Задачи для ЯН по курсу Проектировыание алгоритмов (Составител доцент Юсупов Ф.)

Задача поиска.

- 1. Задача поиска. Построит математическое описание и алгоритм определения первого возрастающей последовательности в одномерном числовом массиве.
- 2. Задача поиска. Построит математическое описание и алгоритм определения первого убывающей последовательности в одномерном числовом массиве.
- 3. Задача поиска. Построит математическое описание и алгоритм создания массива простых чисел из элементов одномерного числового массива.
- 4. Задача поиска. Построит математическое описание и алгоритм печатающие фамилии начинающегося из букв "С" и "Т" в одномерном символном массиве.
- 5. Задача поиска. Построит математическое описание и алгоритм создания нового массива из чисел одномерного числового массива, элементы которых делятся на 2, 3, 5 без остатка.
- 6. Задача поиска. Построит математическое описание и алгоритм определения чисел полиндром (например 12321).
- 7. Задача поиска. Построит математическое описание и алгоритм определения числа с максимальным количеством цифр.
- 8. Задача поиска. Построит математическое описание и алгоритм определения определения слов полиндром в одномерном символном массиве.
- 9. Задача поиска. Построит математическое описание и алгоритм определения слова с максимальной длиной. Слова в предложении разделены одним пробелом.
- 10. Задача поиска. Построит математическое описание и алгоритм определения слов заканчивающихся на "ov", "na". Слова в предложении разделены одним пробелом.
- 11. Задача поиска. Построит математическое описание и алгоритм определения первого возрастающей последовательности в одномерном числовом массиве.
- 12. Задача поиска. Построит математическое описание и алгоритм определения первого убывающей последовательности в одномерном числовом массиве.
- 13. Задача поиска. Построит математическое описание и алгоритм создания массива простых чисел из элементов одномерного числового массива.
- 14. Задача поиска. Построит математическое описание и алгоритм печатающие фамилии начинающегося из букв "С" и "Т" в одномерном символном массиве.
- 15. Задача поиска. Построит математическое описание и алгоритм создания нового массива из чисел одномерного числового массива, элементы которых делятся на 2, 3, 5 без остатка.
- 16. Задача поиска. Построит математическое описание и алгоритм определения чисел полиндром (например 12321).
- 17. Задача поиска. Построит математическое описание и алгоритм определения числа с максимальным количеством цифр.

- 18. Задача поиска. Построит математическое описание и алгоритм определения определения слов полиндром в одномерном символном массиве.
- 19. Задача поиска. Построит математическое описание и алгоритм определения слова с максимальной длиной. Слова в предложении разделены одним пробелом.
- 20. Задача поиска. Построит математическое описание и алгоритм определения слов заканчивающихся на "ov", "na". Слова в предложении разделены одним пробелом.
- 21. Задача поиска. Построит математическое описание и алгоритм определения первого возрастающей последовательности в одномерном числовом массиве.

Операции над числовыми матрицами

- 22. Построит математическое описание и алгоритм создания одномерного числового массива из суммы элементов по строкам двумерного массива.
- 23. Построит математическое описание и алгоритм создания одномерного числового массива из произведения элементов столбца двумерного массива.
- 24. Построит математическое описание и алгоритм создания матрицы размером NxK из элементов одномерного числового массива с M элементами, здес N*K=M. Например M=12, N=3, K=4.
- 25. Построит математическое описание и алгоритм удаления к-го столбца матрицы.
- 26. Построит математическое описание и алгоритм удаления к-ой строки матрицы.
- 27. Построит математическое описание и алгоритм включения одномерного числового массива к-ой строкой в матрицу.
- 28. Построит математическое описание и алгоритм включения одномерного числового массива к-ым столбцом в матрицу.
- 29. Построит математическое описание и алгоритм перстановки к-ой строки с t-ым столбцом матрицы.
- 30. Построит математическое описание и алгоритм определения максимального и минимального элемента матрицы.
- 31. Построит математическое описание и алгоритм определения максимального и минимального элемента которые находится в периметрах матрицы.

Сортировка

- 32. Сортировка. Построит математическое описание и алгоритм сортировки по возрастанию методом "Пузырка".
- 33. Сортировка. Построит математическое описание и алгоритм сортировки по убыванию методом "Пузырка" элементов массива (10, 4, 2, 14, 6, 5).
- 34. Сортировка. Построит математическое описание и алгоритм сортировки по убыванию методом вставки элементов массива (10, 4, 2, 14, 6, 5).
- 35. Сортировка. Построит математическое описание и алгоритм сортировки по возрастанию методом вставки элементов массива (10, 1, 8, 14, 6, 15).
- 36. Сортировка. Построит математическое описание и алгоритм сортировки по убыванию методом Шелла элементов массива (16, 1, 8, 14, 6, 5).
- 37. Сортировка. Построит математическое описание и алгоритм сортировки по возрастанию методом Шелла элементов массива (10, 4, 2, 14, 3, 5).

