Домашнее задание №4

Подготовила: Колесенкова Екатерина Группа:Р3112

V/V	e 1	e ₂	e 3	e ₄	e ₅	e ₆	e ₇	e ₈	e 9	e ₁₀	e 11	e 12
e 1	0					1	1		1		1	
e ₂		0			1	1			1	1		
e 3			0	1					1			1
e 4			1	0				1		1	1	1
e 5		1			0	1	1	1	1			
e 6	1	1			1	0	1	1			1	
e 7	1				1	1	0			1	1	1
e 8				1	1	1		0			1	
e 9	1	1	1		1				0	1		
e 10		1		1			1		1	0	1	
e 11	1			1		1	1	1		1	0	1
e 12			1	1			1				1	0

1. Нахождение Гамильтонова цикла.

Включаем в S вершину x₁.

 $S = \{x_1\}$

Возможная вершина: х₆.

 $S = \{x_1, x_6\}$

Возможная вершина: х2.

 $S = \{x_1, x_6, x_2\}$

Возможная вершина: х₅.

 $S = \{x_1, x_6, x_2, x_5\}$

Возможная вершина: х₇.

 $S = \{x_1, x_6, x_2, x_5, x_7\}$

Возможная вершина: х₁₀.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}\}$

Возможная вершина: х₄.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4\}$

Возможная вершина: х₃.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3\}$

Возможная вершина: х₉.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3, x_9\}$

У x₉ больше нет возможных вершин, удалим ее. Перейдем к x₃.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3\}$

Возможная вершина: х12.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3, x_{12}\}$

Возможная вершина: х₁₁.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3, x_{12}, x_{11}\}$

Возможная вершина: х₈.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3, x_{12}, x_{11}, x_8\}$

У х₈ больше нет возможных вершин, удалим ее. Перейдем к х₁₁.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3, x_{12}, x_{11}\}$

У х₁₁ больше нет возможных вершин, удалим ее. Перейдем к х₁₂.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3, x_{12}\}$

У х₁₂ больше нет возможных вершин, удалим ее. Перейдем к х₃.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_3\}$

У х₃ больше нет возможных вершин, удалим ее. Перейдем к х₄.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4\}$

Возможная вершина: х₈.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_8\}$

Возможная вершина: х₁₁.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_8, x_{11}\}\$

Возможная вершина: х₁₂.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_8, x_{11}, x_{12}\}$

Возможная вершина: х₃.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_8, x_{11}, x_{12}, x_3\}$

Возможная вершина: х₉.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_8, x_{11}, x_{12}, x_3, x_9\}$

Гамильтонов цикл найден.

 $S = \{x_1, x_6, x_2, x_5, x_7, x_{10}, x_4, x_8, x_{11}, x_{12}, x_3, x_9\}$

2. Построение графа пересечений G'

До перенумерации	X 1	X 6	X 2	X 5	X 7	X 10	X 4	X 8	X 11	X 12	X 3	X 9
После перенумерации	X 1	X 2	X 3	X 4	X 5	X 6	X 7	X 8	X 9	X 10	X 11	X 12

V/V	e 1	e ₂	ез	e 4	e 5	e 6	е	e ₈	e 9	e 10	e 11	e 12
e 1	0	х			1				1			1
e 2	1	0	Х	1	1			1	1			
e 3		1	0	Х		1						1
e ₄		1	1	0	Χ			1				1
e 5	1	1		1	0	Χ			1	1		
e 6			1		1	0	X		1			1
e ₇						1	0	Χ	1	1	1	
e 8		1		1			1	0	X			
e 9	1	1			1	1	1	1	0	X		
e 10					1		1		1	0	Χ	
e 11							1			1	0	Х
e 12	1		1	1		1				_	1	0

Определим p₂₉, для чего в матрице R выделим подматрицу R29.

Ребро (x_2x_9) пересекается с (x_1x_5)

Определим p₂₈, для чего в матрице R выделим подматрицу R₂₈.

Ребро (x_2x_8) пересекается с (x_1x_5)

Определим p₃₁₂, для чего в матрице R выделим подматрицу R312.

Ребро (x_3x_{12}) пересекается с (x_1x_5) , (x_1x_9) , (x_2x_4) , (x_2x_5) , (x_2x_8) , (x_2x_9)

Определим р₃₆, для чего в матрице R выделим подматрицу R₃₆.

Ребро (x_3x_6) пересекается с (x_1x_5) , (x_2x_4) , (x_2x_5)

Определим p₄₁₂, для чего в матрице R выделим подматрицу R412.

