Principles of Classical and Modern Radar Monostatic Pulse Radar for Complex Targets

Dimitrios Kazantzis March 2020

Contents

Radar Description	3
Task 1: Phase Shifters	4
Task 2: MATLAB backscatter modelling function	8
Task 3: 1st scan - no targets	10
Task 4: 2nd scan – one target	12
Task 5: 3rd scan – two targets	15
Task 6: 4rth scan – three targets	18
Task 7: Radar data – multi-target detection / parameter estimation	22
Appendix A	24

Radar Description

The aim of this project is to design a PC-based *Monostatic Pulse Radar* which employs the same Phase Array at both the radar's Tx and Rx for detecting and localising multiple complex targets.

The following figure shows the system modelling of the Monostatic Phased Array to be designed.

Figure 1: Monostatic Pulse Radar system design

Point A at Tx:

A digital monostatic radar generates a pulsed-signal according to the following parameters:

- \circ amplitude A = 1kV
- o clock frequency $T_c = 28$ ns
- o pulse duration $T_p = 7*T_c$
- o pulse repetition interval RPI = $200*T_p$
- \circ pulse compression = [-1,-1,-1,1,-1,1]
- 1 Dwell Time = 8*PRI

The code used to generate the initial signal is found in the pA_to_basebandports.m MATLAB function. This function is used to transmit the generated waveform to the baseband ports of the transmitter Tx.

The generated signal at point A is a 1xsnapshots vector (where in this case, snapshots are equal to 11,2000 since for one Dwell Time there are $200*7*8*T_p = 11,200 T_p$). Hence, at point A: the signal is identified as a 1x11,200 vector. Then, the generated signal is multiplied by the weight vector $\overline{\underline{w}} = 1_{45}$ and thus the input signal becomes a 45x11,200 vector. As shown in figure 1, the vector then is phase shifted by $e^{j\overline{\psi}}$ (explained in Task1) and then reaches the baseband ports of the channel (discussed in Task 2).

The output of this function is defined as the Tx_baseband signal (45x11,200 matrix).

Task 1: Phase Shifters

Vectors of Tx and Rx phase-shifter

This model uses a phased-array radar that operates at a wavelength of λ and employs 45 antennas with an inter-antenna spacing $d = \frac{\lambda}{2}$.

In order to steer both the Tx and Rx main lobes towards a direction θ (azimuth angle) the estimated vectors of the phase-shifter are found by:

$$\underline{\psi}\left(\theta\right) = \underline{r}^{T} \mathbf{k}(\theta) \tag{1}$$

where it uses an array of 45 isotropic antennas with Cartesian coordinates defined as:

$$\underline{r} = [r_1, r_2, \dots, r_k, \dots, r_{45}] = \begin{bmatrix} -22d & -21d & \cdots & +22d \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix} \epsilon R^{3x45} , \quad \mathbf{d} = \frac{\lambda}{2}$$
 (2)

Hence, the above equation is simplified for $\underline{r}_y = \underline{r}_z = 0$ and thus \underline{r}_x is defined as:

$$\underline{r}_x = \begin{bmatrix} -22d & -21d & \cdots & 0 & \cdots & +22d \end{bmatrix} \tag{3}$$

and the vectors of Tx and Rx phase-shifter are determined by the equation:

$$\underline{\psi}(\theta) = [\underline{r}_x \quad \underline{r}_y \quad \underline{r}_z] \frac{2\pi}{\lambda} \begin{bmatrix} \cos\theta\cos\varphi \\ \sin\theta\cos\varphi \\ \sin\varphi \end{bmatrix}$$
(4)

Since it is assumed that *elevation* angle $\varphi = 0^{\circ}$ then the above equation is simplified to:

$$\underline{\psi}\left(\theta\right) = \frac{2\pi}{\lambda} \underline{r}_{x} \cos\theta \tag{5}$$

Using the above information, the following MATLAB is used to calculate the vectors of Tx and Rx phase-shifter for the steering directions 40°,70°,120°:

```
% Task 1: (a) Phase Shifters
% The following code estimates the vectors of Tx and Rx phase-shift
% for any steering direction theta (defined as theta steer angle)
                                  % Number of array of antennas
Tc = 28e-9:
                                  % clock frequency
c = physconst('LightSpeed');
lambda = c*Tc;
                                  % Wavelength
% Defining r
r = [-22*d,-21*d,-20*d,-19*d,-18*d,-17*d,-16*d,-15*d,-14*d,-13*d,-12*d,-11*d,-10*d,-9*d,-8
        theta = 0:1:360:
phi = -90:1:90;
                                  % elevation
k_theta = [cos(deg2rad(theta_steer_angle))*cos(deg2rad(phi_steer_angle));...
sin(deg2rad(theta_steer_angle))*cos(deg2rad(phi_steer_angle));...
          sin(deg2rad(phi_steer_angle))];
w = \exp(-1i*2*pi/lambda*r'*k_theta);
phase_shifters = rad2deg(phase_shifters);
% The phase shifter vector
phase_shifters_deg = mod(phase_shifters,360);
```

