Chapter 4. Strong Bisimulation

Goals

- Introduce the notion of strong bisimulation.
- Techniques for establishing strong bisimulation.
- Properties of strong bisimulation.

Equivalence relations on agents

Two agents P and Q are equivalent if they cannot be distinguished by any agent interacting with each of them.

There are several such relations: (behavioural) equality '=', strong bisimilarity ' \sim ', weak bisimilarity \approx , and observation congruence \approx_o :

- \sim and \approx are defined in terms of patterns of actions agents can perform.
- \sim and \approx are distinguished by their treatment of τ , we have $\sim \subset \approx$.
- Observation congruence is a proper subset of weak bisimulation, we have $\sim \subset \approx_o \subset \approx$.
- = is sitting between \sim and \approx ; in fact = is the same as \approx_o .
- We first study \sim , which treats τ exactly like any other actions.

D	
	sons for studying ~ first
	It shares many common properties with the other two
•	It shares many common properties with the other two equivalences.
•	Many equational laws used in practice hold for strong bisimulation.
•	The technique for establishing this equivalence is more or less the same as the techniques for the other two equivalences.

- 0. Basic Notions and Definitions
 - **Sets:** A set S is a collection of objects (elements). A set S is often denoted as:
 - for a finite set: $S = \{e_1, e_2, ..., e_n\}$
 - for an infinite enumerable set: $S = \{e_1, e_2, \dots, \}$
 - in general $S = \{e : P(e)\}$, where P is a predicate
 - empty set: $\emptyset = \{e : P(e) \land \neg P(e)\}\$ $\{1, 2, 3\} = \{2, 1, 3\}$
 - Repetition of elements in a set is insignificant:

$${2,2,3} = {2,3}$$

Subsets:

A set S_1 is a subset of S_2 , $S_1 \subseteq S_2$, if each element of S_1 is an element of S_2 .

Set operations: Given sets S_1 and S_2

- intersection: $S_1 \cap S_2$, $\bigcap \{S_i : i \in I\}$
- union: $S_1 \cup S_2$, $\bigcup \{S_i : i \in I\}$
- complement: $S_1 S_2$ is the complement of S_2 w.r.t. S_1
- product: $S_1 \times S_2 = \{(e_1, e_2) : e_1 \in S_1, e_2 \in S_2\},$ $\Pi\{S_i : i \in I\}$
- power set $\mathcal{P}(S_1) = \{S : S \subseteq S_1\}$

What is $P(\{1, 2, 3\})$?

$$\mathcal{P}(\{1,2,3\}) = \{$$

Relations

A binary relation \mathcal{R} on a set S is a subset of $S \times S$, i.e. the elements of \mathcal{R} are the pairs (e_1, e_2) , where $e_1, e_2 \in S$.

If elements e_1 and e_2 are related by \mathcal{R} , we often write this as $e_1\mathcal{R}e_2$.

Relation operations: Given S and relations \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_i for $i \in I$, the following are also relations on S:

- the identity: $Id_S = \{(e, e) : e \in S\}$
- composition $\mathcal{R}_1\mathcal{R}_2 = \{(e_1, e_2) : \exists m \in S.(e_1, m) \in \mathcal{R}_1, (m, e_2) \in \mathcal{R}_2\}$
- converse: $\mathcal{R}^{-1} = \{(y, x) : (x, y) \in \mathcal{R}\}$
- union: $R_1 \cup R_2$, $\bigcup_{i \in I} \mathcal{R}_i$
- intersection: $R_1 \cap R_2$, $\bigcap_{i \in I} \mathcal{R}_i$

Important properties of relations

Let $R \subseteq S \times S$.

- \mathcal{R} is reflexive if $e\mathcal{R}e$ for all $e \in S$, i.e. $Id_s \subseteq R$
- \mathcal{R} is symmetric if whenever $e_1 \mathcal{R} e_2$ then $e_2 \mathcal{R} e_1$: i.e. $R^{-1} = R$
- \mathcal{R} is transitive if whenever $e_1 \mathcal{R} e_2$ and $e_2 \mathcal{R} e_3$ then $e_1 \mathcal{R} e_3$, i.e. $RR \subseteq R$
- \mathcal{R} is an equivalence relation if it is reflexive, symmetric and transitive.

