Forelesning 3

Rekursiv dekomponering er kanskje den viktigste ideen i hele faget, og designmetoden *splitt og hersk* er en grunnleggende utgave av det: Del instansen i mindre biter, løs problemet rekursivt for disse, og kombinér løsningene.

Pensum

- ☐ Kap. 2. Getting started: 2.3
- ☐ Kap. 4. Divide-and-conquer: Innledning, 4.1 og 4.3–4.5
- ☐ Kap. 7. Quicksort
- Oppgaver 2.3-5 og 4.5-3 med løsning (binærsøk)
- ☐ Appendiks B og C i pensumheftet

Læringsmål

- [C₁] Forstå divide-and-conquer (splitt og hersk)
- [C₂] Forstå maximum-subarrayproblemet med løsninger
- [C₃] Forstå Bisect og Bisect' (se appendiks C i pensumheftet)
- C₄ Forstå Merge-Sort
- [C₅] Forstå Quicksort og Randomized-Quicksort
- [C₆] Kunne løse rekurrenser med substitusjon, rekursjonstrær og masterteoremet
- [C₇] Kunne løse rekurrenser med iterasjonsmetoden (se appendiks B i pensumheftet)
- [C₈] Forstå hvordan *variabelskifte* fungerer

Forelesningen filmes

Dette er den velkjente induksjonsstigen vår

Vi reduserer en instans til mindre instanser...

...til vi treffer grunntilfellet

Vi løser grunntilfellet og bygger vi oss opp igjen

Alle induktive trinn er like, så ser bare på ett av dem

Men vi kan også spalte i <u>flere</u> delinstanser

Men vi kan også spalte i <u>flere</u> delinstanser

Denne designmetoden kalles «splitt og hersk» (divide & conquer)

- 1. Rekurrenser
- 2. Binærsøk
- 3. Merge sort
- 4. Quicksort
- 5. Masterteoremet
- 6. Variabelskifte

4.1: Selvstudium

Én ting er at vi her regner på kjøretider, men merk at strukturen til utregningene og bevisene er den samme som for algoritmedesign og korrekthetsbevis – det er bare «innholdet» som er forskjellig. Det å forstå rekurrensregning kan være nyttig for å bedre forstå rekursiv dekomponering og algoritmedesign generelt – ikke bare for kjøretidsberegninger.

Rekurrenser

Fibonacci-sekvensen (fra Liber Abaci, 1228)

• Rekurrens: Rekursiv ligning

• Beskriver f.eks. kjøretiden til rekursive algoritmer

• Må kvitte oss med den rekursive biten

• Finn løsning:

Iterasjonsmetoden står ikke oppført som læringsmål (en forglemmelse!) – men den er pensum (og står også oppført som pensum).

- Iterasjonsmetoden
- Rekurrenstrær

«Iterasjonsmetoden»: Gjentatt ekspandering av den rekursive forekomsten av funksjonen – det gir oss en sum som vi kan regne ut.

- Masterteoremet (senere i dag)
- Verifisér løsning:
 - Substitusjon (dvs. induksjon)

$$T(1) = 1$$

Eksempel: $1 + 1 + \dots$

$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + 1$$

Rekurrens-tre

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+ T(n-1)$$
(1)

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+ T(n-1)$$
(1)

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+ T(n-1-1)$$
 (2)

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+ T(n-2) \tag{2}$$

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+ T(n-3) \tag{3}$$

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(n-?) \tag{?}$$

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(n-?) \qquad (n-1)$$

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(n - (n - 1))$$
 $(n - 1)$

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(1) \qquad (n-1)$$

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+1$$
 $(n-1)$

D&C > rekurrenser >
$$T(n) = 1 + T(n-1)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+1$$
 $(n-1)$

$$T(n) = n$$

Verifikasjon

Med substitusjon/induksjon

Her må vi også huske å verifisere at grunntilfellet (f.eks. T(1)=1) stemmer med løsningen vår. Det har jeg ikke eksplisitt diskutert her, men det stemmer for de eksemplene vi ser på.

D&C > rekurrenser >
$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + 1$$

Denne løsningen har vi kommet frem til litt uformelt – vi kan verifisere den med induksjon. Det kalles «substitusjonsmetoden», og den kan også brukes om vi bare *gjetter* svaret.

D&C > rekurrenser >
$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + 1$$

D&C > rekurrenser >
$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + 1$$

Gitt antagelsen T(n-1) = n-1, vis at T(n) = n

D&C > rekurrenser >
$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + 1$$

= $(n-1) + 1$

$$T(n) = T(n-1) + 1$$

= $(n-1) + 1$
= $n-1+1$

$$T(n) = T(n-1) + 1$$

$$= (n-1) + 1$$

$$= n - 1 + 1$$

$$= n$$

$$T(n) = T(n-1) + 1$$

$$= (n-1) + 1$$

$$= n - 1 + 1$$

$$= n$$

$$T(n) = n$$

Her bruker vi strengt tatt fortsatt bare én delinstans – men strategien med å halvere instansen er en vanlig ingrediens i mer typiske D&Calgoritmer (som vi straks skal se på).

Binærsøk

HERON OF ALEXANDRIA

324

'Since', says Heron, 1 '720 has not its side rational, we can obtain its side within a very small difference as follows. Since the next succeeding square number is 729, which has 27 for its side, divide 720 by 27. This gives $26\frac{2}{3}$. Add 27 to this making $53\frac{2}{3}$, and take half of this or $26\frac{1}{2}\frac{1}{3}$. The side of 720 will therefore be very nearly $26\frac{1}{2}\frac{1}{3}$ by itself, the product if we

Sir Thomas Little Heath sin beskrivelse av Herons metode for å approksimere kvadratrøtter ved hjelp av en nær slektning av binærsøk – en metode som antagelig ble brukt allerede av babylonerne.

(Heath, A History of Greek Mathematics, vol. 2, 1921; Fowler & Robson, Square Root Approximations in Old Babylonian Mathematics: YBC 7289 in Context, 1998) Sortert sekvens

• Er det du leter etter i første halvdel?

• Hvis ja: Let videre der

• Hvis nei: Let i den andre halvdelen

(Anta at kortet ditt er 6)

Er kortet større enn A[4]?

Er kortet større enn A[6]?

Er kortet større enn A[5]?

Er A[6] kortet ditt?

Antall spørsmål: $\lg n + 1$

BISECT(A, p, r, v)

A tabell

p venstre

r høyre

v søkeverdi

BISECT
$$(A, p, r, v)$$

1 if $p \le r$

p venstre

r høyre

v søkeverdi

BISECT
$$(A, p, r, v)$$

1 if $p \le r$
2 $q = \lfloor (p+r)/2 \rfloor$

- A tabell
- p venstre
- r høyre
- v søkeverdi
- q midten

1 if
$$p \leq r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

$$\mathbf{if}\ v == \mathbf{A}[q]$$

- p venstre
- r høyre
- v søkeverdi
- q midten

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q
```

p venstre

r høyre

v søkeverdi

q midten

```
\begin{array}{ll} \text{BISECT}(\mathbf{A}, p, r, v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == \mathbf{A}[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < \mathbf{A}[q] \end{array}
```

p venstre

r høyre

v søkeverdi

q midten

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \end{array}
```

- p venstre
- r høyre
- v søkeverdi
- q midten

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \end{array}
```

p venstre

r høyre

v søkeverdi

q midten

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

```
A tabell p venstre r høyre v søkeverdi q midten
```

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \end{array}
```

p	1	1
	2	2
	2	3
	3	4
	4	5
	5	6
	6	7
r	7	8

return NIL

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

o	1	1
	2	2
	2	3
	3	4
	4	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

p	1	1
	2	2
	2	3
q	3	4
	4	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

p	1	1
	2	2
	2	3
q	3	4
	4	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

p	1	1
	2	2
	2	3
q	3	4
	4	5
	5	6
	6	7
r	7	8

```
BISECT(A, p, r, v)
1 if p \le r
```

$$2 q = \lfloor (p+r)/2 \rfloor$$

$$\mathbf{if}\ v == \mathbf{A}[q]$$

4 return
$$q$$

5 elseif
$$v < A[q]$$

6 return BISECT
$$(A, p, q - 1, v)$$

7 else return
$$BISECT(A, q + 1, r, v)$$

	1	1
	2	2
	2	3
	3	4
p	4	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p	4	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

