Lesson 5-Unit 2 – Derivatives (3)

Derivatives of exponential and trigonometric functions

Review of Exponential Functions

The exponential function is defined as: $y = f(x) = b^x$; $b > 0, b \ne 1$. The graph of the exponential function is represented below:

The x-axis (y = 0) is a horizontal asymptote.

Number e

The number e is defined by:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1}$$

which can be written also as:

$$e = \lim_{u \to 0} (1 + u)^{\frac{1}{u}}$$
 (2)

Exponential Function

The exponential function e^x may be evaluate using the limit:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \tag{3}$$

Derivative of e^x

$$(e^x)' = e^x \tag{4}$$

Proof

$$\begin{split} &\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} \frac{e^x (e^h - 1)}{h} = (\lim_{h \to 0} e^x) (\lim_{h \to 0} \frac{e^h - 1}{h}) = e^x \\ &\text{We used that } \lim_{h \to 0} \frac{e^h - 1}{h} = 1 \text{(substitute h by } \pm 0.1, \, \pm 0.01, \, \pm 0.001 \text{ to estimate } \frac{e^h - 1}{h} \text{)}. \end{split}$$

Derivative of $e^{f(x)}$

Calculus Class 5 Notes

$$(e^{f(x)})' = e^{f(x)}f'(x).$$

Ex. Differentiate and simplify.

a.
$$x^3 e^x$$

 $(x^3 e^x)' = 3x^2 e^x + x^3 e^x = (3x^2 + x^3)e^x$
b. $e^{x^2 + x + 2}$
 $(e^{x^2 + x + 2})' = (2x + 1) e^{x^2 + x + 2}$

Derivative of b^x , $b > 0, b \neq 1$

$$(b^x)' = b^x \ln b$$

Proof

$$(b^x)' = (e^{x \ln b})' = e^{x \ln b} \ln b = b^x \ln b$$

Review of Logarithmic Function

$$y = b^x \Leftrightarrow x = \log_b y$$

 $y = f(x) = \log_b y$, $b > 0, b \ne 1, x > 0$

Derivative of $\ln x$

$$(\ln x)' = \frac{1}{x}$$

Proof

$$y = \ln x \implies x = e^y$$

 $x' = (e^y)' \implies 1 = e^y y' \implies y' = \frac{1}{e^y} \implies y' = \frac{1}{x}$

Calculus Class 5 Notes

Derivative of $\log_b x$

$$(\log_b x)' = \frac{1}{x \ln b}$$

(Hint:
$$\log_b x = \frac{\ln x}{\ln b}$$
)

Derivative of Trigonometric Functions

Review of Trigonometric Functions

 $\sin x : \mathbb{R} \Rightarrow [-1, 1], \qquad \sin(x + 2\pi) = \sin x$

 $\cos x : \mathbb{R} \Rightarrow [-1, 1], \qquad \cos(x + 2\pi) = \cos x$

Derivative of $\sin x$ and $\cos x$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

Proof

$$\lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h + \sin h \cos x - \sin x}{h} = (\lim_{h \to 0} \sin x)(\lim_{h \to 0} \frac{(\cos h - 1)}{h} + (\lim_{h \to 0} \cos x)(\lim_{h \to 0} \frac{\sin h}{h})$$

$$= \cos x$$

Ex. Differentiate.

a.
$$x^2 \tan x$$

Calculus Class 5 Notes

- b. $\cot x$
- c. $\tan \sqrt{x^2 + 1}$

Solution

a.
$$(x^2 \tan x)' = 2x \tan x + x^2 (\tan x)'$$

 $= 2x \tan x + x^2 (\frac{\sin x}{\cos x})'$
 $= 2x \tan x + x^2 (\frac{\sin^2 x + \cos^2 x}{\cos^2 x})$
 $= 2x \tan x + \frac{x^2}{\cos^2 x}$
b. $(\cot x)' = -\frac{1}{\sin^2 x}$
c. $(\tan \sqrt{x^2 + 1})' = \frac{1}{\cos^2 \sqrt{x^2 + 1}} (\sqrt{x^2 + 1})'$
 $= \frac{x}{\sqrt{x^2 + 1} \cos^2 \sqrt{x^2 + 1}}$.

b.
$$(\cot x)' = -\frac{1}{\sin^2 x}$$

c.
$$(\tan \sqrt{x^2 + 1})' = \frac{1}{\cos^2 \sqrt{x^2 + 1}} (\sqrt{x^2 + 1})'$$

= $\frac{1}{\sqrt{x^2 + 1}\cos^2 \sqrt{x^2 + 1}}$.