Projet P3 LFSAB1503: Rapport de la première tâche

Groupe 1246

22 septembre 2014

0.1Equation de la réaction et bilan de matière

Il nous est demandé de rechercher la quantité nécéssaire des différents composés nécessaire à la synthèse de l'ammoniac. Il nous était dit que l'ammoniac pouvait être obtenu à partir de dihydrogène (H_2) et de diazote (N_2) . Npus sommes donc débouché sur l'équation de synthèse de l'ammoniac suivante:

$$N_2 + 3H_2 \Rightarrow 2NH_3$$

La masse molaire de l'ammoniac étant de $17\mathrm{g/m}$, nous en avons déduit que 1000 tonnes correspondaient à $\frac{10^9}{17}$ moles. Nous avons ensuite fait un tableau

d avancement de la reaction.			
	N_2	$3H_2 \Rightarrow$	$2NH_3$
Initial	$\frac{10^9}{17} * \frac{1}{2}$	$\frac{10^9}{17} * \frac{3}{2}$	0
Réaction	$-\frac{10^9}{17}*\frac{1}{2}$	$-\frac{10^9}{17} * \frac{3}{2}$	$+rac{10^{9}}{17}$
Final	0	0	$\frac{10^9}{17}$

Où les données sont données en moles.

La réaction se produisant en continu, on peut calculer des flux de quantité pour une période de 24 heures :

On obtient selon nos calculs:

une consommation de N_2 égale à :

$$\Rightarrow \frac{10^{9} * \frac{1}{2}}{3600 * 24} \cong 340.41 \text{moles/s.}$$
 une consommation de H_2 égale à :

$$\Rightarrow \frac{10^9}{3600 * 24} \approx \frac{3}{2} \approx 1021.241 \text{moles/s.}$$
une production de NH_3 égale à :

$$\Rightarrow \frac{\frac{10}{17}}{3600 * 24} \cong 680.827 \text{moles/s}.$$

0.2Aspect thermique

Selon nos recherche, nous avons trouvé que la réaction était exothermique $(\Delta H_{react} = -92.2kJ/\text{mole})$. Il nous était indiqué que la température du réacteur devait être maintenue à 500 degrés Celsius et que celui-ci, vu le caractère exothermique de la récation, pouvait être refroidi par un débit continu d'eau, dont la température variait entre 25 et 90 degrés Celsius.

0.2.1 Calcul de volume d'eau nécessaire (pour une mole produite

Nous savons donc que : $\Delta H_{react} = -92.2kJ/\text{mole}$.

Nous savons aussi que:

$$q = m * C * dT$$

οù

 \Rightarrow C est la constante calorifique massique de l'eau valant 4.18 ($\frac{J}{Celsius*g}$).

 \Rightarrow m est la masse total du volume d'eau.

Vu les indication données et, on peut facilement trouver que dT = 65. En supposant que la température initiale de réacteur est de 500 degrés Celsius, il vient :

92200 = 4.18 * 65 *
$$m \Rightarrow \frac{92200}{4.18*65} = m = 339.344$$
 g, qui correspond à 0.3393441 d'eau.

0.2.2 Calcul du débit d'eau nécessaire

Nous avions calculé plus haut que le rythme de production de NH_3 était de environ $680.827~\mathrm{moles/s}$, il vient donc :

680.827 * 0.339344 = 231.03

le débit d'eau nécessaire serait donc de 231.03 l/s.

 $_{\mathrm{teset}}$