

US012391256B1

(12) United States Patent Tsai et al.

(54) BASELINE EVENT DETECTION SYSTEM

(71) Applicant: Samsara Inc., San Francisco, CA (US)

(72) Inventors: Evaline Shin-Tin Tsai, Cupertino, CA (US); Kieran K. Gupta, San Francisco, CA (US); Margaret Irene Finch, San Francisco, CA (US); Matthew Lee Basham, Oakland, CA (US); Bodecker John DellaMaria, Crystal Lake, IL (US); Brian Tuan, Cupertino, CA (US); James Chen, San Francisco, CA (US); Jason Noah Laska, San Francisco, CA (US); Jason Frederic Symons, Dublin, CA (US); John Charles Bicket, Burlingame, CA (US); Kavya Joshi, San Francisco, CA (US); Ryan Reading, San Francisco, CA (US); Sabrina Quinn Shemet, Felton, CA (US); Sean Kyungmok Bae, San Francisco, CA (US); Ishaan Kansal, San Francisco, CA (US)

(73) Assignee: Samsara Inc., San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 24 days.

This patent is subject to a terminal disclaimer.

Claimer

(21) Appl. No.: 18/455,167

(22) Filed: Aug. 24, 2023

Related U.S. Application Data

- (60) Division of application No. 16/794,114, filed on Feb. 18, 2020, now Pat. No. 11,787,413, and a continuation-in-part of application No. 16/395,927, filed on Apr. 26, 2019, now Pat. No. 11,080,568.
- (51) Int. Cl.

 B60W 40/04 (2006.01)

 G06V 10/82 (2022.01)

 (Continued)

(10) Patent No.: US 12,391,256 B1

(45) **Date of Patent:** *Aug. 19, 2025

(52) U.S. Cl.

(Continued)

(58) Field of Classification Search

CPC B60W 40/04; G06V 10/82; G06V 20/46; G06V 20/56; G06V 20/44; G06V 20/582; G06V 20/597; G06F 18/214

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,862,594 A 9/1989 Schierbeek et al. 4,937,945 A 7/1990 Schofield et al. (Continued)

FOREIGN PATENT DOCUMENTS

WO WO-2018131322 A1 7/2018

OTHER PUBLICATIONS

"U.S. Appl. No. 16/395,927, Examiner Interview Summary mailed Apr. 13, 2020", 3 pgs.

(Continued)

Primary Examiner — Solomon G Bezuayehu (74) Attorney, Agent, or Firm — Schwegman Lundberg & Woessner, P.A.

(57) ABSTRACT

A baseline event detection system to detect events by performing operations that include: generating a baseline data set; accessing a data stream; performing a comparison of the baseline data set and the data stream; and detecting an event based on the comparison.

20 Claims, 17 Drawing Sheets

US 12,391,256 B1 Page 2

(51)	Int. Cl.			11,100,767 B1	8/2021	Lee et al.
` /	G06V 20/40		(2022.01)	11,288,948 B2		Martin et al.
	G06V 20/56		(2022.01)	11,436,844 B2		Carruthers et al.
	G06F 18/214		(2023.01)	11,494,921 B2 11,611,621 B2		Elhattab et al. Elhattab et al.
	G06V 20/58		(2022.01)	11,615,141 B1		Hoye et al.
	G06V 20/59		(2022.01)	11,787,413 B2		Tsai et al.
(52)	U.S. Cl.		(=====)	11,847,911 B2		Elhattab et al.
(32)		G06F	18/214 (2023.01); G06V 20/44	12,056,922 B2		Tsai et al.
			G06V 20/582 (2022.01); G06V	2003/0081935 A1		Kirmuss
	(20	22.01), •	20/597 (2022.01)	2005/0131646 A1 2005/0286774 A1	12/2005	Camus et al.
			20/377 (2022.01)	2006/0092015 A1		Agrawal et al.
(56)		Referen	ces Cited	2006/0092874 A1		Agrawal et al.
(00)		11010101		2006/0207818 A1		Fujioka et al.
	U.S. 1	PATENT	DOCUMENTS	2008/0215202 A1	9/2008	Chambers et al.
				2009/0141939 A1 2010/0030586 A1		Taylor et al.
	5,131,154 A		Schierbeek et al.	2010/0087984 A1		Joseph
	5,255,442 A		Schierbeek et al. Schofield et al.	2010/0182398 A1	7/2010	Mazzilli
	5,550,677 A 5,632,092 A		Blank et al.	2010/0278271 A1		MacInnis
	5,670,935 A		Schofield et al.	2010/0281161 A1		Cohn et al. Cobb et al.
	5,796,094 A		Schofield et al.	2011/0043689 A1 2011/0090358 A1	4/2011	
	5,877,897 A		Schofield et al.	2011/0234749 A1	9/2011	
	5,924,212 A 6,266,588 B1		Domanski Mcclellan et al.	2011/0292209 A1*	12/2011	Morley B60K 28/063
	6,313,454 B1		Bos et al.			348/148
	6,353,392 B1		Schofield et al.	2012/0026334 A1		Kamada et al.
	6,396,397 B1	5/2002	Bos et al.	2012/0109418 A1 2012/0218416 A1		Lorber Leny et al.
	6,477,464 B2		Mccarthy et al.	2012/0218416 A1 2013/0147686 A1		Clavin et al.
	6,498,620 B2		Schofield et al.	2013/0250040 A1		Vitsnudel et al.
	6,549,834 B2 6,678,614 B2		Mcclellan et al. McCarthy et al.	2013/0302758 A1	11/2013	
	6,718,239 B2		Rayner	2013/0332004 A1		Gompert et al.
	6,754,660 B1	6/2004	MacPhail	2014/0012492 A1 2014/0113619 A1		Bowers et al. Tibbitts et al.
	6,924,797 B1		Macphail	2014/0132404 A1		Katoh et al.
	6,946,978 B2		Schofield	2014/0146182 A1	5/2014	
	7,004,593 B2 7,038,577 B2		Weller et al. Pawlicki et al.	2014/0226010 A1		Molin et al.
	7,151,996 B2	12/2006		2014/0266694 A1		Mccluskey et al.
	7,167,796 B2		Taylor et al.	2014/0277916 A1		Mullen et al.
	7,386,376 B2		Basir et al.	2015/0054934 A1 2015/0072676 A1		Haley et al. Jordan et al.
	7,526,103 B2		Schofield et al. Breslau et al.	2015/0074091 A1		Walkin et al.
	7,671,762 B2 7,859,392 B2		Mcclellan et al.	2015/0116114 A1		Boyles
	8,319,619 B2*		Arant H04N 5/76	2015/0317841 A1		Karsch et al.
			348/148	2015/0347121 A1 2016/0039377 A1	2/2015	Harumoto
	8,560,164 B2		Nielsen et al.	2016/0039377 A1 2016/0046298 A1*		DeRuyck B60K 28/066
	8,669,857 B2		Sun et al.			340/576
	8,933,960 B2 9,137,498 B1		Lindahl et al. L'heureux et al.	2016/0093212 A1		Barfield, Jr. et al.
	9,189,895 B2		Phelan et al.	2016/0101728 A1	4/2016	
	9,344,683 B1	5/2016	Nemat-Nasser et al.	2016/0119553 A1 2016/0140872 A1		Alm et al. Palmer et al.
	9,569,959 B1		Sprague	2016/0176401 A1		Pilkington
	9,688,282 B2 9,761,063 B2		Cook et al. Lambert et al.	2016/0284009 A1	9/2016	
	9,922,567 B2		Molin et al.	2016/0293049 A1		Monahan et al.
	9,990,553 B1		Chan et al.	2016/0360271 A1	12/2016	Magahern et al. Curtis et al.
	0,037,606 B2	7/2018		2017/0072850 A1 2017/0102463 A1		Hwang
	0,037,711 B2		Chauncey et al.	2017/0102405 A1		Levinson et al.
	0,065,652 B2 0,196,071 B1		Shenoy et al. Rowson et al.	2017/0141476 A1	5/2017	Kim
	0,336,190 B2		Yokochi et al.	2017/0200061 A1		Julian et al.
	0,360,636 B1		Kraft et al.	2017/0263120 A1		Durie, Jr. et al. Innes et al.
	0,389,739 B2		Solotorevsky	2017/0291611 A1 2017/0291800 A1		Scoville et al.
	0,445,559 B2		Joseph et al.	2017/0305342 A1		Tomioka
	0,460,183 B2 0,460,600 B2*		Welland et al. Julian G07C 5/0808	2017/0323641 A1		Shimizu et al.
	0,489,222 B2		Sathyanarayana et al.	2017/0345283 A1		Kwon et al.
1	0,573,183 B1	2/2020	Li et al.	2017/0366935 A1		Ahmadzadeh et al.
	0,623,899 B2		Watkins et al.	2018/0001899 A1 2018/0012462 A1		Shenoy et al. Heitz, III et al.
	0,715,976 B2		Hoffner et al.	2018/0012402 A1 2018/0025636 A1		Boykin et al.
	0,782,691 B2 0,789,840 B2		Suresh et al. Boykin et al.	2018/0063576 A1	3/2018	Tillman et al.
	0,848,670 B2		Gatti et al.	2018/0068206 A1	3/2018	Pollach et al.
1	0,997,430 B1	5/2021	Slavin	2018/0071610 A1	3/2018	
1	0,999,374 B2		Elhattab et al.	2018/0072313 A1		Stenneth
	1,069,257 B2 1,080,568 B2		Palmer et al. Elhattab et al.	2018/0075309 A1 2018/0082500 A1		Sathyanarayana et al. Joodaki et al.
1	1,000,500 152	0/2021	Elimitati et al.	2010/0002300 A1	5/2010	sociali et ai.

