Labeled PSI from Fully Homomorphic Encryption with Malicious Security.pdf

论文理解与样例流程

- 1. 主要流程
 - 1.1 Full Labeled PSI protocol (sender's offline pre-processing)
 - 1.2 Full Labeled PSI protocol continued (online phase)
 - 1.3 Native Theory
- 2. 详细流程解析
 - 2.1 符号定义
 - 2.1 本例参数定义
 - 2.2 经过cuckoo hash后两方的hash table
 - 2.4. 流程理解
 - 2.4.1 Sender offline pre-processing: [Pre Processing X]
 - 2.4.2 Receiver pre-processing
 - 2.4.3 [Intersect] For the bth batch by Sender
 - 2.4.4 [Decrypt and get result]

论文理解与样例流程

1. 主要流程

1.1 Full Labeled PSI protocol (sender's offline pre-processing)

Input: Receiver inputs set $Y \subset \{0,1\}^*$ of size N_Y ; sender inputs set $X \subset \{0,1\}^*$ of size N_X . N_X , N_Y are public. κ and λ denote the computational and statistical security parameters, respectively.

Output: The receiver outputs $Y \cap X$; the sender outputs \bot .

- 1. [Sender's OPRF] The sender samples a key k for the [31] OPRF $F : \{0,1\}^* \to \{0,1\}^\kappa$. The sender updates its set to be $X' = \{H(F_k(x)) : x \in X\}$. Here H is a random oracle hash function with a range of $\sigma = \log_2(N_x N_y) + \lambda$ bits which is sampled using a coin flipping protocol.
- 2. [Hashing] The parameter m is agreed upon such that cuckoo hashing N_Y balls into m bins succeed with probability $\geq 1 2^{-\lambda}$. Three random hash function $h_1, h_2, h_3 : \{0, 1\}^{\sigma} \to [m]$ are agreed upon using coin flipping. The sender inserts all $x \in X'$ into the sets $\mathcal{B}[h_1(x)], \mathcal{B}[h_2(x)], \mathcal{B}[h_3(x)]$.
- 3. [Choose FHE parameters] The parties agree on parameters (n, q, t, d) for an IND-CPA secure FHE scheme. They choose t, d to be large enough so that $d \log_2 t \ge \sigma$.
- 4. [Choose circuit depth parameters] The parties agree on the split parameter B < O(|Y|/m) and windowing parameter $w \in \{2^1, 2^2, \dots, 2^{\log_2 B}\}$ as to minimize the overall cost.
- 5. [Pre-Process X]
 - (a) [Splitting] For each set $\mathcal{B}[i]$, the sender splits it into α subsets of size at most B, denoted as $\mathcal{B}[i,1],\ldots,\mathcal{B}[i,\alpha]$.
 - (b) [Computing Coefficients]
 - i. [Symmetric Polynomial] For each set $\mathcal{B}[i,j]$, the sender computes the symmetric polynomial $S_{i,j}$ over \mathbb{F}_{t^d} such that $S_{i,j}(x) = 0$ for $x \in \mathcal{B}[i,j]$.
 - ii. [Label Polynomial] If the sender has labels associated with its set, then for each set $\mathcal{B}[i,j]$, the sender interpolates the polynomial $P_{i,j}$ over \mathbb{F}_{t^d} such that $P_{i,j}(x) = \ell$ for $x \in \mathcal{B}[i,j]$ where ℓ is the label associated with x.
 - (c) [Batching]

View the polynomials $S_{i,j}$ as a matrix where i indexes the row. For each set of n/d rows (non-overlapping and contiguous), consider them as belonging to a single batch. For b-th batch and each j, take the k-th coefficient of the n/d polynomials, and batch them into one FHE plaintext polynomial $\overline{S}_{b,j,k}$. For Labeled PSI, perform the same batching on the label polynomials $P_{i,j}$ to form batched FHE plaintext polynomials $\overline{P}_{b,j}$.

Fig. 1. Full Labeled PSI protocol (sender's offline pre-processing).

