UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA

EXAMEN DE INGRESO 2 2014 ARITMETICA -ALGEBRA FINAL - F1 **SOLUCIONARIO**

1.	Si N	1 es el	mínimo	común	múltiplo	de los	números	1200.	660 v	720 .	entonces se	e verifica	aue

A) 34000 < M < 36000	B) $36000 < M < 38000$	C) $38000 < M < 40000$	D) $40000 < M < 42000$	E)
Ninguno				

Soluci'on

1200	660	720	2
600	330	360	2
300	165	180	3
100	55	60	5
20	11	12	2
10		6	2
5		3	3
		1	5
1			11
		1	

$$M = 2 \times 2 \times 3 \times 5 \times 2 \times 2 \times 3 \times 5 \times 11 = 39600$$

La respuesta es ${\bf C}$

2. 6 hombres trabajando durante 15 días, a razón de 8 horas diarias han realizado la mitad de una obra. Si se refuerzan con 4 hombres (haciendo un total de 10 hombres) y solo trabajan 6 horas diarias, ¿dentro de cuántos días más terminarán la obra?.

- A) 10 días
- B) 12 días
- C) 15 días
- D) 16 días
- E) Ninguno

Soluci'on

La respuesta es ${f B}$

- 3. Un depósito de agua de 6800 litros está vacío y se llenará de agua abriendo 2 grifos. El primer grifo vierte 250litros en 10 minutos y el segundo 300 litros en 5 minutos. ¿En qué tiempo se llenará el depósito si se abren los dos grifos al mismo tiempo?
 - A) en menos de 1 hora
- B) 1 hora y 20 minutos C)1 hora y media D) en más de 2 horas
- E) Ninguno

Solución

El primer grifo vierte 25 litros en 1 minuto. El segundo grifo vierte 60 litros en 1 minuto.

Los 2 grifos abiertos al mismo tiempo vertirán 85 litros en 1 minuto.

Entonces $6800 \div 85 = 80$ minutos se tardará en llenar el depósito; o que es lo mismo 1 hora y 20 minutos La respuesta es ${\bf B}$

4. Si (a,b,c) es solución del sistema

$$2x - y + z = 5$$

$$x + 3y - 2z = 3$$

$$3x - 2y + 4z = 16$$

entonces la suma S = a + b + c verifica

- A) S=7
- B) S = 9
- C) S = 11
- D) S = 5
- E) Ninguno

Soluci'on.

(1) Multiplicando la segunda ecuación por (-2) y sumando a la primera se obtiene:

$$-7y + 5z = -1 \qquad (*)$$

(2) Multiplicando la segunda ecuación por (-3) y sumando a la tercera se obtiene:

$$-11y + 10z = 7 \quad (**)$$

(3) Multiplicando la ecuación (*) por (-2) y sumando a la ecuación (**) se obtiene:

$$3y = 9$$
; de donde $y = 3$

- (4) Reemplazando el valor de y en la ecuación (*) se obtiene z=4
- (5) Reemplazando los valores de y , z en una de las ecuaciones del sistema original, se obtiene x=2

$$S = 2 + 3 + 4 = 9$$

La respuesta es B.

 $sen^2(2x) = 2 sen^2(x)$ $\left[2 \operatorname{sen}(x) \left(\cos(x) \right)^{2} - 2 \operatorname{sen}^{2}(x) = 4 \operatorname{sen}^{2}(x) \cos^{2}(x) - 2 \operatorname{sen}^{2}(x) = 0\right]$ $[2 \cos^2(x) - 1] \sin^2(x) = 0$

la suma es: 900°

 $Sen^2(x) = 0 \Rightarrow x = 0, 180$

 $\cos^2(x) = \frac{1}{2} \implies \cos(x) = \pm \frac{\sqrt{2}}{2}$

2=45°, 315°, 135°, 225°

$$\begin{array}{ccc} 3-C=\alpha \\ 3+C=90 \end{array} \Rightarrow \begin{array}{ccc} B=\frac{90+\alpha}{2} & C=\frac{90-\alpha}{2} \end{array}$$

,	d	B	C	BxC
	22	56	34	1904
				1

$$\frac{\sqrt{3}}{\frac{2}{2}}a - 2x = \frac{\sqrt{3}}{2}x = \sqrt{3}$$

$$\frac{\sqrt{3}a - 4x}{x} = \sqrt{3} \implies \sqrt{3}a - 4x = \sqrt{3}x$$

$$x = \frac{\sqrt{3}a}{4 + \sqrt{3}} \cdot \frac{4 - \sqrt{3}}{4 - \sqrt{3}} = \frac{a(4\sqrt{3} - 3)}{16 - 3} = \frac{a(4\sqrt{3} - 3)}{13}$$

