U.S.N.					

10

6

4

8

4

BMS College of Engineering, Bangalore-560019

(Autonomous Institute, Affiliated to VTU, Belgaum)

July / August 2017 Supplementary Semester Examinations

Course: Engineering Physics

Course Code: 14PY11CPHY/ 14PY21CPHY

Max Marks: 100

Date: 25.07.2017

Instructions:

- 1. Answer any five full questions choosing one from each unit.
- 2. **Constants:** Planck's constant, $h = 6.63 \times 10^{-34} \text{ Js}$, Mass of electron, $m_e = 9.11 \times 10^{-31} \text{ kg}$, Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$, Boltzmann constant, $k = 1.38 \times 10^{-23} \text{ J/K}$, Avogadro's number, $N_A = 6.02 \times 10^{26} \text{ /k mol}$

Avogadro's number, $N_A = 6.02 \times 10^{-8} / \text{k r}$ Velocity of light, $c = 3 \times 10^8 \text{ m/s}$

Permittivity of free space, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$

UNIT 1

- 1 a) By applying Schrodinger's wave equation, obtain normalized the eigen function and eigen values for a particle in one dimensional potential well of infinite height.
 - b) What is de-Broglie hypothesis? Express the de-Broglie wavelength for an electron accelerated by a potential difference V volt is $\lambda = \frac{1.227}{\sqrt{V}} nm$ for non-relativistic case.
 - c) An electron has wavelength of 2 Å. Determine its kinetic energy and group velocity of the de-Broglie wave associated with it.

OR

- 2 a) What is Heisenberg's uncertainty principle? Using this principle demonstrate that a free electron cannot exist within the nucleus of an atom.
 - b) What are Phase velocity and Group velocity? Establish the relation between phase velocity and group velocity
 - c) An electron is present in one dimensional potential well of width 4 Å and infinite height. What is its minimum energy and first excited state energy?

UNIT 2

3	a)	What are Miller indices of a plane? Write the steps followed to specify the crystal planes using Miller indices with an example. Draw (010) and (123) planes in a cubic unit cell.	8
	b)	What are imperfections in crystals? Elucidate in detail Schottky and Frenkal defects.	7
	c)	First order Bragg refection is observed in a certain cubic crystal of lattice constant. 3.14 Å with x – rays of wavelength 1.54 Å for a glancing angle of 20.3° . Determine the inter-planar spacing and the miller indices of the possible planes which may be involved in the reflection.	5
		UNIT 3	
4	a)	What are Fermi energy and Fermi factor? Deliberate the probability of occupation of various energy states by electrons at $T = 0$ K and $T > 0$ K, on the basis of Fermi factor, with a neat diagram.	8
	b)	Elaborate the determination of thermal conductivity of a good conductor by Forbes method.	8
	c)	The Fermi level in potassium is 2.1 eV. What are the energies for which the probabilities of occupancy at 400 K are 0.99 and 0.5?	4
		UNIT 4	
5	a)	What is a domain? Explain Weiss's domain theory in ferromagnetic materials.	8
	b) c)	What is Lorentz field? Develop Clausius – Mossotti equation. The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate the electronic polarizability of sulphur. Given: for sulphur, density =	8
		2.07×10^3 kg/m ³ , and atomic weight = 32.07.	
		UNIT 5	
6	a)	Elucidate the construction and working of He-Ne laser with the help of energy level diagram.	8
	b)	What is numerical aperture? Develop the expression for numerical aperture of an optical fiber.	8
	c)	The ratio of population of two energy levels out of which upper one corresponds to a metastable state is 1.059×10^{-30} . Determine the wavelength of light emitted at 330 K.	4
		OR	
7	a) b)	How do you classify optical fibers? Enlighten each in detail. Arrive at an expression for energy density of radiation at thermal equilibrium in	8
	U)	terms of Einstein co-efficients.	o
	c)	The attenuation of light in an optical fiber is 3.6 dB/km. What fraction of its initial intensity remains after i) 1 km and ii) after 3 km?	4
