Film Recommendation System

Group name: By a time zone united

Name: Olena Panchenko

Email: hel.panchenko@gmail.com

Country: United Kingdom

College/Company: Taras Shevchenko National University of Kyiv

Specialisation: Data Science

Link: https://github.com/helenapanchenko/DS Internship Glacier/tree/master/Week7

Problem Description

The video-on-demand streaming service is looking to develop a machine learning algorithm that can predict which movies a user will enjoy based on various factors such as genre, online ratings, and previous decisions. The primary objective is to create a system for movie recommendations.

Business understanding

Objective: The goal of our team is to create a personalized movie recommendation system that enhances user engagement, satisfaction, and retention. Below is a list of key stakeholders who would benefit from this model:

Key Stakeholders:

- 1. **Users**: Consumers of streaming platforms who seek personalized content recommendations to discover new titles and highly rated movies aligned with their interests and preferences.
- 2. **Streaming Platforms**: Any streaming platform aiming to increase user satisfaction, retention, and overall consumption by offering accurate and effective content recommendations.

Scope:

- Our recommendation system will leverage the data from "https://grouplens.org/datasets/movielens/latest/". This dataset consists of 6 files with different features which include but are not limited to movie titles, tags, ratings, genres, users, etc.
- Machine learning algorithms and collaborative filtering techniques will be used on movie ratings and user preferences, to generate personalized recommendations.
- The system will operate across web and mobile to ensure a seamless user experience.

Key Functional Requirements:

- **User Profiling**: Develop profiles for individual users based on their viewing history and ratings
- **Movie Representation**: Here we are going to analyse content attributes such as genre and tags to accurately represent each title in the recommendation system.
- **Recommendation Generation**: We would employ algorithms such as collaborative filtering, content-based filtering, and hybrid models to generate personalised recommendations for users.
- **Real-Time Updates**: We would implement mechanisms to continuously update user profiles and recommendations based on new ratings and movie additions.
- Feedback Mechanism: We would enable users to provide explicit feedback (ratings, likes, dislikes) to refine future recommendations and improve algorithm performance.

Key Non-Functional Requirements:

- **Scalability**: We will make sure the system can handle a growing user base and a vast library of content without compromising performance.
- **Accuracy**: We will aim for high accuracy in recommendation predictions to enhance user satisfaction.
- **Privacy**: We will implement robust privacy measures to protect user data and comply with relevant regulations (e.g., GDPR, CCPA).
- **Responsiveness**: We will deliver recommendations promptly, minimizing latency to enhance the user experience across different devices and network conditions.

Success Metrics:

- **Retention Rate**: We will monitor the percentage of users who continue their subscription on streaming platforms that will utilize our recommendation system over time, indicating the effectiveness of personalized recommendations in retaining customers.
- Click-Through Rate (CTR): We will evaluate the percentage of users who click on recommended titles, indicating the relevance and appeal of the recommendations.
- **User Satisfaction Surveys**: We will conduct periodic surveys to gather feedback on the recommendation system's performance and user satisfaction levels.
- Content Consumption Diversity: We will assess the variety of content consumed by users, aiming to ensure recommendations promote exploration and discovery across different genres.

Project life cycle

Business Understanding
Data Acquisition and Understanding
Data Cleaning and Processing
March - 2 April

Exploratory Data Analysis
EDA Presentation
Model Building and Evaluation
Project Presentation
24-30 April

Data Intake Report

Name: Film Recommendation System

Report date: 2024-03-19 Internship Batch: LIMSUM30

Version: 1.0

Data intake by: Daniel Emakporuena, Olena Panchenko, Tehesuma Imoro

Data intake reviewer: Data Glacier

Data storage location:

https://drive.google.com/file/d/1A5E6BSvJIdENAn2f2DUn-mKKBEw32ruK/view?usp=drive_li

<u>nk</u>

Tabular data details: genome-scores

Total number of observations	18472128
Total number of files	1
Total number of features	3
Base format of the file	.csv
Size of the data	497 MB

Tabular data details: genome-tags

Total number of observations	1128
Total number of files	1
Total number of features	2
Base format of the file	.CSV
Size of the data	17.6 KB

Tabular data details: links

Total number of observations	86537
Total number of files	1
Total number of features	3
Base format of the file	.csv
Size of the data	1.83 MB

Tabular data details: movies

Total number of observations	86537
Total number of files	1
Total number of features	3
Base format of the file	.csv
Size of the data	3.99 MB

Tabular data details: ratings

100000000000000000000000000000000000000	
Total number of observations	33832162
Total number of files	1
Total number of features	4
Base format of the file	.CSV
Size of the data	1.44 GB

Tabular data details: tags

Total number of observations	2328315
Total number of files	1
Total number of features	4
Base format of the file	.csv
Size of the data	81.4 MB