#### Exercise 1

Let  $L_1 = \{aa, bb, bbb\}$  and  $L_2 = \{abba, aab, bb\}$  be two languages over the alphabet  $\Sigma = \{a, b\}$ . What are the strings of the following languages?

1.  $L_1 \circ L_2$ 

3.  $L_1 \cap L_2$ 

2.  $L_1 \cup L_2$ 

- 4. Provide a few strings of  $L_2^*$
- 1: {aaabba, aaaab, aabb, bbabba, bbaab, bbbb, bbbabba, bbbaab, bbbbb}
- 2: {aa, bb, bbb, abba, aab, bb}
- 3: Ø eller empty string?
- 4: {ε, abba, aab, bb, bbbb, aabbb, abbabb, bbaab, bbabba ...}

#### Exercise 2

Given the following three automata  $M_1$ ,  $M_2$ , and  $M_3$ 



- 1. Describe the sequence of states that  $M_1$  goes through while reading the inputs:
  - (a) abbbab

(c) aaaaa

(b) ababaab

- (d)  $\varepsilon$
- 2. Which of the previous sequences are accepting in  $M_1$ ,  $M_2$  and  $M_3$ ?
- 3. Describe the languages recognised by each of the three automata.

```
1:
a: q1 -> q3 -> q3 -> q3 -> q3 -> q3 -> q3
b: q1 -> q2 -> q3 -> q3 -> q3 -> q3 -> q3
c: a1 -> q2 -> q3 -> q3 -> q3 -> q3
d: q1

2:
M1: d
M2: d
M3: d

3:
L(M1)={w | only b's and ending with a or only 1 a}
L(M2)={w | only symbols b}
L(M3)={w | only b's and ending with a or only 1 a or only symbols b}
```

### Exercise 3\*

Provide the state diagram of the automaton  $M_4 = (Q, \Sigma, \delta, q_0, F)$  given below and describe its language.



Starting with b it must end with b
Starting with a it must end with a

a, b, b, b, b, a

L(M4)={w | w starts and ends with same letter}

 $q_1 \mid q_1 \quad q_2$ 

## Exercise 4\*

For each of the following languages, draw the state diagram of an automaton recognizing it.

- 1.  $L_1 = \{w \in \{1, 22\}^* \mid w \text{ has } 11 \text{ as prefix}\}$  {1, 22}\* = { $\epsilon$ , 11122, 11221111, ...}
- 2.  $L_2 = \emptyset \subseteq \{0, 1, 2\}^*$
- 3.  $L_3 = \{\varepsilon\} \subseteq \{0, 1, 2\}^*$
- 4.  $L_4 = \{w \in \{\text{go}, \text{stop}\}^* \mid w = \varepsilon \text{ or ends with stop}\}$
- 5.  $L_5 = \{w \in \{0,1\}^* \mid w \text{ has } 001 \text{ as prefix or } 11 \text{ as suffix}\}$





# Exercise 5\*

Consider the automata  $M_1$  and  $M_2$  given below.





- 1. Construct an automaton that recognizes the language  $L(M_1) \cap L(M_2)$ ;
- 2. Construct an automaton for each of the following languages:
  - (a)  $\overline{L(M_1)}$
  - (b)  $\overline{L(M_2)}$
  - (c)  $\overline{L(M_1) \cap L(M_2)}$

m1: ending with 1 m2: ending with 0

q1 and q2 are both acceptable!

2:

# Exercise 6

- 1. Prove that regular languages are closed under intersection. (Hint: Similar construction to the one for the union, only that  $F = F_1 \times F_2$ );
- 2. Prove that regular languages are closed under complement. (Hint: Transitions don't chance. But, what should be now the accepting states?).

## Exercise 7\*

Let M be the following automaton over the alphabet  $\Sigma = \{0, 1, 2, \langle \text{reset} \rangle \}$ .



- 1. Give examples of accepted and non-accepted words (at least five for each).
- 2. Define count(w) to be the sum of the numerical symbols in a string  $w \in \Sigma^*$ . Prove that  $L(M) = \{w \mid count(w) = 0 \pmod{3}\}.$

(Hint: Note that M keeps a running count of the sum of the numerical input symbols it reads, modulo 3. Every time it receives the  $\langle \text{reset} \rangle$  symbol it resets the count to 0).

1: Accepted: {111, 12, 222, 2121, 2211 } It only accepts if sum mod 3 is 0

2: Hader proofs

# Exercise 8 (optional)

Generalize the automaton M from Exercise 7 so that  $L(M) = \{w \mid \mathit{count}(w) = 0 \pmod{4}\}.$