Information Retrieval

Language Modeling for IR

Exploring a different IR modeling paradigm

Figure 2.3. Taxonomy of IR models

Introduction to Generative Language Models

What is a language model?

For he's a jolly good pillow

- Simplified statistical model of text
 - Data driven, as opposed to rule based, symbolic models of text.
 - Local (preceding) context predicts following words
 - Ex: "For he is a jolly good .."
 - Ex: "Barcelona scored 1-0 in the 2nd .."
- LM can be used to compute the <u>probability of</u> <u>observing a sentence</u> given a model of a language (fragment) as opposed to <u>syntactical well-</u> <u>formedness</u> of that string.

Comparing probabilities

- What's the use of these probabilities?
- We can compare the degree of well formedness
 - P('Obama walks in the park' $|M_{English}|$) > P('Obama walk in the park' $|M_{English}|$)
- We can also compare which model has the best fit for the data
 - P('Ajax won the cup' $|M_{sports}|$) > P('Ajax won the cup' $|M_{politics}|$)
- This means that a topic of a document or query can also be represented as a language model
 - i.e., words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model

How can we compute P?

- Starting point: generative model
 - Sentence is a series of ordered terms <t₀,t₁,-t_n>
 - Probability of observing term t_i depends on previous terms
 - P("for he is a") = P("for").P("he" | "for").P("is" | "for he").P("a" | "for he is")
 - $P(t_1, t_2, t_3, t_4) = P(t_1)P(t_2 | t_1)P(t_3 | t_1 t_2)P(t_4 | t_1 t_2 t_3)(\underline{chain rule})$

$$P(S) = \prod_{i=0}^{n} P(t_i (t_0.t_{i-1}))$$
 Memory

- "Memory" of a practical generative model is usually restricted. Why?
 - E.g. Memory=1: First order Markov model

Application in IR

- Intuition: each document is represented by a language model *D.*
- A user constructs a query Q by choosing some terms of which he assumes that they occur in relevant documents.
- Rank documents according to

$$P(D | Q) = P(Q | D)P(D)/P(Q) \cong P(Q | D)P(D)$$

- How probable is Q, when taking a random text sample from D's language model.
- Simple model (memory=0) works surprisingly well!
 - This means that we assume that all terms are chosen independently, which is clearly wrong.
 - dependency models (memory>0) give a small improvement. 11

Unigram language models: example

- Words are generated independent of the "history".
 - Urn model: sampling with replacement.

- O P(the|D)=5/10
- P(quick|D)=3/10
- P(fox|D)=1/10
- P(rat|D)=1/10

$$P(Q|D)=P(the|D)P(quick|D)P(fox|D) = 0.5x0.3x0.1$$

$$P(q_0...q_n \mid D) = \prod_{i=0}^{n} P(q_i \mid D)$$

Bag of Words

- For unigram language models, word order is ignored
 - Also known as bag-of-words, hence this is a
- Multinomial distribution over vocabulary M

In case we view a query as a B.O.W.

 There are multiple ways to create the same bag of words by generating different sequences (=>factorials)

Multinomial constant: $P(d) = \frac{L_d!}{\mathsf{tf}_{t_1,d}!\mathsf{tf}_{t_2,d}!\cdots\mathsf{tf}_{t_M,d}!} P(t_1)^{\mathsf{tf}_{t_1,d}} P(t_2)^{\mathsf{tf}_{t_2,d}}\cdots P(t_M)^{\mathsf{tf}_{t_M,d}}$

- If we compare two models for the same document, constant can be left out.
- In practice this constant is always left out => cross entropy formulation

More formally: Query-Likelihood Model

- Rank documents by the probability that the query could be generated by the document model (i.e. same topic)
- Point of departure: P(D|Q)
- Using Bayes' Rule

$$p(D|Q) \stackrel{rank}{=} P(Q|D)P(D)$$

Assuming 1) prior is uniform, 2) unigram model

Query Likelihood

$$P(Q|D) = \prod_{i=1}^{n} P(q_i|D)$$

Estimating Probabilities

Obvious estimate for unigram probabilities is

$$P(q_i|D) = \frac{f_{q_i,D}}{|D|}$$

- Maximum likelihood estimate
 - makes the observed value of $f_{q,D}$ most likely
- Example:
 - D1: "Election of Barack Obama in 2008."
 - D2: "US Election 2008: won by senator Obama"
 - D3: "Michelle Obama new first lady."
 - Q: "election Barack Obama"
 - what are the query likelihoods? Do they reflect relevance?
- If query words are missing from document, score will be zero
 - Missing 1 out of 3 query terms same as missing 2 out of 3¹⁶

