結論:當 $0 \le Z \le \infty$ 時, $\phi_{p_2} \le \phi_{p_1} \le 90^\circ$ (變壓器是電感性的,使 $\phi_{p_1} \ge \phi_{p_2}$)。

【參考不考: $\phi_{11} = \phi_{21} = N_1 k I_1$ · $\phi_{22} = \phi_{12} = N_2 k I_2$ · ∴ $L_1 = N_1 \phi_{11} / I_1 = N_1^2 k$ · $L_2 = N_2 \phi_{22} / I_2 = N_2^2 k$ · $M = M_{12} = N_1 \phi_{12} / I_2 = N_1 (N_2 k I_2) / I_2 = N_2 N_2 k$ 。 若使用複數的 Z · $j \equiv \sqrt{-1}$ · 則等效阻抗 $Z_{eq} = -\omega k N_1^2 Z / (N_2^2 \omega k + j Z)$ 。 】

防止 Eddy current: 切成一片一片,如右圖。

Impedence matching

假設變壓器不消耗能量,電源送出的功率全被 Z 消耗,則

 $P_{av} = (V_1^2 / 2Z_{eq}) \cos \phi_{p1} = (V_2^2 / 2Z) \cos \phi_{p2} = (N_2 / N_1)^2 (V_1^2 / 2Z) \cos \phi_{p2}$

 $\therefore Z_{eq} = Z(N_1/N_2)^2(\cos\phi_{p1}/\cos\phi_{p2})$ · 變壓器也能變阻抗。

- (a) 當Z很小時 · $\phi_{p2} \approx \phi_{p1}$ · 故 $Z_{eq} \approx Z(N_1/N_2)^2$ 。
- (b) 當右圖音箱的阻抗 z_2 透過變壓器變成 z_{2eq} ,而與擴大機的內阻抗 z_1 相等時,音箱消耗的功率最高。

H.W.: Ex. 35; Prob. 6, 7, 8, 12, 13.

Ch. 34 Maxwell's Equations; Electromagnetic Waves

(1) Faraday showed in 1845 that \vec{B} field affected a beam of light passing through glass.

(2) $1/\mu_0 \in (1/4\pi) = (1/4\pi)$

Displacement Current (位移電流)

考慮以C為邊界的曲面A & B。根據 Ampere's law·

$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu I \text{ for } \vec{\mathbf{m}} A \cdot \vec{\mathbf{m}}$$

= 0 for 面 B ? 錯 · Ampere's law 須修正 ·

電容內有電場 $E = \sigma/\epsilon = q/\epsilon A \cdot \therefore q = \epsilon EA = \epsilon \phi_E \cdot \phi_E$ 是通過面B的向右電通量。 (另法:假設完美導線,則A上無電場, $q = \epsilon \oint_{A \cup B} \vec{E} \cdot d\vec{A} = \epsilon \oint_B \vec{E} \cdot d\vec{A} = \epsilon \phi_E$ 。)

 $I = dq/dt = \in d\phi_E/dt$ · 若把 Ampere's law 修改成 $\oint_C \vec{B} \cdot d\vec{\ell} = \mu(I_{encl} + \in d\phi_E/dt)$ ·

則適用於 $A \& B : \oint_C \vec{B} \cdot d\vec{\ell} = \mu I$ for $A : (:: \in d\phi_E/dt = 0)$

$$=\mu \in d\phi_E/dt$$
 for B ($:: I_{encl} = 0$).

(若導線非完美,則 A & B 上都增加等量的向右電通量。) $(\vec{B} \cdot d\vec{\ell} = \dots + \mu \in d\phi_E/dt \text{ Maxwell's induction law})$

Maxwell Faraday

Maxwell 稱 $\in d\phi_E/dt \equiv I_D$ 為位移電流,與 I_{encl} 平等, $I_D = \in (d/dt) \int_S \vec{E} \cdot d\vec{A} = \int_S (\in \partial \vec{E}/\partial t) \cdot d\vec{A} = \int_S \vec{J}_D \cdot d\vec{A} + \vec{J}_D \equiv \in \partial \vec{E}/\partial t \text{ 位移電流密度。}$ 故 Maxwell 把 \in ₀ $\partial \vec{E}/\partial t$ 看成是真空中乙太的位移電流密度(但錯誤)。

