EECS 376: Foundations of Computer Science

Seth Pettie Lecture 6

Template

- * Solve the problem in a "greedy", "myopic" way
 - * Rarely gives you an **exactly** optimum solution, but makes for some very elegant algorithms when it does.
 - * (Often works well for *approximation algorithms* more on this in November.)
- * Main difficulty: arguing correctness
 - * Exchange arguments

Activity scheduling

- * An activity i has start time s_i and end time f_i
- * Goal: Given a set A of n activities (classes), select a subset $S \subseteq A$ that are mutually disjoint that maximizes |S|, i.e. a maximum schedule.
- * Activities i and j are disjoint if their intervals $[s_i, f_i)$ and $[s_j, f_j)$ don't overlap
 - * $s_i \ge f_j \text{ or } s_j \ge f_i$

No preeminent "Greedy" algorithm

- * Possible greedy heuristics:
 - * Pick a set of activities one at a time, shortest activities first (minimizing $|f_i s_i|$).
 - * Pick a set of activities one at a time, earliest starting time first.
 - * Pick a set of activities one at a time, earliest finishing time first.

A greedy algorithm

Assume they're sorted in increasing order by finishing time: $f_1 \le f_2 \le \cdots \le f_n$

```
Greedy(s, f):

S \leftarrow \{1\} \\ chosen activities

j \leftarrow 1 \\ activity chosen with the largest f_j

for i = 2..n:

if s_i \ge f_j:

S \leftarrow S \cup \{i\}

j \leftarrow i

return S
```

Runtime: O(n)

A greedy algorithm

t = 0


```
Greedy(s, f):

S \leftarrow \{1\}

j \leftarrow 1

for i = 2..n:

if s_i \ge f_j:

S \leftarrow S \cup \{i\}

j \leftarrow i

return S
```


6

Greed is good

- * Theorem: Greedy(s, f) returns a maximum size schedule S
- * Suppose **S**' is an <u>arbitrary</u> maximum size schedule.
- * Goal: show size S =size of S'
- * Idea: show that we can transform S' to S while maintaining the size (by induction, "swapping in" an activity of S for an activity of S', one at a time)

commonly employed strategy to show that a greedy algorithm is optimal

Greed is good

- * Order the activities $a_1, a_2, ...$ in S by their finish time
- * Order the activities $a'_1, a'_2, ...$ in S' by their finish time
- * Idea: Show by induction, every time we "swap" an activity, still have a max size schedule
- * Base case: k=0 swaps; current schedule is S'
- * Ind. step: Suppose we've swapped in first k activities from S
 - * Last activity swapped in was a_k
 - * Of the activities remaining, $\{i \in A \mid s_i \geq f_{k-1}\}, a_{k+1}$ has the earliest f_k
 - * Remove a'_{k+1} and add a_{k+1} : can only be moving the finish time earlier
 - * Still a (disjoint) schedule that's the same size
- * S' a max size schedule, so S is too!

The Routing Problem

$$d(i,j)=d(j,i)$$

- * n cities with symmetric, positive distances d(i,j) between city i and j
- * **Goal:** Find the <u>minimum</u> length of highway needed to **connect** the cities, i.e., it is possible to drive from any city to another using the highway

Q: What's the minimum length of highway needed here?

Review: Graph theory

- * An **undirected graph** has bidirectional edges
- * Fact: Every connected undirected graph G has a spanning tree, i.e., a connected graph that (i) contains every vertex of G and (ii) does not contain any cycles
- * **Goal:** Find a <u>minimum-weight</u> spanning tree (**MST**)

Kruskal's Algorithm

Kruskal(G): // G is weighted, undirected graph

 $T \leftarrow \emptyset$ // invariant: T is a forest (set of trees) of G

for each edge *e* in increasing order of weight:

if T + e is acyclic: $T \leftarrow T + e$

return T

Correctness

Kruskal(G): // G is weighted, undirected graph $T \leftarrow \emptyset$ // invariant: T is a spanning forest (set of trees) of G for each edge e in increasing order of weight: if T + e is acyclic: $T \leftarrow T + e$ return T

- * Theorem: Kruskal(G) returns a minimum spanning tree T of G
- * **Q:** Why does Kruskal return a spanning tree?
 - * Suppose you could add some edge *e* to the output *T* that doesn't introduce a cycle. Then what happens?
- * **Q:** Why does Kruskal return a minimum spanning tree?

* Goal: show weight of T = weight of T'.

* Idea: show that we can transform T' to T while maintaining the weight (by induction, "swapping in" an edge of T for an edge of T', one at a time).

commonly employed strategy to show that a greedy algorithm is optimal

Correctness

Kruskal(G): //G is weighted, undirected graph $T \leftarrow \emptyset$ // invariant: T is a spanning forest (set of trees) of G for each edge e in increasing order of weight: if T + e is acyclic: $T \leftarrow T + e$ return T

- * Let $e_1, e_2, ...$ be the edges of T, in order of addition to T
- * Idea: Show by induction, every time we "swap" an edge, still have an MST
- * Base case: k = 0 swaps; still have T', an MST
- * Ind. step: Suppose we've swapped in first k edges and it's still an MST
 - * Consider the next edge e_{k+1} added to T.
 - * If $e_{k+1} \in T'$, MST doesn't change
 - * If $e_{k+1} \notin T'$, then adding it creates a cycle C (adding any edge to MST makes a cycle)
 - * Since T is acyclic, there is an edge $f \in T'$ on the cycle C.
 - * "Swap in e_{k+1} ": Remove f and add e_{k+1} . It's still an MST!

Claim: e_{k+1} 's weight $\leq f$'s weight.

- * edges added in increasing order of weight
- * f + first k edges do not form a cycle
 - * Kruskal would have considered adding it, but added e_{k+1} instead

Practice

- * Fractional knapsack: A delivery person wants to load divisible goods, like flour or oil, onto a truck, but the truck can only carry weight W, and they want to maximize the value of the goods. There are v_i dollars worth of each good to be loaded, and weighs w_i pounds in total.
 - * Goal: How much of each good should be taken to maximize the value of one truckload?
 - * **Q:** What is a greedy algorithm to solve this problem? How should we order the goods to be selected?

Goodbye Algorithms...

- * Congratulations! You've just finished a crash course on algorithms. (Next: practice, practice, practice.)
- * More advanced algorithms and techniques in EECS 477 (Introduction to Algorithms).
- * On Wednesday we begin Computability.

