Agent新技术新突践

王元 CEng

- ChatGPT技术内核: 生成式AI
- ·本次分享,Al Agent时代下的新方法和新实践

聊技术前,先捋捋场景

- 私域问答机器人
- 无代码数据分析与报表
- 文档智能/企业内网搜索

UI -> 交互式; 后台 ->多轮

UI -> 交互式; 后台 ->多轮

UI ->线性执行;后台 ->单/多轮

新的技术栈

多模态

私域数据

问题: 如何接入私域数据?

- 私域数据常常大于LLM原生的context length
- 全量放入context可能不是最优方式

步骤:

- 私域数据的分割,存入向量数据库;
- ·向量数据库召回,召回结果作为LLM的context;

私域数据一分割

M个文件

- 考量:
- 分割颗粒度
- 召回准确率和速度
- 维护成本

数据接入

分割策略:

- ✔ 分隔符
- ✓ 均匀分割
- ✓ 树结构

N/\cenbeddings

私域数据一召回

私域数据一召回

私域数据一评估

传统检索指标:

- MRR
- · NDCG等

端到端:

• 答案与标准答案的相似度

LLM - 无需标注(RAGAS):

- •上下文与问题的相关性
- 答案与上下文的相关性
- 答案与问题的相关性

私域数据一经验

- ·召回方法,分割大小,top-K是影响性能的主要超参
- 向量空间的语义搜索,有时会有不靠谱的情况
- · 结合传统文字BM25搜索会带来一些帮助
- 召回数据排序,decoder-only比encoder-decoder更敏感
- •把query同时放在召回数据前和后,有助于LLM回答
- 召回可以有更多的考量维度,不仅限于语义相似度

角色框架

给LLM加上方法论:

- 了解背景
- 任务拆分,逐个击破
- ・自省
- 行动(感知和改变环境)

基础模块:

- •角色设定
- 规划模块
- 内存模块
- 动作模块

角色框架一优势

Agent机制的好处: 提升LLM处理复杂任务的能力, 扩大了应用范围

- · 将LLM从无状态变为有状态;
- · 缓解context length有限的外部框架;
- · 赋予LLM自主调用外部工具的能力;
- · 使LLM获得拆解任务的思维,将复杂问题分拆逐个解决;
- · 简化手写FSM;
- · 多个agent相互合作成为可能,即群体智慧(multi-agent)

角色框架

角色框架

角色框架一规划

开环系统: i步的执行结果不影响i+1步的规划

角色框架一规划

闭环系统:

- · i步的执行影响i+1步的规划
- · 多轮调用LLM
- · 使用外部工具 (tools)
- 内存使用

角色框架一规划

一些代表性的闭环系统:

Self-Ask: COT + follow-up Q + tools

• ReAct: 局部plan - 执行 - 观察

• Plan-n-Solve: 全局plan + ŘeAct

· Reflextion: 群体智能雏形(3个LLM)

角色框架一内存

内存种类: 短期记忆(上下文),长期记忆(向量数据库)

内存形式:向量,字符串(text/json/list),数据库

内存召回指标:相关性,时效性,重要性

内存写入: append, 去重, 覆写 (overflow或者简化)

角色框架一行动

函数类型:人类函数,LLM函数

函数选择: 类似RAG检索

函数入参提取: string -> json

函数返回值: string <-> json/xml

角色框架一性能评估

主观评估:

- · 人类打分;
- 图灵测试;

数据评估:

- ·端到端任务指标,KIE准确率,回答GT相似度;
- · 经典数据集: Alfworld, HotpotQA, FEVER, HumanEval
- benchmark: AgentBench, ToolBench等multi-task集合

系统评估:

- 报错次数
- 平均LLM calls
- · 迭代轮次 (耗时)

角色框架一经验

一些尝试:

ReAct
Plan-n-Execute
Self-Ask

一些思考:

Plan-n-Execute > ReAct > Self-Ask 工具选择有时会错 - 工具list最好不要固定一个顺序 中间结果生成有时会错 - GPT4 turbo会改善 现实情况: Agent和手写FSM混合使用

角色框架一挑战

商业:

- · Agent多次调用LLM,除了能力边界提升,成本也提高了
- · Tools的使用会带来额外成本

技术:

- 系统鲁棒性
- 系统时延

安全:

- · Agent自主创建子目标并执行,可能会有潜在安全风险
- · Agent机制会激发AI产生自我意识吗?

角色框架一推荐

关键论文:

- COT (<u>https://arxiv.org/abs/2201.11903</u>)
- ReAct (https://arxiv.org/abs/2210.03629)
- Reflextion (https://arxiv.org/abs/2303.11366)
- Agent综述 (https://arxiv.org/abs/2308.11432)

工程代码:

ReAct: https://github.com/ysymyth/ReAct

Reflextion: https://github.com/noahshinn024/reflexion/tree/main

Langchain: https://github.com/langchain-ai/langchain

Marvin: https://github.com/PrefectHQ/marvin

多模态

场景不同: 自然图片 ->文字密集型文档

问题:对于多模态LLM,OCR是否需要?

