考虑麦克斯韦方程组的时谐形式:

$$\left\{egin{aligned}
abla imes \mathbf{E} &= -j\omega \mathbf{B} \
abla imes \mathbf{H} &= j\omega \mathbf{D} + \mathbf{J} \
abla \cdot \mathbf{B} &= 0 \
abla \cdot \mathbf{D} &=
ho \
abla \cdot \mathbf{J} &= j\omega
ho \end{aligned}
ight.$$

物质的本构关系:

$$\left\{egin{array}{ll} \mathbf{D} = \epsilon \mathbf{E} \ \mathbf{B} = \mu \mathbf{H} \ \mathbf{J} = \sigma \mathbf{E} \end{array}
ight.$$

$$abla imes
abla imes
abl$$

由于导体中场的特性为:无散、无旋、无源, $\nabla (\nabla \cdot \mathbf{E}) = 0$,可以得到:

$$abla imes
abla imes
abla imes \mathbf{E} = -
abla^2 \mathbf{E}$$

根据麦克斯韦方程组 $\nabla \times \mathbf{E} = -j\omega \mathbf{B}$ 有:

$$\nabla \times \nabla \times \mathbf{E} = \nabla \times (-j\omega \mathbf{B})$$

代入物质的本构关系 $\mathbf{B} = \mu \mathbf{H}$ 和麦克斯韦方程组 $\nabla \times \mathbf{H} = j\omega \mathbf{D} + \mathbf{J}$:

$$\nabla \times \nabla \times \mathbf{E} = -j\omega\mu\nabla \times \mathbf{H} = -j\omega\mu\left(j\omega\mathbf{D} + \mathbf{J}\right)$$

由于是在导体中,所以 $j\omega \mathbf{D} = 0$,代入本构关系 $\mathbf{J} = \sigma \mathbf{E}$ 从而得到:

$$\nabla \times \nabla \times \mathbf{E} = -j\omega\mu\sigma\mathbf{E}$$

所以可以得到:

$$abla^2 \mathbf{E} = j\omega\mu\sigma\mathbf{E}$$

此时就得到了亥姆霍兹方程(在后面EMI的部分也大量出现)

亥姆霍兹方程的解为电磁波的传播方程,对于电场,它的形式为:

$$\mathbf{E} = \mathbf{E_0} e^{-\mathbf{k} \cdot r}$$

令指数上的 k 为电磁场的复传播系数,规定其一般形式为

$$\gamma = \alpha + j\beta = \sqrt{j\omega\mu\left(\sigma + j\omega\epsilon\right)}$$

其中的 α 为衰减系数, β 为相位系数(β 是与波数 k 相关的,在无耗介质(真空、空气)中是老印提到的 $\beta_0=\frac{2\pi}{\lambda}$)

在导体中, 省略介电项, 可以得到在导体中的电磁场传播系数为:

$$\gamma = \sqrt{j\omega\mu\sigma}$$

根据趋肤效应的定义,场强减小到 $|\mathbf{E_0}|$ 的 e^{-1} 时,此时的距离规定为趋肤深度:

$$\left|\mathbf{E_0}e^{-\gamma \cdot r}\right| = \left|\mathbf{E_0}e^{-1}\right|$$

解得:

$$r=\left|\sqrt{rac{2}{\gamma}}
ight|=\sqrt{rac{2}{\omega\mu\sigma}}=\sqrt{rac{1}{\pi f\mu\sigma}}$$