

B.W.D.U. BANDARA

CSC 3141 – Image Processing Laboratory

S/20/314

INTRODUCTION

- Agriculture is a vital sector where plant health directly impacts productivity and food supply.
- Leaf diseases are common, and early detection is crucial to prevent widespread damage.
- Manual inspection of plant diseases is time-consuming and prone to human error.
- This project aims to build an automated system to detect diseased regions in plant leaves using traditional image processing techniques.

Problem Statement

Manual disease identification lacks consistency and scalability.

Machine learning models need large labeled datasets and computational power.

Many agricultural settings lack access to such resources.

Need for a **lightweight**, **fast**, **and reliable** system using only classic image processing.

Should adapt to different leaf colors and disease types without training.

Objective

- To detect leaf diseases using only traditional image processing techniques.
- To accurately isolate the leaf from the background.
- To identify healthy regions using the dominant hue (mode) of the leaf.
- To segment and highlight diseased areas using contour analysis.
- To compute and display the percentage of leaf area affected.
- To visualize each processing step clearly for interpretability.

Methodology Overview

Load & Resize Image

Gaussian Blur (Noise Removal)

HSV Conversion

Background Removal

Leaf Mask (Morphological Cleaning)

Dominant Hue Detection (Mode)

Healthy Region Mask

Disease Mask = Leaf - Healthy

Contour Detection

Area Calculation & Visualization

Tools & Technologies

Tool / Library	Purpose	
Python 3.x	Programming language	
OpenCV (cv2)	Image processing operations	
NumPy	Numerical operations, dominant hue	
Matplotlib	Result visualization	
PyCharm	IDE used for coding and testing	
Kaggle Dataset	Source of real-world leaf images	

Image Processing Steps

Image Preprocessing Steps

- Image Acquisition Load and resize the input image (e.g., 512×512).
- Gaussian Blur Reduce noise using low-pass filtering.
- HSV Conversion Convert from BGR to HSV color space for easier color-based segmentation.
- Background Removal Identify and remove background using HSV thresholding.
- Leaf Mask Creation
 Morphological operations clean up the leaf region for further processing.

Image Processing Steps

• Dominant Hue Detection

- After isolating the leaf, the hue values are analyzed to find the most common color. This "mode hue" represents the healthy part of the leaf.
- A dynamic HSV threshold is created around this mode value (±10).
- This makes the system adaptable to both green and yellow healthy leaves.
- Why Mode Hue?
 - → Fixed green/yellow ranges may fail for different crops.
 - → Mode hue allows the system to generalize across leaf types.

Image Processing Steps

- Disease Masking & Contour Analysis
 - After creating the healthy mask:
 - Subtract it from the leaf to get the disease mask
 - Use contour detection to outline infected regions
 - Calculate:
 - Disease % = (Area of Diseased Region / Total Leaf Area) × 100
 - Display this visually and numerically

Result Summary Table

Image Name	Condition	Disease %	Healthy %
Leaf_o1.jpg	Healthy	0.38%	99.56%
Leaf_o2.jpg	Mild Infection	15.912%	83.56%
Leaf_o3.jpg	Moderate Infection	53.21%	46.49%
Leaf_o4.jpg	Severe Infection	65.80%	33.93%

