

Dagstuhl Seminar on Semirings in Databases, Automata, and Logic

Polytime Convergence of Datalogo over p-stable Semirings

Sungjin Im, Ben Moseley, Hung Ngo, Kirk Pruhs

Problem and Results

Problem in a Nutshell

Given

- a commutative *p*-stable semiring $S = (S, \oplus, \otimes, \mathbf{0}, \mathbf{1})$
- a polynomial function $f: S^n \to S^n$

Solve x = f(x) via the iterative method:

$$f^{(0)}(\mathbf{0}) = \mathbf{0}$$
 $f^{(i+1)}(\mathbf{0}) = f(f^{(i)}(\mathbf{0}))$

Problem

What is the number of iterations until convergence? (i.e. $f^{(t)}(\mathbf{0}) = f^{(t+1)}(\mathbf{0})$)

p-Stable Semirings

Given a commutative semiring $S = (S, \oplus, \otimes, \mathbf{0}, \mathbf{1})$ is p-stable iff

$$a^{(p)} = a^{(p+1)} \quad \forall a \in S$$

where
$$a^{(p)} = \mathbf{1} \oplus a \oplus a^2 \cdots \oplus a^p$$

Examples

• Absorptive semirings $\equiv 0$ -stable semirings

 $\mathbf{1} = \mathbf{1} \oplus a$

ullet The tropical semiring Trop_p is p-stable

(Definition later)

Previously Best Known Results

n =# of variables in f (i.e. output size)

KNPSW PODS 22,

S	f	bound on $stability(f)$	
0-stable		n	subsumes traditional Datalog
$Trop_p$	linear	(p+1)n	
<i>p</i> -stable		$\sum_{i=0}^{n} (p+2)^i$	
<i>p</i> -stable	linear	$\sum_{i=0}^{n} (p+1)^i$	

Our Results

 $|\sigma|=$ # of different constants in f

$$\delta = \mathsf{degree}(f)$$

S	f	bound on stability $(m{f})$				
0-stable		n	subsumes traditional Datalog			
$Trop_p$	linear	(p+1)n				
<i>p</i> -stable		$O(\sigma p n^2 (n^2 \log \delta + \lg \sigma))$	Roughly	$O(pn^4)$	IMNP PODS 25	
<i>p</i> -stable	linear	$O((p+1)n^3)$	IMNP ICDT 24			
	linear	$O((p+1)n\log S)$	IMNP ICDT 24			

Still to be confirmed: $\tilde{O}((p+1)n)$ for general ${\bf f}$.

Proof Sketch

- Reformulate the problem as a question about a CFL and its Parikh image
- · A strengthened Parikh theorem
- A couple of combinatorial lemmas about linear sets and p-stability

Stability and Context-Free Languages

Polynomial Map Iteration

$$\begin{bmatrix} X \\ Y \end{bmatrix} \xrightarrow{f} \begin{bmatrix} aXY + bY + c \\ uXY + vX + w \end{bmatrix}$$

$$\xrightarrow{f} \begin{bmatrix} a(aXY + bY + c)(uXY + vX + w) + b(uXY + vX + w) + c \\ u(aXY + bY + c)(uXY + vX + w) + v(aXY + bY + c) + w \end{bmatrix}$$

The Kleene Sequence for f:

$$f^{(0)}\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0\\0\end{bmatrix} \qquad f^{(1)}\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}c\\w\end{bmatrix} \qquad f^{(2)}\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}acw + bw + c\\ucw + vc + w\end{bmatrix}$$

Corresponding CFG

(There must be a constant coefficient in every rule)

$$X \rightarrow aXY \mid bY \mid c$$

$$Y \to uXY \mid vX \mid w$$

X-derivation trees of depth < 2 for the grammar

$$f^{(2)}(\mathbf{0})|_{X} = acw + bw + c$$

Lemma (Esparza, Kiefer, Luttenberger – JACM 2010)

