GalPot (Galaxy potential following falcON)

This documentation is just here to explain how to compile and give parameters to GalPot. See Section 2.3 of Dehnen & Binney (1998) for a fuller explanation of how it works. See testGalPot for examples of what the code can do.

1 Compilation

"make" makes the library and example executables.

"make MyExecutable.exe" will compile a new executable written by the user and called "MyExecutable.cc"

The command "make GalPot" just makes the GalPot libraries.

N.B. In all cases here, the length unit is kpc, the time unit is Myr, and the mass unit is M_{\odot} . For reference, $G = 4.49866 \times 10^{-12} \text{kpc}^3 \text{Myr}^{-2} \text{M}_{\odot}^{-1}$. A velocity of 1 kpc Myr⁻¹ = 977.77km s⁻¹ (See Units.h for further).

2 Input

The file that is given as the input file for the potential must be of the following form (without the comment lines):

```
3
                                       # No. Disks (0 < No.disks < 3)
8.90e7
                                       # Param. for each of the three disks.
         1.8
              0.04
3.50e7
         1.2
              -0.15
                                       # N.B essential to give 5 param.
1.30e7
                                       \# No. lines of param. = No. disks
               0.25
                                       # No. Spheroids (0 \le \text{No.sph.} \le 2)
                                       \# Param. for each spheroid.
4.0e7
         0.8
              -0.5
                      1.4
                            10
2.0e7
         0.2
              -1.5
                                       # essential to give 6 parameters
```

2.1 Disk

The disk parameters, as given in that file are (in order) Σ_0 , R_d , z_d , R_0 , ϵ .

 Σ_0 is the disk's central surface density (in $M_{\odot} \text{kpc}^{-2}$ and the absence of a cutoff), R_d is the disk scale radius, z_d its scale height (though note there is a difference between negative and positive values), and R_0 is an inner cutoff radius (all in kpc). The term ϵ perturbs the disc from a pure exponential, with a peak fractional change in surface density of $\sim \epsilon$ and a scale length of $2R_d$. In numerical terms (cylindrical polars), these give a surface density

$$\Sigma(R) = \Sigma_0 \exp\left(-\frac{R_0}{R} - \frac{R}{R_d} + \epsilon \cos\left(\frac{\pi R}{R_d}\right)\right),\tag{1}$$

i.e. a standard exponential disk with optional hole in the middle and/or ϵ term modulation.

The vertical structure of the density is either an exponential in |z| (if $z_d > 0$), or isothermal (if $z_d < 0$), i.e.

$$\rho_d(R, z) = \begin{cases} \frac{\Sigma(R)}{2z_d} \exp\left(\frac{-|z|}{z_d}\right) & \text{for } z_d > 0\\ \frac{\Sigma(R)}{4(-z_d)} \operatorname{sech}^2\left(\frac{z}{2z_d}\right) & \text{for } z_d < 0. \end{cases}$$
 (2)

N.B. There is a factor of two in the denominator of the sech² profile. That is so that they tend to the same thing as $z \to \infty$.

2.2**Spheroids**

The spheroid parameters are (in order) ρ_0 , q, γ , β , r_0 , r_{cut} . ρ_0 is a scale density (in $M_{\odot} kpc^{-3}$; q is the axis ratio (q < 1 is flatter than a sphere, q > 1 is prolate); γ is the inner density slope, β the outer density slope; r_0 is a scale radius and r_{cut} is a cutoff radius (both in kpc). This corresponds to a density profile

$$\rho_s = \frac{\rho_0}{(r'/r_0)^{\gamma} (1 + r'/r_0)^{\beta - \gamma}} \exp\left[-\left(r'/r_{cut}\right)^2\right],\tag{3}$$

where, in cylindrical coordinates

$$r' = \sqrt{R^2 + (z/q)^2} \tag{4}$$

3 Use

The example executable testGalPot gives examples of the use of the GalaxyPotential class.

References

Dehnen W., Binney J., 1998, MNRAS, 294, 429