Graph Algorithms: Maximum Flow

Flow Network

- Directed graph G = (V, E) with non-negative edge weights $c : E \rightarrow R$
 - c(u, v): nonnegative *capacity* of an edge $(u, v) \in E$
 - \bullet c(u, v) = 0 if $(u, v) \notin E$
 - s: source of the network
 - t: sink of the network

Flow Network

- A positive flow is a function $f: V \times V \rightarrow R$ s.t.,
 - Capacity constraint:
 - For all $u, v \in V$, $0 \le f(u, v) \le c(u, v)$

■ Flow conservation constraint:

• For all $u \in V$ - $\{s, t\}$, $\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v)$

Flow-in equals flow-out

- Given a flow f, the value of f is
 - $|f| = \sum f(s, u)$: i.e., total flow out of the source
- Maximum-flow problem:
 - Compute a flow of maximum value
- Multiple sources/sinks
 - Convert to single source/sink problem by adding one supersource and one supersink
- Anti-parallel edges or Two-way edges
 - Transform the network into an equivalent one containing no anti-parallel edges by adding a new vertex

- Multiple sources/sinks
 - Convert to single source/sink problem by adding one supersource and one supersink

- Anti-parallel edges or Two-way edges
 - Transform the network into an equivalent one containing no anti-parallel edges by adding a new vertex and two edges having the same capacity as one of the anti-parallel edges.

■ Flow networks without anti-parallel edges are easier to explain and process. It is not surprising if anti-parallel edges are avoided or excluded or disallowed for the sake of simplicity in many situations.

```
FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p

3 do augment flow f along p

4 return f
```

Residual Network

- Given a flow network and a flow, the residual network consists of edges that can admit more network flow.
- G = (V, E): a flow network with source s and sink t
- *f* : a flow in *G*
- The amount of additional network flow from u to v before exceeding the capacity c(u, v) is the residual capacity of (u, v), given by: $c_f(u, v) = c(u, v) f(u, v)$

The residual capacity of the path is 3

Residual Network

- Given a flow f in a network G = (V, E)
 - The residual capacity between $u, v \in V$

$$\bullet \quad c_f(u,v) = c(u,v) - f(u,v)$$

- Residual network $G_f = (V, E_f)$
 - where $E_f = \{(u, v) \in V \times V : c_f(u, v) > 0\}$
- Residual network G_f may also contain edges that are not in G
- Residual capacity, $c_f(u, v)$ is defined by

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (u,v) \notin E \\ 0 & \text{otherwise} \end{cases}$$

Residual Network: Example

Each edge in corresponds to at most two edges in residual network: $|E_f| \le 2|E|$

Residual Network

- A flow in a residual network provides a roadmap for adding flow to the original flow network.
 - If f is a flow in G and f' is a flow in G_f , we define $f \uparrow f'$, the *augmentation* of flow f by f'

$$(f \uparrow f')(u,v) = \begin{cases} f(u,v) + f'(u,v) - f'(v,u) & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

• Pushing flow on the reverse edge in the residual network is known as *cancellation*.

Residual Network

Lemma

- Let G = (V, E) be a flow network with source s and sink t, and let f be a flow in G.
- Let G_f be the residual network of G induced by f, and let f be a flow in G_f . Then the flow sum f+f is a flow in G with value |f+f'| = |f| + |f'|
- f + f': the flow in the same direction will be added. the flow in different directions will be cancelled.

This suggests that we can improve current flow by computing a new flow for its residual network, and add it upon original one

Augmenting Path

- Given a flow f in a flow network G = (V, E), an augmenting path p is a simple path from source s to sink t in the residual network G_f .
- How much extra flow can we push on an augmenting path p?

The maximum amount by which we increase the flow on each edge in an augmenting path p is the *residual capacity* of p, given by

$$c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is on } p\}$$

The residual capacity is 2

Augmenting Path: Example

Lemma: Augmenting -> Flow

Lemma:

Given flow network G, flow f in G, residual network G_f . Let p be an augmenting path in G_f . Define $f_p: V \times V \to \mathbf{R}$:

$$f_p(u, v) = \begin{cases} c_f(p) & \text{if } (u, v) \text{ is on } p, \\ -c_f(p) & \text{if } (v, u) \text{ is on } p, \\ 0 & \text{otherwise}. \end{cases}$$

Then f_p is a flow in G_f with value $|f_p| = c_f(p) > 0$.

Corollary:

Given flow network G, flow f in G, and an augmenting path p in G_f , define f_p as in lemma, and define $f': V \times V \to \mathbf{R}$ by $f' = f + f_p$. Then f' is a flow in G with value $|f'| = |f| + c_f(p) > |f|$.

Cuts of Flow Networks

- A cut (S, T) of flow network G = (V, E)
 - is a partition of V into S and T = V S, s.t. $s \in S$ and $t \in T$
 - The net flow f(S, T) across cut (S, T) is

$$f(S,T) = \sum_{u \in S, v \in T} f(u,v) - \sum_{v \in T, u \in S} f(v,u)$$

■ The capacity c(S, T) of cut (S, T) is

$$c(S,T) = \sum_{u \in S, v \in T} c(u,v)$$

• A minimum-cut is a cut whose capacity is minimum over all cuts

Cuts of Flow Networks

• The net flow across any cut is the same and equal to the flow of the network |f|.

Cuts of Flow Networks

Lemma:

Let f be a flow in a network G with source s and sink t, and let (S, T) be a cut of G. Then the net flow across (S, T) is f(S, T) = |f|.

Corollary:

The value of any flow f in a flow network G is bounded from above by the capacity of any cut of G.

The value of any flow \leq the capacity of any cut

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Max-flow Min-cut Theorem

- If f is a flow in a flow network G = (V, E) with source s and sink t, then the following conditions are equivalent:
 - (1) f is a maximum flow in G
 - (2) The residual network G_f contains no augmenting paths
 - (3) |f| = c(S, T) for some cut (S, T) in G
- Proof:
 - $(1) \Rightarrow (2)$
 - (2) => (3)
 - $(3) \Rightarrow (1)$

The value of Maximum Flow = the Capacity of Minimum Cut

Max-flow Min-cut Theorem

Ford-Fulkerson Algorithm

```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in E[G] do
       f[u, v] = 0
f[v, u] = 0
O(E)
while there exists a path P from s to t in the residual network G_f do
       c_f(P) = \min\{c_f(u, v): (u, v) \text{ is in } P\}
       for each edge (u, v) in P do
          If (u, v) \in E[G]
f[u, v] = f[u, v] + c_f(P)
else f[v, u] = f[v, u] - c_f(P)
```


Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUE [

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Ford-Fulkerson Algorithm: Analysis

- Performance obviously
 - depends on the augmenting paths found at each iteration
- If edge capacities are integers (or, rational numbers [apply an appropriate scaling transformation to make them all integral]):
 - Then the algorithm returns max-flow
 - The algorithm runs in polynomial time
- If edge capacities are irrational numbers:
 - Then the algorithm might not even terminate
 - It need not even converge to the maximum value

Ford-Fulkerson Algorithm: Integral Capacities

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

6 while there exists a path p from s to t in the residual network G_f

5 do c_f(\overline{p}) \leftarrow \min\{c_f(\overline{u}, v) : (\overline{u}, \overline{v}) \text{ is in } \overline{p}\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

If each c(e) is an *integer*, then time complexity is $O(E | f^*|)$, where f^* is the maximum flow found by the algorithm

- Lines 1-3 take O(E) time.
- The while loop of Line 4 is executed at most $|f^*|$ times, since the value of the flow increases by at least 1 at each iteration.
 - Each iteration of the while loop takes O(E) time if either depth-first or breadth-first search is used to find a path in the residual network.
- Therefore, total time = $O(E + E \mid f^* \mid) = O(E \mid f^* \mid)$.

Ford-Fulkerson Algorithm: Integral Capacities

- Ford-Fulkerson algorithm runs in $O(E | f^*|)$ time, where f^* is the maximum flow found by the algorithm
- Not really polynomial in |V| and |E|
 - Depends on $|f^*|$

Edmonds-Karp Algorithm

- A small fix to the Ford-Fulkerson algorithm makes it work in polynomial time.
- Select the augmenting path using **breadth-first search** on residual network.
- The augmenting path p is the shortest path from s to t in the residual network (treating all edge weights as 1).
- Runs in time $O(V E^2)$.

```
FORD-FULKERSON(G, s, t)

1 for each edge (u, v) \in E[G]

2 do f[u, v] \leftarrow 0

3 f[v, u] \leftarrow 0

4 while there exists a path p from s to t in the residual network G_f

5 do c_f(p) \leftarrow \min\{c_f(u, v) : (u, v) \text{ is in } p\}

6 for each edge (u, v) in p

7 do f[u, v] \leftarrow f[u, v] + c_f(p)

8 f[v, u] \leftarrow -f[u, v]
```

Edmonds-Karp Algorithm

- Use the Ford-Fulkerson framework
- Implement the computation of augmenting path
 - by using breadth-first search
 - *i.e*, a shortest-linkage path (in no. of edges) from *s* to *t* in residual network
- Enable us to bound the time complexity
 - Mainly: the number of iterations
- Time complexity of Edmonds-Karp algorithm is $O(VE^2)$
 - The number of iterations is O(VE)
 - \blacksquare Each iteration needs O(E)

Edmonds-Karp Algorithm: Observations

• <u>Lemma</u>: If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then for all vertices $v \in V - \{s, t\}$, the shortest distance $\delta_f(s, v)$ in the residual network G_f increases monotonically with each flow augmentation.

Proof:

• <u>Theorem</u>: If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with source s and sink t, then the total number of flow augmentations performed by the algorithm is O(VE).

Proof:

• Time complexity of Edmonds-Karp algorithm is $O(VE^2)$

An Application of Max Flow:

Maximum Bipartite Matching

Bipartite Graph

A bipartite graph is a graph G = (V, E) in which V can be partitioned into two parts L and R such that every edge in E is between a vertex in L and a vertex in R.

 e.g. vertices in L represent skilled workers and vertices in R represent jobs. An edge connects workers to jobs they can perform.

Matching

- A matching in a simple graph G is a set of edges with no shared endpoints.
- The vertices incident to the edges of a matching M are said to be saturated by M; the others are unsaturated.
- A perfect matching in a graph is a matching that saturates every vertex.
- A maximum matching is a matching of maximum size among all matchings in the graph.

Maximum Matching

• A maximum matching is a matching of maximum cardinality (maximum number of edges).

Maximum Matching

- No matching of cardinality 4, because only one of *v* and *u* can be matched.
- In the workers-jobs example a max-matching provides work for as many people as possible.

Solving the Maximum Bipartite Matching Problem

- Reduce the maximum bipartite matching problem on graph **G** to the max-flow problem on a corresponding flow network **G'**.
- Solve using Ford-Fulkerson algorithm.

Corresponding Flow Network

- To form the corresponding flow network **G'** of the bipartite graph **G**:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.
 - Add a sink vertex t and edges from R to t.
 - Assign a capacity of 1 to all edges.
- Claim: max-flow in G' corresponds to a max-bipartite-matching on G.

Solving Bipartite Matching as Max Flow

Let G = (V, E) be a bipartite graph with vertex partition $V = L \cup R$.

Let G' = (V', E') be its corresponding flow network.

If M is a matching in G,

then there is an integer-valued flow f in G' with value |f| = |M|.

Conversely if f is an integer-valued flow in G',

then there is a matching M in G with cardinality |M| = |f|.

Thus $\max |M| = \max(\text{integer } |f|)$

Example

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Example

Dr. Md. Abul Kashem Mia, Professor, CSE Dept, BUET

Conclusion

- Network flow algorithms allow us to find the maximum bipartite matching fairly easily.
- Similar techniques are applicable in other combinatorial design problems.