Sampling

Dr. Bashar Al-Shboul The University of Jordan

Example

• Consider a population consisting of the values 3, 5, 9, 11 and 14. For his data set, we have $\mu = 8.4$ and $\sigma = 4.4497$. Suppose we want to take samples of size 2 from this population. Find all possible pairs and find the mean for each sample.

Pair	3,5	3,9	3,11	3,14	5,9	5,11	5,14	9,11	9,14	11,14
X	4	6	7	8.5	7	8	9.5	10	11.5	12.5

- What is the mean of all the possible values of x for these samples of size two and what is the standard deviation?
- Mean = 8.4
- Std = 2.569

Example

• Consider a population consisting of the values 3, 5, 9, 11 and 14. For his data set, we have μ = 8.4 and σ = 4.4497. Suppose we want to take samples of size 2 from this population. Find all possible pairs and find the mean for each sample.

Pair	3,5,9	3,5,11	3,5,14	3,9,11	3,9,14	3,11,14	5,9,11	5,9,14	5,11,14	9,11,14
X	5.67	6.33	7.33	7.67	8.67	9.33	8.33	9.33	10	11.33

- What is the mean of all the possible values of x for these samples of size two and what is the standard deviation?
- Mean = 8.4
- Std = 1.713

- Suppose that x is the mean of a simple random sample of size n drawn from a large population. If the population mean is μ and the population standard deviation is σ , then the mean of the sampling distribution of x is $\mu = \mu$ and the standard deviation of the sampling distribution is $\sigma = \sigma$ / sqrt(N)
- If our original population has a normal distribution, the sample mean's distribution is N (μ , σ / sqrt(N))
- An unbiased statistic is a statistic used to estimate a parameter in such a
 way that mean of its sampling distribution is equal to the true value of
 the parameter being estimated. We consider the above values to be
 unbiased estimates of our distribution.

- The **Central Limit Theorem** states that if we draw a simple random sample of size n from any population with mean μ . and standard deviation σ , when n is large the sampling distribution of the sample mean is close to the normal distribution $N(\mu, \sigma / \text{sqrt}(N))$.
- Determining whether n is large enough for the central limit theorem. to apply depends on the original population distribution.
- The more the population distribution's shape is from being normal, the larger the needed sample size will be.
- A rule of thumb is that n > 30 will be large enough.

• The mean TOEFL score of international students at a certain university is normally distributed with a mean of 490 and a standard deviation of 80. Suppose groups of 30 students are studied. Find the mean and the standard deviation for the distribution of sample means.

- Mean = 490
- Std = 80 / Sqrt(30)

- A waiter estimates that his average tip per table is \$20 with a standard deviation of \$4. If we take samples of 9 tables at a time, calculate the following probabilities when the tip per table is normally distributed.
 - What is the probability that the average tip for one table is less than \$21?
 - P(X<21) = 0.7734
 - What is the probability that the average tip for one table is more
 - P(X>21) = 0.2266
 - What is the probability that the average tip for one table is between \$19 and \$21? than \$21?
 - P(19 < X < 21) = 0.5468