

Fakultät Mathematik Institut für Algebra, Professur für Algebra

GEOMETRIE

Übungen

Prof. Dr. Arno Fehm

Wintersemester 2018/19

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Eric Kunze

Übungsleiter: Dr. Legrand Wintersemester 2018/19

Geometrie

Thema: Gruppen, Ordnung und Index, symmetrische Gruppe

Übung 6

Ist #G = p eine Primzahl, so ist $G = \langle g \rangle$ für ein $g \in G$.

Lösung. Da $p \ge 2$ ist, existiert ein vom neutralen Element verschiedenes Element $g \in G$. $\Rightarrow \langle g \rangle \le G$

Nach dem Satz von Lagrange gilt $\operatorname{ord}(g) \mid \#G = p$. Da g nicht das neutrale Element der Gruppe G ist, muss $\operatorname{ord}(g) = \#\langle g \rangle \geq 2$ und damit $\operatorname{ord}(g) = \#\langle g \rangle = p$. Folglich ist also $G = \langle g \rangle$.

Übung 7

Sei $f: G \to H$ ein Epimorphismus endlicher Gruppen. Zeigen Sie, dass $|f^{-1}(h)| = |\text{Ker}(f)|$ für jedes $h \in H$. Schließen Sie, dass $\#G = \#H \cdot \# \text{Ker}(f)$.

Lösung. Es sei $h \in H$.

f surjektiv $\Rightarrow \exists g_0 \in G : f(g_0) = h$

Für $g \in \text{Ker}(f)$ gilt

$$f(g \cdot g_0) = f(g) \cdot f(g_0) = 1 \cdot h = h$$

d.h. die Abbildung $\varphi : \operatorname{Ker}(f) \to f^{-1}(h), g \mapsto \varphi(g) := g \cdot g_0$ ist wohldefiniert.

• φ ist surjektiv: Sei $g \in f^{-1}(h)$. Dann haben wir

$$f(g \cdot g_0^{-1}) = f(g) \cdot f(g_0)^{-1} = h \cdot h^{-1} = 1,$$

d.h. $g \cdot g_0^{-1} \in \text{Ker}(f)$ und $\varphi(g \cdot g_0^{-1}) = g \cdot g_0^{-1} \cdot g_0 = g$.

- φ ist injektiv: Es seien $g_1, g_2 \in \text{Ker}(f)$ mit $\varphi(g_1) = \varphi(g_2)$, d.h. $g_1 \cdot g_0 = g_2 \cdot g_0$ $\Rightarrow g_1 = g_2$.
- Dann ist φ bijektiv, d.h. $|f^{-1}(h)| = |\text{Ker}(f)|$.

Die Urbilder von h sind disjunkt, denn: Für $h \neq h' \in H$ haben wir

$$f^{-1}(h) = \{ g \in G : f(g) = h \}$$

$$f^{-1}(h') = \{g \in G : f(g) = h'\}$$

Ist $g \in f^{-1}(h) \cap f^{-1}(h')$, so ist h = f(g) = h' im Widerspruch zur Annahme $h \neq h'$.

Aus
$$G = \biguplus_{h \in H} f^{-1}(h)$$
 folgt

$$|G| = \left| \biguplus_{h \in H} f^{-1}(h) \right| = \sum_{h \in H} \left| f^{-1}(h) \right| = \sum_{h \in H} |\operatorname{Ker}(f)| = |\operatorname{Ker}(f)| \cdot |H|$$

Zeigen Sie: Für $k, n \in \mathbb{N}$ ist $\operatorname{ord}(k + n\mathbb{Z}) = \frac{\operatorname{kgV}(k, n)}{k} = \frac{n}{\operatorname{ggT}(k, n)}$

Lösung. Es seien $k \in \mathbb{N}$ und $n \in \mathbb{N} \setminus \{0\}$. Außerdem sei $d = \operatorname{ggT}(k, n)$. Dann existieren $k_1, n_1 \in \mathbb{N}$ mit

$$k = d \cdot k_1$$

$$n = d \cdot n_1$$

$$ggT(k_1, n_1) = 1$$

Für $m \in \mathbb{N} \setminus \{0\}$ gilt

$$\begin{split} m \cdot (k + n\mathbb{Z}) &= n\mathbb{Z} &\iff n \mid m \cdot k \\ &\Leftrightarrow d \cdot n_1 \mid m \cdot d \cdot k_1 \\ &\Leftrightarrow n_1 \mid m \cdot k_1 \\ &\Leftrightarrow n_1 \mid m \end{split}$$

Dann ist ord $(k + n\mathbb{Z}) = n_1 = \frac{n}{\operatorname{ggT}(k,n)}$.

Übung 17 (Präsenz)

Zeigen oder widerlegen Sie:

Genau dann kommutieren Zykel $\tau_1,\tau_2\in S_n,$ wenn sie disjunkt sind.

Lösung. Die Rückrichtung ist richtig laut Vorlesung (vgl. 1.13). Für die Hinrichtung verwenden wir folgendes Gegenbeispiel: Sei $\tau_1 = (1 \ 2) = \tau_2$. Dann ist $\tau_1 \circ \tau_2 = \tau_2 \circ \tau_1$ aber offensichtlich ist $\tau_1 \cap \tau_2 = \tau_1 = \tau_2 \neq \emptyset$.

Übung 18 (Präsenz)

Zeigen oder widerlegen Sie:

- (1) Sind $K, N \leq G$, so ist $K \cup N \leq G$.
- (2) Sind $K, N \leq G$, so ist $K \cdot N \leq G$.

Lösung. (1) Die Aussage ist falsch. Sei dazu $K := (2\mathbb{Z}, +)$ und $N := (3\mathbb{Z}, +)$. Dann ist $2 \in 2\mathbb{Z}$ und $3 \in 3\mathbb{Z}$, aber $2 + 3 = 5 \notin K \cup N$ und $K \cup N$ ist somit nicht abgeschlossen bezüglich der Addition.

(2) Auch diese Aussage ist falsch. Betrachte dazu $K := \{id, (12)\} \le S_3$ und $N := \{id, (13)\} \le S_3$. Dann ist $K \cdot N = \{id, (12), (12), (12), (13) = (132)\} \not \le S_3$ nach dem Satz von Lagrange, da $|KN| = 4 \nmid 6 = \#S_3$.

Eric Kunze

Übungsleiter: Dr. Legrand Wintersemester 2018/19

Geometrie

Thema: Normalteiler, abelsche Gruppen, Produkte

Übung 24

Es seien G eine Gruppe und H eine Untergruppe von G. Wenn G/H mit dem Komplexprodukt eine Gruppe bildet, so ist $H \subseteq G$.

Lösung. Angenommen, G/H mit dem Komplexprodukt wäre eine Gruppe.

Zunächst zeigen wir, dass H das neutrale Element von G/H ist. Es sei g_0H das neutrale Element von G/H. Für jedes $g \in G$ gilt $gH \cdot g_0H = g_0H \cdot gH = gH$. Insbesondere gilt $g \cdot g_0 = g \cdot 1 \cdot g_0 \cdot 1 \in gH \cdot g_0H = gH$, das heißt es existiert $h \in H$ mit $gg_0 = g \cdot H$. Deswegen gilt $g_0 = h$, somit $g_0H = H$.

Jetzt zeigen wir, dass H Normalteiler von G ist. Sei $g \in G$. Aus $H \cdot gH = gH$ folgt $gH \subseteq H \cdot gH = gH$, das heißt $H \subseteq gHg^{-1}$. Analog bekommen wir $H \subseteq g^{-1}Hg$, das heißt $gHg^{-1} \subseteq H$. Deswegen gilt $gHg^{-1} = H$, also gH = Hg. Mit 3.3 schließen wir, dass $H \leq G$.

Übung 25

Für jedes $n \in \mathbb{N}$ mit $n \geq 2$ ist $S_n = \langle (12) \rangle \ltimes A_n$.

Lösung. Es sei $n \in \mathbb{N}$ mit $n \geq 2$. Nach 5.6 ist zu zeigen, dass $A_n \leq S_n$, $A_n \cap \langle (12) \rangle = \{\text{id}\}$ und $\langle (12) \rangle \cdot A_n = S_n$ gelten. Da A_n der Kern des Homomorphismus sgn: $S_n \to \mu_2$ ist, gilt $A_n \leq S_n$ (vgl. 3.5). Aus $(12) \notin A_n$ folgt $A_n \cap \langle (12) \rangle = \{\text{id}\}$. Dann zeigen wir, dass $H = \langle (12) \rangle \cdot A_n = S_n$ gilt. Es sei $\sigma \in S_n$. Ist $\sigma \in A_n$, so gilt $\sigma = \text{id} \cdot \sigma \in H$. Ist $\sigma \notin A_n$, so gelten $(12) \cdot \sigma \in A_n$ und $\sigma = (12) \cdot ((12) \cdot \sigma) \in H$.

AlterNiver Beweis für die dritte Eigenschaft: Wir wissen, dass $A_n \nleq H \leq S_n$, und da $(S_n : A_n) = 2$ prim ist, folgt aufgrund der Multiplikativität des Index schon, dass $H = S_n$.

Übung 26

Zeigen Sie: Es gibt bis auf Isomorphie genau zwei Gruppen der Ordnung 6, nämlich C_6 und S_3 .

Lösung. Sei G eine endliche Gruppe der Ordnung 6. Aus dem Satz von Lagrange gilt $\operatorname{ord}(g) \in \{1, 2, 3, 6\}$ für jedes $g \in G$.

- Ist $\operatorname{ord}(g) \in \{1, 2\}$ für jedes $g \in G$, so ist G abelsch (vgl. W2). Aus 4.8 und #G = 6 folgt $G \cong C_6$, was unmöglich ist, da C_6 ein Element der Ordnung 6 hat.
- Somit gibt es ein $g \in G$ mit $\operatorname{ord}(g) \in \{3, 6\}$. In beiden Fällen, gibt es ein $g_1 \in G$ mit $\operatorname{ord}(g_1) = 3$ (ist $\operatorname{ord}(g) = 6$, so ist $\operatorname{ord}(g^2) = 3$). Außerdem gibt es $g_2 \in G$ mit $\operatorname{ord}(g_2) = 2$ (vgl. H10). Dann bekommen wir: $\langle g_1 \rangle \subseteq G$ (vgl. P41), $\langle g_1 \rangle \cap \langle g_2 \rangle = \{1\}$ (da $\operatorname{ggT}(2,3) = 1$) und $\langle g_1 \rangle \cdot \langle g_2 \rangle = G$ mit dem selben Argument wie in Ü25. Somit ist $G = \langle g_2 \rangle \ltimes \langle g_1 \rangle$ (vgl. 5.6). Aus 5.12 folgt dann $G \cong C_6$ oder $G \cong S_3$. \square

Zu welcher Ihnen bekannten Gruppe ist $Aut(V_4)$ isomorph?

