Concours commun Mines-Ponts

PREMIERE EPREUVE. FILIERE M

I Un vecteur propre strictement positif

1) et 2) Soient $x \in B$ puis $\theta \in \mathbb{R}^+$. Puisque $x \ge 0$ et $T \ge 0$, on a bien sûr $Tx \ge 0$ et donc, chaque x_i et chaque $(Tx)_i$ est positif ou nul. De plus, l'un au moins des x_i est non nul et donc strictement positif. Par suite,

$$\begin{split} \theta &\in \Gamma_x \Leftrightarrow \theta x \leq Tx \Leftrightarrow \forall i \in [\![1,n]\!], \ (\theta x)_i \leq (Tx)_i \\ &\Leftrightarrow \forall i \in [\![1,n]\!] \ \mathrm{tel} \ \mathrm{que} \ x_i \neq 0, \ \theta \leq \frac{(Tx)_i}{x_i} \\ &\Leftrightarrow \theta \leq \min \left\{ \frac{(Tx)_i}{x_i} / \ 1 \leq i \leq n \ \mathrm{et} \ x_i \neq 0 \right\}. \end{split}$$

Ainsi, si on pose $\theta(x) = \min\left\{\frac{(Tx)_i}{x_i}/1 \le i \le n \text{ et } x_i \ne 0\right\}$, on a $\Gamma_x = [0, \theta(x)]$ et en particulier, Γ_x est non vide, fermé et borné.

$$\forall x \in B, \ \Gamma_x = [0,\theta(x)] \ \text{où} \ \theta(x) = \min \bigg\{ \frac{(Tx)_\mathfrak{i}}{x_\mathfrak{i}} / \ 1 \le \mathfrak{i} \le n \ \mathrm{et} \ x_\mathfrak{i} \ne 0 \bigg\}.$$

3) Soient $x \in B$ et $\alpha \in]0, +\infty[$. Alors les $(\alpha x)_i$ sont positifs et l'un d'entre eux au moins est strictement positif ce qui montre que $\alpha x \in B$. De plus, $(\alpha x)_i > 0 \Leftrightarrow x_i > 0$ et donc

$$\begin{split} \theta(\alpha x) &= \min \left\{ \frac{(T\alpha x)_{\mathfrak{i}}}{(\alpha x)_{\mathfrak{i}}} / \ 1 \leq \mathfrak{i} \leq n \ \mathrm{et} \ x_{\mathfrak{i}} \neq 0 \right\} = \min \left\{ \frac{(Tx)_{\mathfrak{i}}}{x_{\mathfrak{i}}} / \ 1 \leq \mathfrak{i} \leq n \ \mathrm{et} \ x_{\mathfrak{i}} \neq 0 \right\} = \theta(x). \end{split}$$

$$\forall x \in B, \ \forall \alpha > 0, \ \alpha x \in B \ \mathrm{et} \ \theta(\alpha x) = \theta(x). \end{split}$$

4) Soit $x \in B$. Puisque P est positive, on a $Px \in B$. De plus, il existe $\mathfrak{i}_0 \in [\![1,n]\!]$ tel que $x_{\mathfrak{i}_0} > 0$. Pour $\mathfrak{i} \in [\![1,n]\!]$, on a

$$(Px)_i = \sum_{j=1}^n p_{i,j} x_j \ge p_{i,i_0} x_{i_0} > 0,$$

et donc $Px \in B^+$.

$$P(B) \subset B^+.$$

5) Soit $x \in B$. Après développement, la matrice P s'écrit $I_n + U$ où $U = (u_{i,j})_{1 \le i,j \le n}$ est positive. Pour $i \in [1,n]$,

$$(Px)_i = \sum_{j=1}^n p_{i,j} x_j = x_i + \sum_{j=1}^n u_{i,j} x_j \ge x_i.$$

Mais alors, pour $i \in [1, n]$, en posant $x'_i = (Px)_i$,

$$(TPx)_\mathfrak{i} = \sum_{i=1}^n t_{\mathfrak{i},\mathfrak{j}} x_{\mathfrak{j}}' \geq \sum_{i=1}^n t_{\mathfrak{i},\mathfrak{j}} x_{\mathfrak{i}} = (Tx)_\mathfrak{i} \geq \theta(x) x_{\mathfrak{i}},$$

