

Atelier 1

Mise en œuvre de La méthode

Support Vector Machine

Présentation du problème

Notations:

Soit $n \in \mathbb{N}^*$ et soit $x \in \mathbb{R}^n$. Nous notons par $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $x^T = (x_1, \dots, x_n)$ où pour tout $1 \le i \le n$, $x_i \in \mathbb{R}$ est la $i - \grave{e}me$ composante de x.

Pour $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$, nous notons par $\langle x | y \rangle = \sum_{i=1}^n x_i y_i = x^T y$ le produit scalaire canonique de \mathbb{R}^n et par norme de $||x||_2 = \sqrt{\langle x | x \rangle}$.

Notons que la distance entre deux sous-ensembles E_1 et E_2 de \mathbb{R}^n est $d = \inf_{x_1 \in E_1, x_2 \in E_2} \|x_1 - x_2\|_2$.

Nous rappelons aussi qu'un hyperplan \mathcal{H} de \mathbb{R}^n est un espace vectoriel de dimension n-1. D'une manière général, si \mathcal{H} est un hyperplan, alors il existe $\mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \in \mathbb{R}^n \setminus \{0\}$ orthogonal à tous les vecteurs de \mathcal{H} , autrement dit $\mathcal{H} = \{\mathbf{x} \in \mathbb{R}^n / \mathbf{w}^T \mathbf{x} = 0\}$.

Soit $\mathcal{B}=(e_1,...,e_n)$ une base de \mathbb{R}^n et $\mathcal{R}=(O,e_1,...,e_n)$ le repère qui lui est associé. Nous rappelons qu'un hyperplan affine de direction \mathcal{H} et passant par le point M est $\mathcal{H}_M=\left\{x\in\mathbb{R}^n \mid (x-\overrightarrow{OM})\in\mathcal{H}\right\}$

- 1. On considère pour n=2 l'hyperplan d'équation $2x_1-3x_2=0$. Donner $\mathbf{w} \in \mathbb{R}^2 \setminus \{0\}$ orthogonal à tous les vecteurs de cet hyperplan.
- 2. Soit $\mathcal{R}=(0,e_1,e_2)$ un repère orthonormé et K le point de coordonnées $(1,2)_{\mathcal{R}}$. Tracer sur une même figure w, \mathcal{H}_O , \mathcal{H}_K , et l'hyperplan affine d'équation

$$2x_1 - 3x_2 - 8 = 0$$

Méthode SVM linéaire de classification :

Soit une population d'individus décrits par un nombre $n \in \mathbb{N}^*$ de paramètres. L'objectif de la classification est de regrouper les individus selon des critères définis sur ces paramètres. Ceci revient à définir des frontières qui séparent entre les classes d'individus. Un exemple important est celui de la classification de l'état nutritionnel chez l'adulte selon l'OMS 1 :

Classification	$IMC(Kg/m^2)$	Risque
Maigreur (Dénutrition)	< 18,5	
Normal	18,5 - 24,9	

¹ OMS: Organisation mondiale de la Santé https://www.who.int/fr

Surpoids	25 – 29,9	Modérément augmenté
Obésité	> 30	Nettement augmenté

La figure ci-dessous décrit les frontières de cette classification :

Dans cette première partie nous nous proposons d'étudier la détermination de la frontière avec la méthode Support-Vector Machine (SVM) linéaire.

Soient quatre individus décrits par deux paramètres T et P selon le tableau suivant :

Individu	T	P
I_1	1,5	72
I_2	1,75	92
I_3	1,6	60
I_4	1,8	72

Les deux premiers sont hypertendus et les deux autres ne le sont pas. Nous affectons aux hypertendus la valeur 1 et aux autres la valeur -1.

