

Today's Outline

4. Circuit Theorems

Norton's Theorem

Norton's Theorem

Norton's Theorem: any two terminal circuit composed of independent sources, dependent sources and ideal resistors is equivalent to a parallel combination of a current source and an ideal resistor, known as a **Norton equivalent circuit.** Norton's theorem follows from Thévenin's theorem by a source transformation.

Edward Lawry Norton (1898-1983)

Thévenin and Norton Equivalent Circuits

We can convert between a Thévenin equivalent circuit and a Norton equivalent circuit using the source transformation.

$$v_{oc} = i_{sc} R_T$$

Norton Equivalent Circuit

To understand the meaning of the current source, which we denote $i_{\rm sc}$, we analyze the terminal law for the Norton equivalent circuit.

KCL: $0 = -i_{sc} + i_{R} + i_{AB}$

Ohm: $i_R = v_{AB} / R_T$

Combining the above:

$$i_{AB} = i_{sc} - v_{AB}/R_{T}$$

Short Circuit Current

The current i_{sc} is the **short circuit current**, the current that flows through the terminals AB when there is zero terminal voltage v_{AB} =0V (the terminals AB are said to be *shorted*).

Thévenin Resistance

If the current source is turned off, i_{sc} =0A, the circuit behaves like an ideal resistor with value equal to the **Thévenin resistance**, R_{T} .

Finding a Norton Equivalent Circuit

Here, we find i_{sc} first instead of v_{oc} . Alternatively, you can find the Thévenin circuit and apply a source transformation.

Find the Norton equivalent of the following circuit with respect to the terminals AB.

Strategy: Find $i_{sc,}$ then v_{oc} , and then $R_T = v_{oc}/i_{sc}$. If this does not work, apply a test source or solve for i_{AB} - v_{AB} directly.

First, apply a short to AB and find i_{sc} .

We can solve with a single node voltage equation and control variable equation:

$$0 = \frac{v_1}{4\Omega} + \frac{v_1}{4\Omega} + \frac{v_1}{4\Omega}$$

$$v_F = v_1$$

$$\Rightarrow v_F = v_1 = 0V$$

$$i_{sc} = i' + i'' = \frac{v_1}{4\Omega} + \frac{v_F}{4\Omega} = 0A$$

Since i_{sc} =0, the i_{AB} - v_{AB} line passes through the origin. The two intercepts corresponding to open circuit and short circuit conditions are in fact the same intercept!

$$R_T = v_{oc}/i_{sc} = 0 \text{V}/0 \text{A} =$$

The equation of the line is simplified:

$$i_{AB} = i_{sc} - v_{AB} / R_{T} = - v_{AB} / R_{T}$$

 i_{sc} v_{oc} v_{AB}

We need another point on the line. We therefore apply a test voltage of v_{AB} =1V and find the resulting i_{AB} . We could also apply a test current and find the resulting voltage.

We can solve with a single node voltage equation and control variable equation:

$$0 = \frac{v_1}{4\Omega} + \frac{v_1}{4\Omega} + \frac{v_1 - 1V}{4\Omega}$$

$$v_F = v_1$$

$$\Rightarrow v_1 = \frac{1/4}{3/4}V = \frac{1}{3}V$$

$$i_{AB} = i' + i'' = \frac{v_1 - 1V}{4\Omega} + \frac{v_F - 1V}{4\Omega}$$

$$= \frac{-2/3V}{4\Omega} + \frac{-2/3V}{4\Omega}$$

$$= -\frac{1}{3}A$$

We now have another point on the line:

$$\therefore R_{\tau} = -\frac{V_{AB}}{i_{AB}} = -\frac{1V}{-\frac{1}{3}A} = 3\Omega$$

Using the fact that a OA source is an open circuit, the Norton equivalent circuit becomes a Thévenin resistance.

Find the Norton equivalent of the following circuit with respect to the terminals AB.

Strategy: Find i_{sc} , then v_{oc} , and then $R_T = v_{oc}/i_{sc}$. If this does not work, apply a test source or solve for i_{AB} - v_{AB} directly.

First, apply a short circuit to AB, and find i_{sc} .

We can solve with a single KVL equation and control variable equation:

$$0 = -1V - v_{x} \rightarrow v_{x} = -1V$$

$$i_{sc} = 0.1 \frac{A}{V} \cdot v_{x} = -100 \text{mA}$$

Second, apply an open circuit to AB, and find v_{oc} .

We can solve with a control variable equation and a single KVL equation:

$$0 = i_{AB} = 0.1 \frac{A}{V} \cdot V_{x} \rightarrow V_{x} = 0V$$

$$0 = -1V - V_{x} + V_{oc} \rightarrow V_{oc} = 1V - V_{x} = 1V$$

The i_{AB} - v_{AB} diagram has an opposite slope to what we usually observe. The Thévenin resistance is negative!

$$R_{\tau} = \frac{v_{oc}}{i_{sc}} = \frac{1V}{-100\text{mA}} = -10\Omega$$

One consequence is that this circuit model can *deliver* an arbitrarily large amount of power $p_{DEL}=i_{AB} v_{AB}$.

Suggestion: Show that the Thévenin resistance is still negative if you swap the labels A and B.

Question: What happens if a 10Ω load resistance is connected across A and B?

Example 2: Negative Thévenin Resistance

Remember that the Norton and Thévenin equivalent circuits are just compact models to represent linear two-terminal circuits.

Circuits with dependent sources can give rise to negative Thévenin resistance. *Does this mean that nature permits a "negative resistance"?*

