2025 하반기 Challenger Track

자율스터디 기획서

팀명	CV_STUDY
팀장	안정원
팀원	안정원, 조예림

1. 스터디 주제/목표

스터디 주제	CV 를 이용한 실전 프로젝트
스터디 목표	CV의 동작 원리를 학습하고, 직접 활용 및 CV Model을 활용한 다양한 프로젝트 해보기 - 딥러닝 컴퓨터비전의 기초 이론부터 심층 신경망과 콘볼루션 신경망(CNN)의 기본 원리, 유명한 CNN 구조 소개와 함께 객체 인식을 위한 SSD와 YOLOv4~v7 이해
	- 실제 문제를 해결하기 위한 프로젝트를 진행: 이미지 분류 모델을 활용한 재활용품 분류, SSD 객체 인식 모델을 활용한 사물 인지 CCTV, YOLO 객체 인식 모델을 활용한 횡단보도 보행자 인식 등등 해보기 - 이 배운 내용을 토대로 CV를 활용한 대회 출전

2. 참가대회

대회명	학술제 또는 추후 결정 예정
링크	
대회에서	
진행할 주제	

3. 스터디 계획

주차	학습 주제	세부 활동
1 주차	1장: 딥러닝 영상분석	1.1 대표적인 딥러닝 영상분석 기법 3 가지
(7/10-	소개	- 이미지 분류, 객체 인식, 분할
16)		1.2 영상분석을 위한 딥러닝 이해하기
		- 인공지능 역사 속의 딥러닝 ,심층 신경망의 이해
		1.3 딥러닝 모델의 기본 구조
		- 딥러닝 훈련 과정과 추론
		- 손실 함수와 가중치의 최적화
		- 경사 하강법과 역전파
		- 소프트맥스 함수
		1.4 ANN MNIST 파이토치 예제
2 주차	2 장: 딥러닝 영상분석의	2.1 왜 딥러닝 영상분석에서 CNN 이 중요한가?
(7/17-	시작, CNN	- 영상분석에서 입력 데이터의 특징
23)		- FC 레이어와 Conv 레이어
		2.2 CNN 이해하기
		- 활성화 맵과 특징 맵의 차이
		- Conv와 Pooling 레이어의 역할
		2.3 딥러닝 학습 과정 준비
		- 데이터세트 준비
		- 활성화 함수
		- LeNet: CNN MNIST 파이토치 예제
3 주차	3 장: 딥러닝 영상분석을	3.1 가중치의 최적화 솔버들
(7/24 –	위한 학습 과정	- SGD + 모멘텀
30)		- Adagrad
		- RMSProp
		- Adam
		3.2 딥러닝 결과를 향상시키는 방법
		- 배치 정규화
		- 데이터 증강과 전이학습

4 주차 3 정	t: 딥러닝 영상분석을	3.3 인기 있는 CNN 네트워크 구조
(7/31- 위한	한 학습 과정	- AlexNet: 최초의 CNN 기반 이미지 분류 대회
8/6)		- VGGNet: 단순하면서 성능이 좋은 네트워크
		- GoogLeNet: 구글이 만들고 모두가 사용하는
		네트워크
		- ResNet: 가장 깊고 성능이 좋은 네트워크
		3.4 ResNet 파이토치 예제
		- 파이토치 분류 모델 훈련
		- 파이토치 분류 모델 추론
5 주차 4 징	t: 이미지 분할과 객체	4.1 이미지 분할
(8/7- 인스	-	- 이미지 분할 개념
8/13)		- 모델의 평가지표
		- FCN 이미지 분할
		4.2 이미지 객체 인식
		- 이미지 객체 인식의 기본 개념
		- Faster R-CNN
		4.3 YOLO: 최초의 실시간 객체 인식 네트워크
		- YOLO: You Only Look Once
		- YOLOv2: 더 좋은, 더 빠른, 더 강력한
		- YOLOv3: 점진적 개선
6 주차 4 정	: 이미지 분할과 객체	4.4 SSD: Faster R-CNN 과 YOLO 의 장점을 취합
(8/14- 인스	-	- SSD: Single Shot Multi Box Detector
8/20)		4.5 그 밖의 네트워크
		- Mask R-CNN: 이미지 객체 분할
		- MobileNet v2: 작지만 강력한 객체 인식
		- YOLOv4: 새로운 YOLO
		- YOLOv4-tiny: 소형 장치용 tiny 버전
7 주차 4 징	: 이미지 분할과 객체	4.6 YOLOv4 실습
(8/21- 인스	-	- 실습 준비, 학습
27)		- 심층 신경망 학습
		- 코랩에서 이미지 추론 테스트

	1	<u></u>
8 주차	5 장: 이미지 분류를	5.1 재활용품 분리수거 프로젝트 개요
	활용한 재활용품 분류	5.2 데이터세트 클래스
	프로젝트 실습	5.3 심층 신경망 구현
		5.4 전이학습 심층 신경망 구현
		5.5 심층 신경망 학습 클래스
		5.6 코랩에서 심층 신경망으로 학습
		5.7 코랩에서 이미지 추론 테스트
		5.8 윈도우 환경에서 추론 실습
9 주차	6 장: SSD 사물인지 CCTV	6.1 프로젝트 목표와 사용자 시나리오
	프로젝트 실습	6.2 실습 준비
		6.3 네트워크 학습
		6.4 윈도우 환경에서 프로젝트 추론 실습
10 주차	7 장: YOLO 를 활용한	7.1 프로젝트 목표와 사용자 시나리오
	횡단보도 보행자 보호	7.2 YOLOv5 실습 준비
	시스템 프로젝트 실습	7.3 윈도우에서 YOLOv5 추론 실습
		7.4 YOLOv7 실습 준비
		7.5 윈도우에서 YOLOv7 추론 실습
11 주차	대회준비	
12 주차	대회준비	

4. 스터디 규칙

출석

- 1. 스터디 무단 결석 3 회 이상 시 경고 1회
- 2. 스터디 지각 2 회 이상 시 음료 사주기

스터디 과제

- 1. 과제 미제출시 밥 사주기
- 2. 과제는 스터디 시작 전까지 정리한 링크 cv 노션에 올리기

공유회 발표

1. 스터디원 전원이 번갈아 가며 발표

5. 예산안 신청서

1	항목	교재
	비용	31,500 원
	링크	https://product.kyobobook.co.kr/detail/S000211812215
	사용계획	스터디 학습 주교재로 사용
2	항목	카메라
	비용	20,000 원
	링크	http://bit.ly/4llxPTr
	사용계획	CV 실습에 사용할 예정
3	항목	
	비용	
	링크	
	사용계획	
4	항목	
	비용	
	링크	
	사용계획	
	사용계획	