Colorful Image Colorization

Method

CNN architecture

Training details

- LAB space
- Quantize ab output space: bins with grid size = 10, Q = 313 (Number of quantized ab pairs)
- For a given input X, predict color distribution \hat{Z} :

$$\hat{Z} = G(X)$$
 where $\hat{Z} \in [0, 1]^{H \times W \times Q}$

- From \hat{Z} (a distribution) to \hat{Y} (a point in ab space):
 - Mode: vibrant but strange details
 - Mean: desaturated color, similar to Euclidean loss
 - Annealed mean (scaled softmax): $H(Z_{h,w}) = E[f_T(Z_{h,w})], f_T(z) = \frac{e^{\log(z)/T}}{\sum_q e^{\log(z_q)/T}}, T = .38.$
- Ground truth color Y is converted to distribution Z using **soft encoding**: Find **5** nearest neighbours to Y in output space, weight them \propto distance from Y using Gaussian kernel with $\sigma=5$
- Multinomial cross entropy loss:

$$L_{cl}(\hat{Z}, Z) = -\sum_{h,w} v(Z_{h,w}) \sum_{q} Z_{h,w,q} log(\hat{Z}_{h,w,q})$$

- $v(Z_{h,w})$ class rebalancing:
 - \ast low ab values dominate natural images (grayish, due to clouds, pavement, dirt, walls, etc.)
 - * Increase importance of rare colors:
 - 1. Estimate empirical probability distribution of colors in quantized ab space $p \in \Delta Q$.
 - 2. Smooth p to \tilde{p} with Gaussian kernel $G_{\sigma}, \, \sigma = 5$.
 - 3. Mix \tilde{p} with a uniform distribution $\frac{1}{Q}$ (tones down importance of rare colors slightly), then take reciprocal (rare colors importance > frequent colors): $w \propto ((1-\lambda)\tilde{p} + \lambda \times \frac{1}{Q})^{-1}$, $\lambda = .5$.
 - 4. Normalize w so that $E[w] = \sum_{q} \tilde{p}_q w_q = 1$

Experiments

- Data:
 - Training: 1.3M ImageNet training set
 - Validation: 10k ImageNet validation set
 - Test: 10k ImageNet validation set
- Details:
 - Initialization: k-means (checkout data dependent initialization paper!)
 - ADAM solver
 - 450k iterations
 - $-\beta_1 = .9, \beta_2 = .99$, weight decay = 10^{-3} .
 - Initial learning rate = 3×10^{-5} , dropped to 10^{-5} (~200k iteration) and then 3×10^{-6} (~375k iterations) when loss plateaued
- More tests:
 - task generalization: freeze network parameters and training an object classifier on seen data from features from each conv layer
 - dataset generalization: object classification on unseen data
 - colorize legacy black and white images

Evaluations

- 1. Perceptual realism: find people to evaluate
- 2. Semantic interpretability: feed colorized results to state-of-the-art ImageNet classifiers (compare different ones?)
- 3. AuC (Raw accuracy):
 - without class rebalance: count number of pixels within a threshold L2 distance from the ground truth in ab space, $threshold \in [0, 150]$, integrate the area under the curve and normalize.
 - class rebalance: use w function defined above with $\lambda = 0$.