

- Secara umum, model Multi-Attribute Decision Making (MADM) dapat didefinisikan sebagai berikut (Zimermann, 1991):
 - Misalkan A = {a_i | i = 1,...,n} adalah himpunan alternatif-alternatif keputusan dan C = {c_j | j = 1,..., m} adalah himpunan tujuan yang diharapkan, maka akan ditentukan alternatif a_i yang memiliki derajat harapan tertinggi terhadap tujuan-tujuan yang relevan c_i.

- Janko (2005) memberikan batasan tentang adanya beberapa fitur umum yang akan digunakan dalam MADM, yaitu:
 - Alternatif, adalah obyek-obyek yang berbeda dan memiliki kesempatan yang sama untuk dipilih oleh pengambil keputusan.
 - Atribut, sering juga disebut sebagai karakteristik, komponen, atau kriteria keputusan. Meskipun pada kebanyakan kriteria bersifat satu level, namun tidak menutup kemungkinan adanya sub kriteria yang berhubungan dengan kriteria yang telah diberikan.

- Konflik antar kriteria, beberapa kriteria biasanya mempunyai konflik antara satu dengan yang lainnya, misalnya kriteria keuntungan akan mengalami konflik dengan kriteria biaya.
- **Bobot keputusan**, bobot keputusan menunjukkan kepentingan relatif dari setiap kriteria, W = $(w_1, w_2, ..., w_n)$. Pada MADM akan dicari bobot kepentingan dari setiap kriteria.
- Matriks keputusan, suatu matriks keputusan X yang berukuran m x n, berisi elemen-elemen x_{ij}, yang merepresentasikan rating dari alternatif A_i (i=1,2,...,m) terhadap kriteria C_i (j=1,2,...,n).

- Masalah MADM adalah mengevaluasi m alternatif A_i (i=1,2,...,m) terhadap sekumpulan atribut atau kriteria C_j (j=1,2,...,n), dimana setiap atribut saling tidak bergantung satu dengan yang lainnya.
- Kriteria atau atribut dapat dibagi menjadi dua kategori, yaitu:
 - Kriteria keuntungan adalah kriteria yang nilainya akan dimaksimumkan, misalnya: keuntungan, IPK (untuk kasus pemilihan mahasiswa berprestasi), dll.
 - Kriteria biaya adalah kriteria yang nilainya akan diminimumkan, misalnya: harga produk yang akan dibeli, biaya produksi, dll.

 Pada MADM, matriks keputusan setiap alternatif terhadap setiap atribut, X, diberikan sebagai:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} & \cdots & \mathbf{x}_{1n} \\ \mathbf{x}_{21} & \mathbf{x}_{22} & \cdots & \mathbf{x}_{2n} \\ \vdots & \vdots & & \vdots \\ \mathbf{x}_{m1} & \mathbf{x}_{m2} & \cdots & \mathbf{x}_{mn} \end{bmatrix}$$

dengan x_{ii} merupakan rating kinerja alternatif ke-i terhadap atribut ke-j.

 Nilai bobot yang menunjukkan tingkat kepentingan relatif setiap atribut, diberikan sebagai, W:

$$W = \{W_1, W_2, ..., W_n\}$$

- Rating kinerja (X), dan nilai bobot (W) merupakan nilai utama yang merepresentasikan preferensi absolut dari pengambil keputusan.
- Masalah MADM diakhiri dengan proses perankingan untuk mendapatkan alternatif terbaik yang diperoleh berdasarkan nilai keseluruhan preferensi yang diberikan (Yeh, 2002).
- Pada MADM, umumnya akan dicari solusi ideαl.
- Pada solusi ideal akan memaksimumkan semua kriteria keuntungan dan meminimumkan semua kriteria biaya.

- Ada beberapa metode yang dapat digunakan untuk menyelesaikan masalah MADM, antara lain:
 - a. Simple Additive Weighting (SAW)
 - b. Weighted Product (WP)
 - c. TOPSIS
 - d. Analytic Hierarchy Process (AHP)

- Metode Simple Additive Weighting (SAW) sering juga dikenal istilah metode penjumlahan terbobot.
- Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut (Fishburn, 1967)(MacCrimmon, 1968).
- Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

 Formula untuk melakukan normalisasi tersebut adalah sebagai berikut:

$$r_{ij} = \begin{cases} \frac{x_{ij}}{\text{Max } x_{ij}} & \text{jika j adalah atribut keuntungan (benefit)} \\ \frac{\text{Min } x_{ij}}{x_{ij}} & \text{jika j adalah atribut biaya (cost)} \end{cases}$$

dengan r_{ij} adalah rating kinerja ternormalisasi dari alternatif A_i pada atribut C_{ij} ; i=1,2,...,m dan j=1,2,...,n.

