Formális nyelvek és fordítóprogramok alapjai

Formális nyelvek témakör jegyzete

Készült Nagy Sára előadásai és Dévai Gergely gyakorlatai alapján

Sárközi Gergő, 2021-22-2. félév Nincsen lektorálva!

Tartalomjegyzék

Előadás 1: Alapfogalmak és jelölések					
1.1.	Szavak műveletei	3			
	1.1.1. Részszó, szó prefix, szó szuffix	4			
1.2.		4			
Előadás 2: grammatika					
2.1.	Levezetés	5			
2.2.	Chomsky féle grammatika típusok	6			
	2.2.1. Grammatika típusuk implementálási igényei	7			
2.3.	Példa grammatika típusára	7			
2.4.	_	7			
2.5.		7			
2.6.		7			
2.7.	Bizonyítások	7			
Előa	adás 3: reguláris műveletek és nyelvek	8			
	· · · · · · · · · · · · · · · · · · ·	8			
3.2.		9			
3.3.		9			
		9			
	, ,	9			
		9			
		9			
3.4.	· · · · · · · · · · · · · · · · · · ·	10			
3.5.		10			
	1.1. 1.2. Előa 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. Előa 3.1. 3.2. 3.3.	2.3. Példa grammatika típusára 2.4. Nyelvtanok ekvivalenciája 2.5. Nyelvek típusai 2.6. Kényelmi jelölés 2.7. Bizonyítások Előadás 3: reguláris műveletek és nyelvek 3.1. ϵ -mentesítés 3.2. Nyelvosztályok zártsága a reguláris műveletekre 3.3. Grammatikákon végzett reguláris műveletek 3.3.1. Unió, $\mathcal{G}_{0,2,3}$ típusú nyelvek esetén 3.3.2. Unió, \mathcal{G}_1 típusú nyelvek esetén 3.3.3. Konkatenáció, \mathcal{G}_3 típusú nyelvek esetén 3.3.4. Lezárt, \mathcal{G}_3 típusú nyelvek esetén 3.4. 3-as nyelvcsalád leírásai			

	3.6.	Reguláris kifejezések	10
	3.7.	Reguláris kifejezés gyakorlati jegyzet	11
	3.8.	3-as típusú grammatikák normál formája	
			12
4.	Előa	adás 4: véges (nem) determinisztikus automaták 1	13
	4.1.	Véges determinisztikus automata (VDA)	13
		Redukció	
		4.2.1. Közvetlen redukció	14
		4.2.2. Általános redukció	14
	4.3.	Automata által elfogadott nyelv	14
		· · · · · · · · · · · · · · · · · · ·	15
	4.5.		15
	4.6.		16
			16
	4.7.		17
		· ·	17
5.	Előa	adás 5: minimális automata 1	18
			18
		5.1.1. $L \in \mathcal{L}_{reg}$ -et felismerő minimális VDA izomorfizmusig	
			18
		•	18
			19
G	Flő:	adás 6: \mathcal{G}_2 típusú grammatikák, veremautomata 2	20
υ.		7	20
	0.1.		20
			$20 \\ 20$
			20
	6.2.		$\frac{20}{21}$
		Lemmák \mathcal{L}_3 , \mathcal{L}_2 kapcsán	
	0.5.		22 22
		, 3	22 22
			42 22
		* v	
		\-	23 22
	6.4	v oo v	23 24

1. Előadás 1: Alapfogalmak és jelölések

- Két halmaz akkor egyenlő, ha egymásnak részhalmazai.
- \bullet Ábécé: jelek egy nem üres véges halmaza, jele: V
- Betű: ábécé elemei $(a \in V)$
- Szó: V feletti szó a V ábécé elemeinek véges sorozata (szó=sztring)
 - -u szó hossza: $\ell(u)$ $(0 \le \ell(u) < \infty)$
 - üres szó: ϵ ($\ell(\epsilon) = 0$)
- ullet V^* : V ábécé feletti szavak halmaza
 - $-\epsilon \in V^*$, de $V^+ = V \setminus \{\epsilon\}$
- $\bullet\,$ Nyelv, formális nyelv: V^* egy bizonyos részhalmaza, jele: L
 - Létezik véges és végtelen nyelv
 - -Üres szót tartalmazó nyelv: $\{\epsilon\}$
 - Üres nyelv: ∅
- Nyelvosztály, nyelvcsalád: nyelvek valamely halmaza
- Lexikografikus rendezés: először hosszúság szerint, utána ábécé szerint
 - Véges és végtelen nyelveket is el lehet kezdeni felsorolni így

1.1. Szavak műveletei

- Konkatenáció: szavak egymás után leírása
 - Nincs műveleti jel: csak egymás után leírjuk a szimbólumokat
 - Egységelem: ϵ
 - Asszociatív: $(uv)w = u(vw) \quad (u, v, w \in V^*)$
 - V* zárt a konkatenáció műveletre
- Hatványozás: szó önmagával vett n-szeres konkatenációja
 - $-\ u^0=\epsilon,\, u^1=u$ és ha $n\geq 1\colon\, u^n=u^{n-1}u$
- Szó megfordítása: betűk hátulról előre olvasva, jele: u^{-1}

