Report File

$\underline{\mathsf{Assignment}-1}$

Name: Shivani Panchiwala

UTA ID: 1001982478

Subject: CSE 6363 – 001

Prof.: Alex Dillhof

The Iris flower data set (https://en.wikipedia.org/wiki/Iris_flower_data_set)

Linear_Regression:

Mean Absolute Error: 0.2112698081154823 Mean Squared Error: 0.061480291624700444 Mean Root Squared Error: 0.24795219624899564

<u>Linear_Regression_Training_Plot:</u>

The training data set is split into batches of 32 each. Twelve different linear models are traine d through these batches. Below are the plots for all twelve models (errors Vs count).

Testing output for linear regression:

Model	Mean Square Error
petal width (cm) - petal length (cm)	0.6598947541848104
petal width (cm) - sepal width (cm)	0.6513834504778802
petal width (cm) - sepal length (cm)	3.445981819678912e+38
petal length (cm) - sepal width (cm)	0.5331846195224962
petal length (cm) - sepal length (cm)	1.430325304763975e+188
sepal width (cm) - sepal length (cm)	4.7133499587031526e+120
sepal length (cm) - sepal width (cm)	6.515512196690499e+118
sepal length (cm) - petal length (cm)	1.5269938906242933e+187
sepal length (cm) - petal width (cm)	2.753666489012849e+38
sepal width (cm) - petal length (cm)	0.5331846195224962
sepal width (cm) - petal width (cm)	0.651383461548725
petal length (cm) - petal width (cm)	0.6307815293491975

L2 regularization in Linear regression training:

Below are the outputs when a specific model was trained with L2-regularized and non-regularized weights:

```
Weight with regularization : [0.36919318\ 0.17167277] and error : 54.094\ 55229689472 Weight without regularization : [1.38608699\ -0.13016192] and error : 54.05265734237033
```

Classification:

1) <u>Linear Discriminant Analysis:</u>

LDA vs PCA Plotting the graph:

Accuracy:

precision	recall	f1-score	support	
0 1 2	1.00 1.00 1.00	1.00	1.00 1.00 1.00	6 5 4
accuracy macro avg weighted avg	1.00		1.00 1.00 1.00	15 15 15

Confusion matrix for LDA [[6 0 0] [0 5 0] [0 0 4]] accuracy_LDA: 1.000 precision_LDA: 1.000

recall_LDA: 1.000 f1-score_LDA: 1.000

Mean Absolute Error: 0.0 Mean Squared Error: 0.0 Mean Root Squared Error: 0.0

LDA Training_Plot:

The training data set is split into batches of 32 each. Six different linear models are trained thr ough these batches. Below are the plots for all six models (errors Vs count).

Testing output for LDA:

Model	Mean Square Error
sepal length (cm) - sepal width (cm)	1.903377955164063e+121
sepal length (cm) - petal length (cm)	2.1189393264193424e+188
sepal length (cm) - petal width (cm)	3.112995613395727e+38
sepal width (cm) - petal length (cm)	0.5331846195224962
sepal width (cm) - petal width (cm)	0.6513834730456635
petal length (cm) - petal width (cm)	0.7388076337868977

2) <u>Logistic Regression Training Plot:</u>

The training data set is split into batches of 32 each. Six different linear models are trained thr ough these batches. Below are the plots for all six models (errors Vs count).

Accuracy:

precision	recall	f1-score	e suppor	t	
0 1 2	. 1			1.00 1.00 1.00	4 5 6
accuracy macro avo weighted avo	1			1.00 1.00 1.00	15 15 15
Confusion ma [[4 0 0] [0 5 0] [0 0 6]] accuracy_Log precision_Lo recall_Logis f1-score_Log	gistic Reo ogistic Ro stic Regro	gression egression ession: 1	: 1.000 n : 1.000	on	
Mean Absolute Error: 0.0 Mean Squared Error: 0.0 Mean Root Squared Error: 0.0					

Testing output for Logistic Regression:

Model	Mean Square Error
petal width (cm) - petal length (cm)	3.6674620490145204
petal width (cm) - sepal width (cm)	2.7653218571175806
petal width (cm) - sepal length (cm)	3.512663580375092
petal length (cm) - sepal width (cm)	3.518767591473467
petal length (cm) - sepal length (cm)	3.5
sepal width (cm) - sepal length (cm)	3.5

3) Naive Bayes:

Naive Bayes Training Plot:

The training data set is split into batches of 32 each. Six different linear models are trained through these batches. Below are the plots for all six models (errors Vs count).

