CS215: Discrete Math (H)

2021 Fall Semester Written Assignment # 5 Due: Dec. 17th, 2021, please submit at the beginning of class

- Q.1 Let S be the set of all strings of English letters. Determine whether these relations are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive.
 - (1) $R_1 = \{(a, b) | a \text{ and } b \text{ have no letters in common}\}$
 - (2) $R_2 = \{(a, b)|a \text{ and } b \text{ are not the same length}\}$
 - (3) $R_3 = \{(a,b)|a \text{ is longer than } b\}$
- Q.2 How many relations are there on a set with n elements that are
 - (a) symmetric?
 - (b) antisymmetric?
 - (c) irreflexive?
 - (d) both reflexive and symmetric?
 - (e) neither reflexive nor irreflexive?
 - (f) both reflexive and antisymmetric?
 - (g) symmetric, antisymmetric and transitive?
- Q.3 Suppose that the relation R is irreflexive. Is the relation R^2 necessarily irreflexive?
- Q.4 Give an example of a relation R such that its transitive closure R^* satisfies $R^* = R \cup R^2 \cup R^3$, but $R^* \neq R \cup R^2$.
- Q.5 Suppose that R_1 and R_2 are both reflexive relations on a set A.
 - (1) Show that $R_1 \oplus R_2$ is irreflexive.
 - (2) Is $R_1 \cap R_2$ also reflexive? Explain your answer.

- (3) Is $R_1 \cup R_2$ also reflexive? Explain your answer.
- Q.6 Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if ad = bc.
 - (a) Show that R is an equivalence relation.
 - (b) What is the equivalence class of (1,2) with respect to the equivalence relation R?
 - (c) Give an interpretation of the equivalence classes for the equivalence relation R.
- Q.7 Show that the relation R on $\mathbb{Z} \times \mathbb{Z}$ defined on $(a,b)\mathbb{R}(c,d)$ if and only if a+d=b+c is an equivalence relation.
- Q.8 How many different equivalence relations with exactly three different equivalence classes are there on a set with five elements?
- Q.9 Show that $\{(x,y)|x-y\in\mathbb{Q}\}$ is an equivalence relation on the set of real numbers, where \mathbb{Q} denotes the set of rational numbers. What are [1], $[\frac{1}{2}]$, and $[\pi]$?
- Q.10 Let A be a set, let R and S be relations on the set A. Let T be another relation on the set A defined by $(x,y) \in T$ if and only if $(x,y) \in R$ and $(x,y) \in S$. Prove or disprove: If R and S are both equivalence relations, then T is also an equivalence relation.
- Q.11 Let \sim be a relation defined on \mathbb{N} by the rule that $x \sim y$ if $x = 2^k y$ or $y = 2^k x$ for some $k \in \mathbb{N}$. Show that \sim is an equivalence relation.
- Q.12 Given functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, f is **dominated** by g if $f(x) \leq g(x)$ for all $x \in \mathbb{R}$. Write $f \leq g$ if f is dominated by g.
 - (a) Prove that \leq is a partial ordering.
 - (b) Prove or disprove: \leq is a total ordering.
- Q.13 Which of these are posets?
 - (a) $({\bf R}, =)$

- (b) $(\mathbf{R}, <)$
- (c) (\mathbf{R}, \leq)
- (d) (\mathbf{R}, \neq)

Q.14 Consider a relation \propto on the set of functions from \mathbb{N}^+ to \mathbb{R} , such that $f \propto g$ if and only if f = O(g).

- (a) Is \propto an equivalence relation?
- (b) Is \propto a partial ordering?
- (c) Is \propto a total ordering?

Q.15 For two positive integers, we write $m \leq n$ if the sum of the (distinct) prime factors of the first is less than or equal to the product of the (distinct) prime factors of the second. For instance $75 \leq 14$, because $3 + 5 \leq 2 \cdot 7$.

- (a) Is this relation reflexive? Explain.
- (b) Is this relation antisymmetric? Explain.
- (c) Is this relation transitive? Explain.

Q.16 Answer these questions for the partial order represented by this Hasse diagram.

- (a) Find the maximal elements.
- (b) Find the minimal elements.
- (c) Is there a greatest element?
- (d) Is there a least element?
- (e) Find all upper bounds of $\{a, b, c\}$.
- (f) Find the least upper bound of $\{a, b, c\}$, if it exists.
- (g) Find all lower bounds of $\{f, g, h\}$.

Figure 1: Q.16

(h) Find the greatest lower bound of $\{f, g, h\}$, if it exists.

Q.17 We consider partially ordered sets whose elements are sets of natural numbers, and for which the ordering is given by \subseteq . For each such partially ordered set, we can ask if it has a minimal or maximal element. For example, the set $\{\{0\}, \{0,1\}, \{2\}\}$, has minimal elements $\{0\}, \{2\}$, and maximal elements $\{0,1\}, \{2\}$.

- (a) Prove or disprove: there exists a nonempty $R \subseteq \mathcal{P}(\mathbb{N})$ with no maximal element.
- (b) Prove or disprove: there exists a nonempty $R\subseteq \mathcal{P}(\mathbb{N})$ with no minimal element.
- (c) Prove or disprove: there exists a nonempty $T \subseteq \mathcal{P}(\mathbb{N})$ that has neither minimal nor maximal elements.