La droite dans le plan

Leçon : droite dans le plan Présentation globale

- I) Repère et coordonnées d'un point et coordonnées d'un vecteur
- II) Condition analytique de colinéarité de deux vecteurs
- III) La droite dans le plan

IV)positions relatives de deux droites dans le plan

I) Repère et coordonnées d'un point et coordonnées d'un vecteur

Activité:

Soient O. I et J trois points non alignés dans le plan P.

Et soit M un point quelconque du plan

- 1)Construire le point $M_{\scriptscriptstyle 1}$ la projection de M sur $\big(OI\big)$ parallèlement a $\big(OJ\big)$ et le point
- M_2 la projection de M sur (OJ) parallèlement a (OI)
- 2)soit x l'abscisse de $M_{\scriptscriptstyle 1}$ sur l'axe gradué $\left(OI\right)$ et y l'abscisse de $M_{\scriptscriptstyle 2}$ sur l'axe $\left(OJ\right)$
- a) Ecrire $\overrightarrow{OM_1}$ en fonction de \overrightarrow{OI} et écrire $\overrightarrow{OM_2}$ en fonction de \overrightarrow{OJ}
- b) En déduire \overrightarrow{OM} en fonction de \overrightarrow{OI} et \overrightarrow{OJ}

Réponse: 1)

$$\overrightarrow{OM} = \overrightarrow{OM_1} + \overrightarrow{M_1M}$$

2) a) on a : x l'abscisse de M_1 sur l'axe gradué $\left(OI\right)$ donc $\overrightarrow{OM_1}=x\overrightarrow{OI}$

Et on a : y l'abscisse de M_2 sur l'axe (OJ) donc $\overrightarrow{OM_2} = y\overrightarrow{OJ}$

b) dans le quadrilatère $OM_1MM_2: (OM_1)||(MM_2)|$ et $(OM_2)||(MM_1)|$

Donc OM_1MM_2 est un parallélogramme

Et par suite : $\overrightarrow{OM} = \overrightarrow{OM_1} + \overrightarrow{OM_2}$ alors $\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ}$

1) Le Repère dans le plan :

Soient O. I et J trois points non alignés dans le plan P.

Le triplet (O; I; J) détermine un Repère dans le plan. On le note R (O; I; J) ou R

Le point O est l'origine du Repère (O; I; J)

La droite (O I) est l'axe des abscisses du Repère (O; I; J)

La droite (O J) est l'axe des ordonnées du Repère (O; I; J)

Si les droites (O I) et (O J) sont perpendiculaires ont dit que le Repère est orthogonal

Si on a OI =OJ = 1 ont dit que le Repère (O; I; J) est normé

Si les droites (O I) et (O J) sont perpendiculaires et si on a OI =OJ = 1

ont dit que le Repère (O; I; J) est orthonormé

On pose $\overrightarrow{OI} = \overrightarrow{i}$ et $\overrightarrow{OJ} = \overrightarrow{j}$ on note alors le Repère (O; I; J) par $\left(O; \overrightarrow{i}; \overrightarrow{j}\right)$

2) Les coordonnées d'un point :

Propriété et définition : Le plan est rapporté au Repère (O ; I ; J)

Pour tout point M du plan il existe un unique couple (x, y) tel que $x \in \mathbb{R}$ et $y \in \mathbb{R}$

et
$$\overrightarrow{OM} = x\overrightarrow{OI} + y\overrightarrow{OJ}$$

Le couple (x, y) est le couple de coordonnée de M et on note : M(x, y)

x est l'abscisse du point M et y est l'ordonnée du point M

3) Les coordonnées d'un vecteur :

<u>définition</u>: Le plan est rapporté au Repère $\left(O; \vec{i}; \vec{j}\right)$

Le couple de coordonnée d'un vecteur \vec{u} est le couple de coordonnée du point M tel que

$$\overrightarrow{OM} = \overrightarrow{u}$$
 et on note : $\overrightarrow{u}(x, y)$ ou $\overrightarrow{u}\begin{pmatrix} x \\ y \end{pmatrix}$

Application : Le plan est rapporté au

Repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$ Construire

les points A(-4;2); B(-2;3);