1 26.4640 1 85.6002 1 180.0000 2 344.3520 2 147.1639 2 90.0000 3 122.2400 3 208.7275 3 360.0000 5 38.0160 4 270.2911 4 270.0000 6 175.9040 6 33.4184 6 90.0000 7 313.7920 7 94.9820 7 360.0000 8 91.6800 7 94.9820 7 360.0000 9 229.5680 9 218.1092 9 180.0000 10 7.4560 10 279.6729 10 90.0000 11 145.3440 10 279.6729 10 90.0000 12 128.3220 12 24.8001 12 270.0000 13 66.1200 13 104.3637 13 180.0000 14 159.0080 14 165.9274 14 90.0000 15 336.8960 14 165.9274 14 90.0000 16 114.7840	For	r θ = 40°	<u>F</u> (or $\theta = 70$	<u>9•</u>	<u>F(</u>	or $\theta = 120^{\circ}$
2 344.3520	1	206 4640	_		ī		
3 122,2400 3 208,7275 3 360,0000 4 260,1280 4 270,2911 4 270,0000 5 38,0160 5 331,4184 6 90,0000 7 313,7920 7 94,9820 7 360,0000 8 91,6800 7 94,9820 7 360,0000 9 229,5680 8 156,5456 8 270,0000 10 7,4560 10 279,6729 10 90,0000 11 145,3440 10 279,6729 10 90,0000 12 283,2320 11 341,2355 11 360,0000 13 61,1200 12 42,8001 12 270,0000 14 19,9080 13 104,3637 13 180,0000 15 336,8960 14 165,9274 14 90,0000 16 114,7840 15 267,24910 15 360,000 17							
4 260.1280 3 208.7275 3 350.0000 5 38.0160 5 331.8547 5 180.0000 7 313.7920 6 33.4184 6 9.0000 8 91.6800 8 156.5456 8 270.0000 9 229.5680 9 218.1092 9 180.0000 10 7.4560 10 279.6729 10 90.0000 11 145.3440 11 341.2365 11 360.0000 12 283.2320 12 42.8001 12 270.0000 14 199.0080 14 165.9274 14 90.0000 15 336.8960 14 165.9274 14 90.0000 16 114.7840 15 227.4910 15 360.0000 17 252.6720 17 350.6182 17 180.0000 19 168.4480 18 52.1819 18 90.0000 20					+		
5 38.0160 4 270.2911 4 270.0000 6 175.9040 6 33.4184 6 90.0000 7 313.7920 7 94.9820 7 360.0000 8 91.6800 8 156.5456 8 270.0000 9 229.5680 9 218.1092 9 180.0000 10 7.4560 10 279.6729 10 90.0000 11 145.3440 11 341.2355 11 360.0000 12 283.2320 12 42.8001 12 270.0000 13 61.1200 13 104.3637 13 180.0000 14 199.080 14 165.9274 14 90.0000 15 336.8960 14 165.9274 14 90.0000 15 305.6500 17 350.6182 17 180.0000 19 16.4480 18 52.1819 18 90.0000 21					+		
6 175,9040 5 331,8347 6 90,0000 7 313,7920 7 94,9820 7 360,0000 9 229,5680 8 156,5456 8 270,0000 10 7,4560 9 218,1092 9 180,0000 11 145,3440 11 341,2365 11 360,0000 13 61,1200 12 42,8001 12 270,0000 14 199,0080 14 165,9274 14 90,0000 15 336,8960 14 165,9274 14 90,0000 16 114,7840 15 227,4910 15 360,000 17 252,6720 16 289,0546 16 270,0000 18 30,5600 17 350,6182 17 180,0000 19 168,4880 18 52,1819 18 90,0000 21 34,2240 20 175,3091 20 270,0000 22 222,1120 21 236,8727 21 180,0000 25					+		
7 313.7920 6 33.4184 6 90.0000 8 91.6800 8 156.5456 8 270.0000 9 229.5680 9 218.1092 9 180.0000 10 7.4560 10 279.6729 10 90.0000 11 145.3440 10 279.6729 10 90.0000 12 283.2320 11 341.2365 11 360.0000 14 199.0080 13 104.3637 13 180.0000 15 336.8960 14 165.9274 14 90.0000 16 114.7840 15 227.4910 15 360.000 17 250.600 15 360.000 15 360.000 18 30.5600 18 52.1819 18 90.000 20 306.3360 19 113.7455 19 360.000 21 28.22.110 22 298.4364 22 90.000 22					+		
8 91.6800					+		
9 229.5680 10 7.4560 10 279.6729 11 145.3440 11 341.2365 11 360.0000 12 283.2320 11 341.2365 11 360.0000 13 104.3637 13 180.0000 14 199.0080 15 336.8960 16 114.7840 17 252.6720 18 30.5600 19 168.4480 19 113.7455 19 180.0000 19 168.4480 19 113.7455 19 360.0000 19 168.4480 19 113.7455 19 360.0000 19 18.4.2240 20 175.3091 21 22.21120 22 222.1120 23 0 24 137.8880 25 0 25 275.7760 26 136.640 27 191.5520 28 329.4400 29 307.3280 29 9.3818 29 107.3280 29 9.3818 29 107.3280 30 245.2160 31 23.1040 30 70.9454 30 90.0000 31 123.5000 32 124.6560 33 123.1040 30 70.9454 30 90.0000 33 123.1040 30 70.9454 30 90.0000 34 16.6800 35 214.6560 36 32.71 37 180.0000 38 268.3200 39 46.2080 39 46.2080 49 187.8800 30 6.6680e		91.6800			+		
