```
In [ ]: # core
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import os
        import shutil
        import random
        from time import time
        # images
        from PIL import Image
        from IPython.display import display
        # file download
        from zipfile import ZipFile
        from kaggle.api.kaggle_api_extended import KaggleApi
        # torch
        import torch
        import torch.nn as nn
        import torch.optim as optim
        from torchvision import datasets, models, transforms
        from torch.utils.data import DataLoader
        # sklearn & xgb
        from sklearn.decomposition import PCA
        from sklearn.metrics import classification_report
        from xgboost import XGBClassifier
        # styles
        plt.style.use('dark_background')
        # authentication
        api = KaggleApi()
        api.authenticate()
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
In [ ]: # Hyperparameters
        NUM_EPOCHS = 100
        BATCH SIZE = 32
        OPTIMIZER = optim.Adam
        LEARNING_RATE = 0.001
        DROPOUT = 0.3
```

Load Data

```
# download dataset with Kaggle API
 api.dataset_download_files('puneet6060/intel-image-classification')
 # designate downloaded file as zip, and unzip
 zf = ZipFile('intel-image-classification.zip')
 zf.extractall('data')
 zf.close()
 # delete downloaded zip and extracted csv - keep your directory clean!
 os.remove('intel-image-classification.zip')
 # clean up folder structure
 for subset in ['train', 'test']:
     if not os.path.exists(f'data/{subset}'):
         os.makedirs(f'data/{subset}')
     base_path = f'data/seg_{subset}'
     source_path = f'data/seg_{subset}/seg_{subset}'
     target_path = f'data/{subset}'
     num files = 0
     for folder in os.listdir(source_path):
         shutil.move(os.path.join(source_path, folder), os.path.join(target_path, fo
         num_files += len(os.listdir(os.path.join(target_path, folder)))
     print(f'Number of {subset} files: {num_files}')
     os.rmdir(source_path)
     os.rmdir(base_path)
 num pred files = len(os.listdir('data/seg pred/seg pred'))
 print(f'Number of pred files: {num_pred_files}')
 for img in os.listdir('data/seg_pred/seg_pred'):
     os.remove(f'data/seg_pred/seg_pred/{img}')
 os.rmdir('data/seg_pred/seg_pred')
 os.rmdir('data/seg_pred')
Number of train files: 14034
Number of test files: 3000
Number of pred files: 7301
```

EDA

View Images

```
In [ ]: for label in os.listdir('data/train'):
    display(f'Image Class: {label}')
    for idx in range(3):
        img_filename = os.listdir(f'data/train/{label}')[idx]
        img = Image.open(f'data/train/{label}/{img_filename}')
        display(img)
```

^{&#}x27;Image Class: buildings'

'Image Class: forest

'Image Class: glacier'

'Image Class: mountain'

'Image Class: sea'

'Image Class: street

Distribution Across Classes

```
In [ ]: class_counts = {}
    for folder in os.listdir('data/train'):
        class_path = f'data/train/{folder}'
        if os.path.isdir(class_path):
            class_counts[folder] = len(os.listdir(class_path))

pd.DataFrame(class_counts, index=['count']).transpose().plot(kind='bar')
    plt.title('Number of Images per Class')
    plt.ylabel('Count')
    plt.xlabel('Class')
    plt.xticks(rotation=45)
    plt.legend().remove()
    plt.show()
```


Distribution of Image Size and Quality

```
In []: sizes = []
for folder in os.listdir('data/train'):
    class_path = f'data/train/{folder}'
    for image_name in os.listdir(class_path):
        image_path = os.path.join(class_path, image_name)
        with Image.open(image_path) as img:
```

```
sizes.append(img.size)

sizes = np.array(sizes)
width_vals, width_cts = np.unique(sizes[:, 0], return_counts=True)
height_vals, height_cts = np.unique(sizes[:, 1], return_counts=True)

print(
    f'Widths: {width_vals}'
    f'\nCounts: {width_cts}'
    f'\nNHeights: {height_vals}'
    f'\nCounts: {height_cts}'
)
Widths: [150]
```

Counts: [14034] Heights: [76 81 97 100 102 103 105 108 110 111 113 115 119 120 123 124 131 133 134 135 136 140 141 142 143 144 145 146 147 149 150] 2 Counts: [1 1 1 1 1 1 1 1 3 2 1 2 1 1 1 1 2 1 1 1 2 1 1 13986]

Pixel Intensity Distribution

```
In []: # For a single, random image in each class
fig, axes = plt.subplots(3, 2, figsize=(7,6), layout='constrained')
for folder, ax in zip(os.listdir('data/train'), axes.ravel()):
    class_path = f'data/train/{folder}'
    for image_name in os.listdir(class_path):
        image_path = os.path.join(class_path, image_name)
        with Image.open(image_path) as img:
        img_array = np.array(img)
        ax.hist(img_array.ravel(), bins=256, alpha=0.5, label=f'{folder} (sampl break
    ax.set_title(folder)
```



```
In [ ]: # Aggregated across all images
        fig, axes = plt.subplots(3, 2, figsize=(7, 6), layout='constrained', sharex=True, s
        # Iterate over each class folder
        for folder, ax in zip(os.listdir('data/train'), axes.ravel()):
            class_path = f'data/train/{folder}'
            total_hist = np.zeros(256) # Initialize a histogram to accumulate pixel values
            # Accumulate histogram data from all images in the class folder
            for image_name in os.listdir(class_path):
                image_path = os.path.join(class_path, image_name)
                with Image.open(image_path) as img:
                    img_array = np.array(img)
                    hist, _ = np.histogram(img_array.ravel(), bins=256, range=[0, 256])
                    total_hist += hist # Accumulate the histograms
            # Plot the accumulated histogram
            ax.hist(np.arange(256), weights=total_hist, bins=256, alpha=0.5, label=f'{folde
            ax.set_title(folder)
            ax.legend().remove()
            ax.set_yscale('log')
        plt.show()
```