C(-3;3); E(0;4); F(-3;0) et les

vecteurs $\vec{u}(3;2)$; $\vec{v}(-2;-4)$

<u>Réponse</u>: soit M tel que $\overrightarrow{OM} = \overrightarrow{u}$ donc M(3;2) et soit N tel que $\overrightarrow{ON} = \overrightarrow{v}$ donc N(-2;-4)

Propriétés : Le plan est rapporté au

Repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$

Soient $A(x_A; y_A)$; $B(x_B; y_B)$; $I(x_I; y_I)$ trois points dans le plan et $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ deux vecteurs

$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$
 et $AB = \|\overrightarrow{AB}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Le milieu I du segment [AB] a pour coordonnées $I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$

$$\vec{u}(x; y) = \vec{v}(x'; y')$$
 ssi $x' = x$ et $y = y'$
 $\vec{u} + \vec{v}(x + x'; y + y')$ et $\vec{u} - \vec{v}(x - x'; y - y')$
 $\vec{u} + \vec{v} = (x + x')\vec{i} + (y + y')\vec{j}$

Pour tout $\alpha \in \mathbb{R}$ $\vec{\alpha \cdot u}(\alpha x; \alpha y)$

Application: Le plan est rapporté au Repère orthonormé $(O; \vec{i}; \vec{j})$ et soient A(1;2); B(-5;4)

- 1. Déterminer les coordonnée de I le milieu du segment [AB] et calculer $AB = \|\overrightarrow{AB}\|$
- 2. Déterminer les coordonnées du point C tel que $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$
- 3. Quelle est la nature du quadrilatère OACB
- 4. Déterminer les coordonnées du vecteur \vec{u} tel que $\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$

Réponse :1) Le milieu I du segment [AB] a pour coordonnées $I\left(\frac{x_B + x_A}{2}; \frac{y_B + y_A}{2}\right)$

Donc:
$$I\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$$
 donc $I\left(\frac{1 + (-5)}{2}; \frac{2 + 4}{2}\right)$ donc $I\left(-2; 3\right)$

$$AB = \|\overrightarrow{AB}\| = \sqrt{(-5-1)^2 + (4-2)^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}$$

2) on a A(1;2); B(-5;4); O(0;0) donc $\overrightarrow{OA}(x_A-x_O;y_A-y_O)$ donc $\overrightarrow{OA}(1-0;2-0)$ donc $\overrightarrow{OA}(1;2)$

$$\overrightarrow{OB}(x_B - x_O; y_B - y_O)$$
 donc $\overrightarrow{OB}(-5 - 0; 4 - 0)$ donc $\overrightarrow{OB}(-5; 4)$

on a
$$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$$
 donc $\overrightarrow{OC}(1+(-5);2+4)$ donc $\overrightarrow{OC}(-4;6)$ donc $C(-4;6)$

<u>3)</u> on a $\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$ donc OACB est un parallélogramme

On vérifie : on a $\overrightarrow{OA}(1;2)$ ①

Et
$$\overrightarrow{BC}(-4+5;6-4)$$
 cad $\overrightarrow{BC}(1;2)$ ②

De ① et ② on a donc $\overrightarrow{OA} = \overrightarrow{BC}$ donc OACB est un parallélogramme

4) on a
$$\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$$
 et $\overrightarrow{OA}(1;2)$ et $2\overrightarrow{OB}(-10;8)$

$$\overrightarrow{IC}(-4+2;6-3)$$
 donc $\overrightarrow{IC}(-2;3)$

on a
$$\vec{u} = \overrightarrow{OA} + 2\overrightarrow{OB} + \overrightarrow{IC}$$
 donc $\vec{u}(1-10+2;1+8+3)$ donc $\vec{u}(-11;13)$

II) Condition analytique de colinéarité de deux vecteurs

Dans la suite de ce cours le plan est rapporté au Repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs

 \vec{u} et \vec{v} sont colinéaires ssi il existe $\alpha \in \mathbb{R}$ tel que $\vec{u} = \alpha \cdot \vec{v}$