1.1.1. Részszó, szó prefix, szó szuffix

- Részszó: v az u részszava, ha létezik x, y szó, hogy u = xvy
- Szó prefixe: v az u prefixe, ha létezik w szó, hogy u = vw
- Szó szuffixe: v az u szuffixe, ha létezik w szó, hogy u = wv
- "Valódi" jelentése: a teljes szó és az üres szó nem számít bele
 - $\text{Azaz } v \neq \epsilon \text{ \'es } v \neq u$

1.2. Nyelvek műveletei

- Reguláris műveletek: unió, konkatenáció, lezárás
- Két nyelv uniója: ha $L_1, L_2 \subseteq V^*$: $L_1 \cup L_2 = \{u \in V^* \mid u \in L_1 \lor u \in L_2\}$
 - Ha nem mindkettő V^* feletti: ábécé unióját is vesszük
 - Kommutatív, asszociatív, egységelemes (∅)
- Két nyelv metszete: $L_1 \cap L_2 = \{u \in V^* \mid u \in L_1 \land u \in L_2\}$
- Egy nyelv komplementere egy ábécére vonatkozóan: $\overline{L} = V^* \setminus L$
- Egy nyelv tükörképe: $L^{-1} = \{u \in V^* \mid u^{-1} \in L\}$
- Két nyelv konkatenációja: $L_1L_2 = \{uv \mid u \in L_1 \land v \in L_2\}$
 - Gyakorlatilag szorzat
 - Asszociatív, egységelemes ($\{\epsilon\}$)
 - Van nullelem: $\emptyset L = \emptyset = L\emptyset$
- Nyelv hatványozása: ismételt konkatenáció önmagával
 - $-L^0=\{\epsilon\},\,L^1=L$ és ha $n\geq 1\colon L^n=L^{n-1}L$
 - $-\emptyset^0 = \{\epsilon\}$ (\emptyset minden más hatványa önmaga)
- Nyelv lezártja (iteráltja): $L^* = L^0 \cup L^1 \cup L^2 \cup ...$

$$-L^{+} = \bigcup_{i \ge 1} L^{i} \quad (\epsilon \in L^{+} \Leftrightarrow \epsilon \in L)$$

2. Előadás 2: grammatika

- Nyelv megadható szabályrendszerrel (de nem mindegyik)
- Grammatika (nyelvtan): G = (N, T, P, S)
 - N: nemterminális ábécé (szimbólumok, nagybetűsek)
 - T: terminálisok ábécéje (bemeneti szöveg ábécéje, kisbetűsek)
 - P: átírási szabályok véges halmaza
 - -S: kezdőszimbólum $(S \in N)$
 - -N és T diszjunkt halmazok
- Átírási szabályok
 - $-p \to q$ alakúak, ahol $p \in (N \cup T)^* N(N \cup T)^*$ és $q \in (N \cup T)^*$
 - * Bal oldal tartalmaz min. 1 nemterminális szimbólumot
 - * Jobb oldal lehet üres
 - Mondatforma: $(N \cup T)^*$ (vegyes karakterek)
 - * Ha nem vegyes, akkor mondatforma is, de szó is

2.1. Levezetés

- v közvetlen levezethető u-ból $(u \Rightarrow_G v)$, ha: $(u, v \in (N \cup T)^*)$
 - Létezik $u_1, u_2 \in (N \cup T)^*$ és $x \to y \in P$
 - Hogy: $u = u_1 x u_2$ és $v = u_1 y u_2$
- v közvetetten levezethető u-ból $(u \Rightarrow_G^* v)$, ha: $(u, v \in (N \cup T)^*)$
 - Létezik $k \in \mathbb{N}$ és $x_0, ..., x_k \in (N \cup T)^*$
 - Hogy: $u = x_0$ és $v = x_k$ és $\forall i \in [0, k-1] : x_i \Rightarrow_G x_{i+1}$
- Grammatika által generált nyelv
 - Minden olyan szó, ami (közvetetten) levezethető S-ből
 - $-L(G) = \{ u \in T^* \mid S \Rightarrow_G^* u \}$
- Példa: $G = (\{S, A, B\}, \{a, b\}, P, S)$
 - $-P = \{S \to ASB, S \to AB, AB \to BA, A \to a, B \to b\}$
 - $L(G) = \{ u \in \{a, b\} * \mid \ell_a(u) = \ell_b(u) \ge 1 \}$
 - Példa: $S \Rightarrow_G^* A^n B^n \Rightarrow_G^* A^{n-1} BAB^{n-1} \Rightarrow_G^* BA^n B^{n-1} \Rightarrow_G^* ba^n b^{n-1}$

2.2. Chomsky féle grammatika típusok

- \bullet A G = (N, T, P, S) grammatikát P alapján lehet osztályozni
- i = 0 típus: nincs korlátozás (azaz ennyi: grammatikával megadható)
- i=1 típus, környezetfüggő: P minden szabálya $u_1Au_2 \to u_1vu_2$ alakú, ahol $u_1, u_2, v \in (N \cup T)^*$, $A \in N$ és $v \neq \epsilon$, kivéve az $S \to \epsilon$ alakú szabály (Korlátozott ϵ szabály, KES), de ekkor S nem fordul elő egyetlen szabály jobboldalán sem.
- i=2 típus, környezetfüggetlen: P minden szabálya $A \to v$ alakú, ahol $A \in N, v \in (N \cup T)^*$
- i=3 típus, reguláris grammatika: P minden szabálya vagy $A \to uB$ vagy $A \to u$ alakú, ahol $A, B \in N$ és $u \in T^*$
- ullet Jelölje \mathcal{G}_i az i típusú grammatikák halmazát
 - $-\mathcal{G}_i \subseteq \mathcal{G}_0$ ahol $i \in \{1, 2, 3\}$
 - $\mathcal{G}_3 \subseteq \mathcal{G}_2 \not\subseteq \mathcal{G}_1 \subseteq \mathcal{G}_0$
 - * Hiányzó tartalmazás oka: $\epsilon\text{-nal}$ kapcsolatos kikötések
 - * Epszilon mentes grammatika esetén van tartalmazás ott is
- Alábbi táblázat sorai egymásba alakítható grammatikák

