Trabalho Teórico 5 - Notações de Complexidade Unidade01b_Noções de Complexidade

Aluno (a): Thaís Ferreira da Silva Curso: Ciência da Computação

Disciplina: Algoritmos e Estruturas de Dados II

Turno: Manhã Período: 2° Professor: Max do Val Machado

Pergunta 1

Qual é a diferença entre as notações O, Ω e Θ ? Pesquise!!!

Nesta notação, consideramos apenas a maior potência e ignoramos os coeficientes. Sendo O o limite superior, Ω o limite inferior e Θ o limite justo.

O é o limite superior, logo, se um algoritmo é O(f(n)), ele também será O(g(n)) para toda função g(n) tal que seja maior que f(n).

 Ω é o limite inferior, logo, se um algorítimo é $\Omega(f(n))$, ele também será $\Omega(g(n))$ para toda função g(n) tal que seja menor que f(n).

 Θ é o limite justo, logo, se g(n) é O(f(n)) e $\Omega(f(n))$ se e somente se g(n) é $\Theta(f(n))$.

Pergunta 2

Qual é a notação O, Ω e Θ para todos os exercícios feitos nesta Unidade?

Exercício 1

 $O(1), \Omega(1), e \Theta(1)$

Exercício 2

 $O(\lg(n)), \Omega(\lg(n)), e \Theta(\lg(n))$

Exercício 3

 $O(1), \Omega(1), e \Theta(1)$

Exercício 4

- A. O(n), $\Omega(n)$, $e \Theta(n)$
- B. $O(n^{-2})$, $\Omega(n^{-2})$, $e \Theta(n^{-2})$
- C. O (n^{-3}) , $\Omega(n^{-3})$, e $\Theta(n^{-3})$
- D. O (\sqrt{n}) , $\Omega(\sqrt{n})$, e $\Theta(\sqrt{n})$
- E. $O(\lg (n)), \Omega(\lg (n)), e \Theta(\lg (n))$
- F. $O(n^{-2}), \Omega(n^{-2}), e \Theta(n^{-2})$
- G. O(n^2), $\Omega(n^2)$, e $\Theta(n^2)$
- H. O (n^{-2}) , $\Omega(n^{-2})$, e $\Theta(n^{-2})$
- I. $O(n^{-4}), \Omega(n^{-4}), e \Theta(n^{-4})$
- J. O($\lg (n)$), $\Omega(\lg (n))$, $e \Theta(\lg (n))$

Exercício Resolvido 1

 $O(1), \Omega(1), e \Theta(1)$

Exercício Resolvido 2

 $O(1), \Omega(1), e \Theta(1)$

Exercício Resolvido 3

 $O(1), \Omega(1), e \Theta(1)$

Exercício Resolvido 4

 $O(1), \Omega(1), e \Theta(1)$

Exercício Resolvido 5

 $O(n),\Omega(n), e \Theta(n)$

Exercício Resolvido 6

$$O(1), \Omega(1), e \Theta(1)$$

Exercício Resolvido 7

$$O(n), \Omega(n), e \Theta(n)$$

Exercício 5

$$O(1), \Omega(1), e \Theta(1)$$

Exercício 6

$$O(1), \Omega(1), e \Theta(1)$$

Exercício 7

$$O(1), \Omega(1), e \Theta(1)$$

Exercício Resolvido 8

$$O(1), \Omega(1), e \Theta(1)$$

Exercício 8

$$O(n^{-2}), \Omega(n^{-2}), e \Theta(n^{-2})$$

Exercício 9

$$O(1), \Omega(1), e \Theta(1)$$

Exercício 10

$$O(n^{-2}), \Omega(n^{-2}), e \Theta(n^{-2})$$

Exercício 11

$$O(n^{-2}), \Omega(n^{-2}), e \Theta(n^{-2})$$

Exercício 12

$$O(\lg(n)), \Omega(\lg(n)), e \Theta(\lg(n))$$

Exercício 13

$$O(n),\Omega(n), e \Theta(n)$$

Exercício 14

$$O(n^{-2}), \Omega(n^{-2}), e \Theta(n^{-2})$$

Exercício Resolvido 9

 $O(\lg(n)), \Omega(\lg(n)), e \Theta(\lg(n))$

Exercício 15

 $O(\lg(n)), \Omega(\lg(n)), e \Theta(\lg(n))$

Exercício 16

 $O(\lg(n)), \Omega(\lg(n)), e \Theta(\lg(n))$

Exercício 17

 $O(\lg(n)), \Omega(\lg(n)), e \Theta(\lg(n))$

Exercício 18

 $O(\lg(n)), \Omega(\lg(n)), e \Theta(\lg(n))$

Exercício Resolvido 10

- A. $O(n^{-2}), \Omega(n^{-2}), e \Theta(n^{-2})$
- B. $O(n^{-3}), \Omega(n^{-3}), e \Theta(n^{-3})$
- C. $O(lg(n)), \Omega(lg(n)), e \Theta(lg(n))$
- D. $O(n^{-3}), \Omega(n^{-3}), e \Theta(n^{-3})$
- E. $O(n^4), \Omega(n^4), e \Theta(n^4)$
- F. $O(lg(n)), \Omega(lg(n)), e \Theta(lg(n))$

Exercício Resolvido 11

 $O(n),\Omega(n), e \Theta(n)$