

AON6996

30V Dual Asymmetric N-Channel MOSFET

General Description

• Trench Power αMOS Technology

• Low R_{DS(ON)}

• Low Gate Charge

High Current Capability

• RoHS and Halogen-Free Compliant

Product Summary

 $\begin{array}{c|cccc} & & \underline{Q1} & \underline{Q2} \\ V_{DS} & 30V & 30V \\ I_D \ (at \ V_{GS} = 10V) & 50A & 60A \\ R_{DS(ON)} \ (at \ V_{GS} = 10V) & < 5.2m\Omega & < 3.9m\Omega \\ R_{DS(ON)} \ (at \ V_{GS} = 4.5V) & < 8.6m\Omega & < 5m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Applications

• DC/DC Converters in Computing

Isolated DC/DC Converters in Telecom and Industrial

Orderable Part Number	3 71		Minimum Order Quantity
AON6996	DFN 5x6D	Tape & Reel	3000

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Symbol Max Q1 Max Q2		Units			
Drain-Source Voltag	е	V _{DS}	30	30	V			
Gate-Source Voltage	;	V_{GS}	±20	±12	V			
Continuous Drain	T _C =25°C	1	50	60				
Current	T _C =100°C	'D	31	38	Α			
Pulsed Drain Curren	t ^ċ	I _{DM}	100	120	•			
Continuous Drain	T _A =25°C	1	19	23	. A			
Current	T _A =70°C	IDSM	15	18	A			
Avalanche Current ^C		I _{AS}	38	48	Α			
Avalanche energy L=0.01mH ^C		E _{AS}	7	12	mJ			
V _{DS} Spike	10µs	V _{SPIKE}	36	36	V			
	T _C =25°C	В	21	22	· W			
Power Dissipation ^B	T _C =100°C	P _D	8.3	8.6	VV			
	T _A =25°C	В	3.1	3.1	· W			
Power Dissipation ^A	T _A =70°C	P _{DSM}	2	2	VV			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 t	°C				

Thermal Characteristics							
Parameter		Symbol	Typ Q1	Typ Q2	Max Q1	Max Q2	Units
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	30	30	40	40	°C/W
Maximum Junction-to-Ambient AD	Steady-State	Т∙өЈА	50	50	65	65	°C/W
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	4.6	4.4	6	5.8	°C/W

Q1 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	ID=250µA, VGS=0V		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V				1	
idss	Zero Gate Voltage Brain Current		T _J =55°C			5	μA
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		1.4	1.8	2.2	V
		V_{GS} =10V, I_D =20A			4.3	5.2	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		6.3	7.6	11152
		V_{GS} =4.5V, I_D =20A			6.8	8.6	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A			67		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.71	1	V
Is	Maximum Body-Diode Continuous Current					20	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance				820		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz			340		pF
C _{rss}	Reverse Transfer Capacitance				40		pF
R_g	Gate resistance	f=1MHz		0.6	1.2	1.8	Ω
SWITCHI	NG PARAMETERS	•					
$Q_g(10V)$	Total Gate Charge				13		nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A			6.1		nC
Q_{gs}	Gate Source Charge				2		nC
Q_{gd}	Gate Drain Charge				2.4		nC
$t_{D(on)}$	Turn-On DelayTime				6.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =0.75 Ω , R_{GEN} =3 Ω			16.5		ns
$t_{D(off)}$	Turn-Off DelayTime				17		ns
t _f	Turn-Off Fall Time				2.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			11		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	S		19		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED, AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150 $^{\circ}\,$ C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

V_{DS} (Volts) Figure 1: On-Region Characteristics (Note E)

V_{GS}(Volts) Figure 2: Transfer Characteristics (Note E)

 $\rm I_D$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

 T_{CASE} (° C) Figure 13: Current De-rating (Note F)

Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.2.0: June 2015 Page 5 of 10 www.aosmd.com

Q2 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =10mA, V _{GS} =0V		30			V
	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				0.5	mA
I _{DSS}	Zero Gate Voltage Drain Gurrent	T _J =55°C				100	111/4
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±12V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		1.1	1.5	1.9	V
		V_{GS} =10V, I_D =20A			3.2	3.9	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		4.6	5.6	11152
		V_{GS} =4.5V, I_D =20A			4	5	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A			125		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.53	0.7	V
Is	Maximum Body-Diode Continuous Curr	rent				30	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance				1350		pF
Coss	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			450		pF
C _{rss}	Reverse Transfer Capacitance				60		pF
R_g	Gate resistance	f=1MHz		0.9	1.8	2.7	Ω
SWITCHI	NG PARAMETERS	•	•		•	•	•
$Q_g(10V)$	Total Gate Charge				23		nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =20A			10.5		nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V,	1D-20A		4		nC
Q_{gd}	Gate Drain Charge	7			3		nC
$t_{D(on)}$	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_L =0.75 Ω , R_{GEN} =3 Ω			6.5		ns
t _r	Turn-On Rise Time				2.5		ns
$t_{D(off)}$	Turn-Off DelayTime				26		ns
t _f	Turn-Off Fall Time			3.5		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs			13		ns
Q _{rr}	Body Diode Reverse Recovery Charge	l _F =20A, dl/dt=500A/μ	.s		22		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150 $^{\circ}\,$ C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage

(Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

Figure 12: Power De-rating (Note F)

 T_{CASE} (° C) Figure 13: Current De-rating (Note F)

Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Pulse Width (s)
Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

Rev.2.0: June 2015 Page 9 of 10 www.aosmd.com

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev.2.0: June 2015 **www.aosmd.com** Page 10 of 10