电子科技大学实验 报告

(2019-2020-2)

学生姓名: 刘正浩 学生学号: 2019270103005 指导老师: 李朝海

实验学时: 2 实验地点: 家 实验时间: 2020年6月1日

报告目录

- 一、实验课程名称: 电子电路实验
- 二、实验名称: 集成运放的基本放大应用
- 三、实验目的:请附页
- 四、实验原理:请附页
- 五、实验内容:请附页
- 六、实验步骤:请附页
- 七、实验数据及结果分析:请附页
- 八、实验结论:请附页
- 九、思考题:请附页
- 十、实验器材(设备、元器件): 请附页
- 十一、总结及心得体会:请附页
- 十二、对本实验过程及方法、手段的改进建议:请附页

报告评分:	
1M H N /1 •	

三、实验目的:

- 1. 了解集成运算放大器的管脚分布及其功能。
- 2. 掌握集成运放的正确使用方法及特点。
- 3. 掌握用运放构成比例放大电路的设计方法、参数的选取原则。
- 4. 掌握双电源的连接原理及实现方法。

四、实验原理:

1. 集成运放的组成和特点

输入级: 由差分放大电路构成。(抑制共模信号)

中间级: 多采用共射(或共源)放大电路。(具有较强放大能力)

输出级:采用互补输出电路。(输出电阻小,带载能力强)

偏置电路:由恒流源电路构成。(确定合适的静态工作点)

2. 集成运放的电压传输特性

在线性区: $u_o = A_{od}(u_+ - u_-)$, A_{od} 是开环差模放大倍数。由于 A_{od} 高达几十万倍,所以集成运放工作在线性区时的最大输入电压 $(u_+ - u_-)$ 的数值仅为几十~一百多微伏。 $(u_- + - u_-)$ 的数值大于一定值时,开环集成运放的输出不是 $+U_{OM}$,就是 $-U_{OM}$,即此时集成运放工作在非线性区。

3. 集成运放的性能指标

运放具有高增益、低漂移、高输入阻抗、低输出阻抗、可靠性高的特点,因此在实际应用和近似分析时可以视其为理想器件。可将运放的参数理想化,即认为:

(1) 开环电压增益 $A_{od} \rightarrow \infty$;

(2) 输入电阻 $r_{id} \rightarrow \infty$;

 $(3) 输出电阻 r_o \to 0 ;$

 $(4) -3dB 带宽 f_H \to \infty;$

(5) 共模抑制比 $K_{CMR} \rightarrow \infty$;

由于 $A_{od} = \frac{u_o}{u_+ - u_-} = \infty$, 而 u_o 为有限值,所以 $u_o - u_o = 0$, 即 $u_o = u_o$ (虚短路)

由于 $r_{id} = \infty$, 所以 $i_+ = i_- = 0$

五、实验内容:

1、反相比例放大器的设计与测试

根据选择相应元件,用集成运放设计并搭建一个反相放大器。完成下表所列电压增益的测试。

测试条件		输出电压	所选电阻的大小		
u_i A_v		u_o	R_1	R_f	
$2\cos 1000\pi t(V)$	-3				

2、同相比例放大器的设计与测试

测试条件		输出电压	所选电阻的大小	
u_i	A_v	u_o	R_1 R_f	
$3\cos 1000\pi t (V)$	2			

3、同相比例放大器幅频特性的测试

选择相应元件,用集成运放设计并搭建一个同相放大器,要求电路增益: $A_v=2$ 。输入条件: 正弦信号,有效值 $U_i=40mV$,用点频法测试电路的幅频特性,根据测试数据画出幅频特性 曲线。

频点	f_1	f_2	f_3	f_H	$2f_H$	$5f_H$
频率值(Hz)	150	1k	10 <i>k</i>			
U_o (有效值)						

六、实验步骤:

1. 搭建如图所示的反相比例放大器:

- 2. 进行仿真,记录实验数据。
- 3. 构建如图所示的同相比例放大器:

- 4. 进行仿真,记录实验数据。
- 5. 在第三步构建的同相放大器基础上加上一个万用表

6. 改变交流电源频率,记录在特定频率下的输出电压有效值。

七、实验数据及结果分析:

1、反相比例放大器的设计与测试

根据选择相应元件,用集成运放设计并搭建一个反相放大器。完成下表所列电压增益的测试。

测试条件	<u>:</u>	输出电压	所选电阻的大小		
u_i	A_v	u_o	R_1 R_f		
$2\cos 1000\pi t(V)$	-3	-6	$4k\Omega$	$12k\Omega$	

2、同相比例放大器的设计与测试

测试条件		输出电压	所选电阻的大小	
u_i	A_v	u_o	R_1	R_f
$3\cos 1000\pi t (V)$	2	6	$12k\Omega$	$12k\Omega$

3、同相比例放大器幅频特性的测试

选择相应元件,用集成运放设计并搭建一个同相放大器,要求电路增益: $A_v=2$ 。输入条件: 正弦信号,有效值 $U_i=40mV$,用点频法测试电路的幅频特性,根据测试数据画出幅频特性曲线。

频点	f_1	f_2	f_3	f_H	$2f_H$	$5f_H$
频率值(Hz)	150	1k	10 <i>k</i>	300 <i>k</i>	600 <i>k</i>	1500k
U_o (有效值)	80 <i>mV</i>	80.00	79.95	56.12	35.32	15.45

八、实验结论:

- 1. 对于反相放大器,放大出的信号与原信号相位差为 $\frac{\pi}{2}$; 同相放大器放大后的信号与原信号同相。
- 2. 反相放大器的增益计算公式为: $\frac{U_o}{U_i} = \frac{R_f}{R_1}$; 同相放大器的增益计算公式为: $\frac{U_o}{U_i} = 1 + \frac{R_f}{R_1}$

九、思考题:请附页

十、实验器材(设备、元器件):

Multisim

十一、总结及心得体会:

在本次实验中我了解了运放的基本特性,熟悉了如何搭建同相比例放大器和反向比例放大器,并对同相比例放大器的幅频特性有了一定了解。

十二、对本实验过程及方法、手段的改进建议:请附页