	(A)		50 Å		(B)	波长是 5000	Å		(C)	4350	Å		(D)	3550	Å
		11	ナね	人工光士	z n dit	·4 字 . 七	な法分!	/ E i	. #	<i>ዾ</i> ኇ (7月 3년	, V. 4- 1	<u>~</u>	田出名	4、小.122.4	4
						效置一极 子(质量)									
						】(灰里) 射光光-				ヘリ ´I且./ソ	<i>e)</i> 1工型	三旦. 】1	松沙门口	л I Ш.Г.	ม I F
1 1-1-		hc	7(~-)	747 /414				主人.	hc	a.T.	D		hc		
					$\frac{hc}{\lambda_0}$ +	$\frac{(eRB)^2}{2}$	_		$\frac{nc}{\lambda_0}$	$+\frac{eR}{}$. <u>D</u>		$\frac{nc}{\lambda_0}$	-	ת ת
	(A)	λ_0		(B)	\mathcal{N}_0	2 <i>m</i>		(C)	κ_0	n	ı	(D)	κ_0	+ 2 <i>e</i>	KB
	2 42	0.2	四番	>;;	始 丛 左	사 미가 십시 :	나 자 스	모나	\ \$. 1		フ 44 目		K4L F	, -1,1 ,	4 Ш
						光照射 属时,则						人列目	它刀 E	K; 右じ	人円
	(A)	13 1		只只为) ル		らい, 火り 2 <i>hv</i> - コ			口)取. (C)	hv^-			(D)	$h \nu^+$	F_{r}
[(<i>1</i> 1)		∠K		(D)	211 V	LK		(C)	n v	L_{K}		(D)	n v	LK
_	4. 47		在身	養普顿	效应实!	验中,着	き散射 き	光波卡	:是入	射光》	支长的 [1.2 倍	,则带	女射光光	台子
					之比 ε /		/		. =-	– •/					•
	(A)	2			(E	3)			1	(C)	4			(D)	5
]				h 1.22 t :	F	w 11	Ab 415	4132.	=	M 115 -		e.144 *		, _
						原子受							到基為	ミ 发射的	了谷
	纽风世 (A)		支系儿 eV			J谱线, 3.4 。			公氢ル C)	界丁促 10.2			D)	13.6	الم
[(A)]		CV		(D)	J. 4 (UV	(C)	10.2	CV	,	ָע)	13.0	CV
	_		由氢	原子理	里论知,	当大量	氢原子	·处于	n = 3	的激发	之态时 ,	原子	跃迁	将发出:	
	(A) -					两种波								连续光	
]														
						激发到					0.19 eV	7,当	氢原于	产从能量	計
						时,所							<u>-</u> `		_
Γ	(A)		6 eV	/	(B)	3.41	eV		(C)	4.25	eV		(D)	9.95	eV
	_		在气	 依放 ⊧	且管中.	用能量	为 12	1 eV	的电	子去套	击办王	·基态I	的氢原	見子 . №	比时
_					能量只		,,		,, ,	, ,,	, / _ 1	11.70.	1 7 11//	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠. ٦
_		已欠月													
- 氢原	子所負						12.	1 eV,	10.2	2 eV 和	1.9 eV	7			
- 氢原	子所負				10.2 eV	V (C			10.2		1.9 eV 和	7	3.	4	еV
- 氢原	子所育 (A)		eV	(B) 12.1	10.2 eV	V (C]	10.2	(eV	和				
- 氢原 [子所育 (A) (D) 9.42	12.1 d 41:	eV	(B) 12.1 若 <i>α</i> 粒	10.2 eV eV 立子(电荷	V (C V , 5为 2e)?]	10.2	(eV	和				
- 氢原 [子所育 (A) (D) 9.42	12.1 α 41: リ <i>α</i> 料立	eV 三子的	(B) 12.1 若α粒 德布罗	10.2 eV eV i子(电荷 罗意波士	V (CV), 方为 2e)社 长是	生磁感	10.2 应强/	度为 1	eV B 均匀	和 磁场中		圣为 <i>R</i>	? 的圆刑	乡轨
- 氢原 [道运	子所育 (A) (D) 9.42	12.1 α 41: リ <i>α</i> 料立	eV	(B) 12.1 若α粒 德布罗	10.2 eV eV 立子(电荷	V (C V , 5为 2e)?	生磁感	10.2	度为 1	eV	和 磁场中	沿半往	圣为 <i>R</i>		乡轨
- 氢原 [道运	子所自 (A) (D) 9. 42 动,贝 (A)	12.1 d 41: リα粒 h/(1	eV i子的 2 <i>eRE</i>	(B) 12.1 若α粒 德布5	10.2 eV eV i子(电荷 罗意波七 (B)	V (C V , 方为 2e)社 长是 h/(el	生磁感 <i>。</i> RB)	10.2 应强原 (C	度为 <i>I</i> C)	eV B 均匀 1/(2 <i>el</i>	和 磁场中 <i>RBh</i>)	沿半征	圣为 <i>R</i> D)	? 的圆刑 1/(<i>eRE</i>	乡轨
