Homework 5 Honors Analysis I

Homework 5

ALECK ZHAO

October 18, 2017

Chapter 4: Open Sets and Closed Sets

3. Some authors say that two metrics d and ρ on a set M are equivalent if they generate the same open sets. Prove this.

Proof. Suppose $(x_n) \to x$ under d. Then let U be an open set under ρ containing x. Since d and ρ are equivalent, U is also open under d, so x_n is eventually in U, which means that $(x_n) \to x$ under ρ as well. Thus, if d and ρ generate the same open sets, they generate the same convergent sequences, so they are equivalent.

18. Given a nonempty bounded subset E of \mathbb{R} , show that $\sup E$ and $\inf E$ are elements of \overline{E} . Thus $\sup E$ and $\inf E$ are elements of E whenever E is closed.

Proof. From HW1, there exists $a, b \in E$ such that $a > \sup E - \varepsilon$ and $b < \inf E + \varepsilon$ for any $\varepsilon > 0$, thus

$$a \in B_{\varepsilon}(\sup E) \cap E \implies \sup E \in \overline{E}$$

 $b \in B_{\varepsilon}(\inf E) \cap E \implies \inf E \in \overline{E}$

If E is closed, then $E = \overline{E}$ and the conclusion follows.

33. Let A be a subset of M. A point $x \in M$ is called a limit point of A if every neighborhood of x contains a point of A that is different from x itself, that is, if $(B_{\varepsilon}(x) \setminus \{x\}) \cap A \neq \emptyset$ for every $\varepsilon > 0$. If x is a limit point of A, show that every neighborhood of x contains infinitely many points of A.

Proof. Suppose there exists $\varepsilon > 0$ such that $(B_{\varepsilon}(x) \setminus \{x\}) \cap A = \{x_1, x_2, \cdots, x_n\}$ is a finite set. Take

$$r = \min_{1 \le i \le n} \{d(x, x_i)\}$$

$$\implies \emptyset = (B_r(x) \setminus \{x\}) \cap A$$

which contradicts the fact that x is a limit point. Thus, any intersection must be infinite, as desired. \Box

41. Related to the notion of limit points and isolated points are boundary points. A point $x \in M$ is said to be a boundary point of A if each neighborhood of x hits both A and A^c . In symbols, x is a boundary point of A if and only if $B_{\varepsilon}(x) \cap A \neq \emptyset$ and $B_{\varepsilon}(x) \cap A^c \neq \emptyset$ for every $\varepsilon > 0$. Verify each of the following formulas, where $\partial(A)$ denotes the set of boundary points of A:

(a)
$$\partial(A) = \partial(A^c)$$

Proof.

$$x \in \partial(A) \iff B_{\varepsilon}(x) \cap A \neq \emptyset \text{ and } B_{\varepsilon} \cap A^{c} \neq \emptyset$$

 $\iff B_{\varepsilon}(x) \cap A^{c} \neq \emptyset \text{ and } B_{\varepsilon}(x) \cap (A^{c})^{c} \neq \emptyset$
 $\iff x \in \partial(A^{c})$

Homework 5 Honors Analysis I

(b) $\overline{A} = \partial(A) \cup A^{\circ}$

Proof. (\supset): Suppose $x \in \partial(A)$ but $x \notin A$. Then x is not in some set B containing A, so $x \in B^c$ which is open. Thus, there exists some $\varepsilon > 0$ such that $B_{\varepsilon}(x) \cap A = \emptyset$ since $A \subset B$. This contradicts $x \in \partial(A)$, so x must be in every closed set containing A, so $x \in \overline{A}$.

(\subset): Suppose $x \in \overline{A}$ but $x \notin \partial(A) \cup A^{\circ}$. Then $x \notin A^{\circ}$ so $B_{\varepsilon}(x) \not\subset A \Longrightarrow B_{\varepsilon}(x) \cap A^{c} \neq \emptyset$ for all $\varepsilon > 0$. Since $x \notin \partial(A)$, it must be that $B_{\delta}(x) \cap A = \emptyset$ for some δ . Then $(B_{\delta}(x))^{c} \supset A$ is a closed set containing A but not x, which contradicts $x \in \overline{A}$. Thus, $x \in \partial(A) \cup A^{\circ}$.

