PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

IOP224 INVESTIGACIÓN DE OPERACIONES

Cuarta práctica (tipo a) Primer semestre 2025

Indicaciones generales:

- Duración: 110 minutos.
- Materiales o equipos a utilizar: con apuntes de clase físicos.
- No está permitido el uso de ningún material o equipo electrónico, salvo calculadora.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total: 20 puntos.

$\underline{\text{Cuestionario:}}$

Pregunta 1 - Optimización irrestricta (4 puntos)

Sea $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ una muestra aleatoria correspondiente a una distribución normal $\mathcal{N}(\mu, \sigma^2)$. Se define la función de verosimilitud por:

$$L(x_1, x_2, ..., x_n; \mu, \sigma^2) = \prod_{i=1}^n f(x_i; \mu, \sigma^2) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2}.$$
 (1)

Se denominan los estimadores de máxima verosimilitud de μ y σ^2 (que se denotan por $\hat{\mu}$ y $\hat{\sigma}^2$) a los valores para los que se alcanza el máximo valor de la función definida en (1). Calcule $\hat{\mu}$ y $\hat{\sigma}^2$, comprobando que se trata de un máximo. Asuma que no todos los x_i son iguales.

Pregunta 2 - Estática comparativa (4 puntos)

Considere el siguiente modelo IS-LM

$$Y = C + I + G$$

$$C = 0.8(Y - T)$$

$$I = 100 - 0.5r$$

$$Md = 0.5Y - 0.2r$$

- 1. Interprete las ecuaciones, donde T y G son parámetros.
- 2. Verifique si se pueden aplicar los supuestos del teorema de la función implícita y en dicho caso, obtenga $\frac{\partial Y}{\partial G}$ y $\frac{\partial r}{\partial G}$ por medio de estática comparativa.

Pregunta 3 - Lagrange (4 puntos)

Resuelva el problema de maximización de la utilidad en función del vector de precios $\mathbf{p} = (p_1, p_2) \in \mathbb{R}^2_{++}$ y la riqueza I > 0, para

•
$$u(x_1, x_2) = x_1^{0.5} + x_2^{0.5}$$
.

•
$$u(x_1, x_2) = x_1 + \ln x_2, x_2 > 0.$$

Pregunta 4 - Lagrange y Teorema de la Envolvente, estática comparativa (8 puntos)

- 3.1) Supongamos que usted dispone de una placa metálica de $25m^2$ de superficie, con la que debe construir una caja rectangular que se llenará de gasolina. Se le pide que responda las siguiente cuestiones:
 - (a) ¿Cuáles serán las dimensiones de la caja si el objetivo es llevarse la mayor cantidad posible de gasolina?
 - (b) Sabiendo que el litro de gasolina cuesta 144 unidades monetaria, ¿cuánto estaría usted dispuesto a pagar por un cm^2 más de placa?
 - (c) Si el precio de la gasolina sube a 160um el litro, ¿cuánto pagaría por un cm^2 adicional de placa?
- 3.2) Un individuo consume dos bienes x_1 y x_2 , cuyos precios son $p_1, p_2 > 0$. El individuo minimiza el gasto considerando que quiere una utilidad por lo menos igual a $\overline{u} > 0$. Su función de utilidad es clase $C^2(\mathbb{R}^2)$ y tal que, $u(\mathbf{0}) = 0$, $\frac{\partial u}{\partial x_i} > 0$, $\frac{\partial^2 u}{\partial x_i^2} < 0$ y $\frac{\partial^2 u}{\partial x_i \partial x_j} > 0$. Asuma que no es óptimo $x_i = 0$. Halle mediante estática comparativa

$$\frac{\partial x_1}{\partial p_2}$$
,

e interprete.

Profesor del curso: Jorge Chávez.

Asistente de docencia: Marcelo Gallardo.