Transfer Learning – Fine Tuning HF BERT using PyTorch Lightning for Text Classification

PyTorch Lightning

Transfer Learning

• A technique in Machine Learning (ML) in which knowledge learned from a task is re-used in order to boost performance on a related task

How Does Natural Language Processing work?

Representing Language with Numbers

Why?

- Computers excel at handling numbers
- Reducing Dimensions of Language
- Feature Extraction
- Semantic Similar (Not lexical similarity)

Numeric Representation of Language

- Term-Document-Matrix
- Term Frequency Inverse Document Frequency
- Latent Semantic Analysis
- Latent Dirichlet Analysis

Neural Networks

- Good at handling numeric inputs and predicting numeric labels
- Early NLP NNs were Recurrent NNs 1997
- RNNs are good at handling the sequence aspect of text data and the fact that text had long-range dependencies. LSTM 1997, GRU 2014
- NNs that learned embeddings came out in 2013, from Google, Skip-Gram, CBOW
- What are Word Embeddings

What are Word Embeddings?

KING - MAH + WOMAN = QUEEN

Visualizing More Embeddings

Edwin Chen

Surge AI CEO: data labeling and RLHF, designed for the next generation of AI.

http://blog.echen.me/embedding-explorer/

Limitations of Word2Vec

- Single Embedding per word, but words have multiple meanings
- Word level embeddings, but need sentence-level context
- Each word is represented by same vector regardless of context

Transformers!

- Embeddings
- Big Breakthrough in Natural Language Processing
- Attention is all you Need White Paper
- Attention mechanism gives context to sentences

Figure 1: The Transformer - model architecture

Attention

- Model uses weights to determine how much focus is given to every word of sentence
- It considers other input words to determine focus to that word(self attention)
- Other input words, before and after the focused on word (bidirection)
- Model can process the text in parallel and focus on different parts, both in encoder and decoder (multi-headed)

• Encoder

• Encoder focuses on processing input, giving contextualized embeddings

Decoder

 Decoder focuses on output sequence, also has a cross attention component not present in encoder, it basically gets you from those contextualized embeddings to your output

Why BERT, as opposed to GPT

- GPT is specifically for Text Generation
- Encoder Only, No need for Decoder
- Predates GPT
- Open-Source
- Understands Context
- BERT is great at text classification
- Bidirectional MLM

- One of the leaders in Transfer Learning and OpenSource models
- Easy to use
- The Unofficial Leaderboard for a lot of members within community
- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Import transformers

bert_model = BertModel.from_pretrained(BERT_MODEL_NAME,
return_dict=True)

Why Pytorch

- Good framework for Neural Networks
 - Pytorch handles abstraction, FeedForward, Backpropagation
 - Setup and Execute from Checkpoints, Inspecting bottlenecks
- Works well with NVIDIA CUDA

Why Lightning Al

 Lightning Al's Pytorch Lightning offers more Flexibility for Pytorch and allows it to be Scaled without sacrificing performance

PyTorch Lightning

Why Google Translate?

- Data Augmentation
- Data Augmentation is common in Deep Learning
- We use it to augment the class we want to pay attention to
- Translate English to French and back to English
- Generates new sentences that have different word makeup same meaning

```
# Create a Translator object
backtranslator = GoogleTranslator(source='en', target='fr')
forthtranslator = GoogleTranslator(source='fr', target='en')
```

Deep Learning Building Steps

- 1) Problem Identification
- 2) Data Collection, Augmentation kaggle Translate

• 3) Data Preparation, Feature Engineering

- 4) Model Selection
- 5) Model Training/6) Hyperparameter Tuning
- 7) Model Evaluation

DL Problem Identification

Build a model to accurately classify Toxic comments

- Multilabel Classification
- Toxic, Severely Toxic, Identity-Hate, Insult, Obscene, Threat
- Data Collection: https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

Data Preparation, Model Selection and Training

- Data Prep: Augmentation using methods common in language
- Feature Engineering: BERT is used as tokenizer, gives us contextualized word embeddings
- Model Selection: Our classifier is a simple Feed Forward Linear NN
- Simple NN uses Activation function to ensure output is between 0 and 1
- Training, Tuning is done over the course of multiple epochs
- Data is split up into batches and fed through tokenizer and linear NN

Hyperparameter Tuning and Validation

- After forward pass, BCE loss is computed
- Backpropagation updates the weights of the network
- BERT Weights and Biases get Updated, Updating our Feature set
- AdamW Adjusts the learning rate, includes weight decay, large weights are penalized, this prevents overfitting produces a better general model

Let's go to the Python Code!

Base Model

	precision	recall	f1-score	support
toxic	0.56	0.94	0.70	728
severe_toxic	0.46	0.46	0.46	67
obscene	0.72	0.82	0.77	408
threat	0.41	0.50	0.45	18
insult	0.70	0.75	0.73	386
identity_hate	0.48	0.50	0.49	66
micro avg	0.61	0.83	0.70	1673
macro avg	0.56	0.66	0.60	1673
weighted avg	0.62	0.83	0.70	1673
samples avg	0.08	0.08	0.08	1673

Accuracy: 0.88

Precision (macro average): 0.56 Recall (macro average): 0.66 F1 Score (macro average): 0.60

French, German, and Spanish Augmentation

	precision	recall	f1-score	support
toxic	0.57	0.99	0.72	728
severe_toxic	0.99	0.99	0.99	67
obscene	0.86	0.98	0.92	408
threat	0.72	1.00	0.84	18
insult	0.83	0.98	0.90	386
identity_hate	0.89	0.97	0.93	66
micro avg	0.70	0.98	0.82	1673
macro avg	0.81	0.98	0.88	1673
weighted avg	0.73	0.98	0.83	1673
samples avg	0.09	0.10	0.09	1673

Accuracy: 0.92 Precision: 0.81 Recall: 0.98

F1: 0.88

French Augmentation

	precision	recall	f1-score	support
toxic	0.60	0.99	0.75	728
severe_toxic	0.87	0.93	0.90	67
obscene	0.87	0.98	0.92	408
threat	0.77	0.94	0.85	18
insult	0.86	0.97	0.91	386
identity_hate	0.78	0.98	0.87	66
micro avg	0.72	0.98	0.83	1673
macro avg	0.79	0.96	0.87	1673
weighted avg	0.75	0.98	0.84	1673
samples avg	0.09	0.09	0.09	1673

Accuracy: 0.93

Precision (macro average): 0.79 Recall (macro average): 0.96 F1 Score (macro average): 0.87

What do Transfer Learning and Crypto have in common?

- Heavily rely on open-source communities
 - Python, PyTorch, BERT, SKLearn, huggingface, many others that we will explore
 - Bitcoin, Ethereum, Cypherpunks

- Very Fast Growing Technology Sectors
- Heavily Rely on Distributed Computing

How Transfer Learning and Crypto will be used together?

- Developers will rely on LLMs to learn Smart Contract Development, like Solidity
- LLMs can be used to understand existing smart contract code repositories in production by people with different skillsets
- Blockchains can ensure that the underlying training data these models are trained on is public, verifiable, and Audit-able