

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Groun	d Snow Load, $P_g =$	30.00 psf	
Sloped Ro	of Snow Load, P _s =	18.56 psf	(ASCE 7-05, Eq. 7-2)
	I _s =	1.00	
	$C_s =$	0.82	
	C _e =	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 12.72 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>464.45</u>	<u>4838.59</u>	k
Compressive Load =	3937.01	4451.22	k
Lateral Load =	<u>16.08</u>	2629.64	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 122334.7 in-lbs Resisting Force Required = 1853.56 lbs A minimum 132in long x 26in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3089.26 lbs to resist overturning. Minimum Width = <u>26 in</u> in Weight Provided = 5183.75 lbs Sliding 631.79 lbs Force = Use a 132in long x 26in wide x 18in tall Friction = 0.4 Weight Required = 1579.48 lbs ballast foundation to resist sliding. Resisting Weight = 5183.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 631.79 lbs Cohesion = 130 psf Use a 132in long x 26in wide x 18in tall 23.83 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2591.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	26 in	27 in	<u>28 in</u>	29 in	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.17 \text{ ft}) =$	5184 lbs	5383 lbs	5583 lbs	5782 lbs	
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.17 \text{ ft}) =$					

ASD LC	1.0D + 1.0S 1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			iS	0.6D + 1.0W								
Width	26 in	27 in	28 in	29 in	26 in	27 in	28 in	29 in	26 in	27 in	28 in	29 in	26 in	27 in	28 in	29 in
FA	1489 lbs	1489 lbs	1489 lbs	1489 lbs	1223 lbs	1223 lbs	1223 lbs	1223 lbs	1896 lbs	1896 lbs	1896 lbs	1896 lbs	-217 lbs	-217 lbs	-217 lbs	-217 lbs
F _B	1481 lbs	1481 lbs	1481 lbs	1481 lbs	1725 lbs	1725 lbs	1725 lbs	1725 lbs	2268 lbs	2268 lbs	2268 lbs	2268 lbs	-2320 lbs	-2320 lbs	-2320 lbs	-2320 lbs
F _V	204 lbs	204 lbs	204 lbs	204 lbs	1152 lbs	1152 lbs	1152 lbs	1152 lbs	1000 lbs	1000 lbs	1000 lbs	1000 lbs	-1264 lbs	-1264 lbs	-1264 lbs	-1264 lbs
P _{total}	8154 lbs	8353 lbs	8553 lbs	8752 lbs	8133 lbs	8332 lbs	8531 lbs	8731 lbs	9348 lbs	9548 lbs	9747 lbs	9947 lbs	574 lbs	693 lbs	813 lbs	932 lbs
M	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	3495 lbs-ft	5218 lbs-ft	5218 lbs-ft	5218 lbs-ft	5218 lbs-ft	2647 lbs-ft	2647 lbs-ft	2647 lbs-ft	2647 lbs-ft
е	0.48 ft	0.47 ft	0.46 ft	0.45 ft	0.43 ft	0.42 ft	0.41 ft	0.40 ft	0.56 ft	0.55 ft	0.54 ft	0.52 ft	4.61 ft	3.82 ft	3.26 ft	2.84 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	251.7 psf	250.5 psf	249.3 psf	248.2 psf	261.2 psf	259.6 psf	258.1 psf	256.7 psf	272.8 psf	270.8 psf	268.9 psf	267.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	432.5 psf	424.6 psf	417.2 psf	410.3 psf	421.2 psf	413.7 psf	406.7 psf	400.1 psf	511.7 psf	500.8 psf	490.7 psf	481.2 psf	199.2 psf	122.1 psf	103.5 psf	96.6 psf

Maximum Bearing Pressure = 512 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 26in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 901.1 \text{ ft-lbs}$

Resisting Force Required = 831.83 lbs S.F. = 1.67

Weight Required = 1386.38 lbs Minimum Width = 26 in in Weight Provided = 5183.75 lbs A minimum 132in long x 26in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		26 in			26 in		26 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	259 lbs	680 lbs	259 lbs	852 lbs	2463 lbs	852 lbs	76 lbs	199 lbs	76 lbs	
F _V	2 lbs	0 lbs	2 lbs	6 lbs	0 lbs	6 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	6677 lbs	5184 lbs	6677 lbs	6961 lbs	5184 lbs	6961 lbs	1952 lbs	5184 lbs	1952 lbs	
М	6 lbs-ft	0 lbs-ft	6 lbs-ft	21 lbs-ft	0 lbs-ft	21 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	0.36 ft	
f _{min}	279.4 psf	217.5 psf	279.4 psf	289.6 psf	217.5 psf	289.6 psf	81.7 psf	217.5 psf	81.7 psf	
f _{max}	280.9 psf	217.5 psf	280.9 psf	294.6 psf	217.5 psf	294.6 psf	82.1 psf	217.5 psf	82.1 psf	

Maximum Bearing Pressure = 295 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 26in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 26in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut	
Maximum Axial Load =	3.028 k
M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k
Utilization =	<u>41%</u>

Maximum Axial Load = 3.269 k
M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity = 7.421 k
Utilization = 44%

Diagonal Strut

Maximum Axial Load = 1.754 k

M12 Bolt Shear Capacity = 12.808 k

Strut Bearing Capacity = 7.421 k

Utilization = 24%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, $h_{sx} =$ 46.89 in Allowable Story Drift for All Other Structures, Δ = { 0.020 h_{sx} 0.938 in Max Drift, $\Delta_{MAX} =$ 0.066 in

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 129 \text{ in}$$

$$J = 0.432$$

$$356.874$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = \left(\frac{Bc - \frac{1}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 27.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 129$$

$$J = 0.432$$

$$226.951$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 28.4$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 23.1 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 23.1 \text{ ksi} \\ I y = & 446476 \text{ mm}^4 \\ & & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ S y = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $\phi F_L = 1215.13 \text{ mm}^2$
 $\phi F_L = 1.88 \text{ in}^2$
 $\phi F_L = 41.32 \text{ kips}$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 29.4 \text{ ksi}$$

3.4.16

b/t = 16.2

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$

Weak Axis:

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

 $\phi F_1 = 29.2$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))]}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1 N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ l y = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ S y = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 16.2 \\ S1 = & 12.21 \ (\text{See } 3.4.16 \ \text{above for formula}) \\ S2 = & 32.70 \ (\text{See } 3.4.16 \ \text{above for formula}) \\ \phi F_L = & \phi c [\text{Bp-}1.6\text{Dp*b/t}] \\ \phi F_L = & 31.6 \ \text{ksi} \\ \\ b/t = & 7.4 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \ \text{ksi} \\ \end{array}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

 $P_{max} =$

Rev. 11.05.2015

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis: 3.4.14

$L_b =$ 24.8 J = 0.94238.7028

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$SI = b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

27.5 mm

0.621 in³

y =

 $M_{max}St = 1.460 \text{ k-ft}$

Sx=

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

24.5

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

 $\phi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.86047$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 7.50396 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\Phi F_L = 1.3\Phi \Psi F C \Psi$$

$$\Phi F_L = 43.2 \text{ ksi}$$

$$\Psi F_L = 28.2 \text{ ksi}$$

$$\Psi F_L = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

Sy =

 $M_{max}Wk =$

0.621 in³

1.460 k-ft

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L =$$

$$F_L = 30.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$

 $J = 0.942$

$$S1 - \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1 - \frac{\theta_y}{\theta_b}Fcy}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

 $\phi F_L = \phi b[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 28.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

3.4.9

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \boldsymbol{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \boldsymbol{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-39.013	-39.013	0	0
2	M14	٧	-39.013	-39.013	0	0
3	M15	V	-60.293	-60.293	0	0
4	M16	V	-60.293	-60.293	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	88.666	88.666	0	0
2	M14	V	67.386	67.386	0	0
3	M15	V	35.466	35.466	0	0
4	M16	V	35 466	35 466	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	487.336	2	996.413	1	.841	1	.004	1	0	1	Ó	1
2		min	-638.426	3	-1131.394	3	.041	15	0	15	0	1	0	1
3	N7	max	.043	9	1133.087	1	527	15	001	15	0	1	0	1
4		min	107	2	-83.12	3	-12.369	1	025	1	0	1	0	1
5	N15	max	.031	9	3028.468	1	0	2	0	2	0	1	0	1
6		min	-1.349	2	-357.27	3	0	1	0	1	0	1	0	1
7	N16	max	1914.327	2	3424.012	1	0	9	0	2	0	1	0	1
8		min	-2022.798	3	-3721.994	3	0	3	0	3	0	1	0	1
9	N23	max	.043	9	1133.087	1	12.369	1	.025	1	0	1	0	1
10		min	107	2	-83.12	3	.527	15	.001	15	0	1	0	1
11	N24	max	487.336	2	996.413	1	041	15	0	15	0	1	0	1
12		min	-638.426	3	-1131.394	3	841	1	004	1	0	1	0	1
13	Totals:	max	2887.435	2	10711.48	1	0	2						
14		min	-3299.909	3	-6508.292	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
1	M13	1	max	126.551	1	439.293	_1_	-7.83	15	0	3	.302	1	0	1
2			min	5.228	15	-552.541	3	-190.139	1	012	1	.012	15	0	3
3		2	max	126.551	1	307.959	1	-6.027	15	0	3	.101	1	.562	3
4			min	5.228	15	-388.891	3	-146.28	1	012	1	.004	15	446	1
5		3	max	126.551	1	176.625	1	-4.223	15	0	3	0	12	.929	3
6			min	5.228	15	-225.242	3	-102.422	1	012	1	047	1	736	1
7		4	max	126.551	1	45.291	1	-2.419	15	0	3	005	12	1.1	3
8			min	5.228	15	-61.592	3	-58.563	1	012	1	143	1	868	1
9		5	max	126.551	1	102.057	3	616	15	0	3	008	12	1.076	3
10			min	5.228	15	-86.044	1	-14.705	1	012	1	187	1	844	1
11		6	max	126.551	1	265.707	3	29.154	1	0	3	007	15	.857	3
12			min	5.228	15	-217.378	1	.749	12	012	1	178	1	663	1
13		7	max	126.551	1	429.357	3	73.013	1	0	3	005	15	.441	3
14			min	5.228	15	-348.712	1	2.553	12	012	1	117	1	325	1
15		8	max	126.551	1	593.006	3	116.871	1	0	3	0	10	.17	1
16			min	5.228	15	-480.046	1	4.356	12	012	1	004	1	169	3
17		9	max	126.551	1	756.656	3	160.73	1	0	3	.162	1	.822	1
18			min	5.228	15	-611.38	1	6.16	12	012	1	.005	12	975	3
19		10	max	126.551	1	920.305	3	204.588	1	.012	1	.38	1	1.631	1
20			min	5.228	15	-742.714	1	7.963	12	0	3	.013	12	-1.977	3
21		11	max	126.551	1	611.38	1	-6.16	12	.012	1	.162	1	.822	1
22			min	5.228	15	-756.656	3	-160.73	1	0	3	.005	12	975	3
23		12	max	126.551	1	480.046	1	-4.356	12	.012	1	0	10	.17	1
24			min	5.228	15	-593.006	3	-116.871	1	0	3	004	1	169	3
25		13	max	126.551	1	348.712	1	-2.553	12	.012	1	005	15	.441	3
26			min	5.228	15	-429.357	3	-73.013	1	0	3	117	1	325	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	126.551	1	217.378	_1_	749	12	.012	_1_	007	15	.857	3
28			min	5.228	15	-265.707	3	-29.154	1	0	3	178	1	663	1
29		15	max	126.551	1	86.044	_1_	14.705	1	.012	_1_	008	12	1.076	3
30			min	5.228	15	-102.057	3	.616	15	0	3	187	1	844	1
31		16	max	126.551	1_	61.592	3	58.563	1_	.012	_1_	005	12	<u> 1.1 </u>	3
32			min	5.228	15	-45.291	1	2.419	15	0	3	143	1	868	1
33		17	max	126.551	1	225.242	3	102.422	1	.012	1	0	12	.929	3
34			min	5.228	15	-176.625	1_	4.223	15	0	3	047	1	736	1
35		18	max	126.551	1	388.891	3	146.28	1	.012	1	.101	1	.562	3
36			min	5.228	15	-307.959	1	6.027	15	0	3	.004	15	446	1
37		19	max	126.551	1	552.541	3	190.139	1	.012	1	.302	1	0	1
38			min	5.228	15	-439.293	1	7.83	15	0	3	.012	15	0	3
39	M14	1	max	56.238	1	460.524	1	-8.058	15	.006	3	.342	1	0	1
40			min	2.329	15	-424.931	3	-195.689	1	009	1	.014	15	0	3
41		2	max	56.238	1	329.19	1	-6.255	15	.006	3	.135	1	.434	3
42			min	2.329	15	-301.95	3	-151.831	1	009	1	.006	15	472	1
43		3	max	56.238	1	197.856	1	-4.451	15	.006	3	0	3	.721	3
44			min	2.329	15	-178.969	3	-107.972	1	009	1	021	1	786	1
45		4	max	56.238	1	66.522	1	-2.647	15	.006	3	004	12	.862	3
46		_	min	2.329	15	-55.988	3	-64.114	1	009	1	123	1	944	1
47		5	max	56.238	1	66.993	3	844	15	.006	3	007	12	.855	3
48		-	min	2.329	15	-64.813	1	-20.255	1	009	1	174	1	945	1
		6		56.238	1	189.974	3		1	.006	3	007	15	<u>945</u> .702	3
49		0	max	2.329	15	-196.147	1	23.604 .529	12	009	1	007 172	1		1
50		7	min		1		3	67.462			3			789 401	3
51			max	56.238	_	312.955			1	.006	<u> </u>	005	15	.401	1
52		0	min	2.329	15	-327.481	1	2.333	12	009		117	1	<u>477</u>	
53		8	max	56.238	1	435.936	3	111.321	1	.006	3	0	10	0	9
54			min	2.329	15	-458.815	1_	4.136	12	009	1_	011	1	046	3
55		9	max	56.238	1	558.918	3	155.179	1	.006	3	.149	1	.619	1
56		40	min	2.329	15	-590.149	1_	5.94	12	009	1_	.004	12	64	3
57		10	max	56.238	1	681.899	3	199.038	1	.009	1	.36	1	1.403	1
58		44	min	2.329	15	-721.483	1_	7.743	12	006	3	.012	12	-1.381	3
59		11	max	56.238	1	590.149	1_	-5.94	12	.009	1_	.149	1	.619	1
60		40	min	2.329	15	-558.918	3	-155.179	1	006	3	.004	12	<u>64</u>	3
61		12	max	56.238	1	458.815	1_	-4.136	12	.009	1_	0	10	0	9
62			min	2.329	15	-435.936	3	-111.321	1_	006	3	011	1	046	3
63		13	max	56.238	1	327.481	1_	-2.333	12	.009	1_	005	15	.401	3
64			min	2.329	15	-312.955	3	-67.462	1	006	3	117	1	477	1
65		14	max	56.238	1	196.147	_1_	529	12	.009	_1_	007	15	.702	3
66			min	2.329	15	-189.974	3	-23.604	1	006	3	172	1	789	1
67		15			1	64.813	1_	20.255	1	.009	1_	007	12	.855	3
68			min	2.329	15	-66.993	3	.844	15	006	3	174	1	945	1
69		16	max	56.238	1	55.988	3	64.114	1	.009	1_	004	12	.862	3
70			min	2.329	15	-66.522	1	2.647	15	006	3	123	1	944	1
71		17	max	56.238	1	178.969	3	107.972	1	.009	_1_	0	3	.721	3
72			min	2.329	15	-197.856	1_	4.451	15	006	3	021	1	786	1
73		18	max	56.238	1	301.95	3	151.831	1	.009	_1_	.135	1	.434	3
74			min	2.329	15	-329.19	1	6.255	15	006	3	.006	15	472	1
75		19	max	56.238	1	424.931	3	195.689	1	.009	1	.342	1	0	1
76			min	2.329	15	-460.524	1	8.058	15	006	3	.014	15	0	3
77	M15	1	max	-2.457	15	533.929	2	-8.056	15	.01	1	.342	1	0	2
78			min	-59.341	1	-219.192	3	-195.656	1	005	3	.014	15	0	15
79		2	max	-2.457	15	380.495	2	-6.253	15	.01	1	.134	1	.225	3
80			min	-59.341	1	-157.213	3	-151.797	1	005	3	.006	15	546	2
81		3	max	-2.457	15	227.061	2	-4.449	15	.01	1	0	3	.376	3
82			min	-59.341	1	-95.235	3	-107.939	1	005	3	021	1	909	2
83		4	max	-2.457	15	74.12	1	-2.645	15	.01	1	004	12	.452	3

