Polar Coordinates

Comparing Polar Coordinates and Cartesian Coordinates

n	Error (Polar)	Error (Cartesian)
10	7.2×10^{-6}	2.0×10^{-4}
100	7.4×10^{-10}	7.2×10^{-6}
500	1.2×10^{-12}	$6.4 imes 10^{-7}$
1000	7.5×10^{-14}	2.3×10^{-7}
3000	9.2×10^{-16}	$4.4 imes 10^{-8}$
5000	3.1×10^{-16}	$2.0 imes 10^{-8}$
10000	1.9×10^{-16}	7.2×10^{-9}

Legendre and Gauss

Legendre Polynomials

- General Formula: $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$.
- First few terms: $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = x^2 \frac{1}{3}$.
- Suppose we have a n^{th} order Legendre polynomial $P_n(x)$, it then has roots x_1, \ldots, x_n , which are symmetric. The weight of symmetric roots can be calculated by

$$c_i = \int_{-1}^1 \prod_{\substack{j=1\\i\neq i}}^n \frac{x - x_i}{x_i - x_j} dx.$$

First Few Terms

n	Roots $r_{n,i}$	Coefficients $c_{n,i}$
2	-0.5773502691896257	1.00000000000000000
	0.5773502691896257	1.00000000000000000
3	0.00000000000000000	0.8888888888888888888888888888888888888
	-0.7745966692414834	0.55555555555556
	0.7745966692414834	0.55555555555556
4	-0.3399810435848563	0.6521451548625461
	0.3399810435848563	0.6521451548625461
	-0.8611363115940526	0.3478548451374538
	0.8611363115940526	0.3478548451374538

Gaussian Double v.s Simpson's Double

Comparison Between Simpson and Gaussian Integral Method

n	error(Gaussian)	error(Simpson)
1	0.037682072451781	0.108669726772769
2	0.001525047658392	0.002503112733404
3	0.000049493897754	0.039809322528766
4	0.000001511841346	0.000202140564106
5	0.000000045271619	0.023412864485344
6	0.000000001345410	0.000042754312220
7	0.000000000039849	0.016514363451853
8	0.00000000001178	0.000013899605129
9	0.000000000000035	0.012743272142899
10	0.000000000000001	0.000005769449753

Gaussian Triple

Error (Gaussian Triple Integral)

1 0.1666666666666740 2 0.0000000000000000222 3 0.0000000000000000222 4 0.0000000000000000666 5 0.00000000000000000000666	
3	
4 0.00000000000000666 5 0.0000000000000000000	404
5 0.00000000000000000000000000000000000	204
	513
6 0.0000000000000000222	000
0.0000000000000000000000000000000000000	204
7 0.000000000000000888	318
8 0.000000000000000222	204
9 0.000000000000000000	000
10 0.000000000000000222	204