

日本国特許庁
JAPAN PATENT OFFICE

15.1.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2003年 1月17日
Date of Application:

REC'D 05 MAR 2004

出願番号 特願2003-010001
Application Number:
[ST. 10/C]: [JP2003-010001]

WIPO PCT

出願人 武田薬品工業株式会社
Applicant(s):

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 2月19日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 B03012
【提出日】 平成15年 1月17日
【あて先】 特許庁長官殿
【国際特許分類】 A61K 38/00
C07K 14/705
C12N 15/12
G01N 33/53

【発明者】

【住所又は居所】 茨城県土浦市桜ヶ丘町36番地の16
【氏名】 伊藤 康明

【発明者】

【住所又は居所】 茨城県つくば市春日2丁目33番地16
【氏名】 藤井 亮

【発明者】

【住所又は居所】 茨城県つくば市春日1丁目7番地9 武田春日ハイツ1
402号

【氏名】 日沼 州司

【特許出願人】

【識別番号】 000002934
【氏名又は名称】 武田薬品工業株式会社

【代理人】

【識別番号】 100114041

【弁理士】

【氏名又は名称】 高橋 秀一

【選任した代理人】

【識別番号】 100106323

【弁理士】

【氏名又は名称】 関口 陽

【手数料の表示】

【予納台帳番号】 005142

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9909276

【包括委任状番号】 0203423

【プルーフの要否】 要

【書類名】明細書

【発明の名称】新規スクリーニング方法

【特許請求の範囲】

【請求項 1】配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤。

【請求項 2】配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤。

【請求項 3】配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の診断剤。

【請求項 4】配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩に対する抗体を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾

臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤。

【請求項5】配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩に対する抗体を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の診断剤。

【請求項6】配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチドを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤。

【請求項7】（1）配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および（2）脂肪酸を用いることを特徴とする該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩のスクリーニング方法。

【請求項8】（1）配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および（2）脂肪酸を含有することを特徴とする該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩のスクリーニング用キット。

【請求項9】請求項7記載のスクリーニング方法または請求項8記載のスクリーニング用キットを用いて得られる、脂肪酸と配列番号：1または配列番号：3で

表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性を変化させる化合物またはその塩。

【請求項10】 (1) 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を用いることを特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニストのスクリーニング方法。

【請求項11】 (1) 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニストのスクリーニング用キット。

【請求項12】 請求項10記載のスクリーニング方法または請求項11記載のスクリーニング用キットを用いて得られる、該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニスト。

【請求項13】 脂肪酸と配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性を変化させる化合物またはその塩を含有してなる医薬。

【請求項14】 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアゴニストを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療症。

剤。

【請求項15】配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアンタゴニストを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤。

【請求項16】配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を増加させる化合物またはその塩を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤。

【請求項17】配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を減少させる化合物またはその塩を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤。

【請求項18】試験化合物を配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質を含有する細胞に接触させた場合における細胞内Ca²⁺濃度上昇活性を測定することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストのスクリーニング方法。

【請求項19】脂肪酸を含有してなる配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質

共役型レセプター蛋白質のシグナル伝達作用増強剤。

【請求項20】糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤である請求項19記載の剤。

【請求項21】哺乳動物に対して、①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質またはその塩に対するアゴニストの有効量を投与することを特徴とする糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治疗方法。

【請求項22】哺乳動物に対して、①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質、その部分ペプチドまたはその塩に対する抗体、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質またはその塩に対するアンタゴニストの有効量を投与することを特徴とする糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜

症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療方法。

【請求項23】糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤を製造するための①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質に対するアゴニストの使用。

【請求項24】糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤を製造するための①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質、その部分ペプチドまたはその塩に対する抗体、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質に対するアンタゴニストの使用。

【請求項25】配列番号：1または配列番号：3で表わされるアミノ酸配列と同

一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に結合することを確認する方法。

【請求項26】配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に対するアゴニストであることを確認する方法。

【請求項27】配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に対するアンタゴニストであることを確認する方法。

【請求項28】各薬を該レセプター蛋白質、その部分ペプチドまたはその塩に接触させた場合における、各薬と該レセプター蛋白質、その部分ペプチドまたはその塩との結合量を測定することを特徴とする請求項25～27記載の確認方法。

【請求項29】(1) ①配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質に対するアゴニストまたはアンタゴニスト、または(および)②配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部

分ペプチドの発現量を変化させる化合物またはその塩、と（2）糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害、癌、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬、とを組み合わせてなる医薬。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、ヒトおよびマウス由来のG蛋白質共役型レセプター蛋白質（14273）の用途に関する。

【0002】

【従来の技術】

多くのホルモンや神経伝達物質などの生理活性物質は、細胞膜に存在する特異的なレセプター蛋白質を通じて生体の機能を調節している。これらのレセプター蛋白質のうち多くは共役しているguanine nucleotide-binding protein（以下、G蛋白質と略称する場合がある）の活性化を通じて細胞内のシグナル伝達を行ない、また、7個の膜貫通領域を有する共通した構造をもっていることから、G蛋白質共役型レセプター蛋白質（GPCR）あるいは7回膜貫通型レセプター蛋白質（7TMR）と総称される。

G蛋白質共役型レセプター蛋白質は生体の細胞や臓器の各機能細胞表面に存在し、それら細胞や臓器の機能を調節する分子、例えば、ホルモン、神経伝達物質および生理活性物質等の標的として生理的に重要な役割を担っている。レセプターは生理活性物質との結合を介してシグナルを細胞内に伝達し、このシグナルにより細胞の賦活や抑制といった種々の反応が惹起される。

各種生体の細胞や臓器の内の複雑な機能を調節する物質と、その特異的レセプター蛋白質、特にG蛋白質共役型レセプター蛋白質との関係を明らかにすることは、各種生体の細胞や臓器の機能を解明し、それら機能と密接に関連した医薬品開発に非常に重要な手段を提供することとなる。

【0003】

例えば、生体の種々の器官では、多くのホルモン、ホルモン様物質、神経伝達物質あるいは生理活性物質による調節のもとで生理的な機能の調節が行なわれている。特に、生理活性物質は生体内の様々な部位に存在し、それぞれに対応するレセプター蛋白質を通してその生理機能の調節を行っている。生体内には未知のホルモンや神経伝達物質その他の生理活性物質も多く、それらのレセプター蛋白質の構造に関しても、これまで報告されていないものが多い。さらに、既知のレセプター蛋白質においてもサブタイプが存在するかどうかについても分かっていないものが多い。

生体における複雑な機能を調節する物質と、その特異的レセプター蛋白質との関係を明らかにすることは、医薬品開発に非常に重要な手段である。また、レセプター蛋白質に対するアゴニスト、アンタゴニストを効率よくスクリーニングし、医薬品を開発するためには、生体内で発現しているレセプター蛋白質の遺伝子の機能を解明し、それらを適当な発現系で発現させることが必要であった。

近年、生体内で発現している遺伝子を解析する手段として、cDNAの配列をランダムに解析する研究が活発に行なわれており、このようにして得られたcDNAの断片配列がExpressed Sequence Tag (EST) としてデータベースに登録され、公開されている。また最近、ゲノムDNAの網羅的配列解析から、多くの新規遺伝子の存在が明らかになってきている。しかし、これら多くのESTやゲノム配列から予想された新規遺伝子は配列情報のみであり、その機能を推定することは困難である。

ヒト及びマウス由来の14273のアミノ酸配列およびそれをコードするDNAが報告されているが（非特許文献1、非特許文献2および特許文献1）、14273の機能は解明されていなかった。

【0004】

【特許文献1】

WO2002/67868号

【0005】

【非特許文献1】

公開配列データベース：ACCESSION XP_061208

【0006】**【非特許文献2】**

公開配列データベース：ACCESSION XP_129252

【0007】**【発明が解決しようとする課題】**

本発明は、14273に対するリガンドを見出し、それを用いた14273アゴニストまたはアンタゴニストのスクリーニング方法等を提供することを目的とする。

【0008】**【課題を解決するための手段】**

本発明者らは、鋭意研究を重ねた結果、ヒトおよびマウス14273の内因性リガンドが脂肪酸であることを見出した。さらに、14273が下垂体、脂肪組織、大腸がん細胞などで高発現していること、脂肪酸が14273に作用することにより細胞内Ca²⁺濃度上昇が起こることを見出した。本発明者らは、これらの知見に基づいて、さらに研究を重ねた結果、本発明を完成するに至った。

【0009】

すなわち、本発明は、

[1] 配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[2] 配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドを

含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[3] 配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の診断剤、

[4] 配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩に対する抗体を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[5] 配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質もしくはその部分ペプチドまたはその塩に対する抗体を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下

症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の診断剤、

[6] 配列番号：1 または配列番号：3 で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチドを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[7] (1) 配列番号：1 または配列番号：3 で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2) 脂肪酸を用いることを特徴とする該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩のスクリーニング方法、

[8] (1) 配列番号：1 または配列番号：3 で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2) 脂肪酸を含有することを特徴とする該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩のスクリーニング用キット、

[9] 上記[7]記載のスクリーニング方法または上記[8]記載のスクリーニング用キットを用いて得られる、脂肪酸と配列番号：1 または配列番号：3 で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性を変化させる化合物またはその塩、

[10] (1) 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を用いることを特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニストのスクリーニング方法、

[11] (1) 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩および(2)該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニストのスクリーニング用キット、

[12] 上記[10]記載のスクリーニング方法または上記[11]記載のスクリーニング用キットを用いて得られる、該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を含有することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストまたはアンタゴニスト、

[13] 脂肪酸と配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩との結合性を変化させる化合物またはその塩を含有してなる医薬、

[14] 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアゴニストを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[15] 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩に対するアンタゴニストを含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[16] 配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を増加させる化合物またはその塩を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[17] 配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を減少させる化合物またはその塩を含有してなる糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤、

[18] 試験化合物を配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセ

プターランパク質を含有する細胞に接触させた場合における細胞内Ca²⁺濃度上昇活性を測定することを特徴とする該レセプター蛋白質またはその塩に対するアゴニストのスクリーニング方法、

[19] 脂肪酸を含有してなる配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質のシグナル伝達作用増強剤、

[20] 糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤である上記[19]記載の剤、

[21] 哺乳動物に対して、①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質またはその塩に対するアゴニストの有効量を投与することを特徴とする糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治疗方法、

[22] 哺乳動物に対して、①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共

役型レセプタータンパク質、その部分ペプチドまたはその塩に対する抗体、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質またはその塩に対するアンタゴニストの有効量を投与することを特徴とする糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療方法、

[23] 糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤を製造するための①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質に対するアゴニストの使用、

[24] 糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖

尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療剤を製造するための①配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質、その部分ペプチドまたはその塩に対する抗体、②配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドをコードするポリヌクレオチドを含有するポリヌクレオチドと相補的な塩基配列またはその一部を含有してなるポリヌクレオチド、または③配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するGタンパク質共役型レセプタータンパク質に対するアンタゴニストの使用。

[25] 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に結合することを確認する方法、

[26] 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合

分泌症候群)、癌(例えば、大腸癌)、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に対するアゴニストであることを確認する方法、

[27] 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害(例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群)、癌(例えば、大腸癌)、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質予防・治療薬が該レセプター蛋白質またはその塩に対するアンタゴニストであることを確認する方法

、

[28] 各薬を該レセプター蛋白質、その部分ペプチドまたはその塩に接触させた場合における、各薬と該レセプター蛋白質、その部分ペプチドまたはその塩との結合量を測定することを特徴とする上記[25]～[27]記載の確認方法、および

[29] (1) ①配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質に対するアゴニストまたはアンタゴニスト、または(および) ②配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその部分ペプチドの発現量を変化させる化合物またはその塩、と(2) 糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害(例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群)、癌(例えば、大腸癌)、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬、とを組み合わせてなる医薬を提供する。

【0010】

さらに、本発明は、

[30] (i) 配列番号：1または配列番号：3で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有することを特徴とするG蛋白質共役型レセプター蛋白質（以下、14273と略記する場合もある）その部分ペプチドまたはその塩と、脂肪酸とを接触させた場合と、(ii) 14273、その部分ペプチドまたはその塩と、脂肪酸および試験化合物とを接触させた場合との比較を行なうことを特徴とする上記[7]のスクリーニング方法、

[31] (i) 標識した脂肪酸を14273、その部分ペプチドまたはその塩に接触させた場合と、(ii) 標識した脂肪酸および試験化合物を14273、その部分ペプチドまたはその塩に接触させた場合における、標識した脂肪酸の14273、その部分ペプチドまたはその塩に対する結合量を測定し、比較することを特徴とする上記[7]のスクリーニング方法、

[32] (i) 標識した脂肪酸を14273を含有する細胞に接触させた場合と、(ii) 標識した脂肪酸および試験化合物を14273を含有する細胞に接触させた場合における、標識した脂肪酸の該細胞に対する結合量を測定し、比較することを特徴とする上記[7]のスクリーニング方法、

[33] (i) 標識した脂肪酸を14273を含有する細胞の膜画分に接触させた場合と、(ii) 標識した脂肪酸および試験化合物を14273を含有する細胞の膜画分に接触させた場合における、標識した脂肪酸の該細胞の膜画分に対する結合量を測定し、比較することを特徴とする上記[7]のスクリーニング方法、

[34] (i) 標識した脂肪酸を、14273をコードするDNAを含有するDNAを含有する組換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現した14273に接触させた場合と、(ii) 標識した脂肪酸および試験化合物を当該質転換体の細胞膜に発現した14273に接触させた場合における、標識した脂肪酸の14273に対する結合量を測定し、比較することを特徴とする上記[7]のスクリーニング方法、

[35] (i) 14273を活性化する化合物を14273を含有する細胞に接触させた場合と、(ii) 14273を活性化する化合物および試験化合物を14

273を含有する細胞に接触させた場合における、14273を介した細胞刺激活性を測定し、比較することを特徴とする上記〔7〕のスクリーニング方法、

〔36〕14273を活性化する化合物を、14273をコードするDNAを含有するDNAを含有する組換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現した14273に接触させた場合と、14273を活性化する化合物および試験化合物を当該形質転換体の細胞膜に発現した14273に接触させた場合における、14273を介する細胞刺激活性を測定し、比較することを特徴とする上記〔7〕のスクリーニング方法、

〔37〕14273を活性化する化合物が脂肪酸である上記〔35〕または〔36〕のスクリーニング方法、

〔38〕14273を含有する細胞またはその膜画分を含有することを特徴とする上記〔8〕のスクリーニング用キット、

〔39〕14273をコードするDNAを含有するDNAを含有する組換えベクターで形質転換した形質転換体を培養することによって当該形質転換体の細胞膜に発現した14273を含有することを特徴とする上記〔8〕のスクリーニング用キット、

〔40〕(1)①標識された脂肪酸または②該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる標識された化合物またはその塩を、該レセプター蛋白質、その部分ペプチドまたはその塩に接触させた場合と、(2)各薬および①標識された脂肪酸または②該標識された化合物またはその塩を、該レセプター蛋白質、その部分ペプチドまたはその塩に接触させた場合における、①標識された脂肪酸または②該標識された化合物またはその塩と、該レセプター蛋白質、その部分ペプチドまたはその塩との結合量を測定することを特徴とする上記〔25〕～〔27〕記載の確認方法、

〔41〕(1)①標識された脂肪酸または②該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる標識された化合物またはその塩を、該レセプター蛋白質を含有する細胞またはその細胞膜画分に接触させた場合と、(2)各薬および①標識された脂肪酸または②該標識された化合物またはその塩を、該レセプター蛋白質を含有する細胞またはその細胞膜画分に接触させた場合における、①

標識された脂肪酸または②該標識された化合物またはその塩と、該レセプター蛋白質を含有する細胞またはその細胞膜画分との結合量を測定することを特徴とする上記〔25〕～〔27〕記載の確認方法、

〔42〕 (1) ①脂肪酸または②該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を、該レセプター蛋白質を含有する細胞またはその細胞膜画分に接触させた場合と、(2) 各薬および①脂肪酸または②該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩を、該レセプター蛋白質を含有する細胞またはその細胞膜画分に接触させた場合における、細胞内Ca²⁺濃度上昇活性または細胞内cAMP生成抑制活性を測定することを特徴とする上記〔25〕～〔27〕記載の確認方法、

〔43〕 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質、その部分ペプチドまたはその塩を含有することを特徴とする、①糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に結合することを確認するためのキット、および

〔44〕 配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質に対するアゴニストまたはアンタゴニストである、①糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮または癌性悪液質の予防・治療薬等を提供する。

【0011】**【発明の実施の形態】**

本発明のG蛋白質共役型レセプター蛋白質（以下、14273と略記する場合がある）は、配列番号：1または配列番号：3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するレセプター蛋白質である。

14273は、例えば、ヒトや哺乳動物（例えば、モルモット、ラット、マウス、ウサギ、ブタ、ヒツジ、ウシ、サルなど）のあらゆる細胞（例えば、脾細胞、神経細胞、グリア細胞、脾臓 β 細胞、脾臓ランゲルハンス島、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、内皮細胞、繊維芽細胞、繊維細胞、筋細胞、脂肪細胞、免疫細胞（例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、单球）、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細胞もしくはガン細胞など）や血球系の細胞、またはそれらの細胞が存在するあらゆる組織、例えば、脳、脳の各部位（例、嗅球、扁頭核、大脑基底球、海馬、視床、視床下部、視床下核、大脑皮質、延髓、小脳、後頭葉、前頭葉、側頭葉、被殻、尾状核、脳染、黒質）、脊髄、下垂体、胃、脾臓、腎臓、肝臓、生殖腺、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管（例、大腸、小腸）、血管、心臓、胸腺、脾臓、頸下腺、末梢血、末梢血球、前立腺、睾丸、精巣、卵巣、胎盤、子宮、骨、関節、骨格筋などに由来する蛋白質であってもよく、また合成蛋白質であってもよい。特に、14273は下垂体や脂肪組織に高発現している。

【0012】

配列番号：1または配列番号：3で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、例えば、配列番号：1または配列番号：3で表わされるアミノ酸配列と約85%以上、好ましくは90%以上、より好ましくは約95%以上の相同性を有するアミノ酸配列などが挙げられる。

本発明の配列番号：1または配列番号：3で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を含有する蛋白質としては、例えば、配列番号：1または配列番号：3で表わされるアミノ酸配列と実質的に同一のアミノ酸配列を有し、

配列番号：1または配列番号：3で表わされるアミノ酸配列からなる蛋白質と実質的に同質の活性を有する蛋白質などが好ましい。

実質的に同質の活性としては、例えば、リガンド結合活性、シグナル情報伝達作用などが挙げられる。実質的に同質とは、それらの活性が性質的に同質であることを示す。したがって、リガンド結合活性やシグナル情報伝達作用などの活性が同等（例、約0.01～100倍、好ましくは約0.5～20倍、より好ましくは約0.5～2倍）であることが好ましいが、これらの活性の程度や蛋白質の分子量などの量的要素は異なっていてもよい。

リガンド結合活性やシグナル情報伝達作用などの活性の測定は、自体公知の方法に準じて行なうことができるが、例えば、後に記載するスクリーニング方法に従って測定することができる。

【0013】

また、14273としては、a) 配列番号：1または配列番号：3で表わされるアミノ酸配列中の1または2個以上（好ましくは、1～30個程度、より好ましくは1～10個程度、さらに好ましくは数個（1～5個））のアミノ酸が欠失したアミノ酸配列、b) 配列番号：1または配列番号：3で表わされるアミノ酸配列に1または2個以上（好ましくは、1～30個程度、より好ましくは1～10個程度、さらに好ましくは数個（1～5個））のアミノ酸が付加したアミノ酸配列、c) 配列番号：1または配列番号：3で表わされるアミノ酸配列中の1または2個以上（好ましくは、1～30個程度、より好ましくは1～10個程度、さらに好ましくは数個（1～5個））のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、またはd) それらを組み合わせたアミノ酸配列を含有する蛋白質なども用いられる。

【0014】

本明細書において14273は、ペプチド標記の慣例に従って、左端がN末端（アミノ末端）、右端がC末端（カルボキシル末端）である。配列番号：2で表わされるアミノ酸配列を含有する14273をはじめとする14273は、C末端がカルボキシル基（-COOH）、カルボキシレート（-COO⁻）、アミド（-CONH₂）またはエステル（-COOR）の何れであってもよい。

ここでエステルにおけるRとしては、例えば、メチル、エチル、n-プロピル、イソプロピルもしくはn-ブチルなどのC₁-6アルキル基、例えば、シクロペニチル、シクロヘキシルなどのC₃-8シクロアルキル基、例えば、フェニル、α-ナフチルなどのC₆-12アリール基、例えば、ベンジル、フェネチルなどのフェニル-C₁-2アルキル基もしくはα-ナフチルメチルなどのα-ナフチル-C₁-2アルキル基などのC₇-14アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基などが用いられる。

14273がC末端以外にカルボキシル基（またはカルボキシレート）を有している場合、カルボキシル基がアミド化またはエステル化されているものも14273に含まれる。この場合のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

さらに、14273には、上記した蛋白質において、N末端のメチオニン残基のアミノ基が保護基（例えば、ホルミル基、アセチルなどのC₂-6アルカノイル基などのC₁-6アシル基など）で保護されているもの、N端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基（例えば、-OH、-SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など）が適当な保護基（例えば、ホルミル基、アセチルなどのC₂-6アルカノイル基などのC₁-6アシル基など）で保護されているもの、あるいは糖鎖が結合したいわゆる糖蛋白質などの複合蛋白質なども含まれる。

14273の具体例としては、例えば、配列番号：1で表わされるアミノ酸配列からなるヒト由来の14273、配列番号：3で表わされるアミノ酸配列からなるマウス由来の14273などが用いられる（WO2002/67868号、公開配列データベース：ACCESSION XP_061208、XP_129252）。

【0015】

14273の部分ペプチド（以下、単に部分ペプチドと略記する場合がある）としては、上記した14273の部分アミノ酸配列を有するペプチドであれば何のものであってもよいが、例えば、14273の蛋白質分子のうち、細胞膜の

