

Wavefront Sensing via High Speed DSP

ABSTRACT

with accuracies to the nanometer level. But the lag times between wavefront sensing, and then control, Future light-weighted and segmented primary mirror systems require active optical control to maintain mirror positioning and figure to within nanometer tolerances. Current image-based wavefront sensing approaches rely on post-processing techniques to return an estimate of the aberrated optical wavefront processors (DSP's). The computational architecture is discussed as well as the heritage leading to the demonstrate accelerated image-based wavefront sensing performance using multiple digital signal contributes to a significant latency in the wavefront sensing implementation. In this analysis we

Optics Branch / 551 / NASA Goddard Space Flight Center Scott Smith, Bruce Dean August 17-19, 2004

Background

- Technology development in the area of super-computing architectures for image-based wavefront sensing
- Goal: improve wavefront sensing performance by several orders of magnitude beyond the current state-of-the art
- Latency an important limitation of image-based wavefront sensing is addressed

Background

- Supercomputing architectures
- supercomputing hardware exists
- computational architectures for image-based WFS do not
- obtain theoretical computational performance of the Supercomputer
- will play a role in current & future NASA missions NASA's priority list: - image-based WFS sensing requiring optical correction and control.

Conventional Approach: e.g., Star-Fire Labs

- Interferometry; Shack-Hartmann,
- System complexity increased cost and potential system failures,
- Expensive to maintain,
- Little bang for the buck since Every degree of freedom requires a separate wavefront sensor.

ADVANTAGE: these devices are analog and can provide near real-time monitoring of the wavefront.

Image-Based Wavefront Sensing Concept:

- Aberrations are detected out to arbitrary order,
- Basic Trade: optical hardware (conventional) / computational solution
- Significant delay when the images are captured / wavefront is returned,
- <u>Latency</u> exists between "sensing" and the result (10's of minutes to hours).

Image-Based WFS

Problem Statement

- Software (Algorithm) approach
- Reduce need for optical hardware
- Aberrations known to arbitrary order
- Latency

REDUCE THE LATENCY of WFS Algorithm

Algorithm: Modified Misell-Gerchberg-Saxton

Core Algorithm Based on Iterative-Transform Approach – Fourier Transform Intensive:

diversity data (image constraint) obscurations (pupil constraint) Iterative Transform:

Solution - Reducing the Latency

- Parallel Processing
- Multiple Processing Units
- Equivalent dedicated Supercomputer
- High bandwidth
- Supercomputers exist, but...
- No dedicated solutions for wavefront sensing that properly exploit algorithm architecture.

Digital Signal Processors (DSP)

- **Desktop Processors**
- Pentium
- PowerPC
- Good at most tasks
- Multi-Tasking

- Great at scientific calculations
- Great at FFT
- Good at I/O
- Low Power Rating

DSP Heritage - Hammerhead DSP Boards

- Initial Implementation in 2003
- Four DSP's in right of lower image
- Factor of improvement over Single Pentium III
- 4.2
- ADSP-21160 480 Mflops per DSP
- Demonstrated Proof of Concept: Showed that Algorithm performance is scalable with # of DSP's.

Proof of Concept

- Summer Project 2003
- 10 Week
- 4 DSPs: Analog Devices 21160
- One Cluster
- 80 MHz
- Factor of improvement over Single Pentium III
- 4.2
- Showed Algorithm is scalable

Analog Devices TigerSharc TS-101

- Harvard Architecture
- Internal Memory, (No Cache)
- Separate Data and Program Memory (4 and 2 Mbits each)
- Single Instruction Multiple Data (SIMD)
- Two Floating Point Cores
- 1.5 GFlops at 32 bit Single Precision
- 1 GB/sec of available I/O via link ports
- 3 Watts, 250 MHz

Architecture

- Connect multiple DSPs with interprocessor communication (Link Ports)
- Standard Cluster 4 DSPs
- Shared External Memory SDRAM
- Read/Write internal memory
- Connect multiple clusters
- Host computer connected via PCI bus

Architecturual Block Diagram

Step 1, Produce Results

- Disregard Timing
- Produce reliable wavefront data on DSPs
- Start on 1 DSP
- Transition to 4
- Bottlenecks on new architecture
- External to Internal Memory movement
- Data Downloading from Host Computer
- Computations (FFTs)
- Number of FFTs per DSP
- Speed of each FFT

Direct Memory Access

DMA

- Allow movement of data without interrupting the core of the processor
- Process Block 1 while acquiring Block 2

Source and Destinations

- Host computer
- External shared memory
- DSP internal memory
- Link Ports

Multiple DSPs

- Based on timing for 1 Image on 1
- Need more then 8 DSPs
- Need more then 1 board
- Integrating Clusters and Boards
- For each image Data only shared on 2-D FFT
- For all images, Data shared on averaging the estimated phase

Reducing redundant work

Detector Image Size versus Pupil Image Size

Downloading Constant Data outside control

System parameters don't change

Optimized Library

- Decrease the time for each FFT
- TS-Lib for TigerSharc DSP
- Floating Point Library optimized
- Optimized for 1 DSP
- Fastest available FFT
- Fast Memory Movement (Simple)

Decrease FFTs per DSP

- Increase number of DSPs
- Image FFT (2-D)
- FFT each row
- FFT result of each column
- Requires access to result
- Data on each DSP must be moved to every other DSP

2-D FFT Transpose 1/2

- Must be fast, because it happens twice per inner loop.
- Transpose over multiple Processors
- Move data from each DSP to every other DSP

Memory

- Single Stage
- Each DSP transfers to every other DSP (link ports)
- Faster theoretical

Multiple Stage

- Each DSP transposes on the cluster. (Shared Memory)
- Then, Each cluster transposes(link ports)
- One DSP "speaks" for its cluster
 to the other cluster
- Faster in application

Experimental Test Data

- 4 Diversity-Defocus images from GSFC's Wavefront Control Testbed (both + and (-) defocus shown)
- Detector: 16 bit, 512x512, 9μ pixels
- Pupil: 224
- 224x224
- Iterations: 5 inner loops, 25 outer loops, 95% Convergence
- 0º Trefoil Introduced using Xinetics Deformable Mirror = .25 HeNe waves
- Other aberrations < .01

NASA

Speed Improvements

Maltab Timing: 16.5 Minutes

- Pentium IV at 3.0 GHz

16 DSP timing: 5.4 Seconds

4 Images in serial

32 DSP timing: 2.9 Seconds

2 Images in parallel

Accuracy for 7 Significant Figures

Factor of Improvement:

-400

Optical Telescope) Wavefront SPOT (Spherical Primary

Controlling a supercomputer with a laptop

Lessons Learned

Conclusions

- Matrix Transpose Algorithms
- Scalability

Next Steps

- Removing the host computer
- Images feed right onto DSP
- Implement each image in parallel