

Radiation Physics and Chemistry 65 (2002) 109-121

Radiation Physics and Chemistry

www.elsevier.com/locate/radphyschem

Near K-edge linear attenuation coefficients for Si, SiO₂ and Si₃N₄

Alan Owens^{a,*}, G.W. Fraser^b, S.J. Gurman^b

^a Science Payloads Technology Division, ESA/ESTEC, Postbus 299, 2200AG Noordwijk, Netherlands
^b Department of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK

Received 19 October 2001; accepted 7 January 2002

Abstract

We present tabulated near K-edge linear attenuation coefficients for a range of materials commonly used in MOS construction; namely, crystalline silicon (Si-c), amorphous silicon (Si-a), amorphous silicon dioxide (SiO₂-a) and amorphous silicon nitride (Si₃N₄-a). The coefficients were derived from total photocurrent measurements of X-ray absorption fine structure (XAFS) obtained at the Daresbury Synchrotron Radiation Source and show considerable near-edge structure when compared to curves generated from standard atomic data tables. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The present generation of large area X-ray detectors based on silicon charge coupled technologies have sufficiently high spectroscopic resolutions to begin to resolve internally induced structure in their photo response (e.g., see Owens et al., 1996, 1997a). This structure is due to the energy dependence of the X-ray absorption coefficients of the materials of which the device is constructed. It is particularly strong for energies close to absorption edges and in these regions reflects the X-ray absorption fine structure (XAFS). Recent work (Owens et al., 1996; Prigozhin et al., 1998) with a front illuminated CCD has shown that XAFS in the photo response originates in surface features of the device (i.e., electrodes, gate dielectrics, polysilicon gates and passivation layers). It arises from interference effects generated due to the escaping photoelectrons following X-ray absorption and is produced in the first few microns of surface (see Gurman, 1990). Since the dimensions of the surface features encountered in MOS construction are of the same order, this has led

E-mail address: aowens@rssd.esa.int (A. Owens).

to the surprising conclusion that the response of a CCD near its absorption edges is dominated by its surface chemistry instead of the bulk properties of the device (Owens, 2002). The increasing use of silicon detectors (for example in X-ray astronomy) to search for spectral features at or around the absorption edges of the constituent materials has produced an urgent need for a tabulated set of linear attenuation coefficients that incorporate the effects of XAFS. Unfortunately, tables published to date represent the unperturbed atomic cross sections for isolated atoms, which do not consider the collective properties of an ensemble. As such, it is not possible to use them to accurately model device responses around the absorption edges. Since a search of the literature failed to produce the necessary tables, we have derived near-edge linear attenuation coefficients from total photocurrent measurements of test samples obtained at a synchrotron radiation facility. Data are given for a variety of materials commonly used in MOS construction—crystalline silicon (Si-c), amorphous silicon (Si-a), amorphous silicon dioxide (SiO2-a) and amorphous silicon nitride (Si₃N₄-a). It is important to note that while an infinite degree of crystallinity can exist, the specific samples tested were chosen to be representative of their class. The general trends with energy follow standard calculations, such as Cromer and

^{*}Corresponding author. Tel.: +31-71-565-5326; fax: +31-71-565-4690.

Liberman (1970), but show considerable structure above the edge. It is important to note that these measurements can only be made at a synchrotron radiation facility, since the separation between calibration lines used in traditional techniques using discrete X-ray lines is much greater than the characteristic XAFS energy scale.

2. Experimental

Total photo-yields were measured on the SOXAFS beam-line, station 3.4 (Roper et al., 1992), at the Daresbury Synchrotron Radiation Source (SRS). The experimental arrangement is shown in Fig 1. A beam from the synchrotron was extracted by bending magnet 3 and reflected off a chromium-coated flat onto a toroidal mirror. The mirror focused it onto a double crystal monochromator providing a collimated monochromatic beam at the sample. The crystals used for the present experiment were InSb(III). The flat downstream filters hard X-rays by grazing angle reflectivity to give a high-energy cut-off, ensuring that the spectrum at the sample is not contaminated by higher harmonics of the Bragg reflection. The incident beam intensity was determined by measuring the replacement current in a 0.25 µm thick aluminium foil placed into the beam between the sample and monochromator. The samples had dimensions $2 \text{ cm} \times 1 \text{ cm} \times 10^{-3} \text{ cm}$ and were mounted on a 1 mm thick copper substrate, which provided the electrical and mechanical interface. The monochromator was scanned from 1750 to $\sim 2500 \, \text{eV}$ in step sizes of 5 eV from 1750 to 1830 eV; 0.5 eV steps from 1830 to 1870 eV and 2 eV steps thereafter. At each energy setting the current drawn by the sample to maintain charge neutrality, I_s , was measured and logged, as was the current, I_0 , in the beam intensity monitor. The electron drain current technique is standard practice at the SRS for soft X-ray measurements and is an adaptation of the commonly used total electron yield technique (Elam et al., 1988). Data taking was

Fig. 1. The experimental configuration of beamline 3.4 at the Daresbury SRS.

automatic, taking about 30 min to acquire each spectrum. To suppress statistical noise, three spectra were taken for each sample and averaged.

3. Results

In Fig. 2 we show the total photocurrent, $\chi = I_s/I_o$, as a function of energy for all four samples. The data have been normalized to I_o to correct for decay in synchrotron beam current and variations in intensity from the monochromator. Because of uncertainties in the monochromator setting, the dioxide and nitride curves have been displaced by 2 eV to give the correct relative distance from the silicon edge and all four curves adjusted so that the silicon edge falls at its accepted value of 1838.9 eV (Williams, 1986).

