Gröbner Bases: An Introduction Craig Huneke

Notes by Ananthnarayan H. University of Kansas Fall 2004

Setup: Let k be a field and $S := k[X_1, \ldots, X_n]$ be a polynomial ring over k in n variables.

A monomial in S is an element of the form $X_1^{a_1}X_2^{a_2}\cdots X_n^{a_n}$ with $a_i\geq 0$. A term is an element of the form $\lambda X_1^{a_1}X_2^{a_2}\cdots X_n^{a_n}$ with $a_i\geq 0$ and $\lambda\in k$.

Note that these definitions depend on the choice of variables. If $S = k[X_1, X_2]$, then S is also the same as $k[X_1 + X_2, X_2]$. But $(X_1 + X_2)X_2$ is a monomial in the second representation of S but not in the first.

As a vector space over k, the monomials are a k-basis of S. In some sense, Gröbner bases are a way to choose a monomial k-basis of S/I, where I is an ideal in S.

Two examples:

Example 1 Let S = k[X], $I = (f) = X^n + a_1 X^{n-1} + \dots + a_n$, $a_i \in k$. Then, S/Ihas a k-basis $\{1, X, X^2, \dots X^{n-1}\}.$

This statement is equivalent to the Division Algorithm.

Example 2 Let S = k[X, Y, Z] and I = (X - Y + Z, X + Y - Z). Note that I = (X, Y - Z). Thus, $S/I \simeq k[Z]$.

Notice that the generating set $\{X-Y+Z,X+Y-Z\}$ of I corresponds to the matrix $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ while the generating set $\{X, Y - Z\}$ corresponds to $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$, the reduced row echelon form of the first one

Both of these are examples of Gröbner bases as we will see later.

Definition 1

- 1) A term ordering τ (or $>_{\tau}$) is a partial ordering on the monomials of $S = \mathsf{k}[X_1, \dots, X_n]$ such that
- a) for any monomial $m \neq 1$, we have $m >_{\tau} 1$ and
- b) if m, n and m' are monomials such that $m >_{\tau} n$, then $mm' >_{\tau} nm'$.
- 2) A monomial ordering τ (or $>_{\tau}$) is a total ordering on the monomials of S $\mathsf{k}[X_1,\ldots,X_n]$ such that

- a) for any monomial $m \neq 1$, we have $m >_{\tau} 1$ and
- b) if m, n and m' are monomials such that $m >_{\tau} n$, then $mm' >_{\tau} nm'$.

We say that a monomial ordering τ is a degree-wise monomial ordering if it recognizes the degrees, i.e. a monomial of higher degree is greater under τ .

Examples:

- 1) Let S be k[X] and τ be any monomial ordering. Then by (a), $X >_{\tau} 1$. Moreover, by repeated application of (b), we get $\cdots >_{\tau} X^3 >_{\tau} X^2 >_{\tau} X >_{\tau} 1$.
- 2) Let S be k[X, Y] and τ be a monomial ordering such that $X >_{\tau} Y$. Fix a degree d. Then we have

$$X^d >_{\tau} X^{d-1}Y >_{\tau} \cdots >_{\tau} Y^d$$
.

Let us see this in degree 2. Since $X >_{\tau} Y$, we have $X^2 >_{\tau} XY$ and $XY >_{\tau} Y^2$. This gives us $X^2 >_{\tau} XY >_{\tau} Y^2$.

Thus, there is only one degree-wise monomial ordering in the 2-variable case.

3) Let $S = \mathsf{k}[X,Y,Z]$ and τ be a monomial ordering such that $X >_{\tau} Y >_{\tau} Z$. Consider the degree 2 monomials. Multiplying by X,Y and Z we get the respective inequalities:

$$X^2>_\tau XY>_\tau XZ; XY>_\tau Y^2>_\tau YZ$$
 and $XZ>_\tau YZ>_\tau Z^2.$ Hence
$$XZ$$

$$X^2>_\tau XY>_\tau Z>_\tau YZ>_\tau Z^2.$$

Thus, to define a degree-wise monomial ordering in the 3-variable case, we need to make a choice in degree 2, namely $XZ >_{\tau} Y^2$ or $Y^2 >_{\tau} XZ$.

Something to ponder at this juncture is whether these choices uniquely determine the degree-wise monomial orderings in the 3-variable case, i.e. are there only two possible degree-wise monomial orderings, one determined by $XZ >_{\tau} Y^2$ and the other by $Y^2 >_{\tau} XZ$? The answer is no, as we see in the exercises.

