INTEGER-ANTIMAGIC SPECTRA OF TADPOLE AND LOLLIPOP GRAPHS

WAI CHEE SHIU, PAK KIU SUN, AND RICHARD M. LOW

ABSTRACT. Let A be a non-trival abelian group. A connected simple graph G=(V,E) is A-antimagic if there exists an edge labeling $f:E(G)\to A\setminus\{0\}$ such that the induced vertex labeling $f^+:V(G)\to A$, defined by $f^+(v)=\sum_{uv\in E(G)}f(uv)$, is injective. The integer-antimagic spectrum of a graph G is the set $\mathrm{IAM}(G)=\{k\mid G \text{ is }\mathbb{Z}_k\text{-antimagic and }k\geq 2\}.$ In this article, we determine the integer-antimagic spectra of tadpole and lollipop graphs.

1. Introduction

Let G be a connected simple graphs. For any abelian group A (written additively), let $A^* = A \setminus \{0\}$, where 0 is the additive identity of A. Let a function $f: E(G) \to A^*$ be an edge labeling of G and $f^+: V(G) \to A$ be its induced labeling, which is defined by $f^+(v) = \sum_{uv \in E(G)} f(uv)$. If there exists an edge labeling f whose induced labeling f^+ on F^+ on F^+ on F^+ on the integer antimagic labeling and that F^+ is an F^+ and F^+ on the integer antimagic spectrum of a graph F^+ is the set F^+ in the integer antimagic and F^+ is the set F^+ on the integer antimagic and F^+ is the set F^+ on the integer antimagic and F^+ is the set F^+ on the integer antimagic and F^+ is the set F^+ on the integer antimagic and F^+ is the set F^+ on the integer antimagic and F^+ is the set F^+ on the integer antimagic and F^+ is the set F^+ on the integer and F^+ is the set F^+ on the integer antimagic and F^+ is the set F^+ on the integer and F^+ is an integer and F^+ is the set F^+ in the integer and F^+ in the integer and F^+ is the set F^+ in the integer and F^- in the integer and

The concept of A-antimagicness property for a graph G (introduced in [1]) naturally arises as a variation of the A-magic labeling problem (where the induced vertex labeling is a constant map). \mathbb{Z} -magic (or \mathbb{Z}_1 -magic) graphs were considered by Stanley in [25, 26], where he pointed out that the theory of magic labelings could be studied in the general context of linear homogeneous diophantine equations. Doob [2, 3, 4] and others [7, 9, 15, 16,

Date: November 2, 2015.

²⁰¹⁰ Mathematics Subject Classification. 05C78.

This work is partially supported by Faculty Research Grant, Hong Kong Baptist University.

21] have studied A-magic graphs and \mathbb{Z}_k -magic graphs were investigated in [5, 6, 8, 10, 11, 12, 13, 14, 17, 18, 19, 20, 22, 23].

2. Some Known Results

The following three lemmas will be used throughout this article.

Lemma 2.1 ([1, Lemma 1]). For $m \ge 1$, a graph of order 4m + 2 is not \mathbb{Z}_{4m+2} -antimagic.

Lemma 2.2 ([1, Theorem 3]). The path P_3 is \mathbb{Z}_k -antimagic for all $k \geq 3$, and the cycle C_3 is \mathbb{Z}_k -antimagic for all $k \geq 4$ but not for k = 3.

Lemma 2.3 ([1, Theorem 4]). For $m \ge 1$, C_{4m+r} and P_{4m+r} are \mathbb{Z}_k -antimagic, for all $k \ge 4m+r$ if r=0,1,3; C_{4m+2} and P_{4m+2} are \mathbb{Z}_k -antimagic, for all $k \ge 4m+3$.

Also, we will use the following \mathbb{Z}_k -antimagic labelings g and f for paths and cycles, respectively, found in [1]. For integers $a \leq b$, let [a, b] denote the set of integers from a to b, inclusive.

Remark 2.1. In this paper, we let $P_n = v_1 v_2 \cdots v_n$, and $e_1 = v_1 v_2, e_2 = v_2 v_3, \ldots, e_{n-1} = v_{n-1} v_n$ be its edges.

Case 1. $n = 4m, m \ge 1$:

$$g(e_i) = \begin{cases} \frac{i+1}{2} & \text{if } i \text{ is odd;} \\ \frac{i}{2} & \text{if } i \text{ is even and } 2 \leq i \leq 2m-2; \\ \frac{i+2}{2} & \text{if } i \text{ is even and } 2m \leq i \leq 4m-2. \end{cases}$$
The range of q is $[1, 2m]$.

Case 2. n = 4m + 1 with m > 2:

$$g(e_i) = \begin{cases} \frac{i}{2} & \text{if } i \text{ is even;} \\ \frac{i+3}{2} & \text{if } i \text{ is odd and } 1 \leq i \leq 2m-3; \\ \frac{i+5}{2} & \text{if } i \text{ is odd and } 2m-1 \leq i \leq 4m-1. \end{cases}$$

The range of g is [1, 2m + 2].

The labeling for P_5 in [1] is not valid and we correct it as follows:

Case 3.
$$n = 4m + 2, m \ge 1$$
:
$$g(e_i) = \begin{cases} \frac{i+1}{2} & \text{if } i \text{ is odd;} \\ \frac{i+2}{2} & \text{if } i \text{ is even and } 2 \le i \le 2m - 2; \\ \frac{i+4}{2} & \text{if } i \text{ is even and } 2m \le i \le 4m. \end{cases}$$

The range of q is [1, 2m + 2].

Case 4. n = 4m + 3, m > 1:

$$g(e_i) = \begin{cases} \frac{i}{2} & \text{if } i \text{ is even;} \\ \frac{i+1}{2} & \text{if } i \text{ is odd and } 1 \leq i \leq 2m-1; \\ \frac{i+3}{2} & \text{if } i \text{ is odd and } 2m+1 \leq i \leq 4m+1. \end{cases}$$

The range of g is [1, 2m + 2]

Case 5. n=2: Even thought P_2 is not antimagic, we still define $g(v_1v_2)=1$ in this article.

Case 6. n = 3: We define $g(v_1v_2) = 1$ and $g(v_2v_3) = 2$.

Remark 2.2. In this paper, we let $C_p = u_1 u_2 \cdots u_n u_1$ and $e_1 = u_1 u_2$, $e_2 = u_2 u_3, \ldots, e_p = u_p u_1$ be its edges.