Recently, Cho et al. (1988) have argued that the observed XAFS must occur through indirect processes such as reabsorption of Auger electrons and fluorescent radiation. In fact, to first order, the total yield $\chi(E)$ is proportional to the product of the X-ray energy, E, and the absorption coefficient $\mu(E)$ (Henke et al., 1981). Thus, the drain current method gives a signal, which represents the detailed form of $\mu(E)$ modified by a smooth, slowly varying function of energy. This is the basis for its use as a detection method in X-ray absorption spectroscopy. For the present work, we have assumed the photo-yields, χ , shown in Fig. 2 are related to the attenuation coefficients, μ , by the function

$$\chi(E) = \mu(E)\{\alpha + \beta E\}. \tag{1}$$

The constants α and β were determined by normalization at 1800 and 2300 eV to the calculations of Cromer and Liberman (1970) based on single atom absorption. The two bounds are not arbitrary but are

Fig. 2. Measured photocurrent X-ray absorption fine structure from a crystalline Si sample (c), an amorphous Si sample (a), an amorphous Si_3N_4 sample.

considered to be sufficiently above and below the edge to be free from structure. Eq. (1) was initially tested by comparing gold X-ray absorption coefficients derived from photocurrent measurements with the experimentally measured values of Veigele (1973). It was found that the expected relationship was accurate over the energy range 2200–3500 eV to a precision of a few percent (Owens et al., 1997b).

The derived linear attenuation coefficients for our samples are shown graphically in Fig. 3 along with the classical curve for Si predicted by Cromer and Liberman (1970). As expected, the amplitude of structure in amorphous silicon is reduced compared to the crystalline case. This is because in the transition from the crystalline to the amorphous phase in a covalent material like silicon, the disorder in bond angle generally suppresses the signal from atoms beyond the first coordination shell. The specific samples tested, had

Fig. 3. The derived linear attenuation coefficients across the Si K-edge. For Si, the letters c and a refer to crystalline and amorphous. We also show the 'classical' Si curve based on the calculation of Cromer and Liberman (1970).

Table 1 Tabulated linear attenuation coefficients from 1800 to $2300\,\text{eV}$ in 1 eV steps for crystalline silicon (Si-c), amorphous silicon (Si-a) amorphous silicon dioxide (SiO₂) and amorphous silicon nitride (Si₃N₄)

Linear attenuation coefficients (cm⁻¹)

E (eV)	Si-c	Si-a	SiO_2	Si_3N_4
1800	706.0153	705.9860	1362.630	1468.180
1801	703.9272	706.3820	1360.650	1467.500
1802	701.8393	703.8380	1358.670	1466.820
1803	699.7565	698.3540	1356.690	1466.140
1804	697.7205	692.8700	1354.790	1465.350
1805	695.6844	687.3860	1352.970	1464.450
1806	693.6485	681.9020	1351.150	1463.550
1807	691.6125	677.0170	1349.330	1462.650
1808	689.7100	672.7310	1347.510	1461.750
1809	689.0101	668.4449	1345.850	1461.280
1810	688.3101	664.1590	1344.350	1461.240
1811	687.6100	659.8730	1342.850	1461.200
1812	686.9100	661.6440	1341.350	1461.160
1813	686.1512	669.4720	1339.850	1461.120
1814	684.8633	677.3000	1338.300	1460.510
1815	683.5753	685.1280	1336.700	1459.330
1816	682.2872	692.9560	1335.100	1458.150
1817	680.9993	695.3530	1333.500	1456.970
1818	679.7982	692.3190	1331.900	1455.790
1819	679.3802	689.2850	1330.280	1454.940
1820	678.9622	686.2510	1328.640	1454.420
1821	678.5443	683.2170	1327.000	1453.900
1822	678.1262	682.2050	1325.360	1453.380
1823	677.8986	683.2150	1323.720	1452.860
1824	679.3846	684.2250	1322.430	1452.790
1825	680.8705	685.2350	1321.490	1453.170
1826	682.3566	686.2450	1320.550	1453.550
1827	683.8425	689.3390	1319.610	1453.930
1828	685.4139	694.5170	1318.670	1454.310
1829	688.9499	699.6950	1318.320	1455.870
1830	693.3079	704.8730	1318.560	1458.610

Table 1 (continued)

