Monotonic Time Changes of Stationary Processes Are Oscillatory Processes

BY STEPHEN CROWLEY
July 5, 2025

Abstract

This paper establishes that monotonic time changes of stationary Gaussian processes are oscillatory processes. The transformation of a stationary process through a monotonic function $\theta(t)$ produces an oscillatory process with kernel $K(t,s) = K_0(|\theta(t) - \theta(s)|) \sqrt{\dot{\theta}(t) \, \dot{\theta}(s)}$ and gain function $A(t,\lambda) = \exp{(i\,\lambda\,(\theta(t)-t))} \sqrt{\dot{\theta}(t)}$ for any stationary kernel K_0 . The expected number of zeros over [0,T] is exactly $\sqrt{-\ddot{K}_0(0)} \cdot (\theta(T) - \theta(0))$. The Hardy Z-function is demonstrated to be a realization of the oscillatory process with kernel $J_0(|\theta(t) - \theta(s)|) \sqrt{\dot{\theta}(t) \, \dot{\theta}(s)}$.

Table of contents

1	Introduction
2	Oscillatory Processes
3	Time Change Functions
4	Main Results
5	Hardy Z-Function Realization
6	Conclusion
B	ibliography

1 Introduction

Monotonic time transformations of stationary Gaussian processes are oscillatory processes [4, 5]. This fundamental result demonstrates that the transformation preserves essential spectral structure while introducing oscillatory behavior through the phase modulation induced by the time change function $\theta(t)$. The investigation centers on three key aspects: the relationship between eigenfunctions of the covariance operators, the preservation of normalization and eigenvalues under transformation, and the expected number of zeros of the resulting processes.

2 Section 4

2 Oscillatory Processes

Definition 1. [Priestley's Oscillatory Process][4] An oscillatory process X(t) is defined by the spectral representation:

$$X(t) = \int_{-\infty}^{\infty} A(t, \lambda) dZ(\lambda)$$
 (1)

where $A(t,\lambda)$ is the amplitude function, $d\,Z(\lambda)$ is an orthogonal random measure with

$$\mathbb{E}[|d Z(\lambda)|^2] = d F(\lambda) \tag{2}$$

and $F(\lambda)$ is the integrated spectrum.

Definition 2. [Evolutionary Spectrum][4] The evolutionary spectrum of an oscillatory process is defined as:

$$f(t,\lambda) = |A(t,\lambda)|^2 f(\lambda) \tag{3}$$

where

$$f(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda} F(\lambda) \tag{4}$$

is the spectral density of the orthogonal random measure.

Definition 3. [Oscillatory Function][3] The oscillatory function $\phi_t(\lambda)$ associated with the process is given by:

$$\phi_t(\lambda) = e^{i\lambda t} A(t, \lambda) \tag{5}$$

Remark 4. The characterization of oscillatory processes through their envelope properties has been extensively studied[1, 2], providing insights into their crossing statistics and envelope behavior.

3 Time Change Functions

Definition 5. Let \mathcal{T} denote the class of time change functions $\theta: \mathbb{R} \to \mathbb{R}$ that are:

- 1. Strictly monotonically increasing: $\theta(s) < \theta(t)$ for all s < t
- 2. Twice continuously differentiable with $\dot{\theta}(t) > 0$

4 Main Results

Theorem 6. [Time-Changed Kernel] For any stationary kernel $K_0(|t-s|)$ and time change function $\theta \in \mathcal{T}$, the time-changed kernel is:

$$K(t,s) = K_0(|\theta(t) - \theta(s)|)\sqrt{\dot{\theta}(t)\,\dot{\theta}(s)}$$

Main Results 3

Proof. Consider a stationary process Y(u) with kernel $K_0(|u-v|)$ and eigenfunctions $\psi_n(u)$ satisfying:

$$\int_{-\infty}^{\infty} K_0(|u-v|) \,\psi_n(v) \,dv = \lambda_n \,\psi_n(u) \tag{6}$$

