Constraints in Universal Algebra

Ross Willard

University of Waterloo, CAN

SSAOS 2014 September 10, 2014 Lecture 3

Outline

Lecture 1: Intersection problems and congruence $SD(\land)$ varieties

Lecture 2: Constraint problems in ternary groups (and generalizations)

Lecture 3: Constraint problems in Taylor varieties

WARNING

This lecture has been modified to fit our shorter attention spans.

Review

An **instance of 3-CSP(A)** of degree *n* is a list $(s_1, C_1), \ldots, (s_p, C_p)$ where

- Each scope s_i satisfies $s_i \subseteq \{1, 2, ..., n\}$ and $1 \le |s_i| \le 3$.
- Each constraint relation C_i is a non-empty subuniverse of \mathbf{A}^{s_i} .

It is **3-minimal** if

- Every 3-element subset of $\{1, 2, ..., n\}$ occurs as a scope.
- For any two constraints $(s, C_i), (t, C_i)$, if $s \subseteq t$ then $\operatorname{proj}_s(C_i) = C_i$.

The **solution-set** of the instance is $[s_1, C_1] \cap \cdots \cap [s_p, C_p]$, where

$$\llbracket s_i, C_i \rrbracket = \{ \mathbf{a} \in A^n : \operatorname{proj}_{s_i}(\mathbf{a}) \in C_i \} \le \mathbf{A}^n.$$

3-CSP(A): Given a (3-minimal) instance, does a solution exist?

Central problem of CSP (Feder, Vardi) – Dichotomy

Given a finite algebra A, either

- Find a poly-time algorithm deciding 3-minimal instances of 3-CSP(A), or
 - 2 Show that 3-CSP(A) is NP-complete.

3 algorithms deciding 3-minimal instances of 3-CSP(A)

Algebraic CSP Dichotomy Conjecture

There is a class, outside of which each 3-CSP(A) is provably NP-complete.

Conjecture (Bulatov et al): For every A inside the class, 3-CSP(A) is in P.

Defining the "dividing line"

Definition. A term $t(x_1, ..., x_n)$ is a **Taylor term** (for an algebra) if

- 1 It is idempotent (i.e., t(x, x, ..., x) = x).
- **2** $n \ge 2$.
- **③** For each $1 \le i \le n$ there is an identity satisfied by t of the form

$$t(\ldots, x, \ldots) = t(\ldots, y, \ldots)$$

where x occurs at position i on the left, y occurs at position i on the right, and all other positions are filled with x or y.

Example: A Maltsev term is a Taylor term, because m(x, x, x) = x and

$$m(\underline{x}, \underline{x}, y) = m(\underline{y}, \underline{y}, y)$$
 works for $i = 1, 2$
 $m(x, x, \underline{x}) = m(x, y, \underline{y})$ works for $i = 3$

Theorem/Conjecture (Bulatov, Jeavons, Krokhin 2005)

Let **A** be a finite, idempotent algebra.

- (Theorem) If A does not have a Taylor term, then 3-CSP(A) is NP-complete.
- (Conjecture) Otherwise 3-CSP(A) is in P.

Goals of this lecture:

- Oescribe a new, "easy" poly-time CSP algorithm for ternary groups.
 - ▶ Roughly speaking, "enforcing 3-minimality + Gaussian elimination."
- 2 Describe how the algorithm adapts to any Taylor algebra!
- Caveats
 - ► The algorithm is for 2-CSP(**A**) only. (Which is fine.)
 - ▶ I don't know whether the algorithm actually works . . .

First, some technicalities

Potatoes

Let $Inst = ((s_1, C_1), \dots, (s_p, C_p))$ be a 3-minimal instance of 3-CSP(**A**), of degree n.

- **1** $V := \{1, 2, \dots, n\}$. ("variables")
- ② Every 3-element subset $s \subseteq V$ is the scope of a *unique* constraint. Call it (s, C_s) .
- **③** For all $t \subseteq V$ with |t| = 1 or 2, there is a unique "implied" constraint (t, C_t) , namely $(t, \operatorname{proj}_t(C_s))$ for any $t \subseteq s$ with |s| = 3.
- **3** Each $C_{\{i\}}$ is a subuniverse of **A**. The corresponding subalgebra is denoted P_i and is called a "potato."

Congruence completeness

Definition. A 3-minimal instance of 3-CSP(**A**) is **congruence complete** if for every $i \in V$ and every $\alpha \in \operatorname{Con}(\mathbf{P}_i)$ there exists $j \in V$ such that $C_{\{i,j\}}$ is the graph of a surjective homomorphism $h_{ij}: \mathbf{P}_i \to \mathbf{P}_j$ with kernel α .

(I will say \mathbf{P}_j "=" \mathbf{P}_i/α .)

We can always enforce congruence completeness (by adding new variables).

