2023春期中

考试范围: 1~3不含线程

简述

每题8分

- 1. 请简述操作系统四大特点,并叙述并发和并行的区别
- 2. 请画出进程三个基本状态的转换图,并说明发生转换的基本事件
- 3. 请说明同步机制需要遵循的规则
- 4. 请说明作业调度的三类,再描述...(见下图)

至 1. 处理机调度分为哪三级?再描述从装入一个作业开始到执行此作业的整个详细的调度过程。(5分)

处理机调度分为高级调度、低级调度、作业调度。(3分)

作业执行的整个流程有:首先由高级调度也就是作业调度将外存上的作业调入内存,然后为此作业创建进程,并将其加入就绪队列中,启动调度程序(也就是低级调度),如果调度程序根据一定调度算法选择此进程执行则开始执行此作业,从而完成整个作业的调度过程。(2分)

5. 什么是死锁? 什么是死锁的四个必要条件? 哪个条件不能避免预防?

计算

每个题20分

1. 按下标分别计算FCFS、SPF、RR(q=4)状态下的完成时间、周转时间、带权周转时间,请说明哪个算法更好,为什么?

进程	开始时间	运行时间
А	0	3
В	2	5
С	4	4

D	6	6
Е	8	2

填表: (黄底是待填写的)

		А	В	С	D	E	平
FCFS	完成时间	3	8	12	18	20	/
	周转时间	3	6	8	12	12	8.
	带权周转	1	1.2	2	2	6	2.
SPF	完成时间	3	8	14	20	10	/
	周转时间	3	6	10	14	2	7
	带权周转	1	1.2	2.5	2.33	1	1.
RR	完成时间	3	16	11	20	18	/
(q=4)	周转时间	3	14	7	14	10	9.
	带权周转	3	14	7	14	10	2.

【运行图】: RR算法,0-3A,3-7B,7-11C,11-15D,15-16B(注意B排在E的前面),16-18E,18-20D 选择SPJ算法,因为他们的的周转时间和带权周转快

2. 银行家算法

已知表 (数据忘记了)

进程	MAX	NEED	AVAILABLE
Р0			
P1			
P2			
P3			
P4			
P5			

(1)补全下面的表格,并判断当前状态是否安全,为什么

进程	MAX	Allocation	NEED	AVAILABLE
Р0				
P1				
P2				
P3				
P4				
P5				

进程	Work	Allocation	NEED	FINISH

(2) 若此时,进程1提出请求(1,4,2,0) 那么可以响应这个请求吗?

编程填空

桌上有个能盛得下3个水果的空盘子。爸爸不停地向盘中放苹果,妈妈不停的放橘子,儿子不停地从盘中取出水果享用。规定三人不能同时从盘子中取放水果。试用信号量实现爸爸、妈妈和儿子这三个循环进程之间的同步。

[] 为待填空缺

semaphore mutex=1,empty= [3] ,full= [0] ;

```
Dad(){
    while(1){
    [wait(empty)]
    [wait(mutex)]
       put apple,
    [signal(mutex)]
    【signal(full)】
   }
}
Mom(){
    while(1){
    [wait(empty)]
    [wait(mutex)]
       put orange,
    【signal(mutex)】
    (signal(full))
   }
}
Son(){
    while(1){
    [wait(full)]
    [wait(mutex)]
       eat,
    【signal(mutex)】
    【signal(empty)】
   }
}
```