Case 1. $p = 4n, n \ge 1$:

Case 1.
$$p = 4n, n \ge 1$$
:
$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2n; \\ 3 + 2(2n - \lceil \frac{i}{2} \rceil) & \text{if } 2n + 1 \le i \le 4n. \end{cases}$$
Case 2. $p = 4n + 1, n \ge 1$:
$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2n; \\ 3 + 2(2n - \lceil \frac{i}{2} \rceil) & \text{if } 2n + 1 \le i \le 4n + 1. \end{cases}$$
Case 3. $p = 4n + 2, n \ge 1$:
$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2n + 3; \\ 3 + 2(2n - \lceil \frac{i-2}{2} \rceil) & \text{if } 2n + 4 \le i \le 4n + 2. \end{cases}$$
Case 4. $n = 4n - 1, n \ge 2$:

$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2n; \\ 3 + 2(2n - \lceil \frac{i}{2} \rceil) & \text{if } 2n + 1 \le i \le 4n + 1. \end{cases}$$

$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2n+3; \\ 3 + 2(2n - \lceil \frac{i-2}{2} \rceil) & \text{if } 2n+4 \le i \le 4n+2. \end{cases}$$

Case 4.
$$p = 4n - 1, n \ge 2$$
:

$$f(e_i) = \begin{cases} i & \text{if } 1 \le i \le 2n + 1; \\ 3 + 2(2n - \lceil \frac{i+1}{2} \rceil) & \text{if } 2n + 2 \le i \le 4n - 1. \end{cases}$$
Case 5. $p = 3$: We label the edges of C_3 by 1, 2 and 3, hence $I_f(C_3) = [3, 5]$

Case 5. p=3: We label the edges of C_3 by 1, 2 and 3, hence $I_f(C_3)=[3,5]$ and so C_3 is \mathbb{Z}_k -antimagic for $k \geq 4$.

Let ϕ be an edge labeling of G and ϕ^+ be its induced vertex labeling. Let

$$I_{\phi}(G) = \{\phi^{+}(v) \mid v \in V(G)\},\$$

where G is the graph being considered.

For multi-sets S and T, we denote by $S \equiv T \pmod{k}$ if the sets S and T are equal after taking modulo k.

The following are some important properties of the labelings q and f.

Proposition 2.4. All elements in [a,b] are distinct after taking modulo k for $k \geq b - a + 1$.

Corollary 2.5. For $m \ge 1$ and labeling g for paths provided in Remark 2.1, we have $I_g(P_{4m}) = [1, 4m]$, $I_g(P_{4m+1}) = [2, 4m+2]$, $I_g(P_{4m+2}) = [1, 4m+3] \setminus \{2\}$, $I_g(P_{4m-1}) = [1, 4m-1]$ and $I_g(P_2) = \{1, 1\}$ (a multiset). Moreover,

$$\begin{cases} g^{+}(v_{1}) = 1, & g^{+}(v_{4m}) = 2m, & for P_{4m}; \\ g^{+}(v_{1}) = 2, & g^{+}(v_{4m+1}) = 2m, & for P_{4m+1} \text{ and } m \geq 2; \\ g^{+}(v_{1}) = 1, & g^{+}(v_{4m+2}) = 2m+1, & for P_{4m+2}; \\ g^{+}(v_{1}) = 1, & g^{+}(v_{4m+3}) = 2m+1, & for P_{4m+3}; \\ g^{+}(v_{1}) = 2, & g^{+}(v_{5}) = 3, & for P_{5}; \\ g^{+}(v_{1}) = 1, & g^{+}(v_{3}) = 2, & for P_{3}; \\ g^{+}(v_{1}) = 1, & g^{+}(v_{2}) = 1, & for P_{2}. \end{cases}$$

Corollary 2.6. For $n \ge 1$ and labeling f for cycles provided in Remark 2.2, we have $I_f(C_{4n-1}) = [3, 4n+1]$, $I_f(C_{4n}) = [3, 4n+2]$, $I_f(C_{4n+1}) = [2, 4n+2]$ and $I_f(C_{4n+2}) = [3, 4n+5] \setminus \{4n+2\}$.

Theorem 2.7 ([24]). Suppose $h: E(G) \to [1, p]$ is a labeling of a graph G of order p such that $h^+: V(G) \to [b-p, b] \setminus \{a\}$ is bijective, where $p \equiv 2 \pmod{4}$ and a < b. Then, b-a is odd.

Theorem 2.8 ([24]). Suppose $h: E(G) \to [1, p]$ is a labeling of a graph G of order p such that $h^+: V(G) \to [b-p+1, b]$ is bijective, where $p \equiv 1 \pmod{4}$. Then, b must be even.

Theorem 2.9 ([24]). Suppose $h: E(G) \to [1,p]$ is a labeling of a graph G of order p such that $h^+: V(G) \to [b-p+1,b]$ is bijective, where $p \equiv 3 \pmod{4}$. Then, b must be odd.

3. Some Useful Lemmas

For $S \subset \mathbb{Z}$ and $a \in \mathbb{Z}$, we define the set $a + S = \{a + s \mid s \in S\}$.

Lemma 3.1. Let $g: E(P_{2n}) \to \mathbb{Z}$ be a labeling and $c \in \mathbb{Z}$. There exists a labeling h such that $I_h(P_{2n}) = c + I_g(P_{2n})$, $h^+(v_1) = c + 1$ and $h^+(v_{2n}) = n + c$. Note that the range of h is a subset of $[1, n+1] \cup [c+1, c+n]$.

Proof. Relabel the edge $v_i v_{i+1}$ by $g(v_i v_{i+1}) + c$, for odd i, and leave the other labels unchanged. This yields h.

Lemma 3.2. Suppose $n \geq 2$. For $d \in \{2\ell \mid 1 \leq \ell \leq n\} \cup \{2\ell + 1 \mid n \leq \ell \leq 2n\}$, there is a vertex $v \in V(P_{4n+1})$ and a labeling h such that the multiset $I_h(P_{4n+1}) = \{d\} \cup [c, 4n + c - 1]$ and $h^+(v) = d$, for any integer c.