Típus	Alaptípus szabályai	Speciális alakok szabályai	Normál forma szabályai
0.	Nincs korlátozás.	$p \rightarrow q$, ahol $p \in N^+$, $q \in (N \cup T)^*$	
1.	$u_1Au_2 \rightarrow u_1vu_2$, ahol $u_1, u_2, v \in (N \cup T)^*, A \in N$, és $v \neq \epsilon$, kivéve az $S \rightarrow \epsilon$, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem. (környezetfüggő grammatika)	$p \rightarrow q$, ahol $l(p) \le l(q)$ kivéve az $S \rightarrow \epsilon$, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem. (hosszúság nemcsökkentő grammatika)	Kuroda normál forma $A \to a \text{ vagy}$ $A \to B \text{ vagy}$ $A \to BC \text{ vagy}$ $A \to BC \text{ Vagy}$ $AB \to CD \text{ alakúak a szabályok, ahol}$ $a \in T \text{ \'es } A, B, C, D \in N,$ kivéve az $S \to \varepsilon$, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem.
2.	$A \rightarrow v$, ahol $v \in (N \cup T)^*$, $A \in N$ (környezetfüggetlen grammatika)	$A \to v$, ahol $v \in (N \cup T)^*$, $A \in N$ és $v \ne \epsilon$, kivéve az $S \to \epsilon$, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem.	Chomsky normál forma $A \to a \ vagy$ $A \to BC \ alakúak \ a \ szabályok, \ ahol$ $a \in T \ \acute{e}s \ A, B, C \in N,$ kivéve az $S \to \epsilon$, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem.
3.	A → uB vagy A → u, ahol u ∈ T*, A,B ∈ N (reguláris grammatika)	$A \to aB$ vagy $A \to a, \text{ ahol}$ $a \in T, \text{ \'es } A, B \in N,$ kivéve az S $\to \epsilon$, de ekkor S nem fordul elő egyetlen szabály jobboldalán sem.	3-as normál forma $A \to aB \ vagy$ $A \to \epsilon, \ ahol$ $a \in T, \ \acute{e}s \ A, B \in N.$

2.2.1. Grammatika típusuk implementálási igényei

- 3-as típusú grammatika verem nélkül is implementálható
- 2-es nyelvcsaládhoz már kell 1 verem
- Két veremmel már bármi lehetséges (0-as nyelvcsalád)

2.3. Példa grammatika típusára

• Kérdés $G = (\{S', S, A, B\}, \{a, b\}, P, S')$ grammatika típusa

• Tehát G grammatika 0-s típusú, $G_1 \in \mathcal{G}_0$

2.4. Nyelvtanok ekvivalenciája

- $\bullet \ G_1$ és G_2 ekvivalensek, ha $L(G_1)=L(G_2)$
- Gyengén ekvivalensek, ha $L(G_1) \setminus \{\epsilon\} = L(G_2) \setminus \{\epsilon\}$

2.5. Nyelvek típusai

- Egy L nyelv i típusú, ha $\exists i$ -típusú grammatika, ami generálja
- Nyelvcsalád: \mathcal{L}_i jelöli az *i*-típusú nyelvek halmazát
- Chomsky féle hierarchia: $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$

2.6. Kényelmi jelölés

• $S \to A \mid B$ jelentése: két szabály, $S \to A$ és $S \to B$

2.7. Bizonyítások

Indukcióval

3. Előadás 3: reguláris műveletek és nyelvek

- Nyelvtani transzformáció: eljárás, ami G-ből G'-t csinál
 - Ekvivalens transzformáció, ha L(G) = L(G')

3.1. ϵ -mentesítés

- Tétel:
 - -G = (N, T, P, S) legyen környezetfüggetlen (2-es típusú)
 - Csinálható vele ekvivalens G' = (N', T, P', S')
 - * ami szintén környezetfüggetlen
 - * amiben nincs $A \to \epsilon$ alakú szabály, kivéve, ha $\epsilon \in L(G)$, ekkor $S' \to \epsilon \in P'$, de ekkor S' nem szerepelhet szabály jobboldalán
- Eljárás:
 - Első lépés: mely nemterminálisokból vezethető le az ϵ ?

$$* H = \{A \in N \mid A \Rightarrow_G^* \epsilon\} = ?$$

$$* H_1 = \{ A \in N \mid \exists A \to \epsilon \in P \}$$

*
$$H_{i+1} = H_i \cup \{A \in N \mid \exists A \to w \in P \land w \in H_i^*\}$$

$$* H_1 \subset H_2 \subset ...H_k = H_{k+1} \implies H = H_k$$

- $\ast\,$ Nemterminálisok halmaza véges, tehát az eljárás véges
- * Belátható: $\epsilon \in L(G) \Leftrightarrow S \in H$
- Második lépés, $S \notin H$ esetén: $A \to v' \in P'$ akkor és csak akkor ha $v' \neq \epsilon$ és ha $\exists A \to v \in P$, hogy v-ből v'-t úgy kapunk, hogy elhagyunk nulla vagy több H-beli nemterminálist v-ből
- Második lépés, $S \in H$ esetén:
 - * Előbb felsorolt szabályok közül az összes
 - * Új kezdőszimbólum: S' és $S' \notin N$
 - * Két extra szabály: $S' \to \epsilon$ és $S' \to S$

