Question 1: Q3

L'aire du domaine colorié dans l'image ci-jointe peut s'exprimer à l'aide de l'intégrale :

$$\bigcap_{1}^{4} f(x) \mathrm{dx}$$

$$\int_{2}^{5} f(x) dx$$

$$\int_{2}^{1} f(x) dx$$

$$\times \int_0^5 f(x) dx$$

Question 2: Q2

Le programme Python ci-dessous doit calculer dans la variable s' une approximation de l'intégrale $\int_2^4 x^2 \mathrm{d}x$ par la somme des rectangles à gauche avec n subdivisions.

def rectangle_gauche(n):

s = 0

for k in range(n):

return s S = S + (4-2) / m * (2+k+2)Quelleinstruction faut-il saisir pour compléter les pointillés ?

s = s + (b-a)/n * f(a + k * (b-a)/n)

Question 1: Q6

Une primitive de la fonction f définie sur R par $f(x) = \frac{e^x}{e^x + 2}$ est

$$-\frac{1}{\mathrm{e}^x+2}$$

$$\frac{2e^x}{(e^x+2)}$$

$$\chi_{\ln(\mathrm{e}^x+2)}$$

$$\int_{0}^{\infty} (w) = \frac{u^{2}(w)}{u^{2}(w)}$$

$$\frac{2e^{x}}{(e^{x}+2)^{2}}$$

$$\chi_{\ln(e^{x}+2)}$$

Question 2:Q7

Une primitive de la fonction f définie sur R par $f(x) = \frac{\mathrm{e}^x}{(\mathrm{e}^x + 2)^2}$ est

 $\ln(\mathrm{e}^x+2)$

$$e^x+2$$

$$-\frac{1}{e^x+2}$$

Question 3: Q3

Une primitive de la fonction f définie sur R par $f(x) = e^x - ex + e$ est

$$\times e^x - 0.5ex^2 + ex$$

$$e^x - e$$

$$\mathbf{e}x$$

$$\mathbf{X}_{\mathrm{e}^x-0,5\mathrm{e}x^2+\mathrm{e}(x+1)}$$

Une primitive de la fonction f définie sur]0;+oo[par $\dfrac{1}{x}$ est

$$-\frac{1}{x^2}$$

$$\sqrt{\ln(x)}$$

$$rac{1}{0.5x^2}$$

$$-\frac{1}{x^2} + 1$$

$$\sum \ln(x) - 734$$

Question 5:Q4

Une primitive de la fonction f définie sur]0;+oo[par $f(x)=\frac{1}{x}-\frac{1}{\sqrt{x}}+\frac{1}{x^2}$ est

$$\times F(x) = \ln(x) - 2\sqrt{x} - \frac{1}{x} + 1$$

$$F(x) = -\frac{1}{x^2} - \frac{1}{2x\sqrt{x}} - 2\frac{1}{x^3}$$

$$F(x) = \ln(x) - \sqrt{x} - \frac{1}{x} + 734$$

	Question 6 : Q2						
	Une primitive de la fonction f d	léfinie sur R par $f(x)$ =734	4x-1 est				
	X_{367x^2-x+1}						
-	734						
	$734x{ imes}0.5x^2{-}x$						
	□ 734−x						
				& Cm)	1 th	umiline	.ろ)
	Question 7: Q5			% t> %	2 H>	٠ ١ ٣٤ + (<u>}</u>
\		on f définie sur]0;+oo[par ှ		•			
	$-\frac{1}{x^3}$	2.		Fonct Box' x+x 2(0)x	e mú	morose o	بر(ي)
	$\frac{1}{2}(\ln(x))^2+3$	con f(u)=	n (m) x x (m)	2 H3 M(m)x.	(x)	2 12 L2	()+B
	$ F(x) = (\ln(x))^2 $					-2	
	-					\	

Prise de moles du 6/04/2021

Cours: preuve du hévreme?

