Complementi di Algebra 1

APPUNTI DEL CORSO DI ALGEBRA 1 TENUTO DALLA PROF. DEL CORSO E DAL PROF. LOMBARDO

Leonardo Migliorini l.migliorini@studenti.unipi.it

Anno Accademico 2022-23

Indice

1	Insiemi di generatori	3
2	Automorfismi di $(\mathbb{Z}/p\mathbb{Z})^n$	3
3	Gruppo diedrale	4
	3.1 Elementi del gruppo	4
	3.2 Sottogruppi	6
	3.3 Classi di coniugio	9
	3.4 Legge di gruppo e omomorfismi	10
	3.5 Automorfismi	11
4	Automorfismi di un prodotto diretto	12
5	Azioni transitive	15

§1 Insiemi di generatori

Definizione 1.1. Dati un gruppo G e x_1, \ldots, x_n elementi di G, chiamiamo sottogruppo generato da x_1, \ldots, x_n il più piccolo sottogruppo $\langle x_1, \ldots, x_n \rangle$ di G contenente x_1, \ldots, x_n , cioè

$$\langle x_1, \dots, x_n \rangle = \bigcap_{\substack{H \leq G \\ \{x_1, \dots, x_n\} \subseteq H}} H$$

Osservazione 1.2 — La definizione è ben posta, infatti l'intersezione avviene su una famiglia non vuota di insiemi dal momento che G è un sottogruppo di se stesso contenente x_1, \ldots, x_n . Inoltre l'intersezione non è vuota in quanto contiene almeno l'identità e gli elementi x_1, \ldots, x_n .

La definizione data non dà informazioni su come sono fatti gli elementi di $\langle x_1, \ldots, x_n \rangle$, cerchiamo quindi di caratterizzare in modo diverso tale sottogruppo. Poiché chiuso per l'operazione indotta da $G, \langle x_1, \ldots, x_n \rangle$ deve contenere tutti i prodotti finiti, in qualsiasi ordine, delle potenze di x_1, \ldots, x_n , cioè deve contenere l'insieme

$$\{g_1^{\pm 1}, \dots, g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\}\}$$

Proposizione 1.3

Dati un gruppo G e x_1, \ldots, x_n elementi di G, allora

$$\langle x_1, \dots, x_n \rangle = \{ g_1^{\pm 1}, \dots, g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\} \}$$

Dimostrazione. Poniamo $S = \{g_1^{\pm 1}, \dots, g_r^{\pm 1} \mid r \in \mathbb{N}, g_i \in \{x_1, \dots, x_n\} \ \forall i \in \{1, \dots, r\}\}$, mostriamo che S è un sottogruppo di G. Effettivamente $e \in S$ in quanto è prodotto nessuna potenza di x_1, \dots, x_n , il prodotto di due elementi di S è ancora un elemento di S in quanto prodotto finito di potenze di x_1, \dots, x_n e l'inverso di un elemento $g_1^{\pm 1} \dots g_r^{\pm 1} \in S$ è $(g_1^{\pm 1} \dots g_r^{\pm 1})^{-1} = g_r^{\mp 1} \dots g_1^{\mp 1}$, che è un elemento di S. Abbiamo quindi che S è un sottogruppo di G contenente x_1, \dots, x_n , pertanto $\langle x_1, \dots, x_n \rangle \subseteq S$ per minimalità di $\langle x_1, \dots, x_n \rangle$. D'altra parte, per quanto osservato sopra abbiamo che tutti gli elementi della forma $g_1^{\pm 1} \dots g_r^{\pm 1}$ con $r \in \mathbb{N}$, $g_i \in \{x_1, \dots, x_n\}$ per ogni $i \in \{1, \dots, r\}$ devono essere contenuti in $\langle x_1, \dots, x_n \rangle$, pertanto i due sottogruppi coincidono.

Osservazione 1.4 — Se G è un gruppo ciclico abbiamo che esiste $x \in G$ tale che $\langle x \rangle = G$, cioè tutti gli elementi di G sono potenze di x.

Diciamo che $x_1, \ldots, x_n \in G$ sono **generatori** per G, o che l'insieme $\{x_1, \ldots, x_n\}$ **genera** G se $\langle x_1, \ldots, x_n \rangle = G$.

§2 Automorfismi di $(\mathbb{Z}/p\mathbb{Z})^n$

Dato p un primo, vogliamo determinare quanti sono gli automorfismi di $(\mathbb{Z}/p\mathbb{Z})^n$, per fare ciò è conveniente definire una struttura di spazio vettoriale, quindi un prodotto per scalari

$$: \mathbb{Z}/p\mathbb{Z} \times (\mathbb{Z}/p\mathbb{Z})^n \longrightarrow (\mathbb{Z}/p\mathbb{Z})^n : (\overline{\lambda}, v) \longmapsto \overline{\lambda}v$$

con $\overline{\lambda}v=\underbrace{v+\ldots+v}_{\tilde{\lambda}\text{ volte}}$ e $\tilde{\lambda}$ un qualsiasi rappresentante di $\overline{\lambda}$. Tale prodotto è ben definito,

infatti se $\lambda, \lambda' \in \mathbb{Z}$ sono tali che $\overline{\lambda} = \overline{\lambda'}$, cioè esiste $k \in \mathbb{Z}$ tale che $\lambda = \lambda' + kp$, allora

$$\overline{\lambda'}v = \underbrace{v + \ldots + v}_{\lambda' \text{ volte}} = \underbrace{v + \ldots + v}_{\lambda + kp \text{ volte}} = \underbrace{v + \ldots + v}_{\lambda \text{ volte}}$$

in quanto $\underbrace{v+\ldots+v}_{kp \text{ volte}}=0$. Si verifica che $((\mathbb{Z}/p\mathbb{Z})^n,+,\cdot)$ è effettivamente uno spazio

vettoriale sul campo $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ (dove · è il prodotto per scalari appena definito). Per come abbiamo definito il prodotto per scalari, abbiamo che per ogni $\varphi \in Aut((\mathbb{Z}/p\mathbb{Z})^n)$ vale $\varphi(\lambda v) = \lambda \varphi(v)$ per ogni $\lambda \in \mathbb{F}_p$, pertanto

$$Aut((\mathbb{Z}/p\mathbb{Z})^n) = GL((\mathbb{F}_p)^n) = \{\varphi : (\mathbb{F}_p)^n \longrightarrow (\mathbb{F}_p)^n \mid \varphi \text{ isomorfismo di spazi vettoriali}\}.$$

Poiché $GL((\mathbb{F}_p)^n) \cong GL_n(\mathbb{F}_p) = \{M \in M_{n \times n}(\mathbb{F}_p) \mid \det M \neq 0\}$ possiamo rappresentare ogni automorfismo di $(\mathbb{Z}/p\mathbb{Z})^n$ con una matrice invertibile di taglia $n \times n$ a coefficienti in \mathbb{F}_p .