- 38. Сортировка. Построит математическое описание и алгоритм сортировки по убыванию методом Шейкера элементов массива **«46 15 12 32 84 18 26 37»**.
- 39. Сортировка. Построит математическое описание и алгоритм сортировки по возрастанию методом разделения элементов массива **«46 15 12 32 84 18 26 37»**.
- 40. Сортировка. Построит математическое описание и алгоритм сортировки по убыванию методом разделения элементов массива **«46 15 12 32 84 18 26 37»**.
- 41. Сортировка. Построит математическое описание и алгоритм сортировки по убыванию методом мин (мах) элементов массива **«46 15 12 32 84 18 26 37»**.

Определение корня нелинейного уравнения

- 42. $x^3 3x^2 24x 3 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом простой итерации
- 43. $x^3 12x + 6 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 44. $2x^3 3x^2 12x + 10 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 45. $x^3 3x^2 + 2.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [1,2] методом простой итерации
- 46. $x^3 + 3x^2 3.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 47. $x^3 3x^2 24x 8 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом простой итерации
- 48. $x^3 12x + 10 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,2] методом простой итерации
- 49. $2x^3 3x^2 12x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации

- 50. $x^3 4x^2 + 2 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 51. $x^3 + 3x^2 24x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 52. $x^3 3x^2 24x 3 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом Ньютона
- 53. $x^3 12x + 6 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом Ньютона
- 54. $2x^3 3x^2 12x + 10 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом Ньютона
- 55. $x^3 3x^2 24x 3 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом простой итерации
- 56. $x^3 3x^2 + 2.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,2] методом Ньютона
- 57. $x^3 + 3x^2 3.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом Ньютона
- 58. $x^3 3x^2 24x 8 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом Ньютона
- 59. $x^3 12x + 10 = 0$. построить математическое описание и алгоритм определение корня $2x^3 3x^2 12x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом Ньютона
- 60. $x^3 4x^2 + 2 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом Ньютона

- 61. $x^3 + 3x^2 24x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом Ньютона
- 62. $x^3 3x^2 24x 3 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом половинного деления интервала
- 63. $x^3 12x + 6 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом половинного деления интервала
- 64. $2x^3 3x^2 12x + 10 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом половинного деления интервала
- 65. $x^3 3x^2 + 2.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,2] методом половинного деления интервала
- 66. $x^3 + 3x^2 3.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом половинного деления интервала
- 67. $x^3 3x^2 24x 8 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом половинного деления интервала
- 68. $x^3 12x + 10 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом половинного деления интервала
- 69. $2x^3 3x^2 12x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом половинного деления интервала
- 70. $x^3 4x^2 + 2 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом половинного деления интервала
- 71. $x^3 + 3x^2 24x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом половинного деления интервала

Определение интервала изоляции корня нелинейного уравнения

- 72. $5^x 6x 3 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 73. $3^x 6x + 3 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 74. $2^x 4x 6 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом(математическое описание и алгоритм).
- 75. $5^x 2x 7 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 76. $5^{x-1} 2x 3 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 77. $5x^3 2x^2 3x + 7 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 78. $2x^3 + 3x^2 12x 9 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 79. $x^3 0.3x^2 1.2x 3.9 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 80. $x^3 3x^2 6x 2 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 81. $x^3 0.1x^2 2x 1.9 = 0$ интервал изоляции корня трансцендентного уравнения определить аналитическим методом (математическое описание и алгоритм).
- 82. $5\cos(x)-2x-3=0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 83. $6\sin(x+2/\pi)-6x^2+3=0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 84. $3\cos(x-5/\pi)-7x-3=0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 85. $2\ln(x) 2x^2 + 7 = 0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 86. $4\exp(x) 5\sin(x^2 + 2) = 0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 87. $5\cos(x-\pi/3)-2x-7=0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).

- 88. $6\sin(x+2/\pi)-0.6x^2-3=0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 89. $2\cos(x-5/\pi)-2x^2-3=0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 90. $2\ln(x) 0.2x^2 + 3 = 0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 91. $4\exp(x) 5\sin(x) = 0$ интервал изоляции корня трансцендентного уравнения определить графическим методом (математическое описание и алгоритм).
- 92. $5x^3 2x^2 3x + 7 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 93. $2x^3 3x^2 + 12x 9 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 94. $x^3 0.3x^2 + 1.2x 3.9 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 95. $x^3 3x^2 + 6x 2 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 96. $x^3 0.1x^2 + 0.2x 1.9 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 97. $5\cos(x-\pi/3)-2x-7=0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 98. $6\sin(x+2/\pi)-0.6x^2-3=0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 99. $2\cos(x-5/\pi)-2x^2-3=0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- $2\ln(x) 0.2x^2 + 3 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 101. $4\exp(x) 5\sin(x) = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 102. $5x^3 x^2 5x + 7 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 103. $x^3 3x^2 24x 3 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом простой итерации

