Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
Beschleunigung – Kraft		Beschleunigung – Weg			Haftreibung			Gleitreibung			
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
	reibung – Schief			Leistung			Wirkungsgrad			Radialbeschleuni	
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	Arbeit potentielle Energie			kinteische Energie			Kreisfrequenz				
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
Kreist	requenz Hook'so	che Feder		harmonische Schwi Beschleunigun			harmonische Schwing Geschwindigkeit			harmonische Schwi Auslenkung	

$F_{\rm Gl} = \mu_{\rm Gl} \cdot F_{\rm N}$ $F_{\rm Gl}: \text{Gleitreibung}$ $\mu_{\rm Gl}: \text{Gleitreibungskonstante}$ $F_{\rm N}: \text{Normalkraft}$	$F_{\rm H} = \mu_{\rm H} \cdot F_{\rm N}$ $F_{\rm H}: {\rm Haftreibung}$ $\mu_{\rm H}: {\rm Haftreibungskonstante}$ $F_{\rm N}: {\rm Normalkraft}$	$x = \frac{1}{2} \cdot a \cdot t^2$ $[m = \frac{m}{s^2} \cdot s^2]$	$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
# 8 Antwort	# 7 Antwort	# 6 Antwort	# 5
$a = \frac{v^2}{r}$ $\left[\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}\right]$	$\eta = rac{P_{ m out}}{P_{ m in}}$	$P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$ $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$	$\mu_{ m H}= anlpha$
# 12 Antwort	# 11 Antwort	# 10 Antwort	# 9 Antwort
$\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{\mathrm{rad}}{s}\right]$ T: Kreisfrequenz (Umlaufzeit)	$E_{\text{kin}} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = \text{kg} \cdot \frac{\text{m}^2}{\text{s}^2} \right]$	$E_{ ext{pot}} = m \cdot g \cdot h$ $\left[J = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} \cdot \text{m} \right]$ $= \text{kg} \frac{\text{m}^2}{\text{s}^2}$	$W = F \cdot s$ $\begin{bmatrix} J = N \cdot m \\ = kg \frac{m}{s^2} \cdot m \\ = kg \frac{m^2}{s^2} \end{bmatrix}$
# 16 Antwort	# 15 Antwort	# 14 Antwort	# 13 Antwort
$y(t) = y_0 \cdot \sin \omega t$	$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m}\right]$	$a(t) = -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $\left[\frac{\mathbf{m}}{\mathbf{s}^2} = \mathbf{s}^{-2} \cdot \mathbf{m}\right]$	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$ D: Federkonstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
potentielle Energie Hook'sche Feder		Kraft Hook'sche Feder			Inelastischer Stoß			Elastischer Stoß			
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls			che Energie Dre			Impuls			reisfrequenz Fade	
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
Trägheitsmoment Stab um Stabende			Trägheitsmoment Stab um Schwerpunkt			Trägheitsmoment Vollzylinder			Trägheitsmoment Hohlzylinder		
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
Transformation Geschwindigkeit – Winkelgeschwindigkeit		Tr	ägheitsmoment	Kugel	Trä	gheitsmoment St Stabende	ab um		Leistung Transla	ation	

# 20	Antwort	# 19	Antwort	# 18	Antwort	<u># 17</u>	Antwort	
	$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$		$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$ $\left[J = \frac{N}{m} m^2 \right]$ $= \frac{kg \frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2}$	
# 24	Antwort	# 23	Antwort	<u># 22</u>	Antwort	# 21	Antwort	
Nur bei α	$\omega = \sqrt{\frac{g}{l}}$ $\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$ $= \sqrt{s^{-2}} = s^{-1}$ $< 5^{\circ}$		$p = m \cdot v$ $\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \right]$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^{2}$ $\left[J = kg m^{2} \cdot s^{-2} \right]$ $= kg \frac{m^{2}}{s^{2}}$		$L = \vartheta \cdot \omega$ $\left[N \text{ m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$ $\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$ $\text{kg} \frac{\text{m}^2}{\text{s}} = \text{kg} \frac{\text{m}^2}{\text{s}} \right]$	
# 28	Antwort	<u># 27</u>	Antwort	<u># 26</u>	Antwort	<u># 25</u>	Antwort	
	$\vartheta = m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$	r: Durch	$artheta = rac{1}{2} \cdot m \cdot r^2$ $\left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{kg} \cdot \mathrm{m}^2 \right]$ messer des Zylinders	l: Länge	$\vartheta = \frac{1}{12} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	l: Länge	$\vartheta = \frac{1}{3} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	
# 32	Antwort	# 31	Antwort	<u># 30</u>	Antwort	# 29	Antwort	
	$P = F \cdot v = M \cdot \omega$ $\left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \right]$ $kg \frac{m^2}{s^3} = kg \frac{m}{s^2} \cdot \frac{m}{s}$		$\vartheta = \frac{1}{3} \cdot m \cdot L^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$\vartheta = \frac{2}{5} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$v = r \cdot \omega$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1}\right]$	

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik	
Drehmoment		Kreisfrequenz Drehschwingung			Rückstellmoment Drehschwingung			Präzessionsfrequenz				
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik	
	Satz von Steine			Gravitationkonst			ravitationspote			pot. Energie Gra		
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik	
	Gravitationfeldstärke			Gravitationskraft			Erhaltungssätze der klassischen Physik			Corioliskraft		
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Physik	# 48	Deformation	
Keplersche Gesetze				Planet auf Kreis	bahn	Gebun	dener und unge Zustand	bundener		Elastizitätsmo	odul	