Let $\mathcal{T}_X^{(t)}$ denote the set of X-derivation trees of depth $\leq t$ for the grammar. Let Y(T) denote the product of the constants in the leaves of T. Then,

$$f^{(t)}(\mathbf{0}) \mid_{X} = \bigoplus_{T \in \mathcal{T}_{\mathbf{Y}}^{(t)}} Y(T) \qquad \forall t \ge 0$$

$$f^{(t)}(\mathbf{0}) = f^{(t+1)}(\mathbf{0}) \Leftrightarrow \bigoplus_{T \in \mathcal{T}_X^{(t)}} Y(T) = \bigoplus_{T \in \mathcal{T}_X^{(t+1)}} Y(T) \qquad \forall X$$

We will show that, for "large" t,

$$\operatorname{depth}(\hat{T}) = t + 1 \Rightarrow \underbrace{Y(\hat{T}) \oplus \bigoplus_{T \in \mathcal{T}_X^{(t)}} Y(T) = \bigoplus_{T \in \mathcal{T}_X^{(t)}} Y(T)}_{T \in \mathcal{T}_X^{(t)}}$$

A Strengthened Parikh Theorem

Parikh Images

- Let $oldsymbol{c}:=(c_1,\ldots,c_\sigma)$ be the vector of all constants appearing in $oldsymbol{f}$
- For any derivation tree T, its Parikh image $\Pi(T)$ is

$$\Pi(T) := egin{bmatrix} \#c_1(T) \ dots \ \#c_\sigma(T) \end{bmatrix} \in \mathbb{N}^\sigma, \qquad egin{bmatrix} Y(T) = oldsymbol{c}^{\Pi(T)} \ \end{pmatrix}, ext{ where } oldsymbol{c}^{oldsymbol{lpha}} = c_1^{lpha_1} \cdots c_\sigma^{lpha_\sigma}, oldsymbol{lpha} \in \mathbb{N}^\sigma$$

$$\begin{array}{c|c} X \\ / \mid \backslash \\ c \ X \ Y \\ \mid \ \mid \\ c \ w \end{array} \qquad \Pi(T) = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 1 \end{bmatrix} \qquad \boldsymbol{c} = (a,b,c,u,v,w)$$

Reformulation of what we want to get to

If t is "large", for any tree \hat{T} with $\operatorname{depth}(\hat{T}) \geq t+1$,

$$oldsymbol{c}^{\Pi(\hat{T})} \oplus igoplus_{T \in \mathcal{T}_X^{(t)}} oldsymbol{c}^{\Pi(T)} = igoplus_{T \in \mathcal{T}_X^{(t)}} oldsymbol{c}^{\Pi(T)}$$

Parikh's Theorem

A linear set is a set of the form

$$L_{oldsymbol{v},oldsymbol{M}} := \{oldsymbol{v} + oldsymbol{M}oldsymbol{lpha} \mid oldsymbol{lpha} \in \mathbb{N}^k\}$$

where $M \in \mathbb{N}^{\sigma \times k}$, $v \in \mathbb{N}^{\sigma}$, and $k \in \mathbb{N}$. v, M are parameters of the linear set

Theorem (Parikh)

The Parikh image of a CFL is a union of finitely many linear sets.

How does Parikh's Theorem help?

$$oldsymbol{c}^{\Pi(\hat{T})} = oldsymbol{c^{v+Mlpha}} = oldsymbol{c^v} \prod_{i=1}^k (oldsymbol{c^{m_i}})^{lpha_i}$$

From p-stability, if $\|\alpha\|_{\infty} > p$, then

(will prove this later)

$$c^{v+Mlpha}\oplusigoplus_{eta:\|eta\|_\infty\le p}c^{v+Meta}=igoplus_{eta:\|eta\|_\infty\le p}c^{v+Meta}$$

It remains to prove a slightly *strengthen* Parikh's theorem:

- If $\operatorname{depth}(\hat{T}) \geq t+1$, then $\exists (m{v}, m{M})$ s.t. $\Pi(\hat{T}) = m{v} + m{M} m{lpha}$ where $\|m{lpha}\|_{\infty} > p$
- ${m v} + {m M}{m eta} = \Pi(T)$ for some distinct T with $\operatorname{depth}(T) \leq t$

The Strengthened Parikh's Theorem

Theorem (IMNP 2025)

For any CFL \mathcal{L} , \exists a finite set \mathcal{C} of parameters $(\boldsymbol{v}, \boldsymbol{M})$ s.t.

