Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 По дисциплине: «ОМО»

Тема: «Знакомство с анализом данных: предварительная обработка и визуализация.»

Выполнил: Студент 3-го курса Группы АС-66 Пекун М.С. Проверил: Крощенко А.А.

Брест 2025

Цель: Получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

Вариант 8

Выборка Pima Indians Diabetes. Содержит медицинские показатели женщин из племени Пима и информацию о наличии у них диабета. Задачи: 1. Загрузите данные и выведите их статистические характеристики. 2. Проанализируйте столбцы Glucose, BloodPressure, SkinThickness. Нулевые значения в них, скорее всего, являются ошибками. Замените их медианным значением соответствующего столбца. 3. Постройте гистограммы для признаков ВМІ и Age. 4. Создайте матрицу корреляции только для признаков Glucose, ВМІ, Age и Outcome. ОСНОВЫ МАШИННОГО ОБУЧЕНИЯ, ЛР № 1, 2025 5. Визуализируйте распределение Outcome (наличие диабета) с помощью круговой диаграммы. 6. Примените стандартизацию ко всем признакам, кроме Outcome.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
# Настройка отображения графиков
plt.rcParams['font.size'] = 12
plt.rcParams['figure.figsize'] = (10, 6)
# 1. ЗАГРУЗКА ДАННЫХ
print("=" * 50)
print("1. ЗАГРУЗКА ДАННЫХ")
print("=" * 50)
df = pd.read_csv('../../../pima-indians-diabetes.csv', sep=',', comment='#')
column names = [
  'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
  'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'
df.columns = column names
print("Первые 5 строк данных:")
print(df.head())
print("\nИнформация о данных:")
print(df.info())
# 2. СТАТИСТИЧЕСКИЙ АНАЛИЗ
print("\n" + "=" * 50)
print("2. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ")
```

```
print("=" * 50)
print("Основные статистические характеристики:")
print(df.describe())
# Проверка на пропущенные значения (в данном наборе пропуски обозначены как 0 в некоторых столбцах)
print("\nКоличество нулевых значений в каждом столбце:")
for column in df.columns:
  zero count = (df[column] == 0).sum()
  print(f"{column}: {zero_count} нулевых значений")
# 3. ОБРАБОТКА ПРОПУЩЕННЫХ ЗНАЧЕНИЙ
print("\n" + "=" * 50)
print("3. ОБРАБОТКА ПРОПУЩЕННЫХ ЗНАЧЕНИЙ")
print("=" * 50)
# Столбцы, где 0 является некорректным значением
columns to fix = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
# Замена нулевых значений на медианные (исключая нули при расчете медианы)
for column in columns_to_fix:
  median_value = df[df[column] != 0][column].median()
  df[column] = df[column].replace(0, median_value)
  print(f"Столбец {column}: заменено {(df[column] == 0).sum()} значений на медиану {median_value:.2f}")
print("\nСтатистика после обработки пропусков:")
print(df[columns_to_fix].describe())
# 4. ВИЗУАЛИЗАЦИЯ ДАННЫХ
print("\n" + "=" * 50)
print("4. ВИЗУАЛИЗАЦИЯ ДАННЫХ")
print("=" * 50)
# Создание подграфиков
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
# 4.1 Гистограмма ВМІ
axes[0, 0].hist(df['BMI'], bins=20, color='skyblue', edgecolor='black', alpha=0.7)
axes[0, 0].set_title('Распределение индекса массы тела (ВМІ)')
axes[0, 0].set xlabel('BMI')
axes[0, 0].set_ylabel('Частота')
# 4.2 Гистограмма Аде
axes[0, 1].hist(df['Age'], bins=20, color='lightgreen', edgecolor='black', alpha=0.7)
axes[0, 1].set_title('Распределение возраста (Age)')
axes[0, 1].set_xlabel('Возраст (лет)')
axes[0, 1].set_ylabel('Частота')
# 4.3 Круговая диаграмма Outcome
outcome_counts = df['Outcome'].value_counts()
labels = ['Нет диабета', 'Есть диабет']
colors = ['lightblue', 'lightcoral']
axes[1, 0].pie(outcome_counts, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
```

