

iSCALARE

Лаборатория суперкомпьютерных технологий для биомедицины, фармакологии и малоразмерных структур

Параллельная симуляция часть 1

Григорий Речистов

grigory.rechistov@phystech.edu

- Parallel Discrete Event Simulation
- Консервативные модели
- Оптимистические модели

На предыдущей лекции:

- Рассмотрены системы, состоящие из нескольких устройств
- DES: работа отдельных моделей чередуется, при этом сохраняется правильный* порядок событий
 - * правильный ==
 - 1. совпадающий с наблюдаемым на реальной системе
 - 2. допустимый в реальности

Параллельный хозяин

- Замедление моделирования N гостевых процессоров на одном хозяйском ядре: в лучшем случае 1/N
- В это время К-1 хозяйских ядер простаивает
- Возникает желание задействовать их в симуляции

Проблемы

- Нарушение каузальности (причинно-следственной связи)
- Недетерминизм модели

Все известные проблемы параллельного программирования

Взгляд назад

- Квотированное однопоточное моделирование МР систем: возможно нарушение порядка событий при quota > 1
 - Но: ошибка будет наблюдаться всегда => её можно отладить
 - Мы гарантированно достигаем корректности при quota → 1
- В наивном PDES мы не имеем этих возможностей

Как можно детектировать нарушения

- При пересылке сообщения добавлять к нему метку локального симулируемого времени
- По получении проверять метку и корректировать точку создания события
- При отрицательном значении корректировки бить тревогу

Консервативно или оптимистично?

Теперь мы можем обнаруживать нарушения, но всё ещё не можем избавиться от их появления/последствий.

Необходимо:

- 1. Предотвращать их возникновение или
- 2. Подавлять их вредное проявление

Консервативная схема 1

- При посылке сообщения блокировать отправителя до тех пор, пока получатель не обработает связанного события
- Не даём «быстрым» потокам продвигаться через этапы коммуникации
- Фактически вводим упорядоченность == последовательность при коммуникациях

Консервативная схема 2

Взаимоблокировка (дедлок)

Консервативная схема 3

- Необходимо детектировать ситуацию дедлока и разрушать его, освобождая один поток
- Лучший выбор очередь с наименьшим значением симулируемого времени
- Система может оказаться в ситуации, когда большую часть времени почти все потоки стоят => выигрыша в скорости нет

Пустые сообщения 1

- Можно ли избежать блокировок?
- Необходимость в них возникает из-за того, что отдельные потоки не знают, в какой стадии находятся остальные
- Как поток А может узнать локальное время потока В? Через временную метку, хранящуюся в каждом событии

Пустые сообщения 2

- Периодическая рассылка пустых (null) сообщений, не связанных с архитектурными событиями, но несущими метку времени
- Теперь каждый поток имеет представление о том, не слишком ли он далеко убежал в будущее, и может **сам** притормаживать/блокировать своё исполнение

Пустые сообщения 3

- Как часто рассылать сообщения?
 - Часто => потоки могут бежать свободнее, но большой трафик
 - Редко => потоки не имеют актуальной информации о состояниях остальных и простаивают зря
- Кому рассылать?
 - Всем остальным большой трафик
 - Не всем дедлоки вероятны
 - Случайным адресатам можно балансировать

Частный случай: домены синхронизации

14.04.14 Лаборатория суп<mark>еркомпью</mark>терных техн<mark>ологий для б</mark>ио<mark>медицины</mark>, фармакологии и малоразмерных структур

Особенности барьерной синхронизации

- Детерминистична
- Оптимальный сценарий: частые коммуникации внутри домена, редкие между доменами.
 - Пример: домен == SMP-машина, симуляция == группа машин, соединённых по сети
- Влияние величины кванта синхронизации на наблюдаемые внутри симуляции величины
 - Ping: 2 секунды при quant == 1 секунда

Рекомендуемая литература

Jayadev Misra

«Distributed discrete-event simulation» ACM Computing Surveys 18 (1986)

www.cis.udel.edu/~cshen/861/notes/p39-misra.pdf

На следующей лекции:

- Оптимистичные схемы
- Детерминированность симуляции
- Что ещё можно распараллелить?
- The state of the art

Спасибо за внимание!

Все материалы курса выкладываются на сайте лаборатории:

http://iscalare.mipt.ru/material/course_materials/

Замечание: все торговые марки и логотипы, использованные в данном материале, яв<mark>ляются собственностью и</mark>х владельцев. Представленная здесь точка зрения отражает личное мнение автора, не выступающего от лица какой-либо организации.