

Principio di induzione

Quinto assioma di Peano (principio di induzione: prima forma)

Sia $S \subseteq \mathbb{N}$ un insieme che verifica le seguenti proprietà:

- 1. $0 \in S$ (base dell'induzione)
- 2. $\forall n, n \in S \Rightarrow n+1 \in S$ (passo induttivo)

Allora $S = \mathbb{N}$.

Principio di induzione (seconda forma)

Sia P(n) una proprietà vera per n = 0.

Supponiamo che se P(n) è vera, allora è vera anche P(n + 1).

Allora P(n) è vera per ogni n.

Principio di induzione ("da un certo punto in poi")

Sia $S \subseteq \mathbb{N}$. Supponiamo che:

- 1. $k \in S$
- 2. $\forall n \geq k$, se $n \in S$ allora $n+1 \in S$

Allora $S \supseteq \{n \in \mathbb{N}: n \ge k\}$

Fattoriale di un numero (per induzione)

Il fattoriale di un numero *n* rappresenta il prodotto dei primi *n* numeri naturali ed è definito come:

$$n! = \begin{cases} 0! = 1\\ (n+1)! = n! (n-1)! \end{cases}$$

Campi ordinati

Proprietà dell'insieme Q

R1: addizione o somma

È definita in \mathbb{Q} un'operazione detta **addizione** (o **somma**) con le seguenti proprietà:

- 1. **commutativa**: $\forall a, b, a + b = b + a$;
- 2. associativa: $\forall a, b, c, (a+b) + c = a + (b+c)$
- 3. esistenza dell'**elemento neutro** della somma (0) tale che $\forall a, a + 0 = a$
- 4. esistenza dell'**opposto** di ogni elemento: $\forall a, a + (-a) = 0$

R2: moltiplicazione o prodotto

È definita in \mathbb{Q} un'operazione detta **moltiplicazione** (o **prodotto**) con le seguenti proprietà:

- 1. **commutativa**: $\forall a, b, a \cdot b = b \cdot a$
- 2. associativa: $\forall a, b, c, (a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. esistenza dell'**elemento neutro** del prodotto (indicato con 1) tale che $\forall a, a \cdot 1 = a$
- 4. $\forall a \neq 0$ esiste un elemento detto l'**inverso** di a indicato con $\frac{1}{a}$ o a^{-1} tale che $a \cdot a^{-1} = 1$
- 5. proprietà distributiva della somma rispetto al prodotto: $\forall a,b,c,(a+b)\cdot c=a\cdot c+b\cdot c$

R3: relazione d'ordine totale

Su \mathbb{Q} è definita una **relazione d'ordine totale** tale che:

- 1. $\forall a, b, c$, se $a \leq b$ allora $a + c \leq b + c$;
- 2. $\forall a, b, c \text{ con } c > 0$, se $a \le b$ allora $ac \le bc$

Insieme ordinato e totalmente ordinato

Un insieme X si dice **ordinato** se su X è definita una relazione \leq detta **relazione d'ordine** con le seguenti proprietà:

- 1. riflessiva: $\forall a, a \leq a$;
- 2. **antisimmetrica**: $\forall a, b, \text{ se } a \leq b \text{ e } b \leq a \text{ allora } a = b;$
- 3. **transitiva**= $\forall a, b, c$, se $a \leq b$ e $b \leq c$ allora $a \leq c$

Un insieme ordinato X si dice **totalmente ordinato** se presi comunque due elementi $a, b \in X$ è sempre possibile confrontarli secondo la relazione d'ordine \leq definita su X.

Non tutti gli insiemi ordinati sono anche totalmente ordinati.

Campo e campo ordinato

Un insieme su cui sono definite due operazioni che soddisfano le proprietà **R1** ed **R2** si dice campo.

Un insieme su cui sono definite due operazioni ed una relazione d'ordine che soddisfano le proprietà **R1**, **R2** ed **R3** si dice **campo ordinato**.

Maggiorante e minorante

Sia (A, \leq) un insieme ordinato e sia B un suo sottoinsieme. Si dice che un elemento $a \in A$ è un **maggiorante** di B se

$$\forall x \in B, x \leq a$$

L'insieme dei maggioranti di B si indica con M_B .

Dire che un elemento $a \in A$ non è un maggiorante di B significa che

$$\exists \bar{x} \in B: \bar{x} > a$$

Un maggiorante di *B* non deve necessariamente appartenere all'insieme *B*.

Si dice invece che un elemento $b \in A$ è un **minorante** di B se

$$\forall x \in B, b \leq x$$

Dire che un elemento $b \in A$ non è un minorante di B significa che

$$\exists \bar{x} \in B : b > \bar{x}$$

Un minorante di B non deve necessariamente appartenere all'insieme B.

Limite inferiore e superiore

Si dice che un sottoinsieme B di un insieme ordinato è **limitato superiormente** se ha dei maggioranti, cioè se $M_B \neq \emptyset$.

Analogamente, si dice che un sottoinsieme *B* di un insieme ordinato è **limitato inferiormente** se ha dei minoranti.

Si dice infine che un insieme è **limitato** se è limitato superiormente e inferiormente.

Massimo e minimo di un insieme

Sia (A, \leq) un insieme ordinato e sia B un suo sottoinsieme. Si dice che un elemento $\alpha \in A$ è il massimo di B se:

$$\begin{cases} a \in B \\ \forall x \in B, \ x \le a \end{cases}$$

In tal caso si scrive a = max B.

Il massimo di un insieme è un maggiorante che appartiene all'insieme stesso.

