Positive-Unlabeled Learning

송헌 (songheony@gmail.com)

M.S. candidate at Kyushu University Computational Learning Theory Team, RIKEN AIP

CONTENTS

PU Learning의 공식화

• Convex formulation for learning from positive and unlabeled data [Du Plessis et al., ICML, 2015]

위 공식의 문제를 해결

Positive-Unlabeled Learning with Non-Negative Risk Estimator [Kiryo R yuichi, et al. NIPS, 2017]

PNU Learning의 제안

- Semi-supervised classification based on classification from positive and unlabeled data [Sakai Tomoya, et al. ICML, 2017]
- Theoretical Comparisons of Positive-Unlabeled Learning against Positive-Negative Learning [Niu Gang, et al. NIPS, 2016]

위 연구들의 이론적 분석

CONTENTS

Binary Supervised Classification (PN Learning)

- 레이블 $y \in \{+1, -1\}$ 이 붙어있는 샘플들 $\{(x_i, y_i)\}_{i=1}^n \sim p(x, y)$ 이 주어진다.
- 리스크 $R(f) = \mathbb{E}_{p(x,y)}[\ell(yf(x))]$ 을 최소화하는 것을 목표로 한다.

• 이때 Empirical 리스크는 최적의 경우 다음과 같이 나타내어진다.

$$\widehat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i f(x_i)) = R(f) + O\left(\frac{1}{\sqrt{n}}\right)$$

01

Positive-Unlabeled (PU) Learning

• Positive 샘플들 $\{x_i^P\}_{i=1}^{n_P} \sim p(x|y=+1)$ 과 Unlabeled 샘플들 $\{x_i^U\}_{i=1}^{n_U} \sim p(x)$ 이 주어진다.

• 데이터 클릭여부, 친구 여부 등 다양한 경우가 있을 수 있음.

 기존의 방법들은 이론적 분석이 되어있지 않거나, 실제 리스크가 아닌 편향된 목적 함수를 최적화 하는 경우가 많음. • 최소화 하려는 리스크는 다음과 같이 표현이 가능함

$$R(f) = \mathbb{E}_{p(x,y)} [\ell(yf(x))]$$

$$= \pi \mathbb{E}_{p(x|y=+1)} [\ell(f(x))] + (1-\pi) \mathbb{E}_{p(x|y=-1)} [\ell(-f(x))]$$

단, $\pi = p(y = +1)$ 은 Class-prior을 나타내며, 이를 추정하는 많은 방법론들이 제안되어 있음.

- 이때, Negative 샘플들은 주어지지 않았기 때문에, 해당 리스크를 직접적으로 최소화하는 것은 불가능하다.
- 이를 위해서 Unlabeled 샘플들을 이용해 리스크를 추정한다.

• Unlabeled 샘플의 분포 p(x)는 Positive 샘플의 분포 p(x|y=+1) 와 Negative 샘플의 분포 p(x|y=-1) 가 혼합된 형태이다.

$$p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$$

$$p(x|y = -1)$$

$$p(x|y = +1)$$

$$p(x)$$

• 이를 이용하면 다음과 같은 식의 변형이 가능하다

$$R(f) = \mathbb{E}_{p(x)} [\ell(yf(x))]$$

$$= \pi \mathbb{E}_{p(x|y=+1)} [\ell(f(x))] + (1 - \pi) \mathbb{E}_{p(x|y=-1)} [\ell(-f(x))]$$

$$= \pi \mathbb{E}_{p(x|y=+1)} [\ell(f(x))] + \mathbb{E}_{p(x)} [\ell(-f(x))] - \pi \mathbb{E}_{p(x|y=-1)} [\ell(-f(x))]$$

- 즉, 기존의 리스크에서 편향되지 않은 목적함수를 만들 수 있다.
- 또한 convergence rate가 다음과 같이 나타내어진다.

$$\widehat{R}(f) = R(f) + O\left(\frac{2\pi}{\sqrt{n_P}} + \frac{1}{\sqrt{n_U}}\right)$$