Proposizione 2.1

Dato p un primo, allora

$$|Aut((\mathbb{Z}/p\mathbb{Z})^n)| = \prod_{i=0}^{n-1} (p^n - p^i)$$

Dimostrazione. Osserviamo che un elemento di $Aut((\mathbb{Z}/p\mathbb{Z})^n)$ deve necessariamente mandare una base di $(\mathbb{Z}/p\mathbb{Z})^n$ in un'altra base, e si dermina univocamente in questo modo. Sia $\{v_1,\ldots,v_n\}$ una base di $(\mathbb{Z}/p\mathbb{Z})^n$ e $\varphi\in Aut((\mathbb{Z}/p\mathbb{Z})^n)$, consideriamo $\varphi(v_1)$: $\varphi(1)$ può assumere qualsiasi valore non nullo, pertanto abbiamo (p^n-1) possibilità per l'immagine del primo vettore. Per quanto riguarda v_2 , $\varphi(v_2)$ può assumere qualsiasi valore non nullo che non sia multiplo di $\varphi(v_1)$, che sono p^n-p , analogamente $\varphi(v_3)$ può assumere qualsiasi valore non nullo che non sia combinazione lineare di v_1 e v_2 , che sono p^n-p^2 , e così via. Reiteriamo questo ragionamento fino a $\varphi(v_n)$, che può essere scelto in p^n-p^{n-1} modi, da cui

$$|Aut((\mathbb{Z}/p\mathbb{Z})^n)| = \prod_{i=0}^{n-1} (p^n - p^i)$$

§3 Gruppo diedrale

§3.1 Elementi del gruppo

Definizione 3.1. Dato $n \ge 2$ un naturale, consideriamo un poligono regolare di n vertici, definiamo il **gruppo diedrale** su n vertici D_n come l'insieme delle isometrie del piano che mandano i vertici in se stessi, cioè che fissano il poligono (per n=2 consideriamo le isometrie che mandano un segmento in se stesso).

Osservazione 3.2 — D_n è un gruppo, in quanto l'applicazione identità che fissa tutti i vertici è un'isometria dal poligono in se stesso, la composizione di isometrie è un'isometria e un'isometria ammette sempre un'inversa, che è anch'essa un'isometria.

Osservazione 3.3 — Una rotazione di angolo $\frac{2\pi}{n}$ è un elemento di D_n , così come una simmetria rispetto a un asse.

Proseguendo con questa intuizione geometrica, indicheremo con r una rotazione di angolo $\frac{2\pi}{n}$ e con s una simmetria rispetto a un qualsiasi asse. Notiamo che ord(r) = n e ord(s) = 2 (per convenzione, indichiamo con un angolo positivo una rotazione in senso antiorario e con un angolo negativo una rotazione in senso orario).

Definizione 3.4. Data $r \in D_n$ una rotazione di ordine n, indichiamo con \mathcal{R} il sottogruppo delle rotazioni $\langle r \rangle$.

Osservazione 3.5 — Il sottogruppo \mathcal{R} contiene tutte le rotazioni di D_n , infatti se r' è una rotazione di angolo $\frac{2k\pi}{n}$, $k \in \mathbb{Z}$, allora $r^k = r'$ in quanto anche r^k è una rotazione di angolo $\frac{2k\pi}{n}$.

Per determinare come sono fatti gli elementi di D_n , studiamo il sottogruppo $\langle r, s \rangle$. Sicuramente $\langle r, s \rangle$ contiene il sottogruppo \mathcal{R} e tutti gli elementi della forma sr^k , sr^ks , sr^ksr^h e così via, vogliamo mostrare che in effetti D_n è generato da r e s.

Osservazione 3.6 — Gli elementi della forma r^k e sr^h sono distinti per ogni $h, k \in \mathbb{Z}$. Infatti sappiamo dall'algebra lineare che il determinante di una simmetria è -1 e che il determinante di una rotazione è 1, per la moltiplicatività del determinante quindi $\det(r^k) = (\det r)^k = 1$ e $\det(sr^h) = (\det s)(\det r)^h = -1$, da cui $r^k \neq sr^h$.

Lemma 3.7

Per ogni rotazione $r \in D_n$ e per ogni simmetria $s \in D_n$ vale

$$srs^{-1} = r^{-1}$$

Dimostrazione.

$$srs^{-1} = r^{-1} \iff sr = r^{-1}s = (s^{-1}r)^{-1}$$

si conclude osservando che $s^2 = 1$, pertanto $s^{-1} = s$ e

$$(s^{-1}r)^{-1} = (sr)^{-1} = r^{-1}s^{-1} = r^{-1}s$$

Proposizione 3.8

Se $n \geqslant 3$ allora $|D_n| = 2n$.

Dimostrazione. Indicando con $1, \ldots, n$ gli n vertici di un poligono regolare di n lati, notiamo che un elemento $g \in D_n$ è univocamente determinato da $g(1), \ldots, g(n)$. In particolare, fissato g(1), per il quale abbiamo n possibili scelte, abbiamo al massimo due valori per g(2), cioè $g(2) \in \{g(1) + 1, g(1) - 1\}$ (a meno di sommare n se uno dei due elementi è negativo). Poiché g(1) e g(2) individuano due vettori nel piano non allineati, cioè linearmente indipendenti, ne costituiscono una base: fissati i valori di g(1) e g(2) abbiamo quindi determinato ogni elemento di D_n in modo unico e, poiché possiamo farlo in al più 2n modi, $|D_n| \leq 2n$. Ricordiamo adesso che D_n contiene gli elementi della forma r^k , sr^h al variare di $h, k \in \mathbb{Z}$, mostriamo che questi sono infatti 2n. Gli elementi r^k appartengono al gruppo ciclico \mathcal{R} di ordine n, pertanto sono n elementi distinti, inoltre

$$sr^i = sr^j \iff r^i = r^j \iff i \equiv j \mod n$$

pertanto anche questi sono n elementi distinti. Allora $|D_n| = 2n$.

Osservazione 3.9 — Abbiamo mostrato che effettivamente $D_n = \langle r, s \rangle$, quindi i suoi elementi sono tutti della forma r^k , sr^h al variare di $h, k \in \mathbb{Z}$.