Si dice invece che un elemento $a \in A$ è il **minimo** di B se:

$$\{a \in B \mid \forall x \in B, \ a \le x\}$$

 $\begin{cases} a \in B \\ \forall x \in B, \ a \leq x \end{cases}$ Il minimo di un insieme è un minorante che appartiene all'insieme stesso.

Estremo superiore ed estremo inferiore

Sia $A \subseteq \mathbb{R}$ un insieme non vuoto e limitato superiormente. Si dice che ξ è l'estremo superiore di Ase ξ è il **minimo dei maggioranti** di A e si indica come $\xi = \sup A$.

Analogamente si dice che η è l'estremo inferiore di A se η è il massimo dei minoranti di A e si indica come $\eta = inf A$.

Caratterizzazione dell'estremo superiore

$$\xi = \sup A \Leftrightarrow \begin{cases} \xi \in M_A \\ \forall \lambda < \xi, \lambda \notin M_A \end{cases}$$

$$\xi = \sup A \Leftrightarrow \begin{cases} \forall a \in A, \ a \leq \xi \\ \forall \lambda < \xi, \exists \bar{a} \in A : \lambda < \bar{a} \end{cases} \Leftrightarrow \begin{cases} \forall a \in A, \ a \leq \xi \\ \forall \epsilon > 0, \exists \bar{a} \in A : \xi - \epsilon \leq \bar{a} \end{cases}$$

Caratterizzazione dell'estremo inferiore

$$\eta = \inf A \Leftrightarrow \begin{cases} \forall a \in A, \ \eta \leq a \\ \forall \lambda > \eta, \exists \bar{a} \in A: \lambda > \bar{a} \end{cases}$$

R4: assioma di Dedekind (o assioma di continuità)

Siano A, B due sottoinsiemi non vuoti di \mathbb{R} tali che:

$$\forall a \in A, \forall b \in B, a \leq b$$

Allora esiste un elemento $c \in \mathbb{R}$, detto **elemento separatore** di A e B, tale che

$$\forall a \in A, \forall b \in B, a \le c \le b$$

Un insieme che soddisfa questa proprietà possiede la proprietà dell'estremo superiore.

Definizione assiomatica di R

Chiamiamo \mathbb{R} un insieme che soddisfa le proprietà **R1**, **R2**, **R3**, ed **R4** e diremo che è un campo ordinato che ha la proprietà dell'estremo superiore.

Funzioni reali di una variabile reale

Definizione di funzione

Dati due insiemi A e B qualsiasi, una **funzione di dominio** A **a valori in** B è una qualsiasi legge che ad ogni elemento di A associa **uno ed un solo** elemento di B.

L'insieme B viene anche detto **codominio** della funzione.

L'uscita corrispondente ad un valore in ingresso si chiama immagine di quel valore.

L'insieme delle possibili uscite si chiama immagine del dominio tramite f.

Grafico di una funzione

Il grafico di una funzione $f:D\subseteq\mathbb{R}\to\mathbb{R}$ è l'insieme

$$\{(x, f(x)): x \in D\}$$

Funzioni limitate

Sia $f:D\subseteq\mathbb{R}\to\mathbb{R}$. Si dice che f è **limitata superiormente** se esiste un elemento $M\in\mathbb{R}$ tale che $f(x)\leq M, \forall x\in D$, cioè se l'immagine di D tramite f è un insieme limitato superiormente. Dal punto di vista grafico significa che il grafico di f(x) è contenuto nel **semipiano inferiore** delimitato dalla retta y=M.

Si dice che f è **limitata inferiormente** se esiste un elemento $m \in \mathbb{R}$ tale che $f(x) \ge m, \forall x \in D$, cioè se l'immagine di D tramite f è un insieme limitato inferiormente.

Dal punto di vista grafico significa che il grafico di f(x) è contenuto nel **semipiano superiore** delimitato dalla retta y=m.

Infine si dice che f è **limitata** se è limitata inferiormente e superiormente. Dal punto di vista grafico significa che il grafico di f(x) è contenuto in una "striscia" delimitata da due rette y=M ed y=m.

Funzioni simmetriche

Sia $f: D \subseteq \mathbb{R} \to \mathbb{R}$. Allora f si dice **pari** se il suo grafico è simmetrico rispetto all'**asse delle ordinate** (cioè se f(x) = f(-x) per ogni $x \in D$).

Un esempio di funzione pari è $f(x) = x^2$.

f si dice invece **dispari** se il suo grafico è simmetrico rispetto all'**origine degli assi** (cioè se f(-x) = -f(x) per ogni $x \in D$).

Un esempio di funzione dispari è $f(x) = x^3$.

Una funzione può non essere né pari né dispari.

Non esistono funzioni con grafico simmetrico rispetto all'asse x perché questo farebbe perdere l'unicità della corrispondenza tra gli elementi del dominio e del codominio.

Funzioni monotone

Sia $f: D \subseteq \mathbb{R} \to \mathbb{R}$.

f si dice monotona crescente se

$$x_1>x_2\Rightarrow f(x_1)\geq f(x_2)$$
 Si dice invece che f è monotona decrescente se

$$x_1 > x_2 \Rightarrow f(x_1) \le f(x_2)$$

Se le disuguaglianze sono strette si dice che f è monotona **strettamente** crescente (o monotona strettamente decrescente, a seconda dei casi).

Funzioni periodiche

Sia $f: D \subseteq \mathbb{R} \to \mathbb{R}$. Si dice che f è **periodica** di periodo T (con T > 0) se T è il più piccolo numero reale positivo tale che $f(x + T) = f(x), \forall x \in D$.

Ogni intervallo di lunghezza T si dice intervallo di periodicità.