Now we focus on ternary groups

Definition. Let $\mathbf{A} = (G, xy^{-1}z)$ be a ternary group, $\alpha \in \operatorname{Con}(\mathbf{A})$, and p a prime. We say α is an **elementary** p-abelian congruence if $N := 1/\alpha$ ($\triangleleft G$) is an abelian group of exponent p.

Key fact. If $\alpha \in \operatorname{Con}(\mathbf{A})$ is elementary p-abelian, then every α -block C, considered as a subalgebra $\mathbf{C} \leq \mathbf{A}$, is a ternary abelian group of exponent p.

Proposition

Let $\mathbf{A} = (G, xy^{-1}z)$ be a finite ternary group and α a minimal congruence. If α is abelian, then α is elementary p-abelian for some prime p.

Proof. $N = 1/\alpha$ is a minimal normal subgroup of G and is abelian.

If $\exp(N) = mk$ is composite, then $\{x \in N : mx = 1\}$ is a proper nontrivial subgroup of N.

It is also characteristic in N, so is normal in G, contradiction.

Warning: technicalities ahead

Let *Inst* be a 3-minimal instance of 3-CSP(\mathbf{A}), of degree n.

Definition. For each prime p, let

 $VC_p = \{(i, \alpha) : i \in V, \alpha \in Con(P_i), \text{ and } \alpha \text{ is elementary } p\text{-abelian}\}.$

For
$$(i, \alpha), (j, \beta) \in VC_p$$
, define $(i, \alpha) \leq (j, \beta)$ iff

$$\left((a,b),(a',b') \in C_{\{i,j\}} \& (a,a') \in \alpha \right) \quad \Longrightarrow \quad (b,b') \in \beta.$$

($C_{\{i,j\}}$ "induces" a homomorphism $\mathbf{P}_i/\alpha \to \mathbf{P}_i/\beta$.)

Fix p and $(i, \alpha) \in VC_p$. Define

$$V_{(i,\alpha)} = \{j \in V : \exists \beta \in \operatorname{Con}(\mathbf{P}_j) \text{ with } (i,\alpha) \leq (j,\beta) \in VC_p\}.$$

Fact: for each $j \in V_{(i,\alpha)}$ there exists a smallest witnessing β ; call it β_j .

Let $f_j: \mathbf{P}_i/\alpha \to \mathbf{P}_j/\beta_j$ be the homomorphism induced by $C_{\{i,j\}}$.

Definition

Let **A**, *Inst*, p and (i, α) be as above.

- **1** Inst (i,α) is the restriction of Inst^a to the variable-set $V_{(i,\alpha)}$.
- ② For each α -block B, $Inst^B_{(i,\alpha)}$ is the restriction of $Inst_{(i,\alpha)}$ obtained by
 - Replacing each potato P_i by $f_i(B)$, and
 - Restricting the constraint relations of $Inst_{(i,\alpha)}$ to these new potatoes.

^aMore precisely, of the implied constraints (t, C_t) , $1 \le |t| \le 3$, of *Inst*.

Note: Each potato of $Inst^B_{(i,\alpha)}$ is a ternary abelian group of exponent p.

Lemma

Suppose $s \subseteq V_{(i,\alpha)}$ with $|s| \le 3$, and $\mathbf{c} \in C_s$. If there exists $\mathbf{a} \in \operatorname{Sol}(Inst)$ with $\operatorname{proj}_s(\mathbf{a}) = \mathbf{c}$, then for some α -block B there exists $\mathbf{b} \in \operatorname{Sol}(Inst_{(i,\alpha)}^B)$ with $\operatorname{proj}_s(\mathbf{b}) = \mathbf{c}$.

Proof. Given $\mathbf{a} \in \operatorname{Sol}(Inst)$, let $B = a_i/\alpha$ and put $\mathbf{b} = \mathbf{a} \upharpoonright_{V_{(i,\alpha)}}$.

KEY: Each $Inst^{\mathcal{B}}_{(i,\alpha)}$ can be solved by Gaussian elimination (!), and there are only poly(n)-many of them. Hence (using the above Lemma) we can "easily" pre-process Inst to enforce the following:

For every prime p, $(i, \alpha) \in VC_p$, $s \subseteq V_{(i,\alpha)}$ with |s| = 2, and $\mathbf{c} \in C_s$, there exists $\mathbf{b} \in \mathrm{Sol}(Inst_{(i,\alpha)})$ with $\mathrm{proj}_s(\mathbf{b}) = \mathbf{c}$.

Call this condition **2-linear consistency**.

APOLOGY: there is one more technical definition.

It takes 3 slides to explain.

Active 3-ary constraints

Again assume *Inst* is a 3-minimal instance of $3-CSP(\mathbf{A})$.

For any |s| = 3 we always have

$$C_s \subseteq \underbrace{\{\mathbf{a} \in A^s : \operatorname{proj}_t(\mathbf{a}) \in C_t \text{ for all } t \subseteq s \text{ with } |t| = 2\}}_{\widehat{C_s}}.$$

Definition. Call (s, C_s) passive if $C_s = \widehat{C_s}$, and active if $C_s \subsetneq \widehat{C_s}$.

