

金融工程

海外文献推荐 第 26 期

收益的可预测性

本文分析了荷兰、英国和美国市场近四百年来的股价和分红情况,结果表明:(1)股息率对股票收益率和股利增长率都有一定的预测能力,但是在1945年之后,股息率对股利增长率的可预测性消失了,这表明早期分红信息对于价格变动更为重要。(2)1945年之后贴现率对股价变动的影响更为显著,这种现象与近期企业延缓股利支付有关。

协方差矩阵的非线性压缩。当 Markowitz 遇见 Goldilocks

使用 Markowitz(1952)的投资组合理论筛选资产时需要估计收益率的协方差矩阵。为了解决这个问题,我们提出一种更加灵活的非线性压缩估计方法,使用这种方法能够获得更恰当数量的自由参数——参数的数量恰好等于资产数量。当资产数量与样本量相同时,这种非线性压缩估计量是渐近最优的。在使用历史股票收益率数据进行回测时,这种方法的表现优于其他压缩方法,特别是线性压缩。

证券研究报告 2018年01月05日

作者

吴先兴 分析师 SAC 执业证书编号: S1110516120001 wuxianxing@tfzq.com 18616029821

相关报告

- 1 《金融工程:金融工程-市场情绪一 览 2018-01-03》 2018-01-03
- 2 《金融工程:金融工程-市场情绪一 览 2018-01-02》 2018-01-02
- 3 《金融工程:金融工程-量化择时周报》 2018-01-01

风险提示:本报告不构成投资建议。

内容目录

收益的	可预测性	3
1.	简介	3
2.	数据	4
3.	方法	5
4.	实证分析	6
5.	结论	7
协方差	矩阵的非线性压缩:当 Markowitz 遇见 Goldilocks	8
1.	简介	8
2.	方法	8
3.	实证分析	10
4.	结论	14
图表	目录	
图1:	收益率、股息增长率和股息率	3
图 2:	自回归(VAR)估计:年度数据	6
图3:	自回归(VAR)估计: 三年期数据	7
图4:(GMV 投资组合的各种估计方法的评估	11
图 5: (GMV 投资组合的各种估计方法的权重向量的平均特征	12
图 6: (GMV 投资组合的各种估计方法的评估	12
图 7.	压缩特征值作为样本特征值的函数	13

收益的可预测性

文献来源: Golez, B., & Koudijs, P. (2014). Four centuries of return predictability. Social Science Electronic Publishing.

推荐原因:资产定价中最重要的问题之一是价格(或股息率)是否可以预测收益率。如果价格能够预测收益,资产价格将是"过度波动"的,即股价的波动超出了基本面的支撑。经验证据表明,收益率确实是部分可预测的(Campbell和Shiller,1988; Fama和French,1988; Cochrane,2008; Binsbergen和Koijen,2010)。这引发了一个重要的理论,即在均衡模型中纳入时变的收益率(Campbell和Cochrane 1999; Bansal和Yaron 2004; Albuquerque, Eichenbaum和Rebelo 2014)。

1. 简介

在本文中,我们以 17 世纪的阿姆斯特丹作为历史起点,将资产价格和分红的时间序列延伸至金融市场的所有历史时期。我们特别关注当时的主流股票市场: 17 世纪和 18 世纪的荷兰股市、18 世纪和 19 世纪的英国股市、以及 19 世纪末以来的美国股市。我们使用这种方法覆盖了全球市场内主要的股票市场。样本内包含的公司与现在的非常相似——股东有限责任制、所有权和控制权的分离以及活跃的二级市场。我们通过扩展时间序列来减少横截面上(尤其是近期)各股票市场联动的带来的问题。

本文有三个重要发现。首先,长期来看,股息率是平稳的,并且围绕 5%左右波动 (详见图 1, log(5%)约为-3)。直到 1945 年左右,股息率才开始持续下降。这意味着在整个样本期内,预测结果是无偏的。其次,我们找到了收益能够被预测的有力证据。在四个世纪的整个样本期内,股息率的预测系数是为正,而且是非常显著的。分时期来看的样本期内,预测系数非常稳定(尽管不总是统计显着性的)。因此,过度波动似乎是金融市场的普遍特征。第三,在股利增长率的预测方面,各个时期之间存在明显差异。虽然股息率很好地预测了早期的股利增长,但是这样的可预测性在 1945 年左右完全消失了。根据这一观察结果,我们推测,在 1945 年之前,分红信息对价格变动的影响要比贴现率更大。贴现率信息占据主导地位是一个近期才产生的现象。

图 1: 收益率、股息增长率和股息率

Panel A: Annual returns

Panel B: Annual dividend growth rates

Panel C: Dividend-to-price ratio

资料来源: Financial Analysts Journal, 天风证券研究所

2. 数据

我们把股票价格和股利的时间序列往前延伸到 1629 年,并且使用特定时期主要的金融市场数据。具体地说,1629 年至 1811 年期间我们关注阿姆斯特丹的股票市场,1825-1870 年关注伦敦股市,1870 年以后我们主要使用美国的市场数据。最终,我们得到了从1629 年到 2012 年的年度时间序列(仅在 1811 年到 1825 年间缺失了一小段数据)。

17世纪和18世纪,阿姆斯特丹是世界金融之都,并且与伦敦市场联系紧密(Neal 1990)。 虽然技术不太先进,但市场功能与现在非常相似。Harrison(1998)证明了这些市场的收益率数据具有与现在相似的分布和时间序列性质。 Koudijs(2014)显示,阿姆斯特丹市场上的信息效率和交易成本也与近期类似。日频收益率的(负)自相关性与与现在的相当。我们从阿姆斯特丹投资者的角度出发,假设他持有荷兰和英国证券的市值加权组合。我们以当时的汇率将英镑换算成荷兰盾。我们可以获得以下5只股票的历史信息:荷兰东印度公司(1629年起),英格兰银行(1694年),(联合)英国东印度公司(1693年),南海公司(1711年)以及(第二)荷兰西印度公司(1719)。

1825 年至 1870 年间,我们关注伦敦市场。在拿破仑战争之后,伦敦成为世界的金融之都,英国是世界上最大的经济体。从 19 世纪 10 年代开始,众多新股发行。最初,这些股票主要是来源于运河和保险公司。后来,银行和铁路公司也成为重要的新股发行人。值得注意的是,对于 1855 年以前发行的股票,其股票持有人承担无限的股东责任。之后,虽然可以发行有限责任股份,但许多银行和保险公司仍然选择无限责任制。

