

DECIDABILITY

In Chapter 3 we introduced the Turing machine as a model of a general purpose computer and defined the notion of algorithm in terms of Turing machines by means of the Church–Turing thesis.

In this chapter we begin to investigate the power of algorithms to solve problems. We demonstrate certain problems that can be solved algorithmically and others that cannot. Our objective is to explore the limits of algorithmic solvability. You are probably familiar with solvability by algorithms because much of computer science is devoted to solving problems. The unsolvability of certain problems may come as a surprise.

Why should you study unsolvability? After all, showing that a problem is unsolvable doesn't appear to be of any use if you have to solve it. You need to study this phenomenon for two reasons. First, knowing when a problem is algorithmically unsolvable *is* useful because then you realize that the problem must be simplified or altered before you can find an algorithmic solution. Like any tool, computers have capabilities and limitations that must be appreciated if they are to be used well. The second reason is cultural. Even if you deal with problems that clearly are solvable, a glimpse of the unsolvable can stimulate your imagination and help you gain an important perspective on computation.

4.1

DECIDABLE LANGUAGES

In this section we give some examples of languages that are decidable by algorithms. We focus on languages concerning automata and grammars. For example, we present an algorithm that tests whether a string is a member of a context-free language (CFL). These languages are interesting for several reasons. First, certain problems of this kind are related to applications. This problem of testing whether a CFG generates a string is related to the problem of recognizing and compiling programs in a programming language. Second, certain other problems concerning automata and grammars are not decidable by algorithms. Starting with examples where decidability is possible helps you to appreciate the undecidable examples.

DECIDABLE PROBLEMS CONCERNING REGULAR LANGUAGES

We begin with certain computational problems concerning finite automata. We give algorithms for testing whether a finite automaton accepts a string, whether the language of a finite automaton is empty, and whether two finite automata are equivalent.

Note that we chose to represent various computational problems by languages. Doing so is convenient because we have already set up terminology for dealing with languages. For example, the *acceptance problem* for DFAs of testing whether a particular deterministic finite automaton accepts a given string can be expressed as a language, $A_{\rm DFA}$. This language contains the encodings of all DFAs together with strings that the DFAs accept. Let

 $A_{\mathsf{DFA}} = \{ \langle B, w \rangle | \ B \text{ is a DFA that accepts input string } w \}.$

The problem of testing whether a DFA B accepts an input w is the same as the problem of testing whether $\langle B, w \rangle$ is a member of the language A_{DFA} . Similarly, we can formulate other computational problems in terms of testing membership in a language. Showing that the language is decidable is the same as showing that the computational problem is decidable.

In the following theorem we show that A_{DFA} is decidable. Hence this theorem shows that the problem of testing whether a given finite automaton accepts a given string is decidable.

THEOREM 4.1

 A_{DFA} is a decidable language.

PROOF IDEA We simply need to present a TM M that decides A_{DFA} .

M = "On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- **1.** Simulate B on input w.
- 2. If the simulation ends in an accept state, *accept*. If it ends in a nonaccepting state, *reject*."

PROOF We mention just a few implementation details of this proof. For those of you familiar with writing programs in any standard programming language, imagine how you would write a program to carry out the simulation.

First, let's examine the input $\langle B, w \rangle$. It is a representation of a DFA B together with a string w. One reasonable representation of B is simply a list of its five components: Q, Σ , δ , q_0 , and F. When M receives its input, M first determines whether it properly represents a DFA B and a string w. If not, M rejects.

Then M carries out the simulation directly. It keeps track of B's current state and B's current position in the input w by writing this information down on its tape. Initially, B's current state is q_0 and B's current input position is the leftmost symbol of w. The states and position are updated according to the specified transition function δ . When M finishes processing the last symbol of w, M accepts the input if B is in an accepting state; M rejects the input if B is in a nonaccepting state.

We can prove a similar theorem for nondeterministic finite automata. Let $A_{\mathsf{NFA}} = \{ \langle B, w \rangle | \ B \text{ is an NFA that accepts input string } w \}.$

THEOREM **4.2**

 A_{NFA} is a decidable language.

PROOF We present a TM N that decides A_{NFA} . We could design N to operate like M, simulating an NFA instead of a DFA. Instead, we'll do it differently to illustrate a new idea: Have N use M as a subroutine. Because M is designed to work with DFAs, N first converts the NFA it receives as input to a DFA before passing it to M.

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C, using the procedure for this conversion given in Theorem 1.39.
- **2.** Run TM M from Theorem 4.1 on input $\langle C, w \rangle$.
- **3.** If *M* accepts, *accept*; otherwise, *reject*."

Running TM M in stage 2 means incorporating M into the design of N as a subprocedure.