3.2. Nyelvosztályok zártsága a reguláris műveletekre

- Tétel: a $\mathcal{L}_{0..3}$ nyelvosztályok mindegyike zárt a reguláris műveletekre
- Emlékeztető: reguláris műveletek: unió, konkatenáció, lezárás

3.3. Grammatikákon végzett reguláris műveletek

3.3.1. Unió, $\mathcal{G}_{0,2,3}$ típusú nyelvek esetén

- Legyen G=(N,T,P,S) és G'=(N',T,P',S') azonos típusúak
- Legyen $N \cap N' = \emptyset$ és S_0 új szimbólum, $S_0 \notin (N \cup N')$
- $G_{\cup} = (N \cup N' \cup \{S_0\}, T, P \cup P' \cup \{S_0 \to S, S_0 \to S'\}, S_0)$
- Ekkor G_{\cup} típusa megegyzik G, G' típusával és $L(G) \cup L(G') = L(G_{\cup})$

3.3.2. Unió, \mathcal{G}_1 típusú nyelvek esetén

- Ha $\epsilon \in L(G) \cup L(G')$, akkor az előző G_{\cup} -ban nem teljesül a KES
- $\bullet \ G_{\cup}$ készítésekor vegyük kiP-ből és P'-ből a $S \to \epsilon,\, S' \to \epsilon$ szabályokat
- G_{\cup} kezdőszimbóluma legyen az új S_1 szimbólum
- \bullet G_{\cup} szabályai közé vegyük be az alábbiakat: $S_1 \to \epsilon,\, S_1 \to S_0$

3.3.3. Konkatenáció, \mathcal{G}_3 típusú nyelvek esetén

- P-ből csinálunk P₁-et: $A \to u$ alakúakat lecseréljük $A \to uS'$ -re
- $G_C = (N \cup N', T, P_1 \cup P', S)$ és $G_C \in \mathcal{G}_3$ és $L(G_C) = L(G)L(G')$

3.3.4. Lezárt, \mathcal{G}_3 típusú nyelvek esetén

- Legyen S_0 új szimbólum $(S_0 \notin N)$
- P-ből csinálunk P_1 -et: $A \to u$ alakúakat lecseréljük $A \to uS_0$ -ra
- $G_* = (N \cup \{S_0\}, T, P_1 \cup P \cup \{S_0 \to \epsilon, S_0 \to S\}, S_0)$
- $G_* \in \mathcal{G}_3$ és $L(G_*) = L^*$

3.4. 3-as nyelvcsalád leírásai

- \mathcal{G}_3 nyelvei leírhatóak:
 - 3-as típusú grammatikával
 - reguláris kifejezéssel
 - véges determinisztikus automatával
 - véges nemdeterminisztikus automatával
- Bebizonyítható: $\mathcal{L}_3 = \mathcal{L}_{reg} = \mathcal{L}_{VDA} = \mathcal{L}_{VNDA}$

3.5. Reguláris nyelvek

- Rekurzív definíció:
 - Elemi nyelvek: \emptyset , $\{\epsilon\}$ és $\{a\}$, ahol a egy tetszőleges betű
 - Reguláris nyelv: elemi nyelvekből reguláris műveletekkel létrehozható
 - Nincs más reguláris nyelv
- Tétel: $\mathcal{L}_{reg} \subseteq \mathcal{L}_3$, bizonyítás:
 - Elemi nyelvekhez megadható 3-as típusú grammatika: $G=(\{S\},\{a\},\{S\to aS\},S),\ G=(\{S\},\{a\},\{S\to \epsilon\},S),\ G=(\{S\},\{a\},\{S\to a\},S)$
 - $-\mathcal{L}_3$ zárt a reguláris műveletekre
 - Reguláris nyelv def alapján készíthető azonos 3-as nyelv is

3.6. Reguláris kifejezések

- Definíció:
 - Elemi reguláris kifejezések: \emptyset , ϵ , a, ahol a egy tetszőleges betű
 - Ha R_1 és R_2 reguláris kifejezések, akkor az alábbiak is: $(R_1|R_2)$, (R_1R_2) , $(R)^*$
 - A reguláris kifejezések halmaza a legszűkebb halmaz, amire a felső két pont teljesül.
- Műveletek prioritása csökkenő sorrendben: lezárás, konkatenáció, unió
 - A zárójelek ennek megfelelően elhagyhatók

3.7. Reguláris kifejezés gyakorlati jegyzet

- [a-9]: ha 9 előbb van, akkor üres
- \bullet . (pont) az bármi, kivéve \n, de [^a] match-el \n-re
- \bullet Be lett vezetve: $a\{5\}$ (de min, max, tól-ig változatai nem)
- Escaping: " közé, vagy \
- Üresség: "" (kettő ") (azaz $a?\equiv ""|a)$
- Halmazban ([...]) escape-elni kell a karaktert, de mást nem

