Math 317: Homework 5

Due Friday, March 8, 2019

- 1. (15.1, 15.2, 15.4) Determine which of the following series converge. Justify your answers.
 - a. $\sum \left[\sin \left(\frac{n\pi}{6} \right) \right]^n$
 - b. $\sum \frac{(-1)^n}{n}$
 - c. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \log n}$
 - $d. \sum_{n=2}^{\infty} \frac{\log n}{n^2}$
- 2. (17.4) Prove that the function \sqrt{x} is continuous on its natural domain $[0, \infty)$. *Hint:* Think about Example 5 in §8.
- 3. (17.5)
 - a. Prove that x^m is a continuous function for any $m \in \mathbb{N}$.
 - b. Prove that every polynomial function $\sum_{i=0}^{n} a_i x^i$ is continuous.
- 4. (17.13)
 - a. Let f(x) = 1 for rational numbers x and f(x) = 0 for irrational numbers. Show that f is discontinuous at every x in \mathbb{R} .
 - b. Let h(x) = x for rational numbers x and h(x) = 0 for irrational numbers. Show that h is continuous at 0 and at no other point.
- 5. Let $E \subseteq \mathbb{R}$ be a set of real numbers. An element $s_0 \in E$ is *interior* to E if for some r > 0 we have

$${s \in \mathbb{R} : |s - s_0| < r} = (s_0 - r, s_0 + r) \subset E.$$

The set E is open in \mathbb{R} if every point in E is interior to E.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function, and for any subset $V \subset R$, let $f^{-1}(V) \subset R$ be the set;

$$f^{-1}(V) = \{x \in \mathbb{R} : f(x) \in V\}.$$

Show that f is continuous if and only if, for every open set $U \subset \mathbb{R}$, $f^{-1}(U)$ is also an open set.

1