Abstract Algebra

: Lecture 17

Leo

Let F be a field, and $f(x) \in F[x]$, irreducible. Then there exists an extention E of F s.t. 证明. Let E = F[x]/(f(x)). Since F is a field, F[x] is a PID. f(x) is irriducible shows (f(x)) is a maximal ideal hence E is a field. So \bar{x} is a root of f(x) in E since $f(\bar{x}) = \overline{f(x)} = 0$. $\overline{\mathbf{x}} \in \mathbf{c}$. Definition 2. F is called a algebraic closed field if any polynomial $f(x) \in F[x]$ is reducible unless degf = 1. **Definition 3.** Let E/F be a field extension. Then E can be view as a vector space over F. If $\dim_F E = n$ is finite, then E is called a finite extension of F of degree n. **Lemma 4.** If K/E is of degree m, E/F is of degree n, then K/F is of degree mn. Construction by ruler(straightedge) and compasses. Given a unit 1. (1). We can construct all integers. (2). We can construct all rational numbers. (3). We can construct all roots of quadratic polynomials. Now Let $F_0 = \mathbb{Q}$, $F_{n+1} = F_n(\sqrt{a_n})$ where a_n is a square-free integer. Then $[F_{n+1} : F_n]$ equal to 1 or 2. i.e. if α is constructible, then F_{n+1} is a finite extension of F_0 of degree of 2^k where $k \in \mathbb{Z}_{\geqslant 0}$. Let F be a finite field. Char: P. (1). Then $|F|=p^d$ where p is a prime number and $d\in\mathbb{Z}_{\geqslant 1}$. (2). $(F,+) \simeq Z_n^d$. at most p roots in F. So $m \ge p^d - 1$. So $m = p^d - 1$. And $F^{\times} \simeq Z_{p^d - 1}$.

and is elect are all noots of 1 xm-1.

Consider the group action of multiple group on addition group, we can get a semidirect product of two groups such as $Z_p^d: Z_{p^d-1}$, denoted by $\underline{AGL_1(p^d)}$. Let F be a finite field of order p^d , i.e. $\underline{\mathbb{F}_{p^d}}$ or denoted by $GF(p^d)$.

Theorem 5. $\phi: F \to F$ s.t. $x \mapsto x^p$ is an automorphism of F. $F: GF(p^d)$. Char=P.

证明. Check: $(xy)^{\phi} = x^p y^p = x^{\phi} y^{\phi}$, $(x+y)^{\phi} = x^{\phi} + y^{\phi}$. This is called <u>Frobenius automorphism.</u>

Theorem 6. Let F be a field of characteristic 0, then a finite extension of F is a simple extension.

证明. Let $E=F(\alpha,\beta)$, Let f(x),g(x) be irreducible polynomials in F[x] s.t. $f(\alpha)=0,g(\beta)=0$. Let the adjunction of $\gamma=\alpha+c\beta$ where $c\in F$. We need to determine c s.t. $F(\alpha,\beta)=F(\gamma)$. \checkmark .

Let $h(x)=f(\gamma-cx)\in F(\gamma)[x]$, then $h(\beta)=f(\alpha)=0$. So β is root of h(x) and g(x). If β is the only called a primitive common root of h(x) and g(x), then $x-\beta=\gcd(g(x),h(x))=s(x)g(x)+t(x)h(x)\in F(\gamma)[x]$. elt. So $\beta\in F(\gamma)$, and $\alpha=\gamma-c\beta\in F(\gamma)$. So $F(\alpha,\beta)=F(\gamma)$. \checkmark

We will finish the proof next time.