Apprentissage supervisé - Regression, DecisionTreeRegressor, RandomForestRegressor

Sommaire

Objectifs du Brief	2
1 Préparation des données	
1.1 Téléchargement de données	
1.2 Information sur les données	
1.3 Répartition des données	3
1.4 Découverte et visualisation des données	5
1.5 Nettoyage des données	
2 Sélection, apprentissage et évaluation du modèle	8
2.1 Régression Linéaire	
2.1.1 Entraînement du modèle	
2.1.2 Évaluation du jeu d'entraînement	8
2.2 L'arbre de décision	8
2.2.1 Entraînement du modèle	8
2.2.2 Évaluation du jeu d'entraînement	9
2.3 Validation Croisée	9
2.3.1 Validation croisée sur le modèle de l'arbre de décision	
2.3.2 Validation croisée sur le modèle de la régression linéaire	9
3 Fine-Tunning	10
3.1 Grid Search	10
3.2 Evaluation sur la base de test	10
Conclusion	10

Objectifs du Brief

- Réaliser un projet individuel de la préparation de données, d'apprentissage automatique à la phase de prédiction
- L'objectif de ce projet d'apprentissage automatique est de pouvoir, à partir de plusieurs caractéristiques (features), d'estimer les prix des maisons (target) dans l'état de la californie.
- L'interprétation des résultats
- La prise en main des bibliothèques (Pandas, Matplotlib, Scikit-learn, Numpy)

1 Préparation des données

1.1 Téléchargement de données

img = cv2.imread('data/winter-5814578_960_720.jpg',1)

Out[25]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0	8.3252	452600.0	NEAR BAY
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0	8.3014	358500.0	NEAR BAY
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0	7.2574	352100.0	NEAR BAY
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0	5.6431	341300.0	NEAR BAY
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0	3.8462	342200.0	NEAR BAY
20635	-121.09	39.48	25.0	1665.0	374.0	845.0	330.0	1.5603	78100.0	INLAND
20636	-121.21	39.49	18.0	697.0	150.0	356.0	114.0	2.5568	77100.0	INLAND
20637	-121.22	39.43	17.0	2254.0	485.0	1007.0	433.0	1.7000	92300.0	INLAND
20638	-121.32	39.43	18.0	1860.0	409.0	741.0	349.0	1.8672	84700.0	INLAND
20639	-121.24	39.37	16.0	2785.0	616.0	1387.0	530.0	2.3886	89400.0	INLAND

20640 rows x 10 columns

1.2 Information sur les données

```
Entrée [28]: # Code qui affiche le nombre de lignes et de colonnes des données, le type des at- tributs et le nombre de valeurs non nulles.
                             -> Infos sur le fichier , attributs, types.... \n")
             print(data1.info())
              -----> Infos sur le fichier , attributs, types....
             <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 20640 entries, 0 to 20639
             Data columns (total 10 columns):
              # Column
                                       Non-Null Count Dtvpe
              0 longitude
                               20640 non-null float64
20640 non-null float64
                  latitude
                  housing_median_age 20640 non-null
              3 total_rooms 20640 non-null float64
4 total_bedrooms 20433 non-null float64
                                        20640 non-null float64
                  households
                                       20640 non-null float64
                                        20640 non-null float64
                  median_income
               8 median_house_value 20640 non-null float64
             9 ocean_proximity 20646
dtypes: float64(9), object(1)
                                        20640 non-null object
              memory usage: 1.6+ MB
             None
```

On remarque tout de suite qu'il manque des données à la colonne « total_bedrooms » : 20433 features contre 20640 pour les autres colonnes.

De plus, on voit aussi que « ocean_proximity » possède des valeurs qualitatives.

1.3 Répartition des données

On détermine la target , qui est ici "median_house_value" puis on partitionne les données en base d'apprentissage et en base de test.

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size= 0.2, random_state=42)

```
Entrée [31]: # Détermination de la Target et des prédicables
X = data1.iloc[:, 0:9]
Y = data1["median_house_value"]
print("-----> Affichage de X ")
print(X)
                ----> Affichage de X
                        longitude latitude housing_median_age total_rooms total_bedrooms \
-122.23 37.88 41.0 880.0 129.0
                0
                           -122.22
                                          37.86
                                                                   21.0
                                                                                7099.0
                                                                                                    1106.0
                                         37.85
37.85
                                                                                1467.0
                                                                                                     190.0
                2
                           -122.24
                                                                   52.0
                           -122.25
                                                                   52.0
                                                                                1274.0
                                                                                                     235.0
                4
                           -122.25
                                          37.85
                                                                   52.0
                                                                                1627.0
                                                                                                     280.0
                           -121.09
                                          39.48
                                                                                1665.0
                                                                                                     374.0
                20635
                           -121.21
-121.22
                                         39.49
39.43
                                                                   18.0
17.0
                                                                                697.0
2254.0
                                                                                                     150.0
485.0
                20636
                20637
                20638
                20639
                           -121.24
                                          39.37
                                                                   16.0
                                                                                2785.0
                                                                                                     616.0
                         population households median_income median_house_value
                0
                                                              8.3252
8.3014
                              322.0
                                             126.8
                                                                                    452600.0
                1
                             2401.0
                                            1138.0
                                                                                    358500.0
                2
                               496.0
                                             177.0
                                                              7.2574
                                                                                    352100.0
                               558.0
                                             219.0
                                                              5.6431
                                                                                    341300.0
                3
                               565.0
                                             259.0
                                                              3.8462
                                                                                    342200.0
                20635
                               845.0
                                             330.0
                                                              1.5603
                                                                                     78100.0
                20636
                               356.0
                                                              2.5568
                                                                                      77100.0
                20637
                             1007.0
741.0
                                             433.0
                                                              1.7000
1.8672
                                                                                     92300.0
                20638
                                             349.0
                                                                                     84700.0
                20639
                             1387.0
                                             530.0
                                                              2.3886
                                                                                     89400.0
                [20640 rows x 9 columns]
```

1.4 Découverte et visualisation des données

-----> Histogramme des attributs

1.5 Nettoyage des données

Ce nettoyage a pour objectif de combler les données manquantes et remplacer les donnés qualitatives par des données numériques pour ensuite lancer l'apprentissage correctement .

Code qui remplace les valeurs manquantes par la médiane.
median = data1["total_bedrooms"].median()
data1["total_bedrooms"].fillna(median, inplace=True)

Transformation des valeurs qualitatives en des valeurs numériques de la colomne ocean_proximty

from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
data2 = data1["ocean_proximity"]

data2_encoded = encoder.fit_transform(data2)

2 Sélection, apprentissage et évaluation du modèle

2.1 Régression Linéaire

2.1.1 Entraînement du modèle

On lance le modèle avec les données d'entraînement :

from sklearn.linear_model import LinearRegression

linearR = LinearRegression()

linearR.fit(X_train, Y_train)

Puis on prédit les classes de la base d'apprentissage :

Y_predict = linearR.predict(X_train)

2.1.2 Évaluation du jeu d'entraînement

Mesure RMSE du modèle de la régression linéaire

from sklearn.metrics import mean_squared_error

mseL = mean_squared_error(Y_train, Y_predict)

RMSE Linear Regresion = 4811134397.884195

L'erreur de prédiction est trop élevé et doit être proche de 0. Il faut améliorer le modèle.

2.2 L'arbre de décision

2.2.1 Entraînement du modèle

On lance le modèle avec les données d'entraînement :

from sklearn.tree import DecisionTreeRegressor

DTregressor = DecisionTreeRegressor()

DTregressor.fit(X_train, Y_train)

2.2.2 Évaluation du jeu d'entraînement

```
mseDTR = mean_squared_error(Y_train, Y_predict)
print('RMSE Decision Tree Regression = ')
print(mseDTR)

RMSE Decision Tree Regression =
4811134397.884195
```

L'erreur semble la même. Elle est aussi élevé qu'avec la régression linéaire.

2.3 Validation Croisée

2.3.1 Validation croisée sur le modèle de l'arbre de décision

La validation croisée est idéale pour tester l'arbre de décision sur un jeu d'entraînement plus petit.

On lance le modèle :

from sklearn.model_selection import cross_val_score

```
cvs = cross_val_score(DTregressor, X_train, Y_train,scoring ="neg_mean_squared_error",
cv = 10)
```

```
RMSE Validation Croisée = [71689.14745536 73026.34926911 67203.18364379 68279.38299113 70918.06638446 66508.94683068 68863.21082944 70054.20877068 70207.91540238 71344.93573593]
```

Moyenne des MSE: 69809.53473129666

Ecart type de tous les folds : 1964.9313152145362

2.3.2 Validation croisée sur le modèle de la régression linéaire

On lance le modèle :

from sklearn.model_selection import cross_val_score

```
cvs = cross_val_score(linearR, X_train, Y_train, scoring ="neg_mean_squared_error", cv =
10)
```

```
RMSE Validation Croisée = [66170.13482881 72783.99723185 68950.52987763 67640.0509114
```

```
70438.49542911 66523.65704676 66541.25492139 70992.53769382 74292.46725992 70675.67306462]
```

Moyenne des MSE: 69500.87982653153

Ecart type de tous les folds : 2659.0438508863526

La validation croisée sur la régression linéaire ne semble pas beaucoup mieux qu'avec l'arbre de décision . L'écart type est plus élevé même si la moyenne des erreurs baisse.

3 Fine-Tunning

3.1 Grid Search

On crée d'un objet de la classe RandomForestRegressor :

from sklearn.ensemble import RandomForestRegressor

RFregressor = RandomForestRegressor()

On crée la variable param_grid :

```
param_grid = {'n_estimators':[3, 10, 30], 'max_features': [2, 4, 6, 8]}
```

On entraîne le modèle Grid Search:

from sklearn.model_selection import GridSearchCV

```
grid_search = GridSearchCV(RFregressor, param_grid, cv = 5)
```

grid_search.fit(X_train, Y_train)

On affiche les meilleurs paramètres de la méthode RandomForestRegressor en utilisant la fonction best_params_ :

```
grid_search.best_params_
```

```
Out: {'max_features': 6, 'n_estimators': 30}
```

Le max_feature est proche de la valeur maximum 8

3.2 Evaluation sur la base de test

On remplace des valeurs NaN de l'attribut "total_bedrooms" de la base de test par la médiane :

median = data1["total_bedrooms"].median()

X_test["total_bedrooms"].fillna(median, inplace=True)

On transforme des valeurs textuelles de "ocean_proximity" en valeurs numériques :

data_e2 = data1["ocean_proximity"]

data2_encoded = encoder.fit_transform(data_e2)

On stocke le modèle d'apprentissage dans une variable en utilisant la fonction **best_estimator_** du modèle Grid_search

model3 = grid_search.best_estimator_

RandomForestRegressor(max_features=6, n_estimators=30)

Le meilleur estimateur a été trouvé.

Conclusion

Il faut constamment évaluer le modèle pour en tirer le meilleur ajustement en ajoutant de nouvelles données.