(56)References Cited "U.S. Appl. No. 16/395,927, Final Office Action mailed Oct. 16, 2019", 15 pgs. U.S. PATENT DOCUMENTS "U.S. Appl. No. 16/395,927, Non Final Office Action mailed Mar. 5, 2020", 16 pgs. 2018/0120444 A1* 5/2018 Young G01S 19/24 "U.S. Appl. No. 16/395,927, Non Final Office Action mailed Jun. 2018/0126901 A1 5/2018 Levkova et al. 11, 2019", 10 pgs. 2018/0154870 A1 6/2018 Kurata "U.S. Appl. No. 16/395,927, Non Final Office Action mailed Nov. 2018/0174485 A1 6/2018 Stankoulov 2018/0178811 A1 24, 2020", 10 pgs. 6/2018 Ohta 2018/0247109 A1 "U.S. Appl. No. 16/395,927, Notice of Allowance mailed Apr. 7, 8/2018 Joseph et al. 2018/0262724 A1 9/2018 Ross 2021", 14 pgs. 2018/0295141 A1 10/2018 Solotorevsky "U.S. Appl. No. 16/395,927, Response filed Jan. 15, 2020 to Final 2018/0310159 A1 10/2018 Katz et al. Office Action mailed Oct. 16, 2019", 12 pgs. 11/2018 2018/0315340 A1 Chauncey et al. "U.S. Appl. No. 16/395,927, Response filed Mar. 18, 2021 to Non 2018/0329381 A1 11/2018 Doh et al. Final Office Action mailed Nov. 24, 2020", 12 pgs. 2018/0338120 A1 11/2018 Lemberger et al. "U.S. Appl. No. 16/395,927, Response filed Jun. 1, 2020 to Non 2018/0357484 A1 12/2018 Omata 2018/0367731 A1* H04N 21/4223 Final Office Action mailed Mar. 5, 2020", 13 pgs. 12/2018 Gatti ... 2019/0003848 A1 1/2019 Hoten et al. "U.S. Appl. No. 16/395,927, Response filed Aug. 8, 2019 to Non 2019/0007690 A1 1/2019 Varadarajan et al. Final Office Action mailed Jun. 11, 2019", 14 pgs. 2019/0026772 A1 1/2019 Perakslis et al. "U.S. Appl. No. 16/395,927, Response filed Oct. 14, 2020 to Final 2019/0035091 A1 1/2019 Bi et al. Office Action mailed Aug. 28, 2020", 13 pgs. 2019/0054876 A1 2/2019 Ferguson et al. "U.S. Appl. No. 16/395,948, Corrected Notice of Allowability 2019/0065951 A1 2/2019 Luo et al. mailed Jul. 22, 2022", 6 pgs. Zhu et al. 2019/0071091 A1 3/2019 2019/0077308 A1 3/2019 "U.S. Appl. No. 16/395,948, Final Office Action mailed Aug. 18, Kashchenko 2021", 15 pgs. 2019/0120947 A1 4/2019 Wheeler et al. 2019/0137622 A1 5/2019 Lopez-hinojosa et al. "U.S. Appl. No. 16/395,948, Non Final Office Action mailed Feb. 2019/0147263 A1* 5/2019 Kuehnle G07C 5/0866 18, 2021", 13 pgs. 340/439 "U.S. Appl. No. 16/395,948, Non Final Office Action mailed Dec. 2019/0168777 A1 6/2019 Lester 22, 2021", 15 pgs. 2019/0174158 A1 6/2019 Herrick et al. "U.S. Appl. No. 16/395,948, Notice of Allowance mailed Jun. 30, 2019/0205785 A1 7/2019 Volk et al. 2022", 10 pgs. 2019/0244301 A1 8/2019 Seth et al. "U.S. Appl. No. 16/395,948, Response filed Mar. 22, 2022 to Non 2019/0251658 A1 8/2019 Lee et al. Final Office Action mailed Dec. 22, 2021", 11 pgs. 2019/0257661 A1 8/2019 Stentz et al. "U.S. Appl. No. 16/395,948, Response filed May 12, 2021 to Non 2019/0265712 A1 8/2019 Satzoda et al. Final Office Action mailed Feb. 18, 2021", 12 pgs. 2019/0272725 A1 9/2019 Viklund et al. "U.S. Appl. No. 16/395,948, Response filed Nov. 18, 2021 to Final 2019/0286948 A1 9/2019 Sathvanaravana et al. 2019/0303718 A1 10/2019 Office Action mailed Aug. 18, 2021", 10 pgs. Tanigawa et al. 10/2019 2019/0327590 A1 Kubo et al. "U.S. Appl. No. 16/395,960, Examiner Interview Summary mailed 2019/0354838 A1 11/2019 Jun. 8, 2020", 3 pgs. Zhang et al. 2019/0370581 A1 12/2019 Cordell et al "U.S. Appl. No. 16/395,960, Final Office Action mailed Jul. 23, 2019/0382237 A1 12/2019 Witczak et al. 2020", 14 pgs. 2020/0018612 A1 1/2020 Wolcott "U.S. Appl. No. 16/395,960, Non Final Office Action mailed Apr. 2020/0026282 A1 1/2020 Choe et al. 30, 2020", 11 pgs. 2020/0050182 A1 2/2020 Cheng et al. "U.S. Appl. No. 16/395,960, Notice of Allowance mailed Jan. 13, 2020/0057662 A1 2/2020 Zhou 2021", 15 pgs. 2020/0074326 A1 3/2020 Balakrishnan et al. 2020/0074383 A1 "U.S. Appl. No. 16/395,960, Response filed Jun. 26, 2020 to Non 3/2020 Smith et al. Final Office Action mailed Apr. 30, 2020", 11 pgs. 2020/0086852 A1 3/2020 Krekel et al. 2020/0162489 A1 5/2020 Bar-nahum et al. "U.S. Appl. No. 16/395,960, Response filed Nov. 23, 2020 to Final 2020/0164509 A1 5/2020 Shults et al. Office Action mailed Jul. 23, 2020", 11 pgs. 2020/0168094 A1 5/2020 Shimodaira et al. "U.S. Appl. No. 16/794,106, Advisory Action mailed Feb. 10, 2020/0192366 A1 6/2020 Levinson 2022", 3 pgs. "U.S. Appl. No. 16/794,106, Examiner Interview Summary mailed 2020/0242367 A1 7/2020 Ludwigsen et al. 2020/0283003 A1 Raichelgauz 9/2020 Jul. 12, 2021", 2 pgs. 2020/0311602 A1 10/2020 Hawley et al. "U.S. Appl. No. 16/794,106, Final Office Action mailed Jul. 17, 2020/0312155 A1 10/2020 Kelkar et al. 2023", 14 pgs. 2020/0327009 A1 10/2020 Callison et al. "U.S. Appl. No. 16/794,106, Final Office Action mailed Sep. 12, 2020/0327369 A1 10/2020 Cruz et al. 2022", 15 pgs. 2020/0342230 A1 10/2020 Tsai et al. "U.S. Appl. No. 16/794,106, Final Office Action mailed Dec. 2, 2020/0342235 A1 10/2020 Tsai et al. 2021", 13 pgs. 2020/0342274 A1 10/2020 Elhattab et al. "U.S. Appl. No. 16/794,106, Non Final Office Action mailed Feb. 2020/0342611 A1 10/2020 Elhattab et al. 23, 2023", 15 pgs. 2020/0344301 A1 10/2020 Elhattab et al. "U.S. Appl. No. 16/794,106, Non Final Office Action mailed Mar. 2021/0227031 A1 7/2021 Elhattab et al. 22, 2022", 14 pgs. 2021/0397908 A1 12/2021 Elhattab et al. "U.S. Appl. No. 16/794,106, Non Final Office Action mailed Jun. 8, 2022/0165073 A1 5/2022 Shikii et al. 2021", 12 pgs. 2024/0071108 A1* $2/2024 \quad Edwards \ \dots \dots \ G06V \ 40/20$ "U.S. Appl. No. 16/794,106, Response filed Feb. 2, 2022 to Final

OTHER PUBLICATIONS

"U.S. Appl. No. 16/395,927, Examiner Interview Summary mailed Oct. 8, 2020", 3 pgs.

"U.S. Appl. No. 16/395,927, Final Office Action mailed Aug. 28, 2020", 10 pgs.

"U.S. Appl. No. 16/794,106, Response filed May 23, 2023 to Non Final Office Action mailed Feb. 23, 2023", 12 pgs. "U.S. Appl. No. 16/794,106, Response filed Jun. 14, 2022 to Non Final Office Action mailed Mar. 22, 2022", 11 pgs.

Office Action mailed Dec. 2, 2021", 11 pgs.

"U.S. Appl. No. 16/794,106, Response filed Sep. 8, 2021 to Non Final Office Action mailed Jun. 8, 2021", 11 pgs.

(56)References Cited

OTHER PUBLICATIONS

- "U.S. Appl. No. 16/794,106, Response filed Nov. 9, 2022 to Final Office Action mailed Sep. 12, 2022", 12 pgs.
- "U.S. Appl. No. 16/794,114 Response filed Aug. 9, 2022 to Non-Final Office Action filed May 24, 2022", 16 pgs.
- "U.S. Appl. No. 16/794,114, Final Office Action mailed Feb. 11, 2022", 13 pgs.
- "U.S. Appl. No. 16/794,114, Final Office Action mailed Nov. 4, 2022", 13 pgs.
- "U.S. Appl. No. 16/794,114, Non Final Office Action mailed Feb. 16, 2023", 13 pgs.
- "U.S. Appl. No. 16/794,114, Non Final Office Action mailed May 24, 2022", 12 pgs.
- "U.S. Appl. No. 16/794,114, Non Final Office Action mailed Sep. 22, 2021", 10 pgs.
- "U.S. Appl. No. 16/794,114, Notice of Allowance mailed Jun. 7, 2023", 10 pgs.
- "U.S. Appl. No. 16/794,114, Response filed Apr. 29, 2022 to Final Office Action mailed Feb. 11, 2022", 10 pgs.
- "U.S. Appl. No. 16/794,114, Response filed May 2, 2023 to Non Final Office Action mailed Feb. 16, 2023", 10 pgs.
- "U.S. Appl. No. 16/794,114, Response filed Oct. 29, 2021 to Non Final Office Action mailed Sep. 22, 2021", 10 pgs.
- "U.S. Appl. No. 16/794,114, Response filed Nov. 22, 2022 to Final Office Action mailed Nov. 4, 2022", 10 pgs.
- "U.S. Appl. No. 17/301,658 Final Office Action Filed Sep. 9, 2022",
- "U.S. Appl. No. 17/301,658, Final Office Action mailed Aug. 2, 2022", 15 pgs.
- "U.S. Appl. No. 17/301,658, Non Final Office Action mailed May 11, 2022", 14 pgs.
- "U.S. Appl. No. 17/301,658, Notice of Allowance mailed Nov. 16, 2022", 15 pgs.
- "U.S. Appl. No. 17/301,658, Response filed Jul. 11, 2022 to Non Final Office Action mailed May 11, 2022", 11 pgs.
- "U.S. Appl. No. 17/304,810, Final Office Action mailed Nov. 23, 2022", 11 pgs.
- "U.S. Appl. No. 17/304,810, Non Final Office Action mailed May 8, 2023", 11 pgs.
- "U.S. Appl. No. 17/304,810, Non Final Office Action mailed Sep. 23, 2022", 9 pgs
- "U.S. Appl. No. 17/304,810, Notice of Allowance mailed Aug. 9, 2023", 9 pgs.
- "U.S. Appl. No. 17/304,810, Preliminary Amendment filed Sep. 9, 2021", 7 pages.
- "U.S. Appl. No. 17/304,810, Response filed Feb. 23, 2023 to Final
- Office Action mailed Nov. 23, 2022", 10 pgs. "U.S. Appl. No. 17/304,810, Response filed May 26, 2023 to Non
- Final Office Action mailed May 8, 2023", 9 pgs. "U.S. Appl. No. 17/304,810, Response filed Nov. 10, 2022 to Non Final Office Action mailed Sep. 23, 2022", 10 pgs.
- "U.S. Appl. No. 17/820,685, Advisory Action mailed May 16,
- 2023", 3 pgs. "U.S. Appl. No. 17/820,685, Final Office Action mailed Mar. 30,
- 2023", 13 pgs. "U.S. Appl. No. 17/820,685, Non Final Office Action mailed Aug.
- 3, 2023", 11 pgs. "U.S. Appl. No. 17/820,685, Non Final Office Action mailed Dec.
- 8, 2022", 19 pgs. "U.S. Appl. No. 17/820,685, Response filed Mar. 7, 2023 to Non
- Final Office Action mailed Dec. 8, 2022", 10 pgs. "U.S. Appl. No. 17/820,685, Response filed May 2, 2023 to Final
- Office Action mailed Mar. 30, 2023", 9 pgs. Su, et al., "Bayseian depth estimation from monocular natural
- images", Journal of Vision, (2017). "U.S. Appl. No. 16/794,106, Advisory Action mailed Sep. 19,
- 2023", 2 pgs. "U.S. Appl. No. 16/794,106, Non Final Office Action mailed Nov.
- 22, 2023", 14 pgs.

