HOMEWORK 3.4

Soobin Rho

November 11, 2022

Proofs by Contradiction or Contrapositive

B3-B9. Do proofs by contrapositive or contradiction.

B3. Conjecture: If for all $\epsilon > 0$, $x < c + \epsilon$, then $x \le c$.

This can be proven with proof by contrapositive $\forall x, c \in \mathbb{R}, \ x > c \Rightarrow \exists \ \epsilon > 0 \ s.t. \ x \geq c + \epsilon$

Let
$$x, c \in \mathbb{R}$$
, where $x > c$
Choose $\epsilon = x - c$
Since $x > c$, $x - c > 0$

Theorem 3.1.3

Also,
$$c + \epsilon = c + (x - c) = x$$

Therefore,
$$c + \epsilon \leq x$$

B4. Prove: There are no integers a and b such that $b^2 = 4a + 2$.

Filler

Filler

Filler

Filler

Filler

Filler

B6.	Prove:	If	n^3	is	even,	so	is	n.	
									.

Filler
Filler
Filler
Filler
Filler

Filler

B7. Prove: Let a and b be real numbers. If a > 0 and b > 0, then $\frac{2}{a} + \frac{2}{b} \neq \frac{4}{a+b}$

Filler
Filler
Filler
Filler
Filler
Filler

B9. Prove: $\sqrt{3}$ is not a rational number.

Filler
Filler
Filler
Filler
Filler
Filler

B8-B14. Resolve the conjecture of the same number.

$$\begin{array}{ll} Let & x \in \mathbb{R} \ \ where \ \ x \neq 0 \\ Choose & \delta = \frac{|x|}{2} \\ Since & x \neq 0, \ |x| > 0 \\ Since & \frac{1}{2} > 0, \ \epsilon = \frac{|x|}{2} > 0 \\ Since & \frac{1}{2} \leq 1 \ \ and \ \ |x| > 0, \end{array} \qquad \begin{array}{ll} \text{Axiom 3.1.1A, Therem 3.2.2A} \\ \text{Axiom 3.1.1C} \\ \text{Since } & \frac{1}{2} \leq 1 \ \ and \ \ |x| > 0, \end{array}$$

SECTION 3.2 B3. With the list approach, a statement is not regarded as true until it is on the list. With this approach, when can a statement be regarded as fales?