- **Задача 1.** Даны две различные проективные прямые l и m в проективной плоскости, пересекающиеся в точке S, и дано перспективное отображение $\bar{f}: l \xrightarrow{\sim} m$ с центром $A \not\in l \cup m$. (По определению, образом произвольной точки $X \in l_1$ при отображении F является точка $Y = (AX) \cap m$.) Докажите, что \bar{f} является проективным отображением.
- **Задача 2.** Дана проективная прямая l в проективной плоскости (над полем \mathbb{C}), и дано проективное преобразование $F: l \xrightarrow{\sim} l$. В композицию какого минимального числа перспектив можно разложить преобразование F?
- **Задача 3.** Сколько неподвижных точек может иметь произвольное нетождественное проективное преобразование f проективной прямой \mathbb{P}^1 :
- а) над произвольным основным полем ${\bf k}$,
- б) над алгебраически замкнутым полем k?
- в) Ответьте на вопросы а) и б), когда f инволюция.
- Задача 4. Два треугольника ABC и A'B'C' на проективной плоскости называются перспективными, если прямые AA', BB' и CC' пересекаются в одной точке. Пусть треугольники ABC и A'B'C' перспективны. Обозначим точки пересечения соответственных прямых этих треугольников: $M = AB \cap A'B'$, $N = BC \cap B'C'$, $P = AC \cap A'C'$. Докажите теорему Дезарга, которая утверждает, что точки M, N и P коллинеарны.