- 氢原 [道运	子所自 (A) (D) 9. 42 动,贝 (A) 10. 4	12.1 。 41: 川 <i>本</i> 粒 <i>h</i> /(2	eV 之子的 2 <i>eRE</i> 如界	(B) 12.1 若 <i>a</i> 粒 德布罗 3)	10.2 eV eV 亚子(电荷 罗意波士 (B)	V (CV , 方为 2e) 长是 h/(el 量的粒子	生磁感 <i>(RB</i>)	10.2 应强原 (0 德布罗	度为 <i>I</i> C) 罗意波	eV B 均匀 1/(2 <i>el</i> 坡长相[和 磁场中 <i>RBh</i>) 司,则i	沿半往 (这两种	圣为 <i>R</i> D) '粒子	? 的圆刑 1/(<i>eRE</i> 的	多轨 8h)
- 氢原 [道运	子所食(A) (D) 9. 42 3	41: 割α粒 h/(2 770: 动量	eV 之子的 2 <i>eRE</i> 如界	(B) 12.1 若 <i>a</i> 粒 德布罗 3)	10.2 eV eV 亚子(电荷 罗意波士 (B)	V (C V , 方为 2e)社 长是 h/(el	生磁感 <i>(RB</i>)	10.2 应强原 (0 德布罗	度为 <i>I</i> C) 罗意波	eV B 均匀 1/(2 <i>el</i> 坡长相[和 磁场中 <i>RBh</i>) 司,则i	沿半往 (这两种	圣为 <i>R</i> D) '粒子	? 的圆刑 1/(<i>eRE</i>	3h)
- 氢原 [道运	子所自 (A) (D) 9. 42 动,贝 (A) 10. 4	41: 割α粒 h/(2 770: 动量	eV 之子的 2 <i>eRE</i> 如界	(B) 12.1 若 <i>a</i> 粒 德布罗 3)	10.2 eV eV 亚子(电荷 罗意波士 (B)	V (CV , 方为 2e) 长是 h/(el 量的粒子	生磁感 <i>(RB</i>)	10.2 应强原 (0 德布罗	度为 <i>I</i> C) 罗意波	eV B 均匀 1/(2 <i>el</i> 坡长相[和 磁场中 <i>RBh</i>) 司,则词 目同	沿半征 (i 这两种	E为 R D) P粒子 (D) z	? 的圆形 1/(<i>eRE</i> 的 动 能 相	/ <i>Sh</i>)
- 氢 [道 [[[子所食(A) (D)	12.1 d 41: 则α粒 h/(2 770: 功量	eV 子的 2eRE 如果 相同	(B) 12.1 若α粒 德布5 3) 果两种	10.2 eV eV i子(电荷 罗意波士 (B) 不同质 (B)	V (CV , 方为 2e)在 长是 h/(el 量的粒气 能量 相	在磁感 <i>(RB)</i> 子,其有目同	10.2 应强原 (C	度为 <i>I</i> C) 罗意波 (C)	eV <i>B</i> 均匀 1/(2 <i>el</i>	和 磁场中 <i>RBh</i>) 司,则词 目同	沿半征 (i 这两种	E为 R D) P粒子 (D) z	? 的圆形 1/(<i>eRE</i> 的 动 能 相	/ <i>Sh</i>)
	子所食(A) (D) 9. 42 9. 42 (A) 10. 4 (A) 五	12.1 d 41: 回 <i>a</i> 粒 <i>h/</i> (2 770: 劫量	eV 子的 2 eRE 如果 相同	(B) 12.1 若α粒德布等 3) 果两种 粒子在	10.2 eV eV i子(电荷 罗意波士 (B) 不同质 (B)	V (CV , 方为 2e)社 长是 h/(el 量的粒量 能量 相	生磁感, RB) 子,其得目同	10.2 应强原 (C 德布罗 ‡中运	度为 <i>I</i> (C) : 动, j	eV <i>B</i> 均匀 1/(2 <i>el</i>	和 磁场中 <i>RBh</i>) 司,则词 目同	沿半征 (i 这两种	E为 R D) P粒子 (D) z	? 的圆刑 1/(<i>eRE</i> 的	/ <i>Sh</i>)
	子所食(A) (D) 9. 42 9. 42 (A) 10. 4 (A) 五	12.1 d 41: 回 <i>a</i> 粒 <i>h/</i> (2 770: 劫量	eV 子的 2 eRE 如果 相同	(B) 12.1 若α粒德布等 3) 果两种 粒子在	10.2 eV eV i子(电荷 罗意波士 (B) 不同质 (B)	V (CV , 方为 2e)在 长是 h/(el 量的粒气 能量 相	生磁感, RB) 子,其得目同	10.2 应强原 (C 德布罗 ‡中运	度为 <i>I</i> C)	eV B 均匀 1/(2el t 长相顺 速 度 [*] 其波 函	和 磁场中 RBh) 司,同 以 数 为:	沿半征 (i 这两种	E为 R $D)$ $A = \frac{1}{\sqrt{a}}$	P 的圆形 $1/(eRE)$ 的 $1/(eRE)$ 的 $1/(eRE)$ 的 $1/(eRE)$	/ <i>Sh</i>)
- 氢 [道 [(-a	子所食(A) (D) 9. 42 9. 42 (A) 10. 4 (A) 五	112.1 (41: 41: 加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加加	eV 子的 2 eRE 如果 相同	(B) 12.1 若α粒德布等 3) 果两种 粒子在	10.2 eV eV i子(电荷 罗意波七 (B) 不同质 (B)	V (CV , 方为 2e)社 长是 h/(el 量的粒量 能量 相	生磁感, RB) 子,其得目同	10.2 应强原 (C 德布罗 ‡中运	度为 <i>I</i> C)	eV <i>B</i> 均匀 1/(2 <i>el</i>	和 磁场中 RBh) 司,同 以 数 为:	沿半征 (i 这两种	P(D) 型粒子 $P(D)$ $P(D)$ $P(D)$ $P(D)$ $P(D)$ $P(D)$ $P(D)$ $P(D)$? 的圆形 1/(<i>eRE</i> 的 动 能 相	/ <i>Sh</i>)

