Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет Информатика и системы Управления (ИУ) Кафедра «Информационные системы и телекоммуникации» (ИУ3)

Методические указания по выполнению, оформлению отчета и защите лабораторной работы No1

на тему <u>Исследование характеристик выпрямительных схем и стабилизаторов напряжения</u>

по предмету (курсу) Электроника 2019-2020 учебного года

Автор ст.преподаватель Левиев Д.О.

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Номер варианта задания — номер по журналу учета ЛР на портале <u>iu3bmstu.github.io</u>

Задание №1. Рассчитать и исследовать схему однополупериодного выпрямителя

Схема однополупериодного выпрямителя приведена на рисунке 1. на основании данных, представленных в таблице 1 по номеру варианта провести расчет элементов схемы и последующее исследование с использованием симулятора MultiSIM.

Индуктивная нагрузка подключается параллельно, а потом последовательно с омической нагрузкой

Емкостная нагрузка подключается параллельно омической нагрузке при последовательном соединении индуктивной и омической нагрузки.

Емкостная нагрузка подключается параллельно омической и индуктивной нагрузке при параллельном подключении индуктивной и омической нагрузки.

Результаты исследования работы схемы подтвердить осциллограммами в основных контрольных точках. Провести оценку работы схемы в частотной и временной области.

Исследовать переходные процессы в элементах схемы.

Рисунок 1 - Схема однополупериодного выпрямителя

Таблица 1. Исходные данные для расчета однополупериодного выпрямителя

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
1	100 КГц	6 B	125 мВ	10 Ом	1 мГн	10 мкФ	1 Вт	6 B
2	100 КГц	12 B	250 мВ	5 Ом	2 мГн	22 мкФ	2 BT	12 B
3	100 КГц	18 B	200 мВ	2 Ом	5 мГн	10 мкФ	4 Вт	18 B
4	100 КГц	24 B	100мВ	1 Ом	10 мГн	22 мкФ	1 Вт	24 B
5	100 КГц	30 B	125 мВ	10 Ом	20 мГн	10 мкФ	2 BT	30 B
6	100 КГц	36 B	250 мВ	5 Ом	1 мГн	22 мкФ	4 Вт	36 B
7	300 КГц	6 B	200 мВ	2 Ом	2 мГн	10 мкФ	1 Вт	6 B
8	300 КГц	12 B	100мВ	1 Ом	5 мГн	22 мкФ	2 Вт	12 B
9	300 КГц	24 B	125 мВ	10 Ом	20 мГн	10 мкФ	4 Вт	24 B
10	300 КГц	30 B	250 мВ	5 Ом	1 мГн	22 мкФ	1 Вт	30 B
11	300 КГц	36 B	200 мВ	2 Ом	2 мГн	10 мкФ	2 Вт	36 B
12	500 КГц	6 B	100мВ	1 Ом	5 мГн	22 мкФ	4 Вт	6 B
13	500 КГц	12 B	125 мВ	10 Ом	10 мГн	10 мкФ	1 Вт	12 B
14	500 КГц	18 B	250 мВ	5 Ом	20 мГн	22 мкФ	2 Вт	18 B
15	500 КГц	24 B	200 мВ	2 Ом	1 мГн	10 мкФ	4 Вт	24 B
16	500 КГц	30 B	100мВ	1 Ом	2 мГн	22 мкФ	1 Вт	30 B
17	500 КГц	36 B	125 мВ	10 Ом	5 мГн	10 мкФ	2 BT	36 B
18	800 КГц	6 B	250 мВ	5 Ом	10 мГн	22 мкФ	4 Вт	6 B
19	800 КГц	12 B	200 мВ	2 Ом	20 мГн	10 мкФ	1 Вт	12 B
20	800 КГц	18 B	100мВ	1 Ом	1 мГн	22 мкФ	2 Вт	18 B
21	800 КГц	24 B	125 мВ	10 Ом	2 мГн	10 мкФ	4 Вт	24 B
22	800 КГц	30 B	250 мВ	5 Ом	5 мГн	22 мкФ	1 Вт	30 B
23	800 КГц	36 B	200 мВ	2 Ом	10 мГн	10 мкФ	2 Вт	36 B
24	1 МГц	6 B	100мВ	1 Ом	20 мГн	22 мкФ	4 Вт	6 B
25	1 МГц	12 B	125 мВ	10 Ом	1 мГн	10 мкФ	1 Вт	12 B
26	1 МГц	18 B	250 мВ	5 Ом	2 мГн	22 мкФ	2 BT	18 B
27	1 МГц	24 B	200 мВ	2 Ом	5 мГн	10 мкФ	4 BT	24 B
28	1 МГц	30 B	100мВ	1 Ом	10 мГн	22 мкФ	1 Вт	30 B
29	1 МГц	36 B	125 мВ	10 Ом	20 мГн	10 мкФ	2 BT	36 B
30	1,2 МГц	6 B	250 мВ	5 Ом	1 мГн	22 мкФ	4 BT	6 B
31	1,2 МГц	12 B	200 мВ	2 Ом	2 мГн	10 мкФ	1 BT	12 B
32	1,2 МГц	18 B	100мВ	1 Ом	5 мГн	22 мкФ	2 BT	18 B
33	1,2 МГц	24 B	125 мВ	10 Ом	10 мГн	10 мкФ	4 BT	24 B
34	1,2 МГц	30 B	250 MB	5 Ом	20 мГн	22 мкФ	1 BT	30 B
35	1,2 МГц	36 B	200 MB	2 Om	1 мГн 2 мГч	10 мкФ	2 BT	36 B
36	1,5 МГц	6 B	100мB	1 Om	2 мГн	22 мкФ 10 мгФ	4 BT	6 B
37	1,5 МГц	12 B	125 MB	10 Ом	5 мГн 10 мГн	10 мкФ 22 мкФ	1 BT	12 B
38	1,5 МГц 1,5 МГц	18 B 24 B	250 мВ 200 мВ	5 Ом 2 Ом	10 мГн 20 мГн	22 мкФ 10 мкФ	2 Bt 4 Bt	18 B 24 B
40	1,5 МГц	30 B	100мВ	1 Om	20 MI н 1 мГн	22 мкФ	1 BT	30 B
40	1,5 МГц	36 B	125 мВ	10 Ом	2 мГн	22 мкФ 10 мкФ	2 BT	36 B
42	1,5 МП Ц	6 B	250 мВ	5 Ом	2 м1 н 5 мГн	22 мкФ	4 BT	6 B
43	100 КГц	12 B	200 мВ	2 Ом	3 м1 н 10 мГн	22 мкФ 10 мкФ	1 BT	12 B
43	100 КГц	12 B	100мВ	1 Om	20 мГн	22 мкФ	2 BT	12 B 18 B
45	100 КГц	24 B	125 мВ	10 Ом	1 мГн	10 мкФ	4 BT	24 B

