

N-Channel JFET Monolithic Dual

U443 / U444

FEATURES

- High Gain $g_{fs} > 6 \text{ mS}$ typical
- Low Leakage $I_G < 1\text{pA}$ typical
- Low Noise

APPLICATIONS

- Differential Wideband Amplifiers
- VHF/UHF Amplifiers
- Test and Measurement
- Multi-Chip/Hybrids

DESCRIPTION

The U443 Series is an N-Channel Monolithic Dual JFET designed for high speed amplifier circuits. Featuring high gain ($> 6 \text{ mS}$ typical), low leakage ($< 1\text{pA}$ typical) and low noise this device is an excellent choice for high performance test and measurement, wideband amplifiers and VHF/UHF circuits.

ORDERING INFORMATION

Part	Package	Temperature Range
U443-4	Hermetic M0-002AG (TO-78)	-55°C to +150°C
XU443-4	Sorted Chips in Carriers	-55°C to +150°C

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Parameter/Test Condition	Symbol	Limit	Unit
Gate-Drain Voltage	V _{GD}	-25	V
Gate-Source Voltage	V _{GS}	-25	V
Gate-Gate Voltage	V _{GG}	±50	V
Forward Gate Current	I _G	50	mA
Power Dissipation (per side)	P _D	367	mW
(total)		500	mW
Power Derating (per side)		3	mW/ °C
(total)		4	mW/ °C
Operating Junction Temperature	T _J	-55 to 150	°C
Storage Temperature	T _{stg}	-65 to 200	°C
Lead Temperature (1/16" from case for 10 seconds)	T _L	300	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

SYMBOL	CHARACTERISTICS	TYP ¹	U443		U444		UNIT	TEST CONDITIONS
			MIN	MAX	MIN	MAX		
STATIC								
V _{(BR)GS}	Gate-Source Breakdown Voltage	-35	-25		-25		V	I _G = -1μA, V _{DS} = 0V
V _{GS(OFF)}	Gate-Source Cut off Voltage	-3.5	-1	-6	-1	-6		V _{DS} = 10V, I _D = 1nA
I _{DSS}	Saturation Drain Current ²	15	6	30	6	30	mA	V _{DS} = 10V, V _{GS} = 0V
I _{GSS}	Gate Reverse Current	-1		-500		-500	pA	V _{GS} = -15V, V _{DS} = 0V
		-2					nA	T _A = 150°C
I _G	Gate Operating Current	-1		-500		-500	pA	V _{DG} = 10V, I _D = 5mA
		-0.3					nA	T _A = 125°C
V _{GS(F)}	Gate-Source Forward Voltage	0.7					V	I _G = 1mA, V _{DS} = 0V
DYNAMIC								
g _{fs}	Common-Source Forward Transconductance	6	4.5	9	4.5	9	mS	V _{DG} = 10V, I _D = 5mA f = 1kHz
g _{os}	Common-Source Output Conductance	70		200		200	μS	
C _{iss}	Common-Source Input Capacitance	3					pF	V _{DG} = 10V, I _D = 5mA f = 1MHz
C _{rss}	Common-Source Reverse Transfer Capacitance	1						
̄e _n	Equivalent Input Noise Voltage	4					nV/√Hz	V _{DG} = 10V, I _D = 5mA f = 10kHz
MATCHING								
V _{GS1} -V _{GS2}	Differential Gate-Source Voltage	6		10		20	mV	V _{DG} = 10V, I _D = 5mA
Δ V _{GS1} -V _{GS2} ΔT	Gate-Source Voltage Differential Change with Temperature	20					μV/ °C	T = -55 to 25°C
		20						T = 25 to 125°C
I _{DSS1} I _{DSS2}	Saturation Drain Current Ratio	0.97						V _{DS} = 10V, V _{GS} = 0V
g _{fs1} g _{fs2}	Transconductance Ratio	0.97						V _{DG} = 10V, I _D = 5mA f = 1 kHz
CMRR	Common Mode Rejection Ratio	85					dB	V _{DD} = 5 to 10V, I _D = 5mA

NOTES: 1. For design aid only, not subject to production testing.
2. Pulse test; PW = 300μs, duty cycle ≤ 3%.