Better Gaussian Mechanism using Correlated Noise

Christian Janos Lebeda IT University of Copenhagen

Problem formulation

Given a dataset $X = (x_1, \dots, x_n)$ of nelements $x_i \in [0,1]^d$, design a private mechanism to approximate the sum:

$$f(X) := \sum_{i=1}^{n} x_i$$

For neighboring datasets $X \sim X'$ under add/remove one of these cases hold:

$$|X'| = |X| + 1$$
 and $f(X') - f(X) \in [0,1]^d$
 $|X'| = |X| - 1$ and $f(X') - f(X) \in [-1,0]^d$

We focus on variants of the Gaussian mechanism. We ignore scaling from privacy parameters for this poster.

The algorithm is simple!

The standard Gaussian mechanism adds i.i.d. noise from $\mathcal{N}(0, \Delta_2^2) = \mathcal{N}(0, d)$.

We add the same sample to all entries.

This allows us to reduce the i.i.d. noise.

Algorithm 1: Gaussian Mechanism using Correlated Noise

Input: Dataset $X = (x_1, x_2, ..., x_n)$ where $x_i \in [0, 1]^d$. **Output:** DP estimates of $f(X) := \sum_{i=1}^{n} x_i$ and n under add/remove. 1 Sample $\eta \sim \mathcal{N}(0, \frac{\sqrt{d+1}}{4})$.

- 2 foreach $i \in [d]$ do
- Sample $z_i \sim \mathcal{N}(0, \frac{d+\sqrt{d}}{4})$.
- 4 Let $\tilde{x}_i \leftarrow f(X)_i + \eta + z_i$.
- 5 return $\tilde{x}, n+2\eta$.

Geometric intuition

The standard Gaussian mechanism works well for replacement DP, but the noise does not fit the shape of data well under add/remove DP.

Standard Gaussian Mechanism

Replacement

Add/remove

Our noise is elliptical around $(1,1,\ldots,1,1)$.

Correlated Gaussian Mechanism

"Add-DP ideal noise"

Add/remove

Main result

Error scales as $(\sqrt{d} + 1)/2$ instead of \sqrt{d} .

Bounded contribution

[JY24] considered the case where users contribute at most k values $(||x_i||_0 \le k)$. Check out their work in Poster Session 2!

They give the optimal Gaussian noise mechanism for any $k \le d/2$.

Error is (almost) optimal for $k \ge \lfloor d/2 \rfloor$.

Potential Future Work

- How can correlated noise improve error for thresholding techniques [WKZK24]?
- Can we improve error for hierarchical data with this technique? Other queries?

References

[JY24] Matthew Joseph and Alexander Yu. Some Constructions of Private, Efficient, and Optimal K-Norm and Elliptic Gaussian Noise. [WKZK24] Arjun Wilkins, Daniel Kifer, Danfeng Zhang, and Brian Karrer. Exact Privacy Analysis

of the Gaussian Sparse Histogram Mechanism.

