Mathematics for Artificial Intelligence Introduction to Probability

Andres Mendez-Vazquez

April 9, 2020

Outline

- Basic Theory
 - Intuitive Formulation Famous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional Probability
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
 Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Ocunting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Gerolamo Cardano: Gambling out of Darkness

Gambling

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

While gambling he developed the following rule!!!

"The most fundamental principle of all in gambling is simply equal conditions, e.g. of opponents, of bystanders, of money, of situation, of the dice box and of the dice itself. To the extent to which you depart from that equity, if it is in your opponent's favour, you are unjust"

Gerolamo Cardano: Gambling out of Darkness

Gambling

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

Gerolamo Cardano (16th century)

While gambling he developed the following rule!!!

"The most fundamental principle of all in gambling is simply equal conditions, e.g. of opponents, of bystanders, of money, of situation, of the dice box and of the dice itself. To the extent to which you depart from that equity, if it is in your opponent's favour, you are a fool, and if in your

Gerolamo Cardano: Gambling out of Darkness

Gambling

Gambling shows our interest in quantifying the ideas of probability for millennia, but exact mathematical descriptions arose much later.

Gerolamo Cardano (16th century)

While gambling he developed the following rule!!!

Equal conditions

"The most fundamental principle of all in gambling is simply equal conditions, e.g. of opponents, of bystanders, of money, of situation, of the dice box and of the dice itself. To the extent to which you depart from that equity, if it is in your opponent's favour, you are a fool, and if in your own, you are unjust."

Gerolamo Cardano's Definition

Probability

"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favorable throws, and since the circuit is 36, the rest of the throws in which these points will not turn up will be 9; the odds will therefore be 3 to 1."

Gerolamo Cardano's Definition

Probability

"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favorable throws, and since the circuit is 36, the rest of the throws in which these points will not turn up will be 9; the odds will therefore be 3 to 1."

Meaning

Probability as a ratio of favorable to all possible outcomes!!! As long all events are equiprobable...

 $P(All favourable throws) = \frac{Number All favourable throws}{Number of All throws}$

Gerolamo Cardano's Definition

Probability

"If therefore, someone should say, I want an ace, a deuce, or a trey, you know that there are 27 favorable throws, and since the circuit is 36, the rest of the throws in which these points will not turn up will be 9; the odds will therefore be 3 to 1."

Meaning

Probability as a ratio of favorable to all possible outcomes!!! As long all events are equiprobable...

Thus, we get

$$P(All favourable throws) = \frac{Number All favourable throws}{Number of All throws}$$

(1)

Empiric Definition

Intuitively, the probability of an event \boldsymbol{A} could be defined as:

$$P(A) = \lim_{n \to \infty} \frac{N(A)}{n}$$

Where N(A) is the number that event a happens in n trials.

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$P(A) = \lim_{n \to \infty} \frac{N(A)}{n}$$

Where N(A) is the number that event a happens in n trials.

Example

Imagine you have three dices, then

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$P(A) = \lim_{n \to \infty} \frac{N(A)}{n}$$

Where N(A) is the number that event a happens in n trials.

Example

Imagine you have three dices, then

 \bullet The total number of outcomes is 6^3

Cinv

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$P(A) = \lim_{n \to \infty} \frac{N(A)}{n}$$

Where N(A) is the number that event a happens in n trials.

Example

Imagine you have three dices, then

- The total number of outcomes is 63
- If we have event A= all numbers are equal, |A|=6

Empiric Definition

Intuitively, the probability of an event A could be defined as:

$$P(A) = \lim_{n \to \infty} \frac{N(A)}{n}$$

Where N(A) is the number that event a happens in n trials.

Example

Imagine you have three dices, then

- The total number of outcomes is 6^3
- If we have event A= all numbers are equal, |A|=6
- Then, we have that $P(A) = \frac{6}{6^3} = \frac{1}{36}$

Outline

- Basic Theory
 - Intuitive Formulation
 - Famous Examples
 Axioms
 - Using Set OperationsExample
 - Finite and Infinite Space
 - Ocunting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional Probability
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Some Famous Examples

Famous Coin Tosses

- Count of Buffon tossed a coin 4040 times. Heads appeared 2048 times.
- K. Pearson tossed a coin 12000 times and 24000 times.
 - ▶ The heads appeared 6019 times and 12012, respectively.

Some Famous Examples

Famous Coin Tosses

- Count of Buffon tossed a coin 4040 times. Heads appeared 2048 times.
- K. Pearson tossed a coin 12000 times and 24000 times.
 - ▶ The heads appeared 6019 times and 12012, respectively.

Something Notable

• For these three tosses the relative frequencies of heads are 0.5049, 0.5016, and 0.5005.

Outline

- Basic Theory
 - Intuitive FormulationFamous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional ProbabilityIndependence
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Axioms

Given a sample space S of events, we have that

Axioms

Given a sample space ${\cal S}$ of events, we have that

Axioms

Given a sample space S of events, we have that

- $0 \le P(A) \text{ for } A \subseteq S$
- **2** P(S) = 1

Axioms

Given a sample space S of events, we have that

- $0 \le P(A)$ for $A \subseteq S$
- **2** P(S) = 1
- **③** If A_1 and A_2 are mutually exclusive events (i.e. $P(A_1 \cap A_2) = 0$), then:

$$P(A_1 \cup A_2) = P(A_1) + P(A_2)$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

For example, in a dice experiment

 $A = \{i | \text{with } i \text{ an even number}\}$

For example, in a dice experiment

$$A = \{i | \text{with } i \text{ an even number}\}$$

Thus, we have the following set operations

For example, in a dice experiment

$$A = \{i | \text{with } i \text{ an even number}\}$$

Thus, we have the following set operations

- $A \cap B = \{x | x \in A \text{ and } x \in B\}$

For example, in a dice experiment

$$A = \{i | \text{with } i \text{ an even number} \}$$

Thus, we have the following set operations

- **3** $A^C = \{x | x \notin A\}$

Therefore

We can use combinations

Of such events with the previous operations to describe random phenomenas

- $A = \{i | i \text{ is even}\}$
- $B = \{i | i > 3\}$

 $A \cap B = \{i | i \text{ is even and } i > 3\}$

Therefore

We can use combinations

Of such events with the previous operations to describe random phenomenas

Set of all throws even and greater than 3

- $A = \{i | i \text{ is even}\}$
- $B = \{i | i > 3\}$

 $A \cap B = \{i | i \text{ is even and } i > 3\}$

Therefore

We can use combinations

Of such events with the previous operations to describe random phenomenas

Set of all throws even and greater than 3

- $A = \{i | i \text{ is even}\}$
- $B = \{i | i > 3\}$

Then

$$A \cap B = \{i | i \text{ is even and } i > 3\}$$

Example

The Probability of the empty set is

$$P(S) = P(S \cup \emptyset) = P(S) + P(\emptyset)$$

 $P\left(\emptyset\right) = 0$

Example

The Probability of the empty set is

$$P(S) = P(S \cup \emptyset) = P(S) + P(\emptyset)$$

Given that $\overline{S} = \emptyset$, therefore

$$P(\emptyset) = 0$$

Examples

The union $A \cup B$ of two events A and B

It is an event that occurs if at least one of the events A or B occur

 $P(A \cup B) = P(A) + P(B)$

Examples

The union $A \cup B$ of two events A and B

It is an event that occurs if at least one of the events ${\cal A}$ or ${\cal B}$ occur

For mutually exclusive events

$$P(A \cup B) = P(A) + P(B)$$

Further

In the General Case

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P\left(A^{+}\right) = 1 - P\left(A\right)$$

$$P(S) = P(A^{C}) + P(A)$$

Further

In the General Case

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

In the case of the complement

$$P\left(A^{C}\right) = 1 - P\left(A\right)$$

$$P(S) = P(A^C) + P(A)$$

Further

In the General Case

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

In the case of the complement

$$P\left(A^{C}\right) = 1 - P\left(A\right)$$

Given that

$$P(S) = P(A^C) + P(A)$$

Outline

- 1 Basic Theory
 - Intuitive Formulation
 - Famous Examples
 Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 Conditional Probability
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Setup

Throw a biased coin twice

$$A_1 \begin{tabular}{ll} A_1 & $HH \ 0.36$ & A_2 & $HT \ 0.24$ \\ \\ A_3 & $TH \ 0.24$ & A_4 & $TT \ 0.16$ \\ \\ \end{tabular}$$

We have the follow

At least one head!!! Can you tell me which events are part of it?

Tail on first toss.

Setup

Throw a biased coin twice

$$A_1$$
 (HH 0.36) A_2 (HT 0.24)

$$A_3 \left(\mathsf{TH} \ \mathsf{0.24}
ight) \ A_4 \left(\mathsf{TT} \ \mathsf{0.16}
ight)$$

We have the following event

At least one head!!! Can you tell me which events are part of it?

Tail on first toss.

Setup

Throw a biased coin twice

$$A_1$$
 (HH 0.36) A_2 (HT 0.24)

$$A_3$$
 (TH 0.24) A_4 (TT 0.16)

We have the following event

At least one head!!! Can you tell me which events are part of it?

What about this one?

Tail on first toss.

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
 Axioms
- Using Set Operations
- ExampleFinite and Infinite Space
- Counting, Frequentist Approach
- Independence
- Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

We have that experiments in Probability are Defined as

We have

- **1** The Set \mathcal{B} of all experimental outcomes
- 2 The Borel Field of all events of \mathcal{B}
- The Probability of Such Events

- We us this fields because we are given a way to measure infinite phenomenas but Bounded.
- Therefo
 - If you have a measure over a set B, we would love to be able to measure:
 - The Union of such events
 - ▶ The Measure should be bounded.

We have that experiments in Probability are Defined as

We have

- **1** The Set \mathcal{B} of all experimental outcomes
- 2 The Borel Field of all events of \mathcal{B}
- The Probability of Such Events

Remark about the Borel Field

- We us this fields because we are given a way to measure infinite phenomenas but Bounded.
- Therefore
 - If you have a measure over a set B, we would love to be able to measure:
 - ▶ The Union of such events
 - ▶ The Measure should be bounded.

We have that experiments in Probability are Defined as

We have

- **1** The Set \mathcal{B} of all experimental outcomes
- The Borel Field of all events of \mathcal{B}
- The Probability of Such Events

Remark about the Borel Field

 We us this fields because we are given a way to measure infinite phenomenas but Bounded.

Therefore

- If you have a measure over a set \mathcal{B} , we would love to be able to measure:
 - The Union of such events.
 - The Measure should be bounded.

Measuring Countable Spaces

If
$$\mathcal{B} = \{A_1, A_2, ..., A_N\}$$

$$P\left(A_{i}\right)=p_{i}$$

$$p_1 + p_2 + \dots + p_N = 1$$

$$P(B) = \sum_{i=1}^{k} P(A_i)$$

Measuring Countable Spaces

If
$$\mathcal{B} = \{A_1, A_2, ..., A_N\}$$

$$P\left(A_{i}\right)=p_{i}$$

Where

$$p_1 + p_2 + \dots + p_N = 1$$

$$P(B) = \sum_{i=1}^{k} P(A_i)$$

Measuring Countable Spaces

If
$$\mathcal{B} = \{A_1, A_2, ..., A_N\}$$

$$P\left(A_{i}\right)=p_{i}$$

Where

$$p_1 + p_2 + \dots + p_N = 1$$

Then, if you have $B=A_1\cup...\cup A_k$ and $k\leq N$

$$P(B) = \sum_{i=1}^{k} P(A_i)$$

In the Case of Equally Likely Events

We have that

$$p_i = \frac{1}{N}$$

$$P(B) = \sum_{i=1}^{k} P(A_i) = \sum_{i=1}^{k} \frac{1}{N} = \frac{k}{N}$$

22 / 171

In the Case of Equally Likely Events

We have that

$$p_i = \frac{1}{N}$$

Therefore

$$P(B) = \sum_{i=1}^{k} P(A_i) = \sum_{i=1}^{k} \frac{1}{N} = \frac{k}{N}$$

The Real Line

Here the Borel Sets

• It comes to save us...

