

Random Determinants¹

R. Fortet

Determinants whose elements involve random variables are discussed and expressions derived for the first and second moments. Applications are made to n -dimensional geometry, especially, to finding limiting probabilities for the event: "a given point lies above a random hyperplane", under fairly general hypotheses. The random variable $A_n h - B$ is considered, where A_n and B are certain minors of the determinantal equation of the random hyperplane, and h is a coordinate of the given point.

An asymptotic expression for $E\{A_n^2\}$ is obtained, and it is shown that $E\{B^2\}$ is of the order of $(1/n) E\{A_n^2\}$.

1.

In this section real random variables X_{ij} depending on two indices i and j and having the following properties are considered:

Let A_1, A_2, \dots, A_k be k random variables chosen from the X_{ij} 's. Then we make the assumptions that

(a) for any i and j , for any k , and for any choice of the A_i 's, the conditional mathematical expectation

$$E(X_{ij}|A_1, \dots, A_k) = 0,$$

if X_{ij} is not one of the A_i 's.

(b) For any i, j , for any k , and for any choice of the A_i 's, the conditional second order moment

$$E(X_{ij}^2|A_1, \dots, A_k) = \sigma_i^2,$$

(where σ_i is a constant that depends only on i) provided X_{ij} is not one of the A_i 's.

Consider the following random determinant:

$$\Delta_n = \begin{vmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & \dots & \dots & X_{nn} \end{vmatrix}$$

We have the

$$\text{Lemma: } E(\Delta_n) = 0 \text{ and } E(\Delta_n^2) = n! \prod_{i=1}^n \sigma_i^2.$$

Proof. Let A_{ij} be the cofactor of X_{ij} in Δ_n ; we can write

$$\Delta_n = \sum_j A_{1j} X_{1j}$$

$$E(\Delta_n) = \sum_j E\{A_{1j} E(X_{1j}|A_{1j})\}.$$

From (a), $E(X_{1j}|A_{1j}) = 0$; hence

¹ The preparation of this paper was sponsored (in part) by the Office of the Air Comptroller, USAF.

$$E(\Delta_n) = 0.$$

Also

$$\Delta_n^2 = \sum_j A_{1j}^2 X_{1j}^2 + \sum_{j \neq k} A_{1j} A_{1k} X_{1j} X_{1k}.$$

Now

$$E\{ \sum_{j \neq k} A_{1j} A_{1k} X_{1j} X_{1k} \} = \sum_{j \neq k} E\{ A_{1j} A_{1k} X_{1j} E(X_{1k}|A_{1j}, A_{1k}, X_{1j}) \}$$

From (a) $E(X_{1k}|A_{1j}, A_{1k}, X_{1j}) = 0$; hence

$$E\{ \Delta_n^2 \} = \sum_j E\{ A_{1j}^2 X_{1j}^2 \} = \sum_j E\{ A_{1j}^2 E(X_{1j}^2|A_{1j}) \},$$

and from (b) this reduces to

$$E\{ \Delta_n^2 \} = \sigma_1^2 \sum_j E(A_{1j}^2). \quad (1)$$

Now A_{1j} is a Δ_{n-1} , which depends only on those X_{ij} with $i \neq 1$. If we assume that the formula

$$E\{ \Delta_n^2 \} = n! \sum_{i=1}^n \sigma_i^2 \quad (2)$$

is true for $n=1, 2, \dots, r$, (1) shows that (2) is also valid for $n=r+1$; on the other hand (2) obviously holds for $n=1$. Thus (2) is established by induction, and the proof of the lemma is complete.

$$d_n = \begin{vmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & \dots & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & \dots & \dots & x_{nn} \end{vmatrix}.$$

Nonrandom real numbers x_{ij} and the determinant are now considered.

Suppressing the k rows i_1, i_2, \dots, i_k in d_n , a rectangular matrix is obtained with $(n-k)$ rows; $T[i_1, i_2, \dots, i_k; d_n]$ is called the sum of the squares of all determinants of $(n-k)$ th order deduced from this matrix.