Code Snippet

```
import cv2
                                                                                                                                           A3 ^ '
import numpy as np
                                                                              hue_channel = hsv_blurred[:, :, 0]
import matplotlib.pyplot as plt
                                                                              masked_hue = hue_channel[leaf_mask == 255]
                                                                              dominant_hue = int(np.bincount(masked_hue).argmax())
img = cv2.imread("healthy1.JPG")
img = cv2.resize(img, dsize: (512, 512))
                                                                               lower_dominant = np.array([max(dominant_hue - 10, 0), 40, 40])
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                                                                              upper_dominant = np.array([min(dominant_hue + 10, 180), 255, 255])
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
                                                                               healthy_mask = cv2.inRange(hsv_blurred, lower_dominant, upper_dominan
hsv_blurred = cv2.GaussianBlur(hsv, ksize: (5, 5), sigmaX: 0)
                                                                               healthy_mask = cv2.bitwise_and(healthy_mask, leaf_mask)
                                                                               healthy_mask = cv2.morphologyEx(healthy_mask, cv2.MORPH_CLOSE, kernel
# --- Background removal using gray mask ---
lower_gray = np.array([0, 0, 50])
upper_gray = np.array([180, 60, 255])
                                                                               disease_mask = cv2.subtract(leaf_mask, healthy_mask)
background_mask = cv2.inRange(hsv_blurred, lower_gray, upper_gray)
                                                                              disease_mask = cv2.morphologyEx(disease_mask, cv2.MORPH_OPEN, kernel)
leaf_mask = cv2.bitwise_not(background_mask)
                                                                               # --- Contour detection for diseased areas ---
                                                                              contours, _ = cv2.findContours(disease_mask, cv2.RETR_EXTERNAL, cv2.C
kernel = np.ones( shape: (5, 5), np.uint8)
                                                                               contour_img = img_rgb.copy()
leaf_mask = cv2.morphologyEx(leaf_mask, cv2.MORPH_CLOSE, kernel)
                                                                              cv2.drawContours(contour_img, contours, -1, color: (255, 0, 0), thickne
leaf_mask = cv2.morphologyEx(leaf_mask, cv2.MORPH_OPEN, kernel)
                                                                               # --- Area calculations ---
# --- Dominant healthy color detection using Mode Hue ---
                                                                               leaf_area = cv2.countNonZero(leaf_mask)
hue_channel = hsv_blurred[:, :, 0]
                                                                               disease area = cv2 countNonZero(disease mask)
```

Code Snippet

```
code 3.py
               Final code.py
                                 Alternate.py ×
                                                                              Alternate.py ×
                                                                                      plt.title("Disease Mask")
       leaf_area = cv2.countNonZero(leaf_mask)
                                                                   A3 ^ ~
                                                                                                                                                  A3 ^ ~
                                                                                     plt.imshow(disease_mask, cmap='gray')
       disease_area = cv2.countNonZero(disease_mask)
                                                                                      plt.axis("off")
       healthy_area = cv2.countNonZero(healthy_mask)
                                                                                      plt.subplot( *args: 3, 3, 6)
       disease_percentage = (disease_area / leaf_area) * 100 if leaf_area ല
                                                                                      plt.title("Extracted Leaf")
       healthy_percentage = (healthy_area / leaf_area) * 100 if leaf_area el
                                                                                      plt.imshow(leaf_extracted)
       leaf_extracted = cv2.bitwise_and(img_rgb, img_rgb, mask=leaf_mask)
                                                                                      plt.subplot( *args: 3, 3, 7)
       disease_visual = cv2.bitwise_and(img_rgb, img_rgb, mask=disease_mask)
                                                                                      plt.title("Disease Area")
                                                                                      plt.imshow(disease_visual)
                                                                                      plt.axis("off")
       plt.figure(figsize=(16, 10))
                                                                                      plt.subplot( *args: 3, 3, 8)
       plt.subplot( *args: 3, 3, 1)
                                                                                     plt.title("Contour Overlay")
       plt.title("Original")
                                                                                     plt.imshow(contour_img)
       plt.imshow(img_rgb)
                                                                                      plt.axis("off")
       plt.axis("off")
                                                                                     plt.subplot( *args: 3, 3, 9)
       plt.subplot( *args: 3, 3, 2)
                                                                                     plt.axis("off")
       plt.title("Background Mask")
                                                                                      text = f"Disease %: {disease_percentage:.2f}%\nHealthy %: {healthy_pe
       plt.imshow(background_mask, cmap='gray')
                                                                                     plt.text( x: 0.5, y: 0.5, text, fontsize=14, ha='center', va='center'
       plt.axis("off")
                                                                                      plt.tight_layout()
       plt.subplot( *args: 3, 3, 3)
                                                                                      plt.show()
       plt.title("Leaf Mask")
```

Advantages

- **Lightweight** − No ML model or training needed
- **Fast** Runs in real time on basic hardware
- Interpretable Outputs visual and numerical results
- Adaptable Works with green/yellow leaves via dominant hue
- OpenCV-based Easy to integrate into larger systems

Limitations

- **False Positives:** May confuse aging/yellowing with disease
- Color-Based Only: Cannot detect non-visible infections
- Vein/Edge Confusion: May mislabel sharp leaf veins as infected

Conclusion

- Successfully built a disease detection system using only **traditional image processing**.
- Pipeline includes: Gaussian filtering, HSV segmentation, dynamic healthy color masking, and contour-based disease analysis.
- Produces clear **visual and numerical outputs** with **0–64%**+ **disease detection accuracy** across varied leaf samples.
- Requires no machine learning, making it suitable for offline, low-resource environments.

Q&A

THANK YOU!