Finding Optimal Pairs of Cooperative and Competing Patterns with Bounded Distance

<u>Shunsuke Inenaga</u>¹, Hideo Bannai², Heikki Hyyrö⁴, Ayumi Shinohara^{3,4}, Masayuki Takeda^{3,5}, Kenta Nakai², and Satoru Miyano²

¹Department of Computer Science, University of Helsinki, Finland

²Human Genome Center, Institute of Medical Science, University of Tokyo, Japan

³Department of Informatics, Kyushu University, Japan

⁴PRESTO, Japan Science and Technology Agency (JST)

⁵SORST, Japan Science and Technology Agency (JST)

Pattern Discovery

Input: set S of strings $s_1, s_2, ..., s_m$

Output: pattern p that characterizes input S

- S Pattern discovery is a core of Discovery Science.
 - Jump and dive into the sea during summer vacation.

p = padova

Pattern Discovery in Bioinformatics

Machine Discovery System BONSAI

(Shimozono et al. 1994)

- finds optimal substring patterns to characterize input sequence set S.
- has been extended to finding:

```
subsequence patterns (Hirao et al. 2000)
episode patterns (Hirao et al. 2001)
VLDC patterns (Inenaga et al. 2002)
approximate FVLDC patterns (Takeda et al. 2003)
```

Refer to the invited talk by Ayumi Shinohara in D5'04
"String Pattern Discovery"

Composite Pattern Discovery

- More than one sequence element may act in ensemble!
- Sequence elements may not necessarily be cooperative - they may be competitive.
- Consider finding Boolean combination of patterns.

```
e.g.: p \land q : p \land D q

p \lor q : p \land Q

p \land \neg q : p \land D \land Q
```

Examples

$$S = \{s_1, s_2, s_3, s_4, s_5\}$$

p q substrings: exact match only (no mismatches)

Recent Work by Bannai et al.

"Finding Optimal Pairs of Patterns" (Bannai et al. in WABI'04)

- Efficient algorithm for finding optimal Boolean pattern pair of substring patterns
- $O(N^2)$ time & O(N) space (N: total length of strings in input set S)
- $O(N^k)$ time & O(N) space for Boolean combination of k substring patterns

And This Work...

- Introduces the notion of α-distance between patterns in Boolean pair w.r.t. Λ (AND).
- 1 Denoted $p \wedge_{\alpha} q$ and $p \wedge_{\alpha} \neg q$.

Our Result

Input: set S of strings and distance α

Output: optimal pattern pair $p \wedge_{\alpha} q$ and $p \wedge_{\alpha} \neg q$ w.r.t. S

- $O(N^2)$ time & O(N) space (not depending on α)
- $O(N^k)$ time & O(N) space for combination of k substring patterns
 - □ Improves the worst case complexity $O(\alpha^k N^{k+1} \log N)$ due to Arimura et al. (proximity patterns).

Optimality of Pattern Pair

Pattern pair π is optimal w.r.t. S

Pattern pair π maximizes score($M(\pi, S)$)

Examples of score function:

- Gini index
- Chi-square statistic
- Rank-sum test

 $M(\pi, S)$: num. of strings in S that π matches. Assume score can be computed in O(1) time.

Suffix Tree

Suffix Tree of s(ST(s))

- Tree structure which represents all suffixes of s.
- Each leaf is marked with its suffix number.
- ST(s) can be constructed in O(n) time (n = |s|).
 (Weiner 1973, McReight 1976, Ukkonen 1995, etc.)

$$s = cocoa\$_1$$

123456

Generalized Suffix Tree

path(v) = concatenation of labels from <math>root to node v.

Generalized ST (GST(S))

• ST for set S of strings.

• Can be constructed in O(N) time (N = ||S||).

$$S = \{cocoa\$_1, cacao\$_2\}$$

Find Best Single Pattern

- We can restrict the candidates for pattern p to those represented by the nodes of GST(S).
 there are only O(N) nodes
- For all nodes v in GST(S), M(path(v), S) is computable in total O(N) time.
 (Color Set Size Problem, Hui 1992)
- Output path(v) of the best score.
- O(N) time & space for single pattern case.

Find Best Pair $p \wedge_{\alpha} q$

Algorithm Sketch:

- For each candidate of first pattern p
 - 1. Compute Zone(p, S) the region covered by α from each position of p in S.
 - 2. Build sparse suffix tree (SST) on Zone(p, S).
 - 3. For each node u in SST, compute score.
- Output pattern pair of the best score.

Zone(p, S)

Build SST on Zone(p, S)

q = path(u) for some node u in SST on Zone(p, S)

q is such a pattern that $p \wedge_{\alpha} q$ matches S

Analysis

- \square We have O(N) choices for first pattern p.
 - For each candidate p
 - Compute Zone(p, S) O(N) time
 - Construct SST on Zone(p, S) O(N) time
- □ Thus it takes $O(N^2)$ time in total.
- We need <u>O(N)</u> <u>space</u> since we use one SST at each stage of the algorithm.

Find Best Pair $p \wedge_{\alpha} \neg q$

$$O(N^2)$$
 time $O(N)$ time $O(N^2)$ time $M(\overline{\pi}, S) = M(p, S) - M(\pi, S)$ $\pi = p \wedge_{\alpha} q, \ \overline{\pi} = p \wedge_{\alpha} \neg q$

Implementation with Suffix and LCP Arrays

Implementation with Suffix and LCP Arrays

Extended to Correlated Patterns

- Each sequence si in S may be associated with numeric value r_i , such as gene expression level.
- Wanted!: pattern pair π that matches sequences s_i with high r_i , but doesn't match sequences s_i with low r_i (or vice versa).
- \rightarrow pattern pair π that maximizes score($M(\pi, S), R(\pi, S)$).
 - $O(N^2)$ time & O(N) space to find optimal pairs $p \wedge_{\alpha} q$ and $p \wedge_{\alpha} \neg q$

Computational Experiments

Yeast mRNA

■3'UTR predicted processing site sequences (100nt each)

- \square 379 fast degrading ($t_{0.5}$ < 10 min.)
- \square 393 slowly degrading ($t_{0.5}$ > 50 min.) Divided according to mRNA decay rate measurements (Wang et al. 2002, Graber 2003)
- ■score function: chi-squared test statistic

Computational Experiments (Contd.)

fast 159/393

slow 248/379

known biding site of the PUF protein which is important in mRNA regulation

AUA / UGUA

268/393

190/379

AUA Λ_{10} UGUA

231/393

123/379

may influence how efficiently **UGUA** functions, when it is close to **UGUA**??

Conclusions

- $O(N^2)$ time O(N) space algorithm to find optimal pattern pair with bounded distance α
- Efficient implementation with suffix arrays
- Biologically relevant patterns discovered
- It can be extended to more advanced versions of bounded distance:
 - B) $O(m^2N^2)$ time & $O(m^2N)$ space
 - c) $O(N^3)$ time & $O(N^2)$ space
 - D) $O(m^2N^3)$ time & $O(N^2+m^2N)$ space