

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3134201

Data Structures and Algorithms 3rd Semester

Type of course: Core

Prerequisite: Fundamentals of programming and problem solving, Engineering mathematics

Rationale:

- To understand the basic concepts of data structures and algorithms.
- To differentiate linear and non-linear data structures and the operations upon them.
- Ability to perform sorting and searching in each set of data items.
- To comprehend the necessity of time complexity in algorithms.

Teaching and Examination Scheme:

Teaching Scheme Cred			Credits	Examination Marks			Total	
T	т	р	C	Theory Marks		Practical Marks		Marks
L	1	r	C	ESE (E)	PA	ESE (V)	PA (I)	IVIAIKS
3	0	4	5	70	30	30	20	150

Contents:

Sr. No.	Content	Total Hrs
1	Introduction to Algorithms and Analysis: Overview and importance of algorithms and data structures. Fundamentals of algorithm analysis, Space and time complexity of an algorithm, Types of asymptotic notations and orders of growth, Algorithm efficiency – best case, worst case, average case, Analysis of non-recursive and recursive algorithms, Asymptotic analysis for recurrence relation – Recursive Tree Method.	06
2	Linear Data Structures: Array- 1D and 2D array, Stack - Applications of stack: Expression Evaluation - Conversion of Infix to postfix and prefix expression, Tower of Hanoi. Queue - Types of Queue: Circular Queue, Double Ended Queue (deQueue), Applications – Priority Queue using Arrays, List - Singly linked lists – Doubly linked lists - Circular linked lists.	08
3	Sorting and Searching Techniques, Hashing: Searching - Linear Search and binary search (divide and conquer technique), Applications - Sorting - Insertion sort - Selection sort - Bubble sort - Quick sort - Merge sort, Analysis of sorting algorithms. Hash functions, open hashing-separate chaining, closed hashing - linear probing, quadratic probing, double hashing	07
4	Divide and Conquer Algorithm: Introduction, Recurrence, and different methods to solve recurrence, multiplying large Integers Problem.	04
5	Non-linear Data Structures – Trees: Tree - Terminology, Binary Tree – Terminology and Properties, Tree Traversals, Expression Trees – Binary Search Trees – operations in BST – insertion, deletion, finding min and max, Finding the kth minimum element in a BST, AVL tree.	07
6	Non-linear Data Structures – Graphs: Graph – basic definition and Terminology – Representation of Graph – Graph Traversal: Breadth First Search (BFS), Depth First Search (DFS)	04
7	Greedy Algorithm: General Characteristics of greedy algorithms, Problem solving using Greedy Algorithm - Activity selection problem, Elements of Greedy Strategy,	04

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3134201

	Subject Souct Die 1201		
	Minimum Spanning trees (Kruskal's algorithm, Prim's algorithm), Graphs: Shortest		
	paths, The Knapsack Problem, Job Scheduling Problem		
	Dynamic Programming: Introduction, The Principle of Optimality, Problem Solving		
8	using Dynamic Programming – Calculating the Binomial Coefficient, Making Change		
	Problem, Assembly Line-Scheduling, Knapsack problem, Matrix chain multiplication,		
	Longest Common Subsequence.		
9	Backtracking and Branch and Bound: Introduction, The Eight queens' problem,		
	Knapsack problem, Travelling Salesman problem, Minimax principle		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
10	25	25	10			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary from above table.

Reference Books:

- 1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, PHI
- 2. Fundamentals of Algorithms E. Horowitz et al.
- 3. Horowitz, Sahni, and S. Anderson-Freed, Fundamentals of Data Structures in C, Universities Press, Second Edition, 2008.
- 4. Data Structures using C, Reema Thareja, Oxford University Press, Second Edition.
- 5. Introduction to Design and Analysis of Algorithms, Anany Levitin, Pearson.

Course Outcomes: Students will be able to

Sr. No.	CO Statement	Marks % Weightage
1	Understanding the fundamental analysis and asymptotic performance of algorithms.	30
2	Derive and solve recurrences describing the performance of algorithms.	15
3	Application of appropriate data structures and algorithms to find solutions to practical problems.	35
4	Find optimal solution by applying various methods.	20

List of Experiments:

(Pl. Note: List of Experiments and Tutorials should be as per theory covered in the class, below mentioned practical are just for the reference purpose)

- 1. Implementation and time analysis of Stack and its applications (infix, postfix, prefix).
- 2. Implementation and time analysis of queue and its applications.
- 3. Implementation and time analysis of singly linked list.

GUJARAT TECHNOLOGICAL UNIVERSITY

Bachelor of Engineering Subject Code: 3134201

- 4. Implementation and time analysis of doubly linked list.
- 5. Implementation and time analysis of circular linked list.
- 6. Implementation of binary tree and its traversal (preorder, inorder, postorder).
- 7. Implementation and Time analysis of sorting algorithms Bubble sort, Selection sort, Insertion sort, Merge sort and Quicksort.
- 8. Implementation and Time analysis of linear and binary search algorithm.
- 9. Implementation and Time analysis of factorial program using iterative and recursive method
- 10. Implementation of a knapsack problem using dynamic programming.
- 11. Implementation of chain matrix multiplication using dynamic programming.
- 12. Implementation of a knapsack problem using greedy algorithm
- 13. Implementation of Graph and Searching (DFS and BFS).
- 14. Implement prim's algorithm
- 15. Implement 3ruskal's algorithm.
- 16. Implement LCS problem.