Prof. Dr. Anne Frühbis-Krüger Dr. Bernd Schober

Präsenzaufgabenblatt – Zusatztutorium 3

keine Abgabe!

Die Termine für den zweiten Block der klausurvorbereitenden Tutorien sind:

- Dienstag 07.01.2020, von 18:00-20:00 Uhr, im Raum W02 1-148 und
- Mittwoch 08.01.2020, von 18:00–20:00 Uhr, im Raum W03 1-156

In diesem Zusatztutorium werden die folgenden Themen behandelt:

Untervektorräume, Basen, lineare Abbildungen, Rang, Urbild, Bild, Kern, Dimensionsformel, Basiswechsel.

Präsenzaufgabe z.10. (a). Sei K ein Körper. Betrachten Sie die Menge

$$U := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in K^4 \mid x_1 + x_2 = x_3 + x_4 \text{ und } x_1 + x_3 = x_2 + x_4 \right\} \subset K^4$$

Zeigen Sie, dass U ein Untervektorraum von K^4 ist und bestimmen Sie dim(U).

(b). Sei $K := \mathbb{Z}/p\mathbb{Z}$. Betrachten Sie die Menge

$$W := \{a + (a - b)x + bx^2 \mid a, b \in K\} \subset K[x]_{\le 2}$$

Zeigen Sie, dass W ein Untervektorraum von $K[x]_{\leq 2}$ ist, konstruieren Sie einen Isomorphismus $K^2 \to W$ und bestimmen Sie dim(W).

Präsenzaufgabe z.11. Sei
$$\lambda \in \mathbb{R}$$
 $A_{\lambda} := \begin{pmatrix} -\lambda & 0 & -2 \\ 1 & 2-\lambda & 1 \\ 1 & 0 & 3-\lambda \end{pmatrix} \in \mathbb{R}^{3 \times 3}$.

- (a). Berechnen Sie rang (A_{λ}) und dim $(\text{Ker}(A_{\lambda}))$ in Abhängigkeit von λ .
- (b). Betrachten Sie den Fall $\lambda = 1$. Bestimmen Sie aus den Spaltenvektoren von A_1 eine Basis für den Spaltenraum $SR(A_1)$ und ergänzen Sie diese ggf. zu einer Basis von \mathbb{R}^3 . Berechnen Sie weiter eine Basis für $Ker(A_1)$.
- (c). Betrachten Sie den Fall $\lambda=0$. Bestimmen Sie aus den Spaltenvektoren von A_0 eine Basis für den Spaltenraum $\mathrm{SR}(A_0)$ und ergänzen Sie diese ggf. zu einer Basis von \mathbb{R}^3 . Berechnen Sie weiter eine Basis für $\mathrm{Ker}(A_0)$.

Präsenzaufgabe z.12. (a). Sei $\alpha \in \mathbb{Q}$ und $F_{\alpha} : \mathbb{Q}^3 \to \mathbb{Q}^3$ die Abbildung gegeben durch

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_1 - x_2 + (2\alpha - \frac{1}{3})x_3 \\ x_1 + x_2 + (3\alpha - \frac{1}{2})x_3 \\ -x_1 + \alpha x_2 \end{pmatrix}$$

Zeigen Sie, dass F_{α} eine lineare Abbildung ist. Für welche Werte von α ist F_{α} ein Isomorphismus?

(b). Betrachten Sie nun den Fall $\alpha = \frac{1}{6}$. Seien $U_0 := \operatorname{Span}_{\mathbb{Q}}\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}$) und $U_1 := \operatorname{Span}_{\mathbb{Q}}\begin{pmatrix} 0\\12\\-5 \end{pmatrix}$). Bestimmen Sie eine Basen für $\operatorname{Im}(F)$, $F(U_0)$ und $F^{-1}(U_1)$.

Präsenzaufgabe z.13. Seien K ein Körper und V, W endlich-dimensionale K-Vektorräume. Seien $\mathcal{B} := (\vec{b}_1, \dots, \vec{b}_n)$ eine Basis von V und $\mathcal{C} := (\vec{c}_1, \dots, \vec{c}_m)$ eine Basis von W. Angenommen: n = m + 1. Betrachten Sie die K-lineare Abbildung $G: V \to W$ definiert durch

$$G(\vec{b_i}) := \begin{cases} \vec{c_1} + \ldots + \vec{c_i} & \text{falls } i \leq m \\ \vec{c_1} - \vec{c_2} - \ldots - \vec{c_m} & \text{falls } i = m + 1. \end{cases}$$

- (a). Zeigen Sie, dass $\mathcal{C}' := (G(\vec{b}_1), \dots, G(\vec{b}_m))$ eine Basis von W ist und drücken Sie $\vec{c}_1, \dots, \vec{c}_m$ als K-Linearkombination der Vektoren der Basis \mathcal{C}' aus.
- (b). Die Wahl der Basis \mathcal{B} liefert einen Isomorphismus $\phi \colon K^n \to V$ und die Wahl der Basis \mathcal{C} liefert einen Isomorphismus $\psi \colon W \to K^m$. Bestimmen Sie die Matrix Q, welche durch die Abbildung $\psi \circ G \circ \phi \colon K^n \to K^m$ gegeben ist. Folgern Sie hieraus, ob G injektiv, surjektiv, bijektiv oder keines davon ist.

Präsenzaufgabe z.14. (a). Betrachten Sie die folgenden Basen des \mathbb{R}^3 :

$$\mathcal{B}_1 := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}) \quad \text{und} \quad \mathcal{B}_2 := \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}).$$

Berechnen Sie die Basiswechselmatrizen $M_{\mathcal{B}_2}^{\mathcal{B}_1}(\mathrm{id}_{\mathbb{R}^3})$.

(b). Seien K ein Körper und V ein endliche-dimensionaler K-Vektorraum. Sei $\mathcal{V}_0 := (\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$ eine Basis von V. Zeigen Sie, dass $\mathcal{V}_1 := (\vec{v}_1, \vec{v}_2 - \vec{v}_1, \dots, \vec{v}_n - \vec{v}_1)$ ebenfalls eine Basis von V ist und bestimmen Sie die Basiswechselmatrizen $M_{\mathcal{V}_1}^{\mathcal{V}_0}(\mathrm{id}_V)$ und $M_{\mathcal{V}_0}^{\mathcal{V}_1}(\mathrm{id}_V)$.

Anmerkung: Die folgende Aufgabe ist etwas anspriuchsvoller als die vorherigen, sie ist aber noch immer auf Klausurniveau.

Präsenzaufgabe z.15. Sei K ein Körper und $A, B \in K^{n \times n}$. Für $\lambda \in K$ definieren wir

$$V_{\lambda} := \{ \vec{v} \in K^n \mid A\vec{v} = \lambda \vec{v} \} \quad \text{ und } \quad W_{\lambda} := \{ \vec{v} \in K^n \mid B\vec{v} = \lambda \vec{v} \}$$

Seien $F_A \colon K^n \to K^n$ und $F_B \colon K^n \to K^n$ die linearen Abbildungen bzgl. der Standardbasis definiert durch A bzw. B.

Beweisen Sie: Gibt es $\lambda, \mu \in K$ mit $F_A(V_\lambda) \cap W_\mu \neq \{\vec{0}\}$, so ist rang $(B \cdot A - (\lambda \mu) \cdot E_n) < n$.