Fonction exponentielle

Existence et unicité

<u>Définition</u>: Il existe une unique fonction f définie et dérivable sur \mathbb{R} vérifiant les deux conditions suivantes f(0)=1 et f'=f.

Cette fonction est appelée fonction exponentielle et est notée exp. $\exp(0)=1$ et $\exp'(x)=\exp(x)$. Ainsi, pour tout réel $x \in \mathbb{R}$,

Preuve: L'existence est admise, la preuve de l'unicité est dans votre manuel page 172.

Propriétés algébriques

Propriété: La propriété principale de la fonction exponentielle est qu'elle transforme les sommes en produits. Pour tout couple de réels $(a,b) \in \mathbb{R}^2$, on a $\exp(a+b) = \exp(a) \times \exp(b)$.

Preuve : La preuve de ce résultat est donnée dans l'Activité 3.

<u>Corollaire</u>: Pour tous réels a et b, et pour tout entier $n \in \mathbb{N}$,

$$\exp(-a) = \frac{1}{\exp(a)},$$
 $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$

et $(\exp(a))^n = \exp(an)$.

Preuve:

- $\exp(a) \times \exp(-a) = \exp(a + (-a)) = \exp(0) = 1 \Rightarrow \exp(-a) = \frac{1}{\exp(a)}.$
- $\exp(a-b) = \exp(a) \times \exp(-b) = \exp(a) \times \frac{1}{\exp(b)} = \frac{\exp(a)}{\exp(b)}.$
- La preuve du dernier point fait l'objet de l'Activité 4.

Notation

<u>Définition</u>: On note e l'image de 1 par la fonction exponentielle. Ainsi $\exp(1)=e$. Une valeur approchée de e est $e \simeq 2,718$.

Comme la fonction exponentielle partage les mêmes propriétés que les fonctions puissances, on choisit de noter plus simplement la fonction exponentielle : $\exp(x) = e^x$.

Ainsi, comme pour les puissances, pour tout $x, y \in \mathbb{R}$ et $n \in \mathbb{N}$,

$$e^{x+y} = e^x \times e^y$$
, $e^{-x} = \frac{1}{e^x}$, $e^{x-y} = \frac{e^x}{e^y}$ et $(e^x)^n = e^{nx}$.

<u>Propriété</u>: Pour tout $a \in \mathbb{R}$, la suite (u_n) définie pour $n \in \mathbb{N}$ par $u_n = e^{an}$ est une suite géométrique. Son premier terme vaut $u_0 = e^0 = 1$ et sa raison est e^a .

Preuve: Ce résultat est démontré dans l'Activité 5.

Le lien est très fort entre suites géométriques et fonction exponentielle : toute suite géométrique de raison strictement postitive peut s'écrire à l'aide d'une fonction exponentielle. Si q>0, il existe un réel a tel que $e^a=q$. Alors $u_n=u_0q^n=u_0e^{an}$.

Étude de la fonction

<u>Propriété</u>: La fonction exponentielle est strictement positive sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $\exp(x) > 0$.

Preuve: $e^x = e^{2 \times \frac{x}{2}} = \left(e^{\frac{x}{2}}\right)^2 \ge 0$ et $e^x \ne 0$ car $e^x \times e^{-x} = 1$.

<u>Propriété</u>: La fonction exponentielle est strictement croissante sur R.

Preuve : On sait que la fonction exponentielle admet pour dérivée la fonction exponentielle. Or celle-ci est strictement positive, donc la dérivée est strictement positive, donc la fonction est strictement croissante.

Corollaire: Pour tous réels a et b, $e^a = e^b \Leftrightarrow a = b$ et $e^a < e^b \Leftrightarrow a < b$. En particulier, si b = 0, $e^a = 1 \Leftrightarrow a = 0$ et $e^a < 1 \Leftrightarrow a < 0$.

Représentation graphique

- La courbe de la fonction exponentielle passe par les ponts de coordonnées (0;1) et (1;e).
- La courbe est toujours strictement au-dessus de l'axe des abscisses.

Représentation graphique des fonctions $f(x)=e^{kx}$ selon que k>0 ou k<0

Croissance exponentielle

Décroissance exponentielle

Exponentielle d'une fonction affine

Propriété : Si a et b sont deux réels, la fonction définie sur \mathbb{R} par $f(x) = e^{ax+b}$ est dérivable sur \mathbb{R} . Et pour tout réel x, $f'(x) = a \times e^{ax+b}$.