ON THE DENSITY OF THE WEIHRAUCH DEGREES

Manlio Valenti

manlio.valenti@swansea.ac.uk

Swansea University

NUS Logic Seminar Dec 18, 2024

COMPUTATIONAL PROBLEMS

Given an instance of a problem, produce a solution.

COMPUTATIONAL PROBLEMS

Given an instance of a problem, produce a solution.

Can be formalized using partial multi-valued function $f:\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$

input: any $x \in dom(f)$

output: any $y \in f(x)$

COMPUTATIONAL PROBLEMS

Given an instance of a problem, produce a solution.

Can be formalized using partial multi-valued function $f:\subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}^{\mathbb{N}}$

input: any $x \in dom(f)$

output: any $y \in f(x)$

Even $\forall \exists$ theorems can be seen as computational problems!

$$(\forall X)(\varphi(X) \to (\exists Y)\psi(X,Y))$$

Diagram of a "generic" $g \leq f$:

I will refer to Φ and Ψ as the forward and backward functionals respectively.

Diagram of a "generic" $q \leq f$:

I will refer to Φ and Ψ as the forward and backward functionals respectively.

Diagram of a "generic" $g \leq f$:

I will refer to Φ and Ψ as the forward and backward functionals respectively.

According to the properties of Φ and Ψ we get different reductions.

The forward and backward functional are partial computable functions on $\mathbb{N}^{\mathbb{N}}$.

 $g \leq_{\mathbf{W}} f :\iff$ there are computable $\Phi, \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

The forward and backward functional are partial computable functions on $\mathbb{N}^{\mathbb{N}}$.

 $g \leq_{\mathbf{W}} f :\iff$ there are computable $\Phi, \Psi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Given $p \in dom(g)$, $\Phi(p) \in dom(f)$
- Given $q \in f(\Phi(p)), \Psi(p,q) \in g(p)$

The forward and backward functional are partial computable functions on $\mathbb{N}^{\mathbb{N}}$.

 $g \leq_{\mathbf{W}} f : \iff$ there are computable $\Phi, \Psi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that

- Given $p \in dom(g)$, $\Phi(p) \in dom(f)$
- Given $q \in f(\Phi(p)), \Psi(p,q) \in g(p)$

We can extend the definition of Weihrauch reducibility to problem on represented spaces, but problems on $\mathbb{N}^{\mathbb{N}}$ are enough to study the Weihrauch degrees.

Proposition (Pauly; Brattka, Gherardi)

Proposition (Pauly; Brattka, Gherardi)

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Proposition (Pauly; Brattka, Gherardi)

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Proposition (Pauly; Brattka, Gherardi)

The Weihrauch degrees are a distributive lattice with a bottom element but no top element.

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Bottom:

Proposition (Pauly; Brattka, Gherardi)

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Warning:
$$\emptyset <_{\mathbf{W}} id$$

Proposition (Pauly; Brattka, Gherardi)

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Warning:
$$\emptyset <_{\mathbf{W}} id$$

Proposition (Pauly; Brattka, Gherardi)

The Weihrauch degrees are a distributive lattice with a bottom element but no top element.

Join:
$$(f_0 \sqcup f_1)(i, p) := f_i(p)$$

Meet:
$$(f_0 \sqcap f_1)(p_0, p_1) := f_0(p_0) \sqcup f_1(p_1)$$

Bottom: (

Warning: $\emptyset <_{\mathbf{W}} id$

Top: There is no top element (in ZFC).

The existence of a "natural" top element is equivalent to a (relatively weak) form of choice.

How about infinite join/meet?

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

Moreover, there is an infinite descending sequence $(g_n)_{n\in\mathbb{N}}$ in \mathcal{W} with no infimum.

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

Moreover, there is an infinite descending sequence $(g_n)_{n\in\mathbb{N}}$ in \mathcal{W} with no infimum.

Warning: the operations $\bigsqcup_{n\in\mathbb{N}} f_n$ and $\bigcap_{n\in\mathbb{N}} f_n$ are not degree-theoretic!

How about infinite join/meet?

Theorem (Higuchi, Pauly)

No non-trivial countable suprema exists, i.e.

$$f = \sup\{f_n\}_{n \in \mathbb{N}} \iff (\exists N)(f = \sup\{f_n\}_{n < N})$$

Moreover, there is an infinite descending sequence $(g_n)_{n\in\mathbb{N}}$ in \mathcal{W} with no infimum.