- In this case we are using events as intervals $x_1 \leq x \leq x_2$
- And their finite Unions and Intersections

The smallest Borel Field that includes half lines $x \leq x_1$ with $x_i \in \mathbb{R}$

The Real Line

Here the Borel Sets

• It comes to save us...

Something Notable

- In this case we are using events as intervals $x_1 \le x \le x_2$
- And their finite Unions and Intersections

The smallest Borel Field that includes half lines $x \leq x_1$ with $x_i \in \mathbb{R}$

The Real Line

Here the Borel Sets

• It comes to save us...

Something Notable

- In this case we are using events as intervals $x_1 \le x \le x_2$
- And their finite Unions and Intersections

For this, we define \mathcal{B}

The smallest Borel Field that includes half lines $x \leq x_1$ with $x_i \in \mathbb{R}$.

Important

This contains all the open and closed intervals, and all points

• This is not all possible subsets

- A Vitali set is a subset V of the interval [0, 1] of real numbers such that, for each real number r:
 - lacktriangle There is exactly one number $v\in V$ such that v-r is a rational number

These are of no interest for Probability

Important

This contains all the open and closed intervals, and all points

• This is not all possible subsets

Those sets are not result of countable unions and intersections of intervals

- A Vitali set is a subset V of the interval [0,1] of real numbers such that, for each real number r:
 - \blacktriangleright There is exactly one number $v \in V$ such that v-r is a rational number

These are of no interest for Probability

Cinvestav

Important

This contains all the open and closed intervals, and all points

• This is not all possible subsets

Those sets are not result of countable unions and intersections of intervals

- ullet A Vitali set is a subset V of the interval [0,1] of real numbers such that, for each real number r:
 - \blacktriangleright There is exactly one number $v \in V$ such that v-r is a rational number

They do not describe experiments of interest

• These are of no interest for Probability

Therefore, we have

Assume that we have a function $\alpha(x)$ such that

$$\int_{-\infty}^{\infty} \alpha(x) dx = 1 \text{ and } \alpha(x) \ge 0$$

$$P\left(x \le x_1\right) = \int_{-\infty}^{\infty} \alpha\left(x\right) dx$$

Further,
$$x_1 \leq x \leq x_2$$
 is defined

$$C(x_{1} \leq x \leq x_{2}) = \int_{x_{1}}^{x_{2}} \alpha(x) dx$$

Therefore, we have

Assume that we have a function $\alpha(x)$ such that

$$\int_{-\infty}^{\infty} \alpha(x) dx = 1 \text{ and } \alpha(x) \ge 0$$

We define that

$$P\left(x \le x_1\right) = \int_{-\infty}^{x_1} \alpha\left(x\right) dx$$

$$\gamma\left(x_{1} \leq x \leq x_{2}\right) = \int_{x_{1}}^{x_{2}} \alpha\left(x\right) dx$$

Therefore, we have

Assume that we have a function $\alpha(x)$ such that

$$\int_{-\infty}^{\infty} \alpha(x) dx = 1 \text{ and } \alpha(x) \ge 0$$

We define that

$$P\left(x \le x_1\right) = \int_{-\infty}^{x_1} \alpha\left(x\right) dx$$

Further, $x_1 \le x \le x_2$ is defined as

$$P\left(x_{1} \leq x \leq x_{2}\right) = \int_{x_{1}}^{x_{2}} \alpha\left(x\right) dx$$

We have the following probability of emission of radioactive probabilities

$$\alpha\left(t\right)=ce^{-ct}I\left[t\geq0\right] \text{ and }t\in\mathbb{R}$$

$$\int_{0}^{t_0} ce^{ct} dt = 1 - e^{-ct_0}$$

We have the following probability of emission of radioactive probabilities

$$\alpha\left(t\right)=ce^{-ct}I\left[t\geq0\right] \text{ and }t\in\mathbb{R}$$

Therefore, the probability ob being emitted in the interval $(0, t_0)$

$$\int_0^{t_0} ce^{ct} dt = 1 - e^{-ct_0}$$

Outline

- Basic Theory
 - Intuitive Formulation
 Famous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 Conditional Probability
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

We have four main methods of counting

lacksquare Ordered samples of size r with replacement

We have four main methods of counting

- lacktriangledown Ordered samples of size r with replacement
- $oldsymbol{2}$ Ordered samples of size r without replacement

We have four main methods of counting

- lacktriangle Ordered samples of size r with replacement
- $oldsymbol{2}$ Ordered samples of size r without replacement
- \odot Unordered samples of size r without replacement

We have four main methods of counting

- lacktriangle Ordered samples of size r with replacement
- ② Ordered samples of size r without replacement
- 3 Unordered samples of size r without replacement
- lacktriangle Unordered samples of size r with replacement

Ordered samples of size r with replacement

Definition

The number of possible sequences $(a_{i_1},...,a_{i_r})$ for n different numbers is $n \times n \times ... \times n = n^r$

Example

If you throw three dices you have $6 \times 6 \times 6 = 216$

Ordered samples of size r with replacement

Definition

The number of possible sequences $(a_{i_1},...,a_{i_r})$ for n different numbers is $n\times n\times ...\times n=n^r$

Example

If you throw three dices you have $6 \times 6 \times 6 = 216$

Ordered samples of size r without replacement

Definition

The number of possible sequences $(a_{i_1},...,a_{i_r})$ for n different numbers is $n\times n-1\times...\times (n-(r-1))=\frac{n!}{(n-r)!}$

Example

The number of different numbers that can be formed if no digit can be repeated. For example, if you have 4 digits and you want numbers of size 3

Ordered samples of size r without replacement

Definition

The number of possible sequences $(a_{i_1},...,a_{i_r})$ for n different numbers is $n\times n-1\times...\times (n-(r-1))=\frac{n!}{(n-r)!}$

Example

The number of different numbers that can be formed if no digit can be repeated. For example, if you have 4 digits and you want numbers of size 3.

Unordered samples of size r without replacement

Definition

Actually, we want the number of possible unordered sets.

We have $rac{n!}{(n-r)!}$ collections where we care about the order. Thus

$$\frac{\frac{n!}{(n-r)!}}{r!} = \frac{n!}{r!(n-r)!} = \binom{n}{r}$$

Unordered samples of size r without replacement

Definition

Actually, we want the number of possible unordered sets.

However

We have $\frac{n!}{(n-r)!}$ collections where we care about the order. Thus

$$\frac{\frac{n!}{(n-r)!}}{r!} = \frac{n!}{r! (n-r)!} = \begin{pmatrix} n \\ r \end{pmatrix}$$
 (2)

Unordered samples of size r with replacement

Definition

We want to find an unordered set $\{a_{i_1},...,a_{i_r}\}$ with replacement

$$\left(\begin{array}{c} n+r-1\\ r \end{array}\right)$$

Unordered samples of size r with replacement

<u>Definition</u>

We want to find an unordered set $\{a_{i_1},...,a_{i_r}\}$ with replacement

Thus

$$\begin{pmatrix} n+r-1 \\ r \end{pmatrix}$$

(3)

32 / 171

How? Use a digit trick for that

Change encoding by adding more signs

Imagine all the strings of three numbers with $\{1,2,3\}$

How? Use a digit trick for that

Change encoding by adding more signs

Imagine all the strings of three numbers with $\{1,2,3\}$

We have

Old String	New String
111	1+0,1+1,1+2=123
112	1+0,1+1,2+2=124
113	1+0,1+1,3+2=125
122	1+0,2+1,2+2=134
123	1+0,2+1,3+2=135
133	1+0,3+1,3+2=145
222	2+0,2+1,2+2=234
223	2+0,2+1,3+2=235
233	2+0,3+1,3+2=245
333	3+0,3+1,3+2=345

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach

Independence

- Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
 Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Sometimes

We would like to model certain phenomena like

$$P\left(A_{1},A_{2},...,A_{K}\right)$$

We would like something simpler

mething like

 $P\left(A_{1}, A_{2}, ..., A_{K}\right) = Operation_{i=1}^{k} P\left(A_{1}\right)$

Sometimes

We would like to model certain phenomena like

$$P(A_1, A_2, ..., A_K)$$

The Problem is the complexity of calculating the joint distribution

We would like something simpler

 $P(A_1, A_2, ..., A_K) = Operation_{i-1}^k P(A_1)$

Sometimes

We would like to model certain phenomena like

$$P(A_1, A_2, ..., A_K)$$

The Problem is the complexity of calculating the joint distribution

We would like something simpler

Something like

$$P(A_1, A_2, ..., A_K) = Operation_{i=1}^k P(A_1)$$

Independence

Definition

Two events \boldsymbol{A} and \boldsymbol{B} are independent if and only if

$$P(A, B) = P(A \cap B) = P(A)P(B)$$

We have two dices

Thus, we have all pairs $\left(i,j\right)$ such that i,j=1,2,3,...,6

We have two dices

Thus, we have all pairs (i,j) such that i,j=1,2,3,...,6

We have the following events

• $A = \{ \text{First dice 1,2 or 3} \}$

We have two dices

Thus, we have all pairs (i, j) such that i, j = 1, 2, 3, ..., 6

We have the following events

- $A = \{ \text{First dice 1,2 or 3} \}$
- $B = \{ \text{First dice 3, 4 or 5} \}$

We have two dices

Thus, we have all pairs (i, j) such that i, j = 1, 2, 3, ..., 6

We have the following events

- $A = \{ \text{First dice } 1,2 \text{ or } 3 \}$
- $B = \{ \text{First dice 3, 4 or 5} \}$
- $C = \{ \text{The sum of two faces is 9} \}$

We have two dices

Thus, we have all pairs (i, j) such that i, j = 1, 2, 3, ..., 6

We have the following events

- $A = \{ \text{First dice } 1, 2 \text{ or } 3 \}$
- $B = \{ \text{First dice 3, 4 or 5} \}$
- $C = \{ \text{The sum of two faces is 9} \}$

So, we can do

Look at the board!!! Independence between A, B, C

Outline

- Basic Theory
 - Intuitive Formulation
 Famous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 Conditional Probability
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Outline

- Basic Theory
 - Intuitive Formulation
 - Famous Examples
 Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional ProbabilityIndependence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

We have that

Given two sets ${\cal A}$ and ${\cal B}$

$$\mathcal{A} \times \mathcal{B} = \{(a, b) | a \in \mathcal{A} \text{ and } b \in \mathcal{B}\}$$

 $\mathcal{A} \times \mathcal{B} = \{(a_1, b_1), (a_2, b_1), (a_3, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\}$

We have that

Given two sets ${\cal A}$ and ${\cal B}$

$$\mathcal{A} \times \mathcal{B} = \{(a, b) | a \in \mathcal{A} \text{ and } b \in \mathcal{B}\}$$

Example
$$\mathcal{A} = \{a_1, a_2, a_3\}$$
 and $\mathcal{B} = \{b_1, b_2\}$

$$\mathcal{A} \times \mathcal{B} = \{(a_1, b_1), (a_2, b_1), (a_3, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\}$$

Furthermore

If $A \subseteq \mathcal{A}$ and $B \subseteq \mathcal{B}$

$$C = A \times B$$

- It is interesting!!!!
- Therefore, $A \times \mathcal{B}$ and \mathcal{A}
 - $A \times B = A \times \mathcal{B} \cap \mathcal{A} \times B$

Furthermore

If $A \subseteq \mathcal{A}$ and $B \subseteq \mathcal{B}$

$$C = A \times B$$

Look At the Board

• It is interesting!!!

