

Facultad de Ciencias E.T.S. de Ingenierías Informática y de Telecomunicación

Grado en Ingeniería Informática y Matemáticas

TRABAJO DE FIN DE GRADO

Aplicación de la topología algebraica en redes neuronales

Presentado por: Pablo Olivares Martínez

Curso académico 2023-2024

Aplicación de la topología algebraica en redes neuronales

Pablo Olivares Martínez

Pablo Olivares Martínez *Aplicación de la topología algebraica en redes neuronales*. Trabajo de fin de Grado. Curso académico 2023-2024.

Responsable de tutorización

Miguel Ortega Titos Departamento de Geometría y Topología

Julián Luengo Martín Departamento de Ciencias de la Computación e Inteligencia Artificial

Grado en Ingeniería Informática y Matemáticas

> Facultad de Ciencias E.T.S. de Ingenierías Informática y de Telecomunicación

Universidad de Granada

Declaración de originalidad

D./Dña. Pablo Olivares Martínez

Declaro explícitamente que el trabajo presentado como Trabajo de Fin de Grado (TFG), correspondiente al curso académico 2023-2024, es original, entendido esto en el sentido de que no he utilizado para la elaboración del trabajo fuentes sin citarlas debidamente.

En Granada a 23 de abril de 2024

Fdo: Pablo Olivares Martínez

Dedicatoria (opcional) Ver archivo preliminares/dedicatoria.tex

Índice general

Agradecimientos	VII
Summary	IX
Introducción	ΧI
I. Fundamento teórico	1
1. Fundamentos del álgebra homológica 1.1. Módulos 1.2. Sucesiones exactas 1.3. Categorías y funtores 1.4. Módulos diferenciales 1.5. Complejos de cadenas 1.6. Subcomplejos y complejos cociente	3 7 9 10 11
2. Símplices y complejos simpliciales 2.1. Símplices	17 19 21 22 23
3. Homología simplicial 3.1. Homología simplicial orientada	25 25 28 31
4. Invariancia homotópica 4.1. Subdivisión baricéntrica	37 40 42 45 49
5. Homología persistente 5.1. Complejos de Cech y Vietoris-Rips	51 51 51 53

Agradecimientos

 $A grade cimientos \ (opcional, ver archivo\ preliminares/agrade cimiento.\ tex).$

Summary

An english summary of the project (around 800 and 1500 words are recommended). File: preliminares/summary.tex

Introducción

De acuerdo con la comisión de grado, el TFG debe incluir una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas.

Ver archivo preliminares/introduccion.tex

Parte I. Fundamento teórico

1. Fundamentos del álgebra homológica

La teoría de homología es una rama de la topología que trata de resolver problemas topológicos en el ámbito del álgebra. Por este motivo es importante conocer muy bien algunas herramientas algebraicas que iremos utilizando con frecuencia. En todo el capítulo usaremos como referencia principal [Mac12].

1.1. Módulos

La estructura de módulo surge con la idea de generalizar el concepto de espacio vectorial sobre un cuerpo a un anillo. Nuestro interés en ellos radica en que la teoría de homología se construye sobre módulos y por ello es necesario hacer una introducción al campo. Esta sección recoge algunas definiciones y resultados de interés vistos en la asginatura de Álgebra Moderna y complementada con los contenidos de [DF04].

Definición 1.1. Sea R un anillo con elemento identidad $1 \neq 0$. Un R-módulo izquierdo A es un grupo abeliano aditivo junto con una función $p: R \times A \to A$ con $(r,a) \to ra$ tal que dados $r, r' \in R$, $a, a' \in A$ se tiene

```
1. (r+r')a = ra + r'a,
```

2.
$$(rr')a = r(r'a)$$
,

3.
$$r(a + a') = ra + ra'$$
,

4.
$$1a = a$$
.

De la definición anterior se sigue que 0a = 0 y (-1)a = -a.

De manera análoga, definimos R-módulo derecho donde el anillo actúa por la derecha en vez de por la izquierda de forma que $p:A\times R\to A$. Si R es un anillo conmutativo, los R-módulos izquierdos y derechos coinciden y les llamamos simplemente R-módulos. Como los resultados de R-módulos izquierdos y derechos son análogos, trabajaremos con los R-módulos izquierdos y nos referiremos a ellos como R-módulos o módulos a menos que se indique explícitamente lo contrario.

Ejemplo 1.1. El interés de los R-módulos subyace en la cantidad de estructuras conocidas que engloba. Si por ejemplo consideramos el K-módulo donde K es un cuerpo, éste adquiere la estructura de **espacio vectorial**. Ahora sea A un \mathbb{Z} -módulo. Definimos el producto p de forma que para $n \in \mathbb{Z}$ y $a \in A$ con n > 0, $na = a + a + \ldots + a$ (n veces), 0a = 0 y (-n)a = -(na). Entonces A ha de tener estructura de **grupo abeliano**. En particular, si R es un anillo entonces es también un R-módulo.

Definición 1.2. Sea A un R-módulo izquierdo y S un subconjunto de A. Diremos que S es un **submódulo** de A, esto es, $S \subset A$, si S es cerrado respecto a la suma y si $r \in R$, $s \in S$ entonces $rs \in S$.

De la definición anterior se deduce que *S* es un *R*-módulo.

Definición 1.3. Sea R un R-módulo. Si un submódulo de R es un subconjunto $L \subset R$ cerrado respecto a la suma tal que $rL = \{rl : l \in L\} \subset L$ para todo $r \in R$, lo llamaremos **ideal** de R.

Tomando un ideal izquierdo L de R y un R-módulo izquierdo A, definimos el producto del ideal L por el módulo A

$$LA = \left\{ \sum_{i=0}^{n} l_i a_i : l_i \in L, a_i \in A, n \in \mathbb{N} \right\}$$

donde LA es un submódulo de A. En particular, el producto de dos ideales izquierdos LL' es también un ideal izquierdo y (LL')A = L(L'A).

Definición 1.4. Sea A un R-módulo. Definimos el **anulador de** A como el submódulo $Ann(A) = \{r \in R : ra = 0 \ \forall a \in A\}$. De manera análoga, llamaremos **anulador de** $a \in A$ al submódulo $Ann(A) = \{r \in R : ra = 0 \ \forall a \in A\}$.

Definición 1.5. Sea A un R-módulo y sea $a \in A$. El conjunto $Ra = \{r \cdot a : r \in R\}$ es un submódulo de A que denominaremos **submódulo cíclico generado por** a.

Definición 1.6. Sea A un R-módulo y sean $a_1, \ldots, a_n \in A$. Entonces $Ra_1 + \ldots + Ra_n = \{r \cdot a_1 + \ldots + r \cdot a_n : r \in R\}$ es un submódulo de A que llamaremos **submódulo generado por** a_1, \ldots, a_n .

Definición 1.7. Sea M un R-módulo. Un submódulo N de M es **finitamente generado** si existe un subconjunto finito $A \subset M$ tal que N = RA.

Definición 1.8. Sean A, B R-módulos. Definimos el **homomorfismo de** R-**módulos** de A a B como la aplicación $\alpha:A\to B$ tal que

1.
$$\alpha(a+a') = \alpha(a) + \alpha(a')$$
,

2.
$$\alpha(ra) = r\alpha(a)$$

para todo $a, a' \in A, r \in R$.

Cuando $\alpha:A\to B$ sea un homomorfismo de R-módulos, diremos que A es el **dominio** y B el **rango**. La **imagen** de α es el conjunto $\mathrm{Im}(\alpha)=\{\alpha(a):a\in A\}$. El **núcleo** será el conjunto de elementos que se anulan en su imagen, esto es, $\ker(\alpha)=\{a\in A:\alpha(a)=0\}$. Diremos que α es un **epimorfismo** cuando α sea sobreyectiva, un **monomorfismo** cuando α sea inyectiva y un **isomorfismo** si α es un epimorfismo y un monomorfismo a la vez. Si existe un isomorfismo entre A y B diremos que son **isomorfos** y lo notaremos $A\cong B$. Un homomorfismo $\alpha:A\to A$ lo llamaremos **endomorfismo**.

Dado que el núcleo y la imagen de un homomorfismo de *R*-módulos coincide con el de los grupos abelianos subyacentes, la siguiente caracterización es inmediata de la ya conocida para grupos:

Proposición 1.1. Sea $\alpha:A\to B$ un homomorfismo de R-módulos. Entonces

- 1. α es un monomorfismo si, y sólo si, $\ker(\alpha) = 0$.
- 2. α es un epimorfismo si, y sólo si, $\text{Im}(\alpha) = B$.

Es frecuente escribir el homomorfismo de R-módulos $\alpha:A\to B$ como $A\xrightarrow{\alpha}B$. Respecto a la notación de la imagen de un elemento $a\in A$ por α , pondremos $\alpha(a)$ o simplemente αa . En cuanto a la imagen de A por α , lo representaremos de manera análoga por $\alpha(A)$ o αA .

Dados dos homomorfismos de R-módulos $\alpha_1, \alpha_2: A \to B$, su **suma** $\alpha_1 + \alpha_2$ la definimos como $(\alpha_1 + \alpha_2)(a) = \alpha_1(a) + \alpha_2(a)$ para todo $a \in A$. Además, dados dos homomorfismos de R-módulos $\alpha: A \to B$, $\beta: B \to C$, su **composición** $\beta \circ \alpha: A \to C$ es también un homomorfismo de R-módulos. Nótese que para que la composición sea posible, el rango de α tiene que ser igual al dominio de β . En ocasiones usaremos la notación por yuxtaposición $\alpha\beta = \alpha \circ \beta$. Llamaremos **inversa** (por ambos lados) de $\alpha: A \to B$ al homomorfismo $\alpha^{-1}: B \to A$ tal que $\alpha^{-1} \circ \alpha = \mathrm{id}_A$ y $\alpha \circ \alpha^{-1} = \mathrm{id}_B$. Una **inversa izquierda** de α es una función $\gamma: B \to A$ tal que $\gamma \circ \alpha = \mathrm{id}_A$. De manera análoga, el homomorfismo $\theta: B \to A$ es **inversa derecha** de α si $\alpha \circ \theta = \mathrm{id}_B$.

Si $T \subseteq B$, el conjunto $\alpha^{-1}T = \{s \in A : \alpha(s) \in T\}$ es un submódulo de A, llamado la **imagen inversa** (completa) de T. En particular, $\ker \alpha = \alpha^{-1}0$, donde 0 denota el submódulo de B que consiste solo del elemento cero.

Sea $T\subseteq B$ donde B es un R-módulo, llamaremos **inclusión** o **inyección canónica** al homomorfismo $i:T\to B$ tal que i(t)=t para todo $t\in T$. En particular, i es un monomorfismo. Las **clases laterales** de T en B son los conjuntos $b+T=\{b+t:t\in T\}$ donde $b\in B$. Dos clases laterales b_1+T , b_2+T son iguales si $b_1-b_2\in T$. Como T es un submódulo, el grupo abeliano B/T se convierte en un R-módulo cuando r(b+T)=rb+T para todo $r\in R$. A este R-módulo lo llamaremos el **módulo cociente** de B sobre T. El homomorfismo $\pi:B\to B/T$ tal que $\pi(b)=b+T$ es un epimorfismo que llamaremos **proyección canónica** de B.

Proposición 1.2 (Teorema de factorización). Sea $\beta: B \to B'$ un homomorfismo de módulos con $T \subset \ker \beta$. Existe entonces un único homomorfismo de módulos $\beta': B/T \to B'$ con $\beta'\pi = \beta$; es decir, el siguiente diagrama con $\beta(T) = 0$

es conmutativo. Al homomorfismo β' lo llamaremos **homomorfismo inducido** por β .

Demostración. Consideremos el R-módulo B y definamos $\beta'(b+T)=\beta(b)$. Por estar T contenida en el núcleo de β , la función está bien definida. En efecto, si $a,b\in B$ entonces a+T=b+T lo que implica que $a-b\in T\subset \ker\beta$. Esto es, $\beta(a-b)=0$ y por tanto, $\beta(a)=\beta(b)$. Como β es un homomorfismo,

$$\beta'((ra+sb)+T) = \beta(ra+sb) = r\beta(a) + s\beta(b) = r\beta'(a+T) + s\beta'(b+T)$$

para todo $r,s \in R$, $a,b \in B$. En consecuencia, β' también es un homomorfismo de R-módulos.

Teorema 1.1 (Primer teorema de isomorfía). Sea $\beta: B \to B'$ un homomorfismo de R-módulos. Entonces

$$\frac{B}{\ker\beta}\cong\operatorname{Im}\beta$$

Demostración. La demostración es análoga a la ya vista para grupos. Construimos un homomorfismo de R-módulos $\beta: B \to \operatorname{Im} \beta$ donde aplicando el Teorema de factorización con

 $T=\ker \beta$, obtenemos el homomorfismo inducido $\beta':B/\ker \beta\to \operatorname{Im}\beta$ tal que $\beta'(b+\ker \beta)=\beta(b)$. Veamos que está bien definida y que es biyectiva. Para ello, consideremos que existe otro $c\in B$ tal que $b+\ker B=c+\ker B$ lo cual se cumple si, y sólo si, $(b+\ker B)-(c+\ker B)=(b-c)+\ker \beta=0$. Esto es, que $b-c\in \ker \beta$ y por tanto $\beta(b-c)=\beta(b)-\beta(c)=0$. Es decir, $\beta(b)=\beta(c)$. En consecuencia, la aplicación β' está bien definida y además es inyectiva. Claramente $\beta:B\to \operatorname{Im}\beta$ es sobreyectiva.

Definición 1.9. Sea $\{A_i\}_{i\in I}$ una familia de R-módulos indexada por I. Definimos el **producto** directo o **producto** directo externo de $\{A_i\}_{i\in I}$ como el producto cartesiano

$$\prod_{i\in I} A_i = \{(x_i)_{i\in I} : x_i \in A_i\}$$

donde las operaciones se definen componente a componente:

$$(x_i)_{i \in I} + (y_i)_{i \in I} = (x_i + y_i)_{i \in I}$$

 $r(x_i)_{i \in I} = (rx_i)_{i \in I}$

para todo $r \in R$, $x_i, y_i \in A_i$, $i \in I$.

Definición 1.10. Sea $\{A_i\}_{i\in I}$ una familia de R-módulos indexada por I. Definimos la **suma** directa o **suma** directa interna de $\{A_i\}_{i\in I}$ como el submódulo de $\prod_{i\in I} A_i$ tal que

$$\bigoplus_{i \in I} A_i = \{(x_i)_{i \in I} : x_i = 0 \text{ p.c.t. } i \in I\}$$

Nota. Recordemos que una condición se cumple "para casi todo"(p.c.t.) elemento de un conjunto si se cumple para todo elemento en él salvo en un subconjunto finito de elementos.

Definición 1.11. Sea B un conjunto y sea $R\langle B\rangle$ el R-módulo tal que $R\langle B\rangle = \bigoplus_{b\in B} R_b$ donde $R_b = R$ para todo $b \in B$. Llamaremos a dicho R-módulo el R-módulo libre de base B. De esta forma cada $x \in R\langle B\rangle$ se representa por $x = \sum_{b\in B} \lambda_b \cdot b$ donde $\lambda_b \in R$ son coeficientes no nulos en un número finito de posiciones b.

Definición 1.12. Sea M un R-módulo libre. Si para toda base B de M, B tiene la misma cardinalidad, entonces decimos que M tiene **rango** rg M = |B|, donde B es alguna base de M.

Definición 1.13. Sea x un elemento de un R-módulo. Decimos que x es un **elemento de torsión** si existe un $r \in R \setminus \{0\}$ tal que rx = 0. Por otro lado, x es un **elemento sin torsión** si el único elemento $r \in R$ que satisface rx = 0 es r = 0. Un R-módulo se clasifica como **módulo de torsión** si cada uno de sus elementos es un elemento de torsión. Recíprocamente, un **módulo sin torsión** es aquel cuyos elementos no nulos son elementos sin torsión.

Definición 1.14. Definimos el **submódulo de torsión** de un *R*-módulo *M* como el conjunto $Tor(M) = \{x \in M : Ann(x) \neq \{0\}\}$. Es decir, el conjunto de todos los elementos de torsión de *M*.

Teorema 1.2 (Descomposición cíclica primaria). *Sea R un DIP y sea M un R-módulo finitamente generado. Entonces M se descompone como la suma directa*

$$M \cong R^f \oplus \bigoplus_{i=1}^k \frac{R}{\langle a_i \rangle}$$

donde R^f es un módulo libre de rango f y $R/\langle a_1\rangle, \ldots, R/\langle a_k\rangle$ son módulos cíclicos con anuladores $\langle a_1\rangle, \ldots, \langle a_k\rangle$. Además, f y los ideales $\langle a_1\rangle, \ldots, \langle a_k\rangle$ de R generados por $a_1, \ldots, a_k \in R$ están determinados de manera única salvo el orden por M.

Teorema 1.3 (Propiedad universal de los módulos libres). *Sean B un conjunto, M un R-módulo* $y \varphi : B \to M$ una aplicación entre conjuntos. Entonces existe un único homomorfismo de R-módulos $\varphi : R\langle B \rangle \to M$ de forma que $\varphi(b) = \varphi(b)$ para todo $b \in B$. Es decir, el diagrama

conmuta.

1.2. Sucesiones exactas

Definición 1.15. Sea $\{A_i, \alpha_i\}_{i \in \mathbb{Z}}$ una familia de R-módulos A_i y homomorfismos entre ellos tal que $\alpha_i : A_i \to A_{i+1}$. Diremos que la sucesión

$$\cdots \xrightarrow{\alpha_{i-2}} A_{i-1} \xrightarrow{\alpha_{i-1}} A_i \xrightarrow{\alpha_i} A_{i+1} \xrightarrow{\alpha_{i+1}} \cdots$$

es **exacta** cuando Im $\alpha_i = \ker \alpha_{i+1}$.

Definición 1.16. Sean A, B y C R-módulos y $\sigma: A \to B$, $\gamma: B \to C$ homomorfismos entre ellos. Diremos que la **sucesión exacta** es **corta** si

$$(\sigma, \gamma): 0 \to A \xrightarrow{\sigma} B \xrightarrow{\gamma} C \to 0.$$

Es decir, una sucesión exacta de cinco *R*-módulos con los dos módulos exteriores siendo cero (y por lo tanto las dos funciones exteriores triviales).

Proposición 1.3. Sean A, B y C R-módulos y $\sigma: A \to B$, $\gamma: B \to C$ homomorfismos entre ellos. Entonces

- 1. La sucesión $0 \to A \xrightarrow{\sigma} B$ es exacta (en A) si, y sólo si, σ es inyectiva.
- 2. La sucesión $B \to C \xrightarrow{\gamma} 0$ es exacta (en C) si, y sólo si, γ es sobreyectiva.

Demostración. El único homomorfismo que cumple $0 \to A$ tiene imagen 0 en A y por tanto, el núcleo de σ será este si, y sólo si, σ es inyectiva. De manera similar, el único homomorfismo $C \to 0$ es el homomorfismo nulo para todo elemento de C, que es la imagen de γ si, y sólo si, γ es sobreyectiva.

Corolario 1.1. La sucesión $0 \to A \xrightarrow{\sigma} B \xrightarrow{\gamma} C \to 0$ es exacta si, y sólo si, σ es inyectiva, γ es sobreyectiva y $\operatorname{Im} \sigma = \ker \gamma$.

Como acabamos de probar, la exactitud en A significa que σ es un monomorfismo, en B significa que $\sigma A = \ker \gamma$ y en C que γ es un epimorfismo. Así la sucesión exacta corta puede escribirse como $A \xrightarrow{\sigma} B \xrightarrow{\gamma} C$, con exactitud en B. Ahora σ induce un isomorfismo

1. Fundamentos del álgebra homológica

 $\sigma':A\to\sigma A$ y γ un isomorfismo $\gamma':B/\sigma A\to C$; juntos estos proveen un isomorfismo de sucesiones exactas cortas, en la forma de un diagrama conmutativo

$$0 \longrightarrow A \xrightarrow{\sigma} B \xrightarrow{\gamma} C \longrightarrow 0$$

$$\downarrow^{\sigma'} \qquad \qquad \downarrow^{(\gamma')^{-1}}$$

$$0 \longrightarrow \sigma A \xrightarrow{i} B \longrightarrow B/\sigma A \longrightarrow 0.$$

En resumen, una sucesión exacta corta es simplemente otro nombre para un submódulo y su cociente.

Ejemplo 1.2. Respecto al Teorema de factorización, la inclusión i y la proyección π producen una sucesión exacta corta.

$$0 \to T \xrightarrow{i} B \xrightarrow{\pi} B/T \to 0.$$

Para realizar la prueba del siguiente resultado usaremos una estrategia típica en álgebra homológica conocida como persecución de diagramas. Este método consiste en buscar composiciones de aplicaciones equivalentes en diagramas conmutativos, y en explotar las propiedades de los homomorfismos inyectivos, sobreyectivos y biyectivos, así como de las sucesiones exactas.

Lema 1.1 (Lema de los cinco). Consideremos el siguiente diagrama conmutativo de R-módulos

$$A_{1} \xrightarrow{\sigma_{1}} A_{2} \xrightarrow{\sigma_{2}} A_{3} \xrightarrow{\sigma_{3}} A_{4} \xrightarrow{\sigma_{4}} A_{5}$$

$$\downarrow \phi_{1} \qquad \downarrow \phi_{2} \qquad \downarrow \phi_{3} \qquad \downarrow \phi_{4} \qquad \downarrow \phi_{5}$$

$$B_{1} \xrightarrow{\gamma_{1}} B_{2} \xrightarrow{\gamma_{2}} B_{3} \xrightarrow{\gamma_{3}} B_{4} \xrightarrow{\gamma_{4}} B_{5}$$

cuyas filas son exactas. Si además ϕ_2 , ϕ_4 son isomorfismos, ϕ_1 es un epimorfismo y ϕ_5 es un monomorfismo, entonces ϕ_3 es un isomorfismo.

