诚信考试,公平竞争;以实力争取过硬成绩,以诚信展现良好学风。

- *以下三种行为是严重作弊行为, 学校将从严处理:
- 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 组织作弊。
- *答案、解题过程必须写在答题卷上,写在试题卷上的内容不予计分。

大学 高等数学 A1 试题卷 (闭)

2021-2022 学年第一学期 使用班级 _____

班级	学号			姓名		
题号		=	Ξ	四	五.	六
小题数量	5	5	4	3	2	1

- 一、选择题(本大题共5小题,每小题3分,满分15分)
- 1. 曲线 $y = \ln(2 + 3e^{3x})$ 的斜渐近线方程是【 】.
- A. $y = 3x \ln 3$ B. $y = 3x \ln 2$ C. $y = 3x + \ln 3$ D. $y = 3x + \ln 2$

- 2. 曲线 $e^{x-y} + x(x+2y) = x + \sin x + 1$ 在点 (0,0) 处的切线方程是【 】.

- A. x + y = 0 B. x y = 0 C. x + 2y = 0 D. x 2y = 0
- 3. 函数 $y = x^3 3x^2 9x + 2$ 的极大值点是【 】.
- A. x = 0
- B. x = 2 C. x = -2 D. x = -1

- 4. 下列反常积分收敛的是【】.
- A. $\int_{-\infty}^{+\infty} \frac{x}{1+x+x^2} dx$ B. $\int_{2}^{+\infty} \frac{1}{x \ln^2 x} dx$ C. $\int_{1}^{+\infty} \frac{\ln x}{1+x} dx$ D. $\int_{0}^{+\infty} \sin x dx$

- 5. 设 $I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \ln \sin x dx$, $I_2 = \int_{0}^{\frac{\pi}{4}} \ln \cot x dx$, $I_3 = \int_{0}^{\frac{\pi}{4}} \ln \cos x dx$, 则【 】.
- $\text{A. } I_2 < I_1 < I_3 \qquad \qquad \text{B. } I_1 < I_3 < I_2 \qquad \qquad \text{C. } I_1 < I_2 < I_3 \qquad \qquad \text{D. } I_3 < I_1 < I_2$

- 二、填空题(本大题共5小题,每小题3分,满分15分)
- 1. x = 0 是函数 $f(x) = \frac{1}{1 + e^{1/x}}$ 的______间断点. (在可去、跳跃、无穷中选)
- 2. 设 $f(x) = (x^2 1)^3 \sin \frac{\pi x}{2}$, 则 $f'''(1) = \underline{\hspace{1cm}}$
- 3. 当 $x \to 0$ 时,变量 $f(x) = x \sin x \cos x \cos 2x$ 与 x^k 为同阶无穷小,则 k =______
- 4. 由曲线 $y=x^2, y=\sqrt{x}$ 围成的区域绕 y 轴旋转一周所得到的旋转体的体积为______
- 5. 积分 $\int \frac{2x-1}{(x-1)(x-2)} dx =$ ______

诚信考试,公平竞争;以实力争取过硬成绩,以诚信展现良好学风。

*以下三种行为是严重作弊行为,学校将从严处理:

1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 组织作弊。 *答案、解题过程必须写在答题卷上,写在试题卷上的内容不予计分。

- 三、解答题(本大题共4小题,每小题6分,满分24分)
- 1. 求极限 $\lim_{x\to 0} (\sin x + \cos x)^{\frac{1}{x}}$.

2. 读
$$\begin{cases} x = e^{-t}, \\ y = \int_0^t \ln(1 + u^2) du, \quad \stackrel{\stackrel{?}{\Rightarrow}}{\Rightarrow} \frac{dy}{dx} \bigg|_{t=0}. \end{cases}$$

- 3. 求不定积分 $\int x\sqrt[3]{1-2x^2} dx$.
- 4. 求定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + x \sin x \right) dx$.

四、解答题(本大题共3小题,每小题8分,满分24分)

1. 求极限
$$\lim_{n \to \infty} \left(\frac{1^2}{n^3 + n^2 + 1} + \frac{2^2}{n^3 + n^2 + 2} + \dots + \frac{n^2}{n^3 + n^2 + n} \right)$$
.

2. 已知函数 $f(x) = \begin{cases} x \arctan \frac{1}{x^2}, x \neq 0 \\ a, & x = 0 \end{cases}$ 在 x = 0 处可导,求常数 a 的值,并讨论该函数的导函数在 点 x = 0 处的连续性.

3. 设
$$f(x) = \int_0^x \frac{\sin t}{\pi - t} dt$$
, 求定积分 $\int_0^{\pi} f(x) dx$.

五、应用题(本大题共2小题,每小题8分,满分16分)

- 1. 设函数 $f(x) = |x-2|e^x(0 \le x \le 3)$, 求函数曲线的凹凸区间、拐点坐标.
- 2. 设区域 D 由 $x=0, x=1, y=x^3, y=t (0 \le t \le 1)$ 围成,求 t 值,使得区域 D 的面积最小.

六、证明题(本大题共1小题,满分6分)

1. 设函数 f(x) 在区间 [0,1] 上有二阶连续导数,且 f(0) = f(1) = 0, $\min_{x \in [0,1]} \{f(x)\} = -1$,证明:存在 $\xi \in (0,1)$,使得 $f''(\xi) \ge 8$.