ALGORITMICA GRAFURILOR **Săptămâna 14**

C. Croitoru

croitoru@info.uaic.ro FII

January 12, 2014

OUTLINE

● Grafuri planare (ag 13-14 allinone.pdf pag. 367 → 390)

Anunţuri.

Desenarea unui graf planar.

Fary 1948 (independent Wagner şi Stein):

Orice graf planar are o reprezentare planară cu toate muchiile segmente de dreaptă (reprezentarea Fary).

Existența unei reprezentări Fary cu **vîrfuri în puncte de coordonate întregi** și, în același timp, aria suprafeței ocupate de reprezentare să fie polinomială în raport cu numărul *n* de vîrfuri ale grafului!

Teoremă. (Fraysseix, Pach, Pollack (1988)) Orice graf planar cu n vîrfuri are o reprezentare planară cu vîrfuri de coordonate întregi în $[0,2n-4]\times[0,n-2]$ și cu muchii segmente de dreaptă. Demonstrația: algoritm de complexitate $O(n\log n)$ pentru obținerea acestei reprezentări.

Vom demonstra teorema în ipoteza suplimentară că G este \max imal planar : orice muchie i s-ar adăuga se obține un graf neplanar (sau multigraf). Să observăm că orice față a unui graf maximal planar este un C_3 (altminteri în reprezentarea lui G cu dața exterioară mărginită de un C_n cu $n \geq 4$ se pot introduce muchii fără a pierde planaritatea grafului).

Ipoteza nu este restrictivă: de la o reprezentare a lui G ca o hartă planară (ce se obține aplicînd de exemplu algoritmul de testare a planarității) se trece la o hartă cu toate fețele triunghiului prin inserția în timp liniar de corzi în circuite. La desenarea grafului obținut, muchiile fictive introduse nu se vor trasa.

Grafuri plane - versiunea combinatorială.

În versiunea combinatorială un graf este un triplet $G = (E, \theta, ^-)$, unde E este o mulțime de cardinal par, $^-$ este o *involuție* pe E (permutare de ordin 2) fără puncte fixe, și θ este o permutare pe E.

Elementele lui E sunt gândite ca arce; o muchie (neorientată) este reprezentată ca o pereche $e, \overline{e} \in E$ de arce, inverse unul altuia. Aplicația – inversează direcția.

Se dorește ca aplicația θ să dea o orientare a muchiilor din jurul unui vârf (în sens contrar acelor de ceasornic).

Vârfurile sunt *ciclii* permutării θ . (Un ciclu al permutării θ este o submulțime nevidă a lui E închisă în raport cu θ și minimală cu această proprietate).

Dacă notăm cu V mulțimea ciclilor permutării θ atunci definim $t: E \to V$, t(e) = unicul ciclu al lui θ ce conține e (extremit. inițială a lui e) $h: E \to V$, h(e) = unicul ciclu al lui θ ce conține \overline{e} (extremit. finală a lui e) Se observă că $\forall e \ t(e) = h(\overline{e})$ și $h(e) = t(\overline{e})$.

Dacă $\theta^*: E \to E$ definită de $\theta^*(e) = \theta(\overline{e})$, atunci o față a lui G este un ciclu al permutării θ^* . Intuitiv, pentru a calcula $\theta^*(e)$, inversăm e pentru a obține \overline{e} și apoi ne rotim (în sensul acelor de ceasornic) în jurul extremității inițiale a lui \overline{e} . Numărul fețelor lui G se notează cu f.

Grafuri plane - versiunea combinatorială.

O componentă conexă a lui G este o *orbită* a lui E în grupul de permutări generat de θ și $\bar{}$: o mulțime nevidă minimală cu proprietatea că este închisă la θ și $\bar{}$.

Fie G un graf cu $m=\frac{1}{2}|E|$ muchii (neorientate), n=|V| vârfuri, f fețe, și c componente conexe. **Caracteristica Euler** a lui G se definește ca fiind

$$\chi(G)=2c+m-n-f.$$

Un graf G se numește **graf plan** dacă $\chi(G) = 0$.

Se poate demonstra că pentru un graf conex în definiția tradițională, cele două noțiuni de grafuri plane coincid

(graful neorientat construit așa cum am descris mai sus atașat unui graf în formă combinatorială este graf plan conform definiției tradiționale și invers,

dacă pentru un graf tradițional plan conex se construiește θ conform unei orientări inverse acelor de ceasornic a muchiilor și $\bar{}$ corespunzătoare, graful combinatorial obținut este plan $\hat{}$ în noua definiție).

Teorema Separatorului.

Teoremă. (**Tarjan & Lipton, 1979**) Fie G un graf planar cu n vârfuri. Există o partiție a lui V(G) în clasele disjuncte A, B, S astfel încât:

- 1. S separă A de B în G: G-S nu are muchii de la A la B.
- 2. $|A| \leq \frac{2}{3}n$, $|B| \leq \frac{2}{3}n$.
- 3. $|S \le 4\sqrt{n}$.

Această partiție se poate afla în timpul O(n).

Demonstrație. Considerăm graful conex și de asemenea considerăm că dispunem de o reprezentare planară.

Alegem un vârf s și executăm o parcurgere bfs din s numerotând vârfurile (în ordinea întâlnirii lor în această parcurgere) și atribuind fiecărui vârf v nivelul său în arborele bfs construit. Vom nota cu L(t), $0 \le t \le l+1$ mulțimea vârfurilor de pe nivelul t (nivelul l+1 va fi introdus în scopuri tehnice și este vid, ultimul nivel este de fapt l).

