

Universitatea din București

FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ SPECIALIZAREA INTELIGENȚĂ ARTIFICIALĂ

Îmbunătățirea unui sistem de recomandare

LUCRARE DE DISERTAȚIE

COORDONATOR ŞTIINŢIFIC Conf. Dr. Bogdan Alexe ABSOLVENT

Adrian Ispas

București, România Iunie 2019

Abstract

Abstractul în limba română.

Abstract

Abstractul în limba engleză.

Cuprins

Li	stă d	le figur	·i	6
Li	stă d	le tabe	le	7
1	Intr	oduce	re	9
	1.1	Motiva	ație	9
	1.2	Obiect	tive propuse	10
	1.3	Struct	ura lucrării	10
2	Fun	damen	ate teoretice	12
	2.1	Sistem	ne de recomandare	12
		2.1.1	Noțiuni generale	12
		2.1.2	Strategii de recomandare	12
		2.1.3	Funcții de loss	14
	2.2	Reţele	neurale convoluționale	18
		2.2.1	Noțiuni generale	18
		2.2.2	VGG	20
		2.2.3	InceptionV3	21
		2.2.4	ResNet	23
		2.2.5	NASNet	24
	2.3	Cluste	re	27
		2.3.1	Noţiuni generale	27
		2.3.2	K-nearest neighbors	27
B	ibliog	grafie		28

Listă de figuri

2.1	Filtrarea coloborativă	13
2.2	Filtrarea bazată pe conținut	14
2.3	Matricea de interacțiuni	15
2.4	Setul de antrenare	16
2.5	Procedura de învățarea BPR	16
2.6	Online WARP Loss Optimization	18
2.7	Exemplu rețea convoluțională	19
2.8	Exemplu de filtru aplicat peste input	19
2.9	Exemplu de pooling	20
2.10	Configurații VGG	21
2.11	Factorizarea în filtre convoluționale mici	22
2.12	Factorizarea spaţială în convoluţii asimetrice	22
2.13	Arhitectura InceptionV3	23
2.14	Învățarea reziduală	23
2.15	Reţeaua ResNet	25
2.16	NAS	26
2.17	Celule normale si de reducere	26

Listă de tabele

Capitolul 1

Introducere

1.1 Motivație

Volumul de date crește semnificativ de la an la an astfel până în 2020 se estimează că pentru fiecare persoană de pe planetă vor fi creați în fiecare secundă 1.7 MB de date, ceea ce înseamnă peste 13 milioane de GB creați în fiecare secundă în lume.

În 2018 în fiecare minut se vizionau peste 97 de mii de ore de conținut pe Netlfix. Peste 4.3 milioane de videoclipuri erau vizionate pe Youtube. Pe Spotify se ascultau 750 de mii de melodii, iar Amazon pregătea peste o mie de pachete [1].

În România, Netflix pune la dispoziție 575 de filme și 208 seriale. În Regatul Unit sunt disponibile 2425 de filme și 542 de seriale, iar în Statele Unite Ale Americii sunt disponibile 2942 de filme și 629 de seriale [2].

Amazon oferă cumpărătorilor o gamă cu un total de peste 119 milioane de produse, dintre care 44.2 milioane de cărți, 10.1 milioane de electronice sau 4.5 milioane de produse realizate manual [3].

În primă fază, cu cât volumul de date pus la dispoziție de o platforma este mai mare cu atât este mai mare și necesitatea unui sistem de recomandare care să vină în ajutorul utilizatorului final pentru a explora gama de produse oferită de respectiva platformă. Ulterior, acel sistem de recomandare se vrea a fi îmbunătățit astfel încât să ofere fiecărui utilizator o experiență cât mai personalizată prin care se recomande, în cazul platformelor de streaming video, conținut relevant pentru a fi consumat de utilizatorul final, sau în cazul platformelor de ecommerce, produse pe care utilizatorul ar fi dispus să le cumpere.

