МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

ОБНАРУЖЕНИЕ СЕТЕВОГО Р2Р ТРАФИКА МЕТОДОМ АНАЛИЗА ЕГО ПОВЕДЕНИЯ

КУРСОВАЯ РАБОТА

студента 3 курса 331 группы направления 10.05.01 — Компьютерная безопасность факультета КНиИТ Стаина Романа Игоревича

Научный руководитель	
доцент	 А. В. Гортинский
Заведующий кафедрой	
д. фм. н., доцент	 М. Б. Абросимов

СОДЕРЖАНИЕ

BE	ВЕДЕІ	НИЕ		3	
1	Peer-	-to-Peer		4	
	1.1	Истор	ия	4	
2	Архитектура			5	
	2.1	Базовн	ые элементы Р2Р сетей	5	
		2.1.1	Узел Р2Р сети	5	
		2.1.2	Группа узлов	6	
		2.1.3	Сетевой транспорт	6	
	2.2	Марш	рутизация	6	
		2.2.1	Неструктурированные сети	6	
		2.2.2	Структурированные сети	7	
		2.2.3	Гибридные модели	7	
	2.3	Безопа	асность	8	
		2.3.1	Маршрутизационные атаки	8	
		2.3.2	Поврежденные данные и вредоносные программы	8	
	2.4	Отказоустойчивость и масштабируемость сети			
	2.5	Распределенное хранение и поиск			
3	При	именение10			
	Опи	сание п	рограммы	1	
	4.1	Руководство11			
	4.2	Принцип работы1		1	
		4.2.1	Интерфейсная часть программы 1	1	
		4.2.2	Основная функция программы 1	2	
		4.2.3	Определение Р2Р трафика	2	
		4.2.4	Тестирование программы	3	
3A	КЛЮ)ЧЕНИІ	E	4	
CI	ІИСО	к исп	ОЛЬЗОВАННЫХ ИСТОЧНИКОВ	5	

введение

Введение

1 Peer-to-Peer

P2P (peer-to-peer), также известные как одноранговые, децентрализованные или пиринговые сети, — это распределенная архитектура приложения, которая разделяет задачи между узлами (peer). Узлы имеют одинаковые привилегии в приложении и образуют сеть равносильных узлов.

Узлы делают свои ресурсы, такие как вычислительная мощность, объем диска или пропускная способность напрямую доступными остальным членам сети, без необходимости координировать действия с помощью серверов. Узлы являются одновременно поставщиками и потребителями ресурсов, в отличие от стандартной клиент-сервер модели, где поставщик и потребитель ресурсов разделены.

1.1 История

В то время как P2P системы использовались во многих доменных приложениях, архитектура популяризовалась благодаря файлообменной системе Napster, разработанной в 1999 году. Концепция вдохновила новую философию во многих областях человеческого взаимодействия. P2P технология позволяет пользователям интернета образовывать группы и коллаборации, формируя, тем самым, пользовательские поисковые движки, виртуальные суперкомпьютеры и файловые системы. Основная идея P2P систем исходит из первых принципов метода Request for Comment (RFC). Видение Всемирной паутины Тима Бернерса-Ли было близко к P2P сети, в том смысле, что каждый пользователь является активным создателем и редактором контента.

Ранней версией P2P сетей является USENET — распределенная система обмена сообщениями. USENET был разработан в 1979 году и представлял собой систему, обеспечивающую децентрализованную модель управления. Основа представляет собой клиент-серверную модель, предполагающую самоорганизацию группы серверов. Тем не менее сервера взаимодействуют друг с другом как равноправные узлы, распространяя информацию по всей сети USENET.

В мае 1999 года, в Интернет с более чем миллионом пользователей, Шон Фэннинг внедрил приложение файлообменник Napster. Napster стал началом P2P сети, такой какую мы знаем её сейчас, пользователи участвуют в создании виртуальной сети, полностью независимой от физической, без администрирования и каких-либо ограничений.

2 Архитектура

Р2Р сеть строится вокруг понятия равноправных узлов — клиенты и серверы одинаково взаимодействуют с другими узлами сети. Такая модель построения сети отличается от модели клиент-сервер, где взаимодействие идет с центральным сервером. На рисунке 1 а) изображены архитектура клиент-сервера и б) архитектура Р2Р. Типичным примером передачи файла в модели клиент-сервер является File Transfer Protocol (FTP), в котором программы клиента и сервера разделены: клиент инициирует передачу, а сервер отвечает на запросы.

