# Analyse numérique avec python

Yehor Korotenko

April 28, 2025

# Abstract Ce sont les notes prises aux CMs d'Analyse Numériques avec Python (UE MDD253DU) fait par le professeur Jean-Baptiste APOUNG KAMGA. Je n'ai rien ajouté dans ces notes. Ce qui est écrit dans ce ficher est ce que le professeur a écrit sur le tableau pendant les CMs.

# CONTENTS

| 1 | Équ  | nations Différentielles                                                                    |
|---|------|--------------------------------------------------------------------------------------------|
|   | 1.1  | Modèles discrètes                                                                          |
|   |      | 1.1.1 Modèle de croissance géomètrique                                                     |
|   | 1.2  | Modèles continues                                                                          |
|   |      | 1.2.1 Modèle de Malthus                                                                    |
|   |      | 1.2.2 Modèle Verhulst                                                                      |
|   | 1.3  | Modèle de croissance logistique                                                            |
|   | 1.4  | Notion de champ de vecteurs associée à une EDO                                             |
|   |      | 1.4.1 Généralités et définitions                                                           |
|   |      | 1.4.2 Dessins de champs de vecteurs                                                        |
|   |      | 1.4.3 Recherche de solution approchée de modèles sous python                               |
|   | 1.5  | Modèle de prédateur prose (lotka-voltena (1931))                                           |
| 2 | Inte | erpolation polynomiale 11                                                                  |
| 4 | 2.1  | Rappels sur les nuts numériques                                                            |
|   | 2.1  | Vitesse (ordre) de convergence                                                             |
|   |      | valeur ajoutée par itérations                                                              |
|   |      | 2.1.1 Valeur ajoutée par l'itération                                                       |
|   |      | 2.1.2 Obtenir numériquement la vitesse de convergence                                      |
|   | 2.2  | •                                                                                          |
|   | 2.2  | Interpolation: définition-motivation-exemples                                              |
|   |      | 2.2.1 Définition                                                                           |
|   |      |                                                                                            |
|   | 0.2  |                                                                                            |
|   | 2.3  | Polynôme interpolateur de lagrange                                                         |
|   |      | 2.3.1 Définition et propriétés                                                             |
|   |      | 2.3.2 Estimation d'erreur                                                                  |
|   | 0.4  | 2.3.3 Implémentation avec python                                                           |
|   | 2.4  | Construction des polynôme d'intérpolation de lagrange                                      |
|   |      | 2.4.1 Interpolation dans la base canonique (Vandermonde)                                   |
|   |      | 2.4.2 Interpolation dans la base duale: Formule de lagrange et points barycentrique        |
|   | 0.5  | 2.4.3 Méthode des différences divisées                                                     |
|   | 2.5  | Comportement asymptotique "lorsque $N \to \infty$ "                                        |
|   |      | 2.5.1 Observation                                                                          |
|   |      | 2.5.2 Polynôme de Tchebychev                                                               |
|   |      | 2.5.3 Application                                                                          |
| 3 |      | égration numérique 20                                                                      |
|   | 3.1  | Formule de quadrature                                                                      |
|   |      | 3.1.1 Construction de formule de quadrature à points donnés                                |
|   | 3.2  | Utilisation des formules de quadrature. Formule de quadrature élémentaires et composées 29 |
|   |      | 3.2.1 Définition                                                                           |
|   |      | 3.2.2 Méthode de quadrature clamique                                                       |
|   |      | 3.2.3 Méthode de trapèze                                                                   |
|   |      | 3.2.4 Méthode de point-milieu                                                              |
|   |      | 3.2.5 Méthode de Simpson                                                                   |
|   |      | 3.2.6 Méthode de Newton-Côte                                                               |
|   | 3.3  | Construction de formule de quadrature (à points inconnus): Formules de Gauss Legedre 30    |

| 4 | $\mathbf{R\acute{e}s}$            | olution approchée d'équations différentielles ordinaires (EDOs)       | 38       |  |  |  |  |  |  |
|---|-----------------------------------|-----------------------------------------------------------------------|----------|--|--|--|--|--|--|
|   | 4.1                               | 1 Motivations                                                         |          |  |  |  |  |  |  |
|   |                                   | 4.1.1 Définitions                                                     | 38       |  |  |  |  |  |  |
|   |                                   | 4.1.2 Exemple                                                         | 39       |  |  |  |  |  |  |
|   |                                   | 4.1.3 Nécessite de la solution approchée                              | 40       |  |  |  |  |  |  |
|   | 4.2                               | Problème d'évolution de population des lapins                         | 41<br>42 |  |  |  |  |  |  |
|   | 4.3 Exemple de Schémas numériques |                                                                       |          |  |  |  |  |  |  |
|   |                                   | 4.3.1 Formulation intégrale                                           | 42       |  |  |  |  |  |  |
|   |                                   | 4.3.2 Construction de schema d'Euler explicite                        | 42       |  |  |  |  |  |  |
|   |                                   | 4.3.3 Autres schémas et forme géneral des schemas explicites à un pas | 44       |  |  |  |  |  |  |
|   | 4.4                               | Étude de schémas pokes EDOs                                           | 44       |  |  |  |  |  |  |
|   |                                   | 4.4.1 Définition                                                      | 44       |  |  |  |  |  |  |
|   |                                   | 4.4.2 Ordre d'un shéma à un pas explicite                             | 45       |  |  |  |  |  |  |
|   |                                   | 4.4.3 Stabilité des schémas à un pas                                  | 47       |  |  |  |  |  |  |
|   |                                   | 4.4.4 Convergence des schémas à un pas explicite                      | 47       |  |  |  |  |  |  |
| 5 | Rés                               | olution approchée d'équations ordinaires $(EO): f(x) = 0$             | 49       |  |  |  |  |  |  |
| • | 5.1                               | Généralités et exemples                                               | 49       |  |  |  |  |  |  |
|   |                                   | 5.1.1 Définitions                                                     | 49       |  |  |  |  |  |  |
|   |                                   | 5.1.2 Exemples                                                        | 49       |  |  |  |  |  |  |
|   | 5.2                               | Position correcte du problème $(EO)$                                  | 50       |  |  |  |  |  |  |
|   | 5.3                               | Construction de schéma pour $(EO)$                                    | 50       |  |  |  |  |  |  |
|   |                                   | 5.3.1 Méthode de dichotomie                                           | 50       |  |  |  |  |  |  |
|   |                                   | 5.3.2 Méthode de fausse position                                      | 52       |  |  |  |  |  |  |
|   | 5.4                               | Méthode d'itération (ou du point fixe)                                | 53       |  |  |  |  |  |  |
|   |                                   | 5.4.1 Principe                                                        | 53       |  |  |  |  |  |  |
|   |                                   | 5.4.2 Interpolation géomètrique                                       | 53       |  |  |  |  |  |  |
|   |                                   | 5.4.3 Algorithme                                                      | 53       |  |  |  |  |  |  |
|   |                                   | 5.4.4 Convergence                                                     | 54       |  |  |  |  |  |  |
|   | 5.5                               | Méthode de Newton                                                     |          |  |  |  |  |  |  |

#### | CHAPTER

# ÉQUATIONS DIFFÉRENTIELLES

## 1.1 Modèles discrètes

On diésigne par N(t) la population d'individus à l'instant t. Équation du modèle discret:

$$\underbrace{N(t + \Delta t) - N(t)}_{\text{variation de la population}} = \underbrace{n}_{\text{nombre de naissances}} - \underbrace{m}_{\text{nombre de décès}} + \underbrace{i}_{\text{immigration}} - \underbrace{e}_{\text{sol de migration}}$$

#### 1.1.1 Modèle de croissance géomètrique

- hypothèse:
  - solde migration nul: i.e i e = 0
  - nombre de croissance proportionnel à la taille de la population  $\underbrace{n = \lambda \Delta t N(t)}_{\text{taux de natalité}}$
  - Idem pour le mobre de décès:  $\underline{m = \mu \Delta t N(t)}_{\rm taux\ de\ mortalité}$
- Modèle: On pose  $N_n = N(t_n)$  la taille de la population à l'instant  $t_n$ .

$$N_{n+1} - N_n = \lambda \Delta t N_n - \mu \delta t N_n$$

on pose  $r = \lambda - \mu$ 

$$N_{n+1} = (1 + r\Delta t)N_n, \qquad n = 0$$
 (1.1)

- Solution:  $N_n = (1 + r\Delta t)^n N_0, \quad n \in \mathbb{N}$
- Visualisation:  $\Delta t$  fixé







(a) Natalité supérieure à la mortalité

- (b) Natalité égale à la mortalité
- (c) Natalité inférieure à la mortalité

Property. .

• Lorsque  $t \to 0$ , la population semble tendre vers une courbe  $N(t) = N_0 e^{rt}$ , solution de  $\begin{cases} N'(t) = rN(t) \\ N(0) = N_0 \end{cases}$ 

 $\bullet$  Si r > 0, la population croît indéfiniment

• Si r < 0, il y a extinction de l'éspèce.

#### Inconvenients:

1. Une croissance infinie n'est pas réaliste

2. Pour être rigoureux, on devrait écrire  $E(rN_n)$  i.e partie entière.

#### 1.2 Modèles continues

Motivation: L'observation qui prend  $\Delta t$  proche de 0 aura beaucoup plus d'information.

Remark 1.1. Le modèle de croissance géomètrique

$$N(t + \Delta t) - N(t) = \lambda \Delta t N(t) - \mu \Delta t N(t)$$

$$\Rightarrow \frac{N(t + \Delta t) - N(t)}{\Delta t} = \lambda N(t) - \mu N(t)$$

en faisant  $\Delta t \to 0$ 

$$N'(t) = \lambda N(t) - \mu N(t)$$

D'où l'équation des modèles continues:

$$\underbrace{N'(t)}_{\text{vitesse de variation}} = \underbrace{n(t)}_{\text{vitesse de naissance}} - \underbrace{m(t)}_{\text{vitesse de décès}} + \underbrace{i(t)}_{\text{vitesse d'immigration}} - \underbrace{e(t)}_{\text{vitesse d'émigration}}$$

#### 1.2.1 Modèle de Malthus

• hypothèse:

- solde migration nul: i(t) - e(t) = 0

- vitesse de naissance proportionnel à la population à l'instant t:  $n(t) = \lambda N(t)$ 

- vitesse de décès:  $m(t) = \mu N(t)$ 

• Modèle: 
$$\begin{cases} N'(t) = (\lambda - \mu)N(t) \\ N(0) = N_0 \end{cases}$$

• Solution:  $N(t) = N_0 e^{(\lambda - \mu)t}$ 

**Property.** – Il peut être si comme limite du modèle de croissance géomètrique.

– Lorsque  $r = \lambda - \mu > 0$  croissance est proportionnel.

– Lorsque  $r = \lambda - \mu = 0$  la population n'évolue pas.

– Lorsque  $r = \lambda - \mu < 0$  la population tend vers 0.

• <u>Inconvenients</u>:

- croissance exponentielle pas réaliste. Il faut prendre en compte:

\* la limitation des ressources

\* l'interaction avec l'environnement

#### 1.2.2 Modèle Verhulst

Corrige le modèle de Malthus en prennant en compte la limitation de ressources.

 $\bullet$  <u>Idée</u>: limiter la croissance à un seuil K appelé capacité biotique



Figure 1.2: Modèle de Malthus



Figure 1.3: Modèle de Verhulst

- hypothèse: Sole de migration nul
  - -taux de natalité fonction afiine décroissante de la population  $\lambda \approx \lambda(1-\frac{N(t)}{K})$
  - taux de mortalité fonction affine croissante de la population  $\mu \approx -\mu(1-\frac{N(t)}{K})$

• Modèle: 
$$\begin{cases} N'(t) = rN(t)(1 - \frac{N(t)}{K}) \\ N(0) = N_0 \end{cases}$$

- Solutions:  $N(t) = \frac{K}{1 + (\frac{K}{N_0} 1)e^{-rt}}$  t > 0
- <u>Visualisation</u>:



Figure 1.4: Verhulst solution

**Property.** Si r > 0, on a:

- si  $N_0 = 0$   $N_0 = K$  on a:  $N(t) = N_0 \,\forall t > 0$
- $\sin 0 < N_0 < K, N$  croissante
- si  $N_0 > K$ , N décroissante
- -N possède une limite si  $N_0 > 0$

$$\lim_{t \to \infty} N(t) = K$$

## 1.3 Modèle de croissance logistique

C'est un modèle discrét

- <u>hypothèse</u>: i.e = 0 n-m est une fonction affine de la population, i.e  $n-m=r\Delta t N(t)(1-\frac{N(t)}{K})$
- Modèle: On suppose  $\Delta t = 1$ : On pose  $N_n = N(t_n)$

On a: 
$$\begin{cases} N_{n+1} - N_n = r N_n (1 - \frac{N_n}{K}) \\ N_0 \text{ donné} \end{cases}$$

Property. (À vérifier numeriquement)

- si r < 2, la suite converge vers K
- $\sin 2 < r < 2.449$ , la suite converge vers un cycle
- si 2.449 < r < 2.57, la suite est encore un cycle mais plus complèxe
- $-\sin r > 2.57$ , la suite devient chaotique

# 1.4 Notion de champ de vecteurs associée à une EDO

#### 1.4.1 Généralités et définitions

Les modèles continus de la dynamique de populations sont des problèmes de Cauchy pour les EDO.

(EDO) 
$$\begin{cases} y'(x) = f(t, y(t)) & t \in ]0, \pi[\\ y(0) = y_0 & \end{cases}$$

Оù

$$y:[0,\pi]\longrightarrow \mathbb{R}$$
  
 $t\longmapsto y(t)$ 

$$f: ]0, \pi[\times \mathbb{R} \longrightarrow \mathbb{R}$$
  
 $(t, x) \longmapsto f(t, x).$ 

- Si l'on sait résoudre analytiquement l'EDO (i.e donner l'expression de  $t \mapsto y(y)$ ) alors c'est terminé car il suffit d'étudier la fonction  $t \mapsto y(t)$
- Si l'on ne sait pas détérminer la solution analytique, on peut:
  - 1. s'assurer de **l'éxistence** et **l'unicité** de la solution et de sa **stabilité** vis à vis des données du problème.
  - 2. Puis analyser les propriétés qualitatives de cette solution pour simple analyse de f(t,x)

#### C'est ici qu'intervient les champs de vecteurs.

Illustations.

1. Prenons le modèle de Malthus

$$\begin{cases} N'(t) = rN(t), & t \in ]0, \pi[\\ N(0) = N_0 \end{cases}$$

On sait que  $N(t) = N_0 e^{rt}$ 

2. Voici ce que fait python pour traiter N.



Figure 1.5: Ce que fait python

- 3. Traitons les vecteurs tangents à la courbe  $t \mapsto N(t)$  aux points  $t_n$ , n = 0
- 4. Si l'on connaît les valeurs minimals et maximales de la solutions on peut avoir l'allure de la solution.