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC			z Shear[lb]	LC				LC		LC
84			min	-59.341	1	-33.256	3	-64.08	1	005	3	124	1	-1.089	2
85		5	max	-2.457	15	28.722	3	842	15	.01	1	007	12	.455	3
86			min	-59.341	1	-79.806	2	-20.222	1	005	3	174	1	-1.085	2
87		6	max	-2.457	15	90.701	3	23.637	1	.01	1	007	15	.384	3
88			min	-59.341	1	-233.24	2	.564	12	005	3	172	1	898	2
89		7	max	-2.457	15	152.679	3	67.496	1	.01	1	005	15	.238	3
90			min	-59.341	1	-386.674	2	2.368	12	005	3	117	1	531	1
91		8	max	-2.457	15	214.657	3	111.354	1	.01	1	0	10	.026	2
92			min	-59.341	1	-540.108	2	4.171	12	005	3	011	1	0	15
93		9	max	-2.457	15	276.636	3	155.213	1	.01	1	.149	1	.763	2
94			min	-59.341	1	-693.541	2	5.974	12	005	3	.004	12	274	3
95		10	max	-2.457	15	338.614	3	199.071	1	.005	3	.36	1	1.683	2
96			min	-59.341	1	-846.975	2	7.778	12	01	1	.013	12	642	3
97		11	max	-2.457	15	693.541	2	-5.974	12	.005	3	.149	1	.763	2
98			min	-59.341	1	-276.636	3	-155.213	1	01	1	.004	12	274	3
99		12	max	-2.457	15	540.108	2	-4.171	12	.005	3	0	10	.026	2
100		12	min	-59.341	1	-214.657	3	-111.354	1	01	1	011	1	0	15
101		13	max	-2.457	15	386.674	2	-2.368	12	.005	3	005	15	.238	3
102		10	min	-59.341	1	-152.679	3	-67.496	1	01	1	117	1	531	1
103		14	max	-2.457	15	233.24	2	564	12	.005	3	007	15	.384	3
104		14	min	-59.341	1	-90.701	3	-23.637	1	01	1	172	1	898	2
105		15	max	-2.457	15	79.806	2	20.222	1	.005	3	007	12	.455	3
106		10	min	-59.341	1	-28.722	3	.842	15	01	1	174	1	-1.085	2
107		16	max	-2.457	15	33.256	3	64.08	1	.005	3	004	12	.452	3
108		10	min	-59.341	1	-74.12	1	2.645	15	01	1	124	1	-1.089	2
109		17	max	-2.457	15	95.235	3	107.939	1	.005	3	0	3	.376	3
		17		-59.341	1	-227.061	2	4.449	15		1	021	1	909	2
110		18	min	-39.341	15	157.213	3	151.797	1	01 .005	3	.134	1	.225	3
112		10	max	-59.341	1		2		15		1	.006	15		2
		19	min			-380.495		6.253		01				546	
113		19	max	-2.457 -59.341	<u>15</u> 1	219.192 -533.929	2	195.656 8.056	1 15	.005	3	.342	15	0	15
115	M16	1	min	-5.586	15	514.57	2	-7.837	15	01 .01	1	.304	1	0	2
116	IVITO		max	-134.977	1	-206.369	3	-190.361	1	008	3	.013	15	0	3
117		2	min	-134.977 -5.586	15	361.136	2	-6.033	15	.01	1	.103	1	.209	3
118			max	-134.977	1	-144.39	3		1	008	3	.004	15	523	2
119		3	min	-5.586	-	207.702	2	-146.503 -4.23	15	.01	1	0	12	.345	3
120		3	max	-134.977	<u>15</u> 1	-82.412	3	-102.644	1	008	3	046	1	863	2
121		4	min	-5.586	15	54.269	2	-2.426	15	.01	1	046	12	.406	3
122		4	max	-134.977	1	-20.433	3	-58.785	1	008	3	143	1	-1.019	2
		-				41.545	3		15		1				
123		5	max	-5.586	15			623		.01		008	12	.394	3
124		6		-134.977	1 1 5	<u>-99.165</u>	2	-14.927	1	008	3	187	15	992	2
125		6	max		15	103.523	3	28.932	1	.01	3	007	15	.307	2
126 127		7		-134.977	1_	-252.599	2	.861	12	008	1	178	1_	782	
127			max	-5.586 -134.977	<u>15</u> 1	165.502 -406.033	2	72.791 2.665	12	.01 008	3	005 117	<u>15</u>	.146 389	2
		0			_	227.48					1		_		1
129		8	max		15		3	116.649	1	.01	_	0	10	.191	_
130				-134.977	1	-559.467	2	4.468	12	008	3	004	1	088	3
131		9	max		15	289.459	3	160.508	1	.01	1	.161	1	.948	2
132		10		-134.977	1_	-712.9	2	6.271	12	008	3	.005	12	397	3
133		10	max		1 <u>5</u>	351.437	3	204.366	12	.008	3	.379	12	1.891	3
134		11		-134.977	1_	-866.334	2	8.075	12	01		.014	12	78	
135		11	max		15	712.9	2	-6.271	12	.008	3	.161	1	.948	2
136		40		-134.977	1	-289.459	3	-160.508	1	01	1	.005	12	397	3
137		12	max		15	559.467	2	-4.468	12	.008	3	0	10	.191	1
138		40		-134.977	1	-227.48	3	-116.649	1	01	1	004	1_	088	3
139		13	max		15	406.033	2	-2.665	12	.008	3	005	15	.146	3
140			mın	-134.977	1	-165.502	3	-72.791	1	01	1	117	1	389	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

141		Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					
143	141		14	max	-5.586	<u>15</u>	252.599	2	861	12	.008	3	007	15	.307	3
1446																
146			15													
1466																
147			16													
148														_		
149			17													
150				min										_		
151			18	max		15						3				
152	150			min		•				15	01			15	523	2
153	151		19	max	-5.586	15	206.369	3	190.361		.008	3	.304		0	_
155	152			min	-134.977	1		2	7.837	15	01	1	.013	15	0	3
155	153	M2	1	max	982.876		1.92		.814		0	5	0	3	0	1
156	154			min	-993.98	3	.452	15	.034	15	0	1	0	1	0	1
156	155		2	max	983.304	1	1.863	4	.814	1	0	5	0	1	0	15
158	156			min	-993.658	3	.439	15	.034	15	0	1	0	15	0	
158	157		3	max	983.733	1	1.806	4	.814	1	0	5	0	1	0	15
159				min		3		15	.034	15	0		0	15	001	
161			4	max							0	5	0			15
161						3		15		15			0	15	002	
162			5								0	5	0			_
163						3				15			0	15	002	
1684			6										-			_
165																
166			7								_	•	_			_
167														_		
168			8										_			
169																
170			a													
171			3													
172			10										_			
173			10													
174			11										-			-
175																
176			12										_			_
177			12											_		
178 min -990.123 3 .292 15 .034 15 0 1 0 15 006 4 179 14 max 988.446 1 1.182 4 .814 1 0 5 .003 1 001 15 180 min -989.802 3 .279 15 .034 15 0 1 0 15 006 4 181 15 max 988.875 1 1.125 4 .814 1 0 5 .003 1 001 15 182 min -989.481 3 .265 15 .034 15 0 1 0 15 006 4 183 16 max 989.303 1 1.068 4 .814 1 0 5 .004 1 002 15 184 min -989.159 3 .252 <			12													_
179 14 max 988.446 1 1.182 4 .814 1 0 5 .003 1 001 15 180 min -989.802 3 .279 15 .034 15 0 1 0 15 006 4 181 15 max 988.875 1 1.125 4 .814 1 0 5 .003 1 001 15 182 min -989.481 3 .265 15 .034 15 0 1 0 15 006 4 183 16 max 989.303 1 1.068 4 .814 1 0 5 .004 1 002 15 184 min -989.159 3 .252 15 .034 15 0 1 0 15 007 4 185 17 max 989.732 1 1.011 4 .814 1 <td></td> <td></td> <td>13</td> <td></td>			13													
180 min -989.802 3 .279 15 .034 15 0 1 0 15 006 4 181 15 max 988.875 1 1.125 4 .814 1 0 5 .003 1 001 15 182 min -989.481 3 .265 15 .034 15 0 1 0 15 006 4 183 16 max 989.303 1 1.068 4 .814 1 0 5 .004 1 002 15 184 min -989.159 3 .252 15 .034 15 0 1 0 15 .007 4 185 17 max 989.732 1 1.011 4 .814 1 0 5 .004 1 002 15 186 min -988.838 3 .235 <t< td=""><td></td><td></td><td>4.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>			4.4													_
181 15 max 988.875 1 1.125 4 .814 1 0 5 .003 1 001 15 182 min -989.481 3 .265 15 .034 15 0 1 0 15 006 4 183 16 max 989.303 1 1.068 4 .814 1 0 5 .004 1 002 15 184 min -989.159 3 .252 15 .034 15 0 1 0 15 007 4 185 17 max 989.732 1 1.011 4 .814 1 0 5 .004 1 002 15 186 min -988.838 3 .235 12 .034 15 0 1 0 15 007 4 187 18 max 990.16 1 .			14											-		
182 min -989.481 3 .265 15 .034 15 0 1 0 15 006 4 183 16 max 989.303 1 1.068 4 .814 1 0 5 .004 1 002 15 184 min -989.159 3 .252 15 .034 15 0 1 0 15 007 4 185 17 max 989.732 1 1.011 4 .814 1 0 5 .004 1 002 15 186 min -988.838 3 .235 12 .034 15 0 1 0 15 007 4 187 18 max 990.16 1 .955 4 .814 1 0 5 .004 1 002 15 188 min -988.517 3 .213 <td< td=""><td></td><td></td><td>4.5</td><td></td><td></td><td>- .</td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>_</td><td></td><td></td><td>_</td></td<>			4.5			- .						<u> </u>	_			_
183 16 max 989.303 1 1.068 4 .814 1 0 5 .004 1 002 15 184 min -989.159 3 .252 15 .034 15 0 1 0 15 007 4 185 17 max 989.732 1 1.011 4 .814 1 0 5 .004 1 002 15 186 min -988.838 3 .235 12 .034 15 0 1 0 15 007 4 187 18 max 990.16 1 .955 4 .814 1 0 5 .004 1 002 15 188 min -988.517 3 .213 12 .034 15 0 1 0 15 007 4 189 19 max 990.588 1 .8			15							_						
184 min -989.159 3 .252 15 .034 15 0 1 0 15 007 4 185 17 max 989.732 1 1.011 4 .814 1 0 5 .004 1 002 15 186 min -988.838 3 .235 12 .034 15 0 1 0 15 007 4 187 18 max 990.16 1 .955 4 .814 1 0 5 .004 1 007 4 188 min -988.517 3 .213 12 .034 15 0 1 0 15 007 4 189 19 max 990.588 1 .898 4 .814 1 0 5 .004 1 002 15 190 min -988.195 3 .191 1			40										-			_
185 17 max 989.732 1 1.011 4 .814 1 0 5 .004 1 002 15 186 min -988.838 3 .235 12 .034 15 0 1 0 15 007 4 187 18 max 990.16 1 .955 4 .814 1 0 5 .004 1 002 15 188 min -988.517 3 .213 12 .034 15 0 1 0 15 007 4 189 19 max 990.588 1 .898 4 .814 1 0 5 .004 1 007 4 189 19 max 990.588 1 .898 4 .814 1 0 5 .004 1 002 15 190 min -988.195 3 .19			16													
186 min -988.838 3 .235 12 .034 15 0 1 0 15 007 4 187 18 max 990.16 1 .955 4 .814 1 0 5 .004 1 002 15 188 min -988.517 3 .213 12 .034 15 0 1 0 15 007 4 189 19 max 990.588 1 .898 4 .814 1 0 5 .004 1 002 15 190 min -988.195 3 .191 12 .034 15 0 1 0 15 007 4 191 M3 1 max 414.35 2 7.881 4 .178 1 0 12 0 1 .007 4 192 min -557.162 3 1.853 <td></td> <td>_</td> <td></td> <td></td> <td>_</td>													_			_
187 18 max 990.16 1 .955 4 .814 1 0 5 .004 1 002 15 188 min -988.517 3 .213 12 .034 15 0 1 0 15 007 4 189 19 max 990.588 1 .898 4 .814 1 0 5 .004 1 002 15 190 min -988.195 3 .191 12 .034 15 0 1 0 15 007 4 191 M3 1 max 414.35 2 7.881 4 .178 1 0 12 0 1 .007 4 192 min -557.162 3 1.853 15 .007 15 0 1 0 15 .002 15 193 2 max 414.179 2 7.114			17										_	_		
188 min -988.517 3 .213 12 .034 15 0 1 0 15 007 4 189 19 max 990.588 1 .898 4 .814 1 0 5 .004 1 002 15 190 min -988.195 3 .191 12 .034 15 0 1 0 15 007 4 191 M3 1 max 414.35 2 7.881 4 .178 1 0 12 0 1 .007 4 192 min -557.162 3 1.853 15 .007 15 0 1 0 15 .002 15 193 2 max 414.179 2 7.114 4 .178 1 0 12 0 1 .004 4 194 min -557.29 3 1.673																
189 19 max 990.588 1 .898 4 .814 1 0 5 .004 1 002 15 190 min -988.195 3 .191 12 .034 15 0 1 0 15 007 4 191 M3 1 max 414.35 2 7.881 4 .178 1 0 12 0 1 .007 4 192 min -557.162 3 1.853 15 .007 15 0 1 0 15 .002 15 193 2 max 414.179 2 7.114 4 .178 1 0 12 0 1 .004 4 194 min -557.29 3 1.673 15 .007 15 0 1 0 15 0 12 195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3 <td></td> <td></td> <td>18</td> <td></td>			18													
190 min -988.195 3 .191 12 .034 15 0 1 0 15 007 4 191 M3 1 max 414.35 2 7.881 4 .178 1 0 12 0 1 .007 4 192 min -557.162 3 1.853 15 .007 15 0 1 0 15 .002 15 193 2 max 414.179 2 7.114 4 .178 1 0 12 0 1 .004 4 194 min -557.29 3 1.673 15 .007 15 0 1 0 15 0 12 195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493																_
191 M3 1 max 414.35 2 7.881 4 .178 1 0 12 0 1 .007 4 192 min -557.162 3 1.853 15 .007 15 0 1 0 15 .002 15 193 2 max 414.179 2 7.114 4 .178 1 0 12 0 1 .004 4 194 min -557.29 3 1.673 15 .007 15 0 1 0 15 0 12 195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3			19										.004			
192 min -557.162 3 1.853 15 .007 15 0 1 0 15 .002 15 193 2 max 414.179 2 7.114 4 .178 1 0 12 0 1 .004 4 194 min -557.29 3 1.673 15 .007 15 0 1 0 15 0 12 195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3				min						15			_	15		
193 2 max 414.179 2 7.114 4 .178 1 0 12 0 1 .004 4 194 min -557.29 3 1.673 15 .007 15 0 1 0 15 0 12 195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3		M3	1	max		2				_	0	12	0	-	.007	
194 min -557.29 3 1.673 15 .007 15 0 1 0 15 0 12 195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3	192			min	-557.162	3	1.853	15	.007	15	0		0	15	.002	15
194 min -557.29 3 1.673 15 .007 15 0 1 0 15 0 12 195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3	193		2	max	414.179	2	7.114	4	.178		0	12	0		.004	4
195 3 max 414.009 2 6.347 4 .178 1 0 12 0 1 .002 2 196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3	194			min		3	1.673	15	.007	15	0	1	0	15	0	12
196 min -557.418 3 1.493 15 .007 15 0 1 0 15 0 3			3								0	12	0		.002	
								15						15		
			4			2		4			0	12	0		0	2

