

Evaluacion final - Escenario 8 Primer Bloque- Teorico Elementos EN Teoria DE Computacion-[Grupo B03]

Elementos de la Teoría de la Computación (Politécnico Grancolombiano)

Evaluacion final - Escenario 8

Fecha de entrega 26 de oct en 23:55

Puntos 125

Preguntas 20

Disponible 23 de oct en 0:00 - 26 de oct en 23:55 4 días

Límite de tiempo 90 minutos

Intentos permitidos 2

Instrucciones

Apreciado estudiante, presenta tus exámenes como SERGIO EL ELEFANTE, quien con honestidad, usa su sabiduría para mejorar cada día.

StuDocu.com

- Tienes dos intentos para desarrollar tu evaluación.
- 2. Si respondiste uno de los intentos sin ningún inconveniente y tuviste problemas con el otro, el examen no será habilitado nuevamente.
- Cuando estés respondiendo la evaluación, evita abrir páginas diferentes a tu examen. Esto puede ocasionar el cierre del mismo y la pérdida de un intento.
- 4. Asegúrate de tener buena conexión a internet, cierra cualquier programa que pueda consumir el ancho de banda y no utilices internet móvil.
- 5. Debes empezar a responder el examen por lo menos dos horas antes del cierre, es decir, máximo a las 9:55 p. m. Si llegada las 11:55 p. m. no lo has enviado, el mismo se cerrará y no podrá ser calificado.
- El tiempo máximo que tienes para resolver cada evaluación es de 90 minutos.

- 7. Solo puedes recurrir al se intento en caso de un pre tecnológico.
- 8. Si tu examen incluye pregunt respuestas abiertas, estas no calificadas automáticamente, requieren la revisión del tutor.
- 9. Si presentas inconvenientes presentación del examen, perear un caso explicando la situadjuntando siempre imágenevidencia, con fecha y hora, pasoporte Tecnológico pueda bruna respuesta lo antes posible.
- Podrás verificar la soluciór examen únicamente durante horas siguientes al cierre.
- Te recomendamos evitar el teléfonos inteligentes o tabletas presentación de tus active evaluativas.
- 12. Al terminar de responexamen debes dar clic en el "Enviar todo y terminar" de otra el examen permanecerá abierto

¡Confiamos en que sigas, paso a paso, en el camino hacia la excelencia aca ¿Das tu palabra de que realizarás esta actividad asumiendo de corazón no

Historial de intentos

	Intento	Hora	Puntaje	
MANTENER	Intento 2	22 minutos	125 de 125	
MÁS RECIENTE	Intento 2	22 minutos	125 de 125	
	Intento 1	76 minutos	112.5 de 125	

① Las respuestas correctas ya no están disponibles.

Puntaje para este intento: 125 de 125

Entregado el 26 de oct en 9:47

Este intento tuvo una duración de 22 minutos.

6.25 / 6.25 pts Pregunta 1

Si se sabe que

$$mcd(a,b)=12$$

У

$$mcm(a,b) = 36$$

, entonces es correcto afirmar:

- left |ab|=432
- a > b
- \bigcirc 12mid(a+b)
- \bigcirc amid72

6.25 / 6.25 pts Pregunta 2

Sobre la solución de la congruencia lineal

$$3x \equiv 5 \mod 14$$

es correcto afirmar:

 $\mod 14$ $lee x\equiv 11$

$$\bigcirc x \equiv 2 \mod 14$$
 $\bigcirc x \equiv 12 \mod 14$
 $\bigcirc x \equiv 10 \mod 14$

Pregunta 3		6.25 / 6.25 pts
Si		
	2midx	
,	3midx	
,	5midx	
,	$2 \leq \sqrt{x}$	
,	$3 \leq \sqrt{x}$	
,	$5 \leq \sqrt{x}$	
у	$7>\sqrt{x}$	
, entonces es correcto	o afirmar:	

x es un número primo
x es un número compuesto mayor a 49.
X
26
X
53

Pregunta 4

6.25 / 6.25 pts

Si se sabe que

$$13 \equiv x \mod 14$$

, entonces es correcto afirmar:

$$x^2 + x \equiv 1 \mod 14$$

$$x^2 \equiv 0 \mod 14$$

$$3x - 1 \equiv 7 \mod 14$$

$$(x+1)^2 \equiv x-13 \mod 14$$

El inverso de
$12 \mod 25$
es:
$ extstyle 23 \mod 25$
\circ 2 mod 25
\circ $-12 \mod 25$
○ 8 mod 25

Comprobar que para todo

m

entero, con

, se tiene que

mmidn

.

Comprobar que

nmidm

para todo entero

.

Comprobar que

n

ono es un número par.

