ULI101 Week 08

Week Overview

- File system links
- Hard and symbolic links
- Process management
- Storage quota information

What is a file system Link?

A link is a pointer to a file.

- This pointer associates a file name with a number called an i-node number
- An i-node is the control structure for a file (on a UNIX/Linux file system)
- If two file names have the same *i-node* number, they are links to the same file

What is a file system Link?

Use the command "Is -i" to print i-node number of each file:

```
[ray@localhost week8]$ ls -i
32764 lab3a.html 37745 lab3b.html
37740 lab3.zip
```

Use the command "Is -il" for long listing

```
[ray@localhost week8]$ ls -il
total 40
    32764 -rw-r--r-- 1 ray ray 1097 Sep 13 08:53 lab3a.html
    37745 -rw-r--r-- 1 ray ray 6582 Sep 13 08:53 lab3b.html
    37740 -rw-rw-r-- 1 ray ray 6218 Sep 14 00:05 lab3.zip
```


What is a file system Link?

There are two kinds of links:

- 1. Hard Links
- 2. Soft or Symbolic Links

Hard Links

- Hard link is a reference to the physical data on a file system
- More than one hard link can be associated with the same physical data
- Hard links can only refer to data that exists on the same file system
- Only the root user can create hard links to a directory
- When a file has more than one link, you can remove any one link and still be able to access the file through the remaining links.

Hard Links

Example:

- Assume you used "vi" to create a new file, you create the first hard link (vi myfile)
- To Create the 2nd, 3rd and etc. hard links, use the command:
 - In myfile link-name

Display Hard Links info

- Create a new file called "myfile"
- Run the command "Is -il" to display the inode number and link counter

```
38753 -rw-rw-r-- 1 uli uli 29 Oct 29 08:47 myfile

|-- inode # |-- link counter (one link)
```

Display Hard Link Info

- Create a 2nd link to the same data:
 In myfile mylink
- Run the command "Is -il":

```
38753 -rw-rw-r-- 2 uli uli 29 Oct 29 08:47 myfile
38753 -rw-rw-r-- 2 uli uli 29 Oct 29 08:47 mylink

|-- inode # |--link counter (2 links)
```

Add the 3rd Link

- Create a 3rd link to the same data: In myfile newlink
- Run the command "Is -il":

```
38753 -rw-rw-r-- 3 uli uli 29 Oct 29 08:47 myfile
38753 -rw-rw-r-- 3 uli uli 29 Oct 29 08:47 mylink
38753 -rw-rw-r-- 3 uli uli 29 Oct 29 08:47 newlink

|-- inode # |--link counter (3 links)
```

Symbolic Links

Also Known As (a.k.a.): Soft links or Symlinks

- A Symbolic Link is an indirect pointer to a file a pointer to the hard link to the file
- You can create a symbolic link to a directory
- A symbolic link can point to a file on a different file system
- A symbolic link can point to a nonexistent file (referred to as a "broken link")

Symbolic Links

To create a symbolic link to the file "myfile", use

```
In -s myfile symlink or In --symbolic myfile symlink
```

```
[uli@seneca courses] ls -li myfile
44418 -rw-rw-r-- 1 uli uli 49 Oct 29 14:33 myfile
```

```
[uli@seneca courses] ln -s myfile symlink
[uli@seneca courses] ls -li myfile symlink
44418 -rw-rw-r-- 1 uli uli 49 Oct 29 14:33 myfile
44410 lrwxrwxrwx 1 uli uli 6 Oct 29 14:33 symlink -> myfile
```

Different i-node

File type: (symbolic link)

Link counter: (1 link)

Properties of Symbolic Links

- The i-node number is different from the pointed to file
- The link counter of the new symbolic link file is "1"
- Symbolic link file does not affect the link counter of the pointed to file
- The type field of symblic file contains the letter "l"
- The symbolic link file and the pointed to file have different status information (e.g. file size, last modification time etc.)