Definition 2 Let τ be a monomial ordering. If $f \in S = k[X_1, \ldots, X_n]$, we set

 $\operatorname{in}_{ au}(f) := ext{ the largest monomial occurring in a non-zero term of } f$

and the leading term of f with respect to τ

$$lt_{\tau}(f) := the term which has in_{\tau}(f).$$

If I is an ideal in S, then we define

$$\operatorname{in}_{\tau}(I) := < \operatorname{in}_{\tau}(f) : f \in I >$$

Example 3

- 1) Let S = k[X], f be a polynomial of degree n in S. Then $\operatorname{in}_{\tau}(f) = X^n$.
- 2) In k[X, Y], with $X >_{\tau} Y$, we have $\operatorname{in}_{\tau}(X^2 + Y^2 + 2XY) = X^2$ and $\operatorname{in}_{\tau}(Y^2 2XY) = XY$.
- 3) Let $S = \mathsf{k}[X,Y,Z]$, $I = (Y^2 XZ, XY Z^2)$ and τ be a degree-wise monomial ordering such that $X >_{\tau} Y >_{\tau} Z$. Set $f_1 = Y^2 XZ$ and $f_2 = XY Z^2$. Recall that we can choose $XZ >_{\tau} Y^2$ or $Y^2 >_{\tau} XZ$.

Case (a): $XZ >_{\tau} Y^2$.

In this case, $\operatorname{in}_{\tau}(f_1) = XZ$ and $\operatorname{in}_{\tau}(f_2) = XY$.

Question: Is $\operatorname{in}_{\tau}(I) = < \operatorname{in}_{\tau}(f_1), \operatorname{in}_{\tau}(f_2) > ?$

The answer is no. Let $f_3 = Yf_1 + Zf_2 = Y^3 - Z^3 \in I$. Then $\operatorname{in}_{\tau}(f_3) = Y^3$. Clearly $\operatorname{in}_{\tau}(f_3)$ is not in $\langle XY, XZ \rangle = \langle \operatorname{in}_{\tau}(f_1), \operatorname{in}_{\tau}(f_2) \rangle$. In fact, as we will prove later $\operatorname{in}_{\tau}(I) = (XY, XZ, Y^3)$.

Case (b): $Y^2 >_{\tau} XZ$.

In this case, $\operatorname{in}_{\tau}(f_1) = Y^2$ and $\operatorname{in}_{\tau}(f_2) = XY$. If we set $f_4 = Xf_1 - Yf_2 = -X^2Z + YZ^2$, then $\operatorname{in}_{\tau}(f_4) = X^2Z \notin (Y^2, XY) = <\operatorname{in}_{\tau}(f_1), \operatorname{in}_{\tau}(f_2) >$. We will show later that in this case $\operatorname{in}_{\tau}(I) = (Y^2, XY, X^2Z)$.

Thus in general, if $I = \langle f_1, \ldots, f_r \rangle$, then $\operatorname{in}_{\tau}(I)$ need not be the equal to the ideal $\langle \operatorname{in}_{\tau}(f_1), \ldots, \operatorname{in}_{\tau}(f_r) \rangle$. This gives a motivation for defining the notion of a Gröbner basis of I.

Definition 3 A Gröbner basis of an ideal I in S with respect to a monomial ordering τ is a set $\{f_i\}_i \subseteq I$, such that $\operatorname{in}_{\tau}(I) = <\operatorname{in}_{\tau}(f_i)>$.

Thus in example 3.3 above, we claimed that in case (a), $\{f_1, f_2, f_3\}$ is a Gröbner basis of I with respect to τ and in case (b), $\{f_1, f_2, f_4\}$ is a Gröbner basis of I with respect to τ .

Example 4 Let $S = \mathsf{k}[X,Y,Z]$, I = (X+Y-Z,X-Y+Z) and τ be a monomial ordering on S such that $X >_{\tau} Y >_{\tau} Z$. We want to find a Gröbner basis for I with respect to τ .