Demostración. Comencemos viendo la inyectividad de ϕ_3 . Sea $x \in A_3$ tal que $\phi_3(x) = 0$. Considerando la conmutatividad y la exactitud de las filas, obtenemos

$$\phi_4(\sigma_3(x)) = \gamma_3(\phi_3(x)) = \gamma_3(0) = 0.$$

Dado que ϕ_4 es inyectiva, concluimos que $\sigma_3(x)=0$. La exactitud en A_3 implica la existencia de $y\in A_2$ tal que $\sigma_2(y)=x$. Aplicando ϕ_2 y utilizando la conmutatividad, tenemos que

$$\gamma_2(\phi_2(y)) = \phi_3(\sigma_2(y)) = \phi_3(x) = 0.$$

La exactitud en B_2 implica que existe $z \in B_1$ tal que $\gamma_1(z) = \phi_2(y)$. Como ϕ_1 es sobreyectiva, existe $w \in A_1$ con $\phi_1(w) = z$. Nuevamente, la conmutatividad del diagrama y la inyectividad de ϕ_2 implican que

$$\phi_2(\sigma_1(w)) = \gamma_1(\phi_1(w)) = \gamma_1(z) = \phi_2(y),$$

y por tanto, $\sigma_1(w)=y$. Por la exactitud en A_2 , concluimos $x=\sigma_2(y)=\sigma_2(\sigma_1(w))=0$. Veamos ahora la sobreyectividad de ϕ_3 . Dado cualquier $x\in B_3$, como ϕ_4 es sobreyectiva, existe $p\in A_4$ tal que $\phi_4(p)=\gamma_3(x)$. La exactitud y la inyectividad de ϕ_5 nos llevan a

$$\phi_5(\sigma_4(p)) = \gamma_4(\phi_4(p)) = \gamma_4(\gamma_3(x)) = 0,$$

implicando que $\sigma_4(p)=0$. Por exactitud, existe $r\in A_3$ con $\sigma_3(r)=p$, y utilizando la conmutatividad, obtenemos

$$\gamma_3(\phi_3(r)) = \phi_4(\sigma_3(r)) = \phi_4(p) = \gamma_3(x).$$

Entonces, $\phi_3(r) - x$ pertenece a ker $\gamma_3 = \text{Im } \gamma_2$. En consecuencia, existe $s \in B_2$ tal que $\gamma_2(s) = \phi_3(r) - x$. Utilizando la sobreyectividad de ϕ_2 , encontramos $t \in A_2$ con $\phi_2(t) = s$, y por lo tanto,

$$\phi_3(r - \sigma_2(t)) = \phi_3(r) - \gamma_2(\phi_2(t)) = \phi_3(r) - \gamma_2(s) = x.$$

1.3. Categorías y funtores

La teoría de categorías fue introducida por primera vez por Samuel Eilenberg y Saunders MacLane en [EM45]. En particular, las categorías son estructuras algebraicas que capturan la noción de composición. Gracias a ellas podemos analizar y comparar estructuras algebraicas, permitiendo sacar conclusiones comunes y trasladar problemas complejos a otros espacios donde resolverlos es más sencillo. En esta sección haré una breve introducción de las categorías apoyándome en [ML13].

Definición 1.17. Una categoría C es una tripleta (O, hom, \circ) formada por

- 1. Una clase \mathcal{O} , cuyos elementos denominamos **objetos** de \mathcal{C} y notamos por $Obj(\mathcal{C})$.
- 2. Por cada par de objetos (A,B) de \mathcal{C} , un conjunto hom(A,B) cuyos elementos son llamados **morfismos** de A a B. Si $f \in hom(A,B)$, normalmente escribiremos $f:A \to B$ o $A \xrightarrow{f} B$.
- 3. Una **ley de composición** que asocia a cada morfismo $f:A\to B$ y a cada morfismo $g:B\to C$ un morfismo $g\circ f:A\to C$ que satisface
 - **Asociatividad**. Si $f: A \to B$, $g: B \to C$ y $h: C \to D$ son morfismos de C, entonces $h \circ (g \circ f) = (h \circ g) \circ f$.
 - **Identidad**. A cada objeto B le podemos asociar un morfismo identidad id $_B : B \to B$ tal que si $f : A \to B$ y $g : B \to C$ entonces $g \circ id_B = g$ y $id_B \circ f = f$.

Llamaremos a este morfismo la **composición** de f y g.

Ejemplo 1.3. Como veremos a continuación, la definición anterior nos va a permitir trabajar con un gran número de espacios matemáticos que ya conocemos en el contexto de la teoría de categorías. Algunos de ellos son:

- La categoría de espacios topológicos, donde los objetos son todos los espacios topológicos y los morfismos todas las aplicaciones continuas entre espacios topológicos $f: X \to Y$.
- La categoría de grupos, donde los objetos son todos los grupos y los morfismos todos los homomorfismos de grupos.
- La categoría de conjuntos, cuyos objetos son todos los conjuntos y sus morfismos todas las aplicaciones entre conjuntos.

■ La categoría de sucesiones exactas de R-módulos de longitud n. Los objetos son dichas sucesiones $S: A_1 \to \cdots \to A_n$. Para dos sucesiones S: S', los morfismos son de la forma $\Gamma: S \to S'$ tal que $\Gamma = (\gamma_1, \ldots, \gamma_n)$ es una tupla donde los $\gamma_i: A_i \to A_i'$ son homomorfismos de R-módulos tal que

$$A_{1} \longrightarrow A_{2} \longrightarrow \cdots \longrightarrow A_{n-1} \longrightarrow A_{n}$$

$$\uparrow_{1} \qquad \uparrow_{2} \qquad \qquad \downarrow \gamma_{n-1} \qquad \qquad \downarrow \gamma_{n}$$

$$A'_{1} \longrightarrow A'_{2} \longrightarrow \cdots \longrightarrow A'_{n-1} \longrightarrow A'_{n}$$

conmuta para todo $i \in \{1, \dots, n\}$.

Definición 1.18. Sea $f \in \text{hom}(A, B)$ un morfismo en la categoría \mathcal{C} . Diremos que f es una **equivalencia** en \mathcal{C} si existe en \mathcal{C} otro morfismo $g \in \text{hom}(B, A)$ tal que $g \circ f = \text{id}_A$ y $f \circ g = \text{id}_B$.

Nótese que si $f \in \text{hom}(A, B)$ es una equivalencia en C, $g \in \text{hom}(B, A)$ debe ser única. En efecto, si suponemos que existe $g' \in \text{hom}(B, A)$ tal que $g' \circ f = \text{id}_A$, entonces $g = g' \circ f \circ g = g' \circ \text{id}_B = g'$.

Dentro de la teoría de categorías los funtores tienen un papel principal, pues nos va a permitir llevar objetos y morfismos de una categoría a otra preservando identidades y composiciones.

Definición 1.19. Sean C, D dos categorías. Un **funtor covariante** de C a D es una pareja de funciones *denotadas por la misma letra T* tal que:

- 1. Una **función objeto** que asigna a cada objeto $C \in C$ un objeto $T(C) \in D$.
- 2. Una **función de morfismos** qu asigna a cada morfismo $\gamma: C \to C'$ de \mathcal{C} un morfismo $T(\gamma): T(C) \to T(C')$ de \mathcal{D} . Este par de funciones satisfacen las siguientes condiciones:

$$T(1_C)=\mathrm{id}_{T(C)}, \qquad C\in\mathcal{C},$$
 $T(eta\gamma)=T(eta)T(\gamma), \qquad eta\gamma ext{ definido en }\mathcal{C}.$

Es decir, un funtor covariante $T:\mathcal{C}\to\mathcal{D}$ es una aplicación que preserva el rango, dominio, identidades y composiciones de \mathcal{C} en \mathcal{D} .

Mediante el uso de estructuras algebraicas como módulos y complejos de cadenas, la homología asigna a cada espacio topológico una serie de grupos de homología, que reflejan características clave como agujeros y vacíos en diferentes dimensiones. Estos grupos permiten no sólo discernir la estructura interna de los espacios, sino también compararlos de manera abstracta. Usaremos de referencia [Mac12].

1.4. Módulos diferenciales

Comenzaremos definiendo lo que es un módulo de homología y estableceremos la terminología que emplearemos cuando trabajemos con ellos.

Definición 1.20. Sea C un R-módulo junto a un endomorfismo $d:C\to C$ tal que $d^2=d\circ d=0$. Diremos entonces que C es un **módulo diferencial** y llamaremos a d **operador borde** de C.

Llamaremos a los elementos de C cadenas. El subgrupo de ciclos será $Z(C) = \ker d$, y el subgrupo de bordes $B(C) = \operatorname{Im} d$. Si nos fijamos, el requisito $d^2 = 0$ es equivalente a exigir que $\operatorname{Im} d \subset \ker d$.

Definición 1.21. Sea C un grupo diferencial. Definimos el R-módulo de homología de C como el módulo cociente H(C;R) tal que

$$H(C;R) = \frac{Z(C)}{B(C)}$$

En particular, cuando C sea un \mathbb{Z} -módulo diferencial, lo llamaremos **grupo diferencial** y notaremos $H(C;\mathbb{Z})$ simplemente por H(C).

Por tanto, el módulo de homología de un módulo diferencial C está formado por las clases laterales [c] = c + B(C) donde c es un ciclo de C. A los elementos de H(C;R) los llamaremos **clases de homología**. Dos ciclos c y c' diremos que son **homólogos** si ambos pertenecen a la misma clase de homología, esto es, $c \sim c'$.

Definición 1.22. Sean C y C' dos módulos diferenciales y d, d' sus respectivos operadores borde. Diremos que $f: C \to C'$ es un **homomorfismo de módulos diferenciales** si f es un homomorfismo de módulos y además d'f = fd.

La anterior definición nos permite preservar la estructura algebraica del módulo diferencial. De esta forma, si tomamos una cadena $c \in C$ que sea un ciclo o un borde y $f: C \to C'$ es un homomorfismo de módulos diferenciales, $f(c) \in C'$ seguirá siendo un ciclo o un borde de manera correspondiente. En efecto, pues si $z \in Z(C)$, entonces d'f(z) = f(dz) = f(0) = 0. Esto es, $f(z) \in \ker d'$. Ahora, si $b \in B(C)$, entonces existe $c \in C$ tal que dc = b. En consecuencia, d'f(c) = f(dc) = f(b) y por tanto, $f(b) \in \operatorname{Im} d'$.

Definición 1.23. Sean C, C' módulos diferenciales y $f: C \to C'$ un homomorfismo de módulos diferenciales. Definimos la función $f_* = H(f): H(C;R) \to H(C';R)$ tal que

$$f_*([c]) = [f(c)]$$

Diremos que H(f) es el **homomorfismo inducido** por f.

1.5. Complejos de cadenas

Definición 1.24. Sea R un anillo. Un **complejo de cadenas** C_{\bullet} de R-módulos es una familia $\{C_n, \partial_n\}$ donde C_n son R-módulos y $\partial_n : C_n \to C_{n-1}$ homomorfismos de R-módulos tales que $\partial_n \partial_{n+1} = 0$ para todo $n \in \mathbb{Z}$.

Nota. Usualmente notaremos directamente ∂ al homomorfismo ∂_n independientemente del valor de n siempre y cuando se sobrentienda por el contexto.

Observación 1.1. La última condición es equivalente a que $\operatorname{Im} \partial_{n+1} \subset \ker \partial_n$.

Un complejo C₀ es por tanto una sucesión doblemente infinita

$$C_{\bullet}: \cdots \to C_1 \to C_0 \to C_{-1} \to \cdots$$

donde toda composición de homomorfismos de dicha familia es el homomorfismo nulo. La **homología** $H(C_{\bullet})$ es la familia de R-módulos

$$H_n(C_{\bullet}) = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$$

donde $H_n(C_{\bullet})$ es el *n*-ésimo módulo de homología de C_{\bullet} .

Luego $H_n(C_{\bullet})=0$ implica que la sucesión C_{\bullet} es exacta en C_n . A los elementos de C_n los llamaremos **n-cadenas** o **cadenas de dimensión n**. Un **n-ciclo** o **ciclo de dimensión n** de C_{\bullet} es un elemento del submódulo $Z_n(C_{\bullet})=\ker\partial_n$. Un **n-borde** o **borde de dimensión n** es un elemento de $B_n(C_{\bullet})=\operatorname{Im}\partial_{n+1}$. Si la dimensión se sobrentiende en estos casos, no es necesario indicarla de manera explícita. La clase lateral de un ciclo c la notaremos por $[c]=c+\partial C_{n+1}$. Dos n-ciclos $c,c'\in C_n$ pertenecientes a la misma clase lateral [c] decimos que son **homólogos**, es decir, $c\sim c'$.

Definición 1.25. Sea $\{C_{\bullet}^i, \partial^i\}_{i \in I}$ una familia de complejos de cadenas. Su **suma directa** la definimos como el complejo de cadenas $\bigoplus_{i \in I} C_{\bullet}^i$ cuyos operadores borde vienen dados por $\bigoplus_{i \in I} \partial_n^i : \bigoplus_{i \in I} C_n^i \to \bigoplus_{i \in I} C_{n-1}^i$ para todo $n \in \mathbb{Z}$.

Proposición 1.4. Sea $\{C^i_{\bullet}, \partial^i\}_{i \in I}$ una familia de complejos de cadenas. Entonces su homología conmuta con la suma directa, esto es, $H_n(\bigoplus_{i \in I} C^i_{\bullet}) \cong \bigoplus_{i \in I} H_n(C^i_{\bullet})$ para todo $n \in \mathbb{Z}$.

Demostración. Para demostrar que la homología conmuta con sumas directas, queremos mostrar que para una colección de complejos de cadenas $\{C_{\bullet}^i, \partial^i\}_{i \in I}$, los homomorfismos

$$\phi: H_n\left(\bigoplus_{i\in I} C^i_{\bullet}\right) \to \bigoplus_{i\in I} H_n(C^i_{\bullet}): [(c_i)] \mapsto ([c_i]),$$

$$\psi: \bigoplus_{i\in I} H_n(C^i_{\bullet}) \to H_n\left(\bigoplus_{i\in I} C^i_{\bullet}\right): ([c_i]) \mapsto [(c_i)],$$

están bien definidos y son inversos mutuos.

En primer lugar, para comprobar que dichas aplicaciones están bien definidas, observemos que $[(c_i)] = [(c_i')]$ si, y sólo si, $[0] = [(c_i - c_i')]$. Esto ocurre si, y sólo si, existe un $b_i \in C^i_{\bullet}$ tal que $\partial_i(b_i) = (c_i - c_i')$, lo cual es equivalente a $c_i + \partial_i(b_i) = c_i'$ para cada $i \in I$. Por lo tanto, $[(c_i)] = [(c_i')]$ si, y sólo si, $\phi([(c_i)]) = \phi([(c_i')]) = [(c_i' + \partial_i(b_i))] = [(c_i')]$. De manera análoga, $[(c_i)] = [(c_i')]$ si, y sólo si, $\psi([(c_i)]) = \psi([(c_i')])$. Esto implica que tanto ϕ como ψ están bien definidos.

En segundo lugar, es claro que ϕ y ψ son homomorfismos de R-módulos. Además, ϕ lleva la clase de equivalencia $[(c_i)]$ a $([c_i])$, mientras que ψ lleva $([c_i])$ a $[(c_i)]$, lo que demuestra que son inversos el uno del otro.

Por lo tanto, ϕ es un isomorfismo con ψ como su inverso, estableciendo que $\bigoplus_{i \in I} H_n(C^i_{\bullet}) \cong H_n(\bigoplus_{i \in I} C^i_{\bullet})$.

Definición 1.26. Sean C_{\bullet} , C'_{\bullet} complejos de cadenas. Una **aplicación de cadenas** o **morfismo de cadenas** $f: C_{\bullet} \to C'_{\bullet}$ es una familia de homomorfismos de R-módulos $f_n: C_n \to C'_n$ tal que $\partial'_n f_n = f_{n-1} \partial_n$ para todo $n \in \mathbb{Z}$.

$$\cdots \leftarrow C_{n-1} \stackrel{\partial_n}{\lessdot} C_n \stackrel{\partial_{n+1}}{\lessdot} C_{n+1} \leftarrow \cdots$$

$$\downarrow^{f_{n-1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n+1}}$$

$$\cdots \leftarrow C'_{n-1} \stackrel{\partial'_n}{\lessdot} C'_n \stackrel{\partial'_{n+1}}{\lessdot} C'_{n+1} \leftarrow \cdots$$

Cuando se sobrentienda del contexto, notaremos simplemente por ∂ a los correspondientes ∂_n y ∂'_n .

La función $H_n(f) = f_*$ definida por $f_*([c]) = f_*(c + \partial C_{n+1}) = fc + \partial C'_{n+1}$ es un homomorfismo $H_n(f): H_n(C_{\bullet}) \to H_n(C'_{\bullet})$.

Definición 1.27. Sean C_{\bullet} , C'_{\bullet} complejos de cadenas y $f,g:C_{\bullet}\to C'_{\bullet}$ dos aplicaciones de cadenas entre ellos. Una **homotopía de cadenas** u **homotopía algebraica** s es una familia de homomorfismos de módulos $s_n:C_n\to C'_{n+1}$ para cada $n\in\mathbb{Z}$ tal que

$$\partial_{n+1}' s_n + s_{n-1} \partial_n = f_n - g_n$$

Diremos entonces que f y g son algebraicamente homotópicas y escribiremos $f \simeq g$.

Teorema 1.4. Si s es una homotopía de cadenas entre $f,g:C_{\bullet}\to C'_{\bullet}$, entonces

$$H_n(f) = H_n(g) : H_n(C_{\bullet}) \to H_n(C'_{\bullet})$$

Demostración. Si c es un ciclo de C_n , tenemos que $\partial_n c = 0$. Por la Def. 1.27 se cumple que $f_n c - g_n c = \partial s_n c$. Como consecuencia $f_n c$ y $g_n c$ son homólogos lo que implica que $[f_n c] = [g_n c]$ en $H_n(C'_{\bullet})$, como queríamos demostrar.

Definición 1.28. Una aplicación de cadenas $f: C_{\bullet} \to C'_{\bullet}$ es una **equivalencia de cadenas** si existe otra aplicación $h: C'_{\bullet} \to C_{\bullet}$ y homotopías $s: h \circ f \to \mathrm{id}_{C_{\bullet}}$, $t: f \circ h \to \mathrm{id}'_{C_{\bullet}}$ tales que $h \circ f \simeq \mathrm{id}_{C_{\bullet}}$, $f \circ h \simeq \mathrm{id}_{C'_{\bullet}}$.

Como $H_n(\mathrm{id}_{C_{\bullet}}) = \mathrm{id}_{H_n(C_{\bullet})}$, del anterior teorema se deduce lo siguiente.

Corolario 1.2. Si $f: C_{\bullet} \to C'_{\bullet}$ es una equivalencia de cadenas, la aplicación inducida $H_n(f): H_n(C_{\bullet}) \to H_n(C'_{\bullet})$ es un isomorfismo para cada $n \in \mathbb{Z}$.

Proposición 1.5. Sean $f,g:C_{\bullet}\to C'_{\bullet}$ y $f',g':C'_{\bullet}\to C''_{\bullet}$ aplicaciones de cadenas. Sean $s:f\to g$, $s':f'\to g'$ homotopías de cadenas entre ellas tales que $f\simeq g$, $f'\simeq g'$. Entonces la composición

$$f's + s'g : f' \circ f \to g' \circ g$$
 $g' \circ g : C_{\bullet} \to C''_{\bullet}$

es una homotopía de cadenas.

Demostración. Por ser s,s' homotopías de cadenas tenemos que $\partial s + s\partial = f - g$ y $\partial s' + s'\partial = f' - g'$. Aplicando f' a la izquierda de la primera expresión y g a la derecha de la segunda nos queda

$$\begin{cases} f'\partial s + f's\partial = f' \circ f - f' \circ g, \\ \partial s'g + s'\partial g = f' \circ g - g' \circ g. \end{cases}$$

Sumando ambas igualdades

$$f'\partial s + f's\partial + \partial s'g + s'\partial g = f' \circ f - f' \circ g + f' \circ g - g' \circ g,$$

$$f'\partial s + f's\partial + \partial s'g + s'\partial g = f' \circ f - g' \circ g,$$

$$\partial f's + f's\partial + \partial s'g + s'g\partial = f' \circ f - g' \circ g,$$

donde finalmente queda

$$\partial (f's + s'g) + (f's + s'g)\partial = f' \circ f - g' \circ g.$$

1.6. Subcomplejos y complejos cociente

Definición 1.29. Un **subcomplejo** S_{\bullet} de C_{\bullet} es una familia de submódulos $S_n \subset C_n$ tal que para cada $n \in \mathbb{Z}$, $\partial S_n \subset S_{n-1}$.

Por tanto, S_{\bullet} es un complejo en sí con el operador borde ∂ inducido de C_{\bullet} y la inclusión $i: S_{\bullet} \to C_{\bullet}$ es una aplicación de cadenas.

Definición 1.30. Sea S_{\bullet} un subcomplejo de C_{\bullet} . El **complejo cociente** C_{\bullet}/S_{\bullet} es la familia $(C_{\bullet}/S_{\bullet})_n = C_n/S_n$ de módulos cocientes con operador borde $\partial'_n : C_n/S_n \to C_{n-1}/S_{n-1}$ inducido por $\partial_{C_{\bullet}}$.

Definición 1.31. Sean $f: C_{\bullet} \to C'_{\bullet}$, $g: C'_{\bullet} \to C''_{\bullet}$ aplicaciones de cadenas. La sucesión de complejos

$$C_{\bullet} \xrightarrow{f} C'_{\bullet} \xrightarrow{g} C''_{\bullet}$$

es **exacta** en C'_{\bullet} si Im(f) = ker(g); es decir, si cada sucesión $C_n \xrightarrow{f_n} C'_n \xrightarrow{g_n} C''_n$ de módulos es exacta en C'_n .

Definición 1.32. Un complejo C_{\bullet} es **positivo** si $C_n=0$ para todo n<0 con $n\in\mathbb{Z}$. Su n-ésimo módulo de homología es entonces positivo ya que $H_n(C_{\bullet})=0$ para todo n<0. De manera análoga, un complejo C_{\bullet} es **negativo** si $C_n=0$ para todo n>0 con $n\in\mathbb{Z}$.

Los complejos negativos suelen notarse con índices superiores positivos donde C_{-n} se sustituye por C^n y $\partial_{-n}: C_{-n} \to C_{-n-1}$ por $\delta^n: C^n \to C^{n+1}$ quedando así

$$0 \to C^0 \xrightarrow{\delta^0} C^1 \xrightarrow{\delta^1} C^2 \to \cdots, \quad \delta \circ \delta = 0$$

donde el n-ésimo módulo de homología $H^n(C_{\bullet}) = \ker(\delta^n)/\operatorname{Im}(\delta^{n-1})$ es positivo en los índices superiores. A dicho complejo lo llamaremos **complejo de cocadenas**.

Definición 1.33. Sea C_{\bullet} un complejo positivo de R-módulos. Denominaremos **aumento de** C_{\bullet} al homomorfismo sobreyectivo $\varepsilon: C_0 \to R$ de forma que $\varepsilon \circ \partial_1 = 0$.

Definición 1.34. Sea C_{\bullet} un complejo de cadenas positivo, $\varepsilon: C_0 \to R$ un aumento de C_{\bullet} y sea $n \in \mathbb{Z}$. Consideremos el complejo positivo \widetilde{C}_{\bullet} tal que $\widetilde{C}_n = C_n$ para todo $n \geq 0$, $\widetilde{C}_n = 0$ para todo n < -1 y $\widetilde{C}_{-1} = R$. Consideremos también $\widetilde{\partial}_n = \partial_n$ para todo $n \geq 1$ y $\widetilde{\partial}_0 = \varepsilon$. Llamaremos a este complejo **complejo aumentado** de C_{\bullet} .

