Wanmin Liu, 2025-10-06

## Del 1. Repetition och tillämpningar av derivatan.

$$D(f(x)) = f'(x) := \lim_{h \to 0} \frac{\Delta y}{\Delta x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Vi **definierar** talet e så att

$$D(e^x) = e^x$$
, eller  $(e^x)' = e^x$ .

Det är en indirekt definition. Så e är bara en speciell konstant och  $e \approx 2.7$ .

Graf för den naturliga logaritmfunktionen  $y = \ln x$  definieras som reella tal  $\ln x$  sådana att  $e^{\ln x} = x$  för positiv x.



$$(x^a)' = ax^{a-1}$$
 för reela tal  $a$ .  $(e^{kx})' = ke^{kx}$ . För  $a > 0$  är  $(a^{kx})' = a^{kx} \cdot k \cdot \ln(a)$ .  $(ag(x) + bh(x))' = ag'(x) + bh'(x)$ 

**Exempel 1.** Värdet av en samling antika mynt som köptes för 8 år sedan ökar exponentiellt med tiden. Inköpspriset var 23 000 kr och nu är den värd 27 000 kr.

- (a) Bestäm en exponetialfunktion som beskriver myntsamlingens värdeökning under t år.
- (b) Vid vilken tidpunkt kommer värdet att öka med 1 000 kr per år?

#### Ledtråd.

(a) Vi kan skriva en generell exponentialfunktion som

$$f(t) = C \cdot e^{kt},$$

för vissa konstanter k och C.

Vi vet att f(0) = 23000 och f(8) = 27000.

Vi skulle kunna använda dessa två villkor för att hitta värdena på k och C.

(b) Vi skulle lösa ekvationen f'(t) = 1000 för tiden t.

# Uppgift

Sidan 106 - 107, 3230, 3231, 3237 (Ledtråd till 3237:  $e^{0.017} \approx 1,017.$ )

# Del 2. Tangent- och normallinjer i en punkt på en kurva

Givet en kurva y = f(x) och en punkt P på kurvan med koordinaterna  $(x_0, y_0)$ .

Tangentens lutning vid punkten P är  $k_{\text{tangent}} = f'(x_0)$ .

**Definition.** En *normal* till en kurva är en linje som bildar *rät vinkel* mot kurvans tangent i en viss punkt.

Om  $k_{\mathrm{tangent}} \neq 0$ , så har vi

$$k_{\text{tangent}} \cdot k_{\text{normal}} = -1$$
 eller  $k_{\text{normal}} = \frac{-1}{k_{\text{tangent}}}$ .

Om  $k_{\text{tangent}} = 0$ , så är den normala linjen en vertikal (lodrätt) linje  $x = x_0$ .

**Exempel 2.** Bestäm ekvationen för tangenten och normalen till kurvan  $y = e + 7^x$  där x = 0.

**Ledtråd** Vilka är tangentpunktens koordinater? Vad är tangentens lutning? Vad är normalens lutning?

## Tre metoder att skriva linjens ekvation.

Med geometrin (t. ex. tangent, normal, parallell, derivata ...) kan vi hitta lutningen k.

Lutningen på linjen som går genom två kända punkter  $(x_1, y_1)$  och  $(x_2, y_2)$  är  $k = \frac{y_2 - y_1}{x_2 - x_1}$ . (Det står i formelblad.)

**Motod 1.** Skriv y = kx + m och  $y_0 = kx_0 + m$  för att hitta m.

**Motod 2.**  $k = \frac{y - y_0}{x - x_0}$  eftersom linjens lutning är k. (Det står i formelblad.)

**Motod 3.**  $y-y_0=k(x-x_0)$ . Det är linjens ekvation genom punkten  $(x_0,\ y_0)$  där vi känner lutningen k.

#### Uppgift

S. 107: 3239, 3241. S. 115: 32.