ダークマターハローの ユニバーサルスケーリング則

筑波大学 宇宙物理理論研究室

M2 田沼萌美

1933年

銀河団の速度分散から質量を見積もったが 観測されている銀河の量ではこの質量に全然たりない。

見えないけれど何か大きな質量を持ったものがあるはず ダークマター(DM)

(H. Mo, F. van den Bosch & S. White 2010)

1970年代

銀河の回転曲線の観測

中心から離れても 回転が遅くならない

銀河の光っている部分より 大きく広がった大きな質量を 持ったものがある (DMハロー)

DMの性質が知りたい

銀河、銀河団のDM八ローの密度プロファイルの研究

DMハローの密度プロファイル

NFWプロファイル (Navarro et al. 1997)

$$\rho(x_N) = \frac{\rho_N}{x_N(x_N+1)^2} \qquad \left(x_N = \frac{r}{r_N}\right)$$

Burkertプロファイル (Burkert 1995)

$$\rho(x_B) = \frac{\rho_B}{(x_B + 1)(x_B^2 + 1)} \quad \left(x_B = \frac{r}{r_B}\right)$$

Pseudo-Isothemal(ISO)プロファイル

$$\rho(x_I) = \frac{\rho_I}{1 + x_I^2} \qquad \left(x_I = \frac{r}{r_I}\right)$$

NFWプロファイル

シミュレーションから 予言される理論的密度分布

$$\rho(r) = \frac{\rho_N r_N^3}{r(r + r_N)^2}$$

Burkertプロファイル

近傍の矮小銀河の 観測から示唆される密度分布

$$\rho(r) = \frac{\rho_B}{(r + r_B)(r^2 + r_B^2)}$$

矮小銀河の回転速度の観測から 推測した質量をフィットした。

ISOプロファイル

銀河の観測をフィットするのに 一般的によく使われる。

$$\rho(r) = \frac{\rho_I r_I^2}{r^2 + r_I^2}$$

Local Groupの矮小銀河の回転速度から推測した密度分布をフィットした。

DMの性質が知りたい

銀河、銀河団のDM八ローの密度プロファイルの研究

スケーリング則

DMハローをフィッティングする パラメータ間にある関係性

スケーリング則の例 | Burkert Relation

$$v_B = 17.7(r_B \text{ kpc}^{-1})^{\frac{2}{3}} \text{ km/s}$$

プロファイル: Burkert

$$\rho(r) = \frac{\rho_B}{(r + r_B)(r^2 + r_B^2)}$$

近傍矮小銀河の回転速度の観測

スケーリング則の例 | Strigari Relation

 $M(< 300 \text{ pc}) \sim 10^7 M_{\odot}$

M:銀河質量

天の川銀河の矮小銀河の観測

銀河の星の視線方向速度の 観測から銀河質量を推測

スケーリング則の例 | Kormendy Freeman Relation

プロファイル: ISO

$$\rho(r) = \frac{\rho_I r_I^2}{r^2 + r_I^2}$$

late-type galaxy

回転曲線と速度分散のデータから フィッティングパラメータを決定

(Kormendy & Freeman 2016) 1/40

矮小銀河サイズのスケーリング則は見つかっている。

銀河団サイズまで拡張したらどうなるか?