3. Nous nous proposons de trouver les paramètres $\mathbf{w} = \binom{w_1}{w_2} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$ et $w_3 \in \mathbb{R}$ de la fonction frontière d'équation $g(\mathbf{x}) = 0$, où

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$x \mapsto w^T x - w_2$$

et vérifie $g(\mathbf{I_i}) \geq 1$ pour i=1 et 2, $g(\mathbf{I_i}) \leq -1$ pour i=3 et 4 et telle que la distance entre l'ensemble des potentiellement hypertendus

$$HT_+ = \{ \boldsymbol{x} \in \mathbb{R}^2 / g(\boldsymbol{x}) \ge 1 \}$$

et l'ensemble des potentiellement non-hypertendus

$$HT_{-} = \{x \in \mathbb{R}^2 / g(x) \le -1\}$$

soit maximale.

- a. Ecrire la contraintes g_i que doivent vérifier ${\pmb w}$ et w_3 aux différents ${\pmb I}_i$ pour i=1,2,3 et 4
- b. Montrer que la distance qui existe entre l'ensemble $D_1=\{x\in\mathbb{R}^2/g(x)=1\}$ et l'ensemble $D_{-1}=\{x\in\mathbb{R}^2/g(x)=-1\}$ est égale à $\frac{2}{\|\mathbf{w}\|_2}$.

- c. Calculer la distance entre O, l'origine du repère, et $D_0 = \{x \in \mathbb{R}^2 / g(x) = 0\}$
- d. Déduire de a. et de b. le problème de minimisation à résoudre pour déterminer $\pmb{W} = \begin{pmatrix} \overline{W_1} \\ \overline{W_2} \\ \overline{W_2} \end{pmatrix}$.
- e. Donner, en appliquant le théorème de Kuhn & Tucker², le système à résoudre en explicitant les équations.
- f. Les contraintes peuvent elles être simultanément non saturées. Justifier la réponse.
- g. Donner le nombre de contraintes maximales qui soient saturées simultanément. Justifier la réponse
- h. Donner les équations à résoudre si les contraintes 1, 2 et 3 sont saturées. (On ne demande pas de résoudre ces équations)
- 4. Tracer sur une même figure les points $M_i/\overrightarrow{OM_i} = I_i$, pour i = 1,2,3 et 4 et la frontière en supposant que les contraintes 1, 2 et 3 sont saturées.
- 5. **Question subsidiaire** : Donner une formulation plausible pour retrouver les frontières relatives à la classification OMS de la figure ci-dessus.

$$\nabla f(\bar{x}) + \sum_{i \in I(\bar{x})} \lambda_i \nabla g_i(\bar{x}) = 0$$

² Théorème de <u>Kuhn</u> & <u>Tucker</u>. Soit $f \in \mathcal{C}(\mathbb{R}^n, \mathbb{R})$ et soient $g_i \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R})$ pour i=1,2,...,p. On pose $g=\left(g_1,g_2,...,g_p\right)^t$ et on considère $K=\{x\in\mathbb{R}^n/g_i(x)\leq 0, i=1,2,...,p\}$ et on considère $\bar{x}\in\mathbb{R}^n/f(\bar{x})=\inf_{x\in K}f(x)$. On suppose que f est différentiable en \bar{x} et que $\{\nabla g_i(\bar{x})\}_{i\in I(\bar{x})}$ où $I(\bar{x})=\{i\in\{1,2,...;p\}/g_i(x)=0\}$ est une famille libre, alors il existe $\lambda=(\lambda_i)_{i\in I(\bar{x})}$ de réels positifs tels que

Correction

1. On considère pour n=2 l'hyperplan d'équation $2x_1-3x_2=0$. Donner $w\in\mathbb{R}^2\setminus\{0\}$ orthogonal à tous les vecteurs de cet hyperplan.