Definición 1.35. Sea A un módulo. Definimos el siguiente complejo positivo donde $A_0 = A$, $A_n = 0$ para $n \neq 0$ y $\partial = 0$. Un **complejo sobre** A es un complejo positivo C_{\bullet} junto con una aplicación de cadenas $\varepsilon: C_{\bullet} \to A$ donde ε es un homomorfismo de módulos $\varepsilon: C_0 \to A$ tal que $\varepsilon \partial = 0: C_1 \to A$.

Definición 1.36. Una **homotopía contráctil** para $\varepsilon: C_{\bullet} \to A$ es una aplicación de cadenas $f: A \to C_{\bullet}$ tal que $\varepsilon f = \operatorname{id}_A$ junto con una homotopía $s: \operatorname{id}_{C_{\bullet}} \to f \varepsilon$ donde $\operatorname{id}_{C_{\bullet}} \simeq f \varepsilon$. En otras palabras, una homotopía contráctil consiste en homomorfismos de módulos $f: A \to C_0$ y $s_n: C_n \to C_{n+1}, n = 0, 1, \ldots$, tal que

$$\varepsilon f = \mathrm{id}_A$$
, $\partial_1 s_0 + f \varepsilon = \mathrm{id}_{C_0}$, $\partial_{n+1} s_n + s_{n-1} \partial_n = \mathrm{id}_{C_n}$ $n > 0$.

Podemos extender el complejo estableciendo $C_{-1}=A$, $\partial_0=\varepsilon:C_0\to C_{-1}$ y $s_{-1}=f$. Aplicando la Def. 1.36, $s:\mathrm{id}_{C\bullet}\to 0$ es una homotopía de cadenas. Si $\varepsilon:C_\bullet\to A$ tiene una homotopía contráctil, sus grupos de homología son isomorfos por $\varepsilon_*:H_0(C_\bullet)\to A$ para n=0 y $H_n(C_\bullet)=0$ para n>0.

Considérese un complejo de cadenas $C_{\bullet} = \{C_n, d_n\}_{n \in \mathbb{Z}}$, donde cada C_n es un \mathbb{Z} -módulo libre y $d_n : C_n \to C_{n-1}$ es el operador diferencial de C_{\bullet} que cumple $d_{n-1} \circ d_n = 0$ para todo n. Este tipo de complejos aparece frecuentemente en el estudio de espacios topológicos.

Supóngase además que cada C_n es finitamente generado. Entonces, el n-ésimo grupo de homología de C_{\bullet} , definido como

$$H_n(C_{\bullet}) = \frac{\ker(d_n)}{\operatorname{Im}(d_{n+1})},$$

es un grupo abeliano finitamente generado. Este resultado se sigue del hecho de que el núcleo y la imagen de los morfismos entre \mathbb{Z} -módulos libres finitamente generados son también finitamente generados.

El teorema de estructura para grupos abelianos finitamente generados afirma que cualquier grupo abeliano finitamente generado G puede expresarse como una suma directa de grupos cíclicos de la forma

$$G \cong \mathbb{Z}^{\beta} \oplus \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_k}$$
,

donde β es el rango de G y cada \mathbb{Z}_{m_i} es un grupo cíclico de orden m_i , con $m_1|m_2|\dots|m_k$. Aplicando este teorema al n-ésimo módulo de homología $H_n(C_{\bullet})$, obtenemos que

$$H_n(C_{\bullet}) \cong \mathbb{Z}^{\beta_n} \oplus \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_k}$$

donde β_n es el rango de $H_n(C_{\bullet})$, conocido como el **n-ésimo número de Betti** de C_{\bullet} , y los m_i son los **n-ésimos coeficientes de torsión**, satisfaciendo $m_1|m_2|\dots|m_k$.

Definición 1.37. Sea C_{\bullet} un complejo de cadenas y k un entero no negativo. El k-ésimo número de Betti, $\beta_k(C_{\bullet})$, se define como el rango del k-ésimo grupo de homología de C_{\bullet} , $H_k(C_{\bullet})$. Esto es, $\beta_k(C_{\bullet}) = \operatorname{rg}(H_k(C_{\bullet}))$.

Los números de Betti β_n proporcionan una medida de la dimensionalidad de la n-ésima homología, mientras que los coeficientes de torsión $\{m_i\}$ capturan información adicional sobre la estructura algebraica de $H_n(C_\bullet)$. Ambos conjuntos de invariantes son cruciales para el estudio de la topología algebraica, ya que ofrecen una perspectiva profunda sobre la estructura de los espacios topológicos desde el punto de vista homológico.

2. Símplices y complejos simpliciales

Los espacios topológicos pueden llegar a ser complicados de estudiar. Los complejos simpliciales tienen la ventaja de ser estructuras fáciles de estudiar. Por este motivo, los dotaremos de cierta topología que nos permitirá construir homeomorfismos a un gran número de espacios topológicos. En este capítulo nos centraremos en la definición y el estudio de estos objetos en profundidad en la línea de [Mun18] y lo complementaremos con alguna aportación de [Lee10].

2.1. Símplices

Con la finalidad de generalizar estructuras como el triángulo y el tetraedro, a finales del siglo XIX nace un nuevo concepto: el símplice. Su sencillez y propiedades lo convirtieron en una herramienta muy versátil en el estudio de la topología algebraica, dando lugar a lo que hoy conocemos como homología simplicial. En esta sección definiremos lo que es un símplice y algunos conceptos asociados a él que nos serán de gran utilidad en el estudio de dicho campo. Comenzamos recordando algunos conceptos de la geometría afín.

Como tan sólo será necesario trabajar en el espacio afín usual N-dimensional, lo notaremos simplemente por \mathbb{R}^N .

Definición 2.1. Sea $\{a_0, \ldots, a_p\}$ un conjunto de puntos en \mathbb{R}^N . Diremos que dicho conjunto es **afínmente independiente** si para cualesquiera $t_i \in \mathbb{R}$, las ecuaciones

$$\sum_{i=0}^{p} t_i = 0 \quad \mathbf{y} \quad \sum_{i=0}^{p} t_i a_i = 0$$

implican que $t_0 = t_1 = \ldots = t_p$.

Definición 2.2. Sea $\{a_0, \ldots, a_p\}$ un conjunto de puntos afínmente independiente. Definimos el **plano afín** P generado por $\{a_0, \ldots, a_p\}$ como el conjunto de puntos $x \in \mathbb{R}^N$ tales que

$$x = \sum_{i=0}^{p} t_i a_i = a_0 + \sum_{i=1}^{p} t_i (a_i - a_0)$$

para algunos $t_1, ..., t_p \in \mathbb{R}$. Diremos entonces que P es el plano que pasa por a_0 paralelo a los vectores $a_i - a_0$, $i \in \{1, ..., p\}$.

Nótese que la transformación afín T de \mathbb{R}^N tal que $T(x)=x-a_0$ es una traslación que lleva el plano P al subespacio vectorial de \mathbb{R}^N con base $a_1-a_0,a_2-a_0,\ldots,a_p-a_0$. Si componemos dicha transformación con una aplicación lineal que lleve cada vector $a_1-a_0,a_2-a_0,\ldots,a_p-a_0$ a los primeros N vectores de la base usual, obtenemos una transformación afín $S:P\to\mathbb{R}^N\times\{0\}$ tal que $S(a_i)=(0,\stackrel{i-1}{\ldots},0,1,0,\stackrel{i+1}{\ldots},0)$ con $i\in\{1,\ldots,p\}$.

Definición 2.3. Sea $\{a_0,\ldots,a_p\}$ un conjunto de puntos afínmente independiente en \mathbb{R}^N . Definimos el **p-símplice** o **símplice** $\sigma=[a_0,\ldots,a_p]$ generado por a_0,\ldots,a_p como el conjunto de todos los $x\in\mathbb{R}^N$ tales que

$$x = \sum_{i=0}^{p} t_i a_i$$
 y $\sum_{i=0}^{p} t_i = 1$

con $t_i \ge 0$, $i \in \{0, 1, ..., p\}$. Diremos que t_i es la i-ésima coordenada baricéntrica de x respecto a $a_0, a_1, ..., a_p$.

Proposición 2.1. Sea σ un k-símplice definido como en 2.3. Entonces, para cualquier $p \in \sigma$, las coordenadas baricéntricas t_0, \ldots, t_k de p están determinadas de manera única.

Demostración. Por definición, cualquier punto arbitrario $p \in \sigma$ puede escribirse como una combinación convexa de los puntos a_i . Esto garantiza la existencia de una solución (no negativa) al sistema lineal

$$At = \begin{pmatrix} a_{01} & \cdots & a_{k1} \\ \vdots & \ddots & \vdots \\ a_{0N} & \cdots & a_{kN} \\ 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} t_0 \\ \vdots \\ t_k \end{pmatrix} = \begin{pmatrix} p_1 \\ \vdots \\ p_N \\ 1 \end{pmatrix} = p^*,$$

donde A es la matriz que contiene a los a_i como columnas, extendidos con un 1 en la última fila para incorporar la condición de que la suma de t_i sea igual a 1, asegurando que estamos considerando combinaciones convexas.

Para demostrar la unicidad, supongamos la existencia de otro vector t' tal que $At'=p^*$. Esto lleva a A(t-t')=0. Supongamos que A(t-t')=Av=0, donde v=t-t'. Esto implica que para $v_i=t_i-t'_i$ para todo $i\in\{0,\ldots,k\}$

$$\sum_{i=0}^{k} v_i \cdot \begin{pmatrix} a_{0i} \\ \vdots \\ a_{ki} \\ 1 \end{pmatrix} = 0,$$

lo que lleva a que $v_0=v_1=\cdots=v_k=0$, debido a la independencia lineal de las columnas de A. En consecuencia, t=t', demostrando así que las coordenadas baricéntricas son únicas para cualquier punto p en σ .

Los puntos a_0, \ldots, a_p que generan σ los llamaremos **vértices** de σ y al número p lo llamaremos la **dimensión** de σ , que notaremos por dim σ .

Definición 2.4. Sea $\sigma = [a_0, \dots, a_p]$ un símplice. Una **cara de dimensión** p de σ será cualquier símplice generado por un subconjunto no vacío de $\{a_0, \dots, a_p\}$.

En particular, la cara de σ generada por $a_0,\ldots,a_{i-1},a_{i+1},\ldots,a_p$ la llamamos la **cara opuesta** de $a_i,i\in\{0,\ldots,p\}$. Las caras de σ diferentes de σ diremos que son **caras propias** de σ y la unión de todas ellas la llamaremos el **borde** de σ y lo notaremos Bd σ . Finalmente, definimos el **interior** de σ , Int σ , como el conjunto de puntos de σ que no pertenecen a su borde.

En ocasiones, para dos símplices σ y τ , escribiremos $\tau \leq \sigma$ si τ es cara de σ . En caso de ser cara propia, lo notaremos por $\tau \prec \sigma$.

Figura 2.1.: Símplices de dimensión 0, 1, 2 y 3

Proposición 2.2. Si σ es un símplice, entonces es unión disjunta del interior de todas sus caras.

Demostración. Sea x un elemento del símplice $\sigma = [a_0, \ldots, a_p]$ y sean t_0, \ldots, t_p sus coordenadas baricéntricas. Consideremos ahora σ_k el símplice resultante de eliminar los vértices cuya coordenada tenía valor nulo. Esto es, tomamos el símplice $\sigma_k = [a_{i_1}, \ldots, a_{i_k}]$ donde $t_{i_s} > 0$ para todo $s \in \{1, \ldots, k\}$. Por la construcción de σ_k , tenemos que s pertenece a su interior.

Ahora sabemos que todo punto de un símplice pertenece al interior de una cara. Finalmente, la unicidad de las coordenadas baricéntricas nos garantiza que la unión del interior de dos caras es disjunta.

Dado un símplice σ podemos definir un orden sobre sus vértices. Dos órdenes de σ los consideraremos equivalentes si podemos pasar de uno a otro con un número par de permutaciones. Así, los ordenamientos posibles para los vértices de σ se pueden agrupar en dos clases de equivalencia distintas, que definimos como las **orientaciones del símplice** σ .

Definición 2.5. Decimos que un símplice $\sigma = [a_0, a_1, \dots, a_p]$ está **orientado** si se le ha asignado una de estas orientaciones. Utilizaremos $[a_0a_1 \dots a_p]$ para denotar la clase de equivalencia dada por la orientación $a_0 < a_1 < \dots < a_p$ del símplice generado por los vértices a_0, a_1, \dots, a_p .

2.2. Complejos simpliciales

La importancia de los complejos simpliciales reside en su capacidad para descomponer espacios topológicos en componentes manejables, permitiendo un análisis detallado de su estructura. Al considerar la forma en que estos símplices se conectan y orientan entre sí, los complejos simpliciales facilitarán la definición de cadenas y ciclos simpliciales que serán indispensables en el estudio de la homología simplicial.

Definición 2.6. Un **complejo simplicial** (finito) K en \mathbb{R}^N es una colección finita de símplices en \mathbb{R}^N tal que:

- 1. Toda cara de un símplice de *K* está en *K*.
- 2. La intersección de cualesquiera dos símplices de *K* o es el vacío o es una cara de ambos símplices.

Nota. Si bien los complejos simpliciales se pueden formular sin la restricción de finitud, nosotros trabajaremos solamente en el caso finito por conveniencia en algunos resultados.

En ciertas ocasiones puede ser interesante saber si dada una colección cualquiera de símplices, esta es un complejo simplicial o no. Para ello, el siguiente lema nos puede ser de utilidad.

Lema 2.1. Una colección K de símplices es un complejo simplicial si, y sólo si, se cumplen las siguientes condiciones:

- 1. Toda cara de un símplice de K está en K.
- 2. La intersección dos a dos del interior de los símplices de K es vacía.

Demostración. Primero, asumamos que K es un complejo simplicial. Dados dos símplices $\sigma, \tau \in K$ veamos que si el interior de ambos tiene un punto x en común, entonces $\sigma = \tau$. Sea $s = \sigma \cap \tau$ y considero $x \in s$. Si s fuera una cara propia de σ , entonces x pertenecería a la frontera de σ , lo cual no se cumple ya que x pertenece al interior de σ . Por tanto $s = \sigma$. De manera análoga, $s = \tau$, luego $\sigma = \tau$.

Asumamos ahora que se cumplen (1) y (2). Queremos ver que si el conjunto $\sigma \cap \tau \neq \emptyset$, dicha intersección es la cara σ' de σ generada por los vértices b_0, \ldots, b_m de σ que están en τ . Primero, $\sigma' \subset \sigma \cap \tau$ por ser $\sigma \cap \tau$ convexa y contener a b_0, \ldots, b_m . Para la otra inclusión supongamos que $x \in \sigma \cap \tau$. Esto implica que $x \in \text{Int } s \cap \text{Int } t$ para alguna cara s de σ y alguna cara t de τ . Se sigue de (2) que s = t por lo que los vértices de s están en τ y por definición, son elementos del conjunto $\{b_0, \ldots, b_m\}$. Concluimos entonces que s es una cara de σ' , lo que implica que $s \in \sigma'$, como queríamos ver.

Definición 2.7. Si *L* es una subcolección del complejo simplicial *K* que contiene todas las caras de sus elementos, entonces *L* es un complejo simplicial que llamaremos **subcomplejo** de *K*.

Definición 2.8. Sea K un complejo simplicial. Diremos **p-esqueleto** de K al subcomplejo formado por todas las caras de K cuya dimensión sea menor o igual que p. Lo denotaremos por $K^{(p)}$. En particular, $K^{(0)}$ lo llamaremos el **conjunto de vértices** de K.

Definición 2.9. Sea K un complejo simplicial de \mathbb{R}^N y sea |K| el subconjunto de \mathbb{R}^N tal que |K| es la unión de todos los símplices de K. Definimos el **politopo** o **espacio subyacente** de K como el espacio topológico $(|K|, \mathcal{T})$ donde los abiertos de \mathcal{T} son aquellos $O \subseteq |K|$ tal que $O \cap \sigma$ es abierto en σ con la topología inducida de \mathbb{R}^N para todo $\sigma \in K$.

Veamos que en efecto $(|K|, \mathcal{T})$ es un espacio topológico. \emptyset , $|K| \in \mathcal{T}$ ya que son abiertos trivialmente en σ , pues $\emptyset \cap \sigma = \emptyset$ y $|K| \cap \sigma = \sigma$ para todo $\sigma \in K$. Si $O_1, O_2 \in \mathcal{T}$, entonces $O_1 \cap \sigma$, $O_2 \cap \sigma$ son abiertos en σ luego $(O_1 \cap O_2) \cap \sigma = (O_1 \cap \sigma) \cap (O_2 \cap \sigma)$ es abierto en σ para todo $\sigma \in K$. Por tanto $O_1 \cap O_2 \in \mathcal{T}$. Finalmente, consideremos una familia $\{O_i\}_{i \in I} \subset \mathcal{T}$ donde I es un conjunto de índices. Para cada $\sigma \in K$, $(\cup_{i \in I} O_i) \cap \sigma = \cup_{i \in I} (O_i \cap \sigma)$ que efectivamente es una unión arbitraria de abiertos de σ . En consecuencia, $\cup_{i \in I} O_i \in \mathcal{T}$.

En general, la topología de |K| es más fina que la inducida de la topología usual de \mathbb{R}^N . Si A es cerrado en |K| con la topología inducida de la usual, $A = B \cap |K|$ para algún cerrado B de \mathbb{R}^N y por tanto $B \cap \sigma$ sería cerrado en σ para cada símplice σ de K. Como consecuencia, $B \cap |K| = A$ es cerrado en |K| con la topología \mathcal{T} definida anteriormente.

No obstante, la otra inclusión no tiene por qué cumplirse. Como contraejemplo, consideremos el complejo K en \mathbb{R} cuyos símplices son todos los intervalos [m,m+1] con $m\in\mathbb{Z}\setminus\{0\}$, todos los intervalos de la forma [1/(n+1),1/n] donde $n\in\mathbb{N}$ y todas sus respectivas caras. Como resultado tenemos que $|K|=\mathbb{R}$, donde $F=\{1/n:n\in\mathbb{N}\}$ es cerrado en nuestra topología $\mathcal T$ pero no en la inducida por la usual. Dicho de otra forma, $\mathbb{R}\setminus F$ es abierto en $\mathcal T$ pero no en la usual.

Si no hay lugar a confusión, simplemente notaremos al politopo de K por |K| y lo llamaremos el **poliedro** |K|.

A continuación, mencionemos algunas propiedades relevantes de este espacio topológico. Para ello fijemos un complejo simplicial finito K en \mathbb{R}^N .

Proposición 2.3. El poliedro |K| es compacto.

Demostración. Si K es un complejo simplicial, sus símplices son conjuntos cerrados y acotados. En consecuencia, |K| es unión finita de conjuntos cerrados y acotados, luego es cerrado y acotado en \mathbb{R}^N . Por lo tanto, es compacto.

Proposición 2.4. Si $x \in |K|$, entonces existe un único símplice en K tal que x pertenece a su interior.

Demostración. Si $x \in |K|$, entonces existe algún símplice σ de K tal que $x \in \sigma$. Por la Proposición 2.2, x pertenece al interior de alguna cara τ de σ . Supongamos ahora que existe otro símplice ρ de K tal que $x \in \text{Int } \rho$. Por consiguiente, si $x \in \text{Int } \rho \cap \text{Int } \tau$, entonces x pertenecería a una cara común μ de ρ y τ . Esto es, $\mu = \rho \cap \tau$. Ahora si $\rho \neq \mu$, el elemento x debería tener alguna coordenada baricéntrica nula respecto a los vértices de ρ , en contradicción con que x pertenece al interior de ρ . En consecuencia, $\rho = \mu$. De manera análoga obtenemos $\tau = \mu$ y por tanto, $\rho = \tau$.

Definición 2.10. Sea K un complejo simplicial y sea $x \in |K|$. Llamaremos **símplice soporte de** x al único símplice que contiene a x en su interior y lo notaremos por sop(x).

Corolario 2.1. Sean σ , τ símplices de K tal que Int $\sigma \cap \tau$ es no vacía. Entonces σ es una cara de τ .

Demostración. Consideremos $x \in \operatorname{Int} \sigma \cap \tau$. Por la Proposición 2.2 sabemos que τ es la unión de todas sus caras lo que implica que existe una cara μ de τ cuyo interior contiene a x. Por lo tanto, $x \in \operatorname{Int} \mu \cap \operatorname{Int} \sigma$ y como consecuencia de la Proposición 2.4, $\mu = \sigma$.

Lema 2.2. Sea K un complejo simplicial y X un espacio topológico. Una aplicación $f: |K| \to X$ es continua si, y sólo si, $f|_{\sigma}$ es continua para cada $\sigma \in K$.

Demostración. Si f es continua, también lo es $f|_{\sigma}$ por ser σ un subespacio de K. Supongamos ahora que $f|_{\sigma}$ es continua para cada $\sigma \in K$. Si C es un cerrado de X, $f^{-1}(C) \cap \sigma = f|_{\sigma}^{-1}(C)$ es un cerrado en σ por la continuidad de $f|_{\sigma}$. Concluimos que $f^{-1}(C)$ es cerrado en |K| por definición.

Definición 2.11. Un espacio topológico X es **triangulable** si existe un complejo simplicial K cuyo espacio subyacente es homeomorfo a X. Diremos entonces que el homeomorfismo $h: |K| \to X$ es una **triangulación**.

2.3. Aplicaciones simpliciales

Cuando trabajemos con complejos simpliciales, será interesante tener en cuenta cuándo las transformaciones entre ellos pueden ser continuas o incluso homeomorfismos.

Lema 2.3. Sean K y L dos complejos simpliciales y sea $f: K^{(0)} \to L^{(0)}$ una aplicación entre los conjuntos de vértices de K y L. Supongamos que siempre que los vértices v_0, \ldots, v_n de K generen un símplice en K, los puntos $f(v_0), \ldots, f(v_n)$ son vértices de un símplice de L. Entonces podemos extender f a una aplicación continua $g: |K| \to |L|$ tal que

$$x = \sum_{i=0}^{n} t_i v_i \implies g(x) = \sum_{i=0}^{n} t_i f(v_i)$$

Llamaremos a g la **aplicación simplicial** (lineal) inducida por f.

Demostración. Por hipótesis, los vértices $f(v_0), \ldots, f(v_n)$ generan un símplice τ en L. Por ser K un complejo simplicial, la suma de sus coeficientes t_i , con $i \in \{0, \ldots, n\}$, es igual a uno, luego $g(x) = \sum_{i=0}^n t_i f(v_i)$ es un punto de τ . Es decir, g es una aplicación lineal del símplice σ generado por v_0, \ldots, v_n al símplice τ generado por $f(v_0), \ldots, f(v_n)$. Por ser $g: \sigma \to \tau$ lineal en un espacio de dimensión finita, entonces es continua.

