Lecture 12 Counting

Product Rule

Sum Rule

Pigeonhole Principle

Theorem

If there are k+1 objects and k bins, then there is at least one bin with two or more objects.

Generalized

If N objects are placed into k bins, then there is at least one bin containing at least $\lceil N/k \rceil$ objects.

Inclusion-Exclusion Principle

Inclusion-Exclusion Principle: uses a sum rule and then corrects for the overlapping elements.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

■ Two sets

Two sets
$$|E \cup F| = |E| + |F| - |E \cap F|$$

Three sets

$$|E \cup F \cup G|$$

$$= |E| + |F| + |G|$$

$$-|E \cap F| - |E \cap G| - |F \cap G|$$

$$+|E \cap F \cap G|$$

$$|\bigcup_{i=1}^n E_i| = \sum_{k=1}^n (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$

Proof by induction

Base case (n = 2)

$$|E \cup F| = |E| + |F| - |E \cap F|$$

Inductive Hypothesis

$$\left| \bigcup_{i=1}^{n-1} E_i \right| = \sum_{k=1}^{n-1} (-1)^{k+1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n-1} |E_{i_1} \cap E_{i_2} \cap \dots \cap E_{i_k}|$$