Goéland: A Concurrent Tableau-Based Theorem Prover

PDAR2022

<u>Julie CAILLER, Johann ROSAIN, David DELAHAYE, Simon ROBILLARD and Hinde Lilia BOUZIANE</u>

August 11, 2022

MaREL Team, LIRMM, Université de Montpellier, CNRS, France

Context

Method of analytic tableaux

- Free variables
- Usually managed sequentially

Fair proof search is difficult!

- Shared free variables
- Find a subtitution for the whole tree
- Completeness issues: branch selection, free variables reintroduction

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \, \gamma_{\forall} \\ \frac{P(X), \forall y \ P(y) \quad \neg P(X), \neg (\forall y \ P(y))}{} \, \beta_{\Leftrightarrow}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(\boldsymbol{a}), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(\boldsymbol{a}) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall} \\ \hline \frac{P(\boldsymbol{a}), \forall y \ P(y)}{\sigma = \{\boldsymbol{X} \mapsto \boldsymbol{a}\}} \boldsymbol{\beta}_{\Leftrightarrow}$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(\mathbf{a}) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}}{P(\mathbf{a}), \forall y \ P(y)} \gamma_{\forall} \frac{\neg P(\mathbf{a}), \neg (\forall y \ P(y))}{\sigma = \{X \mapsto a\}} \beta_{\Leftrightarrow} \circ_{\sigma}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(a) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall} \\ \frac{P(a), \forall y \ P(y)}{P(b)} \gamma_{\forall} \\ \frac{P(b)}{\sigma = \{Y \mapsto b\}} \odot_{\sigma}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}}{P(X), \forall y \ P(y)} \beta_{\Leftrightarrow}$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(b) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall} \\ \frac{P(b), \forall y \ P(y)}{\sigma = \{X \mapsto b\}} \odot_{\sigma}$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(\textbf{b}) \Leftrightarrow (\forall y \ P(y))} \ \gamma_{\forall} \\ \frac{P(\textbf{b}), \forall y \ P(y)}{\sigma = \{X \mapsto b\}} \ \odot_{\sigma} \\ \frac{\neg P(\textbf{b}), \neg (\forall y \ P(y))}{\neg P(sko)} \ \delta_{\neg \forall}$$

3 / 15

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(b) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}$$

$$\frac{P(b), \forall y \ P(y)}{\sigma = \{X \mapsto b\}} \odot_{\sigma} \frac{\neg P(b), \neg (\forall y \ P(y))}{\neg P(sko)} \delta_{\neg \forall}$$

$$\frac{\neg P(sko)}{P(X_2) \Leftrightarrow (\forall y \ P(y))} reintroduction$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\begin{array}{c} \frac{P(a), \neg P(b), \forall x \; (P(x) \Leftrightarrow (\forall y \; P(y)))}{P(\pmb{b}) \Leftrightarrow (\forall y \; P(y))} \gamma_{\forall} \\ \hline \frac{P(\pmb{b}), \forall y \; P(y)}{\sigma = \{X \mapsto b\}} \odot_{\sigma} & \frac{\neg P(\pmb{b}), \neg (\forall y \; P(y))}{\neg P(sko)} \delta_{\neg \forall} \\ \hline \frac{P(\pmb{X}_2) \Leftrightarrow (\forall y \; P(y))}{P(X_2), \forall y \; P(y)} \xrightarrow{reintroduction} \\ \hline \frac{P(X_2), \forall y \; P(y)}{P(y)} & \neg P(X_2), \neg (\forall y \; P(y)) \end{array}$$

3 / 15

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(b) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}$$

$$\frac{P(b), \forall y \ P(y)}{\sigma = \{X \mapsto b\}} \odot_{\sigma} \frac{\neg P(b), \neg (\forall y \ P(y))}{\neg P(sko)} \delta_{\neg \forall}$$

$$\frac{\neg P(sko)}{P(b) \Leftrightarrow (\forall y \ P(y))} reintroduction$$

$$\frac{P(b), \forall y \ P(y)}{\sigma = \{X_2 \mapsto b\}} \odot_{\sigma} \neg P(b), \neg (\forall y \ P(y)) \beta_{\Leftrightarrow}$$

$$\sigma' = \{X_2 \mapsto sko\}$$

3 / 15

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(b) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}$$

$$\frac{P(b), \forall y \ P(y)}{\sigma = \{X \mapsto b\}} \odot_{\sigma} \frac{\neg P(b), \neg (\forall y \ P(y))}{\neg P(sko)} \delta_{\neg \forall}$$

$$\frac{P(b), \forall y \ P(y)}{\neg P(sko)} reintroduction$$

$$\frac{P(b), \forall y \ P(y)}{\sigma = \{X_2 \mapsto b\}} \odot_{\sigma} \frac{\neg P(b), \neg (\forall y \ P(y))}{\neg P(sko_2)} \delta_{\neg \forall}$$

$$\sigma' = \{X_2 \mapsto sko\}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(b) \Leftrightarrow (\forall y \ P(y))} \gamma_{\forall}$$

$$\frac{P(b), \forall y \ P(y)}{\sigma = \{X \mapsto b\}} \odot_{\sigma} \frac{\neg P(b), \neg(\forall y \ P(y))}{\neg P(sko)} \delta_{\neg \forall}$$

$$\frac{\neg P(b), \neg(\forall y \ P(y))}{\neg P(sko)} reintroduction$$

$$\frac{P(b), \forall y \ P(y)}{\sigma = \{X_2 \mapsto b\}} \odot_{\sigma} \frac{\neg P(b), \neg(\forall y \ P(y))}{\neg P(sko_2)} \delta_{\neg \forall}$$

$$\frac{\neg P(sko_2)}{\neg P(sko_2)} reintroduction$$

$$\sigma' = \{X_2 \mapsto sko\}$$

Exploring branches in parallel?

Approach

- Each branch searches for a local solution
- Manages multiple solutions
- No more branch selection fairness problem

New challenges

- Free variable dependency
- Communication between branches

Technical point

- Backtracking on solutions
- Reintroduction fairness problem: iterative deepening

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \ \gamma \forall M$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \gamma \forall M$$
$$\frac{P(X), \forall y \ P(y) \qquad \neg P(X), \neg (\forall y \ P(y))}{} \beta \Leftrightarrow$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\frac{P(\boldsymbol{a}), \neg P(\boldsymbol{b}), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \gamma \forall M$$

$$\frac{P(\boldsymbol{X}), \forall y \ P(y)}{\odot} \odot_{\sigma} \frac{\neg P(\boldsymbol{X}), \neg (\forall y \ P(Y))}{\odot} \odot_{\sigma}$$

$$\sigma = \{X \mapsto b\}$$

$$\sigma = \{X \mapsto a\}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\begin{array}{c|c} P(a), \neg P(b), \forall x \; (P(x) \Leftrightarrow (\forall y \; P(y))) \\ \hline P(X) \Leftrightarrow (\forall y \; P(y)) \\ \hline P(X), \forall y \; P(y) \\ \hline \odot \\ \sigma = \{X \mapsto b\} \\ \hline \end{array} \begin{array}{c} \neg P(X), \neg (\forall y \; P(y)) \\ \hline \sigma = \{X \mapsto a\} \\ \end{array}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\underbrace{\frac{P(a),\neg P(b),\forall x\;(P(x)\Leftrightarrow (\forall y\;P(y)))}{P(X)\Leftrightarrow (\forall y\;P(y))}\,\gamma\forall M}_{P(b),\forall y\;P(y)} \underbrace{\begin{array}{c} (\forall y\;P(y))\\ \neg P(b),\neg(\forall y\;P(y)) \end{array}}_{\sigma=\{X\mapsto b\}}\beta\Leftrightarrow$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\underbrace{\frac{P(a),\neg P(\mathbf{b}),\forall x\ (P(x)\Leftrightarrow (\forall y\ P(y)))}{P(X)\Leftrightarrow (\forall y\ P(y))}}_{\text{Closed}}\gamma\forall M}_{\gamma\forall D(\mathbf{b}),\forall y\ P(y)} \gamma\forall M$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \ \gamma \forall M}{\frac{P(\textbf{b}), \forall y \ P(y)}{\odot} \ \odot_{\sigma} \ \frac{\neg P(\textbf{b}), \neg (\forall y \ P(y))}{P(sko)} \ \delta_{\neg \forall}}$$

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))}{P(X) \Leftrightarrow (\forall y \ P(y))} \gamma \forall M}{P(b), \forall y \ P(y)} \underbrace{\begin{array}{c} \beta \Leftrightarrow \\ \neg P(b), \neg (\forall y \ P(y)) \\ \hline \\ P(sko) \\ \hline \\ Open \end{array}} \delta_{\neg \forall}$$