Examples of equivalence relations:

- Equality of numbers
- CCS's =

Algebra

An algebra \mathcal{G} is a structure which consists of a set S, called the carrier set, and a set of operations on the elements of S:

$$\mathcal{G} = \langle S, op_1, \dots, op_n \rangle \qquad op_i(x_{i1}, \dots, x_{ik_i}) \in S$$

Congruence

A relation \mathcal{R} on S of \mathcal{G} is a congruence w.r.t \mathcal{G} if

- (a) \mathcal{R} is an equivalence relation, and
- (b) for each op_i and any closed terms over $S e_{i1}, \ldots, e_{ik_i}$ and $e'_{i1}, \ldots, e'_{ik_i}$,

if
$$e_{ij} \mathcal{R} e'_{ij}$$
 for $j = 1, \dots, k_i$
then $op_i(e_{i1}, \dots, e_{ik_i}) \mathcal{R} op_i(e'_{i1}, \dots, e'_{ik_i})$.

1. Bisimulation Games

A game for a pair of agents (P_0, Q_0) is a finite or infinite sequence of the form

$$(P_0,Q_0),\ldots,(P_i,Q_i),\ldots$$

- played by two participants or observers, player I and player II.
- Player I attempts to show that P_i and Q_i have a different behaviour, and player II tries to prevent this.
- For each j the pair (P_{j+1}, Q_{j+1}) is determined as the result of a next step from the previous pair (P_j, Q_j) by the following rules.

Rules of the game

• First player I chooses P_j (or Q_j) and a valid transition

$$P_j \xrightarrow{\alpha} P_{j+1} \quad or \quad Q_j \xrightarrow{\alpha} Q_{j+1}$$

• Then player II chooses a corresponding valid transition from the other agent

$$Q_j \stackrel{\alpha}{\to} Q_{j+1} \qquad or \qquad P_j \stackrel{\alpha}{\to} P_{j+1}$$

Winner of the game

If at any point a player is unable to make a move then the other player wins the game:

- Player I is stuck, and she loses, if both agents are deadlocked.
- Player II loses if she can find no matching transition.
- If the game continues forever (is infinite) or if there is a repeated configuration, i.e. there is a pair (P_{j+1}, Q_{j+1}) which appears twice in the game sequence, then Player II wins.

Winning strategy

A player has a wining strategy from (P_0, Q_0) if she is able to win any game from this pair.

Game equivalence

Two agents P_0 and Q_0 are game equivalent if Player II has a winning strategy from (P_0, Q_0) . In other words, P_0 and Q_0 are game equivalent if whatever moves Player I makes, they can be matched by Player II.

Example 2:

Consider the following agents

$$V \stackrel{def}{=} 1p.(little.collect.V + 1p.big.collect.V)$$

 $V' \stackrel{def}{=} 1p.little.collect.V' + 1p.1p.big.collect.V'$

Player I has a winning strategy from (V, V'):

- 1. Player I chooses agent V' and the transition $V' \xrightarrow{1p} 1p.big.collect.V'$
- 2. Play II has to take V and makes $V \stackrel{1p}{\to} little.collect.V + 1p.big.collect.V$
- 3. Player I opts for little.collect.V + 1p.big.collect.V and chooses

$$little.collect.V + 1p.big.collect.V \stackrel{little}{\rightarrow} collect.V$$

- 4. Player II cannot make the corresponding transition with the agent 1p.big.collect.V'.
- 5. Thus, Player I wins, and V and V' are not equivalent.

2. Strong Bisimulation

Definition 1 A relation $S \subseteq P \times P$ is a strong bisimulation (SB) if, whenever PSQ and $\alpha \in Act$, then

- 1. if $P \stackrel{\alpha}{\to} P'$, then, for some Q', $Q \stackrel{\alpha}{\to} Q'$ and P'SQ', and
- 2. if $Q \xrightarrow{\alpha} Q'$, then, for some P', $P \xrightarrow{\alpha} P'$ and P'SQ'.

