Package 'bfw'

October 12, 2022

```
Title Bayesian Framework for Computational Modeling
Version 0.4.2
Date 2022-02-22
Maintainer Øystein Olav Skaar <br/>
<br/>
Skaar <br/>
<br/>
bayesianfw@gmail.com>
Description Derived from the work of Kruschke (2015,
      <ISBN:9780124058880>), the present package aims to provide a framework
      for conducting Bayesian analysis using Markov chain Monte Carlo (MCMC)
      sampling utilizing the Just Another Gibbs Sampler ('JAGS', Plummer,
      2003, <a href="https://mcmc-jags.sourceforge.io">https://mcmc-jags.sourceforge.io</a>). The initial version
      includes several modules for conducting Bayesian equivalents of
      chi-squared tests, analysis of variance (ANOVA), multiple
      (hierarchical) regression, softmax regression, and for fitting data
      (e.g., structural equation modeling).
License MIT + file LICENSE
URL https://github.com/oeysan/bfw/
BugReports https://github.com/oeysan/bfw/issues/
Depends R (>= 3.5.0)
Imports circlize (>= 0.4.4), coda (>= 0.19-1), data.table (>= 1.12.2),
      dplyr (>= 0.7.7), ggplot2 (>= 2.2.1), graphics, grDevices,
      grid, magrittr (>= 1.5), MASS (>= 7.3-47), officer (>= 0.3.1),
      parallel, plyr (>= 1.8.4), png (>= 0.1-7), runjags (>=
      2.0.4-2), rvg (>= 0.1.9), scales (>= 0.5.0), stats, utils
Suggests testthat (>= 3.0.0), knitr (>= 1.20), lavaan (>= 0.6-1),
      psych (>= 1.7.8), rmarkdown (>= 1.10)
VignetteBuilder knitr
Encoding UTF-8
LazyData true
NeedsCompilation no
RoxygenNote 7.1.2
SystemRequirements JAGS >=4.3.0 <a href="https://mcmc-jags.sourceforge.io">https://mcmc-jags.sourceforge.io</a>,
```

Java JDK >=1.4 https://www.java.com/en/download/manual.jsp

Config/testthat/edition 3

Author Øystein Olav Skaar [aut, cre]

Repository CRAN

Date/Publication 2022-02-22 14:20:02 UTC

R topics documented:

AddNames	3
bfw	4
CapWords	6
Cats	7
	7
	8
1	9
	9
DistinctColors	0
ETA	
FileName	1
FindEnvironment	2
FlattenList	3
GammaDist	4
GetRange	4
Interleave	5
InverseHDI	6
Layout	7
MatrixCombn	7
MergeMCMC	8
MultiGrep	9
Normalize	9
PadVector	0
ParseNumber	0
ParsePlot	1
PlotCirclize	2
PlotData	3
PlotMean	4
PlotNominal	5
PlotParam	6
ReadFile	7
RemoveEmpty	8
RemoveGarbage	9
RemoveSpaces	9
RunContrasts	0
RunMCMC	0
SingleString	3
StatsBernoulli	3
StatsCovariate	5
StatsFit	7

AddNames 3

	StatsKappa	39
	StatsMean	40
	StatsMetric	41
	StatsNominal	42
	StatsRegression	43
	StatsSoftmax	44
	SumMCMC	46
	SumToZero	47
	TidyCode	47
	Trim	48
	TrimSplit	48
	VectorSub	49
Index		51

Add Names Add Names

Description

Add names to columns from naming list

Usage

```
AddNames(
  par,
  job.names,
  job.group = NULL,
  keep.par = TRUE,
  names.only = FALSE,
  ...
)
```

Arguments

par	defined parameter to analyze (e.g., "cor[1,2]")
job.names	names of all parameters in analysis, Default: NULL
job.group	for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL
keep.par	logical, indicating whether or not to keep parameter name (e.g., " $cor[1,2]$ "), Default: TRUE
names.only	logical, indicating whether or not to return vector (TRUE) or string with separator (e.g., " $cor[1,2]$: A vs. B"), Default: FALSE
	further arguments passed to or from other methods

4 bfw

Examples

```
par <- "cor[1,2]"
job.names <- c("A","B")
AddNames(par, job.names, keep.par = TRUE)
# [1] "cor[1,2]: A vs. B"
AddNames(par, job.names, keep.par = FALSE)
# [1] "A vs. B"
AddNames(par, job.names, names.only = TRUE)
# [1] "A" "B"</pre>
```

bfw

Settings

Description

main settings for bfw

```
bfw(
  job.title = NULL,
  job.group = NULL,
  jags.model,
  jags.seed = NULL,
  jags.method = NULL,
  jags.chains = NULL,
  custom.function = NULL,
  custom.model = NULL,
  params = NULL,
  saved.steps = 10000,
  thinned.steps = 1,
  adapt.steps = NULL,
  burnin.steps = NULL,
  initial.list = list(),
  custom.name = NULL,
  project.name = "Project",
  project.dir = "Results/",
  project.data = NULL,
  time.stamp = TRUE,
  save.data = FALSE,
  data.set = "AllData",
  data.format = "csv",
  raw.data = FALSE,
  run.robust = FALSE,
  merge.MCMC = FALSE,
  run.diag = FALSE,
  sep = ",",
```

bfw 5

```
silent = FALSE,
...
)
```

Arguments

8	
job.title	title of analysis, Default: NULL
job.group	for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL
jags.model	specify which module to use
jags.seed	specify seed to replicate a analysis, Default: NULL
jags.method	specify method for JAGS (e.g., parallel or simple), Default: NULL
jags.chains custom.function	specify specify number of chains for JAGS, Default: NULL
	custom function to use (e.g., defined function, external R file or string with function), Default: NULL
custom.model	define a custom model to use (e.g., string or text file (.txt), Default: NULL
params	define parameters to observe, Default: NULL
saved.steps	define the number of iterations/steps/chains in the MCMC simulations, Default: 10000
thinned.steps	save every kth step of the original saved.steps, Default: 1
adapt.steps	the number of adaptive iterations to use at the start of each simulation, Default: NULL
burnin.steps	the number of burnin iterations, NOT including the adaptive iterations to use for the simulation, Default: NULL
initial.list	initial values for analysis, Default: list()
custom.name	custom name of project, Default: NULL
project.name	name of project, Default: 'Project'
project.dir	define where to save data, Default: 'Results/'
project.data	define data to use for analysis (e.g., csv, rda, custom data.frame or matrix, or data included in package, Default: NULL
time.stamp	logical, indicating whether or not to append unix time stamp to file name, Default: TRUE
save.data	logical, indicating whether or not to save data, Default: FALSE
data.set	define subset of data, Default: 'AllData'
data.format	define what data format is being used, Default: 'csv'
raw.data	logical, indicating whether or not to use unprocessed data, Default: FALSE
run.robust	logical, indicating whether or not robust analysis, Default: FALSE
merge.MCMC	logical, indicating whether or not to merge MCMC chains, Default: FALSE
run.diag	logical, indicating whether or not to run diagnostics, Default: FALSE
sep	symbol to separate data (e.g., comma-delimited), Default: ','
silent	logical, indicating whether or not to run analysis without output, Default: FALSE
	further arguments passed to or from other methods

6 CapWords

Details

Settings act like the main framework for bfw, connecting function, model and JAGS.

Value

data from MCMC RunMCMC

See Also

head,modifyList,capture.output

CapWords

Capitalize Words

Description

capitalize the first letter in each words in a string

Usage

```
CapWords(s, strict = FALSE)
```

Arguments

s string

strict logical, indicating whether or not string it set to title case , Default: FALSE

Value

returns capitalized string

```
CapWords("example eXAMPLE", FALSE)
# [1] "Example EXAMPLE"
CapWords("example eXAMPLE", TRUE)
# [1] "Example Example"
```

Cats 7

Cats

Dataset with Cats

Description

Shamelessly adapted from Field (2017).

