Perceptrons

Young Wu Based on lecture slides by Jerry Zhu

February 5, 2019

Supervised Learning

Supervised learning:

Data	Features (Input)	Output	-
Sample	$\{(x_{i1},,x_{iD})\}_{i=1}^{N}$	$\{y_i\}_{i=1}^N$	find "best" \hat{f}
-	observable	known	-
New	$\{(x'_1,,x'_D)\}_{i=1}^N$	y'	guess $\hat{y} = \hat{f}(x')$
-	observable	unknown	-

Training and Test Sets

Supervised learning:

Data	Features (Input)	Output	-
Train	$\{(x_{i1},,x_{iD})\}_{i=1}^{N_T}$	$\{y_i\}_{i=1}^N$	find many \hat{f}
-	observable	known	-
Test	$\{(x_{i1},,x_{iD})\}_{i=1}^{N-N_T}$	$\{y_i\}_{i=1}^N$	find "best" \hat{f}
-	observable	known	-
New	$\{(x'_1,,x'_D)\}_{i=1}^N$	y'	guess $\hat{y} = \hat{f}(x')$
-	observable	unknown	-

Real Life Examples

• Examples of supervised learning:

Data	Features (Input)	Output
Images	$x_{i1} = \text{How much red?}$	$y_i \in \{0, 1\}$
-	$x_{i2} = \text{How many circles?}$	0 = cat,
-		1 = dog
Sentences	$x_{i1} = Length?$	$y_i \in \{0,1\}$
-	$x_{i2} = \text{How many verbs?}$	$0 = bad \; news$
-		1 = good news
Medical	$x_{i1} = Age$	$y_i \in \{0,1\}$
-	$x_{i2} = Height$	0 = not sick
-		1 = sick
Grades	$x_{i1} = Midterm?$	$y_i \in \{0, 1\}$
_	$x_{i2} = \text{Average homework?}$	0 = fail
-		1 = pass

Recall From Previous Lecture Objective Function

• How to select \hat{f} ? Need an objective function

$$\hat{f} = \arg\min_{f \in \text{ all functions}} \frac{1}{2} \sum_{i=1}^{N} (f(x_i) - y_i)^2$$

• Problem: too many functions to choose from

Recall From Previous Lecture Function Space Diagram

Hypothesis Space

• How to select \hat{f} ? Need a hypothesis space

$$\begin{split} \hat{f} &= \arg \min_{f \in \text{ all linear functions}} \ \frac{1}{2} \sum_{i=1}^{N} \left(f\left(x_{i}\right) - y_{i}\right)^{2} \\ (\hat{w}_{0}, \hat{w}_{1}, ..., \hat{w}_{D}) &= \arg \min_{\left(w_{0}, w_{1}, ..., w_{D}\right) \in \mathbb{R}^{D}} \frac{1}{2} \sum_{i=1}^{N} \left(a_{i} - y_{i}\right)^{2} \\ \text{where } a_{i} &= w_{0} + w_{1}x_{i1} + w_{2}x_{i1} + ... + w_{D}x_{iD} \end{split}$$

• Problem: need an algorithm to solve the minimization problem

Recall From Previous Lecture Optimization Diagram

Optimization Diagram, Converge

Recall From Previous Lecture Optimization Intuition

- If a small increase in w_d causes the distances from the points to the regression line to decrease: increase w_d
- If a small increase in w_d causes the distances from the points to the regression line to increase: decrease w_d
- Change in distance due to change in w_d is the derivative
- Change in distance due to change in w is the gradient

Gradient Descent

• How to select \hat{f} ? Need gradient descent

$$(\hat{w}_0, \hat{w}_1, ..., \hat{w}_D) = \arg \min_{(w_0, w_1, ..., w_D) \in \mathbb{R}^D} \frac{1}{2} \sum_{i=1}^N (a_i - y_i)^2$$
 where $a_i = w_0 + w_1 x_{i1} + w_2 x_{i1} + ... + w_D x_{iD}$
$$w_d = w_d - \alpha \sum_{i=1}^N (a_i - y_i) x_{id},$$
 for $d = 0, 1, ..., D, x_{i0} := 1$

