But this implies $s(\hat{\psi}_n) \leq \hat{p}$ in \hat{M}'' . Since \hat{M}_1^+ is $\sigma(\hat{M}'',\hat{M}')$ -dense in $(\hat{M}'')_1^+$ (Kaplanskys density theorem [Sakai (1971), 1.9.1] in combination with [Sakai (1971), 1.8.9 and 1.8.12]), there exists for all $n^{\in \mathbb{N}}$ a net $(\hat{z}_{n,\gamma})$ in \hat{M}_1^+ such that

$$\sigma(\hat{M}'', \hat{M}') - \lim_{\gamma} \hat{z}_{n, \gamma} = s(\hat{\psi}_n)$$
.

From [Sakai (1971), 1.7.8] and the considerations above we obtain that the net $(\hat{pz}_{n,\gamma}\hat{p})$ converges to $s(\hat{\psi}_n)$ in the $\sigma(\hat{M}'',\hat{M}')$ -topology. Therefore we may assume $\hat{z}_{n,\gamma} \in (\hat{M}_{\hat{p}})_1^+$. In the following we denote by $\hat{\phi}$ the canonical image of ϕ in $(M_{\star})^{\hat{}}$.

Since the projections $s(\hat{\psi}_n)$ are mutually orthogonal, there exists a real sequence (r_n) , $0 < r_n < 1$, $\lim_n r_n = 0$ and $\hat{\phi}(s(\psi_n)) \le \frac{1}{2} r_n$. For all $n \in \mathbb{N}$ choose $\hat{z}_n \in (\hat{M}_p^{\hat{c}})_1^+$ such that

$$|\langle \hat{\phi}, s(\hat{\psi}_n) - \hat{z}_n \rangle| \le \frac{1}{2} r_n$$
,
 $|\langle \hat{\psi}_n, s(\hat{\psi}_n) - \hat{z}_n \rangle| \le \frac{1}{2} r_n$.

Hence $\hat{\phi}(\hat{z}_n) \leq r_n$ and $\hat{\psi}_n(\hat{z}_n) \geq \frac{1}{2}$ for all $n \in \mathbb{N}$. For every $n \in \mathbb{N}$ let $(z_{n,k}) \in \hat{z}_n$ be a representing sequence in $(M_p)_1^+ = p(M_1^+)p$ (note that $M_p^- = (M_p^-)_1^-$) and fix $\mu \in \mathbb{R}_+$. Since $\mu \in \mathbb{R}(\mu) \cap \psi_n^- = \psi_n^-$, $\hat{\phi}(\hat{z}_n) \leq r_n$ and $\hat{\psi}_n(\hat{z}_n) \geq \frac{1}{2}$ there exists for all $n \in \mathbb{N}$ an element $U_n \in \mathcal{U}$ such that for all $k \in \mathbb{U}_n$:

(i)'
$$\phi(z_{n,k}) \leq r_n$$
,

(ii)'
$$\|(\text{Id} - \mu R(\mu))\psi_{n,k}\| \le r_n$$
,

(iii)'
$$\psi_{n,k}(z_{n,k}) \ge \frac{1}{2}$$
.

Inductively we find a sequence (z_n) in $(M_p)_1^+$ and a sequence of states (ϕ_n) in M_{\star} such that for all $n \in \mathbb{N}$:

(i)''
$$\lim_{n \to n} \phi_n(z_n) = 0$$
,

(ii)''
$$\lim_{n} \|(\text{Id} - \mu R(\mu))\phi_n\| = 0$$
,

(iii) ''
$$\phi_n(z_n) \ge \frac{1}{2}$$
.

Since ϕ is faithful on M_p , condition (i)'' implies that $\lim_n z_n = 0$ in the $s*(M_p,(M_p)_*)$ -topology [Takesaki(1979), Proposition III.5.4].