Why.. Why?

Python and Data Science (Live Coding)

A. Richards

09.13.2017

- Why.. Why?
- nlp
- Demos
- Discussion and Wrap-up

Demos

Why Data Science?

Well because of the data and because of the science

- Data science means different things to different people
 - ullet Data engineering o data vis o predictive modeling
- Statistics, machine-learning, databases, web-development
- We are in an era of unprecedented data growth
 - And so few know how to effectively use data to gain insight

Demos

• Science is the proponent of truth through the communication of evidence

Why Data Science?

Well because of the data and because of the science

- Data science means different things to different people
 - Data engineering \rightarrow data vis \rightarrow predictive modeling
- Statistics, machine-learning, databases, web-development
- We are in an era of unprecedented data growth
 - And so few know how to effectively use data to gain insight

Demos

Science is the proponent of truth through the communication of evidence

There are jobs as well!

The essential data science toolkit

Subject area mastery

- SQL and noSQL databases
- Associative statistics and hypothesis testing
- Unsupervised and supervised learning
- Data visualization
- Data products

Programming mastery

Expert level proficiency in language that is useful for data science

Why Python?

- There are many languages of data science (Python, R,...)
- Ecosystem (NumPy, matplotlib, pandas)
- Readability, Flexibility
- Glue language
- Object-oriented and functional

- Conversational Agents
 - Siri, Cortana, Google Now, Alexa
 - Talking to your car
 - Communicating with robots
- Machine Translation
 - Google Translate
 - Google's Neural Machine Translation
- Speech Recognition, Speech Synthesis
- Lexical Semantics, Sentiment Analysis
- Dialogue Systems, Question Answering

NLP and Al

The ultimate goal of NLP is to the fill the gap how the humans communicate (natural language) and what the computer understands (machine language).

Why Deep Learning Needed in NLP

- It uses a rule-based approach that represents Words as 'One-Hot' encoded vectors.
- Traditional method focuses on syntactic representation instead of semantic representation.
- Bag of words classification model is unable to distinguish certain contexts.

http://www.datasciencecentral.com/profiles/blogs/overview-of-artificial-intelligence-and-role-of-natural-language and the state of th

Classical NLP

Deep Learning Output Sentiment Classification Translation Translation

blog.aylien.com

What is the meaning of this sentence?

I made her duck.

Challenges

Ambiguity

What does it mean when we say: 'I made her duck'

- I cooked waterfowl for her
- I cooked waterfowl belonging to her
- I created the (papier mache?) duck she owns
- I caused her to quickly lower her head or body
- I waved my magic wand and turned her into undifferentiated waterfowl

Other examples

- 'Court to try shooting defendant'
- 'Hospitals are sued by seven foot doctors'

This problem of determining which sense was meant by a specific word is formally known as word sense disambiguation

Other challenges include:

- Part of speech tagging
- Syntactic disambiguation (The I made her duck example)

Speech and Language Processing (Jurafsky and Martin)

Demo 1

Tutorial Example

Demo 2

Advanced Example

Overview

- Version control based workflow
- 2 Jupyter notebook
- Oata types (lists, arrays, data frames)
- EDA working with data frames, plotting
- Working with text (latent topics, clustering)
- O Data visualization

Why.. Why?

	- .
Week	Topic
0	Python workshop
1	Programming and SQL
2	Probability and Statistics
3	Linear Models
4	Supervised Learning
5	NLP, Business analytics
6	Unsupervised Learning
7	Break Week
8	Big Data / Data Engineering
9	Special Topics / Case Studies
9	Project
10	Project
11	Project
12	Career services and Special topics

There are also part-time courses and free meet-ups...

