

Università di Pisa

Progetto di Sistemi Subacquei:

Deep PU.R.P.L.E Wall-Following (PUffer Robotic Pool Levee Evaluation)

Navigation System

Professori: Candidati:

Andrea Caiti Franca Corradini

Riccardo Costanzi Ilaria Rosati

Marco Borraccino

SCOPO E STRUTTURA DEL PROGETTO

Scopo: implementazione tramite software Matlab di un AUV che effettui il pattugliamento delle pareti laterali di un bacino rettangolare di cui sono noti gli spigoli

Struttura del progetto:

- Fase di Inizializzazione
- EXTENDED KALMAN FILTER TD
- Implementazione Matlab del blocco Sistema di Navigazione
- Simulazioni e integrazione complessiva dei vari blocchi

Figura 1: template integrale Team C

FASE DI INIZIALIZZAZIONE

- Caratteristiche fisiche
- Sensori
- Segnali di interfaccia tra i vari blocchi

- Forma **sferica** (r = 0.285 m)
- Peso 100 *kg*
- Neutro ($\rho = 1030 \ kg/m^3$)
- Stabilità di peso

Figura 2: modello fisico di **DEEP PU.R.P.L.E (PUffer Robotic Pool Levee Evaluation)**

FASE DI INIZIALIZZAZIONE

- Caratteristiche fisiche
- Sensori
- Segnali di interfaccia tra i vari blocchi

SENSORE	VARIANZA σ^2	FREQUENZA
GPS	3 [m ²]	1Hz
Profondimetro	$0.2 \ [m^2]$	10 <i>Hz</i>
DVL	$0.012^{2} [(m/s)^{2}]$	5 <i>Hz</i>
AHRS	$0.0087 \ [rad^2] \ 0.0087 \ [rad^2] \ 0.0017 \ [rad^2]$ Roll Pitch Yaw	10 <i>Hz</i>
Sonar	$0.05 \ [m^2]$	2 <i>Hz</i>
Giroscopio	$2.5133 \cdot 10^{-6} [(rad/s)^2]$	10 <i>Hz</i>

FASE DI INIZIALIZZAZIONE

- Caratteristiche fisiche
- Sensori
- Segnali di interfaccia tra i vari blocchi

Figura 3: segnali di interfaccia provenienti da Environment and Sensor System e in uscita verso Controller e Mission Supervisor

EXTENDED KALMAN
FILTER TD:
per la stima della
posizione

EXTENDED KALMAN FILTER TD

$$\begin{cases} \overrightarrow{\eta_1^k} = \overrightarrow{\eta_1^{k-1}} + \Delta T J_{\left(\overrightarrow{\eta_2^{k-1}} + \overrightarrow{\omega_{\eta_2}^{k-1}}\right)} \left(\overrightarrow{v_1^{k-1}} + \overrightarrow{\omega_{v_1}^{k-1}} \right) \\ \overrightarrow{z^{k-1}} = \overrightarrow{\eta_1^{k-1}} + \overrightarrow{\omega_z^{k-1}} \end{cases}$$

Posizione Stimata (NED frame)

Orientazione (XYZ)

Velocità lineare Tempo di campionamento

$$\overrightarrow{\eta_1} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\overrightarrow{\eta_2} = egin{bmatrix} arphi \ heta \ \psi \end{bmatrix}$$

$$\overrightarrow{v_1}$$

$$\Delta T = 0.1 \text{ s}$$

Misure
Errore velocità lineare
Errore orientazione
Errore vettore delle misure
Matrice di rotazione

$$\overrightarrow{\overline{\omega_{v_1}}}$$
 $\overrightarrow{\overline{\omega_{\eta_2}}}$
 $\overrightarrow{\overline{\omega_{z}}}$
 $J(\overrightarrow{\eta_2})$

EKF **Predizione**

$$\overrightarrow{\widehat{\eta}_{1}^{k|k-1}} = f\left(\overrightarrow{\widehat{\eta}_{1}^{k-1|k-1}}, \overrightarrow{v_{1}^{k-1}}, \overrightarrow{\eta_{2}^{k-1}}, 0\right) = \overrightarrow{\widehat{\eta}_{1}^{k-1|k-1}} + \Delta T J_{\left(\overrightarrow{\eta_{2}^{k-1}}\right)} \overrightarrow{v_{1}^{k-1}}$$

