

			Mh	/ M	inimal			
		Problem 1.						
		Problem 2						
Eu	rry	odd integer		differe	nce of	two squ	vares.	
2d ;	nteger	() ()	q ² -6 ² =	(a+b)((a-6)	/		
TA	\ \ \	ef then	a=6.6:	=5				
h:	=2k	$2+1$, $\alpha=k$	1+1, k=	<u>-</u> 6				
7	hen	$(k+1)^{2}$	k2=k2+	-2k+	1-Le =	2k+1=	h	
		Problem 3						
Sum	of ir	rational nu	mber a	in La	rational	number	is irras	tional -
		o them r						
r-	irra	tional number						
i-	ratio	unal number						
S=	rti	is an irraf	ienal numb	er				
		Problem 4						
J2 :	= irra	tional number						
-02	ব৸	Jz , the ratio	ha/ number	2.				
		Problem 5						
	Use	proof by co	h traposition	to shon	that if	x + y ≥.	2 , χ, y -	- real rumbers
then	2 %	1 of V				U		

If it is not True $x \ge 1$ or $y \ge 1$, then it is not True $x \ne y \ge 2$ x < 1; y < 1x+y<2Problem 6 It is an integer and n3+5 is odd, then n is even using of a proof by contraposition. b) a proof by contradiction. n = 2k + 1 for k e) $N^{3}+5=(2k+1)^{3}+5=8k^{3}+12k^{3}+6k+6=2(4k^{3}+6k^{2}+3k+3), n^{3}+5is evan$ b) Wrong.