

Architektura i integracja systemów.

Andrzej Ratkowski

Wykład 4. Metody oceny architektury.

Copyright © 2013 Wszelkie prawa zastrzeżone.

Informacje organizacyjne

Andrzej Ratkowski, <u>a.ratkowski@elka</u>.

pok. 555, konsultacje: środy 17:00-18:00

strona: andrzejratkowski.blogspot.com

Zaliczanie: 2 kolokwia x 15 punktów +

Projekt: 30 punktów = 60 punktów

Kolokwia: I I kwietnia, 6 czerwca

Projekt podzielony jest na 2 etapy po 20 + 10 punktów

Ogłoszenie tematów: 14 marca

Oddawanie: El 17 kwietnia, E2 6 czerwca

Architektura

Architektura programu lub systemu informatycznego to struktura lub struktury systemu na które składają się elementy oprogramowania, zewnętrzne właściwości tych elementów i relacje między nimi.

[Bass, Clements, Kazman]

Atrybuty systemu

- Atrybuty jakościowe
 - Modyfikowalność / konserwowalność
 - Wydajność
 - Niezawodność
 - Bezpieczeństwo
 - Ergonomia
 - Interoperacyjność (ang. interoperability)
- Ponowne użycie komponentów
- "Time-to-market" / konstruowalność

"Architectural drivers"

 Kluczowe czynniki architektocznie Ograniczenia Ograniczenia techniczne ekonomiczne **Atrybuty** jakościowe: Uwarunkowania modyfikowaln. **Architektura** produktowe / bezpieczeństwo systemu IT niezawodność marketingowe Struktura organizacji

Taktyki (mechanizmy) architektoniczne

Taktyki architektoniczne – kluczowe decyzje konstrukcyjne (architektoniczne) mające wpływ na atrybuty jakościowe.

Taktyki (mechanizmy) architektoniczne (1)

- Taktyki dostępności
 - Wykrywanie awarii
 - Ping/Echo
 - Protokół bicia serca
 - Głosowanie
 - Replikacja
 - Wykrywanie wyjątków (ang. exception)
 - Self-test (pol. auto test)
 - Przywracanie działania
 - Aktywna i pasywna redundancja
 - Check-point / Rollback
 - Resynchronizacja stanu (przywrócenie stanu komponentu z kopii)
 - Zapas

Taktyki architektoniczne (II)

- Zapobieganie awariom
 - Wyłączenie (ang. removal from service)
 - Transakcyjność
 - Zapobieganie wyjątkom
 - Rozszerzanie zbioru kompetencji (np. dodanie warunków wykrywających wartości prowadzące do niedozwolonych operacji)
- Taktyki interoperacyjności
 - Lokalizacja
 - Odkrywanie usług (ang. service discovery)
 - Zarządzanie interfejsami
 - Orkiestracja
 - Dostosowywanie interfejsów

Taktyki (mechanizmy) architektoniczne (III)

- Taktyki modyfikowalności
 - Zwiększanie spójności komponentów
 - Ograniczanie powiązań (ang. coupling reduction)
 - Zmniejszanie wielkości modułu
 - Odkładanie przypisania wartości
 - Komunikacja przez pośrednika
- Taktyki wydajności
 - Kontrolowanie zapotrzebowania na zasoby
 - · Ograniczenie narzutów (np. warstw/komponentów pośredniczących)
 - Ograniczenie liczby obsługiwanych zdarzeń
 - Optymalizacja algorytmów
 - Zarządzanie zasobami
 - Zwiększenie ilości zasobów
 - Zrównoleglanie obliczeń
 - · Utrzymywanie wielu kopii komponentów i równoważenie obciążenia
 - Arbitraż zasobowy, szeregowanie zadań
 - Pamięć podręczna

Taktyki (mechanizmy) architektoniczne (III)

- Taktyki bezpieczeństwa
 - Wykrywanie ataków
 - Odporność na ataki
 - Identyfikacja użytkowników
 - Autentykacja i autoryzacja użytkowników
 - Szyfrowanie danych
 - Ograniczenie narażenia na ataki (ang. limit exposure)
 - Odseparowanie podsystemów
 - Reakcja na ataki
 - Ogranicz lub odbierz dostęp
 - Blokowanie przy próbie włamania
 - Wzbudź alarm informuj administratorów, etc.
 - Wznowienie po ataku
 - · Rejestracja operacji (ang. maintain audit trail)
 - Odzyskiwanie z kopii, użycie komponentu zapasowego

