Numerical Optimization Solution to exercise sheet

review on 04.12.2024 during the exercise class

1. (Slater Condition)

Let $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^p$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ and let f and g be continuously differentiable. Consider a *convex* optimization problem of the form

$$\begin{cases} \min_{x \in \mathbb{R}^n} & f(x) \\ \text{s.t.} & h(x) = 0, \\ & g(x) \le 0, \end{cases}$$
 (1)

where $x^* \in \mathbb{R}^n$ denotes a solution. We say that Problem (1) satisfies the regularity condition of Slater, if

$$\overset{\circ}{\mathcal{F}} := \{ x \in \mathbb{R}^n : g(x) < 0, \ h(x) = 0 \} \neq \emptyset.$$

Prove: If the Problem (1) satisfies the regularity condition of Slater, then there exist Lagrange multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ is a KKT point of (1).

Hint:

• Show that the Slater Condition implies the Abadie Constraint Qualification for arbitrary $\hat{x} \in \mathcal{F}$. Then by Theorem 3.1.17 the KKT conditions hold. In order to do so, show

i)
$$\mathcal{T}_{\text{lin}}(\mathcal{F}, \hat{x}) \subseteq \overset{\circ}{\mathcal{T}_{\text{lin}}(\mathcal{F}, \hat{x})}$$
, where

$$\overset{\circ}{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x}) := \{ d \in \mathbb{R}^n : \nabla g_j(\hat{x})^\top d < 0, j \in \mathcal{A}(\hat{x}); \nabla h(\hat{x})^\top d = 0 \}$$

and

ii)
$$\overset{\circ}{\mathcal{T}_{\text{lin}}}(\mathcal{F},\hat{x}) \subseteq \mathcal{T}(\mathcal{F},\hat{x}).$$

From that it follows

$$\mathcal{T}_{\mathrm{lin}}(\mathcal{F},\hat{x})\subseteq \overline{\overset{\circ}{\mathcal{T}_{\mathrm{lin}}(\mathcal{F},\hat{x})}}\subseteq \overline{\mathcal{T}(\mathcal{F},\hat{x})}=\mathcal{T}(\mathcal{F},\hat{x})$$

and by Lemma 3.1.10 we have the other inclusion as well. Therefore we have ACQ.

(14 Points)

Solution: It is sufficient to show that the Slater Condition implies the Abadie Constraint Qualification, since the claim then follows by Theorem 3.1.17. To show the Abadie Constraint Qualification we have to show

$$\mathcal{T}_{\text{lin}}(\mathcal{F}, \hat{x}) = \mathcal{T}(\mathcal{F}, \hat{x}),$$

where $\hat{x} \in \mathcal{F}$. By Lemma 3.1.10, we already have one set inclusion, hence we only need to show

$$\mathcal{T}_{lin}(\mathcal{F}, \hat{x}) \subseteq \mathcal{T}(\mathcal{F}, \hat{x}).$$

Recall that by Definition 3.1.9 it is

$$\mathcal{T}_{\text{lin}}(\mathcal{F}, \hat{x}) = \{ d \in \mathbb{R}^n : \nabla g_j(\hat{x})^\top d \le 0, j \in \mathcal{A}(\hat{x}); \nabla h(\hat{x})^\top d = 0 \}.$$

First, we define the set

$$\mathring{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x}) := \{ d \in \mathbb{R}^n : \nabla g_j(\hat{x})^\top d < 0, j \in \mathcal{A}(\hat{x}); \nabla h(\hat{x})^\top d = 0 \}.$$

We show the following inclusions:

$$i) \ \mathcal{T}_{lin}(\mathcal{F},\hat{x}) \subseteq \overline{\overset{\circ}{\mathcal{T}_{lin}(\mathcal{F},\hat{x})}}$$

ii)
$$\overset{\circ}{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x}) \subseteq \mathcal{T}(\mathcal{F}, \hat{x})$$

Proof of i). Let $d \in \mathcal{T}_{\text{lin}}(\mathcal{F}, \hat{x})$. We are going to construct a sequence $(d_{\epsilon})_{\epsilon>0} \subset \overset{\circ}{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x})$ convering to d as $\epsilon \to 0$, such that we have $d \in \overset{\circ}{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x})$. Lets define this sequence. Since the regularity condition of Slater is satisfied,

$$d_{\varepsilon} := d + \varepsilon (y - \hat{x}) \quad \text{for } \varepsilon > 0$$

is well-defined for some

$$y \in \mathring{\mathcal{F}} = \{x \in \mathbb{R}^n : g(x) < 0, h(x) = 0\} \neq \emptyset.$$

