Sparse Graph Label Randomization

October 19, 2023

Preliminaries 1

Bounded Functional Encryption

We will use the notation of static, bounded functional encryption as presented in [GGLW22].

Security

We will slightly weaken the security notion such that the adversary does not choose which circuits it can learn the functional secret key for. Indeed, this is a weaker notion of functional encryption which fixes the adversary's output circuit. We will assume that we get circuit C_1, \ldots, C_d .

For completeness, we have the original security definition of [GGLW22] below:

less, we have the original security definition of [GGLW22] below
$$\begin{cases} \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{MPK},\text{MSK})} \leftarrow \text{Setup}\,(1^n,1^q) \\ \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(MPK,MSK)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{CT}} \leftarrow \text{Enc(MPK},m) \end{cases} \\ \begin{cases} \mathcal{A}^{\text{Sim}_3^{U_m(\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}}{\text{MPK}} & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ & \overset{(CT,\mathbf{st}_2)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{CT}}} & \overset{(CT,\mathbf{st}_2)}{\underset{n \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \end{cases} \\ \lambda \in \mathbb{N} \end{cases}$$

whenever the following admissibility constraints and properties are satisfied:

- Sim_1, Sim_3 are stateful in that after each invocation, they updated their states $\mathbf{st}_1, \mathbf{st}_3$ respectively which is carried over to the next invocation.
- Π^m contains a list of functions f_i queried by \mathcal{A} in the pre-challenge phase along with their output on the challenge message m. That is, if f_i is the i-th function queried by A to oracle Sim_1 and $q_{[re]}$ be the number of queries A makes before outputting m, then $\Pi^m =$ $((f_1, f_1(m)), \ldots, (f_{q_{pre}}, f_{q_{pre}}(m))).$
- A makes at most q queries combined tote key generation oracle in both games.
- Sim₃ for eac queried function f_i , in the post challenge phase, makes a single query to its message oracle U_m on the same f_i itself.

Our modified security definition is as follows:

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{KeyGen}(\text{MSK},\{C_{1},\ldots,C_{d}\})}(\text{CT}) & (1^{n},1^{q}) \leftarrow \mathcal{A}^{(1)} \\
\mathcal{A}^{\text{KeyGen}(\text{MSK},\{C_{1},\ldots,C_{d}\})}(\text{CT}) & (MPK,MSK) \leftarrow \text{Setup}(1^{n},1^{q}) \\
m \leftarrow \mathcal{A}(\text{MPK},\text{SK}_{C_{1}},\ldots,\text{SK}_{C_{d}}) \\
\text{CT} \leftarrow \text{Enc}(\text{MPK},m)
\end{array}\right\}_{\lambda \in \mathbb{N}}$$

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{Sim}_{3}^{U_{m}(\{C_{1},\ldots,C_{d}\})}}(\text{CT}) & (MPK,\mathbf{st}_{0}) \leftarrow \text{Sim}_{0}(1^{\lambda},1^{n},q) \\
m \leftarrow \mathcal{A}^{S_{1}(\mathbf{st}_{0})}(\text{MPK},C_{1},\ldots,C_{d}) \\
(\text{CT},\mathbf{st}_{2}) \leftarrow \text{Sim}_{2}(\mathbf{st}_{1},\Pi^{m})
\end{array}\right\}_{\lambda \in \mathbb{N}}$$

$$(1)$$

where the admissibility constraints remain the same.

1.2 Non-malleable Bounded FE

Here, we introduce the notion of non-malleable bounded functional encryption.

We define non-malleable security of bounded functional encryption in almost the exact notion of [Pas06] for public key encryption. First, let $NM(m_1, \ldots, m_q, A)$ be a game as follows for $q = \text{poly}(\lambda)$:

- 1. $(MPK, MSK) \leftarrow FE.Setup(1^{\lambda})$
- 2. $CT_1, \ldots, CT_q \leftarrow FE.Enc(MPK, m_1), \ldots FE.Enc(MPK, m_q)$
- 3. $CT'_1, \ldots, CT'_{\ell} \leftarrow \mathcal{A}(MPK, CT_1, \ldots, CT_q, 1^{|m|})$
- 4. $m_i' \leftarrow \bot$ is $CT_i = CT_j'$ for any $i \in [q], j \in [\ell]$ and $FE.Dec(SK_{identity}, c_i)$ otherwise.

