ECN 7060, Cours 3

William McCausland

2022-09-19

Plan

- 1. Variables aléatoires
- 2. Indépendance
- 3. Continuité de probabilité

Variables aléatoires sur (Ω, \mathcal{F}, P)

• Une fonction $X \colon \Omega \to \mathbb{R}$ est une variable aléatoire sur (Ω, \mathcal{F}, P) si

$$\{X \leq x\} \equiv \{\omega \in \Omega \colon X(\omega) \leq x\} \in \mathcal{F} \text{ pour tous } x \in \mathbb{R}.$$

- ▶ Soit X, Y, Z_1 , Z_2 , . . . des variables aléatoires, c > 0.
- Les fonctions suivantes sont-elles des variables aléatoires?
 - 1. $1_A(\omega)$ où $A \in \mathcal{F}$
 - 2. $W(\omega) = cX(\omega)$
 - 3. $W = \min(X, Y), W = \max(X, Y)$
 - 4. $W = \inf_n Z_n$, $W = \sup_n Z_n$
 - 5. W = X + Y
- Supposez que $\lim_{n\to\infty} Z_n(\omega)$ existe et égale $Z(\omega)$ pour chaque $\omega\in\Omega$. $Z(\omega)$ est-elle une variable aléatoire?
 - Notez le mode de convergence : ponctuel, pas uniforme

Fonctions indicatrices

Notation pour une fonction indicatrice sur Ω , où (Ω, \mathcal{F}, P) est un espace de probabilité :

$$1_A(\omega) = \begin{cases} 1 & \omega \in A \subseteq \Omega, \\ 0 & \text{autrement.} \end{cases}$$

Si $A \in \mathcal{F}$,

$$\{\omega \in \Omega : 1_{\mathcal{A}}(\omega) \le x\} = \begin{cases} \Omega & x \ge 1, \\ \mathcal{A}^c & 0 \le x < 1, \\ \emptyset & x < 0, \end{cases}$$

et \emptyset , A^c , $\Omega \in \mathcal{F}$. Alors $1_A(\omega)$ est une variable aléatoire.

Pré-images par une fonction indicatrice

Multiplication scalaire

Soit $X(\omega)$ une variable aléatoire, c > 0 et $W(\omega) \equiv cX(\omega)$.

Pour tout $x \in \mathbb{R}$,

$$\{\omega \in \Omega \colon W(\omega) \le x\} = \{\omega \in \Omega \colon cX(\omega) \le x\}$$
$$= \{\omega \in \Omega \colon X(\omega) \le x/c\}$$
$$\in \mathcal{F}.$$

En notation plus simple :

$$\{W \le x\} = \{cX \le x\} = \{X \le x/c\} \in \mathcal{F}.$$

Notes:

ightharpoonup pour le cas c < 0 il faut utiliser

$$\{W < x\} = \{X > x/c\} = \left(\bigcup_{n=1}^{\infty} \{X < x/c - 1/n\}\right)^c \in \mathcal{F}.$$

pour c = 0, W = 0 est trivialement une variable aléatoire.

Discussion: minimum, maximum, infimum

Rappel : X, Y, Z_1, Z_2, \ldots sont des variables aléatoires sur (Ω, \mathcal{F}, P) .

- 1. $W = \min(X, Y)$
- 2. $W = \max(X, Y)$
- 3. $W = \inf_n Z_n$

Addition

Soit $X(\omega)$ et $Y(\omega)$ deux variables aléatoires sur le même espace de probabilité (Ω, \mathcal{F}, P) . Soit $W(\omega) = X(\omega) + Y(\omega)$.

Pour tout $w \in \mathbb{R}$,

$$\{W > w\} = \cup_{q \in \mathbb{Q}} (\{X > q\} \cap \{Y > w - q\})$$

= $\cup_{q \in \mathbb{Q}} (\{X \le q\}^c \cap \{Y \le w - q\}^c) \in \mathcal{F}$

Alors $\{W \le w\} = \{W > w\}^c \in \mathcal{F}$.

Notes pour la première équation :

- Pour inclure le point $(x, w x + \epsilon)$ arbitraire qui vérifie x + y > w, choisit $q \in (x \epsilon, x)$.
- ► Entre deux nombres réels, il y a toujours un nombre rationnel (la densité des rationnels dans les réels).

La Somme X(w) + Y(w) La prémage est {X>q30{Y>w-q3}

Limites ponctuelles

Supposez que $Z: \Omega \to \mathbb{R}$, $Z(\omega) = \lim_{n \to \infty} Z_n(\omega)$ pour tout $\omega \in \Omega$.

