Omówienie zagadnienia

Zadanie polegało na znalezieniu numerycznie pierwiastka x^* z równań f(x) = 0 i g(x) = 0 dla

a.
$$f(x) = \sin(x) - 0.4$$

b.
$$g(x) = f(x)^2 = (\sin(x) - 0.4)^2$$

na przedziale $x \in [0, \frac{\pi}{2}]$ metodami: *bisekcji*, *falsi*, *siecznych*, *Newtona*. Należało również ustalić przypadki, dla których nie można było użyć wszystkich metod. Następnie trzeba było zbadać, jak zachowuje się ciąg $x_i - x^*$ dla różnych metod w kolejnych iteracjach.

Dokładnym rozwiązaniem funkcji f(x) oraz g(x) jest arcsin(0.4).

Dodatkowo dla funkcji g(x) zastosowałem usprawnienie z zadania piątego tj. utworzyłem funkcję $h(x) = \frac{g(x)}{g'(x)}$, dla której również zastosowałem wyżej wymienione metody.

Metoda bisekcji polegała głownie na zaimplementowaniu poniższych instrukcji:

Dla przedziału [a, b], wylicz $c = \frac{a+b}{2}$ – następnie

jeżeli
$$f(a)f(c) < 0$$
, to $b = c$

jeżeli
$$f(c)f(b) < 0$$
, to $a = c$

na koniec sprawdzamy czy $|c-x^*| < \epsilon$ – jeżeli warunek jest prawdziwy to wychodzimy z pętli oraz kończymy działanie metody.

Działanie metody *falsi* jest praktycznie identyczne jak działanie *bisekcji* – jedyna różnica polega na sposobie wyliczania wyrazu c, wzór dla metody *falsi* to $c = \frac{-b * f(a) + a * f(b)}{f(b) - f(a)}$.

W metodzie siecznych należało zastosować następujący algorytm:

Dla przedziału $[a, b], x_i = a$ oraz $x_{i-1} = b$ – następnie wyliczamy x_{i+1} ze wzoru

$$x_{i+1} = \frac{x_i * f(x_{i-1}) - x_{i-1} * f(x_i)}{f(x_{r-1}) - f(x_i)}$$

teraz sprawdzamy czy $|x_{i+1} - x^*| < \epsilon$ – jeżeli warunek jest spełniony, to wychodzimy z pętli, w przeciwnym wypadku przypisujemy

$$x_{i-1} = x_i$$

$$x_i = x_{i+1}$$

i przechodzimy do kolejnej iteracji.

Metoda Newtona polega na policzeniu pochodnej funkcji i zastosowania następującego wzoru:

Dla przedziału $[a, b], x_i = a$ – teraz przechodzimy do wyliczania x_{i+1}

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

teraz sprawdzamy warunek $|x_{i+1}-x^*|<\epsilon$ – jeżeli jest spełniony to wychodzimy z pętli, w przeciwnym wypadku

$$x_i = x_{i+1}$$

i przechodzimy do kolejnej iteracji.

Dla wszystkich metod ustaliłem zadowalającą zbieżność jako wartość $\epsilon=1e-15$.

Omówienie funkcji f(x)

Dla funkcji f(x) można było zastosować wszystkie powyżej wymienione metody, otrzymałem następujące wyniki (wykres w skali logarytmicznej):

Znalezione pierwiastki wynosiły:

dla metody bisekcji: 0.411516846067488284433011358487419784069061279296875
dla metody falsi: 0.41151684606748839545531382100307382643222808837890625
dla metody siecznych: 0.4115168460674876182991965833934955298900604248046875
dla metody Newtona: 0.411516846067488006877255202198284678161144256591796875

Rozwinięcie arcsin(0.4): 0.4115168460674880193847378976173356048557011351270258517

Jak można zauważyć, metoda *Newtona* potrzebowała najmniej iteracji oraz osiągnęła największą zbieżność. Najwolniejsza natomiast była metoda *bisekcji*.

Wnioski

Dla funkcji f(x) najdokładniejsza i najszybsza okazała się być metoda *Newtona*.

Omówienie funkcji g(x)

Dla funkcji g(x) można było zastosować tylko metodę *siecznych* i *Newtona*. Wynika to z tego, że funkcja g(x) na całym przedziale nie przyjmuje wartości ujemnych, a zatem metody wykorzystujące zmianę znaków funkcji nie będą działać prawidłowo. Poniżej prezentuję otrzymane wyniki (wykres w skali logarytmicznej):

Znalezione pierwiastki wynosiły:

dla metody *siecznych*: 0.411516846067487229721137964588706381618976593017578125
dla metody *Newtona*: 0.411516846067487229721137964588706381618976593017578125

Rozwinięcie arcsin(0.4): 0.4115168460674880193847378976173356048557011351270258517

Na wykresie widać, że obie metody do dokładnego rozwiązania zbiegają liniowo – metoda *Newtona* nadal okazała się być najszybsza. Znaczący wzrost ilości iteracji wynika z tego, że funkcja g(x) posiada pierwiastki wielokrotne.

Wnioski

Pomimo występowania pierwiastków wielokrotnych w funkcji g(x), nadal najszybsza okazała się być metoda *Newtona*.

Omówienie funkcji h(x)

Dla funkcji h(x) można było zastosować wszystkie metody, jednakże ponieważ funkcja h(x) posiada asymptoty – między innymi w punkcie $x = \frac{\pi}{2}$, który zawiera się w dziedzinie określonej w zadaniu – to dla metod *bisekcji* oraz *falsi* zdecydowałem się zastosować przedział $x \in [0, 1.4]$ zamiast tego, który określony był w poleceniu. Otrzymałem następujące wyniki (wykres w skali logarytmicznej):

Znalezione pierwiastki wynosiły:

dla metody *bisekcji*: 0.411516846067489006077977364839171059429645538330078125
dla metody *falsi*: 0.4115168460674871742099867333308793604373931884765625
dla metody *siecznych*: 0.4115168460674880623884064334561116993427276611328125
dla metody *Newtona*: 0.4115168460674880623884064334561116993427276611328125

Rozwinięcie arcsin(0.4): 0.4115168460674880193847378976173356048557011351270258517

Jak można zauważyć, metoda *Newtona* nadal dąży najszybciej do dokładnego rozwiązania. Metoda falsi nadal zbiega liniowo – zapewne ma to związek z problemem, który opisałem przed zamieszczeniem wykresu. Warto wspomnieć, że funkcja h(x) posiada tylko pierwiastki jednokrotne.

Wnioski

Niezmiennie metoda Newtona okazuje się być najszybsza.

Podsumowanie

Dla wszystkich trzech funkcji najszybszą metodą okazała się być metoda *Newtona* – jednakże nie zawsze może być ona najbardziej opłacalna. Ponieważ koszt wyliczenia pochodnej jest dość wysoki, to bardziej preferowana może być metoda *siecznych*. Na wykresach widać, że metoda *siecznych* zawsze była tuż za metodą *Newtona*, dzięki wzięciu pod uwagę czynnika opłacalności można powiedzieć, że preferowaną metodą jest metoda *siecznych*.

Wnioski

Metoda siecznych okazuje się być najlepszą możliwą metodą do szukania pierwiastków funkcji.