DESIGN AND ANALYSIS OF ALGORITHMS

Introduction

What is Algorithm?

Introduction

- What is Algorithm?
 - An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.

Introduction...

Characteristics of an Algorithm

Introduction...

- Characteristics of an Algorithm
 - Input: ?
 - Output: ?
 - Definiteness: ?
 - Finiteness: ?
 - Effectiveness: ?

Introduction...

- Characteristics of an Algorithm
 - Input: zero or more inputs, taken from a specified set of objects
 - Output: At least one quantity is produced relation to the inputs
 - Definiteness: Each instruction must be precisely defined
 - Finiteness: It terminates after a finite number of steps
 - Effectiveness: All operations to be performed must be sufficiently basic that they can be done exactly and in finite length.

Algorithms vs Programs

Algorithms

- Design Level
- Domain Knowledge
- Any Language
- H/W & OS
- Analyse

Programs

Implementation Level

Programmer

Programming Language

H/W & OS

Testing

Analysis of algorithms

Analysis of algorithms

- Measuring efficiency of an algorithm
 - Time: How long the algorithm takes (running time)
 - Space : Memory requirement

Time and space

Time and space

- Time depends on processing speed
 - Not possible to change for given hardware
- Space is a function of available memory
 - Easier to reconfigure
- Typically, we will focus on time, not space

Time and space complexity

Algorithm swap(a,b)

Time and space complexity

Algorithm swap(a,b)

Time and space complexity

 Algorithm swap(a,b) Temp=a; a=b; b=Temp; Total variables = Temp,a,b Constant =0(1)

Measuring running time

Measuring running time

- Analysis independent of underlying hardware
 - Don't use actual time
 - Measure in term of "Basic operations"

Input size

Input size

- Running time depends on input size
- Measure time efficiency as function of input size
 - Input size n
 - Running time t(n)

Worst-case analysis

Worst-case analysis

- Why do we usually focus on the worst case analysis?
 - Being upper bound, the worst case guarantees that the algorithm will not take any longer.
 - Average case is often roughly as bad as the worst case.

Sorting as array with n elements

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)

- Sorting as array with n elements
 - $-\,$ Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours
 - 115700 days

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours
 - 115700 days
 - 300 years!!!

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours
 - 115700 days
 - 300 years!!!

• Best $n \log n$ algorithm takes only about 3×10^{10} operations

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours
 - 115700 days
 - 300 years!!!

- Best $n \log n$ algorithm takes only about 3×10^{10} operations
- About 300 seconds

- Sorting as array with n elements
 - Basic algorithms : time proportional to n^2
 - Best algorithms : time proportional to $n \log n$
 - Typical CPUs process up to 10^8 operation per second (for approximate calculation)
 - Telephone directory for mobile phone users in India
 - India has about 1 billion = 10^9 phones
 - Basic n^2 algorithm requires 10^{18} operations
 - -10^8 operation per second => 10^{10} seconds
 - 2778000 hours
 - 115700 days
 - 300 years!!!

- Best $n \log n$ algorithm takes only about 3×10^{10} operations
- About 300 seconds
- About 5 minutes

Typical functions

• Problem: print "Hello NIT Surat" for n times

- Problem: print "Hello NIT Surat" for n times
- Algorithm: Print

- Problem: print "Hello NIT Surat" for n times
- Algorithm: Print

```
_____
```

What could be the running time of the solution?

Prepare a table as shown below

Statement	cost	times_executed
1		
2		
3		
4		
5		

- Problem: print "Hello NIT Surat" for n times
- Algorithm/ pseudo code: Print (n)
- 1. i = 1
- 2. While $i \leq n$
- 3. Print "Hello NIT Surat"
- 4. i = i + 1
- 5. Exit

- Problem: print "Hello NIT Surat" for n times
- Algorithm/ pseudo code: Print (n)
- 1. i = 1..... C_1
- 2. While $i \leq n$ C_2
- 3. Print "Hello NIT Surat"..... C_3
- 5. Exit..... C_5

- Problem: print "Hello NIT Surat" for n times
- Algorithm/ pseudo code: Print (n)
- 1. i = 1..... C_1
- 3. Print "Hello NIT Surat"..... C_3
- 4. $i = i + 1 \dots C_4$
- 5. Exit..... \mathcal{C}_5

Total steps = Total time = $C_1 + (n+1)C_2 + nC_3 + nC_4 + C_5$

Consider the code snippet

```
For i=1 to n
For j=1 to n
Print "DAA 2021"
```

What is the cost of execution?

