{desafío} latam_

Bagging y
Random Forests _

Motivación

¿Qué son?

- Bagging y Random Forest se conocen como ensambles paralelos.
- Un ensamble paralelo busca evaluar la decisión de un conjunto de modelos entrenados, para posteriormente promediarla.
- El principal problema de modelos como los árboles de decisión es el hecho que generamos una representación única de los datos.

Limitantes de modelos de instancia única

- Cuando entrenamos modelos de instancia única, generamos representaciones limitadas del fenómeno.
- Al seleccionar un modelo dentro de una serie de candidatos, estamos desechando información relevante de los clasificadores débiles (Kearns y Valliant, 1989).
- La elección de un modelo específico conlleva a una elección deliberada entre sesgo y varianza:
 - Esto es aún más importante cuando hablamos de árboles de decisión.
- Los métodos de ensambles paralelos permiten agregar múltiples visiones sobre el mismo problema.

Bagging

Datos de Entrenamiento

Bootstraping

El objetivo de Bagging es implementar múltiples árboles para regularizar su comportamiento.

Problema: Si entrenamos sobre los mismos datos, incurrimos en sesgo optimista y overfit.

Solución: Para cada modelo implementado en nuestro ensamble, entrenarlo con un subconjunto de datos.

Este subconjunto de datos provendrá de lo que se conoce como **bootstrapping**: Una técnica de muestreo con reemplazo.

Random Forests

Mecanismo de Random Forest

Datos de Entrenamiento

Selección Aleatoria de Atributos

- **Problema de Bagging:** Tiende a generar soluciones con sesgo, dado que al entrenar con todos los atributos generamos correlación entre las predicciones de los árboles.
- Para resolver el problema de correlación entre clasificadores, se incluye un mecanismo aleatorio de selección de atributos.
- Durante la construcción de árboles, Random Forests selecciona un subconjunto de atributos de manera aleatoria y prosigue de igual manera con el entrenamiento y selección de particiones.
 Breiman (2001) sugiere dos formas de definir la cantidad de atributos aleatorizados:
 - El logaritmo del número de atributos.
 - La raíz cuadrada del número de atributos.

Out of Bag

- Problema con los Ensambles: Son computacionalmente costosos. Realizar validación cruzada o búsqueda de grilla puede ser hasta prohibitivo.
- Bagging/Random Forest devuelven un error fuera de la bolsa: En base a las observaciones excluidas de cada bootstrap, generemos una predicción de ésta.
- Idea: generar una aproximación a la tasa de errores con validación cruzada en base a los datos ignorados en el bootstrap de cada modelo.
- Para obtener un estimado out-of-bag (OOB), necesitamos de dos pasos:
 - Identificar las observaciones.
 - Estimar el error predictivo en las observaciones.

$$\mathcal{H}^{\text{out-of-bag}}(\mathbf{x}) = \operatorname*{argmax}_{y \in \mathcal{Y}} \sum_{t=1}^{} \mathbb{I}(h_t(\mathbf{x}) = y) \cdot \mathbb{I}(\mathbf{x} \notin D_t)$$

$$\mathcal{H}^{\mathsf{out\text{-}of\text{-}bag}}(\mathbf{x}) = \operatorname*{argmax}_{y \in \mathcal{Y}} \sum_{t=1}^{I} \mathbb{I}(h_t(\mathbf{x}) = y) \cdot \mathbb{I}(\mathbf{x} \notin D_t)$$

Identificación de observaciones

out of bag

$$\mathcal{H}^{ ext{out-of-bag}}(\mathbf{x}) = \operatorname*{argmax}_{y \in \mathcal{Y}} \sum_{t=1}^{I} \mathbb{I}(h_t(\mathbf{x}) = y) \cdot \mathbb{I}(\mathbf{x}
otin D_t)$$

Identificación de observaciones predichas correctamente a nivel de clasificador débil.

$$\mathcal{H}^{\mathsf{out ext{-}of ext{-}bag}}(\mathbf{x}) = \mathop{\mathsf{argmax}}_{y \in \mathcal{Y}} \sum_{t=1}^T \mathbb{I}(h_t(\mathbf{x}) = y) \cdot \mathbb{I}(\mathbf{x}
otin D_t)$$

Optimización de las clases correctamente predichas fuera del bootstrap.

$$\varepsilon^{\text{out-of-bag}} = \frac{1}{|D|} \sum_{\mathbf{x}, \mathbf{y} \in D} \mathbb{I} \Big(\mathcal{H}^{\text{out-of-bag}}(x \neq y) \Big)$$

$$\varepsilon^{\text{out-of-bag}} = \frac{1}{|D|} \sum_{\mathbf{x}, \mathbf{y} \in D} \mathbb{I} \Big(\mathcal{H}^{\text{out-of-bag}}(x \neq y) \Big)$$

Identificación de la tasa de clasificación errónea en el out-of-bag

$$\varepsilon^{\text{out-of-bag}} = \frac{1}{|D|} \sum_{\mathbf{x}, \mathbf{y} \in D} \mathbb{I} \Big(\mathcal{H}^{\text{out-of-bag}}(x \neq y) \Big)$$

Identificación de los errores de clasificación a nivel de ensamble

$$\varepsilon^{ ext{out-of-bag}} = \frac{1}{|D|} \sum_{\mathbf{x}, \mathbf{y} \in D} \mathbb{I} \Big(\mathcal{H}^{ ext{out-of-bag}}(x \neq y) \Big)$$

Ajuste por la cantidad de datos

{desafío} Academia de talentos digitales