Figure 1.6: Une courbe sur des champs de vecteurs

Analysons ce que represente le vecteurs tangent:

- pour une courbe y = g(x)
- python et tout autre logiciel procède ainsi



Figure 1.7: Ce que represente vecteur

Le vecteur tangent à la courbe:

$$\vec{v} = (1, g'(x)) = (1, \frac{dy}{dx}) = (1, \frac{\frac{dy}{dt}}{\frac{dy}{dt}})$$

$$= \frac{1}{\frac{dy}{dt}} (\frac{dx}{dt}, \frac{dy}{dt}) = \frac{1}{\dot{x}(t)} \underbrace{(\dot{x}(t), \dot{y}(t))}_{\text{vecteur tangent}}$$

$$\vec{v} = (\dot{x}(t), \dot{y}(t))$$

Càd  $\vec{v}$  est le vecteur vitesse au points M(x(t),y(t)) a la courbe parametrée  $t\mapsto \begin{cases} x(t)=t\\ y(t)=g(t) \end{cases}$ . On a le résultat.

#### Proposition 1.2.

```
(y obtient solution de l'EDO y'(t) = f(t, y(t)))

$\psi$ (vecteur vitesse de la courbe parametrée t \mapsto (x(t), y(t)) au point M(t_0) = (t_0, y(t_0)) si le vecteur (1, f(t_0, y(t_0))))
```

#### Proposition 1.3.

$$V:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$
 
$$(t,y)\longmapsto V((t,y)).$$
 (si le champ de vecteur associé à l'EDO  $y'(t)=f(t,y(t)))\Leftrightarrow V(t,y)=(1,f(t,y))$ 

#### 1.4.2 Dessins de champs de vecteurs

#### Principe:

À chaque points  $P = (p_x, p_y)$  on trace le vecteur  $\varepsilon V(P)$  où  $\varepsilon$  est une constance positive choisi pour écrire les vecteurs trop longs.

Avec python on écrit  $quiver(P_x, P_y, V_x, V_y, angles='xy')$  RQ 1: Cette fonction est vectorielle, i.e  $P_x, P_y, V_x, V_y$ , sont des numpy array de taille n. RQ 2: On peut ajouter un paramètre pour controles la longeur des vecteurs:

plt.quiver
$$(P_x, P_y, V_x, V_y, angles='xy', sacle=1)$$

Par conséquent, il faut normaliser les vecteurs (i.e le champ de vecteur)

```
Example 1.4. Champ de vecteur du modèle de Verhulst:
```

```
def f(t, y):
   return r * y * (1 - y/k)
```

la grille:

```
lt = np.linspace(tmin, tmax, N+1)
ly = np.linspace(ymin, ymax, M+1)
T, Y = np.meshgrid(lx, ly)
```

Construire les vecteurs:

```
Y = 1 + 0 * T
V = f(T, Y)
norm = np.sqrt(U*U + V*V)
U = U/norm
V = V/norm
```

On place les points:

```
plt.scatter(T, Y, marker='+', alpha = 0.5)
```

On place les vecteurs

```
plt.quiver(T, Y, U, V, angles='xy', scale=N)
```

#### 1.4.3 Recherche de solution approchée de modèles sous python

On cherche une solution approchée de

$$\begin{cases} y'(t) = f(t, y(t)) & t \in ]t_0, t_0 + T[\\ y(t_0) = y_0 \end{cases}$$

avec python. Pour cela il suffit de dire en quels points on veut cette solution. On se donne:

- une liste des instants  $[t_0, t_1, \ldots, t_N]$
- $t_0, y_0$
- Puis, on appelle la fonction <u>odeint</u> du module scipy.integrate de python.
- On obtient une liste  $[y_0, y_1, \ldots, y_N]$

#### Example 1.5. Cas du modèle du Verhulst

• EDO:

```
def f(t, y):
    return \ldots
```

• Instants

```
t0, tf = a, b
N = 100
t = np.linspace(t0, tf, N)
```

• On appelle odeint

```
from scipy.integrate import odeint
                 yapp = odeint(f, t, y), rtol=None, atol=None, tfloat=False)
2
                 plt.plot(t, yapp, \ldots)
```

#### Modèle de prédateur prose (lotka-voltena (1931)) 1.5

H(t): population de sardins P(t): pupulation de reguins

$$\frac{H'(t)}{H(t)} = \text{taux de variation de sardins} = \underbrace{a}_{\text{taux de croissance}} - \underbrace{bP(t)}_{\text{taux de mortalit\'e}}$$
 
$$\frac{P'(t)}{P(t)} = \text{taux d'arriv\'e des requetes} = \underbrace{-c}_{\text{taux de d\'ec\`es}} + \underbrace{dH(t)}_{\text{taux de croissance}}$$

$$\frac{P'(t)}{P(t)}$$
 = taux d'arrivé des requetes =  $\underbrace{-c}_{\text{taux de décès}}$  +  $\underbrace{dH(t)}_{\text{taux de croissance}}$ 

D'où le modèle:

$$\begin{cases} H'(t) = H(t)(a - bP(t)) & t > 0 \\ P'(t) = P(t)(-c + dH(t)) \\ H(0) = H_0, & P(0) = P_0 \end{cases}$$

Si l'on désigne par  $p \ge 0$  la proportion des requêtes en sardines pêchés

$$\begin{cases} H'(t) = H(t)(a - p - bP(t)) & t > 0 \\ P'(t) = P(t)(-c - p - dH(t)) \\ H(0) = H_0 \\ P(0) = P_0 \end{cases}$$

# $_{ ext{CHAPTER}} 2$

#### INTERPOLATION POLYNOMIALE

On va essayer de construire des polynômes qui passent par un ensemble (nuages) de points donnés. Si ces points sont les valeurs d'une fonction, on amerait:

- savoir si le polynôme construit est d'autant plus proche de la fonction que le nombre de point est grand. C'est-à-dre, est-ce que nute des "erreurs" tend vers zero lorsque le nombre de points tend vers l'infini.
- Si oui, comment quantifier cette convergence? C'est-à-dire, quelle est la vitesse (ordre) de cette convergence.



Figure 2.1: evolution-de-population-en-annee

- 1. Approche 1: approximation linéaire.
  - $\bullet\,$  Polynôme de degré 1
- 2. Approche 2:
  - $\bullet\,$ polynôme de degré $2\,$
  - ullet approximation quadratique
- 3. Approche 3: prise en compre d'Historique

# 2.1 Rappels sur les nuts numériques Vitesse (ordre) de convergence valeur ajoutée par itérations

**Definition 2.1.** Soit  $(x_n)_n \subset \mathbb{R}^n$  une suite qui converge vers  $x^* \in \mathbb{R}^n$ , pour une norme  $\| \|$  de  $\mathbb{R}^n$ 

- Si  $k_1 = \lim_{x \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|}$  existe et  $k_1 \in ]-1,1[\setminus \{0\}]$ . On dit que la suite convere <u>linéairement</u> vers  $x^*$  ou que la convergence est d'ordre 1.
- Si  $k_1 = 0$ ,  $k_2 = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^2}$  existe et non nul. On dit que la suite coverge <u>quadratiquement</u> vers  $x^*$ , ou que la convergence est <u>d'ordre 2</u>.
- Si  $k_q = \lim_{n \to \infty} \frac{\|x_{n+1} x^*\|}{\|x_n x^*\|^q}$  existe et  $\neq 0$  la convergence est <u>d'ordre q</u>. La constante  $K_q$  est appelée constante asymptotique d'erreur.

#### **Example 2.2.** 1. $x_n = (0.2)^n$

- On a  $\lim_{n\to\infty} x_n = 0$ . La convergence vers  $x^* = 0$ .
- $\lim_{n\to\infty} \frac{|x_{n+1}-x^*|}{|x_n-x^*|} = \lim_{n\to\infty} \frac{(0.2)^{n+1}}{(0.2)^n} = 0.2 \in ]-1, 1[\setminus \{0\}]$

D'où

- $x_n$  converge à <u>l'ordre 1</u>
- Sa constante asymptotique est  $k_1 = 0.2$
- 2.  $I_n = (0.2)^{2^n}$ . On a  $\lim_{n\to\infty} I_n = 0$  On a:

$$I_{n+1} = (0.2)^{2^{n+1}} = (0.2)^{2^{n} \cdot 2}$$
$$= ((0.2)^{2^{n}})^{2}$$
$$= (I_n)^{2}$$

D'où 
$$\lim_{n\to\infty}\frac{I_{n+1}}{(I_n)^2}=\lim_{n\to\infty}\frac{(I_n)^2}{(I_n)^2}=1$$
 D'où

- convergence d'ordre 2
- de constante  $k_2 = 1$

En pratique, on ne dispose pas de  $K_q$ 

#### Definition 2.3.

La convergence est au moins d'ordre q si et seulement si on a (deuxieme partie d'équation)

#### 2.1.1 Valeur ajoutée par l'itération

Il est question de comparer 2 suites qui ont la même vitesse de convergence.

Remark 2.4. Si  $|x_n - x^*| = 4 \cdot 10^{-8} = 0.\underbrace{0000000}_{\text{7 chiffres}} 4$ . On dira que  $x_n$  et  $x^*$  ont 7 chiffres exactes apres la virgule.

$$\log_{10} |x_n - x^*| = \log_{10} 4 - 8 \log_{10} (10)$$
$$\frac{\log |x_n - x^*|}{\log 10} = \frac{\log 4}{\log 10} - 8$$

i.e  $d_n = -\log_{10}|x_n - x^*|$  mesure de nombre de chiffres décimales entre  $x_n$  et  $x^*$  qui coincident.

#### Remark 2.5.

$$\lim_{n \to \infty} \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} = K_q \Rightarrow K_q \approx \frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q}$$

D'où  $d_{n+1} - qd_n \approx -\log_{10} K_q$ , i.e

$$d_{n+1} + \frac{\log_{10} K_q}{1-q} \approx q(d_n + \frac{\log_{10} K_q}{1-q})$$

Donc, le nombre de chiffres significatives est multiplié par q.

**Proposition 2.6.** Si  $x_n$  converge à l'ordre 1 vers  $x^*$  de constante asymptotique  $K_1$ , alors le nombre d'itérations nécessaires pour gagner un chiffre exacte est la partié enitère de  $-\frac{1}{\log_{10} K_1}$ 

**Proof.** Soit m le nombre d'itérations pour gegner un chiffre. Comme  $d_{n+1} - d_n = -\log_{10} K_1$ , en partant de  $d_n$ , après m itérations on aura

$$d_{n+m} - d_n = -m\log_{10} K_1$$

D'où on aura gagné 1 chiffre si  $d_{n+m} - d_n = 1$ , i.e

$$1 = -m \log_{10} K_1 \Rightarrow m = \left(-\frac{1}{\log_{10} K_1}\right)$$

#### 2.1.2 Obtenir numériquement la vitesse de convergence

On cherche qtq:  $\lim_{n\to\infty}\frac{\|x_{n+1}-x^*\|}{\|x_n-x^*\|^q}=K_q\in\mathbb{R}^*$ 

#### Remark 2.7.

$$\frac{\|x_{n+1} - x^*\|}{\|x_n - x^*\|^q} \approx K_q \Rightarrow \underbrace{\log \|x_{n+1} - x^*\|}_{Y} - \underbrace{q \log \|x_n - x^*\|}_{X} = \log K_q$$

i.e Y = aX + b.

Conclusion: pour détérminer q:

- Traiter la courbe  $\log ||x_n x^*|| \mapsto \log ||x_{n+1} x^*||$
- $\bullet$  Détérminer q comme la parte de la droite passant par le maximum de points.

$$x_n = x_0, x_1, \dots, x_N$$
  
 $x_n - x^* = x_0 - x^*, x_1 - x^*, \dots, x_N - x^*$   
 $x_{n+1} - x^* = x_1 - x^*, x_2 - x^*, \dots, x_{N+1} - x^*$ 

En python:

## 2.2 Interpolation: définition-motivation-exemples

#### 2.2.1 Définition

**Definition 2.8.** Soient  $(x_i, y_i)_{i=\{1,...,N\}}$  un nuage de points (exemple un ensemble discret de point du graphe d'une fonction). Interpoler ce nuage de points correspond à chercher un polynôme de degré N-1, qui passe par chacun de ces points.



Figure 2.2: L'exemple visuel de la définition

#### Questions:

- 1. Comment le construire?
- 2.  $P_{N-1} \in \mathbb{R}_{N-1}[X]$
- 3.  $P_{N-1}(x_i) = y_i$

#### 2.2.2 Motivations

- La solution d'un problème est fournie par une formule représentative: Noyau de la chaleur (i.e convolution) est un cherche la solution en un nombre de points.
  - On approche alors la fonction par un polynôme: i.e chercher le polynôme de degré "bas" proche de la fonction
- La solution d'un problème n'est connue qu'à table des valeurs en un nombre fini de points et on souhaite l'évaluer partout.
  - l'intérpolation
- On peut utiliser l'intérpolation dans
  - l'intégration numérique
  - la résolution numérique des EDO
  - la visualisation scientifique

**Definition 2.9.** Un tel polynôme est appelé **polynôme intérpolateur de lagrange** de degré N-1 de ces points.

#### 2.2.3 exemples d'intérpolation

**Theorem 2.10.** Polynôme intérpolateur de degré 1. Soient  $(x_1, y_1)$ ,  $(x_2, y_2)$  2 points distincts de  $\mathbb{R}^2$ 

• Il existe une unique droite passant par les 2 points.

$$(x,y) \in \mathcal{D} \Leftrightarrow (x-x_1)(y_2-y_1) - (y-y_1)(x_2-x_1) = 0$$

• Si de plus,  $x_1 \neq x_2$ , il existe un unique polynôme de degré 1 (i.e  $P_1 \in \mathbb{R}_1[X]$ ) tq:

$$(x,y) \in \mathcal{D} \Leftrightarrow y = P(x) \text{ avec } P_1 = \frac{(x-x_1)y_1 - (x-x_2)y_2}{x_2 - x_1}$$

Proof.

$$\begin{split} M \begin{pmatrix} x \\ y \end{pmatrix} &\in \mathcal{D} \Leftrightarrow M \vec{M}_1 / M_1 \vec{M}_2 \\ &\Leftrightarrow \det(M \vec{M}_1, M_1 \vec{M}_2) = 0 \\ &\Leftrightarrow \begin{vmatrix} x - x_1 & x_2 - x_1 \\ y - y_1 & y_2 - y_1 \end{vmatrix} = 0 \\ &\Leftrightarrow (x - x_1)(y_2 - y_1) - (y - y_1)(x_2 - x_1) = 0 \end{split}$$