3.8. 3-as típusú grammatikák normál formája

- Tétel: minden 3-as típusú nyelv generálható ilyen szabályokkal:
 - $A \rightarrow aB,$ ahol $A,B \in N$ és $a \in T$
 - $A \rightarrow \epsilon$ ahol $A \in N$
- Ez a normál forma
- Ebből könnyen készíthető automata

3.8.1. Normál formára alakítás algoritmusa

- $G = (N, T, P, S) \rightarrow G' = (N', T, P', S)$
 - G 3-as típusú grammatika
 - -G' 3-as normál formájú grammatika
- Hosszredukció
 - $A \rightarrow a_1...a_k B$ alakú szabályok helyett (ahol $k \geq 2,\, B$ lehet ϵ is)
 - $-A \rightarrow a_1 Z_1$ ahol $Z_1 \notin N$ és $Z_1 \rightarrow A_2 Z_2$ ahol $Z_2 \notin (N \cup Z_1)$, stb.
 - Azaz Z_k mindig egy új nemterminális
 - $-Z_{k-1} \rightarrow a_k B$
- Befejező szabályok átalakítása
 - Legyen E egy minden szabályra közös új nemterminális
 - $A \to a$ alakú szabályok helyett (ahol $a \in T$ és $A \in N)$ legyen P'része: $A \to aE$ és $E \to \epsilon$
- Láncmentesítés
 - $-A \rightarrow B$ alakú szabályok helyettesítése
 - Ismert módszerrel meghatározzuk: $H(A) = \{B \in N \mid A \Rightarrow_G^* B\}$
 - $* H_1(A) = \{A\}$
 - * $H_{i+1}(A) = H_i(A) \cup \{B \in N \mid \exists C \in H_i(A) \land C \to B \in P\}$
 - Majd P'-be felvesszük az $A\to X$ szabályokat, ha $\exists B\in H(A),$ hogy $B\to X\in P$ ahol $X\in (T\cup N)^*\setminus N$
 - * Azaz ahol $X \in (T \cup N)^*$ és nem csak egyetlen nemterminális

4. Előadás 4: véges (nem) determinisztikus automaták

4.1. Véges determinisztikus automata (VDA)

- Definíció: $A = (Q, T, \delta, q_0, F)$ a VDA, ahol
 - Q: állapotok nemüres VÉGES halmaza
 - T: input szimbólumok ábécéje (véges, nemüres)
 - $-\delta: Q \times T \to Q$ leképezés: állapot-átmenti függvény
 - * Determinisztikus, egyértelmű
 - * Minden $q, a \in Q \times T$ párra értelmezett (különben parciális)
 - * Érdemes táblázattal megadni: bemenetek az oszlopok
 - $-q_0 \in Q$: kezdőállapot
 - $-F \subseteq Q$: elfogadóállapotok (lehet üres)
 - * Ha nem ilyen állapotnál fogy el a bemenet, akkor rossz szó
- Irányított gráffal megadható: csúcspont az állapot, δ alapján élek
 - Kezdőállapot jelölése: semmiből induló nyíl vezet bele
 - Elfogadóállapotok (F) jelölése: dupla karika
- Az egész automata megadható δ -t leíró táblázattal, plusz két extra:
 - Befelé nyíl a kezdőállapotnál
 - Kifelé nyíl az elfogadóállapotoknál
- Beolvasáskor elég a bemenet (szalag) és 1 változó (aktuális állapot)
 - Azaz itt még nincs verem
- Alternatív jelölés állapot-átmenetekre: $\delta(q, a) = p$ helyett $qa \to p$
- Konfiguráció: aktuális állapot és a maradék bemenet
- Automata mindig terminál, mert a bemenet véges
- \bullet Gyakorlaton konvenció: betűvel nem lehet lépni \implies a betűvel a hibaállapota jutunk
 - Hibaállapot: onnan nem mehetünk másikba és nem elfogadó állapot
- Gyakorlat: nem muszáj az állapotokat elnevezni

4.2. Redukció

4.2.1. Közvetlen redukció

- Legyen $A=(Q,T,\delta,Q_0,F)$ egy véges automata
- A az $u \in QT^*$ konfigurációt a $v \in QT^*$ konfigurációra redukálja közvetlenül...
 - Jelölés: $u \Rightarrow_A v$
- $\bullet\,$... ha létezik $qa \to p$ szabály (azaz $\delta(q,a) = p)$
- $\bullet \ \dots$ és ha $\exists w \in T^* : u = qaw \wedge v = pw$

4.2.2. Általános redukció

- Legyen $A = (Q, T, \delta, Q_0, F)$ egy véges automata
- A az $u \in QT^*$ konfigurációt a $v \in QT^*$ konfigurációra redukálja...
 - Jelölés: $u \Rightarrow_A^* v$
- $\bullet \ \dots$ ha u=vvagy $\exists z \in QT^*: u \Rightarrow_A^* z \wedge z \Rightarrow_A v$

4.3. Automata által elfogadott nyelv

- Legyen $A = (Q, T, \delta, q_0, F)$
- A által elfogadott nyelv: $L(A) = \{u \in T^* \mid \exists p \in F : q_0u \Rightarrow_A^* p\}$
- $\bullet\,$ VNDA esetén: $q_0\in Q_0$ a halmaz definícióban