E (eV)	Si-c	Si-a	SiO ₂	Si_3N_4
1831	700.8038	710.0510	1318.800	1461.350
1832	711.9236	719.9750	1319.040	1464.090
1833	728.7155	735.8950	1319.280	1466.830
.834	753.0652	758.7450	1320.000	1468.500
1835	794.5945	798.8700	1321.500	1493.000
1836	877.7345	875.6500	1323.700	1490.200
1837	1108.127	1087.385	1326.450	1502.500
1838	2390.250	2450.800	1330.000	1528.600
1839	7625.121	6987.200	1334.350	1592.400
1840	12684.77	11069.50	1340.850	1789.200
841	13067.83	11538.00	1352.550	2305.300
.842	10917.64	10967.50	1371.850	3731.400
1843	10031.25	10522.00	1408.850	6806.000
1844	9808.678	10370.00	1494.900	10814.00
1845	10034.95	10380.50	1744.150	12219.00
1846	10574.58	10483.50	2606.800	11574.00
1847	10899.62	10454.00	5294.950	10704.00
1848	10180.19	10095.65	10480.40	10179.00
1849	9954.437	9702.650	11680.50	9228.200
1850	10119.40	9434.750	7634.450	8541.600
1851	10129.21	9234.050	5144.800	8276.500
1852	9693.937	9069.250	4685.550	8049.300
1853	9043.210	8941.200	4609.750	7861.300
1854	8685.827	8842.350	4560.450	7820.300
1855	8622.077	8759.301	4558.650	7848.300
1856	8553.958	8679.650	4594.100	7831.800
1857	8446.508	8603.600	4613.000	7862.800
1858	8338.862	8536.500	4595.950	7913.517
1859	8229.463	8479.801	4566.250	7986.950
1860	8125.961	8419.051	4565.350	8060.383
1861	8075.562	8347.400	4624.950	8052.450
1862	8038.968	8270.150	4740.200	7963.150
1863	8126.668	8179.500	4875.250	7873.850
1864	8205.920	8059.000	4987.600	7694.567
1865	8209.120	7910.100	5041.750	7425.300
1866	8195.249	7746.900	5021.050	7156.033
1867	8027.699	7580.000	4929.000	6918.050
1868	7850.811	7421.650	4780.050	6711.350
1869	7589.861	7280.850	4592.550	6504.650
1870	7330.496	7164.300	4383.600	6344.066
1871	7085.396	7072.200	4173.900	6229.600
1872	6857.137	7007.625	3985.150	6115.133
1873	6780.487	6959.075	3829.850	6027.533
1874	6715.389	6924.225	3716.667	5966.800
1875	6754.289	6903.075	3627.200	5906.067
1876	6793.544	6893.125	3537.733	5854.417
1877	6835.994	6894.375	3467.200	5811.850
1878	6877.354	6899.225	3415.600	5769.283
1879	6908.904	6907.675	3364.000	5734.617
1880	6947.552	6921.250	3325.983	5707.850
1881	7050.103	6939.950	3301.550	5681.083
1882	7145.214	6961.400	3277.117	5669.217
1883	7173.364	6985.600	3261.000	5672.250
1884	7192.812	7012.125	3253.200	5675.283
1885	7133.912	7012.123	3245.400	5682.400
1886	7072.092	7040.973	3243.400	5693.600
1887	6983.992	7105.950	3240.300	5704.800
1888	6898.152	7140.300	3239.500	5722.633

Table 1 (continued)

<i>E</i> (eV)	Si-c	Si-a	SiO_2	Si_3N_4
1889	6832.652	7175.300	3241.450	5747.100
890	6781.378	7211.225	3246.150	5771.566
891	6858.178	7248.075	3250.850	5795.550
892	6947.090	7282.150	3256.600	5819.050
.893	7145.040	7313.450	3263.400	5842.550
894	7336.787	7339.950	3270.200	5871.816
895	7472.687	7361.650	3276.667	5906.850
896	7602.193	7375.775	3282.800	5941.883
.897	7674.143	7382.325	3288.933	5976.000
.898	7743.494	7380.775	3294.600	6009.200
1899	7789.444	7371.125	3299.800	6042.400
1900	7827.880	7352.150	3305.000	6073.783
901	7798.681	7323.850	3310.733	6103.350
1902	7762.947	7288.900	3317.000	6132.917
1903	7668.397	7247.300	3323.267	6161.367
1904	7572.942	7201.175	3330.767	6188.700
1905	7469.342	7150.525	3339.500	6216.034
.906	7364.503	7098.600	3348.233	6238.083
1907	7248.503	7045.400	3358.817	6254.850
1908	7129.464	6990.925	3371.250	6271.617
1909	6983.063	6935.175	3383.683	6283.583
1910	6836.618	6882.400	3397.683	6290.750
1911	6689.769	6832.600	3413.250	6297.917
1912	6547.473	6783.825	3428.817	6298.417
.913	6446.172	6736.075	3445.433	6292.250
914	6352.351	6691.775	3463.100	6286.083
.915	6325.851	6650.925	3480.767	6277.333
1916	6305.459	6613.175	3498.300	6266.000
1917	6340.059	6578.525	3515.700	6254.667
1918	6373.930	6545.350	3533.100	6240.800
1919	6401.229	6513.650	3548.867	6224.400
1920	6425.025	6488.975	3563.000	6208.000
.921	6417.275	6471.325	3577.133	6203.883
1921	6408.900	6451.725	3588.367	6212.050
.923	6394.900	6430.175	3596.700	6220.216
1924	6382.455	6411.750	3605.033	6205.417
1925	6384.005	6396.450	3609.883	6167.650
926	6387.669	6383.750	3611.250	6129.883
1927	6410.369	6373.650	3612.617	6103.184
1928	6434.224	6365.175	3611.067	6087.550
1929	6468.474	6358.325	3606.600	6071.917
930	6501.034	6353.875	3602.133	6057.783
.931	6518.384	6351.825	3596.333	6045.150
.932	6533.400	6351.550	3589.200	6032.517
1933	6527.400	6353.050	3582.067	6023.383
1934	6519.951	6357.125	3574.983	6017.750
1935	6499.451	6363.775	3567.950	6012.117
.936	6479.226	6371.975	3560.917	6007.850
.937	6461.476	6381.725	3554.283	6004.950
.938	6444.615	6392.825	3548.050	6002.050
1939	6435.765	6405.275	3541.817	5995.550
1940	6427.295	6418.400	3535.467	5985.450
1941	6422.245	6432.200	3529.000	5975.350
1942	6417.510	6445.700	3522.533	5964.183
1943	6415.610	6458.900	3515.433	5951.950
944	6413.545	6472.800	3507.700	5939.717
1945	6409.995	6487.400	3499.967	5927.767
1946	6405.800	6499.375	3491.483	5916.100

Table 1 (continued)

