2022-2023 MP2I

15. Arithmétique, corrigé

Exercice 1. On cherche le reste modulo 10 de 17^{2022} . On a $17 \equiv 7$ [10]. On a $7^2 \equiv -1$ [10]. On en déduit que $7^4 \equiv 1$ [10]. Ceci entraine que pour tout $n \in \mathbb{N}$, $7^{4n} \equiv 1$ [10]. Puisque $2023 = 4 \times 255 + 3$, on a $17^{2023} \equiv 1 \times 7^3$ [10] $\equiv 3$ [10]. On en déduit que le dernier chiffre de 17^{2023} est 9.

Exercice 2. On veut calculer $2222^3 \times 3^{2222}$ modulo 10.

Pour cela, on a $2222 \equiv 2 \ [10]$ donc $2222^3 \equiv 8 \ [10]$.

On a ensuite $3^2 \equiv -1$ [10]. On en déduit que $3^{2222} \equiv (-1)^{1111}$ [10] d'où $3^{2222} \equiv -1$ [10].

On en déduit finalement que $2222^3 \times 3^{2222} \equiv -8$ [10], ce qui entraine que le reste dans la division euclidienne par 10 vaut 2.

Exercice 4.

1) On a $10 \equiv -1$ [11]. Si on écrit n sous la forme $n = \sum_{k=0}^{p} a_k 10^k$, alors, on a $n \equiv \sum_{k=0}^{p} (-1)^k a_k$ [11].

On en déduit que n est divisible par 11 si et seulement si la somme de ses chiffres de rangs pairs moins la somme de ses chiffres de rangs impairs est divisible par 11.

Exercice 5. Soit $P(x) = 2x^3 - 3x^2 + 2x - 3$. Supposons que P admette une racine entière n_0 . On a alors $P(n_0) = 0$, c'est à dire que $n_0(2n_0^2 - 3n_0 + 2) = 3$.

On en déduit que n_0 divise 3. On a donc $n_0 = -3$, $n_0 = -1$, $n_0 = 1$ ou $n_0 = 3$. Or, on a P(-3) = -90, P(-1) = -10, P(1) = -2 et P(3) = 30. On en déduit que P n'admet pas de racine entière.

Exercice 6.

- 1) En effectuant la table, on remarque que $2^3 \equiv 1$ [7] et que $3^6 \equiv 1$ [7].
- 2) Pour étudier les puissances de $3^n 2^n$, on étudie donc selon les valeurs de n modulo 6 :
- Si $n \equiv 0$ [6], alors $3^n 2^n \equiv 0$ [7].
- Si $n \equiv 1$ [6], alors $3^n 2^n \equiv 1$ [7].
- Si $n \equiv 2$ [6], alors $3^n 2^n \equiv 5$ [7].
- Si $n \equiv 3$ [6], alors $3^n 2^n \equiv 5$ [7].
- Si $n \equiv 4$ [6], alors $3^n 2^n \equiv 2$ [7].
- Si $n \equiv 5$ [6], alors $3^n 2^n \equiv 1$ [7].

Exercice 12. Pour $n \in \mathbb{N}$, on a $\sum_{k=0}^{n} 3^k = \frac{3^{n+1}-1}{3-1} = \frac{3^{n+1}-1}{2}$ par somme géométrique. On a donc

7 qui divise $\sum_{k=0}^{n} 3^k$ si et seulement si 14 divise $3^{n+1} - 1$.

Or, $14 = 2 \times 7$ et que $2 \wedge 7 = 1$, on a $14|(3^{n+1}-1)$ si et seulement si $2|(3^{n+1}-1)$ et $7|(3^{n+1}-1)$. Or, $3^{n+1}-1$ est pair donc est toujours divisible par 2. Il reste à trouver les $n \in \mathbb{N}$ pour lesquels $7|(3^{n+1}-1)$, ce qui revient à avoir $3^{n+1} \equiv 1$ [7].

1

On a $3^2 \equiv 2$ [7], $3^3 \equiv 6$ [7], etc., $3^6 \equiv 1$ [7] et 6 est la première puissance strictement positive vérifiant ceci. On en déduit que $3^n \equiv 1$ [7] $\Leftrightarrow n \equiv 0$ [6].

