Prof. Dr. R. Weissauer

Blatt 1

Dr. Mirko Rösner Abgabe auf Moodle bis zum 13. November

Wir werten die erste und drei der vier anderen Aufgaben.

Ein Gitter Γ ist bei uns definiert als ein \mathbb{Z} -Untermodul von \mathbb{C} mit zwei fest gewählten Erzeugern ω_1 und ω_2 , welche \mathbb{R} -linear unabhängig in \mathbb{C} sind.

- **1. Aufgabe:** (2+2+2=6 Punkte) Sei $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2,\mathbb{R})$ eine reellwertige invertierbare Matrix. Zeigen Sie:
 - (a) Für ein Gitter $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ ist $M \cdot \Gamma = \mathbb{Z}(a\omega_1 + b\omega_2) \oplus \mathbb{Z}(c\omega_1 \oplus d\omega_2)$ wieder ein Gitter.
 - (b) Dies definiert eine transitive Gruppenoperation von $GL(2,\mathbb{R})$ auf der Menge aller Gitter in \mathbb{C} .
 - (c) Es gilt $M \in \mathrm{GL}(2,\mathbb{Z})$ genau dann, wenn für alle Gitter Γ die \mathbb{Z} -Moduln $M \cdot \Gamma$ und Γ gleich sind.

Anmerkung zu (c): Die Gleichheit ist hier nur eine Gleichheit von \mathbb{Z} -Moduln. Die Basis kann sich dabei ändern.

- **2. Aufgabe:** (2+2=4 Punkte) Sei $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ ein Gitter mit Fundamentalparallelogramm $\mathcal{F} = \{s\omega_1 + t\omega_2 \mid 0 \leq s, t \leq 1\}$. Zeigen Sie:
 - (a) Das Volumen von \mathcal{F} ist $\operatorname{vol}(\mathcal{F}) = |\operatorname{Im}(\overline{\omega_1}\omega_2)|$.
- (b) Dieses Volumen ist unabhängig von der Wahl der Basis des Gitters.

Hinweis zu (b): Man benutze Aufgabe 1.

3. Aufgabe: (4 Punkte) Sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze holomorphe Funktion und Γ ein Gitter. Wir nehmen an, zu jedem $\gamma \in \Gamma$ gibt es eine Polynomfunktion P_{γ} mit

$$f(z+\gamma) = f(z) + P_{\gamma}(z)$$
.

Zeigen Sie: Dann ist f selbst ein Polynom. Hinweis: Ableiten.

4. Aufgabe: (4 Punkte) Sei Γ ein Gitter. Sei $f \in \mathbb{C}(\Gamma)$ eine nichtkonstante elliptische Funktion der Ordnung $N_f \in \mathbb{N}_0$. Die Ordnung N_f ist definiert als die Anzahl der Polstellen (mit Vielfachheit) modulo Γ . Die Ableitung $f' \in \mathbb{C}(\Gamma)$ ist auch eine elliptische Funktion. Zeigen Sie:

$$N_f + 1 \le N_{f'} \le 2N_f .$$

Hinweis: Wie verändert sich die Vielfacheit einer Polstelle beim Ableiten?

5. Aufgabe: (4 Punkte) Sei Γ ein Gitter und seien $f,g\in\mathbb{C}(\Gamma)$ elliptische Funktionen mit derselben Null- und Polstellenordnung in jedem Punkt. Dann ist $f=c\cdot g$ für eine Konstante $c\in\mathbb{C}$.