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
198			min	-557.545	3	1.312	15	.007	15	0	1	0	15	002	3
199		5	max		2	4.812	4	.178	1	0	12	0	1	0	15
200			min	-557.673	3	1.132	15	.007	15	0	1	0	15	003	4
201		6	max	413.498	2	4.045	4	.178	1	0	12	0	1	001	15
202			min	-557.801	3	.952	15	.007	15	0	1	0	15	005	4
203		7	max	413.327	2	3.278	4	.178	1	0	12	0	1	002	15
204			min	-557.929	3	.771	15	.007	15	0	1	0	15	007	4
205		8	max		2	2.511	4	.178	1	0	12	0	1	002	15
206		- 6	min	-558.056	3	.591	15	.007	15	0	1	0	15	002	4
207		9	max	412.987	2	1.744	4	.178	1	0	12	.001	1	002	15
208		9	min	-558.184	3	.41	15	.007	15	0	1	0	15	002	4
209		10	max		2	.976	4	.178	1	0	12	.001	1	002	15
210		10	min	-558.312	3	.23	15	.007	15	0	1	0	15	002	4
211		11	max	412.646	2	.292	2	.178	1	0	12	.001	1	002	15
212			min	-558.44	3	054	3	.007	15	0	1	0	15	002	4
213		12			2	131	15	.178	1	0	12	.001	1	002	15
214		12	max	-558.567	3	558	4	.007	15	0	1	0	15	002 01	4
		13	min				_				_				
215		13	max		2	311	15	.178	1	0	12	.001	1	002	15
216		4.4	min	-558.695	3	-1.325	4	.007	15	0	1	0	15	009	4
217		14	max		2	491	15	.178	1	0	12	.001	1	002	15
218		4.5	min	-558.823	3	-2.093	4	.007	15	0	1	0	15	008	4
219		15	max		2	672	15	.178	1	0	12	.001	1	002	15
220		10	min	-558.951	3	-2.86	4	.007	15	0	1	0	15	007	4
221		16	max	411.794	2	852	15	.178	1	0	12	.002	1	001	15
222		4 -	min	-559.078	3	-3.627	4	.007	15	0	1	0	15	006	4
223		17	max		2	-1.032	15	.178	1	0	12	.002	1	001	15
224			min	-559.206	3_	-4.394	4	.007	15	0	1	0	15	004	4
225		18	max		2	-1.213	15	.178	1	0	12	.002	1	0	15
226			min	-559.334	3	-5.161	4	.007	15	0	1	0	15	002	4
227		19	max		2	-1.393	15	.178	1	0	12	.002	1	0	1
228			min	-559.462	3	-5.929	4	.007	15	0	1	0	15	0	1
229	<u>M4</u>	1		1130.021	_1_	0	1	527	15	0	1	.001	1	0	1
230			min	-85.419	3	0	1	-12.792	1	0	1	0	15	0	1
231		2	max	1130.191	_1_	0	1	527	15	0	1	0	12	0	1
232			min	-85.292	3	0	1	-12.792	1	0	1	0	1	0	1
233		3	max	1130.361	<u>1</u>	0	1_	527	15	0	1	0	15	0	1
234			min	-85.164	3	0	1	-12.792	1	0	1	002	1	0	1
235		4	max	1130.532	_1_	0	1	527	15	0	1	0	15	0	1
236			min	-85.036	3	0	1	-12.792	1	0	1	003	1	0	1
237		5		1130.702	_1_	0	1	527	15	0	1	0	15	0	1
238			min	-84.908	3	0	1	-12.792	1	0	1	005	1	0	1
239		6	max	1130.872	_1_	0	1	527	15	0	1	0	15	0	1
240			min		3	0	1	-12.792	1	0	1	006	1	0	1
241		7	max	1131.043	1	0	1	527	15	0	1	0	15	0	1
242			min	-84.653	3	0	1	-12.792	1	0	1	008	1	0	1
243		8	max	1131.213	1	0	1	527	15	0	1	0	15	0	1
244			min		3	0	1	-12.792	1	0	1	009	1	0	1
245		9	max	1131.383	1	0	1	527	15	0	1	0	15	0	1
246			min		3	0	1	-12.792	1	0	1	01	1	0	1
247		10	max	1131.554	1	0	1	527	15	0	1	0	15	0	1
248			min		3	0	1	-12.792	1	0	1	012	1	0	1
249		11		1131.724	1	0	1	527	15	0	1	0	15	0	1
250				-84.142	3	0	1	-12.792	1	0	1	013	1	0	1
251		12		1131.894	1	0	1	527	15	0	1	0	15	0	1
252				-84.014	3	0	1	-12.792	1	0	1	015	1	0	1
253		13		1132.065	1	0	1	527	15	0	1	0	15	0	1
254			min		3	0	1	-12.792	1	0	1	016	1	0	1
					_										

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]						1		y-y Mome			1 1
255 256		14		1132.235 -83.758	<u>1</u> 3	0	1	527 -12.792	<u>15</u> 1	0	<u>1</u> 1	018	<u>15</u> 1	0	1
257		15	min	1132.405	<u> </u>	0	1	527	15	0	1	016 0	15	0	1
258		13		-83.631	3	0	1	-12.792	1	0	1	019	1	0	1
259		16		1132.576	1	0	1	527	15	0	1	0	15	0	1
260		10	min		3	0	1	-12.792	1	0	1	021	1	0	1
261		17		1132.746	1	0	1	527	15	0	1	0	15	0	1
262			min	-83.375	3	0	1	-12.792	1	0	1	022	1	0	1
263		18		1132.916	1	0	1	527	15	0	1	0	15	0	1
264			min	-83.247	3	0	1	-12.792	1	0	1	024	1	0	1
265		19		1133.087	1	0	1	527	15	0	1	001	15	0	1
266			min	-83.12	3	0	1	-12.792	1	0	1	025	1	0	1
267	M6	1	max	3176.179	1	2.193	2	0	1	0	1	0	1	0	1
268			min	-3269.109	3	.235	12	0	1	0	1	0	1	0	1
269		2	max	3176.607	1	2.149	2	0	1	0	1	0	1	0	12
270			min	-3268.788	3	.213	12	0	1	0	1	0	1	0	2
271		3		3177.036	1_	2.104	2	0	1_	0	1	0	1	0	12
272				-3268.466	3	.191	12	0	1	0	1	0	1	001	2
273		4		3177.464	1_	2.06	2	0	1	0	_1_	0	1	0	12
274			min	-3268.145	3	.169	12	0	1	0	1	0	1	002	2
275		5		3177.893	_1_	2.016	2	0	_1_	0	_1_	0	1	0	12
276			min	-3267.824	3	.147	12	0	_1_	0	1_	0	1	002	2
277		6		3178.321	1_	1.972	2	0	1	0	1	0	1	0	12
278		_		-3267.502	3	.125	12	0	1_	0	1	0	1	003	2
279		7	max		1_	1.927	2	0	_1_	0	1	0	1	0	12
280			min	-3267.181	3	.102	3	0	1_	0	1	0	1	004	2
281		8		3179.178	1_	1.883	2	0	1	0	1	0	1	0	12
282				-3266.86	3	.068	3	0	1_	0	1_	0	1	004	2
283		9		3179.607 -3266.538	1	1.839	2	0	1_	0	1	0	1	0	12
284 285		10	min	3180.035	<u>3</u>	.035 1.795	2	0	<u>1</u> 1	0	<u>1</u> 1	0	1	005 0	12
286		10	min	-3266.217	3	.002	3	0	1	0	1	0	1	005	2
287		11		3180.464	1	1.751	2	0	1	0	+	0	1	005 0	12
288				-3265.895	3	031	3	0	1	0	1	0	1	006	2
289		12		3180.892	1	1.706	2	0	1	0	1	0	1	0	12
290		12	min		3	064	3	0	1	0	1	0	1	006	2
291		13		3181.321	1	1.662	2	0	1	0	1	0	1	0	3
292				-3265.253	3	098	3	0	1	0	1	0	1	007	2
293		14		3181.749	1	1.618	2	0	1	0	1	0	1	0	3
294				-3264.931	3	131	3	0	1	0	1	0	1	007	2
295		15		3182.178	1	1.574	2	0	1	0	1	0	1	0	3
296				-3264.61	3	164	3	0	1	0	1	0	1	008	2
297		16	max	3182.606	1	1.529	2	0	1	0	1	0	1	0	3
298				-3264.289	3	197	3	0	1	0	1	0	1	008	2
299		17		3183.035	1_	1.485	2	0	1_	0	1	0	1	0	3
300				-3263.967	3	23	3	0	1	0	1	0	1	009	2
301		18		3183.463	1_	1.441	2	0	_1_	0	1	0	1	0	3
302				-3263.646	3	263	3	0	1	0	1	0	1	009	2
303		19		3183.892	_1_	1.397	2	0	_1_	0	1	0	1	0	3
304				-3263.325	3	297	3	0	1_	0	1	0	1	009	2
305	M7	1		1692.724	2	7.92	4	0	1_	0	1	0	1	.009	2
306				-1751.82	3	1.859	15	0	_1_	0	1	0	1	0	3
307		2		1692.554	2	7.153	4	0	1_	0	1	0	1	.007	2
308				-1751.948	3	1.679	15	0	1_	0	1	0	1	002	3
309		3		1692.383	2	6.386	4	0	1_	0	1	0	1	.004	2
310			min		3	1.498	15	0	1_	0	1	0	1	003	3
311		4	max	1692.213	2	5.618	4	0	<u>1</u>	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1752.203	3	1.318	15	0	1	0	1	0	1	004	3
313		5	max	1692.043	2	4.851	4	0	1	0	_1_	0	_1_	0	2
314			min	-1752.331	3	1.137	15	0	1	0	1	0	1	005	3
315		6	max	1691.872	2	4.084	4	0	1	0	1	0	1	001	15
316			min	-1752.459	3	.957	15	0	1	0	1	0	1	006	3
317		7	max	1691.702	2	3.317	4	0	1	0	_1_	0	1	002	15
318			min	-1752.586	3	.777	15	0	1	0	1	0	1	007	3
319		8		1691.531	2	2.55	4	0	1	0	1	0	1	002	15
320			min	-1752.714	3	.596	15	0	1	0	1	0	1	008	4
321		9		1691.361	2	1.842	2	0	1	0	_1_	0	1	002	15
322			min	-1752.842	3	.324	12	0	1	0	1	0	1	009	4
323		10		1691.191	2	1.244	2	0	1	0	1	0	1	002	15
324			min	-1752.97	3	.001	3	0	1	0	1	0	1	009	4
325		11	max	1691.02	2	.646	2	0	1	0	1	0	1	002	15
326			min	-1753.097	3	447	3	0	1	0	1	0	1	009	4
327		12	max	1690.85	2	.048	2	0	1	0	1	0	1	002	15
328			min	-1753.225	3	895	3	0	1	0	1	0	1	009	4
329		13	max	1690.68	2	305	15	0	1	0	1	0	1	002	15
330			min	-1753.353	3	-1.344	3	0	1	0	1	0	1	009	4
331		14		1690.509	2	486	15	0	1_	0	_1_	0	1_	002	15
332			min	-1753.481	3	-2.054	4	0	1	0	1	0	1	008	4
333		15		1690.339	2	666	15	0	1	0	1	0	1_	002	15
334			min	-1753.608	3	-2.821	4	0	1	0	1	0	1	007	4
335		16		1690.169	2	846	15	0	1	0	1	0	1	001	15
336			min	-1753.736	3	-3.588	4	0	1	0	1	0	1	006	4
337		17	max		2	-1.027	15	0	1_	0	1	0	1_	001	15
338			min	-1753.864	3	-4.355	4	0	1	0	1	0	1	004	4
339		18	max		2	-1.207	15	0	1_	0	1	0	1_	0	15
340			min	-1753.992	3	-5.123	4	0	1	0	1	0	1	002	4
341		19		1689.658	2	-1.387	15	0	1	0	1	0	1	0	1
342			min	-1754.119	3	-5.89	4	0	1	0	1	0	1_	0	1
343	<u>M8</u>	1		3025.401	1	0	1	0	1	0	1	0	1	0	1
344			min	-359.57	3	0	1	0	1	0	1	0	1	0	1
345		2		3025.572	1	0	1	0	1	0	1	0	1	0	1
346			min	-359.442	3	0	1	0	1	0	1	0	1_	0	1
347		3		3025.742	1	0	1	0	1	0	1	0	1	0	1
348			min	-359.314	3	0	1	0	1	0	1	0	1	0	1
349		4	max		1	0	1	0	1	0	1	0	1	0	1
350		-	min	-359.187	3	0	1	0	1	0	1	0	1	0	1
351		5		3026.083	1	0	1	0	1	0	1	0	1	0	1
352				-359.059		0	1	0	1	0	1	0	1	0	1
353		6		3026.253	1	0	1	0	1	0	1	0	1	0	1
354		-	min		3	0	1	0	1	0	1	0	1	0	1
355		7		3026.423	1	0	1	0	1	0	1	0	1	0	1
356		0		-358.803 3026.594		0	1	0	1	0	1	0	1	0	1
357		8	1		1	0	1	0	1	0	1	0	1	0	1
358		9		-358.676	<u>3</u> 1	0	1	0	1	0	1	0	1	0	1
359		9		3026.764		0	1	0	1	0	1	0	1	0	1
360		10		-358.548		0	•	0	1	0	1	0	1	0	
361		10		3026.934	3	0	1	0	1	0	1	0	1	0	1
362		11		-358.42		0		0	_	0		0		0	-
363		11		3027.105	1	0	1	0	1	0	1	0	1	0	1
364		10	min		3	0	1	0	1	0	1	0		0	
365		12		3027.275	1	0		0		0		0	1	0	1
366		42	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3027.445		0	1	0	1	0	1	0	1	0	1
368			min	-358.037	3	0	1	0	1	0	1	0	1	0	1

