

Topic 6: Functional Dependency and Normalization (Chapter 7)

Database System Concepts

©Silberschatz, Korth and Sudarshan (Modified for CS 4513)

Topic 6 Contents

- Integrity Constraints
- Functional Dependencies
- Relational Database Design: Features of a Good design
- Normalization: Decomposition using Functional Dependencies
- Database-Design Process

Integrity Constraints

- Domain constraints
 - Tested by the system whenever a new data item is inserted into the database
 - Comparisons must be made from compatible domains
 - Example:

Integrity Constraints (cont.)

- Referential Integrity
 - Ensures that a value that that appears in a relation for a given set of attributes also appear for a certain set of attributes in another relation
 - Is checked when database modification occurs.
 - Foreign key definition:

Example:

Functional Dependencies

- Constraints on the set of legal relations.
- □ Require that the value for a certain set of attributes determines uniquely the value for another set of attributes.

Functional Dependencies (Cont.)

□ Let R be a relation schema

$$\alpha \subseteq R$$
 and $\beta \subseteq R$

The functional dependency

$$\alpha \rightarrow \beta$$

holds on R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes β . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

- Notation $\alpha \to \beta$: α functionally determines β , or β is functionally dependent on α
- \square Example: Consider r(A,B) with the following instance of r.

On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

Functional Dependencies (cont.)

Another example:

Use of Functional Dependencies

- We use functional dependencies to:
 - test relations to see if they are legal under a given set of functional dependencies.
 - If a relation r is legal under a set F of functional dependencies, we say that r satisfies F.
 - specify constraints on the set of legal relations
 - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F.
- Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.
 - □ For example, a specific instance of *instructor* may, by chance, satisfy $name \rightarrow ID$.

Functional Dependencies (Cont.)

- Trivial FD: A functional dependency is trivial if it is satisfied by all instances of a relation
 - Example:
 - ID, name → ID
 - name → name
 - □ In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$
- Trivial FDs: automatically satisfied by all relations defined on R
 - Example: Schema R (A, B, C)
 - What are some trivial functional dependencies on R?
 - Answer:

Closure of a Set of Functional Dependencies

- ☐ Given a set *F* of functional dependencies, there are certain other functional dependencies that are logically implied by *F*.
 - For example: If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- ☐ The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- We denote the closure of F by F+.
- □ F⁺ is a superset of F.

Closure of a Set of Functional Dependencies (Cont.)

■ We can find F+, the closure of F, by repeatedly applying Armstrong's Axioms (rules of inference for FDs):

Given schema R and α , β , γ , and δ as subsets of R

- □ if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity rule (trivial FD))
- □ if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ (augmentation rule)
- \square if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity rule)
- These rules are
 - sound (generate only functional dependencies that actually hold),
 and
 - complete (generate all functional dependencies that hold).

Closure of Functional Dependencies (Cont.)

- Additional inference rules:
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union rule)
 - If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (decomposition rule)
 - If $\alpha \to \beta$ holds and $\gamma \not \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (pseudotransitivity rule)

The above rules can be inferred from Armstrong's axioms.

Example

$$\begin{array}{ccc}
\Box & R = (A, B, C, G, H, I) \\
F = \{ & A \rightarrow B \\
& A \rightarrow C \\
& CG \rightarrow H \\
& CG \rightarrow I \\
& B \rightarrow H \}
\end{array}$$

- □ some members of *F*⁺
 - \Box $A \rightarrow H$
 - ▶ by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - \Box $AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - \square CG \rightarrow HI
 - by augmenting CG → I to infer CG → CGI, and augmenting of CG → H to infer CGI → HI, and then transitivity

Procedure for Computing F⁺

□ To compute the closure of a set of functional dependencies F:

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+

until F^+ does not change any further
```

NOTE: We shall see an alternative procedure for this task later

How Keys are Related to Functional Dependencies?

- \square K is a superkey for relation schema R if and only if $K \rightarrow R$
- K is a candidate key for R if and only if
- Example:

Functional Dependencies (Cont.)

Functional dependencies allow us to express constraints that cannot be expressed using superkeys. Consider the schema:

inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold from the key constraint:

ID, *dept_name*→ name

ID, *dept_name*→ salary

ID, *dept_name*→ building

ID, *dept_name*→ budget

ID, dept_name→ ID

ID, *dept_name*→ dept_name

but would not expect the following to hold from the key constraint unless it is specified:

dept_name → budget

(meaning: each department has only one budget)

Closure of Attribute Sets

- Given a set of attributes α , define the *closure* of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under F
- \square Algorithm to compute α^+ , the closure of α under F

