遅れ、予測、そして確率的「時間」

大平徹

(株)ソニーコンピュータサイエンス研究所

概要

本論文では時間軸上での「非局所性」と「ゆらぎ」についての議論の方向を具体的なモデルを通じて提起する. 前者については「遅れ力学」と「予測力学」を、後者については「確率的『時間』」を用いたモデルを提案する.

Delay, Prediction, and Stochastic Time

Toru Ohira

Sony Computer Science Laboratories, Inc.

Abstract

We would like to propose a discussion of "non-locality" and "fluctuation" on time through presentations of concrete models. We discuss delayed and predictive dynamical models for temporal non-locality. For fluctuations on time, we discuss a model with "stochastic time".

1 はじめに

我々の時間と空間に対する認識には違いがあり、それは現象の捉え方や理論体系に影響をあたえていると考えられます。歴史の中で繰り返し議論させてきた「時間とは何か」という問題 [1] はこの違いにも深く関連しているとも考えられます。ここではその違いの例として時間の「非局所性」と「揺らぎ」を議論してみたいと思います。どちらも「空間的」な概念で時間とのなじみは薄いのですが、これを時間軸上で考えることでどのような現象の可能性があるのかを具体的にモデルを通じて提起してみます。

2 時間の「非局所性」: 遅れと予測 力学

まず、非局所性についてですが、空間的に離れた点の間の作用については、「場」の概念や、波の伝搬などで物理理論に確立されています。量子力学においては、アインシュタイン・ポドルスキ・ロゼン(EPR)パラドックスや共鳴トンネル効果などに具現化されているように、非局所性はより繊細な側面を見せま

すが、これも空間的な取り扱いです。一方で、時間軸上での非局所性を扱う例としては遅れ力学があります [2,3,4]. 「遅れ」の要素は人間の反応時間の遅れ、フィードバック制御の遅れ、情報伝達の遅れ等、さまざまな場面に現れています。遅れを含む力学式が複雑な挙動を示すことは知られており、交通流の研究でも応用が見られます [5]. 遅れ力学式は現時点と一定の時間はなれた過去の時刻の状態を参照します。この遅れ力学と対称をなす形で同じように時間軸上で非局所性を持つ「予測力学式」を最近提案しました [6,7]. これは現時点と一定の時間はなれた未来の時刻の状態を予測して、参照する力学式です。この予測力学においても複雑な挙動が出現します。こでは遅れと予測力学について具体例を示します.

力学微分方程式としては一般的に以下のような形で書ける場合を考えます.

$$\frac{dx(t)}{dt} = f(\bar{x}(\bar{t}), x(t)). \tag{1}$$

ここで x は時間 t の力学変数で, f がその変化をつかさどる力学関数です。通常の力学式との違いは時刻 \bar{t} の存在で, これは一般に $t \neq \bar{t}$ で過去 ($\bar{t} < t$) に

は現時刻の状態 x(t) だけでなく、時間的にはなれた (図 1A)を用います. (β と s はパラメータ.) 時刻 \bar{t} における状態 \bar{x} にも f を介して依存するとい うことです. この \bar{t} や \bar{x} の導入の方法はいろいろ考 えられますが、ここでは上記に述べたように遅れと 予測力学を考えます.

遅れ力学については上記の一般定義よりさらに以 下の条件を加えることで与えられます.

$$\bar{t} = t - \tau, \quad \bar{x}(\bar{t}) = x(t - \tau).$$
 (2)

ここで $\tau > 0$ が遅れです. つまり現在 t と時間間隔 τ 前の 2 時点の状態が、力学に関与します。

一方で, 予測力学については最近提案し [6, 7], 一 部、数値解析的な精緻化が行われている [8] 初期的な 段階です、これは遅れ力学が過去の時刻を参照する のに対比して、将来の時刻を用い、 $\bar{t} = t + \eta$ として $\eta > 0$ を「先進」と呼びます. さらに、その未来の 時刻での状態を決める必要があり、これにも様々な 方式が考えられますが、ここでは

$$\bar{x}(\bar{t} = t + \eta) = \eta \frac{dx(t)}{dt} + x(t) \tag{3}$$

とした、「固定比予測」と呼ぶ方式を用います. こ れは将来 $\bar{t} = t + \eta$ での状態を現在の変化比率のま まで η の時間変化したときの値として将来値 \bar{x} を推 定するということです. このような方式は人口や財 政予測などでも使われています. また、予測力学と いっても、この予測方式では現在までの状態で推定 をしていることになります. しかし、明示的に先進 を含むパラメータを導入したことで予測方式と合わ せて、どれだけ先の時点の予測を用いるかというこ とも、力学の性質に影響を与えること等の知見が得 られました [6].