Ahora tan solo nos queda ver que $g:|K|\to |L|$ es continua. Bien, pues por ser $g:\sigma\to\tau$ continua, también lo es $g:\sigma\to |L|$. Finalmente por el Lema 2.2, $g:|K|\to |L|$ es continua. \square

Lema 2.4. Supongamos que $f: K^{(0)} \to L^{(0)}$ es una aplicación biyectiva tal que los vértices v_0, \ldots, v_n de K generan un símplice de K si, y sólo si, $f(v_0), \ldots, f(v_n)$ generan un símplice de L. Entonces la aplicación simplicial inducida $g: |K| \to |L|$ es un homeomorfismo. Diremos entonces que g es un homeomorfismo simplicial de K con L.

Demostración. Por hipótesis, cada símplice $\sigma \in K$ se identifica con otro símplice $\tau \in L$. Por tanto, debemos comprobar que la aplicación lineal $h: \tau \to \sigma$ inducida por la correspondencia de vértices f^{-1} es la inversa de $g: \sigma \to \tau$. Si consideramos $x = \sum_{i=0}^n t_i v_i$, entonces por definición $g(x) = \sum_{i=0}^n t_i f(v_i)$. Luego

$$h(g(x)) = h(\sum_{i=0}^{n} t_i f(v_i)) = \sum_{i=0}^{n} t_i f^{-1}(v_i) = \sum_{i=0}^{n} t_i v_i = x$$

2.4. El complejo estrella

Definición 2.12. Sea K un complejo simplicial y sea σ un símplice de K. Llamaremos **estrella** de σ al subcomplejo

$$st(\sigma; K) = \{ \mu \in K : \tau, \sigma \leq \mu \}$$

En caso de que se sobrentienda del contexto, notaremos la estrella de σ en K simplemente por st σ .

Observación 2.1. Nótese que el espacio subyacente $|\operatorname{st}(\sigma;K)|$ no es más que el conjunto resultante de la unión de todos los símplices de K que tienen a σ como cara.

Definición 2.13. Sea K un complejo simplicial. Definimos la **estrella abierta de** σ en K como el conjunto

$$\operatorname{Int}\operatorname{st}(\sigma;K) = \bigcup_{\substack{\mu \in K, \\ \sigma \leq \mu}} \operatorname{Int} \mu$$

De nuevo, notaremos por Int st σ a la estrella abierta de σ si se sobrentiende el complejo en el que estamos trabajando.

De manera análoga, definimos la estrella de $x \in |K|$ como el subcomplejo de K cuyos elementos son todos los símplices que contienen a x y sus respectivas caras. Lo notaremos por $\operatorname{st}(x;K)$ o simplemente por $\operatorname{st} x$. De igual manera, la estrella abierta $\operatorname{Int} \operatorname{st}(x;K)$, o $\operatorname{Int} \operatorname{st} x$, es el conjunto formado por la unión del interior de los símplices a los que pertenece x.

Proposición 2.5. Sea K un complejo simplicial y sean v_0, \ldots, v_k vértices en él. Entonces las siguientes afirmaciones son equivalentes:

- 1. v_0, \ldots, v_k son vértices de un símplice σ de K.
- 2. La intersección de las estrellas abiertas de dichos vértices es no vacía.
- 3. La intersección de conjuntos $\bigcap_{i=0}^{k} \{ \mu \in K : [v_i] \leq \mu \}$ es no vacía.

Demostración. (1) \implies (2). Si v_0, \ldots, v_k son vértices de σ , entonces Int $\sigma \subseteq \bigcap_{i=0}^k$ Int st v_i .

- (2) \Longrightarrow (3). Si $x \in \bigcap_{i=0}^k \operatorname{Int} \operatorname{st} v_i$, entonces $x \in \operatorname{Int} \sigma_i$ donde v_i sea vértice en σ_i . Por la Proposición 2.4, todos los σ_i coinciden con σ y en consecuencia, σ pertenece a la estrella de v_i para todo $i \in \{0, \ldots, k\}$.
- (3) \Longrightarrow (1). Es inmediato que si σ pertenece a dicha intersección, entonces cada vértice v_i pertenece a σ , siendo $i \in \{0, \dots, k\}$.

Lema 2.5. Sea K un complejo simplicial y sean σ, τ dos símplices de K tal que $Int(st \sigma) \cap \mu \neq \emptyset$. Entonces σ es una cara de μ .

Demostración. Si x pertenece a Int(st σ) \cap μ , entonces x es un elemento de un símplice τ , de forma que σ es una cara de τ . Además, x también pertenece a μ luego por el Corolario 2.1, τ es una cara de μ .

Proposición 2.6. Sea K un complejo simplicial y sea σ un símplice de K. Entonces la estrella abierta de σ es un abierto de |K| que contiene al interior de σ .

Demostración. DEMOSTRAR CON CW COMPLEJOS

2.5. Complejos simpliciales abstractos

Si bien la definición actual de los complejos simpliciales puede llegar a ser de gran utilidad, en la práctica muchas veces no es necesario usar las herramientas que nos proporciona la geometría afín. Es por ello que vamos a introducir una descripción puramente combinatoria de los complejos simpliciales que, aun siendo más simple, nos serán de gran utilidad a la hora de trabajar con espacios topológicos.

Definición 2.14. Un **complejo simplicial abstracto** finito (o simplemente complejo abstracto) es una colección finita S de conjuntos finitos no vacíos tal que si $A \in S$, entonces para todo $B \subset A$ con B no vacío, $B \in S$.

Al elemento A de S lo llamaremos **símplice** de $A \in S$. La **dimensión** de A es una menos que el número de elementos que le pertenecen. Todo subconjunto de A lo llamaremos **cara** de A. En cuanto a la **dimensión** de S, diremos que es igual al máximo de las dimensiones de sus elementos o en caso de no haberlo, diremos que la dimensión de S es infinita. El **conjunto de vértices** S de S diremos que es la unión de elementos de S que contienen un único punto. Llamaremos **subcomplejo** de S a cualquier subcolección de S que sea un complejo simplicial abstracto en sí.

Sean V_S , V_T los conjuntos de vértices de los complejos abstractos S, T respectivamente. Dos complejos abstractos S y T diremos que son **isomorfos** si existe una aplicación biyectiva $f: V_S \to V_T$ tal que $\{a_0, \ldots, a_p\} \in S$ si, y sólo si, $\{f(a_0), \ldots, f(a_p)\} \in T$.

Definición 2.15. Sean K un complejo simplicial y V su conjunto de vértices. Sea K la colección de todos los subconjuntos $\{a_0,\ldots,a_p\}\subset V$ tales que los vértices a_0,\ldots,a_p generan un símplice de K. Entonces llamaremos a la colección K el **esquema de vértices** de K.

Definición 2.16. Si el complejo simplicial abstracto S es isomorfo al esquema de vértices del complejo simplicial K, diremos que K es una **realización geométrica** de S.

Proposición 2.7. Sea S un complejo simplicial abstracto de dimensión N. Entonces existe una realización geométrica de S en \mathbb{R}^{2N+1} .

Demostración. Consideremos un conjunto de puntos $p_i \in \mathbb{R}^{2N+1}$ de forma sus componentes son potencias de su índice i. Veamos que cualquier conjunto de 2N+2 de estos puntos es afínmente independiente. Es decir, que los vectores formados por las diferencias entre estos puntos son linealmente independientes.

Para demostrarlo, consideremos un subconjunto de puntos $\{p_{j_k}: 1 \le k \le 2N+2\}$ de esta forma y analicemos el determinante de la matriz formada por los vectores correspondientes,

$$\begin{vmatrix} j_2 - j_1 & j_3 - j_1 & \cdots & j_{2n+2} - j_1 \\ j_2^2 - j_1^2 & j_3^2 - j_1^2 & \cdots & j_{2n+2}^2 - j_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ j_2^{2n+1} - j_1^{2n+1} & j_3^{2n+1} - j_1^{2n+1} & \cdots & j_{2n+2}^{2n+1} - j_1^{2n+1} \end{vmatrix}$$

Simplificando mediante operaciones elementales de fila, este determinante se transforma en el determinante de Vandermonde, cuyo valor es conocido y se calcula como el producto de las diferencias entre los términos seleccionados,

$$\prod_{1 \le k < l \le 2N+2} (j_k - j_l).$$

Este resultado no es cero siempre que todos los j_k sean distintos, asegurando así la independencia lineal

Respecto a la construcción del complejo simplicial, tomemos un símplice abstracto A en \mathcal{S} con vértices $\{v_{i_0}, v_{i_1}, \ldots, v_{i_m}\}$ y consideremos el símplice geométrico $\sigma_A = [p_{i_0}, p_{i_1}, \ldots, p_{i_m}]$ en \mathbb{R}^{2N+1} . Dado que $m+1 \leq 2N+2$, el símplice σ_A tiene dimensión m. Definimos K como el conjunto que contiene todos los símplices σ_A para cada $A \in \mathcal{S}$. Veamos que la intersección de dos símplices σ_A y σ_B en K es igual a $\sigma_{A\cap B}$ con $A, B \in \mathcal{S}$. Consideremos τ como el símplice en \mathbb{R}^{2N+1} cuyos vértices son la unión de los vértices pertenecientes a σ_A y a σ_B , lo cual es posible ya que la suma de sus dimensiones no supera 2N. De esta manera, la intersección $\sigma_A \cap \sigma_B$ resulta ser la cara de τ determinada por los vértices que σ_A y σ_B comparten, es decir, aquellos asociados a $A \cap B$. Concluimos entonces que $\sigma_A \cap \sigma_B = \sigma_{A\cap B}$.

Como consecuencia inmediata de la proposición anterior y del Lema 2.4, tenemos el siguiente corolario.

Corolario 2.2. Las siguientes afirmaciones son ciertas:

- (a) Todo complejo abstracto S es isomorfo al esquema de vértices de algún complejo simplicial K.
- (b) Dos complejos simpliciales son afínmente isomorfos si, y sólo si, sus esquemas de vértices son isomorfos como complejos simpliciales abstractos.

3. Homología simplicial

3.1. Homología simplicial orientada

Consideremos Σ_p el conjunto de todos los símplices de dimensión p de un complejo simplicial K. Para cada $\sigma \in \Sigma_p$, definimos Σ_p^+ y Σ_p^- como los conjuntos que contienen, respectivamente, un símplice orientado σ^+ y el símplice con orientación opuesta σ^- .

Definición 3.1. Sea K un complejo simplicial y sea R un anillo. Consideremos el conjunto. Definimos $C_p(K;R)$, el R-módulo de las p-cadenas simpliciales orientadas de K, como el cociente del R-módulo libre generado por $\Sigma_p^+ \cup \Sigma_p^-$ sobre el submódulo generado por el conjunto $\{\sigma^+ + \sigma^- : \sigma \in \Sigma_p\}$. Esto es,

$$C_p(K;R) = \frac{R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle}{\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle}.$$

Para p < 0 o $p > \dim(K)$, definimos $C_p(K; R)$ como el R-módulo trivial.

El interés de definir el *R*-módulo de *p*-cadenas simpliciales orientadas radica tanto en la identificación de los elementos que contiene como en las operaciones algebraicas aplicables sobre ellos. Esta construcción nos permite manejar un símplice orientado y su opuesto como opuestos algebraicos en un marco formal. Veámoslo.

Nuestro objetivo es demostrar que efectivamente

$$\frac{R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle}{\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle} \cong R\langle \tilde{\Sigma}_p \rangle,$$

donde $\tilde{\Sigma}_p$ representa el conjunto de p-símplices en Σ_p con una orientación arbitrariamente fija para cada uno.

Para ello, definamos la aplicación $f: \Sigma_p^+ \cup \Sigma_p^- \to R\langle \tilde{\Sigma}_p \rangle$. Esta aplicación asigna a cada símplice orientado σ^+ en Σ_p^+ , un representante σ en $R\langle \tilde{\Sigma}_p \rangle$ con una orientación fija elegida arbitrariamente, y a cada σ^- en Σ_p^- , le asigna $-\sigma$ en $R\langle \tilde{\Sigma}_p \rangle$, donde $-\sigma$ refleja el elemento opuesto de σ .

La aplicación f respeta las relaciones de orientación al asignar a símplices con orientaciones opuestas a elementos que son opuestos algebraicos en $R\langle \tilde{\Sigma}_p \rangle$. Por la Propiedad universal de los módulos libres, esta aplicación induce un homomorfismo $\tilde{f}: R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle \to R\langle \tilde{\Sigma}_p \rangle$ que resulta ser sobreyectivo, ya que cada elemento en $R\langle \tilde{\Sigma}_p \rangle$ tiene al menos una preimagen en $R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle$.

Por definición de f, para cada elemento de la forma $\sigma^+ + \sigma^-$ en $\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle$, tenemos que $\tilde{f}(\sigma^+ + \sigma^-) = f(\sigma^+) + f(\sigma^-) = \sigma - \sigma = 0$, demostrando que todo el submódulo $\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle$ tiene imagen cero por \tilde{f} y, por ende, está contenido en el núcleo de \tilde{f} .

Además, si consideramos un elemento x en $R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle$ tal que $\tilde{f}(x) = 0$, este elemento puede expresarse como una combinación lineal de elementos en Σ_p^+ y Σ_p^- . La condición

 $\tilde{f}(x)=0$ implica que la suma de las imágenes bajo f de los términos en esta combinación lineal debe ser cero en $R\langle \tilde{\Sigma}_p \rangle$. Esto solo ocurre si para cada σ , la suma total de los coeficientes correspondientes a σ^+ y σ^- es cero, lo que significa que cada término en x que contribuye a esta suma cero debe ser de la forma $\sigma^+ + \sigma^-$ o un múltiplo de este, luego $\tilde{f}(x)=0$ implica que $x\in \langle \sigma^++\sigma^-:\sigma\in \Sigma_p \rangle$.

Por tanto, el núcleo de \tilde{f} coincide precisamente con $\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle$, y aplicando el Primer teorema de isomorfía, concluimos que

$$\frac{R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle}{\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle} \cong R\langle \tilde{\Sigma}_p \rangle,$$

estableciendo la estructura algebraica deseada y completando la prueba.

Observación 3.1. En particular, la anterior construcción asigna a cada símplice orientado una cadena cuyo coeficiente del anillo es 1, 0 o -1. A estas cadenas las llamaremos p-cadenas elementales. En ocasiones abusaremos de la notación para designar por σ a la cadena elemental respectiva del símplice orientado σ .

Definición 3.2. Sea K un complejo simplicial y sean $C_p(K;R)$, $C_{p-1}(K;R)$ R-módulos de p-cadenas. Definimos el **operador borde de** p-cadenas como el homomorfismo $\partial_p:C_p(K;R)\to C_{p-1}(K;R)$ tal que

$$\partial_p(\sigma) = \partial_p([v_0, v_1, \dots, v_p]) = \sum_{i=0}^p (-1)^i [v_0, \dots, \hat{v}_i, \dots, v_p].$$

donde \hat{v}_i denota el vértice a eliminar.

Lema 3.1. El operador borde $\partial_p : C_p(K;R) \to C_{p-1}(K;R)$ está bien definido. En paritcular, si σ^+ y σ^- son las dos orientaciones del p-símplice σ , tenemos que

$$\partial_{p}(\sigma^{+} + \sigma^{-}) = 0$$

Demostración. Probaremos que la suma de la imagen por el operador borde de $\sigma^+ = [v_0 v_1 \dots v_p]$ y $\sigma^- = [v_1 v_0 \dots v_p]$ es igual a 0. Para ello, observamos que

$$egin{aligned} \partial_p \sigma^+ &= [v_1 v_2 \ldots] - [v_0 v_2 \ldots] + \sum_{i
eq 0, 1} (-1)^i [v_0 v_1 \ldots \hat{v}_i \ldots v_p], \ \partial_p \sigma^- &= [v_0 v_2 \ldots] - [v_1 v_2 \ldots] + \sum_{i
eq 0, 1} (-1)^i [v_1 v_0 \ldots \hat{v}_i \ldots v_p]. \end{aligned}$$

Al sumar ambas expresiones, los dos primeros términos de $\partial_p \sigma^+$ y $\partial_p \sigma^-$ se cancelan entre sí. Como consecuencia de la definición de $C_{p-1}(K;R)$, los términos restantes definen orientaciones opuestas del mismo símplice por lo que se cancelan y $\partial_p (\sigma^+ + \sigma^-) = 0$.

Lema 3.2. Sean $\partial_p: C_{p+1}(K;R) \to C_p(K;R)$, $\partial_p: C_p(K;R) \to C_{p-1}(K;R)$ operadores borde. Entonces $\partial_p \circ \partial_{p+1} = 0$.

Demostración.

$$\begin{split} \partial_p \partial_{p+1} [v_0, \dots, v_{p+1}] &= \partial_p \left(\sum_{i=0}^{p+1} (-1)^i [v_0 \dots \hat{v}_i \dots v_{p+1}] \right) \\ &= \sum_{i=0}^{p+1} (-1)^i \left[\sum_{j>i}^{p+1} (-1)^j [v_0 \dots, \hat{v}_i \dots \hat{v}_j \dots v_{p+1}] + \sum_{j=0}^{j< i} (-1)^j [v_0 \dots \hat{v}_j \dots \hat{v}_i \dots v_{p+1}] \right]. \end{split}$$

Es decir, el símplice $[v_0,\ldots,\hat{v}_k,\ldots,\hat{v}_t,\ldots,v_{p+1}]$ aparece dos veces en la anterior expresión con signos opuestos, donde $k,t\in\{0,\ldots,p+1\}$. Esto nos lleva a discutir los siguientes casos. Supongamos sin pérdida de generalidad que k< t. En el primer caso, i=k< j=t donde el coeficiente es $(-1)^k(-1)^{t-1}$. En el segundo caso, i=t>j=k con coeficiente $(-1)^t(-1)^k$. Concluimos por tanto que todo símplice de la expresión se anula y al anularse sobre los generadores, $\partial_{p-1}\partial_p$ es el homomorfismo nulo.

Definición 3.3. El complejo de cadenas positivo $C_{\bullet}(K;R) = \{C_p(K;R), \partial_p\}$ lo llamaremos **complejo de cadenas simpliciales** de K. La homología de dicho complejo la notaremos por $H_p(K;R)$ y la llamaremos p-ésimo R-módulo de homología de K.

Si $R = \mathbb{Z}$, $H_p(K; \mathbb{Z})$ lo notaremos simplemente por $H_p(K)$ y diremos que es el p-ésimo grupo de homología de K.

Proposición 3.1. Sea K un complejo simplicial no vacío. Entonces el complejo de cadenas positivo $\{C_p(K;R), \partial_p\}$ admite un aumento.

Demostración. Sea $\varepsilon: C_0(K;R) \to R$ el homomorfismo que extiende linealmente $\varepsilon(v) = 1$ para todo vértice $v \in K$. Veamos que $\varepsilon \circ \partial_1: C_1(K;R) \to R$ es nulo. Tomando $[v_0,v_1] \in C_1(K;R)$ obtenemos que $\varepsilon(\partial_1[v_0,v_1]) = \varepsilon(v_1-v_0) = 1-1=0$, como queríamos ver.

Definición 3.4. Sea $\widetilde{C}_{\bullet}(K;R)$ el complejo aumentado del complejo de cadenas simpliciales $C_{\bullet}(K;R)$. Denominaremos *p*-ésimo módulo de homología reducida de C_{\bullet} al módulo de homología $H_p(\widetilde{C}_{\bullet};R)$ y lo denotaremos por $\widetilde{H}(C_{\bullet};R)$.

Proposición 3.2. Sean K y L dos complejos simpliciales junto con una aplicación simplicial $f: |K| \to |L|$. Esta aplicación induce un homomorfismo entre los complejos de cadenas, C(f), el cual se define extendiendo linealmente la función

$$C(f)([v_0 \dots v_p]) = \begin{cases} [f(v_0) \dots f(v_p)] & \text{si los v\'ertices son distintos entre s\'i,} \\ 0 & \text{en caso contrario.} \end{cases}$$

En particular, si f es la identidad, entonces C(f) es simplemente la identidad también. Además, si $g: |L| \longrightarrow |M|$ es otra aplicación simplicial, se cumple que $C(g \circ f) = C(g) \circ C(f)$.

Demostración. Para demostrar esto, primero observamos que la definición de C(f) es independiente de la orientación de los símplices. Luego, verificamos la igualdad $\partial_p \circ C(f) = C(f) \circ \partial_p$. Si no hay vértices repetidos, se tiene que:

$$C(f)\partial_p([v_0\dots v_p]) = C(f)\left(\sum_{i=0}^p (-1)^i[v_0\dots \hat{v}_i\dots v_p]\right) =$$

$$\sum_{i=0}^p (-1)^i[f(v_0)\dots \widehat{f(v_i)}\dots f(v_p)] = \partial_p C(f)([v_0\dots v_p]).$$

Si hay vértices repetidos, digamos $f(v_i) = f(v_j)$, entonces $\partial_p C(f)([v_0 \dots v_p]) = 0$. Por otro lado,

$$\sum_{i=0}^{p} (-1)^{i} C(f)([v_0 \dots \hat{v_i} \dots v_p]) = 0$$

debido a que $C(f)([v_0 \dots \hat{v}_k \dots v_p]) = 0$ para $k \neq i, j$ y cuando i < j,

$$(-1)^{i}[f(v_0)\dots\widehat{f(v_i)}\dots f(v_j)\dots f(v_p)] + (-1)^{j}[f(v_0)\dots f(v_i)\dots\widehat{f(v_j)}\dots f(v_p)] = 0$$

también se anula. Esto se debe a que si no hay más vértices repetidos, como $f(v_i) = f(v_j)$, el número de trasposiciones necesarias para cambiar de un símplice orientado al otro es j-i-1, dado que $f(v_j)$ ocupa el lugar j-1 en el primer símplice. La fórmula $C(g \circ f) = C(g)C(f)$ se sigue directamente de la definición de C(f).

Definición 3.5. Sea $f: |K| \to |L|$ una aplicación simplicial y sea $C(f): C_{\bullet}(K;R) \to C_{\bullet}(L;R)$ una aplicación de cadenas definida como en la Proposición 3.2. Llamaremos a C(f) la aplicación de cadenas inducida por f y la notaremos por $f_{\#}$.

Corolario 3.1. Toda aplicación simplicial $f: |K| \to |L|$ induce un homomorfismo de R-módulos

$$H(f): H_p(K;R) \to H_p(L;R)$$

que notaremos por f_* y que cumple que si $g:|L|\to |M|$ es otra aplicación simplicial, entonces $(g\circ f)_*=f_*\circ f_*$ e $\mathrm{id}_*=\mathrm{id}.$

Lema 3.3. La aplicación de cadenas $f_\#: C_\bullet(K;R) \to C_\bullet(L;R)$ preserva el homomorfismo de aumento y como resultado, induce un homomorfismo f_* de módulos de homología reducida.

