Berkeley Earth + Emission EDA

Team 5
Pascual Eley, Victor Yin, Erik Sambrailo

Datasets

Berkeley Earth

Time series regional average temperature datasets 237 countries with potentially 192 years of data https://berkeleyearth.org/data/

UN Emissions Data

Greenhouse gas emissions datasets for 7 types of emissions for 43 countries over 30 years http://data.un.org/Data.aspx?d=GHG&f=seriesID%3aCH4#GHG

Questions

- How have temperatures changed globally over the past couple centuries?
 - How does this differ by country?
 - Does proximity to the equator have a correlation on temperature change?
- How have greenhouse gas emissions changed over time?
 - How does this differ by country?
 - o How does it differ by type of gas?
 - Does a country's emission have any correlation to its change in temperature?

Scraping Berkeley Earth

Downloading Country data

- Iterated through list of countries
- download .txt files from directory that matches

Only (4) countries of 237 that were not downloadable.

Index of /auto/Regional/TAVG/Text

<u>Name</u>	Last modified Size Description
Parent Directory	
a3d��-TAVG-Counts.txt	13-Jan-2021 19:59 168K
a3d��-TAVG-Trend.txt	13-Jan-2021 19:59 315K
with tokrzyskie-TAVG-Counts.txt	13-Jan-2021 19:59 166K
with tokrzyskie-TAVG-Trend.txt	13-Jan-2021 19:59 315K
♦ land-TAVG-Counts.txt	23-Jun-2016 05:08 163K
I ♦ land-TAVG-Trend.txt	22-Jun-2016 15:09 316K
♦ land-TAVG-Trend.txt	25-Oct-2013 06:46 313K
TAVG_Text.tar.gz	14-Jan-2021 01:16 37M
a_le-de-france-TAVG-Counts.txt	13-Jan-2021 20:03 167K
a_le-de-france-TAVG-Trend.txt	13-Jan-2021 20:03 315K
a_mna□govi-TAVG-Counts.txt	13-Jan-2021 20:07 119K
a_mna govi-TAVG-Trend.txt	13-Jan-2021 20:07 234K
a_va□rhangay-TAVG-Counts.txt	13-Jan-2021 20:07 118K
a_va□rhangay-TAVG-Trend.txt	13-Jan-2021 20:08 234K
acre-TAVG-Counts.txt	13-Jan-2021 19:46 78K
acre-TAVG-Trend.txt	13-Jan-2021 19:46 152K
adygey-TAVG-Counts.txt	13-Jan-2021 19:28 129K
adygey-TAVG-Trend.txt	13-Jan-2021 19:28 247K
afghanistan-TAVG-Counts.txt	13-Jan-2021 17:57 94K
afghanistan-TAVG-Trend.txt	13-Jan-2021 17:57 202K
africa-TAVG-Counts.txt	13-Jan-2021 17:54 178K
africa-TAVG-Trend.txt	13-Jan-2021 17:54 165K

Converting .txt files to DF

- Consistent formatting of .txt files
- Iterated through files to compile dataframe

