21. Développements limités

Exercice 1. (m) Donner un équivalent simple des suites suivantes :

1)
$$u_n = \frac{n^2 + 3n + 2}{n - 1}$$
.

2)
$$u_n = \sqrt{n+1} - \sqrt{n-1}$$
.

3)
$$u_n = \frac{1}{n-1} - \frac{1}{n+1}$$
.

1)
$$u_n = \frac{n^2 + 3n + 2}{n - 1}$$
.
4) $u_n = \tan\left(\frac{\pi}{6} + \frac{1}{n^2}\right)$.

2)
$$u_n = \sqrt{n+1} - \sqrt{n}$$

5) $u_n = n \sin\left(\frac{1}{n^2}\right)$.

6)
$$u_n = \ln(n+1) - \ln(n)$$
.

MP2I

Exercice 2. © En utilisant la formule de Stirling, déterminer un équivalent simple de $u_n = \binom{2n}{n}$

Exercice 3. (m) Déterminer les limites de :

1)
$$u_n = \frac{n^{\ln(n)}}{\ln^n(n)}$$
. 2) $v_n = \sqrt[n]{n^2}$. 3) $w_n = \left(\frac{n-1}{n+1}\right)^n$. 4) $t_n = n^{\frac{\sin(n)}{n}}$.

Exercice 4. (i) Montrer que $\sum_{i=1}^{n} k! \sim n!$. On pourra découper la somme...

Exercice 5. (m) Pour $n \geq 3$, on pose $f_n : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^n + nx - 1 \end{cases}$.

- 1) Montrer qu'il existe un unique $u_n \ge 0$ tel que $f_n(u_n) = 0$.
- 2) Déterminer un encadrement de la suite $(u_n)_{n\in\mathbb{N}}$ et en déduire sa limite et un équivalent.

Exercice 6. (c) Calculer les développements limités en zéro des fonctions suivantes :

- 1) DL à l'ordre $4 : (\sin x)e^x$, $\cos(x)\cos(2x)$, $(\sqrt{1+x})\cos(x^2)$, $\sqrt{1+x}e^{-x}$.
- 2) DL à l'ordre $4:\sqrt{\cos(x)}$, $\sin(\arctan(x))$, $\sin(\cos(x)-1)$, $\arctan(\ln(1+x))$, $\ln(\cos(x))$.
- 3) DL à l'ordre 3 : tan(sin(x)), ln(1 + tan(x)).
- 4) DL à l'ordre 5 : $\frac{\sin(x)}{1-x}$, $\sinh(\sin(x))$, $x^2 e^{\sin(x)}$, $\cos(\sin(x))$, $\sin(xe^x)$.

Exercice 7. © Donner un équivalent en zéro de $\frac{\tan(x-x\cos(x))}{\sin(x)+\cos(x)-1}$.

Exercice 8. (m) Déterminer un équivalent en 0 de $\ln(1+\sin(x)) - \sin(\ln(1+x))$.

Exercice 9. © Trouver un équivalent en zéro de $(1+ax)^{1/a} - (1+bx)^{1/b}$ où a,b>0 sont fixés.

Exercice 10. (m) Calculer des équivalents au voisinage de zéro des fonctions suivantes :

$$f_1(x) = \frac{\cos(x) - e^x}{\sin(x) - \ln(1+x)}$$
 et $f_2(x) = \frac{1}{x} - \frac{1}{\sin(x)} + x$.

1

Exercice 11. (m) Déterminer deux réels a et b pour que $\sin(x) - \frac{x + ax^3}{1 + bx^2} \sim_0 \lambda x^n$ avec $\lambda \neq 0$ et $n \in \mathbb{N}$ le plus grand possible.

Exercice 12. (m) Calculer les développements limités à l'ordre 3 en zéro des fonctions suivantes :

1)
$$f(x) = e^{\frac{\operatorname{ch}(x) - 1}{x}}$$
. 2) $g(x) = \frac{\sin(x^2 \ln(1 + x))}{x^2}$. 3) $h(x) = \cos(x)^{\frac{1}{x}}$. 4) $i(x) = \frac{\arctan(x)}{\sin(2x)}$.

Exercice 13. (m) Ajuster a et b pour que $f(x) = \frac{1}{x} - \frac{a}{\ln(1+x)} - \frac{b}{e^x - 1}$ tende vers 0 quand x tend vers 0 et vérifier qu'alors f(x) = o(x).

Exercice 14. (m) Déterminer $\lim_{x\to 0} \frac{(1+x)^{1/x}-e}{x}$.

Exercice 15. (m) Soient a, b > 0. Déterminer $\lim_{x \to 0} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}}$.

Exercice 16. (m) Calculer les limites suivantes :

1)
$$\lim_{x \to 1} \frac{\ln(2x^2 - 1)}{\tan(x - 1)}$$
. 2) $\lim_{x \to 2} \frac{x^2 - 2^x}{\sin(x - 2)}$. 3) $\lim_{x \to 0} \frac{x \ln(x)}{x^x - 1}$. 4) $\lim_{x \to \frac{1}{2}} (2x^2 - 3x + 1) \tan(\pi x)$.

Exercice 17. (m) Faire le développement limité en 0 à l'ordre 4 de $\sqrt{1+\sqrt{1+x^2}}$.

Exercice 18. (i) Soit $f(x) = \sin^n(x)$ pour $x \in \mathbb{R}$. Montrer que $\forall k \in [0, n-1], f^{(k)}(0) = 0$.

Exercice 19. (m) Donner le développement asymptotique de $\arctan(x)$ en $+\infty$ à la précision $\frac{1}{x^3}$. On pourra étudier $\arctan(x) + \arctan(1/x)$.

Exercice 20. (m) Déterminer la limite en $+\infty$ de $\left(\frac{2}{\pi}\arctan(x)\right)^x$.

Exercice 21. (m) On considère la fonction $f(x) = \frac{1}{x}(2x^2 - 1)e^{1/x}$. Déterminer les asymptotes à f en $\pm \infty$ (c'est à dire les droites de la forme ax + b telles que $|f(x) - ax - b| \to 0$). Déterminer également la position de la courbe représentative de f par rapport à celles-ci.

Exercice 22. \bigcirc Soit $f(x) = \frac{\ln(1+x) - x}{x^2}$. Déterminer le domaine de définition de f puis le DL à l'ordre 2 de f en 0. En déduire que f peut être prolongée par continuité en 0, que ce prolongement est dérivable et déterminer la position relative de la courbe de f par rapport à sa tangente en 0.

Exercice 23. m Soit $f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x}$. Déterminer le domaine de définition de f puis prolonger f par continuité en 0. Montrer que ce prolongement est dérivable en 0 et déterminer la position relative de la courbe de f par rapport à sa tangente en 0.

Exercice 24. (m) On pose $f(x) = 2x + \sin(x)$. Montrer que f est bijective de \mathbb{R} dans \mathbb{R} et que sa réciproque h est de classe \mathcal{C}^{∞} . Trouver un développement limité de h à l'ordre 5 en 0.

Exercice 25. (m) Montrer que la fonction $f(x) = \cosh(\sqrt{x})$ est de classe \mathcal{C}^2 sur \mathbb{R}_+ .