LINEAR ALGEBRA

4th STEPHEN H.FRIEDBERG, ARNOLD J.INSEL, LAWRENCE E.SPENCE

Exercises Of Chapter 1-4

 $http://math.pusan.ac.kr/cafe_home/chuh/$

Contents

$\S 1. Ve$	ctor Spaces	1
1.1.	Introduction	1
1.2.	Vector Spaces	3
1.3.	Subspaces	Ö
1.4.	Linear Combinations and Systems of Linear Equations	19
1.5.	Linear Dependence and Linear Independence	24
1.6.	Bases and Dimension	32
1.7.	Maximal Linearly Independent Subsets	50
§2. Liı	near Transformations and Matrices	55
2.1.	Linear Transformations, Null Spaces, and Ranges	55
2.2.	The matrix representation of a linear transformation	77
2.3.	Composition of Linear Transformations and Matrix Multiplication	87
2.4.	Invertibility and Isomorphisms	101
2.5.	The change of Coordinate Matrix	116
2.6. 2.7.	Dual Spaces	123
	cients	140
-	ementary Matrix Operations and Systems of Linear Equa-	
t10	ns	154
3.1.	v i	154
3.2.		162
3.3.	v i	172
3.4.	Systems of Linear equations - Computational aspects	178

§ 4.	De	terminants
	4.1.	Determinants of Order 2
	4.2.	Determinants of Order n
	4.3.	Properties of Determinants
	4.4.	Summary-Important Facts about Determinants
	4.5.	A characterization of the Determinants

§1. Vector Spaces

1.1. Introduction

- 1. Only the pairs in (b) and (c) are parallel
- (a) x = (3, 1, 2) and y = (6, 4, 2)
- $\nexists 0 \neq t \in \mathbb{R} \text{ s.t. } y = tx$
- (b) (9, -3, -21) = 3(-3, 1, 7)
- (c) (5, -6, 7) = -1(-5, 6, -7)
- (d) x = (2, 0, -5) and y = (5, 0, -2)
- $\nexists 0 \neq t \in \mathbb{R} \text{ s.t. } y = tx$
- 2. (a) x = (3, -2, 4) + t(-8, 9, -3)
- (b) x = (2, 4, 0) + t(-5, -10, 0)
- (c) x = (3,7,2) + t(0,0,-10)
- (d) x = (-2, -1, 5) + t(5, 10, 2)
- 3. (a) x = (2, -5, -1) + s(-2, 9, 7) + t(-5, 12, 2)
- (b) x = (-8, 2, 0) + s(9, 1, 0) + t(14, -7, 0)
- (c) x = (3, -6, 7) + s(-5, 6, -11) + t(2, -3, -9)
- (d) x = (1, 1, 1) + s(4, 4, 4) + t(-7, 3, 1)

4.
$$x = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n, i = 1, 2, \dots, n$$

 $0 = (0, 0, \dots, 0) \in \mathbb{R}^n \text{ s.t. } x + 0 = x, \forall x \in \mathbb{R}^n$

5.
$$x = (a_1, a_2) \Rightarrow tx = t(a_1, a_2) = (ta_1, ta_2)$$

6.
$$A + B = (a + c, b + d), M = (\frac{a+c}{2}, \frac{b+d}{2})$$

7.

$$C = (v - u) + (w - u) + u = v + w - u$$

$$\overrightarrow{OD} + \frac{1}{2}\overrightarrow{DB} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AC}$$

$$i.e. \ w + \frac{1}{2}(v - w) = \frac{1}{2}(v + w) = u + \frac{1}{2}(v + w - u - u)$$

1.2. Vector Spaces

1.

- (a) T
- (b) F (If $\exists 0'$ s.t. $x + 0' = x, \forall x \in V$, then 0' = 0 + 0' = 0' + 0 = 0, $\therefore 0' = 0$)
- (c) F (If $x=0, a \neq b$, then $a \cdot 0 = b \cdot 0$ but $a \neq b$)
- (d) F (If $a = 0, x \neq y$, then $a \cdot x = 0 = a \cdot y$ but $x \neq y$)
- (e) T
- (f) F (An $m \times n$ matrix has m rows and n cilumns)
- (g) F
- (h) F (If f(x) = ax + b, g(x) = -ax + b, then $\deg f = \deg g = 1, \deg (f + g) = 0$)
- (i) T (p.10 Example4)
- (j) T
- (k) T (p.9 Example3)

3.
$$M_{13} = 3$$
, $M_{21} = 4$, $M_{22} = 5$

4

(a)
$$\begin{pmatrix} 6 & 3 & 2 \\ -4 & 3 & 9 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & -1 \\ 3 & -5 \\ 3 & 8 \end{pmatrix}$$

(c) $\begin{pmatrix} 8 & 20 & -12 \\ 4 & 0 & 28 \end{pmatrix}$
(d) $\begin{pmatrix} 30 & -20 \\ -15 & 10 \\ -5 & 40 \end{pmatrix}$

(f)
$$-x^3 + 7x^2 + 16$$

(g)
$$10x^7 - 30x^4 + 40x^2 - 15x$$

(h)
$$3x^5 - 6x^3 + 12x + 6$$

5.
$$U = \begin{pmatrix} 8 & 3 & 1 \\ 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}, D = \begin{pmatrix} 9 & 1 & 4 \\ 3 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}, T = \begin{pmatrix} 17 & 4 & 5 \\ 6 & 0 & 0 \\ 4 & 1 & 0 \end{pmatrix}$$

(*) The total number of crossings

	Fall	Spring	Winter
Brook trout	17	4	5
Rainbow trout	6	0	0
Brown trout	4	1	0

6.
$$M = \begin{pmatrix} 4 & 2 & 1 & 3 \\ 5 & 1 & 1 & 4 \\ 3 & 1 & 2 & 6 \end{pmatrix}, \ 2M - A = \begin{pmatrix} 3 & 1 & 1 & 4 \\ 4 & 0 & 1 & 3 \\ 5 & 2 & 1 & 9 \end{pmatrix}$$

35 suites were sold during the June sale

7. We are going to show that
$$f(t) = g(t)$$
 and $(f+g)(t) = h(t)$, $\forall t \in S = \{0,1\}$

(i)
$$f(0) = 1 = g(0), f(1) = 3 = g(1)$$

(ii)
$$(f+g)(0) = 2 = h(0), (f+g)(1) = 6 = h(1)$$

$$\therefore$$
 In $\mathcal{F}(S,R), f=g$ and $f+g=h$

- 8. VS 7, 8
- 9. (a) Exercise 1(b)

(b) If
$$\exists y' \text{ s.t. } x + y' = 0$$
, then $x + y = 0x + y'$

By the theorem 1.1, y = y'

(c)
$$a \cdot 0 + a \cdot 0 = a(0+0) = a \cdot 0 = a \cdot 0 + 0$$

By the theorem 1.1, $a \cdot 0 = 0$

10.
$$V = D(\mathbb{R}), \ \forall s \in \mathbb{R}$$

(1)
$$\forall f, g \in V, f + g = g + f$$

$$(f+g)(s) = f(s) + g(s) = g(s) + f(s) = (g+f)(s)$$

$$\therefore f + g = g + f$$

(2)
$$\forall f, g, h \in V, (f+g) + h = f + (g+h)$$

$$((f+g)+h)(s) = (f+g)(s) + h(s) = f(s) + g(s) + h(s)$$

$$= f(s) + (g+h)(s) = (f + (g+h))(s)$$

$$\therefore (f+g) + h = f + (g+h)$$

5

(3)
$$\exists 0 \in V \text{ s.t. } f + 0 = f, \ \forall f \in V$$

$$(f + f')(s) = f(s) + f'(s) = 0(s)$$

$$f'(s) = 0(s) - f(s) = (0 - f)(s) = (-f)(s)$$

$$f' = -f$$

(5)
$$\forall f \in V, \ 1 \cdot f = f$$

$$(1 \cdot f)(s) = 1(f(s)) = f(s)$$

$$\therefore 1 \cdot f = f$$

(6)
$$\forall a, b \in F, (ab)f = a(bf)$$

$$((ab)f)(s) = (ab)f(s) = a(bf(s)) = a(bf)(s)$$

$$(ab)f = a(bf)$$

(7)
$$\forall a \in F, \ a(f+g) = af + ag$$

$$a(f+g)(s) = a(f(s) + g(s)) = af(s) + ag(s) = (af + ag)(s)$$

$$\therefore a(f+g) = af + ag$$

(8)
$$\forall a, b \in F$$
, $(a+b)f = af + bf$

$$(a + b) f(s) = a f(s) + b f(s) = (a f + b f)(s)$$

$$(a+b)f = af + bf$$

11.
$$V = \{0\}, \ \forall a, b \in F$$

12.

(1)
$$\forall f, g \in V, t \in \mathbb{R}$$

$$(f+g)(-t) = f(-t) + g(-t) = f(t) + g(t) = (f+g)(t)$$
 : $f+g \in V$

$$(g+f)(-t) = (g+f)(t)$$
 : $g+f \in V$

$$\therefore f + g = g + f$$

(2)
$$\forall f, g, h \in V, (f+g) + h = f + (g+h)$$

(3)
$$\exists 0 \in V \text{ s.t. } f + 0 = f, \ \forall f \in V$$

(4)
$$\exists f' \in V \text{ s.t. } f + f' = 0, \ \forall f \in V, \ f' = -f$$

(5)
$$\forall f \in V, 1f = f$$

(6)
$$\forall a, b \in F, (ab)f = a(bf)$$

$$((ab)f(-t)=(ab)f(t), \ \therefore abf \in V)$$

(7)
$$\forall a \in F, \ \forall f, g \in V, \ a(f+g) = af + ag$$

(8)
$$\forall a, b \in F, \ \forall f \in V, \ (a+b)f = af + bf$$

13. No, (VS 4) fails

(VS 3)
$$\exists$$
 (0,1) \in V s.t. $(a_1, a_2) + (0,1) = (a_1, a_2), \forall (a_1, a_2) \in V$

(VS 4) If
$$a_2 = 0$$
, then $\not\equiv (b_1, b_2) \in V$ s.t. $(a_1, 0) + (b_1, b_2) = (0, 1)$

14. Yes
$$(:: \mathbb{R} \subseteq \mathbb{C})$$

15. No
$$(:: \mathbb{C} \subsetneq \mathbb{R})$$

$$\alpha \in F = \mathbb{C}, \ \alpha x \notin V = \mathbb{R}^n, \ \forall x \in V$$

16. Yes
$$(:: \mathbb{Q} \subseteq \mathbb{R})$$

(VS 5) If
$$a_2 \neq 0$$
, then $1(a_1, a_2) = (a_1, 0) \neq (a_1, a_2)$

(VS 5) If
$$a_1 \neq b_1$$
, then it fails to hold (VS 1)

(VS 8) If
$$c_1 + c_2 \neq 0$$
, $c_1 \neq 0$, $c_2 \neq 0$, then it fails to hold (VS 8)

20. (VS 1)
$$\forall \{a_n\}, \{b_n\} \in V$$

$$\{a_n\} + \{b_n\} = \{a_1 + b_1, a_2 + b_2, \dots\} = \{b_1 + a_1, b_2 + a_2, \dots\} = \{b_n\} + \{a_n\}$$