Osservazione 3.10 — Il risultato è valido anche per D_2 , ma con motivazioni diverse. Se consideriamo un segmento nel piano \mathbb{R}^2 giacente sulla retta y=0, le isometrie che possiamo applicare sono l'identità, la rotazione di angolo π , la simmetria lungo la retta y=0 e la simmetria lungo l'asse passante per il suo punto medio. D_2 contiene quindi quattro elementi, l'identità e tre elementi di ordine 2, pertanto è isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

§3.2 Sottogruppi

Consideriamo un sottogruppo $H \leq D_n$, distinguiamo due possibilità: $H \subseteq \mathcal{R}$ oppure $H \nsubseteq \mathcal{R}$. Nel primo caso abbiamo che $|H| \mid n$, ed è l'unico sottogruppo di \mathcal{R} con questa proprietà in quanto \mathcal{R} è ciclico, in particolare H è ciclico della forma $\left\langle \frac{n}{d} \right\rangle$, con $d \mid n$. Studiamo quindi il caso $H \nsubseteq \mathcal{R}$: notiamo che $\mathcal{R} \leq D_n$ in quanto $[D_n : \mathcal{R}] = 2$, pertanto $D_n \not\sim \mathcal{R}$ è un gruppo con l'operazione indotta da D_n e risulta essere isomorfo a $\mathbb{Z}/2\mathbb{Z}$. Consideriamo la proiezione al quoziente

$$\pi_{\mathcal{R}}: D_n \longrightarrow D_n/_{\mathcal{R}}: g \mapsto [g]$$

poiché $H \nsubseteq \mathcal{R}$ abbiamo che esiste $h \in H$ tale che $h \notin \mathcal{R}$, pertanto $\pi_{\mathcal{R}}(h) \notin [\mathcal{R}]$ e in particolare $\pi_{\mathcal{R}}(H) \nsubseteq [\mathcal{R}]$. Dato che i sottogruppi di $D_n/_{\mathcal{R}}$ sono solo $\{[\mathcal{R}]\}$ e $D_n/_{\mathcal{R}}$ abbiamo $\pi_{\mathcal{R}}(H) = D_n/_{\mathcal{R}}$. Osserviamo inoltre che ker $\pi_{|H} = \ker \pi \cap H = \mathcal{R} \cap H$, per il Primo Teorema di Omomorfismo allora $H/_{H \cap \mathcal{R}} \cong \mathbb{Z}/2\mathbb{Z}$, quindi $|H \cap \mathcal{R}| = \frac{1}{2}|H|$. Dato che $R \cap H \subseteq \mathcal{R}$, esiste $k \in \mathbb{Z}$ tale che $H \cap \mathcal{R} = \langle r^k \rangle$ in particolare $\langle r^k \rangle$ e $\langle sr^h \rangle$, $h \in \mathbb{Z}$, sono contenuti in H.

Proposizione 3.11

Dati $H \leq D_n$ un sottogruppo tale che $H \nsubseteq \mathcal{R}$, se r è un generatore di \mathcal{R} tale che $H \cap \mathcal{R} = \langle r^k \rangle$ e s è una simmetria allora

$$H = \langle r^k \rangle \cdot \langle sr^h \rangle = \{ xy \mid x \in \langle r^k \rangle, y \in \langle sr^h \rangle \}, h, k \in \mathbb{Z}$$

Dimostrazione. Per quanto visto sopra abbiamo che $|\langle r^k \rangle| = \frac{1}{2}|H|$, inoltre osserviamo che ord $(sr^h) = 2$ in quanto

$$(sr^h)^2 = sr^h sr^h = (srs)^h r^h = (srs^{-1})^h r^h = r^{-h} r^h = e$$

pertanto $\langle sr^h \rangle \cong \mathbb{Z}/2\mathbb{Z}$. Da questo ricaviamo $\langle sr^h \rangle \subseteq N_{D_n}(\langle r^k \rangle)$, infatti per ogni $m \in \mathbb{Z}$ abbiamo

$$(sr^h)r^{mk}(sr^h)^{-1}=sr^{h+mk}sr^h=r^{-h-mk}r^h=r^{-mk}\in\langle r^k\rangle$$

cioè $\langle sr^h \rangle \subseteq N_{D_n}(\langle r^k \rangle)$ e quindi $\langle r^k \rangle \cdot \langle sr^h \rangle$ è un sottogruppo di D_n^1 . Poiché $\langle r^k \rangle$ e $\langle sr^h \rangle$ sono contenuti in H abbiamo che $\langle r^k \rangle \cdot \langle sr^h \rangle \subseteq H$, inoltre

$$|\langle r^k \rangle \cdot \langle sr^h \rangle| = \frac{1}{2}|H| \cdot 2 = |H|$$

in quanto $\langle r^k \rangle \cap \langle sr^h \rangle = \{e\}^2$, pertanto i due sottogruppi coincidono.

Osservazione 3.12 — Per $k \mid n \in 0 \leq h < k$, i sottogruppi $H_{k,h} = \langle r^k, sr^h \rangle$ e $H = \langle r^k \rangle \cdot \langle sr^h \rangle$ coincidono. Infatti $H_{k,h} \subseteq H$ in quanto r^k, sr^h sono elementi di H, d'altra parte $H \subseteq H_{k,h}$ in quanto $H_{h,k}$ contiene tutti i prodotti finiti delle potenze di r^k e sr^h , in particolare gli elementi di H.

Osservazione 3.13 — Per $k \mid n \in 0 \leqslant h < k, \langle r^k, sr^h \rangle = \langle r^k, sr^{h+k} \rangle$. Infatti $\langle r^k, sr^h \rangle \subseteq \langle r^k, sr^{h+k} \rangle$ in quanto $sr^h = (sr^{h+k})r^{-k}$ è un elemento del secondo gruppo, simmetricamente $\langle r^k, sr^{h+k} \rangle \subseteq \langle r^k, sr^h \rangle$ in quanto $sr^{h+k} = (sr^h)r^k$ è un elemento del primo gruppo.

Teorema 3.14 (Classificazione dei sottogruppi di D_n)

I sottogruppi di D_n sono della forma

- (1) $\langle r^k \rangle \operatorname{con} k \mid n;$
- (2) $\langle r^k, sr^h \rangle$ con $k \mid n, 0 \leqslant h < k$,

con $r \in \mathcal{R}$ e s una simmetria. Inoltre tali sottogruppi sono tutti distinti.

Dimostrazione. Abbiamo già visto che i sottogruppi di D_n hanno una di queste forme, mostriamo quindi che sono tutti distinti. A meno di cambiare k, possiamo supporre che $\mathcal{R} = \langle r \rangle$, cioè ord(r) = n. Consideriamo $H, K \leq D_n$ due sottogruppi, abbiamo tre casi:

¹Dati K, N sottogruppi di un gruppo G, se vale almeno una delle inclusioni $K \subseteq N_G(N)$, $N \subseteq N_G(K)$ allora HK = KH, quindi HK è un sottogruppo di G.

