

实验数据

最快可以实现 1kHZ 的收发,理论上可以再低,但是收到的数据会较为不稳定。 原因可能是因为:

- 1. 光电感应装置采样频率的限制。(测试了10khz时钟的接收端,实际只能达到3khz的采样频率,因为dma传输不可能耗时如此久,所以猜测是 ADC Poll 的限制)
- 2. 普通液晶本身闪烁频率的限制(因为寒假要回家,所以没法拿到铁电液晶)(1khz 时的液晶已经无法明显地显示中间亮度)。
- 3. 采样过快导致读取数据时的offset不能很好的对齐。
- 4. 串口读取过快导致缓冲区溢出。(后面在host采用了buffer,较好地解决了这一问题)

间隔法

由于 1kHZ 的液晶无法明显显示中间亮度,所以间隔法将液晶闪烁频率设置为了 250 Hz,即 4ms 闪烁一次。

实验证明,间隔法能够明确地收发数据。

encoded len=origin len*2+data len(16)+begin symbols(48)

origin data len(bit)	encoded data len(bit)	transmission time(s)	bit rate(bit/s)
16	96	0.38412	41.654
80	224	0.89609	89.277
400	464	1.85592	215.526

后面的几种编码会在物理层的编码前先对原始数据做加密处理,所以编码后的长度会膨胀。

NRZL/NRZI

由于无法准确恢复时钟,所以 NRZL/NRZI 事实上并不能准确传递数据,所以在实验中我们只是简单地测试了传输速率。

origin data len(bit)	encoded data len(bit)	transmission time(s)	bit rate(bit/s)
16	672	0.67220	23.802
80	768	0.76924	103.999
400	1280	1.28004	312.490
800	1920	1.91937	416.803
80000	128640	127.893	525.523

Manchester

origin data len(bit)	encoded data len(bit)	transmission time(s)	bit rate(bit/s)
16	1344	1.34275	11.816
80	1536	1.54023	51.940
400	2560	2.56331	156.048
800	3840	3.83894	208.391
80000	257280	258.211	309.824

4B/5B

由于编码层的实现有点问题,所以只能测传输速率。

origin data len(bit)	encoded data len(bit)	transmission time(s)	bit rate(bit/s)
16	840	0.83991	19.050
80	960	0.96075	83.268
400	1600	1.60719	248.882
800	2400	2.50002	319.997
80000	160800	161.103	496.577

Miller

origin data len(bit)	encoded data len(bit)	transmission time(s)	bit rate(bit/s)
16	1344	1.40202	11.412
80	1536	1.54037	51.936
400	2560	2.72230	146.935
800	3840	3.87501	206.451
80000	257280	259.389	308.417