Then, we say that a bounded functional encryption scheme is non-malleable if for all PPT \mathcal{A} and every PPT \mathcal{D} , there exists a negligible function negl such that for all $\{m\}_0, \{m\}_1 \in \{0,1\}^{nq}$, we have

$$\left| \mathbf{Pr}[\mathcal{D}(NM(\{m\}_0, \mathcal{A})) = 1] - \mathbf{Pr}[\mathcal{D}(NM(\{m\}_1, \mathcal{A})) = 1] \right| \le \text{negl.}$$
 (2)

As outlined in [Pas06], we can equivalently define non-mall eability in terms of a PPT recognizable relation R such that

$$\left| \mathbf{Pr} \left[NM\left(m_1, \dots m_q, \mathcal{A}(z)\right) \in \bigcup_{m \in \{m\}} R(m) \right] - \right.$$

$$\left. \mathbf{Pr} \left[c \leftarrow \operatorname{Sim}_{NM}(1^n, z); m' = \operatorname{FE.Dec}(\operatorname{SK}_{\text{identity}}, c); m' \in \bigcup_{m \in \{m\}} R(m) \right] \right| \leq \operatorname{negl}(\lambda).$$
(3)

Note that in the above definition, we do not give the adversary access to any SK_{C_i} . We simply require that the scheme is public key (many message) non-malleable.

2 Using Weak Extractible Obfuscation

2.1 Graph Randomized Traversal

Say that we have a sparse, potentially exponentially sized, graph $\mathcal{G} = (V, E)$ and $\forall v \in V, \deg(v) = d$. We also require that \mathcal{G} is equipped with a neighbor function, Γ , which can be computed in polynomial time. We define a randomized and keyed labelling function $\phi : \{0, 1\}^{\lambda} \times V \to \{0, 1\}^{\operatorname{poly}(\lambda)}$ such that given, $\phi(K, v_0)$ for root v_0 , an adversary, \mathcal{A} , which does not know a path from v_0 to v,

$$\mathbf{Pr}[\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, v, \phi(K, v_0)) = \phi(K, v)] \le \mathtt{negl}(\lambda) \tag{4}$$

for function C_{Γ} where $C_{\Gamma}(\phi(K, u)) = \phi(K, \Gamma(u)_1), \dots, \phi(K, \Gamma(u)_d)$ if $\Gamma(u) \neq \emptyset$ and otherwise $\Gamma(u)$ returns a \perp string; and, \mathcal{O} represents an indistinguishable obfuscator.

2.2 Instantiation

We define

$$\phi(K, v) = F(K, v).$$

For shorthand, we will write σ_v to connote an attempted "signature" of v where a correct signature is F(K, v).

We can now define C_{Γ} :

Algorithm 1 The circuit for the neighbor function, C_{Γ} .

```
1: function C_{\Gamma}(f(\sigma_v), v)

2: if f(\sigma_v) \neq f(F(K, v)) then

3: return \bot

4: if \Gamma(v) = \emptyset then

5: return \bot

6: u_1, \ldots u_d = \Gamma(v)

7: return f(F(K, u_1)), f(F(K, u_2)), \ldots, f(F(K, u_d))
```

We are going to show that eq. (4) holds by first showing that the non-existence of an extractor to find a path from v_0 to v implies that \mathcal{A} necessarily does not know $\phi(K,c)$ for a $c \in C_V \subset V$ where the vertices in C_V border a graph cut which separates v_0 and v. Then, we inductively build up a series of games to show that \mathcal{A} cannot learn $any \ \phi(K,v)$ for $v \in V_1$ where V_1 are the vertices on the right-hand side of the cut.

Lemma 2.1. Assuming that there is no extractor E such that $\Pr[E(\Gamma, v_0, v) = P] \ge \frac{1}{p(\lambda)}$ where $P \in \mathcal{P}$, then for any PPT \mathcal{A} , there exists some graph cut $C_E \subset E$ which separates v_0 and v and a set C_V such that

$$\Pr[\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, v, \phi(K, v_0)) \in \phi(K, C_V)] \le negl(\lambda). \tag{5}$$

We define $C_V \subset V$ to be

 $\{u \mid (w,u) \in C_E \text{ and } u \text{ on the side of } v\} \bigcup \{v \mid (w,u) \in C_E \text{ and } u \text{ on the side of } v\}.$

In words, C_V are the vertices just adjacent to the cut and on the same side as v.