- 104. $x^3 12x + 6 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 105. $2x^3 3x^2 12x + 10 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 106. $x^3 3x^2 + 2.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [1,2] методом простой итерации
- 107. $x^3 + 3x^2 3.5 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 108. $x^3 3x^2 24x 8 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [-1,0] методом простой итерации
- 109. $x^3 12x + 10 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,2] методом простой итерации
- 110. $2x^3 3x^2 12x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 111. $x^3 4x^2 + 2 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 112. $x^3 + 3x^2 24x + 1 = 0$. построить математическое описание и алгоритм определение корня трансцендентного уравнения в интервале [0,1] методом простой итерации
- 113. $2x^3 3x^2 + 12x 9 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 114. $x^3 0.3x^2 + 1.2x 3.9 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 115. $x^3 3x^2 + 6x 2 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 116. $x^3 0.1x^2 + 0.2x 1.9 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 117. $5\cos(x-\pi/3)-2x-7=0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).

- 118. $6\sin(x+2/\pi)-0.6x^2-3=0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 119. $2\cos(x-5/\pi)-2x^2-3=0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 120. $2\ln(x) 0.2x^2 + 3 = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).
- 121. $4\exp(x) 5\sin(x) = 0$ интервал изоляции корня трансцендентного уравнения определить алгоритмическим методом (математическое описание и алгоритм).

Вычисление значений определенного интеграла приближенными методами

- 122. $\int_{1}^{3} \frac{x}{\sqrt{x^2+1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 123. $\int_{1}^{3} \frac{x}{\sqrt{x^3+1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 124. $\int_{1}^{3} \frac{2x+3}{\sqrt{x^2+1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 125. $\int_{1}^{3} \frac{x^2 + 3}{\sqrt{x^2 + 1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 126. $\int_{1}^{3} \frac{x^{2}}{\sqrt{x^{2}+1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 127. $\int_{1}^{3} \frac{x^2 + 2}{\sqrt{x^2 + 1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 128. $\int_{1}^{3} \frac{4x+12}{\sqrt{x^2+1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 129. $\int_{1}^{3} \frac{x}{\sqrt{2x^2+5}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку

- 130. $\int_{1}^{3} \frac{3x^2 2}{\sqrt{x^2 + 1}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 131. $\int_{1}^{3} \frac{5x-2}{\sqrt{x^2+3}} dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом левых прямоуголников, оценит ошибку
- 132. $\int_{1}^{3} \frac{dx}{\sqrt{2x^2+1}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 133. $\int_{1}^{3} \frac{dx}{\sqrt{x^2+1}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 134. $\int_{1}^{3} \frac{dx}{\sqrt{3x^2+1}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 135. $\int_{1}^{3} \frac{dx}{\sqrt{x^2 + 5}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 136. $\int_{1}^{3} \frac{dx}{\sqrt{2x^2+3}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 137. $\int_{1}^{3} \frac{dx}{\sqrt{x^2 + 1,4}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 138. $\int_{1}^{3} \frac{dx}{\sqrt{1,2x^2+0,1}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 139. $\int_{1}^{3} \frac{dx}{\sqrt{2,3x^2+1,6}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку

- 140. $\int_{1}^{3} \frac{dx}{\sqrt{3,4x^2+2,8}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 141. $\int_{1}^{3} \frac{dx}{\sqrt{1,7x^2+3,1}}$ построить математическое описание и алгоритм вычисления определенного интеграля методом трапеции, оценит ошибку
- 142. $\int_{1}^{3} (x+1)\sin(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 143. $\int_{1}^{3} (x+1)\cos(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 144. $\int_{1}^{3} x \sin(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 145. $\int_{1}^{3} x \cos(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 146. $\int_{1}^{3} \ln(x+1)\sin(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 147. $\int_{1}^{3} \ln(x+1)\cos(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 148. $\int_{1}^{3} \sqrt{x} \sin(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 149. $\int_{1}^{\sqrt{x}} \cos(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку

- 150. $\int_{1}^{3} e^{x} \sin(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 151. $\int_{1}^{e^{x}} \cos(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 152. $\int_{1}^{3} (x+1)\sin(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 153. $\int_{1}^{3} (x+1)\cos(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 154. $\int_{1}^{3} x \sin(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 155. $\int_{1}^{3} x \cos(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 156. $\int_{1}^{8} \ln(x+1)\sin(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 157. $\int_{1}^{5} \ln(x+1)\cos(x)dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 158. $\int_{1}^{3} \sqrt{x} \sin(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку
- 159. $\int_{1}^{\sqrt{x}} \cos(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку

160. $\int_{1}^{3} e^{x} \sin(x) dx$ построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку

161.
$$\int_{1}^{3} e^{x} \cos(x) dx$$
 построить математическое описание и алгоритм вычисления определенного интеграля методом Симпсона, оценит ошибку

Задачи линейного программирования. Графический метод

1. Найти оптимальное решение задачи линейного программирования графическим методом

$$F = 12X_1 + 16X_2 \longrightarrow \max$$

$$2x_1 + 6x_2 \le 24$$

$$5x_1 + 4x_2 \le 31$$

$$2x_1 + 3x_2 \le 18$$

$$x_1, x_2 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования графическим методом

$$F = 5X_1 + 12X_2 \longrightarrow \max$$

$$4x_1 + 5x_2 \le 15$$

$$3x_1 + 8x_2 \le 35$$

$$12x_1 + 7x_2 \le 32$$

$$x_1, x_2 \ge 0$$

1. 1. Найти оптимальное решение задачи линейного программирования графическим методом

$$F = 10X_1 + 12X_2 \qquad max \\ 3x_1 + 5x_2 \le 13 \\ 2x_1 + 5x_2 \le 24 \\ 6x_1 + 7x_2 \le 12 \\ x1, x2 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования графическим методом

$$F = 15X_1 + 34X_{2} \longrightarrow \max$$

$$3x_1 + 2x_2 \le 28$$

$$2x_1 + 3x_2 \le 37$$

$$7x_1 + 5x_2 \le 23$$

$$x_1, x_2 \ge 0$$

$$F = 2X_1 + 6X_2 \longrightarrow \max$$

$$3x_1 + 8x_2 \le 21$$

$$5x_1 + 7x_2 \le 15$$

$$8x_1 + 3x_2 \le 9$$

$$x_1, x_2 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования графическим методом

```
F = 105X_1 + 164X_2 \qquad \text{max}
2x_1 + 5x_2 \le 10
6x_1 + 7x_2 \le 21
2x_1 + 4x_2 \le 28
x_1, x_2 \ge 0
```

1. Найти оптимальное решение задачи линейного программирования графическим методом

$$F = 15X_1 + 26X_2 \longrightarrow \max_{1} 2x_1 + 9x_2 \le 14$$

$$7x_1 + 5x_2 \le 21$$

$$12x_1 + 2x_2 \le 13$$

$$x_1, x_2 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования графическим методом

```
F = 12X_1 + 16X_2 \longrightarrow ma
5x_1 + 2x_2 \le 24
8x_1 + 3x_2 \le 31
4x_1 + 7x_2 \le 18
x_1, x_2 \ge 0
```

1. Найти оптимальное решение задачи линейного программирования графическим методом

```
F = 20X_{1} + 160X_{2} \longrightarrow \max
3x_{1} + 7x_{2} \leq 20
15x_{1} + 12x_{2} \leq 36
4x_{1} + 7x_{2} \leq 28
x1, x2 \geq 0
```

1. Найти оптимальное решение задачи линейного программирования графическим методом

```
F = 4X_1 + 8X_2 \longrightarrow \max
3x_1 + 5x_2 \le 45
11x_1 + 14x_2 \le 62
8x_1 + 9x_2 \le 25
x_1, x_2 \ge 0
```

1. Найти оптимальное решение задачи линейного программирования

графическим методом

$$F = 12X_1 + 16X_2$$

$$2x_1 + 6x_2 \leq 24$$

$$5x_1 + 4x_2 \le 31$$

$$2x_1 + 3x_2 \le 18$$

$$x1, x2 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования

$$4x_1 + 5x_2 \le 15$$

$$3x_1 + 8x_2 \leq 35$$

$$12x_1 + 7x_2 \leq 32$$

$$x1, x2 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования

$$F = 10X_1 + 12X_2$$
 → $F = 10X_1 + 12X_2$ тах

$$3x_1 + 5x_2 \le 13$$

$$2x_1 + 5x_2 \leq 24$$

$$6x_1 + 7x_2 \leq 12$$

1. Найти оптимальное решение задачи линейного программирования

графическим методом

$$F = 15X_1 + 34X_2 \longrightarrow \max$$

$$3x_1 + 2x_2 \, \leq \, 28$$

$$2x_1 + 3x_2 \, \leq \, 37$$

$$7x_1 + 5x_2 \, \leq \, 23$$

$$x1, x2 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования

графическим методом

$$F = 15X_1 + 26X_2 \longrightarrow max$$

$$2x_1 + 9x_2 \, \leq \, 14$$

$$7x_1 + 5x_2 \, \leq \, 21$$

$$12x_1 + 2x_2 \le 13$$

$$x1, x2 \ge 0$$

Задачи линейного программирования. Симплекс метод

$$F = 12X_1 + 16X_2 + 6X_3$$
 max

$$2x_1 - 5x_2 + 3X_3 \le 14$$

$$5x_1 + 4x_2 + 2X_3 \, \leq \, 31$$

$$2x_1 + 3x_2 \, \leq \, 18$$

$$x1, x2, x3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 5X_1 + 12X_2 + 6X_3 \qquad \text{max}$$

