We thank reviewers R1, R2, R3 for their substantial time investment and for their incisive feedback. Limits. R1 highlights ways our precision must improve. Thm2 states: {{For each d, every non-deg. local min. \$\theta_{\psi}\$ has a nbhd \$U\$ whose every member \$\theta_0\$ induces, via \$Thm1\$, a \$T\$-indexed sequence of degree-d truncations \$f_T \in \mathbb{R}[\eta]\$ that converges as \$T \to \in \in to some \$f_d \in \mathbb{R}[\eta]\$. \$\mathbb{R}[\eta]\$ is the free polynomial ring in dim(\$M\$)^2 many variables, topologized as euclidean space. So if \$L_{d,T}(\eta)\$ is Thm1's truncation, Thm2 controls \$L_d(\eta) = \lim_{\tilde{T} \to \infty} L_{d,\tilde{T}}(\eta)\$ but not \$L_T(\eta) = \lim_{\tilde{d} \to \infty} L_{\tilde{d},T}(\eta)\$, even for \$d,T \to 1\$. Thm1,2's significance stems from empirical findings that their formal power series [\mathbb{Wi}] bear on SGD practice (w.r.t. which \$any\$ infinities are idealizations). Our mathematics was but a strong heuristic,\frac{1}{2}\$ so we didn't examine when \$L_d, L_T\$ agree. Still: Prop A. {{Fix \$U \subseteq M\$ open, \$\theta_{\pi} \in U\$ a non-deg. local min. of \$l\$. Assume \$\subseteq B.1\$ as well as global, prob.-1 bounds (\$|l_x(\theta)|, ||\nabla l_x(\theta_{\pi})||) < C. If some \$Q_-, Q_+ \in SPD bound the hessian \$(Q_- < \nabla \nabla l_x(\theta) > Q_+)\$ on \$U\$, then \$\nabla d\$ and for any \$\theta_0\$ in some nbhd \$V_d\$ of \$\theta_{\pi} \cdot \frac{3}{2} \cdot 0\$, with \$|g(T)|\$ in exp(-big\Omega(T)) so that \$\sup_{T \geq T_0} |L_d(\eta) - L_T(\eta) - g(T)|\$ (exists on some nbhd in SPSD of \$\eta = 0\$ and) is \$o(\eta^d).}\$ \$\mathb{SP}(\mathb{S}) \mathbb{D}\$ consists of symmetric positive (semi)definites.

Sharp Minma. Like us, R3 finds Cor5² counterintutive. SGD's noise consists not of weight *displacements* but of error terms $\nabla l_x(\theta) - \nabla l(x)$ in the *gradient* estimate; compare Fig5 \square to [**Ke**]'s Fig1. Say θ 's 1D with $l(\theta) = a\theta^2/2$ and training loss $\hat{l}(\theta) = l(\theta) + b\theta$. At \hat{l} 's min. $\theta = -b/a$, $l(\theta) = b^2/(2a)$. So for fixed b, sharp min.a ($a \gg 1$) overfit less (demo here). The covariance C controls b^2 , explaining Cor5's C/2H factor. Here, optimization to convergence favors sharp min.a (\star); convergence is slow at flat min.a, so flat min.a also overfit little (\diamond). (Our small- η assumption rules out the possibility that H is so sharp that SGD diverges: we treat $\eta H \ll 1$). Prior work (Pg12Par5, e.g. [**Ke**] and [**Di**]) supports both pro-flat and pro-sharp intuitions. Recognizing η 's role in translating gradients to displacements, we account for both (\star) and (\diamond) and hence unify existing intuitions (§4.3). We view it as a merit that our theory makes such counterintuitive phenomena visible.

COMPARISON TO ODE. We thank R2 for [Ba]. [Ba]'s LemA.3 specializes our LemKey. In our language, [Ba] computes fuzzless diagrams (noiseless \equiv cumulants vanish \equiv fuzz-having diagrams vanish). The only such η^2 diagrams for $l(\theta_T)$ are \frown , \frown . The N^{-1} correction to [Ba]'s noiseless assumption consists of diagrams with one fuzzy outline (Pg24Tab1).

NOTATION. R3 recognizes our expectands as tensor expressions; they are often fully contracted (so scalar) and are always random variables in some \mathbb{R}^k . Per R2,R3, we'll disemploy 'Einstein notation' and cite [Cu] (+ a new §D) for tensor examples. If advised, we'll also forgo diagrams: e.g. [a][ab: c:d][bcd] for (letters name edges). R3, Pg6Thm2 defines 'non-degenerate' as ' $H \in SPD$ '.

Organization. R2,R3 stress the paper's narrative challenge. We'll arrange the paper into 3 self-contained tracks, each pertinent to a different goal: TrkA [pgs 1-4], for casual readers, will eschew diagrams, theorems, and §1.1/§2.2's heavy notations; illustrate Taylor series via §2.1's proof; identify §3.3's terms; state Cor4 (w/ §B.1's assumptions explicit, w/ PrpA's precision); explain §4.2's curl effect. TrkB [pgs 1-4, 5-12], for seekers of physical intuition, will use TrkA to motivate (and §A.4 to illustrate) §1.1/§2's definitions; relegate §2.2/2.1's LemKey/discussion to §B; add to §2.3.1 a resummation cartoon à la Fig5,7. For space, §C'll absorb §4. TrkC [pgs 5-12, 15-45], for our theory's extenders, will include PrpA (per R1) and more explicit statements and arguments throughout.

REFERENCES. [Ba] D.G.Barrett, B.Dherin. *Implicit Gradient Regularization*. ICLR 2021. [Cu] P.McCullagh. *Tensor Methods in Statistics*, §1.1-1.4,§1.8. Dover 2017. [Di] L.Dinh, R.Pascanu, S.Bengio, Y.Bengio. *Sharp Minima Can Generalize for Deep Nets*, §1,§5. ICML 2017. [Ke] N.S.Keskar et alia. *Large-Batch Training for Deep Learning*, §4. ICLR 2017. [Wi] H.Wilf. *Generating functionology*, §2.1-2.3. Academic Press 1994.

^{1.} By clcal.mech. (CM) of thermal continua, ice cubes have energy=∞ [McQuarrie '97, §1-1]. But CM gives real insight.

^{2.} i.e.: that **overfitting** $(\triangleq l(\theta_T) - l(\theta_0)$ where θ_0 is a min. of l) has an η^2 term greatest when ηH has moderate eigenvalues.