从 1871 年开始, 我们关注美国股市。到 1900 年, 美国已经成为世界上最大的经济体, 并且在纽约拥有发达的资本市场。从 1871 年到 1925 年, 我们使用 Cowles (1939)提供的信息——其涵盖了 50只(1871)至 258只(1925)证券。根据现有的文献(如 Shiller 1981), 我们在 1926 年使用 CRSP 提供的数据切换到标准普尔 500 指数。在 1957 年以前, 这实际上是标准普尔 90。同上, 我们的美国股市收益指数也是按市值加权计算的。

3. 方法

本文将分红视作股票现金流的唯一来源,持有期收益包括分红和股价变动:

$$R_t = \frac{P_t + D_t}{P_{t-1}},$$

 P_t 是 t 时刻的每股价格, D_t 是从 t-1 到 t 时期的每股股利,将股息率定义为为 $dP_t = \log(D_t/P_t)$,股利增长率为 $dg_t = \log(D_t/D_{t-1})$ 。 Campbell 和 Shiller (1988) 将对数 收益率用一阶泰勒展开法表示为:

$$r_{t+1} \approx dp_t + dg_{(t+1)} - \rho dp_{t+1}$$
 (2)

其中ρ = $\exp(\overline{-dp})/1 + \exp(\overline{-dp})$ 。重写方程 (2) 我们获得的股息率

$$dp_{t} \approx r_{t+1} - dg_{t+1} + \rho dp_{t+1} \tag{3}$$

迭代等式(3),股息率也可以表示为贴现收益率和股利增长率的无限和:

$$dp_t \simeq E_t \sum_{j=0}^{\infty} \rho^j(r_{t+1+j}) - E_t \sum_{j=0}^{\infty} \rho^j(dg_{t+1+j}).$$
 (4)

最后,上述现值模型还可以研究预期外收益率的变化(Campbell, 1991)。使用 t 时刻的方程(4)的期望减去(4)在 t+1 的期望产生:

$$r_{i+1} - E_i r_{i+1} = -(E_{i+1} - E_i) \sum_{j=1}^{\infty} \rho^j (r_{i+1+j}) + (E_{i+1} - E_i) \sum_{j=0}^{\infty} \rho^j (dg_{i+1+j})$$
 (5)

预期外收益可能很高,因为预期的未来股利增长率可能很高,或者因为未来的预期回 报率低。

我们通过一个向量自回归(VAR)模型来估计收益率,股息增长率和股息率:

$$\mathbf{x}_{t+1} = \varphi \mathbf{x}_t + \epsilon_{t+1} \tag{6}$$

其中 $\mathbf{x}_t = [r_t, dg_t, dp_t]$ '是三个变量的列向量。所有的变量都进行了去中心化处理。定义 $\Sigma = \mathbf{E}[\epsilon_t \; \epsilon_t']$ 是残差的协方差阵。 $\mathbf{r} = \mathbf{E}[\mathbf{x}_t \; \mathbf{x}_t']$ 是变量的协方差阵。

模型由九个矩条件确定:
$$E[(x_{t+1}-\phi x_t)\otimes x_t]=0$$

对方程(3)对估计的参数进一步加以限制。假设 I 是一个三乘三的单位矩阵,并且 e_i 表示单位矩阵的第 i 列。那么限制条件可以写成:

$$(e_1' - e_2' + \rho e_3') \phi = e_3'.$$

使用 VAR 模型,我们可以从他们的短期规律中推断出长期估计。我们首先将股息率的方差分解为未来收益和股利增长率的协方差(Cochrane, 1992):

$$Var(dp_t) = Cov \left(dp_t, \sum_{j=0}^{\infty} \rho^j(r_{t+1+j}) \right) + Cov \left(dp_t, -\sum_{j=0}^{\infty} \rho^j(dg_{t+1+j}) \right)$$

就 VAR 模型而言,协方差项可以写成:

$$Var(dp_t) = e_3 \Gamma e_3 = e_1 \phi (I - \rho \phi)^{-1} \Gamma e_3 - e_2 \phi (I - \rho \phi)^{-1} \Gamma e_3.$$

同样,我们可以将方程(5)中预期外的收益的方差分解成折现率和现金流量两部分。

$$Var(r_{t+1} - E_t r_{t+1}) = -Cov \left[r_{t+1} - E_t r_{t+1}, (E_{t+1} - E_t) \sum_{j=1}^{\infty} \rho^j (r_{t+1+j}) \right] + Cov \left[r_{t+1} - E_t r_{t+1}, (E_{t+1} - E_t) \sum_{j=0}^{\infty} \rho^j (dg_{t+1+j}) \right]$$

在 VAR 模型下,协方差项可以写成

$$Var(r_{t+1} - E_t r_{t+1}) = -e_1 \rho \phi (I - \rho \phi)^{-1} \Sigma e_1 + e_2 (I - \rho \phi)^{-1} \Sigma e_1$$

4. 实证分析

图 2 给出了基于年度数据的 VAR 估计和分解结果,我们估计了每个时期以及整个样本的 VAR。图 3 给出了基于三年期数据的结果。当使用三年期数据时,我们在三个不同的非重叠样本上估计我们的模型,并给出这些样本中估计参数的平均值。