Total time =
$$C_1(n+1) + C_2n(n+1) + C_3n^2$$

Total time =
$$C_1(n+1) + C_2n(n+1) + C_3n^2$$

= $C_1(n+1) + C_2(n^2+n) + C_3n^2$

Consider the code snippet

```
For i=1 to n
For j=1 to i
Print "DAA 2021"
```

What is the cost of execution?

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

= $C_1(n+1) + C_2\left(\frac{n^2+3n}{2}\right) + C_3\left(\frac{n^2+n}{2}\right)$

Consider the code snippet

```
For i = 1 to n

For j = i to n

Print "DAA 2021"
```

What is the cost of execution?

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

Total time =
$$C_1(n+1) + C_2\left(\frac{(n+1)(n+2)}{2} - 1\right) + C_3\frac{n(n+1)}{2}$$

= $C_1(n+1) + C_2\left(\frac{n^2+3n}{2}\right) + C_3\left(\frac{n^2+n}{2}\right)$

• Problem: Insertion sort

Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

How do we analyze the time complexity?

• Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- How do we analyze the time complexity?
- We need to analyze how many times the while loop is executed?

• Algorithm Insertion-Sort (A[], n)

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- How do we analyze the time complexity?
- We need to analyze how many times the while loop is executed?
 - Assume while loop is executed t_i times...

Then the running time is given by the expression

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

Then the running time is given by the expression

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} t_j + C_5 \sum_{j=2}^{n} (t_j - 1) + C_6 \sum_{j=2}^{n} (t_j - 1) + C_7 (n-1)$$

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

When does the best case occur?

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the best case occur?
 - $t_j = 1$ in every case
 - i.e. when the array is sorted

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the **best case** occur?
 - $t_i = 1$ in every case
 - i.e. when the array is sorted
- Then the best case running time is
- $C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} 1 + C_5 \sum_{j=2}^{n} 0 + C_6 \sum_{j=2}^{n} 0 + C_7 (n-1)$

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[i] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the **best case** occur?
 - $t_i = 1$ in every case
 - i.e. when the array is sorted
- Then the best case running time is

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} 1 + C_5 \sum_{j=2}^{n} 0 + C_6 \sum_{j=2}^{n} 0 + C_7 (n-1)$$

$$= C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1) + C_7 (n-1)$$

When does the worst case occur?

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$.

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$. Therefore the expression is
 - $C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^n j + C_5 \sum_{j=2}^n (j-1) + C_6 \sum_{j=2}^n (j-1) + C_7 (n-1)$

```
1 For j = 2 to n

2 key = A[j]

3 i = j - 1

4 While (i > 0) and (A[j] > key)

5 A[i + 1] = A[i]

6 i = i - 1

7 A[i + 1] = key
```

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$. Therefore the expression is

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} j + C_5 \sum_{j=2}^{n} (j-1) + C_6 \sum_{j=2}^{n} (j-1) + C_7 (n-1)$$

$$= C_1 n + C_2(n-1) + C_3(n-1) + C_4\left(\frac{n(n+1)}{2} - 1\right) + C_5\left(\frac{n(n-1)}{2}\right) + C_6\left(\frac{n(n-1)}{2}\right) + C_7(n-1)$$

- When does the worst case occur?
 - At least when the while loop is executed for all the values of i......
 - i.e. when the array is reverse sorted
 - Thus, $t_i = j$. Therefore the expression is

$$C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \sum_{j=2}^{n} j + C_5 \sum_{j=2}^{n} (j-1) + C_6 \sum_{j=2}^{n} (j-1) + C_7 (n-1)$$

$$= C_1 n + C_2(n-1) + C_3(n-1) + C_4\left(\frac{n(n+1)}{2} - 1\right) + C_5\left(\frac{n(n-1)}{2}\right) + C_6\left(\frac{n(n-1)}{2}\right) + C_6\left(\frac{n(n-1)}{2}\right)$$

$$+ C_7(n-1)$$

$$= C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right)$$

$$+ C_7 (n-1)$$

Consider

• An algorithm A which for a problem, does 2n basic operation & $2C_1n$ total operations, while some other algorithm B does 4.5n basic operations & $4.5C_2n$ total operations.

Consider

- An algorithm A which for a problem, does 2n basic operation & $2C_1n$ total operations, while some other algorithm B does 4.5n basic operations & $4.5C_2n$ total operations.
 - Consider constant of proportionality representing overhead operations.

