Numerical Implementation of the Doyle-Fuller-Newman (DFN) Model with Two states thermal model

Prof. Scott Moura | Energy, Controls, and Applications Lab (eCAL) | UC Berkeley

LAST UPDATED | March 12, 2018 | by Saehong Park

1 Update Notes

• 2017.10.14 : Summarize the DFN implementation

This note is originally adopted from Prof. Moura's DFN implementation notes. I found several typos and errors while implementing myself. In addition, two - states thermal models will be added in the future.

2 Doyle-Fuller-Newman Model

We consider the Doyle-Fuller-Newman (DFN) model in Fig. 1 to predict the evolution of lithium concentration in the solid $c_s^{\pm}(x,r,t)$, lithium concentration in the electrolyte $c_e(x,t)$, solid electric potential $\phi_s^{\pm}(x,t)$, electrolyte electric potential $\phi_e(x,t)$, ionic current $i_e^{\pm}(x,t)$, molar ion fluxes $j_n^{\pm}(x,t)$, and bulk cell temperature T(t) [1]. The governing equations are given by

$$\frac{\partial c_s^{\pm}}{\partial t}(x,r,t) = \frac{1}{r^2} \frac{\partial}{\partial r} \left[D_s^{\pm} r^2 \frac{\partial c_s^{\pm}}{\partial r}(x,r,t) \right], \tag{1}$$

$$\varepsilon_e^j \frac{\partial c_e^j}{\partial t}(x,t) = \frac{\partial}{\partial x} \left[D_e^{\text{eff}}(c_e^j) \frac{\partial c_e^j}{\partial x}(x,t) + \frac{1 - t_c^0}{F} i_e^j(x,t) \right], \tag{2}$$

$$0 = \frac{\partial \phi_s^{\pm}}{\partial x}(x,t) - \frac{i_e^{\pm}(x,t) - I(t)}{\sigma^{\text{eff},\pm}}, \tag{3}$$

$$0 = \kappa^{\text{eff}}(c_e) \cdot \frac{\partial \phi_e}{\partial x}(x, t) + i_e^{\pm}(x, t)$$

$$-\kappa^{\text{eff}}(c_e) \cdot \frac{2RT}{F} (1 - t_c^0) \times \left(1 + \frac{d \ln f_{c/a}}{d \ln c_e}(x, t) \right) \frac{\partial \ln c_e}{\partial x}(x, t), \tag{4}$$

$$0 = \frac{\partial i_e^{\pm}}{\partial x}(x,t) - a_s^{\pm} F j_n^{\pm}(x,t), \tag{5}$$

$$0 = \frac{1}{F} i_0^{\pm}(x,t) \left[e^{\frac{\alpha_a F}{RT} \eta^{\pm}(x,t)} - e^{-\frac{\alpha_c F}{RT} \eta^{\pm}(x,t)} \right] - j_n^{\pm}(x,t), \tag{6}$$

Figure 1: Schematic of the Doyle-Fuller-Newman model [1]. The model considers two phases: the solid and electrolyte. In the solid, states evolve in the x and r dimensions. In the electrolyte, states evolve in the x dimension only. The cell is divided into three regions: anode, separator, and cathode.

$$\rho^{\text{avg}} c_P \frac{dT}{dt}(t) = h_{\text{cell}} \left[T_{\text{amb}}(t) - T(t) \right] + I(t) V(t) - \int_{0^-}^{0^+} a_s F j_n(x, t) \Delta T(x, t) dx, \quad (7)$$

where $D_e, \kappa, f_{c/a}$ are functions of $c_e(x,t)$ and $D_e^{\text{eff}} = D_e(c_e) \cdot (\varepsilon_e^j)^{\text{brug}}$, $\sigma^{\text{eff}} = \sigma \cdot (\varepsilon_s^j + \varepsilon_f^j)^{\text{brug}}$, $\kappa^{\text{eff}} = \kappa(c_e) \cdot (\varepsilon_e^j)^{\text{brug}}$ are the effective electrolyte diffusivity, effective solid conductivity, and effective electrolyte conductivity given by the Bruggeman relationship. We also have

