Homework #2: Infinite Analysis

ELEN E6880: RMT with Applications

- 1. Let μ be a distribution and $(m_k, k \geq 0)$ the sequence of its moments. For a given $n \geq 1$, let also $A^{(n)}$ be the $(n+1) \times (n+1)$ matrix defined as $a_{jk}^{(n)} = m_{j+k}, 0 \leq j, k \leq n$.
 - (a) Show that for all $n \geq 1$, the matrix $A^{(n)}$ is positive semi-definite, i.e. that for all $c_0, \ldots, c_n \in \mathbb{R}$,

$$\sum_{j,k=0}^{n} c_j c_k a_{jk}^{(n)} \ge 0.$$

hint: Note that $A^{(n)}$ is symmetric.

(b) Among the following sequences of numbers, which are sequences of moments of a given distribution? and of which distribution?

i.
$$(m_k = \frac{1}{k+1}, k \ge 0)$$
,

ii.
$$(m_k = k^2, k \ge 0)$$
,

iii.
$$(m_k = e^k, k > 0)$$
,

iv.
$$(m_k = e^{k^2/2}, k \ge 0)$$
.

- 2. Compute the moments of the following distributions and tell which of them are uniquely determined by their moments, using Carleman's conition.
 - (a) Let μ be the "quarter-circle law" whose pdf is given by

$$p_{\mu}(x) = \frac{1}{\pi} \sqrt{\frac{1}{x} - \frac{1}{4}} 1_{\{0 < x < 4\}}.$$

hint: Use induction and the change of variables $x = 4\sin^2(t)$.

(b) Let $\lambda > 0$ and μ be the distribution whose pdf is given by

$$p_{\mu}(x) = C_{\lambda} \exp\{(-x^{\lambda})\}, \quad x > 0,$$

with C_{λ} an appropriate normalization constant. For which values of λ is the distribution μ_{λ} uniquely determined by its moments? (no need to exactly compute the moments.) **hint:** Use the approximation $\Gamma(x) = \int_0^{\infty} y^{x-1} e^{-y} dy \sim [x-1]!$ as $x \to \infty$.

3. Let μ be a probability distribution on \mathbb{R} and $g_{\mu}: \mathbb{C}\backslash\mathbb{R} \to \mathbb{C}$ be its Stieltjes transform, defined as

$$g_{\mu}(z) = \int_{\mathbb{R}} \frac{1}{x - z} d\mu(x), \quad z \in \mathbb{C} \backslash \mathbb{R}.$$

- (a) Writing z = u + jv, decompose $g_{\mu}(z)$ into its real and imaginary parts.
- (b) Show g_{μ} is analytic on $\mathbb{C}\backslash\mathbb{R}$.
- (c) Show that $\text{Im}\{g_{\mu}(z)\} > 0$, if $\text{Im}\{z\} > 0$.
- (d) Show that $\lim_{v\to\infty} v|g_{\mu}(iv)| = 1$.
- (e) Show that $g_{\mu}(z^*) = \{g_{\mu}(z)\}^*$.