CONFIDENTIAL: DO NOT RETURN TO STUDENT. SHRED TO DISPOSE.

Dear Professor Pierre-Olivier Parise,

Thank you for working with KOKUA to provide me with appropriate disability-related exam accommodations.

I am acknowledging that I understand the conditions stated below and will take the MATH 311 exam in accordance with these conditions.

NO book allowed, NO notes allowed, Calculator allowed - nongraphing calculator and non-programmable calculator

heller 2	2151011			
7/00-0	2/5/24			
Jones, Lillie (Lillie)	Date			

KOKUA Proctor Notes:

The MATH 311 exam was administered on 2/5/2024 from 10:00 to 11:20

Return Method: Via email to parisepo@hawaii.edu.

University of Hawai'i

Last name:	Jones					
,	4		_			
First name:	Lillie					

Question:	1	2	3	4	5	6	Total
Points:	10	10	10	10	6	4	50
Score:							

Instructions:

- Write your complete name on your copy.
- Answer all 6 questions below.
- Write your answers directly on the questionnaire.
- Show ALL your work to have full credit.
- Draw a square around your final answer.
- Return your copy when you're done or at the end of the 50min period.
- No electronic devices allowed during the exam.
- Scientific calculator allowed only (no graphical calculators).
- Turn off your cellphone(s) during the exam.
- Lecture notes and the textbook are not allowed during the exam.

Your Signature:	Lillie	your		¥ 4		
2001 218100101					 	

MAY THE FORCE BE WITH YOU! PIERRE

QUESTION 1

(10 pts)

Find the solution to the following system of linear equations:

$$\begin{cases} x_1 + x_2 + 3x_3 - x_4 = 3\\ 2x_1 - 2x_2 + x_3 + x_4 = 0 \end{cases}$$

Does it have one solution, or infinitely many solutions?

has intinifely morn

Consider the following vectors:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ -1 \end{bmatrix}, \ \mathbf{z} = \begin{bmatrix} -2 \\ 3 \\ 2 \\ 0 \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} 9 \\ -8 \\ 0 \\ 1 \end{bmatrix}.$$

We would like to know if \mathbf{w} is a linear combination of \mathbf{x} , \mathbf{y} , \mathbf{z} and \mathbf{v} .

- (a) (5 points) Write down the system of linear equations corresponding to this problem. **DO NOT SOLVE THE SYSTEM**.
- (b) (5 points) If the RREF of the augmented matrix of the system from part (a) is

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

can you express \mathbf{w} as a linear combination of \mathbf{x} , \mathbf{y} , \mathbf{z} , and \mathbf{v} ? If so, write \mathbf{w} as a linear combination of the other vectors.

$$\vec{w} = \vec{a} \cdot \vec{x} + \vec{b} \cdot \vec{y} + \vec{c} \cdot \vec{z} + \vec{d} \cdot \vec{y}$$

$$\vec{w} = \vec{a} \cdot \vec{y} + \vec{b} \cdot \vec{y} + \vec{c} \cdot \vec{z} + \vec{d} \cdot \vec{y}$$

$$\vec{a} = \vec{a} \cdot \vec{b} \cdot \vec{z} + \vec{d} \cdot \vec{z} +$$

QUESTION 3

Consider the following homogeneous system of linear equations:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 - x_2 + x_3 - 2x_4 = 0 \\ 3x_1 - x_2 + 2x_3 - x_4 = 0 \end{cases}$$

- (a) (2 points) Write the augmented matrix of the system.
- (b) (2 points) Are there one solution or infinitely many solutions? Justify your answer.
- (c) (6 points) The RREF of the augmented matrix of the system is

$$\begin{bmatrix} 1 & 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 4 & 0 \end{bmatrix}$$

Express the solution as a linear combination of basic solution(s).

offer variables

$$x_1 - 3x = 3$$

 $x_2 = 6$
 $x_3 + x_4 = 0$
 $x_4 = 9$

$$\hat{X} = \begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \\ \hat{X}_3 \\ \hat{X}_4 \end{bmatrix} = 5 \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

QUESTION 4

(10 pts)

Find the entries of the matrix A if A satisfies the equation:

$$\left(2A^{\top} - 5\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}\right)^{\top} = 4A - 9\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}.$$

$$\begin{pmatrix}
 24T - \begin{bmatrix} 50 \\ -510 \end{bmatrix} = 4A - \begin{bmatrix} 99 \\ -90 \end{bmatrix} \\
 \begin{bmatrix}
 2AT \end{bmatrix} - \begin{bmatrix} 50 \\ -510 \end{bmatrix} = 4A - \begin{bmatrix} 99 \\ -90 \end{bmatrix} \\
 2A - \begin{bmatrix} 5-5 \\ 010 \end{bmatrix} = 4A - \begin{bmatrix} 99 \\ -90 \end{bmatrix} \\
 -2A - \begin{bmatrix} -24 \\ -24 \end{bmatrix}$$

$$\begin{array}{c}
-[5-5] = 2 + -[99] \\
+[99] \\
+[90]
\end{array}$$

$$\begin{bmatrix} 9 & 9 \\ -9 & 0 \end{bmatrix} - \begin{bmatrix} 5 & -5 \\ 0 & 10 \end{bmatrix} = 2A$$

A square matrix A is skew-symmetric if $A^{T} = -A$. Show that if A and B are skew-symmetric, then A - B is skew-symmetric.

$$A = -A^T$$
 $B = -B^T$

has to be the

given A&B are stem- symmetric

A-B > -AT -- BT > (-AT-BT) - (-BT) >

(-A)-(-B) statement is steen-symmetric if AT=-A+
BT=-B

AT-BT

QUESTION 6 (4 pts)	
Answer the following questions with True or False . Write down you answers on the line at the end of each question. Justify briefly your answer in the space after the statement of the problem.	
(a) A matrix B with RREF $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ has rank $(A) = 2$.	(/
·	
(a) <u>Tollse</u>	
(b) A homogeneous system can have no solution.	(/ :
even it vainables 20	
[01] - X250 that to estimate of	
To be	
(b) 1036	<i>(</i>) .
(c) If $\mathbf{x_1}$ and $\mathbf{x_2}$ are solutions to a system of linear equations denoted by (S) , then $2\mathbf{x_1} - \mathbf{x_2}$ is also a solution of the system (S) .	(/ .
(S) = X1	
$= \chi_2$	
(c)	
(d) A system of 3 linear equations in 2 variables with a coefficient matrix of rank 2 has a unique solution.	(/ :
[1 =] Wron ref form	
bottom raw should	
be all zons	
which gives you (d) false	
infinite solutions. (d) fortise	