Definition 1 (Simple Iteration). Suppose that g is a real-valued function, defined and continuous on a bounded closed interval [a, b] of the real line, and let $g(x) \in [a, b]$ for all $x \in [a, b]$. Given that $x_0 \in [a, b]$, the recursion defined by

$$x_{k+1} = g(x_k) \tag{1}$$

is called simple iteration; the numbers x_k , $k \geq 0$, are referred to as iterates.

Definition 2. (Contraction) Let g be a real-valued function, defined and continuous on a bounded closed interval [a, b] of the real line. Then, g is said to be a contraction on [a, b] if there exists a constant L such that 0 < L < 1 and

$$|g(x) - g(y)| \le L|x - y| \quad \forall x, y \in [a, b]$$
 (2)

Definition 3 (Stable, Unstable Fixed Point). Suppose that g is a real-valued function, defined and continuous on a bounded closed interval [a, b] of the real line, and let $g(x) \in [a, b]$ for all $x \in [a, b]$, and let ξ denote a fixed point of g. ξ is a stable fixed point of g if the sequence (x_k) defined by the iteration $x_{k+1} = g(x_k)$, $k \geq 0$, converges to ξ whenever the starting value x_0 is sufficiently close to ξ . Conversely, if no sequence (x_k) defined by this iteration converges to ξ for any starting value x_0 close to ξ , except for $x_0 = \xi$, then we say that ξ is an unstable fixed point of g.

Definition 4 (Rate of Convergence). Suppose $\xi = \lim_{k \to \infty} x_k$. Define $E_k = |x_k - \xi|$.

Definition 5 (Newton's Method). Newton's method for the solution of f(x) = 0 is defined by

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{3}$$

Definition 6 (Secant Method). The secant method is defined by

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$
(4)

Definition 7. (Unitary Matrix) A matrix $Q = [q_1 \dots q_n] \in \mathbb{R}^{m \times n}$ is unitary if and only if $\langle q_i, q_j \rangle = \delta_{ij}$.

Definition 8. (Norm) Suppose that \mathcal{V} is a linear space over the field \mathbb{R} . The nonnegative real-valued function $\|\cdot\|$ is a norm on \mathcal{V} if the following axioms are satisfied: Fix $v \in \mathcal{V}$

- 1. Positivity: ||v|| = 0 if and only if v = 0
- 2. Scale Preservation: $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in \mathbb{R}$
- 3. Triangle Inequality: $||v + w|| \le ||v|| + ||w||$.

Definition 9 (Operator Norm). Let A be an $m \times n$ matrix. That is, A is a linear transformation form \mathbb{R}^n to \mathbb{R}^m . Then the operator norm (or subordinate matrix norm) of A is

$$||A||_{p,q} = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||_q}{||x||_p}.$$
 (5)

Definition 10 (Absolute Condition Number).

$$Cond(f) = \sup_{x,y \in D, x \neq y} \frac{\|f(x) - f(y)\|}{\|x - y\|}$$
 (6)

Definition 11 (Absolute Local Condition Number).

$$Cond_x(f) = \sup_{x+\delta x \in D, \delta x \neq 0} \frac{\|f(x+\delta x) - f(x)\|}{\|\delta x\|}$$
 (7)

Definition 12 (Relative Local Condition Number).

$$cond_{x}(f) = \sup_{x+\delta x \in D, \delta x \neq 0} \frac{\|f(x+\delta x) - f(x)\|/\|f(x)\|}{\|\delta x\|/\|x\|}$$
(8)

Definition 13 (Condition Number of a Nonsingular Matrix). The condition number of a nonsingular matrix A is defined by

$$\kappa(A) = ||A|| ||A^{-1}|| \tag{9}$$

If $\kappa(A) \gg 1$, the matrix is said to be ill-conditioned.

Definition 14 (Symmetric, Positive Definite, spd). The real matrix A is said to be symmetric if $A = A^T$. A square $n \times n$ matrix is called positive definite if

$$\boldsymbol{x}^T A \boldsymbol{x} > 0 \tag{10}$$

for all $\boldsymbol{x} \in \mathbb{R}^n$, $\boldsymbol{x} \neq 0$.

Algorithm 1 Cholesky Factorization

Require:
$$A \in \mathbb{R}^{n \times n}$$
, SPD
$$L_1 \leftarrow \sqrt{a_{11}}$$
for $k \leftarrow 2, 3, \dots, n$ do
$$\text{Solve } L_{k-1}l_k = a_k \text{ for } l_k$$

$$l_{kk} \leftarrow \sqrt{a_{kk} - l_k^T l_k}$$

$$L_k \leftarrow \begin{pmatrix} L_{k-1} & 0 \\ l_k^T & l_{kk} \end{pmatrix}$$
end for

Definition 15 (Cauchy Sequence). A sequence $(\boldsymbol{x}^{(k)}) \subset \mathbb{R}^n$ is called a Cauchy sequence in \mathbb{R}^n if for any $\epsilon > 0$ there exists a positive integer $k_0 = k_0(\epsilon)$ such that

$$\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^{(m)}\|_{\infty} < \epsilon \quad \forall k, m \ge k_0(\epsilon)$$
(11)

