

Course: MTS - 417 Intro to Robotics Lab Manual

Prepared By: Dr. Tayyab Zafar & LE Hamza Sohail

Lab Number 03 CoppeliaSim EDU – Translation, Rotation and Transformation

Introduction:

CoppeliaSim uses different languages such as Lua, python or MATLAB etc. In this lab we will study Lua programming. Since Lua programming is used in many industrial grade robots.

Software Used:

CoppeliaSim EDU v4.7

Programming Language:

LUA

Basics can be learnt from the website: www.tutorialspoint.com/lua/

Objectives of the Lab:

- To learn basics of LUA programming
- To use revolute and prismatic joints

Programming basics:

Syntax is almost same as C language.

Data Types → nil, Boolean, number, string, tables

Variable declaration → assignment

Function call with variable arguments

print("test") displays test in the output console.

Keywords:

and	break	do	else
elseif	end	false	for
function	if	in	local
nil	not	or	repeat
return	then	true	until
while			

National University of Sciences & Technology Course: MTS - 417 Intro to Robotics

Lab Manual

Prepared By: Dr. Tayyab Zafar & LE Hamza Sohail

```
Example:
-- Variable definition:
local a, b
-- Initialization
a = 10
b = 30
print("value of a:", a)
print("value of b:", b)
-- Swapping of variables
b, a = a, b
print("value of a:", a)
print("value of b:", b)
f = 70.0/3.0
print("value of f", f)
Loops:
while( true )
 print("This loop will run forever.")
Functions:
function max(num1, num2)
 if (num1 > num2) then
   result = num1;
 else
   result = num2;
 end
 return result;
end
-- calling a function
print("The maximum of the two numbers is ",max(10,4))
print("The maximum of the two numbers is ",max(5,6))
```

Strings:

National University of Sciences & Technology Course: MTS - 417 Intro to Robotics

Lab Manual

Prepared By: Dr. Tayyab Zafar & LE Hamza Sohail

```
string1 = "Lua"
print("\"String 1 is\"",string1)

string2 = 'Tutorial'
print("String 2 is",string2)

string3 = [["Lua Tutorial"]]
print("String 3 is",string3)

Arrays:
array = {"Lua", "Tutorial"}

for i = 0, 2 do
    print(array[i])
end
```

Modules:

- -- Assuming we have a module printFormatter
- -- Also printFormatter has a funtion simpleFormat(arg)
- -- Method 1 require "printFormatter" printFormatter.simpleFormat("test")
- -- Method 2 local formatter = require "printFormatter" formatter.simpleFormat("test")
- -- Method 3
 require "printFormatter"
 local formatterFunction = printFormatter.simpleFormat
 formatterFunction("test")

Matrices and Vectors will be discussed in the script made in CoppeliaSim as they provide major role in transformations. First of all create a new script in the scene.

ADDING A SCRIPT IN CoppeliaSim EDU:

National University of Sciences & Technology Course: MTS - 417 Intro to Robotics

Lab Manual

Prepared By: Dr. Tayyab Zafar & LE Hamza Sohail

Function sysCall_init is used to initialize the handles (robots or objects) that are to be used. Function sysCall_actuation is used when you have to actuate something in the scene. Such as actuating a revolute joint as motors.

ROTATION MATRIX:

Write the code inside sysCall init ()

```
function sysCall_init()
sim = require('sim')
```

```
A = Matrix3x3:rotz(math.pi/2)

Matrix.print(A)

-- do some initialization here
end

-- rotation matrix (rotated around z axis by angle pi/2)

-- Print the matrix
```


Course: MTS - 417 Intro to Robotics

Lab Manual

Prepared By: Dr. Tayyab Zafar & LE Hamza Sohail

TRANSLATIONAL VECTOR:

Now translational vector will be printed as follows $t = vector3(\{2,3,4\})$ Matrix.print(t)

TRANSFORMATION MATRIX:

```
A = Matrix4x4(\{1,0,0,1, -- Add \text{ a transformation Matrix} 0,2,0,-2, 1,2,0,3, 0,0,0,1\})
```

Matrix.print(A) -- print the matrix A

print(Matrix4x4:torotation(A)) -- print the rotation from transformation matrix

print(Matrix4x4:toeuler(A)) -- print the euler angles

print(Matrix4x4:toposition(A)) -- print the translation of the transformation matrix

Now visualizing the frames in CoppeliaSim. Add the two reference frames from model browser Model browser → other → reference frame Name them as R0 and R1

Course: MTS - 417 Intro to Robotics

Lab Manual

Prepared By: Dr. Tayyab Zafar & LE Hamza Sohail

HOMOGENOUS TRANSFORM:

Write down the code in the script's sysCall_init()

function sysCall init()

sim = require('sim') -- module sim

R0 = sim.getObjectHandle('/R0') -- initialize an object R0 (reference frame)

R1 = sim.getObjectHandle('/R1') -- initialize an object R1

R = Matrix3x3:rotx(math.pi/4) -- Make a rotation matrix to rotate the frame R1 by

pi/4 relative to R0

 $t = Vector3({0, 0.1, 0.2})$ -- Make a vector such that to translate R1 by t relative

to R0

A1 = Matrix4x4:fromrt(R,t) -- Make the transformation matrix by concatenating R

and t to make a 4x4 matrix

sim.setObjectMatrix(R1,R0,A1:data()) -- set object position and orientation

end

Now we will print a homogeneous transformation matrix of R1 relative to R0. Adding the following line in the code already done will make homogeneous transformation matrix as shown below:

A1m = Matrix (3,4, sim.getObjectMatrix(R1,R0)) A2 = Matrix:vertcat(A1m,Matrix(1,4,{0,0,0,1})) Matrix.print(A2)

Course: MTS - 417 Intro to Robotics

Lab Manual

Prepared By: Dr. Tayyab Zafar & LE Hamza Sohail

USING THE AXIS METHOD:

Using the Axis method to compute the rotation matrix R from the given transformation matrix such that it is rotated by angle "Y".

Q = A2:axis("y")

T = Matrix3x3:fromaxisangle(Q,math.pi/4)

Matrix.print(T)

By adding the above code we get the rotation matrix when rotated by 45 degrees around Y axis.

Matrix.print(T:inv()) - - takes the inverse of the matrixs