

深度學習

第5章神經網路理論篇

講師:紀俊男

- 感知器原理
- 多層感知器原理
 - 原理概說
 - 五大元件

生物神經元(Neuron)

人工神經元:感知器(Perceptron)

• 弗蘭克·羅森布拉特 (Frank Rosenblatt), 心理學家, 康乃爾航空實驗室, 1957

= 線性邏輯迴歸分類器

感知器實例

平常需要做「特徵縮放」

151200000				
5	8	4		
28	29	32		
1	0	0		

不舒服	溫度	客人	開冷氣
4	32	No	No
8	29	No	Yes
5	28	Yes	Yes

是否會開冷氣

Ŷ

正向傳播(計算損失函數)

一樣本點修正一次:隨機梯度下降

K 樣本點修正一次: 批次隨機梯度下降

全體樣本點修正一次:一般梯度下降

全體樣本點訓練一次 = 一期(Epoch)

$$\Sigma = 4*0.1 + 32*0.1 + 0*0.1 = \underline{3.6}$$

 $\Sigma = 8*0.1 + 29*0.1 + 0*0.1 = 3.7$

 $\Sigma = 5*0.1 + 28*0.1 + 1*0.1 = 3.4$

$$\widehat{Y} = \varphi(3.6) = \frac{1}{1 + e^{-3.6}} = 0.9734 = Yes$$

$$1 + e^{-3.0}$$

$$\hat{Y} = \varphi(3.7) = \frac{1}{1 + e^{-3.7}} = 0.9758 = Yes$$
 ^{1/2} (1-1)²=0.0

$$\widehat{Y} = \varphi(3.4) = \frac{1}{1 + e^{-3.4}} = 0.9677 = Yes$$
 ^{1/2} (1-1)²=0.0

反向傳播(修正權重,讓損失函數有最小(偏微分))

損失函數

 $C = \frac{1}{2} (\widehat{Y} - Y)^2$

 $\frac{1}{2}(1-0)^2=0.5$

感知器的致命傷

• 只能用於「線性可分」的問題 -- Marvin Minsky, Seymour Papert; 1969

AND	0	1	$\omega_1 X_1 + \omega_2 X_2$
0	0	0	ω_1
1	0	1	ω_2

OR	0	1	$\omega_1 X_1 + \omega_2 X_2$
0	0	1	ω_1
1	1	1	ω_2

XOR	0	1	$\omega_1 X_1 + \omega_2 X_2$
0	0	1	ω_1
1	1	0	ω_2

感知器致命傷的解法

多層感知器(Multi-Layers Perceptron)

XOR	0	1
0	0	1
1	1	0

多層感知器原理

Principle of Multi-Layers Perceptron

- 多層感知器架構
- 隱藏層該有多少節點
- 隱藏層該有多少層
- 多層感知器的「學習方式」

多層感知器架構

隱藏層作用

- ▶ 增加抽象概念(H1:以不舒服程度為主。H2:以客人有無為主)
- 將模型提昇至「能解決線性不可分問題」的等級

隱藏層該有多少節點

• 沒有定論!常用的公式如下:

公式一:算數平均數

上一層節點數 + 下一層節點數 2

公式二:經驗法則公式

樣本點個數

 $\alpha \times (上一層節點數 + 下一層節點數)$

 α =2~10 (Scaling Factor) (=2可防止過擬合,一般=5)

隱藏層該有多少層

• 沒有標準!但依據經驗法則,不需太多層就能解大部分的問題!

- 0層
 - 任何「線性可分」的題目都能解。
 - 等同「線性邏輯迴歸分類器」
- 1層
 - 任何「有限定義域」映射至「有限值域」的函數可分的都能解。
- 2層
 - 任何數學函數可分的都能解。

Introduction to Neural Networks with Java (2nd Ed.)

因此,在「淺層學習(Shallow Learning)」中,神經網路層數大多固定在 2~3層。

多層感知器的「學習方式」

- 激活函數 (Activation Functions)
- 權重初始器 (Initializers)
- 損失函數 (Loss Functions)
- 評估標準 (Metrics)
- 優化器 (Optimizers)

•「線性函數」(Linear):迴歸問題使用。

• Sigmoid 函數:輸出層一個節點、二選一時

• 「線性整流函數」(Rectifier Linear Unit, ReLU):隱藏層使用

$$ReLU = f(x) = \begin{cases} 0 & for \ x < 0 \\ x & for \ x \ge 0 \end{cases}$$

線性整流函數(ReLU)的好處:

