Trabalho de Circuitos Digitais: Banco de Registradores e ULA

Instruções:

Data limite de entrega: 04/07/2024

Trabalho em dupla

O que entregar: arquivo compactado cujo nome é "matricula1_nome1_matricula2_nome2" (exemplo: 2011101001_caimi_2021100010_geomar) contendo:

- 1) Relatório incluindo (peso: 3,0):
 - o Apresentação do trabalho
 - o Descrição da solução:
 - Diagrama com os blocos operacionais da solução (exemplo: somadores. multiplexadores, etc)
 - Tabelas-verdade do módulos que compõem a solução
 - Simplificações
 - Circuitos usando portas lógicas no Logisim
 - Equações propostas
 - Soluções das equações para diferentes valores de x (parte 2)
 - o Conclusão apresentando as dificuldades encontradas
- 2) Arquivo do projeto Logisim Evolution¹ (**peso: 3,0**)
- 3) 2 links para vídeos com as resoluções conforme descrição na parte 2 (peso: 3,0):
 - uma equação de segundo grau
 - um binómio quadrado
- 4) Apresentação para o professor (peso: 1,0)

Descrição:

Parte 1: Construção do circuito

O trabalho proposto é a implementação do circuito apresentado na figura abaixo utilizando o software Logisim Evolution²

¹ A Logisim Evolutiom pode ser obtido na seguinte página do Github: https://github.com/logisim-evolution/logisim-evolution

² É obrigatório a entrega do trabalho na versão 3.7 ou superior do Logisim Evolution. Trabalhos entregues em versões anteriores não serão considerados para fins de avaliação.

O circuito é composto de um banco de registradores, uma Unidade Lógica Aritmética (ULA) e multiplexadores.

O banco de registradores possui 4 registradores (R0 até R3) de 8 bits. As saídas VA e VB apresentam os valores contidos nos registradores selecionados pelas entradas Sel.RA e Sel.RB. A entrada Sel.RW seleciona o registrador a ser escrito o valor presente na entrada VW. A escrita no registrador acontece na transição de subida da entrada Escreve.

A ULA possui duas entradas de 8 bits (A e B) e realiza a operação aritmética de acordo com a entrada Sel.Op. A saída S apresenta o resultado da operação realizada e as saídas Z e C são saídas de um bit que indicam que o resultado da operação é zero (saída Z) e que ocorreu Overflow/Underflow (saída C) na operação realizada.

Devem ser considerados os aspectos apresentados abaixo:

- 1. As entradas: Escreve; Insere Valor; Sel. Valor; Sel. RW; Sel. RA; Sel. RB; Sel. Op; devem possuir chaves ligadas às mesmas para inserir valores às entradas;
- 2. As saídas S, Z e C devem ter leds conectadas as mesmas;
- 3. As operações AND, NAND, OR, NOR, XOR e XNOR são bit a bit;
- 4. As operações de adição e subtração são operações em Complemento de 2. A adição deve usar somadores completos conforme visto em aula; A substração deve ser realizada realizando a soma do entre a e o valor oposto de B (A B) = (A + (-B)).
- 5. As operações de multiplicação e divisão podem utilizar módulos prontos da ferramenta
- 6. As operações de adição, subtração, multiplicação e divisão afetam o sinal Overflow/Underflow (C);
- 7. Todas as operações afetam o flag Zero (Z);

Cada dupla utilizará uma "codificação" diferente para as ações realizadas na ULA conforme apresentado na Parte 3 da descrição.

A montagem do logisim deve utilizar apenas portas lógicas (AND, OR, NOT, etc), botões, LEDs, Flip-Flops, módulo multuplicador, módulo divisor. De forma opcional podem ser usados displays de 7 segmentos e codificadores para mostrar o valor presente em diferentes posições do circuito.

Parte 2: resolução de equações

Cada dupla deverá propor uma equação quadrática e um binômio quadrado.

A equação quadrática deverá ter o formato:

$$y = a.x^2 + b.x + c$$

Onde 'a', 'b', 'c' e 'x' devem obrigatoriamente possuir valores diferentes de 0 e 1, e um dos valores deve ser um número negativo.

O binômio quadrado deve ter o formato

$$(a + b)^2 = a^2 + 2ab + b^2$$

Onde 'a' e 'b' devem possuir valores de magnitude maior que 2, e um deles deve ser negativo. Além disso, perceba que a equação possui o binômio e sua identidade, você deverá montar as duas equações e comprovar que ambos tem o mesmo resultado. Ou seja, você deve executar as operações da primeira parte da equação, guardar o resultado R1, então executar as operações da identidade e armazenar o resultado R2, fazer a subtração de R1 e R2 e verificar se o valor resultante é 0.

