CHAPTER 7

- 7.1 (a) $16 \text{ K} \times 8 \implies \text{Address lines} = 14, \text{ Data lines} = 8$
 - **(b)** 512 K \times 16 \Rightarrow Address lines = 19, Data lines = 16
 - (c) $32 \text{ M} \times 32 \implies \text{Address lines} = 25$, Data lines = 32
 - (d) $8 \text{ G} \times 16$ \Rightarrow Address lines = 33, Data lines = 16
- **7.2** (a) 16 K Bytes
 - **(b)** 1024 K Bytes
 - (c) 128 M Bytes
 - (d) 16 G Bytes
- 7.3 $1024 \times 16 \text{ memory} \implies \text{Address line} = 10, \text{ Data line} = 16$ word: no. 875 $\implies \text{Address bits} = 11011011011$ data 46654 $\implies 16\text{-bit data} = 1011 \ 0110 \ 0011 \ 1110$ $= B63E_{16}$
- 7.4 $f_{CPU} = 150 \text{ MHz}, T_{CPU} = 1/f_{CPU} = 6.67^{-9} \text{ Hz}^{-1}$

7.5 Pending

7.6

7.7 (a)
$$64 \text{ K} = 2^{16} = 2^8 \times 2^8 = 256 \times 256$$

Each decoder is $8:256$

Decoder requires 512 AND gates, each with 8 inputs.

(b)
$$36,952 = 1001\ 0000\ 0101\ 1000$$

 $X = 1001\ 0000 = 144$
 $Y = 0101\ 1000 = 88$

7.8 (a)
$$\frac{512 \text{ K}}{64 \text{ K}} = 8 \text{ chips}$$

(b) 512 K = $2^{19} \implies$ 19-bit address lines.

 $64 \text{ K} = 2^{16} \implies 16$ -lines are connected to each chip

and remaining (19 - 16) = 3 are for selecting the chips.

```
Capacity of memory = 2^{15+16} = 2^{31} words = 2G.
7.9
         Bit position = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
7.10
                       P_1 P_2 0 P_4 1 1 0 P_8 1 0 1 0 1 1
         P_1 = XOR \text{ of } (3, 5, 7, 9, 11, 13)
                                         = XOR of (0, 1, 0, 1, 1, 1) = 0
         P_2 = XOR \text{ of } (3, 6, 7, 10, 11, 14)
                                           = XOR of (0, 1, 0, 0, 1, 1) = 0
         P_4 = XOR \text{ of } (5, 6, 7, 12, 13, 14)
                                         = XOR of (1, 1, 0, 0, 1, 1) = 0
         P_8= XOR of (9, 10, 11, 12, 13, 14) = XOR of (1, 0, 1, 0, 1, 1) = 0
         Composite 14-bit code word = 00 0011 0010 1011
7.11
         Bit position
                        1
                                2 3 4
                                               5 6 7 8
                                                                       10 11 12
                                                                                       13
                       P_1 P_2 1 P_4 1 0 1 P_8 1 0 1 1
                                                                                     0
         P_1 = XOR \text{ of } (3, 5, 7, 9, 11, 13) = XOR \text{ of } (1, 1, 1, 1, 1, 0) = 1
         P_2 = XOR \text{ of } (3, 6, 7, 10, 11) = XOR \text{ of } (1, 0, 1, 0, 1) = 1
         P_4 = XOR \text{ of } (5, 6, 7, 12, 13) = XOR \text{ of } (1, 0, 1, 1, 0) = 1
         P_8 = XOR \text{ of } (9, 10, 11, 12, 13) = XOR \text{ of } (1, 0, 1, 1, 0) = 1
         13-bit code word = 1111101110110
7.12
         Bit position
                             2 3
                                      4 5
                                             6 7
                                                          8
                                                                    10 11
                                                                                   13
                                                          P_8
                         P_1 P_2
                                      P_4
                            1 1 1 0 0 1 0 1
         (a)
                      9-bit data word = 100110100
                                  1 1 1 0 1 0 1 0
         (b)
                                                                        0
                      9-bit data word = 101000111
                       1 0 1 0 1 0 0 1 1
                                                               1 0
         (c)
                      9-bit data word = 110011010
         (d)
                   Bit position
                                      2
                                          3 4 5 6 7 8 9 10 11 12 13
                                     0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1
                                                                            0
                                                                                1 1
         C_1 = XOR(1, 3, 5, 7, 9, 11, 13) = XOR(1, 1, 1, 1, 1, 1, 0) = 0
         C_2 = XOR(2, 3, 6, 7, 10, 11) = XOR(0, 1, 0, 1, 0, 1)
         C_4 = XOR (4, 5, 6, 7, 12, 13)
                                       = XOR (1, 1, 0, 1, 1, 0)
                                                                =0
         C_8 = XOR(8, 9, 10, 11, 12, 13) = XOR(1, 1, 0, 1, 1, 0)
                                                                 =0
```

