Mechanik

Physik

Be schleunigung-Kraft

$$F \equiv m \cdot a$$
$$[N = kg \cdot \frac{m}{s^2}]$$

Physik

Be schleunigung-Weg

$$x = \frac{1}{2} \cdot a \cdot t^2$$

$$x = \frac{1}{2} \cdot a \cdot t$$
$$[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$$

Antwort

Physik	# 3	Mechanik
	Haftreibung	or S

$$F_{
m H} = \mu_{
m H} \cdot F_{
m N}$$

$$F_H$$
: Haftreibung μ_H : Haftreibungskonstante F_N : Normalkraft

Physik	# 4	Mechanik
	Gleitreibung	g

$$F_{\mathrm{Gl}} = \mu_{\mathrm{Gl}} \cdot F_{\mathrm{N}}$$

```
F_{G1}: Gleitreibung

\mu_{G1}: Gleitreibungskonstante

F_{N}: Normalkraft
```

Mechanik

Physik

Haftreibung – Schiefe Ebene

$$\mu_{\rm H} = \tan \alpha$$

Winkel α für gegebenes $\mu_{\rm H}$, ab dem die Haftreibung nicht mehr zum Halten ausreicht, also das Objekt anfängt zu "rutschen"

	// ~	
,		

Mechanik

Physik

Leistung

$$P = F \cdot v$$

$$\left[W = N \cdot \frac{m}{s} \right]$$

$$= kg \frac{m}{s^2} \cdot \frac{m}{s}$$

$$= kg \frac{m^2}{s^3}$$

Physik	# 7	Mechanik
	Wirkungsgra	ad

7 Antwort $n = \frac{P_{\text{out}}}{}$

Mechanik

Physik

Radialbeschleunigung

$$\neq 8$$
 Antwort $a = \frac{v^2}{v^2}$

Physik	# 9	Mechanik
	Arbeit	

$$W = F \cdot s$$

$$J = N \cdot m$$

$$= kg \frac{m}{s^2} \cdot m$$

 $= kg \frac{m^2}{s^2} \bigg]$

potentielle Energie

$$E_{\text{pot}} = m \cdot g \cdot h$$
$$J = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} \cdot \text{m}$$

 $= kg \frac{m^2}{s^2}$

kinteische Energie

```
E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2
      \left[J = kg \cdot \frac{m^2}{s^2}\right]
```

J	

Mechanik

Physik

Kreisfrequenz

Antwort

$$\omega = \frac{2\pi}{T}$$
$$\left[s^{-1} = \frac{\text{rad}}{s}\right]$$

Mechanik

Physik

Kreisfrequenz Hook'sche Feder

Antwort

$$\omega = \sqrt{\frac{D}{m}}$$
$$\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$$

D: Federkonstante

Mechanik

Physik

harmonische Schwingung: Beschleunigung

 $\left[\frac{\mathbf{m}}{\mathbf{s}^2} = \mathbf{s}^{-2} \cdot \mathbf{m}\right]$

Antwort

 $a(t) = -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$

Mechanik

Physik

harmonische Schwingung: Geschwindigkeit

15 Antwort
$$v(t) = \omega \cdot v_0 \cdot \cos \omega t$$

$$v(t) = \omega \cdot y_0 \cdot \cos \omega t$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m} \right]$$

Physik

harmonische Schwingung: Auslenkung

$$y(t) = y_0 \cdot \sin \omega t$$

Physik

potentielle Energie Hook'sche Feder

$$W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$$
$$\left[J = \frac{N}{m} m^2 \right]$$
$$= \frac{kg \frac{m}{s^2}}{s^2} \cdot m^2$$

 $= kg \frac{m^2}{s^2}$

Physik

Kraft Hook'sche Feder

$$F = D \cdot x$$
$$\left[\mathbf{N} = \frac{\mathbf{N}}{\mathbf{m}} \cdot \mathbf{m} \right]$$

Mechanik

Physik

Inelastischer Stoß

 $v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

Mechanik

Physik

Elastischer Stoß

$$v_1' = 2 \cdot \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} - v_1$$
$$v_2' = 2 \cdot \frac{m_1 v_1 + m_2 v_2}{m_1 v_1 + m_2 v_2} - v_2$$

$$v_2' = 2 \cdot \frac{m_1 + m_2}{m_1 + m_2 v_2} - v_2$$

v	//	

Mechanik

Physik

Drehimpuls

Antwort

$L = \vartheta \cdot \omega$

$$\left[N \text{ m s} = \text{kg m}^2 \cdot \text{s}^{-1}\right]$$
$$\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$$

 $kg\frac{m^2}{s} = kg\frac{m^2}{s} \bigg]$

Mechanik

Physik

Kinetische Energie Drehbewegung

$$E_{\rm kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$$

$$\int J = kg \ m^2 \cdot s^{-2}$$

Antwort

Physik	# 23	Mechanik
	Impuls	

$$\left[\frac{\text{kg m}}{}\right]$$

$$\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}}\right]$$

$p = m \cdot v$

Antwort

Physik	# 24	Mechanik

Kreisfrequenz Fadenpendel

$$\omega = \sqrt{\frac{g}{l}}$$
$$\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$$
$$= \sqrt{s^{-2}} = s^{-1}$$

