POLITECHNIKA WROCŁAWSKA

Inteligencja Obliczeniowa i jej zastosowania

Ćwiczenie 2 Metody redukcji wymiarowości – nieujemna faktoryzacja macierzy i dekompozycje tensorów

Autorzy: Paweł Andziul 200648 Robert Chojnacki 200685 Marcin Słowiński 200638

Prowadzący: dr hab. inż. Rafał ZDUNEK

Spis treści

1	Zadanie 1	2
	1.1 Opis metody	2
	1.2 Algorytm ALS	2
	1.3 Algorytm MUE	2
	1.4 Algorytm HALS	2
	1.5 Realizacja	2
	1.6 Wyniki	2
2	Zadanie 2	2
3	Zadanie 3	2
	3.1 Opis metody	3
	3.2 Algorytm	3
	3.3 Realizacja	3
	3.4 Wyniki	3
4	Podsumowanie	3

1 Zadanie 1

Wygenerować faktory $A = [a_{ij}] \in R_+^{IxJ}$ i $X = [x_{jt}] \in R_+^{JxT}$, gdzie $a_{ij} = max(0, \check{a}_{ij})$ i $x_{jt} = max(0, \check{x}_{jt})$ oraz $\check{a}_{ij}, \check{x}_{jt} \sim N(0, 1)$ (rozkład normalny). Wygeneruj syntetyczne obserwacje Y=AX dla I = 100, T = 1000, J = 10. Stosując wybrane algorytmy NMF (ALS, MUE, HALS) wyznacz estymowane faktory \hat{A} i \hat{X} oraz unormowany błąd residualny w funkcji iteracji naprzemiennych. Oceń jakość estymacji stosując miary MSE (ang. Mean-Squarred Error) lub SIR (ang. Signal-to-Interference Ratio).

- 1.1 Opis metody
- 1.2 Algorytm ALS
- 1.3 Algorytm MUE
- 1.4 Algorytm HALS
- 1.5 Realizacja
- 1.6 Wyniki

2 Zadanie 2

Wygenerować faktory..

3 Zadanie 3

Obrazy twarzy z bazy ORL (lub podobnej) przedstaw za pomocą tensora $Y = \in R^{I_1xI_2xI_3}$, gdzie I_3 jest liczbą obrazów. Rozdziel obrazy na zbiory trenujący i testujący według odpowiedniej zasady, np, 5-folds CV i utwórz odpowiednie tensory trenujący Y_r i testujący Y_t . Tensor trenujący poddaj dekompozycji CP (np. algorytmem ALS) oraz HOSVD dla J = 4, 10, 20, 30. Pogrupować obrazy stosując metodę k-średnich dla faktora $\hat{U}^{(3)}$. Badania przeprowadzić dla różnej liczby grup. Porównać dokładność grupowania z metodą PCA (z poprzedniego ćwiczenia). Następnie dokonaj projekcji obrazów z tensora Y_t na podprzestrzeń cech generowaną faktorami otrzymanymi z Y_r . Dokonaj klasyfikacji obrazów w przestrzeni cech w $\hat{U}^{(3)}$ za pomocą klasyfikatora k-NN. Porównać efekty klasyfikacji różnymi metodami (np. PCA, CP, HOSVD).

- 3.1 Opis metody
- 3.2 Algorytm
- 3.3 Realizacja
- 3.4 Wyniki
- 4 Podsumowanie

••

Literatura

[1] https://www.mathworks.com/