$$i_0^{\pm}(x,t) = k^{\pm} \left[c_{ss}^{\pm}(x,t) \right]^{\alpha_c} \left[c_e(x,t) \left(c_{s,\max}^{\pm} - c_{ss}^{\pm}(x,t) \right) \right]^{\alpha_a},$$
 (8)

$$\eta^{\pm}(x,t) = \phi_s^{\pm}(x,t) - \phi_e(x,t) - U^{\pm}(c_{ss}^{\pm}(x,t)) - FR_f^{\pm}j_n^{\pm}(x,t), \tag{9}$$

$$c_{ss}^{\pm}(x,t) = c_s^{\pm}(x, R_s^{\pm}, t),$$
 (10)

$$\Delta T(x,t) = U^{\pm}(\bar{c}_s^{\pm}(x,t)) - T(t)\frac{\partial U^{\pm}}{\partial T}(\bar{c}_s^{\pm}(x,t)), \tag{11}$$

$$\overline{c}_s^{\pm}(x,t) = \frac{3}{(R_s^{\pm})^3} \int_0^{R_s^{\pm}} r^2 c_s^{\pm}(x,r,t) dr$$
 (12)

Along with these equations are corresponding boundary and initial conditions. The boundary conditions for the solid-phase diffusion PDE (1) are

$$\frac{\partial c_s^{\pm}}{\partial r}(x,0,t) = 0, \tag{13}$$

$$\frac{\partial c_s^{\pm}}{\partial r}(x, R_s^{\pm}, t) = -\frac{1}{D_s^{\pm}} j_n^{\pm}. \tag{14}$$

The boundary conditions for the electrolyte-phase diffusion PDE (2) are given by

$$\frac{\partial c_e}{\partial x}(0^-, t) = \frac{\partial c_e}{\partial x}(0^+, t) = 0, \tag{15}$$

$$D_e^{\text{eff},-}(c_e(L^-))\frac{\partial c_e}{\partial x}(L^-,t) = D_e^{\text{eff,sep}}(c_e(0^{\text{sep}}))\frac{\partial c_e}{\partial x}(0^{\text{sep}},t), \tag{16}$$

$$D_e^{\text{eff,sep}}(c_e(L^{\text{sep}})) \frac{\partial c_e}{\partial x}(L^{\text{sep}}, t) = D_e^{\text{eff,+}}(c_e(L^+)) \frac{\partial c_e}{\partial x}(L^+, t), \tag{17}$$

$$c_e(L^-, t) = c_e(0^{\text{sep}}, t),$$
 (18)

$$c_e(L^{\text{sep}}, t) = c_e(L^+, t).$$
 (19)

The boundary conditions for the solid-phase potential ODE (3) are given by

$$\frac{\partial \phi_s^-}{\partial x}(L^-, t) = \frac{\partial \phi_s^+}{\partial x}(L^+, t) = 0. \tag{20}$$

The boundary conditions for the electrolyte-phase potential ODE (4) are given by

$$\phi_e(0^-, t) = 0, (21)$$

$$\phi_e(L^-, t) = \phi_e(0^{\text{sep}}, t),$$
 (22)

$$\phi_e(L^{\text{sep}}, t) = \phi_e(L^+, t). \tag{23}$$

The boundary conditions for the ionic current ODE (5) are given by

$$i_e^-(0^-, t) = i_e^+(0^+, t) = 0$$
 (24)

and also note that $i_e(x,t) = I(t)$ for $x \in [0^{\text{sep}}, L^{\text{sep}}]$.

In addition, the parameters D_s^{\pm} , D_e , κ_e , k^{\pm} vary with temperature via the Arrhenius relationship:

$$\psi = \psi_{ref} \exp\left[\frac{E_{\psi}}{R} \left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right]$$
 (25)

where ψ represents a temperature dependent parameter, E_{ψ} is the activation energy [J/mol], and ψ_{ref} is the reference parameter value at reference temperature T_{ref} .

The input to the model is the applied current density I(t) [A/m²], and the output is the voltage measured across the current collectors

$$V(t) = \phi_s^+(0^+, t) - \phi_s^-(0^-, t) - R_c I(t)$$
(26)

Further details, including notation definitions, can be found in [1, 2].