外に露出している部位であって、14273と実質的に同質のレセプター結合活性を有するものなどが用いられる。

具体的には、配列番号：1または配列番号：3で表わされるアミノ酸配列を有する14273の部分ペプチドとしては、疎水性プロット解析において細胞外領域（親水性（Hydrophilic）部位）であると分析された部分を含むペプチドである。また、疎水性（Hydrophobic）部位を一部に含むペプチドも同様に用いることができる。個々のドメインを個別に含むペプチドも用い得るが、複数のドメインを同時に含む部分のペプチドでも良い。

本発明の部分ペプチドのアミノ酸の数は、上記した本発明のレセプター蛋白質の構成アミノ酸配列のうち少なくとも20個以上、好ましくは50個以上、より好ましくは100個以上のアミノ酸配列を有するペプチドなどが好ましい。

実質的に同一のアミノ酸配列とは、これらアミノ酸配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有するアミノ酸配列を示す。

ここで、「実質的に同質のレセプター活性」とは、上記と同意義を示す。「実質的に同質のレセプター活性」の測定は上記と同様に行なうことができる。

【0016】

また、本発明の部分ペプチドは、上記アミノ酸配列中の1または2個以上（好ましくは、1～10個程度、さらに好ましくは数個（1～5個））のアミノ酸が欠失し、または、そのアミノ酸配列に1または2個以上（好ましくは、1～20個程度、より好ましくは1～10個程度、さらに好ましくは数個（1～5個））のアミノ酸が付加し、または、そのアミノ酸配列中の1または2個以上（好ましくは、1～10個程度、より好ましくは数個、さらに好ましくは1～5個程度）のアミノ酸が他のアミノ酸で置換されていてもよい。

また、本発明の部分ペプチドはC末端がカルボキシル基（-COOH）、カルボキシレート（-COO-）、アミド（-CONH₂）またはエステル（-COR）の何れであってもよい。本発明の部分ペプチドがC末端以外にカルボキシル基（またはカルボキシレート）を有している場合、カルボキシル基がアミド化またはエステル化されているものも本発明の部分ペプチドに含まれる。この場合

のエステルとしては、例えば上記したC末端のエステルなどが用いられる。

さらに、本発明の部分ペプチドには、上記した14273と同様に、N末端のメチオニン残基のアミノ基が保護基で保護されているもの、N端側が生体内で切断され生成したG1nがピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基が適当な保護基で保護されているもの、あるいは糖鎖が結合したいわゆる糖ペプチドなどの複合ペプチドなども含まれる。

14273またはその部分ペプチドの塩としては、酸または塩基との生理学的に許容される塩が挙げられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸（例えば、塩酸、リン酸、臭化水素酸、硫酸）との塩、あるいは有機酸（例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、蔥酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸）との塩などが用いられる。

【0017】

14273またはその塩は、上記したヒトや哺乳動物の細胞または組織から自体公知のレセプター蛋白質の精製方法によって製造することもできるし、後に記載する14273をコードするDNAを含有する形質転換体を培養することによっても製造することができる。また、後に記載する蛋白質合成法またはこれに準じて製造することもできる。

ヒトや哺乳動物の組織または細胞から製造する場合、ヒトや哺乳動物の組織または細胞をホモジナイズした後、酸などで抽出を行ない、該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィーなどのクロマトグラフィーを組み合わせることにより精製単離することができる。

【0018】

14273もしくはその部分ペプチドまたはその塩またはそのアミド体の合成には、通常市販の蛋白質合成用樹脂を用いることができる。そのような樹脂としては、例えば、クロロメチル樹脂、ヒドロキシメチル樹脂、ベンズヒドリルアミン樹脂、アミノメチル樹脂、4-ベンジルオキシベンジルアルコール樹脂、4-メチルベンズヒドリルアミン樹脂、PAM樹脂、4-ヒドロキシメチルメチルフェニルアセトアミドメチル樹脂、ポリアクリルアミド樹脂、4-(2', 4' -ジ

メトキシフェニルヒドロキシメチル) フェノキシ樹脂、4-(2', 4'-ジメトキシフェニル-Fmocアミノエチル) フェノキシ樹脂などを挙げることができる。このような樹脂を用い、 α -アミノ基と側鎖官能基を適当に保護したアミノ酸を、目的とする蛋白質の配列通りに、自体公知の各種縮合方法に従い、樹脂上で縮合させる。反応の最後に樹脂から蛋白質を切り出すと同時に各種保護基を除去し、さらに高希釈溶液中で分子内ジスルフィド結合形成反応を実施し、目的の蛋白質またはそのアミド体を取得する。

上記した保護アミノ酸の縮合に関しては、蛋白質合成に使用できる各種活性化試薬を用いることができるが、特に、カルボジイミド類がよい。カルボジイミド類としては、DCC、N, N'-ジイソプロピルカルボジイミド、N-エチル-N'-(3-ジメチルアミノプロリル)カルボジイミドなどが用いられる。これらによる活性化にはラセミ化抑制添加剤(例えば、HOBr、HOObt)とともに保護アミノ酸を直接樹脂に添加するか、または、対称酸無水物またはHOBrエステルあるいはHOObtエステルとしてあらかじめ保護アミノ酸の活性化を行なった後に樹脂に添加することができる。

【0019】

保護アミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、蛋白質縮合反応に使用しうることが知られている溶媒から適宜選択されうる。例えば、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、N-メチルピロリドンなどの酸アミド類、塩化メチレン、クロロホルムなどのハロゲン化炭化水素類、トリフルオロエタノールなどのアルコール類、ジメチルスルホキシドなどのスルホキシド類、ピリジン、ジオキサン、テトラヒドロフランなどのエーテル類、アセトニトリル、プロピオニトリルなどのニトリル類、酢酸メチル、酢酸エチルなどのエ斯特ル類あるいはこれらの適宜の混合物などが用いられる。反応温度は蛋白質結合形成反応に使用され得ることが知られている範囲から適宜選択され、通常約-20℃～50℃の範囲から適宜選択される。活性化されたアミノ酸誘導体は通常1.5～4倍過剰で用いられる。ニンヒドリン反応を用いたテストの結果、縮合が不十分な場合には保護基の脱離を行うことなく縮合反応を繰り返すことにより十分な縮合を行なうことができる。反応を繰り返しても十分な縮合が

得られないときには、無水酢酸またはアセチルイミダゾールを用いて未反応アミノ酸をアセチル化することができる。

【0020】

原料のアミノ基の保護基としては、例えば、Z、Boc、ターシャリーペンチルオキシカルボニル、イソボルニルオキシカルボニル、4-メトキシベンジルオキシカルボニル、C1-Z、Br-Z、アダマンチルオキシカルボニル、トリフルオロアセチル、フタロイル、ホルミル、2-ニトロフェニルスルフェニル、ジフェニルホスフィノチオイル、Fmocなどが用いられる。

カルボキシル基は、例えば、アルキルエステル化（例えば、メチル、エチル、プロピル、ブチル、ターシャリーブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、2-アダマンチルなどの直鎖状、分枝状もしくは環状アルキルエステル化）、アラルキルエステル化（例えば、ベンジルエステル、4-ニトロベンジルエステル、4-メトキシベンジルエステル、4-クロロベンジルエステル、ベンズヒドリルエステル化）、フェナシルエステル化、ベンジルオキシカルボニルヒドラジド化、ターシャリーブトキシカルボニルヒドラジド化、トリチルヒドラジド化などによって保護することができる。

セリンの水酸基は、例えば、エステル化またはエーテル化によって保護することができる。このエステル化に適する基としては、例えば、アセチル基などの低級アルカノイル基、ベンゾイル基などのアロイル基、ベンジルオキシカルボニル基、エトキシカルボニル基などの炭酸から誘導される基などが用いられる。また、エーテル化に適する基としては、例えば、ベンジル基、テトラヒドロピラニル基、t-ブチル基などである。

チロシンのフェノール性水酸基の保護基としては、例えば、Bz1、C12-Bz1、2-ニトロベンジル、Br-Z、ターシャリーブチルなどが用いられる。

ヒスチジンのイミダゾールの保護基としては、例えば、Tos、4-メトキシ-2, 3, 6-トリメチルベンゼンスルホニル、DNP、ベンジルオキシメチル、Bum、Boc、Trt、Fmocなどが用いられる。

【0021】

原料のカルボキシル基の活性化されたものとしては、例えば、対応する酸無水物、アジド、活性エステル〔アルコール（例えば、ペンタクロロフェノール、2, 4, 5-トリクロロフェノール、2, 4-ジニトロフェノール、シアノメチルアルコール、パラニトロフェノール、HONB、N-ヒドロキシスクシミド、N-ヒドロキシフルタリミド、HOBr）とのエステル〕などが用いられる。原料のアミノ基の活性化されたものとしては、例えば、対応するリン酸アミドが用いられる。

保護基の除去（脱離）方法としては、例えば、Pd-黒あるいはPd-炭素などの触媒の存在下での水素気流中での接触還元や、また、無水フッ化水素、メタансルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸あるいはこれらの混合液などによる酸処理や、ジイソプロピルエチルアミン、トリエチルアミン、ピペリジン、ピペラジンなどによる塩基処理、また液体アンモニア中ナトリウムによる還元なども用いられる。上記酸処理による脱離反応は、一般に約-20℃～40℃の温度で行なわれるが、酸処理においては、例えば、アニソール、フェノール、チオアニソール、メタクレゾール、パラクレゾール、ジメチルスルフィド、1, 4-ブantanジチオール、1, 2-エタンジチオールなどのカチオン捕捉剤の添加が有効である。また、ヒスチジンのイミダゾール保護基として用いられる2, 4-ジニトロフェニル基はチオフェノール処理により除去され、トリプトファンのインドール保護基として用いられるホルミル基は上記の1, 2-エタンジチオール、1, 4-ブantanジチオールなどの存在下の酸処理による脱保護以外に、希水酸化ナトリウム溶液、希アンモニアなどによるアルカリ処理によっても除去される。

【0022】

原料の反応に関与すべきでない官能基の保護ならびに保護基、およびその保護基の脱離、反応に関与する官能基の活性化などは公知の基または公知の手段から適宜選択しうる。

蛋白質のアミド体を得る別の方法としては、例えば、まず、カルボキシ末端アミノ酸の α -カルボキシル基をアミド化して保護した後、アミノ基側にペプチド（蛋白質）鎖を所望の鎖長まで延ばした後、該ペプチド鎖のN末端の α -アミノ

基の保護基のみを除いた蛋白質とC末端のカルボキシル基の保護基のみを除去した蛋白質とを製造し、この両蛋白質を上記したような混合溶媒中で縮合させる。縮合反応の詳細については上記と同様である。縮合により得られた保護蛋白質を精製した後、上記方法によりすべての保護基を除去し、所望の粗蛋白質を得ることができる。この粗蛋白質は既知の各種精製手段を駆使して精製し、主要画分を凍結乾燥することで所望の蛋白質のアミド体を得ることができる。

蛋白質のエステル体を得るには、例えば、カルボキシ末端アミノ酸の α -カルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、蛋白質のアミド体と同様にして、所望の蛋白質のエステル体を得ることができる。

【0023】

14273の部分ペプチドまたはその塩は、自体公知のペプチドの合成法に従って、あるいは14273を適当なペプチダーゼで切断することによって製造することができる。ペプチドの合成法としては、例えば、固相合成法、液相合成法のいずれによっても良い。すなわち、14273を構成し得る部分ペプチドもししくはアミノ酸と残余部分とを縮合させ、生成物が保護基を有する場合は保護基を脱離することにより目的のペプチドを製造することができる。公知の縮合方法や保護基の脱離としては、例えば、以下のa) ~e) に記載された方法が挙げられる。

- a) M. Bodanszky および M.A. Ondetti、ペプチド シンセシス (Peptide Synthesis), Interscience Publishers, New York (1966年)
- b) Schroeder および Luebke、ザ ペプチド (The Peptide), Academic Press, New York (1965年)
- c) 泉屋信夫他、ペプチド合成の基礎と実験、丸善(株) (1975年)
- d) 矢島治明 および 榊原俊平、生化学実験講座 1、蛋白質の化学IV、205、(1977年)
- e) 矢島治明監修、続医薬品の開発 第14巻 ペプチド合成 広川書店

また、反応後は通常の精製法、例えば、溶媒抽出・蒸留・カラムクロマトグラフィー・液体クロマトグラフィー・再結晶などを組み合わせて本発明の部分ペプチドを精製単離することができる。上記方法で得られる部分ペプチドが遊離体で

ある場合は、公知の方法によって適当な塩に変換することができるし、逆に塩で得られた場合は、公知の方法によって遊離体に変換することができる。

【0024】

14273をコードするポリヌクレオチドとしては、上記した14273をコードする塩基配列（DNAまたはRNA、好ましくはDNA）を含有するものであればいかなるものであってもよい。該ポリヌクレオチドとしては、14273をコードするDNA、mRNA等のRNAであり、二本鎖であっても、一本鎖であってもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNA:RNAのハイブリッドでもよい。一本鎖の場合は、センス鎖（すなわち、コード鎖）であっても、アンチセンス鎖（すなわち、非コード鎖）であってもよい。

14273をコードするポリヌクレオチドを用いて、例えば、公知の実験医学増刊「新PCRとその応用」15(7)、1997記載の方法またはそれに準じた方法により、14273のmRNAを定量することができる。

14273をコードするDNAとしては、ゲノムDNA、ゲノムDNAライブラリー、上記した細胞・組織由来のcDNA、上記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した細胞・組織よりtotal RNAまたはmRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction（以下、RT-PCR法と略称する）によって増幅することもできる。

具体的には、14273をコードするDNAとしては、例えば、配列番号：2または配列番号：4で表わされる塩基配列を含有するDNA、または配列番号：2または配列番号：4で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号：1または配列番号：3で表わされるアミノ酸配列からなる14273と実質的に同質の活性（例、リガンド結合活性、シグナル情報伝達作用など）を有するレセプター蛋白質をコードするDNAであれば何れのものでもよい。

配列番号：2または配列番号：4で表わされる塩基配列とハイブリダイズできるDNAとしては、例えば、配列番号：2または配列番号：4で表わされる塩基

配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同性を有する塩基配列を含有するDNAなどが用いられる。

【0025】

ハイブリダイゼーションは、自体公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング (Molecular Cloning) 2nd (J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。より好ましくは、ハイストリンジェントな条件に従って行なうことができる。

該ハイストリンジェントな条件とは、例えば、ナトリウム濃度が約19～40 mM、好ましくは約19～20 mMで、温度が約50～70℃、好ましくは約60～65℃の条件を示す。特に、ナトリウム濃度が約19 mMで温度が約65℃の場合が最も好ましい。

より具体的には、配列番号：1で表わされるアミノ酸配列からなるヒト由来14273をコードするDNAとしては、配列番号：2で表わされる塩基配列からなるDNAなどが用いられる。

配列番号：3で表わされるアミノ酸配列からなるマウス由来14273をコードするDNAとしては、配列番号：4で表わされる塩基配列からなるDNAなどが用いられる。

14273をコードするDNAの塩基配列の一部、または該DNAと相補的な塩基配列の一部を含有してなるポリヌクレオチドとは、下記の本発明の部分ペプチドをコードするDNAを包含するだけではなく、RNAをも包含する意味で用いられる。

【0026】

本発明に従えば、14273遺伝子の複製または発現を阻害することのできるアンチセンス・ポリヌクレオチド（核酸）を、クローン化した、あるいは決定された14273をコードするDNAの塩基配列情報に基づき設計し、合成しうる。こうしたポリヌクレオチド（核酸）は、14273遺伝子のRNAとハイブリダイズすることができ、該RNAの合成または機能を阻害することができるか、

あるいは14273関連RNAとの相互作用を介して14273遺伝子の発現を調節・制御することができる。14273関連RNAの選択された配列に相補的なポリヌクレオチド、および14273関連RNAと特異的にハイブリダイズすることができるポリヌクレオチドは、生体内および生体外で14273遺伝子の発現を調節・制御するのに有用であり、また病気などの治療または診断に有用である。用語「対応する」とは、遺伝子を含めたヌクレオチド、塩基配列または核酸の特定の配列に相同性を有するあるいは相補的であることを意味する。ヌクレオチド、塩基配列または核酸とペプチド（蛋白質）との間で「対応する」とは、ヌクレオチド（核酸）の配列またはその相補体から誘導される指令にあるペプチド（蛋白質）のアミノ酸を通常指している。14273遺伝子の5'端ヘアピンループ、5'端6一ベースペア・リピート、5'端非翻訳領域、ポリペプチド翻訳開始コドン、蛋白質コード領域、ORF翻訳開始コドン、3'端非翻訳領域、3'端パリンドローム領域、および3'端ヘアピンループは好ましい対象領域として選択しうるが、14273遺伝子内の如何なる領域も対象として選択しうる。

【0027】

目的核酸と、対象領域の少なくとも一部に相補的なポリヌクレオチドとの関係は、対象物とハイブリダイズすることができるポリヌクレオチドとの関係は、「アンチセンス」であるということができる。アンチセンス・ポリヌクレオチドは、2-デオキシ-D-リボースを含有しているポリデオキシヌクレオチド、D-リボースを含有しているポリデオキシヌクレオチド、プリンまたはピリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、あるいは非ヌクレオチド骨格を有するその他のポリマー（例えば、市販の蛋白質核酸および合成配列特異的な核酸ポリマー）または特殊な結合を含有するその他のポリマー（但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する）などが挙げられる。それらは、2本鎖DNA、1本鎖DNA、2本鎖RNA、1本鎖RNA、さらにDNA:RNAハイブリッドであることができ、さらに非修飾ポリヌクレオチド（または非修飾オリゴヌクレオチド）、さらには公知の修飾の付加されたもの、例え

ば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合（例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメートなど）を持つもの、電荷を有する結合または硫黄含有結合（例えば、ホスホロチオエート、ホスホロジチオエートなど）を持つもの、例えば蛋白質（ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリーレーリジンなど）や糖（例えば、モノサッカライドなど）などの側鎖基を有しているもの、インターラント化合物（例えば、アクリジン、プソラレンなど）を持つもの、キレート化合物（例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など）を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの（例えば、 α アノマー型の核酸など）であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。こうした修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオチドおよび修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたら、あるいはエーテル、アミンなどの官能基に変換されていてよい。

【0028】

本発明のアンチセンス・ポリヌクレオチド（核酸）は、RNA、DNA、あるいは修飾された核酸（RNA、DNA）である。修飾された核酸の具体例としては核酸の硫黄誘導体やチオホスフェート誘導体、そしてポリヌクレオシドアミドやオリゴヌクレオシドアミドの分解に抵抗性のものが挙げられるが、それに限定されるものではない。本発明のアンチセンス核酸は次のような方針で好ましく設計されうる。すなわち、細胞内でのアンチセンス核酸をより安定なものにする、アンチセンス核酸の細胞透過性をより高める、目標とするセンス鎖に対する親和性をより大きなものにする、そしてもし毒性があるならアンチセンス核酸の毒性をより小さなものにする。

こうした修飾は当該分野で数多く知られており、例えば J. Kawakami et al., Pharm Tech Japan, Vol. 8, pp. 247, 1992; Vol. 8, pp. 395, 1992; S. T. Crooke et al. ed., Antisense Research and Applications, CRC Press, 1993 などに開示がある。

本発明のアンチセンス核酸は、変化せしめられたり、修飾された糖、塩基、結合を含有していて良く、リポゾーム、ミクロスフェアのような特殊な形態で供与されたり、遺伝子治療により適用されたり、付加された形態で与えられることができうる。こうして付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質（例えば、ホスホリピド、コレステロールなど）といった疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体（例えば、コレステリルクロロホルメート、コール酸など）が挙げられる。こうしたものは、核酸の3' 端あるいは5' 端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3' 端あるいは5' 端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。

アンチセンス核酸の阻害活性は、本発明の形質転換体、本発明の生体内や生体外の遺伝子発現系、あるいはG蛋白質共役型レセプター蛋白質の生体内や生体外の翻訳系を用いて調べることができる。該核酸それ自体公知の各種の方法で細胞に適用できる。

【0029】

本発明のポリヌクレオチドに対する siRNA は、14273をコードする RNA の一部とそれに相補的な RNA を含有する二重鎖 RNA である。

siRNA は、公知の方法（例、Nature, 411巻, 494頁, 2001年）に準じて、本発明のポリヌクレオチドの配列を基に設計して製造することができる。

14273をコードするRNAの一部を含有するリボザイムは、公知の方法（例、TRENDS in Molecular Medicine, 7巻, 221頁, 2001年）に準じて、本発明のポリヌクレオチドの配列を基に設計して製造することができる。例えば、公知のリボザイムの配列の一部を14273をコードするRNAの一部に置換することによって製造することができる。14273をコードするRNAの一部としては、公知のリボザイムによって切断され得るコンセンサス配列NUX（式中、Nはすべての塩基を、XはG以外の塩基を示す）の近傍の配列などが挙げられる。

【0030】

本発明の部分ペプチドをコードするDNAとしては、上記した本発明の部分ペプチドをコードする塩基配列を含有するものであればいかなるものであってもよい。また、ゲノムDNA、ゲノムDNAライブラリー、上記した細胞・組織由来のcDNA、上記した細胞・組織由来のcDNAライブラリー、合成DNAのいずれでもよい。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。また、上記した細胞・組織よりmRNA画分を調製したものを用いて直接Reverse Transcriptase Polymerase Chain Reaction（以下、RT-PCR法と略称する）によって増幅することもできる。

具体的には、本発明の部分ペプチドをコードするDNAとしては、例えば、（1）配列番号：2または配列番号：4で表わされる塩基配列を有するDNAの部分塩基配列を有するDNA、または（2）配列番号：2または配列番号：4で表わされる塩基配列とハイストリンジェントな条件下でハイブリダイズする塩基配列を有し、配列番号：1または配列番号：3で表わされるアミノ酸配列からなる14273と実質的に同質の活性（例、リガンド結合活性、シグナル情報伝達作用など）を有するレセプター蛋白質をコードするDNAの部分塩基配列を有するDNAなどが用いられる。

