Homework #4

Student name: Clayton Curry

Course: *Abstract Linear Algebra* – Professor: *Dr. Gregory Muller*Due date: *Sep 19*, 2021

1C: 24

A function $f : \mathbb{R} \to \mathbb{R}$ is called even if

$$f(-x) = f(x)$$

for all $x \in \mathbb{R}$. A function $f : \mathbb{R} \to \mathbb{R}$ is called odd if

$$f(-x) = -f(x)$$

for all $x \in \mathbb{R}$.

Let U_e denote the set of real-valued even functions on \mathbb{R} and let U_o denote the set of real-valued odd functions on \mathbb{R} . Show that

$$\mathbb{R}^{\mathbb{R}} = U_e \oplus U_o$$

Answer. If $f \in \mathbb{R}^{\mathbb{R}}$, then

$$f(x) = \frac{f(x) + f(x)}{2} + 0$$

$$= \frac{f(x) + f(x)}{2} + \frac{f(-x) - f(-x)}{2}$$

$$= \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

for all $x \in \mathbb{R}$. Notice,

$$\frac{f(x)+f(-x)}{2}\in U_e$$

and

$$\frac{f(x)-f(-x)}{2}inU_0$$

which implies that f can be uniquely writted as the sum of an even function and an odd function. Since any $f \in \mathbb{R}^{\mathbb{R}}$ can be expressed as a unique sum of an even function and odd function, $\mathbb{R}^{\mathbb{R}}$ is a direct sum of U_{ϱ} and U_{ϱ} .

		2C: 11
Answer.	•	
		3A: 4
Answer.	•	
		3A: 7
Answer.	•	
		3A: 14
Answer.	•	