

Matemática A

11.º ANO DE ESCOLARIDADE

Duração: 90 minutos | Data: MAIO 2023

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- Na figura, está representado, num referencial o.n. Oxyz, um cone reto.
 Sabe-se que:
 - a base do cone está contida no plano xOy e tem o seu centro na origem do referencial;
 - [AB] e [CD] são diâmetros da base do cone;
 - os pontos B e D pertencem aos semieixos positivo Oy e Ox, respetivamente;
 - o vértice V pertence ao semieixo positivo Oz;
 - a área lateral do cone é igual a é $9\sqrt{10} \pi$;

- **1.1.** Mostre que o vértice V tem coordenadas (0,0,9).
- **1.2.** Escreva uma equação do plano *VDB* .
- **1.3.** Determine $\sin \alpha$, sendo $\alpha = V \hat{E} O$.
- 2. De uma progressão aritmética (a_n) sabe-se que o vigésimo termo é 64 e que o terceiro termo é 13.
 - **2.1.** Determine o primeiro termo de (a_n) e a razão da progressão.
 - **2.2.** A soma de k termos consecutivos de (a_n) , a partir do terceiro (inclusive), é igual a 568. Determine k.
- 3. Seja (u_n) a sucessão definida por $\begin{cases} u_1 = 4 \\ 3u_n = u_{n-1} \end{cases}, \forall n \in \mathbb{N} \setminus \{1\}$
 - **3.1.** Mostre que (u_n) é uma progressão geométrica.
 - **3.2.** Escreva o termo geral da progressão.
 - **3.3.** Calcule a soma de todos os termos de (u_n) .

0

4. Na figura encontra-se representada parte do gráfico de uma função f, de domínio $\mathbb{R}\setminus\{5\}$, contínua no seu domínio com exceção dos pontos -4, -2 e 3.

Sabe-se que:

- as retas de equações x = -2 e y = 0 são as únicas assíntotas do gráfico de f;
- $\bullet \quad \lim_{x \to -\infty} f(x) = +\infty$

4.1. Relativamente às afirmações

$$\mathbf{I.} \quad \lim_{x \to a} f(x) = 0$$

II.
$$\lim_{x \to a} f(x) = 2$$

II.
$$\lim_{x \to 5} f(x) = 2$$
 III. $\lim_{x \to +\infty} f(x) = 0$

podemos afirmar que:

(A) I, II e III são verdadeiras.

(B) I é falsa e II e III são verdadeiras.

(C) II é verdadeira e III é falsa.

(D) são todas falsas.

4.2. O valor de $\lim f(u_n)$:

a) sendo
$$u_n = -\frac{2n+1}{n}$$
 é:

b) sendo
$$u_n = -n^2 + n$$
 é:

$$(B) 2$$

c) sendo
$$u_n = 3 - \frac{1}{n}$$
 é:

O valor de $\lim \frac{\sqrt{n^2 - 1} + n}{7 - 2n}$ é:

(A)
$$-1$$
 (B) $-\frac{1}{2}$ **(C)** 0

- 6. Se f é uma função racional cujo gráfico admite como assíntotas as retas de equações x = -2 e y = 4, então o gráfico da função g definida por g(x) = f(x-3) 2 admite com assíntotas as retas de equações:
 - (A) x = -5 e y = 2
- **(B)** x = 1 e y = 2
- (C) x = 0 e y = 1
- **(D)** x = 1 e y = 6
- 7. Seja g a função de domínio $\mathbb{R} \setminus \{-2\}$ definida por $g(x) = \frac{4x+7}{x+2}$.
 - 7.1. Mostre que $g(x) = 4 \frac{1}{x+2}$, $\forall x \in \mathbb{R} \setminus \{-2\}$.
 - **7.2.** Identifique as assíntotas do gráfico de g.
 - 7.3. Determine os pontos de interseção do gráfico de g com os eixos coordenados.
 - 7.4. Sendo h a função definida por h(x) = g(x+a) + b, com $a,b \in \mathbb{R}$, determine a e b de modo que a equação h(x) = 0 seja impossível.
- **8.** Na figura está representado, num referencial o.n. *xOy*:
 - a circunferência de equação $x^2 + y^2 = 4$;
 - o ponto A de coordenadas (0,2);
 - o trapézio retângulo [OABC].

