COURSE 4: Databases

when and why

- Informal:
 - Organize data in a relational database in order to avoid redundancy and data manipulation anomalies.
 - Decompose a relation (table) without loosing information.

CUSTOMER					
CUSTOMER_ID		••••			
1	Smith				
2	Green				
3	Avery				

LOAN					
LOAN_ID	CUSTOMER_ID	AMOUNT	DATE		
101	1	125000	18/04/21		
102	1	25000	14/04/22		
103	2	12500	03/05/21		
127	2	20000	•••		
389	3	75000	•••		

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
3	Avery	769	mortgage	45000

INSERT anomaly

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
4	Stark	???	null	null

UPDATE anomaly

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
3	Avery	769	mortgage	45000

DELETE anomaly

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
4	Stark	700	mortgage	45000

Decomposition

Decomposition Step 1: Projection

$$> S_1 = \prod_{(NAME, LOANID, TYPE, AMOUNT)} R$$

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
3	Smith	389	mortgage	75000

$$> S_2 = \prod_{(CUSTOMERID, NAME)} R$$

NAME	LOAN_ID	ТҮРЕ	AMOUNT
Smith	101	mortgage	125000
Smith	102	credit card	25000
Green	103	credit card	12500
Smith	389	mortgage	75000

CUSTOMER_ID	NAME
1	Smith
1	Smith
2	Green
3	Smith

Decomposition Step 2: Join

CUSTOMER_ID	NAME
1	Smith
1	Smith
2	Green
3	Smith

NAME	LOAN_ID	ТҮРЕ	AMOUNT
Smith	101	mortgage	125000
Smith	102	credit card	25000
Green	103	credit card	12500
Smith	389	mortgage	75000

• Lossy decomposition $S_1 \bowtie S_2 \supseteq R$

CUSTOMER_ID	NAME	LOAN_ID	TYPE	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
1	Smith	389	mortgage	75000
3	Smith	101	mortgage	125000
3	Smith	102	credit card	25000
3	Smith	389	mortgage	75000
2	Green	103	credit card	12500

Decomposition Step 1: Projection

$$\succ S_1 = \prod_{(CUSTOMERID, LOANID, TYPE, AMOUNT)}$$

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
3	Smith	389	mortgage	75000

$$> S_2 = \prod_{(CUSTOMERID, NAME)} R$$

CUSTOMER_ID	LOAN_ID	ТҮРЕ	AMOUNT
1	101	mortgage	125000
1	102	credit card	25000
2	103	credit card	12500
3	389	mortgage	75000

CUSTOMER_ID	NAME
1	Smith
1	Smith
2	Green
3	Smith

Decomposition Step 2: Join

CUSTOMER_ID	NAME
1	Smith
1	Smith
2	Green
3	Smith

CUSTOMER_ID	LOAN_ID	ТҮРЕ	AMOUNT
1	101	mortgage	125000
1	102	credit card	25000
2	103	credit card	12500
3	389	mortgage	75000

• Lossless decomposition $S_1 \bowtie S_2 = R$

CUSTOMER_ID	NAME	LOAN_ID	TYPE	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
3	Smith	389	mortgage	75000
2	Green	103	credit card	12500

Decomposition

• lossy decompositions and lossless decompositions.

• Lossy: $R \rightarrow decompose(R)$: S1, S2 \rightarrow recompose(S1,S2) \blacksquare R

lossy =/= less data, (less is more!)
lossy = lost information

• Lossless R \rightarrow decompose(R): S1, S2 \rightarrow recompose(S1,S2) = R

Decomposition

Lossy

$$\prod_{R_1} R \bowtie \prod_{R_2} R \supseteq R$$

Lossless

$$\prod_{R_1} R \bowtie \prod_{R_2} R = R$$

CUSTOMER_ID	NAME
1	Smith
1	Smith
2	Green
3	Smith

Х	Υ	Z	Т
X1	Y1	Z1	T1
X1	Y2	Z1	T2
X2	Y2	Z2	T2
X2	Y3	Z2	T3
Х3	Y3	Z2	T4

- CUSTOMER_ID -> NAME
- X -> Z
- Z --/--> X
- X -> X

Normal Forms

NF1 NF2 NF3 BCNF NF4 NF5

ATOMIC ATTRIBUTES

- Atomic attributes
- No multi-valued attributes

• The domain of each attribute contains only atomic values and each attribute contains only a value of its domain.

A relational database is at least in NF1

EMP_ID	NAME	EMAIL
1	Williams	williams@gmail.com williams@yahoo.com
2	Davis	davis@gmail.com davis@academy.com
3	Miller	miller@gmail.com
4	Stewart	stewart@gmail.com office@academy.com

NO PARTIAL DEPENDENCIES

- Tables in NF1
- No non-key attributes (not part of the key) that depend on a subset of the attributes forming the key.