(VS 2)
$$({a_n} + {b_n}) + {c_n} = {a_n} + ({b_n} + {c_n})$$

(VS 3)
$$\exists \{0\}$$
 s.t. $\{a_n\} + \{0\} = \{a_n\}$

(VS 4)
$$\exists \{-a_n\}$$
 s.t. $\{a_n\} + \{-a_n\} = \{a_n\} - \{a_n\} = \{0\}, \forall \{a_n\} \in V$

(VS 5)
$$\exists \{1\} \text{ s.t. } \{1\}\{a_n\} = \{a_n\}, \forall \{a_n\} \in V$$

(VS 6)
$$\forall \alpha, \beta \in F$$
, $(\alpha\beta)\{a_n\} = \alpha(\beta\{a_n\})$

(VS 7)
$$\forall \alpha \in F, \forall \{a_n\}, \{b_n\} \in V, \alpha(\{a_n\} + \{b_n\}) = \alpha\{a_n\} + \alpha\{b_n\}$$

(VS 8)
$$\forall \alpha, \beta \in F$$
, $(\alpha + \beta)\{a_n\} = \alpha\{a_n\} + \beta\{a_n\}$

22. 2^{mn}

1.3. Subspaces

- 1. (a) F (p.1 Definition of subspace)
- (b) F $(0 \notin \emptyset)$
- (c) T (V and $\{\emptyset\}$ are subspaces of V)
- (d) F (p.19 Theorem 1.4)
- (e) F
- (f) F (p.18 Example 4)
- (g) F $((0,0,0) \in W$, but $(0,0,0) \notin R^2$)
- 2. (b), (c), (e), (f), (g) are not square matrices
- (a) -5, (d) 12, (h) -6
- 3. $\forall A, B \in M_{m \times n}(F), a, b \in F(1 \le i \le m, 1 \le j \le n)$

$$(aA + bB)_{ij}^t = (aA + bB)_{ji} = (aA)_{ji} + (bB)_{ji}$$

$$= a(A)_{ji} + b(B)_{ji} = aA_{ij}^t + bB_{ij}^t = (aA^t + bB^t)_{ij}$$

$$\therefore (aA + bB)^t = aA^t + bB^t$$

- 4. $(A^t)_{ij}^t = (A^t)_{ji} = A_{ij}$
- 5. $(A + A^t)^t = A^t + (A^t)^t = A^t + A = A + A^t$
- $\therefore A + A^t$ is symmetric

6.
$$tr(aA + bB) = \sum_{i=1}^{n} (aA + bB)_{ii} = \sum_{i=1}^{n} (aA)_{ii} + \sum_{i=1}^{n} (bB)_{ii} = atr(A) + btr(B)$$

7.
$$A = \begin{pmatrix} a_{11} & & & \\ & a_{22} & O & \\ & O & a_{33} & \\ & & & a_{44} \end{pmatrix} \Rightarrow A^t = A$$

- \therefore A is symmetric
- 8. (a) Yes
- (b) No $((0,0,0) \notin W_2)$
- (c) Yes
- (d) Yes
- (e) No $((0,0,0) \notin W_5)$
- (f) No $x + y \notin W_6$), $\forall x, y \in W_6$
- 9. (1) $W_1 \cap W_3 = \{0\}$ is a subspace of \mathbb{R}^3
- (2) $W_1 \cap W_4 = W_1$ is a subspace of \mathbb{R}^3
- (3) $W_3 \cap W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 \mid 3a_1 = 11a_2, 3a_3 = 23a_2\}$ is a subspace of \mathbb{R}^3
- 10. (i) W_1 is a subspace of F^n
- (ii) W_2 is not a subspace of F^n
- $(::(0,0,0)\notin W_2)$

11. No (The given set is not closed under addition)

(Example)
$$\forall f, g \in W$$

Let
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
, $deg f = n$

$$g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0, \ degg = n$$

If
$$b_n = -a_n$$
, then $deg(f+g) = n-1$

- $\therefore f + g \notin W$
- \therefore W is not a subspace of V
- 15. Yes
- 17. (\Rightarrow) Theorem 1.3
- (\Leftarrow) W is a subspace of V
- (i) $0 \in W$ $(a = 0 \in F: field)$
- (ii) $ax \in W$
- (iii) $x + y \in W$
- 18. (\Rightarrow) Theorem 1.3
- (\Leftarrow) W is a subspace of V
- (i) $0 \in W$
- (ii) $ax \in W$ $(y = 0 \in W, \text{ by (i) })$
- (iii) $x + y \in W \ (a = 1 \in F: \text{ field})$

19. (
$$\Leftarrow$$
) If $W_1 \subseteq W_2$, then $W_1 \cup W_2 = W_2$ is a subspace of V

If
$$W_2 \subseteq W_1$$
, then $W_1 \cup W_2 = W_1$ is a subspace of V

$$\therefore W_1 \cup W_2$$
 is a subspace of V

$$(\Rightarrow)$$
 If $\exists a \notin W_1, a \in W_2 \exists b \notin W_2, b \in W_1$,

then
$$ab \in W_1 \cup W_2$$

But if
$$ab \in W_1$$
, then $a = (ab)b^{-1}inW_1$

if
$$ab \in W_2$$
, then $b = (ba)a^{-1}inW_2$

It's a contrdiction

$$\therefore W_1 \subseteq W_2 \text{ or } W_2 \subseteq W_1$$

20. Induction on n

In case of n = 2, it's clear

Assume that this holds for n = k - 1 (k > 2)

By the induction hypothesis,

$$\sum_{i=1}^{k-1} a_i w_i + a_k w_k \in W, \ w_k \in W, \ a_k \in F$$

$$\therefore \forall w_i \in W, \sum_{i=1}^n a_i w_i \in W, \text{ where } \forall a_i \in F, i = 1, 2, \dots, n$$

21. (i)
$$\{0\} \to 0$$
, $\therefore \{0\} \in W$

(ii)
$$\lim \{a_n\} = a, \lim \{b_n\} = b$$

$$\lim(\{a_n\} + \{b_n\}) = \lim\{a_n\} + \lim\{b_n\} = a + b$$

$$\therefore \{a_n\} + \{b_n\} \in W$$

(iii)
$$\lim c\{a_n\} = c \lim\{a_n\}$$

$$\therefore c\{a_n\} \in W$$

 \therefore W is a subspace of V

22.

Let
$$W_1 = \{ g \in F(F_1, F_2) \mid g(-t) = g(t), \text{ for each } t \in F_1 \}$$

$$W_2 = \{g \in F(F_1, F_2) \mid g(-t) = -g(t), \text{ for each } t \in F_1\}$$

$$(1) \ \forall g_1, g_2 \in W_1, \ \forall c \in F$$

(i)
$$0 \in W_1$$

(ii)
$$(g_1 + g_2)(-t) = g_1(-t) + g_2(-t) = g_1(t) + g_2(t) = (g_1 + g_2)(t)$$

$$g_1 + g_2 \in W_1$$

(iii)
$$cg_1(-t) = c(g_1(t)) = cg_1(t)$$

$$\therefore cg \in W_1$$

 $\therefore W_1$ is a subspace of V

(2)
$$\forall g_1, g_2 \in W_2, \ \forall c \in F$$

(i)
$$0 \in W_2$$

(ii)
$$(g_1 + g_2)(-t) = g_1(-t) + g_2(-t) = -g_1(t) - g_2(t) = -(g_1 + g_2)(t)$$

$$\therefore g_1 + g_2 \in W_2$$

(iii)
$$cg_1(-t) = c(-g_1(t)) = -cg_1(t)$$

$$\therefore cg \in W_2$$

 \therefore W_2 is a subspace of V

23. (a)
$$W_1 + W_2 = \{x + y \mid x \in W_1 \text{ and } y \in 2\}$$

(i)
$$0 = 0 + 0 \in W_1 + W_2$$

(ii)
$$\forall x_1 + y_1, \ x_2 + y_2 \in W_1 + W_2$$

$$(x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in W_1 + W_2$$

(iii)
$$\forall x_1 + y_1 \in W_1 + W_2, \ \forall c \in F$$

$$c(x_1 + y_1) = cx_1 + cy_1 \in W_1 + W_2$$

(b)
$$\forall W$$
 as a subspace of V s.t. $W_1 \subseteq W$, $W_2 \subseteq W$

$$\forall x \in W_1 \subseteq W, \ \forall y \in W_2 \subseteq W \ \Rightarrow \ x + y \in W_1 + W_2 \subseteq W$$

24.
$$V = F^n$$

(i)
$$W_1 \cap W_2 = \{(0, 0, \dots, 0)\}$$

(ii)
$$W_1 + W_2 \subseteq V$$
 is clear

$$\forall v = (a_1, a_2, \dots, a_n) = (a_1, a_2, \dots, a_{n-1}, 0) + (0, 0, \dots, 0, a_n) \in W_1 + W_2$$

$$\therefore V = W_1 + W_2$$

25. (a)
$$W_1 \cap W_2 = \{0\}$$

(b)
$$V = \{ f(x) \in P(F) \mid f(x) = a_0 + a_1 x + \dots \}$$

$$(:)$$
 Since $W_1 \subseteq V$ and $W_2 \subseteq V$, $W_1 + W_2 \subseteq V$ is clear

$$\forall f \in V, \ f = a_0 + a_2 x + \dots + a_1 x + a_3 x^3 + \dots \in W_1 + W_2$$

$$\therefore V = P(F) = W_1 \oplus W_2$$

26. (a)
$$W_1 \cap W_2 = \{A \in M_{m \times n} \mid A_{ij} = 0 \ \forall i, j\} = \{0\}$$

(b)
$$W_1 + W_2 \subseteq V$$
 is clear
$$\forall A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & & a_{2n} \\
\vdots & & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} \in M_{m \times n},$$

$$A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & & a_{2n} \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & a_{mn}
\end{pmatrix} + \begin{pmatrix}
0 & 0 & \cdots & 0 \\
a_{21} & 0 & & \vdots \\
\vdots & & \ddots & \vdots \\
a_{m1} & \cdots & a_{m(n-1)} & 0
\end{pmatrix} \in W_1 + W_2$$

$$\therefore V = P(F) = W_1 \oplus W_2$$

27. (a)
$$W_1 \cap W_2 = \{A \in M_{m \times n} \mid A_{ij} = 0 \ \forall i, j\} = \{0\}$$

(b)
$$W_1 + W_2 \subseteq V$$
 is clear
$$\forall A = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & & a_{2n} \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & a_{mn}
\end{pmatrix} \in M_{m \times n},$$

$$A = \begin{pmatrix}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & & a_{mn}
\end{pmatrix} + \begin{pmatrix}
0 & a_{12} & \cdots & a_{1n} \\
0 & 0 & & a_{2n} \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & a_{(n-1)}n
\end{pmatrix} \in W_1 + W_2$$

$$V = P(F) = W_1 \oplus W_2$$

28. (a)
$$W_1 \cap W_2 = \{0\}$$

(b)
$$W_1 + W_2 \subseteq V$$
 is clear

$$\forall A \in V, \ A = (\frac{A - A^t}{2}) + (\frac{A + A^t}{2}) \in W_1 + W_2$$

$$\therefore V \in W_1 + W_2$$

(cf)
$$char(F) \neq 2$$

$$\{\frac{1}{2}(A - A^t)\}^t = \frac{1}{2}(A^t - A) = -\{\frac{1}{2}(A - A^t)\} : \frac{1}{2}(A - A^t) \in W_1$$
$$\{\frac{1}{2}(A - A^t)\}^t = \frac{1}{2}(A + A^t) : \frac{1}{2}(A + A^t) \in W_2$$