(c) $M = A^{\circ} \cup \partial(A) \cup (A^{c})^{\circ}$

Proof. From part (b), this is $M = \overline{A} \cup (A^c)^{\circ}$.

- (\supset) : If $x \in \overline{A}$, then since M is closed in M, we have $\overline{A} \subset M$, so $x \in M$. Since $(A^c)^{\circ} \subset A^c \subset M$, it follows that if $x \in (A^c)^{\circ}$, it must be that $x \in M$.
- (\subset): Suppose $x \in M$ but $x \notin \overline{A}$ and $x \notin (A^c)^\circ$. Since $x \notin (A^c)^\circ$, we have $B_{\varepsilon}(x) \not\subset A^c \implies B_{\varepsilon}(x) \cap A \neq \emptyset$ for all $\varepsilon > 0$. Since $x \notin \overline{A}$, there exists some $\delta > 0$ such that $B_{\delta}(x) \cap A = \emptyset$. Contradiction, so $x \in \overline{A} \cup (A^c)^\circ$.
- 48. A metric space is called separable if it contains a countable dense subset. Find examples of countable dense sets in \mathbb{R} , in \mathbb{R}^2 , and in \mathbb{R}^n .

Solution. $\mathbb{Q} \subset \mathbb{R}$ is a countable dense subset. Then under the Euclidean metric, $\mathbb{Q}^2 \subset \mathbb{R}^2$ is also dense, and countable. Consider any $x = (x_1, x_2) \in \mathbb{R}^2$. Then consider sequences $(p_n) \to x_1$ and $(q_n) \to x_2$ where $p_i, q_i \in \mathbb{Q}$, so $d(x, (p_n, q_n)) \to 0$ and thus $(p_n, q_n) \to x$. Extending this argument, $\mathbb{Q}^n \subset \mathbb{R}^n$ is a countable dense subset.

Chapter 5: Continuity

17. Let $f, g: (M, d) \to (N, \rho)$ be continuous, and let D be a dense subset of M. If f(x) = g(x) for all $x \in D$, show that f(x) = g(x) for all $x \in M$. If f is onto, show that f(D) is dense in N.

Proof. Suppose $x \in M \setminus D$. Then since D is dense in M, there exists a sequence $(x_n) \to x$ in D. Since f is continuous, we have $f(x_n) \to f(x)$ and since f and g agree on D, we have $g(x_n) \to f(x)$, and thus f(x) = g(x). If $x \in D$, then the conclusion is obviously true, so f(x) = g(x) for all $x \in M$, as desired. If f is surjective, for any $g \in N$ there exists $g \in M$ such that g(x) = g(x) Then since $g(x) \to g(x)$ is dense, there exists a sequence $g(x) \to g(x)$ in $g(x) \to g(x)$ and since $g(x) \to g(x)$ is dense in $g(x) \to g(x)$ and sequence $g(x) \to g(x)$ is dense in $g(x) \to g(x)$ and sequence $g(x) \to g(x)$ is dense in $g(x) \to g(x)$.

42. Suppose that $f: \mathbb{Q} \to \mathbb{R}$ is Lipschitz. Show that f extends to a continuous function $h: \mathbb{R} \to \mathbb{R}$. Is h unique? Explain. (Hint: Given $x \in \mathbb{R}$, choose a sequence of rationals (r_n) converging to x and argue that $h(x) = \lim_{n \to \infty} f(r_n)$ exists and is actually independent of the sequence (r_n) .)

Proof. If f is Lipschitz, then let $K \in \mathbb{R}$ such that $|f(x) - f(y)| \leq K|x - y|$. If $x \in \mathbb{Q}$, set h(x) = f(x). Otherwise, if $x \in \mathbb{R} \setminus \mathbb{Q}$, then since \mathbb{Q} is dense in \mathbb{R} , there exists a sequence of rationals $(r_n) \to x$. Thus, since convergent sequences are Cauchy, for any ε , there exists $N \in \mathbb{N}$ such that $|r_n - r_m| < \frac{\varepsilon}{K}$ for all $n, m \geq N$. Then since f is Lipschitz, we have

$$|f(r_n) - f(r_m)| \le K|r_n - r_m| < \varepsilon$$

for all $n, m \ge N$, so $f(r_n)$ is Cauchy. Since Cauchy sequences in \mathbb{R} converge, set $h(x) = \lim_{n \to \infty} f(r_n)$. Since f is continuous, it doesn't matter which sequence (r_n) we choose, and h is unique.