Consider

- An algorithm A which for a problem, does 2n basic operation & $2C_1n$ total operations, while some other algorithm B does 4.5n basic operations & $4.5C_2n$ total operations.
 - Consider constant of proportionality representing overhead operations.
- Which algorithm of the two do you think is better?

n	2 <i>n</i>	4.5n
5	10	22
10	20	45
100	200	450
1000	2000	4500
10000	20000	45000
100000	$2.0*10^{5}$	$4.5 * 10^5$
$1000000 = 10^6$	2.0 * 10 ⁶	4.5 * 10 ⁶

- Consider
 - Another such example with algo1 taking $\frac{n^3}{2}$ multiplicative steps while algo2 taking $5n^2$ steps.

- Consider
 - Another such example with algo1 taking $\frac{n^3}{2}$ multiplicative steps while algo2 taking $5n^2$ steps.
 - Consider constant of proportionality representing overhead operations.
 - Which algorithm of the two do you think is better?

n	2 <i>n</i>	4.5n	$n^3/2$	$5n^2$
5	10	22	45	125
10	20	45	500	500
100	200	450	5 * 10 ⁵	$5*10^4$
1000	2000	4500	5 * 10 ⁸	5 * 10 ⁶
10000	20000	45000	$5*10^{11}$	5 * 10 ⁸
100000	$2.0*10^{5}$	$4.5 * 10^5$	$5*10^{14}$	$5*10^{10}$
$ \begin{array}{r} 1000000 \\ = 10^6 \end{array} $	2.0 * 106	4.5 * 10 ⁶	5 * 10 ¹⁷	5 * 10 ¹²

• A relook at costs of insertion sort with $oldsymbol{\mathcal{C}}_i' oldsymbol{s} = oldsymbol{1}$

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_7(n-1)$$

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1) + C_7 (n-1)$$

= 5n - 4

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1) + C_7 (n-1)$$

= 5n - 4

Worst Case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_7 (n-1)$$

- A relook at costs of insertion sort with $C_i's=1$
- Best case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1) + C_7 (n-1)$$

= 5n - 4

Worst Case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_7 (n-1)$$

$$= \frac{1}{2} (3n^2 + 7n - 8)$$

- A relook at costs of insertion sort with $C_i's = 1$
- Best case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 (n-1) + C_7 (n-1)$$

= 5n - 4

Worst Case

$$T(n) = C_1 n + C_2 (n-1) + C_3 (n-1) + C_4 \left(\frac{n^2 + n - 2}{2}\right) + C_5 \left(\frac{n^2 - n}{2}\right) + C_6 \left(\frac{n^2 - n}{2}\right) + C_7 (n-1)$$

$$= \frac{1}{2} (3n^2 + 7n - 8)$$

• Which term dominates the overall result in the above expression, especially at large values of n?

• Which term dominates the overall result in the above expression, especially at large values of n ?

n	$T(n)=3n^2+7n-8$	$T(n)=3n^2$	
10	362	300	
100	30692	30000	
1000	$3.006992*10^{6}$	$3.00*10^{6}$	
10000	$3.0000699992*10^{10}$	$3.00*10^{10}$	

 Does constant of proportionality matter when n gets very large?

- Does constant of proportionality matter when n gets very large?
- Then, what is asymptotic growth rate, asymptotic order or order of functions?

- Does constant of proportionality matter when n gets very large?
- Then, what is asymptotic growth rate, asymptotic order or order of functions?
- Is it reasonable to ignore smaller values and constants?

Hence, we shall now also drop the all the terms

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm
- Example

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm
- Example
- Insertion sort Best case complexity ...

$$T(n)=5n-4$$

• So, we will say that **complexity is of the order of** n

- Hence, we shall now also drop the all the terms
 - Except the highest degree of the polynomial for the running time of the algorithm
- Example
- Insertion sort Best case complexity ...

$$T(n)=5n-4$$

- So, we will say that complexity is of the order of n
- Insertion sort Best case complexity ...

$$T(n) = \frac{1}{2}(3n^2 + 7n - 8)$$

• So, we will say that **complexity is of the order of** n^2

 So, now we have assumed/abstracted at three different levels viz.