- "U.S. Appl. No. 16/794,106, Notice of Allowability mailed Apr. 24, 2024", 6 pgs
- "U.S. Appl. No. 16/794,106, Notice of Allowance mailed Apr. 2, 2024", 9 pgs
- "U.S. Appl. No. 16/794,106, Response filed Jan. 4, 2024 to Non Final Office Action mailed Nov. 22, 2023", 10 pgs.
- "U.S. Appl. No. 16/794,106, Response filed Sep. 5, 2023 to Final Office Action mailed Jul. 17, 2023", 12 pgs.
- "U.S. Appl. No. 16/794,114, Notice of Allowability mailed Sep. 19, 2023", 7 pgs.
- "U.S. Appl. No. 18/501,112, Non Final Office Action mailed Oct. 1, 2024", 8 pgs
- "U.S. Appl. No. 18/501,112, Non Final Office Action mailed Dec. 10, 2024", 11 pgs.
- "U.S. Appl. No. 18/501,112, Response filed Nov. 15, 2024 to Non Final Office Action mailed Oct. 1, 2024", 7 pgs.
- "Bendix Launches New Wingman Fusion safety system at Mid America Trucking Show", [Online]. Retrieved from the Internet: https://www.oemoffhighway.com/electronics/sensors/proximity- detection-safety-systems/press-release/12058015/bendix-launchesnew-wingman-fusion-safety-system-at-midamerica-truckingshow>, (Mar. 25, 2015), 19 pgs.
- "Bendix Quick Reference Guide", [Online]. Retrieved from the Internet: <URL: https://www.bendix.com/media/home/bw1114_us_ 010.pdf>, 165 pgs.
- "Bendix Wingman Brochure", [Online]. Retrieved from the Internet: <URL: https://www.waterstruck.com/assets/Bendix-Wingman-Fusion-brochure_Truck-1.pdf>, (2015), 10 pgs.
- "Compliance Product Brief", Motive Technologies Inc, (2022), 4
- "Dispatch Product Brief", Motive Technologies, Inc., (2022), 4 pgs. "DriveCam Introduction Pack", [Online]. Retrieved from the Internet: <URL: https://www.iae-services.com.au/downloads/DriveCam-Introduction-Pack.pdf>, (2012), 32 pgs.
- "Driver i Catches No Stop at Stop Sign", [Online]. Retrieved from the Internet: <URL: https://www.youtube.com/watch?v= I8sX3X02aJo>, (Oct. 3, 2017), 2 pgs.
- "Driver Safety Product Brief", Motive Technologies Inc, (2022), 4
- "Driver Speed Management for Fleets", [Online]. Retrieved from the Internet: <URL: https://web.archive.org/web/20181217230050/ https://www.lytx.com/en-us/fleet-services/program-enhancements/ speed-management-for-fleets>, (2018), 9 pgs.
- "ER SV2 Event Recorder", Powerful Technology, [Online]. Retrieved from the Internet: <URL: https://www.multivu.com/players/English/ 7277351-lytx-activevision-distracted-driving/document/52a97b52-6f94-4b11-b83b-8c7d9cef9026.pdf>, (2015), 2 pgs.
- "Fleet Complete Vision Telematic Solution", [Online]. Retrieved from the Internet: https://www.firstnet.com/content/dam/firstnet/ white-papers/firstnet-fleet-complete-utilities.pdf>, (Apr. 6, 2019), 2 pgs.
- "Introducing Driver i TM", [Online]. Retrieved from the Internet: <URL: https://web.archive.org/web/20160922034006/http://www.</pre> netradyne.com/solutions.html>, 4 pgs.
- "Lytx announces enhancements to DriveCam system", [Online]. Retrieved from the Internet: <URL: https://www.fleetequipmentmag. com/lytx-drivecam-system-truck-telematics/>, (Oct. 7, 2016), 12 pgs.
- "Lytx DriveCam Program Adds New Client Centric Enhancements", [Online]. Retrieved from the Internet: $\langle URL : https://www.$ masstransitmag.com/safety-security/press-release/12265105/lytxlytx-drivecamtm-program-adds-new-client-centric-enhancementsevolving-the-gold-standard-video-telematics-program>, (Oct. 4, 2016),
- "Lytx Video Services Workspace", [Online]. Retrieved from the Internet: <URL: https://www.multivu.com/players/English/7899252-1ytx-video-services-program/docs/KeytoLytx_1505780254680-149005849.pdf>, (2017), 1 pg.
- "Making Roads Safer for Everyone Everywhere", [Online]. Retrieved from the Internet: <URL: https://www.lightmetrics.co/about-us>, 8
- "NetraDyne Discuss their AI Platform 5G and their vision of the IoT", [Online]. Retrieved from the Internet: <URL: https://www.

(56) References Cited

OTHER PUBLICATIONS

gsma.com/solutions-and-impact/technologies/internet-of-things/news/netradyne-interview/>, (Oct. 3, 2018), 5 pgs.

"Netradynes Driveri Platform Delivers Results Beyond Legacy Safety Video Systems", [Online] Retrieved from the internet: https://netradyne.com/solutions/, (2018), 7 pgs.

"New Trucking Tech: Forward-Facing Cameras", [Online]. Retrieved from the Internet: <URL: https://supposeudrive.com/new-trucking-tech-forward-facing-cameras/>, (2024), 7 pgs.

"Presentation on DriveCam Analytics and Data", Findings Related to In-Cab Driver Distraction, [Online] Retrieved from the internet: https://www.fincsa.dot.gov/sites/fmcsa.dot.gov/files/docs/MCSAC_201006_DriveCam.pdf, (2010), 50 pgs.

"Product Brief Tracking and Telematics", Motive Technologies Inc, (2022), 4 pgs.

"Reliable telematics solution for utility fleets", Fleet Complete, [Online]. Retrieved from the Internet: <URL: https://www.firstnet.com/content/dam/firstnet/white-papers/firstnet-fleet-complete-utilities. pdf>, 2 pgs.

"Respondents Invalidity Contentions Exhibit C14 Invalidity of U.S. Pat. No. 11,611,621 Based on Fleet Complete Vision Telematic Solution", (Apr. 6, 2019), 42 pgs.

"Respondents Invalidity Contentions Supplemental Exhibit C11 Invalidity of U.S. Pat. No. 11,611,621 Based on Netradyne Driveri", (2018), 100 pgs.

"Respondents Invalidity Contentions Supplemental Exhibit CCC Invalidity of U.S. Pat. No. 11611621 Omnibus Chart Based on Combinations", 123 pgs.

"RideCam System", [Online] Retrieved from the internet: https://www.lightmetrics.co/about-us, (2017), 8 pgs.

"Safety Track 4B Driver Risk Management Program", [Online]. Retrieved from the Internet: <URL: https://airportscouncil.org/wp-content/uploads/2019/01/4b-DRIVER-RISK-MANAGEMENT-PROGRAM-Tamika-Puckett-Rob-Donahue.pdf>, (Jan. 18, 2019), 29 pgs.

"Sensor Fusion Building the Bigger Picture of Risk", [Online]. Retrieved from the Internet: <URL: https://transcanadahvedr.ca/wpcontent/uploads/2022/01/T8080_Deliverable4-DevSmryRpt-FINAL-20180804_English.pdf>, (Apr. 12, 2019), 62 pgs.

"Smart Event Thresholds Guide", Motive Technologies Inc, (2022), 11 pgs.

"Teen Safe Driver Program", [Online]. Retrieved from the Internet: <URL: https://online-sd02.drivecam.com/Downloads/TSD_WebsiteGuide.pdf>, 10 pgs.

Armstrong, Christopher, et al., "Transport Canada Commercial Bus HVEDR Feasibility Study (File No. T8080-160062) Deliverable No. 4", [Online]. Retrieved from the Internet: <URL: https://transcanadahvedr.ca/wp-content/uploads/2022/01/T8080_Deliverable4-DevSmryRpt-FINAL-20180804_English.pdf>, (May 11, 2018), 62 pps

Basir, "Respondents Invalidity Contentions Exhibit C16 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 7,386,376", (Jun. 10, 2008), 52 pgs.

Bendix Wingman Fusion System, "Respondents Invalidity Contentions Exhibit C13 Invalidity of U.S. Pat. No. 11,611,621 Based on Bendix Wingman Fusion System", (2015), 42 pgs.

Boykin, "Respondents Invalidity Contentions Supplemental Exhibit C06 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 10,789,840", (Sep. 29, 2020), 105 pgs.

Carruthers, "Respondents Invalidity Contentions Exhibit C21 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 11,436,844", (Sep. 6, 2022), 57 pgs.

Hoffner, "Respondents Invalidity Contentions Exhibit C15 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 10,715,976", (Jul. 14, 2020), 55 pgs.

Hoye, "Respondents Invalidity Contentions Exhibit C02 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 11,615,141", (Mar. 28, 2023), 76 pgs.

Huff, Aaron, "Lytx DriveCam", [Online]. Retrieved from the Internet: <URL: https://www.ccjdigital.com/business/article/14929274/lytx-drivecam>, (Apr. 3, 2014), 11 pgs.

Julian, "Respondents Invalidity Contentions Supplemental Exhibit C09 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 10,460,600", (Oct. 29, 2019), 49 pgs.

Lambert, "Respondents Invalidity Contentions Exhibit C04 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 9,761,063", (Sep. 12, 2017), 45 pgs.

Lytx Drivecam System, "Respondents Invalidity Contentions Exhibit C10 Invalidity of U.S. Pat. No. 11,611,621 Based on Lytx DriveCam, DriveCam Online Platform, Risk Detection Service, and DriveCam Safety Program", (2010), 98 pgs.

Molin, "Respondents Invalidity Contentions Supplemental Exhibit C20 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 9,922,567", (Mar. 20, 2018), 70 pgs.

Nemat Nasser, "Respondents Invalidity Contentions Exhibit C03 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 9,344,683", (May 17, 2016), 45 pgs.

Nielsen, "Respondents Invalidity Contentions Supplemental Exhibit C01 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 8,560,164", (Oct. 15, 2013), 164 pgs.

Palmer, "Respondents Invalidity Contentions Exhibit C08 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 11,069,257", (Jul. 20, 2021), 67 pgs.

Pilkington, "Respondents Invalidity Contentions Exhibit C19 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pub. No. 20160176401", (Jun. 23, 2016), 26 pgs.

Ridecam System, "Respondents Invalidity Contentions Exhibit C12 Invalidity of U.S. Pat. No. 11,611,621 Based on LightMetrics RideCam and RideView", (2017), 27 pgs.

Sathyanarayana, "Respondents Invalidity Contentions Exhibit C05 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 10,489,222", (Nov. 26, 2019), 52 pgs.

Schofield, "Respondents Invalidity Contentions Exhibit C17 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 7,526,103", (Apr. 28, 2009), 43 pgs.

Shenoy, "Respondents Invalidity Contentions Supplemental Exhibit C07 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 10,065,652", (Sep. 4, 2018), 56 pgs.

Song, Tianyi, et al., "Enhancing GPS with Lane Level Navigation to Facilitate Highway Driving", IEEE Transactions On Vehicular Technology vol. 66 No 6, (Jan. 30, 2017), 13 pgs.

Straight, Brian, "Netradyne using AI to provide intelligent insight into distracted driving", Online]. Retrieved from the Internet: <URL: https://www.freightwaves.com/news/2017/11/7/netradyne-using-ai-to-provide-intelligent-insight-into-distracted-driving>, [, (Nov. 8, 2017), 4 pgs.

Straight, Brian, "Over 20 Years Later Lytx Continues To Evolve Alongside the Industry It Serves", [Online]. Retrieved from the Internet: <URL: https://www.freightwaves.com/news/technology/the-evolution-of-lytx>, (Apr. 16, 2019), 4 pgs.

Sun, "Respondents Invalidity Contentions Exhibit C18 Invalidity of U.S. Pat. No. 11,611,621 Based on U.S. Pat. No. 8,669,857", (Mar. 11, 2014), 23 pgs.