Sabe-se que o ponto C se desloca sobre a circunferência, no terceiro quadrante, de tal modo que $\begin{bmatrix} AB \end{bmatrix}$ e $\begin{bmatrix} CB \end{bmatrix}$ permanecem paralelos aos eixos Ox e Oy, respetivamente.

Para cada posição do ponto C seja α a amplitude do ângulo

$$AOC\left(\alpha\in\left]\frac{\pi}{2},\pi\right[\right).$$

$$A(\alpha) = 2\sin\alpha(2-\cos\alpha), \quad \alpha \in \left[\frac{\pi}{2}, \pi\right]$$

8.2. Determine a área do trapézio [OABC] se $3\tan(\pi - \alpha) = 4$.

FIM

COTAÇÕES

	Item																			
	Cotação (em pontos)																			
1.1.	1.2.	1.3.	2.1.	2.2.	3.1.	3.2.	3.3.	4.1.	4.2.a)	4.2.b)	4.2.c)	5.	6.	7.1.	7.2.	7.3.	7.4.	8.1.	8.2.	
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	200

Proposta de resolução

1.

1.1.
$$A_1 = \pi r g$$
 sendo $r = \|\overrightarrow{OE}\|$ e $g = \overline{EV}$

Raio da base :
$$r = \|\overrightarrow{OE}\| = \sqrt{2^2 + (\sqrt{5})^2 + 0} = \sqrt{4 + 5 + 0} = 3$$

$$A_1 = \pi r g = \pi \times 3 \times g = 3\pi g$$

$$A_1 = 9\sqrt{10}\pi \Leftrightarrow 3\pi g = 9\sqrt{10}\pi \Leftrightarrow$$

$$\Leftrightarrow g = \frac{9\sqrt{10} \pi}{3\pi} \Leftrightarrow g = 3\sqrt{10}$$

Aplicando o Teorema de Pitágoras ao triângulo retângulo [VOE], vem:

$$(3\sqrt{10})^2 = 3^2 + h^2 \Leftrightarrow 9 \times 10 = 9 + h^2 \Leftrightarrow$$

$$\Leftrightarrow h^2 = 90 - 9 \Leftrightarrow h^2 = 81 \Leftrightarrow h = 9$$

Então, V(0,0,9).

1.2.
$$D(3,0,0)$$
, $B(0,3,0)$ e $V(0,0,9)$

$$\overrightarrow{DB} = B - D = (0,3,0) - (3,0,0) = (-3,3,0)$$

$$\overrightarrow{BV} = V - B = (0,0,9) - (0,3,0) = (0,-3,9)$$

Seja $\vec{n}(a,b,c)$ um vetor perpendicular ao plano VDB.

$$\begin{cases} \vec{n} \cdot \overrightarrow{DB} = 0 \\ \vec{n} \cdot \overrightarrow{BV} = 0 \end{cases} \Leftrightarrow \begin{cases} (a,b,c) \cdot (-3,3,0) \cdot = 0 \\ (a,b,c) \cdot (0,-3,9) = 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} -3a + 3b = 0 \\ -3b + 9c = 0 \end{cases} \Leftrightarrow \begin{cases} a = b \\ b = 3c \end{cases} \Leftrightarrow \begin{cases} a = 3c \\ b = 3c \end{cases}$$

$$\vec{n}(3c,3c,c)$$

Um vetor perpendicular ao plano *VBD* é, por exemplo, para c = 1, o vetor $\vec{n}(3,3,1)$.

Usando o ponto D(3,0,0), obtemos $VBD: 3(x-3)+3y+z=0 \Leftrightarrow 3x+3y+z-9=0$