1	1
2	2
2	3
3	4
4	5
5	6
6	7
7	8
	2 2 3 4 5

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

1	1
2	2
2	3
3	4
4	5
5	6
6	7
7	8
	2 2 3 4 5

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

1	1
2	2
2	3
3	4
4	5
5	6
6	7
7	8
	2 2 3 4 5

```
BISECT(A, p, r, v)
1 if p \le r
```

$$2 q = \lfloor (p+r)/2 \rfloor$$

3 if
$$v == A[q]$$

4 return
$$q$$

5 elseif
$$v < A[q]$$

6 return BISECT
$$(A, p, q - 1, v)$$

7 else return BISECT
$$(A, q + 1, r, v)$$

1	1
2	2
2	3
3	4
4	5
5	6
6	7
7	8
	2 2 3 4 5 6

$$p, r, v = 1, 8, 4 \rightarrow 5, 8, 4 \rightarrow 5, 5, 4$$

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p, r	4	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
p,q,r	2	3
	3	4
	4	5
	5	6
	6	7
	7	8

$$\begin{array}{ll} \text{BISECT}(\mathbf{A},p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == \mathbf{A}[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < \mathbf{A}[q] \\ 6 & \text{return BISECT}(\mathbf{A},p,q-1,v) \\ 7 & \text{else return BISECT}(\mathbf{A},q+1,r,v) \\ 8 & \text{return NIL} \end{array}$$

1	1
2	2
2	3
3	4
4	5
5	6
6	7
7	8
	$\begin{bmatrix} 2 \\ 2 \\ 3 \\ 5 \\ \end{bmatrix}$

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q - 1, v)

7 else return BISECT(A, q + 1, r, v)

8 return NIL
```

	1	1
	2	2
	2	3
	3	4
p,q,r	4	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p	4	5
	5	6
	6	7
r	7	8

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q - 1, v)

7 else return BISECT(A, q + 1, r, v)

8 return NIL
```

	1	1
	2	2
	2	3
	3	4
p	4	5
	5	6
	6	7
r	7	8
		1

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q-1, v)

7 else return BISECT(A, q+1, r, v)

8 return NIL
```

p	1	1
	2	2
	2	3
	3	4
	4	5
	5	6
	6	7
r	7	8
	•	•

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q - 1, v)

7 else return BISECT(A, q + 1, r, v)

8 return NIL

\rightarrow 5
```

o	1	1
	2	2
	2	3
	3	4
	4	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

p	1	1
	2	2
	2	3
	3	4
	5	5
	5	6
	6	7
r	7	8

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q-1, v)

7 else return BISECT(A, q+1, r, v)

8 return NIL
```

o	1	1
	2	2
	2	3
	3	4
	5	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

p	1	1
	2	2
	2	3
q	3	4
	5	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

p	1	1
	2	2
	2	3
q	3	4
	5	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

p	1	1
	2	2
	2	3
q	3	4
	5	5
	5	6
	6	7
r	7	8

```
BISECT(A, p, r, v)
1 if p \le r
```

$$2 q = \lfloor (p+r)/2 \rfloor$$

$$\mathbf{if}\ v == \mathbf{A}[q]$$

4 return
$$q$$

5 elseif
$$v < A[q]$$

6 return BISECT
$$(A, p, q - 1, v)$$

7 else return
$$BISECT(A, q + 1, r, v)$$

	1	1
	2	2
	2	3
	3	4
p	5	5
	5	6
	6	7
r	7	8
	•	•

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p	5	5
	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p	5	5
q	5	6
	6	7
r	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

1	1
2	2
2	3
3	4
5	5
5	6
6	7
7	8
	2 2 3 5

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p	5	5
q	5	6
	6	7
r	7	8

BISECT(A, p, r, v)1 **if** $p \le r$

$$2 q = \lfloor (p+r)/2 \rfloor$$

$$\mathbf{if}\ v == \mathbf{A}[q]$$

4 return
$$q$$

5 elseif
$$v < A[q]$$

6 return BISECT
$$(A, p, q - 1, v)$$

7 else return
$$BISECT(A, q + 1, r, v)$$

	1	1
	2	2
	2	3
	3	4
p, r	5	5
	5	6
	6	7
	7	8

$$p, r, v = 1, 8, 4 \rightarrow 5, 8, 4 \rightarrow 5, 5, 4$$

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p, r	5	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p,q,r	5	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p,q,r	5	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p,q,r	5	5
	5	6
	6	7
	7	8

BISECT(A, p, r, v)1 if $p \le r$

$$2 q = \lfloor (p+r)/2 \rfloor$$

3 **if**
$$v == A[q]$$

4 return
$$q$$

5 elseif
$$v < A[q]$$

6 return BISECT
$$(A, p, q - 1, v)$$

7 else return
$$BISECT(A, q + 1, r, v)$$

	1	1
	2	2
	2	3
r	3	4
p	5	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
r	3	4
p	5	5
	5	6
	6	7
	7	8

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q - 1, v)

7 else return BISECT(A, q + 1, r, v)

8 return NIL
```

	1	1
	2	2
	2	3
r	3	4
p	5	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

	1	1
	2	2
	2	3
	3	4
p, r	5	5
	5	6
	6	7
	7	8

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q - 1, v)

7 else return BISECT(A, q + 1, r, v)

8 return NIL
```

	1	1
	2	2
	2	3
	3	4
p, r	5	5
	5	6
	6	7
	7	8

```
\begin{array}{ll} \operatorname{BISECT}(A,p,r,v) \\ 1 & \text{if } p \leq r \\ 2 & q = \lfloor (p+r)/2 \rfloor \\ 3 & \text{if } v == A[q] \\ 4 & \text{return } q \\ 5 & \text{elseif } v < A[q] \\ 6 & \text{return } \operatorname{BISECT}(A,p,q-1,v) \\ 7 & \text{else return } \operatorname{BISECT}(A,q+1,r,v) \\ 8 & \text{return } \operatorname{NIL} \end{array}
```

-
)
Ļ
)
)
7
)

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q - 1, v)

7 else return BISECT(A, q + 1, r, v)

8 return NIL
```

	1	1
	2	2
	2	3
	3	4
p	5	5
	5	6
	6	7
r	7	8

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q-1, v)

7 else return BISECT(A, q+1, r, v)

8 return NIL
```

o	1	1
	2	2
	2	3
	3	4
	15	5
	5	6
	6	7
r	7	8

```
BISECT(A, p, r, v)

1 if p \le r

2 q = \lfloor (p+r)/2 \rfloor

3 if v == A[q]

4 return q

5 elseif v < A[q]

6 return BISECT(A, p, q - 1, v)

7 else return BISECT(A, q + 1, r, v)

8 return NIL
```

)	1	1
	2	2
	2	3
	3	4
	5	5
	5	6
	6	7
•	7	8

$$T(n) = T(n/2) + 1$$

Her gjør jeg endel antagelser/forenklinger, f.eks. at delproblemet har størrelse n/2 og ikke n/2 - 1 - og at vi ikke finner v før vi har kommet til bunnen. Disse antagelsene har ikke noe å si for den asymptotiske worst-case-kjøretiden.

$$T(n) = T(n/2) + 1$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+ T(n/2) \tag{1}$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+ T(n/2) \tag{1}$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+ T(n/2/2) \tag{2}$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+ T(n/4) \tag{2}$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+ T(n/8) \tag{3}$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(n/2?) \tag{?}$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ \operatorname{T}(n/2^?) \tag{lg } n)$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(n/2^{\lg n}) \qquad (\lg n)$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(n/n) (lg n)$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+ T(1) (lg n)$$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+1$$
 $(\lg n)$

D&C > binærsøk >
$$T(n) = 1 + T(n/2)$$

$$T(n) = 1$$

$$+1$$
 (1)

$$+1$$
 (2)

$$+1$$
 (3)

$$+1$$
 $(\lg n)$

$$T(n) = \lg n + 1$$

Verifikasjon

Med substitusjon/induksjon

D&C > binærsøk >
$$T(n) = T(n/2) + 1$$

$$T(n) = T(n/2) + 1$$

D&C > binærsøk >
$$T(n) = T(n/2) + 1$$

$$T(n) = T(n/2) + 1$$

Gitt
$$T(k) = \lg k + 1$$
 for $k < n$, vis $T(n) = \lg n + 1$

D&C > binærsøk >
$$T(n) = T(n/2) + 1$$

$$T(n) = T(n/2) + 1$$

Gitt
$$T(k) = \lg k + 1$$
 for $k < n$, vis $T(n) = \lg n + 1$

D&C > binærsøk >
$$T(n) = T(n/2) + 1$$

$$T(n) = T(n/2) + 1$$

= $(\lg \frac{n}{2} + 1) + 1$

$$T(n) = T(n/2) + 1$$

= $(\lg \frac{n}{2} + 1) + 1$
= $\lg n - \lg 2 + 2$

$$T(n) = T(n/2) + 1$$

$$= (\lg \frac{n}{2} + 1) + 1$$

$$= \lg n - \lg 2 + 2$$

$$= \lg n + 1$$

$$T(n) = T(n/2) + 1$$

$$= (\lg \frac{n}{2} + 1) + 1$$

$$= \lg n - \lg 2 + 2$$

$$= \lg n + 1$$

$$T(n) = \lg n + 1$$

«[Von Neumann's] manuscript, written in ink, is 23 pages long; the first page still shows traces of the penciled phrase "TOP SECRET," which was subsequently erased. (In 1945, work on computers was classified, due to its connections with military problems.)»

Donald Knuth, «Von Neumann's First Computer Program» http://dl.acm.org/citation.cfm?doid=356580.356581

Merge sort

(a) we now form again the vortents of the short the short of the short

Kalles også «flettesortering» på norsk.

• Sortér venstre halvdel rekursivt

• Sortér høyre halvdel rekursivt

• Flett sammen halvdelene

Sortér venstre halvdel rekursivt

Sortér høyre halvdel rekursivt

• Flett sammen halvdelene

 $egin{array}{cccc} A & ext{tabell} \ p & ext{venstre} \ q & ext{midten} \ r & ext{høyre} \ \end{array}$

MERGE(A,
$$p$$
, q , r)

$$1 \quad n_1 = q - p + 1$$

 $egin{array}{lll} A & ext{tabell} \\ p & ext{venstre} \\ q & ext{midten} \\ r & ext{høyre} \\ n_1 & ext{v. lengde} \end{array}$

$$1 \quad n_1 = q - p + 1$$

$$2 \quad n_2 = r - q$$

A tabell p venstre q midten r høyre n_1 v. lengde n_2 h. lengde

$$1 \quad n_1 = q - p + 1$$

- $2 n_2 = r q$
- 3 new: $L[1...n_1 + 1]$, $R[1...n_2 + 1]$

- $egin{array}{ll} A & ext{tabell} \ p & ext{venstre} \ q & ext{midten} \end{array}$
 - høyre
- n_1 v. lengde
- n_2 h. lengde
- L kopi, v.
- R kopi, h.

$$1 \quad n_1 = q - p + 1$$

- $2 n_2 = r q$
- 3 new: $L[1...n_1 + 1]$, $R[1...n_2 + 1]$
- 4 for i = 1 to n_1

- A tabel
- p venstre
- q midten
- r høyre
- n_1 v. lengde
- n_2 h. lengde
- L kopi, v.
- R kopi, h.
- i pos. i L

$$1 \quad n_1 = q - p + 1$$

$$2 n_2 = r - q$$

3 new:
$$L[1...n_1 + 1]$$
, $R[1...n_2 + 1]$

4 for
$$i = 1$$
 to n_1

$$L[i] = A[p+i-1]$$

A tabel

p venstre

q midten

r høyre

 n_1 v. lengde

 n_2 h. lengde

L kopi, v.

R kopi, h.

i pos. i L

$$1 \quad n_1 = q - p + 1$$

$$2 n_2 = r - q$$

3 new:
$$L[1...n_1 + 1]$$
, $R[1...n_2 + 1]$

4 for
$$i = 1$$
 to n_1

$$L[i] = A[p+i-1]$$

6 **for**
$$j = 1$$
 to n_2

A tabel

p venstre

q midten

r høyre

 n_1 v. lengde

 n_2 h. lengde

L kopi, v.

R kopi, h.

i pos. i L

j pos. i R