配列番号：1または配列番号：3で表わされる塩基配列ハイブリダイズできるDNAとしては、例えば、配列番号：1または配列番号：3で表わされる塩基配列と約85%以上、好ましくは約90%以上、より好ましくは約95%以上の相同意性を有する塩基配列を含有するDNAなどが用いられる。

【0031】

14273またはその部分ペプチド（以下、包括的に14273と略記する場合がある）を完全にコードするDNAのクローニングの手段としては、14273の部分塩基配列を有する合成DNAプライマーを用いてPCR法によって増幅するか、または適当なベクターに組み込んだDNAを14273の一部あるいは全領域をコードするDNA断片もしくは合成DNAを用いて標識したものとのハイブリダイゼーションによって選別することができる。ハイブリダイゼーションの方法は、例えば、モレキュラー・クローニング（Molecular Cloning）2nd（J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989）に記載の方法などに従って行なうことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行なうことができる。

【0032】

DNAの塩基配列の変換は、PCRや公知のキット、例えば、MutantTM-super Express Km（宝酒造（株））、Mutant^{TM-K}（宝酒造（株））などを用いて、ODA-LA PCR法、Gapped duplex法、Kunkel法などの自体公知の方法あるいはそれらに準じる方法に従って行なうことができる。

クローン化された14273をコードするDNAは目的によりそのまま、または所望により制限酵素で消化したり、リンカーを付加したりして使用することができる。該DNAはその5'末端側に翻訳開始コドンとしてのATGを有し、また3'末端側には翻訳終止コドンとしてのTAA、TGAまたはTAGを有していてもよい。これらの翻訳開始コドンや翻訳終止コドンは、適当な合成DNAアダプターを用いて付加することもできる。

14273の発現ベクターは、例えば、（イ）14273をコードするDNAから目的とするDNA断片を切り出し、（ロ）該DNA断片を適当な発現ベクター中のプロモーターの下流に連結することにより製造することができる。

【0033】

ベクターとしては、大腸菌由来のプラスミド（例、pBR322、pBR325、pUC12、pUC13）、枯草菌由来のプラスミド（例、pUB110、

pTP5、pC194)、酵母由来プラスミド(例、pSH19、pSH15)、λファージなどのバクテリオファージ、レトロウイルス、ワクシニアウイルス、バキュロウイルスなどの動物ウイルスなどの他、pA1-11、pXT1、pRc/CMV、pRc/RSV、pCDNA1/Neoなどが用いられる。

本発明で用いられるプロモーターとしては、遺伝子の発現に用いる宿主に対応して適切なプロモーターであればいかなるものでもよい。例えば、動物細胞を宿主として用いる場合は、SRαプロモーター、SV40プロモーター、LTRプロモーター、CMVプロモーター、HSV-TKプロモーターなどが挙げられる。

これらのうち、CMVプロモーター、SRαプロモーターなどを用いるのが好ましい。宿主がエシェリヒア属菌である場合は、trpプロモーター、lacプロモーター、recAプロモーター、λPLプロモーター、lppプロモーターなどが、宿主がバチルス属菌である場合は、SPO1プロモーター、SPO2プロモーター、penPプロモーターなど、宿主が酵母である場合は、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーターなどが好ましい。宿主が昆虫細胞である場合は、ポリヘドリンプロモーター、P10プロモーターなどが好ましい。

【0034】

発現ベクターには、以上その他に、所望によりエンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー、SV40複製オリジン(以下、SV40oriと略称する場合がある)などを含有しているものを用いることができる。選択マーカーとしては、例えば、ジヒドロ葉酸還元酵素(以下、dhfrと略称する場合がある)遺伝子〔メソトレキセート(MTX)耐性〕、アンピシリン耐性遺伝子(以下、Amp^rと略称する場合がある)、ネオマイシン耐性遺伝子(以下、Neo^rと略称する場合がある、G418耐性)等が挙げられる。特に、CHO(dhfr-)細胞を用いてdhfr遺伝子を選択マーカーとして使用する場合、目的遺伝子をチミジンを含まない培地によっても選択できる。

また、必要に応じて、宿主に合ったシグナル配列を、本発明のレセプター蛋白質のN末端側に付加する。宿主がエシェリヒア属菌である場合は、PhoA・シ

グナル配列、OmpA・シグナル配列などが、宿主がバチルス属菌である場合は、 α -アミラーゼ・シグナル配列、サブチリシン・シグナル配列などが、宿主が酵母である場合は、MF α ・シグナル配列、SUC2・シグナル配列など、宿主が動物細胞である場合には、インシュリン・シグナル配列、 α -インターフェロン・シグナル配列、抗体分子・シグナル配列などがそれぞれ利用できる。

このようにして構築された14273をコードするDNAを含有するベクターを用いて、形質転換体を製造することができる。

【0035】

宿主としては、例えば、エシェリヒア属菌、バチルス属菌、酵母、昆虫細胞、昆虫、動物細胞などが用いられる。

エシェリヒア属菌の具体例としては、エシェリヒア・コリ (Escherichia coli) K12・DH1 [プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユースエー (Proc. Natl. Acad. Sci. U.S.A.) , 60巻, 160(1968)] , JM103 [ヌクイレック・アシックス・リサーチ (Nucleic Acids Research) , 9巻, 309(1981)] , JA221 [ジャーナル・オブ・モレキュラー・バイオロジー (Journal of Molecular Biology) , 120巻, 517(1978)] , HB101 [ジャーナル・オブ・モレキュラー・バイオロジー, 41巻, 459(1969)] , C600 [ジェネティクス (Genetics) , 39巻, 440(1954)] などが用いられる。

バチルス属菌としては、例えば、バチルス・ズブチルス (Bacillus subtilis) M114 [ジーン, 24巻, 255(1983)] , 207-21 [ジャーナル・オブ・バイオケミストリー (Journal of Biochemistry) , 95巻, 87(1984)] などが用いられる。

酵母としては、例えば、サッカロマイセス セレビシエ (Saccharomyces cerevisiae) AH22, AH22R-, NA87-11A, DKD-5D, 20B-12、シズサッカロマイセス ポンベ (Schizosaccharomyces pombe) NCYC 1913, NCYC 2036、ピキア パストリス (Pichia pastoris) などが用いられる。

【0036】

昆虫細胞としては、例えば、ウイルスがA c N P Vの場合は、夜盗蛾の幼虫由来株化細胞 (*Spodoptera frugiperda* cell ; S f 細胞) 、*Trichoplusia ni*の中腸由来のMG 1 細胞、*Trichoplusia ni*の卵由来のHigh FiveTM細胞、*Mamestra brassicae*由来の細胞または*Estigmene acrea*由来の細胞などが用いられる。ウイルスがB m N P Vの場合は、蚕由来株化細胞 (*Bombyx mori* N ; B m N 細胞) などが用いられる。該 S f 細胞としては、例えば、S f 9 細胞 (ATCC CRL1711) 、S f 2 1 細胞 (以上、Vaughn, J.L. ら、イン・ヴィボ (In Vivo), 13, 213-217, (1977)) などが用いられる。

昆虫としては、例えば、カイコの幼虫などが用いられる [前田ら、ネイチャー (Nature), 315巻, 592 (1985)]。

動物細胞としては、例えば、サル細胞C O S - 7, V e r o, チャイニーズハムスター細胞C H O (以下、C H O 細胞と略記) 、d h f r 遺伝子欠損チャイニーズハムスター細胞C H O (以下、C H O (d h f r -) 細胞と略記) 、マウスL細胞、マウスA t T - 2 0、マウスマミエローマ細胞、ラットG H 3、ヒトF L細胞、ヒトH E K 2 9 3 細胞などが用いられる。

【0037】

エシェリヒア属菌を形質転換するには、例えば、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンジイズ・オブ・ザ・ユースエー (Proc. Natl. Acad. Sci. USA), 69巻, 2110 (1972) やジーン (Gene), 17巻, 107 (1982) などに記載の方法に従って行なうことができる。

バチルス属菌を形質転換するには、例えば、モレキュラー・アンド・ジェネラル・ジェネティックス (Molecular & General Genetics), 168巻, 111 (1979) などに記載の方法に従って行なうことができる。

酵母を形質転換するには、例えば、メッソズ・イン・エンザイモロジー (Methods in Enzymology), 194巻, 182-187 (1991) 、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシイズ・オブ・ザ・ユースエー (Proc. Natl. Acad. Sci. USA), 75巻, 1929 (1978) などに記載の方法に従って行なうことができる。

昆虫細胞または昆虫を形質転換するには、例えば、バイオ／テクノロジー (Bio/Technology) , 6, 47-55(1988)などに記載の方法に従って行なうことができる。
。

動物細胞を形質転換するには、例えば、細胞工学別冊8新細胞工学実験プロトコール. 263-267 (1995) (秀潤社発行)、バイロロジー (Virology) , 52巻, 456 (1973)に記載の方法に従って行なうことができる。

このようにして、14273をコードするDNAを含有する発現ベクターで形質転換された形質転換体が得られる。

宿主がエシェリヒア属菌、バチルス属菌である形質転換体を培養する際、培養に使用される培地としては液体培地が適当であり、その中には該形質転換体の生育に必要な炭素源、窒素源、無機物その他が含有せしめられる。炭素源としては、例えば、グルコース、デキストリン、可溶性澱粉、ショ糖など、窒素源としては、例えば、アンモニウム塩類、硝酸塩類、コーンスチーブ・リカー、ペプトン、カゼイン、肉エキス、大豆粕、バレイショ抽出液などの無機または有機物質、無機物としては、例えば、塩化カルシウム、リン酸二水素ナトリウム、塩化マグネシウムなどが挙げられる。また、酵母エキス、ビタミン類、生長促進因子などを添加してもよい。培地のpHは約5～8が望ましい。

【0038】

エシェリヒア属菌を培養する際の培地としては、例えば、グルコース、カザミノ酸を含むM9培地 [ミラー (Miller), ジャーナル・オブ・エクスペリメンツ・イン・モレキュラー・ジェネティックス (Journal of Experiments in Molecular Genetics) , 431-433, Cold Spring Harbor Laboratory, New York 1972] が好ましい。ここに必要によりプロモーターを効率よく働かせるために、例えば、 β -インドリル アクリル酸のような薬剤を加えることができる。
。

宿主がエシェリヒア属菌の場合、培養は通常約15～43℃で約3～24時間行ない、必要により、通気や攪拌を加えることもできる。

宿主がバチルス属菌の場合、培養は通常約30～40℃で約6～24時間行ない、必要により通気や攪拌を加えることもできる。

宿主が酵母である形質転換体を培養する際、培地としては、例えば、バークホールダー (Burkholder) 最小培地 [Bostian, K. L. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユースエー (Proc. Natl. Acad. Sci. USA), 77巻, 4505(1980)] や 0.5 % カザミノ酸を含有する SD 培地 [Bitter, G. A. ら、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユースエー (Proc. Natl. Acad. Sci. USA), 81巻, 5330 (1984)] が挙げられる。培地の pH は約 5 ~ 8 に調整するのが好ましい。培養は通常約 20°C ~ 35°C で約 24 ~ 72 時間行ない、必要に応じて通気や攪拌を加える。

【0039】

宿主が昆虫細胞または昆虫である形質転換体を培養する際、培地としては、Grace's Insect Medium (Grace, T.C.C., ネイチャー (Nature), 195, 788(1962)) に非動化した 10% ウシ血清等の添加物を適宜加えたものなどが用いられる。培地の pH は約 6.2 ~ 6.4 に調整するのが好ましい。培養は通常約 27°C で約 3 ~ 5 日間行ない、必要に応じて通気や攪拌を加える。

宿主が動物細胞である形質転換体を培養する際、培地としては、約 5 ~ 20% の胎児牛血清を含む MEM 培地 [サイエンス (Science), 122巻, 501(1952)], DMEM 培地 [ヴィロロジー (Virology), 8巻, 396 (1959)], RPMI 1640 培地 [ジャーナル・オブ・ザ・アメリカン・メディカル・メディカル・アソシエーション (The Journal of the American Medical Association) 199巻, 519(1967)], 199 培地 [プロシージング・オブ・ザ・ソサイエティ・フォー・ザ・バイオロジカル・メディシン (Proceeding of the Society for the Biological Medicine), 73巻, 1(1950)] などが用いられる。pH は約 6 ~ 8 であるのが好ましい。培養は通常約 30°C ~ 40°C で約 15 ~ 60 時間行ない、必要に応じて通気や攪拌を加える。

以上のようにして、形質転換体の細胞内、細胞膜または細胞外に 14273 を生成せしめることができる。

【0040】

上記培養物から 14273 を分離精製するには、例えば、下記の方法により行

なうことができる。

14273を培養菌体あるいは細胞から抽出するに際しては、培養後、公知の方法で菌体あるいは細胞を集め、これを適当な緩衝液に懸濁し、超音波、リゾチームおよび／または凍結融解などによって菌体あるいは細胞を破壊したのち、遠心分離やろ過により14273の粗抽出液を得る方法などが適宜用いられる。緩衝液の中に尿素や塩酸グアニジンなどの蛋白質変性剤や、トリトンX-100TMなどの界面活性剤が含まれていてもよい。培養液中に14273が分泌される場合には、培養終了後、それ自体公知の方法で菌体あるいは細胞と上清とを分離し、上清を集めること。

このようにして得られた培養上清、あるいは抽出液中に含まれる14273の精製は、自体公知の分離・精製法を適切に組み合わせて行なうことができる。これらの公知の分離、精製法としては、塩析や溶媒沈澱法などの溶解度を利用する方法、透析法、限外ろ過法、ゲルろ過法、およびSDS-ポリアクリルアミドゲル電気泳動法などの主として分子量の差を利用する方法、イオン交換クロマトグラフィーなどの荷電の差を利用する方法、アフィニティーコロマトグラフィーなどの特異的新和性を利用する方法、逆相高速液体クロマトグラフィーなどの疎水性の差を利用する方法、等電点電気泳動法などの等電点の差を利用する方法などが用いられる。

【0041】

かくして得られる14273が遊離体で得られた場合には、自体公知の方法あるいはそれに準じる方法によって塩に変換することができ、逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、遊離体または他の塩に変換することができる。

なお、組換え体が產生する14273を、精製前または精製後に適当な蛋白修飾酵素を作用させることにより、任意に修飾を加えたり、ポリペプチドを部分的に除去することもできる。蛋白修飾酵素としては、例えば、トリプシン、キモトリプシン、アルギニルエンドペプチダーゼ、プロテインキナーゼ、グリコシダーゼなどが用いられる。

かくして生成する14273の活性は、標識したリガンドとの結合実験および

特異抗体を用いたエンザイムイムノアッセイなどにより測定することができる。

【0042】

14273に対する抗体は、14273を認識し得る抗体であれば、ポリクローナル抗体、モノクローナル抗体の何れであってもよい。

14273に対する抗体は、14273を抗原として用い、自体公知の抗体または抗血清の製造法に従って製造することができる。

【0043】

〔モノクローナル抗体の作製〕

(a) モノクローナル抗体産生細胞の作製

14273は、哺乳動物に対して投与により抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュvantや不完全フロイントアジュvantを投与してもよい。投与は通常2～6週毎に1回ずつ、計2～10回程度行なわれる。用いられる哺乳動物としては、例えば、サル、ウサギ、イヌ、モルモット、マウス、ラット、ヒツジ、ヤギが挙げられるが、マウスおよびラットが好ましく用いられる。

モノクローナル抗体産生細胞の作製に際しては、抗原を免疫された温血動物、例えば、マウスから抗体価の認められた個体を選択し最終免疫の2～5日後に脾臓またはリンパ節を採取し、それらに含まれる抗体産生細胞を骨髄腫細胞と融合させることにより、モノクローナル抗体産生ハイブリドーマを調製することができる。抗血清中の抗体価の測定は、例えば、後記の標識化レセプター蛋白質と抗血清とを反応させたのち、抗体に結合した標識剤の活性を測定することにより行なうことができる。融合操作は既知の方法、例えば、ケーラーとミルスタインの方法〔ネイチャー (Nature)、256巻、495頁 (1975年)〕に従い実施することができる。融合促進剤としては、例えば、ポリエチレンゲリコール (PEG) やセンダイウイルスなどが挙げられるが、好ましくはPEGが用いられる。

骨髄腫細胞としては、例えば、NS-1、P3U1、SP2/0などが挙げられるが、P3U1が好ましく用いられる。用いられる抗体産生細胞（脾臓細胞）

数と骨髄腫細胞数との好ましい比率は1：1～20：1程度であり、PEG（好ましくは、PEG1000～PEG6000）が10～80%程度の濃度で添加され、約20～40℃、好ましくは約30～37℃で約1～10分間インキュベートすることにより効率よく細胞融合を実施できる。

【0044】

モノクローナル抗体産生ハイブリドーマのスクリーニングには種々の方法が使用できるが、例えば、レセプター蛋白質の抗原を直接あるいは担体とともに吸着させた固相（例、マイクロプレート）にハイブリドーマ培養上清を添加し、次に放射性物質や酵素などで標識した抗免疫グロブリン抗体（細胞融合に用いられる細胞がマウスの場合、抗マウス免疫グロブリン抗体が用いられる）またはプロテインAを加え、固相に結合したモノクローナル抗体を検出する方法、抗免疫グロブリン抗体またはプロテインAを吸着させた固相にハイブリドーマ培養上清を添加し、放射性物質や酵素などで標識したレセプター蛋白質を加え、固相に結合したモノクローナル抗体を検出する方法などが挙げられる。

モノクローナル抗体の選別は、自体公知あるいはそれに準じる方法に従って行なうことができるが、通常はHAT（ヒポキサンチン、アミノブテリン、チミジン）を添加した動物細胞用培地などで行なうことができる。選別および育種用培地としては、ハイブリドーマが生育できるものならばどのような培地を用いても良い。例えば、1～20%、好ましくは10～20%の牛胎児血清を含む RPMI 1640 培地、1～10%の牛胎児血清を含む GIT 培地（和光純薬工業（株））またはハイブリドーマ培養用無血清培地（SFM-101、日本製薬（株））などを用いることができる。培養温度は、通常20～40℃、好ましくは約37℃である。培養時間は、通常5日～3週間、好ましくは1週間～2週間である。培養は、通常5%炭酸ガス下で行なうことができる。ハイブリドーマ培養上清の抗体価は、上記の抗血清中の抗体価の測定と同様にして測定できる。

【0045】

(b) モノクローナル抗体の精製

モノクローナル抗体の分離精製は、通常のポリクローナル抗体の分離精製と同様に免疫グロブリンの分離精製法〔例、塩析法、アルコール沈殿法、等電点沈殿

法、電気泳動法、イオン交換体（例、D E A E）による吸脱着法、超遠心法、ゲルろ過法、抗原結合固相またはプロテインAあるいはプロテインGなどの活性吸着剤により抗体のみを採取し、結合を解離させて抗体を得る特異的精製法]に従って行なうことができる。

【0046】

[ポリクローナル抗体の作製]

本発明のポリクローナル抗体は、それ自体公知あるいはそれに準じる方法にしたがって製造することができる。例えば、免疫抗原（14273抗原）とキャリアー蛋白質との複合体をつくり、上記のモノクローナル抗体の製造法と同様に哺乳動物に免疫を行ない、該免疫動物から14273に対する抗体含有物を採取して、抗体の分離精製を行なうことにより製造できる。

哺乳動物を免疫するために用いられる免疫抗原とキャリアー蛋白質との複合体に関し、キャリアー蛋白質の種類およびキャリアーとハプテンとの混合比は、キャリアーに架橋させて免疫したハプテンに対して抗体が効率良くできれば、どの様なものをどの様な比率で架橋させてもよいが、例えば、ウシ血清アルブミン、ウシサイログロブリン、キーホール・リンペット・ヘモシアニン等を重量比でハプテン1に対し、約0.1～20、好ましくは約1～5の割合でカプルさせる方法が用いられる。

また、ハプテンとキャリアーのカプリングには、種々の縮合剤を用いることができるが、グルタルアルデヒドやカルボジイミド、マレイミド活性エステル、チオール基、ジチオビリジル基を含有する活性エステル試薬等が用いられる。

縮合生成物は、温血動物に対して、抗体産生が可能な部位にそれ自体あるいは担体、希釈剤とともに投与される。投与に際して抗体産生能を高めるため、完全フロイントアジュバントや不完全フロイントアジュバントを投与してもよい。投与は、通常約2～6週毎に1回ずつ、計約3～10回程度行なうことができる。

ポリクローナル抗体は、上記の方法で免疫された哺乳動物の血液、腹水など、好ましくは血液から採取することができる。

抗血清中のポリクローナル抗体価の測定は、上記の血清中の抗体価の測定と同様にして測定できる。ポリクローナル抗体の分離精製は、上記のモノクローナル

抗体の分離精製と同様の免疫グロブリンの分離精製法に従って行なうことができる。

【0047】

14273は下垂体、脂肪組織、大腸癌細胞などで高発現しており、14273のリガンドの1つは脂肪酸である。脂肪酸としては、オレイン酸 (oleic acid)、パルミトレイン酸 (Palmitoleic acid)、リノール酸 (linoleic acid)、 γ -リノレン酸 (γ -linolenic acid)、アラキドン酸 (arachidonic acid)、ドコサヘキサエン酸 (docosahexaenoic acid, DHA) などが用いられ、なかでもパルミトレイン酸 (Palmitoleic acid)、リノール酸 (linoleic acid)、 γ -リノレン酸 (γ -linolenic acid) などが好ましい。

従って、14273をコードするDNA（以下、本発明のDNAと略記する場合がある）、14273に対する抗体（以下、本発明の抗体と略記する場合がある）、本発明のDNAに対するアンチセンスDNA（以下、本発明のアンチセンスDNAと略記する場合がある）は、以下の用途を有している。