$$P_{k|k-1} = F_{k-1} P_{k-1|k-1} F_{k-1}^{T} + L_{k-1} Q_{k} L_{k-1}^{T}$$

$$Q = diag(\sigma_{AHRS_{roll}}^2 \quad \sigma_{AHRS_{pitch}}^2 \quad \sigma_{AHRS_{yaw}}^2 \quad \sigma_{DVL}^2 \quad \sigma_{DVL}^2 \quad \sigma_{DVL}^2)$$

$$F_{k-1} = \left(\frac{df}{d\eta_1}\right) \underbrace{\frac{\overline{v_1}^{k-1}}{\widehat{\eta}_1^{k|k-1}}}_{\overrightarrow{\eta}_1^{k|k-1} = 0} L_{k-1} = \left(\frac{df}{d\omega}\right) \underbrace{\frac{\overline{v_1}^{k-1}}{\widehat{\eta}_1^{k|k-1}}}_{\overrightarrow{\eta}_1^{k|k-1} = 0}$$

EKF *Correzione*

$$\overrightarrow{e^k} = \overrightarrow{z^k} - \overrightarrow{h} \left(\overrightarrow{\eta}_1^{k|k-1}, J \right)$$

$$S_k = H_k P_{k|k-1} H_k^T + M_k R_k M_k^T$$

$$K_k = P_{k|k-1} H_k^T S_k^{-1}$$

$$\overrightarrow{\widehat{\eta}_{1}^{k|k}} = \overrightarrow{\widehat{\eta}_{1}^{k|k-1}} + K_{k}e_{k}$$

$$P_{k|k} = (I - K_{k}H_{k})P_{k|k-1}$$

$$R = diag(\sigma_{GPS}^2 \quad \sigma_{GPS}^2 \quad \sigma_{profondimetro}^2 \quad \sigma_{sonar}^2 \quad \sigma_{sonar}^2 \quad \sigma_{sonar}^2)$$

$$M_k = \frac{dh(\eta_1, J)}{d\omega_z} \bigg|_{\overline{\widehat{\eta}_1^{k|k-1}}} = I_{6x6}$$

$$H_k = \frac{d\overline{h}(\eta_1, J)}{d\eta} \bigg|_{\widehat{\eta}_{k|k-1}}$$

SCHEMA GENERALE Blocco Navigation System

SCHEMA GENERALE Filtro EKF TD

Figura 5: implementazione su Simulink del filtro EKF TD per la stima della posizione

Predizione - Misure virtuali - Correzione

Figura 6: funzioni di Predizione , Misura virtuale, Correzione e elaborazione della matrice di covarianza associata al rumore di misura R.

SCHEMA GENERALE Filtro EKF TD

Figura 5: implementazione su Simulink del filtro EKF TD per la stima della posizione

Blocco misure_vector

Figura 7: funzione di creazione del vettore delle misure

•
$$egin{aligned} \textit{GPS}_{(xNorth)} \ \textit{GPS}_{(yEast)} \ \textit{GPS}_{(flag)} \ \textit{depth}_{profondimetro} \ \textit{d}_{sonar_{prua}} \ \textit{d}_{sonar_{dx}} \ \textit{d}_{sonar_{sx}} \ \end{pmatrix}$$

Ultime misure provenienti dai sensori

flag_vect

- Un flag per ogni misura:
 - Flag=1 se la misura
 - è aggiornata e
 - non supera la soglia (caso sonar)
- Se Flag=0 misura ignorata nella fase correzione

Soglie sui sonar

- Soglia 1: La misura del sonar inferiore a tre volte la distanza AUV-parete.
- Soglia 2: La distanza tra il centro del fascio del sonar e gli spigoli del bacino è inferiore a 5 m.
- Soglia 3: Si ha variazione repentina della misura del sonar

Figura 8: esempio dei fasci conici dei sonar quando puntano verso uno spigolo

Figura 9: Fase di rotazione dell'AUV con fascio del sonar parallelo alla parete

SCHEMA GENERALE Filtro EKF TD

Figura 5: implementazione su Simulink del filtro EKF TD per la stima della posizione

Funzioni di ausilio

Figura 10: blocco di inizializzazione del filtro

Figura 11: blocchi per il calcolo delle matrici L, di rotazione J e di covarianza Q con i blocchi di ausilio su DVL e AHRS

