

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

TEGNIESE WETENSKAPPE V2

NOVEMBER 2024

PUNTE: 75

TYD: 1½ uur

Hierdie vraestel bestaan uit 11 bladsye en 4 gegewensblaaie.

INSTRUKSIES EN INLIGTING

- 1. Skryf jou sentrumnommer en eksamennommer in die toepaslike ruimtes op die ANTWOORDEBOEK neer.
- Hierdie vraestel bestaan uit SES vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae oop, bv. tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 8. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 9. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 10. Skryf netjies en leesbaar.

VRAAG 1: MEERVOUDIGEKEUSE-VRAE

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.5) in die ANTWOORDEBOEK neer, bv. 1.6 D.

1.1 Beskou die volgende voorbeelde van isomere:

Voorbeeld 1	but-1-een	but-2-een
Voorbeeld 2	1-chloropropaan	2-chloropropaan

Beide voorbeelde verteenwoordig ...

- A funksionele isomere.
- B posisionele isomere.
- C kettingisomere.
- D struktuurisomere. (2)
- 1.2 Watter EEN van die volgende is die KORREKTE gekondenseerde struktuurformule vir 2,3-dimetielbutaan?
 - A CH₃C(CH₃)₂CH₂CH₃
 - B CH₃CH(CH₃)CH₂CH₂CH₃
 - C CH₃CH(CH₃)CH(CH₃)CH₃
 - $D \qquad CH_3CH_2CH_2CH_2CH_3 \tag{2}$

1.3 Beskou die stroombaandiagram hieronder.

Watter EEN van die volgende grafieke beskryf die verhouding tussen die stroom en toegepaste spanning die beste?

1.4 Watter EEN van die volgende kombinasies is WAAR vir 'n elektrolitiese sel?

	ANODE	KATODE	ENERGIEOMSETTING
Α	Negatief	Positief	Chemies na elektries
В	Positief	Negatief	Elektries na chemies
С	Negatief	Positief	Meganies na elektries
D	Positief	Negatief	Elektries na meganies

Kopiereg voorbehou Blaai om asseblief

(2)

(2)

- 1.5 EEN van die nadele van fotovoltaïese selle is dat ...
 - A toksiese chemikalieë in die vervaardigingsproses gebruik word.
 - B die selle op 'n ongebruikte ruimte bo-op dakke geplaas word.
 - C fotovoltaïese stelsels klankloos en nie 'n steuring is nie.
 - D energie wat deur sonkragselle opgewek word, skoon is.

[10]

VRAAG 2 (Begin op 'n nuwe bladsy.)

Beskou die volgende organiese verbindings wat deur letters A tot E verteenwoordig word.

Α	H H H H H H H H H H H H H H H H H H H	В Н—С—Н Н—С—Н Н—С—Н
С	Metielpropanoaat	D H ₂ CCH ₂
E	2-metielpropan-2-ol	

2.1 Verwys na verbinding **A** en skryf neer die:

- 2.1.3 Algemene formule van die homoloë reeks waaraan die verbinding behoort (1)
- 2.1.4 Molekulêre formules van die produkte wat tydens die verbranding van hierdie verbinding gevorm word (2)
- 2.2 Verwys na verbinding **B** en skryf neer die:
 - 2.2.1 Naam van die homoloë reeks waaraan hierdie verbinding behoort (1)
 - 2.2.2 Naam van die funksionele groep daarvan (1)
- 2.3 Verbinding **C** word gevorm wanneer 'n karboksielsuur met 'n alkohol reageer.
 - 2.3.1 Teken die struktuurformule van die funksionele groep van verbinding **C**. (1)
 - 2.3.2 Skryf die IUPAC-naam neer van die karboksielsuur wat gebruik word. (1)
- 2.4 Skryf die letter neer wat 'n verbinding verteenwoordig van 'n:

2.5 Klassifiseer die alkohol waarna in VRAAG 2.4.2 verwys word as PRIMÊR, SEKONDÊR of TERSIÊR. (1)

[13]

VRAAG 3 (Begin op 'n nuwe bladsy.)

Gebruik die organiese verbindings hieronder om die vrae wat volg, te beantwoord.

Bro	omoetaan	Etanol	Etaan	Etanoësuur						
3.1	Definieer d	ie term <i>kookpunt.</i>			(2					
3.2	Rangskik die verbindings in volgorde van afnemende kookpunt.									
3.3	Skryf die verhouding neer tussen die kookpunte van organiese verbindings en hulle intermolekulêre kragte.									
3.4	Watter EEN van die verbindings sal die hoogste dampdruk hê as hulle by dieselfde temperatuur vergelyk word?									
3.5	Identifiseer die tipe intermolekulêre kragte teenwoordig in bromoetaan en etaan, en vergelyk hulle sterktes.									
3.6	Metielmeta	noaat is 'n isomeer van	etanoësuur.							
	3.6.1	Watter tipe isomere is hi	ierdie organiese verbir	dings?	(1					
	3.6.2	Definieer die tipe isome	er waarna in VRAAG 3	.6.1 verwys word.	(2 [1					

VRAAG 4 (Begin op 'n nuwe bladsy.)

