Structuri de date - Curs 9

Conf. univ. dr. Cristian CIUREA
Departamentul de Informatica si Cibernetica Economica
Academia de Studii Economice din Bucuresti
cristian.ciurea@ie.ase.ro

Agenda

- Echilibrare perfectă/imperfectă
- Arbori AVL

Echilibrarea perfectă:

- implementare operație:
 - metoda divide et impera;
 - parcurgere şir de chei ordonate crescător şi inserarea valorii din mijloc în arbore;
 - volum mare de calcule: operații de inserare și ștergere, parcurgere inordine arbore, reconstrucție structură arborescentă.

Echilibrarea perfectă:

- mentenanța unei astfel de structuri:
 - grad de complexitate foarte ridicat;
 - recrearea arborelui perfect echilibrat după fiecare operație de inserare sau ştergere.

Echilibrarea imperfectă:

- implementare operație:
 - utilizarea aceleiași metode ca la echilibrarea perfectă, pornind de la un set de valori sortate crescător sau descrescător.

Echilibrarea imperfectă:

- mentenanța unei astfel de structuri:
 - grad de complexitate acceptabil;
 - metode specifice unor structuri arborescente echilibrate particulare: arbori AVL, arbori B, arbori Roşu & Negru;
 - efort de prelucrare mai mic decât volumul operaţiilor asociat reconstrucţiei arborelui.

- Avantajul utilizării arborilor binari de căutare echilibrați:
 - minimizarea efortului de căutare, datorită aranjării echilibrate a valorilor pe ambii subarbori ai fiecărui nod.

Caracteristici:

- definit de G.M. Adelson-Velskii şi E.M. Landis;
- arbore binar de căutare echilibrat pe înălţime;
- teorema demonstrată de Adelson-Velskii şi Landis garantează că un arbore echilibrat nu va fi niciodată cu mai mult de 45% mai înalt decât omologul său, perfect echilibrat, oricare ar fi numărul de noduri;
- arbore binar de căutare este AVL dacă gradul de echilibru al fiecărui nod ia valori în mulţimea {-1,0,1}.

Gradul de echilibru al unui nod (GE):

GE = H(SD) - H(SS),

unde:

H() - funcția de calcul a înălțimii unei structuri arborescente;

H(rad) = 1 + max(H(SD), H(SS))

- ▶ Pentru *GE=0*, nodul este echilibrat;
- ▶ Pentru GE=1 și GE=-1, nodul descrie un dezechilibru la dreapta, respectiv la stânga.

Cazurile GE=1 şi GE=−1 sunt situaţii acceptate, deoarece pentru un număr par de valori este imposibil să se definească un arbore binar de căutare în care toate nodurile sunt perfect echilibrate.

Mentenanța structurii arbore AVL:

- verificarea gradului de echilibru, pentru fiecare nod în parte;
- operațiile de inserare/ştergere afectează structura arborelui şi conduc la situaţii de dezechilibru;
- ▶ situaţiile de dezechilibru puternic sunt identificate prin indicatorul *GE* care ia valori în mulţimea {-2,2}.

- Reechilibrarea arborelui binar de căutare şi păstrarea caracteristicilor aferente arborilor AVL se realizează prin:
 - rotire simplă la stânga (rotație stânga);
 - rotire simplă la dreapta (rotație dreapta);
 - dublă rotire la stânga (rotație dreapta-stânga);
 - dublă rotire la dreapta (rotație stânga-dreapta).

- Operația de echilibrare:
 - inserare: un arbore AVL dezechilibrat va fi reechilibrat printr-o singură rotaţie;
 - ştergere: mult mai complexă, necesitând minim o rotație.
- Metoda adecvată de reechilibrare: analiza gradului de echilibru al nodurilor aflate pe drumul de la rădăcina arborelui la locaţia unde a fost inserat/şters un nod.

- Inserarea unui nod într-un arbore AVL se face în două etape:
 - în prima etapă se realizează inserarea nodului ca la o inserare obișnuită într-un arbore binar de căutare;
 - în a doua etapă, dacă este cazul, se echilibrează arborele.

- Dându-se un arbore cu rădăcina R şi subarborii stâng şi drept notați cu SS şi SD, de înălțimi H(SS) şi H(SD), la inserția unui nod în SS se disting trei cazuri:
 - H(SS)=H(SD), în urma inserției, SS și SD devin de înălțimi egale, verificând criteriul echilibrului;
 - H(SS)<H(SD), în urma inserției echilibrul se îmbunătățește;
 - H(SS)>H(SD), criteriul echilibrului nu se mai verifică, arborele trebuie reechilibrat.

Arbore binar AVL dezechilibrat dupa inserare nod cu valoare *cheie = 1*:

Aplicare metodă de reechilibrare:

- se identifică un nod (pivot) în care se realizează rotirea subarborelui - abordare bottom-up pornind de la locația nodului inserat/șters;
- reechilibrarea: cât mai aproape de locația care a generat dezechilibrul;
- identificarea operației de rotație în funcție de gradul de echilibru al nodului pivot și fiu al pivotului pe direcția dezechilibrului.