Ребро (x_4x_{12}) пересекается с (x_1x_5) , (x_1x_9) , (x_2x_5) , (x_2x_8) , (x_2x_9) , (x_3x_6)

Определим р₄₈, для чего в матрице R выделим подматрицу R48.

Ребро (x_4x_8) пересекается с (x_1x_5) , (x_2x_5) , (x_3x_6)

Определим p₅₁₀, для чего в матрице R выделим подматрицу R₅₁₀.

Ребро (x_5x_{10}) пересекается с (x_1x_9) , (x_2x_8) , (x_2x_9) , (x_3x_6) , (x_4x_8)

Определим p₅₉, для чего в матрице R выделим подматрицу R59.

Ребро (x_5x_9) пересекается с (x_2x_8) , (x_3x_6) , (x_4x_8)

Определим p₆₁₂, для чего в матрице R выделим подматрицу R612.

Ребро (x_6x_{12}) пересекается с (x_1x_9) , (x_2x_8) , (x_2x_9) , (x_4x_8) , (x_5x_9) , (x_5x_{10})

Определим p₆₉, для чего в матрице R выделим подматрицу R69.

Ребро (x_6x_9) пересекается с (x_2x_8) , (x_4x_8)

Определим p₇₁₁, для чего в матрице R выделим подматрицу R711.

Ребро (x_7x_{11}) пересекается (x_1x_9) , (x_2x_8) , (x_2x_9) , (x_4x_8) , (x_5x_9) , (x_5x_{10}) , (x_6x_1)

Число пересечений ребер графа 15.

Матрица графа пересечений ребер:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1				1	1	1					
2	1	1		1					1		1		1		1
3	1		1	1					1		1	1	1	1	1
4	1	1	1	1	1	1	1								
5				1	1				1		1		1		1
6				1		1		1							
7				1			1	1	1	1					
8	1					1	1	1	1	1	1	1			
9	1	1	1		1		1	1	1						
10	1						1	1		1	1	1	1	1	1
11		1	1		1			1		1	1		1		1
12			1					1		1		1	1		1
13		1	1		1					1	1	1	1		
14			1							1				1	1
15		1	1		1					1	1	1		1	1

3. Построение семейства Ψ_c

В строке M_{156714} остались незакрытые 0.

M₁ 5 6 12=111111011111101

J'={14}.

M₁ 5 6 14=111111011110111

В строке M_{156} 14 остались незакрытые 0.

M₁ 5 7=111110111110101

 $J'=\{12,14\}.$

M₁ 5 12=111110011111101

J'={14}.

M₁ 5 14=111110011110111

В строке M1 5 14 остались незакрытые 0.

M₁ 6=1111010111100000

 $J'=\{7,11,12,13,14,15\}.$

M₁₆₇=111101111100000

J'={11,12,13,14,15}.

M₁ 6 7 11=1111111111110101

 $J'=\{12,14\}.$

 $J'=\{14\}.$

M₁ 6 7 11 12 14 = 111111111111111111

 $\psi_2 = \{1,6,7,11,12,14\}$

M₁ 6 7 11 14=1111111111111111

В строке M1 6 7 11 14 остались незакрытые 0.

M₁ 6 7 12=111101111101101

J'={14}.

M₁ 6 7 13=111111111111100

 $J'=\{14,15\}.$

M₁ 6 7 13 14= 111111111111111

 $\psi_3 = \{1,6,7,13,14\}$

M₁ 6 7 13 15=1111111111111111

 $\psi_4 = \{1,6,7,13,15\}$

M_{1 6 7 14}= 1111011111100011

В строке M1 6 7 14 остались незакрытые 0.

M₁₆₇₁₅=111111111111111111

В строке М1 6 7 15 остались незакрытые 0.

M₁ 6 ₁₁= 111111011110101

 $J'=\{12,14\}.$

M₁ 6 12=111101011101101

 $J'=\{14\}.$

M₁ 6 ₁₃=111111011111100

 $J'=\{14,15\}.$

M₁₆ 14=1111010111100011

В строке М1 6 14 остались незакрытые 0.

M₁ 6 15=111111011111011

В строке М1 6 15 остались незакрытые 0.

M₁ 7= 111100111100000

 $J'=\{11,12,13,14,15\}.$

M₁ 11=111110011110101

 $J'=\{12,14\}.$

M₁ 12=111100011101101

 $J'=\{14\}.$

M₁ 13=1111100111111100

 $J'=\{14,15\}.$

M₁ 14=111100011100011

В строке M1 14 остались незакрытые 0.