1.3.
$$\cos \alpha = \cos \left(V \widehat{E} O \right) = \frac{\overrightarrow{EV} \cdot \overrightarrow{EO}}{\|\overrightarrow{EV}\| \times \|\overrightarrow{EO}\|}$$

$$\overrightarrow{EV} = V - E = (0, 0, 9) - (2, \sqrt{5}, 0) = (-2, -\sqrt{5}, 9)$$

$$\|\overline{EV}\| = \sqrt{4+5+81} = \sqrt{90} = \sqrt{9 \times 10} = 3\sqrt{10}$$

$$\overrightarrow{EO} = O - E = \left(-2, -\sqrt{5}, 0\right)$$

$$\|\overrightarrow{EO}\| = \sqrt{4+5+0} = 3$$

$$\cos \alpha = \frac{\overrightarrow{EV} \cdot \overrightarrow{EO}}{\|\overrightarrow{EV}\| \times \|\overrightarrow{EO}\|} = \frac{\left(-2, -\sqrt{5}, 9\right) \cdot \left(-2, -\sqrt{5}, 0\right)}{3\sqrt{10} \times 3} = \frac{4+5+0}{9\sqrt{10}} = \frac{1}{\sqrt{10}}$$

$$\sin^2\alpha = 1 - \cos^2\alpha \iff \sin^2\alpha = 1 - \frac{1}{10} \iff \sin^2\alpha = \frac{9}{10} \iff_{\alpha \in 1.^{\circ}Q}$$

$$\Leftrightarrow \sin \alpha = \frac{3}{\sqrt{10}} \Leftrightarrow \sin \alpha = \frac{3\sqrt{10}}{10}$$

Em alternativa, como já conhecemos as medidas dos lados do triângulo retângulo [VOE], temos

$$\sin \alpha = \frac{\overline{OV}}{\overline{EV}} = \frac{9}{3\sqrt{10}} = \frac{3\sqrt{10}}{10}$$

2.

$$2.1. \quad a_n = a_k + (n-k) \times r$$

$$a_{20} = 64$$
; $a_3 = 13$

$$a_{20} = a_3 + (20 - 3) \times r \iff 64 = 13 + 17r \iff$$

$$\Leftrightarrow 17r = 51 \Leftrightarrow r = \frac{51}{17} \Leftrightarrow r = 3$$

$$a_3 = a_1 + 2r$$

$$13 = a_1 + 2 \times 3 \Leftrightarrow a_1 = 7$$

A razão é 3 e o primeiro termo é 7.

2.2.
$$a_3 + a_4 + ... + a_n = 568$$
, $k = n - 3 + 1 = n - 2$

$$\frac{a_3 + a_n}{2} \times (n-2) = 568$$

$$a_n = a_1 + (n-1) \times 3 \Leftrightarrow a_n = 7 + 3n - 3 \Leftrightarrow a_n = 3n + 4 \text{ e } a_3 = 13$$

$$\frac{a_3 + a_n}{2} \times (n-2) = 568 \Leftrightarrow \frac{13 + 3n + 4}{2} \times (n-2) = 568 \Leftrightarrow$$

$$\Leftrightarrow$$
 $(17+3n)(n-2) = 2 \times 568 \Leftrightarrow 17n-34+3n^2-6n-1136 = 0 \Leftrightarrow$

$$\Leftrightarrow 3n^2 + 11n - 1170 = 0 \Leftrightarrow n = \frac{-11 \pm \sqrt{11^2 + 4 \times 3 \times 1170}}{6} \Leftrightarrow$$

$$\Leftrightarrow n = \frac{-11 \pm 119}{6} \Leftrightarrow n = \frac{108}{6} \Leftrightarrow n = 18$$

$$k = n - 2 = 18 - 2 = 16$$

Então, o número de termos a adicionar é 16.

3.
$$\begin{cases} u_1 = 4 \\ 3u_n = u_{n-1} , \forall n \in \mathbb{N} \setminus \{1\} \end{cases}$$

3.1. Uma sucessão é uma progressão geométrica se e só se o quociente entre quaisquer termos consecutivos é constante.

$$\forall n \in \mathbb{N} \setminus \{1\}, \ 3u_n = u_{n-1} \Leftrightarrow 3\frac{u_n}{u_{n-1}} = 1 \Leftrightarrow \frac{u_n}{u_{n-1}} = \frac{1}{3}$$

 (u_n) é uma progressão geométrica de razão $\frac{1}{3}$

3.2. Dado que (u_n) é uma progressão geométrica, vem $u_n = u_1 \times r^{n-1}$.

Logo, como
$$u_1 = 4$$
 e $r = \frac{1}{3}$, temos

$$u_n = 4 \times \left(\frac{1}{3}\right)^{n-1} \Leftrightarrow u_n = \frac{4}{3^{n-1}}$$