$$4x_1 + 5x_2 \le 15$$

$$3x_1 - 8x_2 + 2X_3 \le 35$$

$$12x_1 + 7x_2 + 6X_3 \le 32$$

$$x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 10X_1 + 12X_2 + 6X_3 \qquad \text{max} \\ 3x_1 + 5x_2 - 3X_3 \le 13 \\ 2x_1 - 5x_2 + 3X_3 \le 24 \\ 6x_1 + 7x_2 \le 12 \\ x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 15X_1 + 34X_2 + 6\overline{X_3} \qquad \text{max} \\ 3x_1 + 2x_2 \le 28 \\ 2x_1 + 3x_2 + 5X_3 \le 37 \\ 7x_1 - 5x_2 + 3X_3 \le 23 \\ x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 2X_1 + 6X_2 + 2X_3 \qquad max \\ 3x_1 + 8x_2 + 2X_3 \leq 21 \\ 5x_1 + 7x_2 - 3X_3 \leq 15 \\ 8x_1 - 3x_2 \leq 9 \\ x_1, x_2, x_3 \geq 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 105X_1 + 164X_2 + 6X_3$$
 max
$$2x_1 + 5x_2 \le 10$$

$$6x_1 + 7x_2 + 3X_3 \le 21$$

$$2x_1 + 4x_2 - 5X_3 \le 28$$

$$x_1, x_2, x_3 \ge 0$$

$$F = 15X_1 + 26X_2 + 6\overline{X_3} \qquad \text{max} \\ 2x_1 - 9x_2 + 5X_3 \le 14 \\ 7x_1 + 5x_2 \cdot 6X_3 \le 21 \\ 12x_1 + 2x_2 \le 13 \\ x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 12X_1 + 16X_2 + 6X_3 \qquad max$$

$$5x_1 + 2x_2 - 6X_3 \le 24$$

$$8x_1 + 3x_2 + 6X_3 \le 31$$

$$4x_1 + 7x_2 \le 18$$

$$x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 20X_1 + 160X_2 + 6X_3 \qquad \text{max} \\ 3x_1 + 7x_2 \le 20 \\ 15x_1 - 12x_2 + 6X_3 \le 36 \\ 4x_1 + 7x_2 + 6X_3 \le 28 \\ x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 4X_1 + 8X_2 + 6X_3 \longrightarrow \max$$

$$3x_1 + 5x_2 + 6X_3 \le 45$$

$$11x_1 + 14x_2 - 8X_3 \le 62$$

$$8x_1 + 9x_2 \le 25$$

$$x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 12X_1 + 16X_2 + 6X_3 \longrightarrow \max$$

$$2x_1 + 6x_2 + 5X_3 \le 24$$

$$5x_1 + 4x_2 - 8X_3 \le 31$$

$$2x_1 + 3x_2 \le 18$$

$$x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 5X_1 + 12X_2 + 6X_3 \qquad max \\ 4x_1 + 5x_2 + 2X_3 \le 15 \\ 3x_1 + 8x_2 - 6X_3 \le 35 \\ 12x_1 + 7x_2 \le 32 \\ x_1, x_2, x_3 \ge 0$$

$$F = 10X_1 + 12X_2 + 6X_3 \qquad \text{max}$$

$$3x_1 + 5x_2 + X_3 \le 13$$

$$2x_1 + 5x_2 - 6X_3 \le 24$$

$$6x_1 + 7x_2 \le 12$$

$$x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 15X_1 + 34X_2 + 6X_3 \longrightarrow \max$$

$$3x_1 + 2x_2 \le 28$$

$$2x_1 + 3x_2 + 6X_3 \le 37$$

$$7x_1 - 5x_2 + X_3 \le 23$$

$$x_1, x_2, x_3 \ge 0$$

1. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 2X_1 + 6X_2 + 6X_3$$
 max
 $3x_1 + 8x_2 + X_3 \le 21$
 $5x_1 - 7x_2 + X_3 \le 15$
 $8x_1 + 3x_2 \le 9$
 $x_1, x_2, x_3 \ge 0$

2. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 5X_1 + 12X_2 + 6X_3 \longrightarrow \max$$

$$4x_1 + 5x_2 + 2X_3 \le 10$$

$$3x_1 + 8x_2 - 6X_3 \le 25$$

$$12x_1 + 7x_2 \le 30$$

$$x_1, x_2, x_3 \ge 0$$

2. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 10X_1 + 12X_2 + 6X_3 \qquad \text{max} \\ 3x_1 + 5x_2 + X_3 \le 23 \\ 2x_1 + 5x_2 - 6X_3 \le 34 \\ 6x_1 + 7x_2 \le 20 \\ x_1, x_2, x_3 \ge 0$$

2. Найти оптимальное решение задачи линейного программирования симплекс методом

$$F = 10X_1 + 14X_2 + 8X_3 \qquad \text{max} \\ 3x_1 + 2x_2 \le 28 \\ 2x_1 + 6x_2 + 6X_3 \le 37 \\ 7x_1 - 5x_2 + 2X_3 \le 23 \\ x_1, x_2, x_3 \ge 0$$

$$F = 2X_1 + 5X_2 + 4X_3 \qquad \text{max} \\ 3x_1 + 8x_2 + 2X_3 \le 21 \\ 5x_1 - 7x_2 + 3X_3 \le 15 \\ 8x_1 + 5x_2 \le 9 \\ x_1, x_2, x_3 \ge 0$$

Построение линейный модели методом наименьших квадратов

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	50,2	50,3	50,4	51,0	51,2	51,4	51,6	51,9	52,3	52,4

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	4,2	5,0	6,7	6,3	6,4	6,8	7,8	6,6	6,2
У – фактор	52,2	51,3	50,4	51,0	51,2	51,4	51,6	52,9	52,3	53,4

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	60,2	60,3	60,4	61,0	61,2	61,4	61,6	61,9	62,3	62,4

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	40,2	40,3	40,4	41,0	41,2	41,4	41,6	41,9	42,3	42,4

Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	30,2	30,3	30,4	31,0	31,2	31,4	31,6	31,9	32,3	32,4

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8
У – фактор	52,9	53,0	53,2	53,5	53,6	54,3	54,7	55,2	55,5	56,5

1. Построить линейный модель методом наименьших квадратов

Х – фактор	6,2	6,7	7,4	6,8	7,2	7,7	8,5	7,8	8,4	8,8
У – фактор	50,9	53,0	51,2	53,5	53,6	54,3	54,7	55,2	56,5	59,5

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8
У – фактор	62,9	63,0	63,2	63,5	63,6	64,3	64,7	65,2	65,5	66,5

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8
У – фактор	42,9	43,0	43,2	43,5	43,6	44,3	44,7	45,2	45,5	46,5

1. Построить линейный модель методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8
У – фактор	32,9	33,0	33,2	33,5	33,6	34,3	34,7	35,2	35,5	36,5

Построение нелинейный модели методом наименьших квадратов

1. Построить модель виде полинома 2-го порядка методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	50,2	50,3	50,4	51,0	51,2	51,4	51,6	51,9	52,3	52,4

1. Построить модель виде полинома 2-го порядка методом наименьших квадратов

Номер		1	2	3	4	5	6	7	8	9	10
эксперимент	га										
Х – фактор		5,3	4,2	5,0	6,7	6,3	6,4	6,8	7,8	6,6	6,2
У – фактор		52,2	51,3	50,4	51,0	51,2	51,4	51,6	52,9	52,3	53,4

1. Построить модель виде полинома 2-го порядка методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	60,2	60,3	60,4	61,0	61,2	61,4	61,6	61,9	62,3	62,4

1. Построить модель виде полинома 2-го порядка методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	40,2	40,3	40,4	41,0	41,2	41,4	41,6	41,9	42,3	42,4

1. Построить модель виде полинома 2-го порядка методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2
У – фактор	30,2	30,3	30,4	31,0	31,2	31,4	31,6	31,9	32,3	32,4

