Exercice 1 ()

Un certain type diode a une durée de vie qui suit la loi exponentielle de taux 1.5×10^{-5} défaillances par heure.

- 1. Quelle est la probabilité que ce type diode reste en état de bon fonctionnement aprés 10000 heures ?.
- 2. Quelle est sa fiabilité à 10⁵ heures?.
- 3. Quelle est la probabilité que ce type diode soit hors service (en panne) avant 10⁵ heures de fonctionnement?
- 4. Déterminer sa MTTF,
- 5. Le taux de défaillance?.

Exercice 2 ()

La durée de vie d'un élément obeit à une loi de Weibull de paramètres $\beta=4$; $\theta=2000$ et $\delta=1000h$.

- 1. Trouver la fiabilité pour une mission de 1500 heures
- 2. le taux de défaillance?.

Exercice 3 ()

Un système composé de trois éléments en série. Trois variables aléatoires T_1 , T_2 et T_3 représentent la durée de vie (jusqu'à la 1ère panne) des trois composants indépendants avec les distributions suivantes :

- $-T_1 \longrightarrow N(2 \times 10^3, 4 \times 10^4)$
- $-T_2 \longrightarrow Weibull(\delta = 0, \theta = 1, \beta = 1/7)$
- $-T_3 \longrightarrow lognormal(\mu = 10, \sigma^2 = 4)$
- 1. Calculer la fiabilité du système.
- 2. Quelle est sa fiabilité à 2187 heures.?

Exercice 4 ()

Une chaîne de production comprend les phases suivantes :

- $-M_1 \longrightarrow \text{Tour à commande numérique,}$
- $-T_1 \longrightarrow \text{Transport par chariot filo-guidé},$
- $-M_2 \longrightarrow$ Fraiseuse à commande numérique,
- $-T_2$ Transport par convoyeur aérien,
- $-M_3 \longrightarrow \text{Traitement thermique},$
- $-T_3 \longrightarrow \text{Transport par convoyeur aérien},$
- $-M_4 \longrightarrow \text{Rectifieuse cylindrique},$
- $-M_5 \longrightarrow$ Contrôle automatique. L'objectif de fiabilité est de 0.9. Connaissant la fiabilité de chaque élément : $R_{M_1}=0.85$,

L'objectif de fiabilité est de 0.5. Communication $R_{T_1} = 0.8$, $R_{M_2} = R_{T_2} = R_{M_3} = R_{T_3} = R_{M_4} = R_{M_5} = R_{M_1} = 0.99$.

- 1. Calculer la fiabilité pour la mission de production journalière.
- 2. On veut améliorer la fiabilité en pratiquant des redondances sur les systèmes les moins fiables. On propose 2 systèmes M_1 et 3 systèmes T_1 .

 Cette modification est-elle satisfaisante?.