

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree in Applied Sciences Second Year – Semester I Examination – June/July 2018

PHY2103 - ELECTRONICS I

Time: One and Half (1^1_2) hours

Answer All Questions.

Electron Charge, $e = 1.6 \times 10^{-19} \text{ C}$

Intrinsic Carrier Concentration of Si at 300 K = $1.45 \times 10^{10} cm^{-3}$

- 1. The electrical conductivity of a material can be written as $\sigma = ne\mu$. Where n is the carrier concentration, e is the electron charge and μ is the electron mobility.
 - a) Show that the conductivity in an intrinsic semiconductor is given by $\sigma = n_i(\mu_e + \mu_p)$, where, n_i is the intrinsic carrier concentration, μ_e and μ_p represent the mobility of electrons and holes respectively.
 - b) The intrinsic carrier concentration of an intrinsic semiconductor is 2.5×10^{19} m⁻³. If the mobilities of electrons and holes are 0.40 m²/Vs and 0.20 m²/Vs respectively, calculate the resistivity of the material.
 - c) Determine the electron concentration in the concluction band of an n-type semiconductor at 300 K and has donor concentration of .2.73 \times 10¹⁶ cm⁻³.
 - d) Determine the hole concentration in the valance band of the above semiconductor.
 - e) If the substrate is overdoped with an acceptor concentration of 3.5×10^{16} cm⁻³, determine the electron and hole concentrations. Is the resulting material n-type or p-type?
- 2. Diodes are active electronic devices with n-type and p-type semiconductors.
 - a) Draw the characteristic curve of a diode and mark forward bias region, reverse bias region, threshold voltage, leakage current and breakdown voltage on it.
 - b) Explain the main factors contributing to the breakdown of the p-n junction at high voltage in reverse bias mode.

- c) Explain the origin of leakage current of a commercial diode.
- d) A Zener diode has following characteristics. 7.0 V rating at 10 mA, r_Z = 20 Ω and I_{ZK} = 0.2 mA. Using given ratings find the V_{Z0} .
- e) Find the change in V_{out} resulting from $\pm 1 V$ change in Vs in the following circuit.

3. Following is a common emitter transistor amplifier circuit using an npn transistor with DC current gain $\beta = 200$.

- a) Using Thevenin's Theorem find V_{TH} and R_{TH} for the base terminal.
- b) Find the open circuit voltage and short circuit current of the circuit.
- c) Sketch the load line of the circuit.
- d) Find the DC biasing point (Q' point) of the above circuit.
- e) Check whether the Q point is independent of β change.