1

Assignment 8

Ananthoju Pranav Sai - AI20BTECH11004

Download all python codes from

https://github.com/Ananthoju-Pranav-Sai/ AI1103/tree/main/Assignment 8/Codes

and latex codes from

https://github.com/Ananthoju-Pranav-Sai/ AI1103/blob/main/Assignment_8/main.tex

UGC June 2017 Math set A Q 57

Suppose (X_1, X_2) follows a bivariate normal distribution with

$$E(X_1) = E(X_2) = 0$$
 (0.0.1)

$$V(X_1) = V(X_2) = 2 (0.0.2)$$

$$Cov(X_1, X_2) = -1$$
 (0.0.3)

If $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$, then $\Pr(X_1 - X_2 > 6) = ?$

- 1) $\Phi(-1)$
- 2) $\Phi(-3)$
- 3) $\Phi(\sqrt{6})$
- 4) $\Phi(-\sqrt{6})$

SOLUTION

Definition 0.1. $\mathbf{x} \sim \mathcal{N}(\mu_{\mathbf{x}}, \Sigma_{\mathbf{x}})$ is a bivariate random vector given by

$$\mathbf{x} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \tag{0.0.4}$$

$$\mu_{\mathbf{x}} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \tag{0.0.5}$$

$$\Sigma_{\mathbf{x}} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \tag{0.0.6}$$

where $\Sigma_{\mathbf{x}}$ is covariance matrix of \mathbf{x} and ρ is correlation of X_1 and X_2 which is given by

$$\rho = \frac{Cov(X_1, X_2)}{\sigma_1 \sigma_2} \tag{0.0.7}$$

Theorem 0.1. Let \mathbf{x} be a $K \times 1$ multivariate normal random vector with mean μ_x and covariance matrix $\Sigma_{\mathbf{x}}$. Let \mathbf{A} be an $L \times 1$ real vector and \mathbf{B} an $L \times K$

full-rank real matrix. Then the $L \times 1$ random vector \mathbf{y} defined by

$$\mathbf{y} = \mathbf{A} + \mathbf{B}\mathbf{x} \tag{0.0.8}$$

has a multivariate normal distribution with mean

$$\mu_{\mathbf{y}} = \mathbf{A} + \mathbf{B}\mu_{\mathbf{x}} \tag{0.0.9}$$

and covariance matrix

$$\mathbf{\Sigma}_{\mathbf{y}} = \mathbf{B}\mathbf{\Sigma}_{\mathbf{x}}\mathbf{B}^{\top} \tag{0.0.10}$$

Proof. The joint moment generating function of \mathbf{x} is

$$M_{\mathbf{x}}(\mathbf{t}) = \mathbb{E}[\exp(\mathbf{t}^{\mathsf{T}}\mathbf{x})] \tag{0.0.11}$$

$$\implies M_{\mathbf{x}}(\mathbf{t}) = \exp\left(\mathbf{t}^{\mathsf{T}}\mu_{\mathbf{x}} + \frac{1}{2}\mathbf{t}^{\mathsf{T}}\boldsymbol{\Sigma}_{\mathbf{x}}\mathbf{t}\right) \qquad (0.0.12)$$

Therefore, the joint moment generating function of **y** is

$$M_{\mathbf{v}}(\mathbf{t}) = \mathbb{E}[\exp(\mathbf{t}^{\mathsf{T}}\mathbf{y})]$$
 (0.0.13)

$$= \mathbb{E}[\exp(\mathbf{t}^{\mathsf{T}}(\mathbf{A} + \mathbf{B}\mathbf{x}))] \tag{0.0.14}$$

$$= \exp(\mathbf{t}^{\mathsf{T}} \mathbf{A}) \mathbb{E}[(\mathbf{t}^{\mathsf{T}} \mathbf{B} \mathbf{x})] \tag{0.0.15}$$

$$= \exp(\mathbf{t}^{\mathsf{T}} \mathbf{A}) \mathbb{E}[(\mathbf{B}^{\mathsf{T}} \mathbf{t})^{\mathsf{T}} \mathbf{x}] \tag{0.0.16}$$

$$= \exp(\mathbf{t}^{\mathsf{T}} \mathbf{A}) M_{\mathbf{x}} (\mathbf{B}^{\mathsf{T}} \mathbf{t}) \tag{0.0.17}$$

$$= \exp(\mathbf{t}^{\mathsf{T}} \mathbf{A}) \exp\left((\mathbf{B}^{\mathsf{T}} \mathbf{t})^{\mathsf{T}} \mu_{\mathbf{x}} + \frac{1}{2} (\mathbf{B}^{\mathsf{T}} \mathbf{t})^{\mathsf{T}} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{B}^{\mathsf{T}} \mathbf{t} \right)$$
(0.0.18)

$$= \exp\left(\mathbf{t}^{\top}(\mathbf{A} + \mathbf{B}\mu_{\mathbf{x}}) + \frac{1}{2}\mathbf{t}\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{x}}\mathbf{B}^{\top}\mathbf{t}^{\top}\right) (0.0.19)$$

which is the moment generating function of a multivariate normal distribution with mean $\mathbf{A} + \mathbf{B}\mu$ and covariance matrix $\mathbf{B}\boldsymbol{\Sigma}_{\mathbf{x}}\mathbf{B}^{\mathsf{T}}$.

$$\therefore \mu_{\mathbf{y}} = \mathbf{A} + \mathbf{B}\mu_{\mathbf{x}} \text{ and } \mathbf{\Sigma}_{\mathbf{y}} = \mathbf{B}\mathbf{\Sigma}_{\mathbf{x}}\mathbf{B}^{\top}$$

Theorem 0.2. If (X_1, X_2) follow bivariate distribution then $\Pr(X_1 - X_2 > \alpha)$ is given by $\Phi\left(\frac{(\mu_1 - \mu_2) - \alpha}{\sqrt{\sigma_+^2 + \sigma_+^2 - 2\rho\sigma_1\sigma_2}}\right)$.

