KORESPONDENCYJNY KURS Z MATEMATYKI

PRACA KONTROLNA nr 3 - POZIOM PODSTAWOWY

1. Punkty K i L są środkami boków AB i CD czworokąta ABCD. Wykaż, że

$$\overrightarrow{KL} = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{BC}).$$

Wykonaj rysunek.

- 2. W pewnym ciągu geometrycznym każdy (z wyjątkiem pierwszego) wyraz jest różnicą wyrazu następnego i poprzedniego. Znajdź iloraz tego ciągu.
- 3. Rozwiąż nierówność

$$[\log_{0.2}(x-1)]^2 > 4.$$

4. Rozwiąż równanie

$$\sin^2 x + \frac{1}{2}\sin 2x = 1.$$

- 5. Statek płynie prosto w kierunku klifu. Kąt elewacji (kąt utworzony przez linię poziomą i odcinek łączący obserwatora na statku ze szczytem klifu) wynosi początkowo α , ale po przepłynięciu przez statek d metrów wzrasta do β . Wyznacz wysokość klifu. Wykonaj obliczenia dla wartości $\alpha=10^{\circ}, \beta=15^{\circ}, d=50$.
- 6. Obliczyć pole części wspólnej trzech kół o promieniach r i środkach w wierzchołkach trójkąta równobocznego o boku $r\sqrt{2}$.

PRACA KONTROLNA nr 3 - POZIOM ROZSZERZONY

- 1. Znajdź taki ciąg arytmetyczny, w którym suma pierwszych n wyrazów równa jest n^2 dla wszystkich $n \in \mathbb{N}$.
- 2. W sześciokącie foremnym ABCDEF punkty M i N są środkami boków CD i DE. Wyznacz kat między wektorami \overrightarrow{AM} i \overrightarrow{BN} .
- 3. Rozwiąż nierówność

$$\log_{2x}(x^2 - 5x + 6) < 1.$$

4. Rozwiąż równanie

$$\cos 2x - 3\cos x = 4\cos^2\frac{x}{2}.$$

- 5. Znajdź najmniejszą wartość ilorazu pola powierzchni bocznej stożka i pola powierzchni kuli wpisanej w ten stożek oraz kat rozwarcia stożka realizujący tę wartość najmniejszą.
- 6. Na dachu budynku stoi antena, której wysokość chcemy wyznaczyć nie wchodząc na górę. Urządzenie pomiarowe ustawione w pewnej odległości od budynku zmierzyło kąty między pionem a odcinkiem łączącym punkt pomiaru ze szczytem anteny oraz między pionem a odcinkiem łączącym punkt pomiaru z podstawą anteny. Otrzymano kąty α_1 i β_1 odpowiednio. Następnie przesunięto urządzenie o d metrów w kierunku budynku bez zmiany wysokości punktu pomiarowego i ponowiono pomiary, otrzymując kąty α_2 i β_2 . Podaj wzór na wysokość anteny i wykonaj obliczenia dla kątów $\alpha_1 = 53^\circ$, $\beta_1 = 55^\circ$, $\alpha_2 = 51^\circ$, $\beta_2 = 53.04^\circ$, oraz d = 5m.

Rozwiązania (rękopis) zadań z wybranego poziomu prosimy nadsyłać do **20 listopada 2020r.** na adres:

Wydział Matematyki Politechnika Wrocławska Wybrzeże Wyspiańskiego 27 50-370 WROCŁAW.

Na kopercie prosimy <u>koniecznie</u> zaznaczyć wybrany poziom! (np. poziom podstawowy lub rozszerzony). Do rozwiązań należy dołączyć zaadresowaną do siebie kopertę zwrotną z naklejonym znaczkiem, odpowiednim do formatu listu. Polecamy stosowanie kopert formatu C5 (160x230mm) ze znaczkiem o wartości 3,30 zł. Na każdą większą kopertę należy nakleić droższy znaczek. Prace niespełniające podanych warunków nie będą poprawiane ani odsyłane.

Uwaga. Wysyłając nam rozwiązania zadań uczestnik Kursu udostępnia Politechnice Wrocławskiej swoje **dane osobowe**, które przetwarzamy **wyłącznie** w zakresie niezbędnym do jego prowadzenia (odesłanie zadań, prowadzenie statystyki). Szczegółowe informacje o przetwarzaniu przez nas danych osobowych są dostępne na stronie internetowej Kursu.

Adres internetowy Kursu: http://www.im.pwr.edu.pl/kurs