On a $\vec{u}(x;y)$ et $\alpha \cdot \vec{v}(\alpha x';\alpha y')$

On a $\vec{u} = \alpha \cdot \vec{v}$ donc $x = \alpha x'$ et $y = \alpha y'$

Si
$$x' \neq 0$$
 et $y' \neq 0$ alors $\alpha = \frac{x}{x'}$ et $\alpha = \frac{y}{y'}$

donc $\frac{x}{x'} = \frac{y}{y'}$ alors xy' = x'y finalement on a : xy' - x'y = 0

Si x' = 0 alors x = 0 la condition est juste

Si y' = 0 alors y = 0 la condition est juste

1) Le déterminant de deux vecteurs :

Définition : Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs

On appelle le déterminant de deux vecteurs $\vec{u}(x;y)$ et $\vec{v}(x';y')$ le réel : xy'-x'y

Et on le note :
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - x'y$$

Exemple: $\vec{u}(-2;3)$ et $\vec{v}(4;5)$

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} -2 & 4 \\ 3 & 5 \end{vmatrix} = (-2) \times 5 - 3 \times 4 = -10 - 12 = -22$$

2) Propriété:

Deux vecteurs $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ sont colinéaires ssi $\det(\vec{u}; \vec{v}) = 0$

Deux vecteurs $\vec{u}(x; y)$ et $\vec{v}(x'; y')$ sont non colinéaires ssi $\det(\vec{u}; \vec{v}) \neq 0$

Remarque:

Trois points A. B et C sont alignés ssi les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires Ssi $\det\left(\overrightarrow{AB};\overrightarrow{AC}\right)=0$

Exemple :1) $\vec{u}(1;2)$ et $\vec{v}(-3;1)$

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 1 & -3 \\ 2 & 1 \end{vmatrix} = 1 \times 1 - (-3) \times 2 = 1 + 6 = 7 \neq 0 \quad \text{donc } \vec{u}(1; 2) \text{ et } \vec{v}(-3; 1) \text{ sont non}$$

colinéaires

2)
$$\vec{u}(-6;4)$$
 et $\vec{v}(3;-2)$

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} -6 & 3 \\ 4 & -2 \end{vmatrix} = (-6) \times (-2) - 3 \times 4 = 12 - 12 = 0 \quad \text{Donc } \vec{u}(-6; 4) \text{ et } \vec{v}(3; -2) \text{ sont}$$

colinéaires

Application : Le plan est rapporté au Repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$

Soit m un paramètre réel

Discuter suivant les valeurs de m la colinéarité de \vec{u} et \vec{v} dans chaque cas :

- 1) $\vec{u}(3;2m+1)$ et $\vec{v}(2;m)$
- 2) $\vec{u}(m;1)$ et $\vec{v}(1;m)$

Réponse :1) on a :
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 3 & 2 \\ 2m+1 & m \end{vmatrix} = 3 \times m - 2(2m+1) = 3m - 4m - 2 = -m - 2$$

$$\det(\vec{u}, \vec{v}) = 0$$
 ssi $-m-2=0$ ssi $m=-2$

Si
$$m = -2$$
 alors $\det(\vec{u}, \vec{v}) = 0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires

Si
$$m \neq -2$$
 alors $\det(\vec{u}, \vec{v}) \neq 0$ donc les vecteurs \vec{u} et \vec{v} sont non colinéaires

2) on a:
$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} m & 1 \\ 1 & m \end{vmatrix} = m^2 - 1 = m^2 - 1^2 = (m+1)(m-1)$$

$$\det(\vec{u}; \vec{v}) = 0$$
 ssi $(m+1)(m-1) = 0$ ssi $m = -1$ ou $m = -1$

Si
$$m=1$$
 alors $\det(\vec{u};\vec{v})=0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires

Si
$$m=-1$$
 alors $\det(\vec{u};\vec{v})=0$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires

Si
$$m \neq 1$$
 et $m \neq -1$ alors $\det(\vec{u}; \vec{v}) \neq 0$ donc les vecteurs \vec{u} et \vec{v} sont non colinéaires

III)La droite dans le plan

1) Définition vectorielle d'une droite :

a. Vecteur directeur d'une droite:

Un vecteur directeur d'une droite (D) est un vecteur non nul u qui possède la même direction que la droite (D)

Remarques:

- Toute droite possède une infinité de vecteurs directeurs.
- si u est un vecteur directeur de la droite (D) alors tout vecteur non nul et colinéaire au vecteur u est aussi vecteur directeur de cette droite.
- Deux points distincts quelconques de la droite (D) définissent un vecteur directeur de cette droite.

