#서울시#아파트#매매가격#예측모델

1팀 일기예보

팀장: 박영범

팀원:김예진,권승현,오병훈,최상준

회귀모델을 활용한 서울시 아파트실거래가 예측 모델 구현

프로젝트기기: 2022.01.03-2022.01.07

Work Team & Member

1팀 (일기예보) 팀장 : 박영범

팀원: 권승현, 김예진, 오병훈, 최상준, 김호준

Work Schedule

01.03 프로젝트 계획안 발표

01.04 데이터 수집 및 가공

01.05 모델 설계

01.06 발표 ppt 작성 및 최종 오류 수정

01.07 프로젝트 발표

Work Dataset

공공 데이터 포털: https://www.data.go.kr/ 국토교통부 부동산 실거래가 공개 시스템: http://tdown.molit.go.kr/

회귀모델Skleam을활용한 서울시이파트실거래가예측모델

공공 데이터 포털과 실거래가 공개 시스템에서 수집한 데이터를 바탕으로 Sklearn을 활용한 서울시 실거래가 예측 모델을 설계하여 서울시 아파트 실거래가를 예측함.

0 5 10 15 20 25 30 35 40 45

목차

002

003

001 개요 및 주제

목표

데이터 및 변수

004 문제점 발견 및 해결

005 코드

006 역할분담

개요 및 주제

개요 및 주제

 주택가격은 국가 경제와 국민의 삶에 큰 영향을 주며, 급격한 변화시 큰 혼란을 야기할 수 있습니다. 변화를 사전에예측하고 대응하는 것을 관점으로 프로젝트를 기획하게 되었습니다.

주도적인 학습을 통한 딥러닝 숙지
 미니 프로젝트를 통한 팀원과의 협업 활동
 프로젝트 활동 부족한 지식 학습

데이터 및 변수

변수

동행지수 지가변동률 생산자물가지수 소비자물가지수 아파트거래현황 종합주가지수 주택건설실적 다우존스산업지수 나스닥종합지수

자료수집 : 구글링 코딩 프로그램 : 코랩

문제의 시작

시세예측 데이터

시세 예측 데이터가 딥러닝으로 돌리기에 너무 나도 적은 양이었기에 제대로 학습을 하지 못하 는 문제점 발견

해결방안

월별 데이터 였던 양을 ⇒ 인위적으로 일별 데이터로 늘림

또 다른 문제

시세예측 데이터

데이터 양을 인위적으로 늘리니 예측이 맞지 않 는 상황 여러번 반복적인 학습을 진행하였으나 나아가는 기미가 보이지 않음

해결방안

데이터 양을 인위적으로 늘리는 건 예측이 어렵단 걸 판단 lstm 방식 ⇒ 회귀모델 사이킷런 으로 재 코딩


```
10 warnings.filterwarnings('ignore')
    12 plt.rcParans['font.family'] = 'NanumGothic'
    l cd /content/drive/MyDrive/코랩으로 한 번 해보자/22-01-05 프로젝트/입력 변수
106] I df = pd.read_csv('테이터 입출력 포함.csv', encoding = '07949')
    <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 168 entries, 0 to 167
                         Non-Null Count Dtype
       동헌종합지수 (2015=100) 168 non-null float64
    8 지기변동통
   memory usage: 13.2+ KB
```

필요한 라이브러리 임포트 해주고 d변수명 지정하여 파일입력 df.info()함수사용하여 Dtype 확인하여 float 변경할 목록을 확인

```
[109] 1 df = df.astvpe(float)
    RangeIndex: 168 entries: 0 to 167
                           Non-Null Count Divoe
        <u> 동행종합지수</u> (2015=100) 168 non-null float64
```

사진에 보이는 df 컬럼에 변수들이 1000단위가 넘어가서 자동으로,찍혀 object Dtype 인식이 되어 float 변경이 불가능 오류

locale 라이브러리를 사용하여 ''부분을 공백으로 바꾸어서 float 변 경하고 info() 제대로 변경되었는지 확인

©Saebyeol Yu. Saebyeol's PowerPoint

현재 데이터를 기반으로 실거래가를 시각화 그래프로 표현

사이킷런을 이용하여 전처리 동시에 x(변수값) 값, y 값을 지정 값의 수치를 알기쉽게 0과 1사이로 값을 맞쳐주는 MinmaxScaler 정규화 활용 [112] I from sklearn model selection import train test split 1 from sklearn.preprocessing import MinMaxScaler 3 scaler = MinMaxScaler() 8 scaled [78] 1 x_train, x_test, y_train, y_test = train_test_split(df2.drop('실거래가', 1), df2['실거래가'])

```
1 from sklearn metrics import mean absolute error, mean squared error
15 def plot_predictions(name_, pred, actual):
     df = df.sort_values(by='actual').reset_index(drop=True)
% def mse_eval(name_, pred, actual):
     plot predictions(name . pred. actual)
     mv_predictions[name_] = mse
```

