Kinetic Monte Carlo Notes

Stefan Bringuier

Table of contents

Monte Carlo Methods	į
Integrating a function MC sampling	:
Example integrating a function using MC sampling	4
Example integrating a function using MC sampling	-
Statistical Thermodynamics & Ensemble Properties $$.	-
Statistical Thermodynamics & Ensemble Properties $$.	6
Statistical Thermodynamics & Ensemble Properties $$.	6
Metropolis Monte Carlo	7
Metropolis Monte Carlo	7
Metropolis Monte Carlo	8
Metropolis Monte Carlo	8
Backmatter	Ć
References	Ć

List of Figures

0.1	Random sampled points from uniform distribu-	
	tion over the interval [1, 4]. The black points are	
	those that are accepted	4
0.2	Integration of $log(x)$ using MC	
	Relative probablity for two states	

Monte Carlo Methods

- Solve complex problems using random sampling from a probability distribution (i.e. stochastic description).
- Useful to evolve a physical system to a new state from an esemble of potential future states.

Integrating a function MC sampling

 If we want to evaluate the integral of a function over some domain we can numerically approximate this using the midpoint rule:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$
 (0.1)

• There is an alternative way to do this using probablity theory to determine the expectation value of a function f(x) for random variable x:

$$\int_{a}^{b} p(x)f(x)dx = \frac{b-a}{N} \sum_{i=1}^{N} f(x_i)$$
 (0.2)

where p(x) is a uniform probability distribution over the interval [a, b].

- The difference between numerically evaluating Equation 0.1 and Equation 0.2, is that Equation 0.1 is evaluated over a grid of points and Equation 0.2 is randomly sampled points.
- The error of MC integration is $\propto \frac{1}{\sqrt{N}}$ as a result of central limit theorem

Example integrating a function using MC sampling¹

Figure 0.1: Random sampled points from uniform distribution over the interval [1, 4]. The black points are those that are accepted.

¹A more detailed notebook implementing the code can be viewed here

Example integrating a function using MC sampling

Figure 0.2: Integration of log(x) using MC.

Statistical Thermodynamics & Ensemble Properties

- Microscopic \rightarrow Macroscopic description
 - How positions and momenta of 10^{23} particles relates to bulk temperature, pressure, or volume.
- Ensembles use probability of specific microstate. Probability theory provides average of a function or variable, \(\lambda X \rangle :\)

$$\langle X \rangle = \frac{1}{N} \sum_{i=1}^{N} n_i X_i = \sum_{i=1}^{N} \underbrace{p_i}_{\text{PDF}} X_i \qquad (0.3)$$

- If $\langle X \rangle$ is continous, Equation 0.3 is an integral.
- p_i is the probability the system is in state i. The probability density function (PDF) has the property that its normalized, i.e. $\sum_{i=1}^{N} p_i = 1$

Statistical Thermodynamics & Ensemble Properties

- The consequence of Equation 0.3 is that microscopic collections (i.e. ensemble of systems) can be used to calculate macroscopic properties.
- Choice of $p_i = \frac{z_i}{Z}$ depends on macroscopic conditions which manifest through the partition function:

$$Z = \sum_{i} e^{-\beta X_i} \tag{0.4}$$

• For a macroscopic system that has constant particles, volume and temperature, i.e., canonical.

$$-\beta=\frac{1}{k_bT}$$
 and $X_i=E_i$ where Boltzmann factor is
$$z_i=e^{-\frac{E_i}{k_bT}}$$

$$\langle E \rangle = \frac{1}{Z} \sum_{i} e^{-\frac{E_i}{k_b T}} E_i \tag{0.5}$$

Statistical Thermodynamics & Ensemble Properties

- The biggest challenge in evaluating Equation 0.5 is it requires knowledge of all possible configurations.
- If Z is a configurational integral, e.g., $Z = \int e^{-U(\mathbf{r}^N)/k_B T} d\mathbf{r}^N$, then there are 3N possible configs!
- The key insight is that most configurations are not probable:
 - If the two atoms are extremely close at moderate T, the term $U(\mathbf{r})$ is large an hence the probability low.
- The question then becomes, can we determine $p_i = \frac{1}{Z}e^{-\frac{E_i}{k_BT}}$ efficiently, that is the states with highest probablity centered around $\langle E \rangle$ given that Z is not accessible.

 $U(\mathbf{r})$ is the potential energy between pairs of atoms.

Metropolis Monte Carlo

- If we wanted to evaluate Equation 0.5 for an atomic system (i.e. the discrete states are replaced by continuous atomic configurations), we could use the MC sampling as in Equation 0.2.
- However we need to integrate over 3N dimensions!
- This eliminates the feasability for determining the partition function Z which is required to know the probability of any specific configuration p_i

Metropolis Monte Carlo

- The Metropolis algorithm is a process to sample states i with probablity p_i
- This is achieved by using relative probabilities, i.e., $\frac{p_i}{p_j}$
- From this we get the correct average quantities.
- This works because, even though we don't know Z and can't determine p_i , the results of $\frac{p_i}{p_j}$ gives the correct distribution
- Relative probablities are given as:

$$\frac{p_i}{p_j} = \frac{e^{-E_i/k_B T}}{Z} \frac{Z}{e^{-E_j/k_B T}} = e^{-(E_i - E_j)/k_B T}$$
(0.6)

• Which only depends on energy difference between states as shown in graph

Metropolis Monte Carlo

Figure 0.3: Relative probablity for two states.

Metropolis Monte Carlo

- In the metropolis MC approach we use the relations on Figure 0.3 to create a trajectory of states.
- The steps for MMC are:
 - 1. Generate configuration i with E_i
 - 2. Randomly trial configuration, i + 1, and calculate E_{i+1}
 - 3. Get relative probablity via Equation 0.6.
 - 4. Use relations in Figure 0.3 to accept or accept with probability $\frac{p_i}{p_j} < 1$ given a randomly generated number betwen (0,1)

Backmatter

Connect with me!

stefanbringuier@gmail.com

This presentation can be viewed online at https://stefan bringuier.github.io/KMCNotes. A report formated PDF of this presentation can be downloaded here.

To export revealjs presentations to pdf, press 'e' then 'ctrl-p' 'save as pdf'

References

Andersen, Mie, Chiara Panosetti, and Karsten Reuter. 2019. "A Practical Guide to Surface Kinetic Monte Carlo Simulations." Frontiers in Chemistry 7. https://doi.org/10.3389/fchem.2019.00202.

LeSar, R. 2013. Introduction to Computational Materials Science: Fundamentals to Applications. Cambridge University

Press. https://books.google.com/books?id=QzkhAwAAQB AJ.

"Numerical Integration - Midpoint, Trapezoid, Simpson's Rule." 2021.