MIS 744 Team #5-Greasigma

CHEN, QIUYE(ROGER)

LEE, JAY

SHIN, TAEKYOO

WUERTH, DANIEL

YURCHENKO, DMITRIY

Agenda

- Objectives
- Problem-solving
- ▶ PDCA cycle
- ▶ CE diagram
- Flowchart
- Data analysis
- 5 Potential Tools
- Balanced Scoreboard
- Muda
- ▶ 5 Whys
- Kaizen
- ▶ SIPOC
- Conclusions

Objectives

- ▶ In order to improve the quality of Mesa products and satisfy our customers, we need to emphasize on three aspects for continuous improvement such as stakeholders improvement, product/service improvement and process improvement.
- We will introduce Baldrige quality management process and ISO9000 into our Mesa products.
- We will manipulate PCDA cycle, Six sigma, CE diagram, Flowchart, Data analysis and Kaizen to improve quality issues and productivity.
- We will keep training our stakeholders to reduce human error.

PDCA

<u>Plan</u>

- Reduce rework time of over-pressurized cans by 50%
- Ensure all fill equipment technicians receive equipment training within 1 week of starting work as well as every
- 6 months after that
- Ensure fill equipment is regularly calibrated every 2 months

Do

- Install live monitoring pressure gauges on filling equipment
- Take pressure readings after each can is filled
- Schedule initial and semi-annual regular technician equipment training
 - Schedule regular calibration maintenance for fill equipment

Act

- Perform investigative root cause analysis on machines with unusually high over-pressurization rates
- Technicians with high rates of overpressurization will be required to attend a corrective action seminar on the equipment

Check

- Tabulate number of cans that were overpressurized per machine along with their corresponding rework time and which technician was working the equipment
- Establish any correlations between can overpressurization and either a particular machine, a particular technician or a combination of both

Cause/Effect Diagram

Cause Effect

Machinery

filler (automated)

needs to be replaced? (Lynn) purchased 2 years ago, but was never put through buy-off process?

filler head

not designed for this machine or aplication no critical spares or studies on lifespan or usage

Process

PMs/Work Order MGMT

12 open work orders

No standard settings: conflicting accounts of proper settings

removal of tags

what existing process allows for removal of tags without formal disposition? no area to move discrepant part to and contain no notification process

Production is behind- running 50% taking shortcuts to catch up

Inspection regime too lenient (caught1/2way through shift)

Workforce

Culture of Delivery as #1 priority
Darcy- lack of leadership skill

Chris- shortcuts with impunity

Lack of training

Pat Brown- 2 weeks, no training

Chris-quality training

quality culture

quality is not everyone's resposibility

filler head requires sourcing

new design causes issues

nozzles

burrs from vendor vendor process, expedite

Material/Tooling

lack of long term planning

small issues are ignored no follow through

lack of preventive maintenance

new grip (issues/benefits)

lack of discussion/analysis

Environment

everyone taking shortcuts

Lack of foresight
no PM
little planning

stopping to do the right thing

Production is king

chris gets production out the door - Sandy

no focus on first time through

Leadership

Potential Escape: Cans over-filled (potential safety and quality issue)

Flowchart

Data Analysis- PSI Histogram

PSI for 104 Cans from Current Process

Data Analysis-Teamwork Box Plot

Employee Function and Teamwork Perceptions

Data Analysis- Teamwork ANOVA

Employee Function and Teamwork Perceptions (Cont')

Anova: Single Factor						
SUMI	MARY					
Groups	Corumt	Sum	Avierage	Variance		
1	23	1283	35.78261	102,4506		
2	19	959	50.47368	17.81871		
3	13	650	50	37.16067		
4	17	810	47.64706	26.24265		
.5	19	922	48.52682	28,7076		
6	9	412	45.77778	19.44444		
ANOVA						
Source of Variation	55	df	MS	F	P-value	Fortt
Between Groups	1006.215	5	211.2431	4.828032	0.000566	2.31127
Within Groups	4112.825	94	43.75345			
Total	5169.04	99				