Usage

Cats

Format

A data frame with 2000 rows and 4 variables:

Reward integer Food or Affection

Dance integer Yes or No

Alignment integer Good or Evil

Ratings double Cats rate their owners (average of multiple seven-point Likert-type scale (1 = Hate ... 7 = Love)

Details

Example data for BFW

ChangeNames

Change Names

Description

Change names, colnames or rownames of single items or a list of items

```
ChangeNames(
    x,
    names,
    single.items = FALSE,
    row.names = FALSE,
    param = NULL,
    where = NULL,
    environment = NULL
)
```

8 ComputeHDI

Arguments

x list, vector, matrix, dataframe or a list of such items

names names to insert

single.items logical, indicating whether or not to use names rather than colnames or row-

names, Default: FALSE

row.names logical, indicating whether or not to use rownames rather than colnames, De-

fault: FALSE

param Variable name, Default: NULL where select parents, Default: NULL

environment select reference environment, Default: NULL

Value

returns Named items # ABC <- c("1","2","3") # "1" "2" "3" # ChangeNames(ABC, names = c("A","B","C"), single.items = TRUE) # A B C # "1" "2" "3"

ComputeHDI

Compute HDI

Description

Compute highest density interval (HDI) from posterior output

Usage

```
ComputeHDI(data, credible.region)
```

Arguments

data to compute HDI from

credible.region

summarize uncertainty by defining a region of most credible values (e.g., 95

percent of the distribution), Default: 0.95

Details

values within the HDI have higher probability density than values outside the HDI, and the values inside the HDI have a total probability equal to the credible region (e.g., 95 percent).

Value

Return HDI

ContrastNames 9

Examples

```
set.seed(1)
data <-rnorm(100,0,1)
credible.region <- 0.95
ComputeHDI(data,credible.region)
# HDIlo HDIhi
# -1.99 1.60</pre>
```

ContrastNames

Contrast Names

Description

utilize the AddNames function to create contrast names

Usage

```
ContrastNames(items, job.names, col.names)
```

Arguments

items items to create names for

job.names names of all parameters in analysis, Default: NULL

col.names columns in MCMC to create names from

 ${\tt DiagMCMC}$

Diagnose MCMC

Description

MCMC convergence diagnostics

```
DiagMCMC(
  data.MCMC,
  par.name,
  job.names,
  job.group,
  credible.region = 0.95,
  monochrome = TRUE,
  plot.colors = c("#495054", "#e3e8ea")
)
```

10 DistinctColors

Arguments

data.MCMC MCMC chains to diagnose par.name parameter to analyze

job. names of all parameters in analysis, Default: NULL

job.group for some hierarchical models with several layers of parameter names (e.g., latent

and observed parameters), Default: NULL

credible.region

summarize uncertainty by defining a region of most credible values (e.g., 95

percent of the distribution), Default: 0.95

monochrome logical, indicating whether or not to use monochrome colors, else use Distinct-

Colors, Default: TRUE

plot.colors range of color to use, Default: c("#495054", "#e3e8ea")

Value

list of diagnostic plots

See Also

dev.new,colorRampPalette,recordPlot,graphics.off,dev.list,dev.offpar,layout,plot.new,matplot,abline,texttraceplot,gelman.plot,effectiveSize sd,acf,density

DistinctColors Distinct Colors

Description

create vector containing Hex color codes

Usage

```
DistinctColors(range, random = FALSE)
```

Arguments

range number of colors as sequence

random logical, indicating whether or not to provide random colors, Default: FALSE

```
DistinctColors(1:3)
# [1] "#FFFF00" "#1CE6FF" "#FF34FF"
set.seed(1)
DistinctColors(1:3, TRUE)
# [1] "#575329" "#CB7E98" "#D86A78"
```

ETA 11

ETA ETA

Description

Print estimated time for arrival (ETA)

Usage

```
ETA(start.time, i, total, results = NULL)
```

Arguments

```
start.time start time (preset variable with Sys.time())
i incremental steps towards total
total total number of steps
results message to display, Default: NULL
```

See Also

flush.console

FileName

File Name

Description

simple function to construct a file name for data

```
FileName(
   project = "Project",
   subset = NULL,
   type = NULL,
   name = NULL,
   unix = TRUE,
   ...
)
```

12 FindEnvironment

Arguments

project name of project, Default: 'Project'
subset define subset of data, Default: NULL
type type of data, Default: NULL
name save name, Default: NULL
unix logical, indicating whether or not to append unix timestamp, Default: TRUE
... further arguments passed to or from other methods

Examples

FindEnvironment

Find Environment

Description

Find the environment of a selected variable.

Usage

```
FindEnvironment(x, where = NULL)
```

Arguments

x any type of named object

where select reference environment, Default: NULL

Value

returns Found environment, Default: R_GlobalEnv.

FlattenList 13

FlattenList

Flatten List

Description

flatten a nested list into a single list

Usage

```
FlattenList(li, rm.duplicated = TRUE, unname.li = TRUE, rm.empty = TRUE)
```

Arguments

```
list to flatten

rm.duplicated logical, indicating whether or not to remove duplicated lists, Default: TRUE

unname.li logical, indicating whether or not to unname lists, Default: TRUE

rm.empty logical, indicating whether or not to remove empty lists, Default: TRUE
```

```
li <- list(LETTERS[1:3],</pre>
           list(letters[1:3],
                list(LETTERS[4:6])),
           DEF = letters[4:6],
           LETTERS[1:3],
           list() # Emtpy list
print(li)
# [[1]]
# [1] "A" "B" "C"
# [[2]]
# [[2]][[1]]
# [1] "a" "b" "c"
# [[2]][[2]]
# [[2]][[2]][[1]]
# [1] "D" "E" "F"
# $DEF
# [1] "d" "e" "f"
# [[4]]
# [1] "A" "B" "C"
# [[5]]
# list()
```

14 GetRange

```
FlattenList(li)
# [[1]]
# [1] "A" "B" "C"
#
# [[2]]
# [1] "a" "b" "c"
#
# [[3]]
# [1] "D" "E" "F"
#
# [[4]]
# [1] "d" "e" "f"
```

GammaDist

Gamma Distribution

Description

compute gamma distribution (shape and rate) from mode and standard deviation

Usage

```
GammaDist(mode, sd)
```

Arguments

mode mode from data sd standard deviation from data

Examples

```
GammaDist(1,0.5)
# $shape
# [1] 5.828427
# $rate
# [1] 4.828427
```

GetRange

Get Range

Description

simple function to extract columns from data frame

```
GetRange(var, range = 1:8, df)
```

Interleave 15

Arguments

```
var variable of interest (e.g., V)
range range of variables with same stem name (e.g., V1, V2, ..., V8), Default: 1:8
df data to extract from
```

Examples

```
data <- as.data.frame(matrix(1:80,ncol=8))</pre>
GetRange("V", c(1,4), data)
    V1 V4
# 1
     1 31
# 2
      2 32
# 3
      3 33
      4 34
# 5
      5 35
# 6
      6 36
      7 37
# 8
     8 38
# 9 9 39
# 10 10 40
```

Interleave Interleave

Description

mix vectors by alternating between them

Usage

```
Interleave(a, b)
```

Arguments

a first vectorb second vector

Value

mixed vector

```
a <- 1:3
b <- LETTERS[1:3]
Interleave(a,b)
# [1] "1" "A" "2" "B" "3" "C"</pre>
```

16 InverseHDI

InverseHDI

Compute Inverse HDI

Description

Compute inverse cumulative density function of the distribution

Usage

```
InverseHDI(
  beta,
  shape1,
  shape2,
  credible.region = 0.95,
  tolerance = 0.00000001
)
```

Arguments

beta density, distribution function, quantile function and random generation for the

Beta distribution with parameters shape1 and shape2

shape1 non-negative parameter of the Beta distribution. shape2 non-negative parameter of the Beta distribution.