În majoritatea cazurilor sistemele de recomandare se bazeaza pe metadatele utilizatorilor, precum: regiunea, vârsta, genul, ce alte produse a accesat sau cumpărat și metadatele produselor: categoria din care face parte, ratingul acestuia. La acestea se pot adauga și alte informații precum: ce alte produse a apreciat un alt user cu un profil asemanător.

1.2 Objective propuse

În majoritatea cazurilor primul contact pe care îl avem cu un clip de pe Youtube, cu un film sau serial de pe Netflix sau un produs de pe Amazon este contactul vizual cu imaginea de prezentare a acelui produs.

Astfel, prezenta lucrare de disertație are drept obiectiv principal introducerea în sistemul de recomandare de informații vizuale extrase din imaginile de prezentare ale produselor. Informațiile vizuale sunt reprezentate de clusterele create peste imaginile asociate produselor. Fiecare produs are o imagine de prezentare, iar fiecare imagine are un cluster caruia îi aparține din intervalul [1, N] unde N este corelat cu numărul de categori de produse din baza de date pe care se executa optimizarea. N poate fi ales și pe baza altor raționamente.

Scopul final al acestei abordări fiind acela de a observa evoluția metricilor de evaluare, în cazul nostru acurateațea și precizia@k, atunci când informația vizuală este introdusă într-un sistem de recomandare, fiind singura informație prezentă exceptând matricea de interacțiuni, dar și cum se comportă un sistem de recomandare când primește această informație împreună cu alte informații, spre exemplu categoria unui articol.

1.3 Structura lucrării

Prezenta lucrare de disertație începe prin detalierea fundamentelor teoretice în capitolul II unde sunt prezentate teoriile ce stau la baza realizării acestei lucrări.

Capitolul 2

Fundamente teoretice

2.1 Sisteme de recomandare

2.1.1 Noțiuni generale

Sistemele de recomandare au scopul de oferi sugestii de articole utilizatorilor unei platforme pe baza unor strategii. Un sistem de recomandare poate folosi una sau mai multe strategii de recomandare.

În cazul în care se folosesc cel puţin două strategii, sistemul de recomandare devine un sistem de recomandare hibrid. Prin folosirea mai multor strategii se urmăreşte ca fiecare strategie să vină în completarea celorlalte cu avantajele sale.

De cele mai multe ori, în implementarea unui sistem de recomandare, se folosește tehnica de filtrare coloborativă împreună cu o altă strategie de recomandare [4].

2.1.2 Strategii de recomandare

Filtrarea coloborativă

Filtrarea coloborativă se bazează pe faptul că utilizatorii care au în prezent preferințe similare vor avea și în viitor preferințe destul de similare. Această abordare folosește ratingurile pe care le dau utilizatorii sau oricare altă formă de a da un feedback, îmi place/nu îmi place, pentru a identifica preferințele comune dintre grupurile de utilizatori. Odată identificate preferințele se generează recomandări pe baza similarităților dintre utilizatori.

Dezavantajul acestei strategii apare în momentul în care în sistem intră un nou utilizator. Datorită faptului că utilizatorul este nou, sistemul nu are un istoric al preferințelor lui, iar în consecință nu îl poate asigna unui grup de utilizatori pe baza preferințelor [4].

COLLABORATIVE FILTERING

Figura 2.1: Filtrarea coloborativă. Imagine preluată din [5].

Filtrarea bazată pe conținut

Filtrarea bazată pe conținut pleacă de la premisa că utiliztorii cărora le-au plăcut articole definite de anumite atribute în trecut, vor aprecia aceleași tip de articole și în viitor. Această abordare folosește atributele articolelor pentru a le compara cu profilul utilizatorilor și a oferi recomandări. Calitatea recomandărilor create folosind această strategie este influențată de setul de atribute ales pentru articole.

Similar cu filtrarea coloborativă și filtrarea bazată pe conținut prezintă dezavantaje în momentul în care în sistem intră un nou utilizator fără istoric [4].

