Homework 3

Juwon Lee, Economics and Statistics, UCLA

2023-01-13

tinytex::install_tinytex()

abline(2, 0, col='blue', lty='dashed')
abline(-2, 0, col='blue', lty='dashed')

1.

(a).

Based on the output for model (3.7) a business analyst concluded the following:

The regression coefficient of the predictor variable, Distance is highly statistically significant and the model explains 99.4% of the variability in the Y-variable, Fare. Thus model (1) is a highly effective model for both understanding the effects of Distance on Fare and for predicting future values of Fare given the value of the predictor variable, Distance.

```
There are three methods to provide a detailed critique, \begin{cases} h_{ii} > \frac{4}{n} \to \frac{4}{17} \approx 0.235 \\ |\gamma_i| > 2 \\ D_i > \frac{4}{n-2} \to \frac{4}{15} \approx 0.267 \end{cases}
airfare <- read.table("airfares.txt", header=T)</pre>
lm_data_hw3_1 <- lm(airfare$Fare~airfare$Distance, data=airfare)</pre>
s_hw3_1 <- (sum((lm_data_hw3_1$residuals - mean(lm_data_hw3_1$residuals))^2) / (length(airfare$Fare)-2)
hatvalues hw3 1 <- hatvalues(lm data hw3 1)
st_residuals_hw3_1 <- lm_data_hw3_1$residuals / (s_hw3_1 * (1-hatvalues_hw3_1)^(1/2))
cooks.distance(lm_data_hw3_1)
                                               3
                                                                                             6
##
## 8.883565e-02 3.997799e-02 2.310385e-02 4.856507e-03 4.128465e-03 1.648618e-02
                7
                                                             10
                               8
                                               9
                                                                             11
## 1.784460e-06 1.826705e-02 9.494655e-03 4.401410e-04 2.934379e-04 3.125113e-03
                              14
                                              15
## 1.369600e+00 1.492552e-02 1.654116e-03 2.156824e-01 6.299398e-01
par(mfcol=c(1,2))
plot(airfare$Distance, airfare$Fare)
abline(lm_data_hw3_1$coefficients[1], lm_data_hw3_1$coefficients[2], col='orange')
plot(airfare$Distance, st_residuals_hw3_1)
```


(b)

```
Thus, two values who have more than 1500 distances are bad leverage points. Also, they have big Cook's distance, too.
```

```
airfare_improve <- airfare[c(-13,-17),]</pre>
lm_data_improve_hw3_1 <- lm(airfare_improve$Fare~airfare_improve$Distance, data=airfare_improve)</pre>
s_improve_hw3_1 <- (sum((lm_data_improve_hw3_1$residuals - mean(lm_data_improve_hw3_1$residuals))^2) /</pre>
hatvalues_improve_hw3_1 <- hatvalues(lm_data_improve_hw3_1)
st_residuals_improve_hw3_1 <- lm_data_improve_hw3_1$residuals / (s_improve_hw3_1 * (1-hatvalues_improve
cooks.distance(lm_data_improve_hw3_1)
##
                                          3
                                                                                    6
## 0.2982606823 0.0917448061 0.0712568213 0.0073769587 0.0042049174 0.0376435716
##
## 0.0053263543 0.0498181939 0.0137501029 0.0169499453 0.0002344767 0.0079227965
##
                           15
## 0.0627871691 0.0104044128 0.7543280904
par(mfcol=c(1,2))
plot(airfare_improve$Distance, airfare_improve$Fare)
abline(lm_data_improve_hw3_1$coefficients[1], lm_data_improve_hw3_1$coefficients[2], col='orange', lwd=
abline(lm_data_hw3_1$coefficients[1], lm_data_hw3_1$coefficients[2], col='blue', lwd=2)
plot(airfare improve$Distance, st residuals improve hw3 1, vlim=c(-3,3))
abline(2, 0, col='blue', lty='dashed')
abline(-2, 0, col='blue', lty='dashed')
                                                      က
                                               st_residuals_improve_hw3_1
     300
airfare_improve$Fare
     200
                                                      0
                                                                                      0
                                                      7
                                                                                       0
     100
                                                     7
                                                     က
            200
                    600
                            1000
                                    1400
                                                            200
                                                                    600
                                                                            1000
                                                                                   1400
```

