Integral rechnung S. 483 1

Integrationsmethoden S. 486ff

Linearität	$\int f(\alpha x + \beta) dx = \frac{1}{\alpha} \cdot F(\alpha x + \beta) + C$
Partielle Integration	$\int_{a}^{b} u'(x) \cdot v(x) dx = \left[u(x) \cdot v(x) \right]_{a}^{b} - \int_{a}^{b} u(x) \cdot v'(x) dx \ (v(x) = \text{einfacheste Funktion wählen!})$
Weierstrass-Substitution (Rationalisierung)	
Allgemeine Substitution	$\int_{a}^{b} f(x)dx = \int_{g(a)}^{g(b)} f(g(t)) \cdot g'(t)dt \qquad t = g^{-1}(x) \qquad \boxed{\mathbf{x} = \mathbf{g}(\mathbf{t})} \qquad dx = g'(t) \cdot dt$
Logarithmische Integration	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C \qquad (f(x) \neq 1)$
Potenzregel	$\int f'(x) \cdot (f(x))^{\alpha} dx = f(x)^{\alpha+1} \cdot \frac{1}{\alpha+1} + C \qquad (\alpha \neq -1)$
Differentiation	$\int_{a}^{b} f'(t)dt = f(b) - f(a) \qquad \frac{d}{dx} \int_{1}^{x} f(t)dt = f(x)$

Einige unbestimmte Integrale S. 1074 ff

Siehe Tabelle 4.2 im Anhang.

1.2 Uneigentliches Integral S. 509 ff

Uneigentliches Integral heisst, dass entweder eine unbeschränkte Funktion integriert wird, oder eine Funktion über einen unbeschränkten Integrationsberech integriert wird.

- f(x) auf abgeschlossenem Intervall definiert, aber **nicht** beschränkt.
- f(x) auf abgeschlossenem Intervall definiert mit Ausnahme eines Punktes.
- f(x) hat eine Unendlichkeitsstelle.

Für unbeschränkte Funktionen:

$$I = \int_{a}^{c} f(x)dx = \lim_{t \to b-} \int_{a}^{t} f(x)dx + \lim_{t \to b+} \int_{t}^{c} f(x)dx$$
 Für die unbeschränkte Integration:

$$I = \int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx;$$

$$I = \int_{-\infty}^{a} f(x)dx = \lim_{t \to -\infty} \int_{t}^{a} f(x)dx;$$

$$I = \int_{-\infty}^{\infty} f(x)dx = \lim_{t_1 \to \infty} \lim_{t_2 \to \infty} \int_{t_1}^{a} f(x)dx + \int_{a}^{t_2} f(x)dx$$

Beispiel:
$$\int\limits_{1}^{\infty}\frac{1}{x^{2}}dx = \lim_{t\to\infty}\int\limits_{1}^{t}\frac{1}{x^{2}}dx = \lim_{t\to\infty}-\frac{1}{t}+\frac{1}{1}=1$$

unbeschränkte Funktion

1.2.1 Prinzip der Restfläche

Wenn $\lim_{t\to\infty}\int\limits_t^\infty f(x)dx=0$, dann konvergiert $\int\limits_a^\infty f(x)dx$ und umgekehrt.

Majorantenprinzip (konvergent)

Um nachzuweisen, ob eine Funktion $|f(x)| \ge 0$ konvergiert, wird eine zweite Funktion $g(x) \ge |f(x)|$ (Majorante) gesucht. Konvergiert $\int\limits_a^\infty g(x)dx$, dann konvergiert auch $\int\limits_a^\infty f(x)dx$. $(x\in[a,\infty))$

1.2.3 Minorantenprinzip (divergent)

Um nachzuweisen, ob eine Funktion f(x) divergiert, wird eine zweite Funktion $0 \le g(x) \le f(x)$ (Minorante) gesucht. Divergiert $\int_{a}^{\infty} g(x)dx$, dann divergiert auch $\int_{a}^{\infty} f(x)dx$. $(x \in [a, \infty))$

$\mathbf{2}$ Anwendung der Differential- und Integralrechnung

Beschreibungungsvariantens, 49ff

Funktion (explizit) Koordinatengleichung (implizit) Parameterform (Kartesisch) Polarform x F(x,y) = 0y = f(x) $r = f(\varphi)$ (Bronstein Form 2.4) (Bronstein Form 2.5)

Hat man die explizite Form gegeben, so hat man automatisch die Implizite- und Parameter-Form

