Combinational Logic

Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University

Classification

1. Combinational

- no memory
- outputs depends only the inputs
- expressed by Boolean functions

2. Sequential

- storage elements + logic gates
- the content of the storage elements define the state of the circuit
- outputs are functions of both input and current state
- state is a function of previous inputs
- outputs not only depends the present inputs but also the past inputs

Combinational Circuits

- n input bits \rightarrow 2ⁿ possible binary input combinations
- For each possible input combination, there is one possible output value
 - · truth table
 - Boolean function (with n input variable)
- Examples: adders, subtractors, comparators, decoders, encoders, and multiplexers.
 - · MSI
 - Standards cells in VLSI

Analysis & Design of Combinational Logic

- Analysis: to find out the function that a given circuit implements
 - We are given a logic circuit and
 - we are expected to find out
 - 1. Boolean function
 - 2. truth table
 - 3. A possible explanation of the circuit operation (i.e. what it does)
- Firstly, make sure that the given circuit is, indeed, combinational.

Analysis of Combinational Logic

- Verifying the circuit is combinational
 - · No memory elements
 - No feedback paths (connections)
- Secondly, obtain the Boolean functions for each output or the truth table
- Lastly, interpret the operation of the circuit from the derived Boolean functions or truth table
 - What is it the circuit doing?
 - Addition, subtraction, multiplication, etc.

Obtaining Boolean Function

Example

Example: Obtaining Boolean Function

Boolean expressions for named wires

```
-T_1 = abc
-T_2 = a + b + c
-F_2 = ab + ac + bc
-T_3 = F_2' = (ab + ac + bc)'
-T_4 = T_3T_2 = (ab + ac + bc)'(a + b + c)
- F_1 = T_1 + T_4
           = abc + (ab + ac + bc)' (a + b + c)
           = abc + ((a' + b')(a' + c')(b' + c'))(a + b + c)
           = abc + ((a' + a'c' + a'b' + b'c')(b' + c'))(a + b + c)
           = abc + (a'b' + a'c' + a'b'c' + a'b' + a'b'c' + b'c' +
             b'c') (a + b + c)
```

Example: Obtaining Boolean Function

Boolean expressions for outputs

```
- F_2 = ab + ac + bc

- F_1 = abc + (a'b' + a'c' + a'b'c' + b'c') (a + b + c)

- F_1 = abc + a'b'c + a'bc' + ab'c'

- F_1 = a(bc + b'c') + a'(b'c + bc')

- F_1 = a(b \oplus c)' + a'(b \oplus c)

- F_1 = a \oplus b \oplus c
```

Example: Obtaining Truth Table

							carr	'y sui	m
a	b	С	T_1	T_2	T_{3}	T ₄	F ₂	F_1	
0	0	0	0	0	1	0	0	0	
0	0	1	0	1	1	1	0	1	
0	1	0	0	1	1	1	0	1	
0	1	1	0	1	0	0	1	0	
1	0	0	0	1	1	1	0	1	
1	0	1	0	1	0	0	1	0	
1	1	0	0	1	0	0	1	0	
1	1	1	1	1	0	0	1	1	

This is what we called full-adder (FA)

Design of Combinational Logic

Design Procedure:

- We start with the <u>verbal</u> specification about what the resulting circuit will do for us (i.e. which function it will implement)
- We are expected to find
 - 1. firstly, a Boolean function (or truth table) to realize the desired functionality
 - 2. Logic circuit implementing the Boolean function (or the truth table)

Possible Design Steps

- 1. Find out the number of inputs and outputs
- 2. Derive the truth table that defines the required relationship between inputs and outputs
- 3. Obtain the <u>simplified</u> Boolean functions for each output
- 4. Draw the logic diagram
- 5. Verify the correctness of the design
- Specifications are often verbal, and very likely incomplete and faulty
- Wrong interpretations can result in incorrect circuit

Design Constraints

- From the truth table, we can obtain a variety of simplified expressions
- · Question: which one to choose?
- The design constraints may help in the selection process
- · Constraints:
 - number of gates
 - number of inputs to a gate
 - number of interconnections
 - propagation time of the signal all the way from the inputs to the outputs
 - power consumption
 - driving capability of each gate

Example: Design Process

- BCD-to-2421 Converter
- Verbal specification:
 - Given a BCD number (i.e. {0, 1, ..., 9}), the circuit computes 2421 code equivalent of the decimal number
- Step 1: how many inputs and how many outputs?
 - four inputs and four outputs
- Step 2:
 - Obtain the truth table
 - 0000 → 0000
 - 1001 → 1111
 - etc.

