CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 2

EXERCICE

- 1. Puisque l'entier 3 est premier à l'entier 11, le petit théorème de FERMAT permet d'affirmer que $3^{10} \equiv 1 \mod 11$. Ensuite,
 - $3^1 \equiv 3 \mod 11$ et donc $3^1 \not\equiv 1 \mod 11$.
 - $3^2 \equiv 9 \mod 11$ et donc $3^2 \not\equiv 1 \mod 11$.
 - $3^3 \equiv -2 \times 3$ modulo 11 ou encore $3^3 \equiv 5$ modulo 11 et donc $3^3 \not\equiv 1$ modulo 11.
 - $3^4 \equiv 5 \times 3$ modulo 11 ou encore $3^4 \equiv 4$ modulo 11 et donc $3^4 \not\equiv 1$ modulo 11.
 - $3^5 \equiv 4 \times 3$ modulo 11 ou encore $3^5 \equiv 1$ modulo 11.

Le plus petit entier naturel non nul p tel que $3^p \equiv 1 \mod 11$ est $p_0 = 5$.

2. Soit $n \in \mathbb{N}$.

$$3^{n+2012} - 9 \times 5^{2n} = 3^{n} \times (3^{5})^{402} \times 3^{2} - 9 \times (25)^{n}$$

$$\equiv 3^{n} \times 1^{402} \times 9 - 9 \times 3^{n} \text{ modulo } 11$$

$$\equiv 0 \text{ modulo } 11.$$

Donc, pour tout entier naturel n, $3^{n+2012} - 9 \times 5^{2n}$ est divisible par 11.

PROBLÈME

Partie I. Etude du cas n = 2

1. Soient $(M, N) \in (\mathcal{M}_2(\mathbb{R}))^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$\phi_A(\lambda M + \mu N) = A(\lambda M + \mu N) - (\lambda M + \mu N)A = \lambda(AM - MA) + \mu(AN - NA) = \lambda \phi_A(M) + \mu \phi_A(N).$$

Donc φ_A est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$.

$$\varphi_A(A) = A^2 - A^2 = 0$$
. Donc $A \in \text{Ker}(\varphi_A)$.

2. Calculons les images des éléments de la base canonique de $\mathcal{M}_2(\mathbb{R})$.

•
$$\varphi_A(E_{1,1}) = AE_{1,1} - E_{1,1}A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & -b \\ c & 0 \end{pmatrix} = -bE_{1,2} + cE_{2,1}.$$
• $\varphi_A(E_{2,2}) = AE_{2,2} - E_{2,2}A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix} = bE_{1,2} - cE_{2,1}.$
• $\varphi_A(E_{1,2}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -c & a - d \\ 0 & c \end{pmatrix} = -cE_{1,1} + cE_{2,2} + (a - d)E_{1,2}.$
• $\varphi_A(E_{2,1}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} b & 0 \\ d - a & -b \end{pmatrix} = bE_{1,1} - bE_{2,2} + (d - a)E_{2,1}.$

$$\bullet \ \varphi_{A}\left(\mathsf{E}_{2,2}\right) = \mathsf{A}\mathsf{E}_{2,2} - \mathsf{E}_{2,2}\mathsf{A} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) - \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} 0 & b \\ -c & 0 \end{array}\right) = \mathsf{b}\mathsf{E}_{1,2} - \mathsf{c}\mathsf{E}_{2,1}.$$

$$\bullet \ \varphi_{A}\left(\mathsf{E}_{1,2}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) - \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} -c & a-d \\ 0 & c \end{array}\right) = -c\mathsf{E}_{1,1} + c\mathsf{E}_{2,2} + (a-d)\mathsf{E}_{1,2}.$$

$$\bullet \ \varphi_{A}(E_{2,1}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} b & 0 \\ d-a & -b \end{pmatrix} = bE_{1,1} - bE_{2,2} + (d-a)E_{2,1}$$

On en déduit que

$$\operatorname{Mat}_{(E_{1,1},E_{2,2},E_{1,2},E_{2,1})}(\phi_A) = \left(\begin{array}{cccc} 0 & 0 & -c & b \\ 0 & 0 & c & -b \\ -b & b & a-d & 0 \\ c & -c & 0 & d-a \end{array} \right)$$

3.

$$\begin{split} \chi_{\phi_A} &= \begin{vmatrix} -X & 0 & -c & b \\ 0 & -X & c & -b \\ -b & b & a-d-X & 0 \\ c & -c & 0 & d-a-X \end{vmatrix} \\ &= -X \begin{vmatrix} -X & c & -b \\ b & a-d-X & 0 \\ -c & 0 & d-a-X \end{vmatrix} - b \begin{vmatrix} 0 & -c & b \\ -X & c & -b \\ -c & 0 & d-a-X \end{vmatrix} - c \begin{vmatrix} 0 & -c & b \\ -X & c & -b \\ b & a-d-X & 0 \end{vmatrix} \\ &= -X \left[-X(a-d-X)(d-a-X) - bc(d-a-X) - bc(a-d-X) \right] - b \left(-Xc(d-a-X) \right) - c \left(-Xb(a-d-X) \right) \\ &= -X \left[-X(a-d-X)(d-a-X) + 2bcX \right] - 2bcX^2 = X^2 \left((X-a+d)(X+a-d) - 4bc \right) \\ &= X^2 \left(X^2 - (d-a)^2 - 4bc \right). \end{split}$$

4. On sait que ϕ_A est diagonalisable si et seulement si son polynôme caractéristique est scindé sur $\mathbb R$ et l'odre de multiplicité de chacune de ses valeurs propres est égale à la dimension du sous-espace propre correspondant.

1er cas. Si $(d-\alpha)^2 + 4bc < 0$, χ_{φ_A} n'est pas scindé sur $\mathbb R$ et donc φ_A n'est pas diagonalisable.

2ème cas. Si $(d-\alpha)^2+4bc=0$, $\chi_{\phi_A}=X^4$. Si ϕ_A est diagonalisable, il existe une base de $\mathcal{M}_2(\mathbb{R})$ formée de vecteurs propres de ϕ_A associés à la valeur propre 0. Mais alors l'endomorphisme ϕ_A s'annule sur une base de $\mathcal{M}_2(\mathbb{R})$ et donc $\phi_A=0$ ce qui n'est pas. Donc ϕ_A n'est pas diagonalisable.

3ème cas. Si $(d-\alpha)^2+4bc>0$, χ_{ϕ_A} est scindé sur \mathbb{R} . Plus précisément, ϕ_A admet une valeur propre double à savoir 0 et deux valeurs propres simples à savoir $\sqrt{(d-\alpha)^2+4bc}$ et $-\sqrt{(d-\alpha)^2+4bc}$. La dimension du sous-espace propre associé à une valeur propre simple est toujours égale à 1 et donc ϕ_A est diagonalisable si et seulement si dim $(\operatorname{Ker}(\phi_A))=2$. On sait déjà que l'on a dim $(\operatorname{Ker}(\phi_A)) \leqslant 2$. Mais d'autre part, I_2 et A sont deux éléments de $\operatorname{Ker}(\phi_A)$ et de plus, la famille (I_2,A) est libre car A n'est pas une matrice scalaire. On en déduit que dim $(\operatorname{Ker}(\phi_A)) \geqslant 2$ et finalement que dim $(\operatorname{Ker}(\phi_A))=2$. Mais alors ϕ_A est diagonalisable.

En résumé, ϕ_A est diagonalisable si et seulement si $(d-\alpha)^2+4bc>0$.

5. $\chi_A = X^2 - (a+d)X + ad - bc$. Le discriminant de χ_A est $\Delta = (a+d)^2 - 4(ad-bc) = a^2 + d^2 - 2ad + 4bc = (d-a)^2 + 4bc$. 1er cas. Si $(d-a)^2 + 4bc < 0$, χ_A n'est pas scindé sur $\mathbb R$ et donc A n'est pas diagonalisable.

2ème cas. Si $(d-\alpha)^2+4bc=0$, A admet une valeur propre réelle double. Si A était diagonalisable A serait semblable à une matrice du type $\operatorname{diag}(\lambda,\lambda)=\lambda I_2,\ \lambda\in\mathbb{R}$ et donc égale à une matrice du type $\lambda I_2,\ \lambda\in\mathbb{R}$ ce qui n'est pas. Donc A n'est pas diagonalisable.

3ème cas. Si $(d-a)^2 + 4bc > 0$, A deux valeurs propres réelles simples à et on sait que A est diagonalisable.

En résumé, A est diagonalisable \Leftrightarrow $(d-\alpha)^2 + 4bc > 0 \Leftrightarrow \phi_A$ est diagonalisable.

Partie II. Etude du cas général

6. (a) On sait que $\forall (i,j,k,l) \in [1,n]^4$, $E_{i,j}E_{k,l}\delta_{j,k}E_{i,l}$. Soit $(i,j) \in [1,n]^2$.

$$DE_{i,j} - E_{i,j}D = \sum_{k=1}^n \lambda_k E_{k,k} E_{i,j} - \sum_{k=1}^n \lambda_k E_{i,j} E_{k,k} = \sum_{k=1}^n \delta_{k,i} \lambda_k E_{k,j} - \sum_{k=1}^n \delta_{k,j} \lambda_k E_{i,k} = (\lambda_i - \lambda_j) E_{i,j}.$$

(b) Soit $(i, j) \in [1, n]^2$.

$$\begin{split} \phi_A(B_{i,j}) &= AB_{i,j} - B_{i,j}A = PDP^{-1}PE_{i,j}P^{-1} - PE_{i,j}P^{-1}PDP^{-1} = P(DE_{i,j} - E_{i,j}D)P^{-1} \\ &= (\lambda_i - \lambda_j)PE_{i,j}P^{-1} = (\lambda_i - \lambda_j)B_{i,j}. \end{split}$$

Puisque $B_{i,j} \neq 0$ (car $E_{i,j}$ n'est pas nulle et P et P⁻¹ sont inversibles), $B_{i,j}$ est un vecteur propre de φ_A associé à la valeur propre $\lambda_i - \lambda_i$.

(c) On sait que $(E_{i,j})_{1 \leq i,j \leq n}$. D'autre part, l'application ψ : $M \mapsto PMP^{-1}$ est un automorphisme de $\mathcal{M}_n(\mathbb{R})$ (de réciproque l'application $M \mapsto P^{-1}MP$). L'image d'une base de $\mathcal{M}_n(\mathbb{R})$ par un automorphisme est une base de $\mathcal{M}_n(\mathbb{R})$ et donc $(B_{i,j})_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{R})$.

Ainsi, il existe une base de $\mathcal{M}_n(\mathbb{R})$ formée de vecteurs propres de φ_A et donc φ_A est diagonalisable.

i. Par hypothèse, φ_A en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ est diagonalisable et en particulier son polynôme caractéristique est scindé sur \mathbb{R} .

Maintenant, le polynôme caractéristique de φ_A en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{C})$ est le même que le polynôme caractéristique de φ_A en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{R})$. Donc le polynôme caractéristique de φ_A en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{C})$, est scindé sur \mathbb{R} ou encore les valeurs propres de φ_A en tant qu'endomorphisme de $\mathcal{M}_n(\mathbb{C})$ sont réelles (puisque les valeurs propres de φ_A sont les racines de son polynôme caractéristique).

ii. On sait que A et ^tA ont même polynôme caractéristique. Donc si un nombre complexe z est valeur propre de A, alors z est valeur propre de ^tA.

iii. On note x_1, \ldots, x_n (resp. y_1, \ldots, y_n) les composantes de X (resp. Y).

 $X^{t}Y$ est un élément de $\mathcal{M}_{n}(\mathbb{C})$. Le coefficient ligne k, colonne l de $X^{t}Y$ est $x_{k}y_{l}$. Puisque $X \neq 0$ et $Y \neq 0$, il existe $(k_0, l_0) \in [1, n]$ tel que $x_{k_0} \neq 0$ et $y_{l_0} \neq 0$. Mais alors le coefficient ligne k_0 , colonne l_0 de X^tY , à savoir $x_{k_0}y_{l_0}$, n'est pas nul et par suite la matrice X^tY n'est pas nulle.

Ensuite,

$$\varphi_A(X^tY) = AX^tY - X^tYA = (AX)^tY - X^t(^tAY) = zX^tY - \overline{z}X^tY = (z - \overline{z})X^tY.$$

Puisque X^tY n'est pas nulle, on en déduit que $z - \overline{z}$ est valeur propre de φ_A .

(b) A admet au moins une valeur propre complexe z. Puisque A est à coefficients réels, il en est de même de χ_A . Mais alors, \overline{z} est aussi une racine de χ_A ou encore une valeur propre de A. D'après la question iii., $z-\overline{z}$ est une valeur propre de φ_A .

 $z-\overline{z}=2i\mathrm{Im}(z)$ est un imaginaire pur et aussi un réel d'après la question i. En résumé, $z-\overline{z}\in\mathbb{R}\cap i\mathbb{R}=\{0\}$. On en déduit que $z = \overline{z}$ ou encore que z est un réel.

On a montré que A admet au moins une valeur propre réelle. Plus précisément, on a montré que toute valeur propre de A est réelle.

(c) Par définition, $AP_{i,j} - P_{i,j}A = \varphi_A(P_{i,j}) = \lambda_{i,j}P_{i,j}$. Par suite,

$$AP_{i,i}X = P_{i,i}AX + \lambda_{i,i}P_{i,i}X = (\lambda + \lambda_{i,i})P_{i,i}X.$$

 $\mathrm{Donc},\,\forall (i,j)\in [\![1,n]\!]^2,\,AP_{i,j}X=\mu_{i,j}P_{i,j}X\,\,\mathrm{où}\,\,\mu_{i,j}=\lambda+\lambda_{i,j}.$

(d) Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_{n,1}(\mathbb{R})$. f est une application linéaire. Vérifions que f est surjective. $M \mapsto MX$

Soit Y un élément de $\mathcal{M}_{n,1}(\mathbb{R})$. Puisque X n'est pas nul, il existe $\mathfrak{i}_0 \in [\![1,n]\!]$ tel que $x_{\mathfrak{i}_0} \neq 0$. Soit M la matrice carrée dont toutes les colonnes sont nulles sauf la i_0 -ème qui est $\frac{1}{x_{i_0}}Y$. Alors f(M) = MX = Y.

Ceci montre que tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ a un antécédent par f et donc f est surjective ou encore $\mathrm{Im}(f) = \mathcal{M}_{n,1}(\mathbb{R})$.

Puisque $(P_{i,j})_{1\leqslant i,j\leqslant n}$ est une base de $\mathcal{M}_n(\mathbb{R})$, la famille $(f(P_{i,j}))_{1\leqslant i,j\leqslant n}=(P_{i,j}X)_{1\leqslant i,j\leqslant n}$ est une famille génératrice de $\operatorname{Im}(f) = \mathcal{M}_{n,1}(\mathbb{R})$. On en extrait une base de $\mathcal{M}_{n,1}(\mathbb{R})$.

Les $P_{i,j}X$ qui constituent cette base sont non nuls et vérifient $AP_{i,j}X = (\lambda + \lambda_{i,j})P_{i,j}X$. Ce sont donc des vecteurs propres de A.

Ainsi, il existe une base de $\mathcal{M}_{n,1}(\mathbb{R})$ constituée de vecteurs propres de A et donc A est diagonalisable.

Partie III. Etude de vecteurs propres de φ_A associés à la valeur propre 0

8. On note μ_A le polynôme minimal de A.

• Soit $(\alpha_i)_{0 \leqslant i \leqslant m-1} \in \mathbb{R}^m$ tel que $\sum_{k=0}^{m-1} \alpha_k A^k = 0$. Alors le polynôme $P = \sum_{k=0}^{m-1} \alpha_k X^k$ est un polynôme de degré au plus m-1 annulateur de A. Puisque le polynôme minimal de A est de degré m, on en déduit que P=0 c'est-à-dire $\alpha_0 = \ldots = \alpha_{m-1} = 0$. Ceci montre que la famille $(I_n, A, \ldots, A^{m-1})$ est une famille libre de $\mathbb{R}[A]$.

 $\bullet \ \mathrm{Soit} \ P \in \mathbb{R}[X]. \ \mathrm{La} \ \mathrm{division} \ \mathrm{euclidienne} \ \mathrm{de} \ P \ \mathrm{par} \ \mu_A \ \mathrm{fournit} \ \mathrm{deux} \ \mathrm{polynômes} \ Q \ \mathrm{et} \ R \ \mathrm{tels} \ \mathrm{que} \ P = Q \times \mu_A + R \ \mathrm{etdeg}(R) \\ \mathrm{deg}(R) \leqslant \mathrm{deg}(\mu_A) - 1 = m - 1. \ \mathrm{En} \ \mathrm{posant} \ R = \sum_{k=0}^{m-1} \alpha_k X^k, \ \mathrm{on} \ \mathrm{obtient}$

$$P(A) = Q(A) \times \mu_A(A) + R(A) = R(A) = \sum_{k=0}^{m-1} \alpha_k A^k,$$

et donc $P(A) \in \text{Vect}(I_n, A, \dots, A^{m-1})$. Ceci montre que la famille (I_n, A, \dots, A^{m-1}) est une famille génératrice de $\mathbb{R}[A]$ et finalement

la famille
$$\left(I_n,A,\ldots,A^{m-1}\right)$$
 est une base de $\mathbb{R}[A].$

9. On sait que tout polynôme en A commute avec A et donc pour tout $P \in \mathbb{R}[X]$, $\phi_A(P(A)) = 0$. Par suite, $\mathbb{R}[A] \subset \operatorname{Ker}(\phi_A)$. D'après la question précédente, on en déduit que

$$\dim (\operatorname{Ker} (\phi_A)) \geqslant \dim (\mathbb{R}[A]) = \mathfrak{m}.$$

- 10. Un cas d'égalité
- $\textbf{(a)} \ \operatorname{Puisque} \ \operatorname{card} \left(e_{i}\right)_{1 \leqslant i \leqslant n} = n = \dim \left(\mathbb{R}^{n}\right) < +\infty, \ \operatorname{il} \ \operatorname{suffit} \ \operatorname{de} \ \operatorname{montrer} \ \operatorname{que} \ \operatorname{la} \ \operatorname{famille} \ \left(e_{i}\right)_{1 \leqslant i \leqslant n} \ \operatorname{est} \ \operatorname{libre}.$

Supposons par l'absurde cette famille liée. Il existe alors $(\alpha_1, \dots, \alpha_n) \neq (0, 0, \dots, 0)$ tel que $\sum_{i=1}^n \alpha_i e_i = 0$ ou encore

$$\sum_{i=1}^n \alpha_i u^{n-i}(y) = 0. \text{ Soit } i_0 \in [\![1,n]\!] \text{ le dernier indice } i \text{ pour lequel on a } \alpha_i = 0. \text{ Par définition de } i_0, \text{ on a } \sum_{i=1}^{i_0} \alpha_i u^{n-i}(y) = 0.$$

On calcule l'image des deux membres de cette égalité par u^{i_0-1} , on obtient $\sum_{i=1}^{i_0} \alpha_i u^{n-i+i_0-1}(y) = 0$ et donc

$$\alpha_{i_0} u^{n-1}(y) = 0,$$

 $(\mathrm{car\ pour\ }i\leqslant i_0-1,\ n-i+i_0-1\geqslant n-(i_0-1)+i_0-1=n\ \mathrm{et\ donc\ }u^{n-i+i_0-1}=0).\ \mathrm{Mais\ cette\ derni\`ere\ \acute{e}galit\acute{e}\ est\ impossible\ \mathrm{car\ }\alpha_{i_0}\neq 0\ \mathrm{et\ }u^{n-1}(y)\neq 0.$

Donc la la famille $(e_i)_{1 \leqslant i \leqslant n}$ est libre et finalement la famille $(e_i)_{1 \leqslant i \leqslant n}$ est une base de \mathbb{R}^n .

(b) Soit $B \in \operatorname{Ker}(\phi_A)$. B commute avec A et donc ν commute avec u puis plus généralement ν commute avec tout polynôme en u.

 $\mathrm{Supposons}\;\nu(y)=\sum_{i=1}^n\alpha_ie_i.\;\mathrm{Alors,\;pour\;tout}\;k\in[\![1,n]\!],$

$$\begin{split} \nu(e_k) &= \nu(u^{n-k}(y)) = u^{n-k}(\nu(y)) = u^{n-k}\left(\sum_{i=1}^n \alpha_i e_i\right) = \sum_{i=1}^n \alpha_i u^{n-k+n-i}(y) \\ &= \left(\sum_{i=1}^n \alpha_i u^{n-i}\right)(u^{n-k}(y)) = \left(\sum_{i=1}^n \alpha_i u^{n-i}\right)(e_k). \end{split}$$

Ainsi, les deux endomorphismes ν et $\sum_{i=1}^n \alpha_i u^{n-i}$ coïncident sur une base de \mathbb{R}^n . On en déduit que ces endomorphismes sont égaux ou encore $\nu = \sum_{i=1}^n \alpha_i u^{n-i}$.

(c) Soit $B \in \operatorname{Ker}(\phi_A)$. Avec les notations précédentes, on peut décomposer le vecteur $\nu(y)$ dans la base $(e_i)_{1 \leqslant i \leqslant n}$ sous la forme $\nu(y) = \sum_{i=1}^n \alpha_i e_i$. La question précédente montre alors que $\nu = \sum_{i=1}^n \alpha_i u^{n-i}$ ou encore $B = \sum_{i=0}^{n-1} \alpha_{n-i} A^i$.

Ainsi, tout élément de Ker (φ_A) est une combinaison linéaire de I_n, A, \ldots, A^{n-1} ou encore

$$\mathrm{Ker}\,(\phi_A)\subset\mathrm{Vect}\,\big(I_n,A,\ldots,A^{n-1}\big).$$

En particulier, $\dim (\operatorname{Ker} (\phi_A)) \leq n$. D'autre part, puisque A est nilpotente d'indice n, le polynôme minimal de A est un diviseur unitaire du polynôme X^n et donc de la forme X^k , $1 \leq k \leq n$ mais n'est pas de la forme X^k , $1 \leq k < n$. Donc

$$\mu_A = X^n$$
.

D'après la question 9., $\dim\left(\operatorname{Ker}\left(\phi_{A}\right)\right)\geqslant n$ et finalement $\dim\left(\operatorname{Ker}\left(\phi_{A}\right)\right)=n$.

En résumé, $\operatorname{Ker}(\phi_A) \subset \operatorname{Vect}(I_n,A,\ldots,A^{n-1})$ et $\dim (\operatorname{Ker}(\phi_A)) = \mathfrak{n} = \dim \left(\operatorname{Vect}\left(I_n,A,\ldots,A^{n-1}\right)\right) < +\infty.$ On en déduit que

$$\boxed{\operatorname{Ker}\left(\phi_A\right) = \operatorname{Vect}\left(I_n, A, \dots, A^{n-1}\right) = \mathbb{R}_{n-1}[A].}$$

- 11. Cas où u est diagonalisable
- (a) Si $B \in \mathrm{Ker}\,(\phi_A)$, alors B commute avec A puis $\mathfrak u$ et ν commutent. On sait alors que ν laisse stable les sous-espaces propres de $\mathfrak u$. Redémontrons-le.

Soit $k \in [1, p]$. Soit $x \in E_u(\lambda_k)$. Alors $u(x) = \lambda_k x$ puis $u(v(x)) = v(u(x)) = \lambda_k v(x)$ et donc $v(x) \in E_u(\lambda_k)$.

• Supposons que ν laisse stable chaque $E_{u}\left(\lambda_{k}\right),\,1\leqslant k\leqslant p.$

Soit $k \in [1,p]$. La restriction v_k de v à E_u (λ_k) induit un endomorphisme de E_u (λ_k). D'autre part, la restriction u_k de u à E_u (λ_k) est $\lambda_k Id_{E_u(\lambda_k)}$. On en déduit que

$$(v \circ u)_{E_{u}(\lambda_k)} = v_k \circ u_k = u_k \circ v_k = (u \circ v)_{E_{u}(\lambda_k)}.$$

Maintenant, puisque $\mathfrak u$ est diagonalisable, les $E_\mathfrak u$ (λ_k), $1\leqslant k\leqslant \mathfrak p$, sont supplémentaires. Par suite, les endomorphismes $\mathfrak v\circ\mathfrak u$ et $\mathfrak u\circ\mathfrak v$ coïncident sur des sous-espaces supplémentaires et donc $\mathfrak v\circ\mathfrak u=\mathfrak u\circ\mathfrak v$ ou encore $B\in \mathrm{Ker}\,(\phi_A)$.

(b) Soit $\mathcal B$ une base adaptée à la décomposition $\mathbb R^n=\bigoplus_{1\leqslant k\leqslant p} E_{\mathfrak u}\left(\lambda_k\right).$

Si $B \in \mathrm{Ker}\,(\phi_A), \nu$ laisse stable chacun des $E_u\,(\lambda_k), \, 1 \leqslant k \leqslant p$. La matrice de ν dans \mathscr{B} est donc diagonale par blocs de

$$\operatorname{la\ forme}\ B' = \left(\begin{array}{cccc} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_p \end{array}\right) \text{ où } \forall k \in [\![1,p]\!], \, M_k \in \mathcal{M}_{\mathfrak{m}_k}(\mathbb{R}).$$

Réciproquement supposons que la matrice de ν dans $\mathscr B$ soit de la forme précédente. La matrice de $\mathfrak u$ dans $\mathscr B$ s'écrit $\mathsf A'=\mathsf B$

$$\begin{pmatrix} \lambda_1 I_{m_1} & 0 & \dots & 0 \\ 0 & \lambda_2 I_{m_2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_p I_{m_p} \end{pmatrix} \text{ et un calcul par blocs montre immédiatement } A'B' = B'A' = \begin{pmatrix} \lambda_1 M_1 & 0 & \dots & 0 \\ 0 & \lambda_2 M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_p M_p \end{pmatrix}.$$

Par suite, $v \circ u = u \circ v$ puis $B \in \text{Ker}(\varphi_A)$.

En résumé, $B \in \text{Ker}(\phi_A)$ si et seulement si la matrice de ν dans \mathscr{B} est diagonale par blocs de la forme $\begin{pmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & & 0 & M \end{pmatrix}$

où $\forall k \in [1, p], M_k \in \mathcal{M}_{m_k}(\mathbb{R}).$

(c) Notons P la matrice de passage de la base canonique de \mathbb{R}^n à la base \mathscr{B} . D'après la question précédente, Ker (φ_A) est

l'ensemble des matrices de la forme
$$P \left(\begin{array}{cccc} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_n \end{array} \right) P^{-1} \text{ où } \forall k \in \llbracket 1, p \rrbracket, \, M_k \in \mathcal{M}_{\mathfrak{m}_k}(\mathbb{R}).$$

 $\text{Comme l'application } M \mapsto PMP^{-1} \text{ est un automorphisme de } \mathcal{M}_n(\mathbb{R}), \text{ Ker } (\phi_A) \text{ est isomorphe à l'ensemble des matrices}$

de la forme
$$\begin{pmatrix} M_1 & 0 & \dots & 0 \\ 0 & M_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & M_p \end{pmatrix}$$
 où $\forall k \in [\![1,p]\!], M_k \in \mathcal{M}_{\mathfrak{m}_k}(\mathbb{R}),$ sous espace lui-même isomorphe à $\prod_{k=1}^p \mathcal{M}_{\mathfrak{m}_k}(\mathbb{R}).$

http://www.maths-france.fr

On en déduit que

$$\dim\left(\mathrm{Ker}\left(\phi_{A}\right)\right)=\dim\left(\prod_{k=1}^{p}\mathcal{M}_{\mathfrak{m}_{k}}(\mathbb{R})\right)=\sum_{k=1}^{p}\dim\left(\mathcal{M}_{\mathfrak{m}_{k}}(\mathbb{R})\right)=\sum_{k=1}^{p}\mathfrak{m}_{k}^{2}.$$

$$\dim\left(\mathrm{Ker}\left(\phi_{A}\right)\right)=\sum_{k=1}^{p}\mathfrak{m}_{k}^{2}.$$

 (\mathbf{d})

- Si p = 7, u admet 7 valeurs propres simples. Dans ce cas, $\dim (\operatorname{Ker} (\phi_A)) = 7 \times 1^2 = 7$.
- Si p=6, u admet 5 valeurs propres simples et une valeur propre double. dim $({\rm Ker}\,(\phi_A))=5\times 1^2+2^2=9$.
- Si p = 5.
 - ou bien u admet 4 valeurs propres simples et une valeur propre triple. Dans ce cas, $\dim (\operatorname{Ker} (\phi_A)) = 4 \times 1^2 + 3^2 = 13$.
 - ou bien u admet 3 valeurs propres simples et deux valeurs propres doubles et dim $(\mathrm{Ker}\,(\phi_A))=3\times 1^2+2\times 2^2=11.$
- Si p = 4,
 - ou bien $\mathfrak u$ admet 3 valeurs propres simples et une valeur propre d'ordre 4 et dim $(\mathrm{Ker}\,(\phi_A))=3\times 1^2+4^2=19.$
 - ou bien $\mathfrak u$ admet 2 valeurs propres simples, une double et une triple et $\dim\left(\operatorname{Ker}\left(\phi_{A}\right)\right)=2\times1^{2}+2^{2}+3^{2}=15.$
 - ou bien $\mathfrak u$ admet 1 valeur propre simple et 3 doubles et $\dim\left(\operatorname{Ker}\left(\phi_{A}\right)\right)=1^{2}+3\times2^{2}=13.$
- Si p = 3,
 - ou bien u admet 2 valeurs propres simples et une valeur propre d'ordre 5 et dim (Ker (φ_A)) = $2 \times 1^2 + 5^2 = 27$.
 - ou bien u admet 1 valeur propre simple et 2 triples et dim $(\text{Ker}(\varphi_A)) = 1^2 + 2 \times 3^2 = 19$.
 - ou bien $\mathfrak u$ admet 1 valeur propre simple, une double et une d'ordre 4 et dim $(\mathrm{Ker}\,(\phi_A))=1^2+2^2+4^2=21.$
 - ou bien u admet 2 valeurs propres doubles et une valeur propre d'ordre 3 et dim $(\text{Ker}(\phi_A)) = 2 \times 2^2 + 3^2 = 17$.
- Si p = 2,
 - ou bien $\mathfrak u$ admet 1 valeur propre simple et une valeur propre d'ordre 6 et dim $(\mathrm{Ker}\,(\phi_A))=1^2+6^2=37$.
 - ou bien $\mathfrak u$ admet 1 valeur propre double et une valeur propre d'ordre 5 et dim $(\operatorname{Ker}(\varphi_A)) = 2^2 + 5^2 = 29$.
 - ou bien $\mathfrak u$ admet 1 valeur propre triple et une valeur propre d'ordre 4 et dim $(\mathrm{Ker}\,(\phi_A))=3^2+4^2=25.$
- Si p = 1, u admet 1 valeur propre d'ordre 7. Dans ce cas, $\dim (\operatorname{Ker} (\phi_A)) = \times 7^2 = 49$.

$$\mathrm{Si}\ n=7,\ \mathrm{dim}\left(\mathrm{Ker}\left(\phi_{A}\right)\right)\in\{7,9,11,13,15,17,19,21,22,25,29,37,49\}.$$

Partie IV. Etude de vecteurs propres de ϕ_A associés à une valeur propre non nulle

12. Le résultat est clair si k = 0 ou k = 1. Soit $k \ge 2$.

$$\begin{split} \phi_{A}\left(B^{k}\right) &= AB^{k} - B^{k}A = \sum_{i=0}^{k-1} (B^{i}AB^{k-i} - B^{i+1}AB^{k-i-1}) \text{ (somme t\'elescopique)} \\ &= \sum_{i=0}^{k-1} B^{i}(AB - BA)B^{k-i-1} = \sum_{i=0}^{k-1} B^{i}(\alpha B)B^{k-i-1} = \alpha \sum_{i=0}^{k-1} B^{k} \\ &= \alpha kB^{k}. \end{split}$$

13. Posons $P = \sum_{k=0}^{m} a_k X^k$. Alors $XP' = \sum_{k=0}^{m} k a_k X^k$ puis

$$\phi_A(P(B)) = AP(B) - P(B)A = \sum_{k=0}^{m} \alpha_k (AB^k - B^k A) = \alpha \sum_{k=0}^{m} \alpha_k kB^k$$
$$= \alpha BP'(B).$$

14. Puisque $\alpha \neq 0$, $B\pi_B'(B) = \frac{1}{\alpha}\phi_A(\pi_B(B)) = \frac{1}{\alpha}\phi_A(0) = 0$. Donc le polynôme $X\pi_B'$ est annulateur de B. Ce polynôme est par suite un multiple de π_B et il existe un polynôme Q tel que $X\pi_B' = Q\pi_B$. D'autre part, les polynômes $X\pi_B'$ et π_B ont même degré non nul et donc Q est une constante K non nulle. Enfin, π_B est unitaire et le coefficient dominant de $X\pi_B'$ est d. Donc K = d et finalement

$$X\pi'_B=d\pi_B.$$

15. Soit λ une éventuelle racine complexe non nulle de π_B . On note α on ordre de multiplicité. On sait que si $\alpha=1,\,\lambda$ n'est pas racine de π'_B et si $\alpha\geqslant 2,\,\lambda$ est racine de π'_B d'ordre $\alpha-1$. Dans tous les cas, λ n'est pas racine de π'_B d'ordre α .

D'autre part, λ est racine de $d\pi_B = X\pi_B'$ d'ordre α puis, λ étant non nul, λ est racine de π_B' d'ordre α . Ceci est une contradiction et donc π_B n'admet aucun nombre complexe non nul pour racine. Comme π_B a au moins une racine dans $\mathbb C$, on en déduit que π_B est un polynôme unitaire de degré d admettant 0 pour unique racine et donc $\pi_B = X^d$.

L'égalité $\pi_B(B) = 0$ fournit