(c) 19 - 16 = 3 lines with 3×8 decoder.

 $C_8C_4C_2C_1 = 0010 \Rightarrow \text{bit 2 with error.}$

So, 9-bit data word 110110110

(e) Bit position 1 2 3 4 5 6 7 8 9 10 11 12 13 $0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$ $C_1 = XOR (1, 3, 5, 7, 9, 11, 13) = XOR (0, 0, 1, 0, 1, 1, 1) = 0$ $C_2 = XOR (2, 3, 6, 7, 10, 11) = XOR (0, 0, 0, 0, 0, 1) = 1$ $C_4 = XOR (4, 5, 6, 7, 12, 13) = XOR (0, 1, 0, 0, 0, 1) = 0$

 $C_8C_4C_2C_1 = 1010 \rightarrow \text{bit } 10 \text{ with error.}$

 $C_8 = XOR(8, 9, 10, 11, 12, 13) = XOR(0, 1, 1, 0, 0, 1)$

So, 9-bit data word \rightarrow 010011101

7.13 (a) 25 bits \Rightarrow Check bits $K = 5 \Rightarrow 6$ parity bits

+1 bit

(b) 55 bits \Rightarrow Check bits $K = 6 \Rightarrow 7$ parity bits

+1 bit

(c) 100 bits \Rightarrow Check bits $K = 7 \Rightarrow 8$ parity bits

+1 bit

7.14 Bit position 1 2 3 4 5 6 7 8 9 $P_1 \quad P_2 \quad P_3 \quad P_4 \quad D_5 \quad D_6 \quad D_7 \quad P_8 \quad P_9$ $0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1$ **(a)** $P_1 = XOR \text{ of } (3, 5, 7, 9) = XOR \text{ of } (0, 1, 0, 1) = 0$

$$P_2 = XOR \text{ of } (3, 6, 7)$$
 = XOR of $(0, 1, 0)$ = 1
 $P_3 = XOR \text{ of } (5, 6, 7)$ = XOR of $(1, 1, 0)$ = 0
 $P_4 = XOR \text{ of } (9)$ = XOR of (1) = 1

Ans: 010011011

(b)
$$C_1 = XOR \text{ of } (1, 3, 5, 7, 9) = XOR \text{ of } (0, 0, 1, 0, 1) = 0$$

 $C_2 = XOR \text{ of } (2, 3, 6, 7) = XOR \text{ of } (1, 0, 1, 0) = 0$
 $C_4 = XOR \text{ of } (4, 5, 6, 7) = XOR \text{ of } (0, 1, 1, 0) = 0$
 $C_8 = XOR \text{ of } (8, 9) = XOR \text{ of } (1, 1) = 0$
 $C = C_8C_4C_2C_1 = 0000$

(c) 9-bit composite word = 010010011

$$C_1 = XOR \text{ of } (1, 3, 5, 7, 9) = XOR \text{ of } (0, 0, 1, 0, 1) = 0$$
 $C_2 = XOR \text{ of } (2, 3, 6, 7) = XOR \text{ of } (1, 0, 0, 0) = 1$
 $C_4 = XOR \text{ of } (4, 5, 6, 7) = XOR \text{ of } (0, 1, 0, 0) = 1$
 $C_8 = XOR \text{ of } (8, 9) = XOR \text{ of } (1, 1) = 0$