• Deux droites (D), et (D') sont parallèles si tout vecteur directeur de l'une est aussi vecteur directeur de l'autre.

b. Propriété:

Soit u un vecteur non nul et A un point du plan L'ensemble des points M du plan tq il existe $\alpha \in \mathbb{R}$ tq : $\overrightarrow{AM} = \alpha \overrightarrow{u}$ est la droite (D) de vecteur directeur \vec{u} et passant par A qu'on note : $D(A; \vec{u})$

$$D(A; \vec{u}) = \{ M \in P / \overrightarrow{AM} = \alpha \vec{u} \} \text{ avec } \alpha \in \mathbb{R}$$

C'est la Définition vectorielle d'une droite

2) Représentation paramétrique d'une droite :

Soit $\vec{u}(a;b)$ un vecteur non nul et $A(x_a;y_a)$ un point du plan

On a
$$M \in D(A; \vec{u})$$
 ssi il existe $\alpha \in \mathbb{R}$ tq : $\overrightarrow{AM} = \alpha \vec{u}$

On a
$$\overrightarrow{AM}(x-x_A;y-y_A)$$
 et $\alpha \overrightarrow{u}(\alpha a;\alpha b)$ donc

On a
$$\overrightarrow{AM}(x-x_A;y-y_A)$$
 et $\alpha \overrightarrow{u}(\alpha a;\alpha b)$ donc
$$\overrightarrow{AM} = \alpha \overrightarrow{u} \text{ ssi } \begin{cases} x-x_A = \alpha a \\ y-y_A = \alpha b \end{cases} \text{ ssi } \begin{cases} x=\alpha a+x_A \\ y=\alpha b+y_A \end{cases} \text{ avec } \alpha \in \mathbb{R}$$

<u>Définition</u>: Soit $\vec{u}(a;b)$ un vecteur non nul et $A(x_A;y_A)$ un point du plan et $t \in \mathbb{R}$

le système :
$$\begin{cases} x = ta + x_A \\ y = tb + y_A \end{cases}$$
 avec $t \in \mathbb{R}$ s'appelle une représentation paramétrique de la droite $D(A; \vec{u})$

Exemples:

Exemple 1: Donner un point et un vecteur directeur de la la droite D de représentation

paramétrique
$$\begin{cases} x = 7t - 1 \\ y = -4t + 11 \end{cases}$$
 avec $t \in \mathbb{R}$

Réponse: on a $A(-1;11) \in D$ et $\vec{u}(7;-4)$ est un vecteur directeur de la la droite DExemple 2:

Soient A(1; 2) et B(-3; 0)

- 1) Donner une représentation paramétrique de la droite (AB).
- 2) Déterminer si chacun des points suivants appartient ou non a la droite (AB) :

$$C(0;2)$$
 ; $D(-1;1)$; $E(9;6)$

Réponse :1) \overrightarrow{AB} est un vecteur directeur de (AB), ses composantes sont : \overrightarrow{AB} (-4, -2) La représentation paramétrique de (AB) est donnée par le système :

2)on a C(0;2) on remplace les coordonnées de C dans le système 1

Donc
$$\begin{cases} 0 = -4t + 1 \\ 2 = -2t + 2 \end{cases}$$
 on trouve
$$\begin{cases} t = \frac{1}{4} \\ t = 0 \end{cases}$$
 or $\frac{1}{4} \neq 0$ don $C \notin (AB)$

on a D(-1;1) on remplace les coordonnées de D dans le système (1)

Donc
$$\begin{cases} -1 = -4t + 1 \\ 1 = -2t + 2 \end{cases}$$
 on trouve
$$\begin{cases} t = \frac{1}{2} \\ t = \frac{1}{2} \end{cases}$$
 don $D \in (AB)$

on a E(9;6) on remplace les coordonnées de E dans le système 1

Donc
$$\begin{cases} 9 = -4t + 1 \\ 6 = -2t + 2 \end{cases}$$
 on trouve
$$\begin{cases} t = -2 \\ t = -2 \end{cases}$$
 donc $E \in (AB)$

