Series 6

Sylvain Julmy

1

a)

We consider that 0 is divisible by 2 and by 3.

b)

2

a)

b)

 $\mathbf{c})$

Each state represent a number from 0 to 4 (the rest of the division by 5) and then we encode the number from 0 to 9 in order to recover the correct result after the division by 5. If $n \equiv 0$ mod 5 then it binary string reach state q_0 .

3

Note: we label with [0-9] the transitions when we encounter a digit and by [a-z] the ones when we encounter a letter. We also denote by Σ^* any possible symbol from the alphabet.

a)

b)

c)

	0	1
$\overline{\{p\}}$	$\{p,q\}$	p
$\{p,q\}$	$\{p,q,r\}$	$\{p,r\}$
$\{p,q,r\}$	$\{p,q,r,s\}$	$\{p,r\}$
$\{p,r\}$	$\{p,q,s\}$	$\{p\}$
$\{p,q,s\}$	$\{p,q,s\}$	$\{p,r\}$
$\{p,q,r,s\}$	$\{p,q,r,s\}$	$\{p,r\}$

And we can merge the two accepting state :

5

The NFA:

Transition tables:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline q_0 & \{q_0\} & \{q_0,q_1\} \\ q_1 & \{q_2\} & \{q_2\} \\ q_2 & \{q_3\} & \{q_3\} \\ q_3 & \emptyset & \emptyset \\ \end{array}$$

We can't proceed further reduction on the state because we can't merge accepting and non-accepting states.