• PN Learning과 convergence rate를 비교해보면 다음과 같다

PN Learning
$$O\left(\frac{\pi}{\sqrt{n_P}} + \frac{1-\pi}{\sqrt{n_N}}\right)$$

$$O\left(\frac{2\pi}{\sqrt{n_P}} + \frac{1}{\sqrt{n_U}}\right)$$
 PU Learning

• 즉 다음과 같은 조건을 만족하면 오히려 더 좋은 bound를 얻게 된다

$$\frac{\pi}{\sqrt{n_P}} + \frac{1}{\sqrt{n_U}} < \frac{1 - \pi}{\sqrt{n_N}}$$

• 단 이러한 방법에는 문제점이 있는데, 손실함수가 $\ell(x) \ge 0, \forall x$ 를 만족한다면 다음의 조건 또한 만족해야 한다

$$R^{-}(f) = (1 - \pi) \mathbb{E}_{p(x|y=-1)} [\ell(-f(x))] \ge 0$$

• 하지만 실제로 학습을 할 경우에는 Empirical 리스크를 다루기 때문에 이러한 조건을 만족하지 못하는 경우가 발생한다

$$\widehat{R}^{-}(f) = \frac{1}{n_U} \sum_{i=1}^{n_U} \ell\left(-f(x_i^U)\right) - \frac{\pi}{n_P} \sum_{i=1}^{n_P} \ell\left(-f(x_i^P)\right) \ge 0$$

• 이러한 문제로 인해, 오버피팅이 일어나고 제대로 예측을 못하게 된다.

• 논문에서는 다음과 같은 굉장히 간단한 리스크로 목적함수를 변형시킴

$$\tilde{R}(f) = \frac{\pi}{n_P} \sum_{i=1}^{n_P} \ell\left(f(x_i^P)\right) + \max\left\{0, \frac{1}{n_U} \sum_{i=1}^{n_U} \ell\left(-f(x_i^U)\right) - \frac{\pi}{n_P} \sum_{i=1}^{n_P} \ell\left(-f(x_i^P)\right)\right\}$$

- 변형된 목적함수는 약간의 편향을 갖게 되지만, 샘플수에 따라 편향이 지수적 으로 작아지게 된다.
- 또한 여전히 다음과 같은 convergence rate를 가지게 된다

$$\tilde{R}(f) = R(f) + O\left(\frac{\pi}{\sqrt{n_P}} + \frac{1}{\sqrt{n_U}}\right)$$

• 논문에서는 해당 목적함수를 최소화 하기 위하여 다음과 같이, Negative sample에 대한 리스크가 양수가 되도록 조정함.

• If
$$\frac{1}{n_U} \sum_{i=1}^{n_U} \ell\left(-f(x_i^U)\right) - \frac{\pi}{n_P} \sum_{i=1}^{n_P} \ell\left(-f(x_i^P)\right) \ge -\beta$$

목적함수의 기울기 $\nabla \tilde{R}(f)$ 를 계산

Else

기울기
$$-\nabla \left(\frac{1}{n_U}\sum_{i=1}^{n_U}\ell\left(-f(x_i^U)\right) - \frac{\pi}{n_P}\sum_{i=1}^{n_P}\ell\left(-f(x_i^P)\right)\right)$$
를 계산

• 계산된 기울기를 바탕으로 Gradient Descent 알고리즘을 실행

• 실제로 충분히 많은 Unlabeled 샘플을 이용하여 실험한 결과 PN Learning 보다 좋은 실험 결과를 얻었다.

04

Semi-supervised classification based on classification from positive and unlabeled data

• Positive 샘플들 $\{x_i^P\}_{i=1}^{n_P} \sim p(x|y=+1)$,

Negative 샘플들 $\{x_i^N\}_{i=1}^{n_N} \sim p(x|y=-1)$,

Unlabeled 샘플들 $\left\{x_i^U\right\}_{i=1}^{n_U} \sim p(x)$ 이 주어졌을 때에는?