 $A \times B = A \times \mathcal{B} \cap \mathcal{A} \times \mathcal{B}$

Furthermore

If $A \subseteq \mathcal{A}$ and $B \subseteq \mathcal{B}$

$$C = A \times B$$

Look At the Board

• It is interesting!!!

Therefore, $A \times \mathcal{B}$ and $\mathcal{A} \times B$

$$A \times B = A \times \mathcal{B} \cap \mathcal{A} \times B$$

Re-framing Independence

We have

- $P(A \times B) = P((a, b) | a \in A \text{ and } b \in B) = P(A)$
- $P(A \times B) = P((a, b) | a \in A \text{ and } b \in B) = P(B)$

 $P(A \times B) = P(A \times B \cap A \times B) = P(A) P(B)$

Re-framing Independence

We have

- $P(A \times \mathcal{B}) = P((a,b) | a \in A \text{ and } b \in \mathcal{B}) = P(A)$
- $P(A \times B) = P((a,b) | a \in A \text{ and } b \in B) = P(B)$

Therefore, we can use our previous relation and assuming $A \times \mathcal{B}$ and $\mathcal{A} \times B$ independent events

$$P(A \times B) = P(A \times \mathcal{B} \cap \mathcal{A} \times B) = P(A) P(B)$$

We can use this to derive the Binomial Distribution

What???

We can do something quite interesting

We have this

ullet "Success" has a probability p.

We have this

- \bullet "Success" has a probability p.
- "Failure" has a probability 1 p.

- ullet Toss a coin independently n times.
- Examine components produced on an assembly line

We have this

- \bullet "Success" has a probability p.
- "Failure" has a probability 1 p.

Examples

ullet Toss a coin independently n times.

We take S=all 2^n ordered sequences of length n, with components ${\bf 0}$ (failure) and ${\bf 1}$ (success)

We have this

- \bullet "Success" has a probability p.
- "Failure" has a probability 1 p.

Examples

- ullet Toss a coin independently n times.
- Examine components produced on an assembly line.

We take S=all 2^n ordered sequences of length n, with components ${\bf 0}$. (failure) and ${\bf 1}$ (success)

We have this

- ullet "Success" has a probability p.
- "Failure" has a probability 1 p.

Examples

- ullet Toss a coin independently n times.
- Examine components produced on an assembly line.

Now

We take S =all 2^n ordered sequences of length n, with components $\mathbf{0}$ (failure) and $\mathbf{1}$ (success).

First

How do we represent such events?

We can use a sequence as

$$\langle a_1, a_2, ..., a_n \rangle$$

 $a_i \in S = \{0, 1\}$

First

How do we represent such events?

We can use a sequence as

$$\langle a_1, a_2, ..., a_n \rangle$$

With the following features

$$a_i \in S = \{0, 1\}$$

Meaning

We have one event A

$$A = Success = 1$$

The Other Event A^{α}

 $A^C = Failure = 0$

Meaning

We have one event A

A = Success = 1

The Other Event A^C

 $A^C = Failure = 0$

Thus, taking a sample ω

$$\omega = 11 \cdots 10 \cdots 0 = \{0, 1\} \times \cdots \{0, 1\}$$

k 1's followed by n-k 0's.

47 / 171

Thus, taking a sample ω

$$\omega = 11 \cdots 10 \cdots 0 = \{0, 1\} \times \cdots \{0, 1\}$$

k 1's followed by n-k 0's.

We have then

$$P(\omega) = P(A_1 \cap A_2 \cap \dots \cap A_k \cap A_{k+1}^c \cap \dots \cap A_n^c)$$

= $P(A_1) P(A_2) \cdots P(A_k) P(A_{k+1}^c) \cdots P(A_n^c)$
= $p^k (1-p)^{n-k}$

47 / 171

Did you notice the following?

After mapping the events through the probability

• We are loosing the internal event structure

Events are mutually independent!!!!

The number of such sample is the number of sets with k elements.... or

Did you notice the following?

After mapping the events through the probability

We are loosing the internal event structure

Which is not important because

Events are mutually independent!!!

The number of such sample is the number of sets with k elements.... o

Did you notice the following?

After mapping the events through the probability

We are loosing the internal event structure

Which is not important because

Events are mutually independent!!!

Important

The number of such sample is the number of sets with \boldsymbol{k} elements.... or...

$$\begin{pmatrix} n \\ k \end{pmatrix}$$

We do not care where the 1's and 0's are

Thus all the probabilities are equal to $p^k (1-p)^k$

$$\sum_{k \text{ 1's}} p\left(\omega^k\right)$$

$$\sum_{k \text{ 1's}} p\left(\omega^k\right) = \binom{n}{k} p (1-p)^{n-k}$$

We do not care where the 1's and 0's are

Thus all the probabilities are equal to $p^k (1-p)^k$

Thus, we are looking to sum all those probabilities of all those combinations of 1's and 0's

$$\sum_{k \text{ 1's}} p\left(\omega^k\right)$$

$$\sum_{k \text{ 1's}} p\left(\omega^k\right) = \binom{n}{k} p (1-p)^{n-k}$$

We do not care where the 1's and 0's are

Thus all the probabilities are equal to $p^k (1-p)^k$

Thus, we are looking to sum all those probabilities of all those combinations of 1's and 0's

$$\sum_{k \text{ 1's}} p\left(\omega^k\right)$$

Then

$$\sum_{k \text{ 1's}} p\left(\omega^k\right) = \binom{n}{k} p \left(1 - p\right)^{n-k}$$

Proving this is a probability

Sum of these probabilities is equal to 1

$$\sum_{k=0}^{n} \binom{n}{k} p (1-p)^{n-k} = (p+(1-p))^n = 1$$

The other is simple

$$0 \le \binom{n}{k} p (1-p)^{n-k} \le 1 \ \forall k$$

The Binomial probability function!!!!

50 / 171

Proving this is a probability

Sum of these probabilities is equal to 1

$$\sum_{k=0}^{n} \binom{n}{k} p (1-p)^{n-k} = (p+(1-p))^n = 1$$

The other is simple

$$0 \le \binom{n}{k} p (1-p)^{n-k} \le 1 \ \forall k$$

This is know a

The Binomial probability function!!!

Proving this is a probability

Sum of these probabilities is equal to 1

$$\sum_{k=0}^{n} \binom{n}{k} p (1-p)^{n-k} = (p+(1-p))^n = 1$$

The other is simple

$$0 \le \binom{n}{k} p (1-p)^{n-k} \le 1 \ \forall k$$

This is know as

The Binomial probability function!!!

50 / 171

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products

Unconditional and Conditional Probability Conditional Probability

- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

- Introduction
 - Definition
 - Properties
- Minimizing Distances
- Variance
- Definition of Variance

Unconditional Probability

Definition

An **unconditional probability** is the probability of an event A prior to arrival of any evidence.

Unconditional Probability

Definition

An **unconditional probability** is the probability of an event A prior to arrival of any evidence.

For Example

 \bullet $P(Cavity) = 0.1 \mathrm{means}$ that in the absence of any other information.

Unconditional Probability

Definition

An **unconditional probability** is the probability of an event A prior to arrival of any evidence.

For Example

- ullet P(Cavity)=0.1means that in the absence of any other information.
 - ► "There is a 10% chance that the patient is having a cavity"

Conditional Probability

Definition

A **conditional probability** is the probability of one event if another event occurred.

Conditional Probability

Definition

A **conditional probability** is the probability of one event if another event occurred.

For Example

• P(Cavity/Toothache) = 0.8 means that

Conditional Probability

Definition

A **conditional probability** is the probability of one event if another event occurred.

For Example

- P(Cavity/Toothache) = 0.8 means that
 - ► "there is an 80% chance that the patient is having a cavity given that he is having a toothache"

Outline

- Basic Theory
 - Intuitive Formulation
 Famous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional Probability
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Basically

Using Set Theory

However

We need a distribution!!!

$$\sum_{A\subseteq S}P\left(A\right)=1$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

However

We need a distribution!!!

$$\sum_{A\subseteq S}P\left(A\right)=1$$

We then do the following

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

The conditional probability of A given B is written $P\left(A|B\right)$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A, B)}{P(B)}$$

with P(B) > 0

57 / 171

We have that this are probabilities

First given $0 < P\left(B\right)$ and $0 \le P\left(A \cap B\right)$

Then,

$$\frac{P(A,B)}{P(B)} \ge 0$$

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(A)}{P(B)} \ge P(A) \ge 0$$

We have that this are probabilities

First given $0 < P\left(B\right)$ and $0 \le P\left(A \cap B\right)$

Then,

$$\frac{P(A,B)}{P(B)} \ge 0$$

Second, given if $B \subseteq A$

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(A)}{P(B)} \ge P(A) \ge 0$$

We have that this are probabilities

First given 0 < P(B) and $0 \le P(A \cap B)$

Then,

$$\frac{P(A,B)}{P(B)} \ge 0$$

Second, given if $B \subseteq A$

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

If $A \subseteq B$

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(A)}{P(B)} \ge P(A) \ge 0$$

58 / 171

Finally

We have that for
$$A \cap B = \emptyset$$

$$P\left(A \cup B \middle| C\right) = \frac{P\left(\left[A \cup B\right] \cap C\right)}{P\left(C\right)} = \frac{P\left(\left[A \cap C\right] \cup \left[B \cap C\right]\right)}{P\left(C\right)}$$

 $P\left(A \cup B \middle| C\right) = \frac{P\left(A \cap C\right) + P\left(B \cap C\right)}{P\left(C\right)} = \frac{P\left(A \cap C\right)}{P\left(C\right)} + \frac{P\left(B \cap C\right)}{P\left(C\right)}$

Finally

We have that for
$$A \cap B = \emptyset$$

$$P\left(A \cup B | C\right) = \frac{P\left(\left[A \cup B\right] \cap C\right)}{P\left(C\right)} = \frac{P\left(\left[A \cap C\right] \cup \left[B \cap C\right]\right)}{P\left(C\right)}$$

Then

$$P\left(A \cup B | C\right) = \frac{P\left(A \cap C\right) + P\left(B \cap C\right)}{P\left(C\right)} = \frac{P\left(A \cap C\right)}{P\left(C\right)} + \frac{P\left(B \cap C\right)}{P\left(C\right)}$$

Chain Rule

The prob

$$P(A,B) = P(B)P(A|B) = P(A)P(B|A)$$

Any Ideas?

Chain Rule

The probability that two events A and B will both occur is

$$P(A,B) = P(B)P(A|B) = P(A)P(B|A)$$

Anv Ideas?

Chain Rule

The probability that two events A and B will both occur is

$$P(A,B) = P(B)P(A|B) = P(A)P(B|A)$$

How?

Any Ideas?

This is also know

As the chain rule

 $P(A_1,...,A_n) = P(A_n|A_{n-1}...A_1) P(A_{n-1}|A_{n-2}...A_1) \cdots P(A_2|A_1) P(A_{11}|A_{n-2}...A_n)$

Any idea?

