

GYTE Electronics Engineering

ELEC 331 Electronic Circuits 2

Fall 2014

Instructor: Assist. Prof. Önder Şuvak

HW 13 Questions and Answers

Updated January 2, 2015 - 19:50

Assigned: 20141222

Due: 20141229

Answers Out: 20141230

Late Due: 20150105

Contents

itle Page	1
Contents	1
uestion 1	2
Question	
Solution	3
uestion 2	5
Question	
Solution	6
uestion 3	12
Question	12
Solution	13

First Order Filter Rashid 12.2

12.2 Determine (a) the transfer function of the network shown in Fig. P12.2 and (b) its poles and zeros.

FIGURE P12.2

Notes: None.

Additional Tasks: Sketch the magnitude and phase Bode plots.

Necessary Knowledge and Skills: Laplace transforms, transfer functions, poles and zeros, gain, filtering operation.

$$\frac{V_{0}}{V_{0}} = \frac{R_{2}}{R_{1} + R_{1} / | J_{0}|} = \frac{R_{2}}{R_{2} + R_{1} / | J_{0}|} = \frac{R_{2}}{R_{2} + \frac{R_{1} J_{0}|}{R_{1} + J_{0}|}} = \frac{R_{2}}{R_{2} + \frac{R_{1}}{1 + sC_{1}R_{1}}} = \frac{R_{2}}{R_{1} + R_{2} + R_{1}R_{2}C_{1}s} = \frac{R_{2}}{R_{1} + R_{2}} = \frac{R_{2}}{R_{1} + R_{2}} = \frac{R_{2}}{R_{1} + R_{2}} = \frac{1 + \frac{s}{J_{R_{1}C_{1}}}}{1 + \frac{J}{J_{0}(R_{1}/R_{2})}}$$

Sow frequency $g_{31N} : \frac{R_{2}}{R_{1} + R_{2}}$

Zero: $R_{1}K_{1}$

Zero $f_{1}R_{2}K_{1}$

Zero $f_{2}R_{1}R_{2}K_{2}$

Zero $f_{3}R_{2}$

Scanned by CamScanne

Scanned by CamScanner

Biquadratic Function

Rashid 12.5

12.5 Determine (a) the pole and zero quality factors Q_p and Q_z , (b) the pole and zero resonant frequencies ω_p and ω_z , (c) the pole factor β_p , and (d) the pole angle ϕ_p . The transfer function has the general form as given by

$$H(s) = \frac{5s^2 + 15s + 100}{s^2 + 20s + 200}$$

Notes: See Section 12.5 of Rashid.

Additional Tasks: Switch to Fourier domain and use Matlab to sketch the magnitude and phase Bode plots.

Necessary Knowledge and Skills: Biquadratic function, quality factors, resonant frequencies.

H(s) =
$$5\frac{J^2+3J+20}{J^2+20J+200}$$

= $4\frac{J^2+2J_2w_{2}L_J+w_{0}L_J}{J^2+2J_pw_{2}L_J+w_{0}L_J}$

See other questions for the derivations of J_{W_2}
 $J_{W_2} = 2J_2w_{0,L}$
 $J_{W_3} = 2J_3w_{0,L}$
 $J_{W_3} = J_3w_{0,L}$
 $J_{W_3} = J_3w_{0,$

$$P_{i} = -\lambda_{p} - i\beta_{p}$$

$$P_{2} = -\lambda_{p} + i\beta_{p}$$

$$P_{3} = -\lambda_{p} + i\beta_{p}$$

$$P_{4} = cos^{-1} \left(\frac{\lambda_{p}}{\lambda_{p}^{2} + \beta_{p}^{2}}\right) = cos^{-1} \left(\frac{\lambda_{p}}{\lambda_{p}}\right)$$

$$P_{5} = cos^{-1} \left(\frac{\lambda_{p}}{\lambda_{p}^{2} + \beta_{p}^{2}}\right) = cos^{-1} \left(\frac{\lambda_{p}}{\lambda_{p}}\right)$$