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
46	100 КГц	30 B	250 мВ	5 Ом	2 мГн	22 мкФ	1 Вт	30 B
47	100 КГц	36 B	200 мВ	2 Ом	5 мГн	10 мкФ	2 Вт	36 B
48	300 КГц	6 B	100мВ	1 Ом	10 мГн	22 мкФ	4 Вт	6 B
49	300 КГц	12 B	125 мВ	10 Ом	20 мГн	10 мкФ	1 Вт	12 B
50	300 КГц	18 B	250 мВ	5 Ом	1 мГн	22 мкФ	2 Вт	18 B
51	300 КГц	24 B	200 мВ	2 Ом	2 мГн	10 мкФ	4 Вт	24 B
52	300 КГц	30 B	100мВ	1 Ом	5 мГн	22 мкФ	1 Вт	30 B
53	300 КГц	36 B	125 мВ	10 Ом	10 мГн	10 мкФ	2 Bt	36 B
54	500 КГц	6 B	200 мВ	2 Ом	1 мГн	10 мкФ	1 Вт	6 B
55	500 КГц	12 B	100мВ	1 Ом	2 мГн	22 мкФ	2 Вт	12 B
56	500 КГц	18 B	125 мВ	10 Ом	5 мГн	10 мкФ	4 Вт	18 B
57	500 КГц	24 B	250 мВ	5 Ом	10 мГн	22 мкФ	1 Вт	24 B
58	500 КГц	30 B	200 мВ	2 Ом	20 мГн	10 мкФ	2 Bt	30 B
59	500 КГц	36 B	100мВ	1 Ом	1 мГн	22 мкФ	4 Вт	36 B
60	800 КГц	6 B	125 мВ	10 Ом	2 мГн	10 мкФ	1 Вт	6 B
61	800 КГц	12 B	250 мВ	5 Ом	5 мГн	22 мкФ	2 Bt	12 B
62	800 КГц	18 B	200 мВ	2 Ом	10 мГн	10 мкФ	4 Вт	18 B
63	800 КГц	24 B	100мВ	1 Ом	20 мГн	22 мкФ	1 Вт	24 B
64	800 КГц	30 B	125 мВ	10 Ом	1 мГн	10 мкФ	2 Bt	30 B
65	800 КГц	36 B	250 мВ	5 Ом	2 мГн	22 мкФ	4 Вт	36 B
66	1 МГц	6 B	200 мВ	2 Ом	5 мГн	10 мкФ	1 Вт	6 B
67	1 МГц	12 B	100мВ	1 Ом	10 мГн	22 мкФ	2 Вт	12 B
68	1 МГц	18 B	125 мВ	10 Ом	20 мГн	10 мкФ	4 Вт	18 B
69	1 МГц	24 B	250 мВ	5 Ом	1 мГн	22 мкФ	1 Вт	24 B
70	1 МГц	30 B	200 мВ	2 Ом	2 мГн	10 мкФ	2 Вт	30 B
71	1 МГц	36 B	100мВ	1 Ом	5 мГн	22 мкФ	4 BT	36 B
72	1,2 МГц	6 B	125 мВ	10 Ом	10 мГн	10 мкФ	1 Вт	6 B
73	1,2 МГц	12 B	250 мВ	5 Ом	20 мГн	22 мкФ	2 Вт	12 B
74	1,2 МГц	18 B	200 мВ	2 Ом	1 мГн	10 мкФ	4 Вт	18 B
75	1,2 МГц	24 B	100мВ	1 Ом	2 мГн	22 мкФ	1 Bt	24 B
76	1,2 МГц	30 B	125 мВ	10 Ом	5 мГн	10 мкФ	2 BT	30 B
77	1,2 МГц	36 B	250 мВ	5 Ом	10 мГн	22 мкФ	4 Вт	36 B
78	1,5 МГц	6 B	200 мВ	2 Ом	20 мГн	10 мкФ	1 Вт	6 B
79	1,5 МГц	12 B	100мВ	1 Ом	1 мГн	22 мкФ	2 BT	12 B
80	1,5 МГц	18 B	125 мВ	10 Ом	2 мГн	10 мкФ	4 BT	18 B
81	1,5 МГц	24 B	250 мВ	5 Ом	5 мГн	22 мкФ	1 BT	24 B
82	1,5 МГц	30 B	200 мВ	2 Ом	10 мГн	10 мкФ	2 BT	30 B
83	1,5 МГц	36 B	100мВ	1 Ом	20 мГн	22 мкФ	4 BT	36 B
84	75 КГц	6 B	125 мВ	10 Ом	1 мГн	10 мкФ	1 BT	6 B
85	75 КГц	12 B	250 мВ	5 Ом	2 мГн	22 мкФ	2 BT	12 B
86	75 КГц	18 B	200 мВ	2 Ом	5 мГн	10 мкФ	4 BT	18 B
87	75 КГц	24 B	100мВ	1 Ом	10 мГн	22 мкФ	1 BT	24 B
88	75 КГц	30 B	125 мВ	10 Ом	20 мГн	10 мкФ	2 BT	30 B
89	75 КГц	36 B	250 мВ	5 Ом	1 мГн	22 мкФ	4 BT	36 B
90	2 МГц	6 B	200 мВ	2 Ом	2 мГн	10 мкФ	1 BT	6 B

2 Задание №2. Рассчитать и исследовать схему двухполупериодного выпрямителя

Схема двухполупериодного выпрямителя приведена на рисунке 2 и рисунке 3. На основании данных, представленных в таблице 2 по номеру варианта провести расчет элементов схемы для диодного моста и выпрямителя со средней точкой и последующее исследование с использованием симулятора MultiSIM.

