# 7) Generalized Method of Moments (GMM)

Vitor Kamada

July 2018

# **Generalized Method of Moments (GMM)**

$$Q_N(\beta) = \left\{ \frac{1}{N} (y - X\beta)' Z \right\} W_N \left\{ \frac{1}{N} Z' (y - X\beta) \right\}$$
$$\frac{\partial Q_n(\beta)}{\partial \beta} = -2 \left[ \frac{1}{N} X' Z \right] W_N \left[ \frac{1}{N} Z' (y - X\beta) \right] = 0$$

$$\hat{\beta}_{GMM} = (X'ZW_NZ'X)^{-1}X'ZW_NZ'y$$

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'y$$

$$\hat{\beta}_{2SLS} = \{X'Z(Z'Z)^{-1}Z'X\}^{-1}X'Z(Z'Z)^{-1}Z'y$$

Vitor Kamada ECO 7110 Econometrics II July 2018 2 / 14

# **Optimal GMM**

$$\hat{\beta}_{OGMM} = (X'Z\hat{S}^{-1}Z'X)^{-1}X'Z\hat{S}^{-1}Z'y$$

$$\hat{S} = \frac{1}{N} \sum_{i=1}^{N} \hat{u}^2 z_i z_i' = \frac{Z'DZ}{N}$$

If 
$$E[u_i^2|z_i] = \sigma^2$$
, then  $\hat{S} = \frac{s^2Z'Z}{N}$ 



3 / 14

Vitor Kamada ECO 7110 Econometrics II July 2018

# Medical Expenditure Panel Survey (MEPS): Individuals over the age of 65 years

**Idrugexp:** the log of total out-of-pocket expenditures on prescribed medications

**hi\_empunion:** indicator for whether the individual holds either employer or union-sponsored health insurance

totchr: # of chronic conditions

sociodemographic variables: age, female, blhisp, and linc

**ssiratio:** ratio of an individual's social security income to the individual's income from all sources

multic: if the firm is a large operator with multiple locations

4 / 14

Vitor Kamada ECO 7110 Econometrics II July 2018

# **Summary Statistics**

global x2list totchr age female blhisp linc summarize ldrugexp hi\_empunion \$x2list ssiratio multlc

| Variable    | Obs    | Mean     | Std. Dev. | Min       | Max      |
|-------------|--------|----------|-----------|-----------|----------|
| ldrugexp    | 10,391 | 6.479668 | 1.363395  | 0         | 10.18017 |
| hi_empunion | 10,391 | .3796555 | .4853245  | 0         | 1        |
| totchr      | 10,391 | 1.860745 | 1.290131  | 0         | 9        |
| age         | 10,391 | 75.04639 | 6.69368   | 65        | 91       |
| female      | 10,391 | .5797325 | .4936256  | 0         | 1        |
| blhisp      | 10,391 | .1703397 | .3759491  | 0         | 1        |
| linc        | 10,089 | 2.743275 | .9131433  | -6.907755 | 5.744476 |
| ssiratio    | 10,391 | .5206281 | .3745878  | -2.100647 | 9.25062  |
| multlc      | 10,391 | .0603407 | .2381284  | 0         | 1        |

#### **OLS** Estimates

regress Idrugexp hi\_empunion \$x2list, vce(robust)

| ldrugexp    | Coef.    | Robust<br>Std. Err. | t     | P> t  |
|-------------|----------|---------------------|-------|-------|
| hi empunion | .0738788 | .0259848            | 2.84  | 0.004 |
| totchr      | .4403807 | .0093633            | 47.03 | 0.000 |
| age         | 0035295  | .001937             | -1.82 | 0.068 |
| female      | .0578055 | .0253651            | 2.28  | 0.023 |
| blhisp      | 1513068  | .0341264            | -4.43 | 0.000 |
| linc        | .0104815 | .0137126            | 0.76  | 0.445 |
| cons        | 5.861131 | .1571037            | 37.31 | 0.000 |

