ОБЩАЯ ЭЛЕКТРОТЕХНИКА

контрольные задания

Составители: В. Н. Цыпкин, И. Г. Верещагин, А. В. Бриндеев, В. А. Алешов

Редактор: И. Г. Верещагин

Контрольные задания являются типовым расчетом по курсу общей электротехнике III семестра. Типовые расчеты выполнятся студентами в письменном виде и сдаются преподавателю до начала зачетной сессии. Данное пособие включает в себя 5 задач с 25 вариантами по каждому, а так же примеры решения типовых задач в общем виде. При составлении контрольных заданий за основу были взяты типовые расчеты, разработанные коллективом кафедры ТИССУ.

Печатаются согласно лицензии GPL.

Государственное образовательное учреждение высшего профессионального образования «Московский государственный институт радиотехники, электроники и автоматики (технический университет)»

119454, Москва, пр. Вернадского, 78

Задача № 1. Закон полного тока

На рис.1 изображена магнитная система, состоящая из ферромагнитного сердечника с зазором, трёх намотанных на него обмоток и четырёх шин.

ОПРЕДЕЛИТЬ:

- напряженности магнитного поля вдоль средних силовых линий сердечника и зазора;
- магнитные напряжения, приложенные к сердечнику и зазору;
- магнитную индукцию в сердечнике и зазоре*; величину и направление магнитного потока в системе;

Рис.1

$N_{\underline{0}}$	I ₁	I_2	I_3	I_4	I_5	I_6	μ	l _{cp} **	S**	δ**
варианта	[A]	[A]	[A]	[A]	[A]	[A]		[MM]	$[MM^2]$	[MM]
								W_1	W_2	W_3
1	0.58	1.0	0.5	3.0	5.0	4.0	10000			
2 3	1.0	0.5	2.0	2.0	7.0	3.0	10000	200	200	0.10
	1.6	1.5	1.3	4.0	3.0	5.0	10000			
4	0.4	0.9	1.5	1.0	6.0	2.0	10000	100	150	180
5	0.8	1.0	1.6	4.0	2.0	3.0	10000	100	130	100
6	1.1	0.7	0.25	1.0	6.0	3.0	3000			
7	0.0	0.25	1.5	0.0	5.0	6.0	3000	50	20	0.15
8 9	1.8	1.12	1.0	4.0	2.0	3.0	3000			
	1.5	1.0	2.5	2.0	7.0	4.0	3000	50	100	120
10	0.16	1.4	2.0	3.0	5.0	2.0	3000	50	100	120
11	1.1	0.7	0.38	2.0	3.0	4.0	7000			
12	0.5	0.6	2.0	6.0	1.0	3.0	7000	125	80	0.25
13	0.22	0.3	1.5	5.0	2.0	1.0	7000			
14	1.1	0.29	0.5	3.0	1.0	2.0	7000	1.50	200	200
15	0.9	0.23	1.7	3.0	4.0	2.0	7000	150	300	200
16	0.19	0.3	1.0	1.0	3.0	2.0	2000			
17	0.21	0.5	0.56	6.0	1.0	4.0	2000	100	150	0.30
18	0.75	0.0	0.16	1.0	2.0	3.0	2000			
19	0.0	0.12	0.12	0.5	1.0	2.0	2000	200	400	200
20	1.0	0.39	0.6	3.0	4.0	1.0	2000	200	400	300
21	1.0	0.0	0.5	5.0	0.0	3.0	1000			
22	0.0	2.5	1.2	4.0	2.0	5.0	1000	100	100	0.4
23	0.5	1.0	0.75	1.0	6.0	7.0	1000			
24	0.2	0.1	7.0	10.0	0.0	2.0	1000	150	100	40
25	0.1	0.15	5.0	7.0	2.0	6.0	1000	150	100	40

ПРИМЕЧАНИЯ: * Расчет проводить, исходя из условия, что индукция в теле сердечника равна индукции в зазоре, т.е. краевым эффектом пренебречь.