Рисунок 1 – Архитектура клиент-сервера и Р2Р

2.1 Базовые элементы Р2Р сетей

2.1.1 Узел Р2Р сети

Узел (**Peer**) — фундаментальный составляющие блок любой одноранговой сети. Каждый узел имеет уникальный идентификатор и принадлежит одной или нескольким группам. Он может взаимодействовать с другими узлами как в своей, так и в других группах.

Виды узлов:

- **Простой узел**. Обеспечивает работу конечного пользователя, предоставляя ему сервисы других узлов и обеспечивая предоставление ресурсов пользовательского компьютера другим участникам сети.
- **Роутер**. Обеспечивает механизм взаимодействия между узлами, отделёнными от сети брандмауэрами или NAT-системами.

2.1.2 Группа узлов

Группа узлов — набор узлов, сформированный для решения общей задачи или достижения общей цели. Могут предоставлять членам своей группы такие наборы сервисов, которые недоступны узлам, входящим в другие группы.

Группы узлов могут разделяться по следующим признакам:

- приложение, ради которого они объединены в группу;
- требования безопасности;
- необходимость информации о статусе членов группы.

2.1.3 Сетевой транспорт

Конечные точки (Endpoints) — источники и приёмники любого массива данных передаваемых по сети.

Пайпы (Pipes) — однонаправленные, асинхронные виртуальные коммуникационные каналы, соединяющие две или более конечные точки.

Сообщения — контейнеры информации, которая передаётся через пайп от одной конечной точки до другой.

2.2 Маршрутизация

Р2Р сети обычно реализуют некоторую форму виртуальной сети, наложенную поверх физической сети, где узлы образуют подмножество узлов в физической сети. Данные по-прежнему обмениваются непосредственно над базовой ТСР/IР сетью, а на прикладном уровне узлы имеют возможность взаимодействовать друг с другом напрямую, с помощью логических связей. Наложение используется для индексации и обнаружения узлов, что позволяет системе Р2Р быть независимой от физической сети. На основании того, как узлы соединены друг с другом внутри сети, и как ресурсы индексированы и расположены, сети классифицируются на неструктурированные и структурированные (или как их гибрид).

2.2.1 Неструктурированные сети

Неструктурированная P2P сеть не формирует определенную структуру сети, а случайным образом соединяет узлы друг с другом. Так как не существует глобальной структуры формирования сети, неструктурированные сети легко организуются и доступны для локальных оптимизаций. Кроме того, поскольку роль всех узлов в сети одинакова, неструктурированные сети являются весьма

надежными в условиях, когда большое количество узлов часто подключаются к сети или отключаются от нее.

Однако, из-за отсутствия структуры, возникают некоторые ограничения. В частности, когда узел хочет найти нужный фрагмент данных в сети, поисковый запрос должен быть направлен через сеть, чтобы найти как можно больше узлов, которые обмениваются данными. Такой запрос вызывает очень высокое количество сигнального трафика в сети, требует высокой производительности, и не гарантирует, что поисковые запросы всегда будут решены.

2.2.2 Структурированные сети

В структурированных P2P сетях наложение организуется в определенную топологию, и протокол гарантирует, что любой узел может эффективно участвовать в поиске файла или ресурса, даже если ресурс использовался крайне редко.

Наиболее распространенный тип структурированных сетей P2P реализуется распределенными хэш-таблицами (DHT), в котором последовательное хеширование используется для привязки каждого файла к конкретному узлу. Это позволяет узлам искать ресурсы в сети, используя хэш-таблицы, хранящих пару ключ-значение, и любой участвующий узел может эффективно извлекать значение, связанное с заданным ключом.

Тем не менее, для эффективной маршрутизации трафика через сеть, узлы структурированной сети должны обладать списком соседей, которые удовлетворяют определенным критериям. Это делает их менее надежными в сетях с высоким уровнем оттока абонентов (т.е. с большим количеством узлов, часто подключающихся к сети или отключающихся от нее).