- 解決「梯度消失問題」
 - Sigmoid 的兩端是漸進線,會有「X前進很多,Y不太動」的問題。
 - 這會導致收斂末期,會收斂得很慢。稱為「梯度消失問題」。
- 直接切斷貢獻度小的神經元
 - 一超過「閾值」, ReLU 會直接讓它變成 0。
 - Sigmoid 會「接近 0,但不等於 0」,仍殘留一點值,拖慢運算效能。
- 較貼近生物神經元「全有或全無」的特性
 - · 真正的生物神經元,低於「閾值」會直接不反應,ReLU 比較像。
 - Sigmoid 低於「閾值」,仍會保留很微弱的「殘值」。
- 節省計算量
 - ReLU 的計算量比 Sigmoid 省,不必算 e-x,效果又相近。

• Softmax 函數:輸出層超過一個節點、多選一時

「紅酒評等」資料集

完整「激活函數」列表: https://bit.ly/2ZEHyDd

Softmax 函數

$$P(\underline{Y} = \underline{j} \mid \underline{X}) = \frac{e^{X^T W_j}}{\sum_{k=1}^n e^{X^T W_k}}$$

- X: 特定自變數。如(35歲, 男性)
- P(Y=j|...): Y 分出來的答案是 1, 2, 3... 的機率
- XTW: 所有自變數 x 所有權重
- e^{X^TW} : 把 e^{-x} 從 $\frac{1}{1+e^{-x}}$ 簡化出來,用以代表 X^TW_j (j = 1, 2, 3...) 發生之機率
- 假設 P(Y=1 | X)、 P(Y=2 | X)、 P(Y=3 | X)...
 P(Y=2 | X) 機率最高,則 Y=2 就該被激活。

- 權重初始器 (Initializers)
- 損失函數 (Loss Functions)
- 評估標準 (Metrics)
- 優化器 (Optimizers)

有哪些選擇?

常數型初始器

代表字串	函數	說明
"zeros"	Zeros()	全初始為0
"ones"	Ones()	全初始為1
"constant"	Constant(value=0)	全初始為特定常數

一般分佈型初始器

代表等	字串	函數	說明
"random_u	uniform"	RandomUniform(minv al=-0.05, maxval=0.05)	從平均分佈 [minval, maxval) 抽樣
random_	normal"	RandomNormal(mean =0.0, stddev=0.05)	從常態分佈 (μ=mean, σ=stddev) 抽樣
"truncated_	_normal"	TruncatedNormal(mea n=0.0, stddev=0.05)	同 "random_normal"。但 ±2σ(95%)以外的拋棄。

Glorot 分佈型初始器

代表字串	函數	說明
"glorot_uniform"	GlorotUniform()	從[-x, x] 抽, $x = \sqrt{6/(Fan_{in} + Fan_{out})}$
"glorot_normal"	GlorotNormal()	Truncated Normal(μ =0, $\sigma = \sqrt{2/(Fan_{in} + Fan_{out})}$
"variance_scaling"	VarianceScaling (distribution="", scale=, mode="")	(後述)

★ :常用

完整「權重初始函數 (Intializer)」列表: https://bit.ly/2OFuLdf

權重的初值,很重要嗎?

實驗方法說明:

MNIST 手寫數字資料集(60000 張圖片)、使用 CNN、 批次隨機梯度下降法(batch=128, Epochs=12) 權重一樣 → 輸出類似 → 梯度不明顯 → 收斂慢

權重初值 = Zeros

權重初值 = Random Normal N (μ =0, σ =0.4)

權重初值 = Glorot Normal Truncated-N (μ =0, σ = $\sqrt{2/n}$)

「常數型」權重初始器

"zeros"

Zeros()

• 全初始為 0

 X_1 X_2 X_3 $\Sigma \varphi$

"ones"

Ones()

全初始為1

"constant"

Constant(value=k)

• 全初始為常數 k

「一般分佈型」權重初始器

"random_uniform"

RandomUniform(minval=-x, maxval=x)

● 抽樣~[-x, x]

 X_1 X_2 X_3 X_4 X_4 X_5 X_4

"random_normal"

RandomNormal(mean= \(\mu \), stddev= \(\sigma \)

抽樣~N(μ, σ)

"truncated_normal"

TruncatedNormal(mean= µ, stddev= ♂)

- 抽樣~N(μ, σ)
- ±2σ (95%)以外廢棄

● 何謂「Glorot 分佈」?

Xavier Glorot 加拿大蒙特婁大學博士

<010

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot Yoshua Bengio DIRO, Université de Montréal, Montréal, Québec, Canada

"最佳的權重初始值,與神經網路「輸入端點數」與「輸出端點數」有關!"

