

STGE200NB60S

N-CHANNEL 150A - 600V - ISOTOP PowerMESH™ IGBT

TYPE	V _{CES}	V _{CE(sat)} (typ.)	Ic	T _C
STGE200NB60S	600 V	1.2 V 1.3 V	150 A 200 A	100°C 25°C

- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP (Vcesat)
- OFF LOSSES INCLUDE TAIL CURRENT
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH™ IGBTs, with outstanding performances. The suffix "S" identifies a family optimized to achieve very low V_{CE(sat)} (@ max frequency of 1KHz).

APPLICATIONS

- LOW FREQUENCY MOTOR CONTROLS
- ALUMINUM WELDING EQUIPMENT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V_{GE}	Gate-Emitter Voltage	±20	V
Ic	Collector Current (continuous) at T _C = 25°C	200	Α
Ic	Collector Current (continuous) at T _C = 100°C 150		Α
I _{CM} (■)	Collector Current (pulsed)	400	Α
P _{TOT}	Total Dissipation at T _C = 25°C	600	W
	Derating Factor	4.8	W/°C
T _{stg}	Storage Temperature	- 65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) PULSE WIDTH LIMITED BY SAFE OPERATING AREA

June 2003 1/9

STGE200NB60S

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	0.208	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	30	°C/W

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_C = 250 \mu A, V_{GE} = 0$	600			V
I _{CES}	Collector cut-off	V _{CE} = Max Rating, T _C = 25 °C			500	μA
	$(V_{GE} = 0)$	V _{CE} = Max Rating, T _C = 125 °C			5	mA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20V$, $V_{CE} = 0$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	3		5	V
V _{CE(sat)}	Collector-Emitter Saturation	V _{GE} = 15V, I _C = 100 A		1.2	1.6	V
	Voltage	V _{GE} = 15V, I _C =150 A, Tj =100°C		1.2		V

DYNAMIC

Symbol	Parameter Test Conditions		Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	V _{CE} = 15 V , I _C = 100 A		80		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{CE} = 25V, f = 1 MHz, V _{GE} = 0		15600 1100 95		pF pF pF
Q _g Q _{ge} Q _{gc}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	V _{CE} = 480V, I _C = 100 A, V _{GE} = 15V		560 70 170		0 0 0 0 0 0
I _{CL}	Latching Current	$V_{clamp} = 480 \text{ V}$ Tj = 125°C , R _G = 10 Ω	300			Α

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$V_{CC} = 480 \text{ V}, I_{C} = 100 \text{ A}$ $R_{G} = 2\Omega$, $V_{GE} = 15 \text{ V}$		64 112		μs μs
(di/dt) _{on} Eon	Turn-on Current Slope Turn-on Switching Losses	V_{CC} = 480 V, I_{C} = 100 A R_{G} =2 Ω V _{GE} = 15 V,Tj = 125°C		1800 12		A/μs mJ

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _c	Cross-over Time	$V_{CC} = 480 \text{ V}, I_{C} = 100 \text{ A},$		2.98		μs
$t_r(V_{off})$	Off Voltage Rise Time	$R_{GE} = 2 \Omega$, $V_{GE} = 15 V$		1.7		μs
t _d (off)	Delay Time			2.4		μs
t _f	Fall Time			1.23		μs
E _{off} (**)	Turn-off Switching Loss			59		mJ
E _{ts}	Total Switching Loss			71		mJ
t _c	Cross-over Time	$V_{CC} = 480 \text{ V}, I_{C} = 100 \text{ A},$		4.52		μs
$t_r(V_{\text{off}})$	Off Voltage Rise Time	$R_{GE} = 2 \Omega$, $V_{GE} = 15 V$ Ti = 125 °C		2.6		μs
$t_{d(off)}$	Delay Time	1) = 120 0		2.8		μs
t _f	Fall Time			1.8		μs
E _{off} (**)	Turn-off Switching Loss			92		mJ
E _{ts}	Total Switching Loss			105		mJ

Note: 1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
2. Pulse width limited by max. junction temperature.
(**)Losses include Also the Tail (Jedec Standardization)

A7/₀

Thermal Impedance

Output Characteristics

Normalized Gate Threshold Voltage vs Temp.

Switching Off Safe Operating Area

Transfer Characteristics

Transconductance

Collector-Emitter On Voltage vs Temperature

Gate-Charge vs Gate-Emitter Voltage

Capacitance Variations

Normalized Break-down Voltage vs Temp.

Total Switching losses vs Gate Resistance

Total Switching losses vs Temperature

Total Switching losses vs Ic

Collector-Emitter on Voltage vs Current

Fig. 1: Gate Charge test Circuit

Fig. 2: Test Circuit For Inductive Load Switching

ISOTOP MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	11.8		12.2	0.466		0.480
В	8.9		9.1	0.350		0.358
С	1.95		2.05	0.076		0.080
D	0.75		0.85	0.029		0.033
Е	12.6		12.8	0.496		0.503
F	25.15		25.5	0.990		1.003
G	31.5		31.7	1.240		1.248
Н	4			0.157		
J	4.1		4.3	0.161		0.169
K	14.9		15.1	0.586		0.594
L	30.1		30.3	1.185		1.193
М	37.8		38.2	1.488		1.503
N	4			0.157		
0	7.8		8.2	0.307		0.322

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com