Lösung. Aus W4 ergibt sich $\operatorname{Aut}(V_4) \cong \operatorname{Aut}((\mathbb{Z}/2\mathbb{Z})^2) = \operatorname{Aut}(\mathbb{F}_2^2)$ (siehe auch V44). Aber \mathbb{F}_2^2 ist ein \mathbb{F}_2 -Vektorraum und die Automorphismen der Gruppe \mathbb{F}_2^2 sind genau die \mathbb{F}_2 -Automorphismen des \mathbb{F}_2 -Vektorraums \mathbb{F}_2^2 . Somit ist $\operatorname{Aut}(V_4) \cong \operatorname{GL}_2(\mathbb{F}_2)$, die eine nicht abelsche Gruppe der Ordnung 6 ist (zählen Sie einfach die Elemente der $\operatorname{GL}(\mathbb{F}_2)$ auf). Mit Ü27 schließen wir, dass $\operatorname{Aut}(V_4) \cong S_3$.

Direkt sieht man dies so: Die V_4 hat neben dem neutralen Element e der Ordnung 1 noch drei Elemente der Ordnung 2, und jede Permutation σ dieser 3 Elemente der Ordnung 2 setzt sich durch $\sigma(e) = e$ zu einer Permutation der Menge V_4 fort. Nun muss man allerdings nachprüfen, dass $\sigma: V_4 \to V_4$ auch tatsächlich ein Gruppenhomomorphismus ist.

Übung 41 (Präsenz)

Sei $H \leq G$. Zeige oder widerlege:

a)
$$(G: H) = 2 \Rightarrow H \leq G$$

b)
$$(G: H) = 3 \Rightarrow H \leq G$$

Lösung. a) richtig. Angenommen $H \not \triangleq G$. Sei $h \in H$ mit hH = H = Hh und $g \in G \setminus H$ mit $gH \neq Hg$. Wegen (G: H) = 2 gilt gH = H, das heißt $\exists H \in H$ mit $gh \in H$. Dann folgt

$$\underbrace{gh}_{\in H} \cdot \underbrace{h^{-1}}_{\in H} = g \in H \tag{2.1}$$

was im Widerspruch zu $g \in G \setminus H$ steht. Also ist $H \leq G$.

b) falsch, zum Beispiel $(S_3: \langle (12) \rangle) = 3$, aber

$$(13)\langle(12)\rangle = \{(13), (132)\} \text{ und } \langle(12)\rangle)(13) = \{(13), (123)\}$$

Eric Kunze

Übungsleiter: Dr. Legrand Wintersemester 2018/19

Geometrie

Thema: Gruppenwirkungen, Sylowgruppen

Übung 47

Für $n \geq 2$ ist $S_n = \langle (12), (12 \dots n) \rangle$.

Lösung. Sei $G = \langle (12), (12 \dots n) \rangle$ und $c = (12 \dots n)$. Nach Ü26 gilt für alle $i \in \{0, \dots, n-2\}$:

$$c \circ (12) \circ c^{-1} = (c^{i}(1) \ c^{i}(2)) = (i+1 \ i+2)$$

Dann gilt $\{(12), (23), (34), \dots, (n-1 \ n)\} \subseteq G$. Aus V44 folgt dann $G = S_n$.

Übung 48

Sei $S \in \operatorname{Syl}_p(G)$. Zeigen Sie: Ist (G:S) < p, so ist $S \leq G$.

Lösung. Schreibe $\#G = p^n \cdot m$ mit $n \geq 0$ und $p \nmid m$. Es sei n_p die Kardinalität von $\operatorname{Syl}_p(G)$. Aus den Sylow-Sätzen folgt $n_p = 1$ mod p und $n_p \mid m = (G:S)$ (da $|S| = p^n$ und nach Lagrange ist $(G:S) = |G|: |S| = p^n \cdot m: p^n = m$). Insbesondere gilt $n_p \leq (G:S)$ und $p \mid n_p - 1$. Ist $n_p \neq 1$, so ist $p \leq n_p - 1 \leq n_p \leq (G:S)$, was unmöglich ist. Deswegen ist $n_p = 1$, d.h. $S \leq G$ (vgl. 8.7: $S \leq G \Leftrightarrow \#\operatorname{Syl}_p(G) = 1$)

Übung 49

Seien $H_1, H_2 \leq G$. Die Wirkung von $\Gamma := H_1 \times H_2$ auf $X := H_1 H_2 \subseteq G$ durch $x^{(h_1, h_2)} := h_1^{-1} \cdot x \cdot h_2$ ist transitiv. Bestimmen Sie $\Gamma_1 = \text{Stab}(1)$ und folgern Sie, dass

$$|H_1H_2| = \frac{|H_1| \cdot |H_2|}{|H_1 \cap H_2|}$$

Lösung. ■ Betrachte die Abbildung

$$\psi \colon \left\{ \begin{array}{ccc} H_1 H_2 \times (H_1 \times H_2) & \to & H_1 H_2 \\ (x, (h_1, h_2)) & \mapsto & h_1^{-1} \cdot x \cdot h_2 \end{array} \right.$$

Für jedes $x \in H_1H_2$ gilt $x = g_1 \cdot g_2$ mit $g_1 \in H_1$ und $g_2 \in H_2$. Dann gilt

$$h_1^{-1} \cdot x \cdot h_2 = \underbrace{h_1^{-1} g_1}_{\in H_1} \cdot \underbrace{g_2 h_2}_{\in H_2} \in H_1 H_2$$

Deswegen ist ψ definiert.

- \bullet ψ ist Wirkung.
 - \triangleright Für alle $x \in H_1 H_2$ ist $X^{(1,1)} = 1^{-1} \cdot x \cdot 1 = x$
 - \triangleright Für alle $(g_1, g_2), (h_1, h_2), (l_1, l_2) \in H_1 \times H_2$ gilt

$$\begin{split} ((g_1g_2)^{(h_1,h_2)})^{(l_1,l_2)} &= (h_1^{-1}g_1g_2h_2)^{(l_1,l_2)} = l_1^{-1}h_1^{-1}g_1g_2h_2l_2 \\ &= (h_1l_1)^{-1}g_1g_2(h_2l_2) = (g_1g_2)^{(h_1l_1,h_2l_2)} \\ &= (g_1g_2)^{(h_1,h_2)\cdot(l_1,l_2)} \end{split}$$

• ψ ist transitiv: Es seien $x, y \in H_1H_2$. Schreibe wieder $x = g_1g_2$ mit $g_1 \in H_1, g_2 \in H_2$ und $y = l_1l_2$ mit $l_1 \in H_1, l_2 \in H_2$. Dann gilt

$$y = l_1 l_2 = l_1 g_1^{-1} g_1 g_2 g_2^{-1} l_2 = \underbrace{(g_1 l_1^{-1})^{-1}}_{\in H_1} \cdot x \cdot \underbrace{(g_2^{-1} l_2)}_{\in H_2}$$

■ Es gilt:

$$Stab(1) = \left\{ (g_1, g_2) \in H_1 \times H_2 : 1^{(g_1, g_2)} = 1 \right\}$$

$$= \left\{ (g_1, g_2) \in H_1 \times H_2 : g_1^{-1} \cdot 1 \cdot g_2 = 1 \right\}$$

$$= \left\{ (g_1, g_2) \in H_1 \times H_2 : g_1 = g_2 \right\}$$

$$\cong H_1 \cap H_2$$

■ Deswegen gilt

$$|H_1 \cdot H_2| \stackrel{\text{transitiv}}{=} \#1^{H_1 \times H_2} \stackrel{\text{6.11}}{=} (H_1 \times H_2 \colon \text{Stab}(1))$$

$$\stackrel{\text{Lagrange}}{=} \frac{|H_1 \times H_2|}{|\text{Stab}(1)|} = \frac{|H_1| \cdot |H_2|}{|H_1 \cap H_2|}$$

Übung 50

Jede Gruppe der Ordnung 20 ist isomorph zu einem semidirekten Produkt $C_4 \ltimes_{\alpha} C_5$ oder $V_4 \ltimes_{\alpha} C_5$.

Lösung. Es sein G eine endliche Gruppe und n_5 die Anzahl der 5-Sylowgruppen von G. Nach den Sylow-Sätzen ist $n_5=1 \mod 5$ und $n_5 \mid 4$. Deswegen gilt $n_5=1$. G hat genau eine 5-Sylowgruppe, die wir mit N_5 bezeichnen. Nach 8.7 ist $N_5 \leqslant G$. Es sei N_2 eine 2-Sylowgruppe von G; es gilt $|N_2|=4$ (vgl. dazu 8.2: $\#G=p^k\cdot m$ mit $p\nmid m\Rightarrow 20=2^2\cdot 5\Rightarrow H\in \mathrm{Syl}_2(G)\Rightarrow |H|=p^k=4$). Da $\mathrm{ggT}(4,5)=1$ gilt $|N_5\cap N_2|=1$, d.h. $N_5\cap N_2=\{1\}$. Es gilt auch

$$|N_5 \cdot N_2| = \frac{|N_5| \cdot |N_2|}{|N_5 \cap N_2|} = \frac{5 \cdot 4}{1} = 20 = |G|$$

d.h. $N_5 \cdot N_2 = G$. Mit 5.6 bekommen wir $G \cong N_2 \ltimes_{\alpha} N_5$. Aber wegen $N_5 \cong C_5$ und $N_2 \cong C_3$ oder $N_2 \cong V_4$ (vgl. dazu 7.7 und 4.8 und V4) gilt $C_4 \ltimes_{\alpha} C_5$ oder $V_4 \ltimes_{\alpha} C_5$.

Übung 63 (Präsenz)

Geben Sie ein Beispiel einer Gruppe G und einer G-Menge X mit $G_x = \operatorname{Stab}(x) \not \in G$ für ein $x \in X$.