```
\begin{array}{ll} \text{MERGE}(A,p,q,r) \\ 1 & n_1 = q - p + 1 \\ 2 & n_2 = r - q \\ 3 & \text{new: L}[1 \dots n_1 + 1], \ \text{R}[1 \dots n_2 + 1] \\ 4 & \textbf{for } i = 1 \ \textbf{to} \ n_1 \\ 5 & \text{L}[i] = \text{A}[p + i - 1] \\ 6 & \textbf{for } j = 1 \ \textbf{to} \ n_2 \\ 7 & \text{R}[j] = \text{A}[q + j] \end{array}
```

A tabell p venstre q midten r høyre n_1 v. lengde n_2 h. lengde

L kopi, v.

R kopi, h. i pos. i L j pos. i R

MERGE(A, p, q, r)
1
$$n_1 = q - p + 1$$

2 $n_2 = r - q$
3 new: L[1... $n_1 + 1$], R[1... $n_2 + 1$]
4 **for** $i = 1$ **to** n_1
5 L[i] = A[$p + i - 1$]
6 **for** $j = 1$ **to** n_2
7 R[j] = A[$q + j$]
8 L[$n_1 + 1$] = ∞

p venstre q midten r høyre n_1 v. lengde n_2 h. lengde n_2 h. lengde n_3 kopi, v. n_4 kopi, h. n_5 pos. i n_5 pos. i n_5

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
 2 n_2 = r - q
 3 new: L[1...n_1 + 1], R[1...n_2 + 1]
 4 for i = 1 to n_1
 5 	 L[i] = A[p+i-1]
 6 for j = 1 to n_2
 7 	 R[j] = A[q+j]
 8 L[n_1 + 1] = \infty
 9 R[n_2 + 1] = \infty
```

p venstre q midten r høyre n_1 v. lengde n_2 h. lengde n_2 h. lengde n_3 kopi, v. n_4 kopi, h. n_5 pos. i n_5 pos. i n_5

```
MERGE(A, p, q, r)
 1 \quad n_1 = q - p + 1
 2 n_2 = r - q
 3 new: L[1...n_1 + 1], R[1...n_2 + 1]
 4 for i = 1 to n_1
       L[i] = A[p+i-1]
 6 for j = 1 to n_2
 7 	 R[j] = A[q+j]
 8 L[n_1 + 1] = \infty
 9 R[n_2 + 1] = \infty
10 ...
```

A tabell p venstre q midten r høyre n_1 v. lengde n_2 h. lengde

L kopi, v.

R kopi, h. i pos. i L j pos. i R

```
Merge(A, p, q, r)
10 ...
```

```
A tabell p venstre
```

- q midten
- r høyre
- L kopi, v.
- R kopi, h.
- i pos. i L
- j pos. i R

10 ...

$$11 \quad i = 1$$

A tabell

p venstre

q midten

r høyre

L kopi, v.

R kopi, h.

i pos. i L

j pos. i R

10 ...

 $11 \quad i = 1$

 $12 \ j = 1$

A tabell

p venstre

q midten

r høyre

L kopi, v.

R kopi, h.

i pos. i L

j pos. i R

10 ...

11 i = 1

 $12 \quad j = 1$

13 for k = p to r

A tabell

p venstre

q midten

r høyre

L kopi, v.

R kopi, h.

i pos. i L

j pos. i R

k pos. i A

```
Merge(A, p, q, r)

10 ...

11 i = 1

12 j = 1

13 for k = p to r

14 if L[i] \le R[j]
```

```
A tabell

p venstre

q midten

r høyre

L kopi, v.

R kopi, h.

i pos. i L

j pos. i R

k pos. i A
```

```
MERGE(A, p, q, r)

10 \dots 11 \quad i = 1

12 \quad j = 1

13 \quad \text{for } k = p \text{ to } r

14 \quad \text{if } L[i] \leq R[j]

15 \quad A[k] = L[i]
```

A tabell p venstre q midten r høyre

L kopi, v.

R kopi, h. i pos. i L j pos. i R k pos. i A

```
MERGE(A, p, q, r)
10 \dots 11 \quad i = 1
12 \quad j = 1
13 \quad \text{for } k = p \text{ to } r
14 \quad \text{if } L[i] \leq R[j]
15 \quad A[k] = L[i]
16 \quad i = i + 1
```

```
A tabell

p venstre

q midten

r høyre

L kopi, v.

R kopi, h.

i pos. i L

j pos. i R

k pos. i A
```

```
MERGE(A, p, q, r)

10 ...

11 i = 1

12 j = 1

13 for k = p to r

14 if L[i] \leq R[j]

15 A[k] = L[i]

16 i = i + 1

17 else A[k] = R[j]
```

A tabell p venstre q midten r høyre

L kopi, v.

R kopi, h. i pos. i L j pos. i R k pos. i A

```
MERGE(A, p, q, r)
                                    A tabell
                                      venstre
10 ...
                                      midten
11 i = 1
                                      høyre
12 j = 1
                                    L kopi, v.
   for k = p to r
                                    R kopi, h.
                                    i pos. i L
         if L[i] \leq R[j]
14
                                     pos. i R
              A[k] = L[i]
15
                                    k pos. i A
              i = i + 1
16
         else A[k] = R[j]
17
              j = j + 1
18
```

Vi har brukt R[j], så vi flytter oss videre

```
MERGE(A, p, q, r)

1 copy into L and R

2 for k = p to r

3 if L[i] \le R[j]

4 A[k] = L[i]

5 i = i + 1

6 else A[k] = R[j]

7 j = j + 1
```

```
MERGE(A, p, q, r)

1 copy into L and R

2 for k = p to r

3 if L[i] \le R[j]

4 A[k] = L[i]

5 i = i + 1

6 else A[k] = R[j]

7 j = j + 1
```