Tout vecteur
$$w=\alpha \binom{2}{-3}$$
 où $\alpha\in\mathbb{R}^*$ est orthogonal à $\{x\in\mathbb{R}^2\ /\ 2x_1-3x_2=0\}$

2. Soit $\mathcal{R}=(\mathbf{0},e_1,e_2)$ un repère orthonormé et K le point de coordonnées $(1,2)_{\mathcal{R}}$. Tracer sur une même figure \mathbf{w} , $\mathcal{H}_{\mathbf{0}}$, \mathcal{H}_{K} , et l'hyperplan affine d'équation $2x_1-3x_2-8=0$ $\mathcal{H}_{K}=\{x\in\mathbb{R}^2/2x_1-3x_2+4=0\}$, et $\{x\in\mathbb{R}^2/2x_1-3x_2-8=0\}$ est l'hyperplan \mathcal{H}_{L} où K est le point $(4,0)_{\mathcal{R}}$. Nous avons alors la figure

Remarque : Les hyperplan de même direction restent parallèles

Méthode SVM linéaire de classification :

Soit une population d'individus décrits par un nombre $n \in \mathbb{N}^*$ de paramètres. L'objectif de la classification est de regrouper les individus selon des critères définis sur ces paramètres. Ceci revient à définir des frontières qui séparent entre les classes d'individus. Un exemple important est celui de la classification de l'état nutritionnel chez l'adulte selon l'OMS 3 :

Classification	IMC (Kg/m^2)	Risque
Maigreur (Dénutrition)	< 18,5	
Normal	18,5 - 24,9	
Surpoids	25 – 29,9	Modérément augmenté
Obésité	> 30	Nettement augmenté

La figure ci-dessous décrit les frontières de cette classification :

³ OMS: Organisation mondiale de la Santé https://www.who.int/fr

Dans cette première partie nous nous proposons d'étudier la détermination de la frontière avec la méthode Support-Vector Machine (SVM) linéaire.

Soient quatre individus décrits par deux paramètres T et P selon le tableau suivant :

Individu	T	P
I_1	1,5	72
I_2	1,75	92
I_3	1,6	60
I_4	1,8	72

Les deux premiers sont hypertendus et les deux autres ne le sont pas. Nous affectons aux hypertendus la valeur 1 et aux autres la valeur -1.

3. Nous nous proposons de trouver les paramètres $\mathbf{w} = \binom{w_1}{w_2} \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$ et $w_3 \in \mathbb{R}$ de la fonction frontière d'équation g(x) = 0, où

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$x \longmapsto \mathbf{w}^T x - \mathbf{w} = \mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf$$

et vérifie $g(I_i) \ge 1$ pour i=1 et 2, $g(I_i) \le -1$ pour i=3 et 4 et telle que la distance entre l'ensemble des potentiellement hypertendus

$$HT_{+} = \{ x \in \mathbb{R}^{2} / g(x) \ge 1 \}$$

et l'ensemble des potentiellement non-hypertendus

$$HT_{-} = \{ \boldsymbol{x} \in \mathbb{R}^2 / g(\boldsymbol{x}) \le -1 \}$$

soit maximale.

i. Ecrire la contraintes g_i que doivent vérifier w et w_3 aux différents I_i pour i=1,2,3 et 4

Nous avons $g(I_1) \ge 1$, $g(I_2) \ge 1$, $g(I_3) \le -1$ et $g(I_4) \le -1$ ceci implique que nous avons $\mathbf{w}^T I_1 - w_3 \ge 1$, $\mathbf{w}^T I_2 - w_3 \ge 1$, $\mathbf{w}^T I_3 - w_3 \le -1$ et $\mathbf{w}^T I_4 - w_3 \le -1$ ou encore $1 - \mathbf{w}^T I_1 + w_3 \le 0$; $1 - \mathbf{w}^T I_2 + w_3 \le 0$, $\mathbf{w}^T I_3 - w_3 + 1 \le 0$ et $\mathbf{w}^T I_4 - w_3 + 1 \le 0$ ou encore $g_1(\mathbf{w}, w_3) \le 0$, $g_2(\mathbf{w}, w_3) \le 0$, $g_3(\mathbf{w}, w_3) \le 0$ et $g_4(\mathbf{w}, w_3) \le 0$ avec $g_1(\mathbf{w}, w_3) = 1 - \mathbf{w}^T I_1 + w_3$, $g_2(\mathbf{w}, w_3) = 1 - \mathbf{w}^T I_2 + w_3$, $g_3(\mathbf{w}, w_3) = \mathbf{w}^T I_3 - w_3 + 1$ et $g_4(\mathbf{w}, w_3) = \mathbf{w}^T I_4 - w_3 + 1$

j. Montrer que la distance qui existe entre l'ensemble $D_1=\left\{x\in\mathbb{R}^2/g(x)=1\right\}$ et l'ensemble $D_{-1}=\left\{x\in\mathbb{R}^2/g(x)=-1\right\}$ est égale à $\frac{2}{\|\mathbf{w}\|_2}$.