Wzorce architektoniczne vs. taktyki architektoniczne vs. strategia architektury

- wzorzec architektoniczny połączenie taktyk architektonicznych
- strategia architektury zbiór taktyk architektonicznych

Typowe wady architektury

- Pojedynczy punkt awarii
 - Wąskie gardło
- Nadmierna liczba powiązań
 - Niska modyfikowalność
- Niespójność (cohesion) modułu
- Rozproszenie funkcjonalności
- Zróżnicowanie (nadmierne) równoważnych komponentów

Ocena architektury.

- Umożliwia wczesne wykrycie potencjalnych zagrożeń dla systemu.
- Mamy możliwość przyjrzenia się architekturze (obrazowi) systemu, nawet przed powstaniem samego systemu – niższe koszty usuwania błędów.
- Wymierne (finansowo) korzyści z oceny architektury.

Metoda ATAM

- Architecture Tradeoff Analysis Method
- Twórcy: Rick Kazman, Mark Klein, Paul Clements (Carnegie Mellon, SEI)
- Cel: określa stopień w jakim architektura osiąga określone cele jakościowe i pozwala lepiej zrozumieć jakie są zależności między tymi celami – czyli to, jakie kompromisy (tradeoffs) pomiędzy nimi będą potrzebne.

Metoda ATAM

Metoda ATAM – kroki fazy analizy

- I. Przedstawienie metody ATAM.
- Przedstawienie celów biznesowych (business drivers).
- 3. Prezentacja architektury.
- 4. Identyfikacja zastosowanych rozwiązań konstrukcyjnych (architectural approaches).
- 5. Budowa drzewa użyteczności.
- 6. Analiza zastosowanych rozwiązań.
- Tworzenie scenariuszy metodą burzy mózgów i określenie ich priorytetów.
- 8. Analiza zastosowanych rozwiązań.
- 9. Prezentacja wyników.

- I. Przedstawienie metody ATAM.
- przedstawienie trzem grupom:
 - grupie weryfikacyjnej
 - architekci
 - kierownik zespołu oceny architektury
 - sekretarz i inni wspomagacze
 - decydentom
 - kierownik projektu IT
 - sponsor/klient/właściciel biznesowy
 - interesariuszom

- 2. Przedstawienie celów biznesowych (business drivers).
- najważniejsze funkcje systemu
- istotne ograniczenia techniczne, organizacyjne, ekonomiczne i polityczne
- cele i kontekst biznesowy
- wskazanie głównych interesariuszy
- czynniki kształtujące architekturę

- 3. Prezentacja architektury.
- krótka i zwięzła prezentacja należy zwrócić uwagę na najważniejsze aspekty architektoniczne
- przeprowadza architekt
- słuchacze wyjaśniają swoje wątpliwości zadają pytania

- 4. Identyfikacja zastosowanych rozwiązań.
- wzorce architektoniczne
- taktyki architektoniczne
- strategia architektoniczna
- decyzje architektoniczne

5. Budowa drzewa użyteczności.

- 6. Analiza zastosowanych rozwiązań.
- dokumentacja podejmowanych decyzji architektonicznych
- identyfikacja miejsc(decyzji) o szczególnym znaczeniu dla danego atrybutu jakościowego
- identyfikacja zagrożeń
- Identyfikacja miejsc wykluczenia zagrożenia
- identyfikacja miejsc kompromisu decyzja, która jest miejscem o szczególnym znaczeniu dla więcej niż jednego atrybutu jakościowego

- 7. Tworzenie nowych scenariuszy metodą burzy mózgów i określenie ich priorytetów.
- zgłaszanie nowych scenariuszy istotnych dla poszczególnych interesariuszy
- dyskusja
- ustalanie priorytetów
- wybór najważniejszych scenariuszy (może być na drodze głosowania)