Fiecare nivel este un separator în G (avem muchii doar între nivele consecutive).

Fie t_1 nivelul de la mijloc, adică nivelul ce conține vârful numerotat bfs cu numărul de ordine $\frac{n}{2}$. Mulțimea $L(t_1)$ are o parte din proprietățile separatorului pe care îl căutăm:

$$\left| \cup_{t < t_1} L(t) \right| < \frac{n}{2} \quad \wedge \quad \left| \cup_{t > t_1} L(t) \right| < \frac{n}{2}.$$

Dacă și $L(t_1) \leq 4\sqrt{n}$, teorema are loc.

Teorema Separatorului.

Lemă. Există nivelele $t_0 \le t_1$ și $t_2 > t_1$ a. încât $|L(t_0)| \le \sqrt{n}$, $|L(t_2)| \le \sqrt{n}$ și $t_2 - t_0 \le \sqrt{n}$.

Se alege t_0 cel mai mare număr cu proprietățile $t_0 \leq t_1$ și $|L(t_0)| \leq \sqrt{n}$ (există un astfel de nivel pentru că |L(0)| = 1). La fel, există t_2 un cel mai mic număr astfel înc at $t_2 > t_1$ și $|L(t_2)| \leq \sqrt{n}$ (de aceea s-a luat |L(l+1)| = 0). Orice nivel strict între t_0 și t_2 are mai mult de \sqrt{n} vârfuri deci numărul acestor nivele este mai mic decât \sqrt{n} , altfel am avea mai mult de n vârfuri în graf. Considerăm

$$C = \bigcup_{t < t_0} L(t), \ D = \bigcup_{t_0 < t < t_2} L(t), \ E = \bigcup_{t > t_2} L(t).$$

Teorema Separatorului.

Dacă $|D| \leq \frac{2}{3}n$ atunci teorema are loc cu $S = L(t_0) \cup L(t_2)$, A mulțimea cu cele mai multe elemente dintre C, D, E și B reuniunea celorlalte două (nu uităm că C și E au cel mult $\frac{n}{2}$ elemente).

Considerăm deci că $n_1 = |D| > \frac{2}{3}n$.

Dacă vom găsi un separator de tipul $\frac{2}{3} \leftrightarrow \frac{2}{3}$ pentru D cu cel mult $2\sqrt{n}$ vârfuri, atunci

îl vom adăuga la $L(t_0) \cup L(t_2)$ pentru a obține un separator de cardinal cel mult $4\sqrt{n}$,

reunim mulțimea cu cel mai mare număr de elemente dintre C și E cu partea mică rămasă din D pentru a obține A,

iar partea mare rămasă în D o reunim cu cealaltă mulțime (mică) dintre C și E pentru a obține B.

Construcția separatorului pentru D. Vom șterge toate vârfurile grafului care nu-s în D cu excepția lui s pe care-l unim cu toate vîrfurile de pe nivelul t_0+1 (primul nivel rămas în D). Graful obținut îl notăm cu D și este evident planar și conex. În plus are un arbore parțial T de diametru cel mult $2\sqrt{n}$ (orice vârf este accesibil din s pe un drum de lungime cel mult \sqrt{n} așa cum am arătat în lemă). Acest arbore se parcurge dfs si se construiește separatorul dorit.

Teorema Separatorului. Aplicație.

Considerăm problema testării dacă un graf planar dat admite o 3-colorare a vârfurilor (problemă cunoscută ca fiind NP-completă).

Pentru grafuri cu puţine vârfuri (un număr constant c) se poate testa în timpul $O(3^c) = O(1)$ dacă graful are o 3-colorare.

Pentru grafuri planare cu numărul n de vârfuri mai mare decât c. construim în timp liniar O(n), așa cum ne asigură teorema separatorului, partiția A, B, C a mulțimii vârfurilor sale cu $|A|, |B| \leq \frac{2n}{3}$ și $|C| \leq 4\sqrt{n}$.

Pentru fiecare din cele $3^{|C|} = 2^{O(\sqrt{n})}$ funcții posibile definite pe C și cu valori în {1,2,3} se testează dacă este 3-colorare a subgrafului indus de C și dacă poate fi extinsă la o 3-colorare a subgrafului indus de $A \cup C$ în G și la o 3-colorare a subgrafului indus de $B \cup C$ în G (recursiv). Timpul de lucru al acestui algoritm, T(n), va satisface recurența

$$T(n) = \begin{cases} O(1) & \text{dacă } n \leq c; \\ O(n) + 2^{O(\sqrt{n})} (O(\sqrt{n}) + 2T(\frac{2n}{3})) & \text{dacă } n > c. \end{cases}$$

Se obține $T(n) = 2^{O(\sqrt{n})}$, destul de bun pentru probleme de dimensiuni rezonabile. Este posibil însă ca notația O(.) să ascundă constante mari!

Anunțuri

- Acesta este ultimul curs!
- ② Evaluare: ∼croitoru/ag/week01.pdf pagina 13
- Pogramare test final: 18,19 ianuarie; atenţie la anunţurile de la http://profs.info.uaic.ro/ orar-examene/
 (sunt precizate orele pe grupe și sălile de examen)
- Seminarul special de vineri seara se suspendă.
- **Succes la examene! Succes la examene!**