- 13. 5619: 波长 λ =5000 Å 的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda$ =10⁻³ Å,则利用不确定关系式 $\Delta p_x \Delta x \geq h$ 可得光子的 x 坐标的不确定量至少为:
- 刊用小棚走大系式 1 , 可得定于的 x 坐体的小棚走 y (A) 25 cm (B) 50 cm (C)
 - 50 cm (C) 250 cm (D) 500
 - 14. 8020: 将波函数在空间各点的振幅同时增大 D 倍,则粒子在空间的分布概率将
- (A) 增大 D^2 倍 (B) 增大 2D 倍 (C) 增大 D 倍 (D) 不变
 - 15. 4965: 下列各组量子数中,哪一组可以描述原子中电子的状态?
 - (A) n=2, l=2, $m_l=0$, $m_s=\frac{1}{2}$ (B) n=3, l=1, $m_l=-1$, $m_s=-\frac{1}{2}$
 - (C) $n = 1, l = 2, m_l = 1,$ $m_s = \frac{1}{2}$ (D) $n = 1, l = 0, m_l = 1,$ [
- 16. 8022: 氢原子中处于 3d 量子态的电子,描述其量子态的四个量子数 (n, l, m_l, m_s) 可能取的值为
 - (A) $(3, 0, 1, -\frac{1}{2})$ (B) $(1, 1, 1, -\frac{1}{2})$ (C) $(2, 1, 2, \frac{1}{2})$ (D) $(3, 2, 0, \frac{1}{2})$
 - 17. 4785: 在氢原子的 K 壳层中,电子可能具有的量子数 (n, l, m_l, m_s) 是
 - (A) $(1, 0, 0, \frac{1}{2})$ (B) $(1, 0, -1, \frac{1}{2})$

