[COGS 9] Discussion Reading 1, Python Basics

Reading Quiz 1 due on 27th Jan (Fri)

Donoho's six divisions

Data Gathering, Preparation, and Exploration

Data Representation and Transformation

Computing with Data

Data Modeling

Data Visualization and Presentation

Science about Data Science

Background information

- Let's go through a data science project from my life (Spent 2 years :))
- You do not need to know anything about the nitty-gritties. This is just an example to show you a data science project from the perspective of Donoho's six divisions
- Problem: Predicting the amino acids of a protein (from sequence information alone) that bind to most drugs
- GitHub: https://github.com/devalab/BiRDS

THE 20 COMMON AMINO ACIDS PROTEIN STRUCTURE ● ○ CHARGED ● CHARGED color coded sidechain pKa 9.58 Primary Structure HO' HO' Glycine (Gly) pKa 2.33 pKa 2.27 pKa 2.32 ^{рКа 9.52} NH₂ рКа 9.60 NH₂ NH_2 Alanine 🙆 Valine V Leucine _ Isoleucine Name (Ala) (Val) Secondary Helix Structure pKa 2.16 pKa 1.95 pKa 4.15 Aspartic acid Glutamic acid Glutamine 🧑 Proline P Asparagine (Asp) (Gln) pKa 10.67 ⊕ H₃N рКа 10.28 NH₂ ^{рКа 9.16} NH₂ pKa 9.08 NH₂ Phenylalanine 6 Lysine 🕟 Tryptophan (Trp) Cysteine Methionine (Lys) (Cys) pKa 12.10 NH₂ Polypeptide Aggregation of two Chains or more polypeptides pKa 2.03 pKa 1.70 pKa 2.13 рКа 9.05 **NH**2 рКа 8.96 NH₂ Tyrosine 🕜 Histidine Serine S Threonine 1 Tertiary Quaternary Arginine Structure Structure (Arg) (His)

Background Information

Data Gathering, Preparation and Exploration

Data Representation and Transformation

- Extracting information from sequences
 - Using some NLP techniques
 - Using sequences similar to current sequence to gather information
 - Using some property predictions from other ML models
- Storage
 - Numpy arrays
 - Zstd compression

Computing with Data

Data Modeling

Data Visualization and Presentation

Table 1: Validation and test results

Dataset	MCC	ACC	F1	IoU	PPV	TPR
Fold 1	0.354	0.920	0.394	0.582	0.359	0.437
Fold 2	0.606	0.931	0.633	0.695	0.545	0.755
Fold 3	0.521	0.896	0.565	0.641	0.474	0.700
Fold 4	0.270	0.898	0.323	0.544	0.296	0.355
Fold 5	0.324	0.892	0.367	0.556	0.293	0.490
Fold 6	0.338	0.884	0.373	0.555	0.282	0.550
Fold 7	0.324	0.902	0.368	0.562	0.309	0.456
Fold 8	0.340	0.924	0.380	0.578	0.355	0.407
Fold 9	0.380	0.918	0.421	0.591	0.378	0.475
Fold 10	0.355	0.917	0.391	0.579	0.332	0.476
Test (Full)	0.568	0.940	0.589	0.677	0.502	0.713
Test (Reduced)	0.440	0.951	0.464	0.626	0.497	0.436

Science about Data Science

Figure 6: Success rate plot for various DCC thresholds on the test set after averaging the predictions of the 10 models