Tutorial 7

Exercise 4

- 1. For each of the following $m \times n$ matrices,
 - (i) find a basis for the row space and a basis for the column space;
 - (ii) extend the basis for the row space in (i) to a basis for \mathbb{R}^n ;
 - (iii) extend the basis for the column space in (i) to a basis for \mathbb{R}^m ;
 - (iv) find a basis for the nullspace;
 - (v) find the rank and nullity of the matrix and hence verify the Dimension Theorem for Matrices; and
 - (vi) determine if the matrix has full rank.

$$\text{(c) } C = \begin{pmatrix} 2 & 1 & 4 & 1 & 2 \\ 4 & 2 & 2 & 3 & 2 \\ 2 & 1 & -2 & 2 & 0 \\ 6 & 3 & 6 & 4 & 4 \end{pmatrix}, \qquad \text{(d) } D = \begin{pmatrix} 1 & 4 & 5 & 8 \\ -1 & 4 & 3 & 0 \\ 2 & 0 & 2 & 1 \end{pmatrix}.$$

- 9. Let A be a 3×4 matrix. Suppose that $x_1 = 1$, $x_2 = 0$, $x_3 = -1$, $x_4 = 0$ is a solution to a non-homogeneous linear system Ax = b and that the homogeneous system Ax = 0 has a general solution $x_1 = t 2s$, $x_2 = s + t$, $x_3 = s$, $x_4 = t$ where s, t are arbitrary parameters.
 - (a) Find a basis for the nullspace of A and determine the nullity of A.
 - (b) Find a general solution for the system Ax = b.
 - (c) Write down the reduced row-echelon form of A.
 - (d) Find a basis for the row space of A and determine the rank of A.
 - (e) Do we have enough information for us to find the column space of A?
- 10. Let $A = (a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5)$ be a 4×5 matrix such that the columns a_1 , a_2 , a_3 are linearly independent while $a_4 = a_1 2a_2 + a_3$ and $a_5 = a_2 + a_3$.
 - (a) Determine the reduced row-echelon form of A. (Hint: The linear relations between columns will not be changed by row operations. In this question, the fifth column of A is the sum of the second and the third columns of A. Then the fifth column of the reduced row-echelon form R is still the sum of the second and the third columns of R.)
 - (b) Find a basis for the row space of A and a basis for the column space of A.
- 22. Let A be an $m \times n$ matrix and P an $m \times m$ matrix.
 - (a) If P is invertible, show that rank(PA) = rank(A).
 - (b) Give an example such that rank(PA) < rank(A).

Tutorial 7 (cont.)

- 25. Let A be an $m \times n$ matrix.
 - (a) Show that the null space of A is equal to the null space of $A^{\mathrm{T}}A$.
 - (b) Show that $\operatorname{nullity}(A) = \operatorname{nullity}(A^{\mathrm{\scriptscriptstyle T}}A)$ and $\operatorname{rank}(A) = \operatorname{rank}(A^{\mathrm{\scriptscriptstyle T}}A)$.
 - (c) Is it true that $\operatorname{nullity}(A) = \operatorname{nullity}(AA^{\scriptscriptstyle \mathrm{T}})$? Justify your answer.
 - (d) Is it true that $rank(A) = rank(AA^{T})$? Justify your answer.