Similarly, we can determine whether a regular expression generates a given string. Let $A_{\mathsf{REX}} = \{\langle R, w \rangle | \ R \text{ is a regular expression that generates string } w\}.$

THEOREM 4.3 -----

 A_{REX} is a decidable language.

PROOF The following TM P decides A_{REX} .

P = "On input $\langle R, w \rangle$, where R is a regular expression and w is a string:

- 1. Convert regular expression R to an equivalent NFA A by using the procedure for this conversion given in Theorem 1.54.
- **2.** Run TM N on input $\langle A, w \rangle$.
- **3.** If N accepts, accept; if N rejects, reject."

Theorems 4.1, 4.2, and 4.3 illustrate that, for decidability purposes, it is equivalent to present the Turing machine with a DFA, an NFA, or a regular expression because the machine can convert one form of encoding to another.

Now we turn to a different kind of problem concerning finite automata: *emptiness testing* for the language of a finite automaton. In the preceding three theorems we had to determine whether a finite automaton accepts a particular string. In the next proof we must determine whether or not a finite automaton accepts any strings at all. Let

$$E_{\mathsf{DFA}} = \{ \langle A \rangle | \ A \text{ is a DFA and } L(A) = \emptyset \}.$$

THEOREM 4.4 -----

 E_{DFA} is a decidable language.

PROOF A DFA accepts some string iff reaching an accept state from the start state by traveling along the arrows of the DFA is possible. To test this condition, we can design a TM T that uses a marking algorithm similar to that used in Example 3.23.

T = "On input $\langle A \rangle$, where A is a DFA:

- **1.** Mark the start state of *A*.
- 2. Repeat until no new states get marked:
- **3.** Mark any state that has a transition coming into it from any state that is already marked.
- **4.** If no accept state is marked, *accept*; otherwise, *reject*."

The next theorem states that determining whether two DFAs recognize the same language is decidable. Let

$$EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}.$$

THEOREM 4.5

 EQ_{DFA} is a decidable language.

PROOF To prove this theorem, we use Theorem 4.4. We construct a new DFA C from A and B, where C accepts only those strings that are accepted by either A or B but not by both. Thus, if A and B recognize the same language, C will accept nothing. The language of C is

$$L(C) = \Big(L(A) \cap \overline{L(B)}\Big) \cup \Big(\overline{L(A)} \cap L(B)\Big).$$

This expression is sometimes called the *symmetric difference* of L(A) and L(B) and is illustrated in the following figure. Here, $\overline{L(A)}$ is the complement of L(A). The symmetric difference is useful here because $L(C) = \emptyset$ iff L(A) = L(B). We can construct C from A and B with the constructions for proving the class of regular languages closed under complementation, union, and intersection. These constructions are algorithms that can be carried out by Turing machines. Once we have constructed C, we can use Theorem 4.4 to test whether L(C) is empty. If it is empty, L(A) and L(B) must be equal.

F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- 1. Construct DFA C as described.
- **2.** Run TM T from Theorem 4.4 on input $\langle C \rangle$.
- **3.** If T accepts, accept. If T rejects, reject."

FIGURE 4.6

The symmetric difference of L(A) and L(B)

DECIDABLE PROBLEMS CONCERNING CONTEXT-FREE LANGUAGES

Here, we describe algorithms to determine whether a CFG generates a particular string and to determine whether the language of a CFG is empty. Let

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle | \ G \text{ is a CFG that generates string } w \}.$

THEOREM 4.7

 A_{CFG} is a decidable language.

PROOF IDEA For CFG G and string w, we want to determine whether G generates w. One idea is to use G to go through all derivations to determine whether any is a derivation of w. This idea doesn't work, as infinitely many derivations may have to be tried. If G does not generate w, this algorithm would never halt. This idea gives a Turing machine that is a recognizer, but not a decider, for A_{CFG} .

To make this Turing machine into a decider, we need to ensure that the algorithm tries only finitely many derivations. In Problem 2.26 (page 157) we showed that if G were in Chomsky normal form, any derivation of w has 2n-1 steps, where n is the length of w. In that case, checking only derivations with 2n-1 steps to determine whether G generates w would be sufficient. Only finitely many such derivations exist. We can convert G to Chomsky normal form by using the procedure given in Section 2.1.

PROOF The TM S for A_{CFG} follows.

S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:

- 1. Convert G to an equivalent grammar in Chomsky normal form.
- 2. List all derivations with 2n-1 steps, where n is the length of w; except if n=0, then instead list all derivations with one step.
- 3. If any of these derivations generate w, accept; if not, reject."

The problem of determining whether a CFG generates a particular string is related to the problem of compiling programming languages. The algorithm in TM S is very inefficient and would never be used in practice, but it is easy to describe and we aren't concerned with efficiency here. In Part Three of this book, we address issues concerning the running time and memory use of algorithms. In the proof of Theorem 7.16, we describe a more efficient algorithm for recognizing general context-free languages. Even greater efficiency is possible for recognizing deterministic context-free languages.