Proof. According to the labeling g defined in Remark 2.1, $g^+(v_{2\ell-1}) = 2\ell$ for $1 \le \ell \le n-1$; $g^+(v_{2\ell-1}) = 2\ell+1$ for $n \le \ell \le 2n$; and $g^+(v_{4n+1}) = 2n$. Hence there is a vertex $v_j \in V(P_{4n+1})$, where j is odd, such that $g^+(v_j) = d$. Consider the graph $P_{4n+1} - v_j$, which is either a path of even order or two paths of even order. As in the proof of Lemma 3.1, there is a labeling \tilde{h} such that $I_{\tilde{h}}(P_{4n+1} - v_j) = c + I_g(P_{4n+1} - v_j)$. After inserting back the removed edge(s) with the original label(s), we obtain the desired labeling h for P_{4n+1} .

Similarly, we have the following lemma.

Lemma 3.3. Suppose $n \geq 2$. For $d \in \{2\ell - 1 \mid 1 \leq \ell \leq n\} \cup \{2\ell \mid n \leq \ell \leq 2n - 1\}$, there is a vertex $v \in V(P_{4n-1})$ and a labeling h such that the multiset $I_h(P_{4n-1}) = \{d\} \cup [c, 4n + c - 3]$ and $h^+(v) = d$, for any integer c.

Corollary 3.4. For any integer c, there is a labeling h such that the multiset $I_h(P_{4n+1}) = \{2\} \cup [c, 4n+c-1]$ and $h^+(v_1) = 2$. Moreover, the image of h is a subset of $[2, 2n+2] \cup [c-2, 2n+c-3]$ if $n \geq 2$; and equal to $\{2, 3, c-1, c\}$ if n = 1.

Proof. For $n \geq 2$, the result follows from Lemma 3.2 by choosing d = 2. For n = 1, we relabel v_2v_3 and v_4v_5 by c-1 and c, respectively, and obtain the result.

Corollary 3.5. For any integer c, there is a labeling h such that the multiset $I_h(P_{4n-1}) = \{1\} \cup [c, 4n+c-3]$ and $h^+(v_1) = 1$. Moreover, the image of h is a subset of $[1, 2n] \cup [c-1, 2n+c-3]$ if $n \geq 2$; and equal to $\{1, c\}$ if n = 1.

4. \mathbb{Z}_k -antimagioness of $G^{uv}P_s$

Let G and H be connected simple graphs. Let $u \in V(G)$ and $v \in V(H)$. The graph $G^{uv}H$ is obtained from G and H by add a new edge (bridge) uv. In this section, we construct some group-antimagic graphs from other group-antimagic graphs.

Let G be a simple connected graph of order $p \geq 3$ and assume that $f: E(G) \to [1,p]$. Since all values of f are positive and G is connected, the induced labeling f^+ is a positive mapping. In addition, we assume that $f^+: V(G) \to [b-p+1,b]$ is bijective when $p \not\equiv 2 \pmod{4}$, where

 $b-p \geq 0$; and $f^+: V(G) \rightarrow [b-p,b] \setminus \{a\}$ when $p \equiv 2 \pmod 4$, where $1 \leq b-p < a < b$.

We use the following construction in this article. First, we relabel some edges of $P_s = v_1 v_2 \dots v_s$ based on g to obtain a new labeling h. Then, we choose a suitable vertex u from G and a suitable vertex v from P_s to construct the graph $G^{uv}P_s$. Lastly, we label this bridge uv by a suitable label to construct a \mathbb{Z}_k -antimagic labeling ϕ of $G^{uv}P_s$.

4.1. \mathbb{Z}_k -antimagic Labelings of $G^{uv}P_{4m}$.

Theorem 4.1. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $p \not\equiv 2 \pmod{4}$ and $b-p \leq 2m+1$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m$.

Proof. By setting c=b-2 into Lemma 3.1, we have a labeling h such that $I_h(P_{4m})=[b-1,4m+b-2]$. Choose the vertex $u\in V(G)$ with $f^+(u)=b$ and assign $\phi(uv_1)=-p$. Then $I_\phi(G^{uv_1}P_{4m})=[b-p-1,4m+b-2]$ with ϕ equals to f on G. After taking modulo k for $k\geq p+4m$, all labels are non-zero and the induced labels are distinct, hence $G^{uv_1}P_{4m}$ is \mathbb{Z}_k -antimagic.

Theorem 4.2. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $p \equiv 2 \pmod 4$ and $b-p \leq 2m+2$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m+1$.

Proof. By setting c=b-2 into Lemma 3.1, we have a labeling h such that $I_h(P_{4m})=[b-1,4m+b-2]$. Choose the vertex $u\in V(G)$ with $f^+(u)=b$ and assign $\phi(uv_1)=-p-1$. Then $I_\phi(G^{uv_1}P_{4m})=[b-p-2,4m+b-2]\setminus\{a\}$ with ϕ equals to f on G. After taking modulo k for $k\geq p+4m+1$, all labels are non-zero and the induced labels are distinct, hence $G^{uv_1}P_{4m}$ is \mathbb{Z}_k -antimagic.

4.2. \mathbb{Z}_k -antimagic Labelings of $G^{uv}P_{4m+2}$.

Theorem 4.3. Let $m \ge 1$. Suppose $f : E(G) \to [1,p]$ is a labeling of a graph G of order p such that $f^+ : V(G) \to [b-p+1,b]$ is bijective, where $p \equiv 1$ or $3 \pmod 4$ and $b-p \le 2m+2$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m+2}$ is \mathbb{Z}_k -antimagic for $k \ge p+4m+2$.

Proof. Recall that $I_g(P_{4m+2}) = [1,4m+3] \setminus \{2\}$. By setting c = b-2 into Lemma 3.1, we have a labeling h such that $I_h(P_{4m+2}) = [b-1,4m+b+1] \setminus \{b\}$ and $h^+(v_1) = b-1$. Choose $u \in V(G)$ with $f^+(u) = b - (p+1)/2$ (it is valid since $p \geq 3$) and assign $\phi(uv_1) = (-p+1)/2$. Then $I_\phi(G^{uv_1}P_{4m+2}) = [b-p,4m+b+1]$. Hence ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m+2}$ for $k \geq p+4m+2$.

Theorem 4.4. Let $m \geq 1$. Suppose $f: E(G) \rightarrow [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \rightarrow [b-p,b] \setminus \{a\}$ is bijective, where $p \equiv 2 \pmod 4$, $b-p \leq 2m+2$ and $3 \leq b-a \leq 2p-1$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m+2}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m+2$.