Warning: the operations $\bigsqcup_{n\in\mathbb{N}} f_n$ and $\bigcap_{n\in\mathbb{N}} f_n$ are not degree-theoretic!

Theorem (Lempp, Marcone, V.)

For every $\kappa \leq \mathfrak{c}$ with $\operatorname{cof}(\kappa) > \omega$, there is a chain of order type κ in \mathcal{W} that admits a supremum.

*Warning: not all the existing reductions are drawn

It is a very "wide" lattice:

It is a very "wide" lattice:

Theorem (Lempp, Marcone, V.)

For every problem $f \neq \emptyset$, there is an antichain \mathcal{A} in \mathcal{W} of size $2^{\mathfrak{c}}$ with $f \in \mathcal{A}$.

It is a very "wide" lattice:

Theorem (Lempp, Marcone, V.)

For every problem $f \neq \emptyset$, there is an antichain \mathcal{A} in \mathcal{W} of size $2^{\mathfrak{c}}$ with $f \in \mathcal{A}$.

Theorem (Lempp, Marcone, V.)

No antichain in W of size $< \mathfrak{c}$ is maximal.

AN OVERVIEW OF THE WEIHRAUCH LATTICE

It is a very "wide" lattice:

Theorem (Lempp, Marcone, V.)

For every problem $f \neq \emptyset$, there is an antichain \mathcal{A} in \mathcal{W} of size $2^{\mathfrak{c}}$ with $f \in \mathcal{A}$.

Theorem (Lempp, Marcone, V.)

No antichain in \mathcal{W} of size $< \mathfrak{c}$ is maximal.

Theorem (Lempp, Marcone, V.)

There are no cofinal chains in \mathcal{W} .

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

 $f \not\leq_{\mathbf{W}} g$ as $p' \not\leq_{T} p$, hence there is no computable Φ that map $\operatorname{dom}(f)$ to $\operatorname{dom}(g)$.

Theorem (Dzhafarov, Lerman, Patey, Solomon)

There are no minimal degrees in the Weihrauch degrees.

Proof

Assume $\emptyset <_{\mathbf{W}} f$. In particular, there is $p \in \text{dom}(f) \neq \emptyset$.

Define g as $dom(g) := \{p'\}$ and g(p') := f(p).

 $g \leq_{\mathbf{W}} f$ as $p \leq_T p'$.

 $f \not\leq_{\mathbf{W}} g$ as $p' \not\leq_{T} p$, hence there is no computable Φ that map $\operatorname{dom}(f)$ to $\operatorname{dom}(g)$.

We are heavily exploiting the complexity of the domain!

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B : \iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$
$$\iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$$

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B : \iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$

 $\iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$

The lower A is in the Medvedev degrees, the easier it is to uniformly compute an element of A.

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B :\iff (\exists \Phi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$
$$\iff (\exists \Phi :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$$

The lower A is in the Medvedev degrees, the easier it is to uniformly compute an element of A.

"The first half of a Weihrauch reduction is a Medvedev reduction".

$$g \leq_{\mathcal{W}} f \Rightarrow \operatorname{dom}(f) \leq_{\mathcal{M}} \operatorname{dom}(g)$$

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B : \iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$
$$\iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$$

The lower A is in the Medvedev degrees, the easier it is to uniformly compute an element of A.

"The first half of a Weihrauch reduction is a Medvedev reduction".

$$g \leq_{\mathbf{W}} f \Rightarrow \operatorname{dom}(f) \leq_{\mathbf{M}} \operatorname{dom}(g)$$

In particular, we can embed the Medvedev degrees in the Weihrauch degrees via $A \mapsto d_A$, where

$$d_A \colon A \to \{0^{\mathbb{N}}\} := p \mapsto 0^{\mathbb{N}}$$

Reducibility on subsets of $\mathbb{N}^{\mathbb{N}}$ ("mass problems")

$$A \leq_{\mathrm{M}} B : \iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\Phi(B) \subseteq A)$$
$$\iff (\exists \Phi : \subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}} \text{ computable})(\forall b \in B)(\Phi(b) \in A)$$

The lower A is in the Medvedev degrees, the easier it is to uniformly compute an element of A.

