- методом засечек вычертить звенья ΔDCE , FE и BC навесной системы;
- ullet по значениям координат и радиуса $r_{\mbox{\tiny K}}$ определить положение

опорного колеса, носка лемеха, полевой доски и центра тяжести плуга;

- вычертить полевой, верхний, правый обрезы и стойку корпуса плуга;
- приложить к штоку гидроцилиндра в точке F и к центру тяжести плуга в точке E_1 соответственно силу выглубления Q и силу тяжести G_1 (рис. 4.2).

Puc. 5.2. Схема к определению усилия подъема навесного плуга (рабочее положение)

Сила тяжести G_1 состоит из веса G плуга и G_n почвы, находящейся на корпусе плуга в момент его выглубления:

$$G_1 = G + G_{\pi}$$
.

Величина веса G_{Π} почвы зависит от глубины a пахоты и определяется по формуле:

$$G_{\Pi} = k_{\Pi}a$$
, = 68 H

где $k_{\rm II}$ – коэффициент пропорциональности между глубиной пахоты и весом находящегося на отвальной поверхности плуга пласта почвы (для однокорпусного плуга с шириной захвата 0,35 м, длиной находящегося на отвальной поверхности плуга пласта почвы 0,70 м и удельным весом почвы 1200 кг/м³ значение $k_{\rm II}$ = 0,296 кH/м);

a – глубина пахоты, м.

Кроме этих сил во время движения пахотного агрегата в заглубленном положении на корпус плуга и опорное колесо

						Лист
					Лабораторная работа №4	
Изм.	Лист	№ докум.	Подпись	Дата		

- поднять плуг в транспортное положение и определить давление p масла в гидроцилиндре по показанию манометра;
- по давлению масла в гидравлической системе рассчитать усилие Q' подъема плуга с помощью выражения

$$Q'=pF=350 \text{ H}$$

где F – площадь поршня гидроцилиндра, M^2 ;

- 2) по результатам регистрации сигнала от тензорезисторов, наклеенных на шток гидроцилиндра и соединенных в мостовую электрическую измерительную схему, с помощью измерительного тензометрического комплекса PC Messlektronik «Spider 8»:
- поднять плуг в транспортное положение и зарегистрировать электрический сигнал с помощью измерительного комплекса;
 - рассчитать усилие подъема плуга по формуле

$$Q' = xk_1$$
,

где x — величина сигнала, полученного с помощью регистрирующего измерительного комплекса;

 k_1 – тарировочный коэффициент.

Сравнить определенное по одному из вариантов экспериментальное значение силы Q' с расчетной величиной силы Q и определить относительную погрешность результатов построения схемы и расчета по формуле:

$$\varepsilon = \frac{Q^{'} - Q}{O} 100\%.$$

Результаты измерений и расчетов занести в табл. 4.2.

Таблица 4.2 Опытные и расчетные данные по определению погрешности усилия подъема плуга.

Определяемые	Резул	ьтаты	Диаметр	Площадь	Усилие	Погреш-
величины	измерений		поршня	поршня	подъема	ность
	p, МПа	<i>x</i> , H	D, mm	F, mm ²	<i>Q</i> ', H	ε, %
	5	250	100	7854	350	16.6

Построение планов скоростей и расчет усилия в итоке гидроцилиндра в рабочем положении плуга

Используя методику построения планов скоростей звеньев в транспортном положении, построить планы скоростей звеньев в заглубленном положении плуга (см. рис. 4.2).

Перенести силы G_1 , R_{XZ} , $F_{пд}$, N_{κ} и Q соответственно в точки e_1 , m, k, o и e планов скоростей, повернутых на 90° , и обозначить плечи их действия относительно полюса A.

Составить уравнение моментов сил относительно полюса A:

$$\sum ma = 0$$
, $QH_Q - G_1H_G \pm R_{XZ}H_R + F_{\Pi\Pi}H_F + N_{K}H_N = 0$.

						Лист
					Лабораторная работа №4	
Изм.	Лист	№ докум.	Подпись	Дата		