airfare_improve\$Distance

airfare_improve\$Distance

```
par(mfcol=c(1,2))
plot(airfare_improve$Distance, hatvalues_improve_hw3_1, ylim=c(0,0.3))
abline(0.267, 0, col='darkgreen', lty='dashed')

plot(airfare_improve$Distance, cooks.distance(lm_data_improve_hw3_1))
abline(0.308, 0, col='darkgreen', lty='dashed')
```


They have new ones such that $|\gamma_i| > 2$, but we had better not eliminate it because of the originality.

2.

An analyst for the auto industry has asked for your help in modeling data on the prices of new cars. Interest centers on modeling suggested retail price as a function of the cost to the dealer for 234 new cars. The data set, which is available on the book website in the file cars04.csv, is a subset of the data from http://www.amstat.org/publications/jse/datasets/04cars.txt

The first model to fit to the data was Suggested Retail Price = $\beta_0 + \beta_1 * \text{Dealer Cost} + e$.

(a)

Based on the output for model, the analyst concluded the following:

Since the model explains just more than 99.8% of the variabilty in Suggested Retail Price and the coefficient of Dealer Cost has a t-value greater than 412, model (1) is a highly effective model for producting prediction intervals for Suggested Retail Price.

Provide a detailed critique of this conclusion.

```
cars <- read.csv("cars04.csv", header=T)

lm_data_hw3_2 <- lm(cars$SuggestedRetailPrice~cars$DealerCost, data=cars)

s_hw3_2 <- (sum((lm_data_hw3_2$residuals - mean(lm_data_hw3_2$residuals))^2) / (length(cars$DealerCost)

hatvalues_hw3_2 <- hatvalues(lm_data_hw3_2)

st_residuals_hw3_2 <- lm_data_hw3_2$residuals / (s_hw3_2 * (1-hatvalues_hw3_2)^(1/2))

lm_data_residual_hw3_2 <- lm((((st_residuals_hw3_2)^2)^(1/2))^(1/2)~cars$DealerCost, data=cars)

par(mfrow=c(1,2))

plot(cars$DealerCost, cars$SuggestedRetailPrice)

abline(lm_data_hw3_2$coefficients[1], lm_data_hw3_2$coefficients[2], col='red', lty='dashed')

plot(cars$DealerCost, st_residuals_hw3_2)

abline(2,0, col='red', lty='dashed')

abline(-2,0,col='red', lty='dashed')</pre>
```



```
\begin{cases} h_{ii} > \frac{4}{n} \to \frac{4}{234} \approx 0.017 \\ |\gamma_i| > 2 \\ D_i > \frac{4}{n-2} \to \frac{4}{232} \approx 0.0172 \end{cases}
There are three methods to provide a detailed critique,
par(mfrow=c(1,3))
plot(cars$DealerCost, st_residuals_hw3_2)
abline(2, 0, col='red', lty='dashed')
abline(-2, 0, col='red', lty='dashed')
abline(v=53000, col='blue', lty='dashed')
plot(cars$DealerCost, hatvalues_hw3_2)
abline(4/234,0, col='red', lty='dashed')
abline(v=53000, col='blue', lty='dashed')
plot(cars$DealerCost, cooks.distance(lm_data_hw3_2))
abline(4/232,0,col='red', lty='dashed')
                  0
                                                                                      1.0
                                             0.15
                                                                                 cooks.distance(Im_data_hw3_2)
st_residuals_hw3_2
                                        hatvalues_hw3_2
                                             0.10
                                                                                      9.0
                                                                   0
                                                                                      0.4
                                                                                      0.2
                                             0.00
         20000
                  60000 100000
                                                  20000
                                                          60000 100000
                                                                                           20000
                                                                                                   60000 100000
              cars$DealerCost
                                                       cars$DealerCost
                                                                                               cars$DealerCost
badleverage \leftarrow ((st_residuals_hw3_2)^2)^(1/2) > 2 \& hatvalues_hw3_2 > 4/234
badleverage[badleverage==TRUE]
##
     194 222 223
## TRUE TRUE TRUE
```