 $\mathrm{et}\ \mathrm{en}\ \mathrm{particulier},\ \theta(Px) = \min\left\{\frac{(TPx)_{\mathfrak{i}}}{x_{\mathfrak{i}}},\ 1 \leq \mathfrak{i} \leq n\ \mathrm{et}\ x_{\mathfrak{i}} \neq 0\right\} \geq \theta(x).$

Vérifions maintenant que $Tx \neq 0$. Dans le cas contraire, Tx = 0. Comme $x \neq 0$, il existe $j \in [1, n]$ tel que $x_j > 0$. Mais alors en posant $T = (t_{k,l})_{1 \leq k,l \leq n}$, pour chaque $i \in [1, n]$ on a

$$0 = \sum_{k=1}^n t_{i,k} x_k \geqslant t_{i,j} x_j \geqslant 0,$$

$$1$$

http://www.maths-france.fr

et donc chaque $t_{i,j}x_j$ est nul puis chaque $t_{i,j}$ est nul. Ainsi, la j-ème colonne de T est nulle ou encore la j-ème colonne de $I_n + T$ est la j-ème colonne e_j de I_n . Il en est de même de la j-ème colonne de $(I_n + T)^{n-1} = P$ ce qui contredit le fait que la matrice P est tristement positive.

Donc, Tx est positif et non nul ou encore $Tx \in B$. D'après la question 4) et puisque P est un polynôme en T, on en déduit que $T(Px) = P(Tx) \in B^+$ et donc que $\theta(Px) = \min\left\{\frac{(TPx)_i}{x_i}, \ 1 \le i \le n \ \mathrm{et} \ x_i \ne 0\right\} > 0.$

$$\forall x \in B, \ \theta(Px) \ge \theta(x) \ \mathrm{et} \ \theta(Px) > 0.$$

6) Soient $x \in B$ un vecteur propre de T puis $\lambda \in \mathbb{R}$ la valeur propre associée. On a

$$\theta(x) = \min\left\{\frac{(Tx)_\mathfrak{i}}{x_\mathfrak{i}}, \ 1 \leq \mathfrak{i} \leq n \ \mathrm{et} \ x_\mathfrak{i} \neq 0\right\} = \min\left\{\frac{(\lambda x)_\mathfrak{i}}{x_\mathfrak{i}}, \ 1 \leq \mathfrak{i} \leq n \ \mathrm{et} \ x_\mathfrak{i} \neq 0\right\} = \lambda,$$

ce qui montre que $\lambda \ge 0$. Le vecteur x est encore un vecteur propre de P associé à la valeur propre $\alpha = (1+\lambda)^{n-1}$ avec $\alpha > 0$. D'après la question 3)

$$\theta(Px) = \theta(\alpha x) = \theta(x).$$

Si x est un vecteur propre de T élément de B, $\theta(Px) = \theta(x) > 0$.

7) Soient $x \in B$ puis $\lambda = \theta(x) \in [0, +\infty[$. Le vecteur $y = Tx - \lambda x$ est positif ou nul. Si ce vecteur n'est pas nul, il est dans B de sorte que Py > 0 d'après 4). Maintenant P est un polynôme en T et en particulier commute avec T. Comme on a vu en 5) que $Px \ge x$, on en déduit que

$$\begin{split} Py > 0 &\Rightarrow PTx > \lambda Px \Rightarrow TPx > \lambda Px \Rightarrow TPx > \lambda x \\ &\Rightarrow \forall i \in [\![1,n]\!] \text{ tel que } x_i \neq 0, \ \frac{(TPx)_i}{x_i} > \lambda \\ &\Rightarrow \theta(Px) > \lambda = \theta(x). \end{split}$$

Par contraposition, $\theta(Px) = \theta(x) \Rightarrow y = 0 \Rightarrow Tx = \theta(x)x$ ce qui montre que x est vecteur propre de T associé à la valeur propre $\theta(x)$.