图 2: 自回归(VAR)估计: 年度数据

	(1)	(2)	(3)	(4)	(5)
	Neth./U.K.	U.K.	U.S.	U.S.	
	1685-1809	1825-1870	1871-1945	1945-2012	Full period
Panel A: VAR estimates					
Dep. variable: r_{t+1}					
dp_{r}	0.112***	0.075	0.117	0.123***	0.081***
-,	(0.038)	(0.046)	(0.104)	(0.036)	(0.029)
	[3.311*]	[0.512]	[1.433]	[0.677]	
r_{t}	-0.055	0.071	0.144	-0.038	0.051
•	(0.078)	(0.128)	(0.208)	(0.102)	(0.079)
dg,	0.030	-0.099	-0.270**	-0.095	-0.044
•	(0.077)	(0.069)	(0.117)	(0.221)	(0.056)
Dep. variable: dg_{t+1}					
$dp_{_{t}}$	-0.187**	-0.342***	-0.225***	0.000	-0.123***
- 1	(0.086)	(0.094)	(0.059)	(0.018)	(0.030)
	[5.374**]	[2.126]	[0.213]	[13.653***]	
r_{t}	0.019	-0.122	0.420***	0.119	0.279***
•	(0.108)	(0.261)	(0.075)	(0.081)	(0.056)
dg_{i}	-0.035	0.255***	0.135*	0.415***	0.088
	(0.113)	(0.091)	(0.075)	(0.084)	(0.099)
Dep. variable: dp_{i+1}					
$dp_{_{_{\ell}}}$	0.730***	0.609***	0.692***	0.904***	0.830***
- 1	(0.098)	(0.128)	(0.102)	(0.051)	(0.043)
	[10.79***]	[2.229]	[2.089]	[9.564***]	
r_{t}	0.077	-0.202	0.290	0.161	0.238**
•	(0.152)	(0.358)	(0.227)	(0.158)	(0.096)
dg_{i}	-0.067	0.370***	0.425***	0.526**	0.137
<u> </u>	(0.123)	(0.116)	(0.150)	(0.248)	(0.120)
J-test	2.674	0.399	1.806	1.391	8.702**
Panel B: Decomposition results					
Dividend-to-price					
DR	0.364	0.204	0.395	1.272	0.438
CF	0.636	0.796	0.605	-0.272	0.562
Unexpected returns					
DR	0.288	0.210	0.243	1.002	0.266
CF	0.713	0.791	0.762	-0.003	0.735

资料来源: National Bureau of Economic Research 天风证券研究所

首先分析图 2 中基于年度数据的结果。我们注意到,在全样本期内,股息率对收益率和股息增长率都有一定的预测能力。股息率的估计参数符号也与我们预期的一致;在收益率预测中为正的 0.08,在股息增长率预测中为-0.12,这两个参数都非常显著。

我们观察到不同时期之间具有实质性差异。虽然回归中的估计参数相当稳定,但近期 股息率对股息增长率的回归参数发生了比较明显的变化。实际上,股息率对股息增长率的

预测性在最近一段时间内基本消失了。

图 3: 自回归(VAR)估计: 三年期数据

	(1)	(2)	(3)	(4)	(5)
	Neth./U.K.	U.K.	U.S.	U.S.	
	1629-1809	1825-1870	1871-1945	1945-2012	Full period
Panel A: VAR estimates					
Dep. variable: r_{t+1}					
$dp_{_{I}}$	0.204**	0.125	0.405	0.343***	0.162***
	(0.081)	(0.176)	(0.250)	(0.088)	(0.057)
	[1.890]	[0.532]	[1.075]	[0.521]	
$r_{_{t}}$	0.012	-0.215	0.006	0.074	0.034
	(0.118)	(0.229)	(0.208)	(0.134)	(0.123)
$dg_{_{t}}$	-0.066	-0.030	-0.408**	-0.361	-0.034
	(0.055)	(0.106)	(0.192)	(0.532)	(0.056)
Dep. variable: dg_{t+1}					
dp_{i}	-0.592**	-0.774***	-0.338**	0.050	-0.374**
- 1	(0.294)	(0.213)	(0.152)	(0.039)	(0.147)
	[1.084]	[0.308]	[1.281]	[12.862***]	
r_{ι}	0.157	-0.100	0.372**	-0.026	0.347***
r	(0.411)	(0.209)	(0.152)	(0.082)	(0.115)
dg_{i}	-0.045	0.054	-0.226**	-0.202	-0.164
	(0.166)	(0.097)	(0.095)	(0.202)	(0.111)
Dep. variable: dp,					
dp_{i}	0.231	0.113	0.298	0.768***	0.521***
-71	(0.267)	(0.376)	(0.245)	(0.093)	(0.171)
	[4.721]	[0.919]	[0.275]	[9.384*]	
r_{t}	0.163	0.129	0.423**	-0.109	0.352**
ı	(0.400)	(0.427)	(0.208)	(0.180)	(0.167)
dg_{i}	0.024	0.094	0.210	0.172	-0.146
	(0.156)	(0.181)	(0.181)	(0.469)	(0.117)
J-test	2.520	0.351	0.703	0.574	2.529
anel B: Decomposition results					
Dividend-to-price					
DR	0.278	0.216	0.579	1.090	0.35
CF	0.722	0.784	0.421	-0.090	0.64
Unexpected returns					
DR	-0.064	0.283	0.438	1.073	0.12
CF	1.046	0.725	0.571	-0.082	0.88

资料来源: National Bureau of Economic Research, 天风证券研究所

当我们使用三年频率(而不是年度)的数据时,所有结果与年度数据的结果在本质上都是相似的,如图 3 所示。在全样本期内,股息率仍能用来预测收益率和股息增长率。价格走势早期受分红信息驱动,近期主要受贴现率信息驱动的现象依然显著。

5. 结论

我们分析了过去四个世纪主要金融市场收益率的可预测性和过度波动。具体而言,我们分析了 17 世纪和 18 世纪的荷兰和英国股市,18 世纪和 19 世纪的英国股市,以及 19 世纪末以来的美国股市。

我们发现,股息率在全样本期内是平稳的,并且能够用来预测收益率和股息增长率。然而,不同时期之间有明显的差异。尽管收益率似乎总是可预测的,但是在 1945 年之后,股息率对股利增长的可预测性消失了。这表明早期分红信息对于价格变动更为重要,贴现率占据影响价格变动的主导地位是一个较为新的现象。我们认为这与近年来股票市场久期的增长一致。

协方差矩阵的非线性压缩: 当 Markowitz 遇见 Goldilocks

文献来源: Ledoit, O., and Wolf, M. (2017). Nonlinear shrinkage of the covariance matrix for portfolio selection: Markowitz meets Goldilocks. The Review of Financial Studies, 30(12), 4349-4388.

