

**Serial No.:** 08/736,551

**Filing Date:** 24 OCTOBER 1996

**Inventor:** THOMAS L. CARROLL

**NOTICE**

The above identified patent application is available for licensing.  
Requests for information should be addressed to:

ASSOCIATE COUNSEL (PATENTS)  
CODE 1008.2  
NAVAL RESEARCH LABORATORY  
WASHINGTON DC 20375

**DISTRIBUTION STATEMENT A**

Approved for Public Release  
Distribution Unlimited

*DATA QUALITY INDEPENDENT*

20001208 136

**PATENT APPLICATION/TECHNICAL DIGEST PUBLICATION RELEASE REQUEST**

**FROM:** Associate Counsel (Patents) (3008.2)  
**TO:** Associate Counsel (Patents) (3008.2)

**Via:** (1) Thomas L. Carroll (Code 6341)  
(2) Division Superintendent (Code 6300)  
(3) Head, Classification Management & Control (Code 1221)

**SUBJ:** Patent Application/Technical Digest entitled AMPLITUDE  
INSENSITIVE SYNCHRONIZATION OF NONLINEAR SYSTEMS request  
for release for publication.

**REF:** (a) NRL Instruction 5510.40C  
(b) Chapter 6, ONRINST 5870.1C

**ENCL:** (1) Copy of patent Application/Technical Digest

1. In accordance with the provision of references (a) and (b), it  
is hereby requested that the subject Patent Application/Technical  
Digest be released for publication.

2. It is intended to offer this Patent Application/Technical Digest  
to the National Technical Information Service, for publication.

3. This request is in connection with Navy Case No. 77,203.

230896

(date)

THOMAS E. McDONNELL  
Associate Counsel (Patents)

**FIRST ENDORSEMENT**

Date: 2-10-97

**FROM:** Thomas L. Carroll (Code 6341)  
**TO:** Division Superintendent (Code 6300)

1. It is the opinion of the Inventor(s) that the subject Patent  
Application/Technical Digest (is) (is not) classified and there is  
no objection to public release.

Inventor's Signature

Inventor's Signature

**SECOND ENDORSEMENT**

Date:

FROM: Division Superintendent (Code 6300)  
TO: Classification Management & Control (Code 1221)

1. Release of Patent Application/Technical Digest (is) (is not) approved.
2. To the best knowledge of this Division, the subject matter of this Patent Application/Technical Digest (has) (has not) been classified.
3. This recommendation takes into account military security, sponsor requirements and other administration considerations and there in no objection to public release.



Superintendent

---

**THIRD ENDORSEMENT**

Date: 2/24/97

FROM: Head, Classification & Control (Code 1221)  
TO: Associate Counsel (Patents) (3008.2)

1. This Patent Application/Technical Digest is authorized for public release.



---

Head, Classification, Management & Control

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

## AMPLITUDE INSENSITIVE SYNCHRONIZATION OF NONLINEAR SYSTEMS

### BACKGROUND OF THE INVENTION

1       The present invention relates generally to the synchronization of nonlinear systems and  
2 more particularly to a system which allows the synchronization of one nonlinear dynamical or  
3 chaotic system to another nonlinear dynamical or chaotic system insensitive to attenuation in the  
4 driving signal.

5       A synchronized nonlinear system can be used as an information transfer system. The  
6 transmitter, responsive to an information signal, produces a drive signal for transmission to the  
7 receiver. An error detector compares the drive signal and the output signal produced by the  
8 receiver to produce an error signal indicative of the information contained in the information  
9 signal.

10       It is known to those skilled in the art that a nonlinear dynamical system can be driven (the  
11 response) with a signal from another nonlinear dynamical system (the drive). With such a  
12 configuration the response system actually consist of duplicates of subsystems of the drive system,  
13 which are cascaded and the drive signal, or signals, come from parts of the drive system that are  
14 included in the response system.

15       A system with extreme sensitivity to initial conditions is considered chaotic. The same  
16 chaotic system started at infinitesimally different initial conditions may reach significantly  
17 different states after a period of time. Lyapanov exponents (also known in the art as  
18 "characteristic exponents") measure this divergence. A system will have a complete set of

**Serial No. (unassigned)**  
**Inventor:** Thomas Carroll

**Patent Application**  
**Attorney Docket No. 77,203**

1 Lyapunov exponents, each of which is the average rate of convergence (if negative) or divergence  
2 (if positive) of nearby orbits in phase space as expressed in terms of appropriate variables and  
3 components.

4 Sub or Conditional Lyapunov exponents are characteristic exponents which depend on the  
5 signal driving the system. It is also known to those skilled in the art that, if the sub-Lyapunov,  
6 or conditional Lyapunov, exponents for the driven response system are all negative, then all  
7 signals in the response system will converge over time or synchronize with the corresponding  
8 signals in the drive. When the response system is driven with the proper signal from the drive  
9 system, the output of the response system is identical to the input signal. When driven with any  
10 other signal, the output from the response is different from the input signal.