%	that	month (r	ounding	down if	the cente	r is in l	between mo	nths).	For e
%	the a	nnual av	erage fr	om Janua	ry to Dec	ember 19	50 is repo	rted at	June
%									
%	Value	s are re	ported a	s missin	g (i.e. N	aN) when	station c	overage	with:
%	the r	egion be	comes to	o low, e	ven thoug	h a limi	ted number	of obs	ervat:
							rvals with		
%	be re	ported a	s long a	s at lea	st 75% of	the nec	essary val	ues are	avai
%									
%	6		Monthly		Annu	al	Five-y	ear	Te
%	Year,	Month,	Anomaly	, Unc.,	Anomaly	, Unc.,	Anomaly,	Unc.,	Anor
	1848	5	-0.297	2.037	NaN	NaN	NaN	NaN	1
	1848	6	-0.796	2.136	NaN	NaN	NaN	NaN	1
	1848	7	-0.113	1.937	-0.777	0.639	NaN	NaN	1
	1848	8	-0.462	1.937	-0.743	0.644	NaN	NaN	1
	1848	9	-1.272	1.865	-0.676	0.669	NaN	NaN	1
	1848	10	-0.934	1.880	-0.712	0.687	NaN	NaN	1
	1848	11	-0.769	1.835	-0.723	0.663	NaN	NaN	1
	1848	12	-1.842	2.034	-0.742	0.663	NaN	NaN	1
	1849	1	-0.095	2.550	-0.731	0.685	NaN	NaN	1
	1849	2	-0.560	2.098	-0.704	0.711	NaN	NaN	1
	1849	3	-0.367	2.068	-0.718	0.714	NaN	NaN	1
	1849	4	-1.041	2.307	-0.688	0.713	NaN	NaN	1
	1849	5	-0.427	1.894	-0.706	0.739	NaN	NaN	1
	1849	6	-1.016	1.976	-0.699	0.676	NaN	NaN	1
	1849	7	0.012	2.050	-0.855	0.641	NaN	NaN	1
	1849	8	-0.141	1.952	-0.837	0.650	NaN	NaN	1
	1849	9	-1.431	1.843	-0.811	0.661	NaN	NaN	1
	1849	10	-0.584	1.845	-0.818	0.718	NaN	NaN	1

Dataset Overview & Assumptions

- Country temperature baseline
 - Average temp. from Jan 1951-Dec 1980
 - **Assumption:** These values are accurate representations
- Average temperature anomalies, w/ measured uncertainties centered moving averages for time periods of:

 - month, & 1-, 5-,10-, 20-Year

 Assumption: Assuming anomalies are accurate and not reviewing uncertainty values

Temp Date Availability

Reviewing start and end dates* for all countries

*reviewing monthly temperature anomaly data.

Temp Date Availability

Reviewing gaps in temperature data

Temp Date Availability

Identifying number of countries available by year

Countries Added (between 1900 & 2016)

Antarctica
Federated-States-of-Micronesia
French-Southern-and-Antarctic-Lands
Guam
Heard-Island-and-McDonald-Islands
Northern-Mariana-Islands
Palau
Papua-New-Guinea
Solomon-Islands

Various Anomaly Timeframes

- Used US vs Indonesia as example
- Monthly anomaly High variability
- 20 Year Least variability

Geospatial Data

Countries available for geospatial mapping

Geospatial Temperature Changes

Reviewing geospatial patterns in temperature change

Anomalies by Region

- Compared regions as broken down in our dataset
- Monthly has high variability, but Europe region noticeably higher
- 20 Year trend looks similar across regions

Latitude Correlation

- Used 40 degrees since it looked to split the hemisphere on the globe
- Monthly anomaly for high latitudes is more variable
- 20 year still variable fo high latitudes, and higher anomaly overall

Geospatial Temperature Conclusion

Various prior studies have shown that temperature change is greater at the Earth's poles.¹

The reasons predicted for this are varied:

- caused by melting ice which is reducing reflected energy.¹
- energy in the atmosphere transported to the poles through large weather systems.¹

https://www.nasa.gov/topics/earth/features/warmingpoles.html

Emission Data

Emissions by Country

Type	Country or Area	
C02	United States of America	167927361.97
1000	European Union	120823499.60
	Russian Federation	49909669.59
	Japan	36938568.58
	Germany	26251704.63
methane	United States of America	21128317.05
	European Union	16550898.53
C02	Canada	16332753.49
	United Kingdom	15751101.26
N20	United States of America	13703510.56
C02	Italy	13001643.35

Emission Data

Largest CO2 emitters

Comparing Emissions to Temperature - Global Average

Comparing Emissions to Temperature - Japan and US

Largest CO2 emitters

Comparing Emissions to Temperature - Russia and US

Largest CO2 emitters

Thank you!