Let $l_1 = X + Y - Z$ and $l_2 = X - Y + Z$. Then $\operatorname{in}_{\tau}(l_1) = \operatorname{in}_{\tau}(l_2) = X$ and $\operatorname{in}_{\tau}(l_1 - l_2) = Y$ (assuming that char $\mathsf{k} \neq 2$. In the characteristic 2 case, I = (X + Y + Z) and $\{X + Y + Z\}$ is a Gröbner basis for I with respect to τ). We claim that $\operatorname{in}_{\tau}(I) = (X, Y)$. Suppose some power of Z is in $\operatorname{in}_{\tau}(I)$, then since $X >_{\tau} Y >_{\tau} Z$, the same power of Z is in I. Hence $Z \in \operatorname{rad}(I)$. Since Y - Z and X are in I, this forces $Y \in \operatorname{rad}(I)$ and therefore $\operatorname{rad}(I) = (X, Y, Z)$. This implies that $\operatorname{ht}(I) = 3$, which

contradicts the fact that I is generated by two elements (using Krull's Principal Ideal Theorem).

This shows that $\operatorname{in}_{\tau}(I) = (X, Y)$.

Hence a Gröbner basis for I with respect to τ is $B_1 = \{l_1, l_1 - l_2\}$. A better Gröbner basis is $B_2 = \{X - Y + Z, Y - Z\}$. Even better is $B_3 = \{X, Y - Z\}$.

Observe that the matrices corresponding to B_1 and B_2 , namely $\begin{bmatrix} 1 & -1 & 1 \\ 0 & -2 & 2 \end{bmatrix}$ and

 $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$ respectively, are the matrices obtained in the intermediary steps while

reducing the matrix $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ corresponding to $\{l_1, l_2\}$ to its reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix}$ which corresponds to B_3 .

Some Applications

The following theorem justifies the comment that Gröbner bases give a way of finding a monomial k-basis for the quotient S/I of the polynomial ring.

Theorem 1 Let τ be a monomial order on $S = \mathsf{k}[X_1, \ldots, X_n]$. Let I be an ideal in S. If \mathfrak{B} is the set of all monomials not in $\operatorname{in}_{\tau}(I)$, then \mathfrak{B} is a k -basis of S/I.

We will use the following lemma in the proof of the theorem.

Lemma 2 (Dickson's Lemma) Let τ be a term ordering and let \mathfrak{M} be a non-empty set of monomials. Then \mathfrak{M} has a minimal element.

Proof: Let $J = \langle \mathfrak{M} \rangle$. By the Hilbert Basis Theorem, J is finitely generated. Suppose $J = (m_1, \ldots, m_r)$, where $m_i's$ are monomials. Without loss of generality we may assume that each $\mathfrak{m}_i \in \mathfrak{M}$. Let n be any monomial in J. We claim that there is an i such that $n >_{\tau} m_i$.

To prove this write $n = \sum f_i m_i$ where $f_i \in S$. Since n is a monomial, this forces $m_i | n$ for some i. Hence $n >_{\tau} m_i$. There is a minimal one among the m_i 's which completes the proof.

Corollary 3 Let τ be a monomial ordering and let \mathfrak{M} be a non-empty set of monomials. Then \mathfrak{M} has a least element.

Remark 1 It is easy to prove Dickson's Lemma without appealing to the Hilbert Basis Theorem. In fact one can prove the Hilbert's Basis Theorem using Dickson's Lemma.

Proof of Theorem 1: First of all, let us prove that \mathfrak{B} is linearly independent. Let m_1, \ldots, m_r be distinct elements in \mathfrak{B} . Suppose $\lambda_1 m_1 + \cdots + \lambda_r m_r = 0$ in S/I for $\lambda_i \in \mathsf{k}$. This means that $\lambda_1 m_1 + \cdots + \lambda_r m_r \in I$. We want to show that $\lambda_i = 0$ for each i

Suppose $\lambda_i \neq 0$ for some i. Then $\operatorname{in}_{\tau}(\lambda_1 m_1 + \cdots + \lambda_r m_r) = m_j$ for some j, $1 \leq j \leq r$. But $m_j = \operatorname{in}_{\tau}(\lambda_1 m_1 + \cdots + \lambda_r m_r) \in \operatorname{in}_{\tau}(I)$. This is not possible since $m_j \in \mathfrak{B} \not\subseteq \operatorname{in}_{\tau}(I)$. Thus $\lambda_i = 0$ for each i which proves the linear independence of \mathfrak{B} .

In order to finish the proof that \mathfrak{B} is a basis of S/I, we will show that $I + k < \mathfrak{B} >= S$, where $k < \mathfrak{B} >$ is the k-span of \mathfrak{B} .

Suppose not. Let $\mathfrak{M} = \{ \operatorname{in}_{\tau}(g) : g \in S \setminus (I + \mathsf{k} < \mathfrak{B} >) \}$. By assumption, \mathfrak{M} is non-empty and hence by Dickson's Lemma, has a least element say $m = \operatorname{in}_{\tau}(g)$ for some $g \in S \setminus (I + \mathsf{k} < \mathfrak{B} >)$.

