مروری برالگوریتمهای رمز متقارن(کلید پنهان)

على فانيان a.fanian@iut.ac.ir

معماري لايه اي امنيت

کاربرد امنیتی

پروتکل امنیتي

الگوريتم ها

فهرست مطالب

- معماري لايه اي امنيت
- اصول الگوريتمهاي رمزنگاري
- انواع الگوريتمهاي رمز متقارن(كليد پنهان)
 - الگوريتمهاي رمزنگاري قالبي
 - نحوه هاي بكارگيري رمزهاي قطعه اي

Terminology

plaintext, cleartext: an "unhidden message"

encrypt: transform a message to hide its meaning

ciphertext: encrypted message

cipher: cryptographic algorithm

decrypt: recover meaning from encrypted message

cryptography: art/science of keeping message secure

cryptanalysis: art/science of breaking ciphertext

cryptology: study of both cryptography and cryptanalysis

Encryption and Decryption

Common Mathematical Symbols

P plaintext (here is a binary value)

C ciphertext (also binary)

E encryption function

D decryption function

E(P) = C encrypting plaintext yields ciphertext

D(C) = P decrypting ciphertext yields plaintext

D(E(P)) = P decrypting encrypted plaintext yields plaintext

Cryptography Algorithm Type

Restricted Algorithm

Key-Based Algorithm

Restricted Algorithm

The security of a restricted algorithm requires keeping the algorithm secret!

Simple Restricted Algorithm

Encryption algorithm

Multiply the plaintext by 2

Decryption algorithm

Divide the ciphertext by 2

Key-Based Algorithm

The security of key-based algorithms is based on the secrecy of the algorithm, the key(s), or both

Simple Key-Based Algorithm

Encryption algorithm

Multiply the plaintext by 2 and add key

Decryption algorithm

Subtract the key and divide the ciphertext by 2

plaintext = **SECRET** = 19 5 3 18 5 20

$$Key = 3$$

Ciphertext = $41\ 13\ 9\ 39\ 13\ 43$

Type of cryptography Algorithm

Symmetric Algorithm

• Asymmetric Algorithm

Secret (Symmetric) Key Algorithms

- Decryption key = encryption key
- Key agreed in advance between parties
- Key kept secret
- Like a locked room
 - Need the key to lock up document
 - Need the key to unlock room and get document

Public (Asymmetric) Key Algorithms

Encryption and decryption keys are different Encryption key is public (usually) Decryption key is private

One key locks, the other unlocks

Symmetric Key Algorithms

Exchanging Messages with Symmetric Cryptography

Crypto-Attacks

 Table 2.2
 Average Time Required for Exhaustive Key Search

Key Size (bits)	Number of Alternative Keys	Time Required at 1 Decryption/μs	Time Required at 10 ⁶ Decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31}\mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55}\mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127}\mu s = 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167}\mu s = 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years

فهرست مطالب

- معماري لايه اي امنيت
- اصول الگوريتمهاي رمزنگاري
- انواع الگوريتمهاي رمز متقارن(كليد پنهان)
 - الگوريتمهاي رمزنگاري قالبي
 - نحوه هاي بكارگيري رمزهاي قطعه اي

انواع الگوريتمهاي رمز متقارن

الگوریتمهای رمز متقارن بر دو دسته اند:

- رمزهای قالبی یا قطعه ای (Block Cipher)
 - پردازش پیغام ها بصورت قطعه به قطعه
- اندازه متعارف قطعات ۲۶، ۱۲۸ یا ۲۵٦ بیت
- رمزهای پی در پی یا دنباله ای (Stream Cipher)
 - پردازش پیغام ها بصورت پیوسته (بدون تقطیع)

رمز قطعه ای

قطعات خروجي

رمز دنباله ای

تابع رمزنگاری کامل(One-Time Pad)

• ایده: برای رمز کردن یک داده به طول \mathbf{n} کلیدی به طول \mathbf{n} هزینه کنیم. \mathbf{K}_{i}

- و یعنی داشتن هر تعداد متن نمونه رمزشده کمکی به تحلیلگر نمی کند.
 - امنیت این روش به تصادفی بودن کلید بستگی دارد.
- در صورت تصادفی بودن کلید امنیت الگوریتم غیر قابل شکست است.

