Introduction to Machine Learning

Regularization Perspectives on Ridge Regression (Deep-Dive)

Learning goals

- Know interpretation of L2 regularization as row-augmentation
- Know interpretation of L2 regularization as minimizing risk under feature noise
- Bias-variance tradeoff for ridge regression

PERSPECTIVES ON L2 REGULARIZATION

We already saw two interpretations of *L*2 regularization.

 We know that it is equivalent to a constrained optimization problem:

$$\begin{aligned} \hat{\boldsymbol{\theta}}_{\text{ridge}} &= & \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{T} \mathbf{x}^{(i)} \right)^{2} + \lambda \|\boldsymbol{\theta}\|_{2}^{2} = (\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{T} \mathbf{y} \\ &= & \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta} \right) \right)^{2} \text{ s.t. } \|\boldsymbol{\theta}\|_{2}^{2} \leq t \end{aligned}$$

• Bayesian interpretation of ridge regression: For normal likelihood contributions $\mathcal{N}(\boldsymbol{\theta}^{\top}\mathbf{x}^{(i)}, \sigma^2)$ and i.i.d. normal priors $\theta_j \sim \mathcal{N}(0, \tau^2)$, the resulting MAP estimate is $\hat{\boldsymbol{\theta}}_{\text{ridge}}$ with $\lambda = \frac{\sigma^2}{\sigma^2}$:

$$\hat{\boldsymbol{\theta}}_{\mathsf{MAP}} = \arg\max_{\boldsymbol{\theta}} \log[p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})p(\boldsymbol{\theta})] = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{T}\mathbf{x}^{(i)}\right)^{2} + \frac{\sigma^{2}}{\tau^{2}} \|\boldsymbol{\theta}\|_{2}^{2}$$

L2 AND ROW-AUGMENTATION

We can also recover the ridge estimator by performing least-squares on a **row-augmented** data set: Let $\tilde{\mathbf{X}} := \begin{pmatrix} \mathbf{X} \\ \sqrt{\lambda} \mathbf{I}_p \end{pmatrix}$ and $\tilde{\mathbf{y}} := \begin{pmatrix} \mathbf{y} \\ \mathbf{0}_p \end{pmatrix}$. Using the augmented data, the unregularized least-squares solution $\tilde{\boldsymbol{\theta}}$ can be written as

$$\begin{split} \tilde{\boldsymbol{\theta}} &= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n+p} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2 \\ &= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2 + \sum_{j=1}^{p} \left(0 - \sqrt{\lambda} \theta_j \right)^2 \\ &= \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2 + \lambda \|\boldsymbol{\theta}\|_2^2 \end{split}$$

 $\Longrightarrow \hat{ heta}_{\mathsf{ridge}}$ is the least-squares solution $ilde{ heta}$ but using $ilde{ t X}, ilde{ t y}$ instead of $ilde{ t X}, ilde{ t y}$!

L2 AND NOISY FEATURES

Now consider perturbed features $\mathbf{x}^{(i)} := \mathbf{x}^{(i)} + \delta^{(i)}$ where $\delta^{(i)} \stackrel{\textit{iid}}{\sim} (\mathbf{0}, \lambda \mathbf{I}_p)$. Note that no parametric family is assumed. We want to minimize the expected squared error taken w.r.t. the perturbations δ :

$$\mathcal{R}(\boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{\delta}} \Big[\frac{1}{n} \sum_{i=1}^{n} \big((\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \tilde{\boldsymbol{x}^{(i)}})^2 \big) \Big] = \mathbb{E}_{\boldsymbol{\delta}} \Big[\frac{1}{n} \sum_{i=1}^{n} \big((\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} (\tilde{\boldsymbol{x}^{(i)}} + \boldsymbol{\delta}^{(i)}))^2 \big) \Big] \; \Big| \; \text{expand}$$

$$\mathcal{R}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\delta}} \Big[\frac{1}{n} \sum_{i=1}^{n} \big((\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \boldsymbol{x}^{(i)})^{2} - 2\boldsymbol{\theta}^{\top} \boldsymbol{\delta}^{(i)} (\boldsymbol{y}^{(i)} - \boldsymbol{\theta}^{\top} \boldsymbol{x}^{(i)}) + \boldsymbol{\theta}^{\top} \boldsymbol{\delta}^{(i)} \boldsymbol{\delta}^{(i)\top} \boldsymbol{\theta} \big) \Big]$$

By linearity of expectation, $\mathbb{E}_{\delta}[\delta^{(i)}] = \mathbf{0}_{p}$ and $\mathbb{E}_{\delta}[\delta^{(i)}\delta^{(i)\top}] = \lambda \mathbf{I}_{p}$, this is

$$\mathcal{R}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} ((y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})^{2} - 2\boldsymbol{\theta}^{\top} \mathbb{E}_{\delta}[\delta^{(i)}](y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)}) + \boldsymbol{\theta}^{\top} \mathbb{E}_{\delta}[\delta^{(i)} \delta^{(i)\top}] \boldsymbol{\theta})$$
$$= \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)})^{2} + \lambda \|\boldsymbol{\theta}\|_{2}^{2}$$

 \implies Ridge regression on unperturbed features $\mathbf{x}^{(i)}$ turns out to be minimizing squared loss averaged over feature noise distribution!