• 기존에는 Manifold smoothing 등 정규화를 위해 Unlabeled 샘플들을 이용하였음

- PN, PU, NU를 조합하여 Unlabeled 샘플들을 직접적으로 이용
- Unlabeled 샘플의 수에 따른 convergence rate의 비교:
 - 1) n_U 가 클 때: PU (NU) > PN > NU (PU)
 - 2) n_U 가 작을 때: PU (NU) > NU (PU) > PN
- 즉, PN + PU 혹은 PN + NU가 어떠한 경우에도 좋은 결과를 기대할 수 있음
- 위의 조합을 이용하여 문제를 해결

• 따라서 목적함수를 다음과 같이 설계

$$R_{PNU}^{\eta}(f) = \begin{cases} (1 - \eta)R_{PN}(f) + \eta R_{PU}(f), & 0 \le \eta \le 1\\ (1 + \eta)R_{PN}(f) - \eta R_{NU}(f), & 0 > \eta \ge -1 \end{cases}$$

Semi-supervised classification based on classification from positive and unlabeled data

• 다음과 같은 convergence rate가 얻어진다

$$\hat{R}_{PNPU}(f) = 2R_{PNPU}(f) + O\left(\frac{(1+\eta)\pi}{\sqrt{n_P}} + \frac{(1-\eta)(1-\pi)}{\sqrt{n_N}} + \frac{\eta}{\sqrt{n_U}}\right)$$

즉, Unlabeled 샘플들이 학습에 충분히 도움을 줌

• 또한, 특정 η 에 대해서는 다음과 같은 관계를 가짐

$$\operatorname{Var}[\hat{R}_{PNPU}(f)] < \operatorname{Var}[\hat{R}_{PN}(f)]$$

즉, 더 안정적으로 학습이 가능하며, cross-validation에 유용함

- 1 Semi-supervised classification based on classification from positive and unlabeled data
 - 실험결과, 제안방법이 기존의 방법들과 PU + NU보다 좋은 성능을 보였음