4.4. Véges nemdeterminisztikus automata (VNDA)

- Determinisztikus autotává lehet alakítani (de annak általánosítása is)
- Különbség: $q_0 \in Q$ helyett $Q_0 \subseteq Q$
- Különbség: $\delta: Q \times T \to Q$ helyett $\delta: Q \times T \to \mathcal{P}(Q)$
 - $-\mathcal{P}(Q)$ jelentése: Q részhalmazainak a halmaza (azaz Q hatványhalmaza)
 - Azaz $\mathcal{P}(Q)$ az a Q hatványhalmaza, ami egy véges halmaz
 - Q hatványhalmazába képez, ez egy véges halmaz
 - Táblázat celláiban lehet 0, 1, vagy több állapot is
- Egy szó akkor jó, ha létezik olyan lefutás, amikor el van fogadva
 - Azaz ha nem determinisztikus esetben "rossz" döntést hoztunk, de más döntés esetén jó lett volna a szó, akkor a szó az jó
- Redukciók, elfogadott nyelv definíció gyakorlatilag megegyezik

4.5. 3-as típus nyelvek kapcsolata véges automatákkal

- Tétel: $\mathcal{L}_3 \subseteq \mathcal{L}_{VNDA}$ és $\mathcal{L}_{VNDA} \subseteq \mathcal{L}_3$
- Bizonyítás: $L \in \mathcal{L}_3$ megadása $A = (Q, T, \delta, Q_0, F)$ VNDA-val
 - Tudjuk, hogy L megadható $G = (N, T, P, S) \in \mathcal{G}_3$ grammatikával
 - Minden nemterminális legyen egy állapot: $Q = \{q_X \mid X \in N\}$
 - Kezdőállapot: $Q_0 = q_S = \{S\}$
 - Legyen $\delta(q_a, a) = q_B \Leftrightarrow (A \to aB) \in P$
 - Legyen $q_A \in F \Leftrightarrow (A \to \epsilon) \in P$
 - Megjegyzés: eredmény nem feltétlenül determinisztikus automata
 - Megjegyzés: $S \Rightarrow_G^* u \Leftrightarrow q_S \Rightarrow_A^* u$
- A másik irány bizonyítása hasonló

4.6. VNDA-ból VDA

- Tétel: $\mathcal{L}_{VNDA} \subseteq \mathcal{L}_{VDA}$
- Másik irány triviális definíció alapján

4.6.1. Módszer VNDA-ból VDA konstruálásra

- Alapötlet: legyenek az állapotok maguk is halmazok
 - Üres halmaz is egy állapot
- Legyen $Q' = \mathcal{P}(Q)$, azaz Q részhalmazainak a halmaza (hatványhalmaz)
- Legyen $\delta':Q'\times T\to Q'$ így definiálva:

$$-\ \delta'(q',a) = \bigcup_{q \in q'} \delta(q,a)$$
ahol $q' \in Q'$ és $a \in T$

- Legyen $q'_0 = Q_0$
- Legyen $F' = \{q' \in Q' \mid q' \cap F \neq \emptyset\}$
- Bizonyítás: $L(A) \subseteq L(A')$
 - Lemma 1: $\forall q, p \in Q; q' \in Q'; u, v \in T^*$ esetén ha $qu \Rightarrow_A^* pv \land q \in q'$ akkor $\exists p' \in Q' : q'u \Rightarrow_A^* p'v \land p \in p'$
 - Maradék bizonyítás: fny 4.pdf, 28. oldal
- Bizonyítás: $L(A') \subseteq L(A)$
 - fny_4.pdf, 29. oldal

4.7. Kleene tétele: $\mathcal{L}_3 = \mathcal{L}_{req}$

- Bizonyítás vázlat:
 - $-\mathcal{L}_{reg} \subseteq \mathcal{L}_3$ (már beláttuk)
 - $-\mathcal{L}_3 = \mathcal{L}_{VDA}$ (már beláttuk)
 - $-\mathcal{L}_{VDA} \subseteq \mathcal{L}_{reg}$

4.7.1. $\mathcal{L}_{VDA} \subseteq \mathcal{L}_{reg}$ bizonyítása

- Legyen A egy n állapotú VDA: $Q = \{q_1, q_2, ..., q_n\}$ és q_1 a kezdőállapot
- $q_i u \Rightarrow_A^* q_j$ redukció
 - Érinti a q_m állapotot, ha q_m egy közbülső lépés része
 - k-megszorított, ha csak q_1 és q_k közötti állapotokat érint (i és j nincs megszorítva, csak a közbülső lépések)
- \bullet Milyen szavakba lehet eljutni k megszorítással?

$$-0 \le k \le n$$
és $1 \le i, j \le n$

$$- E_{i,i}^0 = \{\epsilon\} \cup \{a \in T \mid \exists q_i a \to q_i\}$$

$$-E_{i,j}^0 = \{a \in T \mid \exists q_i a \to q_j\} \text{ ahol } i \neq j$$

$$-E_{i,j}^k = \{u \in T^* \mid \exists q_i u \Rightarrow_A^* q_j \text{ k-megszorított redukció} \}$$

$$- E_{i,j}^{k} = E_{i,j}^{k-1} \cup E_{i,k}^{k-1} (E_{k,k}^{k-1})^* E_{k,j}^{k-1}$$

- Automata által elfogadott állapotok: $L(A) = \bigcup_{i \in I} E^n_{1,i}$
 - -Ahol ${\cal I}$ az elfogadó állapotok indexekei
 - Ez csak reguláris műveleteket használ: unió, konkatenáció, lezárás

