Extending the Ackermann function

Aresh Pourkavoos

February 22, 2022

Interpret arguments as coefficients of powers of ω : original function accepts ordinal $<\omega^2$

$$A(n) = n+1$$

$$A(\omega(m+1)) = A(\omega m+1)$$

$$A(\omega(m+1) + (n+1)) = A(\omega m + A(\omega(m+1) + n))$$

X: (possibly empty) list of naturals Y: (possibly empty) list of zeros a, b: naturals

$$A(a) = a + 1$$

$$A(0, X) = A(X)$$

$$A(X, b + 1, Y, 0) = A(X, b, Y, 1)$$

$$A(X, b + 1, Y, a + 1) = A(X, b, Y, A(X, b + 1, Y, a))$$

$$A(2,0,0) = A(1,0,1) = A(1,0,A(0,0,1)) = A(1,0,A(1)) = A(1,0,2) = A(0,0,A(1,0,1)) = A(A(1,0,1))A(A(0,0,A(1,0,0))) = A(1,0,1) = A(1,0,A(0,0,1)) = A(1,0,A(0,$$