$$d(D_1, D_2) = \inf_{x_1 \in D_1, x_2 \in D_2} ||x_1 - x_2||_2$$

Il s'agit donc de minimiser $\|x_1-x_2\|_2$ avec $w^Tx_1-w_3=1$ et $w^Tx_2-w_3=-1$. C'est un problème de minimisation avec deux contraintes d'égalité. Comme la norme est positive le problème devient à minimiser $\frac{1}{2}\|x_1-x_2\|_2^2$ sous les contraintes $w^Tx_1-w_3=1$ et $w^Tx_2-w_3=-1$ ou encore, en faisant un changement de variable $(y=x_1-x_2)$, de minimiser $f(y)=\frac{1}{2}\|y\|_2^2$ sous les contraintes $w^Tx_1-w_3=1$ et $w^T(x_1-y)-w_3=-1 \Leftrightarrow w^Tx_1-w_3-w^Ty=-1 \Rightarrow w^Ty-2=0$.

D'après le théorème de Lagrange, on sait qu'il existe $\lambda \in \mathbb{R}$ tel que:

$$\begin{cases} y + \lambda w = 0 \\ w^T y - 2 = 0 \implies \text{en multipliant la première équation par } w^T \text{ et en tenant compte} \\ w^T x_1 - w_2 = 1 \end{cases}$$

de la deuxième on a $\lambda = \frac{-2}{\|w\|_2^2} \Longrightarrow y = \frac{2}{\|w\|_2^2} w$ et pour cette valeur, la distance est

$$||y||_2 = \sqrt{\langle y|y\rangle} = \sqrt{\left(\frac{2}{||w||_2^2}w\right) \frac{2}{||w||_2^2}w} = \frac{2}{||w||_2^2}||w||_2 = \frac{2}{||w||_2}$$

k. Calculer la distance entre 0, l'origine du repère, et $D_0 = \{x \in \mathbb{R}^2/g(x) = 0\}$ $d(0,D_2) = \inf_{x_1 \in D_1} \|x\|_2$. Il s'agit donc de minimiser $\|x\|_2$ avec $w^Tx - w_3 = 0$, ou encore comme précédemment, Il s'agit donc de minimiser $\frac{1}{2} \|x\|_2$ avec $w^Tx - w_3 = 0$. Encore une fois par Lagrange, on sait qu'il existe $\lambda \in \mathbb{R}$ tel que :

$$\begin{cases} x + \lambda w = 0 \\ w^T x - w_3 = 0 \end{cases} \text{ et de la même manière on obtient } \lambda = \frac{-w_3}{\|w\|_2^2} \text{ et} \|x\|_2 = \sqrt{\langle x | x \rangle} = \sqrt{\left\langle \frac{w_3}{\|w\|_2^2} w \Big| \frac{w_3}{\|w\|_2^2} w \right\rangle} = \frac{w_3}{\|w\|_2^2} \|w\|_2 = \frac{w_3}{\|w\|_2}$$

I. Déduire de a. et de b. le problème de minimisation à résoudre pour déterminer

$$W = \begin{pmatrix} \overline{w_1} \\ \overline{w_2} \\ \overline{w_3} \end{pmatrix}.$$