BCD-to-2421 Converter

· Truth Table

	Inp	uts			Out	outs	
Α	В	С	D	×	y	Z	t
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	0
0	1	1	1	1	1	0	1
1	0	0	0	1	1	1	0
1	0	0	1	1	1	1	1

BCD-to-2421 Converter

- Step 3: Obtain simplified Boolean expressions for each output
- Ouput x:

$$x = BC + BD + AB'$$

Boolean Expressions for Outputs

$$y = A + BD' + BC$$

$$z = A + B'C + BC'D$$

Boolean Expressions for Outputs

CD				
AB	00	01	11	10
00	0	1	1)	0
01	0	1	1	0
11	X	X	X	X
10	0	1	X	X

$$t = D$$

Step 4: Draw the logic diagram

$$x = BC + BD + AB'$$

$$y = A + BD' + BC$$

$$z = A + B'C + BC'D$$

Example: Logic Diagram

Example: Verification

- Step 5: Check the functional correctness of the logic circuit
- Apply all the possible input combinations
- And check if the circuit generates the correct outputs for each input combinations
- For large circuits with many input combinations, this may not be feasible.
- Statistical techniques may be used to verify the correctness of large circuits with many input combinations

Binary Adder/Subtractor

· Addition of two binary digits

$$-0+0=0,0+1=1,1+0=1,$$
 and

- -1+1=10
- The result has two components
 - · the sum (S)
 - the carry (C)
- Addition of three binary digits

0	+	0	+	0	=	0	0
0	+	0	+	1	:	0	1
0	+	1	+	0	=	0	1
0	+	1	+	1	:	1	0
. 1	+	0	+	0	=	0	1
1	+	0	+	1	:::::::::::::::::::::::::::::::::::::	1	0
1	+	1	+	0	=	1	0
1	+	1	+	1	: =:::::	1	1

Half Adder

· Truth table

×	y	С	5
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x'y + xy' = x \oplus y$$

$$C = xy$$

Full Adder

- A circuit that performs the arithmetic sum of three bits
 - Three inputs
 - the range of output is [0, 3]
 - Two binary outputs

<u> </u>				
×	Y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

Karnaugh Maps

$$S = xy'z' + x'y'z + xyz + x'yz'$$

$$= x(y'z' + yz) + x'(y'z + yz')$$

$$= x(y \oplus z)' + x'(y \oplus z)$$

$$= x \oplus y \oplus z$$

$$C = xy + xz + yz$$

Two level implementation 1st level: three AND gates 2nd level: One OR gate

Full Adder

· Sum

-
$$S = x \oplus y \oplus z$$

· Carry

$$-C = xy + xz + yz$$
$$= (x + y) z + xy$$
$$= (x \oplus y) z + xy$$

 This allows us to implement a full-adder using two half adders.

Full Adder Using Half Adders

Integer Addition

· Binary adder:

- A digital circuit that produces the arithmetic sum of two binary numbers
- $A = (a_{n-1}, a_{n-2}, ..., a_1, a_0)$
- B = $(b_{n-1}, b_{n-2}, ..., b_1, b_0)$
- A simple case: 4-bit binary adder

26

Hierarchical Design Methodology

- The design methodology we used to build carryripple adder is what is referred as <u>hierarchical</u> <u>design</u>.
- In classical design, we have to:
 - 9 inputs
 - 5 outputs
 - five truth tables with $2^9 = 512$ entries each
 - We have to optimize five Boolean functions with 9 variables each.
- Hierarchical design
 - we divide our design into smaller functional blocks
 - connect functional units to produce the big functionality

Carry Propagation

- What is the total propagation time of 4-bit ripple-carry adder?
 - τ_{FA} : propagation time of a single full adder.
 - We have four full adders connected in cascaded fashion
 - Total propagation time: $4\tau_{FA}$.

