FbHash: A New Similarity Hashing Scheme for Digital Forensics

Timotej Knez 63..

Sebastian Mežnar 27192031

Jasmina Pegan 63170423

POVZETEK

nek povzetek

Kategorija in opis področja

E.3 [Data encryption]

Splošni izrazi

Hashing

Ključne besede

Data fingerprinting, Similarity digests, Fuzzy hashing, TF-IDF, Cosine-similarity

1. UVOD

Živimo v obdobju shranjevanja ogromnih količin podatkov. Pri forenzičnih preiskavah se pogosto zgodi, da je pridobljenih datotek preveč za ročno pregledovanje. Digitalni forenziki se tako soočijo s problemom avtomatizacije preiskave datotek. Možna rešitev so algoritmi, kot so ssdeep, sdhash in Fb-Hash, ki poskusijo filtrirati vnaprej znane "slabe" oziroma "dobre" datoteke. Ti algoritmi (angl. Approximate Matching algorithms) ugotavljajo delež ujemanja datotek s pomočjo (nekriptografskih) zgoščevalnih funkcij. Algoritma ssdeep in sdhash lahko preslepi aktivni napadalec, ki pametno napravi majhne spremembe na določenih mestih datoteke. Učinkovitega napada na algoritem fbhash ne poznamo.[3]

V 2. poglavju predstavimo predhodnike algoritma FbHash. V 3. poglavju podrobneje predstavimo algoritem FbHash in našo implementacijo. V 4. poglavju opišemo izvedene eksperimente in v 5. poglavju opišemo rezultate. V 6. poglavju povzamemo narejeno delo in rezultate.

2. SORODNA DELA

Prvi algoritem, namenjen iskanju približnih ujemanj, je bil objavljen leta 2002 pod imenom dcfldd. Ta algoritem je razvil N. Harbour kot izboljšano verzijo ukaza dd[4]. Izboljšana

različica tega algoritma jessdeep. Pomembnejša predhodnika algoritma FbHash sta tudi mvHash-B in mrsh-v2.

2.1 ssdeep

Algoritem ssdeep je implementacija kontekstno sprožene kosovno zgoščevalne funkcije (angl. Context Triggered Piecewise Hash, CTPH), ki jo je predstavil J. Kornblum septembra 2006 v članku [5]. Algoritem temelji na detektorju neeželene elektronske pošte spamsum, ki lahko zazna sporočila, ki so podobna znanim neželenim sporočilom.

CTPH uporablja zgoščevanje po kosih (angl. *piecewise hashing*), kar pomeni, da se zgoščena vrednost izračuna na posameznih kosih fiksne dolžine. Za razliko od algoritma dcfldd CTPH uporabi poljubno zgoščevalno funkcijo.

Zgoščevalna funkcija z drsečim oknom (angl. rolling hash) preslika zadnjih nekaj zlogov (bajtov) v psevdonaključno vrednost. Vsakega naslednika je možno hitro izračunati iz predhodno izračunane vrednosti.

Postopek CTPH se začne z izračunom zgoščenih vrednosti z drsečim oknom. Ob določeni sprožilni zgoščeni vrednosti (angl. trigger value) se vzporedno s tem sproži še algoritem zgoščevanja po kosih. Ob ponovni pojavitvi sprožilne vrednosti se dotlej zbrane vrednosti druge zgoščevalne funkcije zapišejo v končni prstni odtis. Tako se ob lokalni spremembi v datoteki sprememba pozna le lokalno tudi v prstnem odtisu.

Sledi primerjava prstnih odtisov datotek, ki temelji na uteženi Levenstheinovi razdalji (angl. *edit distance*), ki je nato še skalirana in obrnjena, da predstavlja 0 povsem različna prstna odtisa.

Algoritem ssdeep, ki je implementacija CTPH, se izkaže pri primerjavi podobnih besedilnih datotek in dokumentov [5]. Po drugi strani pa lahko aktivni napadalec popravi "slabe" datoteke na tak način, da se izognejo črni listi [3].

2.2 sdhash

Nekineki [6]

Po drugi strani pa lahko aktivni napadalec spremeni "slabe" datoteke na tak način, da se izognejo črni listi oziroma "dobre" datoteke tako, da se obdržijo na beli listi [?].

2.3 mvHash-B

2.4 mrsh-v2

Nekineki [2]

- 3. ALGORITEM
- 4. NAŠI EKSPERIMENTI (NAME IN PROGRESS)
- 5. REZULTATI
- 6. ZAKLJUČEK
- 7. ZAHVALA

Mogoče zahvala avtorjem za narjeno delo al kej.

8. REFERENCES

- F. Breitinger, K. P. Astebøl, H. Baier, and C. Busch. mvhash-b - a new approach for similarity preserving hashing. In 2013 Seventh International Conference on IT Security Incident Management and IT Forensics, pages 33-44, March 2013.
- [2] F. Breitinger and H. Baier. Similarity preserving hashing: Eligible properties and a new algorithm mrsh-v2. In *Digital Forensics and Cyber Crime*,, pages 167–182, October 2013.
- [3] D. Chang, M. Ghosh, S. K. Sanadhya, M. Singh, and D. R. White. Fbhash: A new similarity hashing scheme for digital forensics. In *The Digital Forensic Research* Conference, volume 29, pages S113–S123. DFRWS, July 2019.
- [4] N. Harbour. Dcfldd. defense computer forensics lab. online, 2002.
- [5] J. Kornblum. Identifying almost identical files using context triggered piecewise hashing. *Digital Investigation*, 3:91–97, September 2006. The Proceedings of the 6th Annual Digital Forensic Research Workshop (DFRWS '06).
- [6] V. Roussev. Data fingerprinting with similarity digests. IFIP Advances in Information and Communication Technology, 337:207–226, September 2010. Advances in Digital Forensics VI. DigitalForensics.