3 Time-stepping

Ultimately, the equations are discretized to produce a DAE in the following format:

$$\dot{x} = f(x, z, u), \tag{27}$$

$$0 = g(x, z, u) (28)$$

with initial conditions x(0), z(0) that are consistent. That is, they verify (28). The function f(x, z, u) and g(x, z, u) are computed in Matlab function dae_dfn.m.

The time-stepping is done by solving the nonlinear equation

$$0 = F(x(t + \Delta t), z(t + \Delta t)),$$

$$0 = \begin{bmatrix} x(t) - x(t + \Delta t) + \frac{1}{2}\Delta t \left[f(x(t), z(t), u(t)) + f(x(t + \Delta t), z(t + \Delta t), u(t + \Delta t)) \right] \\ g(x(t + \Delta t), z(t + \Delta t), u(t + \Delta t)) \end{bmatrix}$$
(30)

for $x(t + \Delta t)$, $z(t + \Delta t)$. The function cfn_dfn.m returns the solution $(x(t + \Delta t), z(t + \Delta t))$ of (29)-(30), given x(t), z(t), u(t), $u(t + \Delta t)$. Note that we solve (29)-(30) using Newton's method, meaning analytic Jacobians of $F(\cdot, \cdot)$ are required w.r.t. x, z.

$$J = \begin{bmatrix} F_x^1 & F_z^1 \\ F_x^2 & F_z^2 \end{bmatrix}$$

$$= \begin{bmatrix} -I + \frac{1}{2}\Delta t \cdot \frac{\partial f}{\partial x}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) & \frac{1}{2}\Delta t \cdot \frac{\partial f}{\partial z}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) \\ \frac{\partial g}{\partial x}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) & \frac{\partial g}{\partial z}(x(t+\Delta t), z(t+\Delta t), u(t+\Delta t)) \end{bmatrix}$$
(31)

The analytic Jacobian is computed in two functions: (i) Function <code>jac_dfn_pre.m</code> computes Jacobian elements that are NOT state/time-dependent. (ii) Function <code>jac_dfn.m</code> computes Jacobian elements that are state/time-dependent. The secret to realizing fast and accurate simulations is carefully deriving the Jacobians and coding them in the functions above.

4 DAEs

To perform the time-stepping in the previous section, we must compute functions f(x, z, u) and g(x, z, u). These functions, which represent the RHS of (27)-(28), are calculated by the Matlab function $\mathtt{dae_dfn.m}$, given the inputs x, z, u. The role of variables x, z, u are played by the DFN variables shown in Table 1.

In the subsequent sections, we go through each DFN variable listed in Table 1 and document its numerical implementation.

5 Solid Concentration, c_s^-, c_s^+

Table 1: DAE notation for DFN states in Matlab Code

DAE Variable	DFN Variable
\overline{x}	$c_s^-, c_s^+, c_e = [c_e^-, c_e^{sep}, c_e^+], T$
z	$\phi_s^-, \phi_s^+, i_e^-, i_e^+, \phi_e = [\phi_e^-, \phi_e^{sep}, \phi_e^+], j_n^-, j_p^+$
u	I

[DONE] The PDEs (1) and BCs (13)-(14) governing Fickian diffusion in the solid phase are implemented using third order Padé approximations of the transfer function from j_n^{\pm} to c_{ss}^{\pm} [3, 4]:

$$\frac{C_{ss}^{\pm}(s)}{J_n^{\pm}(s)} = \frac{-\frac{(R_s^{\pm})^3}{165(D_s^{\pm})^2} s^2 - \frac{4R_s^{\pm}}{11D_s^{\pm}} s - \frac{3}{R_s^{\pm}}}{\frac{(R_s^{\pm})^4}{3465(D_s^{\pm})^2} s^3 + \frac{3(R_s^{\pm})^2}{55D_s^{\pm}} s^2 + s},$$
(33)

which we notate more simply by

$$\frac{C_{ss}^{\pm}(s)}{J_n^{\pm}(s)} = \frac{b_2 s^2 + b_1 s + b_0}{a_3 s^3 + a_2 s^2 + a_1 s + a_0}.$$
 (34)

Next we multiply top and bottom by $\frac{1}{a_3}$ to yield a unity coefficient on the highest-order term in the denominator, yielding

$$\frac{C_{ss}^{\pm}(s)}{J_n^{\pm}(s)} = \frac{\bar{b}_2 s^2 + \bar{b}_1 s + \bar{b}_0}{s^3 + \bar{a}_2 s^2 + \bar{a}_1 s + \bar{a}_0},\tag{35}$$

where $\bar{b}_i = b_i/a_3$ and $\bar{a}_i = a_i/a_3$.