Funzioni composte

Siano date due funzioni $f: E \to \mathbb{R}$ e $g: F \to \mathbb{R}$ con $f(E) \subseteq F$ cioè $\forall x \in E, f(x) \in F$.

Si definisce la **funzione composta** di *f* e *q* come

$$g \circ f =: h: E \to \mathbb{R}$$

tale che

$$h(x) = (g \circ f)(x) = g(f(x))$$

agisca come segue:

$$x \mapsto f(x) \mapsto g(f(x))$$

Il dominio di una funzione composta è dato dall'intersezione dei domini delle funzioni che la compongono.

Funzioni invertibili

Se accade che

$$\forall y \in f(D), \exists! x \in D: f(x) = y$$

allora f si dice **invertibile** e si realizza una **corrispondenza biunivoca** tra D e f(D).

Funzioni iniettive, suriettive e biiettive

Una funzione è iniettiva se accade che

$$\forall x_1, x_2 \in D, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$

o equivalentemente

$$\forall x_1, x_2 \in D, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Una funzione si dice suriettiva se accade che

$$\forall y \in f(D), \exists x \in D: f(x) = y$$

Una funzione si dice biiettiva se accade che

$$\forall y \in f(D), \exists! x \in D: f(x) = y$$

Funzione inversa

La funzione che per ogni $y \in f(D)$ associa l'unico elemento $x \in D$ tale che si abbia f(x) = y si chiama **funzione inversa** e si indica con il simbolo f^{-1} .

Condizione necessaria e condizione sufficiente

Date due proposizioni *P* e *Q* si dice che:

- $P \ge$ condizione necessaria per $Q \le Q \implies P$;
- $P \ge \text{condizione sufficiente per } Q \le P \implies Q$

Successioni

Semiretta di numeri naturali

Si dice **semiretta di numeri naturali** un insieme del tipo $\{n \in \mathbb{N}: n \geq \bar{n}\}$.

Definizione di successione

Si dice **successione** una qualunque applicazione definita su una semiretta di \mathbb{N} . Se il **codominio** dell'applicazione è un insieme A, si parla di successione di elementi di A (o anche successioni a valori in A).

Successioni limitate inferiormente e superiormente

Una successione $\{a_n\}_{n\in\mathbb{N}}$ si dice **limitata inferiormente** se l'immagine $\{a_n\}_{n\in\mathbb{N}}$ è un insieme limitato inferiormente, cioè se esiste $m\in\mathbb{R}$ tale che $a_n\geq m$ per ogni $n\in\mathbb{N}$.

Una successione $\{a_n\}_{n\in\mathbb{N}}$ si dice **limitata superiormente** se l'immagine $\{a_n\}_{n\in\mathbb{N}}$ è un insieme limitato superiormente, cioè se esiste $M\in\mathbb{R}$ tale che $a_n\leq M$ per ogni $n\in\mathbb{N}$.

Una successione $\{a_n\}_{n\in\mathbb{N}}$ si dice **limitata** se è limitata superiormente e inferiormente. In particolare non è restrittivo dire che $\{a_n\}_{n\in\mathbb{N}}$ è limitata se esiste una costante M>0 tale che $|a_n|\leq M$.

Definizione di "definitivamente" per successioni

Si dice che una successione $\{a_n\}_n$ possiede **definitivamente** una certa proprietà se $\exists \bar{n} : \forall n \geq \bar{n} \ a_n$ soddisfa quella proprietà, cioè se la possiede "da un certo punto in poi".

Successioni convergenti

Una successione $\{a_n\}_n$ si dice **convergente** se esiste $\ell \in \mathbb{R}$ con queste proprietà:

$$\forall \epsilon$$
 definitivamente $|a_n - \ell| < \epsilon$

oppure, equivalentemente:

$$\forall \epsilon > 0$$
, $\exists \bar{n} \in \mathbb{N} : \forall n \geq \bar{n} \qquad |a_n - \ell| < \epsilon$

Il numero ℓ si chiama **limite della successione** e si indica come

$$\lim_{n \to +\infty} a_n = \ell$$
 oppure $a_n \to \ell$ per $n \to \infty$

Successioni divergenti

Una successione di dice **divergente** a $+\infty$ se

$$\forall M > 0$$
, $\exists \bar{n} \in \mathbb{N} : \forall n \geq \bar{n} \quad a_n > M$

Una successione si dice **divergente** a $-\infty$ se

$$\forall \overline{M} < 0, \ \exists \overline{n} \in \mathbb{N} : \forall n \geq \overline{n} \quad a_n < \overline{M}$$

In tal caso $+\infty$ o $-\infty$ sono i limiti delle successioni divergenti e scriveremo

$$\lim_{n\to +\infty} a_n = +\infty \quad \text{oppure} \quad \lim_{n\to +\infty} a_n = -\infty$$

Successioni irregolari

Una successione che non ammette limite (cioè non è né convergente né divergente) si dice irregolare o indeterminata.

Esempio: la successione $n \mapsto (-1)^n$ è una successione irregolare.

Successioni infinite e infinitesime

Una successione che tende a 0 si dice **infinitesima** (esempio: $n \mapsto \frac{1}{n}$), mentre una successione divergente si dice **infinita** (esempio: $n \mapsto n^2$).

Successioni monotone

Una funzione $f: \mathbb{N} \to \mathbb{R}$ è **crescente** se e solo se

$$\forall n, m, n < m \Rightarrow f(n) \leq f(m)$$

Analogamente è **decrescente** se e solo se

$$\forall n, m, n < m \Rightarrow f(n) \ge f(m)$$

Sottosuccessioni

Si dice **sottosuccessione** di una successione $\{a_n\}_n$ la composizione $a \circ k$ della successione data con una qualunque applicazione **strettamente crescente** $k: \mathbb{n} \to \mathbb{N}$.