【0048】

(1) 14273の機能不全に関連する疾患の予防・治療剤

例えば、生体内において14273が減少しているために、リガンドである脂肪酸の生理作用が期待できない（14273の欠乏症）患者がいる場合に、a) 14273を該患者に投与し14273の量を補充したり、b) (イ) 14273をコードするDNAを該患者に投与し発現させることによって、あるいは(ロ) 対象となる細胞に14273をコードするDNAを挿入し発現させた後に、該細胞を該患者に移植することなどによって、患者の体内における14273の量を増加させ、リガンドの作用を充分に發揮させることができる。

具体的には、14273または本発明のDNAは、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、

抗利尿ホルモン不適合分泌症候群)、癌(例えば、大腸癌)、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患の予防・治療剤として使用することができる。

また、脂肪酸は14273のシグナル伝達作用増強剤、または該シグナル伝達作用増強作用に基づいて糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害(例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群)、癌(例えば、大腸癌)、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患の予防・治療剤として使用することができる。

糖尿病には、インスリン依存型(I型)糖尿病、インスリン非依存型(II型)糖尿病が含まれる。

脂肪酸または14273を上記医薬として使用する場合は、常套手段に従って製剤化することができる。

一方、本発明のDNAを上記医薬として使用する場合は、本発明のDNAを単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。本発明のDNAは、そのまで、あるいは摂取促進のための補助剤とともに、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。

例えば、a) 14273またはb) 本発明のDNAは、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、a) 14273またはb) 本発明のDNAを生理学的に認められる公知の担体、香味剤、賦形剤、ベニクリ、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするもので

ある。

【0049】

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターク、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターク、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリソのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などの天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液（例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど）などが用いられ、適当な溶解補助剤、例えば、アルコール（例、エタノール）、ポリアルコール（例、プロピレングリコール、ポリエチレングリコール）、非イオン性界面活性剤（例、ポリソルベート80TM、HCO-50）などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

【0050】

また、上記医薬は、例えば、緩衝剤（例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液）、無痛化剤（例えば、塩化ベンザルコニウム、塩酸プロカインなど）、安定剤（例えば、ヒト血清アルブミン、ポリエチレングリコールなど）、保存剤（例えば、ベンジルアルコール、フェノールなど）、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物（例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）に対して投与することができる。

14273の投与量は、投与対象、対象臓器、症状、投与方法などにより差異

はあるが、経口投与の場合、一般的に例えば、糖尿病患者（60kgとして）においては、一日につき約0.1～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、糖尿病患者（60kgとして）においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

本発明のDNAの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、糖尿病患者（60kgとして）においては、一日につき約0.1～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、糖尿病患者（60kgとして）においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

【0051】

(2) 遺伝子診断剤

本発明のDNAおよびアンチセンスDNAは、プローブとして使用することにより、ヒトまたは哺乳動物（例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）における14273またはその部分ペプチドをコードするDNAまたはmRNAの異常（遺伝子異常）を検出することができるので、例えば、該DNAまたはmRNAの損傷、突然変異あるいは発現低下や、該DNAまたはmRNAの増加あるいは発現過多などの遺伝子診断剤として有用である。

本発明のDNAまたはアンチセンスDNAを用いる上記の遺伝子診断は、例えば、自体公知のノーザンハイブリダイゼーションやPCR-SSCP法（ゲノミ

ックス (Genomics) , 第5巻, 874～879頁 (1989年) 、プロシージングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ユースエー (Proceedings of the National Academy of Sciences of the United States of America) , 第86巻, 2766～2770頁 (1989年)) などにより実施することができる。

例えば、ノーザンハイブリダイゼーションにより14273の発現低下が検出された場合は、例えば、14273の機能不全に関連する疾患、特に糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質に罹患している可能性が高い、または将来罹患する可能性が高いと診断することができる。

また、ノーザンハイブリダイゼーションにより14273の発現過多が検出された場合は、例えば、14273の過剰発現に起因する疾患、特に糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質に罹患している可能性が高い、または将来罹患する可能性が高いと診断することができる。

【0052】

(3) 14273の発現量を変化させる化合物を含有する医薬

本発明のDNAは、プローブとして用いることにより、14273の発現量を変化させる化合物のスクリーニングに用いることができる。

すなわち、本発明は、例えば、(i) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織もしくは細胞、または(ii) 形質転換体等に含ま

れる14273のmRNA量を測定することによる、14273の発現量を変化させる化合物のスクリーニング方法を提供する。

【0053】

14273のmRNA量の測定は具体的には以下のようにして行なう。

(i) 正常あるいは疾患モデル非ヒト哺乳動物（例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的には痴呆ラット、肥満マウス、動脈硬化ウサギ、担癌マウスなど）に対して、薬剤（例えば、抗痴呆薬、血圧低下薬、抗癌剤、抗肥満薬など）あるいは物理的ストレス（例えば、浸水ストレス、電気ショック、明暗、低温など）などを与え、一定時間経過した後に、血液、あるいは特定の臓器（例えば、脳、肝臓、腎臓など）、または臓器から単離した組織、あるいは細胞を得る。

得られた細胞に含まれる14273のmRNAは、例えば、通常の方法により細胞等からmRNAを抽出し、例えば、TaqMan PCRなどの手法を用いることにより定量することができ、自体公知の手段によりノーザンプロットを行うことにより解析することもできる。

(ii) 14273を発現する形質転換体を上記の方法に従い作製し、該形質転換体に含まれる14273のmRNAを同様にして定量、解析することができる。

【0054】

14273の発現量を変化させる化合物のスクリーニングは、

(i) 正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前（30分前～24時間前、好ましくは30分前～12時間前、より好ましくは1時間前～6時間前）もしくは一定時間後（30分後～3日後、好ましくは1時間後～2日後、より好ましくは1時間後～24時間後）、または薬剤あるいは物理的ストレスと同時に被検化合物を投与し、投与後一定時間経過後（30分後～3日後、好ましくは1時間後～2日後、より好ましくは1時間後～24時間後）、細胞に含まれる14273のmRNA量を定量、解析することにより行なうことができ、

(ii) 形質転換体を常法に従い培養する際に被検化合物を培地中に混合させ、

一定時間培養後（1日後～7日後、好ましくは1日後～3日後、より好ましくは2日後～3日後）、該形質転換体に含まれる14273のmRNA量を定量、解析することにより行なうことができる。

【0055】

本発明のスクリーニング方法を用いて得られる化合物またはその塩は、14273の発現量を変化させる作用を有する化合物であり、具体的には、（イ）14273の発現量を増加させることにより、14273を介する細胞刺激活性（例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性など、特に細胞内Ca²⁺濃度上昇活性）を増強させる化合物、（ロ）14273の発現量を減少させることにより、該細胞刺激活性を減弱させる化合物である。

該化合物としては、ペプチド、蛋白、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

上記スクリーニング方法で得られる14273の発現量を増加させる化合物は、14273の機能不全に関連する疾患、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などに対する安全で低毒性な予防・治療剤として有用である。

14273の発現量を減少させる化合物は、14273の発現過多に起因する疾患、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例え

ば、大腸癌)、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などに対する安全で低毒性な予防・治療剤として有用である。

【0056】

本発明のスクリーニング方法を用いて得られる化合物またはその塩を医薬組成物として使用する場合、常套手段に従って製剤化することができる。

例えば、該化合物は、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物を生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターク、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターク、ゼラチン、アルギン酸などの膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリソウのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などの天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液（例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど）などが用いられ、適当な溶解補助剤、例えば、アルコール（例、エタノール）、ポリアルコール（例、プロピレングリコール、ポリエチレングリコール）、非イオン性界面活性剤（例、ポリソルベート80TM、HCO-50）などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用い

られ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

【0057】

また、上記医薬は、例えば、緩衝剤（例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液）、無痛化剤（例えば、塩化ベンザルコニウム、塩酸プロカインなど）、安定剤（例えば、ヒト血清アルブミン、ポリエチレングリコールなど）、保存剤（例えば、ベンジルアルコール、フェノールなど）、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物（例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど）に対して投与することができる。

14273の発現量を増加させる化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、糖尿病患者（60kgとして）においては、一日につき約0.1～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、糖尿病患者（60kgとして）においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

【0058】

(4) 14273に対するリガンドの定量法および診断方法

本発明の抗体は、14273を特異的に認識することができるので、被検液中の14273の定量、特にサンドイッチ免疫測定法による定量などに使用することができます。

すなわち、本発明は、

(i) 本発明の抗体と、被検液および標識化された14273とを競合的に反応させ、該抗体に結合した標識化された14273の割合を測定することを特徴と

する被検液中の14273の定量法、および

(ii) 被検液と担体上に不溶化した本発明の抗体および標識化された本発明の別の抗体とを同時あるいは連続的に反応させたのち、不溶化担体上の標識剤の活性を測定することを特徴とする被検液中の14273の定量法を提供する。

【0059】

上記(ii)の定量法においては、一方の抗体が14273のN端部を認識する抗体で、他方の抗体が14273のC端部に反応する抗体であることが望ましい。

また、14273に対するモノクローナル抗体を用いて14273の定量を行うことができるほか、組織染色等による検出を行なうこともできる。これらの目的には、抗体分子そのものを用いてもよく、また、抗体分子のF(ab')₂、F(ab')、あるいはFab画分を用いてもよい。

本発明の抗体を用いる14273の定量法は、特に制限されるべきものではなく、被測定液中の抗原量（例えば、14273量）に対応した抗体、抗原もしくは抗体-抗原複合体の量を化学的または物理的手段により検出し、これを既知量の抗原を含む標準液を用いて作製した標準曲線より算出する測定法であれば、いずれの測定法を用いてもよい。例えば、ネフロメトリー、競合法、イムノメトリック法およびサンドイッチ法が好適に用いられるが、感度、特異性の点で、後述するサンドイッチ法を用いるのが特に好ましい。

【0060】

標識物質を用いる測定法に用いられる標識剤としては、例えば、放射性同位元素、酵素、蛍光物質、発光物質などが用いられる。放射性同位元素としては、例えば、[¹²⁵I]、[¹³¹I]、[³H]、[¹⁴C]などが用いられる。上記酵素としては、安定で比活性の大きなものが好ましく、例えば、β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオレスカミン、フルオレッセンイソチオシアネートなどが用いられる。発光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニンなどが用いられる。さらに、抗体あるいは抗原と標識剤との結合にビオチン-アビ

ジン系を用いることもできる。

抗原あるいは抗体の不溶化に当っては、物理吸着を用いてもよく、また通常14273あるいは酵素等を不溶化、固定化するのに用いられる化学結合を用いる方法でもよい。担体としては、アガロース、デキストラン、セルロースなどの不溶性多糖類、ポリスチレン、ポリアクリルアミド、シリコン等の合成樹脂、あるいはガラス等があげられる。

サンドイッチ法においては不溶化した本発明のモノクローナル抗体に被検液を反応させ（1次反応）、さらに標識化した別の本発明のモノクローナル抗体を反応させ（2次反応）たのち、不溶化担体上の標識剤の活性を測定することにより被検液中の14273量を定量することができる。1次反応と2次反応は逆の順序に行っても、また、同時にになってもよいし時間をずらして行なってもよい。標識化剤および不溶化の方法は前記のそれらに準じることができる。また、サンドイッチ法による免疫測定法において、固相用抗体あるいは標識用抗体に用いられる抗体は必ずしも1種類である必要はなく、測定感度を向上させる等の目的で2種類以上の抗体の混合物を用いてもよい。

【0061】

本発明のサンドイッチ法による14273の測定法においては、1次反応と2次反応に用いられる本発明のモノクローナル抗体は、14273の結合する部位が相異なる抗体が好ましく用いられる。すなわち、1次反応および2次反応に用いられる抗体は、例えば、2次反応で用いられる抗体が、14273のC端部を認識する場合、1次反応で用いられる抗体は、好ましくはC端部以外、例えばN端部を認識する抗体が用いられる。

本発明のモノクローナル抗体をサンドイッチ法以外の測定システム、例えば、競合法、イムノメトリック法あるいはネフロメトリーなどに用いることができる。

競合法では、被検液中の抗原と標識抗原とを抗体に対して競合的に反応させたのち、未反応の標識抗原(F)と、抗体と結合した標識抗原(B)とを分離し(B/F分離)、B、Fいずれかの標識量を測定し、被検液中の抗原量を定量する。本反応法には、抗体として可溶性抗体を用い、B/F分離をポリエチレングリ

コール、前記抗体に対する第2抗体などを用いる液相法、および、第1抗体として固相化抗体を用いるか、あるいは、第1抗体は可溶性のものを用い第2抗体として固相化抗体を用いる固相化法とが用いられる。

イムノメトリック法では、被検液中の抗原と固相化抗原とを一定量の標識化抗体に対して競合反応させた後固相と液相を分離するか、あるいは、被検液中の抗原と過剰量の標識化抗体とを反応させ、次に固相化抗原を加え未反応の標識化抗体を固相に結合させたのち、固相と液相を分離する。次に、いずれかの相の標識量を測定し被検液中の抗原量を定量する。

【0062】

また、ネフロメトリーでは、ゲル内あるいは溶液中で抗原抗体反応の結果生じた不溶性の沈降物の量を測定する。被検液中の抗原量が僅かであり、少量の沈降物しか得られない場合にもレーザーの散乱を利用するレーザーネフロメトリーなどが好適に用いられる。

これら個々の免疫学的測定法を本発明の定量方法に適用するにあたっては、特別の条件、操作等の設定は必要とされない。それぞれの方法における通常の条件、操作法に当業者の通常の技術的配慮を加えて14273の測定系を構築すればよい。これらの一般的な技術手段の詳細については、総説、成書などを参照することができる。

例えば、入江 寛編「ラジオイムノアッセイ」（講談社、昭和49年発行）、入江 寛編「続ラジオイムノアッセイ」（講談社、昭和54年発行）、石川栄治ら編「酵素免疫測定法」（医学書院、昭和53年発行）、石川栄治ら編「酵素免疫測定法」（第2版）（医学書院、昭和57年発行）、石川栄治ら編「酵素免疫測定法」（第3版）（医学書院、昭和62年発行）、「Methods in ENZYMOLOGY」 Vol. 70(Immunochemical Techniques(Part A))、同書 Vol. 73(Immunochemical Techniques(Part B))、同書 Vol. 74(Immunochemical Techniques(Part C))、同書 Vol. 84(Immunochemical Techniques(Part D : Selected Immunoassays))、同書 Vol. 92(Immunochemical Techniques(Part E : Monoclonal Antibodies and General Immunoassay Methods))、同書 Vol. 121(Immunochemical Techniques(Part I : Hybridoma Technology and Monoclonal Antibodies))(以上、

アカデミックプレス社発行)などを参照することができる。

以上のようにして、本発明の抗体を用いることによって、14273を感度良く定量することができる。

【0063】

さらには、本発明の抗体を用いて14273の濃度を定量することによって、14273の濃度の減少が検出された場合、例えば、14273の機能不全に関連する疾患、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などに罹患している可能性が高い、または将来罹患する可能性が高いと診断することができる。

また、14273の濃度の増加が検出された場合には、例えば、14273の過剰発現に起因する疾患、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などに罹患している可能性が高い、または将来罹患する可能性が高いと診断することができる。

【0064】

(5) 14273に対するアゴニストのスクリーニング方法

脂肪酸が14273に結合することによって、細胞内Ca²⁺濃度の上昇が見られることから、14273はこの細胞内シグナルを指標として14273に対する脂肪酸以外のアゴニスト（天然リガンドを含む）を探索し、または決定するための試薬として有用である。

すなわち、本発明は、試験化合物を14273を含有する細胞に接触させた場合における、14273を介した細胞内Ca²⁺濃度上昇活性を測定することを

特徴とする14273に対するアゴニストの決定方法を提供する。

試験化合物としては、公知のリガンド（例えば、アンギオテンシン、ボンベシン、カナビノイド、コレシストキニン、グルタミン、セロトニン、メラトニン、ニューロペプチドY、オピオイド、プリン、バソプレッシン、オキシトシン、PACAP（例、PACAP₂₇, PACAP₃₈）、セクレチン、グルカゴン、カルシトニン、アドレノメジュリン、ソマトスタチン、GHRH、CRF、ACTH、GRP、PTH、VIP（バソアクティブ インテスティナル アンド リレイテッド ポリペプチド）、ソマトスタチン、ドーパミン、モチリン、アミリン、ブラジキニン、CGRP（カルシトニンジーンリレーティッドペプチド）、ロイコトリエン、パンクレアスタチン、プロスタグランジン、トロンボキサン、アデノシン、アドレナリン、ケモカインスーパーファミリー（例、IL-8, GRO_α, GRO_β, GRO_γ, NAP-2, ENA-78, GCP-2, PF4, IP-10, MIG, PBSF/SDF-1などのCXCケモカインサブファミリー；MCAF/MCP-1, MCP-2, MCP-3, MCP-4, eotaxin, RANTES, MIP-1_α, MIP-1_β, HCC-1, MIP-3_α/LARC, MIP-3_β/ELC, I-309, TARC, MIPF-1, MIPF-2/eotaxin-2, MDC, DC-CK1/PARC, SLCなどのCCケモカインサブファミリー；lymphotoactinなどのCケモカインサブファミリー；fractalkineなどのCX3Cケモカインサブファミリー等）、エンドセリン、エンテロガストリン、ヒスタミン、ニューロテンシン、TRH、パンクレアティックポリペプタイド、ガラニン、リゾホスファチジン酸（LPA）、スフィンゴシン1-リン酸など）の他に、例えば、ヒトまたは哺乳動物（例えば、マウス、ラット、ブタ、ウシ、ヒツジ、サルなど）の組織抽出物、細胞培養上清、低分子合成化合物などが用いられる。例えば、該組織抽出物、細胞培養上清などを14273に添加し、細胞刺激活性などを測定しながら分画し、最終的に単一のリガンドを得ることができる。

【0065】

具体的には、本発明のアゴニスト決定方法は、本発明の組換え型14273の発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによ

って、14273を介する細胞内Ca²⁺濃度上昇活性を有する化合物またはその塩を決定する方法である。

より具体的には、本発明は、次のような決定方法を提供する。

(1) 試験化合物を14273を含有する細胞に接触させた場合における細胞内Ca²⁺濃度上昇活性を測定することを特徴とする14273に対するアゴニストの決定方法、および

(2) 試験化合物を14273DNAを含有する形質転換体を培養することによって細胞膜上に発現した14273に接触させた場合における14273を介する細胞内Ca²⁺濃度上昇活性を測定することを特徴とする14273に対するアゴニストの決定方法を提供する。

特に、試験化合物が14273に結合することを確認した後に、上記の試験を行なうことが好ましい。

【0066】

本発明のアゴニスト決定方法において、14273を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法は公知の方法に従って行なうことができる。

14273を含有する細胞の膜画分としては、細胞を破碎した後、公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破碎方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン（Kinematica社製）による破碎、超音波による破碎、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破碎液を低速（500 rpm～3000 rpm）で短時間（通常、約1分～10分）遠心し、上清をさらに高速（15000 rpm～30000 rpm）で通常30分～2時間遠心し、得られる沈殿を膜画分とする。該膜画分中には、発現した14273と細胞由来のリン脂質や膜タンパク質などの膜成分が多く含まれる。

【0067】

14273を含有する細胞やその細胞膜画分中の14273の量は、1細胞当

たり 10^3 ～ 10^8 分子であるのが好ましく、 10^5 ～ 10^7 分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性（比活性）が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

本発明のアゴニスト決定方法を実施するためには、14273を介する細胞内Ca²⁺濃度上昇活性を公知の方法または市販の測定用キットを用いて測定することができる。具体的には、まず、14273を含有する細胞をマルチウェルプレート等に培養する。アゴニスト決定を行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質（例えば、Ca²⁺など）の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。

本発明のアゴニスト決定用キットは、14273を含有する細胞またはその細胞膜画分を含有するものである。

このようにして決定される14273に対するアゴニストは、14273に結合してその生理的機能を調節するので、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患の予防・治療剤などの医薬として使用することができる。

【0068】

(6) 14273とリガンドとの結合性を変化させる化合物（アゴニスト、アンタゴニストなど）のスクリーニング方法、および14273とリガンドとの結合性を変化させる化合物を含有する医薬

14273を用いるか、または組換え型の14273発現系を構築し、該発現系を用いたレセプター結合アッセイ系を用いることによって、リガンドである脂

脂肪酸と14273との結合性を変化させる化合物（例えば、ペプチド、蛋白質、非ペプチド性化合物、合成化合物、発酵生産物など）またはその塩を効率よくスクリーニングすることができる。

このような化合物には、（イ）14273を介して細胞刺激活性を有する化合物（いわゆる、14273に対するアゴニスト）、（ロ）該細胞刺激活性を有しない化合物（いわゆる、14273に対するアンタゴニスト）、（ハ）脂肪酸と14273との結合力を増強する化合物、あるいは（ニ）脂肪酸と14273との結合力を減少させる化合物などが含まれる。

すなわち、本発明は、（i）14273と脂肪酸とを接触させた場合と（ii）14273と脂肪酸および試験化合物とを接触させた場合との比較を行なうことの特徴とする脂肪酸と14273との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

本発明のスクリーニング方法においては、（i）と（ii）の場合における、例えば、14273に対する脂肪酸の結合量、細胞刺激活性などを測定して、比較することを特徴とする。

細胞刺激活性としては、例えば、アラキドン酸遊離、アセチルコリン遊離、細胞内Ca²⁺遊離、細胞内cAMP生成、細胞内cGMP生成、イノシトールリン酸産生、細胞膜電位変動、細胞内蛋白質のリン酸化、c-fosの活性化、pHの低下などを促進する活性または抑制する活性などが挙げられるが、なかでも細胞内Ca²⁺濃度上昇活性などが好ましい。

