Задача о погоне

Казаков Александр НПИбд-02-19¹ 23 мая, 2022, Москва, Россия

¹Российский Университет Дружбы Народов

Цели и задачи работы

Цель лабораторной работы

Изучение примера построения математических моделей для выбора правильной стратегии при решении задач поиска.

Задание к лабораторной работе

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n pas.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- Определить по графику точку пересечения катера и лодки.

лабораторной работы

Процесс выполнения

Условие задачи

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 16.7 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4.5 раза больше скорости браконьерской лодки

 $t_0 = 0, X_0 = 0$ - местонахождение лодки браконьеров в момент обнаружения

 $X_0=16,7$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Вводим полярные координаты. Будем считать, что полюс - это точка обнаружения браконьеров $x_0=\theta=0$ Полярная ось г будет проходить через точку местонахождения лодки береговой охраны.

За время t лодка пройдет x, а катер x-k (или x+k, в зависимости от случая).

Так как время, которое они двигались, одинаково, можем составить следующее уравнение:

$$rac{x}{v}=rac{x+k}{v}$$
 для первого случая, $rac{x}{v}=rac{x-k}{v}$ для второго случая.

Отсюда находим x_1 и x_2

$$x_1=rac{167}{55}$$
 ,при $heta=0$ $x_2=rac{167}{35}$,при $heta=-\pi$

Далее рассмотрим скорость катера. Она складывается из скорости радиальной и тангенциальной. Таким образом

$$v_r = r \frac{d\theta}{dt} = v$$

$$v_t = r \frac{d\theta}{dt}$$
.

По теореме Пифагора тангенциальная скорость также равна $v_t = \sqrt{20, 25 v_r^2 - v^2}.$

Поскольку, радиальная скорость равна v,

$$v_t = \sqrt{20, 25v^2 - v^2}.$$

Следовательно, $v_t = v \frac{\sqrt{77}}{2}$.

Получим
$$r rac{d heta}{dt} = v rac{\sqrt{77}}{2}$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = v\frac{\sqrt{77}}{2} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{167}{55} \end{cases}$$

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{167}{35} \end{cases}$$

Из полученной системы возможно исключить производную по t Получим следующее уравнение: $\frac{dr}{d\theta}=\frac{2r}{\sqrt{77}}$

Полученные в результате моделирования траектории. Первый случай

Figure 1: Траектории движения для первого случая

Полученные в результате моделирования траектории. Второй случай

Figure 2: траектории движения для второго случая

Итоги

Вывод

Рассмотрена задача о погоне. Выведены соответствующие дифференциальные уравнения. Построена математическая модель для выбора правильной стратегии.