Nilai preferensi untuk setiap alternatif (V_i) diberikan sebagai:

$$V_{i} = \sum_{j=1}^{n} w_{j} r_{ij}$$

• Nilai V_i yang lebih besar mengindikasikan bahwa alternatif A_i lebih terpilih.

Contoh-1:

- Suatu institusi perguruan tinggi akan memilih seorang karyawannya untuk dipromosikan sebagai kepala unit sistem informasi.
- Ada empat kriteria yang digunakan untuk melakukan penilaian, yaitu:
 - C1 = tes pengetahuan (wawasan) sistem informasi
 - C2 = praktek instalasi jaringan
 - C3 = tes kepribadian
 - C4 = tes pengetahuan agama

- Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 35%; C2 = 25%; C3 = 25%; dan C4 = 15%.
- Ada enam orang karyawan yang menjadi kandidat (alternatif) untuk dipromosikan sebagai kepala unit, yaitu:
 - A1 = Indra,
 - A2 = Roni,
 - A₃ = Putri,
 - A₄ = Dani,
 - A₅ = Ratna, dan
 - A6 = Mira.

Tabel nilai alternatif di setiap kriteria:

Alternatif	Kriteria				
	C1	C2	C3	C4	
Indra	70	50	80	60	
Roni	50	60	82	70	
Putri	85	55	80	75	
Dani	82	70	65	85	
Ratna	75	75	85	74	
Mira	62	50	75	80	

Normalisasi:

$$\mathbf{r}_{11} = \frac{70}{\max\{70;50;85;82;75;62\}} = \frac{70}{85} = 0.82$$

$$r_{21} = \frac{50}{\max\{70; 50; 85; 82; 75; 62\}} = \frac{50}{85} = 0,59$$

$$r_{12} = \frac{50}{\max\{50;60;55;70;75;50\}} = \frac{50}{75} = 0,67$$

$$r_{22} = \frac{60}{\max\{50;60;55;70;75;50\}} = \frac{60}{75} = 0,80$$

dst

Hasil normalisasi:

$$R = \begin{bmatrix} 0,82 & 0,67 & 0,94 & 0,71 \\ 0,59 & 0,80 & 0,96 & 0,82 \\ 1 & 0,73 & 0,94 & 0,88 \\ 0,96 & 0,93 & 0,76 & 1 \\ 0,88 & 1 & 1 & 0,87 \\ 0,73 & 0,67 & 0,88 & 0,94 \end{bmatrix}$$

- Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan: w = [0,35 0,25 0,25 0,15]
- Hasil yang diperoleh adalah sebagai berikut:

$$V_1 = (0,35)(0,82) + (0,25)(0,67) + (0,25)(0,94) + (0,15)(0,71) = 0,796$$

$$V_2 = (0,35)(0,59) + (0,25)(0,80) + (0,25)(0,96) + (0,15)(0,82) = 0,770$$

$$V_3 = (0,35)(1,00) + (0,25)(0,73) + (0,25)(0,94) + (0,15)(0,88) = 0,900$$

$$V_4 = (0,35)(0,96) + (0,25)(0,93) + (0,25)(0,76) + (0,15)(1,00) = 0,909$$

$$V_5 = (0,35)(0,88) + (0,25)(1,00) + (0,25)(1,00) + (0,15)(0,87) = 0,939$$

$$V_6 = (0,35)(0,73) + (0,25)(0,67) + (0,25)(0,88) + (0,15)(0,94) = 0,784$$

- Nilai terbesar ada pada V₅ sehingga alternatif A₅ adalah alternatif yang terpilih sebagai alternatif terbaik.
- Dengan kata lain, Ratna akan terpilih sebagai kepala unit sistem informasi.

Contoh-2:

- Sebuah perusahaan makanan ringan XYZ akan menginvestasikan sisa usahanya dalam satu tahun.
- Beberapa alternatif investasi telah akan diidentifikasi. Pemilihan alternatif terbaik ditujukan selain untuk keperluan investasi, juga dalam rangka meningkatkan kinerja perusahaan ke depan.

- Beberapa kriteria digunakan sebagai bahan pertimbangan untuk mengambil keputusan, yaitu:
 - C1 = Harga, yaitu seberapa besar harga barang tersebut.
 - C2 = Nilai investasi 10 tahun ke depan, yaitu seberapa besar nilai investasi barang dalam jangka waktu 10 tahun ke depan.

