ECE/CS 584: Embedded and cyberphysical system verification

Fall 2019

Dawei Sun, daweis2

Homework 3: Temporal logics and composition

Due October 17th

Typeset your solutions using LaTeX zip your writeup (.pdf) and code (.py) in a single file called nedid-584-F19. zip and upload this file through Compass.

Problem 1. CTL reductions (20 points) Convert the following CTL formulas to equivalent formulas that use only E, X, and U:

- **AF** f_1 (infinitely often)
- **AG** f_1 (invariance)
- **AFAG** f_1 (stabilization)
- **A** f_1 **U** f_2 ,

Solution

- (a) **AF** $f_1 \equiv \neg \mathbf{EG} \neg f_1$
- (b) **AG** $f_1 \equiv \neg \mathbf{E}(\text{true}\mathbf{U}\neg f_1)$
- (c) AFAG $f_1 \equiv \neg EG \neg (AGf_1) \equiv \neg EG E[trueU \neg f_1]$
- (d) $\mathbf{A} f_1 \mathbf{U} f_2 \equiv \neg \mathbf{E}[(\neg f_2) \mathbf{U}(\neg (f_1 \lor f_2))] \lor \mathbf{E} \mathbf{G} \neg f_2$

Problem 2. CTL to automata (8 points) Draw a finite automaton with labeled states that satisfies the CTL formula: $\mathbf{AF}(a \wedge \mathbf{AX}a)$.

Solution

Problem 3. CTL model checking (32 points) Consider the following automaton $= \langle Q, Q_0, T, L \rangle$. The set of states $Q = \{s_0, \dots, s_4\}$, initial states $Q_0 = \{s_0, s_3\}$, the set of atomic propositions $AP = \{a, b\}$, transitions T, and the state labels L are shown in the figure.

Consider the following CTL formulas:

- 1. $\phi_1 = \mathbf{A}(a\mathbf{U}b) \vee \mathbf{EX}(\mathbf{AG}b)$
- 2. $\phi_2 = \mathbf{AGA}(a \mathbf{U} b)$

Figure 1: Automaton with state $Q = \{s_1, \dots, s_4\}$. State labels (atomic propositions) are shown under each state.

3.
$$\phi_3 = (a \wedge b) \Rightarrow \mathbf{E} \mathbf{G} \mathbf{E} \mathbf{X} \mathbf{A} (a \mathbf{U} b \vee \mathbf{G} a)$$

4.
$$\phi_4 = A G E F \phi_3$$
.

For each formula ϕ_i , determine the set of states that satisfy it, and state whether satisfies it. (Problem 6.3 from [?])

Problem 4. CTL equivalences (30 points) Let ϕ, ψ be arbitrary CTL formulas. Which of the following equivalences for CTL formulas are correct. Either give a proof or a counterexample.

1. **AXAF** $\phi \equiv$ **AFAX** ϕ

2.
$$\neg \mathbf{A}(\phi \mathbf{U} \psi) \equiv \mathbf{E}(\phi \mathbf{U} \neg \psi)$$

3.
$$(\phi \Rightarrow \mathbf{AX}\phi) \land (\psi \Rightarrow \mathbf{AX}\psi) \equiv (\phi \land \psi) \Rightarrow \mathbf{AX}(\phi \land \psi)$$

Solution

1. False. This is a counterexample satisfying the LHS while not satisfying the RHS.

False. This is a counterexample satisfying the LHS while not satisfying the RHS.

$$\mathsf{start} \longrightarrow \begin{pmatrix} q_0 \\ \{\} \end{pmatrix} \longrightarrow \begin{pmatrix} q_1 \\ \{\} \end{pmatrix}$$

False. This is a counterexample satisfying the RHS while not satisfying the LHS.

Problem 5. Composition (10 points) Give an example of a pair of compatible HIOAs whose composition is a not an HIOA.