This is also know

As the chain rule

Prove by induction

$$P(A_1, ..., A_n) =$$

$$P(A_n|A_{n-1}...A_1) P(A_{n-1}|A_{n-2}...A_1) \cdots P(A_2|A_1) P(A_1)$$

Any idea?

This is also know

As the chain rule

Prove by induction

$$P(A_1,...,A_n) =$$

 $P(A_n|A_{n-1}...A_1) P(A_{n-1}|A_{n-2}...A_1) \cdots P(A_2|A_1) P(A_1)$

Proof

Any idea?

Outline

- Basic Theory
 - Intuitive Formulation
 Famous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 Conditional Probability
 - Independence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Independence

If two events are independent

$$P(A|B) = P(A) \text{ and } P(B|A) = P(B).$$

P(A,B) = P(A)P(B)

Independence

If two events are independent

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$.

Therefore, two events A and B are independent if

$$P(A,B) = P(A)P(B)$$

Example

Experiment

It involves a random draw from a standard deck of 52 playing cards.

 $A=\!\mathsf{The}$ card is heart and $B=\!\mathsf{The}$ card is queen

How do we do it?

Example

Experiment

It involves a random draw from a standard deck of 52 playing cards.

Define events A and B to be

 $A = \mathsf{The}\ \mathsf{card}\ \mathsf{is}\ \mathsf{heart}\ \mathsf{and}\ B = \mathsf{The}\ \mathsf{card}\ \mathsf{is}\ \mathsf{queen}$

How do we do it?

Experiment

It involves a random draw from a standard deck of 52 playing cards.

Define events A and B to be

 $A = \mathsf{The}\ \mathsf{card}\ \mathsf{is}\ \mathsf{heart}\ \mathsf{and}\ B = \mathsf{The}\ \mathsf{card}\ \mathsf{is}\ \mathsf{queen}$

Are the events independent?

How do we do it?

We have that

$$P\left(A,B\right) = \frac{1}{52}$$

$$P(A) P(B) = \frac{13}{52} \times \frac{4}{52}$$

We have that

$$P\left(A,B\right) = \frac{1}{52}$$

But

$$P(A) P(B) = \frac{13}{52} \times \frac{4}{52}$$

What happen when you have independence in conditional setups?

A and B are conditionally independent given C if and only i

$$P(A|B,C) = P(A|C)$$

P(WetGrass|Season, Rain) = P(WetGrass|Rain)

What happen when you have independence in conditional setups?

Conditional independence

A and B are conditionally independent given C if and only if

$$P(A|B,C) = P(A|C)$$

Example

P(WetGrass|Season,Rain) = P(WetGrass|Rain).

Three cards are drawn from a deck

Find the probability of no obtaining a heart

We have

52 cards

39 of them not a heart

 $A_i = \{ \text{Card } i \text{ is not a heart} \}$ Then?

Three cards are drawn from a deck

Find the probability of no obtaining a heart

We have

- 52 cards
- 39 of them not a heart

 $A_i = \{ \mathsf{Card} \ i \ \mathsf{is} \ \mathsf{not} \ \mathsf{a} \ \mathsf{heart} \} \mathsf{Then}?$

Three cards are drawn from a deck

Find the probability of no obtaining a heart

We have

- 52 cards
- 39 of them not a heart

Define each of the draws

 $A_i = \{ Card \ i \text{ is not a heart} \}$ Then?

Outline

- Basic Theory
 - Intuitive Formulation
 Famous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Ocunting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional Probability
 - Independence
 - Law of Total ProbabilityBayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 Definition
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
- Definition of Variance

Definition

Events $H_1, H_2, ..., H_n$ form a partition of the sample space ${\cal S}$ if

Definition

Events $H_1, H_2, ..., H_n$ form a partition of the sample space S if

Definition

Events $H_1, H_2, ..., H_n$ form a partition of the sample space S if

- **1** They are mutually exclusive $H_i \cap H_j = \emptyset$ and $i \neq j$
- ② Their union is the sample space S, $\bigcup_{i=1}^{n} H_i = S$

Definition

Events $H_1, H_2, ..., H_n$ form a partition of the sample space S if

- **1** They are mutually exclusive $H_i \cap H_i = \emptyset$ and $i \neq j$
- ② Their union is the sample space S, $\bigcup_{i=1}^{n} H_i = S$

The events $H_1, H_2, ..., H_n$ are usually called hypotheses

$$P(S) = P(H_1) + P(H_2) + \cdots + P(H_n)$$

Now

Let the event of interest A happens under any of the hypotheses \mathcal{H}_i

• With a know conditional probability $P\left(A|H_{i}\right)$

• The probabilities of hypotheses $H_1,...,H_n$ are known

 $P(A) = P(A|H_1) P(H_1) + \dots + P(A|H_n) P(H_n)$

Now

Let the event of interest A happens under any of the hypotheses \mathcal{H}_i

ullet With a know conditional probability $P\left(A|H_i
ight)$

Assume

• The probabilities of hypotheses $H_1, ..., H_n$ are known.

 $P(A) = P(A|H_1) P(H_1) + \dots + P(A|H_n) P(H_n)$

Now

Let the event of interest A happens under any of the hypotheses \mathcal{H}_i

• With a know conditional probability $P\left(A|H_{i}\right)$

Assume

• The probabilities of hypotheses $H_1, ..., H_n$ are known.

Total Probability Formula

$$P(A) = P(A|H_1) P(H_1) + \cdots + P(A|H_n) P(H_n)$$

Two-headed coin

Out of 100 coins one has heads on both sides.

- Two heads?
- Two tails?

Two-headed coin

Out of 100 coins one has heads on both sides.

One coin is chosen at random and flipped two times

- Two heads?
- Two tails?

Two-headed coin

Out of 100 coins one has heads on both sides.

One coin is chosen at random and flipped two times

What is the probability to get

- Two heads?
- 2 Two tails?

Let A be the event that two heads are obtained

Denote by H_1 the event (hypothesis) that a fair coin was chosen.

Let A be the event that two heads are obtained

Denote by H_1 the event (hypothesis) that a fair coin was chosen.

Now

The Hypothesis ${\cal H}_2={\cal H}_1^C$ is the event that the two-headed coin was chosen.

Let A be the event that two heads are obtained

Denote by H_1 the event (hypothesis) that a fair coin was chosen.

Now

The Hypothesis $H_2=H_1^{\mathbb{C}}$ is the event that the two-headed coin was chosen.

$$P(A) = P(A|H_1) P(H_1) + P(A|H_2) P(H_2)$$
$$= \frac{1}{4} \times \frac{99}{100} + 1 \times \frac{1}{100}$$

Let A be the event that two heads are obtained

Denote by H_1 the event (hypothesis) that a fair coin was chosen.

Now

The Hypothesis $H_2=H_1^{\mathbb{C}}$ is the event that the two-headed coin was chosen.

$$P(A) = P(A|H_1) P(H_1) + P(A|H_2) P(H_2)$$
$$= \frac{1}{4} \times \frac{99}{100} + 1 \times \frac{1}{100}$$

Let A be the event that two heads are obtained

Denote by H_1 the event (hypothesis) that a fair coin was chosen.

Now

The Hypothesis $H_2=H_1^{\cal C}$ is the event that the two-headed coin was chosen.

$$P(A) = P(A|H_1) P(H_1) + P(A|H_2) P(H_2)$$

$$= \frac{1}{4} \times \frac{99}{100} + 1 \times \frac{1}{100}$$

$$= \frac{103}{400}$$

Let A be the event that two heads are obtained

Denote by H_1 the event (hypothesis) that a fair coin was chosen.

Now

The Hypothesis $H_2=H_1^{\mathbb{C}}$ is the event that the two-headed coin was chosen.

$$P(A) = P(A|H_1) P(H_1) + P(A|H_2) P(H_2)$$

$$= \frac{1}{4} \times \frac{99}{100} + 1 \times \frac{1}{100}$$

$$= \frac{103}{400}$$

$$= 0.2575$$

What about the second one

Exercise

Answer: 0.2475

Outline

1 Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
 Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - PropertiesMinimizing Distances
- Variance
- Definition of Variance

Bayes Theorem

First

Let the event of interest A happens under any of hypotheses H_i with a known (conditional) probability $P(A|H_i)$.

That the probabilities of hypotheses $H_1,...,H_n$ are known (prior probabilities).

The conditional (posterior) probability of the hypothesis H_i given that A happened is

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A)}$$

Bayes Theorem

First

Let the event of interest A happens under any of hypotheses H_i with a known (conditional) probability $P(A|H_i)$.

Assume

That the probabilities of hypotheses $H_1, ..., H_n$ are known (prior probabilities).

The conditional (posterior) probability of the hypothesis H_i given that A happened is

 $P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A)}$

Bayes Theorem

First

Let the event of interest A happens under any of hypotheses H_i with a known (conditional) probability $P(A|H_i)$.

Assume

That the probabilities of hypotheses $H_1, ..., H_n$ are known (prior probabilities).

Then

The conditional (posterior) probability of the hypothesis H_i given that A happened is

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A)}$$

Given the independence of the events

$H_1, H_2, ..., H_n$ form a partition of the sample space S

Therefore

$$A = S \cap A = (H_1 \cup H_2 \cup \cdots \cup H_n) \cap A$$

 $A = \bigcup_{i=1}^{n} (H_i \cap A)$

Given the independence of the events

$H_1, H_2, ..., H_n$ form a partition of the sample space S

Therefore

$$A = S \cap A = (H_1 \cup H_2 \cup \dots \cup H_n) \cap A$$

Therefore

$$A = \bigcup_{i=1}^{n} (H_i \cap A)$$

Where

We have

$$P(A) = P(H_1 \cap A) + P(H_2 \cap A) + \dots + P(H_n \cap A)$$

= $P(A|H_1) P(H_1) + \dots + P(A|H_n) P(H_n)$

Bayes Law of Total Probability

Therefore for an event H_i

$$p(A, H_i) = P(A|H_i) P(H_i)$$

$$P(H_i|A) = \frac{p(A, H_i)}{P(A)}$$

Bayes Law of Total Probability

Therefore for an event H_i

$$p(A, H_i) = P(A|H_i) P(H_i)$$

Then

$$P(H_i|A) = \frac{p(A, H_i)}{P(A)}$$

78 / 171

Thus

We have that

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A)}$$

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A|H_1) P(H_1) + \dots + P(A|H_n) P(H_n)}$$

Thus

We have that

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A)}$$

Finally

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{P(A|H_1) P(H_1) + \dots + P(A|H_n) P(H_n)}$$

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- \bullet P(A) is the **prior probability** or marginal probability of A.
 - ▶ It is "prior" in the sense that it does not take into account any information about *B*.

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- \bullet P(A) is the **prior probability** or marginal probability of A.
 - ▶ It is "prior" in the sense that it does not take into account any information about B.
- P(A|B) is the **conditional probability** of A, given B.
 - It is also called the posterior probability because it is derived from or depends upon the specified value of B.

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- \bullet P(A) is the **prior probability** or marginal probability of A.
 - ▶ It is "prior" in the sense that it does not take into account any information about B.
- P(A|B) is the **conditional probability** of A, given B.
 - It is also called the posterior probability because it is derived from or depends upon the specified value of B.
- P(B|A) is the **conditional probability** of B given A.
 - ▶ It is also called the likelihood.

