STAT 461.1002: Homework 1

Dillan Marroquin

September 4, 2020

1. Three dice are tossed, one red, one blue, and one green. What outcomes make up the event A that the sum of the three faces showing equals 5?

 $\textbf{Answer:} \ \ A = \{1r+1b+3g, \ 1r+2b+2g, \ 1r+3b+1g, \ 2r+1b+2g, \ 2r+2b+1g, \ 3r+1b+1g\}$

- 2. Two darts are thrown at the following target:
 - (a) Let (u,v) denote the outcome that the first dart lands in region u and the second dart, in region v. List the sample space of (u,v) pairs.

 $\textbf{Answer:} \ S = \{(1,1),\ (1,2),\ (1,4),\ (2,1),\ (2,2),\ (2,4),\ (4,1),\ (4,2),\ (4,4)\}$

(b) List the outcomes in the sample space of sums, u+v.

Answer: $S = \{2, 3, 4, 5, 6, 8\}$

- 3. Define $A=\{x:0\leq x\leq 1\}$, $B=\{x:0\leq x\leq 3\}$, and $C=\{x:-1\leq x\leq 2\}$. Draw diagrams showing each of the following sets of points:
 - (a) $A^C \cap B \cap C$

(b) $[(A \cup B) \cap C^C]^C$

- 4. Suppose that three events A, B, and C are defined on a sample space S. Use the union, intersection, and complement operations to represent each of the following events:
 - (a) exactly one event occurs

 $\textbf{Answer: } (A \cup B \cup C) \backslash (A \cap B \cap C)$

(b) exactly two events occur

Answer: $[(A \cap B) \backslash C] \cup [(A \cap C) \backslash B] \cup [(B \cap C) \backslash A]$

5. Let A and B be any two events defined on S. Suppose that P(A)=0.4, P(B)=0.5, and $P(A\cap B)=0.1$. What is the probability that A or B but not both occur?

Answer: The probability of A or B but not both is the same as saying $P(A \cup B) - P(A \cap B) = 0.9 - 0.1 = 0.8$.

6. Suppose that three fair dice are tossed. Let A_i be the event that a 6 shows on the i^{th} die, i=1,2,3. Does $P(A_1 \cup A_2 \cup A_3) = \frac{1}{2}$? Explain.

Answer: Yes, $P(A_1 \cup A_2 \cup A_3) = \frac{1}{2}$. This is because events A_1 , A_2 , and A_3 are mutually exclusive events, so

$$P(A_1 \cup A_2 \cup A_3) = P(A) + P(B) + P(C) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}.$$

7. An urn contains twenty-four chips, numbered 1 through 24. One is drawn at random. Let A be the event that the number is divisible by 2 and let B be the event that the number is divisible by 3. Find $P(A \cup B)$.

Answer: $P(A) = \frac{1}{2}$ (obviously) and $P(B) = \frac{1}{3}$ (obviously), so $P(A \cup B) = \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{2}{3}$.

8. Three events A, B, and C are defined on a sample space, S. Given that P(A)=0.2, P(B)=0.1, and P(C)=0.3, what is the smallest possible value for $P[(A \cup B \cup C)^C]$?

Answer: Smallest possible value of $P[(A \cup B \cup C)^C = 0.1]$

9. If $P(A) = \frac{1}{2}$ and $P(B^C) = \frac{1}{3}$, can A and B be disjoint? Explain.

Answer: No, they cannot be disjoint. If we suppose A and B are disjoint, then $P(B)^C$ would also include P(A) in its entirety, so $P(B)^C \geq P(A)$. However, this leads to a contradiction as $P(B)^C = \frac{1}{3}$ and $P(A) = \frac{1}{2}$, so $P(B)^C < P(A)$.

10. **(461 only)** Express the following probability in terms of P(A), P(B), and $P(A \cap B)$: $P(A^C \cap (A \cup B))$.

Answer: $P(A^C \cap (A \cup B)) = (1 - P(A)) \cap (P(A) + P(B) - P(A \cap B)).$