TD6: Cinétique chimique

Exercice 1 : DÉCOMPOSITION DE L'ANION PEROXODISULFATE

Les anions peroxodisulfate $S_2O_8^{\ 2-}$ sont instables en solution aqueuse car ils oxydent lentement l'eau en dioxygène.

1. Écrire l'équation de la réaction traduisant cette instabilité, sachant que des ions sulfate (SO₄²⁻) sont formés.

Pour étudier la cinétique de la réaction de décomposition des ions peroxodisulfate, on suit l'évolution d'une solution de peroxodisulfate de sodium Na₂S₂O₈ de concentration initiale $C_0 = 10.0 \,\mathrm{mmol}\,\ell^{-1}$. Le tableau ci-dessous donne la concentration C en ions $S_2O_8^{2-}$ en fonction du temps, à 80 °C.

t (min)	0	50	100	150	200	250
$C(t) \pmod{\ell^{-1}}$	10,0	7,80	6,05	4,72	3,68	2,86

- 2. Montrer que ces résultats sont compatibles avec une cinétique d'ordre 1.
- 3. Déterminer la valeur de la constante de vitesse à cette température.

Exercice 2 : DIMÉRISATION DU BUTADIÈNE

À température élevée et en phase gazeuse, le buta-1,3-diène se dimérise en 4-vinylcyclohexène suivant la réaction totale d'équation :

$$2 C_4 H_6(g) = C_8 H_{12}(g)$$

Afin d'étudier cette réaction, une certaine quantité de buta-1,3-diène est introduite dans un récipient de volume Vconstant, maintenu à température constante T=326 K. On mesure alors la pression partielle en butadiène p_B dans le récipient en fonction du temps.

$\overline{\mathrm{t(min)}}$	0	3,25	8,02	12,18	17,3	24,55	33,0	43,0	55,08	68,05	90,1	119
$p_B ext{ (bar)}$	0,843	0,807	0,756	0,715	0,670	0,615	0,565	0,520	0,465	0,423	0,366	0,311

- 1. Montrer, en utilisant la loi des gaz parfaits, que la connaissance de la pression initiale p_B et de la température T suffit pour calculer la concentration initiale C_B en buta-1,3-diène.
- 2. Montrer que les résultats sont compatibles avec une cinétique d'ordre 2.
- 3. Déterminer la valeur de la constante de vitesse à cette température.
- 4. Déterminer le temps de demi-réaction du système précédent.
- 5. On admet souvent qu'une réaction est pratiquement terminée lorsque au moins 99% du réactif limitant a été consommé. Déterminer la durée d'évolution du système précédent; exprimer cette durée en fonction du temps de demi-réaction.

Exercice 3 : Substitution sur le bromoéthane

On étudie, à 25°C, l'action d'une solution de soude diluée sur le bronoéthane; la réaction totale a pour équation :

$$CH_3CH_2Br + OH^- \rightleftharpoons CH_3CH_2OH + Br^-$$

On utilise des mélanges steechiométriques en bromoéthane et en ion hydroxyde. Soit C_0 la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de C_0 .

$C_0 \pmod{\ell^{-1}}$	10	25	50	75	100
$\tau_{1/2} \text{ (min)}$	1100	445	220	150	110

- 1. Démontrer que ces données sont compatibles avec une réaction d'ordre partiel 1 par rapport à chacun des réactifs.
- 2. Déterminer la constante de vitesse de la réaction.