Lösung. Sei $n \geq 3$. Betrachte die natürliche Wirkung von S_n auf $\{1, \ldots, n\}$

$$\psi \colon \left\{ \begin{array}{ccc} \{1, \dots, n\} \times S_n & \to & S_n \\ (\sigma, i) & \mapsto & i^{\sigma} = \sigma(i) \end{array} \right.$$

Es gilt $\operatorname{Stab}(n) = \{ \sigma \in S_n : \sigma(n) = n \}$. Aber $\operatorname{Stab}(n) \not \leqslant S_n$:

$$(1 \ n) \circ \underbrace{(1 \ 2 \cdots n - 1)}_{\in \operatorname{Stab}(n)} \circ (1 \ n) \stackrel{\text{U26}}{=} (n \ 2 \cdots n - 1) \notin \operatorname{Stab}(n)$$

Übung 64 (Präsenz)

Sei G eine endliche Gruppe und p eine Primzahl. Genau dann ist G eine p-Gruppe, wenn $\operatorname{ord}(g)$ für jedes $g \in G$ eine p-Potenz ist.

Lösung. Wir betrachten beide Richtungen der Äquivalenz.

- (⇒) Ist G ein p-Gruppe, so ist ord(p) Teiler der Ordnung von G für jedes $g \in G$ (Lagrange), d.h. ord(g) ist eine p-Potenz für jedes $g \in G$, da #G eine p-Potenz ist.
- (\Leftarrow) Umgekehrt sei G eine endliche Gruppe mit

$$\forall g \in G \ \exists n \in \mathbb{N} : \operatorname{ord}(g) = p^n \tag{*}$$

Es sei q eine Primzahl, die #G teilt. Nach dem Satz von Cauchy (7.3) gilt: $\exists g \in G : \operatorname{ord}(g) = q$. Aus Gleichung (**) folgt $\operatorname{ord}(g) = q = p$. Deswegen ist G eine p-Gruppe.

Übung 65 (Präsenz)

Es seien G eine endliche Gruppe der Ordnung 39 und X eine G-Menge der Kardinalität 23. Zeigen Sie, dass X einen Fixpunkt unter G hat.

Lösung. Aus #G = 39 und |X| = 23, dem Satz von Lagrange und 6.11 gilt $\#x^G \in \{1, 3, 13, 39\}$ für alle $x \in X$. Es seien a die Anzahl der Bahnen der Kardinalität 1, b die Anzahl der Bahnen der Kardinalität 3, c die Anzahl der Bahnen der Kardinalität 13. Dann gilt 23 = a + 3b + 13c, insbesondere gilt $c \in \{0, 1\}$ (da $13 \cdot 2 = 26 > 23$). Ist c = 0, so gilt 23 = a + 3b. Ist a = 0, so ist 23 = 3b, was unmöglich ist, also $a \ge 1$. Ist c = 1, so gilt a + 3b = 10. Ist a = 0, so gilt a = 0, was unmöglich ist. Deswegen gilt $a \ge 1$.

Bemerkung: Der Stabilisator G_{x_0} besteht aus den $g \in G$, die x_0 als Fixpunkt haben.

Eric Kunze

Übungsleiter: Dr. Legrand Wintersemester 2018/19

Geometrie

Thema: Sylow-Sätze, einfache Gruppen, auflösbare Gruppen

Übung 66 (Vorbereitung)

Sei $\Delta := \{(g,g) : g \in G\}$. Dann ist $\Delta \leq G \times G$. Ist G abelsch, so ist $\Delta \leqslant G \times G$ und $(G \times G)/\Delta \cong G$. Ist G nicht abelsch, so ist $\Delta \nleq G \times G$

Lösung. Wir präsentieren hier nur die Lösung für den Teil $(G \times G)/\Delta \cong G$. Betrachte dazu die Abbildung

$$f \colon \left\{ \begin{array}{ccc} G \times G & \to & G \\ (g_1, g_2) & \mapsto & f(g_1, g_2) = g_1 \cdot g_2^{-1} \end{array} \right.$$

Da G abelsch ist, ist f ein Gruppenhomomorphismus:

$$\forall g_1, g_2, g_3, g_4 \in G : f((g_1, g_2) \cdot (g_3, g_4)) = f(g_1 g_3, g_2 g_4)$$

$$= g_1 g_3 \cdot (g_2 g_4)^{-1}$$

$$= g_1 g_2^{-1} g_3 g_4^{-1}$$

$$= f(g_1, g_2) \cdot f(g_3, g_4)$$

Es ist klar, dass f surjektiv ist, da alle $g \in G$ dargestellt werden können als $f(g_1, 1) = g$. Außerdem gilt

$$Ker(f) = \{(g_1, g_2) \in G \times G : f(g_1, g_2) = 1\}$$

$$= \{(g_1, g_2) \in G \times G : g_1 \cdot g_2^{-1} = 1\}$$

$$= \{(g_1, g_2) \in G \times G : g_1 = g_2\}$$

$$= \Delta$$

Mit 3.9 aus der Vorlesung schließen wir nun $(G \times G)/\operatorname{Ker}(f) \cong \operatorname{Im}(f) \iff (G \times G)/\Delta \cong G.$

Übung 68

Bestimmen Sie die Anzahl der k-Zykel $\sigma \in S_n$ für $k \in \mathbb{N}$.

Lösung. Es seien $n \ge 1$ und $k \ge 1$. Ist k > n, so gibt es keinen k-Zykel in S_n . Ist $k \le n$, so gibt es genau

$$\frac{n \cdot (n-1) \cdot (n-2) \cdot (n-k+1)}{k}$$

k-Zykel in S_n , bzw. in anderer Darstellungsweise ist die Anzahl der k-Zykel in S_n

$$\frac{n!}{(n-k)! \cdot k}$$

Betrachte zur Veranschaulichung

$$(a_1 a_2 \cdots a_k) = (a_2 a_3 \cdots a_k a_1) = (a_3 a_4 \cdots a_k a_1 a_2) = \cdots$$

Ist G endlich und einfach und $H \leq G$ mit $n = (G : H) \geq 2$, so ist $\#G \mid n!$.

Lösung. Betrachte die folgende Abbildung

$$\psi \colon \left\{ \begin{array}{lcl} H \backslash G \times G & \to & G \\ (Hg_1, g_2) & \mapsto & (Hg_1)^{g_2} = Hg_1g_2 \end{array} \right.$$

 ψ ist eine Wirkung:

- (i) $\forall g \in G$: $(Hg)^1 = Hg \cdot 1 = Hg$
- (ii) $\forall g_1, g_2, g_3 \in G$: $((Hg_1)^{g_2})^{g_3} = (Hg_1g_2)^{g_3} = Hg_1g_2g_3 = (Hg_1)^{g_2 \cdot g_3}$

Betrachte den Kern der Wirkung

$$\varphi \colon \left\{ \begin{array}{ccc} G & \to & S_{(H \backslash G)} \\ g & \mapsto & \varphi(g) : H \backslash G \to H \backslash G, Hl \mapsto (Hl)^g \end{array} \right. \text{ (vgl. 6.3)}$$

 $mit Ker(\varphi) = \{ g \in G \mid \forall l \in G : (Hl)^g = Hl \}$

Da G einfach ist und $\operatorname{Ker}(\varphi) \leq G$, gilt $\operatorname{Ker}(\varphi) = 1$ oder $\operatorname{Ker}(\varphi) = G$. Ist $\operatorname{Ker}(\varphi) = 1$, so ist $G \cong \operatorname{Im}(G)$ nach 3.9, insbesondere gilt $\#G = \#\operatorname{Im}(\varphi)$ und $|S_{H\backslash G}| = (G:H)! = n!$. Ist $\operatorname{Ker}(\varphi) = G$, so gilt H = G:

- $H \subseteq G$ ist klar
- $G \subseteq H$. Es reicht zu zeigen, dass $\operatorname{Ker}(\varphi) \subseteq H$ gilt. Sei $g \in \operatorname{Ker}(\varphi)$, d.h. für alle $l \in G$ ist Hlg = Hl. Insbesondere ist für l = 1 dann Hg = H, d.h. also $g \in H$.

Es ist also G = H, was jedoch falsch ist, da $(G : H) \ge 2$. Somit ist $Ker(\varphi) = G$ nicht möglich.

Übung 70

Keine Gruppe der Ordnung 312, 12 oder 300 ist einfach.

Lösung. Wir zeigen die Eigenschaft nicht einfach zu sein für die entsprechenden Gruppen nacheinander.

- (1) Sei G eine Gruppe der Ordnung $312 = 2 \cdot 156 = 2 \cdot 2 \cdot 78 = 2 \cdot 2 \cdot 2 \cdot 39 = 2^3 \cdot 3 \cdot 13$. Sei n_{13} die Anzahl der 13-Sylowgruppen von G. Nach den Sylowsätzen gilt $n_{13} \equiv 1 \mod 13$ und $n_{13} \mid 24$. Die Teiler von 24 sind genau 1, 24, 2, 12, 3, 8, 4, 6. Deswegen ist $n_{13} = 1$, d.h. es gibt genau eine 13-Sylowgruppe N_{13} von G. Mit 8.7 ist $N_{13} \leqslant G$. Da #G = 312 und $\#N_{13} = 13$, ist $1 \neq N_{13} \neq G$, also ist G nicht einfach.
- (2) Ist G eine endliche Gruppe der Ordnung $12 = 2^3 \cdot 3$. Es seien n_2 die Anzahl der 2-Sylowgruppen von G und n_3 die Anzahl der 3-Sylowgruppen von G. Nach den Sylowsätzen gilt

$$\begin{cases} n_2 \equiv 1 \mod 12 \\ n_2 \mid 3 \end{cases} \quad \text{und} \quad \begin{cases} n_3 \equiv 1 \mod 3 \\ n_3 \mid 4 \end{cases}$$

d.h. $n_2 \in \{1,3\}$ und $n_3 \in \{1,4\}$. Ist $n_3 = 4$, so schreibe N_1, N_2, N_3, N_4 für die vier 3-Sylowgruppen von G. Da $|N_1| = |N_2| = |N_3| = |N_4| = 3$ und $N_i \cap N_j = 1$ für $i \neq j$ (da 3 prim ist), besitzt G mindestens acht Elemente der Ordnung 3:

- $-N_1 = \{1, a_1, b_1\} \text{ mit } \operatorname{ord}(a_1) = 3 = \operatorname{ord}(b_1)$
- $-N_2 = \{1, a_2, b_2\} \text{ mit } \operatorname{ord}(a_2) = 3 = \operatorname{ord}(b_2)$

Ist $a_1 = a_2$, so ist $|N_1 \cap N_2| \ge 2$, was falsch ist. Sei nun $n_2 = 3$. Schreibe K_1, K_2, K_3 für die drei 2-Sylowgruppen von G. Da $|K_1| = |K_2| = |K_3| = 4$, besitzt G mindestens vier Elemente von Ordnung 2 oder 4. Insgesamt gilt $n_3 = 4$ und $n_2 = 3 \implies 12 = \#G = 8+4+1 = 13$ (8 Elemente der Ordnung 3, 4 Elemente der Ordnung 2 oder 4 und ein neutrales Element), was falsch ist. Deswegen gilt $n_3 = 1$ oder $n_2 = 1$. In jedem Fall ist G aber nicht einfach.

