P425/2 APPLIED MATHEMATICS Paper 2 Oct. 2023 3 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

APPLIED MATHEMATICS (PRINCIPAL SUBJECT) Set 10

Paper 2

TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES:

Answer all the Eight questions in Section A and Five questions from Section B. Any additional question(s) answered will not be marked.

All necessary working must be clearly shown.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

In numerical work, take g to be 9.8 ms^{-2} .

SECTION A: (40 MARKS)

Answer all the questions in this section.

1.	The probability that two independent events A and B occur together is	$\frac{1}{3}$. The
	probability that either or both events occur is $\frac{5}{8}$. Find the;	

(i) P(A)

(ii) P(B))

2. A body of mass 4kg is moving with an initial velocity of 5ms⁻¹ on a plane. The kinetic energy of the body is reduced by 16 Joules in a distance of 40m. find the;

(i) Final velocity

(ii) deceleration

3. Use the trapezium rule with 5 strips to estimate the area enclosed by the curve $y = 3^x$ from x=1 to x=2 correct to 3 decimal places.

4. The data below shows the weights in Newtons (N) of potatoes picked from a certain farm: 8.5, 7.6, 8.9, 7.6, 8.9, 8.2, 9.1, 7.9 and 8.5, determine the;

- (i) Mean weight of the potatoes
- (ii) Standard deviation

5. A particle of mass 3kg resting on a rough horizontal plane is pulled by a force of magnitude 13N inclined at an angle of 50° to the horizontal, if the particle does not move, find the;

(a) Normal reaction

(b) Coefficient of friction

6. The table below shows the value of x with corresponding values of y

X	0	8	12	20
у	9.2	6.0	4.4	1.5

Use linear interpolation or extrapolation to estimate

(i) y when x=15

(ii) x when y=9.8

7. A biased coin is tossed six times. The coin is such that the ratio of showing a tail to that of a head is 2:1, find the probability of getting;

(i) At least 4 heads

(ii) Between 2 and 4 tails

8. A particle starts from a point P with an initial velocity of 2ms⁻¹ and travels along a straight line with a constant acceleration of 2ms⁻². Two seconds later a second particle Q stats from rest and travels along the same line with an acceleration of 6ms⁻², find the;

- (i) Time
- (ii) Distance at which overtake occurs

SECTION B: (60 MARKS)

Answer any five questions in this section. All questions carry equal marks

9. The table below shows the percentage of sand (y) in the soil depth (x)

Soil depth (x)	35	65	55	25	45	75	20	90	51	60
Percentage of sand (y)	86	70	84	92	79	68	96	58	86	77

- (a) Plot a scatter diagram for the data, draw a line of best fit and comment.
- (b) Estimate y when x=31
- (c) Calculate the rank correlation coefficient and comment at 5% level of significance
- 10.A rectangle ABCD (3mx4m) has forces of magnitude 5N, 10N, 15N, 20N and 25N act along the sides BA, CB, DC, AD and BCA respectively. If AB=3m as the positive x-axis and AD=4m as the positive y-axis. Find the:
 - (a) Magnitude of the resultant force and its direction
 - (b) Line of action and where the resultant cuts x-axis, by taking moments about A
- 11.(a) Show graphically on the same axes that $y = \frac{x}{2}$ and the line $y = x \sin x$ have a root between 0.2 and 0.8 correct it to 1 decimal place.
 - (b) Use x_0 , the first approximation in (a) above and the Newton Raphson method to find the root of the equation correct to 3 decimal places
- 12. The continuous random variable X has the following p.d.f

$$f(x) = \begin{cases} \alpha & x & ; 0 \le x \le 1 \\ \frac{\alpha}{2}(3 - x) & ; 1 \le x \le 3 \\ 0, & otherwise \end{cases}$$

where α is a constant, determine the;

- (a) values of α
- (b) expected value and variance
- (c) cumulative distribution function F(x), hence determine the mean
- 13.At time t=0, the position vectors and velocity vectors of two trains A and B are as follows.

3

Trains	Position vector	Velocity vector
A	$r_A = (3i + j + 5k)\mathbf{m}$	$v_A = (4i + j - 3k)ms^{-1}$
В	$r_B = (i - 3j + 2k)\mathbf{m}$	$v_B = (i+2j+2k)ms^{-1}$

If they continue with the same velocities, find the

- (a) Position vector of B, relative to A at time t and
- (b) time when A and B are nearest to each other
- (c) Shortest distance between the trains
- 14.(a) The volume of the sphere increases by 2%. Find the corresponding percentage increase in the;
 - (i) radius

- (ii) surface area
- (b) The period of a simple pendulum period (T) and is given by $T=2\pi\sqrt{\frac{l}{g}}$, where π and g are constants. If the percentage increase in the length (l) is 4%, find the corresponding percentage increase in T.
- 15. Given that X is a continuous random variable which is normally distributed with mean, μ and standard deviation, σ such that P(X > 50) = 0.3 and P(X < 30) = 0.4, find the:
 - (i) Value of μ and σ
 - (ii) Percentage that P(X > 40) takes
- 16.A car of mass 1,200kg tows a van of mass 300kg up a hill inclined at 1 in 100 against a constant resistance of 0.2N per kg. given that the car moved at a constant speed of 1.5ms⁻¹ for 5 minutes, calculate the;
 - (i) Tension in the tow bar
 - (ii) Work done by the engine of the car during this time
 - (iii) Total resistance, if the engine develops a power of 15kW at a maximum speed of 120kmh⁻¹ on a level road