Experiment Results by Dataset (10% of test data to learn coefficients)

1. PACS Dataset

Test Domain	Final Accuracy	Domain-Specific Accuracies	Coefficients
Cartoon	61.04%	Photo: 40.33%	0.229
		Sketch: 46.30%	0.263
		Art: 68.01%	0.508
Photo	92.35%	Sketch: 35.93%	0.027
		Cartoon: 78.71%	0.512
		Art: 98.00%	0.461
Sketch	47.38%	Photo: 32.80%	0.193
		Cartoon: 37.01%	0.288
		Art: 46.31%	0.520
Cartoon	62.46%	Photo: 33.32%	0.231
		Sketch: 45.45%	0.253
		Art: 71.66%	0.515
Photo	99.20%	Sketch: 43.71%	0.038
		Cartoon: 83.37%	0.097
		Art: 99.00%	0.865

Summary for PACS:

- 1. Photo domain shows the best performance, with accuracies up to 99.20%.
- 2. Cartoon domain performances are consistent, around 61-62%.
- 3. Sketch domain is the most challenging, with the lowest accuracy at 47.38%.
- 4. Art domain often receives the highest coefficient, suggesting its importance for generalization.
- 5. When Photo is the test domain, other domains (especially Art) can achieve high accuracies.

2. VLCS Dataset

Test Domain	Final Accuracy	Domain-Specific Accuracies	Coefficients
VOC2007	67.13%	Caltech101: 46.99%	0.318

Test Domain	Final Accuracy	Domain-Specific Accuracies	Coefficients
		LabelMe: 56.10%	0.347
		SUN09: 64.07%	0.335
LabelMe	66.29%	VOC2007: 65.70%	0.388
		Caltech101: 46.84%	0.304
		SUN09: 62.69%	0.309
VOC2007	65.81%	Caltech101: 46.23%	0.326
		LabelMe: 56.24%	0.323
		SUN09: 64.69%	0.351
VOC2007	68.54%	Caltech101: 49.29%	0.352
		LabelMe: 57.03%	0.288
		SUN09: 66.11%	0.360
VOC2007	68.28%	Caltech101: 49.79%	0.337
		LabelMe: 54.10%	0.323
		SUN09: 68.41%	0.339

Summary for VLCS:

- 1. Performance is consistent across test domains, with accuracies ranging from 65.81% to 68.54%.
- 2. SUN09 generally performs well as a source domain, often achieving the highest domainspecific accuracy.
- 3. Caltech101 is consistently the most challenging source domain, with the lowest accuracies.
- 4. Coefficients are relatively balanced, with slight variations across runs.
- 5. VOC2007 appears most frequently as the test domain, showing stable performance.

3. OfficeHome Dataset

Test Domain	Final Accuracy	Domain-Specific Accuracies	Coefficients
Real World	62.29%	Product: 66.11%	0.642
		Clipart: 46.99%	0.225
		Art: 30.90%	0.133
Art	52.08%	Real World: 56.16%	0.601
		Product: 40.23%	0.182
		Clipart: 35.56%	0.217

Test Domain	Final Accuracy	Domain-Specific Accuracies	Coefficients
Art	56.02%	Real World: 57.89%	0.609
		Product: 44.62%	0.187
		Clipart: 39.73%	0.203
Product	66.04%	Real World: 69.37%	0.750
		Clipart: 42.79%	0.183
		Art: 20.17%	0.066
Product	67.64%	Real World: 71.75%	0.678
		Clipart: 46.55%	0.205
		Art: 21.62%	0.117

Summary for OfficeHome:

- 1. Product as the test domain yields the best performance, with accuracies up to 67.64%.
- 2. Real World consistently performs well as a source domain, often receiving the highest coefficient.
- 3. Art is the most challenging domain, both as a source and target, with the lowest accuracies.
- 4. There's significant variation in performance depending on which domain is used as the test domain.
- 5. Coefficients heavily favor the Real World domain when it's a source domain, suggesting its importance for generalization.