Umrechnen diverser Systeme S. (197) 2.2

X	$r\cos(\varphi)$	
У	$r\sin(\varphi)$	
r	$\sqrt{x^2 + y^2}$	
Parameter	\Rightarrow explizit	$\implies t = f(x); \ y = g(f(x))$
Ex- bzw. implizit	\Rightarrow Polar	\implies Ersetze x durch $r\cos(\varphi)$ & y durch $r\sin(\varphi)$
Polar	\Rightarrow implizit	\implies Ersetze $r\sin(\varphi)$ durch $y, r\cos(\varphi)$ durch x, r durch $\sqrt{x^2 + y^2}$
Polar	\Rightarrow Parameterform	$\Longrightarrow \left(\begin{array}{c} x(\varphi) \\ y(\varphi) \end{array}\right) = \left(\begin{array}{c} r(\varphi)\cos(\varphi) \\ r(\varphi)\sin(\varphi) \end{array}\right)$
Explizit	\Rightarrow Parameter	$\implies \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right) = \left(\begin{array}{c} x(t)) \\ t \end{array}\right)$
Einzelner Punkt	\Rightarrow Polar	$\implies r = \sqrt{x^2 + y^2}; \ \varphi = \begin{cases} \arctan(\frac{y}{x}) + \pi & x < 0 \\ \arctan(\frac{y}{x}) & x > 0 \\ \frac{\pi}{2} & x = 0; \ y > 0 \\ -\frac{\pi}{2} & x = 0; \ y < 0 \\ \text{unbestimmt} & x = y = 0 \end{cases}$

2.3 Kurvenartens. 203ff

Kreiss. 203 $(x-x_0)^2 + (y-y_0)^2 = r^2$ Implizit:

Bemerkung: Mittelpunkt (x_0, y_0) ; Radius r

 $r = \frac{p}{1 + \epsilon \cos(\varphi)}; \epsilon = 0$ Polarform:

Parameterform: $x = x_0 + R\cos(t), y = y_0 + R\sin(t)$

Hyperbels. 206 $(\frac{x}{a})^2 - (\frac{y}{b})^2 = 1; -(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$ Implizit: Bemerkung:

Polarform:

Polarform: $r = \frac{p}{1+\epsilon\cos(\varphi)}; \epsilon > 1$ Parameterhform: $x = a\cosh(t), y = b\sinh(t)$

Ellipses. 204 $\left(\frac{x-x_0}{a}\right)^2 + \left(\frac{y-y_0}{b}\right)^2 = 1$ Mittelpunkt (x_0, y_0) ; Halbachsen a, b $r = \frac{p}{1+\epsilon\cos(\varphi)}$; $0 < \epsilon < 1$

 $x = a\cos(t), y = b\sin(t)$

Parabels. 209

 $y = ax^2 + bx + c$

Parabeln mit Scheitelpunkt auf der vertikaler Achse

 $r = \frac{p}{1 + \epsilon \cos(\varphi)}; \epsilon = 1$ $x = t, y = at^2 + bt + c$

Kardioide/Herzk. S. 99 $r = a(1 + \cos(\varphi))$

Lemniskate " ∞ " S. 101 $r = a\sqrt{2\cos(2\varphi)}$

Strophoide/harm. K. S. 96 $r = -a \frac{\cos(2\varphi)}{\cos(\varphi)}, (a > 0)$

2.4 Gleichungens, 248, Mittelwertes, 19ff

$$y - y_0 = f'(x_0)(x - x_0)$$

Linearer Mittelwert (= Gleichrichtwert)
$$\bar{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Normalengleichung

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$

$$\bar{f} = \sqrt{\frac{1}{b-a} \int_{a}^{b} f(x)^{2} dx}$$

Tangenten- & Normalenabschnitt, Subtangente & Subnormales, 249ff 2.5

2.6 Abstandsformeln

Hessesche Normalforms, 200f, 222

$$x \cdot \cos \varphi_0 + y \cdot \sin \varphi_0 = r_0$$

$$y - y_0 = m(x - x_0)$$

Abstand zum Ursprung

 $|y_0-m\cdot x_0|$

Berührung in n-ter Ordnung

Zwei explizit gegebene Kurven y = f(x) und y = g(x) berühren einander im Punkt P x_0, y_0 von der Ordnung n, wenn die Funktionswerte und die ersten n Ableitungen existieren und übereinstimmen.

$$f(x_0) = g(x_0); \ f'(x_0) = g'(x_0); \ f''(x_0) = g''(x_0); \ \dots; \ f^{(n)}(x_0) = g^{(n)}(x_0)$$

$$f^{(n+1)}(x_0) \neq g^{(n+1)}(x_0)$$

2.8 Scheitel S. 254

Scheitelpunkte sind Extremalwerte der Krümmungs- bzw. Krümmungsradiusfunktion. Falls bei $\kappa'(x)$ an der Stelle x_0 ein Vorzeichenwechsel besteht, existiert dort eine Extremalstelle.