2.2.3 Гибридные модели

Гибридные модели представляют собой сочетание P2P сети и модели клиент-сервер. Гибридная модель должна иметь центральный сервер, который помогает узлам находить друг друга. Есть целый ряд гибридных моделей, которые находят компромисс между функциональностью, обеспечиваемой структурированной сетью модели клиент-сервер, и равенством узлов, обеспечиваемой чистыми одноранговыми неструктурированными сетями. В настоящее время гибридные модели имеют более высокую производительность, чем чисто неструктурированные или чисто структурированные сети.

2.3 Безопасность

Как и любой другой форме программного обеспечения, P2P приложения могут содержать уязвимости. Особенно опасно для P2P программного обеспечения, является то, что P2P приложения действуют и в качестве серверов и в качестве клиентов, а это означает, что они могут быть более уязвимы для удаленных эксплоитов.

2.3.1 Маршрутизационные атаки

Поскольку каждый узел играет роль в маршрутизации трафика через сеть, злоумышленники могут выполнять различные «маршрутизационные атаки», или атаки отказа в обслуживании. Примеры распространенных атак маршрутизации включают в себя «неправильная маршрутизация поиска», когда вредоносные узлы преднамеренно пересылают запросы неправильно или возвращают ложные результаты, «неправильная маршрутизация обновления», когда вредоносные узлы изменяют таблицы маршрутизации соседних узлов, посылая им ложную информацию, и «неправильная маршрутизация разделения сети», когда новые узлы подключаются через вредоносный узел, который помещает новичков в разделе сети, заполненной другими вредоносными узлами.

2.3.2 Поврежденные данные и вредоносные программы

Распространенность вредоносных программ варьируется между различными протоколами одноранговых сетей. Исследования, анализирующие распространение вредоносных программ по сети P2P обнаружили, например, что 63% запросов на загрузку по сети Limewire содержали некоторую форму вредоносных программ, в то время как на OpenFT только 3% запросов содержали вредоносное программное обеспечение. Другое исследование анализа трафика в сети Кагаа обнаружили, что 15% от 500 000 отобранных файлов, были инфицированы одним или несколькими из 365 различных компьютерных вирусов.

Поврежденные данные также могут быть распределены по P2P-сети путем изменения файлов, которые уже были в сети. Например, в сети FastTrack, RIAA удалось внедрить фальшивые данные в текущий список загрузок и в уже загруженные файлы (в основном файлы MP3). Файлы, инфицированные вирусом RIAA были непригодны впоследствии и содержали вредоносный код. Следовательно, P2P сети сегодня внедрили огромное количество механизмов безопасности и проверки файлов. Современное хеширование, проверка данных

и различные методы шифрования сделали большинство сетей, устойчивыми к практически любому типу атак, даже когда основные части соответствующей сети были заменены фальшивыми или нефункциональными узлами.

2.4 Отказоустойчивость и масштабируемость сети

Децентрализованность P2P сетей повышает их надежность, так как этот метод взаимодействия устраняет ошибку единой точки разрыва, присущую клиент-серверным моделям. С ростом числа узлов, объем трафика внутри системы увеличивается, масштаб сети также увеличивается, что приводит к уменьшению вероятности отказа. Если один узел перестанет функционировать должным образом, то система в целом все равно продолжит работу. В модели клиент-сервер, с ростом количества пользователей, уменьшается количество ресурсов выделяемых на одного пользователя, что приводит к риску возникновения ошибок.

2.5 Распределенное хранение и поиск

Возможность резервного копирования данных, восстановление и доступность приводят как и к преимуществами так и к недостаткам Р2Р сетей. В централизованной сети, только системный администратор контролирует доступность файлов. Если администраторы решили больше не распространять файл, его достаточно удалить с серверов, и файл перестанет быть доступным для пользователей. Другим словами, клиент-серверные модели имеют возможность управлять доступностью файлов. В Р2Р сети, доступность контента определяется степенью его популярности, так как поиск идет по всем узлам, через которые файл проходил. То есть, в Р2Р сетях нет централизованной власти, как системный администратор в клиент-серверном варианте, а сами пользователи определяют уровень доступности файла.

3 Применение

В Р2Р сетях, пользователи передают и используют контент сети. Это означает, что в отличие от клиент-серверных сетей, скорость доступа к данным возрастает с увеличением числа пользователей, использующих этот контент. На этой идее построен протокол Bittorrent — пользователи скачавшие файл, становятся узлами и помогают другим пользователям скачать файл быстрее. Эта особенность является главным преимуществом Р2Р сетей.