10 7.4560 11 145.3440 11 145.3440 11 341.2365 11 360.0000 13 61.1200 12 42.8001 13 104.3637 13 180.0000 14 199.0080 14 165.9274 15 363.8960 15 227.4910 16 114.7840 16 288.0546 16 270.0000 17 252.6720 18 30.5600 18 52.1819 19 168.4480 19 113.7455 19 360.0000 21 84.2240 22 177.3091 22 222.1120 22 298.4364 22 290.0000 24 137.8880 23 0 23 0 23 0 23 0 23 0 23 0 25 275.7760 24 61.5636 25 275.7760 26 63.6640 27 191.5520 28 329.4400 27 191.5520 28 329.4400 29 307.3280 30 245.2160 31 23.1040 31 23.1040 31 23.1040 32 160.9920 31 132.5090 33 298.8800 33 298.8800 34 76.7680 35 214.6560 36 227.0000 37 141.8908 38 268.3200 39 46.2080 49 180.0000 49 180.0000 40 181.7999 30 266.6860e 40 326.5816 40 270.0000 39 46.2080 40 184.0960 40 326.5816 40 270.0000 41 18.7999 42 90.0000 41 18.7999 42 90.0000 41 18.7999 42 90.0000 43 16.9920 44 17.8980 45 17.1999 46.2080 46 184.6999 47 19.5000 48 27.00000 49 180.0000 49 180.0000 40 184.0960 40 184.0960 40 184.0960 40 184.0960 40 184.0960 41 18.1989 42 190.0000 44 15.6480 44 212.8361 45 270.0000 45 18.8499e 45 155.5360 46 212.8361 46 270.0000	9	229.5680			+		
11 143.3440 11 341.2365 11 360.0000 12 283.2320 12 42.8001 12 270.0000 14 199.0080 13 104.3637 13 180.0000 15 336.8960 14 165.9274 14 90.0000 16 114.7840 15 227.4910 15 360.0000 17 252.6720 16 289.0546 16 270.0000 18 30.5600 17 350.6182 17 180.0000 19 168.4480 18 52.1819 18 90.0000 20 306.3360 19 113.7455 19 360.0000 21 84.2240 20 175.3091 20 270.0000 22 222.1120 21 236.8727 21 180.0000 23 0 22 2298.4364 22 90.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26	10	7.4560			+		
12	11	145.3440			+		
13 61.1200 13 104.3637 13 180.0000 14 199.0080 14 165.9274 14 90.0000 16 114.7840 15 327.4910 15 360.0000 17 252.6720 16 289.0546 16 270.0000 18 30.5600 18 52.1819 18 90.0000 20 306.3360 19 113.7455 19 360.0000 21 84.2240 20 175.3091 20 270.0000 22 222.1120 21 236.8727 21 180.0000 23 0 22 298.4364 22 90.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29	12	283.2320			+		
14 199,0080 14 165,9274 14 90,0000 15 336,8960 15 227,4910 15 360,0000 17 252,6720 16 289,0546 16 270,0000 18 30,5600 17 350,6182 17 180,0000 19 168,4480 18 52,1819 18 90,0000 20 306,3360 19 113,7455 19 360,0000 21 84,2240 20 175,3091 20 270,0000 22 222,1120 21 236,8727 21 180,0000 24 137,8880 23 0 23 0 23 0 25 275,7760 24 61,5636 24 270,0000 25 275,7760 26 184,6909 26 90,0000 26 53,6640 25 123,1273 25 180,0000 27 191,5520 26 184,6909 26 90,0000 28 329,4400 27 246,2545 27 1,6670e	13	61.1200			+		
15 336.8960 15 227.4910 15 360.000 16 114.7840 16 289.0546 16 270.0000 18 30.5600 17 350.6182 17 180.0000 19 168.4480 18 52.1819 18 90.0000 20 306.3360 19 113.7455 19 360.0000 21 84.2240 20 175.3091 20 270.0000 22 222.1120 21 236.8727 21 180.0000 23 0 22 298.4364 22 90.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 38 307.8181 28 270.0000 31	14	199.0080			+		
16 114.7840 16 289.0546 16 270.0000 17 252.6720 17 350.6182 17 180.0000 19 168.4480 18 52.1819 18 90.0000 20 306.3360 19 113.7455 19 360.0000 21 84.2240 21 236.8727 21 180.0000 22 2221.120 22 298.4364 22 90.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5909 31 31.3340e 33	15	336.8960			+		
17 252.6720 17 350.6182 17 180.0000 18 30.5600 18 52.1819 18 90.0000 20 306.3360 19 113.7455 19 360.0000 21 84.2240 20 175.3091 20 270.0000 22 222.1120 21 236.8727 21 180.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34<	16				+		
18 30.5600 19 168.4480 18 52.1819 18 90.0000 20 306.3360 19 113.7455 19 360.0000 21 84.2240 20 175.3091 20 270.0000 22 222.1120 21 236.8727 21 180.0000 23 0 22 298.4364 22 90.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 28 307.8181 28 270.0000 30 245.2160 29 9.3818 29 180.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 33.340e 33 298.8800 32 194.0726 32 <t< td=""><td>17</td><td>252.6720</td><td></td><td></td><td>+</td><td></td><td></td></t<>	17	252.6720			+		
