Question: Find all triples
$$(x, y, z)$$
 of positive integers such that $x \le y \le z$ and $x^3(y^3 + z^3) = 2012(xyz + 2)$.

Solution: First note that x divides $2012 \cdot 2 = 2^3 \cdot 503$. If $503 \mid x$ then the right-hand side of the equation is divisible by 503³, and it follows that $503^2 \mid xyz + 2$. This is false as $503 \mid x$. Hence $x = 2^m$ with $m \in \{0,1,2,3\}$. If $m \ge 2$ then $2^6 \mid 2012(xyz + 2)$. However the highest powers of 2 dividing 2012 and xyz + 2 = $2^m yz + 2$ are 2^2 and 2^1 respectively. So x = 1 or x = 2, yielding the two equations

$$y^3 + z^3 = 503(yz + 1)$$

In both cases It follows that $y \equiv -z \pmod{503}$ as

claimed. Therefore y + z = 503k with $k \ge 1$. In view of $y^3 + y^3 + y^4 +$ $z^3 = (y + z)((y - z)^2 + yz)$ the two equations take the form

 $y^3 + z^3 = 2012(yz + 2),$

$$k(y-z)^{2} + (k-4)yz = 8 (1)$$

$$k(y-z)^{2} + (k-1)yz = 1 (2)$$

Therefore (1) has no integer solutions.

In (1) we have $(k-4)yz \le 8$, which implies $k \le 4$

Equation (2) implies $0 \le (k-1)yz \le 1$, so that k=1 or k=2. Also $0 \le k(y-z)^2 \le 1$, hence k=2 only if y=z. However

then y = z = 1, which is false in view of $y + z \ge 503$. Therefore k = 1 and (2) takes the form $(y - z)^2 = 1$, yielding

z - y = |y - z| = 1. Combined with k = 1 and y + z = 503k,

this leads to y = 251, z = 252.

In summary the triple (2,251,252) is the only solution.

Final answer: (2,251,252) **Subfield:** Number theory

Answer type: Tuple **Question type:** Open-ended