2022 C1 Block Test Revision Package Solutions Chapter 3 Inequalities and System of Equations

A Inequalities

1 RVHS11/C1BT/Q1

 $x^2 - 2x + 3 = (x - 1)^2 + 2 \ge 2 > 0$. Hence $x^2 - 2x + 3$ is always positive.

By observation, $1^3 - 4(1)^2 - 1 + 4 = 0$

So x+1 is one factor. Then we use long division or comparing coefficients to find the other two factors x+1, x-4

$$\frac{x^2 - 2x + 3}{x^3 - 4x^2 - x + 4} \ge 0 \Rightarrow \frac{x^2 - 2x + 3}{(x - 1)(x^2 - 3x - 4)} \ge 0$$

$$\Rightarrow \frac{x^2 - 2x + 3}{(x-1)(x+1)(x-4)} \ge 0$$

Since $x^2 - 2x + 3$ is always positive,

$$\Rightarrow (x-1)(x+1)(x-4) > 0$$

\Rightarrow -1 < x < 1 \quad \text{or} \quad x > 4

2. RI10/C1BT/Q2

The curves intersect at x = -0.944 and x = 0.792

Hence, for $e^{2x-1} > x+1$, we have x < -0.944 or x > 0.792 (to 3 s.f.)

The question states without the use of calculator, therefore have to show find the first factor by observation

Need to show that the numerator is always positive

$$e^{-(2x+1)} > 1-x \implies e^{2(-x)-1} > -x+1$$

Replace x by -x:

$$-x < -0.944$$
 or $-x > 0.792$

$$\Rightarrow x > 0.944$$
 or $x < -0.792$ (to 3 s.f.)

3. RI11/C1BT/Q6

(a)

From the graphs, 0 < x < 2.21 or x > 4.51.

$$\left| \frac{1 - 3x}{x} \right| + \ln x > 0$$

$$\Rightarrow \left| \frac{1}{x} - 3 \right| > -\ln x$$
.

$$\Rightarrow \left| \frac{1}{x} - 3 \right| > \ln\left(\frac{1}{x}\right)$$

replace x with $\frac{1}{x}$

For intermediate steps, use more decimal places for better accuracy of the final answer

$$\Rightarrow$$
 0 < $\frac{1}{x}$ < 2.20794 or $\frac{1}{x}$ > 4.50524.

$$\therefore x > 0.453 \text{ or } 0 < x < 0.222$$
.

(b)
$$\frac{2x^2 - 7x + 6}{x^2 - x - 2} < 1$$

$$\Rightarrow \frac{2x^2 - 7x + 6 - (x^2 - x - 2)}{x^2 - x - 2} < 0$$

Move all the terms to one side and combine into a single expression

$$\Rightarrow \frac{x^2 - 6x + 8}{x^2 - x - 2} < 0$$

$$\Rightarrow \frac{(x - 4)(x - 2)}{(x - 2)(x + 1)} < 0$$

$$\Rightarrow \frac{(x - 4)}{(x + 1)} < 0 \quad \text{and} \quad x \neq 2$$

$$\Rightarrow -1 < x < 4 \quad \text{and} \quad x \neq 2$$

 $\therefore -1 < x < 4$ and $x \ne 2$ [Alternative Answer: -1 < x < 2 or 2 < x < 4]

$$-1 < x < 2$$
 or $2 < x < 4$

ACJC10/C1BT/Q3 4.

At the intersection point, x > a so 4|x-a| = 4(x-a).

We want to solve

$$4(x-a) = \frac{1}{x-a} \Rightarrow (x-a)^2 = \frac{1}{4} \Rightarrow x-a = \pm \frac{1}{2} \Rightarrow x = a + \frac{1}{2}$$
 Since $x > a$

Therefore, x < a or $x > a + \frac{1}{2}$.