• Problem: not for binary classification

This Lecture

Binary Classification Diagram

This Lecture

Binary Classification Intuition

- The prediction \hat{y} is not between 0 and 1
- Large x_i are classified correctly but have large distances from the regression line

This Lecture

• How to select \hat{f} for binary classification? Need an activation function.

$$\hat{f} = \arg \min_{f = g(w_0 + w_1 x_{i1} + w_2 x_{i1} + \dots + w_D x_{iD})} \frac{1}{2} \sum_{i=1}^{N} (a_i - y_i)^2$$
where $a_i = g(w_0 + w_1 x_{i1} + w_2 x_{i1} + \dots + w_D x_{iD})$

• Obvious choice: step function

Non-linear Activation Function Step Function

 \bullet Activation function: step function $g\left(\overline{ \cdot \cdot } \right) = \mathbb{1}_{\left[\cdot \cdot \right] \geqslant 0}$

$$\mathbb{1}_{\boxed{\cdot}>0} = \left\{ \begin{array}{ll} 1 & \text{if } \boxed{\cdot} \geqslant 0 \\ 0 & \text{if } \boxed{\cdot} < 0 \end{array} \right.$$

- Derivative: $g'(\overline{)} = 0$ but undefined at $\overline{)} = 0$
- Problem: discontinuous, cannot use gradient

Non-linear Activation Function Step Function Diagram

Another Non-linear Activation Function Sigmoid Function

- Activation function: sigmoid function $g\left(\boxed{\cdot}\right) = \frac{1}{1 + \exp\left(-\boxed{\cdot}\right)}$
- Derivative: $g'(\overline{)} = g(\overline{)}(1 g(\overline{)})$
- Gradient descent step:

$$w_d = w_d - \alpha \sum_{i=1}^{N} (a_i - y_i) a_i (1 - a_i) x_{id}$$
 where $a_i = g (w_0 + w_1 x_{i1} + w_2 x_{i1} + ... + w_D x_{iD})$ for $d = 0, 1, ..., D, x_{i0} := 1$

Non-linear Activation Function Sigmoid Function Diagram

Other Non-linear Activation Function Tanh, Acrtan and ReLu

- Activation function: $g() = \tanh () = \frac{e^{ \cup } e^{ \cup }}{e^{ \cup } + e^{ \cup }}$
- Activation function: $g(\overline{ }) = \arctan(\overline{ })$
- Activation function (rectified linear unit): $g\left(\overline{\cdot \cdot} \right) = \overline{\cdot \cdot 1}_{\left[\cdot \cdot \right] \geqslant 0}$
- Gradient descent: all convex and differentiable.
- Problem: decision boundary is still step function

Other Non-linear Activation Function Decision Boundary

- $f(x_i) = g(w_0 + w_1x_{i1} + w_2x_{i2} + ...w_Dx_{iD})$ is called a perceptron model
- Connect perceptrons into a network

Multi-layer Neural Network Single Layer Diagram

Input

Output

Multi Layer Diagram

- In theory:
- 1 Hidden-layer with enough hidden units can represent any continuous function of the inputs with arbitrary accuracy
- 2 Hidden-layer can represent discontinuous functions
 - In practice:

AlexNet: 8 layers

@ GoogLeNet: 27 layers

ResNet: 152 layers

Multi-class Classification

- Encode $y \in \{1, 2, 3, ..., K\}$ by using K output units
- **1** Class 1 = (1, 0, 0, ..., 0, 0)
- ② Class 2 = (0, 1, 0, ..., 0, 0)
- **③** ...
- **1** Class K = (0, 0, 0, ..., 0, 1)
 - Decode by choosing the class corresponding to the largest output unit

Next Lecture Training Neural Network

- Derivatives are difficult to compute: use chain rule
- Backproprogation