Множество файлообменных систем, таких как Gnutella, G2 и eDonkey популяризовали P2P технологии:

- Пиринговые системы распространения контента.
- Пиринговые системы обслуживания, например повышение производительности, в частности Correli Caches.
- Публикация и распространение программного обеспечения (Linux, видеоигры).

В связи децентрализованностью доступа к данным в P2P сетях возникает проблема нарушения авторских прав. Компании, занимающиеся разработкой P2P приложений часто принимают участие в судебных конфликтах. Самые известные судебные дела это Grokster против RIAA и MGM Studios, Inc. против Grokster Ltd., где в обоих случаях технологии файлообменных систем признавались законными.

4 Описание программы

В данной работе был разработан **сниффер** — анализатор сетевого трафика. Программа выводит на экран информацию о перехваченных пакетах таких сетевых протоколов как *Ethernet*, *IPv4*, *TCP* и *UDP*. Дополнительно последний вывод программы сохраняется в текстовый файл.

4.1 Руководство

Запуск программы возможен <u>только</u> на OC Linux с установленным языком программирования Python3.

Для работы с программой необходимо запустить *window.py* с правами администратора:

```
sudo ./window.py
```

После открытия окна необходимо нажать кнопку «Старт».

4.2 Принцип работы

4.2.1 Интерфейсная часть программы

При запуске *window.py* создаётся **сокет** — программный интерфейс для обеспечения обмена данными между процессами. Через него проходит весь сетевой трафик на той виртуальной машине, на которой он находится.

```
conn = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(3))
```

Далее открывается окно интерфейса, в котором создаются необходимые виджеты: кнопка «Старт» и текстовое поле для вывода информации. Нажатие кнопки «Старт» вызывает функцию *sniff*, которая вызывает функцию *main* из *sniffer.py*. Результат выполнения функции *main* — информация о перехваченном пакете. Данная информация выводится в текстовое поле интерфейса и в текстовый файл *out.txt*. Дополнительно выводится системное время — когда был получен или отправлен очередной пакет.

```
def sniff(self):
out = sniffer.main(conn)
out.insert(0, str(datetime.now().strftime('%H:%M:%S')) + ":")
for s in out:
  file.write(s + '\n')
  self.output.insert('end', s + '\n')
root.after(300, self.sniff) # сканирование каждые 0.3 сек
```

Функция sniff вызывает рекурсивно саму себя каждые 0.3 секунды, то есть сканирование происходит раз в 0.3 секунды.

4.2.2 Основная функция программы

Основная функция *main* получает данные с сокета и затем анализирует и форматирует их с помощью вспомогательных функций. Она позволяет получить информацию о *Ethernet*, *IPv4*, *TCP* и *UDP* пакетах. Стоит отметить, что данные, передающиеся в пакетах, не выводятся, потому что они представлены в виде массива байт (данные могут быть зашифрованы, поэтому извлечь из них информацию затруднительно).

4.2.3 Определение Р2Р трафика

Если был получен TCP или UDP пакет, то проверяются порты источника и назначения. В списке пар порт-приложение $LIST_p2p$ находится информация о используемых портах некоторых P2P приложений, а именно:

- BitTorrent;
- Direct Connect;
- eDonkey;
- FastTrack;
- Yahoo;
- Napster;
- Gnutella;
- AIM;
- Skype;
- Steam;
- Hamachi;
- Radmin VPN;

Если был обнаружен порт, который есть в данном списке, то в информацию о пакете дополнительно заносится строка «Обнаружен Р2Р трафик (методом анализирования портов)».

Конечно же, данный метод не даёт гарантии обнаружения и не позволяет однозначно идентифицировать приложение и тип данных, передающихся по P2P сети.

4.2.4 Тестирование программы

Для тестирования программы использовался *Skype* — приложение для проведения аудио и видео звонков, а также обмена текстовыми сообщениями. Звонки происходят с помощью P2P. На 2 рисунке показана работа программы во время активного аудио звонка в Skype. С помощью метода анализирования портов был обнаружен P2P трафик.

Рисунок 2 – Тестирование работы программы при запущенном звонке в Skype

В данном примере обнаружен порт 3480, который присутствует в списке отслеживаемых портов $LIST_p2p$.

ЗАКЛЮЧЕНИЕ

Заключение

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