輸入端點數 (Fan-in)

輸出端點數 (Fan-out)

背後想法:

- 找到一種權重初值,能維持輸入端權重分散程度 S_{in},與輸出端權重分散程度 S_{out} 類似。
- 只要權重分散程度不會越來越小(集中)· 就能維持梯度的多樣性,讓收斂變快。

GlorotUniform()

- 抽樣~[-x, x]
- $x = \sqrt{6/(Fan_{in} + Fan_{out})}$

GlorotNormal()

- 抽樣 ~ $N(\mu=0, \sigma=\sqrt{2/(Fan_{in}+Fan_{out})})$
- ±2σ (95%)以外廢棄

- Glorot 分佈的缺點
 - 在某些函數(如: ReLU)上適應不良!

- 每層平均有一半的梯度, 會被截止為 0。
- 每層梯度的離散程度少一半
 - → 下一層少一半的一半
 - → 最後趨近於 0,多樣性消失

十層神經網路

採用 Glorot Normal + ReLU

梯度多樣性逐漸消失

•「何氏分佈」:改善 Glorot 會在 ReLU 梯度消失的問題

何愷明 (Kaiming He) Facebook / Microsoft Al Researcher

梯度少一半 \rightarrow × 2 解決!

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Kaiming He

Xiangyu Zhang Microsoft Research

Shaoqing Ren

Jian Sun

Glorot Normal

抽樣 ~ $N(\mu=0, \ \sigma = \sqrt{\frac{2}{Fan_{in}+Fan_{out}}})$

Glorot Normal (μ =0, $\sigma = \sqrt{\frac{2}{2n}} = \sqrt{\frac{1}{n}}$)

假設

Fanin 與 Fanout 的平均值是 n

 $Fan_{in} + Fan_{out} = 2n$

He Normal (μ =0, $\sigma = \sqrt{\frac{1\times 2}{n}} = \sqrt{\frac{2}{n}}$)

背後想法:

Glorot Normal + ReLU J vs. He Normal + ReLU J

梯度多樣性逐漸消失

Glorot Normal + ReLU

梯度多樣性保持豐富

He Normal + ReLU

"variance_scaling"

VarianceScaling (distribution="...", scale=..., mode="...")

$$\mathsf{mode} = \begin{cases} "fan_in" & n = n_{fan_in} \\ "fan_out" & n = n_{fan_out} \end{cases}$$

distribution =
$$\begin{cases} "uniform" & \text{ind} \sim [-x,x] \ x = \sqrt{3 \times scale/n} \\ "untruncated_normal" & \text{ind} \sim N(\mu = 0, \sigma = \sqrt{1 \times scale/n}) \\ "truncated_normal" & \text{ind} \sim N\left(\mu = 0, \sigma = \sqrt{1 \times scale/n}\right) \\ & \pm 2\sigma \ (95\%) \ \text{以外廢棄} \end{cases}$$

scale = 2 · 就是「何氏分佈」

該如何挑選?

淺層學習 (Shallow Learning)

Random Normal . Truncated Normal

深度學習 (Deep Learning)

Glorot Normal

深度學習 + ReLU (Deep Learning + ReLU)

Variance Scaling (scale = 2)

- 激活函數(Activation Functions)
- 權重初始器 (Initializers)
- 損失函數(Loss Functions)
- 評估標準 (Metrics)
- 優化器 (Optimizers)

「損失函數」的選擇

均方誤差

(Mean Squared Error, MSE)

$$MSE = \frac{\sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2}{n}$$

「迴歸問題」時使用

二元交叉熵

(Binary Cross Entropy)

$$H(p,q) = -p \log_2 q - (1-p) \log_2 (1-q)$$

p: 事件真實發生機率 q: 事件預測發生機率

「二元分類問題」時使用

類別交叉熵 (Categorical Cross Entropy)

$$H(p,q) = -\sum_{i} p_i \log_2 q_i$$

 p_i 事件 i 真實發生機率 q_i 事件 i 預測發生機率

「多元分類問題」時使用

完整「損失函數(Loss Functions)」列表:https://bit.ly/2OAk5g4

「損失函數」的選擇

●何謂「交叉熵」(Cross Entropy)

• 實際機率分布 vs. 預測機率分布的落差程度

Claude Shannon 1916-2001

資訊量 (資訊的稀有程度)

$$Info = -logP_i$$

東京下雪機率 =
$$\frac{1}{10}$$

台北下雪機率 = $\frac{1}{1000}$

東京下雪資訊量 =
$$-log \frac{1}{10} = 1$$

台北下雪資訊量 = $-log \frac{1}{1000} = 3$

資訊熵

(資訊亂度) (資訊量的龐大程度) (資訊量的期望值)

