United States Department of Agriculture

Forest Service

Forest Management Service Center

Fort Collins, CO

2008

Revised:

June 2021

East Cascades (EC) Variant Overview

Forest Vegetation Simulator

Conifer stand, Okanogan National Forest (Jennifer Croft, FS-R6)

East Cascades (EC) Variant Overview

Forest Vegetation Simulator

Authors and Contributors:

The FVS staff has maintained model documentation for this variant in the form of a variant overview since its release in 1987. The original author was Ralph Johnson. In 2008, the previous document was replaced with this updated variant overview. Gary Dixon, Christopher Dixon, Robert Havis, Chad Keyser, Stephanie Rebain, Erin Smith-Mateja, and Don Vandendriesche were involved with this update. Erin Smith-Mateja cross-checked information contained in this variant overview with the FVS source code. The species list for this variant was expanded and this document was extensively revised by Gary Dixon in 2012.

FVS Staff. 2008 (revised June 28, 2021). East Cascades (EC) Variant Overview – Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 62p.

Table of Contents

1.0 Introduction	
2.0 Geographic Range	2
3.0 Control Variables	3
3.1 Location Codes	3
3.2 Species Codes	3
3.3 Habitat Type, Plant Association, and Ecological Unit Codes	4
3.4 Site Index	5
3.5 Maximum Density	6
4.0 Growth Relationships	8
4.1 Height-Diameter Relationships	8
4.2 Bark Ratio Relationships	11
4.3 Crown Ratio Relationships	13
4.3.1 Crown Ratio Dubbing	13
4.3.2 Crown Ratio Change	16
4.3.3 Crown Ratio for Newly Established Trees	16
4.4 Crown Width Relationships	16
4.5 Crown Competition Factor	20
4.6 Small Tree Growth Relationships	22
4.6.1 Small Tree Height Growth	22
4.6.2 Small Tree Diameter Growth	26
4.7 Large Tree Growth Relationships	27
4.7.1 Large Tree Diameter Growth	27
4.7.2 Large Tree Height Growth	31
5.0 Mortality Model	39
6.0 Regeneration	42
7.0 Volume	45
8.0 Fire and Fuels Extension (FFE-FVS)	47
9.0 Insect and Disease Extensions	48
10.0 Literature Cited	49
11.0 Appendices	53
11.1 Appendix A. Distribution of Data Samples	53
11.2 Appendix B. Plant Association Codes	56

Quick Guide to Default Settings

Parameter or Attribute	Default Setting			
Number of Projection Cycles	1 (10 if using FVS GUI)		
Projection Cycle Length	10 years			
Location Code (National Forest)	606 – Mount Hood			
Plant Association Code	114 (CPS 241 PIPO/PU	JTR/AGSP)		
Slope	5 percent			
Aspect	0 (no meaningful aspe	ect)		
Elevation	45 (4500 feet)			
Latitude / Longitude	Latitude	Longitude		
All location codes	47	121		
Site Species	Plant Association Cod	e specific		
Site Index	Plant Association Cod	e specific		
Maximum Stand Density Index	Plant Association Cod	e specific		
Maximum Basal Area	Based on maximum s	tand density index		
Volume Equations	National Volume Estir	mator Library		
Merchantable Cubic Foot Volume Specifica	ntions:			
Minimum DBH / Top Diameter	LP	All Other Species		
All location codes	6.0 / 4.5 inches	7.0 / 4.5 inches		
Stump Height	1.0 foot	1.0 foot		
Merchantable Board Foot Volume Specifica	ations:			
Minimum DBH / Top Diameter	LP	All Other Species		
All location codes	6.0 / 4.5 inches	7.0 / 4.5 inches		
Stump Height	1.0 foot	1.0 foot		
Sampling Design:				
Large Trees (variable radius plot)	40 BAF			
Small Trees (fixed radius plot)	1/300 th Acre	1/300 th Acre		
Breakpoint DBH	5.0 inches	5.0 inches		

1.0 Introduction

The Forest Vegetation Simulator (FVS) is an individual tree, distance independent growth and yield model with linkable modules called extensions, which simulate various insect and pathogen impacts, fire effects, fuel loading, snag dynamics, and development of understory tree vegetation. FVS can simulate a wide variety of forest types, stand structures, and pure or mixed species stands.

New "variants" of the FVS model are created by imbedding new tree growth, mortality, and volume equations for a particular geographic area into the FVS framework. Geographic variants of FVS have been developed for most of the forested lands in the United States.

The East Cascades (EC) variant was developed in 1988. It covers the lands east of the Cascade crest in Washington over through the Okanogan National Forest and extends south through the portion of the Mt. Hood National Forest that lies east of the Cascade crest in northern Oregon. Data used in building the EC variant came from forest inventories, silviculture stand examinations, and tree nutrition studies. Forest inventories came from the Forest Service as well as the Warm Springs and Yakima Indian Reservations and the State of Washington Department of Natural Resources. Western white pine uses equations developed for the Southern Oregon/Northeastern California (SO) variant, and western redcedar uses equations from the North Idaho (NI) variant.

Since the variant's development in 1988, many of the functions have been adjusted and improved as more data has become available, and as model technology has advanced. In 2012 this variant was expanded from 11 species to 32 species. Species added include western hemlock, mountain hemlock, Pacific yew, whitebark pine, noble fir, white fir, subalpine larch, Alaska cedar, western juniper, bigleaf maple, vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, a cherry and plum species group, and a willow species group. The "other species" grouping was split into other softwoods and other hardwoods. White fir uses grand fir equations from the EC variant; mountain hemlock uses equations for the original other species grouping in the 11 species version of this variant; all other individual species groupings use equations from the Westside Cascades (WC) variant; other softwoods uses the equations for the original other species grouping in the 11 species version of this variant; and other hardwoods uses the WC quaking aspen equations.

To fully understand how to use this variant, users should also consult the following publication:

Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002)

This publication may be downloaded from the Forest Management Service Center (FMSC), Forest Service website. Other FVS publications may be needed if one is using an extension that simulates the effects of fire, insects, or diseases.

2.0 Geographic Range

The EC variant was fit to data representing forest types on the eastern slope of the Cascade range in Washington and the northern portion of the eastern slope of the Cascade range in Oregon. Data used in initial model development came from forest inventories, silviculture stand examinations, and tree nutrition studies. Forest inventories came from US. Forest Service National Forests, Warm Springs and Yakima Indian Reservations, and the state of Washington Dept. of Natural Resources. Distribution of data samples for species fit from this data are shown in Appendix A.

The EC variant covers forest types on the eastern slope of the Cascade range in Washington and the northern portion of the eastern slope of the Cascade range in Oregon. The suggested geographic range of use for the EC variant is shown in figure 2.0.1.

Figure 2.0.1 Suggested geographic range of use for the EC variant.

3.0 Control Variables

FVS users need to specify certain variables used by the EC variant to control a simulation. These are entered in parameter fields on various FVS keywords available in the FVS interface or they are read from an FVS input database using the Database Extension.

3.1 Location Codes

The location code is a 3-digit code where, in general, the first digit of the code represents the Forest Service Region Number, and the last two digits represent the Forest Number within that region. In some cases, a location code beginning with a "7" or "8" is used to indicate an administrative boundary that doesn't use a Forest Service Region number (for example, other federal agencies, state agencies, or other lands).

If the location code is missing or incorrect in the EC variant, a default forest code of 606 (Mount Hood National Forest) will be used. A complete list of location codes recognized in the EC variant is shown in table 3.1.1.

Table 3.1.1 Location codes used in the EC variant.

Location Code	Location
603	Gifford Pinchot National Forest (mapped to 617)
606	Mount Hood National Forest
608	Okanogan National Forest
613	Mount Baker – Snoqualmie National Forest (mapped to 617)
617	Wenatchee National Forest
699	Okanogan National Forest (Tonasket RD)
8106	Colville Reservation (mapped to 608)
8117	Umatilla Reservation (mapped to 606)
8130	Yakama Nation Reservation (mapped to 613)
8131	Spokane Reservation (mapped to 617)

3.2 Species Codes

The EC variant recognizes 28 individual species, a cherry and plum species group, a willow species group, an "other softwoods" species group, and an "other hardwoods" species group. You may use FVS species codes, Forest Inventory and Analysis (FIA) species codes, or USDA Natural Resources Conservation Service PLANTS symbols to represent these species in FVS input data. Any valid western species codes identifying species not recognized by the variant will be mapped to the most similar species in the variant. The species mapping crosswalk is available on the variant documentation webpage of the FVS website. Any non-valid species code will default to the "other hardwoods" category.

Either the FVS sequence number or species code must be used to specify a species in FVS keywords and Event Monitor functions. FIA codes or PLANTS symbols are only recognized during data input, and

may not be used in FVS keywords. Table 3.2.1 shows the complete list of species codes recognized by the EC variant.

Table 3.2.1 Species codes used in the EC variant.

Species	Species		FIA	PLANTS	
Number	Code	Common Name	Code	Symbol	Scientific Name
1	WP	western white pine	119	PIMO3	Pinus monticola
2	WL	western larch	073	LAOC	Larix occidentalis
3	DF	Douglas-fir	202	PSME	Pseudotsuga menziesii
4	SF	Pacific silver fir	011	ABAM	Abies amabilis
5	RC	western redcedar	242	THPL	Thuja plicata
6	GF	grand fir	017	ABGR	Abies grandis
7	LP	lodgepole pine	108	PICO	Pinus contorta
8	ES	Engelmann spruce	093	PIEN	Picea engelmannii
9	AF	subalpine fir	019	ABLA	Abies lasiocarpa
10	PP	ponderosa pine	122	PIPO	Pinus ponderosa
11	WH	western hemlock	263	TSHE	Tsuga heterophylla
12	МН	mountain hemlock	264	TSME	Tsuga mertensiana
13	PY	Pacific yew	231	TABR2	Taxus brevifolia
14	WB	whitebark pine	101	PIAL	Pinus albicaulis
15	NF	noble fir	022	ABPR	Abies procera
16	WF	white fir	015	ABCO	Abies concolor
17	LL	subalpine larch	072	LALY	Larix lyallii
18	YC	Alaska cedar	042	CANO9	Callitropsis nootkatensis
19	WJ	western juniper	064	JUOC	Juniperus occidentalis
20	BM	bigleaf maple	312	ACMA3	Acer macrophyllum
21	VN	vine maple	324	ACCI	Acer circinatum
22	RA	red alder	351	ALRU2	Alnus rubra
23	PB	paper birch	375	BEPA	Betula papyrifera
24	GC	giant chinquapin	431	CHCHC4	Chrysolepis chrysophylla
25	DG	Pacific dogwood	492	CONU4	Cornus nuttallii
26	AS	quaking aspen	746	POTR5	Populus tremuloides
					Populus balsamifera ssp.
27	CW	black cottonwood	747	POBAT	trichocarpa
28	WO	Oregon white oak	815	QUGA4	Quercus garryana
29	PL	cherry and plum species	760	PRUNU	Prunus spp.
30	WI	willow species	920	SALIX	Salix spp.
31	OS	other softwoods	298	2TE	
32	ОН	other hardwoods	998	2TD	

3.3 Habitat Type, Plant Association, and Ecological Unit Codes

Plant association codes recognized in the EC variant are shown in Appendix B. If an incorrect plant association code is entered or no code is entered FVS will use the default plant association code, which is 114 (PIPO/PUTR/AGSP). Plant association codes are used to set default site information such as site species, site indices, and maximum stand density indices as well as predicting snag dynamics in FFE-FVS. The site species, site index and maximum stand density indices can be reset via FVS keywords. Users may enter the plant association code or the plant association FVS sequence number on the STDINFO keyword, when entering stand information from a database, or when using the SETSITE keyword without the PARMS option. If using the PARMS option with the SETSITE keyword, users must use the FVS sequence number for the plant association.

3.4 Site Index

Site index is used in some of the growth equations for the EC variant. Users should always use the same site curves that FVS uses as shown in table 3.4.1. If site index is available, a single site index for the whole stand can be entered, a site index for each individual species in the stand can be entered, or a combination of these can be entered.

Table 3.4.1 Site index reference curves for species in the EC variant.

Species		BHA or	Base
Code	Reference	TTA ¹	Age
WP	Brickell, J.E., 1970, USDA-FS Res. Pap. INT-75	TTA	50
WL, LL	Cochran, P.H.,1985, USDA-FS Res. Note PNW-424	вна	50
DF	Cochran, P.H.,1979, USDA-FS Res. Pap. PNW-251	ВНА	50
SF, GF,			
WF	Cochran, P.H.,1979, USDA-FS Res. Pap. PNW-252	вна	50
	Hegyi, R.P.F., et. al., 1979 (Revised 1981), Province of B.C.,		
RC	Forest Inv. Rep. ¹	TTA	100
LP	Alexander, R.R., et. al., 1967, USDA-FS Res. Pap. RM-29	TTA	100
ES	Alexander, R.R.,1967, USDA-FS Res. Pap. RM-32	вна	100
AF	Demars, D.J. et. al., 1970, USDA-FS Res. Note PNW-119	ВНА	100
PP	Barrett, J.W., 1978, USDA-FS Res. Pap. PNW-232	вна	100
WH	Wiley, K.N., 1978, Weyerhaeuser Forestry Pap. No. 17	вна	50
	Means, et. al., 1986, unpublished FIR Report. Vol. 10, No. 1,		
MH, OS	OSU ²	вна	100
NF	Herman, F.R. et al., 1978, USDA-FS Res. Pap. PNW-243	ВНА	100
RA	Harrington, C.A. et al., 1986, USDA-FS Res. Pap. PNW-358	TTA	20
WO ⁴	King, J.E., 1966, Weyhaeuser Forestry Pap. No. 8	ВНА	50
Other ³	Curtis, R.O. et al., 1974, Forest Science 20:307-316	ВНА	100

¹Equation is based on total tree age (TTA) or breast height age (BHA)

²The source equation is in metric units; site index values for mountain hemlock and other softwoods are assumed to be in meters.

³Other includes all the following species: Pacific yew, whitebark pine, Alaska cedar, western juniper, bigleaf maple, vine maple, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, cherry and plum species, willow species, and other hardwoods.

⁴Site index values entered for white oak using the King reference are converted to a different basis for use in some portions of this variant.

If site index is missing or incorrect, the default site species and site index are determined by plant association codes found in Appendix B. If the plant association code is missing or incorrect, the site species is set to ponderosa pine with a default site index set to 75.

Site indices for species not assigned a site index are determined based on the site index of the site species (height at base age) with an adjustment for the reference age differences between the site species and the target species.

3.5 Maximum Density

Maximum stand density index (SDI) and maximum basal area (BA) are important variables in determining density related mortality and crown ratio change. Maximum basal area is a stand level metric that can be set using the BAMAX or SETSITE keywords. If not set by the user, a default value is calculated from maximum stand SDI each projection cycle. Maximum stand density index can be set for each species using the SDIMAX or SETSITE keywords. If not set by the user, a default value is assigned as discussed below.

The default maximum SDI is set based on a user-specified, or default, plant association code or a user specified basal area maximum. If a user specified basal area maximum is present, the maximum SDI for all species is computed using equation {3.5.1}; otherwise, the SDI maximum for the site species is assigned from the SDI maximum associated with the plant association code shown in Appendix B. SDI maximums were set based on growth basal area (GBA) analysis developed by Hall (1983) or an analysis of Current Vegetation Survey (CVS) plots in USFS Region 6 by Crookston (2008). Once maximum SDI is determined for the site species, maximum SDI for all other species not assigned a value is estimated using a relative adjustment as seen in equation {3.5.2}. Some SDI maximums associated with plant associations are unreasonably large, so SDI maximums are capped at 900. Maximum stand density index at the stand level is a weighted average, by basal area, of the individual species SDI maximums.

 ${3.5.1}$ SDIMAX_i = BAMAX / ${0.5454154 * SDIU}$

 $\{3.5.2\}$ SDIMAX $_i$ = SDIMAX(SSEC) * (SDIMAX(S) / SDIMAX(SS))

where:

*SDIMAX*_i is the species-specific SDI maximum

BAMAX is the user-specified stand basal area maximum

SDIMAX(SSEC) is maximum SDI for the site species for the given plant association (SSEC) from Appendix

R

SDIMAX(SS) is maximum SDI for the site species (SS) shown in table 3.5.1 SDIMAX(S) is maximum SDI for the target species (S) shown in table 3.5.1

Table 3.5.1 Stand density index maximums by species in the EC variant.

Species		
Code	SDI Maximum	
WP	645	
WL	648	
DF	766	
SF	766	
RC	766	
GF	766	
LP	674	
ES	766	
AF	700	
PP	645	
WH	900	
MH	766	
PY	900	
WB	900	
NF	900	
WF	766	
LL	900	
YC	900	
WJ	900	
BM	900	
VN	900	
RA	900	
PB	900	
GC	900	
DG	900	
AS	900	
CW	900	
WO	900	
PL	900	
WI	900	
OS	766	
ОН	900	

4.0 Growth Relationships

This chapter describes the functional relationships used to fill in missing tree data and calculate incremental growth. In FVS, trees are grown in either the small tree sub-model or the large tree sub-model depending on the diameter.

4.1 Height-Diameter Relationships

Height-diameter relationships in FVS are primarily used to estimate tree heights missing in the input data, and occasionally to estimate diameter growth on trees smaller than a given threshold diameter. In the EC variant, FVS will dub in heights by one of two methods. By default, the EC variant will use the Curtis-Arney functional form as shown in equation {4.1.1} (Curtis 1967, Arney 1985).

If the input data contains at least three measured heights for a species, then FVS can switch to a logistic height-diameter equation {4.1.2} (Wykoff, et.al 1982) that may be calibrated to the input data. FVS will not automatically use equation {4.1.2} even if you have enough height values in the input data. To override this default, the user must use the NOHTDREG keyword and change field 2 to a 1. Coefficients for equation {4.1.1} are given in table 4.1.1 sorted by species and location code. Coefficients for equation {4.1.2} are given in table 4.1.2.

{4.1.1} Curtis-Arney functional form

```
\begin{array}{l} DBH \geq 3.0": HT = 4.5 + P_2 * \exp[-P_3 * DBH \land P_4] \\ DBH < 3.0": HT = \left[ (4.5 + P_2 * \exp[-P_3 * 3.0 \land P_4] - 4.51 \right) * (DBH - 0.3) / 2.7 \right] + 4.51 \end{array}
```

 $\{4.1.2\} HT = 4.5 + \exp(B_1 + B_2 / (DBH + 1.0))$

where:

HT is tree height

DBH is tree diameter at breast height

 B_1 - B_2 are species-specific coefficients shown in table 4.1.2 P_1 - P_4 are species-specific coefficients shown in table 4.1.1

Table 4.1.1 Coefficients for Curtis-Arney equation {4.1.1} in the EC variant.