 ${\tt credible.region}$

summarize uncertainty by defining a region of most credible values (e.g., 95

percent of the distribution), Default: 0.95

tolerance the desired accuracy, Default: 1e-8

Details

values within the HDI have higher probability density than values outside the HDI, and the values inside the HDI have a total probability equal to the credible region (e.g., 95 percent).

Value

Return HDI

See Also

Beta,optimize

```
InverseHDI( qbeta , 554 , 149 )
# HDIlo HDIhi
# 0.758 0.818
```

Layout 17

Layout

Layout

Description

collection of layout sizes

Usage

```
Layout(x = "a4", layout.inverse = FALSE)
```

Arguments

```
x type of layout, Default: 'a4'
layout.inverse logical, indicating whether or not to inverse layout (e.g., landscape) , Default: FALSE
```

Value

width and height of select medium

Examples

```
Layout()
# [1] 8.3 11.7
```

MatrixCombn

Matrix Combinations

Description

Create matrices from combinations of columns

```
MatrixCombn(
  matrix,
  first.stem,
  last.stem = NULL,
  q.levels,
  rm.last = TRUE,
  row.means = TRUE
)
```

18 MergeMCMC

Arguments

matrix	matrix to combine
first.stem	first name of columns to use (e.g., "m" for mean)
last.stem	optional last name of columns to use (e.g., "p" for proportions) , Default: NONE
q.levels	number of levels per column
rm.last	logical, indicating whether or not to remove last combination (i.e., $m1m2m3m4)$, Default: TRUE
row.means	logical, indicating whether or not to compute row means from combined columns, else use row sums, Default: TRUE

MergeMCMC Merge MCMC

Description

Merge two or more MCMC simulations

Usage

```
MergeMCMC(pat, project.dir = "Results/", data.sets)
```

Arguments

pat pattern to select MCMC chain from

project.dir define where to save data, Default: 'Results/'

data.sets data sets to combine

Value

Merged MCMC chains

See Also

head combine.mcmc

MultiGrep 19

MultiGrep MultiGrep

Description

Use multiple patterns from vector to find element in another vector, with option to remove certain patterns

Usage

```
MultiGrep(find, from, remove = NULL, value = TRUE)
```

Arguments

find vector to find

from vector to find from

remove variables to remove, Default: NULL

value logical, if TRUE returns value, Default: TRUE

Normalize Normalize

Description

simple function to normalize data

Usage

Normalize(x)

Arguments

x numeric vector to normalize

```
Normalize(1:10)
# [1] 0.0182 0.0364 0.0545 0.0727 0.0909
# 0.1091 0.1273 0.1455 0.1636 0.1818
```

20 ParseNumber

PadVector

Pad Vector

Description

Pad a numeric vector according to the highest value

Usage

```
PadVector(v)
```

Arguments

V

numeric vector to pad

Examples

```
PadVector(1:10)
# [1] "01" "02" "03" "04" "05" "06" "07" "08" "09" "10"
```

ParseNumber

Parse Numbers

Description

simple function to extract numbers from string/vector

Usage

```
ParseNumber(x, digits = FALSE)
```

Arguments

string or vector

digits

logical, indicating whether or not to extract decimals, Default: FALSE

See Also

```
na.omit
```

```
ParseNumber("String1WithNumbers2")
# [1] 1 2
```

ParsePlot 21

ParsePlot

Parse Plot

Description

Display and/or save plots

Usage

```
ParsePlot(
 plot.data,
 project.dir = "Results/",
  project.name = FileName(name = "Print"),
  graphic.type = "pdf",
 plot.size = "15,10",
  scaling = 100,
  plot.aspect = NULL,
  save.data = FALSE,
  vector.graphic = FALSE,
  point.size = 12,
  font.type = "serif",
  one.file = TRUE,
 ppi = 300,
 units = "in",
  layout = "a4",
  layout.inverse = FALSE,
  return.files = FALSE,
)
```

Arguments

plot.data	a list of plots
project.dir	define where to save data, Default: 'Results/'
project.name	define name of project, Default: 'FileName(name="Print")'
graphic.type	type of graphics to use (e.g., pdf, png, ps), Default: 'pdf'
plot.size	size of plot, Default: '15,10'
scaling	scale size of plot, Default: 100
plot.aspect	aspect of plot, Default: NULL
save.data	logical, indicating whether or not to save data, Default: FALSE
vector.graphic	logical, indicating whether or not visualizations should be vector or raster graphics, Default: \ensuremath{FALSE}
point.size	point size used for visualizations, Default: 12
font.type	font type used for visualizations, Default: 'serif'

22 PlotCirclize

one.file logical, indicating whether or not visualizations should be placed in one or several files, Default: TRUE

ppi define pixel per inch used for visualizations, Default: 300

units define unit of length used for visualizations, Default: 'in'

layout define a layout size for visualizations, Default: 'a4'

layout.inverse logical, indicating whether or not to inverse layout (e.g., landscape), Default: FALSE

return.files logical, indicating whether or not to return saved file names

... further arguments passed to or from other methods

See Also

dev, png, ps.options, recordPlot head readPNG par, plot, rasterImage read_pptx, add_slide,
ph_with dml

Examples

```
# Create three plots
plot.data <- lapply(1:3, function (i) {
    # Open new device
    grDevices::dev.new()
    # Print plot
    plot(1:i)
    # Record plot
    p <- grDevices::recordPlot()
    # Turn off graphics device drive
    grDevices::dev.off()
    return (p)
} )

# Print plots
ParsePlot(plot.data)</pre>
```

PlotCirclize

Circlize Plot

Description

Create a circlize plot

```
PlotCirclize(
  data,
  category.spacing = 1.2,
  category.inset = c(-0.4, 0),
  monochrome = TRUE,
```

PlotData 23

```
plot.colors = c("#CCCCCC", "#DEDEDE"),
font.type = "serif"
)
```

Arguments

font type used for visualizations, Default: 'serif'

See Also

font.type

dev, recordPlot legend circos.par, chordDiagram, circos.trackPlotRegion, circos.clear

PlotData Plot Data

Description

Plot data as violin plot visualizing density, box plots to display HDI, whiskers to display standard deviation

Usage

```
PlotData(data, data.type = "Mean", ...)
```

Arguments

data to plot data from
data.type define what kind of data is being used, Default: 'Mean'
... further arguments passed to or from other methods

24 PlotMean

PlotMean Plot Mean

Description

Create a (repeated) mean plot

Usage

```
PlotMean(
   data,
   monochrome = TRUE,
   plot.colors = c("#495054", "#e3e8ea"),
   font.type = "serif",
   run.repeated = FALSE,
   run.split = FALSE,
   y.split = FALSE,
   ribbon.plot = TRUE,
   y.text = "Score",
   x.text = NULL,
   remove.x = FALSE
)
```

Arguments

data	MCMC data to plot
monochrome	logical, indicating whether or not to use monochrome colors, else use Distinct-Colors, Default: TRUE
plot.colors	range of color to use, Default: c("#495054", "#e3e8ea")
font.type	font type used for visualizations, Default: 'serif'
run.repeated	logical, indicating whether or not to use repeated measures plot, Default: FALSE
run.split	logical, indicating whether or not to use split violin plot and compare distribution between groups, Default: FALSE
y.split	logical, indicating whether or not to split within (TRUE) or between groups, Default: FALSE
ribbon.plot	logical, indicating whether or not to use ribbon plot for HDI, Default: TRUE
y.text	label on y axis, Default: 'Score'
x.text	label on x axis, Default: NULL
remove.x	logical, indicating whether or not to show x.axis information, Default: FALSE

See Also

ggproto, ggplot2-ggproto, aes, margin, geom_boxplot, geom_crossbar, geom_path, geom_ribbon,
geom_violin, ggplot, scale_manual, scale_x_discrete, theme, layer, labs arrange, rbind.fill
zero_range grid.grob, grobName, unit approxfun colorRamp

PlotNominal 25

PlotNominal

Plot Nominal

Description

Create a nominal plot

Usage

```
PlotNominal(
  data,
 monochrome = TRUE,
 plot.colors = c("#CCCCCC", "#DEDEDE"),
  font.type = "serif",
  bar.dodge = 0.6,
  bar.alpha = 0.7,
 bar.width = 0.4,
 bar.extras.dodge = 0,
 bar.border = "black",
 bar.label = FALSE,
 bar.error = TRUE,
  use.cutoff = FALSE,
 diff.cutoff = 1,
 q.items = NULL
)
```

MCMC data to plot

Arguments

data

monochrome	logical, indicating whether or not to use monochrome colors, else use Distinct-Colors, Default: TRUE	
plot.colors	range of color to use, Default: c("#CCCCCC", "#DEDEDE")	
font.type	font type used for visualizations, Default: 'serif'	
bar.dodge	distance between within bar plots, Default: 0.6	
bar.alpha	transparency for bar plot, Default: 0.7	
bar.width	width of bar plot, Default: 0.4	
bar.extras.dodge		
	dodge of error bar and label, Default: 0	
bar.border	color of the bar border, Default: 'black'	
bar.label	logical, indicating whether or not to show bar labels, Default: TRUE	
bar.error	logical, indicating whether or not to show error bars, Default: TRUE	
use.cutoff	logical, indicating whether or not to use a cutoff for keeping plots, Default: FALSE	
diff.cutoff	if using a cutoff, determine the percentage that expected and observed values should differ, Default: 1	
q.items	which variables should be used in the plot. Defaults to all , Default: NULL	

26 PlotParam

See Also

aes,margin,geom_crossbar,ggplot,scale_manual,theme

PlotParam

Plot Param

Description

Create a density plot with parameter values

Usage

```
PlotParam(
  data,
  param,
 ROPE = FALSE,
 monochrome = TRUE,
  plot.colors = c("#495054", "#e3e8ea"),
  font.type = "serif",
  font.size = 4.5,
  rope.line = -0.2,
  rope.tick = -0.1,
  rope.label = -0.35,
  line.size = 0.5,
  dens.zero.col = "black",
  dens.mean.col = "white",
  dens.median.col = "white",
  dens.mode.col = "black",
  dens.rope.col = "black",
  scale = FALSE,
  y.limits = NULL,
  y.breaks = NULL,
  x.limits = NULL,
  x.breaks = NULL,
  plot.title = NULL
```

Arguments

```
data MCMC data to plot

param parameter of interest

ROPE plot ROPE values, Default: FALSE

monochrome logical, indicating whether or not to use monochrome colors, else use Distinct-
Colors, Default: TRUE

plot.colors range of color to use, Default: c("#495054", "#e3e8ea")
```

ReadFile 27

```
font.type
                  font type used for visualizations, Default: 'serif'
font.size
                  font size, Default: 4.5
rope.line
                  size of ROPE lien, Default: -0.2
                  distance to ROPE tick, Default: -0.1
rope.tick
                  distance to ROPE label, Default: -0.35
rope.label
line.size
                  overall line size, Default: 0.5
dens.zero.col
                  colour of line indicating zero, Default: 'black'
dens.mean.col
                  colour of line indicating mean value, Default: 'white'
dens.median.col
                  colour of line indicating median value, Default: 'white'
                  colour of line indicating mode value, Default: 'black'
dens.mode.col
                  colour of line indicating ROPE value, Default: 'black'
dens.rope.col
                  scale x and y axis, Default: FALSE
scale
y.limits
                  vector of y limits, Default: NULL
                  vector of y breaks, Default: NULL
y.breaks
x.limits
                  = vector of x limits, Default: NULL
x.breaks
                  = vector of x breaks, Default: NULL
plot.title
                  = title of plot, Default: NULL
```

Value

Density plot of parameter values

See Also

mutate,group_by,join,select,slice,filter approxfun aes,margin,geom_density,geom_polygon,geom_segment,geom_

ReadFile Read File

Description

opens connection to a file

```
ReadFile(
  file = NULL,
  path = "models/",
  package = "bfw",
  type = "string",
  sep = ",",
  data.format = "txt",
  custom = FALSE
)
```

28 RemoveEmpty

Arguments

```
path path to file, Default: NULL

path path to file, Default: 'models/'

package choose package to open from, Default: 'bfw'

type Type of file (i.e., text or data), Default: 'string'

sep symbol to separate data (e.g., comma-delimited), Default: ','

data.format define what data format is being used, Default: 'csv'

custom logical, indicating whether or not to use custom file, , Default: FALSE
```

See Also

```
read.csv
```

Examples

```
# Print JAGS model for bernoulli trials
cat(ReadFile("stats_bernoulli"))
# model {
# for (i in 1:n){
# x[i] ~ dbern(theta)
# }
# theta ~ dunif(0,1)
# }
```

RemoveEmpty

Remove Empty

Description

Remove empty elements in vector

Usage

```
RemoveEmpty(x)
```

Arguments

vector to eliminate NA and blanks

```
RemoveEmpty( c("",NA,"","Remains") )
# [1] "Remains"
```

RemoveGarbage 29

 ${\tt RemoveGarbage}$

Remove Garbage

Description

Remove variable(s) and remove garbage from memory

Usage

```
RemoveGarbage(v)
```

Arguments

ν

variables to remove

RemoveSpaces

Remove Spaces

Description

simple function to remove whitespace

Usage

```
RemoveSpaces(x)
```

Arguments

Χ

string

```
RemoveSpaces(" No More S p a c e s")
# [1] "NoMoreSpaces"
```

30 RunMCMC

RunContrasts	Run Contrasts

Description

Compute contrasts from mean and standard deviation (Cohen's d) or frequencies (odds ratio)

Usage

```
RunContrasts(contrast.type, q.levels, use.contrast, contrasts, data, job.names)
```

Arguments

contrast.type type of contrast: "m" indicate means and standard deviations, "o" indicate frequency

q.levels Number of levels of each variable/column

use.contrast choose from "between", "within" and "mixed". Between compare groups at

different conditions. Within compare a group at different conditions. Mixed

compute all comparisons

contrasts specified contrasts columns data data to compute contrasts from

job.names names of all parameters in analysis, Default: NULL

See Also

combn

Description

Conduct MCMC simulations using JAGS

```
RunMCMC(
    jags.model,
    params = NULL,
    name.list,
    data.list,
    initial.list = list(),
    run.contrasts = FALSE,
    use.contrast = "between",
```

RunMCMC 31

```
contrasts = NULL,
  custom.contrast = NULL,
  run.ppp = FALSE,
 k.ppp = 10,
 n.data,
 credible.region = 0.95,
  save.data = FALSE,
 ROPE = NULL,
 merge.MCMC = FALSE,
  run.diag = FALSE,
 param.diag = NULL,
 sep = ",",
 monochrome = TRUE,
 plot.colors = c("#495054", "#e3e8ea"),
 graphic.type = "pdf",
 plot.size = "15,10",
  scaling = 100,
 plot.aspect = NULL,
 vector.graphic = FALSE,
  point.size = 12,
 font.type = "serif",
 one.file = TRUE,
 ppi = 300,
 units = "in",
 layout = "a4",
 layout.inverse = FALSE,
)
```