• Si  $x_1 \neq x_2$ 

$$M \in \mathcal{D} \Leftrightarrow y - y_1 = \frac{(x - x_1)(y_2 - y_1)}{x_2 - x_1}$$
  
  $\Leftrightarrow y = P_1(X)$ 

**Remark 2.11.** On a l'écriture équivalente de  $P_1$ :

•

$$P_1 \frac{x_0 y_1 - x_1 y_2}{x_2 - x_1} + X \frac{y_2 - y_1}{x_2 - x_1} \equiv a_0 + a_1 X$$

C'est l'écriture dans la base (1, X) de  $\mathbb{R}_1[X]$ 

•

$$P_1 = \underbrace{\frac{x - x_2}{x_1 - x_2}}_{l_1} y_1 + \underbrace{\frac{x - x_1}{x_2 - x_1}}_{l_2} y_2$$

C'est l'écriture dans la base  $(l_1,l_2)$  de  $\mathbb{R}_1[X]$ 

RQ:

$$l_1(x_1) = 1$$
  $l_1(x_2) = 0$   $l_2(x_1) = 0$   $l_2(x_2) = 1$ 

(base de lagrange)

 $P_1 = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$ 

C'est l'écriture dans la base  $(1,x-x_1)$  de  $\mathbb{R}_1[X]$  (base de newton)

Example 2.12. Méthode de calcul employle

Chercher le polynôme interpolateur de lagrange aux points  $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ 

• Méthode 1:  $x_1 \neq x_2 \neq x_3$ 

 $P_2$  est un polynôme de degré 2

$$P_2 = a_0 + a_1 x + a_2 x^2$$

Lemma 2.13.

$$P_2(x_1) = y_1$$
,  $P_2(x_2) = y_2$  i.e  $a_0 + a_1x_1 + a_2x_1^2 = y_1$ 

$$\underbrace{\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}}_{=\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}}_{=\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}_{=\underbrace{\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix}}_{???} = \underbrace{M^{-1}}_{???} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Remark 2.14. Par 2 points

$$M = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix}$$
 et  $M^{-1} = \frac{1}{x_2 - x_1} \begin{bmatrix} x_2 & -x_1 \\ -1 & 1 \end{bmatrix}$ 

• Méthode 2:

$$P_2 = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$$

$$P_{2}(x_{i}) = y_{i} \Rightarrow \begin{cases} a_{0} & = y_{1} \\ a_{0} + a_{1}(x_{2} - x_{1}) & = y_{2} \\ a_{0} + a_{1}(x_{3} - x_{1}) + a_{2}(x_{3} - x_{1})(x_{3} - x_{2}) & = y_{3} \end{cases}$$

$$\Rightarrow \begin{cases} a_{0} & = y_{1} \\ a_{1} & = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} \\ a_{2} & = \frac{y_{3} - y_{1} - \frac{y_{2} - y_{1}}{x_{2} - x_{1}}(x_{3} - x_{1})}{(x_{3} - x_{1})(x_{3} - x_{2})} \end{cases}$$

Remark 2.15. On a:

$$a_2 = \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_1}$$

càd

$$P_3 = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + \frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_2}(x - x_1)(x - x_2)$$

| $x_1$ | $y_1 =: a_3$ |                                  |                                                                                      |
|-------|--------------|----------------------------------|--------------------------------------------------------------------------------------|
| $x_2$ | $y_2$        | $\frac{y_2-y_1}{x_2-x_1} =: a_1$ |                                                                                      |
| $x_3$ | $y_3$        | $\frac{y_3 - y_2}{x_3 - x_2}$    | $\frac{\frac{y_2 - y_1}{x_2 - x_1} - \frac{y_3 - y_2}{x_3 - x_2}}{x_3 - x_1} =: a_2$ |

• Méthode 3:

$$P_3 = \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)}y_1 + \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}y_2 + \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}y_3 = \sum_{i=1}^{3} \underbrace{\left(\prod_{j=1}^{3} \frac{x - x_j}{x_i - x_j}\right)}_{l_i(x)} y_i$$

Remark 2.16.  $(x_1, y_1), (x_2, y_2)$ 

$$y = \frac{x - x_2}{x_1 - x_2} y_1 + \frac{x - x_1}{x_2 - x_1} y_2$$

# 2.3 Polynôme interpolateur de lagrange

#### 2.3.1 Définition et propriétés

Theorem 2.17. (existence et utilité)

Soit  $x_1, \ldots, x_n$  des réels 2 à 2 distincts et  $y_1, \ldots, y_n$  des rééls quelconques: Il existe <u>un unique</u> polynôme  $P \in \mathbb{R}_{n-1}[X]$  (i.e de degré n-1) tel que  $p(x_i) = y_i, \ i=1,\ldots,n$ 

On dit que P est le polynôme interpolateur de lagrange aux points  $(x_1, y_1), \ldots, (x_n, y_n)$ 

Proof. Soit

$$\Phi: \mathbb{R}_{n-1}[X] \longrightarrow \mathbb{R}^{n-1}$$

$$P \longmapsto \Phi(P) = (P(x_1), \dots, P(x_n)).$$

on a:

- Φ linéaire
- Φ injective

En effet,  $\Phi(P) = 0 \Leftrightarrow P(x_i) = 0 \Leftrightarrow P \equiv 0$  car  $deg(P) \leq n-1$ . D'où  $\Phi$  isomorphisme d'espace vectoriel et la surjection assure le résultat.

**Definition 2.18.** Si f est continue sur  $[a,b] \to \mathbb{R}$ ,  $x_1,\ldots,x_n \in [a,b]$  2 à 2 distincts, alors, l'unique  $P \in \mathbb{R}_{n-1}[X]$  tq  $P(x_i) = f(x_i)$   $i = 1,\ldots,n$  est appelé <u>polynôme d'interpolation de lagrange</u> de f aux points  $x_1,\ldots,x_n$ 

#### 2.3.2 Estimation d'erreur

Theorem 2.19. l'erreur

Soient

- $a < b \ f : [a, b] \to \mathbb{R}$  continue
- $x_1, \ldots, x_n$  2 à 2 distincts de [a, b]
- $\bullet \ P$  polyôme d'interpolation de lagrange de f aux points  $x_i$

Si f est n fois dérivable sur ]a, b[, alors, pour tout  $a \in [a, b]$ , il existe  $t \in ]a, b[$  tq

$$f(x) - P(x) = \omega_n(x) \frac{f^{(n)}(t)}{n!}$$

où  $\omega_n(x) = (x - x_1) \dots (x - x_n)$ 

Corollary 2.20. Si  $f^{(n)}$  est bornée par M sur ]a,b[, alors  $\forall x \in [a,b]$ 

$$|f(x) - P(x)| \le \frac{M}{n!} |\omega_n(x)| \le \frac{M}{n!} (b - a)^n$$

Proof. à faire

#### 2.3.3 Implémentation avec python

```
from scipy.interpolite import lagrange
x = np.array([x.1, x.2, x.3])
y = np.array([y.1, y.2, y.3])
p = lagrange(x, y)
print(p) # affiche le polynome
print(p(3)) # collable
```

## 2.4 Construction des polynôme d'intérpolation de lagrange

 $x_0, \ldots, x_{n-1}$  2 à 2 distincts

#### 2.4.1 Interpolation dans la base canonique (Vandermonde)

#### Construction

$$P = \sum_{i=1}^{n-1} a_i x^i$$

$$P(x_i) = y_i, \ i = 0, \dots, n-1$$

$$\begin{bmatrix} 1 & x_0 & \dots & x_0^{n-1} \\ 1 & x_1 & \dots & x_1^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n-1} & \dots & x_{n-1}^{n-1} \end{bmatrix} \underbrace{\begin{bmatrix} a_0 \\ \dots \\ a_{n-1} \end{bmatrix}}_{a} = \underbrace{\begin{bmatrix} y_1 \\ \dots \\ y_{n-1} \end{bmatrix}}_{b}$$

Matrice de Vandermonde

- elle pleine
- malconditionnée

```
def VDM_Mat(x):
    x_n = np.reshape(x, (x.size, 1))
    return x_n ** np.arange(x.size)

def VDM_Poly(x, y):
    M = VDM_Mat(x)
    a = np.linalg.solve(M, y)
    return a
```

#### Evaluation efficace de P algorithme de Horner

**Proposition 2.21.** Si X est un réel et Q est le polynôme défini par

$$Q(X) = a_0 X^n + a_1 X^{n-1} + \ldots + a_{n-1} X + a_n$$

alors la suite

$$\begin{cases} q_0 = a_0 \\ q_k = q_{k-1}x + a_k, \ k = 1, \dots, n \end{cases}$$

vérfiie  $q_n = Q(x)$ 

Proof. (laissé exo)

```
Q(X) = X^2 + 2X + 1 \equiv (X+2)X + 1
```

```
def Horner(P, xx):
    y = 0
    for a in P:
        y = y * xx + a
    return y
```

```
def IntuP_VDM(x, y, xx):
    a = VDM_Poly(x, y)
    yy = Horner(a[::-1], xx)
    return yy
```

# 2.4.2 Interpolation dans la base duale: Formule de lagrange et points barycentrique

#### Construction

Idée prendre pour base de  $\mathbb{R}_{n-1}[X]$  l'image réciproque de la base canonique de  $\mathbb{R}^{n-1}$  pour  $\Phi$ 

$$L_{i}(x_{j}) = \begin{cases} 1 \text{ si } i \neq j \\ 0 \text{ sinon} \end{cases}$$

$$L_{i}(x) = \frac{\prod_{j \neq i}^{n-1} \sum_{j=0}^{n-1} (x - x_{j})}{\prod_{j=0}^{n-1} \sum_{j \neq i}^{n-1} (x_{i} - x_{j})} = \prod_{j=1}^{n-1} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$P(X) = \sum_{j=0}^{n-1} y_{j} L_{i}(X)$$

Theorem 2.22.

$$f:[a,b]\to\mathbb{R}$$
 $x_1,\ldots,x_n$ 
 $P$ 

Si f n fois dérivable,

$$\forall x \in [a, b], \ \exists t \in ]a, b[, f(x) - P(x)] = \omega_n(x) \frac{f^{(n)}(t)}{n!}$$

**Proof.** du théorème (erreur)

Soit x fixé des  $[a,b] \setminus \{x_1,\ldots,x_n\}$ 

On pose

$$F(t) = f(t) - P(t) - \frac{f(x) - P(x)}{\omega_n(t)} \omega_n(t)$$

F est n fois dérivable et P annule aux n+1 points  $x_1,\ldots,x_n,x$ . D'apres le théorème Rolle (généralisé)

$$\exists t \in ]a, b[ \text{ tq } f^{(n)}(t) = 0$$

Or

$$\underbrace{F^{(n)}(t)}_{=0 \text{ par hyp}} = f^{(n)}(t) - \underbrace{P^{(n)}(t)}_{=0 \text{ car } deg(P) < n} - \frac{f(x) - P(x)}{\omega_n(x)} n!$$

D'où

$$f(x) - P(x) = \omega_N(x) \frac{f^{(n)}(t)}{n!}$$

Par ailleurs, si  $x \in \{x_1, \dots, x_n\}, f(x) - P(x) = 0$ 

$$\omega_n(x) = (x - x_1) \dots (x - x_n)$$

**Proof.** corollaire

$$|f(x) - P(x)| = |\omega_n(x)| \frac{|f^{(n)}(t)|}{n!}$$

comme  $x, x_i \in [a, b]$ , on a  $|x - x_i| \le b - a$  et  $|f^{(n)}(t)| \le M$ , on a:

$$|f(x) - P(x)| \le \frac{M}{n!} (b-a)^n$$

Evaluation efficace: formule barycentrique

Proposition 2.23. On a

$$P(x) = \sum_{i=1}^{n} y_i \frac{\omega_n(x)}{(x - x_i)\omega'_n(x_i)}$$
$$= \frac{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x_i)} y_i}{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x_i)}}$$

**Proof.** Comme

$$\omega_n(x) = \prod_{i=1}^n (x - x_i) \Rightarrow \omega'_n(x) = \sum_{i=1}^n \prod_{j=1}^n (x - x_j)$$

D'où

$$\omega'_n(x_i) = \prod_{j=1}^n \sum_{j \neq i}^n (x_i - x_j) \quad i = 1, \dots, n$$

D'où

$$L_i(x) = \frac{\omega_n(x)}{x - x_i} \frac{1}{\omega'_n(x_i)}$$

Et

$$\sum_{i=1}^{n} y_i L_i(x) = \sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega_n'(x)} \omega_n(x)$$
$$= \omega_n(x) \sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega_n'(x_i)}$$

Or pour  $P \equiv 1$  on a  $y_i = 1, i = 1, \dots, n$ , on a

$$1 = \omega_n(x) \sum_{i=1}^n \frac{1}{(x - x_i)\omega_n'(x)}$$

D'où

$$\omega_n(x) = \left(\sum_{i=1}^n \frac{1}{(x - x_i)\omega'_n(x)}\right)^{-1}$$

Enfin,

$$P(x) = \frac{\sum_{i=1}^{n} \frac{y_i}{(x - x_i)\omega'_n(x)}}{\sum_{i=1}^{n} \frac{1}{(x - x_i)\omega'_n(x)}}$$

**Remark 2.24.** 1. Attention: si  $x = x_i$ , i = 1, ..., n

- 2. Exercice: calculer la complexité de cette formule et comparer à la première.
- 3. Ajouter un nouveau point d'interpolation ablige à refaire tous les calculs.