Let D_n be the following random determinant:

$$D_n = \begin{vmatrix} x_{11} + X_{11} & x_{12} + X_{12} & \dots & x_{1n} + X_{1n} \\ x_{21} + X_{21} & \dots & \dots & \dots \\ \vdots & & & \vdots \\ x_{n1} + X_{n1} & x_{n2} + X_{n2} & \dots & x_{nn} + X_{nn} \end{vmatrix}$$

D_n can be written as a sum of elementary determinants, the elements of which are either x_{ij} or X_{ij} but never $x_{ij} + X_{ij}$. One of these elementary determinants is d_n ; all the other elementary determinants are random determinants. Let S be one of these random determinants: S consists of k rows of X_{ij} 's ($k \geq 1$) and $(n-k)$ rows of x_{ij} 's. For instance, suppose that the first row of S consists of the X_{ij} 's. S is a linear homogeneous form in the X_{ij} 's, the coefficients of which are independent of the X_{ij} 's. Thus according to (a) $E(S) = 0$; consequently $E(D_n) = d_n$.

Let i_1, i_2, \dots, i_k be the k rows of S consisting of some X_{ij} 's, that is, row i_1 consists of the $X_{i_1 j}$, row i_2 of the $X_{i_2 j}$, etc. Employing the Laplace development of S in terms of these k rows i_1, i_2, \dots, i_k , we can write S in the form:

$$S = \Sigma^* \Delta_k(j_1, j_2, \dots, j_k) B(j_1, j_2, \dots, j_k),$$

where $\Delta_k(j_1, j_2, \dots, j_k)$ is a determinant of the preceding Δ type, the elements of which are those X_{ij} with $i \in i_1, i_2, \dots, i_k$, $j \in j_1, j_2, \dots, j_k$; $B(j_1, j_2, \dots, j_k)$ is the algebraic complement of $\Delta_k(j_1, j_2, \dots, j_k)$; and the summation Σ^* is extended over all combinations (j_1, j_2, \dots, j_k) of order k taken from the n integers $1, 2, \dots, n$. For two different combinations we have:

$$E\{\Delta_k(j_1, j_2, \dots, j_k) \cdot \Delta_k(j'_1, \dots, j'_k)\} = 0, \quad (3)$$

since there is at least one j_α , j_1 say, which is not a j'_α , so that the product $\Delta_k(j_1, \dots, j_k) \cdot \Delta_k(j'_1, \dots, j'_k)$ is a homogeneous linear form in $X_{i_1 j_1}, X_{i_2 j_1}, \dots, X_{i_k j_1}$, and (3) follows from (a). Consequently

$$E(S^2) = \Sigma^* B^2(j_1, \dots, j_k) E\{\Delta_k^2(j_1, \dots, j_k)\},$$

and by the lemma,

$$\begin{aligned} E(S^2) &= \sum^* (B^2(j_1, \dots, j_k) \cdot k! \prod_{\alpha=1}^k \sigma_{i_\alpha}^2) \\ &= k! \prod_{\alpha=1}^k \sigma_{i_\alpha}^2 [\sum^* B^2(j_1, \dots, j_k)]. \end{aligned}$$

But obviously,

$$\Sigma^* B^2(j_1, \dots, j_k) = T(i_1, i_2, \dots, i_k; d_n).$$

Hence we have

$$E(S^2) = T(i_1, i_2, \dots, i_k; d_n) k! \prod_{\alpha=1}^k \sigma_{i_\alpha}^2.$$

Consider the product of two different elementary determinants S_1 and S_2 . There is at least one row consisting of some X_{ij} that appear in S_1 and not in S_2 , or in S_2 and not in S_1 . For example, suppose the first row in S_1 , consisting of the X_{1j} 's, does not appear in S_2 ; then the product $S_1 S_2$ is a linear homogeneous form in the X_{1j} 's, the coefficients of which are independent of the X_{1j} 's. Consequently by (a), $E(S_1 S_2) = 0$ and $E(D_n^2)$ reduces to the sum of the squares of all the elementary determinants. This gives us the following:

Theorem 1: Under assumptions (a) and (b),

$$E(D_n) = d_n \quad (4)$$

$$E(D_n^2) = \sum_{k=0}^n k! (\sum^* T(i_1, i_2, \dots, i_k; d_n) \prod_{\alpha=1}^k \sigma_{i_\alpha}^2). \quad (5)$$

