Introduction for DL-LN3X Family 2.4G Multi-hop Ad Hoc WSN Modules

DL-LN3X family modules are newly WSN modules designed by Shenlian innovative. The module is designed for applications requiring automatic multi-hop ad hoc networking. Compared to other common wireless networking solutions, our modules are more flexible and robust, qualified for long-term work. Users do not need to concern about those complicated protocal and chip manuals. You can handle the the wireless multi-hop transmission just by using a simple serial commands.

Product Features

- Directed Diffusion Protocol
 - Modules establish a multi-hop mesh network automatically before power on, without any operation.
 - Each module could communication with all modules in the network.
 - Wireless transmission with acknowledge and CRC checksum, up to 15 times re-transmission.
 - With strong recoverability, any network node failure does not affect the operation of the entire network.
 - Supports up to 130 modules in one network, module address can be modified via UART commands.
 - single packet length up to 63 bytes, with packet buffering mechanism.
- The User Interface Is Easy to Learn
 - Using UART as the interactive interface.
 - Baud rate adjustable.
 - Use variable-length packet in data transmission.
 - Designed to support clustering mechanism.
- Stable Firmware
 - Thread-sliced based operating system, running stable.
 - Using memory pool instead of heap to eliminate memory fragmentation.
- LED Indicator
 - With send and receive lights.
 - With a hunt LED, which can be lighted remotely for finding.

Product Selection

DL-LN33 With PCB antenna Communication distance up to 70m
DL-LN32 With IPEX antenna port Communication distance up to 100m
DL-LN32P With IPEX antenna port and on-board amplifier Communication distance up to 500m

DL-LN3X 系列 2.4G 自组网无线通信模块

DL-LN3X系列模块是深联创新新晋推出的无线通信模块,该模块专为需要自动组网多跳传输的应用场合设计。相对于其他常见的自组网无线通信解决方案,本方案更加灵活、可靠,可长期稳定工作;用户可以抛开复杂的协议 栈和芯片手册,只需要掌握简单的串口通讯便可驾驭无线多跳传输。

产品特性

- 定向扩散型自组网协议
 - 模块上电后会自动组成多跳网状网络,完全不需要用户干预。
 - 每个模块都可以给网络中任意一个节点发送数据。
 - 带有确认传输功能,无线传输使用 CRC 校验,最多重传 15 次。
 - 网络中任何节点故障不影响整个网络的运行,具有很强的抗毁性。
 - 最大可支持 130 个模块组成网络,模块地址可通过 Uart 进行修改。
 - 单个包长可达 63 字节, 带有数据包缓冲机制。
- 用户接口简单易学
 - 使用 uart 作为交互接口
 - 波特率可调
 - 使用长度可变的包传输数据,使用安全的数据分包协议
 - 支持端口分割机制
- 程序工作稳定
 - 操作系统基于线程切片,工作稳定。
 - 使用内存池代替堆完成动态内存分配,长期工作不产生内存碎片。
- 带有指示灯
 - 模块带有收/发包指示灯。
 - 模块带有定位指示灯,可以远程点亮,方便寻找。

产品选型

DL-LN33	使用印版天线	可视距离通信单跳 70m。
DL-LN32	使用 IPEX 接口	可视距离通信单跳 100m。
DL-LN32P	使用 IPEX 接口,并板载无线功放	可视距离通信单跳 500m。

I 组网

1.1 组网通信概述

DL-LN3X 模块是一种自组网多跳无线通信模块。模块无线频率为 2.4GHz~2.45GHz,属于全球免费的无线频段。该模块工作时,会与周围的模块自动组成一个无线多跳网络,此网络为对等网络,不需要中心节点,网络包含以下可配置参数:

表格 |-| 模块网络参数

参数	说明	取值要求
地址	用于区分同一个网络中不同模块的身份标识。	取值范围为 0x0001~0xfffe , 同一个网络中的模块
		地址必须不相同。
信道	与 IEEE802.15.4 一致的,模块将 2.4GHz~2.45GHz之	取值范围为 0x0B~0x1A , 同一个网络中的模块信
	间的频率划分为 16 个信道,每个模块可工作在其中	道必须相同。
	一个信道上,信道不同的模块不会互相干扰。	
网络	用于区分同一个信道可能存在的多个不相同的网络。	取值范围为 0x0001~0xfffe , 同一个网络中的模块
ID	信道相同,网络 ID 不同的模块不会互相通信,但同	网络 ID 必须相同。
	时工作时通信速率会变慢。	

这些参数的配置将在3.3节进行说明。

将多个 DL-LN3X 模块配置成地址不相同,信道和网络 ID 相同的状态,模块将组成一个网络。微控制器(MCU)或者电脑通过 Uart 告诉模块目标地址和待发送的数据,模块会通过网络选择最优的路径,将信息传输给目标模块,而目标模块将通过 Uart 输出源地址和上述的数据。

DL-LN3X模块使用定向扩散协议寻找路由,这种路由算法会记录网络的状态,每个节点平均可记录 130 个目标节点的路由,在网络建立后传输速度和传输延时可到达最优。但这种算法网络建立较慢,在节点刚刚启动时,网络需要 1~5 分钟的时间重新生成路由,在这段时间内网络使用洪泛路由进行数据通信,此时网络的传输速度较慢。

1.2 网络性能

表格 1-2 网络性能

参数	意义	值
最大节点数	一个可正常工作的网络可以容纳的模块数量。	典型值为 I30。
最大包长度	每个包的最大长度(包含端口的地址信息)。	63Byte。
传输容量	只有一个节点发送数据时的最大发送速率。	因为发送包的路由信息会占用一定的带宽,每
		个包的长度越长,发送效率越高。
		每个包包含 3Byte 数据时, 2400Bit/s。
		每个包包含 30Byte 数据时,I 0KBit/s。
最大跳数	包传输的最多跳数。	15跳。
丢包重传次数	传输失败后,允许重新尝试传输的次数	最多 15 次,网络负载高时,最少 5 次。
重传时间间隔	传输失败后,下次传输的时间	0.3 秒
无线电速率	无线传输信号的速度。	250KBit/s。
空中延时	一个包开始输入模块到传输后从另一个模块输	节点间为单跳时,小于 10mS。
	出的时间。	
无线电频率		2.4GHz~2.45GHz。

2 Uart 通信协议

2.I Uart 参数

DL-LN3X 模块使用 Uart 接口作为数据交互接口,接口的参数如下:

 数据位
 8 位

 起始位
 I 位

 停止位
 I 位

 校验位
 无校验

Uart 接口的波特率可以被用户设置为以下值:

2400 4800 9600 14400 19200 28800 38400 57600 115200 230400 125000 250000 500000

几乎任何单片机的 Uart 输出都可以和 DL-LN3X 模块的 Uart 进行通讯,电脑串口则可以使用 MAX3232 芯片转换为 Uart 与 DL-LN3X 进行通信。

2.2 包分割

在通信过程中,最常见的场合是单片机通过 Uart 告诉模块这样的信息:

"将数据 00 AE 13 33 发往地址为 0003 的模块,目标端口为 90,源端口为 91。"

对于单片机,需要将这些信息整理成一个包,通过 Uart 发给模块:

FE 08 91 90 03 00 00 AE 13 33 FF

此包的说明如下表:

表格 2-I Uart 包结构定义

信息名	长度	说明	举例
包头	2byte	包头由 FE 和包的长度组成,长度为包的数据长度加 4。	FE 08
源端口号	lbyte	包的源端口号。	91
目的端口号	lbyte	包的目的端口号。	90
远程地址	2byte	远程模块的地址,当发送数据给模块时,远程地址为目标模块的地址,	03 00
		目标地址为 0x0000 表示此包发给本模块,目标地址为 0xFFFF 的包会被	
		发往本网络中的所有节点。当从模块接收数据时,远程地址是数据的源	
		地址。	
数据	可变	想要传输的数据。	00 AE 13 33
包尾	lbyte	固定为 FF 表示一个包传输完成。	FF

