = \{\omega \mid 0 > f(\omega) > 1/x\}$$

which is clearly in \mathcal{F} .

- 6) The set $\{\omega \mid f^+(\omega) \leq x\} = \{\omega \mid f(\omega) \leq x\}$ when $x \geq 0$, and $\{\omega \mid f^+(\omega) \leq x\} = \emptyset$ when x < 0. Thus $\{\omega \mid f^+(\omega) \le x\} \in \mathcal{F}$. Similarly since $\{\omega \mid f^-(\omega) \le x\} = \{\omega \mid f(\omega) \ge x\}$ when $x \ge 0$ (and \emptyset otherwise). Hence $\{\omega \mid f^-(\omega) \le x\} \in \mathscr{F}$.
- 7) Since $|f| = f^+ + f^-$, it is obvious that |f| is also measurable.

8) In the case of product of measurable functions, we simply use the identity:

$$fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$$

Since f + g, f^2 , and g^2 are measurable (by points 3,4) it follows that fg is also measurable (again by point 3).

Proposition 6.11 Let $(\Omega, \mathcal{F}, \mu)$ be measure space, $f: \Omega \to \mathbb{R}$ be some function, and $f_i:\Omega\to\mathbb{R}$ are a sequence of measurable functions. Then

- 1) $\sup f_n$,
- 2) $\inf f_n$,
- 3) $\limsup f_n$,
- 4) $\liminf f_n$, and
- 5) $\lim f_n$

are measurable functions.

Proof | 1) Consider the set { ω | sup f_n < x}. Since f_n ≤ sup f_n for all n, hence f_n < x. Thus

$$\{\omega \mid \sup f_n < x\} = \bigcup_{n \ge 1} \{\omega \mid f_n < x\} \in \mathscr{F}$$

- 2) Since $\inf f_n = -\sup\{-f_n\}$, it is clear that $\inf f$ is also measurable.
- 3) Since

$$\limsup f_n = \inf_n \sup_{m>n} f_n$$

and both the infimum and supremum of sequence of measurable functions is measurable, it follows that $\limsup f_n$ is also measurable.

- 4) Similar argument as above for $\lim \inf f_n$.
- 5) For converging sequences $\limsup f_n = \liminf f_n = \lim f_n$. Hence the limit of a converging sequence of functions is converging.

DEFINITION 6.12 A property P is said to be true almost everywhere w.r.t. μ , also written as a.e. (μ), if μ ({ $\omega \mid P$ is false }) = 0. In other words P is true everywhere except in a set with zero measure.

Proposition 6.13 Let f and g be simple functions, then:

1) Integral is linear, i.e.

$$\int af = a \int f \& \int f + g = \int f + \int g.$$

2) Integral is monotonic, i.e.

$$f \leq g \implies \int f \leq \int g$$
.

- 3) $\int f = 0 \iff f = 0$, a.e. (μ) . 4) If f = g a.e. (μ) , then $\int f = \int g$.

Proof | Let $\{E_i\}$, $\{F_i\}$ be a partition of Ω and let the representation of f, g be:

$$f(\omega) = \sum_{j \ge 1} c_j 1_{E_j}(\omega)$$
$$g(\omega) = \sum_{j \ge 1} d_j 1_{F_j}(\omega)$$

then:

1) The representation of *a f* would be:

$$f(\omega) = \sum_{j \ge 1} (ac_j) 1_{E_j}(\omega))$$

Thus its integration would be:

$$\int af = \sum_{j\geq 1} (ac_j)\mu(E_j)$$
$$= a\sum_{j\geq 1} c_j\mu(E_j)$$
$$= a\int f.$$

The representation of f + g would be:

$$(f+g)(\omega) = \sum_{j\geq 1} c_j 1_{E_j}(\omega) + \sum_{j\geq 1} d_j 1_{F_j}(\omega)$$
$$= \sum_{j\geq 1} \sum_{k\geq 1} (c_j + d_k) 1_{E_j \cap F_k}(\omega)$$