 \mathbf{S} – площадь сечения поперечного сечения сердечника;

 δ – величина воздушного зазора;

^{**} \mathbf{l}_{cp} – длина средней силовой линии сердечника;

Определив направления токов в катушках, мы можем воспользоваться законом полного тока и составить следующие уравнения:

$$\begin{split} H_c = & \frac{\left| I_1 \cdot W_1 + I_2 \cdot W_2 - I_3 \cdot W_3 - I_4 + I_5 \right|}{\left(1 + \mu \cdot \delta \right)} \; [\text{A/M}] \\ & H_\delta = \mu \cdot H_c \; [\text{A/M}] \\ & U_c = H_c \cdot l \; [\text{A}] \\ & U_\delta = H_\delta \cdot \delta \; [\text{A}] \\ & B_c = \mu_o \cdot H_\delta \; [\text{T}\pi] \\ & B_\delta = B_c \; [\text{T}\pi] \\ & \varPhi_c = B_c \cdot S \; [\text{B6}] \\ & \varPhi_\delta = \varPhi_c \; [\text{B6}] \end{split}$$

Задача № 2. Закон электромагнитной индукции

На рис.1 изображена магнитная система, состоящая из ферромагнитного сердечника и намотанной на него обмотки. На рис.2 приведены временные диаграммы изменения одной из величин, характеризующих процесс перемагничивания сердечника*.

построить:

временную диаграмму изменения величины, указанной в задании.

ОПРЕДЕЛИТЬ:

максимальное (по модулю) значение требуемых величин; полярность ЭДС на зажимах обмотки (+ , –) или направление магнитного потока в сердечнике (по или против часовой стрелки) в указанный на диаграмме момент времени.

№в			3A		ОПРЕДЕЛИТЬ**	
ap.				D	T	
	\mathbf{W}	S 27		\mathbf{B}_{m}	T	(1)
	200	$[MM^2]$		[Тл]	[MC]	e(t),
1	300	100		1.6	100	
2	800	50		0.8	50	$E_m, \Phi_m,$
3	400	30		0.6	10	
4	250	20		0.4	5	Полярность е
5	600	15		0.2	1	
	\mathbf{W}	S		Φ_{m}	T	
		$[MM^2]$		икВб]	[MC]	e(t),
6	600	75		150	50	
7	750	40		60	20	$E_m, B_m,$
8	800	60		45	10	
9	900	125		75	5	Полярность е
10	450	20	9		2	
	W	S	$\Phi_{\mathtt{m}}$		F	
		$[MM^2]$	[N	икВб]	[Гц]	e(t),
11	850	100		220	50	
12	950	75		150	100	$E_m, B_m,$
13	670	200		350	200	
14	435	120		180	300	Полярность е
15	740	80		100	400	-
	W	S		E _m	T	
		$\lceil MM^2 \rceil$		 B]	[MC]	$\Phi(t)^{***}$
16	600	125		4.0	75	
17	750	375		9.0	50	$\Phi_{\rm m},{ m B}_{\rm m},$
18	350	260		6.5	35	,,
19	750	320		60.0	12	Направление Ф
20	1250	160		0.00	5	1
	W	S	E _m T		B_0	
		$[MM^2]$	[B] [MC]		[Tn]	B(t),
21	500	200	1.5 80		-0.4	
22	800	135	3.6 60		0.2	$\Phi_{\rm m},{\rm B}_{\rm m},$
23	400	300	6.0 25		-0.25	,,
24	1350	200	9.0		-1.0	Направление Ф
25	500	320	12.0	4	0.2	1

Рисунок 2:

К вариантам 1-5

К Вариантам 6-10

К Вариантам 11-15

К Вариантам 16-20

К Вариантам 21-25

ПРИМЕЧАНИЯ: * На рис.2 положительными считаются полярность ЭДС в обмотке и направление магнитного потока в сердечнике, обозначенные на рис.1 стрелками.