远程地址长度为 2byte,使用小端模式进行传输,即先传输低 8 位,再传输高 8 位。

传输过程中如果遇到数据部分、地址或者端口号中出现 FF,则使用 FE FD 来代替;如果出现 FE,则用 FE FC来代替。以免传输过程中出现的包头和包尾,使接收方误判断。在传输中这种替换称为"转义"。

包长度不会受到转义的影响,例如发送的数据为 09 FF 时,替换为 09 FE FD,但包头中的数据长度仍然按照 2+4来计算,这样,发送的包如下:

FE 06 91 90 03 00 09 FE FD FF

虽然一共传输了7个字节,但包长为6。如果地址、端口号中出现了FF、FE 也需要进行转义。

2.3 端口

DL-LN3X 模块设计了端口的概念,接收方收到一个包时,会根据包的端口号,选择对应的程序处理包。端口号的取值范围是 0x00~0xFF,其中 0x00~0x7F 端口由模块内部程序占用, 0x80~0xFF 端口开放给 Uart 连接的 MCU或者电脑。

当 MCU 给一个模块发送数据时,如果源端口号填写了小于 0x80 的值,则包无法发出;如果目的端口号填写了小于 0x80 的值,接收方模块的内部程序将处理这个包并执行相关的动作,而不是从 Uart 发出这个包。

例如发送这个句:

FE 05 91 20 03 00 0A FF

则会让地址为 03 00 的模块自带的红灯点亮 I 秒 , 而他的 Uart 不会输出数据。

模块的内部端口大部分用于调试设计,也有一部分开放给用户,这些端口将在第3章说明。

2.4 通信举例

2.4.1 一个节点给另一个节点发送数据

例如将多个节点组成如下网络,在本文中节点特指 PC 或 MCU 和 DL-LN3X 模块组成的硬件设备。

MCU 采集到温湿度为温度 23℃,湿度 60%,则无线传输的数据是 0x17, 0x3C。节点和电脑都使用 A0 端口传输温度, AI 端口传输湿度, MCU 已知连接电脑的模块地址为 0x000F,则 MCU 发给模块的数据为:

FE 05 A0 A0 0F 00 17 FF FE 05 A1 A1 0F 00 3C FF

则电脑串口收到的数据为:

FE 05 A0 A0 01 00 17 FF FE 05 A1 A1 01 00 3C FF

电脑串口收到的数据中远程地址被替换为了源节点的地址。

2.4.2 一个节点给另一个节点的内部端口发送数据

这里仍然使用 2.4.1 节中的网络。

需要寻找地址为 0x0002 的节点时, PC 命令此模块的红灯点亮 5 秒,则 PC 发送:

FE 05 A3 20 02 00 32 FF

可以看到地址为 0x0002 的模块红灯点亮 5 秒。

2.4.3 一个节点给自己的内部端口发送数据

模块可以给自己的端口发送数据。这一部分在3.3.4节有更详细的说明。

2.4.4 不推荐的数据传输情况

这里仍然使用 2.4.1 节中的网络,不推荐的传输情况有以下两种。

- I. 模块使用小于 80 的端口号作为源端口号,例如模块发送 FE 05 20 20 02 00 32 FF 则模块会收到一个<u>端口号错</u><u>误报告包</u>: FE 06 22 20 02 00 E0 20 FF,实际上,模块不会传送任何数据,所以这样的传输是不推荐的。
- 2. 模块给自己的某个端口传输数据。例如地址为 0x000F 的节点,传输数据给自己的 80 端口,模块发送 FE 05 81 80 0F 00 32 FF,则自己会收到 FE 05 81 80 0F 00 32 FF,节点的单片机自己给自己传输了一条数据,这显然是不必要的,所以这样的传输是不推荐的。