【參考:介質中電雙極密度 $\vec{P} \equiv \lim_{\Delta V \to 0} [(\sum_i q_i \vec{d}_i) / \Delta V]$,而會穿過平面 A 的電荷 是 $\vec{P} \cdot \vec{A}$ (見電容那章 $\sigma_i = \vec{P} \cdot \hat{A}$)。故 Gauss law $\Rightarrow \oint_S \vec{E} \cdot d\vec{A} = (1/\epsilon_0)(Q_{ext} - \oint_S \vec{P} \cdot d\vec{A})$ $\Rightarrow \oint_{c} (\in_{0} \vec{E} + \vec{P}) \cdot d\vec{A} = Q_{ext} \Rightarrow \oint_{c} \vec{D} \cdot d\vec{A} = Q_{ext} \cdot \vec{D} \equiv \in_{0} \vec{E} + \vec{P} \text{ displacement field } \circ$ 因 \vec{P} 必行 \vec{E} ·故可寫成 $\vec{D} = \in \vec{E}$ 。介質中需 $\vec{E} \& \vec{P}$ 兩個場·但物理學家喜用 $\vec{E} \& \vec{D}$ 。】

例:Induced
$$\vec{B}$$
 field in a capacitor (有 \in $dE/dt = J_D = I/\pi R^2$)
$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu \in d\phi_E/dt \Rightarrow B2\pi r = \begin{cases} \mu \in (\pi r^2) \, dE/dt \text{ for } r < R \\ \mu \in (\pi R^2) \, dE/dt \text{ for } r > R \end{cases}$$

$$\therefore B = \begin{cases} \mu(r/2) \in dE/dt & \text{for } r < R \\ \mu(R^2/2r) \in dE/dt & \text{for } r > R \end{cases}$$
若代入 $\in dE/dt = I/\pi R^2$ · 則 $B = \begin{cases} \mu(r/2) I/\pi R^2 = (\mu I/2\pi)r/R^2 & \text{for } r < R \\ \mu(R^2/2r) I/\pi R^2 = \mu I/2\pi r & \text{for } r > R \end{cases}$

若代入
$$\in dE/dt = I/\pi R^2$$
 · 則 $B = \begin{cases} \mu(r/2)I/\pi R^2 = (\mu I/2\pi)r/R^2 & \text{for } r < R \\ \mu(R^2/2r)I/\pi R^2 = \mu I/2\pi r & \text{for } r > R \end{cases}$

Maxwell's equations (Maxwell 原先提出 20 eqs. · 1885 年 O. Heaviside 用向量分析符 號改寫成 4 eqs.) (注意式中 $\in \vec{E} = \vec{D} \leftrightarrow \vec{B} = \mu \vec{H} + \vec{D}/\in = \vec{E} \leftrightarrow \vec{H} = \vec{B}/\mu$):

(1)
$$\oint_{S_1} \vec{E} \cdot d\vec{A} = Q$$
 ; (2) $\oint_{S_2} \vec{B} \cdot d\vec{A} = 0$ ($= Q_M$ · 但磁荷 $Q_M = 0$);

(3)
$$\oint_{C_3} \vec{E} \cdot d\vec{\ell} = -(d/dt) \int_{S_3} \vec{B} \cdot d\vec{A} = -d\phi_B/dt$$
 (= $-I_M - d\phi_B/dt$ · 但磁荷流 $I_M = 0$);

(4)
$$\oint_{\mathcal{C}_A} (\vec{B}/\mu) \cdot d\vec{\ell} = I + (d/dt) \oint_{\mathcal{S}_A} \vec{E} \cdot d\vec{A} \quad (= I + d\phi_D/dt) \circ$$

再加上 Lorentz force $\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$,此 5 式描述了自然界所有古典電磁現象。

(註:常用的電荷守恆可由(1) & (4)的微分式証明;上式中的 μ & \in 不須是常數。)

E.M. Wave in charge-free space (where Q = 0 = I)