Filtrarea demografică

Filtrarea demografică folosește atribute precum vârsta, genul, educația, etc. pentru a identifica categoriile de utilizatori. Nu prezintă dezavantaje atunci când apar noi utili-

CONTENT-BASED FILTERING

Figura 2.2: Filtrarea bazată pe conținut. Imagine preluată din [5].

zatori în sistem și nu se folosește de ratinguri, sau alt sistem de feedback, pentru a face recomandări.

Dezavantajul este reprezentat de faptul că procesul de colectare al datelor demografice poate fi îngreunat de legislație fapt ce reprezintă o limitare a acestei metode [4].

Filtrarea bazată pe cunoștințe

Filtrarea bazată pe cunoştințe folosește cunoştințele despre utilizatori și articole pentru a spune ce articole îndeplinesc cerințele utilizatorilor și genereaza recomandări în consecință. Filtrare bazată pe cunoștințe are la bază constrângeri și este capabilă să recomande chiar și articole complexe care nu sunt cumpărate atât de des, precum mașini sau case [4].

2.1.3 Funcții de loss

BPR: Bayesian Personalised Ranking

Este o metodă ce se bazează pe feedback implicit (click-uri, ratinguri, achiziţii). Exită multe metode ce se bazează pe acest feedback implicit, precum matrix factorization (MF),

k-nearest-neighbor (kNN), însă acestea nu sunt optimizate pentru ranguri. Metoda de învățare este bazată pe gradientul descendent. Metoda este recomandată atunci când se dorește optimizarea acurateții.

Definim în continuare U ca fiind mulțimea de utilizatori și I ca fiind mulțimea de articole. Feedback-ul implicit este reprezentat de mulțimea $S\subseteq U\times I$. De asemenea, definim $I_u^+:=i\in I:(u,i)\in S$ și $U_i^+:=u\in U:(u,i)\in S$.

Figura 2.3: Matricea de interacțiuni, mulțimea S. Imagine preluată din [9].

O abordarea uzuală pentru recomandarea de articole este să fie prezis scorul \hat{x}_{ui} care să reflecte preferința utilizatorului u pentru articolul i. Apoi fiecare articol primește un rang după sortarea scorurilor.

Setul de antrenare este definit de mulţimea $D_S := \{(u, i, j) | i \in I_u^+ \land j \in I \setminus I_u^+ \}$ unde (u, i, j) înseamnă că utilizatorul u preferă articolul i în detrimentul articolului j.

Criteriul de optimizare pentru pentru rangurile personalizate este definit după cum urmează:

$$BPR - OPT := \sum_{(u,i,j)\in D_S} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^2$$
(2.1)

unde σ este funcția sigmoid, $\sigma(x) := \frac{1}{1+e^{-x}}$, Θ reprezintă vectorul parametru al modelului care definește interacțiunea dintre utilizatorul u, articolul i și articolul j, iar λ_{Θ} reprezintă parametrii de regularizare.

Cu aceste definiți putem defini și procedura de învățare a BPR după cum urmează.

Figura 2.4: Setul de antrenare. + reprezintă articolele i pe care utilizatorul le preferă în locul articolelor j, - utilizatorul preferă articolele j în loc de i, iar ? reprezintă lipsa informației despre acea interacțiune. Imagine preluată din [9].

```
1: procedure LEARNBPR(D_S, \Theta)
2: initialize \Theta
3: repeat
4: draw (u, i, j) from D_S
5: \Theta \leftarrow \Theta + \alpha \left( \frac{e^{-\hat{x}_{uij}}}{1 + e^{-\hat{x}_{uij}}} \cdot \frac{\partial}{\partial \Theta} \hat{x}_{uij} + \lambda_{\Theta} \cdot \Theta \right)
6: until convergence
7: return \hat{\Theta}
8: end procedure
```

Figura 2.5: Optimizarea modelului bazată metoda gradientului descendent cu parametrul de învățare α și regularizarea λ_{Θ} . Imagine preluată din [9].