* cited by examiner

FIG. 1

FIG. 2

STREAMING AT LEAST A PORTION OF THE PLURALITY OF DATA STREAMS. TO A SERVER SYSTEM BASED ON THE DATA-FLOW DEFINED BY THE **OBJECT MODEL** <u>308</u>

500 >

FIG. 5

600 >

FIG. 6

FIG. 10

FIG. 11

1200 -

IDENTIFYING A USER ACCOUNT BASED ON THE SENSOR DATA 1202

INDEXING THE PORTION OF THE SENSOR DATA ASSOCIATED WITH THE EVENT AMONG A PLURALITY OF DATA OBJECT AT A MEMORY LOCATION ASSOCIATED WITH THE USER ACCOUNT

1204

ACCESSING A SUBSET OF THE PLURALITY OF DATA OBJECTS IN RESPONSE TO THE DETERMINING THE ONE OR MORE EVENT ATTRIBUTES OF THE EVENT TRANSGRESS THE THRESHOLD VALUE 1206

CAUSING DISPLAY OF A NOTIFICATION THAT INCLUDES A PRESENTATION OF THE SUBSET OF THE DATA OBJECTS, WHEREIN THE SUBSET OF THE DATA OBJECTS INCLUDES THE PORTION OF THE SENSOR DATA 1208

1400 >

IDENTIFYING A CLIENT DEVICE BASED ON A DEVICE IDENTIFIER ASSOCIATED WITH THE SENSOR DEVICE <u>1402</u>

CAUSING DISPLAY OF THE NOTIFICATION AT THE CLIENT DEVICE <u>1404</u>

1500 -

1600 >

BASELINE EVENT DETECTION SYSTEM

CLAIM OF PRIORITY

This application is a divisional application of and claims priority benefit from U.S. patent application Ser. No. 16/794, 114, filed on Feb. 18, 2020 and entitled "BASELINE EVENT DETECTION SYSTEM," which is a continuation-in-part application of and claims priority benefit from U.S. patent application Ser. No. 16/395,927, filed on Apr. 26, 2019 and entitled "OBJECT-MODEL BASED EVENT DETECTION SYSTEM," and which are hereby incorporated by reference herein in their entireties.

TECHNICAL FIELD

Embodiments of the present disclosure relate generally the field of communication technology and, more particularly, but not by way of limitation, to an architecture for systems and methods for detecting events based on sensor data collected at one or more sensor devices, and presenting notifications based on the detected events.

BACKGROUND

A dashcam, or event data recorder (EDR), is an onboard camera that continuously records the view through a vehicle's front windscreen and sometimes the interior of the vehicle. Some EDRs also record acceleration, deceleration, speed, steering angle, global positioning system (GPS) data, and throttle position information.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.

- FIG. 1 is a block diagram showing an example system for exchanging data (e.g., sensor data and associated content) over a network in accordance with some embodiments, wherein the system includes an event detection system.
- FIG. 2 is a block diagram illustrating various modules of 45 an event detection system, according to certain example embodiments.
- FIG. 3 is a flowchart depicting a method of detecting an event based on sensor data from a plurality of sensor devices and an object model, according to certain example embodi-50 ments.
- FIG. 4 is a flowchart depicting a method of accessing sensor data from a plurality of sensor devices responsive to detecting an event, according to certain example embodiments
- FIG. 5 is a flowchart depicting a method of detecting an event, according to certain example embodiments.
- FIG. **6** is a flowchart depicting a method of detecting an event, according to certain example embodiments.
- FIG. 7 is an interaction diagram depicting a flow of data, 60 according to certain example embodiments.
- FIG. **8** is an interface diagram depicting a graphical user interface to present sensor data from one or more sensor devices, according to certain example embodiments.
- FIG. 9 is an interface diagram depicting sensor data from 65 one or more sensor devices, according to certain example embodiments.

2

- FIG. 10 is an interface diagram depicting sensor data from one or more sensor devices, according to certain example embodiments.
- FIG. 11 is a flowchart depicting a method of causing display of a notification responsive to an event, according to certain example embodiments.
- FIG. 12 is a flowchart depicting a method of causing display of a notification responsive to an event, according to certain example embodiments.
- FIG. 13 is a flowchart depicting a method of causing display of a notification responsive to an event, according to certain example embodiments.
- FIG. 14 is a flowchart depicting a method of causing display of a notification responsive to an event, according to certain example embodiments.
 - FIG. 15 is a flowchart depicting a method of detecting an event based on baseline data, according to certain example embodiments.
- larly, but not by way of limitation, to an architecture for systems and methods for detecting events based on sensor
 - FIG. 17 is a block diagram illustrating components of a machine, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a
 25 machine-readable storage medium) and perform any one or more of the methodologies discussed herein.

DETAILED DESCRIPTION

As discussed above, EDRs may include devices with an integrated onboard camera that continuously record data that include video, as well as acceleration, deceleration, speed, steering angle, global positioning system (GPS) data, and throttle position information. EDRs therefore generate data which can be used to review activities performed by a fleet of vehicles and can be used to formulate bases for improvements in safety in a variety of areas.

While these systems are effective in recording data related to events, the existing systems lack functionality to efficiently detect and monitor events, and precursors to events, in real-time, let alone to provide interfaces to enable users to manage and view recorded data. A system which detects events and provides real-time data monitoring and alerting is therefore described below.

Example embodiments described herein relate to an event detection system that comprises a plurality of sensor devices to perform operations that include: generating sensor data at the plurality of sensor devices; accessing the sensor data generated by the plurality of sensor devices; detecting an event, or precursor to an event, based on the sensor data, wherein the detected event corresponds to an event category; accessing an object model associated with the event type in response to detecting the event, wherein the object model defines a procedure to be applied by the event detection system to the sensor data; and streaming at least a portion of a plurality of data streams generated by the plurality of sensor devices to a server system based on the procedure, wherein the server system may perform further analysis or visualization based on the portion of the plurality of data streams.

The plurality of sensors may include a front facing camera, and a cabin facing camera (e.g., a dashcam), as well as an accelerometer, a gyroscope, one or more microphones, a temperature sensor, GPS sensors, as well as an interface to couple the event detection system with a vehicle electronic control unit (ECU), and all configured to generate a plurality of data streams that may be used to detect events or

precursors to events. The plurality of sensors may in some embodiments be integrated into a single package, while in further embodiments, one or more of the sensors may be mounted at remote positions from one another based on use and need. The plurality of sensors may further be coupled 5 with a network gateway (hereinafter "gateway"). The gateway facilitates sharing sensor data generated by the plurality of sensor devices from one discrete network to another, and in some embodiments may perform additional processing for the event detection system.

As discussed herein, an "event" may comprise a combination of conditions detected by the sensor devices. An administrator of the event detection system may provide event definitions, wherein each event definition includes one or more of: an event type or identifier (e.g., roll-over, crash, 15 speeding, rolling stop, distracted driver); a set of thresholds; and a set of conditions represented by a set of sensor data from one or more sensor devices from among the plurality of sensor devices of the event detection system. For example, a "rolling stop" may be defined by a set of 20 conditions that include: the presence of a stop sign in one or more frames of a video stream; inertial data indicating that a stop did not occur; and GPS data indicating that a vehicle did not stop at a location associated with the stop sign. Similarly, a "precursor" to the event may be defined by a 25 portion of an event definition. For example, in the example of the "rolling stop" described above, a precursor to the event may be defined as the detection of the stop sign in one or more frames of the video stream.

In some embodiments, each event type or identifier of an 30 event definition may be associated with corresponding object models. An object model of a particular event or precursor to an event includes the event definitions of the event and precursors to the events and defines procedures or subroutines to be performed by the event detection system in 35 response to detecting an event or precursor to an event. For example, the procedures of an object model may define a data-flow of sensor data through one or more processing components of the event detection system, processing operations to be performed upon the sensor data at the one or more 40 processing components of the event detection system, visualization and display instructions for the sensor data, as well as a bit rate (hereinafter "data rate") to generate and access the sensor data responsive to detecting an event or precursor to an event.

The detection of events and precursors to events may be performed by one or more processors associated with the plurality of sensor devices, one or more processors associated with the gateway, or by one or more processors associated with the server system, or any combination thereof. 50

According to certain example embodiments, the detection of events based on the sensor data may include: detecting events based on a comparison of sensor data to one or more thresholds defined by the event definitions; detecting events by detecting features within the sensor; and detecting events based on an output of a neural network (i.e., a time delayed neural network) trained to recognize features corresponding to certain events and precursors to events.

Accordingly, in some example embodiments, detection of an event by the plurality of sensors may be based upon video 60 data generated by one or more cameras of the event detection system. For example, a neural network or machine learned model may be trained to recognize features or signals corresponding to certain types of objects that correspond with an event definition (e.g., signage, a stop sign, 65 yield, children crossing, rail-road, etc.). In some embodiments, the signals detected may also include gestures per-

4

formed by an occupant of a vehicle (e.g., a peace sign). Responsive to recognizing the features that correspond to the object associated with the event definition, the event detection system may access an object model associated with the corresponding event definition. An object model defines procedures and subroutines to be performed by the event detection system.

Similarly, detection of an event by the plurality of sensors may be based upon a stereoscopic inference model generated by the event detection system based on sensor data from one or more of the sensor devices. For example, the plurality of sensors may include a dashcam, and the sensor data may include video data that comprises monocular image data. The event detection system may generate a depth model based on the monocular image data through a stereoscopic inference model trained to construct a 3-dimensional (3D) depth model based on monocular image data. The event detection system may compare the depth model against one or more threshold values to detect events.

In further embodiments, the method of detecting an event may vary based upon the type of sensor data accessed and analyzed. In some embodiments the sensor data may include inertial data, audio data, or location data. Detecting of an event may therefore include detecting one or more values of the sensor data transgressing threshold values corresponding to event types. For example, an event may be triggered based on an inertial value transgressing a threshold value, or in further embodiments, an event may be triggered based on the location data generated by a sensor device transgressing a boundary or reaching a destination.

The object models associated with events may further define presentation and display instructions for sensor data of the events. The presentation and display instructions may include an identification of one or more client devices to present a notification responsive to the detection of an event, as well as display instructions to visualize and display sensor data corresponding to events. For example, the notification may include a display of an identifier, such as a user identifier, or an identifier associated with a sensor device, as well as one or more event attributes of the detected event.

According to certain example embodiments, the event detection system performs operations that include presenting notifications and alerts responsive to detecting an event, or a pre-cursor to an event. For example, the event detection system may perform operations that include: detecting an event based on at least a portion of the sensor data, the event comprising a plurality of event attributes; determining one or more event attributes from the plurality of event attributes of the event transgress a threshold value; and causing display of a notification that includes a presentation of at least the portion of the sensor data in response to the determining that the one or more event attributes from among the plurality of event attributes of the event transgress the threshold value.

In some embodiments, as discussed above, the sensor device may include a dashcam that generates a data stream comprising image data (i.e., a real-time video), as well an accelerometer, a GPS system, and a gyroscope that generate data indicative of movement. The event detection system may detect events based on portions of the image data of the data stream. For example, a "near-collision" may be detected based on image data from the sensor device indicating that a vehicle associated with the sensor device came within a threshold distance of another vehicle, or object, which may be depicted in the data stream generated by the sensor device. Similarly, an event may also include a "lane-

departure" in which a vehicle associated with the sensor device crosses over road markings indicative of a lane.

Responsive to detecting an event based on a portion of the sensor data from the data stream generated by the sensor device, the event detection system determines attributes of 5 the event (e.g., a time-to-collision), identifies a user account associated with the sensor device, and causes display of a notification that includes an identifier associated with the user account and the event at a client device. For example, the event detections system may identify the client device to 10 present the notification based on attributes of the event, as well as an identifier associated with the sensor device.

For example, in some embodiments, the determination of a recipient of the notification, and a type of notification to be displayed may be based on a comparison of one or more 15 event attributes of the event to one or more threshold values. As an illustrative example, notifications for some events may be presented at a first client device as a push-notification, whereas notifications for other events may be presented at a second client device, or just recorded at a memory 20 location of a repository.

