Osnovi elektrotehnike 2 - Veličine i formule Petar Katić

1 Veličine

IME	OZNAKA	MJ. JED.
Intenzitet struje	I	Amper (A)
Zapreminska gustina struje	J	Amper po metru kvadartnom $\left(\frac{A}{m^2}\right)$
Površinska gustina struje	J	Amper po metru $\left(\frac{A}{m}\right)$
Otpornost	R	$Om(\Omega)$
Specifična provodnost	σ (Sigma)	Simens po metru $\left(\frac{S}{m}\right)$
Specifična otpornost	ρ (Ro)	Om-metar (Ωm)
Rad	A, W	$D\check{z}ul(J)$
Snaga	P	Vat(W)
Unutrašnja otpornost generatora	R_q	Om

2 Formule

IME	FORMULA
Koncentracija slobodnih nosilaca naelektrisanja	$N=rac{{ m broj\ slobodnih\ naelektrisanja\ u\ \Delta V}}{\Delta V}$
Gustina struje	$\vec{J} = NQ\vec{\sigma}$
Intenzitet struje kroz površinu S	$I = \int\limits_{S} \vec{J} \vec{dS}$
Intenzitet struje kroz provšinu S $(\vec{J} = const, \vec{J} \parallel d\vec{S})$	$I = JS \implies J = \frac{I}{S}$
Intenzitet VKS¹ kroz zatvorenu površ	$I = \int\limits_{S} \vec{J} \vec{dS} = 0$
Gustina struje u linearnim materijalima	$\vec{J} = \sigma \vec{E}$
Specifična optornost	$\rho = \frac{1}{\sigma}$
Omov zakon (važi za linearne otpornike)	$U = R \cdot I = \frac{I}{G}$
Provodnost otpornika	$G = \frac{1}{R}$
Formula električne otpornosti	$R = \rho \frac{l}{S}$
Džulov zakon	$P = U \cdot I$

1 - Vremenski kontstatna struja

IME	FORMULA
Gustina struje električnog generatora	$\vec{J} = \sigma(\vec{E} + \vec{E_{str}})$
Prazan hod generatora	$\vec{J} = 0$
Prazan hod	$\vec{F_e} + \vec{F_{str}} = 0$
Elektromotorna sila	$E = \frac{A}{\Delta Q} = \int_{N}^{P} \vec{E} d\vec{l}$
Snaga generatora	$P_g = EI$
Snaga Džulovih gubitaka unutar generatora	$P_{jg} = R_g I^2$
Uslov ING ²	$R_g \to 0$

- Idealni naponski generator