Les entiers n solutions sont donc les n tels que $n+1\equiv 0$ [6], soit les n de la forme 6k+5 avec $k\in\mathbb{N}$.

Exercice 13.

1) On a n+3=n+1+2 donc (n+1)|(n+3) si et seulement si (n+1)|2. Autrement dit, les seuls entiers n qui conviennent sont n=0 et n=1.

On a de même $n^2 + 3n + 5 = (n+2)(n+1) + 3$. On a donc (n+2) qui divise $n^2 + 3n + 5$ si et seulement si n+2 divise 3. Puisque $n \in \mathbb{N}$, la seule solution est n=1.

Exercice 14. Soit $n \in \mathbb{Z}$. En utilisant le lemme d'Euclide, on trouve :

$$(9n^{2} + 10n + 1) \wedge (9n^{2} + 8n - 1) = (9n^{2} + 10n + 1 - (9n^{2} + 8n - 1)) \wedge (9n^{2} + 8n - 1)$$

$$= (2n + 2) \wedge (9n^{2} + 8n - 1)$$

$$= (2n + 2) \wedge (9n^{2} + 8n - 1 - (2n + 2) \times 4n)$$

$$= (2n + 2) \wedge (n^{2} - 1)$$

$$= (2(n + 1)) \wedge ((n - 1)(n + 1))$$

$$= |n + 1| \times (2 \wedge (n - 1)).$$

On en déduit que le PGCD étudié vaut 2|n+1| si n est impair et |n+1| si n est pair. Attention aux valeurs absolues! Un PGCD est toujours positif!

Exercice 15. Soient $(x,y) \in (\mathbb{N}^*)^2$. On a :

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{5} \Leftrightarrow 5y + 5x = xy \Leftrightarrow 5y = x(y - 5).$$

Autrement dit, on a $y \neq 5$ et $x = \frac{5y}{y-5} \in \mathbb{N}^*$. Or, on a :

$$5y = 5(y - 5) + 25.$$

On a donc y-5 qui divise 5y si et seulement si y-5 divise 25. Or, les diviseurs de 25 sont -25, -5, -1, 1, 5, 25. On en déduit que les possibilités pour y (puisque $y \in \mathbb{N}^*$) sont 4, 6, 10, 30. Si y=4, on a x<0 donc on enlève cette solution. Pour les autres valeurs, on a $x \in \mathbb{N}^*$ donc finalement les solutions sont les couples (x,y) de la forme (30,6),(10,10),(6,30).

Exercice 16. Résoudre dans \mathbb{Z} les équations suivantes :

1) Calculons le pgcd de 151 et 77 en utilisant l'algorithme d'Euclide. On a :

$$151 = 77 + 74
77 = 74 + 3
74 = 24 \times 3 + 2
3 = 2 + 1$$

On en déduit que $151 \wedge 77 = 1$. Ceci entraine que l'équation 151x - 77y = 5 admet une infinité de solutions que l'on va déterminer. Commençons pour trouver une solution particulière en remontant l'algorithme d'Euclide. On a :

2

$$\begin{array}{rcl}
1 & = & 3-2 \\
& = & 3-(74-24\times3) \\
& = & 25\times3-74 \\
& = & 25\times(77-74)-74 \\
& = & 25\times77-74\times26 \\
& = & 25\times77-(151-77)\times26 \\
& = & 51\times77-26\times151.
\end{array}$$

Pour obtenir une solution particulière, il faut multiplier par 5 les nombres trouvés. On en déduit que le couple $(x_0, y_0 \text{ avec } x_0 = -130 \text{ et } y_0 = -255 \text{ est une solution particulière de } (E)$. Désterminons alors par analyse/synthèse l'ensemble des solutions.

