PLP - 20 TOPIC 20—MORE INDUCTION

Demirbaş & Rechnitzer

MORE EXAMPLES

AN INEQUALITY

PROPOSITION:

Let x>-1 , then for all $n\in\mathbb{N}$, $(1+x)^n\geq 1+nx$

Scratch work

- ullet When $n=\overline{1}$ we have $(1+x)=1+\overline{x}$, so all good
- ullet Assume that $(1+x)^k \geq (1+kx)$, so

$$egin{align} (1+x)^{k+1} &= (1+x) \cdot (1+x)^k \ &\geq (1+x)(1+kx) = 1 + (k+1)x + kx^2 \ &\geq 1 + (k+1)x \end{cases}$$

since $x^2 \geq 0$

Where did we use x>-1?

WRITE IT UP NICELY

PROOF.

We proceed by induction. Assume that x>-1 .

- ullet Base case: When n=1 we have (1+x)=(1+x), as required
- Inductive step: Assume that the result holds for n=k, so $(1+x)^k \geq (1+kx)$. Then

$$(1+x)^{k+1} \geq (1+x)(1+kx)$$
 since $1+x>0$ $= 1+(k+1)x+kx^2$ $\geq 1+(k+1)x$ since $kx^2 \geq 0$

and so the result holds for n=k+1

ANOTHER EXAMPLE

PROPOSITION:

For all $n\in\mathbb{N}$, $1+3+\cdots+(2n-1)=n^2$.

Scratch work

- ullet Base case: When n=1 we have $(2-1)=1^2$.
- ullet Inductive step: Assume $1+3+\cdots+(2k-1)=k^2$ then

$$egin{aligned} 1+3+\cdots+(2k-1)+(2k+1)&=k^2+(2k+1)\ &=(k+1)^2 \end{aligned}$$

as required.

Warning do not think "add the next term". It is " $P(k) \implies P(k+1)$ "

WRITE IT UP

PROOF.

We prove the result by induction.

- ullet Base case: when n=1, we have $(2-1)=1^2$, as required.
- ullet Inductive step: assume that $1+3+\cdots+(2k-1)=k^2$, but then

$$1+3+\cdots+(2k-1)+(2k+1)=k^2+2k+1=(k+1)^2$$

Hence the inductive step holds.

So by induction the result holds for all $n \in \mathbb{N}$.

Warning inductive step is not "add the next term". It is " $P(k) \implies P(k+1)$ "