Nur bei $\alpha < 5^{\circ}$

Mechanik

Physik

Trägheitsmoment Stab um Stabende

$\left\lceil kg \ m^2 = kg \cdot m^2 \right\rceil$

Länge des homogenen Stabes

Antwort

 $\vartheta = \frac{1}{3} \cdot m \cdot l^2$

Mechanik

Physik

Trägheitsmoment Stab um Schwerpunkt

Antwort

 $\vartheta = \frac{1}{12} \cdot m \cdot l^2$

$$\left[kg \ m^2 = kg \cdot m^2 \right]$$

Mechanik

Physik

Trägheitsmoment Vollzylinder

Antwort

 $\vartheta = \frac{1}{2} \cdot m \cdot r^2$

$$\left[kg \ m^2 = kg \cdot m^2 \right]$$

Mechanik

Physik

Trägheitsmoment Hohlzylinder

$$\vartheta = m \cdot r^2$$
$$\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$$

Physik

Transformation Geschwindigkeit – Winkelgeschwindigkeit

Mechanik

$$v = r \cdot \omega$$

$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1} \right]$$

•	**

Mechanik

Physik

Trägheitsmoment Kugel

30 Antwort
$$\vartheta = \frac{2}{5} \cdot m \cdot r^2$$

$$\vartheta = \frac{2}{5} \cdot m \cdot r$$
$$\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$$

	11	

Mechanik

Physik

leeres Duplikat

31 Antwort

Mechanik

Physik

Leistung Translation

$$P = F \cdot v = M \cdot \omega$$

$$\begin{split} \left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \\ kg \frac{m^2}{s^3} = kg \frac{m}{s^2} \cdot \frac{m}{s} \right] \end{split}$$

1 Hysik	# 55	WICCHAIIK

Mechanik

Physik

Drehmoment

$$M = F \cdot r$$
$$\left[\text{Nm} = \text{N} \cdot \text{m} \right]$$

Mechanik

Physik

Kreisfrequenz Drehschwingung

$$\omega = \sqrt{\frac{D}{\vartheta}}$$

$$\omega = \sqrt{\frac{\omega}{\vartheta}}$$
$$\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}\right]$$

Mechanik

Physik

Rückstellmoment Drehschwingung

$$M = -D_{\varphi} \cdot \varphi$$
$$[\text{Nm} = \text{Nm}?]$$

$$\begin{array}{ll} D_{\varphi}: & \text{Torsionsfederkonstante} \\ \varphi: & \text{Verdrillungswinkel} \end{array}$$

# 36	Mechanik
	# 36

Präzessionsfrequenz

$$\omega_{\rm p} = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_{\rm r}}$$

$$\begin{bmatrix} s^{-1} = \frac{Nm}{N m s} = \frac{N \cdot m}{kg m^2 \cdot s^{-1}} \end{bmatrix}$$

Mechanik

Physik

Satz von Steiner

$$\vartheta = m \cdot a^2 + \vartheta_{\rm SP}$$

$$\left[\text{kg m}^2 = \text{m}^2 \cdot \text{kg} + \text{kg m}^2 \right]$$

 ϑ_{SP} Trägheitsmoment durch Schwerpunkt ϑ Trägheitsmoment durch neue Achse, \parallel zur Achse von ϑ_{SP} Abstand der beiden Achsen

Mechanik

Physik

Gravitationkonstante

$$\gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$$

Mechanik

Physik

Gravitationspotential

$$\varphi = -\frac{\gamma \cdot r}{r}$$
$$\left[m^2 - \frac{N m^2}{kg^2} \right]$$

$$\int \mathrm{m}^2 \ \frac{\mathrm{N} \ \mathrm{m}^2}{\mathrm{kg}^2}$$

 $= N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg} \bigg|$

Mechanik

Physik

pot. Energie Gravitation

$$E_{
m pot} = -rac{r}{r}$$

$$\left[{
m J} = rac{rac{{
m N} \ {
m m}^2}{{
m kg}^2} \cdot {
m kg} \cdot {
m kg}}{{
m m}}
ight.$$

$$= {
m Nm}
ight]$$

Physik

Gravitationfeldstärke

Mechanik

$$g = -\frac{\gamma \cdot M}{r^2}$$

$$\left[\frac{m}{s^2} = \frac{\frac{N \text{ m}^2}{\text{kg}^2} \cdot \text{kg}}{m^2}\right]$$

$$= \frac{N}{\text{kg}} = \frac{\text{kg}}{\text{kg}}$$

M : Planetenmasse

Mechanik

Physik

Gravitationskraft

$$F_{\rm G} = -\gamma \cdot \frac{m_1 m_2}{r^2}$$
$$\left[N = \frac{\text{N m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right]$$

Mechanik

Physik

Erhaltungssätze der klassischen Physik

• elektrische Ladungen

Mechanik

Physik

Corioliskraft

Antwort

$$F_{\rm C} = m \cdot a_{\rm c} = 2 \cdot m \cdot v_{\perp} \cdot \omega$$
$$\left[N = \text{kg} \cdot \frac{m}{\text{s}^2} = \text{kg} \cdot \frac{m}{\text{s}} \cdot \text{s}^{-1} \right]$$