Proof. We will show that if \mathcal{A} can break eq. (5), then we can construct an extractor, E, which finds a path from v_0 to v with non-negligible probability.

Assume that for every possible cut, \mathcal{A} is able to produce a single label in this cut for a vertex w. Then, we note that there must be at least 1 path from v_0 to w and v as otherwise, w would not be in the cut. Moreover, we note that \mathcal{A} must be able to produce a label for all vertices on at least one path from v_0 to w as otherwise, we can change the cut to include the edges between where \mathcal{A} is able to produce a label and not able to produce a label. Using the same argument, we can show that \mathcal{A} must be able to produce all labels on a path from w to v.

Note that \mathcal{A} is not given the specific cut C_E but rather C_E is chosen based off of the adversary. So, we can build an extractor to do the following:

- 1. Create an iO obfuscated circuit with a random key, K', for C_{Γ} and create circuit $\mathcal{O}(C_{\Gamma})$ as well as $\phi(K', v_0)$
- 2. Run $\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, v, \phi(K', v_0))$ to get all labels $\phi(K', v_0), \dots \phi(K', v)$ for some path from v_0 to v.
- 3. Recreate the path from v_0 to v via checking which vertex matches to adjacent labels in the path: I.e. starting with $\ell = 0$, we can learn the $\ell + 1$ vertex via finding $j \in [d]$ such that $C_{\Gamma}(\phi(K', v_{\ell}), v_{\ell})_j \in \{\phi(K', v_0), \dots, \phi(K', v)\}$ and then setting $v_{\ell+1} = \Gamma(v_{\ell})_j$.

Algorithm 2 Circuit for the neighbor function, $C_{\Gamma}^{w^*,\Gamma(w^*)_1,\dots,\Gamma(w^*)_d}$ with punctured PRF key $K(\{w^*\})$ and constant $z^*, z_1^*, z_2^*, \dots, z_d^*$

```
1: function C_{\Gamma}(f(\sigma_v), v)
 2:
         if v \neq w and f(\sigma_v) \neq f(F(K, v)) then
             return \perp
 3:
         if v = w and f(\sigma_v) \neq z^* then
 4:
             return \perp
 5:
         if \Gamma(v) = \emptyset then
 6:
             return \perp
 7:
         if v = w then
 8:
             return z_1^*, z_2^*, \dots, z_d^*
 9:
         u_1, \dots u_d = \Gamma(v)
10:
         return f(F(K, u_1)), f(F(K, u_2)), \dots, f(F(K, u_d))
11:
```

We are going to use a series of inductively built indistinguishable hybrids along with algorithm 2 to show that eq. (4) holds.

- Hyb₀: In the first hybrid, the following game is played
 - 1. $K \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda'}$ and $\phi(K, v_0) = (F(K, v_0), v)$
 - 2. The challenger generates $\mathcal{O}(C_{\Gamma})$ and gives the program to \mathcal{A}
 - 3. The challenger chooses a v and gives the adversary v in plaintext.
 - 4. A outputs guess g and wins if $g = \phi(K, v)$

• Hyb₁: Let \mathcal{P} be the set of all paths from v_0 to v. For each path $P \in \mathcal{P}$ where P is an ordered list of connected vertices, we have that the adversary does not know some part of P. We can note that this implies that \mathcal{A} does not know $\phi(K, p)$ for all $p \in P$ as then \mathcal{A} can recover P. Let u_P be the first vertex in P such that \mathcal{A} does not know a path from v_0 to u_P . Define Suff'(P) to be the path in P from this u_P to v. Then, necessarily, \mathcal{A} does not know $\phi(K, w_P)$ for at least one $w_P \in \text{Suff}'(P)$ as then \mathcal{A} would know a path from v_0 to v. Now, let Suff(P) be the path which starts at w_P , ends at v.