3 模块内部端口

3.1 概述

这一节将介绍一些模块内部已经规定的端口,包括这些端口可以接受的包,以及这些这些端口会发出的包。在 对包进行说明时,本文将仅对数据部分进行说明,有关包结构的部分将不再说明。

例如:

表格 3-1 包结构举例

数据	长度	意义
命令	IByte	必须为 0×12 ,
新网络 ID	2Byte	想要设置的新网络 ID 值,新网络 ID 必须合法。

此包是一个端口 21 可以接受的包,则实际通过 Uart 发出的数据是: FE 07 91 21 00 00 12 98 88 FF 其中 91 可以是任意端口号,00 00 是目标地址,12 为命令,98 99 为新网络 ID。 关于这个包的构成请参考 2章。

3.2 红灯闪烁控制端口

端口 0x20 用于控制模块的红色 LED 点亮,发送此包可以使模块的红色 LED 点亮一定时间。

此端口可接收以下包:

表格 3-2 点亮 LED 包

数据	长度	意义
时延	lByte	红色 LED 点亮的时间 = 此参数 × 100ms

发送这个数据给此模块可以点亮红色 LED,用户既可以给本地模块发送这个包,也可以给远程模块发送这个包。

这一功能用于测试一个指定地址的模块是否包含在网络中,如果想从许多节点中迅速找到某个特定地址的节点, 也可以使用此功能。

3.3 基本信息管理端口

端口 0x21 用于配置模块的基本参数,包括地址,网络 ID,信道和波特率。

此端口只接受远程地址填写 0x0000 的包,因此,这些信息的读取和修改只能通过本模块的 Uart 进行,不能远程操作。

3.3.1 读取信息

表格 3-3 读取信息包

数据	长度	意义	
命令	lByte	必须为以下值中的一个:	
)x0I 读取地址 ;	
		0x02 读取网络 ID ;	
		0x03 读取信道编号;	

	0x04 读取 Uart 的	" "特率。	
--	----------------	-----------	--

发送这个数据后,模块会根据修改的内容返回一个<u>返回地址包</u>、<u>返回网络 ID 包</u>、<u>返回信道包</u>或者<u>返回波特率包</u>。 这些包将会携带对应的配置信息。

3.3.2 设置信息

表格 3-4 设置地址包

数据	长度	意义
命令	lByte	必须为 0x II,
新地址	2Byte	想要设置的新地址值,新地址必须合法

发送这个数据后,模块的地址将被修改为新地址给定的值,除非此值不合法。操作完成后,此端口会返回一个 响应包。

表格 3-5 设置网络 ID 包

数据	长度	意义
命令	lByte	必须为 0×12 ,
新网络 ID	2Byte	想要设置的新网络 ID 值 , 新网络 ID 必须合法。

发送这个数据后,模块的网络 ID 将被修改为新网络 ID 给定的值,除非此值不合法。操作完成后,此端口会返回一个*响应包*。

表格 3-6 设置信道包

数据	长度	意义
命令	lByte	必须为 0×13 ,
新信道	IByte	想要设置的新信道值,新网络信道必须合法。

发送这个数据后,模块的网络 ID 将被修改为新网络 ID 给定的值,除非此值不合法。操作完成后,此端口会返回一个*响应包*。

表格 3-7 设置波特率包

数据	长度	意义
命令	IByte	必须为 0×14 ,
新波特率	IByte	想要设置的新波特率读数,此读数和实际波特率的关系可参照 <u>表格 3-14 波特率 读数</u>
		对照表。

发送这个数据后,模块的波特率将被修改为新的的值,除非此值不合法。操作完成后,此端口会返回一个<u>响应</u>包。

设置信息包包含设置地址,设置网络 ID,设置波特率,设置信道四种。这些设置信息在更新以后,不会立即执行,模块会使用原有的参数继续工作,此时如果希望写入的参数生效,则需发送<u>重启命令包</u>给模块。在设置地址信息且没有发送重启命令的情况下,如果模块断电后再次启动,设置的信息也将丢失。一旦设置这些信息并发送<u>重启命令包</u>,这些信息不会因为断电和任何形式的复位丢失。