2.9 Krümmung

Die Krümmung entspricht der Steigung pro Weg: $\kappa = \frac{d\alpha}{ds} = \lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} = \frac{\det \begin{pmatrix} \dot{x} & \dot{y} \\ \ddot{x} & \ddot{y} \end{pmatrix}}{|\dot{c}|^3}$

 $\kappa > 0$ Linkskrümmung konvex

 $\kappa = 0$ Wendepunkt

 $\kappa < 0$ Rechtskrümmung konkav

Der Krümmungsradius ergibt sich aus dem Kehrwert der Krümmung: $\rho = \frac{1}{\nu}$

Wichtige Formelns. FF S60 2.10

Siehe Tabelle 4.1 im Ahnang.

2.11 Orthogonale Trajektorien

Die orthogonalen Trajektorien schneiden alle Kurven der gegebenen Kurvenschar y = f(x, c)im rechten Winkel (orthogonal).

Vorgehen:

- 1. Kurvenschar y = f(x, c) nach c auflösen
- 2. c in der abgeleiteten Gleichung ersetzen 3. y' durch $-\frac{1}{y'}$ ersetzen
- 4. DGL auflösen (sofern nötig...)

Beispiel:

Gesucht: Orthogonalen Trajektorien der Kurvenschar $y = c \cdot x$ mit $c \in \mathbb{R}$.

Die Differentialgleichung ergibt sich mit c = y' zu $y = y' \cdot c$.

Für die orthogonalen Trajektorien gilt also: $y = -\frac{1}{v'} * x$.

Diese Gleichung kann zu $y\cdot y'=-x$ umgeformt werden. Durch Integration folgt: $\frac{1}{2}y^2=-\frac{1}{2}x^2+c_1$, also $x^2+y^2=k$

Das sind für k > 0 konzentrische Kreise um den Nullpunkt.

Info: Die Kreise sind Orthogonaltrajektorien der Hyperbeln und umgekehrt.

timo. Die Kreise sind Ortnogonaltrajektor
$$\frac{r'}{r} = f(\varphi, r) \xrightarrow{\text{orthogonal}} \frac{r'}{r} = -\frac{1}{f(\varphi, r)}$$

Grenzwerte mitn n-ten Wurzeln und Fakultäten 3

$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$	für jede konstante Zahl \boldsymbol{x}
$\lim_{n \to \infty} \left(\sqrt[n]{a} \right) = 1$	für jede konstante Zahl $a>0$
$\lim_{n \to \infty} \left(\sqrt[n]{n} \right) = 1$	
$\lim_{n \to \infty} \left(\sqrt[n]{n^a} \right) = 1$	für jede konstante Zahl α
$\lim_{n\to\infty}\left(\sqrt[n]{p\left(n\right)}\right)=1$	für jede Polynomfunktion $p(n)$ mit $\lim_{n\to\infty} p(n) = \infty$
$\lim_{n \to \infty} \left(\sqrt[n]{r(n)} \right) = 1$	für jede rationale Funktion $r(n)$ mit $\lim_{n\to\infty} r(n) = \infty$
$\lim_{n \to \infty} \left(\frac{K^n}{n!} \right) = 0$	für jede konstante Zahl ${\cal K}$
$\lim_{n \to \infty} {\binom{\sqrt[n]{n!}}{\sqrt[n]{n!}}} = \lim_{n \to \infty} {\binom{\sqrt[n]{1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n}}{\sqrt[n]{1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n}}} = +\infty$	
$\lim_{n \to \infty} \left(\sqrt[n]{\frac{K^n}{n!}} \right) = 0$	für jede konstante Zahl $K>0$
$\lim_{n \to \infty} \left(\frac{n}{\sqrt[n]{n!}} \right) = e$	Eulersche Zahl