5(i)

$$\frac{2x^2 + 4}{(x-1)(1-2x)} \le -1 \Rightarrow \frac{2x^2 + 4}{(x-1)(1-2x)} + 1 \le 0$$
$$\therefore \frac{2x^2 + 4 + (-2x^2 + 3x - 1)}{(x-1)(1-2x)} \le 0$$

$$\Rightarrow \frac{3(x+1)}{(x-1)(1-2x)} \le 0$$

 $\therefore -1 \le x < \frac{1}{2}$ or x > 1.

(ii) Replace x by $\sin x$, so the solution is

$$-1 \le \sin x < \frac{1}{2}$$
 or $\sin x > 1 (\text{rej})$

Hence the set of solution is

$$\left\{ x \in \mathbb{R} : 0 \le x < \frac{\pi}{6} \quad \text{or} \quad \frac{5\pi}{6} < x \le 2\pi \right\}.$$

Sketch the curve of $\sin x$

AJC16/C1BT/Q8 6.

 $|x^2 - 5x| > 8 - 5x \Rightarrow |x^2 - 5x| + 2 > 10 - 5x$

At point P:
$$(x^2 - 5x) + 2 = 10 - 5x$$

$$x^2 = 8 \Rightarrow x = \pm \sqrt{8} = \pm 2\sqrt{2}$$

Since it is at second quadrant, $x = -2\sqrt{2}$

At point Q: $-(x^2 - 5x) + 2 = 10 - 5x$

$$x^2 - 10x + 8 = 0$$

$$x^{2} - 10x + 8 = 0$$

$$\Rightarrow x = \frac{10 \pm \sqrt{100 - 4(8)}}{2} = 5 \pm \sqrt{17}$$

Since $x < 5, x = 5 - \sqrt{17}$

From the graph, the solution for $|x^2 - 5x| > 8 - 5x$ is

$$x < -2\sqrt{2}$$
 or $x > 5 - \sqrt{17}$

Ouestion states "answer in exact form", will need to resolve the modulus and solve for the intersection. Use the graph to find the correct inequality

CJC16/C1BT/Q2 7.

(i)
$$\frac{(x+1)^2}{4} - (y-3)^2 = 1$$

Hyperbola, centre (-1,3).

To find asymptotes:

$$\frac{(x+1)^2}{4} - (y-3)^2 = 0$$

$$\Rightarrow y-3 = \pm \frac{x+1}{2}$$

$$\Rightarrow y = \frac{1}{2}x + \frac{7}{2} \qquad y = -\frac{1}{2}x + \frac{5}{2}$$

(ii)
$$\frac{(x+1)^2}{4} - (y-3)^2 = 1$$

$$\Rightarrow (y-3)^2 = \frac{(x+1)^2}{4} - 1$$

$$\Rightarrow y = 3 + \sqrt{\frac{(x+1)^2}{4} - 1} \text{ or } y = 3 - \sqrt{\frac{(x+1)^2}{4} - 1}$$

$$\text{lower portion of hyperbola in (i)}$$

To solve $3 + \sqrt{\frac{(x+1)^2}{4} - 1} > 2x$, we need to Sketch y = 2x.

Remember to label the centre of the hyperbola

From graph, $x \le -3$ or $1 \le x < 2.09$.

8. IJC16/C1BT/Q5

(i) Method 1:

$$3x^2 - 3x + 1 = 3\left(x - \frac{1}{2}\right)^2 + \frac{1}{4}$$

Since $\left(x-\frac{1}{2}\right)^2 \ge 0$, $3\left(x-\frac{1}{2}\right)^2 + \frac{1}{4}$ is always positive

Discriminant = $(-3)^2 - 4(3)(1) = -3$

Discriminant ≤ 0 and coefficient of x^2 is positive, so $3x^2 - 3x + 1$ is always positive

$$\frac{x}{2x-1} \le \frac{1}{3x-1}$$

$$\Rightarrow \frac{x(3x-1) - (2x-1)}{(2x-1)(3x-1)} \le 0$$

$$\Rightarrow \frac{3x^2 - 3x + 1}{(2x - 1)(3x - 1)} \le 0$$

Since $3x^2 - 3x + 1$ is always positive, it suffices to solve:

$$\frac{1}{\left(2x-1\right)\left(3x-1\right)} \le 0$$

 \therefore solution is $\frac{1}{3} < x < \frac{1}{2}$

$$\frac{1}{3} < x^2 < \frac{1}{2}$$

$$\Rightarrow x^2 < \frac{1}{\sqrt{2}} \text{ and } x^2 > \frac{1}{\sqrt{3}}$$

Find the intersection between the 2

$$\Rightarrow -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \text{ and } x > \frac{1}{\sqrt{3}} \text{ or } x < -\frac{1}{\sqrt{3}}$$

NJC16/C1BT/Q4

$$\frac{29+3x}{9-x^2} \ge 4$$

$$\Rightarrow \frac{29+3x-4(9-x^2)}{9-x^2} \ge 0$$

$$\Rightarrow \frac{(4x+7)(x-1)}{(3-x)(3+x)} \ge 0$$

Hence, $-3 < x \le -\frac{7}{4}$ or $1 \le x < 3$.

$$\frac{3|x|-29}{x^2-9} \ge 4 \Rightarrow \frac{29-3|x|}{9-x^2} \ge 4$$

Replace x with -|x|.

$$-3 < -|x| \le -\frac{7}{4}$$
 or $1 \le -|x| < 3$. (No solution : $-|x| < 0$).

$$\Rightarrow \frac{7}{4} \le |x| < 3$$

Hence $-3 < x \le -\frac{7}{4}$ or $\frac{7}{4} \le x < 3$.

10 SRJC16/C1BT/Q6

 $(x-1)^2$ gives a repeated root. Therefore there is no change in sign in the number line before and after x = 1

11(i)	RI 2020 C1 BT Q8
11(1)	$\frac{x-2}{x^2-x} \ge 1 x \ne 0,1$
	$\frac{(x-2) - (x^2 - x)}{x^2 - x} \ge 0$
	$\frac{-x^2 + 2x - 2}{x^2 - x} \ge 0$
	$-x^2 + 2x - 2 = -(x-1)^2 - 1 < 0 \forall x \in \mathbb{R}$
	since $(x-1)^2 \ge 0 \forall x \in \mathbb{R}$
	Therefore,
	$x^2 - x < 0$ $x(x-1) < 0$
	0 < x < 1
(ii) (a)	$\frac{2 - e^x}{e^x - e^{2x}} \ge 1$
	$\frac{e^x - 2}{e^{2x} - e^x} \ge 1$
	Replace x with e^x .

	From (i), $0 < 0$ That is, $x < 0$						
(ii) (b)	$\frac{x-3}{x^2-3x+2} \le 1$ $\frac{(x-1)-2}{(x-1)^2-(x-1)^2}$ Replace x with From (i), x	$\frac{1}{1} \le 1$ $(x-1)$. $x = 1 < 0$		x-1>1 $x>2$			
(iii)	A way to visu						Note that 0 and 1
							cannot be included in
	_		+	_	_	_	the solution.
		Ó	Ċ)			
			_			_	
					+		
			-				
					Ĭ		
	+	i .	_	_		_	
	-	- 0					-
	•	0 (•	(+)	2 ($\overline{\ominus}$	*
	Another way to visualise:						
	$\frac{2-e^x}{e^x-e^{2x}}-1$	+	_	_	_		
	$\frac{x-3}{x^2 - 3x + 2} - 1$	_	_	+	_		
	$\frac{x-2}{x^2-x}-1$	-	+	-	-		
		+	+	+	-		
	∴The set of va	lues of x	required :			I	

 $(-\infty,2)\setminus\{0,1\}$.

В System of Linear Equations

MJC13/Promo/Q3 12

(i) At A,
$$b+c=a+d$$
.

At B,
$$a+b+c=48$$
.

At C,
$$a+c=2b$$
.

At D,
$$d = b + 2a$$
.

$$-a+b+c-d=0$$
.

$$a+b+c=48$$
.

$$a-2b+c=0$$
.

$$2a+b-d=0.$$

Using GC,
$$a = 8, b = 16, c = 24$$
 and $d = 32$.

