Practice: set 2 second, 32 MB

You are given a list of N integers: $X_1, X_2, ..., X_N$. You are also give a list of M queries: $Y_1, Y_2, ..., Y_M$. For each query Y_j , you want to find the integer X_i that minimizes $|X_i - Y_j|$. If there are more than 1 solutions, answer the smaller values.

Since this is a practice for using STL's set data structure, you should implement your solution with set.

Hint: You may want to look at upper_bound and lower_bound funtions. Also, you can move the iterator returned by these functions (by incrementing it or decrementing it).

Input

The first line contain two integers N and M. (1 <= N <= 100,000; 1 <= M <= 100,000)

The next N lines contains the list of integers $X_1, X_2, ..., X_N$. More specifically, line 1 + i contains X_i , for 1 <= i <= N. Each integer is between 0 and 1,000,000,000.

Finally, the last M lines contains the list of integers $Y_1, Y_2, ..., Y_M$. More specifically, line 1 N + j contains Y_j , for $1 \le j \le M$. Each integer is between 0 and 1,000,000,000.

Output

Your program should output *M* integers, the answers for all queries.

Example

<u>Input</u>	<u>Output</u>
5 4	35
10	10
20	20
35	25
12	
25	
100	
11	
17	
25	