			Giffo	rd Pinchot (6	503)	
Species	Mo	ount Hood (60	6)	Mt. Bake	r / Snoqualm	nie (613)
Code	P ₂	P ₃	P ₄	P ₂	P_3	P ₄
WP	433.7807	6.3318	-0.4988	1143.6254	6.1913	-0.3096
WL	220.0	5.0	-0.6054	255.4638	5.5577	-0.6054
DF	234.2080	6.3013	-0.6413	519.1872	5.3181	-0.3943
SF	441.9959	6.5382	-0.4787	171.2219	9.9497	-0.9727
RC	487.5415	5.4444	-0.3801	616.3503	5.7620	-0.3633
GF	376.0978	5.1639	-0.4319	727.8110	5.4648	-0.3435
LP	121.1392	12.6623	-1.2981	102.6146	10.1435	-1.2877
ES	2118.6711	6.6094	-0.2547	211.7962	6.7015	-0.6739
AF	66.6950	13.2615	-1.3774	113.5390	9.0045	-0.9907

PP	324.4467	8.0484	-0.5892	324.4467	8.0484	-0.5892
WH	341.9034	6.4658	-0.5379	504.1935	6.3635	-0.3652
MH	224.6205	7.2549	-0.5379	631.7598	5.8492	-0.4038
PY	127.1698	4.8977	-0.4668	127.1698	4.8977	-0.3384
WB	139.0727	5.2062	-0.5409	73.9147	3.9630	-0.4008
NF	328.1443	5.9501		178.7700	9.1133	-0.8277
WF			-0.5088		5.4648	
	376.0978	5.1639	-0.4319	727.8110		-0.3435
LL YC	119.7985	4.7067	-0.6751	119.7985	4.7067	-0.6751
	126.1074	6.2499	-0.8091	126.1074	6.2499	-0.8091
WJ	60.6009	4.1543	-0.6277	60.6009	4.1543	-0.6277
BM	220.9772	4.2639	-0.4386	220.9772	4.2639	-0.4386
VN	179.0706	3.6238	-0.5730	179.0706	3.6238	-0.5730
RA	88.1838	2.8404	-0.7343	94.5048	4.0657	-0.9592
PB	88.4509	2.2935	-0.7602	88.4509	2.2935	-0.7602
GC	10707.3906	8.4670	-0.1863	10707.3906	8.4670	-0.1863
DG	444.5618	3.9205	-0.2397	444.5618	3.9205	-0.2397
AS	1709.7229	5.8887	-0.2286	1709.7229	5.8887	-0.2286
CW	178.6441	4.5852	-0.6746	178.6441	4.5852	-0.6746
WO	55.0	5.5	-0.95	55.0	5.5	-0.95
PL	73.3348	2.6548	-1.2460	73.3348	2.6548	-1.2460
WI	149.5861	2.4231	-0.1800	149.5861	2.4231	-0.1800
OS	34.8330	2.6030	-0.5352	34.8330	2.6030	-0.5352
ОН	34.8330	2.6030	-0.5352	34.8330	2.6030	-0.5352
Species		nagan (608, 6			enatchee (61	_
Code	P ₂	P ₃	P ₄	P ₂	P ₃	P ₄
WP	12437.6601	8.1207	-0.1757	254.5262	4.7234	-0.5029
WL	248.1393	4.8505	-0.5833	170.8511	5.8759	-0.7865
DF	305.4997	4.7889	-0.4347	318.2462	5.1952	-0.4679
SF	303.7380	5.8516	-0.5474	356.1556	6.0615	-0.4783
RC	1246.8831	6.9633	-0.3113	307.7977	5.9217	-0.5040
GF	727.8110	5.4648	-0.3435	436.2309	5.5680	-0.4296
LP	130.5332	3.6797	-0.6573	100.6367	7.0781	-1.1163
ES	342.9319	5.4757	-0.4805	233.8124	6.9380	-0.6620
AF	188.7833	5.8908	-0.6732	166.0115	6.1799	-0.6792
PP	1047.4768	6.0765	-0.2927	1167.0325	6.2295	-0.2793
WH	369.9034	6.7038	-0.5424	662.9170	5.7985	-0.3668
MH	493.6376	6.0162	-0.3765	206.3060	6.7321	-0.6265
PY	127.1698	4.8977	-0.4668	19.6943	25.0881	-2.3675
WB	89.1852	4.7008	-0.7043	98.3035	4.7213	-0.6613
NF	178.7700	9.1133	-0.9131	178.7700	9.1133	-0.9131
WF	436.2309	5.5680	-0.4296	436.2309	5.5680	-0.4296
LL	119.7985	4.7067	-0.6751	1442.5197	6.1880	-0.2037

YC	694.2233	5.9131	-0.3484	126.1074	6.2499	-0.8091
WJ	60.6009	4.1543	-0.6277	60.6009	4.1543	-0.6277
BM	220.9772	4.2639	-0.4386	220.9772	4.2639	-0.4386
VN	179.0706	3.6238	-0.5730	179.0706	3.6238	-0.5730
RA	94.5048	4.0657	-0.9592	94.5048	4.0657	-0.9592
PB	83.2440	3.5984	-0.9561	88.4509	2.2935	-0.7602
GC	10707.3906	8.4670	-0.1863	10707.3906	8.4670	-0.1863
DG	444.5618	3.9205	-0.2397	444.5618	3.9205	-0.2397
AS	184.1658	3.4801	-0.5127	1507.7287	5.3428	-0.1982
CW	178.6441	4.5852	-0.6746	178.6441	4.5852	-0.6746
WO	55.0	5.5	-0.95	55.0	5.5	-0.95
PL	73.3348	2.6548	-1.2460	73.3348	2.6548	-1.2460
WI	55.0	5.5	-0.95	55.0	5.5	-0.95
OS	34.8330	2.6030	-0.5352	34.8330	2.6030	-0.5352
ОН	34.8330	2.6030	-0.5352	34.8330	2.6030	-0.5352

Table 4.1.2 Coefficients for the logistic Wykoff equation $\{4.1.2\}$ in the EC variant.

Species		
Code	Default B ₁	B ₂
WP	5.035	-10.674
WL	4.961	-8.247
DF	4.920	-9.003
SF	5.032	-10.482
RC	4.896	-8.391
GF	5.032	-10.482
LP	4.854	-8.296
ES	4.948	-9.041
AF	4.834	-9.042
PP	4.884	-9.741
WH	5.298	-13.240
MH	3.9715	-6.7145
PY	5.188	-13.801
WB	5.188	-13.801
NF	5.327	-15.450
WF	5.032	-10.482
LL	5.188	-13.801
YC	5.143	-13.497
WJ	5.152	-13.576
BM	4.700	-6.326
VN	4.700	-6.326
RA	4.886	-8.792
PB	5.152	-13.576

Species		
Code	Default B ₁	B ₂
GC	5.152	-13.576
DG	5.152	-13.576
AS	5.152	-13.576
CW	5.152	-13.576
WO	5.152	-13.576
PL	5.152	-13.576
WI	5.152	-13.576
OS	3.9715	-6.7145
ОН	5.152	-13.576

When a user turns on calibration of the height-diameter equation using the NOHTDREG keyword, and calibration does occur, trees of some species which have a diameter less than a threshold diameter may use equations other than the calibrated {4.1.2} for dubbing heights.

Ponderosa pine trees less than 3.0" in diameter use equation {4.1.3}.

$$\{4.1.3\}$$
 HT = $8.31485 + 3.03659 * DBH - 0.592 * JCR))$

Western hemlock trees less than 5.0" in diameter use equation {4.1.4}.

$$\{4.1.4\}$$
 HT = exp $(1.3608 + (0.6151 * DBH) - (0.0442 * DBH^2) + 0.0829)$

Pacific yew, whitebark pine, subalpine larch, and Alaska yellow cedar trees less than 5.0" in diameter use equation {4.1.5}.

$$\{4.1.5\}$$
 HT = exp $(1.5097 + (0.3040 * DBH))$

Noble fir trees less than 5.0" in diameter use equation {4.1.6}.

$$\{4.1.6\}$$
 HT = exp $(1.7100 + (0.2943 * DBH))$

Western juniper, bigleaf maple, vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and other hardwoods use equation {4.1.7} for trees less than 5.0" in diameter.

$$\{4.1.7\}$$
 HT = $0.0994 + (4.9767 * DBH)$

where:

HT is tree height DBH is tree diameter

JCR is tree crown ratio code (1 = 0.10 percent, 2 = 11.20 percent, ..., 7 = 61.100 percent)

4.2 Bark Ratio Relationships

Bark ratio estimates are used to convert between diameter outside bark and diameter inside bark in various parts of the model. The equation for western white pine, western larch, Douglas-fir, Pacific silver fir, western redcedar, grand fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, western hemlock, mountain hemlock, Pacific yew, whitebark pine, noble fir, white fir, subalpine larch,

Alaska cedar, western juniper, and other softwoods is shown in equation $\{4.2.1\}$; bigleaf maple, vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, cherry and plum species, willow species, and other hardwoods use equation $\{4.2.2\}$; white oak uses equation $\{4.2.3\}$. Coefficients (b_1, b_2) for each species are shown in table 4.2.1.

 $\{4.2.1\}$ BRATIO = b_1

 $\{4.2.2\}$ BRATIO = $(b_1 + b_2 * DBH) / DBH$

 $\{4.2.3\}$ BRATIO = $(b_1 * DBH^b_2) / DBH$

where:

BRATIO is species-specific bark ratio (bounded to $0.80 \le BRATIO \le 0.99$)

DBH is tree diameter at breast height

 b_1 , b_2 are species-specific coefficients shown in table 4.2.1

Table 4.2.1 Coefficients for equations {4.2.1} - {4.2.3} in the EC variant.

Species		
Code	b ₁	b ₂
WP	0.964	-
WL	0.851	-
DF	0.844	-
SF	0.903	-
RC	0.950	-
GF	0.903	-
LP	0.963	-
ES	0.956	-
AF	0.903	-
PP	0.889	-
WH	0.93371	-
MH	0.934	-
PY	0.93329	-
WB	0.93329	-
NF	0.904973	-
WF	0.903	-
LL	0.9	-
YC	0.837291	-
WJ	0.94967	-
BM	0.0836	0.94782
VN	0.0836	0.94782
RA	0.075256	0.94967
PB	0.0836	0.94782
GC	0.15565	0.90182
DG	0.075256	0.94967
AS	0.075256	0.94967

Species Code	b ₁	b ₂
CW	0.075256	0.94967
WO	0.8558	1.0213
PL	0.075256	0.94967
WI	0.075256	0.94967
OS	0.934	-
ОН	0.075256	0.94967

4.3 Crown Ratio Relationships

Crown ratio equations are used for three purposes in FVS: (1) to estimate tree crown ratios missing from the input data for both live and dead trees; (2) to estimate change in crown ratio from cycle to cycle for live trees; and (3) to estimate initial crown ratios for regenerating trees established during a simulation.

4.3.1 Crown Ratio Dubbing

In the EC variant, crown ratios missing in the input data are predicted using different equations depending on tree species and size. For western white pine, western larch, Douglas-fir, Pacific silver fir, western redcedar, grand fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, mountain hemlock, white fir, and "other softwoods" live trees less than 1.0" in diameter and dead trees of all sizes use equations {4.3.1.1} and {4.3.1.2} to compute crown ratio. Equation coefficients are found in table 4.3.1.1.

$$\{4.3.1.1\} X = R_1 + R_2 * DBH + R_3 * HT + R_4 * BA + R_5 * PCCF + R_6 * HT_{Avg}/HT + R_7 * HT_{Avg} + R_8 * BA * PCCF + R_9 * MAI$$

 $\{4.3.1.2\}$ CR = 1 / $\{1 + \exp(X + N(0,SD))\}$ where absolute value of $\{X + N(0,SD)\}$ < 86

where:

CR is crown ratio expressed as a proportion (bounded to 0.05 < CR < 0.95)

DBH is tree diameter at breast height

HT is tree height

BA is total stand basal area

PCCF is crown competition factor on the inventory point where the tree is established

HTAvg is average height of the 40 largest diameter trees in the stand

MAI is stand mean annual increment

N(0,SD) is a random increment from a normal distribution with a mean of 0 and a standard

deviation of SD

R1 – R9 are species-specific coefficients shown in table 4.3.1.1

Western hemlock, Pacific yew, whitebark pine, noble fir, subalpine larch, Alaska cedar, western juniper, bigleaf maple, vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and "other hardwoods" live trees less than 1.0" in diameter and dead trees of all sizes use equations {4.3.1.3} and {4.3.1.4}, and the coefficients shown in table 4.3.1.1.

 $\{4.3.1.3\} X = R_1 + R_3 * HT + R_4 * BA + N(0,SD)$

 $\{4.3.1.4\}$ CR = ((X - 1.0) * 10 + 1.0) / 100

where:

X is crown ratio expressed as a code (0-9)

CR is crown ratio expressed as a proportion (bounded to 0.05 < *CR* < 0.95)

HT is tree height

BA is total stand basal area

N(0,SD) is a random increment from a normal distribution with a mean of 0 and a standard

deviation of SD

R₁, R₃, R₄ are species-specific coefficients shown in table 4.3.1.1

Table 4.3.1.1 Coefficients for the crown ratio equations {4.3.1.1} and {4.3.1.3} in the EC variant.

		Alpha Code									
Coefficient	WP, WL, LP, PP	DF, SF, GF, RC, ES, AF, WF	WH, YC	PY, WB, LL	NF	WJ	BM, VN, RA, PB, GC, DG, AS, CW, WO, PL, WI, OH	MH, OS			
R ₁	-1.669490	-0.426688	7.558538	6.489813	8.042774	9.0	5.0	-2.19723			
R ₂	-0.209765	-0.093105	0	0	0	0	0	0			
R ₃	0	0.022409	-0.015637	-0.029815	0.007198	0	0	0			
R ₄	0.003359	0.002633	-0.009064	-0.009276	-0.016163	0	0	0			
R ₅	0.011032	0	0	0	0	0	0	0			
R ₆	0	-0.045532	0	0	0	0	0	0			
R ₇	0.017727	0	0	0	0	0	0	0			
R ₈	-0.000053	0.000022	0	0	0	0	0	0			
R ₉	0.014098	-0.013115	0	0	0	0	0	0			
SD	0.5*	0.6957**	1.9658	2.0426	1.3167	0.5	0.5	0.2			

^{*0.6124} for lodgepole pine; 0.4942 for ponderosa pine

A Weibull-based crown model developed by Dixon (1985) as described in Dixon (2002) is used to predict crown ratio for all trees 1.0" in diameter or larger. To estimate crown ratio using this methodology, the average stand crown ratio is estimated from stand density index using equation {4.3.1.5}. Weibull parameters are estimated from the average stand crown ratio using equations in equation set {4.3.1.6}. Individual tree crown ratio is then set from the Weibull distribution, equation {4.3.1.7} based on a tree's relative position in the diameter distribution and multiplied by a scale factor, shown in equation {4.3.1.8}, which accounts for stand density. Crowns estimated from the Weibull distribution are bounded to be between the 5 and 95 percentile points of the specified Weibull distribution. Equation coefficients for each species are shown in table 4.3.1.2.

 $\{4.3.1.5\}$ ACR = $d_0 + d_1 * RELSDI * 100.0$

^{**0.9310} for grand fir and white fir

where: $RELSDI = SDI_{stand} / SDI_{max}$

{4.3.1.6} Weibull parameters A, B, and C are estimated from average crown ratio

 $A = a_0$

 $B = b_0 + b_1 * ACR (B \ge 3)$

 $C = c_0 + c_1 * ACR \quad (C > 2)$

 $\{4.3.1.7\}\ Y = 1-\exp(-((X-A)/B)^C)$

 $\{4.3.1.8\}$ SCALE = 1 - (0.00167 * (CCF - 100))

where:

ACR is predicted average stand crown ratio for the species

SDI_{stand} is stand density index of the stand SDI_{max} is maximum stand density index

A, B, C are parameters of the Weibull crown ratio distribution
X is a tree's crown ratio expressed as a percent / 10

Y is a trees rank in the diameter distribution (1 = smallest; ITRN = largest) divided by the

total number of trees (ITRN) multiplied by SCALE

SCALE is a density dependent scaling factor (bounded to $0.3 \le SCALE \le 1.0$)

CCF is stand crown competition factor

 a_0 , b_{0-1} , c_{0-1} , and d_{0-1} are species-specific coefficients shown in table 4.3.1.2

Table 4.3.1.2 Coefficients for the Weibull parameter equations {4.3.1.5} and {4.3.1.6} in the EC variant.

Species			Мо	del Coefficie	ents		
Code	a ₀	b ₀	b ₁	C ₀	C ₁	d ₀	d ₁
WP	0	0.08106	1.10253	1.04477	0.42828	5.23986	-0.02569
WL	0	0.00603	1.12276	2.73400	0	4.98675	-0.02466
DF	0	-0.28295	1.18232	3.03400	0	4.99727	-0.01043
SF	0	-0.09734	1.14675	2.71600	0	4.79981	-0.00653
RC	0	-0.01129	1.11665	3.35500	0	5.74915	-0.01090
GF	0	-0.09734	1.14675	2.71600	0	4.79981	-0.00653
LP	0	-0.00047	1.13172	2.22700	0	3.85379	-0.00795
ES	0	-0.15678	1.14894	3.05300	0	6.04394	-0.01825
AF	0	0.08247	1.10804	1.45931	0.25495	6.00795	-0.02301
PP	0	0.08106	1.10253	1.04477	0.42828	5.23986	-0.02569
WH	0	0.490848	1.014138	3.164558	0	5.488532	-0.007173
MH	0	-0.01129	1.11665	3.35500	0	5.74915	-0.01090
PY	0	0.196054	1.073909	0.345647	0.620145	5.417431	-0.011608
WB	0	0.196054	1.073909	0.345647	0.620145	5.417431	-0.011608
NF	0	-0.135807	1.147712	3.017494	0	5.568864	-0.021293
WF	0	-0.09734	1.14675	2.71600	0	4.79981	-0.00653
LL	0	0.196054	1.073909	0.345647	0.620145	5.417431	-0.011608
YC	1	-0.811424	1.056190	-3.831124	1.401938	5.200550	-0.014890

Species			Мо	del Coefficie	ents		
Code	a ₀	b ₀	b ₁	C ₀	C ₁	d ₀	d ₁
WJ	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
BM	1	-0.818809	1.054176	-2.366108	1.202413	4.420000	-0.010660
VN	1	-0.818809	1.054176	-2.366108	1.202413	4.420000	-0.010660
RA	1	-1.112738	1.123138	2.533158	0	4.120478	-0.006357
PB	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
GC	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
DG	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
AS	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
CW	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
WO	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
PL	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
WI	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042
OS	0	-0.01129	1.11665	3.35500	0	5.74915	-0.01090
ОН	0	-0.238295	1.180163	3.044134	0	4.625125	-0.016042

4.3.2 Crown Ratio Change

Crown ratio change is estimated after growth, mortality and regeneration are estimated during a projection cycle. Crown ratio change is the difference between the crown ratio at the beginning of the cycle and the predicted crown ratio at the end of the cycle. Crown ratio predicted at the end of the projection cycle is estimated for live tree records using the Weibull distribution, equations $\{4.3.1.5\}$ - $\{4.3.1.8\}$. Crown change is checked to make sure it doesn't exceed the change possible if all height growth produces new crown. Crown change is further bounded to 1% per year for the length of the cycle to avoid drastic changes in crown ratio. Equations $\{4.3.1.1\}$ – $\{4.3.1.4\}$ are not used when estimating crown ratio change.

4.3.3 Crown Ratio for Newly Established Trees

Crown ratios for newly established trees during regeneration are estimated using equation {4.3.3.1}. A random component is added in equation {4.3.3.1} to ensure that not all newly established trees are assigned exactly the same crown ratio.

 $\{4.3.3.1\}$ CR = 0.89722 - 0.0000461 * PCCF + RAN

where:

CR is crown ratio expressed as a proportion (bounded to 0.2 < CR < 0.9)

PCCF is crown competition factor on the inventory point where the tree is established

RAN is a small random component

4.4 Crown Width Relationships

The EC variant calculates the maximum crown width for each individual tree, based on individual tree and stand attributes. Crown width for each tree is reported in the tree list output table and used for percent canopy cover (*PCC*) calculations in the model.

Crown width is calculated using equations $\{4.4.1\} - \{4.4.5\}$, and coefficients for these equations are shown in table 4.4.1. The minimum diameter and bounds for certain data values are given in table 4.4.2. Equation numbers in tables 4.4.1 and 4.4.2 are given with the first three digits representing the FIA species code, and the last two digits representing the equation source.

{4.4.1} Bechtold (2004); Equation 02

$$DBH \ge MinD$$
: $CW = a_1 + (a_2 * DBH) + (a_3 * DBH^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI)$
 $DBH < MinD$: $CW = [a_1 + (a_2 * MinD) + (a_3 * MinD^2) + (a_4 * CR\%) + (a_5 * BA) + (a_6 * HI)] * (DBH / MinD)$

{4.4.2} Crookston (2003); Equation 03

$$DBH \ge MinD: CW = [a_1 * \exp[a_2 + (a_3 * \ln(CL)) + (a_4 * \ln(DBH)) + (a_5 * \ln(HT)) + (a_6 * \ln(BA))]]$$

$$DBH < MinD: CW = [a_1 * \exp[a_2 + (a_3 * \ln(CL)) + (a_4 * \ln(MinD)) + (a_5 * \ln(HT)) + (a_6 * \ln(BA))]] * (DBH / MinD)$$

{4.4.3 Crookston (2005); Equation 04

$$DBH > MinD$$
: $CW = a_1 * DBH^a_2$

$$DBH < MinD$$
: $CW = [a_1 * MinD^a_2] * (DBH / MinD)$

{4.4.4} Crookston (2005); Equation 05

$$DBH \ge MinD$$
: $CW = (a_1 * BF) * DBH^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * (exp(EL))^a_6$
 $DBH < MinD$: $CW = [(a_1 * BF) * MinD^a_2 * HT^a_3 * CL^a_4 * (BA + 1.0)^a_5 * (exp(EL))^a_6] * (DBH / MinD)$

{4.4.5} Donnelly (1996); Equation 06

$$DBH > MinD$$
: $CW = a_1 * DBH^{a_2}$

$$DBH < MinD$$
: $CW = [a_1 * MinD^{a2}] * (DBH / MinD)$

where:

BF is a species-specific coefficient based on forest code

CW is tree maximum crown width

CL is tree crown length

DBH is tree diameter at breast height

HT is tree height

BA is total stand basal area

EL is stand elevation in hundreds of feet

MinD is the minimum diameter

 $a_1 - a_6$ are species-specific coefficients shown in table 4.4.1

Table 4.4.1 Coefficients for crown width equations {4.4.1}-{4.4.5} in the EC variant.

