Exercise Set 6.1

Exercise01

a.

$$A = \{2, \{2\}, \sqrt{2}^2\}, B = \{2, \{2\}, \{\{2\}\}\}$$

Phân tích:

- $ullet \sqrt{2}^2=2$, nên phân tử này không làm cho A khác biệt so với B .
- $\{2\}$ có mặt trong cả hai tập A và B.
- * Tuy nhiên, $\{\{2\}\}$ là một tập hợp chứa tập hợp $\{2\}$, có trong B nhưng không có trong A.

Kết luận:

- * A không phải là tập con của B vì không chứa $\{\{2\}\}$.
- * B không phải là tập con của A vì chứa $\{\{2\}\}$, mà không có trong A.
- Không có tập nào là tập con thực sự của tập kia.

b.

$$A = \{3, \sqrt{5^2 - 4^2} \mod 7\}, B = \{8 \mod 5\}$$

Phân tích:

•
$$\sqrt{5^2 - 4^2} = \sqrt{9} = 3 \mod 7 = 3$$
.

- 8 $\mod 5 = 3$.
- A và B đều chứa số 3.

Kết luận:

- * A không phải là tập con của B vì chứa phân tử mà B không có.
- * B là tập con của A vì mọi phân tử của B đều có trong A.
- ullet B là tập con thực sự của A vì A có thêm phần tử không có trong B.

C.

$$A=\{\{1\},2\}, B=\{1,2,3\}$$

Phân tích:

- Tập A chứa tập hợp $\{1\}$ như một phần tử, trong khi B chứa số 1 như một phần tử.
- Số 2 có trong cả A và B.

Kết luận:

- * A không phải là tập con của B vì chứa $\{1\}$, không phải là phân tử của B.
- ullet B không phải là tập con của A vì có phân tử mà A không có.
- Không có tập nào là tập con thực sự của tập kia.

d.

$$A = \{a,b,c\}, B = \{\{a\},\{b\},\{c\}\}$$

Phân tích:

• Các phân tử a,b,c trong A là các phân tử đơn lẻ, trong khi B chứa các tập hợp của các phân tử này.

Kết luận:

- ${\boldsymbol A}$ không phải là tập con của ${\boldsymbol B}$ và ngược lại.
- Không có tập nào là tập con thực sự của tập kia.

e.

$$A = \{\sqrt{16}, \{4\}\}, B = \{4\}$$

Phân tích:

- $\sqrt{16}=4$, vì vậy số này có mặt trong cả A và B.
- * Tuy nhiên, $\{4\}$ là một tập hợp có phân tử 4, có trong A nhưng không giống với phân tử 4 trong B

Kết luận:

- A không phải là tập con của B vì có thêm tập hợp $\{4\}$.
- \bullet B là tập con của A vì mọi phân tử trong B đều có trong A.
- B là tập con thực sự của A vì A có thêm phân tử $\{4\}$ không có trong B.

f.

$$A = \{x \in \mathbb{R} \mid \cos(x) \in \mathbb{Z}\}, B = \{x \in \mathbb{R} \mid \sin(x) \in \mathbb{Z}\}\$$

Phân tích:

- Giá trị của hàm cosin và sin chỉ nhận giá trị nguyên khi x là các bội số của $\pi/2$.
- * Cả hàm cosin và sin đều chỉ nhận các giá trị nguyên là -1,0,1.

Kết luận:

- A và B chứa cùng một tập hợp các giá trị x mà tại đó cosin và sin có giá trị nguyên.
- A=B vì cả hai đều chứa đúng cùng một tập hợp các giá trị.
- Do đó, không có tập nào là tập con thực sự của tập kia.

Exercise02

$$A=\{m\in\mathbb{Z}\mid m=2a ext{ cho một số nguyên }a\}$$
và
$$B=\{n\in\mathbb{Z}\mid n=2b-2 ext{ cho một số nguyên }b\}$$

Để chứng minh $B\subseteq A$, ta lấy một phân tử bất kỳ n thuộc B. Vi n=2b-2, ta có thể viết lại n dưới dạng n=2(b-1). Lưu ý răng b-1 cũng là một số nguyên vì b là một số nguyên. Do đó, n có thể được viết dưới dạng số gấp đôi của một số nguyên khác, điều này chứng tỏ n thuộc về A. Vì chúng ta bắt đầu từ một phân tử bất kỳ của B và chứng minh nó thuộc A, ta kết luận rằng mọi phân tử của B đều thuộc A, tức là $B\subseteq A$.