Distribution Across RGB Color Channels

```
In [ ]: # Set up the plot
        fig, axes = plt.subplots(6, 3, figsize=(10, 13), layout='tight')
        # Set titles for columns
        axes[0, 0].set_title('Red Channel')
        axes[0, 1].set_title('Green Channel')
        axes[0, 2].set_title('Blue Channel')
        # Iterate over each class directory
        for folder, ax_row in zip(os.listdir('data/train'), axes):
            class_path = f'data/train/{folder}'
            colors = []
            # Collect all colors in this class
            for image_name in os.listdir(class_path):
                image_path = os.path.join(class_path, image_name)
                with Image.open(image_path) as img:
                    colors.append(np.mean(np.array(img), axis=(0, 1)))
            colors = np.array(colors)
            # Plot histograms for each color channel
```

```
ax_row[0].hist(colors[:, 0], bins=50, color='red', alpha=0.7)
ax_row[1].hist(colors[:, 1], bins=50, color='green', alpha=0.7)
ax_row[2].hist(colors[:, 2], bins=50, color='blue', alpha=0.7)

# Set class label as the row title
ax_row[0].set_ylabel(f'{folder.title()} Distribution')

plt.tight_layout()
plt.show()
```


Check for Corrupt Images

```
image_path = os.path.join(class_path, image_name)
    with Image.open(image_path) as img:
        img.verify()
    except (IOError, SyntaxError) as e:
        print('Bad file:', image_name)
        bad_files.append(f'{folder}/{image_name}')

print(f'Number of bad files: {len(bad_files)}')
```

Number of bad files: 0

Preprocessing

Carve Out Validation Subset

```
In [ ]: # set up vars
        train_dir = 'data/train'
        val_dir = 'data/val'
        num val samples = 3000
        num_val_samples_per_class = num_val_samples // len(os.listdir(train_dir))
        # create validation folder
        if not os.path.exists(val_dir):
            os.makedirs(val_dir)
        for label in os.listdir(train dir):
            new_label_dir = os.path.join(val_dir, label)
            if not os.path.exists(new_label_dir):
                os.makedirs(new_label_dir)
        print(f'Folders in {val_dir}:', os.listdir(val_dir))
        # move random train images to validation
        for label in os.listdir(train_dir):
            train_label_dir = os.path.join(train_dir, label)
            val_label_dir = os.path.join(val_dir, label)
            imgs = os.listdir(train label dir)
            random.shuffle(imgs)
            for img in imgs[:num_val_samples_per_class]:
                source_path = os.path.join(train_label_dir, img)
                target_path = os.path.join(val_label_dir, img)
                shutil.move(source_path, target_path)
        for subset in ['train', 'val', 'test']:
            num files = 0
            for folder in os.listdir(f'data/{subset}'):
                num_files += len(os.listdir(f'data/{subset}/{folder}'))
            print(f'Number of {subset} files: {num_files}')
```

```
Folders in data/val: ['buildings', 'forest', 'glacier', 'mountain', 'sea', 'street']
Number of train files: 11034
Number of val files: 3000
Number of test files: 3000
```

Preprocess for ResNet

```
In [ ]: data transforms = {
            'train': transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            'val': transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            'test': transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ]),
        }
        image_datasets = {
            x: datasets.ImageFolder(os.path.join('data', x), data_transforms[x])
            for x in ['train', 'val', 'test']
        }
        dataloaders = {
            x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4)
            for x in ['train', 'val', 'test']
        }
        dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val', 'test']}
        class_names = image_datasets['train'].classes
        print(
            f'Class names: {class_names}'
            f'\nDataset sizes: {dataset_sizes}'
```

Class names: ['buildings', 'forest', 'glacier', 'mountain', 'sea', 'street']
Dataset sizes: {'train': 11034, 'val': 3000, 'test': 3000}

Create Flat, Tabular Data for XGB Benchmark

```
In [ ]: tabular_datasets = {}
    means = np.array([0.485, 0.456, 0.406])
    stds = np.array([0.229, 0.224, 0.225])
```

```
for subset in ['train', 'val', 'test']:
     features = []
     labels = []
     for inputs, classes in dataloaders[subset]:
         for i in range(inputs.shape[0]):
             # Convert tensor to numpy array
             normalized_image = inputs[i].numpy()
             # Denormalize
             denorm_image = normalized_image * stds[:, None, None] + means[:, None,
             # Flatten and convert to 1D
             flat_image = denorm_image.transpose(1, 2, 0).reshape(-1)
             features.append(flat_image)
             labels.append(classes[i].item())
     # Add to dict
     tabular_datasets.update({subset: (np.array(features), np.array(labels))})
 print(
     f'Train features shape: {tabular_datasets["train"][0].shape}\n'
     f'Train labels shape: {tabular_datasets["train"][1].shape}\n'
     f'Val features shape: {tabular_datasets["val"][0].shape}\n'
     f'Val labels shape: {tabular_datasets["val"][1].shape}\n'
     f'Test features shape: {tabular_datasets["test"][0].shape}\n'
     f'Test labels shape: {tabular_datasets["test"][1].shape}'
 )
Train features shape: (11034, 150528)
```