"The first half of a Weihrauch reduction is a Medvedev reduction".

$$g \leq_{\mathcal{W}} f \Rightarrow \operatorname{dom}(f) \leq_{\mathcal{M}} \operatorname{dom}(g)$$

In particular, we can embed the Medvedev degrees in the Weihrauch degrees via $A \mapsto d_A$, where

$$d_A \colon A \to \{0^{\mathbb{N}}\} := p \mapsto 0^{\mathbb{N}}$$

It follows that: $B \leq_{\mathbf{M}} A$ iff $d_A \leq_{\mathbf{W}} d_B$

This embedding reverses the Medvedev order!

WEIHRAUCH DEGREES

WEIHRAUCH DEGREES

WEIHRAUCH DEGREES

In a poset, \mathbf{a} is a minimal cover of \mathbf{b} if $\{\mathbf{c}: \mathbf{b} < \mathbf{c} < \mathbf{a}\} = \emptyset$. \mathbf{a} is a strong minimal cover of \mathbf{b} if for every \mathbf{c} , $\mathbf{c} < \mathbf{a}$ implies $\mathbf{c} \le \mathbf{b}$.

In a poset, **a** is a **minimal cover** of **b** if $\{\mathbf{c} : \mathbf{b} < \mathbf{c} < \mathbf{a}\} = \emptyset$. **a** is a **strong minimal cover** of **b** if for every **c**, **c** < **a** implies **c** \leq **b**.

Empty intervals in the Medvedev degrees have been fully characterized:

For $p \in \mathbb{N}^{\mathbb{N}}$, let $\{p\}^+ := \{(e)^{\widehat{}}q : p <_T q \text{ and } \Phi_e(q) = p\}$.

 $\{p\}^+$ is the immediate successor of $\{p\}$ in the Medvedev degrees.

In a poset, **a** is a **minimal cover** of **b** if $\{c : b < c < a\} = \emptyset$. **a** is a **strong minimal cover** of **b** if for every **c**, **c** < **a** implies **c** \leq **b**.

Empty intervals in the Medvedev degrees have been fully characterized:

For
$$p \in \mathbb{N}^{\mathbb{N}}$$
, let $\{p\}^+ := \{(e)^{\hat{}}q : p <_T q \text{ and } \Phi_e(q) = p\}$.

 $\{p\}^+$ is the immediate successor of $\{p\}$ in the Medvedev degrees.

Theorem (Dyment)

For every $A <_{\mathcal{M}} B$, B is a minimal cover of A iff

$$(\exists p \in A)[A \equiv_{\mathbf{M}} B \land \{p\} \text{ and } B \land \{p\}^+ \equiv_{\mathbf{M}} B],$$

where $P \wedge Q := (0)^{\hat{}} P \cup (1)^{\hat{}} Q$ is the meet in the Medvedev degrees.

Corollary

For every $p \in \mathbb{N}^{\mathbb{N}}$, $\mathrm{id}_{\{p\}}$ is a strong minimal cover of $\mathrm{id}_{\{p\}^+}$.

In particular, id is a SMC of id_{NR}, where NR := $\{q: q \not\leq_T 0\} \equiv_M \{0^{\mathbb{N}}\}^+$.

Corollary

For every $p \in \mathbb{N}^{\mathbb{N}}$, $\mathrm{id}_{\{p\}}$ is a strong minimal cover of $\mathrm{id}_{\{p\}^+}$.

In particular, id is a SMC of id_{NR}, where NR := $\{q : q \not\leq_T 0\} \equiv_M \{0^{\mathbb{N}}\}^+$.

STRONG MINIMAL COVERS IN WEIHRAUCH

Theorem (Lempp, Miller, Pauly, Soskova, V.)

The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees.
- 2. $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$ and $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ for some $p \in \mathbb{N}^{\mathbb{N}}$.

STRONG MINIMAL COVERS IN WEIHRAUCH

Theorem (Lempp, Miller, Pauly, Soskova, V.)

The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees.
- 2. $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$ and $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ for some $p \in \mathbb{N}^{\mathbb{N}}$.

Corollary (Lempp, Miller, Pauly, Soskova, V.)

The Weihrauch degree of id is the greatest degree that is a strong minimal cover. In particular, it is first-order definable in (\mathcal{W}, \leq_W) .

STRONG MINIMAL COVERS IN WEIHRAUCH

Theorem (Lempp, Miller, Pauly, Soskova, V.)

The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees.
- 2. $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$ and $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ for some $p \in \mathbb{N}^{\mathbb{N}}$.

Corollary (Lempp, Miller, Pauly, Soskova, V.)