(3) Es sei G eine endliche Gruppe der Ordnung $300 = 30 \cdot 10 = 5 \cdot 6 \cdot 5 \cdot 2 = 2^2 \cdot 3 \cdot 5^2$. Es sei n_5 die Anzahl der 5-Sylowgruppen von G. Nach den Sylowsätzen gilt $n_5 \equiv 1 \mod 5$ und $n_5 \mid 12$, d.h. auf jeden Fall ist $n_5 \in \{1,6\}$. Es sei N_5 eine 5-Sylowgruppe von G. Ist $n_5 = 6$, so ist $(G : \mathbb{N}_G(N_5)) = 6$ (vgl. 8.6). Ist G auch einfach so gilt $\#G = 300 = 2^2 \cdot 3 \cdot 5^2 \mid 6! = 2^4 \cdot 3^2 \cdot 5$ (vgl. Ü49), was falsch ist (vergleiche die beiden Primfaktorenzerlegungen). Deswegen gilt $n_5 = 1$ oder G ist nicht einfach. In jedem Fall aber ist G nicht einfach.

Übung 81 (Präsenz)

Geben Sie ein Beispiel einer endlichen Gruppe G, die

- (i) einfach und auflösbar ist
- (ii) nicht einfach und auflösbar ist
- (iii) einfach und nicht auflösbar ist
- (iv) nicht einfach und nicht auflösbar ist.

Lösung. Wir geben jeweils ein Beispiel an und zeigen, dass die entsprechenden Eigenschaften gelten.

- (i) Die Gruppe $\mathbb{Z}/2\mathbb{Z}$ ist einfach (vgl. 9.3). Dann besitzt $\mathbb{Z}/2\mathbb{Z}$ die Kompositionsreihe $1 \leq \mathbb{Z}/2\mathbb{Z}$ und $(\mathbb{Z}/2\mathbb{Z})/1 = \mathbb{Z}/2\mathbb{Z}$ ist zyklisch. Somit ist $\mathbb{Z}/2\mathbb{Z}$ auflösbar.
- (ii) Die Gruppe $\mathbb{Z}/4\mathbb{Z}$ ist nicht einfach, da $\mathbb{Z}/4\mathbb{Z}$ einen Normalteiler der Ordnung 2 besitzt. Außerdem besitzt $\mathbb{Z}/4\mathbb{Z}$ die Normalreihe $1 \triangleleft \mathbb{Z}/2\mathbb{Z} \triangleleft \mathbb{Z}/4\mathbb{Z}$, die eine Kompositionsreihe ist, da
 - $(\mathbb{Z}/4\mathbb{Z})/(\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ ist einfach
 - $-(\mathbb{Z}/2\mathbb{Z})/1 \cong \mathbb{Z}/2\mathbb{Z}$ ist einfach

Da die Faktoren dieser Kompositonsreihe zyklisch sind, ist $\mathbb{Z}/4\mathbb{Z}$ auflösbar.

- (iii) Mit 9.11 ist A_5 einfach. Deswegen besitzt A_5 genau eine Kompositonsreihe $1 \triangleleft A_5$. Da $A_5/1 \cong A_5$ nicht zyklisch ist, ist A_5 nicht auflösbar.
- (iv) Die Gruppe S_5 ist nicht einfach, da $(S_5:A_5)=2$ und $A_5 \triangleleft S_5$. Da die Normalteiler der S_5 genau 1, A_5 und S_5 sind und S_5 nicht einfach ist, besitzt die S_5 genau eine Kompositionsreihe, nämlich $1 \triangleleft A_5 \triangleleft S_5$. Es gilt $S_5/A_5 \cong \mathbb{Z}/2\mathbb{Z}$ und $A_5/1 \cong A_5$ ist nicht zyklisch. Deswegen ist die S_5 nicht auflösbar.

Übung 82 (Präsenz)

Für welche $n \geq 1$ ist $S_n \cong A_n \times C_2$?

Lösung. Leider gab es dazu keine Lösung in der Übung.

Eric Kunze

П

Übungsleiter: Dr. Legrand Wintersemester 2018/19

Geometrie

Thema: auflösbare Gruppen, Ringe und Ideale

Lemma 1

Die Normalteiler der A_4 sind genau 1, V_4 und A_4 .

Beweis. Dass alle drei Untergruppen Normalteiler sind, ist klar. Betrachten wir die Umkehrung. Sei dazu $N \le A_4$. Mit dem Satz von Lagrange gilt $\#N \in \{1, 2, 3, 4, 6, 12\}$. Ist #N = 1, so ist N = 1, insbesondere ist $N \le A_4$. Ist #N = 12, so ist $N = A_4$. Deswegen ist $N \le A_4$.

Ist #N = 6, so gibt es einen Widerspruch zu H11.

Ist #N = 4, so ist $N = \{id, (12)(34), (13)(24), (14)(32)\} = V_4$.

Ist #N=2, so gibt es $(a\,b)(c\,d)$ mit $N=\{\mathrm{id},(a\,b)(c\,d)\}$. Da $(a\,b\,c)\circ(a\,b)\circ(c\,d)\circ(a\,c\,b)=(a\,d)(b\,c)\notin N$, ist $N\not \leq A_4$.

Ist #N = 3, so gibt es einen Widerspruch (wie im Fall #N = 2).

Übung 84 (Vorbereitung)

Ist $\#G \leq 9$, so ist G auflösbar.

Lösung. ■ Für #G = 1 ist die Auflösbarkeit klar.

- Für $\#G \in \{2,3,5,7\}$ ist G zyklisch und damit auflösbar.
- Für $\#G \in \{4,9\}$ ist G abelsch und somit auflösbar.
- Für $\#G = 8 = 2^3$ ist G eine p-Gruppe und damit auflösbar.
- Ist #G = 6, so ist $G \cong C_6$, welche abelsch ist, oder $G \cong S_3$, die nach Beispiel der Vorlesung auflösbar ist (vgl. auch Ü27).

In jedem Fall ist G also auflösbar.

Übung 85 (Vorbereitung)

Prüfen Sie nach, dass die Abbildung im Beweis von II.1.12 tatsächlich ein Ringhomomorphismus ist. Für $\varphi \in \text{Hom}(R, S)$ ist diese definiert als

$$\varphi_s \colon \left\{ \begin{array}{ccc} R[X] & \to & S \\ \sum_{i \ge 0} a_i X^i & \mapsto & \sum_{i \ge 0} \varphi(a_i) s^i \end{array} \right.$$

Lösung. Seien $f = \sum_{i \geq 0} a_i X^i, g = \sum_{i \geq 0} b_i X^i \in R[X]$. Dann ist

$$\varphi_s(f+g) = \varphi_s \left(\sum_{i \ge 0} a_i X^i + \sum_{i \ge 0} b_i X^i \right)$$

$$= \varphi_s \left(\sum_{i \ge 0} (a_i + b_i) X^i \right)$$

$$= \sum_{i \ge 0} \varphi(a_i + b_i) s^i$$

$$\stackrel{\varphi \in \text{Hom}}{=} \sum_{i \ge 0} (\varphi(a_i) + \varphi(b_i)) s^i$$

$$= \sum_{i \ge 0} \varphi(a_i) s^i + \sum_{i \ge 0} \varphi(b_i) s^i$$

$$= \varphi_s(f) + \varphi(s(g))$$

Die Multiplikativität folgt dann analog.

Übung 86

Ist #G = pq mit Primzahlen p und q, so ist G auflösbar.

Lösung. Es seien p und q Primzahlen und G eine Gruppe mit $\#G = p \cdot q$.

- Ist p = q, so ist $\#G = p^2$ und G deswegen abelsch. Insbesondere ist G auflösbar.
- Ist $p \neq q$, so gilt $G \cong C_p \ltimes_{\alpha} C_q$ oder $G \cong C_q \ltimes_{\alpha} C_p$ (vgl. 8.9). Mit 10.7 schließen wir, dass G auflösbar ist.

Übung 87

Bestimmen Sie die Kommutatorgruppen S'_n und A'_n für $n \geq 2$.

- **Lösung.** \blacksquare Sei $n \geq 5$. Da $S'_n \leq S_n$ und die Normalteiler von S_n sind $1, A_n, S_n$. Damit ist $S'_n \in \{1, A_n, S_n\}$. Ist $S'_n = 1$, so ist S_n abelsch, was falsch ist. Es gilt $S'_n \subseteq A_n$. Deswegen ist $S'_n = A_n$. Da $n \geq 5$ gilt, ist A_n einfach. Deswegen gilt $A'_n \in \{1, A_n\}$. Ist $A'_n = 1$, so ist A_n abelsch, was falsch ist. Deswegen gilt $A'_n = A_n$.
- Ist n = 2, so gelten $S_2 \cong C_2$ und $A_2 = 1$. Insbesondere sind S_2 und A_2 abelsch, d.h. $S'_n = A'_n = 1$.
- Ist n = 3, so gilt $S_3' = A_3$ (analog zum ersten Fall). Außerdem ist $A_3 \cong C_3$. Insbesondere ist A_3 abelsch, also $A_3' = 1$.
- Ist n=4, so ist $S_4' \in \{1, V_4, A_4, S_4\}$ (vgl. H72). Da S_4 auflösbar ist, aber nicht abelsch, gilt $S_4' \in \{V_4, A_4\}$. Aber es ist

$$[(34), (132)] = (34)(123)(34)(132) = (132) \circ (34) \circ (123) \circ (34) = (1)(243) \in S_4' \setminus V_4$$

Deswegen gilt $S'_4 = A_4$.

Mit Lemma 1 ist $A_4' \in \{1, V_4, A_4\}$. Da A_4 auflösbar, aber nicht abelsch ist, gilt $A_4' = V_4$.

Die Gruppe $GL_2(\mathbb{Z}/3\mathbb{Z})$ ist auflösbar.

