DATABASE MANAGEMENT SYSTEMS

AN OVERVIEW OF DBMS

Trong Nhan Phan, PhD

DATABASE SYSTEMS REMARKS

- Key concepts
- Database design process
- DBMS
- SQL
- Relational algebra

OVERVIEW OF DATABASE DESIGN PROCESS Miniworld REQUIREMENTS COLLECTION AND ANALYSIS Functional Requirements Data Requirements FUNCTIONAL ANALYSIS CONCEPTUAL DESIGN High-Level Transaction Conceptual Schema Specification (In a high-level data model) DBMS-independent LOGICAL DESIGN (DATA MODEL MAPPING) DBMS-specific Logical (Conceptual) Schema APPLICATION PROGRAM (In the data model of a specific DBMS) DESIGN PHYSICAL DESIGN TRANSACTION Internal Schema IMPLEMENTATION Jan - 2015 Application Programs

KEY CONCEPTS

- Data
- Information
- Metadata
- Database (DB)
- System(DBMS)
- **Database System (DBS)**
- Data Model
- **Database Schema**
- Database State

- 10. Relation
- 11. Relation Cardinality
- 12. Relation Degree
- 13. Database Normalization
- Database Management₁₄. Primary key, candidate superkey, foreign partial key, key, surrogate key

PropertyForRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo)

PrivateOwner (ownerNo, fName, IName, address, telNo)

Client (clientNo, fName, IName, address, telNo, prefType, maxRent)

Lease (leaseNo, propertyNo, clientNo, paymentMethod, deposit, paid, rentStart, rentF nish)

WHAT IS A DBMS?

- DataBase Management System (DBMS): a general-purpose software system that facilitates the processes of defining, constructing, manipulating, and sharing databases among various users and applications (or a software system that enables users to define, create, maintain, and control access to the database)
- A DBMS is a powerful tool for creating and managing large amount of data efficiently and allowing it to persist over long periods of time safely.

DBMS CAPABILITIES

The capabilities that a DBMS provides the user are:

- Persistent Storage. A DBMS supports the storage of very large amounts of data that exists independently of any processes that are using the data.
- Programming Interface. A DBMS allows the user to access and modify data through a powerful query language.
- Transaction management. A DBMS supports concurrent access to data, i.e., simultaneously access by many distinct processes (called transaction) at once. To avoid some of the undesirable consequences of simultaneous access, the DBMS supports:
 - isolation
 - atomicity
 - resiliency

HISTORY OF DATABASE SYSTEMS AND DBMS

1960s: Flat-File, Hierarchical, Network Databases.

1970s: Relational DBMS – RDBMS) 1980s: Object-Oriented, Distributed DBMS 1990s:
Objectrelational
model) –
ORDBMS,
OLAP, data
mining, data
warehouse,
multimedia
DB

2000s: XML DB, bioinformation, data stream, sensor network, NoSQL

EXAMPLE OF NETWORK MODEL SCHEMA

Jan - 2015

EXAMPLE OF RELATIONAL MODEL SCHEMA

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Figure 1.2A database that stores student and course information.

THE DATABASE SYSTEM ENVIRONMENT (1/2)

- DBMS component modules
 - Buffer management
 - Stored data manager
 - DDL compiler
 - Interactive query interface
 - Query compiler
 - Query optimizer
 - Precompiler

THE DATABASE SYSTEM ENVIRONMENT (2/2)

- DBMS component modules
 - Runtime database processor
 - System catalog
 - Concurrency control system
 - Backup and recovery system

Figure 2.3
Component modules of a DBMS and their interactions.

(RELATIONAL) DBMSs IN PRACTICE

MySQL

- Oracle
- MS SQL Server
- IBM DB2
- **...**

DISCUSSION

WHAT'S MORE?

SQL

- SQL review
- Relational Algebra

REFERENCES

- 1. R. Elmasri & S.B. Navathe, AddisonWesley, Fundamentals of Database Systems, 7th Edition, 2016.
- H. G. Molina, J. D. Ullman, J. Widom, Database System Implementation, Prentice-Hall, 2000.
- A. Silberschatz, H.F. Korth & S. Sudarshan, Database Systems Concepts, 6th Edition, McGraw-Hill, 2006.
- 4. H.G. Molina, J.D. Ullman & J. Widom, Database Systems – The Complete Book, PrenticeHall, 2002.
- 5. T. Connolly & C. Begg, Database Systems A Practical Approach to Design, Implementation, and Management, 6th Edition, Addison-Wesley, 2015.

QUESTIONS AND ANSWERS

Picture from: http://philadelphiasculpturegym.blogspot.com/2013/09/save-date-free-talk-and-q-on-affordable.html