In some embodiments, the notification may include a display of a portion of the sensor data from the data stream. For example, the sensor data may include a video comprising a sequence of images, wherein the event may be detected 25 by the event detection system based on a portion of the video (i.e., 30 seconds). Responsive to detection of the event, the event detection system may generate a presentation of the portion of the sensor data, and cause display of a notification that includes the presentation of the portion of the sensor 30 device.

In some embodiments, the event detection system may detect events based on baseline data generated based on a portion of the sensor data from the data stream. Responsive to detecting a start of a trip, the event detection system may 35 access sensor data from one or more sensor devices and generate baseline data based on a portion of the sensor data from the one or more sensor devices. For example, the baseline data may comprise sensor data from a predefined period of time from the start of the trip (e.g., 5 minutes), or 40 based on sensor data collected at a predetermined portion of the trip (e.g., first 50 miles). Accordingly, the event detection system may perform a comparison of sensor data generated by the one or more sensor devices against the baseline data in order to detect events. In some embodiments, the event 45 detection system may generate a machine learned model based on the baseline data.

FIG. 1 is a block diagram showing an example system 100 for detecting events based on sensor data. The system 100 includes one or more client device(s) 122 that host a number 50 of applications including a client application 114.

Accordingly, each client application 114 is able to communicate and exchange data with another client application 114 and with the server application 114 executed at the server system 108 via the network 106. The data exchanged 55 between client applications 114, and between a client application 114 and the server system 108, includes functions (e.g., commands to invoke functions) as well as payload data (e.g., text, audio, video or other multimedia data).

The server system 108 provides server-side functionality 60 via the network 106 to a particular client application 114, and in some embodiments to the sensor device(s) 102 and the system gateway 104. While certain functions of the system 100 are described herein as being performed by either a client application 114, the sensor device(s) 102, the 65 system gateway 104, or by the server system 108, it will be appreciated that the location of certain functionality either

6

within the client application 114 or the server system 108 is a design choice. For example, it may be technically preferable to initially deploy certain technology and functionality within the server system 108, but to later migrate this technology and functionality to the client application 114, or one or more processors of the sensor device(s) 102, or system gateway 104, where there may be sufficient processing capacity.

The server system 108 supports various services and operations that are provided to the client application 114. Such operations include transmitting data to, receiving data from, and processing data generated by the client application 114, the sensor device(s) 102, and the system gateway 104. In some embodiments, this data includes, message content, device information, geolocation information, persistence conditions, social network information, sensor data, and live event information, as examples. In other embodiments, other data is used. Data exchanges within the system 100 are invoked and controlled through functions available via graphical user interfaces (GUIs) of the client application 114.

Turning now specifically to the server system 108, an Application Program Interface (API) server 110 is coupled to, and provides a programmatic interface to, an application server 112. The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 that stores data associated with data generated by the sensor devices 102 and processed by the application server 112.

Dealing specifically with the API server 110, this server receives and transmits data (e.g., sensor data, commands, and payloads) between the client device 122 and the application server 112. Specifically, the API server 110 provides a set of interfaces (e.g., routines and protocols) that can be called or queried by the client application 114 in order to invoke functionality of the application server 112. The API server 110 exposes various functions supported by the application server 112, including account registration, login functionality, the transmission of data, via the application server 112, from a particular client application 114 to another client application 114, the sending of sensor data (e.g., images, video, geolocation data, inertial data, temperature data, etc.) from a client application 114 to the server application 114, and for possible access by another client application 114, the setting of a collection of data, the retrieval of such collections, the retrieval of data, and the location of devices within a region.

The application server 112 hosts a number of applications and subsystems, including a server application 114, and an event detection system 124. The event detection system 124 is configured to access sensor data generated by the one or more sensor devices 102, detect events or precursors to events based on the sensor data, and access an object model that corresponds with the events or precursors to events, wherein the object model defines a data-flow, according to some example embodiments. Further details of the event detection system 124 can be found in FIG. 2 below.

The server application 114 implements a number of data processing technologies and functions, particularly related to the aggregation and other processing of data (e.g., sensor data generated by the sensor devices 102). As will be described in further detail, the sensor data generated by the sensor devices 102 may be aggregated into collections associated with a particular user account. Other processor and memory intensive processing of data may also be performed server-side by the server application 114, in view of the hardware requirements for such processing.

The application server 112 is communicatively coupled to a database server 118, which facilitates access to a database 120 in which is stored data associated with sensor data generated by the sensor devices 102 and processed by the server application 114.

FIG. 2 is a block diagram illustrating components of the event detection system 124 that configure the event detection system 124 to perform operations to access sensor data generated by a plurality of sensor devices, detect events or precursors to events based on the sensor data, and to access an object model that corresponds to the event or precursor to the event detected based on the sensor data, according to some example embodiments.

The event detection system 124 is shown as including a sensor data module 202, an object model module 204, a communication module 206, and a presentation module 208, all configured to communicate with each other (e.g., via a bus, shared memory, or a switch). Any one or more of these modules may be implemented using one or more processors 20 210 (e.g., by configuring such one or more processors to perform functions described for that module) and hence may include one or more of the processors 210.

Any one or more of the modules described may be implemented using hardware alone (e.g., one or more of the 25 processors 210 of a machine) or a combination of hardware and software. For example, any module described of the event detection system 124 may physically include an arrangement of one or more of the processors 210 (e.g., a subset of or among the one or more processors of the 30 machine) configured to perform the operations described herein for that module. As another example, any module of the event detection system 124 may include software, hardware, or both, that configure an arrangement of one or more processors 210 (e.g., among the one or more processors of 35 the machine) to perform the operations described herein for that module. Accordingly, different modules of the event detection system 124 may include and configure different arrangements of such processors 210 or a single arrangement of such processors 210 at different points in time. 40 Moreover, any two or more modules of the event detection system 124 may be combined into a single module, and the functions described herein for a single module may be subdivided among multiple modules. Furthermore, according to various example embodiments, modules described 45 herein as being implemented within a single machine, database, or device may be distributed across multiple machines, databases, or devices.

As discussed above, according to certain example embodiments, the event detection system 124 may maintain 50 one or more object models that correspond with a plurality of event definitions, where an object model includes the conditions associated with an event definition and comprises a set of procedures and subroutines to be performed by the event detection system 124 responsive to the detection of an 55 event or precursor to an event. In some embodiments, a portion of the object models and event definition may be stored within the databases 120, at the server system 108, while in further embodiments, a portion of the object models and event definitions may be stored at a local memory of the 60 sensor devices 102, the gateway 104, as well as the client device 122.

FIG. 3 is a flowchart depicting a method 300 of detecting an event based on sensor data from a plurality of sensor devices 102, and an object model, according to certain 65 example embodiments. Operations of the method 300 may be performed by the modules described above with respect

8

to FIG. 2. As shown in FIG. 3, the method 300 includes one or more operations 302, 304, 306, and 308.

At operation 302, sensor data generated by at least one sensor device is accessed at a first network node. For example, the sensor data module 202 accesses sensor data generated by at least one sensor device from among the sensor device(s) 102 at a baseline data rate. The sensor device may include a camera, such as a dashcam, and the sensor data may comprise a video stream.

The sensor data module 202 detects an event or precursor to an event based on the sensor data, wherein the event or precursor to the event corresponds to an event definition. The event or precursor to the event detected by the sensor data module 202 can for example include a feature of a video frame from video data collected from a dashcam (e.g., a sensor device 102). The feature may correspond to an object depicted within the video.

According to certain embodiments, the sensor data module 202 may include a machine learned model or neural network trained to recognize features corresponding to certain types of objects (e.g., signage, a stop sign, yield, children crossing, rail-road, etc.), and to receive sensor data, and output a result that includes an identification of an object. As an illustrative example, the sensor device 102 may include a dashcam, and the sensor data may comprise video data generated by the dashcam and collected by the sensor data module 202 at a first data rate, and the neural network may be trained with labeled feature data to identify one or more events based on the labeled feature data.

At operation 306, in response to the sensor data module 202 detecting the event or precursor to the event based on the sensor data, the object model module 204 accesses an object model that corresponds with the event or precursor to the event detected based on the sensor data. The object model provides event definitions associated with the precursor to the event detected by the sensor data module 202 and provides a procedure to be performed by the event detection system 124 that includes a data flow of sensor data from the sensor devices 102, and a set of conditions or criteria associated with the detected event or precursor to the event, such as threshold values.

At operation 308, based on the procedure defined by the object model, a second network node accesses sensor data from the portion of the sensor devices. For example, the communication module 206 causes the gateway 104 to access sensor data from a portion of the sensor devices 102 based on the procedure defined by the object model. In some embodiments, at operation 308, the communication module 206 may additionally cause the gateway 104 to stream the sensor data from the portion of the sensor devices to the server system 108 for further analysis.

In certain example embodiments, the object model associated with a precursor to an event may identify one or more sensor devices to activate or access responsive to the precursor to the event. For example, in some embodiments, the event detection system 124 may be configured to access and record sensor data from a "primary" sensor device (e.g., a dashcam), and in response to detecting a precursor to an event, accessing one or more secondary sensor devices to retrieve sensor data.

FIG. 4 is a flowchart depicting a method 400 of accessing sensor data from a plurality of sensor devices 102 responsive to detecting an event, according to certain example embodiments. Operations of the method 400 may be performed by the modules described above with respect to FIG. 2. As shown in FIG. 4, the method 400 includes one or more operations 402, 404, 406, and 408. In some embodiments,

the operations of the method 400 may be performed as a precursor to, or subroutine of, one or more of the operations of the method 300 depicted in FIG. 3, such as operation 302.

According to certain example embodiments, the sensor devices 102 may include one or more cameras, such as 5 dashcams, wherein the dashcams may be directed inside a vehicle, to capture images and videos depicted occupants of the vehicle, as well as directed in front of and in some cases behind the vehicle.

At operation 402, the sensor data module 202 detects a 10 feature within a frame of a video stream from one or more of the sensor devices 102. In some embodiments, the sensor data module 202 may include a neural network or machine learned model trained to recognize certain features that correspond to events and precursors to events. For example, 15 the features may depict objects such as signs (e.g., a stop sign) as well as facial features and expressions of a driver of a vehicle.

At operation **404**, in response to detecting a feature within the frame of the video stream from one or more of the sensor 20 devices **102**, the sensor data module **202** determines that the feature corresponds to a precursor to an event. For example, the feature may include a gaze direction of a driver of the vehicle, or a sign depicted within a frame of the video stream

In some embodiments, the precursor to the event may correspond with an object model that defines conditions and thresholds associated with an event. For example, an event may include running a stop-sign or red light, while the precursor to the event is the detection of a sign or stop light within an image frame of the video stream generated by one or more of the sensor devices 102. Responsive to the sensor data module 202 detecting the precursor to the event, the object model module 204 accesses an object model that includes an event definition comprising a set of conditions and thresholds, and provides procedures and subroutines to be performed by one or more modules of the event detection system 124 in response to detecting the precursor to the

At operation 406, the sensor data module 202 accesses a 40 portion of the sensor data generated by the sensor devices 102 based on the object model associated with the precursor to the event. For example, the portion of the sensor data identified by the object model based on the definition of the event associated with the precursor may include inertial 45 data, GPS data, as well as vehicle ECU data. At operation 408, the sensor data module 202 detects the event based on the portion of the sensor data generated by the sensor devices 102. In some embodiments, the operations of the method 400 may be performed by one or more processors of 50 the sensor devices 102 themselves, or by one or more processors associated with the gateway 104, or any combination thereof.

In certain example embodiments, the event detection system 124 may be configured to access and stream sensor 55 data from the sensor devices 102 at a "baseline" data rate. For example, under normal operating conditions, in the absence of one or more event conditions, the event detection system 124 may be configured to cause the sensor devices 102 to generate sensor data at a reduced resolution, and to 60 cause the gateway 104 to stream segments of sensor data to the server system 108 at predefined intervals based on the baseline data rate.

