

Appunti di Algoritmi e Strutture Dati

a.a. 2017/2018

 $\begin{array}{c} {\rm Autore:} \\ {\bf Timoty~Granziero} \end{array}$

Repository:

https://github.com/Vashy/ASD-Notes

INDICE Indice

Indice

1	Lez	Lezione del $28/02/2018$							
	1.1	Problem Solving							
	1.2	Cosa analizzeremo nel corso							
		1.2.1 Approfondimento sul tempo di esecuzione T(n)							
	1.3	Problema dell'ordinamento (sorting)							
	1.4	Insertion Sort							
		141 Invarianti e correttezza							

1 Lezione del 28/02/2018

1.1 Problem Solving

- 1. Formalizzazione del problema;
- 2. Sviluppo dell'algoritmo (focus del corso);
- 3. Implementazione in un programma (codice).

Algoritmo Sequenza di passi elementari che risolve il problema.

$$\mathrm{Input} \to \mathbf{Algoritmo} \to \mathrm{Output}$$

Dato un problema, ci sono tanti algoritmi per risolverlo.

e.g. Ordinamento dei numeri di una Rubrica. L'idea è quella di trovare tutte le permutazioni di ogni numero.

```
30 numeri: complessità 30! \cong 2 \times 10^{32} \text{ns} \Rightarrow 319 anni (con ns = \text{nanosecondi})
```

std::vector È un esempio nel C++ delle ragioni per cui si studia questa materia. Nella documentazione della STL, sono riportati i seguenti:

- Random access: complessità O(1);
- Insert: complessità O(1) ammortizzato.

Il random access è l'accesso a un elemento casuale del vector. O(1) implica che l'accesso avviene in tempo costante (pari a 1).

Per insert si intende l'inserimento di un nuovo elemento in coda. Avviene in tempo O(1) ammortizzato: questo perchè ogni N inserimenti, è necessario un resize del vector e una copia di tutti gli elementi nel nuovo vettore (questa procedura è nascosta al programmatore).

1.2 Cosa analizzeremo nel corso

- Tempo di esecuzione;
- Spazio (memoria);
- Correttezza;
- o Manutenibilità.

1.2.1 Approfondimento sul tempo di esecuzione T(n)

- o P Problems: complessità polinomiale. L'algoritmo è trattabile
- o *NP Complete*: problemi NP completi. **e.g**: Applicazione sugli algoritmi di sicurezzza. Si basano sull'assunzione che per essere risolti debbano essere considerate tutte le soluzioni possibili.
- o NP Problems: problemi con complessità (ad esempio) esponenziale/fattoriale. Assolutamente non trattabili.

Figura 1: Complessità T(n).

1.3 Problema dell'ordinamento (sorting)

Input: sequenza di numeri

 $a_0a_1\ldots a_n;$

Output: permutazione

 $a'_0a'_1\ldots a'_n$

tale che

$$a_0' \le a_1' \le \dots \le a_n'$$

Vedremo due algoritmi:

- Insertion Sort;
- o Merge Sort.

1.4 Insertion Sort

È l'algoritmo di sorting che viene fatto naturalmente ad esempio quando si vogliono ordinare le carte nella propria mano in una partita a scala 40: si prende ogni carta a partire da sinistra, e la si posiziona in ordine crescente.

Astrazione Prendiamo ad esempio il seguente array:

Partiamo dal primo elemento: 5. È già ordinato con se stesso, quindi procediamo con il secondo elemento.

Confronto il numero 2 con l'elemento alla sua sinistra:

 $2 \geq 5$? No, quindi lo inverto con l'elemento alla sua sinistra, come segue

2	5	8	4	7	Key:	8
---	---	---	---	---	------	---

La key analizzata è 8.

 $8 \ge 5$? Sì, quindi è ordinato in modo corretto.

$2 \mid \xi$	5 8	4 7	Key:	4
--------------	-----	-----	------	---

La key analizzata è 4.

4 > 8? No, quindi lo sposto a sinistra invertendolo con 8.

 $4 \ge 5$? No, lo sposto a sinistra invertendolo con 5.

4 > 2? Sì, quindi è nella posizione corretta.

ı	_	4		0	_	т г	1
ı	٠,	1 4	l h	I ×	1 7	K ev.	-7
ı						1 1 C.y .	•

Key analizzata 7.

 $7 \ge 8$? No, lo sposto a sinistra invertendolo con 8.

 $7 \ge 5$? Sì, è nella posizione corretta.

Ottengo l'array ordinato:

_	_			
2	4	5	7	8

Algorimo Passiamo ora all'implementazione dell'algoritmo, con uno pseudocodice similare a Python¹

Input: A[1, ..., n], A.length.

È noto che:
$$A[i] \le key < A[i+1]$$

Pseudocodice Segue lo pseudocodice dell'Insertion Sort.

```
Insertion-Sort(A)
```

```
1 n = A.length

2 for j = 2 to n // il primo elemento è già ordinato

3 key = A[j] // A[1...j-1] ordinato

4 i = j-1

5 while i > 0 and A[i] > key

6 A[i+1] = A[i]

7 i = i-1

8 A[i+1] = key
```

Quando il while termina, ci sono due casi:

o i = 0: tutti gli elementi prima di j sono maggiori di key; key va al primo posto (1);

$$\circ$$
 (i > 0) and (A[i] \leq key): A[i+1] = key.

1.4.1 Invarianti e correttezza

for A[1..j-1] è ordinato e contiene gli elementi in (1,j-1) iniziali.

while A[1..i]A[i+2..j] ordinato eA[i+2..j] > key.

In uscita abbiamo:

- \circ j = n+1;
- o A[1..n] ordinato, come da invariante: vale A[1..j-1] ordinato, e j vale n+1.

¹**ATTENZIONE**: verranno usati array con indici che partono da 1.