M₁ 15=111110011111011

В строке M1 15 остались незакрытые 0.

M₂ 3= 111100001011111

 $J'=\{5,6,7,8,10\}.$

M₂ 3 5=111110001011111

 $J'=\{6,7,8,10\}.$

 $M_{2356} = 111111011011111$

 $J = \{7,10\}.$

 M_2 3 5 6 7=111111111111111

 $\psi_5 = \{2,3,5,6,7\}$

 $M_{235610} = 1111111111111111$

 $\psi_6 = \{2,3,5,6,10\}$

M₂ 3 5 7=11111011111111

В строке M2 3 5 7 остались незакрытые 0.

M₂ 3 5 8=1111111111111111

 $\psi_7 = \{2,3,5,8\}$

M₂ 3 5 10=11111011111111

В строке M_2 3 5 10 остались незакрытые 0.

M₂ 3 6=111101011011111

 $J'=\{7,10\}.$

M₂ ₃ ₇=111100111111111

В строке M2 3 7 остались незакрытые 0.

M₂ 3 8= 1111011111111111

В строке М2 3 8 остались незакрытые 0.

M₂ 3 10=111100111111111

В строке M2 3 10 остались незакрытые 0.

M₂ 5110110001010101

J'={6,7,8,10,12,14}.

M₂ 5 6= 110111011010101

 $J'=\{7,10,12,14\}.$

M₂ 5 6 7=110111111110101

 $J'=\{12,14\}.$

M₂ 5 6 7 12= 111111011111101

 $J'=\{14\}.$

M₂ 5 6 7 12 14=111111111111111

 $\psi_8 = \{2,5,6,7,12,14\}$

M₂ 5 6 7 14=11111111111111111

В строке M_2 5 6 7 14 остались незакрытые 0.

M₂ 5 6 10=1101111111111111

В строке M_2 5 6 10 остались незакрытые 0.

M₂ 5 6 12=111111011111101

 $J'=\{14\}.$

M₂ 5 6 14=111111011110111

В строке M_2 5 6 14 остались незакрытые 0.

M₂ 5 7=110110111110101

 $J'=\{12,14\}.$

M₂ 5 8110111111111101

 $J'=\{14\}.$

M₂ 5 8 141111111111111111

 $\psi_9 = \{2, 5, 8, 14\}$

M₂ 5 10=110110111111111

В строке M_2 5 10 остались незакрытые 0.

M₂ 5 12=111110011111101

 $J'=\{14\}.$

M₂ 5 14= 111110001110111

В строке M_2 5 14 остались незакрытые 0.

M₂ 6=110101011010101

 $J'=\{7,10,12,14\}.$

M₂ 7=110100111110101

 $J'=\{12,14\}.$

M₂ 8=110101111111101

J'={14}.

M₂ 10=1101001111111111

В строке M2 10 остались незакрытые 0.

M₂ 12=111100011111101

M₂ 14=111100001110111

В строке M2 14 остались незакрытые 0.

M₃ ₅= 101110001011111

 $J'=\{6,7,8,10\}.$

M₃ 6=101101011011111

 $J'=\{7,10\}.$

M₃ 7= 1011001111111111

В строке М3 7 остались незакрытые 0.

M₃ 8=101101111111111

В строке М3 8 остались незакрытые 0.

M₃ 10= 101100111111111

В строке M3 10 остались незакрытые 0.

M₄ 8= 111111111111000

 $J'=\{13,14,15\}.$

M4 8 13=11111111111100

 $J'=\{14,15\}.$

M4 8 13 14=1111111111111111

 $\psi_{10} = \{4, 8, 13, 14\}$

M4 8 13 15=1111111111111111

 $\psi_{11}=\{4,8,13,15\}$

M4 8 14=11111111111111111111

В строке М4 8 14 остались незакрытые 0.

M4 8 15=1111111111111111111

В строке M4 8 15 остались незакрытые 0.

M₄ 9= 111111111000000

 $J'=\{10,11,12,13,14,15\}.$

M4 9 10=1111111111111111

 $\psi_{12} = \{4, 9, 10\}$

M4 9 11=1111111111110101

 $J'=\{12,14\}.$

J'={14}.

M4 9 11 12 14= =1111111111111111

 $\psi_{13}=\{4,9,11,12,14\}$

В строке М4 9 11 14 остались незакрытые 0.

M4 9 12= 1111111111101101

J'={14}.