One Version

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- \bullet P(A) is the **prior probability** or marginal probability of A.
 - ▶ It is "prior" in the sense that it does not take into account any information about B.
- P(A|B) is the **conditional probability** of A, given B.
 - It is also called the posterior probability because it is derived from or depends upon the specified value of B.
- P(B|A) is the **conditional probability** of B given A.
 - ▶ It is also called the likelihood.
- ullet P(B) is the **prior or marginal probability** of B, and acts as a normalizing constant.

In the case of Gaussian Distributions

Setup

Throw two unbiased dice independently.

Let

 \bigcirc A ={sum of the faces =8}

 $\bigcirc B = \{\text{faces are equal}\}\$

Look at the board

Setup

Throw two unbiased dice independently.

Let

- $B = \{ faces are equal \}$

Look at the board

Setup

Throw two unbiased dice independently.

Let

- $B = \{ faces are equal \}$

Then calculate P(B|A)

Look at the board

We have the following

Two coins are available, one unbiased and the other two headed

That you have a probability of $rac{3}{4}$ to choose the unbiasec

We have the following

Two coins are available, one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

• $A = \{ \text{head comes up} \}$

We have the following

Two coins are available, one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

Events

- $A = \{ \text{head comes up} \}$
- $B_1 = \{ \text{Unbiased coin chosen} \}$

We have the following

Two coins are available, one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

Events

- $A = \{ \text{head comes up} \}$
- $B_1 = \{ Unbiased coin chosen \}$
- $B_2 = \{ \text{Biased coin chosen} \}$

We have the following

Two coins are available, one unbiased and the other two headed

Assume

That you have a probability of $\frac{3}{4}$ to choose the unbiased

Events

- $A = \{ \text{head comes up} \}$
- $B_1 = \{ \text{Unbiased coin chosen} \}$
- $B_2 = \{ \text{Biased coin chosen} \}$
 - Find that if a head come up, find the probability that the two headed coin was chosen

Outline

- Basic Theory
 - Intuitive Formulation
 Famous Examples
 - Axioms
 - Using Set Operations
 - Example
 - Finite and Infinite Space
 - Counting, Frequentist Approach
 - Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional ProbabilityIndependence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Universal Hashing

Definition of Universal Hash Functions

Definition

Let $H=\{h:U\to\{0,1,...,m-1\}\}$ be a family of hash functions. H is called a universal family if

$$\forall x, y \in U, x \neq y : \Pr_{h \in H}(h(x) = h(y)) \le \frac{1}{m} \tag{4}$$

Main result

With universal hashing the chance of collision between distinct keys k and l is no more than the $\frac{1}{m}$ chance of collision if locations h(k) and h(l) were randomly and independently chosen from the set $\{0,1,\ldots,m-1\}$.

Definition of Universal Hash Functions

Definition

Let $H=\{h:U\to\{0,1,...,m-1\}\}$ be a family of hash functions. H is called a universal family if

$$\forall x, y \in U, x \neq y : \Pr_{h \in H}(h(x) = h(y)) \le \frac{1}{m} \tag{4}$$

Main result

With universal hashing the chance of collision between distinct keys k and l is no more than the $\frac{1}{m}$ chance of collision if locations h(k) and h(l) were randomly and independently chosen from the set $\{0,1,...,m-1\}$.

Example of key distribution

Example with 10 keys

Example with 50 keys

Example with 100 keys

Example with 200 keys

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
 Formal Definition
- Formal Defintion
- Probability of a Random Variable
 - Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 Definition
 - Delilition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

Random Variables

In many experiments,

It is easier to deal with a summary variable than with the original probability structure.

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue

• Suppose we record a "1" for agree and "0" for disagree.

```
Why?
```

- Define the variable X = number of "1" 's recorded out of 50.
 - ▶ Easier to deal with this sample space (has only 51 elements

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue

• Suppose we record a "1" for agree and "0" for disagree.

The sample space for this experiment has 2^{50} elements

Why?

- Define the variable X = number of "1" 's recorded out of 50.
- ► Easier to deal with this sample space (has only 51 elements)

In an opinion poll, we ask 50 people whether agree or disagree with a certain issue

• Suppose we record a "1" for agree and "0" for disagree.

The sample space for this experiment has 2^{50} elements

• Why?

Suppose we are only interested in the number of people who agree

- Define the variable X = number of "1" 's recorded out of 50.
 - ► Easier to deal with this sample space (has only 51 elements).

Thus

It is necessary to define a function "random variable as follow"

$$X: S \to \mathbb{R}$$

Graphically

Thus

It is necessary to define a function "random variable as follow"

 $X:S\to\mathbb{R}$

Definition

How?

What is the probability function of the random variable is being defined from the probability function of the original sample space?

```
ullet Suppose the sample space is S=\{s_1,s_2,...,s_n\}
```

ullet Suppose the range of the random variable $X=< x_1, x_2, ..., x_m>$

Definition

How?

What is the probability function of the random variable is being defined from the probability function of the original sample space?

For this

• Suppose the sample space is $S = \{s_1, s_2, ..., s_n\}$

ullet Suppose the range of the random variable $X=< x_1, x_2, ..., x_m >$

Definition

How?

What is the probability function of the random variable is being defined from the probability function of the original sample space?

For this

• Suppose the sample space is $S = \{s_1, s_2, ..., s_n\}$

Now

• Suppose the range of the random variable $X = \langle x_1, x_2, ..., x_m \rangle$

Then

We have that

• We observe $X=x_i$ if and only if the outcome of the random experiment is an $s\in S$ s.t. $X(s)=x_i$

 $P(X = x_j) = P(s \in S | X(s) = x_j)$

Then

We have that

• We observe $X=x_i$ if and only if the outcome of the random experiment is an $s\in S$ s.t. $X(s)=x_i$

Or

$$P(X = x_i) = P(s \in S | X(s) = x_i)$$

Therefore

If the events in S are disjoint

$$P(X = x_j) = \sum_{s} P(s|X(s) = x_j)$$

We can easily see the relationship between Random Variables and The Events in ${\cal S}$

Therefore

If the events in S are disjoint

$$P(X = x_j) = \sum_{s,s} P(s|X(s) = x_j)$$

Therefore if we can decompose S

We can easily see the relationship between Random Variables and The Events in ${\cal S}$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
 Probability of a Random Variable
 - Probability of a Random Varia
- Types of Random Variable
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 Definition
 - Delimition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

We have

Definition

ullet A Random Variable X is a process of assigning a number $X\left(A\right)$ to every outcome A.

- he resulting function must satisfy the third
- \blacksquare The set $\{X \leq x\}$ is an event for every $x \in \mathbb{R}$.
- **●** The probability of the events $\{X = \infty\}$ and $X = -\infty$ equal zero:

 $P\{X = \infty\} = 0 \ P\{X = -\infty\} = 0$

We have

Definition

 \bullet A Random Variable X is a process of assigning a number $X\left(A\right)$ to every outcome A.

The resulting function must satisfy the the following two conditions

- The set $\{X \leq x\}$ is an event for every $x \in \mathbb{R}$.
- 2 The probability of the events $\{X = \infty\}$ and $X = -\infty$ equal zero:

$$P\{X = \infty\} = 0 \ P\{X = -\infty\} = 0$$

Setup

Throw a coin 10 times, and let R be the number of heads.

Thai

 $S=% { ext{all}} =1$ all sequences of length 10 with components H and $^{-}$

 $\omega = HHHHTTHTTH \Rightarrow R(\omega) = 6$

Setup

Throw a coin 10 times, and let R be the number of heads.

Then

 $S={\sf all}$ sequences of length 10 with components H and T

 $\omega = HHHHTTHTTH \Rightarrow R(\omega) = 6$

Setup

Throw a coin 10 times, and let ${\cal R}$ be the number of heads.

Then

 $S={
m all}$ sequences of length 10 with components H and T

We have for

$$\omega = HHHHTTHTTH \Rightarrow R(\omega) = 6$$

Setup

Let R be the number of heads in two independent tosses of a coin.

• Probability of head is .6

What are the probabili

 $\Omega = \{HH, HT, TH, TT\}$

P(R = 0), P(R = 1), P(R = 2)

Setup

Let ${\cal R}$ be the number of heads in two independent tosses of a coin.

• Probability of head is .6

What are the probabilities?

$$\Omega = \{HH, HT, TH, TT\}$$

P(R = 0), P(R = 1), P(R = 2)

Setup

Let ${\cal R}$ be the number of heads in two independent tosses of a coin.

• Probability of head is .6

What are the probabilities?

$$\Omega = \{HH, HT, TH, TT\}$$

Thus, we can calculate

$$P(R = 0), P(R = 1), P(R = 2)$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Pandom Variable
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities
- Evaceted Value

Expected Value

- Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

Note

If we are interested in a random variable X

We want to know its probabilities

Measurement of such variables leads to measurements assurements

 $a \le X \le b$

 $P\left(s|a \leq X\left(s\right) \leq b\right)$

Note

If we are interested in a random variable X

We want to know its probabilities

Basically

Measurement of such variables leads to measurements as

$$a \le X \le b$$

 $P\left(s|a \le X\left(s\right) \le b\right)$

Note

If we are interested in a random variable X

We want to know its probabilities

Basically

Measurement of such variables leads to measurements as

Therefore, we are looking at the following probabilities

$$P\left(s|a\leq X\left(s\right)\leq b\right)$$

Then

Definition

ullet The distribution of a Random Variable X is the function

$$F_X(x) = P\left\{X \le x\right\}$$

▶ Defined for all $x \in \mathbb{R}$

For example, if a coin is tossed independently n times

With:

- lacksquare Probability p of coming heads on a given toss.
- $oldsymbol{2}$ And X is the number of heads

$$P\left(a \le X\left(s\right) \le b\right) = \sum_{k=1}^{\infty} \left(\begin{array}{c} n \\ k \end{array}\right) p^{k} \left(1-p\right)^{n-k}$$

For example, if a coin is tossed independently n times

With:

- lacktriangle Probability p of coming heads on a given toss.
- $oldsymbol{2}$ And X is the number of heads

We have that

$$P(a \le X(s) \le b) = \sum_{k=1}^{b} \binom{n}{k} p^{k} (1-p)^{n-k}$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Independence
- Law of Total ProbabilityBayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

We have Two Types of Random Variables

Definition

The Random Variable X is said to be discrete if and only if the set of possible values of X is finite or countably infinite.

If $x_1, x_2, ...$ are the values of X that belong to the range R of it

 $P(X = x_1, X = x_2, ...) = \sum_{x \in R} p_X(x)$

We have Two Types of Random Variables

Definition

The Random Variable X is said to be discrete if and only if the set of possible values of X is finite or countably infinite.

Then

If $x_1, x_2, ...$ are the values of X that belong to the range R of it,

$$P(X = x_1, X = x_2, ...) = \sum_{x \in P} p_X(x)$$

In the case of Continuous Random Variables

Definition

A continuous random variable can assume a continuous range of values.

Using integrals

In the case of Continuous Random Variables

Definition

A continuous random variable can assume a continuous range of values.

However, we would use something more formal for this

Using integrals.

Random variable X has uniform U(a,b) distribution if its density is given by

$$f(x|a,b) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & else \end{cases}$$

Random variable X has uniform U(a,b) distribution if its density is given by

$$f(x|a,b) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & else \end{cases}$$

Bernoulli Distribution

Random variable X has Bernoulli $\mathcal{B}er(p)$ distribution with parameter $0 \leq p \leq 1$

$$x(x|p) = p^x (1-p)^{1-x}, x \in \{0,1\}$$

Any idea?