Una successione può essere vista come sottosuccessione di sé stessa.

Il fatto che *k* sia un'applicazione strettamente crescente significa che la sottosuccessione può "iniziare" più indietro o più avanti rispetto alla successione di partenza, ma da quel punto in poi la sottosuccessione **deve** prendere **tutti** gli elementi che compaiono nella successione di partenza, **mantenendoli nello stesso ordine**.

Definizione del numero di Nepero tramite limite

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e$$

Continuità (per successioni)

Una funzione $f:A\subseteq\mathbb{N}\to\mathbb{R}$ si dice **continua** in x_0 se si verifica la seguente proprietà:

$$\forall \{x_n\}_n \subseteq A \qquad x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)$$
 Se f è continua in ogni punto del dominio A si dice che f è continua.

Successioni asintotiche

Due successioni $\{a_n\}$ e $\{b_n\}$ si dicono **asintotiche**, e si indicano con $a_n \sim b_n$, se:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$$

Punto limite

Si dice che $\ell \in \overline{\mathbb{R}}$ è un **punto limite** di una successione se questa ha almeno una sottosuccessione

Ogni successione limitata ha almeno un punto limite in ${\mathbb R}$.

Limiti di funzioni reali di variabile reale

Intorno di un punto

Si dice **intorno di un punto** $x_0 \in \mathbb{R}$ un intervallo del tipo $(x_0 - \delta, x_0 + \delta)$ per un qualche $\delta > 0$.

Un intorno di $+\infty$ è un intervallo del tipo $(a, +\infty)$ mentre un intorno di $-\infty$ è un intervallo del tipo $(-\infty, b)$.

Punto isolato

Sia $A \subseteq \mathbb{R}$. Un punto $x_0 \in \mathbb{R}$ si dice che è un **punto isolato** di A se:

$$\exists U_{x_0}$$
 intorno di x_0 tale che $U_{x_0} \cap A = \{x_0\}$

Un punto isolato di A appartiene ad A.

Un punto x_0 si dice **punto isolato** di A se **esiste almeno un intorno** di x_0 che in comune con l'insieme A ha soltanto il punto x_0 stesso.

Punto di accumulazione

Sia $A \subseteq \mathbb{R}$. Un punto $x_0 \in \mathbb{R}$ si dice **punto di accumulazione** per A se

$$\forall U_{x_0}$$
 intorno di x_0 si ha $(U_{x_0} \cap A) \setminus \{x_0\} \neq \emptyset$

Un punto $x_0 \in \mathbb{R}$ è un **punto di accumulazione** di A se **tutti** gli intorni di x_0 hanno in comune con l'insieme A altri punti diversi da x_0 stesso.

Definizione topologica di limite

Sia $f: dom(f) \subseteq \mathbb{R} \to \mathbb{R}$ e sia $x_0 \in \overline{\mathbb{R}}$ un punto di accumulazione per dom(f). Si dice che

$$\lim_{x \to x_0} f(x) = \ell \qquad \ell \in \overline{\mathbb{R}}$$

se

 $\forall U_\ell$ intorno di ℓ $\exists V_{x_0}$ intorno di x_0 tale che $\forall x \in V_{x_0}$, $x \neq x_0$, $f(x) \in U_\ell$

Limite finito all'infinito

$$\lim_{x \to +\infty} f(x) = \ell \Leftrightarrow \forall \epsilon > 0 \,\exists K > 0 \colon \forall x, \, x > K \Rightarrow |f(x) - \ell| < \epsilon$$

$$\lim_{x \to -\infty} f(x) = \ell \Leftrightarrow \forall \epsilon > 0 \,\exists K > 0 \colon \forall x, \, x < -K \Rightarrow |f(x) - \ell| < \epsilon$$

Asintoto orizzontale

Un asintoto orizzontale è una retta di equazione $y = \ell \operatorname{con} \ell \in \mathbb{R}$ tale che per $x \to +\infty$ oppure per $x \to -\infty$ si abbia

$$\lim_{x \to +\infty} f(x) = \ell \quad \text{oppure} \quad \lim_{x \to -\infty} f(x) = \ell$$

Ogni situazione di limite finito all'infinito corrisponde graficamente ad un asintoto orizzontale.

Limite infinito all'infinito

$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall H > 0 \,\exists K > 0 \colon \forall x, \, x > K \Rightarrow f(x) > H$$

$$\lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall H > 0 \,\exists K > 0 \colon \forall x, \, x > K \Rightarrow f(x) < -H$$

$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall H > 0 \,\exists K > 0 \colon \forall x, \, x < -K \Rightarrow f(x) > H$$

$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall H > 0 \,\exists K > 0 \colon \forall x, \, x < -K \Rightarrow f(x) < -H$$

Asintoto obliquo

Si dice che una funzione f(x) ha **asintoto obliquo** di equazione y = mx + q (con $m \neq 0$ e $q \in \mathbb{R}$ per $x \to +\infty$ oppure per $x \to -\infty$ se accade che:

$$\lim_{x \to +\infty} [f(x) - mx - q] = 0$$
oppure rispettivamente
$$\lim_{x \to -\infty} [f(x) - mx - q] = 0$$

La funzione f(x) ammette asintoto obliquo per $x \to +\infty$ se e solo se **entrambi** questi limiti esistono e sono finiti:

$$\lim_{\substack{x\to +\infty}} \frac{f(x)}{x} = m \neq 0$$

$$\lim_{\substack{x\to +\infty}} [f(x) - mx] = q$$
 ed in tale caso l'asintoto è la retta $y = mx + q$.