$\omega_{p} = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_{r}}$ $\left[s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{\text{kg m}^{2} \cdot s^{-1}}\right]$	$M = -D_{\varphi} \cdot \varphi$ $[\text{Nm} = \text{Nm?}]$ $D_{\varphi}: \text{Torsionsfederkonstante}$ $\varphi: \text{Verdrillungswinkel}$	$\omega = \sqrt{\frac{D}{\vartheta}}$ $\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}\right]$	$M = F \cdot r$ $\left[\text{Nm} = \text{N} \cdot \text{m} \right]$
# 40	# 39 Antwort $\varphi = -\frac{\gamma \cdot m}{r}$ $\left[\frac{m^2}{s^2} = \frac{\frac{N m^2}{kg^2} \cdot kg}{m} - N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg}\right]$	# 38	# 37 $ \theta = m \cdot a^2 + \vartheta_{\mathrm{SP}} $ $ \left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{m}^2 \cdot \mathrm{kg} + \mathrm{kg} \ \mathrm{m}^2 \right] $ $ \theta_{\mathrm{SP}} \text{Trägheitsmoment durch Schwerpunkt} $ $ \theta \text{Trägheitsmoment durch neue Achse,} $ $ \ \ \mathrm{zur} \ \mathrm{Achse} \ \mathrm{von} \ \vartheta_{\mathrm{SP}} $ a Abstand der beiden Achsen
# 44	# 43 Antwort • Energien • Impulse • Drehimpulse • elektrische Ladungen	# 42 Antwort $F_{G} = -\gamma \cdot \frac{m_1 m_2}{r^2}$ $\left[N = \frac{\text{N m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right]$	# 41 Antwort $g = -\frac{\gamma \cdot M}{r^2}$ $\left[\frac{m}{s^2} = \frac{\frac{N \text{ m}^2}{\text{kg}^2} \cdot \text{kg}}{m^2} \right]$ $= \frac{N}{\text{kg}} = \frac{\text{kg} \frac{m}{s^2}}{\text{kg}}$ M : Planetenmasse
# 48	# 47	$\frac{r_{ m p}^3}{T_{ m p}^2}=\gamma rac{m_{ m s}}{4\pi^2}=const.$ $r_{ m p}$: Radius Planetenbahn $r_{ m p}$: Umlaufzeit Planet $m_{ m s}$: Masse der Sonne	 # 45 Antwort Planeten auf Ellipsen mit Sonne im gemeinsamen Brennpunkt Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: ΔA/Δt = const Umlaufzeit T_{1,2}, große Halbachse a_{1,2} zweier Planeten: T²/T²/2 = a³/a³/2

34

Antwort

33

Antwort

36

Antwort

35

Antwort

Physik	# 49	Deformation	Physik	# 50	Deformation	Physik	# 51	Deformation	Physik	# 52	Deformation	
	Zugfestigkeit		Hooksches Gesetz				relative Längenä	nderung	Poisson-Zahl			
Physik	# 53	Deformation	Physik	# 54	Deformation	Physik	# 55	Deformation	Physik	# 56	Deformation	
	Druck			Kompressibi			Kompressions			Scherspann		
Physik	# 57	Deformation	Physik	# 58	Deformation	Physik	# 59	Deformation	Physik	# 60	Deformation	
	Torsionskonstante dünnwandiges Rohr		Torsionskonstante Vollstab				Drehmoment T	Corsion	Dehnung eines Stabes Federkonstante			
Physik	# 61	Deformation	Physik	# 62	Deformation	Physik	# 63	Deformation	Nutzungshinweis	# 64	Lizenz	
	potentielle Energie Dehnarbeit			Energiedichte D) ehnung		Energiedichte T	Γ orsion	Hinweise zur Nutzung dieser Karteilernkarten: Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden.			

# 92 Antwort	# 01 Allowort	# 50 Alltwort	# 49 Alltwort
$\mu = \left \frac{\frac{\Delta d}{d}}{\frac{\Delta l}{l}}\right $ Querkontraktion, Dicke nimm t \perp zur Dehnung ab.	$\varepsilon = \frac{\Delta l}{l_0}$ $\left[1 = \frac{\mathbf{m}}{\mathbf{m}}\right]$	$\sigma = E \cdot arepsilon \ \left[rac{ ext{N}}{ ext{m}^2} = rac{ ext{N}}{ ext{m}^2} \cdot 1 ight]$	$\sigma = \frac{F}{A}$ $\left[\frac{N}{m^2} = \frac{N}{m^2}\right]$
# 56	# 55	# 54 Antwort $\frac{\Delta V}{V} = -\kappa p$ $\Rightarrow \kappa = \frac{3}{E}(1 - 2\mu)$ $\left[\frac{1}{Pa} = \frac{1}{\frac{N}{m^2}}\right]$	# 53
# 60 Antwort $D = \frac{E \cdot A}{l}$ $\left[\frac{N}{m} = \frac{\frac{N}{m^2} \cdot m^2}{m}\right]$	# 59	# 58	# 57
# 64 Antwort "THE BEER-WARE LICENSE": Moritz Augsburger (and others, see https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.	# 63 Antwort $w = \frac{G}{2}\alpha^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$	# 62 Antwort $w = \frac{W}{V} = \frac{E}{2}\varepsilon^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$	# 61

50

Antwort

49

Antwort

52

Antwort

51

Antwort