Schletter, Inc. HCV

Model Name : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	3027.616	_1_	0	1	0	1	0	_1_	0	1_	0	1
370			min	-357.909	3	0	1	0	1	0	1_	0	1	0	1
371		15	max	3027.786	_1_	0	1	0	1	0	_1_	0	1	0	1
372			min	-357.781	3	0	1	0	1	0	1	0	1	0	1
373		16		3027.956	_1_	0	1	0	1_	0	_1_	0	1	0	1
374				-357.654	3	0	1	0	1	0	1	0	1	0	1
375		17	-	3028.127	_1_	0	1	0	1	0	_1_	0	1_	0	1
376				-357.526	3	0	1	0	1	0	1_	0	1_	0	1
377		18		3028.297	_1_	0	1_	0	1	0	_1_	0	1_	0	1
378				-357.398	3	0	1	0	1	0	1_	0	1	0	1
379		19		3028.468	1_	0	1	0	1	0	1	0	1	0	1
380			min	-357.27	3_	0	1	0	1_	0	1_	0	1_	0	1
381	M10	1	max		_1_	1.92	4	034	15	0	_1_	0	1	0	1
382			min	-993.98	3	.452	15	814	1_	0	5	0	3	0	1
383		2	max		1_	1.863	4	034	15	0	1_	0	15	0	15
384			min	-993.658	3	.439	15	814	1_	0	5	0	1_	0	4
385		3	max		1_	1.806	4	034	15	0	1_	0	15	0	15
386		_	min	-993.337	3	.426	15	814	1_	0	5	0	1_	001	4
387		4	max		1_	1.75	4	034	15	0	1_	0	15	0	15
388		_	min	-993.016	3	.412	15	814	1_	0	5	0	1_	002	4
389		5	max		1	1.693	4	034	15	0	1_	0	15	0	15
390			min	-992.694	3_	.399	15	814	1_	0	5	0	1_	002	4
391		6	max		1_	1.636	4	034	15	0	1_	0	15	0	15
392		-	min	-992.373	3	.385	15	814	1_	0	5	001	1_	003	4
393		7	max		1	1.579	4	034	15	0	1	0	15	0	15
394		0	min	-992.052	3	.372	15	814	1_	0	5	001	1_	003	4
395		8	max		1	1.523	4 15	034	<u>15</u>	0	1	0	15	0	15
396			min	-991.73	3	.359		814	1_	0	5	002	1 1 5	003	4
397		9	max		<u>1</u> 3	1.466	15	034 814	<u>15</u>	0	1	0	1 <u>5</u>	004	15
398 399		10	min	<u>-991.409</u> 986.732	<u>ာ</u> 1	.345 1.409	4	034	15	0	<u>5</u> 1	002 0	15	004 001	15
400		10	max	-991.088	3	.332	15	814	1	0	5	002	1	001	
401		11	min max		<u> </u>	1.352	4	034	15	0	<u> </u>	002	15	004 001	15
402			min	-990.766	3	.319	15	814	1	0	5	002	1	005	4
403		12	max		_ <u></u>	1.295	4	034	15	0	1	0	15	003	15
404		12	min	-990.445	3	.305	15	814	1	0	5	003	1	005	4
405		13	max		1	1.239	4	034	15	0	1	0	15	001	15
406		10	min	-990.123	3	.292	15	814	1	0	5	003	1	006	4
407		14	max		1	1.182	4	034	15	0	1	0	15	001	15
408				-989.802	3	.279	15	814	1	0	5	003	1	006	4
409		15		988.875	1	1.125	4	034	15	0	1	0	15	001	15
410				-989.481	3	.265	15	814	1	0	5	003	1	006	4
411		16	max		1	1.068	4	034	15	0	1	0	15	002	15
412		ľ		-989.159	3	.252	15	814	1	0	5	004	1	007	4
413		17		989.732	1	1.011	4	034	15	0	1	0	15	002	15
414				-988.838	3	.235	12	814	1	0	5	004	1	007	4
415		18	max		1	.955	4	034	15	0	1	0	15	002	15
416			-	-988.517	3	.213	12	814	1	0	5	004	1	007	4
417		19		990.588	1	.898	4	034	15	0	1	0	15	002	15
418				-988.195	3	.191	12	814	1	0	5	004	1	007	4
419	M11	1	max		2	7.881	4	007	15	0	1	0	15	.007	4
420			_	-557.162	3	1.853	15	178	1	0	12	0	1	.002	15
421		2	max		2	7.114	4	007	15	0	1	0	15	.004	4
422			min	-557.29	3	1.673	15	178	1	0	12	0	1	0	12
423		3		414.009	2	6.347	4	007	15	0	1	0	15	.002	2
424				-557.418	3	1.493	15	178	1	0	12	Ö	1	0	3
425		4		413.838	2	5.58	4	007	15	0	1	0	15	0	2
		_													