Индуктивная нагрузка подключается параллельно, а потом последовательно с омической нагрузкой

Емкостная нагрузка подключается параллельно омической нагрузке при последовательном соединении индуктивной и омической нагрузки.

Емкостная нагрузка подключается параллельно омической и индуктивной нагрузке при параллельном подключении индуктивной и омической нагрузки.

Результаты исследования работы схемы подтвердить осциллограммами в основных контрольных точках. Провести оценку работы схемы в частотной и временной области.

Исследовать переходные процессы в элементах схемы.

Рисунок 2 - Схема двухполупериодного выпрямителя со средней точкой

Таблица 2. Исходные данные для расчета двухполупериодного выпрямителя

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
1	100 КГц	6 B	125 мВ	10 Ом	1 мГн	10 мкФ	1 Вт	6 B
2	100 КГц	12 B	250 мВ	5 Ом	2 мГн	22 мкФ	2 Вт	12 B
3	100 КГц	18 B	200 мВ	2 Ом	5 мГн	10 мкФ	4 BT	18 B
4	100 КГц	24 B	100мВ	1 Ом	10 мГн	22 мкФ	1 Вт	24 B
5	100 КГц	30 B	125 мВ	10 Ом	20 мГн	10 мкФ	2 Вт	30 B
6	100 КГц	36 B	250 мВ	5 Ом	1 мГн	22 мкФ	4 Вт	36 B
7	300 КГц	6 B	200 мВ	2 Ом	2 мГн	10 мкФ	1 Вт	6 B
8	300 КГц	12 B	100мВ	1 Ом	5 мГн	22 мкФ	2 Вт	12 B
9	300 КГц	24 B	125 мВ	10 Ом	20 мГн	10 мкФ	4 Вт	24 B
10	300 КГц	30 B	250 мВ	5 Ом	1 мГн	22 мкФ	1 Вт	30 B
11	300 КГц	36 B	200 мВ	2 Ом	2 мГн	10 мкФ	2 Вт	36 B
12	500 КГц	6 B	100мВ	1 Ом	5 мГн	22 мкФ	4 Вт	6 B
13	500 КГц	12 B	125 мВ	10 Ом	10 мГн	10 мкФ	1 Вт	12 B
14	500 КГц	18 B	250 мВ	5 Ом	20 мГн	22 мкФ	2 Вт	18 B
15	500 КГц	24 B	200 мВ	2 Ом	1 мГн	10 мкФ	4 Вт	24 B
16	500 КГц	30 B	100мВ	1 Ом	2 мГн	22 мкФ	1 Вт	30 B
17	500 КГц	36 B	125 мВ	10 Ом	5 мГн	10 мкФ	2 Вт	36 B
18	800 КГц	6 B	250 мВ	5 Ом	10 мГн	22 мкФ	4 Вт	6 B
19	800 КГц	12 B	200 мВ	2 Ом	20 мГн	10 мкФ	1 Вт	12 B
20	800 КГц	18 B	100мВ	1 Ом	1 мГн	22 мкФ	2 Вт	18 B
21	800 КГц	24 B	125 мВ	10 Ом	2 мГн	10 мкФ	4 Вт	24 B
22	800 КГц	30 B	250 мВ	5 Ом	5 мГн	22 мкФ	1 Вт	30 B
23	800 КГц	36 B	200 мВ	2 Ом	10 мГн	10 мкФ	2 Вт	36 B
24	1 МГц	6 B	100мВ	1 Ом	20 мГн	22 мкФ	4 Вт	6 B
25	1 МГц	12 B	125 мВ	10 Ом	1 мГн	10 мкФ	1 Вт	12 B
26	1 МГц	18 B	250 мВ	5 Ом	2 мГн	22 мкФ	2 Вт	18 B
27	1 МГц	24 B	200 мВ	2 Ом	5 мГн	10 мкФ	4 Вт	24 B
28	1 МГц	30 B	100мВ	1 Ом	10 мГн	22 мкФ	1 Вт	30 B
29	1 МГц	36 B	125 мВ	10 Ом	20 мГн	10 мкФ	2 Вт	36 B
30	1,2 МГц	6 B	250 мВ	5 Ом	1 мГн	22 мкФ	4 Вт	6 B
31	1,2 МГц	12 B	200 мВ	2 Ом	2 мГн	10 мкФ	1 Вт	12 B
32	1,2 МГц	18 B	100мВ	1 Ом	5 мГн	22 мкФ	2 Вт	18 B
33	1,2 МГц	24 B	125 мВ	10 Ом	10 мГн	10 мкФ	4 Вт	24 B
34	1,2 МГц	30 B	250 мВ	5 Ом	20 мГн	22 мкФ	1 Вт	30 B
35	1,2 МГц	36 B	200 мВ	2 Ом	1 мГн	10 мкФ	2 Вт	36 B
36	1,5 МГц	6 B	100мВ	1 Ом	2 мГн	22 мкФ	4 BT	6 B
37	1,5 МГц	12 B	125 мВ	10 Ом	5 мГн	10 мкФ	1 Вт	12 B
38	1,5 МГц	18 B	250 мВ	5 Ом	10 мГн	22 мкФ	2 Вт	18 B
39	1,5 МГц	24 B	200 мВ	2 Ом	20 мГн	10 мкФ	4 Вт	24 B
40	1,5 МГц	30 B	100мВ	1 Ом	1 мГн	22 мкФ	1 Вт	30 B
41	1,5 МГц	36 B	125 мВ	10 Ом	2 мГн	10 мкФ	2 Вт	36 B
42	100 КГц	6 B	250 мВ	5 Ом	5 мГн	22 мкФ	4 Вт	6 B
43	100 КГц	12 B	200 мВ	2 Ом	10 мГн	10 мкФ	1 Вт	12 B
44	100 КГц	18 B	100мВ	1 Ом	20 мГн	22 мкФ	2 Вт	18 B

