Ali Sharifi-Zarchi

CE Department Sharif University of Technology

October 15, 2024

- 1 Unsupervised Learning Overview
- 2 K-Means
- **3** Challenges in K-Means
- **4** Other Clustering Algorithms

- Unsupervised Learning Overview
- 2 K-Means
- 3 Challenges in K-Means
- 4 Other Clustering Algorithms

Unsupervised Learning

 Unsupervised Learning involves analyzing unlabeled data to uncover hidden patterns or structures within the data

Some Common Tasks

- **Clustering**: Grouping data points into clusters based on similarity.
- **Dimensionality Reduction**: Reducing the number of features under consideration and keeping (perhaps approximately) the most informative features.
- Anomaly Detection: Identifying data points that deviate significantly from the norm (e.g., fraud detection).
- Generative Modeling: Learning the distribution of data to generate new, similar instances.

000000000

Unsupervised Learning Overview

- Clustering organizes data points into groups of similar objects.
- Data points in a cluster are more similar to each other than to those in other clusters.
- The notion of similarity depends on the task at hand (e.g., purchase behavior in market segmentation).

Some Applications of Clustering

- Customer Segmentation (Marketing)
- Image Segmentation and Object Detection (Computer Vision)
- Anomaly Detection (Cybersecurity, Finance)
- Genomics and Bioinformatics
- Social Network Analysis and Community Detection

Clustering in Action: Music Recommendation Systems

Music recommendation systems cluster songs based on similarity.

Adopted from machinelearninggeek.com

• When you like a song, the system suggests others from the same cluster.

Unsupervised Learning Overview

Clustering in Action: Gene Expression Clustering

Clustering can decipher hidden patterns in gene expression data, which can help in understanding disease mechanisms or genetic variations.

Two Beginning Questions

- How to create 'good' clusters?
- How many clusters do we need?

- Unsupervised Learning Overview
- 2 K-Means
- 3 Challenges in K-Means
- 4 Other Clustering Algorithms

K-Means overview

- The most widely used clustering algorithm.
- Partitions data into K distinct groups based on feature similarity
- It works by iteratively assigning data points to the nearest centroid (mean of the group) and then recalculating the centroids based on the new group memberships
- The process repeats until the assignments no longer change

K-Means in action

K-Means in action (cont.)

K-Means 0000●0000000000000000

16 / 62

K-Means in action (cont.)

Challenges in K-Means

Algorithm

Algorithm 1 K-means Clustering

- 1: **Input:** K (number of clusters), $D = \{x^{(1)}, \dots, x^{(N)}\}$ (data points)
- 2: **Initialize:** Select K random points as centroids $\{\mu_1, \dots, \mu_k\}$
- 3: repeat
- Assign each point $\mathbf{x}^{(i)}$ to nearest centroid $f(\mathbf{x}^{(i)}) = \operatorname{argmin}_i \|\mathbf{x}^{(i)} \boldsymbol{\mu}_i\|$ 4:
- For each $1 \le j \le K$ set $C_i = \{x^{(i)} | f(x^{(i)}) = j\}$ 5:
- Update centroids $\boldsymbol{\mu}_i = \frac{1}{|C_i|} \sum_{\boldsymbol{x}^{(i)} \in C_i} \boldsymbol{x}^{(i)}$ 6:
- 7: **until** Centroids do not change
- 8: **Output:** Final clusters $\{C_1, C_2, \dots, C_K\}$

Problem definition

- Formally: We have $X_{\text{train}} = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\} \subseteq \mathbb{R}^d$
- *K* is the number of clusters.
- We are learning:
 - **1** A function or mapping $f: \mathbb{R}^d \to \{1, 2, ..., K\}$ that assigns a cluster to each data point.
 - 2 A set of K prototypes $\mu = \{\mu_1, \mu_2, ..., \mu_K\} \subseteq \mathbb{R}^d$ as the cluster representatives, called **centeroids**.

Objective Function

• We want samples in the same cluster to be similar.

K-Means

• In K-Means, this is expressed as:

$$J = \sum_{j=1}^{K} \sum_{x^{(i)} \in C_j} ||x^{(i)} - \mu_j||^2$$

- Choose f and $\mu = {\mu_1, \mu_2, ..., \mu_K}$ to minimize this.
- This problem is NP-hard. K-Means is a heuristic solution, which is NOT guaranteed to find optimal solution.

Adopted from mlbhanuyerra.github.io

Convergence

- How do we know K-Means will converge in a finite number of steps?
- First we show in each step *J* will decrease, as long as we have not converged.

Convergence (cont.)

• We initially assigne each sample to the nearest centroid.

K-Means

$$f(x) := argmin_j ||x - \mu_j||^2$$

.