Proof. Note that b-a is odd by Theorem 2.7. Setting c=b-2 in Lemma 3.1, there is a labeling h of P_{4m+2} such that $I_h(P_{4m+2})=[b-1,4m+b+1]\setminus\{b\}$ and $h^+(v_1)=b-1$. Choose $u\in V(G)$ with $f^+(u)=(a+b-1)/2$ and assign $\phi(uv_1)=(a-b+1)/2$. Then $I_\phi(G^{uv_1}P_{4m+2})=[b-p,4m+b+1]$ and hence $G^{uv_1}P_{4m+2}$ is \mathbb{Z}_k -antimagic for $k\geq p+4m+2$.

Theorem 4.5. Let $m \geq 1$. Suppose $f: E(G) \rightarrow [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \rightarrow [b-p+1,b]$ is bijective, where $p \equiv 0 \pmod 4$ and $b-p \leq 2m+3$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m+2}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m+3$.

Proof. By setting c=b-2 into Lemma 3.1, we have a labeling h such that $I_h(P_{4m+2})=[b-1,4m+b+1]\setminus\{b\}$ and $h^+(v_1)=b-1$. Choose $u\in V(G)$ with $f^+(u)=b-1-p/2$ (it is valid since $p\geq 4$) and assign $\phi(uv_1)=-p/2$. Then $I_\phi(G^{uv_1}P_{4m+2})=[b-p-1,4m+b+1]\setminus\{b-p\}$ and hence ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m+2}$ for $k\geq p+4m+3$. \square

Theorem 4.6. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $p \not\equiv 2 \pmod{4}$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_2$ is \mathbb{Z}_k -antimagic for $k \geq p+3$ and $k \neq b-p-1$.

Proof. Let h be an edge labeling for P_2 defined by $h(v_1v_2) = b - p - 1$. Choose $u \in V(G)$ with $f^+(u) = b - p + 1$ and assign $\phi(uv_1) = -1$. Then $I_{\phi}(G^{uv_1}P_2) = [b - p - 2, b] \setminus \{b - p + 1\}$ and so ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_2$ for $k \geq p + 3$ and $k \neq b - p - 1$.

Theorem 4.7. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $p \equiv 2 \pmod 4$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_2$ is \mathbb{Z}_k -antimagic for $k \geq p+3$ and $k \neq a$.

Proof. Let h be an edge labeling for P_2 defined by $h(v_1v_2) = a$. Choose $u \in V(G)$ with $f^+(u) = a+1$ and assign $\phi(uv_1) = b-a+1$. Then, $I_{\phi}(G^{uv_1}P_2) = [b-p,b+2] \setminus \{a+1\}$ and so ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_2$ for $k \geq p+3$ and $k \neq a$.

4.3. \mathbb{Z}_k -antimagic Labelings of $G^{uv}P_{4m+1}$.

Theorem 4.8. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $p \equiv 0$ or $3 \pmod 4$ with b is odd and $b-p \leq 2m$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m+1}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m+1$.

Proof. By setting c=b+2 into Corollary 3.4, we have $I_h(P_{4m+1})=\{2\}\cup[b+2,4m+b+1]$. Note that $b-p\leq 2m$ implies that the label of P_{4m+1} under h are positive and less than p+4m+1 for $m\geq 1$. Choose $u\in V(G)$ with $f^+(u)=(b+3)/2$ and assign $\phi(uv_1)=(b-1)/2$. Then $I_{\phi}(G^{uv_1}P_{4m+1})=[b-p+1,4m+b+1]$ and so ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m+1}$ for $k\geq p+4m+1$.

Theorem 4.9. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order p such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $p \equiv 0$ or $1 \pmod 4$ with b is even and $b-p \leq 2m$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m+1}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m+2$.

Proof. By setting c=b+3 into Corollary 3.4, we have $I_h(P_{4m+1})=\{2\}\cup[b+3,4m+b+2]$. Note that $b-p\leq 2m$ implies that the label of P_{4m+1} under h are positive and less than p+4m+2 for $m\geq 1$. Choose $u\in V(G)$ with $f^+(u)=2+b/2$. and assign $\phi(uv_1)=b/2$. Then $I_\phi(G^{uv_1}P_{4m+1})=[b-p+1,4m+b+2]\setminus\{b+1\}$ and thus ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m+1}$, for $k\geq p+4m+2$.

Theorem 4.10. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective with

a is even and

$$\begin{cases} b-p \leq 2m-1 & \text{if } a=2; \\ b-p \leq 2m+1 & \text{if } a \geq 4 \text{ and } a/2 \geq b-p-1. \end{cases}$$

Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m+1}$ is \mathbb{Z}_k -antimagic for $k \geq 4m + p + 1$.

Proof. Suppose a=2, then b-p=1. By setting c=b+3 into Corollary 3.4, we have $I_h(P_{4m+1})=\{2\}\cup[b+3,4m+b+2]$. Choose $u\in V(G)$ with $f^+(u)=1$ and assign $\phi(uv_1)=b$. Then $I_\phi(G^{uv_1}P_{4m+1})=[3,4m+p+3]$ and so ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m+1}$ for $k\geq p+4m+1$.

Suppose $a \geq 4$. By setting c = b + 1 into Corollary 3.4, we have $I_h(P_{4m+1}) = \{2\} \cup [b+1, 4m+b]$. Choose $u \in V(G)$ with $f^+(u) = a/2 + 1$ (note that $a/2 + 1 \in [b-p, b] \setminus \{a\}$) and assign $\phi(uv_1) = a/2 - 1$. Then $I_{\phi}(G^{uv_1}P_{4m+1}) = [b-p, 4m+b]$ and hence ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m+1}$ for $k \geq p + 4m + 1$.

Theorem 4.11. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $b-p \leq 2m-1$, a is odd and $(a+1)/2 \geq b-p$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m+1}$ is \mathbb{Z}_k -antimagic for $k \geq 4m+p+2$.

Proof. Note that b is even in this case and thus, $b - p \ge 2$.

By Corollary 3.4, we have $I_h(P_{4m+1})=\{2\}\cup[b+2,4m+b+1]$. Relabel the edge v_1v_2 of the path P_{4m+1} by a-b and still denote this new labeling by h. Hence $I_h(P_{4m+1})=\{a-b,a\}\cup[b+3,4m+b+1]$ and $h^+(v_1)=a-b$. Choose $u\in V(G)$ with $f^+(u)=(a+1)/2$ and assign $\phi(uv_1)=b-(a-1)/2$ (nonzero). Then $I_\phi(G^{uv_1}P_{4m+1})=[b-p,4m+b+1]\setminus\{b+2\}$ and so ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m+1}$ for $k\geq p+4m+2$.