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
45	100 КГц	24 B	125 мВ	10 Ом	1 мГн	10 мкФ	4 Вт	24 B
46	100 КГц	30 B	250 мВ	5 Ом	2 мГн	22 мкФ	1 Вт	30 B
47	100 КГц	36 B	200 мВ	2 Ом	5 мГн	10 мкФ	2 Вт	36 B
48	300 КГц	6 B	100мВ	1 Ом	10 мГн	22 мкФ	4 Вт	6 B
49	300 КГц	12 B	125 мВ	10 Ом	20 мГн	10 мкФ	1 Вт	12 B
50	300 КГц	18 B	250 мВ	5 Ом	1 мГн	22 мкФ	2 Вт	18 B
51	300 КГц	24 B	200 мВ	2 Ом	2 мГн	10 мкФ	4 Вт	24 B
52	300 КГц	30 B	100мВ	1 Ом	5 мГн	22 мкФ	1 Вт	30 B
53	300 КГц	36 B	125 мВ	10 Ом	10 мГн	10 мкФ	2 BT	36 B
54	500 КГц	6 B	200 мВ	2 Ом	1 мГн	10 мкФ	1 Вт	6 B
55	500 КГц	12 B	100мВ	1 Ом	2 мГн	22 мкФ	2 BT	12 B
56	500 КГц	18 B	125 мВ	10 Ом	5 мГн	10 мкФ	4 BT	18 B
57	500 КГц	24 B	250 мВ	5 Ом	10 мГн	22 мкФ	1 Вт	24 B
58	500 КГц	30 B	200 мВ	2 Ом	20 мГн	10 мкФ	2 BT	30 B
59	500 КГц	36 B	100мВ	1 Ом	1 мГн	22 мкФ	4 Вт	36 B
60	800 КГц	6 B	125 мВ	10 Ом	2 мГн	10 мкФ	1 Вт	6 B
61	800 КГц	12 B	250 мВ	5 Ом	5 мГн	22 мкФ	2 Вт	12 B
62	800 КГц	18 B	200 мВ	2 Ом	10 мГн	10 мкФ	4 Вт	18 B
63	800 КГц	24 B	100мВ	1 Ом	20 мГн	22 мкФ	1 Вт	24 B
64	800 КГц	30 B	125 мВ	10 Ом	1 мГн	10 мкФ	2 Вт	30 B
65	800 КГц	36 B	250 мВ	5 Ом	2 мГн	22 мкФ	4 Вт	36 B
66	1 МГц	6 B	200 мВ	2 Ом	5 мГн	10 мкФ	1 Вт	6 B
67	1 МГц	12 B	100мВ	1 Ом	10 мГн	22 мкФ	2 Вт	12 B
68	1 МГц	18 B	125 мВ	10 Ом	20 мГн	10 мкФ	4 Вт	18 B
69	1 МГц	24 B	250 мВ	5 Ом	1 мГн	22 мкФ	1 Вт	24 B
70	1 МГц	30 B	200 мВ	2 Ом	2 мГн	10 мкФ	2 Вт	30 B
71	1 МГц	36 B	100мВ	1 Ом	5 мГн	22 мкФ	4 Вт	36 B
72	1,2 МГц	6 B	125 мВ	10 Ом	10 мГн	10 мкФ	1 Вт	6 B
73	1,2 МГц	12 B	250 мВ	5 Ом	20 мГн	22 мкФ	2 Вт	12 B
74	1,2 МГц	18 B	200 мВ	2 Ом	1 мГн	10 мкФ	4 Вт	18 B
75	1,2 МГц	24 B	100мВ	1 Ом	2 мГн	22 мкФ	1 Вт	24 B
76	1,2 МГц	30 B	125 мВ	10 Ом	5 мГн	10 мкФ	2 Вт	30 B
77	1,2 МГц	36 B	250 мВ	5 Ом	10 мГн	22 мкФ	4 Вт	36 B
78	1,5 МГц	6 B	200 мВ	2 Ом	20 мГн	10 мкФ	1 Вт	6 B
79	1,5 МГц	12 B	100мВ	1 Ом	1 мГн	22 мкФ	2 Вт	12 B
80	1,5 МГц	18 B	125 мВ	10 Ом	2 мГн	10 мкФ	4 Вт	18 B
81	1,5 МГц	24 B	250 мВ	5 Ом	5 мГн	22 мкФ	1 Вт	24 B
82	1,5 МГц	30 B	200 мВ	2 Ом	10 мГн	10 мкФ	2 Вт	30 B
83	1,5 МГц	36 B	100мВ	1 Ом	20 мГн	22 мкФ	4 Вт	36 B
84	75 КГц	6 B	125 мВ	10 Ом	1 мГн	10 мкФ	1 Вт	6 B
85	75 КГц	12 B	250 мВ	5 Ом	2 мГн	22 мкФ	2 Вт	12 B
86	75 КГц	18 B	200 мВ	2 Ом	5 мГн	10 мкФ	4 Вт	18 B
87	75 КГц	24 B	100мВ	1 Ом	10 мГн	22 мкФ	1 Вт	24 B
88	75 КГц	30 B	125 мВ	10 Ом	20 мГн	10 мкФ	2 Вт	30 B
89	75 КГц	36 B	250 мВ	5 Ом	1 мГн	22 мкФ	4 Вт	36 B

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
90	2 МГц	6 B	200 мВ	2 Ом	2 мГн	10 мкФ	1 Вт	6 B

3 Задание №3. Рассчитать и исследовать схему трехфазного двухполупериодного выпрямителя

Схема трехфазного двухполупериодного выпрямителя приведена на рисунке 4. На основании данных, представленных в таблице 3 по номеру варианта провести расчет элементов схемы и последующее исследование с использованием симулятора MultiSIM.