考慮簡單情況: $\vec{E}(\vec{r},t) = (0, E(x,t), 0) \cdot \vec{B}(\vec{r},t) = (0, 0, B(x,t))$ 。 因在x = const.的平面上 $\vec{E} \& \vec{B}$ 均勻,與y & z無關,故稱平面波。 自動滿足 Gauss laws $\oint_{\mathcal{E}} \cdot d\vec{A} = 0$ & $\oint_{\mathcal{E}} \vec{B} \cdot d\vec{A} = 0$ (右圖)。


```
\oint_C \vec{E} \cdot d\vec{\ell} = E(x + \Delta x, t)\ell - E(x, t)\ell = \Delta x(\partial E/\partial x)\ell
                                             = -d\phi_{R}/dt = -d(B\ell\Delta x)/dt = -(\partial B/\partial t)\ell\Delta x
                                       \therefore \frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t} \dots (1) \circ
                                            \oint_{C} \vec{B} \cdot d\vec{\ell} = B(x,t)\ell - B(x + \Delta x,t)\ell = -\Delta x(\partial B/\partial x)\ell
                                        = \mu \in d\phi_E/dt = \mu \in d(E\ell\Delta x)/dt = \mu \in (\partial E/\partial t)\ell\Delta x
                                       -x : \partial B/\partial x = -\mu \in \partial E/\partial t \dots (2)
\partial^2 E/\partial x^2 \stackrel{\text{(1)}}{=} (\partial/\partial x)(-\partial B/\partial t) = -(\partial/\partial t)(\partial B/\partial x) \stackrel{\text{(2)}}{=} \mu \in \partial^2 E/\partial t^2 \quad \circ
\frac{\partial^2 B}{\partial x^2} = (\frac{\partial}{\partial x})(-\mu \in \frac{\partial E}{\partial t}) = -\mu \in (\frac{\partial}{\partial t})(\frac{\partial E}{\partial x}) = \mu \in \frac{\partial^2 B}{\partial t^2} \circ
f(q) = f(+x \mp vt) 代表以速率v 向右(+\hat{x})或向左(-\hat{x})傳的
                                                                                                            f(+x+vt)_{vt} | f(x)_{vt} | f(+x-vt)_{tt}
       波·滿足\partial^2 f/\partial t^2 = [(\partial q/\partial t)(\partial/\partial q)][(\partial q/\partial t)(\partial f/\partial q)]
                                      = (\mp v)^2 \partial^2 f / \partial q^2 = v^2 \partial^2 f / \partial x^2
∴ E = E(\pm x - vt) · B = B(\pm x - vt) · \not\sqsubseteq + v = 1/\sqrt{\mu} \in · speed of EM wave °
真空中v = 1/\sqrt{\mu_0 \in_0} = 3.0 \times 10^8 \, \text{m/sec} = c;介質中v = 1/\sqrt{K_m \mu_0 K_e \in_0} = c/\sqrt{K_m K_e}
                                                                                            = c/n · n = \sqrt{K_m K_e} 折射率。
再取最簡單的 · 波長 \lambda 的 sine 波: E = E_0 \sin[2\pi (\pm x - vt)/\lambda] \equiv E_0 \sin(\pm kx - \omega t) ·
         k \equiv 2\pi/\lambda wave number ( 與波有關的數 ) · \omega \equiv 2\pi v/\lambda = kv or 2\pi/T 角頻率 ·
\partial E/\partial x = -\partial B/\partial t \implies \pm kE_0 \cos(\pm kx - \omega t) = -\partial B/\partial t
\therefore B = \pm (k/\omega)E_0 \sin(\pm kx - \omega t) = \pm (1/v)E
       \equiv B_0 \sin(\pm kx - \omega t) · B_0 = \pm (k/\omega)E_0 = \pm E_0/v = \pm \sqrt{\mu \in E_0} · +向右-向左傳。
結論: E = E_0 \sin(\pm kx - \omega t)
          B = \pm E/v · + 向右 – 向左傳 ·
         前進方向\propto \vec{E} \times \vec{B} 。
Energy Transport
能量密度 u = u_E + u_B = \in E^2/2 + B^2/2\mu 。
\bigoplus E = vB = B/\sqrt{\mu \in} : : \in E^2/2 = \in (B^2/\mu \in)/2 = B^2/2\mu
\therefore u = \in E^2 = B^2/\mu, or = (E\sqrt{\mu} \in )B/\mu = \sqrt{\in/\mu} EB
厚vdt 的体積中有能量dU = udV = u(Avdt).
```

energy flux (per unit area per unit time) $S \equiv (1/A) dU/dt = vu = vB^2/\mu = EB/\mu$ 。 (註:任何物理量 X 的密度 $u_x \cdot dU_x = u_x dV = u_x (Avdt)$ · 其 flux $S_x = vu_x$ 。)