	Théorème 2 , un intervelle borné
	Toute fonction continue sur un intervalle I admet des primitives.
(O Démonstration ROC
	/~ ·
	E soil ou me fanction continue of sur I
	\$ On odinet que possède un minimum, m sur.
	Soit l'une fondion continue l'aux I com admet que l'assède un minimum maux I. beur but a EI, l'(n) > m (=> fin-m>0
	ED 1 0 10 0 10 0 10 0 10 0 10 0 10 0 10
	la fanction a : xx > f (xi) - m est continue et pasitive. D'après le vivorième fondamental de l'analyse, a
١	admet une primitive GAUI.
	Pour tout nEI, G(n) = g(n) - m
	(=) (g'(x)+m = g(x)
>	med la dévinée de x +> mx
	lone F: x >> G(x) + m x est une primilire de
	lone F: x > G(x) + m x est une primiline de l' Plus généralement Ces fanctions Fg: x > G(x)+m x+R aue (R sont des primilines de l
	lab continuing all that
_	, , , , , , , , , , , , , , , , , , , ,

64 Soit f la fonction définie sur
$$I =]-1$$
; $+\infty[$ par :

$$f(x) = \frac{2x^2 + x}{x + 1}.$$

- 1. Démontrer que, pour tout réel x de $1:f(x)=2x-1+\frac{1}{x+1}$.
- **2.** Calculer $\int_0^1 f(x) dx$.

$$= \frac{2x^2 + 2x - x - 1 + 1}{x + 1} = \frac{2x^2 + x}{x + 1} = \beta(x)$$

L'égalité est démontrée

On cherche une primitive F de l'; par exemple:

: eup timbéls ne mo

el-donc	So farda -	ln(2)_	ln(1) _ Q	m(2 ⁻ .	
	J0 V	•			

https://capytale2.ac-paris.fr		010	
code: d798-11639	=>	accès par l'El dans l'orglet Ressources Nu	· · · · · · · · · · · · · · · · · · ·
		Kessouces Nu	norado

Caracitet du cours	: culcul d'intègrale
0	J
Courige en ligne:	
3	

https://frederic-junier.org/TS2021/Cours/Corrige-Cours-CalculIntegralPartie2-2021-Web.pdf mot de passe: puterminale

Cours: propriétes de l'intégrale

Propriétes 1,2,3 du cours

Li-dessous un extrait du manuel Indice

COURS

3. Propriétés et intégration par parties

Propriétés de l'intégrale

PROPRIÉTÉS Soit f et g deux fonctions continues sur un intervalle I.

a, b et c sont trois réels de I et k est une constante réelle.

(1)
$$\int_{a}^{a} f(x) dx = 0$$
. (2) $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx \text{ et } \int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

(4) Relation de Chasles:
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx.$$

- (5) Positivité: Si pour tout x de [a;b], $f(x) \ge 0$ alors $\int_{a}^{b} f(x) dx \ge 0$.
- (6) Comparaison: Si pour tout x de [a;b], $f(x) \ge g(x)$ alors $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

🄁 Propriété 1 Relation de CHASLES, admise

Soit f une fonction continue sur un intervalle I et a, b et c trois réels de I. Alors

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

AB+BA=0 (Birly + find to = (Birly

Remarque 7

On peut étendre la définition de l'intégrale d'une fonction continue f entre deux bornes a et b au cas où les deux bornes ne sont pas dans l'ordre croissant.

Par exemple si b > a on peut définir $\int_{a}^{a} f(x) dx$.

D'après la relation de Chasles on doit avoir : $\int_a^b f(x) dx + \int_b^a f(x) dx = \int_a^a f(x) dx = 0$

On en déduit donc un corollaire utile de la relation de Chasles : $\int_{L}^{a} f(x) dx = -\int_{-L}^{b} f(x) dx$

Propriété 2 Linéarité, admise

Soient f et g deux fonctions continues sur un intervalle I. Soient a et b deux réels de I et α et β deux réels quelconques. Alors:

•
$$\int_{a}^{b} (\alpha f(x)) dx = \alpha \int_{a}^{b} f(x) dx$$

•
$$\int_{a}^{b} (\alpha f(x)) dx = \alpha \int_{a}^{b} f(x) dx$$

• $\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$

• Plus généralement :
$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

• En particulier:
$$\int_{a}^{b} f(x) - g(x) dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

$$\int_{2}^{5} \beta(n) dn + \int_{2}^{5} q(n) dn = 3 \times 1 + 3 \times 3 = 12$$

$$= \int_{2}^{5} \beta(n) + q(n) dn$$

Exercice sur le relation de Charles

nº 36 p. 341 du manuel

36 Soit f une fonction continue sur \mathbb{R} .

On donne $\int_{-5}^{1} f(x) dx = 8$ et $\int_{1}^{3} f(x) dx = 2$.

Calculer $\int_{-5}^{3} f(x) dx$.

Grapplique la relation de Charles.