【0069】

より具体的には、本発明は、

a) 標識した脂肪酸を、14273に接触させた場合と、標識した脂肪酸および試験化合物を14273に接触させた場合における、標識した脂肪酸の14273に対する結合量を測定し、比較することを特徴とする脂肪酸と14273との結合性を変化させる化合物またはその塩のスクリーニング方法、

b) 標識した脂肪酸を、14273を含有する細胞または該細胞の膜画分に接触させた場合と、標識した脂肪酸および試験化合物を14273を含有する細胞または該細胞の膜画分に接触させた場合における、標識した脂肪酸の該細胞また

は該膜画分に対する結合量を測定し、比較することを特徴とする脂肪酸と14273との結合性を変化させる化合物またはその塩のスクリーニング方法、

c) 標識した脂肪酸を、本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した14273に接触させた場合と、標識した脂肪酸および試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した14273に接触させた場合における、標識した脂肪酸の14273に対する結合量を測定し、比較することを特徴とする脂肪酸と14273との結合性を変化させる化合物またはその塩のスクリーニング方法、

【0070】

d) 14273を活性化する化合物（例えば、脂肪酸など）を14273を含有する細胞に接触させた場合と、14273を活性化する化合物および試験化合物を14273を含有する細胞に接触させた場合における、14273を介した細胞刺激活性を測定し、比較することを特徴とするリガンドと14273との結合性を変化させる化合物またはその塩のスクリーニング方法、および

e) 14273を活性化する化合物（例えば、脂肪酸など）を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した14273に接触させた場合と、14273を活性化する化合物および試験化合物を本発明のDNAを含有する形質転換体を培養することによって細胞膜上に発現した14273に接触させた場合における、レセプターを介する細胞刺激活性を測定し、比較することを特徴とする脂肪酸と14273との結合性を変化させる化合物またはその塩のスクリーニング方法を提供する。

さらに、リガンドとしては、脂肪酸に代えて、脂肪酸と14273との結合性を変化させる化合物またはその塩を用いることもできる。この脂肪酸と14273との結合性を変化させる化合物またはその塩は、例えば、リガンドとして脂肪酸を用いて、後述する本発明のスクリーニング方法を実施することによって得ることができる。以下のスクリーニング方法においては、脂肪酸と14273との結合性を変化させる化合物またはその塩を含めて、単に脂肪酸と表記する。

【0071】

本発明のスクリーニング方法の具体的な説明を以下にする。

まず、本発明のスクリーニング方法に用いる14273としては、上記した14273を含有するものであれば何れのものであってもよいが、14273を含有する哺乳動物の臓器の細胞膜画分が好適である。しかし、特にヒト由来の臓器は入手が極めて困難なことから、スクリーニングに用いられるものとしては、組換え体を用いて大量発現させたヒト由来の14273などが適している。

【0072】

14273を製造するには、上記の方法が用いられるが、本発明のDNAを哺乳細胞や昆虫細胞で発現することにより行なうことが好ましい。目的とする蛋白質部分をコードするDNA断片には相補DNAが用いられるが、必ずしもこれに制約されるものではない。例えば、遺伝子断片や合成DNAを用いてもよい。14273をコードするDNA断片を宿主動物細胞に導入し、それらを効率よく発現させるためには、該DNA断片を昆虫を宿主とするバキュロウイルスに属する核多角体病ウイルス (nuclear polyhedrosis virus; NPV) のポリヘドリンプロモーター、SV40由来のプロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒトヒートショックプロモーター、サイトメガロウイルスプロモーター、SR α プロモーターなどの下流に組み込むのが好ましい。発現したレセプターの量と質の検査はそれ自体公知の方法で行なうことができる。例えば、文献 [Nambi, P. ら、ザ・ジャーナル・オブ・バイオロジカル・ケミストリー (J. Biol. Chem.) , 267巻, 19555~19559頁, 1992年] に記載の方法に従って行なうことができる。

したがって、本発明のスクリーニング方法において、14273を含有するものとしては、それ自体公知の方法に従って精製した14273であってもよいし、14273を含有する細胞を用いてもよく、また14273を含有する細胞の膜画分を用いてもよい。

【0073】

本発明のスクリーニング方法において、14273を含有する細胞を用いる場合、該細胞をグルタルアルデヒド、ホルマリンなどで固定化してもよい。固定化方法はそれ自体公知の方法に従って行なうことができる。

14273を含有する細胞としては、14273を発現した宿主細胞をいうが

、該宿主細胞としては、大腸菌、枯草菌、酵母、昆虫細胞、動物細胞などが好ましい。

細胞膜画分としては、細胞を破碎した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破碎方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン（Kinematica社製）による破碎、超音波による破碎、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破碎液を低速（500 rpm～3000 rpm）で短時間（通常、約1分～10分）遠心し、上清をさらに高速（15000 rpm～30000 rpm）で通常30分～2時間遠心し、得られる沈澱を膜画分とする。該膜画分中には、発現した14273と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

14273を含有する細胞や膜画分中の14273の量は、1細胞当たり10³～10⁸分子であるのが好ましく、10⁵～10⁷分子であるのが好適である。なお、発現量が多いほど膜画分当たりのリガンド結合活性（比活性）が高くなり、高感度なスクリーニング系の構築が可能になるばかりでなく、同一ロットで大量の試料を測定できるようになる。

【0074】

脂肪酸と14273との結合性を変化させる化合物をスクリーニングする上記のa)～c)を実施するためには、例えば、適当な14273画分と、標識した脂肪酸が必要である。

14273画分としては、天然型の14273画分か、またはそれと同等の活性を有する組換え型14273画分などが望ましい。ここで、同等の活性とは、同等のリガンド結合活性、シグナル情報伝達作用などを示す。

標識した脂肪酸としては、標識した脂肪酸、あるいは標識したβ-アラニンアナログまたは標識したL-カルノシンなどが用いられる。例えば[³H]、[¹25I]、[¹⁴C]、[³⁵S]などで標識された脂肪酸などが用いられる。具体的には、脂肪酸と14273との結合性を変化させる化合物のスクリーニ

ングを行なうには、まず14273を含有する細胞または細胞の膜画分を、スクリーニングに適したバッファーに懸濁することにより14273標品を調製する。バッファーには、pH4～10（望ましくはpH6～8）のリン酸バッファー、トリス-塩酸バッファーなどの、脂肪酸と14273との結合を阻害しないバッファーであればいずれでもよい。また、非特異的結合を低減させる目的で、CHAPS、Tween-80TM（花王アトラス社）、ジギトニン、デオキシコレートなどの界面活性剤をバッファーに加えることもできる。さらに、プロテーゼによるレセプターやリガンドの分解を抑える目的でPMSF、ロイペプチド、E-64（ペプチド研究所製）、ペプスタチンなどのプロテアーゼ阻害剤を添加することもできる。0.01ml～10mlの該レセプター溶液に、一定量（5000cpm～500000cpm）の標識した脂肪酸を添加し、同時に10⁻⁴M～10⁻¹⁰Mの試験化合物を共存させる。非特異的結合量（NSB）を知るために大過剰の未標識の脂肪酸を加えた反応チューブも用意する。反応は約0～50℃、望ましくは約4～37℃で、約20分から24時間、望ましくは約30分から3時間行う。反応後、ガラス纖維濾紙等で濾過し、適量の同バッファーで洗浄した後、ガラス纖維濾紙に残存する放射活性を液体シンチレーションカウンターまたはγカウンターで計測する。拮抗する物質がない場合のカウント（B₀）から非特異的結合量（NSB）を引いたカウント（B₀-NSB）を100%とした時、特異的結合量（B-NSB）が、例えば、50%以下になる試験化合物を拮抗阻害能力のある候補物質として選択することができる。

【0075】

脂肪酸と14273との結合性を変化させる化合物をスクリーニングする上記のd)～e)の方法を実施するためには、例えば、14273を介する細胞刺激活性を公知の方法または市販の測定用キットを用いて測定することができる。

具体的には、まず、14273を含有する細胞をマルチウェルプレート等に培養する。スクリーニングを行なうにあたっては前もって新鮮な培地あるいは細胞に毒性を示さない適当なバッファーに交換し、試験化合物などを添加して一定時間インキュベートした後、細胞を抽出あるいは上清液を回収して、生成した産物をそれぞれの方法に従って定量する。細胞刺激活性の指標とする物質（例えば、

Ca^{2+} 、cAMP、アラキドン酸など)の生成が、細胞が含有する分解酵素によって検定困難な場合は、該分解酵素に対する阻害剤を添加してアッセイを行なってもよい。また、cAMP産生抑制などの活性については、フォルスコリンなどで細胞の基礎的産生量を増大させておいた細胞に対する産生抑制作用として検出することができる。

細胞刺激活性を測定してスクリーニングを行なうには、適当な14273を発現した細胞が必要である。14273を発現した細胞としては、天然型の14273を有する細胞株、上記の組換え型の14273を発現した細胞株などが望ましい。

試験化合物としては、例えば、ペプチド、蛋白、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液などが用いられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

また、試験化合物としては、14273の活性部位の原子座標およびリガンド結合ポケットの位置に基づいて、リガンド結合ポケットに結合するように設計された化合物が好ましく用いられる。14273の活性部位の原子座標およびリガンド結合ポケットの位置の測定は、公知の方法あるいはそれに準じる方法を用いて行なうことができる。

脂肪酸と14273との結合性を変化させる化合物がアゴニストかアンタゴニストであるかは、上記した14273に対するアゴニストのスクリーニング方法を用いて確認することができる。

【0076】

脂肪酸と14273との結合性を変化させる化合物またはその塩のスクリーニング用キットは、14273、14273を含有する細胞、または14273を含有する細胞の膜画分を含有するものなどである。

本発明のスクリーニング用キットの例としては、次のものが挙げられる。

1. スクリーニング用試薬

a) 測定用緩衝液および洗浄用緩衝液

Hanks' Balanced Salt Solution (ギブコ社製) に、0.05%のウシ血清アルブミン (シグマ社製) を加えたもの。

孔径 $0.45\mu\text{m}$ のフィルターで濾過滅菌し、 4°C で保存するか、あるいは用時調製しても良い。

b) 14273 標品

14273を発現させたCHO細胞を、12穴プレートに 5×10^5 個／穴で継代し、 37°C 、5%CO₂、95%airで2日間培養したもの。

c) 標識脂肪酸

市販の[³H]、[¹²⁵I]、[¹⁴C]、[³⁵S]などで標識した脂肪酸

水溶液の状態のものを 4°C あるいは -20°C にて保存し、用時に測定用緩衝液にて $1\mu\text{M}$ に希釈する。

d) 脂肪酸標準液

脂肪酸を0.1%ウシ血清アルブミン（シグマ社製）を含むPBSで1mMとなるように溶解し、 -20°C で保存する。

【0077】

2. 測定法

a) 12穴組織培養用プレートにて培養した14273発現CHO細胞を、測定用緩衝液1mlで2回洗浄した後、 $490\mu\text{l}$ の測定用緩衝液を各穴に加える。

b) $10^{-3} \sim 10^{-1}\text{M}$ の試験化合物溶液を $5\mu\text{l}$ 加えた後、標識脂肪酸を $5\mu\text{l}$ 加え、室温にて1時間反応させる。非特異的結合量を知るために試験化合物の代わりに 10^{-3}M の脂肪酸を $5\mu\text{l}$ 加えておく。

c) 反応液を除去し、1mlの洗浄用緩衝液で3回洗浄する。細胞に結合した標識リガンドを0.2N NaOH-1%SDSで溶解し、4mlの液体シンチレーターA（和光純薬製）と混合する。

d) 液体シンチレーションカウンター（ベックマン社製）を用いて放射活性を測定し、Percent Maximum Binding (PMB) を次の式で求める。

$$\text{PMB} = [(B - \text{NSB}) / (B_0 - \text{NSB})] \times 100$$

PMB : Percent Maximum Binding

B : 検体を加えた時の値

N S B : Non-specific Binding (非特異的結合量)

B₀ : 最大結合量

【0078】

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、脂肪酸と14273との結合性を変化させる作用を有する化合物であり、具体的には、(イ) G蛋白質共役型レセプターを介して細胞刺激活性を有する化合物（いわゆる、14273に対するアゴニスト）、(ロ) 該細胞刺激活性を有しない化合物（いわゆる、14273に対するアンタゴニスト）、(ハ) 脂肪酸と14273との結合力を増強する化合物、あるいは(ニ) 脂肪酸と14273との結合力を減少させる化合物である。

該化合物としては、ペプチド、蛋白、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

14273に対するアゴニストは、14273に対するリガンドである脂肪酸が有する生理活性と同様の作用を有しているので、脂肪酸が有する生理活性に応じて安全で低毒性な医薬として有用である。

14273に対するアンタゴニストは、14273に対するリガンドである脂肪酸が有する生理活性を抑制することができるので、脂肪酸の生理活性を抑制するための安全で低毒性な医薬として有用である。

脂肪酸と14273との結合力を増強する化合物は、14273に対するリガンドである脂肪酸が有する生理活性を増強することができるので、脂肪酸が有する生理活性に応じて安全で低毒性な医薬として有用である。

脂肪酸と14273との結合力を減少させる化合物は、14273に対するリガンドである脂肪酸が有する生理活性を減少させることができるので、脂肪酸の生理活性を抑制するための安全で低毒性な医薬として有用である。

具体的には、本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる①14273に対するアゴニストまたは②脂肪酸と14273との結合力を増強する化合物またはその塩は、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、

性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患に対する予防・治療剤として有用である。

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる①14273に対するアンタゴニストまたは②脂肪酸と14273との結合力を減少させる化合物またはその塩は、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患に対する予防・治療剤として有用である。

【0079】

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩は、後述する14273の発現量を変化させる化合物またはその塩、上記疾患に対する他の薬物や、他の糖尿病治療剤、糖尿病性合併症治療剤、高脂血症治療剤、降圧剤、抗肥満剤、利尿剤、化学療法剤、免疫療法剤などの薬剤（以下、併用薬剤と略記することがある）と組み合わせて用いることができる。この際、本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩および併用薬剤の投与時期は限定されず、これらを投与対象に対し、同時に投与してもよいし、時間差をおいて投与してもよい。併用薬剤の投与量は、臨床上用いられている用量を基準として適宜選択することができる。また、本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩と併用薬剤の配合比は、投与対象、投与ルート、対象疾患、症状、組み合わせなどにより適宜選択することができる。例えば投与対象がヒトである場合、例えばアゴニスト1重量部に対し、併用薬剤を0.01～100重量部用いればよい。

他の糖尿病治療剤としては、インスリン製剤（例、ウシ、ブタの脾臓から抽出された動物インスリン製剤；大腸菌、イーストを用い、遺伝子工学的に合成したヒトイインスリン製剤；インスリン亜鉛；プロタミンインスリン亜鉛；インスリンのフラグメントまたは誘導体（例、INS-1等）など）、インスリン感受性増強剤（例、塩酸ピオグリタゾン、トログリタゾン、ロジグリタゾンまたはそのマレイン酸塩、JTT-501、MCC-555、YM-440、GI-262570、KRP-297、FK-614、CS-011等）、 α -グルコシダーゼ阻害剤（例、ボグリボース、アカルボース、ミグリトール、エミグリテート等）、ビグアナイド剤（例、フェンホルミン、メトホルミン、ブホルミン等）、スルホニルウレア剤（例、トルブタミド、グリベンクラミド、グリクラジド、クロルプロパミド、トラザミド、アセトヘキサミド、グリクロピラミド、グリメピリド等）やその他のインスリン分泌促進剤（例、レパグリニド、セナグリニド、ミチグリニドまたはそのカルシウム塩水和物、GLP-1、ナテグリニド等）、ジペチジルペプチダーゼIV阻害剤（例、NVP-DPP-278、PT-100、P32/98等）、 β 3アゴニスト（例、CL-316243、SR-58611-A、UL-TG-307、AJ-9677、AZ40140等）、アミリシアゴニスト（例、プラムリンチド等）、ホスホチロシンホスファターゼ阻害剤（例、バナジン酸等）、糖新生阻害剤（例、グリコーゲンホスホリラーゼ阻害剤、グルコース-6-ホスファターゼ阻害剤、グルカゴン拮抗剤等）、SGLT（sodium-glucose cotransporter）阻害剤（例、T-1095等）等が挙げられる。

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤（例、トルレstatt、エバルレstatt、ゼナレstatt、ゾポルレstatt、フィダレstatt（SNK-860）、ミナルレstatt（ARI-509）、CT-112等）、神経栄養因子（例、NGF、NT-3等）、AGE阻害剤（例、ALT-945、ピマゲジン、ピラトキサチン、N-フェナシルチアゾリウムプロミド（ALT-766）、EXO-226等）、活性酸素消去薬（例、チオクト酸等）、脳血管拡張剤（例、チオブリド等）等が挙げられる。

【0080】

抗高脂血剤としては、コレステロール合成阻害剤であるスタチン系化合物（例、プラバスタチン、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン、セリバスタチンまたはそれらの塩（例、ナトリウム塩等）等）、スクアレン合成酵素阻害剤あるいはトリグリセリド低下作用を有するフィブラーート系化合物（例、ベザフィブラーート、クロフィブラーート、シムフィブラーート、クリノフィブラーート等）等が挙げられる。

降圧剤としては、アンジオテンシン変換酵素阻害剤（例、カプトプリル、エナラブリル、デラブリル等）、アンジオテンシンII拮抗剤（例、ロサルタン、カンデサルタン、シレキセチル等）、カルシウム拮抗剤（例、マニジピン、ニフェジピン、アムロジピン、エホニジピン、ニカルジピン等）、クロニジン等が挙げられる。

抗肥満剤としては、例えば中枢性抗肥満薬（例、デキスフェンフルアミン、フェンフルラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキサンフェタミン、マジンドール、フェニルプロパノールアミン、クロベンゾレックス等）、脇リバーゼ阻害薬（例、オルリストット等）、 β 3アゴニスト（例、CL-316243、SR-58611-A、UL-TG-307、AJ-9677、AZ40140等）、ペプチド性食欲抑制薬（例、レプチン、CNTF（毛様体神経栄養因子）等）、コレシストキニンアゴニスト（例、リンチトリプト、FPL-15849等）等が挙げられる。

利尿剤としては、例えばキサンチン誘導体（例、サリチル酸ナトリウムテオブロミン、サリチル酸カルシウムテオブロミン等）、チアジド系製剤（例、エチアジド、シクロペンチアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒドロフルメチアジド、ベンジルヒドロクロロチアジド、ベンフルチジド、ポリチアジド、メチクロチアジド等）、抗アルドステロン製剤（例、スピロノラクトン、トリアムテレン等）、炭酸脱水酵素阻害剤（例、アセタゾラミド等）、クロルベンゼンスルホンアミド系製剤（例、クロルタリドン、メフルシド、インダパミド等）、アゾセミド、イソソルビド、エタクリン酸、ピレタニド、ブメタニド、フロセミド等が挙げられる。

【0081】

化学療法剤としては、例えばアルキル化剤（例、サイクロフォスファミド、イフオスファミド等）、代謝拮抗剤（例、メソトレキセート、5-フルオロウラシル等）、抗癌性抗生物質（例、マイトマイシン、アドリアマイシン等）、植物由来抗癌剤（例、ビンクリスチン、ビンデシン、タキソール等）、シスプラチン、カルボプラチニン、エトポキシドなどが挙げられる。なかでも5-フルオロウラシル誘導体であるフルツロンあるいはネオフルツロンなどが好ましい。

免疫療法剤としては、例えば微生物または細菌成分（例、ムラミルジペプチド誘導体、ピシバニール等）、免疫増強活性のある多糖類（例、レンチナン、シゾフィラン、クレスチン等）、遺伝子工学的手法で得られるサイトカイン（例、インターフェロン、インターロイキン（IL）等）、コロニー刺激因子（例、顆粒球コロニー刺激因子、エリスロポエチン等）などが挙げられ、なかでもIL-1、IL-2、IL-12などが好ましい。

さらに、動物モデルや臨床で悪液質改善作用が認められている薬剤、すなわち、シクロオキシゲナーゼ阻害剤（例、インドメタシン等）〔キャンサー・リサーチ（Cancer Research）〕、第49巻、5935～5939頁、1989年〕、プロゲステロン誘導体（例、メgestrolアセテート）〔ジャーナル・オブ・クリニカル・オンコロジー（Journal of Clinical Oncology）〕、第12巻、213～225頁、1994年〕、糖質ステロイド（例、デキサメザゾン等）、メトクロプラミド系薬剤、テトラヒドロカンナビノール系薬剤（文献はいずれも上記と同様）、脂肪代謝改善剤（例、エイコサペンタエン酸等）〔ブリティッシュ・ジャーナル・オブ・キャンサー（British Journal of Cancer）〕、第68巻、314～318頁、1993年〕、成長ホルモン、IGF-1、あるいは悪液質を誘導する因子であるTNF- α 、LIF、IL-6、オンコスタチンMに対する抗体なども本発明製剤と併用することができる。

さらに、糖化阻害剤（例、ALT-711等）、神経再生促進薬（例、Y-128、VX853、prosaptide等）、抗うつ薬（例、デシプラミン、アミトリピチリン、イミプラミン）、抗てんかん薬（例、ラモトリジン）、抗不整脈薬（例、メキシレチン）、アセチルコリン受容体リガンド（例、ABT-594）、エンドセリン受容体拮抗薬（例、ABT-627）、モノアミン取り込み阻害薬（例、トラマドル）、麻薬性鎮痛薬（例、モル

ヒネ)、GABA受容体作動薬(例、ギャバベンチン)、 α 2受容体作動薬(例、クロニジン)、局所鎮痛薬(例、カプサイシン)、プロテインキナーゼC阻害剤(例、LY-333531)、抗不安薬(例、ベンゾチアゼピン)、ホスホジエステラーゼ阻害薬(例、シルデナフィル)、ドーパミン受容体作動薬(例、アポモルフィン)なども本発明製剤と併用することができる。

【0082】

本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる化合物またはその塩を上記の医薬組成物として使用する場合、常套手段に従って製剤化することができる。

