

Information Management II

3. Database Models

Yvette Graham Yvette.graham@tcd.ie

DBMS Classification

- Main method of DBMS classification is via the conceptual data model used
- The choice of model affects virtually all other components in the system
 - Particularly the external schemas and associated DML
- Examples
 - Hierarchical
 - Network
 - Relational
 - Object-oriented and Object-Relational
 - Graph, Columnar, In Memory, NoSQL....

Hierarchical Database

- One of the oldest database models
 - Commonly used in Mainframe computing
- Organised
 hierarchically with
 parent and child nodes
 (like a family tree!)

Network Database

- Also have a hierarchical structure
- Uses "members" and "owners" rather than "parents" and "children".
- Each member can have more than one owner

Object-Oriented Database

- Attempts to Model Data Storage in a similar fashion to application programs
 - Persistent storage of program objects such as class definitions
 - Objects can survive past the end of program execution
- Impedance Mismatch Problem
 - Data Structures in DBMS incompatible with the programming language's Data Structures

Graph Database

- Uses a graph structure with:
 - Nodes
 - Edges
 - Properties

 Graph databases treat the relationship between things as equally important to the things themselves.

Relational Database

- Differs from previous models as it is not Hierarchical, but Relational
- More flexible than either the hierarchical or network database models.
- Uses notions of:
 - Relations (Tables)
 - Tuples (Rows)
 - Attributes (Columns)

Relational Databases

- The Relational Model
 - First Introduced in 1969
 - Theoretical Basis
 - Set Theory
 - First-Order Predicate Logic
- Database represented as a collection of mathematical relations
 - Informally, relations resemble tables of values

The Relational Model

- The *table*, or *relation*, is the basic storage structure of a Relational Database.
 - Tables are "Two-Dimensional"
- Each row, or tuple, in a table represents a collection of related values
 - A row represents a fact that corresponds to an entity or relationship in the real world
- Each column, or attribute, contains values of the same data type

The Relational Model

	Relation Name		Attr	ributes			•
	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
,	Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21
1	Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Tuples (Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
/*	Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
`	Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25

The Relational Model

Domain

- The data type describing the values that can appear in each column is represented by a domain of possible values
- mobile_phone_number: The set of 10 digit phone numbers valid in Ireland
- PPS_number: 9 characters in length. 7 numeric characters in positions 1 to 7, followed by 1 alphabetic check character in position 8, and either a space or the letter "W" in position 9

DATABASE

EMPNO	NAME	JOB	DEPTNO
7856	MCNULTY	OFFICER	30
7710	DANIELS	LIEUTENANT	40
7992	GREGGS	DETECTIVE	10
7428	MORELAND	DETECTIVE	20

Formal Definition

- A relational schema R, denoted by $R(A_1, A_2, ..., A_n)$ is made up of:
 - relation name R
 - List of attributes $A_1 \dots A_n$
 - Each attribute A_i is the name of the role played by domain D_i in the relation R
 - D_i is the *domain* of A_i and is denoted by $dom(A_i)$
 - The degree of a schema, is equal to the number of attributes, n

Formal Definiton

- STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)
- The degree of the relation STUDENT is....
- dom(Ssn) =

Formal Definition

- A relation state r of a relational schema $R(A_1, A_2, ..., A_n)$ also denoted r(R) is:
 - A set of tuples $r = \langle t_1, t_2, ..., t_m \rangle$
 - Each *tuple* t is an ordered list of n values $t = \langle v_1, v_2, ..., v_n \rangle$
 - where each value v_i , $1 \le i \le n$, is an element of $dom(A_i)$
 - The ith value of tuple t_n , which corresponds to attribute A^i , is referred to as $t_n[A_i]$ or $t_n[i]$

Formal Definition

 $t_3 =$ Click Davidson,422-11-2320,NULL,3452 Elgin Road,(817)749-1253,25,3.53>

	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
,	Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21
,	Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
٠	Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
,	Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25

$$t_5[A_3] = (817)839-8461$$

relation state =
$$r(R) = \langle t_1, t_2, t_3, t_4, t_5 \rangle$$

- Ordering of tuples in a relation
 - A Relation defined as a set of tuples
 - Elements of a set have no order among them

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Benjamin Bayer	305-61-2435	(817)373-161	2518 Bluebonnet Lane	NULL	19	3.21
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Quick Task

• Suggest a relational table for a company wishing to manage its sales persons and customer records.