In brief, a dynamical system can be described by the ordinary differential equation

$$\dot{\alpha}(t) = f(\alpha). \quad (1)$$

13 The system is then divided into two subsystems.  $\alpha = (\beta, \gamma)$ ;

$$14 \hspace{10cm} \beta = g(\beta, \chi)$$

$$\dot{\chi} = h(\beta, \chi) \quad (2)$$

16 where  $\beta = (\alpha_1, \dots, \alpha_n)$ ,  $g = (f_1(\alpha), \dots, f_n(\alpha))$ ,  $h = (f_{n+1}(\alpha), \dots, f_m(\alpha))$ ,  $\chi = (\alpha_{n+1}, \dots, \alpha_m)$ ,

17 where  $\alpha$ ,  $\beta$  and  $\chi$  are measurable parameters of a system, for example vectors representing a  
18 electromagnetic wave.

19 The division is arbitrary since the reordering of the  $\alpha_i$  variables before assigning them to  
 20  $\beta, \chi, g$  and  $h$  is allowed. A first response system is created by duplicating a new subsystem  
 21  $\chi'$  identical to the  $\chi$  system, and substituting the set of variables  $\beta$  for the corresponding  $\beta'$  in

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1 the function  $h$ , and augmenting Eqs. (2) with this new system, giving

2                    $\dot{\beta} = g(\beta, \chi),$

3                    $\dot{\chi} = h(\beta, \chi) \quad (3)$

4                    $\dot{\chi}' = h(\beta, \chi').$

5                 If all the sub-Lyapunov exponents of the  $\chi'$  system (ie. as it is driven) are less than zero,  
6                 then  $[\chi' - \chi] \rightarrow 0$  as  $t \rightarrow \infty$ . The variable  $\beta$  is known as the driving signal. One may also  
7                 reproduce the  $\beta$  subsystem and drive it with the  $\chi'$  variable, giving

8                    $\dot{\beta} = g(\beta, \chi),$

9                    $\dot{\chi} = h(\beta, \chi),$

10                   $\dot{\chi}' = h(\beta, \chi'). \quad (4)$

11                   $\dot{\beta}'' = g(\beta'', \chi').$

12                 The functions  $h$  and  $g$  may contain some of the same variables. If all the sub-Lyapunov  
13                 exponents of the  $\chi', \beta''$  subsystem (ie. as it is driven) are less than 0, then  $\beta'' \rightarrow \beta$  as  $t \rightarrow$   
14                 infinity. The example of the Equ. (4) is referred to as cascaded synchronization.  
15                 Synchronization is confirmed by comparing the driving signal  $\beta$  with the signal  $\beta''$ .

16                 Generally, since the response system is nonlinear, it will only synchronize to a drive  
17                 signal with the proper amplitude. If the response system is at some remote location with respect  
18                 to the drive system, the drive signal will probably be subjected to some unknown attenuation.  
19                 This attenuation can be problematic to system synchronization.

20                 The present invention is a system design featuring subsystems which are nonlinear and  
21                 possibly chaotic, but will still synchronize when the drive signal is attenuated or amplified by an

**Serial No. (unassigned)**  
**Inventor:** Thomas Carroll

**Patent Application  
Attorney Docket No. 77,203**

1 unknown amount. This invention builds on the design of two previous inventions, the  
2 synchronizing of chaotic systems, US patent 5,245,660, and the cascading of synchronized chaotic  
3 systems, US patent 5,379,346, both herein incorporated by reference. The present invention  
4 extends those principles to situations where the drive signal has been attenuated by some  
5 unknown amount. Applicants overcome this limitation by providing for a nonlinear response  
6 system that is not amplitude dependent and a separate function that is part of the drive system  
7 only that is amplitude dependent.

## SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a chaotic system which will reproduce a signal that is a scaled version of one or more drive signals even when the drive signal, or signals, are subject to attenuation, fading, and desynchronize this response signal by varying a parameter in the drive or response system.

14 It is also an object of the present invention to provide a chaotic system which will detect  
15 the variation of a parameter or parameters in the drive or response systems by detecting  
16 desynchronization.

17 A further object of the present invention is to provide a system which will send  
18 information on a chaotic carrier in a way that is not sensitive to noise or fading by comparing  
19 the input and output of the response system while varying the drive system. These and additional  
20 objects of this invention are accomplished by the structures and processes hereinafter described.

21 The present invention is an amplitude insensitive synchronized nonlinear system (AISN)

1 which allows communication between nonlinear systems operating in the chaotic realm which is  
2 largely insensitive to attenuation or signal noise affecting the amplitude of the drive signal,  
3 thereby allowing communication between remote systems where the amplitude of the transmitted  
4 signal has been varied by an unknown amount.