We now inductively build up a series of hybrids to show that a hybrid distribution which shows $\phi(K, s)$ for $s \in \text{Suff}(P)$ indistinguishable from random. We perform the following procedure for each $P \in \mathcal{P}$. So, for $P \in \mathcal{P}$,

- 1. For the base case, let $U = \text{Suff}(P)_1$ where $\text{Suff}(P)_1$ is the first vertex in P such that \mathcal{A} does not know $\phi(K, p)$ for $p \in P$.
 - (a) Set $w^* = p$. Then, replace C_{Γ} with $C_{\Gamma}^{w^*,\Gamma(w^*)_1,\dots,\Gamma(w^*)_d}$ as defined in algorithm 2. Fix the constant $z^* = f(F(K,p))$ and $z_1^* = f(F(K,\Gamma(w^*)_1)),\dots,z_d^* = f(F(K,\Gamma(w^*)_d))$.
 - (b) Set $z^* = f(t), z_1^* = f(t_1), \dots, z_d^* = f(t_d)$ where t, t_1, \dots, t_d are chosen at random
- 2. For the ℓ -th inductive step where $1 \leq \ell < |\mathrm{Suff}(P)|$, we are going to assume that we are given a hybrid such that $w^* = \mathrm{Suff}(P)_{\ell}$ and $z^* = f(t), z_1^* = f(t_1), \ldots z_d^* = f(t_d)$ for random $t, \ldots t_d$ in algorithm 2. Now, we change the hybrid in a similar manner as in the base case:
 - (a) Set $w^* = \operatorname{Suff}(P)_{\ell+1}$. Then, replace C_{Γ} with $C_{\Gamma}^{w^*,\Gamma(w^*)_1,\dots,\Gamma(w^*)_d}$ as defined in algorithm 2. Fix the constant $z^* = f(F(K,p))$ and $z_1^* = f(F(K,\Gamma(w^*)_1)),\dots,z_d^* = f(F(K,\Gamma(w^*)_d))$.
 - (b) Set $z^* = f(t), z_1^* = f(t_1), \dots, z_d^* = f(t_d)$ where t, t_1, \dots, t_d are chosen at random to puncture on $Suff(P)_{\ell+1}$ where we update z^*, \dots, z_d^* with new randomness.

Finally, we can note that if $Hyb_0 \stackrel{c}{\approx} Hyb_1$,

$$\mathbf{Pr}[\mathcal{A}(C_{\Gamma}, v_0, v, \phi(K, v_0)) = \phi(K, v)] \stackrel{c}{\approx} \mathbf{Pr}[\mathcal{A}(C_{\Gamma}^*, v_0, v, \phi(K, v_0)) = \phi(K, v)]$$

where z^* in C_{Γ}^* is the image on a OWF of a randomly chosen point. Thus, if \mathcal{A} can produce $\phi(K, v) = (\sigma_v, v)$, then \mathcal{A} can find a preimage for z^* under f and thus break the security of a one way function.

Now, we show that $\mathrm{Hyb}_0 \stackrel{c}{\approx} \mathrm{Hyb}_1$.

Lemma 2.2. The game in $Hyb_1(1a)$ is indistinguishable from Hyb_0 .

Proof. As the functionality of C_{Γ} in Hyb_0 equals that of $\mathrm{Hyb}_1(1a)$, we have indistinguishable simply from the definition of indistinguishable obfuscation.

Lemma 2.3. The game in $Hyb_1(1b)$ is indistinguishable from $Hyb_1(1a)$.

Proof. Here we argue that if the game in $Hyb_1(1b)$ is distinguishable from $Hyb_1(1a)$, then we can construct an adversary, \mathcal{B} , which can break the security of the PRF at the punctured point.

Lemma 2.4. The game in $Hyb_1(2a)$ is indistinguishable from Hyb_0 and, by the inductive hypothesis, all previous hybrids.

<i>Proof.</i> Again, we have that the circuit for C_{Γ} is the same in \mathtt{Hyb}_0 and $\mathtt{Hyb}_1(2a)$. Thus, by definition of indistinguishable obfuscation, these games are indistinguishable.	the
Lemma 2.5. The game in $\mathit{Hyb}_1(2b)$ is indistinguishable from $\mathit{Hyb}_1(2a)$ and, by the inductive pothesis, all previous hybrids.	hy-
Proof. TODO: PRF security + extractor part	

Abstract

References

- [GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded functional encryption from identity-based encryption. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 736–763. Springer, 2022. 1.1, 1.1
- [Pas06] Rafael Pass. Lecture 16: Non-mall eability and public key encryption, October 2006. 1.2, 1.2