Support Vector Machines (SVM): Lecture Notes

1. Intuition Behind SVM

Support Vector Machines (SVM) are supervised learning algorithms used for classification and regression. The core idea is to find the **best decision boundary** (hyperplane) that separates data points from different classes with the **maximum margin**.

Key Concepts

- **Hyperplane:** In a 2D space, it is a line; in a 3D space, it is a plane; in higher dimensions, it is a hyperplane. The hyperplane separates the feature space into regions for different classes.
- Margin: The margin is the perpendicular distance between the hyperplane and the closest data points (called **support vectors**). SVM maximizes this margin.
- **Support Vectors:** These are the data points closest to the hyperplane. Only support vectors influence the position and orientation of the hyperplane.

2. Formulating the Optimization Problem

Hyperplane Representation

The hyperplane is represented as:

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

where:

- w is the weight vector, which determines the orientation of the hyperplane.
- \bullet b is the **bias term**, which shifts the hyperplane.
- x is a point in the feature space.

Classification Condition

For correct classification:

- For $y_i = +1$: $\mathbf{w} \cdot \mathbf{x}_i + b \ge 1$,
- For $y_i = -1$: $\mathbf{w} \cdot \mathbf{x}_i + b \le -1$.

These can be combined into a single constraint:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$

Margin Maximization

The margin width is given by:

$$Margin Width = \frac{2}{\|\mathbf{w}\|}$$

Maximizing the margin is equivalent to minimizing $\frac{1}{2} \|\mathbf{w}\|^2$. The optimization problem becomes:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 1 \quad \forall i$$

3. Solving Using Lagrange Multipliers

To handle the constraints, we use **Lagrange multipliers** $\alpha_i \geq 0$. The Lagrangian is:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i \left[y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \right]$$

Stationarity Conditions

1. With respect to w:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$

Solve for \mathbf{w} :

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

2. With respect to b:

$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i = 0$$

This implies:

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Dual Problem

Substitute $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ into the Lagrangian to eliminate \mathbf{w} . The dual problem becomes:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i \cdot \mathbf{x}_j)$$

subject to:

$$\sum_{i=1}^{n} \alpha_i y_i = 0 \quad \text{and} \quad \alpha_i \ge 0 \quad \forall i$$

4. Computing w and b

Weight Vector w

Once α_i is obtained from the dual problem, compute:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

Bias b

To compute b, choose any support vector \mathbf{x}_k (where $\alpha_k > 0$):

$$b = y_k - \sum_{i=1}^n \alpha_i y_i (\mathbf{x}_i \cdot \mathbf{x}_k)$$

5. Classifying New Data Points

For a new data point \mathbf{x} , the decision function is:

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$$

Classify based on the sign of $f(\mathbf{x})$:

- If $f(\mathbf{x}) > 0$, predict y = +1,
- If $f(\mathbf{x}) < 0$, predict y = -1.

6. What is w?

The vector \mathbf{w} in SVM is a key parameter of the model that determines the orientation of the hyperplane. It has the following characteristics:

Geometric Interpretation

- w is the normal vector to the hyperplane, meaning it is perpendicular to the decision boundary.
- The direction of w determines which side of the hyperplane corresponds to each class:

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$$

- If $f(\mathbf{x}) > 0$, \mathbf{x} is classified as +1. If $f(\mathbf{x}) < 0$, \mathbf{x} is classified as -1.
- The magnitude $\|\mathbf{w}\|$ is inversely related to the margin width. A smaller $\|\mathbf{w}\|$ implies a larger margin:

$$Margin\ Width = \frac{2}{\|\mathbf{w}\|}$$

Mathematical Derivation

• w is computed as a weighted sum of the support vectors:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

where:

- $-\alpha_i > 0$: Lagrange multipliers for support vectors.
- $-y_i$: Class label (+1 or -1).
- $-\mathbf{x}_{i}$: Feature vector of a support vector.
- Non-support vectors $(\alpha_i = 0)$ do not contribute to **w**.

Importance of w

- w encodes the direction of the hyperplane and is essential for classification.
- It determines the influence of each feature on the classification decision.
- ullet The SVM training process focuses on finding ullet that maximizes the margin while satisfying the constraints.

7. Summary

- SVM aims to find the hyperplane that maximizes the margin.
- The optimization problem is solved using Lagrange multipliers, leading to the dual problem.
- \bullet The final classifier is based on the weight vector \mathbf{w} and bias b, with contributions primarily from the support vectors.