WARP: Weighted Approximate-Rank

Această metodă își are originile în procesarea imaginilor și anume pentru un set de reprezentări ale unor imagini $x \in R^d$ și pentru un set de reprezentări ale unor adnotări $i \in \Upsilon = \{1,...,Y\}$ - inidici intr-un dicționar cu posibile adnotări, metoda învață să mapeze imagini din spațiul reprezentărilor într-un spațiu comun R^D

$$\Phi_I(x): R^d \to R^D \tag{2.2}$$

în acelaşi timp învățând și mapări pentru adnotări în același spațiu

$$\Phi_W(i): 1, ..., Y \to R^D$$
 (2.3)

Scopul principal fiind acela de a oferi ranguri posibilelor adnotări pentru o imagine dată astfel încât cel mai mare rang să descrie cel mai bine conținutul semnatic al imaginii.

Modelul folosit este următorul:

$$f_i(x) = \Phi_W(i)^T \Phi_I(x) \tag{2.4}$$

Metoda învață să producă ranguri optimizate pentru primele adnotări din listă, ceea ce înseamnă că optimizează precizia@k.

În ceea ce privește funcția de eroare definim: $f(x) \in R^Y$ ce produce un scor pentru fiecare etichetă și unde $f_i(x)$ este valoarea etichetei i. Definim funcția de eroare pentru ranguri ca fiind:

$$err(f(x), y) = L(rank_y(f(x)))$$
 (2.5)

unde $rank_y(f(x))$ este rangul etichetei corecte data de f(x):

$$rank_y(f(x)) = \sum_{i \neq y} I(f_i(x) \ge f_y(x))$$
(2.6)

unde I este funcția indicator, iar $L(\cdot)$ transformă rangul în penalizare

$$L(k) = \sum_{j=1}^{k} \alpha_j, \quad cu \quad \alpha_1 \ge \alpha_2 \ge \dots \ge 0.$$
 (2.7)

 $L(\cdot)$ poate lua diferite forme în funcție de ce se dorește a se optimiza: $\alpha_j = \frac{1}{Y-1}$ optimizează rangul mediu, $\alpha_j = 1$ și $\alpha_{j>1} = 0$ optimizează proporția de ranguri corecte aflate în top, iar valorile mari ale lui α optimizează primele k în lista de ranguri[8].

Cu definițiile prezentate mai sus putem descrie algoritmul acestei metode după cum urmează.

Algorithm 1 Online WARP Loss Optimization Input: labeled data $(x_i, y_i), y_i \in \{1, \dots, Y\}$. repeat Pick a random labeled example (x_i, y_i) Let $f_{y_i}(x_i) = \Phi_W(y_i)^\top \Phi_I(x_i)$ Set N = 0. repeat Pick a random annotation $\bar{y} \in \{1, \dots, Y\} \setminus y_i$. Let $f_{\bar{y}}(x_i) = \Phi_W(\bar{y})^\top \Phi_I(x_i)$ N = N + 1. until $f_{\bar{y}}(x_i) > f_{y_i}(x_i) - 1$ or $N \ge Y - 1$ if $f_{\bar{y}}(x_i) > f_{y_i}(x_i) - 1$ then Make a gradient step to minimize: $L(\lfloor \frac{Y-1}{N} \rfloor)|1 - f_y(x_i) + f_{\bar{y}}(x_i)|_+$ Project weights to enforce constraints (2)-(3). end if until validation error does not improve.

Figura 2.6: Online WARP Loss Optimization. Imagine preluată din [8].

2.2 Rețele neurale convoluționale

2.2.1 Noțiuni generale

Rețelele neurale convoluționale sunt foarte similare cu rețelele neurale fiind formate din neuroni ce învață ponderi (w) și baiasuri (b). Scopul rețelei convoluționale este de a primi o imagine la input și de a scoate la output un scor pentru fiecare clasă ce corespunde imaginii.