表格 3-8 重启命令包

数据	长度	意义
命令	lByte	必须为 0x10 更新信息并重启;

3.3.3 此端口回复的包

表格 3-9 响应包

数据	长度	意义
响应类	l Byte	响应类型可能是以下字节中的一个:
型		0x00 操作完成
		0xF0 此端口禁止远程访问,如果被远程访问,则返回此响应。
		0xF8 命令错误
		0xF9 包的长度与命令要求的不相符
		0xFA 包的值不可用,例如信道设置包中的信道大于 IA,波特率使用未定义的数字,地址使用
		0x0000 或 0xFFFF,或者网络 ID 使用 0x0000 或 0xFFFF。

表格 3-10 返回地址包

数据	长度	意义
命令	lByte	必须为 0x21 ,
地址	2Byte	当前地址,如果节点曾经收到过设置信息包,并且没有进行更新,则此处返回最新设置的值。

表格 3-I I 返回网络 ID 包

数据	长度	意义
命令	IByte	必须为 0×22 ,
网络 ID	2Byte	当前网络 ID , 如果节点曾经收到过设置信息包 , 并且没有进行更新 , 则此处返回最新
		设置的值。

表格 3-12 返回信道包

数据	长度	意义
命令	IByte	必须为 0×23 ,
信道	IByte	当前信道,如果节点曾经收到过设置信息包,并且没有进行更新,则此处返回最新设
		置的值。

表格 3-13 返回波特率包

数据	长度	意义
命令	IByte	必须为 0×24 ,
波特率	lByte	当前波特率,如果节点曾经收到过设置信息包,并且没有进行更新,则此处返回最新
		设置的波特率读数,此读数和实际波特率的关系可参照表格 3-14 波特率读数对照
		<u>表</u> 。

表格 3-14 波特率-读数对照表

波特率	读数	波特率	读数
2400	0x00	57600	0x07
4800	0x01	115200	0x08
9600	0x02	230400	0x09
14400	0x03	125000	0x0A
19200	0x04	250000	0x0B
28800	0×05	500000	0x0C
38400	0x06		

3.3.4 设置说明

这一节将举例说明如何设置 DL- LN 系列模块

如果不知道模块配置的波特率,可以将 BaudReset 引脚连接到 GND,这样便可以使用 I I 5200 波特率对模块进行配置。

首先读取模块现在的设置信息, 当然, 如果不关心当前模块的信息也可以不进行读取。

可发送的信息见下表:

表格 3-15 读取信息包

发送信息	收到信息	意义
FE 05 90 21 00 00 01 FF	FE 07 21 90 00 00 21 0F 00 FF	此命令读取模块的地址,模块返回一个 <u>返回地址包</u> ,带有下划线的数据为模块的地址:0x000F。
FE 05 90 21 00 00 02 FF	FE 07 21 90 00 00 22 88 19 FF	此命令读取模块的网络 ID,模块返回一个 <u>返回网络 ID 包</u> ,带有下划线的数据为网络 ID:0×1988。
FE 05 90 21 00 00 03 FF	FE 06 21 90 00 00 23 0F FF	此命令读取模块的信道,模块返回一个 <u>返回信道包</u> ,带有下划线的数据为模块的信道,信道为 0x0F。
FE 05 90 21 00 00 04 FF	FE 06 21 90 00 00 24 <u>08</u> FF	此命令读取模块的波特率,模块返回一个 <u>返回波特率包</u> ,带有下划线的数据为模块的波特率读数,0x08参照 <u>表格 3-14 波特率-读数对照表</u> ,模块的波特率为115200。