MERGE
$$(A, p, q, r)$$
1 copy into L and R
2 **for** $k = p$ **to** r
3 **if** $L[i] \le R[j]$
4 $A[k] = L[i]$
5 $i = i + 1$
6 **else** $A[k] = R[j]$
7 $j = j + 1$


```
MERGE(A, p, q, r)
1 copy into L and R
2 for k = p to r
3 if L[i] \le R[j]
4 A[k] = L[i]
5 i = i + 1
6 else A[k] = R[j]
7
```



```
Merge(A, p, q, r)
1 copy into L and R
2 for k = p to r
3 if L[i] \le R[j]
4 A[k] = L[i]
5 i = i + 1
6 else A[k] = R[j]
7 j = j + 1
```



```
MERGE(A, p, q, r)

1 copy into L and R

2 for k = p to r

3 if L[i] \le R[j]

4 A[k] = L[i]

5 i = i + 1

6 else A[k] = R[j]

7 j = j + 1
```


MERGE
$$(A, p, q, r)$$
1 copy into L and R
2 **for** $k = p$ **to** r
3 **if** $L[i] \le R[j]$
4 $A[k] = L[i]$
5 $i = i + 1$
6 **else** $A[k] = R[j]$
7

MERGE
$$(A, p, q, r)$$
1 copy into L and R
2 **for** $k = p$ **to** r
3 **if** $L[i] \le R[j]$
4 $A[k] = L[i]$
5 $i = i + 1$
6 **else** $A[k] = R[j]$
7 $j = j + 1$


```
MERGE(A, p, q, r)

1 copy into L and R

2 for k = p to r

3 if L[i] \le R[j]

4 A[k] = L[i]

5 i = i + 1

6 else A[k] = R[j]

7 j = j + 1
```



```
MERGE(A, p, q, r)
1 copy into L and R
2 for k = p to r
3 if L[i] \le R[j]
4 A[k] = L[i]
5 i = i + 1
6 else A[k] = R[j]
7 j = j + 1
```


MERGE
$$(A, p, q, r)$$
1 copy into L and R
2 **for** $k = p$ **to** r
3 **if** $L[i] \le R[j]$
4 $A[k] = L[i]$
5 $i = i + 1$
6 **else** $A[k] = R[j]$
7


```
MERGE(A, p, q, r)
1 copy into L and R
2 for k = p to r
3 if L[i] \le R[j]
4 A[k] = L[i]
5 i = i + 1
6 else A[k] = R[j]
7
```



```
MERGE(A, p, q, r)

1 copy into L and R

2 for k = p to r

3 if L[i] \le R[j]

4 A[k] = L[i]

5 i = i + 1

6 else A[k] = R[j]

7 j = j + 1
```


MERGE(A,
$$p$$
, q , r)
1 copy into L and R

2 for
$$k = p$$
 to r

3 if
$$L[i] \le R[j]$$

4 $A[k] = L[i]$
5 $i = i + 1$

6 else
$$A[k] = R[j]$$

$$j = j + 1$$


```
MERGE(A, p, q, r)

1 copy into L and R

2 for k = p to r

3 if L[i] \le R[j]

4 A[k] = L[i]

5 i = i + 1

6 else A[k] = R[j]

7 j = j + 1
```



```
MERGE(A, p, q, r)

1 copy into L and R

2 for k = p to r

3 if L[i] \le R[j]

4 A[k] = L[i]

5 i = i + 1

6 else A[k] = R[j]

7 j = j + 1
```


Sortér venstre halvdel rekursivt

Sortér høyre halvdel rekursivt

• Flett sammen halvdelene

• Sortér venstre halvdel rekursivt

• Sortér høyre halvdel rekursivt

• Flett sammen halvdelene

Skal sortere A[1..8]

Sortér først A[1..4] og så A[5..8]

Skal sortere A[1...4]

Sortér først A[1...2] og så A[3...4]

Skal sortere A[1...2]

Sortér først A[1] og så A[2]

A[1] er sortert

Sortér først A[1] og så A[2]

A[2] er sortert

Flett sammen A[1] og A[2]

A[1..2] er sortert

Sortér først A[1..2] og så A[3..4]

Skal sortere A[3...4]

Sortér først A[3] og så A[4]

A[3] er sortert

Sortér først A[3] og så A[4]

A[4] er sortert

Flett sammen A[3] og A[4]

A[3...4] er sortert

Flett sammen A[1...2] og A[3...4]

A[1..4] er sortert

Sortér først A[1..4] og så A[5..8]

Flett sammen A[1...4] og A[5...8]

A[1..8] er sortert

Merge-Sort
$$(A, p, r)$$

1 if $p < r$

Hvis A[p...r] har lengde minst 2...

Merge-Sort
$$(A, p, r)$$

1 if
$$p < r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

MERGE-SORT
$$(A, p, r)$$

1 if $p < r$
2 $q = \lfloor (p+r)/2 \rfloor$

Sortér $A[p \dots q]$ rekursivt

MERGE-SORT
$$(A, p, r)$$

1 if $p < r$
2 $q = \lfloor (p+r)/2 \rfloor$
3 MERGE-SORT (A, p, q)
4 MERGE-SORT $(A, q+1, r)$

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

MERGE-SORT(A, p, r)

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

o	2	1
	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
r	3	8

1 if
$$p < r$$

$$q = \lfloor (p+r)/2 \rfloor$$

- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

o	2	1
	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
r	3	8

Merge-Sort
$$(A, p, r)$$

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 MERGE(A, p, q, r)

o	2	1
	4	2
	6	3
q	5	4
	2	5
	1	6
	7	7
r	3	8

1 if
$$p < r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

p	2	1
	4	2
	6	3
r	5	4
	2	5
	1	6
	7	7
	3	8

1 if
$$p < r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

p	2	1
	4	2
	6	3
r	5	4
	2	5
	1	6
	7	7
	3	8

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 MERGE(A, p, q, r)

p	2	1
q	4	2
	6	3
r	5	4
	2	5
	1	6
	7	7
	3	8

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

p	2	1
r	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

1 if
$$p < r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 MERGE(A, p, q, r)

p	2	1
r	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 MERGE(A, p, q, r)

p,q	2	1
r	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

1 if
$$p < r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 MERGE(A, p, q, r)

p,r	2	1
	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

MERGE-SORT(A, p, r)

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

p	2	1
r	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 MERGE(A, p, q, r)

	2	1
p, r	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

p	2	1
r	4	2
	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

MERGE-SORT
$$(A, p, r)$$

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

p	2	1
	4	2
	6	3
r	5	4
	2	5
	1	6
	7	7
	3	8

- 1 if p < r
- $q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

	2	1
	4	2
p	6	3
r	5	4
	2	5
	1	6
	7	7
	3	8

1 if
$$p < r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 MERGE(A, p, q, r)

	2	1
	4	2
p	6	3
r	5	4
	2	5
	1	6
	7	7
	3	8

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

	2	1
	4	2
p,q	6	3
r	5	4
	2	5
	1	6
	7	7
	3	8

1 if
$$p < r$$

$$q = \lfloor (p+r)/2 \rfloor$$

3 Merge-Sort
$$(A, p, q)$$

4 Merge-Sort
$$(A, q + 1, r)$$

5 Merge(A,
$$p$$
, q , r)

	2	1
	4	2
p, r	6	3
	5	4
	2	5
	1	6
	7	7
	3	8

Merge-Sort
$$(A, p, r)$$

1 if $p < r$
2 $q = \lfloor (p+r)/2 \rfloor$
3 Merge-Sort (A, p, q)
4 Merge-Sort $(A, q+1, r)$
5 Merge (A, p, q, r)

Merge-Sort(A, p, r)

- 1 if p < r
- $2 q = \lfloor (p+r)/2 \rfloor$
- 3 Merge-Sort(A, p, q)
- 4 Merge-Sort(A, q + 1, r)
- 5 Merge(A, p, q, r)

	2	1
	4	2
	6	3
p, r	5	4
	2	5
	1	6
	7	7
	3	8

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

1
2
3
4
5
6
7
8

```
Merge-Sort(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 Merge-Sort(A, p, q)

4 Merge-Sort(A, q+1, r)

5 Merge(A, p, q, r)
```


MERGE-SORT
$$(A, p, r)$$

- if p < r
- $q = \lfloor (p+r)/2 \rfloor$
- MERGE-SORT(A, p, q)
- Merge-Sort(A, q + 1, r)4
- MERGE(A, p, q, r)5

2	1
4	2
5	3
6	4
2	5
1	6
7	7
3	8
	4 5 6 1 7

MERGE-SORT(A, p, r)

1 if
$$p < r$$

$$2 q = \lfloor (p+r)/2 \rfloor$$

3 Merge-Sort(A,
$$p$$
, q)

4 MERGE-SORT
$$(A, q + 1, r)$$

5
$$MERGE(A, p, q, r)$$

$$p, r = 1, 8 + 5, 8$$

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

p	2	1
	4	2
	5	3
	6	4
	1	5
	2	6
	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	6 7

```
\begin{aligned} & \text{Merge-Sort}(A, p, r) \\ & 1 \quad \text{if} \ p < r \\ & 2 \qquad q = \lfloor (p+r)/2 \rfloor \\ & 3 \qquad \text{Merge-Sort}(A, p, q) \\ & 4 \qquad \text{Merge-Sort}(A, q+1, r) \\ & 5 \qquad \text{Merge}(A, p, q, r) \end{aligned}
```

