

Polar: $z = |z|e^{j\varphi}$

Euler: $e^{jx} = \cos x + j\sin x \rightarrow \cos x = \frac{e^{jx} + e^{-jx}}{2} \rightarrow \sin x = \frac{e^{jx} - e^{-jx}}{2}$

Continuous / Discrete Time Fourier Transform

Inverse CFT: $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$

Inverse DTFT: $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

DTFT: $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{j\omega n}$

CFT: $\int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$

Window shape and length M tradeoffs ringing and cutoff sharpness

E.g. ideal linear phase LPF: $H_{lp} = \begin{cases} e^{-j\omega\alpha}, & |\omega| < \omega_c, \alpha \in R \\ 0, & \omega_c < |\omega| < \pi \end{cases}$ Generalised linear phase: $\omega \alpha + \beta$ Type 1/2 FIR Linear Phase System Symmetric causal FIR $h[n] = \begin{cases} 0, & n < 0, n > M \\ h[M-n], & 0 \le n \le M \end{cases}$ even M: $H(e^{j\omega})=\sum_{n=0}^{M}h[n]e^{-j\omega n}=e^{-j\omega M/2}\sum_{k=0}^{M/2}a[k]cos\omega k$ Where a[0] = h[M/2] and a[k] = 2h[(M/2) - k]L 9 - 12 Delay $\alpha = M/2$ (an integer) odd M: $H(e^{j\omega})\sum_{n=0}^{M}h[n]e^{-j\omega n}=$ $e^{-j\omega M/2}\sum_{k=0}^{(M+1)/2}b[k]\cos\left[\omega\left(k-\frac{1}{2}\right)\right]$ where b[k] = 2h[(M+1)/2 - k)](b) Delay $\alpha = M/2$ (an integer + half) Not Suitable for HPF and BSF because $H(e^{j\omega})=0$ 0 < n < Motherwise Picking M and β for Kaiser Windo 0.1102(A - 8.7),A > 50 $\beta = \{0.5842(A-21)^{0.4} + 0.07886(A-21), 21 \le A \le 50\}$ A < 21 β controls shape of window: If ${m B}={m 0}$, Kaiser window is rectangular window If $oldsymbol{eta}$ increases, Kaiser window looks more like Gaussian $\mathbf{M} = \frac{A - c}{2.285\Delta\omega}$ $A = -20 \log_{10} \delta$ A - 8 For LP: $\Delta \omega =$ For HP: $\Delta \omega =$ Finding magnitude: $E.g.0.95 < |H(e^{j\omega})| < 1.05$ Max + Min = 0.95 + 1.05Maanitude = We wish to use Kaiser window method to design a FIR filter with generalized linear phase that meets the following specifications: Mag = 1 $0.95 < |H(e^{j\omega})| < 1.05 H$ $0 \le |\omega| \le 0.2\pi$ $\mathsf{Mag} = \mathsf{O} \left| H(e^{j\omega}) \right| < 0.1 \,\mathsf{L}$ $0.3\pi \leq |\omega| \leq 0.6\pi$ $Mag = 1 \ 0.95 < |H(e^{j\omega})| < 1.05 \ H$ $0.7\pi \leq |\omega| \leq \pi$ Find the Kaiser window parameters β and M so that the resulting windowed filter satisfies the above criteria. Justify your choice of δ and Δw . What is the frequency response of the ideal filter? $\delta = 0.05 \Rightarrow$ because $\delta = 0.05$ is stricter than $\delta = 0.1$ in stopband $A = -20\log_{10}0.05 = 26.0206$ $\beta = 0.5842(A - 21)^{0.4} + 0.07886(A - 21) = 1.5099$ $\Delta\omega_1 = 0.3\pi - 0.2\pi = 0.1\pi$ and $\Delta\omega_2 = 0.7\pi - 0.6\pi = 0.1\pi$ Statistical Chp 3 - Random walk $x_n: x_N = x_0 + \sum_{n=1}^N z_n$ $M = \frac{A-8}{1-A-1} = 25.1 \rightarrow \text{ round up } M = 26$ 2.285Δω x_0 : initial position $x_n = x_{n-1} + z_n$ for $n \ge 1$ 0, $=\binom{n}{(n+k)/2}\frac{1}{2n}$ Markov Process: Random process is Markov if future and past $0 \le |\omega| \le 0.25\pi$ conditionally independent given 0, $0.25\pi \le |\omega| \le 0.65\pi$ $0.65\pi \le |\omega| \le \pi$ Markov Chain: Discrete Fourier Transform (DFT) $p(x_1,\ldots,x_{n-1},x_{n+1},\ldots,x_N|x_N)$ - Sampled version of DTFT with sampling period $2\pi/N$ - Can be computed in N log N operations with FFT x_n : state at timept n - Efficiently compute DTFT and convolutions Transition Matrix: rows of T sum to 1 Markov Chain Properties **Property (1):** $\pi_{n+1} = \pi_n T$ where π_n is a row vector & $\pi_n(i) = p(x_n = s_i)$ $\pi_{n+1}(j) = p(x_{n+1} = s_i)$ Property (2): Stationary Distribution