For $j \in \mathcal{A}(\hat{x})$ we have

$$\nabla g_{j}(\hat{x})^{\top} d_{\varepsilon} = \nabla g_{j}(\hat{x})^{\top} (d + \varepsilon(y - \hat{x}))$$

$$= \underbrace{\nabla g_{j}(\hat{x})^{\top} d}_{\leq 0} + \nabla g_{j}(\hat{x})^{\top} (\varepsilon(y - \hat{x})) \qquad \text{convexity (Theorem 2.1.8)}$$

$$\leq \varepsilon \underbrace{(g_{j}(y) - g_{j}(\hat{x}))}_{\leq 0} < 0.$$

Clearly it also holds

$$\nabla h_z(\hat{x})^{\top} d_{\varepsilon} = \nabla h_z(\hat{x})^{\top} (d + \varepsilon (y - \hat{x}))$$

$$= \underbrace{\nabla h_z(\hat{x})^{\top} d}_{=0} + \varepsilon \nabla h_z(\hat{x})^{\top} (y - \hat{x})$$

$$= \varepsilon (\nabla h_z(\hat{x})^{\top} y - \nabla h_z(\hat{x})^{\top} \hat{x}).$$

for $z \in \{1, ..., m\}$. Since h is affine linear, we have $h_z(y) = \nabla h_z(\hat{x})^\top y + h_z(0)$. As $y \in \mathring{\mathcal{F}}$, it holds $h_z(y) = \nabla h_z(\hat{x})^\top y + h_z(0) = 0$ which means $\nabla h_z(\hat{x})y^\top = -h_z(0)$. Similarly we have $\nabla h_z(\hat{x})^\top \hat{x} = -h_z(0)$, thus we obtain

$$= \varepsilon(-h_z(0) + h_z(0)) = 0 \quad \Rightarrow \nabla h(\hat{x})^{\top} d_{\varepsilon} = 0.$$

Therefore we have $d_{\varepsilon} \in \overset{\circ}{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x})$ by definition. Taking the limit we have found a sequence that converges to d, since $\lim_{\varepsilon \to 0^+} d_{\varepsilon} = d$, hence $d \in \overset{\circ}{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x})$, therefore we have shown

$$\mathcal{T}_{\text{lin}}(\mathcal{F}, \hat{x}) \subseteq \overline{\overset{\circ}{\mathcal{T}_{\text{lin}}(\mathcal{F}, \hat{x})}}.$$

Proof of ii). First recall that the tangential cone is given by

$$T(\mathcal{F}, \hat{x}) = \{ \bar{d} \in \mathbb{R}^n : \exists (\eta^{(l)})_{l \in \mathbb{N}} \subset \mathbb{R}^+, (x^{(l)})_{l \in \mathbb{N}} \subset \mathcal{F} : \lim_{l \to \infty} x^{(l)} = \hat{x}, \lim_{l \to \infty} \eta^{(l)}(x^{(l)} - \hat{x}) = \bar{d} \}.$$

Let $d \in \overset{\circ}{\mathcal{T}}_{\text{lin}}(\mathcal{F}, \hat{x})$. Define the sequences by $x^{(l)} := \hat{x} + \frac{1}{l}d$ and $\eta^{(l)} := l$, then we have

$$\lim_{l \to \infty} x^{(l)} = \hat{x} \quad \text{and} \quad \lim_{l \to \infty} \eta^{(l)} (x^{(l)} - \hat{x}) = d.$$

Clearly it is $(\eta^{(l)})_{l\in\mathbb{N}}\subset\mathbb{R}^+$, thus it only remains to show that $(x^{(l)})_{l\in\mathbb{N}}\subset\mathcal{F}$. Observe that for $j\in\mathcal{A}(\hat{x})$, we can apply the mean value theorem to the continuous differentiable function g_j at $x^{(l)}$ and \hat{x} . This gives us some $y^{(l)}\in\overline{x^{(l)}\hat{x}}$ such that

$$g_j(x^{(l)}) - g_j(\hat{x}) = \nabla g_j(y^{(l)})^\top (x^{(l)} - \hat{x})$$

$$\Longrightarrow \qquad g_j(x^{(l)}) = g_j(\hat{x}) + \nabla g_j(y^{(l)})^\top \left(\frac{1}{l}d\right).$$

Since $y^{(l)} \in \overline{x^{(l)}}\hat{x}$ and $\lim_{l\to\infty} x^{(l)} = \hat{x}$, we also have $\lim_{l\to\infty} y^{(l)} = \hat{x}$ by the sandwich theorem. Thus we obtain for large l

$$g_j(x^{(l)}) = \underbrace{g_j(\hat{x})}_{=0, \text{ as } j \in \mathcal{A}(\hat{x})} + \frac{1}{l} \underbrace{\nabla g_j(y^{(l)})^\top(d)}_{\longrightarrow \nabla g_j(\hat{x})^\top d < 0, \text{ by choice of } d} \leq 0.$$