The transfer function (35) is converted into controllable canonical state-space form, thus producing the subsystem:

$$\frac{d}{dt} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\bar{a}_0 & -\bar{a}_1 & -\bar{a}_2 \end{bmatrix} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} j_n^{\pm}(t) \tag{36}$$

$$\begin{bmatrix} c_{ss}^{\pm}(t) \end{bmatrix} = \begin{bmatrix} \bar{b}_0 & \bar{b}_1 & \bar{b}_2 \end{bmatrix} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix}$$

$$(37)$$

for each discrete point in x.

To simplify analytical applications for the DFN model, we seek a different state-space realization in which bulk concentration $\bar{c}_s^{\pm}(t)$ is expressed as a state. This can be found by pursuing a Jordan-form state-space realization, which diagonalizes the system matrix. The diagonal elements represent the system eigenvalues. The zero eigenvalue corresponds to bulk concentration. All the aforementioned calculations are performed in Matlab function

c_s_mats.m. The final result produces system matrices:

$$\frac{d}{dt} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix} = A_{cs}^{\pm} \begin{bmatrix} c_{s1}^{\pm}(t) \\ c_{s2}^{\pm}(t) \\ c_{s3}^{\pm}(t) \end{bmatrix} + B_{cs}^{\pm} j_n^{\pm}(t)$$
(38)

$$\begin{bmatrix}
c_{ss}^{\pm}(t) \\
c_{s}^{\pm}(t)
\end{bmatrix} = C_{cs}^{\pm} \begin{bmatrix}
c_{s1}^{\pm}(t) \\
c_{s2}^{\pm}(t) \\
c_{s3}^{\pm}(t)
\end{bmatrix}$$
(39)

where the second row of C_{cs}^{\pm} is $[C_{cs}^{\pm}]_2 = [0, 0, 1]$. Note we have abused notation. The states in (38)-(39) are not the same as those in (36)-(37), due to the different realizations. Also, these matrices must be computed online, due to the temperature dependence of D_s^{\pm} described in (25).

6 Electrolyte Concentration, c_e

[DONE] The electrolyte concentration PDE (2) combined with (5), and BCs (15)-(19) are implemented using the central difference method, which ultimately produces the matrix differential equation:

$$\frac{d}{dt}c_e^j(t) = \frac{dD_e^{\text{eff},j}}{dc_e}(c_e^j) \left[M_{ce}^{j,1}c_e^j(t) + M_{ce}^{j,2}c_{e,bc}^j(t) \right]^2 + D_e^{\text{eff},j}(c_e^j) \left[M_{ce}^{j,3}c_e^j(t) + M_{ce}^{j,4}c_{e,bc}^j(t) \right] + M_{ce}^{j,5}j_n^j(t)$$
(40)

where c_e, j_n^j are vectors whose elements represent discrete points along the x-dimension of the DFN model. The variable $c_{e,bc}^j$ represents the boundary values for region j, namely $c_{e,bc}^- = \left[c_{e,bc,1}, c_{e,bc,2}\right]^T$, $c_{e,bc}^{\text{sep}} = \left[c_{e,bc,2}, c_{e,bc,3}\right]^T$, $c_{e,bc}^+ = \left[c_{e,bc,3}, c_{e,bc,4}\right]^T$. The boundary values are computed by: $c_{e,bc}(t) = C_{ce} \ c_e(t)$ where $c_{e,bc} = \left[c_{e,bc,1}, c_{e,bc,2}, c_{e,bc,3}, c_{e,bc,4}\right]^T$.

