## Condivisione di Segreti Dinamica: Un'implementazione

Leonardo Danella



#### Obiettivo del tirocinio

Studiare paper su sicurezza e correttezza di Secret Sharing ed Evolving Secret Sharing

Fornire un'implementazione dell'evolving secret sharing che sia:

- Sicuro
- Confidenziale
- Con performance paragonabili a uno di SS classico



Perché il secret sharing?

- Cos'è e come funziona
- Shamir's & Blakey's SS
- Pro e contro



Cos'è e come funziona?

- Algoritmo di condivisione di un segreto
- Dividere il segreto in n parti
- Recuperare il segreto con t < n parti</li>

Genero un polinomio p di grado (t-1) il cui coefficiente è il segreto da criptare e prendo n punti

Sfrutto l'interpolazione di Lagrange per recuperare il segreto: t coppie (x,y) serviranno a definire un polinomio fino al (t-1)-esimo ordine

## Shamir's & Blakey's SS

#### Schema di Shamir:

- polinomio di grado (t 1)
- t punti
- generare n punti e darne uno a partecipante
- recuperare il segreto sfruttando
  l'interpolazione di Lagrange

#### Schema di Blakley:

- iperpiano di grado (n 1)
- n iperpiani non paralleli
- il segreto giace nell'intersezione dei piani





Pro e contro

#### Pro:

- Confidentiality
- Integrity
- Non c'è un singolo punto di fallimento

#### Contro:

- No availability
- Grandezza di ogni share ≥ grandezza del segreto

(Unconditionally secure secret sharing)

Computationally secure secret sharing

Algoritmi usati per aumentare le prestazioni di spazio

Due tecniche principali:

#### - Secret Sharing Made Short

- Crittografare dati con una chiave privata
- Suddividere il ciphertext in n parti (IDA Rabin)
- Fattore di crescita della grandezza di uno share: numero di frammenti / soglia

#### - AONT-RS

- Trasformazione All or Nothing come IDA
- garantisce che qualsiasi numero di azioni inferiore alla soglia è insufficiente per decriptare i dati

#### Differenze tra ESS e SS

Komargodski, Naor e Yogev [2016]

- non avere un limite sul numero di share condivisibili
- cambiamenti monotoni sulla struttura d'accesso:
  - Solo aggiunta di partecipanti
  - Insiemi qualificati restano tali
- non avendo in anticipo un limite sugli shares, non si riescono ad ottimizzare i calcoli

Soglia 2: ESS(2, n)

'l' bit di segreto, grandezza share per t-esimo partecipante:

- Diciamo che t ∈ alla generazione g = [log(t)]
  SIZE(g) = 2<sup>g</sup>
- Se 2 partecipanti t1, t2 E ad una stessa generazione possono ricostruire il segreto
- Grandezza di uno share del t-esimo partecipante: max{l, log t} + σ(log t + 1)

Soglia k: ESS(k, n)

'l' bit di segreto, grandezza share per t-esimo partecipante:

- Diciamo che t  $\in$  alla generazione  $g = \lfloor \log_k(t) \rfloor$ SIZE(g) =  $k^{g+1} - k^g = (k - 1) \cdot k^g$
- Servono k partecipanti t1, .., t<sub>k</sub> ∈ ad una stessa generazione per ricostruire il segreto
- Grandezza di uno share del t-esimo partecipante: kt · max{l, log(kt)}

Threshold dinamico: precondizioni

Struttura d'accesso che prende in input valori di soglia t.c.:

- k1 ≤ k2 ≤ .., per garantire monotonicità, affinché la struttura sia evolutiva
- Al tempo t, sono qualificati solo gli insiemi con cardinalità di almeno k<sub>t</sub>

Threshold dinamico: algoritmo

Per ogni partecipante i in una GenSz(g+1):

- Suddivido il segreto  $s_{(c0,...,cg)}$  in shares  $\Pi_1,...,\Pi_i$
- Ad ogni partecipante in [i] do il rispettivo share

Per ogni  $c_{g+1} \in [GenSz(g+1)]$ :

- Generiamo un bit  $r_{(c0, ..., cg+1)} \leftarrow \{0, 1\}$  randomico
- Condividiamo r<sub>(c0, ..., cg+1)</sub> tra i partecipanti della Gen(g+1)
- Poniamo  $s_{(c0,...,cg+1)} = s_{(c0,...,cg)} \oplus r_{(c0,...,cg+1)}$

## Secret Sharing ed Evolving Secret Sharing

### Testing delle implementazioni

| m .:             |                       |                         |                   |
|------------------|-----------------------|-------------------------|-------------------|
| Testing          |                       |                         |                   |
| chars and thre-  | Secret Sharing time   | Evolving Secret Sharing | Rapporto ESS/SS   |
| shold            |                       | time                    |                   |
| 1 and (8, 3)     | 0.0001468900009058416 | 0.0003248950015404262   | 2.211825172148294 |
| 1  and  (10, 4)  | 0.0001356089996988885 | 0.0003544329956639558   | 2.613639186565439 |
| 1 and (15, 7)    | 0.0003656070002762135 | 0.0011853360010718461   | 3.242104227151923 |
| 1  and  (23, 13) | 0.000396353003452532  | 0.003920939001545776    | 9.892542676330079 |
| 4 and (8, 3)     | 0.0001572479959577322 | 0.0004355350174591876   | 2.769733342587451 |
| 4  and  (10, 4)  | 0.0001653709987294860 | 0.0003919660011888481   | 2.370222132056095 |
| 4 and (15, 7)    | 0.0003449729993008077 | 0.0011097449951193994   | 3.216903923984294 |
| 4 and (23, 13)   | 0.0005766430040239356 | 0.0037232520116958767   | 6.456771322489382 |
| 16 and (8, 3)    | 0.0001117869978770613 | 0.0003153010038658976   | 2.820551672857807 |
| 16 and (10, 4)   | 0.0001681630019447766 | 0.0004790980092366226   | 2.84900961386235  |
| 16 and (15, 7)   | 0.0003610919993661809 | 0.001227837999977055    | 3.400346731947147 |
| 16 and (23, 13)  | 0.00079077100235736   | 0.004249283017998096    | 5.373594890721332 |

Il numero di shares influenza di molto le prestazioni poiché l'incremento, all'aumentare degli shares, aumenta linearmente nell'Evolving Secret Sharing, mentre logaritmicamente nel classico Secret Sharing

## Conclusioni e sviluppi futuri nell'ESS

- Migliorare le prestazioni
  - temporali
  - spaziali
- Definire la non-malleabilità
- Sfruttare i codici prefisso





Facoltà di Ingegneria dell'informazione, Informatica e Statistica

Dipartimento di Informatica

# Grazie per l'attenzione

Candidato Leonardo Danella 1885686 Relatore Daniele Venturi