 $\forall x \in B, \ \theta(Px) = \theta(x) \Leftrightarrow x \ \mathrm{est} \ \mathrm{vecteur} \ \mathrm{propre} \ \mathrm{de} \ T \ \mathrm{associ\'e} \ \grave{\mathrm{a}} \ \mathrm{la} \ \mathrm{valeur} \ \mathrm{propre} \ \theta(x).$

8) $C = \{(x_i)_{1 \leq i \leq n} / \ \forall i \in \llbracket 1, n \rrbracket, \ x_i \geq 0 \ \text{et} \ \sum_{i=1}^n x_i = 1 \}$. On a $P(C) \subset P(B) \subset B^+$. Pour chaque $i \in \llbracket 1, n \rrbracket$, les applications $x \mapsto (Tx)_i$ et $x \mapsto x_i$ sont des formes linéaires sur \mathbb{R}^n et donc continues sur \mathbb{R}^n . On en déduit que pour chaque $i \in \llbracket 1, n \rrbracket$, l'application $x \mapsto \frac{(Tx)_i}{x_i}$ est continue sur B^+ et donc sur P(C) en tant que quotient d'applications continues sur B^+ dont le dénominateur ne s'annule pas sur B^+ . Finalement, l'application θ est continue sur B^+ et donc sur P(C) en tant que minimum d'un nombre fini d'applications continues sur B^+ .

$$\theta$$
 est continue sur $P(C)$.

9) C est contenu dans Σ et donc C est borné. De plus, chaque demi-espace défini par $x_i \geq 0$ et l'hyperplan affine d'équation $\sum_{i=1}^n x_i = 1 \text{ sont des fermés de } \mathbb{R}^n. \text{ C est donc un fermé de } \mathbb{R}^n \text{ en tant qu'intersection de fermés.}$

C est une partie fermée, bornée de \mathbb{R}^n et donc un compact de \mathbb{R}^n d'après le théorème de BOREL-LEBESGUE. Par suite, P(C) est un compact de \mathbb{R}^n en tant qu'image d'un compact par une application continue (P étant linéaire en dimension finie).

 θ est continue sur le compact P(C) à valeurs dans \mathbb{R} . θ admet donc un maximum sur P(C) ou encore

$$\exists x_0 \in P(C)/\ \theta(x_0) = \sup_{x \in P(C)} \theta(x).$$

 $\textbf{10)} \ \mathrm{Soit} \ x \in C. \ \mathrm{D'après} \ 5), \ \theta(x) \leq \theta(P(x)) \leq \sup_{y \in P(C)} \theta(y). \ \mathrm{Ainsi}, \ \sup_{y \in P(C)} \theta(y) \ \mathrm{est} \ \mathrm{un} \ \mathrm{majorant} \ \mathrm{de} \ \{\theta(x), \ x \in C\} \ \mathrm{et} \ \mathrm{donc}$

$$\sup_{x \in C} \theta(x) \le \sup_{y \in P(C)} \theta(y).$$

http://www.maths-france.fr

11) On a $C \subset B$ et donc $\sup_{x \in C} \theta(x) \le \sup_{x \in B} \theta(x)$.

