LATEX Exercises

Jason Gross

TeXed on September 6, 2010

If you have trouble figuring out how to typeset one of the following, try to figure it out using the Internet before asking me how to typeset it. Knowing how to find the information you want on the Internet is an important skill. If you're stuck or frustrated, feel free to ask for help.

Note that http://detexify.kirelabs.org/classify.html is useful.

1 Easy

Please type me! The quick brown fox jumps over the lazy dog. (1)

$$e^{i\pi} + 1 = 0 \tag{2}$$

$$e^{i\theta} = \cos\theta + i\sin\theta\tag{3}$$

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \tag{4}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{5}$$

$$\vec{L} = \vec{r} \times \vec{p} \tag{6}$$

$$\sqrt[3]{2}$$
 (7)

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r} \tag{8}$$

$$\sqrt{\frac{a_1^2 + \dots + a_n^2}{n}} \ge \frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 + \dots + a_n} \ge \frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}}$$
(9)

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \cdot \langle y, y \rangle \tag{10}$$

A1:
$$\varphi \longrightarrow (\psi \to \varphi)$$

A2: $(\varphi \to (\psi \to \theta)) \longrightarrow ((\varphi \to \psi) \to (\varphi \to \theta))$
A3: $(\neg \varphi \to \neg \psi) \longrightarrow (\psi \to \varphi)$ (11)

2 Medium

$$1_A = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \tag{12}$$

$$n\underbrace{\uparrow \cdots \uparrow}_{n} n = n \to n \to n \tag{13}$$

In the following, note the spacing between the = and the $^{1}1$, $^{2}2$, and $^{^{3}}3$.

$$1 \uparrow 1 = {}^{1}1 = 1$$
$$2 \uparrow \uparrow 2 = {}^{2}2 = 4$$

$$3\uparrow\uparrow\uparrow 3 = {}^{3}3 = 3\uparrow\uparrow 3\uparrow\uparrow 3 = \underbrace{3^{3^{3^{3^{3^{3^{1}}}}}}^{3}}_{3^{3^{3} \text{ threes}}}$$
 (14)

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \tag{15}$$

$$H_2O(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$
 (16)

$$\Gamma(n+1) \stackrel{\text{def}}{=} \int_0^\infty e^{-t} t^n dt \tag{17}$$

$$\gcd(n, m \bmod n); \quad x \equiv y \pmod b; \quad x \equiv y \mod c; \quad x \equiv y \pmod m$$
 (18)

In the following, note the bold symbols.

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$$
(19)

For the following exercise, you will need to \usepackage{esint} to get the symbol ∯.

$$\oint_{\partial V} \mathbf{E} \cdot d\mathbf{A} = \frac{Q(V)}{\varepsilon_0}$$

$$\oint_{\partial V} \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial \Phi_{B,S}}{\partial t}$$

$$\oint_{\partial S} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_S + \mu_0 \varepsilon_0 \frac{\partial \Phi_{E,S}}{\partial t}$$
(20)

You might find the environments bmatrix and pmatrix useful for the following exercises.

$$\rho_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 (21)

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \cdots & * \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \cdots & * \end{bmatrix}$$
(22)

Note the locations of the bounds on the summation in the following exercise.

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} p_i (x_i - \bar{x})^2} = \sqrt{\frac{\sum_{i=1}^{N} p_i (x_i - \bar{x})^2}{N}}$$
(23)

$$\varphi(n) = n \cdot \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 - \frac{1}{p} \right) \tag{24}$$

If you \usepackage{mathtools}, you can make it look like

$$\varphi(n) = n \cdot \prod_{\substack{p \mid n \\ p \text{ prime}}} \left(1 - \frac{1}{p}\right) \tag{25}$$

$${}^{4}_{12}C^{5+}_{2} \quad {}^{14}_{2}C^{5+}_{2} \quad {}^{4}_{12}C^{5+}_{2} \quad {}^{14}C^{5+}_{2} \quad {}^{2}C^{5+}_{2}$$
 (26)

In the following, note the size of the /, and the spacing on the sides of the |.

$$\mathbb{Q} \cong \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } b \neq 0 \right\} / \sim$$

$$\frac{a}{b} \sim \frac{c}{d} \iff ad - bc = 0$$
(27)

Notice both the horizontal and vertical spacing in the following exercise.

3 Hard

The command $\newcommand{\newcommand{\newcommand{\newcommand, where n is the number of parameters and $default$ is the default value for the first parameter. Parameters in braces ({ }) are required, and parameters in square brackets ([]) are optional. The parameters can be referred to via #1, #2, ..., #9. Using <math>\newcommand{\mexcommand{$

4 Insane

Write a command \outputcode which outputs the code of the document being typeset.

The following exercise idea is taken from the T_EXbook . Define a command $\primes\{n\}$ which typesets the first n primes. For example, $\primes\{30\}$ should give 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, and 113.

5 Diabolical

The Ackermann function is defined as

$$A(m,n) = \begin{cases} n+1 & \text{if } m = 0\\ A(m-1,1) & \text{if } m > 0 \text{ and } n = 0\\ A(m-1,A(m,n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}$$

Define a command, $\ackermann\{m\}\{n\}$, which computes the Ackermann function and displays the intermediate values. For an extra challenge, ensure that it only displays each sub-value only once (per command call; a second call to $\ackermann\{m\}\{n\}$ should typeset the same thing as the first one).

For example, \ackermann{2}{2} should display

$$A(2,2) = A(1, A(2,1))$$

$$= A(1, A(1, A(2,0)))$$

$$= A(1, A(1, A(1,1)))$$

$$= A(1, A(1, A(0, A(1,0))))$$

$$= A(1, A(1, A(0, A(0,1))))$$

$$= A(1, A(1, A(0, A(0,2)))$$

$$= A(1, A(1, A(0, A(1,2)))$$

$$= A(1, A(0, A(0, A(1,1))))$$

$$= A(1, A(0, A(0, A(1,1))))$$

$$= A(1, A(0, A(0, A(1,1))))$$

$$= A(1, A(0, A(0, A(1,1)))$$

$$= A(1, A(0, A(0, A(1,1)))$$

$$= A(1, A(0, A(1,1))$$

$$=$$