Relational Algebra

R & G, Chapter 4.2

Relational Query Languages

- · Query languages:
 - manipulation and retrieval of data
 - (what else is there?!)
- · Relational QLs:
 - Strong formal foundation based on logic
 - Simple, powerful
 - Allow for much optimization

Why Bother with Formalism?

- · We already have "physical" dataflow
 - i.e. Iterators
 - e.g. Map and Reduce
 - What more could we want?!
- · Semantic transparency
 - With a small domain-specific language (DSL) for data
 - Enables rich program analysis
- · As we'll see, helps us with optimization
- Also with many other topics we won't cover
 - Data lineage
 - Materialized views
 - Updatable views

Relational Query Languages

Standard viewpoint: QLs != PLs

- Domain-Specific Languages for data processing
- Not Turing complete
- Not intended for complex calculations

Reality in recent years:

- Everything interesting involves a large data set
- QLs (with extensions) are quite powerful
 - A good choice for expressing algorithms at scale
 - An attractive choice for thinking about asynchronous and parallel programming

e.g. rx.codeplex.com, bloom-lang.org

Formal Relational QL's

Relational Algebra:

- Operational
- Useful for representing execution plan semantics

Relational Calculus:

- A Declarative language (Logic!)
- Describe what you want, rather than how to compute it.
- Foundation for SQL

Preliminaries

- · A query is applied to relation instances
- · Result is also a relation instance
 - Schemas of input relations are fixed
 - Schema for query results are also fixed
 - · determined by query language syntax
 - · contrast with MapReduce
- Pure relational algebra has set semantics
 - No duplicate tuples in a relation
 - Vs. SQL, which has multiset semantics

Relational Algebra: 5 Basic Operations

- Selection (σ) Selects a subset of rows (horizontal)
- Projection (π) Retains only desired columns
- Cross-product (x) Allows us to combine two relations.
- Set-difference (-) Tuples in r1, but not in r2.
- Union (∪) Tuples in r1 or in r2.

Since each operation returns a relation, operations can be composed! (Algebra is "closed")

Example Instances R1

<u>sid</u>	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Boats					
<u>bid</u>	bname	color			
101	Interlake	blue			
102	Interlake	red			
103	Clipper	green			
104	Marine	red			

S1	<u>s</u>
	2
	١.

S2

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection (π)

- Examples: $\pi_{\rm age}({\rm S2})$; $\pi_{\rm sname,rating}({\rm S2})$ Retains only attributes in the "projection list"
- Schema of result:
 - the fields in the projection list
 - with the same names that they had in the input relation
- · Projection operator has to eliminate duplicates
- Note: real systems typically don't do duplicate elimination
 - Unless the user explicitly asks for it
- (Why not?)

Projection (π)

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10
-	

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

 $\pi_{\mathit{sname},\mathit{rating}}(\mathit{S2})$

age
35.0
55.5

 $\pi_{age}(S2)$

Selection (σ)

- · Selects rows that satisfy selection condition.
- · Result is a relation with same schema
- · Do we need to do duplicate elimination?

sid	sname	rating	ag	e
28	yuppy	9	35	.0
31	lubber	8	5:	.5
44	guppy	5	3:	0.0
58	rusty	10	3:	0.5
	σ	_(S2	\mathbf{a}	
	ratin	$\alpha \sim 8^{(5)}$	/	

rating>8

rating sname yuppy rusty $\pi_{sname,rating}(\sigma_{rating>8}(S2))$

Union and Set-Difference

- Two input relations, must be *union-compatible*:
 - Same number of fields.
 - "Corresponding" fields have same type.
- · Duplicate elimination required?

Union

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

5	sid	sname	rating	age
2	28	yuppy	9	35.0
1	31	lubber	8	55.5
4	44	guppy	5	35.0
1	58	rusty	10	35.0
-				•

 $S1 \cup S2$

sname

dustin

lubber

rusty

guppy

yuppy

31

58

rating

10

age

45.0

55.5

35.0

35.0 35.0

C	

Set Difference

	<u>sid</u>	sname	rating	age
ſ	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0

sid	sname	rating	age
22	dustin	7	45.0

S1-S2

S1

	sid	sname	rating	age
ſ	28	yuppy	9	35.0
	31	lubber	8	55.5
	44	guppy	5	35.0
Į	58	rusty	10	35.0

S2

<u>sid</u>	sname	rating	age			
28	yuppy	9	35.0			
44	guppy	5	35.0			
S2-S1						

A Note on Set Difference

Most relational algebra operators are monotonic

- Monotonic: As input instances grow, output grows
- I.e. Consider a monotonic query Q(R1, S1, T1, ...) over relation instances
- If R2 \supset R1, then Q(R2, S1, T1, ...) \supseteq Q(R1, S1, T1, ...)

