Chapter 6

10.80 The grades in a statistics course for a particular semester were as follows:

Grade	A	В	С	D	F
f	14	18	32	20	16

Test the hypothesis, at the 0.05 level of significance, that the distribution of grades is uniform.

10.81 A die is tossed 180 times with the following results:

X	1	2	3	4	5	6
f	28	36	36	30	27	23

is this a balanced die? Use a 0.01 level of significance.

10.87 A random sample of 90 adults is classified according to gender and the number of hours of television watched during a week:

	Gender		
	Male	Female	
Over 25 hours	15	29	
Under 25 hours	27	19	

Use a 0.01 level of significance and test the hypothesis that the time spent watching television is independent of whether the viewer is male or female.

10.89 A criminologist conducted a survey to determine whether the incidence of certain types of crime varied from one part of a large city to another. The particular crimes of interest were assault, burglary, larceny, and homicide. The following table shows the numbers of crimes committed in four areas of the city during the past year.

	Type of Crime			
District	Assault	Burglary	Larceny	Homicide
1	162	118	451	18
2	310	196	996	25
3	258	193	458	10
4	280	175	390	19

Can we conclude from these data at the 0.01 level of significance that the occurrence of these types of crime is dependent on the city district?

10.93 To determine current attitudes about prayer in public schools, a survey was conducted in four Virginia counties. The following table gives the attitudes of 200 parents from Craig County, 150 parents from Giles County, 100 parents from Franklin County, and 100 parents from Montgomery County:

	County			
Attitude	Craig	Giles	Franklin	Mont.
Favor	65	66	40	34
Oppose	42	30	33	42
No opinion	93	54	27	24

Test for homogeneity of attitudes among the four counties concerning prayer in the public schools. Use a *P*-value in your conclusion.

10.94 A survey was conducted in Indiana, Kentucky, band Ohio to determine the attitude of voters concerning school busing. A poll of 200 voters from each of these states yielded the following results:

	Voter Attitude		
	Do Not		
State	Support	Support	Undecided
Indiana	82	97	21
Kentucky	107	66	27
Ohio	93	74	33

At the **0.05** level of significance, test the null hypothesis that the proportions of voters within each attitude category are the same for each of the three states.

11.7 The following is a portion of a classic data set called the "pilot plot data" in Fitting Equations to Data by Daniel and Wood, published in 1971. The response y is the acid content of material produced by

titration, whereas the regressor x is the organic acid content produced by extraction and weighing.

$oldsymbol{y}$	\boldsymbol{x}	\boldsymbol{y}	$oldsymbol{x}$
76	123	70	109
62	55	37	48
66	100	82	138
58	75	88	164
88	159	43	28

- (a) Plot the data; does it appear that a simple linear regression will be a suitable model?
- (b) Fit a simple linear regression; estimate a slope and intercept.
- (c) Graph the regression line on the plot in (a).

11.9 A study was made by a retail merchant to determine the relation between weekly advertising expenditures and sales.

Advertising Costs (\$)	Sales (\$)
40	385
20	400
25	395
20	365
30	475
50	440
40	490
20	420
50	560
40	525
25	480
50	510

- (a) Plot a scatter diagram.
- (b) Find the equation of the regression line to predict weekly sales from advertising expenditures.
- (c) Estimate the weekly sales when advertising costs are \$35.
- (d) Plot the residuals versus advertising costs. Comment.

11.53 The following data represent the chemistry grades for a random sample of 12 freshmen at a certain college along with their scores on an intelligence test administered while they were still seniors in high school.

	\mathbf{Test}	Chemistry
${f Student}$	Score, x	Grade, y
1	65	85
2	50	74
3	55	76
4	65	90
5	55	85
6	70	87
7	65	94
8	70	98
9	55	81
10	70	91
11	50	76
12	55	74

- (a) Compute and interpret the sample correlation coefficient.
- (b) State necessary assumptions on random variables.
- (c) Test the hypothesis that $\rho = 0.5$ against the alternative that $\rho > 0.5$. Use a *P*-value in the conclusion.