Analyse : soit (x, y) solution de l'équation considérée. On a a alors $151x - 77y = 151x_0 - 77y_0$. On en déduit que :

$$151(x - x_0) = 77(y - y_0).$$

Ceci entraine que 151 divise $77(y-y_0)$. Or, $151 \wedge 77=1$. D'après le théorème de Gauss, on a donc 151 qui divise $y-y_0$. Il existe donc $k \in \mathbb{Z}$ tel que $y-y_0=151k$. En réinjectant dans la relation précédente et en simplifiant par 151, on trouve alors que $x-x_0=77k$. On en déduit que $x=x_0+77k$ et $y=y_0+151k$ avec $k \in \mathbb{Z}$.

Synthèse: Réciproquement, supposons que $x = x_0 + 77k$ et $y = y_0 + 151k$ avec $k \in \mathbb{Z}$. On a alors:

$$151x - 77y = 151(x_0 + 77k) - 77(y_0 + 151k)
= 151x_0 - 77y_0 + 0
= 5.$$

La dernière égalité étant vraie puisque (x_0, y_0) est solution particulière. On a donc montré par analyse/synthèse que l'ensemble des solutions de l'équation est l'ensemble :

$$\{(-130 + 77k, -255 + 151k), k \in \mathbb{Z}\}.$$

2) Calculons le pgcd de 51 et 44. On a :

$$51 = 44 + 7$$

 $44 = 6 \times 7 + 2$
 $7 = 3 \times 2 + 1$.

On en déduit que $51 \wedge 44 = 1$. L'équation 51x + 44y = 1 admet donc une infinité de solutions. Pour en trouver une particulière, on remonte l'algorithme d'Euclide :

$$1 = 7 - 3 \times 2
= 7 - 3 \times (44 - 6 \times 7)
= 19 \times 7 - 3 \times 44
= 19 \times (51 - 44) - 3 \times 44
= 19 \times 51 - 22 \times 44.$$

On en déduit qu'une solution particulière de 51x + 44y = 1 est (x_0, y_0) avec $x_0 = 19$ et $y_0 = -22$. Ceci entraine (même preuve que dans le cours ou dans le 1.) que l'ensemble des solutions est :

$$\{(19+44k, -22-51k), k \in \mathbb{Z}\}.$$

3) On remarque déjà que dans l'équation 9072x + 306y = 18, les nombres 9072 et 306 sont divisibles par 6 (car ils sont pairs et leur somme des chiffres vaut 3). L'équation est donc équivalente à 1512x + 51y = 3. On peut encore simplifier par 3 encore une fois (même argument). L'équation est donc équivalente à 504x + 17y = 1. On effectue alors la division euclidienne de 504 par 17 :

$$504 = 29 \times 17 + 11$$

$$17 = 11 + 6$$

$$11 = 6 + 5$$

$$6 = 5 + 1$$

On en déduit que $504 \wedge 17 = 1$. L'équation admet donc une infinité de solutions. En remontant l'algorithme d'Euclide, on trouve une solution particulière. On a :

$$1 = 6 - 5$$

$$= 6 - (11 - 6)$$

$$= 2 \times 6 - 11$$

$$= 2 \times (17 - 11) - 11$$

$$= 2 \times 17 - 3 \times 11$$

$$= 2 \times 17 - 3 \times (504 - 29 \times 17)$$

$$= -3 \times 504 + 89 \times 17.$$

On trouve alors une solution particulière de 504x + 17y = 1. Par exemple, (x_0, y_0) avec $x_0 = -6$ et $y_0 = 178$ convient. On a alors (voir cours ou 1.) que l'ensemble des solutions de l'équation est :

$$\{(-6+17k, 178-504k), k \in \mathbb{Z}\}.$$

Exercice 17. (i) Soient $a, b \in \mathbb{Z}$.

Supposons dans un premier temps que $a \wedge b = 1$. D'après le lemme d'Euclide, on a $a \wedge (a+b) = a \wedge (a+b-a) = a \wedge b = 1$. De mà ame, on a aussi $b \wedge (a+b) = 1$. On en déduit d'après le cours que :

$$(ab) \wedge (a+b) = 1.$$

Réciproquement, supposons que $(ab) \wedge (a+b) = 1$. D'après l'identité de Bézout, il existe alors $u, v \in \mathbb{Z}$ tels que abu + (a+b)v = 1, ce qui implique que :

$$a(bu+v)+bv=1.$$

D'après le théorème de Bézout, on en déduit que $a \wedge b = 1$ (puisque $bu + v \in \mathbb{Z}$ et $v \in \mathbb{Z}$).