 $\begin{array}{lll} \mathbf{a_c} \colon & \mathbf{Coriolisbeschleunigung} \\ v_\perp \colon & \mathbf{Geschwindigkeit\ des\ K\"{o}rpers,\ rel.} \\ & \mathbf{zum\ rotierenden\ Bezugssystem} \\ \omega \colon & \mathbf{Winkelgeschwindigkeit\ Bezugssystem} \end{array}$

Mechanik

Physik

Keplersche Gesetze

4.	5	Antwort		
•	,	Planeten auf Ellipsen mit Sonne	im	ge-
		meinsamen Brennpunkt		

- Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: $\frac{\Delta A}{\Delta t} = \text{const}$
- Umlaufzeit $T_{1,2}$, große Halbachse $a_{1,2}$ zweier Planeten: $\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$

Mechanik

Physik

Planet auf Kreisbahn

$$\frac{r_{\rm p}^3}{T_{\rm p}^2} = \gamma \frac{m_{\rm s}}{4\pi^2} = const.$$

 $r_{\rm p}$: Radius Planetenbahn $T_{\rm p}$: Umlaufzeit Planet $m_{\rm s}$: Masse der Sonne

Mechanik

Physik

Gebundener und ungebundener Zustand

$$\#$$
 47 Antwort

$$E = E_{\text{kin}} + E_{\text{pot}} = \frac{1}{2}m_2v^2 - \gamma \frac{m_1m_2}{r}$$

$$E \geq 0$$
: ungebunder Zustand, m_2 kann sich beliebig weit von m_1 entfernen $E < 0$: gebunder Zustand

	· ·	**
-		

Deformation

Physik

Elastizitätsmodul

$$E = \frac{\sigma}{\varepsilon}$$

$$\left[\frac{N}{m} - \frac{\frac{N}{m^2}}{m^2}\right]$$

Physik # 49

Zugfestigkeit

Deformation

$$\sigma = \left[\frac{N}{T}\right]$$

Physik	# 50	Deformation

Hooksches Gesetz

$$\sigma = E \cdot \varepsilon$$

$$\left[\frac{N}{m^2} = \frac{N}{m^2} \cdot 1 \right]$$

v .	"

Deformation

Physik

relative Längenänderung

Physik	# 52	Deformation
	D : 7	1.1
	Poisson-Za	hl

// TO D 0

. .

TO 1

$$\mu = \left| rac{rac{\Delta d}{d}}{rac{\Delta l}{l}}
ight|$$

Querkontraktion, Dicke nimmt \(\pm \) zur Dehnung ab.

Antwort

Physik	# 53	Deformation
	Druck	

p =
Pa

Deformation

Physik

Kompressibilität

$$\frac{\Delta V}{V} = -\kappa p$$

$$\Rightarrow \kappa = \frac{3}{E}(1 - 2\mu)$$

Deformation

Physik

Kompressionsmodul

55 Antwort
$$K = \frac{1}{-}$$

$$K = \frac{1}{\kappa}$$

Deformation

Physik

Scherspannung

$$\tau = \frac{F_{\rm s}}{A} = G\alpha$$

 $F_{\rm s}$: Scherkraft, tangential zu A

G: Torsions- oder Schubmodul [Pa] Scherwinkel α :

Physik

Torsionskonstante dünnwandiges Rohr

Deformation

$$D_{\varphi} = \frac{2\pi r^3 d}{l} G$$
$$\left[\text{N m} = \frac{\text{m}^3 \text{ m}}{\text{m}} \frac{\text{N}}{\text{m}^2} \right]$$

r: Rohrradius d: Rohrwandstärke, $d \ll r$ l: Rohrlänge

Deformation

Physik

Torsionskonstante Vollstab

$$D_{\varphi} = \frac{\pi}{2} \frac{R^4}{l} G$$
$$\left[\text{N m} = \frac{\text{m}^4}{\text{m}} \frac{\text{N}}{\text{m}^2} \right]$$

Antwort

Physik	# 59	Deformation

Drehmoment Torsion

$$M = D_{\varphi} \cdot \varphi$$
$$\left[N \, \mathbf{m} = N \, \mathbf{m} \right]$$

$$\begin{bmatrix} N \, m = N \, m \end{bmatrix}$$

Physik

Dehnung eines Stabes Federkonstante

Deformation

Deformation

Physik

potentielle Energie Dehnarbeit

$$W = \frac{1}{2} \cdot E \cdot A \cdot l \cdot \varepsilon^2 = \frac{1}{2} \cdot E \cdot V \cdot \varepsilon^2$$

$$W = \frac{1}{2} \cdot E \cdot A \cdot l \cdot \varepsilon^{2} = \frac{1}{2} \cdot E \cdot V \cdot \varepsilon^{2}$$

$$\left[J = \frac{N}{m^{2}} \cdot m^{2} \cdot m = N m \right]$$

1 Hybrix	77 02	Delormation

Deformation

Physik

Energiedichte Dehnung

62 Antwort

$$w = \frac{W}{V} = \frac{E}{2}\varepsilon^2$$
$$\left[\frac{J}{3} = \frac{N}{2}\right]$$

$$\begin{bmatrix} \frac{J}{m^3} = \frac{N}{m^2} \\ = \frac{N m}{m^3} \end{bmatrix}$$