M4 9 13=111111111111100

 $J'=\{14,15\}.$

M4 9 13 14=1111111111111111

 $\psi_{14} = \{4, 9, 13, 14\}$

M4 9 13 15=11111111111111111

 $\psi_{15}=\{4,9,13,15\}$

M4 9 14=1111111111100011

В строке M4 9 14 остались незакрытые 0.

M4 9 15=11111111111111111

В строке M4 9 15 остались незакрытые 0.

M₄ 10=11111111111111111

В строке М4 10 остались незакрытые 0.

M₄ 11=111111110110101

 $J'=\{12,14\}.$

M₄ 12=1111111110101101

 $J'=\{14\}.$

M₄ 13=111111100111100

 $J'=\{14,15\}.$

M4 14=1111111100100011

В строке М4 14 остались незакрытые 0.

M₄ 15=111111100111011

В строке M4 15 остались незакрытые 0.

M₅ 6=000111011010101

 $J'=\{7,10,12,14\}.$

M₅ 7=000110111110101

 $J'=\{12,14\}.$

M₅ 8=100111111111101

 $J'=\{14\}.$

M₅ 10=1001101111111111

В строке M5 10 остались незакрытые 0.

M₅ 12=001110011111101

J'={14}.

M₅ 14=001110001110111

В строке M5 14 остались незакрытые 0.

M₆ 7=000101111100000

J'={11,12,13,14,15}.

M₆ 9= 1111111111000000

 $J = \{10,11,12,13,14,15\}.$

M6 9 10=11111111111111111

 $\psi_{16}=\{6,9,10\}$

M6 9 11=1111111111110101

 $J'=\{12,14\}.$

 $J'=\{14\}.$

M6 9 11 12 14=1111111111111111

 $\psi_{17}=\{6,9,11,12,14\}$

M6 9 11 14=11111111111111111

В строке M6 9 11 14 остались незакрытые 0.

M6 9 12=1111111111101101

J'={14}.

M6 9 13=11111111111100

 $J'=\{14,15\}.$

M6 9 13 14=1111111111111111

 $\psi_{18} = \{6, 9, 13, 14\}$

M6 9 13 15=1111111111111111

 $\psi_{19}=\{6,9,13,15\}$

M6 9 14=1111111111100011

В строке М6 9 14 остались незакрытые 0.

В строке M6 9 15 остались незакрытые 0.

M₆ 10=100101110111111

В строке М6 10 остались незакрытые 0.

M6 11=011111010110101

 $J'=\{12,14\}.$

M₆ 12=001101010101101

```
J'=\{14\}.
M<sub>6</sub> 13=0111110101111100
J'=\{14,15\}.
M<sub>6</sub> 14= 001101010100011
В строке M6 14 остались незакрытые 0.
M<sub>6</sub> 15= 011111010111011
В строке M_6 15 остались незакрытые 0.
M7 11=011110111110101
J'=\{12,14\}.
M7 12=001100111101101
J'=\{14\}.
M7 13=011110111111100
J'=\{14,15\}.
M7 14=001100111100011
В строке M7 14 остались незакрытые 0.
M7 15=011110111111011
В строке М7 15 остались незакрытые 0.
```

Из матрицы видно, что строки с номерами j > 7 не смогут закрыть ноль в позиции 4.