In (5) the summation Σ^* is extended over all combinations (i_1, i_2, \dots, i_k) of order k of the integers $1, 2, \dots, n$; for convenience we put

$$T(1, 2, \dots, n; d_n) = 1.$$

An interesting feature of formulas (4) and (5) is that these formulas do not depend on the probability laws of the X_{ij} 's. This fact remains valid even if the σ_i 's depend on j , but (5) becomes more complicated; on the other hand it is possible to compute the higher moments of D_n by using similar reasoning and suitable assumptions. However, the formulas seem quite complicated. It also appears difficult to obtain the probability law of D_n , even under such hypotheses as that the X_{ij} are normally distributed.

Of course if $\sigma_1 = \sigma_2 = \dots = \sigma_n = \sigma$, where σ is a constant independent of i , (5) reduces to:

$$E(D_n^2) = \sum_{k=0}^n T_k(d_n) k! \sigma^{2k}, \quad (5a)$$

where

$$T_k(d_n) = \Sigma^* T(i_1, \dots, i_k; d_n).$$

From (5) certain interesting results may be deduced, which are perhaps already known. These results are connected with the geometrical interpretation of the coefficients of (5). Let E_n be an n -dimensional Euclidean space, with orthogonal coordinates. The n numbers $x_{11}, x_{12}, \dots, x_{1n}$ may be regarded as the coordinates of a point P_1 in E_n , and $x_{11} + X_{11}, x_{12} + X_{12}, \dots, x_{1n} + X_{1n}$ can be considered as the coordinates of a random point M_1 in E_n . That d_n is invariant under orthogonal transformations is well known. If $(0, P_1 P_2 \dots P_n)$ is the volume in E_n of the parallelepiped formed by the vectors $\overrightarrow{0P_1}, \overrightarrow{0P_2}, \dots, \overrightarrow{0P_n}$ we have:

$$d_n = \pm (0, P_1 P_2 \dots P_n).$$

An analogous interpretation holds for D_n and $(0, M_1 M_2 \dots M_n)$; hence $E(D_n^2)$ is invariant under an orthogonal transformation. If the X_{ij} 's are normally distributed, this property also persists. The

σ_i remain unaltered also. We conclude that the coefficients $T(i_1, \dots, i_k; d_n)$ are invariant.

$T(i_1, \dots, i_k; d_n)$ depends only on P_{i_1}, \dots, P_{i_k} ; consider the set of points $P'_{i_1}, P'_{i_2}, \dots, P'_{i_k}$ defined as follows:

$$\overrightarrow{0P'_{i_1}} = \overrightarrow{0P_{i_1}}$$

$$\overrightarrow{0P'_{i_2}} = \overrightarrow{0P_{i_2}} + \lambda_{21} \overrightarrow{0P_{i_1}}$$

$$\overrightarrow{0P'_{i_k}} = \overrightarrow{0P_{i_k}} + \lambda_{k1} \overrightarrow{0P_{i_1}} + \dots + \lambda_{k, k-1} \overrightarrow{0P_{i_{k-1}}},$$

where the λ_{ij} are such that the vectors $\overrightarrow{0P'_{i_1}}, \overrightarrow{0P'_{i_2}}, \dots, \overrightarrow{0P'_{i_k}}$ are mutually orthogonal. From a classical property of determinants we can replace P_{i_1}, \dots, P_{i_k} by $P'_{i_1}, \dots, P'_{i_k}$ without altering $T(i_1, \dots, i_k; d_n)$. The invariance of $T(i_1, \dots, i_k; d_n)$ under orthogonal transformations implies that the vectors $\overrightarrow{0P'_{i_\alpha}}$ ($\alpha=1, \dots, k$) can be taken as coordinate axes. Then it becomes obvious that

$$T(i_1, \dots, i_k; d_n) = (0, P'_{i_1} \dots P'_{i_k})^2,$$

the volume $(0, P'_{i_1} \dots P'_{i_k})$ being considered as a volume in a k -dimensional subspace of E_n ; but it is also obvious that

$$(0, P'_{i_1} \dots P'_{i_k})^2 = (0, P_{i_1} P_{i_2} \dots P_{i_k})^2,$$

and we have established:

Theorem 2:

$$T(i_1, \dots, i_k; d_n) = (0, P_{i_1} \dots P_{i_k})^2, \quad (6)$$

and consequently,

$$T_k(d_n) = \sum^* (0, P_{i_1} \dots P_{i_k})^2. \quad (7)$$

On the other hand, considering P_1, \dots, P_n as fixed points in E_n , and Ω as a moving point, $(\Omega, P_{i_1} \dots P_{i_k})^2$ and $\Sigma^* (\Omega, P_{i_1} \dots P_{i_k})^2$ are given by (6) or (7) under a simple change of the origin of coordinates. If one puts

$$(\Omega, P_{i_1} \dots P_{i_k})^2 = C \quad (8)$$

and

$$\Sigma^* (\Omega, P_{i_1} \dots P_{i_k})^2 = C^*, \quad (9)$$

where C and C^* are any positive constants, then eq (8) and (9) define quadrics $Q(i_1, \dots, i_k; C)$ and $Q_k(C^*)$, respectively, of ellipsoidal type. Thus it follows from (5) that the relation

$$E\{(\Omega, M_1 \dots M_n)^2\} = e, \quad (10)$$

where e is some positive constant, also defines a quadric $Q(e)$ (which is in general an ellipsoid).

2.

In Euclidean n -space with the coordinates defined as above consider n fixed points P_1, P_2, \dots, P_n , and a fixed point S on the axis $0x_n$ with coordinates $(0, 0, \dots, 0, h)$. Let M_1, M_2, \dots, M_n be n random points, and consider the random plane Π , (i. e., an $(n-1)$ -dimensional linear variety) defined by (M_1, M_2, \dots, M_n) . The equation of Π has the following determinantal form

$$U = \begin{vmatrix} x_1 & x_2 & \dots & x_{n-1} & x_n & 1 \\ x_{11} + X_{11} & x_{12} + X_{12} & \dots & x_{1, n-1} + X_{1, n-1} & X_{1n} & 1 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ x_{n1} + X_{n1} & x_{n2} + X_{n2} & \dots & x_{n, n-1} + X_{n, n-1} & X_{nn} & 1 \end{vmatrix} = 0$$

Developing this determinant in terms of the elements of the first row and their cofactors, one obtains

$$U = \sum_{j=1}^n A_j x_j - B = 0. \quad (11)$$

For convenience we set

$$Y_{ij} = x_{ij} + X_{ij} \quad (i=1, 2, \dots, n; j=1, 2, \dots, n-1).$$

Let M'_i be the point $(Y_{i2}, \dots, Y_{i, n-1}, 0)$ and V the linear variety of $n-2$ dimensions defined by

$$x_n = 0, \quad U = 0, \quad (12)$$

and let H_i be the orthogonal projection of M_i or M'_i on V . An elementary computation shows that, in absolute value,

$$\frac{\overline{M'_i M_i}}{\overline{H_i M'_i}} = \frac{|X_{in}|}{|H_i M'_i|} = \frac{\sqrt{\sum_{j=1}^{n-1} A_j^2}}{|A_n|} \quad (13)$$

We now suppose that:

(A) the distance between P_i and P_j is equal to 1, for any i and j . In this case the n points P_i form a regular polyhedron in the variety $x_n = 0$; this polyhedron admits $\binom{n}{k}$ linear varieties V_{ij} as varieties of symmetry, V_{ij} being defined as that $(n-2)$ -dimensional variety formed by the points in $x_n = 0$ which are equidistant from P_i and P_j ($i \neq j$). Now suppose that V is a moving $(n-2)$ -dimensional variety, and consider the quantity

$$s = \max_i (\text{distance from } V \text{ to } P_i).$$

s attains its minimum value when V is a V_{ij} , in which case $s = \frac{1}{2}$. Consequently in all cases there is at least one point P_i such that the distance from V to P_i is at least $\frac{1}{2}$.