5 AISN comprises a transmitter system (drive) employing linear or scale invariant nonlinear  
6 subsystems, the output of the one driving the other, at least two which are amplitude insensitive  
7 in operation. The signal produced by the second scale invariant nonlinear subsystem is then used  
8 to drive an amplitude dependent nonlinear function. The amplitude dependent nonlinear function  
9 acts to bound the chaotic signal and prevent the signals from diverging uncontrollably, and is  
10 designed to have characteristics that ensure a plot of its input vs. output can be related at the  
11 same reference point. This is critical because this common reference point serves as a baseline  
12 point for one to determine system synchronization. The chaotic transmitter signal produced by  
13 the amplitude dependent function is then transmitted to a nonlinear cascaded receiver.

14 AISN employs a receiver (response) which comprises subsystems which are duplicates of  
15 the transmitters scale invariant subsystems and are arranged to be responsive to the AISN  
16 transmitter. Synchronization is confirmed by sampling the value of the transmitted signal. If the  
17 input to the receiver and the output pass through known reference points at the same time, then  
18 the transmitter and receiver are known to be synchronized. Information may be encoded by  
19 making the output from the receiver go out of synchronization with the input by altering the  
20 transmitted signal.

21 The synchronized nonlinear system can be used as an information transfer system. The

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1 transmitter, responsive to an information signal, produces a drive signal for transmission to the  
2 receiver. An error detector compares the drive signal and the output signal produced by the  
3 receiver to produce an error signal indicative of the information contained in the information  
4 signal.

5

## 6 BRIEF DESCRIPTION OF THE DRAWINGS

7 Figure 1. is a block diagram of a cascaded synchronized nonlinear system (prior art).  
8 Figure 2. is a block diagram of an amplitude insensitive synchronized nonlinear system.  
9 Figure 3. is a schematic diagram of an example chaotic drive circuit constructed in accordance  
10 with this invention.  
11 Figure 4(a). is a graphical representation of input signal  $Y$  and the output signal from circuit  
12 function  $g_1(x)$   
13 Figure 4(b). is a graphical representation of input signal  $X$  and the output signal from circuit  
14 function  $g_2(x)$ .  
15 Figure 4(c). is a graphical representation of input signal  $Y$  and the output signal from circuit  
16 function  $g_3(y)$ .  
17 Figure 5. is the chaotic attractor from the example drive circuit of figure 3.  
18 Figure 6. is a schematic diagram of an example response circuit for figure 3 constructed in  
19 accordance with this invention.  
20 Figure 7. is a representation of the power spectrum of the transmitted chaotic signal  $u=\Gamma g_1(y)$ .  
21 Figure 8(a). is a plot of the  $Y$  signal form the driving circuit vs. the  $Y'$  signal from the receiving  
22 circuit with a scaling factor of  $\Gamma=1.0$ .  
23 Figure 8(b). is a plot of the  $Y$  signal form the driving circuit vs. the  $Y'$  signal from the receiving  
24 circuit with a scaling factor of  $\Gamma=0.2$   
25 Figure 9. is the chaotic attractor for the response circuit with a scaling factor of  $\Gamma=0.5$ .  
26 Figure 10. is a plot of the drive signal  $u_d$  vs. the output signal  $Y'$  from the response circuit.  
27 Figure 11. is a schematic diagram of an example of the synchronization detection circuit.  
28 Figure 12. is a plot of the low frequency power spectrum of  $u_d$ .  
29 Figure 13. is a block diagram of an signal transmission system featuring amplitude insensitive  
30 chaotic synchronization.  
31  
32  
33  
34

## 35 DETAILED DESCRIPTION

36 Referring now to the figures, wherein like reference characters indicate like elements

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1 throughout the several views, figure 1 illustrates a block diagram of the basic architecture of a  
2 cascaded synchronizing nonlinear system 100 divided into subsystems A 298, B 299, A' 390  
3 and B' 399, for producing synchronized communication signals  $S_B$  222 and  $S_{B'}$  333. The  
4 system is a tangible system that can be of any form. Examples of signals, such as signals  $S_B$   
5 222 and  $S_{B'}$  333 can be associated with system 100 can be electrical, optical or other  
6 electromagnetic signals, pressure, force temperature, chemical concentration, population or  
7 others.

8 Since the response system 300 is nonlinear, it will only synchronize to a drive signal  
9 222 from the drive system 200 having the proper amplitude. In other words, for some  
10 nonlinear function  $f(x)$ , rescaling  $x$  produces a different result:  $f(\Gamma x) \neq \Gamma f(x)$ . There are  
11 nonlinear functions for which the equality does not hold; for example, if  $f(x)$  is polynomial  
12 nonlinear, exponentially nonlinear or piecewise linear the desired characteristics are present.  
13 For example, if  $f(x)$  is piecewise nonlinear, ( $f(x)$  may be constructed from the line segments  
14 with different slopes) and  $f(x)$  has its only break point at the origin, then  $f(\Gamma x) = \Gamma f(x)$ , so that  
15  $f(x)$  is scale invariant. Any amplitude dependent nonlinear function in which the input and  
16 output can be related at some point will be acceptable. If one has functions  $f(x, y, z)$ ,  $h(x, y,$   
17  $z)$ , and  $u(x, y, z)$  which contain only scale invariant nonlinearities, it is possible to construct a  
18 scale-invariant set of differential equations:

19  
20  
21

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1

(5)

$$\frac{d(\Gamma x)}{dt} = \Gamma \frac{dx}{dt} = f(\Gamma x, \Gamma y, \Gamma z) = \Gamma f(x, y, z)$$

$$\frac{d(\Gamma y)}{dt} = \Gamma \frac{dy}{dt} = h(\Gamma x, \Gamma y, \Gamma z) = \Gamma h(x, y, z)$$

$$\frac{d(\Gamma z)}{dt} = \Gamma \frac{dz}{dt} = u(\Gamma x, \Gamma y, \Gamma z) = \Gamma u(x, y, z)$$

2

3      The scale factor  $\Gamma$  will cancel, so that rescaling all of the variables does not affect the  
4      dynamics of the system. This relation is also true for a linear set of equations. It is not  
5      possible to get chaos out of a scale invariant set of equations such as equation (5). Some  
6      instability is necessary for chaos to exist, so that nearby phase space trajectories diverge from  
7      each other. The trajectories will diverge to infinity, however, unless some mechanism exists  
8      to fold them back when some variable becomes too large. This requires that some part of the  
9      differential equations for a chaotic system depend on the amplitude of at least one of the  
10     variables. It is useful to isolate the amplitude dependence in one function,  $g(x)$  for example.  
11     When the chaotic system is constructed properly, then  $g(x)$  may also be used as a driving  
12     signal to drive a cascaded response system. Figure 2 is a block diagram of such a system.  
13     Referring now to figure 2, the signal from **B** to **A** in the full chaotic system passes through  
14     the amplitude-dependent function  $g$ . The signal  $S_{g(x)}$  may then be used to drive **A'** in the  
15     response system, which then drives **B'**. Rather than comparing  $S_{B'}$  to  $S_B$  to confirm

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1 synchronization, as is Figure 1, synchronization is confirmed by comparing  $S_B'$  with  $g(x)$ . In  
2 order to make the detection of synchronization easier, it is useful to make  $g(x_0) = \alpha_0$ , where  
3  $\alpha_0$  is a known reference point for some  $x_0$  so that the input and output of the response system  
4 may be directly compared.

5 If **A** and **B** are linear or contain only scale-invariant nonlinearities, then if the driving  
6 signal  $S_{g(x)}$  is replaced by  $\Gamma S_{g(x)}$ , the signals in **B'** and **A'** will be scaled by  $\Gamma$  relative to the  
7 signals in **A** and **B**. The use of a function of a variable rather than the variable itself as a  
8 driving signal to synchronize the chaotic systems has been described before (L. Kocarev and  
9 U. Parlitz, *General Approach for Chaotic Synchronization with Applications to*  
10 *Communication*, Phys. Rev. Lett. 74, p. 5028, (June 1995)), but in the Kocarev and Parlitz  
11 approach the entire chaotic drive system must be reproduced and the other subsystems contain  
12 non scale-invariant nonlinearities. In the present invention, the driving function need not be  
13 reproduced.

14 It should be noted that with the right choice of  $g$ , it is possible for **A** and **B** to be  
15 linear. It is advantageous for communications to have **A** or **B** include some nonlinearity, as  
16 this makes it harder to decode an encoded information signal and easier to separate noise from  
17 the chaotic signal.

18 As a specific example, figure 3 shows a schematic diagram for a chaotic drive circuit  
19 fulfilling the above conditions.

20 Drive circuit 400 comprises two interdependent subsystems **A** 498 and **B** 499 which  
21 may or may not overlap in part but which together constitute the essential aspects of the

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1 amplitude independent system of the drive. Subsystems **A** 498 and **B** 499 are not overlapping  
2 in the sense that neither subsystem **A** 498 nor subsystem **B** 499 is contained within the other  
3 system. Drive circuit 400 also comprises an amplitude dependent function  $g(x)$ , 500.

4 Drive circuit 400 comprises integrator circuits formed by differential amplifiers 411,  
5 413, 415, 417, resistors 420, 421, 422, 423, 426, 427, 439, 440, 443, 444, and capacitors  
6 451, 452, 453, and 454, amplitude independent nonlinear functions formed by differential  
7 amplifiers 414, 416 resistors 437, 438 442 and diodes 480 and 481 and a summing circuit  
8 formed by differential amplifier 412 and resistors 424 and 425. These circuits are coupled to  
9 form subsystems **A** 498 and **B** 499 in the drive circuit as illustrated in figures 2 and 3. Drive  
10 circuit 400, also comprises  $g(x)$ , the nonlinear amplitude dependent nonlinear function 500  
11 (piecewise in this example), formed by differential amplifiers 510, 511, resistors 518, 519 520  
12 521, 522, 523, 524, 525 and diodes 580 and 581. Component values for the resistors and  
13 capacitors which were used are set forth in the following table:

14  
15  
16  
17  
18  
19  
20  
21

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No.-77,203

R420 = 1MΩ      R421 = 68k  
R422 = 2M      R423 = 1M  
R424 = 20k      R425 = 10k  
R426 = 100k      R427 = 680k  
R438 = 5k      R439 = 100k  
R440 = 100k      R441 = 2.2k  
R442 = 10k      R443 = 10k  
R444 = 10k      R518 = 20k  
R519 = 10k      R520 = 10k  
R521 = 10k      R522 = 10k  
R523 = 150k      R524 = 150k  
R525 = 33k

C451 = 0.001μF      C452 = 0.001μ  
C453 = 0.001μ      C454 = 0.001μ

P461 = 30k set to 22.5k  
P462 = 200k break/ g2 @ 0.0V  
P463 = 200k break/ g3 @ 0.0V

Resistance values are expressed in Ohms and capacitance values are expressed in Farads.

Drive circuit 400 can be subdivided into three subsystems **A** 498, **B** 499 and **g(x)** 500.

Although the illustrative subsystems **g(x)** 500, **A** 498 and **B** 499 shown in figure 2 correspond to the two circuits forming drive circuit 400 its is not necessary, and the division of a given drive circuit 400 into subsystems in order to determine the proper configuration for a synchronized response circuit 600 is made in accordance with the analysis described herein.

The nonlinear folding function is  $g_1(y)$ , while the amplitude(scale)-invariant nonlinearities are provided by functions  $g_2(x)$  and  $g_3(y)$ . The equations describing the circuit are:

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1

(6)

$$\frac{dx}{dt} = -\alpha (0.05x + 0.05g_1(y) + 1.47z + 0.1S_1)$$

$$\frac{dy}{dt} = -\alpha (-0.5x - 0.44g_1(y) + 0.147y)$$

$$\frac{dz}{dt} = -\alpha (-0.5g_2(x) + z - 0.5w)$$

$$\frac{dw}{dt} = -\alpha (-10.0g_3(g_1(y)) + 10.0w)$$

$$g_1(y) : \begin{cases} y \leq -1.6 & g_1 = -2.5y - 7.2 \\ -1.6 < y < 1.6 & g_1 = 2.0y \\ 1.6 \leq y & g_1 = -2.5y + 7.2 \end{cases}$$

$$g_3(y) : \begin{cases} y \leq 0 & g_3 = 4.5y \\ y > 0 & g_3 = 0 \end{cases}$$

$$g_2(x) : \begin{cases} x \leq 0 & g_2 = 0 \\ x > 0 & g_2 = 4.5x \end{cases}$$

2 where the time factor  $\alpha$  was  $10^4$ .

3 The plots of functions  $g_1(y)$ ,  $g_2(x)$  and  $g_3(y)$  as defined in figure 3 and equation (6),  
4 are illustrated in figures 4a, 4b, and 4c, respectively. These plots reflect the driving of the  
5 above nonlinear functions with a 10Hz sine wave.  $S_1$  is a non-zero information signal,  
6 injected into drive circuit 400 when the circuits are used for communications. The presence

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1 of chaos in drive circuit 400 is confirmed by calculating the largest Lyapunov exponent  
2 numerically from eqs. (6). This exponent is  $765 \text{ s}^{-1}$ . Conventional methods for calculating  
3 Lyapunov exponents, as analytical measurement, numerical and otherwise can be used, such  
4 as, for example those described by Eckmann et al., *Rev. Mod. Phys.*, Vol. 57, p.617 et seq.  
5 (1985); Lichtenberg et al., *Regular and Stochastic Motion*, Springer-Verlag, New York  
6 (1983); Rashband, *Chaotic Dynamics of Nonlinear Systems*, John Wiley & Sons, New York  
7 (1990); and Wolf et al., *Physica*. Vol. 16D, p. 285 et seq.(1985).

8 The chaotic attractor for example drive circuit 400, produced by plotting the y signal  
9 vs. the x signal is shown in Figure 5.

10 Referring now to figure 6, which shows an example of a chaotic response circuit 600  
11 built to synchronize with drive circuit 400 of figure 3, comprises duplicates of subsystems A  
12 498 and B 499 of drive circuit 400, labeled as subsystems A' 698 and B' 699.