29. W_1 : strictly lower triangular matrices

 W_2 : all symmetric matrices

(a)
$$W_1 \cap W_2 = \{0\}$$

(b) Let $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in V \text{ and } A' = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & & a_{2n} \\ \vdots & & \ddots & \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} \in W_2$

$$\therefore V \subseteq W_1 + W_2$$

$$V = W_1 + W_2$$

30.

$$(\Rightarrow)$$
 If $x = x_1 + x_2 = x_3 + x_4$, $x_1, x_3 \in W_1$ and $x_2, x_4 \in W_2$

then
$$x_1 - x_3 = x_4 - x_2 \in W_1 \cap W_2 = \{0\}$$

$$\therefore x_1 = x_3, x_2 = x_4$$

$$(\Leftarrow)$$
 (i) $V = W_1 + W_2$ is clear

(ii) If
$$w \in W_1 \cap W_2$$
, then $w = w + 0 = 0 + 0$

$$\therefore w = 0$$

$$W_1 \cap W_2 = \{0\}$$

31. (a)
$$(\Leftarrow)$$
 $v \in W \implies v + W = W$

$$\therefore v + W$$
 is a subspace of V

$$(\Rightarrow) v + w_1, v + w_2 \in W$$

$$v + w_1 + v + w_2 = v + (w_1 + w_2 + v) \in v + W$$

$$\therefore w_1 + w_2 + v \in W$$

$$v \in W$$

(b)
$$v_1 - v_2 \in W \Leftrightarrow v_1 - v_2 + W = W \Leftrightarrow v_1 + W = v_2 + W$$

(c) Since
$$v_1 - v_1' \in W$$
 and $v_2 - v_2' \in W$,

$$(v_1 - v_1') + (v_2 - v_2') = (v_1 + v_2) - (v_1' + v_2') \in W$$

$$(v_1 + v_2) + W = (v_1' + v_2') + W$$

$$(v_1 + W) + (v_2 + W) = (v_1' + W) + (v_2' + W)$$

Since
$$a(v_1 - v_1) \in W$$
, $a(v_1 + W) = a(v_1' + W)$

(d)
$$S = V/W = \{v + W \mid v \in V\}$$
 is a vector space

(VS 1)
$$(v_1+W)+(v_2+W)=(v_1+v_2)+W=(v_2+v_1)+W=(v_2+W)+(v_1+W)$$

(VS 2)
$$\{(v_1 + W) + (v_2 + W)\} + (v_3 + W) = (v_1 + v_2) + W + v_3 + W$$

$$= (v_1 + v_2 + v_3) + W = v_1 + (v_2 + v_3) + W$$

$$= \{v_1 + W\} + \{(v_2 + v_3) + W\}$$

$$= (v_1 + W) + \{(v_2 + W) + (v_3 + W)\}\$$

(VS 3)
$$\exists 0 + W \text{ s.t. } (v + W) + (0 + W) = (v + 0) + W = v + W$$

(VS 4)
$$\forall v + W, (1 + W)(v + W) = v + W$$

(VS 5)
$$\exists -v + W \text{ s.t. } (v + W) + (-v + W) = 0 + W$$

(VS 6)
$$\forall a, b \in F$$
, $(ab)(v+W) = abv+W = a(bv)+W = a(bv+W) = a(b(v+W))$
(VS 7) $\forall a \in F$, $a(v_1+W+v_2+W) = av_1+av_2+W = av_1+W+av_2+W = a(v_1+W)+a(v_2+W)$
(VS 8) $(a+b)(v+W) = (a+b)v+W = av+bv+W = a(v+W)+b(v+W)$

1.4. Linear Combinations and Systems of Linear Equations

1. (a) T
$$(0v = 0, \forall v \in V)$$

(b) F (p.30
$$span(\emptyset) = \{0\}$$
)

2. (a)
$$\{r(1,1,0,0) + s(-3,0,-2,1) + (5,0,4,0) \mid r,s \in R\}$$

(b)
$$(-2, -4, -3)$$

(c) There are no solutions

(d)
$$\{r(-8,3,1,0) + (-16,9,0,2) \mid r \in R\}$$

(e)
$$\{r(0, -3, 1, 0, 0) + s(-3, -2, 0, 1, 0) + (-4, 3, 0, 0, 5) \mid r, s \in R\}$$

(f)
$$(3, 4, -2)$$

3. (a) yes
$$(-2,0,3) = 4(1,3,0) + (-3)(2,4,-1)$$

(b) Yes
$$(1, 2, -3) = 5(-3, 2, 1) + 8(2, -1, -1)$$

(d) Yes
$$(2, -1, 0) = \frac{4}{5}(1, 2, -3) + \frac{6}{5}(1, -3, 2)$$

(f) Yes
$$(-2,2,2) = 4(1,2,-1) + 2(-3,-3,3)$$

4. (a) Yes
$$(x^3 - 3x + 5) = 3(x^3 + 2x^2 - x + 1) + (-2)(x^3 + 3x^2 - 1)$$

- (b) No
- (c) Yes 4, -3
- (d) Yes -2, 5
- (e) No
- (f) No

5. (a) Yes
$$(2, -1, 1) = 1(1, 0, 2) + (-1)(-1, 1, 1) \in span(S)$$

- (b) No
- (c) No
- (d) Yes 2, -1
- (e) Yes -1, 3, 1
- (f) No
- (g) Yes 3, 4, -2
- (h) No

6. Let
$$span\{(1,1,0),(1,0,1),(0,1,1)\}=W$$

$$\forall v = (a_1, a_2, a_3) \in F^3,$$

$$v = r(1, 1, 0) + s(1, 0, 1) + t(0, 1, 1)$$
 s.t. $r = \frac{1}{2}(a_1 + a_2 - a_3), s = \frac{1}{2}(a_1 - a_2 + a_3), t = \frac{1}{2}(a_1 + a_2 - a_3)$

$$\frac{1}{2}(-a_1 + a_2 + a_3) \in W$$

$$\therefore\ V\subseteq W$$
 Since $W\subseteq F^3$ is clear, $W=F^3$

7.
$$\forall v = (a_1, a_2, \dots, a_n) \in F^n$$

 $v = a_1 e_1 + a_1 e_2 + \dots + a_n e_n, \ \forall a_i \in F, \ i = 0, 1, \dots, n$

8.
$$\forall f(x) = a_0 + a_1 x + \dots + a_n x^n \in P_n(F)$$

 $f(x) = a_0 \cdot 1 + a_1 \cdot x + \dots + a_n \cdot x^n, \forall a_i F, i = 0, 1, \dots, n$

9.
$$\forall A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_{2 \times 2}(F)$$

$$A = a_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$10. \ \forall A = \begin{pmatrix} a & c \\ c & b \end{pmatrix} \in M_{2 \times 2}(F)$$

$$A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in span\{M_1, M_2, M_3\}$$

- 11. If $x \neq 0$, then $span(\{x\}) = \{ax \mid a \in F\}$ is the line through the origin in R^3 Otherwise $span(\{x\}) = \{ax \mid a \in F\}$ is the origin
- 12. (\Leftarrow) By the theorem 1.5, span(W) is a subspace of V
- \therefore W is a subspace of V

$$(\Rightarrow) \ \forall v \in W, \ v = 1 \cdot v \in span(W)$$

$$\therefore W \subseteq span(W)$$

$$\forall v \in span(W), \ v = a_1v_1 + \dots + a_nv_n$$

Since
$$\forall a_i v_i \in W, \ v = \sum_{i=1}^n \in W$$

$$\therefore span(W) \subseteq W$$

13. (i)
$$S_1 \subseteq S_2 \subseteq span(S_2) \Rightarrow span(S_1) \subseteq span(S_2)$$

(ii) By (i)
$$span(S_1) = V \subseteq span(S_2) \subseteq V$$

$$\therefore span(S_2) = V$$

14.
$$S_1, S_2 \subseteq V$$
, $S_1 = \{x_1, x_2, \dots, x_m\}, S_2 = \{x_{m+1}, x_{m+2}, \dots, x_n\}$

(i) Since
$$S_1, S_2 \subseteq S_1 \cup S_2$$
, $span(S_1), span(S_2) \subseteq span(S_1 \cup S_2)$

If
$$v = \sum_{i=1}^{m} a_i x_i + \sum_{i=m+1}^{n} a_i x_i \in span(S_1) + span(S_2), \ \forall a_i \in F$$

then $v \in span(S_1 \cup S_2)$

(ii) If
$$v = \sum_{i=1}^{n} a_i x_i \in span(S_1 \cup S_2, \ \forall a_i \in F$$

then
$$v = \sum_{i=1}^{m} a_i x_i + \sum_{i=m+1}^{n} a_i x_i \in span(S_1) + span(S_2)$$

15. Since
$$S_1 \cap S_2 \subseteq S_1 \subseteq span(S_1)$$
 and $S_1 \cap S_2 \subseteq S_2 \subseteq span(S_2)$,

$$span(S_1 \cap S_2) \subseteq span(S_1) \cap span(S_2)$$

16.
$$\forall v \in span(S)$$
, suppose $v = a_1v_1 + \cdots + a_nv_n = b_1v_1 + \cdots + b_nv_n$

then
$$(a_1 - b_1)v_1 + \cdots + (a_n - b_n)v_n = 0$$

$$(a_1 - b_1) = \cdots = (a_n - b_n) = 0$$

$$\therefore a_1 = b_1, \cdots, a_n = b_n$$

- 17. W must be a finite set
- (i) F is an infinite field

If
$$\exists 0 \neq w \in W$$
, then $\{aw \mid a \in F\} \Rightarrow W = \{0\}$

(ii) F is a finite field

If
$$\beta = \{w_1, \cdots, w_n\}$$
, then $\mid W \mid = \mid F \mid^{\mid \beta \mid}$

 $\therefore \dim W < \infty$

1.5. Linear Dependence and Linear Independence

1. (a) If S is a linearly dependent set, then each vector in S is a linear combination of other vector in S.

Ans: F

(Example)
$$V = R^3$$
, $S = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1), e_4 = (1, 1, 0)\}$

 $\{e_1, e_2, e_3\}$: linearly independent

 $\{e_1, e_2, e_4\}$: linearly dependent

(b) Any set containing the zero vector is linearly dependent.

 $Ans: T(:) \forall a \in F, 0 = a \cdot 0, a \neq 0$

(c) The empty set is linearly dependent.

 $Ans: F(\cdot)$ linearly dependent set must be non-empty.

(d) Subsets of linearly dependent sets are linearly dependent.

Ans: F(:) theorem 1.6

(e) Subsets of linearly independent sets are linearly independent.

Ans: T(:) the corollarly from theorem 1.6

(f) If $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ and x_1, x_2, \cdots, x_n are linearly independent, then all the scalars a_i are zero.

Ans: T(:) from the definition.

- 2. (a), (d), (e), (g), (h), (j) : linearly independent
- (b), (c), (f), (i): linearly dependent

3. In $M_{2\times 3}(F)$, prove that the set

$$\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}$$

is linearly dependent.

$$(::)$$
 $a+d=0, b+d=0, c+d=0,$

$$a + e = 0, b + e = 0, c + e = 0$$

$$\Rightarrow a = -d, b = -d, c = -d, d, e = d$$

: the given set is linearly dependent.

