Operator Semigroups

Chang Feng

June 17, 2025

1 Spaces and Topologies

- Let E be a locally compact Hausdorf space. (that is $\forall x \in E, x$ has a compact neighborhood).
- $(\mathcal{X}, \|\cdot\|)$: Banach Space.
- $\mathcal{L}(\mathcal{X})$: space of bounded linear operators on \mathcal{X} .

Topologies on $\mathcal{L}(\mathcal{X})$

- (1) Weak Operator Topology (WOT)
 - coarest topology s.t. $\forall f \in \mathcal{X}$, the map $\mathcal{L}(\mathcal{X}) \ni T \mapsto T(f) \in \mathcal{X}$ is continuous, when X is equipped with the weak topology.
 - In other words, $T_n \to T$ if $\langle f^*, T_n f \rangle \to \langle f^*, T f \rangle$, $\forall f^* \in \mathcal{X}^*$
- (2) Strong Operator Topology (SOT)
 - coarest topology s.t. $\forall f \in \mathcal{X}$, the map $\mathcal{L}(\mathcal{X}) \ni T \mapsto T(f) \in \mathcal{X}$ is continuous, when X is equipped with the strong topology.
 - In other words, $T_n \to T$ if $T_n f \to T f$ in \mathcal{X} , for all $f \in \mathcal{X}$ (topology of pointwise convergence).
- (3) Norm Topology (Uniform Topology)
 - Topology induced by the operator norm $(||T|| = \sup\{||Tf|| : ||f|| \le 1\}).$
 - $T_n \to T$ if $||T_n T|| \to 0$.

It turns out for semigroups, weak and strong topology are equivalent in some sense. The norm topology is usually to strong. So we shall work with SOT.

Choices for \mathcal{X} :

Shall use the sup norm

- $C_b(E)$: cts bdd functions on E
- $C_0(E)$: cts bdd functions on E that vanish at ∞ , i.e. $\{f \in C_b(E) : \lim_{\|x\| \to \infty} f(x) = 0\}$.

Often, $C_b(E)$ is not enough to get SCS, need $C_0(E)$ instead.

Figure 1: title

2 Definition of Semigroups

Definition 2.1 (Monoid)

- An algebraic semigroup is a pairing (M, \circ) , where
 - -M: nonempty set
 - $-\circ$ is associative binary operation $M\times M\to M$.
- M is a **monoid** if it is an algebraic semigroup and have an unit element. i.e. $\exists e \in M$ s.t. $e \circ a = a \circ e = a$, $\forall a \in M$.
- A topological monoid is a monoid with a topology, in which ∘ is continuous.

Definition 2.2 (Algebraic Representation)

let M be a monoid. A map $T: M \to \mathcal{L}(\mathcal{X})$ is called an **algebraic representation** if

- (1) T(e) = Id
- (2) $T(a \circ b) = T(a)T(b)$, for all $a, b \in M$.

If in addition, M is a topological monoid and $a \mapsto T(a)$ is continuous when $\mathcal{L}(\mathcal{X})$ is given the strong operator topology, then we say T is **strongly continuous representation**.

The operator semigroup that we consider is actually an algebraic representation, with the monoid $M = [0, \infty)$ and addition as the binary operation.

*

*

Definition 2.3 (Operator Semigroups)

- A family $\{T_t, t \geq 0\}$ of bounded linear operators on \mathcal{X} is a **semigroup** if
 - 1. $T_0 = Id$
 - 2. $T_{s+t} = T_s T_t, \forall s, t \geq 0.$
- $\{T_t\}$ is strongly continuous semigroup (SCS) if $\lim_{t\downarrow 0} T_t f = f$, $\forall f \in \mathcal{X}$. (notice this is simply right continuity at 0)
- $\{T_t\}$ is contraction semigroup if $||T_t|| \le 1$, $\forall t \ge 0$.

A useful inequality for SCS:

Proposition 2.4 (Growth Bound)

Let $\{T_t\}$ be SCS on \mathcal{X} , then $\exists M \geq 1, w \geq 0$ s.t.

$$||T_t|| \le Me^{wt}, \quad t \ge 0.$$

In the definition of SCS, it should be $\lim_{s\to t} T_s f = T_t f$, $\forall f \in \mathcal{X}, t \geq 0$. Why is right continuity at 0 sufficient for its definition?

Corollary 2.5 (EK1.2)

Let $\{T_t\}$ be SCS, then $\forall f \in \mathcal{X}, t \mapsto T_t f$ is continuous.

3 Examples

3.1 Translation Semigroups

Take $\mathcal{X} = C_b(\mathbb{R})$.

For fixed speed c > 0, define

$$T_t f(x) = f(x + ct)$$

 $\{T_t\}$ is not SCS.