P-value = 0.000566

Reject Null

At least one employee function performs significantly different than the rest

Data Analysis- Market Response

Marketing Research Data – Customer Rating

Balanced Scorecards

- ▶ Balanced Scorecard- "A management system that provides feedback on both internal business processes and external outcomes to continuously improve strategic performance and results" R. Munro, G. Ramu, D. Zrymiak, The Certified Six Sigma Green Belt Handbook
- Gives a strategic view and ensures focus and actions meet both customer and business needs
- Displays measures from four business perspectives:
 - > Financial
 - > Customer
 - > Internal processes
 - > Employee learning and growth

Balanced Scorecard- 4 Perspectives

- Financial- What actions should we take to generate sustainable revenue and profits?
- Internal Business Processes- What should our measures of productivity, quality and efficiency be in order to achieve success? How are we performing against those targets?
- Customers- What does the customer require and how are we performing to meet these requirements?
- Employee Learning and Growth- What actions are we taking toward employee engagement and professional development? Are they effective in improving performance?

Balance is the key. All perspectives of the business are considered as they impact one another.

Balanced Scorecard Applied to Strategy

From Strategy

To Actions

MUDA- The seven wastes in manufacturing

1. Overproduction

Manufacture an item before it is actually required.

2. Waiting

Whenever goods are not moving or being processed, the waste of waiting occurs.

3. Transporting

Excessive movement and handling cause damage and are an opportunity for quality to deteriorate.

4. Inappropriate Processing

 Often termed as "using a sledgehammer to crack a nut," many organizations use expensive high precision equipment where simpler tools would be sufficient.

5. Unnecessary Inventory

Excess inventory tends to hide problems on the plant floor, which must be identified and resolved in order to improve operating performance.

6. Unnecessary/Excess Motion

This waste is related to ergonomics and is seen in all instances of bending, stretching, walking, lifting, and reaching.

7. Defects

 Having a direct impact to the bottom line, quality defects resulting in rework or scrap are a tremendous cost to organizations.

Muda-Applied to Mesa Products Case

- Inappropriate Processing
 - ▶ Product line not customized for specific use
- Defects
 - ► Lack of systematic approach to handle defects

5 Whys

The "5 Whys" Analysis is an investigative technique used to explore a particular issue's cause-and-effect relationships, with an end goal of getting to the <u>root cause</u> of the original issue.

The immediate cause of the issue is rarely the root cause. Therefore, if the root cause is not properly identified, corrective action and resources could be wasted on a solution that will eventually fall victim to the same root cause.

Kaizen

Identify Waste

Plan Counter-measures

Start here Do it again Celebrate

Document Reality Make this the Standards

- ▶ What is Kaizen?
 - ▶ 改 Kai = change
 - ▶ 善 Zen = good
 - Kaizen = Continuous Improvement
- ▶ Principles
 - ▶ Team process
 - Clear objectives
 - Quick and simple, action first
 - Tight focus on time (one week)
 - Necessary resources available right away
 - Immediate results (new process function by end of week)

Kaizen Cycle

Measure Results

Verify Change

Reality Check Make Changes

Kaizen – Problem Solving (Greasex case)

- Select a bottleneck situation
 - high pressured can → reduce productivity
- Understand the "Current State" of the bottleneck
 - plastic nozzle heads is not fit well or automated filling equipment is not forgreasex
- Brainstorm the "Future State" to set improvement goals
 - Need to solve high pressure problem
- Implement within the five days
- Then use the 30 day opportunity log to finish up any items requiring more time

SIPOC

- High level map of process
- Tool used to inform whole team what the processes in relation to all need inputs, outputs, and suppliers
- Implemented during Define or Measure stage of DMAIC

How Does SIPOC Help?

- Identifies the potential gaps (deficiencies) between
 - suppliers and input specifications
 - Outputs specifications and customer expectations
- How is this given process servicing the customer?
- Helps clearly understand the purpose and scope of the process

Healthcare Example

Prepared By:	Date:
Sue Jordan	11/29/2011
Project:	
Reduce Claims Cycle Time	

Suppliere	Inputs			
	Description	Requirements		
Hospitals	Medical claim	Completeness		
QA	QA completeness stamp	Date/time stamped		

Process
deims package
r completeness
claim
r to mainframe
all claims at ift
r data errors
check
confirmation e-
֡

0	Customers		
Description	Requirements	-	
Payment check	Accurate amount	Hospitals	
Supercular v	Timeliness	1	
Confirmation email	Timeliness	Hospitals	
Claim data	No errors or missing data	IT.	