1	1
2	2
2	3
3	4
4	5
5	6
6	7
7	8

$$T(n) = 2T(n/2) + n$$

$$T(n) = 2T(n/2) + n$$

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+ 2T(n/2)$$
(1)

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+ 2T(n/2)$$
(1)

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+ 2 \cdot n/2 \tag{1}$$

$$+ 2 \cdot 2T(n/2/2) \tag{2}$$

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+n$$
 (1)

$$+4T(n/4) \tag{2}$$

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+8T(n/8) \tag{3}$$

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+n$$
 (3)

$$+2? \cdot T(n/2?) \tag{?}$$

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+n$$
 (3)

$$+ 2^{?} \cdot T(n/2^{?}) \qquad (\lg n)$$

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+n$$
 (3)

$$+ 2^{\lg n} \cdot T(n/2^{\lg n}) \qquad (\lg n)$$

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+n$$
 (3)

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+n$$
 (3)

$$+ n \cdot T(1)$$
 $(\lg n)$

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+n$$
 (3)

$$+n$$
 $(\lg n)$

D&C > merge sort >
$$T(n) = n + 2T(n/2)$$

$$T(n) = n$$

$$+n$$
 (1)

$$+n$$
 (2)

$$+n$$
 (3)

$$+n$$
 $(\lg n)$

$$T(n) = n \lg n + n$$

Verifikasjon

Med substitusjon/induksjon

D&C > merge sort >
$$T(n) = 2T(n/2) + n$$

$$T(n) = 2T(n/2) + n$$

D&C > merge sort >
$$T(n) = 2T(n/2) + n$$

$$T(n) = 2T(n/2) + n$$

Gitt
$$T(k) = k \lg k + k$$
 for $k < n$, vis $T(n) = n \lg n + n$

D&C > merge sort >
$$T(n) = 2T(n/2) + n$$

$$T(n) = 2T(n/2) + n$$

Gitt
$$T(k) = k \lg k + k$$
 for $k < n$, vis $T(n) = n \lg n + n$

$$T(n) = 2T(n/2) + n$$

$$= 2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n$$

$$T(n) = 2T(n/2) + n$$

$$= 2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n$$

$$= n\lg\frac{n}{2} + n + n$$

$$T(n) = 2T(n/2) + n$$

$$= 2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n$$

$$= n\lg\frac{n}{2} + n + n$$

$$= n(\lg n - \lg 2) + 2n$$

$$T(n) = 2T(n/2) + n$$

$$= 2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n$$

$$= n\lg\frac{n}{2} + n + n$$

$$= n(\lg n - \lg 2) + 2n$$

$$= n\lg n + n$$

Gitt $T(k) = k \lg k + k$ for k < n, vis $T(n) = n \lg n + n$

$$T(n) = 2T(n/2) + n$$

$$= 2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n$$

$$= n\lg\frac{n}{2} + n + n$$

$$= n(\lg n - \lg 2) + 2n$$

$$= n\lg n + n$$

Gitt $T(k) = k \lg k + k$ for k < n, vis $T(n) = n \lg n + n$

$$T(n) = n \lg n + n$$

Quicksort

Quicksort

By C. A. R. Hoare

A description is given of a new method of sorting in the random-access store of a computer. In ease of programming. Certain refinements of the methods in speed, in economy of storage, and ation of inner loops, are described in the second part of the paper.

rt One: Theory

e sorting method described in this paper is based on principle of resolving a problem into two simpler sheet to produce yet simpler problems. The process rivial. These trivial problems are found to shown methods.

highest address and moves downward. The lower key which is equal to or less than the bound, it moves locations. It continues to move in the next higher group of

• Skill «små» og «store» tall

• Sortér små tall rekursivt

• Sortér store tall rekursivt

• Skill «små» og «store» tall

Sortér små tall rekursivt

Sortér store tall rekursivt

 $egin{array}{ll} A & {
m tabell} \ p & {
m venstre} \ r & {
m høyre} \end{array}$

Partition(A,
$$p$$
, r)
1 $x = A[r]$

A tabel

p venstre

r høyre

x splitt

1
$$x = A[r]$$

$$\begin{array}{ll}
1 & x = A[r] \\
2 & i = p - 1
\end{array}$$

p venstre r høyre x splitt i siste, små

$$1 \quad x = \mathbf{A}[r]$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$

r høyre x splitt i siste, små j siste, store

$$1 \quad x = \mathbf{A}[r]$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$

4 if
$$A[j] \leq x$$

A tabell p venstre r høyre x splitt i siste, små j siste, store

```
Partition(A, p, r)
1 \quad x = A[r]
2 \quad i = p - 1
3 \quad \text{for } j = p \text{ to } r - 1
4 \quad \text{if } A[j] \leq x
5 \quad i = i + 1
```

```
egin{array}{ll} A & 	ext{tabell} \ p & 	ext{venstre} \ r & 	ext{høyre} \ x & 	ext{splitt} \ i & 	ext{siste, små} \ j & 	ext{siste, store} \ \end{array}
```

```
\begin{array}{ll} \operatorname{PARTITION}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \textbf{for } j = p \textbf{ to } r-1 \\ 4 & \textbf{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \operatorname{exchange} A[i] \text{ with } A[j] \end{array}
```

```
A tabell

p venstre

r høyre

x splitt

i siste, små

j siste, store
```

```
\begin{array}{ll} \operatorname{Partition}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \textbf{for } j = p \textbf{ to } r-1 \\ 4 & \textbf{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \operatorname{exchange } A[i] \text{ with } A[j] \\ 7 & \operatorname{exchange } A[i+1] \text{ with } A[r] \end{array}
```

```
A tabell

p venstre

r høyre

x splitt

i siste, små

j siste, store
```

```
\begin{array}{ll} \operatorname{PARTITION}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \textbf{for } j = p \textbf{ to } r-1 \\ 4 & \textbf{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \operatorname{exchange } A[i] \textbf{ with } A[j] \\ 7 & \operatorname{exchange } A[i+1] \textbf{ with } A[r] \\ 8 & \textbf{ return } i+1 \end{array}
```

```
A tabell

p venstre

r høyre

x splitt

i siste, små

j siste, store
```

$$1 \quad x = A[r]$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$

4 if
$$A[j] \leq x$$

$$5 i = i + 1$$

6 exchange
$$A[i]$$
 with $A[j]$

7 exchange
$$A[i+1]$$
 with $A[r]$

8 return
$$i+1$$

o	2	1
	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

```
\begin{array}{ll} \operatorname{PARTITION}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \text{for } j = p \text{ to } r-1 \\ 4 & \text{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \text{ exchange } A[i] \text{ with } A[j] \\ 7 & \text{ exchange } A[i+1] \text{ with } A[r] \\ 8 & \text{ return } i+1 \end{array}
```

p	2	1
	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

```
Partition(A, p, r)
1 \quad x = A[r]
2 \quad i = p - 1
3 \quad \text{for } j = p \quad \text{to } r - 1
4 \quad \text{if } A[j] \leq x
5 \quad i = i + 1
6 \quad \text{exchange } A[i] \quad \text{with } A[j]
7 \quad \text{exchange } A[i + 1] \quad \text{with } A[r]
8 \quad \text{return } i + 1
```

p	2	1
	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

Partition
$$(A, p, r)$$

$$1 \quad x = A[r]$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$

4 if
$$A[j] \leq x$$

$$5 i = i + 1$$

6 exchange
$$A[i]$$
 with $A[j]$

7 exchange
$$A[i+1]$$
 with $A[r]$

8 return
$$i+1$$

j,p	2	1
	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

$$\begin{array}{ll} \operatorname{PARTITION}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \text{for } j = p \text{ to } r-1 \\ 4 & \text{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \operatorname{exchange } A[i] \text{ with } A[j] \\ 7 & \operatorname{exchange } A[i+1] \text{ with } A[r] \\ 8 & \text{ return } i+1 \end{array}$$

j,p	2	1
	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

```
Partition(A, p, r)
1 \quad x = A[r]
2 \quad i = p - 1
3 \quad \text{for } j = p \quad \text{to } r - 1
4 \quad \text{if } A[j] \leq x
5 \quad i = i + 1
6 \quad \text{exchange } A[i] \quad \text{with } A[j]
7 \quad \text{exchange } A[i + 1] \quad \text{with } A[r]
8 \quad \text{return } i + 1
```

i, j, p	2	1
	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

Partition(A,
$$p$$
, r)
$$1 \quad x = A[r]$$

$$2 \quad i = p - 1$$

$$3 \quad \text{for } j = p \quad \text{to } r - 1$$

$$4 \quad \text{if } A[j] \leq x$$

$$5 \quad i = i + 1$$

$$6 \quad \text{exchange } A[i] \quad \text{with } A[j]$$

$$7 \quad \text{exchange } A[i + 1] \quad \text{with } A[r]$$

$$8 \quad \text{return } i + 1$$

i, j, p	2	1
	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

Partition(A,
$$p$$
, r)
1 $x = A[r]$
2 $i = p - 1$
3 for $j = p$ to $r - 1$
4 if $A[j] \le x$
5 $i = i + 1$
6 exchange $A[i]$ with $A[j]$

exchange A[i+1] with A[r]

i, p	2	1
j	8	2
	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

return i+1

$$\begin{array}{ll} \operatorname{PARTITION}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \text{for } j = p \text{ to } r-1 \\ 4 & \text{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \text{ exchange } A[i] \text{ with } A[j] \\ 7 & \text{ exchange } A[i+1] \text{ with } A[r] \\ 8 & \text{ return } i+1 \end{array}$$