Soit alors $x \in B$. x n'est pas nul et donc $||x||_1 > 0$. Mais alors d'après 3)

$$\theta(x) = \theta\left(\|x\|_1 \frac{x}{\|x\|_1}\right) = \theta\left(\frac{x}{\|x\|_1}\right) \le \sup_{y \in C} \theta(y).$$

Ainsi, $\sup_{u \in C} \theta(y) \text{ est un majorant de } \{\theta(x), \ x \in B\} \text{ et donc } \sup_{x \in B} \theta(x) \leq \sup_{y \in C} \theta(y). \text{ Finalement de } \{\theta(x), \ x \in B\} \text{ et donc } \{\theta($

$$\sup_{x \in B} \theta(x) = \sup_{y \in C} \theta(y).$$

 $\textbf{12)} \text{ D'après 10), on a } \sup_{x \in C} \theta(x) \leq \sup_{y \in P(C)} \theta(y). \text{ Mais d'autre part, } P(C) \subset P(B) \subset B^+ \subset B \text{ et donc } \sup_{y \in P(C)} \theta(y) \leq \sup_{x \in B} \theta(x) = \max_{x \in C} \theta($ $\sup_{x \in C} \theta(x) \text{ d'après 11}). \text{ Finalement},$

$$\sup_{x \in C} \theta(x) = \sup_{y \in P(C)} \theta(y) = \theta(x_0).$$

13) x_0 est l'image par P d'un élément de $C \subset B$ et donc $x_0 \in B^+$. On sait d'après 5) que $\theta(P(x_0)) \ge \theta(x_0)$ mais d'autre $\mathrm{part},\ \theta(P(x_0)) \leq \ \mathrm{sup}\ \theta(y) = \theta(x_0). \ \mathrm{Finalement},\ x_0 \ \mathrm{est} \ \mathrm{un} \ \mathrm{\acute{e}l\acute{e}ment} \ \mathrm{de} \ B^+ \ \mathrm{tel} \ \mathrm{que} \ \theta(Px_0) = \theta(x_0) = \theta_0 \ \mathrm{et} \ \mathrm{d'après} \ \mathrm{la}$ question 7)

 x_0 est un vecteur strictement positif tel que $Tx_0=\theta_0x_0.$

Enfin, $\theta_0 = \theta(x_0) = \theta(Px_0) > 0$ d'après 5).

II Une méthode d'approximation

14) Soit $i \in [1, n]$. Puisque les $t_{i,j}$ sont des réels positifs,

$$(Tx^+)_{\mathfrak{i}} = \sum_{i=1}^n t_{\mathfrak{i},j} |x_j| \ge \left| \sum_{j=1}^n t_{\mathfrak{i},j} x_j \right| = |(Tx)_{\mathfrak{i}}| = |(\theta x)_{\mathfrak{i}}| = (|\theta| x^+)_{\mathfrak{i}},$$

et donc

$$|\theta|x^+ \leq Tx^+$$
.

 $\textbf{15)} \ \mathrm{Ainsi}, \ |\theta| \in \Gamma_{x^+} \ \mathrm{et} \ \mathrm{donc} \ |\theta| \leq \theta(x^+) \leq \sup_{y \in B} \, \theta(y) = \sup_{y \in C} \, \theta(y) = \theta_0.$

$$\forall \theta \in \mathrm{Sp}(T), \ |\theta| \leq \theta_0.$$

16) De la question 14), on déduit

$$\begin{split} |\theta| \|x^+\|_1 &\leq \|Tx^+\|_1 = \sum_{i=1}^n \left| \sum_{j=1}^n t_{i,j} |x_j| \right| = \sum_{i=1}^n \left(\sum_{j=1}^n t_{i,j} |x_j| \right) \\ &= \sum_{j=1}^n \left(\sum_{i=1}^n t_{i,j} \right) |x_j| = \sum_{j=1}^n |x_j| = \|x^+\|_1. \end{split}$$

Donc, $|\theta| \|x^+\|_1 \le \|x^+\|_1$ et finalement puisque $\|x^+\|_1 > 0$,

$$|\theta| \leq 1$$
.

17) En particulier $\theta_0 \le 1$ car θ_0 est une valeur propre de T associée à $x_0 = x_0^+$. Mais d'autre part, 1 est valeur propre de ${}^{t}T$ associée au vecteur propre $(1,\ldots,1)$ t donc 1 est valeur propre de T. On a donc aussi $\theta_0 \geq |1| = 1$. Finalement

$$\theta_0 = 1$$
.