6 / 15

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\begin{array}{c|c} P(a), \neg P(b), \forall x \; (P(x) \Leftrightarrow (\forall y \; P(y))) \\ \hline P(X) \Leftrightarrow (\forall y \; P(y)) \\ \hline P(a), \forall y \; P(y) \\ \hline \sigma = \{X \mapsto a\} \\ \end{array} \begin{array}{c|c} \neg P(a), \neg (\forall y \; P(y)) \\ \hline \sigma = \{X \mapsto a\} \\ \end{array}$$

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

$$\underbrace{\frac{P(\boldsymbol{a}),\neg P(b),\forall x\;(P(x)\Leftrightarrow (\forall y\;P(y)))}{P(X)\Leftrightarrow (\forall y\;P(y))}}_{P(\boldsymbol{a}),\forall y\;P(y)} \gamma\forall M}_{\text{Closed}}$$

Come back to example

$$P(a), \neg P(b), \forall x \ (P(x) \Leftrightarrow (\forall y \ P(y)))$$

$$\frac{\frac{P(a), \neg P(b), \forall x \; (P(x) \Leftrightarrow (\forall y \; P(y)))}{P(X) \Leftrightarrow (\forall y \; P(y))} \; \gamma \forall M}{\frac{P(a), \forall y \; P(y)}{P(Y)} \; \gamma_{\forall} \; \frac{\neg P(a), \neg (\forall y \; P(y))}{\odot} \; \odot_{\sigma}}$$

Come back to example

$$P(a), \neg P(b), \forall x (P(x) \Leftrightarrow (\forall y P(y)))$$

Goéland tool

Implementation

- Go programming language
- Designed for concurrency
- Goroutines: N:M lightweight threads

7 / 15

	(263	SYN problems)	(46	SET 64 problems)
Goéland		199		229
Zenon	256	(+60, -3)	150	(+74, -153)
Princess	195	(+1, -5)	258	(+132, -103)
LeoIII	195	(+1, -5)	177	(+93, -145)
Е	261	(+62, -0)	363	(+184, -50)
Vampire	262	(+63, -0)	321	(+167, -75)

	(263	SYN problems)	(46	SET 64 problems)
Goéland		199		229
Zenon	256	(+60, -3)	150	(+74, -153)
Princess	195	(+1, -5)	258	(+132, -103)
LeoIII	195	(+1, -5)	177	(+93, -145)
Е	261	(+62, -0)	363	(+184, -50)
Vampire	262	(+63, -0)	321	(+167, -75)

	(263	SYN problems)	(46	SET 4 problems)
Goéland		199		229
Zenon	256	(+60, -3)	150	(+74, -153)
Princess	195	(+1, -5)	258	(+132, -103)
LeoIII	195	(+1, -5)	177	(+93, -145)
Е	261	(+62, -0)	363	(+184, -50)
Vampire	262	(+63, -0)	321	(+167, -75)

Reasoning Modulo Theory

Example

- Axiom: $\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b$
- Axiom: $\forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a$
- Conjecture: $\forall a.\ a \subseteq a$

In the method of analytics tableaux

$$(\forall a,b.\ a\subseteq b \Leftrightarrow \forall x.\ x\in a \Rightarrow x\in b) \land (\forall a,b.\ a=b \Leftrightarrow a\subseteq b \land b\subseteq a) \land \neg (\forall a.\ a\subseteq a)$$

Reasoning Modulo Theory

Main heuristic

 $(\forall \vec{x}.) \ A \Leftrightarrow F \text{ where:}$

- A is an atomic formula
- F is a non-atomic formula

Axiom:
$$\forall a, b. \ a \subseteq b \Leftrightarrow \forall x. \ x \in a \Rightarrow x \in b$$

Rule:
$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

Axiom:
$$\forall a, b. \ a = b \Leftrightarrow a \subseteq b \land b \subseteq a$$

Rule:
$$A = B \rightarrow A \subseteq B \land B \subseteq A$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\neg(\forall a.\ a \subseteq a)$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\neg(\forall a.\ a \subseteq a)}{\neg(a \subseteq a)}\ \delta_{\neg\forall}$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$
$$A = B \to A \subseteq B \land B \subseteq A$$