では具体的に数値計算をしてみます. 連続と離散 時間システムの違いを考えると数理的には粗いので すが、上記で述べたような一般的な性質をもつよう な以下の対応する写像力学を考察します.

$$x_{n+1} = (1 - \mu)x_n + f[\bar{x}(\bar{t_n})] \tag{4}$$

ここで μ は変化率をコントロールするパラメータで す. 遅れを τ としたときの遅れ力学は

$$\bar{x}(\bar{t_n}) = x_{n-\tau},\tag{5}$$

であたえられ、先進 η をもつ予測力学は

$$\bar{x}(\bar{t_n}) = x_n + \eta(x_n - x_{n-1})$$
 (6)

も未来($t<ar{t}$)に成り得ます.すなわち x(t) の変化 とし、 力学関数 f には以下のマッキー・グラス関数

$$f(x) = \frac{\beta x}{1 + x^s}. (7)$$

これらの力学の挙動の例を図1Bに示しました.

図 1: **A:** マッキー・グラス関数で $\beta = 0.8, n = 10$ とした. 直線は $\alpha=0.3$ の傾きを持つ. B: マッ キー・グラス関数を用いたときの遅れ力学写像(左 側列)と固定比予測力学写像(右側列)の比較の 例. パラメータは $\mu = 0.2$, $\beta = 0.8$, n = 10 に設 定. 遅れ η と先進 η の値は比較のため同じで (a) 0, (b) 3, (c) 5, (d) 12, (e) 25 とした.

パラメータは遅れも先進もない $\tau = \eta = 0$ のとき には単調に安定固定点に収束するような力学軌跡を (6) 持つように設定しました. 遅れ τ , または先進 η の 値が大きくなることで振動やより複雑な挙動が現れ 位置と考えます. 通常の力学では一方向に移動する

一般に遅れ力学では遅れとともに初期条件の関数 を τ の初期時間について定義してやる必要がありま す. 他方、予測力学では先進とともに予測の方式を 決めてやる必要があります. 遅れや先進の値とと もに、この初期関数や予測の方式が力学の性質を決 定します。また、どちらも安定点において線形安定 解析を行うことができますが、より進んだ数理的な 解析は一般に困難で、課題として残されているとこ ろが多々あります.

また、遅れ力学の場合には「空間的」ノイズを組 み合わせた「遅れ確率共鳴」[4,9]が提案されていま す. これは通常の確率共鳴 [10, 11] とはことなり、外 部からの周期振動する信号や力を必要とせずに、遅 れ力学からくる振動的な挙動を活用しています. こ の現象については理論的な拡張 [12] に加えて、実験 的な現象の確認もなされました[13]. これからの類 推で予測力学についても似たような現象、「予測確 率共鳴」が起きることが示されています[7].

時間的な非局所性は、単純な力学システムに複雑 な挙動をもたらしえることがこれらの例から推察さ れます.

時間の「揺らぎ」:確率的「時間」

続いて、時間軸上での揺らぎやノイズを取り上げ てみます [14]. これは因果律の問題などがあるので 困難もともないますが、遅れ力学と組み合わせた具 体的なモデルで問題提起してみます. このモデルは 写像力学モデルで以下の形で与えられます.

$$x_{n_{k+1}} = f(x_{n_k}, x_{n_k - \tau}),$$

 $n_{k+1} = n_k + \xi_k$ (8)

ここで n_k は整数で、これを「時間」として解釈しま す. ξ_k は +1 もしくは -1 を確率的にとり, τ は遅れ です. $\xi_k = -1$ となる確率を k によらずに p とおき, $n_0=0$ とします. すると p=0 の時には $n_k=k$ と なり、このモデルは通常の遅れ力学写像に収束しま す. しかし, 0 < p においては時折 $\xi_k = -1$ となり, 「時間」の向きが「逆転」します.この時 $,x_n$ はよ リ大きなkを持つ値で更新することにしますが、こ れにより「過去」の状態を p の確率で書き換えるこ とになります. ちょうど、図2に示したようにテー プレコーダの記録ヘッドが、移動しながらテープ上 のxの値を更新していき、時間」nはテープの上の

だけですが、このモデルでは0 < p で逆に戻ります. このときのxの「時」系列の性質を調べてみます.

図 2: 確率的「時間」で動く遅れ力学写像モデルの 模式図.