- 18. 4222: 与绝缘体相比较,半导体能带结构的特点是
- (A) 导带也是空带 (B) 满带与导带重合 (C) 满带中总是有空穴,导带中总是有电子

」 (D) 禁 带 宽 度 较 窄 「 〕

- 19. 4789: p 型半导体中杂质原子所形成的局部能级(也称受主能级),在能带结构中应处于
 - (A) 满带中 (B) 导带中 (C) 禁带中,但接近满带顶 (D) 禁 带 中 , 但 接 近 导 带 底
- 20. 8032: 按照原子的量子理论,原子可以通过自发辐射和受激辐射的方式发光,它们所产生的光的特点是:
 - (A) 两个原子自发辐射的同频率的光是相干的,原子受激辐射的光与入射光是不相干的
 - (B) 两个原子自发辐射的同频率的光是不相干的,原子受激辐射的光与入射光是相干的

(C) 两个原子自发辐射的同频率的光是不相干的	J, 原子受激辐射的光与入射光是不相干
的 (D) 两个原子自发辐射的同频率的光是相干的,	原子受激辐射的光与入射光是相干的
21. 9900: \hat{x} 与 \hat{P}_x 的互易关系[\hat{x},\hat{P}_x]等于	
(A) $i\hbar$ (B) $-i\hbar$ (C) $i\hbar$ (D) $-i\hbar$, 'a
•	
22.9901: 厄米算符 A 满足以下哪一等式(u 、	^ル 是任意的态函数)
$\int u^* \hat{A} v dx = \int (\hat{A} u^*) v dx \qquad (B) \int v^* \hat{A} u$	$udx = \int v(\hat{A}u)^* dx$
	$(D) \int u^* \hat{A} v dx = \int (\hat{A} u) v^* dx$
二、填空题	
一、場工窓1.4179: 光子波长为λ,则其能量= ; 动量	量的七小
2. 4180: 当波长为 3000 Å 的光照射在某金属表	
10^{-19} J。在作上述光电效应实验时遏止电压为 $ U $	
= Hz.	av, bushing it seekey. — vo
3. 4388: 以波长为 λ = 0.207 μ m 的紫外光照射金	属钯表面产生光电效应,已知钯的红限
	V°
4. 4546: 若一无线电接收机接收到频率为 10 ⁸ F	
收到的光子数为。	
5. 4608: 钨的红限波长是 230 nm, 用波长为 1	80 nm 的紫外光照射时,从表面逸出的
电子的最大动能为eV。	
6.4611:某一波长的 X 光经物质散射后,	
的两种成分,其中的散射成	分称为康普顿散射。
7. 4191: 在氢原子发射光谱的巴耳末线系中有一	
原子从能级 $E_n =$ eV 跃迁到能级 $E_k =$	
8. 4192: 在氢原子光谱中,赖曼系(由各激发态)	
系)的最短波长的谱线所对应的光子能量为 所对应的光子的能量为 eV。	ev; 口 中 不
所对应的光子的能量为eV。 9.4200:在氢原子光谱中,赖曼系(由各激发态)	跃迁到基本所发射的各谱线组成的谱线
	eV; 巴耳末系的最短波长的谱线
所对应的光子的能量为 eV。	
10. 4424: 欲使氢原子发射赖曼系(由各激发态)	跃迁到基态所发射的谱线构成)中波长
为 1216 Å 的谱线,应传给基态氢原子的最小能量是	
11.4754:氢原子的部分能级跃迁示意如图。在	
中, (1) 从 $n =$ 的能级跃迁到 $n =$ 的能级	付所发射的光子 $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$ $\frac{1}{n}$
的波长最短; (2) 从 $n =$ 的能级跃迁到 $n =$	的能级时所 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
发射的光子的频率最小。	
12. 4755: 被激发到 $n=3$ 的状态的氢原子气体分	V V V V = n = 1
有条可见光谱线和条非可见光谱线	
13. 4760: 当一个质子俘获一个动能 E_K =13.6 e 所发出的单色光频率是。	V 的目由电子组成一个基态氢原子时,
14. 4207:	m_e 为由子静止质量 。为直
空中光速, h 为普朗克常量)。当电子的动能等于它	
工工几处, n 为自め允市里)。 当电 1 的幼能 $+$ 1 $+$ λ_c 。	14767 亚庇至81, 日时他仰夕 总伙 区定
7.	₽中, 自热 /────
阴极 K 发射出的电子束经 $U=500$ V 的电势差加速后	/ 7
体上。这电子束的德布罗意波长λ= nm。	$K = \{1, \dots, M\}$
	