Species	Equation						
Code	Number*	a_1	a ₂	a_3	a ₄	a ₅	a ₆
WP	11905	5.3822	0.57896	-0.19579	0.14875	0	-0.00685
WL	07303	1.02478	0.99889	0.19422	0.59423	-0.09078	-0.02341
DF	20205	6.0227	0.54361	-0.20669	0.20395	-0.00644	-0.00378

Species	Equation						
Code	Number*	a_1	a_2	a ₃	a ₄	a ₅	a ₆
SF	01105	4.4799	0.45976	-0.10425	0.11866	0.06762	-0.00715
RC	24205	6.2382	0.29517	-0.10673	0.23219	0.05341	-0.00787
GF	01703	1.0303	1.14079	0.20904	0.38787	0	0
LP	10805	6.6941	0.81980	-0.36992	0.17722	-0.01202	-0.00882
ES	09305	6.7575	0.55048	-0.25204	0.19002	0	-0.00313
AF	01905	5.8827	0.51479	-0.21501	0.17916	0.03277	-0.00828
PP	12205	4.7762	0.74126	-0.28734	0.17137	-0.00602	-0.00209
WH	26305	6.0384	0.51581	-0.21349	0.17468	0.06143	-0.00571
MH	26403	6.90396	0.55645	-0.28509	0.20430	0	0
PY	23104	6.1297	0.45424	0	0	0	0
WB	10105	2.2354	0.66680	-0.11658	0.16927	0	0
NF	02206	3.0614	0.6276	0	0	0	0
WF	01505	5.0312	0.53680	-0.18957	0.16199	0.04385	-0.00651
LL	07204	2.2586	0.68532	0	0	0	0
YC	04205	3.3756	0.45445	-0.11523	0.22547	0.08756	-0.00894
WJ	06405	5.1486	0.73636	-0.46927	0.39114	-0.05429	0
BM	31206	7.5183	0.4461	0	0	0	0
VN	32102	5.9765	0.8648	0	0.0675	0	0
RA	35106	7.0806	0.4771	0	0	0	0
PB	37506	5.8980	0.4841	0	0	0	0
GC	63102	3.1150	0.7966	0	0.0745	-0.0053	0.0523
DG	35106	7.0806	0.4771	0	0	0	0
AS	74605	4.7961	0.64167	-0.18695	0.18581	0	0
CW	74705	4.4327	0.41505	-0.23264	0.41477	0	0
WO	81505	2.4857	0.70862	0	0.10168	0	0
PL	35106	7.0806	0.4771	0	0	0	0
WI	31206	7.5183	0.4461	0	0	0	0
OS	26403	6.90396	0.55645	-0.28509	0.20430	0	0
ОН	74605	4.7961	0.64167	-0.18695	0.18581	0	0

^{*}Equation number is a combination of the species FIA code (###) and equation source (##).

Table 4.4.2 $\it MinD$ values and data bounds for equations $\{4.4.1\}$ - $\{4.1.5\}$ in the EC variant.

Species	Equation						
Code	Number*	MinD	EL min	EL max	<i>HI</i> min	HI max	<i>CW</i> max
WP	11905	1.0	10	75	n/a	n/a	35
WL	07303	1.0	n/a	n/a	n/a	n/a	40
DF	20205	1.0	1	75	n/a	n/a	80
SF	01105	1.0	4	72	n/a	n/a	33
RC	24205	1.0	1	72	n/a	n/a	45
GF	01703	1.0	n/a	n/a	n/a	n/a	40
LP	10805	1.0	1	79	n/a	n/a	40

Species	Equation						
Code	Number*	MinD	EL min	EL max	<i>HI</i> min	HI max	CW max
ES	09305	1.0	1	85	n/a	n/a	40
AF	01905	1.0	10	85	n/a	n/a	30
PP	12205	1.0	13	75	n/a	n/a	50
WH	26305	1.0	1	72	n/a	n/a	54
MH	26403	n/a	n/a	n/a	n/a	n/a	45
PY	23104	1.0	n/a	n/a	n/a	n/a	30
WB	10105	1.0	n/a	n/a	n/a	n/a	40
NF	02206	1.0	n/a	n/a	n/a	n/a	40
WF	01505	1.0	2	75	n/a	n/a	35
LL	07204	1.0	n/a	n/a	n/a	n/a	33
YC	04205	1.0	16	62	n/a	n/a	59
WJ	06405	1.0	n/a	n/a	n/a	n/a	36
BM	31206	1.0	n/a	n/a	n/a	n/a	30
VN	32102	5.0	n/a	n/a	n/a	n/a	39
RA	35106	1.0	n/a	n/a	n/a	n/a	35
PB	37506	1.0	n/a	n/a	n/a	n/a	25
GC	63102	5.0	n/a	n/a	-55	15	41
DG	35106	1.0	n/a	n/a	n/a	n/a	35
AS	74605	1.0	n/a	n/a	n/a	n/a	45
CW	74705	1.0	n/a	n/a	n/a	n/a	56
WO	81505	1.0	n/a	n/a	n/a	n/a	39
PL	35106	1.0	n/a	n/a	n/a	n/a	35
WI	31206	1.0	n/a	n/a	n/a	n/a	30
OS	26403	n/a	n/a	n/a	n/a	n/a	45
ОН	74605	1.0	n/a	n/a	n/a	n/a	45

Table 4.4.3 *BF* values for equation {4.4.4} in the EC variant.

Species		Location Code								
Code	603	606	608	613	617	699				
WP	1.128	1.081	1.081	1	1	1				
WL	0.952	0.907	0.952	1	0.879	1				
DF	1	1	1	1	0.975	1				
SF	1.032	1.296	1	1	1	1				
RC	0.920	1.115	0.905	1	0.905	1				
GF	1	1.086	1	1	0.972	1				
LP	1	0.944	1.114	1	0.969	1				
ES	1	1	1	1	0.949	1				
AF	0.906	1.038	1	1	0.906	1				
PP	1	1	1	1	0.946	1				
WH	1.028	1.260	1	1	0.962	1				

Species			Locatio	n Code		
Code	603	606	608	613	617	699
MH	1.077	1.106	0.900	1	0.952	1
PY	1	1	1	1	1	1
WB	1	1	1	1	1	1
NF	1.123	1.301	1	1	1	1
WF	1	1.130	1	1	1	1
LL	1	1	1	1	1	1
YC	1	1.493	1	1	1	1
WJ	1	1	1	1	1	1
BM	1	1	1	1	1	1
VN	1	1	1	1	1	1
RA	1	1	1	1	1	1
PB	1	1	1	1	1	1
GC	1	1	1	1	1	1
DG	1	1	1	1	1	1
AS	1	1	1	1	1	1
CW	1	1	1	1	1	1
WO	1	1	1	1	1	1
PL	1	1	1	1	1	1
WI	1	1	1	1	1	1
OS	1.077	1.106	0.900	1	0.952	1
OH	1	1	1	1	1	1

4.5 Crown Competition Factor

The EC variant uses crown competition factor (CCF) as a predictor variable in some growth relationships. Crown competition factor (Krajicek and others 1961) is a relative measurement of stand density that is based on tree diameters. Individual tree CCF_t values estimate the percentage of an acre that would be covered by the tree's crown if the tree were open-grown. Stand CCF is the summation of individual tree (CCF_t) values. A stand CCF value of 100 theoretically indicates that tree crowns will just touch in an unthinned, evenly spaced stand.

For western white pine, western larch, Douglas-fir, Pacific silver fir, western redcedar, grand fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, mountain hemlock, white fir, and other softwoods crown competition factor for an individual tree is calculated using the equation set {4.5.1}. All species coefficients are shown in table 4.5.1.

 $\{4.5.1\}$ *CCF*_t equations

 $DBH \ge 1.0''$: $CCF_t = R_1 + (R_2 * DBH) + (R_3 * DBH^2)$

0.1'' < DBH < 1.0'': $CCF_t = R_4 * DBH^R_5$

 $DBH \le 0.1$ ": $CCF_t = 0.001$

For western hemlock, Pacific yew, whitebark pine, noble fir, subalpine larch, Alaska cedar, western juniper, bigleaf maple, vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking

aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and other hardwoods crown competition factor for an individual tree is calculated using equation {4.5.1} for trees greater than or equal to 1.0" in diameter and equation {4.5.4} for trees less than 1.0" in diameter. All species coefficients are shown in table 4.5.1.

 $\{4.5.4\}$ DBH < 1.0": CCF_t = $(R_1 + R_2 + R_3) * DBH$

where:

 CCF_t is crown competition factor for an individual tree

DBH is tree diameter at breast height

 $R_1 - R_5$ are species-specific coefficients shown in table 4.5.1

Table 4.5.1 Coefficients for the *CCF* equations in the EC variant.

Species		Me	odel Coeffic	ients	
Code	R ₁	R ₂	R ₃	R ₄	R ₅
WP	0.03	0.0167	0.00230	0.009884	1.6667
WL	0.02	0.0148	0.00338	0.007244	1.8182
DF	0.0388	0.0269	0.00466	0.017299	1.5571
SF	0.04	0.0270	0.00405	0.015248	1.7333
RC	0.03	0.0238	0.00490	0.008915	1.7800
GF	0.04	0.027	0.00405	0.015248	1.7333
LP	0.01925	0.01676	0.00365	0.009187	1.7600
ES	0.03	0.0173	0.00259	0.007875	1.7360
AF	0.03	0.0216	0.00405	0.011402	1.7560
PP	0.0219	0.0169	0.00325	0.007813	1.7780
WH	0.03758	0.0233	0.00361	0	0
MH	0.03	0.0215	0.00363	0.011109	1.7250
PY	0.0204	0.0246	0.0074	0	0
WB	0.01925	0.0168	0.00365	0	0
NF	0.02453	0.0115	0.00134	0	0
WF	0.04	0.027	0.00405	0.015248	1.7333
LL	0.0194	0.0142	0.00261	0	0
YC	0.0194	0.0142	0.00261	0	0
WJ	0.0194	0.0142	0.00261	0	0
BM	0.0204	0.0246	0.0074	0	0
VN	0.0204	0.0246	0.0074	0	0
RA	0.03561	0.02731	0.00524	0	0
PB	0.0204	0.0246	0.0074	0	0
GC	0.0160	0.0167	0.00434	0	0
DG	0.0204	0.0246	0.0074	0	0
AS	0.0204	0.0246	0.0074	0	0
CW	0.0204	0.0246	0.0074	0	0
WO	0.0204	0.0246	0.0074	0	0
PL	0.0204	0.0246	0.0074	0	0

Species		Model Coefficients								
Code	R ₁	R ₂	R ₃	R ₄	R_5					
WI	0.0204	0.0246	0.0074	0	0					
OS	0.03	0.0215	0.00363	0.011109	1.7250					
ОН	0.0204	0.0246	0.0074	0	0					

4.6 Small Tree Growth Relationships

Trees are considered "small trees" for FVS modeling purposes when they are smaller than some threshold diameter. The threshold diameter is set to 3.0" for all species in the EC variant.

The small tree model is height-growth driven, meaning height growth is estimated first and diameter growth is estimated from height growth. These relationships are discussed in the following sections.

4.6.1 Small Tree Height Growth

The small-tree height increment model predicts 10-year height growth (HTG) for small trees, based on site index. Potential height growth is estimated using equations $\{4.6.1.1\} - \{4.6.1.4\}$, and coefficients for these equations are shown in table 4.6.1.1.

$$\{4.6.1.1\} \ POTHTG = (SI / c_1) * (1.0 - c_2 * exp(c_3 * X_2))^c c_4 - (SI / c_1) * (1.0 - c_2 * exp(c_3 * X_1))^c c_4$$

$$X_1 = \text{ALOG} \left[(1.0 - (c_1 / SI * HT)^c (1 / c_4)) / c_2 \right] / c_3$$

$$X_2 = X_1 + A$$

$$\{4.6.1.2\} \ POTHTG = \left[(c_1 + c_2 * SI) / (c_3 - c_4 * SI) \right] * Y$$

$$\{4.6.1.3\} \ POTHTG = \left[(c_1 + c_2 * SI) / (c_3 - c_4 * SI) \right] * Y * 3.280833$$

 $\{4.6.1.4\}$ POTHTG = $[(c_1 * ln(1 - (SI / c_2) c^3) * c_4) - 0.1)] * Y$

where:

POTHTG is potential height growth

SI is species site index bounded by SITELO and SITEHI (shown in table 4.6.1.2)

Y is the number of years for which a growth estimate is needed

HT is tree height

 $c_1 - c_4$ are species-specific coefficients shown in table 4.6.1.1

Table 4.6.1.1 Coefficients and equation reference for equations {4.6.1.1} and {4.6.1.2} in the EC variant.

Species	POTHTG		Model Co	efficients	
Code	Equation	C ₁	C ₂	C ₃	C 4
WP	{4.6.1.1}	0.375045	0.92503	-0.020796	2.48811
WL	{4.6.1.2}	-3.97245	0.50995	28.11668	0.05661
DF	{4.6.1.2}	2.0	0.420	28.5	0.05
SF	{4.6.1.2}	-0.6667	0.4333	28.5	0.05
RC	{4.6.1.1}	0.752842	1.0	-0.0174	1.4711
GF	{4.6.1.2}	-1.0470	0.4220	28.7739	0.0597

LP	{4.6.1.2}	0.3277	0.01296	1.0	0
ES	{4.6.1.2}	-8.0	0.35	53.72545	0.274509
AF	{4.6.1.2}	6.0	0.14	33.882	0.06588
PP	{4.6.1.2}	-1.0	0.32857	28.0	0.042857
WH	{4.6.1.2}	-5.74874	0.54576	26.15767	0.03596
MH	{4.6.1.3}	0.965758	0.082969	55.249612	1.288852
PY	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
WB	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
NF	{4.6.1.2}	11.26677	0.12027	27.93806	0.02873
WF	{4.6.1.2}	-1.0470	0.4220	28.7739	0.0597
LL	{4.6.1.2}	-3.97245	0.50995	28.11668	0.05661
YC	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
WJ	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
BM	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
VN	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
RA	{4.6.1.2}	-0.007025	0.056794	1.0	0
PB	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
GC	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
DG	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
AS	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
CW	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
WO	{4.6.1.4}	-37.60812	114.24569	0.44444	0.01
PL	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
WI	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586
OS	{4.6.1.3}	0.965758	0.082969	55.249612	1.288852
ОН	{4.6.1.2}	1.47043	0.23317	31.56252	0.05586

Table 4.6.1.2 SITELO and SITEHI values for equations {4.6.1.1-4.6.1.3} in the EC variant.

Species		
Code	SITELO	SITEHI
WP	20	80
WL	50	110
DF	50	110
SF	50	110
RC	15	30
GF	50	110
LP	30	70
ES	40	120
AF	50	150
PP	70	140
WH	0	999
MH	15	30

Species		
Code	SITELO	SITEHI
PY	0	999
WB	0	999
NF	0	999
WF	50	110
LL	0	999
YC	0	999
WJ	0	999
BM	0	999
VN	0	999
RA	0	999
РВ	0	999
GC	0	999
DG	0	999
AS	0	999
CW	0	999
WO	0	999
PL	0	999
WI	0	999
OS	15	30
ОН	0	999

Potential height growth is then adjusted based on stand density (PCTRED) and crown ratio (VIGOR) as shown in equations {4.6.1.5} and {4.6.1.6} respectively, to determine an estimated height growth as shown in equation {4.6.1.7}.

$$\{4.6.1.5\}$$
 PCTRED = $1.11436 - 0.011493*Z + 0.43012E - 04*Z^2 - 0.72221E - 07*Z^3 + 0.5607E - 10*Z^4 - 0.1641E - 13*Z^5$

$$Z = HT_{Avg} * (CCF / 100)$$
 bounded so $Z \le 300$ and $0.01 \le PCTRED \le 1.0$

$$\{4.6.1.6\}$$
 VIGOR = $(150 * CR^3 * exp(-6 * CR)) + 0.3$

where:

PCTRED is reduction in height growth due to stand density

HT_{Avg} is average height of the 40 largest diameter trees in the stand

CCF is stand crown competition factor

VIGOR is reduction in height growth due to tree vigor (bounded to VIGOR ≤ 1.0)

CR is a tree's live crown ratio (compacted) expressed as a proportion

HTG is estimated height growth for the cycle

POTHTG is potential height growth

For all species, a small random error is then added to the height growth estimate. The estimated height growth (*HTG*) is then adjusted to account for cycle length, user defined small-tree height growth adjustments, and adjustments due to small tree height model calibration from the input data.

Height growth estimates from the small-tree model are weighted with the height growth estimates from the large tree model over a range of diameters (X_{min} and X_{max}) in order to smooth the transition between the two models. For example, the closer a tree's DBH value is to the minimum diameter (X_{min}), the more the growth estimate will be weighted towards the small-tree growth model. The closer a tree's DBH value is to the maximum diameter (X_{max}), the more the growth estimate will be weighted towards the large-tree growth model. If a tree's DBH value falls outside of the range given by X_{min} and X_{max} , then the model will use only the small-tree or large-tree growth model in the growth estimate. The weight applied to the growth estimate is calculated using equation {4.6.1.8}, and applied as shown in equation {4.6.1.9}. The range of diameters for each species is shown in Table 4.6.1.3.

{4.6.1.8}

 $DBH < X_{min}$: XWT = 0

 $X_{min} < DBH < X_{max}$: $XWT = (DBH - X_{min}) / (X_{max} - X_{min})$

 $DBH > X_{max}$: XWT = 1

 $\{4.6.1.9\}$ Estimated growth = [(1 - XWT) * STGE] + [XWT * LTGE]

where:

XWT is the weight applied to the growth estimates

DBH is tree diameter at breast height

 X_{max} is the maximum *DBH* is the diameter range is the minimum *DBH* in the diameter range

STGE is the growth estimate obtained using the small-tree growth model LTGE is the growth estimate obtained using the large-tree growth model

Table 4.6.1.3 Diameter bounds by species in the EC variant.

Species Code	Xmin	X _{max}
WP	2.0	4.0
WL	2.0	4.0
DF	2.0	4.0
SF	2.0	4.0
RC	2.0	10.0
GF	2.0	4.0
LP	1.0	5.0
ES	2.0	4.0
AF	2.0	6.0
PP	2.0	6.0
WH	2.0	4.0
MH	2.0	6.0
PY	2.0	4.0

Species		
Code	X_{min}	X _{max}
WB	2.0	4.0
NF	2.0	4.0
WF	2.0	4.0
LL	2.0	4.0
YC	2.0	4.0
WJ	2.0	4.0
BM	2.0	4.0
VN	2.0	4.0
RA	2.0	4.0
PB	2.0	4.0
GC	2.0	4.0
DG	2.0	4.0
AS	2.0	4.0
CW	2.0	4.0
WO	2.0	4.0
PL	2.0	4.0
WI	2.0	4.0
OS	2.0	6.0
ОН	2.0	4.0

4.6.2 Small Tree Diameter Growth

As stated previously, for trees being projected with the small tree equations, height growth is predicted first, and then diameter growth. So both height at the beginning of the cycle and height at the end of the cycle are known when predicting diameter growth. Small tree diameter growth for trees over 4.5 feet tall is calculated as the difference of predicted diameter at the start of the projection period and the predicted diameter at the end of the projection period, adjusted for bark ratio. By definition, diameter growth is zero for trees less than 4.5 feet tall. Diameter growth for trees whose diameter is 3.0" or greater at the start of the projection cycle is estimated using equations discussed in section 4.7.1.

When calibration of the height-diameter curve is turned off or does not occur for a species, these two predicted diameters are estimated using the species-specific Curtis-Arney functions shown in equation {4.1.1} with diameter solved as a function of height. When calibration of the height-diameter curve is turned on and does occur for a species, these two predicted diameters are estimated using the species specific logistic relationships shown in equation {4.1.2} with diameter solved as a function of height except in the following cases.

Ponderosa pine trees use equation {4.1.3} with diameter solved as a function of height and JCR set to 7.