Suppose that in the database:

- The database must contain the following information: customer numbers (Ids), salesperson numbers (ids), customer names and salesperson names
- For Each customer, the database stores his/her name and the sales person who services that customer
- For each customer there is only one sales person

- Ordering of tuples in a relation
 - A Relation defined as a set of tuples
 - Elements of a set have no order among them
- Ordering of values within a tuple
 - Each *tuple* t is an ordered list of n values $t = \langle v_1, v_2, ..., v_n \rangle$
 - Order can change as long as correspondence between attributes and values is maintained

- Values in tuples
 - Each value in a tuple is atomic
 - For example: Student Age
 - Composite and multivalued attributes not allowed in the "Flat" Relational Model
 - Multivalued attributes
 - For example: College Degree
 - Must be represented by separate relations
 - Composite attributes
 - For example: Address
 - Represented only by simple component attributes in basic relational model

- NULL values
 - Represent the values of attributes that may be unknown or may not apply to a tuple

- Meanings for NULL values
 - Value unknown
 - Value exists but is not available
 - Attribute does not apply to this tuple (also known as value undefined)
- The NULL value is defined for each domain and there are restrictions

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3 21

Relational Model Constraints

- Restrictions on the actual values that can be placed in a database state
- These rules are derived from the rules of the world that the database represents
- Constraints inherent in the data model
 - Inherent model-based or implicit constraints

Relational Model Constraints

- Constraints expressed in the schemas of the data model i.e. DDL
 - Schema-based or explicit constraints
- Constraints that cannot be expressed in the DDL
 - Must be enforced by the application programs
 - Application-based or semantic constraints,
 Business Rules

Keys and Integrity Constraints

- A Relational DB consists of many relations
 - tuples of those relations can be related in various ways
- Every relation and every attribute has a name
 - As a result, can be uniquely identified
- Attribute names are often qualified by relation name
 - Resolves ambiguity
 - PATIENT.name
 - DOCTOR.name

Primary Key

- Most relations have one attribute whose values uniquely identify its tuples
 - e.g. student_number in the relation STUDENT
 - no two students can have the same student number
- This attribute is known as a key
 - More specifically, this type of key is called a Primary Key

Primary Key

 Not every relation uses a single attribute as its Primary Key

CAR

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

 When multiple Candidate Keys exist, they may be combined, or one chosen, to form a Primary Key

Entity Integrity Constraint

- Specifies that there may not be any duplicate entries in the Primary Key attribute
- NULL values are not permitted in Primary Key fields
 - Primary Key is used to identify a tuple
 - Having a NULL in a Primary Key implies that we cannot identify some tuples
- Once defined, Key and Entity Constraints are enforced by the DBMS

Referential Integrity

- Key and Entity Constraints are specified on individual relations
- Referential Integrity Constraints are specified between two relations
 - Maintains consistency among tuples in the two relations
- Informally:
 - A tuple in one relation that refers to another relation,
 must refer to an existing tuple in that relation

Referential Integrity

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	0 291 Berry, Bellaire, TX		43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-3 i	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

Foreign Keys

- A Foreign Key formally specifies a Referential Integrity Constraint between two relations
- Consider two relation schemas R_1 and R_2
- A set of attributes FK in R_1 is a Foreign Key of R_1 that references R_2 if:
 - The attributes of FK have the same domains as the Primary Key attributes PK of R₂
 - FK is said to reference or refer to R₂
 - A value of FK in a tuple t1 either occurs as a value of PK for some tuple t2, or is NULL
 - tuple t₁ is said to reference or refer to tuple t₂

Table Relationships

EMPLOYEE

STUDENT

(student_number, student_name, student_address)

COURSE

(course_number, course_title, lecturer)

RESULT

(course_number, student_number, grade)

STUDENT

(<u>student_number</u>, student_name, student_address)

COURSE

(course number, course_title, lecturer)

RESULT

(course number, student number, grade)

- fk_course_number is a FK of RESULT that references COURSE
 - RESULT.course_number and COURSE.course_number have the same domain
 - Each tuple in RESULT must contain a course_number that exists in a tuple in COURSE, or be NULL

- fk_student_number is a FK of RESULT that references STUDENT
 - RESULT.student_number and STUDENT.student_number have the same domain
 - Each tuple in RESULT must contain a student_number that exists in a tuple in STUDENT, or be NULL

STUDENT

(<u>student_number</u>, student_name, student_address)

RESULT

(course number, student number, grade)

COURSE

(course number, course_title, lecturer)

2	EMPNO	NAME	JOB	MGR	HIREDATE	SALARY	СОММ	DEPTNO	4
	7839	KING	PRESIDENT		17-NOV-81	5000		10	
	7698	BLAKE	MANAGER	7839	01-MAY-81	2850		30	
	7782	CLARK	MANAGER	7839	09-JUN-81	2450		10	
	7566	JONES	MANAGER	7839	02-APR-81	2975		20	
	7654	MARTIN	SALESMAN	7698	28-SEP-81	1250	1400	30	
	7499	ALLEN	SALESMAN	7698	20-FEB-81	1600	300	30	
	7844	TURNER	SALESMAN	7698	08-SEP-81	1500	5 0	30	
	7900	JAMES	CLERK	7698	03-DEC-81	950		30	
	7521	WARD	SALESMAN	7698	22-FEB-81	1250	500	30	
	7902	FORD	ANALYST	7566	03-DEC-81	3000		20	
	7369	SMITH	CLERK	7902	17-DEC-80	800		20	
	7788	SCOTT	ANALYST	7566	09-DEC-82	3000		20	
	7876	ADAMS	CLERK	7788	12-JAN-83	1100		20	
1	7934	MILLER	CLERK	7782	23-JAN-82	1300		10	
						4. 1		was a second	Courted