_	J	11	

Deformation

Physik

Energiedichte Torsion

63 Antwort
$$w = \frac{G}{2}\alpha^2$$

$$w = \frac{1}{2}\alpha$$

$$\left[\frac{J}{m^3} = \frac{N}{m^2}\right]$$

$$= \frac{N m}{m^3}$$

	"	

Fluide

Physik

Viskosität "Zähigkeit"

# 64	Antwort	
	$\eta \left[\frac{\mathrm{N}\mathrm{s}}{2} \right]$	

Physik # 65 Fluide Dichte

Fluide

Physik

Oberflächenspannung

# 66	Antwort	
	_[J]	

$$\sigma \left[rac{
m J}{
m m^2}
ight]$$

Fluide

Physik

hydrostatischer Druck Schweredruck

$$p(h) = p_0 + \varrho \cdot h \cdot g$$

$$\left[\text{Pa} = \text{Pa} + \underbrace{\frac{\text{kg}}{\text{m}^3} \cdot \text{m} \cdot \frac{\text{m}}{\text{s}^2}}_{\text{kg}} \right]$$

p₀: (Luft-)Druck an der Oberflächeh: Tiefe

Physik	# 68	Fluide
	Auftrieb	

$$F = (\varrho_{FI} - \varrho_{K}) \cdot V_{K} \cdot g$$
$$\left[N = \frac{kg}{m^{3}} \cdot m^{3} \cdot \frac{m}{s^{2}} = kg \frac{m}{s^{2}} \right]$$

$$\begin{array}{ll} \varrho_{\rm Fl} < \varrho_{\rm K} \Leftrightarrow F_{\rm A} < F_{\rm G} \Longrightarrow & {\rm K\"{o}rper~sinkt} \\ \varrho_{\rm Fl} = \varrho_{\rm K} \Leftrightarrow F_{\rm A} = F_{\rm G} \Longrightarrow & {\rm K\"{o}rper~schwebt} \\ \varrho_{\rm Fl} > \varrho_{\rm K} \Leftrightarrow F_{\rm A} > F_{\rm G} \Longrightarrow & {\rm K\"{o}rper~steigt} \end{array}$$

Fluide

Physik

Barometrische Höhenformel

69 Antwort
$$p = p_0 \cdot \exp\left(-\frac{\varrho_0}{p_0} \cdot g \cdot h\right)$$

Physik

Rückstellkraft Oberflächenspannung Fluide

$$F = 2 \cdot \sigma \cdot l$$

$$\left[N = \frac{J}{m^2} \cdot m = \frac{N}{m} \cdot m \right]$$

Antwort

σ: Oberflächenspannungl: Länge der Randlinie des Bügels

Fluide

Physik

Oberflächenenergie

$$W = A \cdot \sigma$$

$$\left[1 - m^2 \right]$$

$$W = A \cdot \sigma$$

$$\left[J = m^2 \cdot \frac{J}{m^2} \right]$$

Fluide

Physik

Druck in Flüssigkeitskugel

$$p=2\frac{\sigma}{r}$$
 Vollkugel (Wassertropfen)
$$p=3\frac{\sigma}{r}$$
 Hohlkugel (Seifenblase)

$$p = 3\frac{J}{r} \text{ Hohlkugel (Seifenblase)}$$

$$\left[\text{Pa} = \frac{\frac{J}{m^2}}{m} = \frac{\frac{N \text{ m}}{m^2}}{m} = \frac{N}{m^2} \right]$$

Geometrie

Physik

Kugeloberfläche- und Volumen

$$A = 4\pi r^2$$

Kugeloberfläche

$$V = \frac{4}{3}\pi r^3$$

Kugelvolumen

Fluide

Physik

Kontinuitätsgleichung für inkompressible Medien

74 Antwort
$$A_1v_1 = A_2v_2$$

für $\varrho = \text{const}$

Bernoulli-Gleichung

$$\underbrace{\frac{\varrho}{2}v_1^2}_{\text{Staudruck}} + \underbrace{p_1}_{\text{stat. Druck}} = \underbrace{p_0}_{\text{Gesamtdruck}}$$

Physik

Newtonsches Reibungsgesetz Viskosität zwischen Platten

Physik

Geschwindigkeit im Stromröhrchen

$$v(r) = \frac{p_1 - p_2}{4\eta l} (R^2 - r^2)$$

$$\left[\frac{m}{s} = \frac{Pa}{\frac{Ns}{m^2} m} m^2 = \frac{\frac{N}{m^2}}{\frac{Ns}{m^2} m} m^2 = \frac{m^2}{ms} \right]$$

Druck vor und hinter dem Röhrchen $p_{1,2}$: R: Radius des umschließenden Rohres

Radius des Röhrchens r:

Fluide

Physik

Antriebskraft Rohrströmung

$$F = \pi \cdot r^2 \cdot \Delta p$$

$$\left[N = m^2 \cdot Pa = m^2 \cdot \frac{N}{m^2} \right]$$

Fluide

Physik

Gesetz von Hagen-Poiseuille

# 79	Antwort	

$$\dot{M} = \frac{\varrho \cdot \pi}{8 \cdot \eta} \cdot \frac{\Delta p}{l} \cdot R^4 \sim R^4$$

$$\left[\frac{\text{kg}}{\text{s}} = \frac{\frac{\text{kg}}{\text{m}^3}}{\frac{\text{Ns}}{\text{m}^2}} \cdot \frac{\frac{\text{N}}{\text{m}^2}}{\text{m}} \cdot \text{m}^4 = \frac{\text{N kg m}^6}{\text{N s m}^6} \right]$$

 \dot{M} : Massenstromstärke Δp : Druckdifferenz vor und hinter dem Rohr R: Radius des Rohres

# 80	Fluide
	_
	# 80

Stokesches Gesetz für Kugel

Antwort

$$\left[N = \frac{Ns}{m^2} \cdot m \cdot \frac{m}{s}\right]$$

 $F_{\rm R} = 6 \cdot \pi \cdot \eta \cdot r \cdot v$

$$v = \text{const f\"{u}r}$$
:
 $mq - |F_A| = 6 \cdot \pi \cdot \eta \cdot r \cdot v = F_B$

Physik	# 81	Fluide
	Reynolds-Zahl	

T 1

$$Re = \frac{\varrho \cdot L \cdot v}{\eta}$$

$$\left[1 = \frac{\frac{\frac{kg}{m^3} \cdot m \cdot \frac{m}{s}}{\frac{Ns}{m^2}} = \frac{\frac{kg}{sm}}{\frac{kg}{sm}}\right]$$

Sobald Re einen bestimmten Grenzwert überschreitet (z.B. 2300 bei Rohrströmung), schlägt die Strömung von laminar in turbulent um.

Filysik	# 62	riuide

Luftwiderstand

4 99

Fluida

Dhygil

$$F = c_{\mathbf{w}} \cdot \frac{\varrho}{2} \cdot v^2 \cdot A$$

$$\left[\mathbf{N} = 1 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3} \cdot \frac{\mathbf{m}^2}{\mathbf{s}^2} \cdot \mathbf{m}^2 \right]$$

c_w: StrömungswiderstandskoeffizientA: Stirnfläche

Physik

Bewegungsgleichung harmonischer Oszillator

Schwingungen

Schwingungen

Physik

 ${\bf Bewegungsgleichung} \\ {\bf freier, ged\"{a}mpfter Oszillator}$

harmonischer Oszillator

Physik

85 Antwort
$$x(t) = x_0 \cos(\omega_0 t) + \frac{v_0}{\omega_0} \sin(\omega_0 t)$$

Schwingungen

Physik

gedämpfter Oszillator

$$y(t) = y_0 e^{-\delta t} \sin \left(\sqrt{\omega_0^2 - \delta^2} \cdot t + \varphi_0 \right)$$

$$y(t) = y_0 e^{-\delta t} \sin \left(\sqrt{\omega_0^2 - \delta^2} \cdot t + \varphi_0 \right)$$

Schwingungen

Physik

gedämpfte Schwingung Reibung Stokesche Kugel

$$\beta = -6\pi \eta r$$

Schwingungen

Physik

Kreisfrequenz physikalisches Pendel

$$\omega_0 = \sqrt{rac{mgS}{artheta}}$$

Physik

Bewegungsgleichung erzwungene Schwingung

Schwingungen

$$m\ddot{x} + \beta \dot{x} + Dx = DL_0 \sin{(\omega t)}$$

Schwingungen

Physik

erzwungene, gedämpfte Schwingung

$\frac{x_0}{L_0} =$	ω_0^2	
	$\sqrt{\left(\omega_0^2 - \omega^2\right)^2 - \left(2\delta\omega\right)^2}$	

 x_0 : Amplitude der Schwingung L_0 : Amplitude des Erregers

 ω_0 : Eigenfrequenz der Schwingung

 ω_0 : Eigenfrequenz der Schwingung ω : Frequenz des Erregers

 δ : Dämpfung

Schwingungen

Physik

Schwebungsfreqzenz schwache Kopplung

$$\omega_{schwebung} = \omega_1 - \omega_2$$

$$D_{12}$$
: Kopplungsfeder $(D_{12} \ll D)$
 D : Randfeder
 m : $m_{Pendel2} = m_{Pendel1}$

Schwingungen

Physik

gleichpasige, gekoppelte Schwingung

$$\omega_1=\omega_0=\sqrt{rac{D}{m}}$$

$$\omega_1 = \omega_0 = \bigvee_{m} m$$
 D_{12} : Kopplungsfeder (immer entspannt)

$$D$$
: Randfeder

$$m$$
: $m_{Pendel2} = m_{Pendel1}$

Schwingungen

Physik

gegenphasige, gekoppelte Schwingung

$$\omega_2 = \sqrt{\frac{D + 2 \cdot D_{12}}{m}}$$
$$= \sqrt{\omega_0 + 2\frac{D_{12}}{m}}$$

$$= \sqrt{\omega_0 + 2\frac{D}{n}}$$
 D_{12} : Kopplungsfeder

D: Randfeder

m: $m_{Pendel2} = m_{Pendel1}$

Wellen

Physik

Schallgeschwindigkeit in Stab

$$c = \sqrt{\frac{E}{\rho}}$$

E: Elastizitätsmodul ρ : Dichte

Dopplereffekt bewegte Quelle Antwort

$$f'$$
:

: empfangen Frequenz : gesendete Frequenz

v: c:

Geschwindigkeit Quelle Schallgeschwindigkeit

Physik

Dopplereffekt bewegter Beobachter Wellen

Antwort

$$f' = f_0(1 + \frac{v}{c})$$

empfangen Frequenz

gesendete Frequenz

Geschwindigkeit Beobachter v:

Schallgeschwindigkeit c:

Physik	# 98	Wellen
	Wellenzahl	
	, , chichizani	

$$k = \frac{2\pi}{\lambda}$$

$$\lambda$$
: Wellenlänge

Wellen

Physik

Phasengeschwindigkeit

$$c = \frac{\lambda}{T} = \frac{\omega}{k}$$

Wellenlänge

$$T = \frac{2\pi}{\omega}$$
: "Ort" um λ gewandert k : Wellenzahl

0. Hauptsatz der Thermodynamik

100

Thermodynamik

Physik

Antwort Zwei Körper im thermischen Gleichgewicht ha-

100

ben die selbe Temperatur

1. Hauptsatz der Thermodynamik

101 Thermodynamik

Physik

# 101	_	Antwort				
Es ist	unmöglich,	Energie	aus	dem	nichts	zu

gewinnen. Ein perpetuum mobule erster Art ist unmöglich.

102 Thermodynamik

Physik

2. Hauptsatz der Thermodynamik

Antwort Wärmeenergie fließt von selbst immer nur zum

102

kälteren Körper, aber nie umgekehrt. Ein perpetuum mobule erster Art ist unmöglich.

3. Hauptsatz der Thermodynamik

103 Thermodynamik

Physik

Antwort Am absoluten Nullpunkt ist die Entropie 0.

103

Es ist unmöglich, diesen zu erreichen.

Längenausdehnung

104 Thermodynamik

Physik

Antwort

$$\frac{\Delta l}{l} = \alpha \cdot \Delta T$$

Länge

 Δl : Längenänderung

 ΔT :

Temperaturänderung Wärmeausdehnungskoeffizient α :

105 Thermodynamik

Physik

Volumenausdehnung

Antwort

$$\frac{\Delta V}{V} = \gamma \cdot \Delta T$$

V: Volumen

 ΔV : Volumenänderung

Temperaturänderung

 ΔT : Volumenausdehnungskoeffizient γ :

Physik

Volumenausdehnungskoeffizient Festkörper

Thermodynamik

 $\gamma = 3 \cdot \alpha$

Antwort

γ: Volumenausdehnungskoeffizient

 α : Wärmeausdehnungskoeffizient

107 Thermodynamik

Physik

spezifische Wärme, Wärmekapazität

$$\begin{split} \Delta Q &= c \cdot m \cdot \Delta T = C \cdot \Delta T \\ C &= c \cdot m \end{split}$$

Antwort

$$\Delta Q$$
: Wärmeenergie ΔT : Temperaturänderung

spezifische Wärme $\left[\frac{J}{\log K}\right]$ c:

Wärmekapazität $\left[\frac{J}{K}\right]$ C:

Thermodynamik

Physik

ideale Gasgleichung

$$p \cdot V = n \cdot R \cdot T = N \cdot k \cdot T$$

$$p: \qquad \text{Druck}$$

VVolumen

Stoffmenge n:

R:

T:

Teilchenzahl

N: $k = \frac{R}{NA}$: Boltzmann-Konstante

Temperatur in Kelvin

universelle Gaskonstante $\left[\frac{J}{mol}\right]$

Teilchenzahl

109 Thermodynamik

Physik

$$N = n \cdot N_A$$

 N_A : Avogadro-Konstante $6,022045 \cdot 10^{23} \frac{Teilchen}{mol}$

110

Thermodynamik

Physik

Wärmebillanz Zustandsänderung

110

$\Delta U = \Delta Q \cdot \Delta W$

Antwort

 ΔU : innere Energie

 ΔQ : Wärmeenergie

 ΔW : mechanische Arbeit

1 Hy SH	// ***	1 normody namn
	innere En	ergie
	milete Lii	01510

111 Thermodynamik

Physik

Antwort

$$\Delta U = \frac{f}{2} \cdot n \cdot R \cdot T \Delta T$$

```
f:
     Freiheitsgrade Teilchen
```

Stoffmenge n:

R:

universelle Gaskonstante $\left[\frac{J}{mol K}\right]$

Temperatur in Kelvin T:

112 Thermodynamik

Physik

Freiheitsgrade

112 Antwort

einatomiges Gas
$$f = 3$$

zweiatomiges Gas $f = 5$

Atom in Festkörper $f = 6$

113 Thermodynamik

Physik

Boltzmann-Konstante

$$k = \frac{R}{N_A} = 1,3807 \cdot 10^{-23} \frac{J}{K}$$

$$R$$
: universelle Gaskonstante $\left[\frac{J}{mol}\right]$

$$R$$
: universelle Gaskonstante $\left[\frac{J}{\text{mol K}}\right]$
 N_A : Avogadro-Konstante $\left[\frac{1}{\text{mol }}\right]$

Physik

Zugeführte Wärmeenergie isochor, isobar

114 Thermodynamik

(isochor)

(isobar)

$$\Delta Q = n \cdot C_{v,p} \cdot \Delta T$$

$$C_v = \frac{f}{2}R$$

$$C_p = \frac{f+2}{2}R$$

$$\frac{2}{2}R$$

115 Thermodynamik

Physik

Adiabatenkoeffizient

$$\kappa = \frac{f+2}{f} = \frac{C_p}{C_v}$$

116 Thermodynamik

Physik

Isotherme Energieänderung

$$\Delta W = n \cdot R \cdot T \cdot \ln \frac{V_2}{V_1} = -\Delta Q$$

Stoffmenge n:

R:

universelle Gaskonstante $\left[\frac{J}{mol K}\right]$

Temperatur in Kelvin T: Volumen t_0

 V_1 :

 V_2 : Volumen t_1

elektrische Ladung

$$Q = 1C = 1Coulomb$$
$$e = 1.0602 \cdot 10^{-19} C$$

Q: elektrische Ladunge: Elementarladung

Elektrizität

Coulomb-Kraft elektrostatische Kraft

Antwort

$$F_c = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$$

$$\varepsilon_0$$
: elektrische Feldkonstante F_c : $\vec{F_c} || \vec{r} ||$ r: Abstand der Punktladungen

elektrische Feldkonstante

02

$\varepsilon_0 = 8,854 \cdot 10^{-12} \frac{A \,\mathrm{s}}{\mathrm{V m}}$

Antwort

$$1 \frac{A s}{V m} = 1 \frac{C}{V m} = 1 \frac{F}{m}$$
$$= 1 \frac{A^2 s^4}{kg m^3} = 1 \frac{C^2}{N m^2}$$

Elektrizität

Physik

potentielle Energie elektrisches Feld

Antwort

$$W_{pot} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r}$$

 ε_0 : elektrische Feldkonstante r: Abstand der Punktladungen elektrisches Feld Punktladung

$$\begin{split} \vec{E}(\vec{r}) &= \frac{\vec{F_C}(\vec{r})}{Q} \\ \vec{E}_{Q_1}(\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1}{r^2} \end{split}$$

Elektrizität

elektrisches Potential

$$\begin{split} \varphi(\vec{r}) &= \frac{W_{pot}}{Q} \\ \varphi_{Q_1}(\vec{r}) &= \frac{1}{4\pi\varepsilon_0} \cdot \frac{Q_1}{r} \end{split}$$

$$\varphi(r) = \frac{1}{Q}$$

$$\varphi(r) = \frac{1}{Q}$$

elektrische Spannung

Elektrizität

206

$$U = \Delta \varphi$$
$$= \int_{r1}^{r2} \vec{E} \cdot \vec{ds}$$

$$= \int_{r_1}^{r_2} V = \frac{J}{C}$$

elektrische Arbeit

$$W = Q \cdot U$$

Antwort

 $= Q \cdot \int_{\mathbb{T}^1}^{r2} \vec{E} \cdot \vec{ds}$

$$W = Q \cdot C$$

$$= \int_{r_1}^{r_2} \vec{F} \cdot d\vec{s}$$

Elektrizität

Raumladungsdichte

$$\rho = \frac{Q}{V} \quad \left[\frac{\mathbf{C}}{\mathbf{m}^2} \right]$$

Physik	# 209	Elektrizität
		-

Elektrizität

Flächenladungsdichte

$$\sigma = \frac{Q}{A} \quad \left[\frac{\mathbf{C}}{\mathbf{m}^3}\right]$$

Physik	# 210	Elektrizität

Längenladungsdichte

$$\lambda = \frac{Q}{l} \quad \left[\frac{\mathbf{C}}{\mathbf{m}}\right]$$

Physik	# 211	Elektrizität

E-Feld Kugelkondensator

 ε_0 :

$$E(r) = \frac{Q}{4\pi\varepsilon_0 r^2} \text{ für } r \ll R_0$$

elektrische Feldkonstante

Kugelradius r:

Entfernung Kugelmittelpunkt R_0 :