Accordingly, in some embodiments, the procedures defined by the object models may include instructions to 65 cause one or more processors associated with the sensor devices 102, the gateway 104, and the client device 122 to

10

increase the data rate and resolution in which sensor data is generated and accessed by the event detection system 124, responsive to detecting an event or precursor to an event.

FIG. 5 is a flowchart depicting a method 500 of detecting an event based on sensor data generated by a plurality of sensor devices 102, according to certain example embodiments. Operations of the method 500 may be performed by the modules described above with respect to FIG. 2. As shown in FIG. 5, the method 500 includes one or more operations 502, 504, and 506. The method 500 may be performed as a precursor to, or subroutine of, one or more of the operations of the methods 300 and 400, as depicted in FIGS. 3 and 4.

At operation 502, the sensor data module 202 accesses sensor data from the plurality of sensor devices 102 at a first data rate. For example, the event detection system 124 may be configured to access and stream data from the plurality of sensor devices 102 at a baseline data rate.

In some embodiments, the event detection system 124 may be configured to cause the gateway 104 to stream snapshots of sensor data from the sensor devices 102 at a predefined interval or data rate. For example, at the baseline rate, the event detection system 124 may only stream a portion of the sensor data from the sensor devices 102 through the gateway 104 to the server system 108.

At operation 504, the sensor data module 202 detects an event, or a precursor to an event, based on the sensor data, as discussed in the methods 300 and 400 of FIGS. 3 and 4. In response to detecting the event or precursor to the event, at operation 506, the event detection system 124 may cause the sensor data module 202 to access the sensor data from the sensor devices 102 at a second data rate. In some embodiments, the second data rate may be based on an event type of the event or precursor to the event detected by the sensor data module 202.

In some embodiments, operation 506 may also include causing the sensor data module 202 to stream a sensor data from a specific set of sensor devices from among the sensor devices 102. For example, in response to detecting an event based on sensor data from a first sensor device, the sensor data module 202 may access and stream sensor data from the first sensor device, and a second and third sensor device from among a plurality of sensor devices.

FIG. 6 is a flowchart depicting a method 600 of detecting an event based on sensor data generated by a plurality of sensor devices 102, according to certain example embodiments. Operations of the method 600 may be performed by the modules described above with respect to FIG. 2. As shown in FIG. 6, the method 600 includes one or more operations 602, 604, and 606. The method 600 may be performed as a precursor to, or subroutine of, one or more of the operations of the methods 300, 400, and 500, as depicted in FIGS. 3, 4, and 5.

At operation 602, upon accessing the sensor data from the sensor devices 102, as in operation 302 of the method 300, and operation 502 of the method 500, the sensor data module 202 extracts a set of features from the sensor data. For example, the sensor data may include video data generated by a dashcam, wherein the dashcam is configured to capture images of occupants of a vehicle. The set of features extracted from the sensor data may therefore include facial landmarks and image features depicting the occupants of the vehicle.

In response to extracting the set of features from the sensor data generated by the sensor devices 102, at operation 604 the sensor data module 202 applies the set of features to a machine learning model trained to identify events and

precursors to events based on features. For example, the machine learning model may be trained to identify a distracted driver based on gaze tracking features. At operation 606, the sensor data module 202 identifies an event or precursor to an event based on the machine learned model. 5

FIG. 7 is an interaction diagram 700 depicting a flow of sensor data generated by the sensor devices 102, according to certain example embodiments. Operations of the interaction diagram 700 may be performed by the modules described above with respect to FIG. 2.

At operation 702, the sensor devices 102 detects a precursor to an event based on a first portion of sensor data generated by the sensor devices 102. For example, the first portion of the sensor data may include video data generated by a dashcam, and the precursor to the event may include a 15 feature within the sensor data. For example, sensor devices 102 may include a neural network trained to identify objects correlated with precursors to events.

At operation **704**, based on detecting the precursor to the event, the sensor devices **102** determines an event type that 20 corresponds with the precursor to the event. The event type identifies an object model that defines a data flow of the sensor data.

At operation 706, the sensor devices 102 streams a second portion of the sensor data to the system gateway 104, where 25 the second portion of the sensor data is based on the object model associated with the event type. At operation 708, the system gateway 104 detects an event based on the precursor to the event detected by the sensor device 102 and the second portion of the sensor data streamed by the sensor 30 devices 102 to the system gateway 104.

At operation 710, based on the system gateway 104 detecting the event based on the second portion of the sensor data, the sensor devices 102 multiplex the sensor data from the plurality of sensors 102 and stream the multiplexed 35 sensor data to the server system 108. At operation 712, the system gateway 104 routes the sensor data from the plurality of sensors 102 to the server system 108. At operation 714, the server system 108 receives the multiplexed sensor data.

In some embodiments, a portion of the plurality of sensors 40 102 may be integrated into the system gateway 104. For example, the system gateway 104 may include one or more sensor devices configured to generate sensor data. In further embodiments, the system gateway 104 may access the plurality of sensors 102 responsive to detecting an event 45 based on a portion (e.g., the second portion) of the sensor data, as depicted in operation 708.

At operation 716, based on receiving the multiplexed sensor data, the server system 108 performs further analysis upon the sensor data, and in some embodiments may perform operations that include presenting a notification at a client device and causing display of a graphical user interface that comprises a presentation of visualizations based on the sensor data generated by the sensor devices 102.

For example, in some embodiments, the object model 55 corresponding to the event may identify one or more client devices to be notified when an event is triggered and may also define notification features of the notifications to be presented. Responsive to detecting an event, the event detection system 124 presents the notification at the one or 60 more client devices identified within the corresponding object model, wherein the notification includes a set of event attributes as defined based on the notification features from the object model.

FIG. 8 is an interface diagram depicting a GUI 800 to 65 present sensor data from one or more sensor devices 102, according to certain example embodiments. As seen in the

12

GUI 800, the presentation of the sensor data may include a video stream 805, depicting video data generated by a dashcam, a video stream 810, depicting video data generated by a driver facing dashcam, as well as a graph element 815, depicting sensor data captured by a vehicle ECU, and GPS data plotted over a period of time. In certain embodiments, the sensor data may also include an audio stream that comprises audio data collected by one or more sensor devices (i.e., microphones) in communication with the event detection system 124. For example, the audio data may be collected from a mobile device or device with similar audio recording capability, wherein the device may be coupled with one or more of the client device 122, the system gateway 104, the sensor devices 102, or the event detection system 124. Coupling may include wired as well as wireless connections. Accordingly, in such embodiments, a presentation of the audio data may be displayed at a position within the GUI 800, wherein the presentation of the audio data may include a visualization of the audio data, such as a display of a waveform, or an audio spectrum indicator.

In some embodiments, the period of time depicted by the graph element **815** may be based on temporal attributes of the video data depicted in the video streams **805** and **810**. For example, the video stream **805** may include a display of a scrub bar, wherein a position of an indicator **820** on the scrub bar indicates a point in time of the video stream.

In some embodiments, the sensor data depicted in the graph element **815** may be scaled based on a length of the video data depicted in the video stream **805**. For example, the position of the indicator **820** corresponds with a video frame of the video stream **805**. As seen in the GUI **800**, the position of the indicator **820** aligns vertically with corresponding sensor data in the graph element **815**.

Similarly, the video stream **810** may be presented based on the video stream **805**. For example, a user may provide an input moving the indicator **820** to a position that corresponds with a timestamped video frame of the video stream **805** along the scrub bar of the video stream **805**. Based on receiving the input, the event detection system **124** updates the video stream **810** in the GUI **800** based on the position of the indicator **820** on the sub bar.

In some embodiments, the GUI 800 may include a display of an event log that includes a display of events detected by the event detection system 124, such as the event indicator 825. For example, based on detecting an event, as discussed in the methods 300 and 400 of FIGS. 3 and 4, the event detection system 124 may update the event log to include the event indicator 825, wherein properties of the event indicator 825 are based on attributes of the event.

In some embodiments, a user of the event detection system 124 may provide an input that selects an event indicator, such as the event indicator 825, and the event detection system 124 may update the GUI 800 to present the corresponding sensor data from the event. For example, updating the GUI 800 may include presenting a segment of the video streams 805 and 810 based on temporal attributes of the event associated with the event indicator 825.

In further embodiments, the GUI 800 may also include a map image 830. The map image 830 comprises indications of locations corresponding to the events from the event log. For example, the event indicator 825 comprises an identifier ("A") that is also presented at a location that corresponds with the event indicator 825 on the map image 830. A user may therefore determine where the event associated with the event indicator occurred based on the position of the identifier within the map image 830.

FIG. 9 is an interface diagram depicting sensor data 900 from one or more sensor devices 102, according to certain example embodiments. As seen in FIG. 9, the sensor data 900 may include the video stream 810 depicted in FIG. 8. The video stream 810 includes video data from a dashcam.

In some embodiments, a dashcam may be positioned to record video of a driver of a vehicle. Based on receiving the video data from the dashcam, the event detection system 124 may perform facial recognition to the video data to identify one or more occupants of the vehicle. Based on identifying the one or more occupants of the vehicle based on the video data, the event detection system 124 may present an identification 910 that includes a display of an identifier of an occupant of the vehicle.

FIG. 10 is an interface diagram depicting sensor data 1000 from one or more sensor devices 102, according to certain example embodiments. As seen in FIG. 9, the sensor data 1000 may include the video stream 810 depicted in FIG. 8. The video stream 810 includes video data from a dashcam. 20

In some embodiments, a dashcam may be positioned to record video of a driver of a vehicle. Based on receiving the video data from the dashcam, the event detection system 124 may perform gaze detection on the video data to determine a point of attention of an occupant of the vehicle. Based on 25 performing the gaze detection on the video data, the event detection system 124 may cause display of the gaze indicator 1005 within the video stream 810.

FIG. 11 is a flowchart depicting a method 1100 of causing display of a notification responsive to an event, according to 30 certain example embodiments. Operations of the method 1100 may be performed by the modules described above with respect to FIG. 2.

At operation 1102, the sensor data module 202 accesses sensor data generated by one or more sensor devices. The 35 sensor device may include a GPS system, an accelerometer, as well as a dashcam, such as an inward/cabin facing dashcam to capture images of a driver of a vehicle, as well as a forward facing dashcam, to capture images in front of the vehicle.

At operation 1104, the sensor data module 202 detects an event based on a portion of the sensor data generated by the one or more sensor devices. The event may comprise a plurality of event attributes, such as a duration of the event, and a distance to collision, or a time-to-collision. In some 45 embodiments, the event attributes may also include location data, temporal data, as well as an identifier associated with a driver of the vehicle, an identifier associated with the one or more sensor devices, as well as an identifier associated with the vehicle.

At operation 1106, the sensor data module 202 determines that one or more of the event attributes from among the plurality of event attributes of the event transgresses a threshold value. For example, the threshold may be a distance value, or a temporal value. Responsive to the sensor 55 data module 202 determining that the one or more event attributes of the event transgresses the threshold value, at operation 1108, the presentation module 208 generates and causes display of a notification that includes a presentation of a portion of the sensor data. For example, the portion of 60 the sensor data may include a video clip depicting the event. In some embodiments, the presentation of the sensor data within the notification may include a display of an identifier associated with the sensor device, such as a device identifier, a vehicle identifier, and a user identifier. In some embodi- 65 ments, the notification may additionally include an auditory or visual alert.

14

FIG. 12 is a flowchart depicting a method 1200 of causing display of a notification responsive to an event, according to certain example embodiments. Operations of the method 1200 may be performed by the modules described above with respect to FIG. 2.