테디노트 깃허브 시각화 함수, 모델링 코드를 참고하여 그래프를 여러 색상으로 눈에 띄게 코딩

```
df = pd.DataFrame(v value, columns=['model', 'mse'])
      max = df['mse'].max() + 10
      olt_figure(figsize=(10, length))
      ax.set vticks(np.arange(len(df)))
      hars = ax.barh(np.arange(len(df)), df['mse'])
      for i. v in enumerate(df['mse']):
60 def remove model(name_):
          del my_predictions[name_]
```

위에 시각화 함수코드와 이어지는 코드이며 mse에 시각화 그래프와,

위에 코드와 마찬가지로 기초적인 모델링 코드

시각화 코드를 블러와서 실행시킨 모습 mseerror 0.006 준수한 성적을 내고 있다.

규제 (Regularization)

학습이 과대적합되는 것을 방지하고자 일종의 패널티 부여

alphas=규제 값 큰 값일수록 규제가 큼

L2 규제 (L2 Regularization) == λ

각 가중치 제곱의 합에 규제 강도 ٨를 곱한다 λ를 크게 하면 가중치가 더 많이 감소되고 λ를 작게 하면 가중치가 증가

릿지(Ridge) Error=MSE+aw2

```
1 from sklearn.linear model import Ridge
```

[136] 1#값이 커질 수록 큰 규제입니다.

2 alphas = [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]

1 for alpha in alphas:

ridge = Ridge(alpha=alpha)

ridge.fit(x_train, y_train)

pred = ridge.predict(x test)

mse_eval('Ridge(alpha={})'.format(alpha), pred, y_test)

가장 큰 alpha(규제) 값을 주었을 때 본래의 mse 에러보다 더 많은 에러가 났으며, 그래프 또한 많이 떨어진 예측을 보여준다.

치대로 돌아왔다.

여기서의 최소 영향을 주는 값은 0.1이상

가장 큰 규제를 주었던 그래프의 mse에러 값이 가장 큰걸 확인 할 수 있다.

©Saebyeol Yu. Saebyeol's PowerPoint

L1 규제 (L1 Regularization)

가중치의 제곱의 합이 아닌 가중치의 합을 더한 값에 규제 강도 A를 곱하여 오차에 더한다.

어떤 가중치(w)는 실제로 0이 된다. 즉, 모델에서 완전히 제외되는 특성이 생기라쏘(Lasso)-L1 규제 Error=MSE+q(w)

```
[145] I from sklearn.linear_model import Lasso
```

- [146] 1 # 값이 커질 수록 큰 규제입니다. 2 alphas = [100, 10, 1, 0.1, 0.01, 0.001, 0.0001]
 - 1 for alpha in alphas:
 - 2 lasso = Lasso(alpha=alpha)
 - 3 lasso.fit(x_train, y_train)
 - 4 pred = lasso.predict(x_test)
 - 5 mse_eval('Lasso(alpha={})'.format(alpha), pred, y_test)

규제를 최대 값을 준 라쏘 그래프

규제를최소 값을 준 라쏘그래프

이 또한위에 릿지(Ridge) 규제 처럼 최솟 값의 규제일 때에 mse 값 은 0.005 좋은 결과과 나오며, 최대로 값을 주었을 때 커진 오차 범위를 보인다.

```
[138] | def plot_coef(columns, coef):
            coef_df = pd.DataFrame(list(zip(columns, coef)))
            coef_df.columns=['feature', 'coef']
            coef_df = coef_df.sort_values('coef', ascending=False), reset_index(drop=True)
            fig. ax = pit.subplots(figsize=(9, 7))
            ax.barb(np.arange(len(coef df)), coef df['coef'])
            idx = np.arange(len(coef df))
            ax.set vticklabels(coef df['feature'])
            plt.show()
[139] | plot_coef(x_train.columns, ridge.coef_)
[140] | | ridge_100 = Ridge(alpha=100)
      2 ridge 100 fit(x train, y train)
      3 ridge_pred_100 = ridge_100.predict(x_test)
      5 ridge 001 = Ridge(alpha=0.001)
      6 ridge_001.fit(x_train, y_train)
      7 ridge_pred_001 = ridge_001.predict(x_test)
[141] | plot_coef(x_train.columns, ridge_100.coef_)
```

마지막으로 coef 함수를 사용하여 계수를 확인하는 시각화 그래프를 호출하는 코드

어떠한 x값(변수)이 가장 y값(거래가) 영향을 끼치는 지 확인 가능

그래프의 변화를 알아보기 쉽게 하기 위하여 규제 넣어 그래프화

그래프로 알 수 있는점 '날짜' 즉, 시간영향이 값에 가장 큰 영향을 끼친다는 걸 알 수 있다.

역할분담

#감사합니다