18) Soient A et B deux matrices stochastiques. Montrons que $A \times B = (c_{i,j})_{1 \le i,j \le n}$ est encore une matrice strochastique. Déjà, la matrice AB est positive. Soit alors $j \in [1,n]$.

$$\sum_{i=1}^n c_{i,j} = \sum_{i=1}^n \left(\sum_{k=1}^n \alpha_{i,k} b_{k,j} \right) = \sum_{k=1}^n \left(\sum_{i=1}^n \alpha_{i,k} \right) b_{k,j} = \sum_{k=1}^n b_{k,j} = 1.$$

Ainsi, un produit de matrices stochastiques est stochastiques. Maintenant, les matrices I_n et T sont stochastiques puis, par récurrence, pour tout $j \in \mathbb{N}$, T^j est stochastique.

Soit $k \in \mathbb{N}^*$. Posons $T^j = (t_{u,\nu}^{(j)})_{1 \leq u,\nu \leq n}$. La matrice R_k est positive et pour $\nu \in [\![1,n]\!]$

$$\sum_{u=1}^n r_{u,v}^{(k)} = \sum_{u=1}^n \left(\frac{1}{k} \sum_{j=0}^{k-1} t_{u,v}^{(j)}\right) = \frac{1}{k} \sum_{j=0}^{k-1} \left(\sum_{u=1}^n t_{u,v}^{(j)}\right) = \frac{1}{k} \sum_{j=0}^{k-1} 1 = \frac{k}{k} = 1.$$

 $\forall j \in \mathbb{N}, \, T^j$ est stochastique et $\forall k \in \mathbb{N}^*, \, \overline{R_k}$ est stochastique.

19) Soit $x = (x_i)_{1 \le i \le n} \in \mathbb{R}^n$.

$$\|Tx\|_1 = \sum_{i=1}^n \left| \sum_{j=1}^n t_{i,j} x_j \right| \leq \sum_{i=1}^n \sum_{j=1}^n t_{i,j} |x_j| = \sum_{j=1}^n \left(\sum_{i=1}^n t_{i,j} \right) |x_j| = \sum_{j=1}^n |x_j| = \|x\|_1.$$

On en déduit que $\|T\|_1 \le 1$. Ensuite, pour $j \in \mathbb{N}^*$, puisqu'une norme subordonnée est sous-multiplicative, $\|T^j\|_1 \le \|T\|_1^j \le 1$ ce qui reste clair pour j = 0. Enfin, pour $k \in \mathbb{N}^*$,

$$\|R_k\|_1 \leq \frac{1}{k} \sum_{j=0}^{k-1} \|T^j\|_1 \leq \frac{1}{k} \sum_{j=0}^{k-1} 1 = 1.$$

$$\forall j \in \mathbb{N}^*, \, \|T^j\|_1 \,\, \mathrm{et} \,\, \forall k \in \mathbb{N}^*, \, \|R_k\|_1 \leq 1.$$

20) Soit $k \in \mathbb{N}^*$.

$$\|TR_k - R_k\|_1 = \left\|\frac{1}{k}\sum_{j=0}^{k-1}T^{j+1} - \frac{1}{k}\sum_{j=0}^{k-1}T^j\right\|_1 = \frac{1}{k}\|T^k - I_n\|_1 \le \frac{1}{k}(\|Tk\|_1 + \|I_n\|_1) \le \frac{2}{k}.$$

$$\forall k \in \mathbb{N}^*, \ \|TR_k - R_k\|_1 \leq \frac{2}{k}.$$

21) Soit $x \in \mathbb{C}^n$. Pour $k \in \mathbb{N}^*$, $\|R_k x\|_1 \le \|R_k\|_1 \|x\|_1 \le \|x\|_1$. Ainsi, la suite $(R_k x)_{k \in \mathbb{N}^*}$ est bornée. Puisque \mathbb{C}^n est de dimension finie, le théorème de BOLZANO-WEIERSTRASS permet d'affirmer qu'on peut extraire de la suite $(R_k x)_{k \in \mathbb{N}^*}$ une sous-suite convergente $(R_{\phi(k)} x)_{k \in \mathbb{N}^*}$ ou encore, ce qui revient au même