3.3.
$$S_n = u_1 \times \frac{1 - r^n}{1 - r} = 4 \times \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = 4 \times \frac{1 - \left(\frac{1}{3}\right)^n}{\frac{2}{3}} = 4 \times \frac{1 - \left(\frac{1}{3}\right)^n}{\frac{2}{3}} = 4 \times \frac{3}{2} \times \left[1 - \left(\frac{1}{3}\right)^n\right] = 6 \times \left[1 - \left(\frac{1}{3}\right)^n\right]$$

$$\lim S_n = \lim \left[6 \times \left(1 - \left(\frac{1}{3}\right)^n\right)\right] = 6 \times (1 - 0) = 6$$

4.

4.1.
$$-4 \in D_f$$
 e $\lim_{x \to -4^-} f(x) = \lim_{x \to -4^+} f(x) \neq f(-4)$. Logo, não existe $\lim_{x \to -4} f(x)$.

Então, a afirmação I é falsa.

$$5 \notin D_f e \lim_{x \to 5^-} f(x) = \lim_{x \to 5^+} f(x) = 2$$
. Logo $\lim_{x \to 5} f(x) = 2$

Então, a afirmação II é verdadeira.

Se a reta de equação y = 0 é assíntota ao gráfico de f e $\lim_{x \to -\infty} f(x) = +\infty$ então $\lim_{x \to +\infty} f(x) = 0$

A afirmação III é verdadeira.

Resposta: (B)

4.2.

a)
$$\lim u_n = \lim \left(-\frac{2n+1}{n} \right) = \lim \left(-2 - \frac{1}{n} \right) = -2^{-n}$$
$$\lim f(u_n) = \lim_{x \to -2^{-n}} f(x) = +\infty$$

Resposta: (C)

b)
$$\lim u_n = \lim \left(-n^2 + n \right) = \lim \left(-n^2 \right) = -\infty$$
$$\lim f(u_n) = \lim_{x \to -\infty} f(x) = +\infty$$

Resposta: (C)

c)
$$\lim u_n = \lim \left(3 - \frac{1}{n}\right) = 3^{-1}$$
$$\lim f(u_n) = \lim_{x \to 3^{-1}} f(x) = -4$$

Resposta: (A)

5.
$$\lim \frac{\sqrt{n^2 - 1} + n}{7 - 2n} = \lim \frac{\sqrt{n^2 \left(1 - \frac{1}{n^2}\right) + n}}{7 - 2n} = \lim \frac{n\sqrt{1 - \frac{1}{n^2} + n}}{7 - 2n} = \lim \frac{n\sqrt$$

Resposta: (A)

6. O gráfico da função g é obtido do gráfico da função f pela translação associada ao vetor (3,-2).

Nesta translação

a reta de equação x=-2 transforma-se na reta de equação $x=-2+3 \Leftrightarrow x=1$ e a reta de equação y=4 transforma-se na reta de equação $y=4-2 \Leftrightarrow y=2$

Resposta: (B)

7.
$$g(x) = \frac{4x+7}{x+2}$$
, $D_g = \mathbb{R} \setminus \{-2\}$

7.1.

$$\begin{array}{c|c}
4x+7 & \underline{\qquad x+2} \\
-4x-8 & 4
\end{array}$$

$$g(x) = 4 - \frac{1}{x+2}, \forall x \in \mathbb{R} \setminus \{-2\}$$

7.2.
$$g(x) = 4 - \frac{1}{x+2} = 4 - \frac{1}{x-(-2)}, \forall x \in \mathbb{R} \setminus \{-2\}$$

Assíntota horizontal: y = 4

Assintota vertical: x = -2

Interseção com Oy:

$$g(0)=\frac{7}{2}$$
,

O gráfico de g interseta o eixo Oy no ponto $\left(0, \frac{7}{2}\right)$.

Interseção com Ox:

$$g(x) = 0 \Leftrightarrow \frac{4x+7}{x+2} = 0 \Leftrightarrow 4x+7 = 0 \land x+2 \neq 0 \Leftrightarrow x = -\frac{7}{4}$$

O gráfico de g interseta o eixo Ox no ponto $\left(-\frac{7}{4}, 0\right)$.