#### 2.4.3 Méthode des différences divisées

Préliminaires: Interpolation de Neville

**Lemma 2.25.** Considérons n points 2 à 2 distincts  $x_1, \ldots, x_n$  et n réels  $y_1, \ldots, y_n$ . Pour  $1 \le k \le l \le n$ , posons  $P_{x_k, \ldots, x_l}$  le polynôme d'interpolation aux points

$$(x_k, y_k) \dots (x_l, y_l)$$

Nous avons

$$P_{x_k,...,x_l}(x) = \frac{(x - x_l)P_{x_l,...x_{l-1}}(x) - (x - x_k)P_{x_{k+1},...x_l}(x)}{x_k - x_l}$$

Schématiquement

$$P(x) = \underbrace{x_{k}, \underbrace{x_{k+1}, \dots, x_{l-1}, x_{l}}_{P_{1}}}_{x_{k} - x_{l}} P_{1} + \underbrace{\frac{x - x_{k}}{x_{l} - x_{k}}}_{P_{2}} P_{2}$$

#### Construction de l'intérpolation de Newton

**Definition 2.26.** (Polynôme de Newton) Soit  $n \ge 1$  entier,  $x_1, \ldots, x_n$  n rééls 2 à 2 distincts. Les polynômes de Newton  $\omega_0, \ldots, \omega_n$  associés à ces points sont définis par

$$\begin{cases} \omega_0 = 1 \\ \omega_j = (x - x_1) \dots (x - x_j), \quad (1 \le j \le n) \end{cases}$$

Remark 2.27.  $\{\omega_j\}_{j=1,\dots,k}$  est une base de  $\mathbb{R}_k[x]$ 

• Ainsi le polynôme d'intérpolation de Lagrange associé aux points  $(x_1, y_1) \dots (x_n, y_n)$  s'écrit

$$P = \sum_{k=0}^{n-1} \alpha_k \omega_k$$

où  $\alpha_k$  sont solutions de

$$y_i = \sum_{k=0}^{n-1} \alpha_k \omega_k(x_i), \quad i = 1, \dots, n$$

On parle de développement de Newton du polyôme de Lagrange

**Definition 2.28.** On appelle differences divisées d'ordre j-1  $(1 \le j \le n)$  associées aux points  $(x_1, y_1), \ldots, (x_i, y_i)$  les nombres  $d_{i,j}$   $(i = j \ a \ n)$  définis par

- $d_{i,1} = y_i$  i = 1, ..., n
- $d_{i,j} = \frac{d_{i,j-1} d_{i-1,j-1}}{x_i x_{i-j+1}}$  j=2 à  $n,\ i=j$  à n

Lorsque  $y_i = f(x_i)$   $i = 1, \ldots, n, d_{i,j}$  est généralement noté  $f[x_{j-i+1}, \ldots, x_{j-1}, x_j]$  et est appelé difference divisé d'ordre j-1 aux i points  $x_{j-i+1}, \ldots, x_j$ 

Python:

```
def MatriceDifferencesDivisee(x, y):
    n = len(y)
    d = np.zeros((n, n))
    d[:, 0] = 1.0 * y
    for j in range(1, n):
        d[j:n, j] = (d[j:n, j-1] - d[j-1:n, j-1]) / (x[j:n] - x[0:n-j])
    return d
```

Remark 2.29. • Le "stencil" (squelette) est

$$i-1,j-1\\ /\\ i,j-1----i,j$$

- ullet La hauteur de stencil est j
- Le support du stencil est  $[x_{i-j}, \ldots, x_i]$

**Proposition 2.30.** On a  $d_{j,j} = \alpha_{j-1}$  pour  $j \in [1, ..., n]$ , càd:

$$P = \sum_{j=1}^{n} d_{j,j} \omega_{j-1}$$

Ainsi, pour calculer P il suffit de connaître  $d_{j,j}$   $j=1,\ldots,n$ 

#### Calcul efficace du polynôme

**Proposition 2.31.** Soit donné  $x_0, \ldots, x_n$  dés rééls 2 à 2 distincts. Soit Q le polyôme défini par

$$Q(x) = a_0 + \sum_{i=1}^{n} a_i \prod_{j=1}^{i-1} (x - x_j) \equiv \sum_{i=0}^{n} a_i \omega_i(x)$$

La suite des polynômes  $Q_0, \ldots, Q_n$  définies par

$$\begin{cases} Q_n = a_n \\ Q_k = a_k + (x - x_k)Q_k \quad k = n - 1, \dots, 0 \end{cases}$$

vérifie  $Q_0 = Q$ 

```
def HornerNewton(d, x, xx):
    n = len(d)
    yy = 0 * xx + d[n-1]
    for i in range(n-2, -1, -1):
        yy = d[i] + (xx - x[i]) * yy
```

return yy

```
def DifferencesDivisees(x, y):
    d = MatriceDifferencesDivisee(x, y)
    a = np.diag(d)
    return a
```

# 2.5 Comportement asymptotique "lorsque $N \to \infty$ "

#### 2.5.1 Observation

On n'a pas toujours une convergence uniforme de l'interpolation

**Example 2.32.**  $f(x) = \sqrt{x}$  avec  $[a, b] = [0, 1], x_1, \dots, x_n$  équirépartis sur [a, b]

$$\max_{a \le t \le b} |f(t) - P(t)| \xrightarrow[n \to \infty]{} +\infty$$

ce phénomène est appelé phénoème de Runge.

Il en reste une solution:

 $\bullet$  si f est lipschitziènne sur [a,b] ou Hölderienne

$$\exists a \in ]0,1[,|f(x)-f(y)| \le C|x-y|$$

• Si  $x_1, \ldots, x_n$  sont les racines du n-ème polynôme de Tchebychev.

$$|f(x) - P(x)| \le \frac{|f^{(n)}(x)|}{n!} \prod_{i=1}^{n} (x - x_i)$$

#### 2.5.2 Polynôme de Tchebychev

Definition 2.33. Les polynômes de Tchebychev sont définis par la recurrence:

$$\begin{cases} T_0 = 1 \\ T_1 = x \\ T_n = 2xT_{n-1} - T_{n-2} & n \ge 2 \end{cases}$$

Proposition 2.34. Le n-ième polynôme de Tchebychev vérifie:

- 1.  $T_n$  est de degré exactement n et son coefficient de plus haut degré est  $2^{n-1}$ ,  $n \ge 1$
- 2.  $T_n$  a n racines distinctes simples

$$T_n(x) = 0 \Leftrightarrow x \in \{x_1, \dots, x_n\}, x_j = \cos(\frac{2j-1}{2n}\pi) \quad (1 \le j \le n)$$

3.  $|T_n(x)| \le 1$ ,  $\forall x \in [-1, 1], |T_n(x)| = 1 \Leftrightarrow x \in \{x_0, \dots, x_n\} x_k = \cos(k\frac{\pi}{n})$ 

$$|T_n(x)| = 1 \text{ si } x \in \{x_k\} \quad x_k = \cos(k\frac{\pi}{n}) \quad (0 \le k \le n)$$

**Proof.** 1. Par récurrence:

Soit  $(P_n)$  la propriété " $T_n$  est de degré n et son coef. de plus haut degré est  $2^{n-1}$ ",  $n \ge 1$ .  $P_0$  et  $P_1$  vraies  $(k \le n)$ .

Supposons  $P_k$  vrai et montrons que  $P_{n+1}$  vrai.

En effet, nous avons  $T_{n+1} = 2xT_n - T_{n-1}$ , on en déduit que  $P_{n+1}$  est vraie.

Maintenant,

$$\forall x \in [-1, 1], T_n(x) = \cos(n \cdot \arccos(x))$$

En effet, pour 
$$\begin{cases} n=0, T_0(x)=1=\cos(0) \\ n=1, T_n(x)=\cos(\arccos(x)) \end{cases} \text{ et } n>1$$

$$\cos((n+1)\arccos(x)) = \cos(n\arccos(x))\cos(\arccos(x)) - \sin(n\arccos(x))\sin(\arccos(x))$$

$$\cos((n-1)\arccos(x)) = \cos(n\arccos(x))\cos(\arccos(x)) + \sin(n\arccos(x))\sin(\arccos(x))$$

On a:

$$\cos((n+1)\arccos(x)) = 2x\cos(n\arccos(x)) - \cos((n-1)\arccos(x))$$

D'où  $x \mapsto \cos(n \arccos(x))$  vérifie la même récurrence sur [-1,1] que  $T_n$ . Par conséquent les 2 coïncident sur [-1,1]. On en déduit  $\forall x \in [-1,1]$ 

2.

$$T_n(x) = 0 \Leftrightarrow \cos(n\arccos(x)) = 0$$

$$\Leftrightarrow n\arccos(x) = \frac{\pi}{2} \mod \pi$$

$$\Leftrightarrow \arccos(x) = \frac{\pi}{2n} \mod \frac{\pi}{n} \qquad \Leftrightarrow x = \cos(\frac{\pi}{2n} + k\frac{\pi}{n}) \quad 0 \le k \le n - 1$$

3.  $|\cos(x)| \le 1$  D'où  $|T_n(x)| \le 1, \forall x \in [-1, 1]$ 

$$|T_n(x)| = 1 \Leftrightarrow n \arccos(x) = 0 \mod \pi$$
  
 $\arccos(x) = 0 \mod \frac{\pi}{n}$ 

$$\in x \in \{\cos(k\frac{\pi}{n}), k \in [0, n]\}$$

**Proposition 2.35.** Si  $Q_n$  est un polyôme de degré n de même coeff. de plus haut degré que  $T_n$ , alors:

$$\max_{x \in [-1,1]} |Q_n(x)| \ge \max_{x \in [-1,1]} |T_n(x)| = 1$$

**Corollary 2.36.** Si  $\xi_1, \ldots, \xi_n$  sont n points 2 à 2 distincts de [-1, 1], on a:

$$\max_{x \in [-1,1]} \left| \prod_{j=1}^{n} (x - \xi_j) \right| \ge \max_{x \in [-1,1]} \left| \prod_{j=1}^{n} (x - x_j) \right| = \max_{x \in [-1,1]} \frac{1}{2^{n-1}} |T_n(x)| = \frac{1}{2^{n-1}}$$

où  $x_j$  sont les racines de  $T_n$ 

#### 2.5.3 Application

Soit  $\xi_1, \dots, \xi_n$ , 2 à 2 distincts, P le polynôme de lagrange de f (suffisament régulière), alors:

$$|f(x) - P(x)| \le \frac{\|f^{(n)}\|_{\infty}}{n!} |\omega_n(x)|$$
$$\le \frac{\|f^{(n)}\|_{\infty}}{n!} \|\omega_n(x)\|_{\infty}$$

où  $\omega_i = \prod_{j=1}^n (x - \xi_j)$  et  $\|.\|_{\infty}$  et loi norme inf sur [-1,1]. Ainsi, le choix de  $\xi_i$  qui possede la plus petite valeur de  $\|\omega_n\|_{\infty}$  est celui des racines du n-ìeme polynôme de Tchebychev.

24

CHAPTER 2. INTERPOLATION POLYNOMIALE

Remark 2.37. On se ramène à un intervalle quelconque [a,b] par

$$x_j = \frac{a+b}{2} + \frac{b-a}{2}\cos(\frac{2j-1}{2n}\pi) \quad (1 \le j \le n)$$

sont les racines des polynômes de Tchebychev sur  $\left[a,b\right]$ 

# CHAPTER 3

# INTÉGRATION NUMÉRIQUE

But: On souhaite calculer au mieux

$$I(f) = \int_{a}^{b} f(x) \, dx$$

où  $f:[a,b] \to \mathbb{R}$  donné Contraintes

- $\bullet$  f n'a pas de primitive connue (ou évidente)
- $\bullet\,\,f$ n'est connue ou ne peut être évaluée qu'en un certain nombre fini de points

$$(x_i, 0 \le i \le n \text{ sur } [a, b])$$



Figure 3.1: Exemple d'une intégration

$$I(f) = \int_{a}^{b} f(x) dx$$
$$S(f, \sum_{N} = \sum_{i=0}^{N} f(\xi_{i}) \underbrace{(x_{i+1} - x_{i})}_{\omega_{i}}$$

somme de Rieman associée à  $\sum_N.$  Théorème:  $\lim_{N\to\infty}S(f,\sum_N)=\int_a^bf(x)\;dx$ 

#### 3.1 Formule de quadrature

**Definition 3.1.** Étant donnée N points  $x_1, \ldots, x_N$  de l'intervalle [a, b] et N poids  $\omega_1, \ldots, \omega_N \in \mathbb{R}$  associées à chaque points.

On appelle formule de quadrature associé aux  $(x_i)$ ,  $(\omega_i)$  l'application linéaire sur  $\mathcal{C}^0([a,b])$ 

$$\tilde{I}(f) = \sum_{i=1}^{N} \omega_i f(x_i)$$

On dit que la formule de quadrature est d'ordre p si elle est exacte pour les polynôme de degré  $p_1$ . i.e

$$\tilde{I}(Q) = \int_a^b Q \, dx \forall Q \in \mathbb{R}_{p-1}[X]$$

et s'il existe  $Q \in \mathbb{R}_{p-1}[X]$  tq  $I(Q) \neq \int_a^b Q \, dx$ , autrement dit si elle exacte pour le polyôme de degré <u>au plus</u> p-1.

Remark 3.2. On note:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(x_{i})$$

| Points | $x_1$      | $x_2$      |  |
|--------|------------|------------|--|
| Poids  | $\omega_1$ | $\omega_2$ |  |

Example 3.3. Soit la formulle de quadrature

$$\int_{a}^{b} f(x) dx \approx (b - a)f(a)$$

• si f=1, on a

$$\int_{a}^{b} f(x) \, dx = b - a = (b - a)f(a)$$

elle exacte pour les polynômes de degré 0.

•  $\operatorname{si} f(x) = x \text{ on a}$ 

$$\int_{a}^{b} f(x) \, dx = \left[ \frac{x^2}{2} \right]_{a}^{b} = \frac{(b-a)(a+b)}{2} \neq (b-a)a$$

elle n'est pas exacte pour les polynômes de degré 1.

Conclusion: elle est exacte pour les polynômes de degré au plus 0. Elle est donné d'ordre 1.

#### 3.1.1 Construction de formule de quadrature à points donnés

**Proposition 3.4.** Soit  $x_1, \ldots, x_N, N$  points 2 à 2 distincts de [a, b].

1. Il existe un unique  $(\omega_1, \ldots, \omega_N) \in \mathbb{R}^N$  tels que

$$\tilde{I}(Q) \stackrel{def}{=} \sum_{i=1}^{N} \omega_i Q(x_i) = \int_a^b Q(x) dx \quad \forall Q \in \mathbb{R}_{N-1}[X]$$

2. Pour toute function  $f:[a,b]\to\mathbb{R}$  de calsse  $\mathcal{C}^N$ 

$$\left| \int_{a}^{b} f(x) \, dx - \tilde{I}(f) \right| \le \frac{(b-a)^{N+1}}{N!} \|f^{(N)}\|_{\infty}$$

**Proof.** Soit  $l_i$ , i = 1, ..., N la base de Lagrange associé aux  $x_i$ , i.e

$$l_i(x) = \prod_{j=1, j \neq i}^{N} \frac{X - x_j}{x_i - x_j}$$

on a  $l_i \in \mathbb{R}_{N-1}[X]$ .

