Your Name: _____ Gro

Group Members:_

Use the proofs of the following propositions as a guide.

Proposition 1. Let $a, b \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Proof Since $a \mid b$ and $b \mid c$, there exist $d, e \in \mathbb{Z}$ such that b = ae and c = bf. Combining these, we see

$$c = bf = (ae)f = a(ef),$$

so $a \mid c$.

Proposition 2. Let $a, b, c, m, n \in \mathbb{Z}$. If $c \mid a$ and $c \mid b$ then $c \mid ma + nb$.

Proof Let $a, b, c, m, n \in \mathbb{Z}$ such that $c \mid a$ and $c \mid b$. Then by definition of divisibility, there exists $j, k \in \mathbb{Z}$ such that cj = a and ck = b. Thus,

$$ma + nb = m(cj) + n(ck) = c(mj + nk).$$

Therefore, $c \mid ma + nb$ by definition.

In-class Problem 1 Prove or disprove the following statements.

- (a) If a, b, c, and d are integers such that if $a \mid b$ and $c \mid d$, then $a + c \mid b + d$.
- (b) If a, b, c, and d are integers such that if $a \mid b$ and $c \mid d$, then $ac \mid bd$.
- (c) If a, b, and c are integers such that if $a \nmid b$ and $b \nmid c$, then $a \nmid c$.

In-class Problem 2 Construct a truth table for $A \to B$, $\neg(A \to B)$ and $A \land \neg B$

Solution:

A	B	$A \Rightarrow B$	$\neg(A \Rightarrow B)$	$A \wedge \neg B$
Τ	Τ	Τ	F	F
Τ	F	F	${ m T}$	${ m T}$
\mathbf{F}	Τ	Τ	\mathbf{F}	F
\mathbf{F}	F	Т	\mathbf{F}	F

In-class Problem 3 Prove that our two definitions of even are equivalent using the following outline:

Proposition 3. Let $n \in \mathbb{Z}$. Then there is some $k \in \mathbb{Z}$ such that n = 2k if and only if $2 \mid n$.

Proof (\Rightarrow) Let $n \in \mathbb{Z}$. Assume that there is some $k \in \mathbb{Z}$ such that n = 2k. Thus, $2 \mid n$

Free Response: by definition of divides.

 (\Leftarrow) Let $n \in \mathbb{Z}$. Assume that $2 \mid n$. Then, there is some $k \in \mathbb{Z}$ such that n = 2k

Free Response: by definition of divides.

In-class Problem 4 Prove that our two definitions of odd are equivalent using the following outline:

Proposition 4. Let $n \in \mathbb{Z}$. Then there is some $k \in \mathbb{Z}$ such that n = 2k + 1 if and only if $2 \nmid k$.

Proof (\Rightarrow) Let $n \in \mathbb{Z}$. Assume that there is some $k \in \mathbb{Z}$ such that n = 2k + 1. Then

Free Response: by the division algorithm, there exists unique $q, r \in \mathbb{Z}$ such that n = 2q + r and $0 \le r < 2$.

Thus, $2 \nmid k$.

 (\Leftarrow) Let $n \in \mathbb{Z}$. Assume that $2 \nmid k$. Then

Free Response: by the division algorithm, there exists unique $q, r \in \mathbb{Z}$ such that n = 2q + r and 0 < r < 2. Thus, r = 1.1

Learning outcomes:

Author(s): Claire Merriman

Thus, there is some $k \in \mathbb{Z}$ such that n = 2k + 1.