• For any derivation tree T of \mathcal{L} , $\exists (oldsymbol{v}, oldsymbol{M}) \in \mathcal{C}$ s.t.

$$\Pi(T) = v + M\alpha \tag{1}$$

$$depth(T) \le (\|\alpha\|_1 + 1)n(n+1) \tag{2}$$

- For any $(v, M) \in C$, \exists a derivation tree T of $\mathcal L$ s.t. (1) and (2) hold.
- For any $(m{v},m{M})\in\mathcal{C}$, $\|m{v}\|_{\infty}\leq \delta^{n(n+1)}$ and $\|m{M}\|_{\max}\leq \delta^{n(n+1)}$.

$$\|\boldsymbol{\alpha}\|_{\infty} \geq \frac{\|\boldsymbol{\alpha}_1\|}{\|\boldsymbol{\alpha}\|_0} = \Omega\left(\frac{\operatorname{depth}(\hat{T})}{n^2}\right) \cdot \frac{1}{\|\boldsymbol{\alpha}\|_0} \qquad \text{also want } \|\boldsymbol{\alpha}\|_0 \text{ to be "small"}$$

A Couple of Combinatorial Lemmas

Linear Sets with Small Supports

Lemma

For any $(v, M) \in \mathcal{C}$, where M has k columns, and any $\alpha \in \mathbb{N}^k$, there exists a $\alpha' \in \mathbb{N}^k$ with $v + M\alpha' = v + M\alpha$, where $\|\alpha'\|_1 = \|\alpha\|_1$ and $\|\alpha'\|_0 = O(\sigma(n^2 \log \delta + \lg \sigma))$.

A Property of *p*-Stable Semirings

Lemma (KNPSW PODS 22, IMNP PODS 25)

For any $(v, M) \in \mathcal{C}$, where M has k columns, and any $\alpha \in \mathbb{N}^k$, where $\|\alpha\|_{\infty} > p$. Define $L_{\leq p} := \{v + M\beta \mid support(\beta) \subseteq support(\alpha), \beta \in \mathbb{N}^k, \|\beta\|_{\infty} \leq p\}$. Then,

$$c^{v+Mlpha}\oplusigoplus_{u\in L_{\leq p}}c^u=igoplus_{u\in L_{\leq p}}c^u$$

As $\Pi(\hat{T}) = v + M\alpha$ where $\|\alpha\|_{\infty} > p$, and $L_{\leq p} \subseteq \{\Pi(T) \mid T \in \mathcal{T}_X^{(t)}\}$, proof is complete.

Application to Datalogo

Datalogo

Datalogo Convergence Problem

Given a Datalogo program under a p-stable semiring, how many steps does it take for the iterative method to converge?

Datalogo Examples

$$\begin{split} &\operatorname{TC}(u,v) = E(u,v) \vee \exists w \ \operatorname{TC}(u,w) \wedge \operatorname{TC}(w,v) & \operatorname{quadratic} \\ &\operatorname{APSP}(u,v) = \min \left(E(u,v), \ \min_{\boldsymbol{w}} \left\{ \operatorname{APSP}(u,w) + E(w,v) \right\} \right) & \operatorname{linear} \\ &\operatorname{APSP}_p(u,v) = \min \left(E(u,v), \ \min_{\boldsymbol{w}} \left\{ \operatorname{APSP}(u,w) \oplus_p E(w,v) \right\} \right) & \operatorname{linear} \end{split}$$

The Trop_p semiring captures the p-shortest paths problem.

Grounding Datalogo Programs

$$\mathsf{TC}(u,v) = E(u,v) \oplus \bigoplus_{w} \mathsf{TC}(u,w) \otimes \mathsf{TC}(w,v)$$

$$E = \{(1,2), (2,3), (3,4)\}$$

The grounded version

$$X_{12} = e_{12}$$
 $X_{23} = e_{23}$
 $X_{13} = X_{12} \otimes X_{23}$ $X_{24} = X_{23} \otimes X_{34}$
 $X_{14} = X_{12} \otimes X_{24} \oplus X_{13} \otimes X_{34}$ $X_{34} = e_{34}$.

Equivalent Formulation: Stability Index of Kleene Sequence

Given a commutative semiring $S = (S, \oplus, \otimes, \mathbf{0}, \mathbf{1})$

Solve
$$m{x} = m{f}(m{x})$$
 $X_1 = f_1(X_1, \dots, X_n)$
$$m{f}: S^n \to S^n \qquad \qquad \vdots$$
 $(f_i \text{ is a polynomial } \forall i)$ $X_n = f_n(X_n, \dots, X_n)$

The stability index of f is the smallest t such that $f^{(t)}(\mathbf{0}) = f^{(t+1)}(\mathbf{0})$

Equivalent Problem

Given f, and p-stable semiring S, find the stability index of f.

The Trop_p Semiring

For any bag $x = \{\{x_0, x_1, \dots, x_n\}\}$, where $x_0 \le x_1 \le \dots \le x_n$, and any $p \ge 0$, define:

$$\min_p(\mathbf{x}) := \{ \{x_0, x_1, \dots, x_{\min(p,n)} \} \}$$

Let $\mathcal{B}_{p+1}(\mathbb{R}_+ \cup \{\infty\})$ be the set of bags of size p+1.

The Trop_p semiring

$$\mathsf{Trop}_p^+ := (\mathcal{B}_{p+1}(\mathbb{R}_+ \cup \{\infty\}), \oplus_p, \otimes_p, \mathbf{0}_p, \mathbf{1}_p)$$

$$egin{aligned} oldsymbol{x} \oplus_p oldsymbol{y} &:= \min_p (oldsymbol{x} \uplus oldsymbol{y}) & oldsymbol{0}_p &:= \{\!\{\infty, \infty, \dots, \infty\}\!\} \ oldsymbol{x} \otimes_p oldsymbol{y} &:= \min_p (oldsymbol{x} + oldsymbol{y}) & oldsymbol{1}_p &:= \{\!\{0, \infty, \dots, \infty\}\!\} \end{aligned}$$

Concluding Remarks

Open Problems

- $O(pn^4)$ is likely not tight. We likely will get O(pn) soon
- Bound the runtime, not just the stability index.
 - If f is linear, then generalized Gaussian elimination can compute the fix point in $O(pn+n^3)$ -time (Flloyd-Warshall). What about non-linear f?
 - ullet WLOG, we can assume f is quadratic (Chomsky normal form).
- Runtime in terms of some data parameters

References (and references thereof)

- · Javier Esparza, An Introduction to Newton's Method on Semirings
 - https://simons.berkeley.edu/talks/ javier-esparza-technische-universitat-munchen-2023-11-14
- Dan Suciu, Algebraic Structures in Logic and Query Evaluation 3 and 4 $\,$
 - https://simons.berkeley.edu/workshops/ logic-algorithms-database-theory-ai-boot-camp/videos
- IMNP 25 Sungjin Im, Ben Moseley, Hung Q. Ngo, Kirk Pruhs, "Polynomial Time Convergence of the Iterative Evaluation of Datalogo Programs", PODS 2025.
- IMNP 24 Sungjin Im, Benjamin Moseley, Hung Q. Ngo, Kirk Pruhs, "On the Convergence Rate of Linear Datalogo over Stable Semirings", ICDT 2024.
- KNPSW 22 Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and Yisu Remy Wang. "Convergence of Datalog over (Pre-) Semirings", PODS 2022.
 - EKL 10 Newtonian program analysis J Esparza, S Kiefer, M Luttenberger Journal of the ACM (JACM), 2010

Thank You!