رمز دنباله ای

چند الگوريتم نمونه:

- -Physical processes
- -LSFR (Linear Feedback Shift Register)
- -BBS(Blum-Blum-Shub)

Linear Feedback Shift Register

Linear shift feedback register with 4 bit register

فهرست مطالب

- معماري لايه اي امنيت
- اصول الگوريتمهاي رمزنگاري
- انواع الگوريتمهاي رمز متقارن(كليد پنهان)
 - الگوريتمهاي رمزنگاري قالبي
 - نحوه هاي بكارگيري رمزهاي قطعه اي

اصول رمزهای قطعه ای

- نگاشت قطعات متن واضح به قطعات متن رمزشده باید برگشت پذیر (یک به یک) باشد.
 - الگوریتم قطعات ورودی را در چند مرحله ساده و متوالی پردازش میکند. به این مراحل دور میگوییم.
- هر دور عموماً مبتنی بر ترکیب اعمال ساده ایی همچون جایگزینی و جایگشت استوار است.

دو بلوک پایه براي عملیات رمز گذاري

- جانشینی Substitution
- جایگیزینی یک سمبل با سمبل دیگر
 - ممكن است هم طول نباشند
 - جابگشت Permutation
- ترتیب قرار گرفتن حروف/بیتها در متن اصلی جابجا می شود

استانداردهای رمزهای قطعه ای آمریکا:

- رمزهای قطعه ای استاندارد
- \mathbf{DES} استاندارد رمز گذاری داده -
- \mathbf{AES} استاندارد رمز گذاری پیشرفته -
 - تحت نظارت

National Institute of Science and Technology (NIST)

استاندارد رمز گذاری داده DES

- مرور
- در سال ۱۹۷۶ توسط IBM تولید شد
- پس از انجام تغییراتی توسط NSA (Nist I versional Security) مدر سال ۱۹۷۲ آن را پذیرفت.
- اساس الگوریتم ترکیبی از عملیات جانشینی و جایگشتی میباشد.
 - مشخصات:
 - طول کلید ٥٦ بیت
 - طول قالبهای ورودی و خروجی: ٦٤ بیت
 - تعداد دورها: ١٦ دور
- الگوریتمهای رمزگذاری و رمزگشایی عمومی هستند, ولی مبانی ریاضی و اصول طراحی آنها فاش نشد.
 - در گذشته بسیار پر استفاده بود و هنوز هم از رده خارج نشده است.

استاندارد رمز گذاری داده DES

Initial and final permutation steps in DES

DES uses 16 rounds.

A round in DES (encryption site)

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output.

DES function

Expansion P-box

Since R_{I-1} is a 32-bit input and K_I is a 48-bit key, we first need to expand R_{I-1} to 48 bits.

Expansion permutation

S-Boxes

The S-boxes do the real mixing (confusion). DES uses 8 S-boxes, each with a 6-bit input and a 4-bit output.

S-box rule

DES cipher and reverse cipher for the first approach

باید از رده خارج شود \mathbf{DES}

- در ژانویه ۱۹۹۹ این الگوریتم توسط حمله جستجوی جامع فضای کلید در ۲۳ ساعت شکسته شد!
 - بیش از ۱۰۰۰ کامپیوتر بر روی اینترنت هر یک بخش کوچکی از کار جستجو را انجام دادند.
- به الگوریتمهای امن تر با طول کلید بالاتر نیاز داریم.
 - DES طراحی شفاف و روشن ندارد.

2DES and 3DES

- مسئله:
- ا کامل کامل DES اسیب پذیری DES در مقابل حمله آزمون جستجوی کامل

- راه حل:
- استفاده از الگوریتم های رمزنگاری دیگر
- پیچیده کردن الگوریتم DES از طریق اضافه کردن مراحل رمزنگاری و افزایش طول کلید

2DES

A pair of semi-weak keys in encryption and decryption

Meet-in-the-Middle Attack

However, using a known-plaintext attack called meet-in-the-middle attack proves that double DES improves this vulnerability slightly (to 2^{57} tests), but not tremendously (to 2^{112}).