Now suppose that n tends to $+\infty$ with condition (A) always holding; we make the following assumptions:

$$(B) \lim_{n \rightarrow \infty} \Pr \left\{ \max_i |X_{in}| < \epsilon \right\} = 1 \quad \text{for any } \epsilon > 0;$$

(C) there exists a positive number $a < \frac{1}{2}$ and independent of n such that:

$$\lim_{n \rightarrow \infty} \Pr \left\{ \max_i \sum_{j=1}^n X_{ij}^2 < a^2 \right\} = 1.$$

If for instance the distance from P_i to V is a maximum when $i=1$, then except in cases of small probability:

$$\overline{H_1 M_1} > \frac{1}{2} - a,$$

and

$$|X_{1n}| < \epsilon.$$

Thus we have:

Theorem 3: Under hypotheses (A), (B), and (C),

$$\lim_{n \rightarrow \infty} \Pr \left\{ \sqrt{\sum_{j=1}^{n-1} A_j^2} > 0 \right\} = 0.$$

Remark: Assumptions (B) and (C) are not particularly restrictive. They are satisfied, for instance if the X_{ij} 's are independent and normally distributed with

$$E(X_{ij}^2) = \frac{\rho^2}{n}, \quad (14)$$

ρ being $< \frac{1}{2}$ and independent of i, j, n ; also when the M_i are independently distributed with uniform probability density over the interior of the sphere of center P_i and radius $\rho < \frac{1}{2}$.

Denote the center of gravity of P_1, \dots, P_n by G , with coordinates (ξ_1, \dots, ξ_n) given by

$$\xi_j = \frac{1}{n} \sum_{i=1}^n x_{ij}, \quad (j=1, 2, \dots, n), \quad (15)$$

$\xi_n = 0$. Let K be the center of gravity of M_1, \dots, M_n with coordinates $\xi_j + Z_j$ ($j=1, 2, \dots, n$). Put

$$Z_j = \frac{1}{n} \sum_{i=1}^n X_{ij}. \quad (16)$$

We make the following assumptions:

(D) the distance \overline{OG} remains bounded as $n \rightarrow +\infty$;

(E) the X_{ij} satisfy assumptions (a) and (b) of section 1, with

$$\sigma_i \leq \frac{\rho}{\sqrt{n}},$$

where ρ^2 is a constant independent of i and n . The algebraic distance L from G to Π is equal to:

$$L = \frac{\sum_{j=1}^{n-1} A_j \xi_j - B}{\sqrt{\sum_{j=1}^n A_j^2}}. \quad (17)$$

K belongs to Π , so that

$$|L| \leq \overline{GK}.$$

But the coordinates of the vector \overrightarrow{GK} are the Z_j 's defined by (16). From (E) it then follows that

$$E(\overline{GK}^2) \leq \frac{\rho^2}{n}.$$

Hence \overline{GK} and *a fortiori* L tend toward zero in probability. Write (17) as

$$\begin{aligned} \frac{\sum_{j=1}^{n-1} A_j \xi_j - B}{\sqrt{\sum_{j=1}^n A_j^2}} &= -\frac{B}{A_n} \cdot \frac{A_n}{|A_n| \sqrt{1 + \frac{\sum_{j=1}^{n-1} A_j^2}{|A_n|^2}}} \\ &+ \frac{\sum_{j=1}^{n-1} A_j \xi_j}{|A_n| \sqrt{1 + \frac{\sum_{j=1}^{n-1} A_j^2}{|A_n|^2}}}. \end{aligned}$$

We have by the Schwartz inequality

$$\left| \sum_{j=1}^{n-1} A_j \xi_j \right| \leq \sqrt{\sum_{j=1}^{n-1} A_j^2} \cdot \sqrt{\sum_{j=1}^{n-1} \xi_j^2},$$

so that

$$\frac{\left| \sum_{j=1}^{n-1} A_j \xi_j \right|}{|A_n| \sqrt{1 + \frac{\sum_{j=1}^{n-1} A_j^2}{|A_n|^2}}} \leq \sqrt{\sum_{j=1}^{n-1} \xi_j^2} \cdot \frac{\sqrt{\sum_{j=1}^{n-1} A_j^2}}{\sqrt{1 + \frac{\sum_{j=1}^{n-1} A_j^2}{|A_n|^2}}}.$$

Now $\sqrt{\sum_{j=1}^{n-1} \xi_j^2}$ is bounded and $\sqrt{\sum_{j=1}^{n-1} A_j^2} / |A_n|$ tends to

zero in probability. Therefore under the assumptions (A)–(E) we have:

Lemma: As $n \rightarrow \infty$, $|B/A_n|$ tends to zero in probability.