推荐原因:使用 Markowitz 的投资组合理论筛选资产时需要估计预期收益率和收益率的协方差矩阵。 Green 等人(2013)列出了 300 多篇研究预期收益率估计的论文。相比之下,关于协方差矩阵的研究要少很多。我们十分确定的是教科书上的估计量——样本协方差矩阵——是不适用的。当资产数量大于样本数量时,样本协方差矩阵是不可逆的,并且存在较大的估计误差;当资产数量小于样本数量时,根据 Ledoit(2004)里面的引理 2.1,样本协方差矩阵的特征值分布也会比真实协方差矩阵的特征值分布区间广,造成样本协方差矩阵的条件数(矩阵的最大特征值/最小特征值)偏高,偏离幅度与样本数/资产数的大小正相关。

1. 简介

假设资产的数量为 N,则样本协方差矩阵的自由参数为N²。给定一个大小为 O (N²) 的数据集,估计 O (1) 很容易。本文的研究重点是从一个大小为 O (N²) 的数据集中使用足够先进的技术来一致地估计 O (N),而不仅仅是 O (1)。具有 O (N²) 个自由参数的样本协方差矩阵太宽松,但现有文献将 O (N²) 转为 O (1) 又太严苛。对于一个规模为 O (N²) 的数据集,O (N) 是"恰到好处的":这恰好是 Goldilocks 量级。

我们考虑的这种估计方法是由 Stein(1975,1986)提出的,被称为非线性压缩法,即通过单独为每个特征值确定一个量,使样本协方差矩阵小的特征值变大,大的特征值变小。由于有 N 个特征值,就需要给出 N 个自由度。这种方法的难点在于确定每个特征值的最佳压缩强度。这种最佳压缩强度只能根据特定的损失函数来实现。我们建议使用能够刻画投资者股票筛选过程的损失函数对特征值进行优化,之前 Engle 和 Colacito(2006)和 Kan和 Smith(2008)已经考虑过该函数。我们的第一个理论贡献就是要证明这个损失函数在高维假设下有一个明确的界限。我们的第二个理论贡献是给出非线性压缩公式最小化时的特征。这项原创工作的结果是,当可投资资产的数量 N 很大时,N 维非线性压缩估计的协方差矩阵是渐近最优的。我们也证明了其唯一性,即所有的最优估计都是渐近等价的,不同估计量之间相差一个正的乘数。

2. 方法

N表示可投资资产的数目,m 为 $N \times 1$ 的预期收益率向量的单个横截面信号或一组横截面信号的线性组合。 Σ 表示资产收益的 $N \times N$ 的资产收益率协方差矩阵,注意 Σ 是不可观测的。投资组合筛选旨在最大化收益与风险比率:

$$\max_{\frac{w'm}{\sqrt{w'\Sigma w}}} \tag{1}$$

其中 w 表示 N×1 维的投资组合权重向量。该优化问题中不考虑杠杆和卖空限制,仅 关注 Markowitz(1952)投资组合选择的核心问题:收益与风险之间的权衡。当且仅当存在一个严格正的标量 a 使得 w = $a \times \sum^{-1} m$ 时,w 是(1)的一个解。第一个目标函数的一阶条件可以很容易地验证这个结论 。设定一定水平的期望收益,我们可以获得一组投资组合权重向量,例如期望为 b 时,我们可以得到:

$$W = \frac{b}{m' \Sigma^{-1} m} \times \Sigma^{-1} m \tag{2}$$

在实践中,协方差矩阵是未知的,需要使用历史数据进行估计。 设分是一个协方差矩阵的一般(可逆)估计量。最佳投资组合权重的估计量是:

$$\widehat{w} := \frac{\sqrt{m \cdot m}}{m \cdot \widehat{\Sigma}^{-1} m} \times \widehat{\Sigma}^{-1} m \tag{3}$$

我们想在样本外获得最优的协方差矩阵估计,因而将目标函数定义为在给定∑和 m 条件下样本外投资组合收益的方差。即,

$$\mathcal{L}(\widehat{\Sigma}, \Sigma, \mathbf{m}) := \widehat{w}' \Sigma \widehat{w} = m' m \times \frac{m' \widehat{\Sigma}^{-1} \Sigma \widehat{\Sigma}^{-1} m}{(m' \widehat{\Sigma}^{-1} m)^2}$$
 (4)

此外,我们还可以用最大化夏普比率来定义目标函数。在给定已有的可获得的信息的基础上,我们使用向量 m 代表投资者预期收益的代理变量。根据方程(3),我们可以将目标函数写为,

$$\frac{\widehat{w}'m}{\sqrt{\widehat{w}'\Sigma\widehat{w}}} = \frac{\sqrt{m'm}}{m'\widehat{\Sigma}^{-1}m} \times m'\widehat{\Sigma}^{-1}m \times \frac{m'\widehat{\Sigma}^{-1}m}{\sqrt{m'm}} \times \frac{1}{\sqrt{m'\widehat{\Sigma}^{-1}m}\widehat{\Sigma}\widehat{\Sigma}^{-1}m}$$

$$= \frac{m'\widehat{\Sigma}^{-1}m}{\sqrt{m'\widehat{\Sigma}^{-1}m}\widehat{\Sigma}\widehat{\Sigma}^{-1}m}$$

$$= \sqrt{\frac{m'm}{\mathcal{L}(\widehat{\Sigma}, \Sigma, m)}}$$

另一种控制风险与收益之间折衷的方法是最大化 $W-\gamma W^2$ 型二次效用函数的期望,其中 W 代表最终财富, γ 代表风险厌恶参数。带入等式(3)的权重得出:

$$\begin{split} & W_0 + W_0 \widehat{w}' m - \gamma [(W_0 + W_0 \widehat{w}' m)^2 + W_0^2 \widehat{w}' \Sigma \widehat{w}] \\ & = W_0 + W_0 \sqrt{m' m} - \gamma W_0^2 \big[1 + 2 \sqrt{m' m} + m' m + \mathcal{L}(\widehat{\Sigma}, \Sigma, m) \big] \end{split}$$

 W_0 代表初始财富。由于我们没有优化矢量 m 的欧几里得范数,我们也没有对初始财富 W_0 进行优化,所以这个目标也等价于最小化第一种定义下的损失函数。这种等价性进一步证实了在筛选股票时,损失函数(4)是正确的。