Train features shape: (11034, 150528)
Train labels shape: (11034,)
Val features shape: (3000, 150528)
Val labels shape: (3000,)
Test features shape: (3000, 150528)
Test labels shape: (3000,)

Generate PCA features

Train PCA shape: (11034, 1000) Val PCA shape: (3000, 1000) Test PCA shape: (3000, 1000)

Benchmark XGBoost Training

```
In []: # Set up pca data
    X_train_pca, y_train = pca_datasets['train']
    X_val_pca, y_val = pca_datasets['val']

# Train the model
    xgb_pca = XGBClassifier(tree_method='hist', device='cuda', objective='multi:softpro
    xgb_pca.fit(X_train_pca, y_train)

# Evaluate the model on validation set
    y_pred_pca = xgb_pca.predict(X_val_pca)
    print(classification_report(y_val, y_pred_pca, target_names=class_names))
```

	precision	recall	f1-score	support
h	0.10	0.27	0.22	F00
buildings	0.19	0.27	0.22	500
forest	0.04	0.03	0.03	500
glacier	0.19	0.22	0.21	500
mountain	0.41	0.39	0.40	500
sea	0.32	0.15	0.21	500
street	0.20	0.24	0.22	500
accuracy			0.22	3000
macro avg	0.22	0.22	0.21	3000
weighted avg	0.22	0.22	0.21	3000

ResNet-50 Setup and Baseline Training

```
In [ ]: model = models.resnet50(weights='IMAGENET1K_V1')
    model
```

```
Out[]: ResNet(
           (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=F
           (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats
        =True)
           (relu): ReLU(inplace=True)
           (maxpool): MaxPool2d(kernel size=3, stride=2, padding=1, dilation=1, ceil mode=F
         alse)
           (layer1): Sequential(
             (0): Bottleneck(
               (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_s
        tats=True)
               (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), b
        ias=False)
               (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running s
        tats=True)
               (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
         stats=True)
               (relu): ReLU(inplace=True)
               (downsample): Sequential(
                 (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
                 (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
         stats=True)
               )
             )
             (1): Bottleneck(
               (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running s
        tats=True)
               (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), b
        ias=False)
               (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_s
        tats=True)
               (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
         stats=True)
               (relu): ReLU(inplace=True)
             (2): Bottleneck(
               (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_s
        tats=True)
               (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), b
        ias=False)
               (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track running s
               (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
         stats=True)
               (relu): ReLU(inplace=True)
             )
           (layer2): Sequential(
             (0): Bottleneck(
```

```
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv3): Conv2d(128, 512, kernel size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (relu): ReLU(inplace=True)
    (2): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (relu): ReLU(inplace=True)
    (3): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (relu): ReLU(inplace=True)
```

```
(layer3): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running
_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running
_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running
_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running
stats=True)
      (relu): ReLU(inplace=True)
    (3): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running
```

```
_stats=True)
      (relu): ReLU(inplace=True)
    (4): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (relu): ReLU(inplace=True)
    )
    (5): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track running
_stats=True)
      (relu): ReLU(inplace=True)
    )
  (layer4): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running
_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running
stats=True)
      )
    (1): Bottleneck(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_
stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running
```

```
stats=True)
               (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track running
        stats=True)
               (relu): ReLU(inplace=True)
             (2): Bottleneck(
               (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
               (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running
         stats=True)
               (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
        bias=False)
               (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track running
         stats=True)
               (conv3): Conv2d(512, 2048, kernel size=(1, 1), stride=(1, 1), bias=False)
               (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running
        _stats=True)
               (relu): ReLU(inplace=True)
             )
           )
           (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
           (fc): Linear(in_features=2048, out_features=1000, bias=True)
         )
In [ ]: # Freeze all the parameters in the network
        for param in model.parameters():
            param.requires_grad = False
        # Replace the last fully connected layer with a new one with 6 output classes
        num_ftrs = model.fc.in_features
        model.fc = nn.Linear(num_ftrs, 6)
        model.fc
Out[ ]: Linear(in_features=2048, out_features=6, bias=True)
In [ ]: # Transfer the model to GPU if available
        model = model.to(device)
        # Define loss function and optimizer
        criterion = nn.CrossEntropyLoss()
        optimizer = OPTIMIZER(model.fc.parameters(), lr=LEARNING_RATE)
        # Set up variables
        train losses = []
        val_losses = []
        train_accuracies = []
        val_accuracies = []
        start = time()
        # Train model
        for epoch in range(NUM_EPOCHS):
            if epoch % (NUM_EPOCHS // 10) == 0 or epoch == NUM_EPOCHS - 1:
                print(f'\nEpoch {epoch + 1}/{NUM_EPOCHS} - Time Elapsed: {(time() - start)
```

```
# Repeat for training and validation
   for phase in ['train', 'val']:
       # Set model to training mode or evaluation mode
        if phase == 'train':
            model.train()
        else:
            model.eval()
        running loss = 0.0
        running_corrects = 0
        # Iterate over data.
        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Zero the parameter gradients
            optimizer.zero_grad()
            # Forward
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
               loss = criterion(outputs, labels)
                # Backward + optimize only if in training phase
                if phase == 'train':
                    loss.backward()
                    optimizer.step()
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]
        if phase == 'train':
            train_losses.append(epoch_loss)
            train_accuracies.append(epoch_acc)
        else:
            val_losses.append(epoch_loss)
            val_accuracies.append(epoch_acc)
        if epoch % (NUM_EPOCHS // 10) == 0 or epoch == NUM_EPOCHS - 1:
            print(f'{phase.title()} Loss: {epoch_loss:.4f} - Accuracy: {epoch_acc:.
torch.save(model, 'models/baseline_model.pt')
```