4. In F^n , let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that $\{e_1, e_2, \dots, e_n\}$ is linearly independent.

$$(::)$$
 $(a_1, a_2, \dots, a_n) = a_1 e_1 + a_2 e_2 + \dots + a_n e_n = (0, \dots, 0)$

$$\therefore a_1 = a_2 = \dots = a_n = 0$$

 $\therefore \{e_1, e_2, \cdots, e_n\}$ is linearly independent.

5. Show that the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent in $P_n(F)$.

(:) If
$$a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n = 0 \cdot 1 + 0 \cdot x_1 + 0 \cdot x_2 + \dots + 0 \cdot x_n$$
,
then $\forall a_i = 0, 1 \le i \le n$.

6. In $M_{n\times n}(F)$, let E^{ij} denote the matrix whose only nonzero entry is 1 in the *i*th row and *i*th column.

Prove that $\{E^{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$ is linearly independent.

$$(::) \forall A \in M_{n \times n}(F),$$

If
$$A = a_{11}E^{11} + a_{12}E^{12} + \dots + a_{nn}E^{nn} = 0$$

then,

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$\therefore \forall a_{ij} = 0$$
, where $1 \le i \le m, 1 \le j \le n$

7. Recall from Example 3 in section 1.3 that the set of diagonal matrices in $M_{2\times 2}(F)$ is a subspace.

Find a linearly independent set that generates this subspace.

$$(:) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\forall \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad a, b \in F$$

- 8. Let $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ be a subset of the vector space F^3 .
- (a) Prove that if F = R, then S is linearly independent.
- (b) Prove that if F has characteristic 2, then S is linearly independent.

(::) (a)
$$a(1,1,0) + b(1,0,1) + c(0,1,1) = (0,0,0), \forall a,b,c \in F$$

then
$$a + b = 0$$
, $a + c = 0$, $b + c = 0$

$$\therefore a = b = c = 0$$

(b) If
$$a = b = c = 1$$
, then $a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1) = (2, 2, 2) = (0, 0, 0)$

$$\therefore$$
 {(1, 1, 0), (1, 0, 1), (0, 1, 1)} is linearly dependent

9. Let u and v be distinct vectors in a vector space V.

Show that $\{u, v\}$ is linearly dependent if and only if u or v is a multiple of the other.

- $(:.)\ u\neq v,\{u,v\}$: linearly independent
- (\Rightarrow) If au+bv= 0,

$$(1)a \neq 0 \Rightarrow u = \frac{-a}{b}v$$

$$(2)a = 0 \Rightarrow b \neq 0 \Rightarrow v = \frac{-a}{b}u$$

$$(\Leftarrow)u = kv \Rightarrow 1u - kv = 0$$

10. Give an example of three linearly dependent vectors in \mathbb{R}^3 such that none of the three is a multiple of another.

(Example)
$$\{(-1,0,-1),(1,-1,0),(0,1,1)\}$$

11. Let $S = \{u_1, u_2, \dots, u_n\}$ be a linearly independent subset of a vector space V over the field Z_2 . How many vectors are there in span(S)?

 $| span(S) | = | F |^{|n|}$, when the set is linearly independent.

^{*} what if the given set is not linearly independent?

then the number of vectors in the set is smaller than $|F|^{|n|}$.

(Example)
$$a_i = \{0, 1\},\$$

$$v_1 = (-1, 0, 1), v_2 = (1, -1, 0), v_3 = (0, 1, 1)$$

$$\operatorname{span}(S) = \{(0,0,0), (0,1,1), (1,1,0), (1,0,1)\}$$

12. Prove Theorem 1.6 and its corollary.

Let
$$S_1 = \{u_1, \dots, u_n\}, S_2 = \{u_1, \dots, u_n, v\}$$

(i)
$$a_1u_1 + a_2u_2 + \cdots + a_nu_n + a_{n+1}v = 0$$
, not all $a_i \neq 0$ $(n \geq 1)$ then $v = b_1u_1 + \cdots + b_nu_n$, where $b_i = -\frac{a_i}{a_{n+1}} \in F$

 \therefore S_2 is linearly independent

(ii)
$$a_1u_1 + \dots + a_nu_n + 0v = 0 \implies a_1 = \dots = a_n = 0$$

 \therefore S_1 is linearly independent

- 13. Let V be a vector space over a field of characteristic not equal to two.
- (a) Let u and v be distinct vectors in V.

Prove that $\{u, v\}$ is linearly independent if and only if $\{u + v, u - v\}$ is linearly independent.

$$(::)(\Rightarrow)$$
 Suppose $a(u+v)+b(u-v)=0, a,b\in F$

$$(a+b)u + (a-b)v = 0$$

$$\therefore a = b = 0$$

 $(\Leftarrow) \{u+v, u-v\}$ is linearly independent.

$$au + bv = (\frac{a+b}{2})(u+v) + (\frac{a-b}{2})(u-v) = 0$$

$$(\frac{a+b}{2}) = 0$$
 and $(\frac{a-b}{2}) = 0$

$$\therefore a = b = 0$$

(b)

$$(\Rightarrow) \ a(u+v) + b(u+w) + c(v+w) = 0$$

$$\Rightarrow$$
 $(a+b)u + (a+c)v + (b+c)w = 0$

$$a + b = a + c = b + c = 0$$

$$\therefore a = b = c = 0$$

$$(\Leftarrow) \ au + bv + cw = (\frac{a+b}{2})(u+v) + (\frac{a+c}{2})(u+w) + (\frac{b+c}{2})(v+w)$$

$$\left(\frac{a+b}{2}\right) = \left(\frac{a+c}{2}\right) = \left(\frac{b+c}{2}\right) = 0$$

$$a = b = c = 0$$

14. (\Leftarrow) By the exercise 1(b), if $S = \{0\}$, then S is linearly dependent

If
$$v = a_1u_1 + \dots + a_nu_n$$
, then $a_1u_1 + \dots + a_nu_n - 1 \cdot v = 0$

$$\therefore S = \{u_1, \dots, u_n, v\}$$
 is linearly dependent

$$(\Rightarrow)$$
 If $S \neq \{0\}$, $\exists a_i \neq 0 \text{ s.t. } a_1 u_1 + \dots + a_n u_n + a_{n+1} v = 0$

Let $a_{n+1} \neq 0$

$$v = b_1 u_1 + \cdots + b_n v_n \in span(\{u_1, \cdots, u_n\}), \text{ where } b_i = -\frac{a_i}{a_{n+1}} \in F$$

15. (\Leftarrow) By the theorem 1.6

 (\Rightarrow)

If $u_1 = 0$, then it's clear

So we may assume $u_1 \neq 0$

Let $k \geq 0$ be the first integer s.t. u_1, \dots, u_k linearly independent and $\{u_1, \dots, u_k, u_{k+1}\}$ linearly dependent

So $a_1u_1 + \cdots + a_ku_k + a_{k+1}u_{k+1} = 0$ for some scalar $a_1, a_2, \cdots, a_{k+1}$ (not all zero)

If
$$a_{k+1} = 0$$
, then $a_1u_1 + \cdots + a_ku_k + a_{k+1}u_{k+1} = a_1u_1 + \cdots + a_ku_k = 0$

$$\therefore a_1 = \dots = a_k = a_{k+1} = 0$$

It's a contradiction

Thus
$$u_{k+1} = b_1 u_1 + \cdots + b_k u_k \in span(u_1, \cdots, u_k)$$
, where $b_i = -\frac{a_i}{a_{k+1}}$

16. (\Rightarrow) By the corollary of theorem 1.6

 (\Leftarrow) $S \subseteq S$ is linearly independent

17. Let
$$M^{(1)} = (a_{11}, 0, \dots, 0)^t, M^{(2)} = (a_{12}, a_{22}, 0, \dots, 0)^t, \dots, M^{(n)} = (a_{1n}, a_{2n}, \dots, a_{nn})^t$$

$$M \in span\{M^{(1)}, M^{(2)}, \cdots, M^{(n)} \mid a_{ii} \neq 0\}$$

Suppose
$$k_1 M^{(1)} + \dots + k_n M^{(n)} = 0$$

$$k_1 = k_2 = \dots = k_n = 0, \ \forall a_{ii} \neq 0$$

 \therefore S is linearly independent

18.
$$f_0(x) = a_0$$

$$f_1(x) = a_0 + a_1 x$$

:

$$f_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$\Rightarrow k_0 f_0(x) + k_1 f_1(x) + \dots + k_n f_n(x) = 0$$

$$\Rightarrow k_n a_n = 0$$

$$(k_{n-1} + k_n)a_{n-1} = 0$$

$$\vdots$$

$$(k_0 + \dots + k_n)a_0 = 0$$

$$\therefore \forall k_i = 0$$

19.

$$(a_1A_1 + \dots + a_kA_k)^t = (0)^t \implies a_1A_1^t + \dots + a_kA_k^t = 0$$

$$\therefore a_1 = \dots = a_k = 0$$

$$\therefore~\{A_1^t,\cdots,A_k^t\}$$
 is linearly independent

20.

$$ae^{rt} + be^{st} = 0, \ r \neq s$$

$$\Rightarrow a + be^{(s-r)t} = 0$$

Since
$$e^{(s-r)t} \neq 0$$
, $a = b = 0$

 $\therefore~\{e^{rt},e^{st}\}$ is linearly independent

1.6. Bases and Dimension

- 1. (a) F (:) \varnothing is a basis for the zero vector space.
- * $span\{\emptyset\} = \{0\}$ and \emptyset is linearly independent.
- (b) T (:) Theorem 1.9; If a vector space V is generated by a finite set S, then some subset of S is a basis for V.
- (c) F (Counterexample) $\{1, x, x^2, \dots\}$ is a basis for P(F)
- (d) F (:) Corollary 2 (c) from Theorem 1.10

Every linearly independent subset of V can be extended to a basis for V.

(e) T (∵) Corollary 1 from Theorem 1.10

Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

- (f) F (:) $\{1, x, x^2, \dots, x^n\}$ is a basis for $P_n(F)$
- (g) F (:) The dimension of $M_{m \times n}(F)$ is $m \times n$
- (h) T (∵) Replacement theorem.
- (i) F
- (:) Theorem 1.8. Let V be a vector space and $\beta = \{u_1, u_2, \dots, u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β .

(Example)
$$V = \mathbb{R}^2$$
, $S = \{v_1 = (1,0), v_2 = (0,1), v_3 = (1,1)\}$

$$(a,b) = av_1 + bv_2 + 0v_3 = 0v_1 + (b-a)v_2 + av_3$$

(j) T

Theorem 1.11. Let W be a subspace of a finite-dimensional vector space V. Then W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then V = W.

- (k) T
- (i) The vector space $\{0\}$ has dimension zero and 0 is unique element in V.
- So V has exactly one subspace with dimension 0.
- (ii) From the theorem 1.11, $W \leq V$ as a subspace

If
$$\dim(W) = \dim(V)$$
, then $V = W$

So V has exactly one subspace with dimension n.

- (l) T
- (\Rightarrow) If S is linearly independent,

Let W be a space spanned by S.

