1. In this guiz you will diagonalise some matrices and apply this to simplify calculations.

1 / 1 punto

Given the matrix $T = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$ and change of basis matrix $C = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ (whose columns are eigenvectors of T), calculate the diagonal matrix $D = C^{-1}TC.$

- $\begin{array}{cccc}
 & 9 & 0 \\
 & 0 & 20
 \end{array}$ $\begin{array}{cccc}
 & 3 & 0 \\
 & 0 & 3
 \end{array}$
 - - Well done!
- Given the matrix $T = \begin{bmatrix} 2 & 7 \\ 0 & -1 \end{bmatrix}$ and change of basis matrix $C = \begin{bmatrix} 7 & 1 \\ -3 & 0 \end{bmatrix}$ 2. 1 / 1 punto (whose columns are eigenvectors of T), calculate the diagonal matrix $D = C^{-1}TC.$

- Given the matrix $T=\begin{bmatrix}1&0\\2&-1\end{bmatrix}$ and change of basis matrix $C=\begin{bmatrix}1&0\\1&1\end{bmatrix}$ (whose columns are eigenvectors of T), calculate the diagonal matrix $D=C^{-1}TC$.

 - $\bigcirc \quad \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$

 - $\bigcirc \ \, \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$
 - ✓ Correcto
 Well done!

$$\begin{bmatrix} -a & 0 \\ 0 & -a \end{bmatrix}$$

$$\begin{bmatrix} -a & 0 \\ 0 & a \end{bmatrix}$$

✓ Correcto

Well done! As it turns out, because D is a special type of diagonal matrix, where all entries on the diagonal are the same, this matrix is just a scalar multiple of the identity matrix. Hence, given any change of co-ordinates, this matrix remains the same.

5. Given that $T = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$, calculate T^3 .

$$[186 \quad -61]$$

$$\bigcirc \begin{bmatrix} -61 & 3 \\ 122 & 186 \end{bmatrix}$$

$$\begin{bmatrix} 122 & 186 \\ -61 & 3 \end{bmatrix}$$

$$O$$
 $\begin{bmatrix} 3 & 122 \\ 186 & -61 \end{bmatrix}$

⊘ Correcto

Well done!

- 6. Given that $T = \begin{bmatrix} 2 & 7 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & -1/3 \\ 1 & 7/3 \end{bmatrix}$, calculate T^3 .
 - $\begin{bmatrix} -1 & 21 \\ 8 & 0 \end{bmatrix}$
 - $\bigcirc \begin{bmatrix} 21 & 8 \\ 0 & -1 \end{bmatrix}$
 - $[\begin{bmatrix} 8 & 21 \\ 0 & -1 \end{bmatrix}]$
 - $\begin{bmatrix} 0 & -1 \\ 21 & 8 \end{bmatrix}$
 - ✓ Correcto

Well done!

- 7. Given that $T = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$, calculate T^5 .
 - $\bigcirc \quad \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix}$
 - \bigcirc $\begin{bmatrix}
 1 & 0 \\
 2 & -1
 \end{bmatrix}$