 $\forall x\in\mathbb{C}^n,\, \mathrm{la\;suite}\; (R_kx)_{k\in\mathbb{N}^*}\; \mathrm{admet\;au\;moins\;une\;valeur\;d'adh\'erence}.$

22) Avec les notations précédentes, posons $y = \lim_{k \to +\infty} R_{\phi(k)} x$. D'après la question 20), pour tout entier naturel non nul k on a

$$\|TR_{\phi(k)}x - R_{\phi(k)}x\|_1 \le \|TR_{\phi(k)} - R_{\phi(k)}\|_1 \le \frac{2}{\phi(k)}\|x\|_1.$$

On en déduit que $\lim_{k\to +\infty} \mathsf{TR}_{\phi(k)} x - \mathsf{R}_{\phi(k)} x = 0$ ou encore $\mathsf{Ty} - \mathsf{y} = 0$. Ensuite, pour $k\in \mathbb{N}^*$

$$R_k y = \frac{1}{k} \sum_{i=0}^{k-1} T^i y = \frac{1}{k} \sum_{i=0}^{k-1} y = y.$$

$$Ty=y \ {\rm et} \ \forall k\in \mathbb{N}^*, \ R_ky=y.$$

23) Soient y et z deux valeurs d'adhérence de la suite $(R_k x)_{k \in \mathbb{N}^*}$. Soient l et m deux entiers naturels. R_l et R_m sont des polynômes en T et donc R_l et R_m commutent. Comme $R_m y = y$ et $R_l z = z$, on en déduit que

$$R_{l}(R_{\mathfrak{m}}x-z)-R_{\mathfrak{m}}(R_{l}x-y)=R_{l}R_{\mathfrak{m}}x-R_{l}z-R_{\mathfrak{m}}R_{l}x+R_{\mathfrak{m}}y=y-z.$$

24) On en déduit que $\forall (l, m) \in \mathbb{N}^2$,

$$\|y-z\|_1 \le \|R_1(R_mx-z)\|_1 + \|R_m(R_1x-y)\|_1 \le \|R_1\|_1 \|R_mx-z\|_1 + \|R_m\|_1 \|R_1x-y\|_1 \le \|R_mx-z\|_1 + \|R_1x-y\|_1.$$

Maintenant, on peut extraire de la suite $(R_lx)_{m\in\mathbb{N}^*}$ une sous-suite $(R_{\varphi(l)}x)_{l\in\mathbb{N}^*}$, convergente de limite y et de la suite $(R_mx)_{m\in\mathbb{N}^*}$ une sous-suite $(R_{\varphi'(m)}x)_{m\in\mathbb{N}^*}$, convergente de limite z. D'après ce qui précède, pour chaque $k\in\mathbb{N}^*$, on a $\|y-z\|_1 \leq \|R_{\varphi'(k)}x-z\|_1 + \|R_{\varphi(k)}x-y\|_1$. Quand k tend vers $+\infty$, on obtient $\|y-z\|_1 \leq 0$ et donc y=z.