Arguments

jags.model	specify which module to use	
params	define parameters to observe, Default: NULL	
name.list	list of names	
data.list	list of data	
initial.list	initial values for analysis, Default: list()	
run.contrasts	logical, indicating whether or not to run contrasts, Default: FALSE	
use.contrast	choose from "between", "within" and "mixed". Between compare groups at different conditions. Within compare a group at different conditions. Mixed compute all comparisons, Default: "between",	
contrasts	define contrasts to use for analysis (defaults to all), Default: NULL	
custom.contrast		
	define contrasts for custom models , Default: NULL	
run.ppp	logical, indicating whether or not to conduct ppp analysis, Default: FALSE	
k.ppp	run ppp for every kth length of MCMC chains, Default: 10	
n.data	sample size for each parameter	

32 RunMCMC

credible.region

summarize uncertainty by defining a region of most credible values (e.g., 95

percent of the distribution), Default: 0.95

save.data logical, indicating whether or not to save data, Default: FALSE

ROPE define range for region of practical equivalence (e.g., c(-0.05, 0.05), Default:

NULL

merge . MCMC logical, indicating whether or not to merge MCMC chains, Default: FALSE

run.diag logical, indicating whether or not to run diagnostics, Default: FALSE

param.diag define parameters to use for diagnostics, default equals all parameters, Default:

NULL

sep symbol to separate data (e.g., comma-delimited), Default: ','

monochrome logical, indicating whether or not to use monochrome colors, else use Distinct-

Colors, Default: TRUE

plot.colors range of color to use, Default: c("#495054", "#e3e8ea") graphic.type type of graphics to use (e.g., pdf, png, ps), Default: 'pdf'

plot.size size of plot, Default: '15,10' scaling scale size of plot, Default: 100 plot.aspect aspect of plot, Default: NULL

vector.graphic logical, indicating whether or not visualizations should be vector or raster graph-

ics, Default: FALSE

point.size point size used for visualizations, Default: 12 font.type font type used for visualizations, Default: 'serif'

one.file logical, indicating whether or not visualizations should be placed in one or sev-

eral files, Default: TRUE

ppi define pixel per inch used for visualizations, Default: 300 units define unit of length used for visualizations, Default: 'in' layout define a layout size for visualizations, Default: 'a4'

layout.inverse logical, indicating whether or not to inverse layout (e.g., landscape), Default:

FALSE

... further arguments passed to or from other methods

Value

list containing MCMC chains , MCMC chains as matrix , summary of MCMC, list of name used, list of data, the jags model, running time of analysis and names of saved files $\frac{1}{2}$

See Also

runjags.options,run.jags detectCores as.mcmc.list,varnames rbind.fill cor,cov,sd mvrnorm write.table

SingleString 33

SingleString

Single String

Description

determine whether input is a single string

Usage

```
SingleString(x)
```

Arguments

Х

string

Value

true or false

Examples

```
A <- "This is a single string"
SingleString(A)
# [1] TRUE
is.character(A)
# [1] TRUE
B <- c("This is a vector" , "containing two strings")
SingleString(B)
# [1] FALSE
is.character(B)
# [1] TRUE</pre>
```

 ${\tt StatsBernoulli}$

Bernoulli Trials

Description

Conduct bernoulli trials

```
StatsBernoulli(
  x = NULL,
  x.names = NULL,
  DF,
  params = NULL,
  initial.list = list(),
  ...
)
```

34 StatsBernoulli

Arguments

```
x predictor variable(s), Default: NULL
x.names optional names for predictor variable(s), Default: NULL
DF data for analysis
params define parameters to observe, Default: NULL
initial.list initial values for analysis, Default: list()
... further arguments passed to or from other methods
```

See Also

complete.cases

```
## Create coin toss data: heads = 50 and tails = 50
#fair.coin<- as.matrix(c(rep("Heads",50),rep("Tails",50)))</pre>
#colnames(fair.coin) <- "X"</pre>
#fair.coin <- bfw(project.data = fair.coin,</pre>
                   x = "X"
                   saved.steps = 50000.
                   jags.model = "bernoulli",
                   jags.seed = 100,
#
#
                   ROPE = c(0.4, 0.6),
                   silent = TRUE)
#fair.coin.freq <- binom.test( 50000 * 0.5, 50000)
## Create coin toss data: heads = 20 and tails = 80
#biased.coin <- as.matrix(c(rep("Heads",20),rep("Tails",80)))</pre>
#colnames(biased.coin) <- "X"</pre>
#biased.coin <- bfw(project.data = biased.coin,</pre>
                     x = "X"
                     saved.steps = 50000,
                     jags.model = "bernoulli",
#
                     jags.seed = 101,
#
                     initial.list = list(theta = 0.7),
#
                    ROPE = c(0.4, 0.6),
                     silent = TRUE)
#biased.coin.freq <- binom.test( 50000 * 0.8, 50000)</pre>
## Print Bayesian and frequentist results of fair coin
#fair.coin$summary.MCMC[,c(3:6,9:12)]
                                           ROPElo
                                                      ROPEhi
## Mode
              ESS
                       HDIlo
                                 HDIhi
                                                                ROPEin
## 0.505 50480.000
                        0.405
                                  0.597
                                             2.070
                                                        2.044
                                                                 95.886
                                                                         100.00
#sprintf("Frequentist: %.3f [%.3f , %.3f], p = %.3f" ,
         fair.coin.freq$estimate ,
#
         fair.coin.freq$conf.int[1] ,
#
         fair.coin.freq$conf.int[2] ,
         fair.coin.freq$p.value)
```

StatsCovariate 35

```
## [1] "Frequentist: 0.500 [0.496 , 0.504], p = 1.000"
## Print Bayesian and frequentist results of biased coin
#biased.coin$summary.MCMC[,c(3:6,9:12)]
## Mode
             ESS
                      HDIlo
                                HDIhi
                                         ROPE1o
                                                   ROPEhi
                                                             ROPEin
## 0.803 50000.000
                       0.715
                                 0.870
                                           0.000
                                                    99.996
                                                               0.004
                                                                       100.000
#sprintf("Frequentist: %.3f [%.3f , %.3f], p = %.3f" ,
        biased.coin.freq$estimate ,
        biased.coin.freq$conf.int[1] ,
        biased.coin.freq$conf.int[2] ,
        biased.coin.freq$p.value)
## [1] "Frequentist: 0.800 [0.796 , 0.803], p = 0.000"
```

StatsCovariate

Covariate

Description

Covariate estimations (including correlation and Cronbach's alpha)

Usage

```
StatsCovariate(
  y = NULL,
  y.names = NULL,
  x = NULL,
  x.names = NULL,
  DF,
  params = NULL,
  job.group = NULL,
  initial.list = list(),
  jags.model,
  ...
)
```

Arguments

У	criterion variable(s), Default: NULL
y.names	optional names for criterion variable(s), Default: NULL
X	predictor variable(s), Default: NULL
x.names	optional names for predictor variable(s), Default: NULL
DF	data to analyze
params	define parameters to observe, Default: NULL

36 StatsCovariate

```
job.group for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL initial.list initial values for analysis, Default: list()

jags.model specify which module to use further arguments passed to or from other methods
```