Accuracy:

	pre	ecision	recall	f1-score	suppor	t
	0	1.00	1.0	00 1	.00	3
	1	0.89	1.0	0 0 0	.94	8
	2	1.00	0.	75 0	.86	4
accui	cacy			0	.93	15
macro	avg	0.96	0.9	92 0	.93	15
weighted	avg	0.94	0.9	93 0	.93	15

Confusion matrix for Naive Bayes

[[3 0 0] [0 8 0]

[0 1 3]]

accuracy_Naive Bayes: 0.933
precision_Naive Bayes: 0.933
recall_Naive Bayes: 0.933
f1-score_Naive Bayes: 0.933

Mean Absolute Error: 0.0666666666666667 Mean Squared Error: 0.0666666666666667 Mean Root Squared Error: 0.2581988897471611

Testing output for Naive Bayes:

Model	Mean Square Error
sepal length (cm) - sepal width (cm)	1.1662961729052648e+133
sepal length (cm) - petal length (cm)	1.340318424194045e+163
sepal length (cm) - petal width (cm)	9.940774082215085e+36
sepal width (cm) - petal length (cm)	0.6810111671779693
sepal width (cm) - petal width (cm)	0.30087984678313295
petal length (cm) - petal width (cm)	0.3335154084751074

Classification Accuracy:

Classification	Accuracy
LDA	1.00
Logistic Regression	1.00
Navie Bayes	0.933

Based on Classifier Accuracy Linear Discriminate Analysis and Logistic Regression has 100% accuracy.

References:

https://stackoverflow.com/questions/43159754/datasets-load-iris-in-python

https://stackoverflow.com/questions/464864/how-to-get-all-possible-combinations-of-alist-s-elements

https://www.codegrepper.com/code-

examples/python/X_train%2C+X_test%2C+Y_train%2C+Y_test+%3D+train_test_split%28X% 2CY%2Ctest_size%3D0.25%2C+random_state%3D123%29

https://stackoverflow.com/questions/3584805/in-matplotlib-what-does-the-argument-mean-in-fig-add-subplot111

https://stackoverflow.com/questions/66902973/using-matplotlib-to-draw-i-use-ax-setxlabelx-and-ax-set-ylabely-to-set

https://stackoverflow.com/questions/9603230/how-to-use-matplotlib-tight-layout-withfigure

https://gist.github.com/nuzrub/f1527654572b3e2da5125d0581e7bdad

https://www.codegrepper.com/code-

examples/python/how+to+calculate+mean+squared+error+in+python

https://realpython.com/gradient-descent-algorithm-python

https://numpy.org/doc/stable/reference/random/generated/numpy.random.uniform.html

https://data-flair.training/blogs/train-test-set-in-python-ml/

https://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html

https://towardsdatascience.com/classification-basics-walk-through-with-the-iris-data-setd46b0331bf82

https://hands-on.cloud/implementation-of-linear-discriminant-analysis-lda-using-python/

https://www.statology.org/linear-discriminant-analysis-in-python/

https://medium.com/@kgpvijaybg/logistic-regression-on-iris-dataset-48b2ecdfb6d3

https://medium.com/analytics-vidhya/linear-regression-using-iris-dataset-hello-world-of-machine-learning-b0feecac9cc1

https://sa2253.medium.com/classification-of-iris-dataset-b4310ddf0482

https://hands-on.cloud/implementation-of-linear-discriminant-analysis-lda-using-python/

https://towardsdatascience.com/classification-basics-walk-through-with-the-iris-data-set-d46b0331bf82

https://www.kaggle.com/code/vinayshaw/iris-species-100-accuracy-using-naive-bayes/notebook