

Universidad Politécnica de Tlaxcala Región Poniente

Alumna: Montserrat Castillo Galindo

2°A

Sistemas Computacionales

Materia: Física

Profesora: Vanesa Tenopala Zavala

Índice

Introducción	1.1
Desarrollo del tema	1.2
Sistema internacional de medidas SI	1.3
Sistema Anglosajón	1.4
Conclusión	1.5
Referencias	

1.1 Introducción

En el siguiente reporte se muestra la investigación de medidas sistema anglosajón y sistema internacional lo cual se generó un programa en scratch que muestra dichas conversiones ya que son muy útiles en la física y en la vida cotidiana, este programa facilita el trabajo de muchas personas.

1.2 Desarrollo del tema

La importancia de la conversión de unidades es dar respuesta matemáticamente a factores de una magnitud en otra de distintas unidades para su análisis.

Actividad 1

Investigar cuales son las medidas entre ambos sistemas

1.3 Sistema SI

Las siete unidades básicas del SI, establecidas por convenio, se consideran dimensionalmente independientes entre sí y son: **metro, kilogramo, segundo, amperio, kelvin, mol y candela**. Las unidades derivadas se forman a partir de las unidades básicas.

	Unidades Básicas o Fundamentales					
	Unidad	Símbolo	Magnitud	Dimensión		
1	metro	m	longitud	L		
2	kilogramo	kg	masa	М		
3	segundo	s	tiempo	Т		
4	kelvin	K	temperatura	Θ		
5	amperio	Α	intensidad de corriente eléctrica	1		
6	candela	cd	intensidad luminosa J			
7	mol	mol	cantidad de sustancia	N		

1.4 Sistema Anglosajón

El sistema anglosajón incluye pulgada, pies, yarda, y milla para medir la longitud; onza y libra para medir el peso; cucharadita, taza, pinta, cuarto y galón para medir la capacidad.

SISTEMA ANGLOSAJÓN

MAGNITUD	UNIDAD	SÍMBOLO
Masa	libra	lb = 0,4535 kg
Longitud	milla	1,609 km
Longitud	yarda	yd=0,9144 m
Longitud	pulgada	2,54 cm
Longitud	pie	30,48 cm

SISTEMA INGLÉS, EQUIVALENCIAS CON EL SISTEMA INTERNACIONAL (SI)

Magnitud	Unidad Sistema Inglés	Equivalencia con SI
Longitud	Pulgada	1 in = 2.54 cm
	Pie	1 pie = 30.48 cm
	Yarda	1 yd = 0.914 m
	Milla	1 mi = 1.609 km
Masa	Libra	1 lb = 453.6 g
	Onza	1 oz = 28.35 g
Volumen Galón		1 gal = 3.785 l

Al presionar en banderita verde el gatito pregunta la cantidad a convertir en seguida muestra una frase que dice estoy calculando, posteriormente muestra el resultado en un diálogo de texto y listo obtenemos la unidad de medida deseada.

1.5 Conclusión

En esta actividad realizada abarca varias ramas tanto de la física como de programación y viceversa. Es fundamental para el método científico que las medidas sean reproducibles y, para que esto sea posible, las magnitudes con sus unidades han de ser expresadas de una manera concisa y no ambigua.

Referencias bibliográficas

https://www.google.com/search?q=importancia+de+la+medidas+en+la+fisica&client=firefox-

https://www.google.com/search?q=sistema+anglosajon+&client=firefox-b-d&sca_esv=60127

https://www.google.com/search?q=sistema+internacional+de+medidas&client=firefox-b-d&s

https://www.youtube.com/watch?v=gtACLfEQWdY