Alors

$$\begin{aligned} \{Z \le x\} &= \{\lim_{k \to \infty} Z_k \le x\} = \{\forall \epsilon > 0, \, \exists n, \, \forall k > n, \, Z_k \le x + \epsilon\} \\ &= \cap_{m=1}^{\infty} \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} \{Z_k \le x + 1/m\} \in \mathcal{F}. \end{aligned}$$

Notes sur les limites ponctuelles

- 1. Fonctions sur $\Omega = \mathbb{R}$ avec un ensemble dénombrable de discontinuités, à travers la construction des suites de combinaisons linéaires de fonctions indicatrices.
- Comme les limites ponctuelles et les sommes finies de v.a. sont des variables aléatoires, les sommes infinies convergentes sont des variables aléatoires.

Indépendance de deux événements sur (Ω, \mathcal{F}, P)

- ▶ Définition : $A, B \in \mathcal{F}$ sont indépendants (dénoté $A \perp B$) si $P(A \cap B) = P(A)P(B)$.
- ▶ Résultat : $A \perp B \Rightarrow A \perp B^c$, $A^c \perp B$, $A^c \perp B^c$.
- Preuve du premier : $P(A \cap B^c) + P(A \cap B) = P(A)$ par additivité. Si $P(A \cap B) = P(A)P(B)$, $P(A \cap B^c) = P(A)(1 P(B)) = P(A)P(B^c)$.
- Deux faits intéressants :
 - $P(A \cap B) + P(A \cap B^c) + P(A^c \cap B) + P(A^c \cap B^c) = 1$
 - $(P(A) + P(A^c))(P(B) + P(B^c)) = P(A)P(B) + P(A)P(B^c) + P(A^c)P(B) + P(A^c)P(B^c) = 1.$

Indépendance de trois événements

- ▶ $A, B, C \in \mathcal{F}$ sont indépendants si $P(A \cap B) = P(A)P(B)$, $P(B \cap C) = P(B)P(C)$, $P(A \cap C) = P(A)P(C)$ et $P(A \cap B \cap C) = P(A)P(B)P(C)$.
- ▶ Importance de $P(A \cap B \cap C) = P(A)P(B)P(C)$:
 - $\Omega = \{1, 2, 3, 4\}, P(\{i\}) = \frac{1}{4} \text{ pour } i = 1, 2, 3, 4.$
 - Soit $A = \{1, 2\}$, $B = \{1, 3\}$, $C = \{2, 3\}$.
 - $P(A \cap B) = P(A)P(B) = \frac{1}{4}, \ P(A \cap C) = P(A)P(C) = \frac{1}{4}, \ P(B \cap C) = P(B)P(C) = \frac{1}{4}.$
 - Mais $P(A \cap B \cap C) = 0$ et $P(A)P(B)P(C) = \frac{1}{8}$.
 - Intuition: si $\omega \in C$, $\omega \in A \cap B$ est impossible, tandis que si $\omega \notin C$, c'est possible.

Indépendance d'un ensemble / d'événements

- ▶ L'ensemble I peut être indénombrable (Exemple : processus stochastique $X_t(\omega)$ en temps continu, $t \in \mathbb{R}$)
- ▶ $\{A_{\alpha}\}_{{\alpha}\in I}$ sont indépendants si pour chaque $j\in\mathbb{N}$ et chaque α_1,\ldots,α_j ,

$$P(A_{\alpha_1} \cap A_{\alpha_2} \cap \ldots \cap A_{\alpha_j}) = P(A_{\alpha_1})P(A_{\alpha_2}) \cdots P(A_{\alpha_j})$$

▶ Si les $\{A_{\alpha}\}_{{\alpha}\in I}$ sont indépendants et $a\in I$, $\{A_{\alpha}\}_{{\alpha}\in I\setminus\{a\}}\cup\{A_a^c\}$ le sont aussi. (On peut remplacer un évènement arbitraire par son complément.)