例えば、該化合物は、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物を生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターク、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターク、ゼラチン、アルギン酸などの膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などの天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えば、アルコール(例、

エタノール)、ポリアルコール(例、プロピレングリコール、ポリエチレングリコール)、非イオン性界面活性剤(例、ポリソルベート80TM、HCO-50)などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

【0083】

また、上記医薬は、例えば、緩衝剤(例えは、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えは、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えは、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えは、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えは、ヒトや哺乳動物(例えは、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。

例えは、14273に対するアゴニストの投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えは、糖尿病患者(60kgとして)においては、一日につき約0.1～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えは、注射剤の形では通常例えは、糖尿病患者(60kgとして)においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

【0084】

(6) 各種薬物の作用メカニズムの解明方法

14273を用いることによって、各種薬物が14273を介して薬理効果を発揮しているか否かを確認することができる。

すなわち、本発明は、

(1) 14273を用いることを特徴とする、①糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に結合することを確認する方法、

(2) 14273を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に対するアゴニストであることを確認する方法、

(3) 14273を用いることを特徴とする、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質の予防・治療薬が該レセプター蛋白質またはその塩に対するアンタゴニストであることを確認する方法、

(4) 各薬を14273に接触させた場合における、各薬と14273との結合量を測定することを特徴とする上記(1)～(3)記載のスクリーニング方法を提供する。

この確認方法は、前記したリガンドと14273との結合性を変化させる化合物のスクリーニング方法において、試験化合物に代えて、上記の薬物を使用することによって実施することができる。

また、本発明の確認方法用キットは、前記したリガンドと14273との結合性を変化させる化合物のスクリーニング用キットにおいて、試験化合物に代えて、上記の薬物を含有するものである。

このように、本発明の確認方法を用いることによって、市販または開発途中の各種薬物が14273を介して薬理効果を発揮していることを確認することができる。

【0085】

(7) 細胞膜における14273またはその部分ペプチドの量を変化させる化合物を含有する医薬

本発明の抗体は、14273を特異的に認識することができるので、細胞膜における14273の量を変化させる化合物のスクリーニングに用いることができる。

すなわち本発明は、例えば、

(i) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織もしくは細胞等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる14273を定量することによる、細胞膜における14273の量を変化させる化合物のスクリーニング方法、

(ii) 14273を発現する形質転換体等を破壊した後、細胞膜画分を単離し、細胞膜画分に含まれる14273を定量することによる、細胞膜における14273の量を変化させる化合物のスクリーニング方法、

(iii) 非ヒト哺乳動物のa) 血液、b) 特定の臓器、c) 臓器から単離した組織もしくは細胞等を切片とした後、免疫染色法を用いることにより、細胞表層での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することによる、細胞膜における14273の量を変化させる化合物のスクリーニング方法を提供する。

(iv) 14273を発現する形質転換体等を切片とした後、免疫染色法を用いることにより、細胞表層での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することによる、細胞膜における14273の量を変化させる化合物のスクリーニング方法を提供する。

【0086】

細胞膜画分に含まれる14273の定量は具体的には以下のようにして行なう。

(i) 正常あるいは疾患モデル非ヒト哺乳動物（例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的には痴呆ラット、肥満マウス、動脈硬化ウサギ、担癌マウスなど）に対して、薬剤（例えば、抗痴呆薬、血圧低下薬、抗癌剤、抗肥満薬など）あるいは物理的ストレス（例えば、浸水ストレス、電気ショック、明暗、低温など）などを与え、一定時間経過した後に、血液、あるいは特定の臓器（例えば、脳、肝臓、腎臓など）、または臓器から単離した組織、あるいは細胞を得る。得られた臓器、組織または細胞等を、例えば、適当な緩衝液（例えば、トリス塩酸緩衝液、リン酸緩衝液、ヘペス緩衝液など）等に懸濁し、臓器、組織あるいは細胞を破壊し、界面活性剤（例えば、トリトンX100TM、ツイーン20TMなど）などを用い、さらに遠心分離や濾過、カラム分画などの手法を用いて細胞膜画分を得る。

細胞膜画分としては、細胞を破碎した後、それ自体公知の方法で得られる細胞膜が多く含まれる画分のことをいう。細胞の破碎方法としては、Potter-Elvehjem型ホモジナイザーで細胞を押し潰す方法、ワーリングブレンダーやポリトロン（Kinematica社製）による破碎、超音波による破碎、フレンチプレスなどで加圧しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。細胞膜の分画には、分画遠心分離法や密度勾配遠心分離法などの遠心力による分画法が主として用いられる。例えば、細胞破碎液を低速（500 rpm～3000 rpm）で短時間（通常、約1分～10分）遠心し、上清をさらに高速（15000 rpm～30000 rpm）で通常30分～2時間遠心し、得られる沈殿を膜画分とする。該膜画分中には、発現した14273と細胞由来のリン脂質や膜蛋白質などの膜成分が多く含まれる。

細胞膜画分に含まれる14273は、例えば、本発明の抗体を用いたサンドイッチ免疫測定法、ウエスタンプロット解析などにより定量することができる。

かかるサンドイッチ免疫測定法は上記の方法と同様にして行なうことができ、ウエスタンプロットは自体公知の手段により行なうことができる。

(ii) 14273を発現する形質転換体を上記の方法に従い作製し、細胞膜画分に含まれる14273を定量することができる。

【0087】

細胞膜における14273の量を変化させる化合物のスクリーニングは、

(i) 正常あるいは疾患モデル非ヒト哺乳動物に対して、薬剤あるいは物理的ストレスなどを与える一定時間前（30分前～24時間前、好ましくは30分前～12時間前、より好ましくは1時間前～6時間前）もしくは一定時間後（30分後～3日後、好ましくは1時間後～2日後、より好ましくは1時間後～24時間後）、または薬剤あるいは物理的ストレスと同時に被検化合物を投与し、投与後一定時間経過後（30分後～3日後、好ましくは1時間後～2日後、より好ましくは1時間後～24時間後）、細胞膜における14273の量を定量することにより行なうことができる、

(ii) 形質転換体を常法に従い培養する際に被検化合物を培地中に混合させ、一定時間培養後（1日後～7日後、好ましくは1日後～3日後、より好ましくは2日後～3日後）、細胞膜における14273の量を定量することにより行なうことことができる。

細胞膜画分に含まれる14273の確認は具体的には以下のようにして行なう。

(iii) 正常あるいは疾患モデル非ヒト哺乳動物（例えば、マウス、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど、より具体的には痴呆ラット、肥満マウス、動脈硬化ウサギ、担癌マウスなど）に対して、薬剤（例えば、抗痴呆薬、血圧低下薬、抗癌剤、抗肥満薬など）あるいは物理的ストレス（例えば、浸水ストレス、電気ショック、明暗、低温など）などを与え、一定時間経過した後に、血液、あるいは特定の臓器（例えば、脳、肝臓、腎臓など）、または臓器から単離した組織、あるいは細胞を得る。得られた臓器、組織または細胞等を、常法に従い組織切片とし、本発明の抗体を用いて免疫染色を行う。細胞表層での該受容体蛋白質の染色度合いを定量化することにより、細胞膜上の該蛋白質を確認することにより、定量的または定性的に、細胞膜における14273の量を確認することができる。

(iv) 14273を発現する形質転換体等を用いて同様の手段をとることにより確認することもできる。

【0088】

本発明のスクリーニング方法を用いて得られる化合物またはその塩は、細胞膜における14273の量を変化させる作用を有する化合物であり、具体的には、

(イ) 細胞膜における14273の量を増加させることにより、14273を介する細胞刺激活性を増強させる化合物、(ロ) 細胞膜における14273の量を減少させることにより、該細胞刺激活性を減弱させる化合物である。

該化合物としては、ペプチド、蛋白、非ペプチド性化合物、合成化合物、発酵生産物などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

細胞膜における14273の量を増加させる化合物は、14273の機能不全に関連する疾患に対する安全で低毒性な予防・治療薬として有用である。

細胞膜における14273の量を減少させる化合物は、14273の発現過多に起因する疾患に対する安全で低毒性な予防・治療薬として有用である。

具体的には、14273の量を増加させる化合物またはその塩は、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患に対する予防・治療剤として使用することができる。

14273の量を減少させる化合物またはその塩は、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、膵臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患に対する予防・治療剤として使用することができる。

本発明のスクリーニング方法を用いて得られる化合物またはその塩を医薬組成物として使用する場合、常套手段に従って製剤化することができる。

例えば、該化合物は、必要に応じて糖衣を施した錠剤、カプセル剤、エリキシル剤、マイクロカプセル剤などとして経口的に、あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、または懸濁液剤などの注射剤の形で非経口的に使用できる。例えば、該化合物を生理学的に認められる公知の担体、香味剤、賦形剤、ベヒクル、防腐剤、安定剤、結合剤などとともに一般に認められた製剤実施に要求される単位用量形態で混和することによって製造することができる。これら製剤における有効成分量は指示された範囲の適当な容量が得られるようにするものである。

【0089】

錠剤、カプセル剤などに混和することができる添加剤としては、例えば、ゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリソのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は注射用水のようなベヒクル中の活性物質、胡麻油、椰子油などの天然産出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方することができる。注射用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液（例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど）などが用いられ、適当な溶解補助剤、例えば、アルコール（例、エタノール）、ポリアルコール（例、プロピレングリコール、ポリエチレングリコール）、非イオン性界面活性剤（例、ポリソルベート 80 TM、HCO-50）などと併用してもよい。油性液としては、例えば、ゴマ油、大豆油などが用いられ、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。

また、上記予防・治療薬は、例えば、緩衝剤（例えば、リン酸塩緩衝液、酢酸

ナトリウム緩衝液)、無痛化剤(例えば、塩化ベンザルコニウム、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、ベンジルアルコール、フェノールなど)、酸化防止剤などと配合してもよい。調製された注射液は通常、適当なアンプルに充填される。

このようにして得られる製剤は安全で低毒性であるので、例えば、ヒトや哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。

例えば、細胞膜における14273の量を増加させる化合物またはその塩の投与量は、投与対象、対象臓器、症状、投与方法などにより差異はあるが、経口投与の場合、一般的に例えば、糖尿病患者(60kgとして)においては、一日につき約0.1～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、糖尿病患者(60kgとして)においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

【0090】

(8) 14273に対する抗体を含有してなる医薬

14273に対する抗体の中和活性とは、14273の関与するシグナル伝達機能を不活性化する活性を意味する。従って、該抗体が中和活性を有する場合は、14273の関与するシグナル伝達、例えば、14273を介する細胞刺激活性を不活性化することができる。

したがって、14273に対する中和抗体は、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害(例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群)、癌(例えば、大腸癌)、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患の予

防・治療剤として用いることができる。

【0091】

(9) 本発明のアンチセンスDNAまたはs.i RNAを含有してなる医薬

本発明のアンチセンスDNAまたはs.i RNAは、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などの疾患の予防・治療剤として用いることができる。

例えば、該アンチセンスDNAまたはs.i RNAを用いる場合、該アンチセンスDNAを単独あるいはレトロウイルスペクター、アデノウイルスペクター、アデノウイルスアソシエーテッドウイルスペクターなどの適当なベクターに挿入した後、常套手段に従って実施することができる。該アンチセンスDNAまたはs.i RNAは、そのままで、あるいは摂取促進のために補助剤などの生理学的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与できる。

さらに、該アンチセンスDNAまたはs.i RNAは、組織や細胞における本発明のDNAの存在やその発現状況を調べるための診断用オリゴヌクレオチドプローブとして使用することもできる。

【0092】

(10) 本発明のDNA導入動物の作製

本発明は、外来性の本発明のDNA（以下、本発明の外来性DNAと略記する）またはその変異DNA（本発明の外来性変異DNAと略記する場合がある）を有する非ヒト哺乳動物を提供する。

すなわち、本発明は、

- [1] 本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物、
- [2] 非ヒト哺乳動物がゲッ歯動物である第[1]記載の動物、
- [3] ゲッ歯動物がマウスまたはラットである第[2]記載の動物、および

〔4〕本発明の外来性DNAまたはその変異DNAを含有し、哺乳動物において発現しうる組換えベクターを提供するものである。

本発明の外来性DNAまたはその変異DNAを有する非ヒト哺乳動物（以下、本発明のDNA転移動物と略記する）は、未受精卵、受精卵、精子およびその始原細胞を含む胚芽細胞などに対して、好ましくは、非ヒト哺乳動物の発生における胚発生の段階（さらに好ましくは、単細胞または受精卵細胞の段階でかつ一般に8細胞期以前）に、リン酸カルシウム法、電気パルス法、リポフェクション法、凝集法、マイクロインジェクション法、パーティクルガン法、DEAE-デキストラン法などにより目的とするDNAを転移することによって作出することができる。また、該DNA転移方法により、体細胞、生体の臓器、組織細胞などに目的とする本発明の外来性DNAを転移し、細胞培養、組織培養などに利用することもでき、さらに、これら細胞を上述の胚芽細胞と自体公知の細胞融合法により融合させることにより本発明のDNA転移動物を作出することもできる。

非ヒト哺乳動物としては、例えば、ウシ、ブタ、ヒツジ、ヤギ、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラットなどが用いられる。なかでも、病体動物モデル系の作成の面から個体発生および生物サイクルが比較的短く、また、繁殖が容易なゲッ歯動物、とりわけマウス（例えば、純系として、C57BL/6系統、DBA2系統など、交雑系として、B6C3F₁系統、CDF1系統、B6D2F₁系統、BALB/c系統、ICR系統など）またはラット（例えば、Wistar, SDなど）などが好ましい。

哺乳動物において発現しうる組換えベクターにおける「哺乳動物」としては、上記の非ヒト哺乳動物の他にヒトなどがあげられる。

【0093】

本発明の外来性DNAとは、非ヒト哺乳動物が本来有している本発明のDNAではなく、いったん哺乳動物から単離・抽出された本発明のDNAをいう。

本発明の変異DNAとしては、元の本発明のDNAの塩基配列に変異（例えば、突然変異など）が生じたもの、具体的には、塩基の付加、欠損、他の塩基への置換などが生じたDNAなどが用いられ、また、異常DNAも含まれる。

該異常DNAとしては、異常な14273を発現させるDNAを意味し、例え

ば、正常な14273の機能を抑制する14273を発現させるDNAなどが用いられる。

本発明の外来性DNAは、対象とする動物と同種あるいは異種のどちらの哺乳動物由来のものであってもよい。本発明のDNAを対象動物に転移させるにあたっては、該DNAを動物細胞で発現させうるプロモーターの下流に結合したDNAコンストラクトとして用いるのが一般に有利である。例えば、本発明のヒトDNAを転移させる場合、これと相同性が高い本発明のDNAを有する各種哺乳動物（例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど）由来のDNAを発現させうる各種プロモーターの下流に、本発明のヒトDNAを結合したDNAコンストラクト（例、ベクターなど）を対象哺乳動物の受精卵、例えば、マウス受精卵へマイクロインジェクションすることによって本発明のDNAを高発現するDNA転移哺乳動物を作出することができる。

【0094】

14273の発現ベクターとしては、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミド、 λ ファージなどのバクテリオファージ、モロニー白血病ウィルスなどのレトロウィルス、ワクシニアウィルスまたはバキュロウィルスなどの動物ウィルスなどが用いられる。なかでも、大腸菌由来のプラスミド、枯草菌由来のプラスミドまたは酵母由来のプラスミドなどが好ましく用いられる。

上記のDNA発現調節を行なうプロモーターとしては、例えば、①ウイルス（例、シミアンウイルス、サイトメガロウイルス、モロニー白血病ウイルス、JCウイルス、乳癌ウイルス、ポリオウイルスなど）に由来するDNAのプロモーター、②各種哺乳動物（ヒト、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど）由来のプロモーター、例えば、アルブミン、インスリンII、ウロプラキンII、エラスターゼ、エリスロポエチン、エンドセリン、筋クリアチンキナーゼ、グリア線維性酸性蛋白質、グルタチオンS-トランスフェラーゼ、血小板由来成長因子 β 、ケラチンK1, K10およびK14、コラーゲンI型およびII型、サイクリックAMP依存蛋白質キナーゼ β Iサブユニット、ジストロフィン、酒石酸抵抗性アルカリフォスファターゼ、心房ナトリウム利尿性

因子、内皮レセプターチロシンキナーゼ（一般にTie2と略される）、ナトリウムカリウムアデノシン3リン酸化酵素（Na, K-ATPase）、ニューロフィラメント軽鎖、メタロチオネインIおよびIIA、メタロプロテイナーゼ1組織インヒビター、MHCクラスI抗原（H-2L）、H-ras、レニン、ドーパミンβ-水酸化酵素、甲状腺ペルオキシダーゼ（TPO）、ペプチド鎖延長因子1 α （EF-1 α ）、 β アクチン、 α および β ミオシン重鎖、ミオシン軽鎖1および2、ミエリン基礎蛋白質、チログロブリン、Thy-1、免疫グロブリン、H鎖可変部（VNP）、血清アミロイドPコンポーネント、ミオグロビン、トロポニンC、平滑筋 α アクチン、プレプロエンケファリンA、バソプレシンなどのプロモーターなどが用いられる。なかでも、全身で高発現することが可能なサイトメガロウイルスプロモーター、ヒトペプチド鎖延長因子1 α （EF-1 α ）のプロモーター、ヒトおよびニワトリ β アクチンプロモーターなどが好適である。

上記ベクターは、DNA転移哺乳動物において目的とするメッセンジャーRNAの転写を終結する配列（一般にターミネーターと呼ばれる）を有していることが好ましく、例えば、ウイルス由来および各種哺乳動物由来の各DNAの配列を用いることができ、好ましくは、シミアンウイルスのSV40ターミネーターなどが用いられる。

【0095】

その他、目的とする外来性DNAをさらに高発現させる目的で各DNAのスプライシングシグナル、エンハンサー領域、真核DNAのイントロンの一部などをプロモーター領域の5'上流、プロモーター領域と翻訳領域間あるいは翻訳領域の3'下流に連結することも目的により可能である。

正常な14273の翻訳領域は、ヒトまたは各種哺乳動物（例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、ラット、マウスなど）由来の肝臓、腎臓、甲状腺細胞、線維芽細胞由来DNAおよび市販の各種ゲノムDNAライブラリーよりゲノムDNAの全てあるいは一部として、または肝臓、腎臓、甲状腺細胞、線維芽細胞由来RNAより公知の方法により調製された相補DNAを原料として取得することができる。また、外来性の異常DNAは、上記の細胞または組織

より得られた正常な14273の翻訳領域を点突然変異誘発法により変異した翻訳領域を作製することができる。

該翻訳領域は転移動物において発現しうるDNAコンストラクトとして、前記のプロモーターの下流および所望により転写終結部位の上流に連結させる通常のDNA工学的手法により作製することができる。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞のすべてに存在するように確保される。DNA転移後の作出動物の胚芽細胞において、本発明の外来性DNAが存在することは、作出動物の後代がすべて、その胚芽細胞および体細胞のすべてに本発明の外来性DNAを保持することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞のすべてに本発明の外来性DNAを有する。

本発明の外来性正常DNAを転移させた非ヒト哺乳動物は、交配により外来性DNAを安定に保持することを確認して、該DNA保有動物として通常の飼育環境で継代飼育することが出来る。

受精卵細胞段階における本発明の外来性DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに過剰に存在するように確保される。DNA転移後の作出動物の胚芽細胞において本発明の外来性DNAが過剰に存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫はその胚芽細胞および体細胞の全てに本発明の外来性DNAを過剰に有する。

導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを過剰に有するように繁殖継代することができる。

【0096】

本発明の正常DNAを有する非ヒト哺乳動物は、本発明の正常DNAが高発現させられており、内在性の正常DNAの機能を促進することにより最終的に14273の機能亢進症を発症することがあり、その病態モデル動物として利用することができる。例えば、本発明の正常DNA転移動物を用いて、14273の機

能亢進症や、14273が関連する疾患の病態機序の解明およびこれらの疾患の治療方法の検討を行なうことが可能である。

また、本発明の外来性正常DNAを転移させた哺乳動物は、遊離した14273の増加症状を有することから、14273に関連する疾患に対する治療薬のスクリーニング試験にも利用可能である。

一方、本発明の外来性異常DNAを有する非ヒト哺乳動物は、交配により外来性DNAを安定に保持することを確認して該DNA保有動物として通常の飼育環境で継代飼育することが出来る。さらに、目的とする外来DNAを前述のプラスミドに組み込んで原料として用いることができる。プロモーターとのDNAコンストラクトは、通常のDNA工学的手法によって作製することができる。受精卵細胞段階における本発明の異常DNAの転移は、対象哺乳動物の胚芽細胞および体細胞の全てに存在するよう確保される。DNA転移後の作出動物の胚芽細胞において本発明の異常DNAが存在することは、作出動物の子孫が全てその胚芽細胞および体細胞の全てに本発明の異常DNAを有することを意味する。本発明の外来性DNAを受け継いだこの種の動物の子孫は、その胚芽細胞および体細胞の全てに本発明の異常DNAを有する。導入DNAを相同染色体の両方に持つホモザイゴート動物を取得し、この雌雄の動物を交配することによりすべての子孫が該DNAを有するように繁殖継代することができる。

【0097】

本発明の異常DNAを有する非ヒト哺乳動物は、本発明の異常DNAが高発現させられており、内在性の正常DNAの機能を阻害することにより最終的に14273の機能不活性型不応症となることがあり、その病態モデル動物として利用することができる。例えば、本発明の異常DNA転移動物を用いて、14273の機能不活性型不応症の病態機序の解明およびこの疾患を治疗方法の検討を行なうことが可能である。

また、具体的な利用可能性としては、本発明の異常DNA高発現動物は、14273の機能不活性型不応症における本発明の異常14273による正常14273の機能阻害（dominant negative作用）を解明するモデルとなる。