Para cada uma das equações propostas deverá ser apresentada a sequência de ações no circuito para encontrar o valor de y com dois valores distintos de x, isto é, uma solução com um valor x1 e outra solução com um valor x2. Onde um dos valores (x1 ou x2) deve ser negativo.

Sugestão de tabela para mostrar a sequência de ações resolvendo as equações:

	Equação: 3.x² + 2x - 5		
	Entrada x1 para variável x: 2		
	Resultado da equação: y = 11		
Passo	entrada	controle	resultado
1	Insere_valor = 3	sel_valor = 1 sel_RW = 00; escreve = $0 \rightarrow 1 \rightarrow 0$	Coloca 'a' em R0 : R0 = 3
2			

Parte 3: Grupos e sequência de controle para as operações na ULA (preenchimento obrigatório)

https://docs.google.com/spreadsheets/d/ 18XtyUfEFwsfqoGKKPjmLy2lKoKPbWdFOosILOiar0QM/edit?usp=sharing

SelOp	Grupo 1:	Grupo 2:	Grupo 3:
000	A * B	A - B	A * B
001	~A	~A	~B
010	A XOR B	A OR B	A XOR B
011	A + B	A/B	A - B
100	A OR B	A NOR B	A + B
101	A / B	A * B	A NOR B
110	A - B	A + B	A/B
111	A AND B	A XOR B	A NAND B
SelOp	Grupo 4:	Grupo 5:	Grupo 6:
000	A NAND B	A OR B	A/B
001	A XOR B	A - B	A + B
010	A + B	A AND B	A XOR B
011	A AND B	A + B	A AND B
100	A OR B	A/B	A - B
101	A - B	A XOR B	A NOR B
110	A/B	A * B	A * B
111	A * B	A NOR B	A NAND B

SelOp	Grupo 7:	Grupo 8:	Grupo 9:
000	A * B	A AND B	A - B
001	A XOR B	A * B	A AND B
010	A + B	A OR B	A OR B
011	A AND B	A/B	A * B
100	A OR B	A NOR B	A + B
101	~B	A XOR B	A NAND B
110	A - B	A + B	A/B
111	A/B	A - B	A XOR B
SelOp	Grupo 10:	Grupo 11:	Grupo 12:
000	A AND B	A NOR B	A - B
001	A OR B	A + B	A * B
010	A * B	A NAND B	A OR B
011	A NAND B	A * B	A NAND B
100	A NOR B	A - B	A/B
101	A + B	A OR B	A XOR B
110	A - B	A/B	A + B
111	A/B	A XOR B	A AND B
		•	
SelOp	Grupo 13:	Grupo 14:	Grupo 15:
000	A * B	A AND B	A - B
001	A XOR B	A - B	A AND B
010	A + B	A OR B	A OR B
011	A AND B	A/B	A/B
100	A OR B	A NOR B	A + B
101	~B	A XOR B	A NAND B
110	A - B	A + B	A * B
		A * B	A XOR B

SelOp	Grupo 16:	Grupo 17:	Grupo 18:
000	A XOR B	A - B	A AND B
001	A * B	A NAND B	A + B
010	A AND B	A * B	A * B
011	A - B	A NOR B	A NOR B
100	A OR B	A XOR B	A NAND B
101	~A	A AND B	A/B
110	A + B	A + B	A XOR B
111	A/B	A/B	A - B
SelOp	Grupo 19:	Grupo 20:	Grupo 21:
000	A OR B	A/B	A NAND B
001	A/B	A NAND B	A * B
010	A + B	A + B	A - B
011	A AND B	~A	A XOR B
100	A XOR B	A XOR B	A AND B
101	~B	A AND B	A/B
110	A - B	A * B	A OR B
111	A * B	A - B	A + B

SelOp	Grupo 22:	Grupo 23:	Grupo 24:
000	A OR B	A/B	A AND B
001	A - B	A NAND B	A * B
010	A + B	A + B	A + B
011	A * B	~A	A NOR B
100	A XOR B	A NOR B	A NAND B
101	~B	A - B	A/B
110	A/B	A * B	A XOR B
111	A AND B	A AND B	A - B

SelOp	Grupo 25:	Grupo 26:	Grupo 27:
000	A OR B	A + B	A AND B
001	A/B	A NAND B	A * B
010	A - B	A * B	A - B
011	A NAND B	~B	A XOR B
100	A XOR B	A XOR B	A + B
101	~A	A AND B	A/B
110	A * B	A/B	A NAND B
111	A + B	A - B	A OR B

SelOp	Grupo 28:	Grupo 29:	Grupo 30:
000	A XOR B	A - B	A NOR B
001	A + B	A OR B	A/B
010	A - B	A/B	A + B
011	A NAND B	~B	A NAND B
100	A NOR B	A OR B	A + B
101	~A	A NAND B	A/B
110	A * B	A/B	A AND B
111	A + B	A + B	A XOR B