Absolutely! Let's dive **in-depth into TTQ** — **Terminal Transaction Qualifiers** — a crucial concept in **EMV contactless transactions**, and an often misunderstood piece of the flow.

What is TTQ?

• **Tag**: 9F66

• Length: 4 bytes (32 bits)

• Format: Binary

• **Purpose**: TTQ tells the card what the terminal **supports and is requesting** in terms of transaction capabilities during a contactless EMV transaction.

It acts like a **capability declaration** by the terminal:

"Here's what I support; let me know what you (card) support too."

This is compared against **CTQ (Card Transaction Qualifiers)**, returned by the card, to decide how the transaction should proceed.

Structure: TTQ Bit Layout

Let's break down all 32 bits (4 bytes):

Byte 1 – Terminal Capabilities (Basic)

Bit Description		Meaning
8	Contactless EMV mode supported	Terminal supports full EMV contactless
7	Contactless Magnetic Stripe mode supported	Terminal supports Magstripe-mode contactless (MSD)
6	Contact chip supported	Terminal can accept contact chip cards
5	Offline-only reader	No online capability
4	Online PIN supported	Terminal supports online PIN
3	Signature supported	Terminal supports signature CVM
2	Offline PIN supported	Terminal supports offline PIN

Bit Description

Meaning

1 No CVM required

Terminal supports No CVM flow

■ Byte 2 – Consumer Device CVM & Other CVMs

Bit Description

- 8 Consumer Device CVM supported (e.g., mobile device auth)
- 7 Contactless EMV transaction supported
- 6 Reader supports cash transactions
- 5 Reader supports goods transactions
- 4 Reader supports services transactions
- 3 Reader supports cashback transactions
- 2 Reader supports bill payment transactions
- 1 Reader supports transit transactions

Byte 3 - Terminal Risk Management / Decision Logic

Bit Description

- 8 Terminal supports EMV mode if CVM is not required
- 7 Terminal supports online cryptogram if CVM not required
- 6 Terminal supports EMV contactless for online-only cards
- 5 Terminal supports magstripe contactless for online-only cards
- 4 Terminal can process CDCVM results
- 3 Terminal will not prompt for a CVM for CDCVM-verified transactions
- 2 Terminal supports deferred authorization
- 1 RFU (Reserved for future use)

■ Byte 4 – Reserved / Private Use / RFU

 Most schemes (Visa, Mastercard, etc.) have proprietary use or leave these reserved.

Example TTQ and Interpretation

Let's say:

ini

CopyEdit

TTQ = E0 20 C0 00

Breakdown:

Byte 1 (E0 = 11100000):

- Bit 8: ✓ Contactless EMV supported
- Bit 7: ✓ Magstripe supported
- Bit 6: ✓ Contact chip supported
- Bits 5–1: X Not supported (e.g., offline-only, CVM methods)

Byte 2 (20 = 00100000):

- Bit 6: Reader supports goods transactions
- Others: X

Byte 3 (C0 = 11000000):

- Bit 8: ✓ Terminal supports EMV mode if CVM not required
- Bit 7: Online cryptogram without CVM
- Bits 6–1: X

So this terminal:

- Supports full EMV and magstripe contactless
- Allows contact chip fallback
- Supports goods transactions
- Can do EMV with no CVM

Can do online cryptogram even without CVM

TTQ in Transaction Flow

When is TTQ Used?

During **GET PROCESSING OPTIONS (GPO)** phase of contactless flow:

- 1. Terminal sends TTQ to card inside PDOL (Processing Data Object List).
- 2. Card compares TTQ with its CTQ (Card Transaction Qualifiers).
- 3. Based on this:
 - Card decides if EMV or magstripe mode is used
 - o Whether CVM is needed
 - o Whether transaction can be offline approved, or must go online

TTQ vs CTQ – Who Decides What?

TTQ (Terminal) CTQ (Card)

What the terminal supports What the card allows or wants

Proposes options Responds with allowed mode

Used in GPO Returned in GPO response or GENERATE AC

→ Card makes the final decision, using TTQ + CTQ + AIP (Application Interchange Profile)

TTQ and TVR Interaction

Certain TTQ bits influence whether terminal performs checks that could set TVR bits:

TTQ Capability	TVR Impact
EMV supported (Byte 1, Bit 8)	Enables ODA, affects Byte 1 of TVR
Offline PIN supported	Enables offline PIN CVM → affects Byte 3
Online PIN supported	If PIN pad missing, TVR Byte 3 Bit 5 gets set

TTQ Capability

TVR Impact

Floor limit risk checks supported Affects Byte 4 of TVR

No CVM support Impacts whether CVM failures trigger TVR bits

Deferred auth supported May reduce need to set online-needed TVR bits

Summary Table

Component TTQ

Tag 9F66

Length 4 bytes

Direction Terminal → Card (sent in GPO)

Purpose Declares terminal capability in contactless context

Compared With CTQ

Influences CVM method, ODA, TVR bits, online/offline path

Important In EMV Contactless, especially PayWave, PayPass, ExpressPay

tm Wrap-up

If you understand TTQ, you can:

- Predict how a contactless transaction will behave
- Troubleshoot why a transaction went online or failed offline
- Map TVR outcomes based on terminal capability declarations
- Tune terminal profiles for different business models (offline, fast transit, unattended, etc.)