Soit  $Q \in \mathbb{R}_{N-1}[X]$ , Q coïncide avec le polynôme d'interpolation de lagrange aux points  $x_1, \dots, x_N$ 

$$Q(X) = \sum_{i=1}^{N} Q(x_i)l_i(X)$$

d'où

$$\int_a^b Q(x) dx = \sum_{i=1}^N Q(x_i) \int_a^b l_i(x) dx$$
$$= \sum_{i=1}^n Q(x_i)\omega_i$$

où  $\omega_i = \int_a^b l_i(x) \, dx$ . D'où l'existence. Unicité: Soit  $\tilde{\omega_i} \, i = 1, \dots, N$ ,

$$k: \int_{a}^{b} Q(x) dx = \sum_{i=1}^{N} \tilde{\omega_{i}} Q(x_{i}) \quad \forall Q \in \mathbb{R}_{N-1}[X]$$

alors, puisque  $l_i \in \mathbb{R}_{N-1}[X]$ , on a

$$\int_{a}^{b} l_{i}(x) dx = \tilde{\omega_{i}} \quad i = 1, \dots, N$$

D'où  $(\tilde{\omega}_i = \omega_i)$  et on a l'unicité

Estimation d'erreur:

Soit f de classe  $\mathbb{C}^N$  sur [a,b] et  $R_f$  un poly d'interpolation aux points  $x_i$   $i=1,\ldots,N$ . On a:

$$\tilde{I}(f) = \sum_{i=1}^{N} f(x_i)\omega_i = \sum_{i=1}^{N} P_f(x_i)\omega_i$$
$$= \int_a^b P_f(x) dx$$

D'où

$$\left| \int_a^b f(x) \, dx - \tilde{I}(f) \right| = \left| \int_a^b f(x) \, dx - \int_a^b P_f(x) \, dx \right|$$

$$\leq \int_a^b |f(x) - P_f(x)| \, dx$$

$$\leq \frac{\|f^{(N)}\|_{\infty} (b - a)^N}{N!} (b - a)$$

$$\left| \int_{a}^{b} f(x) \, dx - \tilde{I}(f) \right| \le \frac{\|f^{(N)}\|_{\infty}}{N!} (b - a)^{N} (b - a)$$

python:

from scipy.Integrate import quad quad(f, a, b) =

# 3.2 Utilisation des formules de quadrature. Formule de quadrature élémentaires et composées

#### 3.2.1 Définition

On appelle formule de quadrature élémentaire  $I_e$  sur [-1,1] associée aux poits  $\xi_i \in [-1,1]$  et de poids  $\omega_i$ ,  $i=1,\ldots,N$ , la formule

$$I_e(f) = \sum_{i=1}^{N} \omega_i f(\xi_i) \quad \text{pour } f \in \mathcal{C}^0([-1,1])$$

Une subdivision d'un intervalle [a,b] en n points  $a=x_1 < x_2 < \ldots < x_n = b$  étant donnée, elle induit une formule de quadrature composite  $I_c$  pour [a,b]

$$I_c = \sum_{i=1}^{n-1} I_e(f; x_i, x_{i+1}) \equiv \sum_{i=1}^{n-1} \frac{x_{j+1} - x_j}{2} \sum_{i=1}^{N} \omega_i f(x_{i,j}) \text{ où } x_{i,j} = \frac{(x_j + x_{j+1}) + \xi_i (x_{j+1} - x_j)}{2}$$

Illustation:



Figure 3.2: 
$$I_e(f) = \sum_{i=1}^{N} \omega_i f(\xi_i) \approx \int_{\alpha}^{\beta} f(t) dt$$

$$\int_{\alpha}^{\beta} f(t) dt \approx \frac{s+1}{2} = \frac{t-\alpha}{\beta-\alpha} \Rightarrow \eta = \alpha + \frac{s+1}{2}(\beta-\alpha)$$
$$dt = \frac{\beta-\alpha}{2} ds$$

$$\int_{\alpha}^{\beta} f(t) dt = \frac{\beta - \alpha}{2} \int_{-1}^{1} f(\alpha + \frac{s+1}{2}(\beta - 1)) ds \approx \frac{\beta - \alpha}{2} \sum_{i=1}^{N} \omega_{i} f(\underline{\alpha + \frac{\xi_{i} + 1}{2}(\beta - 1)})$$

$$\approx \sum_{i=1}^{N} \left(\frac{\beta - \alpha}{2}\omega_{i}\right) f(x_{i})$$

$$\approx I_{e}(f, \alpha, \beta)$$

#### 3.2.2 Méthode de quadrature clamique

Méthode de rectangles

Definition 3.5.

$$\int_{\alpha}^{\beta} f(t) dt \approx f(\alpha)(\beta - \alpha)$$



Figure 3.3: methode-rectangle

**Proposition 3.6.** • Si f est  $\mathcal{C}^1$  sur  $[\alpha, \beta]$  l'erreur de la méthode de quadrature élémentaires :

$$E_e(f) = I(f) - I_e(f) = \frac{f'(c)}{2}(\beta - \alpha)^2$$
 où  $c \in ]\alpha, \beta[$ 

• Si f est de classe  $C^1$  sur [a,b], l'erreur de quadrature de la méthode composite associée à une subdivision uniforme de pas h est majorée par

$$|E_c(f)| = |I(f) - I_c(f)| \le h \underbrace{\|f'\|_{\mathcal{C}^0([a,b])}}_{\max_{a \le x \le b} |f'(x)|} \frac{b-a}{2}$$

**Proof.** Posons  $F(x) = \int_a^x f(t) dt$ , F est de  $\mathcal{C}^2$  car f est  $\mathcal{C}^1$ . Par Taylor lagrange à l'ordre 2 en  $\alpha$  donne

$$F(\beta) = F(\alpha) + F'(\alpha)(\beta - \alpha) + F''(c)\frac{(\beta - \alpha)^2}{2} \text{ où } c \in ]\alpha, \beta[$$

D'où

$$\int_{\alpha}^{\beta} f(t) dt - f(\alpha)(\beta - \alpha) = \frac{f'(c)}{2}(\beta - \alpha)^{2}$$

On en déduit

$$|I(f) - I_c(f)| = \left| \int_a^b f(t) dt - I_c(f) \right|$$

$$= \left| \sum_{j=0}^{n-1} \int_{x_j}^{x_{j+1}} f(t) dt - \sum_{j=0}^{n-1} f(x_j)(x_{j+1} - x_j) \right|$$

$$\leq \sum_{j=0}^{n-1} \left| \int_{x_j}^{x_{j+1}} f(t) dt - f(x_j)(x_{j+1} - x_j) \right|$$

$$\leq \sum_{j=0}^{n-1} \frac{\|f'\|_{\infty}}{2} (x_{j+1} - x_j)^2$$

$$\leq h \frac{\|f'\|_{\infty}}{2} \sum_{j=0}^{n-1} (x_{j+1} - x_j)$$

$$\leq h \frac{\|f'\|_{\infty}}{2} (b - a)$$

### 3.2.3 Méthode de trapèze

Definition 3.7.

$$\int_{a}^{b} f(x) dx \approx \frac{f(a)f(b)}{2}(b-a)$$



Figure 3.4: Méthode de trapeze

**Proposition 3.8.** Si f est C? sur [a, b]

$$|E_c(f)| = |I(f) - I_c(f)| \le h^2 ||f''||_{\infty} \frac{(b-a)}{12}$$

Proof. La formule était exacte pour les poly de degré 1, elle est du type interpolation:

$$I_c(f) = \int_a^b P_f(t) \, dt$$
où  $P_f$  est le poly d'ext aux points  $a,b$ 

D'où

$$|E_c(f)| = |I(f) - I_c(f)| = \left| \int_a^b (f(t) - P_f(t)) dt \right|$$

$$\leq \frac{\|f''\|_{\infty}}{2!} \int_a^b (x - a)(b - x) dx$$

On en déduit que:

$$|I(f) - I_c(f)| = \left| \sum_{j=0}^{n-1} \left( \int_{x_j}^{x_{j+1}} f(t) dt \right) - \frac{f(x_j) + f(x_{j+1})}{2} (x_{j+1} - x_j) \right|$$

$$\leq \sum_{j=0}^{n-1} |E_c(f)|$$

$$\leq \frac{\|f''\|_{\infty}}{12} \sum_{j=0}^{n-1} h^b = \frac{h^2}{12} \|f''\|_{\infty} \sum_{j=0}^{n-1} h$$

$$\leq \frac{1}{12} h^2 \|f''\|_{\infty} (b - a)$$

#### 3.2.4 Méthode de point-milieu

Definition 3.9.

$$\int_{\alpha}^{\beta} f(t) dt \approx f(\frac{\alpha + \beta}{2})(\beta - \alpha)$$



Figure 3.5: methode-de-point-milieu

**Example 3.10.** degré d'exactitude sur [-1,1] elle devient

$$\int_{-1}^{1} f(s) \, ds \approx 2f(0)$$

- Pour f = 1, on a  $I(f) = \int_{-1}^{1} ds 2 = 2 \cdot 1 = I_c(f)$ . D'où  $I_c$  est excte pour poly de degré <u>au moins 0</u>.
- Pour f = s on a  $I(f) = \int_{-1}^{1} s \, ds = 0 = 2 \cdot 0 = I_c(f)$ . D'où  $I_c$  est exacte pour poly de degré au moins 1.
- Pour  $f = s^2$  on a  $I(f) = \int_{-1}^1 s^2 ds = \frac{2}{3} \neq 2 \cdot 0^2 = I_c(f)$ . La formule élémentaire n'est pas exacte pour poly de degré 2. Donc, la formule de point-milieuest exacte pour les polynômes de degré 1.

**Proposition 3.11.** • Si f est  $C^2([a,b])$  on a:

$$E_c(f) = I(f) - I_c(f) = \frac{f''(c)}{24}(b-a)^3$$

• Si f est  $C^2$  sur [a, b], l'erreur de quadrature de la méthode composite associée à une subdivision uniforme de [a, b] de pas h est majorée par

$$|E_c(f)| = |I(f) - I_c(f)| \le h^2 \frac{||f''||_{\infty}}{24} (b - a)$$

Proof. exo

#### 3.2.5 Méthode de Simpson

Definition 3.12.

$$\int_{\alpha}^{\beta} f(t) dt \approx \frac{\beta - \alpha}{6} \left( f(\alpha) + 4f(\frac{\alpha + \beta}{2}) + f(\beta) \right)$$



Figure 3.6: methode-de-simpson

**Proposition 3.13.** • Si f est  $C^{3+1}$  sur  $[\alpha, \beta]$  on a:

$$E_c(f) = \int_{\alpha}^{\beta} f(x) dx - I_e(f) = -\frac{f^{(4)}}{2880} (\beta - \alpha)^5 \text{ où } c \in ]\alpha, \beta[$$
$$|E_c(f)| \le h^4 ||f^{(4)}||_{\infty} \frac{(b-a)}{2880}$$

#### 3.2.6 Méthode de Newton-Côte

C'est une généralisation des methodes élémentairs.

**Definition 3.14.** On appelle méthode de Newton-Côte d'ordre k la méthode élémentaire construite en utilisant le polynôme d'intérpolation d'ordre k, associé aux k+1 points équidistants

$$x_i = \alpha + i \frac{\beta - \rho}{k}, \quad i = 0, \dots, k$$

$$\int_{\alpha}^{\beta} f(x) dx \approx \sum_{i=0}^{k} \omega_i f(x_i)$$

où 
$$x_i = \alpha + i \frac{\beta - \rho}{k}, \quad i = 0, \dots, k$$
 et

$$\omega_i = \int_{\alpha}^{\beta} \prod_{\substack{j=0\\j\neq i}}^{k} \frac{x - x_j}{x_i - x_j} \, dx$$

**Remark 3.15.** • Cette formule est  $\begin{cases} d' \text{ordre } k \text{ si } k \text{ impair} \\ d' \text{ordre } k+1 \text{ si } k \text{ pair} \end{cases}$ 

- $\bullet$  On n'utilise les méthodes que pour k pair sauf le cas k=1
- $\bullet\,$  Si k=1 on a la formule des trapèzes

- $\bullet\,$  Si k=2 on a la formule de Simpson
- $\bullet\,$  Si k=4 on a la formule de Boole-Villarceau

$$\int_{-1}^{1} f(x) dx \approx \frac{7}{90} f(-1) + \frac{16}{49} f(-\frac{1}{2}) + \frac{2}{15} f(0) + \frac{16}{45} f(\frac{1}{2}) + \frac{7}{90} f(1)$$

- Pour k = 6, on a la formule de Hordy
- Pour  $k \geq 8$  on a des points  $\omega_i$ , négatifs, ce qui rendent les formules sembles aux erreurs d'arronde.

**Theorem 3.16.** Soient  $I(f) = \int_{\alpha}^{\beta} f(x) dx$ ,  $I_e(f) = \sum_{i=0}^{k} \omega_i f(x_i)$ ,  $E(f) = I(f) - I_e(f)$ . Supposons que la méthode d'intégration soit d'ordre  $p \ge k$ . Posons

$$K(t) = E(x \mapsto (x - t)_{+}^{p}) = \int_{\alpha}^{\beta} (x - t)_{+}^{p} dx - \sum_{i=0}^{k} \omega_{i}(x_{i} - t)_{+}^{p}$$

avec  $x_+ = \begin{cases} x \text{ si } x \geq 0 \\ 0 \text{ sinon} \end{cases}$  . On a:

$$E(t) = \int_{\alpha}^{\beta} \frac{K(t)}{p!} f^{(p+1)}(t) dt \quad \forall f \in \mathcal{C}^{p+1}([\alpha, \beta])$$

Si de plus K est de signe constante sur  $[\alpha, \beta]$ , il existe  $c \in [\alpha, \beta]$  telle que

$$E(f) = f^{(p+1)}(c) \int_{\alpha}^{\beta} \frac{K(t)}{p!} dt$$

On appelle Noyay de Peano associée à la méthode, la fonction

$$t\mapsto \frac{K(t)}{p!}$$

**Proof.** Formule de Taylor avec reste intégrale:

$$f(x) = \sum_{i=0}^{l} \frac{(x-\alpha)^{l}}{l!} + \int_{\alpha}^{x} \frac{(x-t)^{p}}{p!} f^{l+1}(t) dt$$

$$E(f) = E\left(\sum_{i=0}^{l} \frac{(x-\alpha)^{l}}{l!}\right) + E\left(\int_{\alpha}^{x} \frac{(x-t)^{p}}{p!} f^{l+1}(t) dt\right)$$

Remark 3.17. Lorsque K est de signe constante,

$$E(t \mapsto u^{p+1}) = (p+1)! \int_{\alpha}^{\beta} \frac{K(t)}{p!} dt$$

D'où

$$E(f) = \frac{f^{(p+1)}(c)}{(p+1)!} E(x \mapsto x^{p+1})$$

Dans les méthodes et Newton-Côte le noyau de Peano a une signe constante.

# 3.3 Construction de formule de quadrature (à points inconnus): Formules de Gauss Legedre

On cherche s'il existe un meilleur choix des points  $x_1, \ldots, x_n$  de  $[\alpha, \beta]$  tel que la formule de quadrature associéé soit exacte sur  $\mathbb{R}_{n'}[X]$  pour n' > n.