Agents P and Q are strongly bisimilar, or simply bisimilar, written $P \sim Q$, if there is a SB \mathcal{S} such that $P\mathcal{S}Q$.

Theorem Agents P and Q are strongly bisimilar if and only if they are game equivalent.

In other words

Agents P and Q are strongly bisimilar if and only if Player II has a winning strategy from (P, Q).

Example 3

For Cl_1 and Cl_2 in Example 1, $Cl_1 \sim Cl_2$ since the following is a bisimulation

$$\{(Cl_1, Cl_2), (Cl_1, tick.Cl_2)\}$$

Example 4 Consider the agents

$$A_0 \stackrel{def}{=} a.A_1$$

$$A_1 \stackrel{def}{=} a.A_2 + b.A_0$$

$$A_2 \stackrel{def}{=} b.A_1$$

and

$$B \stackrel{def}{=} a.b.B$$

$$C \stackrel{def}{=} B|B$$

Then $A_0 \sim C$ since the following is a bisimulation

$$\{(A_0,C),(A_1,b.B|B),(A_1,B|b.B),(A_2,b.B|b.B)\}.$$

Proposition 1

Assume that each S_i $(i \in I = \{1, 2, ...\})$ is a SB. Then the following relations are SBs

- $(1) \quad Id_{\mathcal{P}} \qquad (3) \quad \mathcal{S}_1 \mathcal{S}_2$
- $(2) \quad \mathcal{S}_i^{-1} \qquad (4) \quad \bigcup_{i \in I} \mathcal{S}_i$

Proof of (3):

Suppose that

$$PS_1S_2R$$

Then for some Q

$$PS_1Q$$
 and QS_2R

Now let $P \stackrel{\alpha}{\to} P'$. Then for some Q' we have since PS_1Q

$$Q \xrightarrow{\alpha} Q'$$
 and $P'\mathcal{S}_1 Q'$

Also since QS_2R we have, for some R',

$$R \stackrel{\alpha}{\to} R'$$
 and $Q'\mathcal{S}_2R'$

Hence $P'S_1S_2R'$. Similarly if $R \stackrel{\alpha}{\to} R'$ then we can find P'such that

$$P \stackrel{\alpha}{\to} P'$$
 and $P' \mathcal{S}_1 \mathcal{S}_2 R'$

3.	Properties	of	\sim
----	------------	----	--------

Proposition 2

- 1. \sim is the largest SB.
- 2. \sim is an equivalence relation.
- 3. $P \sim Q$ iff, for all $\alpha \in Act$
 - (a) Whenever $P \xrightarrow{\alpha} P'$ then, for some Q', $Q \xrightarrow{\alpha} Q'$ and $P' \sim Q'$
 - (b) Whenever $Q \xrightarrow{\alpha} Q'$ then, for some P' $P \xrightarrow{\alpha} P'$ and $P' \sim Q'$

Proof:

(1). It is easy to prove that

 $\sim = \bigcup \{ S : S \text{ is a SB} \}$

(2). Reflexivity: For any $P, P \sim P$ by $\mathbf{P}.1(1)$.

Symmetry: If $P \sim Q$, then PSQ for some SB S.

Hence $QS^{-1}P$, and so $Q \sim P$ by $\mathbf{P}.1(2)$.

Transitivity: If $P \sim Q$ and $Q \sim R$, then for some SB S_1 and S_2

 PS_1Q and QS_2R

Hence PS_1S_2R , so $P \sim R$ by $\mathbf{P}.1(3)$.

(3) Fairly direct from the definition.