Faster Adders

- The carry propagation technique is a limiting factor in the speed with which two numbers are added.
- Two alternatives
 - use faster gates with reduced delays
 - Increase the circuit complexity (i.e. put more gates)
 in such a way that the carry delay time is reduced.
- An example for the latter type of solution is carry lookahead adders
 - Two binary variables:
 - 1. $P_i = a_i \oplus b_i carry propagate$
 - 2. $G_i = a_i b_i carry generate$

Carry Lookahead Adders

- Sum and carry can be expressed in terms of P_i and G_i :
 - $S_i = P_i \oplus C_i$
 - $C_{i+1} = G_i + P_i C_i$
- Why the names (carry propagate and generate)?
 - If $G_i = 1$ (both $a_i = b_i = 1$), then a "new" carry is generated
 - If P_i = 1 (either a_i = 1 or b_i = 1), then a carry coming from the previous lower bit position is propagated to the next higher bit position

4-bit Carry Lookahead Adder

 We can use the carry propagate and carry generate signals to compute carry bits used in addition operation

-
$$C_0$$
 = input
- C_1 = G_0 + P_0C_0
- C_2 = G_1 + P_1C_1
= G_1 + $P_1(G_0$ + $P_0C_0)$ = G_1 + P_1G_0 + $P_1P_0C_0$
- C_3 = G_2 + P_2C_2 = G_2 + $P_2(G_1$ + P_1G_0 + $P_1P_0C_0)$
= G_2 + P_2G_1 + $P_2P_1G_0$ + $P_2P_1P_0C_0$
- P_0 = a_0 \oplus b_0 and G_0 = a_0b_0
- P_1 = a_1 \oplus b_1 and G_1 = a_1b_1
- P_2 = a_2 \oplus b_2 and G_2 = a_2b_2
- P_3 = a_3 \oplus b_3 and G_3 = a_3b_3

4-bit Carry Lookahead Circuit - 1

4-bit Carry Lookahead Circuit - 2

- All three carries (C_1, C_2, C_3) can be realized as two-level implementation (i.e. AND-OR)
- C_3 does not have to wait for C_2 and C_1 to propagate
- C₃ has its own circuit
- The propagations happen concurrently

4-bit Carry Lookahead Circuit - 3

Two levels of logic

4-bit Carry Lookahead Adder

Propagation Time of Carry Lookahead Adders

- Carry lookahead circuit has the delay of two gates
 - remember it has been implemented as two-level AND-OR logic
 - To generate P_i and G_i we need one gate delay
 - To compute S; we need one gate delay
 - In total, overall delay is 4 gate delay.
- In general,
 - carry-ripple adders have O(n) gate delays
 - carry lookahead adders have O(log2n) gate delays

Hybrid Approach for 16-bit Adder

Subtractor

Recall how we do subtraction (2's complement)

$$-A-B=A+(2^{n-1}-B)$$

Overflow

- How to detect overflows:
 - two n-bit numbers
 - we add(/subtract) them, and result may be a (n+1)-bit number → overflow.
 - Unsigned numbers:
 - · easy
 - check the carryout.
 - Signed numbers
 - more complicated
 - overflow occurs in addition, when the operands are of the same sign

Examples: Overflows

Example 1: 8-bit signed numbers

```
...00 0 1 0 0 0 1 0 0 68
...00 0 1 0 1 1 0 1 1 91
...00 1 0 0 1 1 1 1 1 1 159
```

Example 2: 8-bit signed numbers

						1					1)				Ł										Ė						1					()				٠.										6	١٠,	2	3		
																												•			:										•																					
			•	-	Ļ	-	Ļ				1				: (J)				Ł				F	1				ŀ	- 1	٠					1			ì	•	()				Ŀ										u	4.	- 1			
					1		1					· ·				1					1				()				(·					7	<u>.</u>)				(7	:			1		:				_		1	- j	<u>-</u>	, ,	C	_ ک	i	

How to Detect Overflows:

- First Method
 - 1. If both operands are positive and the MSB of the result is 1.
 - 2. If both operands are negative and the MSB of the result is 0.

a _{n-1}	b_{n-1}	S_{n-1}	V
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Detecting Overflows: First Method

•
$$V = a_{n-1}' b_{n-1}' S_{n-1} + a_{n-1} b_{n-1} S_{n-1}'$$

· Can we do it better?