Note that the effective diffusivity, $D_e^{\mathrm{eff},j}(c_e^j)$, and its derivative, $\frac{dD_e^{\mathrm{eff},j}}{dc_e}(c_e^j)$, are state-dependent and must be computed online. The matrices $M_{ce}^{j,1}, M_{ce}^{j,2}, M_{ce}^{j,3}, M_{ce}^{j,4}, M_{ce}^{j,5}, C_{ce}$ are computed offline by Matlab function c_e_mats.m. These matrices are given by

$$M_{ce}^{j,1} = \frac{1}{2L^{j}\Delta x^{j}} \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ 0 & -1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & & \\ 0 & 0 & \dots & \dots & 1 \\ 0 & 0 & \dots & -1 & 0 \end{bmatrix}, \quad M_{ce}^{j,2} = \frac{1}{2L^{j}\Delta x^{j}} \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \tag{41}$$

$$M_{ce}^{j,3} = \frac{1}{(L^{j}\Delta x^{j})^{2}} \begin{bmatrix} 1 & -2 & 1 & \dots & 0 \\ 0 & 1 & -2 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 & -2 & 1 \\ 0 & 0 & \dots & 0 & 1 & -2 \end{bmatrix}, \quad M_{ce}^{j,4} = \frac{1}{(L^{j}\Delta x^{j})^{2}} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad (42)$$

$$M_{ce}^{j,5} = \frac{(1 - t_c^0)a_s^j}{\varepsilon_e^j} \mathbb{I}.$$
(43)

for $j \in \{-, \text{sep}, +\}$. The matrix C_{ce} is given by

$$C_{ce} = -(N_{ce}^2)^{-1}(N_{ce}^1) (44)$$

where

$$N_{ce}^{2} = \begin{bmatrix} -3 & 0 & 0 & 0 & 0 \\ 0 & 3\frac{(\varepsilon_{e}^{-})^{\text{brug}}}{2L - \Delta x^{-}} + 3\frac{(\varepsilon_{e}^{\text{sep}})^{\text{brug}}}{2L^{\text{sep}}\Delta x^{\text{sep}}} & 0 & 0 \\ 0 & 0 & 3\frac{(\varepsilon_{e}^{-})^{\text{brug}}}{2L^{\text{sep}}\Delta x^{\text{sep}}} + 3\frac{(\varepsilon_{e}^{\text{ep}})^{\text{brug}}}{2L + \Delta x^{+}} & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$
(46)

Note, we have used second-order accurate finite difference approximations for the boundary conditions.

7 Temperature, T

[DONE] Temperature is scalar, so the ODE (7) is directly implemented as:

$$\rho^{\text{avg}} c_P \frac{dT}{dt}(t) = h_{\text{cell}} \left[T_{\text{amb}}(t) - T(t) \right] + I(t) V(t) - \int_{0^-}^{0^+} a_s F j_n(x, t) \Delta T(x, t) dx, \quad (47)$$

$$\Delta T(x,t) = U^{\pm}(\overline{c}_s^{\pm}(x,t)) - T(t) \frac{\partial U^{\pm}}{\partial T}(\overline{c}_s^{\pm}(x,t)), \tag{48}$$

$$\overline{c}_s^{\pm}(x,t) = \frac{3}{(R_s^{\pm})^3} \int_0^{R_s^{\pm}} r^2 c_s^{\pm}(x,r,t) dr \tag{49}$$

8 Solid Potential, ϕ_s^-, ϕ_s^+

[DONE] The solid potential ODE (3) and BCs (20) are implemented using the central difference method, which ultimately produces the matrix equation:

$$\frac{d}{dt}\phi_s^-(t) = F_{psn}^1 \phi_s^-(t) + F_{psn}^2 i_{e,aug}^-(t) + G_{psn} I(t) = 0$$
 (50)

$$\frac{d}{dt}\phi_s^+(t) = F_{psp}^1 \phi_s^+(t) + F_{psp}^2 i_{e,aug}^+(t) + G_{psp} I(t) = 0.$$
 (51)

where $i_{e,aug}^{\pm}$ are

$$i_{e,aug}^{-}(t) = \begin{bmatrix} 0 \\ i_{e}^{-}(x,t) \\ I(t) \end{bmatrix}, \qquad i_{e,aug}^{+}(t) = \begin{bmatrix} I(t) \\ i_{e}^{+}(x,t) \\ 0 \end{bmatrix}$$
 (52)