Lo stesso criterio può essere utilizzato per $x \to -\infty$.

Limite infinito al finito

$$\lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall K > 0 \,\exists \delta > 0 \colon \forall x \neq x_0, \, |x - x_0| < \delta \Rightarrow f(x) > K$$

$$\lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall K > 0 \ \exists \delta > 0 \colon \forall x \neq x_0, \ |x - x_0| < \delta \Rightarrow f(x) < -K$$

Asintoto verticale

Si dice che f ha un **asintoto verticale** di equazione $x = x_0$ (con $x_0 \in \mathbb{R}$ per $x \to x_0$ (oppure per $x \to x_0^+$ o $x \to x_0^-$) accade che:

$$\lim_{x \to x_0} f(x) = +\infty \text{ oppure } \lim_{x \to x_0} f(x) = -\infty$$

oppure, a seconda dei casi:

$$\lim_{x \to x_0^+} f(x) = +\infty \text{ oppure } \lim_{x \to x_0^+} f(x) = -\infty$$
$$\lim_{x \to x_0^-} f(x) = +\infty \text{ oppure } \lim_{x \to x_0^-} f(x) = -\infty$$

Limite finito al finito

$$\lim_{x\to x_0} f(x) = \ell \Leftrightarrow \forall \epsilon > 0 \,\exists \delta > 0 \colon \forall x \neq x_0, \, |x-x_0| < \delta \Rightarrow |f(x)-\ell| < \epsilon$$

Continuità (per funzioni)

Sia $f: dom(f) \subseteq \mathbb{R} \to \mathbb{R}$ e sia x_0 un punto di accumulazione appartenente a dom(f). Allora si dice che f è **continua** in x_0 se esiste

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Si dice che f è continua se risulta continua in ogni punto del suo dominio. Una funzione non continua in un punto $x_0 \in dom(f)$ si dice **discontinua**.

Parlare di continuità (e di discontinuità) in un punto x_0 ha senso solo se $x_0 \in dom(f)$. Non ha senso quindi dire che $f(x) = \frac{1}{x}$ non è continua in x = 0, perché quel punto non appartiene al dominio della funzione.

Discontinuità a salto

Si dice che x_0 è un **punto di discontinuità a salto** per f(x) quando i limiti destro e sinistro esistono finiti ma diversi tra loro. L'ampiezza del salto in x_0 in questo caso è data da

salto =
$$\lim_{x \to x_0^+} f(x) - \lim_{x \to x_0^-} f(x)$$

Se uno dei due limiti coincide per $x \to x_0$ con $f(x_0)$ si dice che f è **continua da destra** o **continua da sinistra** rispettivamente.

Definizione successionale di limite

Si dice che

$$\lim_{x \to x_0} f(x) = \ell \qquad x_0, \ell \in \overline{\mathbb{R}}$$

se accade che

$$\forall \{x_n\}_n, x_n \neq x_0, x_n \rightarrow x_0 \Rightarrow f(x_n) \rightarrow \ell \text{ per } n \rightarrow +\infty$$

Relazione di "asintotico" (per funzioni)

Si dice che due funzioni sono **asintotiche** per $x \to x_0$ e si indicano come $f \sim g$ se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Calcolo differenziale per funzioni reali di variabile reale

Definizione di derivata

Sia $f:(a,b)\to\mathbb{R}$. f si dice **derivabile** in $x_0\in(a,b)$ se **esiste finito** il limite

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

e tale limite prende il nome di **derivata prima** di f in x_0 e si indica come $f'(x_0)$.

Si ha dunque

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

o equivalentemente

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Punto angoloso

Sia $f:(a,b)\to\mathbb{R}$, sia $x_0\in(a,b)$. Allora se esiste ed è finito il limite

$$\lim_{h\to 0^+} \frac{f(x_0+h)-f(x_0)}{h} \text{ o equivalentemente } \lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}$$

oppure

$$\lim_{h\to 0^-} \frac{f(x_0+h)-f(x_0)}{h} \text{ o equivalentemente } \lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}$$

allora f si dice **derivabile da destra** (o rispettivamente **derivabile da sinistra**) e il precedente limite finito si indica con $f'_+(x_0)$ (o rispettivamente $f'_-(x_0)$) e si chiama **derivata destra** (o rispettivamente **derivata sinistra**).

Nel caso in cui f sia continua e derivabile sia da destra che da sinistra in un punto x_0 allora si dice che f ha un **punto angoloso** in $x=x_0$.

Cuspide

Se f è continua in x_0 e $f'_+(x_0) = \pm$ e contemporaneamente $f'_-(x_0) = \mp$ allora si dice che f in x_0 ha una **cuspide**.

Notazioni asintotiche

Definizione di "o piccolo"

Date due funzioni f(x) e g(x) definite in un intorno di x_0 si dice che

$$f(x) = o(g(x)) \operatorname{per} x \to x_0$$

se accade che

$$\frac{f(x)}{g(x)} \to 0 \text{ per } x \to x_0$$

Per definizione si ha che o(1) = 0.

Notazione "O-grande"

Date due funzioni $f: \mathbb{N} \to \mathbb{R}^+$ e $g: \mathbb{N} \to \mathbb{R}^+$ si dice che f(n) = O(g(n)) se e solo se esistono due costanti c > 0 e $\bar{n} \in \mathbb{N}$ tali che

$$f(n) \le cg(n) \qquad \forall n \ge \bar{n}$$

Notazione Ω

Date due funzioni $f: \mathbb{N} \to \mathbb{R}^+$ e $g: \mathbb{N} \to \mathbb{R}^+$ si dice che $f(n) = \Omega(g(n))$ se e solo se esistono due costanti c > 0 e $\bar{n} \in \mathbb{N}$ tali che

$$f(n) \ge cg(n) \qquad \forall n \ge \bar{n}$$

Notazione Θ

Date due funzioni $f: \mathbb{N} \to \mathbb{R}^+$ e $g: \mathbb{N} \to \mathbb{R}^+$ si dice che $f(n) = \Theta(g(n))$ se f(n) = O(g(n)) e contemporaneamente $f(n) = \Omega(g(n))$.