13 Response circuit 600 comprises integrator circuits formed by differential amplifiers  
14 611, 613, 615, 617, resistors 620, 621, 622, 623, 626, 627, 639, 640, 643, 644, and  
15 capacitors 651, 652, 653, and 654, amplitude independent nonlinear functions formed by  
16 differential amplifiers 614, 616 resistors 637, 638, 642 and diodes 680 and 681 and a  
17 summing circuit formed by differential amplifier 612 and resistors 624 and 625. These  
18 circuits are coupled to form subsystems A' 698 and B' 699 in response circuit 600 as  
19 illustrated in figures 2 and 6. The reader should note that  $g(x)$ , the amplitude dependent  
20 nonlinear circuit 500, is not reproduced in response circuit 600. Component values for the  
21 resistors and capacitors which were used are set fourth in the following table:

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1

---

2 R621 = 68kΩ      R622 = 2M  
3 R623 = 1M      R624 = 20k  
4 R625 = 10k      R626 = 100k  
5 R627 = 680k      R638 = 5k  
6 R639 = 100k      R640 = 100k  
7 R641 = 2.2k      R642 = 10k  
8 R643 = 10k      R644 = 10k

9  
10 C651 = 0.001μF      C652 = 0.001μ  
11 C653 = 0.001μ      C654 = 0.001μ

12 P661 = 30k set to 22.5k  
13 P662 = 200k break/ g2 @ 0.0V  
14 P663 = 200k break/ g3 @ 0.0V

---

15  
16 Resistance values are expressed in Ohms and capacitance values are expressed in Farads.

17 Response circuit 600 can be subdivided into two subsystems A' 698 and B' 699.  
18 Although the illustrative subsystems A' 698 and B' 699 shown in figure 2 correspond to the  
19 two circuits forming response circuit 600, its is not necessary, and the division of a given  
20 response circuit 600 into subsystems in order to determine the proper configuration for  
21 synchronization with a drive circuit 400 is made in accordance with the analysis described  
22 herein.

23 The equations describing the circuit are:

24 (7)

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

$$u_d = \Gamma g_1(y)$$

$$\frac{dx'}{dt} = -\alpha (0.05x' + 0.05u + 1.47z')$$

$$\frac{dy'}{dt} = -\alpha (-0.5x' - 0.44u + 1.47y')$$

$$\frac{dz'}{dt} = -\alpha (-0.5g_2(x') + z - 0.5w')$$

$$\frac{dw'}{dt} = -\alpha (-10.0g_3(u) + 10.0w')$$

1

2        The output function  $g_1(y)$  has been rescaled by a factor  $\Gamma$  to produce the driving  
3        variable  $u_d$ . The largest Lyapunov for the response circuit is calculated numerically to be  
4         $-1470.0\text{s}^{-1}$ , independent of the scaling factor  $\Gamma$ .

5        It is necessary for  $u_d = \Gamma g_1(y)$  to have a known relation to  $y'$  at some known value of  
6         $y$  in order to detect synchronization of the drive 400 and response 600 circuits. This  
7        relationship must be independent of the scaling factor  $\Gamma$ . In the example circuit above this  
8        relation is satisfied by  $\Gamma g_1(0) = 0$ . Referring now to figure 10, which is a graph of  $y'$  vs the  
9        transmitted signal  $u_d$  when the scaling factor is  $\Gamma=1$ , the reader should note that for all values  
10      of  $\Gamma$ , the graph passes through the origin  $(0,0)$ . This allows synchronization to be confirmed  
11      by sampling the value of the transmitted signal  $u_d$  when  $y'$  crosses 0. When the circuits are in  
12      synchronization, the sampled value is 0.

1        Among the many embodiments of the present invention, AISN may be employed to  
2        transmit information on a chaotic carrier in the form of data encoded on a pure frequency  
3        signal. The system allows the transmission of the data by a means which is insensitive to  
4        fading distortion and not very sensitive to other types of noise. Referring to figures 2, 3, 6,  
5        and 13 example chaotic drive circuit 400, forms a portion of a transmitter 800 and example  
6        chaotic response circuit 600 forms part of a receiver 900. Drive circuit 400 is injected with  
7        an information signal  $S_I$ . Assume, for purposes of example, the signal  $S_I$  is configured as  
8         $2.0\sin(2\Pi f_1 t)$  where  $f_1$  is less than 200Hz. The frequencies which contain much of the power  
9        for the transmitted signal approach 2kHz, so the  $S_I$  frequency is small in comparison to  
10      maximize the S/N ratio in receiver 900. Frequencies above 200Hz for  $S_I$  would tend to lower  
11      the S/N ratio in this example. The effects of different types of signal encoding are system  
12      dependent; for the circuit described in figure 3 and equation (6), the fact that different types  
13      of signal encoding move the plot (see figure 10) of  $y'$  vs  $u_d$  in different directions may be  
14      used for sending multiple information signals on one chaotic signal.