Spre exemplu, la input se dă o imagine cu un autovehicul, iar rețeaua convoluțională poate spune că în imagine este o mașină în proporție de 80%, un camion în proporție de 10%, un avion în proporție de 6%, o barcă în proporție de 3% sau un cal în proporție de 1%.

Rețelele convoluționale sunt compuse dintr-o secvență de layere ce poate fi împărțită în trei tipuri principale de layere [7]:

1. Convolutional Layer este layerul de bază într-o rețea convoluțională. Parametrii acestui layer sunt reprezentați de filtre învățabile, unde fiecare filtru reprezintă o mică bucată din imaginea de input. De exemplu, un filtru pentru pentru acest layer poate avea dimensiunea de 5 × 5 × 3, dimensiune ce reprezintă faptul că se iau 5 pixeli pe lațime şi înălțime cu o adâncime de 3, unde adâncimea reprezintă canalele RGB. În continuare se glisează fiecare filtru peste input şi se compune produsul

Figura 2.7: Exemplu de rețea convoluțională care primește la input o imagine și produce la output o listă de clase ce pot descrie imaginea de input. Imagine preluată din [7].

dintre filtre și input la fiecare poziție. În urma acestei operații se produce un vector de activare 2-dimensional care reprezintă răspunsul filtrului la fiecare poziție. Altfel spun, rețeaua va învăța filtre care se activează atunci când sunt prezente anumite tipuri de caracteristici, precum culoarea sau orientarea.

Figura 2.8: Exemplu de filtru aplicat peste input într-un layer convoluțional. Imagine preluată din [7].

- 2. Pooling Layer reprezintă o practică des folosită între mai multe layere convoluționale succesive. Această operație reduce numărul de parametrii (dimensiunea), computațiile din rețea și controlează overfittingul. Se execută indepedent pe fiecare nivel al adâncimii unui input și pastrează valoarea maximă a acelei zone. Rezultatul este o zonă de caracteristicii mai mică dar care păstrează cea mai relevantă statistică.
- 3. Fully-Connected Layer este stratul în care caracteristicile sunt vectorizate pentru a

(a) Reducerea dimensiunii.

(b) Filtrul de 2 × 2 aplicat ce păstrează valoarea maximă.

Figura 2.9: Exemplu de pooling. Imagine preluată din [7].

putea fi folosite.

2.2.2 VGG

VGG este o arhitectură de rețea cu filtre convoluționale foarte mici, de dimensiune 3×3 și care poate avea o adâncime a straturilor de ponderi de 16 - 19.

În ceea ce privește arhitectura, inputul în rețeaua convoluțională este de dimensiune fixă și anume 224×224 imagine RGB. Mai departe, imaginea este trecută printr-un set de straturi convoluționale unde sunt utilizate filtre de dimensiune mică, 3×3 - fiind cea mai mică dimensiune ce poate captura noțiunile de stânga/dreapta, sus/jos, centru. Într-una dintre configurații se utilizează un filtru convoluțional de dimensiune 1×1 . Pasul în straturile convoluționale este fixat la 1 pixel.

Poolingul este compus din cinci straturi de max-pooling care urmează după unele straturi convoluționale. Max-poolingul este calculat cu ferestre de 2×2 pixel și cu pas de 2 pixeli.

Odată trecută imaginea prin straturile convoluționale și cele de pooling ajunge în trei straturi fully-connected. Primele două straturi au câte 4096 de canale fiecare, iar al treilea are 1000 de canale. Canalele celui de-al treilea strat sunt asociate claselor, fiecare canal reprezintă o clasă.

Ultimul strat din rețea este un strat soft-max [10].

