计算机体系结构第三次作业

卢雨轩 19071125

2021年10月8日

3-14 假设在一个采用组相联映像方式的 cache 中,主存由 B_0 B_7 共 8 块组成,cache 有 2 组,每组 2 块,每块的大小为 16B,采用 LFU 块替换算法。在一个程序执行过程中一次访问这个 cache 的块地址流如下:

6,2,4,1,4,6,3,0,4,5,7,3

(1) 写出主存地址的格式,并标出各字段的长度。

|--|

(2) 写出 cache 地址的格式,并标出各字段的长度。

(3) 画出主存与 cache 之间各个块的映像对应关系。

(4) 如果 cache 的各个块号为 C_0 、 C_1 、 C_2 和 C_3 ,列出程序执行过程中 Cache 的块地址流情况。

主存块地址执行顺序	6	2	4	1	4	6	3	0	4	5	7	3
C_0			4*	4	4*	4	4	4	4*	4	4	4
C_1				1*	1	1	1	0*	0	5*	5	5
C_2	6*	6	6	6	6	6*	6	6	6	6	7*	7
C_3		2*	2	2	2	2	3*	3	3	3	3	3*
操作	装	装	装	装	命	命	替	替	命	替	替	命
17×11-	λ	λ	λ	λ	中	中	换	换	中	换	换	中

(5) 如果采用 FIFO 替换算法, 计算 cache 的块命中率。

主存块地址执行顺序	6	2	4	1	4	6	3	0	4	5	7	3
C_0			4*	4	4*	4	4	0*	0	5*	5	5
C_1				1*	1	1	1	1	4*	4	4	4
C_2	6*	6	6	6	6	6*	3*	3	3	3	3	3*
C_3		2*	2	2	2	2	2	2	2	2	7*	7
操作	装	装	装	装	命	命	替	替	替	替	替	命
3米1上	λ	λ	λ	λ	中	中	换	换	换	换	换	中

命中率 = $\frac{3}{12}$ = 0.25

- (6) 采用 LFU 替换算法, 计算 cache 的块命中率。命中率 = $\frac{4}{12}$ = 0.33
- 3-16 假设机器的时钟周期为 10 毫微秒, cache 失效的访存时间为 20 个时钟周期。回答以下问题:
 - (1) 假设失效率为 0.05,忽略写操作时的其他延迟,求机器的平均访存时间。 $T_0 = 0.95 \times 1 + 0.05 \times 20 = 1.95 \text{(cycles)} = 19.5 \text{ns}$
 - (2) 假设通过增加 cache 容量使失效率降低到 0.03, 但使得 cache 命中时的访问时间增加到了 1.2 时钟周期,指出这样的改动设计是否合适?

$$T_1 = 0.97 \times 1.2 + 0.03 \times 20 \approx 1.76 \text{(cycles)} = 17.6 \text{ns}$$
可以缩短平均访问时间,改动合适。

(3) 如果时钟周期取决于 cache 访问时间(也就是采用延长时钟周期的方法),上述改动设计是否合适?

不合适,会让计算密集任务显著减慢。