5. Előadás 5: minimális automata

5.1. Minimális véges determinisztikus automata

• Egy A VDA minimális, ha állapotainak száma minimális: nincs olyan A' VDA, hogy L(A) = L(A'), de A' állapotainak száma kevesebb

5.1.1. $L \in \mathcal{L}_{reg}$ -et felismerő minimális VDA izomorfizmusig egyértelmű

- L reguláris nyelvet felismerő minimális VDA: izomorfizmus erejéig egyértelmű
- Bizonyítás lépései:
 - Automata összefüggővé tétele: nem elérhető állapotok elhagyása
 - Ekvivalens állapotok meghatározása
- Elkészített véges automata: $A' = (Q', T, \delta', q'_0, F')$
 - Az állapotok partíciókra cseréljük le (partíciókról később)
 - $-Q' = B_i$ partíciók
 - $-q_0'=q_0$ -t tartalamzó partíció
 - -F' = F-ből keletkezett partíciók
 - $-\delta'(B_i, a) = B_i \iff \delta(q, a) = p \land q \in B_i \land p \in B_i$

5.1.2. Összefüggő VDA

- $A=(Q,T,\delta,q_0,F)$ VDA q állapota elérhető, ha $\exists u\in T^*:q_0u\Rightarrow_A^*q$
- \bullet Egy VDA összefüggő, ha minden állapota elérhető q_0 -ból
- Elérhető állapotok meghatározása:
 - $H_0 = \{q_0\}$
 - $-H_{i+1} = H_i \cup \{r \in Q \mid \delta(q, a) = r; q \in H_i; a \in T\}$
 - $-H = H_k$, ahol $H_k = H_{k+1}$
- Tehát a $Q \setminus H$ állapotok elhagyhatóak: nem elérhetőek

5.1.3. Ekvivalens állapotok meghatározása

- q és p ekvivalens $(q \sim p)$, ha minden szóra egyformán működnek
 - Azaz: $\forall u \in T^* : (qu \Rightarrow_A^* r \land pu \Rightarrow_A^* r') \implies (r \in F \Leftrightarrow r' \in F)$
- Állítás: $(q \sim p \land qa \rightarrow s \land pa \rightarrow t) \implies s \sim t$
 - Azaz ha két ekvivalens állapotból azonos betűvel léptünk, akkor ekvivalens állapotokba jutunk.
- \bullet qés pi-ekvivalens állapotok $(q \sim^i p),$ ha minden max ihosszú szóra egyformán működnek
 - $\forall u \in T^*, \ell(u) \le i : (qu \Rightarrow_A^* r \land pu \Rightarrow_A^* r') \implies (r \in F \Leftrightarrow r' \in F)$
 - Lemma: $q \sim^{i+1} p \Leftrightarrow (\forall a \in T : (qa \to r \land pa \to t) \implies r \sim^i t)$
 - $-q \sim^0 p \Leftrightarrow (q, p \in F \lor q, p \in Q \setminus F)$
- Particionálás folyamata
 - Folyamatosan egyre hosszabb szavak alapján particionálunk
 - $-\epsilon$, először két rész: $Q=B_1\cup B_2,\,B_1=F,\,B_2=Q\setminus F$
 - Finomítás:
 - * Legyen $q \sim^i p$ és a partíciók száma $k \geq 2 \; (Q = B_1 \cup ... \cup B_k)$
 - * $p,q \in B_i$ pontosan akkor maradnak egy partícióban, ha: $\forall a \in T : (qa \to r \land pa \to t) \implies (r,t \in B_i)$ azaz ha r,t azonos partícióba tartoznak, ilyenkor $q \sim^{i+1} p$
 - * Ellenkező esetben a B_i partíciót szét kell bontani
 - * Ezt az eljárást addig ismételjük, amíg változás van

6. Előadás 6: \mathcal{G}_2 típusú grammatikák, veremautomata

6.1. Programozási nyelvek szintaxisa

• Programozási nyelvek szintaxisa: környezetfüggetlen (\mathcal{G}_2)

6.1.1. Szóprobléma

- Tétel: $\forall G \in \mathcal{G}_2$ eldönthető, hogy $u \in T^*$ esetén $u \in L(G)$ igaz-e
 - Nem bizonyítjuk

6.1.2. Backus-Naur forma (BNF)

- Szabály bal-jobb oldal elválasztó: ::=
- Nemterminális: < és > jelek között (minden más terminális)

– Pár helyes kifejezés: i + i * i, (i + i) * i, i * i * i * i, ((i)), i

6.1.3. Szintaxisfa

- Legyen $G = (N, T, P, S) \in \mathcal{G}_2$
- A t nemüres fa szintaxisfa, ha...:
 - Belső pontjai N elemeivel vannak címkézve
 - Levelei $T \cup \{\epsilon\}$ elemeivel vannak címkézve
 - * ϵ -nal címkézett pontoknak nincs testvére
 - Ha egy belső pont címkéje A és közvetlen gyerekei $X_1,X_2,...,X_n,$ akkor $A\to X_1X_2...X_n\in P$
- Szóhoz megadható szintaxisfa \Leftrightarrow létezik levezetés
- Egyértelmű grammatika: $\forall u \in L(G)$ szóhoz egyetlen szintaxisfa tartozik
 - Nem egyértelmű példa: $S \to a \mid S + S$ az u = a + a + a esetben