Detecting Overflows

- Second method:
 - Remember we have other variables when adding:
 - · Carries

0	0 0	1	0	0	0	1	0	0	А
0	0 0	1	0	1	1	0	1	1	В
) 1	0	0	0	0	0	0	0	С
0) 1	0	0	1	1	1	1	1	S
1	1 1	0	1	1	1	1	0	0	А
1	1 1	0	1	0	0	1	0	1	В
	1 0	1	1	1	1	0	0	0	С
1	1 0	1	1	0	0	0	0	1	S

Look at C_7 and C_8 in both cases

Detecting Overflows: Second Method

Observations

- <u>Case 1</u>: V = 1 when $C_7 = 1$ and $C_8 = 0$
- <u>Case 2</u>: V = 1 when $C_7 = 0$ and $C_8 = 1$
- $V = C_7 \oplus C_8 = 1$
- Think about whether this could happen when the operands have different signs.

•
$$C_7 = C_8$$

Overflow detection logic

- Which one is simpler?
- $V = C_7 \oplus C_8$
- $V = a_7' b_7' S_7 + a_7 b_7 S_7'$

Binary Multipliers

Two-bit multiplier

(3x4)-bit Multiplier: Method

			b ₃	b ₂	b_1	b ₀	В
		×		a ₂	a_1	a ₀	А
			a ₀ b ₃	a ₀ b ₂	a ₀ b ₁	a ₀ b ₀	
		$a_1 b_3$	a ₁ b ₂	$a_1 b_1$	$a_1 b_0$		
+	$a_2 b_3$	a ₂ b ₂	a ₂ b ₁	$a_2 b_0$			
C	6 C ₅	C ₄	C ₃	C ₂	\mathtt{c}_1	C ₀	

4-bit Multiplier: Circuit

mxn-bit Multipliers

- · Generalization:
- multiplier: m-bit integer
- multiplicand: n-bit integers
- · mxn AND gates
- · (m-1) adders
 - each adder is n-bit

Magnitude Comparator

- Comparison of two integers: A and B.
 - $A > B \rightarrow (1, 0, 0) = (x, y, z)$
 - $A = B \rightarrow (0, 1, 0) = (x, y, z)$
 - $A < B \rightarrow (0, 0, 1) = (x, y, z)$
- Example: 4-bit magnitude comparator
 - $A = (a_3, a_2, a_1, a_0)$ and $B = (b_3, b_2, b_1, b_0)$
 - 1. (A=B) case
 - they are equal if and only if $a_i = b_i$ $0 \le i \le 3$
 - $t_i = (a_i \oplus b_i)'$ $0 \le i \le 3$
 - $y = (A=B) = t_3 t_2 t_1 t_0$

4-bit Magnitude Comparator

- 2. (A > B) and (A < B) cases
 - We compare the most significant bits of A and B first.
 - if $(a_3 = 1 \text{ and } b_3 = 0) \rightarrow A > B$
 - else if $(a_3 = 0 \text{ and } b_3 = 1) \rightarrow A < B$
 - else (i.e. $a_3 = b_3$) compare a_2 and b_2 .

$$x = (A > B) = a_3 b_3' + t_3 a_2 b_2' + t_3 t_2 a_1 b_1' + t_3 t_2 t_1 a_0 b_0'$$

 $z = (A < B) = a_3' b_3 + t_3 a_2' b_2 + t_3 t_2 a_1' b_1 + t_3 t_2 t_1 a_0' b_0$
 $y = (A = B) = t_3 t_2 t_1 t_0$