含方向 $\vec{S} \equiv \vec{E} \times \vec{B}/\mu$ (Poynting vector) 。

Sinusoidal wave $S = EB/\mu = (1/\mu)[E_0 \sin(kx - \omega t)B_0 \sin(kx - \omega t)]$ = $(E_0B_0/2\mu)[1 - \cos(2(kx - \omega t))] \cdot E_0 = vB_0$

:. Intensity $I = \langle S \rangle = E_0 B_0 / 2 \mu = E_0^2 / 2 \mu v$ or $v B_0^2 / 2 \mu$ °

例:有一 point source,平均功率 P_{av} ,各向均匀,在距離 r 處的 $E_0(r) \& B_0(r) = ?$ $I(r) = P_{av} / 4\pi r^2 = E_0^2 / 2\mu v \quad \text{or} \quad v B_0^2 / 2\mu,$ $\therefore E_0(r) = \sqrt{\mu v P_{av} / 2\pi r^2} + B_0(r) = \sqrt{\mu P_{av} / 2\pi r^2 v} \propto 1/r \quad (\text{ not } 1/r^2) \quad \circ$

例:Cylindrical conducting wire of radius a & length ℓ with resistance R & current I.

 $E = V/\ell = IR/\ell$, $B = \mu I/2\pi a$.

 $S = EB/\mu = (1/\mu)(IR/\ell)(\mu I/2\pi a) = I^2R/2\pi a\ell$,

因 $2\pi a\ell$ 即圓柱側面面積A,故 $I^2R = SA$ 。

Momentum and Radiation Pressure

 $E = mc^2$, $m = E/c^2$, $\rho = u/c^2$ mass density in EM wave

Momentum density $\vec{\Pi} = \rho \vec{v}$ (也可視為 mass flux) = $\vec{v}u/c^2 = \vec{S}/c^2$ 。

(此式電磁學也能証明,不須用 $E = mc^2$)

Surface A 受光壓力 P = F/A = (1/A)(dp/dt) · 動量 $dp = \Pi dV = \Pi(Avdt)$ ·

 $\therefore P = v\Pi$ (可視為 momentum flux) = $(v/c^2)S$ (全吸收)或 $(2v/c^2)S$ (全反射)。

 $< P >= (v/c^2) < S > = (v/c^2)I$ (全吸) 或 $(2v/c^2)I$ (全反)

In vaccum, v = c, $\langle P \rangle = I/c$ or 2I/c °

Radiation(可想像成電荷甩動電力線,電力線數目或電通量固定,下圖是單一電荷)

Hertz 實驗:

 C_2 (含小球)經變壓器變換又與 C_1 串聯後有等效電抗 L_{eq} & C_{eq} 。主線圈 PRI 的電流達設定值時,產生的磁場會把 interrupter 的開關吸開,電流改流經電容 C_1 ,而作 $\omega = \sqrt{1/L_{eq}C_{eq}}$ 的振盪,發出電磁波, C_2 的兩個小球間會產生火花。右邊的金屬環就是個線圈L,兩端小球就是電容C,調整L 或C 使 $\sqrt{1/LC} = \sqrt{1/L_{eq}C_{eq}}$ 時,右上角的小球間就會產生火花。

Electric dipole antenna

Magnetic dipole antenna

【參考】若 $\vec{p}(t) = q\vec{d}(t) = p_0 \sin(\omega t)\hat{y}$, 則在 r >> d 處: $E \approx (p_0 k^2 / 4\pi \in_0 r) \sin\theta \sin(\omega t - kr)$, $B \approx E/c$, \vec{r} , \vec{E} , \vec{B} 兩兩互相垂直, $\vec{S} \equiv \vec{E} \times \vec{B}/\mu \propto (\sin^2\theta/r^2)\hat{r}$ 。

H.W.: Prob. 1, 7, 8, 9, 12.