²Se H, K sono sottogruppi finiti di un gruppo G e $HK \leq G$ allora vale $|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$

- se $H = \langle r^k \rangle$ e $K = \langle r^m \rangle$, $m \in \mathbb{Z}$, allora $H = K \iff k = m$ in quanto entrambi sottogruppi di un gruppo ciclico, pertanto esiste un unico sottogruppo della forma $\langle r^k \rangle$ per ogni $k \mid n$;
- se $H = \langle r^k \rangle$ e $K = \langle r^m, sr^h \rangle$, $m \mid n$, allora $H \neq K$ in quanto H è ciclico e K no;
- se $H = \langle r^k, sr^h \rangle$ e $K = \langle r^m, sr^l \rangle$, con $m \mid n \in 0 \leq l < m$, considerando le intersezioni $H \cap \mathcal{R} = \langle r^k \rangle$ e $K \cap \mathcal{R} = \langle r^m \rangle$ abbiamo

$$H \cap \mathcal{R} = K \cap \mathcal{R} \iff \langle r^k \rangle = \langle r^m \rangle \iff k = m$$

Inoltre, se $sr^h \in \langle r^m, sr^l \rangle = \langle r^m \rangle \cdot \langle sr^l \rangle$, allora esiste $t \in \mathbb{Z}$ tale che

$$sr^h = (r^m)^t sr^l \iff sr^h = s^2 r^{mt} sr^l \iff r^h = r^{-mt+l} \iff h \equiv l-mt \mod n$$

da cui ricaviamo $h \equiv l \mod m$ in quanto $m \mid n$. Ma allora h = l dato che $0 \leq h < k$ e $0 \leq l < m$.

Lemma 3.15

Dati un gruppo G e A, B due sottogruppi tali che $A \leq B \leq G$, se $B \leq G$ e A è caratteristico in B allora $A \leq G$.

Dimostrazione. Fissato $g \in G$, consideriamo l'omomorfismo di coniugio

$$\varphi_g: G \longrightarrow G: x \longmapsto gxg^{-1}$$

poiché $B \leq G$ è ben definita la restrizione $\varphi_{g|B} \in Aut(B)$. Dal momento che A è un sottogruppo caratteristico di B abbiamo che $\varphi_{g|B}(A) = \varphi_g(A) = A$, pertanto $A \leq G$. \square

Corollario 3.16

Ogni sottogruppo di \mathcal{R} è normale in D_n .

Dimostrazione. Siano $\langle r^k \rangle$ un sottogruppo di \mathcal{R} e $\varphi \in Aut(\mathcal{R})$, allora $\varphi(\langle r^k \rangle) = \langle r^k \rangle$ in quanto φ preserva l'ordine del sottogruppo e $\langle r^k \rangle$ è l'unico sottogruppo di \mathcal{R} di tale ordine (\mathcal{R} è ciclico), pertanto $\langle r^k \rangle$ è caratteristico in \mathcal{R} . Poiché \mathcal{R} è un sottogruppo normale di D_n , per il Lemma 2.15 abbiamo $\langle r^k \rangle \leqslant D_n$.

Osservazione 3.17 — \mathcal{R} è caratteristico in D_n per $n \geq 3$. Infatti se $\mathcal{R} = \langle r \rangle$, necessariamente $\operatorname{ord}(r) = \operatorname{ord}(\varphi(r))$, da cui $|\langle \varphi(r) \rangle| = n$. Se fosse $\varphi(r) \notin \mathcal{R}$ avremmo $\operatorname{ord}(\varphi(r)) = 2$, quindi $|\varphi(r)| = n = 2$, che è assurdo in quanto $|D_n| = 2n \geq 6$. Questo non è vero per D_2 , che contiene una rotazione e due simmetrie. Poiché $\operatorname{Aut}(D_2) \cong S_3$, esiste un automorfismo che manda la rotazione in una riflessione, quindi che non fissa \mathcal{R} .

Corollario 3.18

Per $k \mid n \in 0 \leq h < k$, il sottogruppo $H_{k,h} = \langle r^k, sr^h \rangle$ è normale in D_n se e solo se $r, s \in N_{D_n}(H_{k,h})$.

Dimostrazione.

- Se $H_{k,h} \leq D_n$ allora $N_{D_n}(H_{k,h}) = D_n$, in particulare $r, s \in N_{D_n}(H_{k,h})$;
- se $r, s \in N_{D_n}(H_{k,h})$, poiché il normalizzatore è un sottogruppo di D_n abbiamo che $D_n = \langle r, s \rangle \subseteq N_{D_n}(H_{k,h})$, pertanto $H_{k,h} \leq D_n$.

Vediamo effettivamente quali sono i sottogruppi normali della forma $\langle r^k, sr^h \rangle$. Consideriamo gli automorfismi di coniugio

$$\varphi_s: D_n \longrightarrow D_n: x \longmapsto sxs^{-1} \qquad \varphi_r: D_n \longrightarrow D_n: x \longmapsto rxr^{-1}$$

e sia $x_1^{\pm 1} \dots x_m^{\pm 1} \in H_{k,h} = \langle r^k, sr^h \rangle$, allora

$$\varphi_s(x_1^{\pm 1} \dots x_m^{\pm 1}) = \varphi_s(x_1)^{\pm 1} \dots \varphi_s(x_m)^{\pm 1} \in \langle srs, r^h s^{-1} \rangle = \langle sr^k s, r^h s^{-1} \rangle = \langle r^k, sr^{-h} \rangle$$

$$\varphi_r(x_1^{\pm 1} \dots x_m^{\pm 1}) = \varphi_r(x_1)^{\pm 1} \dots \varphi_r(x_m)^{\pm 1} \in \langle r^k, rsr^{h-1} \rangle = \langle r^k, sr^{h-2} \rangle$$

Pertanto $H_{k,h} \leq D_n$ se e solo se $\langle r^k, sr^{h-2} \rangle = \langle r^k, sr^{-h} \rangle = \langle r^k, sr^h \rangle$, se e solo se $h \equiv h-2 \mod k$, cioè $k \in \{1,2\}$.

- Se k=1 allora $H_{k,h}=\langle r,s\rangle=D_n;$
- se k=2 (e n pari) allora $H_{k,h}=\langle r^2,sr\rangle$ oppure $H_{k,h}=\langle r^2,s\rangle$.

Osservazione 3.19 — Il secondo caso si presenta solo se n è pari, questo corrisponde al fatto che in un poligono con un numero pari di lati gli assi di simmetria sono per metà passanti per i lati e metà passanti per i vertici opposti. In un poligono con un numero dispari di lati gli assi di simmetria sono tutti passanti per i lati.