TRUE TRUE TRUE
cooks.distance(lm_data_hw3_2)[cooks.distance(lm_data_hw3_2) > 4/232]

213 178 188 189 194 210 212 ## 0.02256804 0.01841797 0.02367993 0.07728761 0.01800359 0.02781819 0.02363324 ## 222 223 229 214 215 228 ## 0.08232065 0.16876037 0.22534700 1.14307623 0.05388900 0.12363746 0.01915348

Thus, three components are bad leverage points.

And we can detect big Cook's distance, too.

```
cars_improve <- cars[c(-178, -188, -189, -194, -210, -212, -213, -214, -215, -222, -223, -228, -229, -2
lm_data_improve_hw3_2 <- lm(cars_improve$SuggestedRetailPrice~cars_improve$DealerCost, data=cars)</pre>
s_improve_hw3_2 <- (sum((lm_data_improve_hw3_2$residuals - mean(lm_data_improve_hw3_2$residuals))^2) /</pre>
hatvalues_improve_hw3_2 <- hatvalues(lm_data_improve_hw3_2)
st_residuals_improve_hw3_2 <- lm_data_improve_hw3_2$residuals / (s_improve_hw3_2 * (1-hatvalues_improve
lm_data_residual_improve_hw3_2<-lm((((st_residuals_improve_hw3_2)^2)^(1/2))^(1/2))~cars_improve$DealerCo
par(mfrow=c(1,2))
plot(cars_improve$DealerCost, cars_improve$SuggestedRetailPrice)
abline(lm_data_improve_hw3_2$coefficients[1], lm_data_improve_hw3_2$coefficients[2], col='red', lty='da
plot(cars_improve$DealerCost, st_residuals_improve_hw3_2)
abline(2,0, col='red', lty='dashed')
abline(-2,0,col='red', lty='dashed')
     70000
cars_improve$SuggestedRetailPrice
                                                     က
                                                                   ⊕
                                               st_residuals_improve_hw3_2
     50000
                                                                                     00
                                                     0
     30000
                                                     7
                                                     7
                                                                                0
     0000
                                                     က
         10000
                  30000
                            50000
                                                        10000
                                                                  30000
                                                                           50000
            cars_improve$DealerCost
                                                           cars_improve$DealerCost
par(mfrow=c(1,2))
plot(cars_improve$DealerCost, (((st_residuals_improve_hw3_2)^2)^(1/2))^(1/2))
abline(lm_data_residual_improve_hw3_2$coefficients[1], lm_data_residual_improve_hw3_2$coefficients[2],
qqnorm(st_residuals_improve_hw3_2)
qqline(st_residuals_improve_hw3_2, col='red', lty='dashed')
```


cars_improve\$DealerCost

Theoretical Quantiles

```
par(mfrow=c(1,3))
plot(cars_improve$DealerCost, st_residuals_improve_hw3_2)
abline(2, 0, col='red', lty='dashed')
abline(-2, 0, col='red', lty='dashed')
abline(v=55000, col='blue', lty='dashed')

plot(cars_improve$DealerCost, hatvalues_improve_hw3_2)
abline(4/220,0, col='red', lty='dashed')
abline(v=55000, col='blue', lty='dashed')

plot(cars_improve$DealerCost, cooks.distance(lm_data_improve_hw3_2))
abline(4/218,0,col='red', lty='dashed')
```


(b)

Carefully describe all the shortcomings evident in model (3.10). For each shortcoming, describe the steps needed to overcome the shortcoming.

- (1) The square root of standardized residual has steep slope. \rightarrow we can use log-scale.
- (2) It has a heavy-tail in QQ-plot.