- **Lösung.** Wir zeigen, dass jede Gruppe der Ordnung 12 auflösbar ist. Es sei G eine endliche Gruppe der Ordnung 12. Mit Ü70 folgt, dass G nicht einfach ist, d.h. G besitzt einen Normalteiler $N \leq G$ mit $\#N \in \{2,3,4,6\}$. Mit V84 sind alle N auflösbar und G/N auflösbar. Mit 10.7 schließen wir, dass auch G auflösbar ist.
- Die Gruppe $GL_2(\mathbb{Z}/3\mathbb{Z})$ besitzt Ordnung $(3^2 1) \cdot (3^2 3) = 8 \cdot 6 = 48$. Betrachte die Determinante det: $GL_2(\mathbb{Z}/3\mathbb{Z}) \to (\mathbb{Z}/3\mathbb{Z})^{\times}$, die Gruppenhomomorphismus ist. Da $\det(GL_2(\mathbb{Z}/3\mathbb{Z})) = (\mathbb{Z}/3\mathbb{Z})^{\times}$, gilt $\# \operatorname{Ker}(\det) = 24$. Es ist klar, dass

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Elemente von ZKer(det) sind. Außerdem ist Ker(det) nicht abelsch, weil

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Deswegen gilt $\#Z(\mathrm{Ker}(\det)) \in \{2,3,4,6,8,12\}$. Mit V84 und dem ersten Punkt oben folgt, dass $Z(\mathrm{Ker}(\det))$ auflösbar ist. Deswegen ist $\mathrm{Ker}(\det)/Z(\mathrm{Ker}(\det))$ auflösbar. Mit 10.7 bekommen wir, dass $\mathrm{Ker}(\det)$ auflösbar ist. Aber $\mathrm{GL}_2(\mathbb{Z}/3\mathbb{Z})/\mathrm{Ker}(\det)$ hat Ordnung 2 und ist somit auflösbar. Mit 10.7 schließen wir erneut, dass $\mathrm{GL}_2(\mathbb{Z}/3\mathbb{Z})$ auflösbar ist.

Bemerkung zur Gruppenordnung: Betrachtet man $\binom{a \ b}{c \ d}$, dann hat man sowohl für a und c je drei Möglichkeiten, muss aber eine davon wieder abziehen, da $\binom{0}{0}$ keine zulässige Spalte ist. Für b und d muss man schließlich noch die linear abhängigen Möglichkeiten abziehen.

Übung 89

Formulieren und beweisen Sie die universelle Eigenschaft des Polynomrings $R[X_i: i \in I]$.

Lösung. Es seien R ein Ring und $I \neq \emptyset$ eine Menge. Betrachte den Polynomring $R[X_i: I]$. Weiter Seien S ein Ring und $\varphi: R \to S$ ein Ringhomomorphismus sowie $s_i \in S$ für jedes $i \in I$.

zu zeigen: Es gibt genau einen Ringhomomorphismus $\varphi_{(s_i)} \colon R[X_i \colon I] \to S$, der sowohl $\varphi_{(s_i)}|_R = \varphi$ als auch $\varphi_{(s_i)}(X_i) = s_i$ für jedes $i \in I$ erfüllt.

Beweis: Betrachte die folgende Abbildung

$$\varphi_{(s_i)} : \begin{cases} R[X_i : I] & \to & S \\ \sum_{\mu} a_{\mu} X^{\mu} & \mapsto & \sum_{\mu} \varphi(a_{\mu}) \prod_i s_i^{\mu_i} \end{cases}$$

Für jedes $r \in R$ gilt $\varphi_{(s_i)}(r) = \varphi(r)$ (klar), d.h. $\varphi_{(s_i)}|_R = \varphi$. Insbesondere gilt $\varphi_{(s_i)}(1) = 1$. Seien $\sum_{\mu} a_{\mu} X^{\mu}, \sum_{\mu} b_{\mu} X^{\mu} \in R[X_i : i \in I]$.

5.3

Dann gilt

$$\varphi_{(s_i)}\left(\sum_{\mu}a_{\mu}X^{\mu} + \sum_{\mu}b_{\mu}X^{\mu}\right) = \varphi_{(s_i)}\left(\sum_{\mu}(a_{\mu} + b_{\mu})X^{\mu}\right)$$

$$= \sum_{\mu}\varphi(a_{\mu} + b_{\mu}) \cdot \prod_{i}s_{i}^{\mu_{i}}$$

$$= \sum_{\mu}\varphi(a_{\mu}) + \varphi(b_{\mu}) \cdot \prod_{i}s_{i}^{\mu_{i}}$$

$$= \left(\sum_{\mu}\varphi(a_{\mu})\prod_{i}s_{i}^{\mu_{i}}\right) + \left(\sum_{\mu}\varphi(b_{\mu})\prod_{i}s_{i}^{\mu_{i}}\right)$$

$$= \varphi_{(s_i)}\left(\sum_{\mu}a_{\mu}X^{\mu}\right) + \varphi_{(s_i)}\left(\sum_{\mu}b_{\mu}X^{\mu}\right)$$

Analog zeigen wir die Multiplikativität, d.h.

$$\varphi_{(s_i)}\left(\sum_{\mu}a_{\mu}X^{\mu}\cdot\sum_{\mu}b_{\mu}X^{\mu}\right)=\varphi_{(s_i)}\left(\sum_{\mu}a_{\mu}X^{\mu}\right)\cdot\varphi_{(s_i)}\left(\sum_{\mu}b_{\mu}X^{\mu}\right)$$

Deswegen ist $\varphi_{(s_i)}$ ein Ringhomomorphismus. Für jedes $i \in I$ gilt $\varphi_{(s_i)}(X_i) = \varphi(1) \cdot s_i^1 = s_i$. Für die Eindeutigkeit sei $\psi \colon R[X_i \colon i \in I] \to S$ ein Ringhomomorphismus mit $\psi|_R = \varphi$ und $\psi(X_i) = s_i$ für jedes $i \in I$. Für jedes $\sum_{\mu} a_{\mu} X^{\mu} \in R[X_i \colon i \in I]$ gilt

$$\psi\left(\sum_{\mu} a_{\mu} X^{\mu}\right) = \sum_{\mu} \psi(a_{\mu}) \cdot \psi\left(X^{\mu}\right)$$

$$= \sum_{\mu} \varphi(a_{\mu}) \cdot \psi\left(\prod_{i} X_{i}^{\mu_{i}}\right)$$

$$= \sum_{\mu} \varphi(a_{\mu}) \cdot \prod_{i} \psi(X_{i})^{\mu_{i}}$$

$$= \sum_{\mu} \varphi(a_{\mu}) \cdot \prod_{i} x_{i}^{\mu_{i}}$$

$$= \varphi(s_{i}) \left(\sum_{\mu} a_{\mu} X^{\mu}\right)$$

Übung 104 (Präsenz)

Sei $R = \mathbb{Z}[X]$. Geben Sie ein Beispiel eines maximalen Ideals und ein Beispiel eines Primideals $(0) \neq \mathfrak{p} \leq R$, das nicht maximal ist.

Lösung. ■ Betrachte das Ideal I von $\mathbb{Z}[X]$, das von X und 2 erzeugt wird (d.h. I = (2, X)), sowie die Abbildung

$$\varphi \colon \left\{ \begin{array}{ccc} \mathbb{Z}\left[X\right] & \to & \mathbb{Z}/2\mathbb{Z} \\ \sum_{i=0}^{m} a_i X^i & \mapsto & a_0 \mod 2 \end{array} \right.$$

Es ist klar, dass φ Ringhomomorphismus ist und surjektiv. Bestimme den Kern. Sei $\sum_{i=0}^{m} a_i X^i \in$

 $\operatorname{Ker}(\varphi)$. Dann gibt es $b_0 \in \mathbb{Z}$ mit $a_0 = 2b_0$. Dann gilt

$$\sum_{i=0}^{m} a_i X^i = a_0 + \sum_{i=1}^{m} a_i X^i = 2b_0 + X \cdot \sum_{i=1}^{m} a_i X^{i-1} \in I$$

Umgekehrt seien $P(X), Q(X) \in \mathbb{Z}[X]$. Dann gilt

$$\varphi\left(2\cdot P(X) + X\cdot Q(X)\right) = \varphi(2)\cdot \varphi(P(X)) + \varphi(X)\cdot \varphi(Q(X)) = 0 + 0 = 0$$

Deswegen ist Ker $(\varphi) = I$. Mit 2.8 bekommen wir $\mathbb{Z}[X]/I = \mathbb{Z}/2\mathbb{Z}$, was ein Körper ist. Deswegen ist I maximal (vgl. 2.11).

■ Analog zeigen wir, dass $\mathfrak{p} = X \cdot \mathbb{Z}[X]$ prim, aber nicht maximal ist.

Übung 105 (Präsenz)

Beweisen oder widerlegen Sie: Ist I ein Ideal / Primideal / maximales Ideal von R, so ist $I \cap R_0$ ein Ideal / Primideal / maximales Ideal von R_0

Lösung. Dazu gab es leider keine Lösung in der Übung.

Eric Kunze

Übungsleiter: Dr. Legrand Wintersemester 2018/19

Geometrie

Thema: Kongruenzen, Einheitengruppen, Teilbarkeit

Lemma 1

Sei $x \in \mathbb{Z}[\sqrt{-5}]$. Genau dann ist x eine Einheit, wenn N(x) = 1 (vgl. Gleichung (6.7)).

Beweis. Schreibe $x = a + b \cdot \sqrt{-5}$ mit $a, b \in \mathbb{Z}$.

- (⇒) Ist x eine Einheit, so gibt es $y \in \mathbb{Z}[\sqrt{-5}]$ mit xy = 1. Dann gilt $1 = N(1) = N(xy) = N(x) \cdot N(y)$ (Multiplikativität von N ist noch zu zeigen). Da $N(x) \in \mathbb{N}$ gilt N(x) = 1.
- (\Leftarrow) Ist N(x) = 1, so ist $a^2 + 5b^2 = 1$. Ist $b \neq 0$, so gilt $a^2 + 5b^2 \geq 5$, was falsch ist. Deswegen gilt b = 0 und $a^2 = 1$, d.h. $x = \pm 1$. In jedem Fall ist x eine Einheit.

Lemma 2

 $\xi = 1 + \sqrt{-5}$ ist irreduzibel in $\mathbb{Z}[\sqrt{-5}]$.

Beweis. Es ist $N(\xi) = 6 \neq 1$. Deswegen ist ξ keine Einheit nach Lemma 1. Schreibe $\xi = 1 + \sqrt{-5} = xy$ mit $x, y \in \mathbb{Z}[\sqrt{-5}]$ und x = a + ib, y = c + id mit $a, b, c, d \in \mathbb{Z}$. Dann gilt

$$6 = N(\xi) = N(xy) = N(x) \cdot N(y) = (a^2 + 5b^2)(c^2 + 5d^2)$$

Deswegen gilt $a^2+5b^2\in\{1,2,3,6\}$. Ist $b\neq 0$, so gilt $a^2+5b^2\geq 5$, d.h. $a^2+5b^2=6$ und damit $y=c^2+5d^2=1$, also y eine Einheit. Ist b=0, so ist $a^2+5b^2=a^2\in\{0,1,4,9,\ldots\}$. Deswegen ist a=1 und x somit eine Einheit. In jedem Fall ist $\xi=1+\sqrt{-5}$ irreduzibel.