選率时、它的總布罗意波长是	16. 4629: 氢原子的运动速率等于它在 300 K 时的方均根
17. 4630. 在 $B = 1.25 \times 10^2$ T 的勾操磁场中沿半谷为 $R = 1.66$ cm 的圆轨道运动的α粒子的德布罗意波长是 18. 4203: 设 描 述 微 观 粒 子 运 动 的 波 函 数 为 $\Psi(\vec{r},t)$,则 $\Psi\Psi^*$ 表 示 : $\Psi(\vec{r},t)$ 须清是的条件是 ; 其归一化条 ; $\Psi(\vec{r},t)$ 须清是的条件是 ; 其归一化条	速率时,它的德布罗意波长是。质量为 $M=1$ g,以速度
的國轨道运动的 α 粒子的德布罗意波长是	
18 . 4203 : 设 描 述 微 观 粒 子 运 劝 的 波 函 数 为 $\Psi(\vec{r},t)$,则 $\Psi\Psi^*$ 表 示 ; $\Psi(\vec{r},t)$ 须满足的条件是	
### ### #############################	
# 是	
19. 4632: 如果电子被限制在边界 x 与 x + ax 之间, ax = 0.5 Å,则电子动量 x 分量的不确定量近似地为 kg · m / s · 20. 4221: 原子内电子的量子态由 n · l · m D m · g m · C 可 · C	$\Psi(ar{r},t)$ 须满足的条件是 $_{}$;其归一化条
確定量近似地为	· · · · · · · · · · · · · · · · · · ·
不同的量子态数目为 : 当 $n-2$ 时,不同的量子态数目为 : 当 $n-2$ 时,不同的量子态数目为 : 司 $n-2$ 时,不同的量子态数目为	确定量近似地为kg·m/s。
21. 4782: 电子的自旋磁量子数 m, 只能取	
22. 4784:根据量子力学理论,氢原子中电子的动量矩为 $L = \sqrt{I(l+1)} h$,当主量子数 $n=3$ 时,电子动量矩的可能取值为	
时,电子动量矩的可能取值为	
时,电子动量矩的可能取值为 23、4963: 原子中电子的主量子数 n=2,它可能具有的状态数最多为	
24. 4219: 多电子原子中,电子的排列遵循	
25. 4635: 泡利不相容原理的内容是	23. 4963: 原子中电子的主量子数 $n=2$,它可能具有的状态数最多为个。
$m_s = \frac{1}{2}$ 26. 4787: 在主量子数 $n = 2$. 自旋磁量子数 $m_s = \frac{1}{2}$ 的量子态中,能够填充的最大电子数是	24. 4219: 多电子原子中, 电子的排列遵循
数是	25. 4635: 泡利不相容原理的内容是。
数是	$m = \frac{1}{2}$
数是	$m_s = 26.4787$: 在主量子数 $n=2$,自旋磁量子数 $m_s = 2$ 的量子态中,能够填充的最大电子
27. 4967: 锂(Z=3)原子中含有 3 个电子,电子的量子态可用(n, l, m _l , m _s)四个量子数来描述,若已知基态锂原子中一个电子的量子态为(1, 0, 0, 1/2),则其余两个电子的量子态分别为(
 恋分别为($\overline{27.4967:}$ 锂($Z=3$)原子中含有 3 个电子,电子的量子态可用 (n, l, m_l, m_s) 四个量子数
 恋分别为(1
 恋分别为(来描述,若已知基态锂原子中一个电子的量子态为 $(1,0,0,\frac{2}{2})$,则其余两个电子的量子
可有	态分别为(
29. 8025: 根据量子力学理论,原子内电子的量子态由(n, l, m _l , m _s)四个量子数表征。那么,处于基态的氦原子内两个电子的量子态可由	
那么,处于基态的氦原子内两个电子的量子态可由	
子数表征。 30. 4637: 右方两图(a)与(b)中,(a)图是型半导体的能带结构图,(b)图是型半导体的能带结构图。 31. 4792: 若在四价元素半导体中掺入五价元素原子,则可构成型半导体,参与导电的多数载流子是。 32. 4793: 若在四价元素半导体中掺入三价元素原子,则可构成型半导体,参与导电的多数载流子是。 33. 4971: 在下列给出的各种条件中,哪些是 产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射3/20粒子数反转; (4)三能极系统; (5)谐振腔。 34 . 5244 : 激 光 器 中 光 学 谐 振 腔 的 作 用 是 : (1); (2)。 35. 8034: 按照原子的量子理论,原子可以通过。两种辐	
30. 4637: 右方两图(a)与(b)中,(a)图是型半导体的能带结构图,(b)图是型半导体的能带结构图。 31. 4792: 若在四价元素半导体中掺入五价元素原子,则可构成型半导体,参与导电的多数载流子是。 32. 4793: 若在四价元素半导体中掺入三价元素原子,则可构成型半导体,参与导电的多数载流子是_。 33. 4971: 在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射37(2)粒子数反转; (4)三能极系统; (5)谐振腔。 34. 5244: 激光器中光学谐振腔的作用是: (1); (2); (3)。 35. 8034: 按照原子的量子理论,原子可以通过	