Flächenladungsdichte

 $\rho = \varepsilon_0 \cdot E_\perp$

Physik	# 213	Elektrizität

elektrische Verschiebungsdichte

$\vec{D} =$	$\varepsilon_0 \varepsilon_r$	Ì

Physik	# 214	Elektrizität

Kapazität Plattenkondensator

$$C = \frac{Q}{U} = \varepsilon_0 \varepsilon_r \cdot \frac{A}{d}$$

hysik	# 215	Elektrizität

Physik

Kapazität Kugelkondensator

215 Antwort
$$C = \frac{Q}{U} = \frac{4\pi\varepsilon_0\varepsilon_r}{\frac{1}{2} - \frac{1}{2}}$$

hysik	# 216	Elektrizität

Physik

Kapazität Zylinderkondensator

216 Antwort
$$C = \frac{Q}{U} = \frac{2\pi\varepsilon_0\varepsilon_r l}{\ln(\frac{r_a}{r_i})}$$

Physik	# 217	Elektrizität

gespeicherte Energie Kondensator

Physik	# 218	Elektrizität

Physik

energiedichte Elektrisches Feld

 $w = \frac{W}{V} = \frac{1}{2}\varepsilon_0\varepsilon_r E^2$

Elektrizität

Physik

elektrischer Strom

219 Antwort
$$I = \frac{Q}{4}$$

elektrische Stromdichte

Physik # 221 Elektrizität

Leitfähigkeit

$$R = \rho \cdot \frac{l}{A}$$

Antwort

spezifischer Widerstand $[\Omega m]$ ρ :

E-Magnetismus

Physik

Erregung ∞ -Draht

$$H = \frac{I}{2\pi r}$$

E-Magnetismus

Physik

Erregung lange, dünne Zylinderspule

$$H = I \frac{N}{l}$$

N: Windungszahl l: Länge

E-Magnetismus

Physik

Erregung Kreisstrom

E-Magnetismus

Physik

magnetische Feldkonstante

$$\mu_0 = 4\pi \cdot$$

$$\mu_0 = 4\pi \cdot 10^{-17} \, \frac{\mathrm{V \, s}}{\mathrm{A \, m}}$$

Physik

magnetische Flussdichte

E-Magnetismus

$$\vec{B} = \mu_0 \cdot \mu_r \cdot \vec{H}$$

$$\left[1 \text{ T} = 1 \frac{\text{V s}}{\text{A m}} \frac{\text{A}}{\text{m}} = 1 \frac{\text{V s}}{\text{m}^2} = 10^4 \text{ G} \right]$$

 \vec{H} : magnetische Erregung μ_0 : magnetische Feldkonstante μ_τ : magnetische Permeabilität

E-Magnetismus

Physik

Lorentz-Kraft

$$\vec{F}_L = q \cdot \vec{v} \times \vec{B}$$

E-Magnetismus

Physik

$F_L = IlB$

Antwort

Stromstärke

l: Leiterlänge im Magnetfeld

B: magnetische Flußdichte

E-Magnetismus

Physik

Bahnen freier Ladungsträger im Magnetfeld

257 Antwort

(a)
$$\vec{v} || \vec{B} \Rightarrow \vec{v} = \text{const}$$

$$F_L = 0$$

 $\vec{v} \perp \vec{B} \Rightarrow \vec{v} \neq \text{const}, |\vec{v}| = \text{const}$

 \vec{v} beliebig $\Rightarrow \vec{v} = \vec{v}_{\perp} + \vec{v}_{\parallel}$ Überlagerung (a) und (b)

 $r = \frac{m \cdot V}{aB}$

(b)

(c)

E-Magnetismus

Drehmoment auf Leiterschleife

Physik

258 Antwort

$$\begin{split} \vec{M} &= I \cdot \vec{r} \times \vec{l} \times \vec{B} \\ &= \vec{A} \times \vec{B} = \vec{m} \times \vec{B} \end{split}$$
 mit $\vec{m} = I \times \vec{A}$ (magnetischer Moment)

E-Magnetismus

Physik

Hallspannung

$$U_H = A_H \frac{I \cdot B}{d}$$

 A_H : Hall-Koeffizient

d: dicke des Plättchens

E-Magnetismus

Physik

Induzierte Spannung

260 Antwort
$$\ddot{\text{Anderung }} A \qquad U_{ind} = -NB \cdot \frac{\delta A}{\delta t}$$

Änderung
$$B$$
 $U_{ind} = -NA \cdot \frac{\delta B}{\delta t}$
Änderung Q $U_{ind}(t) = N \cdot B \cdot A \cdot \omega \cdot \sin(\omega t)$

Änderung φ $U_{ind}(t) = N \cdot B \cdot A \cdot \omega \cdot \sin(\omega t)$

Physik

induktivität lange Zylinderspule

E-Magnetismus

$$L = \mu_r \cdot \mu_0 \cdot A \cdot \frac{N^2}{l}$$
$$[L] = 1 \frac{Vs}{A}$$

E-Magnetismus

Physik

Selbstinduktion Spule

$$U_{ind} = -L \cdot \frac{\delta I}{\delta t}$$

E-Magnetismus

Physik

Energie in Spule

E-Magnetismus

Physik

Energiedichte im Magnetfeld

264 Antwort
$$w = \frac{1}{2}\mu_r\mu_0H^2 = \frac{1}{2}HB$$

Physik	# 300	Optik

O ...

TO 1

300 Antwort =

Physik	# 301	Optik

Physik # 302 Optik

302 Antwort =

Hinweise zur Nutzung dieser Karteilernkarten:

Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden.

"THE BEER-WARE LICENSE": Moritz Augsburger (and others, see

https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day and you think this stuff is north it you can have me a been on a coffee in

Antwort

If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.