```
result := \alpha;
while (changes to result) do
for each \beta \to \gamma in F do
begin
if \beta \subseteq result then result := result \cup \gamma
end
```


Example of Attribute Set Closure

- \square R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
- □ (*AG*)+
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3. $result = ABCGH \quad (CG \rightarrow H \text{ and } CG \subseteq AGBC)$
 - 4. $result = ABCGHI \ (CG \rightarrow I \text{ and } CG \subseteq AGBCH)$
- □ Is AG a candidate key?
 - 1. Is AG a super key?
 - 1. Does $AG \rightarrow R$? == Is $(AG)^+ \supseteq R$
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$
 - 2. Does $G \rightarrow R$? == Is $(G)^+ \supseteq R$

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing for candidate key:
 - \square To test if α is a candidate key, test if α is a superkey and minimal
- Testing functional dependencies
 - □ To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F^+), just check if $\beta \subseteq \alpha^+$.
 - That is, we compute α ⁺ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - □ For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Relational Database Design

- Design Goal:
 - Generate a set of relations that allow data to be retrieved easily and allow data to be stored without unnecessary redundancy
- Properties of a bad design:
 - Unnecessary redundancy
 - Loss of data
 - Inability to represent some information
 - => Design schemas that are in an appropriate normal form

Relational Database Design (Cont.)

Normalization:

- Process of decomposing a relation schema into smaller schemas
 - $Arr R => R_1, R_2, ..., R_n$
- Objectives:
 - To reduce redundancy
 - To reduce database modification anomalies:
 - Insertion anomaly: inability to represent some information in the database
 - Deletion anomaly: deletion of some information causes loss of other information
 - Update anomaly: update one tuple requires updating many tuples

Desirable Properties of Decomposition (Cont.)

- 1) Lossless Join:
- For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

- A decomposition of R into R_1 and R_2 is lossless join if at least one of the following dependencies is in F^+ :
 - \square $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$

Example of Lossless-Join Decomposition

- Lossless join decomposition
- Decomposition of R = (A, B, C) $R_1 = (A, B)$ $R_2 = (B, C)$

$$\prod_{A,B}(r) \bowtie \prod_{B,C}(r)$$

A B	C
	A B
β 2	•

Example of a Lossy Decomposition

ID	name	street	city	salary
: 57766 57766 98776 98776 :	Kim Kim Kim Kim	Main North Main North	Perryridge Hampton Perryridge Hampton	75000 67000 75000 67000

Note: Additional tuples that were not in the original employee relation are called SPURIOUS TUPLES

Desirable Properties of Decomposition (Cont.)

2) Dependency Preserving:

Let F_i be the set of dependencies F^+ that include only attributes in R_i .

- A decomposition is **dependency preserving**, if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
- If it is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive.

Example

$$R = (A, B, C)$$
$$F = \{A \rightarrow B, B \rightarrow C\}$$

- Can be decomposed in two different ways
- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\}$$
 and $B \to BC$ in F^+ , i.e., $R_1 \cap R_2 \to R_2$ in F^+

- Dependency preserving
- $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition:

$$R_1 \cap R_2 = \{A\}$$
 and $A \to AB$ in F^+ , i.e., $R_1 \cap R_2 \to R_1$ in F^+

□ Not dependency preserving (cannot check $B \rightarrow C$ without computing $R_1 \bowtie R_2$)

Normal Forms (NF)

☐ First Normal Form (1NF):

- A schema R is in 1NF if every attribute in R is atomic (only single value, not divisible, no composite value)
- Example:
 - Student (name, gpa, degree)
 - name: cannot be divided into first name and last name
 - degree: one degree only, cannot be divided into multiple degrees

- Second Normal Form (2NF): given a relation schema R and a set of functional dependencies F defined on R, R is in 2NF if
 - R is 1NF and
 - Every nonprime attribute in R is fully dependent on every candidate key of R
- Nonprime attribute in R: is not a subset of any candidate key of R
- Fully dependent:
 - Given X -> Y ∈ F⁺
 - □ If $Z \subseteq X$ and $Z \rightarrow Y \in F^+$ then Y is partially dependent on X
 - □ If no such Z exists, then Y is fully dependent on X
 - Example:

Example: Is the following schema student_class in 2NF, assuming (studentid, classid) is the only candidate key of the schema?

student_class (name, <u>studentid</u>, gpa, <u>classid</u>, grade)

name	studentid	gpa	classid	grade
Harris	1234	3.4	Physics_1A	А
Johnson	2346	3.1	Physics_1A	В
Sampson	1236	2.8	Chem_2B	А
Harris	1234	3.4	Chem_2B	А

Answer:

- If student_class is not in 2NF, describe the database modification anomalies and decompose it into 2NF schemas
- Answer:

- ☐ Third Normal Form (3NF): given a relation schema R and a set of functional dependencies F defined on R, R is in 3NF if
 - R is in 1NF and
 - For each X -> A in F+ where X is a set of attributes in R and A is a single attribute in R then
 - Either X -> A is trivial FD or
 - X is a superkey of R or
 - A is a prime attribute of R
- Note: a prime attribute of R is a subset of a candidate key of R

Example: Is the following schema class_instructor in 3NF, assuming that classid is the only candidate key of class_instructor?

class_instructor (classid		instid	office)	
	Physics_1A	Smith	M11	
	Music_1	Harris	M22	
	Chem_2B	Parker	C12	
	Music_5	Harris	M22	

Answer:

- If class_instructor is not in 3NF, describe the database modification anomalies and decompose it into 3NF schemas
- Answer:

- Boyce-Codd Normal Form (BCNF): given a relation schema R and a set of functional dependencies F defined on R, R is in BCNF if
 - R is in 1NF and
 - For each X -> A in F+ where X is a subset of attributes in R and A is a single attribute in R then
 - Either X -> A is trivial FD or
 - X is a superkey of R

■ Example: given the following relational schema and rules, is the schema is in BCNF? If not, decompose it into BCNF schemas

student_sport (student, sport, coach)

Rules:

- 1) Each student may participate in one or more sports;
- 2) For each sport in which a student participates, he/she has a different coach;
- 3) Each sport may have several coaches
- 4) Each coach works with only one sport

Answer:

BCNF Decomposition Algorithm

Given relational schema R and set of functional dependencies F defined on R