导体的能带结构图。 31. 4792: 若在四价元素半导体中掺入五价元素原子,则可构成型半导体,参与导电的多数载流子是。 32. 4793: 若在四价元素半导体中掺入三价元素原子,则可构成型半导体,参与导电的多数载流子是。 33. 4971: 在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射3/2粒子数反转; (4)三能极系统; (5)谐振腔。 34 . 5244 : 激 光 器 中 光 学 谐 振 腔 的 作 用 是 : (1)。; (2)。 35. 8034: 按照原子的量子理论,原子可以通过。两种辐	* ****
31. 4792: 若在四价元素半导体中掺入五价元素原子,则可构成型半导体,参与导电的多数载流子是。 32. 4793: 若在四价元素半导体中掺入三价元素原子,则可构成型半导体,参与导电的多数载流子是。 33. 4971: 在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射37(2)粒子数反转; (4)三能极系统; (5)谐振腔。 34. 5244: 激光器中光学谐振腔的作用是:(1);(2)。 35. 8034: 按照原子的量子理论,原子可以通过。两种辐	已休的能典结构图
元素原子,则可构成型半导体,参与导电的多数载流子是。 32. 4793: 若在四价元素半导体中掺入三价元素原子,则可构成型半导体,参与导电的多数载流子是。 33. 4971: 在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射	\hbar^{L}
32. 4793: 若在四价元素半导体中掺入三价元素原子,则可构成 型半导体,参与导电的多数载流子是 33. 4971: 在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射 (2)受激辐射 (2)受激辐射 (2)受激辐射 (4)三能极系统; (5)谐振腔。	元素原子、则可构成
32. 4793: 若在四价元素半导体中掺入三价元素原子,则可构成型半导体,参与导电的多数载流子是。 33. 4971: 在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射 (2)受激辐射 (2)受激辐射 (2)受激辐射 (2)受激辐射 (2)受激辐射 (3) (4) (5) (5) 谐振腔。 34. 5244: 激光器中光学谐振腔的作用是:(1);(2);(3)。 35. 8034: 按照原子的量子理论,原子可以通过 两种辐	的多数载流子是 。 ${\lambda}$ 。 $\frac{1}{\lambda}$ 的多数载流子是 $\frac{1}{\lambda}$ 。 $\frac{1}{\lambda}$ 的多数载流子是 $\frac{1}{\lambda}$ 。 $\frac{1}{\lambda}$ 的多数载流子是 $\frac{1}{\lambda}$ 的多数或量
元素原子,则可构成型半导体,参与导电	32 4793. 若在Ⅲ价元麦坐旱休中掺 λ 三价 **** *** *** **** **** **** **** *
33. 4971: 在下列给出的各种条件中,哪些是 (a) (b) 产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射3/20粒子数反转; (4)三能极系统; (5)谐振腔。	元素原子,则可构成型半导体,参与导电 V
产生激光的条件,将其标号列下:。(1)自发辐射; (2)受激辐射3 / 20粒子数反转; (4)三能极系统; (5)谐振腔。 34 . 5244 : 激 光 器 中 光 学 谐 振 腔 的 作 用 是 : (1); (2); (3)。 35. 8034: 按照原子的量子理论,原子可以通过两种辐	132 34-1/1016 3 7-2 11111111111111111111111111111111111
(4)三能极系统; (5)谐振腔。 34 . 5244 : 激 光 器 中 光 学 谐 振 腔 的 作 用 是 : (1); (2); (3)。 35. 8034: 按照原子的量子理论,原子可以通过两种辐	
34 . 5244 : 激 光 器 中 光 学 谐 振 腔 的 作 用 是 : (1)	
(1) ; (2) ; (3) 。 。 35. 8034: 按照原子的量子理论,原子可以通过 两种辐	
(3)。 35. 8034: 按照原子的量子理论,原子可以通过两种辐	
35. 8034: 按照原子的量子理论,原子可以通过两种辐	
	(3)
	· /

