Bayesian decision theory

Introduction à l'apprentissage machine – GIF-4101 / GIF-7005

Professor: Christian Gagné

Week 2

2.1 Bayes formula

Review of basic statistical concepts

- ullet Random experiment ($\mathcal E$): an experiment for which the outcome cannot be predicted in advance with certainty
- Sample space (U): the set of all possible outcomes or results of an experiment
 - Discrete sample space: finite set of possible outcomes
 - Continuous sample space: the possible outcomes are not enumerable
- Random event (A): result of a random experiment, subset of the sample space $(A \subset U)$
- Probability (P(A)): associate a real number representing the application of a given event (A) related to a random experiment $(A \subset U)$, satisfying the axioms of probabilities
 - 1. $0 \le P(A) \le 1, \forall A$
 - 2. P(U) = 1
 - 3. Suppose the events A_i , $i=1,\ldots,n$ are mutually exclusive $(A_i\cap A_j=\emptyset,\,\forall j\neq i)$, then $P\left(\bigcup_{i=1}^n A_i\right)=\sum_{i=1}^n P(A_i)$

Probability and inference

- Tossing a coin: $U = \{ tail, head \}$
- Random variable $X = \{0, 1\}$ (0=head, 1=tail)
 - Bernoulli distribution: $P(x \in X) = (1 p_1)^{1-x} p_1^x$
- Set of samples X drawn according to a probability distribution parameterized by p_1 (tail probability)
 - Set of *N* samples: $\mathbf{X} = \{x^t\}_{t=1}^N$ with $x^t \in X$
 - Estimate of p_1 by sampling: $\hat{p}_1 = \frac{\#tails}{\#tosses} = \frac{\sum_{i=1}^N x^t}{N}$
- Prediction of the next toss x^{N+1} : if $\hat{p}_1 > 0.5$ then tail, otherwise head
- Example of outcomes: $\mathbf{X} = \{1, 1, 1, 0, 1, 0, 0, 1, 1\}$
 - Estimation of the probability: $\hat{p}_1 = \frac{\sum_{t=1}^N x^t}{N} = \frac{6}{9}$

Classification

- Example of credit risk assessment
 - Input data: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, with x_1 as income and x_2 the amount of savings
 - Possible classes: $\overset{\mathsf{L}}{C} \in \{0, 1\}$ where C = 1 denotes an individual at high risk of default and C = 0 an individual at low risk of default
- If we know $P(C|x_1,x_2)$ then:

• Assign:
$$\begin{cases} C = 1 & \text{if } P(C = 1 | x_1, x_2) > 0.5 \\ C = 0 & \text{otherwise} \end{cases}$$

• Equivalent formulation:

• Assign:
$$\begin{cases} C = 1 & \text{if } P(C = 1 | x_1, x_2) > P(C = 0 | x_1, x_2) \\ C = 0 & \text{otherwise} \end{cases}$$

3

Conditional probability

• Conditional probability P(E|F): probability that the event E will occur if the event F has occurred:

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

• Since ∩ is commutative:

$$P(E \cap F) = P(E|F) P(F) = P(F|E) P(E)$$

• Bayes formula:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Venn diagram and Bayes formula

$$P(E \cap F) = P(E|F) P(F) = P(F|E) P(E) = P(F \cap E)$$

Bayes formula

$$\underbrace{P(C|\mathbf{x})}_{\text{posterior}} = \underbrace{\frac{P(C)}{P(\mathbf{x})} \underbrace{\frac{\text{likelihood}}{p(\mathbf{x}|C)}}_{\text{evidence}}$$

- Prior probability (P(C)): probability of observing an instance of the class C
- Class likelihood $(p(\mathbf{x}|C))$: likelihood that an observation of the class C is \mathbf{x}
- Evidence $(p(\mathbf{x}))$: likelihood of observing the data \mathbf{x}
- Posterior probability ($P(C|\mathbf{x})$): probability that an observation \mathbf{x} belongs to the class C

Bayes formula

$$\underbrace{P(C|\mathbf{x})}_{\text{posterior}} = \underbrace{\frac{P(C)}{P(\mathbf{x})} \underbrace{p(\mathbf{x}|C)}_{\text{evidence}}}^{\text{prior}}$$

- Sum of prior probabilities: P(C=0) + P(C=1) = 1
- Sum of posterior probabilities: $P(C = 0|\mathbf{x}) + P(C = 1|\mathbf{x}) = 1$
- Evidence: p(x) = P(C = 1) p(x|C = 1) + P(C = 0) p(x|C = 0)

Example: Bayes formula

- Vehicle observation
 - Probability of observing a car, P(C = 1) = 0.7
 - Probability of observing another vehicle, P(C = 0) = 0.3
- A given vehicle observation x
 - Likelihoods of the observation: $p(\mathbf{x}|C=1)=1.1$, $p(\mathbf{x}|C=0)=0.4$
- Evidence

$$p(\mathbf{x}) = p(\mathbf{x}|C=1) P(C=1) + p(\mathbf{x}|C=0) P(C=0)$$

= 1.1 \cdot 0.7 + 0.4 \cdot 0.3 = 0.77 + 0.12 = 0.89

Posterior probabilities

$$P(C = 1|\mathbf{x}) = \frac{P(C = 1) p(\mathbf{x}|C = 1)}{p(\mathbf{x})} = \frac{0.7 \cdot 1.1}{0.89} = \frac{0.77}{0.89} = 0.865$$

$$P(C = 0|\mathbf{x}) = \frac{P(C = 0) p(\mathbf{x}|C = 0)}{p(\mathbf{x})} = \frac{0.3 \cdot 0.4}{0.89} = \frac{0.12}{0.89} = 0.134$$