Exercice 19. Soit $x \in \mathbb{Q}$. On suppose qu'il existe $n \in \mathbb{N}^*$ tel que $x^n \in \mathbb{Z}$. Puisque $x \in \mathbb{Q}$, on peut écrire $x = \frac{p}{q}$ avec $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ et $p \wedge q = 1$. On a alors :

$$x^n = \frac{p^n}{q^n}.$$

On a alors $p^n \wedge q^n = 1$ puisque $p \wedge q = 1$ (on peut par exemple utiliser le fait que p et q n'ont aucun facteur premier commun donc c'est aussi le cas de p^n et q^n).

Puisque $x^n \in \mathbb{Z}$, on en déduit qu'il existe $k \in \mathbb{Z}$ tel que $\frac{p^n}{q^n} = k = \frac{k}{1}$. Or, on a unicité de l'écriture sous la forme $\frac{p}{q}$ avec $p \in \mathbb{Z}$, $q \in \mathbb{N}^*$ et $p \wedge q = 1$, on en déduit que $p^n = k$ et $q^n = 1$. Puisque $q \in \mathbb{N}^*$, on a alors q = 1 et donc $x = p \in \mathbb{Z}$.

Exercice 21.

1) Notons $(E): x \wedge y = x + y - 1$.

Analyse: Supposons que (x, y) soit solution de (E). Supposons dans un premier temps que $x \wedge y \neq 1$. Posons alors $a = x \wedge y$. Puisque a|x et a|y, on en déduit que a|-1. On a donc a = 1 (car a est positif). Ceci est donc absurde!

On a donc $x \wedge y = 1$. L'équation (E) est donc équivalente à :

$$\begin{cases} x + y = 2 \\ x \wedge y = 1 \end{cases}$$

On en déduit que $(x,y) \in \{(n,2-n), n \in \mathbb{Z}\}$ et que $x \wedge y = 1$. Déterminons quels sont les éléments de cet ensemble premiers entre eux. On a :

$$n \wedge (2-n) = n \wedge (2-n+n)$$
 (d'après le lemme d'Euclide)
= $n \wedge 2$.

On en déduit que ce pgcd vaut 1 si et seulement si n est impair. On trouve donc que (x, y) est de la forme (2k + 1, 1 - 2k), avec $k \in \mathbb{Z}$.

Synthèse: Soit $k \in \mathbb{Z}$. On a alors $(2k+1) \wedge (1-2k) = 1$ (toujours en utilisant le lemme d'Euclide) et en remarquant que $(2k+1) \wedge 2 = 1$. On a alors que $2k+1+(1-2k)-1=(2k+1) \wedge (1-2k)$. Tous les couples trouvés sont donc solutions.

L'ensemble des solutions de (E) est donc l'ensemble $\{(2k+1, 1-2k), k \in \mathbb{Z}\}.$

2) Notons $(E'): x \vee y = x + y - 1$.

Analyse: Supposons (x,y) solution de (E'). Supposons dans un premier temps que $x \wedge y \neq 1$. Posons alors $a = x \wedge y$. Puisque $a|x \vee y$, a|x et a|y, on en déduit que a|-1. On a donc a=1 (car a est positif). Ceci est donc absurde!

On a donc $x \wedge y = 1$, ce qui implique que $x \vee y = xy$. L'équation (E') est donc équivalente à :

$$\begin{cases} xy = x + y - 1 \\ x \land y = 1 \end{cases}$$

On en déduit que y(x-1)=x-1, ce qui après factorisation entraı̂ne que (x-1)(y-1)=0. On en déduit que $(x,y)\in\{(k,1),\ k\in\mathbb{Z}\}$ $\bigcup\{(1,j)n\ j\in\mathbb{Z}\}$.

Synthèse: Soit $k \in \mathbb{Z}$. On a alors $k \vee 1 = k$. et on a alors que k = k + 1 - 1. (k, 0) est donc solution de (E'). De même, (1, k) est solution de (E'). Tous les couples trouvés sont donc solutions.