 $C_8C_4C_2C_1 = 0110 \Rightarrow \text{Error in bit 6 i.e.}, D_6 = 1$

(d) Composite word: $0\ 1\ 0\ 0\ 1\ 1\ 0\ 1\ 1\ P_{10}$

$$P_{10} = 1.$$
 $C_1 = XOR \text{ of } (1, 3, 5, 7, 9) = XOR \text{ of } (1, 1, 1, 0, 1) = 0$
 $C_2 = XOR \text{ of } (2, 3, 6, 7, 10) = XOR \text{ of } (1, 1, 1, 0, 1) = 0$
 $C_4 = XOR \text{ of } (4, 5, 6, 7) = XOR \text{ of } (0, 1, 1, 0) = 0$
 $C_8 = XOR \text{ of } (8, 9, 10) = XOR \text{ of } (1, 1, 1) = 1$
 $P = 0$

Error in P_1 and D_3 , so the composite word 1110110111

 $C_8C_4C_2C_1 = 1000$ and $P = 0 \Rightarrow$ indicates double error.

7.15 To construct $4K \times 8$ ROM from $1K \times 8$ we need 4 chips.

7.16

Total number of pins = Addr line + Data line + CS + 2= 13 + 8 + 3 + 2= 26 pins

7.17

Input Address	Output	of ROM		
$I_5 I_4 I_3 I_2 I_1$	$D_6^{}D_5^{}D_4^{}$	$D_{3}D_{2}D_{1}$	$D_0(2^0)$	Decimal
00000	000	000	0, 1	0, 1
$0\ 0\ 0\ 0\ 1$	$0 \ 0 \ 0$	0 0 1	0, 1	2, 3
•••				•••
• • •				
01000	001	0 1 1	0, 1	16, 17
01001	001	100	0, 1	18, 19
•••				•••
11110	110	000	0, 1	60, 61
11111	110	0 0 1	0, 1	62, 63

7.18

(a) 5-bit binary multiplier: Size of ROM = $2^{10} \times 10 = 1 \text{ K} \times 10 \text{ ROM}$

(b) 5-bit adder-subtractor: Size of ROM = $2^{11} \times 6 = 2 \text{ K} \times 6 \text{ ROM}$

(c) Quadruple 4×1 mux: Size of ROM = $2^{19} \times 4 = 512$ K $\times 4$ ROM

(d) 5 inputs 7 outputs $2^5 \times 7$ 32×7 ROM

7.19

$$A(x, y, z) = \Sigma(0, 2, 3, 7)$$

= $x'z' + yz$
 $A' = xy' + xz' + y'z$

$$B(x, y, z) = \Sigma(1, 2, 4, 5, 6)$$

 $A(x, y, z) = y'z + yz' + xz'$

$$C(x, y, z) = \Sigma(0, 1, 5, 7)$$

 $C(x, y, z) = x'y' + xz$

$$D(x, y, z) = \Sigma(0, 2, 3, 4, 6)$$

$$D(x, y, z) = z' + x'y$$

$$D' = Z(x + y') = xz + y'z$$

PLA programming table:

		Inputs	Outputs
	Product term	x y z	A B C D
xy'	1	1 0 -	1
xz'	2	1 - 0	1 1
y'z	3	- 0 1	1 1 - 1
yz'	4	- 1 0	- 1
x'y'	5	0 0 -	1 -
XZ	6	1 - 1	<u> 1 1</u>
			C T T C

7.20

Inj	puts	S		Οι	ıtpu	ts	
w	x	y	z	\boldsymbol{A}	В	C	D
0	0	0	0	0	1	0	1
0	0	0	1	1	0	1	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	1
0	1	0	0	0	1	0	1
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	1	1
1	0	0	0	0	1	1	1
1	0	0	1	1	0	0	0
1	0	1	0	0	1	0	0
1	0	1	1	1	0	0	1