Value

covariate, correlation and (optional) Cronbach's alpha

See Also

```
complete.cases
```

```
## Create normal distributed data with mean = 0 and standard deviation = 1
### r = 0.5
#data <- MASS::mvrnorm(n=100,</pre>
                        mu=c(0, 0),
                        Sigma=matrix(c(1, 0.5, 0.5, 1), 2),
                        empirical=TRUE)
## Add names
#colnames(data) <- c("X","Y")</pre>
## Create noise with mean = 10 / -10 and sd = 1
### r = -1.0
#noise <- MASS::mvrnorm(n=2,</pre>
                         mu=c(10, -10),
                         Sigma=matrix(c(1, -1, -1, 1), 2),
                         empirical=TRUE)
## Combine noise and data
#biased.data <- rbind(data,noise)</pre>
#
## Run analysis on normal distributed data
#mcmc <- bfw(project.data = data,</pre>
             y = "X,Y",
             saved.steps = 50000,
             jags.model = "covariate",
             jags.seed = 100,
             silent = TRUE)
## Run robust analysis on normal distributed data
#mcmc.robust <- bfw(project.data = data,</pre>
                     y = "X, Y",
                     saved.steps = 50000,
                     jags.model = "covariate",
                     run.robust = TRUE,
                     jags.seed = 101,
                     silent = TRUE)
## Run analysis on data with outliers
#biased.mcmc <- bfw(project.data = biased.data,</pre>
```

StatsFit 37

```
y = "X, Y",
                    saved.steps = 50000,
                    jags.model = "covariate",
                    jags.seed = 102,
                    silent = TRUE)
## Run robust analysis on data with outliers
#biased.mcmc.robust <- bfw(project.data = biased.data,</pre>
                           y = "X, Y",
                           saved.steps = 50000,
                           jags.model = "covariate",
                           run.robust = TRUE,
                           jags.seed = 103,
                           silent = TRUE)
## Print frequentist results
#stats::cor(data)[2]
## [1] 0.5
#stats::cor(noise)[2]
## [1] -1
#stats::cor(biased.data)[2]
## [1] -0.498
## Print Bayesian results
#mcmc$summary.MCMC
                     Mean Median Mode ESS HDIlo HDIhi
## cor[1,1]: X vs. X 1.000 1.000 0.999
                                         0 1.000 1.000 100
## cor[2,1]: Y vs. X 0.488  0.491  0.496  19411  0.337  0.633  100
## cor[1,2]: X vs. Y 0.488  0.491  0.496  19411  0.337  0.633  100
## cor[2,2]: Y vs. Y 1.000 1.000 0.999
                                            0 1.000 1.000 100
#mcmc.robust$summary.MCMC
                                         ESS HDIlo HDIhi
                     Mean Median Mode
## cor[1,1]: X vs. X 1.00 1.000 0.999
                                           0 1.000 1.000 100
## cor[2,1]: Y vs. X 0.47 0.474 0.491 18626 0.311 0.626 100
## cor[1,2]: X vs. Y 0.47 0.474 0.491 18626 0.311 0.626 100
## cor[2,2]: Y vs. Y 1.00 1.000 0.999
                                           0 1.000 1.000 100
#biased.mcmc$summary.MCMC
                      Mean Median
                                    Mode
                                           ESS HDIlo HDIhi
## cor[1,1]: X vs. X 1.000 1.000 0.999
                                              0 1.000 1.000 102
## cor[2,1]: Y vs. X -0.486 -0.489 -0.505 19340 -0.627 -0.335 102
## cor[1,2]: X vs. Y -0.486 -0.489 -0.505 19340 -0.627 -0.335 102
## cor[2,2]: Y vs. Y 1.000 1.000 0.999
                                              0 1.000 1.000 102
#biased.mcmc.robust$summary.MCMC
                                         ESS HDIlo HDIhi
                     Mean Median Mode
## cor[1,1]: X vs. X 1.000 1.000 0.999
                                            0 1.000 1.000 102
## cor[2,1]: Y vs. X 0.338  0.343  0.356  23450  0.125  0.538  102
## cor[1,2]: X vs. Y 0.338  0.343  0.356  23450  0.125  0.538  102
```

StatsFit Fit Data

Description

Apply latent or observed models to fit data (e.g., SEM, CFA, mediation)

38 StatsFit

Usage

```
StatsFit(
  latent = NULL,
  latent.names = NULL,
  observed = NULL,
  observed.names = NULL,
  additional = NULL,
  additional.names = NULL,
 DF,
  params = NULL,
  job.group = NULL,
  initial.list = list(),
 model.name,
  jags.model,
  custom.model = NULL,
  run.ppp = FALSE,
  run.robust = FALSE,
)
```

Arguments

latent latenr variables, Default: NULL

latent.names optional names for for latent variables, Default: NULL

observed observed variable(s), Default: NULL

observed.names optional names for for observed variable(s), Default: NULL

additional supplemental parameters for fitted data (e.g., indirect pathways and total effect),

Default: NULL

additional.names

optional names for supplemental parameters, Default: NULL

DF data to analyze

params define parameters to observe, Default: NULL

job. group for some hierarchical models with several layers of parameter names (e.g., latent

and observed parameters), Default: NULL

initial.list initial values for analysis, Default: list()

model.name name of model used

jags.model specify which module to use

custom.model define a custom model to use (e.g., string or text file (.txt), Default: NULL run.ppp logical, indicating whether or not to conduct ppp analysis, Default: FALSE

run. robust logical, indicating whether or not robust analysis, Default: FALSE

. . . further arguments passed to or from other methods

See Also

```
complete.cases
```

StatsKappa 39

StatsKappa

Cohen's Kappa

Description

Bayesian alternative to Cohen's kappa

Usage

```
StatsKappa(
  x = NULL,
  x.names = NULL,
  DF,
  params = NULL,
  initial.list = list(),
  ...
)
```

Arguments

```
x predictor variable(s), Default: NULL
x.names optional names for predictor variable(s), Default: NULL
DF data to analyze
params define parameters to observe, Default: NULL
initial.list initial values for analysis, Default: list()
... further arguments passed to or from other methods
```

See Also

```
complete.cases
```

40 StatsMean

```
#library(psych)

#psych::cohen.kappa(data)$confid[1,]

## lower estimate upper

## 0.6137906 0.7593583 0.9049260

##' mcmc$summary.MCMC

## Mean Median Mode ESS HDIlo HDIhi n

## Kappa[1]: 0.739176 0.7472905 0.7634503 50657 0.578132 0.886647 100
```

StatsMean

Mean Data

Description

Compute means and standard deviations.

Usage

```
StatsMean(
  y = NULL,
  y.names = NULL,
  x = NULL,
  x.names = NULL,
  DF,
  params = NULL,
  initial.list = list(),
  ...
)
```

Arguments

У	criterion variable(s), Default: NULL
y.names	optional names for criterion variable(s), Default: NULL
x	categorical variable(s), Default: NULL
x.names	optional names for categorical variable(s), Default: NULL
DF	User defined data frame, Default: NULL
params	define parameters to observe, Default: NULL
initial.list	Initial values for simulations, Default: list()
	further arguments passed to or from other methods

Value

mean and standard deviation

StatsMetric 41

StatsMetric Predict Metric

Description

Bayesian alternative to ANOVA

Usage

```
StatsMetric(
  y = NULL,
  y.names = NULL,
  x = NULL,
  x.names = NULL,
  DF,
  params = NULL,
  job.group = NULL,
  initial.list = list(),
  model.name,
  jags.model,
  custom.model = NULL,
  run.robust = FALSE,
  ...
)
```

Arguments

у	criterion variable(s), Default: NULL
y.names	optional names for criterion variable(s), Default: NULL
X	categorical variable(s), Default: NULL
x.names	optional names for categorical variable(s), Default: NULL
DF	data to analyze
params	define parameters to observe, Default: NULL
job.group	for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL
initial.list	initial values for analysis, Default: list()
model.name	name of model used
jags.model	specify which module to use
custom.model	define a custom model to use (e.g., string or text file (.txt), Default: NULL
run.robust	logical, indicating whether or not robust analysis, Default: FALSE
• • •	further arguments passed to or from other methods