Proposition 3

 \sim is a congruence relation (called strong congruence): if $P_1 \sim P_2$ then

- 1. $\alpha.P_1 \sim \alpha.P_2$
- 2. $P_1 + Q \sim P_2 + Q$
- 3. $P_1|Q \sim P_2|Q$
- 4. $P_1 \setminus L \sim P_2 \setminus L$
- 5. $P_1[f] \sim P_2[f]$
- 6. If $\tilde{A} \stackrel{def}{=} \tilde{P}$, then $\tilde{A} \sim \tilde{P}$

Proof:

For (3), we show S is a SB, where

$$S = \{ (P_1|Q, P_2|Q) : P_1 \sim P_2 \}$$

For any $(P_1|Q, P_2|Q) \in \mathcal{S}$. Let

$$P_1|Q \xrightarrow{\alpha} R$$

There are three cases to consider

1. $P_1 \stackrel{\alpha}{\to} P_1'$, and $R \equiv P_1'|Q$. Then since $P_1 \sim P_2$, we have $P_2 \stackrel{\alpha}{\to} P_2'$ and $P_1' \sim P_2'$

Hence

$$P_2|Q \xrightarrow{\alpha} P_2'|Q \text{ and } (P_1'|Q, P_2'|Q) \in \mathcal{S}$$

2. $Q \stackrel{\alpha}{\to} Q'$ and $R \equiv P_1|Q'$. Then also

$$P_2|Q \xrightarrow{\alpha} P_2|Q'$$
 and $(P_1|Q', P_2|Q') \in \mathcal{S}$

3. $\alpha = \tau$, $P_1 \xrightarrow{l} P_1'$ and $Q \xrightarrow{\overline{l}} Q'$, and $R \equiv P_1'|Q'$. Then since $P_1 \sim P_2$, we have

$$P_2 \xrightarrow{l} P_2'$$
 and $P_2|Q \xrightarrow{\tau} P_2'|Q'$

with $P_1' \sim P_2'$. Thus

$$(P_1'|Q', P_2'|Q') \in \mathcal{S}$$

Proof of (6). We consider the single defining equation

$$A \stackrel{def}{=} P$$

By rule **Con**, $A \stackrel{\alpha}{\to} A'$ iff $P \stackrel{\alpha}{\to} A'$. So by **P.**2(3), $A \sim P$.

Proposition 4 \sim is preserved by recursion

Let \tilde{E} and \tilde{F} be agent expressions and contain variables \tilde{X} at most. If for any agents \tilde{R} ,

$$\tilde{E}\{\tilde{R}/\tilde{X}\} \sim \tilde{F}\{\tilde{R}/\tilde{X}\}$$

and if

$$\tilde{A} \stackrel{\text{def}}{=} \tilde{E}\{\tilde{A}/\tilde{X}\} \text{ and } \tilde{B} \stackrel{\text{def}}{=} \tilde{F}\{\tilde{B}/\tilde{X}\}$$

then

$$\tilde{A} \sim \tilde{B}$$

Proposition 5 (implies P.3.1: monoid laws)

- 1. $P + Q \sim Q + P$ commutativity
- 2. $P + (Q + R) \sim (P + Q) + R$ associativity
- 3. $P + P \sim P$ Idempotence
- 4. $P + \mathbf{0} \sim P \mathbf{0}$ is the zero element of +

Proof of (2):

Suppose that

$$P + (Q + R) \stackrel{\alpha}{\to} P'$$

Then by the semantic rules \mathbf{Sum}_j ,

- either $P \xrightarrow{\alpha} P'$,
- or $Q \xrightarrow{\alpha} P'$
- or $R \stackrel{\alpha}{\to} P'$

In each case we can easily infer by \mathbf{Sum}_j that

$$(P+Q)+R \stackrel{\alpha}{\to} P'$$

and we know $P' \sim P'$ This establish (a) of **P.**2(3), and (b) is similar.

