Real-Estate Professionals Scraper + ML + Deep Learning

1. Overview

This project collects **LinkedIn profiles of real estate professionals in India** using Selenium-based scraping, then applies **two machine-learning pipelines** to automatically detect whether a profile is **relevant to the real estate domain**:

- 1. Classical ML Baseline TF-IDF vectoriser + Logistic Regression.
- 2. **Deep-Learning Model** Keras **Embedding + Bi-LSTM** network.

The pipeline produces:

- Raw scraped CSV of all profiles.
- Scored CSV with ML & DL probabilities and predicted relevance labels.
- Filtered CSV with only high-confidence "relevant" profiles.
- Uncertain CSV with mid-confidence profiles for manual review.
- A **ZIP archive** for easy sharing.
- Saved **vectoriser / ML model / DL model/tokenizer** for later reuse.

The code is designed to recover gracefully from LinkedIn session drops and to handle very small datasets.

2. Usage

1. Configure credentials

Edit these two variables near the top of the script:

- 2. LINKEDIN EMAIL = "your email@example.com"
- 3. LINKEDIN_PASSWORD = "your_password"
- 4. Run the script
- 5. python real_estate_scraper_ml_dl.py
- 6. **Outputs** (all saved in the working directory):
 - real_estate_professionals_india_scored.csv all profiles with ML + DL scores
 - real_estate_professionals_india_filtered.csv only high-probability relevant profiles
 - o real_estate_professionals_india_uncertain.csv medium-confidence profiles
 - o real estate professionals india.csv identical to filtered.csv (legacy name)
 - real_estate_professionals_india.zip zipped filtered CSV
 - models/folder with:
 - relevance_vectorizer.joblib
 - relevance_model.joblib
 - dl tokenizer.joblib
 - dl model.h5

7. Typical workflow

- o The script first generates random (company, city, job title) queries.
- o Launches Chrome, logs into LinkedIn.
- o Scrapes profiles per query, deduplicates them.
- o Builds weak labels using keyword-based rules.
- o Trains or loads both the baseline and DL models.
- o Scores every profile with **probabilities** and **predicted labels**.
- Saves final CSVs and ZIP for distribution.

3. Rationale for Model Choices

3.1 Weak-Label + ML Approach

- Scraped data is **unlabelled**.
- A **rule-based weak-labelling** step (keywords such as "broker", "property manager") provides **noisy binary labels** to bootstrap training.

3.2 TF-IDF + Logistic Regression (Baseline)

- Interpretable & light-weight: good for small datasets and explainable terms.
- **TF-IDF** captures important words & bigrams in titles/positions.
- Logistic Regression is fast to train, robust with sparse data, and supports class-imbalance weighting.

3.3 Deep-Learning Bi-LSTM

- For larger datasets, word order and context can be informative.
- The Embedding + Bidirectional LSTM network captures sequential patterns that TF-IDF ignores.
- Uses Early-Stopping and neutral fall-backs to avoid over-fitting or failures on small data.

3.4 Hybrid Output

• Both models' **probabilities** are retained:

```
prob_relevant - baseline TF-IDF + LogReg probability.
dl_prob_relevant - Deep-Learning probability.
```

Users can compare or ensemble them later.

4. Robustness & Safety Features

- Validation-split auto-adjustment: skips validation if <10 samples.
- **Dummy-model fall-back:** if dataset <2 samples, DL model is skipped and outputs a neutral probability (0.5) for each profile.
- **Shape-mismatch guard:** fixes the Keras output-length bug encountered with tiny datasets.
- Auto-restart of the Selenium driver if the LinkedIn session expires.
- **Deduplication** to avoid repeated profiles.