Pregunta 7

6.25 / 6.25 pts

Si se sabe que

$$mcm(a,b)=12$$

con

, entonces es correcto afirmar:

 $lacksquare mcd(a,b) \mid 12$

 \bigcirc 12 | mcd(a,b)

$$a = 12k$$

para algún

 $igcup k\in \mathbb{Z}$

$$|ab|=12$$

Pregunta 8

6.25 / 6.25 pts

Si

$$a = 2^3 5^2 7^3$$

У

$$b = 2^4 7^2 11^3$$

, entonces es correcto afirmar:

$$mcd(a,b)=2^37^2$$

у

$$mcm(a,b) = 2^45^27^311^3$$

$$mcd(a,b) = 2^37^2$$

У

$$mcm(a,b) = 2^47^3$$

$$mcd(a,b) = 2^3 5^2 7^2$$

У

 $mcm(a,b) = 2^4 5^2 7^3 11^3$

$$mcd(a,b) = 2^3 5^2 7^2$$

 $mcm(a,b) = 2^47^311^3$

Pregunta 9

6.25 / 6.25 pts

Sobre la congruencia lineal

$$12x \equiv 16 \mod 18$$

es correcto afirmar:

No tiene solución.

Su solución existe dado que

$$d = mcd(12, 18)$$

divide a

16

La solución es

$$x \equiv 2 \mod 18$$

https://poli.instructure.com/courses/40

Su solución es

$$x = \frac{4}{3}$$

Pregunta 10	6.25 / 6.25 pts
Solucionar el módulo usando el Teorema de Fermat.	
¿Cuál es resultado de	
$315^{61} \hspace{-0.2cm} \mod \hspace{0.1cm} 13$	
?	
3	
O 1	
○ 315	
O 0	

6.25 / 6.25 pts Pregunta 11 Sobre el conjunto $\mathbb{Z}/11\mathbb{Z}$ es correcto afirmar:

$$a^{10} \equiv 1 \mod 11$$

para todo

$$aot \equiv 0 \mod 11$$

•

Existe un elemento no nulo de

$$\mathbb{Z}/11\mathbb{Z}$$

que no tiene inverso.

La ecuación

$$ax \equiv 1 \mod 11$$

no tiene solución para

$$a \in \mathbb{Z}/11\mathbb{Z}$$

ono nulo.

Existen infinitos elementos en

 $\mathbb{Z}/11\mathbb{Z}$

Pregunta 12

6.25 / 6.25 pts

Si se sabe que

$$11 \equiv x \mod 12$$

, entonces es correcto afirmar:

$$\circ x^2 \equiv 0 \mod 12$$

$$3x - 1 \equiv 7 \mod 12$$

$$(x+1)^2 \equiv x \mod 12$$

Pregunta 13

6.25 / 6.25 pts

Si

$$7x \equiv 4 \mod 13$$

, entonces es correcto afirmar:

$$4x \equiv 6 \mod 13$$

$$\bigcirc 2x \equiv 6 \mod 13$$

$$-x \equiv 8 \mod 13$$

$$\bigcirc \ 2x+1 \equiv 7x-1 \mod 13$$

Pregunta 14

6.25 / 6.25 pts

Si

$5 \mid 11x$

, entonces es correcto afirmar:

- \circ 5 | x
- 0.11x = 5
- \circ 5 | (11x 11)

$$5 \div 11x$$

es un número entero.

Pregunta 15

6.25 / 6.25 pts

Si

$$7a \equiv 3 \mod 12$$

es correcto afirmar:

$$\bigcirc 7a + 12 \equiv 15 \mod 12$$

$$9a \equiv 15 \mod 60$$

$$a^2 + 1 \equiv 9 \mod 12$$

Pregunta 16	6.25 / 6.25 pts
Estimación de números primos.	
¿Cuál es la cantidad apróximada de núm 342243?	neros primos menores o iguales a
26856	
O 231132	
○ 7880	
O 25565	

6.25 / 6.25 pts Pregunta 17 Si $a \equiv 5 \mod 7$ У $b \equiv 2 \mod 7$

es correcto afirmar:

$$a^2 + b^2 \equiv 0 \mod 7$$

$$a(b+3) \equiv 3 \mod 7$$

$$\bigcirc 2b \equiv a-2 \mod 7$$

Pregunta 18		6.25 / 6.25 pts
	mcd(4,8)	
es:		
a 4		
O 8		
O 2		
O 6		

6.25 / 6.25 pts Pregunta 19

Estimación de números primos.

¿Cuál es la cantidad apróximada de números primos menores o iguales a 324423?

O 213312			
7880			
26055			

Pregunta 20		6.25 / 6.25 pts
Al calcular		
	$5^{1001} \mod 3$	
se obtiene:		
2		
O 0		
1		
O -2		

Puntaje del examen: **125** de 125

×