Bernoulli Distribution

Random variable X has Bernoulli $\mathcal{B}er(p)$ distribution with parameter $0 \le p \le 1$

if its probability mass function is given by

$$f(x|p) = p^x (1-p)^{1-x}, x \in \{0,1\}$$

Any idea?

Bernoulli Distribution

Random variable X has Bernoulli $\mathcal{B}er(p)$ distribution with parameter $0 \le p \le 1$

if its probability mass function is given by

$$f(x|p) = p^x (1-p)^{1-x}, x \in \{0,1\}$$

What is the structure of the distribution

Any idea?

As you can imagine

They need to follow the rules of a probability.

As you can imagine

They need to follow the rules of a probability.

The Probability sums to one

For the PMF and PDF

As you can imagine

They need to follow the rules of a probability.

The Probability sums to one

For the PMF and PDF

As you can imagine

They need to follow the rules of a probability.

The Probability sums to one

For the PMF and PDF

- - $\bullet \int_{-\infty}^{\infty} f(x)dx = 1$

The Probability

It can be "easily" calculated

One of my ironies.

$$F_X(a < X < b) = \sum_{i=1}^{n} f_X(k)$$

 $F_X(a < X < b) = \int_a^b f_X(t)dt$

The Probability

It can be "easily" calculated

• One of my ironies.

PMF

$$F_X(a < X < b) = \sum_{k=1}^{n} f_X(k).$$

$$F_X(a < X < b) = \int_a^b f_X(t)dt$$

The Probability

It can be "easily" calculated

One of my ironies.

PMF

$$F_X(a < X < b) = \sum_{k=a} f_X(k).$$

PDF

$$F_X(a < X < b) = \int_a^b f_X(t)dt$$

In the Continuous Case

We have

$$F_X(a < X < b) = F_X(b) - F_X(a)$$

 $F_{Y}(a < X < a) = F_{Y}(a) - F_{Y}(a) = F_{Y}(a)$

In the Continuous Case

We have

$$F_X(a < X < b) = F_X(b) - F_X(a)$$

Additionally, we have that for a single point

$$F_X(a < X < a) = F_X(a) - F_X(a) = 0$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

We have some basic ideas about the descriptions of the Random Variables

We need to be more formal to connect our basic intuitions on continuous spaces.

We have some basic ideas about the descriptions of the Random Variables

We need to be more formal to connect our basic intuitions on continuous spaces.

Theorem

• Let f be a nonnegative real-valued function on \mathbb{R} with $\int_{-\infty}^{\infty} f(x) dx = 1$.

We have some basic ideas about the descriptions of the Random Variables

We need to be more formal to connect our basic intuitions on continuous spaces.

Theorem

- Let f be a nonnegative real-valued function on \mathbb{R} with $\int_{-\infty}^{\infty} f(x) \, dx = 1$.
- \bullet There is a unique probability measure P defined in the Borel Subsets of $\mathbb R$

We have some basic ideas about the descriptions of the Random Variables

We need to be more formal to connect our basic intuitions on continuous spaces.

Theorem

- Let f be a nonnegative real-valued function on \mathbb{R} with $\int_{-\infty}^{\infty} f(x) dx = 1$.
- \bullet There is a unique probability measure P defined in the Borel Subsets of $\mathbb R$
- Such That

$$P(B) = \int_{B} f(x) dx$$

We have some basic ideas about the descriptions of the Random Variables

We need to be more formal to connect our basic intuitions on continuous spaces.

Theorem

- Let f be a nonnegative real-valued function on \mathbb{R} with $\int_{-\infty}^{\infty} f(x) dx = 1$.
- ullet There is a unique probability measure P defined in the Borel Subsets of \mathbb{R} .
- Such That

$$P(B) = \int_{B} f(x) dx$$

For all intervals B = (a, b]

Therefore

Definition

The random variable X is said to be absolutely continuous if and only if there is a non-negative function $f=f_X$ defined over $\mathbb R$ such that

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

 f_X is called the Density function of X and F_X is called a Cumulative Density Function (CDF).

Therefore

Definition

The random variable X is said to be absolutely continuous if and only if there is a non-negative function $f=f_X$ defined over $\mathbb R$ such that

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

Here

 f_X is called the Density function of X and F_X is called a Cumulative Density Function (CDF).

Graphically

Properties

CDF's Properties

• $F_X(x) \ge 0$

- example
 - $F_X(x) = P(f(X) \le x) = \sum_{k=1}^{N} P(X_k = p_k).$

Properties

CDF's Properties

- $F_X(x) \ge 0$
- $F_X(x)$ in a non-decreasing function of X.

Properties

CDF's Properties

- $F_X(x) \ge 0$
- $F_X(x)$ in a non-decreasing function of X.

Example

• If X is discrete, its CDF can be computed as follows:

$$F_X(x) = P(f(X) \le x) = \sum_{k=1}^{N} P(X_k = p_k).$$

Example on Discrete Function

Derivative of Cumulative Densitiy Function

Continuous Function

If X is continuous, its CDF can be computed as follows:

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

Remark

Based in the fundamental theorem of calculus, we have the following equality

$$\frac{dF}{dx}(x) = \frac{dF}{dx}(x)$$

Note

This particular p(x) is known as the Probability Distribution Function (PDF)

Derivative of Cumulative Densitiy Function

Continuous Function

If X is continuous, its CDF can be computed as follows:

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

Remark

Based in the fundamental theorem of calculus, we have the following equality.

$$f(x) = \frac{dF}{dx}(x)$$

This particular p(x) is known as the Probability Distribution Function (PDF)

Derivative of Cumulative Densitiy Function

Continuous Function

If X is continuous, its CDF can be computed as follows:

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

Remark

Based in the fundamental theorem of calculus, we have the following equality.

$$f(x) = \frac{dF}{dx}(x)$$

Note

This particular p(x) is known as the Probability Distribution Function (PDF).

Some Basic Properties of These Densities

Conditional PMF/PDF

We have the conditional pdf:

$$p(y|x) = \frac{p(x,y)}{p(x)}.$$

From this, we have the general chain rule

$$p(x_1, x_2, ..., x_n) = p(x_1|x_2, ..., x_n)p(x_2|x_3, ..., x_n)...p(x_n).$$

If X and Y are independent, then:

p(x,y) = p(x)p(y).

Some Basic Properties of These Densities

Conditional PMF/PDF

We have the conditional pdf:

$$p(y|x) = \frac{p(x,y)}{p(x)}.$$

From this, we have the general chain rule

$$p(x_1,x_2,...,x_n) = p(x_1|x_2,...,x_n)p(x_2|x_3,...,x_n)...p(x_n).$$

Independence

If X and Y are independent, then:

$$p(x,y) = p(x)p(y).$$

Also the Law of Total Probability

Law of Total Probability is still working correctly

$$p(y) = \sum_{x} p(y|x)p(x).$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Ocunting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
 - Types of Random Variables
- Distribution Functions
 Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

We have a common problem

Given a function g

Describing a specific phenomena.

For example a Random Variable X_1

 $X_2 = g\left(X_1\right)$

We have a common problem

Given a function g

Describing a specific phenomena.

We can have a stochastic input

For example a Random Variable X_1

 $X_2 = g\left(X_1\right)$

We have a common problem

Given a function g

Describing a specific phenomena.

We can have a stochastic input

For example a Random Variable X_1

Then, we have another random variable

$$X_2 = g\left(X_1\right)$$

Example

Let X_1 a random variable such that $X_2 = X_1^2$

What is the density function of X_2 ?

In terms of the random variable X_1

Thus, we have that for u < 0

$$F(x) - F(Y \le x) -$$

Example

Let X_1 a random variable such that $X_2 = X_1^2$

What is the density function of X_2 ?

For this, we need to express the event $\{X_2 \leq y\}$

In terms of the random variable X_1

Thus, we have that for y < 0

 $F_2(y) = F(X_2 \le y) = 0$

Example

Let X_1 a random variable such that $X_2 = X_1^2$

What is the density function of X_2 ?

For this, we need to express the event $\{X_2 \leq y\}$

In terms of the random variable X_1

First $X_2 \ge 0$

Thus, we have that for y < 0

$$F_2(y) = F(X_2 \le y) = 0$$

Then

if $y \ge 0$ then $R_2 \le y$

If and only if $-\sqrt{y} \leq X_1 \leq \sqrt{y}$

$$F\left(X_{2} \leq y\right) = F\left(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\right) = \int_{-\sqrt{y}}^{\sqrt{y}} f_{1}\left(x\right) dx$$

$$f_{1}(x) = \begin{cases} 0 & \text{if } x < -1\\ \frac{1}{2} & \text{if } -1 \leq x < 0\\ \frac{1}{2} \exp\left\{-x\right\} & \text{if } 0 \leq x \end{cases}$$

Then

if $y \ge 0$ then $R_2 \le y$

If and only if $-\sqrt{y} \le X_1 \le \sqrt{y}$

Then

$$F\left(X_{2} \leq y\right) = F\left(-\sqrt{y} \leq X_{1} \leq \sqrt{y}\right) = \int_{-\sqrt{y}}^{\sqrt{y}} f_{1}\left(x\right) dx$$

$$f_{1}(x) = \begin{cases} 0 & \text{if } x < -1\\ \frac{1}{2} & \text{if } -1 \leq x < 0\\ \frac{1}{2} \exp\left\{-x\right\} & \text{if } 0 \leq x \end{cases}$$

Then

if $y \ge 0$ then $R_2 \le y$

If and only if $-\sqrt{y} \le X_1 \le \sqrt{y}$

Then

$$F(X_2 \le y) = F(-\sqrt{y} \le X_1 \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} f_1(x) dx$$

lf

$$f_1(x) = \begin{cases} 0 & \text{if } x < -1\\ \frac{1}{2} & \text{if } -1 \le x < 0\\ \frac{1}{2} \exp\{-x\} & \text{if } 0 \le x \end{cases}$$

We have then

if
$$0 \le y \le 1$$

$$F_{2}\left(y\right) = \int_{-\sqrt{y}}^{\sqrt{y}} f_{1}\left(x\right) dx$$

We have then

if
$$0 \le y \le 1$$

$$F_{2}(y) = \int_{-\sqrt{y}}^{\sqrt{y}} f_{1}(x) dx$$
$$= \int_{-\sqrt{y}}^{0} \frac{1}{2} dx + \int_{0}^{\sqrt{y}} \frac{1}{2} \exp\{-x\} dx$$

We have then

if
$$0 \le y \le 1$$

$$F_{2}(y) = \int_{-\sqrt{y}}^{\sqrt{y}} f_{1}(x) dx$$

$$= \int_{-\sqrt{y}}^{0} \frac{1}{2} dx + \int_{0}^{\sqrt{y}} \frac{1}{2} \exp\{-x\} dx$$

$$= \frac{1}{2} \sqrt{y} + \frac{1}{2} (1 - \exp\{-\sqrt{y}\})$$

If y > 1

What is $F_2(y)$?