§3.3 Classi di coniugio

Abbiamo visto che possiamo scrivere ogni elemento di D_n nella forma $s^h r^k$, dove s è una simmetria e r è una rotazione che genera \mathcal{R} , con $h \in \{0, 1\}$ e $k \in \{0, \dots, n-1\}$ in quanto ord(s) = 2 e ord(r) = n. Inoltre tutti gli elementi della forma sr^h hanno ordine 2.

Consideriamo la classe di coniugio di r, $C_r = \{grg^{-1} \mid g \in D_n\}$, fissato $g \in D_n$ abbiamo due possibili valori per grg^{-1} :

- se $g \in \mathcal{R}$ allora g è una potenza di r, pertanto i due elementi commutano e si ha $grg^{-1} = r$;
- se $g \notin \mathcal{R}$ allora $g = sr^h$ con $h \in \mathbb{Z}$, quindi

$$(sr^h)r(sr^h)^{-1} = (sr^h)r(sr^h) = sr^{h+1}sr^h = s^2r^{-1-h}r^h = r^{-1}$$

cioè $C_r = \{r, r^{-1}\}$. In modo analogo si mostra che $C_{r^k} = \{r^k, r^{-k}\}$ per ogni $k \in \mathbb{Z}$.

Osservazione 3.20 — Se n è pari, scriviamo n=2m e consideriamo la classe di coniugio di r^m . Poiché $r^m \neq e$ e $r^{2m} = (r^m)^2 = e$ abbiamo che ord $(r^m) = 2$, cioè $(r^m)^{-1} = r^m$. Allora $C_{r^m} = \{r^m\}$, pertanto abbiamo trovato un elemento del centro di D_n (infatti se G è un gruppo e $x \in G$, allora $x \in Z(G)$ se e solo se $C_x = \{x\}$).

Consideriamo adesso la classe di coniugio di sr^h , $C_{sr^h} = \{g(sr^h)g^{-1} \mid g \in D_n\}$, fissato $g \in D_n$ abbiamo due possibili valori per $g(sr^h)g^{-1}$:

• se $g \in \mathcal{R}$ allora $g = r^k$ con $k \in \mathbb{Z}$, pertanto

$$r^k(sr^h)r^{-k} = sr^{-k}r^hr^{-k} = sr^{h-2k}$$

• se $g \notin \mathcal{R}$ allora $g = sr^k$ con $k \in \mathbb{Z}$, pertanto

$$(sr^k)(sr^h)(sr^k)^{-1} = (sr^k)(sr^h)(sr^k) = sr^{2k-h}$$

cioè $C_{sr^k} = \{sr^{h-2k}, sr^{2k-h} \mid k \in \mathbb{Z}\}.$

Osservazione 3.21 — La classe di coniugio di sr^h contiene tutte le simmetrie in cui l'esponente di r ha la stessa parità di h. Se n è dispari tutte le simmetrie appartengono alla stessa classe, mentre se n è pari abbiamo due classi distinte: quella delle simmetrie rispetto agli assi passanti per i vertici opposti e quella delle simmetrie rispetto agli assi passanti per i lati.

§3.4 Legge di gruppo e omomorfismi

Se g è un elemento di D_n possiamo scrivere g in modo unico come $s^a r^b$ con $a \in \{0, 1\}$ e $b \in \{0, \ldots, n-1\}$, utilizziamo questa proprietà per esplicitare la legge di gruppo di D_n . Fissati $g_1, g_2 \in D_n$, scriviamo $g_1 = s^{a_1} r^{b_1}$ e $g_2 = s^{a_2} r^{b_2}$ con $a_1, a_2 \in \{0, 1\}$ e $b \in \{0, \ldots, n-1\}$,

$$q_1q_2 = (s^{a_1}r^{b_1})(s^{a_2}r^{b_2}) = s^{a_1}s^{a_2}(s^{a_2}r^{b_1}s^{-a_2})r^{b_2} = s^{a_1}s^{a_2}\varphi_{s^{a_2}}(r^{b_1})r^{b_2}$$

dove $\varphi_{s^{a_2}}$ è l'automorfismo di coniugio per s^{a_2} (ricordiamo che $s^{a_2} = s^{-a_2}$). Poiché $\varphi_{s^{a_2}}$ è un omomorfismo e $\varphi_x \circ \varphi_y = \varphi_{xy}$ per ogni $x, y \in G$, abbiamo $(\varphi_{s^{a_2}}(r^{b_1})) = (\varphi_s^{a_2}(r))^{b_1}$, quindi

$$g_1g_2 = s^{a_1}s^{a_2}(\varphi_s^{a_2}(r))^{b_1}r^{b_2} = s^{a_1+a_2}r^{(-1)^{a_2}b_1+b_2}$$

Per l'unicità della scrittura che stiamo usando (scegliendo $a \in \{0, 1\}$ e $b \in \{0, \dots, n-1\}$), possiamo identificare ogni elemento $g = s^a r^b \in D_n$ con la coppia (a, b), la legge di gruppo è quindi tale che

$$(a_1, b_1)(a_2, b_2) = (a_1 + a_2, (-1)^{a_2}b_1 + b_2)$$

Usiamo il risultato appena ottenuto per descrivere gli omomorfismi da D_n in un qualsiasi gruppo G. Poiché ogni elemento $g \in D_n$ si scrive come $s^a r^b$, con $a, b \in \mathbb{Z}$, un omomorfismo $\varphi \in \text{Hom}(D,G)$ è univocamente determinato da $\varphi(r)$ e $\varphi(s)$: infatti

$$\varphi(g) = \varphi(s^a r^b) = \varphi(s)^a \varphi(r)^b$$

Poniamo $x=\varphi(s),\ y=\varphi(r),$ necessariamente ord $(x)\mid n$ e ord $(y)\mid 2,$ cioè $x^n=e_G$ e $y^n=e_G,$ inoltre

$$xyx^{-1} = \varphi(s)\varphi(r)\varphi(s)^{-1} = \varphi(srs^{-1}) = \varphi(r^{-1}) = \varphi(r)^{-1} = y^{-1}$$

Mostriamo che effettivamente queste condizioni sono anche sufficienti:

Proposizione 3.22

Dati un gruppo G e un'applicazione

$$\varphi: D_n \longrightarrow G: s^a r^b \longmapsto x^a y^b$$

dove $x = \varphi(s)$ e $y = \varphi(r)$, allora φ è un omomorfismo se e solo se $x^2 = e_G$, $y^n = e_G$ e $xyx^{-1} = y^{-1}$.