The Weihrauch degree of id is the greatest degree that is a strong minimal cover. In particular, it is first-order definable in (\mathcal{W}, \leq_{W}) .

Corollary (Lempp, Miller, Pauly, Soskova, V.)

The first-order theory of the Weihrauch degrees, the first-order theory of the Weihrauch degrees below id, and the third-order theory of true arithmetic are pairwise recursively isomorphic.

MINIMAL COVERS IN WEIHRAUCH

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f and h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a minimal cover of h in the Weihrauch degrees.
- 2. $f \equiv_{\mathbf{W}} h \sqcup \mathrm{id}_{\{p\}}$ for some p with $\mathrm{dom}(h) \not\leq_{\mathbf{M}} \{p\}$ and $\mathrm{dom}(h) \leq_{\mathbf{M}} \{p\}^+$.

MINIMAL COVERS IN WEIHRAUCH

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f and h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a minimal cover of h in the Weihrauch degrees.
- 2. $f \equiv_{\mathbf{W}} h \sqcup \mathrm{id}_{\{p\}}$ for some p with $\mathrm{dom}(h) \not\leq_{\mathbf{M}} \{p\}$ and $\mathrm{dom}(h) \leq_{\mathbf{M}} \{p\}^+$.

Corollary (Lempp, Miller, Pauly, Soskova, V.)

Let g be a multi-valued function. The following are equivalent:

- 1. id $\not\leq_{\mathrm{W}} g$.
- 2. There are f, h such that $g \leq_{\mathbf{W}} h <_{\mathbf{W}} f$ and f is a minimal cover of h.

MINIMAL COVERS IN WEIHRAUCH

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f and h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a minimal cover of h in the Weihrauch degrees.
- 2. $f \equiv_{\mathbf{W}} h \sqcup \mathrm{id}_{\{p\}}$ for some p with $\mathrm{dom}(h) \not\leq_{\mathbf{M}} \{p\}$ and $\mathrm{dom}(h) \leq_{\mathbf{M}} \{p\}^+$.

Corollary (Lempp, Miller, Pauly, Soskova, V.)

Let g be a multi-valued function. The following are equivalent:

- 1. id $\not\leq_{\mathbf{W}} g$.
- 2. There are f, h such that $g \leq_{\mathbf{W}} h <_{\mathbf{W}} f$ and f is a minimal cover of h.

Corollary (Lempp, Miller, Pauly, Soskova, V.)

The Weihrauch degrees above id are dense. In fact, id is the least degree whose upper Weihrauch cone is dense.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

For every family of pairwise Turing incomparable sets $\{p_{\alpha}\}_{\alpha<\kappa}$ with $\kappa<2^{\aleph_0}$, there is a multi-valued function h whose minimal covers are exactly those of the form $h\sqcup \mathrm{id}_{\{p_{\alpha}\}}$.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

For every family of pairwise Turing incomparable sets $\{p_{\alpha}\}_{\alpha<\kappa}$ with $\kappa<2^{\aleph_0}$, there is a multi-valued function h whose minimal covers are exactly those of the form $h\sqcup \mathrm{id}_{\{p_{\alpha}\}}$.

Proof (Sketch)

Take any problem h with

$$dom(h) = \bigcup_{\alpha < \kappa} \{ q : p_{\alpha} <_{T} q \}$$

Theorem (Lempp, Miller, Pauly, Soskova, V.)

For every family of pairwise Turing incomparable sets $\{p_{\alpha}\}_{\alpha<\kappa}$ with $\kappa<2^{\aleph_0}$, there is a multi-valued function h whose minimal covers are exactly those of the form $h\sqcup \mathrm{id}_{\{p_{\alpha}\}}$.

Proof (Sketch)

Take any problem h with

$$dom(h) = \bigcup_{\alpha < \kappa} \{ q : p_{\alpha} <_{T} q \}$$

By the characterization of minimal covers, $h \sqcup \mathrm{id}_{\{p_{\alpha}\}}$ is a minimal cover of h.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

For every family of pairwise Turing incomparable sets $\{p_{\alpha}\}_{\alpha<\kappa}$ with $\kappa<2^{\aleph_0}$, there is a multi-valued function h whose minimal covers are exactly those of the form $h\sqcup \mathrm{id}_{\{p_{\alpha}\}}$.

Proof (Sketch)

Take any problem h with

$$dom(h) = \bigcup_{\alpha < \kappa} \{ q : p_{\alpha} <_{T} q \}$$

By the characterization of minimal covers, $h \sqcup \mathrm{id}_{\{p_\alpha\}}$ is a minimal cover of h.