Questo equivale a dire che esistono 3 costanti $c_1>0$, $c_2>0$ ed $\bar{n}\in\mathbb{N}$ tali che

$$c_2 g(n) \le f(n) \le c_1 g(n) \qquad \forall n \ge \bar{n}$$

Serie

Definizione di serie

Data una successione $\{a_n\}_n$ di numeri reali, si chiama **serie associata** ad $\{a_n\}_n$ (o anche **serie di termine generale** a_n) la quantità

$$\sum_{n=0}^{\infty} a_n$$

Gli elementi di a_n si chiamano $\operatorname{termini}$ della serie.

La successione

$$s_n = \sum_{k=0}^n a_k$$

si chiama successione delle somme parziali.

Serie assolutamente convergente

Si dice che una serie $\sum_n a_n$ è assolutamente convergente se la serie $\sum_n |a_n|$ è convergente.

Approssimazione e formule di Taylor

Definizione di polinomio di Taylor

Si dice **polinomio di Taylor** di ordine n associato alla funzione f e centrato in x_0 un polinomio P_{n,x_0} di ordine n tale che

$$f(x) - P_{n,x_0}(x) = o((x - x_0)^n)$$

Si tratta di un polinomio che **approssima** la funzione. Quest'approssimazione, in quanto tale, ha un certo **errore**, espresso dal termine $o((x-x_0)^n)$. Questo errore diventa sempre più trascurabile al crescere di n.

Applicazioni del calcolo differenziale: problemi di ottimizzazione Massimo e minimo di una funzione

Si dice che M è un massimo di f nell'intervallo [a,b] e che $x_M \in [a,b]$ è punto di massimo per fnell'intervallo [a, b] se accade che

$$f(x_M) = M \ge f(x) \quad \forall x \in [a, b]$$

 $f(x_M) = M \ge f(x) \quad \forall x \in [a,b]$ Analogamente si dice che m è il **minimo** di f in un intervallo [a,b] e che $x_m \in [a,b]$ è **punto di minimo** per f in [a, b] se accade che

$$f(x_m) = m \le f(x) \quad \forall x \in [a.b]$$

Si dice che M è massimo locale per f e che $x_M \in [a, b]$ è punto di massimo locale per f se esiste un intervallo $(x_M - \delta, x_M + \delta)$ tale che

$$f(x_M) = M \geq f(x) \quad \forall x \in (x_M - \delta, x_M + \delta) \cap [a, b]$$
 Analogamente si dice che m è **minimo locale** per f e che $x_m \in [a, b]$ è **punto di minimo locale** per

f se esiste un intervallo $(x_m - \delta, x_m + \delta)$ tale che

$$f(x_m) = m \le f(x) \quad \forall x \in (x_m - \delta, x_m + \delta) \cap [a, b]$$

Se le precedenti disuguaglianze sono strette, si dice che M ed m sono rispettivamente massimo **locale stretto** e minimo locale stretto e che $x_M \in ((x_M - \delta, x_M + \delta) \cap [a, b]) \setminus \{x_M\}$ e $x_m \in$ $((x_m - \delta, x_m + \delta) \cap [a, b]) \setminus \{x_m\}$ sono rispettivamente **punto di massimo locale stretto** e punto di minimo locale stretto.

I punti di massimo e di minimo (locale, stretto o globale) si chiamano punti di estremo.

Il massimo ed il minimo di una funzione, se esistono, sono unici (questo viene dal teorema di unicità del massimo per i campi ordinati, in questo caso l'insieme è l'immagine del dominio tramite la f). I punti di massimo/minimo globali/locali, invece, possono essere più di uno.

Punto stazionario

Un **punto stazionario** di *f* è un punto in cui la **derivata prima** di *f* si annulla.

Figure concave e convesse

Una figura F si dice **convessa** se per ogni coppia di punti $P_1, P_2 \in F$ tutto il segmento $\overline{P_1P_2}$ è contenuto in F.

Se ciò non accade, cioè se esiste almeno una coppia di punti tale che il segmento che li unisce non è del tutto contenuto in F, la figura si dice concava.

Figura convessa

Figura concava

Epigrafico di una funzione

Sia $f: I \to \mathbb{R}$ con I intervallo. Si chiama **epigrafico** di f l'insieme:

$$epi(f) = \{(x, y) \in \mathbb{R}^2 : x \in I \text{ e } y \ge f(x)\}$$

In altre parole, con epigrafico s'intende l'insieme dei punti che sta al di sopra della funzione.

Si dice che f è **convessa** se il suo epigrafico è un insieme convesso. Si dice invece **concava** se -f è convessa.

Funzioni concave e convesse

Sia $f: I \to \mathbb{R}$ con I intervallo. Allora si dice che f è **convessa** in I se per ogni coppia di punti $x_1, x_2 \in I$ il segmento di estremi $(x_1, f(x_1))$ e $(x_2, f(x_2))$ **non ha punti sotto** al grafico di f. Viceversa, f si dice **concava** se per ogni coppia di punti $x_1, x_2 \in I$ il segmento di estremi $(x_1, f(x_1))$ e $(x_2, f(x_2))$ **non ha punti sopra** al grafico di f.

