Report Name: Midpoint Circle Drawing Algorithm

Procedure:

Given:

Center point of circle = $\langle (x_0, y_0) \rangle$ Radius of circle = $\langle (R \rangle)$

Step 1:

Assign the starting point coordinates $((x_0, y_0))$ as:

$$(x_0 = 0, y_0 = R)$$

Step 2:

Calculate the value of the initial decision parameter:

\(P
$$0 = 1 - R \)$$

Step 3:

The current point is $\langle (x_k, y_k) \rangle$, and the next point is $\langle (x_{k+1}, y_{k+1}) \rangle$. Here, two cases exist:

Case 1:

Case 2:

Step 4:

If the given center point $\ ((x_0, y_0))\$ is not $\ ((0, 0))\$, then adjust and plot the points as:

$$(x_{\text{plot}}) = x + x_0$$

```
\( y_{\text{plot}} = y + y_0 \)
*Step 5:*
```

Keep repeating steps 3 and 4 until \(x_{plot} \\ \geq y_{plot} \\).

Step 6:

Step 5 generates all points for one octant. Using symmetry, plot points for all eight octan

Report Name: Bresenham Circle Drawing Algorithm

Procedure:

Given the center point of the circle = (x_0, y_0)

Radius of the circle = R

Step 1: Assign the starting point coordinates (x_0, y_0) as:

$$-x_0 = 0, y_0 = R$$

Step 2: Calculate the value of the initial decision parameter p₀ as:

$$-p_0 = 3 - 2 \times R$$

Step 3: The current point is $(x \square, y \square)$, and the next point is $(x \square_{+1}, y \square_{+1})$. Decision parameter $p \square$:

Follow two cases:

- *Case 1:* If
$$p \square < 0$$

$$x \square_{+1} = x \square + 1$$

$$y\square_{+1}=y\square$$

$$p_{\,\square_{\,+1}}\!=p_{\,\square}\,+4\times x_{\,\square_{\,+1}}\!+6$$

- *Case 2:* If
$$p$$
□ >= 0

$$x \square_{+1} = x \square + 1$$

$$y\square_{+1}=y\square$$
 - 1

$$p_{\Box_{+1}} = p_{\Box} + 4 \times (x_{\Box_{+1}} - y_{\Box_{+1}}) + 10$$

Step 4: If the given input point (x_0, y_0) is not (0, 0), then do the following and plot the points:

$$- x \square \square_o \square = x_e + x_0$$

$$-y \square \square_{o} \square = y_{e} + y_{0}$$

Where x_e , y_e are the current values of $x \square$, $y \square$.

Step 5:Keep repeating *Step 3* and *Step 4* until $x \square \square_o \square \neq y \square \square_o \square$.

^{*}Step 6:* *Step 5* generates all the points for one octant.

Report Name: 2D Translation

Procedure:

Let initial coordinates of the object = $(x_o \square_x, y_o \square_o)$

New coordinates of the object after translation = $(x \square_{ev}, y \square_{ev})$ Translation vector = (T_x, T_y)

Given a translation vector (T_x, T_y) :

-
$$\chi \square_{ev} = \chi_o \square_o + T_x$$

-
$$y \square_{ev} = y_o \square_o + T_\gamma$$

Code:

```
rectangle(p[0][0], p[0][1], p[1][0], p[1][1]);

p[0][0] = p[0][0] + T[0];

p[0][1] = p[0][1] + T[1];

p[1][0] = p[1][0] + T[0];

p[1][1] = p[1][1] + T[1];

rectangle(p[0][0], p[0][1], p[1][0], p[1][1]);
```

Report Name: Scaling in 2D Translation

Procedure:

Let initial coordinates of the object = $(x_o \square_o, y_o \square_o)$

```
Scaling factor for x-axis = S_x
Scaling factor for y-axis = S_y
```

New coordinates of the object after scaling = $(x \square_{ev}, y \square_{ev})$

This scaling is achieved by:

$$- x \square_{ev} = x_o \square_o \times S_x$$
$$- y \square_{ev} = y_o \square_o \times S_\gamma$$

Code:

```
void Scale(float x, float y, float S_x, float S_y) { float x \square_{ev} = x * S_x; float y \square_{ev} = y * S_y; Scale(x, y, S_x, S_y); }
```