**Example 3.18.** Cherchons une table fomrule à 2 ponts

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \omega_2 f(x_2)$$

En effet, on a 4 inconnus, il faut donc 4 équations. On pose comme condition l'éxactitude de cette formule pour les polynômes  $1, x, x^2, x^3$ , d'où

$$\begin{cases} 2 = \omega_1 + \omega_2 \\ 0 = \omega_1 x_1 + \omega_2 x_2 \\ \frac{2}{3} = \omega_1 x_1^3 + \omega_2 x_2^3 \\ 0 = \omega_1 x_1^3 + \omega_2 x_2^3 \end{cases}$$

**Remark 3.19.**  $x_1$  et  $x_2$  sont racines du polynôme  $\frac{1}{2}(3x^2-1)$  i.e  $x_1=-\frac{1}{\sqrt{3}}$   $x_2=\frac{1}{\sqrt{3}}$ . D'où  $\omega_1=\omega_2=1$ .

D'où

$$\int_{-1}^{1} f(x) \, dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

est exacte sur  $\mathbb{R}_3[X]$   $(3=2\cdot 2-1)$ 

**Example 3.20.** Formule à 3 points

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \omega_2 f(x) + \omega_3 f(x_3)$$

On impose l'exactitude  $1, x, x^2, x^3, x^4, x^5$ 

$$\left| \int_{\alpha}^{\beta} f(x) \, dx - I_e[f, \alpha, \beta] \right| \le c(\beta - \alpha)^{5+2}$$
$$\left| \int_{\alpha}^{\beta} f(x) \, dx - I_c[f, \alpha, \beta] \right| \le ch^6$$

On obtient  $x_i$  sont racines du polynôme  $\frac{1}{3}(5x^3-3x)$ . D'où,  $x_1=-\sqrt{\frac{3}{5}},\ x_2=0,\ x_3=\sqrt{\frac{3}{5}}$  et  $\omega_1=\frac{5}{9},\ \omega_2=\frac{8}{9},\ \omega_3=\frac{5}{9}$ . D'où

$$\int_{-1}^{1} f(x) \, dx \approx \frac{5}{9} f(-\sqrt{\frac{3}{5}}) + \frac{8}{9} f(0) + \frac{5}{9} f(\sqrt{\frac{3}{5}})$$

**Proposition 3.21.** Considérons la formule à n points

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \ldots + \omega_n f(x_n)$$

exacte pour les polynômes de degré  $\leq 2n-1$ . Alors les abscisses  $x_1, \ldots, x_n$  sont les n racines du polynôme

de legendre de degré n définie par la recurrence.

$$L_0(x) = 1$$

$$L_1(x) = x$$

$$L_{n+1}(x) = \frac{1}{n+1} \left[ (2n+1)x L_n(x) - nL_{n-1}(x) \right]$$

$$\omega_i = \int_{-1}^1 \prod_{\substack{j=1 \ i \neq i}}^n \frac{x - x_j}{x_i - x_j} dx \quad i = 1, 2, \dots, n$$

La formule de quadrature ainsi construite est appellé formule de Gauss-Legendre.

$$\int_{-1}^{1} f(x) dx \approx \omega_1 f(x_1) + \omega_2 f(x_2)$$

exacte pour  $1, x, x^2, x^3$  pour  $(x - x_1)(x - x_2)$ 

$$\int_{-1}^{1} (x - x_1)(x - x_2) dx = 0$$

$$\int_{-1}^{1} x(x - x_1)(x - x_2) dx = 0$$

$$\int_{-1}^{1} x^2 - (x_1 + x_2)x + x_1x_2 dx = 0$$

$$\begin{cases} \frac{2}{3} + (x_1 x_2)2 = 0\\ -\frac{2}{3}(x_1 x_2) = 0 \end{cases}$$

$$\int_{-1}^{1} f(x) \, dx \approx \omega_1 f(-\frac{1}{\sqrt{3}}) + \omega_2 f(\frac{1}{\sqrt{3}})$$

• 
$$f \equiv (x - \frac{1}{\sqrt{3}}) \equiv (x - x_1) \Rightarrow -x_1 = \omega_1 2x_1$$

• 
$$f \equiv (x + \frac{1}{\sqrt{3}}) \equiv (x - x_2)$$

# CHAPTER 4

RÉSOLUTION APPROCHÉE D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (EDOS)

#### 4.1 Motivations

#### 4.1.1 Définitions

**Definition 4.1.** Soit

$$f: [a, b] \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$$
  
 $(t, x) \longmapsto f((t, x))$ 

avec  $a, b \in \mathbb{R}$  et  $d \in \mathbb{N}^*$  donnée par des d composantes

$$f_i : [a, b] \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$$
  
 $(t, x) \longmapsto f_i(t, x)$ 

On note  $g^{(p)}$  la dérivée d'ordre p d'une fonction  $g: \mathbb{R} \to \mathbb{R}$  et g' sa dérivée d'ordre 1.

Si  $g:[a,b]\to\mathbb{R}^d$  est continue ainsi que toutes ses dérivées jusqu'à l'ordre p, on notera  $g\in\mathcal{C}^p([a,b],\mathbb{R}^d)$  ou simplement  $g\in\mathcal{C}^p([a,b])$  s'il n'ya pas ambiguité. On a:

$$\left(g \in \mathcal{C}^1([a,b],\mathbb{R}), i = 1,\dots,d\right) \Leftrightarrow \left(g \in \mathcal{C}^1([a,b],\mathbb{R}^d)\right)$$

Definition 4.2. On appelle équation différentielle d'ordre 1 une équation de la forme

$$y'(t) = f(t, y(t)), \quad t \in ]t_0, t_0 + \tau[$$

On appelle EDO d'ordre p une équation de la forme

$$y^{(p)}(t) = f(t, y(t), y'(t), \dots, y^{(p-1)}(t))$$

où  $f:[a,b]\times(\mathbb{R}^d)^p\to\mathbb{R}^d$  est continue.

#### Definition 4.3. -

- Une fonction y de classe  $C^1$  vérifiant une EDO est dite solution de l'EDO.
- Résoudre une EDO c'est détérminer toutes les solutions de cette EDO.
- Lorsque  $d \neq 1$ , on parle de système d'EDOs.

**Remark 4.4.** Toute EDO d'ordre p > 1 peut ce ramener à un système d'EDOs d'ordre 1.

Definition 4.5. On appelle condition de Cauchy de l'EDO, la donnée de la valeur de la solution en un point

$$t_0 \in [a, b]: \quad y(t_0) = y^0$$

Le couple  $(t_0, y^0)$  est appelé **condition initiale** et le problème de Cauchy consiste à la recherche d'une fonction de classe  $\mathcal{C}^1$  vérifiant:

$$\begin{cases} y'(t) = f(t, y(t)) & t \in ]t_0, t_0 + \tau[\\ y(t_0) = y^0, & t_0 \text{ donné des } \mathbb{R}^d \end{cases}$$

#### 4.1.2 Exemple

#### **Example 4.6.** Pendule



Figure 4.1: pendule-exemple-edo

$$\begin{cases} m = 1 \\ \phi(t) = ? \\ \phi' + \frac{g}{L}\sin(\phi) = 0 \end{cases}$$

c'est une EDO d'ordre 2.

$$\begin{cases} x_1 = \phi \Rightarrow x_1' = \phi' = x_2 \\ x_2 = \phi' \Rightarrow x_2' = \phi'' = -\frac{g}{L}\sin(\phi) = -\frac{g}{L}\sin(x_1) \end{cases}$$
 D'où  $X(t) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$  on a  $X'(t) = \begin{pmatrix} x_2 \\ -\frac{g}{L}\sin(x_1) \end{pmatrix} = f(t, X(t))$  où 
$$f: \mathbb{R} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 
$$(t, X \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) \longmapsto f((t, X \begin{pmatrix} x_1 \\ x_2 \end{pmatrix})) = \begin{pmatrix} x_2 \\ -\frac{g}{L}\sin(x_1) \end{pmatrix}.$$

**Example 4.7.** Objet en chasse libre.



Figure 4.2: asteroid-edo

$$\begin{cases} \text{vitesse: } v \\ \text{altituted: } z \end{cases}$$

k a coef. de frottement.

$$z'' = -g + k(z')^2 e^{-az}$$
 càd EDO d'ordre 2

ou encore

$$\begin{cases} z' = v \\ v' = -g + kv^2e^{-az} \end{cases}$$
 càd système d'EDOs d'ordre 1

Pososn 
$$Y = \begin{pmatrix} z \\ z' \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} Y = f(t, Y)???$$

$$f(t, Y \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}) = \begin{pmatrix} y_2 \\ -g + ky_2^2 e^{-ay_1} \end{pmatrix}$$

```
def f(t, Y):
    x, y = Y
    return np.array([y, -g + (k*y**2)*np.exp(-a*x)])
```

#### Example 4.8. Taux d'inféction



Figure 4.3: taux-d-infection-edo

y: inféctés, x: soins,  $\alpha$ : taux d'inféction

$$\begin{cases} \dot{y} = \alpha xy \\ x + y = n \end{cases} \Rightarrow y' = \alpha y(n - y)$$

## 4.1.3 Nécessite de la solution approchée

On considère le problème de Cauchy

$$\begin{cases} x'(t) = f(t, x(t)) & t \in ]t_0, t_0 + \tau[\\ x(t_0) = x^0 \in \mathbb{R}^d \end{cases}$$
 (4.1)

On ne sait résourdre 4.1 dans des cas particulièrs.

 $d=1,\,f$  est à variables séparées.

Example 4.9.

$$\begin{cases} \dot{L} = \tau_L L \quad ]0, T[ \\ L(0) = L_0 \end{cases} \Rightarrow L(t) = L_0 l^{t\tau_L}$$

Illustation graphique



Figure 4.4: illustation-graphique-sol-approche

• On se donne  $t_n = n\Delta t$ 

$$n=0,\ldots,N,$$
 où  $\Delta t=\frac{T}{N},N\in\mathbb{N}^*$ 

- On calcule  $L_n = L_0 e^{t_n \tau_L}$ ,  $n = 0, \dots, N$
- On place  $(t_n, L_n)$  sur un figure et on les relie pour obtenir un graphe de  $t \mapsto L(t)$

## 4.2 Problème d'évolution de population des lapins

L: population des lapins, R: population renards.

On a le problème de Cauchy

$$\begin{cases} \dot{L} = L(\tau_L - pR) \\ \dot{R} = R\tau_R(\alpha L - 1) \\ L(0) = L_0, \quad R(0) = R_0 \end{cases}$$

Ce système n'est pas résoulable analytiquement.

On peut cependant le résoudre numériquement à condition de s'assurer que le problème est bien posé.

- Existence et l'unicité de la solution
- Régularité de la solution
- Dépendance continue de la solution vis à vis des données du problème (où Stabilité)

$$\Phi: (t_0, f) \mapsto y$$

$$\|\Phi(y_1 - y_2)\|_* \le C_1 \|L - L_0^2\| + C_2 \|f_1 - f_2\|_{**}$$

**Definition 4.10.** On dit que  $f:[a,b]\times\mathbb{R}^d\to\mathbb{R}^d$  est lipschizienne par rapport à sa seconde variable s'il existe une constante positive L (appellée constante de lipschitz) telle que

$$||f(t, y_2) - f(t, y_1)|| \le L||y_2 - y_1|| \quad \forall t \in [a, b] \forall y_1, y_2 \in \mathbb{R}^d$$

**Theorem 4.11.** de Cauchy lipshitz.

$$\begin{cases} x'(t) = f(t, x(t)), & t \in ]t_0, t_0 + \tau[\\ x(t_0) = x^0 \end{cases}$$
(4.2)

- Si  $f: [t_0, t_0 + \tau] \times \mathbb{R}^d \to \mathbb{R}^d$  vérifie

  1. f continue

  2.  $||f(t, y) f(t, z)|| \ll ||y z||$

Alors 4.2 admet une unique solution (globale) de classe  $C^1([t_0, t_0 + \tau], \mathbb{R}^d)$ 

#### 4.3 Exemple de Schémas numériques

#### 4.3.1 Formulation intégrale

**Proposition 4.12.** x solution de 4.2 ssi  $x(t) = x^0 + \int_{t_0}^t f(s, x(s)) ds \forall t \in [t_0, t_0 + \tau]$ 

Proof. -

$$\begin{cases} x(t_0) = x^0 \\ x'(t) = f(t, x(t)) \end{cases}$$

$$\int_{t_0}^t x'(s) \, ds \int_{t_0}^t f(s, x(s)) \, ds$$

#### 4.3.2 Construction de schema d'Euler explicite

Étape 1 maillage du domaine

$$N$$
donné, pose $\Delta t = \frac{T}{N}, t_n = n \Delta t, n = 0, \dots, N$ 

Étape 2 : Formulation intégrale:

Suite  $[t_n, t_{n+1}]$  problème discrèt ("continue")

$$\begin{cases} x(t_{n+1}) = x(t_n) + \int_{t_n}^{t_{n+1}} f(s, x(s)) \, ds, n = 0, \dots, N - 1 \\ x(t_0) = x^0 \end{cases}$$
(4.3)

Étape 3 Approximation des intégrales (Formules de quadratures)



Figure 4.5: etape-3-rectangles-a-gauche

Récrangles à gauche

$$\int_{t_n}^{t_{n+1}} g(s) \, ds \Delta t g(t_n) + o(\Delta t^2) \approx \Delta t g(t_n)$$

On a

$$\begin{cases} x(t_{n+1}) = x(t_n) + \Delta t f(t_n, x(t_n)) + o(\Delta t^2) \\ x(t_0) = x^0 \end{cases}$$
 (4.4)

$$\begin{cases} x(t_{n+1}) \approx x(t_n) + \Delta t f(t_n, x(t_n)) \\ x(t_0) = x^0 \end{cases}$$

$$(4.5)$$

On pose  $x_n \approx x(t_n), n = 0, \dots, N$  lorsque des dans (PDC) on se sépare des restes

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_n, x_n), & n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$
 (4.6)

On a le schéma d'Euler explicite

#### Remark 4.13. Schéma du point-millieu

$$\int_{t_n}^{t_{n+1}} g(s) \, ds \Delta t g(\frac{t_{n+1} + t_n}{2} + o(\Delta t^3))$$

On aurait

$$x(t_{n+1}) = x(t_n) + \Delta 3f(t_{n+\frac{1}{2}}, x(t_{n+\frac{1}{2}})) + o(\Delta t^3)$$

Soit

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_{n+\frac{1}{2}}, x_{n+\frac{1}{2}}), & n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$

Comme  $x_{n+\frac{1}{2}}$  est inconnu, on l'approche par le schema d'Euler explicite.

i.e 
$$x_{n+\frac{1}{2}} = x_n + \frac{\Delta t}{2} f(t_n, x_n)$$

D'où

$$\begin{cases} x_{n+\frac{1}{2}} = x_n + \frac{\Delta t}{2} f(t_n, x_n) \\ x_{n+1} = x_n + \Delta t f(t_n + \frac{\Delta t}{2}, x_{n+\frac{1}{2}}) \end{cases}$$
(4.7)