Western hemlock trees use equation {4.6.2.1}.

$$\{4.6.2.1\} D = -0.674 + 1.522 * ln(H)$$

Pacific yew, whitebark pine, noble fir, and subalpine larch trees use equation {4.6.2.2}.

$$\{4.6.2.2\} D = -2.089 + 1.980 * ln(H)$$

Alaska yellow cedar and western juniper trees use equation {4.6.2.3}.

$$\{4.6.2.3\} D = -0.532 + 1.531 * ln(H)$$

Bigleaf maple, vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and other hardwood trees use equation {4.6.2.4}.

$${4.6.2.4} D = 3.102 + 0.021 * ln(H)$$

Where:

D is tree diameterH is total tree height

4.7 Large Tree Growth Relationships

Trees are considered "large trees" for FVS modeling purposes when they are equal to, or larger than, some threshold diameter. This threshold diameter is set to 3.0" for all species in the EC variant.

The large-tree model is driven by diameter growth meaning diameter growth is estimated first, and then height growth is estimated from diameter growth and other variables. These relationships are discussed in the following sections.

4.7.1 Large Tree Diameter Growth

The large tree diameter growth model used in most FVS variants is described in section 7.2.1 in Dixon (2002). For most variants, instead of predicting diameter increment directly, the natural log of the periodic change in squared inside-bark diameter ($\ln(DDS)$) is predicted (Dixon 2002; Wykoff 1990; Stage 1973; and Cole and Stage 1972). For variants predicting diameter increment directly, diameter increment is converted to the DDS scale to keep the FVS system consistent across all variants.

The EC variant predicts diameter growth using equation {4.7.1.1} for all species except red alder. Coefficients for this equation are shown in table 4.7.1.1 and 4.7.1.3.

```
\{4.7.1.1\} \ln(DDS) = b_1 + (b_2 * EL) + (b_3 * EL^2) + (b_4 * \ln(SI)) + SASP + b_6 + (b_7 * \ln(DBH)) + b_8 + (b_9 * CR) + (b_{10} * CR^2) + (b_{11} * DBH^2) + (b_{12} * BAL) / (\ln(DBH + 1.0))) + (b_{13} * PCCF) + (b_{14} * RELHT * PCCF / 100) + (b_{15} * PCCF^2 / 1000) + (b_{16} * RELHT) + (b_{17} * MAI * CCF) + (b_{22} * BAL) + (b_{23} * BA)
```

For western white pine, western larch, Douglas-fir, Pacific silver fir, western redcedar, grand fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, mountain hemlock, white fir, and other softwoods:

```
for SL = 0, SASP = b_5
for SL \neq 0, SASP = [b_{18} * sin(ASP) * SL] + [b_{19} * cos(ASP) * SL] + [b_{20} * SL] + [b_{21} * SL^2]
```

For all other species, except red alder:

$$SASP = [b_{18} * sin(ASP) * SL] + [b_{19} * cos(ASP) * SL] + [b_{20} * SL] + [b_{21} * SL^2]$$

where:

DDS is the square of the diameter growth increment

EL is stand elevation in hundreds of feet (bounded to 30 < EL for western juniper, paper

birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, cherry and

plum species, willow species, other hardwoods)

SI is species site index (for other softwoods and mountain hemlock, SI = SI * 3.281)

ASP is stand aspect SL is stand slope

CR is crown ratio expressed as a proportion

DBH is tree diameter at breast height

BAL is total basal area in trees larger than the subject tree

PCCF is crown competition factor on the inventory point where the tree is established is tree height divided by average height of the 40 largest diameter trees in the stand

MAI is stand mean annual increment CCF is stand crown competition factor

 b_1 is a location-specific coefficient shown in table 4.7.1.1 $b_2 - b_{23}$ are species-specific coefficients shown in table 4.7.1.3

Table 4.7.1.1 b_1 values by location class for equation $\{4.7.1.1\}$ in the EC variant.

Location					Specie	es Code				
Class	WP	WL	DF	SF	RC	GF, WF	LP	ES	AF	PP
1	-4.64535	-0.605649	-4.081038	-0.441408	1.49419	-3.811100	-1.084679	-0.098284	-0.420205	-3.102028
2	0	0	-3.965956	-0.538987	0	-3.673109	-1.172470	0.117987	-0.312955	0
3	0	0	0	0	0	0	0	0	0	0
					Specie	es Code				
						WJ, PB,				
						GC, DG,				
						AS, CW,				
Location			PY, WB,			PL, WI,				
Class	WH	MH	LL	NF	YC	ОН	BM, VN	RA	wo	OS
1	-0.147675	-1.407548	-1.310067	-1.127977	-1.277664	-0.107648	-7.753469	0	-1.33299	-1.407548
2	-0.298310	-1.131934	0	-1.401865	0	0	0	0	0	-1.131934
3	0	-1.539078	0	0	0	0	0	0	0	-1.539078

Table 4.7.1.2 Location class by species and location code in the EC variant.

						Species Cod	le			
Location Code	WP	WL	DF	SF	RC	GF, WF	LP	ES	AF	PP
603 – Gifford Pinchot	1	1	1	1	1	1	1	2	1	1
606 – Mount Hood	1	1	1	1	1	1	1	1	1	1
608 – Okanogan	1	1	2	2	1	1	1	1	1	1
613 – Mount Baker – Snoqualmie	1	1	1	1	1	1	1	1	1	1

617 – Wenatchee	1	1	1	1	1	1	2	1	1	1
699 – Okanogan (Tonasket RD)	1	1	2	1	1	2	1	2	2	1
						Species Cod	de			
			PY,			WJ, PB, GC,				
			WB,			DG, AS, CW,				
Location Code	WH	MH	LL	NF	YC	PL, WI, OH	BM, VN	RA	wo	OS
603 – Gifford Pinchot	1	1	1	1	1	1	1	1	1	1
606 – Mount Hood	1	1	1	1	1	1	1	1	1	1
608 – Okanogan	2	2	1	2	1	1	1	1	1	2
613 – Mount Baker – Snoqualmie	1	1	1	1	1	1	1	1	1	1
617 – Wenatchee	2	3	1	2	1	1	1	1	1	3
699 – Okanogan (Tonasket RD)	2	3	1	2	1	1	1	1	1	3

Table 4.7.1.3 Coefficients (b2- b21) for equation 4.7.1.1 in the EC variant.

					Speci	es Code				
Coefficient	WP	WL	DF	SF	RC	GF, WF	LP	ES	AF	PP
b_2	0	0.004379	-0.021091	-0.015087	-0.00175	0.023020	-0.001124	-0.014944	-0.009430	-0.005345
b_3	0	0	0.000225	0	-0.000067	-0.000364	0	0	0	0
b_4	0.86756	0.351929	1.119725	0.323625	0	0.782092	0.458662	0.290959	0.231960	0.921987
b_5	0	-0.290174	0	-0.174404	0	-0.360203	0	0	-0.278601	0
b_6	0	0	0	0	0	0	0	0	0.3835	0
b_7	1.32610	0.609098	0.855516	0.980383	0.58705	1.042583	0.554261	0.823082	0.816917	0.665401
b ₈	0	0	0	-0.799079	0	0.522079	0	0	0	0
b ₉	1.29730	1.158355	2.009866	1.709846	1.29360	2.182084	1.423849	1.263610	1.119493	1.671186
b ₁₀	0	0	-0.44082	0	0	-0.843518	0	0	0	0
b ₁₁	0	-0.000168	-0.000261	-0.000219	0	-0.000369	0	-0.000204	0	-0.000247
b ₁₂	-0.00239	-0.004253	-0.003075	-0.000261	-0.02284	-0.001323	-0.004803	-0.005163	-0.000702	-0.008065
b ₁₃	-0.00044	-0.000568	-0.000441	-0.000643	-0.00094	-0.001574	-0.000627	-0.000883	-0.001102	0.00112
b ₁₄	0	0	0	0	0	0	0	0	0	0
b ₁₅	0	0	0	0	0	0	0	0	0	-0.003183
b ₁₆	0.49649	0	0	0	0	0	0	0	0	0
b ₁₇	0	0	0	0	0	0	0	0	0	0
b ₁₈	-0.17911	0.258712	0.029947	-0.128126	0.05534	-0.185520	-0.142328	0.216231	0.002810	-0.149848
b ₁₉	0.38002	-0.156235	-0.092151	-0.059062	-0.06625	-0.239156	-0.064328	-0.055587	-0.049761	-0.181022
b ₂₀	-0.81780	-0.635704	-0.309511	0.240178	0.11931	1.466089	-0.097297	-0.000577	1.160345	-0.252705
b ₂₁	0.84368	0	0	0.131356	0	-1.817050	0.094464	0	-1.740114	0
b ₂₂	0	0	0	0	0	0	0	0	0	0
b ₂₃	0	0	0	0	0	0	0	0	0	0
					Speci	es Code	•			
Coefficient	WH	МН	PY	WB	NF	LL	YC	WJ	BM, VN	RA
b ₂	-0.040067	0.012082	0	0	-0.069045	0	0	-0.075986	-0.012111	0
b ₃	0.000395	0	0	0	0.000608	0	0	0.001193	0	0

		T		T			T	I		
b ₄	0.380416	0.346907	0.252853	0.252853	0.684939	0.252853	0.244694	0.227307	1.965888	0
b ₅	0	-0.099908	0	0	0	0	0	0	0	0
b ₆	0	0	0	0	0	0	0	0	0	0
b ₇	0.722462	0.580156	0.879338	0.879338	0.904253	0.879338	0.816880	0.889596	1.024186	0
b ₈	0	0	0	0	0	0	0	0	0	0
b ₉	2.160348	1.212069	1.970052	1.970052	4.123101	1.970052	2.471226	1.732535	0.459387	0
b ₁₀	-0.834196	0	0	0	-2.689340	0	0	0	0	0
b ₁₁	-0.000155	-0.000019	-0.000132	-0.000132	-0.0003996	-0.000132	-0.000254	0	-0.000174	0
b ₁₂	-0.004065	0	-0.004215	-0.004215	-0.006368	-0.004215	-0.005950	-0.001265	-0.010222	0
b ₁₃	0	-0.001221	0	0	-0.000471	0	0	0	-0.000757	0
b ₁₄	0	0.156459	0	0	0	0	0	0	0	0
b ₁₅	0	0	0	0	0	0	0	0	0	0
b ₁₆	-0.000358	0	0	0	0	0	0	0	0	0
b ₁₇	0	-0.000021	0	0	0	0	0	0	0	0
b ₁₈	0	0.037062	0	0	-0.207659	0	0.679903	-0.863980	0	0
b ₁₉	0	-0.097288	0	0	-0.374512	0	-0.023186	0.085958	0	0
b ₂₀	0.421486	0.089774	0	0	0.400223	0	0	0	0	0
b ₂₁	-0.693610	0	0	0	0	0	0	0	0	0
b ₂₂	0	0	0	0	0	0	0	0	0	0
b ₂₃	0	0	-0.000173	-0.000173	0	-0.000173	-0.000147	-0.000981	0	0
~23		U	0.000173	0.000173		es Code	0.000147	0.000301		U
					- 1					
Coefficient	PB	GC	DG	AS	CW	WO	PL	WI	OS	ОН
Coefficient b ₂		GC -0.075986		AS	CW	WO	PL -0.075986		OS 0.012082	OH -0.075986
b ₂	-0.075986	-0.075986	-0.075986	-0.075986	-0.075986	0	-0.075986	-0.075986	0.012082	-0.075986
b ₂ b ₃	-0.075986 0.001193	-0.075986 0.001193	-0.075986 0.001193	-0.075986 0.001193	-0.075986 0.001193	0	-0.075986 0.001193	-0.075986 0.001193	0.012082	-0.075986 0.001193
b ₂ b ₃ b ₄	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	0 0 0.14995	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	0.012082 0 0.346907	-0.075986 0.001193 0.227307
b ₂ b ₃ b ₄ b ₅	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	0 0 0.14995	-0.075986 0.001193 0.227307	-0.075986 0.001193 0.227307	0.012082 0 0.346907 -0.099908	-0.075986 0.001193 0.227307
b ₂ b ₃ b ₄ b ₅ b ₆	-0.075986 0.001193 0.227307 0	-0.075986 0.001193 0.227307 0	-0.075986 0.001193 0.227307 0	-0.075986 0.001193 0.227307 0	-0.075986 0.001193 0.227307 0	0 0 0.14995 0	-0.075986 0.001193 0.227307 0	-0.075986 0.001193 0.227307 0	0.012082 0 0.346907 -0.099908	-0.075986 0.001193 0.227307 0
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596	0 0 0.14995 0 0 1.66609	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596	0.012082 0 0.346907 -0.099908 0 0.580156	-0.075986 0.001193 0.227307 0 0 0.889596
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596	-0.075986 0.001193 0.227307 0 0 0.889596 0	-0.075986 0.001193 0.227307 0 0 0.889596	0 0 0.14995 0 0 1.66609	-0.075986 0.001193 0.227307 0 0 0.889596 0	-0.075986 0.001193 0.227307 0 0 0.889596	0.012082 0 0.346907 -0.099908 0 0.580156 0	-0.075986 0.001193 0.227307 0 0 0.889596
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	0 0 0.14995 0 0 1.66609 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	0 0 0.14995 0 0 1.66609 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	0 0 0.14995 0 0 1.66609 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	0 0 0.14995 0 0 1.66609 0 0 0 -0.00154	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	0 0 0.14995 0 0 1.66609 0 0 -0.00154 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0.889596 0 1.732535 0 0 -0.001265	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃ b ₁₄	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0	0 0 0.14995 0 0 1.66609 0 0 0 -0.00154 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0 -0.001221 0.156459	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃ b ₁₄ b ₁₅	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0	0 0 0.14995 0 0 1.66609 0 0 -0.00154 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0 -0.001221 0.156459	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃ b ₁₄ b ₁₅ b ₁₆	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0	0 0 0.14995 0 0 1.66609 0 0 -0.00154 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0 -0.001221 0.156459 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃ b ₁₄ b ₁₅ b ₁₆ b ₁₇	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0	0 0 0.14995 0 0 1.66609 0 0 -0.00154 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0 -0.001221 0.156459 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 0
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃ b ₁₄ b ₁₅ b ₁₆ b ₁₇ b ₁₈	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	0 0 0.14995 0 0 1.66609 0 0 0 -0.00154 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 -0.863980	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0 -0.001221 0.156459 0 0 -0.000021 0.037062	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃ b ₁₄ b ₁₅ b ₁₆ b ₁₇ b ₁₈ b ₁₉	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 -0.863980 0.085958	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 -0.001265 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 -0.863980 0.085958	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 -0.001265 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 -0.863980 0.085958	0 0 0.14995 0 0 1.66609 0 0 -0.00154 0 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 -0.001265 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980 0.085958	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0 -0.001221 0.156459 0 0 -0.000021 0.037062 -0.097288	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b ₂ b ₃ b ₄ b ₅ b ₆ b ₇ b ₈ b ₉ b ₁₀ b ₁₁ b ₁₂ b ₁₃ b ₁₄ b ₁₅ b ₁₆ b ₁₇ b ₁₈	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.001265	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	0 0 0.14995 0 0 1.66609 0 0 0 -0.00154 0 0 0	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 -0.001265 0 0 0 -0.863980	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980	0.012082 0 0.346907 -0.099908 0 0.580156 0 1.212069 0 -0.000019 0 -0.001221 0.156459 0 0 -0.000021 0.037062	-0.075986 0.001193 0.227307 0 0 0.889596 0 1.732535 0 0 -0.001265 0 0 0 -0.863980

b ₂₂	0	0	0	0	0	-0.00326	0	0	0	0
b ₂₃	-0.000981	-0.000981	-0.000981	-0.000981	-0.000981	-0.00204	-0.000981	-0.000981	0	-0.000981

Large-tree diameter growth for red alder is predicted using equation set {4.7.1.2}. Diameter growth is predicted based on tree diameter and stand basal area. While not shown here, this diameter growth estimate is eventually converted to the *DDS* scale.

{4.7.1.2} Used for red alder:

$$DBH \le 18.0$$
": $DG = CON - (0.166496 * DBH) + (0.004618 * DBH^2)$
 $DBH > 18.0$ ": $DG = CON - (CON / 10) * (DBH - 18)$

where:

CON = (3.250531 - 0.003029 * BA)

DG is potential diameter growthDBH is tree diameter at breast height

BA is stand basal area

4.7.2 Large Tree Height Growth

For all species except white oak, height growth equations in the EC variant are based on the site index curves shown in section 3.4. Equations for white oak are shown later in this section.

Using a species site index and tree height at the beginning of the projection cycle, an estimated tree age is computed using the site index curves. Also, a maximum species height is computed using equations $\{4.7.2.1 - 4.7.2.4\}$.

{4.7.2.1} used for western white pine, western larch, Douglas-fir, Pacific silver fir, western redcedar, grand fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine and white fir

$$HTMAX = a_0 + a_1 * SI$$

{4.7.2.2} used for mountain hemlock and other softwoods

$$HTMAX = a_0 + a_1 * SI * 3.281$$

{4.7.2.3} used for western hemlock, Pacific yew, whitebark pine, noble fir, subalpine larch, Alaska cedar, western juniper, bigleaf maple vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and other hardwoods

$$HTMAX = a_0 + a_1 * DBH$$

{4.7.2.4} used for western hemlock, Pacific yew, whitebark pine, noble fir, subalpine larch, Alaska cedar, western juniper, bigleaf maple vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and other hardwoods

$$HTMAX2 = a_0 + a_1 * (DBH + (DG/BARK))$$

where:

HTMAX is maximum expected tree height in feet at the start of the projection cycle

HTMAX2 is maximum expected tree height in feet 10-years in the future

SI is the species specific site index

DBH is tree diameter at the start of the projection cycle is estimated 10-year inside-bark diameter growth

BARK is tree bark ratio

 $a_0 - a_1$ are species-specific coefficients shown in table 4.7.2.1

For western white pine, western larch, Douglas-fir, Pacific silver fir, western redcedar, grand fir, lodgepole pine, Engelmann spruce, subalpine fir, ponderosa pine, mountain hemlock, white fir, and other softwoods, if tree height at the beginning of the projection cycle is greater than the maximum species height (*HTMAX*), then height growth is computed using equation {4.7.2.5}. For western hemlock, Pacific yew, whitebark pine, noble fir, subalpine larch, Alaska cedar, western juniper, bigleaf maple vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and other hardwoods, if tree height at the beginning of the projection cycle is greater than the maximum species height (*HTMAX*) and less than the maximum species height at the end of the projection cycle (HTMAX2), then height growth is computed using equation {4.7.2.5}.

 $\{4.7.2.5\}$ HTG = 0.1

For western hemlock, Pacific yew, whitebark pine, noble fir, subalpine larch, Alaska cedar, western juniper, bigleaf maple vine maple, red alder, paper birch, giant chinquapin, Pacific dogwood, quaking aspen, black cottonwood, Oregon white oak, cherry and plum species, willow species, and other hardwoods, if tree height at the beginning of the projection cycle is greater than the maximum species height (*HTMAX*) and greater than or equal to the maximum species height at the end of the projection cycle (HTMAX2), then height growth is computed using equation {4.7.2.6}.

 $\{4.7.2.6\}$ HTG = 0.5 * DG

where:

HTG is estimated 10-year tree height growth (bounded 0.1 < HTG)

DG is species estimated 10-year diameter growth

 $a_0 - a_1$ are species-specific coefficients shown in table 4.7.2.1

Table 4.7.2.1 Maximum height coefficients for equations $\{4.7.2.1 - 4.7.2.4\}$, and maximum age, in the EC variant.

Species			Maximum
Code	a_0	a_1	Age
WP	2.3	2.39	200
WL	12.86	1.32	110
DF	-2.86	1.54	180
SF	21.29	1.24	130
RC	52.27	1.14	250
GF	21.29	1.24	130
LP	2.3	1.75	140
ES	20.0	1.10	150

Species			Maximum
Code	a ₀	a ₁	Age
AF	45.27	1.24	150
PP	-5.00	1.30	200
WH	51.9732476	4.0156013	200
MH	-2.06	1.54	180
PY	62.7139427	3.2412923	200
WB	62.7139427	3.2412923	200
NF	39.6317079	4.3149844	200
WF	21.29	1.24	130
LL	62.7139427	3.2412923	200
YC	62.7139427	3.2412923	200
WJ	62.7139427	3.2412923	200
BM	59.3370816	3.9033821	200
VN	59.3370816	3.9033821	200
RA	59.3370816	3.9033821	200
РВ	59.3370816	3.9033821	200
GC	59.3370816	3.9033821	200
DG	59.3370816	3.9033821	200
AS	59.3370816	3.9033821	200
CW	59.3370816	3.9033821	200
WO	59.3370816	3.9033821	200
PL	59.3370816	3.9033821	200
WI	59.3370816	3.9033821	200
OS	-2.06	1.54	180
ОН	59.3370816	3.9033821	200

If tree height at the beginning of the projection cycle is less than the maximum species height, height increment is obtained by estimating a tree's potential height growth and adjusting the estimate according to the tree's crown ratio and height relative to other trees in the stand.