$$\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\neg(\forall x.\ x\in a\Rightarrow x\in a)}\to (A\mapsto a, B\mapsto a)$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\neg(\forall x.\ x\in a\Rightarrow x\in a)}\to (A\mapsto a, B\mapsto a)$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\frac{\neg(\forall x.\ x\in a\Rightarrow x\in a)}{\neg(x\in a\Rightarrow x\in a)}} \xrightarrow{\delta_{\neg\forall}} (A\mapsto a, B\mapsto a)$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\frac{\neg(\forall x.\ x\in a\Rightarrow x\in a)}{\neg(x\in a\Rightarrow x\in a)}} \xrightarrow[\sigma(x\in a), (x\in a)]{} \delta_{\neg\forall}$$

$$A \subseteq B \to \forall x. \ x \in A \Rightarrow x \in B$$

 $A = B \to A \subseteq B \land B \subseteq A$

$$\frac{\frac{\neg(\forall a.\ a\subseteq a)}{\neg(a\subseteq a)}\ \delta_{\neg\forall}}{\frac{\neg(\forall x.\ x\in a\Rightarrow x\in a)}{\neg(x\in a\Rightarrow x\in a)}} \xrightarrow[\delta_{\neg\forall}]{} (A\mapsto a, B\mapsto a)$$

$$\frac{\frac{\neg(\forall x.\ x\in a\Rightarrow x\in a)}{\neg(x\in a), (x\in a)}\ \alpha_{\neg\Rightarrow}}{\frac{\neg(x\in a), (x\in a)}{\odot}\ \odot}$$

Benefits

- Avoid combinatorial explosion
- "Useless" axioms aren't tiggered
- Shorter proof
- Not limited to one theory
- Good properties for an ATP!

They use it too!

- iProverModulo: search time divided by 10 in average (compared to iProver)
- ZenonModulo: from 48.5% to 80.3% on BWare benchmark (compared to Zenon)
- Zipperposition: use of deduction modulo theory on Tarski's geometry
- ArchSAT: dealing with static and dynamic rewrite systems

	(263	SYN problems)	(46	SET 64 problems)
GoélandDMT		199		272
Goéland	199	(+0, -0)	229	(+23, -66)
Zenon	256	(+60, -3)	150	(+57, -179)
Princess	195	(+1, -5)	258	(+104, -118)
LeoIII	195	(+1, -5)	177	(+73, -168)
Е	261	(+62, -0)	363	(+153, -62)
Vampire	262	(+63, -0)	321	(+136, -87)

	(263	SYN problems)	(46	SET 64 problems)
GoélandDMT	199			272
Goéland	199	(+0, -0)	229	(+23, -66)
Zenon	256	(+60, -3)	150	(+57, -179)
Princess	195	(+1, -5)	258	(+104, -118)
LeoIII	195	(+1, -5)	177	(+73, -168)
Е	261	(+62, -0)	363	(+153, -62)
Vampire	262	(+63, -0)	321	(+136, -87)

	(263	SYN problems)	SET (464 problems)		
GoélandDMT		199		272	
Goéland	199	(+0, -0)	229	(+23, -66)	
Zenon	256	(+60, -3)	150	(+57, -179)	
Princess	195	(+1, -5)	258	(+104, -118)	
LeoIII	195	(+1, -5)	177	(+73, -168)	
Е	261	(+62, -0)	363	(+153, -62)	
Vampire	262	(+63, -0)	321	(+136, -87)	

Analysis and future work

Analysis

- Fairness between branches managed by concurrency
- Efficiency of DMT to reason inside of a theory
- Promising results for a very new prover, especially with DMT

Future work

- Completeness proof
- Polymorphic types
- Arithmetic (with simplex and branch and bound)

Thank you!	
https://github.com/GoelandProver/Goeland	

Tableaux

$$\frac{\bot,\neg\top,P\neg Q}{\odot}\odot$$

$$\frac{\alpha}{\alpha_1} \alpha$$
 α_2

$$\frac{\beta}{\beta_1 \mid \beta_2} \beta$$

Where $\sigma(P) = \sigma(Q)$

$$\frac{(\exists / \neg \forall) x. \, \delta(x)}{\delta_1(x \leftarrow f(args))} \, \delta$$

$$\frac{(\forall/\neg\exists)x.\ \gamma(x)}{\gamma_1(x\leftarrow X)}\ \gamma$$

Where f is a fresh skolem symbol and args the free variables in δ

Where X is a new variable not occuring anywhere else and waiting for an instanciation

Concurrency vs. parallelism

Concurrency

Concurrency is about an application making progress on more than one task at the same

Parallelism

Parallelism is about tasks which can be processed in parallel, for instance on multiple CPUs at the exact same time.

time. Task A Task B B Α В В B Concurrent but not Parallel but not conparallel and concur-

parallel

current

rent