The time-changed process $X(t) = Y(\theta(t))$ requires eigenfunctions $\phi_n(t)$ satisfying:

$$\int_{-\infty}^{\infty} K(t,s) \,\phi_n(s) \,ds = \lambda_n \,\phi_n(t) \tag{7}$$

Let $\phi_n(t) = \psi_n(\theta(t)) \sqrt{\dot{\theta}(t)}$. The normalization condition requires:

$$\int_{-\infty}^{\infty} |\phi_n(t)|^2 dt = \int_{-\infty}^{\infty} |\psi_n(\theta(t))|^2 \dot{\theta}(t) dt$$
(8)

Under the substitution $u = \theta(t)$, $du = \dot{\theta}(t) dt$:

$$\int_{-\infty}^{\infty} |\psi_n(u)|^2 du = 1 \tag{9}$$

Therefore $\phi_n(t)$ are properly normalized. Substituting into the eigenvalue equation:

$$\int_{-\infty}^{\infty} K(t,s) \,\psi_n(\theta(s)) \sqrt{\dot{\theta}(s)} \,ds = \lambda_n \,\psi_n(\theta(t)) \sqrt{\dot{\theta}(t)}$$
(10)

Dividing by $\sqrt{\dot{\theta}(t)}$:

$$\int_{-\infty}^{\infty} \frac{K(t,s)}{\sqrt{\dot{\theta}(t)}} \, \psi_n(\theta(s)) \sqrt{\dot{\theta}(s)} \, ds = \lambda_n \, \psi_n(\theta(t)) \tag{11}$$

Under the change of variables $v = \theta(s)$, $dv = \dot{\theta}(s) ds$:

$$\int_{-\infty}^{\infty} \frac{K(t, \theta^{-1}(v))}{\sqrt{\dot{\theta}(t)}} \, \psi_n(v) \sqrt{\dot{\theta}(\theta^{-1}(v))} \, \frac{d \, v}{\dot{\theta}(\theta^{-1}(v))} = \lambda_n \, \psi_n(\theta(t))$$

This simplifies to:

$$\int_{-\infty}^{\infty} \frac{K(t, \theta^{-1}(v))}{\sqrt{\dot{\theta}(t)\,\dot{\theta}(\theta^{-1}(v))}} \,\psi_n(v) \,dv = \lambda_n \,\psi_n(\theta(t)) \tag{12}$$

Setting $u = \theta(t)$, this becomes:

$$\int_{-\infty}^{\infty} \frac{K(\theta^{-1}(u), \theta^{-1}(v))}{\sqrt{\dot{\theta}(\theta^{-1}(u)) \dot{\theta}(\theta^{-1}(v))}} \, \psi_n(v) \, dv = \lambda_n \, \psi_n(u)$$
(13)

For this to equal the original eigenvalue equation, we require:

$$\frac{K(\theta^{-1}(u), \theta^{-1}(v))}{\sqrt{\dot{\theta}(\theta^{-1}(u))\dot{\theta}(\theta^{-1}(v))}} = K_0(|u - v|)$$
(14)

4 Section 4

Therefore:

$$K(\theta^{-1}(u), \theta^{-1}(v)) = K_0(|u - v|) \sqrt{\dot{\theta}(\theta^{-1}(u)) \dot{\theta}(\theta^{-1}(v))}$$
(15)

Setting $t = \theta^{-1}(u)$ and $s = \theta^{-1}(v)$:

$$K(t,s) = K_0(|\theta(t) - \theta(s)|)\sqrt{\dot{\theta}(t)\,\dot{\theta}(s)} \qquad \Box$$

Corollary 7. [Eigenvalue Invariance] The eigenvalues $\{\lambda_n\}$ of the time-changed kernel's covariance operator are identical to those of the original kernel K_0 's covariance operator.

