Skúška 21.1.2005

Meno	Priezvisko

Označte správnu odpoveď (môže byť správna jedna, viac, alebo žiadna odpoveď). Vyhodnocujú sa len označené odpovede. Ak označená odpoveď je správna, pripočíta sa 1 bod, ak je nesprávna, 1 bod sa odpočíta. V teste sa dá získať aspoň 20 bodov. Na pokračovanie v skúške potrebujete aspoň 10 bodov.

1.	Vektor
1.	A CIVOOL

 $\tilde{\mathbf{f}} = (1, 3, 2)$ je priemetom vektora $\mathbf{f} = (1, 6, 2)$ do podpriestru určeného bázou

(-4, -12, 8)

(1, 6, 2)

2. Proces $\mathbf{f} = (1, 3, 2)$ má v harmonickej báze $\mathcal{H} = \{\mathbf{b_0}, \mathbf{b_1}\}$ spektrum $\mathbf{c} = (2, ?, -0.5 +$ 0.29j).

Funkcia, popisujúca proces ako funkciu času je

 $f(t) = 2 - \cos(\frac{2\pi}{3}t) + 0.58\sin(\frac{2\pi}{3}t)$ $f(t) = 2 - \cos(\frac{2\pi}{3}t) + 0.58\sin(\frac{4\pi}{3}t)$ $f(t) = 2 - \cos(\frac{2\pi}{3}t) + 0.58\sin(\frac{4\pi}{3}t)$

3. Vektor $\mathbf{b} = (1, e^{j\frac{1\pi}{3}}, e^{j\frac{2\pi}{3}}, \dots, e^{j\frac{5\pi}{3}})$ je vektorom

harmonickej bázy 3-rozmerného priestoru

harmonickej bázy 6-rozmerného priestoru

harmonickej bázy 5-rozmerného priestoru

4. Koeficient 3 je jeden z koeficientov priemetu procesu $\mathbf{f} = (1, 4, 3, 6, 1)$ do podpriestoru určeného bázou

 $\{(1,1,1,1)\}$

 $\{(1,2,3,4,5),(1,1,1,1,1)\}$

 $\{(1,-1,1,-1,0),(1,1,1,1,1)\}$

5. Pri lineárnej regresii použitím funkcie $y(t) = c_0 + c_1 t$ robíme priemet do

jednorozmerného podpriestoru

dvojrozmerného podpriestoru

trojrozmerného podpriestoru

6. Do spektra procesu $\mathbf{f}=(1,0,1,-1)$ v báze $\mathcal{B}=\{(2,0,0,0),(0,0,0,2)\}$ patrí číslo

 $-\frac{1}{2}$

7. Spektrom procesu $\mathbf{f} = (f_0, f_1, f_2)$ v báze $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$ je vektor

 (c_0, c_1, c_2)

 (f_1, f_2)

 $((c_1, c_2))$

8. Stredná energia procesu $\mathbf{f}=(1,-2,2)$ na jednotkovej impedancii je $\Box 1 \Box 5 \Box 9$
9. Ktorá trojica vektorov tvorí ortogonálnu bázu E_3 ?
 10. Pri Kharnunen-Loevovej transformácii je báza, do ktorej náhodný proces rozkladáme, deterministická, ak náhodný proces ☐ je centrovaný ☐ je stacionárny ☐ má jedinú realizáciu Vlastné čísla matice
11. Vektory $(2, 2, 2), (3, 3, 3), (-1, -1, -1)$ generujú \Box jednorozmerný podpriestor priestoru E_3 \Box jednorozmerný podpriestor priestoru E_4 \Box trojrozmerný podpriestor priestoru E_3
12. Ak hodnoty náhodného procesu zmenšíme na polovicu, hodnoty amplitúdového spektra procesu sa □ nezmenia □ zmenšia na polovicu □ zväčšia na dvojnásobok
13. Ak je stredná hodnota náhodného procesu nula je to proces □ Biely šum □ stacionárny niekedy □ stacionárny vždy
14. Ak je kovariančná matica náhodného procesu je symetrická podľa diagonály (t.j. $r_{ij} = r_{ij}$), potom sa jedná o proces \Box reálny \Box deterministický \Box stacionárny
15. Matica $\begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{pmatrix}$ môže byť □ kovariančná matica stacionárneho náhodného procesu □ kovariančná matica nestacionárneho náhodného procesu □ nemôže byť kovariančná matica náhodného procesu
16. Lineárnu regresiu robíme napr. kvôli tomu, aby sme □ odstránili šum □ vyjadrili proces pomocou menšieho počtu parametrov □ vyjadrili proces v inej báze