Demostración. Sea $f: |K| \to |L|$ una aplicación simplicial, $f_\#$ su aplicación de cadenas inducida y sean $ε: C_0(K;R) \to R$, $ε: C_0(L;R) \to R$ aumentos de $C_\bullet(K;R), C_\bullet(L;R)$ respectivamente. Llamemos indistintamente ε a ambos aumentos en función del dominio en el que nos encontremos. Ahora definamos $ε(f_\#(v)) = 1$ y ε(v) = 1 para todo vértice de K y extendamos por linealidad. Por consiguiente $ε \circ f_\# = ε$. Esta ecuación implica que $f_\#$ lleva el núcleo de $ε_K: C_0(K;R) \to R$ al núcleo de $ε_L: C_0(L;R) \to R$, lo que induce un homomorfismo $f_*: \widetilde{H}_0(K;R) \to \widetilde{H}_0(L;R)$.

Teorema 3.1. Sean f, g aplicaciones simpliciales de K a L; $f_{\#}$, $g_{\#}$ sus aplicaciones de cadenas inducidas g sea g: g una homotopía de cadenas entre ellas. Entonces los homomorfismos inducidos g para sus módulos de homología son iguales.

Demostración. Sea z un p-ciclo de K. Entonces

$$g_*(z) - f_*(z) = \partial sz + s\partial z = \partial sz + 0$$

por lo que f(z) y g(z) tienen la misma clase de homología. Por tanto, $f_*([z]) = g_*([z])$ como se quería.

3.2. Homología del complejo cono

A continuación, exploraremos un nuevo complejo simplicial que construiremos a partir de otro dado. El complejo cono nos facilitará la obtención de algunos resultados relevantes en homología.

Definición 3.6. Sea K un complejo simplicial de \mathbb{R}^N y sea $w \in \mathbb{R}^N$ tal que cada semirrecta con origen w corta a |K| a lo sumo en un punto. Definimos el **cono sobre** K **con vértice** w como el conjunto cuyos elementos son los símplices de K o símplices de la forma $[w, v_0, \ldots, v_p]$, donde $[v_0, \ldots, v_p] \in K$. Lo denotaremos por w * K.

Lema 3.4. El cono w * K es un complejo simplicial.

Demostración. Sea $\sigma = [v_0, \ldots, v_p]$ un símplice de K. Primero veamos que el conjunto $\{w, v_0, \ldots, v_p\}$ es afínmente independiente. Si w perteneciera al plano P generado por los puntos v_0, \ldots, v_p , podríamos considerar el segmento que une w con un punto de $x \in \operatorname{Int} \sigma$. Dicho conjunto, por ser abierto en P, contendría un intervalo de puntos en el segmento, contradiciendo la hipótesis de que las semirrectas que parten de w cortan a lo sumo en un punto a |K|.

Veamos ahora que w * K es un complejo simplicial. Los símplices de w * K pueden ser de tres tipos:

- 1. Símplices $[v_0, \ldots, v_p]$ pertenecientes a K.
- 2. Símplices de la forma $[w, v_0, \ldots, v_p]$.
- 3. El 0-símplice [w].

Si σ, τ son símplices del primer tipo, entonces $\operatorname{Int} \sigma \cap \operatorname{Int} \tau = \emptyset$ puesto que K es un complejo simplicial. El símplice $\operatorname{Int}[w,v_0,\ldots,v_p]$ es la unión de todos los segmentos abiertos que unen w con v_0,\ldots,v_p , luego dos símplices de esta forma tienen intersección vacía pues las semirrectas que parten de w cortan a K a lo sumo en un punto. Finalmente, si σ es del primer tipo y τ del segundo, $\operatorname{Int} \sigma \cap \operatorname{Int} \tau = \emptyset$ por el mismo argumento recién dado.

Figura 3.1.: Cono sobre el complejo formado por el 2-símplice [a,b,c] y todas sus caras con vértice w.

Proposición 3.3. Sea K un complejo simplicial y sea w * K el cono sobre K de vértice w. Entonces la homología orientada de w * K es $H_p(w * K; R) = 0$ para todo $p \neq 0$ y $H_0(w * K; R) \cong R$. En el caso de la homología reducida, $\widetilde{H}_0(w * K; R) = 0$ para todo $p \in \mathbb{Z}$.

Demostración. Sea $D_{\bullet} = \{D_p, \partial_p\}$ un complejo de cadenas tal que $D_p = 0$ para todo $p \neq 0$ y $D_0 = R$. Definimos la aplicación de cadenas $f: D_{\bullet} \to C_{\bullet}(w*K;R)$ de forma que $f_p = 0$ para todo $p \neq 0$ y $f_0(r) = rw$. Por otro lado, por la Proposición 3.1 podemos definir el aumento $\varepsilon: C_{\bullet}(w*K;R) \to D_{\bullet}$ dado por $\varepsilon_p = 0$ para todo $p \neq 0$ y $\varepsilon_0(v) = 1$ para todo vértice

v del cono. Nuestro objetivo es ver que efectivamente f es una equivalencia de cadenas junto a ε . De manera directa tenemos que $\varepsilon \circ f = \mathrm{id}_D$, luego $\varepsilon \circ f \simeq \mathrm{id}_D$. Veamos ahora que $f \circ \varepsilon$ es homotópica a la identidad. Para ello vamos a definir s como la familia $\{s_p\}$ de homomorfismos $s_p: C_p(w*K;R) \to C_{p+1}(w*K;R)$ tal que

$$s_p([v_0 \dots v_p]) = \begin{cases} [wv_0 \dots v_p] & \text{ si } v_i \neq w \quad 0 \leq i \leq p, \quad p \geq 0 \\ 0 & \text{ en caso contrario} \end{cases}$$

induce una extensión lineal. Dicha familia está bien definida para $C_p(w*K;R)$. Veamos que $\partial_{p+1}s_p+s_{p-1}\partial_p=\mathrm{id}_{C_p(w*K;R)}-f_p\varepsilon_p$ se cumple, por lo que s es una homotopía de cadenas. Para el caso en que $p\in\mathbb{Z}$ es menor que 0 se cumple de manera trivial. Si p=0 distinguimos dos casos. Cuando $v\neq w$ tenemos que $(\partial_1s_0+s_{-1}\partial_0)(v)=\partial_1[w,v]=v-w=(\mathrm{id}_0-f_0\varepsilon_0)(v)$. Por el contrario si v=w, $(\partial_1s_0+s_{-1}\partial_0)(v)=0$ y también $(\mathrm{id}_0-f_0\varepsilon_0)(v)=\mathrm{id}_0(w)-(f_0\varepsilon_0)(w)=w-w=0$. Por último, veamos que sucede cuando p>0. Supongamos primero que $w\neq v_i$. Entonces

$$(\partial_{p+1}s_p + s_{p-1}\partial_p)[v_0 \dots v_p] = \partial_{p+1}[wv_0 \dots v_p] + s_{p-1} \left(\sum_{i=0}^p (-1)^i [v_0 \dots \hat{v}_i \dots v_p] \right)$$

$$= [v_0 \dots v_p] + \sum_{i=0}^p (-1)^{i+1} [wv_0 \dots \hat{v}_i \dots v_p] + \sum_{i=0}^p (-1)^i [wv_0 \dots \hat{v}_i \dots v_p]$$

$$= [v_0 \dots v_p] = (id_{C_p} - f_p \varepsilon_p)[v_0 \dots v_p].$$

Finalmente si $w = v_{i_0}$ para algún i_0 entonces

$$\begin{aligned} (\partial_{p+1} s_p + s_{p-1} \partial_p) [v_0 \dots v_p] &= s_{p-1} \partial_p [v_0 \dots v_p] = s_{p-1} \left(\sum_{i=0}^{p-1} (-1)^i [v_0 \dots \hat{v}_i \dots v_p] \right) \\ &= (-1)^{i_0} s_{p-1} [v_0 \dots \hat{v}_{i_0} \dots v_p] = (-1)^{i_0} [w v_0 \dots \hat{v}_{i_0} \dots v_p] \\ &= (-1)^{i_0} [v_{i_0} v_0 \dots \hat{v}_{i_0} \dots v_p] = [v_0 \dots v_p]. \end{aligned}$$

Es decir, $f \circ \varepsilon \simeq \mathrm{id}_{C(w*K;R)}$ y por el Corolario 1.2 induce un isomorfismo $\varepsilon_* : H_p(w*K;R) \to H_p(D;R)$.

Para el caso reducido consideremos el complejo aumentado D_{\bullet} dado por el aumento $\mathrm{id}_R:D_0\to R$. Como consecuencia, la homología de \widetilde{D} es trivial. Además, podemos extender los homomorfismos ε y f a homomorfismos $\widetilde{\varepsilon}$ y \widetilde{f} para los complejos aumentados de forma que $\widetilde{\varepsilon}_{-1}=\widetilde{f}_{-1}=\mathrm{id}_R$. Por la misma homotopía s obtenemos que $\widetilde{\varepsilon}$ y \widetilde{f} son equivalencias homotópicas entre los complejos aumentados y por tanto, $\widetilde{H}_p(w*K;R)=0$ para todo $p\in \mathbb{Z}$.

Corolario 3.2. La homología simplicial reducida de cualquier símplice es nula.

Corolario 3.3. Sea σ un n-símplice y sea Bd σ su borde. Entonces $\widetilde{H}_p(\operatorname{Bd}\sigma;R)=0$ es trivial si p=n-1 y $\widetilde{H}_{n-1}(\operatorname{Bd}\sigma;R)\cong R$. Además, para el caso no trivial, un generador es la clase de la cadena $\partial(\sigma)$.

Demostración. Dado el símplice anterior, los complejos de cadenas aumentados de σ y su borde coinciden hasta dimensión $p \le n-1$. Por el Corolario 3.2 deducimos que $\widetilde{H}_p(\operatorname{Bd}\sigma;R)=0$ para $p \le n-2$. Además, $C_p(\operatorname{Bd}\sigma;R)=0$ para $p \ge n$. Por lo tanto, $\widetilde{H}_{n-1}(\operatorname{Bd}\sigma;R)=\ker\partial_{n-1}$.

Aquí, ∂_{n-1} representa el operador borde en ambos complejos aumentados (es decir, $\partial_0 = \varepsilon$ indica el aumento). Dado que el complejo aumentado de σ tiene homología trivial, entonces $\ker \partial_{n-1} = \operatorname{Im}, \partial_n$, y además ∂_n es inyectivo donde el operador borde $\partial_n : C_n(\sigma;R) \to C_{n-1}(\sigma;R) = C_{n-1}(\operatorname{Bd}\sigma;R)$ aparece en el complejo de σ . Puesto que $C_n(\sigma;R)$ es isomorfo a R generado por σ , se sigue que $\operatorname{Im}\partial_n$, y por tanto $\widetilde{H}_{n-1}(\operatorname{Bd}\sigma;R)$, es isomorfo a R generado por $\partial(\sigma)$.

3.3. Sucesión de Mayer-Vietoris

Nombrada en honor a los matemáticos austriacos Walther Mayer y Leopold Vietoris, la sucesión de Mayer-Vietoris es una herramienta esencial en la topología algebraica y la teoría de homología. Esta sucesión permite analizar la homología de un complejo simplicial a partir de la homología de sus subcomplejos, de manera análoga a como el teorema de Seifert-van Kampen describe el grupo fundamental de un espacio topológico a partir de subespacios abiertos y conexos por caminos.

Lema 3.5 (Lema de la serpiente). Sean $A_{\bullet} = \{A_n, \partial_A\}$, $B_{\bullet} = \{B_n, \partial_A\}$ y $C_{\bullet} = \{C_n, \partial_C\}$ complejos de cadenas y sean f, g aplicaciones de cadenas tales que la sucesión

$$0 \to A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \to 0$$

es exacta. Existe entonces una sucesión exacta de homología

$$\cdots \to H_p(A_{\bullet};R) \xrightarrow{f_*} H_p(B_{\bullet};R) \xrightarrow{g_*} H_p(C_{\bullet};R) \xrightarrow{\partial_*} H_{p-1}(A_{\bullet};R) \xrightarrow{f_*} H_{p-1}(B_{\bullet};R) \to \cdots$$

donde ∂_* es el operador borde inducido en B_{\bullet} .

Demostración. Para realizar esta prueba usaremos una persecución de diagramas. Usaremos el siguiente diagrama como guía:

 $Paso\ 1$. Para definir el operador conector ∂_* , primero tenemos que comprobar que si tenemos un ciclo de C_p , entonces podemos asignarle un único ciclo en A_{p-1} . Por tanto, sea c_p un ciclo de C_p (esto es, $c_p \in \ker \partial_C$) y escojamos $b_p \in B_p$ tal que $g(b_p) = c_p$ (recordemos que g es sobreyectiva por ser la sucesión exacta corta). El elemento $\partial_B b_p$ de B_{p-1} pertenece al núcleo de g pues $g(\partial_B b_p) = \partial_C g(b_p) = \partial_C c_p = 0$. Por tanto, existe un elemento $a_{p-1} \in A_{p-1}$ tal que $f(a_{p-1}) = \partial_B b_p$, pues $\ker g = \operatorname{Im} f$. Tenemos que dicho elemento es único por $\ker f$ inyectiva. Además, a_{p-1} es un ciclo. Como $f(\partial_A a_{p-1}) = \partial_B f(a_{p-1}) = \partial_B \partial_B b_p = 0$, entonces $\partial_A a_{p-1} = 0$ por $\ker f$ inyectiva. Definimos $\partial_* [c_p] = [a_{p-1}]$ donde los corchetes denotan la clase de homología.

Paso 2. Queremos probar ahora que ∂_* es un homomorfismo de módulos bien definido. Sean c_p, c_p' dos elementos del núcleo de $\partial_C: C_p \to C_{p-1}$. Sean b_p, b_p' elementos de B_p tal que $g(b_p) = c_p$ y $g(b_p') = c_p'$. Escojamos ahora a_{p-1} y a_{p-1}' tal que $f(a_{p-1}) = \partial_B b_p$ y $f(a_{p-1}') = \partial_B b_p'$.

Para probar que ∂_* está bien definido, veamos que no depende del b_p y c_p escogido. Supongamos que $c_p \sim c_p'$ y veamos entonces que a_{p-1} y a_{p-1}' también lo son. Por tanto, supongamos que $c_p - c_p' = \partial_C c_{p+1}$. Escogemos b_{p+1} tal que $g(b_{p+1}) = c_{p+1}$. Esto implica que

$$f(b_p - b_p' - \partial_B b_{p+1}) = c_p - c_p' - \partial_C g(b_{p+1}) = c_p - c_p' - \partial_C c_{p+1} = 0$$

En consecuencia, podemos tomar a_p tal que $f(a_p) = b_p - b'_p - \partial_B b_{p+1}$ luego

$$f(\partial_A a_p) = \partial_B f(a_p) = \partial_B (b_p - b'_p) - 0 = f(a_{p-1} - a'_{p-1})$$

Por ser f inyectiva, $\partial_A a_p = a_{p-1} - a'_{p-1}$, como buscábamos.

Ya sabemos que ∂_* está bien definido, veamos que es un homomorfismo de módulos. Para ello basta fijarnos en que $g(b_p+b'_p)=c_p+c'_p$ y que $f(a_{p-1}+a'_{p-1})=\partial_B(b_p+b'_p)$. Por tanto $\partial_*[c_p+c'_p]=[a_{p-1}+a'_{p-1}]$ por definición y en consecuencia, $\partial_*[c_p+c'_p]=\partial_*[c_p]+\partial_*[c'_p]$. Ahora si $\lambda\in R$, de manera análoga obtenemos que $\lambda\partial_*[b_p]=\lambda[c_p]=[\lambda c_p]=\partial_*[\lambda b_p]$.

Paso 3. Probaremos la exactitud de $H_p(B_\bullet;R)$ por doble inclusión. Como $g \circ f = 0$ tenemos que $g_* \circ f_* = 0$. Esto implica que si $\gamma \in \operatorname{Im} f_*$, entonces $g_*(\gamma) = 0$.

Para probar la otra inclusión, consideremos $\gamma = [b_p]$ y supongamos que $g_*(\gamma) = 0$. Entonces $g(b_p) = \partial_C c_{p+1}$ para algún $c_{p+1} \in C_p$. Escojamos b_{p+1} de manera que $g(b_{p+1}) = c_{p+1}$. Entonces

$$g(b_p - \partial_B b_{p+1}) = g(b_p) - \partial_C g(b_{p+1}) = g(b_p) - \partial_C c_{p+1} = 0$$

luego $b_p - \partial_B b_{p+1} = f(a_p)$ para algún a_p . Ahora, a_p es un ciclo pues

$$f(\partial_A a_p) = \partial_B f(a_p) = \partial_B b_p - 0 = 0$$

y f es inyectiva. Es más, $f_*[a_p] = [f(a_p)] = [b_p - \partial_B b_{p+1}] = [b_p]$ y por tanto $[b_p] \in \operatorname{Im} f_*$ como queríamos.

Paso 4. Probemos la exactitud en $H_p(C_{\bullet};R)$. Sea $\alpha=[c_p]$ un elemento de $H_p(C_{\bullet};R)$. Escojamos b_p tal que $g(b_p)=c_p$ y ahora tomemos a_{p-1} tal que $f(a_{p-1})=\partial_B b_p$. En consecuencia, $\partial_*\alpha=[a_{p-1}]$ por definición.

Procederemos de nuevo por doble inclusión. Consideremos primero que $\alpha \in \operatorname{Im} g_*$. Entonces $\alpha = [g(b_p)]$ donde b_p es un ciclo en B. Esto implica que $f(a_{p-1}) = 0$ de donde $a_{p-1} = 0$ y por tanto $\partial_* \alpha = 0$.

Supongamos ahora que $\partial_*\alpha=0$. Entonces $a_{p-1}=\partial_A a_p$ para algún a_p . Deducimos entonces que $b_p-f(a_p)$ es un ciclo y que $\alpha=g_*[b_p-f(a_p)]$ luego $\alpha\in {\rm Im}\,g_*$. Realizando los cálculos obtenemos que

$$\partial_B(b_p - f(a_p)) = \partial_B(b_p) - \partial_B(f(a_p)) = \partial_B(b_p) - f(a_{p-1}) = 0$$
$$g_*[b_p - f(a_p)] = [g(b_p) - 0] = [c_p] = \alpha$$

Paso 5. Finalmente obtengamos la exactitud para $H_{p-1}(A_{\bullet};R)$. Si $\beta \in \operatorname{Im} \partial_*$, entonces

 $\beta = [a_{p-1}]$ donde $f(a_{p-1}) = \partial_B b_p$ para algún b_p por definición. En consecuencia,

$$f_*(\beta) = [f(a_{p-1})] = [\partial_B b_p] = 0$$

Consideremos ahora el caso donde $f_*(\beta)=0$. Sea $\beta=[a_{p-1}]$. Entonces $[f(a_{p-1})]=0$ por lo que $f(a_{p-1})=\partial_B b_p$ para algún b_p . Definimos $c_p=g(b_p)$. En consecuencia, c_p es un ciclo ya que $\partial_c c_p=g(\partial_B b_p)=g(f(a_{p-1}))=0$ y $\beta=\partial_*[c_p]$ por definición. Esto es, $\beta\in \operatorname{Im}\partial_*$. \square

Definición 3.7. En las condiciones del anterior lema, llamaremos a la sucesión obtenida sucesión exacta larga de homología.

Una consecuencia importante del resultado anterior es su naturalidad, un concepto de gran interés en teoría de categorías.

Teorema 3.2. Consideremos el siguiente diagrama conmutativo

$$0 \longrightarrow A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A'_{\bullet} \xrightarrow{f'} B'_{\bullet} \xrightarrow{g'} C'_{\bullet} \longrightarrow 0$$

donde las sucesiones horizontales son sucesiones exactas de complejos de cadenas. Entonces el diagrama

$$\longrightarrow H_p(A_{\bullet};R) \xrightarrow{f_*} H_p(B_{\bullet};R) \xrightarrow{g_*} H_p(C_{\bullet};R) \xrightarrow{\partial_*} H_{p-1}(A_{\bullet};R) \longrightarrow$$

$$\downarrow^{\alpha_*} \qquad \qquad \downarrow^{\beta_*} \qquad \qquad \downarrow^{\gamma_*} \qquad \qquad \downarrow^{\alpha_*}$$

$$\longrightarrow H_p(A_{\bullet}';R) \xrightarrow{f_*'} H_p(B_{\bullet}';R) \xrightarrow{g_*'} H_p(C_{\bullet}';R) \xrightarrow{\partial_*'} H_{p-1}(A_{\bullet}';R) \longrightarrow .$$

es conmutativo, siendo α , β , γ aplicaciones de cadenas.

Demostración. Es claro que el diagrama

$$H_{p}(A_{\bullet};R) \xrightarrow{f_{*}} H_{p}(B_{\bullet};R) \xrightarrow{g_{*}} H_{p}(C_{\bullet};R)$$

$$\downarrow^{\alpha_{*}} \qquad \qquad \downarrow^{\beta_{*}} \qquad \qquad \downarrow^{\gamma_{*}}$$

$$H_{p}(A'_{\bullet};R) \xrightarrow{f'_{*}} H_{p}(B'_{\bullet};R) \xrightarrow{g'_{*}} H_{p}(C'_{\bullet};R)$$

es conmutativo, pues los homomorfismos inducidos de las aplicaciones de cadenas conservan la conmutatividad. Por tanto, basta estudiar la conmutatividad en

$$H_{p}(C_{\bullet};R) \xrightarrow{\partial_{*}} H_{p-1}(A_{\bullet};R)$$

$$\downarrow^{\gamma_{*}} \qquad \qquad \downarrow^{\alpha_{*}}$$

$$H_{p}(C'_{\bullet};R) \xrightarrow{\partial'_{*}} H_{p-1}(A'_{\bullet};R) .$$

Sea $[a] \in H_p(A_{\bullet};R)$ y tomemos b_p de manera que $g(b_p)=c_p$. Además tomemos $a_{p-1} \in A_p$ de forma que $f(a_{p-1})=\partial_B b_p$. En consecuencia, $\partial'_*[c_p]=[a_{p-1}]$ por definición. Consideremos

ahora $c_p' = \gamma(c_p)$. Nuestro objetivo es ver que $\partial_*'[c_p'] = \alpha_*[a_{p-1}]$. Está claro que $\beta(b_p)$ es preimagen de c_p por g', pues $g'\beta(b_p) = \gamma g(b_p) = \gamma(c_p) = e_p'$. Así mismo, $\alpha(c_{p-1})$ lo es de $\partial_D'\beta(b_p)$, pues $f'\alpha(a_{p-1}) = \beta f(a_{p-1}) = \beta(\partial_B b_p) = \partial_D'\beta(b_p)$. Esto es, $\partial_*'[c_p] = [\alpha(a_{p-1})]$ por definición.

Proposición 3.4 (Sucesión de Mayer-Vietoris). *Sea K un complejo simplicial y sean K*₁, K_2 *sub-complejos de K tales que K* = $K_1 \cup K_2$. *Entonces existe una sucesión exacta*

$$\cdots \to H_p(K_1 \cap K_2; R) \xrightarrow{f} H_p(K_1; R) \oplus H_p(K_2; R) \xrightarrow{g} H_p(K; R) \to H_{p-1}(K_1 \cap K_2; R) \to \cdots$$

tal que $f(c) = (i_{1\#}(c), -i_{2\#}(c)), g(d, e) = j_{1\#}(d) + j_{2\#}(e)$ donde $i_t : K_1 \cap K_2 \to K_t \ y \ j_t : K_t \to K_1 \cup K_2$ para $t \in \{1, 2\}$ son las respectivas inclusiones.

