Assessment 1

Shubham Gopale 18MCS0066

Que: Read the data from the excel file with two coordinates x and y. Divide the dataset into training and testing. Apply linear regression and logistic regression for the training data. For the test data, given x value predict the y value.

Code:

```
# -*- coding: utf-8 -*-
Copyright @Shubhcyanogen
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import train_test_split
def estimate_coef(x, y):
  n = np.size(x)
  m x, m y = np.mean(x), np.mean(y)
  SS_xy = np.sum(y*x) - n*m_y*m_x
  SS_x = np.sum(x*x) - n*m_x*m_x
  b_1 = SS_xy / SS_xx
  b_0 = m_y - b_1 = m_x
  return(b_0, b_1)
def plot regression line(x, y, b):
  plt.scatter(x, y, color = "m",
  marker = "o", s = 30)
  y_pred = b[0] + b[1]*x
  plt.plot(x, y_pred, color = "g")
  plt.xlabel('x')
  plt.ylabel('y')
  plt.show()
def main():
# input taken from a csv file
  x_val = pd.read_csv('/Users/shubhcyanogen/Desktop/X_values.csv')
  y_val = pd.read_csv('/Users/shubhcyanogen/Desktop/Y_values.csv')
  x = x \ val.values
  y = y val.values
  b = estimate_coef(x, y)
```

Output:

	Α	\mathcal{A}	А
1	12	1	54
2	34	2	75
3	56	3	64
4	78	4	95
5	90	5	74
6	12	6	63
7	54	7	42
8	83	8	74
9	91	9	75
10	34	10	31
11	98	11	93
12	53	12	91
13	42	13	74
14	32	14	63
14	32	15	