Indépendance des variables aléatoires

- Indépendance de deux variables aléatoires : X et Y sont indépendants si pour tous ensembles boréliens S_1 et S_2 , $X^{-1}(S_1)$ et $Y^{-1}(S_2)$ sont indépendants.
- ► Indépendance par paire : pour toutes paires (X, Y) dans une collection de variables aléatoires, X et Y sont indépendants.
- Indépendance : une collection $\{X_{\alpha} : \alpha \in I\}$ de variables aléatoires est indépendante si pour tout $j \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_j \in I$, S_1, \ldots, S_j boréliens,

$$P(X_{\alpha_1} \in S_1, \dots, X_{\alpha_j} \in S_j) = P(X_{\alpha_1} \in S_1) \cdots P(X_{\alpha_j} \in S_j)$$

- Indépendance de f(X) et g(Y) pour X, Y indépendant, f et g réelles et mesurables
- Pour indépendance, la nécessité de F(x,y) = F(x)F(y) est évidente. La preuve de la Proposition 3.2.4 établie la suffisance.

Indépendance de f(x) of g(y), fig rélles et mesurable

Continuité de probabilité (résultat)

Soit (Ω, \mathcal{F}, P) un espace de probabilité.

Résultat (continuité de probabilité)

- ▶ Si $A_n \nearrow A$, $A_n \in \mathcal{F}$, $P(A) = \lim_{n \to \infty} P(A_n)$.
- ▶ Si $A_n \searrow A$, $A_n \in \mathcal{F}$, $P(A) = \lim_{n \to \infty} P(A_n)$.

Attention:

- \triangleright $[0,1-1/n] \nearrow [0,1).$
- On peut avoir $P([0, 1 1/n]) \to P([0, 1)) = 0.5$ et P([0, 1]) = 1 en même temps.
- Plus généralement, la fonction de répartition n'est pas forcément continue. Mais la continuité de probabilité implique qu'elle est continue à droite.

Continuité de probabilité (preuve)

- ▶ Soit $A_n \nearrow A$, $A_n \in \mathcal{F}$.
- ► On construit une suite d'anneaux disjoints :

$$B_1 = A_1, B_2 = A_2 \cap A_1^c, \ldots, B_n = A_n \cap A_{n-1}^c, \ldots$$

- Notez que $B_n \in \mathcal{F}$, $A_n = \bigcup_{m=1}^n B_m$ et $A = \bigcup_{m=1}^\infty B_m$.
- ▶ Alors $A \in \mathcal{F}$ et

$$P(A) = P(\bigcup_{m=1}^{\infty} B_m) = \sum_{m=1}^{\infty} P(B_m) = \lim_{n \to \infty} \sum_{m=1}^{n} P(B_n) = \lim_{n \to \infty} P(A_n)$$

▶ Si $A_n \searrow A$ et $A_n \in \mathcal{F}$, $A_n^c \nearrow A^c$ puis $P(A^c) = \lim_{n \to \infty} P(A_n^c)$, $P(A) = \lim_{n \to \infty} P(A_n)$.

Construction do Bn

Convergence : suites d'événements A_n non-monotones

- $C_n = \bigcap_{k=n}^{\infty} A_k \nearrow C \equiv \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \ (A_n \text{ presque toujours, lim inf}_n A_n).$
- ▶ $D_n = \bigcup_{k=n}^{\infty} A_k \setminus_{\mathcal{A}} D \equiv \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \ (A_n \text{ infiniment souvent, lim sup}_n A_n).$
- Les ensembles "infiniment souvent", "presque toujours" existe toujours.
- ► (Proposition 3.4.1, preuve)

$$P(\liminf_{n} A_{n}) = P(\bigcup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}) = \lim_{n \to \infty} P(\cap_{k=n}^{\infty} A_{k})$$
$$= \liminf_{n \to \infty} P(\cap_{k=n}^{\infty} A_{k}) \leq \liminf_{n \to \infty} P(A_{n}),$$

$$P(\liminf_{n} A_n) \leq \liminf_{n} P(A_n) \leq \limsup_{n} P(A_n) \leq P(\limsup_{n} A_n).$$

▶ Si $P(\liminf_n A_n) = P(\limsup_n A_n)$, $\lim_{n\to\infty} P(A_n)$ existe.

Aperçu du Chapitre 4, Espérance

1. Pour les variables aléatoires simples $X(\omega) = \sum_{i=1} x_i 1_{A_i}(\omega)$,

$$E[X(\omega)] = \sum_{i=1}^{n} x_i P(A_i).$$

- linéarité
- ightharpoonup E[XY] = E[X]E[Y] pour X, Y indépendant
- 2. Des variables aléatoires non-négatives

$$E[X] = \sup\{E[Y]: Y \text{ simple}, Y \leq X\}.$$

- 3. Des variables aléatoires générales.
- 4. Espérance comme une généralisation de l'intégration riemannienne.