Similarly, for $j \in \{1, \dots, m\} \setminus \mathcal{A}(\hat{x})$ we have

$$g_j(x^{(l)}) = \underbrace{g_j(\hat{x})}_{<0} + \underbrace{\frac{1}{l} \nabla g_j(y^{(l)})^\top (d)}_{\longrightarrow \frac{1}{l} \nabla g_j(\hat{x})^\top d \longrightarrow 0} \le 0.$$

Finally, we see that that

$$h(x^{(l)}) = \nabla h(\hat{x})^\top \left(\hat{x} + \frac{1}{l}d\right) + h(0) = \underbrace{\nabla h(\hat{x})^\top \hat{x} + h(0)}_{=h(\hat{x})=0} + \underbrace{\frac{1}{l}}_{=0} \underbrace{\nabla h(\hat{x})^\top d}_{\text{by choice of } d} = 0.$$

Therefore, when we choose l large enough $x^{(l)}$ is feasible and the inclusion is shown.

2. (Linear independence constraint qualification (LICQ Condition)) Let $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^p$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ be continuously differentiable functions. An optimization problem of the form

$$\begin{cases} \min_{x \in \mathbb{R}} & f(x) \\ \text{s.t.} & h(x) = 0 \\ & g(x) \le 0 \end{cases}$$
 (2)

satisfies the *LICQ* condition in a feasible point $\hat{x} \in \mathcal{F} \subset \mathbb{R}^n$, if $\nabla g_i(\hat{x}) \in \mathbb{R}^n$ and $\nabla h_j(\hat{x}) \in \mathbb{R}^n$ are linear independent for all $i \in \mathcal{A}(\hat{x})$ and for all j = 1, ..., m.

Prove: If a local solution $x^* \in \mathcal{F}$ satisfies the LICQ condition, than the Lagrange multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ at a KKT point $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ of (2) are unique.

(6 Points)

Solution: We assume there exit two KKT points (x^*, λ^*, μ^*) and $(x^*, \overline{\lambda}, \overline{\mu})$ of the optimization problem (2) with $(\lambda^*, \mu^*) \neq (\overline{\lambda}, \overline{\mu})$. This means the KKT conditions of Theorem 3.1.17 (first order optimality conditions) hold for these points. Further, let the LICQ condition be fulfilled at x^* .

We insert both KKT points in the "multiplier rule". For (x^*, λ^*, μ^*) we get

$$\nabla f(x^*) + \sum_{i \in \mathcal{A}(x^*)} \mu_i^* \nabla g_i(x^*) + \sum_{j=1}^m \lambda_j^* \nabla h_j(x^*) = 0.$$
 (3)

Analogously, for $(x^*, \overline{\lambda}, \overline{\mu})$ it is

$$\nabla f(x^*) + \sum_{i \in \mathcal{A}(x^*)} \overline{\mu}_i \nabla g_i(x^*) + \sum_{j=1}^m \overline{\lambda}_j \nabla h_j(x^*) = 0.$$
 (4)

Next, we subtract (4) from (3) to get

$$\sum_{i \in \mathcal{A}(x^*)} (\mu_i^* - \overline{\mu}_i) \nabla g_i(x^*) + \sum_{j=1}^m (\lambda_j^* - \overline{\lambda}_j) \nabla h_j(x^*) = 0.$$
 (5)

For satisfying the LICQ condition it is required that $\nabla g_i(x^*)$ and $\nabla h_j(x^*)$ are linear independent for all $i \in \mathcal{A}(x^*)$ and for all j = 1, ..., m, which is:

$$\sum_{i \in \mathcal{A}(x^*)} a_i \nabla g_i(x^*) + \sum_{j=1}^m b_j \nabla h_j(x^*) = 0 \quad \Rightarrow a_i = 0, \ i \in \mathcal{A}(x^*), \text{ and } b_j = 0, \ j = 1, ..., m.$$
 (6)

It follows $(\lambda^*, \mu^*) = (\overline{\lambda}, \overline{\mu}).$

3. (Another condition and the relation of the CQs, Mangasarian-Fromovitz constraint qualification (MFCQ))

Let $\hat{x} \in \mathcal{F}$. We say that the MFCQ holds at \hat{x} if the gradients

$$\nabla h_i(\hat{x}), \quad i = 1, \dots, m$$

are linear independent and there exists a vector $d \in \mathbb{R}^n$ such that

$$\nabla g_i(\hat{x})^T d < 0, \quad i \in \mathcal{A}(x), \quad \nabla h(\hat{x})^T d = 0.$$

One can show: If $x \in \mathcal{F}$ fulfills MFCQ, then ACQ holds. Moreover we have:

Theorem 1. Let $x \in \mathcal{F}$ be given. Then the following implications hold

$$LICQ(x)$$
 \Rightarrow $MFCQ(x)$ \Rightarrow $ACQ(x)$ \Rightarrow $GCQ(x)$ \uparrow $Convex problems$ $Slater$

Remark: Note that the Slater condition implies ACQ(x) for all $x \in \mathcal{F}$.