3) Equations cartésiennes d'une droite Soit $\vec{u}(\alpha;\beta)$ un vecteur non nul et $A(x_A;y_A)$ un point du

On a $M(x; y) \in (D)$ ssi \overrightarrow{AM} et \overrightarrow{u} sont colinéaires

ssi
$$\det(\overrightarrow{AM}; \overrightarrow{u}) = 0$$
 On a $\overrightarrow{AM}(x - x_A; y - y_A)$

et on a
$$\begin{vmatrix} x - x_A & \alpha \\ y - y_A & \beta \end{vmatrix} = \beta(x - x_A) - \alpha(y - y_A) = \beta x - \beta x_A - \alpha y + \alpha y_A = \beta x - \alpha y - \beta x_A + \alpha y_A$$

on pose : $\beta = a$ et $-\alpha = b$ et $-\beta x_A + \alpha y_A = c$ alors :

$$M(x; y) \in (D)$$
 ssi $ax + by + c = 0$

Définition:

Toute droite (D) admet une équation cartésienne de la forme ax + by + c = 0 avec $a \in \mathbb{R}$ et $a \in \mathbb{R}$ et $c \in \mathbb{R}$ et $a \neq 0$ ou $b \neq 0$

Remarque: Une droite (D) admet une infinité d'équations cartésiennes

En effet, si ax + by + c = 0 est une équation cartésienne de (D), alors pour tout réel k non nul alors kax + kby + kc = 0 est une autre équation de la même droite.

Propriété: Soient $a \in \mathbb{R}$ et $b \in \mathbb{R}$ et $c \in \mathbb{R}$ tel que $a \neq 0$ ou $b \neq 0$

L'ensemble des points M (x ; y) vérifiant l'équation : ax + by + c = 0 est une droite de vecteur directeur u(-b;a)

Exemples:

Exemple 1 : Déterminer une équation cartésienne de la droite D) passant par le point A(1;-1) et de vecteur directeur u(-1;3)

Réponse : Soit M un point de d de coordonnées : M (x ; y)

Les vecteurs $\overrightarrow{AM}(x-1;y+1)$ et $\overrightarrow{u}(-1;3)$ sont colinéaires si, et seulement si $\det(\overrightarrow{AM};\overrightarrow{u})=0$

équivaut à : (x - 1)(3) - (y + 1)(-1) = 0 équivaut à : 3x - 3 + y + 1 = 0 équivaut à : 3x + y - 2 = 0Une équation cartésienne de la droite (D), est : 3x + y - 2 = 0

Exemple 2 : Déterminer une équation cartésienne de la droite (D), passant par les points A (5 ; 13) et B (10; 23).

Réponse : Les points A et B appartiennent à la droite (D), donc le vecteur \overrightarrow{AB} est un vecteur directeur de cette droite.

On a $\overrightarrow{AB}(10-5;23-13)$ donc $\overrightarrow{AB}(5;10)$ en divisant les coordonnées du vecteur \overrightarrow{AB} par 5, nous obtenons le vecteur $\overrightarrow{u}(1;2)$ est vecteur directeur aussi de la droite (D),

Donc b = 1 et a = -2 Une équation cartésienne de la droite d est donc

de la forme : -2 x + y + c = 0 Comme le point A (5 ; 13) appartient à la droite (D), ses coordonnées vérifient l'équation : -2x5 + 13 + c = 0 donc -10 + 13 + c = 0 D'où : c = -3

Une équation cartésienne de la droite (D), est donc : -2x + y - 3 = 0

Exemple 3 : Déterminer l'équation cartésienne d'une droite à partir de sa représentation graphique

Soit $\left(O;\vec{i};\vec{j}\right)$ un repère du plan. Déterminer une équation cartésienne de la droite (D), tracée ci-dessous

Réponse :

Méthode 1 : Le vecteur u est un vecteur directeur de la droite (D),

On lit graphiquement $\vec{u}(3;1)$ Donc a = -1 et b = 3

Une équation cartésienne de la droite d est de la forme :

- x + 3y + c = 0 Comme le point A (4; 1) appartient à la droite (D), ses coordonnées vérifient l'équation :—4 + 3 + c = 0 c = 1

Une équation cartésienne de la droite d est : -x + 3y + 1 = 0

Méthode 2 : On prend deux points de la droite, par exemple : A (4 ; 1) et B (-2 ; -1) et on applique la même méthode qu'à l'exemple 2.