Continued

Tables for meet-in-the-middle attack

$$\mathbf{M} = \mathbf{E}_{k_1}(\mathbf{P})$$

M	<i>k</i> ₁
•	

M	=	D_{k_2}	(C)
---	---	-----------	-----

M	k_2
•	

Find equal M's and record corresponding k_1 and k_2

3DES

استفاده از الگوریتم 3DES

- از دو مرحله رمزنگاری و یک مرحله رمزگشایی با سه کلید مجزا
 استفاده می شود
 - فضای کلید به ۱۹۸ بیت گسترش می یابد
- در صورت استفاده از یک کلید یکسان، 3DES با DES مطابقت می
 کند
 - نسبت به الگوریتمهای دیگر مانند Blowfish و RC5 سرعت کمتری دارد
 - تا کنون حمله ای علیه آن گزارش نشده است

Triple DES with two keys

استاندارد رمز گذاری پیشرفته AES

- NIST در سال ۱۹۹۷ مسابقه ای دو مرحله ای برای طراحی استاندارد جدید برگزار کرد.
 - تمام طراحی ها باید بر اساس اصول کاملاً روشن انجام شوند.

- در سال ۲۰۰۰ رایندال(Rijndael) به عنوان برنده اعلام شد
 - \mathbf{AES} استاندارد رمز گذاری پیشرفته -

فيناليست هاى مسابقه AES

- MARS
- *RC6*
- Rijndael
- Serpent
- Twofish

A Performance Comparison of the Five AES Finalists

B. Schneier and D. Whiting

فهرست مطالب

- معماري لايه اي امنيت
- اصول الگوريتمهاي رمزنگاري
- انواع الگوريتمهاي رمز متقارن(كليد پنهان)
 - الگوريتمهاي رمزنگاري قالبي
 - نحوه هاي بكارگيري رمزهاي قطعه اي

نحوه های بکارگیری رمزهای قطعه ای

- ECB: Electronic Code Book
- CBC: Cipher Block Chaining
- CFB: Cipher Feed Back
- OFB: Output Feed Back
- CTR: CounTeR mode

نحوه بكارگيري ECB

- اشکال اساسی: هر متن واضح به ازاء کلید ثابت همیشه به یک متن رمز شده نگاشته میشود.
 - دشمن میتواند دریابد که پیامهای یکسان ارسال شده اند.

نحوه بكارگيري CBC

مد کاری CBC

- این مد از یك مقدار دهي اولیه تصادفي (IV)بهره مي گیرد
- مقدار IVدر هر بار رمزگذاري به صورت تصادفي تغيير مي كند
 - بهتر است IV نیز رمز شده ارسال گردد
 - هر متن آشکار به ازاء کلید ثابت هر بار به یك متن رمز شده متفاوت نگاشته مي شود

نحوه بكارگيري CBC

- ملزومات امنیتی:
- IV باید کاملاً غیر قابل پیش بینی و غیر قابل دستکاری باشد
 - رمزنگاری:
 - عملیات رمزنگاری قابل موازی سازی نیست.
 - مقدار IV و متن واضح باید در دسترس باشند.
 - رمزگشایی:
 - عملیات رمزگشایی قابل موازی سازی است.
 - مقدار IV و متن رمزشده باید در دسترس باشند.
 - طول پیام:
- در برخی موارد ممکن است وادار به افزایش طول پیام بشویم.
 - طول پیام باید مضربی از طول قطعه باشد.
 - پیاده سازی:
 - رمز گشایی و رمز نگاری، هر دو باید پیاده سازی شوند.

نحوه بكارگيري CFB

• رمز نگاری

• رمزگشایی

نحوه بكارگيري OFB

• رمز نگاری

• رمزگشایی

مقايسه CFB و OFB

- موارد استفاده CFB و OFB
 - رمز جریانی
 - کاربردهای بلادرنگ
- عيب CFB : انتشار خطاى انتقال
- این عیب را برطرف می کند \mathbf{OFB} –

نحوه بكارگيري CTR

• رمز نگاری

• رمزگشایی

مقایسه کاربرد انواع مدهای کاری

كاربرد	مد کاری
ارسال مقادیر کوچک مانند کلید	EBC (Electronic Code Book)
ارسال قطعه-گرای هر گونه داده	CBC
احراز صحت	(Cipher Block Chaining)
ارسال جریانی هر گونه داده	CFB
احراز صحت	(Cipher Feed Back)
ارسال جریانی بر روی کانال نویزی (مانند ارتباطات	OFB
ماهوارهای)	(Output Feed Back)
ارسال قطعه-گرای هر گونه داده	CTR
مناسب برای ارسال با سرعت بالا	(Counter)