$=\frac{3}{2}+2\sqrt{2}\pi^2$

16).

Lit reloval,
$$\varphi = x_0$$

Lit reloval, $\varphi = \frac{\pi}{4}$

= = = 2 03

(10)
$$\frac{1}{3} | x = r \cos \theta$$

 $\frac{1}{4} = r \sin \theta$ L: $\frac{1}{4} = \frac{1}{4} = \frac{1$

= B sto et dt = B(1-eto)

$$\begin{aligned} & = \frac{1}{12} \underbrace{\frac{1}{12}}_{1} \underbrace{\frac{1}{12}}_{$$

(b)
$$\left\{ z^{2} + x^{2} + y^{2} \right\} \Rightarrow \left(x^{2} + 2y^{2} + 2y^{2} + 8 \right) \Rightarrow \left(x^{2} + y^{2} \right)^{2}$$

S: $z = \left[x^{2} + y^{2} \right]^{2}$, $(x,y) \in D$.

S= $\left\{ x^{2} + y^{2} + y^{2} \right\}^{2}$ dvdy

= $\left[x^{2} + y^{2} + y^{2} \right]^{2}$ dvdy

= $\left[x^{2} + y^{2} + y^{2} \right]^{2}$ dvdy

= $\left[x^{2} + y^{2} + y^{2} \right]^{2}$ dvdy

= $\left[x^{2} + y^{2} + y^{2} \right]^{2}$ $\left[x^{2} + y^{2} + y^{2} \right]^{2}$
 $\left\{ x^{2} + y^{2} + y^{2} + y^{2} \right\}^{2}$

= $\left[x^{2} + y^{2} + y^{2} \right]^{2}$ (asin 28) in $\left[x^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

= $\left[x^{2} + y^{2} + y^{2} + y^{2} \right]^{2}$

=

3(1):
$$\int (x^{2}+y^{2}) dS$$

$$= \frac{2}{3} R^{2} \cdot \int dS$$

$$= \frac{2}{3} R^{2} \cdot 4\pi R^{2}$$

$$= \frac{3}{3} \pi R^{4}$$
(2).
$$\int (x+y+z) dS = \int a^{2}-x^{2}-y^{2} \int |+|\frac{x}{a^{2}x^{2}-y}|^{2}+|\frac{x}{a^{2}x^{2}-y}|^{2} dxdy$$

$$= \pi a^{3}$$

4.
$$C_{1}: Z = -\frac{1}{C}(Ax + By + D)$$

 $S_{4} = \iint_{Dxy} \frac{A^{2} + B^{2} + C^{2}}{\int_{C}^{2}} \int_{Dxy} dx dy = \iint_{Dxy} \frac{A^{2} + B^{2} + C^{2}}{C} dx dy$

$$= \iint_{C^{2}} \frac{A^{2} + B^{2} + C^{2}}{C^{2}} \int_{Dxy} dx dy$$

$$= \iint_{C^{2}} \frac{A^{2} + B^{2} + C^{2}}{C^{2}} \times S_{4}$$

得证.

5. $m = \int \rho ds = \int z ds = \frac{1}{2} \int (x^2 + y^2) \int$