对于协方差矩阵的优化,我们使用 Oracle 压缩函数。Oracle 估计是一个依赖于不可观测量的估计量,在这个不可观测量能被一致地估计能够被一致估计的前提下,Oracle 估计构成了可在实践中使用的真实估计量的重要基石。方程(7)使我们能够特征化最优的极限压缩函数:

$$m_{T}'m_{T} \times \frac{m_{T'}\widehat{\Sigma}_{T}^{-1}\sum_{T}\widehat{\Sigma}_{T}^{-1}m_{T}}{(m_{T'}\widehat{\Sigma}_{T}^{-1}m_{T})^{2}} \xrightarrow{a.s.} \frac{\sum_{k=1}^{K}\int_{a_{k}}^{b_{k}} \frac{dF(x)}{x|s(x)|^{2}\widehat{\delta}(x)^{2}} + 1_{\{c>1\}}\frac{1}{cs(0)\widehat{\delta}(0)^{2}}}{\left[\int_{\overline{\delta}(x)^{2}}^{dF(x)}\right]^{2}}$$
(7)

Oracle 压缩方程定义:

$$\forall x \in \text{Supp}(F) \qquad d^*(x) := \begin{cases} \frac{1}{x|s(x)|^2} & \text{if } x > 0\\ \frac{1}{(c-1)s(0)} & \text{if } c > 1 \text{ and } x = 0 \end{cases}$$

协方差矩阵的 Oracle 估计:

$$S_T^* := U_T D_T^* U_T'$$
 where $D_T^* := Diag(d^*(\lambda_{T,1}), ..., d^*(\lambda_{T,N}))$

其中 c 和 s (x) 都不可观测,尽管如此,由于 c 和 S (x) 的一致估计量很容易获得,因此推导出对应的 Oracle 估计量 S_T^* 也相对容易。使用压缩函数最小化损失函数时只取决

于一个随机的正标量 α 。这也是投资组合选择所具有的特性:两个仅相差一个正标量 α 的协方差矩阵会生成相同的投资组合权重向量。我们可以将最优投资组合权重向量表示为:

$$w_T^* := a_T \times (S_T^*)^{-1} m_T = a_T \times U_T (D_T^*)^{-1} U_T' m_T = a_T \times \sum_{i=1}^N \frac{u_{T,i}' m_T}{d^* (\lambda_{T,i})} u_{T,i}$$

$$\approx a_T \times \sum_{i=1}^N \frac{u_{T,i}' m_T}{u_{T,i}' \sum_T u_{T,i}} u_{T,i}$$

其中 a^T 是一个适当选择的标量系数,最后一个近似来自 Ledoit 和 Péché(2011)的定理 1.4。因此,使用均值-方差构建的有效投资组合可以被分解成样本特征向量组合的线性组合,其中第 i 个样本特征向量组合被赋予与 $u'_{T,i} m_T / (u'_{T,i} \sum_T u_{T,i})$ 近似成正比的权重。这个加权方案非常有吸引力,因为它代表了第 i 个样本特征向量组合的样本外风险回报率。(通过使用"样本外"风险回报率,我们刻画的是由总体协方差矩阵 \sum_T 的真实风险,而不是任何估计值)。因此,我们可以确信上文提出的非线性压缩公式在经济意义上是合理的。

根据 Ledoit 和 Wolf (2012, 2015) 提供的解决方案,将最优的 Oracle 估计 S_T^* 转变为真实估计量变得相对简单。这些作者为不可观测的 Stieltjes 变换 S(x) 研究出了 $\hat{S}(x)$ 估计,并证明使用 $\hat{S}(x)$ 代替 S(x)、自然估计 $\hat{C}_T := N/T$ 代替集中度 C 可以在渐进无损的情况下实现。

3. 实证分析

本节研究的目标是根据我们最近提出的协方差矩阵估计量来检验 Markowitz 投资组合的样本外特性。特别是,我们与金融方面文献中的其他主流投资策略进行比较,其中一些基于其他的协方差矩阵估计方法,而另一些则完全避免了估计协方差矩阵的问题。为了符号的紧凑性,类似于第1节,我们不使用下标 T 标注协方差矩阵本身、协方差矩阵的估计值和期望收益向量。

我们使用从 1972 年 1 月 1 日到 2011 年 12 月 31 日 CRSP 的日频数据。为简单起见,我们采用连续 21 个交易日构成一个 "月"的标准。抽样时间范围从 1973 年 1 月 19 日至 2011 年 12 月 31 日,共计 480 个月(或 10,080 天)。所有投资组合都是每月更新一次。我们用 h=1, …,480 来表示投资日期。在任何投资日期 h,使用最近的 T=250 日收益来估计协方差矩阵,大致对应于过去一年的数据。

我们考虑了在没有卖空限制的情况下估计全球最小方差(GMV)投资组合的问题.11 问题表述为:

$$\min_{w} w' \Sigma w$$

$$subject \ to \ w' 1 = 1$$

它有一个解析解:
$$W = \frac{\Sigma^{-1}1}{1^{-1}\Sigma^{-1}1}$$

GMV 投资组合的估计是评估协方差矩阵估计量的质量一种有效的方法,因为它不需要对预期收益的向量进行估计。此外,学者们已经确定,GMV 组合估计值不仅在风险方面具有理想的样本外特性,而且在风险收益方面也是如此(即夏普比率)。例如参见 Haugen和 Baker (1991), Jagannathan和 Ma (2003)以及 Nielsen和 Aylursubramanian (2008)。因此,这样的投资组合已经成为共同基金大量销售的一种产品。

研究包括以下11个组合。

1 / N: DeMiquel 等人推荐的等权重投资组合 (2009)。

Sample: 组合的协方差阵由样本协方差矩阵给出;

FM: Frahm 和 Memmel (2010)的优异组合,是 1/N 和 Sample 的线性组合。

FYZ: 带有总头寸限制 (c=2)的 GMV 组合。 (2012年)。

Lin: Ledoit 和 Wolf (2004b) 的线性压缩估计矩阵给出的投资组合(20)。

NonLin: 由推论 1 的估计量 S 给出的投资组合。

NL-Inv: 由基于通用 Frobenius 范数损失的矩阵估计逆的直接非线性压缩估计量给出估计矩阵的投资组合。

SF:由单因子协方差矩阵 F 给出的投资组合,用于构造单因子预处理非线性压缩估计。

FF:基于 Fama 和 French (1993)的三因子模型,由协方差矩阵估计量给出的投资组合。

POET:由 Fan 等人的 POET 协方差矩阵估计给出的投资组合。(2013年)