Definition 16 (Continuous function). Let $D \subset \mathbb{R}^n$ be nonempty and $f: D \to \mathbb{R}^n$. Given $\boldsymbol{\xi} \in D$, f is continuous at $\boldsymbol{\xi}$ if for every $\epsilon > 0$, there exists a $\delta = \delta(\epsilon) > 0$ such that for every $\boldsymbol{x} \in B(\boldsymbol{\xi}; \delta) \cap D$

$$||f(\boldsymbol{x}) - f(\boldsymbol{\xi})||_{\infty} < \epsilon \tag{12}$$

Definition 17 (Lipschitz condition, constant, and contraction). Let D be a closed subset of \mathbb{R}^n and $g: D \to D$. If there exists a positive constant L such that

$$||g(x) - g(y)||_{\infty} \le L||x - y||_{\infty}$$
 (13)

for all $x, y \in D$, then g satisfies the Lipschitz condition on D in the ∞ -norm. L is called the Lipschitz constant. If $L \in (0,1)$, then g is called a contraction on D in the ∞ -norm.

Definition 18 (Jacobian). Let $g = (g_1, \ldots, g_n)^T : \mathbb{R}^n \to \mathbb{R}^n$ be a function defined and continuous in an (open) neighborhood of $\boldsymbol{\xi} \in \mathbb{R}^n$. Suppose the first partial derivatives of each g_i exist at $\boldsymbol{\xi}$. The Jacobian matrix $J_g(\boldsymbol{\xi})$ of g at $\boldsymbol{\xi}$ is the $n \times n$ matrix with elements

$$J_g(\boldsymbol{\xi})_{ij} = \frac{\partial g_i}{\partial x_j}(\boldsymbol{\xi}) \tag{14}$$

Definition 19 (Newton's Method). The sequence defined by

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - [J_f(\mathbf{x}^{(k)})]^{-1} f(\mathbf{x}^{(k)})$$
(15)

where $\boldsymbol{x}^{(0)} \in \mathbb{R}^n$, is called Newton's method.

Algorithm 2 Power Iteration

Require: $v^{(0)} = \text{some vector with } ||v^{(0)}|| = 1$

- 1: **for** $k \leftarrow 1, 2, ...$ **do**
- $w \leftarrow Av^{(k-1)}$

 \triangleright Apply A

3:

▶ Normalize

- $v^{(k)} \leftarrow w/\|w\|$ $\lambda^{(k)} \leftarrow (v^{(k)})^T A v^{(k)} = \langle v^{(k)}, A v^{(k)} \rangle$ 4:
- ▶ Rayleigh Quotient

5: end for

Algorithm 3 Simultaneous Iteration

Require: $Q^{(0)} = V = I$, a list of vectors V, which we choose to be the identity

- 1: **for** $k \leftarrow 1, 2, ...$ **do**
- $Z \leftarrow AQ^{(k-1)}$

 \triangleright Apply A

 $Z \leftarrow Q^{\overline{(k)}} R^{(k)}$ 3:

 $\triangleright QR$ factorization of Z

 $A^{(k)} \leftarrow (\underline{Q}^{(k)})^T A \underline{Q}^{(k)}$

 $\triangleright A_{ii}^{(k)} = \langle q_i^{(k)}, Aq_i^{(k)} \rangle$

5: end for

Algorithm 4 QR Algorithm (without shifts)

Require: $A^{(0)} = A$

- 1: **for** $k \leftarrow 1, 2, ...$ **do**
- $Q^{(k)}R^{(k)} \leftarrow A^{(k-1)}$

 $\triangleright QR$ factorization of $A^{(k-1)}$

- $\dot{A}^{(k)} \leftarrow R^{(k)} Q^{(k)}$
- ▶ Recombine factors in reverse order

4: end for

Definition 20 (Lagrange basis polynomial). Given the data $\{x_i\}_{i=0}^n$, define

$$l_j(x) = \frac{\prod_{i \neq j} (x - x_i)}{\prod_{i \neq j} (x_j - x_i)}$$

$$\tag{16}$$

which satisfies

$$l_j(x_i) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (17)

(note that $\prod_{i\neq j}(x-x_i)$ is an *n*th order polynomial (1 less degree than the number of data points) and $\prod_{i\neq j}(x_j-x_i)$ is a constant).

Definition 21 (Lagrange interpolation polynomial). Given the data $\{x_i\}_{i=0}^n$ and corresponding function values $\{f(x_i)\}_{i=0}^n$ the Lagrange interpolation polynomial is

$$p(x) = \sum_{i=0}^{n} f(x_i) l_i(x)$$
 (18)

Definition 22 (Orthogonal polynomials). Given a domain [a, b] and a weight function w(x) on the domain, a set of orthogonal polynomials is a list of polynomials $\phi_0, \phi_1, \ldots, \phi_N, \ldots$ such that

$$\langle \phi_i, \phi_j \rangle = \int_a^b \phi_i(x)\phi_j(x)w(x)dx = \delta_{ij}$$
 (19)

Definition 23 (Autonomous). If the force f has no explicit dependence on t, then we call the ODE (system) autonomous.

Definition 24 (Lipshitz continuous). If

$$|f(u) - f(u^*)| \le L|u - u^*|$$
 (20)

for u in a small neighborhood of u^* , then f is Lipshitz continuous at u^* . Note that if f' exists, then

$$L = |f'(u^*)| \tag{21}$$

Definition 25 (Uniformly Lipshitz continuous). If L_u has an upper bound in the domain of f, then f is uniformly Lipshitz continuous.