Data set	$n_{ m L}$ PNU	PUNU	ER	LapSVM	SMIR	WellSVM	S4VM
Banana	10 30.1 (1.0)	32.1 (1.1)	35.8 (1.0)	36.9 (1.0)	37.7 (1.1)	41.8 (0.6)	45.3 (1.0)
d = 2	50 19.0 (0.6)	26.4(1.2)	20.6 (0.7)	21.3(0.7)	21.1 (1.0)	42.6(0.5)	38.7 (0.9)
Phoneme	10 32.5 (0.8)	33.5 (1.0)	33.4 (1.2)	36.5 (1.5)	36.4 (1.2)	28.4 (0.6)	33.7 (1.4)
d = 5	50 28.1 (0.5)	32.8(0.9)	27.8 (0.6)	27.0(0.8)	28.6(1.0)	26.8(0.4)	25.1(0.2)
Magic	10 31.7 (0.8)	34.1 (0.9)	34.2 (1.1)	37.9 (1.3)	36.0 (1.2)	30.1 (0.8)	33.3 (0.9)
d = 10	50 29.9 (0.8)	33.4 (0.9)	30.9 (0.5)	31.0 (0.9)	30.8 (0.9)	28.8(0.8)	29.2(0.4)
Image	10 29.8 (0.9)	31.7 (0.8)	33.7 (1.1)	36.6 (1.2)	36.7 (1.2)	34.7 (1.1)	35.9 (1.0)
d = 18	50 20.7 (0.8)	26.6(1.1)	20.8(0.8)	20.3 (1.0)	20.9(0.9)	27.2(1.0)	23.2(0.7)
Susy	10 44.6 (0.6)	45.0 (0.6)	47.7 (0.4)	48.2 (0.4)	45.1 (0.7)	48.0 (0.3)	46.8 (0.3)
d = 18	50 38.9 (0.6)	41.5 (0.6)	37.9(0.7)	43.1 (0.6)	43.9 (0.8)	43.8(0.7)	42.1 (0.4)
German	10 40.8 (0.9)	42.4 (0.7)	43.6 (0.9)	45.9 (0.7)	46.2 (0.8)	42.4 (0.8)	42.0 (0.7)
d = 20	$50\ 36.2\ (0.8)$	39.0 (0.8)	38.9(0.6)	40.6(0.6)	38.4(1.1)	38.5 (1.0)	34.9(0.5)
Waveform	10 17.4 (0.6)	18.0 (0.9)	18.5 (0.6)	24.9 (1.4)	18.0 (1.0)	16.7 (0.6)	20.8 (0.8)
d = 21	50 16.3 (0.6)	23.7(1.2)	14.2(0.4)	18.1 (0.8)	15.4(0.6)	15.5(0.5)	15.3 (0.3)
ijenn1	10 43.6 (0.6)	40.3 (1.0)	49.7 (0.1)	49.2 (0.3)	44.0 (1.0)	45.9 (0.7)	49.3 (0.8)
d = 22	50 34.5 (0.8)	37.1 (0.9)	35.5 (0.8)	33.4 (1.1)	49.4 (0.3)	46.2 (0.8)	48.6 (0.4)
g50c	10 11.4 (0.6)	12.5(0.6)	23.3(2.3)	39.8 (1.6)	21.9 (1.3)	6.6(0.4)	27.0 (1.4)
d = 50	50 12.5 (1.1)	10.1 (0.6)	8.7 (0.4)	22.5 (1.5)	10.6 (0.6)	7.4(0.4)	12.1 (0.5)
covtype	$10\ 46.2\ (0.4)$	$46.0\ (0.4)$	46.0(0.5)	47.1(0.5)	47.9(0.5)	46.9(0.6)	46.4(0.4)
d = 54	50 41.3 (0.5)	42.3 (0.5)	41.0 (0.4)	41.5 (0.5)	46.2 (0.8)	43.6 (0.6)	40.8 (0.4)
Spambase	10 27.2 (0.9)	28.1 (1.1)	31.8 (1.4)	39.7 (1.4)	30.9 (1.3)	23.8(0.8)	36.1 (1.5)
d = 57	50 23.4 (1.0)	26.6 (1.0)	22.1(0.7)	28.5 (1.3)	20.9 (0.5)	19.1(0.4)	24.5 (0.9)
Splice	10 38.3 (0.8)	39.3 (0.8)	43.9 (0.8)	47.9 (0.5)	41.6 (0.7)	42.0 (1.0)	42.4 (0.6)
d = 60	50 30.6 (0.8)	34.7 (0.9)	30.9(0.8)	38.8 (1.0)	30.6 (0.9)	40.9 (0.8)	35.9 (0.7)
phishing	10 24.2 (1.2)					27.5(1.4)	31.7 (1.3)
d = 68	50 15.8 (0.6)	18.3 (0.8)	15.4(0.5)	21.1 (1.3)	14.7 (0.8)	17.2(0.7)	16.7 (0.8)
a9a	10 31.4 (0.9)	31.3 (1.0)	34.3 (1.2)	41.0 (1.1)	37.3 (1.3)	33.1 (1.2)	34.3 (1.2)
d = 83	50 27.9 (0.6)	29.9 (0.8)	28.6 (0.7)	33.3 (1.0)	26.9 (0.7)	28.9 (0.8)	26.2(0.4)
Coil2	10 38.7 (0.8)	40.1 (0.8)	42.8 (0.7)	43.9 (0.8)	43.2 (0.8)	39.1(0.9)	44.0 (0.8)
d = 241	50 23.2 (0.6)	30.5 (0.9)	23.6 (0.9)	22.8 (0.9)	25.1 (0.9)	22.6 (0.8)	25.4 (0.8)
w8a	10 35.9 (0.9)	33.6 (1.0)	41.6 (1.0)	46.6 (0.8)	39.4 (0.9)	42.1 (0.8)	43.0 (0.8)
d = 300	50 28.1 (0.7)	27.6 (0.6)	27.0 (0.9)	38.7 (0.8)	28.0 (0.9)	33.7(0.8)	35.2 (1.0)

Misclassification error rate

- 1 Semi-supervised classification based on classification from positive and unlabeled data
 - 또한, 실제로 class-prior를 추론하여 실험하였을 때도 좋은 결과를 얻었음