NL-SF: 单因子预处理非线性压缩估计给出的投资组合。

图 4: GMV 投资组合的各种估计方法的评估

1 /37										
1/ <i>N</i>	Sample	FM	FZY	Lin	NonLin	NL-Inv	SF	FF	POET	NL-SF
					N = 30					
1.14	8.64	8.65	8.68	8.52	8.71	8.72	8.22	9.39	8.29	8.88
20.05	14.21	14.11	14.11	14.16	14.08*	14.08	14.08	14.59	14.49	14.00
0.56	0.61	0.61	0.62	0.60	0.62	0.62	0.56	0.66	0.57	0.63
					N = 50		_			
9.54	4.65	4.99	4.70	5.10	5.21	5.22	5.22	5.44	5.59	5.44
9.78	13.15	13.01	12.83	12.75	12.68***	12.68	13.04	12.51	12.60	12.28
0.48	0.35	0.38	0.37	0.40	0.41	0.41	0.40	0.43	0.44	0.44
					N = 100					
0.53	4.74	5.31	4.96	4.99	5.10	5.12	4.81	5.80	4.83	5.07
9.34	13.11	12.71	11.75	11.79	11.52***	11.55	11.96	11.30	11.31	10.99
0.54	0.36	0.42	0.42	0.42	0.44	0.44	0.40	0.51	0.43	0.46
					N = 250					
9.57	275.02	275.02	6.73	5.81	6.26	6.43	5.95	6.60	5.90	5.71
8.95	3,542.90	3,542.90	10.69	10.91	10.34***	10.49	11.30	10.47	9.93	9.46
0.50	0.08	0.08	0.63	0.53	0.61	0.61	0.52	0.63	0.59	0.60
					N = 500					
9.78	NA	NA	5.90	5.03	5.34	5.41	5.30	5.87	5.32	5.53
8.95	NA	NA	10.21	10.20	9.65***	9.75	11.07	10.06	9.25	8.61
0.52	NA	NA	0.58	0.49	0.55	0.55	0.48	0.58	0.57	0.64
	0.05 9.54 9.78 0.48 0.53 9.34 0.54 9.57 8.95 0.50	0.05 14.21 0.56 0.61 9.54 4.65 9.78 13.15 0.48 0.35 0.53 4.74 9.34 13.11 0.54 0.36 9.57 275.02 8.95 3,542.90 0.50 0.08 9.78 NA 8.95 NA	0.05 14.21 14.11 0.56 0.61 0.61 9.54 4.65 4.99 9.78 13.15 13.01 0.48 0.35 0.38 0.53 4.74 5.31 9.34 13.11 12.71 0.54 0.36 0.42 9.57 275.02 275.02 8.95 3,542.90 3,542.90 0.50 0.08 0.08 9.78 NA NA 8.95 NA NA 8.95 NA NA	0.05 14.21 14.11 14.11 0.56 0.61 0.61 0.62 9.54 4.65 4.99 4.70 9.78 13.15 13.01 12.83 0.48 0.35 0.38 0.37 0.53 4.74 5.31 4.96 9.34 13.11 12.71 11.75 0.54 0.36 0.42 0.42 9.57 275.02 275.02 6.73 8.95 3,542.90 3,542.90 10.69 0.50 0.08 0.08 0.63 9.78 NA NA 5.90 8.95 NA NA 10.21	0.05 14.21 14.11 14.11 14.11 14.16 0.56 0.61 0.61 0.62 0.60 9.54 4.65 4.99 4.70 5.10 9.78 13.15 13.01 12.83 12.75 0.48 0.35 0.38 0.37 0.40 0.53 4.74 5.31 4.96 4.99 9.34 13.11 12.71 11.75 11.79 0.54 0.36 0.42 0.42 0.42 9.57 275.02 275.02 6.73 5.81 8.95 3,542.90 3,542.90 10.69 10.91 0.50 0.08 0.08 0.63 0.53 9.78 NA NA 5.90 5.03 8.95 NA NA 10.21 10.20	1.14 8.64 8.65 8.68 8.52 8.71 0.05 14.21 14.11 14.11 14.16 14.08* 0.56 0.61 0.61 0.62 0.60 0.62 N=50 9.54 4.65 4.99 4.70 5.10 5.21 9.78 13.15 13.01 12.83 12.75 12.68*** 0.48 0.35 0.38 0.37 0.40 0.41 N=100 0.53 4.74 5.31 4.96 4.99 5.10 9.34 13.11 12.71 11.75 11.79 11.52*** 0.54 0.36 0.42 0.42 0.42 0.44 N=250 9.57 275.02 275.02 6.73 5.81 6.26 8.95 3,542.90 3,542.90 10.69 10.91 10.34**** 0.50 0.08 0.08 0.63 0.53 0.61 N=500	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.14

资料来源: The Review of Financial Studies, 天风证券研究所

其中, AV 代表平均值, SD 代表标准差, SR 代表其夏普比率。

总结一下,在最小化方差问题中,NonLin 在标准差方面领先了另外六个投资组合,并且在 Sharpe 比率方面也占领先。NL-SF 构成了对 NonLin 的进一步改进。

我们还提供了一些随时间变化的投资组合权重向量的汇总统计。在每个月,我们计算 以下四个特征:

Min: 最小权重

Max: 最大权重

SD: 权重的标准差

MAD-EW:均值加权投资组合的平均绝对偏差计算为:

$$\frac{1}{N} \sum_{i=1}^{N} \left| \widehat{w}_i - \frac{1}{N} \right|.$$

对于每个特征,我们然后报告 480 个投资组合的平均结果。

图 2 显示了结果。不出意料,前六个组合中权重最为分散的是 SAMPLE,其次是 FM 和 FZY。三种压缩方法通常分散的权重最小,其中 NonLin 和 NL-Inv 在 N = 30,50 时比 Lin 更加分散,N = 100,250,500 时比 Lin 分散更少。

