S.-T. Yau College Student Mathematics Contests 2011

Algebra, Number Theory and Combinatorics

Team

9:00–12:00 pm, July 9, 2011 (Please select 5 problems to solve)

For the following problems, every example and statement must be backed up by proof. Examples and statements without proof will receive no-credit.

- **1.** Let F be a field and \bar{F} the algebraic closure of F. Let f(x,y) and g(x,y) be polynomials in F[x,y] such that g.c.d.(f,g)=1 in F[x,y]. Show that there are only finitely many $(a,b)\in \bar{F}^{\times 2}$ such that f(a,b)=g(a,b)=0. Can you generalize this to the cases of more than two-variables?
- **2.** Let D be a PID, and D^n the free module of rank n over D. Then any submodule of D^n is a free module of rank m < n.
- **3.** Identify pairs of integers $n \neq m \in \mathbb{Z}_+$ such that the quotient rings $\mathbb{Z}[x,y]/(x^2-y^n) \cong \mathbb{Z}[x,y]/(x^2-y^m)$; and identify pairs of integers $n \neq m \in \mathbb{Z}_+$ such that $\mathbb{Z}[x,y]/(x^2-y^n) \not\cong \mathbb{Z}[x,y]/(x^2-y^m)$.
- **4.** Is it possible to find an integer n > 1 such that the sum

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$$

is an integer?

- **5.** Recall that \mathbb{F}_7 is the finite field with 7 elements, and $GL_3(\mathbb{F}_7)$ is the group of all invertible 3×3 matrices with entries in \mathbb{F}_7 .
 - (a) Find a 7-Sylow subgroup P_7 of $GL_3(\mathbb{F}_7)$.
 - (b) Determine the normalizer subgroup N of the 7-Sylow subgroup you found in (a).
 - (c) Find a 2-Sylow subgroup of $GL_3(\mathbb{F}_7)$.
- **6.** For a ring R, let $SL_2(R)$ denote the group of invertible 2×2 matrices. Show that $SL_2(\mathbb{Z})$ is generated by $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. What about $SL_2(\mathbb{R})$?