

1. Considere la sentencia ϕ definida como $\forall x \exists y (\neg(x=y) \land (R(x,y) \rightarrow R(y,x)))$, donde R es símbolo de predicado de aridad 2.

a) Sea $A = \{a, b, c\}$ y $R^M = \{(b, c), (b, b), (b, a)\}$. Decida si $\mathcal{M} \models \phi$.

1. Considere la sentencia ϕ definida como $\forall x \exists y (\neg(x=y) \land (R(x,y) \rightarrow R(y,x)))$, donde R es símbolo de predicado de aridad 2.

a) Sea $A = \{a, b, c\}$ y $R^M = \{(b, c), (b, b), (b, a)\}$. Decida si $M \models \phi$.

Escribamos a ϕ como $\phi \equiv \forall x \exists y \ (\phi_1 \land \phi_2)$ donde $\phi_1 \equiv \neg (x \doteq y) \ y \ \phi_2 \equiv R(x, y) \to R(y, x)$.

 $\llbracket \phi \rrbracket_{\mathcal{M},s} = T \text{ sii para cada } e \in |\mathcal{M}| \text{ resulta } \llbracket \exists y \, (\phi_1 \wedge \phi_2) \rrbracket_{\mathcal{M},s[x \mapsto e]} = T. \text{ En particular, para } e = b$ $\llbracket \exists y \, (\phi_1 \wedge \phi_2) \rrbracket_{\mathcal{M},s[x \mapsto b]} = T \text{ sii para algún } h \in |\mathcal{M}| \text{ resulta } \llbracket \phi_1 \wedge \phi_2 \rrbracket_{\mathcal{M},s[x \mapsto b][y \mapsto h]} = T.$

Sea $s' = s [x \mapsto b] [y \mapsto h]$. Consideremos los tres casos posibles para h:

Caso
$$h = a$$
:

Luego:

Por lo tanto

$$\phi_2]_{\mathcal{M}}$$

$$[2]_{M,s}$$

 $\|\phi_2\|_{\mathcal{M}_{s'}} = F$

 $\iff \langle \text{definición de } \phi_2 \rangle$

 $\iff \langle \text{definición de } s' \rangle$

lo cual vale.

 $[R(x,y) \rightarrow R(y,x)]_{M,s'} = F$

⇔ (definición de ∏ para términos)

 $(b,a) \in R_{\mathcal{M}} \ \mathrm{y} \ (a,b) \notin R_{\mathcal{M}}$

 $\llbracket \phi_1 \wedge \phi_2 \rrbracket_{\mathcal{M},s'} = \min \left\{ \llbracket \phi_1 \rrbracket_{\mathcal{M},s'}, F \right\} = F$

 $[\![R(x,y)]\!]_{\mathcal{M},s'} = T \ y \ [\![R(y,x)]\!]_{\mathcal{M},s'} = F$

 $(s'(x), s'(y)) \in R_M \vee (s'(y), s'(x)) \notin R_M$

 $\left(\llbracket x \rrbracket_{\mathcal{M},s'}, \llbracket y \rrbracket_{\mathcal{M},s'}\right) \in R_{\mathcal{M}} \text{ y } \left(\llbracket y \rrbracket_{\mathcal{M},s'}, \llbracket x \rrbracket_{\mathcal{M},s'}\right) \notin R_{\mathcal{M}}$

$$2 \|_{\mathcal{M}, s'}$$

Caso h = c: análogo.

Caso h = b:

 $\llbracket \phi_1 \rrbracket_{\mathcal{M},s'} = F$ $\iff \langle \text{definición de } \phi_1 \rangle$

 $[\![\phi_1 \wedge \phi_2]\!]_{\mathcal{M},s'} = \min \{ [\![\phi_1]\!]_{\mathcal{M},s'}, [\![\phi_2]\!]_{\mathcal{M},s'} \}$

$$\llbracket \neg (x \dot{=} y) \rrbracket_{\mathcal{M}, s'} = F$$

$$\iff \langle \text{definición de } \llbracket \text{ para } \neg \rangle$$

$$\llbracket x \dot{=} y \rrbracket_{\mathcal{M}, s'} = T$$

 $\iff \langle \text{definición de } [] \text{ para } \dot{=} \rangle$ $[[x]]_{\mathcal{M},s'} = [[y]]_{\mathcal{M},s'}$ $\iff \langle \text{definición de } [] \text{ para términos} \rangle$ s'(x) = s'(y) $\iff \langle \text{definición de } s' \rangle$ b = b lo cual vale.

Por lo tanto: $\llbracket \phi_1 \wedge \phi_2 \rrbracket_{\mathcal{M},s'} = \min \left\{ F, \llbracket \phi_2 \rrbracket_{\mathcal{M},s'} \right\} = F$

En conclusión, hemos visto que para ningún $h \in |\mathcal{M}|$ resulta $\llbracket \phi_1 \wedge \phi_2 \rrbracket_{\mathcal{M},s'} = T$, por lo tanto $\llbracket \exists y \, (\phi_1 \wedge \phi_2) \rrbracket_{\mathcal{M},s[x\mapsto b]} = F$. Como dijimos que $\llbracket \phi \rrbracket_{\mathcal{M},s} = T$ sii para cada $e \in |\mathcal{M}|$ resulta $\llbracket \exists y \, (\phi_1 \wedge \phi_2) \rrbracket_{\mathcal{M},s[x\mapsto e]} = T$ y vimos que para e = b no vale, podemos concluir que $\llbracket \phi \rrbracket_{\mathcal{M},s} = F$.

Para el ejercicio 5:

Axiomas de Peano: $\Gamma_{\mathbb{N}}$ es el siguiente conjunto de fórmulas:

1-
$$\phi_1 \equiv \forall x \neg (s(x) = 0)$$

2-
$$\phi_2 \equiv \forall x \forall y (s(x) = s(y) \rightarrow x = y)$$

3-
$$\phi_{3a} \equiv \forall x(x+0=x)$$

 $\phi_{3b} \equiv \forall x(0+x=x)$

4-
$$\phi_4 \equiv \forall x \forall y (x + s(y) = s(x + y))$$

5-
$$\phi_{5a} \equiv \forall x(x \times 0 = 0)$$

 $\phi_{5b} \equiv \forall x(0 \times x = 0)$

6-
$$\phi_{6a} \equiv \forall x(x \times s(0) = x)$$

 $\phi_{6b} \equiv \forall x(s(0) \times x = x)$

7- El producto entre un natural y el sucesor de otro es igual a la suma del último y el producto de dichos naturales

$$\phi_7 \equiv \forall x \forall y (x \cdot s(y) = y + (x \cdot y))$$