k-Means-Clustering mit Manhattan-Distanz

Einführung

In dieser Übung wenden Sie den k-Means-Clustering-Algorithmus an, um eine Menge von Datenpunkten in Cluster zu gruppieren. Der Algorithmus verwendet die **Manhattan-Distanz** zur Berechnung der Distanzen zwischen Punkten und Zentroiden.

Datenpunkte und initiale Zentroiden

Die Tabelle zeigt die Ausgangsdatenpunkte sowie die initialen Zentroiden. Jeder Punkt ist mit einem Buchstaben von a bis l gekennzeichnet.

Punkt	X	\mathbf{Y}
a	2	10
b	2 2 8	5
c	8	4
d	5	8
e	7	5
f	6	4
g	1	9
h	4	9
i	6	2
j	3	3
k	5	6 7
l	9	7

Initiale Zentroiden:

- O Cluster 1, Zentroid Z_1 : (2,10)
- \triangle Cluster 2, Zentroid Z_2 : (5,8)
- \square Cluster 3, Zentroid Z_3 : (1,2)

Aufgabe

- 1. Berechnen Sie die Manhattan-Distanzen jedes Punktes zu den Zentroiden Z_1 , Z_2 und Z_3 .
- 2. Ordnen Sie jeden Punkt dem Cluster mit der kleinsten Distanz zu. Ist die Distanz gleich, wird der erste Zentroid bevorzugt.
- 3. Aktualisieren Sie die Zentroidenpositionen, indem Sie den Mittelwert der X- und Y- Koordinaten der Punkte in jedem Cluster berechnen (auf ganze Zahlen gerundet).
- 4. Wiederholen Sie die Schritte, bis sich die Clusterzuweisungen nicht mehr ändern.

Iteration 1 (vorgefüllt)

Punkt	$\mathbf{D}(Z_1)$	$\mathbf{D}(Z_2)$	$\mathbf{D}(Z_3)$	Cluster
a	0	5	9	$\bigcirc Z_1$
b	5	6	4	$\square Z_3$
c	10	7	10	$\triangle Z_2$
d	5	0	10	$\triangle Z_2$
e	10	5	9	ΔZ_2
f	11	6	7	$\triangle Z_2$
g	9	10	0	$\square Z_3$
h	3	2	10	OZ_1
i	12	7	5	$\square Z_3$
j	7	7	3	$\square Z_3$
k	9	3	7	$\triangle Z_2$
l	14	7	13	ΔZ_2

Neue Zentroiden:

• O Cluster 1, Zentroid Z_1 : (3, 10)

• \triangle Cluster 2, Zentroid Z_2 : (7,6)

• \square Cluster 3, Zentroid Z_3 : (3,3)

Iteration 2 (auszufüllen)

Punkt	$\mathbf{D}(Z_1)$	$\mathbf{D}(Z_2)$	$\mathbf{D}(Z_3)$	Cluster
a				
b				
c				
d				
e				
f				
g				
h				
i				
j				
k				
l				

Neue Zentroiden:

• O Cluster 1, Zentroid Z_1 : ____

• \triangle Cluster 2, Zentroid Z_2 : ____

• \square Cluster 3, Zentroid Z_3 : ____

Iteration 3 (auszufüllen)

Führen Sie die Berechnungen weiter durch, bis sich die Zentroiden nicht mehr ändern.