Demostración. La demostración consiste en construir la sucesión exacta corta de complejos de cadena

$$0 \to C_{\bullet}(K_1 \cap K_2; R) \xrightarrow{f} C_{\bullet}(K_1; R) \oplus C_{\bullet}(K_2; R) \xrightarrow{g} C_{\bullet}(K; R) \to 0$$

y aplicar el Lema de la serpiente.

Para ello comencemos describiendo el complejo de cadenas $C_{\bullet}(K_1;R) \oplus C_{\bullet}(K_2;R)$. Recordemos que la suma directa de un complejo de cadenas se definía como la suma directa de los R-módulos de dimensión p $C_p(K_1;R) \oplus C_p(K_2;R)$, cuyo operador borde $\partial'(d,e) = (\partial_1 d, \partial_2 e)$ donde ∂_1, ∂_2 corresponden a los operadores borde de K_1 y K_2 respectivamente.

Para comprobar la exactitud de la sucesión, comencemos estudiando la exactitud en los extremos de ésta. Es claro que f es inyectiva por ser una inclusión. En cuanto a la sobreyectividad de g, tomemos $d \in C_p(K;R)$ donde d sea la suma de símplices orientados. Notemos por d_1 a los elementos de dicha suma provenientes de K_1 . Entonces $d-d_1 \in K_2$ y $g(d_1,d-d_1)=d$.

Para estudiar la exactitud en $C_{\bullet}(K_1;R) \oplus C_{\bullet}(K_2;R)$, consideremos la inclusión $k:K_1 \cap K_2 \to K$ y la respectiva inclusión de cadenas inducida $k_\#:C_{\bullet}(K_1 \cap K_2;R) \to C_{\bullet}(K;R)$. Nótese que $g(f(c))=k_\#(c)-k_\#(c)=0$. Sea ahora g(d,e)=0, entonces d=-e si las consideramos como cadenas de K. Como d proviene de K_1 y e de K_2 , ambas deben de provenir de $K_1 \cap K_2$ y en consecuencia, (d,e)=(d,-d)=f(d), como queríamos.

La homología de $K_1 \oplus K_2$ de dimensión p es entonces

$$H_p(K_1 \oplus K_2; R) \cong H_p(K_1; R) \oplus H_p(K_2; R)$$

por la Proposición 1.4. Finalmente aplicamos el Lema de la serpiente y en consecuencia tenemos la sucesión deseada.

Para obtener la sucesión de Mayer-Vietoris de homología reducida, reemplazaremos los complejos de cadenas anteriores por sus correspondientes complejos de cadenas aumentados. Consideremos para ello el siguiente diagrama

$$0 \longrightarrow C_0(K_1 \cap K_2; R) \longrightarrow C_0(K_1; R) \oplus C_0(K_2; R) \longrightarrow C_0(K; R) \longrightarrow 0$$

$$\downarrow^{\varepsilon_{K_1 \cap K_2}} \qquad \qquad \downarrow^{\varepsilon_1 \oplus \varepsilon_2} \qquad \qquad \downarrow^{\varepsilon}$$

$$0 \longrightarrow R \xrightarrow{\widetilde{f}} R \oplus R \xrightarrow{\widetilde{g}} R \longrightarrow 0$$

La conmutatividad y la exactitud se mantienen en la parte inferior del diagrama si definimos $\widetilde{f}(r)=(r,r)$ y $\widetilde{g}(r',r)=r'+r$. Las aplicaciones $\varepsilon_{K_1\cap K_2}$, $\varepsilon_1\oplus\varepsilon_2$ y ε son sobreyectivas pues la

intersección de K_1 y K_2 es no vacía. De este modo, la homología de sus respectivos complejos de cadenas es nula en dimensión -1 y en dimensión 0 es igual a la de sus respectivos módulos de homología reducida $\widetilde{H}_0(K_1\cap K_2;R)$, $\widetilde{H}_0(K_1;R)\oplus\widetilde{H}_0(K_2;R)$ y $\widetilde{H}_0(K;R)$. Para finalizar, aplicamos de nuevo el Lema de la serpiente.

4. Invariancia homotópica

En los capítulos previos hemos hecho un arduo esfuerzo en conocer las propiedades de los complejos simpliciales, sus módulos de homología y cómo estudiarlos. Si bien el lector todavía podría dudar de la utilidad de este estudio, hay una propiedad que lo dota de gran interés: los módulos de homología son invariantes respecto a los grupos de homotopía. A continuación veremos que podemos aproximar cualquier aplicación continua por aplicaciones simpliciales, las cuales usaremos para demostrar este vital resultado. Las principales referencias empleadas han sido [RAo3] [Arm83].

4.1. Subdivisión baricéntrica

Definición 4.1. Sea K un complejo simplicial geométrico en \mathbb{R}^N . Un complejo simplicial K' diremos que es una **subdivisión** de K si:

- 1. Cada símplice de K' está contenido en algún símplice de K.
- 2. Cada símplice de K es igual a la unión finita de símplices de K'.

Observación 4.1. Nótese que la definición anterior implica que |K| = |K'|. Además, la condición de finitud nos garantiza que la topología de los espacios subyacentes es la misma.

Lema 4.1. Si K es un complejo, entonces la intersección de cualquier colección de subcomplejos de K es un subcomplejo de K. Por otro lado, si $\{K_{\alpha}\}_{{\alpha}\in A}$ es una colección de complejos en \mathbb{R}^N y todas las intersecciones $|K_{\alpha}| \cap |K_{\beta}|$ son el politopo de un complejo que es subcomplejo de ambos, entonces la unión es un complejo.

Demostración. Sea $\{K_i\}_{i\in I}$ una colección de subcomplejos de K indexados por I. Queremos ver que efectivamente $K' = \bigcap_{i\in I} K_i$ es un complejo simplicial. En el caso de intersección vacía tenemos que K' es el complejo trivial. Si K' no es vacío, entonces existe algún símplice σ perteneciente a la intersección. Por tanto, consideremos una cara τ de σ y veamos existe en K'. Es claro que $\sigma \in K_i$ para todo $i \in I$ y por ser K_i un complejo simplicial, todas sus caras pertenecen a K_i , luego $\tau \in K'$. En cuanto a la intersección de dos símplices cualesquiera, procederemos por reducción a lo absurdo. Supongamos que existen dos símplices $\sigma, \tau \in K'$ de forma que su intersección no es ni el vacío ni una cara de ambos. Entonces, este hecho se seguiría cumpliendo para cada K_i , en contradicción con que K_i es un complejo para todo $i \in I$.

Para la segunda afirmación, veamos que $K = \bigcup_{\alpha \in A} K_{\alpha}$ es un complejo simplicial. Si σ es un símplice en K, entonces existe algún $i \in I$ de forma que $\sigma \in K_i$. Por ser K_i un símplice, todas sus caras están en K_i y, en consecuencia, en K. Consideremos ahora dos símplices arbitrarios σ, τ pertenecientes a K_{α}, K_{β} respectivamente. Por hipótesis, la intersección $|K_{\alpha}| \cap |K_{\beta}|$ es también el politopo de un complejo simplicial, que denotaremos por $L_{\alpha\beta}$. Este complejo $L_{\alpha\beta}$ es subcomplejo tanto de K_{α} como de K_{β} . Por tanto, cualquier intersección de símplices $\sigma \cap \tau$ (si existe) resulta ser un conjunto de símplices que pertenecen a $L_{\alpha\beta}$ y, por ende, también están contenidos en K_{α} , K_{β} , y en la unión K, garantizando que dicha intersección es una cara común o vacía.

Si bien existen distintos procedimientos para construir una subdivisión, nosotros seguiremos el siguiente:

Definición 4.2. Sea K un complejo. Supongamos que L_p es una subdivisión del p-esqueleto de K. Sea σ un símplice de dimensión p+1 de K. El conjunto Bd σ es el politopo de un subcomplejo del p-esqueleto de L_{σ} . Si w_{σ} es un punto del interior de σ , entonces el cono $x_{\sigma}*L_{\sigma}$ es un complejo cuyo espacio subyacente es σ . Definimos L_{p+1} como la unión de L_p con los complejos $w_{\sigma}*L_{\sigma}$ para todo símplice de dimensión p+1 de K. Llamaremos a L_{p+1} la **subdivisión de** K^{p+1} **obtenida estrellando** L_p **de los puntos** w_{σ} .

Veamos que L_{p+1} es un complejo. Notemos que $|w_{\sigma}*L_{\sigma}| \cap |L_p| = \operatorname{Bd} \sigma$, que es el politopo del subcomplejo L_{σ} de $|w_{\sigma}*L_{\sigma}|$ y $|L_p|$. De manera similar, si τ es otro símplice de dimensión p+1, entonces los espacios $|w_{\sigma}*L_{\sigma}|$ y $|w_{\tau}*L_{\tau}|$ intersecan en el símplice $\sigma \cap \tau$ de K. Esto es, el politopo del subcomplejo de L_p y en consecuencia, también de L_{σ} y L_{τ} . Por el Lema 4.1, L_{p+1} es un complejo.

Puesto que el complejo L_{p+1} depende de la elección de los puntos w_{σ} , los escogeremos de la siguiente forma.

Definición 4.3. Sea $\sigma = [v_0, \dots, v_p]$ un *p*-símplice. Definimos el **baricentro** de σ como el punto

$$\overline{\sigma} = \sum_{i=0}^{p} \frac{1}{p+1} v_i.$$

Esto es, el punto del interior de σ cuyas coordenadas baricéntricas con respecto a los vértices de σ son iguales.

Definición 4.4. Sea K un complejo. Definimos la secuencia de subdivisiones de esqueletos de K de la siguiente forma. Sea $L_0=K^{(0)}$ el 0-esqueleto de K. En general, si L_p es una subdivisión del p-esqueleto de K, entonces definimos L_{p+1} como la subdivisión del esqueleto p+1 obtenido estrellando L_p de los baricentros de los p+1 símplices de K. Por el Lema 4.1, la unión de los complejos L_p es una subdivisión de K que llamaremos **subdivisión baricéntrica** de K y la denotaremos por sd K.

Lema 4.2. Sea K un complejo simplicial. Entonces el complejo sd K es igual a la colección de todos los símplices de la forma

$$[\overline{\sigma}_0, \overline{\sigma}_1, \dots, \overline{\sigma}_n]$$

donde $\sigma_0 \succ \sigma_1 \succ \cdots \succ \sigma_n$.

Demostración. Procederemos por inducción. Es inmediato que los símplices de sd K de la subdivisión de $K^{(0)}$ son de esta forma, pues cada símplice es un vértice de K y sus baricentros coinciden con dicho vértice.

Supongamos ahora que cada símplice de sd K perteneciente a $|K^{(p)}|$ es de esta forma. Sea τ un símplice de sd K perteneciente a $|K^{(p+1)}|$ pero no a $|K^{(p)}|$. Entonces τ pertenece a uno de los complejos $\overline{\sigma}*L_{\sigma}$, donde σ es un símplice de dimensión p+1 de K y L_{σ} es la primera subdivisión baricéntrica del complejo formado por las caras propias de σ . Por hipótesis de inducción, cada símplice de L_{σ} es de la forma $[\overline{\sigma}_0,\overline{\sigma}_1,\ldots,\overline{\sigma}_n]$, donde $\sigma_0 \succ \sigma_1 \succ \cdots \succ \sigma_n$ y σ_0 es una cara propia de σ . Concluimos que τ debe ser de la forma $[\overline{\sigma},\overline{\sigma}_0,\overline{\sigma}_1,\ldots,\overline{\sigma}_n]$, como buscábamos.

Definición 4.5. Sea σ un símplice. Definimos el **diámetro** de σ como la mayor distancia entre dos puntos de σ . Formalmente,

$$\operatorname{diam} \sigma = \max \{ \|x - y\| : x, y \in \sigma \}$$

donde en nuestro caso trabajamos con la norma euclídea.

Lema 4.3. Sea $\sigma = [v_0, \dots, v_n]$ un n-simplice. Entonces

$$\operatorname{diam} \sigma = \max \{ \|v_i - v_j\| : 0 \le i, j \le n \}.$$

Demostración. Sean $p, q \in \sigma$. En particular, si $p = \sum_{i=0}^{n} \lambda_i v_i$, entonces

$$||p-q|| = \left\| \sum_{i=0}^{n} \lambda_i v_i - q \right\| = \left\| \sum_{i=0}^{n} (\lambda_i v_i - \lambda_i q) \right\| \le \sum_{i=0}^{n} \lambda_i ||v_i - q|| \le \max_{0 \le i \le n} ||v_i - q||.$$

De manera análoga, si $q = \sum_{j=0}^{n} \mu_j v_j$, entonces

$$||v_i - q|| \le \max_{0 \le i \le n} ||v_i - v_j||.$$

Por consiguiente tenemos que

$$||p-q|| \le \max_{0 \le i,j \le n} ||v_i - v_j||$$

para cualesquiera $p, q \in \sigma$ y por tanto, diam $\sigma \leq \max_{0 \leq i, i \leq n} \|v_i - v_i\|$.

Definición 4.6. Definimos la **medida** de un complejo simplicial K como el número $m(K) = \max\{\operatorname{diam} \sigma : \sigma \in K\}$.

Teorema 4.1. Dado un complejo simplicial finito K, una métrica para |K| $y \in 0$, existe un natural N tal que cada símplice de $\operatorname{sd}^N K$ tiene un diámetro menor que ε .

Demostración. Procedemos por inducción en el número de subdivisiones. Consideremos la primera subdivisión, sd K. Sea $\mu \in \operatorname{sd} K$ y sean $\overline{\sigma}_0, \overline{\sigma}_1, \ldots, \overline{\sigma}_k$ los vértices de μ , donde $\sigma_0 \prec \sigma_1 \prec \ldots \prec \sigma_k$. Supongamos, por simplicidad, que el diámetro de μ viene dado por diam $\mu = \|\overline{\sigma}_0 - \overline{\sigma}_1\|$ conforme al Lema 4.3, donde $\sigma_0 = [v_0, \ldots, v_n]$ y $\sigma_1 = [v_0, \ldots, v_n, v_{n+1}, \ldots, v_s]$.

Entonces, calculamos:

$$\left\| \sum_{i=0}^{n} \frac{1}{n+1} v_i - \overline{\sigma_1} \right\| = \frac{1}{n+1} \left\| \sum_{i=0}^{n} (v_i - \overline{\sigma_1}) \right\| \le \max\{ \|v_i - \overline{\sigma_1}\| : i \le n \}$$

y, de manera similar,

$$\|v_i - \overline{v_1}\| = \left\|v_i - \sum_{j=0}^s \frac{1}{s+1} p_j\right\| = \frac{1}{s+1} \left\|\sum_{j=0}^s (v_i - v_j)\right\| \le \frac{s}{s+1} \max\{\|v_i - v_j\|\}.$$

Esto implica que

$$\operatorname{diam}(\mu) \le \frac{s}{s+1} \operatorname{diam}(\sigma_1) \le \frac{s}{s+1} \operatorname{m}(K),$$

donde m(K) es el máximo diámetro de los símplices en K. Finalmente, dado que dim $\sigma_1 = s \le r = \dim K$, tenemos que

$$\operatorname{diam}(\mu) \le \frac{r}{r+1} \operatorname{m}(K)$$

para todo $\mu \in \operatorname{sd} K$. O lo que es lo mismo,

$$\mathsf{m}(\mathsf{sd}\,K) \le \frac{r}{r+1}\,\mathsf{m}(K).$$

Por inducción, si asumimos que la propiedad se mantiene para $\operatorname{sd}^{N-1} K$, entonces en $\operatorname{sd}^N K$ es claro que la siguiente desigualdad se cumple

$$\operatorname{m}(\operatorname{sd}^N K) \le \frac{r}{r+1}\operatorname{m}(\operatorname{sd}^{N-1} K) \le \left(\frac{r}{r+1}\right)^N\operatorname{m}(K),$$

donde la primera desigualdad se obtiene de manera análoga al razonamiento anterior, considerando el complejo sd $^{N-1}$ K y su subdivisión.

4.2. Teorema de aproximación simplicial

El teorema de aproximación simplicial nos proporciona una herramienta para obtener aplicaciones simpliciales entre complejos a partir de aplicaciones continuas entre sus respectivos poliedros.

Definición 4.7. Sean K, L complejos simpliciales y sea $f: |K| \to |L|$ una aplicación continua. Diremos que la aplicación simplicial $\varphi: K \to L$ es una **aproximación simplicial** de f si para todo $x \in |K|$ se tiene que $\varphi(x)$ pertenece al símplice soporte de f(x) en L.

Observación 4.2. La anterior definición es equivalente a afirmar si σ es un símplice de L y $f(x) \in \sigma$, entonces $\varphi(x)$ pertenece a σ .

Proposición 4.1. Sean K, L complejos simpliciales $y : |K| \to |L|$ una aplicación continua. Si $\varphi : K \to L$ es una aproximación simplicial de f, entonces $d(f, \varphi) \le m(L)$, donde $d(f, \varphi) = \sup\{\|f(x) - \varphi(x)\| : x \in |K|\}$.

Demostración. Dado que φ es una aproximación simplicial de f, para todo $x \in |K|$, f(x) y $\varphi(x)$ pertenecen al mismo símplice $\sigma \in L$. Por lo tanto, $||f(x) - \varphi(x)|| \le \operatorname{diam}(\sigma)$, y así, $||f(x) - \varphi(x)|| \le \operatorname{m}(L)$ donde $\operatorname{m}(L)$ es el máximo diámetro de los símplices en L. Por lo tanto, $d(f,\varphi) = \sup_{x \in |K|} ||f(x) - \varphi(x)|| \le \operatorname{m}(L)$.

Proposición 4.2. Sean K, L complejos simpliciales y sea $f: |K| \to |L|$ una aplicación continua. Sea $\varphi: K \to L$ una aproximación entre los vértices de K y L. Entonces φ es una aproximación simplicial de f si, y sólo si, para todo vértice $v \in K$ tenemos que $f(\operatorname{Int}\operatorname{st}(v;K)) \subseteq \operatorname{Int}\operatorname{st}(\varphi(x);L)$.

Demostración. Comencemos probando la implicación a la izquierda. Sea $\sigma = [v_0, \ldots, v_p]$ un símplice de K. Por la Proposición 2.5, sabemos que la intersección de estrellas de cada vértice de σ es no vacía y por tanto

$$\emptyset \neq f\left(\bigcap_{i=0}^{p} \operatorname{Int}\operatorname{st}(v_{i};K)\right) \subseteq \bigcap_{i=0}^{p} f(\operatorname{Int}\operatorname{st}(v_{i};K)) \subseteq \bigcap_{i=0}^{p} \operatorname{Int}\operatorname{st}(\varphi(v_{i});L).$$

Luego los vértices $\varphi(v_i)$ están en un mismo símplice de L para todo $i \in \{0, ..., p\}$ y en consecuencia, φ es una aplicación simplicial.

Consideremos ahora $x \in |K|$ tal que $x \in \operatorname{Int} \sigma$, siendo $\sigma = [v_0, \ldots, v_p]$ un símplice de K. Además, se tiene que $x \in \bigcap_{i=0}^p \operatorname{Int} \operatorname{st}(v_i; K)$. Siguiendo el razonamiento anterior, $f(x) \in \bigcap_{i=0}^p \operatorname{Int} \operatorname{st}(\varphi(v_i); K)$. Es decir, $\varphi(v_0), \ldots, \varphi(v_p)$ son los vértices del símplice soporte de f(x) y φ es una aproximación simplicial de f.

Para la otra implicación tomemos $x \in \operatorname{Int}\operatorname{st}(v;K)$. Entonces existe $\tau \in K$ tal que v es un vértice de τ y $x \in \operatorname{Int} \tau$. Asimismo, $f(x) \in \operatorname{Int} \sigma$ para algún símplice σ de L. Por ser φ una aproximación simplicial, llevará τ a un símplice σ' de L tal que $\varphi(v)$ es vértice de σ' , pertenece al interior de σ' y además pertenece a σ . Por el Corolario 2.1, σ' es una cara de σ y $\varphi(v) \in \sigma$. Concluimos entonces que $f(x) \in \operatorname{Int} \sigma \subseteq \operatorname{Int}\operatorname{st}(\varphi(v);L)$ y $f(\operatorname{Int}\operatorname{st}(v;K)) \subseteq \operatorname{Int}\operatorname{st}(\varphi(v);L)$. \square

Corolario 4.1. Sea $f: |K| \to |L|$ una aplicación continua. Entonces f admite una aproximación simplicial $\varphi: K \to L$ si, y sólo si, para cada vértice v de K existe algún vértice de L tal que $\operatorname{Int} \operatorname{st}(v; K) \subseteq f^{-1}(\operatorname{Int} \operatorname{st}(w; L))$.

Demostración. Sea φ una aproximación simplicial de f. Por la Proposición 4.2, para todo vértice $v \in K$ se cumple que $f(\operatorname{Int}\operatorname{st}(v;K)) \subseteq \operatorname{Int}\operatorname{st}(\varphi(v);L)$. Esto es, $\operatorname{Int}\operatorname{st}(v;K) \subseteq f^{-1}(\operatorname{Int}\operatorname{st}(w;L))$ donde $w = \varphi(v)$.

Para el recíproco, tenemos que $\operatorname{Int}\operatorname{st}(v;K)\subseteq f^{-1}(\operatorname{Int}\operatorname{st}(w;L))$. Entonces podemos definir una aplicación entre los vértices de K y L de manera que $\varphi(v)=w$. En consecuencia, $\operatorname{Int}\operatorname{st}(v;K)\subseteq f^{-1}(\operatorname{Int}\operatorname{st}(w;L))$ lo que implica que $f(\operatorname{Int}\operatorname{st}(v;K))\subseteq\operatorname{Int}\operatorname{st}(\varphi(v);L)$. Finalmente, por la Proposición 4.2, φ es una aproximación simplicial de f.

Antes de proceder con la demostración del resultado principal de esta sección, necesitaremos hacer uso del lema de Lebesgue. Para demostrarlo, recordemos la siguiente consecuencia del teorema de Weierstrass.

Corolario 4.2. Sea (X,d) un espacio métrico compacto y sea $\mathbb R$ con la distancia euclídea. Además, sea $f:X\to\mathbb R$ una aplicación continua. Entonces f alcanza un mínimo y un máximo en X.

Lema 4.4 (Lema de Lebesgue). Sea \mathcal{U} un recubrimiento por abiertos de un espacio métrico compacto (X,d). Entonces existe un número de Lebesgue $\varepsilon > 0$ de forma que cualquier subconjunto $V \subseteq X$ tal que diam $V \le \varepsilon$ está contenido en algún abierto U de \mathcal{U} .