Câu 10

	Operation	Result
a.	$A \cup B$	$\{1, 3, 5, 6, 7, 9\}$
b.	$A\cap B$	${3,5,7}$
c.	$A \cup C$	$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
d.	$A\cap C$	{} (tập rống vì không có phân tử chung)
e.	A - B	$\{1, 9\}$
f.	B-A	{6}
g.	$B \cup C$	$\{2, 3, 4, 5, 6, 8, 9\}$
h.	$B\cap C$	$\{4, 6, 8\}$

Câu 11:

- **a.** $A \cup B$: Hợp của A và B sế bao gồm tất cả các số thực từ 0 đến dưới 4.
- **b.** $A\cap B$: Giao của A và B sế bao gồm tất cả các số thực từ 0 đến dưới 2.
- ${f c.}~A^c$: Phân bù của A sẽ là tất cả các số thực nhỏ hơn 0 hoặc lớn hơn hoặc bằng ${f 2.}$
- **d.** $A \cup C$: Hợp của A và C sế bao gồm tất cả các số thực từ 0 đến dưới 9.
- ${f e.}~A\cap C$: Giao của A và C là tập rống vì không có khoảng chung nào giữa A và C.
- **f.** B^c : Phân bù của B sẽ là tất cả các số thực nhỏ hơn -1 hoặc lớn hơn hoặc băng 2.
- **g.** $A^c \cap B^c$: Giao của phân bù của A và phân bù của B sế bao gồm các số thực nhỏ hơn -1 hoặc lớn hơn hoặc băng 4.
- **h.** $(A \cup B)^c$: Phân bù của hợp A và B sế bao gồm các số thực nhỏ hơn 0 hoặc lớn hơn hoặc bằng 4.

Câu 12:

- **a.** $A \cup B$: Hợp của A và B sế bao gồm tất cả các số thực từ -3 đến dưới 2.
- **b.** $A\cap B$: Giao của A và B sế bao gồm các số thực lớn hơn -1 và nhỏ hơn 0.
- **c.** A^c : Phân bù của A sẽ là các số thực nhỏ hơn -3 hoặc lớn hơn hoặc băng 0.
- **d.** $A \cup C$: Hợp của A và C sế bao gồm các số thực từ -3 đến dưới 8.
- $\mathbf{e.}\ A\cap C$: Giao của A và C là tập rống vì không có khoảng chung giữa hai tập hợp này.
- **f.** B^c : Phân bù của B sế bao gồm các số thực nhỏ hơn hoặc băng -1 hoặc lớn hơn hoặc băng 2.
- **g.** $A^c\cap B^c$: Giao của phân bù của A và phân bù của B sế bao gồm các số thực nhỏ hơn hoặc băng -3 và lớn hơn hoặc băng 2.
- **h.** $A^c \cup B^c$: Hợp của phân bù của A và phân bù của B sế bao gồm tất cả các số thực trừ khoảng từ -1 đến dưới 2.
- i. $(A\cap B)^c$: Phân bù của giao A và B sế bao gồm tất cả các số thực không năm trong khoảng từ -1 đến dưới 0.

Exercise Set 6.3

- 1. Phát biểu: $(A \cap B) \cup C = A \cap (B \cup C)$.
 - Phản ví dụ: Giả sử $A = \{1\}, B = \{2\}, C = \{1,2\}.$
 - $(A \cap B) \cup C = (\{1\} \cap \{2\}) \cup \{1,2\} = \emptyset \cup \{1,2\} = \{1,2\}.$
 - $A \cap (B \cup C) = \{1\} \cap (\{2\} \cup \{1,2\}) = \{1\} \cap \{1,2\} = \{1\}.$
 - ullet $\{1,2\}
 eq \{1\}$, do đó phát biểu là sai.
- 2. Phát biểu: $(A \cup B)^c = A^c \cup B^c$.