Proposition 6 (implies P.3.8-3.10)

1.
$$P|Q \sim Q|P$$
 – commutativity

2.
$$P|(Q|R) \sim (P|Q)|R$$
 – associativity

3.
$$P|\mathbf{0} \sim P - \mathbf{0}$$
 is an unit

4.
$$P \setminus L \sim P$$
 if $\mathcal{L}(P) \cap (L \cup \overline{L}) = \emptyset$

5.
$$P \setminus K \setminus L \sim P \setminus (K \cup L)$$

6.
$$P[f] \setminus L \sim (P \setminus f^{-1}(L))[f]$$

7.
$$(P|Q)\backslash L \sim P\backslash L|Q\backslash L$$
 if
$$\mathcal{L}(P) \cap \overline{\mathcal{L}(Q)} \cap (L \cup \overline{L}) = \emptyset$$

8.
$$P[Id] \sim P$$

9.
$$P[f] \sim P[f']$$
 if $f \upharpoonright \mathcal{L}(P) = f' \upharpoonright \mathcal{L}(P)$

10.
$$P[f][f'] \sim P[f' \circ f]$$

11.
$$(P|Q)[f] \sim P[f]|Q[f]$$
 if $f \upharpoonright (L \cup \overline{L})$ is one to one, where $L = \mathcal{L}(P|Q)$

Proof of (1):

We show that S is a SB, where

$$\mathcal{S} = \{ (P|Q, Q|P) : P, Q \in \mathcal{P} \}$$

Suppose that $(P|Q) \stackrel{\alpha}{\to} P'$. There are three main cases, with sub-cases:

- 1. $P \stackrel{\alpha}{\to} P_1$, and $P' \equiv P_1|Q$ Then we also have $Q|P \stackrel{\alpha}{\to} Q|P_1$ and $(P_1|Q,Q|P_1) \in \mathcal{S}$
- **2.** $Q \xrightarrow{\alpha} Q_1$ and $P' \equiv P|Q_1$. Then have: $Q|P \xrightarrow{\alpha} Q_1|P$ and $(P|Q_1, Q_1|P) \in \mathcal{S}$
- 3. $\alpha = \tau, P \xrightarrow{l} P_1, Q \xrightarrow{\overline{l}} Q_1 \text{ and } P' \equiv P_1|Q_1. \text{ Then } Q|P \xrightarrow{\tau} Q_1|P_1 \text{ and } (P_1|Q_1, Q_1|P_1) \in \mathcal{S}.$

This proves condition (1) of **Def**.1. Condition (2) follows by a symmetric argument.

Proposition 7 (implies the expansion law)

Let $P \equiv (P_1[f_1]| \dots |P_n[f_n]) \setminus L$. Then

$$P \sim \sum \{f_i(\alpha).(P_1[f_1]|\dots|P'_i[f_i]|\dots|P_n[f_n]) \setminus L:$$

$$P_i \stackrel{\alpha}{\to} P'_i, f_i(\alpha) \not\in L \cup \overline{L}\}$$

$$+ \sum \{\tau.(P_1[f_1]|\dots|P'_i[f_i]|\dots|P'_j[f_j]|\dots|P_n[f_n]) \setminus L:$$

$$P_i \stackrel{l_1}{\to} P'_i, P_j \stackrel{l_2}{\to} P'_j, f_i(l_1) = \overline{f_j(l_2)}, i < j\}$$

Proposition 8 (implies P.3.4(2))

Let E_i $(i \in I)$ contain at most the variables X_j $(j \in I)$, and let these variables are weakly guarded in each E_i , i.e. every occurrence of X_i in E_j is within some subexpression αF of E_j with $\alpha \in Act$. Then,

If
$$\tilde{P} \sim \tilde{E}\{\tilde{P}/\tilde{X}\}$$
 and $\tilde{Q} \sim \tilde{E}\{\tilde{Q}/\tilde{X}\}$ then $\tilde{P} \sim \tilde{Q}$

4. Summary

- We introduced the notion of strong bisimulation. Strong bisimulation requires that, if $P \sim Q$, then every α action, including the silent action τ , of P or Q must be matched by an α action of the other.
- To prove that two agents are strongly equivalent, we either
 - establish (define) a strong bisimulation which contains the pair of the two agents, or
 - define a strong bisimulation game starting from the pair of the two agents such that Player II has a winning strategy.
- We can also prove that two agents are strongly equivalent by using the properties of the strong bisimulation relation \sim .