

计算机组成原理

第六章 中央处理器

6.17 CPU设计实验

第六章

- 1 实验目标与任务
 - 学生理解单周期MIPS CPU基本原理
 - 能在Logisim平台中设计实现单周期MIPS CPU
 - 8条核心指令或更多,能运行冒泡排序测试程序
 - 学生理解MIPS多周期处理器的基本原理,
 - 能在Logisim平台中设计实现MIPS 多周期CPU
 - 硬布线控制器,微程序控制器两种方案
 - 8条核心指令

2

核心指令集

可实现内存区域冒泡排序

#	MIPS指令	RTL功能描述
1	add \$rd,\$rs,\$rt	R[\$rd]←R[\$rs]+R[\$rt] 溢出时产生异常,且不修改R[\$rd]
2	slt \$rd,\$rs,\$rt	R[\$rd]←R[\$rs] <r[\$rt] td="" 小于置1,有符号比较<=""></r[\$rt]>
3	addi \$rt,\$rs,imm	R[\$rt]←R[\$rs]+SignExt _{16b} (imm) 溢出产生异常
4	lw \$rt,imm(\$rs)	$R[\$rt] \leftarrow Mem_{4B}(R[\$rs] + SignExt_{16b}(imm))$
5	sw \$rt,imm(\$rs)	$Mem_{4B}(R[\$rs] + SignExt_{16b}(imm)) \leftarrow R[\$rt]$
6	beq \$rs,\$rt,imm	$if(R[\$rs] = R[\$rt]) PC \leftarrow PC + SignExt_{18b}(\{imm, 00\})$
7	bne \$rs,\$rt,imm	$if(R[\$rs] != R[\$rt]) PC \leftarrow PC + SignExt_{18b}(\{imm, 00\})$
8	syscall	系统调用,这里用于停机

3 构建单周期MIPS数据通路

4

单周期MIPS控制器设计

- 单周期控制器无时序逻辑,纯组合逻辑电路
- 输入信号: 指令字Opcode, Func字段 (12位)
- 输出信号: 所有控制信号
- 设计方法: 真值表 → 表达式 → 电路
 - 利用Logisim自动生成电路

6 多周期MIPS 顶层视图

7

构建指令周期状态转换图

8 构造微程序控制器

构造微程序控制器

9

微程序控制器Logisim实现

硬布线控制器Logisim实现

谢谢!