19 168.4480 20 306.3360 21 84.2240 22 175.3091 22 222.1120 23 0 22 298.4364 22 290.0000 24 137.8880 25 275.7760 26 53.6640 27 191.5520 28 329.4400 29 107.3280 20 27 246.2545 29 9.3818 29 180.0000 21 23 0 0 25 123.1273 25 180.0000 26 184.6909 27 246.2545 29 107.3280 28 307.8181 29 9.3818 29 180.0000 30 245.2160 31 23.1040 31 23.1040 32 160.9920 33 13.3340e 33 298.8800 34 76.7680 35 214.6560 35 18.7635 35 214.6560 36 80.3271 37 130.4320 38 268.3200 39 46.2080 40 184.0960 40 184.0960 41 321.9840 42 99.8720 44 15.6480 44 270.0000 44 15.6480 45 153.5360 46 232.708	18				+		
20 306.3360 21 84.2240 22 123.120 23 0 22 298.4364 22 90.0000 24 137.8880 25 275.7760 26 53.6640 27 191.5520 28 329.4400 29 107.3280 30 245.2160 31 23.1040 31 23.1040 32 160.9920 33 298.8800 34 76.7680 35 214.6560 35 214.6560 36 352.5440 37 130.4320 38 268.3200 39 46.2080 40 184.0960 41 321.9840 42 19.8720 44 128.1453 45 153.5360 44 212.8361 44 270.0000 44 15.6480 44 270.0000 44 15.6480 44 212.8361 44 270.0000 44 15.6480 44 270.0000 44 15.6480 44 270.0000 44 15.6480 44 270.0000 44 15.6480 44 270.0000 44 15.6480 45 153.5360	19	168.4480			+		
21 84.2240 21 236.8727 21 180.0000 23 0 22 298.4364 22 90.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34 76.7680 33 255.6363 33 180.0000 35 214.6560 34 317.1999 34 90.000 36 352.5440 35 18.7635 35 2.4566e 37					+		
23 0 22 298.4364 22 90.0000 24 137.8880 23 0 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 30 245.2160 30 70.9454 30 90.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34 76.7680 33 255.6363 33 180.0000 35 214.6560 34 317.1999 34 90.000 36 352.5440 35 18.7635 35 2.4566e 37	21				+		
23 0 24 137.8880 23 0 25 275.7760 24 61.5636 24 270.0000 26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 30 245.2160 30 70.9454 30 90.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34 76.7680 33 255.6363 33 180.0000 35 214.6560 34 317.1999 34 90.0000 36 352.5440 35 18.7635 35 2.4566e 37 130.4320 36 80.3271 36 270.0000					+		
24 137.8880 24 61.5636 24 270.0000 25 275.7760 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 30 245.2160 30 70.9454 30 90.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34 76.7680 33 255.6363 33 180.0000 35 214.6560 34 317.1999 34 90.0000 36 352.5440 35 18.7635 35 2.4566e 37 130.4320 37 141.8908 37 180.0000 39 46.2080 38 203.4544 38 90.0000 <tr< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td></tr<>					+		
26 53.6640 25 123.1273 25 180.0000 27 191.5520 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 30 245.2160 30 70.9454 30 90.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34 76.7680 33 255.6363 33 180.0000 35 214.6560 34 317.1999 34 90.0000 36 352.5440 35 18.7635 35 2.4566e 37 130.4320 36 80.3271 36 270.0000 38 268.3200 37 141.8908 37 180.0000 39 46.2080 40 326.5816 40 270.0000 <tr< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td></tr<>					+		
26 53.6640 26 184.6909 26 90.0000 28 329.4400 27 246.2545 27 1.6670e 29 107.3280 28 307.8181 28 270.0000 30 245.2160 30 70.9454 30 90.0000 31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34 76.7680 33 255.6363 33 180.0000 35 214.6560 34 317.1999 34 90.0000 36 352.5440 35 18.7635 35 2.4566e 37 130.4320 36 80.3271 36 270.0000 38 268.3200 37 141.8908 37 180.0000 39 46.2080 39 265.0180 39 6.6680e 41 321.9840 40 326.5816 40 270.0000					-		
27 191.5320 28 329.4400 29 107.3280 30 245.2160 31 23.1040 32 160.9920 33 298.8800 34 76.7680 35 214.6560 36 352.5440 37 130.4320 38 268.3200 39 46.2080 40 184.0960 40 184.0960 41 321.9840 41 1321.9840 42 99.8720 43 15.6480 45 153.5360					-		
28 307.8181 29 107.3280 30 245.2160 31 23.1040 31 132.5090 31 132.5090 31 298.8800 32 194.0726 33 298.8800 34 76.7680 35 214.6560 36 352.5440 37 130.4320 38 268.3200 39 46.2080 40 184.0960 40 184.0960 41 321.9840 42 19.8720 43 151.2725 44 270.0000 44 15.6480 45 153.5360 46 2080 46 2080 46 2080 47 270.0000 48 237.7600 49 99.8720 40 15.6480 40 15.6480 44 212.8361 45 274.3008					-		