Partition(A,
$$p$$
, r)
1 $x = A[r]$
2 $i = p - 1$
3 for $j = p$ to $r - 1$
4 if $A[j] \le x$
5 $i = i + 1$
6 exchange $A[i]$ with $A[j]$

exchange A[i+1] with A[r]

l, p	2	1
	8	2
j	7	3
	1	4
	3	5
	5	6
	6	7
r	4	8

return i+1

Partition(A,
$$p$$
, r)
$$1 \quad x = A[r]$$

$$2 \quad i = p - 1$$

$$3 \quad \text{for } j = p \quad \text{to } r - 1$$

$$4 \quad \text{if } A[j] \leq x$$

$$5 \quad i = i + 1$$

$$6 \quad \text{exchange } A[i] \quad \text{with } A[j]$$

$$7 \quad \text{exchange } A[i + 1] \quad \text{with } A[r]$$

$$8 \quad \text{return } i + 1$$

Partition(A, p, r)

$$1 \quad x = A[r]$$

$$2 \quad i = p - 1$$

3 for
$$j = p$$
 to $r - 1$

4 if
$$A[j] \leq x$$

$$5 i = i + 1$$

6 exchange
$$A[i]$$
 with $A[j]$

7 exchange
$$A[i+1]$$
 with $A[r]$

8 return
$$i+1$$

i,p	2	1
	8	2
	7	3
j	1	4
	3	5
	5	6
	6	7
r	4	8

$$x, i = 4, 1$$

$$\begin{array}{ll} \operatorname{PARTITION}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \text{for } j = p \text{ to } r-1 \\ 4 & \text{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \operatorname{exchange } A[i] \text{ with } A[j] \\ 7 & \operatorname{exchange } A[i+1] \text{ with } A[r] \\ 8 & \text{ return } i+1 \end{array}$$

i, p	2	1
	8	2
	7	3
j	1	4
	3	5
	5	6
	6	7
r	4	8

```
Partition(A, p, r)
1 \quad x = A[r]
2 \quad i = p - 1
3 \quad \text{for } j = p \quad \text{to } r - 1
4 \quad \text{if } A[j] \leq x
5 \quad i = i + 1
6 \quad \text{exchange } A[i] \quad \text{with } A[j]
7 \quad \text{exchange } A[i + 1] \quad \text{with } A[r]
8 \quad \text{return } i + 1
```

p	2	1
i	8	2
	7	3
j	1	4
	3	5
	5	6
	6	7
r	4	8

Partition
$$(A, p, r)$$

$$1 \quad x = A[r]$$

$$2 i = p - 1$$

3 **for**
$$j = p$$
 to $r - 1$

4 if
$$A[j] \leq x$$

$$5 i = i + 1$$

6 exchange
$$A[i]$$
 with $A[j]$

7 exchange
$$A[i+1]$$
 with $A[r]$

8 return
$$i+1$$

$$x, i = 4, 2$$

```
Partition(A, p, r)
1 \quad x = A[r]
2 \quad i = p - 1
3 \quad \text{for } j = p \quad \text{to } r - 1
4 \quad \text{if } A[j] \leq x
5 \quad i = i + 1
6 \quad \text{exchange } A[i] \quad \text{with } A[j]
7 \quad \text{exchange } A[i + 1] \quad \text{with } A[r]
8 \quad \text{return } i + 1
```

p	2	1
	1	2
i	3	3
	8	4
	7	5
	5	6
j	6	7
r	4	8

```
\begin{array}{ll} \operatorname{PARTITION}(A,p,r) \\ 1 & x = A[r] \\ 2 & i = p-1 \\ 3 & \text{for } j = p \text{ to } r-1 \\ 4 & \text{ if } A[j] \leq x \\ 5 & i = i+1 \\ 6 & \text{ exchange } A[i] \text{ with } A[j] \\ 7 & \text{ exchange } A[i+1] \text{ with } A[r] \\ 8 & \text{ return } i+1 \end{array}
```

p	2	1
	1	2
i	3	3
	4	4
	7	5
	5	6
j	6	7
r	8	8

```
Partition(A, p, r)
1 \quad x = A[r]
2 \quad i = p - 1
3 \quad \text{for } j = p \text{ to } r - 1
4 \quad \text{if } A[j] \leq x
5 \quad i = i + 1
6 \quad \text{exchange } A[i] \text{ with } A[j]
7 \quad \text{exchange } A[i + 1] \text{ with } A[r]
8 \quad \text{return } i + 1
\rightarrow 4
```

p	2	1
	1	2
i	3	3
	4	4
	7	5
	5	6
j	6	7
r	8	8

• Skill «små» og «store» tall

Sortér små tall rekursivt

Sortér store tall rekursivt

• Skill «små» og «store» tall

• Sortér små tall rekursivt

• Sortér store tall rekursivt

Quicksort(A, p, r)

Quicksort(A,
$$p$$
, r)
1 if $p < r$

Hvis A[p...r] har lengde minst 2...

Quicksort(A,
$$p$$
, r)

1 if $p < r$

2 $q = \text{Partition}(A, p, r)$

```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

Quicksort(A, p, q - 1)
```

```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort(A, p, q - 1)

4 Quicksort(A, q + 1, r)
```

Quicksort(A, p, r)

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q + 1, r)

p	5	1
	2	2
	4	3
	7	4
	1	5
	3	6
	2	7
r	6	8

1 if
$$p < r$$

$$2 q = PARTITION(A, p, r)$$

3 Quicksort
$$(A, p, q - 1)$$

4 Quicksort
$$(A, q + 1, r)$$

p	5	1
	2	2
	4	3
	7	4
	1	5
	3	6
	2	7
r	6	8

1 if
$$p < r$$

$$2 q = PARTITION(A, p, r)$$

3 Quicksort
$$(A, p, q - 1)$$

4 Quicksort
$$(A, q + 1, r)$$

p	5	1
	2	2
	4	3
	1	4
	3	5
	2	6
q	6	7
r	7	8

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q + 1, r)

p	5	1
	2	2
	4	3
	1	4
	3	5
r	2	6
	6	7
	7	8

1 if
$$p < r$$

$$2 q = PARTITION(A, p, r)$$

3 Quicksort
$$(A, p, q - 1)$$

4 Quicksort(A,
$$q + 1, r$$
)

p	5	1
	2	2
	4	3
	1	4
	3	5
r	2	6
	6	7
	7	8

$$p, q, r = 1, 7, 8 \rightarrow 1, -, 6$$

1 if
$$p < r$$

$$2 q = PARTITION(A, p, r)$$

3 Quicksort
$$(A, p, q - 1)$$

4 Quicksort(A,
$$q + 1, r$$
)

p	2	1
	1	2
q	2	3
	5	4
	3	5
r	4	6
	6	7
	7	8

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q + 1, r)

o	2	1
r	1	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

1 if
$$p < r$$

$$2 q = PARTITION(A, p, r)$$

3 Quicksort
$$(A, p, q - 1)$$

4 Quicksort(A,
$$q + 1, r$$
)

p	2	1
r	1	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

1 if
$$p < r$$

$$2 q = PARTITION(A, p, r)$$

3 Quicksort
$$(A, p, q - 1)$$

4 Quicksort(A,
$$q + 1, r$$
)

p,q	1	1
r	2	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q + 1, r)

o	1	1
	2	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort(A, p, q - 1)

4 Quicksort(A, q + 1, r)
```

p	1	1
	2	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort(A, p, q - 1)

4 Quicksort(A, q + 1, r)
```

p,q	1	1
r	2	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q 1)
- 4 Quicksort(A, q + 1, r)

		_
	1	1
p, r	2	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort(A, p, q - 1)