At operation 1202, the sensor data module 202 identifies a user account based on the sensor data. For example, the sensor data generated by the one or more sensor devices may include image data that comprises a set of facial features useable by the sensor data module 202 to perform facial recognition. Accordingly, a user account may be identified based on facial recognition techniques. In some embodiments, the sensor data generated by the one or more sensor devices may comprise metadata that includes a device identifier, wherein the device identifier is associated with a user account within a database.

At operation 1204, the sensor data module 202 indexes a portion of the sensor data associated with the event among a plurality of data objects at a memory location associated with the user account identified at operation 1202. For example, the memory location may be associated with a user profile of the user account and include a plurality of data objects representative of events in which the user account was involved (i.e., as a driver, passenger).

At operation 1206, the sensor data module 202 accesses a subset of the plurality of data objects from the memory location associated with the user account responsive to determining that one or more event attributes of an event detected by the sensor data module 202 transgresses a threshold value. Accordingly, the subset of the plurality of data objects may include the portion of the data stream associated with the detected event.

At operation 1208, the presentation module 208 generates and causes display of a notification that includes a presentation of the subset of the data objects. For example, the notification may comprise a listing of similar events to the event detected by the sensor data module 202.

FIG. 13 is a flowchart depicting a method 1300 of causing display of a notification responsive to an event, according to certain example embodiments. Operations of the method 1300 may be performed by the modules described above with respect to FIG. 2. According to certain example embodiments, the method 1300 may be performed as a subroutine of operations 1108 of FIG. 11, 1208 of FIG. 12, 45 as well as 1404 of FIG. 14.

At operation 1302, the sensor data module 202 generates a user score to be assigned to the user account based on one or more event attributes of a plurality of events listed at the memory location associated with the user account (i.e., a user profile). As discussed in the method 1200, the user profile may contain a listing of all events and corresponding event attributes, of events in which the user account was involved. For example, a user associated with the user account may have been a driver or passenger during one of the above-mentioned events. Accordingly, the user score may simply be a total number of events, or a total number of a certain type of event.

At operation 1304, the sensor data module 202 determines that the user score associated with the user account transgresses a threshold value. For example, the threshold value may indicate a total number of events of a particular event type (i.e., 3 near-collision events).

At operation 1306, responsive to determining that the user score associated with the user account transgresses the threshold value, the presentation module 208 generates and causes display of a notification that includes a user identifier associated with the user account.

FIG. 14 is a flowchart depicting a method 1400 of causing display of a notification responsive to an event, according to certain example embodiments. Operations of the method 1400 may be performed by the modules described above with respect to FIG. 2.

At operation 1402, responsive to the sensor data module 202 detecting an event based on a portion of the sensor data stream generated by the one or more sensor devices, the communication module 206 identifies one or more client devices. For example, the one or more client devices identified by the communication module 206 may be associated with the sensor device at a memory repository. In some embodiments, the one or more client devices may be associated with the one or more sensor devices, as well as one or more events. As an illustrative example, the event detec- 15 tion system 124 may be configured to notify an administrator or manager associated with a particular deployment (a collection of sensor devices), responsive to detecting an event. Accordingly, the event detection system 124 may be configured to notify certain devices responsive to certain 20 events, based on event attributes of the events.

At operation 1404, the presentation module 308 generates and causes display of a notification at the one or more client devices. The notification may include a display of a portion of the sensor data stream, as well as an identification of a 25 user account, a location in which the event occurred, and temporal data indicating when the event occurred.

FIG. 15 is a flowchart depicting a method 1500 of detecting an event based on baseline data, according to certain example embodiments. Operations of the method 30 1500 may be performed by the modules described above with respect to FIG. 2.

At operation 1502, the communication module 206 detects a start of a trip. For example, a start of a trip may be determined based on determining that an ignition of a 35 vehicle associated with the one or more sensor devices has been keyed on. In some embodiments, the start of the trip may be determined based on GPS data indicating that a vehicle begins moving, or in some embodiments, responsive to determining that the vehicle has started along a route to 40 a destination generated by a GPS.

At operation 1504, responsive to the communication module 206 detecting the start of the trip, the sensor data module 302 accesses a sensor data stream generated by one or more sensor devices. In some embodiments, the sensor 45 data stream may include image data, as well as accelerometer data.

At operation 1506, the sensor data module 302 generates a baseline data set based on a first portion of the data stream. For example, the first portion of the sensor data stream may 50 be defined as sensor data generated by the one or more sensor devices over a predefined period of time, or distance, originating at the start of the trip.

At operation 1508, the sensor data module 302 performs a comparison of the baseline data to a second portion of the 55 sensor data stream. Based on the comparison, at operation 1510, the sensor data module 302 detects an event.

FIG. 16 is a flowchart depicting a method 1600 of detecting an event based on baseline data, according to certain example embodiments. Operations of the method 60 1600 may be performed by the modules described above with respect to FIG. 2.

At operation 1602, as in operation 1502, the communication module 206 detects a start of a trip. As discussed above in operation 1502, a start of a trip may be determined 65 based on determining that an ignition of a vehicle associated with the one or more sensor devices has been keyed on. In

16

some embodiments, the start of the trip may be determined based on GPS data indicating that a vehicle begins moving, or in some embodiments, responsive to determining that the vehicle has started along a route to a destination generated by a GPS.

At operation 1604, the sensor data module 302 accesses a sensor data stream generated by one or more sensor devices, wherein the sensor data may include image data. The sensor data module 302 identifies a user account based on the sensor data stream.

At operation 1606, responsive to identifying the user account, the sensor data module 302 retrieves a baseline data set associated with the user account.

FIG. 17 is a block diagram illustrating components of a machine 1700, according to some example embodiments, able to read instructions from a machine-readable medium (e.g., a machine-readable storage medium) and perform any one or more of the methodologies discussed herein. Specifically, FIG. 17 shows a diagrammatic representation of the machine 1700 in the example form of a computer system, within which instructions 1710 (e.g., software, a program, an application, an applet, an app, or other executable code) for causing the machine 1700 to perform any one or more of the methodologies discussed herein may be executed. As such, the instructions 1710 may be used to implement modules or components described herein. The instructions 1710 transform the general, non-programmed machine 1700 into a particular machine 1700 programmed to carry out the described and illustrated functions in the manner described. In alternative embodiments, the machine 1700 operates as a standalone device or may be coupled (e.g., networked) to other machines. In a networked deployment, the machine 1700 may operate in the capacity of a server machine or a client machine in a server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 1700 may comprise, but not be limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook, a personal digital assistant (PDA), an entertainment media system, a cellular telephone, a smart phone, a mobile device, a wearable device (e.g., a smart watch), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any machine capable of executing the instructions 1710, sequentially or otherwise, that specify actions to be taken by machine 1700. Further, while only a single machine 1700 is illustrated, the term "machine" shall also be taken to include a collection of machines that individually or jointly execute the instructions 1710 to perform any one or more of the methodologies discussed herein.

The machine 1700 may include processors 1704, memory memory/storage 1706, and I/O components 1718, which may be configured to communicate with each other such as via a bus 1702. The memory/storage 1706 may include a memory 1714, such as a main memory, or other memory storage, and a storage unit 1716, both accessible to the processors 1704 such as via the bus 1702. The storage unit 1716 and memory 1714 store the instructions 1710 embodying any one or more of the methodologies or functions described herein. The instructions 1710 may also reside, completely or partially, within the memory 1714, within the storage unit 1716, within at least one of the processors 1704 (e.g., within the processor's cache memory), or any suitable combination thereof, during execution thereof by the machine 1700. Accordingly, the memory 1714, the storage unit 1716, and the memory of processors 1704 are examples of machine-readable media.

The I/O components 1718 may include a wide variety of components to receive input, provide output, produce output, transmit information, exchange information, capture measurements, and so on. The specific I/O components 1718 that are included in a particular machine 1700 will depend 5 on the type of machine. For example, portable machines such as mobile phones will likely include a touch input device or other such input mechanisms, while a headless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 1718 may include many other components that are not shown in FIG. 17. The I/O components 1718 are grouped according to functionality merely for simplifying the following discussion and the grouping is in no way limiting. In various example embodiments, the I/O components 1718 may 15 include output components 1726 and input components 1728. The output components 1726 may include visual components (e.g., a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), 20 acoustic components (e.g., speakers), haptic components (e.g., a vibratory motor, resistance mechanisms), other signal generators, and so forth. The input components 1728 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric 25 input, a photo-optical keyboard, or other alphanumeric input components), point based input components (e.g., a mouse, a touchpad, a trackball, a joystick, a motion sensor, or other pointing instrument), tactile input components (e.g., a physical button, a touch screen that provides location and/or force 30 of touches or touch gestures, or other tactile input components), audio input components (e.g., a microphone), and the like.

In further example embodiments, the I/O components 1718 may include biometric components 1730, motion 35 components 1734, environmental environment components 1736, or position components 1738 among a wide array of other components. For example, the biometric components 1730 may include components to detect expressions (e.g., hand expressions, facial expressions, vocal expressions, 40 body gestures, or eye tracking), measure biosignals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identify a person (e.g., voice identification, retinal identification, facial identification, fingerprint identification, or electroencephalogram based identification), 45 and the like. The motion components 1734 may include acceleration sensor components (e.g., accelerometer), gravitation sensor components, rotation sensor components (e.g., gyroscope), and so forth. The environment components 1736 may include, for example, illumination sensor com- 50 ponents (e.g., photometer), temperature sensor components (e.g., one or more thermometer that detect ambient temperature), humidity sensor components, pressure sensor components (e.g., barometer), acoustic sensor components (e.g., one or more microphones that detect background noise), 55 proximity sensor components (e.g., infrared sensors that detect nearby objects), gas sensors (e.g., gas detection sensors to detection concentrations of hazardous gases for safety or to measure pollutants in the atmosphere), or other components that may provide indications, measurements, or 60 signals corresponding to a surrounding physical environment. The position components 1738 may include location sensor components (e.g., a Global Position system (GPS) receiver component), altitude sensor components (e.g., altimeters or barometers that detect air pressure from which 65 altitude may be derived), orientation sensor components (e.g., magnetometers), and the like.

18

Communication may be implemented using a wide variety of technologies. The I/O components 1718 may include communication components 1740 operable to couple the machine 1700 to a network 1732 or devices 1720 via coupling 1722 and coupling 1724 respectively. For example, the communication components 1740 may include a network interface component or other suitable device to interface with the network 1732. In further examples, communication components 1740 may include communication components, wireless communication components, cellular communication components, Near Field Communication (NFC) components, Bluetooth® components (e.g., Bluetooth® Low Energy), Wi-Fi® components, and other communication components to provide communication via other modalities. The devices 1720 may be another machine or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a Universal Serial Bus (USB)).

Moreover, the communication components 1740 may detect identifiers or include components operable to detect identifiers. For example, the communication components 1740 may include Radio Frequency Identification (RFID) tag reader components, NFC smart tag detection components, optical reader components (e.g., an optical sensor to detect one-dimensional bar codes such as Universal Product Code (UPC) bar code, multi-dimensional bar codes such as Quick Response (QR) code, Aztec code, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code, and other optical codes), or acoustic detection components (e.g., microphones to identify tagged audio signals). In addition, a variety of information may be derived via the communication components 1740, such as, location via Internet Protocol (IP) geo-location, location via Wi-Fi® signal triangulation, location via detecting a NFC beacon signal that may indicate a particular location, and so forth.

GLOSSARY

"CARRIER SIGNAL" in this context refers to any intangible medium that is capable of storing, encoding, or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible medium to facilitate communication of such instructions. Instructions may be transmitted or received over the network using a transmission medium via a network interface device and using any one of a number of well-known transfer protocols.

"CLIENT DEVICE" in this context refers to any machine that interfaces to a communications network to obtain resources from one or more server systems or other client devices. A client device may be, but is not limited to, a mobile phone, desktop computer, laptop, portable digital assistants (PDAs), smart phones, tablets, ultra books, netbooks, laptops, multi-processor systems, microprocessor-based or programmable consumer electronics, game consoles, set-top boxes, or any other communication device that a user may use to access a network.