See Also

```
complete.cases, sd, aggregate, median head
```

42 StatsNominal

StatsNominal

Predict Nominal

Description

Bayesian alternative to chi-square test

Usage

```
StatsNominal(
  x = NULL,
  x.names = NULL,
  DF,
  params = NULL,
  job.group = NULL,
  initial.list = list(),
  model.name,
  jags.model,
  custom.model = NULL,
  ...
)
```

Arguments

```
categorical variable(s), Default: NULL
x.names
                  optional names for categorical variable(s), Default: NULL
DF
                  data to analyze
                  define parameters to observe, Default: NULL
params
job.group
                  for some hierarchical models with several layers of parameter names (e.g., latent
                  and observed parameters), Default: NULL
initial.list
                  initial values for analysis, Default: list()
                  name of model used
model.name
jags.model
                  specify which module to use
custom.model
                  define a custom model to use (e.g., string or text file (.txt), Default: NULL
                  further arguments passed to or from other methods
. . .
```

StatsRegression 43

```
## Print only odds-ratio and effect sizes
    mcmc$summary.MCMC[ grep("Odds ratio|Effect",
#
                       rownames(mcmc$summary.MCMC)) , c(3:7) ]
##
                                                                          HDThi
                                                   Mode ESS
                                                                HDI1o
## Effect size: Affection/Food vs. Evil/Good
                                                0.12844 45222 0.00115
                                                                        0.25510 2000
## Effect size: Affection/Food vs. No/Yes
                                                1.05346 44304 0.90825
                                                                        1.18519 2000
## Effect size: Affection/Food vs. No/Yes @ Evil 2.58578 30734 2.35471
                                                                        2.85450 1299
## Effect size: Affection/Food vs. No/Yes @ Good     -0.51934 35316 -0.73443     -0.30726 701
## Effect size: Food/Affection vs. Evil/Good
                                               -0.12844 45222 -0.25510 -0.00115 2000
## Effect size: Food/Affection vs. No/Yes
                                               -1.05346 44304 -1.18519 -0.90825 2000
## Effect size: Food/Affection vs. No/Yes @ Evil -2.58578 30734 -2.85450
                                                                       -2.35471 1299
## Effect size: Food/Affection vs. No/Yes @ Good    0.51934 35316    0.30726
                                                                        0.73443 701
## Effect size: No/Yes vs. Evil/Good
                                                1.43361 43603 1.30715
                                                                        1.55020 2000
## Effect size: Yes/No vs. Evil/Good
                                               -1.43361 43603 -1.55020
                                                                       -1.30715 2000
## Odds ratio: Affection/Food vs. Evil/Good
                                               1.25432 45225 0.99311
                                                                        1.57765 2000
## Odds ratio: Affection/Food vs. No/Yes
                                                6.49442 44215 5.10392
                                                                        8.46668 2000
## Odds ratio: Affection/Food vs. No/Yes @ Evil 104.20109 30523 66.55346 169.12331 1299
0.55982
## Odds ratio: Food/Affection vs. Evil/Good
                                                0.77604 45245 0.62328
                                                                        0.98904 2000
## Odds ratio: Food/Affection vs. No/Yes
                                                0.14586 44452 0.11426
                                                                        0.18982 2000
## Odds ratio: Food/Affection vs. No/Yes @ Evil
                                                0.00848 31117 0.00527
                                                                        0.01336 1299
## Odds ratio: Food/Affection vs. No/Yes @ Good
                                                2.44193 35397 1.65204
                                                                        3.63743 701
## Odds ratio: No/Yes vs. Evil/Good
                                               13.12995 43500 10.58859 16.49207 2000
## Odds ratio: Yes/No vs. Evil/Good
                                                0.07393 43739 0.05909
                                                                        0.09221 2000
```

The results indicate that evil cats are 13.13 times more likely than good cats to decline dancing ## Furthermore, when offered affection, evil cats are 104.20 times more likely to decline dancing, ## relative to evil cats that are offered food.

StatsRegression

Regression

Description

Simple, multiple and hierarchical regression

Usage

```
StatsRegression(
  y = NULL,
  y.names = NULL,
  x = NULL,
  x.names = NULL,
  x.steps = NULL,
  x.blocks = NULL,
  DF,
  params = NULL,
  job.group = NULL,
  initial.list = list(),
```

StatsSoftmax

```
)
```

Arguments

У	criterion variable(s), Default: NULL
y.names	optional names for criterion variable(s), Default: NULL
X	predictor variable(s), Default: NULL
x.names	optional names for predictor variable(s), Default: NULL
x.steps	define number of steps in hierarchical regression, Default: NULL
x.blocks	define which predictors are included in each step (e.g., for three steps "1,2,3") , Default: NULL $$
DF	data to analyze
params	define parameters to observe, Default: NULL
job.group	for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL
initial.list	initial values for analysis, Default: list()
	further arguments passed to or from other methods

See Also

```
complete.cases
```

StatsSoftmax

Softmax Regression

Description

Perform softmax regression (i.e., multinomial logistic regression)

Usage

```
StatsSoftmax(
  y = NULL,
  y.names = NULL,
  x = NULL,
  x.names = NULL,
  DF,
  params = NULL,
  job.group = NULL,
  initial.list = NULL,
  run.robust = FALSE,
  ...
)
```

StatsSoftmax 45

Arguments

```
criterion variable(s), Default: NULL
У
y.names
                   optional names for criterion variable(s), Default: NULL
                   predictor variable(s), Default: NULL
x.names
                   optional names for predictor variable(s), Default: NULL
DF
                   data to analyze
                   define parameters to observe, Default: NULL
params
                   for some hierarchical models with several layers of parameter names (e.g., latent
job.group
                   and observed parameters), Default: NULL
initial.list
                  initial values for analysis, Default: list()
run.robust
                  logical, indicating whether or not robust analysis, Default: FALSE
                   further arguments passed to or from other methods
. . .
```

See Also

```
complete.cases
```

```
## Conduct softmax regression on Cats data
### Reward is 0 = Food and 1 = Dance
### Sample 100 datapoints from Cats data
#mcmc <- bfw(project.data = bfw::Cats,</pre>
          v = "Alignment",
          x = "Ratings, Reward",
           saved.steps = 50000,
           jags.model = "softmax",
           jags.seed = 100)
## Conduct binominal generalized linear model
#model <- glm(Alignment ~ Ratings + Reward, data=bfw::Cats, family = binomial(link="logit"))</pre>
## Print output from softmax
#mcmc$summary.MCMC
#
                                           Mode ESS HDIlo HDIhi
##
                            Mean Median
##beta[1,1]: Evil vs. Ratings    0.000    0.00 -0.000607    0    0.000    0.000    2000
##beta[1,2]: Evil vs. Reward
                           0.000 0.00 -0.000607
                                                   0 0.000 0.000 2000
##beta[2,2]: Good vs. Reward
                           ##beta0[1]: Intercept: Evil
                           0.000 0.00 -0.000607
                                                   0 0.000 0.000 2000
##beta0[2]: Intercept: Good
                          -7.690 -7.68 -7.659198 17693 -8.472 -6.918 2000
                                 0.00 -0.000607
##zbeta[1,1]: Evil vs. Ratings 0.000
                                                   0 0.000 0.000 2000
##zbeta[1,2]: Evil vs. Reward 0.000
                                 0.00 -0.000607
                                                   0.000
                                                           0.000
                                                                 2000
                                  2.47 2.464586 19614 2.280
##zbeta[2,1]: Good vs. Ratings 2.476
                                                           2.664 2000
##zbeta[2,2]: Good vs. Reward 0.501
                                  0.50 0.501960 20807 0.377
                                                           0.626 2000
##zbeta0[1]: Intercept: Evil
                           0.000
                                 ##zbeta0[2]: Intercept: Good -1.031 -1.03 -1.024178 22812 -1.185 -0.870 2000
## Print (truncated) output from GML
```