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
426			min	-557.545	3	1.312	15	178	1	0	12	0	1	002	3
427		5	max	413.668	2	4.812	4	007	15	0	1	0	15	0	15
428			min	-557.673	3	1.132	15	178	1	0	12	0	1	003	4
429		6	max		2	4.045	4	007	15	0	1	0	15	001	15
430			min	-557.801	3	.952	15	178	1	0	12	0	1	005	4
431		7	max		2	3.278	4	007	15	0	1	0	15	002	15
432			min	-557.929	3	.771	15	178	1	0	12	0	1	007	4
433		8	max	413.157	2	2.511	4	007	15	0	1_	0	15	002	15
434			min	-558.056	3	.591	15	178	1	0	12	0	1	008	4
435		9	max	412.987	2	1.744	4	007	15	0	1	0	15	002	15
436			min	-558.184	3	.41	15	178	1	0	12	001	1	009	4
437		10	max		2	.976	4	007	15	0	1	0	15	002	15
438			min	-558.312	3	.23	15	178	1	0	12	001	1	009	4
439		11	max		2	.292	2	007	15	0	1	0	15	002	15
440			min	-558.44	3	054	3	178	1	0	12	001	1	01	4
441		12	max		2	131	15	007	15	0	1	0	15	002	15
442			min	-558.567	3	558	4	178	1	0	12	001	1	01	4
443		13	max	412.305	2	311	15	007	15	0	_1_	0	15	002	15
444			min	-558.695	3	-1.325	4	178	1	0	12	001	1	009	4
445		14	max	412.135	2	491	15	007	15	0	1	0	15	002	15
446			min	-558.823	3	-2.093	4	178	1	0	12	001	1	008	4
447		15	max		2	672	15	007	15	0	1	0	15	002	15
448			min	-558.951	3	-2.86	4	178	1	0	12	001	1	007	4
449		16	max	411.794	2	852	15	007	15	0	1	0	15	001	15
450			min	-559.078	3	-3.627	4	178	1	0	12	002	1	006	4
451		17	max	411.624	2	-1.032	15	007	15	0	1	0	15	001	15
452			min	-559.206	3	-4.394	4	178	1	0	12	002	1	004	4
453		18	max	411.454	2	-1.213	15	007	15	0	1	0	15	0	15
454			min	-559.334	3	-5.161	4	178	1	0	12	002	1	002	4
455		19	max	411.283	2	-1.393	15	007	15	0	1	0	15	0	1
456			min	-559.462	3	-5.929	4	178	1	0	12	002	1	0	1
457	M12	1	max	1130.021	1	0	1	12.792	1	0	1	0	15	0	1
458			min	-85.419	3	0	1	.527	15	0	1	001	1	0	1
459		2	max	1130.191	1	0	1	12.792	1	0	1	0	1	0	1
460			min	-85.292	3	0	1	.527	15	0	1	0	12	0	1
461		3	max	1130.361	1_	0	1	12.792	1	0	1	.002	1	0	1
462			min	-85.164	3	0	1	.527	15	0	1	0	15	0	1
463		4	max	1130.532	1	0	1	12.792	1	0	1	.003	1	0	1
464			min	-85.036	3	0	1	.527	15	0	1	0	15	0	1
465		5	max	1130.702	_1_	0	1	12.792	1	0	1	.005	1	0	1
466				-84.908	3	0	1	.527	15	0	1	0	15	0	1
467		6	max	1130.872	_1_	0	1	12.792	1	0	1	.006	1	0	1
468			min	-84.781	3	0	1	.527	15	0	1	0	15	0	1
469		7	max	1131.043	_1_	0	1	12.792	1	0	1	.008	1	0	1
470			min	-84.653	3	0	1	.527	15	0	1	0	15	0	1
471		8	max	1131.213	_1_	0	1	12.792	1	0	1	.009	1_	0	1
472			min		3	0	1	.527	15	0	1	0	15	0	1
473		9	max	1131.383	_1_	0	1	12.792	1	0	1	.01	1	0	1
474			min		3	0	1	.527	15	0	1	0	15	0	1
475		10	max	1131.554	_1_	0	1	12.792	1	0	1	.012	1	0	1
476			min		3	0	1	.527	15	0	1	0	15	0	1
477		11	max	1131.724	1_	0	1	12.792	1	0	1	.013	1	0	1
478			min		3	0	1	.527	15	0	1	0	15	0	1
479		12	max	1131.894	1	0	1	12.792	1	0	1	.015	1	0	1
480			min	-84.014	3	0	1	.527	15	0	1	0	15	0	1
481		13	max	1132.065	1	0	1	12.792	1	0	1	.016	1	0	1
482			min	-83.886	3	0	1	.527	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1132.235	_1_	0	_1_	12.792	1	0	1	.018	1	0	1
484			min	-83.758	3	0	1_	.527	15	0	1_	0	15	0	1
485		15		1132.405	_1_	0	_1_	12.792	1_	0	_1_	.019	1	0	1
486		4.0	min	-83.631	3	0	1_	.527	15	0	1_	0	15	0	1
487		16		1132.576	1_	0	1_	12.792	1	0	1	.021	1	0	1
488		47	min	-83.503	3	0	1_	.527	15	0	1	0	15	0	1
489		17		1132.746	1_	0	1_	12.792	1_	0	1_	.022	1	0	1
490		40	min	-83.375	3	0	1_	.527	15	0	1_	0	15	0	1
491		18	_	1132.916	1	0	1	12.792	1 15	0	1	.024	15	0	1
492 493		19	min	-83.247 1133.087	<u>3</u>	0	1	.527 12.792	1	0	1	.025	1	<u> </u>	1
494		19	min	-83.12	3	0	1	.527	15	0	1	.025	15	0	1
495	M1	1	max		<u> </u>	552.523	3	-5.228	15	0	1	.302	1	0	3
496	IVII	I	min	7.83	15	-437.899	1	-126.383	1	0	3	.012	15	012	1
497		2	max	190.75	1	551.549	3	-5.228	15	0	1	.236	1	.22	1
498			min	8.013	15	-439.197	1	-126.383	1	0	3	.01	15	291	3
499		3	max	339.358	3	486.102	1	-5.195	15	0	3	.169	1	.441	1
500			min	-203.848	2	-389.912	3	-125.852	1	0	1	.007	15	571	3
501		4	max	339.812	3	484.804	1	-5.195	15	0	3	.103	1	.185	1
502			min	-203.242	2	-390.885	3	-125.852	1	0	1	.004	15	365	3
503		5	max	340.266	3	483.505	1	-5.195	15	0	3	.036	1	003	15
504			min	-202.637	2	-391.859	3	-125.852	1	0	1	.001	15	158	3
505		6	max	340.72	3	482.207	1	-5.195	15	0	3	001	15	.049	3
506			min	-202.032	2	-392.833	3	-125.852	1	0	1	03	1	326	1
507		7	max	341.174	3	480.909	1	-5.195	15	0	3	004	15	.256	3
508			min	-201.426	2	-393.806	3	-125.852	1	0	1	097	1	58	1
509		8	max		3_	479.611	_1_	-5.195	15	0	3	007	15	.465	3
510			min	-200.821	2	-394.78	3	-125.852	1	0	1	163	1	833	1
511		9	max	354.855	3_	35.056	2	-7.524	15	0	9	.095	1	.544	3
512				-121.142	2	.396	15	-182.125	1_	0	3	.004	15	95	1
513		10	max		3	33.758	2	-7.524	15	0	9	0	15	.528	3
514				-120.537	2	.004	<u>15</u>	-182.125	1_	0	3	001	1	<u>959</u>	1
515		11	max		3_	32.46	2	-7.524	15	0	9	004	15	.513	3
516		40	min	-119.931	2	-1.58	4	-182.125	1_	0	3	097	1	968	1
517		12	max	368.936	3	248.702	3	-5.067	15	0	2	.161	1	.446	3
518		40	min	-74.604	10	-516.534	1	-122.866	1_	0	3	.007	15	8 <u>55</u>	1
519		13	max	369.39	3	247.728	3	-5.067	<u>15</u> 1	0	2	.096	1	.315	3
520		14	min	-74.099	<u>10</u>	-517.832	1	-122.866			3	.004	15	<u>582</u>	
521 522		14	max	369.844 -73.595	<u>3</u> 10	246.755 -519.13	<u>3</u>	-5.067 -122.866	<u>15</u>	0	3	.031	15	.185 309	3
523		15	min	370.298	3	245.781	3	-5.067	15	0	2	001	15	<u>309</u> .055	3
524		13	min		10	-520.428	1	-122.866	1	0	3	034	1	034	1
525		16	max		3	244.807	3	-5.067	15	0	2	004	15	.255	2
526		10	min	-72.586	10	-521.726	1	-122.866	1	0	3	098	1	075	3
527		17	max		3	243.834	3	-5.067	15	0	2	007	15	.524	2
528			min	-72.081	10	-523.025	1	-122.866	1	0	3	163	1	204	3
529		18	max		15	516.348	2	-5.586	15	0	3	01	15	.263	2
530			-	-190.962	1	-205.445	3	-135.14	1	0	2	233	1	101	3
531		19	max		15	515.049	2	-5.586	15	0	3	013	15	.008	3
532				-190.357	1	-206.419	3	-135.14	1	0	2	304	1	01	1
533	M5	1		409.166	1	1840.545	3	0	1	0	1	0	1	.023	1
534			min		12	-1476.968	1	0	1	0	1	0	1	0	3
535		2	max		1	1839.572	3	0	1	0	1	0	1	.803	1
536			min	16.229	12	-1478.266	1	0	1	0	1	0	1	971	3
537		3	max	1093.595	3	1498.387	1	0	1	0	1	0	1	1.547	1
538			min	-744.486	2	-1265.234	3	0	1	0	1	0	1	-1.904	3
539		4	max	1094.049	3	1497.089	1	0	1	0	1	0	1	.757	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-743.881	2	-1266.208	3	0	1	0	1	0	1	-1.236	3
541		5	max	1094.503	3	1495.791	1	0	1	0	1	0	1	.005	9
542			min	-743.276	2	-1267.182	3	0	1	0	1	0	1	568	3
543		6	max	1094.957	3	1494.493	1	0	1	0	1	0	1	.101	3
544			min	-742.67	2	-1268.155	3	0	1	0	1	0	1	822	1
545		7	max	1095.411	3	1493.195	1	0	1	0	1_	0	1	.77	3
546			min	-742.065	2	-1269.129	3	0	1	0	1	0	1	-1.61	1
547		8	max	1095.865	3	1491.896	1	0	1	0	1	0	1	1.44	3
548			min	-741.459	2	-1270.103	3	0	1	0	1	0	1	-2.397	1
549		9	max	1119.463	3	116.143	2	0	1	0	1_	0	1	1.661	3
550			min	-578.308	2	.393	15	0	1	0	1	0	1	-2.713	1
551		10	max	1119.917	3	114.845	2	0	1	0	1	0	1	1.605	3
552			min	-577.702	2	.002	15	0	1	0	1	0	1	-2.745	1
553		11	max	1120.371	3	113.547	2	0	1	0	1	0	1	1.55	3
554			min	-577.097	2	-1.408	4	0	1	0	1	0	1	-2.777	1
555		12	max	1144.079	3	797.647	3	0	1	0	1	0	1	1.359	3
556			min	-413.958	2	-1616.853	1	0	1	0	1	0	1	-2.475	1
557		13	max	1144.533	3	796.673	3	0	1	0	1	0	1	.939	3
558			min	-413.353	2	-1618.151	1	0	1	0	1	0	1	-1.622	1
559		14	max	1144.987	3	795.699	3	0	1	0	1	0	1	.519	3
560			min	-412.747	2	-1619.45	1	0	1	0	1	0	1	768	1
561		15	max	1145.441	3	794.726	3	0	1	0	1	0	1	.146	2
562			min	-412.142	2	-1620.748	1	0	1	0	1	0	1	004	13
563		16	max	1145.895	3	793.752	3	0	1	0	1	0	1	.978	2
564			min	-411.537	2	-1622.046	1	0	1	0	1	0	1	32	3
565		17	max	1146.349	3	792.778	3	0	1	0	1	0	1	1.811	2
566			min	-410.931	2	-1623.344	1	0	1	0	1	0	1	739	3
567		18	max	-16.452	12	1736.801	2	0	1	0	1	0	1	.934	2
568			min	-409.347	1	-702.22	3	0	1	0	1	0	1	386	3
569		19	max	-16.149	12	1735.502	2	0	1	0	1	0	1	.021	1
570			min	-408.741	1	-703.194	3	0	1	0	1	0	1	016	3
571	M9	1	max	190.144	1	552.523	3	126.383	1	0	3	012	15	0	3
572			min	7.83	15	-437.899	1	5.228	15	0	1	302	1	012	1
573		2	max	190.75	1	551.549	3	126.383	1	0	3	01	15	.22	1
574			min	8.013	15	-439.197	1	5.228	15	0	1	236	1	291	3
575		3	max	339.358	3	486.102	1	125.852	1	0	1	007	15	.441	1
576			min	-203.848	2	-389.912	3	5.195	15	0	3	169	1	571	3
577		4	max	339.812	3	484.804	1	125.852	1	0	1	004	15	.185	1
578			min	-203.242	2	-390.885	3	5.195	15	0	3	103	1	365	3
579		5	max		3	483.505	1	125.852	1	0	1_	001	15	003	15
580			min		2	-391.859	3	5.195	15	0	3	036	1	158	3
581		6	max		3	482.207	1	125.852	1	0	1	.03	1	.049	3
582			min		2	-392.833	3	5.195	15	0	3	.001	15	326	1
583		7	max		3	480.909	1	125.852	1	0	1	.097	1	.256	3
584			min	-201.426	2	-393.806	3	5.195	15	0	3	.004	15	58	1
585		8	max	341.628	3	479.611	1	125.852	1	0	_1_	.163	1	.465	3
586			min		2	-394.78	3	5.195	15	0	3	.007	15	833	1
587		9	max		3	35.056	2	182.125	1	0	3	004	15	.544	3
588			min	-121.142	2	.396	15	7.524	15	0	9	095	1	95	1
589		10	max		3	33.758	2	182.125	1	0	3	.001	1	.528	3
590			min		2	.004	15	7.524	15	0	9	0	15	959	1
591		11	max	355.763	3	32.46	2	182.125	1	0	3	.097	1	.513	3
592			min	-119.931	2	-1.58	4	7.524	15	0	9	.004	15	968	1
593		12	max		3	248.702	3	122.866	1	0	3	007	15	.446	3
594			min	-74.604	10	-516.534	1	5.067	15	0	2	161	1	855	1
595		13	max		3	247.728	3	122.866	1	0	3	004	15	.315	3
596			min		10	-517.832	1	5.067	15	0	2	096	1	582	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	369.844	3	246.755	3	122.866	1	0	3	001	15	.185	3
598			min	-73.595	10	-519.13	1	5.067	15	0	2	031	1	309	1
599		15	max	370.298	3	245.781	3	122.866	1	0	3	.034	1	.055	3