Dimostrazione. Mostriamo che tali condizioni sono sufficienti affinché φ sia un omomorfismo. Poiché $x^m = x^{-m}$ per ogni $m \in \mathbb{Z}$, fissati $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ abbiamo

$$\begin{split} (x^{a_1}y^{b_1})(x^{a_2}y^{b_2}) &= x^{a_1}x^{a_2}(x^{a_2}y^{b_1}x^{-a_2})y^{b_2} = x^{a_1+a_2}\varphi_{x^{a_2}}(y^{b_1})y^{b_2} = \\ &= x^{a_1+a_2}(\varphi_x^{a_2}(y))^{b_1}y^{b_2} = x^{a_1+a_2}y^{(-1)^{a_2}b_1}y^{b_2} = x^{a_1+a_2}y^{(-1)^{a_2}b_1+b_2} \end{split}$$

dove φ_g è l'automorfismo di coniugio per $g \in G$. Allora abbiamo che φ è un omomorfismo, infatti per ogni $h_1, h_2, k_1, k_2 \in \mathbb{Z}$

$$\varphi((s^{h_1}r^{k_1})(s^{h_2}r^{k_2})) = \varphi(s^{h_1+h_2}r^{(-1)^{h_2}k_1+k_2}) =$$

$$= x^{h_1+h_2}y^{(-1)^{h_2}k_1+k_2} = (x^{h_1}y^{k_1})(x^{h_2}y^{k_2}) = \varphi(s^{h_1}r^{h_2})\varphi(s^{h_2}r^{h_2})$$

§3.5 Automorfismi

Studiamo separatamente gli automorfismi di D_n per $n \ge 3$ e di D_2 .

Per $n \geq 3$ consideriamo $\varphi \in Aut(D_n)$, poiché $D_n = \langle r, s \rangle$ è sufficiente studiare le immagini di r, s per determinare φ . Osserviamo che necessariamente $\varphi(r) = r^k$ con (n, k) = 1, infatti φ deve preservare l'ordine di r e la sua immagine deve essere un generatore di \mathcal{R} , in quanto \mathcal{R} è caratteristico in D_n è isomorfo a $\mathbb{Z}/n\mathbb{Z}$. Per quanto riguarda $\varphi(s)$, se n è dispari allora le simmetrie sono gli unici elementi di ordine 2, pertanto $\varphi(s) = sr^h$ con $0 \leq h < n$. Se n è pari abbiamo apparentemente due possibilità:

- (1) $\varphi(s) = sr^h$, con $0 \le h < n$;
- (2) $\varphi(s) = r^{\frac{n}{2}}$, se n è pari.

D'altra parte, se fosse $\varphi(s) = r^{\frac{n}{2}}$ allora φ non sarebbe né iniettiva né surgettiva, pertanto $\varphi(s) = sr^h$ con $0 \le h \le n$. Verifichiamo che φ è un omomorfismo, per la caratterizzazione che abbiamo dato sopra è sufficiente verificare che $\varphi(s)\varphi(r)\varphi(s)^{-1} = \varphi(r)^{-1}$:

$$\varphi(s)\varphi(r)\varphi(s)^{-1} = (sr^h)r^k(sr^h)^{-1} = sr^{h+k}r^{-h}s = sr^ks^{-1} = r^{-k} = \varphi(r)^{-1}$$

Inoltre φ è surgettiva, infatti $r^k, sr^h \in \text{Im}\varphi$, cioè

$$\langle r^k, sr^h \rangle = \langle r, sr^h \rangle = \langle s, r \rangle = D_n \subseteq \text{Im}\varphi$$

da cui $\operatorname{Im}\varphi = D_n$. Poiché D_n è finito abbiamo che φ è un automorfismo. Gli automorfismi di $D_n = \langle r, s \rangle$ quindi sono tutti e soli gli omomorfismi da D_n in D_n che mandano r in un generatore di \mathcal{R} , che sono $\phi(n)$, e s in un'altra simmetria, che sono n, pertanto $|Aut(D_n)| = n\phi(n)$.

Per n=2, sappiamo che $D_2\cong (\mathbb{Z}/2\mathbb{Z})^2$, pertanto

$$Aut(D_2) \cong Aut((\mathbb{Z}/2\mathbb{Z})^2) \cong S_3$$

Alternativamente possiamo considerare $(\mathbb{Z}/2\mathbb{Z})^2$ come spazio vettoriale su \mathbb{F}_2 , pertanto abbiamo

$$Aut(D_2) \cong GL_2(\mathbb{F}_2)$$

Per quanto visto nella sezione (2), $GL_2(\mathbb{F}_2)$ contiene (4-1)(4-2)=6 elementi, inoltre GL_2 non è un gruppo commutativo (con l'operazione di prodotto tra matrici), pertanto $GL_2(\mathbb{F}_2) \cong S_3$. In particolare, gli elementi di $GL_2(\mathbb{F}_2)$ sono:

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, che è l'identità del gruppo;
- $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, che sono gli elementi di ordine 2 corrispondenti alle trasposizioni;
- $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ che sono gli elementi di ordine 3 corrispondenti ai 3-cicli.

§4 Automorfismi di un prodotto diretto

Consideriamo due gruppi finiti H, K, studiamo il gruppo degli automorfismi di $H \times K$. Chiaramente esiste un'inclusione di $Aut(H) \times Aut(K)$ in $Aut(H \times K)$ data dall'omomorfismo

$$\iota: Aut(H) \times Aut(K) \longrightarrow Aut(H \times K) : (\varphi_1, \varphi_2) \longmapsto \varphi_1 \times \varphi_2$$

con

$$\varphi_1 \times \varphi_2 : H \times K \longrightarrow H \times K : (q_1, q_2) \longmapsto (\varphi_1(q_1), \varphi_2(q_2))$$

Mostriamo che ι è ben definita e che è un omomorfismo iniettivo:

• per ogni $(\varphi_1, \varphi_2) \in Aut(H) \times Aut(K)$, per ogni $(g_1, g_2), (h_1, h_2) \in H \times K$ abbiamo

$$(\varphi_1 \times \varphi_2)((g_1, g_2)(h_1, h_2)) = (\varphi_1(g_1h_1), \varphi(g_2h_2)) = (\varphi_1(g_1)\varphi_1(h_2), \varphi_2(g_2)\varphi_2(h_2)) =$$

$$= (\varphi_1(g_1), \varphi_2(g_2))(\varphi_1(h_1), \varphi_2(h_2)) = ((\varphi_1 \times \varphi_2)(g_1, g_2))((\varphi_1 \times \varphi_2)(h_1, h_2))$$

cioè $\varphi_1 \times \varphi_2$ è un omomorfismo. Inoltre

$$\operatorname{Ker}(\varphi_1 \times \varphi_2) = \{(g_1, g_2) \in H \times K \mid (\varphi_1(g_1), \varphi_2(g_2)) = (e_H, e_K)\} = \{(0, 0)\}$$

quindi $\varphi_1 \times \varphi_2 \in Aut(H \times K)$ in quanto $H \times K$ è finito, pertanto ι è ben definita;