30 245.2160 31 23.1040 32 160.9920 33 298.8800 34 76.7680 35 214.6560 36 352.5440 37 130.4320 38 268.3200 39 46.2080 40 184.0960 41 321.9840 42 99.8720 43 237.7600 44 15.6480 45 153.5360				307.8181			
31 23.1040 30 70.9454 30 90.0000 32 160.9920 31 132.5090 31 3.3340e 33 298.8800 32 194.0726 32 270.0000 34 76.7680 33 255.6363 33 180.0000 35 214.6560 34 317.1999 34 90.0000 36 352.5440 35 18.7635 35 2.4566e 37 130.4320 36 80.3271 36 270.0000 38 268.3200 37 141.8908 37 180.0000 39 46.2080 38 203.4544 38 90.0000 40 184.0960 40 326.5816 40 270.0000 41 321.9840 41 28.1453 41 180.0000 42 89.7820 42 89.7089 42 90.0000 44 15.6480 43 8.8439e 43 8.8439e 45 153.5360 44 272.0000			29	9.3818			
31 25.1040 32 160.9920 33 298.8800 34 76.7680 35 214.6560 36 352.5440 37 130.4320 38 268.3271 36 80.3271 36 270.0000 39 46.2080 40 184.0960 41 321.9840 42 99.8720 43 237.7600 44 15.6480 45 153.5360			30	70.9454			
32 194.0726 33 298.8800 34 76.7680 35 214.6560 36 352.5440 37 130.4320 38 268.3200 39 46.2080 40 184.0960 41 321.9840 42 99.8720 43 237.7600 44 15.6480 45 153.5360 46 184.098							
33 255.6363 34 76.7680 35 214.6560 36 352.5440 37 130.4320 38 268.3200 39 46.2080 40 184.0960 41 321.9840 42 99.8720 43 237.7600 44 15.6480 45 153.5360 46 3276.008 47 374.3008 48 325.6363 39 180.0000 39 265.0180 40 270.0000 41 180.0000 42 89.7089 44 212.8361 45 153.5360					+		
35 214.6560 34 317.1999 34 90.0000 36 352.5440 35 18.7635 35 2.4566e 37 130.4320 36 80.3271 36 270.0000 38 268.3200 37 141.8908 37 180.0000 39 46.2080 38 203.4544 38 90.0000 40 184.0960 40 326.5816 40 270.0000 41 321.9840 41 28.1453 41 180.0000 42 99.8720 41 28.1453 41 180.0000 43 237.7600 42 89.7089 42 90.0000 44 15.6480 44 212.8361 44 270.0000				255.6363			
36 352.5440 37 130.4320 38 268.3200 39 46.2080 40 184.0960 41 321.9840 42 99.8720 43 237.7600 44 15.6480 45 153.5360 35 2.4566e 36 80.3271 36 270.0000 374.3008 372.3008 372.43008 35 2.4566e 36 277.0000 377.0008 35 2.4566e 36 270.0000 37 141.8908 37 180.0000 39 6.6680e 40 326.5816 40 270.0000 41 28.1453 42 89.7089 43 8.8439e 45 153.5360				317.1999			
37 130.4320 36 80.3271 36 270.0000 38 268.3200 37 141.8908 37 180.0000 39 46.2080 38 203.4544 38 90.0000 40 184.0960 39 265.0180 39 6.6680e 41 321.9840 40 326.5816 40 270.0000 42 99.8720 41 28.1453 41 180.0000 43 237.7600 42 89.7089 42 90.0000 44 15.6480 43 151.2725 43 8.8439e 45 153.5360 44 212.8361 44 270.0000			35	18.7635			
38 268.3200 39 46.2080 40 184.0960 41 321.9840 42 99.8720 43 237.7600 44 15.6480 45 153.5360 37 141.8908 37 180.0000 38 90.0000 39 6.6680e 40 270.0000 41 28.1453 42 89.7089 43 151.2725 44 212.8361 45 153.5360			36	80.3271			
39 46.2080 40 184.0960 41 321.9840 42 99.8720 43 237.7600 44 15.6480 45 153.5360 38 90.0000 39 6.6680e 40 270.0000 41 28.1453 42 89.7089 42 90.0000 43 151.2725 44 212.8361 45 153.5360			37	141.8908		_	
40 184.0960 39 265.0180 39 6.6680e 41 321.9840 40 326.5816 40 270.0000 42 99.8720 41 28.1453 41 180.0000 43 237.7600 42 89.7089 42 90.0000 44 15.6480 43 8.8439e 45 153.5360 44 272.0000			38	203.4544			
41 321.9840 40 326.5816 40 270.0000 42 99.8720 41 28.1453 41 180.0000 43 237.7600 42 89.7089 42 90.0000 44 15.6480 43 8.8439e 45 153.5360 44 272.0000			39	265.0180			
42 99.8720 41 28.1453 41 180.0000 43 237.7600 42 89.7089 42 90.0000 44 15.6480 43 151.2725 43 8.8439e 45 153.5360 44 212.8361 44 270.0000			40	326.5816			
43 237.7600 42 89.7089 42 90.0000 44 15.6480 43 151.2725 43 8.8439e 45 153.5360 44 212.8361 44 270.0000			41				
44 15.6480 45 153.5360 48 151.2725 49 212.8361 40 270.0000			42				
45 153.5360 44 212.8361 44 270.0000			43			_	
45 274 2000			44		+	44	270.0000
			45	274.3998		45	180.0000