Phản ví dụ: Giả sử $U = \{1, 2, 3\}, A = \{1\}, B = \{2\}.$

- $(A \cup B)^c = (\{1\} \cup \{2\})^c = \{1, 2\}^c = \{3\}.$
- $A^c \cup B^c = \{1\}^c \cup \{2\}^c = \{2,3\} \cup \{1,3\} = \{1,2,3\}.$
- $\{3\}
 eq \{1,2,3\}$, do đó phát biểu là sai.
- 3. Phát biểu: Nếu $A \not\subseteq B$ và $B \not\subseteq C$ thì $A \not\subseteq C$.

Phản ví dụ: Giả sử $A = \{1, 2\}, B = \{2, 3\}, C = \{1, 2, 3\}.$

- A không là tập con của B vì A có phân tử 1 không thuộc B.
- B không là tập con của C vì B và C giống nhau (trong trường hợp này giả định là sai nhưng ta vấn sử dụng để xem xét).
- Tuy nhiên, A là tập con của C.
- Do đó phát biểu là sai.
- 4. Phát biểu: Nếu $B\cap C\subseteq A$ thì $(A-B)\cap (A-C)=\emptyset$.

Phản ví dụ: Giả sử $A = \{1, 2\}, B = \{2\}, C = \{2\}.$

- $B \cap C = \{2\} \subseteq A$.
- $A B = \{1, 2\} \{2\} = \{1\}.$
- $A-C=\{1,2\}-\{2\}=\{1\}.$
- $(A B) \cap (A C) = \{1\} \cap \{1\} = \{1\} \neq \emptyset.$
- · Do đó phát biểu là sai.

Exercise Set 1.2

Câu 8:

- **a.** $B\subseteq A$? Không. B không là tập con của A vì B chứa phân tử 'j', không có trong A.
- **b.** $C\subseteq A$? Có. C là tập con của A vì mọi phân tử của C đều có trong A.
- **b.** $C\subseteq C$? Có. Mọi tập hợp đều là tập con của chính nó.
- ${\bf d.} \ C \ {\rm la} \ {\rm tập} \ {\rm con} \ {\rm thực} \ {\rm sự} \ {\rm của} \ A? \ {\rm C\acute{o}}. \ C \ {\rm la} \ {\rm tập} \ {\rm con} \ {\rm thực} \ {\rm sự} \ {\rm của} \ A \ {\rm vì} \ C \ {\rm chứa} \ {\rm ft} \ {\rm phân} \ {\rm tử} \ {\rm hơn} \ {\rm và} \ {\rm tất} \ {\rm cảc} \ {\rm các} \ {\rm phân} \ {\rm tử} \ {\rm của} \ C \ {\rm dêu} \ {\rm c\acute{o}} \ {\rm trong} \ A.$

Câu 9:

- **a.** $3 \in \{1, 2, 3\}$? Có. Số 3 là một phân tử của tập hợp này.
- **b.** $1\subseteq\{1\}$? Không. 1 không phải là tập con của $\{1\}$ nhưng là một phân tử của nó.
- $\mathbf{c.}\{2\} \in \{1,2\}$? Không. $\{2\}$ là tập con của $\{1,2\}$ nhưng không phải là phân tử của nó.
- **d.** $\{3\} \in \{1,\{2\},\{3\}\}$? Có. $\{3\}$ là một phần tử của tập hợp này.
- $\mathbf{e.}\,\mathbf{1}\!\in\{1\}$? Có. Số 1 là một phân tử của tập hợp này.
- f. $\{2\}\subseteq\{1,\{2\},\{3\}\}$? Không. $\{2\}$ không là tập con của $\{1,\{2\},\{3\}\}$ nhưng là một phân tử của nó.
- **g.** $\{1\}\subseteq\{1,2\}$? Có. $\{1\}$ là tập con của $\{1,2\}$.
- **h.** 1 $\in \{\{1\}, 2\}$? Không. Số 1 không phải là một phân tử của tập hợp này; $\{1\}$ là phân tử.
- i. $\{1\}\subseteq\{1,\{2\}\}$? Không. $\{1\}$ không phải là tập con của $\{1,\{2\}\}$ nhưng là một phân tử của nó.
- j. $\{1\}\subseteq\{1\}$? Có. $\{1\}$ là tập con của chính nó.