4 Quicksort(A, q + 1, r)
```

_		_
	1	1
p, r	2	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort(A, p, q - 1)

4 Quicksort(A, q + 1, r)
```

p,q	1	1
r	2	2
	2	3
	5	4
	3	5
	4	6
	6	7
	7	8

```
Quicksort(A, p, r)

1 if p < r

2 q = \text{Partition}(A, p, r)

3 Quicksort(A, p, q - 1)

4 Quicksort(A, q + 1, r)
```

p	1	1
	2	2
q	2	3
	5	4
	3	5
r	4	6
	6	7
	7	8

- 1 if p < r
- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q-1)
- 4 Quicksort(A, q + 1, r)

$$p, q, r = 1, 7, 8 \rightarrow 1, 3, 6 \rightarrow 4, -, 6$$

```
\begin{array}{ll} \text{Quicksort}(\mathbf{A},p,r) \\ 1 & \textbf{if} \ p < r \\ 2 & q = \text{Partition}(\mathbf{A},p,r) \\ 3 & \text{Quicksort}(\mathbf{A},p,q-1) \\ 4 & \text{Quicksort}(\mathbf{A},q+1,r) \end{array}
```

p	1	1
	2	2
q	2	3
	3	4
	4	5
r	5	6
	6	7
	7	8

1 if
$$p < r$$

- 2 q = PARTITION(A, p, r)
- 3 Quicksort(A, p, q-1)
- 4 QUICKSORT(A, q + 1, r)

p	1	1
	2	2
	2	3
	3	4
	4	5
	5	6
q	6	7
γ	7	8

$$p, q, r = 1, 7, 8$$

```
\begin{array}{ll} \text{Quicksort}(\mathbf{A},p,r) \\ 1 & \textbf{if} \ p < r \\ 2 & q = \text{Partition}(\mathbf{A},p,r) \\ 3 & \text{Quicksort}(\mathbf{A},p,q-1) \\ 4 & \text{Quicksort}(\mathbf{A},q+1,r) \end{array}
```

	_
1	1
2	2
2	3
3	4
4	5
5	6
6	7
7	8

I beste/gjsn. tilfelle Akkurat som merge sort

I verste tilfelle Pivot blir helt alene

$$T(n) = T(n-1) + n$$

$$T(n) = T(n-1) + n$$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+ T(n-1)$$
(1)

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+ T(n-1)$$
(1)

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+ n - 1 \tag{1}$$

$$+ T(n-1-1)$$
 (2)

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+ n - 1 \tag{1}$$

$$+ T(n-2) \tag{2}$$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+n-1$$
 (1)

$$+ n - 2 \tag{2}$$

$$+ T(n-3) \tag{3}$$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+n-1$$
 (1)

$$+n-2 \tag{2}$$

$$+n-3$$
 (3)

$$+ T(n-?) \tag{?}$$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+n-1$$
 (1)

$$+n-2$$
 (2)

$$+n-3$$
 (3)

$$+ T(n-?) \qquad (n-1)$$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+n-1$$
 (1)

$$+n-2$$
 (2)

$$+n-3$$
 (3)

$$+ T(n - (n - 1))$$
 $(n - 1)$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+n-1$$
 (1)

$$+n-2 \tag{2}$$

$$+ n - 3 \tag{3}$$

$$+ T(1) \qquad (n-1)$$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+ n - 1 \tag{1}$$

$$+ n - 2 \tag{2}$$

$$+ n - 3 \tag{3}$$

$$+1$$
 $(n-1)$

D&C > quicksort > WC >
$$T(n) = n + T(n-1)$$

$$T(n) = n$$

$$+n-1$$
 (1)

$$+n-2$$
 (2)

$$+n-3$$
 (3)

$$+1$$
 $(n-1)$

$$T(n) = n(n+1)/2$$

Verifikasjon

Med substitusjon/induksjon

D&C > quicksort > WC >
$$\mathrm{T}(n) = \mathrm{T}(n-1) + n$$

$$T(n) = T(n-1) + n$$

D&C > quicksort > WC >
$$\mathrm{T}(n) = \mathrm{T}(n-1) + n$$

$$T(n) = T(n-1) + n$$

Gitt
$$T(n-1) = (n-1)n/2$$
, vis $T(n) = n(n+1)/2$

D&C > quicksort > WC >
$$\mathrm{T}(n) = \mathrm{T}(n-1) + n$$

$$T(n) = T(n-1) + n$$

Gitt
$$T(n-1) = (n-1)n/2$$
, vis $T(n) = n(n+1)/2$

D&C > quicksort > WC >
$$T(n) = T(n-1) + n$$

$$T(n) = T(n-1) + n$$
$$= \frac{(n-1)n}{2} + n$$

Gitt
$$T(n-1) = (n-1)n/2$$
, vis $T(n) = n(n+1)/2$

D&C > quicksort > WC >
$$T(n) = T(n-1) + n$$

$$T(n) = T(n-1) + n$$

$$= \frac{(n-1)n}{2} + n$$

$$= \frac{n^2 - n + 2n}{2}$$

Gitt
$$T(n-1) = (n-1)n/2$$
, vis $T(n) = n(n+1)/2$

$$T(n) = T(n-1) + n$$

$$= \frac{(n-1)n}{2} + n$$

$$= \frac{n^2 - n + 2n}{2}$$

$$= \frac{n(n+1)}{2}$$

$$T(n) = T(n-1) + n$$

$$= \frac{(n-1)n}{2} + n$$

$$= \frac{n^2 - n + 2n}{2}$$

$$= \frac{n(n+1)}{2}$$

Gitt
$$T(n-1) = (n-1)n/2$$
, vis $T(n) = n(n+1)/2$

$$T(n) = n \cdot \frac{n+1}{2}$$

Randomisering Så ingen input alltid er kjip

Dette tabbet de seg ut på i implementasjonen av Swift sin sorteringsalgoritme, opprinnelig: https:// lemire.me/blog/2017/02/06/sorting-sorted-arraysin-swift/

(Arkivert: https://archive.is/ItULW)

RANDOMIZED-PARTITION(A, p, r)

- $1 \quad i = \text{RANDOM}(p, r)$
- 2 exchange A[r] and A[i]
- 3 return Partition(A, p, r)

```
Randomized-Quicksort(A, p, r)
```

```
1 if p < r
```

- 2 q = RANDOMIZED-PARTITION(A, p, r)
- RANDOMIZED-QUICKSORT(A, p, q 1)
- RANDOMIZED-QUICKSORT(A, q + 1, r)

For spesielt interesserte: Akra–Bazzi-metoden er en generalisering av dette.

https://en.wikipedia.org/wiki/Akra-Bazzi_method

Masterteoremet

SIGACT News

36

Fall 1980

A General Method for Solving Divide-and-Conquer Recurrences 1

Jon Louis Bentley²
Dorothea Haken
James B. Saxe
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

alog n

Ta logaritmen på begge sider: $\log a \cdot \log n = \log n \cdot \log a$

$$T(n) = aT(n/b) + f(n)$$

$$T(n) = aT(n/b) + f(n)$$

D&C > masterteoremet >
$$T(n) = f(n) + aT(n/b)$$

$$T(n) = f(n)$$

$$+ aT(n/b)$$
(1)

D&C > masterteoremet >
$$T(n) = f(n) + aT(n/b)$$

$$T(n) = f(n)$$

$$+ aT(n/b)$$
(1)

D&C > masterteoremet >
$$T(n) = f(n) + aT(n/b)$$

$$T(n) = f(n)$$

$$+ af(n/b)$$

$$+ aaT(n/b/b)$$
(2)

D&C > masterteoremet >
$$T(n) = f(n) + aT(n/b)$$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 \operatorname{T}(n/b^2) \tag{2}$$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 \operatorname{T}(n/b^3) \tag{3}$$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ a? T(n/b?)$$
 (?

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ a^{?} \operatorname{T}(n/b^{?}) \qquad (\log_{b} n)$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ a^{\log_b n} \operatorname{T}(n/b^{\log_b n}) \qquad (\log_b n)$$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ a^{\log_b n} \operatorname{T}(n/n)$$
 $(\log_b n)$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ a^{\log_b n} T(1) \qquad \qquad (\log_b n)$$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ a^{\log_b n} \qquad (\log_b n)$$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ a^{\log_b n} \qquad \qquad (\log_b n)$$

$$T(n) = f(n)$$

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a} \qquad \qquad (\log_b n)$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a} \qquad (\log_b n)$$

$$f(n) = O(n^{\log_b a - \epsilon}) \implies T(n) =$$

D&C > masterteoremet >
$$T(n) = f(n) + aT(n/b)$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a}$$
 $(\log_b n)$

$$f(n) = O(n^{\log_b a - \epsilon}) \implies T(n) =$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a}$$
 $(\log_b n)$

$$f(n) = O(n^{\log_b a - \epsilon}) \implies T(n) = \Theta(n^{\log_b a})$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a} \qquad (\log_b n)$$

$$f(n) = \Theta(n^{\log_b a}) \implies \mathrm{T}(n) =$$

$$T(n) = \Theta(n^{\log_b a})$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a} \qquad (\log_b n)$$

$$f(n) = \Theta(n^{\log_b a}) \implies \mathrm{T}(n) =$$

D&C > masterteoremet >
$$T(n) = f(n) + aT(n/b)$$

$$T(n) = \Theta(n^{\log_b a})$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+\Theta(n^{\log_b a}) \qquad (\log_b n)$$