4-bit Magnitude Comparator: Circuit

Fig. 4-17 4-Bit Magnitude Comparator

Decoders

- · A binary code of n bits
 - capable of representing 2ⁿ distinct elements of coded information
 - A decoder is a combinational circuit that converts binary information from n binary inputs to a maximum of 2ⁿ unique output lines

х у	d _o	d_1	d_2	d_3
0 0	1	0	0	0
0 1	0	1	0	0
1 0	0	0	1	0
1 1	0	0	0	1

•
$$d_0 = x'y'$$

•
$$d_1 = x'y$$

•
$$d_2 = xy'$$

•
$$d_3 = xy$$

2-to-4-Line Decoder

- Some decoders are constructed with NAND gates.
 - Thus, active output will be logic-0
 - They also include an "enable" input to control the circuit operation

е	X	У	do	d_1	d_2	d_3	
1	X	X	1	1	1	1	• $d_0 = e + x + y = (e'x'y')'$
0	0	0	0	1	1	1	• $d_1 = e + x + y' = (e'x'y)'$
0	0	1	1	0	1	1	• $d_2 = e + x' + y = (e'xy')'$
0	1	0	1	1	0	1	• $d_3 = e + x' + y' = (e'xy)'$
0	1	1	1	1	1	0	

2-to-4-Line Decoder with Enable

$$d_0 = e + x + y = (e'x'y')'$$

 $d_1 = e + x + y' = (e'x'y)'$
 $d_2 = e + x' + y = (e'xy')'$
 $d_3 = e + x' + y' = (e'xy)'$

Decoder/Demultiplexer

- · A demultiplexer is a combinational circuit
 - it receives information from a single line and directs it one of 2ⁿ output lines
 - It has n selection lines as to which output will get the input

$$d_0 = e$$
 when $x = 0$ and $y = 0$
 $d_1 = e$ when $x = 0$ and $y = 1$
 $d_2 = e$ when $x = 1$ and $y = 0$
 $d_3 = e$ when $x = 1$ and $y = 1$ 55

Combining Decoders

Decoder as a Building Block

 A decoder provides the 2ⁿ minterms of n input variable

- We can use a decoder and OR gates to realize any Boolean function expressed as sum of minterms
 - Any circuit with n inputs and m outputs can be realized using a n-to-2ⁿ-line encoder and m OR gates

Example: Decoder as a Building Block

· Full adder

- $C = xy + xz + yz = \Sigma(3, 5, 6, 7)$
- $S = x \oplus y \oplus z = \Sigma(1, 2, 4, 7)$

Encoders

- An encoder is a combinational circuit that performs the inverse operation of a decoder
 - number of inputs: 2ⁿ
 - number of outputs: n
 - the output lines generate the binary code corresponding to the input value
- Example: n = 2