- C3 = Daya dukung terhadap produktivitas perusahaan, yaitu seberapa besar peranan barang dalam mendukung naiknya tingkat produktivitas perusahaan. Daya dukung diberi nilai: 1 = kurang mendukung, 2 = cukup mendukung; dan 3 = sangat mendukung.
- C4 = Prioritas kebutuhan, merupakan tingkat kepentingan (kemendesak-an) barang untuk dimiliki perusahaan. Prioritas diberi nilai: 1 = sangat berprioritas, 2 = berprioritas; dan 3 = cukup berprioritas.

- C5 = Ketersediaan atau kemudahan, merupakan ketersediaan barang di pasaran. Ketersediaan diberi nilai: 1 = sulit diperoleh, 2 = cukup mudah diperoleh; dan 3 = sangat mudah diperoleh.
- Dari pertama dan keempat kriteria tersebut, kriteria pertama dan keempat merupakan kriteria biaya, sedangkan kriteria kedua, ketiga, dan kelima merupakan kriteria keuntungan.
- Pengambil keputusan memberikan bobot untuk setiap kriteria sebagai berikut: C1 = 25%; C2 = 15%; C3 = 30%; C4 = 25; dan C5 = 5%.

- Ada empat alternatif yang diberikan, yaitu:
 - A1 = Membeli mobil box untuk distribusi barang ke gudang;
 - A2 = Membeli tanah untuk membangun gudang baru;
 - A3 = Maintenance sarana teknologi informasi;
 - A4 = Pengembangan produk baru.

Nilai setiap alternatif pada setiap kriteria:

	Kriteria					
Alternatif	C1 (juta Rp)	C2 (%)	C3	C4	C5	
A1	150	15	2	2	3	
A2	500	200	2	3	2	
A3	200	10	3	1	3	
A4	350	100	3	1	2	

Normalisasi:

$$r_{11} = \frac{\min\{150;500;200;350\}}{150} = \frac{150}{150} = 1$$

$$r_{21} = \frac{15}{\max\{15;200;10;100\}} = \frac{15}{200} = 0,075$$

$$r_{35} = \frac{2}{\max\{2;2;3;3\}} = \frac{2}{3} = 0,667$$

$$r_{45} = \frac{\min\{2;3;1;1\}}{2} = \frac{1}{2} = 0,5$$

• Hasil normalisasi:

$$R = \begin{bmatrix} 1 & 0,08 & 0,67 & 0,50 & 1 \\ 0,30 & 1 & 0,67 & 0,33 & 0,67 \\ 0,75 & 0,05 & 1 & 1 & 1 \\ 0,43 & 0,50 & 1 & 1 & 0,67 \end{bmatrix}$$

 Proses perankingan dengan menggunakan bobot yang telah diberikan oleh pengambil keputusan:

$$W = [0,25 \quad 0,15 \quad 0,30 \quad 0,25 \quad 0,05]$$

Hasil yang diperoleh adalah sebagai berikut:

$$\begin{aligned} V_1 &= (0,25)(1) + (0,15)(0,08) + (0,3)(0,67) + (0,25)(0,5) + (0,05)(1) = 0,638 \\ V_2 &= (0,25)(0,3) + (0,15)(1) + (0,3)(0,67) + (0,25)(0,33) + (0,05)(0,67) = 0,542 \\ V_3 &= (0,25)(0,75) + (0,15)(0,05) + (0,3)(1) + (0,25)(1) + (0,05)(1) = 0,795 \\ V_4 &= (0,25)(0,43) + (0,15)(0,5) + (0,3)(1) + (0,25)(1) + (0,05)(0,67) = 0,766 \end{aligned}$$

• Nilai terbesar ada pada V3 sehingga alternatif A3 adalah alternatif yang terpilih sebagai alternatif terbaik. Dengan kata lain, *maintenance* sarana teknologi informasi akan terpilih sebagai solusi untuk investasi sisa usaha

- Metode Weighted Product (WP) menggunakan perkalian untuk menghubungkan rating atribut, dimana rating setiap atribut harus dipangkatkan dulu dengan bobot atribut yang bersangkutan.
- Proses ini sama halnya dengan proses normalisasi.

Preferensi untuk alternatif A_i diberikan sebagai berikut:

$$S_i = \prod_{j=1}^n x_{ij}^{w_j}$$

dengan i=1,2,...,m; dimana $\sum w_i = 1$.

 w_j adalah pangkat bernilai positif untuk atribut keuntungan, dan bernilai negatif untuk atribut biaya.