请注意,只有使用 0x0000 作为目标地址才能与 2I 端口进行通信,0x0000 即模块的本地地址。 然后写入待配置的信息。

表格 3-16 设置信息包

发送信息	意义
FE 07 90 21 00 00 11 IF 00 FF	将地址配置为 0x001F。带有下划线的部分为配置的目标地址,地址不能配置为 0x0000 和 0xFFFF
FE 07 90 21 00 00 12 91 19 FF	将网络 ID 配置为 0x1991。带有下划线的部分为配置的目标网络 ID ,网络 ID 不能配置为 0xFFFF
FE 06 90 21 00 00 13 <u>12</u> FF	将信道配置为 0x12 信道。带有下划线的部分为配置的目标信道,信道的范围是 0x0B 到 0x1A。
FE 06 90 21 00 00 14 <u>02</u> FF	将波特率配置为 9600。参照 <u>表格 3-14 波特率 读数对照表</u> , 9600 对应的波特率读数为 02, 即

带有下划线的数据。

向模块发送配置命令后,模块会返回 FE 05 21 90 00 00 00 FF,表示配置完成,返回信息会指示发包的错误,错误信息详见响应包。

最后如果配置信息确认无误,向模块发送 FE 05 90 21 00 00 10 FF,模块会进行重启,然后使用新的参数进行工作。

3.4 错误报告端口

端口 0x22 用于报告通信错误,用户不能向这个端口发送数据,当用户发送数据使用不合法的地址时,这个端口会发送错误报告包:

表格 3-17 端口号错误报告包

数据	长度	意义
错误类型	IByte	必须为 0xe0 ,
异常端口	IByte	用户使用的不合法的端口号。

当用户发送源地址小于 0x80 的包时,将会收到来自这个端口的错误报告

3.5 连接质量测试端口

端口 0×23 用于探测两个模块之间的双向链路质量,链路质量为两个模块之间互相发包时,收到数据的信号强度的平均值,信号强度取决于两个模块之间的距离,以及有无遮挡物。如果已知两个模块之间没有遮挡,这个值可以用来估计模块之间的距离。

此端口可接收以下包:

表格 3-18 连接质量采集命令

数据	长度	意义
采集目标地址	2Byte	采集 RSSI 的另一个模块的地址,不可为 0x0000 和 0xFFFF

下面是一个数据包的例子:

FE 06 80 23 01 00 02 00 FF

这个命令将会采集两个模块之间的 RSSI, 其中一个模块为收到此包的模块,即地址为 0x0001,另一个模块为 0x0002。即采集目标地址。如此,模块 0x0001 会给模块 0x0002 发送一个采集 RSSI 命令,模块 0x0002 在收到此命令 后返回一个 RSSI 数值,模块 0x0001 收到此包后,将综合两个数据,返回此包:

FE 07 23 80 XX XX 02 00 12 FF

表格 3-19 连接质量采集返回

数据	长度	意义
采集目标地址	2Byte	采集 RSSI 的另一个模块的地址,不可为 0x0000 和 0xFFFF
连接质量参数	Ibyte	有符号数。表示两个节点之间的连接质量,数值越高表示两个节点间的连接质量越好。
		如果此数值为-128(0×80)说明节点没有收到对方返回的包,即数据

这个包可以远程发送,即A节点可以命令B采集B到C的链路质量并返回给A;

采集链路质量与两个模块之间是否建立链路没有关系,没有建立链路仍然能够进行采集;

采集链路质量的返回值如果是 I 28 说明采集信息发送失败了,这有可能是两个节点距离太远,也有可能是因为当时网络的通信非常频繁,因此采集信息无法发出。

3.6 可控 TTL 输出

模块的 Pin4 和 Pin5 为测试串口输出,在用户正常使用时这两个端口可以作为 TTL 输出使用,通过给 0x44 和 0x45 发送指令可以分别控制 Pin4 和 Pin5 的输出。

表格 3-20 TTL 控制命令

数据	长度	意义
命令	Ibyte	只能为以下三个数值:
		0x11 命令端口输出高电平
		0x10 命令端口输出低电平
		0x12 读取当前端口输出的电平值