Proof. Let
$$\mathbf{u} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$
$$X_2 - X_1 = \mathbf{u}^{\mathsf{T}} \mathbf{x} \tag{0.0.20}$$

Now consider a random variable Y defined as follows

$$Y = X_2 - X_1 \tag{0.0.21}$$

$$\implies y = \mathbf{u}^{\mathsf{T}} \mathbf{x} \tag{0.0.22}$$

then Y has normal distribution with mean

$$\mu_{\mathbf{v}} = \mathbf{u}^{\mathsf{T}} \mu_{\mathbf{x}} \tag{0.0.23}$$

and variance is given by

$$\sigma_{v}^{2} = \mathbf{u}^{\mathsf{T}} \mathbf{\Sigma}_{\mathbf{x}} (\mathbf{u}^{\mathsf{T}})^{\mathsf{T}}$$
 (0.0.24)

$$\implies \sigma_y^2 = \mathbf{u}^\mathsf{T} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{u} \tag{0.0.25}$$

$$\therefore Y \sim \mathcal{N}(\mu = \mathbf{u}^{\mathsf{T}} \mu_{\mathbf{x}}, \sigma^2 = \mathbf{u}^{\mathsf{T}} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{u})$$

The Standard Normal, often written Z, is a Normal with $\mu = 0$ and $\sigma^2 = 1$. Thus, $Z \sim \mathcal{N}(\mu = 0, \sigma^2 = 1)$

Now $Pr(X_1 - X_2 > \alpha)$ can be written as $Pr(Y < -\alpha)$

$$\Pr(Y < -\alpha) = \Pr\left(\frac{Y - \mu_y}{\sigma_y} < \frac{-\alpha - \mu_y}{\sigma_y}\right)$$
(0.0.26)

$$(0.0.26)$$

$$\Rightarrow \Pr(Y < -\alpha) = \Pr\left(Z < \frac{-(\alpha + \mathbf{u}^{\mathsf{T}} \mu_{\mathbf{x}})}{\sqrt{\mathbf{u}^{\mathsf{T}} \Sigma_{\mathbf{x}} \mathbf{u}}}\right)$$

$$(0.0.27) \Rightarrow \Pr(X_1 - X_2 > 6) = \Phi\left(\frac{-6}{\sqrt{6}}\right)$$

$$\Rightarrow \Pr(X_1 - X_2 > 6) = \Phi\left(-\frac{\sqrt{6}}{\sqrt{6}}\right)$$

$$\Rightarrow \Pr(X_1 - X_2 > 6) = \Phi\left(-\frac{\sqrt{6}}{\sqrt{6}}\right)$$

$$\therefore \Pr(X_1 - X_2 > \alpha) = \Phi\left(\frac{-(\alpha + \mathbf{u}^{\mathsf{T}} \mu_{\mathbf{x}})}{\sqrt{\mathbf{u}^{\mathsf{T}} \Sigma_{\mathbf{x}} \mathbf{u}}}\right) \quad (0.0.28)$$

Lemma 0.3.

$$\mu_{\mathbf{y}} = \mathbf{u}^{\mathsf{T}} \mu_{\mathbf{x}} \tag{0.0.29}$$

$$\implies \mu_{\mathbf{y}} = \left(-1 \ 1\right) \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \tag{0.0.30}$$

$$\implies \mu_{\mathbf{y}} = \left(\mu_2 - \mu_1\right) \tag{0.0.31}$$

Lemma 0.4.

$$\sigma_{\mathbf{v}}^2 = \mathbf{u}^{\mathsf{T}} \mathbf{\Sigma}_{\mathbf{x}} \mathbf{u} \tag{0.0.32}$$

$$\implies \sigma_y^2 = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} \quad (0.0.33)$$

$$\implies \sigma_{\rm v}^2 = \left(\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2\right) \tag{0.0.34}$$

$$\therefore \Pr(X_1 - X_2 > \alpha) = \Phi\left(\frac{(\mu_1 - \mu_2) - \alpha}{\sqrt{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}}\right)$$
(0.0.35)

Given (X_1, X_2) follow a bivariate normal distribution

$$\mu_1 = \mu_2 = 0 \tag{0.0.36}$$

$$\sigma_1^2 = \sigma_2^2 = 2 \tag{0.0.37}$$

$$Cov(X_1, X_2) = -1$$
 (0.0.38)

$$\rho = \frac{Cov(X_1, X_2)}{\sigma_1 \sigma_2} = \frac{-1}{2} \tag{0.0.39}$$

for $Pr(X_1 - X_2 > 6)$ we can use the above theorem as follows

$$\Pr(X_1 - X_2 > \alpha) = \Phi\left(\frac{(\mu_1 - \mu_2) - \alpha}{\sqrt{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}}\right)$$
(0.0.40)

$$\Pr(Y < -\alpha) = \Pr\left(\frac{Y - \mu_y}{\sigma_y} < \frac{-\alpha - \mu_y}{\sigma_y}\right) \implies \Pr(X_1 - X_2 > 6) = \Phi\left(\frac{(0 - 0) - 6}{\sqrt{2 + 2 - 2\left(\frac{-1}{2}\right)2}}\right)$$

$$(0.0.41)$$

$$\implies \Pr(X_1 - X_2 > 6) = \Phi\left(\frac{-6}{\sqrt{6}}\right)$$
 (0.0.42)

$$\therefore \Pr(X_1 - X_2 > 6) = \Phi(-\sqrt{6}) \tag{0.0.43}$$