4.4. \mathbb{Z}_k -antimagic Labelings of $G^{uv}P_{4m-1}$.

Theorem 4.12. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order $p \equiv 0$ or $1 \pmod 4$ such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $b-p \leq 2m-2$, $b \leq 2p$ and b is even. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m-1}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m-1$.

Proof. By setting c = b + 2 into Corollary 3.5, there is a labeling h such that $I_h(P_{4m-1}) = \{1\} \cup [b+2, 4m+b-1]$. Note that the maximum label of h is 2m+b-1 when $m \geq 2$ and b+2 when m=1, respectively. When $b-p \leq 2m-2$, the maximum label of h is less than p+4m-1. Choose $u \in V(G)$ with $f^+(u) = b/2 + 1$ and assign $\phi(uv_1) = b/2$. Then $I_{\phi}(G^{uv}P_{4m-1}) = [b-p+1, 4m+b-1]$ and hence $G^{uv_1}P_{4m-1}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m-1$.

Theorem 4.13. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order $p \equiv 0$ or $3 \pmod 4$ such that $f^+: V(G) \to [b-p+1,b]$ is bijective, where $b-p \leq 2m-2$, $b \leq 2p+1$ and b is odd. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m-1}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m$.

Proof. By Corollary 3.5 there is a labeling h such that $I_h(P_{4m-1}) = \{1\} \cup [b+3,4m+b]$. Choose $u \in V(G)$ with $f^+(u) = (b+3)/2$ and let $\phi(uv_1) = (b+1)/2$. Then $I_{\phi}(G^{uv}P_{4m-1}) = [b-p+1,4m+b] \setminus \{b+1\}$ and thus $G^{uv_1}P_{4m-1}$ is \mathbb{Z}_k -antimagic for $k \geq p+4m$.

Theorem 4.14. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where $b-p \leq 2m$, a is odd and $(a+1)/2 \geq b-p$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m-1}$ is \mathbb{Z}_k -antimagic for $k \geq 4m+p-1$.

Proof. By Corollary 3.5, we have $I_h(P_{4m+1}) = \{1\} \cup [b+1, 4m+b-2]$. Choose $u \in V(G)$ with $f^+(u) = (a+1)/2$ and assign $\phi(uv_1) = (a-1)/2$. Then $I_{\phi}(G^{uv_1}P_{4m-1}) = [b-p, 4m+b-2]$ and hence ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m-1}$ for $k \geq p+4m-1$.

Theorem 4.15. Let $m \geq 2$. Suppose $f : E(G) \rightarrow [1,p]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+ : V(G) \rightarrow [b-p,b] \setminus \{a\}$ is bijective, where $b-p \leq 2m$, a is even and $a/2 \geq b-p$. Then there is a vertex $u \in V(G)$ such that $G^{uv_1}P_{4m-1}$ is \mathbb{Z}_k -antimagic for $k \geq 4m+p$.

Proof. By Corollary 3.5, we have $I_h(P_{4m-1})=\{1\}\cup[b+2,4m+b-1]$. Relabel the edge v_1v_2 of the path P_{4m-1} by a-b-1 and still denote this new labeling by h. Hence $I_h(P_{4m-1})=\{a-b-1,a\}\cup[b+3,4m+b-1]$ and $h^+(v_1)=a-b-1$. Choose $u\in V(G)$ with $f^+(u)=a/2$ and assign $\phi(uv_1)=b+1-a/2$. Then $I_\phi(G^{uv_1}P_{4m-1})=[b-p,4m+b-1]\setminus\{b+2\}$. Hence ϕ is a \mathbb{Z}_k -antimagic labeling of $G^{uv_1}P_{4m-1}$ for $k\geq p+4m$.

Theorem 4.16. Suppose $f: E(G) \to [1,p]$ is a labeling of a graph G of order $p \equiv 2 \pmod{4}$ such that $f^+: V(G) \to [b-p,b] \setminus \{a\}$ is bijective, where a is even, $3a \neq 2b-p$ and $a \leq p$. Then, there is a vertex $u \in V(G)$ such that $G^{uv_1}P_3$ is \mathbb{Z}_k -antimagic for $k \geq p+3$.

Proof. There is a vertex $u \in V(G)$ such that $f^+(u) = b - (p+a)/2$, which is not equal to a. Define $\phi(v_1v_2) = b - a + 1$, $\phi(v_2v_3) = a$ and $\phi(v_1u) = -1 - (p-a)/2$. Then, $I_{\phi}(G^{uv_1}P_3) = [b-p-1,b+1]$. Hence $G^{uv_1}P_3$ is \mathbb{Z}_k -antimagic for $k \geq p+3$.

5. APPLICATION TO TADPOLE GRAPHS

The tadpole graph T(r,s) is obtained by joining a cycle C_r and a path P_s by a bridge, where $r \geq 3$ and $s \geq 1$. The idea for finding an antimagic labeling of T(r,s) is to modify the labeling of the path that provided in Remark 2.1, and then joining a suitable labeled vertex from the cycle by a bridge with the end vertex v_1 or v_s of the path.

In this section, we will use some results proved in [24].

Lemma 5.1 ([24]). For $d \in [2, 4n+2]$ and any integer c, there is a labeling h such that $I_h(C_{4n+1})$ is the multiset $([c, 4n+c] \setminus \{c+d-2\}) \cup \{d\}$. Note that the range of h is a subset of $[1, 2n+1] \cup [c-1, c-1+2n]$.

Lemma 5.2 ([24]). For $d \in [3, 4n+1]$ and any integer c, there is a labeling h such that $I_h(C_{4n-1})$ is the multiset $([c, 4n+c-2] \setminus \{c+d-3\}) \cup \{d\}$. Note that the range of h is a subset of $[1, 2n+1] \cup [c-2, c-2+2n]$.

Lemma 5.3 ([24]). Let $g: V(C_{2n}) \to \mathbb{Z}$ and $c \in \mathbb{Z}$. There is a labeling h such that $I_h(C_{2n}) = c + I_g(C_{2n})$. Note that the range of h is a subset of $[1, n+2] \cup [c+2, c+n+1]$.