Übung 106 (Vorbereitung)

Berechnen Sie ggT(n, 2019) mit dem euklidischen Algorithmus, wobei n Ihr Geburtsjahr ist.

Lösung. Sei n = 1999. Dann folgt mit dem euklidischen Algorithmus:

$$2019 = 1 \cdot 1999 + 20$$

$$1999 = 99 \cdot 20 + 19$$

$$20 = 1 \cdot 19 + 1$$
$$19 = 19 \cdot 1 + 0$$

Damit ist ggT(1999, 2019) = 1, was bereits klar ist, da 1999 prim ist.

Übung 107 (Vorbereitung)

Bestimmen Sie $x, y \in \mathbb{Z}$ mit

$$13x + 17y = ggT(13, 17) (6.1)$$

Bestimmen Sie außerdem $x, y \in \mathbb{Z}$ mit

$$13x + 17y = 3 \tag{6.2}$$

Lösung. Mit dem euklidischen Algorithmus folgt

$$17 = 1 \cdot 13 + 4$$

$$13 = 4 \cdot 4 + 1$$

$$4 = 4 \cdot 1 + 0$$

Durch Rückwärtseinsetzen der Reste ausgehend von der vorletzten Gleichung erhalte wir

$$1 = 13 - 3 \cdot 4$$
$$= 13 - 3 \cdot (17 - 13)$$
$$= 4 \cdot 13 - 3 \cdot 17$$

Somit ist (x, y) = (4, -3) eine Lösung von Gleichung (6.1). Multiplizieren wir die Gleichung mit dem Faktor 3, so ist (x, y) = (12, -9) eine Lösung von Gleichung (6.2).

Übung 108 (Vorbereitung)

 $\mathbb{Z}[X]$ und K[X,Y] sind keine Hauptidealringe.

Lösung. Um zu zeigen, dass $\mathbb{Z}[X]$ kein Hauptidealring ist, betrachten wir das Ideal (2, X) und zeigen, dass dies wirklich ein Ideal ist. Wir zeigen hier nur die Abgeschlossenheit unter Multiplikation mit Elementen aus $\mathbb{Z}[X]$. Sei dazu $f \in \mathbb{Z}[X]$, dann ist

$$f\cdot (a\cdot 2+b\cdot X)=f\cdot a\cdot 2+f\cdot b\cdot X=\underbrace{(f\cdot a)\cdot 2}_{\in\mathbb{Z}[X]}\cdot 2+\underbrace{(f\cdot b)\cdot X}_{\in\mathbb{Z}[X]}\cdot X\in (2,X)$$

Für K[X,Y] ist beispielsweise (X,Y) ein Ideal und damit K[X,Y] kein Hauptidealring.

Definiere $R_0 = R$ und $R_{i+1} := R_i[X_{i+1}]$. Dann ist $R_n \cong R[X_1, \dots, X_n]$.

Lösung. Wir lösen die Aufgabe durch vollständige Induktion über $n \geq 0$. Für n = 0 gilt $R_0 = R$. Für n = 1 gilt $R_1 = R_0[X_1] = R[X_1]$. Sei daher nun n > 1. Wir setzen voraus, dass es Isomorphismen $\Phi_n \colon R_n \to R[X_1, \dots, X_n]$ sowie $\Psi_n \colon R[X_1, \dots, X_n] \to R_n$ gibt mit

$$\Phi_n \circ \Psi_n = \mathrm{id}_{R[X_1, \dots, X_n]} \tag{6.3a}$$

$$\Psi_n \circ \Phi_n = \mathrm{id}_{R_n}$$

$$\Phi_n|_R = \mathrm{id}_R \tag{6.3b}$$

$$\Psi_n|_R = \mathrm{id}_R$$

$$\Psi_n(X_i) = \Phi_n(X_i) = X_i \text{ für alle } i \in \{1, \dots, n\}$$

$$(6.3c)$$

Betrachte die Abbildung $\iota: R \to R_{n+1}, x \mapsto x$. Mit Ü89 gibt es dann $\Psi_{n+1}: R[X_1, \dots X_{n+1}] \to R_{n+1}$ mit $\Psi_{n+1}(X_i) = X_i$ für alle $i \in \{1, \dots, n+1\}$ und $\Psi_{n+1}(x) = \iota(x) = x$ für alle $x \in R$.

Betrachte die Abbildung

$$\kappa \colon \left\{ \begin{array}{ccc} R_n & \to & R\left[X_1, \dots, X_{n+1}\right] \\ x & \mapsto & \Phi_n(x) \end{array} \right. \tag{6.4}$$

Mit Ü
89 gibt es $\Phi_{n+1}\colon R_n\left[X_{i+1}\right]\to R\left[X_1,\dots,X_{n+1}\right]$ mit

$$\Phi_{n+1}(X_{n+1}) = X_{n+1} \text{ und} ag{6.5a}$$

$$\Phi_{n+1}(x) = \Phi_n(x) \text{ für alle } x \in R_n$$
(6.5b)

Da $\Psi_n(x) \stackrel{\text{(6.3b)}}{=} x$ für jedes $x \in R$ und $\Psi_n(X_i) \stackrel{\text{(6.3c)}}{=} X_i$ für jedes $i \in \{1, \dots, n\}$ gilt auch $\Psi_{n+1}|_{R[X_1, \dots, X_n]} = \Psi_n$. Für jedes $x \in R_n$ gilt

$$(\Psi_{n+1} \circ \Phi_{n+1})(x) = (\Psi_{n+1} \circ \Phi_n)(x) = (\Psi_n \circ \Phi_n)(x) = x$$
 (6.6)

Es gilt auch

$$(\Psi_{n+1} \circ \Phi_{n+1})(X_{n+1}) = \Psi_{n+1}(X_{n+1}) = X_{n+1}$$

Deswegen gilt $\Psi_{n+1} \circ \Phi_{n+1} = \mathrm{id}_{R_n[X_n]} = \mathrm{id}_{R_{n+1}}$. Für jedes $x \in R$ gilt

$$(\Phi_{n+1} \circ \Psi_{n+1})(x) = \Phi_{n+1}(x) = \Phi_n(x) = x$$

und für jedes $i \in \{1, \dots, n+1\}$

$$(\Phi_{n+1} \circ \Psi_{n+1})(X_i) = \Phi_{n+1}(X_i) = \Phi_n(X_i) = X_i$$

Deswegen gilt $\Phi_{n+1} \circ \Psi_{n+1} = \mathrm{id}_{R[X_1,\ldots,X_n]}$.

Es sei R nullteilerfrei und $\iota \colon R \to K := \operatorname{Quot}(R)$. Beweisen Sie die universelle Eigenschaft des Quotientenkörpers: Ist L ein Körper und $\varphi \in \operatorname{Hom}(R,L)$ injektiv, so gibt es genau ein $\varphi' \in \operatorname{Hom}(K,L)$ mit $\varphi' \circ \iota = \varphi$.

Lösung. Es seien L ein Körper und $\varphi \in \text{Hom}(R, L)$ injektiv. Da φ injektiv ist, ist $\varphi(b) \neq 0$ für alle $b \in R \setminus \{0\}$. Betrachte die Abbildung

$$\psi \colon \left\{ \begin{array}{ccc} K & \to & L \\ \frac{a}{b} & \mapsto & \psi\left(\frac{a}{b}\right) = \varphi(a) \cdot \varphi(b)^{-1} \end{array} \right.$$

- Die Abbildung ψ ist wohldefiniert. Ist $a/b = c/d \in K$ mit $a, c \in R$ und $b, d \in R \setminus \{0\}$, so gilt ad = bc in R. Dann gilt $\varphi(a) \cdot \varphi(d) = \varphi(ad) = \varphi(bc) = \varphi(b) \cdot \varphi(c)$, d.h. $\varphi(a) \cdot \varphi(b)^{-1} = \varphi(c) \cdot \varphi(d)^{-1}$. Damit ist φ wohldefiniert.
- $\blacksquare \ \psi \ ist \ Ringhomomorphismus.$
 - (a) Für $a, c \in R$ und $b, d \in R \setminus \{0\}$ gilt

$$\psi\left(\frac{a}{b} + \frac{c}{d}\right) = \psi\left(\frac{ad + bc}{bd}\right) = \varphi(ad + bc) \cdot \varphi(bd)^{-1}$$

$$= (\varphi(a)\varphi(d) + \varphi(b)\varphi(c)) \cdot \varphi(d)^{-1}\varphi(b)^{1}$$

$$= \varphi(a)\varphi(d) \cdot \varphi(d)^{-1}\varphi(b)^{-1} + \varphi(b)\varphi(c) \cdot \varphi(d)^{-1}\varphi(b)^{1}$$

$$= \varphi(a) \cdot \varphi(b)^{-1} + \varphi(c) \cdot \varphi(d)^{-1}$$

$$= \psi\left(\frac{a}{b}\right) + \psi\left(\frac{c}{d}\right)$$

- (b) Es gilt $\psi(1) = \psi(\frac{1}{1}) = \varphi(1) \cdot \varphi(1)^{-1} = 1$.
- (c) Für $a, c \in R$ und $b, d \in R \setminus \{0\}$ gilt

$$\psi\left(\frac{a}{b} \cdot \frac{c}{d}\right) = \psi\left(\frac{ac}{bd}\right) = \varphi(ac) \cdot \varphi(bd)^{-1} = \varphi(a)\varphi(c) \cdot \varphi(d)^{-1}\varphi(b)^{1} = \varphi(a)\varphi(b)^{-1} \cdot \varphi(c) \cdot \varphi(d)^{-1}$$
$$= \psi\left(\frac{a}{b}\right) \cdot \psi\left(\frac{c}{d}\right)$$

- Für jedes $a \in R$ gilt $(\varphi \circ \iota)(a) = \psi(\frac{a}{\iota}) = \varphi(a) \cdot \varphi(1)^{-1} = \varphi(a)$.
- ψ ist eindeutig bestimmt. Es sei $\psi_1 \in \text{Hom}(K, L)$ mit $\psi_1 \circ \iota = \varphi$. Für jedes $a \in R$ gilt dann

$$\psi_1\left(\frac{a}{1}\right) = (\psi_1 \circ \iota)(a) = \varphi(a) = (\psi \circ \iota)(a) = \psi\left(\frac{a}{1}\right)$$

Ist $a \neq 0$, so gilt

$$\psi_1\left(\frac{1}{a}\right) = \psi_1\left(\left(\frac{a}{1}\right)^{-1}\right) = \psi_1\left(\frac{a}{1}\right)^{-1} = \psi\left(\frac{a}{1}\right)^{-1} = \psi\left(\left(\frac{a}{1}\right)^{-1}\right) = \psi\left(\frac{1}{a}\right)$$

Da ψ_1 und ψ Homomorphismen sind, gilt $\psi_1 = \psi$.