# IV estimation of an exactly identified model: First Stage

ivregress 2sls Idrugexp (hi\_empunion = ssiratio) ///
\$x2list, vce(robust) first

| hi_empunion | Coef.    | Robust<br>Std. Err. | t      | P> t  |
|-------------|----------|---------------------|--------|-------|
| totchr      | .0127865 | .0036655            | 3.49   | 0.000 |
| age         | 0086323  | .0007087            | -12.18 | 0.000 |
| female      | 07345    | .0096392            | -7.62  | 0.000 |
| blhisp      | 06268    | .0122742            | -5.11  | 0.000 |
| linc        | .0483937 | .0066075            | 7.32   | 0.000 |
| ssiratio    | 1916432  | .0236326            | -8.11  | 0.000 |
| _cons       | 1.028981 | .0581387            | 17.70  | 0.000 |

# IV estimation of an exactly identified model: Second Stage

ivregress 2sls ldrugexp (hi\_empunion = ssiratio) ///
\$x2list, vce(robust) first

|             |           | Robust    |       |       |
|-------------|-----------|-----------|-------|-------|
| ldrugexp    | Coef.     | Std. Err. | Z     | P> z  |
| hi_empunion | 8975913   | . 2211268 | -4.06 | 0.000 |
| totchr      | . 4502655 | .0101969  | 44.16 | 0.000 |
| age         | 0132176   | .0029977  | -4.41 | 0.000 |
| female      | 020406    | .0326114  | -0.63 | 0.531 |
| blhisp      | 2174244   | .0394944  | -5.51 | 0.000 |
| linc        | .0870018  | .0226356  | 3.84  | 0.000 |
| _cons       | 6.78717   | .2688453  | 25.25 | 0.000 |

#### IV, OGMM, and LIML

ivregress 2sls ldrugexp (hi\_empunion = ssiratio) \$x2list, vce(robust) estimates store IV

ivregress gmm ldrugexp (hi\_empunion = ssiratio) \$x2list, wmatrix(robust) estimates store OGMM

ivregress liml Idrugexp (hi\_empunion = ssiratio) \$x2list, vce(robust) estimates store LIML

estimates table IV OGMM LIML, b(%9.4f) se

| Variable    | IV         | OGMM    | LIML    |
|-------------|------------|---------|---------|
| hi empunion | -0.8976    | -0.8976 | -0.8976 |
| _           | 0.2211     | 0.2211  | 0.2211  |
| totchr      | 0.4503     | 0.4503  | 0.4503  |
|             | 0.0102     | 0.0102  | 0.0102  |
| age         | -0.0132    | -0.0132 | -0.0132 |
|             | 0.0030     | 0.0030  | 0.0030  |
| female      | -0.0204    | -0.0204 | -0.0204 |
|             | 0.0326     | 0.0326  | 0.0326  |
| blhisp      | -0.2174    | -0.2174 | -0.2174 |
|             | 0.0395     | 0.0395  | 0.0395  |
| linc        | 0.0870     | 0.0870  | 0.0870  |
|             | 0.0226     | 0.0226  | 0.0226  |
| cons        | 6.7872     | 6.7872  | 6.7872  |
|             | ECO 7110 E | 4.3     |         |

#### Code: 2SLS, OGMM, and LIML

```
global ivmodel "Idrugexp (hi_empunion = ssiratio multlc) $x2list"
quietly ivregress 2sls $ivmodel
estimates store TwoSLS
quietly ivregress 2sls $ivmodel, vce(robust)
estimates store Rob_2SLS
quietly ivregress gmm $ivmodel, wmatrix(unadjusted)
estimates store GMM
quietly ivregress gmm $ivmodel, wmatrix(robust)
estimates store Rob GMM
quietly ivregress liml $ivmodel, vce(robust)
estimates store Rob_LIML
estimates table TwoSLS Rob_2SLS GMM Rob_GMM Rob_LIML, b(%9.4f) se
```