資訊熵 =
$$\sum_{i=1}^{n}$$
 (資訊 i 發生機率) × (資訊 i 資訊量)

$$= \sum_{i=1}^{n} Entropy_{i} = \sum_{i=1}^{n} P_{i} \times (-logP_{i})$$

下雪的「資訊熵」

 $= Entropy(東京) + Entropy(台北) + \cdots$

$$=\frac{1}{10}\times\left(-\log\frac{1}{10}\right)+\frac{1}{1000}\times\left(-\log\frac{1}{1000}\right)+\cdots$$

(實際 vs 預測的資訊量落差)

交叉熵 =
$$\sum_{i=1}^{n}$$
(資訊 i 實際發生機率) × (資訊 i 預測資訊量) = $\sum_{i=1}^{n} P_i \times (-logQ_i)$

「損失函數」的選擇

• 「交叉熵」的範例

多選一神經網路分類器

種類	預測
貓	0.30
狗	0.45
牛	0.25

反向傳播/權重修正

反向傳播/權重修正

種類	實際	預測	交叉熵
貓	0	0.30	$0 \times (-\log 0.30) = 0$
狗	1	0.45	$1 \times (-\log 0.45) \cong 0.3469$
#	0	0.25	$0 \times (-\log 0.25) = 0$
總交叉熵		交叉熵	0.3469

種類	實際	預測	交叉熵
貓	0	0.20	$0 \times (-\log 0.20) = 0$
狗	1	0.75	$1 \times (-\log 0.75) \cong 0.1249$
牛	0	0.05	$0 \times (-\log 0.05) = 0$
總交叉熵		交叉熵	0.1249

種類	實際	預測	交叉熵
貓	0	0.00	$0 \times (-\log 0.00) = 0$
狗	1	1.00	$1 \times (-\log 1.00) \cong 0.00$
牛	0	0.00	$0 \times (-\log 0.00) = 0$
總交叉熵			0.0000

- 激活函數 (Activation Functions)
- 權重初始器 (Initializers)
- 損失函數 (Loss Functions)
- 評估標準(Metrics)
- 優化器 (Optimizers)

「評估標準」的定義&選擇

• 評估標準

• 讓人類得知,目前這一期(Epoch)的神經網路模型「有多好」

代表字串	底層類別	說明
"mean_squared_error" "mse"	MeanSquaredError()	均方誤差(Mean Squared Error)。 用於「迴歸問題」。
(無)	RootMeanSquaredError()	均方根誤差(Root Mean Squared Error)。 用於「迴歸問題」。
"accuracy" "acc"	Accuracy()	確度(Accuracy)。公式為 (TN + TP)/ALL。 用於「分類問題」。
(無)	Recall()	廣度(Recall)。公式為 $TP/(TP + FN)$ 。 用於「分類問題」。
(無)	Precision()	精度(Precision)。公式為 <i>TP/(TP+FP</i>)。 用於「分類問題」。

$$\hat{Y} = 0$$
 $\hat{Y} = 1$

TN FP

FN TP

Y = 0

Y = 1

完整「評估標準 (Metrics)」列表: https://bit.ly/32zrdl4

為何沒有 F1-Score?

• 目前有問題,下架中

• 問題點:計算出來的 F1-Score 不正確!

• 網址: https://bit.ly/32AQ73I

• 有解決方案嗎?

- 2020/02/17 已有人提出「Feture Request」
- 目前因為提問人久未回應,暫時關閉中(Status: Open → Closed)
- 網址: https://bit.ly/3jlKJr0

• 想試試看 F1-Score 到底有多不正確

- 安裝: pip install tensorflow-addons
- 引入: import tensorflow_addons as tfa
- 使用: model.compile(... metrics=[tfa.metrics.F1Score(num_classes=2, average= "micro")])
 - num classes=2:代表最終答案有兩類(分類二選一問題)
 - average:求平均的方法(micro:微觀平均、macro:巨觀平均)

函式庫結果 vs. 手工計算

Confusion Matrix: [[1049 0] [0 982]] Accuracy: 100.00% Recall: 100.00% F1-score: 100.00%

- 激活函數 (Activation Functions)
- 權重初始器 (Initializers)
- 損失函數 (Loss Functions)
- 評估標準 (Metrics)
- 優化器 (Optimizers)

- 「優化器(Optimizers)」的任務
 - 找到「**損失函數」**」的極小值
 - 更新「權重θ」

- 全域極小值
 - 我們要找的目標。
- 區域極小值
 - 不小心找到的假目標。
- 鞍部點
 - 可能會被困住的點。

- 「優化器」如何找極小值
 - 梯度下降法(Gradient Descent, GD)