Alternatives of SIPOC

COPIS

- Identify customer first then outputs
- Working backwards until all suppliers are identified

PISOC

- Easier with larger team
- Start with process, easier to identify and already know
- Inputs going into this process

Stage 1 Conclusions

- Several Tools, such as Kaizen, 5 Whys, Muda and SIPOC could be useful in correcting this specific issue
- Balanced Scorecards could help the organization at a strategic level, but not with this specific issue
- More data need to be collected and analyzed
 - What the appropriate range of pressure for cans is
 - What metrics are used to measure "Teamwork"
 - Pressure data over constant long period of time (at least 1 month) for each pressure filling machine

Stage 2- Data Analysis

PSI Basic Data Analysis Comparison(Stage I Vs. Stage II)

	Stage i	Stage II
Number of Observations	104	124
Sample P90	35.0000	35.0000
Sample P75	33.0000	33.0000
Sample P50 (median)	31.0000	31.0000
Sample P25	28.0000	28.0000
Sample P10	27.0000	27.0000
Sample Mean	30.7308	30.7177
Maximum Value	40.0000	39.0000
Minimum Value	23.0000	24.0000
Sample variance	9.9951	9.3099
Sample standard deviation	3,1599	3.0512
Skewness at alpha = .05	No Significant Skewness	No Significant Skewness
Kurtosis at alpha = .05	No Significant Kurtosis	No Significant Kurtosis
2-tailed t-test critical Vs. probability	±1.9832 Vs. 0.0202 (Reject Ho)	±1.9794 Vs. 0.0099 (Reject Ho)
	Min: 24.4109	Min: 24.6153
2-SD Rule (includes at least 75% of cases)	Max: 37.0506	Max: 36.8202
3-SD Rule (includes at least 88.9% of	Min: 21.2510	Mirc 21.5641
cases)	Max: 40.2105	Max: 39.8714
Data Boundaries: 1.96 (includes 95% of	Min: 24.5374	Min: 24.7376
cases, if normal)	Max: 38.9241	Max: 36.6980
Data Boundaries: 2.58 (includes 99% of	Min: 22.5914	Min: 22.8583
cases, if normal)	Max: 38.8702	Max: 38.5772
Mean Boundaries: 95% Confidence	Min: 30.1162:	Min: 30.1754
Interval (alpha at 0.05)	Max: 31,3453	Max: 31.2601
Mean Boundaries: 99% Confidence	Min: 29.9176	Min: 30.0008
Interval	Max: 31.5440	Max: 31.4347

PSI Stage 2 Run Chart (X-Chart)

PSI Raw Data Distribution Stage 1 vs. Stage 2

PSI Data Stage1 Raw Score Cutoffs for Various Zones				PSI Data Stage2 Raw Score Cutoffs for Various Zones					
Distance from Mean	Mean +/− k Standard Deviations	Cutoffs			Distance from Mean	Mean +/- k Standard Deviations	Cutoffs		
+3 Sigma	Mean + 3 SD	40.2105			+3 Sigma	Mean + 3 SD	39.8714		
+2 Sigma	Mean + 2 SD	37.0506			+2 Sigma	Mean + 2 SD	36.8202		
+1 Sigma	Mean + 1 SD	33.8907			+1 Sigma	Mean + 1 SD	33.7690		
Mean	Mean	30.7308			Mean	Mean	30.7177	1	
−1 Sigma	Mean - 1 SD	27.5709			−1 Sigma	Mean - 1 SD	27.6665		
−2 Sigma	Mean - 2 SD	24.4109			−2 Sigma	Mean - 2 SD	24.6153		
−3 Sigma	Mean - 3 SD	21.2510			−3 Sigma	Mean - 3 SD	21.5641		
	Distribution of Values withi	n Zones			Distribution of Values within Zones				
Zone		Count	% of Total	Cumulative	Zone		Count	% of Total	Cumulative
Beyond +3 Sigma	Between +3 Sigma and +∞	0	0.00	0	Beyond +3 Sigma	Between +3 Sigma and +∞	0	0.00	0
Α	Between +2 Sigma and +3 Sigma	2	1.92	2	Α	Between +2 Sigma and +3 Sigma	3	2.42	3
В	Between +1 Sigma and +2 Sigma	15	14.42	17	В	Between +1 Sigma and +2 Sigma	17	13.71	20
С	Between the Mean and +1 Sigma	37	35.58	54	С	Between the Mean and +1 Sigma	44	35.48	64
С	Between the Mean and -1 Sigma	36	34.62	90	С	Between the Mean and -1 Sigma	43	34.68	107
В	Between -1 Sigma and -2 Sigma	12	11.54	102	В	Between -1 Sigma and -2 Sigma	15	12.10	122
Α	Between -2 Sigma and -3 Sigma	2	1.92	104	Α	Between -2 Sigma and -3 Sigma	2	1.61	124
Beyond −3 Sigma	Between -3 Sigma and -∞	0	0.00	104	Beyond −3 Sigma	Between -3 Sigma and -∞	0	0.00	124