Prove: $LICQ(x) \Rightarrow MFCQ(x)$.

(4 Points)

Solution: Obviously, the gradients $\nabla h_j(\hat{x})$ for $j = 1, \dots, m$ are linear independent due to LICQ. It remains to find a suitable vector $d \in \mathbb{R}^n$ such that

$$\nabla g_i(\hat{x})^T d < 0, \quad i \in \mathcal{A}(x), \quad \nabla h(\hat{x})^T d = 0.$$

hold. Lets define the matrix

$$\begin{pmatrix} \nabla g_i(\hat{x})^T & i \in \mathcal{A}(\hat{x}) \\ \nabla h_j(\hat{x})^T & j = 1, \dots, m \end{pmatrix} \in \mathbb{R}^{(|\mathcal{A}(\hat{x})| + m) \times n}$$

which has full rank by LICQ. Hence we can add rows to obtain a non-singular matrix $A(\hat{x}) \in \mathbb{R}^{n \times n}$. Then, the linear system

$$A(\hat{x})d = \begin{pmatrix} -e \\ 0 \end{pmatrix},$$

where $e = (1, ..., 1)^T \in \mathbb{R}^{|\mathcal{A}(\hat{x})|}$ has a solution $\hat{d} \in \mathbb{R}^n$ which fulfills the requirements of MFCQ.

4. (LICQ, MFCQ and Slater)

We consider the following optimization problem with p=4 constraints

- (a) Check, if $\hat{x} := (0,1)^T \in \mathbb{R}^2$ fulfills LICQ and MFCQ.
- (b) Prove that the minimum \bar{x} of (7) fulfills the KKT conditions.

$$(3+3=6 \text{ Points})$$

Solution:

(a) The constraints and the Jacobian matrix of the constraints are

$$g(x) = \begin{pmatrix} x_1^2 + 4x_2^2 - 4 \\ (x_1 - 2)^2 + x_2^2 - 5 \\ -x_1 \\ -x_2 \end{pmatrix}, \quad g(\hat{x}) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \end{pmatrix}, \quad g'(x) = \begin{pmatrix} 2x_1 & 8x_2 \\ 2x_1 - 4 & 2x_2 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad g'(\hat{x}) = \begin{pmatrix} 0 & 8 \\ -4 & 2 \\ -1 & 0 \\ 0 & -1 \end{pmatrix},$$

where the first three constraints are active at \hat{x} , i.e. $\mathcal{A}(\hat{x}) = \{1, 2, 3\}$.

LICQ: Because $|\mathcal{A}(\hat{x})| = 3$ constraints are active, but there are only n = 2 variables, the gradients of the contraints can not be linear independent. Therefore the LICQ can not hold.

MFCQ: We do not have equality constraints so that for MFCQ we need to have $v \in \mathbb{R}^2$ such that

$$\begin{pmatrix} 0 & 8 \\ -4 & 2 \\ -1 & 0 \end{pmatrix} v < \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The vector $v = (1, -1)^T$ fulfills this, which is readily seen

$$\begin{pmatrix} 0 & 8 \\ -4 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -8 \\ -6 \\ -1 \end{pmatrix}.$$

(b) The problem (7) is convex (only linear and quadradic inequality constraints), therefore we want test if the Slater condition is fulfilled. We consider the point $x = (1, 0.5)^T$, for which $x \in \mathring{\mathcal{F}}$, i.e. $\mathring{\mathcal{F}} \neq \emptyset$, due to

$$g(x) = \begin{pmatrix} x_1^2 + 4x_2^2 - 4 \\ (x_1 - 2)^2 + x_2^2 - 5 \\ -x_1 \\ -x_2 \end{pmatrix} = \begin{pmatrix} -2 \\ -3.75 \\ -1 \\ -0.5 \end{pmatrix} < \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Therefore there are Lagrange parameters $\bar{\lambda}$ and $\bar{\mu}$, such that $(\bar{x}, \bar{\lambda}, \bar{\mu})$ fulfills the KKT-conditions.

Remark: To check if a CQ is fulfilled in x the function f is irrelevant. We could have taken any other convex function f and nothing would have changed. The objective function f only becomes relevant if we try to find a minimum.