7.4.
$$g(x) = 4 - \frac{1}{x+2}, \ \forall x \in \mathbb{R} \setminus \{-2\}$$

$$h(x) = g(x+a) + b = 4 - \frac{1}{x+a+2} + b$$
, $\forall x \in \mathbb{R} \setminus \{-2-a\}$

$$h(x) = 4 + b - \frac{1}{x+a+2}, \forall x \in \mathbb{R} \setminus \{-2-a\}$$

A equação h(x) = 0 é impossível se o eixo Ox for a assíntota horizontal do gráfico de h, o que acontece se $4 + b = 0 \Leftrightarrow b = -4$.

y 🛦

D

Resposta: $b = -4 \land a \in \mathbb{R}$

8.

Se considerarmos o ângulo β com o semieixo positivo Ox como lado origem e $\dot{O}C$ como 8.1. lado extremidade, vem $\beta = \alpha + \frac{\pi}{2}$.

Coordenadas de C em função de β :

$$C(2\cos\beta, 2\sin\beta)$$

Cordenadas de C em função de α :

Como
$$\beta = \alpha + \frac{\pi}{2}$$

$$2\cos\beta = 2\cos\left(\alpha + \frac{\pi}{2}\right) = -2\sin\alpha$$

$$2\sin\beta = 2\sin\left(\alpha + \frac{\pi}{2}\right) = 2\cos\alpha$$

Logo, $C(-2\sin\alpha, 2\cos\alpha)$ pelo que $\overline{OD} = 2\sin\alpha$ e $\overline{DC} = -2\cos\alpha$.

x

Em alternativa, considerando o triângulo retângulo [ODC]

(parte do trapézio contida no terceiro quadrante), temos

$$D\widehat{O}C = \alpha - \frac{\pi}{2}$$

$$\sin\left(\alpha - \frac{\pi}{2}\right) = \frac{\overline{DC}}{\overline{OC}} \Leftrightarrow -\sin\left(\frac{\pi}{2} - \alpha\right) = \frac{\overline{DC}}{2} \Leftrightarrow \overline{DC} = -2\cos\alpha$$

$$\cos\left(\alpha - \frac{\pi}{2}\right) = \frac{\overline{OD}}{\overline{OC}} \Leftrightarrow \cos\left(\frac{\pi}{2} - \alpha\right) = \frac{\overline{OD}}{2} \Leftrightarrow \overline{OD} = 2\sin\alpha$$

Area do trapézio:

Base menor:
$$\overline{OA} = 2$$

Base maior:
$$\overline{BC} = \overline{BD} + \overline{DC} = 2 - 2\cos\alpha$$

Altura:
$$\overline{AB} = \overline{OD} = 2 \sin \alpha$$

$$A_{[OABC]} = \frac{2 + 2 - 2\cos\alpha}{2} \times 2\sin\alpha =$$
$$= (4 - 2\cos\alpha) \times \sin\alpha = 2\sin\alpha(2 - \cos\alpha)$$

8.2.
$$3\tan(\pi-\alpha)=4 \Leftrightarrow -3\tan\alpha=4 \Leftrightarrow \tan\alpha=-\frac{4}{3}$$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$1 + \left(-\frac{4}{3}\right)^2 = \frac{1}{\cos^2 \alpha} \Leftrightarrow 1 + \frac{16}{9} = \frac{1}{\cos^2 \alpha} \Leftrightarrow \frac{25}{9} = \frac{1}{\cos^2 \alpha} \Leftrightarrow \cos^2 \alpha = \frac{9}{25} \Leftrightarrow \cos \alpha = -\frac{3}{5}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \Leftrightarrow \sin \alpha = \tan \alpha \times \cos \alpha$$

Então,
$$\sin \alpha = -\frac{4}{3} \times \left(-\frac{3}{5}\right) = \frac{4}{5}$$
.

$$A(\alpha) = 2\sin\alpha(2-\cos\alpha) = 2 \times \frac{4}{5} \times \left[2 - \left(-\frac{3}{5}\right)\right] = \frac{8}{5} \times \frac{13}{5} = \frac{104}{5}$$

A área do trapézio $\left[\textit{OABC} \right]$ é $\frac{104}{5}$ u.a.