Misclassification error rate

Data set	$n_{ m U}$	π	$\hat{\pi}$	PNU	ER	LapSVM	SMIR	WellSVM
Arts	1000	0.50	0.49 (0.01)	27.4 (1.3)	26.6 (0.5)	26.1 (0.7)	40.1 (3.9)	27.5 (0.5)
	5000	0.50	0.50(0.01)	24.8(0.6)	26.1(0.5)	26.1(0.4)	30.1 (1.6)	N/A
	10000	0.50	0.52 (0.01)	25.6(0.7)	25.4(0.5)	25.5 (0.6)	N/A	N/A
Deserts	1000	0.73	0.67 (0.01)	13.0 (0.5)	15.3 (0.6)	16.7 (0.8)	17.2 (0.8)	18.2 (0.7)
	5000	0.73	0.67(0.01)	13.4(0.4)	13.3(0.5)	16.6(0.6)	24.4(0.6)	N/A
	10000	0.73	0.68 (0.01)	13.3(0.5)	13.7(0.6)	16.8(0.8)	N/A	N/A
Fields	1000	0.65	0.57 (0.01)	22.4 (1.0)	26.2 (1.0)	26.6 (1.3)	28.2 (1.1)	26.6 (0.8)
	5000	0.65	0.57(0.01)	20.6(0.5)	22.6(0.6)	24.7(0.8)	29.6(1.2)	N/A
	10000	0.65	0.57(0.01)	21.6(0.6)	22.5 (0.6)	25.0(0.9)	N/A	N/A
Stadiums	1000	0.50	0.50 (0.01)	11.4 (0.4)	11.5 (0.5)	12.5 (0.5)	17.4 (3.6)	11.7 (0.4)
	5000	0.50	0.50(0.01)	11.0(0.5)	10.9(0.3)	11.1(0.3)	13.4(0.7)	N/A
	10000	0.50	0.51 (0.00)	10.7(0.3)	10.9(0.3)	11.2(0.2)	N/A	N/A
Platforms	1000	0.27	0.33 (0.01)	21.8 (0.5)	23.9 (0.6)	24.1 (0.5)	30.1 (2.3)	26.2 (0.8)
	5000	0.27	0.34(0.01)	23.3(0.8)	24.4(0.7)	24.9(0.7)	26.6(0.3)	N/A
	10000	0.27	0.34 (0.01)	21.4(0.5)	24.3(0.6)	24.8(0.5)	N/A	N/A
Temples	1000	0.55	0.51 (0.01)	43.9 (0.7)	43.9 (0.6)	43.4 (0.6)	50.7 (1.6)	44.3 (0.5)
	5000	0.55	0.54(0.01)	43.4(0.9)	43.0(0.6)	43.1(1.0)	43.6(0.7)	N/A
	10000	0.55	0.50 (0.01)	45.2(0.8)	44.4 (0.8)	44.2(0.7)	N/A	N/A

• Class-prior π 를 추론하는 간단한 방법 중 하나는 다음과 같은 분포를 찾는 것 $^{[*]}$

$$q(x; \theta) = \theta p(x|y = +1) + (1 - \theta)p(x|y = -1)$$

• 그리고 $q(x;\theta)$ 와 p(x)를 가깝게 하는 θ 를 찾아서 π 를 추정

$$\theta = \underset{0 \le \theta \le 1}{\operatorname{argmin}} \int f\left(\frac{q(x;\theta)}{p(x)}\right) p(x) dx$$

단, f는 convex 함수이며, f(1) = 0을 만족

• 보통 f에는 KL-Divergence, Pearson Divergence 등이 사용되어짐

[*] Analysis of Learning from Positive and Unlabeled Data [Du Plessis et al., NIPS, 2014]

• 하지만, p(x|y = -1)의 샘플들은 주어지지 않기 때문에 다음을 탐색

$$q(x;\theta) = \theta p(x|y = +1)$$

$$\theta = \underset{0 \le \theta \le 1}{\operatorname{argmin}} \int f\left(\frac{q(x;\theta)}{p(x)}\right) p(x) dx$$

$$q(x; \theta) = \theta p(x|y = +1) + (1 - \theta)p(x|y = -1)$$

$$q(x;\theta) = \theta p(x|y = +1)$$

05

Class-prior estimation for learning from positive and unlabeled data

- 이로인해 π 를 overestimate 하는 경향을 보임
- 논문에서는 L1-distance를 이용하는 것으로 이러한 문제를 해결

Q & A