Sparse data problem

- Feature space is large
 - → the number of parameters is extremely high (all words in a language).
- Relatively small amount of data for estimation (just 1 document)
 - This explains why higher order models (bigrams and up) are hardly feasible for IR.
- Solution: "smoothing"

Smoothing

- Document texts are a sample from the language model
 - Missing words should not have zero probability of occurring
- Smoothing is a technique for estimating probabilities for missing (or unseen) words
 - lower (or discount) the probability estimates for words that are seen in the document text
 - assign that "left-over" probability to the estimates for the words that are not seen in the text

Smoothing by discounting

Laplace

$$P_{laplace}(w) = \frac{c(w) + \alpha}{\sum_{w \in V} c(w) + \alpha |V|}$$

|V| is vocabulary size of language model, typically 10^5

Is this a proper probability distribution?

• Typical values: α = 0.5

Limitation of discounting

- Problem: all unseen terms are assigned an equal probability
 - Why is this a problem?

- Solution:
 - Interpolation with a more general model
 - E.g. smooth a trigram model with a bigram model, which in turn is smoothed by a unigram model (ASR)
 - Or: smooth a document unigram model with a collection unigram model (background model)

Smoothing by linear interpolation

- Estimate for unseen words is $\alpha_D P(q_i | C)$
 - $P(q_i|C)$ is the probability for query word i in the collection language model for collection C (background probability)
 - α_D is a parameter
- Estimate for words that occur is

$$(1 - \alpha_D) P(q_i | D) + \alpha_D P(q_i | C)$$

• Different forms of estimation come from different α_D

Basic ranking formula: JM smoothing

$$P(q_1, q_2, \dots q_n \mid D) = \prod_{j=1}^n P(q_j \mid D)$$

Generative model, <u>term</u> independence

- Add smoothing to P(Q|D)
- α_D is a constant: λ (Jelinek Mercer smoothing)

$$P(q_{1}, q_{2}, \dots q_{n} \mid D) = \prod_{j=1}^{n} (1 - \lambda) P(q_{j} \mid D) + \lambda P(q_{j} \mid C)$$

$$\log P(q_{1}, q_{2}, \dots q_{n} \mid D) = \sum_{j=1}^{n} \log \left[(1 - \lambda) P(q_{j} \mid D) + \lambda P(q_{j} \mid C) \right]$$

- A good value for λ is e.g. 0.85, is this light or heavy smoothing?
- How does the model behave with λ approaching 0 and λ =1?

Where is tf.idf Weight?

$$P(q_i \mid D)$$
 $P(q_i \mid C)$

$$\log P(Q|D) = \sum_{i=1}^{n} \log((1-\lambda)\frac{f_{q_{i},D}}{|D|} + \lambda \frac{c_{q_{i}}}{|C|})$$

$$= \sum_{i:f_{q_{i},D}>0} \log((1-\lambda)\frac{f_{q_{i},D}}{|D|} + \lambda \frac{c_{q_{i}}}{|C|}) + \sum_{i:f_{q_{i},D}=0} \log(\lambda \frac{c_{q_{i}}}{|C|})$$

$$= \sum_{i: f_{q_i, D} > 0} \log \frac{((1 - \lambda) \frac{f_{q_i, D}}{|D|} + \lambda \frac{c_{q_i}}{|C|})}{\lambda \frac{c_{q_i}}{|C|}} + \sum_{i=1}^n \log(\lambda \frac{c_{q_i}}{|C|})$$

$$\stackrel{rank}{=} \sum_{i: f_{q_i, D} > 0} \log \left(\frac{((1 - \lambda) \frac{f_{q_i, D}}{|D|}}{\lambda \frac{c_{q_i}}{|C|}} + 1 \right)$$

- proportional to the term frequency,
- inversely proportional to the collection frequency

Dirichlet Smoothing

• α_D depends on document length

$$\alpha_D = \frac{\mu}{|D| + \mu}$$

Gives probability estimation of

$$p(q_i|D) = \frac{f_{q_i,D} + \mu \frac{c_{q_i}}{|D| + \mu}}{|D| + \mu}$$

and document score

$$\log P(Q|D) = \sum_{i=1}^{n} \log \frac{f_{q_i,D} + \mu \frac{c_{q_i}}{|D| + \mu}}{|D| + \mu}$$