Punto di flesso

Sia $f:(a,b)\to\mathbb{R}$ una funzione e $x_0\in(a,b)$ un punto di derivabilità o un punto per cui $f'(x_0)=\pm\infty$. Allora x_0 si dice **punto di flesso** per f se esiste un intorno destro di x_0 (del tipo (x_0,x_0+h) con h>0) in cui f è convessa e un intorno sinistro di x_0 (del tipo (x_0-h,x_0) con h>0) in cui f è concava, o viceversa.

Dal punto di vista geometrico, un punto di flesso attraversa la propria retta tangente.

In altre parole, un punto di flesso è un punto in cui la funzione cambia la propria concavità (cioè da concava diventa convessa o viceversa) e in quel punto la derivata prima non esiste oppure è infinita (in quest'ultimo caso si ha un **flesso a tangente verticale**).

Calcolo integrale

Partizione di un intervallo

Si chiama suddivisione o partizione di [a,b] ogni insieme finito del tipo

$$A = \{x_0, x_1, \dots, x_n\}$$

$$\operatorname{con} a = x_0 < x_1 < \dots < x_n = b.$$

Definizione di integrale tramite somme di Cauchy-Riemann

Diciamo che la funzione limitata $f:[a,b] \to \mathbb{R}$ è **integrabile** se detta S_n una qualsiasi successione di somme di Cauchy-Riemann, al variare di $n \in \mathbb{N}$ esiste finito:

$$\lim_{n\to\infty} S_n$$

 $\lim_{n\to\infty} S_n$ e tale limite **non dipende** dalla scelta dei punti ξ_j . In tal caso si pone:

$$\lim_{n\to\infty} S_n = \int_a^b f(x) dx$$

Per ogni suddivisione A di [a, b], le quantità

$$s(f,A) = \sum_{i=1}^{n} (x_i - x_{i-1}) \inf_{[x_{i-1},x_i]} (f(x))$$
$$S(f,A) = \sum_{i=1}^{n} (x_i - x_{i-1}) \sup_{[x_{i-1},x_i]} (f(x))$$

verranno chiamate rispettivamente somma inferiore e somma superiore di f rispetto alla suddivisione A.

Infine, le quantità

$$s(f) = \sup\{s(f,A): A \text{ suddivisione di } [a,b]\}$$

 $S(f) = \inf\{S(f,A): A \text{ suddivisione di } [a,b]\}$
verranno chiamate **integrale inferiore** e **integrale superiore** (secondo Riemann) di f su $[a,b]$.

Dal punto di vista geometrico, se f è una funzione positiva integrabile su [a, b], allora s(f, A)rappresenta l'area del **plurirettangolo inscritto** nel sottografico di f:

mentre S(f,A) rappresenta l'area del **plurirettangolo circoscritto** al sottografico di f:

Definizione di funzione integrabile (tramite somme superiori e inferiori)

Una funzione **limitata** f si dice **integrabile** (secondo Riemann) su [a, b] se si ha:

$$s(f) = S(f)$$

ed in tal caso il comune valore di s(f) ed S(f) viene detto **integrale di f su [a,b]** e viene indicato come:

$$\int_{a}^{b} f(x) dx$$

Funzione di Dirichlet

La funzione di Dirichlet è una funzione definita come:

$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Si può dimostrare che questa funzione è discontinua in ogni punto dell'intervallo [0,1] e che non è integrabile secondo Riemann.

Esempio di applicazione lineare con l'integrale

L'applicazione definita sull'intervallo [a, b] che associa ad ogni funzione f il suo integrale:

$$f \mapsto \mathcal{S}(f) = \int_{a}^{b} f(x) dx$$

è un esempio di applicazione lineare non decrescente, cioè verifica due ipotesi:

- 1. $S(\alpha f + \beta g) = \alpha S(f) + \beta S(g)$, per ogni $\alpha, \beta \in \mathbb{R}$ ed ogni f, g;
- 2. $S(f) \leq S(g)$ per ogni $f \leq g$

Media integrale

Data una funzione integrabile $f: [a, b] \to \mathbb{R}$ si dice **media di f su** [a, b] la quantità

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Definizione di primitiva

Se f è una funzione definita su un intervallo [a,b], si dice che $G:[a,b]\to\mathbb{R}$ è **una primitiva di f** se G è **derivabile** su [a,b] e se si ha che

$$G'(x) = f(x) \quad \forall x \in [a, b]$$

Esempio di funzione che non ha primitiva

Esistono funzioni che non hanno primitive. Un esempio è la funzione definita su tutto $\mathbb R$ come:

$$f(x) = \begin{cases} 0 & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$

Se per assurdo F fosse una primitiva di f su tutto $\mathbb R$ si avrebbe che

$$F'(x) = 0 \quad \forall x < 0 \qquad F'(x) = 0 \quad \forall x > 0$$

per cui esisterebbero due costanti c_1 e c_2 tali che

$$F(x) = c_1 \quad \forall x < 0 \qquad F(x) = c_2 \quad \forall x > 0$$

Ma poiché f deve essere derivabile (e quindi **continua**) su tutto \mathbb{R} , deve essere che $c_1=c_2=F(0)$, ma ciò contraddice il fatto che per definizione di primitiva dovrebbe essere F'(0)=f(0)=1.

Definizione di integrale indefinito

Si dice **integrale indefinito di** *f* e si indica con il simbolo

$$\int f(x)dx$$

l'insieme di tutte le primitive di una funzione f rispetto alla variabile x, cioè tutte le funzioni F(x) tali che:

$$F'(x) = \frac{d}{dx}F(x) = f(x)$$

L'espressione $\frac{d}{dx}$ è equivalente a dire "derivata di..." (in questo caso "derivata di F(x)").