** В таблице: E_m , B_m и Φ_m - максимальные (по модулю) величины ЭДС в обмотке e(t), магнитной индукции B(t) и магнитного потока $\Phi(t)$ в сердечнике; B_0 - значение B(t) при t=0.

*** При определении $\Phi(t)$ считать, что при t=0 $\Phi(t)=0$.

$$F = \frac{1}{T} [\Gamma_{\text{Ц}}]$$

Согласно графику мы находим максимальное изменение индукции и составляем следующую формулу:
$$E_{_{\mathcal{M}}}\!=\!\frac{\left(-w\!\cdot\!s\cdot\left(-B_{_{\mathcal{M}}}\!-\!B_{_{\mathcal{M}}}\right)\right)}{\left(4\cdot\!T\!-\!3\cdot\!T\right)}\;[\mathrm{B}]$$

$$\varPhi_{_{\mathcal{M}}}\!=\!B_{_{\mathcal{M}}}\!\cdot\!s\;[\mathrm{B6}]$$

Задача № 3. Нелинейная магнитная цепь

рис.1 изображена магнитная система, состоящая из ферромагнитного сердечника с зазором и намотанной на него обмотки. Кривая намагничивания материала сердечника δ | аппроксимируется отрезками прямых:

$$B = a H$$
 $B = c H + e$ (см. рис.2.).

ОПРЕДЕЛИТЬ:

величину и направление магнитного потока в системе*; значение индуктивности обмотки $L = \frac{\Psi}{I}$.

							размеры сердечника
№	I	w	δ	a	c	e	$(\mathbf{D} \times \mathbf{d} \times \mathbf{h}),$
варианта	[A]		[MM]	[A/m]	$[\operatorname{T}_{\operatorname{J}}/(\operatorname{A/M})]$	[Тл]	[MM]
1	0.5	100	0.10	0.0080	0.0002	0.60	
2	0.8	125	0.25	0.0090	0.0004	0.65	
3 4	0.6	150	0.15	0.0085	0.0003	0.70	50 x 32 x 25
	0.5	400	0.12	0.0075	0.0002	0.60	
5	2.0	75	0.05	0.0060	0.0003	0.80	
6	1.0	180	0.09	0.0080	0.0005	0.75	
7	0.9	100	0.12	0.0065	0.0006	0.60	
8	3.0	50	0.15	0.0085	0.0007	0.65	60 x 40 x 20
9	1.5	120	0.10	0.0070	0.0003	0.70	
10	0.8	250	0.20	0.0090	0.0004	0.80	
11	3.0	80	0.15	0.0100	0.0005	0.75	
12	0.5	300	0.11	0.0075	0.0004	0.60	
13	1.2	150	0.10	0.0080	0.0005	0.65	55 x 30 x 10
14	2.5	80	0.12	0.0095	0.0003	0.70	
15	1.5	120	0.08	0.0090	0.0004	0.75	
16	0.9	200	0.15	0.0085	0.0003	0.80	
17	1.3	100	0.20	0.0075	0.0005	0.60	
18	1.0	90	0.05	0.0070	0.0004	0.80	60 x 30 x 25
19	0.6	300	0.10	0.0090	0.0004	0.85	
20	0.8	100	0.06	0.0080	0.0003	0.75	
21	1.4	100	0.09	0.0095	0.0005	0.60	·
22	0.4	500	0.08	0.0010	0.0005	0.70	
23	0.7	300	0.20	0.0080	0.0003	0.80	50 x 20 x 15
24	0.9	150	0.11	0.0085	0.0004	0.65	
25	1.0	220	0.10	0.0075	0.0004	0.75	

*ПРИМЕЧАНИЯ: Расчет проводить, исходя из условия равенства значений индукции в теле сердечника и в зазоре, т.е. *краевым эффектом - пренебречь*.