The final inequality is due to the fact that if $\omega \in E_j \cap F_k \neq \emptyset$ in which case we have c_j from the first sum and d_k from the second sum in the LHS and a $c_j + d_k$ in the RHS. Since both the summations are countable it is possible to write it out as a single sum (using the fact that product of countable sets is countable). Thus

$$\int (f+g) = \sum_{j\geq 1} \sum_{k\geq 1} (c_j + d_k) \mu(E_j \cup F_k)$$

$$= \sum_{j\geq 1} \sum_{k\geq 1} c_j \mu(E_j \cup F_k) + \sum_{j\geq 1} \sum_{k\geq 1} d_j \mu(E_j \cup F_k)$$

$$= \int f + \int g$$

2) If $\omega \in E_i \cap F_j \neq \emptyset$ then

$$c_i = f(\omega) \le g(\omega) = d_j,$$

and since

$$\int f = \sum_{i \ge 1} \sum_{j \ge 1} c_i \mu(E_i \cap F_j)$$

Either $E_i \cap F_j = \emptyset$, or $E_i \cap F_j \neq \emptyset$ in which case $c_i \leq d_j$. Thus

$$\int f \le \sum_{i>1} \sum_{j>1} d_j \mu(E_i \cap F_j) = \int g$$

3) Its clear that when f = 0, then $\int f = 0$. For the forward implication let $D = \{\omega \mid f > 0\}$ and $D_n = \{\omega \mid f > 1/n\}$. Clearly $D_n \uparrow D$. Since

$$f \ge f 1_{D_n} \ge \frac{1}{n} 1_{D_n}$$

$$0 = \int f \ge \int \frac{1}{n} 1_{D_n} = \frac{1}{n} \mu(D_n)$$

$$\implies \mu(D_n) \le 0 \implies \mu(D_n) = 0$$

Using monotone continuity from below, we get that $\mu(D) = 0$. Thus f = 0 a.e. (μ) .

4) Let h = f - g. Thus h = 0, a.e. (μ). From the previous property we know that $\int h = 0$. Then using linearity $\int f = \int g$.

Thus completing the proof.

The second property can be further generalised to $f \leq g$ a.e. (μ) implies that $\int f \leq \int g$ using the fourth property.

Lemma 6.15 Let $f: \Omega \to \mathbb{R}$ be a non-negative function, then there exists a sequence of non-negative simple functions $f_n: \Omega \to \mathbb{R}$ such that $f_n \uparrow f$.

Proof | Consider the sequence of simple functions $(f_n)_{n\geq 1}$ given by:

$$f_n(\omega) = \begin{cases} n, & \text{if } f(\omega) > n \\ \frac{k}{2^n}, & \text{if } \frac{k}{2^n} \le f(\omega) \le \frac{k+1}{2^n}, & 0 \le k \le n2^n - 1 \end{cases}$$

If $f(\omega) = \infty$, then $f_n(\omega) = n$ implying that $f_n(\omega) \to f(\omega)$. When $f(\omega) < \infty$, then $\exists n_0$ such that $f(\omega) < n_0$. If $n > n_0$ then

$$f_n(\omega) = \frac{[2^n f(\omega)]}{2^n} \le f(\omega).$$

Since $f \ge 0$ it follows that:

$$\frac{2^n f(\omega) - 1}{2^n} \le f_n(\omega) = \frac{[2^n f(\omega)]}{2^n} \le f(\omega)$$
$$\implies f(\omega) \le \lim_{n \to \infty} f_n(\omega) \le f(\omega)$$

Thus as $n \to \infty$ we get $f_n \to f$.

Now it is required to show that $f_{n+1} > f_n$. In the case when $f(\omega) = \infty$ clearly $f_n(\omega) = n < f_{n+1}(\omega) = n+1$. When $f(\omega) > n+1$, then $f_n(\omega) < f_{n+1}(\omega)$. When $n < f(\omega) < n+1$, we know that

$$f_{n+1}(\omega) = \frac{\left[2^{n+1}f(\omega)\right]}{2^{n+1}} \ge \frac{\left[n2^{n+1}\right]}{2^{n+1}} \ge n = f_n(\omega)$$

And finally when $f_n(\omega) < n < n+1$ then:

$$f_{n+1}(\omega) = \frac{\left[2^{n+1}f(\omega)\right]}{2^{n+1}}$$

Since for any x > 0 we have:

$$[2x] = \begin{cases} 2[x] + 1, & \text{if } \{x\} \ge 0.5\\ 2[x], & \text{if } \{x\} < 0.5 \end{cases}$$

Thus:

$$\frac{\left[2^{n+1}f(\omega)\right]}{2^{n+1}} = \begin{cases} \frac{2\left[2^{n}f(\omega)\right]+1}{2^{n+1}},\\ \frac{\left[2^{n}f(\omega)\right]}{2^{n}} \end{cases}$$

$$\implies f_{n+1}(\omega) \ge f_{n}(\omega)$$

Hence we have proved that $f_n \uparrow f$.

DEFINITION 6.16 (Definition of integral of non-negative functions) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $f: \Omega \to \mathbb{R}$ be a non-negative function, and f_n be a sequence of non-negative simple functions such that $f_n \uparrow f$. Then

$$\int f := \lim_{n \to \infty} \int f_n$$

Proposition 6.17 Integral in definition 6.16 is well defined.

