THE PLOT THICKENS

JOE SMITH

1. Closed Union

Prove that the class of regular languages is closed under the union (\cup) operation. (Hint: Use proof by construction.)

2. ... Now has two problems

Provide the regular expression that corresponds to each of the following language descriptions. Assume that Σ is $\{0, 1\}$:

(1) $\{w|w \text{ has exactly a single } 1\}$

$$0^* \cdot \{1\} \cdot 0^*$$

(2) $\{w|w \text{ contains the string } 001 \text{ as a substring}\}$

$$\Sigma^* \cdot \{001\} \cdot \Sigma^*$$

(3) $\{w|w \text{ is a string of even length}\}$

$$(\{0,1\} \cdot \{0,1\})^*$$

(4) $\{w|w \text{ starts and ends with the same symbol}\}$

3. Regex to NFA

Convert the regular expression $(a \cup b)^*$ to a nondeterministic finite state automaton. Note that you do not have to draw the NFA if you do not wish to do so. You may provide the mathematical specification $M=(Q,\Sigma,\delta,q_0,F)$. For δ you may provide a table of the transitions.

This seems almost deceptively simple, but it would appear that this is a rather simple Regex to model. $M = (Q, \Sigma, \delta, q_0, F)$, where:

$$\begin{array}{l} Q = 1 \\ \Sigma = a, \ b \\ \delta = \{1\}_a \to \{1\}, \{1\}_b \to \{1\} \\ q_0 = 1 \\ F = 1. \end{array}$$

4. Pump it up

Using the pumping lemma prove that $F = \{ww|w \in \{0,1\}\}\$ is nonregular.

2 JOE SMITH

Figure 1. $T(a \cup b)^*$