(c)

The second model fitted to the data was $log(Suggested Retail Price) = \beta_0 + \beta_1 log(Dealer Cost) + e.$

```
lm_data_log_hw3_2 <- lm(log(cars$SuggestedRetailPrice)~log(cars$DealerCost), data=cars)
s_log_hw3_2 <- (sum((lm_data_log_hw3_2$residuals - mean(lm_data_log_hw3_2$residuals))^2) / (length(cars hatvalues_log_hw3_2 <- hatvalues(lm_data_log_hw3_2)
st_residuals_log_hw3_2 <- lm_data_log_hw3_2$residuals / (s_log_hw3_2 * (1-hatvalues_log_hw3_2)^(1/2))
lm_data_residual_log_hw3_2 <- lm(((st_residuals_log_hw3_2)^2)^(1/2))^(1/2)^log(cars$DealerCost), data=
par(mfrow=c(1,2))
plot(log(cars$DealerCost), log(cars$SuggestedRetailPrice))
abline(lm_data_log_hw3_2$coefficients[1], lm_data_log_hw3_2$coefficients[2], col='red', lty='dashed')
plot(log(cars$DealerCost), st_residuals_log_hw3_2)
abline(2,0, col='red', lty='dashed')
abline(-2,0,col='red', lty='dashed')</pre>
```


Thus, the log-scale model is more fitted than above one. This is because

- (1) More γ_i are in (-2,2).
- (2) Square root of standardized residual has flatter regression.
- (3) Normality is better.

```
par(mfrow=c(1,3))
plot(log(cars$DealerCost), st_residuals_log_hw3_2)
abline(2, 0, col='red', lty='dashed')
abline(-2, 0, col='red', lty='dashed')
abline(v=9.3, col='blue', lty='dashed')
abline(v=10.9, col='blue', lty='dashed')

plot(log(cars$DealerCost), hatvalues_log_hw3_2)
abline(4/234,0, col='red', lty='dashed')
abline(v=9.3, col='blue', lty='dashed')
abline(v=10.9, col='blue', lty='dashed')

plot(log(cars$DealerCost), cooks.distance(lm_data_log_hw3_2))
abline(4/232,0,col='red', lty='dashed')
```