The algebraic distance from S to Π is

$$\begin{aligned} \Delta &= \frac{h A_n - B}{\sqrt{\sum_{j=1}^n A_j^2}} = \frac{h A_n - B}{|A_n| \sqrt{1 + \frac{\sum_{j=1}^{n-1} A_j^2}{|A_n|^2}}} \\ &= \left(h \frac{A_n}{|A_n|} - \frac{B}{|A_n|} \right) \frac{1}{\sqrt{1 + \frac{\sum_{j=1}^{n-1} A_j^2}{|A_n|^2}}}. \quad (18) \end{aligned}$$

Suppose that $h > 0$; then S is above Π if $\Delta A_n > 0$, or what is the same thing, $(h A_n^2 - B A_n) > 0$. We may write this last expression as

$$h - \frac{B}{A_n} > 0.$$

Thus according to the above lemma (and under the same hypotheses, viz., assumption (A)-(E)):

Theorem 4. If $h > 0$, the probability that S is above Π tends to 1 when $n \rightarrow +\infty$; if $h < 0$, this probability tends to zero.

The case $h = 0$ is not clear-cut. But if, for instance, the M_i 's are independent with the same continuous probability law which is symmetric about the plane $x_n = 0$, then clearly $Pr\{S > \pi\} = \frac{1}{2}$.

3.

Keeping the notations of section 2, we assume that $P_i P_j = 1$ for any i, j and that the X_{ij} 's satisfy conditions (a) and (b) of section 1 with $\sigma_1 = \dots = \sigma_n = \rho/\sqrt{n}$ where ρ is a constant independent of i and n . The other assumptions, (B), (C), and (D) of section 2, will not be required. We wish to obtain some information about the random variable:

$$H = A_n h - B. \quad (19)$$

Theorem 1 implies immediately that

$$E(H) = V_n h, \quad (20)$$

where V_n is the determinant

$$V_n = \begin{vmatrix} x_{11} & x_{12} \dots x_{1, n-1} & 1 \\ x_{21} & x_{22} \dots x_{2, n-1} & 1 \\ \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} \dots x_{n, n-1} & 1 \end{vmatrix}.$$

V_n , as we have seen, is given by

$$V_n = \pm (P_1, P_2 P_3 \dots P_n).$$

That is to say (cf. formula (33) of the Appendix)

$$V_n = \pm \sqrt{\frac{n}{2^{n-1}}}. \quad (21)$$

Let w_n be the determinant

$$\begin{vmatrix} x_{11} & x_{12} \dots x_{1, n-1} & 0 \\ x_{21} & \dots x_{2, n-1} & 0 \\ \vdots & \vdots & \vdots \\ x_{n1} & \dots x_{n, n-1} & 0 \end{vmatrix}.$$

For $E(H^2)$ we have at once:

$$E(H^2) = h^2 E(A_n^2) + E(B^2). \quad (22)$$

Since B is a determinant of the form D_n (section 1) formula (5a) gives the result that

$$E(B^2) = \sum_{k=1}^n T_k(w_n) k! \frac{\rho^{2k}}{n^k}. \quad (23)$$

A_n is not exactly of type D_n , but in entirely similar fashion we find

$$E(A_n^2) = \sum_{k=0}^{n-1} T'_k(V_n) k! \frac{\rho^{2k}}{n^k}. \quad (24)$$

$T'_k(V_n)$ is the sum of the minors of order $(n-k)$ of V_n obtained without suppressing the last column of V_n . For instance