If estimated tree age at the beginning of the projection cycle is greater than or equal to the species maximum age, then for all species except ponderosa pine, potential height growth is calculated using equation {4.7.2.7}. For ponderosa pine, equation {4.7.2.8} is used.

{4.7.2.7} used for all species except PP when estimated tree age is greater than or equal to the maximum age for the species

$$POTHTG = 0.1$$

{4.7.2.8} used for PP when estimated tree age is greater than or equal to the maximum age for the species

where:

POTHTG is estimated potential 10-year tree height growth (bounded 0.1 < HTG)

SI is species site index

When estimated tree age at the beginning of the projection cycle is less than the species maximum age, then potential height growth is obtained by subtracting estimated current height from an estimated future height. In all cases, potential height growth is then adjusted according to the tree's crown ratio and height relative to other trees in the stand. Estimated current height (ECH) and estimated future height (H10) are both obtained using the equations shown below. Estimated current height is obtained using estimated tree age at the start of the projection cycle and site index. Estimated future height is obtained using estimated tree age at the start of the projection cycle plus 10-years and site index.

{4.7.2.9} Used for white pine

$$H = SI / [b_0 * (1.0 - b_1 * (exp (b_2 * A)))^b_3]$$

{4.7.2.10} Used for western larch and subalpine larch

$$H = 4.5 + (b_1 * A) + (b_2 * A^2) + (b_3 * A^3) + (b_4 * A^4) + (SI - 4.5) * [b_5 + (b_6 * A) + (b_7 * A^2) + (b_8 * A^3)] - b_9 * [b_{10} + (b_{11} * A) + (b_{12} * A^2) + (b_{13} * A^3)]$$

{4.7.2.11} Used for Douglas-fir

$$H = 4.5 + \exp[b_1 + (b_2 * \ln(A)) + (b_3 * \ln(A) ^4)] + b_4 * [b_5 + (b_6 * (1 - \exp(b_7 * A)) ^b_8)] + (SI - 4.5) * [b_5 + b_6 * (1 - \exp(b_7 * A) ^b_8)]$$

{4.7.2.12} Used for Pacific silver fir, grand fir, and white fir

$$H = \exp[b_0 + b_1 * \ln(A) + b_2 * (\ln(A))^4 + b_3 * (\ln(A))^9 + b_4 * (\ln(A))^11 + b_5 * (\ln(A))^18] + b_{12} * \exp[b_6 + b_7 * \ln(A) + b_8 * (\ln(A))^2 + b_9 * (\ln(A))^7 + b_{10} * (\ln(A))^16 + b_{11} * (\ln(A))^24] + (SI - 4.5) * \exp[b_6 + b_7 * \ln(A) + b_8 * (\ln(A))^2 + b_9 * (\ln(A))^7 + b_{10} * (\ln(A))^16 + b_{11} * (\ln(A))^24] + 4.5$$

{4.7.2.13} Used for red cedar

$$H = b_1 * SI * [(1 - \exp(b_2 * A))^b_3]$$

{4.7.2.14} Used for lodgepole pine

$$H = b_0 + (b_1 * A) + (b_2 * A^2) + (b_4 * A * SI) + (b_5 * A^2 * SI)$$

{4.7.2.15} Used for Engelmann spruce

$$H = 4.5 + [(b_0 * SI ^b_1) * (1 - \exp(-b_2 * A)) ^ (b_3 * SI ^b_4)]$$

{4.7.2.16} Used for subalpine fir

$$H = SI * [b_0 + (b_1 * A) + b_2 * A^2]$$

{4.7.2.17} Used for ponderosa pine

$$H = [b_0 * (1 - \exp(b_1 * A))^b_2] - [(b_3 + b_4 * (1 - \exp(b_5 * A))^b_6) * b_7] + [(b_3 + b_4 * (1 - \exp(b_5 * A))^b_6) * (SI - 4.5)] + 4.5$$

{4.7.2.18} Used for western hemlock

$$H = [A^2 / \{b_0 + (b_1 * Z) + ((b_2 + b_3 * Z) * A) + ((b_4 + b_5 * Z) * A^2)\}] + 4.5$$

$$Z = 2500 / (SI - 4.5)$$

{4.7.2.19} Used for mountain hemlock and other softwoods

$$H = [(b_0 + b_1 * SI) * (1 - \exp(b_2 * (SI \wedge b_3) * A)) \wedge (b_4 + b_5/SI) + 1.37] * 3.281$$

{4.7.2.20} Used for Pacific yew, whitebark pine, Alaska cedar, western juniper, bigleaf maple, vine maple, paper birch, golden chinkapin, Pacific dogwood, quaking aspen, black cottonwood, cherry and plum species, willow species, and other hardwoods

$$H = \{(SI - 4.5) / [b0 + (b1 / (SI - 4.5)) + (b2 *A^{-1}.4) + ((b3 / (SI - 4.5)) *A^{-1}.4)]\} + 4.5$$

{4.7.2.21} Used for noble fir

$$H = \{(SI - 4.5) / [(X_1 * (A^{-1})^{-2}) + (X_2 * (A^{-1})) + 1.0 - 0.0001 * X_1 - 0.01 * X_2]\} + 4.5$$

$$X1 = b0 + (b1 * (SI - 4.5)) - (b2 * (SI - 4.5)^{-2})$$

$$X2 = b3 + (b4 * (SI - 4.5)^{-1}) + (b5 * (SI - 4.5)^{-2})$$

{4.7.2.22} Used for red alder

$$H = SI + \{[b0 + (b1 * SI)] * [1 - exp((b2 + (b3 * SI)) * A)]^b4\} - \{[b0 + (b1 * SI)] * [1 - exp((b2 + (b3 * SI)) * 20)]^b4\}$$

where:

H is estimated height of the tree

SI is species site index

A is estimated age of the tree

 $b_0 - b_{13}$ are species-specific coefficients shown in table 4.7.2.2

Table 4.7.2.2 Coefficients ($b_0 - b_{13}$) for height-growth equations in the EC variant.

	Species Code					
Coefficient	WP	WL, LL	DF	SF, GF, WF	RC	LP
b_0	0.37504453	0	0	-0.30935	0	9.89331
b ₁	0.92503	1.46897	-0.37496	1.2383	1.3283	-0.19177
b_2	-0.0207959	0.0092466	1.36164	0.001762	-0.0174	0.00124
b ₃	-2.4881068	-0.00023957	-0.00243434	-5.40E-06	1.4711	0
b ₄	0	1.1122E-06	-79.97	2.046E-07	0	0.01387
b ₅	0	-0.12528	-0.2828	-4.04E-13	0	-0.0000455
b_6	0	0.039636	1.87947	-6.2056	0	0
b ₇	0	-0.0004278	-0.022399	2.097	0	0
b ₈	0	1.7039E-06	0.966998	-0.09411	0	0
b ₉	0	73.57	0	-0.00004382	0	0
b ₁₀	0	-0.12528	0	2.007E-11	0	0
b ₁₁	0	0.039636	0	-2.054E-17	0	0
b ₁₂	0	-0.0004278	0	-84.93	0	0
b ₁₃	0	1.7039E-06	0	0	0	0
	Species Code					
Coefficient						PY, WB,

	ES	AF	PP	WH	MH, OS	YC, WJ, BM, VN, PB, GC, DG, AS, CW, PL, WI, OH
b ₀	2.75780	-0.07831	128.8952205	-1.7307	22.8741	0.6192
b_1	0.83312	0.0149	-0.016959	0.1394	0.950234	-5.3394
b_2	0.015701	-4.0818E-05	1.23114	-0.0616	-0.00206465	240.29
b ₃	22.71944	0	-0.7864	0.0137	0.5	3368.9
b ₄	-0.63557	0	2.49717	0.00192	1.365566	0
b_5	0	0	-0.004504	0.00007	2.045963	0
b_6	0	0	0.33022	0	0	0
b_7	0	0	100.43	0	0	0
b ₈	0	0	0	0	0	0
b_9	0	0	0	0	0	0
b ₁₀	0	0	0	0	0	0
b ₁₁	0	0	0	0	0	0
b ₁₂	0	0	0	0	0	0
b ₁₃	0	0	0	0	0	0

	Species Code				
Coefficient	NF	RA			
b_0	-564.38	59.5864			
b_1	22.25	0.7953			
b_2	0.04995	0.00194			
b ₃	6.80	-0.00074			
b ₄	2843.21	0.9198			
b 5	34735.54	0			
b_6	0	0			
b ₇	0	0			
b ₈	0	0			
b ₉	0	0			
b ₁₀	0	0			
b ₁₁	0	0			
b ₁₂	0	0			
b ₁₃	0	0			

Potential 10-year height growth (*POTHTG*) is calculated by using equation {4.7.2.23}. Modifiers are then applied to the height growth based upon a tree's crown ratio (using equation {4.7.2.24}), and relative height and shade tolerance (using equation {4.7.2.25}). Equation {4.7.2.26} uses the Generalized Chapman – Richard's function (Donnelly et. al, 1992) to calculate a height-growth modifier. Final height growth is calculated using equation {4.7.2.27} as a product of the modifier and potential height growth. The final height growth is then adjusted to the length of the cycle.

 $\{4.7.2.23\}$ *POTHTG* = H10 - ECH

 $\{4.7.2.24\}$ HGMDCR = $(100 * (CR / 100)^3) * \exp(-5 * (CR / 100))$ bounded HGMDCR ≤ 1.0

 $\{4.7.2.25\}$ HGMDRH = $[1 + ((1/b_1)^{(b_2-1)} - 1) * exp((-1 * (b_3/(1-b_4)) * RELHT^{(1-b_4)})^{(-1/(b_2-1))}]$

 $\{4.7.2.26\}$ HTGMOD = (0.25 * HGMDCR) + (0.75 * HGMDRH) bounded $0.0 \le HTGMOD \le 2.0$

{4.7.2.27} HTG = POTHTG * HTGMOD

where:

POTHTG is potential height growth

H10 is estimated height of the tree in ten years

ECH is estimated height of the tree at the beginning of the cycle

HGMDCR is a height growth modifier based on crown ratio

HGMDRH is a height growth modifier based on relative height and shade tolerance

HTGMOD is a weighted height growth modifierCR is crown ratio expressed as a proportion

RELHT is tree height divided by average height of the 40 largest diameter trees in the stand

 $b_1 - b_4$ are species-specific coefficients shown in table 4.7.2.3

Table 4.7.2.3 Coefficients ($b_1 - b_4$) for equation {4.7.2.25} in the EC variant.

Species		Coeff	cient	
Code	b ₁	b ₂	b ₃	b ₄
WP	0.10	1.1	15	-1.45
WL	0.01	1.1	12	-1.60
DF	0.10	1.1	15	-1.45
SF	0.20	1.1	20	-1.10
RC	0.20	1.1	20	-1.10
GF	0.15	1.1	16	-1.20
LP	0.01	1.1	12	-1.60
ES	0.15	1.1	16	-1.20
AF	0.15	1.1	16	-1.20
PP	0.05	1.1	13	-1.60
WH	0.20	1.1	20	-1.10
MH	0.10	1.1	15	-1.45
PY	0.20	1.1	20	-1.10
WB	0.10	1.1	15	0.10
NF	0.10	1.1	15	-1.45
WF	0.15	1.1	16	-1.20
LL	0.01	1.1	12	-1.60
YC	0.15	1.1	16	-1.20
WJ	0.05	1.1	13	-1.60
BM	0.20	1.1	20	-1.10
VN	0.20	1.1	20	-1.10
RA	0.05	1.1	13	-1.60

Species	Coefficient			
Code	b ₁	b ₂	b₃	b ₄
PB	0.05	1.1	13	-1.60
GC	0.10	1.1	15	-1.45
DG	0.20	1.1	20	-1.10
AS	0.01	1.1	12	-1.60
CW	0.01	1.1	12	-1.60
WO	0.10	1.1	15	-1.45
PL	0.05	1.1	13	-1.60
WI	0.01	1.1	12	-1.60
OS	0.10	1.1	15	-1.45
ОН	0.01	1.1	12	-1.60

For Oregon white oak, *POTHTG* is estimated using equation {4.7.2.28}.

 $\{4.7.2.28\} \ POTHTG = [4.5+\{(114.24569(1-exp(-.02659*SI))^2.25993)-18.602 \ / \ ln(2.71*BA)\}^*\{1-exp(-.02659*SI))^2.25993)-18.602 \ / \ ln(2.71*BA)\}^*\{1-exp(-.13743*DBH1)\}^1.38994]$

where:

POTHTG is potential height growth

BA is stand basal area

SI is site index for Oregon white oak

DBH1 is diameter of the tree at the beginning of the cycle DBH2 is estimated diameter of the tree at the end of the cycle

Modifiers are then applied to the height growth as described above using equations {4.7.2.24} - {4.7.2.27}.

A check is done after computing height growth to limit the maximum height for a given diameter. This check is to make sure that current height plus height growth does not exceed the maximum height for the given diameter. The maximum height for a given diameter is calculated using equations {4.7.2.1} - {4.7.2.4}.

5.0 Mortality Model

The EC variant uses an SDI-based mortality model as described in Section 7.3.2 of Essential FVS: A User's Guide to the Forest Vegetation Simulator (Dixon 2002, referred to as EFVS). This SDI-based mortality model is comprised of two steps: 1) determining the amount of stand mortality (section 7.3.2.1 of EFVS) and 2) dispersing stand mortality to individual tree records (section 7.3.2.2 of EFVS). In determining the amount of stand mortality, the summation of individual tree background mortality rates is used when stand density is below the minimum level for density dependent mortality (default is 55% of maximum SDI), while stand level density-related mortality rates are used when stands are above this minimum level.

The equation used to calculate individual tree background mortality rates for all species is shown in equation {5.0.1}, and this is then adjusted to the length of the cycle by using a compound interest formula as shown in equation {5.0.2}. Coefficients for these equations are shown in table 5.0.1. The overall amount of mortality calculated for the stand is the summation of the final mortality rate (*RIP*) across all live tree records.

$$\{5.0.1\}$$
 RI = $[1/(1 + \exp(p_0 + p_1 * DBH))] * 0.5$

$$\{5.0.2\}$$
 RIP = $1 - (1 - RI)^Y$

where:

RI is the proportion of the tree record attributed to mortality
RIP is the final mortality rate adjusted to the length of the cycle

DBH is tree diameter at breast height

Y is length of the current projection cycle in years p_0 and p_1 are species-specific coefficients shown in table 5.0.1

Table 5.0.1 Coefficients used in the background mortality equation (5.0.1) in the EC variant.

Species		
Code	p ₀	p ₁
WP	6.5112	-0.0052485
WL	6.5112	-0.0052485
DF	7.2985	-0.0129121
SF	5.1677	-0.0077681
RC	9.6943	-0.0127328
GF	5.1677	-0.0077681
LP	5.9617	-0.0340128
ES	9.6943	-0.0127328
AF	5.1677	-0.0077681
PP	5.5877	-0.005348
WH	5.1677	-0.0077681
MH	5.1677	-0.0077681
PY	9.6943	-0.0127328
WB	6.5112	-0.0052485

Species		
Code	p_0	p ₁
NF	6.5112	-0.0052485
WF	5.1677	-0.0077681
LL	5.9617	-0.0340128
YC	5.1677	-0.0077681
WJ	5.5877	-0.005348
BM	5.9617	-0.0340128
VN	5.9617	-0.0340128
RA	5.5877	-0.005348
PB	5.5877	-0.005348
GC	6.5112	-0.0052485
DG	9.6943	-0.0127328
AS	5.9617	-0.0340128
CW	5.9617	-0.0340128
WO	6.5112	-0.0052485
PL	5.5877	-0.005348
WI	5.9617	-0.0340128
OS	5.1677	-0.0077681
ОН	5.9617	-0.0340128

When stand density-related mortality is in effect, the total amount of stand mortality is determined based on the trajectory developed from the relationship between stand SDI and the maximum SDI for the stand. This is explained in section 7.3.2.1 of EFVS.

Once the amount of stand mortality is determined based on either the summation of background mortality rates or density-related mortality rates, mortality is dispersed to individual tree records in relation to either a tree's percentile in the basal area distribution (PCT) using equations {5.0.3}. This value is then adjusted by a species-specific mortality modifier representing the species shade tolerance shown in equation {5.0.4}.

The mortality model makes multiple passes through the tree records multiplying a record's trees-peracre value times the final mortality rate (*MORT*), accumulating the results, and reducing the trees-peracre representation until the desired mortality level has been reached. If the stand still exceeds the basal area maximum sustainable on the site the mortality rates are proportionally adjusted to reduce the stand to the specified basal area maximum.

$$\{5.0.3\}$$
 MR = $0.84525 - (0.01074 * PCT) + (0.0000002 * PCT^3)$

 $\{5.0.4\}$ *MORT* = *MR* * *MWT* * 0.1

where:

MR is the proportion of the tree record attributed to mortality (bounded: $0.01 \le MR \le 1$)

DBH is tree diameter at breast height

PCT is the subject tree's percentile in the basal area distribution of the stand

MORT is the final mortality rate of the tree record

MWT is a mortality weight value based on a species' tolerance shown in table 5.0.2

Table 5.0.2 MWT values for the mortality equation {5.0.4} in the EC variant.

Species	
Code	MWT
WP	0.85
WL	1.0
DF	0.55
SF	0.6
RC	0.6
GF	0.5
LP	0.9
ES	0.5
AF	0.6
PP	0.85
WH	0.60
MH	0.75
PY	0.60
WB	0.85
NF	0.85
WF	0.50
LL	0.90
YC	0.50
WJ	0.85
BM	0.90
VN	0.90
RA	0.85
PB	0.85
GC	0.85
DG	0.60
AS	0.90
CW	0.90
WO	0.85
PL	0.85
WI	0.90
OS	0.75
ОН	0.90

6.0 Regeneration

The EC variant contains a partial establishment model which may be used to input regeneration and ingrowth into simulations. A more detailed description of how the partial establishment model works can be found in section 5.4.5 of the Essential FVS Guide (Dixon 2002).

The regeneration model is used to simulate stand establishment from bare ground, or to bring seedlings and sprouts into a simulation with existing trees. Sprouts are automatically added to the simulation following harvest or burning of known sprouting species (see table 6.0.1 for sprouting species).

Table 6.0.1 Regeneration parameters by species in the EC variant.

Species	Sprouting	Minimum Bud	Minimum Tree	Maximum Tree
Code	Species	Width (in)	Height (ft)	Height (ft)
WP	No	0.4	1.0	23.0
WL	No	0.3	1.0	27.0
DF	No	0.3	1.0	21.0
SF	No	0.3	0.5	21.0
RC	No	0.2	0.5	22.0
GF	No	0.3	0.5	20.0
LP	No	0.4	1.0	24.0
ES	No	0.3	0.5	18.0
AF	No	0.3	0.5	18.0
PP	No	0.5	1.0	17.0
WH	No	0.2	1.0	20.0
MH	No	0.2	0.5	22.0
PY	No	0.2	1.0	20.0
WB	No	0.4	1.0	20.0
NF	No	0.3	1.0	20.0
WF	No	0.3	0.5	20.0
LL	No	0.3	1.5	20.0
YC	No	0.2	1.0	20.0
WJ	No	0.2	1.0	20.0
BM	Yes	0.2	1.0	20.0
VN	Yes	0.2	1.0	20.0
RA	Yes	0.2	1.0	50.0
PB	Yes	0.2	1.0	20.0
GC	Yes	0.2	1.0	20.0
DG	Yes	0.2	1.0	20.0
AS	Yes	0.2	1.0	20.0
CW	Yes	0.2	1.0	20.0
WO	Yes	0.2	1.0	20.0
PL	Yes	0.2	1.0	20.0

Species Code	Sprouting Species	Minimum Bud Width (in)	Minimum Tree Height (ft)	Maximum Tree Height (ft)
WI	Yes	0.2	1.0	20.0
OS	No	0.2	0.5	22.0
ОН	No	0.2	1.0	20.0

The number of sprout records created for each sprouting species is found in table 6.0.2. For more prolific stump sprouting hardwood species, logic rule {6.0.1} is used to determine the number of sprout records, with logic rule {6.0.2} being used for root suckering species. The trees-per-acre represented by each sprout record is determined using the general sprouting probability equation {6.0.3}. See table 6.0.2 for species-specific sprouting probabilities, number of sprout records created, and reference information.

Users wanting to modify or turn off automatic sprouting can do so with the SPROUT or NOSPROUT keywords, respectively. Sprouts are not subject to maximum and minimum tree heights found in table 6.0.1 and do not need to be grown to the end of the cycle because estimated heights and diameters are end of cycle values.