$$\psi 1 = \{u_{15}, u_{19}, u_{24}, u_{25}, u_{59}, u_{69}\}$$

$$\psi 2 = \{u_{15}, u_{24}, u_{25}, u_{510}, u_{59}, u_{69}\}$$

$$\psi 3 = \{u_{15}, u_{24}, u_{25}, u_{612}, u_{69}\}$$

$$\psi 4 = \{u_{15}, u_{24}, u_{25}, u_{612}, u_{711}\}$$

$$\psi 5 = \{u_{29}, u_{28}, u_{19}, u_{24}, u_{25}\}$$

$$\psi 6 = \{u_{29}, u_{28}, u_{19}, u_{24}, u_{48}\}$$

$$\psi 7 = \{u_{29}, u_{28}, u_{19}, u_{36}\}$$

$$\psi 8 = \{u_{29}, u_{19}, u_{24}, u_{25}, u_{59}, u_{69}\}$$

$$\psi 9 = \{u_{29}, u_{19}, u_{36}, u_{612}, u_{69}\}$$

$$\psi 10 = \{u_{312}, u_{36}, u_{612}, u_{711}\}$$

$$\psi 12 = \{u_{312}, u_{412}, u_{48}\}$$

$$\psi 13 = \{u_{312}, u_{412}, u_{48}\}$$

$$\psi 14 = \{u_{3 12}, u_{4 12}, u_{6 12}, u_{6 9}\}$$

$$\psi 15 = \{u_{3 12}, u_{4 12}, u_{6 12}, u_{7 11}\}$$

$$\psi 16 = \{u_{2 4}, u_{4 12}, u_{4 8}\}$$

$$\psi 17 = \{u_{2 4}, u_{4 12}, u_{5 10}, u_{5 9}, u_{6 9}\}$$

$$\psi 18 = \{u_{2 4}, u_{4 12}, u_{6 12}, u_{6 9}\}$$

$$\psi 19 = \{u_{2 4}, u_{4 12}, u_{6 12}, u_{7 11}\}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	0	7	7	8	8	9	9	7	8	9	10	9	9	9	10	8	8	8	9
2		0	7	8	9	10	10	8	9	9	10	9	8	9	10	8	7	8	9
3			0	6	8	9	9	8	8	7	8	8	9	7	8	7	8	6	7
4				0	8	9	9	9	9	8	7	8	10	8	7	7	9	7	6
5					0	6	6	7	7	9	9	8	10	9	9	7	9	8	8
6						0	6	8	7	9	9	7	10	9	9	6	ത	8	8
7							0	8	5	7	7	7	9	8	8	7	9	8	8
8								0	7	9	10	9	9	9	10	8	8	8	9
9									0	6	7	7	8	7	8	7	8	7	8
10										0	5	6	7	5	6	7	8	6	7
11											0	6	8	6	5	7	9	7	6
12												0	6	5	5	4	7	6	6
13													0	6	7	7	6	7	8
14														0	5	6	7	5	6
15															0	6	8	6	5
16										_						0	6	5	5
17																	0	6	7
18																		0	5
19																			0

 $\max \alpha_{\gamma\delta} = \alpha_{110} = \alpha_{115} = \alpha_{26} = \alpha_{27} = \alpha_{211} = \alpha_{215} = \alpha_{413} = \alpha_{513} = \alpha_{613} = \alpha_{811} = \alpha_{815} = 10$ дают 11 пар множеств $\psi_1 \text{ и } \psi_{10}, \psi_1 \text{ и } \psi_{15}, \psi_2 \text{ и } \psi_6, \psi_2 \text{ и } \psi_7, \psi_2 \text{ и } \psi_{11}, \psi_2 \text{ и } \psi_{15}, \psi_4 \text{ и } \psi_{13}, \psi_5 \text{ и } \psi_{13}, \psi_6 \text{ и } \psi_{13}, \psi_8 \text{ и } \psi_{11} , \psi_8 \text{ и } \psi_{15}$

Возьмем множества $\psi 1$ = $\{u_{1\,5,}\,u_{1\,9},\,u_{2\,4},\,u_{2\,5},\,u_{5\,9},\,u_{6\,9}\}$ и $\psi 11$ = $\{u_{3\,12,}\,u_{3\,6},\,u_{6\,12},\,u_{7\,11}\}$

В суграфе H, содержащем максимальное число непересекающихся ребер, ребра, вошедшие в ψ_1 , проводим внутри гамильтонова цикла, а в ψ_{11} – вне его

Удалим из $\psi_{\it G}$, реализованные ребра:

$$\psi 1 = \{ \}$$

$$\psi 2 = \{u_{5 \ 10}\}$$

$$\psi 3 = \{ \}$$

$$\psi 4 = \{ \}$$

$$\psi 5 = \{u_{29}, u_{28}\}$$

$$\psi$$
6 = {u₂ 9, u₂ 8, u₄ 8}

$$\psi$$
7 = { u_{2} 9, u_{2} 8}

$$\psi 8 = \{u_{29}\}$$

$$\psi 9 = \{u_{2\,9}\}$$

$$\psi 10 = \{ \}$$

$$\psi 11 = \{ \}$$

$$\psi$$
12 = {u_{4 12}, u_{4 8}}

$$\psi 13 = \{u_{4 12}, u_{5 10}\}$$

$$\psi 14 = \{u_{4 12}\}$$

$$\psi 15 = \{u_{4 12}, \}$$

$$\psi 16 = \{u_{4 12}, u_{4 8}\}$$

$$\psi 17 = \{u_{4 12}, u_{5 10}\}$$

$$\psi 18 = \{u_{4 12}\}$$

$$\psi 19 = \{u_{4 12}\}$$

Объединим множества

Нереализованными остались ребра: u_2 9, u_2 8, u_4 8, u_5 10, u_4 12

Все ребра графа G реализованы. Толщина графа m = 2.