NEAREST NEIGHBORS METHODS

Week09

k-NN

Review: Types of Classifiers

- A classifier is a function that assigns to a sample, \mathbf{x} a class label \hat{y} $\hat{y} = f(\mathbf{x})$
- A probabilistic classifier obtains conditional distributions $\Pr(Y|\mathbf{x})$, meaning that for a given $\mathbf{x} \in X$, they assign probabilities to all $y \in Y$
 - Hard classification

$$\hat{y} = \arg\max_{y} \Pr(Y = y | \mathbf{x})$$

Any other classifiers not belonging to a probabilistic approach?

k-Nearest Neighbors(kNN)

- Nonparametric method used for classification and regression
- For classification
 - Output class of data sample is determined by output class of its k-nearest neighbors
 - Majority vote
 - assign the output class to the most common class among k-nearest neighbors

- For regression
 - $lue{\Box}$ Output value of data sample is determined by output value of its k-nearest neighbors of the data sample
 - $lue{}$ Output value is the average value of k-nearest neighbors
 - There are several different ways to calculate average

*** What is Nonparametric Method**

- Parametric
 - Assume that data are drawn from a specific form of function up to unknown parameters
 - Linear regression, logistic regression
- Nonparametric
 - Assume that data are drawn from a certain unspecified function
 - Unlike parametric methods, there is no single global model
 - Learn to find patterns from training set and interpolate
 - Heavier computational cost than parametric ones

- Distance is a numerical description of how far apart objects are
 - Euclidean distance, one of distance measures, is common
 - Euclidean distance of two-dimensional data points, (x_1, y_1) , (x_2, y_2)

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

■ In general, Euclidean distance of two data points, $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in \mathbb{R}^n$

$$d = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

- Other distance measures
 - 1-norm distance(Manhattan distance)

$$\sum_{i}^{n} |x_i - y_i|$$

□ p-norm distance (when p=2 → Euclidean distance)

$$\left(\sum_{i}^{n}(x_{i}-y_{i})^{p}\right)^{1/p}$$

- Distance measure should hold the following
 - $d(x,y) \ge 0$
 - Non-negativity
 - $d(x,y) = 0 \Leftrightarrow x = y$
 - Identity of indiscernibles
 - d(x,y) = d(y,x)
 - symmetry
 - $d(x,z) \le d(x,y) + d(y,z)$
 - Subaddivity or triangle inequality

- What if variables are not numerical
 - Other metrics are required for categorical variables
- Metrics for categorical variables
 - Hamming distance

$$d(x,y) = \frac{\sum_{i} I(x_i \neq y_i)}{\dim(x)}$$

- $I(x_i \neq y_i)$ is 1 if and only if $x_i \neq y_i$
- $\dim(x)$ is the dimension of x

- Metrics for categorical variables
 - Jaccard distance
 - Used to calculate the distance between binary vectors

		\mathcal{Y}	
		0	1
$\boldsymbol{\chi}$	0	а	b
	1	С	d

- a: the total number of attributes where x and y both have a value of 0
- b: the total number of attributes where the attribute of x is 0 and the attribute of y is 1
- c: the total number of attributes where the attribute of x is 1 and the attribute of y is 0
- d: the total number of attributes where x and y both have a value of 1

$$d(x,y) = \frac{b+c}{b+c+d}$$

Question

 \Box Find k-nearest neighbors based on given data points

1) Find **k**-nearest neighbors of 5th objects when **k**=3 using Euclidean distance

2) Find **k**-nearest neighbors of 5th objects when **k**=3 using Manhattan distance

index	\boldsymbol{x}	y	
1	1	1	
2	2	3	
3	4	6	
4	3	1	
5	2	4	
6	4	0	
7	7	5	
8	6	2	

Feature Scaling

- Scale of variable affects on determination of nearest neighbors
- Which sample is the nearest neighbor of data sample 1?

i	x_1	x_2	x_3	x_4	y
1	9	30	100	0.5	1
2	9	25	250	0.1	0
3	9	44	220	0.7	0
4	7.5	75	170	1.2	1
	•••	•••			•••

i	Distance from p_1		
1	-		
2	150.0838		
3	120.8141		
4	83.23305		

- $lue{}$ Scale of variable x_3 dominates over other variables
- The nearest neighbor is strongly dependent on x_3

It is unfair!

Normalization

- Normalization is to adjust values of variables with different scales to common scale
 - There are several different ways for normalization
- Commonly used normalization method

$$x \to \frac{x - \mu}{\sigma}$$

- \blacksquare μ =mean value of the variable
- σ =standard deviation of the variable
- \blacksquare μ and σ are computed by sample data points

$$x \to \frac{x - x_{min}}{x_{max} - x_{min}}$$

- \mathbf{z}_{max} is the maximum value of variable x and x_{min} is the minimum value of variable x
- Normalized value is within [0, 1]

Mahalanobis Distance

- Normalization based on normal distribution $(x \to \frac{x-\mu}{\sigma})$ assumes that the sample points are distributed about the center of mass in a spherical manner
 - In real data, variables are correlated with other variables

Need to consider scale (level of spread along axis) and correlation to measure distance

Mahalonobis distance

Mahalanobis Distance

Mahalanobis distance

$$d(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{(\mathbf{x}_1 - \mathbf{x}_2)^T S^{-1}(\mathbf{x}_1 - \mathbf{x}_2)}$$

- *S* is sample covariance matrix
- If covariance matrix is diagonal(no correlation), the resulting distance measure is as the same as the standardized distance

$$d(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{\sum_{i=1}^{p} \frac{(x_{1i} - x_{2i})^2}{s_i^2}}$$

Mahalanobis Distance

Comparison between Euclidean distance and Mahalanobis distance

Euclidean distance

Mahalanobis distance

Procedure of kNN

Decide the number of nearest neighbors k and distance measure

For all data point in test set, find k nearest neighbors

Obtain output value based on output values of neighbors

Fixed-radius Near Neighbors

Problem of Fixed-Number of Nearest Neighbors

 \Box When distribution of data set is not homogenous, samples not similar to data point x can be obtained in the nearest neighbors

$$k = 5$$

Fixed-Radius Near Neighbors

- - Because of that, the number of neighbors may be different depending on the location

Fixed-Radius Near Neighbors Methods

- The only difference of fixed-radius NN from kNN is the method to find the nearest neighbors
 - Remained steps of classification and regression are the same

Decide radius of range from data point and distance measure

For all data point in test set, find fixed-radius near neighbors

Obtain output value based on output values of neighbors