ЛИТЕРАТУРА: Бессонов Л.А. Теоретические основы электротехники, ч.1. - М.: Высшая школа, 1978.

$$S_{c} = \frac{|D-d| \cdot h}{2} \quad [\text{M}^{2}]$$

$$l_{c} = \frac{\pi \cdot |D+d|}{2} \quad [\text{M}]$$

$$a \cdot H_{k} = c \cdot H_{k} + e$$

$$H_{k} = \frac{e}{|a-c|} \quad [\text{A/M}]$$

$$B_{k} = \frac{H_{k}}{|\mu_{0}|} \quad [\text{Тл}]$$

$$I \cdot w = \frac{B}{|\mu_{0}|} \cdot \delta + \frac{|B-e|}{c} \cdot l_{c}$$

$$B = \frac{\left(\left|I \cdot w \cdot c + e \cdot l_{c}\right| \cdot \mu_{0}\right)}{\left(\delta \cdot c + l_{c} \cdot \mu_{0}\right)} \quad [\text{Тл}]$$

$$\text{Если В > B}_{k}$$

$$H_{c} = \frac{|B-e|}{c} \quad [\text{A/M}]$$

$$\text{иначе}$$

$$H_{c} = \frac{B}{a} \quad [\text{A/M}]$$

$$\text{исходя из этого}$$

$$H_{\delta} = \frac{B}{|\mu_{0}|} \quad [\text{A/M}]$$

$$U_{\text{мс}} = H_{c} \cdot l_{c} \quad [\text{A}]$$

$$U_{\text{мс}} = H_{c} \cdot l_{c} \quad [\text{A}]$$

$$U_{\text{мб}} = H_{\delta} \cdot \delta \quad [\text{A}]$$

$$\Phi = B \cdot S \quad [\text{B6}]$$

$$L = \frac{w \cdot \Phi}{I} \quad [\text{ГH}]$$

Для проверки результата посмотрите, выполняется ли тождество

$$U_{_{\mathcal{M}C}} + U_{_{\mathcal{M}\delta}} \equiv I \cdot w$$

Задача № 4. Цепь постоянного тока

Рассчитать силы тока I_i во всех ветвях и определить потенциалы в узлах A и B (полагая узел C заземленным, т.е. $j_C=0$) данной схемы 3-мя способами:

- 1) по законам Кирхгофа;
- 2) методом контурных токов;
- 3) методом узловых потенциалов.

Проверьте: одинаковы ли результаты при разных способах решения.

<u>Для 1-го – 5-го вариантов</u>

№	R_{1}	R_{2}	R_{3}	$R_{_4}$	R_{5}	E_{1}	E_{2}	J
1	2	1	5	3	2	10	5	1
2	1	3	3	2	4	24	12	4
3	5	2	7	6	1	15	4.5	2
4	3	1	1	1	6	12	30	5
5	2	6	3	7	2	4.5	20	1

<u>Для 6-го – 10-го вариантов</u>

№	R_{1}	R_{2}	R_3	$R_{_4}$	R_{5}	E_{1}	E_3	J
6	4	2	10	3	7	5	5	6
7	1	7	3	2	1	10	12	3
8	10	3	7	8	10	12	4.5	7
9	1	4	1	1	2	3	15	3
10	12	1	5	4	7	15	8	2

<u>Для 11-го – 15-го вариантов</u>

No	R_{1}	R_2	R_3	R_4	R_{5}	E_{1}	E_3	J
11	2	2	2	5	2.5	20	7.5	6
12	4	4	8	2	1	12	20	4
13	3	3	2	6	3	30	13	2
14	2	8	4	9	6	10	3	6
15	5	10	1	1	1	7.5	12	1

<u>Для 16-го – 20-го вариантов</u>

No	R_{1}	R_2	R_3	R_4	R_{5}	E_{1}	E_{5}	J
16	6	2	10	5	5	5	8	2
17	3	1	5	2	2	1.5	3	5
18	5	8	2	1	10	12	24	1
19	1	12	7	7	2	30	5	3
20	3	3	2	3	6	24	18	7

Для 21-го – 25-го вариантов

№	R_{1}	R_{2}	R_{3}	$R_{_4}$	R_{5}	E_{1}	E_{2}	J
21	1	1	1	2.5	3	5	4	15
22	2	7	9	1	1	6	9	2
23	10	1	1	6	8	14	12	5
24	7	10	2.5	2	2	4	10	1
25	3	1	2	4	2.5	30	10	3

Для 1-5 вариантов мы составляем систему уравнений на основе двух законов Кирхгофа:

$$\begin{split} I_{1} - I_{2} - I_{4} - I_{3} &= 0 \\ I_{4} - I_{5} + J &= 0 \\ E_{1} + E_{2} &= I_{1} \cdot R_{1} + I_{2} \cdot R_{2} \\ E_{1} &= I_{1} \cdot R_{1} + I_{4} \cdot R_{4} + I_{5} \cdot R_{5} \\ E_{2} &= I_{2} \cdot R_{2} - I_{3} \cdot R_{3} \end{split}$$

И по закону Ома:

$$\wp_A = E_I - I_1 \cdot R_1$$

$$\wp_B = I_5 \cdot R_5$$

По методу контурных токов мы можем составить следующую систему:

$$\begin{split} \boldsymbol{E}_{1} + & \boldsymbol{E}_{2} = \left(\boldsymbol{I}_{\kappa_{1}} + \boldsymbol{I}_{\kappa_{2}}\right) \cdot \boldsymbol{R}_{1} + \left(\boldsymbol{I}_{\kappa_{1}} + \boldsymbol{I}_{\kappa_{3}}\right) \cdot \boldsymbol{R}_{2} \\ & \boldsymbol{E}_{2} = \left(\boldsymbol{I}_{\kappa_{1}} + \boldsymbol{I}_{\kappa_{3}}\right) \cdot \boldsymbol{R}_{3} + \boldsymbol{I}_{\kappa_{3}} \cdot \boldsymbol{R}_{3} \\ \boldsymbol{E}_{1} = \left(\boldsymbol{I}_{\kappa_{1}} + \boldsymbol{I}_{\kappa_{2}}\right) \cdot \boldsymbol{R}_{1} + \boldsymbol{I}_{\kappa_{2}} \cdot \boldsymbol{R}_{4} + \left(\boldsymbol{I}_{\kappa_{2}} + \boldsymbol{J}\right) \cdot \boldsymbol{R}_{5} \end{split}$$

Решив ее, мы можем найти интересующие нас токи:

$$\begin{split} I_{1} &= I_{\kappa_{1}} + I_{\kappa_{2}} \\ I_{2} &= I_{\kappa_{1}} + I_{\kappa_{3}} \\ I_{3} &= I_{\kappa_{3}} \\ I_{4} &= I_{\kappa_{2}} \\ I_{5} &= I_{\kappa_{2}} + J \end{split}$$

Потенциалы ищем тем же образом, что и по законам Кирхгофа. В методе узловых потенциалов мы можем составить систему:

$$\frac{\left(E_{1}-\wp_{A}\right)}{R_{1}}-\frac{\left(E_{2}+\wp_{A}\right)}{R_{2}}-\frac{\wp_{A}}{R_{3}}-\frac{\left(\wp_{A}-\wp_{B}\right)}{R_{4}}=0$$

$$\frac{\left(\wp_{A}-\wp_{B}\right)}{R_{4}}-\frac{\wp_{B}}{R_{5}}+J=0$$

Зная потенциалы, мы можем найти все остальное:

$$\begin{split} I_1 &= \frac{\left(E_1 - \wp_A\right)}{R_1} \\ I_2 &= \frac{\left(E_2 + \wp_A\right)}{R_2} \\ I_3 &= \frac{\wp_A}{R_3} \\ I_4 &= \frac{\left(\wp_A - \wp_B\right)}{R_4} \\ I_5 &= \frac{\wp_B}{R_5} \end{split}$$

Для остальных вариантов мы приведем только системы уравнений по законам Кирхгофа. Решение же методом узловых потенциалов и контурных токов осуществляется подобным образом.

Для 6-10 варианта:

$$\begin{split} I_{_{1}}+I_{_{2}}-I_{_{3}}+I_{_{4}}&=0\\ I_{_{3}}-I_{_{4}}-I_{_{5}}+J&=0\\ E_{_{1}}&=I_{_{1}}\cdot R_{_{1}}-I_{_{2}}\cdot R_{_{2}}\\ E_{_{1}}+E_{_{2}}&=I_{_{1}}\cdot R_{_{1}}+I_{_{3}}\cdot R_{_{3}}+I_{_{5}}\cdot R_{_{5}}\\ E_{_{2}}&=I_{_{3}}\cdot R_{_{3}}+I_{_{4}}\cdot R_{_{4}}\\ \varnothing_{_{A}}&=X3X3X3\\ \varnothing_{_{B}}&=X3X3X3 \end{split}$$

Для 11-15 варианта:

$$\begin{split} I_{1} + I_{2} - I_{3} + I_{4} &= 0 \\ I_{3} - I_{5} + J &= 0 \\ E_{1} = I_{1} \cdot R_{1} - I_{2} \cdot R_{2} \\ E_{1} + E_{2} = I_{1} \cdot R_{1} + I_{3} \cdot R_{3} + I_{5} \cdot R_{5} \\ E_{2} = I_{3} \cdot R_{3} + I_{5} \cdot R_{5} + I_{4} \cdot R_{4} \\ \varnothing_{A} = X3X3 \\ \varnothing_{B} = X3X3 \end{split}$$

Для 16-20 варианта:

$$\begin{split} I_{1}-I_{2}-I_{3}+J&=0\\ I_{3}+I_{4}-I_{5}-J&=0\\ E_{1}&=I_{1}\cdot R_{1}+I_{2}\cdot R_{2}\\ E_{1}+E_{2}&=I_{1}\cdot R_{1}+I_{3}\cdot I_{3}+I_{5}\cdot R_{5}\\ E_{2}&=I_{5}\cdot R_{5}+I_{4}\cdot R_{4}\\ \varnothing_{A}&=X3X3X3\\ \varnothing_{B}&=X3X3X3 \end{split}$$

Для 21-25 варианта:

$$\begin{split} I_{1} + I_{2} - I_{3} &= 0 \\ J - I_{3} - I_{4} - I_{5} &= 0 \\ E_{1} = I_{1} \cdot R_{1} - I_{2} \cdot R_{2} \\ E_{1} - E_{2} &= I_{1} \cdot R_{1} - I_{3} \cdot R_{3} + I_{5} \cdot R_{5} \\ E_{2} = I_{3} \cdot R_{3} - I_{2} \cdot R_{2} - I_{4} \cdot R_{4} \\ \α_{A} = X3 \\ \α_{B} = X3 \end{split}$$

Задача № 5. Цепь переменного тока

Анализ состояния цепи переменного синусоидального тока

<u>Варианты 1-5</u>

<u>No</u>	$\boldsymbol{\mathit{U}}$	f	R	C	L
варианта	[B]	[Гц]	[Ом]	[мкФ	[мГн]
]	
1	220	50	40	50	120
2	380	50	30	60	100
3	127	50	20	70	80
4	110	400	50	10	15
5	200	400	70	8	25

<u>Варианты 6-10</u>

No	$\boldsymbol{\mathit{U}}$	f	R	\boldsymbol{C}	L
варианта	[B]	[Гц]	[Ом]	[мкФ	[мГн]
]	
6	220	50	50	60	100
7	380	50	40	70	80
8	127	50	30	80	80
9	110	400	60	10	30
10	200	400	50	6	15

<u>Варианты 11-15</u>

Варианты 16-20

Варианты 21-25