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.
 - Level 3 ignore all the terms except for the one with the highest degree in the expression of time complexity

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.
 - Level 3 ignore all the terms except for the one with the highest degree in the expression of time complexity
- Such analysis is based on the asymptotic growth rate,

- So, now we have assumed/abstracted at three different levels viz.
 - Level 1 ignored the actual cost of execution of each statement.
 - Level 2 ignored even the abstract cost (C_i) of each statement.
 - Level 3 ignore all the terms except for the one with the highest degree in the expression of time complexity
- Such analysis is based on the asymptotic growth rate,
 - Asymptotic order or order or functions and called asymptotic analysis

Typical functions

- We are interested in order of magnitude
- t(n) may proportional to $\log n, ..., n^2, n^3, ..., 2^n$
- Logarithmic, polynomial, exponential ...

Basic Asymptotic Efficiency classes

1	Constant		
$\log n$	Logarithmic		
n	Linear		
$n \log n$	$n \log n$		
n^2	Quadratic		
n^3	Cubic		
2^n	Exponential		
n!	Factorial		

Typical functions t(n)

Input	log n	n	n log n	n^2	n^3	2^n	n!
10	3.3	10	33	100	1000	1000	10^{6}
100	6.6	100	66	10^{4}	10^{6}	10^{30}	10^{157}
1000	10	1000	10 ⁴	10^{6}	10 ⁹		
10 ⁴	13	10^{4}	10^{5}	10^{8}	10^{12}		
10 ⁵	17	10 ⁵	10^{6}	10^{10}			
10 ⁶	20	10^{6}	10 ⁷				
10 ⁷	23	10 ⁷	108				
10 ⁸	27	10 ⁸	10 ⁹				
10 ⁹	30	10 ⁹	10 ¹⁰				
10 ¹⁰	33	10^{10}					

Typical functions t(n)

An interesting "seconds" conversion

10^{2}	1.7 min
10 ⁴	2.8 hours
10^5	1.1 days
10^6	1.6 weeks
10 ⁷	3.8 months
10 ⁸	3.1 years
10 ⁹	3.1 decades
10^{10}	3.1 centuries

Asymptotic Notations

- In this approach, the running time of an algorithm is describes as Asymptotic Notations.
- Computing the running time of algorithm's operations in mathematical units of computation and defining the mathematical formula of its run-time performance is referred to as Asymptotic Analysis.
- An algorithm may not have the same performance for different types of inputs. With the increase in the input size, the performance will change.
- Asymptotic analysis accomplishes the study of change in performance of the algorithm with the change in the order of the input size.

Asymptotic Notations

- Asymptotic notations are mathematical notations used to represent the time complexity of algorithms for Asymptotic analysis.
- ▶ Following are the commonly used asymptotic notations to calculate the running time complexity of an algorithm.
 - 1. O Notation
 - 2. Ω Notation
 - 3. θ Notation
- Asymptotic Notations are used,
 - 1. To characterize the complexity of an algorithm.
 - To compare the performance of two or more algorithms solving the same problem.

1. O-Notation (Big O notation) (Upper Bound)

- The notation O(n) is the formal way to express the upper bound of an algorithm's running time.
- For a given function g(n), we denote by O(g(n)) the set of functions,

 $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n_0 \le n \}$

Big(O) Notation

- g(n) is an asymptotically **upper bound** for f(n).
- f(n) = O(g(n)) implies: f(n)" \leq " c.g(n)

2. Ω -Notation (Omega notation) (Lower Bound)

- \blacktriangleright Big Omega notation (Ω) is used to define the lower bound of any algorithm.
- ▶ This always indicates the minimum time required for any algorithm for all input values.
- When a time complexity for any algorithm is represented in the form of big- Ω , it means that the algorithm will take at least this much time to complete it's execution. It can definitely take more time than this too.
- For a given function g(n), we denote by $\Omega(g(n))$ the set of functions,

 $\Omega(g(n)) = \{f(n): \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n_0 \le n \}$

$Big(\Omega)$ Notation

- g(n) is an asymptotically **lower bound** for f(n).
- $f(n) = \Omega(g(n))$ implies: f(n)" \geq " c.g(n)

3. θ -Notation (Theta notation) (Same order)

- The notation $\theta(n)$ is the formal way to enclose both the lower bound and the upper bound of an algorithm's running time.
- The time complexity represented by the Big- θ notation is the range within which the actual running time of the algorithm will be.
- ▶ So, it defines the exact Asymptotic behavior of an algorithm.
- For a given function g(n), we denote by $\theta(g(n))$ the set of functions,