$$\Psi(x) = \begin{cases} A \sin \frac{n\pi}{a} x & 0 < x < a \\ 0 & x \le 0 \quad x \ge a \end{cases}, \quad \text{ if }$$

10. 体系在无限深方势阱中的波函数为 一化常数A。

$$U(x) = \begin{cases} 0 & 0 < x < a \\ \infty & x \le 0, x \ge a \end{cases}$$

11. 质量为 m 的粒子沿 x 轴运动, 其势能函数可表示为: 求解粒子的归一化波函数和粒子的能量。

$$\psi(x) = \frac{4}{\sqrt{a}} \sin\left(\frac{\pi}{a}x\right) \cos^2\left(\frac{\pi}{a}x\right)$$

12. 设质量为粒子处在 (0, a) 内的无限方势阱中, $\psi(x) = \frac{4}{\sqrt{a}} \sin\left(\frac{\pi}{a}x\right) \cos^2\left(\frac{\pi}{a}x\right),$ 对它的能量进行测量,可能得到的值有哪几个?概率各多少? 平均能量是多少?

 $\psi(x) = \sqrt{\frac{1}{3}}u_0(x) + \sqrt{\frac{1}{2}}u_2(x) + cu_3(x)$ $u_n(x)$ $u_n(x)$ 归一化的谐振子的定态波函数。求:c和能量的可能取值,以及平均能量 \overline{E} 。

—, D	7. 4748: A	D 2. 4244: B 3. 4383: D 4. 4737: D 5. 4190: C 6. 4197: C 8. 4750: C 9. 4241: A 10. 4770: A 11. 4428: A 12. 4778: C 14. 8020: D 15. 4965: B 16. 8022: D 17. 4785: A 18. 4222:
ט	19. 4789:	C 20. 8032: B 21. 9900: A 22. 9901: C
_,	填空题	
Λ	1. 4179:	hc/λ
分	2. 4180:	2.52 分; 4.0×10 ¹⁴ 2 分
	3. 4388:	0.99
	4. 4546:	1.5×10^{19} 3 分
		1.53 分
	6. 4611:	不变1 分; 变长1 分; 波长变长1
分		7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
	7. 4191:	-0.852 分; -3.4 2 分
	8. 4192:	13.62分; 3.42分
	9. 4200:	62 分; 9732 分
	10. 4424:	10.23 分
	11. 4754:	4 12分; 4 32分
	12. 4755:	12分; 22分
	13. 4760:	6.56×10 ¹⁵ Hz3 分
	14. 4207:	$1/\sqrt{3}$
	15. 4429:	0.05493 分
	16. 4629:	1.45 Å2 分; 6.63×10 ⁻¹⁹ Å2 分
	17. 4630:	0.1 Å3 分
	18. 4203:	粒子在 t 时刻在 (x, y, z) 处出现的概率密度2 分
		单值、有限、连续1 分
		$\iiint \mathcal{Y} ^2 \mathrm{d} x \mathrm{d} y \mathrm{d} z = 1 $
	19. 4632:	1.33×10^{-23} 3 分

由题可知 α 粒子受磁场力作用作圆周运动: $qvB = m_{\alpha}v^2/R$, $m_{\alpha}v = qRB$

```
又 q=2e 则: m_{\alpha}v=2eRB ......4 分
        \lambda_{\alpha} = h/(2eRB) = 1.00 \times 10^{-11} \text{ m} = 1.00 \times 10^{-2} \text{ nm}
                     v = 2eRB/m_{\alpha}
   (2) 由上一问可得
                    \lambda = \frac{h}{m_{1}} = \frac{h}{2eRB} \cdot \frac{m_{\alpha}}{m} = \frac{m_{\alpha}}{m} \cdot \lambda_{\alpha} = 6.64 \times 10^{-34} \text{ m} - 3 \text{ }\%
对于质量为m的小球:
                  E_K = p^2 / (2m_e) = (h/\lambda)^2 / (2m_e)______3 \frac{1}{2}
   3. 4506: 解:
                      =5.0\times10^{-6} \text{ eV}
                               E_K = \frac{1}{2} m_e v^2
   4. 4535: 解: 非相对论动能:
                         E_K = \frac{p^2}{2m_o}
   p = m_e v. 故有.
又根据德布罗意关系有 p=h/\lambda 代入上式------1分
       E_K = \frac{1}{2}h^2/(m_e\lambda^2) = 4.98 \times 10^{-6} \text{ eV}
则:
   5. 4631: 解: 若电子的动能是它的静止能量的两倍,则: mc^2 - m_e c^2 = 2m_e c^2 ______1
分
       故:
由相对论公式: m = m_e / \sqrt{1 - v^2 / c^2}
                 3m_e = m_e / \sqrt{1 - v^2 / c^2}
有:
       德布罗意波长为: \lambda = h/(mv) = h/(\sqrt{8}m_e c) \approx 8.58 \times 10^{-13} \text{m}-----2 分
\lambda = h/(m_e v) ①-----2 分
   6. 5248: 解:
                   v^2 - v_0^2 = 2ad (2)
                   eE = m_e a (3)-----2 \frac{1}{2}
          v = h/(m_e \lambda) = 7.28 \times 10^6 \text{ m/s}
由①式:
           a = eE / m_e = 8.78 \times 10^{13} \text{ m/s}^2
由③式:
           d = (v^2 - v_0^2)/(2a) = 0.0968 \text{ m} = 9.68 \text{ cm}
曲②式:
    7. 4430: 解: 先求粒子的位置概率密度:
        \cos(2\pi x/a) = -1 时, |\psi(x)|^2 有最大值. 在 0 \le x \le a 范围内可得 2\pi x/a = \pi
当:
             x = \frac{1}{2}a -----3 \%
```