600			min	-73.09	10	-520.428	1	5.067	15	0	2	.001	15	034	1
601		16	max	370.752	3	244.807	3	122.866	1	0	3	.098	1	.255	2
602			min	-72.586	10	-521.726	1	5.067	15	0	2	.004	15	075	3
603		17	max	371.206	3	243.834	3	122.866	1	0	3	.163	1	.524	2
604			min	-72.081	10	-523.025	1	5.067	15	0	2	.007	15	204	3
605		18	max	-8.02	15	516.348	2	135.14	1	0	2	.233	1	.263	2
606			min	-190.962	1	-205.445	3	5.586	15	0	3	.01	15	101	3
607		19	max	-7.837	15	515.049	2	135.14	1	0	2	.304	1	.008	3
608			min	-190.357	1	-206.419	3	5.586	15	0	3	.013	15	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x	Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.095	1	.006		7.624e-3	1_	NC	1_	NC	1
2			min	0	15	009	3	003		-8.47e-4	3	NC	1	NC	1
3		2	max	.001	1	.317	3	.054	1 8	8.837e-3	1	NC	5	NC	2
4			min	0	15	144	1	.002	15 -	8.602e-4	3	793.292	3	5001.964	1
5		3	max	.001	1	.58	3	.129	1 1	1.005e-2	1	NC	5	NC	3
6			min	0	15	333	1	.005	15 -	8.734e-4	3	438.295	3	2027.648	1
7		4	max	0	1	.74	3	.195	1 1	1.126e-2	1	NC	5	NC	3
8			min	0	15	441	1	.008	15 -	8.866e-4	3	344.584	3	1335.437	1
9		5	max	0	1	.777	3	.23	1 1	1.247e-2	1	NC	5	NC	3
10			min	0	15	452	1	.01	15 -	8.999e-4	3	328.208	3	1133.713	1
11		6	max	0	1	.695	3	.223	1 1	1.369e-2	1	NC	5	NC	3
12			min	0	15	368	1	.009	15 -	9.131e-4	3	366.763	3	1170.525	1
13		7	max	0	1	.517	3	.176	1	1.49e-2	1	NC	5	NC	3
14			min	0	15	211	1	.007	15 -	9.263e-4	3	490.781	3	1485.428	1
15		8	max	0	1	.291	3	.103	1 1	1.611e-2	1	NC	4	NC	3
16			min	0	15	019	1	.004	10 -	9.395e-4	3	860.561	3	2547.604	1
17		9	max	0	1	.154	2	.031	1 1	1.732e-2	1	NC	4	NC	2
18			min	0	15	.005	15	004	10 -	9.527e-4	3	2718.241	3	8907.538	1
19		10	max	0	1	.229	1	.019	3 ′	1.854e-2	1	NC	3	NC	1
20			min	0	1	006	3	012	2	-9.66e-4	3	1921.149	1	NC	1
21		11	max	0	15	.154	2	.031	1 1	1.732e-2	1	NC	4	NC	2
22			min	0	1	.005	15	004	10 -	9.527e-4	3	2718.241	3	8907.538	1
23		12	max	0	15	.291	3	.103		1.611e-2	1	NC	4	NC	3
24			min	0	1	019	1	.004	10 -	9.395e-4	3	860.561	3	2547.604	1
25		13	max	0	15	.517	3	.176	1	1.49e-2	1	NC	5	NC	3
26			min	0	1	211	1	.007	15 -	9.263e-4	3	490.781	3	1485.428	1
27		14	max	0	15	.695	3	.223	1 1	1.369e-2	1	NC	5	NC	3
28			min	0	1	368	1	.009		9.131e-4	3	366.763	3	1170.525	1
29		15	max	0	15	.777	3	.23	1 1	1.247e-2	1	NC	5	NC	3
30			min	0	1	452	1	.01	15 -	8.999e-4	3	328.208	3	1133.713	1
31		16	max	0	15	.74	3	.195		1.126e-2	1	NC	5	NC	3
32			min	0	1	441	1	.008		8.866e-4	3	344.584	3	1335.437	1
33		17	max	0	15	.58	3	.129		1.005e-2	1	NC	5	NC	3
34			min	001	1	333	1	.005		8.734e-4	3	438.295	3	2027.648	1
35		18	max	0	15	.317	3	.054		8.837e-3	1	NC	5	NC	2
36			min	001	1	144	1	.002		8.602e-4	3	793.292	3	5001.964	1
37		19	max	0	15	.095	1	.006		7.624e-3	1	NC	1	NC	1
38			min	001	1	009	3	003		-8.47e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.16	3	.005		4.783e-3	1	NC	1	NC	1
40			min	0	15	312	1	002		-2.9e-3	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio		, ,	
41		2	max	0	1	.458	3	.038	1_	5.77e-3	_1_	NC	5_	NC	2
42			min	0	15	666	1	.002	15	-3.554e-3	3	728.223	<u>1</u>	7239.7	1
43		3	max	0	1	.707	3	.105	1	6.756e-3	_1_	NC	<u>15</u>	NC	3
44			min	0	15	968	1	.004		-4.208e-3	3	392.898	1_	2507.754	
45		4	max	0	1	.877	3	.169	1	7.742e-3	1_	NC	<u>15</u>	NC 4550,454	3
46		-	min	0	15	<u>-1.183</u>	1	.007	15	-4.862e-3	3	296.049	1_	1550.151	1
47		5	max	0	1	.95	3	.205	1	8.729e-3	1	9139.766	15	NC	3
48		6	min	0	15	-1.293	1	.009		-5.516e-3	3	263.032	1_	1271.431	1
49		6	max	0	1 15	.928	3	.203	1	9.715e-3	1	9145.846	<u>15</u> 1	NC	3
50 51		7	min	0	1	-1.296 .827	3	.009 .163	15	-6.17e-3 1.07e-2	<u>3</u>	262.004 NC	15	1284.38 NC	3
52			max	0	15	-1.212	1	.007	15	-6.824e-3	3	286.454	1	1604.947	1
53		8	max	0	1	.683	3	.007	1	1.169e-2	1	NC	15	NC	3
54		0	min	0	15	-1.076	1	.004		-7.478e-3	3	337.641	1	2717.888	
55		9	max	0	1	.545	3	.03	1	1.267e-2	<u> </u>	NC	15	NC	2
56			min	0	15	94	1	004	10	-8.132e-3	3	410.663	1	9318.93	1
57		10	max	0	1	.481	3	.017	3	1.366e-2	1	NC	5	NC	1
58		1.0	min	0	1	876	1	011	2	-8.786e-3	3	457.464	1	NC	1
59		11	max	0	15	.545	3	.03	1	1.267e-2	1	NC	15	NC	2
60			min	0	1	94	1	004	10	-8.132e-3	3	410.663	1	9318.93	1
61		12	max	0	15	.683	3	.097	1	1.169e-2	1	NC	15	NC	3
62			min	0	1	-1.076	1	.004	15	-7.478e-3	3	337.641	1	2717.888	
63		13	max	0	15	.827	3	.163	1	1.07e-2	1	NC	15	NC	3
64			min	0	1	-1.212	1	.007	15		3	286.454	1	1604.947	1
65		14	max	0	15	.928	3	.203	1	9.715e-3	1	9145.846	15	NC	3
66			min	0	1	-1.296	1	.009	15	-6.17e-3	3	262.004	1	1284.38	1
67		15	max	0	15	.95	3	.205	1	8.729e-3	1	9139.766	15	NC	3
68			min	0	1	-1.293	1	.009	15	-5.516e-3	3	263.032	1	1271.431	1
69		16	max	0	15	.877	3	.169	1	7.742e-3	1_	NC	15	NC	3
70			min	0	1	-1.183	1	.007	15	-4.862e-3	3	296.049	1_	1550.151	1
71		17	max	0	15	.707	3	.105	1	6.756e-3	1_	NC	<u>15</u>	NC	3
72			min	0	1	968	1	.004	15	-4.208e-3	3	392.898	_1_	2507.754	1
73		18	max	0	15	.458	3	.038	1	5.77e-3	1_	NC	_5_	NC	2
74		10	min	0	1	666	1	.002	15		3	728.223	1_	7239.7	1
75		19	max	0	15	.16	3	.005	3	4.783e-3	1_	NC	1_	NC NC	1
76	N445	-	min	0	1	312	1	002	2	-2.9e-3	3	NC	1_	NC NC	1
77	M15	1	max	0	15	.164	3	.005	3	2.437e-3	3	NC NC	1_	NC NC	1
78		2	min	0	1	<u>311</u>	1	002	2	-4.904e-3	1_	NC NC	1_	NC NC	1
79		2	max	0	15	.342	3	.038	1	2.992e-3	3	NC CE4.4E0	5	NC 7006 700	2
80		3	min	0	15	705 .494	3	.002 .105	1 <u>5</u>	-5.922e-3 3.547e-3	1	654.159 NC	<u>1</u> 15	7206.709 NC	3
82		3	max min	0	1	-1.04	1	.004	15		1	353.807	1	2501.114	
83		4	max	0	15	.605	3	.169	1	4.102e-3	3	NC	15	NC	3
84		4	min	0	1	-1.275	1	.007		-7.958e-3	1	267.734	1	1547	1
85		5	max	0	15	.665	3	.205	1	4.657e-3	3	9151.848	15	NC	3
86			min	0	1	-1.388	1	.009	_	-8.976e-3	1	239.46	1	1269.118	
87		6	max	0	15	.675	3	.203	1	5.211e-3	3	9160.374	15	NC	3
88			min	0	1	-1.382	1	.009		-9.994e-3	1	240.946	1	1281.988	
89		7	max	0	15	.641	3	.163	1	5.766e-3	3	NC	15	NC	3
90			min	0	1	-1.276	1	.007	15	-1.101e-2	1	267.508	1	1601.333	
91		8	max	0	15	.582	3	.097	1	6.321e-3	3	NC	15	NC	3
92			min	0	1	-1.111	1	.004		-1.203e-2	1	322.62	1	2708.102	
93		9	max	0	15	.521	3	.03	1	6.876e-3	3	NC	15	NC	2
94			min	0	1	949	1	003		-1.305e-2	1	404.212		9210.995	
95		10	max	0	1	.492	3	.016	3	7.43e-3	3	NC	5	NC	1
96			min	0	1	874	1	011	2	-1.407e-2	1	458.698	1	NC	1
97		11	max	0	1	.521	3	.03	1	6.876e-3	3	NC	15	NC	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
98			min	0	15	949	1	003	10 -1.305e-2	1_	404.212	1_	9210.995	
99		12	max	0	1	.582	3	.097	1 6.321e-3	3	NC	15	NC	3
100			min	0	15	<u>-1.111</u>	1	.004	15 -1.203e-2	_1_	322.62	_1_	2708.102	1
101		13	max	0	1	.641	3	.163	1 5.766e-3	3	NC	<u>15</u>	NC	3
102		4.4	min	0	15	-1.276	1	.007	15 -1.101e-2	1_	267.508	1_	1601.333	1
103		14	max	0	1	<u>.675</u>	3	.203	1 5.211e-3	3	9160.374	<u>15</u>	NC	3
104			min	0	15	-1.382	1	.009	15 -9.994e-3	1_	240.946	1_	1281.988	1
105		15	max	0	1	<u>.665</u>	3	.205	1 4.657e-3	3	9151.848	<u>15</u>	NC	3
106		4.0	min	0	15	-1.388	1	.009	15 -8.976e-3	1_	239.46	1_	1269.118	
107		16	max	0	1	.605	3	.169	1 4.102e-3	3_	NC 007.704	<u>15</u>	NC 15.17	3
108		4-7	min	0	15	<u>-1.275</u>	1	.007	15 -7.958e-3	1_	267.734	1_	1547	1
109		17	max	0	1	.494	3	.105	1 3.547e-3	3_	NC	<u>15</u>	NC 2504.444	3
110		10	min	0	15	-1.04	1	.004	15 -6.94e-3	1_	353.807	_1_	2501.114	1
111		18	max	0	1	.342	3	.038	1 2.992e-3	3_	NC	5	NC	2
112		10	min	0	15	705	1	.002	15 -5.922e-3	1_	654.159	1_	7206.709	1
113		19	max	0	1	164	3	.005	3 2.437e-3	3	NC	1_	NC	1
114			min	0	15	311	1	002	2 -4.904e-3	1_	NC	1_	NC	1
115	M16	1	max	0	15	.092	1	.004	3 4.292e-3	3_	NC		NC	1
116			min	001	1	054	3	002	2 -7.113e-3	_1_	NC	1_	NC	1
117		2	max	0	15	.054	3	.053	1 5.114e-3	3_	NC	5_	NC	2
118			min	001	1	204	2	.002	15 -8.199e-3	1_	902.284	2	5036.464	1
119		3	max	0	15	.138	3	.129	1 5.935e-3	3	NC	5	NC	3
120			min	<u>001</u>	1	433	2	.005	15 -9.286e-3	1_	501.553	2	2034.669	1
121		4	max	0	15	.184	3	.195	1 6.757e-3	3	NC	_5_	NC	3
122		_	min	0	1	565	2	.008	15 -1.037e-2	_1_	398.812	2_	1337.635	1
123		5	max	0	15	.185	3	.229	1 7.579e-3	3	NC	5_	NC	3
124			min	0	1	584	2	.01	15 -1.146e-2	_1_	387.513	2	1133.957	1
125		6	max	0	15	.142	3	.223	1 8.4e-3	3	NC	5	NC	3
126			min	0	1	492	2	.009	15 -1.254e-2	1_	449.454	2	1168.901	1
127		7	max	0	15	.064	3	.176	1 9.222e-3	3_	NC	_5_	NC	3
128			min	0	1	314	2	.007	15 -1.363e-2	1_	652.44	2	1479.57	1
129		8	max	0	15	0	15	.104	1 1.004e-2	3	NC	3	NC	3
130			min	0	1	093	2	.005	15 -1.472e-2	1_	1478.119	2	2521.83	1
131		9	max	0	15	.135	1	.032	1 1.087e-2	3	NC	2	NC	2
132			min	0	1	<u>111</u>	3	003	10 -1.58e-2	1_	4487.326	<u>3</u>	8528.307	1
133		10	max	0	1	.223	1	.014	3 1.169e-2	3	NC	5	NC	1
134			min	0	1	148	3	01	2 -1.689e-2	_1_	1969.785	1_	NC	1
135		11	max	0	1	.135	1	.032	1 1.087e-2	3	NC	2	NC	2
136			min	0	15	<u>111</u>	3	003	10 -1.58e-2	1_	4487.326	3	8528.307	1
137		12	max	0	1	0	15	.104	1 1.004e-2	3	NC	3	NC	3
138		10	min	0	15	093	2	.005	15 -1.472e-2				2521.83	1
139		13	max	0	1	.064	3	.176	1 9.222e-3	3_	NC 050.44	5	NC	3
140		4.4	min	0	15	314	2	.007	15 -1.363e-2	1_	652.44	2	1479.57	1
141		14	max	0	1	.142	3	.223	1 8.4e-3	3_	NC	5	NC	3
142			min	0	15	492	2	.009	15 -1.254e-2	1_	449.454	2	1168.901	1
143		15	max	0	1	.185	3	.229	1 7.579e-3	3_	NC	5	NC	3
144		1.0	min	0	15	584	2	.01	15 -1.146e-2	1_	387.513	2	1133.957	1
145		16	max	0	1	<u>.184</u>	3	.195	1 6.757e-3	3_	NC	_5_	NC	3
146		4-	min	0	15	<u>565</u>	2	.008	15 -1.037e-2	1	398.812	2	1337.635	
147		17	max	.001	1	.138	3	.129	1 5.935e-3	3_	NC FOA FFO	5_	NC	3
148		10	min	0	15	433	2	.005	15 -9.286e-3	1_	501.553	2	2034.669	