Recall that we have given procedures for converting back and forth between CFGs and PDAs in Theorem 2.20. Hence everything we say about the decidability of problems concerning CFGs applies equally well to PDAs.

Let's turn now to the emptiness testing problem for the language of a CFG. As we did for DFAs, we can show that the problem of determining whether a CFG generates any strings at all is decidable. Let

$$E_{\mathsf{CFG}} = \{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}.$$

THEOREM 4.8

 E_{CFG} is a decidable language.

PROOF IDEA To find an algorithm for this problem, we might attempt to use TM S from Theorem 4.7. It states that we can test whether a CFG generates some particular string w. To determine whether $L(G) = \emptyset$, the algorithm might try going through all possible w's, one by one. But there are infinitely many w's to try, so this method could end up running forever. We need to take a different approach.

In order to determine whether the language of a grammar is empty, we need to test whether the start variable can generate a string of terminals. The algorithm does so by solving a more general problem. It determines *for each variable* whether that variable is capable of generating a string of terminals. When the algorithm has determined that a variable can generate some string of terminals, the algorithm keeps track of this information by placing a mark on that variable.

First, the algorithm marks all the terminal symbols in the grammar. Then, it scans all the rules of the grammar. If it ever finds a rule that permits some variable to be replaced by some string of symbols, all of which are already marked, the algorithm knows that this variable can be marked, too. The algorithm continues in this way until it cannot mark any additional variables. The TM R implements this algorithm.

PROOF

R = "On input $\langle G \rangle$, where G is a CFG:

- 1. Mark all terminal symbols in G.
- 2. Repeat until no new variables get marked:
- 3. Mark any variable A where G has a rule $A \to U_1 U_2 \cdots U_k$ and each symbol U_1, \dots, U_k has already been marked.
- **4.** If the start variable is not marked, *accept*; otherwise, *reject*."

Next, we consider the problem of determining whether two context-free grammars generate the same language. Let

$$EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle | \ G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}.$$

Theorem 4.5 gave an algorithm that decides the analogous language EQ_{DFA} for finite automata. We used the decision procedure for E_{DFA} to prove that EQ_{DFA} is decidable. Because E_{CFG} also is decidable, you might think that we can use a similar strategy to prove that EQ_{CFG} is decidable. But something is wrong with this idea! The class of context-free languages is *not* closed under complementation or intersection, as you proved in Exercise 2.2. In fact, EQ_{CFG} is not decidable. The technique for proving so is presented in Chapter 5.

Now we show that context-free languages are decidable by Turing machines.

THEOREM 4.9

Every context-free language is decidable.

PROOF IDEA Let A be a CFL. Our objective is to show that A is decidable. One (bad) idea is to convert a PDA for A directly into a TM. That isn't hard to do because simulating a stack with the TM's more versatile tape is easy. The PDA for A may be nondeterministic, but that seems okay because we can convert it into a nondeterministic TM and we know that any nondeterministic TM can be converted into an equivalent deterministic TM. Yet, there is a difficulty. Some branches of the PDA's computation may go on forever, reading and writing the stack without ever halting. The simulating TM then would also have some nonhalting branches in its computation, and so the TM would not be a decider. A different idea is necessary. Instead, we prove this theorem with the TM S that we designed in Theorem 4.7 to decide A_{CFG} .

PROOF Let G be a CFG for A and design a TM M_G that decides A. We build a copy of G into M_G . It works as follows.

 M_G = "On input w:

- **1.** Run TM S on input $\langle G, w \rangle$.
- 2. If this machine accepts, accept; if it rejects, reject."

Theorem 4.9 provides the final link in the relationship among the four main classes of languages that we have described so far: regular, context-free, decidable, and Turing-recognizable. Figure 4.10 depicts this relationship.

FIGURE **4.10**The relationship among classes of languages

4.2

UNDECIDABILITY

In this section, we prove one of the most philosophically important theorems of the theory of computation: There is a specific problem that is algorithmically unsolvable. Computers appear to be so powerful that you may believe that all problems will eventually yield to them. The theorem presented here demonstrates that computers are limited in a fundamental way.

What sorts of problems are unsolvable by computer? Are they esoteric, dwelling only in the minds of theoreticians? No! Even some ordinary problems that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and a precise specification of what that program is supposed to do (e.g., sort a list of numbers). You need to verify that the program performs as specified (i.e., that it is correct). Because both the program and the specification are mathematically precise objects, you hope to automate the process of verification by feeding these objects into a suitably programmed computer. However, you will be disappointed. The general problem of software verification is not solvable by computer.

In this section and in Chapter 5, you will encounter several computationally unsolvable problems. We aim to help you develop a feeling for the types of problems that are unsolvable and to learn techniques for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a specific language: the problem of determining whether a Turing machine accepts a