Metaheuristic Optimization Methods: Particle Swarm Optimization

Swarm Intelligence

- Study of collective behavior in decentralized, self-organized systems
- Originated from the study of colonies, or swarms of social organisms
- Collective intelligence arises from interactions

Particle Swarm Optimization (PSO)

- Introduced by Kennedy & Eberhart 1995
- Inspired by social behavior of birds and shoals of fish
- Swarm intelligence-based optimization
- Nondeterministic
- Population-based optimization
- Performance comparable to Genetic algorithms

PSO vs. GA

Similarity

- Start with a group of a randomly generated population
- Use fitness values to evaluate the population
- Update population and use stochastic techniques
- Neither guarantee success

Dissimilarity

- PSO has no evolution operators (e.g. crossover)
- Particles update themselves with an internal velocity
- Particles have memory
- PSO works best (naturally) on continuous space

Advantages

- PSO is easy to implement with few parameters to adjust
- PSO tends to converge to 'best' solution quickly

Particle Swarm Optimization

- Simple algorithms for movement
- Movement is influenced by three factors:
 - 1. Inertia
 - 2. Cognitive influence
 - 3. Social influences
- Particles try to improve themselves and often achieve this by (2) and (3)
- Overall population moves towards "better" areas of the problem space

Particle Swarm Optimization

- Swarm: a set of particles (S)
- Particle: a potential solution
 - Position, $X_i = (x_{i1}, x_{i2}, ..., x_{in}) \in \mathbb{R}^n$
 - Velocity, $V_i = (v_{i1}, v_{i2}, \dots, v_{in}) \in \mathbb{R}^n$
- Each particle maintains
 - Individual best position: $P_i = (p_{i1}, p_{i2}, ..., p_{in}) \in \mathbb{R}^n$ $pbest_i = f(P_i)$
- Swarm maintains its global best: $P_g \in \mathbb{R}^n$ $gbest = f(P_g)$

PSO Algorithm

Basic process:

- 1. Initialize the swarm from the solution space
- 2. Evaluate fitness of each particle
- 3. Update individual and global bests
- 4. Update velocity and position of each particle
- 5. Go to step 2, and repeat until termination condition

Particle Swarm Optimization

Original velocity update equation:

$$V_i^{t+1} = V_i^t + \varphi_1 . r_1 (P_i - X_i^t) + \varphi_2 . r_2 (P_g - X_i^t)$$
Inertia Cognitive Component Social Component

where
$$r_1, r_2 \sim U(0,1)$$
 and acceleration constants φ_1, φ_2

• Position Update:
$$X_i^{t+1} = X_i^t + V_i^{t+1}$$

PSO Algorithm - Parameters

- Acceleration constants: φ_1, φ_2
 - small values limit the movement of the particles
 - large values: tendency to explode toward infinity
 - In general,

$$\varphi_1 + \varphi_2 \le 4$$

Maximum velocity

If
$$v_{ij} > v_{\text{max}}$$
 then $v_{ij} = v_{\text{max}}$ else if $v_{ij} < -v_{\text{max}}$ then $v_{ij} = -v_{\text{max}}$

Rate of Convergence Improvement

Inertia weight:

$$V_i^{t+1} = w V_i^t + \varphi_1 \cdot r_1 (P_i - X_i^t) + \varphi_2 \cdot r_2 (P_g - X_i^t)$$

- Scales the previous velocity
- Control search behavior

 - Low values → exploitation

PSO with Inertia weight

Can be decreased over time

• Linearly:

$$w(t) = w_{\mathrm{max}} \left(w_{\mathrm{max}} - w_{\mathrm{min}}
ight) rac{t}{t_{\mathrm{max}}}$$
 e.g. 0.9 to 0.2

Nonlinearly, e.g.:

$$w(t) = \frac{A}{e^{kt}}$$

- main disadvantage:
 - once the inertia weight is decreased, the swarm loses its ability to search new areas (can not recover its exploration mode).

PSO Neighborhoods

- The neighborhood concept in PSO is not the same as the one used in other metaheuristics search
- Neighborhoods do not depend on particle position in the search space, but on "external" relationships that are not problem dependent
- The original PSO had two types of neighborhoods defined: global and local

PSO Neighborhoods

Global neighborhood → use "gbest"

PSO Neighborhoods

Local neighborhood → use "lbest" as social component

Swarm Topologies

- Two general types of neighborhoods:
 - Global best (gbest): fully connected network
 - Local best (*lbest*): according to a topology

Swarm topologies

Ring

- each particle has k/2 neighbors on each "side"
- usually k=2
- e.g.,

Particle 2 is neighbors with particles 1 and 3 Particle 3 is neighbors with particles 2 and 4

Swarm topologies

- von Neumann
 - basically a ring with 2 neighbors on each side
 - each particle has 4 neighbors

Particle 2 is neighbors with particles 1, 3, 6, and 10 Particle 3 is neighbors with particles 2, 4, 7, and 11

Swarm topologies

- Star
 - All particles are connected to one "central" particle
 - All "information" passes through the central node

Focal Point

Particle 2 is neighbors with particles all other particles Particle 3 is neighbors with particle 2

PSO Variants

- Discrete PSO: discrete or binary space instead of continuous space
- Hybrid PSO: incorporate capabilities of evolutionary techniques, e.g.,
 - GA-PSO: add "natural selection" and breeding to PSO
 - EPSO: stochastic tournament selection, parameters and "gbest" mutate
- Adaptive PSO
 - Swarm size is dynamic
 - Parameters adapt (e.g., cognitive component influence increases if "pbest" is very good)

Schwefel Function

$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i \sin(\sqrt{|x_i|})$$

- Number of variables: n
- Several local minima.
- Optimal solution: known
- Search domain:

$$-500 \le x_i \le 500 \text{ for } i = 1 \dots n$$

• Global minima:

$$\mathbf{x}^* = (420.9687, \dots, 420.9687)$$

 $f(\mathbf{x}^*) = -418.9829n$

2D Schwefel Problem

Some functions often used for testing real-valued optimization algorithms

... and some typical results

Optimum=0, dimension=30

Best result after 40 000 evaluations

30D function	PSO	Evolutionary algorithm
Griewank [±300]	0.003944	0.4033
Rastrigin [±5]	82.95618	46.4689
Rosenbrock [±10]	50.193877	1610.359