(fordant fordant = 5 fordant)

(1 faidre+ (3) faidre = 8+2 = 10 m.a

Enervice sur la propriété de linéarité

mo37 n. 341

37 Soit f et g deux fonctions continues sur \mathbb{R} et telles que $\int_{-1}^{3} f(x) dx = 2$ et $\int_{-1}^{3} g(x) dx = -5$.

Calculer: **a.** $\int_{-1}^{3} 7f(x) dx$ **b.** $\int_{-1}^{3} (f(x) + g(x)) dx$

c. $\int_{-1}^{3} (2f(x) - 3g(x)) dx$

a) $\int_{-1}^{3} f(x) dx = 7 \int_{-1}^{3} f(x) dx = 7 \times 2 = 14$

工(7月)=7工(月)

On peut sorlir les constantes qui ne dépendent pas de x:

Safenda - n Sforda

et four

[] f(m)x f(m)dn \ [-1 f(m)dx] \ () -1 f(m)dn \]
L'intégrale d'un product n'ext pas le
Vooduit des intégrales

Enervice sur la propriété de linéarité.

70 Soit
$$I = \int_0^1 \frac{e^x}{e^x + 1} dx$$
 et $J = \int_0^1 \frac{1}{e^x + 1} dx$.

- **1.** Calculer I et I + J.
- En déduire la valeur de J.

$$T+5 = \left(\frac{e^{x}}{e^{x}+1}\right)dx + \left(\frac{1}{e^{x}+1}\right)dx - \left(\frac{e^{x}+1}{e^{x}+1}\right)dx$$

$$= \left(\frac{1}{e^{x}+1}\right)dx - \left(\frac{e^{x}+1}{e^{x}+1}\right)dx$$

Calculons
$$T = \frac{1}{1 - \frac{e^{2}}{1 - \frac{e^{2$$

$$2)\left\{ \begin{array}{l} T+S=1 \\ T=2n\left(\frac{e+1}{2}\right) \end{array} \right\} = \frac{1}{1-2n\left(\frac{e+1}{2}\right)}$$

b)

	Exerce sur la relation de Ghasles:
mo 73	M.343
	En utilisant la relation de Chasles, calculer : $\int_{-3}^{5} x dx$.
	J -3'

Capacité 8 Application des propriétés de l'intégrale

Soient f et g deux fonctions continues sur [1;5], on donne :

$$I = \int_{1}^{2} f(x) dx = -3$$
 $J = \int_{5}^{2} f(x) dx = 2$ $K = \int_{1}^{5} g(x) dx = 12$

Calculer
$$L = \int_{1}^{5} f(x) dx$$
, $M = \int_{1}^{5} (f(x) + g(x)) dx$ puis $N = \int_{1}^{5} (2f(x) - 3g(x)) dx$

Enercice de synthèse

Fishe d'exercices

https://frederic-junier.org/TS2020/Cours/TS-Exos-Integration2020-Fiche1-Web.pdf

Exercice 1

Cloches de Pâques

On considère la fonction f définie sur l'intervalle [1;2] par $f(x)=\frac{4}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^2}{2}}+\frac{1-\ln x}{(x-\ln x)^2}$. f est dérivable et donc continue sur [1;2] comme somme de fonctions dérivables sur [1;2]. On munit le plan d'un repère orthonormal $\left(0,\overrightarrow{t},\overrightarrow{j}\right)$.

- 1. La fonction $g: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ est dérivable donc continue sur $\mathbb R$ et on donne ci-dessous des valeurs approchées à 0,001 près :
 - de l'aire du domaine \mathcal{D}_1 délimité par les droites d'équations x = -1, x = 1, y = 0 et par la courbe d'équation $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$;
 - ter de l'aire du domaine \mathcal{D}_2 délimité par les droites d'équations x = -1, x = 2, y = 0 et par la courbe d'équation $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$.

En déduire une valeur approchée à 0,002 près (les erreurs s'ajoutent) de l'intégrale :

$$\int_{1}^{2} g(x) dx = \int_{1}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

- 2. On considère la fonction H définie et dérivable sur [1; 2] par $H(x) = \frac{\ln x}{x \ln x}$.
 - **a.** Démontrer que H est une primitive de la fonction $h: x \mapsto \frac{1 \ln x}{(x \ln x)^2}$ sur l'intervalle [1; 2].
 - **b.** En déduire la valeur exacte de l'intégrale $\int_1^2 h(x) dx = \int_1^2 \frac{1 \ln x}{(x \ln x)^2} dx$.
- 3. Déterminer une valeur approchée à 0,002 près de l'intégrale $\int_1^2 f(x) dx$.