E (eV)	Si-c	Si-a	SiO_2	Si_3N_4
1947	6395.800	6508.725	3482.250	5904.434
1948	6385.975	6517.650	3473.017	5890.750
949	6377.725	6526.150	3463.150	5875.050
1950	6371.109	6532.800	3452.650	5859.350
1951	6379.209	6537.600	3442.150	5845.767
1952	6388.569	6540.950	3431.317	5834.300
1953	6409.270	6542.850	3420.150	5822.833
1954	6429.620	6542.650	3408.983	5810.025
1955	6446.819	6540.350	3397.517	5795.875
1956	6463.939	6535.800	3385.750	5781.725
1957	6480.339	6529.000	3373.983	5767.575
1958	6496.975	6520.625	3362.250	5753.425
1959	6515.725	6510.675	3350.550	5739.275
1960	6534.944	6500.000	3338.850	5725.125
1961	6558.395	6488.600	3327.300	5710.975
1962	6581.895	6475.125	3315.900	5699.181
1963	6605.844	6459.575	3304.500	5689.744
1964	6628.250	6443.800	3293.600	5680.306
1965	6636.750	6427.800	3283.200	5670.869
1966	6642.396	6412.650	3272.800	5661.431
1967	6622.345	6398.350	3262.400	5651.994
1968	6599.886	6383.500	3252.000	5642.556
1969	6555.736	6368.100	3241.600	5633.119
1970	6511.146	6350.050	3232.475	5628.325
1971	6462.596	6329.350	3224.625	5628.175
1972	6414.876	6309.375	3216.775	5628.025
1973	6374.626	6290.125	3208.925	5627.875
1974	6335.601	6276.825	3201.075	5627.725
1975	6307.601	6269.475	3193.225	5627.575
1976	6279.985	6258.100	3187.583	5627.425
1977	6255.835	6242.700	3184.150	5627.275
1978	6230.726	6226.675	3180.717	5628.775
1979	6196.976	6210.025	3177.283	5631.925
1980	6162.766	6192.775	3173.850	5635.075
1981	6124.416	6174.925	3170.417	5638.225
1982	6086.301	6158.225	3167.417	5641.375
1983	6050.301	6142.675	3164.850	5644.525
1984	6016.350	6127.425	3162.283	5647.675
1985	6000.850	6112.475	3159.717	5650.825
1986	5987.030	6098.075	3157.150	5653.987
1987	5988.330	6084.225	3154.583	5657.163
.988	5989.325	6070.850	3151.975	5660.337
1989	5987.575	6057.950	3149.325	5663.512
1990	5985.400	6045.225	3146.675	5666.688
1991	5979.400	6032.675	3144.025	5669.862
1992	5973.520	6021.400	3141.375	5673.037
1993	5968.720	6011.400	3138.725	5676.212
1994	5963.700	6002.675	3137.542	5678.650
1995	5956.700	5995.225	3137.825	5680.350
.996	5949.620	5988.000	3138.108	5682.050
1997	5941.820	5981.000	3138.392	5683.750
1998	5934.280	5975.150	3138.675	5685.450
1999	5929.080	5970.450	3138.958	5687.150
2000	5923.880	5966.375	3139.042	5688.850
2001	5918.680	5962.925	3138.925	5690.550
2002	5913.480	5960.075	3138.808	5691.900
2003	5908.952	5957.825	3138.692	5692.900
2004	5910.472	5956.100	3138.575	5693.900

Table 1 (continued)

E (eV)	Si-c	Si-a	SiO_2	Si_3N_4
2005	5911.992	5954.900	3138.458	5694.900
2006	5913.512	5954.350	3138.600	5695.900
2007	5915.032	5954.450	3139.000	5696.900
2008	5917.352	5955.075	3139.400	5697.900
2009	5926.872	5956.225	3139.800	5698.900
2010	5936.392	5957.325	3140.200	5697.431
2011	5945.912	5958.375	3140.600	5693.494
2012	5955.432	5960.850	3141.517	5689.556
2013	5964.242	5964.750	3142.950	5685.619
2014	5966.662	5968.050	3144.383	5681.681
2015	5969.082	5970.750	3145.817	5677.744
2016	5971.502	5973.700	3147.250	5673.806
2017	5973.922	5976.900	3148.683	5669.869
2018	5976.188	5978.775	3149.983	5666.369
2019	5977.068	5979.325	3151.150	5663.306
2020	5977.948	5980.925	3152.317	5660.244
2021	5978.828	5983.575	3153.483	5657.181
2022	5979.708	5985.600	3154.650	5654.119
2023	5980.456	5987.000	3155.817	5651.056
2024	5980.016	5987.575	3156.950	5647.994
2025	5979.576	5987.325	3158.050	5644.931
2026	5979.136	5987.775	3159.150	5638.793
2027	5978.696	5988.925	3160.250	5629.581
2028	5976.670	5986.650	3161.350	5620.369
2029	5960.370	5980.950	3162.450	5611.156
2030	5944.070	5975.775	3161.642	5601.944
2031	5927.770	5971.125	3158.925	5592.731
2032	5911.470	5967.000	3156.208	5583.519
2033	5897.380	5963.400	3153.492	5574.307
2034	5903.180	5957.225	3150.775	5566.531
2035	5908.979	5948.475	3148.058	5560.194
2036	5914.780	5939.725	3145.167	5553.856
2037	5920.580	5930.975	3142.100	5547.519
2038	5925.242	5923.525	3139.033	5541.181
2039	5919.662	5917.375	3135.967	5534.844
2040	5914.082	5909.575	3132.900	5528.506
2041	5908.502	5900.125	3129.833	5522.169
2042	5902.922	5890.475	3126.817	5515.294
2042	5896.094	5880.625	3123.850	5507.881
2044	5878.034	5870.600	3120.883	5500.469
2045	5859.975	5860.400	3117.917	5493.056
2046	5841.915	5849.975	3114.950	5485.644
2047	5823.854	5839.325	3111.983	5478.231
2048	5806.077	5828.550	3109.067	5470.819
2049	5790.836	5817.650	3106.200	5463.406
2050	5775.596	5806.475	3103.333	5456.981
2050	5760.355	5795.025	3100.467	5451.544
2052	5745.115	5784.025	3097.600	5446.106
2052	5730.861	5773.475	3094.733	5440.669
2054	5725.481	5762.250	3091.958	5435.231
2055	5720.102	5750.350	3089.275	5429.794
2056	5714.722	5738.675	3086.592	5424.356
2056	5709.341	5727.225	3083.908	5418.919
2057	5704.360	5717.000	3083.908	5413.394
2058			3078.542	
	5702.960 5701.560	5708.000 5608.425		5407.781 5402.160
2060	5701.560	5698.425	3075.833	5402.169
2061	5700.160	5688.275	3073.100	5396.556
2062	5698.760	5680.000	3070.367	5390.944

