2.(a)

curl

"http://data.un.org/Handlers/DownloadHandler.ashx?DataFilter= itemCode: 526&DataMartId=FAO&Formation for the context of the

=csv&c=2,3,4,5,6,7&s=countryName:asc,elementCode:asc,year:desc" -o "data.zip"

Download the zip file from the url link and rename it as "data.zip"

unzip -p data.zip > data.csv

Decompress the zip file as data.csv

grep + data.csv > region.csv

Extract the regions of the world (ex:Africa) into a new file since those names are followed by "+"

grep -v + data.csv > country.csv

Extract the individual countries into a new file since those names are not followed by "+"

grep 2005 country.csv > 2005.csv

Subset the country-level data to the year 2005

grep Area 2005.csv > area.csv

Subset the data of which the element is "Area Harvested"

sed 's/\"//g' area.csv | sort -n -t ',' -k 6 | tail -n 5

First, we use sed command to remove the double quote on each field. Then, we use sort to compare the

number on the sixth filed(-k option means column, -t means delimiter)

Finally, use tail command to show the five countries with greatest values

The result includes Turkey, Pakistan, Uzbekistan, Algeria and Spain

for $((i=1965; i\leq 2005; i+=10)); do$

grep \$i country.csv | grep Area | sed 's/\"//g' | sort -n -t ',' -k 6 | tail -n 5 >> file.txt

done

We automate the aggregate process and loop it from the year 1965 to 2005, then put the stdout into file.txt

less file.txt

Check the content in the file

We can observe that there is a little difference of countries among different years

```
(b)
function agri(){
# Define a function called agri
if [ "$1" == "-h" ]
# Print the introduction of this function if user types "-h"
then
echo "This function asks you to enter a valid item code as input. The output will be the data in csv format
otherwise a warning signal will appear."
exit 0
# Exit the function
fi
curl
"http://data.un.org/Handlers/DownloadHandler.ashx?DataFilter=itemCode:$1&DataMartId=FAO&Format=
csv&c=2,3,4,5,6,7&s=countryName:asc,elementCode:asc,year:desc" -o "data.zip"
# Download the zip file by passing the number of item code as the first argument ($1)
unzip -p data.zip > data.csv
# download the zip file from the url and unzip it as data.csv
byte=$(ls -la data.csv | cut -d' ' -f8)
# variable "byte" records the size of the file in bytes.
# If the url is invalid, the downloaded file will be a nearly empty file with approximate 244 bytes
if [ $byte -lt 1000 ]
# If the file is less than 1000 bytes, the url is invalid
echo "You've passed an invalid number. Please Try again."
fi
less data.csv
# Check the content in the csv file
}
```

3.

curl https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ > data.html

Download the whole HTML file as "data.html"

less data.html

Check the HTML file, we observe that the critical words like "ghcnd-countries.txt" are dispersed among the file.

data=\$(grep .txt data.html | cut -d''' -f8)

We try to filter the txt files, the result will look like "ghcnd-countries.txt", "readme.txt" and so on

for i in \$data;do

#Loop each item (ex."readme.txt") in \$data

echo \$i;

Print the name of the item

curl -o "\$i" https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/\$i; done

Download each item by adding its name on the tail of the url link

```
4. \documentclass {article} \begin {document} 
The height of the water level in Lake Huron fluctuates over time. Here I analyze the variation using R. I show a histogram of the lake levels for the period \Sexpr{start(LakeHuron)[1]} 
to\Sexpr{end(LakeHuron)[1]}. 
# Below is the R chunk 
<>>= hist(LakeHuron)
lowHi <- c(which.min(LakeHuron), which.max(LakeHuron))
yearExtrema <- attributes(LakeHuron)$tsp[1]-1 + lowHi
@ \end{document}
```

The height of the water level in Lake Huron fluctuates over time. Here I analyze the variation using R. I show a histogram of the lake levels for the period 1875 to 1972.

hist(LakeHuron)

Histogram of LakeHuron

lowHi <- c(which.min(LakeHuron), which.max(LakeHuron))
yearExtrema <- attributes(LakeHuron)\$tsp[1]-1 + lowHi</pre>