Inhaltverzeichnis

1	Einleitung	2
2	Teilspurminimierung	2
3	Gesamtspurminimierung	3
4	Ausgleichung unter Zwang	4
5	HELMERT'schen Punktfehler	5
6	Qualität des Netzes mit Teilspurminimierung	6
7	Vergleichung	6

1 Einleitung

In dieser Übung führt man 3 unterschiedliche Ausgleichungsverfahren mit Panda durch. Die Beobachtungen sind vorgegeben. Die Qualität und Güte werden diskutiert und beurteilt.

2 Teilspurminimierung

Figure 1: Stützpunkte als Datumspunkte

3 Gesamtspurminimierung

(a) Fehlerellipse

(b) Konfidenzellipse

Figure 2: Alle Punkte als Datumspunkte

Ausgleichung unter Zwang

Figure 3: Ausgleichung unter Zwang

5 HELMERT'schen Punktfehler

HELMERT'schen-Punktfehler

$$\sigma_P = \sqrt{\sigma_x^2 + \sigma_y^2}$$

Punktenummer	$\sigma_x (mm)$	$\sigma_y (mm)$	$\sigma_P (mm)$
101	0,69	0,51	0,8580
102	0,65	0,55	0,8515
103	0,64	0,58	0,8637
104	0,66	0,57	0,8721
904	0,68	0,75	1,0124
905	0,84	0,76	1,1328
906	0,67	0,70	0,9690
907	0,72	0,62	0,9502
908	0,69	0,81	1,0640
909	0,85	0,93	1,2599
910	0,81	0,83	1,1597
911	0,88	0,86	1,2304

- Der HELMERT'schen-Punktfehler beschreibt die Qualität bzw. die Messgenauigkeit eines Punktes.
- Die Fehlerellipse beschreibt die Größe der Fehlern in verschiedenen Richtungen.
- Die Konfindenzellepse beschreibt die möglichen Gebiete, wo der Punkt genau liegt.

6 Qualität des Netzes mit Teilspurminimierung

- Die lokale Genauigkeit lautet HELMERT'schen-Punktfehler. Da alle sind zwischen 0, 8 bis 1, 3 mm, ist die Messung ziemlich genau.
- Die globale Genauigkeit kann durch die Formel $sp \sum_{xx}$ berechnet werden. $sp \sum_{xx} = 1,2696 \cdot 10^{-5}$. D.h. die Messung hat eine gute Genauigkeit.
- Innere Zuverlässigkeit kann man durch $b=\frac{f}{n}$ berechnen, wobei f ist die Freiheitsgrade und n ist der Anzahl der Beobachtungen. Aus dem Protokoll ist f=67 also (100-36+3) und n=100, deshalb ist Innere Zuverlässigkeit b=0,67
- Äußere Zuverlässigkeit $\Phi_i^2=(1-r_i{'})\cdot p_{ii}\cdot \nabla l_i^2$ wobei r_i Teilredundanz und p_{ii} Gewicht sind, ∇l_i wird hier direkt vom Protokoll gelesen. Zum Beispiel, bei der erste Beobachtung, $r_1=0,37,\,p_{11}=1,\,\nabla l_i=0,087mgon\cdot \frac{\pi}{200}=1,367\cdot 10^{-5}$, $\Phi_1^2=1.1766\cdot 10^{-10}$

7 Vergleichung

Bei freier Ausgleichung werden alle Punkten ausgeglichen und bei Ausgleichung unter Zwang sind nur Stützpunkten bzw. Festpunkten ausgeglichen.