 $\mathbb{Z}[i] := \{x + iy \colon x, y \in \mathbb{Z}\}$ ist ein Teilring von \mathbb{C} , der euklidisch ist.

Lösung. • Es ist einfach zu zeigen, dass $\mathbb{Z}[i]$ ein Teilring von \mathbb{C} ist.

■ Betrachte die Abbildung

$$N: \left\{ \begin{array}{ccc} \mathbb{Z}[i] \backslash \{0\} & \to & \mathbb{N} \\ a+ib & \mapsto & a^2+b^2 \end{array} \right.$$

Es seien $z_1 \in \mathbb{Z}[i]$ und $z_2 \in Z[i] \setminus \{0\}$. Betrachte $\frac{z_1}{z_2} \in \mathbb{C}$ und schreibe $\frac{z_1}{z_2} = x + iy$ mit $x, y \in \mathbb{R}$. Aber es gibt $a, b \in Z$ mit $-1/2 \le x - a \le 1/2$ und $-1/2 \le y - b \le 1/2$. Schreibe $q = a + ib \in \mathbb{Z}[i]$ und $r = z_1 - qz_2 \in \mathbb{Z}[i]$ (da $\mathbb{Z}[i]$ Teilring von \mathbb{C} ist). Ist $r \ne 0$, so gilt

$$N(r) = r \cdot \overline{r} = (z_1 - qz_2) (\overline{z_1} - \overline{q}\overline{z_2})$$

$$= z_2 \overline{z_2} \cdot \left(\frac{z_1}{z_2} - q\right) \left(\frac{\overline{z_1}}{\overline{z_2}} - \overline{q}\right)$$

$$= N(z_2)(x + iy - a - ib)(x - iy + a + ib)$$

$$= N(z_2) ((x - a) + i(y - b)) ((x - a) - i(y - b))$$

$$= N(z_2) ((x - a)^2 + (y - b)^2)$$

$$\leq N(z_2) \left(\frac{1}{4} + \frac{1}{4}\right)$$

$$= \frac{1}{2}N(z_2)$$

$$< N(z_2) \quad (\text{da } N(z_2) \neq 0)$$

Deswegen ist $\mathbb{Z}[i]$ euklidisch.

Übung 113

 $\mathbb{Z}[\sqrt{-5}] := \{x + y\sqrt{-5} \colon x, y \in \mathbb{Z}\}$ ist ein Teilring von \mathbb{C} , der nicht faktoriell ist.

Lösung. \blacksquare Es ist einfach zu zeigen, dass $\mathbb{Z}[\sqrt{-5}]$ ein Teilring von \mathbb{C} ist.

■ Betrachte die Abbildung

$$N: \begin{cases} \mathbb{Z}[\sqrt{-5}] & \to \mathbb{N} \\ a + b\sqrt{-5} & \mapsto a^2 + 5b^2 \end{cases}$$
 (6.7)

Ist $\mathbb{Z}[\sqrt{-5}]$ faktoriell, so ist $1+\sqrt{-5}$ prim nach Lemma 2. Da $(1+\sqrt{-5})(1-\sqrt{-5})=6=2\cdot 3$, gilt $1+\sqrt{-5}\mid 2$ oder $1+\sqrt{-5}\mid 3$. Gilt $1+\sqrt{-5}\mid 2$, so gibt es $x\in\mathbb{Z}[\sqrt{-5}]$ mit $2=x\left(1+\sqrt{-5}\right)$. Insbesondere ist $4=N(2)=N(x)\cdot N\left(1+\sqrt{-5}\right)=6\cdot N(x)$, d.h. $2=3\cdot N(x)$, was falsch ist, da $N(x)\in\mathbb{N}$. Der andere Fall ist analog. Deswegen ist $\mathbb{Z}[\sqrt{-5}]$ nicht faktoriell.

Übung 114 (Präsenz)

Bestimmen Sie die Lösungen der folgenden Kongruenzen in \mathbb{Z} :

```
x\equiv 1 \mod 3 y\equiv 1 \mod 2 z\equiv 1 \mod 4 x\equiv 2 \mod 5 y\equiv 2 \mod 3 z\equiv 2 \mod 6 x\equiv 3 \mod 7 y\equiv 3 \mod 4 z\equiv 3 \mod 9
```

Lösung. Wir lösen nur das erste System von Kongruenzen:

Es gilt $3 \cdot 5 \cdot 7 = 105$. Bestimme $u, v \in \mathbb{Z}$ mit $3u + {105/3} \cdot v = 1$, d.h. 3u + 35v = 1. Es ist klar, dass u = 12 und v = -1 eine Lösung ist. Dann ist $-35 \equiv 1 \mod 3$, $-35 \equiv 0 \mod 5$ und $-35 \equiv 0 \mod 7$. Analog bestimmen wir $21 \equiv 1 \mod 5$, $21 \equiv 0 \mod 3$, $21 \equiv 0 \mod 7$, sowie $15 \equiv 1 \mod 7$, $15 \equiv 0 \mod 3$, $15 \equiv 0 \mod 5$. Betrachte $(-35) \cdot 1 + 2 \cdot 21 + 3 \cdot 15 = 52$. Dann gilt $52 + 105m \equiv 1 \mod 3$, $52 + 105m \equiv 2 \mod 5$ und $52 + 105m \equiv 3 \mod 7$ für jedes $m \in \mathbb{Z}$.

Umgekehrt sei $x \in \mathbb{Z}$ mit $x \equiv 1 \mod 3$, $x \equiv 2 \mod 5$ und $x \equiv 3 \mod 7$. Da 52 Lösung ist, gilt $x = 52 \mod 3$, $x = 52 \mod 5$ und $x = 52 \mod 7$, sowie kgV(3, 5, 7) = 105, d.h. es gilt $x \mid 52$, somit existiert $n \in \mathbb{Z}$ mit x = 52 + 105n.

Übung 115 (Präsenz)

Für jedes $n \ge 1$ gibt es $x \in \mathbb{N}$, für das keine der Zahlen $x + 1, \dots, x + n$ prim ist.

Beweis. Sei y = (n+1)!. Dann gilt für y + i mit $i \in \{2, ..., n+1\}$, dass

$$i \mid (n+1)! \tag{6.8}$$

Somit gilt auch $i \mid y+i$ für alle $i \in \{2, \ldots, n+1\}$ wegen (6.8) und $i \mid i$. Da $n \geq 1$ vorausgesetzt war, ist auch stets y+1>i und i somit ein echter Teiler von y. Damit sind die Zahlen y+i für $i \in \{2, \ldots, n+1\}$ nicht prim. Dann erfüllt x:=y+1 die Anforderungen.

Eric Kunze

Übungsleiter: Dr. Legrand Wintersemester 2018/19

Geometrie

Thema: Bruchringe, Irreduzibilität

Lemma 1

Es seien $a, b, c \in \mathbb{Z}$ mit $a \neq 0$, $a \mid bc$ und ggT(a, b) = 1. Dann gilt $a \mid c$.

Beweis. Da ggT(a,b)=1, gibt es $u,b\in\mathbb{Z}$ mit au+bv=1. Dann gilt $c=c\cdot 1=c\cdot (au+bv)=cau+cbv\equiv cbv\equiv 0$ mod a.

Lemma 2

Sei $f \in \mathbb{R}[X]$. Dann gilt für alle $z \in \mathbb{C}$: $f(z) = 0 \iff f(\overline{z}) = 0$

Beweis. Es seien $f \in \mathbb{R}[X]$ und $z \in \mathbb{C}$ mit f(z) = 0. Schreibe $f(X) = a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$ mit $a_n, \ldots, a_0 \in \mathbb{R}$. Da f(z) = 0 gilt

$$0 = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$
$$= a_n \overline{z}^n + a_{n-1} \overline{z}^{n-1} + \dots + a_1 \overline{z} + a_0$$
$$= f(\overline{z})$$

Deswegen ist \overline{z} Nullstelle von f.

Übung 131 (Vorbereitung)

Bestimmen Sie die Lösungen der folgenden Kongruenzen in \mathbb{Z} :

$$x\equiv 1 \mod 3$$
 $y\equiv 1 \mod 2$ $z\equiv 1 \mod 4$ $u\equiv 1 \mod 4$ $x\equiv 2 \mod 5$ $y\equiv 2 \mod 3$ $z\equiv 2 \mod 6$ $u\equiv 1 \mod 6$ $x\equiv 3 \mod 7$ $y\equiv 3 \mod 4$ $z\equiv 3 \mod 9$ $u\equiv 1 \mod 9$

Übung 133 (Vorbereitung)

Zerlegen Sie $X^4 - 2 \in \mathbb{R}[X]$ in seine Primfaktoren.

Lösung. Wiederholung: $f \in \mathbb{R}[X]$ prim $:\Leftrightarrow f \in \mathbb{R}[X]^{\times}$ und $f \mid ab \to f \mid a \lor f \mid b$

$$f = X^4 - 2 = \left(X^2 + \sqrt{2}\right)\left(X^2 - \sqrt{2}\right) = \left(X^2 + \sqrt{2}\right)\left(X - \sqrt[4]{2}\right)\left(X + \sqrt[4]{2}\right)$$

Übung 134

Ist $x = \frac{a}{b} \in \mathbb{Q}$ eine Nullstelle von $f = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X]$ mit ggT(a, b) = 1, so gelten $a \mid a_0$ und $b \mid a_n$.

Lösung. Es seien $a, b \in \mathbb{Z}$ mit $b \neq 0$, ggT(a, b) = 1 und $f\left(\frac{a}{b}\right) = 0$. Dann ist

$$0 = f\left(\frac{a}{b}\right) = \sum_{i=0}^{n} a_i \cdot \frac{a^i}{b^i} \iff 0 = b^n \cdot f\left(\frac{a}{b}\right) = \sum_{i=0}^{n} a_i \cdot a^i \cdot b^{n-i}$$

Insbesondere gelten $a \mid a_0b^n$ und $b \mid a_na^n$. Mit Lemma 1 folgt $a \mid a_0b^{n-1}$ und $b \mid a_na^{n-1}$. Per Induktion zeigt man nun noch. dass $a \mid a_0$ und $b \mid a_n$.

