

PRINTABLE VERSION

Quiz 7

Find the derivative of $f(x) = 5x^2 + 2x + 1$

a)
$$4J/f'(x) = 2x - 2$$

$$f(x) = 10x + 2$$

c)
$$< f'(x) = 10x + 2 + \frac{1}{x^2}$$

d)
$$\Leftrightarrow f'(x) = 10x + 2$$

e)
$$f'(x) = 10x + 3$$

Find the derivative of $f(x) = \frac{7}{x^2} - 7x^3$

a)
$$= f'(x) = \frac{14}{x^2} - 21x^2$$
 $f(X) = 7 - X^{-2} - 7X^{3}$

b)
$$-f'(x) = -21 x^2 + 14 x$$

b)
$$\cup f'(x) = -21x^2 + 14x$$

c) $\cup f'(x) = -\frac{14}{x^3} - 21x^2$ $f(x) = -(4x^2 - 2)x^2$

d)
$$-f'(x) = -\frac{7}{x^3} + 21x^3$$

$$=\frac{-14}{x3}-21x^2$$

Question 3

First the slope of the line that is langest to the graph of $f(x) = x^6 + 5 x^4 - x^2 + 1$ at x = 1

Question

1 of 3

Consider the function $f(x) = x^3 + 4x^2 + 3$. Find the equation of the normal line at the point (1, 8) $f(x) = 3x^3 + 4x^2 + 3$.

a)
$$>> y = -11x + 19$$

Slope of taugent line at
$$x=1, \Rightarrow f(1)=11$$

b)
$$y = \frac{x}{11} + \frac{89}{11}$$

Normal line: (4-8)=- 1 (x-1)

(1)
$$y = \frac{x}{11} + \frac{87}{11}$$

d)
$$y = \frac{-x}{11} - \frac{87}{11}$$

e)
$$y = 11 x - 3$$

Ouestion 5 Consider the function $f(x) = x^1 - x^2 + 4$, find the points where the tangent line is herizontal. $\Leftrightarrow f(X) = 0$

a)
$$-\left(\frac{1}{2}, \frac{61}{16}\right)\left(-\frac{1}{2}, \frac{61}{16}\right)$$
 $+\left(x\right) = 4x^{3} - 2x \Rightarrow 4x^{3} - 2x = 6$

$$\Rightarrow 2 \times (2 \times 1) = 0$$

a)
$$\mathbb{C}(0,4)\left(-\frac{\sqrt{2}}{2},\frac{15}{4}\right)\left(\frac{\sqrt{2}}{2},\frac{15}{4}\right) \longrightarrow 2\times(2\times +1)(2\times -1) = 0$$

Given the function
$$f(x) = \frac{1}{3}x^3 - 2x^2 + 7x + 1$$
, and the points where the tangent line has slope 4.

(-12) $f(x) = 4$

(b) $-(3, 13)$, $(1, \frac{19}{3})$

(c) $f(x) = 4$

(d) $f(x) = 4$

b)
$$\cup (3,13), (1,\frac{19}{3})$$
 $\top (X) = X^2 - 42 + 7 = 4$

$$(3) \cup (-3, -47) \cdot \left(-1, -\frac{25}{3}\right) \Rightarrow \chi^2 + \chi + 3 = 0 \Rightarrow \chi = [-1, r]$$

(i)
$$\omega(0,1), \left(-1, -\frac{25}{3}\right)$$
 $\Rightarrow (x-3)(x-1) = 0$
(e) $\omega(0,1), (3,13)$ $\Rightarrow (3, f(3))$
Outstion 7

for $f(x) = 2 \cos(x)$, find $f'\left(\frac{\pi}{2}\right)$

$$f(x) = -2\sin(x)$$

$$f(\Xi) = -2Sin(\Xi) = -2$$

Ouestion f

2 of 3

02/10/2015 07:17 PM

For $g(x) = x + 5 \sin(x) + \cot(x)$, find $g'\left(\frac{\pi}{4}\right)$

a)
$$= 2 + \sqrt{3}$$

b)
$$= \frac{5\sqrt{2}}{2} - 1$$

d)
$$\frac{5\sqrt{2}}{2} - 1 + \frac{\pi}{4}$$

e)
$$\equiv \frac{\sqrt{3}}{2} \div \frac{\pi}{4}$$

9(x)=1+5005x-csc2x

Question 9

Determine the number(s), x, between 0 and 2π where the line tangent to the function $f(x) = 6 \sin(x) + 6 \cos(x)$ is horizontal E Fad X Such that f(X) = 0 ($X \in (0, 2 I)$)

$$\mathbf{a}) \quad \mathbf{x} = \left\{ \frac{\pi}{S}, \frac{5\pi}{4} \right\}$$

$$\mathbf{b}) = x = \left\{ \frac{\pi}{4} \cdot \frac{5\pi}{4} \right\}$$

$$x = \left\{ \frac{\pi}{4} \cdot \frac{5\pi}{2} \right\}$$

d)
$$= x = \{0, 1\}$$

e)
$$\sigma = \left\{ \frac{\pi}{2}, \frac{3\pi}{2} \right\}$$

$$f'(x) = 6\cos(x) - 6\sin(x) = 0$$

$$\Rightarrow$$
 $6\cos(x) = 6\sin(x)$ \Rightarrow $\cos(x) = \sin(x)$. $x = \frac{1}{4}$ or $\frac{5\pi}{4}$

$$\Rightarrow$$
 $Cos(x) = sih(x)$

Find the function of the function $f(x) = 3x^3 + \frac{8}{x^3}$ Find $f(x) = 3x^3 + 8x^3 + 8x^3$

a)
$$f'''(x) = 13x + \frac{96}{x^5}$$

b)
$$= \int_{-\infty}^{\infty} f'''(x) = 9x^2 + \frac{24}{x^4}$$

c)
$$f'''(x) = 18 + \frac{480}{4}$$

d)
$$f'''(x) = 18x - \frac{96}{x^5}$$

e)
$$\int_{-r}^{r_0} \{x\} = 18 - \frac{480}{r_0^{12}}$$

$$f(x) = 9x^2 + 24x^4$$

$$f(x) = 18x - 96x^{5}$$

$$f^{(3)}(x) = [8 + 480x^{-6}]$$

$$= [8 + 480x^{-6}]$$