Nodul pivot (cheia 3) are GE=-2, ceea ce indică un dezechilibru la stânga;

Nodul fiu stânga (cheia 2) are dezechilibru la

stânga;

GE = 0

Reechilibrarea se realizează prin operaţia de rotire simplă la dreapta.

Arbore AVL reechilibrat:

- Nodul pivot (cheia 23) are *GE=2*, ceea ce indică dezechilibru la dreapta.
- Nodul fiu dreapta (cheia 27) are dezechilibru la dreapta.

Reechilibrarea se realizează prin operaţia de rotire simplă la stânga.

Arbore AVL reechilibrat:

Se inserează în arborele AVL anterior elementele cu valorile *16*, *24*, *26* și se obține structura arborescentă:

- Ultima operație: inserare nod 26;
- Analiza drumului de la nodul 26 la rădăcină conduce la identificarea pivotului, nodul 27;
- Nodul 27 este puternic dezechilibrat la stânga, iar nodul fiu, nodul 23, este dezechilibrat slab pe direcția opusă.

Simulare rotire simplă la dreapta aplicată pivotului, nodul 27:

Arborele obținut:

- este dezechilibrat, dar în sens opus;
- reechilibrarea: tot cu o rotire simplă, dar în sens opus: va conduce la obţinerea ipotezei iniţiale;
- soluția este ineficientă.

Soluţia eficientă:

- aplicarea unei rotiri duble: constă în două rotiri simple;
- prima rotire: scop de a rearanja structura arborescentă, astfel încât direcţiile dezechilibrului nodului pivot şi a fiului acestuia să aibă acelaşi sens;
- a doua rotire are ca obiectiv reechilibrarea arborelui.

Soluţia eficientă:

- cele două rotații sunt aplicate unor noduri diferite;
- prima rotaţie aplicată nodului fiu al nodului pivot, pe direcţia dezechilibrului;
- a două rotație aplicată nodului pivot şi are sens opus dezechilibrului.

- Pivotul este nodul 27, puternic dezechilibrat la stânga.
- Etape pentru a reechilibra arborele:
 - se analizează nodul fiu al nodului pivot pe direcţia dezechilibrului, respectiv nodul 23, care este slab dezechilibrat la dreapta;
 - reechilibrarea se realizează printr-o dublă rotație (pivotul și nodul fiu sunt dezechilibrate pe direcții diferite).

Etape pentru a reechilibra arborele:

- prima rotaţie se aplică nodului fiu şi are sens identic cu dezechilibrul nodului pivot; redefineşte situaţia pentru aplicarea unei rotaţii simple;
- a doua rotație se aplică nodului pivot şi are sens opus dezechilibrului.

Rotație simplă la stânga:

Rotație simplă la dreapta:

Arbore AVL reechilibrat:

Reechilibrare arbore AVL prin ștergerea unei chei cu valoarea *16* și inserarea cheii *25*.

- Există două noduri, 24 și 10, ce descriu dezechilibre puternice, GE = 2, la dreapta.
- Analiza drumului de la noul nod inserat la rădăcină arborelui, stabileşte ca fiind pivot nodul cu valoarea 24.

Reechilibrarea presupune:

- rotaţie simplă la dreapta în nodul fiu al pivotului, respectiv nodul 27; dacă pivotul are ambii fii, atunci rotaţia se face în direcţia dezechilibrului;
- rotație simplă la stânga, în sens opus dezechilibrului, în nodul pivot, nodul *24*.

Rotație simplă la dreapta:

Rotație simplă la stânga:

Arbore AVL reechilibrat:

A) ROTATIE SIMPLA LA DREAPTA

Situaţii dezechilibru arbori AVL (operaţia de inserare):

Grad echilibru nod pivot	Nod fiu analizat	Grad echilibru nod fiu	Rotire
+2	dreapta	+1	Simplă la stânga
+2	dreapta	-1	Dublă la stânga: rotire simplă la dreapta în fiul din dreapta al pivotului; rotire simplă la stânga în pivot.
-2	stânga	-1	Simplă la dreapta
-2	stânga	+1	Dublă la dreapta: rotire simplă la stânga în fiul din stânga al pivotului; rotire simplă la dreapta în pivot.

Din arborele AVL de mai jos, se şterge nodul cu cheia 50.

Arbore de tip AVL dezechilibrat prin aplicarea unei rotaţii simple la dreapta în pivot:

- Printr-o rotaţie la dreapta în nodul cu valoarea 35 considerat pivot, arborele AVL este reechilibrat.
- Deoarece stiva a fost golită, operaţia de ştergere se consideră încheiată.

Arbore AVL reechilibrat:

- Există cazuri în care prin ştergerea unui nod, se ajunge la situaţii de dezechilibru diferite de ipotezele analizate la operaţia de inserare:
 - pivotul are un grad de echilibru ± 2 , iar nodul fiu de pe direcția dezechilibrului are un echilibru 0.
 - soluţia este dată de o rotaţie simplă în pivot la stânga.

Ştergere din arbore de tip AVL:

Bibliografie

- Ion Ivan, Marius Popa, Paul Pocatilu (coordonatori) - Structuri de date, Editura ASE, Bucureşti, 2008.
 - Cap. 14. Arbori echilibraţi