## Лабораторная работа №1

# Алгоритмы растрирования

#### Задание 1

В файле simple.cpp приведена простейшая windows-программа отображающая горизонтальный отрезок. Необходимо доработать программу, реализовав в виде отдельной функции алгоритм Брезенхема для отображения отрезка с заданными координатами концов. При реализации алгоритма для управления состоянием пикселов разрешается использовать только функцию SetPixel.

В качестве теста корректности разработанной функции программа должна быть способна отображать

 $\circ$  звездочку с заданным количеством лучей (*N*) (см. пример на рисунке для *N*=10);



- $\circ$  набор из N отрезков со случайными координатами концов;
- о отрезок с заданными координатами.

Режим работы и значения параметров должны передаваться в программу в командной строке.

#### Задание 2

Реализуйте в простейшей windows-программе алгоритм заполнения многоугольников YX в виде функции FillPolygon(), воспринимающей в качестве параметров массив вершин многоугольника, цвет внутренности и цвет границы многоугольника.

Программа должна работать в двух режимах:

- о визуализации двух многоугольников
  - о выпуклый с 7 вершинами;
  - о невыпуклый с 10 вершинами;
- о последовательной визуализации многоугольников, описание которых считывается программой из внешнего текстового файла, указываемого в командной строке. Файл с описаниями многоугольников имеет следующий формат.

| / />                                                |
|-----------------------------------------------------|
| $< x_1 > < y_1 >$                                   |
| < <i>x</i> <sub>2</sub> > < <i>y</i> <sub>2</sub> > |
| •••                                                 |
| $<\chi_N><\chi_N>$                                  |
| < <i>K</i> >                                        |
| $< x_1 > < y_1 >$                                   |
| $< x_2 > < y_2 >$                                   |
| • • •                                               |
| $<\chi_K><\chi_K>$                                  |
|                                                     |

Здесь N, K — количество вершин в соответствующих многоугольниках,  $x_i, y_i$  — координаты вершин многоугольников. В файле может содержаться произвольное количество описаний многоугольников. Количество вершин в многоугольниках не может превосходить 500.

### Алгоритм ҮХ

- 1. Для каждой стороны многоугольника вычислить все точки пересечения со строками развертки, координаты *x*, *y* каждой точки пересечения занести в список.
- 2. Упорядочить список таким образом, чтобы точка  $(x_1, y_1)$  предшествовала бы точке  $(x_2, y_2)$  тогда и только тогда, когда  $y_1 > y_2$  и  $x_1 < x_2$ .
- 3. Произвести заполнение строка за строкой, отображая для каждой строки развертки уотрезки, ограниченные точками  $(x_{2k-1}, y)$  и  $(x_{2k}, y)$ , где k = 1, ..., K, K— половина числа пересечений.