Thus, there are no bad leverage points, and if we eliminate the values having big Cook's distances,

```
cooks.distance(lm_data_log_hw3_2)[cooks.distance(lm_data_log_hw3_2) > 4/232]
```

```
15
                       22
                                  23
                                              37
                                                          38
                                                                     39
  0.01903889 0.02196987 0.01921043 0.06248367 0.05188559 0.06814664 0.04663131
##
                                 194
                                             214
##
           83
                      178
                                                         215
                                                                    222
## 0.03933094 0.02024618 0.02788756 0.03548507 0.04418252 0.04633358 0.09330748
##
          228
                      229
## 0.02234703 0.03459348
```

```
cars_{log_{improve}} \leftarrow cars_{[c(-15,-22,-23,-37,-38,-39,-40,-83,-178,-194,-214,-215,-222,-223,-228,-229),]}
lm_data_log_improve_hw3_2 <- lm(log(cars_log_improve$SuggestedRetailPrice)~log(cars_log_improve$DealerC
s_log_improve_hw3_2 <- (sum((lm_data_log_improve_hw3_2$residuals - mean(lm_data_log_improve_hw3_2$resid
hatvalues_log_improve_hw3_2 <- hatvalues(lm_data_log_improve_hw3_2)
st_residuals_log_improve_hw3_2 <- lm_data_log_improve_hw3_2$residuals / (s_log_improve_hw3_2 * (1-hatva
lm_data_residual_log_improve_hw3_2 <- lm((((st_residuals_log_improve_hw3_2)^2)^(1/2))^(1/2)^log(cars_log_improve_hw3_2)^2</pre>
par(mfrow=c(1,2))
plot(log(cars_log_improve$DealerCost), log(cars_log_improve$SuggestedRetailPrice))
abline(lm_data_log_improve_hw3_2$coefficients[1], lm_data_log_improve_hw3_2$coefficients[2], col='red',
plot(log(cars_log_improve$DealerCost), st_residuals_log_improve_hw3_2)
abline(2,0, col='red', lty='dashed')
abline(-2,0,col='red', lty='dashed')
og(cars_log_improve$SuggestedRetailPrice)
                                                                            ❽
                                                 st_residuals_log_improve_hw3_2
                                                                                 0
      11.0
      10.5
                                                        0
      10.0
                                                        7
      9.5
                                                        7
               9.5
                      10.0
                             10.5
                                   11.0
                                                                       10.0
                                                                               10.5
                                                                                      11.0
                                                                 9.5
                                                         log(cars_log_improve$DealerCost)
       log(cars_log_improve$DealerCost)
par(mfrow=c(1,2))
```

```
par(mfrow=c(1,2))
plot(log(cars_log_improve$DealerCost), (((st_residuals_log_improve_hw3_2)^2)^(1/2))^(1/2))
abline(lm_data_residual_log_improve_hw3_2$coefficients[1], lm_data_residual_log_improve_hw3_2$coefficient
qqnorm(st_residuals_log_improve_hw3_2)
qqline(st_residuals_log_improve_hw3_2, col='red', lty='dashed')
```



```
par(mfrow=c(1,3))
plot(log(cars_log_improve$DealerCost), st_residuals_log_improve_hw3_2)
abline(2, 0, col='red', lty='dashed')
abline(-2, 0, col='red', lty='dashed')
abline(v=9.36, col='blue', lty='dashed')
abline(v=10.82, col='blue', lty='dashed')

plot(log(cars_log_improve$DealerCost), hatvalues_log_improve_hw3_2)
abline(4/218,0, col='red', lty='dashed')
abline(v=9.36, col='blue', lty='dashed')
abline(v=10.82, col='blue', lty='dashed')
plot(log(cars_log_improve$DealerCost), cooks.distance(lm_data_log_improve_hw3_2))
abline(4/216,0,col='red', lty='dashed')
```


 $log(Dealer\ Cost) = 1.01484$, which is the amount of change of Suggested Retail Price when Dealer Cost fluctuates.

(e)

3.

Chu (1996) discusses the development of a regression model to predict the price of diamond rings from the size of their diamond stones (in terms of their weight in carats). Data on both variables were obtained from a full page advertisement placed in the *Straits Times* newspaper by a Singapore-based retailer of diamond jewelry. Only rings made with 20 carat gold and mounted with a single diamond stone were included in the data set. There were 48 such rings of varying designs. (Information on the designs was available but not used in the modeling.)

Part 1 - (a)

```
diamonds <- read.table("/Users/user/Desktop/Yonsei/Junior/3-2/Introduction to Data Analysis and Regress
lm_data_hw3_3 <- lm(diamonds$Price~diamonds$Size, data=diamonds)
plot(diamonds$Size, diamonds$Price)
abline(lm_data_hw3_3$coefficients[1], lm_data_hw3_3$coefficients[2], col='red', lty='dashed')</pre>
```



```
###
```

```
s_hw3_3 <- (sum((lm_data_hw3_3$residuals - mean(lm_data_hw3_3$residuals))^2) / (length(diamonds$Price)-
hatvalues_hw3_3 <- hatvalues(lm_data_hw3_3)

st_residuals_hw3_3 <- lm_data_hw3_3$residuals / (s_hw3_3 * (1-hatvalues_hw3_3)^(1/2))

lm_data_residual_hw3_3 <- lm((((st_residuals_hw3_3)^2)^(1/2))^(1/2)^diamonds$Size, data=diamonds)

###

par(mfrow=c(1,3))
plot(diamonds$Size, st_residuals_hw3_3)
abline(2,0,col='red', lty='dashed')</pre>
```

```
abline(-2,0,col='red', lty='dashed')

plot(diamonds$Size, (((st_residuals_hw3_3)^2)^(1/2))^(1/2))

abline(lm_data_residual_hw3_3$coefficients[1], lm_data_residual_hw3_3$coefficients[2], col='red', lty='qqnorm(st_residuals_hw3_3)

qqline(st_residuals_hw3_3, col='red', lty='dashed')
```