There are no partial dependencies.

X	Υ	Z	Т
X1	Y1	Z1	T1
X2	Y1	Z1	T2
X2	Y2	Z2	Т3
X2	Y3	Z2	T3
X2	Y3	Z2	T3

X	Υ	Z	T
X1	Y1	Z1	•••
X2	Y1	Z1	•••
X2	Y2	Z2	•••
X2	Y3	Z2	•••
X2	Y3	Z2	

- partial $(X,Y) \rightarrow Z$
 - Y →Z

X	Υ	Z	Т
X1	Y1	•••	T1
X2	Y1	•••	T2
X2	Y2	•••	T3
X2	Y3		T3
X2	Y3		T3

- total $(X,Y) \rightarrow T$
 - X -/-> T
 - Y -/-> T

Х	Υ	Z	Т
	Y1		T1
	Y1	•••	T2
	•••		
	•••	•••	•••
	•••		

X	Υ	Z	Т
	•••	•••	•••
X2	•••		T2
X2	•••		Т3
	•••		
	•••	•••	•••

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	AIRPLANE_MODEL	BOARDING_GATE
1	101	30/03/20 17:00	Boeing 777	42
1	102	02/05/20 09:30	Airbus A320	50
2	201	06/08/20 10:45	Boeing 757	35
2	202	10/10/20 06:20	Airbus A320	10
1	101	06/04/20 16:35	Boeing 777	23

dependencies

K1 -> X

(K1, K2) -> Y

dependencies

K1 -> X

(K1, K2) -> Y

K1 = AIRPLANE_ID

K2 = AIRPORT_ID, DEPARTURE

Y = BOARDING_GATE

X = AIRPLANE_MODEL

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	AIRPLANE_MODEL	BOARDING_GATE
1	101	30/03/20 17:00	Boeing 777	42
1	102	02/05/20 09:30	Airbus A320	50
2	201	06/08/20 10:45	Boeing 757	35
2	202	10/10/20 06:20	Airbus A320	10
1	101	06/04/20 16:35	Boeing 777	23

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	BOARDING_GATE
1	101	30/03/20 17:00	42
1	102	02/05/20 09:30	50
2	201	06/08/20 10:45	35
2	202	10/10/20 06:20	10
1	101	06/04/20 16:35	23

AIRPLANE_ID	AIRPLANE_MODEL
101	Boeing 777
102	Airbus A320
201	Boeing 757
202	Airbus A320

NO TRANSITIVE DEPENDENCIES

- Tables in NF2
- Non-key attributes (not part of the key) depend on the entire key and only on the key.

There are no transitive dependencies.

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	MODEL	CAPACITY	REVISION_DATE	BOARDING_GATE
1	101	30/03/20 17:00	Boeing 777	451	01/01/2021	42
1	102	02/05/20 09:30	Airbus A320	150	01/03/2020	50
2	201	06/08/20 10:45	Boeing 757	295	03/05/2020	35
2	202	10/10/20 06:20	Airbus A320	150	04/06/2021	10
1	101	06/04/20 16:35	Boeing 777	451	08/09/2020	23

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	BOARDING_GATE
1	101	30/03/20 17:00	42
1	102	02/05/20 09:30	50
2	201	06/08/20 10:45	35
2	202	10/10/20 06:20	10
1	101	06/04/20 16:35	23

AIRPLANE_ID	MODEL	CAPACITY	REVISION_DATE
101	Boeing 777	451	01/01/2021
102	Airbus A320	150	01/03/2020
201	Boeing 757	259	03/05/2020
202	Airbus A320	150	04/06/2021

AIRPLANE_ID	MODEL	CAPACITY	REVISION_DATE
101	Boeing 777	451	01/01/2021
102	Airbus A320	150	01/03/2020
201	Boeing 757	259	03/05/2020
202	Airbus A320	150	04/06/2021

dependencies

K -> X

X -> Y

dependencies

K -> X

X -> Y

K = AIRPLANE_ID

X = AIRPLANE_MODEL

Y = CAPACITY

Z= REVISION_DATE

AIRPLANE_ID	MODEL	CAPACITY	REVISION_DATE
101	Boeing 777	451	01/01/2021
102	Airbus A320	150	01/03/2020
201	Boeing 757	259	03/05/2020
202	Airbus A320	150	04/06/2021

AIRPLANE_ID	MODEL	REVISION_DATE
101	Boeing 777	01/01/2021
102	Airbus A320	01/03/2020
201	Boeing 757	03/05/2020
202	Airbus A320	04/06/2021

MODEL	CAPACITY
Boeing 777	451
Airbus A320	150
Boeing 757	259