Epoch 1/100 - Time Elapsed: 0.00 minutes Train Loss: 0.5641 - Accuracy: 0.7984 Val Loss: 0.3141 - Accuracy: 0.8890 Epoch 11/100 - Time Elapsed: 4.79 minutes Train Loss: 0.3657 - Accuracy: 0.8624 Val Loss: 0.2416 - Accuracy: 0.9133 Epoch 21/100 - Time Elapsed: 9.40 minutes Train Loss: 0.3636 - Accuracy: 0.8625 Val Loss: 0.2694 - Accuracy: 0.9020 Epoch 31/100 - Time Elapsed: 14.01 minutes Train Loss: 0.3659 - Accuracy: 0.8654 Val Loss: 0.2350 - Accuracy: 0.9203 Epoch 41/100 - Time Elapsed: 18.56 minutes Train Loss: 0.3466 - Accuracy: 0.8711 Val Loss: 0.2933 - Accuracy: 0.8930 Epoch 51/100 - Time Elapsed: 23.09 minutes Train Loss: 0.3493 - Accuracy: 0.8686 Val Loss: 0.2574 - Accuracy: 0.9100 Epoch 61/100 - Time Elapsed: 27.62 minutes Train Loss: 0.3224 - Accuracy: 0.8813 Val Loss: 0.2486 - Accuracy: 0.9130 Epoch 71/100 - Time Elapsed: 32.16 minutes Train Loss: 0.3363 - Accuracy: 0.8756 Val Loss: 0.2755 - Accuracy: 0.9007 Epoch 81/100 - Time Elapsed: 36.70 minutes Train Loss: 0.3377 - Accuracy: 0.8718 Val Loss: 0.2684 - Accuracy: 0.9113 Epoch 91/100 - Time Elapsed: 41.24 minutes Train Loss: 0.3312 - Accuracy: 0.8726 Val Loss: 0.2311 - Accuracy: 0.9163

Epoch 100/100 - Time Elapsed: 45.32 minutes

Train Loss: 0.3264 - Accuracy: 0.8799 Val Loss: 0.2364 - Accuracy: 0.9187

View Loss Over Epochs

```
In []: fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].plot(train_losses, label='Train')
axes[0].plot(val_losses, label='Validation')
axes[0].set_title('Loss')
axes[0].legend()

axes[1].plot([x.detach().cpu().numpy() for x in train_accuracies], label='Train')
axes[1].plot([x.detach().cpu().numpy() for x in val_accuracies], label='Validation'
axes[1].set_title('Accuracy')
axes[1].legend()

plt.show()
```


Error Analysis

Classification Report - Training Data

```
In []: # Set up variables
    true_labels = []
    pred_labels = []

# Loop through validation set
    for inputs, labels in dataloaders['train']:
        inputs = inputs.to(device)
        labels = labels.to(device)

# Generate predictions
with torch.no_grad():
        outputs = model(inputs)
        _, preds = torch.max(outputs, 1)
        # Store true and predicted Labels
        true_labels.extend(labels.cpu().numpy())
```

1691
44
1771
1904
2012
1774
1882
11034
11034
11034

Classification Report - Validation Data

```
In [ ]: # Set up variables
        true_labels = []
        pred_labels = []
        # Loop through validation set
        for inputs, labels in dataloaders['val']:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Generate predictions
            with torch.no_grad():
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                # Store true and predicted labels
                true_labels.extend(labels.cpu().numpy())
                pred_labels.extend(preds.cpu().numpy())
        # Convert to numpy arrays
        true_labels = np.array(true_labels)
        pred_labels = np.array(pred_labels)
        # Log classification report
        class_report = classification_report(true_labels, pred_labels, target_names=class_n
        class_report = pd.DataFrame(class_report).transpose()
        class_report.to_csv('logs/class_report_baseline.csv')
        # Print string version
        print(classification_report(true_labels, pred_labels, target_names=class_names))
```

	precision	recall	f1-score	support
buildings	0.93	0.93	0.93	500
forest	1.00	0.98	0.99	500
glacier	0.82	0.90	0.86	500
mountain	0.88	0.84	0.86	500
sea	0.97	0.93	0.95	500
street	0.92	0.94	0.93	500
accuracy			0.92	3000
macro avg	0.92	0.92	0.92	3000
weighted avg	0.92	0.92	0.92	3000

```
In []:
    error_df = pd.DataFrame({'true_label': true_labels, 'pred_label': pred_labels})
    error_df = error_df[true_labels != pred_labels].reset_index(drop=True)
    error_df.true_label = error_df.apply(lambda row: class_names[row['true_label']], ax
    error_df.pred_label = error_df.apply(lambda row: class_names[row['pred_label']], ax

fig, axes = plt.subplots(2, 3, figsize=(10, 6), layout='constrained')
    for label, ax in zip(class_names, axes.ravel()):
        label_df = error_df[error_df.true_label == label]
        ax.bar(label_df.pred_label.value_counts().index, label_df.pred_label.value_countax.set_title(label.title())
        ax.set_xlabel('Predicted_Label')
        ax.set_ylabel('Count')
    plt.show()
```