Case(1): $m \notin \mathfrak{B}$.

In this case $m \in \operatorname{in}_{\tau}(I)$, i.e. $m = \operatorname{in}_{\tau}(f)$ for some $f \in I$. Then there is a $\lambda \in \mathsf{k}$ such that $m >_{\tau} \operatorname{in}_{\tau}(g - \lambda f)$. By the choice of m, this forces $g - \lambda f \in I + \mathsf{k} < \mathfrak{B} >$, which implies that $g \in I + \mathsf{k} < \mathfrak{B} >$, a contradiction.

Case(2): $m \in \mathfrak{B}$.

There is a $\lambda \in \mathsf{k}$ such that $m >_{\tau} \operatorname{in}_{\tau}(g - \lambda m)$. This implies that $g - \lambda m \in I + \mathsf{k} < \mathfrak{B} >$. But $m \in \mathfrak{B}$ forces $g \in I + \mathsf{k} < \mathfrak{B} >$, again a contradiction.

Discussion: Recall that if R = S/I, I a homogeneous ideal in S, then $R = \mathsf{k} \oplus R_1 \oplus R_2 \oplus \cdots$ is graded and the Hilbert function

$$H_R(d) := \dim_{\mathsf{k}}(R_d) \le \dim_{\mathsf{k}}(S_d) = \begin{pmatrix} n+d-1 \\ n-1 \end{pmatrix}.$$

For d >> 0, $H_R(d) = P_R(d)$, where $P_R(d)$ is a polynomial in d with rational coefficients such that $\deg(P_R) = \dim(R) - 1$.

With this notation, we now prove a corollary of theorem 1.

Corollary 4 If I is a homogeneous ideal in S, then

$$H_{S/I}(d) = H_{S/\operatorname{in}_{\tau}(I)}(d).$$

Proof: Let \mathfrak{B} is the set of all monomials not in $\operatorname{in}_{\tau}(I)$. Then by theorem 1, $\dim_{\mathsf{k}}((S/\operatorname{in}_{\tau}(I))_d) = \operatorname{number}$ of distinct elements of \mathfrak{B} of degree $d = \dim_{\mathsf{k}}((S/I)_d) = H_{S/I}(d)$.

Corollary 5 If I is a homogeneous ideal in S, then

$$\dim(S/I) = \dim(S/\operatorname{in}_{\tau}(I)).$$

Remark 2 Suppose I and J are two homogeneous ideals in S such that $I \subseteq J$. If $H_{S/I}(d) = H_{S/J}(d)$ for $d \ge 0$, then I = J.

Example 5 As in example 3.3, let $f_1 = Y^2 - XZ$, $f_2 = XY - Z^2$ and $I = (f_1, f_2)$. We further assume that $XZ >_{\tau} Y^2$. Then $\text{in}_{\tau}(f_1) = XZ$, $\text{in}_{\tau}(f_2) = XY$. If $f_3 = Zf_2 + Yf_1 = Y^3 - Z^3$, then $\text{in}_{\tau}(f_3) = Y^3 \notin (\text{in}_{\tau}(f_1), \text{in}_{\tau}(f_2))$. We claim that $\text{in}_{\tau}(I) = (XY, XZ, Y^2)$. Let $R := \mathsf{k}[X, Y, Z]/I$. Then

degree d	0	1	2	3	 d
$H_R(d)$	1	3	4	4	 4
Basis	1	x, y, z	x^2, xy, xz, yz	x^3, xyz, x^2y, x^2z	 $x^{d}, x^{d-2}yz, x^{d-1}y, x^{d-1}z$

Thus $H_R(d) = 1, 3, 4, 4, 4, \ldots$ Hence by Cor.4, $H_{S/\text{in}_{\tau}(I)}(d) = 1, 3, 4, 4, 4, \ldots$ Since $J := (XY, XZ, Y^3) \subseteq \text{in}_{\tau}(I)$, to prove the equality, it suffices to prove that $H_{S/J}(d) = 1, 3, 4, 4, 4, \ldots$

We have

degree d	0	1	2	3	 d
$H_{S/I}(d)$	1	3	4	4	 4
Basis	1	x, y, z	x^2, y^2, z^2, yz	x^3, y^2z, z^3, yz^2	 $x^d, yz^{d-1}, z^d, y^2z^{d-2}$

This proves that $J = \operatorname{in}_{\tau}(I)$.