Exercice 4 : Chlorure d'hydrogène et cyclohexène

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction: $C_6H_{10} + HCl \longrightarrow C_6H_{11}Cl$ schématisée par : $A + B \longrightarrow C$. On réalise une série d'expériences à 25°C, où l'on mesure la vitesse initiale v_0 de la réaction en fonction des concentrations molaires initiales $[A]_0$ en cyclohexène et $[B]_0$ en chlorure d'hydrogène dans le milieu réactionnel. Le volume du mélange est constant et égal à 1 L. Les résultats sont rassemblés dans le tableau ci dessous :

Expérience	1	2	3	4
$ \begin{array}{c} \hline{(A)_0 \ (\text{mol} \ \ell^{-1})} \\ [B]_0 \ (\text{mol} \ \ell^{-1}) \\ v_0 \ (10^{-9} \ \text{mol} \ \text{s}^{-1}) \end{array} $	0,470 $0,235$ $15,7$	0,470 $0,328$ $30,6$	0,470 0,448 57,1	0,313 $0,448$ $38,0$

- 1. On désigne par p et q les ordres partiels initiaux de la réaction par rapport au cyclohexane (A) et au chlorure d'hydrogène (B). Exprimer la loi de vitesse initiale de cette réaction en fonction de p et q.
- 2. Déterminer p.
- 3. Déterminer q, en déduire l'ordre global de la réaction.
- 4. Calculer la constante cinétique de la réaction.
- 5. Dans le cas d'un mélange stœchiométrique en A et B, déterminer la loi de vitesse initiale de la réaction en fonction de [A].

Exercice 5 : RÉDUCTION DU MERCURE

On considère la réaction suivante : $2 \operatorname{Hg}^{2+} + 2 \operatorname{Fe}^{2+} \longrightarrow \operatorname{Hg}_{2}^{2+} + 2 \operatorname{Fe}^{3+}$

On suit deux expériences, à 80°C par spectrophotométrie, qui donnent, avec $\alpha =$

Expérience 1 : $[Fe^{2+}]_0 = 0,100 \text{ mol } \ell^{-1} \text{ et } [Hg^{2+}]_0 = 0,100 \text{ mol } \ell^{-1}$

$t (10^5 \text{ s})$	0,0	1,0	2,0	3,0	∞
$\alpha(t)$	1,000	0,500	0,333	0,250	0,000

Expérience 2 : $[\mathrm{Fe}^{2+}]_0 = 0{,}100\,\mathrm{mol}\,\ell^{-1}$ et $[\mathrm{Hg}^{2+}]_0 = 0{,}001\,\mathrm{mol}\,\ell^{-1}$

$t (10^5 \text{ s})$	0.0	0.5	1.0	1.5	2.0	∞
$\alpha(t)$	1,000	0,585	0,348	0,205	0,122	0,000

- 1. On considère que la réaction est d'ordre partiel p par rapport à Fe^{2+} et q par rapport à Hg^{2+} . Écrire l'expression de la vitesse de la réaction.
- 2. Déterminer l'ordre global de la réaction à l'aide de l'expérience 1.
- 3. Déterminer q à l'aide de l'expérience 2. En déduire p.
- 4. Déterminer la constante de vitesse de la réaction.

Exercice 6 : DISMUTATION DE L'EAU OXYGÉNÉE

L'eau oxygénée H₂O₂ se dismute naturellement suivant la réaction :

$$\mathrm{H_2O_2} \longrightarrow \mathrm{H_2O} + \frac{1}{2}\mathrm{O_2}.$$

Sur le graphique ci-contre, on trace l'évolution de $\ln([H_2O_2])$ en fonction du temps.

réaction.

Déterminer l'ordre de la réaction ainsi que la constante de vitesse k de la

Exercice 7 : MESURE DE L'ÉNERGIE D'ACTIVATION D'UNE RÉACTION

La réaction $2N_2O_5 \longrightarrow 4NO_2 + O_2$ est d'ordre 1. On mesure la constante de vitesse k pour différentes températures :

$T(^{\circ}C)$	25	35	55	65
$k(\times 10^{-5} \mathrm{s}^{-1})$	1,72	6,65	75	24

- 1. Rappeler la loi d'Arrhénius
- 2. À partir de l'ajustement des données expérimentales par une fonction bien choisie, déterminer l'énergie d'activation E_a de la réaction.
- 3. En déduire la constante de vitesse pour T = 30 °C.