图 5: GMV 投资组合的各种估计方法的权重向量的平均特征

	1/N	Sample	FM	FZY	Lin	NonLin	NL-Inv	SF	FF	POET	NL-SF
	N = 50										
Min	0.0333	-0.0729	-0.0653	-0.0690	-0.0522	-0.0584	-0.0582	-0.0463	-0.0533	-0.0658	-0.0540
Max	0.0333	0.2720	0.2562	0.2698	0.1902	0.2210	0.2228	0.2440	0.2472	0.2361	0.2536
SD	0.0000	0.0737	0.0686	0.0726	0.0562	0.0614	0.0616	0.0675	0.0669	0.0678	0.0680
MAD	0.0000	0.0515	0.0479	0.0507	0.0423	0.0444	0.0444	0.0491	0.0476	0.0495	0.0481
EW											
					i	V=50					
Min	0.0200	-0.0762	-0.0680	-0.0695	-0.0531	-0.0537	-0.0536	-0.0393	-0.0497	-0.0496	-0.0483
Max	0.0200	0.2219	0.2055	0.2211	0.1461	0.1556	0.1589	0.1861	0.1945	0.1790	0.1952
SD	0.0000	0.0552	0.0506	0.0533	0.0411	0.0415	0.0418	0.0458	0.0471	0.0451	0.0471
MAD	0.0000	0.0386	0.0353	0.0367	0.0309	0.0306	0.0306	0.0327	0.0329	0.0323	0.0330
EW											
					Λ	V = 100					
Min	0.0100	-0.0837	-0.0733	-0.0598	-0.0499	-0.0423	-0.0424	-0.0281	-0.0390	-0.0346	-0.0397
Max	0.0100	0.1776	0.1595	0.1684	0.0989	0.0846	0.0890	0.1208	0.1307	0.1208	0.1354
SD	0.0000	0.0407	0.0362	0.0333	0.0270	0.0234	0.0237	0.0258	0.0276	0.0258	0.0279
MAD	0.0000	0.0288	0.0256	0.0218	0.0205	0.0180	0.0181	0.0182	0.0191	0.0182	0.0192
EW											
					Λ	V=250		•			
Min	0.0040	-7.2464	-7.2464	-0.0438	-0.0362	-0.0260	-0.0263	-0.0151	-0.0228	-0.0210	-0.0251
Max	0.0040	6.7094	6.7094	0.1225	0.0530	0.0357	0.0362	0.0628	0.0716	0.0684	0.0791
SD	0.0000	1.9296	1.9296	0.0172	0.0150	0.0108	0.0108	0.0113	0.0127	0.0121	0.0134
MAD	0.0000	1.4159	1.4159	0.0098	0.0118	0.0085	0.0086	0.0079	0.0087	0.0084	0.0092
EW											
					Λ	V = 500					
Min	0.0020	NA	NA	-0.0359	-0.0232	-0.0167	-0.0164	-0.0089	-0.0140	-0.0169	-0.0166
Max	0.0020	NA	NA	0.0998	0.0293	0.0199	0.0203	0.0364	0.0430	0.0446	0.0505
SD	0.0000	NA	NA	0.0106	0.0083	0.0059	0.0059	0.0058	0.0067	0.0068	0.0075
MAD	0.0000	NA	NA	0.0052	0.0066	0.0046	0.0047	0.0041	0.0046	0.0047	0.0052
EW											

资料来源: The Review of Financial Studies, 天风证券研究所

图 3-4 显示了结果。可以看出,在前六个组合中,15/15 个案例中 NonLin 的标准差表现最好,当 N ≥ 50 时,Lin 的表现显著优于其他组合。在基于因子的投资组合中,NL-SF在 14/15 个案例中表现最好,它是对 NonLin 的进一步改进。

图 6: GMV 投资组合的各种估计方法的评估

	1/N	Sample	FM	FZY	Lin	NonLin	NL-Inv	SF	FF	POET	NL-SF
					i	N = 30					
AV SD	7.64 15.43	4.97 11.63	5.00 11.54	4.97 11.63	5.49 11.42	5.40 11.39	5.39 11.39	5.12 11.21	6.53 11.30	5.46 11.46	5.91 11.32
SR	0.50	0.43	0.43	0.43	0.48	0.47	0.47	0.46	0.58	0.48	0.52
					i	N = 50					
AV SD	7.20 14.83	3.63 10.91	3.93 10.74	3.57 10.88	4.58 10.54	4.68 10.47**	4.68 10.47	5.28 10.40	4.95 10.35	4.93 10.44	4.84 10.28
SR	0.49	0.33	0.37	0.33	0.43	0.45	0.45	0.51	0.48	0.47	0.47
					1	V = 100					
AV SD	8.62 14.50	6.06 10.39	6.09 10.03	6.54 9.61	6.82 9.43	6.92 9.18***	6.90 9.18	6.99 9.03	5.90 8.88	6.57 8.89	6.60 8.77
SR	0.59	0.58	0.61	0.68	0.72	0.75	0.75	0.77	0.67	0.74	0.75
					1	V = 250					
AV SD	6.16 14.18	-527.27 2,009.60	-527.27 2,009.60	4.78 8.41	5.08 8.51	6.09 7.81***	5.96 7.86	5.79 7.84	3.85 7.53	4.24 7.39	4.61 7.14
SR	0.43	-0.26	-0.26	0.57	0.60	0.78	0.76	0.74	0.51	0.57	0.65
					1	V = 500					
AV SD	6.91 14.14	NA NA	NA NA	3.35 7.82	4.20 7.50	5.45 7.03***	5.41 7.14	6.14 7.58	3.99 7.10	3.90 6.82	4.57 6.49
SR	0.49	NA	NA	0.43	0.56	0.77	0.76	0.81	0.56	0.57	0.70

Dariad.	Mar. O	1096 to	Amoust 25	1000

Terr	1/N	Sample	FM	FZY	Lin	NonLin	NL-Inv	SF	FF	POET	NL-SF
	N=30										
AV	12.56	12.06	12.01	12.04	12.23	12.08	12.10	12.43	11.09	10.78	11.76
SD SR	16.24 0.77	12.91 0.93	12.81 0.94	12.81 0.94	12.78 0.96	12.77 0.95	12.77 0.95	12.77 0.97	12.71 0.87	13.14 0.82	12.67 0.93
SK	0.77	0.93	0.94	0.94	0.90		0.93	0.97	0.67	0.82	0.93
						N = 50					
AV SD	12.94 15.82	7.22 12.04	7.69 11.94	7.58 11.90	7.20 11.86	7.62 11.85	7.60 11.85	7.78 11.56	8.50 11.41	8.40 11.62	8.24 11.33
SR	0.82	0.60	0.64	0.64	0.61	0.64	0.64	0.67	0.75	0.72	0.73
						N = 100					
AV	12.45	6.68	7.23	6.92	6.84	6.56 10.26***	6.61	5.24 10.09	6.22	6.28	6.17
SD SR	15.37 0.81	11.42 0.58	11.10 0.65	10.63 0.65	10.39 0.66	0.64	10.28 0.64	0.52	9.75 0.64	9.87 0.64	9.75 0.63
						N=250		•			
AV SD	12.04 15.09	652.67 2,126.98	652.67 2,126.98	7.92 10.07	7.41 9.78	6.72 9.55***	6.70 9.64	5.86 9.37	6.78 9.11	6.48 8.93	7.15 8.73
SR	0.80	0.31	0.31	0.79	0.76	0.70	0.70	0.63	0.74	0.73	0.82
	N=500										
AV	12.12	NA	NA	9.45	7.96	6.93 8.93***	7.29	5.47	6.86	6.61	7.45
SD SR	15.01 0.81	NA NA	NA NA	9.57 0.99	9.21 0.86	0.78	9.06 0.80	8.95 0.61	8.44 0.81	8.11 0.81	7.86 0.95
	N. 0.01 141 141 0.27 0.00 0.70 0.00 0.01 0.01 0.01 0.23										