2.2 Bayesian Decision Theory

Bayes formula with several classes

$$P(C_i|\mathbf{x}) = \frac{P(C_i) p(\mathbf{x}|C_i)}{\sum_{k=1}^{K} P(C_k) p(\mathbf{x}|C_k)}$$

- $P(C_i) \ge 0$ et $\sum_{i=1}^{K} P(C_i) = 1$
- Choose class C_i for data \mathbf{x} according to $C_i = \underset{k=1}{\operatorname{argmax}} P(C_k | \mathbf{x})$

Loss function

- Not all decisions have the same impact
 - Lending money to a high-risk client versus not lending to a low-risk client
 - Medical diagnosis: possible impacts of not detecting a serious illness
 - Intrusion detection
- Quantify with a loss function $\mathcal{L}(\alpha_i, C_j)$
 - ullet Perform an action $lpha_i$ while the actual class is \mathcal{C}_j

• Expected risk of an action α :

$$R(\alpha|\mathbf{x}) = \sum_{k=1}^{K} \mathcal{L}(\alpha, C_k) P(C_k|\mathbf{x})$$

• Action minimizing risk:

$$\alpha^* = \operatorname*{argmin}_{\forall \alpha} R(\alpha|\mathbf{x})$$

- Modifying the loss function changes the risk
 - Modifying the cost associated with a false negative relative to the cost of a false positive

Confusion matrix (two classes)

		Decision	
		$lpha_{0}$	α_1
Actual	<i>C</i> ₀	0	$\lambda_{ ext{FP}}$
	C_1	$\lambda_{ m FN}$	0

- $\mathcal{L}(\alpha = 1, C = 0) = \lambda_{\mathrm{FP}}$: cost of a false positive
- ullet $\mathcal{L}(lpha=0,\mathcal{C}=1)=\lambda_{\mathrm{FN}}$: cost of a false negative

Confusion matrix (*K* **classes)**

	$lpha_{0}$	α_1		α_{K}
C_0	0	$\lambda_{1,0}$	• • •	$\lambda_{K,0}$
C_1	$\lambda_{0,1}$	0	• • •	$\lambda_{K,1}$
:	:	:	٠	:
C_K	$\lambda_{0,K}$	$\lambda_{1,K}$	• • •	0

Zero-one loss function

• Zero-one loss function:

$$\mathcal{L}(\alpha_i, C_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases}$$

• Corresponding risk:

$$R(\alpha_i|\mathbf{x}) = \sum_{k=1}^{K} \mathcal{L}(\alpha_i, C_k) P(C_k|\mathbf{x})$$
$$= \sum_{k\neq i} P(C_k|\mathbf{x})$$
$$= 1 - P(C_i|\mathbf{x})$$

Optimal decision:

$$\alpha^* = \operatorname*{argmax}_{\alpha_k = \alpha_1} P(C_k | \mathbf{x})$$

Reject option

- For many applications, a bad classification can have a huge impact
 - Addition of a reject option in case of doubt, action α_{K+1}
- Zero-one loss function with reject option:

$$\mathcal{L}(lpha_i, \mathcal{C}_j) = \left\{ egin{array}{ll} 0 & ext{if } i = j \ \lambda & ext{if } i = K+1 \ 1 & ext{otherwise} \end{array}
ight.$$

In that case:

$$R(\alpha_i|\mathbf{x}) = \sum_{k \neq i} P(C_k|\mathbf{x}) = 1 - P(C_i|\mathbf{x})$$

$$R(\alpha_{K+1}|\mathbf{x}) = \sum_{k=1}^{K} \lambda P(C_k|\mathbf{x}) = \lambda$$

Optimal decision with reject option

Optimal decision with reject option:

$$\alpha^* = \operatorname*{argmin}_{\alpha_k = \alpha_1} R(\alpha_k | \mathbf{x})$$

• Optimal decision for zero-one loss function with reject option:

$$lpha^* = \left\{ egin{array}{ll} lpha_{\mathcal{K}+1} & ext{if } P(\mathit{C}_j|\mathbf{x}) < 1-\lambda, \ orall j = 1, \ldots, \mathcal{K} \ lpha_{j=lpha_1} & ext{otherwise} \end{array}
ight.$$

Confusion matrix (*K* **classes and reject option)**

	α_{0}	α_1	• • •	α_{K}	α_{K+1}
C_0	0	$\lambda_{1,0}$	• • •	$\lambda_{K,0}$	$\lambda_{K+1,0}$
C_1	$\lambda_{0,1}$	0	• • •	$\lambda_{K,1}$	$\lambda_{K+1,1}$
:	:	:	٠	:	:
C_K	$\lambda_{0,K}$	$\lambda_{1,K}$		0	$\lambda_{K+1,K}$

Discriminant function

- Discriminant functions for classification: $\alpha^t = \underset{\alpha_i = \alpha_1}{\operatorname{argmax}} h_i(\mathbf{x}^t)$
 - In the Bayesian case (general): $h_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x})$
 - Bayesian with zero-one loss function: $h_i(\mathbf{x}) = P(C_i|\mathbf{x})$
 - Ignoring normalization relative to $p(\mathbf{x})$: $h_i(\mathbf{x}) = p(\mathbf{x}|C_i) P(C_i)$
- Decision regions: division of the input space into K regions:
 - $\mathcal{R}_1, \dots, \mathcal{R}_K$ où $\mathcal{R}_i = \{\mathbf{x} | \mathbf{h}_i(\mathbf{x}) = \mathsf{max}_{\forall k} \mathbf{h}_k(\mathbf{x}) \}$
- Decision regions are separated by decision boundaries
- Two-class case is a dichotomizer, $K \ge 3$ classes is a plurichotomizer

Regions and decision boundaries

