

reem pla zo i	
	T(n-(n-1))+(n-i).C=
	T(1) + (n-1) C + T(1)
=	+ nc = c = + (n)

calcula orolen

1 + NK - K

of our candiolato > n

Signow K WWA CONSTAVITE primer termino

1 (= N.C.) para todo n/ NO

1. 计专用方面 电压线器

con C1=1 y no=1 sique valiendo de siqualdad.

sequinos terminos

N.K L= N.C2 para Todo ny, no

 $con \qquad cz = k \qquad y \quad no = 0$

Tercer ternius
al ser negativo no se tiene en cuentos para la prensicación
ya que se puede ocotor con c=0 y no=0

e = c1 + cz = 1 + k NO = 1 -> mas resoriction

t(n) = 0(n) con c=1+k parantoon n > no con n = 1

6		
+ [n]= \ \ \ \ \	$= 1$ $1 + c$ $\sqrt{2}$	
suporu evano q	w N 7/2	
PO 20 0	T (v/z) + c	
po 80 (D)	$\left[\begin{array}{c} T\left(\frac{N}{2^{2}}\right) + C \end{array}\right] + C =$	
	$=$ $T\left(\frac{N}{2}\right)+2C$	
pasu (3)	$\left[\left[\left[\frac{N}{Z^3} \right] + C \right] + 2C = 1$	
	$= T\left(\frac{N}{2^3}\right) + 3C$	
paso ()	$T\left(\frac{N}{2}\right)+iC$	
		Escaneado con CamScanner

caso base $loug_Z(n) = i$ reemploso i $+\left(\frac{2 \log_5(n)}{N}\right) + \log_5(n) c =$ T(1) + log z(N) C = $+ \log_{S}(N)C = I(N)$ 0 (rad 5 (N)) 2T (n/2) + C , N>, 2 60180 (1) $2t\left(\frac{N}{2}\right)+C$ $2\left[2+\left(\frac{N}{2^{2}}\right)+C\right]+C=$ paso 3 $= 4 + \left(\frac{S_5}{N}\right) + 5C + C$ = $4 + \left(\frac{N}{2^2}\right) + 3c$ $4\left[2+\left(\frac{N}{2}\right)\right]+c+3C=$ paso (3) $= 8 T \left(\frac{N}{2^3}\right) + 4C.$

		migra as as assertion of
poiso (3)	[T (N-15) +C] + 2C	
	T (N-15) +3C.	
paso i	+ (n-5i) + ic	
caso base	W-56 Z= 5	
	h <= 5-5ì	
	$N-5 \ \ \langle = 50 \ \ \ \ \ \ \ \ \ \ \ \ \ $	
reemplozo i	$T\left(N-5\left(\frac{N-s}{5}\right)\right)+\left(\frac{N-5}{5}\right)C=$	
	$= \tau(5) + \left(\frac{N}{5} - \frac{1}{3}\right)C =$	
	$= 1 + \left(\frac{N}{5} - 1\right) C =$	
	$= \frac{1 + N \cdot C - C}{5}$	
o (v)	5	

	$\frac{1}{N} = 8$
ceemplazo i	$+\left(\frac{8}{N}\cos^{8}(N^{2})\right) + \cos^{8}\left(\frac{N}{2}\right) \cdot C =$
	= +(x) + rob8 (x) c =
	$= 1 + \log 8 \left(\frac{v}{4}\right) c =$
	$= 1 + \left(\log 8 \left(x \right) - \log 8 \left(x \right) \right) c =$
	$= 1 + \log_8(n) \cdot c - \log_8(4) \cdot c = +(n)$
$o(\alpha \delta^{8}(u))$	

Escaneado con CamScanner