Lezione del 14 Novembre del Prof. Frigerio

Definizione 0.1 (Successione di Cauchy).

Sia (X, d) uno spazio metrico.

Una successione $\{a_n\} \subseteq X$ è detta di Cauchy se

$$\forall \varepsilon > 0 \quad \exists n_0 \quad d(x_n, x_m) \le \varepsilon \quad \forall n, m \ge n_0$$

Lemma 0.1. Se $\{x_n\}$ è convergente allora è di Cauchy

Dimostrazione. Sia \overline{x} il limite di x_n dunque

$$\forall \varepsilon > 0 \quad \exists n_0 \quad d(x_n, \overline{x}) \le \frac{\varepsilon}{2} \quad \forall n \ge n_0$$

dunque

$$\forall n, m \ge n_0 \quad d(x_n, x_m) \le d(x_n, \overline{x}) + d(x_m, \overline{x}) = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Definizione 0.2 (Spazio completo).

X spazio topologico si dice completo se ogni successione di Cauchy in X è convergente

Osservazione 1. \mathbb{Q} non è completo, sia $\{x_n\} \subseteq \mathbb{Q}$ convergente a $\sqrt{2}$ tale successione è di Cauchy, essendo convergente, ma non converge in \mathbb{Q}

Lemma 0.2. Sia $\{x_n\}$ di Cauchy. Se $\{x_n\}$ ammette una sottosuccessione convergente allora $\{x_n\}$ è essa stessa convergente.

Dimostrazione. Poichè $\{x_n\}$ è di Cauchy

$$\forall \varepsilon > 0 \quad \exists n_0 \quad d(x_n, x_m) \le \frac{\varepsilon}{2} \quad \forall n, m \ge n_0$$

Ora sia $\overline{x} = \lim_{i \to +\infty} x_{n_i}$ dunque per definizione di limite

$$\forall \varepsilon > 0 \quad \exists j \in \mathbb{N} \quad d(\overline{x}, x_n) \le \frac{\varepsilon}{2} \quad \forall n \ge n_j$$

Sia $n_{\bar{i}} \ge n_j \ge n_0$ dunque

$$\forall n \ge n_{\overline{i}} \quad d(\overline{x}, x_n) \le d(\overline{x}, x_{n_{\overline{i}}}) + d(x_{n_{\overline{i}}}, x_n) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

dunque $\lim_{n\to+\infty} x_n = \overline{x}$

Corollario 0.3. Sia X uno spazio metrico

 $X \ compatto \ per \ successioni \Rightarrow X \ completo$

Lemma 0.4. Sia X è completo e $Y \subseteq X$ con la metrica indotta

$$Y \ completo \Leftrightarrow Y \ chiiuso \ in \ X$$

Dimostrazione. In modo contronominale.

Se Y non è chiuso allora $\exists \{y_n\} \subseteq Y$ con $\lim_{n \to \infty} y_n = \overline{y} \notin Y$,infatti essendo Y primo numerabile, $\overline{Y} = \{$ punti limiti delle successioni $\subseteq Y\}$.

Ora $\{y_n\}$ converge, dunque è di Cauchy ma non converge in Y, Y non è completo.

 \Leftarrow Sia $\{y_n\} \subseteq Y$ di Cauchy.

Per completezza di X $\exists \lim_{n \to \infty} y_n = \overline{x}$, ora essendo Y chiuso $\overline{x} \in \overline{Y} = Y$ dunque Y completo \Box

Definizione 0.3. Sia X uno spazio metrico.

X è totalmente limitato se $\forall \varepsilon > 0$ esiste un ricoprimento finito di X fatto con palle di raggio ε

Lemma 0.5.

 $X \ totalmente \ limitato \implies X \ limitato$

Dimostrazione. Dalla totale limitatezza ponendo $\varepsilon=1$ si ottiene

$$X = \bigcup_{i=1}^{n} B(x_i, 1)$$

Posto $M = \max_{i,j=1,\dots,n} \{d(x_i, x_j)\}$

$$\forall x, y \in X \quad \exists x_i, x_i \quad x \in B(x_i, 1) \text{ e } y \in B(x_i, 1)$$

da cui

$$d(x,y) \le d(x,x_i) + d(x_i,x_j) + d(x_j,y) \le 1 + M + 1 + M = M + 2$$

Osservazione 2. Non vale il viceversa.