Индуктивная нагрузка подключается параллельно, а потом последовательно с омической нагрузкой

Емкостная нагрузка подключается параллельно омической нагрузке при последовательном соединении индуктивной и омической нагрузки.

Емкостная нагрузка подключается параллельно омической и индуктивной нагрузке при параллельном подключении индуктивной и омической нагрузки.

Результаты исследования работы схемы подтвердить осциллограммами в основных контрольных точках. Провести оценку работы схемы в частотной и временной области.

Исследовать переходные процессы в элементах схемы.

Рисунок 4 - Схема трехфазного двухполупериодного выпрямителя

Таблица 3. Исходные данные для расчета двухполупериодного выпрямителя

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
1	100 КГц	6 B	125 мВ	10 кОм	1 мГн	10 мкФ	1 Вт	6 B
2	100 КГц	12 B	250 мВ	5 кОм	2 мГн	22 мкФ	2 Вт	12 B
3	100 КГц	18 B	200 мВ	2 кОм	5 мГн	10 мкФ	4 BT	18 B
4	100 КГц	24 B	100мВ	1 кОм	10 мГн	22 мкФ	1 Вт	24 B
5	100 КГц	30 B	125 мВ	10 кОм	20 мГн	10 мкФ	2 Вт	30 B
6	100 КГц	36 B	250 мВ	5 кОм	1 мГн	22 мкФ	4 Вт	36 B
7	300 КГц	6 B	200 мВ	2 кОм	2 мГн	10 мкФ	1 Вт	6 B
8	300 КГц	12 B	100мВ	1 кОм	5 мГн	22 мкФ	2 Вт	12 B
9	300 КГц	24 B	125 мВ	10 кОм	20 мГн	10 мкФ	4 Вт	24 B
10	300 КГц	30 B	250 мВ	5 кОм	1 мГн	22 мкФ	1 Вт	30 B
11	300 КГц	36 B	200 мВ	2 кОм	2 мГн	10 мкФ	2 Вт	36 B
12	500 КГц	6 B	100мВ	1 кОм	5 мГн	22 мкФ	4 Вт	6 B
13	500 КГц	12 B	125 мВ	10 кОм	10 мГн	10 мкФ	1 Вт	12 B
14	500 КГц	18 B	250 мВ	5 кОм	20 мГн	22 мкФ	2 Вт	18 B
15	500 КГц	24 B	200 мВ	2 кОм	1 мГн	10 мкФ	4 Вт	24 B
16	500 КГц	30 B	100мВ	1 кОм	2 мГн	22 мкФ	1 Вт	30 B
17	500 КГц	36 B	125 мВ	10 кОм	5 мГн	10 мкФ	2 Вт	36 B
18	800 КГц	6 B	250 мВ	5 кОм	10 мГн	22 мкФ	4 Вт	6 B
19	800 КГц	12 B	200 мВ	2 кОм	20 мГн	10 мкФ	1 Вт	12 B
20	800 КГц	18 B	100мВ	1 кОм	1 мГн	22 мкФ	2 Вт	18 B
21	800 КГц	24 B	125 мВ	10 кОм	2 мГн	1 мкФ	4 Вт	24 B
22	800 КГц	30 B	250 мВ	5 кОм	5 мГн	2 мкФ	1 Вт	30 B
23	800 КГц	36 B	200 мВ	2 кОм	10 мГн	1 мкФ	2 Вт	36 B
24	1 МГц	6 B	100мВ	1 кОм	20 мГн	2 мкФ	4 Вт	6 B
25	1 МГц	12 B	125 мВ	10 кОм	1 мГн	1 мкФ	1 Вт	12 B
26	1 МГц	18 B	250 мВ	5 кОм	2 мГн	2 мкФ	2 Вт	18 B
27	1 МГц	24 B	200 мВ	2 кОм	5 мГн	1 мкФ	4 BT	24 B
28	1 МГц	30 B	100мВ	1 кОм	10 мГн	2 мкФ	1 Вт	30 B
29	1 МГц	36 B	125 мВ	10 кОм	20 мГн	1 мкФ	2 Вт	36 B
30	1,2 МГц	6 B	250 мВ	5 кОм	1 мГн	2 мкФ	4 Вт	6 B
31	1,2 МГц	12 B	200 мВ	2 кОм	2 мГн	1 мкФ	1 Вт	12 B
32	1,2 МГц	18 B	100мВ	1 кОм	5 мГн	2 мкФ	2 BT	18 B
33	1,2 МГц	24 B	125 мВ	10 кОм	10 мГн	1 мкФ	4 Вт	24 B
34	1,2 МГц	30 B	250 мВ	5 кОм	20 мГн	2 мкФ	1 Вт	30 B
35	1,2 МГц	36 B	200 мВ	2 кОм	1 мГн	1 мкФ	2 BT	36 B
36	1,5 МГц	6 B	100мВ	1 кОм	2 мГн	2 мкФ	4 Вт	6 B
37	1,5 МГц	12 B	125 мВ	10 кОм	5 мГн	1 мкФ	1 Вт	12 B
38	1,5 МГц	18 B	250 мВ	5 кОм	10 мГн	2 мкФ	2 Вт	18 B
39	1,5 МГц	24 B	200 мВ	2 кОм	20 мГн	1 мкФ	4 Вт	24 B
40	1,5 МГц	30 B	100мВ	1 кОм	1 мГн	2 мкФ	1 Вт	30 B
41	1,5 МГц	36 B	125 мВ	10 кОм	2 мГн	1 мкФ	2 Вт	36 B
42	100 КГц	6 B	250 мВ	5 кОм	5 мГн	2 мкФ	4 Вт	6 B
43	100 КГц	12 B	200 мВ	2 кОм	10 мГн	1 мкФ	1 Вт	12 B
44	100 КГц	18 B	100мВ	1 кОм	20 мГн	2 мкФ	2 Вт	18 B

