

FIRST SEMESTER 2020-2021

Course Handout Part II

Date:

17.08.2020

Course No: CHEM F212

Course Title: ORGANIC CHEMISTRY -I

Instructor-in-charge: Manab Chakravarty

1. Scope and objective of the course: To familiarize the students with basic mechanistic aspects of organic reactions including mechanistic types, thermodynamics and kinetics, the important intermediates involved in organic reactions, functional group chemistry.

2. Text Book: R. T. Morrison, R. Boyd and S. K. Bhattacharjee, Organic Chemistry, 7th edition. **(T1)**

Reference Books: J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OUP, 1st ed., 2000. **(R1)**

Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 4th ed., 1992.

(R2)

G Marc Loudon, Organic Chemistry, Oxford, 4th Edition, 2002.

Francis A Carey, Organic Chemistry, Tata McGrawHill, 7th edition, 2008.

3. Course Plan:

Lec. No.	Learning objectives	Topics to be Covered	Learning Outcomes	Text book, Chapter, Page No.
1-2	Basic	Homolytic, heterolytic	Understanding of	T1: Ch. 4, pg. 55-59
	terminology	fission of bonds, concept of	basic organic	R1: Ch. 5, pg. 116-131.
	and	electrophiles and	reactions	
	representation	nucleophiles; how to write	and drawing reactions	
	of organic	organic reaction	realistically towards	
	reactions	mechanisms; movement of	creative organic	
		arrows; curved and fish-	chemistry;	
		hook arrows; examples	Representing the	
			movement of	
			electrons in reactions	
			by curly arrows	
3-4	Reactive	Carbocations: Structure &	Detailed analysis on	T1: Ch. 4, pg. 64-69.

	intermediates: carbocations	stability, generation and reactions	the generation, character, type and role of the useful intermediate carbocation in organic reactions, application in organic synthesis with stereochemical	
5	Reactive	Carbanions: Structure &	outcome Idea about another	T1: Ch. 4, pg. 69-72.
	intermediates: carbanions	stability, generation and reactions	intermediate and difference between cation and anion intermediates in terms of the synthesis, behavior etc. Use of such intermediate in organic reactions	
6-7	Reactive intermediates: free radicals	Free radicals: Structure & stability, generation and reactions	Intermediate with a free electron and their reactions follow different rules than ionic intermediates, Idea of polymerization.	T1: Ch. 4, pg. 81-86.
8-10	Reactive intermediates: others	Carbenes; nitrenes: generation, stability, and fate	Substrate Conditions to generate carbenes, Carbenes are neutral species with only six electrons, electrophilic nature, insertion reaction and application in organic synthesis and modern development; How different these are with the ionic intermediates. Same information related to nitrene is expected to be gained as nitrenes are the nitrogen analogue of carbenes.	T1: Ch. 4, pg. 72-78.
11- 13	Aromatic chemistry	Aromatic nucleophilic substitutions; Aromatic electrophilic substitutions;	Concept of aromaticity, Understanding the	T1: Ch. 5C, pg. 262-283; Ch. 9, pg. 488-502. R1: Ch. 23, pg. 589-604.

		S _N Ar mechanism; benzyne mechanism;	ways to functionalize the aromatic ring and its usefulness to generate medicines and functional materials		
14-17	Thermodynami cs and kinetics of reactions	Thermodynamic and kinetic control; Hammond postulate; methods to determine mechanisms (Hammett equation, kinetic isotopic effect); examples	Importance in proposing mechanism, how the thermodynamic and kinetic parameters help to determine the feasibility of reactions (the speed and energy), how a reaction rate can vary with different substitution.	Ch. 22, pg. 554-556. Ch. 41, pg.1090-1101. R2: Ch. 6, pg. 208-215, 217-219, 226.	
18- 21	Alkyl and aryl halides	Synthesis and reactions of alkyl and aryl halides	How this halides are related to our daily needs and the chemistry behind the fact	T1: Ch. 8, pg. 426-462. Ch. 9, pg. 482-485.	
22- 25	Alcohols, phenol and ethers	Synthesis, reactivity; applications of Grignard reagents for synthesis; diols, acid/base catalysed ring opening	The chemistry involved in the naturally occurring functional groups that contain polar C-O bond, the distinct reactivity of these functional groups will be understood.	T1: Ch. 10, pg. 507-537. Ch. 11, pg. 545-562. Lecture notes (epoxides)	
26- 28	Amines and nitro compounds	Synthesis, basicity and reactions	Many interesting natural products and widely used drugs are amines; hence such functional group chemistry will be learnt.	T1: Ch. 15, pg. 696-736. and Lecture Notes (Nitro compounds)	
29- 37	Carbonyl compounds	Synthesis, reactivity, enolates, malonate and ethyl acetoacetate synthesis Aldol, Crossed Aldol and Claisen condensation; Conjugate addition reactions of α, β-unsaturated carbonyl	Concept about the most important functional group because its electondeficient carbons and easily broken π-bond. The important name reactions and their	T1: Ch. 12, pg. 571-611. R1: Ch. 21, pg. 524-541. Lecture notes (malonate & ethyl acetoacetate)	

		compounds with special	applications in	
		reference to Michael	organic synthesis to	
		addition, Mannich reaction,	synthesize medicinally	
		Wittig reaction	useful molecules.	
38-	Carboxylic acid	Synthesis, reactions,	Enrich with this	T1: Ch. 13, pg. 624-648;
40	& derivatives	conversion for acid to other	interesting functional	Ch. 14, Pg. 657-685.
		derivatives	groups in terms of	
			preparation, features	
			important products	
			such as aspirin	
41-	Carbohydrates	Introduction and their	Concept on the largest	T1: Ch. 26, pg. 1228-1236,
42		reactions	group of organic	1244-1253.
			molecules in nature,	
			the basic structures	
			and reactions of	
			carbohydrates	

4. Evaluation:

1. Livatuation.				
Component	Duration	Weightage (%)	Date and Time	Remarks
Test 1	30 min.	10	September 10 –	Open Book
			September 20	_
			(During scheduled	
			class hour)	
Test 2	30 min.	15	October 09 –October	Open Book
			20 (During	
			scheduled class	
			hour)	
Test 3	30 min	15	November 10 –	Open book
			November 20	
			(During scheduled	
			class hour)	
Viva/interaction/assignment	continuous	30	continuous	Open book
Comprehensive Examination	120 min	30	TBA	Open book

- 5. Make-up(s) will be granted only for genuine reasons.
- **6. Chamber consultation hours:** : To be announced
- 7. Notices: All the notices pertaining to this course will be displayed on CMS.
- 8. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Ι

Instructor-in-Charge Organic Chemistry -