7.21 Note: See truth table in Fig. 7.12(b).

Dec	cimal	w	X	y	Z	\mathbf{b}_7	b_6	\boldsymbol{b}_5	b_4	b_3	\boldsymbol{b}_2	\boldsymbol{b}_1	b_0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	0	0	0	0	1
2	4	0	0	1	0	0	0	0	0	0	1	0	0
3	9	0	0	1	1	0	0	0	0	1	0	0	1
4	16	0	1	0	0	0	0	0	1	0	0	0	0
5	25	0	1	0	1	0	0	0	1	1	0	0	1
6	36	0	1	1	0	0	0	1	0	0	1	0	0
7	49	0	1	1	1	0	0	1	1	0	0	0	1
8	64	1	0	0	0	0	1	0	0	0	0	0	0
9	81	1	0	0	1	0	1	0	1	0	0	0	1
10	100	1	0	1	0	0	1	1	0	0	1	0	0
11	121	1	0	1	1	0	1	1	1	1	0	0	1
12	144	1	1	0	0	1	0	0	1	0	0	0	0
13	169	1	1	0	1	1	0	1	0	1	0	0	1
14	196	1	1	1	0	1	1	0	0	0	1	0	0
15	225	1	1	1	1	1	1	1	0	0	0	0	1

Note: $b_0 = z$, and $b_1 = 0$. ROM would have 4 inputs and 6 outputs. A 4 x 8 ROM would waste two outputs.

7.23

From Fig. 4-3: $w = A + BC + BD$]		t Inputs ABCD	Outputs $F_1 F_2 F_3 F_4$
w' = A'B' + A'C'D'	A	1	1	1
x = B'C + B'D + BC'D'	BC	2	- 11-	1 1
x' = B'C'D' + BC BD	BD	3	- 1 - 1	1 1
y = CD + C'D'	B'C'D'	4	- 0 0 0	- 1
y' = C'D + CD'	CD	5	1 1	1 -
z = D'	C'D'	6	0 0	1 -
z' = D	D'	7	0	1
<i>Use w, x', y, z (7 terms)</i>				TCTT

7.24

	AND	
Produ	ct Inputs	
term	ABCD	Outputs
-		
1	1	A · DC · DD
2	- 11 -	w = A + BC + BD
_ 3	- 1 - 1	
4	- 0 1 -	
5	- 0 - 1	x = B'C + B'D + BC'D'
6	- 100	
7	1 1	
8	0 0	y = CD + C'D'
_ 9		
10	0	
11		z = D'
12		

7.25

$$A = \Sigma(1, 2, 4, 5, 6)$$

 $A = xy' + y'z + yz'$

$$B = \Sigma(1, 2, 4, 5, 6, 7)$$

$$B = x + y'z + yz'$$

$$= xy + xy' + y'z + yz'$$

$$= A + xy$$

x^{y}	^z 00	01	11	10
0	1	0	1	1
1	1	1	1	0

$$C = \Sigma(0, 2, 3, 4, 5, 7)$$

 $C = y'z' + x'y + xz$

x^y	^{7Z} 00	01	11	10
	0	1	1	0
	1	1	1	0

$$D = \Sigma(1, 3, 4, 5, 7)$$

 $D = z + xy'$

		Inp	outs	Outputs
	Product term	x y	z A	
xy'	1	1 0		
y'z	2	- 0	1 -	A = xy' + y'z + yz'
yz'	3	- 1	0 -	
A	4		- 1	B = A + xy
xy	5	1 1		
y'z'	6	- 0	0 -	
x'y	7	0 1		C = y'z' + x'y + xz
XZ	8	1 -	1 -	
z	9		1 -	D = z + xy'
xy'	10	1 0		•

7.26
$$D_A = (x \oplus y \oplus A)'$$

$$= ((x \bigoplus y)'A' + (x \bigoplus y)A)$$

$$= xyA' + x'y'A' + xy'A + x'yA$$

7.27

The results of Prob. 6.17 can be used to develop the equations for a three-bit binary counter with D-type flip-flops.

$$DA_0 = A'_0$$

$$DA_1 = A'_1A_0 + A_1A'_0$$

$$DA_{1} = A'_{1}A_{0} + A_{1}A'_{0}$$

$$DA_{2} = A'_{2}A_{1}A_{0} + A_{2}A'_{1} + A_{2}A'_{0}$$

$$C_{out} = A_2 A_1 A_0$$

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

7.29 PLA programming table:

		Inputs	Outputs
	Product term	x y A	D_A
xyA'	1	1 1 0	1
x'y'A'	2	$0 \ 0 \ 0$	1
xy'A	3	1 0 1	1
x'yA	4	0 1 1	1