- Keep each sample's assignment fixed until a closer centriod is found.
- Each time a sample is reassigned. the total distance between samples and their centroids decreases.
- The number of possible sample-to-centroid assignments is finite.
- The algorithm terminates when no sample changes its assigned centroid.

Convergence (cont.)

• In Updating step, with f(x) fixed, J is a quadratic function of μ_j (like SSE) and by taking derivative we can minimize it as:

$$\frac{\partial J}{\partial \mu_j} = 0 \implies \sum_{x^{(i)} \in C_j} 2\left(x^{(i)} - \mu_j\right) = 0$$

• This means we should **update** each μ_j as the mean of cluster C_j :

$$\mu_j = \frac{\sum_{x^{(i)} \in C_j} x^{(i)}}{|C_j|}$$

Convergence (cont.)

- For each cluster, the mean of its samples minimizes squared distances.
- For C_j if μ'_j was the old centroid we have: $\sum_{x^{(i)} \in C_j} ||x^{(i)} \mu'_j||^2 \ge \sum_{x^{(i)} \in C_i} ||x^{(i)} \mu_j||$. So $J_{\text{new}} \leq J_{\text{old}}$.

- *J* is non-negative, and there are a finite number of partitions so there is a minimum for *I* and we can't decrease *I* forever.
- Therefore we must converge at some point.
- The convergence properties of the K-means algorithm were studied by MacQueen (1967).

K-Means Convergence (cont.)

Strengths

- Simple: easy to understand and to implement.
- Efficient: Time complexity: *O*(*tkn*), where
 - *n* is the number of data points,
 - k is the number of clusters, and
 - *t* is the number of iterations.

- Unsupervised Learning Overview
- 2 K-Means
- **3** Challenges in K-Means
- 4 Other Clustering Algorithms

- K-Means always converges. What could go wrong?
- K-Means algorithm is a **heuristic**
- It requires initial centroids, and the choice is important as it could affect the *t* in O(tkn).

Local Optimum

- The algorithm finds a local minimum but there is no guarantee to find global minimum.
- Its result is highly affected by the initialization.
- Some suggestions are:
 - Multiple runs with random initial centroids, then select the "best" result.
 - Initialization heuristics (K-Means++, Furthest Traversal).
 - Initializing with the suggested results of another method.

Local Optimum

Local optimum (cont.)

Optimal clustering

Possible clustering

Definition of Mean

- We assume $x^{(i)} \in \mathbb{R}^d$, which is not always the case. K-Means requires a space where sample **mean** is defined.
 - · Categorical data.
 - A suggested solution: K-Mode the centroid is the most frequent category (the mode) in each cluster.
 - Closest centroid is found by the Hamming Distance.

How many clusters?

Adopted from

slides of Dr. Soleymani, Modern Information Retrieval Course, Sharif University of technology.

How many clusters? (cont.)

- Number of clusters is usually given in advance in the problem of clustering. However; finding the right number of clusters is also a problem.
- First we need to know how we can evaluate a clustering.

Clustering Evaluation

- Evaluating clusters involves two key aspects:
 - Intra-cluster cohesion (compactness): How similar the data points are within a cluster.
 - Often measured by the within-cluster sum of squares (WCSS):

$$WCSS = \sum_{i=1}^{K} \sum_{x \in C_i} ||x - \mu_i||^2$$

Challenges in K-Means

Clustering Evaluation

- **Inter-cluster separation (isolation)**: How different the data points are between clusters.
 - Single-link (Minimum Distance):
 - Measures the **minimum distance** between any two points from different clusters.

$$d_{\text{single}}(C_i, C_j) = \min_{x \in C_i, y \in C_j} d(x, y)$$

- Complete-link (Maximum Distance):
- Measures the maximum distance between any two points from different clusters.

$$d_{\text{complete}}(C_i, C_j) = \max_{x \in C_i, y \in C_j} d(x, y)$$

Clustering Evaluation

- **Inter-cluster separation (isolation)**: How different the data points are between clusters.
 - Centroid (Wards Method):
 - Measures the distance between the centroids of two clusters.

$$d_{\text{centroid}}(C_i, C_j) = d(\mu_i, \mu_j)$$

Challenges in K-Means

- Average-link:
- Measures the average distance between all pairs of points from different clusters.

$$d_{\text{average}}(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{x \in C_i} \sum_{y \in C_j} d(x, y)$$

Elbow Method for Optimal K

- Finds the optimal number of clusters *K* by minimizing the within-cluster sum of squares (WCSS).
- Elbow Point:
 - Plot WCSS versus K.
 - The point where the rate of decrease sharply slows down (resembles an "elbow") is considered the optimal K.