					•								•		 																	 								 	
		•																														 								 	
٠	٠.					٠			٠	٠.٠.					 				_	٠			٠	٠.٠.								 V					٠			 	
	٠.٠	٠.			1.		٠.٠.				٠.٠.	7.			 ٠.٠.				ъ.			٠.٠.			٠.٠.	•	1	٠.٠.				X	• • • •	٠.٠.	• • • •	٠.٠.			v	 	
٠						•			٠				4		 			٠.۲		\sim			٠				. ~					 					٠		T	 	
				•	•	. 1 . '						•							_											. 1 . 1									<i>.</i>		
						1.				1.1				1.1.	 		100			/	100			1.1								 							•	 	1.1.
			100		٠.٠	<i>.</i>		1.1				100			 ٠.٠.	1.1				_		٠.٠.				100				. 1 . 1		 100	100	100	100	1.1				 	
																_														_		 								 	
				4.0	4										 												•					 •							\sim	 	
												٠.(٠														 									
																			•													 									
					_								•		 				$\mathbf{\sim}$													 ·							_	 	
		•																									-												7 .	 	
		•																														 								 	
٠						٠			٠				٠		 					٠			٠									 					٠			 	
	٠. ٠	٠.			٠.٠		٠.٠.				٠.٠.	٠.٠.			 ٠.٠.			٠.٠.	٠.٠.			٠.٠.			٠.٠.		٠.٠.					 		٠.٠.		٠.٠.				 	
					\sim																					2	∼ .			т.		~							'A' .		
							٠				٠.٠.	٠. ٦			 ٠.٠.	1.1			7.			٠.٠.					·					 / · `	1.1.	٠.٠.	1.1.				_	 	
					. "	٠. ٠.				1.1				100	 		100				1.1			1.1			. "					 								 	1.1.
			100					1.1				100			 ٠.٠.	1.1			1.			٠.٠.					·			. 1 . 1		 .	100	1.1	100	1.1				 	
					◡.								-		 					٠							-					 \smile							- .	 	
											40.0				 				40.0													 4.0								 	
					_														• 4								_												∼ •		
						٠.٠.						$\cdot t$			 											• 1						 ٠,								 	
												. €	•		 																	 								 	
					•								•						•								•												∵	 	
		•																														 								 	
٠	٠.					٠			٠	٠.٠.			٠		 					٠			٠	٠.٠.								 					٠			 	
	٠. ٠	٠.			٠.٠		٠.٠.				٠.٠.	٠.٠.			 ٠.٠.			٠.٠.	٠.٠.			٠.٠.			٠.٠.		٠.٠.					 		٠.٠.		٠.٠.				 	
٠				1.1		٠.٠.			٠.٠.	1.1.			_ ' .	1.1.	 		1.1		- ' '	٠.٠.	1.1		٠.٠.	1.1.						т.	100	 					٠.٠.	100		 	100
		. Ť.	1.1				٠.٠.	1.1					→ .		 ٠.٠.	1.1		٠.٠.	\sim			٠.٠.			٠.٠.		ж.	1.1.	•	. I . '		 4.	1.1.	· . · .	1.1.	· . · .			a.	 	
					. 1	٠.٠.				100			т.	1.1.	 		100		.	l	1.1			100							100	 						1.1.	٠,	 	100
		· ·	100	. 1				100			100	·	. 1		 100	100			L 1			100				100	T	100		. I . `			100	100	100	100		100		 	
													1.						A .													 							1.	 	
					_										 																	 ှ .							_	 	

Priority Encoder

- Problem with a regular encoder:
 - only one input can be active at any given time
 - the output is undefined for the case when more than one input is active simultaneously.
- Priority encoder:
 - there is a priority among the inputs

d_0	d_1	d ₂	d ₃	×	У	V
0	0	0	0	X	X	0
1	0	0	0	0	0	1
X	1	0	0	0	1	1
X	X	1	0	1	0	1
X	X	X	1	1	1	1

4-bit Priority Encoder

- · In the truth table
 - X for input variables represents both 0 and 1.
 - Good for condensing the truth table
 - Example: $X100 \rightarrow (0100, 1100)$
 - This means d₁ has priority over d₀
 - d₃ has the highest priority
 - · do has the next
 - d₀ has the lowest priority
 - $V = d_0 + d_1 + d_2 + d_3$

Maps for 4-bit Priority Encoder

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	1
01	0	1	1	1
11	0	1	1	1
10	0	1	1	1

$$-x = d_2 + d_3$$

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	0
01	1	1	1	0
11	1	1	1	0
10	0	1	1	0

$$-y = d_1d_2' + d_3$$

4-bit Priority Encoder: Circuit

$$-x = d_2 + d_3$$

$$-y = d_1d_2' + d_3$$

$$-V = d_0 + d_1 + d_2 + d_3$$

Multiplexers

- · A combinational circuit
 - It selects binary information from one of the many input lines and directs it to a single output line.
 - Many inputs m
 - One output line
 - selection lines $n \rightarrow n = \lceil \log_2 m \rceil$
- Example: 2-to-1-line multiplexer
 - 2 input lines I_0 , I_1
 - 1 output line Y
 - 1 select line S