Comme le but est de maximiser la distance entre HT_+ de frontière D_1 et entre HT_- de frontière D_{-1} et que la distance entre ces deux frontières est égale à $\frac{2}{\|\mathbf{w}\|_2}$, alors le problème revient à minimiser $f(\mathbf{w}, w_3) = \frac{1}{2} \|\mathbf{w}\|_2$ sous les contraintes $g_1(\mathbf{w}, w_3) \leq 0$, $g_2(\mathbf{w}, w_3) \leq 0$, $g_3(\mathbf{w}, w_3) \leq 0$ et $g_4(\mathbf{w}, w_3) \leq 0$ avec $g_1(\mathbf{w}, w_3) = 1 - \mathbf{w}^T \mathbf{I}_1 + w_3$, $g_2(\mathbf{w}, w_3) = 1 - \mathbf{w}^T \mathbf{I}_2 + w_3$, $g_3(\mathbf{w}, w_3) = \mathbf{w}^T \mathbf{I}_3 - w_3 + 1$ et $g_4(\mathbf{w}, w_3) = \mathbf{w}^T \mathbf{I}_4 - w_3 + 1$

m. Donner, en appliquant le théorème de Kuhn & Tucker, le système à résoudre en explicitant les équations.

Le théorème de Kuhn et Tucker implique que si $(\overline{w}, \overline{w_3})$ est un minimum, alors ils existent des réels positifs λ_1 , λ_2 , λ_3 et λ_4 tels que :

$$\begin{cases} \nabla f(\overline{\boldsymbol{w}}, \overline{w_3}) + \sum_{i=1}^{4} \lambda_i \nabla g_i(\overline{\boldsymbol{w}}, \overline{w_3}) = 0\\ \lambda_i g_i(\overline{\boldsymbol{w}}, \overline{w_3}) = 0 \ pour \ i = 1,2,3 \ et \ 4\\ g_i(\overline{\boldsymbol{w}}, \overline{w_3}) \leq 0 \qquad pour \ i = 1,2,3 \ et \ 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} \binom{w_1}{w_2} + \lambda_1 \begin{pmatrix} -l_{11} \\ -l_{12} \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} -l_{21} \\ -l_{22} \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} l_{31} \\ l_{32} \\ -1 \end{pmatrix} + \lambda_4 \begin{pmatrix} l_{41} \\ l_{42} \\ -1 \end{pmatrix} = 0$$

$$\lambda_i g_i(\overline{\boldsymbol{w}}, \overline{w_3}) = 0 \ pour \ i = 1, 2, 3 \ et \ 4$$

$$g_i(\overline{\boldsymbol{w}}, \overline{w_3}) \leq 0 \qquad pour \ i = 1, 2, 3 \ et \ 4$$

où $I_{i,1}$ et $I_{i,2}$ sont les composantes de $I_{i,1}$

- n. Les contraintes peuvent elles être simultanément non saturées. Justifier la réponse. Si les contraintes sont simultanément non saturées alors, par les équations $\lambda_i g_i(\overline{w}, \overline{w_3}) = 0 \ pour \ i = 1,2,3 \ et \ 4$, on obtient que les multiplicateurs sont tous nuls et par conséquent que $w_1 = w_2 = 0$ ce qui est impossible.
- o. Donner le nombre de contraintes maximales qui soient saturées simultanément. Justifier la réponse

La matrice
$$\begin{bmatrix} \nabla g_1(\overline{\pmb w},\overline{w_3}), \nabla g_2(\overline{\pmb w},\overline{w_3}), \nabla g_3(\overline{\pmb w},\overline{w_3}), \nabla g_4(\overline{\pmb w},\overline{w_3}) \end{bmatrix} = \begin{bmatrix} -l_{11} & -l_{21} & l_{31} & l_{41} \\ -l_{11} & -l_{21} & l_{31} & l_{41} \\ 1 & 1 & -1 & -1 \end{bmatrix}$$
 est de rang égal à 3. Ceci implique qu'il existe au plus trois contraintes simultanément saturées.

p. Donner les équations à résoudre si les contraintes 1, 2 et 3 sont saturées. (On ne demande pas de résoudre ces équations)