SIMULAZIONI E VALIDAZIONE DEL SISTEMA INTEGRALE

Simulazione con dati di ricerca reali

• Esempio di miglioramento delle prestazioni con soglie sonar

• Simulazioni con DVL e AHRS non funzionanti

• Prestazioni del sistema

SIMULAZIONE CON DATI DI RICERCA

NO SONAR

Sensori disponibili

- GPS (in superficie)
- profondimetro
- DVL
- AHRS

Figura 13: confronto tra profondità stimata e dati provenienti dal profondimetro

Figure 12: confronto tra la traiettoria stimata dell'AUV e i dati del GPS con ellissoidi d'incertezza (semiassi pari **a tre volte la deviazione standard**)

30

yEast [m]

60

70

10

-10

20

SIMULAZIONE INTEGRALE SONAR

Figura 14: confronto flag di validità di misura in presenza o assenza della soglia sulla distanza

SIMULAZIONE INTEGRALE SONAR

Figura 15: confronto errori assoluti caso con e senza soglia 1 sui sonar

SIMULAZIONE INTEGRALE DVL e AHRS guasti

Figura 16: malfunzionamento DVL

Figura 17: malfunzionamento AHRS

SIMULAZIONE INTEGRALE DVL e AHRS guasti

Tempo di guasto di DVL e AHRS

 $t_{simulazione} \approx 15 secondi$

Tempo max guasto di DVL e AHRS

$$t_{max} = 5$$
 secondi

SIMULAZIONE INTEGRALE

Parete	Profondità	Distanza	Verso di	Orientazione	Velocità
iniziale		dalla parete	ispezione	relativa	
ВС	5 m	8 m	Orario	30°	0,4 m/s

Figura 18: pattugliamento del bacino

Figura 19: errore assoluto tra posizione stimata e reale

SIMULAZIONE INTEGRALE

Parete	Profondità	Distanza	Verso di	Orientazione	Velocità
iniziale		dalla parete	ispezione	relativa	
ВС	5 m	8 m	Orario	30°	0,4 m/s

Figura 20: confronto tra profondità reale e stimata

Figura 21: errore assoluto tra profondità stimata e reale

PRESTAZIONI DEL SISTEMA E CONCLUSIONI

Deviazione standard	Valore massimo	Sensori per la correzione
		001102110
	$\approx 0,23 m$	GPS (superficie)
σ_{xy}	\approx 0,07 m	Sonar (immersione)
σ_z	$\approx 0.05 m$	profondimetro

Componente	Errore
posizione	assoluto
stimata	massimo
X	
у	$\pm 0,40 m$
Z	$\pm 0, 10 m$

Tabella 2: deviazione standard massima della posizione e profondità stimata

Tabella 3: errore assoluto massimo di posizione e profondità stimata

Le prestazioni del sistema di navigazione sono adeguate ed in linea con le necessità del progetto

POSSIBILI SVILUPPI E MIGLIORAMENTI

AUMENTO DI STATO

1) Utilizzo della velocità stimata in ingresso al filtro

CONSIDERARE IL RUMORE DELL'AHRS

2a) Pesare l'azione correttiva dei sonar

$$R = diag(\sigma_{GPS}^2 \quad \sigma_{GPS}^2 \quad \sigma_{profondimetro}^2 \quad \textbf{\textit{K}} \cdot \sigma_{sonar}^2 \quad \textbf{\textit{K}} \cdot \sigma_{sonar}^2 \quad \textbf{\textit{K}} \cdot \sigma_{sonar}^2$$

2b) Considerare l'errore dell'AHRS nell'innovazione

$$S_k = H_k P_{k|k-1} H_k^T + M_k R_k M_k^T$$

$$M_k = \frac{dh(\eta_1, J)}{d\omega_z} \bigg|_{\widehat{\eta}_1^{k|k-1}}$$

$$\overrightarrow{\omega_{GPS}}_{(xNorth)}$$

$$\overrightarrow{\omega_{GPS}}_{(yEast)}$$

$$\overrightarrow{\omega_{depth_{profondimetro}}}$$

$$\overrightarrow{\omega_{dsonar_{prua}}}$$

$$\overrightarrow{\omega_{dsonar_{dx}}}$$

$$\overrightarrow{\omega_{dsonar_{sx}}}$$

$$\overrightarrow{\omega_{\eta_{2}}(1)}$$

$$\overrightarrow{\omega_{\eta_{2}}(2)}$$

$$\overrightarrow{\omega_{\eta_{2}}(3)}$$

SIMULAZIONE 3D

Contatti:

m.borraccino@studenti.unipi.it

i.rosati1@studenti.unipi.it

f.corradini@studenti.unipi.it