149		18	max	.001	1	.054	3	.053	1 5.114e-3	3_	NC	5_	NC 5000 404	2
150		4.0	min	0	15	204	2	.002	15 -8.199e-3	1_	902.284	2	5036.464	
151		19	max	.001	1	.092	1	.004	3 4.292e-3	3_	NC	_1_	NC NC	1
152	140		min	0	15	054	3	002	2 -7.113e-3	1_	NC	1_	NC	1
153	M2	1	max	.006	1	.005	2	.01	1 -1.124e-5		NC	1_	NC 2400 000	2
154			min	006	3	009	3	0	15 -2.725e-4	1_	NC	1_	6428.606	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
155		2	max	.006	1	.004	2	.009	1	-1.054e-5	15	NC	1_	NC	2
156			min	006	3	008	3	0	15	-2.556e-4	_1_	NC	1_	7012.91	1
157		3	max	.005	1	.003	2	.008	1	-9.844e-6		NC	1_	NC	2
158			min	005	3	008	3	0	15		1_	NC	1_	7709.575	
159		4	max	.005	1	.002	2	.007	1	-9.147e-6	<u>15</u>	NC	1_	NC 05 40, 470	2
160		_	min	005	3	008	3	0	15	-2.218e-4	1_	NC NC	1_	8548.479	
161		5	max	.005	3	.002	2	.007	1	-8.449e-6	<u>15</u>	NC NC	1	NC	2
162		6	min	005	1	008 0	3	0	15	-2.048e-4	1_	NC NC	1	9570.434	
163 164		6	max	.004	3		3	.006 0	1 15	-7.752e-6 -1.879e-4	<u>15</u> 1	NC NC	1	NC NC	1
165		7	min max	004 .004	1	007 0	2	.005	1	-7.054e-6	15	NC NC	1	NC NC	1
166			min	004	3	007	3	0	15	-1.71e-4	1	NC NC	1	NC	1
167		8	max	.004	1	<u>007</u> 0	2	.004	1	-6.357e-6	15	NC	1	NC	1
168		0	min	004	3	007	3	0	15		1	NC	1	NC	1
169		9	max	.003	1	0	2	.004	1	-5.659e-6	15	NC	1	NC	1
170		3	min	003	3	006	3	0	15		1	NC	1	NC	1
171		10	max	.003	1	0	15	.003	1	-4.962e-6	15	NC	1	NC	1
172			min	003	3	006	3	0	15	-1.202e-4	1	NC	1	NC	1
173		11	max	.003	1	0	15	.002	1	-4.265e-6	15	NC	1	NC	1
174			min	003	3	005	3	0	15	-1.033e-4	1	NC	1	NC	1
175		12	max	.002	1	0	15	.002	1	-3.567e-6	15	NC	1	NC	1
176			min	002	3	005	3	0	15	-8.64e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	.001	1	-2.87e-6	15	NC	1	NC	1
178			min	002	3	004	3	0	15		1	NC	1	NC	1
179		14	max	.002	1	0	15	.001	1	-2.172e-6	15	NC	1	NC	1
180			min	002	3	004	3	0	15	-5.256e-5	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1	-1.475e-6	15	NC	1	NC	1
182			min	001	3	003	3	0	15	-3.564e-5	1	NC	1	NC	1
183		16	max	0	1	00	15	0	1	-7.776e-7	15	NC	_1_	NC	1
184			min	0	3	003	4	0	15	-1.872e-5	1	NC	1	NC	1
185		17	max	0	1	0	15	0	1	-8.013e-8	<u>15</u>	NC	_1_	NC	1
186			min	0	3	002	4	0	15	-1.799e-6	1_	NC	1_	NC	1
187		18	max	0	1	0	15	0	1	1.512e-5	1_	NC	1_	NC	1
188			min	0	3	001	4	0	15	5.469e-7	12	NC	1_	NC	1
189		19	max	0	1	0	1	0	1	3.204e-5	1_	NC	1_	NC NC	1
190	140		min	0	1	0	1	0	1	1.315e-6	15	NC NC	1_	NC NC	1
191	<u>M3</u>	1_	max	0	1	0	1	0	1	-4.327e-7	<u>15</u>	NC NC	1_	NC NC	1
192			min	0	1	0	1	0	1	-1.054e-5	1_	NC NC	1_	NC NC	1
193		2	max	0	3	0	15	0	1	1.771e-5	1 =	NC NC	<u>1</u> 1	NC NC	1
194 195		3	min	<u> </u>	3	002 0	15	0	1 <u>5</u>	7.303e-7 4.595e-5	<u>15</u>	NC NC	1	NC NC	1
196		3	max min	0	2	004	4	0	15		15	NC NC	1	NC NC	1
197		4	max	0	3	004 001	15	0	1	7.419e-5	1	NC	1	NC	1
198		4	min	0	2	006	4	0		3.056e-6	15	NC	1	NC	1
199		5	max	.001	3	002	15	0	1	1.024e-4	1	NC	1	NC	1
200			min	0	2	007	4	0	15	4.219e-6	15	NC	1	NC	1
201		6	max	.001	3	002	15	.001	1	1.307e-4	1	NC		NC	1
202			min	0	2	009	4	0	15		15	NC	1	NC	1
203		7	max	.002	3	003	15	.001	1	1.589e-4	1	NC	1	NC	1
204			min	001	2	011	4	0	15	6.545e-6		8602.873	4	NC	1
205		8	max	.002	3	003	15	.002	1	1.872e-4	1	NC	1	NC	1
206			min	001	2	012	4	0	15	7.708e-6		7723.893	4	NC	1
207		9	max	.002	3	003	15	.002	1	2.154e-4	1	NC	2	NC	1
208			min	002	2	013	4	0	15			7204.213	4	NC	1
209		10	max	.002	3	003	15	.003	1	2.437e-4	1	NC	3	NC	1
210			min	002	2	013	4	0	15	1.003e-5	15	6953.307	4	NC	1
211		11	max	.003	3	003	15	.003	1	2.719e-4	1	NC	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
212			min	002	2	014	4	0	15	1.12e-5	15	6934.212	4	NC	1
213		12	max	.003	3	003	15	.004	1	3.001e-4	_1_	NC	3	NC	1
214			min	002	2	013	4	0	15	1.236e-5	15	7149.359	4	NC	1
215		13	max	.003	3	003	15	.004	1	3.284e-4	1	NC	1	NC	1
216			min	002	2	012	4	0	15	1.352e-5	15	7643.317	4	NC	1
217		14	max	.004	3	003	15	.005	1	3.566e-4	1	NC	1	NC	1
218			min	003	2	011	4	0	15	1.469e-5	15	8525.899	4	NC	1
219		15	max	.004	3	002	15	.006	1	3.849e-4	1	NC	1	NC	1
220			min	003	2	01	4	0	15	1.585e-5	15	NC	1	NC	1
221		16	max	.004	3	002	15	.006	1	4.131e-4	1	NC	1	NC	1
222			min	003	2	008	4	0	15	1.701e-5	15	NC	1	NC	1
223		17	max	.004	3	001	15	.007	1	4.414e-4	1	NC	1	NC	1
224			min	003	2	006	1	0	15	1.818e-5	15	NC	1	NC	1
225		18	max	.005	3	0	15	.008	1	4.696e-4	1	NC	1	NC	1
226			min	003	2	005	1	0	15	1.934e-5	15	NC	1	NC	1
227		19	max	.005	3	0	15	.009	1	4.978e-4	1	NC	1	NC	2
228			min	004	2	003	1	0	15	2.05e-5	15	NC	1	9754.599	1
229	M4	1	max	.003	1	.003	2	0	15	6.626e-5	1	NC	1	NC	3
230			min	0	3	005	3	009	1	2.74e-6	15	NC	1	2673.069	1
231		2	max	.003	1	.003	2	0	15	6.626e-5	1	NC	1	NC	3
232			min	0	3	005	3	009	1	2.74e-6	15	NC	1	2906.488	1
233		3	max	.002	1	.003	2	0	15	6.626e-5	1	NC	1	NC	3
234			min	0	3	004	3	008	1	2.74e-6	15	NC	1	3184.309	1
235		4	max	.002	1	.003	2	0	15	6.626e-5	1	NC	1	NC	3
236			min	0	3	004	3	007	1	2.74e-6	15	NC	1	3518.064	1
237		5	max	.002	1	.002	2	0	15	6.626e-5	1	NC	1	NC	3
238			min	0	3	004	3	006	1	2.74e-6	15	NC	1	3923.424	1
239		6	max	.002	1	.002	2	0	15	6.626e-5	1	NC	1	NC	2
240			min	0	3	004	3	006	1	2.74e-6	15	NC	1	4422.123	1
241		7	max	.002	1	.002	2	0	15	6.626e-5	1	NC	1	NC	2
242		,	min	0	3	003	3	005	1	2.74e-6	15	NC	1	5045.01	1
243		8	max	.002	1	.002	2	0	15	6.626e-5	1	NC	1	NC	2
244			min	0	3	003	3	004	1	2.74e-6	15	NC	1	5837.077	1
245		9	max	.002	1	.002	2	0	15	6.626e-5	1	NC	1	NC	2
246		ľ	min	0	3	003	3	004	1	2.74e-6	15	NC	1	6866.057	1
247		10	max	.001	1	.002	2	0	15	6.626e-5	1	NC	1	NC	2
248		'	min	0	3	002	3	003	1	2.74e-6	15	NC	1	8237.831	1
249		11	max	.001	1	.001	2	0	15	6.626e-5	1	NC	1	NC	1
250			min	0	3	002	3	002	1	2.74e-6	15	NC	1	NC	1
251		12	max	.001	1	.002	2	0	15	6.626e-5	1	NC	1	NC	1
252		12	min		3	002	3	002	1	2.74e-6	15	NC	1	NC	1
253		13	max	0	1	.002	2	0	15	6.626e-5	1	NC	1	NC	1
254		10	min	0	3	002	3	001	1	2.74e-6	15	NC	1	NC	1
255		14	max	0	1	<u>002</u> 0	2	<u>001</u> 0	15		1	NC	1	NC	1
256		17	min	0	3	001	3	001	1	2.74e-6	15	NC	1	NC	1
257		15	max	0	1	0	2	0	15		1	NC	1	NC	1
258		10	min	0	3	001	3	0	1	2.74e-6	15	NC	1	NC	1
259		16	max	0	1	0	2	0	15	6.626e-5	1	NC	1	NC	1
260		10	min	0	3	0	3	0	1	2.74e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	6.626e-5	1	NC	1	NC	1
262		17	min	0	3	0	3	0	1	2.74e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	6.626e-5	1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	2.74e-6	15	NC NC	1	NC	1
265		19	max	0	1	0	1	0	1	6.626e-5	1 <u>15</u> 1	NC NC	1	NC NC	1
266		13	min	0	1	0	1	0	1	2.74e-6	15	NC NC	1	NC NC	1
267	M6	1	max	.019	1	.019	2	0	1	0	<u>15</u> 1	NC NC	3	NC NC	1
268	IVIO		min	02	3	027	3	0	1	0	1	3270.598	2	NC NC	1
200			THILL	02	J	021	J	U		U		JZ1 U.J90		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio			
269		2	max	.018	1	.017	2	0	1	0	_1_	NC	3	NC	1
270			min	019	3	026	3	0	1	0	<u>1</u>	3596.194	2	NC	1
271		3	max	.017	1	.016	2	0	1	0	_1_	NC	3	NC	1
272			min	018	3	024	3	0	1	0	1_		2	NC	1
273		4	max	.016	1	.014	2	0	1	0	_1_	NC	3	NC	1
274		_	min	016	3	023	3	0	1	0	1_	4472.946	2	NC	1
275		5	max	.015	1	.012	2	0	1	0	1	NC	1_	NC	1
276			min	015	3	021	3	0	1	0	1_	5071.941	2	NC	1
277		6	max	.014	1	.011	2	0	1	0	1	NC	1_	NC	1
278		_	min	014	3	02	3	0	1	0	1_	5827.546	2	NC	1
279		7	max	.013	1	.009	2	0	1	0	<u>1</u>	NC	1_	NC	1
280			min	013	3	018	3	0	1	0	<u>1</u>	6799.393	2	NC	1
281		8	max	.012	1	.008	2	0	1	0	_1_	NC	1_	NC	1
282			min	012	3	017	3	0	1	0	1_	8079.05	2	NC	1
283		9	max	.011	1	.006	2	0	1	0	_1_	NC	1_	NC	1
284			min	011	3	01 <u>5</u>	3	0	1	0	1_	9813.189	2	NC	1
285		10	max	.01	1	.005	2	0	1	0	_1_	NC	1_	NC	1
286			min	01	3	014	3	0	1	0	<u>1</u>	NC	1_	NC	1
287		11	max	.009	1	.004	2	0	1	0	1_	NC	1_	NC	1
288			min	009	3	012	3	0	1	0	1_	NC	1_	NC	1
289		12	max	.007	1	.003	2	0	1	0	<u>1</u>	NC	1_	NC	1
290			min	008	3	011	3	0	1	0	<u>1</u>	NC	1_	NC	1
291		13	max	.006	1	.002	2	0	1	0	1_	NC	1_	NC	1
292			min	007	3	009	3	0	1	0	1_	NC	1	NC	1
293		14	max	.005	1	.001	2	0	1	0	_1_	NC	1_	NC	1
294			min	005	3	008	3	0	1	0	<u>1</u>	NC	1_	NC	1
295		15	max	.004	1	0	2	0	1	0	1	NC	1_	NC	1
296			min	004	3	006	3	0	1	0	<u>1</u>	NC	1_	NC	1
297		16	max	.003	1	0	2	0	1	0	_1_	NC	1_	NC	1
298			min	003	3	005	3	0	1	0	_1_	NC	1_	NC	1
299		17	max	.002	1	0	2	0	1	0	1	NC	1_	NC NC	1
300		10	min	002	3	003	3	0	1	0	1_	NC	1_	NC	1
301		18	max	.001	1	0	2	0	1	0	1	NC	1_	NC	1
302			min	001	3	002	3	0	1	0	1	NC	1_	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
304	N 4-7		min	0	1	0	1	0	1	0	1_	NC NC	1_	NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	1_	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1_	NC	1
307		2	max	0	3	0	15	0	1	0	1	NC	1_	NC	1
308		_	min	0	2	002	3	0	1	0	1_	NC NC	1_	NC NC	1
309		3	max	.002	3	0	15	0	1	0	1	NC NC	1	NC NC	1
310		4	min	002	2	004	3	0	1	0	1_	NC NC	1_	NC NC	1
311		4	max	.003	3	001	15	0	1	0	1	NC NC	1_	NC NC	1
312		_	min	002	2	006	3	0	1	0	1_	NC NC	1_	NC NC	1
313		5	max	.003	3	002	15	0	1	0	1	NC NC	1	NC NC	1
314		_	min	003	2	008	3	0	1	0	1	NC NC	1_	NC NC	1
315		6	max	.004	3	002	15	0	1	0	1	NC NC	1	NC NC	1
316		7	min	004	2	01	3	0	1	0	1	NC NC	1_1	NC NC	1
317		7	max	.005	3	003	15	0	1	0	1	NC 0000 070	1	NC NC	1
318		0	min	005	2	011	3	0	1	0	1	8822.976	4_	NC NC	1
319		8	max	.006	3	003	15	0	1	0	1	NC 700C 07F	1_	NC NC	1
320		_	min	006	2	012	3	0	1	0	1_	7906.975	4	NC NC	1
321		9	max	.007	3	003	15	0	1	0	1_	NC 7000 744	1_	NC NC	1
322		40	min	007	2	013	4	0	1	0	1_	7363.744	4	NC NC	1
323		10	max	.008	3	003	15	0	1	0	1	NC 7000 040	1_	NC NC	1
324		4.4	min	007	2	<u>014</u>	4	0	1	0	1_	7098.218	4	NC NC	1
325		11	max	.008	3	003	15	0	1	0	_1_	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