```
result := \{R\};

done := false;

compute F^+;

while (not done) do

if (there is a schema R_i in result that is not in BCNF

then begin

let \alpha \mathbb{P} \to \beta be a functional dependency that

holds on R_i and violates BCNF

result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);

end

else done := true;
```

Note: each R_i in the final result is in BCNF, and decomposition is lossless-join; (the same algorithm is for 3NF decomposition when replacing "BCNF" with "3NF"). The algorithm does not guarantee dependency-preservation, but guarantees lossless join decomposition

Example of BCNF Decomposition

- class (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, capacity, time_slot_id)
- Functional dependencies:
 - □ course_id→ title, dept_name, credits
 - □ building, room_number→capacity
 - □ course_id, sec_id, semester, year→building, room_number, time_slot_id
- A candidate key {course_id, sec_id, semester, year}.
- BCNF Decomposition:
 - □ course_id→ title, dept_name, credits holds
 - but course_id is not a superkey.
 - We replace class by:
 - course(course_id, title, dept_name, credits)
 - class-1 (course_id, sec_id, semester, year, building, room_number, capacity, time_slot_id)

BCNF Decomposition (Cont.)

- course is in BCNF
 - How do we know this?
- □ building, room_number→capacity holds on class-1
 - but {building, room_number} is not a superkey for class-1.
 - □ We replace *class-1* by:
 - classroom (building, room_number, capacity)
 - section (course_id, sec_id, semester, year, building, room_number, time_slot_id)
- classroom and section are in BCNF.

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

- R = (J, K, L) $F = \{JK \to L$ $L \to K\}$ Two candidate keys JK
 - Two candidate keys = JK and JL
- R is not in BCNF
- Any decomposition of R will fail to preserve

$$JK \rightarrow L$$

This implies that testing for $JK \rightarrow L$ requires a join

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into a set of relations that are in 3NF such that:
 - the decomposition is lossless
 - the dependencies are preserved
- ☐ It is always possible to decompose a relation into a set of relations that are in BCNF such that:
 - the decomposition is lossless
 - it may not be possible to preserve dependencies.

Design Goals

- Goal for a relational database design is:
 - BCNF.
 - Lossless join.
 - Dependency preservation.
- ☐ If we cannot achieve this, we accept one of
 - Lack of dependency preservation
 - Redundancy due to use of 3NF

Overall Database Design Process

- ☐ We have assumed schema *R* is given
 - R could have been generated when converting E-R diagram to a set of tables.
 - R could have been a single relation containing all attributes that are of interest (called universal relation).
 - Normalization breaks R into smaller relations.
 - R could have been the result of some ad hoc design of relations, which we then test/convert to normal form.

ER Model and Normalization

- When an E-R diagram is carefully designed, identifying all entities correctly, the tables generated from the E-R diagram should not need further normalization.
- However, in a real (imperfect) design, there can be functional dependencies from non-key attributes of an entity to other attributes of the entity
 - Example: an employee entity with attributes department_name and building, and a functional dependency department_name→ building
 - Good design would have made department an entity

Denormalization for Performance

- May want to use non-normalized schema for performance
- ☐ For example, displaying *prereqs* along with *course_id*, and *title* requires join of *course* with *prereq*
- Alternative 1: Use denormalized relation containing attributes of course as well as prereq with all above attributes
 - faster lookup
 - extra space and extra execution time for updates
 - extra coding work for programmer and possibility of error in extra code
- □ Alternative 2: use the normalized schema, but additionally store a materialized view defined as the join of course and prereq: course ⋈ prereq
 - Materialized views: a view whose results is stored in the database and brought up to date (by the database system) when the relations used in the view are updated
 - Benefits and drawbacks are the same as in Alternative 1, except no extra coding work for programmer and avoids possible errors

Other Design Issues

- Some aspects of database design are not caught by normalization
- □ Examples of bad database design to be avoided:
 Instead of earnings (company_id, year, amount), use
 - earnings_2004, earnings_2005, earnings_2006, etc., all on the schema (company_id, earnings).
 - Above are in BCNF, but makes querying across years difficult and needs new table each year
 - company_year (company_id, earnings_2004, earnings_2005, earnings_2006)
 - Also in BCNF, but also makes querying across years difficult and requires new attribute each year.
 - Is an example of a crosstab, where values for one attribute become column names
 - Used in spreadsheets, and in data analysis tools

End of Topic 6

Database System Concepts

©Silberschatz, Korth and Sudarshan (Modified for CS 4513)