L'ensemble des solutions de (E) est donc l'ensemble $\{(k,1),\ k\in\mathbb{Z}\}$ \bigcup $\{(1,j),\ j\in\mathbb{Z}\}.$

Exercice 22. On considère $(E): 3^x = 8 + y^2$ avec $x, y \in \mathbb{N}^*$. Soit (x, y) une solution de (E).

1) 3^x est impair (un produit de nombre impair est impair) donc $y^2 = 3^x - 8$ est impair. On en déduit que y est impair (par l'absurde, si il était pair alors y^2 serait pair : absurde).

Étudions alors les restes possibles des carrés modulo 8 pour $n \in \mathbb{Z}$ (impair car on a montré que y était impair) :

$$\begin{cases}
 n \equiv 1 \ [8] \Rightarrow n^2 \equiv 1 & [8] \\
 n \equiv 3 \ [8] \Rightarrow n^2 \equiv 1 & [8] \\
 n \equiv 5 \ [8] \Rightarrow n^2 \equiv 1 & [8] \\
 n \equiv 7 \ [8] \Rightarrow n^2 \equiv 1 & [8]
\end{cases}$$

Tous les carrés impairs sont congrus à 1 modulo 8. On en déduit que $y^2 \equiv 1[8]$.

2) On déduit de la question précédente que $3^x \equiv 1$ [8]. Supposons par l'absurde que x soit impair, c'est à dire de la forme x = 2k + 1 avec $k \in \mathbb{N}$. On en déduit que $3^x \equiv 3$ [8] ce qui est absurde!

5

On en déduit que x est pair, donc de la forme 2k avec $k \in \mathbb{N}^*$. On en déduit alors que $3^{2k} - y^2 = 8$, ce qui implique que :

$$(3^k - y)(3^k + y) = 8.$$

Or, puisque y est supposé positif, on en déduit que $3^k - y \ge 1$ (sinon on aurait le produit d'un nombre inférieur ou égal à 0 avec un nombre positif qui serait égal à 8, ce qui est absurde). On en déduit que $3^k + y \le 8$. Puisque y > 0, ceci implique que $3^k < 8$, c'est à dire $3^{\frac{x}{2}} < 8$.

3) L'unique valeur possible pour x est donc 2. Ceci impose y = 1. L'unique solution de notre système est donc x = 2 et y = 1.

Exercice 23. Supposons par l'absurde que l'équation $(E): x^2 + y^2 = 11z^2$ admette une solution entière. Posons $a = x \wedge y \wedge z$. On remarque alors que si l'on pose $x' = \frac{x}{a}, y' = \frac{y}{a}$ et $z' = \frac{z}{a}$, alors, x', y' et z' sont encore entiers, ils sont premiers entre eux dans leur ensemble et ils sont encore solution de (E) (en divisant l'équation par a^2 .

Considérons alors l'équation modulo 11. On a donc $(x')^2 + (y')^2 \equiv 0$ [11]. Étudions à présent les restes possibles pour les carrés modulo 11. Si $n \in \mathbb{Z}$, alors :

$$\begin{cases} n \equiv 0 \ [11] \Rightarrow n^2 \equiv 0 & [11] \\ n \equiv 1 \ [11] \Rightarrow n^2 \equiv 1 & [11] \\ n \equiv 2 \ [11] \Rightarrow n^2 \equiv 4 & [11] \\ n \equiv 3 \ [11] \Rightarrow n^2 \equiv 9 & [11] \\ n \equiv 4 \ [11] \Rightarrow n^2 \equiv 5 & [11] \\ n \equiv 5 \ [11] \Rightarrow n^2 \equiv 3 & [11] \\ n \equiv 6 \ [11] \Rightarrow n^2 \equiv 3 & [11] \\ n \equiv 7 \ [11] \Rightarrow n^2 \equiv 5 & [11] \\ n \equiv 8 \ [11] \Rightarrow n^2 \equiv 5 & [11] \\ n \equiv 8 \ [11] \Rightarrow n^2 \equiv 9 & [11] \\ n \equiv 9 \ [11] \Rightarrow n^2 \equiv 4 & [11] \\ n \equiv 10 \ [11] \Rightarrow n^2 \equiv 1 & [11] \end{cases}$$