Theorem 5.4. The graph T(p, 4m) is \mathbb{Z}_k -antimagic for $k \geq p+4m$ if $p \not\equiv 2 \pmod{4}$, and is \mathbb{Z}_k -antimagic for $k \geq p+4m+1$ if $p \equiv 2 \pmod{4}$.

Proof. From Corollary 2.6, we have $1 \le b - p \le 3$ and the results follow from Theorems 4.1 and 4.2.

Theorem 5.5. Let $m \geq 1$. The graph T(p, 4m + 2) is \mathbb{Z}_k -antimagic for $k \geq p + 4m + 2$ if $p \not\equiv 0 \pmod{4}$, and is \mathbb{Z}_k -antimagic for $k \geq p + 4m + 3$ if $p \equiv 0 \pmod{4}$.

Proof. From Corollary 2.6, we have $1 \le b - p \le 3$; and b - a = 3 when $p \equiv 2 \pmod{4}$. The results follow from Theorems 4.3, 4.4 and 4.5.

Theorem 5.6. The graph T(p,2) is \mathbb{Z}_k -antimagic for $k \geq p+2$ if $p \not\equiv 0 \pmod{4}$, and is \mathbb{Z}_k -antimagic for $k \geq p+3$ if $p \equiv 0 \pmod{4}$.

Proof.

- Case 1: Suppose p=4n+1 for some $n\geq 1$. By setting d=2 and c=3 into Lemma 5.1, there is a labeling h such that $I_h(C_p)=[4,p+2]\cup\{2\}$ and $h^+(u_1)=2$. We label the edge v_1v_2 of P_2 by 1 and label the bridge u_1v_1 by 1 and denote the new labeling by ϕ . Then $\phi^+(u_1)=3$, $\phi^+(v_1)=2$ and $\phi^+(v_2)=1$. Hence $I_\phi(T(p,2))=[1,p+2]$ and so ϕ is an \mathbb{Z}_k -antimagic labeling for $k\geq p+2$.
- Case 2: Suppose p=4n+2 for some $n\geq 1$. In this case $I_f(C_p)=[3,p+3]\setminus\{p\}$. We choose $u\in V(C_p)$ such that $f^+(u)=p+2$ (indeed $u=u_{2n+4}$). We label the edge v_1v_2 of P_2 by p and label the bridge uv_1 by 2 and denote the new labeling by ϕ . Then $\phi^+(u)=p+4$, $\phi^+(v_1)=p+2$ and $\phi^+(v_2)=p$. Hence $I_\phi(T(p,2))=[3,p+4]$ and thus, ϕ is an \mathbb{Z}_k -antimagic labeling for $k\geq p+2$.
- Case 3: Suppose p=4n-1 for some $n\geq 1$. By setting d=3 and c=4 into Lemma 5.2, there is a labeling h such that $I_h(C_p)=[5,p+3]\cup\{3\}$ and $h^+(u_2)=3$. We label the edge v_1v_2 of P_2 by 4 and label the bridge u_2v_1 by -1 and denote the new labeling by ϕ . Then $\phi^+(u_2)=2$, $\phi^+(v_1)=3$ and $\phi^+(v_2)=4$. Hence $I_\phi(T(p,2))=[2,p+3]$ and thus, ϕ is an \mathbb{Z}_k -antimagic labeling for $k\geq p+2$.
- Case 4: Suppose p = 4n for some $n \ge 1$. Then, the result follows from Theorem 4.6.

Theorem 5.7. For $m \geq 1$, T(p, 4m+1) is \mathbb{Z}_k -antimagic for $k \geq p+4m+1$ if $p \not\equiv 1 \pmod{4}$, and is \mathbb{Z}_k -antimagic for $k \geq p+4m+2$ if $p \equiv 1 \pmod{4}$.

Proof.

Case 1: Suppose p = 4n - 1 for some $n \ge 1$. In this case, b = 4n + 1 and b - p = 2. By Theorem 4.8, we obtain the result.

- Case 2: Suppose p = 4n + 2 for some $n \ge 1$. In this case, b p = 3 and $a = 4n + 2 \ne 2$. The result follows from Theorem 4.10.
- Case 3: Suppose p=4n for some $n\geq 1$. In this case, b=4n+2 and b-p=2. By Theorem 4.9, T(p,4m+1) is \mathbb{Z}_k -antimagic for $k\geq p+4m+2$.

When k = p + 4m + 1, we have $I_g(P_{4m+1}) = [2, 4m + 2]$. By setting c = 4m + 1 in Lemma 5.3, we have a labeling h such that $I_h(C_{4n}) = [4m + 4, 4n + 4m + 3]$. Note that the image of h is a subset of $[1, 2n+2] \cup [4m+3, 4m+2n+2]$. Choose $u \in V(C_{4n})$ with $h^+(u) = 2n + 4m + 3$ and assign $\phi(uv_1) = -2n$. Then $\phi^+(u) = 4m + 3$ and $\phi^+(v_1) = 2 - 2n \equiv 4m + 2n + 3 \pmod{4n + 4m + 1}$. Hence $I_{\phi}(T(4n, 4m + 1)) \equiv [3, 4n + 4m + 3] \pmod{4n + 4m + 1}$ and so ϕ is an $\mathbb{Z}_{4n+4m+1}$ -antimagic labeling for T(4n, 4m + 1).

Case 4: Suppose p = 4n + 1 for some $n \ge 1$. In this case, b = 4n + 2 and b - p = 1. The result follows from Theorem 4.9.

Theorem 5.8. For $m \ge 1$, T(p,1) is \mathbb{Z}_k -antimagic for $k \ge p+1$ if $p \not\equiv 1 \pmod{4}$, and is \mathbb{Z}_k -antimagic for $k \ge p+2$ if $p \equiv 1 \pmod{4}$.

Proof. Let $P_1 = v$. From Corollary 2.6, we have $I_f(C_{4n-1}) = [3, 4n+1]$, $I_f(C_{4n}) = [3, 4n+2]$, $I_f(C_{4n+1}) = [2, 4n+2]$ and $I_f(C_{4n+2}) = [3, 4n+5] \setminus \{4n+2\}$.