To show that they are the only minimal covers of h, we use the fact that if $(\forall \alpha < \kappa)(p_{\alpha} \not\leq_T p)$ then there is some $q >_T p$ such that $(\forall \alpha < \kappa)(p_{\alpha} \not\leq_T q)$.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

For every family of pairwise Turing incomparable sets $\{p_{\alpha}\}_{\alpha<\kappa}$ with $\kappa<2^{\aleph_0}$, there is a multi-valued function h whose minimal covers are exactly those of the form $h\sqcup \mathrm{id}_{\{p_{\alpha}\}}$.

Proof (Sketch)

Take any problem h with

$$dom(h) = \bigcup_{\alpha < \kappa} \{ q : p_{\alpha} <_T q \}$$

By the characterization of minimal covers, $h \sqcup \mathrm{id}_{\{p_\alpha\}}$ is a minimal cover of h.

To show that they are the only minimal covers of h, we use the fact that if $(\forall \alpha < \kappa)(p_{\alpha} \not\leq_T p)$ then there is some $q >_T p$ such that $(\forall \alpha < \kappa)(p_{\alpha} \not\leq_T q)$.

Corollary (Lempp, Miller, Pauly, Soskova, V.)

For every cardinal $\kappa \leq 2^{\aleph_0}$, there is a problem h with exactly κ minimal covers.

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof strategy: For every function $\xi \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, we can define a "scrambled" version F_{ξ} of f:

$$F_{\xi}(p,\xi(p)) := f(p)$$

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof strategy: For every function $\xi \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, we can define a "scrambled" version F_{ξ} of f:

$$F_{\xi}(p,\xi(p)) := f(p)$$

For every ξ , $F_{\xi} \leq_{\mathbf{W}} f$: given $(p, n) \in \text{dom}(F_{\xi})$, F(p, n) = f(p).

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof strategy: For every function $\xi \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, we can define a "scrambled" version F_{ξ} of f:

$$F_{\xi}(p,\xi(p)) := f(p)$$

For every ξ , $F_{\xi} \leq_{\mathbf{W}} f$: given $(p, n) \in \text{dom}(F_{\xi})$, F(p, n) = f(p).

The reduction $f \leq_{\mathbf{W}} F_{\xi}$ holds if ξ is computable, but fails in general.

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof strategy: For every function $\xi \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, we can define a "scrambled" version F_{ξ} of f:

$$F_{\xi}(p,\xi(p)) := f(p)$$

For every ξ , $F_{\xi} \leq_{\mathbf{W}} f$: given $(p, n) \in \text{dom}(F_{\xi})$, F(p, n) = f(p).

The reduction $f \leq_{\mathbf{W}} F_{\xi}$ holds if ξ is computable, but fails in general.

We try to build ξ so that

- $F_{\xi} \not\leq_{\mathbf{W}} h$
- $h \sqcup F_{\xi} <_{\mathbf{W}} f$

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof strategy: For every function $\xi \colon \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$, we can define a "scrambled" version F_{ξ} of f:

$$F_{\xi}(p,\xi(p)) := f(p)$$

For every ξ , $F_{\xi} \leq_{\mathbf{W}} f$: given $(p, n) \in \text{dom}(F_{\xi})$, F(p, n) = f(p).

The reduction $f \leq_{\mathbf{W}} F_{\xi}$ holds if ξ is computable, but fails in general.

We try to build ξ so that

- $F_{\xi} \not\leq_{\mathbf{W}} h$
- $h \sqcup F_{\xi} <_{\mathbf{W}} f$

This can't happen: $h <_{\mathbf{W}} h \sqcup F_{\xi} <_{\mathbf{W}} f$, against the fact that f is a minimal cover of h. This will give us the g we are looking for.

We build ξ in stages. At each stage $s, \, \xi_s$ is only defined on finitely many points.

We build ξ in stages. At each stage s, ξ_s is only defined on finitely many points.

We extend ξ_s trying to satisfy the following requirements:

- $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$
- $S_{e,i}: f \not\leq_{\mathbf{W}} h \sqcup F_{\xi}$ via Φ_e, Φ_i

We build ξ in stages. At each stage s, ξ_s is only defined on finitely many points.