Pour que $x^2 + y^2 \equiv 0$ [11], alors, on doit avoir $x \equiv 0$ [11] et $y \equiv 0$ [11] (on ne peut pas retomber sur 0 avec les différents restes ci-dessus dans tous les autres cas). On en déduit donc que 11|x' et que 11|y'. On a donc $11^2|(x')^2$ et $11^2|(y')^2$. Puisque (x',y',z') vérifie l'équation (E), on en déduit que 11^2 divise $(x')^2 + (y')^2 = 11(z')^2$, ce qui implique que $11|(z')^2$. Puisque 11 est premier, on en déduit que 11|z' (on a $11|(z') \times (z')$ ssi 11|z' ou 11|z'). On en déduit que x', y' et z' ne sont pas premiers entre eux dans leur ensemble ce qui est absurde!

L'équation proposée n'a donc pas de solution.

Exercice 24. Supposons par l'absurde que $x,y,z) \in \mathbb{Z}^3$ soit solution de $x^3+y^3+z^3=94$. On a alors que $x^3+y^3+z^3\equiv 4$ [9]. Calculons les restes possibles de n^3 modulo 9 pour $n\in\mathbb{Z}$:

$$\begin{cases}
 n \equiv 0 & [9] \Rightarrow n^3 \equiv 0 & [9] \\
 n \equiv 1 & [9] \Rightarrow n^3 \equiv 1 & [9] \\
 n \equiv 2 & [9] \Rightarrow n^3 \equiv -1 & [9] \\
 n \equiv 3 & [9] \Rightarrow n^3 \equiv 0 & [9] \\
 n \equiv 4 & [9] \Rightarrow n^3 \equiv 1 & [9] \\
 n \equiv 5 & [9] \Rightarrow n^3 \equiv -1 & [9] \\
 n \equiv 6 & [9] \Rightarrow n^3 \equiv 0 & [9] \\
 n \equiv 7 & [9] \Rightarrow n^3 \equiv 1 & [9] \\
 n \equiv 8 & [9] \Rightarrow n^3 \equiv -1 & [9]
\end{cases}$$

Les restes possibles des cubes modulo 9 sont donc 0,1 et -1. En prenant des combinaisons de ces restes, on peut donc obtenir les restes 0,1,2,3,-1,-2,-3 mais on ne peut pas obtenir 4. L'équation étudiée n'a donc pas de solutions entières.

Exercice 26. Soient p_1, \ldots, p_n des nombres premiers distincts. On pose $A = \sum_{k=1}^n \frac{1}{p_k}$. Supposons par

l'absurde que A soit entier. On peut alors multiplier A par $\prod_{j=1}^n p_j$, ce qui nous donne : $A\prod_{j=1}^n p_j = \sum_{k=1}^n \prod_{j\neq k} p_j.$

$$A\prod_{j=1}^{n} p_j = \sum_{k=1}^{n} \prod_{j \neq k} p_j.$$

Or, p_1 divise le membre de gauche donc il divise également la somme de droite. Or, p_1 apparait dans chacun des produits sauf dans le terme $\prod_{i \in I} p_j$. Ceci entraine que $p_1 | \prod_{i \in I} p_j$. Or, ceci est absurde car p_1 est premier avec tous les p_j (car ce sont des nombres premiers distincts) et est donc premier avec p_j . Il ne peut donc pas le diviser.

Exercice 28. Soit n dans \mathbb{N}^* . Posons x = (n+1)! + 1. x+1 n'est pas premier car il est divisible par 2. x+2 n'est pas premier car il est divisible par 3. De manière générale, si $k \in [1,n]$, alors x+k est divisible par k+1. On a donc construit n entiers consécutifs non premiers.

Exercice 29. Soit $n = \prod_{i=1}^k p_i^{\alpha_i}$ la décomposition en facteur premier de $n \in \mathbb{N}^*$.