12		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
328	326			min	008	2		4					7071.131	4	NC	
13			12	max					0		0	1		1_		1
330												•		4		
331			13								_					_
333			1.4									_		_		
333			14													_
334			45													
336			15													
336			4.0													
338			16													-
338			17									_		_		
339			17													
340			10									•		_		
341			10													_
342			10									_				
343 M8			13													
344		M8	1													
345		IVIO														1
346			2									•		1		1
347						-										-
348			3							1		1		1		1
349										1		1		1		1
350			4		.006	1			0	1	0	1		1		1
351						3			0	1	0	1		1		1
353			5		.006	1			0	1	0	1	NC	1	NC	1
354	352			min	0	3	012	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.005	1	.01	2	0	1	0	1	NC	1	NC	1
356	354			min	0	3	011	3	0	1	0	1	NC	1	NC	1
357			7		.005	-			0	1		1_		1_		1
358				min								1		_		
359			8	max					0		0	1		1_		1
360				min		_			0			•		1_		1
361			9													
362												_				
363			10													_
364 min 0 3 007 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .005 2 0 1 0 1 NC 1 NC 1 366 min 0 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1																
365 12 max .003 1 .005 2 0 1 0 1 NC 1 NC 1 366 min 0 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 NC 1 NC 1 <td></td> <td></td> <td>11</td> <td></td> <td>1_</td> <td></td> <td>1</td>			11											1_		1
366 min 0 3 006 3 0 1 0 1 NC 1 NC 1 367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1			40											1_		1
367 13 max .002 1 .005 2 0 1 0 1 NC 1 NC 1 368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 <td>365</td> <td></td> <td>12</td> <td>max</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	365		12	max				2		_						
368 min 0 3 005 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1			40							_						
369 14 max .002 1 .004 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 1 NC 1 </td <td></td> <td></td> <td>13</td> <td></td>			13													
370 min 0 3 004 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1			1.1									•		•		
371 15 max .002 1 .003 2 0 1 0 1 NC 1 NC 1 372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC			14													_
372 min 0 3 003 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 N			15									_		_		
373 16 max .001 1 .002 2 0 1 0 1 NC 1 NC 1 374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC <td></td> <td></td> <td>13</td> <td></td> <td>_</td>			13													_
374 min 0 3 003 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 .002 2 0 1 0 1 NC 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1			16													
375 17 max 0 1 .002 2 0 1 0 1 NC 1 376 min 0 3 002 3 0 1 0 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 2.725e-4 1 NC 1 NC 2			10													
376 min 0 3 002 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 2.725e-4 1 NC 1 NC 2			17							-						•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 2.725e-4 1 NC 1 NC 2			11			-										_
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 2.725e-4 1 NC 1 NC 2			18									_		_		
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 2.725e-4 1 NC 1 NC 2			'0													
380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .006 1 .005 2 0 15 2.725e-4 1 NC 1 NC 2			19									•		_		
381 M10 1 max .006 1 .005 2 0 15 2.725e-4 1 NC 1 NC 2			'		-		-				_					_
		M10	1			1				15	•	1		1		
	382			min	006	3	009	3	01		1.124e-5	15	NC	1	6428.606	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.006	1	.004	2	0	15	2.556e-4	_1_	NC	_1_	NC	2
384			min	006	3	008	3	009	1	1.054e-5	15	NC	<u>1</u>	7012.91	1
385		3	max	.005	1	.003	2	0	15	2.387e-4	_1_	NC	_1_	NC	2
386			min	005	3	008	3	008	1	9.844e-6	15	NC	1_	7709.575	
387		4	max	.005	1	.002	2	0	15	2.218e-4	1_	NC	1	NC	2
388		_	min	005	3	008	3	007	1_	9.147e-6	15	NC	1_	8548.479	1
389		5	max	.005	1	.002	2	0	15	2.048e-4	_1_	NC	_1_	NC	2
390			min	005	3	008	3	007	1	8.449e-6	15	NC	1_	9570.434	1
391		6	max	.004	1	0	2	0	15	1.879e-4	_1_	NC	1_	NC	1
392		_	min	004	3	007	3	006	1	7.752e-6	15	NC	1_	NC	1
393		7	max	.004	1	0	2	0	15	1.71e-4	1_	NC	1	NC NC	1
394			min	004	3	007	3	005	1	7.054e-6	15	NC	1_	NC	1
395		8	max	.004	1	0	2	0	15	1.541e-4	1_	NC	1	NC NC	1
396			min	004	3	007	3	004	1	6.357e-6	15	NC	1	NC	1
397		9	max	.003	1	0	2	0	15	1.372e-4	1_	NC	1	NC NC	1
398		40	min	003	3	006	3	004	1_	5.659e-6	15	NC	1_	NC NC	1
399		10	max	.003	1	0	15	0	15	1.202e-4	1_	NC	1	NC NC	1
400		4.4	min	003	3	006	3	003	1_45	4.962e-6	15	NC NC	1_	NC NC	1
401		11	max	.003	1	0	15	0	15	1.033e-4	1_	NC	1_	NC NC	1
402		40	min	003	3	005	3	002	1_45	4.265e-6	<u>15</u>	NC NC	1_	NC NC	1
403		12	max	.002	1	0	15	0	15	8.64e-5	1_	NC NC	1	NC NC	1
404		40	min	002	3	005	3	002	1_1_	3.567e-6	<u>15</u>	NC NC	_	NC NC	1
405		13	max	.002	3	0	15	0	15	6.948e-5	1_		1	NC NC	1
406		4.4	min	002		004	3	001	1_1_	2.87e-6	15	NC NC		NC NC	
407		14	max	.002	3	0 004	15	0	15	5.256e-5 2.172e-6	1_	NC NC	1	NC NC	1
408		15	min	002	1			<u>001</u>	1 1 5		<u>15</u>	NC NC	1		1
409		15	max	.001 001	3	003	15	0 0	15	3.564e-5	1_	NC NC	1	NC NC	1
410		16	min		1	003 0	3 15		15	1.475e-6 1.872e-5	<u>15</u> 1	NC NC	1	NC NC	1
412		10	max	0	3			0	1	7.776e-7		NC NC	1	NC NC	1
413		17	min max	0	1	003 0	15	0	15	1.799e-6	<u>15</u> 1	NC NC	1	NC NC	1
414		17	min	0	3	002	4	0	1	8.013e-8	15	NC	1	NC	1
415		18		0	1	<u>002</u> 0	15	0	15	-5.469e-7	12	NC NC	1	NC NC	1
416		10	max	0	3	001	4	0	1	-3.469e-7	1	NC NC	1	NC NC	1
417		19	max	0	1	<u>001</u> 0	1	0	1	-1.312e-5	15	NC	1	NC	1
418		19	min	0	1	0	1	0	1	-3.204e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.054e-5	1	NC	1	NC	1
420	IVIII		min	0	1	0	1	0	1	4.327e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-7.303e-7	15	NC	1	NC	1
422		_	min	0	2	002	4	0	1	-1.771e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	_	-1.893e-6	_	NC	1	NC	1
424			min	0	2	004	4	0	1	-4.595e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15		•	NC	1	NC	1
426		Ė	min	0	2	006	4	0	1	-7.419e-5	1	NC	1	NC	1
427		5	max	.001	3	002	15	0				NC	1	NC	1
428			min	0	2	007	4	0	1	-1.024e-4	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15	-5.382e-6	•	NC	1	NC	1
430			min	0	2	009	4	001	1	-1.307e-4	1	NC	1	NC	1
431		7	max	.002	3	003	15	0		-6.545e-6		NC	1	NC	1
432			min	001	2	011	4	001	1	-1.589e-4	1	8602.873	4	NC	1
433		8	max	.002	3	003	15	0	15	-7.708e-6	15	NC	1	NC	1
434			min	001	2	012	4	002	1	-1.872e-4	1	7723.893	4	NC	1
435		9	max	.002	3	003	15	0	15		15	NC	2	NC	1
436			min	002	2	013	4	002	1	-2.154e-4	1	7204.213	4	NC	1
437		10	max	.002	3	003	15	0	15		15	NC	3	NC	1
438			min	002	2	013	4	003	1	-2.437e-4	1	6953.307	4	NC	1
439		11	max	.003	3	003	15	0	15		15	NC	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
440			min	002	2	014	4	003	1	-2.719e-4	1_	6934.212	4	NC	1
441		12	max	.003	3	003	15	0	15	-1.236e-5	<u>15</u>	NC	3	NC	1
442			min	002	2	013	4	004	1	-3.001e-4	1	7149.359	4	NC	1
443		13	max	.003	3	003	15	0	15	-1.352e-5	15	NC	1	NC	1
444			min	002	2	012	4	004	1	-3.284e-4	1	7643.317	4	NC	1
445		14	max	.004	3	003	15	0	15	-1.469e-5	15	NC	1	NC	1
446			min	003	2	011	4	005	1	-3.566e-4	1	8525.899	4	NC	1
447		15	max	.004	3	002	15	0	15	-1.585e-5	15	NC	1	NC	1
448			min	003	2	01	4	006	1	-3.849e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	0	15	-1.701e-5	15	NC	1	NC	1
450			min	003	2	008	4	006	1	-4.131e-4	1	NC	1	NC	1
451		17	max	.004	3	001	15	0	15	-1.818e-5	15	NC	1	NC	1
452			min	003	2	006	1	007	1	-4.414e-4	1	NC	1	NC	1
453		18	max	.005	3	0	15	0	15		15	NC	1	NC	1
454		1.0	min	003	2	005	1	008	1	-4.696e-4	1	NC	1	NC	1
455		19	max	.005	3	0	15	0	15	-2.05e-5	15	NC	1	NC	2
456		10	min	004	2	003	1	009	1	-4.978e-4	1	NC	1	9754.599	1
457	M12	1	max	.003	1	.003	2	.009	1	-2.74e-6	15	NC	1	NC	3
458	17112		min	0	3	005	3	0	15	-6.626e-5	1	NC	1	2673.069	1
459		2	max	.003	1	.003	2	.009	1	-2.74e-6	15	NC	1	NC	3
460			min	0	3	005	3	<u>.009</u>	15	-6.626e-5	1	NC NC	1	2906.488	1
461		3	max	.002	1	.003	2	.008	1	-2.74e-6	15	NC	1	NC	3
462		-	min	0	3	004	3	<u>.008</u>	15	-6.626e-5	1	NC NC	1	3184.309	1
463		4		.002	1	.003	2	.007	1	-0.020e-3		NC NC	1	NC	3
		4	max	.002	3		3	007 0	15		<u>15</u> 1	NC NC	1		1
464		E	min	_	1	<u>004</u>				-6.626e-5	•		_	3518.064	-
465		5	max	.002	_	.002	2	.006	1	-2.74e-6	<u>15</u>	NC NC	1	NC	3
466			min	0	3	004	3	0	15	-6.626e-5	1_	NC NC	1_	3923.424	1
467		6	max	.002	1	.002	2	.006	1	-2.74e-6	<u>15</u>	NC NC	1	NC 4400 400	2
468		_	min	0	3	004	3	0	15	-6.626e-5	1_	NC	1_	4422.123	1
469		7	max	.002	1	.002	2	.005	1	-2.74e-6	<u>15</u>	NC	1	NC 5045.04	2
470			min	0	3	003	3	0	15	-6.626e-5	1_	NC	1_	5045.01	1
471		8	max	.002	1	.002	2	.004	1_	-2.74e-6	<u>15</u>	NC	1	NC	2
472			min	0	3	003	3	0	15	-6.626e-5	<u>1</u>	NC	1_	5837.077	1
473		9	max	.002	1	.002	2	.004	1	-2.74e-6	15	NC	1_	NC	2
474			min	0	3	003	3	0	15	-6.626e-5	1_	NC	1_	6866.057	1
475		10	max	.001	1	.002	2	.003	1_	-2.74e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	3	002	3	0	15	-6.626e-5	1_	NC	1_	8237.831	1
477		11	max	.001	1	.001	2	.002	1	-2.74e-6	15	NC	_1_	NC	1
478			min	0	3	002	3	0	15	-6.626e-5	1_	NC	1_	NC	1
479		12	max	.001	1	.001	2	.002	1	-2.74e-6	15	NC	1_	NC	1
480			min	0	3	002	3	0	15	-6.626e-5	1	NC	1	NC	1
481		13	max	0	1	.001	2	.001	1	-2.74e-6	15	NC	1	NC	1
482			min	0	3	002	3	0	15	-6.626e-5	1	NC	1	NC	1
483		14	max	0	1	0	2	.001	1	-2.74e-6	15	NC	1	NC	1
484			min	0	3	001	3	0	15	-6.626e-5	1	NC	1	NC	1
485		15	max	0	1	0	2	0	1	-2.74e-6	15	NC	1	NC	1
486			min	0	3	001	3	0	15	-6.626e-5	1	NC	1	NC	1
487		16	max	0	1	0	2	0	1	-2.74e-6	15	NC	1	NC	1
488			min	0	3	0	3	0	15		1	NC	1	NC	1
489		17	max	0	1	0	2	0	1	-2.74e-6	15	NC	1	NC	1
490			min	0	3	0	3	0	15		1	NC	1	NC	1
491		18	max	0	1	0	2	0	1	-2.74e-6	15	NC	1	NC	1
492		10	min	0	3	0	3	0	15	-6.626e-5	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-0.020e-3	15	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-2.74e-6 -6.626e-5	1	NC NC	1	NC NC	1
494	M1	1	max	.006	3	.095	1	.001	1	1.73e-2	1	NC NC	1	NC NC	1
496	IVI I		min	003	2	009	3		15		3	NC	1	NC	1
490			111111	003		009	3	0	10	-2.353e-2	3	INC		INC	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio L			
497		2	max	.006	3	.046	1	0	15	8.396e-3	1		3	NC_	1
498		_	min	003	2	003	3	007	1	-1.164e-2	3	2353.705		NC	1
499		3	max	.006	3	.009	3	0	15	1.504e-5	<u>10</u>		5	NC_	1
500			min	003	2	008	2	01	1_	-2.014e-4	1_	1.120.011	1	NC NC	1
501		4	max	.006	3	.031	3	0	15	4.544e-3	1		5	NC NC	1
502		5	min	003	2	068	1	009	1 1	-4.055e-3	3	7 02.77	1	NC NC	1
503 504		1 5	max	.006 002	3	.061 133	3	006	15	9.289e-3 -7.996e-3	<u>1</u> 3		1	NC NC	1
505		6			3	<u>133</u> .094	3	006 0	15	1.403e-2	<u> </u>		5	NC NC	1
506		0	max min	.006 002	2	196	1	003	1	-1.194e-2	3		1	NC	1
507		7	max	.002	3	<u>196</u> .125	3	003 0	1	1.878e-2	<u>3</u>		5	NC NC	1
508		+	min	002	2	253	1	0	12	-1.588e-2	3		1	NC	1
509		8	max	.002	3	.152	3	.001	1	2.352e-2	1		5	NC	1
510			min	002	2	298	1	0	15	-1.982e-2	3		1	NC	1
511		9	max	.005	3	.169	3	0	15	2.596e-2	1		5	NC	1
512		 	min	002	2	327	1	0	1	-1.976e-2	3		1	NC	1
513		10	max	.005	3	.176	3	0	1	2.687e-2	1		5	NC	1
514			min	002	2	336	1	0	12	-1.705e-2	3		1	NC	1
515		11	max	.005	3	.172	3	0	1	2.778e-2	1		5	NC	1
516			min	002	2	326	1	0	15	-1.434e-2	3		1	NC	1
517		12	max	.005	3	.157	3	0	15	2.627e-2	1		5	NC	1
518			min	002	2	297	1	001	1	-1.177e-2	3		1	NC	1
519		13	max	.005	3	.134	3	0	15	2.115e-2	1	9884.903 1	5	NC	1
520			min	002	2	251	1	0	1	-9.419e-3	3	331.513	1	NC	1
521		14	max	.005	3	.104	3	.002	1	1.602e-2	1	NC 1	5	NC	1
522			min	002	2	193	1	0	15	-7.069e-3	3	000.000	1	NC	1
523		15	max	.005	3	.071	3	.006	1	1.089e-2	1		5	NC	1
524			min	002	2	128	1	0	15	-4.718e-3	3		1	<u>NC</u>	1
525		16	max	.005	3	.036	3	.009	1_	5.76e-3	1		5	NC	1
526			min	002	2	064	1	0	15	-2.368e-3	3	7 20.000	1	NC_	1
527		17	max	.004	3	.003	3	.009	1	6.312e-4	1		5	NC_	1
528		10	min	002	2	<u>004</u>	2	0	15	-1.77e-5	3		1	NC_	1
529		18	max	.004	3	.047	1	.006	1	1.035e-2	2		4	NC_	1
530		40	min	002	2	026	3	0	15	-3.841e-3	3	2000.000	1	NC_	1
531		19	max	.004	3	.092	3	0	15	2.074e-2	2	.,,	1 1	NC_	1
532	M5	1	min	002 .019	3	054 .229	1	001 0	1	-7.807e-3 0	<u>3</u>		1	NC NC	1
533 534	CIVI		max	012	2	006	3	0	1	0	1		1	NC NC	1
535		2	min max	012 .019	3	<u>006</u> .11	1	0	1	0	1		5	NC NC	1
536			min	013	2	.001	3	0	1	0	1		1	NC	1
537		3	max	.019	3	.029	3	0	1	0	1		5	NC	1
538			min	013	2	025	2	0	1	0	1		1	NC	1
539		4	max	.019	3	.091	3	0	1	0	1		5	NC	1
540			min	012	2	189	1	0	1	0	1		1	NC	1
541		5	max	.018	3	.179	3	0	1	0	1		5	NC	1
542			min	012	2	367	1	0	1	0	1		1	NC	1
543		6	max	.018	3	.278	3	0	1	0	1		5	NC	1
544			min	012	2	545	1	0	1	0	1		1	NC	1
545		7	max	.018	3	.375	3	0	1	0	1		5	NC	1
546			min	012	2	707	1	0	1	0	1		1	NC	1
547		8	max	.017	3	.456	3	0	1	0	1	3616.86 1	5	NC	1
548			min	011	2	836	1	0	1	0	1		1	NC	1
549		9	max	.017	3	.509	3	0	1	0	1		5	NC	1
550			min	011	2	918	1	0	1	0	1	00.00	1	NC	1
551		10	max	.016	3	.528	3	0	1	0	1		5	NC	1
552			min	011	2	945	1	0	1	0	1	0110=1	1	NC	1
553		11	max	.016	3	.514	3	0	1	0	1	3361.244 1	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	011	2	917	1	0	1	0	1	99.731	1	NC	1
555		12	max	.016	3	.47	3	0	1	0	1_	3617.055	15	NC	1
556			min	011	2	833	1	0	1	0	1	107.66	1	NC	1
557		13	max	.015	3	.399	3	0	1	0	1_		15	NC	1
558			min	01	2	7	1	0	1	0	1	123.23	1	NC	1
559		14	max	.015	3	.309	3	0	1_	0	_1_		15	NC	1
560			min	01	2	534	1	0	1	0	1	150.217	1	NC	1
561		15	max	.015	3	.208	3	0	1	0	1_	6456.787	15	NC	1
562			min	01	2	353	1	0	1	0	1	197.448	1	NC	1
563		16	max	.014	3	.106	3	0	1	0	1_	9221.538	15	NC	1
564			min	01	2	173	1	0	1	0	1	286.745	1	NC	1
565		17	max	.014	3	.009	3	0	1	0	1	NC	15	NC	1
566			min	01	2	014	2	0	1	0	1	481.802	1	NC	1
567		18	max	.014	3	.115	1	0	1	0	1	NC	5	NC	1
568			min	01	2	073	3	0	1	0	1	1046.067	1	NC	1
569		19	max	.014	3	.223	1	0	1	0	1	NC	1	NC	1
570			min	01	2	148	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.006	3	.095	1	0	15	2.353e-2	3	NC	1	NC	1
572			min	003	2	009	3	001	1	-1.73e-2	1	NC	1	NC	1
573		2	max	.006	3	.046	1	.007	1	1.164e-2	3	NC	3	NC	1
574			min	003	2	003	3	0	15	-8.396e-3	1	2353.705	1	NC	1
575		3	max	.006	3	.009	3	.01	1	2.014e-4	1	NC	5	NC	1
576			min	003	2	008	2	0	15	-1.504e-5	10	1125.547	1	NC	1
577		4	max	.006	3	.031	3	.009	1	4.055e-3	3	NC	5	NC	1
578			min	003	2	068	1	0	15	-4.544e-3	1	702.77	1	NC	1
579		5	max	.006	3	.061	3	.006	1	7.996e-3	3		15	NC	1
580			min	002	2	133	1	0	15	-9.289e-3	1	502.558	1	NC	1
581		6	max	.006	3	.094	3	.003	1	1.194e-2	3		15	NC	1
582			min	002	2	196	1	0	15	-1.403e-2	1	393.036	1	NC	1
583		7	max	.006	3	.125	3	0	12	1.588e-2	3		15	NC	1
584			min	002	2	253	1	0	1	-1.878e-2	1	328.761	1	NC	1
585		8	max	.006	3	.152	3	0	15	1.982e-2	3	8777.697	15	NC	1
586			min	002	2	298	1	001	1	-2.352e-2	1	290.905	1	NC	1
587		9	max	.005	3	.169	3	0	1	1.976e-2	3		15	NC	1
588			min	002	2	327	1	0	15	-2.596e-2	1	271.258	1	NC	1
589		10	max	.005	3	.176	3	0	12	1.705e-2	3		15	NC	1
590			min	002	2	336	1	0	1	-2.687e-2	1	265.378	1	NC	1
591		11	max	.005	3	.172	3	0	15	1.434e-2	3		15	NC	1
592			min	002	2	326	1	0	1	-2.778e-2	1	271.61	1	NC	1
593		12	max	.005	3	.157	3	.001	1	1.177e-2	3		15	NC	1
594			min		2	297	1	0	15	-2.627e-2		292.011	1	NC	1
595		13	max	.005	3	.134	3	0	1	9.419e-3	3		15	NC	1
596	_		min	002	2	251	1	0	_	-2.115e-2	1	331.513	1	NC	1
597		14	max	.005	3	.104	3	0		7.069e-3	3		15	NC	1
598			min	002	2	193	1	002	1	-1.602e-2	1	398.983	1	NC	1
599		15	max	.005	3	.071	3	0	15	4.718e-3	3		15	NC	1
600			min	002	2	128	1	006	1	-1.089e-2	1	514.888	1	NC	1
601		16	max	.005	3	.036	3	0	15	2.368e-3	3	NC	5	NC	1
602		1.0	min	002	2	064	1	009	1	-5.76e-3	1	728.903	1	NC	1
603		17	max	.002	3	.003	3	<u>.005</u>	15	1.77e-5	3	NC	5	NC	1
604			min	002	2	004	2	009	1	-6.312e-4	1	1185.025	1	NC	1
605		18	max	.002	3	.047	1	<u>.005</u>	15	3.841e-3	3	NC	4	NC	1
606		1.0	min	002	2	026	3	006	1	-1.035e-2	2	2505.355	1	NC	1
607		19	max	.002	3	.092	1	.000	1	7.807e-3	3	NC	1	NC	1
608		'	min	002	2	054	3	0			2	NC	1	NC	1
000			1111111	.002		.007	J		10	2.07 TO Z		110			

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.