We extend ξ_s trying to satisfy the following requirements:

- $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$
- $S_{e,i}: f \not\leq_{\mathbf{W}} h \sqcup F_{\xi} \text{ via } \Phi_e, \Phi_i$

 $p\in \mathrm{dom}(g)$ witnesses a non-reduction $g\not\leq_{\mathrm{W}} f$ via Φ,Ψ if

- $\Phi(p) \notin \text{dom}(f)$ or
- $(\exists q \in f\Phi(p))(\Psi(p,q) \notin g(p))$

We build ξ in stages. At each stage s, ξ_s is only defined on finitely many points.

We extend ξ_s trying to satisfy the following requirements:

- $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$
- $S_{e,i}: f \not\leq_{\mathbf{W}} h \sqcup F_{\xi} \text{ via } \Phi_e, \Phi_i$

 $p\in \mathrm{dom}(g)$ witnesses a non-reduction $g\not\leq_{\mathrm{W}} f$ via Φ,Ψ if

- $\Phi(p) \notin \text{dom}(f)$ or
- $(\exists q \in f\Phi(p))(\Psi(p,q) \notin g(p))$

Adding points to dom(g) "makes it harder to have $g \leq_{\mathbf{W}} f$ "

Adding solutions to g(p) "makes it easier to have $g \leq_{\mathbf{W}} f$ "

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

Since $F_{\hat{\xi}} \equiv_{\mathbf{W}} f >_{\mathbf{W}} h$, there is $p \in \text{dom}(F_{\hat{\xi}})$ witnessing $F_{\hat{\xi}} \not\leq_{\mathbf{W}} h$ via Φ_e, Φ_i .

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

Since $F_{\hat{\xi}} \equiv_{\mathbf{W}} f >_{\mathbf{W}} h$, there is $p \in \text{dom}(F_{\hat{\xi}})$ witnessing $F_{\hat{\xi}} \not\leq_{\mathbf{W}} h$ via Φ_e, Φ_i .

If $p \in \text{dom}(\xi_s)$ there is nothing to do. Otherwise, extend ξ_s adding $(p, \hat{\xi}(p))$.

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

Since $F_{\hat{\xi}} \equiv_{\mathbf{W}} f >_{\mathbf{W}} h$, there is $p \in \text{dom}(F_{\hat{\xi}})$ witnessing $F_{\hat{\xi}} \not\leq_{\mathbf{W}} h$ via Φ_e, Φ_i .

If $p \in \text{dom}(\xi_s)$ there is nothing to do. Otherwise, extend ξ_s adding $(p, \hat{\xi}(p))$.

 $S_{e,i}:f\not\leq_{\mathcal{W}}h\sqcup F_{\xi}$ via Φ_{e},Φ_{i}

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

Since $F_{\hat{\xi}} \equiv_{\mathbf{W}} f >_{\mathbf{W}} h$, there is $p \in \text{dom}(F_{\hat{\xi}})$ witnessing $F_{\hat{\xi}} \not\leq_{\mathbf{W}} h$ via Φ_e, Φ_i .

If $p \in \text{dom}(\xi_s)$ there is nothing to do. Otherwise, extend ξ_s adding $(p, \hat{\xi}(p))$.

 $S_{e,i}:f\not\leq_{\mathcal{W}}h\sqcup F_{\xi}$ via Φ_{e},Φ_{i}

This step fails when Φ_e, Φ_i witness $f \leq_W h \sqcup F_{\xi_s}$ (extending ξ_s does not affect the reduction).

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

Since $F_{\hat{\xi}} \equiv_{\mathbf{W}} f >_{\mathbf{W}} h$, there is $p \in \text{dom}(F_{\hat{\xi}})$ witnessing $F_{\hat{\xi}} \not\leq_{\mathbf{W}} h$ via Φ_e, Φ_i .

If $p \in \text{dom}(\xi_s)$ there is nothing to do. Otherwise, extend ξ_s adding $(p, \hat{\xi}(p))$.

 $S_{e,i}: f \not\leq_{\mathbf{W}} h \sqcup F_{\xi} \text{ via } \Phi_e, \Phi_i$

This step fails when Φ_e, Φ_i witness $f \leq_W h \sqcup F_{\xi_s}$ (extending ξ_s does not affect the reduction).

Assume q witnesses $f \not\leq_{\mathbf{W}} h \sqcup F_{\xi_s}$ via Φ_e, Φ_i . The problematic case is if $\Phi_e(q) \downarrow = (1, (r, k))$ for some $r \in \text{dom}(f) \setminus \text{dom}(\xi_s)$. In this case, we can extend ξ_s choosing eg $\xi_{s+1}(r) := k+1$.