Then S is a basis for W (the corollary 2 from 1.10)

And $\dim W = n$

- $\therefore W = V$
- $\therefore S$ is a basis for V
- (\Leftarrow) If S is a generating set for V that contains n vectors, then by the corollary 2 from 1.10, S is linearly independent.
- 2. (a) $\{(1,0,-1),(2,5,1),(0,-4,3)\}$: a basis for \mathbb{R}^3

$$(::)\ 0 = a \cdot (1,0,-1) + b \cdot (2,5,1) + c \cdot (0,-4,3) = (a+2b,5b-4c,-a+b+3c)$$

$$\therefore a = b = c = 0$$

(*)

$$\begin{vmatrix} 1 & 0 & -1 \\ 2 & 5 & 1 \\ 0 & -4 & 3 \end{vmatrix} = 27 \neq 0$$

 $\therefore \{(1,0,-1),(2,5,1),(0,-4,3)\}$ is linearly independent.

(b)
$$\{(2,-4,1),(0,3,-1),(6,0,-1)\}$$
: a basis for \mathbb{R}^3

$$(:)$$
 $0 = a \cdot (2, -4, 1) + b \cdot (0, 3, -1) + c \cdot (6, 0, -1)$

$$= (2a + 6c, -4a, a - b - c)$$

$$\therefore a = b = c = 0$$

(c)
$$\{(1,2,-1),(1,0,2),(2,1,1)\}$$
: a basis for \mathbb{R}^3

(d)
$$\{(-1,3,1),(2,-4,-3),(-3,8,2)\}$$
: a basis for \mathbb{R}^3

(e)
$$\{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$$

$$(::)\ 0 = a \cdot (1, -3, -2) + b \cdot (-3, 1, 3) + c \cdot (-2, -10, -2)$$

$$= (a - 3b - 2c, -3a + b - 10c, -2a + 3b - 2c)$$

$$\therefore a = 2b, c = \frac{-1}{2}b$$

$$\exists (4,2,1) \neq (0,0,0)$$

(*)

$$\begin{vmatrix} 1 & -3 & -2 \\ -3 & 1 & 3 \\ -2 & 10 & -2 \end{vmatrix} = \begin{vmatrix} 1 & -3 & -2 \\ 0 & -8 & -3 \\ 0 & -16 & -6 \end{vmatrix} = 0$$

 $\therefore \{(1, -3, -2), (-3, 1, 3), (-2, -10, -2)\}$ is linearly dependent.

3. (a)
$$\{-1 - x + 2x^2, 2 + x - 2x^2, 1 - 2x + 4x^2\}$$

(:) $0 = a \cdot (-1 - x + 2x^2) + b \cdot (2 + x - 2x^2) + c \cdot (1 - 2x + 4x^2)$
 $= (1 + 2a - 2b + 4c)x^2) + (-a + b - 2c)x + (-a + 2b + c)$
: $a = -5c, b = -3c$
: $\exists (-5, 3, 1) \neq (0, 0, 0)$
(*)
$$\begin{vmatrix} -1 & -1 & 2 \\ 2 & 1 & -2 \\ 1 & -2 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 2 & -1 & 2 \\ 1 & -3 & 6 \end{vmatrix} = 0$$

 $\therefore \{-1 - x + 2x^2, 2 + x - 2x^2, 1 - 2x + 4x^2\}$ is linearly dependent.

(b)
$$\{1+2x+x^2, 3+x^2, x+x^2\}$$
: a basis for $P^2(R)$

(c)
$$\{1-2x-2x^2, -2+3x-x^2, 1-x+6x^2\}$$
: a basis for $P^2(R)$

(d)
$$\{-1+2x+4x^2, 3-4x-10x^2, -2-5x-6x^2\}$$
: a basis for $P^2(R)$

(e)
$$\{1+2x-x^2, 4-2x+x^2, -1+18x-9x^2\}$$

$$(::) 0 = a \cdot (-1 - x + 2x^2) + b \cdot (4 - 2x + x^2) + c \cdot (-1 + 18x - 9x^2)$$
$$= (-a + b - 9c)x^2) + (2a - 2b + 18c)x + (a + 4b - c)$$

$$\therefore a = -11c, b = -2c$$

$$\therefore \exists (-11, -2, 1) \neq (0, 0, 0)$$

4. No.

$$|\{x^3 - 2x^2 + 1, 4x^2 - x + 3, 3x - 2\}| = 3$$
 and $\dim(P_3(R)) = 4$

The generating set for V contains at least 4 vectors.

5. No.

Any n+1 or more vectors in V are linearly dependent.

Since $\dim(\mathbb{R}^3) = 3$, every linearly independent set contains at most 3 vectors.

6.

$$\begin{cases}
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \\
\begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\
\begin{cases} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{cases}$$

7.

Select any nonzero vector in the given set, say u_1 , to be a vector in the basis.

Since $u_3 = -4u_1$, the set $\{u_1, u_3\}$ is linearly dependent.

Hence we don't include u_3

On the other hand, the set $\{u_1, u_2\}$ is linearly independent. Thus we include u_2 .

And the set $\{u_1, u_2, u_4\}$ is linearly dependent. So we exclude u_4 .

 $\therefore \{u_1, u_2, u_5\}$ is a basis for \mathbb{R}^3 .

$$\begin{vmatrix} 2 & -3 & 1 \\ 1 & 4 & -2 \\ 1 & 37 & -17 \end{vmatrix} = \begin{vmatrix} 0 & -11 & 5 \\ 1 & 4 & -2 \\ 0 & 33 & -15 \end{vmatrix} = - \begin{vmatrix} -11 & 5 \\ 33 & -15 \end{vmatrix} = 0$$

36

PNU-MATH

$$\therefore \{u_1, u_2, u_4\}$$
 is linearly dependent.

8.
$$\{u_1, u_3, u_4, u_8\}$$
 is a basis for W.

9.
$$a, b, c, d \in F$$
, $(a_1, a_2, a_3, a_4) = au_1 + bu_2 + cu_3 + du_4$
= $(a, a + b, a + b + c, a + b + c + d)$

$$\therefore a = a_1, b = a_2 - a_1, c = a_3 - a_2, d = a_4 - a_3$$

$$\therefore (a_1, a_2, a_3, a_4) = a_1 u_1 + (a_2 - a_1) u_2 + (a_3 - a_2) u_3 + (a_4 - a_3) u_4$$

$$f_0(x) = \frac{1}{3}(x^2 - 1), \ f_1(x) = -\frac{1}{2}(x^2 + x - 2), \ f_2(x) = \frac{1}{6}(x^2 + 3x + 2)$$

$$\therefore \ g(x) = \sum_{i=0}^2 b_i f_i(x) = -4x^2 - x + 8$$
(b)

$$f_0(x) = \frac{1}{35}(x^2 - 4x + 3), \ f_1(x) = -\frac{1}{10}(x^2 + x - 12), \ f_2(x) = \frac{1}{14}(x^2 + 3x - 4)$$

 $\therefore \ g(x) = \sum_{i=0}^{2} b_i f_i(x) = -3x + 12$

(c)

$$f_0(x) = -\frac{1}{15}(x^3 - 3x^2 - x + 3), \quad f_1(x) = -\frac{1}{8}(x^3 - 2x^2 - 5x + 6), \quad f_2(x) = -\frac{1}{12}(x^3 - 7x^2 - 6), \quad f_3(x) = \frac{1}{40}(x^3 + 2x^2 - x - 2)$$

$$\therefore g(x) = \sum_{i=0}^{3} b_i f_i(x) = -x^3 + 2x^2 + 4x - 5$$

(d)

$$f_0(x) = -\frac{1}{12}(x^3 + x^2 - 2x), \ f_1(x) = \frac{1}{6}(x^3 + 2x^2 - 3x), \ f_2(x) = -\frac{1}{6}(x^3 + 4x^2 + x - 2x)$$

6),
$$f_3(x) = \frac{1}{12}(x^3 + 5x^2 + 6x)$$

$$\therefore g(x) = \sum_{i=0}^{3} b_i f_i(x) = -3x^3 - 6x^2 + 4x + 15$$

11. (i)

We need to show that $\{u+v,au\}$ is linearly independent

 k_1, k_2 are scalars,

If
$$k_1(u+v) + k_2(au) = (k_1 + ak_2)u + (k_1v) = 0$$

Since $\{u, v\}$ is a basis for V,

$$\therefore k_1 + ak_2 = 0, k_1 = 0$$
 (a is a nonzero scalar)

$$\therefore k_1 = k_2 = 0$$

(ii)

If
$$k_1(au) + k_2(bv) = (ak_1)u + (bk_2)v = 0$$

Since $a \neq 0, b \neq 0$ and $\{u, v\}$ is a basis for V.

$$\therefore k_1 = k_2 = 0$$

 $\therefore \{au, bv\}$ is a basis for V.

12.
$$k_1(u+v+W) + k_2(v+w) + k_3(w) = 0, k_1, k_2, k_3 \in F$$

$$\Rightarrow k_1u + (k_1 + k_2)v + (k_1 + k_2 + k_3)w = 0$$

$$\Rightarrow k_1 = k_2 = k_3 = 0$$

- 13. $\{a(1,1,1)|a\in R\}$ is a solution set
- \therefore {(1,1,1)} is a basis for the given system

14.
$$\{(0,0,1,0,0), (0,0,0,1,0), (0,1,0,0,0), (0,0,0,0,1)\}$$
: a basis for W_1
 $\{(1,0,0,0,-1), (0,1,1,1,0)\}$: a basis for W_2
 $\therefore \dim(W_1)=4, \dim(W_2)=2$

(*) The dimension of the solution space AX = 0 is equal to n-rankA (n is the number of rows of A)

(i)
$$a_1 - a_3 - a_4 = 0$$
 i.e. $a_1 + 0a_2 - a_3 - a_4 + 0a_5 = 0$ —(*)

$$A = (1, 0, -1, -1, 0)_{1 \times 5}, \quad X = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{pmatrix}$$

(*) is equal to AX = 0

The dimension of the solution space AX = 0 is equal to n-rankA = 5 - 1 = 4

(ii)
$$a_2 = a_3, a_2 = a_4, a_1 + a_5 = 0$$

$$A = \begin{pmatrix} 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}_{3 \times 5}$$

 $\therefore \operatorname{rank}(A) = 3$

The dimension of the solution space AX = 0 is equal to n-rankA = 5 - 3 = 2

(i)
$$\{(\sum_{i,j=1}^n E_{ij}, \text{ where } i \neq j) \text{ and } (**)\} : \text{a basis for } W.$$

 $(**) = \{(1, -1, 0, \dots, 0), (0, 1, -1, \dots, 0), \dots, (0, \dots, 1, -1, 0), (0, \dots, 1, -1)\}$

that is, ith component of the element in (**) is -1

(ii)
$$Dim(W)=n^2-n+(n-1)=n^2-1$$

(:) n^2 : the dim of $M_{n\times n}(F)$, n: the number of vectors consist of diagonal,

(n-1) : the number of vectors consist of (**)

* When char F=2, if $A^t=-A$, then $a_{ij}=-a_{ji}$ and $a_{ii}=-a_{ii}$

$$\therefore a_{ii} = 0$$

(Example)

16.