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n)), n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$
(4.8)

#### 4.3.3 Autres schémas et forme géneral des schemas explicites à un pas

Remark 4.14. Si Rectangles à droits, on aurait eu

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_{n+1}, x_{n+1}), n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$
(4.9)

Il est implicite c'est le schema d'Euler implicite

Remark 4.15. Formule des trapeze - on aurait

$$\begin{cases} x_{n+1} = x_n + \frac{\Delta t}{2} (f(t_n, x_n) + f(t_{n+1}, x_{n+1})), n = 0, \dots, N - 1 \\ x_0 \text{ donn\'e} \end{cases}$$
(4.10)

C'est le schema de CLANK-NICOLAS il est implicite. On peut expliciter le schema de C-N.

$$x_{n+1} = x_n + \Delta t f(t_n, x_n)$$

On aura

$$\begin{cases} x_{n+1} = x_n + \frac{\Delta t}{2} \left[ f(t_n, x_n) + f(t_{n+1}, x_n + \Delta t f(t_n, x_n)) \right] \\ x_0 \text{ donn\'e} \end{cases}$$
(4.11)

$$\begin{cases} x_{n+1}^* = x_n + \Delta t f(t_n, x_n) & n = 0, \dots, N - 1 \\ x_{n+1} = x_n + \frac{\Delta t}{2} \left[ f(t_n, x_n) + f(t_{n+1}, x_{n+1}^*) \right] \end{cases}$$
(4.12)

C'est un schema explicite appelé schema de Heun. Généralisation des schema à un pas.

$$\begin{cases} x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t), & n = 0, \dots, N - 1 \\ x_0 \text{ donn\'e} \end{cases}$$
 (4.13)

où  $\Phi: \mathbb{R} \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ 

**Example 4.16.** • Euler explicite :  $\Phi(t, y, \Delta t) = f(t, y)$ 

- Point Millieu :  $\Phi(t, y, \Delta t) = f(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2} f(t, y))$
- HEUN:  $\Phi(t, y, \Delta t) = \frac{1}{2} \left[ f(t, y) + f(t + \Delta t, y + \Delta t f(t, y)) \right]$

$$\begin{cases} x_{n+1} = x_n + \Delta t f(t_n + \frac{\Delta t}{2}, x_n + \frac{\Delta t}{2} f(t_n, x_n)) \\ x_0 = x^0 \end{cases}$$
 (4.14)

## 4.4 Étude de schémas pokes EDOs

On aimerait savoir si la suite  $(x_n)_n$  générée par S converge. Si oui, "vers" la solution de P.

#### 4.4.1 Définition

**Definition 4.17.** le schéma S est dit convergent ssi pour toute solution x de P et toute suite de  $(x_n)_n$  construite par S courbe  $x^0 = x(t_0)$  on a

$$\lim_{N \to +\infty} \left( \max_{0 \le n \le N} \|x(t_n) - x_n\| \right) = 0$$

Où  $x(t_n) - x_n =: e_n$  erreur globale à l'itération n

• S'il existe C > 0, ne dépendant que de  $f, t_0, T$  tq

$$\max_{0 \le n \le N} \|e_n\| \le C\Delta t^p \quad \forall t \in [0, \Delta t_0]$$

Le schéma est dit convergent d'ordre p.

Remark 4.18. Pour étudier un schéma pour EDO, on procède en 2 étaps:

- On cherche l'ordre de consistance
- Puis, on regarde sa stabilité

#### 4.4.2 Ordre d'un shéma à un pas explicite

**Definition 4.19.** (erreur de consistance)

Soit x la solution de P. On appelle erreur locale de troncature du schéma S à l'instant  $t_n$  la quantité

$$\xi_n = x(t_{n+1}) - x(t_n) - \Delta t \Phi(t_n, x(t_n), \Delta t)$$

$$P \begin{cases} x'(t) = f(t, x(t)) & t \in ]t_0, t_0 + T[\\ x^0 = x(t_0) \end{cases}$$

**Definition 4.20.** S et dit consistant d'ordre au moins q si pour toute solution exacte x de P, il existe une constante C > 0 telle que

$$\xi(t, \Delta t) = x(t + \Delta t) - x(t) - \Delta t + \Phi(t, x(t), \Delta t)$$

vérifie

$$\|\xi(t,\Delta t)\| \le C\Delta t^{q+1}$$

• Si S est d'ordre au moins q mais pas d'ordre au moins q+1, alors il est dit consistant d'ordre exactement q.

Example 4.21. Étude de consistance du Schéma d'Euler explicite

$$S \begin{cases} x_{n+1} = x_n + \Delta f(t_n, x_n), & n = 0, \dots, N \\ x_0 = x^0 \end{cases}$$

 $\bullet$  L'erreur de consistance à l'instant t est

$$\xi(t, \Delta t) = x(t + \Delta t) - x(t) - \Delta t f(t, x(t))$$

où x est solution suffisamment régulière de P (i.e x'(t) = f(t, x(t)))

• On cherche le petit o de  $\Delta t$  dans  $\xi(t, \Delta t)$ .

Comme x est solution exacte, on a:

$$\xi(t, \Delta t) = x(t + \Delta t) - x(t) - \Delta t x'(t)$$

Effections les  $\Delta t$ 

$$x(t + \Delta t) = x(t) + \Delta x'(t) + \frac{\Delta t^2}{2}x''(t) + o(\Delta t^2)$$

D'où

$$\xi(t, \Delta t) = \Delta t^2 \frac{x''(t)}{2} + o(\Delta t^2)$$

càd  $\xi(t, \Delta t) = o(\Delta t^2)$  d'où le schema est consistant d'ordre au moins 1. Or pour le problème  $\left\{x^0(t) = f(t, x(t))\right\}$  avec f(t, y) = 2t, on a la solution exacte  $x(t) = x_0 + \frac{t^2}{2}$ . Et on a:

$$\xi(t, \Delta t) = \Delta t^2$$

D'où le schema ne peut pas être consistant d'ordre au moins 2. <u>Il est donc consistant d'ordre exactement 1.</u>

**Proposition 4.22.** Soit  $\Phi: I \times \mathbb{R}^d \times [0, \Delta t_0] \to \mathbb{R}^d$  telle que  $\frac{\partial \Phi}{\partial \Delta t}, \frac{\partial^2 \Phi}{\partial \Delta t^2}, \dots, \frac{\partial^q \Phi}{\partial \Delta t^q}$  existant et sont continues sur  $I \times \mathbb{R}^d \times [0, \Delta t_0], f$  étant de classe  $C^q$ . Alors le schema

$$S \begin{cases} x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t) & n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$

est consistant d'ordre au moins q ssi,

$$\Phi(t, y, 0) = f(t, y)$$
$$\frac{\partial \Phi}{\partial \Delta t}(t, y, 0) = \frac{1}{2} f^{[1]}(t, y)$$

:

$$\frac{\partial^{q-1}\Phi}{\partial\Delta t^{q-1}}(t,y,0)=\frac{1}{q}f^{[q-1]}(t,y)$$

où  $f^{[0]}(t,y) = f(t,y), f^{[j]}(t,y) = \frac{\partial f^{[j-1]}}{\partial t}(t,y) + f(t,y) \frac{\partial f^{[j-1]}}{\partial y}(t,y)$  et  $j = 1, \dots, q-1$ 

#### Example 4.23. Étude du schema du PM

$$\begin{cases} x_{n+\frac{1}{2}} = x_n + \frac{\Delta t}{2} f(t_n, x_n) \\ x_{n+1} = x_n + \Delta t f(t_{n+\frac{1}{2}}, x_{n+\frac{1}{2}}) \\ x_0 = x^0 \end{cases}$$

ce schéma est explicite à un pas avec

$$\Phi(t, y, \Delta t) = f(t + \frac{\Delta t}{2}, y + \frac{\Delta t}{2} f(t, y))$$

Comme

- $\Phi(t, y, 0) = f(t, y)$  ce schema est consistant d'ordre au moins 1.
- $\bullet \ \ \tfrac{\partial \Phi}{\partial \Delta t}(t,y,\Delta t) = \tfrac{1}{2} \tfrac{\partial f}{\partial t}(t+\tfrac{\Delta t}{2},y+\tfrac{\Delta t}{2}f(t,y)) + \tfrac{1}{2}f(t,y) \tfrac{\partial f}{\partial y}(y+\tfrac{\Delta t}{2},y+\tfrac{\Delta t}{2}f(t,y))$

$$\frac{\partial \Phi}{\partial \Delta t}(t,y,0) = \frac{1}{2} \left[ \frac{\partial f}{\partial t}(t,y) + f(t,y) \frac{\partial f}{\partial y}(t,y) \right] = \frac{1}{2} f^{[1]}(t,y)$$

D'où le schema des (PM) est consistant d'ordre au moins 2.

**Exercise.** Mq qu'il ne peut pas être consistant d'ordre. Choisissez f(t,y) = g(t) et revenez à la définition de  $\xi(t, \Delta t)$ 

#### 4.4.3 Stabilité des schémas à un pas

**Definition 4.24.** (S) est di stable pour une classe de fonction f, s'il existe une constante  $S \ge 0$  indépendante de  $\Delta t$  tq:

Pour toute suite  $(x_n)_{0 \le n \le N}$ ,  $(\tilde{x_n})_{0 \le n \le N}$ ,  $(r_n)_{0 \le n \le N-1}$ :

$$x_{n+1} = x_n + \Delta t \Phi(t_n, x_n, \Delta t)$$
$$\tilde{x}_{n+1} = \tilde{x}_n + \Delta t \Phi(t_n, \tilde{x}_n, \Delta t) + r_n$$

on a la majoration

$$\underbrace{\max_{\substack{0 \leq n \leq N}} \{\|\tilde{x}_n - x_n\|\}}_{\text{erreur maximale pour toutes les itérations}} \leq S\{\underbrace{\|\tilde{x}_0 - x_0\|}_{\text{erreur initiale}} + \sum_{j=0}^{N-1} \underbrace{\|\eta_n\|}_{\text{erreur ajoutée}}\}$$

Proposition 4.25. (Stabilité du schéma d'Euler explicite)

Si f est lipschitzienne en espace, alors le schema d'Euler explicite est stable.

Proof.

$$||x_{n+1} - \tilde{x}_{n+1}|| \le (1 + L\Delta t)||x_n - \tilde{x}_n|| + ||\eta_n||$$

Et on conclut pas le lemme de Gramwall discret.

Lemma 4.26. de Graomwall discret:

 $(a_n)_{0 \le n \le N}$ ,  $(b_n)_{0 \le n \le N-1}$  terms positifs et h > 0, L > 0 tq

$$a_{n+1} \le (1 + Lh)a_n + b_n \quad n = 0, \dots, N - 1$$

alors

$$a_n \le e^{Lnh} a_0 + \sum_{j=0}^{n-1} e^{L(n-j-1)h} b_j$$

D'où

$$a_n \le e^{nhL} \left( a_0 + n \max_{0 \le j \le n-1} |b_j| \right)$$

**Proposition 4.27.** Si la fonction  $\Phi$  est telle que: il existe  $\Lambda \geq 0$  tq:

$$\forall \Delta t \in [0, \Delta t_0], \forall t \in [t_0, t_0 + T - \Delta t] \forall y_1, y_2 \in \mathbb{R}^d$$

$$\|\Phi(t, y_1, \Delta t) - \Phi(t, y_2, \Delta t)\| \le \Lambda \|y_1 - y_2\|$$

alors le schéma (S) est stable de constante de stabilité  $S=e^{\Lambda T}$ 

#### 4.4.4 Convergence des schémas à un pas explicite

**Theorem 4.28.** 1. Si la méthode (S) est stable et consistant, alors elle est convergente

2. Si la méthode (S) est stable et consistant d'ordre q, alors elle est convergente d'ordre q et pour toute suite  $(x_n)_{0 \le n \le N}$  donnée par S, initialisée par  $x_0 \in \mathbb{R}^d$ , on a

$$\max_{0 \le n \le N} ||x(t_n) - x_n|| \le (||x(t_n) - x_0|| + CT\Delta t^q)$$

Où S est une constante de stabilité et  ${\cal C}$  - constante de consistance.

# CHAPTER 5

Résolution approchée d'équations ordinaires (EO): f(x) = 0

## 5.1 Généralités et exemples

Soit  $f: \mathbb{R}^n \to \mathbb{R}^n$ ,  $I \subset \mathbb{R}^n$ 

$$(EO) \begin{cases} \text{chercher } x^* \in I \\ f(x^*) = 0 \end{cases}$$

#### 5.1.1 Définitions

• (EO) est appelé équation non linéaire si f est affine, elle est dite linéaire.

$$f(x) = Ax + b$$
 où 
$$\begin{cases} A \in \mathcal{M}_m(\mathbb{R}) \\ b \in \mathbb{R}^n \end{cases}$$

- Tout  $x^* \in I$  solution de (EO) est dite reciné au zéro de f dans I.
- Si f est de classe  $C^r$  avec  $r \ge 1$  et  $x^*$  est racine de f, alors
  - $-x^*$  est dite racine simple  $f'(x^*) \neq 0$
  - $-x^*$  est dite racine de multiplicité p < r si  $f^{(k)}(x^*) = 0, k = 0, \ldots, p-1$  et  $f^{(p)}(x^*) \neq 0$
  - lorsque m=1, c'est cad  $f:I\subset\mathbb{R}\to\mathbb{R}$ , l'équation est dite scalaire.

#### 5.1.2 Exemples

Schéma d'Euler implicite par EDO

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x^0 \end{cases}$$

$$(EI) \begin{cases} x_{n+1} = x_n + \Delta t f(t_{n+1}, x_{n+1}), n = 0, \dots, N-1 \\ x_0 = x^0 \end{cases}$$

À l'itération n, pour déterminer  $x_{n+1}$ , il faut résoudre l'équation  $g_n(z) = 0$  où

$$g_n(z) = z - x_n + \Delta t f(t_{n+1}, z)$$

- $x^0$  donné
- Pour n = 0, ..., N 1,

– résoudre 
$$\begin{cases} \text{chercher } z \in \mathbb{R} \\ z = x_n - \Delta t f(t_n + \Delta t, z) = 0 \\ - \text{ pour } x_{n+1} = z \end{cases}$$

$$(CN) \begin{cases} x_{n+1} = x_n + \frac{\Delta t}{2} \left[ f(t_n, x_n) + f(t_{n+1}, x_{n+1}) \right], n = 0, \dots, N - 1 \\ x_0 = x^0 \end{cases}$$

$$(HEUN) \begin{cases} \overline{x}_{n+1} = x_n + \Delta t f(t_n, x_n) \\ x_{n+1} = x_n + \frac{\Delta t}{2} \left[ f(t_n, x_n) + f(t_{n+1}, \overline{x}_{n+1}) \right] \\ x_0 = x^0 \end{cases}$$

## 5.2 Position correcte du problème (EO)

On se propose de vérifier si

- (EO) admet une solution
- Si oui, cette solution est-elle unique?
- La solution dépend continûment des données du problèmes (stabilité)
- La solution est suffisamment régulière.