15       Referring again to figure 3, the information signal  $S_I$  is injected into the integrator  
16      whose output voltage is labeled as X. The drive signal  $u_d$  may be transmitted to response  
17      circuit 600 by any desired conventional wired or wireless fashion, 11. The information signal  
18      is decoded from the chaotic carrier  $u_d$  by comparing  $u_d$  to response 600 output  $y'$  as  $y'$  crosses  
19      0. In order to detect the information in the chaotic carrier signal  $u_d$ , the negative-going  
20      zero crossings of the signal  $y'$  from the response circuit is used to strobe  $u_d$ , generating a  
21      detected signal  $\Delta$ . When drive 400 and response 600 circuits are synchronized,  $u_d$  is zero

Serial No. (unassigned)  
Inventor: Thomas Carroll

Patent Application  
Attorney Docket No. 77,203

1 when  $y'$  is zero, therefore  $\Delta$  is zero. When response 600 and drive 400 are not synchronized,  
2  $u_d$  is nonzero when  $y'$  crosses zero, so  $\Delta$  is non-zero. Generally, for a small signal  $S_1$  injected  
3 into the drive 400 system (or if any parameter is changed by a small amount), the average of  
4  $\Delta$  is proportional to the injected signal (or the parameter difference between the drive and  
5 response system). If  $S_1$  has a much lower frequency than the average rate at which  $y'$  crossed  
6 zero,  $\Delta$  can also be used to detect  $S_1$ , since the information signal  $S_1$ , causes a lack of  
7 synchronization. Passing  $\Delta$  through a low pass filter (not shown) has the effect of averaging  $\Delta$   
8 to reveal the information signal  $S_1$ .

9         Detector circuit 900, shown in figure 11, may be used to decode the information  
10 signal. The signal  $y'$  is greatly amplified and applied to a comparator 960 so that a pulse is  
11 generated when  $y'$  crosses 0 in the negative direction. This pulse is applied to a sample and  
12 hold amplifier 950 which samples the difference between  $y'$  and  $u_d$  when  $y'$  crosses 0. The  
13 output of the sample and hold amplifier 900 is the detected signal. Figure 12 shows the low  
14 frequency power spectrum of the transmitted signal  $u_d$  when the informational signal  $f_1$  is 30  
15 Hz. The signal to noise ratio at  $f_1$  was calculated by subtracting the average signal power (in  
16 dB) within 2 Hz of  $f_1$  (not including the power at  $f_1$ ) from the power at  $f_1$ . Figure 7 displays  
17 a plot of the power spectrum of the transmitted signal  $u_d$ , which shows the broad band nature  
18 of chaos. Figure 8(a) shows a plot of the  $y'$  signal vs.  $y$  when  $\Gamma=1$ , showing synchronization.  
19 In figure 8(b) also shows a plot of the  $y'$  signal vs.  $y$  however in 8(b)  $\Gamma=0.2$ . The signal  $y'$  is  
20 now a scaled version of  $y$ . Figure 9 shows  $y'$  vs.  $x'$  in the response circuit when  $\Gamma=0.5$ . The  
21 plot of figure 9 is a scaled reproduction of the attractor in figure 5.

1

## ABSTRACT

2       The present invention is an amplitude insensitive synchronized nonlinear system  
3       (AISN) which allows communication between nonlinear systems operating in the chaotic  
4       realm which is largely insensitive to attenuation or signal noise affecting the amplitude of the  
5       drive signal, thereby allowing communication between remote systems where the amplitude of  
6       the transmitted signal has been varied by an unknown amount.

7       AISN comprises a transmitter system (drive) grouped into linear or scale invariant  
8       nonlinear subsystems, the output of the first driving the second, both amplitude insensitive in  
9       operation. The signal produced by the second subsystem is then used to drive a amplitude  
10      dependent nonlinear function. The amplitude dependent nonlinear function is designed to  
11      have characteristics that ensure a plot of its input vs. output can be related at the same  
12      reference point. The chaotic transmitter signal produced by the amplitude dependent function  
13      is then transmitted to a nonlinear cascaded receiver.

14       AISN employs a receiver (response) which comprises subsystems which are duplicates  
15      of the transmitters scale invariant nonlinear subsystems arranged to be responsive to the AISN  
16      transmitter. Synchronization is confirmed by sampling the value of the transmitted signal.  
17       When the input to the receiver and the output pass through known reference points at the  
18      same time, then the transmitter and receiver are known to be synchronized. Information may  
19      be encoded by making the output from the receiver go out of synchronization with the input  
20      by altering the transmitted signal.