 $H(e^{j\omega}) = e^{-j\omega n_d} \rightarrow |H(e^{j\omega})| = 1 \rightarrow angle = -\omega n_d$

use the Haar transform, where $g=g_0=\left[\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]$, $h=\left[-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]$ and $h_0=\left[\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right]$ +(EWT) + Circular Shift By 1 + DWT + DWT + Invest Shift 1 Consider Shaft Sty 2 | COVT | + | EOVT | + | Invest Shaft 2 | + $\rightarrow h \rightarrow \downarrow 2 \rightarrow h_0 \rightarrow 1$ Required coefficient 1 = [116 6 12 120] → shift right Required coefficient 2 = $\begin{bmatrix} 116 & 6 & 12 & 120 \end{bmatrix} * \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \rightarrow \downarrow 2$ $=\sqrt{2}[55 - 54]$ Required coefficient $3i = \sqrt{2}[55 \ 0 \ -54 \ 0]$ Final Required coefficient $3 = \sqrt{2}[55 \ 0 \ -54 \ 0] * \left[\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right]$ $= \sqrt{2}\sqrt{2}[27.5 - 27.5 - 27 \ 27]$ $= [55 - 55 - 54 \ 54]$ Required coefficient 4 = [116 6 12 120] * $\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right] \rightarrow \downarrow 2$ = $\sqrt{2} \left[\frac{116+6}{2}, \frac{12+120}{2}\right]$ = $\sqrt{2}[61 66]$ Required coefficient $5 = \sqrt{2} \begin{bmatrix} 61 & 66 \end{bmatrix} * \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \rightarrow \downarrow 2$ $=\sqrt{2}\sqrt{2}\left[\frac{61-66}{}\right]$ Required coefficient $6 = \begin{bmatrix} -5 & 0 \end{bmatrix} * \begin{bmatrix} \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \end{bmatrix}$ $=\sqrt{2}[-2.5 \ 2.5]$ Required coefficient $7 = \sqrt{2} \begin{bmatrix} 61 & 66 \end{bmatrix} * \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \rightarrow \downarrow 2$ $=\sqrt{2}\sqrt{2}\left[\frac{61+66}{2}\right]$ = [127]Required coefficient 8 = $\begin{bmatrix} 127 & 0 \end{bmatrix} * \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$ $=\sqrt{2}[63.5 \ 63.5]$ Required coefficient $9i = \sqrt{2}[-2.5 \ 2.5] + \sqrt{2}[63.5 \ 63.5]$ $=\sqrt{2}[61 \ 66]$ Final Required coefficient $9 = \sqrt{2} \begin{bmatrix} 61 & 0 & 66 & 0 \end{bmatrix} * \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \end{bmatrix}$ $=\sqrt{2}\sqrt{2}[30.5 \ 30.5 \ 33 \ 33]$ $= [61 \ 61 \ 66 \ 66]$ Required coefficient $10i = [55 - 55 - 54 \ 54] + [61 \ 61 \ 66 \ 66]$ = [116 6 12 120] Final Required coefficient $10 = [6 \ 12 \ 120 \ 116]$ $z_n = \pm 1$ with equal probability & Independent and Identically Distributed (i.i.d.) $p(x_n = k) = p\left(a = \frac{n+k}{2} \text{ heads in independent coin tosses}\right)$ $T(x_n, x_{n+1}) =$ Fo.9 0.075 0.025 0.15 0.8 0.05 0.25 0.25 0.5 $= p(x_1, ..., x_{n-1}|x_n)p(x_{n+1}, ... x_N|x_n)$ 3 state Markov chain example

 $\pi_{n+1} = \pi_n T \rightarrow \pi_{n+2} = \pi_{n+1} T = \pi_n T^2 \rightarrow ... \rightarrow \boxed{\pi_{n+k} = \pi_n T^k}$

Once we reach π^* , distribution of the state stays constant

Eigenvector (π^*): If $\pi^* = \pi^* T$, then π^* is stationary distri. of T where $\pi^* = 1$.

fundamental theorem applies & T has a unique stationary distribution.

(2) Random walk: x_n does not satisfy the Fundamental Theorem. \rightarrow $p(x_{n0} = n_0 + 1) = 0$ (e.g., at time 5, there is zero probability of $x_5 = 6$).

E.g. (does not satisfy): (1) identity matrix: no unique stationary distribution.

Fundamental Theorem of Markov Chain Satisfy: If all entries in $T^n > 0$ for all $n \ge 1$,

Wavelet Consider one cycle of the Spincycle transform illustrated. Suppose $x = [6 \ 12]$

120 116]. What are the coefficients at location (a)-(j) in the spincycle, assuming we