Add Dropout

Re-run Training

```
In [ ]: # Transfer the model to GPU if available
        model = model.to(device)
        # Define loss function and optimizer
        criterion = nn.CrossEntropyLoss()
        optimizer = OPTIMIZER(model.fc.parameters(), lr=LEARNING_RATE)
        # Set up variables
        train_losses = []
        val_losses = []
        train_accuracies = []
        val_accuracies = []
        start = time()
        # Train model
        for epoch in range(NUM_EPOCHS):
            if epoch % (NUM_EPOCHS // 10) == 0 or epoch == NUM_EPOCHS - 1:
                print(f'\nEpoch {epoch + 1}/{NUM_EPOCHS} - Time Elapsed: {(time() - start)
            # Repeat for training and validation
            for phase in ['train', 'val']:
                # Set model to training mode or evaluation mode
                if phase == 'train':
                    model.train()
                else:
                    model.eval()
                running_loss = 0.0
                running_corrects = 0
                # Iterate over data.
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)
                    # Zero the parameter gradients
                    optimizer.zero_grad()
                    # Forward
                    with torch.set_grad_enabled(phase == 'train'):
                         outputs = model(inputs)
```

```
_, preds = torch.max(outputs, 1)
               loss = criterion(outputs, labels)
                # Backward + optimize only if in training phase
               if phase == 'train':
                   loss.backward()
                   optimizer.step()
           running_loss += loss.item() * inputs.size(0)
           running_corrects += torch.sum(preds == labels.data)
        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]
       if phase == 'train':
           train_losses.append(epoch_loss)
           train_accuracies.append(epoch_acc)
        else:
           val_losses.append(epoch_loss)
           val_accuracies.append(epoch_acc)
        if epoch % (NUM_EPOCHS // 10) == 0 or epoch == NUM_EPOCHS - 1:
           print(f'{phase.title()} Loss: {epoch_loss:.4f} - Accuracy: {epoch_acc:.
torch.save(model, 'models/dropout_model.pt')
```

Epoch 1/100 - Time Elapsed: 0.00 minutes

Train Loss: 0.5871 - Accuracy: 0.7895 Val Loss: 0.3081 - Accuracy: 0.8893

Epoch 11/100 - Time Elapsed: 4.52 minutes

Train Loss: 0.4366 - Accuracy: 0.8357 Val Loss: 0.2752 - Accuracy: 0.9020

Epoch 21/100 - Time Elapsed: 9.05 minutes

Train Loss: 0.4212 - Accuracy: 0.8430 Val Loss: 0.2657 - Accuracy: 0.9023

Epoch 31/100 - Time Elapsed: 13.60 minutes

Train Loss: 0.4317 - Accuracy: 0.8409 Val Loss: 0.2539 - Accuracy: 0.9117

Epoch 41/100 - Time Elapsed: 18.16 minutes

Train Loss: 0.4297 - Accuracy: 0.8435 Val Loss: 0.2519 - Accuracy: 0.9100

Epoch 51/100 - Time Elapsed: 22.70 minutes

Train Loss: 0.4283 - Accuracy: 0.8422 Val Loss: 0.2663 - Accuracy: 0.9053

Epoch 61/100 - Time Elapsed: 27.25 minutes

Train Loss: 0.4180 - Accuracy: 0.8465 Val Loss: 0.2487 - Accuracy: 0.9133

Epoch 71/100 - Time Elapsed: 31.80 minutes

Train Loss: 0.4425 - Accuracy: 0.8386 Val Loss: 0.2605 - Accuracy: 0.9037

Epoch 81/100 - Time Elapsed: 36.35 minutes

Train Loss: 0.4251 - Accuracy: 0.8431 Val Loss: 0.2395 - Accuracy: 0.9137

Epoch 91/100 - Time Elapsed: 40.90 minutes

Train Loss: 0.4470 - Accuracy: 0.8359 Val Loss: 0.2615 - Accuracy: 0.9063

Epoch 100/100 - Time Elapsed: 44.99 minutes

Train Loss: 0.4416 - Accuracy: 0.8428 Val Loss: 0.2428 - Accuracy: 0.9153

```
In []: # Plot Losses and accuracies
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].plot(train_losses, label='Train')
axes[0].plot(val_losses, label='Validation')
axes[0].set_title('Loss')
axes[0].legend()

axes[1].plot([x.detach().cpu().numpy() for x in train_accuracies], label='Train')
axes[1].plot([x.detach().cpu().numpy() for x in val_accuracies], label='Validation'
axes[1].set_title('Accuracy')
axes[1].legend()

plt.show()
```



```
In [ ]: # Set up variables
        true_labels = []
        pred_labels = []
        # Loop through validation set
        for inputs, labels in dataloaders['val']:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Generate predictions
            with torch.no_grad():
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                # Store true and predicted labels
                true_labels.extend(labels.cpu().numpy())
                pred_labels.extend(preds.cpu().numpy())
        # Convert to numpy arrays
        true_labels = np.array(true_labels)
        pred_labels = np.array(pred_labels)
```

```
# Log classification report
class_report = classification_report(true_labels, pred_labels, target_names=class_n
class_report = pd.DataFrame(class_report).transpose()
class_report.to_csv('logs/class_report_dropout.csv')

# Print string version
print(classification_report(true_labels, pred_labels, target_names=class_names))
```

	precision	recall	f1-score	support
buildings	0.91	0.94	0.92	500
forest	0.99	0.98	0.99	500
glacier	0.87	0.82	0.85	500
mountain	0.83	0.87	0.85	500
sea	0.95	0.97	0.96	500
street	0.93	0.91	0.92	500
accuracy			0.92	3000
macro avg	0.92	0.92	0.92	3000
weighted avg	0.92	0.92	0.92	3000