Homework 5 Honors Analysis I

46. Show that every metric space is homeomorphic to one of finite diameter. (Hint: Every metric is equivalent to a bounded metric.)

Proof. Let (M,d) be a metric space, and set $\rho(x,y) = \min\{1,d(x,y)\}$ for $x,y \in M$. Then ρ is a metric on M from HW4, so (M,ρ) is a bounded metric space since $\rho(x,y) \leq 1$ for any $x,y \in M$, and from exercise 3.42, d is equivalent to ρ . Since d and ρ are equivalent, we have $i:(M,d) \to (M,\rho)$ the identity map and its inverse i^{-1} are both continuous, so (M,d) is homeomorphic to (M,ρ) .

48. Prove that \mathbb{R} is homeomorphic to (0,1) and that (0,1) is homeomorphic to $(0,\infty)$. Is \mathbb{R} isometric to (0,1)? to $(0,\infty)$? Explain.

Proof. Let $f:(0,1)\to\mathbb{R}$ be given by $f(x)=\tan\left(\pi x-\frac{\pi}{2}\right)$. Clearly f is continuous on (0,1) under the usual metric. Then $f^{-1}(y)=\frac{1}{\pi}\arctan(y)+\frac{1}{2}$ is its continuous inverse on \mathbb{R} , so \mathbb{R} is homeomorphic to (0,1), under the usual metric for both.

Let $g:(0,1)\to(0,\infty)$ be given by $g(x)=\frac{x}{1-x}$. Clearly g is continuous on (0,1) under the usual metric. Then $g^{-1}(y)=\frac{y}{1+y}$ is also continuous on $(0,\infty)$, so (0,1) is homeomorphic to $(0,\infty)$, under the usual metric for both.

 \mathbb{R} is not isometric to (0,1) or $(0,\infty)$, or any proper subset of itself. Suppose $X \subseteq \mathbb{R}$ and $f: \mathbb{R} \to X$ was isometric. Then |f(x) - f(0)| = |x| so either f(x) = f(0) + x or f(x) = f(0) - x. Since X is a proper subset, there exists $y \in \mathbb{R} \setminus X$. Then if f(y - f(0)) = f(0) + (y - f(0)) = y, we reach a contradiction since $y \notin X$, so we must have f(y - f(0)) = f(0) - (y - f(0)) = 2f(0) - y. Similarly, we must have f(f(0) - y) = 2f(0) - y = f(y - f(0)). Since f is an isometry, it must be injective, so f(0) - y = y - f(0) so y = f(0), which is a contradiction since $y \notin X$. Thus, an isometry does not exist.

- 56. Let $f: (M, d) \to (N, \rho)$.
 - (i) We say that f is an open map if f(U) is open in N whenever U is open in M; that is, f maps open sets to open sets. Give examples of a continuous map that is not open and an open map that is not continuous.

Solution. Let $f: \mathbb{N} \to \mathbb{R}$ where f(n) = n. Then f is continuous, and $\{n\}$ is open in \mathbb{N} , but $f(\{n\}) = \{n\}$, which is not open in \mathbb{R} .

Let $g: \mathbb{R} \to \mathbb{Z}$ where $g(x) = \lfloor x \rfloor$ and \mathbb{Z} is endowed with the discrete metric. Then any subset of \mathbb{Z} is open, but g is not continuous.

(ii) Similarly, f is called closed if it maps closed sets to closed sets. Give examples of a continuous map that is not closed and a closed map that is not continuous.

Solution. Let $f: \mathbb{R} \to \mathbb{R}$ where $f(x) = e^x$. Then f is continuous on \mathbb{R} , and \mathbb{R} is closed in \mathbb{R} , but $f(\mathbb{R}) = (0, \infty)$ is not closed in \mathbb{R} .

Let $g: \mathbb{R} \to \mathbb{Z}$ where $g(x) = \lfloor x \rfloor$ and \mathbb{Z} is endowed with the discrete metric. Then any subset of \mathbb{Z} is closed, but g is not continuous.