1/10

Fig.1

2/10

Fig.2

3/10

Fig.3

	HEATING FURNACE ANNEALING TEMPERATURE (°C)	COOLING MEANS ENTRY TEMPERATURE (°C)	TRANSMISSION LOSS @1.55 μ m (dB/km)	TRANSMISSION LOSS @0.63 μ m (dB/km)
EXAMPLE A1	1100	700	0.185	6
EXAMPLE A2	1400	1000	0.180	6
EXAMPLE A3	1550	1200	0.182	7
EXAMPLE A4	1550	1300	0.182	9

Fig.4

	HEATING FURNACE ANNEALING TEMPERATURE (°C)	COOLING MEANS ENTRY TEMPERATURE (°C)	TRANSMISSION LOSS @1.55 μ m (dB/km)	TRANSMISSION LOSS @0.63 μ m (dB/km)
COMPARATIVE EXAMPLE B1	-	1000	0.190	12
COMPARATIVE EXAMPLE B2		500	0.190	6
COMPARATIVE EXAMPLE B3	900	500	0.189	6
COMPARATIVE EXAMPLE B4	1100	500	0.185	6
COMPARATIVE EXAMPLE B5	1650	1300	0.188	10

4/10

Fig.5

5/10

Fig.6

6/10

Fig.7

	TYPE OF OPTICAL FIBER	CORE REGION Ge QUANTITY OF DOPANT	TRANSMISSION LOSS @1.55 μ m (dB/km)	INCREASE IN LOSS Δα1.38 (dB/km)
EXAMPLE C1	Co CM	Δn ₀ =	0.180	0.05
COMPARATIVE EXAMPLE D1	Ge-SM	0.35%	0.190	0.2
EXAMPLE C2	DCE	Δn ₀ =	0.188	0.07
COMPARATIVE EXAMPLE D2	DSF	0.6%	0.200	0.3
EXAMPLE C3	DCF	Δn ₀ =	0.228	0.11
COMPARATIVE EXAMPLE D3	DCF	1.5%	0.245	0.6

Fig.8

	HEATING FURNACE EXIT	1m	2m	_	3m	4m	5m	6m	7m
EXAMPLE E	1499	1299	1125	FORCED COOLING	553	_	1		_
COMPARATIVE EXAMPLE F	1499	1299	1125	_	976	846	736	637	554

(TEMPERATURE OF OPTICAL FIBER:℃)

7/10

Fig.9

HEATING FURNACE S TEMPERATURE (°C		1300	1000	800	500	20
DISTANCE FROM	0	1500	1500	1500	1500	1500
ENTRANCE OF HEATING FURNACE	1	1418	1296	1214	1092	896
(m)	2	1370	1175	1045	850	539
ENTRANCE OF COOLING MEAN		1174	1007	896	729	464
COOLING SPEE (°C/SEC.)	D	433.3	1083.3	1516.7	2166.7	3203.3
ANNEALING EFFE	СТ	0	0	0	×	×

Vf=400 (m/MINUTE)

Fig.10

HEATING FURNACES TEMPERATURE (°C		1300	1000	800	500	20
DISTANCE FROM	0	1500	1500	1500	1500	1500
ENTRANCE OF HEATING FURNACE	1	1453	1384	1338	1269	1159
(m)	2	1418	1296	1214	1092	896
ENTRANCE OF COOLING MEAN		1041	952	892	803	660
COOLING SPEE (°C/SEC.)	D	546.7	1360.0	1906.7	2720.0	4026.7
ANNEALING EFFE	ст	0	0	0	×	×

Vf=800 (m/MINUTE)

8/10

Fig.11

HEATING FURNACE S TEMPERATURE (°C	SET ;)	1300	1000	800	500	20
	0	1500	1500	1500	1500	1500
DISTANCE FROM	1	1475	1438	1414	1377	1318
ENTRANCE OF HEATING FURNACE	2	1453	1384	1338	1269	1159
(m)	3	1435	1337	1272	1175	1019
	3.5	1426	1316	1243	1132	956
ENTRANCE OF COOLING MEAN		1102	1017	961	876	740 `
COOLING SPEE (°C/SEC.)	D	560.1	1400.3	1960.4	2800.5	4144.8
ANNEALING EFFE	СТ	0	0	0	×	×

Vf=1600 (m/MINUTE)

9/10

Fig.12

HEATING FURNACE : TEMPERATURE (°C		1300	1000	800	500	20
	0	1500	1500	1500	1500	1500
	1	1487	1466	1453	1433	1400
DISTANCE FROM	2	1474	1435	1409	1370	1307
ENTRANCE OF	3	1462	1406	1368	1311	1220
HEATING FURNACE (m)	4	1451	1378	1329	1256	1139
(''')	5	1441	1353	1294	1205	1064
	6	1432	1329	1260	1158	993
	7	1423	1307	1229	1113	928
ENTRANCE OF COOLING MEAN		1240	1139	1071	971	810
COOLING SPEE (°C/SEC.)	D	552.3	1380.7	1933.0	2761.4	4086.8
ANNEALING EFFE	СТ	0	0	0	×	×

Vf=3000 (m/MINUTE)

10/10

Fig.13

HEATING FURNACES TEMPERATURE (°C	1300	
DISTANCE FROM	0	1500
ENTRANCE OF HEATING FURNACE	1	1453
(m)	1.5	1435
ENTRANCE OF COOLING MEAN	1053	
COOLING SPEE (°C/SEC.)	577.4	
ANNEALING EFFE	СТ	×

Vf=800 (m/MINUTE)