Advanced Machine Learning Subsidary Notes

Lecture 6: Boosting

Adam Prügel-Bennett

January 19, 2024

1 Keywords

· Boosting, AdaBoost, Gradient Boosting

2 Main Points

2.0.1 Boosting

- · Boosting constructs a strong learner as a weighted sum of weak learners
- Adaboost
 - Used for binary decisions
 - Start with a set of weak learners, \mathcal{W}
 - Each weak learner $h_i(\boldsymbol{x})$ outputs ± 1
 - Greedily build the strong learner by adding $\alpha_t h_t(\boldsymbol{x})$ at iteration t
 - Uses an exponential "error" to choose the weak learner and α_t
 - Algorithm does the following
 - * Define a weight, w_t^μ , for each training example $({\pmb x}^\mu, y^\mu)$
 - · initially these are set to 1
 - · Large weight implies the training example is poorly predicted
 - * Choose the weak learner, h_t that fails only where prediction is good
 - · it decides this by summing the weights of training examples where the weak learner makes an error
 - · it choose the weak learner with the smallest sum
 - * Choose the parameter α_t to minimises the error
 - Need to understand derivation and resulting algorithm (this is complicated)
- Gradient Boosting
 - Used on regression problems
 - Iterative algorithm where we learn a new weak learner that minimises the residual errors
 - Uses very small decision trees for regression
- · Performance of Boosting
 - Can over-fit (use early stopping)
 - Only works for very simple weak-learners (strong learners will over-fit)
 - Can give state-of-the-art performance