Demostración. Dado que (X,d) es un espacio métrico compacto, podemos extraer un subrecubrimiento finito por abiertos $\{U_1,\ldots,U_n\}\subseteq \mathcal{U}$. Si para algún $i\in\{1,\ldots,n\}$ se cumple que $U_i=X$, entonces cualquier $\varepsilon>0$ satisfará la condición del lema. En caso contrario, definimos para cada $i\in\{1,\ldots,n\}$ el conjunto $C_i:=X\setminus U_i$, el cual es no vacío.

Consideremos la función $f: X \to \mathbb{R}$ de forma que

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} d(x, C_i),$$

donde $d(x, C_i)$ es la distancia de x al conjunto C_i . Dado que f es continua en X y X es compacto, por el Corolario 4.2, f alcanza su valor mínimo $\varepsilon > 0$ en X.

Ahora demostramos que este valor es el número de Lebesgue buscado. Para cualquier subconjunto $V\subseteq X$ con diam $V\le \varepsilon$, existe $x_0\in X$ tal que $V\subseteq \overline{B}_\varepsilon(x_0)$, donde $\overline{B}_\varepsilon(x_0)$ denota la bola cerrada de radio ε centrada en x_0 . Dado que $f(x_0)\ge \varepsilon$, debe existir al menos un índice i para el cual $d(x_0,C_i)\ge \varepsilon$, lo que implica que $\overline{B}_\varepsilon(x_0)\subseteq U_i$ y, por lo tanto, $V\subseteq U_i$. \square

Teorema 4.2 (Teorema de aproximación simplicial). *Sean K, L complejos simpliciales y f*: $|K| \rightarrow |L|$ una aplicación continua. Entonces existe una subdivisión baricéntrica sd^n y una aplicación $\varphi: |sd^n K| \rightarrow |L|$ tal que φ es una aproximación simplicial de de f.

Demostración. Por la continuidad de f y como consecuencia de la Proposición 2.6, podemos considerar el conjunto $\mathcal{U} = \{f^{-1}(\operatorname{Int}\operatorname{st}(q;L)) : q \in K^{(0)}\}$ tal que \mathcal{U} es un recubrimiento por abiertos de |K|.

Por el Lema de Lebesgue, sabemos que existe un número $\varepsilon > 0$ asociado a \mathcal{U} . Por el Teorema 4.1, podemos considerar $n \in \mathbb{N}$ tal que $\operatorname{m}(\operatorname{sd}^n K) < \varepsilon/2$. Sea ahora p un vértice de $\operatorname{sd}^n K$ y sean $\sigma, \tau \in \operatorname{Int}\operatorname{st}(p;\operatorname{sd}^n K)$. Si $x \in \operatorname{Int}\sigma$, $y \in \operatorname{Int}\tau$, entonces

$$||x-y|| \le ||x-p|| + ||y-p|| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

De este modo, $\operatorname{diam}(\operatorname{st}(p;\operatorname{sd}^nK)) < \varepsilon$ y existe un vértice q_p de L tal que $f(\operatorname{Int}\operatorname{st}(p;\operatorname{sd}^nK)) \subseteq \operatorname{Int}\operatorname{st}(q_p;L)$. Por el Corolario 4.1, existe una aproximación simplicial φ de f.

Corolario 4.3. Sean K, L complejos simpliciales $y f : |K| \to |L|$ una aplicación continua. Para todo $\varepsilon > 0$ existen subdivisiones baricéntricas de K, L y una aproximación simplicial $\varphi : \operatorname{sd}^n K \to \operatorname{sd}^m L$ tal que $d(f, \varphi) < \varepsilon$.

Demostración. Consideremos $\operatorname{sd}^m L$ tal que $\operatorname{m}(\operatorname{sd}^m L) < \varepsilon$. Por el Teorema de aproximación simplicial, existe una subdivisión baricéntrica $\operatorname{sd}^n K$ y una aplicación $\varphi: |\operatorname{sd}^n K| \to |\operatorname{sd}^m L|$ tal que φ es una aproximación simplicial de $f: |K| \to |L|$. Como $|L| = |\operatorname{sd}^m L|$, por la Proposición 4.1 concluimos que $d(f, \varphi) \le \operatorname{m}(\operatorname{sd}^m L) < \varepsilon$.

4.3. Operador subdivisión

Definición 4.8. Sea $\{C_n(K;R), \partial_n\}$ un complejo de cadenas simpliciales. Llamaremos **operador de subdivisión** al homomorfismo $\mathrm{sd}_{\#n}: C_n(K;R) \to C_n(\mathrm{sd}\,K;R)$ definido por

$$\mathrm{sd}_{\#n}(\sigma) = \sum_{\substack{\widehat{\sigma} \in \mathrm{sd} \ K \\ \widehat{\sigma} \subseteq \sigma}} [\sigma : \widehat{\sigma}] \cdot \widehat{\sigma},$$

donde cada $\widehat{\sigma}$ es un símplice orientado de dimensión n en la subdivisión sd K de K. El coeficiente $[\sigma:\widehat{\sigma}]$ es definido como +1 si la orientación de $\widehat{\sigma}$, inducida por la orientación de σ , coincide con la orientación estándar de $\widehat{\sigma}$, y -1 si es opuesta. Esta orientación se determina por el orden de los vértices de $\widehat{\sigma}$ según su aparición en la construcción de sd K.

Nota. En ocasiones prescindiremos del subíndice de dimensión de la cadena, notando así todos los homomorfismos $sd_{\#n}$ simplemente por $sd_{\#}$ cuando se sobrentienda por el contexto.

Consideremos un n-símplice orientado σ con vértices v_0, v_1, \ldots, v_n y su subdivisión baricéntrica $\mathrm{sd}_\#(\sigma)$. Queremos expresar de manera explícita la composición $\partial_n \circ \mathrm{sd}_\#(\sigma) : C_n(K;R) \to C_{n-1}(\mathrm{sd}\,K;R)$. Veamos que esto se puede escribir como

$$\partial_n(\mathrm{sd}_{\#}(\sigma)) = \sum_{\substack{\widehat{\sigma} \in \mathrm{sd} \ K \\ \widehat{\sigma} \subseteq \sigma}} (-1)^n [\sigma : \widehat{\sigma}] \cdot \widehat{\tau}.$$

Aquí, $\hat{\sigma}$ es un símplice de dimensión n-1 y $\hat{\tau}$ es cara únicamente de $\hat{\sigma}$ contenida en $\partial_n \sigma$. Desarrollando la expresión obtenemos

$$\partial_n(\mathrm{sd}_{\#}(\sigma)) = \sum_{\substack{\widehat{\sigma} \in \mathrm{sd} K \\ \widehat{\sigma} \subset \sigma}} [\sigma : \widehat{\sigma}] \cdot \widehat{\sigma} = \sum_{\substack{\widehat{\sigma} \in \mathrm{sd} K \\ \widehat{\sigma} \subset \sigma}} [\sigma : \widehat{\sigma}] \sum_{j=0}^n (-1)^j \cdot \widehat{\tau}_j,$$

donde cada $\hat{\tau}_j$ es el símplice resultante de excluir el *j*-ésimo vértice de $\hat{\sigma}$. Específicamente, $\hat{\tau}_j$ es la cara de $\hat{\sigma}$ opuesta al vértice v_j .

Primero notemos que $\widehat{\tau}_n$ es la única cara que $\widehat{\sigma}$ tiene en el borde, pues se obtiene eliminando su baricentro. En consecuencia, $\widehat{\tau}_n$ es cara de un único n-símplice en la subdivisión. Para j>0, al eliminar el baricentro del conjunto de vértices $[v_{i_1}\dots v_{i_j}]$, se mantienen los baricentros de $[v_{i_1}\dots v_{i_{j-1}}]$ y $[v_{i_1}\dots v_{i_{j+1}}]$. Esto permite que el símplice $\widehat{\tau}_j$ sea compartido por exactamente dos n-símplices de la subdivisión baricéntrica, y podemos continuar formando una secuencia creciente de símplices al agregar vértices que no alteren la orientación general de la secuencia. Para el caso j=0, se puede seleccionar cualquiera de los vértices del primer 1-símplice en la secuencia.

Por lo tanto, al considerar la suma con signos alternados en la expresión de $\partial_n(\operatorname{sd}_\#(\sigma))$, los términos correspondientes a $\widehat{\tau}_j$ para $j \neq n$ se cancelarán mutuamente, ya que estas caras son compartidas por pares de n-símplices con orientaciones opuestas. En cambio, el término $\widehat{\tau}_n$ no se cancela, ya que solo pertenece a un símplice.

Lema 4.5. Sea $\{C_n(K;R), \partial_n\}$ un complejo de cadenas simpliciales y sean $\mathrm{sd}_{\# n}: C_n(K;R) \to C_n(\mathrm{sd}\,K;R)$ sus respectivos operadores de subdivisión para todo $n \geq 0$. Entonces la familia $\{\mathrm{sd}_{\# n}\}$ constituye un homomorfismo de complejos de cadenas.

Demostración. Para demostrar que $\{sd_{\#n}\}$ es un homomorfismo de complejos de cadenas, necesitamos verificar que el siguiente diagrama

$$C_n(K) \xrightarrow{\operatorname{sd}_{\#n}} C_n(\operatorname{sd} K)$$

$$\begin{array}{ccc} \partial_n & & & & \downarrow \partial_n \\ C_{n-1}(K) & \xrightarrow{\operatorname{sd}_{\#n-1}} C_{n-1}(\operatorname{sd} K) \end{array}$$

conmuta para todo $n \ge 0$. Consideramos un símplice σ en $C_n(K)$. Aplicando el operador borde seguido del operador subdivisión obtenemos

$$\partial_n(\operatorname{sd}_{\#n}(\sigma)) = \sum_{\substack{\widehat{\sigma} \in \operatorname{sd}K \\ \widehat{\sigma} \subset \sigma}} (-1)^n [\sigma : \widehat{\sigma}] \cdot \tau.$$

Por otro lado, aplicando primero el operador subdivisión y luego el operador borde,

$$\operatorname{sd}_{n-1}(\partial_n(\sigma)) = \operatorname{sd}_{n-1}\left(\sum_{j=0}^n (-1)^j \sigma_j\right) = \sum_{j=0}^n (-1)^j \operatorname{sd}_{n-1}(\sigma_j),$$

donde σ_j es el *j*-ésimo símplice en $C_{n-1}(K)$ que resulta de eliminar el *j*-ésimo vértice de σ . Veamos entonces que la anterior expresión es igual a

$$\sum_{j=0}^{n} (-1)^{j} \sum_{\substack{\sigma_{j} \in \text{sd } K \\ \widehat{\sigma}_{i} \subseteq \sigma_{j}}} [\sigma_{j} : \widehat{\sigma}_{j}] \cdot \widehat{\sigma}_{j}.$$

Observemos que cada símplice subdividido $\widehat{\sigma}_j$ es un subconjunto de σ_j , y que cada σ_j es a su vez una cara de σ , por lo que $\widehat{\sigma}_j \subseteq \sigma_j \subseteq \partial \sigma$. Además, como cada σ_j se obtiene al eliminar un vértice de σ , concluimos que dim $\widehat{\sigma}_j = \dim \sigma_j = n-1$. Esto implica que los conjuntos de símplices subdivididos $\widehat{\tau}$ y $\widehat{\sigma}_j$ coinciden. Supongamos entonces que $\widehat{\tau} = \widehat{\sigma}_j$, por lo que $\widehat{\tau}$ es igual al símplice formado por los baricentros de $v_{i_0}, [v_{i_0}, v_{i_1}], \ldots, [v_{i_0}, \ldots, v_{i_{n-1}}]$ tales que $[v_{i_0}] \prec [v_{i_0}, v_{i_1}] \prec \ldots \prec [v_{i_0}, v_{i_1}, \ldots, v_{i_{n-1}}] \prec \sigma_j$. La secuencia $(i_0, i_1, \ldots, i_{n-1})$ es una permutación P de los índices $(0, \ldots, \widehat{j}, \ldots, n-1)$, siendo \widehat{j} el índice del vértice eliminado para formar σ_j . La signatura de esta permutación, que denotaremos por $\operatorname{sgn}(P)$, determina el coeficiente $[\sigma_j:\widehat{\sigma}_j]=(-1)^{\operatorname{sgn}(P)}$. Dado que estamos considerando que $\widehat{\tau}$ es una cara de $\widehat{\sigma}$, y que $\widehat{\sigma}_j$ aparece al eliminar el último vértice, la permutación P' que transforma $(i_0,i_1,\ldots,i_{n-1},j)$ en $(0,1,\ldots,n)$ muestra signatura $\operatorname{sgn}(P)+n-j$. Así, tenemos que $[\sigma:\widehat{\sigma}]=(-1)^{\operatorname{sgn}(P)}\cdot (-1)^{n-j}$. Al multiplicar por $(-1)^n$ en la primera expresión, alineamos el signo con el de la última expresión, obteniendo así la conmutatividad del diagrama.

Definición 4.9. Sea $f: |K| \to |L|$ una aplicación simplicial y sea $\sigma = [v_0, v_1, \dots, v_p]$ un símplice de |K|. Diremos que f colapsa a σ si $f(v_i) = f(v_i)$ para algún $i \neq j$.

Lema 4.6. Sea $f: |K| \to |L|$ una aplicación simplicial y sea $f: |\operatorname{sd} K| \to |\operatorname{sd} L|$ la misma aplicación para sus subdivisiones baricéntricas. Entonces el siguiente diagrama es conmutativo

$$C_n(K;R) \xrightarrow{f_\#} C_n(L;R)$$

$$\downarrow^{\mathrm{sd}_\#} \qquad \qquad \downarrow^{\mathrm{sd}_\#}$$

$$C_n(\mathrm{sd}\,K;R) \xrightarrow{f_\#} C_n(\mathrm{sd}\,L;R)$$

donde $f_{\#}$ denota el homomorfismo de cadenas inducido C(f).

Proposición 4.3. Sea $\{C_n(K;R), \partial_n\}$ un complejo de cadenas simpliciales y y sean $\{\operatorname{sd}_{\#n}\}$ sus respectivos operadores subdivisión para todo $n \geq 0$. Entonces dicha familia induce un homomorfismo $\operatorname{sd}_{*n}: H_n(K;R) \to H_n(\operatorname{sd} K;R)$ que de la misma forma llamaremos **operador subdivisión**. Si $f: |K| \to |L|$ es una aplicación simplicial, entonces el diagrama

$$H_n(K;R) \xrightarrow{\operatorname{sd}_*} H_n(\operatorname{sd} K;R)$$

$$\downarrow f_* \qquad \qquad \downarrow f_*$$

$$H_n(L;R) \xrightarrow{\operatorname{sd}_*} H_n(\operatorname{sd} L;R)$$

es conmutativo.

Demostración. Es consecuencia inmediata de Lema 4.6.

Nota. Al igual que hicimos para el operador subdivisión entre cadenas, omitiremos el subíndice de dimensión cuando se sobrentienda por el contexto.

Definición 4.10. Sea $\mathrm{sd}_*: H_n(K;R) \to H_n(\mathrm{sd}\,K;R)$ el operador subdivisión asociado al módulo de homología $H_n(\mathrm{sd}\,K;R)$. Entonces diremos que

$$\operatorname{sd}_*^m = \operatorname{sd}_* \circ \operatorname{sd}_* \circ \operatorname{wees} \circ \operatorname{sd}_* : H_n(K;R) \to H_n(\operatorname{sd}^m K;R)$$

es el *m*-ésimo operador subdivisión del complejo *K*.

Proposición 4.4. Sea K un complejo simplicial finito. Se tiene que su m-ésimo operador subdivisión es un isomorfismo.

Demostración. Probaremos el caso m=1 y razonaremos por inducción sobre el número n de símplices. Sea n=1 el caso base. Entonces $K=\{[v]\}$ donde v es un vértice y el resultado se sigue de manera trivial. Ahora supongamos que se cumple para n-1 símplices y veamos que sucede con n de ellos. Por tanto, sea K un complejo con n símplices y sea σ un símplice de dimensión máxima en K. Como el borde de σ está contenido en el complejo $L=K\setminus\{\sigma\}$, el resultado se cumple para $Int \sigma$ y L. Por consiguiente, el diagrama de la sucesión de Mayer-Vietoris

$$... \longrightarrow H_p(\operatorname{Int} \sigma; R) \longrightarrow H_p(\operatorname{Int} \sigma; R) \oplus H_p(L; R) \longrightarrow H_p(K; R) \longrightarrow ...$$

$$\downarrow^{\operatorname{sd}_*} \qquad \qquad \downarrow^{\operatorname{sd}_*} \qquad \qquad \downarrow^{\operatorname{sd}_*}$$

$$... \longrightarrow H_p(\operatorname{sd} \operatorname{Int} \sigma; R) \longrightarrow H_p(\operatorname{sd} \operatorname{Int} \sigma; R) \oplus H_p(\operatorname{sd} L; R) \longrightarrow H_p(\operatorname{sd} K; R) \longrightarrow ...$$

es conmutativo.

Como sd σ es el cono $\overline{\sigma}*$ sd Bd σ , por la Proposición 3.3 tenemos que $H_p(\operatorname{sd}\sigma;R)=0$ para todo entero $p\neq 0$ y $H_0(\operatorname{sd}\sigma;R)\cong R$, donde cualquier vértice sirve de generador. Análogamente $H_p(\sigma;R)=0$ para todo entero $p\neq 0$ y $H_0(\sigma;R)\cong R$. En consecuencia, $\operatorname{sd}_*:H_0(\sigma;R)\to H_0(\operatorname{sd}\sigma;R)$ es un isomorfismo. Concluimos aplicando el Lema de los cinco.

4.4. Invarianza homotópica de la homología simplicial

Definición 4.11. Sean $f,g:|K|\to |L|$ aplicaciones simpliciales. Diremos que f y g son **contiguas** si para todo p-símplice σ de K se tiene que $f(\sigma)$ y $g(\sigma)$ son caras de un símplice común en L.

Lema 4.7. Si $\varphi, \psi : |K| \to |L|$ son aproximaciones simpliciales de f, entonces son contiguas.

Demostración. Sea $\sigma = [v_0, \dots, v_p]$ un símplice de K y sea $x = \sum_{i=0}^p \lambda_i v_i$ un punto del interior de σ , donde λ_i es la i-ésima coordenada baricéntrica de x respecto a los vértices de σ . Esto implica que $\psi(x) = \sum_{i=0}^p \lambda_i \psi(v_i)$ y por tanto, $\psi(x)$ pertenece al interior de $\psi(\sigma)$. Por hipótesis, $\psi(x) \in \text{sop}(f(x))$. Por la Proposición 2.4 concluimos que $\psi(\sigma) \prec \text{sop}(f(x))$ y análogamente, $\varphi(\sigma) \prec \text{sop}(f(x))$.

Lema 4.8. Si $f,g:|K| \to |L|$ son aplicaciones simpliciales contiguas, entonces sus aplicaciones de cadenas inducidas son algebraicamente homotópicas.

Demostración. Por ser f, g contiguas, podemos definir la familia de homomorfismos $\{D_p: C_p(K;R) \to C_{p+1}(L;R)\}$ para cada dimensión p de la siguiente forma. Sea $\sigma = [v_0 \dots v_p]$ un p-símplice orientado de K y definamos $D_p(\sigma)$ como la (p+1)-cadena de L tal que

$$D_p(\sigma) = \sum_{i=0}^{p} (-1)^i [f(v_0)f(v_1) \dots f(v_i)g(v_i) \dots g(v_p)]$$

donde suponemos que los sumandos de vértices repetidos valen 0. Veamos que en efecto D_p nos da la homotopía deseada. Evaluando la expresión

$$\partial D_p(\sigma) + D_{p-1}(\sigma)$$

nos queda que es igual a la diferencia

$$[g(v_0)g(v_1)\dots g(v_p)] - [f(v_0)f(v_1)\dots f(v_p)]$$

y en consecuencia,

$$\partial D_p(\sigma) = g_p(\sigma) - f_p(\sigma) - D_{p-1}\partial(\sigma).$$

Corolario 4.4. Si $f,g:|K| \to |L|$ son aplicaciones simpliciales contiguas, entonces f_*,g_* son iguales.

Demostración. Es consecuencia inmediata del Lema 4.8 y del Teorema 1.4.

Teorema 4.3. *Toda aplicación continua* $f: |K| \to |L|$ *induce un homomorfismo* f_* *en* H.

Demostración. Consideremos una aproximación simplicial $\varphi: |\operatorname{sd}^m K| \to |L|$ de la función continua $f: |K| \to |L|$. Utilizamos el operador de subdivisión $\operatorname{sd}_\#^m: C(K;R) \to C(\operatorname{sd}^m K;R)$ para definir el homomorfismo inducido $f_*: H_p(K;R) \to H_p(L;R)$ como la composición $\varphi_* \circ \operatorname{sd}_\#$.

Para asegurar que la definición de f_* es independiente de la elección de la aproximación simplicial, consideremos otra aproximación simplicial $\psi: |\operatorname{sd}^n K| \to |L|$ donde $m \le n$. Introducimos el operador subdivisión $\operatorname{sd}_\#^{n-m}: C(\operatorname{sd}^m K;R) \to C(\operatorname{sd}^n K;R)$. Queremos ver que el diagrama

es conmutativo. Es decir, debemos verificar que $\varphi_* \circ \operatorname{sd}_*^m = \psi_* \circ \operatorname{sd}_*^{n-m} \circ \operatorname{sd}_*^m$. Para ello, consideramos una aplicación simplicial $h: |\operatorname{sd}^n K| \to |\operatorname{sd}^m K|$ y veamos que $\varphi \circ h$ es una aproximación simplicial de f. Sea $x \in |\operatorname{sd}^n K|$ y $\sigma = [v_0, \ldots, v_p]$ el símplice soporte de x. Sea $\tau = [w_0, \ldots, w_p]$ el símplice de $\operatorname{sd}^m K$ que contiene a σ tras m-n subdivisiones. Entonces, x está en el interior de τ y $\varphi(x)$ está en el interior de $[\varphi(w_0), \ldots, \varphi(w_p)]$. Como φ es una aproximación simplicial de f, entonces $\varphi(x)$ pertenece al soporte de f(x) y en consecuencia, $[\varphi(w_0), \ldots, \varphi(w_p)]$ es una cara del soporte de f(x). Además, h(x) pertenece al interior de $[h(v_0), \ldots, h(v_p)]$, que es una cara propia de τ , asegurando que $\varphi \circ h(x)$ pertenezca al soporte de f(x). Esto es, $\varphi \circ h(x)$ es una aproximación simplicial de f.

De acuerdo al Lema 4.7 y el Corolario 4.4, $\varphi \circ h$ y ψ son aplicaciones contiguas, implicando que $\varphi_*h_*=\psi_*$. Como h_* y sd_*^{n-m} son inversas entre sí, concluimos que $\psi_*\,\mathrm{sd}_*^{n-m}\,\mathrm{sd}_*^m=0$

 $\varphi_*h_*\operatorname{sd}^{n-m}_*\operatorname{sd}^m_*=\varphi_*\operatorname{sd}^m_*.$ Por lo tanto, $f_*:H_p(K;R)\to H_p(L;R)$ es un homomorfismo bien definido para cada $p\in\mathbb{Z}.$

Teorema 4.4. Si $f: |K| \to |L|$, $g: |L| \to |M|$ son aplicaciones continuas, entonces $(g \circ f)_* = g_* f_*$. Además, $H(id) = id_*$.