This section also computes the terminal voltage V(t) from (26) using matrix equations

$$\phi_{s,bc}^{-}(t) = C_{psn} \, \phi_s^{-}(t) + D_{psn} \, I(t),$$
 (53)

$$\phi_{s,bc}^{+}(t) = C_{psp} \, \phi_s^{+}(t) + D_{psp} \, I(t),$$
 (54)

$$V(t) = \phi_{s\,bc\,2}^{+}(t) - \phi_{s\,bc\,1}^{-}(t) - R_c I(t) \tag{55}$$

where the following matrices are computed a priori by Matlab function phi_s_mats.m

$$(F1n) = (M1n) - (M2n)(N2n)^{-1}(N1n), (56)$$

$$(F2n) = (M3n), \tag{57}$$

$$(Gn) = (M4n) - (M2n)(N2n)^{-1}(N3n), (58)$$

$$(F1p) = (M1p) - (M2p)(N2p)^{-1}(N1p), (59)$$

$$(F2p) = (M3p), \tag{60}$$

$$(Gp) = (M4p) - (M2p)(N2p)^{-1}(N3p), (61)$$

$$(Cn) = -(N2n)^{-1}(N1n), (62)$$

$$(Dn) = -(N2n)^{-1}(N3n), (63)$$

$$(Cp) = -(N2p)^{-1}(N1p), (64)$$

$$(Dp) = -(N2p)^{-1}(N3p), (65)$$

where the (Mij) and N(ij) matrices result from central difference approximations of the ODE in space (3) and boundary conditions (20).

$$(M1j) = \begin{bmatrix} 0 & \alpha_j & 0 & \dots & 0 \\ -\alpha_j & 0 & \alpha_j & \dots & 0 \\ 0 & -\alpha_j & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & & \\ 0 & 0 & \dots & \dots & \alpha_j \\ 0 & 0 & \dots & -\alpha_i & 0 \end{bmatrix}, \quad (M2j) = \begin{bmatrix} -\alpha_j & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & \alpha_j \end{bmatrix}, \tag{66}$$

$$(M3j) = \frac{1}{\sigma^{\text{ref},\pm}} \begin{bmatrix} 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & -1 & 0 & 0 \\ 0 & 0 & \dots & 0 & -1 & 0 \end{bmatrix}, \quad (M4j) = \frac{1}{\sigma^{\text{ref},\pm}} \mathbb{I}$$
 (67)

$$(N1j) = \begin{bmatrix} 4\alpha_j & -\alpha_j & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1\alpha_j & -4\alpha_j \end{bmatrix}, \quad (N2j) = \begin{bmatrix} -3\alpha_j & 0 \\ 0 & 3\alpha_j \end{bmatrix}, \tag{68}$$

$$(N3n) = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad (N3p) = \begin{bmatrix} 0\\1 \end{bmatrix} \tag{69}$$

for $j \in \{n, p\}$, $\alpha_j = 1/(2L^j \Delta x^j)$. Note, we have used second-order accurate finite difference approximations for the boundary conditions.

9 Electrolyte Current, i_e^-, i_e^+

[DONE] The electrolyte current ODE (5) and BCs (24) are implemented using the central difference method, which ultimately produces the matrix equation:

$$\frac{d}{dt}i_e^-(t) = F_{ien}^{1-} i_e^-(t) + F_{ien}^{2-} j_n^-(t) + F_{ien}^{3-} I(t)$$
 (70)

$$\frac{d}{dt}i_e^+(t) = F_{iep}^{1+} i_e^+(t) + F_{iep}^{2+} j_n^+(t) + F_{iep}^{3+} I(t)$$
 (71)

where the following matrices are computed a priori by Matlab function i_e_mats.m

$$F_{ien}^{1-} = (M1n) - (M2n)(N2n)^{-1}(N1n), \tag{72}$$

$$F_{ien}^{2-} = (M3n) - (M2n)(N2n)^{-1}(N3n), \tag{73}$$

$$F_{ien}^{3-} = (M2n)(N2n)^{-1}(N4n), (74)$$

$$F_{iep}^{1+} = (M1p) - (M2p)(N2p)^{-1}(N1p), \tag{75}$$

$$F_{iep}^{2+} = (M3p) - (M2p)(N2p)^{-1}(N3p), \tag{76}$$

$$F_{ien}^{3+} = (M2p)(N2p)^{-1}(N4p) \tag{77}$$

where the (Mij) and N(ij) matrices result from central difference approximations of the ODE in space (5) and boundary conditions (24).

