Cloud Computing and Security notes

Intro

- on-demand delivery of IT resources over the Internet on a pay-as-you-go model
- AWS
- uses
 - data backup
 - disaster recovery
 - email
 - S/W dev and testing
 - big data analytics
- · benefits
 - agility
 - easy access to a broad range of tech
 - elasticity
 - don't need to over provision resources up front to handle more load in the future
 - can easily scale resources up and down as business needs change
 - cost savings
 - can treat fixed expenses such as data centers for varibale expenses, which is a lot cheaper due to difference in scale
 - deploy globally
 - can expand to new geo locations + deploy in mins

Cloud Delivery Models

- laaS(infra as a service)
 - basic building blocks for cloud IT
 - examples
 - networking features
 - comps(virtual/dedicated H/W)
 - data storage space
 - highest level of flexibility and control over resources
- PaaS(platform as a service)
 - remove the need for orgs to manage udnerlying infra(H/W, OS, etc.)
 - provides pre-configed envs for development/deployment
 - examples
 - middleware
 - runtime envs
 - database
 - built on top of IaaS; more abstraction, less flexibility than IaaS
- SaaS(S/W as a service)
 - S/W apps run and managed by vendor
 - not needed to worry about maintenance or underlying arch of S/W; only about its usage

- examples
 - web-based email

Bare Metal Servers vs Hypervisors

Bare Metal Servers

- physical server with tangible components like RAM, CPU, etc.\
- performance
 - o optimized performance + resource utilization; direct access to components
 - o ideal for high performance apps like databases and real-tiem analytics
- security
 - preferred for secure apps since there is no intermediary layer, removing an additional attack surface

Hypervisor

- S/W layers created a separation b/w H/W components and OS; creates many VMs
- flexibility + isolation
 - ideal for testing envs requiring isolation b/w workloads
- · resource sharing
 - amongst multiple VMs; resource efficiency
- · ease on mgmt
 - ease of managing VMs
- bare metal servers become more powerful when a hypervisor is added
- multiple VMs run isolated from each other parallelly

On Premises vs On Cloud

On Premises

- use to running of app done inside + backup, privacy, updates, etc. must be managed in-house
- complete ownershp
- additional power labourers, database prog, OS, etc. required

On Cloud

- delivery of on-demand computing services over the Internet in a cost-effective manner
- · the difference
 - scalability
 - on premises difficult to scale up and down as the needs change; more expensive
 - on cloud easier + faster to scale up and down; pay as per usage
 - o server storage
 - on premises more space, power and maintenance to store
 - on cloud provider manages storage and its requirements
 - data security

- on-premises less secure as it is up to the owner
- on-cloud far more secure
- data loss/recovery
 - on-premises in case of loss, recovery is little to none in most cases
 - on-cloud robust recovery options provided by cloud provider
- maintenance
 - on-premises additional cost for maintenace
 - on-cloud maintenance handled by cloud provider

DNS

- domain name system
- translates domain names to IP addresses so that browsers can load Internet resources
- working
 - translation b/w domain name typed in browser and IP address of server containing the required webpage
 - H/W involved
 - DNS recursor
 - receives queries from clients via apps like web browsers
 - makes additional requests
 - root nameserver
 - first step in translation
 - reference for more specific locations
 - TLD(top level domain) nameserver
 - hosts the last portion of the hostname
 - authoritative nameserver
 - if it has access to the requested record, returns IP address back to DNS recursor
 - series of recursive requests until it reaches authoritative nameserver until it obtaines the requested record
 - a workaround to making multiple requests is caching data persistence process that helps short-circuit necessary requests by serving requested resource record earlier in the lookup

How does DNS resolve IP

AWS

AWS Region

- a cluster of data centers ina specific geo area
- choose one close to users to reduce latency
- has multiple AZs(availability zones)
 - each AZ restricted to a region; can use multiple AZs within a region; can't use same AZ across regions

AWS Availability Zone

- standalone data center/cluster in a region
- · operate independently
- multiple AZs used to increase redundancy and reliability for disaster recovery

•

AWS local zones are extensions of regions, letting you choose more specific geo locations

EC2 (Elastic Cloud Compute)

- · cloud computing service
- · deploy apps without worrying about underlying infra
- configured securely using VPC, subnets and sec groups
- can scale config by attaching autoscaling group to instance
- use cases
 - deploying application
 - scaling application
 - hybrid-cloud env deploy app on cloud and connect to database on-premises
 - cost-effective
- · instance types
 - general purpose
 - · compute optimized
 - memory optimized
 - storage optimized
 - accelerated computing

Route 53

- highly scalable and available DNS
- allows routing of users to web apps in a highly efficient manner
- only takes a few mins to reroute a domain to a new IP address
- working
 - URL entered in browser
 - reg routed to user's DNS resolver
 - req forwarded to TLD name server for ".com" domains for example
 - resolver receives authoritative name server for domain 4 Amazon Route 53 name servers that host domain's DNS zone
 - name server looks in the DNS zone for that URL and receives IP
 - resolver receives IP from name server and caches before returning it to the user's browser

• browser contacts webserver/other Amazon-hosted services using the IP address

- benefits
 - highly available and reliable
 - flexible
 - simple
 - fast
 - designed to intergrate with otehr AWS services
 - secure
 - scalable
- · routing policies
 - simple routing
 - failover routing
 - latency-based routing
 - geolocation routing
 - weighted routing policy

VPC

- · virtual private cloud
- service that enables users to launch VMs in aprotected as well as isolated virutal env defined by them
- complete control over VPC
- can select virtual address of private cloud and sub-constituents like subnet, subnet mask, AZ, etc.
- · can place resources and manage them
- default VPC created during account creation
- architecture
 - VPC divided into subnets, connected via route tables

- components
 - VPC

- can lanch AWs resources in a virtual network
- closely mimics a network operated in your own data center
- subnets
 - break network into smaller subnets to handle traffic upto /16, 200 user-defined subnets
- route tables
 - to specify protocol for routing traffic b/w subnets
- network ACLs
 - firewall to manage inboudna dn outbound rules
 - for each VPC there is a default NACL that can't be deleted
- Internet gateway(IGW)
 - makes it possible to link the resources in the VPC to the Internet
- NAT
 - enbales conn between priv subnet and the Internet