Table 1 (continued)

E (eV)	Si-c	Si-a	SiO_2	$\mathrm{Si}_{3}\mathrm{N}_{4}$
2063	5696.303	5673.600	3067.633	5385.331
2064	5684.343	5662.975	3064.900	5379.719
2065	5672.383	5648.125	3062.167	5374.106
2066	5660.423	5637.075	3059.208	5367.981
2067	5648.463	5629.825	3056.025	5361.344
2068	5636.623	5621.575	3052.842	5354.706
2069	5625.863	5612.325	3049.658	5348.069
2070	5615.103	5603.475	3046.475	5341.431
2071	5604.343	5595.025	3043.292	5334.794
2072	5593.583	5586.850	3039.925	5328.156
2073	5582.791	5578.950	3036.375	5321.519
2074	5571.711	5571.200	3032.825	5315.013
2075	5560.631	5563.600	3029.275	5308.638
2076	5549.551	5556.575	3025.725	5302.263
2077	5538.471	5550.125	3022.175	5295.888
2078	5527.511	5543.625	3018.350	5289.513
2079	5517.631	5537.075	3014.250	5283.138
2080	5507.751	5530.700	3010.150	5276.763
2081	5497.871	5524.500	3006.050	5270.388
2082	5487.991	5518.250	3001.950	5264.557
2083	5478.624	5511.950	2997.850	5259.269
2084	5473.864	5507.275	2993.575	5253.981
2085	5469.104	5504.225	2989.125	5248.694
2086	5464.343	5498.800	2984.675	5243.406
2087	5459.583	5491.000	2980.225	5238.119
2088	5454.917	5485.350	2975.775	5232.831
2089	5451.098	5481.850	2971.325	5227.543
2090	5447.278	5478.525	2967.400	5222.387
2091	5443.458	5475.375	2964.000	5217.362
2092	5439.638	5471.275	2960.600	5212.337
2093	5435.729	5466.225	2957.200	5207.313
2094	5431.030	5463.625	2953.800	5202.288
2095	5426.330	5463.475	2950.400	5197.263
2096	5421.630	5461.075	2946.267	5192.238
2097	5416.930	5456.425	2941.400	5187.213
2098	5412.118	5452.075	2936.533	5182.707
2099	5406.297	5448.025	2931.667	5178.719
2100	5400.478	5444.450	2926.800	5174.731
2100	5394.658	5441.350	2920.800	5174.731
2102	5388.837	5438.220	2917.600	5166.756
2103	5383.728	5435.060	2913.800	5162.769
2104	5385.008	5431.900	2910.000	5158.781
2105	5386.288	5428.740	2906.200	5154.793
2106	5387.568	5425.580	2902.400	5152.025
2107	5388.848	5422.330	2898.600	5150.475
2108	5390.012	5418.990	2895.050	5148.925
2109	5390.132	5415.650	2891.750	5147.375
2110	5390.252	5412.310	2888.450	5145.825
2111	5390.372	5408.970	2885.150	5144.275
2112	5390.492	5405.420	2881.850	5142.725
2113	5390.472	5401.660	2878.550	5141.175
2114	5389.192	5397.900	2875.492	5139.350
2115	5387.912	5394.140	2872.675	5137.250
2116	5386.632	5390.380	2869.858	5135.150
2117	5385.352	5386.370	2867.042	5133.050
2118	5384.060	5382.110	2864.225	5130.950
2119	5382.660	5377.850	2861.408	5128.850

Table 1 (continued)