矮小銀河〜銀河団サイズのスケーリング則を探す

計算方法

物理量の定義

V_{max}:銀河の最大回転速度

 r_{\max} :回転速度が最大になる

銀河半径

計算方法

回転速度:
$$V_{\rm cir} = \sqrt{\frac{GM(r)}{r}}$$

銀河質量: $M(r) = \int_0^r 4\pi \rho(r')r'^2 dr'$

G: 重力定数

r:銀河半径

$$\frac{dV_{\text{cir}}}{dr} = 0$$
になるrが r_{max}

銀河質量
$$M(r_{\text{max}}) = \int_0^{r_{\text{max}}} 4\pi \rho(r) r^2 dr$$

NFWプロファイル

$$\rho(r) = \frac{\rho_N r_N^3}{r(r+r_N)^2}$$

Burkertプロファイル

$$\rho(r) = \frac{\rho_B}{(r + r_B)(r^2 + r_B^2)}$$

使用データ

参考文献	密度プロファイル	銀河の種類	観測	サーベイ
Oh et al. 2015	NFW	矮小銀河	回転曲線	LITTLE THINGS
Gentile et al. 2009	Burkert	矮小銀河、渦巻銀河	回転曲線	THINGS, GHASP
de Blok et al. 2008	NFW	渦巻銀河、円盤銀河 矮小銀河	回転曲線	THINGS
Gastaldello et al. 2007	NFW	銀河群	X線	Chandra, XMM
Umetsu et al. 2016	NFW	銀河団	重力レンズ効果	CLASH
Merten et al. 2015	NFW	銀河団	重カレンズ効果	CLASH

銀河団をX線で撮影した写真

銀河団にはX線でしか観測できない高温ガスがある。

高温ガスを銀河団に 閉じ込めておくために 大量のDMが必要

高温ガスの観測から DMの質量を推測する。

重力レンズ効果

光源の曲げられ方から重力源(DM)の密度分布を推測

結果

$$V_{\text{max}} = (r_{\text{max}}^{0.635155} \text{ kpc}^{-1}) \times 10^{1.184278} \text{ km/s}$$

使用データ

参考文献	密度プロファイル	銀河の種類	観測したもの	サーベイ
Oh et al. 2015	NFW	矮小銀河	回転曲線	LITTLE THINGS
Gentile et al. 2009	Burkert	矮小銀河、渦巻銀河	回転曲線	THINGS, GHASP
de Blok et al. 2008	NFW	渦巻銀河、円盤銀河 矮小銀河	回転曲線	THINGS
Gastaldello et al. 2007	NFW	銀河群	X線	Chandra, XMM
Umetsu et al. 2016	NFW	銀河団	重力レンズ効果	CLASH
Merten et al. 2015	NFW	銀河団	重カレンズ効果	CLASH

矮小銀河のDMハローのカスプ・コア問題

こんな**矮小銀河**が 見つかっている

カスプ・コア遷移モデル

NFWプロファイル (Navarro et al. 1997)

$$\rho(x) = \frac{\rho_N}{x(x+1)^2} \qquad \left(x = \frac{r}{r_N}\right)$$

Burkertプロファイル (Burkert 1995)

$$\rho(x) = \frac{\rho_B}{(x+1)(x^2+1)} \left(x = \frac{r}{r_B} \right)$$

(Navarro, Frenk & White 1997)

(G. Ogiya et al. 2014)

NFWプロファイルと**Burkertプロファイル**を つなげるために仮定をする。

仮定

- 1. $r \gg r_N$, r_B のとき密度分布のべきが r^{-3} で保存する。
- 2. ビリアル質量は変わらない。

カスプ・コア遷移モデル

1. $r \gg r_N$, r_B のとき密度分布のべきが r^{-3} で保存する。

NFW
$$\rho(r) = \frac{\rho_N r_N^3}{r(r+r_N)^2} \rightarrow \frac{\rho_N r_N^3}{r^3}$$

Burkert
$$\rho(r) = \frac{\rho_B}{(r + r_B)(r^2 + r_B^2)} \rightarrow \frac{\rho_B r_B^3}{r^3}$$

$$\frac{\rho_N r_N^3}{r^3} \approx \frac{\rho_B r_B^3}{r^3} \qquad \rho_N r_N^3 \approx \rho_B r_B^3$$

ビリアル質量は変わらない。

NFW
$$M(r_{\text{vir}}) = 4\pi \rho_N r_N^3 \left[\ln \left(1 + \frac{r_{\text{vir}}}{r_N} \right) - \frac{r_{\text{vir}}/r_N}{1 + r_{\text{vir}}/r_N} \right]$$