多模态-baseline

难点 - text序列化非常难以泛化,错误的排序直接影响LLM做QA或KIE

多模态-baseline

Baseline on steroids: 模型越堆越多,系统越搞越复杂,泛化性依旧成问题

多模态一方案1

微调形式: 高效微调

挑战:

- · 开源LLM/MLLM适用,闭源不适用(没API)
- · 分类任务效果好,KIE效果不好
- · 预训练的vision encoder多数分辨率低,且不是multi-scale
- · 微调不是端到端的,是2-stage微调

多模态一方案1

	Regular			Irregular						Occluded		Others					
Method	IIIT5K	SVT	IC13	IC15	SVTP	CT80	COCO	CTW	TT	HOST	WOST	WordArt	IAM	ReCTS	CAR-A	Avg.	
	3000	647	857	1811	645	288	9896	1572	2201	2416	2416	1511	3000	3000	3784		
BLIP-2 OPT _{6.7b}	76.63	80.22	82.96	69.35	73.33	76.04	48.68	61.70	63.52	57.00	68.00	74.26	38.00	0	6.21	58.40	
BLIP-2 FlanT5 _{XXL}	76.60	83.77	86.35	70.84	73.80	80.90	50.10	64.50	65.74	57.16	68.34	73.79	40.50	0	17.73	60.68	
OpenFlamingo	68.20	74.19	74.10	63.61	73.49	67.71	45.52	53.94	57.84	48.18	60.55	60.62	45.53	0	3.57	53.14	
LLaVA	64.10	67.70	70.71	58.97	62.95	61.11	41.71		52.43	47.39	55.26	62.61	50.40	0	1.40	49.84	
MiniGPT4	48.00	50.39	48.89	42.19	50.39	57.29	26.25	41.86	40.57	34.52	41.06	51.42	28.90	0	1.69	37.56	
mPLUG-Owl	74.43	77.74	82.15	65.21	72.71	81.94	50.42	68.64	68.11	47.81	60.60	72.73	42.53	0	40.20	60.35	
Supervised-SOTA	96.63	93.04	96.73	85.70	89.30	89.93	64.42	78.57	80.13	73.10	81.58	72.49	91.24	94.77	95.53	85.54	
Method				VQA					KIE								
	STVQA OCRVQA TextVQA J			DocVQA InfoVQA ChartQA E			ESTVQA(En) ESTVQA(Ch			QA(Ch)	FUNSD	SROIE	POIE	HME100K		Avg.	
	5000	5000	5000	5349	2801	1250	50	00	5	000	588	2503	6321	5000			
BLIP-2 OPT _{6.7b}	13.36	10.58	21.18	0.82	8.82	7.44	27.02		0	.08	0.00	0.00	0.02	0.0	00	9.41	
BLIP-2 FlanT5 _{XXL}	21.70	30.74	32.18	4.86	10.17	7.20	42.46		0	0.04 1.19		0.20	2.52	0.04		16.19	
OpenFlamingo	19.32	27.82	29.08	5.05	14.99	9.12	28.20		0	.26	0.85	0.12	2.12	0.00		13.02	
LLaVA	22.08	11.36	28.86	4.49	13.78	7.28	33.48		0	0.16		0.12	2.09	0.04		12.00	
MiniGPT4	14.02	11.52	18.72	2.97	13.32	4.32	28.	36	0	.10	1.19	0.04	1.31	0.0	00	9.59	
mPLUG-Owl	29.26	28.62	40.28	6.88	16.46	9.52	49.68		0	.44	1.02	0.64	3.26	0.18		18.44	
Supervised-SOTA	69.60	68.10	73.67	90.16	36.82	70.5	43.26† 4		43	3.26†	93.12	98.70	79.54	64.29		72.75	

Source: https://arxiv.org/abs/2305.07895

KIE任务,MLLM效果普遍差强人意期待更多开源高分辨率多模态原生大模型的出现!

多模态-方案2

- ·解决了text序列化问题
- ·开源和闭源LLM都适用
- · 对于LLM,是in-context learning,LLM本身不微调
- · 预训练Seq2seq模型分辨率高,模型小,只需微调Seq2Seq模型
- · 缺点: GT标注较难获取, 有标注成本

语义缓存

LLM服务很贵,以GPT4为例:

- · GPT4接口调用成本很高,千万美元/年
- 接口平均响应时间为3-6秒

语义缓存技术可以有效缓解上述挑战

语义缓存

语义缓存

注意事项:

- Hit ratio vs search accuracy
- · 高速实现attribute filtering,推荐支持hybrid search的向量数据库
- 缓存一致性
- · 并行化支持 eviction manager的进程安全
- 持久化和故障恢复

统一缓存设计

- Key定义
- 表结构合理划分
- · Eviction manager交互接口

推荐: GPTCache

测试问题

LLM应用让测试变得更有挑战测试数据

- On-topic similarity
- Off-topic rejection
- Moderation
- Prompt injection
- Hallucination

模型打分

- · 人工收集gold responses
- · 模型自动打分 需要研发专门的打分模型,OR
- LLM as Evaluator 大模型prompting来打分

THANKS

软件正在重新定义世界 Software Is Redefining The World