• 起始點

隨機任意選取的一個點。

• 梯度(Gradient)

- 總是指向「**函數最大增加方向**」的向量。
- 梯度 = 函數 f 在各分量的偏微分。 $\nabla f(x_1, x_2) = \left(\frac{\partial}{\partial x_1} f(x_1, x_2) \frac{\partial}{\partial x_2} f(x_1, x_2)\right)$
- 概念類似「某一點的切線斜率(微分)」, 只不過它是向量(除了大小,還有方向)。
- 若梯度→0,代表接近水平,找到終點。

學習速率(Learning Rate, η (Eta))

- 往目標走一步的距離。
- 梯度越斜→學習速率應越大。反之越小。否則會出現在終點附近折返跑的現象。

△ 「優化器」的選擇

「學習速率η」與「收斂速度」的關係

「學習速率」隨著梯度<mark>減小</mark> (容易收斂)

「學習速率」一直<mark>固定不變</mark> (不易收斂)

• 梯度下降法的問題(1):區域極小問題(Local Minima)

解決方法

讓「**學習速率 η**」定期<mark>循環</mark>跳動 (Cyclic Learning Rate Scheduling)

「學習速率η」 🛈

- → 容易跳出山谷
- → 找到多個極小值
- → 取最小的那一個

• 梯度下降法的問題(2):鞍部點問題(Saddle Point)

• 梯度下降法的問題(3):梯度懸崖問題(Gradient Cliff)

(一稱梯度爆炸(Gradient Exploding)問題)

梯度在「懸崖邊」,突然一下子<mark>增大!</mark> 指向遠方,讓快要<mark>收斂</mark>的結果,功虧一簣! 解決方法 使用「梯度截斷法」 (Gradient Cut-Off)

梯度超過一定「閾值」

→ 拋棄不用!

• 梯度下降法的問題(4):病態曲率問題(Pathological Curvature)

因為山谷<mark>太窄</mark>,就算 學習速率 η 已經縮到很小了, 仍然會產生「反覆橫跳」、<mark>浪費效能</mark>的現象。

• 梯度下降法的問題(4):病態曲率問題(Pathological Curvature)

反覆橫跳的原因

梯度橫方向分量 > 縱方向分量

解決方法 使用「動量法」(Momentum)

累加歷史上出現過的梯度**各分量**, 並將它用於**下一次**的梯度下降**距離**。

理想路徑

w1

• 有哪些「優化器」可用?

完整「優化器」列表: https://bit.ly/2CLkEkw

- Keras 內常見的「優化器」(1)
 - 隨機梯度下降法 (Stochastic Gradient Descent, SGD)

• 底層類別: "sgd" = SGD(learning_rate=0.01, momentum=0.0, nesterov=False)

學習速率: 固定(手工輸入)。預設值 = η = 0.01

• 注意事項: Keras 內的 SGD 事實上是使用 mini-Batch Gradient Descent 演算法。

數學原理: 下次權重 θ_{t+1} = 現在權重 θ_t + 學習速率 η × 現在梯度 ∇ 的反方向 (-1)

$$\theta_{t+1} = \theta_t - \eta \nabla J(\theta_t; X_{i \sim (i+n)}, Y_{i \sim (i+n)})$$
 常簡寫成 $\Delta \theta = -\eta \nabla J(\theta)$

且在梯度 $\nabla J()$ = - 自變數 X_i , 應變數 Y_i 開始的 n 個樣本點

現在權重 θ_t 與

- 取**梯度**

缺點:η固定

- 易只找到局部極小。
- 終點前反覆橫跳。
- 易受騙困於鞍部點。
- 病態曲率時易震盪。

- Keras 內常見的「優化器」(2)
 - 隨機梯度下降 + 動量法 (SGD + Momentum) 通常是 0.9
 - 底層類別: SGD(learning_rate=0.01, momentum=[0, 1) 之數, nesterov=False)
 - 學習速率: 固定(手工輸入)。預設值 = η = 0.01
 - 解決問題: 逃離區域極小、逃離鞍部點、減低病態曲率處反覆震盪。
 - 數學原理: $\theta_{t+1} = \theta_t + v_t$ (下次權重 $\theta_{t+1} = 現在權重 \theta_t + 現在動量 v_t$)
 - 推導: $v_t = \gamma v_{t-1} \eta \nabla J(\theta_t)$ (現在動量 $v_t = L$ 数量 $v_{t-1} \times$ 衰減率 γ + 學習速率 $η \times$ 現在梯度 ∇ 的反方向 (-1))

 動量 P = 質量 m × 速度 v

 設神經網路中,質量 m = 1

 V_i 有記憶效應!擺盪方向會累加相消!