Die vloeidiagram hieronder illustreer verskeie organiese reaksies waarin verbinding A na verskeie verbindings, B, C en D, omgeskakel word. Bestudeer die vloeidiagram sorgvuldig en beantwoord dan die vrae wat volg.

- 4.1 Skryf die homoloë reeks neer waaraan verbinding **A** behoort. (1)
- 4.2 Beskou die reaksie waarin verbinding **A** na verbinding **B** omgeskakel word.
 - 4.2.1 Teken die struktuurformule van verbinding **B**. (2)
 - 4.2.2 Verduidelik waarom verbinding **B** 'n tersiêre haloalkaan genoem word. (2)
 - 4.2.3 Waarom is dit belangrik dat daar geen water in die reaksiemengsel moet wees nie? (2)

	4.5.2	Simbool van die katalisator wat tydens die reaksie gebruik word	(1) [16]
	4.5.1	NAAM van die anorganiese reaktans wat vir die reaksie benodig word	(1)
4.5	Beskou d Skryf nee	lie reaksie waarin verbinding A na verbinding D omgeskakel word. r die:	
	4.4.2	Skryf die chemiese formule neer van die anorganiese reaktans wat gebruik word.	(1)
	4.4.1	Skryf die NAAM en die TIPE van hierdie chemiese reaksie neer.	(2)
4.4	Beskou d	ie omskakeling van verbinding A na verbinding C .	
	4.3.2	Gebruik molekulêre formules om 'n gebalanseerde chemiese vergelyking vir hierdie reaksie neer te skryf.	(3)
	4.3.1	Skryf EEN reaksietoestand vir hierdie reaksie neer.	(1)
4.3	Beskou d	ie reaksie waarin verbinding B na verbinding C omgeskakel word.	

VRAAG 5 (Begin op 'n nuwe bladsy.)

'n Leerder wil 'n ysterring met silwer elektroplateer om die voorkoms daarvan te verbeter en die waarde daarvan te verhoog. Die ysterring word deeglik skoongemaak voordat die elektroplatering plaasvind.

5.1 Definieer die term elektrolise. (2) 5.2 skoongemaak Waarom moet die ysterring deeglik word voordat elektroplatering plaasvind? (2) Is elektrode X die anode of katode? 5.3 (1) 5.4 Gee 'n rede vir die antwoord op VRAAG 5.3. (2) 5.5 Skryf die NAAM van ioon X⁺ neer. (1) 5.6 Skryf die halfreaksie neer wat by die ysterring plaasvind. [10]

VRAAG 6 (Begin op 'n nuwe bladsy.)

'n Groep leerders stel 'n elektrochemiese sel op, soos in die diagram hieronder getoon. Die sel is ONVOLTOOID.

- 6.1 Watter tipe elektrochemiese sel is dit? (1)
- 6.2 Verduidelik die antwoord op VRAAG 6.1. (2)
- 6.3 Wat is die lesing op die voltmeter? (1)
- 6.4 Skryf die naam van die komponent neer wat benodig word om die stroombaan te voltooi. (1)
- 6.5 Noem TWEE funksies van die komponent wat in VRAAG 6.4 genoem is. (2)

Die komponent in VRAAG 6.4 word ingevoeg en die voltmeterlesing neem toe. Die grafieke hieronder toon die verandering in die massas van beide elektrodes **A** en **B** terwyl die sel in werking is.

6.6 Watter grafiek (**X** of **Y**) hieronder verteenwoordig die verandering in die massa van elektrode **A**? Skryf slegs **X** of **Y** neer.

- 6.7 Is elektrode **A** 'n oksideermiddel of reduseermiddel? Verduidelik die antwoord.
- 6.8 Bereken die emk van die sel terwyl dit in werking is.

(4) **[14]**

(2)

TOTAAL: 75

DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 VRAESTEL 2

TABLE 1/TABEL 1: PHYSICAL CONSTANTS/FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 x 10 ⁵ Pa
Standard temperature Standaardtemperatuur	$T^{\scriptscriptstyle{ heta}}$	0 °C/273 K

TABLE 2/TABEL 2: FORMULAE/FORMULES

Emf/Emk	E^{θ} cell = E^{θ} cathode - E^{θ} anode / E^{θ} sel = E^{θ} katode - E^{θ} anode
	or/of
	$E^{ heta}$ cell = $E^{ heta}$ reduction - $E^{ heta}$ oxidation / $E^{ heta}$ sel = $E^{ heta}$ reduksie - $E^{ heta}$ oksidasie
	or/of
	E^{θ} cell = E^{θ} oxidising agent - E^{θ} reducing agent - E^{θ} sel = E^{θ} oksideermiddel - E^{θ} reduseermiddel

