法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:大数据分析挖掘
 - 新浪微博: ChinaHadoop

第四讲

数据可视化

--梁斌

目录

- Matplotlib
- Seaborn
- 交互式数据可视化—Bokeh
- Logistic Regression
- 项目案例:世界高峰数据可视化

目录

- Matplotlib
- Seaborn
- · 交互式数据可视化—Bokeh
- Logistic Regression
- 项目案例:世界高峰数据可视化

Matplotlib

- 用于创建出版质量图表的绘图工具库
- 目的是为Python构建一个Matlab式的绘图接口
- import matplotlib.pyplot as plt
 - pyploy模块包含了常用的matplotlib API函数

figure

- Matplotlib的图像均位于figure对象中
- 创建figure
 - plt.figure()

Subplot

- fig.add_subplot(a, b, c)
 - a,b 表示讲fig分割成axb的区域
 - c 表示当前选中要操作的区域,
 - 注意:从1开始编号

Subplot (续)

- fig.add_subplot(a, b, c)
 - 返回的是AxesSubplot对象
 - plot 绘图的区域是最后一次指定subplot的位置 (jupyter里不能正确显示)
- 在指定subplot里结合scipy绘制统计图
 - 正态分布 sp.stats.norm.pdf
 - 正态直方图 sp.stats.norm.rvs

示例代码:

01_matplotlib.ipynb,

01_matplotlib.py

Subplot (续)

- 直方图 hist
- 散点图 scatter
- 柱状图 bar
- 矩阵绘图 plt.imshow()
 - 混淆矩阵,三个维度的关系

示例代码:

01_matplotlib.ipynb,

01_matplotlib.py

plt.subplots()

- 同时返回新创建的figure和subplot对象数组
- fig, subplot_arr = plt.subplots(2,2)
- · 在jupyter里可以正常显示,推荐使用这种方式创建多个图表

示例代码:

01_matplotlib.ipynb,

01_matplotlib.py

颜色、标记、线型

- ax.plot(x, y, 'r--')
 - 等价于ax.plot(x, y, linestyle= '--' , color= 'r')

颜色

- b: blue
- g: green
- r: red
- c: cyan
- m: magenta
- y: yellow
- k: black
- · w: white

标记

marker	description
""	point
""	pixel
"o"	circle
"V"	triangle_down
" ^ "	triangle_up
"<"	triangle_left

线型

linestyle	description
'-' Or 'solid'	solid line
'' Or 'dashed'	dashed line
'' Or 'dashdot'	dash-dotted line
':' Or 'dotted'	dotted line
'None'	draw nothing
1 1	draw nothing
11	draw nothing

刻度、标签、图例

- 设置刻度范围
 - plt.xlim(), plt.ylim()
 - ax.set_xlim(), ax.set_ylim()
- 设置显示的刻度
 - plt.xticks(), plt.yticks()
 - ax.set_xticks(), ax.set_yticks()
- 设置刻度标签
 - ax.set_xticklabels(), ax.set_yticklabels()
- 设置坐标轴标签
 - ax.set_xlabel(), ax.set_ylabel()

刻度、标签、图例 (续)

- 设置标题
 - ax.set title()
- 图例
 - ax.plot(label= 'legend')
 - ax.legend(), plt.legend()
 - loc= 'best' 自动选择放置图例最佳位置

matplotlib设置

- plt.rc()
- http://matplotlib.org/users/customizing.html

目录

- Matplotlib
- Seaborn
- · 交互式数据可视化—Bokeh
- Logistic Regression
- 项目案例:世界高峰数据可视化

什么是Seaborn

- Python中的一个制图工具库,可以制作出吸引人的、信息量大的统计图
- 在Matplotlib上构建,支持numpy和pandas的数据结构可视化,甚至是 scipy和statsmodels的统计模型可视化

特点

- 多个内置主题及颜色主题
- 可视化<u>单一变量、二维变量用于比较</u>数据集中各变量的分布情况
- 可视化线性回归模型中的独立变量及不独立变量

特点(续)

- 可视化矩阵数据,通过聚类算法探究矩阵间的结构
- 可视化时间序列数据及不确定性的展示
- 可在分割区域制图,用于复杂的可视化

安装

- conda install seaborn
- pip install seaborn

数据集分布可视化

- 单变量分布 sns.distplot()
 - 直方图 sns.distplot(kde=False)
 - 核密度估计 sns.distplot(hist=False) 或 sns.kdeplot()
 - 拟合参数分布 sns.distplot(kde=False, fit=)
- 双变量分布
 - 散布图 sns.jointplot()
 - 二维直方图 Hexbin sns.jointplot(kind= 'hex')
 - 核密度估计 sns.jointplot(kind= 'kde')
- 数据集中变量间关系可视化 sns.pairplot()

示例代码: 02_seaborn.ipynb

类别数据可视化

- 类别散布图
 - sns.stripplot() 数据点会重叠
 - sns.swarmplot() 数据点避免重叠
 - hue指定子类别
- 类别内数据分布
 - 盒子图 sns.boxplot(), hue指定子类别
 - 小提琴图 sns.violinplot(), hue指定子类别
- 类别内统计图
 - 柱状图 sns.barplot()
 - 点图 sns.pointplot()