1.2 Full Labeled PSI protocol continued (online phase)

7. [Encrypt Y]

- (a) [Receiver's OPRF] The receiver performs the interactive OPRF protocol of [31] using its set Y in a random order as private input. The sender uses the key k as its private input. The receiver learns $F_k(y)$ for $y \in Y$ and set $Y' = \{H(F_k(y)) : y \in Y\}$.
- (b) [Cuckoo Hashing] The receiver performs cuckoo hashing on the set Y' into a table C with m bins using h_1, h_2, h_3 has the hash functions.
- (c) [Batching] The receiver interprets \mathcal{C} as a vector of length m with elements in \mathbb{F}_{t^d} . For the bth set of n/d (non-overlapping and contiguous) in \mathcal{C} , the receiver batches them into a FHE plaintext polynomial \overline{Y}_b .
- (d) [Windowing] For each \overline{Y}_b , the receiver computes the component-wise $i \cdot w^j$ -th powers $\overline{Y}_b^{i \cdot w^j}$, for $1 \le i \le w 1$ and $0 \le j \le \lfloor \log_w(B) \rfloor$.
- (e) [Encrypt] The receiver uses FHE.Encrypt to encrypt each power $\overline{Y}^{i \cdot 2^j}$ and forwards the ciphertexts $c_{i,j}$ to the sender.

8. [Intersect] For the bth batch,

- (a) [Homomorphically compute encryptions of all powers] The sender receives the collection of ciphertexts $\{c_{i,j}\}$ and homomorphically computes a vector $\mathbf{c} = (c_0, \ldots, c_B)$, such that c_k is a homomorphic ciphertext encrypting \overline{Y}_b^k .
- (b) [Homomorphically evaluate the dot product] For each $\overline{S}_{b,1},...,\overline{S}_{b,\alpha}$, the sender homomorphically evaluates

$$z_{b,j} = \sum_{k=0}^B c_k \cdot \overline{S}_{b,j,k}$$

and optionally performs modulus switching on the ciphertexts $z_{b,j}$ to reduce their sizes. All $z_{b,j}$ are sent back to the receiver. If Labeled PSI is desired, repeat the same operation for \overline{P} and denote the returned ciphertexts $q_{b,j}$.

9. [Decrypt and get result] For the b-th batch, the receiver decrypts the ciphertexts $z_{b,1},...,z_{b,\alpha}$ to obtain $r_{b,1},...,r_{b,\alpha}$, which are interpreted as vectors of n/d elements in \mathbb{F}_{t^d} .

Let $r_1^*, ..., r_{\alpha}^*$ be vectors of m elements in \mathbb{F}_{t^d} obtained by concatenating $r_j^* = r_{1,j}^* ||...|| r_{md/n,j}^*$. For all $y' \in Y'$, output the corresponding $y \in Y$ if

$$\exists j: r_j^*[i] = 0,$$

where i is the index of the bin that y' occupies in C.

If Labeled PSI is desired, perform the same decryption and concatenation process on the $q_{b,j}$ ciphertexts to obtain the m element vectors $\ell_1^*, ..., \ell_{\alpha}^*$. For each $r_j^*[i] = 0$ above, output the label of the corresponding y to be $\ell_j^*[i]$.

Fig. 2. Full Labeled PSI protocol continued (online phase).

1.3 Native Theory

We now review the protocol of [12] in detail. Following the architecture of [43], their protocol instructs the receiver to construct a cuckoo hash table of its set Y. Specifically, the receiver will use three hash functions h_1, h_2, h_3 , and a vector $B_R[0], \ldots, B_R[m]$ of O(|Y|) bins. For each $y \in Y$, the receiver will place y in bin $B_R[h_i(y)]$ for some i such that all bins contain at most one item. The sender will perform a different hashing strategy. For all $x \in X$ and all $i \in \{1, 2, 3\}$, the sender places x in bin $B_S[h_i(x)]$. Note that each bin on the sender's side will contain O(|X|/m) items with high probability when $|X| \gg m$. It then holds that the intersection of $X \cap Y$ is equal to the union of all bin-wise intersections. That is,

$$X \cap Y = \bigcup_{j} B_R[j] \cap B_S[j] = \bigcup_{j} \{y_j\} \cap B_S[j]$$

where y_j is the sole item in bin $B_R[j]$ (or a special sentinel value in the case that $B_R[j]$ is empty). The protocol then specifies a method for computing $\{y\} \cap B_S[j]$ using FHE. The receiver first sends an encryption of y, denoted as [y], to the sender who locally computes