 $\forall A \in W$: the set of all upper triangular $n \times n$ matrices

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

- (i) $\{E_{ij}|E_{ij}=0, i>j\}$ is a basis for W
- (ii) dim(W) = $1 + 2 + \dots + n = \frac{1}{2}n(n+1)$

 $\forall A \in W$: the set of all skew-symmetric $n \times n$ matrices

$$\begin{pmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & 0 & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & 0 & \cdots & a_{3n} \\ \vdots & & \ddots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & 0 \end{pmatrix}, \quad a_{ij} = -a_{ji}$$

(i) A basis for W

$$\left\{ \left(\begin{array}{c|ccc} 0 & 1 & & \\ \hline 1 & 0 & & \\ \hline & & & \\ \end{array} \right), \left(\begin{array}{c|ccc} 0 & 0 & 1 & \\ \hline 0 & 0 & 0 & \\ \hline \hline & & & \\ \hline \end{array} \right), \cdots, \left(\begin{array}{c|ccc} & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} \right) \right\}$$

- (ii) dim(W) = $1 + 2 + \dots + (n-1) = \frac{1}{2}n(n-1)$
- (iii) In case of char F = 2

if
$$A^t = -A$$
, then $a_{ij} \neq -a_{ji}$

$$(:)$$
 if $a_{ii} = -a_{ii} \implies a_{ii} = 0$ in char $(F)=2$

18. V consists of all sequences $\{a_n\}$ in F that have only a finite number of nonzero terms a_n

Let
$$\{e_i\} = \{0, \dots, 0, 1, 0 \dots, 0\}$$
 i.e. the *i*th term is 1 then $\{e_i \mid i = 1, \dots, n\}$ is a basis for V

19. (\Leftarrow) Suppose each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , then clearly β spans V.

If
$$0 = a_1u_1 + a_2u_2 + \dots + a_nu_n$$

And we also have $0 = 0 \cdot u_1 + 0 \cdot u_2 + \cdots + 0 \cdot u_n$

By hypothesis, the representation of zero as a linear combination of the u_i is unique. Hence each $a_i = 0$, and the u_i are linearly independent.

20. (a) Prove that there is a subset of S that is a basis for V. (Be careful not to assume that S is finite.)

If
$$V=(0)\Rightarrow \varnothing(\subseteq S)$$
 a basis. So we may assume that $V\neq (0)$

Let $C = \{B | B \subseteq S, B \text{ is linearly independent}\}$

then
$$\forall B \in \mathcal{C}, |B| \leq n (= \dim V)$$

(i) Choose $B' \in \mathcal{C}$ with maximal element

i.e.
$$B' \in \mathcal{C}$$
 and $\forall B \in \mathcal{C}, |B| \leq |B'|$

(ii)

Claim $S \subseteq span(B')$

(:] If not, $S \nsubseteq span(B')$, then $\exists v \in S, v \notin span(B')$

By the theorem 1.7(p.39), $B' \cup \{v\}$ is linearly independent

Since $B' \subsetneq B' \cup \{v\} \subseteq S$, this contradicts to the maximality of B'

And
$$V = span(S) \subseteq span(span(B')) = span(B')$$

$$\therefore V = span(B')$$

Therefore B' is a basis for V

(b)

Let
$$Q \subseteq V$$
 s.t. $span(Q) = V$ and $\mid Q \mid < n$

From (a), we can find a subset Q' of Q is a basis for V.

This contradicts to the following fact:

If $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V, then any set of n+1 vectors in V is linearly dependent

 \therefore Any spanning set S for V must contain at least n vectors.

- 21. (i) Suppose dim $V = \infty$
- $\Rightarrow V$ has an infinite set of linearly independent
- (ii) By the Replacement theorem

22.
$$\dim(W_1 \cap W_2) = \dim(W_1) \iff W_1 \cap W_2 = W_1 \iff W_1 \subseteq W_2$$

- 23. (a) $\dim(W_1) = \dim(W_2)$ if and only if $v \in span\{v_1, v_2, \dots, v_k\} = W_1$
- (b) If $\dim(W_1) \neq \dim(W_2)$, then $\dim(W_1) < \dim(W_2)$

(:) By (a), $v \in W_1$ and $v \notin W_2$

By the exercise 20, $\dim(W_1) \leq k$ and $\dim(W_2) \leq k+1$

 $\therefore \dim(W_1) \leq \dim(W_2)$

 $\therefore \dim(W_1) < \dim(W_2)$

24.
$$f(x) = k_n x^n + \dots + k_1 x + k_0, \ k_n \neq 0, \forall k_i \in \mathbb{R}$$

Let $a_0 f(x) + a_1 f'(x) + \dots + a_n f^{(n)}(x) = 0$, for some scalars $a_0, \dots, a_n \in R$ then $(a_0 k_n) x^n + (a_0 k_{n-1} + a_1 k_n) x^{n-1} + \dots + (a_0 k_1 + 2! a_1 k_2 + 3! a_2 k_3 + \dots + n! a_{n-1} k_n) x + (\sum_{m=0}^n m! a_m k_m) = 0$

By equating the coefficient of x^k on both sides of this equation for $k = 0, 1, 2, \dots, n$, we obtain $a_0 = a_1 = \dots = a_n = 0$ (since charR = 0)

It follows from (b) of corollary 2 (p.48) that $\{f(x), f'(x), \dots, f^{(n)}(x)\}$ is a basis for $P_n(R)$.

$$\therefore \forall g(x) \in P_n(R), \exists c_0, \dots, c_n \in R \text{ s.t. } g(x) = c_0 f(x) + c_1 f'(x) + \dots + c_n f^{(n)}(x)$$

25.
$$Z = \{(v, w) \mid v \in V \text{ and } w \in W\} = V \times W$$

$$\dim(Z) = \dim(Z) \times \dim(W) = mn$$

$$\beta = \{v_1, \dots, v_m\}$$
 a basis for V

$$\gamma = \{w_1, \dots, w_n\} \text{ a basis for } W$$
then $\alpha = \{(v_1, 0), \dots, (v_m, 0), \dots, (0, w_1), \dots, (0, w_n)\}$ a basis for $V \times W$

26.
$$W = \{ f \in P_n(R) \mid f(a) = 0 \}$$
 is a subspace of $V = P_n(R)$
i.e. $\forall f \in W$ forms $(x - a)(a_{n-1}x^{n-1} + \dots + a_1x + a_0)$
 $\therefore \dim(W) = n$

$$\dim(W_1\cap P_n(F)) = \begin{array}{cc} \frac{n}{2} & \text{if n : even} \\ \frac{n+1}{2} & \text{if n : odd} \end{array}, \quad \dim(W_2\cap P_n(F)) = \begin{array}{cc} \frac{n}{2}+1 & \text{if n : even} \\ \frac{n+1}{2} & \text{if n : odd} \end{array}$$

28.

$$\dim V = 2n$$

$$\beta = \{v_1, v_2, \dots, v_n\} \text{ a basis for } V \text{ over } \mathbb{C}, \text{ dim } V = n$$

$$\beta' = \{v_1, v_2, \dots, v_n, v_1 i, v_2 i, \dots, v_n i\} \text{ a basis for } V \text{ over } \mathbb{R}$$

$$a_1 v_1 + \dots + a_n v_n + b_1 v_v i + \dots + b_n v_n i = 0$$

$$\Rightarrow (a_1 + ib_1)v_1 + \dots + (a_n + ib_n)v_n = 0$$

29.

Let
$$\beta=\{u_1,\cdots,u_k,v_1,\cdots,v_m,w_1,\cdots,w_p\}$$
 (i) β spans W_1+W_2 $\forall v\in W_1+W_2,\ v=(\sum\limits_{i=1}^k a_iu_i+\sum\limits_{i=1}^m b_iv_i)+(\sum\limits_{i=1}^k c_iu_i+\sum\limits_{i=1}^p d_iw_i)\in span(\beta),\ w_1\in W_1,\ w_2\in W_2$ (ii) β is linearly independent Suppose that $a_1u_1+\cdots+a_ku_k+b_1v_1+\cdots+b_mv_m+c_1w_1+\cdots+c_pw_p=0----(*)$, where $a_1,\cdots,a_k,b_1,\cdots,b_m,c_1,\cdots,c_p\in F$ Let $v=\sum\limits_{i=1}^k a_iu_i+\sum\limits_{i=1}^m b_iv_i=-\sum\limits_{i=1}^p c_iw_i\in W_1\cap W_2$

Since $\{u_1, \dots, u_k\}$ is a basis for $W_1 \cap W_2$, $\exists d_i \in F$ s.t. $v = \sum_{i=1}^k d_i u_i$

$$\sum_{i=1}^{k} d_i u_i + \sum_{i=1}^{p} c_i w_i = 0 \implies c_1 = c_2 = \dots = c_p = 0$$
By (*), $a_1 = \dots = a_k = b_1 = \dots = b_m = 0$

 $\therefore \beta$ is linearly independent

 \therefore β is a basis for $W_1 + W_2$

$$\therefore \dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

(b)
$$\dim(W_1 + W_2) = 0 \iff W_1 \cap W_2 = \emptyset$$

30.

(i) W_1 and W_2 are subspaces of V

$$\forall A = \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{a} \end{pmatrix}, B = \begin{pmatrix} \mathbf{d} & \mathbf{e} \\ \mathbf{f} & \mathbf{d} \end{pmatrix} \in W_1, \ \alpha \in F$$

$$\alpha A + B = \begin{pmatrix} \alpha \mathbf{a} + \mathbf{d} & \alpha \mathbf{b} + \mathbf{e} \\ \alpha \mathbf{c} + \mathbf{f} & \alpha \mathbf{a} + \mathbf{d} \end{pmatrix} \in W_1$$

$$\forall A = \begin{pmatrix} 0 & \mathbf{a} \\ -\mathbf{a} & \mathbf{b} \end{pmatrix}, B = \begin{pmatrix} 0 & \mathbf{c} \\ -\mathbf{c} & \mathbf{d} \end{pmatrix} \in W_2, \ \alpha \in F$$

$$\alpha A + B = \begin{pmatrix} 0 & \alpha \mathbf{a} + \mathbf{c} \\ -\alpha \mathbf{a} - \mathbf{c} & \mathbf{b} + \mathbf{d} \end{pmatrix} \in W_2$$

(ii)
$$\dim(W_1) = 3$$
, $\dim(W_2) = 2$, $\dim(W_1 \cap W_2) = 1$ and $\dim(W_1 + W_2) = 4$

31. (a)

(:) $W_1 \cap W_2$ is a subspace of W_1 ,

By the theorem 1.11, $\dim(W_1 \cap W_2) \leq \dim(W_1) \leq n$

 $\therefore dim(W_1 \cap W_2) \leq n$

(b)
$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2) \le m + n - \dim(W_1 + W_2)$$

$$\therefore \dim(W_1 + W_2) \le m + n$$

(a)
$$\dim(W_1 \cap W_2) = \dim(W_2)$$

$$W_1 = \{(a_1, a_2, 0) | a_1, a_2 \in F\}, \dim(W_1) = 2$$

$$W_2 = \{(a_1, 0, 0) | a_1 \in F\}, \dim(W_2) = 1$$

(b)
$$\dim(W_1 \cap W_2) = 0$$

$$W_1 = \{(a_1, 0, 0) | a_1 \in F\}, \dim(W_1) = 1$$

$$W_2 = \{(0, a_2, a_3) | a_2, a_3 \in F\}, \dim(W_2) = 2$$

(c)
$$W_1 = \{(a_1, 0, a_3) | a_1, a_3 \in F\}, \dim(W_1) = 2$$

$$W_2 = \{(a_1, a_2, 0) | a_1, a_2 \in F\}, \dim(W_2) = 2$$

33.
$$V = W_1 \oplus W_2 \iff \beta_1 \cap \beta_2 = \emptyset, \ \beta_1 \cup \beta_2 : \text{ a basis for } V$$
 (\Rightarrow)