$$T'_k(i_1, \dots, i_k; V_n) = (P_{j_1}, P_{j_2} P_{j_3} \dots P_{j_{n-k}})^2,$$

where j_1, j_2, \dots, j_{n-k} run through all the numbers $1, 2, \dots, n$ except i_1, i_2, \dots, i_{n-k} . Hence

$$T'_k(i_1, \dots, i_k; V_n) = V_{n-k}^2 = \frac{n-k}{2^{n-k-2}} \quad (25)$$

and

$$T'_k(V_n) = \binom{n}{k} (n-k) 2^{-n+k+1}. \quad (26)$$

Substituting this expression into (24) one finds

$$\begin{aligned} E(A_n^2) &= \sum_{k=0}^{n-1} \binom{n}{k} (n-k) 2^{-n+k+1} \cdot k! \frac{\rho^{2k}}{n^k} \\ &= \frac{n}{2^{n-1}} \sum_{k=0}^{n-1} \frac{(n-1) \dots (n-k)}{n^k} (2\rho^2)^k. \quad (27) \end{aligned}$$

If we suppose that $2\rho^2 < 1$, (27) yields immediately:

$$E(A_n^2) \sim \frac{1}{1-2\rho^2} \cdot \frac{n}{2^{n-1}}, \quad (27a)$$

as $n \rightarrow \infty$.

B is of the form D_n ; we know that $Q_k(C^*)$ is a quadric, and it must have as planes of symmetry the $\binom{n}{2}$ planes of symmetry V_{ij} of the polyhedron

(P_1, P_2, \dots, P_n) . Consequently the center of $Q_k(C^*)$ is G , and $Q_k(C^*)$ is a sphere since $\binom{n}{2} > n$, and we can write:

$$T_k(w_n) = \lambda_k(n) \overline{OG}^2 + T_k^*(w_n), \quad (28)$$

where $T_k^*(w_n)$ is the value of $T_k(w_n)$ when $\overline{OG}=0$. On the other hand

$$T_k(i_1, \dots, i_k; w_n) = (O, P_{j_1} P_{j_2} \dots P_{j_{n-k}}),$$

where j_1, j_2, \dots, j_{n-k} are all the numbers 1, 2, \dots, n except i_1, i_2, \dots, i_k . If $O=G$, we find (cf. appendix, formula (36)):

$$T_k^*(i_1, \dots, i_k; w_n) = \frac{k}{n 2^{n-k}}$$

and

$$T_k^*(w_n) = \binom{n}{k} \frac{k}{n 2^{n-k}}.$$

Hence

$$\sum_{k=1}^n T_k^*(w_n) k! \frac{\rho^{2k}}{n^k} = \frac{1}{n 2^n} \sum_{k=1}^n k \frac{n(n-1) \dots (n-k+1)}{n^k} (2\rho^2)^k. \quad (29)$$

If $2\rho^2 < 1$, (29) becomes asymptotically

$$\sum_{k=1}^n T_k^*(w_n) k! \frac{\rho^{2k}}{n^k} \sim \frac{1}{n 2^n} \cdot \frac{1 \rho^2}{(1 - 2\rho^2)^2}. \quad (29a)$$

We can now compute the value $T_k^{**}(w_n)$ of $T_k(w_n)$ for $P_n=O$ (cf. appendix, formula (38)). Writing

$$T_k^{**}(w_n) = \lambda_k(n) \overline{GP_n}^2 + T_k^*(w_n),$$

we have an equation which determines $\lambda_k(n)$; we find

$$\lambda_k(n) = \frac{n(n-2)(n-3) \dots (n-k)}{(k-1)! 2^{n-k-1}}$$

and

$$\sum_{k=1}^n \lambda_k(n) k! \frac{\rho^{2k}}{n^k} = \frac{1}{2^{n-1}} \sum_{k=1}^n \frac{n(n-2)(n-3) \dots (n-k)}{n^k} k (2\rho^2)^k. \quad (30)$$

Asymptotically this expression becomes, for $2\rho^2 < 1$,

$$\sum_{k=1}^n \lambda_k(n) k! \frac{\rho^{2k}}{n^k} \sim \frac{1}{2^{n-1}} \frac{2\rho^2}{(1 - 2\rho^2)^2}. \quad (30a)$$

We verify that $E(B^2)$ is of the order of $(1/n)E(A_n^2)$, which agrees with the lemma of section 2. In the particular case when $G=O$, $E(B^2)$ is of the order of $(1/n^2) E(A_n^2)$.