ConvNet Configuration								
A	A-LRN	В	С	D	E			
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight			
layers	layers	layers	layers	layers	layers			
	input (224×224 RGB image)							
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
	LRN	conv3-64	conv3-64	conv3-64	conv3-64			
			pool					
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
		conv3-128	conv3-128	conv3-128	conv3-128			
			pool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
			conv1-256	conv3-256	conv3-256			
					conv3-256			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
			conv1-512	conv3-512	conv3-512			
					conv3-512			
			pool					
FC-4096								
FC-4096								
FC-1000								
soft-max								

Figura 2.10: Configurații ale rețelei VGG. Imagine preluată din [10].

2.2.3 InceptionV3

Prima arhitectura de Inception a apărut sub numele de GoogLeNet. O a doua versiune de Inception a fost definită prin introducerea de batch-uri normalizate. Iar mai apoi, versiunea a treia în care a fost adăugate idea de factorizare.

Factorizarea în filtre convoluționale mici presupune înlocuirea stratului cu filtru de dimensiune 5×5 cu două straturi de dimensiune 3×3 astfel reducânduse dimensiunea de la $5 \times 5 = 25$ la $3 \times 3 + 3 \times 3 = 18$.

Factorizarea spaţială în convoluţii asimetrice presupune înlocuirea stratului cu filtru de dimensiune 3×3 cu două straturi de dimensiune 3×1 şi 1×3 astfel reducânduse dimensiunea de la $3 \times 3 = 9$ la $3 \times 1 + 1 \times 3 = 6$.

Clasificatori auxiliari ...

Reducerea eficientă a dimensiunii ...

Figura 2.11: Factorizarea în filtre convoluționale mici. Filtrul de dimensiune 5×5 înlocuit cu două de dimensiune 3×3 . Imagine preluată din [14].

Figura 2.12: Factorizarea în filtre convoluționale mici. Filtrul de dimensiune 3×3 înlocuit cu două de dimensiune 3×1 și 1×3 . Imagine preluată din [14].

2.2.4 ResNet

Fie H(x) maparea de bază unde x reprezintă inputul. Funcția reziduală poate fi aproximată cu F(x) := H(x) - x, maparea de bază fiind F(x) + x.

Învățarea reziduală se aplică la câtva grupuri de straturi. Putem defini un bloc de straturi ca fiind

$$y = F(x, \{W_i\}) + x \tag{2.8}$$

unde x și y reprezintă inputul și outputul straturilor considerate. Funcția $F(x, \{W_i\})$ reprezintă maparea reziduală ce trebuie învățată.

Figura 2.13: Arhitectura rețelei InceptionV3. Imagine preluată din [14].

Figura 2.14: Învățarea reziduală. Imagine preluată din [11].

Dimensiunea lui x și F din ecuația de mai sus trebuie să fie egale. Redefinim ecuația după cum urmează

$$y = F(x, \{W_i\}) + W_s x \tag{2.9}$$

unde W_s este o proiecție liniară a scurtăturilor conexiunilor pentru ca dimensiunile să se potrivească.

ResNet pleacă de la o rețea simplă. Rețeaua simplă fiind inspirată de rețeaua VGG. Straturile convoluționale au în general filtre de dimensiune 3×3 și se bazează de două reguli de design: - pentru outputuri cu același număr de caracteristici, straturile vor avea același număr de filtre; - dacă numărul de caracteristicii este injumătățit, numărul de filtre este dublat astfel încât să fie păstrată complexitatea de timp pe strat.

Poolingul se realizează dupa straturile convoluționale cu un pas de 2 pixeli. Rețeaua se termină cu un strat de pooling mediu și un strat fully-connected softmax cu 1000 de

canale.

Bazată pe rețeaua descrisă mai sus, rețeaua reziduală presupune inserția unor scurtături. Scurtăturile identice (vezi formula 2.8) pot fi direct utilizate când inputul și outputul au aceași dimensiune. Când dimensiunea crește considerăm două opțiuni: - scurtătura calculează în continuare maparea identității. Această opțiune nu introduce parametrii noi; - proiecția scurtăturii din formula 2.9 este utilizată pentru a potrivi dimensiunile. În ambele situații când se folosesc scurtăturile pentru pentru a sări peste două straturi sunt calculate cu un pas de 2.

