Summary: Lecture 6

Summary for the chapter 8.2. [1, 6]

Completeness

Let C be a complexity class and let L be a language in C. L is called C-complete if any language $L' \in C$ can be reduced to L.

(Every language of a complexity class can be reduced to L.)

- reducitbility is transitive \rightarrow problems are ordered by difficulty
- complete problems can capture the difficulty of a class
- problem is seen as completely understood if the problem is complete

Question:

Which problems can be reduced to a formal language?

SAT can be expressed as formal language. [5] \Rightarrow SAT can be reduced to a formal language. (?)

Because CIRCUIT SAT can be reduced to SAT: CIRCUIT SAT can be reduced to a formal language. (?)

Formal language

Formal languages are abstract languages, which define the syntax of the words that get accepted by that language. It is a set of words that get accepted by the language and has a set of symbols that is called alphabet, which contains all the possible characters of the words. Those characters are called nonterminal symbols. [2, 7]

Kleene star

The Kleene star Σ^* of an alphabet Σ is the set of all words that can be created through concatenation of the symbols of the alphabet Σ . The empty word ϵ is included.

Formal language

A formal language L over an alphabet Σ is a subset of the Kleene star of the alphabet: $L\subseteq \Sigma^*$

Where to set the line between lanuguage decisions and other problems? Can every problem be controuted as a formal language?

Is everything that is reducable to SAT reducable to a formal language?

Closed under reduction

The following complexity classes are all closed under reductions:

P NP CONP L NL PSPACE EXP

A class C is closed under reductions if whenever L is reducible to L' and $L' \in C'$, then L in C'.

If a complete problem in C belongs in a class $C' \subseteq C$, C = C'.

Figure 1: P and NP sets [4] and complexity classes [3]

- examples:
 - if an NP-complete language is in P, then NP = P
 - if a P-complete language is in L, then P = L
 - if a P-complete language is in NL, then P = NL
 - no EXP-complete language can be in P

P-completeness of CIRCUIT VALUE

Problem: Circuit Value

The CIRCUIT VALUE Problem is the problem of computing the output of a given Boolean circuit on a given input.

In terms of time complexity, it can be solved in linear time (topological sort).

- P-complete
- limit of power of reductions
- got a little tired and zoned out

TODO

Questions:

The reduction (?)

Problem: Circuit Sat

The circuit satisfiability problem (CIRCUIT SAT) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true.

Input: a Boolean circuit C

Question: Is there a truth assignment which makes C output the value true?

CIRCUIT SAT is NP-complete

- circuit decides nondeterministically (?)
- a variable is added n the nondeterministic Turing Machine
- check if one of the variables is tue: use this choice (?)
- problem: can we set thiese variables such that the Turing Machine accepts?
- answer corresponds direct to is there a choice of nd decisions such that the turing machine accepts?
- extremely direct reduction
- cooks theorem:)
- SAT is NP-complete

TODO

Questions:

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Chomsky's Normal Form (CNF). Website. https://www.javatpoint.com/automata-chomskys-normal-form, opened on 26.09.2022.
- [3] Complexity classes diagram image source. https://en.wikipedia.org/wiki/Complexity_class.
- [4] Image source: P-NP sets. https://www.techno-science.net/actualite/np-conjecture-000-000-partie-denouee-N21607.html.
- [5] klaus-joern Lange. "The Boolean Formula Value Problem as Formal Language". In: (Jan. 2012). DOI: 10.1007/978-3-642-31644-9_9.
- [6] Christos H. Papadimitriou. *Computational Complexity*. Addison-Wesley Publishing Company, 1994.
- [7] A.J. Kfoury Robert N. Moll Michael A. Arbib. An Introduction to Formal Language Theory. Springer-Verlag, 1988.