$$Y = S' I_0 + S I_1$$

													•			•										•				
		ı.														Ι.														
																ı.														
																г.						_		_						
								-	-													•								
	•		•		•	•		(•	•	•	•	ľ	•							•		•	•			
٠		•					•	•	•									•	•	•		• 1		,				•		
									•							ŀ							w	•						
							٠.																7							
							- 0		_							ŀ							•							
		ı.					. "	7	~							Ι.							٠.							
																ı.														
																г.														
	•		•		•	•						•	•	•	•	ľ	•							•		•	•			
٠		•					•	•	•									•	•	•		•						•		
-	-		_	-	-	-	-	_	_	_	_	_	-	-	-	-	-	-	_	_	_	_	_	_	-	-	-	_	_	
٠																														
																ŀ														
									4													_								
								•	•							ŀ						-	•							
							. 4		. 1							ι.														
																L														
							. 1									г.														
							٠,	Ι.								ι.								_	٠.					
	•		•		•	•		•	•			•	•	•	•	ľ	•				-		_	•	١.	•	•			
٠		•					•											•	•	•			_	١.				•		
																ŀ									,					
																								•						
																ŀ														
																ı.														
			٠.	٠.	٠.							٠.	٠.	٠.	٠.	г.								٠.	٠.	٠.				
																L														
																г.														
																ι.						•	_							
	•		•		•			-				•	•	•	•	ľ						-	_	•		•				
٠		•					•											•	•	•		•						•		
																ŀ														
																						•								
																ŀ								• 4						
									•							ι.						-	_	7	٠.					
								_	−.							ı.						_	_							
		. '	٠.	٠.	٠.							٠.	٠.	٠.	٠.	Γ.										٠.				
																								_	•					
	1		٠.		٠.		. •	. *				٠.	٠.	٠.	٠.	Г.		. •	. •					٠.		٠.				
٠		•																	•	•	•							•		

Function Table

2-to-1-Line Multiplexer

Special Symbol

4-to-1-Line Multiplexer

- 4 input lines: I_0 , I_1 , I_2 , I_3
- 1 output line: Y
- 2 select lines: S_0 , S_1 .

$$egin{array}{c|c|c|c} S_0 & S_1 & Y \\ \hline 0 & 0 & I_0 \\ 0 & 1 & I_1 \\ 1 & 0 & I_2 \\ 1 & 1 & I_3 \\ \hline \end{array}$$

$$Y = S_0'S_1'I_0 + S_0'S_1I_1 + S_0S_1'I_2 + S_0S_1I_3$$

Interpretation:

- In case $S_0 = 0$ and $S_1 = 0$, Y selects I_0
- In case $S_0 = 0$ and $S_1 = 1$, Y selects I_1
- In case $S_0 = 1$ and $S_1 = 0$, Y selects I_2
- In case $S_0 = 1$ and $S_1 = 1$, Y selects I_3

4-to-1-Line Multiplexer: Circuit

Multiple-bit Selection Logic - 1

- A multiplexer is also referred as a "data selector"
- A multiple-bit selection logic selects a group of bits

Multiple-bit Selection Logic - 2

E S	У
1 X	all O's
0 0	Α
0 1	В

Design with Multiplexers - 1

- · Reminder: design with decoders
- Half adder
 - $-C = xy = \Sigma(3)$
 - $S = x \oplus y = x'y + xy' + \Sigma(1, 2)$

 A closer look will reveal that a multiplexer is nothing but a decoder with OR gates

Design with Multiplexers - 1

4-to-1-line multiplexer

- $\cdot S_1 \rightarrow X$
- $S_0 \rightarrow y$
- $S_1'S_0' = x'y'$,
- $S_1'S_0 = x'y$,
- $S_1S_0' = xy'$,
- $S_1S_0 = xy$
- $Y = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$.
- $Y = x'y' I_0 + x'y I_1 + xy' I_2 + xy I_3$.