Using the above phase-shifters, four types of **array patterns** are plotted below:

- 1. Linear
- 2. Polar
- 3. 3D Cartesian
- 4. 3D Spherical

Figure 2: Array Patterns for azimuth angle = 40°

For: $\theta = 70^{\circ}$

Figure 3: Array Patterns for azimuth angle = 70°

For: $\theta = 120^{\circ}$

<u>Figure 4:</u> Array Patterns for azimuth angle = 120°

Task 2: MATLAB backscatter modelling function

The following figure illustrates the channel of the *Monostatic Pulse Radar* (figure 1).

Figure 5: MIMO backscatter multi-target modelling

In this task, we create the MATLAB function that generates the backscatter data for a given steering direction. This function is found in the MATLAB file named as backscatterdata.m and is defined by two input parameters:

- 1. **Tx_baseband**: which is defined in the pA_to_basebandports function with input parameter: theta_steer_angle (explained in Radar Description section)
- 2. **Targets**: this parameter can take values from to 0 to 3

The input parameter Tx_baseband is a 45x11,200 vector:

- o **Each row:** represents the signal of each Tx antenna array antenna
- Each column: represents the signal-vector sent for transmission at a particular time instant

The function is created according to figure 5. Testing of the function is found in Appendix A.

First step: Define the parameters of each target

The number of irritations of the first *for loop* is determined by how many targets are detected (depending on the Task).

	Target-1 (constant)	Target-2 (complex)	Target-3 (complex)
direction, θ	$\theta_1 = 40^{\circ}$	$\theta_2 = 70^{\circ}$	$\theta_3 = 120^{\circ}$
range, R	$R_1 = 2km$	$R_2 = 3km$	$R_3 = 2.5$ km
target, mean RCS	$RCS_1 = 1$ m ²	$RCS_2 = 5m^2$	$RCS_3 = 4.5 \text{m}^2$
complexity	constant RCS	scatters of similar	scatters with one much
		amplitudes	larger than the other
model for RCS	constant	Sweling1&2	Swerling3&4

<u>Table 1</u>: Target parameters

A second *for loop* is used in order to assign an RCS vector for each PRI. Hence, for one dwell time the RCS vector would have dimensions 1x11,200.

Second step: Tx array manifold vectors

The input signal Tx_baseband is multiplied by the Tx-array manifold vector:

$$S_1 = e^{j\psi(\theta)} \tag{6}$$

where $\psi(\theta)$ is defined in equation (5)

The Tx-array manifold vector is a complex vector of dimensions 45x1. Hence, the multiplication of the manifold vector's transpose with the input signal results to a 1x11,200 vector.

Third step: Define delay

According to figure 5, the resulted signal is delayed by $delay = \frac{t_{echo}}{T_c}$ units where:

$$t_{\text{echo}} = \frac{2R}{c}$$
 , $c = \text{speed of light}$ (7)

The signal is shifted by *delay* units to the right at the end of the loop.

Fourth step: Path attenuation

The signal is attenuated by the factor β :

$$\beta = \frac{P_{Tx}G_{Tx}G_{Rx}}{(4\pi)^3} \cdot \frac{\lambda}{R^2} \cdot \sqrt{RCS}$$
 (8)

Since RCS is a 1x11,200 matrix, beta will also be a matrix with the same dimensions. Hence, the signal is multiplied *elementwise* with beta.

<u>Fifth step:</u> Rx array manifold vectors

The signal is multiplied with the conjugate of the S factor given by equation (6). The conjugate of S is a 45x1 vector while the signal has dimensions of 1x11,200 as explained above. Hence, the resulted signal at the Rx baseband ports is a 45x11,200 vector.

Sixth step: Add the effect of noise

The total effect of different noise sources is presented as a single noise source at the Rx antenna with power¹:

$$\sigma^2 = k_B \cdot T_0 \cdot F_n \cdot B \tag{9}$$

where k_B = Boltzmann constant, T_0 = 290K temperature, F_n = Noise Figure of the Rx-subsystem (defined in Figure 1) and B = bandwidth.

_

¹ Notes

Task 3: 1st scan - no targets

(a) Generate the noise samples/snapshots at the baseband ports of the Rx (at the output of ADC in figure 1).

We assume the number of targets to be equal to 0 and set a random theta angle in order to generate the noise samples/snapshots.

The code for the generation of the noise snapshots is found in Task3.m file. It is evident that the noise samples/snapshots at the baseband ports of the Rx is a 45x11,200 vector:

Workspace	
Name 🛎	Value
□ noise_power	1.8754e-11
□ noise_sq	1x11200 double
Rx_baseband	45x11200 compl
theta_steer_an	30
Tx_baseband	45x11200 compl
⊞ z	1x11200 double
	1x11200 comple

(b) Plot the magnitude (Volts) of noise snapshots for one Dwell-time.

Figure 6: Noise for one dwell-time at point Z (11,200 snapshots)

(c) Estimate and plot the pdf of the noise data samples.

Figure 7: Probability density function of the noise data sample at point Z

The above figure is plotted by using the MATLAB command histogram.

(d) Estimate the noise power at point-Z in figure 1.

The noise power at point-Z is estimated by the square of the noise vector. However, this results to a 1x11,200 matrix, and thus we estimate the mean of the vector. This is shown by the following code:

Hence, the noise power estimate: $P_{\text{noise}} = 1.8521 \times 10^{-11} \text{ W}$

Workspace	
Name 🛦	Value
noise_power	1.8521e-11
H noise_sq	1x11200 double

Task 4: 2nd scan – one target

(a) Assuming that the Target-1 parameters are known, generate synthetic backscatter-data for this scan at the baseband ports.

The parameters for each target are defined inside the backscatterdata.m function. Since we are interested in Target-1 we define the parameters targets = 1.

The backscatter-data at the Rx baseband ports are a matrix of dimensions 45x11,200 (N x snapshots). The generation of the backscatter-data is defined as backscatterData, a 121x1 cell where each cell contains a 45x11,200 matrix which is the signal at the baseband ports of the receiver Rx. Each cell represents an azimuth angle from 30 to 150. For example, cell 1 represents the received signal at the baseband ports for direction angle $\theta = 30^{\circ}$, cell $2: \theta = 31^{\circ}$, ..., cell $121: \theta = 150^{\circ}$.