$$\llbracket z
rbracket := r \prod_{x \in B_S[j]} (\llbracket y
rbracket - x)$$

2. 详细流程解析

2.1 符号定义

- X is the sender's set; Y is the receiver's set. We assume $|X| \gg |Y|$.
- $-\sigma$ is the length of items in X and Y.
- $-\ell$ is the length of labels in Labeled PSI.
- -n is the ring dimension in our FHE scheme (a power of 2); q is the ciphertext modulus; t is the plaintext modulus [22,21].
- d is the degree of the extension field in the SIMD encoding.
- -m is the cuckoo hash table size.
- $-\alpha$ is the number of partitions we use to split the sender's set X in the PSI protocol (following [12]).
- -[i,j] denotes the set $\{i,i+1,...,j\}$, and [j] is shorthand for the case i=1.

2.1 本例参数定义

m	3
n	3
d	1
Y	3
X	4

2.2 经过cuckoo hash后两方的hash table

Receiver data: Y[1, 2, 3]

idx[1:m]	item	
1	1	
2	2	
3	3	

Sender data: X [1, 3, 4, 5], 3个hash functions

idx[1:m]	item	item	item	item
1	5	1	3	4
2	3	4	1	5
3	5	1	4	3

说明: 从例子中, 可以看出X与Y的交集是[1, 3]

2.4. 流程理解

2.4.1 Sender offline pre–processing: [Pre – Processing X]

(a) [Splitting] For each set $\mathcal{B}[i]$, the sender splits it into α subsets of size at most B, denoted as $\mathcal{B}[i,1],\ldots,\mathcal{B}[i,\alpha]$.

令 α=2, B=2, 即分裂成α个子集, 每个子集最多有B=2个item, 得到下图所示

idx[1:m]	α=1		α=2	
1	5	1	3	4
2	3	5	1	4
3	3	1	4	5

(b) [Computing Coefficients]

i. [Symmetric Polynomial] For each set $\mathcal{B}[i,j]$, the sender computes the symmetric polynomial $S_{i,j}$ over \mathbb{F}_{t^d} such that $S_{i,j}(x) = 0$ for $x \in \mathcal{B}[i,j]$.

idx[1:m]	α=1	α=2	
1	S ₁₁ = [5, -6, 1]	S ₁₂ = [12, -7, 1]	
2	S ₂₁ = [15, -8, 1]	S ₂₂ = [4, -5, 1]	
3	S ₃₁ = [3, -4, 1]	S ₃₂ = [20, -9, 1]	

$$S_{ij} = aX^B + bX^{B-1} + ... + 1 = [a, b, ..., 1]$$

例: $S_{11} = (x-5)(x-1) = 5-6x + x^2 = [5, -6, 1] = [axb+bx]$

(c) [Batching]

View the polynomials $S_{i,j}$ as a matrix where i indexes the row. For each set of n/d rows (non-overlapping and contiguous), consider them as belonging to a single *batch*. For b-th batch and each j, take the k-th coefficient of the n/d polynomials, and batch them into one FHE plaintext polynomial $\overline{S}_{b,j,k}$.

例:
$$\overline{S}_{b,j,k}$$
,取 $j=1,k=0$,则 $\overline{S}_{b,1,0}=(S_{11}[0],S_{21}[0],S_{31}[0])=(5,15,3)$

能过转换,可以得到以下矩阵视图

idx[1:m]	α=1	α=2	
	S _{1,1,0} = (5, 15, 3)	S _{1,2,0} = (12, 4, 20)	
b=1	$S_{1,1,1} = (-6, -8, -4)$	$S_{1,2,1} = (-7, -5, -9)$	
	S _{1,1,2} = (1, 1, 1)	S _{1,2,2} = (1, 1, 1)	

等同于以下矩阵

$$S = egin{bmatrix} (5,15,3) & (12,4,20) \ (-6,-8,-4) & (-7,-5,-9) \ (1,1,1) & (1,1,1) \end{bmatrix}$$

2.4.2 Receiver pre-processing

- (c) [Batching] The receiver interprets \mathcal{C} as a vector of length m with elements in \mathbb{F}_{t^d} . For the bth set of n/d (non-overlapping and contiguous) in \mathcal{C} , the receiver batches them into a FHE plaintext polynomial \overline{Y}_b .
- (d) [Windowing] For each \overline{Y}_b , the receiver computes the component-wise $i \cdot w^j$ -th powers $\overline{Y}_b^{i \cdot w^j}$, for $1 \le i \le w-1$ and $0 \le j \le \lfloor \log_w(B) \rfloor$.
- (a) [Homomorphically compute encryptions of all powers] The sender receives the collection of ciphertexts $\{c_{i,j}\}$ and homomorphically computes a vector $\mathbf{c} = (c_0, \ldots, c_B)$, such that c_k is a homomorphic ciphertext encrypting \overline{Y}_b^k .