(i) Suppose that
$$a_1u_1 + a_2u_2 + \cdots + b_1w_1 + b_2w_2 + \cdots = 0$$
 $a_i, b_j \in F$

Then
$$a_1u_1 + a_2u_2 + \dots = -(b_1w_1 + b_2w_2 + \dots) \in W_1 \cap W_2 = \{0\}$$

$$\therefore \forall a_i = b_j = 0$$

$$\beta_1 \cup \beta_2$$
 is linearly independent

Let
$$v = u + w \in W_1 + W_2$$

Since β_1, β_2 spans W_1, W_2 , respectively

$$\exists a_i, b_j \in F \text{ s.t. } v = a_1u_1 + a_2u_2 + \dots + b_1w_1 + b_2w_2 + \dots$$

 $\beta_1 \cup \beta_2 \text{ spans } V$

(ii) If
$$\exists 0 \neq u \in \beta_1 \cap \beta_2$$
, then $W_1 \cap W_2 \neq \{0\}$

$$\therefore \beta_1 \cap \beta_2 = \varnothing$$

 (\Leftarrow)

(i) Since $\beta_1 \cup \beta_2$ spans $V, v \in span(\beta_1 \cup \beta_2)$

$$v = a_1u_1 + a_2u_2 + \dots + b_1w_1 + b_2w_2 + \dots \in W_1 + W_2$$

$$V = W_1 + W_2$$

(ii) Since
$$\beta_1 \cap \beta_2 = \emptyset$$
, $W_1 \cap W_2 = \{0\}$

$$\therefore V = W_1 \oplus W_2$$

34. (a)

Let $\beta_1 = \{u_1, u_2, \dots, u_k\}$ be a basis for W_1

and we can extend it to a basis for V, say β

Let
$$\beta = \{u_1, u_2, \dots, u_k, u_{k+1}, \dots, u_n\}$$
 and $\beta_2 = \{u_{k+1}, u_{k+2}, \dots, u_n\}$

By the exercise 33, $V = W_1 \oplus W_2$

(b)

$$V = W_1 \oplus W_2, \ W_1 = \{(a,0) | a \in R\}, \ W_2 = \{(0,b) | b \in R\}$$

$$V = W_1 \oplus W_{2'}, \ W_1 = \{(a,0)|a \in R\}, \ W_{2'} = \{(-a,b)|a,b \in R\}$$

35.

(a)
$$\beta' = \{u_{k+1} + W, u_{k+2} + W, \dots, u_n + W\}$$
 is a basis for V/W . (p.23)

(i)
$$\forall \alpha \in V/W = \{v + W | v \in V\}$$

 $\alpha = (a_1u_1 + a_2u_2 + \dots + a_nu_n) + W$
 $= (a_1u_1 + W) + (a_2u_2 + W) + \dots + (a_nu_n + W)$
 $= a_1(u_1 + W) + \dots + a_k(u_k + W) + a_{k+1}(u_{k+1} + W) + \dots + a_n(u_n + W)$
 $= a_{k+1}(u_{k+1} + W) + a_{k+2}(u_{k+2} + W) + \dots + a_n(u_n + W)$

$$\beta'$$
 spans V/W

(ii) Suppose
$$a_{k+1}(u_{k+1} + W) + a_{k+2}(u_{k+2} + W) + \dots + a_n(u_n + W) = W$$
, $a_i \in F$, $i = k+1, \dots, n$

then
$$a_{k+1}u_{k+1} + a_{k+2}u_{k+2} + \cdots + a_nu_n = 0$$

Since
$$\{u_{k+1}, \dots, u_n\}$$
 is linearly independent, $a_{k+1} = \dots = a_n = 0$

 $\therefore \beta'$ is a basis for V/W.

(b)
$$\dim(V) = k + n$$
, $\dim(W) = k$, $\dim(V/W) = n - k$

$$\therefore \dim(/WV) = \dim(V) - \dim(W)$$

1.7. Maximal Linearly Independent Subsets

- 1. Label the following statement as true or false.
- (a) Every family of sets contains a maximal element. (F)
- (::) Let \mathcal{F} be the family of all finite subsets of an infinite set S. then \mathcal{F} has no maximal element.
- (b) Every chain contains a maximal element. (F)
- (:) If A: a partial ordered set and every chain $(\neq \varnothing)$ of A has an upper bound, then A has a maximal element.
- (ex) \mathbb{Z} , \mathbb{Q} , \mathbb{R}
- (c) If a family of sets has a maximal element, then that maximal element is unique. (F)
- (:) Let $S = \{a = x^3 2x^2 5x 3, b = 3x^3 5x^2 4x 9, c = 2x^3 2x^2 + 12x 6\}$ then $\{a,b\}, \{a,c\}, \{b,c\}$ are maximal linearly independent subsets of SSo maximal element need not be unique.
- (d) If a chain of sets has a maximal element, then that maximal element is unique.
 (T)
- (e) A basis for a vector space is a maximal linearly independent subset of that vector space. (T)
- (f) A maximal linearly independent subset of a vector space is a basis for that vector space. (T)

- 2. Show that the set of convergent sequences is an infinite-dimensional subspace of the vector space of all sequences of real numbers. (See Exercise 21 in Section 1.3.)
- (i) By the exercise 21 of section 1.3, W is a suspace of V
- (ii) $\{1, 1, \cdots\}$ is a basis for W
- 3. Let V be the set of real numbers regarded as a vector space over the field of rational numbers. Prove that V is infinite-dimensional.

Let V be a finite-dimensional vector space

$$\beta = \{v_1, \cdots, v_n\}$$

Since
$$\pi \in V$$
, $\pi = \alpha_1 v_1 + \dots + \alpha_n v_n$, $\forall \alpha_i \in \mathbb{Q}$, $i = 1, \dots, n$

But π is a transcendental number in $\mathbb Q$

It's a contrdiction

Thus V is infinite dimensional

- 4. Let W be a subspace of a (not necessarily finite-dimensional) vector space V. Prove that any basis for W is a subset of a basis for V.
- (:) Let β_W be a basis for W, then $\beta_W \subseteq V$
- (i) By theorem 1.13, $\exists \beta$: a maximal linearly independent subset of V that contains β_W .
- (ii) We are going to show that β is a basis for V which contains β_W .

Since β is linearly independent, so it suffices to show that β spans V.

If $v \in V$ and v is not contained in β (i.e. v is not in $\mathrm{span}(\beta)$),

then $\beta \cup \{v\}$ is linearly independent.

This contradicts to the maximality of β .

$$\therefore \forall v \in V, v \in span(\beta) \in V$$

$$\therefore span(\beta) = V.$$

 $\therefore \beta$ is a basis for V which contains β_W .

5.

$$(:)$$
 (\Rightarrow) Let $\beta = \{v_1, v_2, \cdots\}$ is a basis for V .

If
$$v \in V$$
, then $v \in \text{span}V$

Thus v is a linear combination of the vectors of β (that is v can be expressed by some finite vectors of β and scalars in F)

Suppose that $v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$ and $v = b_1v_1 + b_2v_2 + \cdots + b_nv_n$ are two such representation of v. Then

$$0 = (a_1 - b_1)v_1 + (a_2 - b_2)v_2 + \dots + (a_n - b_n)u_n$$

Since β is linearly independent, it follows that $a_i = b_i$, where $1 \le i \le n$

(\Leftarrow) Suppose each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , then clearly β spans V.

If
$$0 = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

And we also have $0 = 0 \cdot u_1 + 0 \cdot u_2 + \cdots + 0 \cdot u_n$

By hypothesis, the representation of zero as a linear combination of the u_i is unique. Hence each $a_i = 0$, and the u_i are linearly independent.

(i) Since
$$S_1 \in \mathcal{F}, \ \mathcal{F} \neq \emptyset$$

Let C be a chain in $\mathcal F$ and $U=\cup\{A\mid A\in C\}$

Clearly
$$S_1 \subseteq U \subseteq S_2$$

Let
$$a_1u_1 + \cdots + a_nu_n = 0$$
 s.t. $\forall u_i \in U, \ \forall a_i \in F, \ i = 1, \cdots, n$

Since
$$u_i \in A$$
, $\exists A_i \subseteq C$ s.t. $u_i \in A_i$

Since C is a chain, $\exists A_k$ a.t. $\forall A_i \subseteq A_k$

Thus
$$\forall u_i \in A_k \in F$$

$$\therefore a_1 = \dots = a_n = 0$$

So U is n upper bound of C

By the maximal principle, F has a maximal element β

i.e. β is a maximal linearly independent subset of V

(ii)
$$\forall v \in S_2$$
, if $v \in \beta$, then $v \in span(\beta)$

If $v \notin \beta$, $\beta \cup \{v\}$ is linearly independent

This contradicts to the maximality of β

$$\therefore S_2 \subseteq span(\beta)$$

Then
$$V = span(S_2) \subseteq span(\beta) \subseteq V$$

$$\therefore span(\beta) = V$$

Therefore β is a basis for V s.t. $S_1 \subseteq \beta \subseteq S_2$

7. Let $\mathbb{S} = \{ A \subseteq \beta \mid A \cap S = \emptyset, \ A \cup S \text{ is linearly independent } \}$

$$\mathbb{S} \neq \emptyset$$
 (:: $A = \emptyset$)

Let C be a nonempty chain in S and $B = \bigcup \{A \mid A \in C\}$

If $\exists x \in B \cap S$, then $x \in B$ and $x \in S$

Since $A \subseteq B$, $x \in A$ for some $A \in C$

thus $x \in A \cap S = \emptyset$

It's a contradiction, so $B \cap S = \emptyset$

If $a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n = 0, \ \forall a_i, b_j \in F, \ u_i \in B, v_j \in S$

Since $B = \bigcup \{A \mid A \in C\}, \ \exists A_1, \dots, A_m \in C \text{ s.t. } \forall u_i \in A_i$

So we may assume that $u_1, \dots, u_m \in A_m$

then $u_1, \dots, u_m, v_1, \dots, u_n \in A_m \cup S$ is linearly independent

$$\therefore \ \forall a_i = 0, \ \forall b_j = 0$$

 $\therefore B \cup S$ is linearly independent

i.e. B is an upper bound of C

By the maximal principle, S has a maximal element, say S_1

Clearly $S_1 \subseteq \beta$, $S_1 \cap S = \emptyset$, $S_1 \cup S_2$ is linearly independent

So we only need to show that either $\{S_1 \cup S \text{ is a maximal linearly independent}$ subset of V or $\{\beta \subseteq span(S_1 \cup S)\}$

 $\forall v \in \beta$, If $v \in S_1 \cup S$, then $v \in span(S_1 \cup S)$ If $v \notin S_1 \cup S$, then $S_1 \cup S \cup \{v\}$ is linearly independent

It's a contradiction, $\therefore \beta \subseteq span(S_1 \cup S)$

Therefore $S_1 \cup S$ is a basis for V

§2. Linear Transformations and Matrices

2.1. Linear Transformations, Null Spaces, and Ranges

- 1. (a) T
- (b) F (:) If $\forall x, y \in V$ and $c \in F$, T(x+y) = T(x) + T(y) and T(cx) = cT(x),

then T is a linear transformation

- (c) F (∵) T is linear and one-to-one if and only if
- (d) $T(\cdot \cdot) T(0_V) = T(0_V + 0_V) = T(0_V) + T(0_V) \cdot \cdot T(0_V) = 0_W$
- (e) F (∵) p.70 Theorem 2.3
- (f) $F(\cdot)$ T is linear and one to one, then
- (g) T (∵) p.73 Corollary to Theorem 2.6
- (h) F (∵) p.72 Theorem 2.6

2.

