

Artificial Intelligence II

Part 2: Lecture 8

Yalda Mohsenzadeh

Representation Learning

- Representations in the brain
- What is learned by a deep net?
- Transfer learning and fine-tuning
- Unsupervised and self-supervised learning
- Anomaly detection

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

— Max Wertheimer, 1923

Representation Learning

Image

Compact Mental Representation

Representation

- Good representations are:
 - Compact (minimal)
 - Explanatory (sufficient)
 - Disentangled (independent factors)
 - Interpretable
 - Make subsequent problem solving easy

Classic Object Recognition

Feature extractors

Deep Learning

Internal Representations in Deep Nets

Layer 1 representation of the image

Image features: a vector representation of the image

Internal Representations in Deep Nets

Layer 1 representation of the image

A DNN is a multiscale, hierarchical representation of data

Understanding CNNs

Layer1: Gabor-like filters

Image patches that strongly activates units in Layer 4

Internal Representations in Deep Nets

Layer 1 representation of the image

Represent image as a vector of neural activations
Perhaps representing a vector of detected texture patterns and object parts

Representational Similarity Analysis

Representational Dissimilarity Matrix (RDM)

Relating the Brain and CNN representations

• Deep nets organize visual information similarly to how our brains do!

Transfer Learning

A good representation is one that makes a subsequent learning task easier

- Deep Learning, Goodfellow et al. 2016

Train Test

object recognition

scene recognition

Finetuning

A large object image dataset

A small scene image dataset

Pretraining on object recognition

Finetuning on scene recognition

Testing on scene recognition

Finetuning: start with the representations learned on a previous relevant task, and tune it to perform well on the new task

Finetuning

Finetuning: The learned representations is just weight and biases, those are what being transferred!

Pretraining on object recognition

Finetuning on scene recognition

Finetuning

 Pretrain a network on task A (often object recognition), resulting in parameters W and b

Initialize a second network with some or all of W and b

• Train the second network on task B, resulting in parameters W' and b'

Supervised vs Unsupervised Learning

THE NEXT BIG THING(S) IN UNSUPERVISED MACHINE LEARNING: FIVE LESSONS FROM INFANT LEARNING

Lorijn Zaadnoordijk

Trinity College Institute of Neuroscience
Trinity College Dublin
Dublin, Ireland
L.Zaadnoordijk@tcd.ie

Tarek R. Besold Neurocat GmbH

Berlin, Germany tb@neurocat.ai

Rhodri Cusack

Trinity College Institute of Neuroscience
Trinity College Dublin
Dublin, Ireland
CusackRh@tcd.ie

Supervised Learning

- Hand-curated training data
- Informative
- But
 - Expensive
 - Limited to teacher's knowledge

Infant Learning

- Raw unlabeled training data
- Cheap
- But
 - Noisy
 - Harder to interpret

Learning from examples (supervised learning)

Training data

$$\{x_1, y_1\}$$
 $\{x_2, y_2\}$ \rightarrow Learner \rightarrow $f: X \rightarrow Y$
 $\{x_3, y_3\}$

 $f^* = \operatorname*{arg\,min}_{f \in \mathcal{F}} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i)$

Learning without examples (unsupervised learning)

Data

$$\{x_1\}$$
 $\{x_2\}$ \rightarrow Learner \rightarrow $\{x_3\}$

Representation Learning

Data

 $\{x_1\}$ $\{x_2\}$ \to Learner \to Representations $\{x_3\}$

Representation Learning

Image

Compact Mental Representation

Unsupervised Representation Learning

Unsupervised Representation Learning

Image

X

Autoencoder

 $argmin_F E_X || F(X) - X ||$

Reconstructed Image

$$X' = F(X)$$

Self-supervised learning

- Trick:
 - Convert "unsupervised" problem into "supervised" empirical risk minimization
 - Do so by cooking up "labels" (prediction targets) from the raw data itself

Multisensory self-supervision

Multiview self-supervised learning

Contrastive Self-supervised learning

- composition of data augmentations
- contrastive loss

Augmentations

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal parameters (e.g. rotation degree, noise level). Note that we *only* test these operators in ablation, the *augmentation policy used to train our models* only includes *random crop* (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

SimCLR

Pair of images originated from the same image

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

Pair of images originated from different images within a batch

CLAR: Contrastive Learning of Auditory Representations

Haider Al-Tahan

Department of Computer Science The University of Western Ontario London, Ontario Canada

Abstract

Learning rich visual representations using contrastive self-supervised learning has been extremely successful. However, it is still a major question whether we could use a similar approach to learn superior auditory representations. In this paper, we expand on prior work (SimCLR) to learn better auditory representations. We (1) introduce various data augmentations suitable for auditory data and evaluate their impact on pre-

Yalda Mohsenzadeh

Department of Computer Science The University of Western Ontario London, Ontario Canada

variations in auditory features. Applications of sound understanding range from surveillance (Radhakrishnan et al., 2005) and music classification (Choi et al., 2017; Ibrahim et al., 2020) to audio generation (Engel et al., 2019; Donahue et al., 2019) and deep-fake detection (Mittal et al., 2020).

Achieving automated auditory perception requires the learning of effective representations. Often prior work derive effective representations through discriminative approaches (Park et al., 2019a; Hershey et al., 2017; Tokozume and Harada, 2017; Guzhov et al., 2020). That is, similar to supervised learning, the model

Deep unsupervised representation learning for Anomaly Detection

Anomaly Detection?

 Anomaly detection aims at identifying unexpected, abnormal data points given a set of normal data samples only

Example application: Anomaly Detection in Brain MRI Images

- Train an autoencoder to compress and reconstruct the healthy images
- Assumption: AE trained on only healthy samples cannot properly reconstruct anomalies in pathological data

Testing the AE model

Anomalous structures, which have never been seen during training, cannot be properly reconstructed from the distribution encoded in the latent representation

Context Autoencoder (denoising AE)

AE is trained to recover missing sections in healthy training images

Summary

- Deep nets learn representations, just like our brains do
- This is useful because representations transfer they act as prior knowledge that enables quick learning on new tasks
- Representations can also be learned without labels, which is great since labels are expensive and limiting
- Without labels there are many ways to learn representations. We saw:
 - representations as compressed codes
 - representations that are shared across sensory modalities
 - representations that are predictive of anomality or missing data