8. Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

Proof:

Assume $\lim_{n \to \infty} a_n = L$ and let M be an arbitary positive real number.

From definition of limit, we have $(\forall \varepsilon > 0)(\exists n \in \mathbb{N})(\forall m \ge n)[|a_m - L| \le \varepsilon]$.

Since $\frac{\varepsilon}{M}$ is also a positive real, we can find another natural n_0 such that $(\forall m \ge n_0) \left[|a_m - L| \le \frac{\varepsilon}{M} \right]$.

We will use this to prove limit for sequence $\{Ma_n\}_{n=1}^{\infty}$ below

For an arbitary $\varepsilon > 0$ and for every $m \ge n_0$ show that $|Ma_m - ML| \le \varepsilon$

$$\begin{aligned} |Ma_{m} - ML| &\leq \varepsilon \\ M|a_{m} - L| &\leq \varepsilon \; (\because M > 0) \\ \left[|a_{m} - L| &\leq \frac{\varepsilon}{M} \right] \text{ which is true.} \end{aligned}$$

Hence sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to ML as $n \to \infty$.

: if
$$\lim_{n\to\infty} a_n = L$$
 then $\lim_{n\to\infty} Ma_n = ML$.