Proof Let f_n, g_n be sequences of non-negative simple functions such that $f_n, g_n \uparrow f$. Let the representation of f_n , g_n be as follows,

$$f_n = \sum_{i \ge 1} c_{ni} 1_{E_{ni}}$$
$$g_n = \sum_{i \ge 1} d_{ni} 1_{F_{ni}},$$

let

$$I_n = \int f_n = \sum_{i \ge 1} c_{ni} \mu(E_{ni}) = \sum_{i \ge 1} \sum_{j \ge 1} c_{ni} \mu(E_{ni} \cap F_{nj})$$
$$J_n = \int g_n = \sum_{j \ge 1} d_{nj} \mu(F_{nj}) = \sum_{j \ge 1} \sum_{i \ge 1} d_{nj} \mu(F_{nj} \cap E_{ni}),$$

and let $\epsilon > 0$. Since we know that f_n and g_n converge to the same function, f, assuming that $\omega \in E_{nk} \cap F_{nl} \neq \emptyset$ it follows that $\exists N \text{ such that } n > N \text{ implies}$

$$|f_n(\omega) - g_n(\omega)| < \frac{\epsilon}{2^{k+l}\mu(E_{nk} \cap F_{nl})}$$

$$\implies |\sum_{i \ge 1} c_{ni} 1_{E_{ni}}(\omega) - \sum_{i \ge 1} d_{ni} 1_{F_{ni}}(\omega)| < \frac{\epsilon}{2^{k+l}\mu(E_{nk} \cap F_{nl})}$$

$$\implies |c_{nk} - d_{nl}| < \frac{\epsilon}{2^{k+l}\mu(E_{nk} \cap F_{nl})}.$$

Also,

$$|I_n - J_n| = \left| \sum_{j \ge 1} \sum_{i \ge 1} (c_{ni} - d_{nj}) \mu(F_{nj} \cap E_{ni}) \right|$$

In this sum we either have that $E_{ni} \cap F_{nj} = \emptyset$, or $E_{ni} \cap F_{nj} \neq \emptyset$ in which case we know that $|c_{ni} - d_{nj}|$ is arbitrarily close to zero. Hence we get

$$|I_n - J_n| \le \sum_{j \ge 1} \sum_{i \ge 1} |c_{ni} - d_{nj}| \, \mu(F_{nj} \cap E_{ni})$$

$$< \sum_{j \ge 1} \sum_{i \ge 1} \frac{\epsilon}{2^{i+j} \mu(E_{ni} \cap F_{nj})} \mu(F_{nj} \cap E_{ni}) = \epsilon$$

Thus $n > N \implies |I_n - J_n| < \epsilon$. Hence

$$\lim I_n = \lim J_n = \int f$$

proving that the integral is well defined.

Proposition 6.18 The properties in proposition 6.13 extend to non-negative measurable functions.

Proof Let f, g be non-negative measurable functions, let $f_n \uparrow f$, and $g_n \uparrow g$ where f_n , g_n are non-negative simple functions. Then:

1) Since $f_n \uparrow f \implies af_n \uparrow af$. Thus

$$\int af = \lim_{n \to \infty} \int af_n$$

$$= a \lim_{n \to \infty} \int f_n$$

$$= a \int f.$$

2) If $f \le g$ then there exists N such that $n \ge N \implies f_n \le g_n$. Thus

$$\int f_n \le \int g_n$$

$$\implies \lim_{n \to \infty} \int f_n \le \lim_{n \to \infty} \int g_n$$

$$\implies \int f \le \int g.$$

- 3) The proof for the third property did not assume anything about the function *f* thus it is true for non-negative functions too.
- 4) Since f = g a.e. (μ) , let $\epsilon > 0$, then there exists N such that n > N implies that

$$g_n - \epsilon < f_n < g_n + \epsilon, \text{ a.e. } (\mu)$$

$$\implies \int g_n - \epsilon \mu(\Omega) < \int f_n < \int g_n + \epsilon \mu(\Omega), \text{ everywhere}$$

$$\implies \lim_{n \to \infty} \int g_n - \epsilon \mu(\Omega) < \lim_{n \to \infty} \int f_n < \lim_{n \to \infty} \int g_n + \epsilon \mu(\Omega)$$

$$\implies \int g \le \int f \le \int g$$

$$\implies \int f = \int g$$

Thus completing the proof.

Theorem 6.19 (Monotone Convergence Theorem) If $(f_n)_{n\geq 1}$, f be non-negative measurable functions such that $f_n \uparrow f$ a.e. (μ) . Then,

$$\int f = \lim_{n \to \infty} \int f_n.$$

Proof