

Ayudantía 5

19 de abril de 2024 Martín Atria, Paula Grune, Caetano Borges

Resumen

Conceptos importantes:

- Conjunto: es una colección bien definida de obejtos, estos objetos se llaman elementos del conjunto y diremos que pertenecen a él.
- \blacksquare Subconjunto: Sean A y B conjuntos. Diremos que A es subconjunto de B $(A\subseteq B)$ si

 $\forall x(x\in A\rightarrow x\in B)$ (esto es si cada elemento de A está en B)

- \bullet Diremos que dos conjuntos A y B son iguales si y solo si $A\subseteq B$ y $B\subseteq A.$
- Conjunto potencia: Dado un conjunto A, el conjunto de todos los subconjuntos de A corresponde a su conjunto potencia, $\mathcal{P}(A) := \{X | X \subseteq A\}$
- \blacksquare Complemento: Dado un conjunto $A\subseteq\mathcal{U},$ el complemento de A (relativo a $\mathcal{U})$ es

$$A^c = \mathcal{U} \backslash A = \{x | x \in \mathcal{U} \land x \notin A\}$$

Axioma de extensión: $\forall A \forall B, \ A = B \iff \forall x (x \in A \iff x \in B)$. Observación: $\{x,x\} = \{x\}$

Axioma del conjunto vacío: $\exists X$ tal que $\forall x, x \notin X$. $X = \emptyset$.

Teoremas importantes:

- Para todo conjunto A se tiene que $\varnothing \subseteq A$.
- Existe un único conjunto vacío.

Operaciones:

• Unión: dados dos conjuntos A y B, el conjunto de los elementos que están en A o en B corresponde a la unión de A y B $(A \cup B)$,

$$A \cup B = \{x | x \in A \lor x \in B\}$$

Dado un conjunto de conjuntos S se define la **unión generalizada** como

$$\bigcup S = \{x | \exists A \in S \text{ tal que } x \in A\}$$

■ Intersección: dados dos conjuntos A y B, el conjunto de los elementos que están en A y en B corresponde a la intersección de A y B $(A \cap B)$,

$$A \cap B = \{x | x \in A \land x \in B\}$$

Dado un conjunto de conjuntos S se define la intersección generalizada como

$$\bigcap S = \{x | \forall A \in S \text{ se cumple que } x \in A\}$$

■ Diferencia: dados dos conjuntos A y B, el conjunto de los elementos que están en A pero no en B corresponde a la diferencia de A y B $(A \setminus B)$,

$$A \backslash B = \{ x | x \in A \land x \notin B \}$$

Leyes

1. Absorción:

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

4. Asociatividad:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

7. Leves de De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

2. Elemento neutro:

$$A \cup \varnothing = A$$
$$A \cap \mathcal{U} = A$$

$$\varnothing = A$$
 $M = A$

5. Conmutatividad:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

8. Elemento inverso:

$$A \cup A^c = \mathcal{U}$$
$$A \cap A^c = \varnothing$$

3. Distributividad:

Distributividad.

$$A \cup (B \cap C) =$$

 $(A \cup B) \cap (A \cup C)$
 $A \cap (B \cup C) =$
 $(A \cap B) \cup (A \cap C)$

6. Idempotencia:

$$A \cup \bar{A} = A$$
$$A \cap A = A$$

9. Dominación:

$$A \cup \mathcal{U} = \mathcal{U}$$
$$A \cap \emptyset = \emptyset$$

1. Conjuntos y Producto Cartesiano

- 1. Sean A, B y C conjuntos no vacíos. ¿Son ciertas las siguientes afirmaciones? Demuestre o dé un contraejemplo.
 - a) $A \times B = B \times A$ si y sólo si A = B
 - b) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$
- 2. Definimos la diferencia simétrica entre dos conjuntos A y B como:

$$A\Delta B = A \setminus B \cup B \setminus A$$

Demuestre que si A, B y C son no vacíos, se cumple que.

Si
$$A\Delta C = B\Delta C$$
 entonces $A = B$

2. Teoría de Conjuntos

Dado un conjunto A, definimos

$$\mathcal{T}(A) = \{ X \in \mathcal{P}(A) \mid X = \emptyset \lor A \backslash X \text{ es finito} \}$$

Recuerde que $\mathcal{P}(A)$ es el conjunto potencia de A.

Demuestre que:

- 1. $\varnothing \in \mathcal{T}(A)$
- 2. $A \in \mathcal{T}(A)$
- 3. $\bigcup \mathcal{T}(A) \in \mathcal{T}(A)$
- 4. Si \mathcal{X} es un subconjunto finito de $\mathcal{T}(A)$, entonces $\bigcap \mathcal{X} \in \mathcal{T}(A)$.