Figure 2: title

To make $\{T_t\}$ a SCS, need to take $\mathcal{X} = C_0(\mathbb{R})$.

Also note that $\{T_t\}$ is not uniformly continuous! $(T_s \not\to T_t \text{ in operator norm, which is too strong)}.$

• for each t > 0, find $f \in C_0$ with $||f|| \le 1$ but $|f(0) - f(-ct)| \ge 1$. Then we see $||T_t - T_0|| \ge 1$, $\forall t > 0$.

3.2 Flow Semigroups

Consider ODE

$$\begin{cases} X'(t) = F(X(t)), \\ X(0) = x \in \mathbb{R}^d, \end{cases}$$

Assume F is nice enough (for example Lipschitz continuous), such that the ODE has unique solution, denoted X^x .

Figure 3: title

By uniqueness, we have

$$X^{X^x(s)}(t) = X^x(s+t)$$

Let

$$T_t f(x) = f(X^x(t))$$

3.3 Heat Semigroup

3.4 Poisson Semigroup

Take $\mathcal{X} = l^{\infty}$, the space of bounded sequences $\{x_n\}_{n \in \mathbb{N}_0}$. For $t \geq 0$, define $T_t : l^{\infty} \to l^{\infty}$ by

$$(T_t f)_n := \sum_{m \in \mathbb{N}_0} e^{-\lambda t} \frac{(\lambda t)^m}{m!} f_{n+m} = \mathbb{E} \left[f_{n+Pois(\lambda t)} \right]$$

4 Infinitesimal Generators

Definition 4.1 (Operator on Banach Spaces)

- An **operator** on Banach space \mathcal{X} is a pair $(A, \mathcal{D}(A))$ where
 - $-A: \mathcal{D}(A) \to \mathcal{X}$ is a linear map (not necessarily cts)
 - $-\mathcal{D}(A)$ is a subspace of \mathcal{X} .
- The **graph** of A is the linear subspace

$$\Gamma(A) = \{ (f, g) \in \mathcal{X} \times \mathcal{X} : f \in \mathcal{D}(A), g = Af \}.$$

And the **graph norm** is the map $||f||_{\mathcal{D}(A)} := ||f|| + ||Af||, f \in \mathcal{D}(A)$.

- The operator $(A, \mathcal{D}(A))$ is
 - **closed** if its graph $\Gamma(A)$ is closed.
 - **closable** if the closure of $\Gamma(A)$ defines the graph of a operator $\bar{A}: \mathcal{D}(\bar{A}) \to \mathcal{X}$, (which is necessarily unique and closed).

Recall some basic functional analysis facts:

Proposition 4.2

- 1. A is closable \iff for all sequences $\{f_n\}_n \subset \mathcal{D}(A)$ s.t. $f_n \to 0$, the existence of limit $Af_n \to g$ implies g = 0.
- 2. If A is closed, then $(D(A), \|\cdot\|_{\mathcal{D}(A)})$ is a Banach space.
- 3. (Closed Graph Thm) If A is closed and $\mathcal{D}(A) = \mathcal{X}$, then A is bounded (i.e. cts).

Example 4.3 (Dense but not bdd operators)

Definition 4.4 (Infinitesimal Generator)

The **infinitesimal generator** of SCS $(T_t)_{t\geq 0}$ is the operator $(A, \mathcal{D}(A))$ defined by

$$Af := \lim_{t \to 0} \frac{T_t f - f}{t}, \quad f \in \mathcal{D}(A),$$

where the domain $\mathcal{D}(A)$ is all $f \in \mathcal{X}$ for which the limit exists.

Example 4.5 (Generator for Poisson Semigroup)

Taking the derivative $\frac{d}{dt}(T_t A)_n$ formally yields

$$(Af)_n = \lambda (f_{n+1} - f_n), \quad f \in l^{\infty}.$$

- A is a scaled difference operator.
- $\mathcal{D}(A)$ is the entire space l^{∞} .
- Hence A is bounded and $T_t = e^{tA}$.

Example 4.6 (Generator for Flow Semigroup)

$$Af(x) = Df(x) \cdot F(x)$$

• A is a differential operator of first order with state dependent coefficient F(x).

Example 4.7 (Generator for Heat Semigroup)

Recall the representation $T_t f = \mathbb{E}[f(x + B_t)].$

The generator of the heat semigroup is the Laplacian:

$$Af = \frac{1}{2}\nabla f, \quad f \in C_c^2(\mathbb{R}^d).$$

4.1 Integrating Banach-valued functions

specifically, want to integrate continuous maps $[a, b] \to \mathcal{X}$. Turns out, the theory closely parallels Riemann integrals.