Contoh:

- Suatu perusahaan di Surabaya ingin membangun sebuah gudang yang akan digunakan sebagai tempat untuk menyimpan sementara hasil produksinya.
- Ada 3 lokasi yang akan menjadi alternatif, yaitu:
 - A1 = Ngagel,
 - $A_2 = Kapasan$,
 - $A_3 = Kenjeran$.

- Ada 5 kriteria yang dijadikan acuan dalam pengambilan keputusan, yaitu:
 - C1 = jarak dengan pasar terdekat (km),
 - C2 = kepadatan penduduk di sekitar lokasi (orang/km2);
 - C₃ = jarak dari pabrik (km);
 - C4 = jarak dengan gudang yang sudah ada (km);
 - C5 = harga tanah untuk lokasi (x1000 Rp/m2).

- Tingkat kepentingan setiap kriteria, juga dinilai dengan 1 sampai
 5, yaitu:
 - 1 = Sangat rendah,
 - 2 = Rendah,
 - 3 = Cukup,
 - 4 = Tinggi,
 - 5 = Sangat Tinggi.
- Pengambil keputusan memberikan bobot preferensi sebagai:

$$W = (5, 3, 4, 4, 2)$$

• Nilai setiap alternatif di setiap kriteria:

Alternatif	Kriteria				
	C ₁	C ₂	C ₃	C ₄	C ₅
A ₁	0,75	2000	18	50	500
A ₂	0,50	1500	20	40	450
A ₃	0,90	2050	35	35	800

- Kategori setiap kriteria:
 - Kriteria C2 (kepadatan penduduk di sekitar lokasi) dan C4 (jarak dengan gudang yang sudah ada) adalah kriteria keuntungan;
 - Kriteria C1 (jarak dengan pasar terdekat), C3 (jarak dari pabrik), dan C5 (harga tanah untuk lokasi) adalah kriteria biaya.
- Sebelumnya dilakukan perbaikan bobot terlebih dahulu seperti sehingga $\sum w = 1$, diperoleh $w_1 = 0,28$; $w_2 = 0,17$; $w_3 = 0,22$; $w_4 = 0,22$; dan $w_5 = 0,11$.

Kemudian vektor S dapat dihitung sebagai berikut:

$$S_{1} = (0,75^{-0.28})(2000^{0.17})(18^{-0.22})(50^{0.22})(500^{-0.11}) = 2,4187$$

$$S_{2} = (0,5^{-0.28})(1500^{0.17})(20^{-0.22})(40^{0.22})(450^{-0.11}) = 2,4270$$

$$S_{3} = (0,9^{-0.28})(2050^{0.17})(35^{-0.22})(35^{0.22})(800^{-0.11}) = 1,7462$$

Nilai vektor V yang akan digunakan untuk perankingan dapat dihitung sebagai berikut:

$$V_1 = \frac{2,4187}{2,4187 + 2,4270 + 1,7462} = 0,3669$$

$$V_2 = \frac{2,4270}{2,4187 + 2,4270 + 1,7462} = 0,3682$$

$$V_3 = \frac{1,7462}{2,4187 + 2,4270 + 1,7462} = 0,2649$$

- Nilai terbesar ada pada V2 sehingga alternatif A2 adalah alternatif yang terpilih sebagai alternatif terbaik.
- Dengan kata lain, Kapasan akan terpilih sebagai lokasi untuk mendirikan gudang baru.

Latihan

- Orang tua ingin memilih sekolah dasar untuk anaknya. Pertimbangannya berdasarkan jarak dari rumah, prestasi sekolah, akreditasi, dan lingkungan. Terdapat 4 alternatif sekolah yang dipilih yaitu A, B, C, dan D.
- Prestasi sekolah diberikan bobot sebagai berikut : Internasional = 4, nasional = 3, provinsi = 2, kabupaten = 1, dan tidak ada = 0
- Akreditasi diberikan bobot sebagai berikut: A = 3, B = 2, C = 1
- Lingkungan sekolah diberikan bobot sebagai berikut: sangat bersih = 2, bersih = 1 dan tidak bersih = 0
- Jarak adalah kriteria biaya, sedangkan prestasi, akreditasi dan lingkungan adalah kriteria keuntungan
- Dengan menggunakan SAW dan WP, alternatif sekolah mana yang dipilih? W = (4, 3, 3,2)
- Nilai alternatif seperti table di bawah ini:

Alternatif	C1 (jarak = km)	C2 (prestasi)	C ₃ (akreditasi)	C4 (lingkungan)
Α	3	Provinsi	Α	Sangat bersih
В	5	Nasional	В	Sangat bersih
С	1	Nasional	Α	Bersih
D	4	Internasional	В	Bersih