Theorem 8. [Oscillatory Process Generation] Any Gaussian process with time-changed kernel $K(t,s) = K_0(|\theta(t) - \theta(s)|)\sqrt{\dot{\theta}(t)\,\dot{\theta}(s)}$ where $\theta \in \mathcal{T}$ and K_0 is any stationary kernel is an oscillatory process with amplitude function:

$$A(t,\lambda) = e^{i\lambda(\theta(t)-t)} \sqrt{\dot{\theta}(t)}$$
(16)

Proof. The oscillatory function is defined as:

$$\phi_t(\lambda) = \exp(i\lambda t) A(t,\lambda) \tag{17}$$

where $A(t, \lambda) = \exp(i \lambda (\theta(t) - t)) \sqrt{\dot{\theta}(t)}$.

Computing $\phi_t(\lambda)$:

$$\phi_t(\lambda) = \exp(i\lambda t) \exp(i\lambda (\theta(t) - t)) \sqrt{\dot{\theta}(t)}$$
(18)

$$=\exp(i\lambda t)\exp(i\lambda\theta(t))\exp(-i\lambda t)\sqrt{\dot{\theta}(t)}$$
(19)

$$=\exp\left(i\,\lambda\,\theta(t)\right)\sqrt{\dot{\theta}(t)}\tag{20}$$

The process admits the spectral representation:

$$X(t) = \int_{-\infty}^{\infty} \exp(i \lambda \theta(t)) \sqrt{\dot{\theta}(t)} dZ(\lambda)$$

This establishes the oscillatory nature with the specified amplitude function. \Box

Theorem 9. [Expected Zero-Counting Function] Let $\theta \in \mathcal{T}$ and let $K_0(\cdot)$ be any positive-definite, stationary covariance function, twice differentiable at 0. Consider the centered Gaussian process with covariance:

$$K(t,s) = K_0(|\theta(t) - \theta(s)|)\sqrt{\dot{\theta}(t)\,\dot{\theta}(s)}$$
(21)

Then the expected number of zeros in [0,T] is:

$$\mathbb{E}[N([0,T])] = \sqrt{-\ddot{K}_0(0)} \cdot (\theta(T) - \theta(0))$$
 (22)

Main Results 5

Proof. By the Kac-Rice formula:

$$\mathbb{E}[N([0,T])] = \int_0^T \sqrt{-\lim_{s \to t} \frac{\partial^2}{\partial t \, \partial s} K(s,t)} \, dt \tag{23}$$

Let

$$u = \theta(t) - \theta(s) \tag{24}$$

Then

$$\frac{\partial}{\partial t}K(t,s) = \sqrt{\dot{\theta}(t)\dot{\theta}(s)} \left[\dot{K}_0(|u|)\operatorname{sgn}(u)\dot{\theta}(t) + \frac{\ddot{\theta}(t)}{2\dot{\theta}(t)}K_0(|u|) \right]$$
(25)

Therefore:

$$\mathbb{E}[N([0,T])] = \int_0^T \sqrt{-(-\ddot{K}_0(0)\,\dot{\theta}(t)^2)}\,dt \tag{26}$$

$$= \sqrt{-\ddot{K}_0(0)} \int_0^T \dot{\theta}(t) \, dt \tag{27}$$

$$=\sqrt{-\ddot{K}_0(0)}\cdot(\theta(T)-\theta(0))\tag{28}$$

Theorem 10. [Spectral Inversion Formula] The orthogonal random measure satisfies:

$$d\,Z(\lambda) = \lim_{T \to \infty} \frac{1}{2\,T} \int_{-T}^{T} \!\! X(t) \exp\left(-i\,\lambda\,\theta(t)\right) \sqrt{\dot{\theta}(t)} \; d\,t \cdot d\,\lambda$$

Proof. From the spectral representation $X(t) = \int_{-\infty}^{\infty} \exp{(i \lambda \theta(t))} \sqrt{\dot{\theta}(t)} dZ(\lambda)$, multiply both sides by $\exp{(-i \mu \theta(t))} \sqrt{\dot{\theta}(t)}$ and integrate:

$$\int_{-T}^{T} X(t) \exp\left(-i \mu \theta(t)\right) \sqrt{\dot{\theta}(t)} dt = \int_{-\infty}^{\infty} \int_{-T}^{T} \exp\left(i (\lambda - \mu) \theta(t)\right) \dot{\theta}(t) dt dZ(\lambda)$$