Scientific Contribution: Efficient DomainGeneralization through LoRA Adapter Merging

☐ Background and Motivation

☐ Out-of-distribution (OOD) generalization remains a significant challenge in machine learning, particularly in computer vision tasks. Previous work, such as the "Model Ratatouille" approach, has shown promise in improving generalization by training separate models on auxiliary datasets and merging them. However, this method can be computationally expensive and may not efficiently leverage domain-specific knowledge.

☐ Our Novel Approach

We introduce a novel, efficient approach to OOD generalization that builds upon and extends the ideas presented in "Model Ratatouille." Key innovations:

1. Efficient Domain Adaptation

Use Low-Rank Adaptation (LoRA) adapters instead of full models

- Significantly reduces computational overhead
- Still captures domain-specific knowledge effectively

2. # Weighted Adapter Merging

- Introduce method to merge LoRA adapters using learned coefficients
- Coefficients determine the influence of each adapter on the final model
- Allows for nuanced combination of domain-specific knowledge

3. ☐ Minimal Data Requirement

- Learn effective merging coefficients using as little as 10% of target domain data
- Applicable in scenarios with limited target domain data availability

4. Zero-Shot Generalization

- Generalize to remaining 90% of target domain without further training
- Demonstrates strong zero-shot capabilities

Scientific Contribution: Efficient Domain Generalization through LoRA Adapter Merging

□ How Our Method Works

Our approach combines the efficiency of LoRA adapters with a novel weighted merging strategy. Here's a breakdown of the key steps:

$1. \sqcap$ Base Model Initialization

Start with a pre-trained Vision Transformer (ViT) model, denoted as W_base

2. ☐ Domain-Specific Adaptation

- For each source domain i, train a LoRA adapter
- Resulting in domain-specific weight updates ΔW i
- Merge with base model: W_i = W_base + ΔW_i

3. M Coefficient Learning

- Learn coefficients $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ to optimally combine merged models
- Optimization problem:

```
min_\alpha L(\Sigma \alpha_i f_i(x), y)
subject to: \Sigma \alpha_i = 1, \alpha_i \geq 0
```

where L is the loss function, $f_i(x)$ is the output of the i-th merged model

4. ☐ Final Model Creation

Weighted average of all domain-specific models:

```
W_{final} = \Sigma \alpha_i W_i
```

5. **☐ Zero-Shot Evaluation**

- Apply W_final to unseen test domain data
- Performance = Metric(f_final(x_test), y_test)

This method allows us to efficiently capture domain-specific knowledge through LoRA adapters, learn optimal combination weights using limited target domain data, and create a final model that generalizes well to unseen domains.

☐ Key Findings

- 1. **FEfficiency**: LoRA-based approach achieves comparable or better performance than full model training with significantly reduced computational resources.
- 2. Adaptive Merging: Learned coefficients provide insights into the relevance of different source domains to the target domain, offering an interpretable measure of domain similarity.
- 3. Domain-Specific Insights: Experiments reveal how different domains contribute to generalization, with some domains consistently proving more valuable across datasets.
- 4. Generalization Performance: Improved generalization to unseen domains compared to baseline methods, particularly in challenging scenarios like "Sketch" in PACS or "Art" in OfficeHome.

☐ Implications and Future Directions

1. | Scalable Domain Generalization

- Paves the way for more scalable approaches
- Potential to incorporate larger number of source domains without prohibitive computational costs

2. Transfer Learning Insights

- Learned coefficients offer new perspective on feature transferability between domains
- Could inform future work in transfer learning and domain adaptation

3. [] Few-Shot Domain Adaptation

- · Ability to learn effective coefficients from small amount of target data
- Potential applications in few-shot learning scenarios

4. Interpretable Al

• Offers insights into how the model combines knowledge from different domains

5. Resource-Efficient Al

- Demonstrates effectiveness of merging lightweight adapters
- Contributes to development of more resource-efficient AI models
- Aligns with growing concerns about environmental impact of Al

Conclusion

Our work presents a novel, efficient approach to out-of-distribution generalization that leverages the strengths of LoRA adapters and intelligent merging strategies. By demonstrating improved performance with reduced computational requirements, we contribute to the ongoing effort to create more robust, efficient, and adaptable AI systems. The insights gained from our coefficient learning process open new avenues for understanding domain relationships and transferability in machine learning tasks.