E (eV)	Si-c	Si-a	${ m SiO}_2$	Si_3N_4
2121	5379.860	5369.330	2856.475	5124.650
2122	5378.460	5364.820	2854.125	5121.431
2123	5376.992	5360.060	2851.775	5117.094
2124	5374.912	5355.300	2849.425	5112.756
2125	5372.832	5350.540	2847.075	5108.419
2126	5370.752	5345.780	2844.958	5104.081
2127	5368.672	5340.630	2843.075	5099.744
2128	5366.053	5335.090	2841.192	5095.406
2129	5358.593	5329.550	2839.308	5091.069
2130	5351.133	5324.010	2837.425	5087.581
2131	5343.673	5318.470	2835.542	5084.944
2132	5336.213	5312.700	2833.825	5082.306
2133	5328.191	5306.700	2832.275	5079.668
2134	5315.111	5300.700	2830.725	5077.031
2135	5302.031	5294.700	2829.175	5074.394
2136	5288.951	5288.700	2827.625	5071.756
2137	5275.871	5282.510	2826.075	5069.119
2138	5263.081	5276.130	2824.650	5066.156
2139	5252.901	5269.750	2823.350	5062.869
2140	5242.721	5263.370	2822.050	5059.581
2141	5232.541	5256.990	2820.750	5056.293
2142	5222.361	5250.260	2819.450	5053.006
2143	5212.463	5243.180	2818.150	5049.719
2144	5205.104	5236.100	2816.500	5046.431
2145	5197.743	5229.020	2814.500	5043.144
2146	5190.383	5221.940	2812.500	5038.556
2147	5183.023	5214.070	2810.500	5032.669
2148	5175.681	5205.410	2808.500	5026.781
2149	5168.501	5196.750	2806.500	5020.894
2150	5161.321	5188.090	2805.167	5015.006
2151	5154.141	5179.430	2804.500	5009.119
2152	5146.961	5172.600	2803.833	5003.231
2153	5140.056	5167.600	2803.167	4997.344
2154	5135.616	5162.600	2802.500	4991.487
2155	5131.175	5157.600	2801.833	4985.663
2156	5126.735	5152.600	2800.883	4979.837
2157	5122.295	5146.950	2799.650	4974.012
2158	5117.711	5140.650	2798.417	4968.188
2159	5111.831	5134.350	2797.183	4962.362
2160	5105.951	5128.050	2795.950	4956.537
2161	5100.071	5121.750	2794.717 2793.342	4950.712
2162	5094.191	5115.550		4945.225
2163	5088.350	5109.450	2791.825	4940.075
2164	5082.850	5103.350	2790.308	4934.925
2165	5077.350	5097.250	2788.792	4929.775
2166	5071.850	5091.150	2787.275	4924.625
2167 2168	5066.350	5085.450	2785.758 2784.300	4919.475
2169	5061.092 5058.012	5080.150 5074.850	2782.900	4914.325 4909.175
2170	5054.932 5051.852	5069.550 5064.250	2781.500 2780.100	4904.332 4899.794
2171 2172	5051.852 5048.771	5064.250 5059.180	2780.100 2778.700	
2172	5045.583	5054.340	2777.300	4895.256 4890.719
2173	5045.58 <i>3</i> 5041.424	5054.340 5049.500	2777.300 2775.767	4890.719 4886.181
2175	5037.264	5044.660	2774.100	4881.644
2176	5033.104	5039.820	2772.433	4877.106
2177	5028.944	5035.070	2770.767	4872.568
2178	5024.722	5030.410	2769.100	4867.900

Table 1 (continued)

E (eV)	Si-c	Si-a	SiO_2	Si_3N_4
2179	5019.941	5025.750	2767.433	4863.100
2180	5015.162	5021.090	2765.633	4858.300
2181	5010.381	5016.430	2763.700	4853.500
2182	5005.602	5011.900	2761.767	4848.700
2183	5000.905	5007.500	2759.833	4843.900
2184	4996.965	5003.100	2757.900	4839.100
2185	4993.025	4998.700	2755.967	4834.300
2186	4989.085	4994.300	2753.933	4829.381
2187	4985.146	4990.020	2751.800	4824.344
2188	4981.134	4985.860	2749.667	4819.306
2189	4976.474	4981.700	2747.533	4814.269
2190	4971.813	4977.540	2745.400	4809.231
2191	4967.153	4973.380	2743.267	4804.194
2192	4962.493	4969.650	2741.542	4799.156
2192	4957.881	4966.350	2741.342	4794.119
2194	4953.702	4963.050 4959.750	2738.908	4789.625
2195	4949.521		2737.592	4785.675
2196	4945.341	4956.450	2736.275	4781.725
2197	4941.162	4952.760	2734.958	4777.775
2198	4936.989	4948.680	2733.025	4773.825
2199	4932.890	4944.600	2730.475	4769.875
2200	4928.790	4940.520	2727.925	4765.925
2201	4924.689	4936.440	2725.375	4761.975
2202	4920.589	4932.590	2722.825	4758.362
2203	4916.459	4928.970	2720.275	4755.087
2204	4912.060	4925.350	2717.942	4751.813
2205	4907.660	4921.730	2715.825	4748.538
2206	4903.259	4918.110	2713.708	4745.262
2207	4898.859	4914.540	2711.592	4741.987
2208	4894.543	4911.020	2709.475	4738.712
2209	4890.983	4907.500	2707.358	4735.438
2210	4887.424	4903.980	2705.275	4732.031
2211	4883.864	4900.460	2703.225	4728.494
2212	4880.304	4896.850	2701.175	4724.956
2213	4876.804	4893.150	2699.125	4721.418
2214	4873.844	4889.450	2697.075	4717.881
2215	4870.884	4885.750	2695.025	4714.344
2216	4867.924	4882.050	2692.925	4710.806
2217	4864.963	4878.250	2690.775	4707.269
2218	4862.072	4874.350	2688.625	4702.844
2219	4859.792	4870.450	2686.475	4697.531
2220	4857.512	4866.550	2684.325	4692.219
2221	4855.231	4862.650	2682.175	4686.906
2222	4852.952	4858.750	2680.033	4681.594
2223	4850.712	4854.850	2677.900	4676.281
2224	4848.832	4850.950	2675.767	4670.969
2225	4846.952	4847.050	2673.633	4665.656
2226	4845.072	4843.150	2671.500	4661.481
2227	4843.192	4839.140	2669.367	4658.444
2228	4841.212	4835.020	2667.200	4655.406
2229	4838.332	4830.900	2665.000	4652.369
2230	4835.452	4826.780	2662.800	4649.332
2231	4832.572	4822.660	2660.600	4646.294
2232	4829.692	4818.510	2658.400	4643.256
2233	4826.658	4814.330	2656.200	4640.219
2234	4822.238	4810.150	2654.000	4636.381
2235 2236	4817.817 4813.397	4805.970 4801.790	2651.800 2649.600	4631.744 4627.106

Table 1 (continued)