46 SumMCMC

```
## Estimate Std. Error z value Pr(>|z|)
##(Intercept) -6.39328 0.27255 -23.457 < 2e-16 ***
##Ratings 1.28480 0.05136 25.014 < 2e-16 ***
##RewardAffection 1.26975 0.16381 7.751 9.1e-15 ***
```

 ${\sf SumMCMC}$

Summarize MCMC

Description

The function provide a summary of each parameter of interest (mean, median, mode, effective sample size (ESS), HDI and n)

Usage

```
SumMCMC(
  par,
  par.names,
  job.names = NULL,
  job.group = NULL,
  credible.region = 0.95,
  ROPE = NULL,
  n.data,
  ...
)
```

Arguments

par	defined parameter	
par.names	parameter names	
job.names	names of all parameters in analysis, Default: NULL	
job.group	for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL	
credible.region		
	summarize uncertainty by defining a region of most credible values (e.g., 95 percent of the distribution), Default: 0.95	
ROPE	define range for region of practical equivalence (e.g., c(-0.05 , 0.05), Default: $NULL \\$	
n.data	sample size for each parameter	
	further arguments passed to or from other methods	

See Also

```
effectiveSize
```

SumToZero 47

SumToZero Sum to Zero

Description

Compute sum to zero values across all levels of a data matrix

Usage

```
SumToZero(q.levels, data, contrasts)
```

Arguments

q.levels number of levels of each variable/column

data matrix to combine from contrasts specified contrasts columns

Examples

TidyCode

Tidy Code

Description

Small function that clears up messy code

Usage

```
TidyCode(tidy.code, jags = TRUE)
```

Arguments

tidy.code Messy code that needs cleaning

jags logical, if TRUE run code as JAGS model, Default: TRUE

Value

(Somewhat) tidy code

48 TrimSplit

Examples

```
messy <- "code <- function( x ) {
print (x ) }"
cat(messy)
code \leftarrow function(x) {
print (x ) }
cat ( TidyCode(messy, jags = FALSE) )
code <- function(x) {</pre>
   print(x)
}
```

Trim

Trim

Description

remove excess whitespace from string

Usage

```
Trim(s, multi = TRUE)
```

Arguments

s string

multi

logical, indicating whether or not to remove excess whitespace between characters, Default: TRUE

Examples

```
Trim("
                  Trimmed
                               string")
# [1] "Trimmed string"
Trim("
                 Trimmed
                               string", FALSE)
# [1] "Trimmed
                   string"
```

 ${\sf TrimSplit}$

Trim Split

Description

Extends strsplit by trimming and unlisting string

VectorSub 49

Usage

```
TrimSplit(
  sep = ",",
  fixed = FALSE,
 perl = FALSE,
 useBytes = FALSE,
  rm.empty = TRUE
)
```

Arguments

Х string

symbol to separate data (e.g., comma-delimited), Default: ',' sep

logical, if TRUE match split exactly, otherwise use regular expressions. Has fixed

priority over perl, Default: FALSE

perl logical, indicating whether or not to use Perl-compatible regexps, Default: FALSE useBytes

logical, if TRUE the matching is done byte-by-byte rather than character-by-

character, Default: FALSE

logical. indicating whether or not to remove empty elements, Default: TRUE rm.empty

Details

strsplit

Examples

```
TrimSplit("Data 1, Data2, Data3")
# [1] "Data 1" "Data2" "Data3"
```

VectorSub

Pattern Matching and Replacement From Vectors

Description

extending gsub by matching pattern and replacement from two vectors

Usage

```
VectorSub(pattern, replacement, string)
```

Arguments

vector containing words to match pattern

vector containing words to replace existing words. replacement

string to replace from string

VectorSub VectorSub

Value

modified string with replaced values

```
pattern <- c("A","B","C")
replacement <- 1:3
string <- "A went to B went to C"
VectorSub(pattern,replacement,string)
# [1] "1 went to 2 went to 3"</pre>
```

Index

* datasets Cats, 7	DiagMCMC, 9 DistinctColors, 10, 10, 23-26, 32 dml, 22
abline, 10 acf, 10 add_slide, 22	effectiveSize, <i>10</i> , <i>46</i> ETA, 11
AddNames, 3 aes, 24, 26, 27 aggregate, 41 approxfun, 24, 27 arrange, 24 as.mcmc.list, 32	FileName, 11 filter, 27 FindEnvironment, 12 FlattenList, 13 flush.console, 11
Beta, <i>16</i> bfw, 4	GammaDist, 14 gelman.plot, 10 geom_boxplot, 24
capture.output, 6 CapWords, 6 Cats, 7 ChangeNames, 7 chordDiagram, 23 circos.clear, 23 circos.par, 23 circos.trackPlotRegion, 23 colorRamp, 24 colorRampPalette, 10 combine.mcmc, 18 combn, 30 complete.cases, 34, 36, 38, 39, 41, 44, 45 ComputeHDI, 8 ContrastNames, 9 cor, 32 cov, 32	geom_crossbar, 24, 26 geom_density, 27 geom_label, 27 geom_path, 24 geom_polygon, 27 geom_ribbon, 24 geom_segment, 27 geom_violin, 24 GetRange, 14 ggplot, 24, 26, 27 ggplot_build, 27 ggproto, 24 graphics.off, 10 grid.grob, 24 grobName, 24 group_by, 27 head, 6, 18, 22, 41
density, <i>10</i> detectCores, <i>32</i>	Interleave, 15
dev, 22, 23 dev.list, 10	InverseHDI, 16 join, 27
dev.new, 10 dev.off, 10	labs, 24, 27
, .	• • • • •

52 INDEX

layer, 24	runjags.options, 32
Layout, 17	RunMCMC, 6, 30
layout, 10	11411110110, 0, 30
	scale_continuous, 27
legend, 23	
	scale_manual, 24, 26
margin, <i>24</i> , <i>26</i> , <i>27</i>	scale_x_discrete, 24
matplot, 10	sd, <i>10</i> , <i>32</i> , <i>41</i>
MatrixCombn, 17	select, 27
median, 41	SingleString, 33
	slice, 27
MergeMCMC, 18	
modifyList, 6	StatsBernoulli, 33
mtext, <i>10</i>	StatsCovariate, 35
MultiGrep, 19	StatsFit, 37
mutate, 27	StatsKappa, 39
mvrnorm, 32	StatsMean, 40
11.77 TIOT III, 3.2	StatsMetric, 41
na.omit, 20	StatsNominal, 42
Normalize, 19	StatsRegression, 43
	StatsSoftmax, 44
optimize, 16	strsplit, <i>49</i>
	SumMCMC, 46
PadVector, 20	SumToZero, 47
par, 10, 22	
ParseNumber, 20	text, <i>10</i>
ParsePlot, 21	theme, 24, 26, 27
ph_with, 22	TidyCode, 47
	traceplot, 10
plot, 22	
plot.new, <i>10</i>	Trim, 48
PlotCirclize, 22	TrimSplit,48
PlotData, 23	24
PlotMean, 24	unit, <i>24</i>
PlotNominal, 25	20
PlotParam, 26	varnames, 32
png, 22	VectorSub, 49
points, 10	write.table, <i>3</i> 2
ps.options, 22	
	zero_range, 24
rasterImage, 22	
rbind.fill, <i>24</i> , <i>32</i>	
read.csv, 28	
read_pptx, 22	
ReadFile, 27	
readPNG, 22	
recordPlot, 10, 22, 23	
RemoveEmpty, 28	
RemoveGarbage, 29	
RemoveSpaces, 29	
run.jags, <u>32</u>	
RunContrasts, 30	