4 Anhang: Tabellen

4.1 Wichtige Formelns. FF 860

Geometrischer Begriff	karthesische Koordianten	Parameter Darstellung	Polarkoordinaten
Anstieg in $P_0 \in \mathcal{C}$	$y' = f'(x_0)$	$y' = rac{\dot{y}}{\dot{x}} \ y'' = rac{x\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}$	$y' = \frac{f'(\varphi_0)\sin\varphi_0 + f(\varphi_0)\cos\varphi_0}{f'(\varphi_0)\cos\varphi_0 - f(\varphi_0)\sin\varphi_0}$
Bogenlänge zwischen $P_1, P_2 \in \mathcal{C}$	$s = \int_{b}^{a} \sqrt{1 + (f'(x))^{2}} dx$	$ s = \int_{t_1}^{t_2} \sqrt{\dot{x}^2 + \dot{y}^2(t)} dt$	$ s = \int_{\varphi_1}^{\varphi_2} \sqrt{(f'(\varphi))^2 + (f(\varphi))^2} d\varphi$
Krümmung in $P_0 \in \mathcal{C}$	$\kappa = \frac{f''(x_0)}{(\sqrt{1 + (f'(x_0))^2})^3}$	$\kappa = \frac{\dot{x}(t_0)\ddot{y}(t_0) - \dot{y}(t_0)\ddot{x}(t_0)}{(\sqrt{\dot{x}(t_0)})^2 + (\dot{y}(t_0))^2)^3}$	$\kappa = \frac{2(f'(\varphi))^2 - f(\varphi_0)f''(\varphi) + (f(\varphi_0))^2}{(\sqrt{(f'(\varphi_0))^2 + (f(\varphi_0))^2})^3}$
Flächeninhalt einer Fläche mit dem Rand $A = \int\limits_{b}^{a} f(x) dx$ C		$A = \frac{1}{2} \int_{t_1}^{t_2} [x(t)\dot{y}(t) - \dot{x}(t)y(t)]dt$	$A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} (f(\varphi))^2 d\varphi$
Volumen eines Rotationskörpers mit dem $V = \pi \int_a^b (f(x))^2 dx$ Meridian C (Rotation um x)		$V = \pi \left \int_{t_1}^{t_2} (y(t))^2 \dot{x}(t) dt \right $	$V = \pi \left \int_{\varphi_1}^{\varphi_2} f^2(\varphi) \sin^2 \varphi [f'(\varphi) \cos \varphi - f(\varphi) \sin \varphi] d\varphi \right $
Oberlächeninhalt eines Rotationskörpers $O = 2\pi \int\limits_a^b f(x) \sqrt{1 + (f'(x))^2} dx$ mit dem Meridian C	$O = 2\pi \int_{a}^{b} f(x) \sqrt{1 + (f'(x))^{2}} dx$	$O = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt$	$O = 2\pi \int_{t_1}^{t_2} y(t) \sqrt{\dot{x}^2(t) + \dot{y}^2(t)} dt O = 2\pi \int_{\varphi_1}^{\varphi_2} f(\varphi)\sin\varphi \sqrt{(f'(\varphi))^2 + (f(\varphi))^2} d\varphi$