動量 P = 速度 V 再設「力」=修正方向 (-學習速率×梯度) 動量 = 速度 V_t = 前速 V_{t-1} ×衰減率 γ +作用力 ($-\eta \nabla J(\theta_t)$)

$$v_t = \gamma v_{t-1} - \eta \nabla J(\theta_t) \quad \gamma = 0.9, G_0 = -\eta \nabla J(\theta_0)$$

$$v_1 = G_0, v_2 = 0.9G_0 + G_1, v_3 = 0.81G_0 + 0.9G_1 + G_2, ...$$

逃離「區域極小」

- Keras 內常見的「優化器」(3)
 - Nesterov 加速梯度法(SGD + Nesterov Accelerated Gradient, NAG)

• 底層類別: SGD(learning_rate=0.01, momentum=[0, 1), nesterov=True)

解決問題: 同動量法 + 收斂更快。

• 數學原理: $\theta_{t+1} = \theta_t + v_t$ $v_t = \gamma v_{t-1} - \eta \nabla J(\theta_t)$

 $\theta_{t+1} = \theta_t + \gamma v_{t-1} - \eta \nabla J(\theta_t)$ 無論如何 γv_{t-1} 一定會加入到 θ_t 裡,成為 θ_{t+1} 的一部分

那就乾脆偷跑半步,求 $\nabla J(\theta_t + \gamma v_{t-1})$ 不是更能預見未來、收斂更快嗎?

Nesterov 公式:

$$\theta_{t+1} = \theta_t + v_t$$
$$v_t = \gamma v_{t-1} - \eta \nabla J(\theta_t + \gamma v_{t-1})$$

Yurii Nesterov

(1956-)

- Keras 內常見的「優化器」(4)
 - 自適應梯度法(AdaGrad: Adaptive Gradient)
 - 底層類別: "adagrad" = Adagrad(learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-07)

學習速率: 變動(梯度大→ η 大,梯度小→ η 小)。預設值 = η = 0.001

解決問題: 讓收斂接近終點時,學習速率可以自動縮小。

數學原理: $\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\sum_{k=1}^t (\nabla J(\theta_t))^2 + \varepsilon}} \nabla J(\theta_t)$

 $\sqrt{\sum_{k=1}^{t} (\mathbf{V} \mathbf{J}(\boldsymbol{\theta_t}))^2}$: 過往梯度平方總和 + 開根號

平方:不讓下負梯度互相影響 開根號:回復原先的數量級

 ε : 為了防止梯度=0 時分母=0。一般= 10^{-7} 左右。

剛開始:梯度累積不多(小) \rightarrow η大結束前:梯度累積很多(大) \rightarrow η小 效果

缺點:

即將收斂結束時,會因為梯度平方永為正, 累積太多,導致 η 過小,影響收斂速度。

AdaGrad

- Keras 內常見的「優化器」(5)
 - AdaDelta

- 底層類別: "adadelta" = Adadelta(learning_rate=0.001, rho=0.95, epsilon=1e-07)
- 學習速率: 變動(梯度大→η大,梯度小→η小)。預設值 = η = 0.001
- 解決問題:修正 AdaGrad 中後段因為學習速率變小,而收斂減緩的問題。
- 解法巧思: (1) 累加「過往梯度平方」時,要讓歷史<mark>越久遠</mark>的梯度,影響力<mark>越小</mark>。
 - (2) 引入類似「動量」概念,累加過往的更新值。再加越久遠、影響越小的效果 (如此才能「壞方向累加相消、好方向累加增進」!)
- 數學公式: $\theta_{t+1} = \theta_t + \Delta X_t$ (ΔX_t : 此次針對權重 θ_t 的更新值)

- Keras 內常見的「優化器」(5)
 - AdaDelta

$$G_t = \rho G_{t-1} + (1-\rho) \nabla J(\theta_t)^2$$
 (假設 $\rho = 0.9$ $G_0 = 0$)

$$G_1 = 0.9 \times 0 + (1 - 0.9) \nabla J(\theta_1)^2 = 0.1 \nabla J(\theta_1)^2$$

$$G_2 = 0.9 \times G_1 + (1 - 0.9) \nabla J(\theta_2)^2 = 0.9 \times (0.1 \nabla J(\theta_1)^2) + (0.1 \nabla J(\theta_2)^2)$$

$$G_3 = 0.9 \times G_2 + (1 - 0.9) \nabla J(\theta_3)^2$$

$$= 0.81 \times (0.1\nabla J(\theta_1)^2) + 0.9 \times (0.1\nabla J(\theta_2)^2) + (0.1\nabla J(\theta_3)^2)$$

