In the Claims:

Please amend the claims as follows:

- 1-8 (cancelled)
- (new) A method of making artificial dental bridges, comprising:
 applying a suspension comprising particles to densely sintered high strength ceramic individual bridge parts;

drying the suspension comprising particles to form a layer of particles; applying a suspension of glass material to the layer of particles; and heat treating the individual bridge parts with the applied layer of particles and the suspension of glass material with a one step heat treatment.

- 10. (new) The method according to claim 9, wherein the suspension comprising particles comprises particles, dispersant for the articles, binder for the particles, and a solvent.
- 11. (new) The method according to claim 9, wherein the particles comprise aluminum oxide particles.
- 12. (new) The method according to claim 9, wherein the suspension of glass comprises SiO₂, B₂O₃, Al₂O₃, La₂O₃, and TiO₂.

- 13. (new) The method according to claim 9, wherein the individual bridge parts comprise high strength ceramic material with a relative density greater than 98%.
- 14. (new) The method according to claim 9, wherein the individual bridge parts comprise one or more of the oxides Al₂O₃, TiO₂, MgO, ZrO₂ or ZrO₂ with up to 10 mol % Y₂O₃, MgO or CaO.
- 15. (new) The method according to claim 9, wherein the suspension of glass has a surface energy at a joining temperature lower than a surface energy for the densely sintered individual bridge parts.
- 16. (new) The method according to claim 9, wherein the suspension of glass material comprises the same metal oxides as the densely sintered high strength ceramic individual bridge parts in an amount less than a degree of saturation of the metal oxides in the suspension of glass material at the joining temperature.
- 17. (new) The method according to claim 9, wherein the glass material has a coefficient of thermal expansion that is less than or equal to a coefficient of thermal expansion of the densely sintered high strength ceramic individual bridge parts.
- 18. (new) The method according to claim 9, wherein the glass material comprises SiO₂ 32 mol %, B₂O₃ 24 mol %, Al₂O₃ 18 mol %, and La₂O₃ 12 mol %.

19. (new) The method according to claim 9, wherein the particles in the layer of particles are large enough such that drying stresses on removal of solvent from the suspension of glass material do not lead to catastrophic failure of the dental bridge prior to melting and solidification of the glass material.