Die folgenden Polynome sind in den jeweiligen Ringen irreduzibel:

- (a) $X^3 + 39X^2 4X + 8 \in \mathbb{Q}[X]$
- (b) $2X^4 + 200X^3 + 2000X^2 + 20000X + 20 \in \mathbb{Q}[X]$
- (c) $X^5 64 \in \mathbb{Q}[X]$
- (d) $X^2Y + XY^2 X Y + 1 \in \mathbb{Q}[X, Y]$
- **Lösung.** (a) Ist das Poylnom irreduzibel über \mathbb{Q} , so besitzt es eine Nullstelle $x \in \mathbb{Q}$. Schreibe x = a/b mit $a, b \in \mathbb{Z}$, $b \neq 0$ und ggT(a, b) = 1. Mit Ü134 gilt $a \mid 8$ und $b \mid 1$, dh. $x \in \{8, -8, 4, -4, 2, -2, 1, -1\}$. Aber man zeigt leicht, dass

$$f(8) \neq 0$$
 $f(4) \neq 0$ $f(2) \neq 0$ $f(1) \neq 0$ $f(-8) \neq 0$ $f(-4) \neq 0$ $f(-2) \neq 0$ $f(-1) \neq 0$

Deswegen ist f irreduzibel über \mathbb{Q} .

(b) Sei $f(X) = 2X^4 + 200X^3 + 2000X^2 + 20000X + 20 \in \mathbb{Q}[X]$. Da $2 \in \mathbb{Q}[X]^{\times}$, gilt:

f irreduzibel über $\mathbb{Q} \iff 1/2 f = X^4 + 100 X^3 + 1000 X^2 + 10000 X + 10$ irreduzibel über \mathbb{Q}

Mit dem Satz von Eisenstein (p=2) ist 1/2f irreduzibel über \mathbb{Q} , also auch f irreduzibel über \mathbb{Q} .

(c) Sei $f(X) = X^5 - 64 \in \mathbb{Q}[X]$. Da $64 \neq x^5$ für alle $x \in \mathbb{Q}$, besitzt f keine Nullstelle in \mathbb{Q} . Deswegen gilt: Ist f irreduzibel über \mathbb{Q} , so gibt es $a, b, c, d, e \in \mathbb{Q}$ mit $X^5 - 64 = (X^2 + aX + b)(X^3 + cX + dX + e)$. Jetzt gilt

$$\begin{split} X^5 - 2 &= \frac{(X^5 - 2) \cdot 32}{32} = \frac{(2X)^5 - 64}{32} \\ &= \frac{1}{32} \left((2X)^2 - a \cdot (2X) - b \right) \left((2X)^3 + c(2X)^2 + d \cdot (2X) + e \right) \\ &= \left(\frac{4X^2 + 2aX + b}{4} \right) \left(\frac{8X^3 + 4cX^2 + 2dX + e}{8} \right) \\ &= \left(X^2 + \frac{a}{2}X + \frac{b}{4} \right) \left(X^3 + \frac{c}{2}X^2 + \frac{d}{4}X + \frac{e}{8} \right) \end{split}$$

Insbesondere ist X^5-2 reduzibel über \mathbb{Q} . Mit dem Satz von Eisenstein (p=2) ist X^5-2 irreduzibel über \mathbb{Q} , ein Widerspruch. Deswegen ist $f(X)=X^5-64$ irreduzibel über \mathbb{Q} .

- (d) Sei $f(X,Y)X^2Y + XY^2 X Y + 1 \in \mathbb{Q}[X,Y]$
 - (i) Zeige, dass $X^2 + X(Y^2 1) + (-Y + 1) \in \mathbb{Q}[Y][X]$ irreduzibel ist. Benutze den Satz von Eisenstein (mit dem Primelement Y 1). Deswegen ist $X^2 + X(Y^2 1) + (-Y + 1)$ irreduzibel über $\mathbb{Q}[X]$.
 - (ii) Analog ist $Y^2 + Y(X^2 1) + (1 X)$ irreduzibel über $\mathbb{Q}[X]$.

(iii) Zeige, dass $X^2Y + XY^2 - X - Y + 1$ irreduzibel über $\mathbb{Q}[X,Y]$ ist. Dazu schreiben wir f(X,Y) = $A(X,Y) \cdot B(X,Y)$ mit $A,B \in \mathbb{Q}[X,Y]$. Aus (i) und (ii) folgt

$$\deg_X(A)=2$$
 und $\deg_X(B)=0$ oder $\deg_X(A)=0$ und $\deg_X(B)=2$

und

$$\deg_Y(A) = 2$$
 und $\deg_Y(B) = 0$ oder $\deg_Y(A) = 0$ und $\deg_Y(B) = 2$

- \blacksquare deg_X(A) = 2, deg_X(B) = 0, deg_Y(A) = 2, deg_Y(B) = 0. Dann ist $B(X,Y) \in \mathbb{Q}$. Deswegen ist f irreduzibel über $\mathbb{Q}[X,Y]$.
- ullet deg_X(A) = 0, deg_X(B) = 2, deg_Y(A) = 0, deg_Y(B) = 2. \sim analog zum ersten Fall
- \bullet deg_X(A) = 2 = deg_Y(B), deg_Y(A) = 0 = deg_X(B). Dann ist $f(X,Y) = A(X) \cdot B(Y)$. Schreibe $A(X) = X^2 + aX + b$ und $B(Y) = Y^2 + cY + d$. Dann gilt $A(X) \cdot B(Y) = X^2 Y^2 + \cdots$, ein Widerspruch. Deswegen ist dieser Fall unmöglich.
- $\blacksquare \deg_X(A) = 0 = \deg_Y(B), \deg_Y(A) = 2 = \deg_X(B). \rightsquigarrow \text{ analog zum dritten Fall}$

Übung 136

Ist $f \in \mathbb{R}[X]$ und $z \in \mathbb{C}$ mit f(z) = 0, so ist auch $f(\overline{z}) = 0$. Nutzen Sie dies sowie den Fundamentalsatz der Algebra, um zu zeigen, dass alle irreduziblen $f \in \mathbb{R}[X]$ Grad 1 oder 2 haben.

Lösung. Wir zeigen die folgende Aussage: f irreduzibel in $\Leftrightarrow \deg(f) \in \{1,2\}$. Es sei $f \in \mathbb{R}[X]$ irreduzibel in zibel über \mathbb{R} . Weiter sei $\lambda \in \mathbb{C}$ mit $f(\lambda) = 0$ nach dem Fundamentalsatz der Algebra.

- Ist $\lambda \in \mathbb{R}$, so gilt $(X \lambda) \mid f(X)$. Da f irreduzibel ist, folgt, dass $\deg(f) = 1$.
- Ist $\lambda \in \mathbb{C} \setminus \mathbb{R}$, so ist mit Lemma 2 auch $f(\overline{\lambda}) = 0$. Schreibe $f(X) = (X \lambda) \cdot g(X)$ mit $g \in \mathbb{C}[X]$. $\mathrm{Da}\ (X-\overline{\lambda})\mid f(X)\ \mathrm{und}\ \mathrm{ggT}(X-\lambda,X-\overline{\lambda})=1\ \mathrm{gilt:}\ (X-\overline{\lambda})\mid g(X),\ \mathrm{d.h.}\ \mathrm{es}\ \mathrm{gibt}\ q\in\mathbb{C}\left[X\right]\ \mathrm{mit}$ $g(x) = (X - \overline{\lambda}) \cdot q(X). \text{ Somit ist also } f(X) = (X - \lambda)(X - \overline{\lambda}) \cdot q(X) = X^2 - (\underbrace{\lambda + \overline{\lambda}}) \cdot X + \underbrace{\lambda \overline{\lambda}}_{\in \mathbb{R}} \in \mathbb{R}[X].$ Mit der Eindeutigkeit der Polynomdivision folgt schlussendlich, dass $q(X) \in \mathbb{R}[X]$. Da f irreduzibel

in $\mathbb{R}[X]$ ist, schließen wir, dass $\deg(f) = 2$ gilt.

Übung 145 (Präsenz)

Finden Sie eine Primfaktorenzerlegung von $X^4 + 1$ in $\mathbb{C}[X]$, $\mathbb{R}[X]$ und $\mathbb{Q}[X]$.

Lösung. \blacksquare in $\mathbb{C}[X]$: $X^4 + 1$ hat vier Nullstellen, also $f(X) = (X - \lambda_1)(X - \lambda_2)(X - \lambda_3)(X - \lambda_4)$, wobei $(X - \lambda_i)$ stets irreduzibel ist für alle $i \in \{1, 2, 3, 4\}$.

$$X^{4} + 1 = \left(X + e^{1/4i\pi}\right) \left(X - e^{3/4i\pi}\right) \left(X - e^{5/4i\pi}\right) \left(X - e^{7/4i\pi}\right)$$

■ in $\mathbb{R}[X]$: Es gilt

$$X^{4} + 2 = X^{4} + 1 - 2X^{2} + 2X^{2} = (X^{2} - 1)^{2} + 2X^{2} = \left(X^{2} - \sqrt{2}X + 1\right)\left(X^{2} + \sqrt{2}X + 1\right)$$

Für jedes $x \in \mathbb{R}$ gilt

$$x^{2} - \sqrt{2}x + 1 = \left(x - \frac{1}{\sqrt{2}}\right)^{2} + \frac{1}{2} > 0$$
$$x^{2} + \sqrt{2}x + 1 = \left(x + \frac{1}{\sqrt{2}}\right)^{2} + \frac{1}{2} > 0$$

Deswegen sind $X^2 \pm \sqrt{2}X + 1$ irreduzibel über \mathbb{R} .

■ in Q[X]: Ist $X^4 + 1$ irreduzibel über \mathbb{Q} , so gibt es normierte Polynome $A(X), B(X) \in \mathbb{Q}[X]$ mit Grad 2 und $X^4 + 1 = A(X)B(X)$ (da $X^4 + 1 \neq 0$ für alle $x \in \mathbb{Q}$). Da $x^4 \neq -1$ für alle $x \in \mathbb{R}$, sind A(X) und B(X) irreduzibel über \mathbb{R} . Aus der Eindeutigkeit der Primfaktorenzerlegung über $\mathbb{R}[X]$ folgt

$$A(X) = X^2 \pm \sqrt{2} \cdot X + 1$$
 und $B(X) = X^2 \mp \sqrt{2} \cdot X + 1$

In jedem Fall bekommen wir einen Widerspruch, da $\sqrt{2} \notin \mathbb{Q}$. Deswegen ist $X^4 + 1$ irreduzibel über $\mathbb{Q}[X]$.