• per ogni $(\varphi_1, \varphi_2), (\psi_1, \psi_2) \in Aut(H) \times Aut(K)$, per ogni $(g_1, g_2) \in H \times K$ abbiamo

$$\iota((\varphi_1, \varphi_2)(\psi_1, \psi_2))(g_1, g_2) = \iota(\varphi_1 \psi_1, \varphi_2 \psi_2)(g_1, g_2) = (\varphi_1 \psi_1 \times \varphi_2 \psi_2)(g_1, g_2) =$$

$$= (\varphi_1(\psi_1(g_1)), \varphi_2(\psi_2(g_2))) = (\varphi_1 \times \varphi_2)(\psi_1(g_1), \psi_2(g_2)) =$$

$$= ((\varphi_1 \times \varphi_2)(\psi_1 \times \psi_2))(g_1, g_2) = (\iota(\varphi_1, \varphi_2)\iota(\psi_1 \psi_2))(g_1, g_2)$$

cioè $\iota((\varphi_1, \varphi_2)(\psi_1, \psi_2)) = \iota(\varphi_1, \varphi_2)\iota(\psi_1, \psi_2)$, quindi ι è un omomorfismo;

• ι è iniettiva, infatti

$$\operatorname{Ker} \iota = \{ (\varphi_1, \varphi_2) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K) \mid \iota(\varphi_1, \varphi_2) = e_{\operatorname{Aut}(H \times K)} \} =$$

$$= \{ (\varphi_1, \varphi_2) \in \operatorname{Aut}(H) \times \operatorname{Aut}(K) \mid (\varphi_1(g_1), \varphi_2(g_2)) = (e_H, e_K) \ \forall (g_1, g_2) \in H \times K \}$$

Poiché gli unici elementi $\varphi_1 \in Aut(H), \ \varphi_2 \in Aut(K)$ tali che $\varphi_1(H) = \{e_H\}$ e $\varphi_2(K) = \{e_K\}$ sono rispettivamente $e_{Aut(H)}, e_{Aut(K)}$ abbiamo

$$\operatorname{Ker} \iota = \{(e_{Aut(H)}, e_{Aut(K)})\} = \{e_{Aut(H \times K)}\}\$$

Proposizione 4.1

Dati due gruppi finiti $H, K, Aut(H) \times Aut(K) \cong Aut(H \times K)$ se e solo se $H \times \{e_K\}$ e $\{e_H\} \times K$ sono sottogruppi caratteristici di $H \times K$.

Dimostrazione. Sia ι l'immersione da $Aut(H) \times Aut(K)$ in $Aut(H \times K)$ definita come sopra, se ι è surgettiva allora ogni elemento di $Aut(H \times K)$ può essere scritto come $\varphi_1 \times \varphi_2$ con $\varphi_1 \in Aut(H)$ e $\varphi_2 \in Aut(K)$. Allora abbiamo

$$(\varphi_1 \times \varphi_2)(H \times \{e_K\}) = (\varphi_1(H), \varphi_2(\{e_K\})) = H \times \{e_K\}$$

$$(\varphi_1 \times \varphi_2)(\lbrace e_K \rbrace \times K) = (\varphi_1(\lbrace e_H \rbrace), \varphi_2(K)) = \lbrace e_H \rbrace \times K$$

cioè $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici in $H \times K$. Viceversa, se i due sottogruppi sono caratteristici, dato $\varphi \in Aut(H \times K)$ poniamo $\varphi_1 \in Aut(H)$ tale che $\varphi(g_1, e_K) = (\varphi_1(g_1), e_K)$ e $\varphi_2 \in Aut(K)$ tale che $\varphi(e_H, g_2) = (e_H, \varphi_2(g_2))$ per ogni $g_1 \in H$, per ogni $g_2 \in K$ (questo possiamo farlo in quanto $H \times \{e_K\}$ e $\{e_H\} \times K$ sono caratteristici). Allora abbiamo

$$\varphi(g_1, g_2) = \varphi((g_1, e_K)(e_H, g_2)) = \varphi(g_1, e_K)\varphi(e_H, g_2) =$$

$$= (\varphi_1(g_1), e_K)(e_H, \varphi_2(g_2)) = (\varphi_1(g_1), \varphi_2(g_2)) = (\varphi_1 \times \varphi_2)(g_1, g_2)$$

cioè ι è surgettiva e quindi un isomorfismo tra $Aut(H) \times Aut(K)$ e $Aut(H \times K)$.

Esempio 4.2

Consideriamo il gruppo $G = \mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$, osserviamo che il sottogruppo $\{0\} \times \mathbb{Z}/n\mathbb{Z}$ è caratteristico in quanto un automorfismo φ di G deve preservare gli ordini degli elementi, in particolare quello di un generatore, quindi l'immagine di un generatore è un altro generatore del sottogruppo. Poiché gli elementi di G di ordine finito sono tutti della forma (0,d) abbiamo che $\varphi(\{0\} \times \mathbb{Z}/n\mathbb{Z}) = \{0\} \times \mathbb{Z}/n\mathbb{Z}$. Viceversa, l'immagine di φ su un generatore di $\mathbb{Z} \times \{0\}$, ad esempio $\varphi(1,0)$, è della forma (a,b), e questo implica che $\mathbb{Z} \times \{0\}$ non è caratteristico. Se φ è surgettivo, necessariamente esiste $(x,y) \in \mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ tale che $\varphi(x,y) = (\pm 1,0)$, da cui, posti $\varphi(1,0) = (a,b)$ e $\varphi(0,1) = (0,d)$ con n e d coprimi, abbiamo

$$\varphi(x,y) = \varphi(x(1,0) + y(0,1)) = x\varphi(1,0) + y\varphi(0,1) =$$

$$= x(a,b) + y(0,d) = (xa,xb + yd) = (\pm 1,0) \iff a = \pm 1$$

Viceversa, se $a=\pm 1$ allora φ è surgettiva, infatti per ogni $(x_0,y_0)\in \mathbb{Z}\times \mathbb{Z}/n\mathbb{Z}$, scegliendo $x=x_0a$ e $y\equiv d^{-1}(y_0-x_0ab)\mod n$ abbiamo

$$\varphi(x,y) = (x_0a^2, x_0ab + dd^{-1}(y_0 - x_0ab)) = (x_0, y_0)$$

e questo ci permette di concludere che $\mathbb{Z} \times \{0\}$ non è un sottogruppo caratteristico. In questo caso abbiamo solo un'immersione del gruppo $Aut(\mathbb{Z}) \times Aut(\mathbb{Z}/n\mathbb{Z})$ dentro a $Aut(\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z})$, in quanto gli automorfismi che mandano $(\pm 1,0)$ in (a,b) con $a = \pm 1$ e $b \neq 0$ non possono essere ristretti ad automorfismi di $\mathbb{Z} \times \{0\}$.

