VE311 Electronic Circuit Lab 5 Manual

Due: Aug 3th 11:59 a.m.

1 Objectives

• Get familiar with differential amplifier

2 Exercises

2.1 Differential Amplifier

Take $V_{DD} = 5V$, $I_{SS} = 1mA$, $R_{D1} = R_{D2} = 10k\Omega$. M_1 and M_2 are the same NMOS (RN7000). (For the simulation, you may use the 2N7000 file we have provided before)

- (a) Simulation: Build the differential amplifier as shown below: $V_{in1} = 1.45 + 0.03 \sin(2\pi 10^2 \cdot t), V_{in2} = 1.45 0.03 \sin(2\pi 10^2 \cdot t).$ Plot V_{out1} vs. t, V_{out2} vs. t and $V_{out1} V_{out2}$ vs. t.
- (b) Simulation: Replace two input voltages as $V_{in1} = V_{in2} = V_{in,CM}$ as DC input from 0 V to 3 V. Assume $V_{out1} = V_{out2} = V_{out,CM}$. Plot $V_{out,CM}$ vs. $V_{in,CM}$ from 0 V to 3 V. Calculate A_{CM} for $V_{in,CM} = 2$ V.
- (c) In-lab: Build the differential amplifier as shown in Fig.2, use $V_{in1} = 1.45 + 0.03 \sin(2\pi 10^2 \cdot t)$, $V_{in2} = 1.45 0.03 \sin(2\pi 10^2 \cdot t)$. Plot V_{out1} and V_{out2} vs. t. Calculate the A_{DM} for this case.
- (d) In-lab: Build the differential amplifier as shown in Fig.2, use $V_{in1} = V_{in2} = 2V$. Plot V_{out1} and V_{out2} vs. t. Calculate the A_{CM} for this case and compare it with your result in (b).

Figure 1: Differential Amplifier

2.2 Current Mirror

2.2 Current Mirror

- (a) Calculate the small-voltage gain of the circuit below.
- (b) Pspice simulation: $\text{Take}V_{DD}=5\text{V},R_L=10\text{k}\Omega$. Plot V_{out} vs. V_{in} from 1V to 3V. Calculate the voltage gain. NMOS(2N7000), PMOS(TP2104).
- (c) In-lab: Take V_{DD} =5V, R_L =10k Ω , build the curent mirror, plot V_{out} vs, time,at V_{in} =1V; 1.5V and 2.5V. Use these V_{out} you got in lab, plot V_{out} vs. V_{in} curve on your own.

Figure 2: Current Mirror

3 Deliverable

You should attend the regular lab session and demonstrate your lab exercise to the TA. You should submit a lab report containing the following:

- Objectives
- Experimental results (numerical results, figures)
- Simulation results (numerical results, figures)
- Error analysis, and discussion
- Conclusion

Everyone needs to submit the report individually.