- Case 1: Suppose p=4n. By setting c=1 into Lemma 5.3, we have $I_h(C_{4n})=[4,4n+3]$. Choose $u\in V(C_{4n})$ with $h^+(u)=2n+2$ and assign $\phi(uv)=2n+2$. Then $\phi^+(u)=4n+4$ and $\phi^+(v)=2n+2$. Hence $I_\phi(T(4n,1))=[4,4n+4]$ and so ϕ is an \mathbb{Z}_k -antimagic labeling for T(4n,1) for $k\geq 4n+1$.
- Case 2: Suppose p = 4n 1. Since $I_f(C_{4n-1}) = [3, 4n + 1]$, choose $u \in V(C_{4n-1})$ with $f^+(u) = 2n + 1$ and assign $\phi(uv) = 2n + 1$. Then $\phi^+(u) = 4n + 2$ and $\phi^+(v) = 2n + 1$. Hence $I_{\phi}(T(4n 1, 1)) = [3, 4n + 2]$ and so ϕ is an \mathbb{Z}_k -antimagic labeling for T(4n 1, 1) for $k \geq 4n$.
- Case 3: Suppose p = 4n + 2. Since $I_f(C_{4n+2}) = [3, 4n + 5] \setminus \{4n + 2\}$, choose $u \in V(C_{4n+2})$ with $f^+(u) = 2n + 1$ and assign $\phi(uv) = 2n + 1$. Then $\phi^+(u) = 4n + 2$ and $\phi^+(v) = 2n + 1$. Hence $I_{\phi}(T(4n+2,1)) = [3, 4n+5]$ and so ϕ is an \mathbb{Z}_k -antimagic labeling for T(4n+2,1) for $k \geq 4n+3$.

Case 4: Suppose p=4n+1. Since $I_f(C_{4n+1})=[2,4n+2]$, choose $u\in V(C_{4n+1})$ with $f^+(u)=2n+2$ and assign $\phi(uv)=2n+2$. Then $\phi^+(u)=4n+4$ and $\phi^+(v)=2n+2$. Hence $I_\phi(T(4n+1,1))=[2,4n+4]\setminus\{4n+3\}$ and so ϕ is an \mathbb{Z}_k -antimagic labeling for T(4n+1,1) for $k\geq 4n+3$.

Theorem 5.9. For $m \ge 1$, T(p, 4m-1) is \mathbb{Z}_k -antimagic for $k \ge p+4m-1$ if $p \not\equiv 3 \pmod{4}$, and is \mathbb{Z}_k -antimagic for $k \ge p+4m$ if $p \equiv 3 \pmod{4}$.

Proof.

- Case 1: Suppose p = 4n. In this case, b = 4n + 2 and b p = 2. The result follows from Theorem 4.12.
- Case 2: Suppose p = 4n + 1. In this case, b = 4n + 2 and b p = 1. The result follows from Theorem 4.12.
- Case 3: Suppose p = 4n + 2. In this case, b = 4n + 5, b p = 3 and a = 4n + 2 = p.

When m=1, by Theorem 4.16, T(p,3) is \mathbb{Z}_k -antimagic for $k\geq p+3$.

When $m \geq 2$, by Theorem 4.15, T(p, 4m-1) is \mathbb{Z}_k -antimagic for $k \geq p+4m$.

Therefore, we have to only deal with the case when k=4n+4m+1. By setting c=4m-2 in Lemma 5.3, we have a labeling h such that $I_h(C_{4n+2})=[4m+1,4m+4n+3]\setminus \{4m+4n\}$.

For $m \geq 3$, we define a new labeling for P_{4m-1} (based on g) by

$$\widetilde{g}(e_i) = egin{cases} 3 & ext{if } i=1; \ g(e_i)+1 & ext{if } i ext{ is even and } i \geq 4; \ g(e_i) & ext{otherwise,} \end{cases}$$

where e_i are defined in Remark 2.1.

For m=2, we define \tilde{g} as the following way:

Hence $I_{\widetilde{g}}(P_{4m-1}) = [3, 4m] \cup \{3\}$. Now we choose $u \in V(C_{4n+2})$ with $h^+(u) = 4m + 4n + 2$ and assign $\phi(uv_1) = -2$. Note that $\phi^+(v_1) = 1 \equiv 4m + 4n + 2 \pmod{4m + 4n + 1}$. Then $I_{\phi}(T(4n + 2n + 2n)) = -2$.

(2,4m-1)=[3,4m+4n+3]. Hence it is an $\mathbb{Z}_{4m+4n+1}$ -antimagic labeling of T(4n+2,4m-1).

Case 4: Suppose p = 4n - 1. In this case, b = 4n + 1, b - p = 2. By Theorem 4.13, we have the result.

Summarizing the results in this section, we have

Theorem 5.10. For $r \geq 3$ and $s \geq 1$,

$$\mathrm{IAM}(T(r,s)) = \begin{cases} [r+s,\infty) & \textit{if } r+s \not\equiv 2 \pmod{4}; \\ [r+s+1,\infty) & \textit{if } r+s \equiv 2 \pmod{4}. \end{cases}$$

FIGURE 1. T(3,3) is \mathbb{Z}_k -antimagic, for $k \geq 7$.

6. APPLICATION TO LOLLIPOP GRAPHS

The lollipop graph L(r,s) is obtained by joining a complete graph K_r and a path P_s by a bridge, where $r \geq 3$ and $s \geq 1$. To make this paper self-contained, we provide the labeling of K_p (directly adopted from [24]). The image of the induced vertex labeling is the same as that of C_p (given by Lemma 2.3). The results in the preceding sections of this paper are then used to determine the integer-antimagic spectra of lollipop graphs.

Let the vertex set of K_p be $\{u_1,\ldots,u_p\}$. Let z be an integer with $1 \leq z \leq \lfloor p/2 \rfloor$. We construct a spanning subgraph $K_p(z)$ of K_p in which two vertices u_i and u_j are adjacent if $j \equiv i+z \pmod p$. Then, $K_p(z)$ is a union of $\gcd(z,p)$ cycles (each of order $p/\gcd(z,p)$). Note that if z=p/2, then $K_p(z)$ is a perfect matching. Also, observe that $K_p = \bigcup_{z=1}^{\lfloor p/2 \rfloor} K_p(z)$. \mathbb{Z}_k -Antimagic labeling for K_{4m} :

 $K_{4m} = \bigcup_{z=1}^{2m} K_{4m}(z)$. We label $K_{4m}(1)$, using g+1. All edges of $K_{4m}(z)$ are labeled by -1 for even z, except z=2m. All edges of $K_{4m}(z)$ are

labeled by 1 for odd z, except z=1. All edges of $K_{4m}(2m)$ are labeled by -2. Let this labeling be f. Then, $I_f(K_{4m})=I_g(C_{4m})$.

