NeuroPlay: A Multi-Modal **Game-Based Diagnostic Tool for** Early Detection and Staging for Parkinson's Disease

Ayesha, Ananya, and Yeowon

Table of Contents

01 Background

02 Project Development

03 Reflection

04 The Future

Background

The Problem

Parkinson's Disease

Early Diagnosis

Accessibility

Our Goal

To develop a multimodal, game-based machine learning framework for accessible at-home screening and monitoring of Parkinson's disease

Project Development

Proposed Pipeline

Tremor Model

Feature Engineering

- The Parkinson Disease Spiral Drawings Using Digitized Graphics Tablet dataset from UCI's ML repository
- X and Y coordinates and pressure →

Tremor Energy

Statistical Descriptors

Instantaneous Speed

Tremor Model

Training and Testing

- Stratified K-fold cross-validation (k=5)
- Logistic Regression
- XGBoost
- Random Forest

Voice Model

Feature Engineering

- The *Parkinson Telemonitoring* dataset from UCI's ML repository
- Voice features extracted from speech recordings of Parkinson's patients with UPDRS scores

Phonotation Stability

Complexity Features

Signal-to-Noise Measures

Voice Model - Regression

Training and Testing

- Train/Validation/Test Split (70/15/15)
 - Stratified using age
- Neural Network
- Random Forest

TABLE 2 Voice Regression Task Model Evaluation Metrics			
Metric	Voice Regression Test Model		
	Random Forest	Neural Network	
R ² Score	0.358	0.463	
RMSE	8.394	7.677	
MAE	6.477	5.836	
Explained Variance	0.358	0.466	

Voice Model - Classification

Training and Testing

- Train/Validation/Test Split (70/15/15)
- Neural Network Classification Model
- Partitioned Total UPDRS Score (Multi-Class)

4-way Split:

3-way Split:

TABLE 3 Voice Classification Model Evaluation Metrics

Metric	Voice Classification Test		
Merric	4-way Split	3-way Split	
Precision	0.59	0.76	
Recall	0.59	0.77	
F1-score	0.59	0.73	
Accuracy	0.59	0.74	
M Average F1	0.58	0.72	

Prototyping

- React Native framework
- Flask backend w/ Python
- Tremor:
 - User draws a spiral on-screen
 - Compares drawn spiral to healthy baseline
 - Yes/No Parkinson's diagnosis

• Voice:

- User speaks prompted sentence
- Analyzes vocal tremors, articulation, and pauses
- UPDRS Score → Stage

NeuroPlay

Games for tracking Parkinson's

Reflection

Overcoming Challenges

Challenge

Solution

Optimizing Models

Testing out multiple models, k-fold, stratification, feature engineering

Stage Uncertainty

Used Oxford voice data to estimate severity scores (UPDRS values).

The Future

Broader Range

- Expand model to other neurodegenerative diseases
- Design mini-games targeting other symptoms
- Offer accurate diagnosis despite overlapping symptoms
- Provide accessible, nuanced screening for patients

Mobile Launch

- Launch model as mobile diagnostic app
- Use gamified tools for user engagement
- Reduce stress of formal cognitive testing
- Detect disease early with home screening
- Prioritize senior-friendly, accessible interface design
- Bridge age gap with inclusive technology

Clinical Validation

- Current models use public dataset sources
- Plan clinical validation with UT Southwestern
- Partner with Peter O'Donnell Brain Institute
- Test on patients with varying stages
- Refine model using real clinical data
- Prove tool is reliable for screening

Thank you!

GitHub Repository

Questions?