E (eV)	Si-c	Si-a	${ m SiO_2}$	Si_3N_4
2237	4808.978	4797.470	2647.400	4622.469
2238	4804.656	4793.010	2645.200	4617.832
2239	4801.216	4788.550	2643.000	4613.194
2240	4797.775	4784.090	2640.758	4608.556
2241	4794.335	4779.630	2638.475	4603.919
2242	4790.896	4775.120	2636.192	4599.938
2243	4787.452	4770.560	2633.908	4596.613
2244	4783.972	4766.000	2631.625	4593.288
2245	4780.492	4761.440	2629.342	4589.962
2246	4777.012	4756.880	2627.017	4586.638
2247	4773.532	4752.290	2624.650	4583.313
2248	4769.905	4747.670	2622.283	4579.987
2249	4764.965	4743.050	2619.917	4576.663
2250	4760.025	4738.430	2617.550	4573.737
2251	4755.085	4733.810	2615.183	4571.212
2252	4750.146	4729.140	2612.858	4568.688
2253	4745.029	4724.420	2610.575	4566.163
2254	4738.330	4719.700	2608.292	4563.637
2255	4731.629	4714.980	2606.008	4561.112
2256	4724.930	4710.260	2603.725	4558.587
2257	4718.229	4705.540	2601.442	4556.063
2258	4711.572	4700.820	2599.167	4553.400
2259	4705.292	4696.100	2596.900	4550.600
2260	4699.011	4691.380	2594.633	4547.800
2261	4692.731	4686.660	2592.367	4545.000
2262	4686.451	4681.940	2590.100	4542.200
2263	4680.285	4677.220	2587.833	4539.400
2264	4675.146	4672.500	2585.650	4536.600
2265	4670.005	4667.780	2583.550	4533.800
2266	4664.866	4663.060	2581.450	4531.087
2267	4659.726	4658.430	2579.350	4528.462
2268	4654.520	4653.890	2577.250	4525.837
2269	4648.720	4649.350	2575.150	4523.212
2270	4642.919	4644.810	2573.083	4520.587
2271	4637.120	4640.270	2571.050	4517.962
2272	4631.319	4635.780	2569.017	4515.337
2273	4625.642	4631.340	2566.983	4512.712
2274	4621.062	4626.900	2564.950	4509.788
2275	4616.482	4622.460	2562.917	4506.563
2276	4611.902	4618.020	2560.967	4503.337
2277	4607.322	4613.660	2559.100	4500.112
2278	4602.760	4609.380	2557.233	4496.888
2279	4598.360	4605.100	2555.367	4493.663
2280	4593.960	4600.820	2553.500	4490.438
2281	4589.560	4596.540	2551.633	4487.212
2282	4585.160	4592.300	2549.808	4483.300
2283	4580.776	4588.100	2548.025	4478.700
2284	4576.536	4583.900	2546.242	4474.100
2285	4572.296	4579.700	2544.458	4469.500
2286	4568.056	4575.500	2542.675	4464.900
2287	4563.815	4571.430	2540.892	4460.300
2288	4559.640	4567.490	2539.192	4455.700
2289	4556.040	4563.550	2537.575	4451.100
2290	4552.439	4559.610	2535.958	4447.750
2291	4548.840	4555.670	2534.342	4445.650
2292	4545.240	4551.840	2532.725	4443.550
2293	4541.729	4548.120	2531.108	4441.450
2294	4539.030	4544.400	2529.517	4439.350

Table 1 (continued)

E (eV)	Si-c	Si-a	SiO_2	Si ₃ N ₄
2295	4536.330	4540.680	2527.950	4437.250
2296	4533.630	4536.960	2526.383	4435.150
2297	4530.930	4533.220	2524.817	4433.050
2298	4528.189	4529.460	2523.250	4430.888
2299	4525.090	4525.700	2521.683	4428.663
2300	4521.990	4521.940	2520.167	4426.438

Please note that the number of significant places after the decimal points is an artefact of the computer program used to produce them and is not intended to imply statistical precision. The typical uncertainty on the measured data points is estimated to be at the few percent level and on the interpolated values given in the table, about a factor of two lower. The coefficients may be converted into mass attenuation coefficients, μ/ρ , by dividing by the appropriate density, i.e., $\rho(Si) \equiv 2.329 \, \text{g/cm}^3$ (crystalline; Tatsumi and Ohsaki, 1988) and $2.1 \, \text{g/cm}^3$ (amorphous—averaged vacuum evaporation and sputtered; Tatsumi and Ohsaki, 1988), $\rho(SiO_2) \equiv 2.200 \, \text{g/cm}^3$ (film and bulk; Peterson, 1978) and $2.27 \, \text{g/cm}^3$ (thermal dry oxide; El-Kareh, 1995) and $\rho(Si_3N_4) \equiv 3.2 \, \text{g/cm}^3$ (ceramic; Ohji et al., 1990) and $3.100 \, \text{g/cm}^3$ (sputtered; Peterson, 1978). Note, the densities quoted are representative of quoted values, however, it should be noted that the densities of commercial material can vary by a few percent depending on the exact production process used.

Debye–Waller factors of ~ 0.01 and 0.04 for the crystalline and amorphous materials, respectively. These can be considered representative for MOS construction. For completeness, we have derived linear attenuation coefficients from 1800 to 2300 eV in 1 eV steps by interpolation of the experimental data. The results are tabulated in Table 1. It should be noted that because of the narrow width of the dioxide white line, the data are undersampled. In fact, we estimate by fitting the line using data with 0.5 eV spacing, that the peak is 10% larger. The error in the energy determination is not more than 1 eV and typical uncertainties in the listed coefficients are estimated to be at the few percent level.