```
axes[1, 0].set title('Распределение наличия диабета')
# 4.4 Матрица корреляции
correlation columns = ['Glucose', 'BMI', 'Age', 'Outcome']
correlation matrix = df[correlation columns].corr()
im = axes[1, 1].imshow(correlation_matrix, cmap='coolwarm', aspect='auto', vmin=-1, vmax=1)
axes[1, 1].set_xticks(range(len(correlation_columns)))
axes[1, 1].set vticks(range(len(correlation columns)))
axes[1, 1].set xticklabels(correlation columns)
axes[1, 1].set_yticklabels(correlation_columns)
# Добавление значений корреляции на тепловую карту
for i in range(len(correlation_columns)):
  for j in range(len(correlation_columns)):
    text = axes[1, 1].text(j, i, f'{correlation_matrix.iloc[i, j]:.2f}',
                ha="center", va="center", color="black")
axes[1, 1].set title('Матрица корреляции')
plt.tight layout()
plt.show()
# 5. ДОПОЛНИТЕЛЬНАЯ ВИЗУАЛИЗАЦИЯ
print("\n" + "=" * 50)
print("5. ДОПОЛНИТЕЛЬНАЯ ВИЗУАЛИЗАЦИЯ")
print("=" * 50)
# Диаграмма рассеяния: Glucose vs BMI с цветом по Outcome
plt.figure(figsize=(10, 6))
scatter = plt.scatter(df['Glucose'], df['BMI'], c=df['Outcome'],
           cmap='viridis', alpha=0.6)
plt.colorbar(scatter, label='Outcome (0=Нет, 1=Да)')
plt.xlabel('Уровень глюкозы (Glucose)')
plt.ylabel('Индекс массы тела (ВМІ)')
plt.title('Зависимость BMI от уровня глюкозы')
plt.grid(True, alpha=0.3)
plt.show()
# 6. СТАНДАРТИЗАЦИЯ ДАННЫХ
print("\n" + "=" * 50)
print("6. СТАНДАРТИЗАЦИЯ ДАННЫХ")
print("=" * 50)
# Признаки для стандартизации (все кроме Outcome)
features_to_standardize = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
              'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age']
df_original = df.copy()
# Стандартизация
scaler = StandardScaler()
df standardized = df.copy()
df standardized[features to standardize] = scaler.fit transform(df[features to standardize])
```

