A. Substrings

2 seconds, 256 megabytes

For a given string s and m requests to check, if substrings [a..b] and [c..d] are equal.

Input

The first line contains string s ($1 \le |s| \le 10^5$).

The second line contains a single integer m — the number of requests $(0 \le m \le 10^5)$.

Each of the next m lines contains four integers — a, b, c, d $(1 \le a \le b \le |s|, 1 \le c \le d \le |s|)$.

Output

For each request output "Yes", if corresponding strings are equal, and "No" — otherwise.

input trololo 3 1 7 1 7 3 5 5 7 1 1 1 5 output Yes Yes No

B. Prefix Function

2 seconds, 256 megabytes

Compute prefix function for given string s.

Input

Single line contains a string *s* containing only letters $(1 \le |s| \le 10^6)$.

Output

Output values of the prefix function for string s for indices 1, 2, ..., |s|.

input	
aaaAAA	
output	
0 1 2 0 0 0	

C. Z-function

2 seconds, 256 megabytes

Compute Z-function for a given string s.

Input

Single line contains string *s* of only Latin letters $(1 \le |s| \le 10^6)$.

Output

Output values of the Z-function for string s for indices 2, 3, ..., |s|.

input	
aaaAAA	
output	
2 1 0 0 0	

input	
abacaba	

output

0 1 0 3 0 1

D. Fast substring search

2 seconds, 256 megabytes

For two strings s and t find all the occurrences of the string s in the string t.

Input

First line contains string s, second — t ($1 \le |s|$, $|t| \le 10^6$). Strings consist of lowercase english letters.

Output

On the first line output number of occurrences of string s in string t. On the second line output all indices where string s occurs in the string t in ascending order, indices begin from 1.

input	
aba abaCaba	
output	
2 1 5	

E. Period

2 seconds, 256 megabytes

For given string s find it's period, i.e. minimum string t, such that s can be represented as one or more concatenations of string t.

Input

Single line consists of string s, containing only letters $(1 \le |s| \le 10^6)$.

Output

Output length of the string t.

input	
abcabcabc	
output	
3	

F. Substrings-3

2 seconds, 256 megabytes

You are given K strings of small english letters. Find their longest common substring.

Input

First line has a single integer K ($1 \le K \le 10$).

Next K lines hold K given strings (each string is at least 1 and at most $10\,000$ characters long).

Output

Output longest common substring

G. Multiple search

3 seconds, 1024 megabytes

You are given an array of strings s_i and a string t. For each line s_i determine whether it appears in t as a substring.

Input

The first line of the input file contains an integer n — the number of elements in s ($1 \le n \le 10^6$). The next n lines contain one of s_i each. The sum of the lengths of all lines from s does not exceed 10^6 . The last line of the input file contains t ($1 \le t \le 10^6$). All strings consist of lowercase latin letters.

Output

For each line s_i print «YES» if it occurs in t and «NO» otherwise. Lines are numbered in the order they appear in the input file.

input 3 abc abcdr abcde xabcdef output YES NO YES

H. Multiple search 2

3 seconds, 1024 megabytes

You are given an array of strings s_i and a string t. For each line s_i determine how many times it occurs in t as a substring.

Input

The first line of the input file contains an integer n — the number of elements in s ($1 \le n \le 10^6$). The next n lines contain one of s_i each. The sum of the lengths of all lines from s does not exceed 10^6 . The last line of the input file contains t ($1 \le t \le 10^6$). All strings consist of lowercase latin letters.

Output

For each line of s_i print one number: how many times it occurs in t. Lines are numbered in the order they appear in the input file.

```
input

3
abc
abcdr
abcde
xabcdef

output

1
0
1
```

Statement is not available on

English language

І. Множественный поиск 3

3 секунды, 1024 мегабайта

Дан массив строк s_i и строка t. Требуется для каждой строки s_i найти самое левое и самое правое вхождение в t как подстроки.

Входные данные

Первая строка входного файла содержит целое число n — число элементов в s ($1 \le n \le 10^6$). Следующие n строк содержат по одной строке s_i . Сумма длин всех строк из s не превосходит 10^6 . Последняя строка входного файла содержит t ($1 \le t \le 10^6$). Все строки состоят из строчных латинских букв.

Выходные данные

Для каждой строки s_i выведите два числа: индексы самой левой и самой правой позиции, в которых она встречается в t. Если строка не встречается в t ни разу, выведите -1 - 1. Строки нумеруются в порядке появления во входном файле. Позиции нумеруются с 0.

J. Suffix array

2 seconds, 512 megabytes

Build a suffix array for a given string s, for each two adjacent suffixes find the length of longest common prefix.

Input

First line holds a single string s ($1 \le |s| \le 400\ 000$). String consists of small english letters.

Output

In first line output |s| distinct integers — numbers of first symbols of s suffixes in a way, that according suffixes will be lexicographically sorted in acsending order. In second line output |s| - 1 integers — lengths of longest common prefixes.

Statement is not available on English language

К. Количество подстрок

2 секунды, 512 мегабайт

Вычислите количество различных подстрок строки s.

Входные данные

Единственная строка входного файла содержит строку s ($1 \le |s| \le 400\ 000$). Строка состоит из строчных латинских букв.

Выходные данные

Выведите одно число — ответ на задачу.

входные данные	
ababb	
выходные данные	
4.4	

L. Cyclic shifts

2 seconds, 512 megabytes

k-th cyclic shift of a string S is a string made by moving k first symbols of S to its end.

Consider all cyclic shifts of string \boldsymbol{S} and sort them in ascending order.

Calculate *i*-th element of that order.

For example, for string abacabac 4 cyclic shifts exist: 0-th (abacabac), first (bacabaca), second (acabacab) and third (cabacaba). Sorted acsendingly results in array: abacabac, acabacab, bacabaca, cabacaba.

Input

First line of input has string S, at most 100~000 characters long, chars have ASCII-code from 32 to 126. Second line has a single integer k ($1 \le k \le 100~000$).

Output

Output k-th cyclic shift of string S, our <code>IMPOSSIBLE</code> if it doesn't exist.

input	
abacabac 4	
output	
cabacaba	
input	
abacabac 5	
output	
IMPOSSIBLE	

M. Longest common substring

2 seconds, 512 megabytes

Find the longest common substring of two given strings s and t.

Input

First line of the input has single string s, second — t ($1 \le |s|, |t| \le 100, 000$). Strings are made of small latin letters.

Output

Output single line — the longest common substring of strings s and t. Output lexicographily minimal one, in case of multiple possible answers.

nput
babb bacabba
ıtput
a

<u>Codeforces</u> (c) Copyright 2010-2021 Mike Mirzayanov The only programming contests Web 2.0 platform