Si
$$\alpha = 13 \Rightarrow \alpha = \frac{13(4\sqrt{3}-3)}{18} = 4\sqrt{3}-3$$

$$(a+2r)^{2} = (a+r)^{2} + a^{2}$$

$$a^{2} + 4ar + 4r^{2} = a^{2} + 2ar + r^{2} + a^{2}$$

$$a^{2} - 2ar - 3r^{2} = 0$$

$$(a - 3r)(a+r) = 0$$

$$a = 3r$$

$$(a = -r)$$

$$A = \frac{1}{2}(a+r)a = \frac{1}{2}(4r)3r = 6r^{2}$$

Si
$$r=4 \Rightarrow A=96$$

Fila 1

Fila 1 $\vec{A} = 2\hat{1} - 3\hat{1} + \hat{K} ; \vec{B} = -\hat{1} + 2\hat{1} + \hat{K} ; \vec{C} = -3\hat{1} - 2\hat{1} - 2\hat{K}$ $V = \begin{vmatrix} 2 & -3 & 1 \\ -1 & 2 & 1 \\ -3 & -2 & -2 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ -2 - 2 \end{vmatrix} 2 - \begin{vmatrix} -1 & 1 \\ -3 - 2 \end{vmatrix} (-3) + \begin{vmatrix} -1 & 2 \\ -3 - 2 \end{vmatrix} (1)$ = (-4+2) 2 - (2+3)(-3) + (2+6) = -4 + 15 + 8 = 19 $V = 19 \frac{3}{4}$

Rta (b)

Fila 1

$$T_{2} = T_{2}$$

$$T_{1} = 2T_{2}$$

$$T_{1} = 2T_{2}$$

$$T_{2} = 60$$

$$T_{2} = 30$$

$$T_{2} = 30$$

$$T_{3} = 30$$

$$T_{4} = 30$$

$$T_{2} = 30$$

$$T_{5} = 30$$

$$T_{7} = 30$$

$$T_{8} = 30$$

$$T_{9} = 30$$

$$W = T_2 = 30$$
 $mg = 30 \longrightarrow [m = 3 \text{ Kg}]$

F11)

$$m = 2kg$$
 $V = 12m/s$
 $R = 6m$

$$M = \frac{mV^2}{R}$$
 $N = \frac{mV^2}{R} - \frac{mg}{R}$
 $N = \frac{V^2}{R} - \frac{gH}{6}$
 $N = \frac{2(\frac{14H}{6} - 16)}{8H}$
 $N = \frac{2(\frac{14H}{6} - 16)}{8H}$

Rta (d)

$$m(10)6 = \frac{1}{2}m(10)4^{2} = \frac{1}{2}m(10)4^{$$

EXAMEN DE INGRESO QUÍMICA

Fila 1

Q13.-¿En cuál de los siguientes compuestos no se cumple la regla del octeto para el átomo central?

A) CO₂

B) NF₃

C) OF₂

D) PF₅

E) Todos cumplen

Solución:

Realizando la estructura de Lewis para PF₅, se demuestra que no cumple con la regla del octeto

Q14.- Dados los conjuntos siguientes de números cuánticos electrónicos, indique el conjunto que no puede tener lugar:

A) 3, 0, 0, -1/2

B) 2, 2, 1,-1/2

C) 3, 2, 1, +1/2

D) 3, 1, 1,+1/2

E) Ninguno

Solución: Para el segundo nivel no existe el orbital "d"

Q15.- Para la reacción:

$$Al + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2$$

Calcular los moles de gas hidrógeno cuando reaccionan 270 g de aluminio puro, si el rendimiento de la reacción del 80%.

A) 12

B) 15

C) 40

D) 8

E) Ninguno

Solución:

$$2Al + 3 H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$$

$$270 \text{ g Al} \times \frac{1 \text{ mol Al}}{27 \text{ g Al}} \times \frac{3 \text{ mol } H_2}{2 \text{ mol Al}} \times \frac{80\%}{100\%} = 12 \text{ moles } H_2$$

Q16.- ¿Cuántos gramos de Hidróxido de sodio estarían presentes en 200 ml de solución de hidróxido de sodio de concentración 2,5 N?

A) 8

B) 16

C) 19

D) 20

E) Ninguno

Solución:

$$200 \ ml \ solución \times \frac{2,5 \ equiv. \ NaOH}{1000 \ ml \ solución} \times \frac{1 \ mol \ NaOH}{1 \ equiv. \ NaOH} \times \frac{40 \ g \ NaOH}{1 mol \ NaOH} = 20 \ g \ NaOH$$