① 越古老、越衰減 ② ρ 可以控制新加入項 $\nabla J(\theta_t)$ 的佔比 ③ \mathfrak{D}_{t-1} 的累計原理類似

模型比較:

AdaGrad: 收斂較慢

AdaDelta: 收斂快,且完全模擬真實球體滾動軌跡

- Keras 內常見的「優化器」(6)
 - RMSProp (<u>Root-Mean-Square Propagation</u>)

• 底層類別: "rmsprop" = RMSprop(learning_rate=0.001, rho=0.95, momentum=0.0, epsilon=1e-07, centered=False)

學習速率: 變動(梯度大→η大・梯度小→η小)。預設值 = η = 0.001

• 解決問題:修正 AdaGrad 中後段因為學習速率變小,而收斂減緩的問題。

• 解法巧思: 累加「**過往梯度**平方」時,要讓歷史<mark>越久遠</mark>的梯度,影響力<mark>越小</mark>。

• 數學原理: $\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{G_t + \varepsilon}} \nabla J(\theta_t)$

 $G_t = \rho G_{t-1} + (1 - \rho) \nabla J(\theta_t)^2$ 歷史梯度平方累計+衰減

- Keras 內常見的「優化器」(7)
 - AdaM (<u>Adaptive Moment Estimation</u> 自適應動差估計法)
 - 底層類別: "adam" = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False)
 - 學習速率: 變動(梯度大→η大・梯度小→η小)。預設值 = η = 0.001
 - 特色說明: (1) 結合「RMSProp」與「動量法」的優點。是目前用得最廣泛的演算法。
 - (2) 有個偏差校正式,也是讓 AdaM 比別人優秀的另一個秘訣!
 - 數學公式:

$$m{ heta_{t+1}} = m{ heta_t} - rac{m{\eta}}{\sqrt{\widehat{v_t} + arepsilon}} \widehat{m{m_t}} \qquad \widehat{m{m_t}} = rac{m{m_t}}{1 - m{eta_1}^t} \quad \widehat{m{v_t}} = rac{m{v_t}}{1 - m{eta_2}^t} \quad m{\cdot}_{t=1} \stackrel{m{m_t}, \, m{v_t} \, \text{偏差校正式}}{\text{t}} = \frac{m{m_t}, \, m{v_t} \, \text{偏差校正式}}{1 - m{eta_2}^t} \quad m{\cdot}_{t=1} \stackrel{m{m_t}, \, m{v_t} \, \text{偏差校正式}}{\text{t}} = \frac{m{m_t}, \, m{v_t} \, \text{偏差校正式}}{1 - m{eta_2}^t} = \frac{m{m_t}, \, m{v_t} \, \text{偏差校正式}}{1 - m{\phi_2}^t} = \frac{m{m_t}, \, m{v_t} \, \text{偏差校正式}}{1 - m{\phi_2}^t} = \frac{m{m_t}, \, m{v_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{v_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{m_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{m_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{m_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{m_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{m_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{m_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} = \frac{m{m_t}, \, m{m_t} \, \textbf{GE}}{1 - m{m_t} \, \textbf{GE}} =$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla J(\theta_t)$$
 歷史梯度累加+衰減 = 歷史梯度加權平均值 = 歷史梯度一階動差估計式(仿效動量法優點)

$$\mathbf{v_t} = \beta_2 \mathbf{v_{t-1}} + (1 - \beta_2) \mathbf{VJ}(\mathbf{\theta_t})^2$$
 歷史梯度平方累加+衰減 = 歷史梯度變異數加權平均值 = 歷史梯度**二階動差估計式**(仿效 RMSProp 優點)

- Keras 內常見的「優化器」(7)
 - AdaM (Adaptive Moment Estimation 自適應動差估計法)
 - 補充知識:何謂「**動差(Moment)」? →** 一種能**快速計算「四大統計**量」的方法

動差定義:樣本點 x_i 與特定數字 a 距離的 \mathbf{r} 次方和之平均 = \mathbf{r} 階一般動差

平均值
$$\mu$$
 = 一階原點動差($r=1$, $a=0$) = $m_1 = \frac{1}{n} \sum_{i=1}^n (x_i - 0)^1 = \frac{1}{n} \sum_{i=1}^n x_i$

$$\mathbf{m}_r = \frac{1}{n} \sum_{i=1}^n (x_i - a)^r$$

偏態係數
$$sk = 三階主動差 (r=3, a= \mu)/\sigma^3 = m_3/\sigma^3$$

峰值係數 K = 四階主動差
$$(r=4, a=\mu)/\sigma^4 = m_4/\sigma^4$$

a=0:原點動差

△【優化器」的選擇

測試集:

- Keras 內常見的「優化器」(7)
 - AdaM (<u>Adaptive Moment Estimation 自適應動差估計法)</u>

• Adam 的優點:收斂快

MNIST Multilayer Neural Network + dropout

AdaGrad

RMSProp

SGDNesterov

AdaDelta

Adam

Adam 的缺點: 複雜的 J(θ) 容易 Overfit, 去找到
 那些擁有「病態曲率」的低點當極值

97.0

參考: https://is.gd/bllyLl

SGD

AdaM

- Keras 內常見的「優化器」(7)
 - AMSGrad: AdaM 的改進方法
 - 改進方法: AMSGrad

ON THE CONVERGENCE OF ADAM AND BEYOND

Sashank J. Reddi, Satyen Kale & Sanjiv Kumar Google New York New York, NY 10011, USA {sashank, satyenkale, sanjivk}@qoogle.com

2018

• 數學公式:

$$\boldsymbol{\theta_{t+1}} = \boldsymbol{\theta_t} - \frac{\eta}{\sqrt{\widehat{v_t} + \varepsilon}} \widehat{\boldsymbol{m_t}}$$

$$\widehat{\boldsymbol{m}_{t}} = \frac{\boldsymbol{m}_{t}}{1 - \beta_{1}^{t}} \qquad \widehat{\boldsymbol{v}_{t}} = \boxed{\max(\frac{\boldsymbol{v}_{t-1}}{1 - \beta_{2}^{t}}, \boldsymbol{v}_{t})}$$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla J(\theta_t)$$
 只改了這裡
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) \nabla J(\theta_t)^2$$

"Adam 的問題在於,它太快收斂, 導致學習速率η縮小而「變慢」掉入深谷, 所以「過小的變化ν_t」就踢掉 衝快一點就能避免掉入山谷"

程式寫法:

Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True)

AdaM

- Keras 內常見的「優化器」(8)
 - NAdaM (<u>Nesterov-Accelerated Adaptive Moment Estimation</u>)
 - 底層類別: "nadam" = Nadam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
 - 學習速率: 變動(梯度大→η大・梯度小→η小)。預設值 = η = 0.001
 - 特色說明:將 Adam 內的「動量」,換成「 Nesterov 動量」(多偷看一步,收斂快)。
 - 數學公式:

NAdaM

$$\begin{aligned} \boldsymbol{\theta_{t+1}} &= \boldsymbol{\theta_t} - \frac{\boldsymbol{\eta}}{\sqrt{\widehat{n_t}} + \varepsilon} \left(\beta_1 \widehat{m_t} + \frac{1 - \beta_1}{1 - \beta_1^t} \nabla J(\boldsymbol{\theta_t}) \right) \\ \widehat{m_t} &= \frac{m_t}{1 - \beta_1^t} \qquad \boldsymbol{m_t} = \beta_1 \boldsymbol{m_{t-1}} + (1 - \beta_1) \nabla J(\boldsymbol{\theta_t}) \\ \widehat{n_t} &= \frac{n_t}{1 - \beta_2^t} \qquad \boldsymbol{n_t} = \beta_2 \boldsymbol{n_{t-1}} + (1 - \beta_2) \nabla J(\boldsymbol{\theta_t})^2 \end{aligned}$$

- Keras 內常見的「優化器」(8)
 - NAdaM (<u>Nesterov-Accelerated Adaptive Moment Estimation</u>)

△【優化器」的選擇

- Keras 內常見的「優化器」(8)
 - NAdaM (<u>Nesterov-Accelerated Adaptive Moment Estimation</u>)
 - NAdaM 與 AdaM 比較:

NAdam 收斂通常比 Adam 快!

• Step 1. 挑選「優化器模型」

• Step 2. 挑選「初始學習速率η」

- **SGD** ≒ 0.1
- Momentum = 0.1
- AdaGrad ≒ 0.1
- AdaDelta ≒ 10
- RMSProp ≒ 0.001
- Adam = 0.001

比較保險的作法:超參數搜尋

- 網格搜尋法(Grid Search)
- Population Based Training (PBT) (一種基因演算法, Google 提出)

資料來源: How to pick the best learning rate for your machine learning project

本章總結

- 「多層感知器」架構
 - 輸入層、隱藏層、輸出層
- 「隱藏層」節點個數

• 公式一: 上一層節點數+下一層節點數

- 「隱藏層」層數
 - 淺層學習:2~3層
 - 深度學習:數十~數百層

本章總結

• 「人工神經網路」學習架構

