

MULTIVARIATE OPTIMIZATION WITH INEQUALITY CONSTRAINTS

Fundamentals of optimization

Fundamentals of optimization

Multivariate optimization with constraints

General formulation

Multivariate optimization

Necessary condition for $\overline{x^*}$ to be the minimizer

KKT conditions has to be satisfied

Sufficient condition

 $\nabla^2 L(\overline{x^*})$ has to be positive definite

Optimization for data science

Data science for Engineers

Summary - KKT conditions

Multivariate optimization

When both equality and inequality constraints are present, at the optimum we have

KKT (Karush-Kuhn-Tucker) conditions

Summary - KKT conditions

Multivariate optimization

- ➤ In general it is <u>difficult to use the KKT</u> conditions to solve for the optimum of an inequality constrained problem (than for a problem with equality constraints only) because we do not <u>know a priori</u> which constraints are <u>active</u> at the optimum.
- ➤ Makes this a combinatorial problem
- ➤ KKT conditions are used to <u>verify that a point</u> we have reached is a candidate optimal solution.
- > Given a point, it is easy to check which constraints are binding.

Optimization for data science

Data science for Engineers

Fundamentals of optimization

Multivariate optimization-quadratic programming

Optimization for data science

7

Fundamentals of optimization

Multivariate optimization-quadratic programming

Optimization for data science

Data science for Engineers

Fundamentals of optimization

Multivariate optimization-quadratic programming

SI.no		e (A) /Inac constrain (b)		Solution (x,μ)	Possible optima (Y/N)	Remark
1	Α	Α	Α	Infeasible	N	Equations do not have a valid solution.
2	Α	Α	1	x = [3.6364 0.5455] $\mu = [-5.2 -1.45 0]$	N	$x_1 \leq 1$ is not satisfied, $\mu_1 < 0, \mu_2 < 0$
3	Α	1	Α	$ \begin{aligned} x &= [1 & 4.5] \\ \mu &= [-18 & 0 & 50] \end{aligned} $	N	$\mu_1 < 0$
4	1	Α	Α	x = [1 1.6] $\mu = [0 2.56 1.12]$	Υ	All constraints and KKT conditions satisfied
5	Α	J	- 1	x = [3.27 1.09] $\mu = [-4.36 0 0]$	N	$x_1 \le 1$ is not satisfied
6	1	Α	1	x = [1.21 1.51] $\mu = [0 2.45 0]$	N	$x_1 \le 1$ is not satisfied
7	-1	Ī	Α	$ \begin{aligned} x &= \begin{bmatrix} 1 & 0 \end{bmatrix} \\ \mu &= \begin{bmatrix} 0 & 0 & -4 \end{bmatrix} \end{aligned} $	N	$2x_1 + 5x_2 \ge 10$ is not satisfied
8	1	I	1	$ \begin{aligned} x &= \begin{bmatrix} 0 & 0 \\ \mu &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \end{aligned} $	N	$2x_1 + 5x_2 \ge 10$ is not satisfied

Optimization for data science

9

Data science for Engineers

Fundamentals of optimization

☆ Solution for each case★ Actual Optima