$$Compute!$$

```
01/02/15
                                                    c12_q005_plots.m
                                                                                                                           1
!cl .
close all
clear classes
clear all
f = logspace(-16, 16, 10000);
w = 2*pi*f;
     (5*(1j*w).^2 + 15*(1j*w) + 100)...
     (1*(1j*w).^2 + 20*(1j*w) + 200);
% plots
myLineWidth = 4;
myFontSize = 24;
figure(101);
h1 = ...
     semilogx ...
     f , 20*log10(abs(H)) , ...
     'LineWidth' , myLineWidth ...
grid on;
set(gca,'units','normalized')
set(gca,'Box','on','FontName','Arial',...
    'FontSize',myFontSize,'FontWeight','bold','LineWidth',4)
xlabel('Frequency (Hz)');
ylabel('Magnitude (dB)');
title('Magnitude Bode Plot')
legend(...
     h1 , .
     'Bode Plot' , ...
'Orientation' , 'Horizontal' , ...
'Location' , 'South' ...
     );
figure(102);
h2 = ...
     semilogx ...
     f , 180 / pi * phase(H) , ...
     'LineWidth' , myLineWidth ...
     );
grid on;
axis([ 1e-20 1e+20 -20 120 ])
set(gca,'units','normalized')
set(gca,'Box','on','FontName','Arial',...
    'FontSize',myFontSize,'FontWeight','bold','LineWidth',4)
xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');
title('Phase Bode Plot')
legend(...
     h2 , ..
      'Bode Plot'
     'Bode Plot' , ...
'Orientation' , 'Horizontal' , ...
                       , 'South' ...
     'Location'
pme/onder/Dropbox/shared n/shared MyStuff/books solnSingle ECir/book soln Rashid/c12 sim/q005/c12 q005 plots.m
```

Soln to Q 2

01/02/15	c12_q005_plots.m	2
);		
me/onder/Dropbox/shared_n/shared_MyStuff/boo	oks_solnSingle_ECir/book_soln_Rashid/c12_sim/q005/c12_q005_plot	s.m

LC Resonator Sedra 12.73

12.73 A coil having an inductance of 10 μ H is intended for applications around 1-MHz frequency. Its Q is specified to be 200. Find the equivalent parallel resistance R_p . What is the value of the capacitor required to produce resonance at 1 MHz? What additional parallel resistance is required to produce a 3-dB bandwidth of 10 kHz?

Notes: None.

Additional Tasks: None.

Necessary Knowledge and Skills: LC resonators, bandwidth, quality factor Q, resonance frequency.

where
$$G(s) = \frac{2fw_0 S}{c^2 + 2fw_0 S + v_0^2}$$

Where $G(s) = \frac{2fw_0 S}{s^2 + 2fw_0 S + v_0^2}$

Non will compute the bondwidth of the tuned amplifier by calculating high—and low—

Frequency cut—offs.

 $G(iv) = \frac{iw 2fw_0}{(w_0^2 - w^2)^2 + (2fw_0 w)^2} = \frac{3m}{C} \frac{1}{2Jw_0}$
 $= \frac{9m}{C} RR$
 $= \frac{1}{RC}$

Bondwidth $BW = W_{+} - W_{-} = 2fw_0$
 $= \frac{1}{RC}$

Scanned by CamScanne

Mote that
$$R \to +\infty \Rightarrow BW \to 0$$
 Sedra

The ideal LC tonk is

$$C = LE \qquad R \to +\infty$$

$$C = LE \qquad R \to +\infty$$

$$C = R \qquad C$$

$$= R \qquad C$$

(with
$$Q = R_p \sqrt{\frac{C}{L}} = 200 (garen)$$
 $\frac{fatra}{12-73}$ Contin-

(computed L known compute R_p .

(with R not open $= \frac{1}{R_p/R_p} C$ $= \frac{1}{R_p/R_p} C$ $= \frac{1}{R_p/R_p} C$ $= \frac{1}{R_p Computed}$. $= \frac{1}{R_p Computed}$. $= \frac{1}{R_p Computed}$. $= \frac{1}{R_p Computed}$. $= \frac{1}{R_p Computed}$.