CS604: Advanced System Security

Multics System

Deepti Vidyarthi DIAT

(Acknowledgements to Trent Jaeger and William Enck for reference)

Secure System - Evaluation Criteria

- Mediation: Does interface mediate correctly?
- Mediation: On all resources?
- Mediation: Verifably?
- Tamperproof: Is reference monitor protected?
- Tamperproof: Is system TCB protected?
- Verifiable: Is TCB code base correct?
- Verifiable: Does the protection system enforce the system's security goals?
- Does Multics satisfy these?

MAC Systems

- Major Effort: Multics
- Multiprocessing system developed many OS concepts (Including security)
- Began in 1965
 - Development continued into the mid-70s
- Used until 2000
 - Initial partners: MIT, Bell Labs, GE/Honeywell
- Subsequent proprietary system, SCOMP, became the basis for secure operating systems design

Multics Fundamentals

- Processes: (executable context to run code)
 - Protection domain of a process = segments it can access
 + operations it can perform on those segments.
 - Process Descriptor Segment
- Segments: files, I/O devices, etc..
 - Organized into a hierarchy of directories and segments
 - Segments in the process's context have a set of segment descriptor words (SDWs)
 - Segments outside the process's context must be addressed by full name

Multics process's segment

Descriptor Base Register Segment 0 **Process Descriptor Segment** Segment Desc Word 0 Segment Desc Word 1 Segment Desc Word 2 Segment 1 Segment N Segment Desc Word N Segment Desc Word N+1

Multics process's segment

Address Le	ength R1	R2 R3	R W	E	Gate
------------	----------	-------	-----	---	------

SDW: Segment Descriptor Word

Multics Security Fundamental Concepts

- <u>Supervisor</u>: core component part of TCB.
- Protection rings: a hierarchical layering.
 - Ring 0: access control, I/O, scheduling, segmentation and memory management, etc.
 - Ring 1: accounting, stream management and file system search, etc.

The login process

- Handled by answering service.
- Answering service retrieves password segment to verify password (authorized by supervisor).
- If user and password match, a process is created with the appropriate code and data segments, and perhaps the appropriate SDW's.

The login process

Multics Protection System Models

- 3 different, interacting protection models:
 - Access control lists
 - Rings and Brackets
 - Multilevel Security

Access is granted if all three models grant it.

Access Control Lists

- Each segment + each directory has associated an ACL stored in the parent directory.
- · Permissions:
 - r(ead), w(rite), e(xecute) for segments
 - (check)s(tatus of entry), m(odify entry), or a(ppend an entry).
- To change the ACL, m permission is need on the parent directory.

```
perms user(s) (can be wildcarded)

rwe Backup.SysDaemon.*
```

Rings and Brackets

- Each process runs in a certain ring r.
- Each segment has three ring numbers associated with it: $r1 \le r2 \le r3$.
- Segment access determined by r, r1 & r2.
- Segment execution determined by r, r1, r2 & r3.

Rings and Brackets

Ring Policy for segment access

r < r1	R, W - the process can read and write the segment.	
r1 ≤ r ≤ r2	R - the process can only read the segment.	
r2 < r	No access allowed	

Rings and Brackets

Ring policy for segment execution

r < r1	 Execution allowed Ring transition r-> r' r', r1 ≤ r' ≤ r2, specified by the segment 	
r1 ≤ r ≤ r2	Execution allowedno ring transition	
r2 < r ≤ r3	 Execution allowed if authorized by the gates in code segment's SDW; Ring transition r-> r' 	
r3 < r	 Execution not allowed 	

Multilevel Security

W only	S/D level ≥ Process level
R only	S/D level ≤ Process level
R + W	S/D level = Process level Process trusted

Multilevel Security (MLS)

- Subjects & objects placed in levels such that their levels can be compared.
- · The higher the level the "more secret" it is.
- Reading and writing is constrained so that information can flow from less secrecy to more secrecy.
- Read below and Write above.

Multics Protection System Models

- 3 different, interacting protection models:
 - Access control lists
 - Rings and Brackets
 - Multilevel Security

Access is granted if all three models grant it.

Multics Security

- Secrecy
 Prevent leakage even if running untrusted code
- Integrity
 Prevent unauthorized modification layers of trust
- Comprehensive control enforce at lowest level

Multics Security

- ACLs and ring brackets for a segment may modified by process that has the modify privilege to the segment's parent directory.
- MLS policy is loaded with the system at boottime and is otherwise immutable.

Multics Protection System

- Protection State
 - ACL , Ring brackets, Levels in MLS
- Labelling State
 - Not specifically defined.
 - Presumably, creator assigns MLS labels and ring brackets to new segments
- Transition State
 - Ring brackets define allowed protection domain transitions.
 - No object transitions specified.

Ring transition

- Gate is a special memory address where lowerprivilege code can call higher
- Enables OS to control where applications call it (system calls)

Ring transition

Ring transition to a more-privileged ring

- Entry through a special gate segment
 - number of arguments expected;
 - data type on each argument;
 - access requirements for each argument (e.g. R / RW).
- Gate segment = gatekeeper
 - protect the invoked code from potentially malicious input from lower-privileged code
- Return to the calling code in the proper ring number r.

Ring transition

- Transition to a lower-privileged ring
- May leak information
 Each segment in which an argument is contained must be accessible to the called procedure/some form of copying is necessary
- · Higher privileged code protect itself on return
 - caller to provide a gate for return = return gate.
 - Similar in concept to a call gate multiple calls may result in a stack of return gates (Not in SDW)
 - Supervisor must maintain stack of return gates for the process

Multics Reference Monitor

Mediation

- Security-sensitive operations on segments
- All objects are accessed via a named hierarchy of segments

Tamperproofing

- Reference monitor is part of the kernel ring
- Minimize dependency on software outside kernel Verifiability
- Lots of code (well, 54K SLOC, but designers thought this was too much)
- MLS for secrecy and rings for integrity (not mandatory)

Vulnerability Analysis

- Evaluation of Multics system security 1972-1973
- Roger Schell and Paul Karger
- Implementation based flaws

Hardware Vulnerability Analysis

- Run the system for a long time
 - Didn't crash, but found one undocumented instruction and one vulnerability
- Indirect Addressing
 - Address provided includes the actual address to use
 - Mechanism only checked the first address
- Result
 - Bypass access checking (complete mediation)

Software Vulnerability Analysis

- Master mode vulnerability
 - Run privileged code with ring 0 permissions
 - Requires a trap to ring 0
 - Expensive as some privileged operations occur frequently (page faults)
- Where to keep signaller ??

Multics Security

- Largely good but risks remain.
- Powerful mediation, expressive tamperproofing, and verifiable secrecy controls and system integrity controls.
- Challenges:
 - Managing the scope of the TCB,
 - Verifying correctness of system integrity policies
 - Ensuring integrity protection for all processes and segments correctly
 - Correct implementation

Take Away

- Multics originated the development of a "secure operating system"
 - -Real attempts were made to achieve reference monitor guarantees and provide a mandatory protection system (e.g., MLS)
- However, it is not easy to satisfy reference monitor guarantees, even when you try
 - -Especially, if your system maintainers are not trying
- If you are not trying to satisfy RM guarantees - You won't have anything close (UNIX and Windows)

References & Acknowledgments

- Book: Operating System Security by Trent Jaeger
- William Enck, OS Security lecture notes
- Lecture Notes:

http://www.cse.psu.edu/~trj1/cse544-s18/schedule.html