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
45	100 КГц	24 B	125 мВ	10 кОм	1 мГн	1 мкФ	4 Вт	24 B
46	100 КГц	30 B	250 мВ	5 кОм	2 мГн	2 мкФ	1 Вт	30 B
47	100 КГц	36 B	200 мВ	2 кОм	5 мГн	1 мкФ	2 BT	36 B
48	300 КГц	6 B	100мВ	1 кОм	10 мГн	2 мкФ	4 Вт	6 B
49	300 КГц	12 B	125 мВ	10 кОм	20 мГн	1 мкФ	1 Вт	12 B
50	300 КГц	18 B	250 мВ	5 кОм	1 мГн	2 мкФ	2 Вт	18 B
51	300 КГц	24 B	200 мВ	2 кОм	2 мГн	1 мкФ	4 Вт	24 B
52	300 КГц	30 B	100мВ	1 кОм	5 мГн	2 мкФ	1 BT	30 B
53	300 КГц	36 B	125 мВ	10 кОм	10 мГн	1 мкФ	2 BT	36 B
54	500 КГц	6 B	200 мВ	2 кОм	1 мГн	1 мкФ	1 BT	6 B
55	500 КГц	12 B	100мВ	1 кОм	2 мГн	2 мкФ	2 BT	12 B
56	500 КГц	18 B	125 мВ	10 кОм	5 мГн	1 мкФ	4 Вт	18 B
57	500 КГц	24 B	250 мВ	5 кОм	10 мГн	2 мкФ	1 Вт	24 B
58	500 КГц	30 B	200 мВ	2 кОм	20 мГн	1 мкФ	2 BT	30 B
59	500 КГц	36 B	100мВ	1 кОм	1 мГн	2 мкФ	4 Вт	36 B
60	800 КГц	6 B	125 мВ	10 кОм	2 мГн	1 мкФ	1 Вт	6 B
61	800 КГц	12 B	250 мВ	5 кОм	5 мГн	2 мкФ	2 Вт	12 B
62	800 КГц	18 B	200 мВ	2 кОм	10 мГн	1 мкФ	4 Вт	18 B
63	800 КГц	24 B	100мВ	1 кОм	20 мГн	2 мкФ	1 Bt	24 B
64	800 КГц	30 B	125 мВ	10 кОм	1 мГн	1 мкФ	2 Вт	30 B
65	800 КГц	36 B	250 мВ	5 кОм	2 мГн	2 мкФ	4 Вт	36 B
66	1 МГц	6 B	200 мВ	2 кОм	5 мГн	1 мкФ	1 Вт	6 B
67	1 МГц	12 B	100мВ	1 кОм	10 мГн	2 мкФ	2 BT	12 B
68	1 МГц	18 B	125 мВ	10 кОм	20 мГн	1 мкФ	4 BT	18 B
69	1 МГц	24 B	250 мВ	5 кОм	1 мГн	2 мкФ	1 Вт	24 B
70	1 МГц	30 B	200 мВ	2 кОм	2 мГн	1 мкФ	2 BT	30 B
71	1 МГц	36 B	100мВ	1 кОм	5 мГн	2 мкФ	4 BT	36 B
72	1,2 МГц	6 B	125 мВ	10 кОм	10 мГн	1 мкФ	1 BT	6 B
73	1,2 МГц	12 B	250 мВ	5 кОм	20 мГн	2 мкФ	2 BT	12 B
74	1,2 МГц	18 B	200 мВ	2 кОм	1 мГн	1 мкФ	4 BT	18 B
75	1,2 МГц	24 B	100мВ	1 кОм	2 мГн	2 мкФ	1 BT	24 B
76	1,2 МГц	30 B	125 MB	10 кОм	5 мГн	1 мкФ 2 мкФ	2 BT	30 B
77 78	1,2 МГц 1,5 МГц	36 B 6 B	250 мВ 200 мВ	5 кОм 2 кОм	10 мГн 20 мГн	2 мкФ 1 мкФ	4 B _T	36 B 6 B
78 79	1,5 МГц	12 B	200 мВ 100мВ	2 кОм 1 кОм	20 MI н 1 мГн	2 мкФ	2 BT	12 B
80	1,5 МГц	12 B 18 B	125 мВ	10 кОм	2 мГн	2 мкФ 1 мкФ	4 BT	12 B 18 B
81	1,5 МГц	24 B	250 мВ	5 кОм	2 мг н 5 мГн	2 мкФ	1 BT	24 B
82	1,5 МГц	30 B	200 мВ	2 кОм	3 м1 н 10 мГн	2 мкФ 1 мкФ	2 BT	30 B
83	1,5 МГц	36 B	100мВ	2 кОм 1 кОм	20 мГн	2 мкФ	4 BT	36 B
84	75 КГц	6 B	125 мВ	10 кОм	1 мГн	1 мкФ	1 BT	6 B
85	75 КГц	12 B	250 мВ	5 кОм	2 мГн	2 мкФ	2 BT	12 B
86	75 КГц	18 B	200 мВ	2 кОм	5 мГн	1 мкФ	4 BT	18 B
87	75 КГц	24 B	100мВ	1 кОм	10 мГн	2 мкФ	1 Вт	24 B
88	75 КГц	30 B	125 мВ	10 кОм	20 мГн	1 мкФ	2 BT	30 B
89	75 КГц	36 B	250 мВ	5 кОм	1 мГн	2 мкФ	4 BT	36 B

№ варианта	Рабочая частота	Выходное напряжение	Пульсация выходного напряжения	Омическая нагрузка	Индуктивная нагрузка	Емкостная нагрузка	Лампа накаливания	Аккумулятор свинцовый
90	2 МГц	6 B	200 мВ	2 кОм	2 мГн	1 мкФ	1 Вт	6 B

4 Задание №4. Рассчитать и исследовать схему диодного умножителя

Схема диодного умножителя приведена на рисунке 5. На основании данных, представленных в таблице 4 по номеру варианта провести расчет элементов схемы и последующее исследование с использованием симулятора MultiSIM.

Результаты исследования работы схемы подтвердить осциллограммами в основных контрольных точках. Провести оценку работы схемы в частотной и временной области.

Исследовать переходные процессы в элементах схемы.