PSI Data One-sample t-test Stage 2

- \blacktriangleright μ_0 : Target CAN pressure = 30 PSI (hypothesized mean)
- \rightarrow n = 124, df = 123
- \rightarrow x-bar = 30.7177 (observed mean), s = 3.0512
- ► H_0 : x-bar = μ_{0} , H_a : x-bar $\neq \mu_0$
- $t = \frac{\bar{x} \mu_0}{s / \sqrt{n}} = 2.6194$
- a = 0.05 (2-tailed critical value = 1.9794)
- ▶ Reject H₀

Conclusion: The observed mean and hypothesized mean from Stage 2 PSI data are statistical significant different from each other

PSI Data Two-sample Independent t-test Stage 1 vs. Stage 2

Two-directional F-test for homogeneity of variance				
Lower and upper computed F-values	0.9324	1.0725		
Lower and upper critical F-values	0.6914	1.4463		

Conclusion: The sample means and variance from Stage 1 PSI data and Stage 2 PSI data are not statistical significant different from each other

Pooled standard error of the differences	0.4124	
Unpooled standard error of the differences	0.4136	
Two-sample independent t-test based on pooled SE term	0.0316	
df	226.0000	
Critical t-value	±1.9705	
2-tailed computed probability	0.9748	
Decision regarding test for means	Fail to reje	ct Ho

PSI Stage 2 SPC and Process Capability Analysis

Results - Part 2 - Process Capability			
Number of Subgroups (Rows) = 31			
	X-Bar Chart		
LCL	Center	UCL	
26.2731935	30.7177419	35.1622903	

Number of Subgroup Means Outside Control Limits							
			Percent Outside				
# Below LCL	# Above UCL	# Outside	Limits				
0	0	0	0.000%				
Numb	er of Subgroup Rang	es Outside Contro	Limits				
			Percent Outside				
# Below LCL	# Above UCL	# Outside	Limits				
0	1	1	3.226%				
Number of Individual Observations Outside 2 Sigma Limits							

Conclusion: According to Stage 2 PSI data, we are currently still at 3 sigma level

N	Number and Percent of Observed Values Beyond Specifications					
# 1	Below LSL	# Above USL	# Outside			
	0	0	0			
Perce	ent Below LSL	Percent Above USL	Percent Outside Limits			
(0.00000%	0.00000%	0.00000%			
Numbe	Number of Expected Values Beyond Specifications (Assuming Normality)					
Per	-3.0000 cent for LSL ning Normality	z-score for USL 3.0000 Percent for USL Assuming Normality	Expected Percent of Observations Outside Specification Limits Assuming Normality			
(0.13499%	0.13499%	0.26998%			
	I below LSL ning Normality	PPM above USL Assuming Normality	PPM outside Specification Limits Assuming Normality			
	1349.91	1349.89	2699.80			

3.051217		Pop SD = 3.038889	
1.000000		Cp = 1.004057	
0.000001		K = 0.000001	
0.000001		Abs K = 0.000001	
0.999999	min	Cpk = 1.004056	min
1.000001	max	Cpk = 1.004058	max
0.999999		Cpk = 1.004056	
The Cpk needs to b	e: To obtain t	this Cpk level, the SD must be to or less than:	e equa
2.000	000	1.	52560
1.666	667	1.	83072
1.500	000	2.	03414
1.333	333	2.	28841
1.166	667	2.	61532
1.000	000	3	.05121
1.000			
	1.000000 0.000001 0.000001 0.999999 1.000001 0.999999 The Cpk needs to b 2.000 1.666 1.500 1.333	1.000000 0.000001 0.000001 0.999999 min 1.000001 max 0.999999 The Cpk needs to be: To obtain 1 2.000000 1.666667 1.500000 1.333333 1.166667	1.000000