"COMMUNICATIONS NETWORK" in this context refers to one or more portions of a network that may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet, a portion of the Internet, a portion of the Public Switched Telephone Network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a Wi-Fi® network, another type of net-

work, or a combination of two or more such networks. For example, a network or a portion of a network may include a wireless or cellular network and the coupling may be a Code Division Multiple Access (CDMA) connection, a Global System for Mobile communications (GSM) connec- 5 tion, or other type of cellular or wireless coupling. In this example, the coupling may implement any of a variety of types of data transfer technology, such as Single Carrier Radio Transmission Technology (1×RTT), Evolution-Data Optimized (EVDO) technology, General Packet Radio Ser- 10 vice (GPRS) technology, Enhanced Data rates for GSM Evolution (EDGE) technology, third Generation Partnership Project (3GPP) including 3G, fourth generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), High Speed Packet Access (HSPA), World- 15 wide Interoperability for Microwave Access (WiMAX), Long Term Evolution (LTE) standard, others defined by various standard setting organizations, other long range protocols, or other data transfer technology.

"MACHINE-READABLE MEDIUM" in this context 20 refers to a component, device or other tangible media able to store instructions and data temporarily or permanently and may include, but is not be limited to, random-access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache 25 memory, other types of storage (e.g., Erasable Programmable Read-Only Memory (EEPROM)) and/or any suitable combination thereof. The term "machine-readable medium" should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, or asso- 30 ciated caches and servers) able to store instructions. The term "machine-readable medium" shall also be taken to include any medium, or combination of multiple media, that is capable of storing instructions (e.g., code) for execution by a machine, such that the instructions, when executed by 35 one or more processors of the machine, cause the machine to perform any one or more of the methodologies described herein. Accordingly, a "machine-readable medium" refers to a single storage apparatus or device, as well as "cloudbased" storage systems or storage networks that include 40 multiple storage apparatus or devices. The term "machinereadable medium" excludes signals per se.

"COMPONENT" in this context refers to a device, physical entity or logic having boundaries defined by function or subroutine calls, branch points, application program inter- 45 faces (APIs), or other technologies that provide for the partitioning or modularization of particular processing or control functions. Components may be combined via their interfaces with other components to carry out a machine process. A component may be a packaged functional hard- 50 ware unit designed for use with other components and a part of a program that usually performs a particular function of related functions. Components may constitute either software components (e.g., code embodied on a machine-readable medium) or hardware components. A "hardware com- 55 ponent" is a tangible unit capable of performing certain operations and may be configured or arranged in a certain physical manner. In various example embodiments, one or more computer systems (e.g., a standalone computer system, a client computer system, or a server computer system) or 60 one or more hardware components of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware component that operates to perform certain operations as described herein. A hardware component may 65 also be implemented mechanically, electronically, or any suitable combination thereof. For example, a hardware com20

ponent may include dedicated circuitry or logic that is permanently configured to perform certain operations. A hardware component may be a special-purpose processor, such as a Field-Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). A hardware component may also include programmable logic or circuitry that is temporarily configured by software to perform certain operations. For example, a hardware component may include software executed by a general-purpose processor or other programmable processor. Once configured by such software, hardware components become specific machines (or specific components of a machine) uniquely tailored to perform the configured functions and are no longer generalpurpose processors. It will be appreciated that the decision to implement a hardware component mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations. Accordingly, the phrase "hardware component" (or "hardware-implemented component") should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which hardware components are temporarily configured (e.g., programmed), each of the hardware components need not be configured or instantiated at any one instance in time. For example, where a hardware component comprises a general-purpose processor configured by software to become a special-purpose processor, the general-purpose processor may be configured as respectively different special-purpose processors (e.g., comprising different hardware components) at different times. Software accordingly configures a particular processor or processors, for example, to constitute a particular hardware component at one instance of time and to constitute a different hardware component at a different instance of time. Hardware components can provide information to, and receive information from, other hardware components. Accordingly, the described hardware components may be regarded as being communicatively coupled. Where multiple hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) between or among two or more of the hardware components. In embodiments in which multiple hardware components are configured or instantiated at different times, communications between such hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware components have access. For example, one hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Hardware components may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information). The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented components that operate to perform one or more operations or functions described herein. As used herein, "processor-implemented component" refers to a hardware component implemented using

one or more processors. Similarly, the methods described herein may be at least partially processor-implemented, with a particular processor or processors being an example of hardware. For example, at least some of the operations of a method may be performed by one or more processors or 5 processor-implemented components. Moreover, the one or more processors may also operate to support performance of the relevant operations in a "cloud computing" environment or as a "software as a service" (SaaS). For example, at least some of the operations may be performed by a group of 10 computers (as examples of machines including processors), with these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., an Application Program Interface (API)). The performance of certain of the operations may be distributed among the 15 processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processors or processor-implemented components may be located in a single geographic location (e.g., within a home environment, an office environment, or 20 a server farm). In other example embodiments, the processors or processor-implemented components may be distributed across a number of geographic locations.

"PROCESSOR" in this context refers to any circuit or virtual circuit (a physical circuit emulated by logic executing 25 on an actual processor) that manipulates data values according to control signals (e.g., "commands", "op codes", "machine code", etc.) and which produces corresponding output signals that are applied to operate a machine. A processor may, for example, be a Central Processing Unit 30 (CPU), a Reduced Instruction Set Computing (RISC) processor, a Complex Instruction Set Computing (CISC) processor, a Graphics Processing Unit (GPU), a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Radio-Frequency Integrated Circuit (RFIC) or any 35 combination thereof. A processor may further be a multicore processor having two or more independent processors (sometimes referred to as "cores") that may execute instructions contemporaneously.

"TIMESTAMP" in this context refers to a sequence of 40 characters or encoded information identifying when a certain event occurred, for example giving date and time of day, sometimes accurate to a small fraction of a second.

"TIME DELAYED NEURAL NETWORK (TDNN)" in this context, a TDNN is an artificial neural network architecture whose primary purpose is to work on sequential data. An example would be converting continuous audio into a stream of classified phoneme labels for speech recognition.

"BI-DIRECTIONAL LONG-SHORT TERM MEMORY (BLSTM)" in this context refers to a recurrent neural 50 network (RNN) architecture that remembers values over arbitrary intervals. Stored values are not modified as learning proceeds. RNNs allow forward and backward connections between neurons. BLSTM are well-suited for the classification, processing, and prediction of time series, 55 given time lags of unknown size and duration between events.

What is claimed is:

1. A method comprising:

detecting a start of a trip of a vehicle, the trip comprising 60 a first portion and a second portion;

accessing a sensor data stream generated by a sensor device associated with the vehicle in response to the detecting the start of the trip, the sensor data stream comprising image data;

identifying a user account based on the image data from the sensor device; 22

accessing a baseline sensor data stream generated by the sensor device in response to the detecting the start of the trip, the baseline sensor data stream comprising baseline image data corresponding to the first portion of the trip;

generating baseline data associated with the user account based on the baseline image data;

generating a training data set based on the baseline data associated with the user account;

training a machine-learned model based on the training data set;

detecting an event, using the machine-learned model, based on a second sensor data stream corresponding to the second portion of the trip; and

causing a notification at a client device based on the event.

2. The method of claim 1, wherein the detecting the start of the trip includes:

accessing accelerometer data; and

detecting the start of the trip based on the accelerometer

3. The method of claim 1, wherein the detecting the start of the trip includes:

accessing geolocation data; and

detecting the start of the trip based on the geolocation

- **4.** The method of claim **1**, wherein the sensor device includes a dash-cam, and the image data comprises a set of image features that depict a gaze and a head pose.
- 5. The method of claim 4, wherein the identifying a user account based on the image data from the sensor device comprises:

performing one or more facial recognition techniques on the set of image features.

6. The method of claim 1, further comprising:

generating a user score associated with the user account based on the event; and

adjusting the user score in response to detecting a subsequent event.

7. The method of claim 6, further comprising:

determining the user score transgresses a threshold value; and

causing display of a second notification including a user identifier and the user score at the client device based on the user score transgressing the threshold value.

8. A system comprising:

at least one vehicle;

at least one sensor device to generate sensor data comprising a plurality of data streams;

a memory; and

at least one hardware processor to perform operations comprising:

detecting a start of a trip of a vehicle, the trip comprising a first portion and a second portion;

accessing a sensor data stream generated by a sensor device associated with the vehicle in response to the detecting the start of the trip, the sensor data stream comprising image data;

identifying a user account based on the image data from the sensor device;

accessing a baseline sensor data stream generated by the sensor device in response to the detecting the start of the trip, the baseline sensor data stream comprising baseline image data corresponding to the first portion of the trip:

generating baseline data associated with the user account based on the baseline image data;

23

generating a training data set based on the baseline data associated with the user account;

training a machine-learned model based on the training data set:

detecting an event, using the machine-learned model, 5 based on a second sensor data stream corresponding to the second portion of the trip; and

causing a notification at a client device based on the event.

9. The system of claim 8, wherein the detecting the start of the trip includes:

accessing accelerometer data; and

detecting the start of the trip based on the accelerometer data.

10. The system of claim 8, wherein the detecting the start of the trip includes:

accessing geolocation data; and

detecting the start of the trip based on the geolocation data.

- 11. The system of claim 8, wherein the sensor device includes a dash-cam, and the image data comprises a set of 20 image features that depict a gaze and a head pose.
- 12. The system of claim 11, wherein the identifying a user account based on the image data from the sensor device comprises:

performing one or more facial recognition techniques on 25 the set of image features.

13. The system of claim 8, wherein the operations further comprise:

generating a user score associated with the user account based on the event; and

adjusting the user score in response to detecting a subsequent event.

14. The system of claim 13, wherein the operations further comprise:

determining the user score transgresses a threshold value; 35

causing display of a second notification including a user identifier and the user score at the client device based on the user score transgressing the threshold value.

15. A non-transitory machine-readable storage medium 40 comprising instructions that, when executed by one or more processors of a machine, cause the machine to perform operations comprising:

detecting a start of a trip of a vehicle, the trip comprising a first portion and a second portion;

accessing a sensor data stream generated by a sensor device associated with the vehicle in response to the detecting the start of the trip, the sensor data stream comprising image data;

24

identifying a user account based on the image data from the sensor device;

accessing a baseline sensor data stream generated by the sensor device in response to the detecting the start of the trip, the baseline sensor data stream comprising baseline image data corresponding to the first portion of the trip;

generating baseline data associated with the user account based on the baseline image data;

generating a training data set based on the baseline data associated with the user account;

training a machine-learned model based on the training data set;

detecting an event, using the machine-learned model, based on a second sensor data stream corresponding to the second portion of the trip; and

causing a notification at a client device based on the event.

16. The non-transitory machine-readable storage medium of claim 15, wherein the detecting the start of the trip includes:

accessing accelerometer data; and

detecting the start of the trip based on the accelerometer

17. The non-transitory machine-readable storage medium of claim 15, wherein the detecting the start of the trip includes:

accessing geolocation data; and

detecting the start of the trip based on the geolocation data.

- 18. The non-transitory machine-readable storage medium of claim 15, wherein the sensor device includes a dash-cam, and the image data comprises a set of image features that depict a gaze and a head pose.
- 19. The non-transitory machine-readable storage medium of claim 18, wherein the identifying a user account based on the image data from the sensor device comprises:

performing one or more facial recognition techniques on the set of image features.

20. The non-transitory machine-readable storage medium of claim 15, wherein the operations further comprise:

generating a user score associated with the user account based on the event; and

adjusting the user score in response to detecting a subsequent event.

* * * * *