Рисунок 5 - Схема диодного умножителя

Таблица 4. Исходные данные для расчета двухполупериодного выпрямителя

№ варианта	Рабочая частота	Выходное напряжение	Входное напряжения	Омическая нагрузка
1	100 Гц	6 B	125 мВ	10 МОм
2	100 Гц	12 B	250 мВ	5 МОм
3	100 Гц	18 B	200 мВ	2 МОм
4	100 Гц	24 B	100мВ	1 МОм
5	100 Гц	30 B	125 мВ	10 МОм
6	100 Гц	36 B	250 мВ	5 МОм
7	300 Гц	6 B	200 мВ	2 МОм
8	300 Гц	12 B	100мВ	1 МОм
9	300 Гц	24 B	125 мВ	10 МОм
10	300 Гц	30 B	250 мВ	5 МОм

№ варианта	Рабочая частота	Выходное напряжение	Входное напряжения	Омическая нагрузка
11	300 Гц	36 кВ	200 B	2 МОм
12	500 Гц	6 кВ	100B	1 МОм
13	500 Гц	12 кВ	125 B	10 МОм
14	500 Гц	18 кВ	250 B	5 МОм
15	500 Гц	24 кВ	200 B	2 МОм
16	500 Гц	30 кВ	100 B	1 МОм
17	500 Гц	36 кВ	125 B	10 МОм
18	800 Гц	6 кВ	250 B	5 МОм
19	800 Гц	12 кВ	200 B	2 МОм
20	800 Гц	18 кВ	100 B	1 МОм
21	800 Гц	24 кВ	125 B	10 МОм
22	800 Гц	30 кВ	250 B	5 МОм
23	800 Гц	36 кВ	200 B	2 МОм
24	1 КГц	6 кВ	100 B	1 МОм
25	1 КГц	12 кВ	125 B	10 МОм
26	1 КГц	18 кВ	250 B	5 МОм
27	1 КГц	24 кВ	200 B	2 МОм
28	1 КГц	30 кВ	100 B	1 МОм
29	1 КГц	36 кВ	125 B	10 МОм
30	1,2 КГц	6 кВ	250 B	5 МОм
31	1,2 КГц	12 кВ	200 B	2 МОм
32	1,2 КГц	18 кВ	100 B	1 МОм
33	1,2 КГц	24 кВ	125 B	10 МОм
34	1,2 КГц	30 кВ	250 B	5 МОм
35	1,2 КГц	36 кВ	200 B	2 МОм
36	1,5 КГц	6 кВ	100 B	1 МОм
37	1,5 КГц	12 кВ	125 B	10 МОм
38	1,5 КГц	18 кВ	250 B	5 МОм
39	1,5 КГц	24 кВ	200 B	2 МОм
40	1,5 КГц	30 кВ	100 B	1 МОм
41	1,5 КГц	36 кВ	125 B	10 МОм
42	100 Гц	6 кВ	250 B	5 МОм
43	100 Гц	12 кВ	200 B	2 МОм
44	100 Гц	18 кВ	100 B	1 МОм
45	100 Гц	24 кВ	125 B	10 МОм
46	100 Гц	30 кВ	250 B	5 МОм
47	100 Гц	36 кВ	200 B	2 МОм
48	300 Гц	6 кВ	100 B	1 МОм
49	300 Гц	12 кВ	125 B	10 МОм
50	300 Гц	18 кВ	250 B	5 МОм
51	300 Гц	24 кВ	200 B	2 МОм
52	300 Гц	30 кВ	100 B	1 МОм
53	300 Гц	36 кВ	125 B	10 МОм
54	500 Гц	6 кВ	200 B	2 МОм
55	500 Гц	12 кВ	100 B	1 МОм

№ варианта	Рабочая частота	Выходное напряжение	Входное напряжения	Омическая нагрузка
56	500 Гц	18 кВ	125 B	10 МОм
57	500 Гц	24 кВ	250 B	5 МОм
58	500 Гц	30 кВ	200 B	2 МОм
59	500 Гц	36 кВ	100 B	1 МОм
60	800 Гц	6 кВ	125 B	10 МОм
61	800 Гц	12 кВ	250 B	5 МОм
62	800 Гц	18 кВ	200 B	2 МОм
63	800 Гц	24 кВ	100 B	1 МОм
64	800 Гц	30 кВ	125 B	10 МОм
65	800 Гц	36 кВ	250 B	5 МОм
66	1 КГц	6 кВ	200 B	2 МОм
67	1 КГц	12 кВ	100 B	1 МОм
68	1 КГц	18 кВ	125 B	10 МОм
69	1 КГц	24 кВ	250 B	5 МОм
70	1 КГц	30 кВ	200 B	2 МОм
71	1 КГц	36 кВ	100 B	1 МОм
72	1,2 КГц	6 кВ	125 B	10 МОм
73	1,2 КГц	12 кВ	250 B	5 МОм
74	1,2 КГц	18 кВ	200 B	2 МОм
75	1,2 КГц	24 кВ	100 B	1 МОм
76	1,2 КГц	30 кВ	125 B	10 МОм
77	1,2 КГц	36 кВ	250 B	5 МОм
78	1,5 КГц	6 кВ	200 B	2 МОм
79	1,5 КГц	12 кВ	100 B	1 МОм
80	1,5 КГц	18 кВ	125 B	10 МОм
81	1,5 КГц	24 кВ	250 B	5 МОм
82	1,5 КГц	30 кВ	200 B	2 МОм
83	1,5 КГц	36 кВ	100 B	1 МОм
84	75 Гц	6 кВ	125 B	10 МОм
85	75 Гц	12 кВ	250 B	5 МОм
86	75 Гц	18 кВ	200 B	2 МОм
87	75 Гц	24 кВ	100 B	1 МОм
88	75 Гц	30 кВ	125 B	10 МОм
89	75 Гц	36 кВ	250 B	5 МОм
90	2 КГц	6 кВ	200 B	2 МОм

- 5 Задание №5. Рассчитать и исследовать схему питания светодиода
- 6 Задание №6. Рассчитать и исследовать схему резервного питания нагрузки от батареи

- 7 Задание №7. Рассчитать и исследовать схему резервного питания от аккумулятора с зарядным устройством
- 8 Задание №8. Рассчитать и исследовать схему линейного стабилизатора

ОФОРМЛЕНИЕ ОТЧЕТА

По результатам выполнения лабораторной работы оформляется отчет на бумажном носителе. Отчет может быть скреплен путем пробивки листов слева дыроколом и вставлением в папку-скоросшиватель или сброшюрован пружинами.