8. 4526: 解: 粒子位于 0-a/4 内的概率为

$$P = \int_{0}^{a/4} \frac{2}{a} \sin^{2} \frac{\pi x}{a} dx = \int_{0}^{a/4} \frac{2}{a} \frac{a}{\pi} \sin^{2} \frac{\pi x}{a} d(\frac{\pi x}{a})$$

$$= \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi x}{a} - \frac{1}{4} \sin \frac{2\pi x}{a} \right]_{0}^{a/4} = \frac{2}{\pi} \left[\frac{\frac{1}{2} \pi}{a} \frac{a}{4} - \frac{1}{4} \sin(\frac{2\pi}{a} \frac{a}{4}) \right]_{0}^{a/4} = 0.091 - 0.091$$

9. 解:根据给出的氢原子波函数的表达式,可知能量E的可能值为: E_1 、 E_2 、 E_3 .

能量为 E₃ 的概率为

能量的平均值为: $\overline{E} = P_1 E_1 + P_2 E_2 + P_3 E_3$ _____2 分

$$A = \sqrt{\frac{2}{a}}$$
 _____2 \Rightarrow

11. 解: 当 $x \le 0$ 或 $x \ge a$ 时, 粒子势能无限大, 物理上考虑这是不可能的, 所以粒子 在该区域出现纪律为零,即: $\psi(x)=0$

由波函数的连续性可知, 在x=0、x=a处 $\psi(x)=0$, 即.

$$\psi(x) = A\sin 0 + B\cos 0 = 0$$

 $\psi(x) = A\sin(ka) + B\cos(ka) = 0$; $k = \frac{n\pi}{a}$, $n = 1, 2, 3....$

所以有:
$$\psi_n(x) = A \sin\left(\frac{n\pi}{a}\right)$$
, $n = 1, 2, 3$

归一化条件:
$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_0^a |\psi(x)|^2 dx = \int_0^a A^2 \sin^2\left(\frac{n\pi}{a}\right) dx = 1$$
所以:
$$A = \sqrt{\frac{2}{a}}, \quad \text{即:} \quad \psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}\right), \quad n = 1, 2, 3 \dots$$

$$E = E = \frac{\pi^2 \hbar^2}{a} n^2$$

 $E = E_n = \frac{\pi^2 \hbar^2}{2\mu a^2} n^2$ 粒子能量为: $n = 1, 2, 3 \dots$

12.
$$\psi(x) = \frac{2}{\sqrt{a}} \sin\left(\frac{\pi x}{a}\right) \cos^2\left(\frac{\pi x}{a}\right) = \frac{2}{\sqrt{a}} \left[\sin\left(\frac{\pi x}{a}\right) + \sin\left(\frac{\pi x}{a}\right) \cos\left(\frac{2\pi x}{a}\right)\right] \\
= \frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right) + \frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}} \sin\left(\frac{3\pi x}{a}\right)$$

 $\mathbf{p}\psi(x)$ 是第一和第三个能量本征态的叠加,所以测得能量值可为:

$$\frac{\pi^2 \hbar^2}{2\mu a^2}$$
,相应概率为: $\left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$

$$\frac{9\pi^2\hbar^2}{2\mu a^2}$$
, 相应概率为: $\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$

所以,能量平均值为: $\overline{E} = \frac{1}{2} \frac{\pi^2 \hbar^2}{2\mu a^2} + \frac{1}{2} \frac{9\pi^2 \hbar^2}{2\mu a^2} - \frac{5\pi^2 \hbar^2}{2\mu a^2}$

13. 解: 由归一化条件得:
$$\left|\sqrt{\frac{1}{3}}\right|^2 + \left|\sqrt{\frac{1}{2}}\right|^2 + \left|c\right|^2 = 1$$
 解得: $c = \sqrt{\frac{1}{6}}$

根据谐振子波函数的表达式,可知能量E的可能值为: E_0 、 E_2 、 E_3

因为:
$$E_n = \left(n + \frac{1}{2}\right)h\nu$$

所以:

$$E_0 = \frac{1}{2}hv$$
 $E_2 = \frac{5}{2}hv$ $E_3 = \frac{7}{2}hv$

$$\overline{E} = P_0 E_0 + P_2 E_2 + P_3 E_3 = \left| \sqrt{\frac{1}{3}} \right|^2 \cdot \frac{1}{2} h v + \left| \sqrt{\frac{1}{2}} \right|^2 \cdot \frac{5}{2} h v + \left| \sqrt{\frac{1}{6}} \right|^2 \cdot \frac{7}{2} h v = 2 h v$$