12 Total amount collected =
$$\$0.50(2c+b)$$

(ii)
$$= \$0.50(48+16)$$
$$= \$32$$

HCI11/C1BT/Q4 13.

(i)
$$b + \frac{c}{4} = 160000 \dots (1)$$

$$a+b+\frac{c}{5}=198\,000$$
(2)

$$2a+b+\frac{c}{6}=240\,000$$
(3)

$$\Rightarrow a = 50000, b = 100000, c = 240000$$

(ii) Method 1:

$$-50000t + 100000 + \frac{240000}{t+4} = 0$$

$$\Rightarrow t = 2.71$$

The profit first becomes zero in 2003.

Method 2:

$$-50000t + 100000 + \frac{240000}{t+4} = 0$$

$$\Rightarrow$$
 -50000 t^2 -100000 t + 640000 = 0

$$\Rightarrow t = 2.71 \text{ or } -4.71 \text{ (rej } :: t > 0 \text{)}$$

The profit first becomes zero in 2003.

					-	
- PA/8	21	Hb.	^		- 2	٠
M	e.	ш	v	u	J	٠

X	[Yt	
012 8456	160000 98000 40000 -15714 -70000 -1.2E5 -1.8E5	
X=3		

$$-50000t + 100000 + \frac{240000}{t+4} = 0$$

From GC, t = 3.

The profit first becomes zero in 2003.

RI11/C1BT/Q1 14.

Let P, G, and M be the prices (\$) of 1 PineApple, Googol and Macrohard shares respectively.

$$10P + 50G + 300M = 40040$$

$$G = P + 10M \Rightarrow P - G + 10M = 0$$

$$(0.1)(10P) + (0.15)(50G) + (0.2)(300M) = 6227$$

From GC, P = \$326, G = \$582, M = \$25.60

15. HCI14/C1BT/Q3

Differentiate implicitly w.r.t x:

$$2Ax + 2By \frac{dy}{dx} + C + D \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{2Ax + C}{2By + D}$$

Since the point (1,-1) is on the curve,

$$A+B+C-D = -13$$
 -----(1)

 $\frac{dy}{dx}$ at (1,-1) is zero. From (i) $\Rightarrow 2Ax + C = 0$:

$$2A + C = 0$$
 -----(2)

The point (3,-2) is on the curve:

$$9A + 4B + 3C - 2D = -13$$
 ----- (3)

Tangent at (3,-2) // to y-axis. From (i) $\Rightarrow 2By + D = 0$:

$$-4B + D = 0$$
 -----(4)

Using GC, A=1, B=4, C=-2, D=16

VJC11/C1BT/Q1 16.

Let c, l, m be the ERP rates for cars,

lorries & motorcycles respectively in dollars

$$123c + 91l + 210m = 788.5$$

$$175c + 98l + 210m = 910$$

$$154c + 103l + 190m = 850.5$$

$$c = 2$$
, $l = 2.50$, $m = 1.50$

New rate for lorries (in \$) = $2.50 \times 1.2 = 3$

$$\therefore$$
 Day 3's revenue (in \$) = 154(2)+103(3)+190(1.5)

$$=902$$

17 ASRJC/2019C1BT1/2

Let x, y and z be the usual prices of a box of chocolates, a box of biscuits and a packet of nuts respectively.

$$x+y+z=73|4$$
 ---- (1)

$$0.85(3x) + x + 6y - 15 + 3z = 297.97 \implies 3.55x + 6y + 3z = 312.97 - (2)$$

$$0.85(6x) + 5y - 10 + 2z = 322.39$$
 \Rightarrow $5.1x + 5y + 2z = 332.39$ --- (3)

From GC, x = 36.4, y = 24.25, z = 12.75.

The price of a box of chocolate is \$36.40; the price of a box of biscuits is \$24.25; the price of a packet of nuts is \$12.75.

Total savings made by Mary = $0.15(3 \times 36.40) + 15 =$ <u>\$31.38</u>.