Set Difference is *non-monotonic*

- Example query: S1 R1
- "Grow" R: i.e. choose R2 \supset R1
- If R2 ⊃ R1, then S1 R2 \subseteq S1 R1

One implication: set difference => blocking iterator

- For S R, need to have full contents of R before emitting any results
- All other operators can be implemented in a non-blocking fashion!

Cross-Product

- S1 \times R1: Each row of S1 paired with each row of R1.
- Q: How many rows in the result?
- · Result schema: one field per field of S1 and R1,
 - Field names "inherited" when possible.
 - Naming conflict? S1 and R1 have a field with same name.
 - Can use a $\mathit{renaming}$ operator ρ :

Cross Product Example

	<u>sid</u>	<u>bid</u>	<u>day</u>
ſ	22	101	10/10/96
	58	103	11/12/96

<u>s1d</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

R1

S1

S1 x R1 =

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

Compound Operator: ∩

- In addition to 5 basic operators...
- · Several "Compound Operators"
 - Add no computational power to the language
 - Useful shorthand
 - Can be expressed solely with the basic ops
- · Intersection takes two input relations, which must be union-compatible
- · Q: How to express it using basic operators? $R \cap S = ?$

Compound Operator: ∩

- In addition to 5 basic operators...
- · Several "Compound Operators"
 - Add no computational power to the language
 - Useful shorthand
 - Can be expressed solely with the basic ops.
- · Intersection takes two input relations, which must be union-compatible.
- · Q: How to express it using basic operators? $R \cap S = R - \dots$

Compound Operator: ∩

- · In addition to 5 basic operators...
- Several "Compound Operators"
 - Add no computational power to the language
 - Useful shorthand
 - Can be expressed solely with the basic ops.
- · Intersection takes two input relations, which must be union-compatible.
- Q: How to express it using basic operators? $R \cap S = R - (R - S)$

Intersection

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

<u>sid</u>	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

S2

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Compound Operator: Join

- · Involves cross product & selection
- And sometimes projection (for natural join)
- · Most common type of join: "natural join"
 - R ⋈ S conceptually is:
 - · Compute R x S
 - Select rows where attributes appearing in $both\ relations$ have equal values
 - · Project onto all unique attributes and one copy of each of the common ones.
- · Note: obviously we should use a good join algorithm, not a cross-product!!

Natural Join Example

<u>sid</u>	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96
		•

R1

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

S1

S1 ⋈R1 =

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

Other Types of Joins

Berkeley

Condition Join (or "theta-join"):

$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

S1
$$M_{S1.sid = R1.sid} R1$$

- · Result schema same as that of cross-product
- May have fewer tuples than cross-product
- <u>Equi-Join</u>: Special case: condition c contains only conjunction of equalities

Examples

Reserves

 sid
 bid
 day

 22
 101
 10/10/96

 58
 103
 11/12/96

Sailors

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Boats

<u>bid</u>	bname	color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

Berkele

Find names of sailors who've reserved boat #103

• Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$

• Solution 2: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Berkele

Find names of sailors who've reserved a red boat

Information about boat color only available in Boats; so need an extra join:

 $\pi_{\mathit{sname}}((\sigma_{\mathit{color} = 'red'}^{\mathit{Boats}}) \bowtie \mathsf{Reserves} \bowtie \mathit{Sailors})$

A more efficient solution:

 $\pi_{\mathit{sname}}(\pi_{\mathit{sid}}((\pi_{\mathit{bid}}{}^{o}_{\mathit{color} = '\mathit{red'}}{}^{\mathit{Boats}}) \bowtie \mathsf{Res}) \bowtie \mathit{Sailors})$

Berkeley

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

 $\rho~(\textit{Tempboats}, (\sigma_{color = 'red' \ \lor \ color = 'green'}~\textit{Boats}))$

 π_{sname} (Temphoats \bowtie Reserves \bowtie Sailors)

Berkele

Find sailors who've reserved a red and a green boat

· Cut-and-paste previous slide?

 $\rho (Tempoats, (experiment New Yor='red(New Yor='red(New$

 π_{sname} emphoats \bowtie eserves \bowtie uilors)

Berkele

Find sailors who've reserved a red and a green boat

- · Previous approach won't work!
- Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):

$$\rho~(\textit{Tempred}, \pi_{\textit{sid}}((\sigma_{\textit{color} = '\textit{red}'} \textit{Boats}) \bowtie \mathsf{Reserves}))$$

$$\rho~(\textit{Tempgreen}, \pi_{\textit{sid}}((\sigma_{\textit{color} = '\textit{green}'} \textit{Boats}) \bowtie \mathsf{Reserves}))$$

 $\pi_{\mathit{sname}}((\mathit{Tempred} \cap \mathit{Tempgreen}) \bowtie \mathit{Sailors})$

Summary

- Relational Algebra: a small set of operators mapping relations to relations
 - Operational, in the sense that you specify the explicit order of operations
 - A closed set of operators! Mix and match.
- Basic ops include: σ , π , ×, \cup , -
- Important compound ops: ∩, ⋈