Wrap-Up and Outlook

Lecture Graph Drawing Algorithms · 192.053

Martin Nöllenburg 26.06.2018

Goals and Requirements

Objectives: At the end of the course you will be able to...

- explain concepts, structures, and problem definitions
- understand the discussed algorithms, explain them intuitively, analyze them formally and prove their properties
- use graph drawing tools and libraries to create your own visualizations
- select and adapt appropriate graph drawing algorithms
- analyze new graph drawing problems and build abstract models
- develop and analyze efficient algorithms in these models

Layout Problem

Graph visualization problem

given: graph G = (V, E)

find: drawing Γ of G that

- complies with the given drawing conventions
- optimizes the given aesthetics
- satisfies the partial/local constraints

Quality Criteria for Graph Drawings

- 1) Drawing conventions, required properties, for example
 - straight-line edges
 - orthogonal edges (with 90° bends)
 - grid drawings
 - crossing-free

Quality Criteria for Graph Drawings

- 1) Drawing conventions, required properties
- 2) **Aesthetics** (to be optimized), for example:
 - number of crossing
 - number of bends
 - uniform edge length
 - area/length
 - angular resolution
 - symmetries
 - **.** . . .

3

Quality Criteria for Graph Drawings

- 1) Drawing conventions, required properties
- 2) **Aesthetics** (to be optimized)
- 3) Partial/local constraints, for example:
 - constraints on positions of some vertices
 - constrained relative positions of vertices
 - groups of vertices drawn close to each other

Summary – Mind Map aesthetics techniques graph classes algorithms (crossings divide & conquer e.g. Reingold/ force-based (trees) large angles decomposition planar max deg 4 dynamic progr. bends) series parallel Sugiyana framevok orea iterative directed graphs distances Canonical planar graphs , Ordering / edge lengths ILP) verlex distribution Exbitrary graphs in wemental topological softing algorithm network Mow Quad Trees

not complete!

Schnyder realizer

Oral Exams

Exam dates*:

- July 10
- September 18

Content:

- material discussed and presented in class
- textbooks/further reading helpful, but not required

Format:

- 15–20 minutes
- English or German
- \blacksquare counts for 70% of the grade (plus 30% from exercises)
- explain and analyze layout algorithms and problems
- aesthetics, applicability, comparisons, properties, limitations, proof ideas, . . .

* in exceptional cases individual exam date

Beyond-planar graphs

- Beyond-planar graphs
- Drawings with low visual complexity

- Beyond-planar graphs
- Drawings with low visual complexity
- Representations of large graphs

- Beyond-planar graphs
- Drawings with low visual complexity
- Representations of large graphs
- Layout of clustered graphs

- Beyond-planar graphs
- Drawings with low visual complexity
- Representations of large graphs
- Layout of clustered graphs
- Visibility representations

- Beyond-planar graphs
- Drawings with low visual complexity
- Representations of large graphs
- Layout of clustered graphs
- Visibility representations
- Dynamic graphs

More Graph Drawing

- Next week: exercise presentations
- September 15: optional submission (Game of Thrones / Math Genealogy) for GD contest

Please perform the lecture evaluation in TISS to give us (anonymous) feedback by June 29.

More Graph Drawing

- Next week: exercise presentations
- September 15: optional submission (Game of Thrones / Math Genealogy) for GD contest

Please perform the lecture evaluation in TISS to give us (anonymous) feedback by June 29.

Upcoming semesters

- 186.862 Seminar in Algorithms: Graphs and Geometry
- Topics for Master theses in Graph Drawing