DIGITAL CIRCUITS

Week-2, Lecture-2 Introduction

Sneh Saurabh 8th August, 2018

Digital Circuits: Announcements/Revision

Logic Expression: Precedence of Operators

- (): Bracket
- NOT
- AND
- OR

What will be the order of computation for the following expression:

$$f(x_1, x_2, x_3) = \overline{x_1}.(x_2 + x_3.x_1)$$

- Computation 1: Bracket
 - $x_3.x_1$ AND
 - $x_2 + x_3 \cdot x_1$ OR
- Computation 2: $\overline{x_1}$ NOT
- Computation 3: $\overline{x_1}$. $(x_2 + x_3. x_1)$ AND

Logic function: Complement of a function

 Complement can be defined for complex function also

•
$$f(x_1, x_2) = (x_1 + x_2)$$

$$\bullet \ \overline{f}(x_1, x_2) = \overline{(x_1 + x_2)}$$

- NOT of OR is known as NOR operation
- Similarly NOT of AND operation is known as NAND operation

Find the truth table for this function

x_1	x_2	$f(x_1, x_2) = x_1 + x_2$	$ \bar{f}(x_1, x_2) \\ = \overline{(x_1 + x_2)} $
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Logic gates: AND, OR, NOT (Basic Gates)

What is a *Logic Gate*?

- Hardware implementation of logic operation such as NOT, AND, OR, NAND, NOR etc. in terms of transistors etc. is known as *Logic Gate*
- A logic gate has one or more inputs and only one output
- Output depends on the value of inputs
- Convenient to represent in terms of schematic
- A bubble at the input or the output denotes taking complement

Logic gates: NAND, NOR

NAND/NOR gates are widely used because it is easy to realize/fabricate them using transistors

- AND/OR/NOT gates can be realized using only NAND gates
- AND/OR/NOT gates can also be realized using only NOR gates
- NAND/NOR gates are called universal gates

NAND, NOR: Universal gates

A	В	X	Y	Q
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

Similarly, it can be shown that NOT, OR, AND operation can be realized using NOR gates alone

Logic gates: XOR, XNOR

x_1	x_2	$XOR(x_1, x_2) = x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

x_1	x_2	$XNOR(x_1, x_2) = \overline{(x_1 \bigoplus x_2)}$
0	0	1
0	1	0
1	0	0
1	1	1

Positive and Negative Logic

- Logic Gates are designed in terms of voltage levels
 - ➤ Two levels are defined: *H* (High) and *L* (Low)
- The *interpretation* of these voltages in terms of "0" and "1" can be in two ways

Positive Logic:

■ *H* (High) is "1" and *L* (Low) is "0"

Negative	Logic:
Itcgative	<u>Logio.</u>

■ *H* (High) is "0" and *L* (Low) is "1"

ow) is "1"	L	L	
	L	Н	
$x_1 - \int_{-f}^{f}$	Н	L	
x ₂	Н	Н	

 x_1

 x_2

x_1	x_2	$f(x_1, x_2)$	
0	0	0	
0	1	0	
1	0	0	$x_1 \longrightarrow f$
1	1	1	

x_1	x_2	$f(x_1, x_2)$	x_1
1	1	1	x ₂ —
1	0	1	
0	1	1	x_1
0	0	0	x_2

Triangles indicate negative logic

 $f(x_1,x_2)$

Н

Negative Logic system is rarely used, and we will assume positive logic system in this course

Logic Network or Logic Circuit

- NOT, AND, OR gates can be used to implement any logic function
- A complex logic function is implemented by interconnecting logic gates

Logic Network or Logic Circuit is an interconnection of logic gates

- Same Logic Function can be implemented by different Logic Networks
- A designer task is to find a Logic Network with less complexity (less number of gates)

Tasks for a Logic Circuit Designer

Analysis:

 Given a logic network, determine the logic function that is implemented

Synthesis:

- Given a logic function, find a logic network that implements it
- There are many solutions, choose the best

Logic Network Analysis: Function $f(x_1, x_2)$

Analysis: Find the function that is represented by the above Logic Network

Approach:

- a) Write the Logic Function
- b) Write the Truth Table

Logic Function:

$$A = \overline{x_1} \qquad B = x_1. \, x_2$$

$$f(x_1, x_2) = \overline{x_1} + x_1 \cdot x_2$$

x_1	x_2	A	В	$f(x_1, x_2)$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	0
1	1	0	1	1

Logic Network Analysis: Timing Diagram

Timing Diagram: Changes in signals at different point of time represented graphically.

x_1	x_2	A	В	$f(x_1, x_2)$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	0
1	1	0	1	1

 $x_{1} = \frac{1}{0}$ $x_{2} = \frac{1}{0}$ $A = \frac{1}{0}$ $B = \frac{1}{0}$ $f = \frac{1}{0}$ Tin

Assumption: output of a gate changes instantaneously when its input changes