Série 5 du jeudi 20 octobre 2016

Exercice 1.

Pour un réel $\alpha > 0$, étudier la convergence de $\sum_{n=1}^{\infty} \frac{\alpha^n}{n^8}$.

Exercice 2 (* A rendre).

1.) Soit $(x_n)_{n=0}^{\infty}$ une suite de nombres réels positifs qui est sous-additive au sens que:

$$x_{n+m} \le x_n + x_m, \quad \forall m, n \in \mathbb{N}.$$

Démontrer que la suite $\left(\frac{x_n}{n}\right)_{n=1}^{\infty}$ converge vers $\inf\left\{\frac{x_1}{1},\frac{x_2}{2},\ldots,\frac{x_n}{n},\ldots\right\}$. (Mais donner un exemple qui montre que $\left(\frac{x_n}{n}\right)_{n=1}^{\infty}$ n'est pas nécessairement monotone).

2.) On appelle marche auto-évitante partant de (0,0) de longueur n une collection de points $\{(0,0),(x_1,y_1),\ldots,(x_n,y_n)\}$ avec $x_i, y_i \in \mathbb{Z}$, $\forall 0 \le i \le n$ telle que $|x_{k+1} - x_k| + |y_{k+1} - y_k| = 1$, $\forall 0 \le k \le n-1$ et telle que tous les (x_i, y_i) soient distincts (c.f. les 2 exemples ci-dessous).

Soit C_n le nombre de telles marches. Montrer que $C_n \geq 2^n$ et qu'il existe $\alpha > 0$ tel que $\frac{\log C_n}{n} \to \alpha$.

Exercice 3.

Soient $(a_n)_{n=0}^{\infty}$ et $(b_n)_{n=0}^{\infty}$ deux suites de nombres réels positifs pour lesquelles il existe $n_0 \in \mathbb{N}$ tel que pour tout

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}.$$

Montrer que:

$$\sum_{n=0}^{\infty} b_n < +\infty \Rightarrow \sum_{n=0}^{\infty} a_n < +\infty$$

et

$$\sum_{n=0}^{\infty} a_n = +\infty \Rightarrow \sum_{n=0}^{\infty} b_n = +\infty.$$

<u>Indication:</u> montrer que pour tout $n > n_0$, $a_n \le \beta b_n$ où $\beta = \frac{a_{n_0}}{b_{n_0}}$.