when we check our power of justification,

```
par(mfrow=c(1,3))
plot(diamonds$Size, st_residuals_hw3_3)
abline(2, 0, col='red', lty='dashed')
abline(-2, 0, col='red', lty='dashed')
abline(v=0.32, col='blue', lty='dashed')

plot(diamonds$Size, hatvalues_hw3_3)
abline(4/length(diamonds$Size),0, col='red', lty='dashed')
abline(v=0.32, col='blue', lty='dashed')

plot(diamonds$Size, cooks.distance(lm_data_hw3_3))
abline(4/(length(diamonds$Size)-2),0,col='red', lty='dashed')
```


Thus, they don't have any bad leverage points. If we eliminate values having 'big' cook's distance,

```
cooks.distance(lm_data_hw3_3)[cooks.distance(lm_data_hw3_3) > 4/(length(diamonds\$Price)-2)]
```

```
## 4 19 42
## 0.09196098 0.11715838 0.21815953
diamonds_improve <- diamonds[c(-4,-19,-42),]
lm_data_improve_hw3_3 <- lm(diamonds_improve$Price~diamonds_improve$Size, data=diamonds_improve)
plot(diamonds_improve$Size, diamonds_improve$Price)
abline(lm_data_improve_hw3_3$coefficients[1], lm_data_improve_hw3_3$coefficients[2], col='red', lty='da</pre>
```



```
###
s_improve_hw3_3 <- (sum((lm_data_improve_hw3_3$residuals - mean(lm_data_improve_hw3_3$residuals))^2) /
hatvalues_improve_hw3_3 <- hatvalues(lm_data_improve_hw3_3)
st_residuals_improve_hw3_3 <- lm_data_improve_hw3_3$residuals / (s_improve_hw3_3 * (1-hatvalues_improve
lm_data_residual_improve_hw3_3 <- lm(((st_residuals_improve_hw3_3)^2)^(1/2))^(1/2)^diamonds_improve$Si.
###

par(mfrow=c(1,3))
plot(diamonds_improve$Size, st_residuals_improve_hw3_3)
abline(2,0,col='red', lty='dashed')
abline(-2,0,col='red', lty='dashed')
plot(diamonds_improve$Size, (((st_residuals_improve_hw3_3)^2)^(1/2))^(1/2))
abline(lm_data_residual_improve_hw3_3$coefficients[1], lm_data_residual_improve_hw3_3$coefficients[2],
qqnorm(st_residuals_improve_hw3_3)
qqline(st_residuals_improve_hw3_3, col='red', lty='dashed')</pre>
```


Then we can get this outcome. If we check the power of justification,

```
par(mfrow=c(1,3))
plot(diamonds_improve$Size, st_residuals_improve_hw3_3)
abline(2, 0, col='red', lty='dashed')
abline(-2, 0, col='red', lty='dashed')
abline(v=0.29, col='blue', lty='dashed')

plot(diamonds_improve$Size, hatvalues_improve_hw3_3)
abline(4/length(diamonds_improve$Size),0, col='red', lty='dashed')
abline(v=0.29, col='blue', lty='dashed')

plot(diamonds_improve$Size, cooks.distance(lm_data_improve_hw3_3))
abline(4/(length(diamonds_improve$Size)-2),0,col='red', lty='dashed')
```


Part 1 - (b)
The number of data are small.