$$(M1j) = \begin{bmatrix} 0 & \alpha_{j} & 0 & \dots & 0 \\ -\alpha_{j} & 0 & \alpha_{j} & \dots & 0 \\ 0 & -\alpha_{j} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & & \\ 0 & 0 & \dots & \dots & \alpha_{j} \\ 0 & 0 & \dots & -\alpha_{j} & 0 \end{bmatrix}, \quad (M2j) = \begin{bmatrix} -\alpha_{j} & 0 \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \\ 0 & \alpha_{j} \end{bmatrix}, \quad (M3j) = -\beta_{j}\mathbb{I},$$

$$(78)$$

 $(N1j) = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}, \qquad (N2j) = \mathbb{I}, \qquad (N3j) = (N1j), \tag{79}$

$$(N4n) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad (N4p) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 (80)

for $j \in \{n, p\}, \ \alpha_j = (2L^j \Delta x^j)^{-1}, \ \beta_j = a_*^j F.$

Electrolyte Potential, ϕ_e 10

DONE The electrolyte potential is implemented using the central difference method, which ultimately produces the matrix equation:

$$\frac{d}{dt}\phi_e^-(t) = F_{pe}^1(c_{e,x}) \cdot \phi_e(t) + F_{pe}^2(c_{e,x}) \cdot i_{e,x}(t) + F_{pe}^3(c_{e,x}) \cdot \ln(c_{e,x}(t))$$
(81)

where vectors $i_{e,x}$ and $c_{e,x}$ represent the entire electrolyte current and concentration, respectively, across the entire battery, including boundary values,

$$i_{e,x}(t) = \begin{bmatrix} 0, i_e^-(x,t), I(x,t), i_e^+(x,t), 0 \end{bmatrix}^T,$$
 (82)

$$c_{e,x}(t) = \begin{bmatrix} c_{e,bc,1}(t), c_e^-(x,t), c_{e,bc,2}(t), c_e^{sep}(x,t), c_{e,bc,3}(t), c_e^+(x,t), c_{e,bc,4}(t) \end{bmatrix}^T, (83)$$

$$c_{e,bc}(t) = C_{ce} c_e(t) (84)$$

Note that the system matrices $F_{pe}^1, F_{pe}^2, F_{pe}^3$ are state-varying. These state matrices are computed online as follows:

$$F_{pe}^{1} = \kappa^{\text{eff}}(c_{e}) \cdot M_{pe,1} + M_{pe,2}C_{pe},$$

$$F_{pe}^{2} = M_{pe,3},$$
(85)

$$F_{pe}^2 = M_{pe,3},$$
 (86)

$$F_{pe}^{3} = \kappa_{D}^{\text{eff}}(c_{e})M_{pe,4} \tag{87}$$

where

$$\kappa^{\text{eff}}(c_e) = \kappa(c_e) \cdot (\varepsilon_e^j)^{\text{brug}},$$
(88)

$$\kappa_D^{\text{eff}}(c_e) = \kappa^{\text{eff}}(c_e) \frac{2RT}{F} (t_c^0 - 1) \left(1 + \frac{d \ln f_{c/a}}{d \ln c_e} (x, t) \right).$$
(89)

The matrices $M_{pe,1}, M_{pe,2}, M_{pe,3}, M_{pe,4}, C_{pe}$ are computed offline by Matlab function $phi_e_mats.m$ as follows. Let

$$\alpha^j = \frac{1}{2L^j \Delta x^j} \tag{90}$$

Molar ion fluxes, i.e. Butler-Volmer Current, j_n^-, j_n^+ 11

[DONE] Since the Butler-Volmer equation (6) is algebraic, and we always assume $\alpha_a = \alpha_c =$ $0.5 = \alpha$, it is trivially implemented as:

$$\frac{d}{dt}j_n^-(t) = \frac{2}{F}i_0^-(t)\sinh\left[\frac{\alpha F}{RT}\eta^-(t)\right] - j_n^-(t), \tag{91}$$

$$\frac{d}{dt}j_n^+(t) = \frac{2}{F}i_0^+(t)\sinh\left[\frac{\alpha F}{RT}\eta^+(t)\right] - j_n^+(t)$$
(92)