#### **Estimation of an Overidentified Model**

| Variable    | TwoSLS  | Rob_2SLS | GMM     | Rob_GMM | Rob_LIML |
|-------------|---------|----------|---------|---------|----------|
| hi_empunion | -0.9899 | -0.9899  | -0.9899 | -0.9933 | -0.9957  |
|             | 0.1922  | 0.2046   | 0.1922  | 0.2047  | 0.2059   |
| totchr      | 0.4512  | 0.4512   | 0.4512  | 0.4510  | 0.4513   |
|             | 0.0105  | 0.0103   | 0.0105  | 0.0103  | 0.0103   |
| age         | -0.0141 | -0.0141  | -0.0141 | -0.0142 | -0.0142  |
| _           | 0.0028  | 0.0029   | 0.0028  | 0.0029  | 0.0029   |
| female      | -0.0278 | -0.0278  | -0.0278 | -0.0282 | -0.0283  |
|             | 0.0312  | 0.0322   | 0.0312  | 0.0322  | 0.0322   |
| blhisp      | -0.2237 | -0.2237  | -0.2237 | -0.2231 | -0.2241  |
| -           | 0.0387  | 0.0396   | 0.0387  | 0.0396  | 0.0396   |
| linc        | 0.0943  | 0.0943   | 0.0943  | 0.0945  | 0.0947   |
|             | 0.0212  | 0.0219   | 0.0212  | 0.0219  | 0.0220   |
| cons        | 6.8752  | 6.8752   | 6.8752  | 6.8778  | 6.8807   |
| _           | 0.2453  | 0.2579   | 0.2453  | 0.2580  | 0.2589   |
| I           | I       |          |         |         |          |

# Overidentified Test (OID), Hansen's Test, and Sargan's Test

$$Q(\hat{eta}) = \{ \frac{1}{N} (y - X\hat{eta})'Z \} \hat{S}^{-1} \{ \frac{1}{N} Z'(y - X\hat{eta}) \}$$
 $Z'(y - X\hat{eta}) \simeq 0$ , so  $Q(\hat{eta}) \simeq 0$ 
 $Q(\hat{eta}) \stackrel{a}{\sim} \chi_r^2$ ,

r is the # of overidentifying restrictions

$$H_0: E\{Z'(y-X\beta)\} = 0$$

Rejection means that at least one of the instruments is not valid

### **Test of Overidentifying Restrictions**

 $\label{eq:continuous} \mbox{ivregress gmm ldrugexp (hi\_empunion} = \mbox{ssiratio multlc) $x2list, ///wmatrix(robust)}$ 

estat overid

 $H_0$ : Overidentifying Restriction is Valid

Test of overidentifying restriction:

Hansen's J chi2(1) = 1.04754 (p = 0.3061)

#### Four Available Instruments

ivregress gmm ldrugexp (hi\_empunion = ssiratio ///
lowincome multlc firmsz) \$x2list, wmatrix(robust)

| ldrugexp    | Coef.    | Robust<br>Std. Err. | Z     | P> z  |
|-------------|----------|---------------------|-------|-------|
| hi_empunion | 8124043  | .1846433            | -4.40 | 0.000 |
| totchr      | . 449488 | .010047             | 44.74 | 0.000 |
| age         | 0124598  | .0027466            | -4.54 | 0.000 |
| female      | 0104528  | .0306889            | -0.34 | 0.733 |
| blhisp      | 2061018  | .0382891            | -5.38 | 0.000 |
| linc        | .0796532 | .0203397            | 3.92  | 0.000 |
| _cons       | 6.7126   | .2425973            | 27.67 | 0.000 |

#### estat overid

Test of overidentifying restriction:

Hansen's J chi2(3) = 11.5903 (p = 0.0089)  $\Rightarrow = 9999$ 

Vitor Kamada ECO 7110 Econometrics II July 2018 14 / 14