Query Likelihood Example

- For the term "president"
 - $f_{ai,D}$ = 15, c_{ai} = 160,000
- For the term "lincoln"
 - $f_{ai,D}$ = 25, c_{ai} = 2,400
- length (number of word occurrences) of document |d| is assumed to be 1,800
- number of word occurrences in the collection is 10⁹
 - 500,000 documents times an average of 2,000 words
- $\mu = 2,000$

Query Likelihood Example (2)

$$QL(Q, D) = \log \frac{15 + 2000 \times (1.6 \times 10^5/10^9)}{1800 + 2000} + \log \frac{25 + 2000 \times (2400/10^9)}{1800 + 2000}$$

$$= \log(15.32/3800) + \log(25.005/3800)$$

$$= -5.51 + -5.02 = -10.53$$

Negative number because summing logs of small numbers

Query Likelihood Example (5 docs)

Fr	equency of	Frequency of	QL
"]	president"	"lincoln"	score
	15	25	-10.53
	15	1	-13.75
	15	0	-19.05
·	1	25	-12.99
	0	25	-14.40

A document that misses the term lincoln is penalized more than a document that misses the more general term president.

Using the prior for document length normalization

- Almost linear relation between P(R) and document length
- Document priors improve average precision, especially for short queries
- TREC7 ad hoc MAP (1999):
 - Okapi: 0.232
 - LM: 0.241 (JM smoothing)
 - LM+prior: 0.251 RSV += log(length)

Log(length)

Djoerd Hiemstra and Wessel Kraaij, ``Twenty-One at TREC-7: ad-hoc and cross-language track", Proceedings of the seventh Text Retrieval Conference TREC-7, NIST Special Publication 500-242, pages 227-238, 1999

Cross-entropy for monolingual IR

$$P(q_1, q_2, \dots, q_n \mid D) = \prod_{j=1}^n P(q_j \mid D)$$

~ rank equiv.

From tokens to type counts in a bag of words*, taking logs

$$\log P(Q \mid D) = \sum_{w_i \in Q} c(w_i, Q) \log P(w_i \mid D)$$

~ rank equiv.

$$-H(w;D) = \sum_{i=1}^{n} P(w_i | Q) \log P_{sm}(w_i | D)$$

Normalizing by |Q|

Which in fact equals the negated cross-entropy

Summary of the lecture

 Statistical language modeling offers a clean, competitive and extensible framework for a range of (IR and NLP) tasks

 Parameter estimation techniques accommodating the sparse data problem are key to its success

Comparing models

	Effectiveness	Efficiency	Explain/Use	Parsimony
Boolean	No ranking	++ (presence only)	++/-	+
Vector Space (Inc.ntc)	Ranking	++ (presence only)	fair	fair
Lnu.ltu	Ranking ++	++ (presence only)	fair	- (more parameters)
Neural IR	Precision oriented ++ (needs BM25 1 st stage)	(all terms)	Better than LSI	-
BIM	No Tf!	++ (presence only)	Theory is clear	0 hyperparameters
BM25	++	++ (presence only)	Complex derivation	2 hyperparameters
LM	++	++ (presence only)	Simple derivation	1 hyperparameter

More references

- TREC Experiment and Evaluation in Information Retrieval Edited by Ellen M. Voorhees and Donna K. Harman MIT Press
- Language Modeling for Information Retrieval Series: <u>The Kluwer International Series on Information Retrieval</u>, Vol. 13 Croft, W. Bruce; Lafferty, John (Eds.) 2003, 264 p., Hardcover ISBN: 1-4020-1216-0
- Relevance-Based Language Models, by Lavrenko, V. and Croft, W.B., in Proceedings of the 24th annual international ACM SIGIR conference, New Orleans, LA, September 7 - 12, 2001.
- Using Language Models for Information Retrieval, by Djoerd Hiemstra, Ph.D. Thesis, Centre for Telematics and Information Technology, University of Twente, January 2001, ISSN 1381-3617 (no. 01-32), ISBN 90-75296-05-3
- Transitive probabilistic CLIR models, by Wessel Kraaij and Franciska de Jong. In Proceedings of RIAO 2004, 2004.
- Variations on Language Modeling for Information Retrieval, by Wessel Kraaij. PhD thesis, University of Twente, June 2004
- Foundations of Statistical Natural Language Processing, Manning and Schuetze,
 MIT press. http://nlp.stanford.edu/fsnlp/

End of Lecture