在发送控制命令后,端口的电平值会发生改变。

发送 0×12 后模块将返回当前的端口电平状态,返回数据如下

表格 3-21 TTL 控制返回

数据	长度	意义
命令	Ibyte	只能为以下三个数值:
		0x01 表示端口输出高电平
		0x00 表示端口输出低电平

可控 TTL 输出可以用于控制一些最简单的控制器,例如通过继电器或者场效应管控制灯光,风扇,电磁阀等设备,或者直接连接指示灯。

一般情况下控制这些设备的频率不应该过高,否则会消耗大量网络资源。

Pin4 和 Pin5 的控制命令完全相同,端口 0x44 控制 Pin4,端口 0x45 控制 Pin5

4 电气特性

表格 4-IDL-LN33 电气参数

参数	意义	值
工作电压	模块工作时的供电电压	2.5V~3.6V,典型值为 3.3V
工作电流	模块工作时消耗的电流	小于 30mA
无线发送功率	无线电的发送功率	4.5dBm

表格 4-2DL-LN32 电气参数

参数	意义	值
工作电压	模块工作时的供电电压	2.5V~3.6V,典型值为 3.3V
工作电流	模块工作时消耗的电流	小于 30mA
无线发送功率	无线电的发送功率	4.5dBm

表格 4-3DL-LN32P 电气参数

参数	意义	值
工作电压	模块工作时的供电电压	2.5V~3.6V,典型值为 3.3V
工作电流	模块工作时消耗的电流	小于 55mA
无线发送功率	无线电的发送功率	20dBm

5 引脚配置

DL-LN33/ DL-LN32/ DL-LN32P 模块使用相同的引脚配置,这些模块都设计成了邮票孔电路板的形状,引脚配置如下图:

表格 5-1 管脚定义

引脚名称	管脚位置	意义
NoUsed	1,2,10,11,13	未使用,请保持悬空(悬空指的是不与任何电路相连)
TestMode	3	测试模式,当悬空时工作在正常模式,接地则工作在测试模式下。用户使用时请悬空。
TestTx	4	在测试模式下输出测试信息,用户使用时将作为可控 IO 口输出
TestRx	5	在测试模式下输入测试信息,用户使用时将作为可控 IO 口输出
Gnd	6,9,16	接地
Vcc	7,8	接电源
BaudReset	12	如果先将此管脚接地,再启动模块,模块将强制使用 II5200 默认波特率进行工作。在此模式下可以读取或设置模块的波特率,读取到的波特率为模块先前设置的波特率,而非 II5200;如果没有进行波特率设置再次重启模块后,模块将使用先前设置的波特率进行工作。
Tx	14	模块的 Uart 输出
Rx	15	模块的 Uart 输入

6 封装信息

6.I DL-LN33 封装

6.2 DL-LN32 封装

6.3 DL-LN32P 封装

7 硬件设计参考

7.1 PCB设计注意事项

PCB设计需要注意以下几点:

- 1. 必须将模块的电源管脚都连接到电源, 地线都连接到地线。
- 2. 模块的电源管脚外最好就近接 100nF 的滤波电容。
- 3. 必须将模块的所有未使用管脚都悬空。
- 4. 将模块背面的电路板请涂满丝印,以防止短路。
- 5. 模块的天线下面不能有任何走线或铺铜,不论正面还是背面。
- 6. 模块的下载线接口背面有漏铜,此处电路板的正面不能有任何走线或铺铜,否则可能引起短路。
- 7. DL-LN33 和 DI-LN32 的印版天线应靠近电路板的边缘,这样布线会比较简单,并且天线的信号会更好。

7.2 结构设计注意事项

结构设计需要考虑以下几点:

- 1. 天线不应被包含在金属外壳或金属网中,以免信号被屏蔽。
- 2. 天线附近应尽量避免出现金属螺丝等物体,以免影响通信距离。
- 3. 天线应安排在产品的外侧,例如产品摆放在地面时,天线应尽量靠上;产品安装在墙壁上时,天线应尽量 远离墙面。