

Phase-1 Submission

Student Name: Christina Ryka S

Register Number: 410723104011

Institution: Dhanalakshmi college of engineering

Department: Computer Science and Engineering

Date of Submission: 28-04-2025

1.Problem Statement

AI - POWERED DISEASE PREDICTION

Transforming healthcare with Al-powered disease prediction based on patient data.

2. Objectives of the Project

Project Objective:

To develop an Al-powered system that predicts the risk of diseases using patient data, enabling early diagnosis, personalized care, and better clinical outcomes.

Key Outcomes:

- Train machine learning models to predict diseases based on patient demographics, medical history, and lifestyle factors.
- Classify patients into risk categories for targeted intervention.
- Identify key predictors influencing disease risk.
- Evaluate model accuracy using metrics like precision, recall, and AUC.
- Provide a decision-support tool for clinicians with risk insights and recommendations.

3. Scope of the Project

Features to Analyse/Build:

1. Demographics:

o Age, gender, ethnicity, location

2. Medical History:

 Past diagnoses, family history of diseases, previous hospitalizations

3. Vital Signs & Clinical Metrics:

o Blood pressure, heart rate, BMI, cholesterol, glucose levels

4. Lab Test Results:

o Blood work, urinalysis, liver/kidney function tests

5. Lifestyle Factors:

o Smoking status, alcohol consumption, physical activity, diet

6. Medication & Treatment History:

- Current/past prescriptions, treatment adherence
- 7. Genetic or Genomic Data (if available)
- 8. Time-Series Data (for longitudinal analysis):
 - Trends in vitals or lab values over time

1. Data Constraints:

o Use of publicly available or anonymized datasets (e.g., MIMIC-III,

UCI Health datasets)

o Missing or imbalanced data may affect model performance

2. Model Constraints:

- Limited to interpretable models if required by clinical partners (e.g., logistic regression, decision trees)
- Avoid black-box models unless explainability techniques (e.g., SHAP, LIME) are applied

3. Deployment Constraints:

- Prototype may not be deployed in real clinical settings without regulatory approval (e.g., FDA clearance)
- Compliance with data privacy laws (e.g., HIPAA, GDPR)

4. Tool Constraints:

- Development limited to Python-based frameworks (e.g., scikitlearn, TensorFlow, PyTorch)
- o Visualization using tools like Streamlit, Dash, or Power BI

4.Data Sources

III Dataset Description:

Dataset Name : Healthcare Dataset

Source : Kaggle

Accessibility: PublicType: Static

5. High-Level Methodology

• Data Collection - The dataset will be obtained through direct download from

publicly available source Kaggle for disease diagnosis.

- Data Cleaning Identify potential issues such as missing values, duplicates, or inconsistent formats.
- Exploratory Data Analysis (EDA)
 - Predictive Modeling & Risk Analysis
 - Techniques:
 - Logistic regression, decision trees, or random forests for predicting disease risk.
 - 2. Survival analysis (e.g., Kaplan-Meier curves) for analyzing time to event (e.g., time until readmission).
 - Visualizations:
 - 1. ROC curves / AUC plots to evaluate model performance.
 - 2. Survival curves to compare patient outcomes by treatment groups.
- Model Building
 - Supervised Learning
- 1. Logistic Regression Simple, interpretable, great for binary outcomes.
- 2. Random Forest Handles non-linear data, robust to noise.
- 3. XGBoost/LightGBM High accuracy, handles complex patterns well.
- 4. **SVM** Good for high-dimensional classification.
- 5. Neural Networks Flexible, good for large and complex datasets.
 - Unsupervised Learning
- 6. K-Means Fast and effective for patient clustering.
- 7. Hierarchical Clustering Useful for exploring group hierarchies.
- 8. PCA Reduces dimensionality, reveals hidden patterns.
 - **Survival Analysis**
- 9. **Kaplan-Meier** Estimates survival over time.
- 10. Cox Model Assesses impact of risk factors on outcomes.
 - Deep Learning (for Images/Text)
- 11. CNNs Best for medical image analysis.
- 12. Transformers (e.g., BERT) Excellent for clinical text mining.

Model Evaluation –

- **Metrics**
- 1. Classification: Accuracy, Precision, Recall, F1 Score, ROC-AUC
- 2. Regression: MAE, RMSE, R²
- 3. Survival: C-index, Log-rank Test
- 4. Clustering: Silhouette Score, Clinical relevance
 - Validation Strategies
- 5. **Train-Test Split** Simple, quick check
- 6. k-Fold CV / Stratified k-Fold Robust, keeps class balance
- 7. **Time Series Split** For time-dependent data
- 8. **Bootstrapping** Good for uncertainty estimation
- Visualization & Interpretation
 - **Visualization & Interpretation**
- 1. Charts: Line, bar, scatter, boxplots, heatmaps
- 2. Dashboards: Interactive summaries (e.g., Power BI, Tableau)
- 3. Model Explainers: SHAP, LIME, feature importance
- 4. Reports: Clear visuals + insights for stakeholders

6. Tools and Technologies

- **Programming Language** The main language we use is Python.
- Notebook/IDE –The platform we use is Google Colob.
- Libraries The libraries we use is pandas, NumPy, seaborn, matplotlib.

7. Team Members and Roles

S.No	NAME	ROLE
1	Agnes Selestina S	Data Collection, Data Cleaning

2	Christina Ryka S	Visualization & Interpretation
3	Jeevikasri R	Exploratory Data Analysis (EDA), Feature Engineering
4	Keerthana R	Model Building, Model Evaluation