Example: Design with Multiplexers

• Example: $S = \Sigma(1, 2)$

Design with Multiplexers Efficiently

- More efficient way to implement a n-variable Boolean function
 - 1. Use a multiplexer with n-1 selection inputs
 - 2. First (n-1) variables are connected to the selection inputs
 - 3. The remaining variable is connected to data inputs
- Example: $S = \Sigma(1, 2)$

Example: Design with Multiplexers

•
$$F(x, y, z) = \Sigma(1, 2, 6, 7)$$

$$- F = x'y'z + x'yz' + xyz' + xyz$$

-
$$Y = S_1'S_0' I_0 + S_1'S_0 I_1 + S_1S_0 I_2 + S_1S_0 I_3$$

-
$$I_0 = z$$
, $I_1 = z'$, $I_2 = 0$, $I_3 = z$ or z' .

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F = z$$

$$F = z$$

$$F = 0$$

$$F = 1$$

Example: Design with Multiplexers

$$F = x'y'z + x'yz' + xyz' + xyz$$

 $F = z$ when $x = 0$ and $y = 0$
 $F = z'$ when $x = 0$ and $y = 1$
 $F = 0$ when $x = 1$ and $y = 0$
 $F = 1$ when $x = 1$ and $y = 1$

Design with Multiplexers

- General procedure for n-variable Boolean function
 - $F(x_1, x_2, ..., x_n)$
- 1. The Boolean function is expressed in a truth table
- 2. The first (n-1) variables are applied to the selection inputs of the multiplexer $(x_1, x_2, ..., x_{n-1})$
- 3. For each combination of these (n-1) variables, evaluate the value of the output as a function of the last variable, x_n .
 - \cdot 0, 1, \times_n , \times_n
- 4. These values are applied to the data inputs in the proper order.

Combining Multiplexers

Three-State Buffers

- A different type of logic gate
 - Instead of two states (i.e. 0, 1), it exhibits three states (0, 1, Z)
 - Z (Hi-Z) is called high-impedance
 - When in Hi-Z state the circuit behaves like an open circuit (the output appears to be disconnected, and the circuit has no logic significance)

3-State Buffers

- We can connect the outputs of three-state buffers
 - provided that no two three-state buffers drive the line to opposite 0 and 1 values at the same time.
 - Remember we cannot connect the outputs of other logic gates.

																																		•
					 	•										A						I					🕦							
															1	•											·:·.							
																												•						
																					1.1													
	_		_		 					-							-			-														- '
																																		•
					 										🗨																			
					 																								. 7					
						: :										· /											4i		· // .					
																•																		
																~													7					•
					 																								<i>-</i> .					
																																		•
																					1.1													
				100	 • •					400	100	100	40.00			•																		
	٠.		. T.	1.1	 ં 4		1000				1.1.	1.1.	1.1.	1000	/	<u>ب</u>												·				1.1.		
	÷	Н	- [-	100			1818	1414	-1-1-	0.0	100	100	100	1818		7 .	-1-1-	1919	-1-1	-1-1-	200		-1-1	-1-1	-1-1	-1-1-		7:	-1-1	-1-1	-1-1-	100	- : -	٠.
	÷		Ė								111				1	\mathbf{a}					-1-1						• (7:						b
٠,٠	Ė		Ġ												- ()											()						è
٠.٠						1111									()											()						ì
H	Ì															-												_						ì
ij						1111									(-											(_						ì
						1111										-												_						
						1111										-												_						
						1111										-												_						
						1111										-												_						
						1111										-												_						
						1111										-												_						
						1111										-												_						
						1111										-												_						
						1111										-												_						
						1111										-												_						
					1											-																		
					1																													
					1																													
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						
					1											1												1						

Multiplexing with 3-State Buffers

Two Active Outputs - 1

What will happen if $C_1 = C_0 = 1$?

C_1	C_0	Α	В	У
0	0	X	X	Z
0	1	0	X	0
0	1	1	X	1
1	0	X	0	0
1	0	X	1	1
1	1	0	0	0
1	1	1	1	1
1	1	0	1	Sele E
1	1	1	0	wtech.com

Design Principle with 3-State Buffers

- Designer must be sure that only one control input must be active at a time.
 - Otherwise the circuit may be destroyed by the large amount of current flowing from the buffer output at logic-1 to the buffer output at logic-0.

Busses with 3-State Buffers

There are important uses of three-state buffers