 $\theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n_0 \le n \}$

θ-Notation

- $\theta(g(n))$ is a set, we can write $f(n) \in \theta(g(n))$ to indicate that f(n) is a member of $\theta(g(n))$.
- g(n) is an asymptotically tight bound for f(n).
- $f(n) = \theta(g(n))$ implies: f(n) " = " c.g(n)

Asymptotic Notations

Asymptotic Notations

O-Notation (Big O notation) (Upper Bound)

$$O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } \mathbf{0} \le f(n) \le g(n) \text{ for all } n_0 \le n \}$$

$$f(n) = O(g(n))$$

Ω-Notation (Omega notation) (Lower Bound)

$$\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n_0 \le n\}$$

$$f(\boldsymbol{n}) = \Omega(g(\boldsymbol{n}))$$

 θ -Notation (Theta notation) (Same order)

$$\theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{such that } \mathbf{0} \leq \mathbf{c_1} \mathbf{g}(\mathbf{n}) \leq \mathbf{f}(\mathbf{n}) \leq \mathbf{c_2} \mathbf{g}(\mathbf{n}) \text{ for all } n_0 \leq n \}$$

$$f(\boldsymbol{n}) = \theta(g(\boldsymbol{n}))$$

Asymptotic Notations – Examples

Example 1:

$$f(n) = n^2$$
 and $g(n) = n$

Algo. 1 running time

Algo. 2 running time

$$f(n) \ge g(n) \Longrightarrow f(n)$$

= $\Omega(g(n))$

n	$f(n)=n^2$	g(n) = n
1	1	1
2	4	2
3	9	3
4	16	4
5	25	5

Example 2:

$$f(n) = n$$
 and $g(n) = n^2$

Algo. 1 running time

Algo. 2 running time

$$f(n) \le g(n) \Longrightarrow f(n)$$

= $O(g(n))$

n	f(n) = n	$g(n) = n^2$
1	1	1
2	2	4
3	3	9
4	4	16
5	5	25

Asymptotic Notations – Examples

Example 3: $f(n) = n^2$ and $g(n) = 2^n$

		ſ	
			$f(n) \le g(n) \Longrightarrow f(n)$ = $O(g(n))$
n	$f(n)=n^2$	$g(n)=2^n$	
1	1	2	
2	4	4	
3	9	8	
4	16	16	Here for $n \geq$
<u>5</u>	25	32	$4, f(n) \leq$
6	36	64	g(n)
7	49	128	$so, n_0 = 4$

Asymptotic Notations – Examples

Example 4: $\mathbf{f(n)} = \mathbf{30n} + \mathbf{8} \text{ is in the order of n, or } 0(n)$ $\mathbf{g(n)} = \mathbf{n^2 + 1} \text{ is order } n^2, \text{ or } 0(n^2)$ $\mathbf{f(n)} = \mathbf{0}(\mathbf{g(n)})$

In general, any $O(n^2)$ function is fastergrowing than any O(n) function.

Asymptotic notations: The Big-O notation

Prove that f(n) = 2n+3 is O(n)

 $2n+3 \le 7n$ [Upgrade to higher order term]

n	L.H.S.	R.H.S.
1	5	7
2	7	14
3	9	21

$$f(n)=O(n)$$
 for $n>=1 && c=7$

Asymptotic notations: The Big-O notation

Prove that f(n) = 2n+5 is O(n)

 $2n+5 \le 3n$ [Upgrade to higher order term]

n	L.H.S.	R.H.S.
1	7	3
2	9	6
3	11	9
4	13	12
5	15	15
6	17	18

$$f(n)=O(n)$$
 for $n>=5 \&\& c=3$

• Prove that f(n) = 2n+5 is $O(n^2)$

Asymptotic notations: The Big-O notation

$f(n) = 2n^{2} + 3n + 4$ $2n^{2} + 3n + 4 \le 2n^{2} + 3n^{2} + 4n^{2}$ $\le 9n^{2}$ $f(n) = 2n^{2} + 3n + 4$ c = 9 $g(n) = n^{2}$ $f(n) = O(n^{2})$

Asymptotic notations: The Big- Ω notation

Asymptotic notations: The Big- Ω notation

```
f(n) = 2n+3

2n+3≥ 1 * n n ≥1

f(n) = 2n+3

c=1

g(n)=n

f(n) = Ω(n)
```