由于B=2,所以需要计算 Y^0, Y^1, Y^2

通过计算,得到以下视图 $\mathbf{c} = (c_0,, c_B)$

idx[1:m]	B= 0 , C ₀	B=1, C ₁	B= 2 , C ₂
1	1 ⁰	1 ¹	1 ²
2	2 ⁰	2 ¹	2 ²
3	3 ⁰	3 ¹	3 ²

等同于以下矩阵

 $c_0 c_1 c_2$

$$C = egin{bmatrix} 1,1,1\1,2,4\1,3,9 \end{bmatrix}$$

2.4.3 [Intersect] For the bth batch by Sender

(b) [Homomorphically evaluate the dot product] For each $\overline{S}_{b,1},...,\overline{S}_{b,\alpha}$, the sender homomorphically evaluates

$$z_{b,j} = \sum_{k=0}^{B} c_k \cdot \overline{S}_{b,j,k}$$

and optionally performs modulus switching on the ciphertexts $z_{b,j}$ to reduce their sizes. All $z_{b,j}$ are sent back to the receiver. If Labeled PSI is desired, repeat the same operation for \overline{P} and denote the returned ciphertexts $q_{b,j}$.

即计算
$$Z_{b,j} = C * S$$
, 这里 $b=1$, $j = [1, 2]$

$$z_{bj} = \begin{bmatrix} 1, 1, 1 \\ 1, 2, 4 \\ 1, 3, 9 \end{bmatrix} * \begin{bmatrix} (5, 15, 3) & (12, 4, 20) \\ (-6, -8, -4) & (-7, -5, -9) \\ (1, 1, 1) & (1, 1, 1) \end{bmatrix} = [z_{b1}, z_{b2}]$$

详细过程如下所示

$$z_{b1} = z_{b10} + z_{b11} + z_{b12} = (1*5, 1*15, 1*3) + (1*-6, 2*-8, 3*-4) + (1*1, 4*1, 9*1) = (0, 4, 0)$$
 $z_{b2} = z_{b20} + z_{b21} + z_{b22} = (1*12, 1*4, 1*20) + (1*-7, 2*-5, 3*-9) + (1*1, 4*1, 9*1) = (6, -2, 2)$

2.4.4 [Decrypt and get result]

[Decrypt and get result] For the b-th batch, the receiver decrypts the ciphertexts $z_{b,1},...,z_{b,\alpha}$ to obtain $r_{b,1},...,r_{b,\alpha}$, which are interpreted as vectors of n/d elements in \mathbb{F}_{t^d} .

Let $r_1^*, ..., r_{\alpha}^*$ be vectors of m elements in \mathbb{F}_{t^d} obtained by concatenating $r_j^* = r_{1,j}^* ||...|| r_{md/n,j}^*$. For all $y' \in Y'$, output the corresponding $y \in Y$ if

$$\exists j: r_i^*[i] = 0,$$

Decrypt
$$\mathbf{z}_{\mathrm{b,j}}$$
, obtain $\mathbf{r}_{\mathrm{b,j}}$ $\mathbf{r}_{\mathrm{b,1}} = [0,4,0], \, \mathbf{r}_{\mathrm{b,2}} = [6,-2,2]$ 由于b只有一个,且等于1,所以 $\mathbf{r}_{1}^{*} = \mathbf{r}_{1,1}^{*}||...||\mathbf{r}_{md/n,1}^{*} = [0,4,0]$ $\mathbf{r}_{2}^{*} = \mathbf{r}_{1,2}^{*}||...||\mathbf{r}_{md/n,2}^{*} = [6,-2,2]$

$$Y \cap X = [1,2,3] \cap [1,3,4,5] = r_1^* \quad or \quad r_2^* = [true, false, ture] or [false, false, false] = [1,0,1]$$

以上可得结果正确^_^

特别感谢邵航同学的大力指导

写的累死我了