また、本発明の外来異常DNAを転移させた哺乳動物は、遊離した14273

の増加症状を有することから、14273の機能不活性型不応症に対する治療薬スクリーニング試験にも利用可能である。

また、上記2種類の本発明のDNA転移動物のその他の利用可能性として、例えば、

①組織培養のための細胞源としての使用、

②本発明のDNA転移動物の組織中のDNAもしくはRNAを直接分析するか、またはDNAにより発現された14273を分析することによる、14273により特異的に発現あるいは活性化する14273との関連性についての解析、

③DNAを有する組織の細胞を標準組織培養技術により培養し、これらを使用して、一般に培養困難な組織からの細胞の機能の研究、

④上記③記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリーニング、および

⑤本発明の変異14273を単離精製およびその抗体作製などが考えられる。

さらに、本発明のDNA転移動物を用いて、14273の機能不活性型不応症などを含む、14273に関連する疾患の臨床症状を調べることができ、また、14273に関連する疾患モデルの各臓器におけるより詳細な病理学的所見が得られ、新しい治療方法の開発、さらには、該疾患による二次的疾患の研究および治療に貢献することができる。

また、本発明のDNA転移動物から各臓器を取り出し、細切後、トリプシンなどの蛋白質分解酵素により、遊離したDNA転移細胞の取得、その培養またはその培養細胞の系統化を行なうことが可能である。さらに、14273産生細胞の特定化、アポトーシス、分化あるいは増殖との関連性、またはそれらにおけるシグナル伝達機構を調べ、それらの異常を調べることなどができる、14273およびその作用解明のための有効な研究材料となる。

さらに、本発明のDNA転移動物を用いて、14273の機能不活性型不応症を含む、14273に関連する疾患の治療薬の開発を行なうために、上述の検査法および定量法などを用いて、有効で迅速な該疾患治療薬のスクリーニング法を提供することが可能となる。また、本発明のDNA転移動物または本発明の外来性DNA発現ベクターを用いて、14273が関連する疾患のDNA治療法を検

討、開発することが可能である。

【0098】

(11) ノックアウト動物

本発明は、本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞および本発明のDNA発現不全非ヒト哺乳動物を提供する。

すなわち、本発明は、

- [1] 本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞、
- [2] 該DNAがレポーター遺伝子（例、大腸菌由来のβ-ガラクトシダーゼ遺伝子）を導入することにより不活性化された第〔1〕項記載の胚幹細胞、
- [3] ネオマイシン耐性である第〔1〕項記載の胚幹細胞、
- [4] 非ヒト哺乳動物がゲッ歯動物である第〔1〕項記載の胚幹細胞、
- [5] ゲッ歯動物がマウスである第〔4〕項記載の胚幹細胞、
- [6] 本発明のDNAが不活性化された該DNA発現不全非ヒト哺乳動物、
- [7] 該DNAがレポーター遺伝子（例、大腸菌由来のβ-ガラクトシダーゼ遺伝子）を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうる第〔6〕項記載の非ヒト哺乳動物、
- 、
- [8] 非ヒト哺乳動物がゲッ歯動物である第〔6〕項記載の非ヒト哺乳動物、
- [9] ゲッ歯動物がマウスである第〔8〕項記載の非ヒト哺乳動物、および
- [10] 第〔7〕項記載の動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーター活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。

【0099】

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞とは、該非ヒト哺乳動物が有する本発明のDNAに人为的に変異を加えることにより、DNAの発現能を抑制するか、もしくは該DNAがコードしている14273の活性を実質的に喪失させることにより、DNAが実質的に14273の発現能を有さない（以下、本発明のノックアウトDNAと称することがある）非ヒト哺乳動物の胚幹細胞（以下、ES細胞と略記する）をいう。

非ヒト哺乳動物としては、前記と同様のものが用いられる。

本発明のDNAに人为的に変異を加える方法としては、例えば、遺伝子工学的手法により該DNA配列の一部又は全部の削除、他DNAを挿入または置換させることによって行なうことができる。これらの変異により、例えば、コドンの読み取り枠をずらしたり、プロモーターあるいはエキソンの機能を破壊することにより本発明のノックアウトDNAを作製すればよい。

【0100】

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞（以下、本発明のDNA不活性化ES細胞または本発明のノックアウトES細胞と略記する）の具体例としては、例えば、目的とする非ヒト哺乳動物が有する本発明のDNAを単離し、そのエキソン部分にネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子を代表とする薬剤耐性遺伝子、あるいはlacZ（ β -ガラクトシダーゼ遺伝子）、cat（クロラムフェニコールアセチルトランスフェラーゼ遺伝子）を代表とするレポーター遺伝子等を挿入することによりエキソンの機能を破壊するか、あるいはエキソン間のインtron部分に遺伝子の転写を終結させるDNA配列（例えば、polyA付加シグナルなど）を挿入し、完全なメッセンジャーRNAを合成できなくすることによって、結果的に遺伝子を破壊するように構築したDNA配列を有するDNA鎖（以下、ターゲッティングベクターと略記する）を、例えば相同組換え法により該動物の染色体に導入し、得られたES細胞について本発明のDNA上あるいはその近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析あるいはターゲッティングベクター上のDNA配列とターゲッティングベクター作製に使用した本発明のDNA以外の近傍領域のDNA配列をプライマーとしたPCR法により解析し、本発明のノックアウトES細胞を選別することにより得ることができる。

また、相同組換え法等により本発明のDNAを不活性化する元のES細胞としては、例えば、前述のような既に樹立されたものを用いてもよく、また公知EvansとKaufmanの方法に準じて新しく樹立したものでもよい。例えば、マウスのES細胞の場合、現在、一般的には129系のES細胞が使用されているが、免疫学的背景がはっきりしていないので、これに代わる純系で免疫学的に遺伝的背景が

明らかなES細胞を取得するなどの目的で例えば、C57BL/6マウスやC57BL/6の採卵数の少なさをDBA/2との交雑により改善したBDF1マウス（C57BL/6とDBA/2とのF₁）を用いて樹立したものなども良好に用いられる。BDF1マウスは、採卵数が多く、かつ、卵が丈夫であるという利点に加えて、C57BL/6マウスを背景に持つので、これを用いて得られたES細胞は病態モデルマウスを作出したとき、C57BL/6マウスとバッククロスすることでその遺伝的背景をC57BL/6マウスに代えることが可能である点で有利に用い得る。

また、ES細胞を樹立する場合、一般には受精後3.5日目の胚盤胞を使用するが、これ以外に8細胞期胚を採卵し胚盤胞まで培養して用いることにより効率よく多数の初期胚を取得することができる。

また、雌雄いずれのES細胞を用いてもよいが、通常雄のES細胞の方が生殖系列キメラを作出するのに都合が良い。また、煩雑な培養の手間を削減するためにもできるだけ早く雌雄の判別を行なうことが望ましい。

【0101】

ES細胞の雌雄の判定方法としては、例えば、PCR法によりY染色体上の性決定領域の遺伝子を增幅、検出する方法が、その1例としてあげることができる。この方法を使用すれば、従来、核型分析をするのに約10⁶個の細胞数を要していたのに対して、1コロニー程度のES細胞数（約50個）で済むので、培養初期におけるES細胞の第一次セレクションを雌雄の判別で行なうことが可能であり、早期に雄細胞の選定を可能にしたことにより培養初期の手間は大幅に削減できる。

また、第二次セレクションとしては、例えば、G-バンディング法による染色体数の確認等により行なうことができる。得られるES細胞の染色体数は正常数の100%が望ましいが、樹立の際の物理的操作等の関係上困難な場合は、ES細胞の遺伝子をノックアウトした後、正常細胞（例えば、マウスでは染色体数が2n=40である細胞）に再びクローニングすることが望ましい。

このようにして得られた胚幹細胞株は、通常その増殖性は大変良いが、個体発生できる能力を失いやすいので、注意深く継代培養することが必要である。例え

ば、S T O 繊維芽細胞のような適当なフィーダー細胞上でL I F (1~1000 U/ml) 存在下に炭酸ガス培養器内 (好ましくは、5%炭酸ガス、95%空気または5%酸素、5%炭酸ガス、90%空気) で約37℃で培養するなどの方法で培養し、継代時には、例えば、トリプシン/EDTA溶液 (通常0.001~0.5%トリプシン/0.1~5 mM EDTA、好ましくは約0.1%トリプシン/1 mM EDTA) 処理により単細胞化し、新たに用意したフィーダー細胞上に播種する方法などがとられる。このような継代は、通常1~3日毎に行なうが、この際に細胞の観察を行い、形態的に異常な細胞が見受けられた場合はその培養細胞は放棄することが望まれる。

E S 細胞は、適当な条件により、高密度に至るまで単層培養するか、または細胞集塊を形成するまで浮遊培養することにより、頭頂筋、内臓筋、心筋などの種々のタイプの細胞に分化させることが可能であり [M. J. Evans及びM. H. Kaufman, ネイチャー (Nature) 第292巻、154頁、1981年; G. R. Martin プロシードィングス・オブ・ナショナル・アカデミー・オブ・サイエンス・ユースエー (Proc. Natl. Acad. Sci. U.S.A.) 第78巻、7634頁、1981年; T. C. Doetschman ら、ジャーナル・オブ・エンブリオロジー・アンド・エクスペリメンタル・モルフォロジー、第87巻、27頁、1985年]、本発明のE S 細胞を分化させて得られる本発明のDNA発現不全細胞は、インビトロにおける14273または14273の細胞生物学的検討において有用である。

【0102】

本発明のDNA発現不全非ヒト哺乳動物は、該動物のmRNA量を公知方法を用いて測定して間接的にその発現量を比較することにより、正常動物と区別することが可能である。

該非ヒト哺乳動物としては、前記と同様のものが用いられる。

本発明のDNA発現不全非ヒト哺乳動物は、例えば、前述のようにして作製したターゲッティングベクターをマウス胚幹細胞またはマウス卵細胞に導入し、導入によりターゲッティングベクターの本発明のDNAが不活性化されたDNA配列が遺伝子相同組換えにより、マウス胚幹細胞またはマウス卵細胞の染色体上の本発明のDNAと入れ換わる相同組換えをさせることにより、本発明のDNAを

ノックアウトさせることができる。

本発明のDNAがノックアウトされた細胞は、本発明のDNA上またはその近傍のDNA配列をプローブとしたサザンハイブリダイゼーション解析またはターゲッティングベクター上のDNA配列と、ターゲッティングベクターに使用したマウス由来の本発明のDNA以外の近傍領域のDNA配列とをプライマーとしたPCR法による解析で判定することができる。非ヒト哺乳動物胚幹細胞を用いた場合は、遺伝子相同組換えにより、本発明のDNAが不活性化された細胞株をクローニングし、その細胞を適当な時期、例えば、8細胞期の非ヒト哺乳動物胚または胚盤胞に注入し、作製したキメラ胚を偽妊娠させた該非ヒト哺乳動物の子宮に移植する。作出された動物は正常な本発明のDNA座をもつ細胞と人為的に変異した本発明のDNA座をもつ細胞との両者から構成されるキメラ動物である。

該キメラ動物の生殖細胞の一部が変異した本発明のDNA座をもつ場合、このようなキメラ個体と正常個体を交配することにより得られた個体群より、全ての組織が人為的に変異を加えた本発明のDNA座をもつ細胞で構成された個体を、例えば、コートカラーの判定等により選別することにより得られる。このようにして得られた個体は、通常、14273のヘテロ発現不全個体であり、14273のヘテロ発現不全個体同志を交配し、それらの産仔から14273のホモ発現不全個体を得ることができる。

【0103】

卵細胞を使用する場合は、例えば、卵細胞核内にマイクロインジェクション法でDNA溶液を注入することによりターゲッティングベクターを染色体内に導入したトランスジェニック非ヒト哺乳動物を得ることができ、これらのトランスジェニック非ヒト哺乳動物に比べて、遺伝子相同組換えにより本発明のDNA座に変異のあるものを選択することにより得られる。

このようにして本発明のDNAがノックアウトされている個体は、交配により得られた動物個体も該DNAがノックアウトされていることを確認して通常の飼育環境で飼育継代を行なうことができる。

さらに、生殖系列の取得および保持についても常法に従えばよい。すなわち、該不活性化DNAの保有する雌雄の動物を交配することにより、該不活性化DNAを

相同染色体の両方に持つホモザイゴート動物を取得しうる。得られたホモザイゴート動物は、母親動物に対して、正常個体1、ホモザイゴート複数になるような状態で飼育することにより効率的に得ることができる。ヘテロザイゴート動物の雌雄を交配することにより、該不活性化DNAを有するホモザイゴートおよびヘテロザイゴート動物を繁殖継代する。

本発明のDNAが不活性化された非ヒト哺乳動物胚幹細胞は、本発明のDNA発現不全非ヒト哺乳動物を作出する上で、非常に有用である。

また、本発明のDNA発現不全非ヒト哺乳動物は、14273により誘導され得る種々の生物活性を欠失するため、14273の生物活性の不活性化を原因とする疾病的モデルとなり得るので、これらの疾病的原因究明及び治療法の検討に有用である。

【0104】

(11a) 本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニング方法

本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物のスクリーニングに用いることができる。

すなわち、本発明は、本発明のDNA発現不全非ヒト哺乳動物に試験化合物を投与し、該動物の変化を観察・測定することを特徴とする、本発明のDNAの欠損や損傷などに起因する疾病に対して治療・予防効果を有する化合物またはその塩のスクリーニング方法を提供する。

該スクリーニング方法において用いられる本発明のDNA発現不全非ヒト哺乳動物としては、前記と同様のものがあげられる。

試験化合物としては、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などがあげられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。

具体的には、本発明のDNA発現不全非ヒト哺乳動物を、試験化合物で処理し、無処理の対照動物と比較し、該動物の各器官、組織、疾病的症状などの変化を

指標として試験化合物の治療・予防効果を試験することができる。

試験動物を試験化合物で処理する方法としては、例えば、経口投与、静脈注射などが用いられ、試験動物の症状、試験化合物の性質などにあわせて適宜選択することができる。また、試験化合物の投与量は、投与方法、試験化合物の性質などにあわせて適宜選択することができる。

【0105】

該スクリーニング方法において、試験動物に試験化合物を投与した場合、該試験動物の血糖値や上記疾患症状が約10%以上、好ましくは約30%以上、より好ましくは約50%以上低下した場合、該試験化合物を上記の疾患に対して治療・予防効果を有する化合物として選択することができる。

該スクリーニング方法を用いて得られる化合物は、上記した試験化合物から選ばれた化合物であり、14273の欠損や損傷などによって引き起こされる疾患（例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質など）に対する安全で低毒性な治療・予防剤などの医薬として使用することができる。

また、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸（例、無機酸、有機酸など）や塩基（例、アルカリ金属など）などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸（例えは、塩酸、リン酸、臭化水素酸、硫酸など）との塩、あるいは有機酸（例えは、酢酸、ギ酸、プロピオン酸、マル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、藤酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など）との塩などが用いられる。

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記した14273とリガンドとの結合性を変化させる化合物を含有する医薬と同様にして製造することができる。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物（例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど）に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、該化合物を経口投与する場合、一般的に例えば、糖尿病患者（60kgとして）においては、一日につき約0.1～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、糖尿病患者（60kgとして）においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

【0106】

(11b) 本発明のDNAに対するプロモーターの活性を促進または阻害する化合物をスクリーニング方法

本発明は、本発明のDNA発現不全非ヒト哺乳動物に、試験化合物を投与し、レポーター遺伝子の発現を検出することを特徴とする本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供する。

上記スクリーニング方法において、本発明のDNA発現不全非ヒト哺乳動物としては、前記した本発明のDNA発現不全非ヒト哺乳動物の中でも、本発明のDNAがレポーター遺伝子を導入することにより不活性化され、該レポーター遺伝子が本発明のDNAに対するプロモーターの制御下で発現しうるものが用いられる。

試験化合物としては、前記と同様のものがあげられる。

レポーター遺伝子としては、前記と同様のものが用いられ、 β -ガラクトシダーゼ遺伝子 (l a c Z) 、可溶性アルカリフェオヌクターゼ遺伝子またはルシフェラーゼ遺伝子などが好適である。

本発明のDNAをレポーター遺伝子で置換された本発明のDNA発現不全非ヒト哺乳動物では、レポーター遺伝子が本発明のDNAに対するプロモーターの支配下に存在するので、レポーター遺伝子がコードする物質の発現をトレースすることにより、プロモーターの活性を検出することができる。

例えば、14273をコードするDNA領域の一部を大腸菌由来の β -ガラクトシダーゼ遺伝子 (l a c Z) で置換している場合、本来、14273の発現する組織で、14273の代わりに β -ガラクトシダーゼが発現する。従って、例えば、5-ブロモ-4-クロロ-3-インドリル- β -ガラクトピラノシド (X-gal) のような β -ガラクトシダーゼの基質となる試薬を用いて染色することにより、簡便に14273の動物生体内における発現状態を観察することができる。具体的には、14273欠損マウスまたはその組織切片をグルタルアルデヒドなどで固定し、リン酸緩衝生理食塩液 (PBS) で洗浄後、X-galを含む染色液で、室温または37°C付近で、約30分ないし1時間反応させた後、組織標本を1mM EDTA/PBS溶液で洗浄することによって、 β -ガラクトシダーゼ反応を停止させ、呈色を観察すればよい。また、常法に従い、l a c ZをコードするmRNAを検出してもよい。

上記スクリーニング方法を用いて得られる化合物またはその塩は、上記した試験化合物から選ばれた化合物であり、本発明のDNAに対するプロモーター活性を促進または阻害する化合物である。

該スクリーニング方法で得られた化合物は塩を形成していてもよく、該化合物の塩としては、生理学的に許容される酸（例、無機酸など）や塩基（例、有機酸など）などとの塩が用いられ、とりわけ生理学的に許容される酸付加塩が好ましい。この様な塩としては、例えば、無機酸（例えば、塩酸、リン酸、臭化水素酸、硫酸など）との塩、あるいは有機酸（例えば、酢酸、ギ酸、プロピオン酸、フマル酸、マレイン酸、コハク酸、酒石酸、クエン酸、リンゴ酸、亜酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸など）との塩などが用いられる。

【0107】

本発明のDNAに対するプロモーター活性を促進する化合物またはその塩は、中枢または末梢神経機能調節薬として有用である。

本発明のDNAに対するプロモーター活性を促進する化合物またはその塩は、14273の発現を促進し、14273の機能を促進することができるので、例えば、14273の機能不全に関連する疾患などの予防・治療薬などの医薬として有用である。

本発明のDNAに対するプロモーター活性を阻害する化合物またはその塩は、14273の発現を阻害し、14273の機能を阻害することができるので、例えば、14273の発現過多に関連する疾患などの予防・治療薬などの医薬として有用である。

14273の機能不全に関連する疾患としては、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などが挙げられる。

14273の過剰発現に起因する疾患としては、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、肥満症、下垂体機能障害（例えば、下垂体前葉機能低下症、下垂体性小人症、尿崩症、先端巨大症、Cushing病、高プロラクチン血症、抗利尿ホルモン不適合分泌症候群）、癌（例えば、大腸癌）、記憶学習障害、脾臓疲弊、低血糖症、インスリンアレルギー、脂肪毒性、脂肪萎縮、癌性悪液質などが挙げられる。

さらに、上記スクリーニングで得られた化合物から誘導される化合物も同様に用いることができる。

【0108】

該スクリーニング方法で得られた化合物またはその塩を含有する医薬は、前記

した14273またはその塩とリガンドとの結合性を変化させる化合物を含有する医薬と同様にして製造することができる。

このようにして得られる製剤は、安全で低毒性であるので、例えば、ヒトまたは哺乳動物（例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サルなど）に対して投与することができる。

該化合物またはその塩の投与量は、対象疾患、投与対象、投与ルートなどにより差異はあるが、例えば、本発明のDNAに対するプロモーター活性を促進する化合物を経口投与する場合、一般的に例えば、糖尿病患者（60kgとして）においては、一日につき約0.1～100mg、好ましくは約1.0～50mg、より好ましくは約1.0～20mgである。非経口的に投与する場合は、その1回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、糖尿病患者（60kgとして）においては、一日につき約0.01～30mg程度、好ましくは約0.1～20mg程度、より好ましくは約0.1～10mg程度を静脈注射により投与するのが好都合である。他の動物の場合も、60kg当たりに換算した量を投与することができる。

このように、本発明のDNA発現不全非ヒト哺乳動物は、本発明のDNAに対するプロモーターの活性を促進または阻害する化合物またはその塩をスクリーニングする上で極めて有用であり、本発明のDNA発現不全に起因する各種疾患の原因究明または予防・治療薬の開発に大きく貢献することができる。

また、14273のプロモーター領域を含有するDNAを使って、その下流に種々のタンパクをコードする遺伝子を連結し、これを動物の卵細胞に注入していわゆるトランスジェニック動物（遺伝子移入動物）を作成すれば、特異的にその14273を合成させ、その生体での作用を検討することも可能となる。さらに上記プロモーター部分に適当なレポータ遺伝子を結合させ、これが発現するような細胞株を樹立すれば、14273そのものの体内での産生能力を特異的に促進もしくは抑制する作用を持つ低分子化合物の探索系として使用できる。

【0109】

本明細書および図面において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号ある

いは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

D N A	: デオキシリボ核酸
c D N A	: 相補的デオキシリボ核酸
A	: アデニン
T	: チミン
G	: グアニン
C	: シトシン
R N A	: リボ核酸
m R N A	: メッセンジャーリボ核酸
d A T P	: デオキシアデノシン三リン酸
d T T P	: デオキシチミジン三リン酸
d G T P	: デオキシグアノシン三リン酸
d C T P	: デオキシシチジン三リン酸
A T P	: アデノシン三リン酸
E D T A	: エチレンジアミン四酢酸
S D S	: ドテシル硫酸ナトリウム

【0110】

G l y	: グリシン
A l a	: アラニン
V a l	: バリン
L e u	: ロイシン
I l e	: イソロイシン
S e r	: セリン
T h r	: スレオニン
C y s	: システイン
M e t	: メチオニン
G l u	: グルタミン酸

