Gate.in.21

EE22BTECH11008 - Annapureddy Siva Meenakshi*

Q: A system has transfer function

$$\frac{Y(s)}{X(s)} = \frac{s - \pi}{s + \pi}$$

let u(t) be the unit step function. The input x(t) that results in a steady-state output $y(t) = \sin(\pi t)$ is ___. **Solution:**

$$y(t) \longrightarrow \boxed{\frac{1}{H(s)}} x(t)$$

Fig. 0: Block diagram of the inverse system

$$x(t)$$
 $H(s)$ $y(t)$

Fig. 0: Block diagram of the system

Variable	Description	Value
x(t)	input function	none
y(t)	output function	$\sin(\pi t)$
H(s)	Transfer-function	$\frac{s-\pi}{s+\pi}$

TABLE 0: Input parameters

$$H(s) = \frac{s - \pi}{s + \pi} \tag{1}$$

from Fig. 0

$$\frac{1}{H(s)} = \frac{s+\pi}{s-\pi} \tag{2}$$

Converting transfer function to frequency response, we get

$$\frac{1}{H(j\omega)} = \frac{j\omega + \pi}{j\omega - \pi} \tag{3}$$

from Table $0 \omega = \pi$

$$\frac{1}{H(j\pi)} = \frac{j+1}{j-1} = -j = e^{-j\frac{\pi}{2}} \tag{4}$$

from (4)

$$\left| \frac{1}{H(j\pi)} \right| = 1$$
 and $\arg \left(\frac{1}{H(j\pi)} \right) = -90^{\circ}$ (5)

$$y(t) = \sin(\pi t) \tag{6}$$

$$\sin(\pi t) \stackrel{\frac{1}{H(j\omega)}}{\rightarrow} \left| \frac{1}{H(j\omega)} \right| \sin\left(\pi t + \arg\left(\frac{1}{H(j\omega)}\right)\right)$$
 (7)

Therefore, by (6) and (7), we get

$$x(t) = \sin\left(\pi t - \frac{\pi}{2}\right) \tag{8}$$

Fig. 0: Plot of x(t) and y(t) taken from Python

Fig. 0: Amplitude and phase of $\frac{1}{H(j\omega)}$