

Artículo: COMEII-22032 VII CONGRESO NACIONAL DE RIEGO, DRENAJE Y BIOSISTEMAS

Teziutlán, Puebla., del 23 al 26 de noviembre de 2022

ANÁLISIS COMPARATIVO DE LA ESTIMACIÓN DE HUMEDAD DEL SUELO MEDIANTE IMÁGENES LANDSAT-8, LANDSAT-9 Y SENTINEL-2 EN PARCELAS BAJO RIEGO

Sebastián David Rodríguez Gaytán^{1*}; Ronald Ernesto Ontiveros Capurata²; José Antonio Quevedo Tiznado³; Víctor Manuel Gordillo Salinas³; Mario Alberto Montiel Gutiérrez³; Alberto González Sánchez³; José Agustín Breña Naranjo⁴

¹Instituto Mexicano de Tecnología del Agua. Posgrado en Ciencia y Tecnología del Agua. Paseo Cuauhnáhuac 8532, Jiutepec, Morelos, C. P. 62550, México.

rodriguez.12.29@hotmail.com 777 111 1173 (*Autor de correspondencia)

²Instituto Mexicano de Tecnología del Agua. Coordinación de Riego y Drenaje. Consejo Nacional de Ciencia y Tecnología (CONACYT). Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos, C.P. 62550. México.

³Instituto Mexicano de Tecnología del Agua. Coordinación de Riego y Drenaje. Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos, C.P. 62550. México.

⁴Instituto Mexicano de Tecnología del Agua. Coordinación de Hidrología. Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos, C.P. 62550. México.

Resumen

La humedad del suelo (HS) es una de las variables más importantes para la gestión del agua en las zonas agrícolas bajo riego. El método más frecuente para medir esta variable es mediante análisis de laboratorio o con sensores instalados en campo, lo que representa altos costos en tiempo y recursos. Ante esta situación el uso de información obtenida mediante sensores remotos satelitales e índices de vegetación (IV) representan una alternativa. Por lo anterior, el objetivo de este estudio fue comparar modelos de estimación de humedad del suelo basados en índices de vegetación (NDVI y NDMI) obtenidos a partir de imágenes satelitales Landsat-8, 9 y Sentinel-2, con registros medidos en campo con el sensor CropX en parcelas bajo riego del módulo IV-1 Culiacancito A.C., del distrito de riego (DR 010) Culiacán-Humaya, en el estado de Sinaloa, México, durante el ciclo agrícola otoño invierno (O-I) del año 2021. Para la estimación se utilizó un modelo empírico que estima el volumen de humedad del suelo (VHS) a partir de los IV. Los resultados indican que el modelo que usa datos de Sentinel 2 es mejor con un R²=0.661, ECM=1.691% para NDVI y con un R²=0.601, ECM=1.836% para NDMI. Sin embargo, al juntar las tres fuentes de imágenes en un solo modelo se obtuvo un R²=0.168, ECM=0.167% para NDVI y un R²=0.076, ECM=4.312% para NDMI. Por lo anterior, se puede concluir que la información proveniente del satélite Sentinel-2 representa una alternativa para la estimación de la humedad del suelo en zonas

Palabras claves: Índices de vegetación, sensor CropX, cultivo de maíz, Sinaloa.