21



Figure 1



Figure 2





Fig 4 a



Fig 4b



Fig 4c



Fig 5

699

drive  
signal  
in

$d_1$

$d_2$

$d_3$

$d_4$

$d_5$

$d_6$

$d_7$

$d_8$

$d_9$

$d_{10}$

$d_{11}$

$d_{12}$

$d_{13}$

$d_{14}$

$d_{15}$

$d_{16}$

$d_{17}$

$d_{18}$

$d_{19}$

$d_{20}$

$d_{21}$

$d_{22}$

$d_{23}$

$d_{24}$

$d_{25}$

$d_{26}$

$d_{27}$

$d_{28}$

$d_{29}$

$d_{30}$

$d_{31}$

$d_{32}$

$d_{33}$

$d_{34}$

$d_{35}$

$d_{36}$

$d_{37}$

$d_{38}$

$d_{39}$

$d_{40}$

$d_{41}$

$d_{42}$

$d_{43}$

$d_{44}$

$d_{45}$

$d_{46}$

$d_{47}$

$d_{48}$

$d_{49}$

$d_{50}$

$d_{51}$

$d_{52}$

$d_{53}$

$d_{54}$

$d_{55}$

$d_{56}$

$d_{57}$

$d_{58}$

$d_{59}$

$d_{60}$

$d_{61}$

$d_{62}$

$d_{63}$

$d_{64}$

$d_{65}$

$d_{66}$

$d_{67}$

$d_{68}$

$d_{69}$

$d_{70}$

$d_{71}$

$d_{72}$

$d_{73}$

$d_{74}$

$d_{75}$

$d_{76}$

$d_{77}$

$d_{78}$

$d_{79}$

$d_{80}$

$d_{81}$

$d_{82}$

$d_{83}$

$d_{84}$

$d_{85}$

$d_{86}$

$d_{87}$

$d_{88}$

$d_{89}$

$d_{90}$

$d_{91}$

$d_{92}$

$d_{93}$

$d_{94}$

$d_{95}$

$d_{96}$

$d_{97}$

$d_{98}$

$d_{99}$

$d_{100}$

$d_{101}$

$d_{102}$

$d_{103}$

$d_{104}$

$d_{105}$

$d_{106}$

$d_{107}$

$d_{108}$

$d_{109}$

$d_{110}$

$d_{111}$

$d_{112}$

$d_{113}$

$d_{114}$

$d_{115}$

$d_{116}$

$d_{117}$

$d_{118}$

$d_{119}$

$d_{120}$

$d_{121}$

$d_{122}$

$d_{123}$

$d_{124}$

$d_{125}$

$d_{126}$

$d_{127}$

$d_{128}$

$d_{129}$

$d_{130}$

$d_{131}$

$d_{132}$

$d_{133}$

$d_{134}$

$d_{135}$

$d_{136}$

$d_{137}$

$d_{138}$

$d_{139}$

$d_{140}$

$d_{141}$

$d_{142}$

$d_{143}$

$d_{144}$

$d_{145}$

$d_{146}$

$d_{147}$

$d_{148}$

$d_{149}$

$d_{150}$

$d_{151}$

$d_{152}$

$d_{153}$

$d_{154}$

$d_{155}$

$d_{156}$

$d_{157}$

$d_{158}$

$d_{159}$

$d_{160}$

$d_{161}$

$d_{162}$

$d_{163}$

$d_{164}$

$d_{165}$

$d_{166}$

$d_{167}$

$d_{168}$

$d_{169}$

$d_{170}$

$d_{171}$

$d_{172}$

$d_{173}$

$d_{174}$

$d_{175}$

$d_{176}$

$d_{177}$

$d_{178}$

$d_{179}$

$d_{180}$

$d_{181}$

$d_{182}$

$d_{183}$

$d_{184}$

$d_{185}$

$d_{186}$

$d_{187}$

$d_{188}$

$d_{189}$

$d_{190}$

$d_{191}$

$d_{192}$

$d_{193}$

$d_{194}$

$d_{195}$

$d_{196}$

$d_{197}$

$d_{198}$

$d_{199}$

$d_{200}$

$d_{201}$

$d_{202}$

$d_{203}$

$d_{204}$

$d_{205}$

$d_{206}$

$d_{207}$

$d_{208}$

$d_{209}$

$d_{210}$

$d_{211}$

$d_{212}$

$d_{213}$

$d_{214}$

$d_{215}$

$d_{216}$

$d_{217}$

$d_{218}$

$d_{219}$

$d_{220}$

$d_{221}$

$d_{222}$

$d_{223}$

$d_{224}$

$d_{225}$

$d_{226}$

$d_{227}$

$d_{228}$

$d_{229}$

$d_{230}$

$d_{231}$

$d_{232}$

$d_{233}$

$d_{234}$

$d_{235}$

$d_{236}$

$d_{237}$

$d_{238}$

$d_{239}$

$d_{240}$

$d_{241}$

$d_{242}$

$d_{243}$

$d_{244}$

$d_{245}$

$d_{246}$

$d_{247}$

$d_{248}$

$d_{249}$

$d_{250}$

$d_{251}$

$d_{252}$

$d_{253}$

$d_{254}$

$d_{255}$

$d_{256}$

$d_{257}$

$d_{258}$

$d_{259}$

$d_{260}$

$d_{261}$

$d_{262}$

$d_{263}$

$d_{264}$

$d_{265}$

$d_{266}$

$d_{267}$

$d_{268}$



oo

Fis7



Fig 1a



$\gamma(v)$

OO

Fig 8(b)



oo

Fig 9



~~$y$~~   
 $\overset{+ (V)}{\text{Asi}}(y) = u$

oo

Fig 10



Fig 11



Fig 12



Fig 12