Graph Concepts

Facebook - Facebook - Tostagram -> code storywith MIK

(Twitter) > CSwith MIK

codestorywith MIK > S

(V)otivation:-

Every tough topic becomes easy with Persistence and curiosity. Each attempt brings you closer to understanding, and every with small elevel adds up.

2097. Valid Arrangement of Pairs

Hard

Topics

Companies

O Hint

You are given a **0-indexed** 2D integer array pairs where pairs[i] = [start_i, end_i]. An arrangement of pairs is **valid** if for every index i where $1 \le i \le pairs.length$, we have $end_{i-1} = start_i$.

Return any valid arrangement of pairs.

Note: The inputs will be generated such that there exists a valid arrangement

of pairs.

$$[xemple: paixs = [(5,1), (4,5), (11,9), (9,4)]$$

$$Output = [(11,9), (9,4), (4,5), (5,1)]$$

- 1) How is this problem related to Euler ???
- 2 What is it asking from us ???
- 3 How to find Euler Path???

 "Hierholzer's Algorithm"

$$[(1,2), (1,3), (2,1)]$$

$$((1,2) \rightarrow (2,1) \times (3)$$

1-2-1-3

only once.

Euler Path.

indegree outdægree

(11,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (4,5), (5,1) (-1,9), (9,4), (9,4), (9,4) (-1,9), (9,4), (9,4), (9,4) (-1,9), (9,4), (9,4), (9,4) (-1,9), (9,4), (9,4), (9,4) (-1,9), (9,4), (9,4), (9,4) (-1,9), (9,4), (9,4), (9,4) (-1,9), (9,4), (9,4), (9,4) (-1,9), (9,4), (9,4), (9,4) (-1,9), (-1,9), (-1,9) (-1,9), (-1,9), (-1