Based on Population Parameters

Based on Sample Statistics

PSI Stage 2 X-Bar and R Charts

Trai	nslation of	Time Inte	rval
1	Day 1	Shift 1	8:00
2	Day 1	Shift 1	9:00
3	Day 1	Shift 1	10:00
4	Day 1	Shift 1	11:00
5	Day 1	Shift 1	12:00
6	Day 1	Shift 1	13:00
7	Day 1	Shift 1	14:00
8	Day 1	Shift 1	15:00
9	Day 1	Shift 2	17∙∩∩

Conclusions:

- The starting time intervals of the days are good
- Poorer results toward the last three intervals of the day
 - The last intervals are the worst

PSI Data Stage2 One-way ANOVA Between Days

	Results											
Group Names	Group No.	Count	df	Mean	S.D.	Variance	SS					
Day1	1	60	59	30.8167	2.8730	8.2540	486.9833					
Day2	2	64	63	30.6250	3.2293	10.4286	657.0000					
Total	Total	124	123	30.7177	3.0512	9.3099	1145.1210					

	Analysis of Variance (ANOVA) Test to Compare Means											
ANOVA Table												
Source of Variation Omnibus Omnibus Omnibus Omnibus Computed F Omnibus Omnibus Critical F Omnibus Computed F Omnibus Critical F Computed F												
Among	1	1.1376	1.1376	0.1213	3.9188	0.7282	Fail to reject Ho					
Within	122	1143.9833	9.3769									
Total	123	1145.1210	9.3099									

Hypothesis: Ho: mean(psi)_day1 = mean(psi)_day2 vs. Ha: mean(psi)_day1 ≠ mean(psi)_day2

Conclusion: Fail to reject Ho, the sample means from day1 and day2 are not statistical significantly different from each other at $\alpha=0.05$ level

PSI Data Stage2 One-way ANOVA Between Day-time Shifts and Night-time Shifts

	Results											
Group Names	Group No.	Count	df	Mean	S.D.	Variance	SS					
Day-time Shift	1	64	63	30.8438	2.6976	7.2768	458.4375					
Night-time Shift	2	60	59	30.5833	3.4063	11.6031	684.5833					
Total	Total	124	123	30.7177	3.0512	9.3099	1145.1210					

	Analysis of Variance (ANOVA) Test to Compare Means											
ANOVA Table												
Source of Variation Omnibus Omnibus Omnibus Omnibus Computed F Omnibus Omnibus Critical F Computed F Omnibus Critical F Computed F Computed F												
Among	1	2.1001	2.1001	0.2242	3.9188	0.6367	Fail to reject Ho					
Within	122	1143.0208	9.3690									
Total	123	1145.1210	9.3099									

Hypothesis: Ho: mean(psi)_day-time shifts = mean(psi)_night-time shifts vs. Ha: mean(psi)_day-time shifts ≠ mean(psi)_night-time shifts

Conclusion: Fail to reject Ho, the sample means from day-time shifts and night-time shifts are not statistical significantly different from each other at $\alpha = 0.05$ level

PSI Data Stage2 Treatment-by-Subjects ANOVA

	PSI Data Stage2 Treatment-by-Subjects ANOVA										
Treatment-by-Subjects ANOVA (i.e., Randomized Blocks Design)											
Source of Variation	P-value	Critical F-Value Based on User- Determined Alpha	Decision								
Rows (Subjects)	30	286.3710	9.5457	1.0513	0.4139	1.5859	Fail to Reject Ho				
Columns (Treatments)	3	41.5726	13.8575	1.5262	0.2131	2.7058	Fail to Reject Ho				
Error (Interaction)	90	817.1774	9.0797								
Total	123	1145.1210									
Homogene	eity of Variance (Red	quires More than 2	Groups)				_				
Bartlett's Chi-Square Test for Homogene	eity of Variance C Correlations or D		s Across Columns V	Vithout Regard to							
Bartlett's Chi-Square Test for Homogeneity of Variance	Degrees of Freedom for Chi- Square Test	Critical Chi- Square Value	Computed Probability	Decision Regarding Ho							
0.0679	3	7.8147	0.9954	Fail to reject Ho							

Note:

Subjects: PSI among one sample

Treatments: the 4 cans

According to our data from **31** total time intervals from previous page.