Appendix

Given n points P_1, \dots, P_n in an $(n-1)$ -dimensional Euclidean space E_{n-1} such that $\overline{P_i P_j} = 1$ for any i and j ($i \neq j$) (that is, these points are the vertices of a regular polyhedron P_n) we wish to find an expression for the volume

$(1/n!)$ $|V_n|$ of P_n in E_{n-1} . Let G_i be the center of gravity of the points P_1, P_2, \dots, P_i ; h_n the distance between G_{n-1} and P_n ; and d_n the distance between G_n and any P_i . We have

$$(n-1) \overrightarrow{G_n G_{n-1}} + \overrightarrow{G_n P_n} = 0. \quad (31)$$

G_{n-1}, G_n, P_n are on the same "straight line" (one-dimensional linear variety); and $P_1 G_{n-1} P_n$ is a right triangle; hence:

$$1 = \overline{P_1 P_n}^2 = \overline{P_1 G_{n-1}}^2 + \overline{G_{n-1} P_n}^2.$$

It follows that

$$d_n = \frac{n-1}{n} h_n$$

$$h_n^2 = 1 - \left(\frac{n-2}{n-1} \right)^2 h_{n-1}^2. \quad (32)$$

Clearly h_3 is known; the recurrence equation (32) can be solved for h_n :

$$h_n = \frac{1}{\sqrt{2}} \sqrt{\frac{n}{n-1}}.$$

It follows by recurrence from (31), $|V_3|$ being equal to $\sqrt{3}/2$, that:

$$|V_n| = \sqrt{\frac{n}{2^{n-1}}}, \quad (33)$$

On the other hand,

$$d_n = \frac{1}{\sqrt{2}} \sqrt{\frac{n-1}{n}}, \quad (34)$$

and

$$\overline{G_n G_{n-1}}^2 = \frac{1}{2(n-1)n} = \frac{1}{2} \left(\frac{n}{n-1} - \frac{1}{n} \right). \quad (35)$$

We now compute the volume $(G_n, P_1 P_2 \dots P_{n-k})$. If L_{n-k} is the orthogonal projection of G_n on the linear variety $(P_1 P_2 \dots P_{n-k})$, we have:

$$(G_n, P_1 P_2 \dots P_{n-k})^2 = \overline{G_n L_{n-k}}^2 |V_{n-k}|^2.$$

But $L_{n-k} = G_{n-k}$, so that

$$\overline{G_n L_{n-k}}^2 = \overline{G_n G_{n-1}}^2 + \overline{G_{n-1} G_{n-2}}^2 + \dots + \overline{G_{n-k+1} G_{n-k}}^2.$$

As in (35),

$$\overline{G_n L_{n-k}}^2 = \frac{1}{2} \left(\frac{1}{n-k} - \frac{1}{n} \right) = \frac{k}{2n(n-k)},$$

and so

$$(G_n, P_1 \dots P_{n-k})^2 = \frac{k}{n 2^{n-k}}. \quad (36)$$

We can also compute $(P_n, P_1 P_2 \dots P_{n-k})$:

$$(P_n, P_1 P_2 \dots P_{n-k})^2 = \overline{P_n L_{n-k}}^2 |V_{n-k}|^2$$

$$\overline{P_n L_{n-k}}^2 = \overline{P_n G_{n-1}}^2 + \overline{G_{n-1} G_{n-2}}^2 + \dots + \overline{G_{n-k+1} G_{n-k}}^2$$

$$= \frac{1}{2} \left(1 + \frac{1}{n-k} \right).$$

Therefore

$$(P_n, P_1 \dots P_{n-k})^2 = \frac{(n-k+1)}{2^{n-k}}. \quad (37)$$

From (37) it follows that

$$T_k^{**}(w_n) = \binom{n-1}{k-1} \frac{n-k+1}{2^{n-k}}, \quad (38)$$

LOS ANGELES, January 11, 1951.