{6.0.1} For stump sprouting hardwood species

 $DSTMP_i \le 5$: NUMSPRC = 1

 $5 < DSTMP_i \le 10$: $NUMSPRC = NINT(0.2 * DSTMP_i)$

 $DSTMP_i > 10$: NUMSPRC = 2

{6.0.2} For root suckering hardwood species

 $DSTMP_i \leq 5$: NUMSPRC = 1

 $5 < DSTMP_i \le 10$: NUMSPRC = NINT(-1.0 + 0.4 * DSTMP_i)

 $DSTMP_i > 10: NUMSPRC = 3$

 $\{6.0.3\}\ TPA_s = TPA_i * PS$

 $\{6.0.4\}$ PS = $(TPA_i/(ASTPAR * 2)) * ((ASBAR / 198) * (40100.45 - 3574.02 * RSHAG^2 + 554.02 * RSHAG^3 - 3.5208 * RSHAG^5 + 0.011797 * RSHAG^7))$

 $\{6.0.5\}$ PS = $((99.9 - 3.8462 * DSTMP_i) / 100)$

where:

*DSTMP*ⁱ is the diameter at breast height of the parent tree

NUMSPRC is the number of sprout tree recordsNINT rounds the value to the nearest integer

TPA_s is the trees per acre represented by each sprout record

TPA_i is the trees per acre removed/killed represented by the parent tree

PS is a sprouting probability (see table 6.0.2)

ASBAR is the aspen basal area removed
ASTPAR is the aspen trees per acre removed

RSHAG is the age of the sprouts at the end of the cycle in which they were created

Table 6.0.2 Sprouting algorithm parameters for sprouting species in the EC variant.

Species Code	Sprouting Probability	Number of Sprout Records	Source
	<u>.</u>		Roy 1955
BM	0.9	{6.0.2}	Tappenier et al. 1996
			Ag. Handbook 654
VN	0.9	{6.0.2}	Uchytil 1989
DΛ	(6 O E)	1	Harrington 1984
RA	{6.0.5}	1	Uchytil 1989
PB	0.7	1	Hutnik and Cunningham 1965
PD	0.7	1	Bjorkbom 1972
GC	0.0	(6.0.3)	Harrington et al. 1992
GC	0.9	{6.0.2}	Meyer 2012
DG	0.9	{6.0.1}	Gucker 2005
AS	{6.0.4}	2	Keyser 2001
CM	0.0	(6.0.3)	Gom and Rood 2000
CW	0.9	{6.0.2}	Steinberg 2001
WO	0.9	(6 O 1)	Roy 1955
VVO	0.9	{6.0.1}	Gucker 2007
PL	0.7	1	Ag. Handbook 654
WI	0.9	1	Ag. Handbook 654

Regeneration of seedlings must be specified by the user with the partial establishment model by using the PLANT or NATURAL keywords. Height of the seedlings is estimated in two steps. First, the height is estimated when a tree is 5 years old (or the end of the cycle – whichever comes first) by using the small-tree height growth equations found in section 4.6.1. Users may override this value by entering a height in field 6 of the PLANT or NATURAL keyword; however the height entered in field 6 is not subject to minimum height restrictions and seedlings as small as 0.05 feet may be established. The second step also uses the equations in section 4.6.1, which grow the trees in height from the point five years after establishment to the end of the cycle.

Seedlings and sprouts are passed to the main FVS model at the end of the growth cycle in which regeneration is established. Unless noted above, seedlings being passed are subject to minimum and maximum height constraints and a minimum budwidth constraint shown in table 6.0.1. After seedling height is estimated, diameter growth is estimated using equations described in section 4.6.2. Crown ratios on newly established trees are estimated as described in section 4.3.1.

Regenerated trees and sprouts can be identified in the treelist output file with tree identification numbers beginning with the letters "ES".

7.0 Volume

In the EC variant, volume is calculated for three merchantability standards: total stem cubic feet, merchantable stem cubic feet, and merchantable stem board feet (Scribner). Volume estimation is based on methods contained in the National Volume Estimator Library maintained by the Forest Products Measurements group in the Forest Management Service Center (Volume Estimator Library Equations 2009). The default volume merchantability standards and equation numbers for the EC variant are shown in tables 7.0.1-7.0.3.

Table 7.0.1 Volume merchantability standards for the EC variant.

Merchantable Cubic Foot Volume Specifications:								
Minimum DBH / Top Diameter	LP	All Other Species						
All location codes	6.0 / 4.5 inches	7.0 / 4.5 inches						
Stump Height	1.0 foot	1.0 foot						
Merchantable Board Foot Volume Specification	ons:							
Minimum DBH / Top Diameter	LP	All Other Species						
All location codes	6.0 / 4.5 inches	7.0 / 4.5 inches						
Stump Height	1.0 foot	1.0 foot						

Table 7.0.2 Volume equation defaults for each species, at specific location codes, with model name.

Common Name	Location Code	Equation Number	Reference
western white pine	All	616BEHW119	Behre's Hyperbola
western larch	608, 617	I12FW2W122	Flewelling's 2-Point Profile Model
western larch	606, 699	616BEHW073	Behre's Hyperbola
Douglas-fir	606	F05FW2W202	Flewelling's 2-Point Profile Model
Douglas-fir	608, 617	I12FW2W202	Flewelling's 2-Point Profile Model
Douglas-fir	699	616BEHW202	Behre's Hyperbola
Pacific silver fir	606	I12FW2W017	Flewelling's 2-Point Profile Model
Pacific silver fir	608, 617	616BEHW011	Behre's Hyperbola
Pacific silver fir	699	616BEHW011	Behre's Hyperbola
western redcedar	All	616BEHW242	Behre's Hyperbola
grand fir	606	I13FW2W017	Flewelling's 2-Point Profile Model
grand fir	608, 617	I11FW2W017	Flewelling's 2-Point Profile Model
grand fir	699	616BEHW017	Behre's Hyperbola
lodgepole pine	606	I11FW2W108	Flewelling's 2-Point Profile Model
lodgepole pine	608, 617	I12FW2W108	Flewelling's 2-Point Profile Model
lodgepole pine	699	616BEHW108	Behre's Hyperbola
Engelmann spruce	606	I11FW2W093	Flewelling's 2-Point Profile Model
Engelmann spruce	608, 617	I11FW2W093	Flewelling's 2-Point Profile Model

Common Name	Location Code	Equation Number	Reference
Engelmann spruce	699	616BEHW093	Behre's Hyperbola
subalpine fir	All	616BEHW019	Behre's Hyperbola
ponderosa pine	606, 608, 617	I12FW2W122	Flewelling's 2-Point Profile Model
ponderosa pine	699	616BEHW122	Behre's Hyperbola
western hemlock	606	I11FW2W260	Flewelling's 2-Point Profile Model
western hemlock	608, 617, 699	616BEHW263	Behre's Hyperbola
mountain hemlock	All	616BEHW264	Behre's Hyperbola
Pacific yew	All	616BEHW231	Behre's Hyperbola
whitebark pine	All	616BEHW101	Behre's Hyperbola
noble fir	606	I13FW2W017	Flewelling's 2-Point Profile Model
noble fir	608, 617, 699	616BEHW022	Behre's Hyperbola
white fir	All	616BEHW015	Behre's Hyperbola
subalpine larch	All	616BEHW072	Behre's Hyperbola
Alaska cedar	All	616BEHW042	Behre's Hyperbola
western juniper	All	616BEHW064	Behre's Hyperbola
bigleaf maple	All	616BEHW312	Behre's Hyperbola
vine maple	All	616BEHW000	Behre's Hyperbola
red alder	All	616BEHW351	Behre's Hyperbola
paper birch	All	616BEHW375	Behre's Hyperbola
giant chinquapin	All	616BEHW431	Behre's Hyperbola
Pacific dogwood	All	616BEHW492	Behre's Hyperbola
quaking aspen	All	616BEHW746	Behre's Hyperbola
black cottonwood	All	616BEHW747	Behre's Hyperbola
Oregon white oak	All	616BEHW815	Behre's Hyperbola
cherry and plum species	All	616BEHW000	Behre's Hyperbola
willow species	All	616BEHW920	Behre's Hyperbola
other softwoods	All	616BEHW298	Behre's Hyperbola
other hardwoods	All	616BEHW998	Behre's Hyperbola

Table 7.0.3 Citations by Volume Model

Model Name	Citation
Behre's	USFS-R6 Sale Preparation and Valuation Section of Diameter and Volume
Hyperbola	Procedures - R6 Timber Cruise System. 1978.
Flewelling's 2-	Unpublished. Based on work presented by Flewelling and Raynes. 1993. Variable-
Point Profile	shape stem-profile predictions for western hemlock. Canadian Journal of Forest
Model	Research Vol 23. Part I and Part II.

8.0 Fire and Fuels Extension (FFE-FVS)

The Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) (Reinhardt and Crookston 2003) integrates FVS with models of fire behavior, fire effects, and fuel and snag dynamics. This allows users to simulate various management scenarios and compare their effect on potential fire hazard, surface fuel loading, snag levels, and stored carbon over time. Users can also simulate prescribed burns and wildfires and get estimates of the associated fire effects such as tree mortality, fuel consumption, and smoke production, as well as see their effect on future stand characteristics. FFE-FVS, like FVS, is run on individual stands, but it can be used to provide estimates of stand characteristics such as canopy base height and canopy bulk density when needed for landscape-level fire models.

For more information on FFE-FVS and how it is calibrated for the EC variant, refer to the updated FFE-FVS model documentation (Rebain, comp. 2010) available on the FVS website.

9.0 Insect and Disease Extensions

FVS Insect and Pathogen models for dwarf mistletoe and western root disease have been developed for the EC variant through the participation and contribution of various organizations led by Forest Health Protection. These models are currently maintained by the Forest Management Service Center and regional Forest Health Protection specialists. Additional details regarding each model may be found in chapter 8 of the Essential FVS Users Guide (Dixon 2002).

10.0 Literature Cited

- Alexander, R.R., Tackle, D., and Dahms, W.G. 1967. Site Indices for Engelmann Spruce. Res. Pap. RM-32. Forest Service, Rocky Mountain Research Station.
- Alexander, R.R., Tackle, D., and Dahms, W.G. 1967. Site Indices for Lodgepole Pine with Corrections for Stand Density Methodology. Res. Pap. RM-29. Forest Service, Rocky Mountain Research Station. 18 p.
- Arney, J. D. 1985. A modeling strategy for the growth projection of managed stands. Canadian Journal of Forest Research. 15(3):511-518.
- Barrett, James W. 1978. Height growth and site index curves for managed, even-aged stands of ponderosa pine in the Pacific Northwest. Res. Pap. PNW-232. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 14 p.
- Bjorkbom, John C. 1972. Stand changes in the first 10 years after seedbed preparation for paper birch. USDA Forest Service, Research Paper NE-238. Northeastern Forest Experiment Station, Upper Darby, PA. 10 p.
- Brickell, James E. 1970. Equations and Computer subroutines for Estimating Site Quality of Eight Rocky Mounatin Species. Res. Pap. INT-75. Ogden, UT: Forest Service, Intermounatin Forest and Range Experimnet Station. 24 p.
- Burns, R. M., & Honkala, B. H. 1990. Silvics of North America: 1. Conifers; 2. Hardwoods Agriculture Handbook 654. US Department of Agriculture, Forest Service, Washington, DC.
- Cochran, P.H. 1979. Site index and height growth curves for managed, even-aged stands of white or grand fir east of the Cascades in Oregon and Washington. Res. Pap. PNW-251. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 16 p.
- Cochran, P.H. 1979. Site index and height growth curves for managed, even-aged stands of white or grand fir east of the Cascades in Oregon and Washington. Res. Pap. PNW-252. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 13 p.
- Cochran, P. H. 1985. Site index, height growth, normal yields, and stocking levels for larch in Oregon and Washington. Res. Note PNW-424. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 13 p.
- Cole, D. M.; Stage, A. R. 1972. Estimating future diameters of lodgepole pine. Res. Pap. INT-131. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 20p.
- Crookston, Nicholas L. 2003. Internal document on file. Data provided from Region 1. Moscow, ID: Forest Service.
- Crookston, Nicholas L. 2005. Draft: Allometric Crown Width Equations for 34 Northwest United States

 Tree Species Estimated Using Generalized Linear Mixed Effects Models.
- Crookston, Nicholas L. 2008. Internal Report.

- Curtis, Robert O. 1967. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Science 13(4):365-375.
- Curtis, Robert O.; Herman, Francis R.; DeMars, Donald J. 1974. Height growth and site index for Douglas-fir in high-elevation forests of the Oregon-Washington Cascades. Forest Science 20(4):307-316.
- DeMars, Donald J., Francis R. Herman, and John F. Bell. 1970. Preliminary site index curves for noble fir From stem analysis data. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station, Res. Note PNW-119. 9p.
- Dixon, G. E. 1985. Crown ratio modeling using stand density index and the Weibull distribution. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 13p.
- Dixon, Gary E. comp. 2002 (revised frequently). Essential FVS: A user's guide to the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Forest Management Service Center.
- Donnelly, Dennis M., Betters, David R., Turner, Matthew T., and Gaines, Robert E. 1992. Thinning evenaged forest stands: Behavior of singular path solutions in optimal control analyses. Res. Pap. RM-307. Fort Collins, CO: Forest Service. Rocky Mountain Forest and Range Experiment Station. 12 p.
- Unpublished. Based on work presented by Flewelling and Raynes. 1993. Variable-shape stem-profile predictions for western hemlock. Canadian Journal of Forest Research Vol 23. Part I and Part II.
- Gom, L. A., & Rood, S. B. (2000). Fire induces clonal sprouting of riparian cottonwoods. Canadian Journal of Botany, 77(11), 1604-1616.
- Gucker, Corey L. 2005. Cornus nuttallii. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Gucker, Corey L. 2007. Quercus garryana. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Hall, Frederick C. 1983. Growth basal area: a field method for appraising forest site productivity for stockability. Can. J. For. Res. 13:70-77.
- Harrington, Constance A. 1984. Factors influencing initial sprouting of red alder. Canadian Journal of Forest Research. 14: 357-361.
- Harrington, Constance A.; Curtis, Robert O. 1986. Height growth and site index curves for red alder. Res. Pap. PNW-358. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 14 p.
- Harrington, T. B., Tappeiner, I. I., John, C., & Warbington, R. 1992. Predicting crown sizes and diameter distributions of tanoak, Pacific madrone, and giant chinkapin sprout clumps. Western Journal of Applied Forestry, 7(4), 103-108.

- Hegyi, R.P.F., J.J. Jelinek, J. Viszlai and D.B. Carpenter. 1979. Site index equations and curves for the major species in British Columbia. For. Inv. Rep. No. 1. Ministry of Forests, Inventory Branch, 1450 Government Street, Victoria, B.C. V8W 3E7
- Herman, Francis R.; Curtis, Robert O.; DeMars, Donald J. 1978. Height growth and site index estimates for noble fir in high-elevation forests of the Oregon-Washington Cascades. Res. Pap. PNW-243. Portland, OR: Forest Service, Pacific Northwest Forest and Range Experiment Station. 15 p.
- Hutnik, Russell J., and Frank E. Cunningham. 1965. Paper birch (Betula papyrifera Marsh.). In Silvics of forest trees of the United States. p. 93-98. H. A. Fowells, comp. U.S. Department of Agriculture, Agriculture Handbook 271. Washington, DC.
- Keyser, C.E. 2001. Quaking Aspen Sprouting in Western FVS Variants: A New Approach. Unpublished Manuscript.
- King, James E. 1966. Site index curves for Douglas-fir in the Pacific Northwest. Weyerhaeuser Forestry Paper No. 8. Centralia, WA. Weyerhaeuser Forestry Research Center. 49p.
- Krajicek, J.; Brinkman, K.; Gingrich, S. 1961. Crown competition a measure of density. Forest Science. 7(1):35-42
- Means, J.F., M.H. Campbell, and G.P. Johnson. 1986. Preliminary height growth and site index curves for mountain hemlock. FIR Report, Vol 10, No.1. Corvallis, OR: Oregon State University.
- Meyer, Rachelle. 2012. Chrysolepis chrysophylla. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Rebain, Stephanie A. comp. 2010 (revised frequently). The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated Model Documentation. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center. 379 p.
- Reinhardt, Elizabeth; Crookston, Nicholas L. (Technical Editors). 2003. The Fire and Fuels Extension to the Forest Vegetation Simulator. Gen. Tech. Rep. RMRS-GTR-116. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 209 p.
- Roy, D. F. 1955. Hardwood sprout measurements in northwestern California. Forest Research Notes. California Forest and Range Experiment Station, (95).
- Stage, A. R. 1973. Prognosis Model for stand development. Res. Paper INT-137. Ogden, UT: U. S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 32p.
- Steinberg, Peter D. 2001. Populus balsamifera subsp. trichocarpa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Tappeiner, I. I., John, C., Zasada, J., Huffman, D., & Maxwell, B. D. 1996. Effects of cutting time, stump height, parent tree characteristics, and harvest variables on development of bigleaf maple sprout clumps. Western Journal of Applied Forestry, 11(4), 120-124.

- Uchytil, Ronald J. 1989. Acer circinatum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer).
- Uchytil, Ronald J. 1989. Alnus rubra. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
- USFS-R6 Sale Preparation and Valuation Section of Diameter and Volume Procedures R6 Timber Cruise System. 1978.
- Van Dyck, Michael G.; Smith-Mateja, Erin E., comps. 2000 (revised frequently). Keyword reference guide for the Forest Vegetation Simulator. Internal Rep. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Forest Management Service Center.
- Wiley, Kenneth N. 1978. Site index tables for western hemlock in the Pacific Northwest. For. Pap. No. 17. Centralia, WA: Weyerhaeuser Forestry Research Center. 28 p.
- Wykoff, W. R. 1990. A basal area increment model for individual conifers in the northern Rocky Mountains. For. Science 36(4): 1077-1104.
- Wykoff, William R., Crookston, Nicholas L., and Stage, Albert R. 1982. User's guide to the Stand Prognosis Model. Gen. Tech. Rep. INT-133. Ogden, UT: Forest Service, Intermountain Forest and Range Experiment Station. 112p.

11.0 Appendices

11.1 Appendix A. Distribution of Data Samples

The following tables contain distribution information of data used to fit species relationships in this variant's geographic region (information from original variant overview).

Table 11.1.1. Distribution of samples by National Forest, expressed in whole percent of total observations for each species.

			National Fore	st		
Species	Gifford- Pinchot	Mt. Hood	Okanogan	Wenatche	OK- Tonasket RD	Total Number of Observations
•			Okanogan	e		_
western white pine	0	0	0	0	0	0
western larch	1	15	8	55	20	652
Douglas-fir	7	22	12	55	5	6249
Pacific silver fir	20	31	2	47	0	1210
western redcedar	0	0	0	0	0	0
grand fir	3	24	<1	73	0	1950
lodgepole pine	3	17	25	50	5	1479
Engelmann spruce	6	4	49	38	3	623
subalpine fir	6	3	33	57	1	729
ponderosa pine	1	30	4	63	1	4040
other species	14	43	4	39	0	1443

Table 11.1.2. Distribution of samples for diameter breast high, expressed in whole percent of total observations for each species.

		DBH Range							
Species	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40+
western white									
pine	0	0	0	0	0	0	0	0	0
western larch	<1	16	22	22	15	9	6	5	4
Douglas-fir	1	16	22	21	16	10	6	3	4
Pacific silver fir	<1	16	20	21	18	10	7	4	3
western redcedar	0	0	0	0	0	0	0	0	0
grand fir	1	19	27	25	14	7	4	1	2
lodgepole pine	<1	50	33	12	4	1	<1	0	0
Engelmann spruce	0	22	25	22	15	8	5	2	1
subalpine fir	<1	38	36	18	5	2	1	<1	0
ponderosa pine	<1	13	18	21	20	13	7	4	3
other species	<1	13	25	24	19	9	4	2	2

Table 11.1.3. Distribution of samples by Crown Ratio group, expressed in whole percent of total observations for each species.

		Crown Code (1=1-10,2=11-20,,9=81-100)								
Species	1	2	3	4	5	6	7	8	9	
western white										
pine	0	0	0	0	0	0	0	0	0	
western larch	4	9	24	27	20	11	4	1	<1	
Douglas-fir	1	6	16	22	20	16	10	6	3	
Pacific silver fir	2	8	19	24	21	14	9	3	<1	
western redcedar	0	0	0	0	0	0	0	0	0	
grand fir	2	8	18	21	18	15	10	6	3	
lodgepole pine	3	14	28	20	14	9	6	4	2	
Engelmann										
spruce	<1	2	7	14	18	20	18	15	5	
subalpine fir	2	3	9	17	20	20	16	8	4	
ponderosa pine	2	8	18	23	20	16	8	3	1	
other species	<1	4	9	18	20	18	14	9	7	

Table 11.1.4. Distribution of samples by Aspect Code, expressed in percent of total observations for each species.