再びマッキー・グラス関数を用いて、以下の具体 例を考察します.

$$x_{n_{k+1}} = x_{n_k} + d\delta(-\alpha x_{n_k} + \frac{\beta x_{n_k - \tau}}{1 + x_{n_k - \tau}^s}).$$
 (9)

ここで α , β , s そして $d\delta$ はパラメータです. の例は図3Aに示しました.遅れ自身は原点の安定 性を崩さない値に設定しているのですが、「時間」 の「逆転」の確率 p を大きくしていくにしたがって、 徐々に規則的に振動する挙動があらわれますが、こ れが、適切なpの値をこえていくと、逆に振動の規則 性は崩れていきます. この様子はxのnの関数とし ての「時」系列、(模式図3のテープ上に書かれて いる x の列) からも、対応するパワースペクトラム のピークからも見てとることができ、「共鳴」カー ブも描けます (図 3B). すなわち「時間的」ノイズ を用いた確率共鳴が出現します。しかし、このモデ ルの理論解析は課題として残されています. このモ デルにおいて、k ではなくn を「時間」とする解釈 には困難も伴いますが、時間軸上での「揺らぎ」も (存在するとすれば)「新しい」現象につながる可能 性があります.

おわりに 4

時間の問題は物理学にとどまらず重いテーマです ので、軽々しくは扱いにくいのですが、「空間的」概 念である非局所性やノイズを時間軸上で考える一つ の問題提起をしてみました. 特に揺らぎについては 古典力学のレベルでは「仮想」であっても、たとえ ば、素粒子論では時空の距離にノイズを加えるよう な研究がなされています[15]. この他にも物理体系 の中のどこかしらで時間の非局所性や揺らぎが考察 に値しないかと考えております.

図 3: \mathbf{A} : 「時間」の向きに確率要素をもつ、式(9)で与えられるモデルを数値計算した結果の例. x_n の時系列(左列)、パワースペクトラム(右列)を表示した. パラメータは $\alpha=0.3$, s=10, $\beta=0.5$, $d\delta=0.1$, $\tau=15$ として、「時間」の向きの逆転する確率 p は (\mathbf{a}) p=0, (\mathbf{b}) p=0.15, (\mathbf{c}) p=0.3, (\mathbf{d}) p=0.4, (\mathbf{e}) p=0.45 とした. 初期条件としては $n_0=0$ かつ, $x_n=0.5$, $(n\leq0)$ と設定した. 数値計算は k=10240 ステップまでおこない, x_n の $0\leq n\leq L=1024$ までの「時系列」に対応するパワースペクトラムを 50 試行の平均をとって計算した. 周波数 λ の単位は $\frac{1}{L}$ とし、パワースペクトラム $P(\lambda)$ は任意単位とした. \mathbf{B} : 「時間」の向きの確率 p の関数として、 \mathbf{A} のパワースペクトラムのピークにおける S/N 比をプロットした.

参考文献

- [1] P. Davies, *About Time* (Simon and Schuster, New York, 1995). (林一 訳,『時間について』, (早川書房,1997)).
- [2] M. C. Mackey and L. Glass, Science 197 (1977) 287.
- [3] 内藤敏機,原惟行,日野義之,宮崎倫子,『タイムラグを持つ微分方程式 関数微分方程式入門』 (牧野書店,2002).
- [4] 大平徹,『ノイズと遅れの数理』 (共立出版, 2006).
- [5] 五十嵐尤二,伊藤克美,中西健一,交通流模型 の数理ー厳密解構成によるアプローチ,日本物 理学会誌,**55-3**,pp. 202-205 (2000).
- [6] T. Ohira, arXiv:cond-mat/0605500;
- [7] T. Ohira, arXive:cond-mat/0610032 (To appear in the AIP Conf. Proc. of 9th Granada Seminar (Granada, Spain, Septemper 11-15, 2006)).
- [8] J. M. Aguirregabiria, arXiv:physics/0606079.
- [9] T. Ohira and Y. Sato, Phys. Rev. Lett. 82 (1999) 2811.
- [10] K. Wiesenfeld, and F. Moss, Nature 373 (1995) 33.
- [11] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70 (1998) 223.
- [12] L.S. Tsimring and A. Pikovsky, Phys. Rev. Lett. 87 (2001) 250602.
- [13] C. Masoller, Phys. Rev. Lett. **88** (2002) 034102.
- [14] T. Ohira, arXiv:cond-mat/0607544 (To appear in the AIP Conf. Proc. of 8th Int. Symp. of Frontiers of Fundamental Physics (Madrid, Spain, October 17-19, 2006)).
- [15] 高野義郎, 素粒子と時間空間」(別冊・数理科学 『時間論の諸パラダイム』 サイエンス社,2004).