6.2. Chomsky normál forma (\mathcal{G}_2)

- Emlékeztető: $A \to a$ vagy $A \to BC$ a szabályok $(a \in T; A, B, C \in N)$
 - Vagy $S \rightarrow \epsilon$, de ekkor S csak bal oldalon van
- Bináris szintaxisfák jönnek ki ilyen grammatikákból
- Aktív nemterminálisok halmaza
 - Jelentése: valahány lépésben csupa terminális csinálható belőle
 - $-\ A = \{X \in N \mid X \Rightarrow_G^* u \wedge u \in T^*\}$
 - Inaktív nemterminálisok halamza: $N \setminus A$
 - $-A = \emptyset \implies L(G) = \emptyset$
- Elérhető nemterminálisok halamza:
 - Jelentése: kezdőállapotból el lehet bele jutni
 - $-\ R = \{X \in N \mid S \Rightarrow_G^* uXw \land u, w \in (T \cup N)^*\}$
 - * Nem lehet üres: S mindig benne van
 - Nem elérhető nemterminálisok halmaza: $N \setminus R$
- Hasznos nemterminálisok: aktív és elérhető $(A \cap R)$
- Redukált grammatika: minden nemterminális hasznos $(N = A \cap R)$

6.3. Lemmák \mathcal{L}_3 , \mathcal{L}_2 kapcsán

6.3.1. Kis Bar-Hillel lemma, szükséges feltétel $L \in \mathcal{L}_3$ -ra

- \bullet Minden $L \in \mathcal{L}_3$ nyelvhez van $n \geq 1$ nyelvfüggő konstans
- Hogy $\forall u \in L$ ahol $\ell(u) \geq n$ van olyan u = xyz felbontás
 - $-\ell(xy) \le n$
 - $-y \neq \epsilon$
 - $\forall i > 0 : xy^i z \in L$

6.3.2. Kis Bar-Hillel lemma bizonyítása

- $L \in \mathcal{L}_3 \implies$ adható minimális VDA
- \bullet Tegyük fel, hogy az automatának n állapota van
- Szó legalább n hosszó \implies legalább n hosszú prefixének olvasásakor legalább egy állapot kétszer volt érintve, azaz tettünk egy kört
 - Ezt a kört kihagyhatjuk (i=0) vagy akárhányszor ismételhetjük

6.3.3. Példa és lemma alapján $\mathcal{L}_3 \subset \mathcal{L}_2$ belátása

- $L = \{a^k b^k \mid k \ge 0\} \notin \mathcal{L}_3$ bizonyítása
- Tegyük fel indirekt, hogy $\exists n \geq 1$ a lemma szerint
- Legyen $u = a^k b^k$ ahol k > n
- Ekkor léteznie kéne egy u=xyz felbontásnak ahol $\ell(xy) \leq n$ és $y \neq \epsilon$
- De k>n miatt y csak 'a' betűket tartalmazhat
- Lemma szerint $a^{k+j}b^k$ szónak is $\in L$, de ez nem igaz

6.3.4. Bar-Hillel lemma (pumpáló lemma)

- \bullet Minden környezetfüggetlen nyelvhez megadható p,q
- $\bullet \ \forall u \in L : \ell(u) > p \implies u = vxwyz$
 - $-v, x, w, y, z \in T^*$
 - $-\ell(xwy) < q$
 - $-xy \neq \epsilon$
 - $\ \forall i \ge 0 : vx^i wy^i z \in L$
- Párhuzamos pumpálás szemléletesen
- Nem bizonyítjuk (de Chomsky-normálforma, bináris fa alapján kell)

6.3.5. Bar-Hillel lemma \implies van környezetfüggő nyelv

- Példa: $L = \{a^n b^n c^n \mid n > 0\} \notin \mathcal{L}_2$
- Bizonyítás: indirekt, tegyük fel, hogy létezik p és q
- Legyen k>p és k>q, ekkor $u=a^kb^kc^k$ és $\ell(u)>p$
- \bullet Tétel szerint x és y párhuzamosan iterálható, de xy-ban nem lehet mindhárom betűből

6.4. Veremautomata

- $A = (Z, Q, T, \delta, z_0, q_0, F)$
 - -Z: verem szimbólumok ábécéje (nem üres)
 - − Q: állapotok halmaza (véges és nem üres)
 - T: bemeneti szimbólumok ábécéje
 - $-\delta: Z \times Q \times (T \cup \{\epsilon\}) \to \mathcal{P}(Z^* \times Q)$
 - * Lehet determinisztikus vagy nem determinisztikus
 - * Verem tetejét mindig kiveszi (de vissza is rakhatja, akár többet)
 - $\ast\,$ Bár Z^{\ast} lehet végtelen, mi csak véges sok szabályt engedünk
 - $-z_0 \in \mathbb{Z}$: kezdő veremszimbólum (verem nem üresen kezd)
 - $-q_0 \in Q$: kezdőállapot
 - $-F \subseteq Q$: elfogadó állapotok halmaza
- VDA-tól eltérés: Z, z_0 és δ
- Elfogadó állapotba kerüléskor nem feltétlenül üres a verem
- ullet Verem üres \Longrightarrow (szó helyes \Leftrightarrow elfogadóállapotban vagyunk)
 - Bemenetből olvasható ϵ , de veremből nem!
- Nem feltétlenül terminál (ϵ -t olvashat bemenetről)