Finalement, d'après la question 21), la suite $(R_k x)_{k \in \mathbb{N}^*}$ admet au moins une valeur d'adhérence et d'après ce qui précède, la suite $(R_k x)_{k \in \mathbb{N}^*}$ admet au plus une valeur d'adhérence. On a donc montré que

 $\overline{\forall x\in\mathbb{C}^n,\, \text{la suite } (R_kx)_{k\in\mathbb{N}^*}} \text{ admet une valeur d'adhérence et une seule.}$

- **25)** Soit $x \in \mathbb{C}^n$. Puisque la suite $(R_k x)_{k \in \mathbb{N}^*}$ est bornée et admet une valeur d'adhérence et une seule, on en déduit que la suite $(R_k x)_{k \in \mathbb{N}^*}$ converge. Maintenant, l'application $x \mapsto \lim_{k \to +\infty} R_k x$ est linéaire et donc il existe $R \in M_{n,n}(\mathbb{C})$ telle que $\forall x \in \mathbb{C}^n$, $Rx = \lim_{k \to +\infty} R_k x$. On a alors $\lim_{k \to +\infty} R_k = R$ et il est clair que R est une matrice réelle positive, stochastique.
- **26)** L'application $f:M\mapsto TM-MT$ est continue car linéaire en dimension finie. On en déduit que pour $x\in\mathbb{C}^n$,

$$TR-RT=f(\lim_{k\to +\infty}R_k)=\lim_{k\to +\infty}f(R_k)=\lim_{k\to +\infty}(TR_k-R_kT)=\lim_{k\to +\infty}0=0.$$

R et T commutent.

27) D'après la question 20), pour chaque $k \in \mathbb{N}^*$, $\|TR_k - R_k\|_1 \le \frac{2}{k}$. Quand k tend vers $+\infty$, on obtient $\lim_{k \to +\infty} (TR_k - R_k) = 0$ et donc TR = R. Mais alors pour $k \in \mathbb{N}^*$,

$$RR_k = \frac{1}{k} \sum_{i=0}^{k-1} RT^j = \frac{1}{k} \sum_{i=0}^{k-1} R = R,$$

et quand k tend vers $+\infty$, on obtient

$$RT = TR = R \text{ et } R^2 = R.$$

R est donc un projecteur qui commute avec T.

28) L'égalité TR = R s'écrit $(T - I_n)R = 0$ et donc $Im(R) \subset Ker(T - I_n)$. Réciproquement, soit $x \in Ker(T - I_n)$. On a donc Tx = x puis $\forall k \in \mathbb{N}^*$, $R_k x = x$ et quand k tend vers $+\infty$, Rx = x. On en déduit que $x \in Im(R)$. On a montré que $Ker(T - I_n) \subset Im(R)$ et finalement que $Im(R) = Ker(T - I_n)$.

On a aussi RT = R ce qui fournit $Im(T - I_n) \subset Ker(R)$ puis $Im(T - I_n) = Ker(R)$ d'après le théorème du rang.

$$R$$
 est la projection sur $\operatorname{Ker}(T-I_n)$ parallèlement à $\operatorname{Im}(T-I_n).$

En particulier, $Ker(T-I_n)$ et $Im(T-I_n)$ sont supplémentaires.

29) Puisque $\text{Ker}(T - I_n)$ est de dimension 1, d'après les questions 13) et 17), on a $\text{Ker}(T - I_n) = \text{Vect}(x_0)$. Soit $x \in B$. Il existe $\lambda \in \mathbb{R}$ tel que $Rx = \lambda x_0$. Puisque $x \in B$, $R \ge 0$ et $x_0 > 0$, on a $\lambda \ge 0$. De plus,

$$\begin{split} \lambda \|x_0\|_1 &= \|\lambda x_0\|_1 = \|Rx\|_1 = \sum_{i=1}^n \left|\sum_{j=1}^n r_{i,j} x_j\right| = \sum_{i=1}^n \left(\sum_{j=1}^n r_{i,j} x_j\right) \\ &= \sum_{j=1}^n \left(\sum_{i=1}^n r_{i,j}\right) x_j = \sum_{j=1}^n x_j = \|x\|_1, \end{split}$$

et donc $\lambda = \frac{\|\mathbf{x}\|_1}{\|\mathbf{x}_0\|_1}$.

$$\forall x \in B, \ Rx = \frac{\|x\|_1}{\|x_0\|_1} x_0.$$