È utile riuscire a determinare se i sottogruppi $H \times \{e_K\}$, $\{e_H\} \times K$ sono caratteristici in $H \times K$, da cui il seguente risultato:

Proposizione 4.3

Dati due gruppi finiti H, K, se (|H|, |K|) = 1 allora $H \times \{e_K\}$ e $\{e_H\} \times K$ sono sottogruppi caratteristici di $H \times K$.

Dimostrazione. Poniamo m = |H|, n = |K|, $S = \{(g_1, g_2) \in H \times K \mid (g_1, g_2)^n = (e_H, e_K)\}$, osserviamo che $H \times \{e_K\} = S$, infatti $H \times \{e_K\} \subseteq S$ in quanto tutti gli elementi di $H \times e_K$ hanno ordine che divide n. D'altra parte dato $(g_1, g_2) \in S$, se ord $(g_1, g_2) \mid n$ allora ord $(g_1) \mid n$ e ord $(g_2) \mid n$, ma ord $(g_2) \mid m$ per il Teorema di Lagrange, quindi ord $(g_2) = 1$ e $S \subseteq H \times \{e_K\}$, da cui l'uguaglianza. Con un ragionamento analogo possiamo caratterizzare $\{e_H\} \times K$ come

$${e_H} \times K = {(g_1, g_2) \in H \times K \mid (g_1, g_2)^m = (e_H, e_K)}$$

Poiché un automorfismo di $H \times K$ deve preservare gli ordini degli elementi, per la caratterizzazione data abbiamo che i due sottogruppi sono caratteristici.

Corollario 4.4

Se $m, n \ge 2$ sono interi coprimi allora

$$Aut(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) \cong Aut(\mathbb{Z}/n\mathbb{Z}) \times Aut(\mathbb{Z}/m\mathbb{Z})$$

§5 Azioni transitive

Definizione 5.1. Siano G un gruppo e X un insieme, un'azione

$$\varphi: G \longrightarrow S(X): g \longmapsto \varphi_q$$

si dice **transitiva** se per ogni $x, y \in X$ esiste $g \in G$ tale che $\varphi_g(x) = y$, equivalentemente se $\operatorname{Orb}(x) = G$ per ogni $x \in X$. Diciamo anche che G **agisce transitivamente** su X tramite φ .

Lemma 5.2

Dato G un gruppo finito e $H \leq G$ un suo sottogruppo proprio, allora

$$G \neq \bigcup_{g \in G} gHg^{-1}$$

Dimostrazione. Poniamo $K = \bigcup_{g \in G} gHg^{-1}$, osserviamo che gli elementi della forma xHx^{-1} con $x \in N_G(H)$ contribuiscono una sola volta all'unione, in quanto $xHx^{-1} = H$, pertanto K è unione di $[G:N_G(H)] = \frac{|G|}{|N_G(H)|}$ elementi distinti³. Poiché $H \subseteq N_G(H)$ e $|gHg^{-1}| = |H|$ per ogni $g \in G$, possiamo stimare la cardinalità di K nel seguente modo

$$|K| \le \frac{|G|}{|N_G(H)|}|H| \le \frac{|G|}{|H|}|H| = |G|.$$

D'altra parte, per il Principio di Inclusione-Esclusione abbiamo che |K| è somma delle cardinalità dei singoli termini dell'unione se e solo se l'unione è disgiunta, ma questo è falso in quanto ogni classe di coniugio di H contiene l'identità del gruppo, quindi |K| < |G|, cioè $G \neq K$.

Proposizione 5.3

Dati un gruppo G e un insieme G, se

$$\varphi: G \longrightarrow S(X): g \longmapsto \varphi_q$$

è un'azione transitiva valgono i seguenti fatti:

- (1) per ogni $x, y \in X$ esiste $g \in G$ tale che $g \operatorname{St}(x) g^{-1} = \operatorname{St}(y)$;
- (2) se $|X| \ge 2$ allora esiste $g \in G$ che agisce su X senza punti fissi, cioè tale che $\varphi_g(x) \ne x$ per ogni $x \in X$.

Dimostrazione. Mostriamo i due fatti singolarmente:

(1) sia $g \in G$ tale che $\varphi_g(x) = y$, dato $h \in g\operatorname{St}(x)g^{-1}$ esiste $w \in \operatorname{St}(x)$ tale che $h = gwg^{-1}$. Allora

$$\varphi_h(y) = \varphi_{gwg^{-1}}(y) = \varphi_g(\varphi_w(\varphi_h^{-1}(y))) = \varphi_g(\varphi_w(x)) = \varphi_g(x) = y$$

³Infatti, se $X = \{N \mid N \leq G\}$ e φ è l'azione di coniugio su X, per ogni $N \in X$ abbiamo $St(N) = N_G(N)$ e $Orb(N) = C_N = \{gNg^{-1} \mid g \in G\}$. Vale quindi la relazione $|G| = |C_N| \cdot |N_G(N)|$

pertanto $g \operatorname{St}(x) g^{-1} \subseteq \operatorname{St}(y)$. Osservando che $\varphi_{g^{-1}}(y) = x$ e ragionando in modo simmetrico otteniamo l'inclusione $g^{-1}\operatorname{St}(y)g \subseteq \operatorname{St}(x)$, da cui $g \operatorname{St}(x)g^{-1} = \operatorname{St}(y)$;

(2) un elemento $g \in G$ con tali proprietà non può essere contenuto nello stabilizzatore di nessun elemento di X, cioè cerchiamo $g \in G$ tale che

$$g \in \bigcap_{x \in X} \operatorname{St}(x)^{\mathcal{C}}$$

che è equivalente a

$$g \notin \bigcup_{x \in X} \operatorname{St}(x) = \bigcup_{h \in G} h \operatorname{St}(x_0) h^{-1}$$

per il fatto precedente, fissato $x_0 \in G$. Osserviamo che $\operatorname{St}(x_0) \neq G$, infatti se fosse $\operatorname{St}(x_0) = G$ avremmo

$$|\operatorname{Orb}(x_0)| = \frac{|G|}{|\operatorname{St}(x_0)|} = 1$$

ma questo è assurdo in quanto $\operatorname{Orb}(x_0)=X$ per la transitività di φ e $|X|\geqslant 2$. Allora per il Lemma 5.2 abbiamo

$$G \neq \bigcap_{h \in G} h \operatorname{St}(x_0) h^{-1}$$

pertanto esiste un elemento g con tale proprietà.