Hypothesis: Ho: mean_1 = mean_2 = ... = mean_i for i = 1,2,...31 vs. Ha: Not all means are equal.

Conclusion: Fail to reject Ho. There is no statistical significant difference between the 31 time intervals at $\alpha = 0.05$ level

Hypothesis: Ho: mean_1 = mean_2 = ... = mean_i for i = 1,2,3,4 vs. Ha: Not all means are equal.

Conclusion: Fail to reject Ho. There is no statistical significant difference between the 31 time intervals at $\alpha = 0.05$ level

PSI Data Stage 2 Two-Way ANOVA

Can Number

Category								
Names	Row	Column	Count	df	Mean	S.D.	Variance	SS
1, 1	Day1 Shift1	Can #1	8.0000	7.0000	31.0000	3.1168	9.7143	68.0000
1, 2	Day1 Shift1	Can #2	8.0000	7.0000	30.7500	3.1510	9.9286	69.5000
1, 3	Day1 Shift1	Can #3	8.0000	7.0000	31.2500	1.5811	2.5000	17.5000
1, 4	Day1 Shift1	Can #4	8.0000	7.0000	30.6250	3.0208	9.1250	63.8750
2, 1	Day1 Shift2	Can #1	7.0000	6.0000	30.1429	2.6095	6.8095	40.8571
2, 2	Day1 Shift2	Can #2	7.0000	6.0000	30.2857	2.8702	8.2381	49.4286
2, 3	Day1 Shift2	Can #3	7.0000	6.0000	31.5714	3.9097	15.2857	91.7143
2, 4	Day1 Shift2	Can #4	7.0000	6.0000	30.8571	3.5322	12.4762	74.8571
3, 1	Day2 Shift1	Can #1	8.0000	7.0000	31.1250	2.7999	7.8393	54.8750
3, 2	Day2 Shift1	Can #2	8.0000	7.0000	30.7500	2.4349	5.9286	41.5000
3, 3	Day2 Shift1	Can #3	8.0000	7.0000	32.3750	2.9246	8.5536	59.8750
3, 4	Day2 Shift1	Can #4	8.0000	7.0000	28.8750	2.1002	4.4107	30.8750
4, 1	Day2 Shift2	Can #1	8.0000	7.0000	28.2500	3.4538	11.9286	83.5000
4, 2	Day2 Shift2	Can #2	8.0000	7.0000	30.5000	4.1057	16.8571	118.0000
4, 3	Day2 Shift2	Can #3	8.0000	7.0000	31.5000	3.6645	13.4286	94.0000
4, 4	Day2 Shift2	Can #4	8.0000	7.0000	31.6250	3.0208	9.1250	63.8750

	Main Effects: Rows											
Category Names	Rows	Count	df	Mean	S.D.	Variance	SS					
	11	32	31	30.9063	2.6683	7.1200	220.7188					
Day &	12	28	27	30.7143	3.1371	9.8413	265.7143					
Shift	21	32	31	30.7813	2.7677	7.6603	237.4688					
	22	32	31	30.4688	3.6719	13.4829	417.9688					
		· <u> </u>	, <u> </u>				· <u> </u>					
		Main	Effects: Co	lumns								
Category					1							
Names	Columns	Count	df	Mean	S.D.	Variance	SS					
	1	31	30	30.1290	3.1064	9.6495	289.4839					