Comme les quatre contraintes ne peuvent être saturées simultanément. La saturation des contraintes 1, 2 et 3 implique que $g_4(\overline{\pmb w},\overline{w_3})<0$ et par conséquent $\lambda_4=0$. Les équations à résoudre sont alors :

$$\begin{aligned} w_1 - \lambda_1 I_{11} - \lambda_2 I_{21} + \lambda_3 I_{31} &= 0 \\ w_2 - \lambda_1 I_{12} - \lambda_2 I_{22} + \lambda_3 I_{32} &= 0 \\ \lambda_1 + \lambda_2 - \lambda_3 &= 0 \\ -w_1 I_{11} - w_2 I_{12} + w_3 + 1 &= 0 \\ -w_1 I_{21} - w_2 I_{22} + w_3 + 1 &= 0 \\ w_1 I_{31} + w_2 I_{32} - w_3 + 1 &= 0 \\ w_1 I_{41} + w_2 I_{42} - w_3 + 1 &< 0 \\ \lambda_1 &\geq 0; \ \lambda_2 \geq 0; \ \lambda_3 \geq 0 \end{aligned}$$

4. Tracer sur une même figure les points $M_i/\overrightarrow{OM_i} = I_i$, pour i = 1, 2, 3 et 4 et la frontière en supposant que les contraintes 1, 2 et 3 sont saturées.

 $\mathbf{1}^{\text{ère}}$ méthode pour le calcul de \overline{w} et de $\overline{w_3}$:

Les équations 4, 5 et 6 de la question précédente donnent un système
$$\begin{bmatrix} -I_{11} & -I_{12} & 1 \\ -I_{21} & -I_{22} & 1 \\ I_{31} & I_{32} & -1 \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} \text{qui peut être inversé pour donner} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} -8 \\ 0.1 \\ -\frac{29}{5} \end{pmatrix}.$$

 $2^{\text{ème}}$ méthode pour le calcul de \overline{w} et de $\overline{w_3}$:

Si les contraintes 1 et 2 sont saturées ceci implique que la droite D_1 est de direction le vecteur $\mathbf{I_2} - \mathbf{I_1} = \begin{pmatrix} 0.25 \\ 20 \end{pmatrix}$ où encore que $D_1 = \{x = (x_1, x_2) \in \mathbb{R}^2 / \mathbf{w}^T \mathbf{x} - w_3 = \mathbf{1}\}$ avec $\mathbf{w} = \mathbf{a} \begin{pmatrix} -20 \\ 0.25 \end{pmatrix}$; $\alpha \in \mathbb{R}^*$ et $w_3 = \mathbf{w}^T \mathbf{I_1} - \mathbf{1} = \mathbf{w}^T \mathbf{I_2} - \mathbf{1} = (-20 \times 1.5\alpha + 0.25 \times 72\alpha) - 1 = (-20 \times 1.75\alpha + 0.25 \times 92\alpha) - 1 = -12\alpha - 1$. α est alors déterminé en écrivant que $g_4(\mathbf{w}, \mathbf{w_3}) = 0$, autrement dit $\mathbf{w}^T \mathbf{I_3} - \mathbf{w_3} = -1 \Rightarrow (-20 \times 1.6\alpha + 0.25 \times 60\alpha) + 1 + 12\alpha = -1 \Rightarrow \alpha = \frac{2}{5} \Rightarrow \mathbf{w} = \begin{pmatrix} -8 \\ 0.1 \end{pmatrix}$ et $w_3 = -\frac{29}{5}$

Ceci nous donne la figure suivante :

Remarque : Cette solution n'est pas bonne, car ${\pmb w}={-8 \choose 0,1}$ et $w_3=-\frac{29}{5}$ font que $~\lambda_2<0$

5. **Question subsidiaire** : Donner une formulation plausible pour retrouver les frontières relatives à la classification OMS de la figure ci-dessus.

Délivrable

Un rapport contenant :

- 1- Une bibliographie sur la méthode
- 2- La Programmer de la méthode
- **3-** Une discussion sur les résultats de la programmation