Lemma 4.8

Let $f:[0,t]\to\mathcal{X}$ be continuous, T be BDD linear operator on \mathcal{X} . Then the following holds:

- 1. $T \int_0^t f(u) du = \int_0^t T f(u) du.$
- 2. $\left\| \int_0^t f(u) du \right\| \le \int_0^t \|f(u)\| du$.

4.2 Main Results on Generators of SCS

Proposition 4.9

Let $(A, \mathcal{D}(A))$ be generator of SCS $\{T_t\}_t$ on $\mathcal{L}(\mathcal{X})$. Then

- 1. for $f \in \mathcal{X}$, t > 0,
 - (a) $\int_0^t T_u f du \in \mathcal{D}(A)$ and
 - (b) $A \int_0^t T_u f du = T_t f f$.
- 2. $\mathcal{D}(A)$ is dense in \mathcal{X} .
- 3. For $t \geq 0$, $f \in \mathcal{D}(A)$
 - (a) $T_t f \in \mathcal{D}(A)$ and
 - (b) $T_t A f = A T_t f$ and
 - (c) $T_t f f = \int_0^t A T_u f du$.
- 4. A is closed.

Corollary 4.10 (Generator has unique semigroup)

Let $\{T_t\}$ and $\{S_t\}$ be two semigroups on $\mathcal{L}(\mathcal{X})$ with the same generator $(A, \mathcal{D}(A))$. Then T = S.

4.3 Core of Generator

Often, the full domain $\mathcal{D}(A)$ is hard to describe, instead, people work with the core of the generator.

Definition 4.11

We say $D \subset \mathcal{D}(A)$ is a **core** of generator A if D is dense in $\mathcal{D}(A)$ in the graph norm.

Proposition 4.12

The following are cores:

- 1. $\mathcal{D}(A^{\infty}) := \bigcap_{n} \mathcal{D}(A^{n})$
- 2. Any linear subspace D of $\mathcal{D}(A)$ such that
 - D is norm-dense in X and
 - $T_tD \subseteq D$, for all $t \ge 0$.

5 Resolvent Operators

5.1 Basic Definition and Properties

Definition 5.1

Let $(A, \mathcal{D}(A))$ be an operator.

- $\lambda \in \mathbb{R}$ is in the **resolvent set** $\rho(A)$ if the operator $\lambda I A : \mathcal{D}(A) \to \mathcal{X}$
 - 1. is bijective, and
 - 2. its inverse $(\lambda I A)^{-1} : \mathcal{X} \to \mathcal{D}(A) \subseteq \mathcal{X}$ is continuous (bdd).
- Let $\lambda \in \rho(A)$, the operator $R(\lambda, A) = (\lambda I A)^{-1}$ is the **resolvent** of A at λ .
- The spectrum of A is the set $\sigma(A) = \mathbb{R} \setminus \rho(A)$.

Remark 5.2

- When $\{T_t\}$ is SCS, recall that A is closed. Hence by the closed graph theorem, requirement 2 in the definition of resolvent set is unnecessary.
- Aware there are alternative definitions that use the density of the range of λA .

Proposition 5.3 (The Resolvent Equation)

Let A be an operator and $\lambda, \mu \in \rho(A)$. Then

$$R(\lambda, A) - R(\mu, A) = (\mu - \lambda)R(\lambda, A)R(\mu, A).$$

In particular, $\{R(\lambda, A) : \lambda \in \rho(A)\}\$ is a commutative family.

Proposition 5.4 (Analyticity of the Resolvent)

Let $\lambda_0 \in \rho(A)$, $\lambda \in \mathbb{R}$ s.t.

$$|\lambda - \lambda_0| < ||R(\lambda_0, A)||^{-1},$$

then $\lambda \in \rho(A)$ and $\rho(A)$ is open.

Further, $\lambda \mapsto R(\lambda, A)$ is analytic on $\rho(A)$ and

$$R(\lambda, A) = \sum_{k=0}^{\infty} (-1)^k (\lambda - \lambda_0)^k R^{k+1}(\lambda_0, A).$$

5.2 Resolvent as Laplace Transform

Use the convenient heuristic $T_t = e^{tA}$,

$$\int_0^\infty e^{-\lambda t} T_t dt = \int_0^\infty e^{-\lambda t + At} dt = \frac{1}{\lambda - A} = R(\lambda, A).$$

Proposition 5.5

let $(A, \mathcal{D}(A))$ be generator of SCS $\{T_t\}_t$ s.t. $||T_t|| \leq Me^{ct}$ for some M > 0 and $c \in \mathbb{R}$. Then

- $(c, \infty) \subseteq \rho(A)$ and
- $R(\lambda, A)f = \int_0^\infty e^{-\lambda u} T_u f du$ for $\lambda > 0$.

And hence $\|(\lambda - c)R(\lambda, A)\| \le M$, for all $\lambda > c$.

6 Hille-Yosida Theorem