

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Discrete Structures: CMPSC 102 A Review of the Class

Oliver BONHAM-CARTER

Fall 2018 Week 15

Final Exam Topics

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

- Given on Tuesday 18th December at 9:00am, Alden 101
- Online format
- Three hours to complete
- Fifteen questions: Multi-choice, True/False and short answer
- Material covered since week 12

What types of things to study

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

- Slides, notes, with chapters to add detail to class material
- Main ideas behind mathematical subjects in class (again, study your slides)
- Python basics and code
- Sets (main ideas)
- Basic stats: meaning and understanding of how to use a measurement
- Differences between sets, dictionaries, lists
 - Determining the correct data-type for a task.
- Conceptual questions: What did each week teach you in terms of general concepts in discrete structures and computation?

Course Overview: Academic Bulletin Description

Final Exam Topics

Class Overview

Discrete Objects

Python! Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis An introduction to the foundations of computer science with an emphasis on understanding the abstract structures used to represent discrete objects. Participating in hands-on activities that often require teamwork, students learn the computational methods and logical principles that they need to create and manipulate discrete objects in a programming environment. Students also learn how to write, organize, and document a programs source code so that it is easily accessible to intended users of varied backgrounds. During a weekly laboratory session students use state-of-the-art technology to complete projects, reporting on their results through both written documents and oral presentations. Prerequisite: Knowledge of elementary algebra. Distribution Requirements: QR, SP.

What did I learn here?

Final Exam **Topics**

Class

Overview Discrete

Objects Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

"An introduction to the foundations of computer science with an emphasis on understanding the abstract structures used to represent discrete objects.

Wait! What?

What is do you mean by, discrete?

Discreet or Discrete

- Discreet means unobtrusive or unnoticeable (not this course!)
- **Discrete** means *separate*, not continuous or *not sharing* any common space

So, Discrete then?

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

• Discrete mathematics involves countable things.

Discrete objects

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

- Discrete means "countable"
- We can count the number of animals.

About Python...

Final Exam Topics

Class Overview

Discrete Objects

Python!

Finding Factorials Approx Sqrts

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

- Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance.
- Python supports modules and packages, which encourages program modularity and code reuse.
- The Python interpreter and the extensive standard library are open source and freely available in all major platforms

About Python...

Final Exam Topics

Class Overview

Discrete Objects

Python!

Finding Factorials Approx Sqrts

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Topics

- Using the interactive shell
- Mathematical operators
- If statements
- Conditional statements
- Reading from files
- Data structures
- Applying mathematical reasoning, logic to your code.

Practicals

- Calculating factorials
- Approximating square roots
- Fibonacci sequences

Finding Factorial (not Nemo!)

Practical work: Putting mathematics to computation

Final Exam Topics

Class Overview

Discrete Objects

Python! Finding

Factorials
Approx Sgrts

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

```
Enter a number: 10
 The number you entered is the following: 10
Testing the number for Odd or Even polarity ...
 The number << 10 >> is EVEN:
Determing the factorial of the number ...
Current value of fact int :
                              24
Current value of fact int: 120
Current value of fact int: 720
Current value of fact int :
                             5040
Current value of fact int :
                             40320
 Current value of fact int :
                             362880
 * Factorial for 10 is : 3628800
```

$$n! = \prod_{k=1}^{n} k = n * (n-1) * (n-2) \cdots (3) * (2) * (1)$$

Finding Factorial (not Nemo!)

Practical work: The steps for approximation.

Final Exam Topics

Class Overview

Discrete Objects

Python! Finding Factorials

Approx Sqrts

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis Finding square root of : 2 Initial values: n = 2 and guess = 1.0 Square root result : 1.4142156862745099

Finding cube root of: 175616

Approx guess: 1.0

Initial values: n = 175616 and guess = 1.0

Cube root result : 56.00000000040617

Finding forth root of: 9834496

Initial values: n = 9834496 and guess = 1.0

Forth root result : 56.0

Guess			Approx. root
x_n	$f(x) = x_n^2 - 2$	$f'(x_n) = 2x$	$x_n - \frac{f(x_n)}{f'(x_n)}$
1	-1	2	$1 - \frac{-1}{2} = \frac{3}{2} = 1.5$
$\frac{3}{2}$	$\frac{1}{4} = 0.25$	3.0	$\frac{3}{2} - \frac{(\frac{1}{4})}{3} = \frac{17}{12} = 1.4167$
$\frac{17}{12}$	$\frac{1}{144}$	$\frac{17}{6}$	$\frac{17}{6} - \frac{\frac{1}{144}}{\frac{17}{6}} = \frac{577}{408} = 1.4142$

Types of Sets One decides which elements make up a set

Final Exam **Topics**

Class Overview

Discrete Objects

Python!