Asymptotic notations: The Big- Ω notation

```
f(n) = 2n^{2} + 3n + 4
2n^{2} + 3n + 4n \ge 1 * n^{2}
f(n) = 2n^{2} + 3n + 4
c=1
g(n)=n^{2}
f(n) = \Omega(n^{2})
```

Asymptotic notations: The Big- heta notation

Asymptotic notations: The Big-heta notation

```
f(n) = 2n+3
f(n)=O(n)
f(n)=\Omega(n)
f(n)=\theta(n)
```

Asymptotic notations: The Big-heta notation

$$f(n) = 2n^2 + 3n + 4$$

 $f(n) = O(n^2)$
 $f(n) = O(n^2)$
 $f(n) = \theta(n^2)$

The Big-theta notation

Figure: Big-theta notation: $t(n) \in \theta(g(n))$

• Prove that $10 \log n + 4 = \theta(\log n)$

Calculating complexity

- Iterative programs
- Recursive programs

Problem: Maximum value in an array

- Problem: Maximum value in an array
- Solution:

```
Function MaxElement(A, n)

1 maxval = A[0]

2 For i = 1 to n - 1

3 If A[i] > maxval

4 maxval = A[i]
```

Return maxval

- Problem: Maximum value in an array
- Solution:

```
Function MaxElement(A, n)
```

```
1 maxval = A[0]

2 For i = 1 to n - 1 -------(n-1) steps

3 If A[i] > maxval
```

maxval = A[i]

5 Return *maxval*

Problem: Check if all element in an array are distinct

- Problem: Check if all element in an array are distinct
- Solution:

```
Function NoDuplicates(A, n)

1 For i = 1 to n

2 For j = i + 1 to n

3 If A[i] == A[j]

Return False
```

Return *True*

• Problem: Matrix multiplication

- Problem: Matrix multiplication
- Solution:

Function MatrixMultiply(A, B)

- 1. For i = 1 to n
- 2. For j = 1 to n
- 3. C[i][j] = 0
- 4. For k = 1 to n
- 5. $C[i][j] = c[i][j] + A[i][k] \times B[k][j]$
- 6.Return C

1) General Properties:

If f(n) is O(g(n)) then a*f(n) is also O(g(n)); where a is a constant.

Example:

$$f(n) = 2n^2+5$$
 is $O(n^2)$
then $7*f(n) = 7(2n^2+5)$
= $14n^2+35$ is also $O(n^2)$

Similarly this property satisfies for both Θ and Ω notation. We can say,

If f(n) is $\Theta(g(n))$ then a*f(n) is also $\Theta(g(n))$; where a is a constant.

If f(n) is Ω (g(n)) then $a^*f(n)$ is also Ω (g(n)); where a is a constant.

Reflexive Properties:

- If f(n) is given then f(n) is O(f(n)).
 Example: f(n) = n²; O(n²) i.e O(f(n))
- Function is Upper Bound for itself.
- Similarly, this property satisfies both Θ and Ω notation. We can say
 If f(n) is given then f(n) is Θ(f(n)).
 If f(n) is given then f(n) is Ω (f(n)).

- Transitive Properties :
- If f(n) is O(g(n)) and g(n) is O(h(n)) then f(n) = O(h(n)).

```
Example: if f(n) = n, g(n) = n^2 and h(n)=n^3 n is O(n^2) and n^2 is O(n^3) then n is O(n^3)
```

• Similarly this property satisfies for both Θ and Ω notation. We can say If f(n) is $\Theta(g(n))$ and g(n) is $\Theta(h(n))$ then $f(n) = \Theta(h(n))$. If f(n) is Ω (g(n)) and g(n) is Ω (h(n)) then $f(n) = \Omega$ (h(n))

Symmetric Properties:

• If f(n) is $\Theta(g(n))$ then g(n) is $\Theta(f(n))$. Example: $f(n) = n^2$ and $g(n) = n^2$ then $f(n) = \Theta(n^2)$ and $g(n) = \Theta(n^2)$

This property only satisfies for Θ notation.

- Transpose Symmetric Properties:
- If f(n) is O(g(n)) then g(n) is Ω (f(n)). Example: f(n) = n, $g(n) = n^2$ then n is $O(n^2)$ and n^2 is Ω (n)

• This property only satisfies for O and Ω notations.

- Some More Properties :
- 1. If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ then $f(n) = \Theta(g(n))$

2. If f(n) = O(g(n)) and d(n)=O(e(n))
 then f(n) + d(n) = O(max(g(n), e(n)))