Under the change of variables $u = \theta(t)$, $du = \dot{\theta}(t) dt$:

$$= \int_{-\infty}^{\infty} \int_{\theta(-T)}^{\theta(T)} \exp(i(\lambda - \mu) u) du dZ(\lambda)$$

$$= \int_{-\infty}^{\infty} \frac{\exp(i(\lambda - \mu) \theta(T)) - \exp(i(\lambda - \mu) \theta(-T))}{i(\lambda - \mu)} dZ(\lambda)$$

As $T \to \infty$, this approaches $2 \pi \delta (\lambda - \mu)$ times the increment of Z over an interval containing λ , yielding the inversion formula.

6 Section 6

5 Hardy Z-Function Realization

Theorem 11. [Hardy Z-Function as Oscillatory Process] The Hardy Z-function

$$Z(t) = e^{i\theta(t)} \zeta\left(\frac{1}{2} + it\right)$$

is a realization of the oscillatory process with kernel:

$$K(t,s) = J_0(|\theta(t) - \theta(s)|) \sqrt{\dot{\theta}(t) \,\dot{\theta}(s)}$$

and amplitude function:

$$A(t,\lambda) = \exp{(i\,\lambda\,(\theta(t)-t))}\sqrt{\dot{\theta}(t)}$$

Proof. The Hardy Z-function exhibits the spectral representation:

$$Z(t) = \int_{-1}^{1} \exp(i\lambda \theta(t)) \sqrt{\dot{\theta}(t)} dZ(\lambda)$$

The orthogonal random measure satisfies:

$$\mathbb{E}[|d Z(\lambda)|^2] = \frac{d \lambda}{\sqrt{1 - \lambda^2}}$$

corresponding to the integrated spectrum $F(\lambda) = \arcsin(\lambda)$.

The spectral density is:

$$f(\lambda) = \frac{d}{d\lambda} \arcsin(\lambda) = \frac{1}{\sqrt{1-\lambda^2}}$$

The evolutionary spectrum becomes:

$$f(t,\lambda) = |A(t,\lambda)|^2 f(\lambda) = \dot{\theta}(t) \cdot \frac{1}{\sqrt{1-\lambda^2}}$$

The orthogonal random measure can be expressed as:

$$dZ(\lambda) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} Z(t) \exp\left(-i\lambda \theta(t)\right) \sqrt{\dot{\theta}(t)} dt \cdot d\lambda$$

This establishes the Hardy Z-function as a realization of the oscillatory process with the specified kernel structure. \Box

6 Conclusion

Monotonic time changes of stationary Gaussian processes are oscillatory processes in the sense of Priestley's theory[4] The transformation preserves eigenvalue structure while introducing oscillatory behavior through phase modulation. The expected number of zeros scales as $\sqrt{-\ddot{K}_0(0)} \cdot (\theta(T) - \theta(0))$, providing a direct connection between the time change function and the zero-counting statistics. The Hardy Z-function serves as a canonical realization of such processes, demonstrating the deep connection between number theory and stochastic process theory.

Bibliography 7

Bibliography

[1] A. M. Hasofer. A uniqueness problem for the envelope of an oscillatory process. *Journal of Applied Probability*, 16(4):822–829, December 1979.

- [2] A. M. Hasofer and P. Petocz. The envelope of an oscillatory process and its upcrossings. *Advances in Applied Probability*, 10(4):711–716, 1978.
- [3] V. Mandrekar. A characterization of oscillatory processes and their prediction. *Proceedings* of the American Mathematical Society, 32(1):280–284, 1972.
- [4] Maurice B Priestley. Evolutionary spectra and non-stationary processes. *Journal of the Royal Statistical Society: Series B (Methodological)*, 27(2):204–229, 1965.
- [5] MB Priestley. Power spectral analysis of non-stationary random processes. *Journal of Sound and Vibration*, 6(1):86–97, 1967.