(Unsupervised) Clustering

A very personal point of view

What do you cluster?

Questions:

- What is your question?
- How is your data?
- How would you measure distances?
 - Is it fair?

What do you cluster?

Questions:

- What is your question?
- How is your data?
- How would you measure distances?
 - Is it fair?

. . .

What do you cluster?

Questions:

- What is your question?
- How is your data?
- How would you measure distances?
 - Is it fair?

. . .

Solutions:

- Think
- Plot
- Think
- Plot

Patience

Data massaging (rescue your outliers)

- Data transformation
 - min/max or percentiles 5/95
 - Log
 - Sigmoid (personal favorite)
- Normalization
 - Minus mean over standard-deviation
 - Something else (be creative...)

... try to keep it simple

Dimensionality reduction (and noise removal)

- PCA
- MDS
- t-SNE, UMAP

https://github.com/dkobak/tsne-umap-init

- Something else depending on the question...
 - SOM (https://en.wikipedia.org/wiki/Self-organizing_map)
 - sub-sampling

Dimensionality reduction (also a good way to explore)

Clustering

- Pick a type of clustering
 - Hierarchical (single, complete, **Ward**...)
 - Agglomerative
 - Divisive
 - Centroid/distribution/density based (K-means, GMM, DBSCAN...)
 - Something else
 - MCL (https://micans.org/mcl/)
 - HDBSCAN (https://hdbscan.readthedocs.io)

Read the documentation

Clustering (nobody is perfect)

Blind evaluation

- Overall clustering quality
 - Silhouette
 - Calinski-Harabasz
 - Davies-Bouldin

- Specific clustering quality
 - Robustness to bootstrapping (https://github.com/shimo-lab/pvclust)
 - Normal distribution of data at each cluster split (https://github.com/pkimes/sigclust2)

Try to supervise it a bit...

- Enrichment in specific biological function
- **Define a quality metric** (e.g. "how homogeneously active are genes in each cluster")
- Test many combinations of parameters using this metric

Repeat...

Links

- Scikit-learn summary: https://scikit-learn.org/stable/modules/clustering.html
- t-SNE vs UMAP: https://towardsdatascience.com/tsne-vs-umap-global-structure-4d8045acba17
- General course: https://liulab-dfci.github.io/bioinfo-combio/