BIAS-VARIANCE DECOMPOSITION FOR RIDGE

For linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\varepsilon}$ with $\mathbf{X} \in \mathbb{R}^{n \times p}$, $\boldsymbol{\varepsilon} \sim (\mathbf{0}, \sigma^2 \mathbf{I}_n)$, bias of ridge estimator $\hat{\boldsymbol{\theta}}_{\text{ridge}}$ is given by

Bias
$$(\hat{\theta}_{\text{ridge}}) := \mathbb{E}[\hat{\theta}_{\text{ridge}} - \theta] = \mathbb{E}[(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{y}] - \theta$$

$$= \mathbb{E}[(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}(\mathbf{X}\theta + \varepsilon)] - \theta$$

$$= (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{X}\theta + (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\underbrace{\mathbb{E}[\varepsilon]}_{=0} - \theta$$

$$= (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1}\mathbf{X}^{\top}\mathbf{X}\theta - \theta$$

$$= [(\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_{p})^{-1} - (\mathbf{X}^{\top}\mathbf{X})^{-1}]\mathbf{X}^{\top}\mathbf{X}\theta$$

- Last expression shows bias of ridge estimator only vanishes for $\lambda=0$, which is simply (unbiased) OLS solution
- ullet It follows $\| {
 m Bias}(\hat{m{ heta}}_{
 m ridge}) \|_2^2 > 0$ for all $\lambda > 0$

BIAS-VARIANCE DECOMPOSITION FOR RIDGE / 2

For the variance of $\hat{ heta}_{ ext{ridge}}$, we have

$$\begin{aligned} \operatorname{Var}(\hat{\boldsymbol{\theta}}_{\mathsf{ridge}}) &= \operatorname{Var}\left((\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}\right) & | \operatorname{apply} \operatorname{Var}_{\boldsymbol{u}}(\boldsymbol{A}\boldsymbol{u}) = \boldsymbol{A}\operatorname{Var}(\boldsymbol{u})\boldsymbol{A}^{\top} \\ &= (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{\top}\operatorname{Var}(\boldsymbol{y})\left((\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{\top}\right)^{\top} \\ &= (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{\top}\operatorname{Var}(\boldsymbol{\varepsilon})\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \\ &= (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{\top}\boldsymbol{\sigma}^{2}\boldsymbol{I}_{n}\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \\ &= \boldsymbol{\sigma}^{2}(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}(\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I}_{p})^{-1} \end{aligned}$$

- $Var(\hat{\theta}_{ridge})$ is strictly smaller than $Var(\hat{\theta}_{OLS}) = \sigma^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}$ for any $\lambda > 0$, meaning matrix of their difference $Var(\hat{\theta}_{OLS}) Var(\hat{\theta}_{ridge})$ is positive definite (bit tedious derivation)
- ullet This further means trace $(extstyle{Var}(\hat{ heta}_{ extstyle{OLS}}) extstyle{Var}(\hat{ heta}_{ extrm{ridge}})) > 0 \, orall \lambda > 0$

BIAS-VARIANCE DECOMPOSITION FOR RIDGE /3

With bias and variance of the ridge estimator we can decompose its mean squared error as follows:

$$\mathsf{MSE}(\hat{ heta}_\mathsf{ridge}) = \|\mathsf{Bias}(\hat{ heta}_\mathsf{ridge})\|_2^2 + \mathsf{trace}\big(\mathsf{Var}(\hat{ heta}_\mathsf{ridge})\big)$$

Comparing MSEs of $\hat{ heta}_{
m ridge}$ and $\hat{ heta}_{
m OLS}$ and using ${
m Bias}(\hat{ heta}_{
m OLS})=0$ we find

$$\mathsf{MSE}(\hat{\theta}_{\mathsf{OLS}}) - \mathsf{MSE}(\hat{\theta}_{\mathsf{ridge}}) = \underbrace{\mathsf{trace}\big(\mathsf{Var}(\hat{\theta}_{\mathsf{OLS}}) - \mathsf{Var}(\hat{\theta}_{\mathsf{ridge}})\big)}_{>0} - \underbrace{\|\mathsf{Bias}(\hat{\theta}_{\mathsf{ridge}})\|_2^2}_{>0}$$

Since both terms are positive, sign of their diff is *a priori* undetermined.
• Theobald 1974 and • Farebrother 1976 prove there always exists some $\lambda^* > 0$ so that

$$\mathsf{MSE}(\hat{ heta}_\mathsf{OLS}) - \mathsf{MSE}(\hat{ heta}_\mathsf{ridge}) > 0$$

Important theoretical result: While Gauss-Markov guarantuees $\hat{\theta}_{\text{OLS}}$ is best linear unbiased estimator (BLUE), there are biased estimators with lower MSE.