where

$$i_0^{\pm}(t) = k^{\pm} \left[c_{ss}^{\pm}(t) c_e(t) \left(c_{s,\text{max}}^{\pm} - c_{ss}^{\pm}(t) \right) \right]^{\alpha},$$

$$\eta^{\pm}(t) = \phi_s^{\pm}(t) - \phi_e(t) - U^{\pm}(c_{ss}^{\pm}(t)) - F R_f^{\pm} j_n^{\pm}(t)$$
(93)
(94)

$$\eta^{\pm}(t) = \phi_s^{\pm}(t) - \phi_e(t) - U^{\pm}(c_{ss}^{\pm}(t)) - FR_f^{\pm}j_n^{\pm}(t)$$
 (94)

for each discrete point in x, in the electrodes only. Note that $\frac{d}{dt}j_n^{\pm}(t)$ is a dummy variable used to save the corresponding element of vector g(x, z, t).

Nomenclature **12**

See Table 2.

References

- [1] K. E. Thomas, J. Newman, and R. M. Darling, "Mathematical modeling of lithium batteries," in Advances in lithium-ion batteries. Springer, 2002, pp. 345–392.
- [2] N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, "Algorithms for advanced batterymanagement systems," IEEE Control Systems, vol. 30, no. 3, pp. 49–68, June 2010.
- [3] J. C. Forman, S. Bashash, J. L. Stein, and H. K. Fathy, "Reduction of an electrochemistry-based li-ion battery model via quasi-linearization and pade approximation," Journal of the Electrochemical Society, vol. 158, no. 2, pp. A93–A101, 2011.
- [4] C. D. Rahn and C.-Y. Wang, Battery systems engineering. John Wiley & Sons, 2013.

Table 2: Symbol Definitions

Symbols in order of appearance

Electrochemical model states, inputs, outputs		
c_s^{\pm}	Lithium concentration in solid phase [mol/m ³]	
c_e	Lithium concentration in electrolyte phase [mol/m ³]	
ϕ_s^{\pm}	Solid electric potential [V]	
	Electrolyte electric potential [V]	
i_e^{\pm}	Ionic current [A/m ²]	
ϕ_e i_e^{\pm} j_n^{\pm} i_0^{\pm} η^{\pm} c_{ss}^{\pm}	Molar ion flux [mol/m ² -s]	
i_0^{\pm}	Exchange current density [A/m ²]	
η^\pm	Overpotential [V]	
c_{ss}^{\pm}	Lithium concentration at solid particle surface [mol/m ³]	
$ heta^\pm$	Normalized surface concentration $c_{ss}^{\pm}/c_{s,\text{max}}^{\pm}$ [-]	
I	Applied current [A/m ²]	
V	Terminal voltage [V]	
Electrochemical model parameters		
D_s^{\pm}, D_e	Diffusivity of solid, electrolyte phase [m ² /s]	
t_c^0	Transference number [-]	
$\varepsilon_s^{\pm}, \varepsilon_e$	Volume fraction of solid, electrolyte phase [-]	
F	Faraday's constant [C/mol]	
σ^{\pm}	Conductivity of solid $[1/\Omega-m]$	
κ	Conductivity of electrolyte $[1/\Omega-m]$	
R	Universal gas constant [J/mol-K]	
T	Temperature [K]	
$f_{c/a}$	Mean molar activity coefficient in electrolyte [-]	
a^{\pm}	Specific interfacial surface area [m ² /m ³]	
α_a, α_c	Anodic, cathodic charge transfer coefficient [-]	
k^{\pm}	Kinetic reaction rate $[(A/m^2)(mol^3/mol)^{(1+\alpha)}]$	
$c_{s,\max}^{\pm}$	Maximum concentration of solid material [mol/m ³]	
U^{\pm}	Open circuit potential of solid material [V]	
R_f^{\pm}	Solid-electrolyte interphase film resistance $[\Omega-m^2]$	
R_c	Resistance of connectors, current collectors $[\Omega-m^2]$	
R_s^{\pm}	Particle radius in solid phase [m]	
L^{j}	Length of region $j \in \{-, \text{sep}, +\}$	
E_{ψ}	Activation energy of parameter ψ , [J/mol]	