① 피토관 입구 경사각에 따른 유동각 변화

그림 3.1.1.4 피토관 입구경사각에 따른 유동각 변화[3.1.1.1]

그림 3.1.1.4를 통해 피토관의 입구 경사각(inside-bevel angle)이 45° 일 경우 α_{1} 은 $\pm 19^{\circ}$ 이며, 입구 경사각이 15° 일 경우 α_{1} 은 $\pm 24^{\circ}$ 임을 알 수 있다. 따라서 피토관의 입구 경사각은 45° 에서 15° 로 작아질수록 $\pm 5^{\circ}$ 커진 유동각 범위 이내에서 전압력 오차가 1% 이하임을 알 수 있다. AETF에서 기 활용하였던 전압력 레이크의 입구 경사각은 30° 이다.

라 레이놀즈수에 따른 유동각 변화

그림 3.1.1.5 레이놀즈 수 변화에 따른 유동각 변화^[3.1.1.1]

그림 3.1.1.5를 통해 유입되는 공기유동의 레이놀즈수가 500에서 6,000까지 변동할 경우 α_1 의 변화를 확인할 수 있다. 해당 레이놀즈수 범위에서 α_1 은 최저 $\pm 16^\circ$ 에서 최대 $\pm 18^\circ$ 까지 변동하며, α_1 의 변동폭은 $\pm 2^\circ$ 이내로 피토관의 형상과 관련된 인자에 비해 작은 값임을 알수 있다.