ZEKE-PFI spectroscopy of naphthalene vapours via S_2 electronic state

Akopyan M.E., Ivanov V.S., Kleimenov V.I., Feofilov A.G.

Institute of Physics, St.-Petersburg State University, Old Peterhoff, Ulianovskaja 1, 198904, St.-Petersburg, Russia.

Phone: 812-4284561. Fax: 812-4287240. E-mail: val@mols.phys.lgu.spb.su

ABSTRACT

A new group of electrons in the naphthalene ZEKE PFI spectrum has been observed in the energy range 70000 - 72000 cm⁻¹ by the one-color two-step laser excitation technique. It can be assigned to the field ionization of the high n Rydberg states converging to the first electron-excited ionic state of naphthalene. The lifetimes of the superexcited Rydberg states with the energy excess (above the first ionization energy) up to 1 eV are about 1 µs. The improved value of the second adiabatic ionization potential is 71823±30 cm⁻¹ (8.904±0.004 eV).

Keywords: photoionization methods, ZEKE-PFI spectroscopy, naphthalene.

INTRODUCTION

In this work we have performed the zero-kinetic-energy pulsed-field ionization (ZEKE PFI) studies of naphthalene vapors with the help of a new laser spectrometer. The method of ZEKE-PFI photoelectron spectroscopy has become a widely used tool for investigation of the molecular ion energy spectra. Naphthalene, as a prototype aromatic molecule with a conjugated π -system is a traditional object of spectroscopic studies¹⁻⁸. Energy spectra of neutral molecule of naphthalene and its cation were successfully investigated by absorption and luminescence spectroscopy and by laser photoionization spectroscopy as well⁹⁻¹⁴. So we have chosen the naphthalene to test our spectrometer. The obtained ZEKE-PFI spectrum has revealed a new group of electrons. We assign it to the field ionization of the high n Rydberg states converging to the first electron-excited state of cation. These states are populated resonantly via S₂ electron state of naphthalene. The new group enabled us to improve the value of the second adiabatic ionization potential - 71823±30 cm⁻¹ (8.904±0.004 eV).

EXPERIMENT

The experimental setup for ZEKE-PFI spectroscopy is based on a new laser spectrometer. This spectrometer enables one to carry out the following methods of photoionization spectroscopy: total current spectroscopy; mass-spectroscopy; photoelectron spectroscopy; ZEKE- and ZEKE-PFI spectroscopy. A tunable dye laser, pumped by the 2-nd harmonic of Nd-YAG, is used to populate the high n Rydberg states. The beam of the frequency-doubled radiation is focused into the ionization chamber by the short-focus lens (F=140 mm). The ionization chamber is filled with naphthalene vapors at the pressure of about 10⁻⁵ Torr and at room temperature. The laser wavelengths were calibrated by **Hg** lamp with the accuracy of 0.05 nm. Wavelengths were scanned with the 0.02 nm step. The laser pulse duration is 12 ns, the energy in pulse is 1-15 µJ.

Photoelectrons are removed from the viewing field of detector by the dc field of ~ 0.1 V/cm. The Rydberg states with n>130 are ionized by the delayed (0-1 μ s) electric

field pulse (~1 V/cm). Thus formed electrons (ZEKE PFI electrons) are detected by chevron pair of microchannel plates (MCP).

RESULTS

The one-color two-step ZEKE-PFI spectrum is shown in Fig.1. It consists of the two groups of electrons - nearly 300 nm and nearly 279 nm, respectively. The first one corresponds to the two-step excitation of the Rydberg states converging to ground ionic state of naphthalene D₀. This group (Fig.2) has been studied thoroughly in other laboratories (see the two-color excitation of jet cooled naphthalene ¹³). It is assigned to the following sequence of processes:

$$\begin{array}{cccc} & \text{hv} & \text{hv} & E \\ S_0(v\text{''=0}) \, \rightarrow \, S_1(v\text{'}) \, \rightarrow \, S_R(v_R) \, \rightarrow \, D_0(v\text{'}) + e, \end{array}$$

where S_0 is a ground electron state; S_1 - first excited state; S_R - Rydberg states converging to the different vibrational terms of the ground D_0 state of cation; v", v, v_R and v^+ - series of vibrational quantum numbers; E - ionizing electric field.

Thus formed electrons have almost zero kinetic energy, because the ionized Rydberg states lie 4-6 cm below the threshold (at field intensity ~1 V/cm).

Analysis of ZEKE-PFI spectra via S_1 state made it possible to identify the vibrations of D_0 state of cation^{13,14}. We used this information to analyze the structure of the first group of electrons.