30

30

31

31

31

30.5806

31.6774

30.4839

3.0526

2.9932

2.9763

9.3183

8.9591

8.8581

279.5484

268.7742

265.7419

PSI Stage 2 ANOVA results

	Totals										
			Count	df	Mean	S.D.	Variance	SS			
All Cells Combined	Total Values for All Cells Combined		124	123	30.7177	3.0512	9.3099	1145.1210			
ANOVA TABLE											
Source	df	SS	MS	F	Critical F	Prob.	Dec	ision			
Among (Cells)	15	122.8888	8.1926	0.8656	1.7600	0.6037	Fail to	reject Ho			
Rows	3	3.2504	1.0835	0.1145	2.6887	0.9515	Fail to	reject Ho			
Columns	3	41.5726	13.8575	1.4641	2.6887	0.2284	Fail to	reject Ho			
Interaction	9	78.0658	8.6740	0.9164	1.9677	0.5139	Fail to	reject Ho			
Within (Error or Residual)	108	1022.2321	9.4651								
Total	123	1145.1210	9.3099								

Results for the Bartlett's Chi-Square Test for Homogeneity of Variance											
Bartlett's	artlett's df for Critical Computed Decision										
Chi-Square	Chi-Square	Chi-square	Prob.	About Ho							
9.6237	15	24.9958	0.8427	Fail to reject							
9.0257	13	24.3336	0.0427	Но							

Conclusion:

There is no statistical significant difference among or between different can samples across different days or different shifts.

Linear Regression Model

Regressio	n Model								
Input Variables	Coefficient	Std. Error	t-Statistic	P-Value	CI Lower	CI Upper	RSS Reduction		
Intercept	30.77848	1.374536	22.39191	1.74E-44	28.05677	33.5002	117003.9	Residual DF	119
Day	-0.18867	0.555947	-0.33937	0.734929	-1.2895	0.912158	1.137634	R ²	0.009342
Shift	-0.45324	1.221333	-0.3711	0.711223	-2.8716	1.965125	2.000575	Adjusted R ²	-0.02396
Time	0.022712	0.124206	0.182857	0.855221	-0.22323	0.268653	0.318752	Std. Error Estimate	3.087551
4									

Dependent variable: PSI Value.

Independent variables: Day, Shift, Time, Can group.

Conclusion: None of the coefficients are statistically significant enough in the model.

Variable Selection (Backward Elimination)										
						Model				
#Coeffs 🔽	RSS 🔻	Cp 🔽	R² ▼	Adjusted R ²	Probability 🔽	1 🔻	2	3	4 -	5 🔻
5	1134.4237	5	0.0093	-0.024	1	Intercept	Day	Shift	Time	Can Group
4	1134.7424	3.0334	0.0091	-0.0157	0.8552	Intercept	Day	Shift		Can Group
3	1135.7805	1.1423	0.0082	-0.0082	0.9313	Intercept		Shift		Can Group
2	1137.8806	-0.6374	0.0063	-0.0018	0.9477	Intercept				Can Group
1	1145.121	-1.8779	0	0	0.8901	Intercept				

Team Greasigma: Stage 2 Conclusions

- Conclusion 1: The observed mean and hypothesized mean from Stage 2 PSI data are statistical significant different from each other
- Conclusion 2: The sample means and variance from Stage 1 PSI data and Stage 2 PSI data are not statistical significant different from each other
- Conclusion 3: According to Stage 2 PSI data, we are currently still at 3 sigma level
- Conclusion 4: The starting time intervals of the days are better and results toward the last three intervals of the day are worse
- ► Conclusion 5: There is no statistical significant difference among each sample and between the 4 samples
- ► Conclusion 6: There is no statistically significant difference among or between different can samples across different days or different shifts
- Conclusion 7: Unable to identify coefficients statistically significant enough for linear regression modelling

Contributions

- Chen, Qiuye(Roger)- Responsible for slides 8 -10 (Stage 1 Data), slides 14 –
 15 (Muda) and most of the data slides. Lead Team Data Analyst
- <u>Lee, Jay</u> Responsible for Flowcharts on slide 6, and SIPOC Tool overview on slides 19-22
- Shin, Taekyoo Responsible for Agenda and objective on slide 2, 3, Kaizen tool overview on slides 17-18, and PSI Data One-sample t-test Stage 2 on slide 27
- Wuerth, Daniel- Responsible for slide 5 (C/E Diagram) and slides 11 13 (Balanced Scorecards). Slideshow design and compilation
- Yurchenko, Dmitriy- Responsible for slide 4 (PDCA) and slide 16 (5 Whys)
- All team members collaborated fully and worked together to draw appropriate conclusions