(b) Plot the backscatter-data at point-Z for the dwell-time that corresponds to the direction of the Target-1.

Figure 8: Backscatter-data at point Z for azimuth angle = 40°

In the above figure, it is evident that the magnitude of signal has a peak around 2.2×10^{-4} Volts. The noise appears to be very small compared to the magnitude of the signal at point Z. This observation can also be verified by comparing figures 6 (Task 3) and figure 8 since the noise signal has a much smaller amplitude. The following figure shows the same data but instead of the MATLAB command plot we use semilogy.

Figure 9: Backscatter-data at point Z for azimuth angle = 40° using MATLAB command *semilogy*

(c) Then forget that the parameters of the Target-1 are known. Using only your generated backscatter random numbers at point-Z, detect and estimate the parameters of this target.

Using the generated backscatter random numbers at point Z we detect the following signal at steering direction = 40° by setting the expected threshold.

Figure 10: Random backscatter-data at point Z

The code for this Task is found in the MATLAB file named Task4.m. In order to ensure that the detection is accurate we set a threshold by taking into consideration the probability density function of noise and the probability of false alarm. The detection code uses pulse compression (explained in the MATLAB) and full correlation between the received signal and the PN code [-1 -1 -1 1 1 -1 1], as a matched filter. The output of the code is:

Command Window

Target direction: 40 degrees
Range: 1.999200e+03 m = 1999 m
RCS: 1.019720e+00 m^2 = 1 m^2
Range index: 69th

fx
>>

Detection of range (after pulse compression and averaging) is shown below:

Figure 11: Range detected for the first target

Using equation (7), t_{echo} estimate is calculated as $t_{\text{echo}} = \frac{2R}{c} = \frac{2 \cdot 1999}{3 \cdot 10^8} = 1.33 \cdot 10^{-5} \text{ s.}$

Comments

A full correlation is used between the received signal and the PN code to avoid the effects of partial convolution when using the matched filter coding: conv(z,pn). For the method that was used, first we determine the sequence with the largest correlator and then use this sequence to find the Rx correlator. The construction of the Rx correlator uses elementwise multiplication and summation as explained in the corresponding MATLAB file.

In this task Target-1 was detected. According to Table 1, the parameters of this target are: azimuth angle = 40, Range = 2000m, RCS = 1 m². Hence, the program has effectively detected all the parameters of the target.

Task 5: 3rd scan – two targets

(a) Assuming that the Target-1 and Target-2 parameters are known, generate synthetic backscatter-data for this scan at the baseband ports.

The parameters for each target are defined inside the backscatterdata.m function. Since we are interested in Target-1 and Target-2 we define the parameters targets = 2. The generation of the backscatter-data is defined as backscatterData, where the data is stored as a 121x1 cell: each cell contains a 45x11,200 matrix which is the signal at the baseband ports of the receiver Rx for steering directions from 30 to 150.

(b) Plot the backscatter-data at point-Z for the dwell-time that corresponds to the directions of the two targets.

Figure 12: Signal at point Z due to both targets (at different steering directions)

In the below figure, it is evident that the magnitude of signal varies since the RCS value of Target-2 is random. Once again, the noise is considered small compared to the maximum amplitude of the signal at point Z. **Left figure**: steering direction = 40° ,

Right figure: steering direction = 70°

Figure 13: Signal at point Z at the two steering directions

(c) Then forget that the parameters of the two targets are known. Using only your generated backscatter random numbers at point-Z, detect and estimate the parameters of these two targets.

The code for this Task is found in the MATLAB file named Task5.m. In order to ensure that the detection is accurate we set a threshold by taking into consideration the probability density function of noise and the probability of false alarm. The detection code uses pulse compression (explained in the MATLAB file) and full correlation between the received signal and the PN code [-1 -1 -1 1 1 -1 1]. We know that for this scan two targets are present and thus a loop is used and is defined by 1:1:targets, where targets = 2.

The output of the code is:

```
Target: 1
Target direction: 40 degrees
Range: 1.999200e+03 m = 1999 m
RCS average: 1.031534e+00 m^2 = 1 m^2
Range index: 69th

Target: 2
Target direction: 70 degrees
Range: 2.998800e+03 m = 2999 m
RCS average: 4.990443e+00 m^2 = 5 m^2
Range index: 103th
```

Using the generated backscatter random data at point-Z, the following signal is received due to Target-1 and Target-2. The two signals are separated in order to effectively detect each target.

Figure 14: Random backscatter-data at point Z due to the two targets

Detection of range (after pulse compression and averaging) for Target-1 is shown below:

Figure 15: Range detected for the first target

Using equation (7), t_{echo} estimate is calculated as $t_{\text{echo}} = \frac{2R}{c} = \frac{2 \cdot 1999}{3 \cdot 10^8} = 1.33 \cdot 10^{-5} \text{ s.}$

Figure 16: Range detected for the second target

Using equation (7), t_{echo} estimate is calculated as $t_{echo} = \frac{2R}{c} = \frac{2 \cdot 2999}{3 \cdot 10^8} = 1.99 \cdot 10^{-5} \text{ s.}$

Comments

The code effectively estimates the parameters of the two targets as shown in the above figures and at the output of the code (command window). However, it is important to note that the estimation of RCS for Target-2 is a bit unstable. More specifically, during testing of the code Target-2's RCS estimate takes values equal from 2 to 5 m². This is due to a small uncertainty added when using the Rx correlator.