1. Построить модель виде полинома 2-го порядка методом наименьших квадратов

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										

Х – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8			
У – фактор	52,9	53,0	53,2	53,5	53,6	54,3	54,7	55,2	55,5	56,5			
1. Построи	ть модель	виле по	линома	2-го по	nguka N	метолом	и наиме	нгших	квап п ат	OR			
Номер	<u> 1</u>	2	3	4	<i>5</i>	методок 6	7	8	9	10			
эксперимента		_		•		Ü	,			10			
X – фактор	6,2	6,7	7,4	6,8	7,2	7,7	8,5	7,8	8,4	8,8			
У – фактор	50,9	53,0	51,2	53,5	53,6	54,3	54,7	55,2	56,5	59,5			
-				2									
1. Построи		виде по 2			*		и наиме 7	ı					
Номер	1	2	3	4	5	6	1	8	9	10			
эксперимента	6.2	67	7 0	6.0	7.2	77	0 0	7 0	0 1	0 0			
X – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8			
У – фактор	62,9	63,0	63,2	63,5	63,6	64,3	64,7	65,2	65,5	66,5			
1. Построить модель виде полинома 2-го порядка методом наименьших квадратов													
Номер	1	2	3	4	5	6	7	8	9	10			
эксперимента													
Х – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8			
У – фактор	42,9	43,0	43,2	43,5	43,6	44,3	44,7	45,2	45,5	46,5			
	ть модель												
Номер	1	2	3	4	5	6	7	8	9	10			
эксперимента													
Х – фактор	6,3	6,7	7,8	6,8	7,2	7,7	8,8	7,8	8,4	8,8			
У – фактор	32,9	33,0	33,2	33,5	33,6	34,3	34,7	35,2	35,5	36,5			
1 по	строить мо	лапі ві	ле пол	1110Ma 2	го пор	ппко ме	тоном і	шимаш	IIIIIV IAD	опроте			
Номер	1	2	3	1нома <u>2</u>	-10 110p:	ядка ме б	тодом г 7	8	9	адрато 10			
эксперимента			3	-	3	O	,			10			
Х – фактор	5,3	6,2	5,0	5,7	6,3	5,4	6,8	7,3	6,6	6,2			
У – фактор	40	41	40,4	41,0	42	41,4	40,6	42	42,3	42,4			
- quittop	10	11	10,1	11,0	12	1 ± 9 1	10,0	ı . <i></i>	12,5	12,7			
2. Построи	ть молель	виле по	линома	2-го па	орялка м	метолом	таиме	ныших	квалпат	ОВ			
Номер	1	2	3	4	ъридка 1 5	<u> 6</u>	7	8	9	10			
DICHARIMALITA		_	_	•	-			_					

Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	5	6	5	5	6,3	5,4	7	7,3	6,6	6,2
У – фактор	30,2	30,3	30,4	31,0	31,2	31,4	31,6	31,9	32,3	32,4

2. Построить молель виде полинома 2-го порядка методом наименьших квадратов

2. Hoorpoints	подоль	виде по	3111110111G	2 10 110	ридка	потодон	1 manime	прших	прадраг	ОБ
Номер	1	2	3	4	5	6	7	8	9	10
эксперимента										
Х – фактор	6,3	7	8	6	7	7	8,8	7,8	8,4	9
У – фактор	52,9	53,0	53,2	53,5	53,6	54,3	54,7	55,2	55,5	56,5

Построить 3-х факторный полный модель технологического процесса методом планирования эксперимента

- 1. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(2,5,6,7,9,8,5,3); Z1=100-160;Z2=30-40;Z3=50-60.
- 2. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: У=(2,3,6,17,19,15,7,3); Z1=10-30; Z2=30-40; Z3=50-60.
- 3. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(1,5,8,10,16,14,8,3); Z1=20-30; Z2=30-50; Z3=50-60.
- 4. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(2,4,10,12,9,8,3,1); Z1=10-30; Z2=20-40; Z3=60-80.
- 5. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(2,8,16,27,19,13,9,5); Z1=10-30; Z2=20-40; Z3=60-80.
 - 6. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(2,6,14,18,20,16,12,5); Z1=40-60; Z2=60-90; Z3=60-80.
 - 7. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(1,5,10,17,20,16,9,3); Z1=100-140; Z2=20-40; Z3=160-180.
 - 8. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: У=(3,8,16,17,20,15,8,3); Z1=110-130; Z2=120-140; Z3=60-80.
- 9. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: У=(2,4,6,12,18,14,8,3); Z1=10-40; Z2=120-140; Z3=30-60.
- 10.Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: У=(2,8,15,20,19,12,8,3); Z1=200-300; Z2=80-100; Z3=60-80.
- 11.Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(2,8,10,20,18,10,8,3); Z1=200-300; Z2=80-100; Z3=60-80.

- 12.Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(2,7,10,20,15,12,6,3); Z1=200-300; Z2=80-100; Z3=60-80.
- 13.. Построит 3-х факторный полный модель технологического процесса методом планирования эксперимента (2^{K} -план). Данные: Y=(2,12,15,22,18,14,6,3); Z1=200-300; Z2=80-100; Z3=60-80.

«Жадные алгоритмы» в графах

1. «Жадные алгоритмы» в графах. Алгоритмы Краскаля иа Прима. Для заданного графа определите остовное дерево (скелет графа).

Связи	AB	AC	AD	BD	BF	CD	CE	СН	DE	DF	EF	EG	GF	GH
Величина	5	2	3	4	1	5	2	7	6	8	2	4	3	6

«Жадные алгоритмы» в графах. Алгоритмы Краскаля иа Прима. Для заданного графа определите остовное дерево (скелет графа).

