Definition 1. The map below defines the Wardrobe relation.

The Wardrobe relation includes three sets:

- The domain consists of 7 shirts identified in the map.
- The codomain consists of the 5 family members identified in the map.
- A set of ordered pairs. The pair (shirt, person) is a member of the Wardrobe relation if the shirt is connected to the family member with an arrow.

Multiple Choice:

- (a) True
- (b) False ✓

Feedback (attempt):

Exercise 2 Is Wardrobe a well-defined function?

Multiple Choice:

- (a) Yes ✓
- (b) *No*

Feedback (attempt): Each domain shirt is associated with exactly one family member.

Exercise 3 How many items are in the range of Wardrobe? 2

Feedback (attempt): All arrows point to one of two family members.

Exercise 4 Evaluate Wardrobe(

Multiple Choice:

) $\stackrel{\bullet \bullet}{=}$ is not in the domain \checkmark

Feedback (attempt): The domain of Wardrobe consists of shirts.

Exercise 5 Evaluate Wardrobe(

Multiple Choice:

(d) Not Defined

Feedback (attempt): The shirt in the domain is connected to only one family member.

Exercise 6 The solution set to the equation Wardrobe(shirt) = how many elements? $\boxed{6}$

contains

Feedback (attempt): Six pairs in the Wardrobe have

in the second slot.