- 8. Analiza zastosowanych rozwiązań (takie same czynności jak w p. 6)
- dokumentacja podejmowanych decyzji architektonicznych
- identyfikacja miejsc o szczególnym znaczeniu dla danego atrybutu jakościowego
- identyfikacja zagrożeń
- Identyfikacja miejsc wykluczenia zagrożenia
- identyfikacja miejsc kompromisu decyzja, która jest miejscem o szczególnym znaczeniu dla więcej niż jednego atrybutu jakościowego

- 9. Prezentacja wyników.
- dokumentacja rozwiązań konstrukcyjnych
- zbiór scenariuszy z procesu burzy mózgów wraz z priorytetami
- drzewo użyteczności
- rozpoznane zagrożenia
- rozpoznane zagrożenia wykluczone
- kompromisy i miejsca o szczególnym znaczeniu

Metoda ATAM - korzyści

- poprawa komunikacji pomiędzy interesariuszami
- doprecyzowanie wymagań jakościowych
- poprawienie dokumentacji architektury
- podstawy dla dokumentowania decyzji architektonicznych
- identyfikacja ryzyk we wczesnej fazie cyklu życia

Metoda ATAM na przykładzie systemu dla PKW

Metoda ATAM na przykładzie systemu dla PKW

Inne metody oceny architektury

- SAAM Scenario-based Architecture Analysis Method
- ATAM Architecture Tradeoff Analysis Method
- SAAMER SAAM for Evolution and Reusability
- SBAR Scenario-Based Architecture Reengineering

Różne metody

			1	
	SAAM	ATAM	SAAMER	SBAR
Cel	Identyfikacja ryzyk, analiza stosowalności	Analiza wrażliwości i kompromisów architektonicz- nych	Ocena architektury pod względem reużywalności	Ocena architektury pod względem osiągania atrybutów jakościowych
Atrybuty jakościowe	Głównie modyfikowal- ność	Dowolne atrybuty	Reużywalność, podatność na ewolucję	Dowolne atrybuty
Opis architektury	Widok logiczny i modułów	Widok procesów, przepływu danych, fizyczny i modułów	Widok statyczny, dynamiczny, widok zasobów	Zaimplementowana architektura
Metoda oceny	Analiza funkcjonalności i zmian	Metoda hybrydowa: kwestionariusze i metryki	Modelowanie danych i analiza scenariuszy	Wiele metod

Studium przypadku – antywirus operatora telekomunikacyjnego

- Funkcjonalność
 - Ochrona przed wirusami
 - Blokada stron z nielegalną treścią
 - Zakup/rezygnacja z usługi przez klienta
 - Generowanie i prezentacja raportów z zablokowanych ataków

Studium przypadku – antywirus operatora telekomunikacyjnego

- Skala i wydajność
 - liczba zdarzeń rozpoczęcia/zakończenia sesji
 - kilka MLN/dobę
 - w peaku tysiące/sekundę
 - liczba ataków:
 - kilkaset/klienta/dobę
 - liczba zakupów/rezygnacji:
 - normalnie kilkaset/dobę
 - w peaku kilkaset tysięcy na godzinę

Studium przypadku – antywirus operatora telekomunikacyjnego

Studiu lautoryzacja padku – antywirus operatora telekomunikacyjnego 5 raport atak Group POP NaviR ADIUS OSSRADIUS BJAS RADIUS Reg/ACCT Server Server TP Szyna EAI COMP-VAS Java BAE COMP-VAS BRAS RADIUS-ACCT LOG COMP-VAS PORTAL/SPLITER BRAS COPS Protocol SRC Portal + Spliter COMP-VAS Session Java BAE DB2 ?? COMP-VAS Activation Radius-2-BGP Engine IPS-MGNT: LOG Service Selection Portal BRAS COPS Protocol LDAP/TCP COMP-Report COMP-VAS Java BAE LDAP TCP/Reports COMP-V LDAP DB2 Sun ONE LOG USER@neostrada-2-VAS COMP-VAS COMP.VAS 2 ustawienie User TCP 3 ustawienie routingu (out) routingu (in) Group POP TCP 6 dane do raportu Group POP TCP 4 zakup/rezygnacja atakach

Literatura

Taktyki architektoniczne

http://www.sei.cmu.edu/reports/09tr006.pdf

Metoda ATAM

http://www.sei.cmu.edu/reports/00tr004.pdf