示例代码: 02_seaborn.ipynb

目录

- Matplotlib
- Seaborn
- 交互式数据可视化—Bokeh
- Logistic Regression
- 项目案例:世界高峰数据可视化

什么是Bokeh

- 专门针对Web浏览器的交互式、可视化Python绘图库
- 可以做出像D3.js简洁漂亮的交互可视化效果

特点

- · 独立的HTML文档或服务端程序
- 可以处理大量、动态或数据流
- 支持Python (或Scala, R, Julia...)
- 不需要使用Javascript

安装

- conda install bokeh
- pip install bokeh

Bokeh接口

- Charts: 高层接口,以简单的方式绘制复杂的统计图
- · Plotting: 中层接口,用于组装图形元素
- · Models: 底层接口,为开发者提供了最大的灵活性

包引用

- from bokeh.io import output_file 生成.html文档
- from boken.io import output_notebook 在jupyter中使用

bokeh.charts

- http://bokeh.pydata.org/en/latest/docs/reference/charts.html
- 散点图 Scatter
- 柱状图 Bar
- 盒子图 BoxPlot
- ...

示例代码: 03_bokeh.ipynb

bokeh.charts (续)

- 弦图 Chord
 - 展示多个节点之间的联系
 - 连线的粗细代表权重

示例代码: 03_bokeh.ipynb

bokeh.plotting

- 方框 square
- 圆形 circle
- •
- 更多图形元素参考

http://bokeh.pydata.org/en/latest/docs/reference/plotting.html

示例代码: 03_bokeh.ipynb

目录

- Matplotlib
- Seaborn
- · 交互式数据可视化—Bokeh
- Logistic Regression
- 项目案例:世界高峰数据可视化

概率(probability)

• 定义:对一件事情发生可能性的衡量

• 范围:0<=p<=1

条件概率

$$P(A|B) = rac{P(A\cap B)}{P(B)}$$

Logistic Regression (逻辑回归)

例子

$$h(x) > 0.5$$
 or $h(x) < 0.5$

Logistic Regression (逻辑回归) (续)

例子

$$h(x) > 0.2 \text{ or } h(x) < 0.2$$

基本模型

- 训练样本为: X (x₀, x₁, x₂, ..., x_n)
- 学习的参数为: Θ (θ_{θ} , θ_{1} , θ_{2} , ..., θ_{n})

$$Z = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n + \theta_n x_$$

向量表示

$$Z = \Theta^T X +$$

• Sigmoid函数将线型转换成非线性

$$g(Z) = \frac{1}{1 + e^{-Z}}$$

基本模型(续)

• 预测函数
$$h_{\theta}(X) = g(\Theta^T X) = \frac{1}{1 + e^{-\Theta^T X}}$$

- 用概率的形式表示
 - \circ 正样本 $h_{\theta}(X) = P(y=1|X;\Theta)$
 - \circ 负样本 $1-h_{\theta}(X) = P(y=0 | X; \Theta)$
- 损失函数

$$Cost(h_{\Theta}(X), y) = \begin{cases} -\log(h_{\Theta}(X)) \text{ when } y = 1\\ -\log(1 - h_{\Theta}(X)) \text{ when } y = 0 \end{cases}$$

$$J(\Theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\Theta}(x^{(i)}), y^{(i)}) = -\frac{1}{m} \left[\sum_{i=1}^{m} \left(y^{(i)} \log(h_{\Theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\Theta}(x^{(i)})) \right) \right]$$

• 目标:通过训练样本求出参数theta使损失函数最小化

基本模型 (续)

• 解法:梯度下降 (gradient descent)

Gradient Descent

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta), (j = 0...n) +$$

更新方式:

$$\theta_j = \theta_j - \alpha \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}, (j = 0...n)$$

- alpha: 学习率
- 同时更新所有theta
- 迭代更新直到收敛

目录

- Matplotlib
- Seaborn
- · 交互式数据可视化—Bokeh
- Logistic Regression
- 项目案例:世界高峰数据可视化

项目案例

项目介绍

• 项目地址: https://www.kaggle.com/abcsds/highest-mountains

项目任务

• 可视化高峰数据

涉及知识点

• Matplotlib 数据可视化

参考

Matplotlib示例库
 http://matplotlib.org/gallery.html

• Matplot线型
http://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D.set_linestyle

Matplotlib标记
 http://matplotlib.org/api/markers_api.html

Seaborn教程

http://seaborn.pydata.org/tutorial.html

• 利用Seaborn可视化数据分布

http://seaborn.pydata.org/tutorial/distributions.html

参考

• Bokeh教程

http://nbviewer.jupyter.org/github/bokeh/bokehnotebooks/blob/master/tutorial/00%20-%20intro.ipynb

Logistic Regression 模型简介
 http://tech.meituan.com/intro_to_logistic_regression.html

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

小象问答 @Robin_TY

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

