TRABAJO DE INVESTIGACION

APLICACIONES DE AUTOMATAS

- A. Sistemas de estacionamiento automatizado utilizados en entornos urbanos, en edificios y centros comerciales.
- B. Máquinas de autoservicio en supermercados que son cada vez más comunes en todo el mundo.
- C. Sistemas de control de ascensores parte esencial de los edificios modernos.

Cada grupo debe desarrollar la aplicación asignada en forma aleatoria:

Grupos	Aplicación
8, 3, 2	A
5, 1, 7	В
4, 6	С

EL INFORME FINAL DEL TRABAJO DE INVESTIGACION DEBE CONTENER (Letra Arial 11, interlineado 1.5)

- INTRODUCCION (1 cara) (0.5 p)
- OBJETIVOS DEL TRABAJO (0.5 p)
- MARCO TEORICO (3 a 5 caras máximo, referenciado) (1 p)
- MODELAMIENTO DE LA APLICACION (8 p)
 - PROPOSITO DE LA APLICACION
 - o FUNCIONAMIENTO DE LA APLICACION: Descripción detallada del proceso
 - DEFINICION (FORMAL)DEL AUTOMATA (incluir las SALIDAS como un Traductor) y DIAGRAMA DE ESTADOS
 - EJEMPLOS DE INTERACCIONES RECONOCIDAS POR EL AUTOMATA Y SUS POSIBLES SALIDAS
- IMPLEMENTACION DEL AUTOMATA (O TRADUCTOR): ALGORITMO O PROGRAMAS E INTERFAZ DE SALIDA DE LA APLICACIÓN (2 p)
- PROGRAMA (archivo ejecutable) que cumple requisitos del funcionamiento del Autómata (5 p)
- CONCLUSIONES (1 p)
- BIBLIOGRAFIA (5 FUENTE COMO MINIMO 0.5 p)
- OTROS: formato, figuras, redacción y ortografía (1.5 p)

FECHA DE PRESENTACION DE DOCUMENTOS

DOCUMENTO (PDF) Y PROGRAMA EJECUTABLE: martes 12 de marzo, 11: 55 pm, a través de Grupos de Chat

SIA

Subir en el SIA en forma individual el documento en Pdf, hasta el miércoles 12:15 am

EXPOSICION

DOCUMENTO EXPOSICION

Miércoles 13 de marzo, hasta las 9 am, a través de los grupos de Chat.

EXPOSICION EN CLASES

Miércoles 13 de marzo, de 9 am a 11 am Duración de exposición: 8 minutos

NOTA:

TOMAR COMO REFERENCIA AL SIGUIENTE EJEMPLO:

Ejemplo 9:

En cierta oficina, una máquina expendedora distribuye dos tipos de bebidas en lata: gaseosa y agua mineral. El precio por unidad es \$1. La máquina acepta monedas de \$0.25, \$0.50 y \$1; y devuelve el cambio necesario. Para comprar una bebida se deben introducir las monedas, y luego apretar el botón G para solicitar una gaseosa, o bien el botón M para solicitar Agua Mineral.

Para esta máquina se modela el siguiente Autómata Finito AFM = $\langle E, A, \delta, S, \gamma \rangle$

La función de traducción γ indica el dinero que se entrega como cambio por la adquisición de la bebida, seguido por el tipo de bebida que se ha seleccionado.

El conjunto de estados $E = \{e_0, e_1, e_2, e_3, e_4\}$, donde el estado e_k de la máquina, para k = 0, 1, 2, 3, 4, recuerda la inserción de un total de k * \$0.25.

$$A = \{0.25, 0.50, 1, G, M\}$$

S = {0.25, 0.50, 1, g, m} donde g indica lata de gaseosa y m agua mineral

δ	0.25	0.50	1	G	M
e_0	e_1	e_2	e ₄	e ₀	e ₀
e_1	e ₂	e ₃	e ₄	e_1	e ₁
e_2	e ₃	e ₄	e_4	e_2	e ₂
e_3	e ₄	e ₄	e ₄	e ₃	e ₃
e ₄	e ₄	e ₄	e ₄	e ₀	e ₀

γ	0.25	0.50	1	G	M
e_0	3	3	3	3	3
e_1	3	ε	0.25	3	3
e_2	ε	ε	0.50	ε	ε
e ₃	ε	0.25	0.25 0.50	3	3
e ₄	0.25	0.50	1	g	m

Transición

Traducción