Pour répondre à cela, on va se placer dans le cadre scalaire:  $f:\mathbb{R}\to\mathbb{R}$ 

**Proposition 5.1.** Cas où f(x) = 0

- Si I = [a, b] et f est telle que
  - f(a)f(b) < 0
  - -f continue sur I

alors il existe  $x^* \in I$  tq:  $f(x^*) = 0$ 

• Si de plus f est strictement monotone, alors  $x^*$  est unique

**Proof.** • Théorème des valeurs intérmidiaires

• unicité f est injective (où f bijective de  $I \to f(I), x^* = f^{-1}(0)$  est unique)

**Proposition 5.2.** Cas x = g(x)

Si g est telle que

- $g(I) \subset I$
- g continue

Alors, il existe  $x^* \in I \text{ tq } g(x^*) = x^*$ 

• Si g contractante  $(|g(x) - g(y)| < k|x - y| \text{ avec } 0 \le k < 1)$  alors  $x^*$  est unique.

**Remark 5.3.** Si g est dérivable avec  $|g'(x)| < j \ll 1 \forall x \in I$ , alors g est contractante.

Remark 5.4. Lorsque la racine cherchée sera de multiplicité  $\geq 1$ . Il faudra faire attention!

• Autrement dit, le problème sera difficile à resoudre numériquement si le zero est une racine multiple.

# 5.3 Construction de schéma pour (EO)

#### 5.3.1 Méthode de dichotomie

S'applique au cas f(x) = 0

### Principe

 $I = [a, b] \operatorname{tq} f(a) \cdot f(b) < 0$ 



Figure 5.1: principe-de-methode-de-dichotomie

$$[a_0, b_0] = [a, b], c = \frac{a_0 + b_0}{2}$$

$$[a_1, b_1] = \begin{cases} [a_0, c] & \text{si } f(a_0) f(c) < 0 \\ [c, b_0] & \text{si } f(c) f(b_0) < 0 \end{cases}$$

Si  $[a_n,b_n]$  est construit, on construit  $[a_{n+1},b_{n+1}]$ , en prennant:  $c=\frac{a_n+b_n}{2}$ 

$$[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, c] \text{ si } f(a_n) f(c) < 0 \\ [c, b_n] \text{ sinon} \end{cases}$$

#### Algorithme

- Initialisation
  - Soit a,b t<br/>qf(a)f(b)<0 et  $\varepsilon$  tolérance donné
  - Calculer  $c = \frac{a+b}{2}$
  - k = 0
- Itération: tant que  $|f(c)| > \varepsilon$  et k pas trop grand, Faire
  - Si f(a)f(b) < 0, poser b = c
  - Sinon, poser a = c

Calculer  $c = \frac{a+b}{2}$ , k = k+1. Fin Faire

#### Coût

:

- 1 dimension
- 1 évaluation de la fonction

#### Convergence

f est continue. Soit  $(a_n),(b_n)$  générées

- $x^* \in [a_n, b_n]$
- $[a_{n+1}, b_{n+1}] \subset [a_n, b_n], \forall n$

- $b_n a_n = \frac{b-a}{2^n}$
- $|a_n x^*| \le \frac{b-a}{2^n}, |b_n x^*| \le \frac{b-a}{2^n}$
- $\lim_{n\to\infty} a_n = x^*$ ,  $\lim_{n\to\infty} b_n = x^*$

## 5.3.2 Méthode de fausse position

#### Principe

• remplacer dans dichotomie  $c = \frac{a+b}{2}$  par c l'abscisse du point d'intersection avec l'axe des abscisses de la droite passante par (a, f(a)), (b, f(b))

$$c = b - \frac{b-a}{f(b) - f(a)}f(b)$$

#### Algorithme

Remplacer  $c=\frac{a+b}{2}$  par  $c=b-\frac{b-a}{f(b)-f(a)}f(b)$  dans dichotomie

- Initialisation
  - Soit a, b tq f(a)f(b) < 0 et  $\varepsilon$  tolérance donné
  - Calculer  $c = b \frac{b-a}{f(b)-f(a)}f(b)$
  - -k=0
- <u>Itération</u>: tant que  $|f(c)| > \varepsilon$  et k pas trop grand, Faire
  - Si f(a)f(b) < 0, poser b = c
  - Sinon, poser a = c

Calculer  $c = b - \frac{b-a}{f(b)-f(a)}f(b), k = k+1$ . Fin Faire

#### Coût

:

- 1 dimension, 1 produit
- 1 évaluation de la fonction

#### Convergence

(Fausse position) Soit  $f \in \mathcal{C}^2([a,b])$ , f(a)f(b) < 0. Si f'' n'a aucune racine dans I = [a,b], alors une des suites  $(a_n)$  ou  $(b_n)$  demeure constante.

**Proposition 5.5.** Si f est  $C^2([a,b])$ , f(a)f(b) < 0 et f'' n'a aucune racine sur [a,b]. Soient  $(a_n),(b_n)$  générées.

 $\bullet$  Si  $(b_n)$  est constante, alors  $(a_n)$  converge linéairement vers  $x^*$  racine de f et on a

$$K_1 = \lim_{n \to \infty} \frac{x^* - x_{n+1}}{x^* - x_n} = 1 - f' \frac{x^* - b}{f(b)}$$

• Si  $(a_n)$  est constante  $(b_n)$  converge linéairement vers  $x^*$  et

$$K_1 = \lim_{n \to \infty} \frac{x^* - b_{n+1}}{x^* - b_n} = 1 - f' \frac{x^* - a}{f(a)}$$

## 5.4 Méthode d'itération (ou du point fixe)

#### 5.4.1 Principe

Elle est adaptée aux problèmes

(EO) 
$$\begin{cases} \text{Chercher } x^* \in \mathbb{R} \\ f(x^*) = x^* \end{cases}$$

**Remark 5.6.** Une équation  $f(x^*)=0$  devra être transformée pour rentrer dans ce cadre (g=?) On cerche  $x^*$  comme  $\lim_{n\to\infty}x_n$  où

(S) 
$$\begin{cases} x_{n+1} = y(x_n), n = 0, \dots \\ x_0 \text{ donné} \end{cases}$$

### 5.4.2 Interpolation géomètrique

Comment construire  $x_{n+1}$  à partir de  $x_n$ ?



Figure 5.2: Interpolation géomètrique

#### 5.4.3 Algorithme

#### Initialisation

- Choisir  $x_0$  et x donné  $\varepsilon > 0$
- Pour

$$- k = 0$$

$$-r_k = \varepsilon + 1$$

#### **Itérations**

• Tant que  $r_k > \varepsilon$  et k pas trop grand faire

$$-x_{k+1} = g(x_k)$$

$$- r_{k+1} = |x_{k+1} - x_k|$$

$$-k = k + 1$$

• Fin faire

#### Coût:

1 évaluation de la fonction

#### **Inconvenient:**

Choix de  $x^*$ 

### 5.4.4 Convergence

**Proposition 5.7.** Soit  $I \subset \mathbb{R}$  tq  $g(I) \subset I$ , alors g admet un point fixe  $x^*$  dans  $\mathbb{R}$ 

- Si  $\max_{x \in I} |g'(x)| = k < 1$ , alors le point fixe est unique
- Si  $\max_{x \in I} |g'(x)| = k < 1$ , et de plus,  $x_0 \in I$  et  $(x_n)_n$  générée par (S), alors

$$-|x^* - x_{n+1}| < k|x^* - x_n|$$

 $-(x_n)_n$  converge vers  $x^*$ 

$$-k_1 = \lim_{n \to \infty} \frac{x^* - x_{n+1}}{x^* - x_n} = g'(x^*) \text{ et } k_1 \le k$$

**Proof.** • Existence: I = [a,b]. Posons f(x) = f(x) - x, on a: Comme  $g(I) \subset I$ , comme  $g(a) \in [a,b]$  et  $g(b) \in [a,b]$  on a:  $g(a) \ge a$ ,  $g(b) \le b$ , d'où  $f(a) = g(a) - a \ge 0$ ,  $f(b) = g(b) - b \le 0$ . D'après le théorème de VF,  $\exists x^* \in [a,b]$  tq  $f(x^*) = 0$  i.e  $g(x^*) = x^*$ 

• Unicité: Supposons  $\exists x^*, x^{**} \text{ tq } g(x^*) = x^* \text{ et } g(x^{**}) = x^{**} \text{ et } x^{**} \neq x^*, \text{ alors}$ 

$$\begin{aligned} |x^{**} - x^{*}| &= |g(x^{**}) - g(x^{*})| \\ &\leq |g'(x^{*} + o(x^{**} - x^{*}))||x^{**} - x^{*}| \\ &\leq \max_{n \in I} |g'(n)||x^{**} - x^{*}| \end{aligned}$$

$$|x^{**} - x^*| < K|x^{**} - x^*|$$
 avec  $0 < K < 1$ 

i.e 1 < K < 1 - absurde!

• Convergence:

$$-x_{n+1} = g(x_n)$$
$$-x^* = g(x^*)$$

D'où 
$$|x_{n+1}-x^*| \leq |g(x_n)-g(x^*)| \leq K|x_n-x^*|$$
. D'où  $|x_{n+1}-x^*| \leq K|x_n-x^*|$  donc

$$|x_n - x^*| \le K^n |x_0 - x^*|$$

Comme 0 < K < 1 on a  $\lim_{n \to \infty} x_n = x^*$ 

• Ordre de convergence:

$$x_{n+1} - x^* = g(x_n) - g(x^*)$$
  
=  $g'(x^* + \theta(x_n - x^*))(x_n - x^*) \quad 0 < \theta < 1$ 

D'où

$$\frac{x_{n+1} - x^*}{x_n - x^*} = g'(x^* + \theta(x_n - x^*))$$

Comme g est de classe  $C^1$ , on a  $\lim_{n\to\infty} g'(x^* + \theta(x_n - x^*)) = g'(x^*)$  Donc

$$\lim_{n \to \infty} \frac{x_{n+1} - x^*}{x_n - x^*} = g'(x^*)$$

**Remark 5.8.** Si  $g'(x^*) \neq 0$ , on a une convergence linéaire (d'ordre 1) avec pour constante asymtotique

Que se passe-t-il si  $g'(x^*) = 0$ ?

Soit  $p \ge 1$ , le plus petit entrer tel que  $g^{(p)}(x^*) \ne 0$ 

#### Example 5.9.

$$\Big\{x^{n+1} = g(x^n)$$

$$g(x) = e^x - 1 - x$$

2. 
$$g(x) = e^x - 1 - x - \frac{x^2}{2}$$
  
Rq:  $x^* = 0$   
 $g'(0) = 0, g''(0) = 1$ , alors  $p = 2$ 

$$g'(0) = 0$$
,  $g''(0) = 1$ , alors  $p = 2$ 

**2.** 
$$g'(0) = 0$$
,  $g''(0) = 0$ ,  $g'''(0) = 1 \neq 0$ , alors  $p = 3$ 

Si  $g \in C^p$ , alors:

$$g(x_n) = g(x^*) + (x_n - x^*)g'(x^*) + \sum_{k=2}^{p-1} \frac{g^{(k)}(x^*)}{k!} (x_n - x^*)^k + \frac{(x_n - x^*)^p}{p!} g^{(p)}(x^* + \theta(x_n - x^*))$$

Comme  $g'(x^*) = \dots g^{(p-1)}(x^*) = 0$ , on a:  $g(x^*) = x^*$ ,  $g(x_n) = x_{n+1}$ 

$$x_{n+1} - x^* = (x_n - x^*)^p \frac{g^{(p)}(x^* + \theta(x_n - x^*))}{p!}$$

D'où

$$\lim_{n \to \infty} \frac{x_{n+1} - x^*}{(x_n - x^*)^p} = \frac{1}{p!} g^{(p)}(x^*)$$

Donc  $x_n \to x^*$  à l'ordre p.

#### Méthode de Newton 5.5

#### Principe

Adaptée pour le problème

(EO) 
$$\begin{cases} \text{Cherche } x^* \in I \\ f(x^*) = 0 \end{cases}$$

Comment construire  $x_{n+1}$  à partir de  $x_n$ ?

On remplace f par son polynôme de Taylor d'ordre 1 au voisinage de  $x_n$ 

$$f(x) \approx f(x_n) + f'(x_n)(x - x_n) \equiv P_f(x)$$

On trouve  $f(x_n) + f'(x_n)(x_{n+1} - x_n) = 0$ . D'où  $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ , càd  $x_{n+1} = g(x_n)$  avec  $g(x) = x - \frac{f(x)}{f'(x)}$ 

#### Comment calculer an ayant PointFixe donné

```
def PointFixe(g, x_0, eps, IterMax):
```

CHAPTER 5. RÉSOLUTION APPROCHÉE D'ÉQUATIONS ORDINAIRES (EO): f(x) = 0

```
def Newton(f, f_prime, x0, eps, IterMax):
      g = lambda x: x - f(x)/f_prime(x)
2
      return PointFixe(g, x0, eps, IterMax)
```

#### Convergence

On adapte les résultats de la méthode du point fixe, ici:

Comme  $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ , n'est rien d'autre que

$$x_{n+1} = g(x_n)$$
 avec  $g(x) = x - \frac{f(x)}{f'(x)}$ 

Remark 5.10.

$$g'(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{(f'(x))^2}$$

$$g'(x^*) = 1 - \frac{f'(x^*)^2 - 0}{f'(x^*)^2} = 0$$

D'où la méthode de Newton. Pour un bon choix de  $x_0$  coverge. Et est au moins d'ordre 2 pour une racine

**Remark 5.11.** Si  $f(x^*) = 0, f'(x^*) = 0, \dots, f^{(m)}(x^*) \neq 0$ 

**Example 5.12.**  $f(x) = (x-1)^3$ ,  $x^* = 1$ , on a: f(1) = 0, f'(1) = 0, f''(1) = 0, f''(1) = 0, i.e m = 3

$$\begin{cases} x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \\ x_0 \text{ donnée} \end{cases}$$

 $\begin{cases} x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}\\ x_0 \text{ donn\'ee} \end{cases}$  On aura convergence d'ordre 1 i.e  $\lim_{n\to\infty}\frac{x_{n+1}-x^*}{x_n-x^*}=K_1\neq 0$  avec  $K_1=1-\frac{1}{m}=\frac{2}{3}$