第四章:分类

原文: http://guidetodatamining.com/chapter-4

在上几章中我们使用用户对物品的评价来进行推荐,这一章我们将使用物品本身的特征来进行推荐。这也是潘多拉音乐站所使用的方法。

内容:

- ●潘多拉推荐系统简介
- •特征值选择的重要性
- ●示例:音乐特征值和邻域算法
- ●数据标准化
- ●修正的标准分数
- Python代码:音乐,特征,以及简单的邻域算法实现
- 一个和体育相关的示例
- •特征值抽取方式一览

根据物品特征进行分类

前几章我们讨论了如何使用协同过滤来进行推荐,由于使用的是用户产生的各种数据,因此又称为社会化过滤算法。比如你购买了Phoenix专辑,我们网站上其他购买过这张专辑的用户还会去购买Vampire的专辑,因此会把它推荐给你;我在Netflix上观看了Doctor Who,网站会向我推荐Quantum Leap,用的是同样的原理。我们同时也讨论了协同过滤会遇到的种种问题,包括数据的稀疏性和算法的可扩展性。此外,协同过滤算法倾向于推荐那些已经很流行的物品。试想一个极端的例子:一个新乐队发布了专辑,这张专辑还没有被任何用户评价或购买过,那它将永远不会出现在推荐列表中。

这类推荐系统会让流行的物品更为流行,冷门的物品更无人问津。

-- Daniel Fleder & Kartik Hosanagar 2009 《推荐系统对商品分类的影响》

这一章我们来看另一种推荐方法。以潘多拉音乐站举例,在这个站点上你可以设立各种音乐频道,只需为这个频道添加一个歌手,潘多拉就会播放和这个歌手风格相类似的歌曲。比如我添加了Phoenix乐队,潘多拉便会播放El Ten Eleven的歌曲。它并没有使用协同过滤,而是通过计算得到这两个歌手的音乐风格是相似的。其实在播放界面上可以看到推荐理由:

"根据你目前告知的信息,我们播放的这首歌曲有着相似的旋律,使用了声响和电音的组合,即兴的吉他伴奏。"在我的Hiromi音乐站上,潘多拉会播放E.S.T.的歌曲,因为"它有着古典爵士乐风,一段高水准的钢琴独奏,轻盈的打击乐,以及有趣的歌曲结构。"

潘多拉网站的推荐系统是基于一个名为音乐基因的项目。他们雇佣了专业的音乐家对歌曲进行分类(提取它们的"基因")。这些音乐家会接受超过150小时的训练,之后便可用20到30分钟的时间来分析一首歌曲。这些乐曲特征是很专业的:

EI Ten Eleven		My Only Swerving	04/2000/00/00
Beats per Minute:	wø	major tonality:	5
swinging 16ths:	Ø	electric guitar riffs:	5
well articulated piano solo:	2	repetitive melodic phrasing:	4
block chords:	3	drumming:	3
acoustic instrumentation:	5	electric instrumentation:	ч

这些专家要甄别400多种特征,平均每个月会有15000首新歌曲,因此这是一项非常消耗人力的工程。

注意:潘多拉的音乐基因项目是商业机密,我不曾了解它的任何信息。下文讲述的是如何构造一个类似的系统。

特征值选取的重要性

假设潘多拉会用曲风和情绪作为歌曲特征,分值如下:

●曲风:乡村1分,爵士2分,摇滚3分,圣歌4分,饶舌5分

●情绪:悲伤的1分,欢快的2分,热情的3分,愤怒的4分,不确定的5分

比如James Blunt的那首You're Beautiful是悲伤的摇滚乐,用图表来展示它的位置便是:

比如一个叫Tex的用户喜欢You're Beautiful这首歌,我们想要为他推荐歌曲。

我们的歌曲库中有另外三首歌:歌曲1是悲伤的爵士乐;歌曲2是愤怒的圣歌;歌曲3是 愤怒的摇滚乐。你会推荐哪一首?

图中歌曲1看起来是最相近的。也许你已经看出了这种算法中的不足,因为不管用何种计算距离的公式,爵士乐和摇滚乐是相近的,悲伤的乐曲和快乐的乐曲是相近的等等。即使调整了分值的分配,也不能解决问题。这就是没有选取好特征值的例子。不过解决的方法也很简单,我们将每种歌曲类型拆分成单独的特征,并对此进行打分:

"乡村音乐"一栏的1分表示完全不是这个乐曲风格,5分则表示很相符。这样一来,评分值就显得有意义了。如果一首歌的"乡村音乐"特征是4分,另一首是5分,那我们可以认为它们是相似的歌曲。

其实这就是潘多拉所使用的特征抽取方法。每个特征都是1到5分的尺度,0.5分为一档。特征会被分到不同的大类中。通过这种方式,潘多拉将每首歌曲都抽象成一个包含400个数值元素的向量,并结合我们之前学过的距离计算公式进行推荐。

一个简单的示例

我们先来构建一个数据集,我选取了以下这些特征(可能比较随意),使用5分制来评分(0.5分一档):

- ●使用钢琴的程度(Piano):1分表示没有使用钢琴,5分表示整首歌曲由钢琴曲贯穿;
- ●使用美声的程度(Vocals):标准同上
- ●节奏(Driving beat):整首歌曲是否有强烈的节奏感
- ●蓝调 (Blues infl.)
- ●电音吉他 (Dirty elec. Guitar)
- ●幕后和声 (Backup vocals)
- ●饶舌(Rapinfl.)

使用以上标准对一些歌曲进行评分:

	Piano	Vocals	Driving beat	Blues infl.	Dirty elec. Guitar	Backuj vocals
Dr. Dog/ Fate	2.5	4	3.5	3	5	4
Phoenix/ Lisztomania	2	5	5	3	2	1
Heartless Bastards / Out at Sea	1	5	4	2	4	1
Todd Snider/ Don't Tempt Me	4	5	4	4	1	5
The Black Keys/ Magic Potion	1	4	5	3.5	5	1
Glee Cast/ Jessie's Girl	1	5	3.5	3	4	5
Black Eyed Peas/ Rock that Body	2	5	5	1	2	2
La Roux/ Bulletproof	5	5	4	2	1	1
Mike Posner/ Cooler than me	2.5	4	4	1	1	1
Lady Gaga/ Alejandro	1	5	3	2	1	2

然后我们便可以使用距离计算公式了,比如要计算Dr. Dog的Fate歌曲和Phoenix的 Lisztomania之间的曼哈顿距离:

Dr. Dog/ Fate	2.5	4	3.5	3	5	4
Phoenix/ Lisztomania	2	5	5	3	2	1
Distance	0.5	1	1.5	O	3	3

相加得到两首歌曲的曼哈顿距离为9。

使用Python实现推荐逻辑

回忆一下,我们在协同过滤中使用的用户评价数据是这样的:

我们将上文中的歌曲特征数据也用类似的格式储存起来:

假设我有一个朋友喜欢Black Keys Magic Potion, 我便可根据曼哈顿距离来进行推荐:

>>> computeNearestNeighbor('The Black Keys/Magic Potion', music) [(4.5, 'Heartless Bastards/Out at Sea'), (5.5, 'Phoenix/Lisztoma

这里我推荐的是Heartless Bastard的Out as Sea, 还是很合乎逻辑的。当然,由于我们的数据集比较小,特征和歌曲都不够丰富,因此有些推荐结果并不太好。

这段代码可以点此浏览。

如何显示"推荐理由"?

潘多拉在推荐歌曲时会显示推荐理由,我们也可以做到这一点。比如在上面的例子中, 我们可以将Magic Potion和Out at Sea的音乐特征做一个比较,找出高度相符的点:

	Piano	Vocals	Driving beat	Blues infl.	Dirty elec. Guitar	Backt
Black Keys Magic Potion	1	5	4	2	4	1
Heartless Bastards Out at Sea	1	4	5	3.5	5	1
difference	0	1	1	1.5	1	0

可以看到,两首歌曲最相似的地方是钢琴、和声、以及饶舌,这些特征的差异都是0。 但是,这些特征的评分都很低,我们不能告诉用户"因为这首歌曲没有钢琴伴奏,所以我们推荐给你"。因此,我们需要使用那些相似的且评分较高的特征。

我们推荐歌曲是因为它有着强烈的节奏感,美声片段,以及电音吉他的演奏。

评分标准的问题

假如我想增加一种音乐特征——每分钟的鼓点数(bpm),用来判断这是一首快歌还是慢歌。以下是扩充后的数据集:

	Piano	Vocals	Driving beat	Blues infl.	Dirty elec. Guitar	Backup vocals	Raj
Dr. Dog/ Fate	2.5	4	3.5	3	5	4	
Phoenix/ Lisztomania	2	5	5	3	2	1	
Heartless Bastards / Out at Sea	1	5	4	2	4	1	
The Black Keys/ Magic Potion	1	4	5	3.5	5	1	
Glee Cast/ Jessie's Girl	1	5	3.5	3	4	5	
Bad Plus/ Smells like Teen Spirit	5	1	2	1	1	1	

没有bpm时,Magic Potion和Out at Sea距离最近,和Smells Like Teen Spirit距离最远。但引入bpm后,我们的结果就乱套了,因为bpm基本上就决定了两首歌的距离。现在Bad Plus和The Black Keys距离最近就是因为bpm数据相近。

再举个有趣的例子。在婚恋网站上,我通过用户的年龄和收入来进行匹配:

	gals	
name	age	salary
	35	15,000
Yun L	52	55,000
Allie C	-	45,000
Daniela C	27	
Rita A	31	115,000

ğ	uys		
ame	age	salary	
name		10,000	
Brian A	53		
Abdullah K	25	105,000	
	35	69,000	
David A	- 33	12.000	
Michael W	48	43,000	

这样一来,年龄的最大差异是28,而薪资的最大差异则是72,000。因为差距悬殊,薪水的高低基本决定了匹配程度。如果单单目测,我们会将David推荐给Yun,因为他们年龄相近,工资也差不多。但如果使用距离计算公式,那么53岁的Brian就会被匹配给Yun,

这就不太妙了。

事实上,评分标准不一是所有推荐系统的大敌!

标准化

不用担心,我们可以使用标准化。

要让数据变得可用我们可以对其进行标准化,最常用的方法是将所有数据都转化为0到1之间的值。

拿上面的薪酬数据举例,最大值115,000和最小值43,000相差72,000,要让所有值落到0到1之间,可以将每个值减去最小值,并除以范围(72,000)。所以,Yun标准化之后的

薪水是:

(75,000 - 43,000) / 72,000 = 0.444

对一些数据集,这种简单的方法效果是不错的。

	gals	
name	salary	normalized salary
V. m. l	15,000	0.444
Yun L Allie C	55,000	0.167
	-	- 000
Daniela C Rita A	115,00	10

如果你学过统计学,会知道还有其他的标准化方法。比如说标准分(z-score)——分值偏离均值的程度:

标准差的计算公式是:

$$sd = \sqrt{\frac{\sum_{i} (x_i - \overline{x})^2}{card(x)}}$$

card(x)表示集合x中的元素个数。

如果你对统计学有兴趣,可以读一读《漫话统计学》。

我们用上文中交友网站的数据举例。所有人薪水的总和是577,000,一共有8人,所以均值为72,125。代入标准差的计算公式:

$$= \sqrt{\frac{8,265,625+293,265,625+735,765,625+...}{8}} = \sqrt{602,395}$$

$$= 24,543.01$$

那Yun的标准分则是:

$$\frac{75000 - 72125}{24543.01} = \frac{2875}{24543.01} = 0.117$$

练习题:计算Allie、Daniela、Rita的标准分

name	salary	Standard Score
Yun L	75,000	0.117
Allie C	55,000	-0.698
Daniela C	45,000	-1.105
Rita A	115,000	1.747

Allie: (55,000 - 72,125) / 24,543.0 = -0.698

Daniela: (45,000 - 72,125) / 24,543 = -1.105

Rita:

(115,000 - 72,125) / 24,543.01

= 1.747

标准分带来的问题

标准分的问题在于它会受异常值的影响。比如说一家公司有100名员工,普通员工每小时赚10美元,而CEO一年能赚600万,那全公司的平均时薪为:

结果是每小时38美元,看起来很美好,但其实并不真实。鉴于这个原因,标准分的计算 公式会稍作变化。

修正的标准分

计算方法:将标准分公式中的均值改为中位数,将标准差改为绝对偏差。以下是绝对偏差的计算公式:

$$asd = \frac{1}{card(x)} \sum_{i} |x_i - \mu|$$

中位数指的是将所有数据进行排序,取中间的那个值。如果数据量是偶数,则取中间两个数值的均值。

下面就让我们试试吧。首先将所有人按薪水排序,找到中位数,然后计算绝对偏差:

median =	(69,000 + 70,000)	= 69,500
meaian –	2	- 09,500

N	ame	
Mic	nael W	
Dar	ie <mark>la C</mark>	
Al	lie C	
Da	vid A	
Br	ian A	
Y	un L	
Abd	ullah K	
R	ta A	

$$asd = \frac{1}{card(x)} \sum_{i} |x_i - \mu|$$

$$asd = \frac{1}{8}(|43,000 - 69,500| + |45,000 - 69,500| + |55,000 - 69,500|)$$

$$= \frac{1}{8}(26,500 + 24,500 + 14,500 + 500 + ...)$$

$$= \frac{1}{8}(153,000) = 19,125$$

最后,我们便可以计算得出Yun的修正标准分:

Modified Standard Score:

(each value) - (median)

(absolute standard deviation)

$$mss = \frac{(75,000 - 69,500)}{19,125} = \frac{5,500}{19,125}$$

是否需要标准化?

当物品的特征数值尺度不一时,就有必要进行标准化。比如上文中音乐特征里大部分是 1到5分,鼓点数却是60到180;交友网站中薪水和年龄这两个尺度也有很大差别。

再比如我想在新墨西哥圣达菲买一处宅子,下表是一些选择:

asking price	bedrooms	bathrooms	sq. ft.
\$1,045,000	2	2.0	1,860
\$1,895,000	3	4.0	2,907
\$3,300,000	6	7.0	10,180
\$6,800,000	5	6.0	8,653
\$2,250,000	3	2.0	1,030

可以看到,价格的范围是最广的,在计算距离时会起到决定性作用;同样,有两间卧室和有二十间卧室,在距离的影响下作用也会很小。

需要进行标准化的情形:

- 1. 我们需要通过物品特性来计算距离;
- 2. 不同特性之间的尺度相差很大。

但对于那种"赞一下"、"踩一脚"的评分数据,就没有必要做标准化了:

Bill =
$$\{0, 0, 0, 1, 1, 1, 1, 0, 1, 0 \dots \}$$

在潘多拉的例子中,如果所有的音乐特征都是在1到5分之间浮动的,是否还需要标准化呢?虽然即使做了也不会影响计算结果,但是任何运算都是有性能消耗的,这时我们可以通过比较两种方式的性能和效果来做进一步选择。在下文中,我们会看到标准化反而会降低结果正确性的示例。

回到潘多拉

在潘多拉网站的示例中,我们用一个特征向量来表示一首歌曲,用以计算歌曲的相似度。潘多拉网站同样允许用户对歌曲"赞"和"踩",那我们要如何利用这些数据呢?

假设我们的歌曲有两个特征,重金属吉他(Dirty Guitar)和强烈的节奏感(Driving Beat),两种特征都在1到5分之间。一位用户对5首歌曲做了"赞"的操作(图中的L),另外五首则"踩"了一下(图中的D):

图中多了一个问号所表示的歌曲,你觉得用户会喜欢它还是不喜欢呢?想必你也猜到了,因为这个问号离用户喜欢的歌曲距离较近。这一章接下来的篇幅都会用来讲述这种计算方法。最明显的方式是找到问号歌曲最邻近的歌曲,因为它们之间相似度比较高,再根据用户是否喜欢这些邻近歌曲来判断他对问号歌曲的喜好。

使用Python实现最邻近分类算法

我们仍使用上文中的歌曲示例,用7个特征来标识10首歌曲:

	Piano	Vocals	Driving beat	Blues infl.	Dirty elec. Guitar	Backuj vocals
Dr. Dog/ Fate	2.5	4	3.5	3	5	4
Phoenix/ Lisztomania	2	5	5	3	2	1
Heartless Bastards / Out at Sea	1	5	4	2	4	1
Todd Snider/ Don't Tempt Me	4	5	4	4	1	5
The Black Keys/ Magic Potion	1	4	5	3.5	5	1
Glee Cast/ Jessie's Girl	1	5	3.5	3	4	5
Black Eyed Peas/ Rock that Body	2	5	5	1	2	2
La Roux/ Bulletproof	5	5	4	2	1	1
Mike Posner/ Cooler than me	2.5	4	4	1	1	1
Lady Gaga/ Alejandro	1	5	3	2	1	2

使用Python代码来表示这些数据:

这样做虽然可行,但却比较繁琐,piano、vocals这样的键名需要重复很多次。我们可以将其简化为向量,即Python中的数组类型:

```
# 物品向量中的特征依次为:piano, vocals, beat, blues, guitar, backup # items = {"Dr Dog/Fate": [2.5, 4, 3.5, 3, 5, 4, 1],
```

```
"Phoenix/Lisztomania": [2, 5, 5, 3, 2, 1, 1],
"Heartless Bastards/Out": [1, 5, 4, 2, 4, 1, 1],
"Todd Snider/Don't Tempt Me": [4, 5, 4, 4, 1, 5, 1],
"The Black Keys/Magic Potion": [1, 4, 5, 3.5, 5, 1, 1],
"Glee Cast/Jessie's Girl": [1, 5, 3.5, 3, 4, 5, 1],
"La Roux/Bulletproof": [5, 5, 4, 2, 1, 1, 1],
"Mike Posner": [2.5, 4, 4, 1, 1, 1, 1],
"Black Eyed Peas/Rock That Body": [2, 5, 5, 1, 2, 2, 4]
"Lady Gaga/Alejandro": [1, 5, 3, 2, 1, 2, 1]}
```

在线性代数中,向量(vector)指的是具有大小和方向的几何对象。向量支持多种运算,包括相加、相减、以及数乘等。

在数据挖掘中,向量则可简品的一组特征,比如上文中特征。做文本挖掘时,会将用向量来表示——每个元素一个特定的单词,这个位置单词出现的次数。

此外,用"向量"一词比用"物品的一组特征"要来得专业。

当我们用这种方式定义特征后,就可以 运用线性代数中的向量运算法则了。

接下来我还需要将用户"赞"和"踩"的数据也用Python代码表示出来。由于用户并不会对 所有的歌曲都做这些操作,所以我用嵌套的字典来表示:

```
users = {"Angelica": {"Dr Dog/Fate": "L",
                      "Phoenix/Lisztomania": "L",
                      "Heartless Bastards/Out at Sea": "D",
                      "Todd Snider/Don't Tempt Me": "D",
                      "The Black Keys/Magic Potion": "D",
                      "Glee Cast/Jessie's Girl": "L",
                      "La Roux/Bulletproof": "D",
                      "Mike Posner": "D",
                      "Black Eyed Peas/Rock That Body": "D",
                      "Lady Gaga/Alejandro": "L"},
         "Bill": {"Dr Dog/Fate": "L",
                  "Phoenix/Lisztomania": "L",
                  "Heartless Bastards/Out at Sea": "L",
                  "Todd Snider/Don't Tempt Me": "D",
                  "The Black Keys/Magic Potion": "L",
                  "Glee Cast/Jessie's Girl": "D",
                  "La Roux/Bulletproof": "D",
                  "Mike Posner": "D",
                  "Black Eyed Peas/Rock That Body": "D",
                  "Lady Gaga/Alejandro": "D"}}
```

这里使用L和D两个字母来表示喜欢和不喜欢,当然你也可以用其他方式,比如0和1等。 对于新的向量格式,我们需要对曼哈顿距离函数和邻近物品函数做一些调整:

```
def manhattan(vector1, vector2):
   distance = 0
   total = 0
   n = len(vector1)
   for i in range(n):
       distance += abs(vector1[i] - vector2[i])
   return distance
def computeNearestNeighbor(itemName, itemVector, items):
    """按照距离排序,返回邻近物品列表"""
   distances = []
    for otherItem in items:
       if otherItem != itemName:
           distance = manhattan(itemVector, items[otherItem])
           distances.append((distance, otherItem))
   # 最近的排在前面
   distances.sort()
   return distances
```

最后,我需要建立一个分类函数,用来预测用户对一个新物品的喜好,如:

"Chris Cagle/I Breathe In. I Breathe Out" [1, 5, 2.5, 1, 1, 5, 1

这个函数会先计算出与这个物品距离最近的物品,然后找到用户对这个最近物品的评

价,以此作为新物品的预测值。下面是一个最简单的分类函数:

```
def classify(user, itemName, itemVector):
   nearest = computeNearestNeighbor(itemName, itemVector, items
   rating = users[user][nearest]
   return rating
```

让我们试用一下:

```
```python
>>> classify('Angelica', 'Chris Cagle/I Breathe In. I Breathe Ou
'L'
```

#### 我们认为她会喜欢这首歌曲!为什么呢?

>>> computeNearestNeighbor('Chris Cagle/I Breathe In. I Breathe
[(4.5, 'Lady Gaga/Alejandro'), (6.0, "Glee Cast/Jessie's Girl"),

可以看到,距离I Breathe In最近的歌曲是Alejandro,并且Angelica是喜欢这首歌曲的,所以我们预测她也会喜欢I Breathe In。

其实我们做的是一个分类器,将歌曲分为了用户喜欢和不喜欢两个类别。

#### 号外,号外!我们编写了一个分类器!



分类器是指通过物品特征来判断它应该属于哪个组或类别的程序!

分类器程序会基于一组已经做过分类的物品进行学习,从而判断新物品的所属类别。在上面的例子中,我们知道Angelica喜欢和不喜欢的歌曲,然后据此判断她是否会喜欢Chris Cagle的歌。

- 1. 在Angelica评价过的歌曲中找到距离Chris Cagle最近的歌曲,即Laydy Gaga的Alejandro;
- 2. 由于Angelica是喜欢Alejandro这首歌的,所以我们预测她也会喜欢Chris Cagle的 Breathe In, Breathe Out。

分类器的应用范围很广,以下是一些示例:

#### 推特情感分类

很多人在对推特中的文字消息进行情感分类(积极的、消极的),可以有很多用途,如 Axe发布了一款新的腋下除臭剂,通过推文就能知道用户是否满意。这里用到的物品特征是文字信息。

#### 人脸识别

现在有些手机应用可以识别出照片里你的朋友们,这项技术也可用于监控录像中的人脸识别。不同的识别技术细节可能不同,但都会用到诸如五官的大小和相对距离等信息。

#### 政治拉票

通过将目标选民分为"爱凑热闹"、"很有主见"、"家庭为重"等类型,来进行有针对性的 拉票活动。

#### 市场细分

这和上个例子有点像,与其花费巨额广告费向不可能购买维加斯公寓的人进行宣传,不如从人群中识别出潜在客户,缩小宣传范围。最好能再对目标群体进行细分,进一步定制广告内容。

#### 个人健康助理

如今人们越来越关注自身,我们可以购买到像Nike健身手环这样的产品,而Intel等公司也在研制一种智能家居,可以在你行走时称出你的重量,记录你的行动轨迹,并给出健康提示。有些专家还预言未来我们会穿戴各种便携式设备,收集我们的生活信息,并加以分类。

#### 其他

- 识别恐怖分子
- ●来信分类(重要的、一般的、垃圾邮件)
- 预测医疗费用
- ●识别金融诈骗

## 她是从事什么运动的?

让我们来为之后的几章做一个预热,先看一个较为简单的例子——根据女运动员的身高

和体重来判断她们是从事什么运动项目的。下表是原始数据:

Name	Sport	Age	Height	Weight
Asuka Teramoto	Gymnastics	16	54	66
Brittainey Raven	Basketball	22	72	162
Chen Nan	Basketball	30	78	204
Gabby Douglas	Gymnastics	16	49	90
Helalia Johannes	Track	32	65	99
Irina Miketenko	Track	40	63	106
Jennifer Lacy	Basketball	27	75	175
Kara Goucher	Track	34	67	123
Linlin Deng	Gymnastics	16	54	68
Nakia Sanford	Basketball	34	76	200
Nikki Blue	Basketball	26	68	163
Qiushuang Huang	Gymnastics	20	61	95
Rebecca Tunney	Gymnastics	16	58	77
Rene Kalmer	Track	32	70	108
Shanna Crossley	Basketball	26	70	155
Shavonte Zellous	Basketball	24	70	155
Tatyana Petrova	Track	29	63	108
Tiki Gelana	Track	25	65	106
Valeria Straneo	Track	36	66	97
Viktoria Komova	Gymnastics	17	61	76

这里列出的是2008和2012奥运会上排名靠前的二十位女运动员。篮球运动员参加了WNBA;田径运动员则完成了2012年奥运会的马拉松赛。虽然数据量很小,但我们仍可以对其应用一些数据挖掘算法。

你可以看到上表中列出了运动员的年龄,光凭这一信息就能进行一些预测了。比如,以下运动员会是哪个项目的呢?



Candace Parker; Age 26



Lisa Jane Weightman; Age 34



McKayla Marone



Olivera Jevtić: Age 35

## 答案

Candace Parker是篮球运动员,McKayla Maroney是美国女子体操队的一员,Olivera Jevtic是塞尔维亚的一名长跑运动员,Lisa Jane Weightman则是澳大利亚的长跑运动员。

看,我们刚刚就进行了一次分类——通过运动员的年龄特征来识别她们参与的体育项目。

#### 头脑风暴

假设我想通过运动员的身高和体重来预测她所从事的运动,数据集只有两人:Nakia Sanford是篮球运动员,身高6尺4寸(76英寸,1.93米),体重200磅(90公斤); Sarah Beale是橄榄球运动员,身高5尺10寸(70英寸,1.78米),体重190磅(86公斤)。我想知道Catherine Spencer是从事哪项运动的,她的身高是5尺10寸,重200磅,如何预测呢?

如果你认为她是橄榄球运动员,那么你猜对了。但是,如果用曼哈顿距离来进行计算,Catherine和Nakia的距离是6,和Sarah的距离是10,那应该预测她是篮球运动员才对。我们之前是否学过一个方法,能让距离计算更为准确呢?

没错,就是修正的标准分!

### 测试数据

下表是我们需要进行预测的运动员列表,一起来做分类器吧!

Name	Sport	Height	Weight
Crystal Langhorne		74	190
Li Shanshan		64	101
Kerri Strug		57	87
Jaycie Phelps	`	60	97
Kelly Miller		70	140
Zhu Xiaolin		67	123
Lindsay Whalen		69	169
Koko Tsurumi		55	75
Paula Radcliffe		68	120
Erin Thorn		69	144

# Python编码

这次我们不将数据直接写在Python代码中,而是放到两个文本文件里: athletesTrainingSet.txt和athletesTestSet.txt。我会使用第一个文件中的数据来训练分 类器,然后使用测试文件里的数据来进行评价。

文件格式大致如下:

Asuka Teramoto	Gymnastics	54	66
Brittainey Raven	Basketball	72	162
Chen Nan	Basketball	78	204
Gabby Douglas	Gymnastics	49	90

文件中的每一行是一条完整的记录,字段使用制表符分隔。我要使用运动员的身高体重数据来预测她所从事的运动项目,也就是用第三、四列的数据来预测第二列的数据。运动员的姓名不会使用到,我们既不能通过运动员的姓名得知她参与的项目,也不会通过身高体重来预测运动员的姓名。



你好,你有五英尺高,150磅重,莫非你的名字是Clara Coleman?

当然,名字也有它的用处,我们可以用它来解释分类器的预测结果:"我们认为Amelia Pond是一名体操运动员,因为她的身高体重和另一名体操运动员Gabby Douglas很接近。"

为了让我们的Python代码更具一般性,并不只适用于这一种数据集,我会为每一列数据增加一个列名,如:

comment	class	num	num
Asuka Teramoto	Gymnastics	54	66
Brittainey Raven	Basketball	72	162

所有被标记为comment的列都会被分类器忽略;标记为class的列表示物品所属分类; 不定个数的num列则表示物品的特征。

#### 头脑风暴

我们在Python中应该如何表示这些数据呢?以下是一些可能性:

```
1
{'Asuka Termoto': ('Gymnastics', [54, 66]),
 'Brittainey Raven': ('Basketball', [72, 162]), ...
```

这种方式使用了运动员的姓名作为键,而我们说过分类器程序根本不会使用到姓名,所以不合理。

```
2
[['Asuka Termoto', 'Gymnastics', 54, 66],
 ['Brittainey Raven', 'Basketball', 72, 162], ...
```

这种方式看起来不错,它直接反映了文件的格式。由于我们需要遍历文件的数据,所以使用列表类型(list)是合理的。

```
3
[('Gymnastics', [54, 66], ['Asuka Termoto']),
 ('Basketball', [72, 162], ['Brittainey Raven']), ...
```

这是我最认同的表示方式,因为它将不同类型的数据区别开来了,依次是分类、特征、 备注。这里备注可能有多个,所以也用了一个列表来表示。以下是读取数据文件并转换 成上述格式的函数:

```
class Classifier:
 def init (self, filename):
 self.medianAndDeviation = []
 # 读取文件
 f = open(filename)
 lines = f.readlines()
 f.close()
 self.format = lines[0].strip().split('\t')
 self.data = []
 for line in lines[1:]:
 fields = line.strip().split('\t')
 ignore = []
 vector = []
 for i in range(len(fields)):
 if self.format[i] == 'num':
 vector.append(int(fields[i]))
 elif self.format[i] == 'comment':
 ignore.append(fields[i])
 elif self.format[i] == 'class':
 classification = fields[i]
 self.data.append((classification, vector, ignore))
```

在计算修正的标准分之前,我们需要编写获取中位数和计算绝对偏差的函数,尝试实现 这两个函数:

```
>>> heights = [54, 72, 78, 49, 65, 63, 75, 67, 54]
>>> median = classifier.getMedian(heights)
>>> median
65
>>> asd = classifier.getAbsoluteStandardDeviation(heights, media)
>>> asd
8.0
```

### 关于断言

通常我们会将一个大的算法拆分成几个小的组件,并为每个组件编写一些单元测试,从 而确保它能正常工作。很多时候,我们会先写单元测试,再写正式的代码。在我提供的 模板代码中已经编写了一些单元测试,摘录如下:

```
def unitTest():
 list1 = [54, 72, 78, 49, 65, 63, 75, 67, 54]
 classifier = Classifier('athletesTrainingSet.txt')
 m1 = classifier.getMedian(list1)
 assert(round(m1, 3) == 65)
 ...
 print("getMedian和getAbsoluteStandardDeviation均能正常工作")
```

#### 你需要完成的geMedian函数的模板是:

```
def getMedian(self, alist):
"""返回中位数"""
"""请在此处编写代码"""
return 0
```

这个模板函数返回的是0,你需要编写代码来返回列表的中位数。比如单元测试中我传入了以下列表:

```
[54, 72, 78, 49, 65, 63, 75, 67, 54]
```

assert(断言)表示函数的返回值应该是65。如果所有的单元测试都能通过,则报告以下信息:

getMedian和getAbsoluteStandardDeviation均能正常工作

#### 否则,则抛出以下异常:

```
File "testMedianAndASD.py", line 78, in unitTest
 assert(round(m1, 3) == 65)
```

断言在单元测试中是很常用的。

将大型代码拆分成一个个小的部分,并为每个部分编写单元测试,这一点是很重要的。如果没有单元测试,你将无法知道自己是否正确完成了所有任务,以及未来的某个修改是否会导致你的程序不可用。--- Peter Norvig



## 答案

```
def getMedian(self, alist):
 """返回中位数"""
 if alist == []:
 return []
 blist = sorted(alist)
 length = len(alist)
 if length % 2 == 1:
 # 列表有奇数个元素,返回中间的元素
 return blist[int(((length + 1) / 2) - 1)]
 else:
 # 列表有偶数个元素,返回中间两个元素的均值
 v1 = blist[int(length / 2)]
 v2 =blist[(int(length / 2) - 1)]
 return (v1 + v2) / 2.0
```

```
def getAbsoluteStandardDeviation(self, alist, median):
 """计算绝对偏差"""
 sum = 0
 for item in alist:
 sum += abs(item - median)
 return sum / len(alist)
```

可以看到,getMedian函数对列表进行了排序,由于数据量并不大,所以这种方式是可以接受的。如果要对代码进行优化,我们可以使用选择算法。

现在,我们已经将数据从athletesTrainingSet.txt读取出来,并保存为以下形式:

```
[('Gymnastics', [54, 66], ['Asuka Teramoto']),
 ('Basketball', [72, 162], ['Brittainey Raven']),
 ('Basketball', [78, 204], ['Chen Nan']),
 ('Gymnastics', [49, 90], ['Gabby Douglas']), ...
```

#### 我们需要对向量中的数据进行标准化,变成以下结果:

```
[('Gymnastics', [-1.93277, -1.21842], ['Asuka Teramoto']), ('Basketball', [1.09243, 1.63447], ['Brittainey Raven']), ('Basketball', [2.10084, 2.88261], ['Chen Nan']), ('Gymnastics', [-2.7731, -0.50520], ('Track', [-0.08403, -0.23774], ['Helalia Johannes']), ('Track', [-0.42017, -0.02972], ['Irina Miketenko']), ...
```

#### 在init方法中,添加标准化过程:

```
获取向量的长度
```

```
self.vlen = len(self.data[0][1])
标准化
for i in range(self.vlen):
 self.normalizeColumn(i)
```

在for循环中逐列进行标准化,即第一次会标准化身高,第二次标准化体重。

动手实践 下载normalizeColumnTemplate.py文件,编写normalizeColumn方法。

## 答案

```
def normalizeColumn(self, columnNumber):
 """标准化self.data中的第columnNumber列"""
 # 将该列的所有值提取到一个列表中
 col = [v[1][columnNumber] for v in self.data]
 median = self.getMedian(col)
 asd = self.getAbsoluteStandardDeviation(col, median)
 #print("Median: %f ASD = %f" % (median, asd))
 self.medianAndDeviation.append((median, asd))
```

```
for v in self.data:
 v[1][columnNumber] = (v[1][columnNumber] - median) / asd
```

可以看到,我将计算得到的中位数和绝对偏差保存在了medianAndDeviation变量中,因为我们会用它来标准化需要预测的向量。比如,我要预测Kelly Miller的运动项目,她身高5尺10寸(70英寸),重140磅,即原始向量为[70, 140],需要先进行标准化。

我们计算得到的meanAndDeviation为:

```
[(65.5, 5.95), (107.0, 33.65)]
```

它表示向量中第一元素的中位数为65.5,绝对偏差为5.95;第二个元素的中位数为107.0,绝对偏差33.65。

现在我们就利用这组数据将[70,140]进行标准化。第一个元素的标准分数是:

$$mss = \frac{x_i - \tilde{x}}{asd} = \frac{70 - 65.5}{5.95} = \frac{4.5}{5.95} = 0.7563$$

第二个元素为:

$$mss = \frac{x_i - \tilde{x}}{asd} = \frac{140 - 107}{33.65} = \frac{33}{33.65} = 0.98068$$

#### 以下是实现它的Python代码:

```
def normalizeVector(self, v):
"""我们已保存了每列的中位数和绝对偏差,现用它来标准化向量v"""
```

vector = list(v)
for i in range(len(vector)):
 (median, asd) = self.medianAndDeviation[i]
 vector[i] = (vector[i] - median) / asd
return vector

### 最后,我们要编写分类函数,用来预测运动员的项目:

classifier.classify([70, 140])

#### 在我们的实现中, classify函数只是nearestNeighbor的一层包装:

```
def classify(self, itemVector):
"""预测itemVector的分类"""
return self.nearestNeighbor(self.normalizeVector(itemVector)
```

动手实践 实现nearestNeighbor函数。

### 答案

#### 好了,我们用200多行代码实现了近邻分类器!



在完整的<u>示例代码</u>中,我提供了一个test函数,它可以对分类器程序的准确性做一个评价。比如用它来评价上面实现的分类器:

```
- Track Aly Raisman Gymnastics 62 115
+ Basketball Crystal Langhorne Basketball 74 190
+ Basketball Diana Taurasi Basketball 72 163
...
+ Track Xueqin Wang Track 64 110
+ Track Zhu Xiaolin Track 67 123
```

80.00% correct

可以看到,这个分类器的准确率是80%。它对篮球运动员的预测很准确,但在预测田径和体操运动员时出现了4个失误。

## 鸢尾花数据集

我们可以用鸢尾花数据集做测试,这个数据集在数据挖掘领域是比较有名的。它是20世纪30年代Ronald Fisher对三种鸢尾花的50个样本做的测量数据(萼片和花瓣)。



Ronald Fisher是一名伟大的科学家。他对统计学做出了革命性的改进,Richard Dawkins称他为"继达尔文后最伟大生物学家。"



鸢尾花数据集可以在<u>这里</u>找到,你可以测试你的算法,并问自己一些问题:标准化让结果更正确了吗?训练集中的数据量越多越好吗?用欧几里得距离来算会怎样?

记住所有的学习过程都是在你自己的脑中进行的,你付出的努力越多,学到的也就越多。

鸢尾花数据集的格式如下,我们要预测的是Species这一列:



Sepal length	Sepal width	Petal Length	Petal Width	Species
5.1	3.5	1.4	0.2	I.setosa
4.9	3.0	1.4	0.2	I setosa

训练集中有120条数据,测试集中有30条,两者没有交集。

#### 测试结果如何呢?

>>> test('irisTrainingSet.data', 'iristestSet.data')
93.33% correct

这又一次证明我们的分类算法是简单有效的。有趣的是,如果不对数据进行标准化,它 的准确率将达到100%。这个现象我们会在后续的章节中讨论。

## 每加仑燃油可以跑多少公里?

最后,我们再来测试另一个广泛使用的数据集,卡内基梅隆大学统计的汽车燃油消耗和公里数数据。它在1983年的美国统计联合会展中使用过,大致格式如下:

mpg	cylinders	c.i.	HP	weight	secs. 0-60	make
30	4	68	49	1867	19.5	fiat 128
45	4	90	48	2085	21.7	vw rabbit (di
20	8	307	130	3504	12	chevrolet ch

这个数据集做过一些修改。我们要预测的是加仑燃油公里数(mpg),使用的数据包括 汽缸数、排气量、马力、重量、加速度等。



数据集中有342条记录,50条测试记录,运行结果如下:

>>> test('mpgTrainingSet.txt', 'mpgTestSet.txt')
56.00% correct

如果不进行标准化,准确率将只有32%。



我们应该如何提高预测的准确率呢?改进分类算法?增加训练集?还是增加特征的数量?我们将在下一章揭晓!

# 番外篇:关于标准化

这一章我们讲解了标准化的重要性,即当不同特征的评分尺度不一致时,为了得到更准确的距离结果,就需要将这些特征进行标准化,使他们在同一个尺度内波动。



虽然大多数数据挖掘工程师对标准化的理解是一致的,但也有一些人要将这种做法区分为"正规化"和"标准化"两种。其中,"正规化"表示将值的范围缩小到0和1之间;"标准化"则是将特征值转换为均值为0的一组数,其中每个数表示偏离均值的程度(即标准偏差或绝对偏差)。我们使用的修正的标准分就是属于后者。

回忆一下,我们上文中有讲解过如何将特征值缩小到0到1之间:找出最大最小值,并做如下计算:

 $\frac{value - \min}{\max - \min}$ 

我们来比较一下使用不同的标准化方法得到的准确度:

data set	classifier built					
	using no normalization	using the formula on previous page	using Modified Standard Score			
Athletes	80.00%	60.00%	80.00%			
Iris	100.00%	83.33%	93.33%			
MPG	32.00%	36.00%	56.00%			

## 看来还是使用修正的标准分结果会好些。



用不同的数据集来测试我们的算法是不是很有趣?这些数据集是从<u>UCI机器学习仓库</u>中获得的。去下载一些新的数据集,调整一下格式,测试我们学过的算法吧!