Add More Data Augmentations

```
In [ ]: data_transforms = {
            'train': transforms.Compose([
                # Original transforms
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                # Additional transforms
                transforms.RandomRotation(15),
                transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.
                # Conversion and normalization
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            'val': transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
             'test': transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
            ]),
        image_datasets = {
            x: datasets.ImageFolder(os.path.join('data', x), data_transforms[x])
            for x in ['train', 'val', 'test']
```

```
dataloaders = {
    x: DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4)
    for x in ['train', 'val', 'test']
}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val', 'test']}
class_names = image_datasets['train'].classes
print(
    f'Class names: {class_names}'
    f'\nDataset sizes: {dataset_sizes}'
)
```

Class names: ['buildings', 'forest', 'glacier', 'mountain', 'sea', 'street']
Dataset sizes: {'train': 11034, 'val': 3000, 'test': 3000}

Re-run model training

```
In [ ]: # Re-instantiate model (without dropout)
        model = models.resnet50(weights='IMAGENET1K_V1')
        # Freeze all the parameters in the network
        for param in model.parameters():
            param.requires_grad = False
        # Replace the last fully connected layer with a new one with 6 output classes
        num_ftrs = model.fc.in_features
        model.fc = nn.Linear(num_ftrs, 6)
        # Move to GPU
        model = model.to(device)
        # Define loss function and optimizer
        criterion = nn.CrossEntropyLoss()
        optimizer = OPTIMIZER(model.fc.parameters(), lr=LEARNING_RATE)
        # Set up variables
        train_losses = []
        val_losses = []
        train_accuracies = []
        val_accuracies = []
        start = time()
        # Train model
        for epoch in range(NUM_EPOCHS):
            if epoch % (NUM_EPOCHS // 10) == 0 or epoch == NUM_EPOCHS - 1:
                print(f'\nEpoch {epoch + 1}/{NUM_EPOCHS} - Time Elapsed: {(time() - start)
            # Repeat for training and validation
            for phase in ['train', 'val']:
                # Set model to training mode or evaluation mode
                if phase == 'train':
```

```
model.train()
        else:
            model.eval()
        running_loss = 0.0
        running_corrects = 0
       # Iterate over data.
        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Zero the parameter gradients
            optimizer.zero_grad()
            # Forward
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)
                # Backward + optimize only if in training phase
                if phase == 'train':
                    loss.backward()
                    optimizer.step()
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]
        if phase == 'train':
            train_losses.append(epoch_loss)
            train_accuracies.append(epoch_acc)
        else:
            val_losses.append(epoch_loss)
            val_accuracies.append(epoch_acc)
        if epoch % (NUM_EPOCHS // 10) == 0 or epoch == NUM_EPOCHS - 1:
            print(f'{phase.title()} Loss: {epoch_loss:.4f} - Accuracy: {epoch_acc:.
torch.save(model, 'models/augments_model.pt')
```

