EC 414 Week 7 Discussion Clustering – K-Means & DP-Means

What are Clustering Algorithms?

- Clustering algorithms are a form of unsupervised learning.
- Unsupervised learning:
 - o no labels
 - algorithm attempts to find patterns in the data directly from the examples

Some Applications of Clustering

- Search Engines
 - Grouping together similar objects to improve search experiences
- Marketing
 - Finding groups of customers with similar behavior given a large database of customer
 data containing their properties and past buying records
- etc...

Types of Clustering Algorithms

Hard Clustering

- Each point belongs either belongs completely to a cluster or it does not.
- Soft Clustering
 - Points can be "shared" by clusters. For example a point will have a probabilistic likelihood of belonging to several various clusters
- Partitional Clustering
 - Carving the space into parts
- Hierarchical Clustering
 - Clusters themselves are further clusterable ...

Hierarchical Clustering: Agglomerative vs Divisive

- Agglomerative: bottom-up
 - each data point starts as its own cluster
 - we then merge clusters every iteration
- Divisive: top-down
 - starting with one big cluster, we recursively divide the data into smaller clusters until we reach each individual point
- "Tree" of clusters == dendrogram
- The method of joining and dividing clusters is sometimes done by a similarity matrix

Hierarchical Clustering

K-Means

Unsupervised learning that creates k clusters of data by minimizing a squared error function:

$$J = \sum_{i=1}^{k} \sum_{x \in S_i} \left| |x - \mu_i| \right|^2$$

Requires initial knowledge of number of clusters.

Algorithm Steps:

- 1) Initialize *k* means (centroids)
- 2) Assign all points to their closest centroids.
- 3) Recalculate positions of *k* centroids.
- 4) Repeat (2) and (3) until means become stationary.

K-means Clustering: Algorithm

1. Randomly assign K centroids to the space, which define the initial clusters.

K-means Clustering

2. **Assignment step**: assign each point of training data to the closest centroid,

$$\underset{c_i \in C}{\operatorname{argmin}} dist(c_i, x)^2$$

where c_i is the current centroid, and C is the set of all centroids. Usually Euclidean (L2) distance is used as the distance function.

K-means Clustering

3. Update step: Find the new centroids by taking the average of all the points assigned

to that cluster,

$$c_i = \frac{1}{|S_i|} \sum_{x_i \in S_i} x_i$$

4. Repeat assignment & update until clusters no longer move

Characteristics of K-means

- Fixed number of clusters
- Often produces clusters of uniform size
- Sensitive: Order of data traversal affects final results, inconsistent due to random initialization
- Fast, easy to implement

K-means Clustering Animation

interactive visualization: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-means++: The Scikit-learn Implementation

Take one center c_1 , chosen uniformly at random from \mathcal{X} .

Take a new center c_i , choosing $x \in \mathcal{X}$ with probability $\frac{D(x)^2}{\sum_{x \in \mathcal{X}} D(x)^2}$.

D(x) is the distance of a data point to the closest center already chosen.

Repeat Step 1b. until we have taken k centers altogether.

Proceed as with the standard k-means algorithm.

DP-means Clustering

1. Initialize only 1 cluster (k=1, $\ell_c = \{x_1 \dots x_n\}$ initially), where the value of the centroid is the global mean,

$$\boldsymbol{\mu}_c = rac{1}{|\ell_c|} \sum_{\boldsymbol{x} \in \ell_c} \boldsymbol{x}.$$

- 2. **Assign** each point x_i to the closest centroid. Usually Euclidean (L2) distance is used as the distance function.
- 3. If the distance from $x_i > \lambda$ (cluster penalty parameter), add a new cluster (k=k+1), and set $\mu_c = x_i$. Otherwise, place the point into the nearest cluster.
- 4. Update: Find the new centroid by taking the average of all points assigned to each cluster ℓ_j :

$$m{\mu}_j = rac{1}{|\ell_j|} \sum_{m{x} \in \ell_j} m{x}.$$

5. Repeat steps 2-4 until clusters become stable (they no longer reassign with each iteration).

DP Means - Algorithm

Input: $x_1, ..., x_n$: input data, λ : cluster penalty parameter **Output:** Clustering $\ell_1, ..., \ell_k$ and number of clusters k

- 1. Init. $k = 1, \ell_1 = \{\boldsymbol{x}_1, ..., \boldsymbol{x}_n\}$ and $\boldsymbol{\mu}_1$ the global mean.
- 2. Init. cluster indicators $z_i = 1$ for all i = 1, ..., n.
- 3. Repeat until convergence
 - For each point x_i
 - Compute $d_{ic} = \|\boldsymbol{x}_i \boldsymbol{\mu}_c\|^2$ for c = 1, ..., k
 - If $\min_c d_{ic} > \lambda$, set k = k + 1, $z_i = k$, and $\boldsymbol{\mu}_k = \boldsymbol{x}_i$.
 - Otherwise, set $z_i = \operatorname{argmin}_c d_{ic}$.
 - Generate clusters $\ell_1, ..., \ell_k$ based on $z_1, ..., z_k$: $\ell_j = \{ \boldsymbol{x}_i \mid z_i = j \}$.
 - For each cluster ℓ_j , compute $\boldsymbol{\mu}_j = \frac{1}{|\ell_j|} \sum_{\boldsymbol{x} \in \ell_j} \boldsymbol{x}$.

Characteristics of DP-means

- Fast and scalable nonparametric extension of k-means (clusters can grow as a function of data)
- Number of clusters is not fixed (do not need prior knowledge of k)
- Can minimize the number of clusters due to the cluster penalty

K-means vs. DP-means objectives

$$\min_{\substack{\{\ell_c\}_{c=1}^k \\ \text{where}}} \quad \sum_{c=1}^k \sum_{\boldsymbol{x} \in \ell_c} \|\boldsymbol{x} - \boldsymbol{\mu}_c\|^2 + \lambda k$$

$$\boldsymbol{\mu}_c = \frac{1}{|\ell_c|} \sum_{\boldsymbol{x} \in \ell_c} \boldsymbol{x}.$$

DP Means – Effect of λ on Simple Example:

• Smaller $\lambda \rightarrow$ Finer clusters

DP Means – Examples 1-2

DP Means – Examples 3-4