4) Equation réduite d'une droite

Soit (D) une droite d'équation cartésienne ax + by + c = 0 donc by = -ax - c

Si
$$b \neq 0$$
 alors $y = -\frac{a}{b}x - \frac{c}{b}$

On pose:
$$m = -\frac{a}{b}$$
 et $p = -\frac{c}{b}$ alors $y = mx + p$

Si
$$b=0$$
 alors on a $ax+c=0$ donc $x=-\frac{c}{a}$ $\left(a\neq 0\right)$ dans ce cas (D) est parallèle à l'axe des ordonnées

Propriété : une droite n'est pas parallèle à l'axe des ordonnées ssi son équation cartésienne s'écrit sous la forme : $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{p}$ avec $m \in \mathbb{R}$ et $p \in \mathbb{R}$

 $\underline{\textbf{Définition:}} \ \ \textbf{Soit (D) une droite non parallèle à l'axe des ordonnées}.$

L'équation: y = mx + p s'appelle L'équation réduite de (D)

- le nombre *m s'appelle* le coefficient directeur de la droite
- le nombre *p s'appelle* l' ordonnée a l'origine

Remarque:

- si $m \, est$ le coefficient directeur de la droite alors vecteur directeur de cette droite est $\vec{u}(1;m)$
- si $\vec{u}(-b;a)$ est un vecteur directeur de la droite

 (D) et $b \neq 0$ alors $m = -\frac{a}{b}$ est un coefficient directeur de la droite

Exemple: Soit (D) la droite d'équation cartésienne: 4x + 2y + 3 = 0

- Son équation réduite est de la forme: y = -2x-3
- -2 est le coefficient directeur de la droite (D)
- Un vecteur directeur de cette droite est $\vec{u}(-2;4)$ ou $\vec{u}(1;-2)$

Récapitulatif : Equations cartésiennes et équations réduites

	Cas où $b = 0$ et $a \neq 0$	Cas où $a = 0$ et $b \neq 0$	Cas où $c = 0$ et $a \neq 0$ et $b \neq 0$	Cas où $c \neq 0$ et $a \neq 0$ et $b \neq 0$	
Equation cartésienne	ax + 0 + c = 0 $ax + c = 0$	0 + by + c = 0 $by + c = 0$	ax + by + 0 = 0 $ax + by = 0$	ax + by + c = 0	
Equation réduite	$x = -\frac{c}{a}$	$y = -\frac{c}{b}$	$y = -\frac{a}{b}x$	$y = -\frac{a}{b}x + -\frac{c}{b}$	
Représentation graphique	$x = \frac{c}{a}$ $\frac{c}{a}$ $\frac{-c}{a}$ $\frac{-a}{a}$ 0 $-4 -3 -2 -1 0 1$	$y = -\frac{c}{b}$ $y = -\frac{c}{b}$ 1 0 0 0 1 1	$y = -\frac{a}{b}x$ 2 1 $4 \cdot 3 \cdot 2 \cdot 1$ $1 1 x$	$y = -\frac{a}{b}x + \frac{-c}{b}$	

Remarque : si $A(x_A; y_A)$; $B(x_B; y_B)$ et $x_A \neq x_B$ alors $m = \frac{y_B - y_A}{x_B - x_A}$ est coefficient directeur de la droite (AB)

Exemple: Représenter graphiquemt les droites suivantes :

1)
$$(D_1)$$
 2x + y - 3 = 0

2)
$$(D_2): x = 3$$

3)

3)
$$(D_2): y = 2$$

	1									\ 4]
X	0	1								3	A
y	3	1								2	
										1	В
							-2		-1	0	1 2
			4 -							-1	
			3 -							-2	1
			2 -								
			1 -			A					
2)	-	-1	0	i	2	3	4	_			

IV)positions relatives de deux droites dans le plan

Propriété:

Deux droites (D) et (D'), d'équations respectives ax + by + c = 0 et a'x + b'y + c' = 0 sont parallèles si et seulement si : a b ' - a'b = 0

u(-b;a) est un vecteur directeur de la la droite(D)

 $\overrightarrow{u'}(-b';a')$ est un vecteur directeur de la la droite(D'),

(D) et (D') sont parallèles équivaut à \vec{u} et \vec{u}' sont colinéaires ce qui équivaut à :

$$-ba'-a(-b')=0$$
 ce qui équivaut à : $ab'-a'b=0$.