Burkert
$$M(r_{\text{vir}}) = 4\pi\rho_B r_B^3 \left[-\frac{1}{2} \tan^{-1} \left(\frac{r_{\text{vir}}}{r_B} \right) + \frac{1}{2} \ln \left(1 + \frac{r_{\text{vir}}}{r_B} \right) + \frac{1}{4} \ln \left\{ 1 + \left(\frac{r_{\text{vir}}}{r_B} \right)^2 \right\} \right]$$

$$\rho_N r_N^3 \approx \rho_B r_B^3$$

$$\ln\left(1 + \frac{r_{\text{vir}}}{r_N}\right) - \frac{r_{\text{vir}}/r_N}{1 + r_{\text{vir}}/r_N} \approx -\frac{1}{2} \tan^{-1}\left(\frac{r_{\text{vir}}}{r_B}\right) + \frac{1}{2} \ln\left(1 + \frac{r_{\text{vir}}}{r_B}\right) + \frac{1}{4} \ln\left\{1 + \left(\frac{r_{\text{vir}}}{r_B}\right)^2\right\}$$

2. ビリアル質量は変わらない。

$$\ln\left(1 + \frac{r_{\text{vir}}}{r_N}\right) - \frac{r_{\text{vir}}/r_N}{1 + r_{\text{vir}}/r_N} \approx -\frac{1}{2}\tan^{-1}\left(\frac{r_{\text{vir}}}{r_B}\right) + \frac{1}{2}\ln\left(1 + \frac{r_{\text{vir}}}{r_B}\right) + \frac{1}{4}\ln\left\{1 + \left(\frac{r_{\text{vir}}}{r_B}\right)^2\right\}$$

$$r_{\rm vir} \gg r_N, r_B$$

$$\ln\left(\frac{r_{\text{vir}}}{r_N}\right) - 1 \approx \ln\left(\frac{r_{\text{vir}}}{r_B}\right) - \frac{\pi}{4}$$
 $r_N \approx r_B$

$$\rho_N r_N^3 \approx \rho_B r_B^3$$

現在の姿 (元データ)

Burkertプロファイル

数値データ: ρ_B, r_B

$$\rho(r) = \frac{\rho_B}{(r + r_B)(r^2 + r_B^2)}$$

過去の姿

NFWプロファイル

数値データ:
$$\rho_N \approx \rho_B, r_N \approx r_B$$

$$\rho(r) = \frac{\rho_N r_N^3}{r(r + r_N)^2}$$

コア型からカスプ型に変換した

スケーリング則の例 | Burkert Relation

$$v_B = 17.7(r_B \text{ kpc}^{-1})^{\frac{2}{3}} \text{ km/s}$$

プロファイル: Burkert

$$\rho(r) = \frac{\rho_B}{(r + r_B)(r^2 + r_B^2)}$$

Burkert Relationとの比較

スケーリング則の例 | Strigari Relation

 $M(< 300 \text{ pc}) \sim 10^7 M_{\odot}$

M:銀河質量

天の川銀河の矮小銀河の観測

銀河の星の視線方向速度の 観測から銀河質量を推測

Strigari Relationとの比較

スケーリング則の例 | Kormendy Freeman Relation

プロファイル: ISO

$$\rho(r) = \frac{\rho_I r_I^2}{r^2 + r_I^2}$$

late-type galaxy

回転曲線と速度分散のデータから フィッティングパラメータを決定

(Kormendy & Freeman 2016) 5/40

Kormendy Freeman Relationとの比較

まとめ

やったこと

- V_{max} と r_{max} を用いて、矮小銀河から銀河団サイズまで DMハローのスケーリング則がないか調べた。
- Burkertプロファイルを持っている銀河が 過去にカスプ型だった場合のスケーリング関係を調べ た。

わかったこと

- 矮小銀河から銀河団サイズまで1つのスケーリング則がありそう。
- 矮小銀河の範囲では $r_{\text{max}} V_{\text{max}}$ 関係が他のスケーリング則とも一致する。

今後の展望

- 球状星団では $r_{\text{max}} V_{\text{max}}$ 関係がどうなってるか?
- Λ CDMモデルに基づくN体シミュレーションでも銀河が $r_{max} V_{max}$ 関係を作るか確かめる。
- $V_{\text{max}} \propto r_{\text{max}}^{0.6}$ となる物理的理由は何か?