

sit with your clan if you can

CMPS 12B/M Introduction to Data Structures

■ Instructor: Nathan Whitehead

Vote for Lab Times

Piazza poll for potential new lab:

Monday, 6pm-8pm Tuesday, 8am-10am Wednesday, 6pm-8pm Thursday, 8am-10am Friday, 5pm-7pm

How many people are signed up for a lab but actually have a conflict?

Data Structures

■ What do they do?

Data as Cards

- Data can represent things
 - external to computer
 - meaningful to people
- Like a stack of cards
- What can you do?
 - Write things on a card
 - ▼ Find desired cards
 - Insert new cards
 - Delete existing cards
 - Organize cards using different systems

Data Structures

■ Think of data structures as ways of dealing with data cards

Array

▼ Fixed size numbered plastic slots

Ordered Array

Keep them organized in order

■ Stack

- LIFO
- Queue
 - **▼**FIFO

More Data Structures

- Linked list
- Binary tree
- Red-black tree
- Hash table
- Heap
- Graph

each data structure has advantages and disadvantages

Some Definitions

- Database
 - All the data needed in a particular situation
- Record
 - One card
- ▼ Field
 - One part of a card
- Key
 - Designated field for searching and sorting

Example

- Database
 - All businesses in USA, names and phone numbers
- Record
 - One business
- **▼** Fields
 - Business name
 - Phone number
- ▼ Key
 - Business name

Unordered Array Example

http://cs.brynmawr.edu/Courses/cs206/spring2004/lafore.html

Java code for arrays

- Array
- LowArray
- HighArray

Ordered Array

Java code for ordered arrays

■ OrderedArray

How fast is HighArray?

- How many steps does it take on average to do these operations for HighArray?
 - (Assume no duplicates allowed)
 - \blacksquare Let *n* be number of elements in array.
 - Insert
 - Delete
 - ▼ Find

The End