Résultats concernant l'arithmétique d'intervalle appliquée aux réseaux de neurones

Capitaine de corvette Guillaume Berthelot

Aout 2024

On considère l'arithmétique d'intervalle appliquée aux réseaux de neurones.

Théorème 1. Soit un réseau de neurones quelconque. Soit A_{ϵ} un tenseur de symboles de bruits pour l'arithmétique d'intervalle. Soit f la fonction telle que l'image du tenseur à travers le réseau est donnée par $f(a_{\epsilon_i})$ pour chacun des éléments de A_{ϵ} .

S'il existe une base de dimension n sur laquelle la projection de A_{ϵ} est injective et s'il existe une matrice W représentant f sur cette base, c'est-à-dire pour tout i appartenant à $\{1,\ldots,n\}$, $f(a_{\epsilon_i})=Wa_{\epsilon_i}e_i$,

Alors,

$$Z^+ = |W||A_{\epsilon}|$$

est un vecteur bornant pour l'arithmétique d'intervalle. Si C est le vecteur centre, alors les bornes sont données par $C\pm Z^+$.

Proof. Soit p le nombre d'éléments de A_{ϵ} , on a

$$Z^{+} = \sum_{i=1}^{p} |f(a_{\epsilon_{i}})| = \sum_{i=1}^{p} |Wa_{\epsilon_{i}}e_{i}| = |W| \sum_{i=1}^{p} |a_{\epsilon_{i}}e_{i}|$$

d'où le résultat. \Box

Lemme 1. Il existe une base canonique dans laquelle les opérations dites linéaires des réseaux de neurones sont représentables par une matrice. Il s'agit de la base générée par l'opération d'aplatissement.

Lemme 2. Si p est le tenseur des coefficients d'approximation d'une fonction d'activation, alors l'image de p dans la base canonique est l'aplatissement de p.

Corollaire 1. Si $L_1, R_1, L_2, R_2, \ldots, L_n, R_n$ est une succession de couches linéaires et d'activations, et si A_{ϵ} est un tenseur de symboles de bruits pour l'arithmétique d'intervalle se projetant injectivement sur la base canonique de L_1 ,

Si p_1, p_2, \ldots, p_n sont les tenseurs d'approximation projetés dans leurs bases canoniques respectives, alors l'image A_s de A_ϵ pour l'arithmétique d'intervalle est donnée par

$$Z_s = |W_r||A_{\epsilon}| = |((p_n W_n) \otimes (p_{n-1} W_{n-1}) \otimes \cdots \otimes (p_1 W_1))||A_{\epsilon}||$$

Autrement dit, il est possible de réduire à un produit matriciel le calcul de l'arithmétique d'intervalle appliquée à l'ensemble du réseau.

Proof. Soit L_n, R_n les deux dernières couches linéaire et d'activation,

Soit A_{n-1} le tenseur de symboles d'entrée, A_s l'image du tenseur d'entrée par l'approximation linéaire du doublet L_n, R_n . Alors

$$A_s = f_n(p_n A_{n_1}) = p_n W_n A_{n-1}$$

puis récursivement

$$= p_n W_n p_{n-1} W_{n-1} A_{n-2} =$$

$$\dots = ((p_n W_n) \otimes (p_{n-1} W_{n-1}) \otimes \dots \otimes (p_1 W_1)) A_{\epsilon}$$

Or A_{ϵ} se projecte injectivement sur son espace canonique. D'où le résultat.

Théorème 2. Soit d le tenseur de bruit généré par l'approximation d'une couche d'activation. Alors d se projette injectivement sur la base canonique.

Proof. L'opération d'approximation est définie.

En appliquant les résultats précédents, il est possible de réduire l'évaluation de l'arithmétique d'intervalle à un produit matriciel.

Théorème 3. Soit $L_1, R_1, L_2, R_2, \ldots, L_n, R_n$ une succession de couches linéaires et d'activations, soit j une couche intermédiaire L_j . Alors les bornes pour l'arithmétique d'intervalle pour la couche d'activation R_j sont données par

$$C_j \pm \sum_{l=1}^{j} |W_{r_i}| |A_{d_i}|$$

où

$$W_{r_i} = (W_i) \otimes (p_{i-1}W_{i-1}) \otimes \cdots \otimes (p_iW_i) \quad \forall i \in \{1, \dots, j\}$$

Proof. Ce résultat est immédiat.

Corollaire 2. Soit un réseau constitué de couches linéaires et de fonctions d'activations. L'algorithme 1 est un algorithme d'approximation affine pour ce réseau en temps polynomial

Algorithm 1 Affine Approximation Algorithm for the Network

```
1: Step 1:
 2: for each linear layer do
      Calculate W_l
      Create an empty list L_W
 5: end for
 6: Step 2:
 7: Choose an input x
   for each dimension of x do
      Establish a noise level \delta
10: end for
11: Create the vector A_\delta
12: Create a list A with the first element A_{\delta}
13: Initialize a unit approximation vector p
14: for each layer of the network, in increasing order do
      if linear layer then
15:
        Calculate the center
16:
        for each element of the list L_W do
17:
           Multiply it by p \times W_l on left side
18:
        end for
19:
        Add W_l to the list L_W
20:
        Create a copy |L_W|
21:
        for each pair of elements (|W_L|, |A|) do
22:
           Stack the sum of the products: result Z^+
23:
24:
        end for
        Overwrite p with a unit vector of the output dimension
25:
      else if activation layer then
26:
        Calculate the bounds and store the result
27:
28:
        Define p, q, d
29:
        Shift the center
        Add A_d to the list A
30:
31:
      end if
32: end for
```