```
print("Данные после стандартизации (первые 5 строк):")
print(df_standardized[features_to_standardize].head())
# Визуализация распределения до и после стандартизации
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
# До стандартизации
axes[0].hist(df_original['Glucose'], bins=20, color='skyblue', edgecolor='black', alpha=0.7, label='Исходные')
axes[0].set_title('Распределение Glucose до стандартизации')
axes[0].set xlabel('Glucose')
axes[0].set ylabel('Частота')
# После стандартизации
axes[1].hist(df standardized['Glucose'], bins=20, color='lightcoral', edgecolor='black', alpha=0.7,
label='Стандартизированные')
axes[1].set title('Распределение Glucose после стандартизации')
axes[1].set xlabel('Glucose (стандартизированный)')
axes[1].set_ylabel('Частота')
plt.tight_layout()
plt.show()
# 7. ВЫВОДЫ И АНАЛИЗ
print("\n" + "=" * 50)
print("7. ВЫВОДЫ И АНАЛИЗ")
print("=" * 50)
print("Ключевые наблюдения:")
print("1. Размер набора данных:", df.shape)
print("2. Распределение классов:")
print(f" - Без диабета: {outcome counts[0]} случаев ({outcome counts[0]/len(df)*100:.1f}%)")
print(f" - С диабетом: {outcome counts[1]} случаев ({outcome counts[1]/len(df)*100:.1f}%)")
# Анализ корреляции
correlation with outcome = df[correlation columns].corr()['Outcome'].sort values(ascending=False)
print("\n3. Корреляция признаков с Outcome:")
for feature, corr in correlation_with_outcome.items():
  if feature != 'Outcome':
    print(f" - {feature}: {corr:.3f}")
print("\n4. Статистика по возрасту:")
print(f" - Средний возраст: {df['Age'].mean():.1f} лет")
print(f" - Медианный возраст: {df['Age'].median():.1f} лет")
print(f" - Минимальный возраст: {df['Age'].min()} лет")
print(f" - Максимальный возраст: {df['Age'].max()} лет")
print("\n5. Статистика по ВМІ:")
print(f" - Средний BMI: {df['BMI'].mean():.1f}")
print(f" - Медианный ВМІ: {df['BMI'].median():.1f}")
# Сохранение обработанных данных
df standardized.to csv('pima indians diabetes processed.csv', index=False)
```

1. ЗАГРУЗКА ДАННЫХ

Первые 5 строк данных:

Pregnancies Glucose BloodPressure ... DiabetesPedigreeFunction Age Outcome

0	1	85	66	0.351 31	0
1	8	183	64	0.672 32	1
2	1	89	66	0.167 21	0
3	0	137	40	2.288 33	1
4	5	116	74	0.201 30	0

[5 rows x 9 columns]

Информация о данных:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 767 entries, 0 to 766 Data columns (total 9 columns):

# Column Non-Null Count	Dtype

0	Pregnancies	767 non-null	int64
	Glucose	767 non-null in	_
2	BloodPressure	767 non-null	int64
3	SkinThickness	767 non-null	int64

4 Insulin 767 non-null int64 5 BMI 767 non-null float64

6 DiabetesPedigreeFunction 767 non-null float64

7 Age 767 non-null int64

8 Outcome 767 non-null int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

None

2. СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные статистические характеристики:

		_	-	
P	regnancies	Glucose	Age Ou	ıtcome
count	767.000000	767.000000	767.0000	00 767.000000
mean	3.842243	120.859192	33.21903	5 0.348110
std	3.370877	31.978468	11.752296	0.476682
min	0.000000	0.000000	21.000000	0.000000
25%	1.000000	99.000000	. 24.000000	0.000000

50%	3.000000	117.000000	29.000000	0.000000
75%	6.000000	140.000000	41.000000	1.000000
max	17.000000	199.000000	81.000000	1.000000

[8 rows x 9 columns]

Количество нулевых значений в каждом столбце:

Pregnancies: 111 нулевых значений

Glucose: 5 нулевых значений

BloodPressure: 35 нулевых значений SkinThickness: 227 нулевых значений

Insulin: 373 нулевых значений BMI: 11 нулевых значений

DiabetesPedigreeFunction: 0 нулевых значений

Age: 0 нулевых значений

Outcome: 500 нулевых значений

3. ОБРАБОТКА ПРОПУЩЕННЫХ ЗНАЧЕНИЙ

Столбец Glucose: заменено 0 значений на медиану 117.00

Столбец BloodPressure: заменено 0 значений на медиану 72.00 Столбец SkinThickness: заменено 0 значений на медиану 29.00

Столбец Insulin: заменено 0 значений на медиану 125.00 Столбец ВМІ: заменено 0 значений на медиану 32.30

Статистика после обработки пропусков:

			•		
	Glucose Bloo	odPressure Ski	nThickness	Insulin	BMI
count	767.000000	767.000000	767.000000	767.000000	767.000000
mean	121.621904	72.387223	29.100391	140.692308	32.453716
std	30.443252	12.104527	8.794378 86	6.437570 6.	879539
min	44.000000	24.000000	7.000000	14.000000 1	8.200000
25%	99.500000	64.000000	25.000000	121.000000	27.500000
50%	117.000000	72.000000	29.000000	125.000000	32.300000
75%	140.000000	80.000000	32.000000	127.500000	36.600000
max	199.000000	122.000000	99.000000	846.000000	67.100000

6. СТАНДАРТИЗАЦИЯ ДАННЫХ

Данные после стандартизации (первые 5 строк):

Pregnancies Glucose ... DiabetesPedigreeFunction Age 0 -0.843726 -1.203741 ... -0.364265 -0.188940

1.234240 2.017463 ... 0.604701 -0.103795

2 -0.843726 -1.072264 ... -0.919684 -1.040393 3 -1.140579 0.505469 ... 5.482732 -0.018650 4 0.343683 -0.184789 ... -0.817052 -0.274086

7. ВЫВОДЫ И АНАЛИЗ

Ключевые наблюдения:

- 1. Размер набора данных: (767, 9)
- 2. Распределение классов:
 - Без диабета: 500 случаев (65.2%)- С диабетом: 267 случаев (34.8%)
- 3. Корреляция признаков с Outcome:

- Glucose: 0.492 - BMI: 0.312 - Age: 0.236

- 4. Статистика по возрасту:
 - Средний возраст: 33.2 лет Медианный возраст: 29.0 лет Минимальный возраст: 21 лет Максимальный возраст: 81 лет
- 5. Статистика по ВМІ:

- Средний ВМІ: 32.5- Медианный ВМІ: 32.3

Обработанные данные сохранены в файл 'pima_indians_diabetes_processed.csv'

Графики:

Вывод: в результате выполнения данной лабораторной работы получили практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научились выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.