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

Since $F_{\hat{\xi}} \equiv_{\mathbf{W}} f >_{\mathbf{W}} h$, there is $p \in \text{dom}(F_{\hat{\xi}})$ witnessing $F_{\hat{\xi}} \not\leq_{\mathbf{W}} h$ via Φ_e, Φ_i .

If $p \in \text{dom}(\xi_s)$ there is nothing to do. Otherwise, extend ξ_s adding $(p, \hat{\xi}(p))$.

 $S_{e,i}: f \not\leq_{\mathbf{W}} h \sqcup F_{\xi} \text{ via } \Phi_e, \Phi_i$

This step fails when Φ_e, Φ_i witness $f \leq_W h \sqcup F_{\xi_s}$ (extending ξ_s does not affect the reduction).

Assume q witnesses $f \not\leq_{\mathbf{W}} h \sqcup F_{\xi_s}$ via Φ_e, Φ_i . The problematic case is if $\Phi_e(q) \downarrow = (1, (r, k))$ for some $r \in \text{dom}(f) \setminus \text{dom}(\xi_s)$. In this case, we can extend ξ_s choosing eg $\xi_{s+1}(r) := k+1$.

The other cases are straightforward.

 $R_{e,i}: F_{\xi} \not\leq_{\mathbf{W}} h \text{ via } \Phi_e, \Phi_i$

Pick a total computable extension $\hat{\xi}$ of ξ_s .

Since $F_{\hat{\xi}} \equiv_{\mathbf{W}} f >_{\mathbf{W}} h$, there is $p \in \text{dom}(F_{\hat{\xi}})$ witnessing $F_{\hat{\xi}} \not\leq_{\mathbf{W}} h$ via Φ_e, Φ_i .

If $p \in \text{dom}(\xi_s)$ there is nothing to do. Otherwise, extend ξ_s adding $(p, \hat{\xi}(p))$.

$$S_{e,i}: f \not\leq_{\mathbf{W}} h \sqcup F_{\xi} \text{ via } \Phi_e, \Phi_i$$

This step fails when Φ_e, Φ_i witness $f \leq_W h \sqcup F_{\xi_s}$ (extending ξ_s does not affect the reduction).

Assume q witnesses $f \not\leq_{\mathbf{W}} h \sqcup F_{\xi_s}$ via Φ_e, Φ_i . The problematic case is if $\Phi_e(q) \downarrow = (1, (r, k))$ for some $r \in \text{dom}(f) \setminus \text{dom}(\xi_s)$. In this case, we can extend ξ_s choosing eg $\xi_{s+1}(r) := k+1$.

The other cases are straightforward.

This concludes the construction.

We have showed that

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathbf{W}} f$ and f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

We have showed that

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathbf{W}} f$ and f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

This lemma can be refined

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathbf{W}} f$ and f is a minimal cover of h then there is g with $|\operatorname{dom}(g)| = 1$ such that $f \equiv_{\mathbf{W}} h \sqcup g$.

We have showed that

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathcal{W}} f$ and f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathcal{W}} h \sqcup g$.

This lemma can be refined

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathbf{W}} f$ and f is a minimal cover of h then there is g with $|\operatorname{dom}(g)| = 1$ such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof

In the previous construction, we obtained g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

We have showed that

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathcal{W}} f$ and f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathcal{W}} h \sqcup g$.

This lemma can be refined

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathbf{W}} f$ and f is a minimal cover of h then there is g with $|\operatorname{dom}(g)| = 1$ such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof

In the previous construction, we obtained g with finite domain such that $f \equiv_W h \sqcup g$. Let $dom(g) = \{p_0, \dots, p_{k-1}\}$ and let $g_i := g|_{g_i}$

Let dom $(g) = \{p_0, \dots, p_{k-1}\}$ and let $g_i := g|_{\{p_i\}}$.

We have showed that

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathbf{W}} f$ and f is a minimal cover of h then there is g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

This lemma can be refined

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $h \leq_{\mathbf{W}} f$ and f is a minimal cover of h then there is g with $|\operatorname{dom}(g)| = 1$ such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Proof

In the previous construction, we obtained g with finite domain such that $f \equiv_{\mathbf{W}} h \sqcup g$.

Let $dom(g) = \{p_0, \dots, p_{k-1}\}$ and let $g_i := g|_{\{p_i\}}$.