Task 6: 4rth scan – three targets

(a) Assuming that the Target-1 and Target-2 and Target-3 parameters are known, generate synthetic backscatter-data for this scan at the baseband ports.

The parameters for each target are defined inside the backscatterdata function. Since we are interested in Target-1, Target-2 and Target-3 we define the parameter targets = 3. The signal at the Rx baseband ports are a matrix of dimensions 45x11,200 (N x snapshots). The generation of the back-scatter data is defined as backscatterData (a 121x1 cell) in Task6.m MATLAB file.

(b) Plot the backscatter-data at point-Z for the dwell-time that corresponds to the directions of the three targets.

Figure 17: Signal at point Z due to the three targets

In the above figure, it is evident that the magnitude of signal varies since the RCS values of Target-2 and Target-3 are random in nature.

Figure 18: Signal at point Z for the three steering directions: $\theta = \{40^\circ, 70^\circ, 120^\circ\}$

(c) Then forget that the parameters of the two targets are known. Using only your generated backscatter random numbers at point-Z, detect and estimate the parameters of these three targets.

The code for this Task is found in the MATLAB file named Task6.m. In order to ensure that the detection is accurate we set a threshold by taking into consideration the probability density function of noise and the probability of false alarm. The detection code uses pulse compression (explained in the MATLAB) and full correlation between the received signal and the PN code [-1 -1 -1 1 1 -1 1]. We know that for this scan three targets are present and thus a loop is used and is defined by 1:1:targets, where targets = 3.

The output of the code is:

Using the generated backscatter random data at point-Z, the following signal is received due to Target-1, Target-2 and Target-3. The signals occur at three different steering directions: $\theta = \{40^{\circ}, 70^{\circ}, 120^{\circ}\}.$

Figure 19: Random backscatter-data at point Z at the three steering directions

Detection of range (after pulse compression and averaging) for Target-1 is shown below:

Figure 20: Range detected for the first target

Using equation (7), techo estimate is calculated as $t_{echo} = \frac{2R}{c} = \frac{2.1999}{3.10^8} = 1.33 \cdot 10^{-5} \text{ s.}$

Detection of range (after pulse compression and averaging) for Target-2 is shown below:

Figure 21: Range detected for the second target

Using equation (7), t_{echo} estimate is calculated as $t_{echo} = \frac{2R}{c} = \frac{2 \cdot 2999}{3 \cdot 10^8} = 1.99 \cdot 10^{-5} \text{ s.}$

Detection of range (after pulse compression and averaging) for Target-3 is shown below:

Figure 22: Range detected for the third target

Using equation (7), techo estimate is calculated as $t_{echo} = \frac{2R}{c} = \frac{2.2499}{3.10^8} = 1.66 \cdot 10^{-5} \text{ s.}$

Comments

The code effectively estimates the parameters of the three targets as shown in the above figures and the command window. However, that the estimation of RCS for Target-2 and Target-3 is a bit unstable. More specifically, during testing of the code Target-2's RCS estimate takes values equal from 2 to 5 $\,\mathrm{m}^2$ and Target-3's RCS estimate from 3 to 7. This is due to a small uncertainty added when using the Rx correlator.

Task 7: Radar data – multi-target detection / parameter estimation

The data file that is used is called BackscatterData.mat. The data is a 121x1 cell where each cell contains a 45x11,200 matrix which is the signal at the baseband ports of the receiver Rx. Each cell represents an azimuth angle from 30 to 150. For example, cell 1 represent the received signal at the baseband ports for direction angle $\theta = 30^{\circ}$, cell 2: $\theta = 31^{\circ}$, ..., cell 121: $\theta = 150^{\circ}$.

A number of targets are detected at the angle $\theta = 142^{\circ}$. The signal at point Z for steering direction equal to 142° is shown below.

Figure 23: Signal detected at point Z

It is evident in Figure 23 that 4 peaks occur at each PRI. This means that 4 targets are present at this azimuth angle but at a different distance from the radar.

Figure 24: Signal Z after the Rx correlator

In order to ensure accurate detectability, we use an Rx correlator (defined by the full correlation between the PN code and the received signal Z). The output of the correlator is shown in figure 24 above.

Detection of range (after pulse compression and averaging) for the targets is shown below:

Figure 25: Range detection for the four targets

The output of the code is:

```
Command Window
  -- Target 1 --
  Target direction: 142 degrees
  Range: 1.411200e+03 m = 1411 m
  RCS average: 2.735466e-01 m^2
  Range index: 49th
  -- Target 2 --
  Target direction: 142 degrees
  Range: 1911 m = 1911 m
  RCS average: 1.001797e+00 m^2
  Range index: 66th
  -- Target 3 --
  Target direction: 142 degrees
  Range: 3381 m = 3381 m
  RCS average: 7.723442e-01 \text{ m}^2 = 1 \text{ m}^2
  Range index: 116th
  -- Target 4 --
  Target direction: 142 degrees
  Range: 3.851400e+03 m = 3851 m
  RCS average: 2.158925e+00 \text{ m}^2 = 2 \text{ m}^2
  Range index: 132th
```

Appendix A

An initial testing was also conducted on the backscatterdata function (for Task 2) by defining the following parameters:

- \circ delay = 0
- \circ betas = 1
- \circ targets = 1

By setting the above parameters to these values it is expected to receive a signal with magnitude equal to $1000*45*45 \approx 2 \times 10^6$.

Figure 26: Signal at point Z for delay = 0 and betas = 1

Hence, the testing confirms that the baskscatterdata function works as expected.