How Important Is Weight Symmetry in Backpropagation?

Qianli Liao, Joel Z. Leibo, Tomaso Poggio

Center for Brains, Minds and Machines McGovern Institute, MIT

Biological plausibility of deep learning

Biological plausibility of deep learning

- Important question for both neuroscience and machine learning
- Has been heavily debated since 1980s

Biological plausibility of deep learning

Since most successful deep learning models are trained with Backpropagation,

It becomes a priority to answer:

Is backpropagation biologically plausible?

- Many past studies concluded NO
- We tend to say YES based on recent findings.

Why is backpropagation interesting?

- Deep Feedforward Neural Networks (DNNs): a key model of deep learning, successful in many domains
- DNNs: universal approximators
 --> good solutions exist!
- Surprise: good solutions are found
- How? By backpropagation (BP)
- Brain: arguably some form of DNN
- Could the brain implement backpropagation?

Could the brain implement BP?

Many studies answered NO:

```
Crick, F.1989;
Mazzoni, Andersen, and Jordan 1991;
O'Reilly 1996;
Chinta and Tweed 2012;
Bengio et al. 2015
and many more ...
```

- •Summary of the difficulties of implementing BP in the brain:
 - (1) feedback weights = feedforward weights
 - (2) forward and backward passes require different computations
 - (3) error gradients must be stored separately from activations.

Biological difficulties of backpropagation

- (1) feedback weights = feedforward weights (i.e., "weight transport problem")
- (2) forward and backward passes require different computations
- (3) error gradients must be stored separately from activations.

 Cannot be implemented by a pair of neurons (as show on the right).

Simple solution: error network

Only problem left: V is not equal to W

We reduced 3 difficulties to 1!

Asymmetric backpropagation

Standard BP: V = W

Brain: V ≠ W

Main finding!!:

Even if V ≠ W, we can achieve strong performance (when combined with Batch Normalization and/or Batch Manhattan)

Good news for the brain!

- Ideally V = W, but biologically implausible
- What if V = sign(W)?
 - vanishing or exploding gradients
- + Batch Normaliazation (loffe and Szegedy 2015)
 - or Batch Manhattan
 - It works!
- Batch Manhattan = when updating the weights, use only the signs of the gradients (discard the magnitudes)

What if

$$V = M * sign(W)?$$

where M is a random value from [0,1]

- it works too!

(A) ForwardProp

(B) BackProp

Result:

The magnitudes seem to be NOT important

What if

Sp: sign concordance probability

(A) ForwardProp

(B) BackProp

Result:

The effectiveness of backpropagation is strongly dependent on high sign concordance probability.

What if

V = fixed random

- it outperforms chance,
 but not as good as
 standard SGD
- batch normalization is still required

Related work: Other biologically plausible neural networks

Two camps:

- Bidirectionally connected networks:
 - 1. Recirculation Algorithms (Hinton and McClelland 1988)
 - 2. Generalized Recirculation Algorithms (O'Reilly 1996)
- BP Variants:
 - 1. Random feedback weights support learning in DNN. (Lillicrap et al. 2014)
 - 2. This work.

Related work: Bidirectionally connected networks

Pros

Less assumptions.

Weight symmetry is learned automatically

Cons

Stability

Biological consistency (?)

Performance

Compare to:

Random feedback weights support learning in DNN (Lillicrap et al. 2014)

Our work:

- Found that Batch Normalization and Batch Manhattan are critical for the performance (important)
- Found that the signs of feedback are important
- Many more datasets
- Much deeper models

Contributions

- First systematic study of asymmetric forward and backward weights in BP
- We show that there exist variants of BP may be biologically implementable
- We identify the crucial role of Batch Normalization and Batch Manhattan in asymmetric BP.
- We demonstrate the importance of signs, instead of magnitudes of both feedback weights and gradient updates (i.e., Batch Manhattan update rule).
 - --- consistent with the notion that brain's algorithm is noise-tolerant.