Part 2 - (a)

```
We can use log-scale SLR model.
```

```
lm_data_log_hw3_3 <- lm(log(diamonds$Price)~log(diamonds$Size), data=diamonds)
plot(log(diamonds$Size), log(diamonds$Price))
abline(lm_data_log_hw3_3$coefficients[1], lm_data_log_hw3_3$coefficients[2], col='red', lty='dashed')</pre>
```



```
log(diamond
```

```
###
s_log_hw3_3 <- (sum((lm_data_log_hw3_3$residuals - mean(lm_data_log_hw3_3$residuals))^2) / (length(diam
hatvalues_log_hw3_3 <- hatvalues(lm_data_log_hw3_3)

st_residuals_log_hw3_3 <- lm_data_log_hw3_3$residuals / (s_log_hw3_3 * (1-hatvalues_log_hw3_3)^(1/2))

lm_data_residual_log_hw3_3 <- lm((((st_residuals_log_hw3_3)^2)^(1/2))^(1/2)^log(diamonds$Size), data=di

###

par(mfrow=c(1,3))
plot(log(diamonds$Size), st_residuals_log_hw3_3)
abline(2,0,col='red', lty='dashed')
abline(-2,0,col='red', lty='dashed')
plot(log(diamonds$Size), (((st_residuals_log_hw3_3)^2)^(1/2))^(1/2))
abline(lm_data_residual_log_hw3_3$coefficients[1], lm_data_residual_log_hw3_3$coefficients[2], col='red

qqnorm(st_residuals_log_hw3_3)
qqline(st_residuals_log_hw3_3, col='red', lty='dashed')</pre>
```


When we check the power of justification,

```
par(mfrow=c(1,3))
plot(log(diamonds$Size), st_residuals_log_hw3_3)
abline(2, 0, col='red', lty='dashed')
abline(-2, 0, col='red', lty='dashed')
abline(v=-1.15, col='blue', lty='dashed')

plot(log(diamonds$Size), hatvalues_log_hw3_3)
abline(4/length(diamonds$Size),0, col='red', lty='dashed')
abline(v=-1.15, col='blue', lty='dashed')

plot(log(diamonds$Size), cooks.distance(lm_data_log_hw3_3))
abline(4/(length(diamonds$Size)-2),0,col='red', lty='dashed')
```


Thus, there are no bad leverage points.

If we eliminate the data having big cook's distance,

```
cooks.distance(lm_data_log_hw3_3)[cooks.distance(lm_data_log_hw3_3) > 4/(length(diamonds$Size)-2)]
```

```
## 4
## 0.1183951
diamonds_log_improve <- diamonds[c(-4),]
lm_data_log_improve_hw3_3 <- lm(log(diamonds_log_improve$Price)~log(diamonds_log_improve$Size), data=di
plot(log(diamonds_log_improve$Size), log(diamonds_log_improve$Price))
abline(lm_data_log_improve_hw3_3$coefficients[1], lm_data_log_improve_hw3_3$coefficients[2], col='red',</pre>
```



```
###
s_log_improve_hw3_3 <- (sum((lm_data_log_improve_hw3_3$residuals - mean(lm_data_log_improve_hw3_3$residuals - mean(lm_data_log_improve_hw3_3$residuals_log_improve_hw3_3 <- hatvalues(lm_data_log_improve_hw3_3)

st_residuals_log_improve_hw3_3 <- lm_data_log_improve_hw3_3$residuals / (s_log_improve_hw3_3 * (1-hatva_lm_data_residual_log_improve_hw3_3 <- lm((((st_residuals_log_improve_hw3_3)^2)^(1/2))^(1/2)^log(diamond_###

par(mfrow=c(1,3))
plot(log(diamonds_log_improve$size), st_residuals_log_improve_hw3_3)
abline(2,0,col='red', lty='dashed')
abline(2,0,col='red', lty='dashed')
plot(log(diamonds_log_improve$size), (((st_residuals_log_improve_hw3_3)^2)^(1/2))^(1/2))
abline(lm_data_residual_log_improve_hw3_3$coefficients[1], lm_data_residual_log_improve_hw3_3$coefficients[1], lm_data_residual_log_improve_hw3_3$coefficients[1], lty='dashed')
qqline(st_residuals_log_improve_hw3_3, col='red', lty='dashed')</pre>
```


Part 2 - (b)
The number of data are small.

Part 3

Part B has a better model, because the regression of sum of squared of standardized residual is flatter.