3.1. Calculating linear attenuation coefficients

Lastly, we point out that there is an approximate method for calculating linear attenuation coefficients if experimental data is not available—for example, near the oxygen and nitrogen edges where suitable synchrotron beamlines are limited. From Fig. 3, we note that the calculations of Cromer and Liberman (1970) accurately reproduce the trend in $\mu(E)$, but show no structure. This is expected, since the theory is only applicable for isolated atoms and does not include modifications to the wavefunction by neighboring atoms. Also, because the calculations of Cromer and Liberman are so computationally intensive, they were only calculated at a few energy points and intermediate values interpolated by a smooth function of energy. This in turn tends to wash out the peak at the absorption edge—the 'white line'. Gurman (1983) has reported an approximate theory for calculating $\mu(E)$ accurately and rapidly for the isolated atom. This rapidity allows many more energy points to be calculated and in this way the 'white line' may be found. The oscillatory structure which extends several hundred eV or more above the edge (the extended X-ray absorption fine structure (EXAFS)) can then be calculated by standard methods (e.g., spherical wave approximation; Gurman, 1990) and added. In this way, $\mu(E)$ can be accurately 'built-up'. Obviously, X-ray absorption near-edge structure (XANES) due to multiple scattering effects (Bianconi et al., 1987) will not be present, which will result in a loss of detail within $\sim 70\,\mathrm{eV}$ of the edge.

Acknowledgements

This work was supported by the Daresbury Laboratory SESS and the SERC. We thank A.D. Smith for beamline support and S. Bayliss for providing the Si_3N_4 data.

References

Bianconi, A., di Cicco, A., Pavel, N.V., Benfatto, M., Marcelli, A., Natoli, C.R., Pianetta, P., Woicik, J., 1987. Multiplescattering effects in the K-edge X-ray-absorption near-edge structure of crystalline and amorphous silicon. Phys. Rev. B 36, 6426–6433.

Cho, T., Yamaguchi, N., Kondoh, T., Hirata, M., Miyoshi, S., Aoki, S., Maezawa, H., Nomura, M., 1988. Quantum efficiency of gold photocathodes (2–8 keV) and EXAFS in its secondary electron yield and in the detection currents of a microchannel plate and a silicon surface barrier detector. Rev. Sci. Inst. 59, 2453–2456.

Cromer, D.T., Liberman, D., 1970. Relativistic calculation of anomalous scattering factors for X-rays. J. Chem. Phys. 53, 1891–1898.

Elam, W.T., Kirkland, J.P., Neiser, R.R., Wolf, P.D., 1988. Depth dependence for extended X-ray-absorption fine-structure spectroscopy detected via electron yield in He and in vacuum. Phys. Rev. B38, 26–30.

El-Kareh, B., 1995. Fundamentals of Semiconductor Processing Technologies. Kluwer, Boston.

- Gurman, S.J., 1983. An even simpler method for calculating X-ray absorption parameters. J. Phys. C16, 2987–3000.
- Gurman, S.J., 1990. In: Hasnain, S. (Ed.), Synchrotron Radiation and Biophysics, (chap. 1). Ellis Horwood Ltd., Chichester, UK, pp. 10–42.
- Henke, B.L., Knauer, J.P., Premaratne, J., 1981. The characterization of X-ray photocathodes in the 0.1–10-keV photon energy region. J. Appl. Phys. 52, 1509–1520.
- Ohji, T., Sakai, S., Ito, M., Yamauchi, Y., Kanematsu, W., Ito, S., 1990. Fracture energy and tensile strength of silicon nitride at high temperatures. J. Ceram. Soc. Jpn Int. Ed. 98, 244–251.
- Owens, A., 2002. XANES fingerprinting: a techniques for investigating CCD surface structures and measuring dead layer thicknesses, Nucl. Instrum. Methods, submitted for publication.
- Owens, A., Fraser, G.W., Keay, A., Wells, A., McCarthy, K.J., Hill, H., Hughes, E.A., Smith, A.D., Suller, V., Surman, M., 1996. Mapping X-ray absorption fine structure in the quantum efficiency of an X-ray charge-coupled device. X-ray Spectrosc. 25, 33–38.
- Owens, A., Denby, M., Wells, A., Keay, A., Graessle, D.E., Blake, R.L., 1997a. The effect of X-ray absorption fine structure in soft X-ray astronomical telescopes. Astrophys. J. 476, 924–932.

- Owens, A., Bayliss, S., Fraser, G.W., Gurman, S.J., 1997b. On the relationship between total electron photoyield and X-ray absorption coefficient. Nucl. Instrum. Methods A358, 556-558
- Peterson, K.E., 1978. Dynamic micromechanisms on silicon: Techniques and devices. IEEE Trans. Electron. Devices ED-25 (10), 1241–1250.
- Prigozhin, G.Y., Woo, J.W., Gregory, J.A., Loomis, A.H., Bautz, M.W., Ricker, G.R., Kraft, S., 1998. X-ray absorption near edge structure in the quantum efficiency of X-ray charge-coupled devices. Opt. Eng. 37, 2848–2854.
- Roper, M., Buksh, P., Kirkman, I., van der Laan, G., Padmore, H., Smith, A., 1992. Performance of the Daresbury synchrotron radiation source soft X-ray double-crystal monochromator. Rev. Sci. Instrum. 63, 1322–1325.
- Tatsumi, Y., Ohsaki, H., 1988. Density of crystalline and amorphous Si. In: Properties of Silicon, EMIS Datareviews Series Vol. 4. INSPEC, The Institution of Electrical Engineers, London, New York, pp. 3-6.
- Veigele, W.J., 1973. Atom. Data Tables 5, 51-111.
- Williams, G.P., 1986. Electron binding energies of the elements.
 In: Weast, R.C. (Ed.), CRC Handbook of Chemistry and Physics. 67th Edtion, CRC Press, Boca Raton, pp. F163–F166.