If for all i < k, $g_i \leq_W h$ then $h \sqcup g \leq_W h$. Hence for some i,

$$h <_{\mathbf{W}} h \sqcup g_i \leq_{\mathbf{W}} f$$
.

The claim follows from the fact that f is a minimal cover of h.

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $g \not\leq_{\mathbf{W}} id$ and g has singleton domain, then for all h such that $g \not\leq_{\mathbf{W}} h$ there is $G <_{\mathbf{W}} g$ such that $G \not\leq_{\mathbf{W}} h$. It follows that $h <_{\mathbf{W}} h \sqcup G <_{\mathbf{W}} h \sqcup g$.

Lemma (Lempp, Miller, Pauly, Soskova, V.)

If $g \not\leq_{\mathbf{W}} id$ and g has singleton domain, then for all h such that $g \not\leq_{\mathbf{W}} h$ there is $G <_{\mathbf{W}} g$ such that $G \not\leq_{\mathbf{W}} h$. It follows that $h <_{\mathbf{W}} h \sqcup G <_{\mathbf{W}} h \sqcup g$.

Combining all the previous lemmas, we can finally characterize the minimal covers in the Weihrauch degrees.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f and h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a minimal cover of h in the Weihrauch degrees.
- 2. $f \equiv_{\mathbf{W}} h \sqcup \mathrm{id}_{\{p\}}$ for some p with $\mathrm{dom}(h) \not\leq_{\mathbf{M}} \{p\}$ and $\mathrm{dom}(h) \leq_{\mathbf{M}} \{p\}^+$.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f, h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees,
- 2. There is $p \in \mathbb{N}^{\mathbb{N}}$ such that $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ and $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f, h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees,
- 2. There is $p \in \mathbb{N}^{\mathbb{N}}$ such that $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ and $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$.

Proof

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f, h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees,
- 2. There is $p \in \mathbb{N}^{\mathbb{N}}$ such that $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ and $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$.

Proof

 $(2) \Rightarrow (1)$: easy knowing that the lower cone of id is isomorphic to the dual Medvedev degrees.

Theorem (Lempp, Miller, Pauly, Soskova, V.)

Let f, h be partial multi-valued functions on Baire space. The following are equivalent:

- 1. f is a strong minimal cover of h in the Weihrauch degrees,
- 2. There is $p \in \mathbb{N}^{\mathbb{N}}$ such that $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$ and $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$.

Proof

- $(2) \Rightarrow (1)$: easy knowing that the lower cone of id is isomorphic to the dual Medvedev degrees.
- (1) \Rightarrow (2): By the characterization, $f \equiv_{\mathbf{W}} h \sqcup \mathrm{id}_{\{p\}}$ for some p. Since the top of a SMC is join-irreducible, $f \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}}$. The only possibility is then that $h \equiv_{\mathbf{W}} \mathrm{id}_{\{p\}^+}$.

Overview

REFERENCES

- [1] Brattka, Vasco, Gherardi, Guido, and Pauly, Arno, Weihrauch Complexity in Computable Analysis, pp. 367–417, Springer International Publishing, Jul 2021, doi:10.1007/978-3-030-59234-9_11.
- [2] Dyment, Elena Z., On Some Properties of the Medvedev Lattice, Mathematics of the USSR-Sbornik **30** (1976), no. 3, 321–340, doi:10.1070/SM1976v030n03ABEH002277. MR 0432433
- [3] Higuchi, Kojiro and Pauly, Arno, *The degree structure of Weihrauch reducibility*, Logical Methods in Computer Science **9** (2013), no. 2:02, 1–17, doi:10.2168/LMCS-9(2:02)2013.
- [4] Lempp, Steffen, Marcone, Alberto, and Valenti, Manlio, Chains and antichains in the Weihrauch lattice, Submitted, 2024.
- [5] Lempp, Steffen, Miller, Joseph S., Pauly, Arno, Soskova, Mariya I., and Valenti, Manlio, Minimal covers in the Weihrauch degrees, Proceedings of the American Mathematical Society 152 (2024), no. 11, 4893–4901, doi:10.1090/proc/16952. MR 4802640
- [6] Sorbi, Andrea, *The Medvedev Lattice of Degrees of Difficulty*, Computability, Enumerability, Unsolvability (Cooper, S. B., Slaman, T. A., and Wainer, S. S., eds.), Cambridge University Press, New York, NY, USA, 1996, pp. 289–312.