\mathbb{Z}_k -Antimagic labeling for K_{4m+2} :

 $K_{4m+2} = \bigcup_{z=1}^{2m+1} K_{4m+2}(z)$. We label $K_{4m+2}(1)$, using g. All edges of $K_{4m+2}(z)$ are labeled by 1 for even z. All edges of $K_{4m+2}(z)$ are labeled by -1 for odd z, except z=1 and 2m+1. All edges of $K_{4m+2}(2m+1)$ are labeled by -2. Let this labeling be f. Then, $I_f(K_{4m+2}) = I_g(C_{4m+2})$. \mathbb{Z}_k -Antimagic labeling for K_{4m-1} :

 $K_{4m-1}=\bigcup_{z=1}^{2m-1}K_{4m-1}(z)$ for $m\geq 2$. We label $K_{4m-1}(1)$, using g. All edges of $K_{4m-1}(z)$ are labeled by 1 for even z. All edges of $K_{4m-2}(z)$ are labeled by -1 for odd z, except z=1. Let this labeling be f. Then, $I_f(K_{4m-1})=I_g(C_{4m-1})$.

\mathbb{Z}_k -Antimagic labeling for K_{4m+1} :

 $K_{4m+1}=\bigcup_{z=1}^{2m}K_{4m+1}(z).$ We label $K_{4m+1}(1)$, using g+1. All edges of $K_{4m+1}(z)$ are labeled by -1 for even z. All edges of $K_{4m-2}(z)$ are labeled by 1 for odd z, except z=1. Let this labeling be f. Then, $I_f(K_{4m+1})=I_g(C_{4m+1})$.

Observe that in all of these cases, the domain of f is a subset of $[-2, p-1] \setminus \{0\}$, where p is the order of the graph under consideration.

If we change the domain of f (described in the lemmas and theorems in Sections 3 and 4) to $[-2, p-1] \setminus \{0\}$, then those results continue to hold. By substituting G by K_r and H by P_s and using these results and similar arguments as in Section 5, we see that

Theorem 6.1. For $r \geq 3$ and $s \geq 1$,

$$IAM(L(r,s)) = \begin{cases} [r+s,\infty) & \text{if } r+s \not\equiv 2 \pmod{4}; \\ [r+s+1,\infty) & \text{if } r+s \equiv 2 \pmod{4}. \end{cases}$$

FIGURE 2. L(4,3) is \mathbb{Z}_k -antimagic, for $k \geq 7$.

REFERENCES

- W.H. Chan, R.M. Low and W.C. Shiu, On group-anitmagic graphs, to appear in Congr. Numer.
- [2] M. Doob, On the construction of magic graphs, Proc. Fifth S.E. Conference on Combinatorics, Graph Theory and Computing (1974), 361-374.
- [3] M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B, 17 (1974), 205-217.
- [4] M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory, Series B, 25 (1978), 94-104.
- [5] M.C. Kong, S-M Lee, and H. Sun, On magic strength of graphs, Ars Combinatoria, 45 (1997), 193-200.
- [6] S-M Lee, Yong-Song Ho and R.M. Low, On the integer-magic spectra of maximal planar and maximal outerplanar graphs, *Congressus Numerantium*, 168 (2004), 83-90.
- [7] S-M Lee, A. Lee, Hugo Sun, and Ixin Wen, On group-magic graphs, JCMCC, 38 (2001), 197-207.
- [8] S-M Lee and F. Saba, On the integer-magic spectra of two-vertex sum of paths, Congressus Numerantium, 170 (2004), 3-15.
- [9] S-M Lee, F. Saba, E. Salehi, and H. Sun, On the V₄-group magic graphs, Congressus Numerantium, 156 (2002), 59-67.
- [10] S-M Lee, F. Saba, and G. C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium, 92 (1993), 177-184.
- [11] S-M Lee and E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria, 67 (2003), 199-212.
- [12] S-M Lee, E. Salehi and H. Sun, Integer-magic spectra of trees with diameters at most four, JCMCC, 50 (2004), 3-15.
- [13] S-M Lee, L. Valdes, and Yong-Song Ho, On group-magic spectra of trees, double trees and abbreviated double trees, JCMCC, 46 (2003), 85-95.
- [14] R.M. Low and S-M Lee, On the integer-magic spectra of tessellation graphs, Australas. J. Combin., 34 (2006), 195-210.
- [15] R.M. Low and S-M Lee, On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41-48.

- [16] R.M. Low and S-M Lee, On group-magic eulerian graphs, JCMCC, 50 (2004), 141-148.
- [17] R.M. Low and L. Sue, Some new results on the integer-magic spectra of tessellation graphs, Australas. J. Combin., 38 (2007), 255-266.
- [18] E. Salehi, Zero-sum magic graphs and their null sets, Ars Combinatoria, 82 (2007), 41-53.
- [19] E. Salehi, On zero-sum magic graphs and their null sets, Bulletin of the Institute of Mathematics, Academia Sinica, 3 (2008), 255-264.
- [20] E. Salehi and P. Bennett, On integer-magic spectra of caterpillars, JCMCC, 61 (2007), 65-71.
- [21] W.C. Shiu and R.M. Low, Group-magicness of complete N-partite graphs, JCMCC, 58 (2006), 129-134.
- [22] W.C. Shiu and R.M. Low, Integer-magic spectra of sun graphs, J. Comb. Optim., 14 (2007), 309-321.
- [23] W.C. Shiu and R.M. Low, \mathbb{Z}_k -magic labelings of fans and wheels with magic-value zero, Australas. J. Combin., 45 (2009), 309–316.
- [24] W.C. Shiu and R.M. Low, Integer-antimagic spectrum of dumbbell graphs, preprint, 2014.
- [25] R.P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J., 40 (1973), 607-632.
- [26] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, Duke Math. J., 40 (1976), 511-531.

DEPARTMENT OF MATHEMATICS, HONG KONG BAPTIST UNIVERSITY, 224 WATERLOO ROAD, HONG KONG, P.R. CHINA

E-mail address: wcshiu@hkbu.edu.hk

Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, P.R. China

E-mail address: lionel@hkbu.edu.hk

Department of Mathematics, San Jose State University, San Jose, CA 95192, USA

E-mail address: richard.low@sjsu.edu