- **38.** En \mathbb{M}_{22} : $\begin{pmatrix} 1 & -3 \\ 2 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 4 \\ 5 & 0 \end{pmatrix}$, $\begin{pmatrix} -1 & 6 \\ -1 & 3 \end{pmatrix}$, $\begin{pmatrix} 1 & 7 \\ 6 & 7 \end{pmatrix}$
- **39.** En \mathbb{M}_{22} : $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} b & c \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} d & e \\ f & 0 \end{pmatrix}$, $\begin{pmatrix} g & h \\ j & k \end{pmatrix}$ donde $acfk \neq 0$
- **40.** En \mathbb{P}_n , sean $p_1, p_2, \ldots, p_{n+1}, n+1$ polinomios tales que $p_i(0) = 0$ para $i = 1, 2, \ldots, n+1$. Demuestre que los polinomios son linealmente dependientes.
- *41. En el problema 5.6.40, en lugar de $p_i(0) = 0$, suponga que $p_i^{(j)} = 0$ para i = 1, 2, ..., n + 1 y para alguna j con $1 \le j \le n$, donde $p_i^{(j)}$ denota la j-ésima derivada de p_i . Demuestre que los polinomios son linealmente dependientes en P_n .

- **42.** En \mathbb{M}_{mn} sean A_1, A_2, \ldots, A_{mn} , mn matrices cuyas componentes en la posición 1,1 son cero. Demuestre que las matrices son linealmente dependientes.
- *43. Suponga que los ejes x y y en el plano se rotan en sentido positivo (contrario al de las manecillas del reloj), un ángulo θ (medido en radianes). Esto da nuevos ejes que se denotan por (x', y'). ¿Cuáles son las coordenadas x, y de los vectores de la base \mathbf{i} y \mathbf{j} rotados?
 - 44. Demuestre que la matriz del cambio de coordenadas en el problema 43 está dada por

$$A^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

- **45.** Si en los problemas 43 y 44, $\theta = \frac{\pi}{6}$ rad, escriba el vector $\begin{pmatrix} 1 \\ -4 \end{pmatrix}$ en términos de los nuevos ejes coordenados x' y y'.
- 46. Si $\theta = \frac{5\pi}{4} = 225^{\circ}$, escriba $\begin{pmatrix} 2 \\ -7 \end{pmatrix}$ en términos de los nuevos ejes coordenados.
- 47. Si $\theta = 2\pi/3 = 120^{\circ}$, escriba $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ en términos de los nuevos ejes coordenados.
- **48.** Sea $C = (c_{ij})$ una matriz invertible de $n \times n$ y sea $B_1 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ una base para el espacio vectorial. Sea

$$c_{1} = \begin{pmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{n1} \end{pmatrix}_{B_{1}} = c_{2} = \begin{pmatrix} c_{12} \\ c_{22} \\ \vdots \\ c_{n2} \end{pmatrix}_{B_{1}} = c_{n} = \begin{pmatrix} c_{1n} \\ c_{2n} \\ \vdots \\ c_{nn} \end{pmatrix}_{B_{1}}$$

Demuestre que $B_2 = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\}$ es una base para V.

- **49.** Sean B_1 y B_2 dos bases para el espacio vectorial V de dimensión n y sea C la matriz de transición de B_1 a B_2 . Demuestre que C^{-1} es la matriz de transición de B_2 a B_1 .
- **50.** Demuestre que $(\mathbf{x})_{B_1} = CA(\mathbf{x})_{B_1}$ para todo \mathbf{x} en un espacio vectorial V si y sólo si CA = I. [Sugerencia: Sea \mathbf{x}_i el vector i en B_1 . Entonces $(\mathbf{x}_i)_{B_1}$ tiene un uno en la posición i y un cero en otra parte. ¿Qué puede decirse sobre $CA(\mathbf{x}_i)_{B_1}$?]