Finally

For y < 0

$$f_2(y) = \frac{dF_2(y)}{dy} = 0$$

$$f_2(y) = \frac{dF_2(y)}{dy} = \frac{1}{4\sqrt{y}} (1 + \exp\{-\sqrt{y}\})$$

$$f_2(y) = \frac{dF_2(y)}{dy} = \frac{1}{4\sqrt{y}} \exp\left\{-\sqrt{y}\right\}$$

Finally

For y < 0

$$f_2(y) = \frac{dF_2(y)}{dy} = 0$$

For 0 < y < 1

$$f_{2}\left(y\right)=\frac{dF_{2}\left(y\right)}{dy}=\frac{1}{4\sqrt{y}}\left(1+\exp\left\{ -\sqrt{y}\right\} \right)$$

$$f_{2}\left(y\right) = \frac{dF_{2}\left(y\right)}{dy} = \frac{1}{4\sqrt{y}}\exp\left\{-\sqrt{y}\right\}$$

Finally

For
$$y < 0$$

$$f_2(y) = \frac{dF_2(y)}{dy} = 0$$

For 0 < y < 1

$$f_2(y) = \frac{dF_2(y)}{dy} = \frac{1}{4\sqrt{y}} (1 + \exp\{-\sqrt{y}\})$$

For y > 1

$$f_2(y) = \frac{dF_2(y)}{dy} = \frac{1}{4\sqrt{y}} \exp\left\{-\sqrt{y}\right\}$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
 - Unconditional and Conditional Probability
 - Conditional ProbabilityIndependence
 - Law of Total Probability
 - Bayes Theorem
 - Application in Universal Hashing

2

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

The Situation Becomes Interesting

When you take into account two or more variables

Here, we have two random variables that are defined by a density function:

$$f_{X,Y}\left(x,y\right)$$

We need to understand how these random variables interact

The Situation Becomes Interesting

When you take into account two or more variables

Here, we have two random variables that are defined by a density function:

$$f_{X,Y}\left(x,y\right)$$

Therefore

We need to understand how these random variables interact.

Joint Distributions

Suppose we have a non-negative function real-valued function f in \mathbb{R}^2

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx dy = 1$$

 $X_{1}\left(x,y\right)$ and $X_{2}\left(x,y\right)$, then

$$P\left(\left(X_{1}, X_{2}\right) \in B\right) = P\left(B\right) = \int_{\mathbb{R}} f\left(x, y\right) dx dy$$

Joint Distributions

Suppose we have a non-negative function real-valued function f in \mathbb{R}^2

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx dy = 1$$

Now, if we define

 $X_{1}\left(x,y\right)$ and $X_{2}\left(x,y\right)$, then

$$P((X_1, X_2) \in B) = P(B) = \int \int_{B} f(x, y) dxdy$$

The Joint Distribution Function is defined as

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du \, dv$$

Let

$$f(x,y) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1 \\ 0 & elsewhere \end{cases}$$

The Unit Square in \mathbb{R}^2

Let

$$f\left(x,y\right) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \text{ and } 0 \le y \le 1\\ 0 & elsewhere \end{cases}$$

It looks like

The Unit Square in \mathbb{R}^2

Assume the following random variables

$$X_{1}\left(x,y\right) =x\text{ and }X_{1}\left(x,y\right) =y.$$

$$\frac{1}{2} \le X_1 + X_2 \le \frac{3}{2}$$

$$\frac{1}{2} \le x + y \le \frac{3}{2}$$

Assume the following random variables

$$X_{1}(x,y) = x \text{ and } X_{1}(x,y) = y.$$

Why don't we calculate the following probability? For

$$\frac{1}{2} \le X_1 + X_2 \le \frac{3}{2}$$

$$\frac{1}{2} \le x + y \le \frac{3}{2}$$

Assume the following random variables

$$X_1(x,y) = x \text{ and } X_1(x,y) = y.$$

Why don't we calculate the following probability? For

$$\frac{1}{2} \le X_1 + X_2 \le \frac{3}{2}$$

Therefore

$$\frac{1}{2} \le x + y \le \frac{3}{2}$$

Look

We have the following

$$P\left\{\frac{1}{2} \le x + y \le \frac{3}{2}\right\} = \int \int_{B} 1 dx dy$$

$$P\left\{\frac{1}{2} \le x + y \le \frac{3}{2}\right\} = 1 - 2\left(\frac{1}{8}\right)$$

Look

We have the following

$$P\left\{\frac{1}{2} \le x + y \le \frac{3}{2}\right\} = \int \int_{B} 1 dx dy$$

What is B?

We can draw it!!!

$$P\left\{\frac{1}{2} \leq x + y \leq \frac{3}{2}\right\} = 1 - 2\left(\frac{1}{8}\right)$$

Look

We have the following

$$P\left\{\frac{1}{2} \le x + y \le \frac{3}{2}\right\} = \int \int_{B} 1 dx dy$$

What is B?

We can draw it!!!

Therefore

$$P\left\{\frac{1}{2} \le x + y \le \frac{3}{2}\right\} = 1 - 2\left(\frac{1}{8}\right)$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
- Relations Between Join and Individual Densities

Expected Value

- Introduction
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
 - Definition of Variance

If we have a Joint Distribution

Can we get the Individual Distributions?

Actually, we have that we can integrate one of the variables.

What if we have the following age-weight distributions

If we have a Joint Distribution

Can we get the Individual Distributions?

Actually, we have that we can integrate one of the variables.

For Example

What if we have the following age-weight distributions

$X_1 = Weight$			
170-160	2	3	
160-150	4	5	
	20-25	25-30	$X_2 = Age$

The Joint Distribution for two discrete variables

$$f(x,y) = F(X_1 = x, X_2 = y)$$

$${X_1 = x} = {X_1 = x, X_2 = y_1} \cup {X_1 = x, X_2 = y_2} \cup \dots$$

The events are independent!!!

The Joint Distribution for two discrete variables

$$f(x,y) = F(X_1 = x, X_2 = y)$$

Then

$${X_1 = x} = {X_1 = x, X_2 = y_1} \cup {X_1 = x, X_2 = y_2} \cup \dots$$

The events are independent!!!

The Joint Distribution for two discrete variables

$$f(x,y) = F(X_1 = x, X_2 = y)$$

Then

$${X_1 = x} = {X_1 = x, X_2 = y_1} \cup {X_1 = x, X_2 = y_2} \cup \dots$$

Remember

The events are independent!!!

We have the marginal distribution for X_1

$$f_1(x) = F(X_1 = x) = \sum_{x} f(x, y)$$

$$f_{2}\left(y\right) = F\left(X_{2} = y\right) = \sum_{x} f\left(x, y\right)$$

We have the marginal distribution for X_1

$$f_1(x) = F(X_1 = x) = \sum_{y} f(x, y)$$

Similarly

$$f_2(y) = F(X_2 = y) = \sum f(x, y)$$

We have

$$F\left(x_{0} \leq X_{1} \leq x_{0} + dx_{0}\right) \approx f_{1}\left(x_{0}\right) dx_{0}$$

We have

$$F\left(x_{0} \leq X_{1} \leq x_{0} + dx_{0}\right) \approx f_{1}\left(x_{0}\right) dx_{0}$$

141 / 171

We have

$$F(x_0 \le X_1 \le x_0 + dx_0) = F(x_0 \le X_1 \le x_0 + dx_0, -\infty < X_2 < \infty)$$

$$= \int_{x_0}^{x_0 + dx_0} dx \int_{-\infty}^{\infty} f(x, y) dy$$

$$\approx dx_0 \int_{-\infty}^{\infty} f(x, y) dy$$

We have if f(x,y) is well behaved

$$f_1(x_0) dx_0 \approx dx_0 \int_{-\infty}^{\infty} f(x_0, y) dy$$

$$f_1\left(x_0\right) pprox \int_{-\infty}^{\infty} f\left(x_0, y\right) dy$$

We have if f(x,y) is well behaved

$$f_1(x_0) dx_0 \approx dx_0 \int_{-\infty}^{\infty} f(x_0, y) dy$$

Then

$$f_1(x_0) \approx \int_{-\infty}^{\infty} f(x_0, y) dy$$

In this way

We have

$$f_{1}(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

In this way

We have

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Also

$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Given

$$f(x,y) = \begin{cases} 8xy & 0 \le y \le x \le 1\\ 0 & elsewhere \end{cases}$$

Then for 0

$$f_1(x) = \int_0^x 8xy dy = 4x^3$$

 $f_2(y) = 0$

Given

$$f(x,y) = \begin{cases} 8xy & 0 \le y \le x \le 1\\ 0 & elsewhere \end{cases}$$

Then for $0 \le x \le 1$

$$f_1(x) = \int_0^x 8xy dy = 4x^3$$

Given

$$f(x,y) = \begin{cases} 8xy & 0 \le y \le x \le 1\\ 0 & elsewhere \end{cases}$$

Then for $0 \le x \le 1$

$$f_1(x) = \int_0^x 8xy dy = 4x^3$$

If y < 0 or y > 1

$$f_2(y) = 0$$

We have for $0 \le y \le 1$

$$f_2(y) = \int_y^1 8xy dx = 4y (1 - y^2)$$

Outline

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction Definition
 - Properties
- Minimizing Distances
- Variance
- Definition of Variance

Expectation

Imagine the following situation

You have the random variables R_1,R_2 representing how long is a call and how much you pay for an international call

Expectation

Imagine the following situation

You have the random variables R_1,R_2 representing how long is a call and how much you pay for an international call

if
$$0 \le X_1 \le 3(minute) \ X_2 = 10(cents)$$

if $3 < X_1 \le 6(minute) \ X_2 = 20(cents)$
if $6 < X_1 < 9(minute) \ X_2 = 30(cents)$

We have then the probabilities

$$P\{R_2 = 10\} = 0.6, P\{R_2 = 20\} = 0.25, P\{R_2 = 10\} = 0.15$$

We can say that we have $N \times 0.6$ calls and $10 \times N \times 0.6$ the cost of those calls

We have then the probabilities

$$P\{R_2 = 10\} = 0.6, P\{R_2 = 20\} = 0.25, P\{R_2 = 10\} = 0.15$$

If we observe N calls and N is very large

We can say that we have $N \times 0.6$ calls and $10 \times N \times 0.6$ the cost of those calls

Expectation

Similarly

 $\bullet \ \{R_2 = 20\} \Longrightarrow 0.25 N \ \text{and total cost} \ 5N$

Expectation

Similarly

- $\{R_2 = 20\} \Longrightarrow 0.25N$ and total cost 5N
- $\{R_2 = 20\} \Longrightarrow 0.15N$ and total cost 4.5N

The total cost is 6N + 5N + 4.5N = 15.5N or in average 15.5 cents per

Expectation

Similarly

- $\{R_2 = 20\} \Longrightarrow 0.25N$ and total cost 5N
- $\{R_2 = 20\} \Longrightarrow 0.15N$ and total cost 4.5N

We have then the probabilities

The total cost is 6N+5N+4.5N=15.5N or in average 15.5 cents per call

The weighted average

$$\frac{10(0.6N) + 20(.25N) + 30(0.15N)}{N} = 10(0.6) + 20(.25) + 30(0.15)$$
$$= \sum_{y} yP\{R_2 = y\}$$

Then

The Expected Value is a weighted average!!!

The weighted average

$$\frac{10(0.6N) + 20(.25N) + 30(0.15N)}{N} = 10(0.6) + 20(.25) + 30(0.15)$$
$$= \sum_{y} yP\{R_2 = y\}$$

Then

The Expected Value is a weighted average!!!

John Cage

Assume

Given X a simple random variable i.e. a discrete random variable with a finite range!

$E(X) = \sum_{x} x P(X = x)$

- -:---

The sum is finite and there are not convergence problems.

John Cage

Assume

Given \boldsymbol{X} a simple random variable i.e. a discrete random variable with a finite range!

We define the expectation of as

$$E(X) = \sum_{x} x P(X = x)$$

The sum is finite and there are not convergence pr

John Cage

Assume

Given X a simple random variable i.e. a discrete random variable with a finite range!