Связи	AB	AC	AD	BD	BF	CD	CE	СН	DE	DF	EF	EG	GF	GH
Величина	2	3	8	1	5	4	6	2	7	8	5	3	6	7

«Жадные алгоритмы» в графах. Алгоритмы Краскаля иа Прима. Для заданного графа определите остовное дерево (скелет графа).

Связи	AB	AC	AD	BD	BF	CD	CE	СН	DE	DF	EF	EG	GF	GH
Величина	4	2	3	6	12	5	8	7	6	12	2	9	3	6

«Жадные алгоритмы» в графах. Алгоритмы Краскаля иа Прима. Для заданного графа определите остовное дерево (скелет графа).

Связи	AB	AC	AD	BD	BF	CD	CE	СН	DE	DF	EF	EG	GF	GH
Величина	3	5	2	4	6	5	7	8	6	9	12	4	10	11

«Жадные алгоритмы» в графах. Алгоритмы Краскаля иа Прима. Для заданного графа определите остовное дерево (скелет графа).

Связи	AB	AC	AD	BD	BF	CD	CE	СН	DE	DF	EF	EG	GF	GH
Величина	15	12	13	4	10	15	14	17	16	8	13	14	17	9

«Жадные алгоритмы» в графах. Алгоритмы Краскаля иа Прима. Для заданного графа определите остовное дерево (скелет графа).

Связи	AB	AC	AD	BD	BF	CD	CE	СН	DE	DF	EF	EG	GF	GH
Величина	8	2	5	4	7	5	12	8	9	8	13	15	16	10

Задачи теории игр

1. Задача Теория игр найти оптимальную стратегию для игрока А.

	$\mathbf{B_1}$	$\mathbf{B_2}$	\mathbf{B}_3
A_1	10	17	12
A_2	25	15	23
A_3	2	17	18

1. Задача Теория игр найти оптимальную стратегию для игрока А

	$\mathbf{B_1}$	$\mathbf{B_2}$	B ₃
A_1	11	17	32
A_2	12	27	21
A_3	14	10	18

1. Задача Теория игр найти оптимальную стратегию для игрока А

	\mathbf{B}_{1}	\mathbf{B}_2	B ₃
A_1	17	19	20
A_2	21	14	23
A_3	15	27	18

1. Задача Теория игр найти оптимальную стратегию для игрока А

	$\mathbf{B_1}$	$\mathbf{B_2}$	\mathbf{B}_3
A_1	15	10	24
A_2	12	27	23
A_3	22	27	21

1. Задача Теория игр найти оптимальную стратегию для игрока А

1 1		<i>J</i>	1 '
	B ₁	\mathbf{B}_2	B ₃
A_1	10	17	20
A_2	21	27	23
A_3	12	17	10

1. Задача Теория игр найти оптимальную стратегию для игрока В

	B ₁	B ₂	B ₃
A_1	15	17	16
A_2	25	27	20

_			
A_3	11	24	12

1. Задача Теория игр найти оптимальную стратегию для игрока В

	B ₁	B_2	B ₃
A_1	15	12	16
A_2	20	17	20
A_3	11	24	12

1. Задача Теория игр найти оптимальную стратегию для игрока В

	B ₁	B ₂	B ₃
A_1	12	7	10
A_2	25	27	20
A_3	11	24	12

1. Задача Теория игр найти оптимальную стратегию для игрока В

	\mathbf{B}_1	$\mathbf{B_2}$	\mathbf{B}_3
A_1	18	17	26
A_2	22	32	20
A_3	14	24	12

1. Задача Теория игр найти оптимальную стратегию для игрока В

	B_1	$\mathbf{B_2}$	B ₃
A_1	25	12	16
A_2	17	15	20
A_3	11	24	12

1.Задача Теория игр найти оптимальную стратегию для игрока В

	\mathbf{B}_1	$\mathbf{B_2}$	\mathbf{B}_3
A_1	12	17	16
A_2	23	27	20
A_3	11	24	12

1.Задача Теория игр найти оптимальную стратегию для игрока В

		, ,	
	\mathbf{B}_{1}	\mathbf{B}_2	B ₃
A_1	35	27	16
A_2	45	37	20
A_3	11	24	12

1.Задача Теория игр найти оптимальную стратегию для игрока В

	$\mathbf{B_1}$	$\mathbf{B_2}$	\mathbf{B}_3
A_1	15	11	26
A_2	33	27	28
A_3	16	24	12

1.Задача Теория игр найти оптимальную стратегию для игрока В

	$\mathbf{B_1}$	\mathbf{B}_2	B ₃
A_1	12	17	10
A_2	25	18	20
A_3	23	24	12

1.Задача Теория игр найти оптимальную стратегию для игрока В

	B ₁	B ₂	B ₃
A_1	14	12	16
A_2	25	32	20

A_3	11	24	17
			-