The structure can depend both on the one-photon absorption spectrum structure in the region of $S_0 \rightarrow S_1$ transition and on the satisfying the conditions of the double optical resonance:

$$2v \approx I_i + E_v(\mathbf{M}^+) - E_{v''}(\mathbf{M}) \tag{1}$$

where v is the wave number, I_i - i-th adiabatic ionization energy, $E_v(M^+)$ and $E_{v,v}(M)$ - vibrational energies of the ionic and initial electron states, correspondingly. Energy is measured in cm⁻¹. The equation (1) isn't exact due to neglecting the rotational excitation of molecules and ions, laser radiation bandwidth and dispersion of "zero" electron energies (4-6 cm⁻¹).

Spectrum of naphthalene vapors luminescence excitation was obtained³ at the conditions, similar to ours. Its comparison with the one-color ZEKE-PFI spectrum reveals no correlation. Therefore, we assign the obtained structure to the set of electron-vibrational states of cation. The long-wave peak (65674±20cm⁻¹) corresponds to the first adiabatic ionization potential of naphthalene (65687±7cm⁻¹)¹³. The next peak is at 200±30 cm⁻¹ distance. We assign it to the excitation of 4a_u vibration of cation (176 cm⁻¹)¹⁴. Wide peak with maximum at 302.5 nm is at 450±30cm⁻¹ distance from 0⁰ peak. This peak is complex. Its high intensity is defined by the superposition of the following vibrations: 3b_{1u} (423 cm⁻¹), 4b_{3g} (425 cm⁻¹) and 8b_{1g}(455 cm⁻¹). The long-wave shoulder can correspond to 3b_{2g} (365 cm⁻¹) and/or 8b_{2u} (365 cm⁻¹) vibrations. Short-wave increase of the intensity of electron background is provided by the noticeable role of hot transitions and by the short-wave increase of the vibrational states density of cation. Hot transitions are responsible for red shadowing of all peaks, because most of the low-frequency ion vibration energies are less than that of the initial, S₀ state^{6,14}.

One can see that it is possible to obtain the useful information from one-color experiments, which are far easier to carry out.

The second group of ZEKE-PFI electrons (near 279 nm) has been observed for the first time. This group is depicted in Fig.3. We can assign it to the pulsed-field ionization of the Rydberg states converging to the first electronexcited state of cation D₁. The second ionization adiabatic energy determined by photoelectron spectroscopy. The value of this energy varies within 8.7-9.0 eV limits¹⁵⁻¹⁷. The two-step ionization $(S_0 \rightarrow ... \rightarrow D_1)$

becomes possible at the wavelengths less than ~285 nm. Both S_1 and S_2 electron-vibrational levels can serve as an intermediate one in this process. The most accurate value of the difference between $S_2(0^0)$ and $S_0(0^0)$ terms is 35815±5 cm⁻¹ (4.44 eV), derived from the dependence of radiative lifetimes of electron-vibrational states of napthalene upon excitation energy⁵. This value is approximately in the center of the gap between $D_1(0^0)$ and $S_0(0^0)$. The one-color two-step excitation is possible due to this intermediate level. Two-photon energy on the short-wavelength limit of laser radiation band exceeds the second ionization threshold by ~200 cm⁻¹. Accordingly, the second group is formed involving ground (or low) vibrational levels of S_2 state. When the equilibrium geometries of S_2 , S_R and D_1 states are similar, the Frank-Condon factors of the transitions are high¹⁴. In fact, in energy region higher, than $S_2(0^0)$, molecular states of naphthalene are mixed due to electron-vibrational interaction of S_1 and S_2 states^{2,3,8}. The oscillator force of $S_0 \rightarrow S_2$ transition is 50 times greater than that of $S_0 \rightarrow S_1$ transition^{8,18}; Frank-Condon factors for latter transitions with energies higher than 3800 cm⁻¹ are very small. This leads to the optical coupling of S_0 and S_2 components of molecular state. The intensity ratio of two our groups is defined by the oscillators' forces ratio.

The results of semi-empirical calculations tell us that the equilibrium geometries of S_1 , D_0 and D_1 are similar (average deviation is 0.8%, maximal deviation - 2.7%)¹⁴. In this case the transitions with big changes of vibrational energy will be characterized by small Frank-Condon factors and the preference will be given to transitions with the conservation of vibrational energy ($\Delta v_i = 0$)¹⁹. The fact, that in most of multi-photon (photoelectron) spectra transitions with small Δv_i have maximal intensity¹², just adds to our arguments.