				Α	spect Cod	le			
		North-		South-		South-		North-	
Species	North	east	East	east	South	west	West	west	Level
western white									
pine	0	0	0	0	0	0	0	0	0
western larch	16	15	6	8	5	2	7	7	34
Douglas-fir	13	11	10	8	8	8	10	9	24
Pacific silver fir	19	12	11	11	11	10	6	10	10
western redcedar	0	0	0	0	0	0	0	0	0
grand fir	12	8	6	8	6	7	3	5	45
lodgepole pine	14	13	7	10	11	8	7	8	23
Engelmann									
spruce	14	13	3	7	6	13	6	11	27
subalpine fir	20	14	6	9	8	7	11	10	14
ponderosa pine	9	7	6	6	7	7	4	4	50
other species	18	15	15	9	6	10	5	14	10

Table 11.1.5. Distribution of samples by total stand basal area per acre, expressed in percent of total for each species.

		Basal Area									
		100- 150- 200- 250- 300- 350-									
Species	0-50	50-100	150	200	250	300	350	400	<u>> 400</u>		

				ı	Basal Area	a			
Species	0-50	50-100	100- 150	150- 200	200- 250	250- 300	300- 350	350- 400	<u>></u> 400
western white									
pine	0	0	0	0	0	0	0	0	0
western larch	5	21	29	17	11	9	6	<1	2
Douglas-fir	14	23	22	14	11	7	5	2	2
Pacific silver fir	4	8	6	13	19	22	14	7	6
western redcedar	0	0	0	0	0	0	0	0	0
grand fir	5	15	20	18	18	15	5	3	5
lodgepole pine	10	21	34	20	9	4	1	1	<1
Engelmann									
spruce	2	10	17	29	22	12	7	1	<1
subalpine fir	1	10	19	25	28	10	6	1	<1
ponderosa pine	14	35	29	14	5	2	<1	<1	0
other species	6	12	11	14	16	20	11	5	4

Table 11.1.6. Distribution of samples by diameter growth, expressed in percent for each species.

	Diameter Growth (inches/10 years)										
Species	< 0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	<u>></u> 3.5			
western white											
pine	0	0	0	0	0	0	0	0			
western larch	51	34	11	3	1	<1	0	0			
Douglas-fir	27	33	20	13	6	2	1	<1			
Pacific silver fir	35	38	17	6	3	<1	<1	<1			
western redcedar	0	0	0	0	0	0	0	0			
grand fir	16	34	23	13	7	3	2	2			
lodgepole pine	42	42	12	3	<1	<1	<1	<1			
Engelmann											
spruce	32	39	16	8	3	1	<1	<1			
subalpine fir	36	43	16	3	1	1	0	0			
ponderosa pine	23	34	25	10	5	2	<1	<1			
other species	38	41	15	5	1	<1	0	<1			

Table 11.1.7. Distribution of samples by elevation, expressed in percent for each species.

		Elevation									
Species	< 3000	3000-4000	4000-5000	5000-6000	<u>></u> 6000						
western white											
pine	0	0	0	0	0						
western larch	2	28	41	29	<1						
Douglas-fir	26	37	29	8	<1						
Pacific silver fir	3	25	56	16	0						

	Elevation								
Species	< 3000	3000-4000	4000-5000	5000-6000	<u>></u> 6000				
western redcedar	0	0	0	0	0				
grand fir	12	38	35	15	0				
lodgepole pine	5	14	34	39	8				
Engelmann spruce	4	11	34	33	18				
subalpine fir	<1	5	30	50	16				
ponderosa pine	37	40	18	4	<1				
other species	4	33	41	21	2				

11.2 Appendix B. Plant Association Codes

Table 11.2.1 Plant association codes recognized in the EC variant.

### HPL/ACTR ### Western redcedar/vanilla leaf ### CCF212	FVS Sequence Number = Plant						
1 - PIAL/CARU	Association	Alpha	Site	Site	Max.		
1 = PNAI/CARU	Species Type		Species	Index*	SDI*	Source*	Reference
2 = PIAL/VASC/LUHI	1 = PIAL/CARU		•				PNW-GTR-360
2 = PIAL/VASC/LUHI Whitebark pine/grouse huckleberry/smooth woodrush CAS311 AF	Whitebark pine/pinegrass	CAG112	DF	25	625	С	p. 262
Whitebark pine/grouse huckleberry/smooth woodrush CAS311 AF 45 700 C P. 248	, .						PNW-GTR-359
3 = THPL-ABGR/ACTR Western redcedar-grand fir/vanilla leaf CCF211 DF 72 850 H R6 E TP-004-88 p. 115	· · · ·	CAS311	AF	45	700	С	p. 248
### HPIL/ACTR ### Western redcedar/valilal leaf ### CCF212 GF 71 1016 H R6 E TP-006-88 p. 93 ### Western redcedar/queencup beadily ### CCF221 DF 64 840 C p. 246 ### EFT-006-88 p. 93 ### PNW-GTR-360 ### Western redcedar/queencup beadily ### CCF222 DF 69 670 C p. 246 ### PNW-GTR-360 ### CCF222 DF 69 670 C p. 240 ### PNW-GTR-360 ### PN	·						
Western redcedar/vanilla leaf	Western redcedar-grand fir/vanilla leaf	CCF211	DF	72	850	Н	R6 E TP-004-88 p. 115
S = THPL/CLUN Western redecedar/queencup beadily CCF221 DF 64 840 C PNW-GTR-360 P. 246 E = THPL/ARNU3 C = THPL/ARNU3 CCF222 DF 69 670 C PNW-GTR-360 P. 246 E = THPL/ARNU3 CCF222 DF 69 670 C PNW-GTR-360 P. 240 PNW-GTR-360 P. 240 PNW-GTR-360 P. 240 PNW-GTR-360 P. 240 PNW-GTR-360 P. 251 PNW-GTR-360 P. 256	4 = THPL/ACTR						
Western redcedar/queencup beadily	Western redcedar/vanilla leaf	CCF212	GF	71	1016	Н	R6 E TP-006-88 p. 93
6 = THPL/ARNU3 Western redcedar/wild sarsaparilla CCF222 DF 69 670 C PNW-GTR-360 p. 240 PNW-GTR-360 p. 240 PNW-GTR-360 p. 240 PNW-GTR-360 p. 251 PNW-GTR-360 PNW-GTR-360 p. 251 PNW-GTR-360 p. 251 PNW-GTR-360 p. 251 PNW-GTR-360 p. 256 PNW-GTR-359 p. 256 PNW-GTR-359 p. 256 PNW-GTR-359 p. 257 PNW-GTR-359 p. 257 PNW-GTR-359 p. 27 11 = PSME/CARU-O&C Douglas-fir/pearpass (Okanogan) CDG123 DF S8 S30 C PNW-GTR-360 p. 49 PNW-GTR-360 p. 49 PNW-GTR-360 p. 49 PNW-GTR-360 p. 49 PNW-GTR-359 pouglas-fir/plek sedge (Wenatchee) CDG131 DF S8 S30 C PNW-GTR-359 PNW-GTR-359 pouglas-fir/plek sedge (Wenatchee) Douglas-fir/plek sedge (Wenatchee) Douglas-fir/plek sedge (Wenatchee) Douglas-fir/plek sedge CDG141 DF S5 442 H R6 E TP-004-88 p. 51 T5 = PIPO-PSME/AGSP POnderosa pine-Douglas-fir/bluebunch wheatgrass CDG311 PP 79 270 C PNW-GTR-359 PNW-GTR-359 PNW-GTR-359 PNW-GTR-360 PNW-GTR-359 PNW-GTR-359	5 = THPL/CLUN						PNW-GTR-360
Western redcedar/wild sarsaparilla	Western redcedar/queencup beadily	CCF221	DF	64	840	С	p. 246
7 = THPL/OPHO Western redcedar/devii's club CCS211 RC 96 775 C p. 251 8 = THPL/VAME Western redcedar/devii's club CCS211 DF 63 815 C p. 256 9 = PSME/PEFR3 Douglas-fir/brubby penstemon CDF411 DF 58 229 H p. 82 Douglas-fir/brubby penstemon CDF411 DF 58 229 H p. 82 T1 = PSME/CARU-O&AN Douglas-fir/bearberry (Okanogan) CDG123 DF 38 331 H p. 27 T1 = PSME/CARU-O&C Douglas-fir/pinegrass (Okanogan & Colville) CDG131 DF 58 530 C p. NW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-359 POUGlas-fir/pinegrass-bluebunch wheatgrass CDG131 DF 58 530 C p. 64 Ta = PSME/CARU-AGSP Douglas-fir/pinegrass-bluebunch wheatgrass CDG134 DF 69 550 C PNW-GTR-359 PNW-GTR-359 PNW-GTR-359 Pn 64 Ta = PSME/CAGE Douglas-fir/bluebunch wheatgrass CDG141 DF 55 442 H R6 E TP-004-88 p. 51 T5 = PIPO-PSME/AGSP PONDEGRAFIV/bluebunch wheatgrass CDG311 PP 79 270 C p. 44 T6 = PSME/CAGE Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG322 DF 39 235 C PNW-GTR-359 Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG323 DF 58 188 H p. 86 E TP-004-88 p. 59 Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H p. 86 E TP-004-88 p. 59 Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H p. 80 676 H R6 E TP-004-88 p. 59	6 = THPL/ARNU3						PNW-GTR-360
Western redcedar/devil's club	Western redcedar/wild sarsaparilla	CCF222	DF	69	670	C	p. 240
### STHPL/VAME Western redcedar/big huckleberry	7 = THPL/OPHO					_	PNW-GTR-360
Western redcedar/big huckleberry	Western redcedar/devil's club	CCS211	RC	96	775	C	p. 251
9 = PSME/PERR3 Douglas-fir/shrubby penstemon CDF411 DF 58 229 H p. 82 R6 E 132b-83 Douglas-fir/bearberry (Okanogan) CDG123 DF 38 331 H p. 27 T1 = PSME/CARU-O&C Douglas-fir/pinegrass (Okanogan & Colville) CDG131 DF 58 530 C p. 49 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-360 PNW-GTR-359 Douglas-fir/pinegrass (Okanogan & Colville) CDG132 DF 69 550 C p. 60 T1 = PSME/CARU-AGSP Douglas-fir/pinegrass-bluebunch wheatgrass CDG134 DF 61 430 C p. 64 T4 = PSME/CAGE Douglas-fir/elk sedge CDG141 DF 55 442 DF 67 649 Douglas-fir/bluebunch wheatgrass CDG311 PP 79 270 C p. 44 R6 E TP-004-88 p. 51 T1 = PSME/AGSP-WEN Douglas-fir/western fescue CDG322 DF 39 235 C p. 58 T8 = PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG323 DF 58 188 DF 67 AG9 PNW-GTR-359 PNW-GTR-	8 = THPL/VAME					_	PNW-GTR-360
Douglas-fir/shrubby penstemon	Western redcedar/big huckleberry	CCS311	DF	63	815	C	p. 256
Douglas-fir/bearberry (Okanogan) CDG123 DF 38 331 H PNW-GTR-360 PNW-GTR-359 PNW-GTR-360 PNW-GT	9 = PSME/PEFR3						PNW-GTR-359
Douglas-fir/bearberry (Okanogan) CDG123 DF 38 331 H p. 27	Douglas-fir/shrubby penstemon	CDF411	DF	58	229	Н	p. 82
The post of the	10 = PSME/ARUV-OKAN						R6 E 132b-83
Douglas-fir/pinegrass (Okanogan & Colville) CDG131 DF 58 530 C p. 49 12 = PSME/CAGE-WEN Douglas-fir/elk sedge (Wenatchee) CDG132 DF 69 550 C 13 = PSME/CAGE DF 69 550 C PNW-GTR-359 14 = PSME/CAGE DF 61 430 C PNW-GTR-359 14 = PSME/CAGE DF 61 430 C PNW-GTR-359 15 = PIPO-PSME/AGSP Douglas-fir/elk sedge CDG141 DF 55 442 H R6 E TP-004-88 p. 51 15 = PIPO-PSME/AGSP DF 67 649 H R6 E TP-004-88 p. 55 17 = PSME/FEOC Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG321 DF 67 649 H R6 E TP-004-88 p. 55 18 = PSME/AGSP-WEN Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG322 DF 39 235 C PNW-GTR-359 19 = PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H PNW-GTR-359 19 = PSME/HODI/CAGE Douglas-fir/oceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF R6 TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF TP-004-88 p.	Douglas-fir/bearberry (Okanogan)	CDG123	DF	38	331	Н	p. 27
12 = PSME/CAGE-WEN	·					_	
Douglas-fir/elk sedge (Wenatchee)	<u> </u>	CDG131	DF	58	530	C	'
Tale PSME/CARU-AGSP Douglas-fir/pinegrass-bluebunch wheatgrass CDG134 DF 61 430 C PNW-GTR-359 p. 64 PNW-GTR-359 p. 64 H R6 E TP-004-88 p. 51 The PSME/AGSP Ponderosa pine-Douglas-fir/bluebunch wheatgrass CDG311 DF The PSME/AGSP The PSME/AGSP The PSME/AGSP-WEN Douglas-fir/bluebunch wheatgrass (Wenatchee) The PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass-podfern The PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass-podfern The PSME/HODI/CAGE Douglas-fir/oceanspray/elk sedge CDS231 DF The PSME/ACCI/FEOC The PSME/ACCI/FEOC The PSME/ACCI/FEOC The PSME/ACCI/FEOC The PSME/AGSP The PSME/AGSP The PSME/AGSP The PSME/ACCI/FEOC The PSME/AGSP The The TSME/AGSP The PSME/AGSP The PSME/	12 = PSME/CAGE-WEN					_	
Douglas-fir/pinegrass-bluebunch wheatgrass CDG134 DF 61 430 C p. 64 14 = PSME/CAGE Douglas-fir/elk sedge CDG141 DF 55 442 H R6 E TP-004-88 p. 51 15 = PIPO-PSME/AGSP Ponderosa pine-Douglas-fir/bluebunch wheatgrass CDG311 PP 79 270 C p. 44 16 = PSME/FEOC Douglas-fir/western fescue CDG321 DF 67 649 H R6 E TP-004-88 p. 55 17 = PSME/AGSP-WEN Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG322 DF 39 235 C PNW-GTR-359 Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H PNW-GTR-359 Douglas-fir/loceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC DF 80 676 H R6 E TP-004-88 p. 59	<u> </u>	CDG132	DF	69	550	C	· -
## PSME/CAGE Douglas-fir/elk sedge	•					_	
Douglas-fir/elk sedge		CDG134	DF	61	430	C	p. 64
The color of the	•					ы	
Ponderosa pine-Douglas-fir/bluebunch wheatgrass CDG311 PP 79 270 C p. 44 16 = PSME/FEOC Douglas-fir/western fescue CDG321 DF 67 649 H R6 E TP-004-88 p. 55 17 = PSME/AGSP-WEN Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG322 DF 39 235 C p. 58 18 = PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H PNW-GTR-359 p. 80 19 = PSME/HODI/CAGE Douglas-fir/oceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC	<u> </u>	CDG141	DF	55	442	П	
The control of the							
Douglas-fir/western fescue CDG321 DF 67 649 H R6 E TP-004-88 p. 55 17 = PSME/AGSP-WEN Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG322 DF 39 235 C PNW-GTR-359 p. 58 18 = PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H PNW-GTR-359 p. 80 19 = PSME/HODI/CAGE Douglas-fir/oceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC CDS231 DF 80 676 H R6 E TP-004-88 p. 59	<u> </u>	CDG311	PP	79	270	C	p. 44
17 = PSME/AGSP-WEN Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG322 DF 39 235 C PNW-GTR-359 p. 58 18 = PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC	•	CD C333	55	67	640	н	DC E TD 004 00
Douglas-fir/bluebunch wheatgrass (Wenatchee) CDG322 DF 39 235 C p. 58 PNW-GTR-359 p. 80 PNW-GTR-359 PNW-GTR-359 p. 80 PNW-GTR-359 p.		CDG321	DF	67	649	11	
18 = PSME/AGSP-ASDE Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF S8 188 H PNW-GTR-359 p. 80 19 = PSME/HODI/CAGE Douglas-fir/oceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC	•	CDC333	D.F.	20	225	(
Douglas-fir/bluebunch wheatgrass-podfern CDG323 DF 58 188 H p. 80 19 = PSME/HODI/CAGE Douglas-fir/oceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC		CDG322	DF	39	235		<u> </u>
19 = PSME/HODI/CAGE Douglas-fir/oceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59	•	CDG333	DE	EO	100	н	
Douglas-fir/oceanspray/elk sedge CDS231 DF 80 676 H R6 E TP-004-88 p. 59 20 = PSME/ACCI/FEOC		CDG323	DF	58	199	- ''	μ. ου
20 = PSME/ACCI/FEOC	·	CD\$334	DE	90	676	н	DC E TD 004 99 5 50
	9	CD3231	DF	80	0/0		NO E 17-004-88 β. 59
Douglas tir Alina mania Awastorn tassua CDS2A1 DE 76 720 D DE ETD AAE 00 n AE	20 = PSME/ACCI/FEOC Douglas-fir/vine maple/western fescue	CDS241	DF	76	720	Н	R6 E TP-006-88 p. 45

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
21 = PSME/PAMY-		opec.es	u.c.x	J	000.00	R6 E 132b-83
Douglas-fir/pachistima (Okanogan)	CDS411	DF	59	630	С	p. 41
22 = PSME/PAMY/CARU						PNW-GTR-359
Douglas-fir/pachistima/pinegrass	CDS412	DF	57	450	С	p. 81
23 = PSME/ARUV-PUTR						R6 E 132b-83
Douglas-fir/bearberry-bitterbrush	CDS631	DF	45	232	Н	p. 24
24 = PSME/SYOR-O&C						PNW-GTR-360
Douglas-fir/Mt. snowberry (Okanogan and Colville)	CDS632	DF	54	400	С	p. 71
25 = PSME/SYAL						PNW-GTR-360
Douglas-fir/common snowberry	CDS633	DF	81	475	С	p. 66
26 = PSME/SYAL-WEN					_	PNW-GTR-359
Douglas-fir/common snowberry (Wenatchee)	CDS636	DF	80	580	С	p. 72
27 = PSME/SYAL/AGSP					_	PNW-GTR-359
Douglas-fir/common snowberry/bluebunch wheatgrass	CDS637	DF	67	325	С	p. 74
28 = PSME/SYAL/CARU					_	PNW-GTR-359
Douglas-fir/common snowberry/pinegrass	CDS638	DF	77	425	С	p. 76
29 = PSME/SPBEL/CARU					С	PNW-GTR-359
Douglas-fir/shiny-leaf spirea/pinegrass	CDS639	DF	65	550	C	p. 70
30 = PSME/SPBEL	000000				С	PNW-GTR-359
Douglas-fir/shiny-leaf spirea	CDS640	DF	68	555	C	p. 82
31 = PSME/ARUV-WEN	CDCCE3	DE	27	460	С	PNW-GTR-359
Douglas-fir/bearberry (Wenatchee)	CDS653	DF	37	460	C	p. 80
32 = PSME/ARUV-PUTR	CDS654	DF	51	375	С	PNW-GTR-359
Douglas-fir/bearberry-bitterbrush 33 = PSME/ARUV/CARU	CD3654	DF	21	3/3		p. 81 PNW-GTR-359
55 = PSIVIE/AROV/CARO Douglas-fir/bearberry/pinegrass	CDS655	DF	40	370	С	p. 80
34 = PSME/SYAL-MTH	CD3033	DF	40	370		μ. ου
Douglas-fir/common snowberry (Mt Hood)	CDS661	DF	84	767	Н	R6 E TP-004-88 p. 67
35 = PSME/ARNE	CD3001	Di	04	707		10 E 11 00 + 00 p. 07
Douglas-fir/pinemat manzanita	CDS662	DF	51	1118	Н	R6 E TP-004-88 p. 63
36 = PSME/PUTR	020002		32	1110		PNW-GTR-359
Douglas-fir/bitterbursh	CDS673	DF	50	525	С	p. 82
37 = PSME/PUTR/AGSP				0.00		PNW-GTR-359
Douglas-fir/bitterbursh/bluebunch wheatgrass	CDS674	DF	62	305	С	p. 66
38 = PSME/PUTR/CARU						PNW-GTR-359
Douglas-fir/bitterbrush/pinegrass	CDS675	DF	58	370	С	p. 68
39 = PSME/PHMA-O&C					_	PNW-GTR-360
Douglas-fir/ninebark (Okanogan & Colville)	CDS715	DF	63	470	С	p. 55
40 = PSME/PHMA-LIBOL					_	PNW-GTR-360
Douglas-fir/ninebark-twinflower	CDS716	DF	60	600	С	p. 61
41 = PSME/VACCI						R6 E 132b-83
Douglas-fir/huckleberry	CDS811	DF	51	397	Н	p. 33
42 = PSME/VACA-COL					_	PNW-GTR-360
Douglas-fir/dwarf huckleberry (Colville)	CDS813	WL	66	600	С	p. 76
43 = PSME/VAME-COLV					6	PNW-GTR-360
Douglas-fir/big huckleberry (Colville)	CDS814	DF	66	585	С	p. 82
44 = PSME/VACA						PNW-GTR-359
Douglas-fir/dwarf huckleberry	CDS831	DF	60	362	Н	p. 82
45 = PSME/VAME-WEN					_	PNW-GTR-359
Douglas-fir/big huckleberry (Wenatchee)	CDS832	DF	53	530	С	p. 83
46 = PSME/VAMY/CARU					C	PNW-GTR-359
Douglas-fir/low huckleberry/pinegrass	CDS833	DF	48	265	С	p. 83
47 = ABLA2/XETE	0==			225	С	PNW-GTR-360
Subalpine fir/beargrass	CEF111	AF	54	905	C	p. 178
48 = ABLA2/LIBOL-O&C				505	С	PNW-GTR-360
Subalpine fir/twinflower (Okanogan & Colville)	CEF211	AF	80	685		p. 141
49 = ABLA2/LIBOL-WEN	05-222	50	60	700	С	PNW-GTR-359
Subalpine fir/twinflower (Wenatchee) 50 = ABLA2/CLUN	CEF222	ES	90	700	C	p. 234 PNW-GTR-360
	1	1	i .	1	1	DMM (= 10 360)