Epoch 1/100 - Time Elapsed: 0.00 minutes

Train Loss: 0.7106 - Accuracy: 0.7390 Val Loss: 0.3684 - Accuracy: 0.8663

Epoch 11/100 - Time Elapsed: 5.21 minutes

Train Loss: 0.4842 - Accuracy: 0.8186 Val Loss: 0.2910 - Accuracy: 0.8933

Epoch 21/100 - Time Elapsed: 10.39 minutes

Train Loss: 0.4752 - Accuracy: 0.8264 Val Loss: 0.2722 - Accuracy: 0.9000

Epoch 31/100 - Time Elapsed: 15.59 minutes

Train Loss: 0.4551 - Accuracy: 0.8315 Val Loss: 0.2663 - Accuracy: 0.9013

Epoch 41/100 - Time Elapsed: 20.79 minutes

Train Loss: 0.4570 - Accuracy: 0.8281 Val Loss: 0.2576 - Accuracy: 0.9050

Epoch 51/100 - Time Elapsed: 25.99 minutes

Train Loss: 0.4629 - Accuracy: 0.8303 Val Loss: 0.2796 - Accuracy: 0.8907

Epoch 61/100 - Time Elapsed: 31.19 minutes

Train Loss: 0.4491 - Accuracy: 0.8306 Val Loss: 0.2640 - Accuracy: 0.9020

Epoch 71/100 - Time Elapsed: 36.39 minutes

Train Loss: 0.4305 - Accuracy: 0.8392 Val Loss: 0.2548 - Accuracy: 0.9093

Epoch 81/100 - Time Elapsed: 41.60 minutes

Train Loss: 0.4309 - Accuracy: 0.8360 Val Loss: 0.2594 - Accuracy: 0.9053

Epoch 91/100 - Time Elapsed: 46.80 minutes

Train Loss: 0.4373 - Accuracy: 0.8368 Val Loss: 0.2905 - Accuracy: 0.9003

Epoch 100/100 - Time Elapsed: 51.49 minutes

Train Loss: 0.4411 - Accuracy: 0.8370 Val Loss: 0.2772 - Accuracy: 0.8957

```
In []: # Plot Losses and accuracies
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].plot(train_losses, label='Train')
axes[0].plot(val_losses, label='Validation')
axes[0].set_title('Loss')
axes[0].legend()

axes[1].plot([x.detach().cpu().numpy() for x in train_accuracies], label='Train')
axes[1].plot([x.detach().cpu().numpy() for x in val_accuracies], label='Validation'
axes[1].set_title('Accuracy')
axes[1].legend()

plt.show()
```



```
In [ ]: # Set up variables
        true_labels = []
        pred_labels = []
        # Loop through validation set
        for inputs, labels in dataloaders['val']:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Generate predictions
            with torch.no_grad():
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                # Store true and predicted labels
                true_labels.extend(labels.cpu().numpy())
                pred_labels.extend(preds.cpu().numpy())
        # Convert to numpy arrays
        true_labels = np.array(true_labels)
        pred_labels = np.array(pred_labels)
```

```
# Log classification report
class_report = classification_report(true_labels, pred_labels, target_names=class_n
class_report = pd.DataFrame(class_report).transpose()
class_report.to_csv('logs/class_report_augments.csv')

# Print string version
print(classification_report(true_labels, pred_labels, target_names=class_names))
```

	precision		f1-score	support
buildings	0.91	0.90	0.90	500
forest	1.00	0.97	0.98	500
glacier	0.78	0.90	0.84	500
mountain	0.89	0.72	0.80	500
sea	0.92	0.97	0.94	500
street	0.89	0.92	0.91	500
accuracy			0.90	3000
macro avg	0.90	0.90	0.89	3000
weighted avg	0.90	0.90	0.89	3000

Unfreeze Additional Layers

```
In [ ]: # View model Layers
        for name, _ in model.named_children():
            print(name)
       conv1
       bn1
       relu
       maxpool
       layer1
       layer2
       layer3
       layer4
       avgpool
       fc
In [ ]: # Unfreeze Layers 3 and 4
        for name, child in model.named_children():
            if name in ['layer3', 'layer4', 'fc']:
                for param in child.parameters():
                    param.requires_grad = True
            else:
                for param in child.parameters():
                    param.requires_grad = False
        # Check the requires_grad attribute for each parameter layer
        for name, child in model.named_children():
            counter = 0
            for param in child.parameters():
                 if param.requires grad:
                    counter += 1
```

```
if counter == len(list(child.parameters())):
         print(f'{name}: unfrozen')
     elif counter == 0:
         print(f'{name}: frozen')
     else:
         print(f'{name}: partially frozen - {counter} of {len(list(child.parameters(
conv1: frozen
bn1: frozen
relu: unfrozen
maxpool: unfrozen
layer1: frozen
layer2: frozen
layer3: unfrozen
layer4: unfrozen
avgpool: unfrozen
fc: unfrozen
 NOTE: the relu, maxpool and avgpool layers all have zero trainable parameters, so
 therefore appear as frozen.
```

Re-run model training

```
In [ ]: # Transfer the model to GPU
        model = model.to(device)
        # Define loss function and optimizer
        criterion = nn.CrossEntropyLoss()
        optimizer = OPTIMIZER(model.fc.parameters(), lr=LEARNING_RATE)
        # Set up variables
        train_losses = []
        val_losses = []
        train_accuracies = []
        val_accuracies = []
        start = time()
        # Train model
        for epoch in range(NUM_EPOCHS):
            if epoch % (NUM EPOCHS // 10) == 0 or epoch == NUM EPOCHS - 1:
                print(f'\nEpoch {epoch + 1}/{NUM_EPOCHS} - Time Elapsed: {(time() - start)
            # Repeat for training and validation
            for phase in ['train', 'val']:
                # Set model to training mode or evaluation mode
                if phase == 'train':
                    model.train()
                else:
                    model.eval()
                running_loss = 0.0
                running_corrects = 0
                # Iterate over data.
```

```
for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Zero the parameter gradients
            optimizer.zero_grad()
            # Forward
            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
               loss = criterion(outputs, labels)
                # Backward + optimize only if in training phase
                if phase == 'train':
                   loss.backward()
                    optimizer.step()
            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)
        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]
        if phase == 'train':
            train_losses.append(epoch_loss)
            train_accuracies.append(epoch_acc)
        else:
            val_losses.append(epoch_loss)
            val_accuracies.append(epoch_acc)
        if epoch % (NUM_EPOCHS // 10) == 0 or epoch == NUM_EPOCHS - 1:
            print(f'{phase.title()} Loss: {epoch_loss:.4f} - Accuracy: {epoch_acc:.
torch.save(model, 'models/unfrozen_model.pt')
```