- 1) Les diviseurs de n sont de la forme $\prod_{i=1}^k p_i^{\beta_i}$ où pour tout $i\in [1,k],\ 0\leq \beta_i\leq \alpha_i$. On a donc $\overline{a_1}$ + 1 possibilités pour le choix de la puissance de p_1 , puis α_2 + 1 possibilités pour le choix de la puissance de p_2 , etc., et enfin α_k+1 possibilités pour le choix de la puissance de p_k . On en déduit qu'il existe finalement $\prod_{i=1}^{n} (\alpha_i + 1)$ possibilités pour construire un diviseur positif de n, ce qui nous donne le nombre de diviseurs positifs distincts.
- 2) On veut $\prod^{\kappa} (\alpha_i + 1) = 21 = 7 \times 3$. On ne peut donc avoir qu'au plus deux α_i strictement positif (sinon on aurait un nombre admettant plus de facteurs premiers). On a donc plusieurs possibilités pour obtenir 21:
 - Soit k=1 et $\alpha_1=20$. Le plus petit nombre de cette forme est 2^{20} .
 - Soit k=2 et $\alpha_1=2$ et $\alpha_2=6$. Le plus petit nombre de cette forme est $2^6\times 3^2$.

Le plus petit entier admettant 21 diviseurs positifs est donc $2^6 \times 3^2 = 576$.

Exercice 30.

1) On doit ici montrer que $n^5 - n$ est divisible par $30 = 2 \times 3 \times 5$. Puisque ces 3 entiers sont premiers entre eux, on va tester la divisilité par 2, par 3 et par 5 et le corollaire du théorème de Gauss nous assure alors que le produit de ces 3 entiers divisera $n^5 - n$. Commençons par la divisibilité par 5 : d'après le petit théorème de Fermat, $n^5 \equiv n$ [5], ce qui nous donne que $n^5 - n$ est divisible par 5. Pour les autres divisibilités, on peut essayer de factoriser :

$$n^{5} - n = n(n^{4} - 1)$$

$$= n(n^{2} - 1)(n^{2} + 1)$$

$$= n(n - 1)(n + 1)(n^{2} + 1).$$

On a alors le produit de 3 entiers consécutifs dans l'expression de n^5-n , ce qui entraine que 6 divise $n^5 - n$ (car 2 le divise et 3 le divise et 2 et 3 sont premiers entre eux). Puisque 5 et 6 sont premiers

entre eux, on en déduit que 30 divise $n^5 - n$. On pourrait aussi réutiliser le théorème de Fermat pour montrer la divisibilité par 2 et par 3, voir la question suivante.

2) On a directement avec Fermat $n^7 \equiv n$ [7], c'est à dire que 7 divise $n^7 - n$. Il ne reste plus qu'à montrer que 6 divise $n^7 - n$ (car 6 et 7 sont premiers entre eux). On pourrait le faire comme ci-dessus mais on peut également le faire en réutilisant Fermat. En effet, on a $n^3 \equiv n$ [3] (d'après Fermat) donc on en déduit que :

$$n^{7} \equiv n^{3} \times n^{4} [3]$$

$$\equiv n \times n^{4} [3]$$

$$\equiv n^{3} \times n^{2} [3]$$

$$\equiv n \times n^{2} [3]$$

$$\equiv n [3].$$

Ceci entraine que 3 divise $n^7 - n$. De même, puisque $n^2 \equiv n$ [2]. On en déduit que :

$$n^{7} \equiv (n^{2})^{3} \times n [2]$$

$$\equiv n^{4} [2]$$

$$\equiv (n^{2})^{2} [2]$$

$$\equiv n^{2} [2]$$

$$\equiv n [2].$$

On a donc 2 qui divise $n^7 - n$. Puisque 2, 3 et 7 sont premiers entre eux, on en déduit que 42 divise $n^7 - n$. Montrer que $n^7 - n$ est divisible par 42.

Exercice 31. Infinité de nombres premiers de la forme 4k + 3.

1) Soit $n \equiv 3$ [4]. On a alors n impair (car n est de la forme 4k + 3). On en déduit que les nombres premiers qui sont dans la décomposition en facteurs premiers de n sont tous impairs. Ces nombres sont donc tous congrus à 1 ou 3 modulo 4.