Se su \mathbb{R} poniamo $d(x,y) = \min\{|x-y|,1\}$ allora (\mathbb{R},d) è limitato ma non totalmente limitato, non esistono ricoprimenti finiti con palle di raggio 1/2

Proposizione 0.6. (X, d) totalmente limitato \Rightarrow a base numerabile

Dimostrazione. Per un teorema già visto basta vedere che è separabile (metrico e separabile implica a base numerabile)

$$\forall n \quad \exists F_n \subseteq X \text{ finito con } X = \bigcup_{p \in F_n} B\left(p, \frac{1}{n}\right)$$

Allora $\bigcup_{n>1} F_n$ è numerabile, mostriamo che è denso.

Sia $U \subseteq X$ un aperto non vuoto, dunque $\exists n_0 \in \mathbb{N} \ \exists z \in X \ \text{tale che} \ B\left(z, \frac{1}{n_0}\right) \subseteq U$.

Ora le palle di raggio $\frac{1}{n_0}$ sono un ricoprimento da cui $\exists p \in F_{n_0}$ tale che $z \in B\left(p, \frac{1}{n_0}\right)$.

Dunque $p \in \bigcup F_n$ e $p \in B\left(z, \frac{1}{n_0}\right) \subseteq U$ da cui $\bigcup F_n$ interseca ogni aperto non vuoto da cui denso.

Teorema 0.7. Sia (X, d) metrico. I seguenti fatti sono equivalenti

- (i) X compatto
- (ii) X compatto per successioni
- (iii) X totalmente limitato e completo

Inoltre in questi casi X ammette una base numerabile

Dimostrazione.

- \bullet (i) \Rightarrow (ii) Deriva dal fatto che metrico implica primo-numerabile
- $\bullet \ (\mbox{ii}) \Rightarrow (\mbox{iii})$ Abbiamo già visto che compatto per successione implica completo.

Mostriamo che X è totalmente limitato in modo contronominale.

Se X non fosse totalmente limitato allora $\exists \varepsilon > 0$ tale che X non sia ricoperto da un numero finito di palle di raggio ε .

Costruiamo induttivamente una successione $\{x_n\}$.

Prendiamo $x_0 \in X$ (qualunque).

Poniamo $x_{n+1} \notin B(x_0, \varepsilon) \cup \cdots \cup B(x_n, \varepsilon)$.

Tale successione non ammette sottosuccessione convergenti infatti $d(x_n, x_m) \ge \varepsilon$ per tutti gli $n \ne m$

 (iii) ⇒ (i) Poichè totalmente limita implica a base numerabile, sotto le ipotesi (iii) vale (i) ⇔ (ii).

Mostriamo, dunque, che X è compatto per successioni.

Sia $\{x_n\}$ una successione in X, essendo X completo, troviamo una sottosuccessione di Cauchy (dunque convergente).

Per totale limitatezza, $\forall n \in \mathbb{N}$ esiste un ricoprimento finito \mathfrak{U}_n di X fatto con palle di raggio 2^{-n} . Essendo \mathfrak{U}_0 finito

$$\exists W_0 \in \mathfrak{U}_0 \quad I_0 = \{ n \in \mathbb{N} \mid | x_n \in W_0 \} \text{ infinito}$$

(la successione si deve ripartire in finite palle, dunque deve esistere una palla che contiene infinti termini della successione)

Pongo $n_0 = \min I_0$.

Essendo \mathfrak{U}_1 finito

$$\exists W_1 \in \mathfrak{U}_1 \quad I_1 = \{ n \in \mathbb{N} \mid | n > n_0 \in x_n \in W_1 \} \text{ infinito}$$

Pongo $n_1 = \min I_1$.

Proseguo induttivamente ottenendo una sottosuccessione $\{x_{n_i}\}$.

Mostriamo che tale successione è di Cauchy; per ogni $i, j \geq j_0$ segue che $x_{n_i}, x_{n_j} \in W_{j_0}$ Ora W_{j_0} è una palla di raggio 2^{-j_0} da cui $d(x_{n_i}, x_{n_j}) \leq 2^{-j_0+1} < \varepsilon$