$$f(n) = \Theta(n^{\log_b a}) \implies \mathrm{T}(n) =$$

D&C > masterteoremet >
$$T(n) = f(n) + aT(n/b)$$

$$T(n) = \Theta(n^{\log_b a})$$

$$+ \Theta(n^{\log_b a}) \tag{1}$$

$$+\Theta(n^{\log_b a}) \tag{2}$$

$$+\Theta(n^{\log_b a}) \tag{3}$$

$$+\Theta(n^{\log_b a}) \qquad (\log_b n)$$

$$f(n) = \Theta(n^{\log_b a}) \implies \mathrm{T}(n) =$$

$$T(n) = \Theta(n^{\log_b a})$$

$$+\Theta(n^{\log_b a}) \tag{1}$$

$$+\Theta(n^{\log_b a}) \tag{2}$$

$$+\Theta(n^{\log_b a}) \tag{3}$$

$$+\Theta(n^{\log_b a}) \qquad (\log_b n)$$

$$f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(n^{\log_b a} \cdot \log_b n)$$

$$T(n) = \Theta(n^{\log_b a})$$

$$+\Theta(n^{\log_b a}) \tag{1}$$

$$+\Theta(n^{\log_b a}) \tag{2}$$

$$+\Theta(n^{\log_b a}) \tag{3}$$

$$+\Theta(n^{\log_b a}) \qquad (\log_b n)$$

$$f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(n^{\log_b a} \cdot \lg n)$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a} \qquad (\log_b n)$$

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \Longrightarrow T(n) =$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

Antar «regularitet»

 $af(n/b) \le cf(n)$ for store n, c < 1

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a} \qquad (\log_b n)$$

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \Longrightarrow T(n) =$$

$$T(n) = f(n)$$

$$+ af(n/b)$$
 (1)

Antar «regularitet»

 $af(n/b) \le cf(n)$ for store n, c < 1

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a}$$
 $(\log_b n)$

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \Longrightarrow T(n) =$$

D&C > masterteoremet > T(n) = f(n) + aT(n/b)

Regularitetskriteriet er for at serien av a^i*f(n/b^i)-ledd ikke skal stige mer enn eksponentielt fort (altså ikke mer enn en konstantfaktor c per nivå); ellers vil ikke Omega-kriteriet vårt være nok til at f(n) dominerer kjøretiden asymptotisk.

$$T(n) = f(n)$$

Antar «regularitet» $af(n/b) \le cf(n)$ for store n, c < 1

$$+ af(n/b) \tag{1}$$

$$+ a^2 f(n/b^2) \tag{2}$$

$$+ a^3 f(n/b^3) \tag{3}$$

$$+ n^{\log_b a}$$
 $(\log_b n)$

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \implies T(n) = \Theta(f(n))$$

$$f(n) = O(n^{\log_b a - \epsilon}) \implies T(n) = \Theta(n^{\log_b a})$$

$$f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(n^{\log_b a} \lg n)$$

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \implies T(n) = \Theta(f(n))$$

$$f(n) = O(n^{\log_b a - \epsilon}) \implies T(n) = \Theta(n^{\log_b a})$$

$$f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(n^{\log_b a} \lg n)$$

$$f(n) = \Omega(n^{\log_b a + \epsilon}) \implies T(n) = \Theta(f(n))$$

$$af(n/b) \le cf(n)$$
for store $n, c < 1$

Her har jeg ikke kjørt verifikasjons-trinnet (med substitusjon/induksjon), men prøv gjerne selv!

$$f(n) = O(n^{\log_b a - \epsilon}) \implies T(n) = \Theta(n^{\log_b a})$$

$$f(n) = \Theta(n^{\log_b a}) \implies T(n) = \Theta(n^{\log_b a} \lg n)$$

$$\longrightarrow f(n) = \Omega(n^{\log_b a + \epsilon}) \implies T(n) = \Theta(f(n))$$

$$af(n/b) \le cf(n)$$

for store $n, c < 1$

Teorem 4.1: «The master theorem»

Variabelskifte

Å bytte ut variable er en teknikk som også brukes i f.eks. kalkulus.

Se f.eks. https:// en.wikipedia.org/wiki/ Change_of_variables

$$T(\sqrt{n}) = \lg n$$

$$T(\sqrt{n}) = \lg n$$

$$T(n^{\frac{1}{2}}) = \lg n$$

D&C
$$\rightarrow$$
 variabelskifte \rightarrow $\mathrm{T}(n^{\frac{1}{2}}) = \lg n$

$$m \stackrel{\text{def}}{=} \lg n$$

D&C
$$\rightarrow$$
 variabelskifte \rightarrow $\mathrm{T}(n^{\frac{1}{2}}) = \lg n$

$$m \stackrel{\text{def}}{=} \lg n$$

$$T(2^{\frac{m}{2}}) = m$$

D&C
$$\rightarrow$$
 variabelskifte \rightarrow $\mathrm{T}(n^{\frac{1}{2}}) = \lg n$

$$m \stackrel{\text{def}}{=} \lg n$$
 $T(2^{\frac{m}{2}}) = m$ $S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$

D&C > variabelskifte >
$$T(n^{\frac{1}{2}}) = \lg n$$

$$m \stackrel{\text{def}}{=} \lg n$$
 $T(2^{\frac{m}{2}}) = m$
 $S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$
 $T(2^{\frac{m}{2}}) = S(m/2)$

$$m \stackrel{\text{def}}{=} \lg n$$
 $T(2^{\frac{m}{2}}) = m$
 $S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$
 $T(2^{\frac{m}{2}}) = S(m/2)$
 $S(m/2) = m$

$$m \stackrel{\text{def}}{=} \lg n$$
 $T(2^{\frac{m}{2}}) = m$
 $S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$
 $T(2^{\frac{m}{2}}) = S(m/2)$
 $S(m/2) = m$
 $S(m) = 2m$

(Evt. enda et skifte: $x = m/2 \implies S(x) = 2x \implies S(m) = 2m$)

$$m \stackrel{\text{def}}{=} \lg n$$
 $T(2^{\frac{m}{2}}) = m$
 $S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$
 $T(2^{\frac{m}{2}}) = S(m/2)$
 $S(m/2) = m$
 $S(m) = 2m$
 $T(n) = 2 \lg n$

Her bruker vi bare definisjonene våre: S(m) = T(n) og $m = \lg n$

$$T(n) = 2T(\sqrt{n}) + \lg n$$

$$T(n) = 2T(\sqrt{n}) + \lg n$$

$$T(n) = 2T(n^{\frac{1}{2}}) + \lg n$$

D&C > variabelskifte >
$$T(n) = 2T(n^{\frac{1}{2}}) + \lg n$$

$$m \stackrel{\text{def}}{=} \lg n$$

D&C > variabelskifte >
$$T(n) = 2T(n^{\frac{1}{2}}) + \lg n$$

$$m \stackrel{\text{def}}{=} \lg n$$
$$T(2^m) = T(2^{\frac{m}{2}}) + m$$

D&C > variabelskifte >
$$T(n) = 2T(n^{\frac{1}{2}}) + \lg n$$

$$m \stackrel{\text{def}}{=} \lg n$$

$$T(2^m) = T(2^{\frac{m}{2}}) + m$$

$$S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$$

Gi $T(2^m)$ et nytt navn!

$$m \stackrel{\text{def}}{=} \lg n$$
 $T(2^m) = T(2^{\frac{m}{2}}) + m$
 $S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$
 $T(2^{\frac{m}{2}}) = S(m/2)$

$$m \stackrel{\text{def}}{=} \lg n$$

$$T(2^m) = T(2^{\frac{m}{2}}) + m$$

$$S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$$

$$T(2^{\frac{m}{2}}) = S(m/2)$$

$$S(m) = 2S(m/2) + m$$

$$m \stackrel{\text{def}}{=} \lg n$$
 $T(2^m) = T(2^{\frac{m}{2}}) + m$
 $S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$
 $T(2^{\frac{m}{2}}) = S(m/2)$
 $S(m) = 2S(m/2) + m$
 $S(m) = m \lg m + m$

$$m \stackrel{\text{def}}{=} \lg n$$

$$T(2^m) = T(2^{\frac{m}{2}}) + m$$

$$S(m) \stackrel{\text{def}}{=} T(n) = T(2^m)$$

$$T(2^{\frac{m}{2}}) = S(m/2)$$

$$S(m) = 2S(m/2) + m$$

$$S(m) = m \lg m + m$$

$$T(n) = \lg n \lg \lg n + \lg n$$

Her bruker vi bare definisjonene våre: S(m) = T(n) og $m = \lg n$

- 1. Rekurrenser
- 2. Binærsøk
- 3. Merge sort
- 4. Quicksort
- 5. Masterteoremet
- 6. Variabelskifte

- 5. Masterteoremet
- 6. Variabelskifte

5. Masterteoremet
6. Variabel kifle

- 1. Rekurrenser
- 2. Binærsøk
- 3. Merge sort

5. Masterteoremet