(Aside: if we start with an instance of 2-CSP(**A**) and enforce 3-minimality, all of the resulting 3-ary constraints will be passive.)

Example - active constraint

Suppose $i \in V$, $\alpha \in \text{Con}(\mathbf{P}_i)$, and $\langle 0_{P_i}, \alpha \rangle$ bounds a copy of \mathbf{M}_3 .

$$\operatorname{Con}(\mathbf{P}_i) = \begin{pmatrix} \alpha \\ \theta_1 & \theta_2 \end{pmatrix} \theta_3$$

Suppose also that $j,k,\ell\in V$ and

$$\mathbf{P}_j$$
 "=" \mathbf{P}_i/θ_1 via $h_{ij}: \mathbf{P}_i \to \mathbf{P}_j$
 \mathbf{P}_k "=" \mathbf{P}_i/θ_2 via $h_{ik}: \mathbf{P}_i \to \mathbf{P}_k$
 \mathbf{P}_ℓ "=" \mathbf{P}_i/θ_3 via $h_{i\ell}: \mathbf{P}_i \to \mathbf{P}_\ell$

Define

$$H = \{(h_{ij}(a), h_{ik}(a), h_{i\ell}(a)) : a \in P_i\} \subseteq A^{\{j,k,\ell\}}.$$

Let $s = \{j, k, \ell\}$. Then $H \subsetneq \widehat{C_s}$. Hence if $C_s = H$, then (s, C_s) is active.

M₃-induced active constraints

Definition. Let **A** be a finite ternary group and *Inst* a 3-minimal instance of 3-CSP(**A**). We say that *Inst* has **M**₃-induced active constraints if for every $i \in V$, $\alpha \in \operatorname{Con}(\mathbf{P}_i)$, and $s = \{j, k, \ell\} \subseteq V$ as described on the previous slide, and with $H = \{(h_{ij}(a), h_{ik}(a), h_{i\ell}(a)) : a \in P_i\}$,

if α is elementary *p*-abelian for some prime *p*, **then** $C_s = H$.

By adding the constraint (s, H) whenever required, we can easily enforce that *Inst* have M_3 -induced active constraints.

Pre-processing: Summary

Let $\bf A$ be a finite ternary group. Given an instance of 2-CSP($\bf A$), we can enforce

- 3-minimality
- Congruence completeness.
- 2-linear consistency
- M₃-induced active constraints.

If a contradiction is not found, this "super" pre-processing will produce an equivalent instance of $3\text{-}\mathsf{CSP}(\mathbf{A})$ which:

- is 3-minimal;
- is congruence complete;
- is 2-linearly consistent;
- has M₃-induced active constraints;
- has no other active constraints.

Conjecture (Stará Lesná)

Suppose **A** is a finite ternary group and *Inst* is an instance of $3\text{-CSP}(\mathbf{A})$ which:

- is 3-minimal;
- is congruence complete;
- is 2-linearly consistent;
- has M₃-induced active constraints;
- has no other active constraints.

Then *Inst* has a solution.

If true, we will get the following "easy" algorithm for ternary groups A:

```
Input: an instance of 2-CSP(A)
"Super" pre-process the instance
If a contradiction is found, return "NO"
Return "Yes"
```

OK, **maybe** this new algorithm will work for ternary groups . . .

... but what does this have to do with Taylor algebras??

Generalizing to Taylor algebras

For general algebras, there is a notion of "abelian congruence."

If **A** is finite and has a Taylor term, then every block of an abelian congruence "is" a ternary abelian group (in a natural way).

Definition. Let **A** be a finite algebra with a Taylor term, $\alpha \in \operatorname{Con}(\mathbf{A})$, and p a prime. We say that α is **elementary** p-abelian if α is abelian and every α -block "is" a ternary abelian group of exponent p.

Many facts about finite ternary groups lift to abelian congruences in finite Taylor algebras. For example:

Proposition

Let **A** be a finite algebra with a Taylor term and α a <u>minimal</u> congruence. If α is abelian, then α is elementary *p*-abelian for some prime *p*.

Wild speculation

Let **A** be any finite, idempotent algebra with a Taylor term.

Let *Inst* be an instance of $2\text{-CSP}(\mathbf{A})$.

Just as for ternary groups, we can "super" pre-process Inst to either find a contradiction or produce an equivalent instance of 3-CSP($\bf A$) which:

- is 3-minimal;
- is congruence complete;
- is 2-linearly consistent;
- has M₃-induced active constraints;
- has no other active constraints.

Problem (Stará Lesná)

For which Taylor varieties is it true that every 3-CSP(**A**) instance satisfying the above conditions has a solution? (Could it be <u>all</u> Taylor varieties??)

Thank you!