

Quiz #7

Monday, November 7 2016

Duration: 20 min
NAME:
Please write clearly and properly. Always explain your answers.

Problem	Grade
1	
2	
3	
Total	

z be a con	2 points.). nplex numb (in terms of	er written a and b).	z = a + ib i	in algebraic for	rm. Find	the algebr

	$A = \{z \in \mathcal{C} \mid z \in \mathcal{C}\}$	$\mathbb{C}^* \colon \frac{\pi}{4} \leqslant \operatorname{Arg}$	$(z) \leqslant \frac{3\pi}{4} \} \ .$		
Does there exist a branch of the complex logarithm on $\mathbb{C} - A$?					
roblem 3 (∼ 5 pc	oints.).				
ecall that Log de	notes the principa				
(1) What is the	domain of definiti	on of Log? Is	s it a holomorpl	hic function?	

			(/			
the princip	pal values	s of (-4 <i>i</i>)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4 <i>i</i>)	$2i$ and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4 <i>i</i>)	$2i$ and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4 <i>i</i>)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
the princip	pal values	s of (-4i)	2i and (3π)	$e^{5i\pi/3}$.		
						the values $Log(-4i)$ and $Log(e^{5i\pi/3})$.