Обязательным листом отчета является титульный лист. Титульный лист отчета по лабораторной работе должен содержать:

- Полное наименование образовательного учреждения с указанием организационной-правовой формы и подчиненности
- Наименование факультета полное и сокращенное
- Наименование кафедры полное и сокращенное
- Наименование документа
- Номер лабораторной работы
- Тема лабораторной работы
- Полное фамилия, имя, отчество (при наличии) студента
- Группа студента
- Номер личного дела студента (номер зачетки)
- Вариант задания
- Специальность
- Специализация
- Должность и фамилия с инициалами преподавателя, проводившего лабораторную работу
- Дата и личная подпись студента, подтверждающая выполнение лабораторной работы
- Дата, фамилия и инициалы преподавателя принявшего выполнение лабораторной работы
- Результаты защиты лабораторной работы в виде дата, количество заданных вопросов, количество правильно отвеченных вопросов, фамилия и инициалы преподавателя принимавшего защиту

- Город выполнения лабораторной работы
- Год выполнения лабораторной работы

Отчет должен содержать следующие данные в трех частях:

Теоретическая часть

- 1. Задание 1. Рассчитать и исследовать схему однополупериодного выпрямителя
 - 1.1. Исходные данные
 - 1.2. Расчет параметров схемы
 - 1.3. Расчет электрических и тепловых режимов работы элементов электрической схемы
- 2. Задание 2. Рассчитать и исследовать схему двухполупериодного выпрямителя
 - 2.1. Исходные данные
 - 2.2. Расчет электрических и тепловых режимов работы элементов электрической схемы
- 3. Задание 3. Рассчитать и исследовать схему трехфазного двухполупериодного выпрямителя
 - 3.1. Исходные данные
 - 3.2. Расчет параметров схемы
 - 3.3. Расчет электрических и тепловых режимов работы элементов электрической схемы
- 4. Задание 4. Рассчитать и исследовать схему диодного умножителя
 - 4.1. Исходные данные
 - 4.2. Расчет параметров схемы
 - 4.3. Расчет электрических и тепловых режимов работы элементов электрической схемы
- 5. Задание 5. Рассчитать и исследовать схему питания светодиода
 - 5.1. Исходные данные
 - 5.2. Расчет параметров схемы
 - 5.3. Расчет электрических и тепловых режимов работы элементов электрической схемы
- 6. Задание 6. Рассчитать и исследовать схему резервного питания нагрузки от батареи
 - 6.1. Исходные данные
 - 6.2. Расчет параметров схемы
 - 6.3. Расчет электрических и тепловых режимов работы элементов электрической схемы
- 7. Задание 7. Рассчитать и исследовать схему резервного питания от аккумулятора с зарядным устройством
 - 7.1. Исходные данные
 - 7.2. Расчет параметров схемы
 - 7.3. Расчет электрических и тепловых режимов работы элементов электрической схемы
- 8. Задание 8. Рассчитать и исследовать схему линейного стабилизатора
 - 8.1. Исходные данные
 - 8.2. Расчет параметров схемы

- 8.3. Расчет электрических и тепловых режимов работы элементов электрической схемы Практическая часть
- 9. Задание 1. Рассчитать и исследовать схему однополупериодного выпрямителя
 - 9.1. Исходные данные
 - 9.2. Сведения на проект в симуляторе MultiSIM
 - 9.3. Результаты исследования
- 10. Задание 2. Рассчитать и исследовать схему двухполупериодного выпрямителя
 - 10.1. Исходные данные
 - 10.2. Сведения на проект в симуляторе MultiSIM
 - 10.3. Результаты исследования
- 11. Задание 3. Рассчитать и исследовать схему трехфазного двухполупериодного выпрямителя
 - 11.1. Исходные данные
 - 11.2. Сведения на проект в симуляторе MultiSIM
 - 11.3. Результаты исследования
- 12. Задание 4. Рассчитать и исследовать схему диодного умножителя
 - 12.1. Исходные данные
 - 12.2. Сведения на проект в симуляторе MultiSIM
 - 12.3. Результаты исследования
- 13. Задание 5. Рассчитать и исследовать схему питания светодиода
 - 13.1. Исходные данные
 - 13.2. Сведения на проект в симуляторе MultiSIM
 - 13.3. Результаты исследования
- 14. Задание 6. Рассчитать и исследовать схему резервного питания нагрузки от батареи
 - 14.1. Исходные данные
 - 14.2. Сведения на проект в симуляторе MultiSIM
 - 14.3. Результаты исследования
- 15. Задание 7. Рассчитать и исследовать схему резервного питания от аккумулятора с зарядным устройством
 - 15.1. Исходные данные
 - 15.2. Сведения на проект в симуляторе MultiSIM
 - 15.3. Результаты исследования
- 16. Задание 8. Рассчитать и исследовать схему линейного стабилизатора
 - 16.1. Исходные данные
 - 16.2. Сведения на проект в симуляторе MultiSIM
 - 16.3. Результаты исследования

ЗАЩИТА ЛАБОРАТОРНОЙ РАБОТЫ

Защита лабораторной работы проводится на листах контроля текущей успеваемости и представляет собой получение до 10 вопросов по теме лабораторной работы, включая теоретическую и практическую часть.

Для получения зачета необходимо ответить не менее чем на 60% вопросов.

С целью оптимизации защит, студент не ответивший на пять вопросов, направляется на повторную сдачу зачета в следующий прием защиты с формированием списка новых вопросов с учетом не отвеченных ранее.