Sets

And, Or, Not

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Set of Triangles

Intentional definition of sets

- \bullet A_1 is the set whose members are the first four positive integers.
- B_1 is the set of colors of the Union Jack (i.e., the British flag)

Types of Sets Sets of members in curly brackets

Final Exam Topics

Topics Class

Overview
Discrete
Objects

Python!

Sets

And, Or, Not

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Extensional definition of sets

- $A_2 = \{4, 2, 1, 3\}$
 - The first four positive numbers
- $B_2 = \{ Blue, Red and White \}$
 - The set of colors of the Union Jack (the British flag)
- $F = \{n^2 4 : n \text{ is an integer; and } 0 \le n \le 19\}$
 - The set of all values gained from plugging in n between 0 and 19 into the equation n^2-4

Types of Sets Practical: Used to make a secret writing program

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

And, Or, Not

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Intentional Definition:

- \bullet A_1 is the set are the first four positive integers.
- ullet B_1 is the set of colors of the Union Jack

Extensional Definition:

$$\bullet \ A_2 = \{4, 2, 1, 3\}$$

•
$$B_2 = \{ Blue, Red and White \}$$

Prepositional Logic

Final Exam **Topics** Class

Overview Discrete Objects

Python!

Sets And, Or, Not

Compound

Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

A proposition statement:

- Denoted by a capital letter (i.e., "A")
- A negation of a proposition statement
- $\sim A$: "not A"
- Two proposition statements joined by a connective
- *A* ∧ *B*: "A and B"
- $A \vee B$: "A or B"
- If a connective joins complex statements, parenthesis are added
- $A \wedge (B \vee C)$: "A and (B or C)"

Compound Truth tables

Final Exam **Topics** Class

Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Α	В	\sim A	$A \lor B$	$(\sim A) \wedge (A \vee B)$
0	0	1	0	0
0	1	1	1	1
1	0	0	1	0
_1	1	0	1	0

Legend

- AND is denoted by : ∧
- OR is denoted by : ∨
- ullet Contradiction is denoted by : \sim
- Equivalency is denoted by : \equiv

Generator Functions For Fibonacci Sequences

Creating sequences dynamically with yield

Final Exam Topics

Functions having yield-statement are generator

Overview Discrete

• This function works as a generator or otherwise

Objects
Python!

A generator function for the Fibonacci sequence

Sets

Compound Truth Tables

Fibonacci Sequence: Generator

Sequence: Generator with Yield

Graph Theory
Visualizing

Data

```
def fibs(n):
    a=1
    b=1
    for i in range(n):
        yield a
        a, b = b, a + b
print([x for x in fibs(6)])
print(" My type is:",type(fibs))
f = fibs(6)
for i in f: print(i)
print(" My type is: ",type(fibs(6)))
```

Define a Graph

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Adjacency Matrices

Visualizing Data

A Little Text Analysis

A Bowtie Graph

- ullet We define a graph by its vertices and edges: $G=(V,\,E)$
 - Vertices: $V(G) = \{V_1, V_2, V_3, V_4, V_5\}$
 - Edges: $E(G) = \{V_1V_2, V_2V_3, V_3V_1, V_4V_1, V_5V_1, V_4V_5\}$

Adjacency Matrices

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Adjacency Matrices

Visualizing Data

A Little Text Analysis

A matrix is used describe adjacent vertices

- A matrix contains rows and columns
- Vertices are labelled with a 1 or 0 in position (v_i, v_j) according to whether v_i and v_j are adjacent vertices

Creating Plots with Matplotlib

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

 We first need to know that the library is installed on your machine.

python3

from pylab import plot, show

- https://matplotlib.org/index.html
- https://matplotlib.org/3.0.0/users/installing.html

Another Amazing Example!

Plot the sin wave

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Place in python3 or in a python3 program file

```
from pylab import plot, show #get the library
import math
x_num = [i for i in range(50)]
y_num = [math.sin(i) for i in x_num]
plot(x_num, y_num, marker ='o')
# also including 'o', '*', 'x', and '+' as points
show() # draw the plot on canvas
```


Frequency Fingerprints of Famous Writers! Text Analysis

Final Exam **Topics**

Class

Overview Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing

Data

A Little Text Analysis

Figure: Maybe we cannot hack into a typewriter but we can still hack the text that typewriters have produced. For this type of hacking, we collect frequency information to determine the distribution of frequencies.

Frequency Fingerprints of Famous Writers! Text Analysis

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

Figure: Authur Conan Doyle's fingerprint from word frequencies.

Sentiment Analyzer!

Text Analysis

Final Exam Topics

Class Overview

Discrete Objects

Python!

Sets

Compound Truth Tables

Fibonacci Sequence: Generator with Yield

Graph Theory

Visualizing Data

A Little Text Analysis

What else did we learn?!

Much more!!