4.2 Einige unbestimmte Integrales. 1074

$\int dx = x + C$	$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \ x \in \mathbb{R}^+, \ \alpha \in \mathbb{R} \setminus \{-1\}$
$\int \frac{1}{x} dx = \ln x + C, \ x \neq 0$	$\int e^x dx = e^x + C$
$\int a^x dx = \frac{a^x}{\ln a} + C, \ a \in \mathbb{R}^+ \setminus \{1\}$	$\int \sin x dx = -\cos x + C$
$\int \cos x dx = \sin x + C$	$\int \frac{dx}{\sin^2 x} = -\cot x + C, \ x \neq k\pi \text{ mit } k\epsilon\mathbb{Z}$
$\int \frac{dx}{\cos^2 x} = \tan x + C, \ x \neq \frac{\pi}{2} + k\pi \text{ mit}k\epsilon\mathbb{Z}$	$\int \sinh x dx = \cosh x + C$
$\int \cosh x dx = \sinh x + C$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C, \ x \neq 0$
$\int \frac{dx}{\cosh^2 x} = \tanh x + C$	$\int \frac{dx}{ax+b} = \frac{1}{a} \ln ax+b + C, \ a \neq 0, x \neq -\frac{b}{a}$
$\int \frac{dx}{a^2 x^2 + b^2} = \frac{1}{ab} \arctan \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0$	$\int \frac{dx}{a^2 x^2 - b^2} = \frac{1}{2ab} \ln \left \frac{ax - b}{ax + b} \right + C, \ a \neq 0, \ b \neq 0, \ x \neq \frac{b}{a}, \ x \neq -\frac{b}{a}$
$\int \sqrt{a^2x^2 + b^2} dx = \frac{x}{2} \sqrt{a^2x^2 + b^2} + \frac{b^2}{2a} \ln\left(ax + \sqrt{a^2x^2 + b^2}\right) + C, \ a \neq 0, \ b \neq 0$	$\int \sqrt{a^2 x^2 - b^2} dx = \frac{x}{2} \sqrt{a^2 x^2 - b^2} - \frac{b^2}{2a} \ln ax + \sqrt{a^2 x^2 - b^2} + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 \ge b^2$
$\int \sqrt{b^2 - a^2 x^2} dx = \frac{x}{2} \sqrt{b^2 - a^2 x^2} + \frac{b^2}{2a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 \le b^2$	$\int \frac{dx}{\sqrt{a^2 x^2 - b^2}} = \frac{1}{a} \ln(ax + \sqrt{a^2 x^2 + b^2}) + C, \ a \neq 0, \ b \neq 0$
$\int \frac{dx}{\sqrt{a^2x^2 - b^2}} = \frac{1}{a} \ln ax + \sqrt{a^2x^2 - b^2} + C, \ a \neq 0, \ b \neq 0, \ a^2x^2 > b^2$	$\int \frac{dx}{\sqrt{b^2 - a^2 x^2}} = \frac{1}{a} \arcsin \frac{a}{b} x + C, \ a \neq 0, \ b \neq 0, \ a^2 x^2 < b^2$
Die Integrale $\int \frac{dx}{X}$, $\int \sqrt{X} dx$, $\int \frac{dx}{\sqrt{X}}$ mit $X = ax^2 + 2bx + c$, $a \neq 0$ werden durch	$\int \frac{xdx}{X} = \frac{1}{2a} \ln X - \frac{b}{a} \int \frac{dx}{X}, \ a \neq 0, \ X = ax^2 + 2bx + c$
die Umformung $X = a(x + \frac{b}{a})^2 + (c - \frac{b^2}{a})$ und die Substitution $t = x + \frac{b}{a}$ in die	
oberen 4 Zeilen transformiert.	
$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \cdot \sin 2ax + C, \ a \neq 0$	$\int \cos^2 ax dx = \frac{x}{2} + \frac{1}{4a} \cdot \sin 2ax + C, \ a \neq 0$
$\int \sin^n ax dx = -\frac{\sin^{n-1} ax \cdot \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int \cos^n ax dx = \frac{\cos^{n-1} ax \cdot \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax dx, \ n \in \mathbb{N}, \ a \neq 0$
$\int \frac{dx}{\sin ax} = \frac{1}{a} \ln \left \tan \frac{ax}{2} \right + C, \ a \neq 0, \ x \neq k^{\frac{\pi}{a}} \text{ mit } k \in \mathbb{Z}$	$\int \frac{dx}{\cos ax} = \frac{1}{a} \ln \tan(\frac{ax}{2} + \frac{\pi}{4}) + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k\frac{\pi}{a} \text{ mit } k \in \mathbb{Z}$
$\int \tan ax dx = -\frac{1}{a} \ln \cos ax + C, \ a \neq 0, \ x \neq \frac{\pi}{2a} + k \frac{\pi}{a} \text{mit } k \in \mathbb{Z}$	$\int \cot ax dx = \frac{1}{a} \ln \sin ax + C, \ a \neq 0, \ x \neq k \frac{\pi}{a} \text{mit} k \in \mathbb{Z}$
$\int x^n \sin ax dx = -\frac{x^n}{a} \cos ax + \frac{n}{a} \int x^{n-1} \cos ax dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int x^n \cos ax dx = \frac{x^n}{a} \sin ax - \frac{n}{a} \int x^{n-1} \sin ax dx, \ n \in \mathbb{N}, \ a \neq 0$
$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx, \ n \in \mathbb{N}, \ a \neq 0$	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C, \ a \neq 0, \ b \neq 0$
$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a\cos bx + b\sin bx) + C, \ a \neq 0, \ b \neq 0$	$\int \ln x dx = x(\ln x - 1) + C, \ x \in \mathbb{R}^+$
$\int x^{\alpha} \cdot \ln x dx = \frac{x^{\alpha+1}}{(\alpha+1)^2} \left[(\alpha+1) \ln x - 1 \right] + C, \ x \epsilon \mathbb{R}^+, \ \alpha \epsilon \mathbb{R} \setminus \{-1\}$	