CIS 22C 1		
Review HASH TABLES	First Name	Last Name
1.	First Name	Last Name
(A). A collision occurs when a hashing algorithm		Last Name
produces an address for an insertion key and that		Last Name
address is already occupied. True/Fals	e Flist Name	Last Name
(B). Also known as division remainder, the		
modulo-division method divides the key by		
the array size and uses the remainder for the add	ress.	True/False
(C). Hashing is an address-to-key mapping proc	ess.	True/False
(D). Synonyms are table entries whose keys trantable.	sform into the same ind	ex of the hash True/False
2.		
(A). The algorithm used to search a list depends	to a large extent on the	
a. Structure of the list		
b. Operating system being used		
c. Programming language used to	o implement it	
c. Data type of the keys.		
(B). The memory that contains all of the home a	addresses is known as th	e
a. home area		
b. prime area c. home address		
d. collision area		
(C). As data are added to a list and collisions are	e resolved, some hashin	g algorithms tend
to cause data to group within the list. This tende		
hashed list is known as	,	•
a. grouping		
b. collision tendency		
c. clustering		
d. collision factor	1	1 1 1
(D). Under reasonable assumptions, the expect table is	ed time to search for an	element in a hash
a. O(n)		
b. O(log ₂ (n)) c. O(1)		
$d. O(n^2)$		
3 According to D. Warrth a seed best for the	on chould set of the	wino no onto:
3. According to D. Knuth, a good hash function (A).	on should satisfy two rec	junements:
(B).		

Review HASH TABLES

4.

(A) Using the modulo division method and <u>linked list collision resolution</u>, store the keys shown below in an array of 10 elements (numbered from 0 to 9).

0	1	2	3	4	5	6	7	8	9

(B) What is the load factor (density) of the list after all keys have been inserted?

5.

(A) Using the modulo division method and <u>linear probe collision resolution</u>, store the keys shown below in an array of 10 elements (numbered from 0 to 9).

0	1	2	3	4	5	6	7	8	9

(B) What is the load factor (density) of the list after all keys have been inserted?

CIS 22C 3

Review HASH TABLES

6. What's wrong with the following hash function?

```
int hash( int index, int listSize, int *address )
{
   int key;
   key = index / (listSize - 1);
   *address = key;
   return key;
}

(A)

(B)

(C)

(D)
```

7. The following algorithm is searching a hash array. Linear probe was used to solve collisions. As a team leader, would you accept this algorithm? Why? Why not?

```
Algorithm searchHash ( hashAry, size, targetKey, location)
```

This algorithm searches a hash array...

Pre: ary, size, targetKey

Post: location – index where targetKey is being stored

Return: found or not found

```
i = 0
loop(i < size)
    if( hashAry[i].key is equal to targetKey)
        location = i
        return TRUE
    end if
    i = i + 1
    end loop
    return FALSE
end searchHash</pre>
```