Stochastik I 10. Übung

Aufgabe 37 (5 Punkte)

Satz 3.4.8. Gegeben seien nicht-leere, abzählbare Mengen $\Omega_1, \ldots, \Omega_n$. Zudem sei \mathbb{P}_1 ein W-Maß auf $(\Omega_1, \mathfrak{P}(\Omega_1))$, und für jede $k \in \{1, \ldots, n\}$ und $\omega_1 \in \Omega_1, \ldots, \omega_{k-1} \in \Omega_{k-1}$ sei $\mathbb{P}_{k|\omega_1, \ldots, \omega_{k-1}}$ ein W-Maß auf $(\Omega_k, \mathfrak{P}(\Omega_k))$. Setze $\Omega := \Omega_1 \times \cdots \Omega_n$ und $\mathcal{F} := \mathfrak{P}(\Omega)$, und betrachte die Koordinatenabbildung $X_i : \Omega \to \Omega_i, (\omega_1, \ldots, \omega_n) \mapsto X_i(\omega_1, \ldots, \omega_n) := \omega_i$ für jedes $i \in \{1, \ldots, n\}$. Zeigen Sie, dass dann

$$p_{\omega} := \mathbb{P}_1[\{\omega_1\}] \cdot \mathbb{P}_{2|\omega_1}[\{\omega_2\}] \cdots \mathbb{P}_{n|\omega_1,\dots,\omega_{n-1}}[\{\omega_n\}], \qquad \omega = (\omega_1,\dots,\omega_n) \in \Omega$$

die Zähldichte $(p_{\omega})_{\omega \in \Omega}$ des einzigen W-Maßes \mathbb{P} auf (Ω, \mathcal{F}) liefert, für das gilt:

- (i) $\mathbb{P}[X_1 = \omega_1] = \mathbb{P}_1[\{\omega_1\}]$ für alle $\omega_1 \in \Omega_1$.
- (ii) $\mathbb{P}[X_k = \omega_k | X_1 = \omega_1, \dots, X_{k-1} = \omega_{k-1}] = \mathbb{P}_{k|\omega_1, \dots, \omega_{k-1}}[\{\omega_k\}]$ für alle $\omega_1 \in \Omega_1, \dots, \omega_{k-1} \in \Omega_{k-1}$ und $k \in \{2, \dots, n\}$ mit $\mathbb{P}[X_1 = \omega_1, \dots, X_{k-1} = \omega_{k-1}] > 0$.

Hinweis: Benutzen Sie Teil (i) von Aufgabe 35 für den Beweis der Eindeutigkeit des W-Maßes P.

Aufgabe 38 (3 Punkte)

Beim Skatspiel erhält jeder der 3 Spieler 10 der 32 Karten, 2 Karten kommen in den Skat. Mit welcher Wahrscheinlichkeit bekommt jeder der 3 Spieler *genau* ein Ass? (*Hinweis:* Verwenden Sie Satz 3.4.8 zur Beantwortung dieser Frage.)

Aufgabe 39 (4 Punkte)

Seien $(\Omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und I eine beliebige nicht-leere Menge. Beweisen Sie die folgenden Aussagen für ein System von Ereignissen $(A_i)_{i \in I} \subset \mathcal{F}$:

- (i) Die Familie von Ereignissen $(A_i)_{i\in I}$ ist genau dann unabhängig, wenn die Familie der Indikatorfunktionen $(\mathbb{1}_{A_i})_{i\in I}$ unabhängig ist. (*Hinweis:* Verwenden Sie Satz 3.5.12.)
- (ii) Die Unabhängigkeit der Familie $(A_i)_{i\in I}$ impliziert die Unabhängigkeit jeder Familie $(B_i)_{i\in I}$ mit $B_i \in \{\emptyset, A_i, A_i^{\mathsf{c}}, \Omega\}, i \in I$.

Sei nun $(X_i)_{i\in I}$ eine Familie von Zufallsvariablen auf $(\Omega, \mathcal{F}, \mathbb{P})$, J eine endliche Teilmenge von I und $S_J := \sum_{j\in J} X_j$ sowie $P_J := \prod_{j\in J} X_j$. Beweisen Sie die folgenden Aussagen:

(iii) Ist die Familie von Zufallsvariablen $(X_i)_{i\in I}$ unabhängig, dann ist auch die aus S_J und X_i , $i\in I\setminus J$, bestehende Familie von Zufallsvariablen unabhängig. Ebenso ist dann auch die aus P_J und X_i , $i\in I\setminus J$, bestehende Familie von Zufallsvariablen unabhängig.

Aufgabe 40 (4 Punkte)

Seien X_2, X_3, \ldots unabhängig identisch $\operatorname{Exp}_{\lambda}$ -verteilte Zufallsvariablen auf einem W-Raum $(\Omega, \mathcal{F}, \mathbb{P})$ für ein $\lambda > 0$. Zeigen Sie mit Hilfe des Null-Eins-Gesetzes von Borel-Cantelli, dass

$$\limsup_{n \to \infty} \frac{X_n}{\log n} = \frac{1}{\lambda} \qquad \mathbb{P}\text{-f.s.}$$

 $\mathit{Hinweis}$: Es genügt zu zeigen, dass $\limsup_{n \to \infty} \frac{X_n}{\log n} \ge \frac{1}{\lambda} \mathbb{P}$ -f.s. und $\limsup_{n \to \infty} \frac{X_n}{\log n} < \frac{1}{\lambda} + \varepsilon \mathbb{P}$ -f.s. für jedes $\varepsilon > 0$. Warum?