Teoria da Informação Ficha Teórico-Prática nº 1

"Teoria da Informação"

Período de execução: 1 aula teórico-prática

Objectivo: Pretende-se que o aluno adquira sensibilidade para as questões fundamentais de teoria da informação, em particular informação, entropia exacta e aproximada e incerteza.

Trabalho

- 1. A Maria e a Joana jogam ao "adivinha um número entre 0 e 100". De acordo com a regras definidas a Joana tenta adivinhar o número apenas colocando questões do tipo "é maior que ##?" às quais a Maria apenas pode responder afirmativamente ou negativamente (por exemplo, "é maior que 10?" ou "é maior que 95?").
 - a) Indique o número esperado de questões que a Joana tem que realizar.
 - b) Substituindo "maior" por "menor" existe alteração do número esperado de questões a realizar?
 - c) Imagine que a Joana coloca, não uma, mas duas questões em simultâneo às quais a Maria responde individualmente (por exemplo, "é maior que 10?; é maior que 30?" ou "é maior que 60?; é maior que 90?"). Neste caso qual o número mínimo de pares de questões que a Joana tem que realizar?
- 2. Numa imagem binária 20x20, 200 pixels são pretos.
 - a) Sem efectuar quaisquer cálculos, indique a informação e a entropia de cada pixel.
 - b) Considere agora que 240 pixels são pretos. Calcule a informação e a entropia de cada pixel (em bits). Qual a relação entre a informação de cada pixel e a probabilidade da sua ocorrência?
 - c) Nessa mesma imagem, verificou que a probabilidade de ocorrência de 2 pixies consecutivos <preto, preto> é de 0.6, <branco, branco> é de 0.2, <preto, branco> é de 0.1 e <bra> e oranco, preto> é de 0.1. Calcule a entropia de cada pixel. Compare-a com a calculada na alínea anterior e tire conclusões.
 - d) Assumindo agora que 2/3 dos pixeis são pretos, verificou que a probabilidade de um pixel preto suceder a outro pixel preto é 0.6, um branco suceder a um branco é de 0.2 e um preto suceder a um branco é de 0.8 e um branco suceder a um preto é de 0.4. Calcule a entropia associada a cada pixel.

Teoria da Informação 1

3. Considere uma fonte de informação com a seguinte estatística de segunda ordem (P(x,y))

x/y	0	1
0	1/3	1/3
1	0	1/3

- a) Determina $H(X) \in H(Y)$.
- b) Determine H(X|Y) e H(Y|X).
- c) Determine H(X,Y)
- d) Determine I(X;Y)
- 4. Demonstre as seguintes propriedades elementares:
 - a) $H(x) \ge 0$
 - b) H(x) ≤ log2 (N), em que N representa a cardinalidade do alfabeto da fonte de informação.
 - c) H(x,y) = H(x) + H(y) se e só se x e y forem variáveis independentes.
- 5. Considere a seguinte fonte de informação que regista as temperaturas ao longo do dia com intervalo de duas horas:

12 14 16 18 20 22 22 20 18 16 14 12

- a) Calcule a entropia de fonte.
- b) Proponha uma estratégia de modelação da fonte de informação que minimize o valor de entropia.
- 6. Considere uma fonte de informação composta por um alfabeto de dois símbolos $S=\{1,2\}$. Assuma que as probabilidades condicionadas de ordem 1 dessa fonte são P(1|1)=0.8, P(2|1)=0.2, P(1|2)=0.6 e P(2|2)=0.4. (note que P(1,2)=P(2,1))
 - a) Comente a seguinte afirmação: "Um codificador que assuma que os símbolos são independentes terá que usar, em média, pelo menos 0.95 bits por símbolo." Fundamente com cálculos.
 - b) Considere que procede à modelização da sua fonte de informação usando um modelo de Markov de primeira ordem. Nessas circunstâncias, qual é o melhor desempenho possível do codificador.
- 7. Considere uma variável estocástica $X \in \{1,2,3\}$ tal que P(X=1)=a/2, P(X=2)=1-a e P(x=3)=a/2, $a \in [0,1]$. Nestas circunstâncias observa-se que (assinale a(s) resposta(s) certa(s)):
- a) H(X) é máximo para:

$\square a = 1$	$\Box a = 1/3$
$\Box a = 1/2$	□ nenhuma das anteriores

b) \square H(X) = 1 \square H(X) \leq 2 \square nenhuma das anteriores

c) \square H(X,X) = H(X) \square H(X,X) =H(X)+H(X) \square nenhuma das anteriores

c)	$\Box I(X;X) = 0$ $\Box I(X;X) = H(X)$	□ I(X;X) = H(X X) □ nenhuma das anteriores			
d)	□ I(X;X) é máximo quando a = 0 □ I(X;X) é máximo quando a = 1 □ I(X;X) é máximo quando a = 0.5 □ nenhuma das anteriores				
assina	nsidere que Y = log2(2X+2) lle as opções corretas:	. Assumindo que D() representa a distância KL,			
a)	$\Box H(X,Y) \ge 0$ $\Box H(Y) \ge 0$	\Box H(X,Y) ≤ 1 \Box nenhuma das anteriores			
b)	$\Box H(X,Y) = H(Y)$ $\Box H(X,Y) = H(X)+H(Y \mid X)$	\square H(X,Y) =H(Y)+H(X) \square nenhuma das anteriores			
c)	$\Box I(X;Y) = 0$ $\Box I(X;Y) = H(Y)$	□ I(X;Y) = H(X Y) □ nenhuma das anteriores			
d)	$ \Box D(X;Y) = 0 $ $ \Box D(X;Y) + D(Y;X) = H(Y) + H(X)$	\Box D(X;Y)+D(Y;X) ≤ 2 \Box nenhuma das anteriores			
e)	$ \Box D(X;Y)+D(Y;X) = 2H(X) $ $ \Box D(X;Y)+D(Y;X) = 2H(Y) $	\Box D(X;Y)+D(Y;X) ≥ 0 \Box nenhuma das anteriores			
com p	orobabilidade 1/e2, 2/e2,	bria X que pode tomar os valores 0, 1, 2,, n,, 2n/(n!e2), Nestas condições observa-se que $\frac{r}{n} = \frac{r}{1-r^2}$, $\sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$, $\sum_{i=0}^{\infty} \frac{x^n}{n!} = e^x$.			
•	ra aprender o processo qu Y do algoritmo de aprendiz	ue esteve na origem de X pretende-se que a cagem verifique: (X;Y) = 0 nenhuma das anteriores			
b) Um	☐ menos de 5/3 bits/símb.	gue representar os símbolos da sequência com: □ nunca menos de 2/3 bits/símb. com Huffman□ nenhuma das anteriores			
	·	codificação de canal em que o codificador é, cada bit t o codificador codifica t1t2t3. O			

Teoria da Informação 3

descodificador para cada sequencia r1r2r3 descodifica a mensagem s=mediana $\{r1r2r3\}$. Assuma que a probabilidade de erro de transmissão de cada bit é de 10% e que os acontecimentos são independentes. Determine a

probabilidade de erro de cada mensagem.

- 11^{*}. Uma moeda de 1€ é lançada até que ocorra a primeira cara.
 - a) Sendo X o número requerido de lançamentos, calcule a entropia de X em bits. Assuma a situação genérica em que a moeda possa estar viciada, sendo f a probabilidade de ocorrência de caras.
 - b) Qual a entropia quando a moeda é totalmente equilibrada?

Utilize os seguintes resultados:

$$\sum_{n=1}^{\infty} r^n = \frac{r}{1-r} \qquad \sum_{n=1}^{\infty} nr^n = \frac{r}{(1-r)^2}$$

- 13. Demonstre, com recurso ao princípio da máxima entropia, que a entropia de uma dada variável aleatória X é máxima quando os acontecimentos são equiprováveis.

Teoria da Informação

^{*} Exercício adaptado de Cover and Thomas, "Elements of Information Theory", p. 42.

^{**} Exercício adaptado de Cover and Thomas, "Elements of Information Theory", p. 44.