Create Symbolic Link Directory

The syntax is the same as linking to a file
 In -s target_directory link_directory
 In --symbolic target_directory link_directory

```
[uli@seneca week8]$ ls -li
38766 drwxrwxr-x 7 uli uli 168 Oct 29 13:32 courses

[uli@seneca week8]$ ln courses mydir
ln: `courses': hard link not allowed for directory
[uli@seneca week8]$ ln -s courses mydir
[uli@seneca week8]$ ls -li
38766 drwxrwxr-x 7 uli uli 168 Oct 29 13:32 courses
44417 lrwxrwxrwx 1 uli uli 7 Oct 29 15:41 mydir -> courses
```

Directory Listing

- To display the contents in a directory, we usually use the command "Is -I directory_name"
- Compare the following two commands

Delete link to a directory

To delete a link to a directory, simply use the "rm" command:

```
[uli@seneca week8]$ ls -l
drwxrwxr-x 7 uli uli 168 Oct 29 13:32 courses
lrwxrwxrwx 1 uli uli 7 Oct 29 15:41 mydir ->
    courses

[uli@seneca week8]$ rm mydir
[uli@seneca week8]$ ls -l
drwxrwxr-x 7 uli uli 168 Oct 29 13:32 courses
```

Properties of Symbolic Link Directory

- The Symbolic link to a directory has a file type of "I" (the first letter of the permission field).
- The permissions on the link are set to "rwx" for all.
- chmod on the link applies to the actual directory (or file), the permissions on the link stay the same
- Can point to a non-existent directory

UNIX processes

- Almost everything that is "running" on a UNIX system is referred to as a process
- Each process has an owner
- Each process has a unique ID (PID)
- Processes in UNIX can run in:
 - Foreground
 - Background

Process structure

- UNIX processes are hierarchical
- This structure has a root, parents and children
- Creation of a new process is called forking or spawning
- Parent can fork a child and children can fork their own children
- Processes keep their PID for their entire life
- Usually parent sleeps when a child is executing its task
 - The exception is when the child process is run in the background

Process identification

- ps (process status) command displays snapshot information about processes
- By default, the ps command displays information only about current terminal (ps -U username shows all)
- The top command provides a continuous update including resource usage

Foreground and background

- Foreground processing:
 - Is the default
 - Takes away the command line until processing is finished
- Background processing:
 - Is invoked by putting the ampersand (&) operator at the end of the command line
 - User gets the command line back immediately
- Both foreground and background processes can be executed on one command line
- Background processes run concurrently (at the same time)

Process suspending

- A foreground job can be suspended (temporarily stopped) by pressing Ctrl+Z
- Stopped jobs can be restarted by using the fg command Syntax:

```
or fg job_number (1,2...)
or fg PID
```

- fg without id/job will bring the last background process to foreground
- The jobs command will show a list of background/suspended processes

Process restarting

Restarting in foreground:

```
fg PID OR fg job_number
```

Restarting in background:

```
bg PID OR bg job_number
```

Terminating processes

- Foreground processes can be terminated by using Ctrl+C or can be killed
- Background processes have to be killed unless brought to foreground – then Ctrl+C will work

kill command

- Terminates a process
- One or more processes can be terminated at once
- Regular users can only kill processes they own
- Syntax:

kill PID

- In some cases may be ignored by the shell use kill –9 PID instead
- kill –9 0 will terminate all background processes
- pkill command can kill processes based on the program name, for example: pkill firefox

Storage Quotas

- All file systems have finite capacity
 - Try the du and df commands to find out more
- Most regular user accounts have a quota
 - A quota limits the amount of disk space you can consume
 - This ensures that a single user cannot interfere with the file system use for others
- The amount of quota and disk usage can be obtained using the quota command
- If you want more disk space...
 - Temporarily use the /tmp directory
 - Permanently ask the administrator