# **Problem statement:-**

Predictive study using the breast cancer diagnosis dataset

# **Data Collection**

## In [1]:

import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")

## In [2]:

df=pd.read\_csv(r"C:\Users\sowmika\Downloads\BreastCancerPrediction.csv")
df

### Out[2]:

|     | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_r |
|-----|----------|-----------|-------------|--------------|----------------|-----------|--------------|
| 0   | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    | 0.1          |
| 1   | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    | 0.0          |
| 2   | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    | 0.1          |
| 3   | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     | 0.1          |
| 4   | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    | 0.1          |
|     |          |           |             |              |                |           |              |
| 564 | 926424   | М         | 21.56       | 22.39        | 142.00         | 1479.0    | 0.1          |
| 565 | 926682   | М         | 20.13       | 28.25        | 131.20         | 1261.0    | 0.0          |
| 566 | 926954   | М         | 16.60       | 28.08        | 108.30         | 858.1     | 0.0          |
| 567 | 927241   | М         | 20.60       | 29.33        | 140.10         | 1265.0    | 0.1          |
| 568 | 92751    | В         | 7.76        | 24.54        | 47.92          | 181.0     | 0.0          |
|     |          |           |             |              |                |           |              |

569 rows × 33 columns

In [3]:

df.shape

Out[3]:

(569, 33)

# In [4]:

```
plt.scatter(df["radius_mean"],df["texture_mean"])
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

# Out[4]:

Text(0, 0.5, 'texture\_mean')



# In [5]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

## Out[5]:

```
▼ KMeans
KMeans()
```

#### In [6]:

```
y_pred=km.fit_predict(df[["radius_mean","texture_mean"]])
y_pred
```

#### Out[6]:

```
array([3, 4, 4, 0, 4, 3, 4, 7, 5, 5, 7, 7, 1, 5, 5, 2, 7, 7, 4, 3, 3, 6,
       3, 1, 7, 3, 7, 4, 5, 3, 1, 0, 1, 1, 7, 7, 7, 0, 5, 7, 5, 5, 1, 7,
       5, 4, 0, 0, 6, 5, 5, 3, 0, 4, 7, 0, 4, 7, 0, 6, 6, 0, 5, 6, 5, 5,
       0, 0, 0, 3, 4, 6, 1, 3, 0, 7, 6, 3, 1, 0, 5, 3, 1, 1, 6, 4, 7, 1,
       5, 3, 5, 7, 3, 0, 7, 1, 0, 0, 6, 7, 5, 6, 0, 0, 0, 3, 0, 0, 4, 5,
       0, 5, 7, 0, 6, 5, 6, 3, 7, 4, 6, 4, 4, 3, 3, 3, 5, 4, 3, 1, 6, 7,
       7, 3, 4, 5, 0, 6, 3, 6, 6, 7, 0, 3, 6, 6, 0, 7, 3, 0, 5, 0, 6, 6,
       3, 0, 7, 7, 6, 6, 0, 4, 4, 5, 4, 7, 6, 7, 1, 3, 6, 7, 3, 6, 6, 6,
       0, 7, 5, 6, 4, 1, 7, 6, 7, 6, 4, 0, 0, 3, 5, 5, 0, 2, 5, 3, 5, 4,
       4, 7, 0, 7, 1, 5, 0, 3, 0, 7, 5, 3, 4, 0, 4, 1, 5, 3, 0, 0, 4, 1,
       3, 3, 0, 7, 3, 3, 6, 3, 5, 5, 7, 2, 2, 1, 6, 7, 1, 4, 2, 2, 3, 6,
       0, 5, 1, 0, 0, 3, 5, 6, 1, 0, 4, 3, 4, 3, 1, 3, 7, 2, 1, 7, 7, 7,
       7, 1, 0, 5, 3, 0, 3, 6, 4, 6, 1, 0, 6, 4, 0, 3, 1, 6, 4, 7, 3, 0,
       5, 6, 0, 0, 7, 7, 3, 0, 6, 3, 6, 0, 7, 5, 4, 0, 1, 0, 0, 5, 3, 6,
       3, 3, 0, 3, 6, 6, 0, 0, 6, 4, 0, 0, 6, 4, 6, 4, 6, 0, 3, 0, 7, 7,
       3, 0, 0, 6, 0, 7, 3, 4, 0, 1, 3, 0, 6, 4, 6, 6, 0, 3, 6, 6, 0, 7,
       4, 5, 6, 0, 0, 3, 6, 0, 0, 5, 0, 7, 3, 4, 1, 0, 4, 4, 7, 3, 4, 4,
       3, 3, 0, 2, 3, 0, 6, 6, 5, 0, 3, 5, 6, 3, 6, 1, 6, 0, 7, 4, 0, 3,
       0, 0, 6, 0, 4, 6, 0, 3, 6, 0, 3, 5, 4, 0, 0, 0, 5, 7, 2, 5, 5, 7,
       6, 5, 0, 3, 6, 7, 0, 5, 6, 5, 0, 0, 7, 0, 4, 4, 3, 7, 0, 3, 7, 3,
       0, 1, 3, 0, 4, 5, 1, 3, 7, 4, 5, 1, 2, 3, 0, 2, 2, 5, 5, 2, 1, 1,
       2, 0, 0, 7, 7, 0, 1, 0, 0, 2, 3, 2, 6, 3, 7, 3, 6, 7, 0, 7, 3, 0,
       3, 3, 3, 4, 0, 7, 5, 3, 4, 6, 7, 7, 0, 0, 4, 4, 3, 5, 3, 4, 6, 6,
       0, 0, 3, 5, 6, 3, 7, 3, 7, 0, 4, 4, 0, 3, 6, 4, 0, 0, 6, 6, 0, 6,
       3, 6, 0, 0, 3, 4, 0, 4, 5, 5, 5, 5, 6, 5, 5, 2, 7, 5, 0, 0, 0, 5,
       5, 5, 2, 5, 2, 2, 0, 2, 5, 5, 2, 2, 2, 1, 4, 1, 2, 1, 5])
```

## In [27]:

```
df["Cluster"]=y_pred
df.head()
```

#### Out[27]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_me |
|---|----------|-----------|-------------|--------------|----------------|-----------|---------------|
| 0 | 842302   | М         | 0.521037    | 0.022658     | 122.80         | 1001.0    | 0.118         |
| 1 | 842517   | М         | 0.643144    | 0.272574     | 132.90         | 1326.0    | 0.084         |
| 2 | 84300903 | М         | 0.601496    | 0.390260     | 130.00         | 1203.0    | 0.109         |
| 3 | 84348301 | М         | 0.210090    | 0.360839     | 77.58          | 386.1     | 0.142         |
| 4 | 84358402 | М         | 0.629893    | 0.156578     | 135.10         | 1297.0    | 0.100         |

5 rows × 35 columns

### In [30]:

```
df1=df[df.Cluster==0]
df2=df[df.Cluster==1]
df3=df[df.Cluster==2]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="orange")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="lightgreen")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="lightblue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

# Out[30]:

Text(0, 0.5, 'texture\_mean')



### In [9]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["texture_mean"]])
df["texture_mean"]=scaler.transform(df[["texture_mean"]])
df.head()
```

## Out[9]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_me |
|---|----------|-----------|-------------|--------------|----------------|-----------|---------------|
| 0 | 842302   | М         | 17.99       | 0.022658     | 122.80         | 1001.0    | 0.118         |
| 1 | 842517   | М         | 20.57       | 0.272574     | 132.90         | 1326.0    | 0.084         |
| 2 | 84300903 | М         | 19.69       | 0.390260     | 130.00         | 1203.0    | 0.109         |
| 3 | 84348301 | М         | 11.42       | 0.360839     | 77.58          | 386.1     | 0.142         |
| 4 | 84358402 | М         | 20.29       | 0.156578     | 135.10         | 1297.0    | 0.100         |

5 rows × 33 columns

## In [14]:

```
scaler.fit(df[["radius_mean"]])
df["radius_mean"]=scaler.transform(df[["radius_mean"]])
df.head()
```

## Out[14]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_me |
|---|----------|-----------|-------------|--------------|----------------|-----------|---------------|
| 0 | 842302   | М         | 0.521037    | 0.022658     | 122.80         | 1001.0    | 0.118         |
| 1 | 842517   | М         | 0.643144    | 0.272574     | 132.90         | 1326.0    | 0.084         |
| 2 | 84300903 | М         | 0.601496    | 0.390260     | 130.00         | 1203.0    | 0.109         |
| 3 | 84348301 | М         | 0.210090    | 0.360839     | 77.58          | 386.1     | 0.142         |
| 4 | 84358402 | М         | 0.629893    | 0.156578     | 135.10         | 1297.0    | 0.100         |

5 rows × 33 columns

#### In [15]:

```
y_pred=km.fit_predict(df[["radius_mean","texture_mean"]])
y_pred
```

## Out[15]:

```
array([3, 1, 1, 5, 1, 3, 1, 2, 2, 6, 2, 3, 4, 2, 2, 6, 2, 2, 1, 3, 3, 0,
       3, 7, 2, 1, 2, 1, 2, 1, 4, 5, 4, 4, 3, 2, 2, 5, 6, 2, 2, 5, 4, 2,
       2, 1, 0, 5, 0, 2, 5, 3, 5, 1, 2, 5, 1, 2, 5, 0, 0, 5, 2, 0, 6, 2,
       5, 5, 5, 3, 1, 0, 4, 3, 3, 2, 3, 1, 4, 5, 5, 3, 7, 4, 0, 1, 2, 4,
       2, 3, 2, 2, 3, 5, 2, 4, 5, 5, 0, 2, 6, 0, 5, 5, 5, 3, 5, 5, 7, 5,
       5, 5, 2, 5, 0, 5, 0, 3, 2, 1, 0, 1, 7, 3, 3, 3, 6, 1, 3, 4, 0, 2,
       2, 3, 1, 2, 5, 0, 3, 0, 0, 2, 5, 3, 0, 0, 5, 2, 3, 3, 2, 5, 0, 0,
       3, 5, 1, 1, 0, 0, 5, 1, 1, 2, 7, 2, 0, 1, 4, 3, 0, 2, 3, 0, 0, 0,
       5, 2, 2, 3, 7, 4, 2, 0, 2, 0, 1, 5, 5, 3, 2, 2, 5, 6, 2, 3, 2, 1,
       1, 2, 5, 1, 7, 2, 5, 3, 5, 1, 2, 3, 1, 5, 7, 4, 2, 3, 5, 5, 1, 4,
       3, 3, 5, 2, 3, 3, 0, 3, 6, 2, 1, 6, 6, 4, 0, 2, 7, 1, 6, 4, 3, 3,
       5, 2, 4, 5, 3, 3, 6, 0, 4, 5, 1, 1, 1, 3, 4, 3, 2, 6, 4, 4, 1, 2,
       1, 4, 5, 2, 3, 5, 3, 0, 7, 0, 4, 5, 0, 1, 3, 3, 4, 0, 1, 2, 3, 5,
       5, 3, 5, 5, 2, 2, 3, 5, 3, 3, 0, 5, 3, 5, 1, 5, 4, 5, 5, 6, 3, 0,
       3, 3, 5, 3, 3, 0, 5, 5, 0, 1, 5, 5, 0, 1, 3, 1, 0, 5, 3, 5, 2, 2,
       3, 5, 5, 0, 5, 1, 3, 1, 5, 7, 3, 0, 0, 1, 0, 0, 5, 3, 0, 0, 5, 2,
       7, 6, 0, 5, 5, 3, 0, 5, 5, 2, 5, 1, 3, 1, 4, 5, 1, 7, 2, 3, 1, 1,
       3, 3, 5, 6, 3, 5, 0, 0, 2, 5, 3, 2, 0, 3, 0, 4, 0, 0, 2, 7, 5, 3,
       2, 5, 0, 5, 1, 0, 5, 3, 3, 5, 3, 2, 1, 5, 5, 5, 5, 2, 6, 5, 5, 2,
       0, 5, 5, 3, 0, 2, 5, 5, 0, 5, 5, 5, 2, 5, 1, 1, 3, 2, 5, 3, 2, 3,
       5, 4, 3, 5, 1, 6, 4, 3, 2, 1, 5, 4, 6, 3, 5, 6, 6, 6, 6, 6, 4, 7,
       6, 5, 5, 2, 2, 5, 4, 5, 5, 6, 3, 6, 0, 3, 2, 3, 0, 2, 5, 2, 3, 3,
       3, 3, 3, 1, 0, 1, 2, 3, 1, 0, 2, 2, 5, 5, 1, 1, 3, 6, 3, 7, 0, 0,
       5, 5, 3, 2, 0, 3, 2, 3, 2, 5, 1, 1, 5, 3, 0, 7, 5, 2, 0, 0, 2, 0,
       3, 0, 5, 5, 3, 1, 5, 1, 2, 6, 6, 6, 0, 6, 6, 6, 2, 2, 0, 0, 5, 6,
       5, 5, 6, 5, 6, 6, 5, 6, 2, 6, 6, 6, 6, 4, 7, 4, 4, 6])
```

### In [16]:

```
df["New Cluster"]=y_pred
df.head()
```

#### Out[16]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_me |
|---|----------|-----------|-------------|--------------|----------------|-----------|---------------|
| 0 | 842302   | М         | 0.521037    | 0.022658     | 122.80         | 1001.0    | 0.118         |
| 1 | 842517   | М         | 0.643144    | 0.272574     | 132.90         | 1326.0    | 0.084         |
| 2 | 84300903 | М         | 0.601496    | 0.390260     | 130.00         | 1203.0    | 0.109         |
| 3 | 84348301 | М         | 0.210090    | 0.360839     | 77.58          | 386.1     | 0.142         |
| 4 | 84358402 | М         | 0.629893    | 0.156578     | 135.10         | 1297.0    | 0.100         |

5 rows × 34 columns

## In [19]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==2]
df3=df[df["New Cluster"]==3]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="orange")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="lightgreen")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

### Out[19]:

Text(0, 0.5, 'texture\_mean')



#### In [20]:

```
km.cluster_centers_
```

## Out[20]:

### In [31]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==2]
df3=df[df["New Cluster"]==3]
plt.scatter(df1["radius_mean"],df1["texture_mean"],color="lightpink")
plt.scatter(df2["radius_mean"],df2["texture_mean"],color="lightgreen")
plt.scatter(df3["radius_mean"],df3["texture_mean"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("radius_mean")
plt.ylabel("texture_mean")
```

## Out[31]:

Text(0, 0.5, 'texture\_mean')



#### In [24]:

```
k_rng=range(1,10)
sse=[]
```

### In [25]:

```
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["radius_mean","texture_mean"]])
    sse.append(km.inertia_)
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
```

[27.817507595043075, 14.87203295827117, 10.252751496105198, 8.484720462531293, 7.04076556970335, 6.043008828607218, 5.117871158721308, 4.442425175619684, 3.9 921644950560777]

## Out[25]:

Text(0, 0.5, 'Sum of Squared Error')



# Conclusion:-

## In [ ]:

For the given dataset we can do prediction by various models, but accuracy from that models are not good. So we prefer K-Means Clustering for this dataset