Epoch 1/100 - Time Elapsed: 0.00 minutes

Train Loss: 0.4338 - Accuracy: 0.8399 Val Loss: 0.3258 - Accuracy: 0.8867

Epoch 11/100 - Time Elapsed: 5.42 minutes

Train Loss: 0.4275 - Accuracy: 0.8442 Val Loss: 0.3018 - Accuracy: 0.8957

Epoch 21/100 - Time Elapsed: 10.86 minutes

Train Loss: 0.4378 - Accuracy: 0.8402 Val Loss: 0.2812 - Accuracy: 0.9017

Epoch 31/100 - Time Elapsed: 16.27 minutes

Train Loss: 0.4320 - Accuracy: 0.8424 Val Loss: 0.3318 - Accuracy: 0.8747

Epoch 41/100 - Time Elapsed: 21.69 minutes

Train Loss: 0.4231 - Accuracy: 0.8457 Val Loss: 0.2550 - Accuracy: 0.9093

Epoch 51/100 - Time Elapsed: 27.11 minutes

Train Loss: 0.4182 - Accuracy: 0.8467 Val Loss: 0.2764 - Accuracy: 0.9000

Epoch 61/100 - Time Elapsed: 32.58 minutes

Train Loss: 0.4360 - Accuracy: 0.8392 Val Loss: 0.2667 - Accuracy: 0.9073

Epoch 71/100 - Time Elapsed: 38.01 minutes

Train Loss: 0.4263 - Accuracy: 0.8429 Val Loss: 0.2543 - Accuracy: 0.9087

Epoch 81/100 - Time Elapsed: 43.45 minutes

Train Loss: 0.4126 - Accuracy: 0.8480 Val Loss: 0.2480 - Accuracy: 0.9100

Epoch 91/100 - Time Elapsed: 48.88 minutes

Train Loss: 0.4273 - Accuracy: 0.8380 Val Loss: 0.2606 - Accuracy: 0.9093

Epoch 100/100 - Time Elapsed: 53.79 minutes

Train Loss: 0.4150 - Accuracy: 0.8480 Val Loss: 0.2693 - Accuracy: 0.9030

```
In []: # Plot Losses and accuracies
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].plot(train_losses, label='Train')
axes[0].plot(val_losses, label='Validation')
axes[0].set_title('Loss')
axes[0].legend()

axes[1].plot([x.detach().cpu().numpy() for x in train_accuracies], label='Train')
axes[1].plot([x.detach().cpu().numpy() for x in val_accuracies], label='Validation'
axes[1].set_title('Accuracy')
axes[1].legend()

plt.show()
```



```
In [ ]: # Set up variables
        true_labels = []
        pred_labels = []
        # Loop through validation set
        for inputs, labels in dataloaders['val']:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Generate predictions
            with torch.no_grad():
                 outputs = model(inputs)
                 _, preds = torch.max(outputs, 1)
                # Store true and predicted labels
                true_labels.extend(labels.cpu().numpy())
                 pred_labels.extend(preds.cpu().numpy())
        # Convert to numpy arrays
        true_labels = np.array(true_labels)
        pred_labels = np.array(pred_labels)
```

```
# Log classification report
class_report = classification_report(true_labels, pred_labels, target_names=class_n
class_report = pd.DataFrame(class_report).transpose()
class_report.to_csv('logs/class_report_unfrozen.csv')

# Print string version
print(classification_report(true_labels, pred_labels, target_names=class_names))
```

	precision		f1-score	support
buildings	0.95	0.85	0.90	500
forest	0.99	0.97	0.98	500
glacier	0.90	0.78	0.84	500
mountain	0.82	0.88	0.85	500
sea	0.90	0.98	0.94	500
street	0.88	0.95	0.91	500
accuracy			0.90	3000
macro avg	0.91	0.90	0.90	3000
weighted avg	0.91	0.90	0.90	3000

Final Model Evaluation

```
In [ ]: # Load Best Model - BASELINE
        model = torch.load('models/baseline_model.pt')
        # Save model
        torch.save(model, 'models/final_model.pt')
        # Set up variables
        true_labels = []
        pred_labels = []
        # Loop through validation set
        for inputs, labels in dataloaders['test']:
            inputs = inputs.to(device)
            labels = labels.to(device)
            # Generate predictions
            with torch.no_grad():
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                # Store true and predicted labels
                true_labels.extend(labels.cpu().numpy())
                pred_labels.extend(preds.cpu().numpy())
        # Convert to numpy arrays
        true_labels = np.array(true_labels)
        pred_labels = np.array(pred_labels)
        # Log classification report
        class_report = classification_report(true_labels, pred_labels, target_names=class_n
```

```
class_report = pd.DataFrame(class_report).transpose()
class_report.to_csv('logs/class_report_final.csv')

# Print string version
print(classification_report(true_labels, pred_labels, target_names=class_names))
```

	precision		precision recall f1-score		support
buildings	0.94	0.92	0.93	437	
forest	1.00	0.98	0.99	474	
glacier	0.83	0.89	0.86	553	
mountain	0.89	0.83	0.86	525	
sea	0.96	0.95	0.96	510	
street	0.93	0.95	0.94	501	
accuracy			0.92	3000	
macro avg	0.92	0.92	0.92	3000	
weighted avg	0.92	0.92	0.92	3000	

Compare All Model Results

```
In [ ]: # Create results dataframe
        results_df = pd.DataFrame()
        # Loop through model results
        for model_type in ['baseline', 'dropout', 'augments', 'unfrozen', 'final']:
            error_df = pd.read_csv(f'logs/class_report_{model_type}.csv', index_col=0)
            accuracy = error_df.loc['accuracy', 'precision']
            precision = error_df.loc['macro avg', 'precision']
            recall = error_df.loc['macro avg', 'recall']
            f1 = error_df.loc['macro avg', 'f1-score']
            # Add results to dataframe
            results_df = pd.concat([results_df, pd.DataFrame({
                'accuracy': accuracy,
                'precision': precision,
                'recall': recall,
                'f1': f1
            }, index=[model_type])], axis=0)
        # Print results
        results df
```

Out[]:		accuracy	precision	recall	f1
	baseline	0.918667	0.920724	0.918667	0.919169
	dropout	0.915333	0.915749	0.915333	0.915258
	augments	0.895667	0.898505	0.895667	0.894761
	unfrozen	0.903000	0.905552	0.903000	0.902429
	final	0.920000	0.924146	0.921752	0.922514