NSS Vertroulik

TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

DBE/November 2024

2,1	1 (l) 1 H]	2 (II)		3		4	5 KEY	6 /SLEUT	7 EL		9 : numbe <i>mgetal</i>	10 er	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII) 2 He
1,0 2	1 3 Li 7	1,5	4 Be 9						ectrone ektrone		.→ <mark>c</mark> , (9 Cu +	Symbol Simboo	ol		0°7 B	6 6 7 12	7 ဇ် N 14	8 8 6 16	0, Ł 10 8	10 Ne 20
6,0	11 Na 23	1,2	12 Mg 24										nic mass mmassa			13 - Al 27	ω, Si 28	15 P 31	32	ວ 17 ຕິ Cℓ 35,5	18 Ar 40
8,0	19 K 39	1,0	20 Ca 40	1,3	21 Sc 45	1,5	22 Ti 48	9, V 51	9 Cr 52	25 S, Mn 55	26 E Fe 56	ω, Co 59	28 % Ni 59	63,5 63,5	9, Zn 65	31 9 Ga 70	∞ Ge 73	33 0, As 75	7, Se 79	35 8, Br 80	36 Kr 84
8,0	37 Rb 86	1,0	38 Sr 88	1,2	39 Y 89	1,4	40 Zr 91	41 Nb 92	ω΄ Mo 96	6. Tc	7, Ru 101	45 C, Rh 103	46 7, Pd 106	47 6, Ag 108	48 Cd 112	49 In 115	50 % Sn 119		52 7 Te 128	53 5, I 127	54 Xe 131
7'0	55 Cs 133	6,0	56 Ba 137		57 La 139	1,6	72 Hf 179	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt	79 Au 197	80 Hg 201	81	∞ 82 Pb 207	83	84 0'7 Po	85 S, At	86 Rn
2'0	87 Fr	6'0	88 Ra 226		89 Ac			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
								140 90 Th 232	141 91 Pa	144 92 U 238	93 Np	150 94 Pu	152 95 Am	157 96 Cm	159 97 Bk	163 98 Cf	165 99 Es	167 100 Fm	169 101 Md	173 102 No	175 103 Lr

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reaction	s/Hal	freaksies	E ^Θ (V)
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ⁺ +2e ⁻	=	2H ₂ O	+1,77
MnO ₄ ⁻ + 8H ⁺ +5e ⁻	=	Mn ²⁺ + 4H ₂ O	+ 1,51
Cl ₂ (g) + 2e ⁻	=	2Cl-	+ 1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺ +6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07
NO ₃ ⁻ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
Ag+ + e -	=	Ag	+ 0,80
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68
I ₂ + 2e ⁻	=	2l ⁻	+ 0,54
Cu+ + e⁻	=	Cu	+ 0,52
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	=	40H-	+ 0,40
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu²+ + e⁻	=	Cu+	+ 0,16
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
S + 2H+ + 2e-	=	H ₂ S(g)	+ 0,14
2H⁺ + 2e⁻	=	H ₂ (g)	0,00
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Co ²⁺ + 2e ⁻	=	Со	- 0,28
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
2H ₂ O + 2e⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Al ³⁺ + 3e ⁻	=	Al	- 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Na⁺ + e⁻	=	Na	- 2,71
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Cs+ + e-	=	Cs	- 2,92
K⁺ + e⁻	=	K	- 2,93
Li+ + e⁻	=	Li	- 3,05

Increasing reducing ability/Toenemende reduserende vermoë

Blaai om asseblief

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/H	ksies	E [⊕] (V)	
Li ⁺ + e ⁻	=	Li	- 3,05
K+ + e-	=	K	- 2,93
Cs+ + e-	=	Cs	- 2,92
Ba ²⁺ + 2e ⁻	1	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	1	Ca	- 2,87
Na+ + e-	11	Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Al ³⁺ + 3e ⁻	1	Αℓ	- 1,66
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
2H ₂ O + 2e ⁻	1	H ₂ (g) + 2OH ⁻	- 0,83
Zn ²⁺ + 2e ⁻	11	Zn	- 0,76
Cr ³⁺ + 3e ⁻	1	Cr	- 0,74
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	11	Cd	- 0,40
Co ²⁺ + 2e ⁻	11	Со	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	1	Sn	- 0,14
Pb ²⁺ + 2e ⁻	1	Pb	- 0,13
Fe ³⁺ + 3e ⁻	7	Fe	- 0,06
2H+ + 2e-	1	H ₂ (g)	0,00
S + 2H+ + 2e-	=	H ₂ S(g)	+ 0,14
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu+	+ 0,16
SO ₄ ⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻	1	40H ⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
Cu+ + e-	\rightleftharpoons	Cu	+ 0,52
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻	11 11	Fe ²⁺	+ 0,77
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Ag ⁺ + e ⁻	=	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	1	Hg(ℓ)	+ 0,85
NO ₃ ⁻ + 4H ⁺ + 3e ⁻	11	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2e^{-\ell}$	1	2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	11	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	11	Mn ²⁺ + 2H ₂ O	+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	11	2H ₂ O	+ 1,23
Cr ₂ O ₇ ⁻ + 14H ⁺ +6e ⁻	11	2Cr ³⁺ + 7H ₂ O	+ 1,33
Cl ₂ (g) + 2e ⁻	11	2Cℓ ⁻	+ 1,36
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	1	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	11	2H ₂ O	+1,77
Co ³⁺ + e ⁻	11	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels