Réduction d'un endomorphisme liret

Floryan Jourdan

5 novembre 2023

E est un \mathbb{K} espace vectoriel.

1 Rappels d'Algèbre linéaire

Définition 1. Soit $\lambda \in \mathbb{K}$. On dit que λ est valeur propre de f s'il existe un vecteur non nul $x \in E$ tel que $f(x) = \lambda x$.

Exercice 1. Montrer que le scalaire $\lambda \in \mathbb{K}$ est valeur propre $\text{de} f \in \mathcal{L}(E)$ si et seulement si l'endomorphisme $f - \lambda i d_E$ n'est pas bijectif.

Définition 2. Soit $x \in E$. On dit que x est vecteur propre de f si $x \neq 0$ et s'il existe $\lambda \in \mathbb{K}$ tel que $f(x) = \lambda x$.

Exercice 2 (Valeur propre). Soit $x \in E$, montrer qu'il existe un unique scalaire λ tel que $f(x) = \lambda x$.

Solution: P50

Exercice 3. Soit $h \in \mathcal{L}(E)$ tel que tout vecteur non nul de E est vecteur propre de h. Montrer que h est une homothétie de E.

Solution: P51

Exercice 4. Soit $f \in \mathcal{L}(E)$, soit $P \in \mathbb{K}[X]$, montrer que si x est un vecteur propre de f pour la valeur propre λ alors x est vecteur propre de P(f) pour la valeur propre $P(\lambda)$.

Solution: P51

Exercice 5. Soit $\lambda_1, ..., \lambda_s$ des valeurs propres distinctes de f, montrer que si x_i est vecteur propre de f pour la valeur propre λ_i , alors les vecteurs $x_1, ..., x_s$ sont linéairement indépendants. Indice : Utiliser le résultat de l'exercice précédent.

Solution: P52

Définition 3. Soit $A \in \mathcal{M}(\mathbb{K})$. Le polynôme $det(A - XI_n)$ de $\mathbb{K}[X]$ s'appelle le polynôme caractéristique de la matrice A. Nous le notons \mathcal{X}_A .

NB: Nous admettons ici le résultat que le déterminant de la matrice $A-XI_n$ est un polynôme à coefficients dans \mathbb{K} de degré n tel que $\det(A-XI_n)=(-1)^nX^n+(-1)^{n-1}(trA)X^{n-1}+...+\det A$, mais il serait bon de savoir le prouver.

Exercice 6. Soit A et B des matrices de $\mathcal{M}_n(\mathbb{K})$. Montrer que s'il existe $P \in GL_n(\mathbb{K})$ telle que $B = P^{-1}AP$, alors on a $\mathcal{X}_B = \mathcal{X}_A$.

Solution: P55

Définition 4. On appelle polynôme caractéristique de f, le polynôme caractéristique de la matrice de f dans une base de E. Le polynôme caractéristique de f sera noté \mathcal{X}_f .

NB: par définition du déterminant d'un endomorphisme, on a donc $\mathcal{X}_f(\lambda) = det(f - \lambda id_E)$ quel que soit le scalaire $\lambda \in \mathbb{K}$.

Exercice 7. Soit $\lambda \in \mathbb{K}$. Montrer que le scalaire λ est valeur prorpre de f si et seulement si λ est racine du polynôme caractéristique de f.

Solution: P55

Exercice 8. Soit A la matrice de f dans une base de E. Montrer que si la matrice A est triangulaire, alors les valeurs propres de f sont les coefficients diagonaux de A.

Indice: utiliser un résultat sur le déterminant.

Solution: P56

Définition 5. Soit $A \in \mathcal{M}(\mathbb{K})$. On dit que le scalaire $\lambda \in \mathbb{K}$ est valeur propre de A si λ est racine du polynôme \mathcal{X}_A .

Définition 6. Soit λ une valeur propre de f. Le sous espace vectoriel $Ker(f - \lambda id_E)$ s'appelle le sous espace propre de E pour la valeur propre λ et se note $E(\lambda)$.

Exemple: Soit p la projection de E sur F et s ma symétrie par rapport à F parallèlement à G, où $E = F \oplus G$. Tout vecteur $x \in E$ s'écrit de manière unique x = y + z avec $y \in F$ et $z \in G$. Nous avons p(x) = y et s(x) = y - z. En conclure les sous espaces propres de tout ça.

Exercice 9. Soit $\lambda_1, ..., \lambda_r$ les valeurs propres distinctes de f. Montrer que les sous espaces propres $E(\lambda_1), ..., E(\lambda_r)$ sont en somme directe.

Indice: utiliser exo 5

Solution: P58

Notation : Soit λ une valeur propre de f, c'est à dire une racine **dans** \mathbb{K} du polynôme \mathcal{X}_f . On note $m(\lambda)$ la multiplicité de λ dans le polynôme \mathcal{X}_f , c'est à dire le plus grand entier r tel que $(X - \lambda)$ divise \mathcal{X}_f . Puisque λ est racine de \mathcal{X}_f , on a $m(\lambda) \geq 1$.

Exercice 10. Soit λ une valeur propre de f. Montrer qu'on a $1 \leq dim E(\lambda) \leq m(\lambda)$.

Indice: utiliser exercice 3 et un résultat sur le déterminant

Solution: P58

2 Réduction

Exercice 11. Montrer que la matrice de $f \in \mathcal{L}(E)$ dans la base $(e_1, ..., e_n)$ de E est diagonale si et seulement si les vecteurs $e_1, ..., e_n$ sont desvecteurs propres de f.

D'après ce résultat, l'endomorphisme f est diagonalisable si et seulement

Définition 7. On dit que l'endomorphisme f est diagonalisable si et seulement si il existe une base de E dans laquelle la matrice de f est diagonale.