We define the expectation of as

$$E\left(X\right) = \sum_{x} x P\left(X = x\right)$$

Given that you have a simple random variable

The sum is finite and there are not convergence problems.

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
 Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduct
 - Definition
 - Properties
 - Minimizing Distances
 - Variance
- Definition of Variance

Now

This expected function can be extended to random functions too

$$E(X_2) = E(g(X_1)) = \sum g(x) f_{X_1}(x)$$

$$\Xi(X_3) = \int_{-\infty}^{\infty} x f_{x_3}(x) dx$$

 $E\left(g\left(X_{3}\right)\right) = \int_{-\infty}^{\infty} g(x) f_{X_{3}}(x) dx$

This expected function can be extended to random functions too

$$E(X_2) = E(g(X_1)) = \sum_{x} g(x) f_{X_1}(x)$$

In a similar way, it is possible to define for the continuous random variables

$$E(X_3) = \int_{-\infty}^{\infty} x f_{x_3}(x) dx$$

 $E\left(g\left(X_{3}\right)\right) = \int_{-\infty}^{\infty} g(x) f_{X_{3}}(x) dx$

Now

This expected function can be extended to random functions too

$$E(X_2) = E(g(X_1)) = \sum_{x} g(x) f_{X_1}(x)$$

In a similar way, it is possible to define for the continuous random variables

$$E(X_3) = \int_{-\infty}^{\infty} x f_{x_3}(x) dx$$

Similarly

$$E(g(X_3)) = \int_{-\infty}^{\infty} g(x) f_{X_3}(x) dx$$

Normal Density Function

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$$

Then

$$E[X] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \exp\left\{-\frac{x^2}{2}\right\} dx$$

$$E[X] = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\frac{x^2}{2}\right\} d\left\{-\frac{x^2}{2}\right\}$$

155 / 171

Normal Density Function

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$$

Then

$$E[X] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \exp\left\{-\frac{x^2}{2}\right\} dx$$

$$E[X] = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\frac{x^2}{2}\right\} d\left\{-\frac{x^2}{2}\right\}$$

Normal Density Function

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}$$

Then

$$E[X] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x \exp\left\{-\frac{x^2}{2}\right\} dx$$

Then

$$E[X] = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\frac{x^2}{2}\right\} d\left\{-\frac{x^2}{2}\right\}$$

Finally

We have

$$E[X] = -\frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\} \Big|_{-\infty}^{\infty} = 0$$

Imagine the following

We have the following functions

Imagine the following

We have the following functions

1
$$f(x) = e^{-x}, x \ge 0$$

The expected Value

Imagine the following

We have the following functions

1
$$f(x) = e^{-x}, x \ge 0$$

2
$$g(x) = 0, x < 0$$

The expected Value

Imagine the following

We have the following functions

1
$$f(x) = e^{-x}, x \ge 0$$

2
$$g(x) = 0, x < 0$$

Find

The expected Value

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
 Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduction
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

Given a random variable X, and a, b, c constants

Then, for any functions $g_{1}\left(x\right)$ and $g_{2}\left(x\right)$ whose expectation exists

Given a random variable X, and a, b, c constants

Then, for any functions $g_1\left(x\right)$ and $g_2\left(x\right)$ whose expectation exists

Given a random variable X, and a, b, c constants

Then, for any functions $g_1(x)$ and $g_2(x)$ whose expectation exists

- ② If $g_1(x) \ge 0$ for all x, then $E[g_1(x)] \ge 0$

Given a random variable X, and a, b, c constants

Then, for any functions $g_1(x)$ and $g_2(x)$ whose expectation exists

- ② If $g_1(x) \ge 0$ for all x, then $E[g_1(x)] \ge 0$

Given a random variable X, and a, b, c constants

Then, for any functions $g_1(x)$ and $g_2(x)$ whose expectation exists

- ② If $g_1(x) \ge 0$ for all x, then $E[g_1(x)] \ge 0$
- $\bullet \ \text{ If } a \leq g_1\left(x\right) \leq b \text{ for all, then } a \leq E\left[g_1\left(x\right)\right] \leq b$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
- Conditional ProbabilityIndependence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

2

Random Variables

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduc
- Definition
- Properties
- Minimizing Distances
- VarianceDefinition of Variance

Minimizing Distances

Observation

The expected value of a Random Variable has an important property!!!

The interpretation of $E\left[X
ight]$ as a good guess for X

We measure the distance between a random variable X and a constant b by $\left(X=b\right)^{2}$

• The closer the b is to X, the smaller the quantity is!!!

Minimizing Distances

Observation

The expected value of a Random Variable has an important property!!!

One can be seen as

The interpretation of E[X] as a good guess for X

We measure the distance between a random variable X and a constant b by $(X = b)^2$

• The closer the b is to X, the smaller the quantity is!!!

Minimizing Distances

Observation

The expected value of a Random Variable has an important property!!!

One can be seen as

The interpretation of E[X] as a good guess for X

Suppose the following

We measure the distance between a random variable X and a constant b by $(X-b)^2$

• The closer the b is to X, the smaller the quantity is!!!

$$E(X - b)^{2} = E(X - EX + EX - b)^{2}$$

$$E(X - b)^{2} = E(X - EX + EX - b)^{2}$$
$$= E((X - EX) + (EX - b))^{2}$$

$$E (X - b)^{2} = E (X - EX + EX - b)^{2}$$

$$= E ((X - EX) + (EX - b))^{2}$$

$$= E (X - EX)^{2} + (EX - b)^{2} + \dots$$

$$E(X - b)^{2} = E(X - EX + EX - b)^{2}$$

$$= E((X - EX) + (EX - b))^{2}$$

$$= E(X - EX)^{2} + (EX - b)^{2} + \dots$$

$$= 2E((X - EX)(EX - b))$$

We notice the following

We have

$$E((X - EX)(EX - b)) = (EX - b)E(X - EX) = 0$$

$$E(X - b)^{2} = E(X - EX)^{2} + (EX - b)^{2}$$

$$\min_{b} E(X - b)^{2} = E(X - EX)^{2}$$

We notice the following

We have

$$E((X - EX)(EX - b)) = (EX - b)E(X - EX) = 0$$

Then

$$E(X - b)^{2} = E(X - EX)^{2} + (EX - b)^{2}$$

$$\min_{b} E(X - b)^{2} = E(X - EX)^{2}$$

We notice the following

We have

$$E((X - EX)(EX - b)) = (EX - b)E(X - EX) = 0$$

Then

$$E(X - b)^{2} = E(X - EX)^{2} + (EX - b)^{2}$$

What if we choose b = EX

$$\min_{L} E (X - b)^{2} = E (X - EX)^{2}$$

Outline

Basic Theory

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability
 Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

Random Variable

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Types of Random Variables
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- Introduc
- Definition
- Properties
- Minimizing Distances
- Variance
- Definition of Variance

First, the central moments

Definition

For each integer n, the n^{th} moment of X, $\mu_n^{'}$, is

$$\mu_{n}^{'}=E\left[X^{n}\right]$$

$$\mu_n = E\left[X - \mu\right]^2$$

$$\mu=\mu_{n}^{'}=EX$$

First, the central moments

Definition

For each integer n, the n^{th} moment of X, $\mu_n^{'}$, is

$$\mu_{n}^{'}=E\left[X^{n}\right]$$

The n^{th} central moment of X is

$$\mu_n = E\left[X - \mu\right]^2$$

First, the central moments

Definition

For each integer n, the n^{th} moment of X, $\mu_n^{'}$, is

$$\mu_{n}^{'}=E\left[X^{n}\right]$$

The n^{th} central moment of X is

$$\mu_n = E\left[X - \mu\right]^2$$

Where

$$\mu = \mu'_n = EX$$

Outline

- Intuitive Formulation
- Famous Examples
- Axioms
- Using Set Operations
- Example
- Finite and Infinite Space
- Counting, Frequentist Approach
- Independence
 - Repeated Trials
 - Cartesian Products
- Unconditional and Conditional Probability Conditional Probability
- Independence
- Law of Total Probability
- Bayes Theorem
- Application in Universal Hashing

- Introduction
- Formal Defintion
- Probability of a Random Variable
- Distribution Functions
- Function of Random Variables
- Some Properties of the Distribution Functions
 - Relations Between Join and Individual Densities

Expected Value

- - Definition
- Properties
- Minimizing Distances Definition of Variance
- Variance

Then

Definition

The Variance of a Random Variable \boldsymbol{X} is its second central moment

$$Var X = E[X - EX]^2$$

• The standard deviation is simply $\sigma = \sqrt{Var(X)}$

Then

Definition

The Variance of a Random Variable X is its second central moment

$$Var X = E[X - EX]^2$$

Then

• The standard deviation is simply $\sigma = \sqrt{Var(X)}$.

Now

The variance gives a measure of the degree of spread around its mean

Then, we have two cases

In such case X is more variable

• If $Var \ X = E (X - EX)^2 = 0$, then X = EX with probability 1. • No Variation!!!

Now

The variance gives a measure of the degree of spread around its mean

Then, we have two cases

A large variance

In such case X is more variable

• If $Var\ X = E\ (X - EX)^2 = 0$, then X = EX with probability 1.1

▶ No Variation!!!

Now

The variance gives a measure of the degree of spread around its mean

Then, we have two cases

A large variance

In such case X is more variable

At the extreme

- If $Var\ X = E(X EX)^2 = 0$, then X = EX with probability 1.
 - ► No Variation!!!

Exponential Variance

Let X have the exponential (λ) distribution.

Exponential Variance

Let X have the exponential (λ) distribution.

Exponential Variance

Let X have the exponential (λ) distribution.

$$Var X = E(X - \lambda)^2$$

Exponential Variance

Let X have the exponential(λ) distribution.

$$Var X = E(X - \lambda)^{2}$$
$$= \int_{0}^{\infty} (x - \lambda)^{2} \frac{1}{\lambda} \exp\left\{-\frac{x}{\lambda}\right\} dx$$

Exponential Variance

Let X have the exponential(λ) distribution.

$$Var X = E (X - \lambda)^{2}$$

$$= \int_{0}^{\infty} (x - \lambda)^{2} \frac{1}{\lambda} \exp\left\{-\frac{x}{\lambda}\right\} dx$$

$$= \int_{0}^{\infty} \left(x^{2} - 2x\lambda + \lambda^{2}\right) \frac{1}{\lambda} \exp\left\{-\frac{x}{\lambda}\right\} dx$$

Further

We can use integration by parts to find the variance

$$\int udv = uv - \int vdu$$

Please, try to calculate it:

Answer: $Var X = \lambda^2$

Further

We can use integration by parts to find the variance

$$\int udv = uv - \int vdu$$

Please, try to calculate it

Answer: $Var X = \lambda^2$

About the Possible Linearity

We have

If \boldsymbol{X} is a random variable with finite variance, then for any constants \boldsymbol{a} and \boldsymbol{b}

$$Var(aX + b) = a^2 Var X$$

$$Var X = EX^2 - (EX)^2$$

At the White Board

About the Possible Linearity

We have

If \boldsymbol{X} is a random variable with finite variance, then for any constants \boldsymbol{a} and \boldsymbol{b}

$$Var\left(aX+b\right) = a^2 Var\ X$$

Alternative formula for the variance

$$Var X = EX^2 - (EX)^2$$

At the White Board

About the Possible Linearity

We have

If X is a random variable with finite variance, then for any constants \boldsymbol{a} and \boldsymbol{b}

$$Var(aX + b) = a^2 Var X$$

Alternative formula for the variance

$$Var X = EX^2 - (EX)^2$$

Proof

At the White Board