Remarque: 1) si (D) et (D') sont parallèles : on prend un point $A \in (D)$

- Si $A \in (D')$ alors (D) = (D') (confondues)
- Si $A \notin (D')$ alors $(D) \parallel (D')$ strictement

2) si (D) et (D') sont sécantes alors le point d'intersection E (x ; y) vérifie le système :

$$\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$$

Conséquence : Soit la droite (D) d'équation : y = mx + p et (D') : y' = m'x + p'

(D) et (D') sont parallèles si et seulement si *m = m'*

En effet les vecteurs de coordonnées (1 ; m) et (1 ;m) sont deux vecteurs directeurs respectifs de (D) et (D')

D'où : ces vecteurs sont colinéaires si et seulement si *m = m'*

Application:

Étudier la position relative des deux droites D) et (D') dans chaque cas suivant :

$$(D')$$
: -x +2 y + 5 = 0

$$(D'): x + 3y - 2 = 0$$

Réponse:1) on a : (D) 2x - 4y + 3 = 0 donc $\vec{u}(4;2)$ est un vecteur directeur de (D)

Et on a :
$$(D')$$
 : -x +2 y + 5 = 0 donc $\vec{v}(-2;-1)$ est un vecteur directeur de (D')

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 4 & -2 \\ 2 & -1 \end{vmatrix} = -4 + 4 = 0 \quad \text{Alors les vecteurs } \vec{u} \text{ et } \vec{v} \text{ sont colinéaires donc (D) et (D')}$$

sont parallèles

Soit
$$A(x;y) \in (D)$$
 on prend $x = 0$ Alors $\mathbf{0} - \mathbf{4}y + \mathbf{3} = \mathbf{0}$ donc $y = \frac{3}{4}$ donc $A(0; \frac{3}{4}) \in (D)$

On vérifie si_
$$A\left(0;\frac{3}{4}\right) \in \left(D'\right)$$
 ?

on a :
$$-0 + 2 \times \frac{3}{4} + 5 = \frac{3}{2} + 5 = \frac{13}{2} \neq 0$$
 donc $A\left(0; \frac{3}{4}\right) \notin (D')$ D'où : $(D) \parallel (D')$ strictement

2) on a :
$$(D)$$
 2x + 5 y -2 = 0 donc $\vec{u}(-5;2)$ est un vecteur directeur de (D)

Et on a :
$$(D')$$
 : $x + 3y - 2 = 0$ donc $\vec{v}(-3;1)$ est un vecteur directeur de (D')

 $\det(\vec{u}; \vec{v}) = \begin{vmatrix} -5 & -3 \\ 2 & 1 \end{vmatrix} = -5 + 6 = 1 \neq 0$ Alors les vecteurs \vec{u} et \vec{v} sont non colinéaires donc (D)

et (D') sont sécantes

On détermine le point d'intersection de (D) et (D')

Soit E(x; y) ce point d'intersection de (D) et (D') Alors (x; y) vérifie le système :

$$\begin{cases} 2x + 5y - 2 = 0 \\ x + 3y - 2 = 0 \end{cases} \quad \text{donc} \quad \begin{cases} 2x + 5y = 2 \\ x + 3y = 2 \end{cases} \quad \text{donc} \quad \begin{cases} 2x + 5y = 2 \\ x = 2 - 3y \end{cases}$$

$$\text{donc} \quad \begin{cases} 2(2 - 3y) + 5y = 2 \\ x = 2 - 3y \end{cases} \quad \text{donc} \quad \begin{cases} 4 - 6y + 5y = 2 \\ x = 2 - 3y \end{cases} \quad \text{donc} \quad \begin{cases} 4 - y = 2 \\ x = 2 - 3y \end{cases}$$

donc
$$\begin{cases} y = 2 \\ x = 2 - 3y \end{cases}$$
 donc
$$\begin{cases} y = 2 \\ x = -4 \end{cases}$$
 donc $E(-4; 2)$