Algebraic Topology Homework 5

Michael Nelson

Problem 1

Lemma o.1. Let X

Exercise 1. Let $X = S^1 \times S^1$ and $Y = S^1 \vee S^1 \vee S^2$.

- 1. Compute the homology of *X* and *Y* and confirm that the homology is the same in every dimension.
- 2. Describe the universal covering spaces of *X* and *Y*.
- 3. Show that the universal covering spaces of *X* and *Y* do not have the same homology.

Solution 1. 1. We use Kunneth theorem which tells us that $H(X) \simeq H(S^1) \otimes H(S^1)$ as graded modules. In particular, this implies

$$H_i(X) = egin{cases} \mathbb{Z} & ext{if } i = 0 \ \mathbb{Z} \oplus \mathbb{Z} & ext{if } i = 1 \ \mathbb{Z} & ext{if } i = 2 \ 0 & ext{else} \end{cases}$$

Next, note that the identified basepoint in the wedge sum $S^1 \vee S^1 \vee S^2$ is a deformation retract of open neighborhoods in S^1 and S^2 . Thus one can use the Mayer-Vietoris sequence to deduce that $\widetilde{H}(Y) \simeq \widetilde{H}(S^1) \oplus \widetilde{H}(S^1) \oplus \widetilde{H}(S^2)$ as graded modules, where the tilde denoted "reduced homology". In particular, this implies

$$H_i(Y) = egin{cases} \mathbb{Z} & ext{if } i = 0 \ \mathbb{Z} \oplus \mathbb{Z} & ext{if } i = 1 \ \mathbb{Z} & ext{if } i = 2 \ 0 & ext{else} \end{cases}$$

where we use the fact that Y is connected so get $H_0(Y) = \mathbb{Z}$.

2. Recall we have a homeomorphism $\mathbb{R}/\mathbb{Z} \simeq S^1$ defined by $\overline{x} \mapsto e^{2\pi i x}$. Thus it suffices to describe the universal covering space of $\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$. The universal covering space of $\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ is given by $\pi \colon \mathbb{R}^2 \to \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ where π is canonical projection map defined by

$$\pi(\mathbf{x}) = \pi(\mathbf{x}_1, \mathbf{x}_2) = (\overline{\mathbf{x}}_1, \overline{\mathbf{x}}_2),$$

for all $x = (x_1, x_2) \in \mathbb{R}^2$.

Example 0.1. We have a right action of \mathbb{Z}^2 on \mathbb{R}^2 given by

$$x \cdot a = (x_1 + a_1, x_2 + a_2) \tag{1}$$

for all $a = (a_1, a_2) \in \mathbb{Z}^2$ and $x \in (x_1, x_2) \in \mathbb{R}^2$.

1. The action is continuous as a map $\mathbb{R}^2 \times \mathbb{Z}^2 \to \mathbb{R}^2$. Indeed, let $a \in \mathbb{Z}^2$. The map $\mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$(x_1, x_2) = \mathbf{x} \mapsto \mathbf{x} \cdot \mathbf{a} = (x_1 + a_1, x_2 + a_2)$$

1

is continuous since the component functions are continuous.

- 2. The action (??) is free since if $x \cdot a = x$ implies a = 0. T
- 3. The action (??) is also properly discontinuous. Indeed, given $x \in \mathbb{R}^2$, choose

$$U_x = \{ y \in \mathbb{R}^2 \mid ||y - x||_{\infty} < 1/2 \} = (x_1 - 1/2, x_1 + 1/2) \times (x_2 - 1/2, x_2 + 1/2),$$

that is, U_x is the open square centered at x whose sides have length 1. Then clearly $U_x \cdot a$ is disjoint from U_x for all $a \in \mathbb{Z}^2 \setminus \{0\}$.

Problem 2

Exercise 2. Compute the homology groups $H_n(X, A)$ in the following cases:

- 1. X is S^2 and A is a finite set of points in X.
- 2. X is $S^1 \times S^1$ and A is a finite set of points in X.
- 3. *X* is a surface of genus 2 and *A* is a loop that separates the two wholes (see Loop A in the figure on page 132 of Hatcher Page 141 of the pdf document).
- 4. *X* is a surface of genus 2 and *A* is a loop that goes through one of the two holes (see Loop B in the figure on page 132 of Hatcher Page 141 of the pdf document).

Solution 2.

Problem 3

Exercise 3. Compute the homologies of the following spaces:

- 1. The quotient of S^2 by identifying the north and south poles to a point.
- 2. The space $S^1 \times (S^1 \vee S^1)$. This space looks somewhat like a torus, but each of the radial slices is a figure-eight.
- 3. The quotient space formed from deleting two disjoint open disks in the interior of D^2 and identifying all three boundaries, preserving the clockwise orientations of the circles.

Solution 3.

Problem 4

Exercise 4. A map $f: S^n \to S^n$ satisfying f(x) = f(-x) for all x is an **even map**. For this problem, you may assume that f has the property that there is some point $y \in S^n$ with finitely many preimages.

- 1. Prove that an even map $S^n \to S^n$ must have even degree.
- 2. Prove that when *n* is even, the degree of an even map must be 0.
- 3. Prove that when n is odd, there exist even maps of any given even degree.

Solution 4.