Demostración. Dadas las aplicaciones continuas f y g, consideremos las aproximaciones simpliciales $φ: |\operatorname{sd}^m K| \to |\operatorname{sd}^n L|$ de f y $\psi: |\operatorname{sd}^n L| \to |M|$ de g. A continuación consideremos los operadores subdivisión $\operatorname{sd}^n_\#: |K| \to |\operatorname{sd}^n K|$, $\operatorname{sd}^m_\#: |L| \to |\operatorname{sd}^m L|$ y una aplicación simplicial $h: |\operatorname{sd}^n L| \to |L|$.

Siguiendo un razonamiento análogo al de la demostración anterior, tenemos que $h \circ \varphi$ es una aproximación simplicial de f. Además, $\psi \circ \varphi$ es una aproximación simplicial de $g \circ f$. Para comprobarlo, sea $x \in |\operatorname{sd}^m K|$ y sea $\sigma = [v_0, \ldots, v_p]$ el p-símplice tal que $x \in \operatorname{Int} \sigma$. Por ser φ una aproximación simplicial de f, tenemos que $[\varphi(v_0), \ldots, \varphi(v_p)]$ pertenece al soporte de f(x) en $|\operatorname{sd}^n L|$ y por tanto

$$[\psi(\varphi(v_0)),\ldots,\psi(\varphi(v_p))] \prec \psi(\operatorname{sop}(f(x))).$$

En particular, f(x) pertenece al soporte de f(x) en $|\operatorname{sd}^n L|$ y por ser ψ una aproximación simplicial de g,

$$\psi(\operatorname{sop}(f(x))) \prec \operatorname{sop}(g(f(x))).$$

Es decir, $\psi(\varphi(x)) \in \text{sop}(g(f(x)))$. En consecuencia,

$$g_*f_* = (\psi_* \operatorname{sd}^n_*)(h_*\varphi_* \operatorname{sd}^m_*) = \psi_*\varphi_* \operatorname{sd}^m_* = (\psi\varphi)_* \operatorname{sd}^m_* = (gf)_*.$$

A continuación verifiquemos que la identidad topológica induce la identidad de módulos de homología. Consideremos el operador subdivisión $\operatorname{sd}_{\#}^n: C(K;R) \to C(\operatorname{sd}^n K;R)$ y sea $h: |\operatorname{sd}^n K| \to |K|$ una aplicación simplicial. Veamos que h es una aproximación simplicial de $\operatorname{id}: |K| \to |K|$. Notemos por σ' al soporte de f(x) en $|\operatorname{sd} K|$ y σ al soporte de x en |K|. Por la definición de h, $h(\sigma)$ es una cara propia de σ' y por ser simplicial, si $x \in \sigma'$, entonces $h(x) \in h(\sigma') \prec \sigma$. Es decir, $h(x) \in \sigma$. Concluimos entonces que $\operatorname{id}_* = h_* \operatorname{sd}_*$ es la identidad.

Lema 4.9. Sean f, g aplicaciones continuas de |K| a |L| y sea ε el número de Lebesgue del recubrimiento $\{\operatorname{st} v: v \in L^{(0)}\}$ de |L|. Si se tiene que $d(f(x),g(x)) < \varepsilon$, entonces existe una aplicación $\varphi: |\operatorname{sd}^m K| \to |L|$ que es aproximación simplicial de $f: |\operatorname{sd}^m K| \to |L|$ $y g: |\operatorname{sd}^m K| \to |L|$ al mismo tiempo.

Demostración. Consideremos un elemento x de |K| y sus imágenes f(x), g(x) en |L|. Entonces el conjunto $\{f(x),g(x)\}$ está contenido en Int st v_i para algún vértice de L y por lo tanto, x pertenece a las preimágenes de st v_i tanto por f como por g. Esto implica que

$$\{f^{-1}(\operatorname{Int}\operatorname{st} v_i)\cap g^{-1}(\operatorname{Int}\operatorname{st} v_i): v_i\in L^{(0)}\}$$

es un recubrimiento por abiertos de |K|. Por el Lema de Lebesgue, existe un número de Lebesgue $\delta > 0$ que, considerando un natural m lo bastante grande, garantiza que $m(\operatorname{sd}^m K) < \delta/2$. Ahora si w es un vértice de |K|, entonces su estrella abierta st w tiene un diámetro menor que δ . En consecuencia, podemos encontrar un vértice v_i de |L| de forma que

Int st
$$w \subset f^{-1}(\operatorname{Int}\operatorname{st} v_i) \cap g^{-1}(\operatorname{Int}\operatorname{st} v_i)$$

y en particular, $\operatorname{Intst} w \subset f^{-1}(\operatorname{Intst} v_j)$, $\operatorname{Intst} w \subset g^{-1}(\operatorname{Intst} v_j)$. Finalmente, por el Corolario 4.1, existe una aplicación $\varphi: |\operatorname{sd}^m K| \to |L|$ que es aproximación simplicial tanto de f como de g.

Teorema 4.5. Si f, g son aplicaciones homotópicas, entonces $f_* = g_*$.

Demostración. Consideremos $F: |K| \times [0,1] \to |L|$ una homotopía entre f y g tal que $f_t(x) = F(x,t)$. Consideremos ahora el recubrimiento de |L| dado por las estrellas abiertas de sus vértices y su número de Lebesgue $\varepsilon > 0$ asociado.

Por ser $|K| \times [0,1]$ un espacio métrico compacto, tenemos que F es uniformemente continua. En consecuencia, para el número de Lebesgue $\varepsilon > 0$, existe $\delta > 0$ tal que para todo $t_i, t_j \in [0,1]$ que cumplan $|t_i - t_j| < \delta$, se cumple que $d(F(x,t_i),F(x,t_j)) < \varepsilon$.

A continuación, tomemos un natural n que garantice que $\frac{1}{n} < \delta$ y consideremos el conjunto $\{k \in \mathbb{Z} : 0 \le k < n\}$. Es claro que $\frac{1}{n}$ pertenece al intervalo [0,1] y por tanto, $|\frac{k+1}{n} - \frac{k}{n}| < \delta$. Es decir,

$$d\left(F(x,\frac{k}{n}),F(x,\frac{k+1}{n})\right)=d\left(f_{\frac{k}{n}}(x),f_{\frac{k+1}{n}}(x)\right)<\varepsilon$$

para todo k perteneciente a $\{k \in \mathbb{Z} : 0 \le k < n\}$ y para todo $x \in |K|$. Aplicando el Lema 4.9, podemos garantizar que existen aproximaciones simpliciales $\varphi_1, \ldots, \varphi_n : |\operatorname{sd}^m| \to |L|$ tal que φ_i es una aproximación simplicial tanto de $f_{\frac{i-1}{n}}$ como de $f_{\frac{i}{n}}$ para todo $i \in \{1, \ldots, n\}$.

Notando $f_0 = f$ y $f_{\frac{n}{n}} = f_1 = g$, tenemos que φ_1 aproxima simplicialmente a f y φ_n a g. Por el Lema 4.7, tenemos que φ_i y φ_{i+1} son aplicaciones contiguas para todo $i \in \{1, \ldots, n\}$. En consecuencia, si sd_{*}^m : $H(K;R) \to H(\operatorname{sd}^m K;R)$ es el operador subdivisión, entonces

$$f_* = \varphi_1 \operatorname{sd}^m_* = \varphi_2 \operatorname{sd}^m_* = \cdots = \varphi_n \operatorname{sd}^m_* = \varphi_*.$$

Corolario 4.5. Sean K, L complejos simpliciales y sean |K|, |L| sus espacios subyacentes. Si |K|, |L| son homotópicamente equivalentes, entonces sus módulos de homología son isomorfos.

Demostración. Consideremos dos aplicaciones continuas $f:|K|\to |L|$ y $g:|K|\to |L|$ tales que $g\circ f\simeq \mathrm{id}_{|K|}$ y $f\circ g\simeq \mathrm{id}_{|L|}$. Por tanto, la composición de los homomorfismos inducidos

$$H_p(K;R) \xrightarrow{f_*} H_p(L;R) \xrightarrow{g_*} H_p(K;R),$$

$$H_p(L;R) \xrightarrow{g_*} H_p(K;R) \xrightarrow{f_*} H_p(L;R)$$

son la identidad para todo $p \in \mathbb{Z}$. En consecuencia, f_* es un isomorfismo.

4.5. Característica de Euler-Poincaré

5. Homología persistente

5.1. Complejos de Cech y Vietoris-Rips

Definición 5.1. Sea X un espacio topológico y sea $\mathcal{U} = \{U_v\}_{v \in V}$ un recubrimiento de X. Llamaremos **nervio** de \mathcal{U} al complejo simplicial abstracto con conjunto de vértices V tal que la familia v_0, \ldots, v_p genera un p-símplice si, y sólo si, $U_{v_0} \cap \cdots \cap U_{v_p} \neq \emptyset$. Lo notaremos por $N(\mathcal{U})$.

Teorema 5.1 (del Nervio). Sea X un espacio topológico y sea $\mathcal{U} = \{U_v\}_{v \in V}$ un recubrimiento por abiertos numerable de X. Supongamos además que para todo subconjunto no vacío de vértices $S \subseteq V$ tenemos que $\bigcap_{s \in S} U_s$ es contráctil o vacío. Entonces $N(\mathcal{U})$ es homotópicamente equivalente a X.

Demostración. contenidos... □

Definición 5.2. Sea (X,d) un espacio métrico y sea V un subconjunto de puntos de X.Definimos el **complejo de CEch** $C(V,\varepsilon)$ como el nervio $N(\mathcal{B}_{\varepsilon})$, donde

$$\mathcal{B}_{\varepsilon} = \{B_{\varepsilon}(v) : v \in V\},\,$$

siendo $B_{\varepsilon}(v)$ la bola abierta de centro x y radio $\varepsilon > 0$.

Definición 5.3. Sea (X,d) un espacio métrico y sea V un subconjunto de puntos de X. Definimos el **complejo de Vietoris-Rips** $VR(V,\varepsilon)$ como el complejo simplicial cuyo conjunto de vértices es V, de forma que $\{v_0,v_1,\ldots v_p\}\subseteq V$ genera un p-símplice si, y sólo si, $d(v_i,v_j)\leq \varepsilon$ para todo $0\leq i,j\leq p$.

Proposición 5.1. Sea (X, d) un espacio métrico y sea V un subconjunto de puntos de X. Entonces

$$C(V,\varepsilon) \subseteq VR(V,2\varepsilon) \subseteq C(V,2\varepsilon).$$

Demostración. La primera imnclusión es inmediata pues si un punto x pertenece a la intersección $\bigcap_{v \in V} B(v, \varepsilon)$, entonces la distancia para cada par de puntos de V es, a lo sumo, 2ε . En consecuencia, cualquier símplice de $C(V, \varepsilon)$ se encuentra en $VR(V, 2\varepsilon)$.

Para la segunda inclusión, consideremos ahora un símplice $\sigma = \{v_0, \ldots, v_p\}$ de $VR(V, 2\varepsilon)$. Por la definición de complejo de Vietoris-Rips, tenemos que $d(v_i, v_j) \leq 2\varepsilon$ para todo $i, j \in \{0, \ldots, p\}$. Considerando las bolas abiertas de radio 2ε centradas en v_i y en v_j , tenemos que su intersección es no vacía, pues $v_i \in \overline{B}_{2\varepsilon}(v_j)$ y $v_j \in \overline{B}_{2\varepsilon}(v_i)$. En el supuesto de que los puntos pertenecieran a la frontera de las bolas, la intersección de las bolas abiertas también sería no vacía pues $\varepsilon > 0$. En consecuencia, tenemos que $\sigma \in C(V, 2\varepsilon)$.

5.2. Módulos de homología persistente

Definición 5.4. Sea K un complejo simplicial. Una **filtración** \mathcal{F} de K es una familia totalmente ordenada de subcomplejos $\{K^n\}_{n\in\mathbb{N}}$ tal que \emptyset , $K\in\mathcal{F}$ y si $i\leq j$, entonces $K^i\subseteq K^j$. En particular, llamaremos a dicho orden **filtro**.

A partir de la definición anterior, podemos construir los complejos de cadenas asociados $C(K^i;R)$ para todo $i \in \mathbb{N}$. Así mismo, podemos obtener sus respectivos submódulos de ciclos Z^i_p y bordes B^i_p para cada cadena $C_p(K^i;R)$.

Definición 5.5. Sea \mathcal{F} una filtración, sea p un número natural y sean $i, j \in \{0, ..., n\}$. Definimos el (i, j)-ésimo R-módulo de homología persistente de nivel p asociado a \mathcal{F} como

$$H_p^{i \to j}(\mathcal{F}) := \operatorname{Im} f_p^{i,j}.$$

El rango de $H_p^{i\to j}(\mathcal{F})$ diremos que es el (i,j)-ésimo número de Betti de persistencia de nivel p y lo notaremos por $\beta_p^{i,j}$.

Proposición 5.2. Sea \mathcal{F} una filtración del complejo simplicial K. Entonces

$$H_p^{i \to j}(\mathcal{F}) \cong \frac{Z_p(K_j)}{B_p(K_j) \cap Z_p(K_i)}$$

es un isomorfismo de R-módulos.

Demostración. Sabemos que el cociente anterior está bien definid,o pues $Z_p(K_i) \cap B_p(K_j)$ es un submódulo de $Z_p(K_i)$. Para ver que en efecto existe un isomorfismo, consideraremos la proyección canónica $\pi_i: Z_p(K_i) \to H_p(K_j)$. Aplicando el Primer teorema de isomorfía, tenemos que

$$\frac{Z_p(K_i)}{\ker \pi_i} \cong \operatorname{Im} \pi_i$$

es un isomorfismo. Sin embargo, nótese que

$$\ker \pi_i = \{ z \in Z_p(K_i) : \pi_i(z) = [0] \}$$

$$= \{ z \in Z_p(K_i) : [z] = [0] \}$$

$$= \{ z \in Z_p(K_i) : z \in B_p(K_j) \}$$

$$= B_p(K_j) \cap Z_p(K_i).$$

Además,

$$H_p^{i,j}(\mathcal{F}) = \operatorname{Im} f_p^{i,j} = \{ f_p^{i,j}([z]) : [z] \in H_p(K_i) \}$$

$$= \{ [(i_{i,j_*})_p(z)] : z \in Z_p(K_i) \}$$

$$= \{ \pi_i(z) : z \in Z_p(K_i) \}$$

$$= \operatorname{Im} \pi_i.$$

Definición 5.6. Dada una filtración F, decimos que un elemento $\alpha \neq 0$ en $H^p(K_i)$ nace en K_i si $\alpha \notin H^{p-1}(K_{i-1}, F)$. Además, decimos que α muere entrando en K_j si se fusiona con una clase proveniente de un nivel anterior cuando se desplaza de K_j a K_{j-1} ; es decir, si $f_{i,j-1}^p(\alpha) \notin H^{p-1}(K_{i-1}, F)$ pero $f_{i,j}^p(\alpha) \in H^{p-1}(K_j, F)$.

5.3. Representación de la homología persistente

Lema 5.1. Sea A un R-módulo. A es finitamente generado por n elementos si, y sólo si, existe un epimorfismo $\phi: \mathbb{R}^n \to A$.

Demostración. Sea M un módulo generado por un conjunto finito de elementos $\{m_1, \ldots, m_n\}$. Consideremos el homomorfismo $\phi : R^n \to M$ definido por

$$\phi(a_1,\ldots,a_n)=\sum_{i=1}^n a_i m_i.$$

Este homomorfismo ϕ es claramente sobreyectivo, ya que cada elemento m en M puede ser expresado como $\phi(a_1, \ldots, a_n)$ para algunos $a_1, \ldots, a_n \in R$.

Por otro lado, si existe un homomorfismo sobreyectivo $\phi: R^n \to M$, entonces, para cada $m \in M$ existe una n-tupla (a_1, \ldots, a_n) en R^n tal que $\phi(a_1, \ldots, a_n) = m$. Los elementos $\phi(e_i)$, donde e_i es el i-ésimo vector de la base estándar de R^n , generan M. De aquí se sigue que M es finitamente generado.

Definición 5.7. Sea A un R-módulo finitamente generado por n elementos y sea $\phi : R^n \to A$ un epimorfismo. Diremos que A es **finitamente presentado** si ker ϕ es finitamente generado.

Definición 5.8. Sea $\{A_i\}_{i\in\mathbb{N}}$ una familia de R-módulos. Diremos que dicha familia es un **módulo de persistencia discreto** sobre el anillo R si para cada $i \leq j$ existe un homomorfismo de R-módulos $f_{i,j}: A_i \to A_j$ tal que:

- 1. $f_{i,i} = \mathrm{id}_{A_i}$ para todo $i \in \mathbb{N}$.
- 2. $f_{i,k} \circ f_{i,j} = f_{i,k}$ para todo $i \leq j \leq k$.

Además, diremos que el módulo de persistencia es de **tipo finito** si cada A_i es finitamente generado y existe un $n \in \mathbb{N}$ tal que para todo $i, j \geq n$, el homomorfismo $f_{i,j}$ es un isomorfismo.

Definición 5.9. Sean $\mathcal{M}=\{o\}, \mathcal{N}$ dos módulos de persistencia discretos. Diremos que la familia de homomorfismos $\varphi_{\bullet}=\{\varphi_i\}_{i\in\mathbb{N}}$ tales que $\varphi_i:M_i\to N_i$ es un **homomorfismo de módulos de persistencia discreto** si $g_{i,j}\circ\varphi_i=\varphi_j\circ f_{i,j}$.

La anterior definición es equivalente a decir que el diagrama

conmuta. En las condiciones anteriores, los módulos de persistencia discretos junto a sus homomorfismos forman una categoría que notaremos por R-Persmod.

Definición 5.10. Sea *R* un anillo. Diremos que *R* es un **anillo graduado** si puede descomponerse como una suma directa

$$R = \bigoplus_{n=0}^{\infty} R_n,$$

donde $R_m R_n \subseteq R_{m+n}$ para todos $m,n \in \mathbb{Z}$. Los elementos de R_n distintos de cero se denominan **homogéneos de grado** n.

Definición 5.11. Sea *R* un anillo graduado y sea *M* un *R*-módulo. Diremos que *M* es un **módulo graduado** si puede escribirse como

$$M=\bigoplus_{n=0}^{\infty}M_n,$$

donde M_n son grupos abelianos y $R_m M_n \subseteq M_{m+n}$ para todos $m, n \in \mathbb{Z}$. Un elemento de M_n distinto de cero se llama **homogéneo de grado** n.

VER QUE LOS MODULOS RGADUADOS FORMAN UNA CATEGORIA

Lema 5.2. Las aplicaciones α y β definidas respectivamente en 2 y 3 forman una pareja isomorfa de funtores entre R-PersMod y R[t]-Gr-Mod. En particular, ambas categorías son isomorfas.

Demostración. Sea $\varphi_{\bullet}:\mathcal{M}\to\mathcal{N}$ un morfismo de módulos de persistencia discretos. Definimos la aplicación α

FYNTOR

y comprobemos que es un funtor. COMPROBAMOS

Por otro lado, sea ψ ...

Finalmente, por la construcción de α y β tenemos que $\beta \circ \alpha$ es el funtor identidad en R[t]-Gr-Mod y que $\alpha \circ \beta$ es el funtor identidad en R-PersMod.

En la práctica generalmente trabajaremos con módulos de persistencia que cumplen ciertas condiciones de finitud. Por ello, resulta de gran interés conocer si la correspondencia recién realizada se sigue cumpliendo bajo estos casos.

Definición 5.12. Diremos que un módulo de persistencia discreto \mathcal{M} es de **tipo finito** si existe $n \in \mathbb{N}$ de forma que para todo $i, j \in \mathbb{N}$ tal que $n \leq i \leq j$ la aplicación $f_{i,j}$ es un isomorfismo.

Definición 5.13. Diremos que un módulo de persistencia discreto \mathcal{M} es de **finitamente presentado (generado)** si es de tipo finito y además, M_i es finitamente presentado (generado) para todo $i \in \mathbb{N}$.

Lema 5.3. Sea \mathcal{M} un módulo de persistencia discreto. Si \mathcal{M} es finitamente presentado, entonces $\alpha(\mathcal{M})$ es finitamente presentado.

Demostración. contenidos...

Para los siguientes dos lemas fijaremos el R[t]módulo graduado finitamente presentado $\mathbf{M} = \oplus_{i \in \mathbb{N}} M_i$ junto con la aplicación $\mu : R[t]^n \to \mathbf{M}$ cuyo núcleo es finitamente generado. MAS

Lema 5.4. Cada M_i de M está finitamente presentado como un R-módulo.

Demostración. contenidos...

Lema 5.5. $\beta(\mathbf{M})$ *es de tipo finito. En particular, es de tipo finitamente presentado (lema anterior).*

Demostración. contenidos...

Teorema 5.2. Sea R un anillo. Entonces, todos los módulos de persistencia finitamente presentados están en correspondencia biunívoca con los R[t]-módulos graduados finitamente presentados.

Demostración. □

Teorema 5.3 (Teorema de descomposición de módulos graduados). Sea A un R[t]-módulo graduado finitamente generado. Entonces A se descompone de manera única, salvo isomorfismos, como

$$A \cong \left(\bigoplus_{i=1}^{n-m} R[t](-a_i)\right) \oplus \left(\bigoplus_{j=1}^{m} R[t]/(t^{c_j})(-b_j)\right),$$

donde $a_i, b_j, c_j \in \mathbb{N}$, y para cada j, t^{c_j} es un elemento homogéneo tal que divide a $t^{c_{j+1}}$.

Demostración. □

Bibliografía

- [Arm83] M. A. Armstrong. *Simplicial Homology*, páginas 173–193. Springer New York, New York, NY, 1983.
- [DF04] David Steven Dummit y Richard M Foote. Abstract algebra, volumen 3. Wiley Hoboken, 2004.
- [EM45] Samuel Eilenberg y Saunders MacLane. General theory of natural equivalences. *Transactions of the American Mathematical Society*, 58:231–294, 1945.
- [Lee10] John Lee. *Introduction to topological manifolds*, volumen 202. Springer Science & Business Media, 2010.
- [Mac12] Saunders MacLane. Homology. Springer Science & Business Media, 2012.
- [ML13] Saunders Mac Lane. *Categories for the working mathematician*, volumen 5. Springer Science & Business Media, 2013.
- [Mun18] James R Munkres. Elements of algebraic topology. CRC press, 2018.
- [RAo3] A.Q.T.A.Q.E.D. Rafael Ayala. *Elementos de la teoría de homología clásica*. Serie Ciencias / Universidad de Sevilla. Secretariado de Publicaciones, Universidad de Sevilla, 2003.