A s p	: アスパラギン酸
L y s	: リジン
A r g	: アルギニン
H i s	: ヒスチジン
P h e	: フェニルアラニン
T y r	: チロシン
T r p	: トリプトファン
P r o	: プロリン
A s n	: アスパラギン
G l n	: グルタミン
p G l u	: ピログルタミン酸
*	: 終止コドンに対応する
M e	: メチル基
E t	: エチル基
B u	: プチル基
P h	: フェニル基
T C	: チアゾリジン-4 (R) -カルボキサミド基

【0111】

また、本明細書中で繁用される置換基、保護基および試薬を下記の記号で表記する。

T o s	: p-トルエンスルフォニル
C H O	: ホルミル
B z l	: ベンジル
C l ₂ B z l	: 2, 6-ジクロロベンジル
B o m	: ベンジルオキシメチル
Z	: ベンジルオキシカルボニル
C l-Z	: 2-クロロベンジルオキシカルボニル
B r-Z	: 2-ブロモベンジルオキシカルボニル
B o c	: t-ブトキシカルボニル

D N P	: ジニトロフェノール
T r t	: トリチル
B u m	: t-ブトキシメチル
F m o c	: N-9-フルオレニルメトキシカルボニル
H O B t	: 1-ヒドロキシベンズトリアゾール
H O O B t	: 3, 4-ジヒドロ-3-ヒドロキシ-4-オキソ- 1, 2, 3-ベンゾトリアゾン
H O N B	: 1-ヒドロキシ-5-ノルボルネン-2, 3-ジカルボキシミド
D C C	: N, N' -ジシクロヘキシルカルボジイミド

【0112】

本明細書の配列表の配列番号は、以下の配列を示す。

配列番号： 1

ヒト由来14273のアミノ酸配列を示す。

配列番号： 2

ヒト由来14273をコードするcDNAの塩基配列を示す。

配列番号： 3

マウス由来14273のアミノ酸配列を示す。

配列番号： 4

マウス由来14273をコードするcDNAの塩基配列を示す。

配列番号： 5

実施例2におけるPCR反応で使用したプライマーの塩基配列を示す。

配列番号： 6

実施例2におけるPCR反応で使用したプライマーの塩基配列を示す。

配列番号： 7

実施例2におけるPCR反応で使用したプローブの塩基配列を示す。

【0113】**【実施例】**

以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。なお、大腸菌を用いての遺伝子操作は、モレキュラ

一・クローニング (Molecular cloning) に記載されている方法に従った。

【0114】

【実施例1】ヒトおよびマウス14273に対する脂肪酸の反応性の確認

CHO-K1細胞株は、特に記載が無い限り10%牛胎児血清(Invitrogen)を含むハムF-12培地(Invitrogen)を用いて培養した。トランスフェクションを行う前日に 10 cm^2 あたり 4.5×10^5 個の細胞を播き、5%CO₂濃度に調整されたCO₂培養器にて37℃で15時間以上培養した。トランスフェクションはLipofectamine試薬(Invitrogen)を用い、試薬添付の方法に準じて操作を行った。培養器に6-wellプレートを使用する場合は、以下のように行った。まず、1.5ml容チューブを2本用意し、それぞれにOpti-MEM-I培地(Invitrogen)を $100\mu\text{l}$ 分注した。次に、片方のチューブに発現ベクターを $1\mu\text{g}$ 、もう片方にLipofectamine試薬を $6\mu\text{l}$ 添加後、両者を混合し、20分間室温に静置した。この溶液にOpti-MEM-I培地を $800\mu\text{l}$ 加えたトランスフェクション用混合液を、あらかじめOpti-MEM-I培地を用いて洗浄したCHO-K1細胞に添加後、CO₂培養器にて6時間培養した。培養後の細胞は、PBS(Invitrogen)を用いてリノンスした後、0.05%トリプシン・EDTA溶液(Invitrogen)を用いて剥がし、遠心操作にて回収した。得られた細胞の数を測定し、培地 $100\mu\text{l}$ あたり 5×10^4 個の細胞が含まれるように希釈し、Black walled 96-well plate(Costar)に1穴あたり $100\mu\text{l}$ ずつ分注後、CO₂培養器にて一晩培養した。上記トランスフェクション操作にて一過性に受容体を発現したCHO-K1細胞に各種試験サンプルを添加し、この際の細胞内カルシウム濃度の変動をFLIPR(Molecular Device)を用いて測定した。FLIPRにて細胞内カルシウム濃度の変動を測定するために、以下の前処置を施した。まず、細胞に蛍光色素Fluo3-AM(DOJIN)を添加するため、あるいはFLIPRアッセイを行う直前に細胞を洗浄するためのアッセイバッファーを作成した。HBSS(Invitrogen)1000mlに1M HEPES(pH7.4)(DOJIN)20mlを加えた溶液(以下、

HBSS/HEPES溶液)に、プロベネシド(Sigma)710mgを1N NaOH 5mlに溶解後さらにHBSS/HEPES溶液5mlを加え混合した溶液10mlを添加し、この溶液をアッセイバッファーとした。次にFluor3-AM 50μgを21μl DMSO(DOJIN)に溶解し、さらに等量の20%プロロン酸(Molecular Probes)を加え混合後、105μlの牛胎児血清を添加した10.6mlのアッセイバッファーに加え、蛍光色素溶液を調製した。トランスフェクション処理を施したCHO-K1細胞の培地を除き、直ちに蛍光色素溶液を1穴あたり100μlずつ分注後、CO₂培養器にて1時間培養し、細胞に蛍光色素を取り込ませた。培養後の細胞は上記のアッセイバッファーを用いて洗浄した後、FLIPRにセットした。また、受容体発現CHO-K1細胞に添加する試験サンプルはアッセイバッファーを用いて調製し、同時にFLIPRにセットした。以上の前処置を施した後、FLIPRにて各種試験サンプル添加後の細胞内カルシウム濃度の変動を測定した。その結果、パルミトレイン酸(Palmitoleic acid)(図1)、リノール酸(linoleic acid)(図2)、γ-リノール酸(γ-linolenic acid)(図3)、アラキドン酸(arachidonic acid)(図4)、ドコサヘキサエン酸(docosahexaenoic acid, DHA)(図5)等を加えたときに、ヒトおよびマウス14273を発現するCHO-K1細胞が特異的に応答(細胞内カルシウム濃度の上昇)することが分かった。コントロールの発現ベクターのみを導入したCHO-K1細胞では、このような応答は見られなかった。すなわち、ヒトおよびマウス14273の内因性リガンドが脂肪酸であることが明らかになった。

【0115】

【実施例2】ヒト14273 mRNAの発現分布

mRNAの発現量の定量にはABI PRISM 7700 Sequence Detector(アプライドバイオシステムズ社)を用いた。発現量の定量に用いるプライマー[5'-GCTGTGCCATGCTTTAAC-3'(配列番号：5)、5'-CGCTGTGGATG TCTATTTGC-3'(配列番号：6)]とプローブ[5'-AGTTCATTCCAGTACCCCTCCATCAGTGG C-3'(配列番号：7)]は、ヒト型14273の塩基配列(配列番号：2)をもと

にABI PRISM Sequence Detector専用のソフトウェア Primer Express (アプライドバイオシステムズ社)を利用してデザインした。鑄型となるcDNAは、ヒト各種組織由来の total RNA (クロンテック社) 1 μgからランダムプライマーを用いて逆転写反応して合成したものを使用した。逆転写反応は逆転写酵素としてSuperScript II (GIBCO BRL社)を使用し、添付のプロトコールにしたがって行った。ABI PRISM 7700 Sequence Detectorの反応液はTaqMan Universal PCR Master Mix (アプライドバイオシステムズ社)を12.5 μl、各プライマーを0.9 μM、プローブを0.25 μM、cDNA溶液を混ぜ合わせ、蒸留水で25 μlとして調製した。ABI PRISM 7700 Sequence Detectorでの反応は、50℃で2分、95℃で10分の後、95℃ 15秒、60℃ 1分のサイクルを40回繰り返して行った。ヒト各種組織でのmRNAの発現分布を図2に示す。下垂体や脂肪組織や大腸で高い発現が見出された。

【0116】

【発明の効果】

14273の機能が脂肪酸の受容体であることが明らかになったことで、脂肪酸と14273、その部分ペプチドまたはその塩との結合性を変化させる化合物を効率良くスクリーニングすることができ、それによって見出される化合物は、糖尿病、肥満症、下垂体機能障害などの疾患に対する予防・治療薬として有用である。

【0117】

【配列表】

SEQUENCE LISTING

<110> Takeda Chemical Industries, Ltd.

<120> Novel Screening Method

<130> B03012

<160> 7

<210> 1

<211> 361

<212> PRT

<213> Human

<400> 1

Met Ser Pro Glu Cys Ala Arg Ala Ala Gly Asp Ala Pro Leu Arg Ser
 5 10 15
 Leu Glu Gln Ala Asn Arg Thr Arg Phe Pro Phe Phe Ser Asp Val Lys
 20 25 30
 Gly Asp His Arg Leu Val Leu Ala Ala Val Glu Thr Thr Val Leu Val
 35 40 45
 Leu Ile Phe Ala Val Ser Leu Leu Gly Asn Val Cys Ala Leu Val Leu
 50 55 60
 Val Ala Arg Arg Arg Arg Gly Ala Thr Ala Cys Leu Val Leu Asn
 65 70 75 80
 Leu Phe Cys Ala Asp Leu Leu Phe Ile Ser Ala Ile Pro Leu Val Leu
 85 90 95
 Ala Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Ala Cys His
 100 105 110
 Leu Leu Phe Tyr Val Met Thr Leu Ser Gly Ser Val Thr Ile Leu Thr
 115 120 125
 Leu Ala Ala Val Ser Leu Glu Arg Met Val Cys Ile Val His Leu Gln
 130 135 140
 Arg Gly Val Arg Gly Pro Gly Arg Arg Ala Arg Ala Val Leu Leu Ala
 145 150 155 160
 Leu Ile Trp Gly Tyr Ser Ala Val Ala Leu Pro Leu Cys Val Phe
 165 170 175
 Phe Arg Val Val Pro Gln Arg Leu Pro Gly Ala Asp Gln Glu Ile Ser
 180 185 190
 Ile Cys Thr Leu Ile Trp Pro Thr Ile Pro Gly Glu Ile Ser Trp Asp

195

200

205

Val Ser Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val

210

215

220

Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg

225

230

235

240

Leu Thr Val Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser

245

250

255

Gln Gln Asp Phe Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser

260

265

270

Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu

275

280

285

Ile Gln Asn Phe Lys Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe

290

295

300

Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu

305

310

315

320

Tyr Asn Met Thr Leu Cys Arg Asn Glu Trp Lys Lys Ile Phe Cys Cys

325

330

335

Phe Trp Phe Pro Glu Lys Gly Ala Ile Leu Thr Asp Thr Ser Val Lys

340

345

350

Arg Asn Asp Leu Ser Ile Ile Ser Gly

355

360

<210> 2

<211> 1083

<212> DNA

<213> Human

<400> 2

atgtccctg aatgcgcg ggcagcggc gacgcgcc tgcgcagcct ggagcaagcc 60

aaccgcaccc gctttccctt cttctccgac gtcaagggcg accaccggct ggtgctggcc 120
 gcggtgtgaga caaccgtgct ggtgctcatc tttcagtgt cgctgctggg caacgtgtgc 180
 gccctggtgc tggtgccgac ccgacgacgc cgcggcgca ctgcctgcct ggtactcaac 240
 ctcttcgtcg cggacctgct cttcatcagc gctatccctc tggtgctggc cgtgcgctgg 300
 actgaggcct ggctgctggg ccccgttgcc tgccacctgc tcttctacgt gatgaccctg 360
 agcggcagcg tcaccatcct cacgctggcc gcggtcagcc tggagcgcatt ggtgtgcattc 420
 gtgcacctgc agcgcggcgt gcggggtcct gggcggcgaa cgcggcagt gctgctggcg 480
 ctcatctggg gctattcggc ggtcgccgct ctgcctctt gcgtcttctt ccgagtcgtc 540
 ccgcaacggc tccccggcgc cgaccaggaa atttcgattt gcacactgat ttggcccacc 600
 attcctggag agatctcggt ggatgtctt tttgttactt tgaacttctt ggtgccagga 660
 ctggtcattt tggatcgatca ctccaaaatt ttacagatca caaaggcatc aaggaagagg 720
 ctcacggtaa gcctggccta ctcggagagc caccagatcc gcgtgtccca gcaggacttc 780
 cggctttcc gcaccctt ctcctcatg gtctccttct tcatcatgtg gagccccatc 840
 atcatcacca tcctcctcat cctgatccag aactcaagc aagacctggg catctggccg 900
 tccctttct tctgggtggt ggccttcaca tttgctaatt cagccctaaa ccccatcctc 960
 tacaacatga cactgtgcag gaatgagtgg aagaaaattt tttgctgctt ctggttccca 1020
 gaaaaggag ccatttaac agacacatct gtcaaaaagaa atgacttgc gattatttct 1080
 ggc 1083

<210> 3

<211> 361

<212> PRT

<213> Mouse

<400> 3

Met Ser Pro Glu Cys Ala Gln Thr Thr Gly Pro Gly Pro Ser His Thr

5 10 15

Leu Asp Gln Val Asn Arg Thr His Phe Pro Phe Phe Ser Asp Val Lys

20 25 30

Gly Asp His Arg Leu Val Leu Ser Val Val Glu Thr Thr Val Leu Gly

35 40 45

Leu Ile Phe Val Val Ser Leu Leu Gly Asn Val Cys Ala Leu Val Leu
 50 55 60
 Val Ala Arg Arg Arg Arg Gly Ala Thr Ala Ser Leu Val Leu Asn
 65 70 75 80
 Leu Phe Cys Ala Asp Leu Leu Phe Thr Ser Ala Ile Pro Leu Val Leu
 85 90 95
 Val Val Arg Trp Thr Glu Ala Trp Leu Leu Gly Pro Val Val Cys His
 100 105 110
 Leu Leu Phe Tyr Val Met Thr Met Ser Gly Ser Val Thr Ile Leu Thr
 115 120 125
 Leu Ala Ala Val Ser Leu Glu Arg Met Val Cys Ile Val Arg Leu Arg
 130 135 140
 Arg Gly Leu Ser Gly Pro Gly Arg Arg Thr Gln Ala Ala Leu Leu Ala
 145 150 155 160
 Phe Ile Trp Gly Tyr Ser Ala Leu Ala Leu Pro Leu Cys Ile Leu
 165 170 175
 Phe Arg Val Val Pro Gln Arg Leu Pro Gly Gly Asp Gln Glu Ile Pro
 180 185 190
 Ile Cys Thr Leu Asp Trp Pro Asn Arg Ile Gly Glu Ile Ser Trp Asp
 195 200 205
 Val Phe Phe Val Thr Leu Asn Phe Leu Val Pro Gly Leu Val Ile Val
 210 215 220
 Ile Ser Tyr Ser Lys Ile Leu Gln Ile Thr Lys Ala Ser Arg Lys Arg
 225 230 235 240
 Leu Thr Leu Ser Leu Ala Tyr Ser Glu Ser His Gln Ile Arg Val Ser
 245 250 255
 Gln Gln Asp Tyr Arg Leu Phe Arg Thr Leu Phe Leu Leu Met Val Ser
 260 265 270
 Phe Phe Ile Met Trp Ser Pro Ile Ile Ile Thr Ile Leu Leu Ile Leu

275

280

285

Ile Gln Asn Phe Arg Gln Asp Leu Val Ile Trp Pro Ser Leu Phe Phe

290

295

300

Trp Val Val Ala Phe Thr Phe Ala Asn Ser Ala Leu Asn Pro Ile Leu

305

310

315

320

Tyr Asn Met Ser Leu Phe Arg Asn Glu Trp Arg Lys Ile Phe Cys Cys

325

330

335

Phe Phe Phe Pro Glu Lys Gly Ala Ile Phe Thr Asp Thr Ser Val Arg

340

345

350

Arg Asn Asp Leu Ser Val Ile Ser Ser

355

360

<210> 4

<211> 1083

<212> DNA

<213> Mouse

<400> 4

atgtccctg	agtgtgcaca	gacgacgggc	cctggcccct	cgcacaccct	ggaccaagtc	60
aatcgacccc	acttcccttt	cttctcgat	gtcaaggcg	accaccggtt	ggtgttgagc	120
gtcgtggaga	ccaccgttct	ggggctcatc	tttgcgtct	cactgctggg	caacgtgtgt	180
gctctagtgc	tggtggcgcg	ccgtcgccgc	cgtggggcga	cagccagcct	ggtgctcaac	240
ctcttctgct	cggatttgct	cttcaccagc	gccatccctc	tagtgcgtgt	cgtgcgctgg	300
actgaggcct	ggctgttggg	gcccgctgtc	tgccacactgc	tcttctacgt	gatgacaatg	360
agcggcagcg	tcacgatcct	cacactggcc	gcggtcagcc	tggagcgcac	ggtgtgcac	420
gtgcgcctcc	ggcgccgctt	gagcggcccg	ggcggccgga	ctcaggcggc	actgctggct	480
ttcatatggg	tttactcgcc	gctcgccgc	ctgccccctct	gcatcttggtt	ccgcgtggtc	540
ccgcagcgcc	ttcccgccgg	ggaccaggaa	attccgattt	gcacattgga	ttggcccaac	600
cgcataaggag	aaatctcatg	ggatgtgttt	tttgcgtact	tgaacttcct	ggtgccggga	660
ctggtcattg	tgtcgttta	ctccaaaatt	ttacagatca	cgaaagcatc	gcggaagagg	720
cttacgctga	gcttggcata	ctctgagagc	caccagatcc	gagtgtccca	acaagactac	780

cgactttcc gcacgctctt cctgctcatg gtttcattct tcatacatgtg gagtcccatc 840
atcatcacca tcctcctcat ctgtatccaa aacttccggc aggacctggt catctggcca 900
tccctttct tctgggtggt ggccttcacg tttgccaaact ctgccctaaa ccccatactg 960
tacaacatgt cgctgttcag gaacgaatgg aggaagattt tttgctgctt ctttttcca 1020
gagaagggag ccattttac agacacgtct gtcaggcgaa atgacttgta ttttatttcc 1080
agc 1083
<210> 5
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<400> 5
gctgtggcat gctttaaac 20
<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<400> 6
cgctgtggat gtctattgc 20
<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<400> 7
agttcatttc cagtaccctc catcagtggc 30

【図面の簡単な説明】

【図1】パルミトレイン酸 (P a l m i t o l e i c a c i d) 30 μMを添加したときの細胞内Ca²⁺濃度の変化を調べた結果を示す。縦軸のCountsは細胞内Ca²⁺濃度を示す蛍光強度、横軸のTime (sec.)はサンプル添加後の時間経過 (秒)を示す。○はヒト14273発現CHO-K1細胞、△はマウス14273発現CHO-K1細胞、□は14273を発現していないコントロールのCHO-K1細胞を示す。

【図2】リノール酸 (l i n o l e i c a c i d) 30 μMを添加したときの細胞内Ca²⁺濃度の変化を調べた結果を示す。縦軸のCountsは細胞内Ca²⁺濃度を示す蛍光強度、横軸のTime (sec.)はサンプル添加後の時間経過 (秒)を示す。○は14273発現CHO-K1細胞、△はマウス14273発現CHO-K1細胞、□は14273を発現していないコントロールのCHO-K1細胞を示す。

【図3】γ-リノレン酸 (γ-l i n o l e n i c a c i d) 30 μMを添加したときの細胞内Ca²⁺濃度の変化を調べた結果を示す。縦軸のCountsは細胞内Ca²⁺濃度を示す蛍光強度、横軸のTime (sec.)はサンプル添加後の時間経過 (秒)を示す。○は14273発現CHO-K1細胞、△はマウス14273発現CHO-K1細胞、□は14273を発現していないコントロールのCHO-K1細胞を示す。

【図4】アラキドン酸 (a r a c h i d o n i c a c i d) 30 μMを添加したときの細胞内Ca²⁺濃度の変化を調べた結果を示す。縦軸のCountsは細胞内Ca²⁺濃度を示す蛍光強度、横軸のTime (sec.)はサンプル添加後の時間経過 (秒)を示す。○は14273発現CHO-K1細胞、△はマウス14273発現CHO-K1細胞、□は14273を発現していないコントロールのCHO-K1細胞を示す。

【図5】ドコサヘキサエン酸 (d o c o s a h e x a e n o i c a c i d, DHA) 30 μMを添加したときの細胞内Ca²⁺濃度の変化を調べた結果を示す。縦軸のCountsは細胞内Ca²⁺濃度を示す蛍光強度、横軸のTime (sec.)はサンプル添加後の時間経過 (秒)を示す。○は14273発現CHO-K1細胞、△はマウス14273発現CHO-K1細胞、□は14273

を発現していないコントロールのCHO-K1細胞を示す。

【図6】ヒト各種組織での14273mRNAの発現分布を示す。

【書類名】 図面

【図 1】

Palmitoleic acid

【図 2】

Linoleic acid

【図3】

 γ -Linolenic acid

【図4】

Arachidonic acid

【図 5】

Docosahexaenoic acid

【図 6】

【書類名】要約書

【要約】

【課題】アゴニスト／アンタゴニストのスクリーニング方法の提供。

【解決手段】配列番号：1 または配列番号：3 で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するG蛋白質共役型レセプター蛋白質またはその塩および脂肪酸を用いることを特徴とする該レセプター蛋白質またはその塩と脂肪酸との結合性を変化させる化合物またはその塩のスクリーニング方法などを提供する。

【選択図】なし

特願 2003-010001

出願人履歴情報

識別番号 [000002934]

1. 変更年月日 1992年 1月22日

[変更理由] 住所変更

住 所 大阪府大阪市中央区道修町四丁目1番1号
氏 名 武田薬品工業株式会社