Supposons par l'absurde que tous ces nombres soient congrus à 1 modulo 4. Alors, par produit, on aurait n qui serait congru à $1 \times 1 \times \ldots \times 1$ [4] ce qui est absurde car n est congru à 3 modulo 4.

On en déduit que n admet au moins un diviseur premier congru à 3 modulo 4.

2) Supposons par l'absurde qu'il n'existe qu'un nombre fini de nombre premiers de la forme 4n + 3. Notons les p_1, \ldots, p_k . Par hypothèse, ce sont les seuls nombres premiers qui sont congrus à 3 modulo 4. Remarquons qu'ils sont tous impairs (2 n'étant pas congru à 3 modulo 4).

Considérons alors le nombre $x=2\prod_{j=1}^k p_j+1$. Puisque chaque p_j est congruent à 3 modulo 4, on en

déduit que le produit $\prod_{j=1}^k p_j$ est congruent à 1 ou 3 (puisqu'il s'agit d'un nombre impair). En multipliant par 2, on obtient un nombre congru à 2 modulo 4 ou à 6 modulo 4, ce qui dans les deux cas, revient à avoir un nombre congru à 2 modulo 4. On a donc $x \equiv 3$ [4].

D'après la question précédente, on a x qui admet un diviseur premier congru à 3 modulo 4. Or, aucun des p_j ne divise x (puisqu'ils divisent le produit, si p_j divise x, alors p_j divise 1 ce qui est absurde). Ceci contredit le fait qu'il n'y a que p_1, \ldots, p_k qui soient premiers congrus à 3 modulo 4.

On en déduit qu'il y a une infinité de nombres premiers de la forme 4n + 3.

Exercice 32. Infinité de nombres premiers de la forme 4k + 1.

- 1) On a $n^p \equiv n$ [p] d'après le petit théorème de Fermat donc $p|(n^p-n)$, soit $p|n(n^{p-1}-1)$. Puisque $p \wedge n = 1$, on en déduit d'après le théorème de Gauss que $p|(n^{p-1}-1)$, soit que $n^{p-1} \equiv 1$ [p].
- 2) Soit $n \in \mathbb{N}$ et $p \in \mathbb{P}$ un nombre premier impair tel que p divise $n^2 + 1$. On a p qui ne divise pas n (car sinon p divise n^2 et donc p divise $(n^2 + 1) n^2 = 1$ ce qui est absurde car $p \ge 2$). Puisque p est premier, on a $n \land p = 1$.

D'après la question précédente, on a alors $n^{p-1} \equiv 1$ [p]. Or, on a $p|(n^2+1)$ donc $n^2 \equiv -1$ [p]. En élevant à la puissance $\frac{p-1}{2} \in \mathbb{N}^*$ (puisque p est impair), on a alors que :

$$n^{2\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} [p] \Leftrightarrow n^{p-1} \equiv (-1)^{\frac{p-1}{2}} [p].$$

On a donc $(-1)^{\frac{p-1}{2}} \equiv 1$ [p] ce qui entraine que $\frac{p-1}{2}$ est pair (sinon on aurait $1 \equiv -1$ [p] ce qui est absurde car p > 2). On a donc p-1 multiple de 4, soit $p \equiv 1$ [4].

3) Supposons par l'absurde qu'il n'y ait qu'un nombre fini de nombres premiers congrus à 1 modulo 4. Notons les p_1, \ldots, p_k . Considérons alors $a = (2p_1 \times p_2 \times \ldots \times p_n)^2 + 1$. Soit $p \in \mathbb{P}$ qui divise a. Puisque a est impair, on a p impair. D'après la question précédente, on a donc $p \equiv 1$ [4]. Il existe donc $j \in [1, k]$ tel que $p = p_j$. Ceci est absurde car on a alors p_j qui divise a et qui divise $(2p_1 \times p_2 \times \ldots \times p_n)^2$ (car il apparait dans le produit) et il divise donc la différence, soit 1.

On a donc une infinité de nombres premiers congrus à 1 modulo 4.