Silhouette Method for Cluster Evaluation

• Silhouette Score for a single point *i*:

$$S(i) = \frac{b(i) - a(i)}{max(a(i), b(i))}$$

Challenges in K-Means

- where:
 - *a(i)* is the average distance between *i* and all other points in the same cluster.
 - b(i) is the average distance between i and points in the nearest neighboring cluster.
- Interpretation:
 - $S(i) \in [-1,1]$
 - $S(i) \approx 1$: Well-clustered.
 - $S(i) \approx 0$: On or near the decision boundary between clusters.
 - $S(i) \approx -1$: Misclustered.

How many Clusters? (cont.)

- There is a trade-off between having better focus within each cluster or having too many clusters.
- Don't want one-element clusters.
- Optimization problem: penalize having too many clusters

$$K^* = arg min_k J(k) + \lambda k$$

- The algorithm is sensitive to outliers
- Outliers are data points that are very far away from other data points.
- Outliers could be errors in data recording or unique data points with significantly different values.

Data Distribution

- There is a problems with how k-means defines clusters.
- K-means assumes clusters are spherical and separated by equal variance, which limits its effectiveness on non-spherical or complex-shaped clusters.

Figure 1: example when k-means wont work

- Unsupervised Learning Overview
- 2 K-Means
- 3 Challenges in K-Means
- 4 Other Clustering Algorithms

Hard vs Soft Clustering

- **Hard Clustering(Partitional)**: Each data point belongs to exactly one cluster
 - More common and easier to use.
- Soft Clustering(Bayesian)

Figure adapted from Machine Learning and Pattern Recognition, Bishop

Hard vs Soft Clustering (cont.)

- Hard Clustering(Partitional)
- **Soft Clustering(Bayesian)**: Each sample is assigned to different clusters with probabilities, rather than $\{0,1\}$.
 - data point belongs to each cluster with a probability

Figure adapted from Machine Learning and Pattern Recognition, Bishop

Hierarchical Clustering

- Hierarchical algorithms find successive clusters using previously established clusters. Two Types:
 - **Agglomerative (bottom-up)**: Start with individual points and merge clusters.
 - **Divisive** (top-down): Start with all points and split clusters.

Result: A hierarchy of clusters represented by a dendrogram.

Agglomerative Clustering Algorithm

- Start with each point as its own cluster.
- Merge the "closest" clusters.
- Repeat until one cluster remains or desired number is reached.
- Closest cluster can be determined using inter-cluster separation measures

Dendrogram and Cutting

- A dendrogram shows the hierarchy of merges.
- Cut the dendrogram at a desired level to form clusters.

dist hclust (*, "complete")

Adopted from r-graph-gallery.com

Hierarchical Algorithms

- Advantages:
 - No need to specify the number of clusters.
 - Produces a dendrogram for visualization.
 - Works with arbitrary-shaped clusters.
- Disadvantages
 - High computational cost.
 - · Sensitive to noise and outliers.
 - Greedy: cannot undo merges.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise):

- Groups points in high-density regions.
- Labels points in low-density regions as noise.
- Does not require specifying the number of clusters *K*.

Parameters:

- ϵ (epsilon): Maximum distance for neighbors.
- minPts: Minimum points to form a dense region.

Core Concepts in DBSCAN

DBSCAN defines three types of points:

- **Core Point**: A point with at least minPts neighbors within distance ϵ .
- **Border Point**: A point within ϵ of a core point but with fewer than minPts neighbors.
- **Noise**: Points that are neither core points nor border points.

Adopted from ai.plainenglish.io

October 15, 2024

Core Concepts in DBSCAN (cont.)

Definitions:

• A point x_i is a core point if:

$$|\{x_j: d(x_i, x_j) \le \epsilon\}| \ge \min \mathsf{Pts}$$

• A point is a border point if it is within distance ϵ of a core point, but not itself a core point.

DBSCAN Algorithm Steps

Algorithm Steps:

- **1)** For each unvisited point x_i :
 - Mark x_i as visited.
 - Find all points within distance ϵ (neighborhood).
- ② If x_i is a core point:
 - Create a new cluster and expand it by recursively adding all reachable core and border points.
- 3 If x_i is not a core point:
 - Label it as noise if it does not belong to any cluster.

Advantages of DBSCAN

- Can find clusters of arbitrary shape (non-spherical).
- Does not require specifying the number of clusters *K* in advance.
- Robust to noise and outliers.
- · Works well with large datasets.

40) 4 (7)) 4 (3)

Limitations of DBSCAN

- DBSCAN struggles with datasets of varying densities.
- Sensitive to the selection of parameters ϵ and minPts.
- Does not perform well with high-dimensional data.

Other Clustering Algorithms 0000000000000000000

Clustering Algorithms

Each algorithm is suited for different kinds of patterns and information in data.

Contributions

- This slide has been prepared thanks to:
 - · Hooman Zolfaghari