Definizione di integrale definito

La quantità

$$\int_{a}^{b} f(x) dx$$

è detta integrale definito di f da a a b.

Integrali generalizzati

Integrali di funzioni non limitate

Integrale generalizzato per funzioni definite in un intervallo (a, b] o [a, b)

Si consideri una funzione $f:[a,b)\to\mathbb{R}$ tale che $\lim_{x\to b^-}f(x)=\pm\infty$.

Se esiste finito il limite

$$\lim_{\epsilon \to 0^+} \int_a^{b-\epsilon} f(x) dx$$

diremo che f è **integrabile in senso generalizzato** (o improprio) su [a,b) e tale limite verrà indicato con la scrittura

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0^{+}} \int_{a}^{b-\epsilon} f(x)dx$$

Questo integrale

- è convergente se il limite esiste ed è finito
- è divergente (positivamente/negativamente) se il limite esiste e vale $\pm \infty$
- non esiste (o non ha senso) se il limite non esiste

Le stesse considerazioni si possono fare per funzioni $f:(a,b]\to\mathbb{R}$ **continue** (quindi integrabili su intervalli del tipo $[\alpha,b]$, con $\alpha>a$) tali per cui si ha che $\lim_{x\to a} f(x)=\pm\infty$, ponendo

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to 0^{+}} \int_{a+\epsilon}^{b} f(x)dx$$

Integrale generalizzato per funzioni definite su un intervallo illimitato (a, b)

Se f è definita su (a,b) ed è integrabile su $[\alpha,\beta]$ per ogni $a < \alpha < \beta < b$, scelto un punto $c \in (a,b)$ diremo che f è **integrabile in senso generalizzato** su (a,b) se essa è integrabile su (a,c] e su [c,b) ed in tal caso porremo

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

L'integrale di partenza:

- è convergente, se entrambi gli integrali sono convergenti;
- è **divergente** (positivamente o negativamente) se uno dei due integrali è divergente a ±∞ e l'altro diverge allo stesso modo oppure converge;
- non esiste se uno dei due integrali non esiste oppure se si viene a creare una forma di indecisione del tipo $\infty-\infty$

Si consideri la funzione $f:(0,1] \to \mathbb{R}$ definita come

$$f(x) = \frac{1}{x^{\alpha}}$$

Essendo sempre positiva, l'integrale

$$\int_0^1 \frac{1}{x^{\alpha}} dx$$

ha sempre senso. Al variare di $\alpha \in \mathbb{R}$ si verificano i seguenti casi:

- se $\alpha \le 0$, allora f è integrabile secondo Riemann perché si tratta della **funzione potenza** $f(x) = x^{\alpha}$;
- se $\alpha > 0$ si hanno i seguenti casi:

$$\int_{\epsilon}^{1} \frac{1}{x^{\alpha}} dx = \begin{cases} -log\epsilon & \text{se } \alpha = 1\\ \frac{1 - \epsilon^{1 - \alpha}}{1 - \alpha} & \text{se } \alpha \neq 1 \end{cases}$$

per cui passando al limite per $\epsilon
ightarrow 0^+$ si ottiene che

$$\int_0^1 \frac{1}{x^{\alpha}} dx < +\infty \Leftrightarrow \alpha < 1$$

e che se $\alpha < 1$ l'integrale (generalizzato se $\alpha > 0$) vale $\frac{1}{1-\alpha}$.

In altre parole, l'integrale

$$\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} \text{converge a } \frac{1}{1 - \alpha} \text{ per } \alpha < 1 \\ \text{diverge per } \alpha \ge 1 \end{cases}$$

Integrazione su intervalli illimitati

Definizione di integrale su un intervallo illimitato $[a, +\infty)$ o $(-\infty, b]$

Sia $f: [a, +\infty) \to \mathbb{R}$ continua. Poniamo

$$\int_{a}^{+\infty} f(x)dx = \lim_{\omega \to +\infty} \int_{a}^{\omega} f(x)dx$$

Se il limite **esiste finito**, allora f si dice **integrabile** in $[a, +\infty)$ oppure si dice che l'integrale $\int_a^{+\infty} f(x) dx$ è **convergente**.

Se il limite **esiste** e vale $\pm \infty$ diremo che l'integrale improprio è **divergente** (positivamente o negativamente).

In tutti gli altri casi diremo che l'integrale generalizzato non esiste.

Analogamente se $f:(-\infty,b]\to\mathbb{R}$ è continua si pone

$$\int_{-\infty}^{b} f(x)dx = \lim_{\omega \to -\infty} \int_{\omega}^{b} f(x)dx$$

ed infine se $f: \mathbb{R} \to \mathbb{R}$ si pone

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

Integrale di $f(x) = \frac{1}{x^{\alpha}}$ nell'intervallo $[1, \infty)$

La funzione $f(x) = \frac{1}{x^{\alpha}}$ definita in $[1, +\infty)$ ha integrale **divergente positivamente** se $\alpha \le 0$, mentre se $\alpha > 0$ si ha, per ogni y > 1:

$$\int_{1}^{y} \frac{1}{x^{\alpha}} dx = \begin{cases} \log y & \text{se } \alpha = 1\\ \frac{y^{1-\alpha} - 1}{1 - \alpha} & \text{se } \alpha \neq 1 \end{cases}$$

per cui, passando al limite per $y \to +\infty$, si ottiene che

$$\int_{1}^{+\infty} f(x)dx < +\infty \Leftrightarrow \alpha > 1$$

e che se $\alpha > 1$ l'integrale generalizzato vale

$$\frac{1}{\alpha-1}$$