Molecular states of naphthalene, lying above the $S_2(0^0)$ level, can have admixture of low-lying triplet states^{3,4}. However, the same, as for S_1 state, reasons, lead us to the thought, that these states add a little to our signal.

The short-wave group is almost structureless, though there are two distinct peaks at the distance $174\pm20~\text{cm}^{-1}$. It corresponds (concerning the uncertainty in determining the wavelengths) to the $4a_u$ vibration of D_0 state of naphthalene cation¹⁴. This vibration is seen in the first group. There are no data for out-of-plane vibrations in D_1 , but whereas potential surfaces of D_0 and D_1 states are quite close, we assign the main peak to the generation of cation in ground state $D_1(0^0)$ and the second one - in $D_1(4a_u)$ state. In this case the second adiabatic ionization potential value is $71823\pm30~\text{cm}^{-1}$ (8.904±0.004 eV). This value improves the less accurate values, obtained by photoelectron spectroscopy $^{15-17}$.

CONCLUSION

The new laser spectrometer was successfully tested on a naphthalene vapors. We have observed a new group of electrons near 279 nm in one-color two-step ZEKE-PFI spectrum. This group appears due to the following chain of elementary processes:

$$hv hv E$$

 $S_0(v^2=0) S_2(v^2) S_R(v_R) D_1(v^+) + e$

The superexcited Rydberg states converging to D_1 have long lifetimes. (The decay of these states via all decay channels including autoionization is characterized by $\sim 1.0~\mu s$ period).

We assume that one of the two distinct peaks in a new group corresponds to the second adiabatic ionization potential, the improved value of which is 71823 ± 30 cm⁻¹ (8.904 \pm 0.004 eV) and the second one - to the generation of cation in $D_1(4a_u)$ state, correspondingly (the energy of $4a_u$ vibration is 174 ± 20 cm⁻¹).

REFERENCES

- Beck S. M., Powers D. E., Hopkins J. B., Smalley R. E., J. Chem. Phys. 73(5), pp. 2019-2027 (1980).
- Stockburger M., Gattermann H., Klusmann W., J. Chem. Phys. 63(10), pp. 4519-4528 (1975).

- Stockburger M., Gattermann H., Klusmann W., J. Chem. Phys. 63(10), pp. 4529-4540 (1975).
- 4. Gattermann H., Stockburger M., J. Chem. Phys. 63(10), pp. 4541-4545 (1975).
- 5. Behlen F. M., Rice S. A., J. Chem. Phys. 75(12), pp. 5672-5684 (1981).
- Behlen F. M., McDonald D. B., Sethurama V., Rice S. A., J. Chem. Phys. 75(12), pp. 5685-5693 (1981).
- 7. Hashimoto T., Nakano H., Hirao K., *J. Chem. Phys.* **104**(16), pp. 6244-6258 (1996).
- 8. Negri F., Zgierski M. Z., J. Chem. Phys. 104(10), pp. 3486-3500 (1996).
- Antonov V. S., Letochov V. S., Shibanov A. N., Opt. Commun. 38(1), pp. 182-184
 (1981).
- Duncan M. A., Dietz T. G., Smalley R. E., J. Chem. Phys. 75(5), pp. 2118-2125
 (1981).
- Cooper D. E., Frueholz R. P., Klimcak C. M., Wessel J. E., J. Phys. Chem.
 86(25), pp. 4892-4987 (1982).
- Hiraya A., Achiba Y., Mikami M., Kimura K., J. Chem. Phys. 82(4), pp. 1810-1817 (1985).
- Cockett M. C. R., Ozeki H., Okuyama K., Kimura K., J. Chem. Phys. 98(10), pp. 7763-7772 (1993).
- 14. Negri F., Zgierski M. Z., J. Chem. Phys. 107(13), pp. 4827-4843 (1997).
- Turner D. W., Baker C., Baker A. D., Brundle C. R. Molecular Photoelectron Spectroscopy. L.: Wiley. pp. 321, 1970.
- Brundle C. R., Robin M. B., Kuebler N. A., J. Amer. Chem. Soc. 94(5), pp. 1466-1475 (1972).

- 17. Moomaw W. R., Kleier D. A., Markgraf J. H., Thoman J. W., Ridyard J. N. A., *J. Phys. Chem.* **22**(17), pp. 4892-4898 (1988).
- 18. George G. A., Morris G. C., J. Mol. Spectros. 26(1), pp. 67-71 (1968).
- 19. Compton R.N., Miller J.C., Laser Applications in Physical Chemistry.Ed. Evans D.K. N. Y.: Marcel Dekker, 1989. pp. 221-257.