资料来源:天风证券研究所

我们通过回测分析评估了非线性压缩估计用于估计最小方差组合时的样本外性能;在 这种情况下,主要评判标准是样本外超额收益率的标准差。我们将非线性压缩与许多其他 策略进行了比较,其中大多数是在过去十年中在领先的金融和计量经济学期刊中提出的。

图 7: 压缩特征值作为样本特征值的函数

资料来源:天风证券研究所

4. 结论

尽管相对简单,马科维茨(Markowitz,1952)的投资组合理论仍然是金融投资的基石。在实际中应用时,需要估计预期收益向量和收益协方差矩阵,本文的重点是解决协方差矩阵的估计问题。

与先前估计协方差矩阵的方法相比,我们提供的方法的主要区别在于估计的自由参数数量。设 N 表示可投资资产数量,之前的方法不是估计 O(1) ——如 Ledoit 和 Wsolf (2003,2004a,b) 提出的线性压缩——就是估计 $O(N^2)$ ——如样本协方差矩阵。我们认为,在高维框架下,O(1) 自由参数不够,而 $O(N^2)$ 自由参数太多,依据 Goldilocks 准则,O(N) 自由参数是"恰到好处的数量"。

此外,我们研究了将非线性压缩与股票收益的单因子模型相结合。这种混合方法在减少投资组合收益率的样本外波动方面带来了额外的改善。

分析师声明

本报告署名分析师在此声明:我们具有中国证券业协会授予的证券投资咨询执业资格或相当的专业胜任能力,本报告所表述的 所有观点均准确地反映了我们对标的证券和发行人的个人看法。我们所得报酬的任何部分不曾与,不与,也将不会与本报告中 的具体投资建议或观点有直接或间接联系。

一般声明

除非另有规定,本报告中的所有材料版权均属天风证券股份有限公司(已获中国证监会许可的证券投资咨询业务资格)及其附属机构(以下统称"天风证券")。未经天风证券事先书面授权,不得以任何方式修改、发送或者复制本报告及其所包含的材料、内容。所有本报告中使用的商标、服务标识及标记均为天风证券的商标、服务标识及标记。

本报告是机密的,仅供我们的客户使用,天风证券不因收件人收到本报告而视其为天风证券的客户。本报告中的信息均来源于我们认为可靠的已公开资料,但天风证券对这些信息的准确性及完整性不作任何保证。本报告中的信息、意见等均仅供客户参考,不构成所述证券买卖的出价或征价邀请或要约。该等信息、意见并未考虑到获取本报告人员的具体投资目的、财务状况以及特定需求,在任何时候均不构成对任何人的个人推荐。客户应当对本报告中的信息和意见进行独立评估,并应同时考量各自的投资目的、财务状况和特定需求,必要时就法律、商业、财务、税收等方面咨询专家的意见。对依据或者使用本报告所造成的一切后果,天风证券及/或其关联人员均不承担任何法律责任。

本报告所载的意见、评估及预测仅为本报告出具日的观点和判断。该等意见、评估及预测无需通知即可随时更改。过往的表现亦不应作为日后表现的预示和担保。在不同时期,天风证券可能会发出与本报告所载意见、评估及预测不一致的研究报告。

天风证券的销售人员、交易人员以及其他专业人士可能会依据不同假设和标准、采用不同的分析方法而口头或书面发表与本报告意见及建议不一致的市场评论和/或交易观点。天风证券没有将此意见及建议向报告所有接收者进行更新的义务。天风证券的资产管理部门、自营部门以及其他投资业务部门可能独立做出与本报告中的意见或建议不一致的投资决策。

特别声明

在法律许可的情况下,天风证券可能会持有本报告中提及公司所发行的证券并进行交易,也可能为这些公司提供或争取提供投资银行、财务顾问和金融产品等各种金融服务。因此,投资者应当考虑到天风证券及/或其相关人员可能存在影响本报告观点客观性的潜在利益冲突,投资者请勿将本报告视为投资或其他决定的唯一参考依据。

投资评级声明

类别	说明	评级	体系
		买入	预期股价相对收益 20%以上
股票投资评级	自报告日后的6个月内,相对同期沪	增持	预期股价相对收益 10%-20%
放宗仅负仟级	深 300 指数的涨跌幅	持有	预期股价相对收益-10%-10%
		卖出	预期股价相对收益-10%以下
		强于大市	预期行业指数涨幅 5%以上
行业投资评级	自报告日后的6个月内,相对同期沪	中性	预期行业指数涨幅-5%-5%
	深 300 指数的涨跌幅	弱于大市	预期行业指数涨幅-5%以下

天风证券研究

北京	武汉	上海	深圳
北京市西城区佟麟阁路 36 号	湖北武汉市武昌区中南路 99	上海市浦东新区兰花路 333	深圳市福田区益田路 4068 号
邮编: 100031	号保利广场 A 座 37 楼	号 333 世纪大厦 20 楼	卓越时代广场 36 楼
邮箱: research@tfzq.com	邮编: 430071	邮编: 201204	邮编: 518017
	电话: (8627)-87618889	电话: (8621)-68815388	电话: (86755)-82566970
	传真: (8627)-87618863	传真: (8621)-68812910	传真: (86755)-23913441
	邮箱: research@tfzq.com	邮箱: research@tfzq.com	邮箱: research@tfzq.com