2.2.5 **NASNet**

NASNet este o arhitectură de rețea bazată pe tehnica de căutare Neural Architecture Search (NAS). NAS presupune un controler cu o rețea neurală recurentă care conține mai multe rețele copii cu arhitecturi diferite. Rețelele copii sunt antrenate să conveargă pentru a obține o anumită precizie pe un set de antrenare. Rezultatele sunt utilizate pentru a actualiza controlerul ceea ce înseamnă că acest controler va genera arhitecturi mai bune în timp.

Plusul principal pe care îl aduce rețeaua NASnet este reprezentat de proiectarea unui nou spațiu de căutare astfel încât cea mai bună arhitectură pe setul de date CIFAR-10 poate scala către rezoluții ale imaginilor cât mai mari într-un interval definit. Astfel, acest spațiu poartă numele de NASNet search space. În abordarea NASNet arhitecturile rețelelor convoluționale manual predeterminate, fiind compuse din celule convoluționale repetate de multe ori unde, fiecare celulă convoluțională are aceași arhitectură dar ponderi diferite.

Pentru a construi mai ușor arhitecturi scalabile pentru imagini de orice dimensiune este nevoie de două tipuri de celule convoluționale pentru a îndeplini două funcții principale: - celule convoluționale care returnează o hartă de caracteristici cu aceași dimensiune. Acest tip de celule se numesc *Celulă Normal*; - celule convoluționale care returnează o hartă de caracteristici cu înălțimea și lungimea harții divizată cu un factor doi. Acest tip de celule se numesc *Celulă de reducere*.

Figura 2.15: Prima rețea (stânga) este o rețea VGG19. A doua rețea (centru) este o rețea simplă cu 34 de straturi. A treia rețea (dreapta) este o rețea reziduală cu 34 de straturi. Imagine preluată din [11].

Figura 2.16: Privire de ansamblu asupra unei Neural Architecture Search. Imagine preluată din [13].

Figura 2.17: Celule normale (dreapta). Celule de reducere (stânga). Imagine preluată din [13].

- 2.3 Clustere
- 2.3.1 Noțiuni generale
- 2.3.2 K-nearest neighbors

Bibliografie

- [1] Data never sleeps 6.0 https://www.domo.com/learn/data-never-sleeps-6
- [2] Netflix International: What movies and TV shows can I watch, and where can I watch them?
 - https://www.finder.com/global-netflix-library-totals
- [3] How Many Products Does Amazon Sell? April 2019

 https://www.scrapehero.com/number-of-products-on-amazon-april-2019/
- [4] Erion Çano, Maurizio Morisio. *Hybrid Recommender Systems: A Systematic Literature Review*. Intelligent Data Analysis, vol. 21, no. 6, pp. 1487-1524, 2017
- [5] An Overview of Recommendation Systems

 http://datameetsmedia.com/an-overview-of-recommendation-systems/
- [6] LightFM 1.15 documentation http://lyst.github.io/lightfm/docs/lightfm.html
- [7] CS231n: Convolutional Neural Networks for Visual Recognition http://cs231n.stanford.edu/2018/syllabus.html
- [8] Jason Weston, Samy Bengio, Nicolas Usunier. Wsabie: Scaling up to large vocabulary image annotation. IJCAI. Vol. 11. 2011.
- [9] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme. BPR: Bayesian personalized ranking from implicit feedback. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009.
- [10] Karen Simonyan, Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR, 2015.

- [11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p770-778, 2016.
- [12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna. *Rethinking the Inception Architecture for Computer Vision*. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p2818-2826, 2016.
- [13] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc V. Le. Learning Transferable Architectures for Scalable Image Recognition. IEEE/CVF Conference on Computer Vision and Pattern Recognition, p8697-8710, 2018.
- [14] Advanced Guide to Inception v3 on Cloud TPU

 https://cloud.google.com/tpu/docs/inception-v3-advanced