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
51 = ABLA2/TRCA3	Code	Species	illuex	301	Jource	PNW-GTR-360
Subalpine fir/false bugbane	CEF422	AF	87	745	С	p. 157
52 = ABLA2/COCA	CLT422	Al	67	743		PNW-GTR-360
Subalpine fir/bunchberry dogwood	CEF423	AF	75	675	С	p. 136
53 = ABLA2/ARLA-POPU	0223	7		0,0		PNW-GTR-359
Subalpine fir/broadleaf arnica-skunkleaf polemonium	CEF424	AF	65	880	С	p. 214
54 = ABLA2/LUHI-WEN					_	PNW-GTR-359
Subalpine fir/smooth woodrush (Wenatchee)	CEG121	AF	65	785	С	p. 218
55 = ABLA2/CARU-WEN						PNW-GTR-359
Subalpine fir/pinegrass (Wenatchee)	CEG310	AF	73	549	Н	p. 216
56 = ABLA2/CARU-O&C					_	PNW-GTR-360
Subalpine fir/pinegrass (Okanogan & Colville)	CEG311	AF	77	655	С	p. 126
57 = PIEN/EQAR					С	PNW-GTR-360
Engelmann spruce/horsetail	CEM211	ES	72	535	C	p. 184
58 = ABLA2/PAMY-OKAN	050444	4.5	00	204	Н	R6 E 132b-83
Subalpine fir/pachistima (Okanogan)	CES111	AF	90	381	11	p. 52 PNW-GTR-359
59 = ABLA2/PAMY-WEN Subalpine fir/pachistima (Wenatchee)	CES113	ES	111	820	С	p. 234
60 = ABLA2/RHAL-XETE	CE3113	ES	111	020		PNW-GTR-360
Subalpine fir/Cascades azalea-beargrass	CES210	AF	56	790	С	p. 152
61 = ABLA2/RHAL	CL3210	Al	30	730		PNW-GTR-359
Subalpine fir/Cascade azalea	CES211	AF	52	790	С	p. 220
62 = ABLA2/RHAL/LUHI	020222	7	32			PNW-GTR-359
Subalpine fir/Cascade azalea/smooth woodrush	CES213	AF	60	665	С	p. 222
63 = ABLA2/VACCI						R6 E 132b-83
Subalpine fir/huckleberry	CES312	AF	102	511	H	p. 46
64 = ABLA2/VAME-COLV					_	PNW-GTR-360
Subalpine fir/big huckleberry (Colville)	CES313	AF	76	700	С	p. 168
65 = ABLA2/VAME-WEN					_	PNW-GTR-359
Subalpine fir/big huckleberry (Wenatchee)	CES342	DF	73	810	С	p. 235
66 = ABLA2/VASC-O&C					6	PNW-GTR-360
Subalpine fir/grouse huckleberry (Okan & Colv)	CES412	AF	63	780	С	p. 173
67 = ABLA2/VASC/CARU-OKAN					С	PNW-GTR-359
Subalpine fir/grouse huckleberry/pinegrass (Okan)	CES413	ES	62	670	C	p. 236
68 = ABLA2/VACA	656422		0.4	620	С	PNW-GTR-359
Subalpine fir/dwarf huckleberry	CES422	LP	94	620	C	p. 235
69 = ABLA2/RULA	CES423	۸۲	90	785	С	PNW-GTR-359 p. 224
Subalpine fir/dwarf bramble 70 = ABLA2/VASC/ARLA	CE3423	AF	90	765		p. 224 PNW-GTR-359
Subalpine fir/grouse huckleberry/broadleaf arnica	CES424	AF	51	785	С	p. 230
71 = ABLA2/VASC/LUHI	CLSTZT	Al	31	703		PNW-GTR-359
Subalpine fir/grouse huckleberry/smooth woodrush	CES425	AF	65	720	С	p. 232
72 = ABLA2/VASC-WEN	020.25	7	- 00	,,,,		PNW-GTR-359
Subalpine fir/grouse huckleberry (Wenatchee)	CES426	DF	69	720	С	p. 228
73 = ABAM/TITRU						PNW-GTR-359
Pacific silver fir/coolwort foamflower	CFF162	SF	143	1234	Н	p. 168
74 = ABAM/ACTR-WEN					_	PNW-GTR-359
Pacific silver fir/vanilla leaf (Wenatchee)	CFF254	SF	112	935	С	p. 158
75 = ABAM/VAAL-WEN						PNW-GTR-359
Pacific Silver fir/Alaska huckleberry (Wenatchee)	CFS232	SF	104	872	Н	p. 170
76 = ABAM/VAME/CLUN-WEN						PNW-GTR-359
Silver fir/big huckleberry/queencup beadlily (Wen)	CFS233	SF	79	1070	С	p. 172
77 = ABAM/VAME-PYSE					_	PNW-GTR-359
Pacific silver fir/big huckleberry-sidebells pyrola	CFS234	SF	62	840	С	p. 174
78 = ABAM/MEFE-WEN	0505.45	65		0.15	С	PNW-GTR-359
Pacific silver fir/rusty menziesia (Wenatchee)	CFS542	SF	84	915	C	p. 160
79 = ABAM/RHAL-OKAN Pacific cilver fir/Cassada azaloa (Okanogan)	CECEES	C.E.	45	CAC	Н	R6 E 132b-83
Pacific silver fir/Cascade azalea (Okanogan) 80 = ABAM/RHAL-VAME-WEN	CFS553	SF	45	646	- ''	p. 75 PNW-GTR-359
80 = ABAM/RHAL-VAME-WEN Pac silver fir/Cascade azalea-big huckleberry (Wen)	CFS556	٨Ε	40	940	С	
rac sliver III/Cascaue azalea-Dig nuckleberry (Wen)	CF3556	AF	40	940		p. 164

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
81 = ABAM/PAMY						R6 E 132b-83
Pacific silver fir/pachistima	CFS558	DF	65	776	Н	p. 75
82 = ABAM/ACCI						PNW-GTR-359
Pacific silver fir/vine maple	CFS621	SF	104	550	С	p. 156
83 = TSHE-ABGR/CLUN						
Western hemlock-grand fir/queencup beadlily	CHC311	GF	81	798	Н	R6 E TP-004-88 p. 111
84 = TSHE/ACTR-WEN					_	PNW-GTR-359
Western hemlock/vanilla leaf (Wenatchee)	CHF223	DF	73	675	С	p. 138
85 = TSHE/CLUN					_	PNW-GTR-360
Western hemlock/queencup beadlily	CHF311	DF	69	835	С	p. 204
86 = TSHE/ARNU3					С	PNW-GTR-360
Western hemlock/wild sarsaparilla	CHF312	DF	75	775	C	p. 199
87 = TSHE/ASCA3					Н	PNW-GTR-359
Western hemlock/wild ginger	CHF313	DF	85	1253	П	p. 142
88 = TSHE/GYDR					С	PNW-GTR-360
Western hemlock/oak-fern	CHF422	DF	83	900	C	p. 209
89 = TSHE/XETE-COLV	CHEESA	56	00	020	С	PNW-GTR-360
Western hemlock/beargrass (Colville)	CHF521	ES	90	830	C	p. 226
90 = TSHE/BENE-WEN	CUCAA	DE	0.3	010	С	PNW-GTR-359
Western hemlock/Cascade Oregon grape (Wenatchee)	CHS142	DF	82	810		p. 144
91 = TSHE/PAMY/CLUN Western hemlock/pachistima/queencup beadlily	CHS143	DF	74	855	С	PNW-GTR-359 p. 146
92 = TSHE/ARNE	CH3143	DF	74	855		PNW-GTR-359
92 = 13HE/AKNE Western hemlock/pinemat manzanita	CHS144	DF	52	705	С	p. 140
93 = TSHE/ACCI/ACTR-WEN	C113144	DI	32	703		PNW-GTR-359
Western hemlock/vine maple/vanilla leaf (Wenatchee)	CHS225	DF	87	565	С	p. 132
94 = TSHE/ACCI/ASCA3	C113223	Di	87	303		PNW-GTR-359
Western hemlock/vine maple/wild ginger	CHS226	DF	86	720	С	p. 134
95 = TSHE/ACCI/CLUN	CHSEE	51	- 00	720		PNW-GTR-359
Western hemlock/vine maple/queencup beadlily	CHS227	GF	86	630	С	p. 136
96 = TSHE/RUPE	0.10227	G.		000		PNW-GTR-360
Western hemlock/five-leaved bramble	CHS411	ES	103	1129	Н	p. 221
97 = TSHE/MEFE						PNW-GTR-360
Western hemlock/rusty menziesia	CHS711	DF	71	765	С	p. 215
98 = PICO/SHCA						PNW-GTR-360
Lodgepole pine/russet buffaloberry	CLS521	LP	96	530	С	p. 267
99 = TSME/XETE-VAMY					_	PNW-GTR-359
Mountain hemlock/beargrass-low huckleberry	CMF131	ОТ	23	775	С	p. 202
100 = TSME/LUHI						PNW-GTR-359
Mountain hemlock/smooth woodrush	CMG221	ОТ	24	544	Н	p. 184
101 = TSME/VASC/LUHI					_	PNW-GTR-359
Mountain hemlock/grouse huckleberry/smooth woodrush	CMS121	ОТ	23	650	С	p. 200
102 = TSME/RULA					_	PNW-GTR-359
Mountain hemlock/dwarf bramble	CMS122	SF	79	940	С	p. 194
103 = TSME/MEFE-VAAL						PNW-GTR-359
Mountain hemlock/rusty menziesia-Alaska huckleberry	CMS256	SF	94	742	Н	p. 186
104 = TSME/MEFE-VAME					_	PNW-GTR-359
Mountain hemlock/rusty menziesia-big huckleberry	CMS257	SF	102	1115	С	p. 188
105 = TSME/VAAL-WEN						PNW-GTR-359
Mountain hemlock/Alaska huckleberry (Wenatchee)	CMS258	ОТ	28	1132	Н	p. 196
LOG = TSME/VAME-WEN					C	PNW-GTR-359
Mountain hemlock/big huckleberry (Wenatchee)	CMS259	OT	20	885	С	p. 198
107 = TSME/PHEM-VADE	CN 4537.5		F.2	700	С	PNW-GTR-359
Mtn hemlock/red mountain heath-Cascade huckleberry	CMS354	AF	53	780	C	p. 190
108 = TSME/RHAL-VAAL	C1 453==	0.7	20	F 4.6	Н	PNW-GTR-359
Mountain hemlock/Cascade azalea-Alaska huckleberry	CMS355	OT	26	541	11	p. 204
109 = TSME/RHAL-VAME	CN45356	OT	30	035	С	PNW-GTR-359
Mountain hemlock/Cascades azalea-big huckleberry	CMS356	OT	20	935		p. 192
110 = PIPO/AGSP-WEN	1				С	PNW-GTR-359

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
111 = PIPO/CARU-AGSP	Code	Species	IIIUEX	301	Jource	PNW-GTR-359
Ponderosa pine/pinegrass-bluebunch wheatgrass	CPG231	PP	49	420	С	p. 44
112 = PIPO-QUGA/BASA	Cl G231		45	420		p. ++
Ponderosa pine-Or white oak/arrowleaf balsamroot	CPH211	PP	65	328	Н	R6 E TP-004-88 p. 43
113 = PIPO-QUGA/PUTR	_					
Ponderosa pine-Oregon white oak/bitterbrush	CPH212	PP	63	342	Н	R6 E TP-004-88 p. 47
114 = PIPO/PUTR/AGSP						PNW-GTR-359
Ponderosa pine/bitterbursh/bluebunch wheatgrass	CPS241	PP	75	210	С	p. 46
115 = ABGR-PIEN/SMST					Н	
Grand fir-Engelmann spruce/starry solomonseal	CWC511	GF	90	972	П	R6 E TP-004-88 p. 107
116 = ABGR/LIBO2	C) 1/5224	C.F.	0.2	700	Н	DC 5 TD 004 00 . 07
Grand fir/twinflower	CWF321	GF	83	709	11	R6 E TP-004-88 p. 87
117 = ABGR/ARCO Grand fir/heartleaf arnica	CWF444	GF	72	785	С	PNW-GTR-359 p. 102
118 = ABGR/TRLA2	CVVI444	Gi	72	763		p. 102
Grand fir/starflower	CWF521	GF	91	810	С	R6 E TP-004-88 p. 83
119 = ABGR/ACTR			_			
Grand fir/vanillaleaf	CWF522	GF	100	710	С	R6 E TP-004-88 p. 95
120 = ABGR/POPU						
Grand fir/skunk-leaved polemonium	CWF523	GF	90	955	Н	R6 E TP-004-88 p. 103
121 = ABGR/ACTR-WEN						PNW-GTR-359
Grand fir/vanilla leaf (Wenatchee)	CWF524	GF	86	963	Н	p. 100
122 = ABGR/CAGE					Н	
Grand fir/elk sedge	CWG121	GF	104	712	П	R6 E TP-004-88 p. 71
123 = ABGR/CAGE-GP	CMC122	C.F.	100	010	С	DC F TD 00C 00 - F3
Grand fir/elk sedge (Gifford Pinchot) 124 = ABGR/CARU	CWG122	GF	100	810	C	R6 E TP-006-88 p. 53
Grand fir/pinegrass	CWG123	GF	112	1769	Н	R6 E TP-006-88 p. 49
125 = ABGR/CARU-WEN	CWG123	- Gi	112	1703		PNW-GTR-359
Grand fir/pinegrass (Wenatchee)	CWG124	GF	85	635	С	p. 110
126 = ABGR/CARU-LUPIN						PNW-GTR-359
Grand fir/pinegrass-lupine	CWG125	DF	58	750	С	p. 112
127 = ABGR/VAME/CLUN-COL						PNW-GTR-360
Grand fir/big huckleberry/queencup beadlily (Colv)	CWS214	GF	86	996	Н	p. 110
128 = ABGR/VAME/LIBO2						
Grand fir/big huckleberry/twinflower	CWS221	GF	100	776	Н	R6 E TP-006-88 p. 85
129 = ABGR/VAME/CLUN					_	
Grand fir/big huckleberry/queencup beadlily	CWS222	GF	103	745	С	R6 E TP-006-88 p. 89
130 = ABGR/RUPA/DIHO	6)4/6222	C.F.	400	455	С	DC 5 TD 00C 00 . 04
Grand fir/thimbleberry/fairy bells 131 = ABGR/BENE/ACTR	CWS223	GF	108	455	C	R6 E TP-006-88 p. 81
Grand fir/dwarf Oregon grape/vanillaleaf	CWS224	DF	69	650	С	R6 E TP-006-88 p. 73
132 = ABGR/BENE	CVV3224	DI	03	030		PNW-GTR-359
Grand fir/Cascade Oregon grape	CWS225	GF	77	845	С	p. 106
133 = ABGR/BENE/CARU-WEN						PNW-GTR-359
Grand fir/Cascade Oregon grape/pinegrass-Wenatchee	CWS226	GF	85	745	С	p. 108
134 = ABGR/SYMPH					_	
Grand fir/snowberry	CWS331	GF	90	695	С	R6 E TP-004-88 p. 79
135 = ABGR/SYMO/ACTR						
Grand fir/creeping snowberry/vanillaleaf	CWS332	GF	108	870	С	R6 E TP-006-88 p. 65
136 = ABGR/SPEBL/PTAQ					_	PNW-GTR-359
Grand fir/shiny-leaf spirea/bracken fern	CWS335	GF	74	655	С	p. 116
137 = ABGR/SYAL/CARU	0		7.0	-00	С	PNW-GTR-359
Grand fir/common snowberry/pinegrass	CWS336	GF	76	580	C	p. 118
138 = ABGR/SYOR	C/4/C227	D.F.	70	200	С	PNW-GTR-359
Grand fir/mountain snowberry	CWS337	DF	70	360	C	p. 120
139 = ABGR/ARNE Grand fir/pinemat manzanita	CWS338	DF	49	575	С	PNW-GTR-359 p. 104
140 = ABGR/PHMA	CVV 3338	DF	49	3/3		p. 104 PNW-GTR-360
Grand fir/ninebark	CWS421	DF	79	575	С	p. 100
Orana in/illicuation	CVV3421	DΓ	13	3/3		p. 100

FVS Sequence Number = Plant						
Association	Alpha	Site	Site	Max.		
Species Type	Code	Species	Index*	SDI*	Source*	Reference
141 = ABGR/ACGLD/CLUN						PNW-GTR-360
Grand fir/Douglas maple/queencup beadlilly	CWS422	GF	73	1259	H	p. 95
142 = ABGR/HODI					_	
Grand fir/oceanspray	CWS531	GF	95	860	С	R6 E TP-004-88 p. 75
143 = ABGR/ACCI/ACTR					_	
Grand fir/vine maple/vanillaleaf	CWS532	GF	98	780	С	R6 E TP-004-88 p. 91
144 = ABGR/CACH						
Grand fir/chinkapin	CWS533	DF	57	690	С	R6 E TP-004-88 p. 99
145 = ABGR/HODI-GP						
Grand fir/oceanspray (Gifford Pinchot)	CWS534	GF	104	585	С	R6 E TP-006-88 p. 61
146 = ABGR/ACCI-BEAQ/TRLA2						
Grand fir/vine maple-tall Oregongrape/starflower	CWS535	GF	116	520	С	R6 E TP-006-88 p. 57
147 = ABGR/COCO2/ACTR						
Grand fir/California hazel/vanillaleaf	CWS536	GF	116	1377	Н	R6 E TP-006-88 p. 69
148 = ABGR/CONU/ACTR					_	
Grand fir/pacific dogwood/vanillaleaf	CWS537	DF	64	650	С	R6 E TP-006-88 p. 77
149 = ABGR/ACCI-WEN						PNW-GTR-359
Grand fir/vine maple (Wenatchee)	CWS551	GF	109	740	С	p. 94
150 = ABGR/ACCI-CHUM						PNW-GTR-359
Grand fir/vine maple-western prince's pine	CWS552	GF	100	695	С	p. 96
151 = ABGR/ACCI/CLUN						PNW-GTR-359
Grand fir/vine maple/queencup beadlily	CWS553	GF	104	1090	Н	p. 98
152 = ABGR/HODI/CARU						PNW-GTR-359
Grand fir/ocean-spray/pinegrass	CWS554	DF	70	545	С	p. 114
153 = ABGR/VACA						PNW-GTR-360
Grand fir/dwarf huckleberry	CWS821	DF	74	560	С	p. 105
154 = POTR/CARU						R6 E 132b-83
Quaking aspen/pinegrass	HQG111	LP	84	522	Н	p. 75
155 = POTR/SYAL						R6 E 132b-83
Quaking aspen/common snowberry	HQS211	WL	68	331	Н	p. 75

^{*}Site index estimates are from GBA analysis. SDI maximums are set by GBA analysis (Source=H) or CVS plot analysis (Source=C).

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.