(1)
$$T((a_1, a_2, a_3) + (b_1, b_2, b_3)) = T(a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

$$= ((a_1 + b_1) - (a_2 + b_2), 2(a_3 + b_3))$$

$$=(a_1-a_2), 2a_3)+(b_1-b_2), 2b_3)$$

$$= T(a_1, a_2, a_3) + T(b_1, b_2, b_3)$$

$$T(c(a_1, a_2, a_3)) = T(ca_1, ca_2, ca_3) = (ca_1 - ca_2, 2ca_3) = c(a_1 - a_2, 2a_3) = cT(a_1, a_2, a_3)$$

Thus, T is linear.

(2)
$$N(T)=span\{(1,1,0)\}$$

$$R(T)=span\{(1,0),(0,1)\}$$

(3)
$$Dim(V)=nullity(T) + rank(T)=1+2$$

(4) T is not one-to-one (::N(T)

$$\neq \{0\} = \{(0,0,0)\})$$

T is onto
$$(:: 2=rank(T)=dim(W)=2)$$

- (1) T is linear.
- (2) $N(T) = span\{(0,0)\}\$

$$R(T)=span\{(1,0,0),(0,0,1)\}$$

(3)
$$Dim(V)=nullity(T) + rank(T)= 0 + 2$$

(4) T is one-to-one (::N(T)=
$$\{0\}$$
)

T is not onto (
$$\because 2=\text{rank}(T) \neq \dim(W)=3$$
)

4.

- (1) T is linear.

(2) N(T)=span
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
R(T)=span $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

- (3) Dim(V)=nullity(T) + rank(T)= 4 + 2
- (4) T is not one-to-one $(::N(T) \neq \{0\})$

T is not onto (: $2=rank(T) \neq dim(W)=4$)

5. (1) T is linear.

(2)
$$N(T) = span\{0\}$$

$$R(T) = span\{1, x, x^2\}$$

(3)
$$Dim(V)=nullity(T) + rank(T)= 0 + 3$$

(4) T is one-to-one
$$(::N(T) = \{0\})$$

T is not onto $(\because rank(T) \neq dim(W))$

6. (1) T is linear.

(2)
$$N(T) = \{A \mid T(A) = tr(A) = 0\} = span\{E_{ij}, E'_{ij}\},\$$

where E_{ij} denote the matrix whose ij-entry is 1 and zero elsewhere and E'_{ij} denote the matrix of a_{11} component is 1, a_{jj} component is -1 and others are all zero. $(2 \le j \le n)$

(*)
$$\beta = \{E_{ij} \mid i \neq j\} \cup \{E_{11} - E_{ii} \mid 2 \leq j \leq n\}$$

$$R(T) = \{T(A) \mid A \in Mat_{n \times n}\} = span\{1\}$$

(3)
$$n^2 = \text{Dim}(V) = \text{nullity}(T) + \text{rank}(T) = (n^2 - 1) + 1$$

* dim N(T)=
$$n^2-1$$
 (p.56 exercise 15, sec 1.6)

(4) T is not one-to-one but onto $(\because rank(T) = dim(W))$

7.

(1) If T is linear, then T(0) = 0

$$T(0) = T(0+0) = T(0) + T(0)$$

$$T(0) = 0$$

(2)

57

If T is linear,
$$T(cx + y) = T(cx) + T(y) = cT(x) + T(y)$$

Suppose T(cx + y) = cT(x) + T(y), then

$$c = 1, T(x + y) = T(x) + T(y)$$

$$j = 0$$
, $T(cx) = cT(x)$

(3)
$$0 = T(0) = T(x - x) = T(x) + T(-x)$$

$$\Rightarrow T(-x) = -T(x) \ \forall x$$

So
$$T(x - y) = T(x) + T(-y) = T(x) - T(y)$$

(4)

$$(\Rightarrow)$$
 If T is linear, then $T(\sum_{i=1}^n a_i x_i) = \sum_{i=1}^n T(a_i x_i) = \sum_{i=1}^n a_i T(x_i)$

 (\Leftarrow) clear

(i)
$$T_{\theta}((a_1, a_2) + (b_1, b_2)) = T_{\theta}(a_1 + b_1, a_2 + b_2)$$

$$= ((a_1 + b_1)\cos\theta - (a_2 + b_2)\sin\theta, (a_1 + b_1)\sin\theta + (a_2 + b_2)\cos\theta)$$

$$= (a_1 \cos \theta - a_2 \sin \theta, a_1 \sin \theta + a_2 \cos \theta) + (b_1 \cos \theta - b_2 \sin \theta, b_1 \sin \theta + b_2 \cos \theta)$$

$$= T_{\theta}(a_1, a_2) + T_{\theta}(b_1, b_2)$$

(ii)
$$T_{\theta}c((a_1, a_2)) = T_{\theta}(ca_1, ca_2) = (ca_1 \cos \theta - ca_2 \sin \theta, ca_1 \sin \theta + ca_2 \cos \theta)$$

$$= c(a_1\cos\theta - a_2\sin\theta, a_1\sin\theta + a_2\cos\theta) = cT_{\theta}(a_1, a_2)$$

(b)

(i)
$$T((a_1, a_2) + (b_1, b_2)) = T(a_1 + b_1, a_2 + b_2) = (a_1 + b_1, -a_2 - b_2) = (a_1 - a_2) + (a_1 + b_2) = (a_2 + b_2) = (a_1 + b_2) = (a_2 + b_2) =$$

58

$$(b_1 - b_2) = T(a_1 + a_2) + T(b_1 + b_2)$$

(ii)
$$T(c(a_1, a_2)) = (ca_1, -ca_2) = c(a_1, -a_2) = cT(a_1, a_2)$$

$$T((a_1 + a_2) + (b_1 + b_2)) = (1, a_2 + b_2)$$

$$T(a_1 + a_2) + T(b_1, b_2) = (2, a_2 + b_2)$$

(b)

$$T(c(a_1, a_2)) = (ca_1, c^2a_2^2) \ cT(a_1, a_2) = (ca_1, ca_1^2)$$

(c)

$$T((a_1 + a_2) + (b_1 + b_2)) = (\sin(a_1 + b_1), 0)$$

$$T(a_1 + a_2) + T(b_1, b_2) = (\sin a_1 + \sin b_1, 0)$$

(d)

$$T((a_1 + a_2) + (b_1 + b_2)) = (|a_1 + b_1|, a_2 + b_2)$$

$$T(a_1 + a_2) + T(b_1, b_2) = (|a_1| + |b_1|, a_2 + b_2)$$

(e)

$$T((a_1 + a_2) + (b_1 + b_2)) = (a_1 + b_1 + 1, a_2 + b_2)$$

$$T(a_1 + a_2) + T(b_1, b_2) = (a_1 + b_1 + 2, a_2 + b_2)$$

10.

(a)
$$T(2,3) = -1T(1,0) + 3T(1,1) = (5,11)$$

(b) T is one-to-one

$$T(x,y) = xT(1,0) + yT(0,1) = xT(1,0) + y(T(1,1) - T(0,1)) = x(1,4) + y((2,5) - T(0,1) = x(1,4) + y((2,5) - T(0,1)) = x(1,4) + y((2,5) - T(0,1)) = x(1,4) + y((2$$

$$(1,4)$$
 == $(x + y, 4x + y) = (0,0)$

$$(x,y) = (0,0)$$

11.
$$T(8,11) = 2T(1,1) + 3T(2,3) = (5,-3,16)$$

12. No
$$(T(2,0,6) \neq -2T(1,0,3))$$

$$S = \{v_1, v_2, \dots, v_k\}$$
 s.t $T(v_i) = w_i, i = 1, 2, \dots, k$

Suppose $\sum_{i=1}^{k} a_i v_i = 0$ for some scalars $a_i \in F$,

then we need to show that all $a_i = 0$

$$T(\sum_{i=1}^{k} a_i v_i) = \sum_{i=1}^{k} a_i T(v_i) = a_i \sum_{i=1}^{k} w_i = T(0) = 0$$

Since w_i 's are linearly independent, so $a_i = 0$

 \therefore S is linearly independent.

14. (a)

 $(\Rightarrow) \{v_1, v_2, \cdots, v_n\}$ is linearly independent subset of V

If
$$\sum a_i T(v_i) = 0$$
, then

$$T(\sum a_i v_i) = 0$$
 and $\sum a_i v_i \in N(T) = \{0\}$

$$\therefore \forall a_i = 0$$

T: $\{T(v_1), \cdots, T(v_n)\}$ is linearly independent subset of W

$$(\Leftarrow)$$
 Let $w_1 = \sum a_i T(v_i), \ \forall a_i, b_i \in F$

If
$$w_1 = w_2$$
, then $\sum (a_i - b_i)T(v_i) = 0$

Since $T(v_i)$'s are linearly independent, $\forall a_i = b_i$

$$\therefore \sum a_i v_i = \sum b_i v_i$$

 \therefore T is one-to-one

(b)

$$(\Rightarrow)$$
 By (a), $T(S)$ is linearly independent

$$(\Leftarrow)$$
 Let $T(S) = \{T(v_1), \dots, T(v_n)\}$ " linearly independent

If
$$\sum a_i v_i = 0$$
, then $\sum a_i T(v_i) = T(0) = 0$

$$\therefore \forall a_i = 0$$

$$S = \{v_1, \cdots, v_n\}$$
 is linearly independent

(c)

By (b), $T(\beta)$ is linearly independent

By the theorem 2.2, $R(T) = span(T(\beta))$

Since T is onto, $span(T(\beta)) = W$

 $T(\beta)$ is a basis for W

15. (a)

(i)
$$T(f(x)+g(x)) = \int_0^x (f(t)+g(t))dt = \int_0^x f(t)dt + \int_0^x g(t)dt = T(f(x)) + T(g(x))$$

(ii)
$$T(cf(x)) = \int_0^x cf(t)dt = c \int_0^x f(t)dt = cT(f(x))$$

(b) If
$$T(f(x)) = T(g(x))$$
, then $\int_0^x f(t)dt = \int_0^x g(t)dt$

i.e.
$$\int_0^x (f(t) - g(t))dt = 0$$

$$\therefore f(x) = g(x)$$

(c)
$$\{x, x^2, \dots\}$$
 is a basis for $R(T)$

Since $span R(T) \neq P(R)$, T is not onto

Let
$$f(x) = ax + b$$
, $g(x) = ax + d$, $b \neq d$ (i.e. $f(x) \neq g(x)$)

But
$$T(f(x)) = T(g(x))$$

(b)
$$\beta = \{1, x, x^2, \dots\}$$
 is a standard basis for $P(R)$

It suffices to show that $\beta \subseteq R(T) = span(T(\beta))$

$$\forall x^n \in \beta, \ x^n = T(\frac{1}{n+1}x^n) \in R(T)$$

17. (a) By the theorem 2.3, $\dim R(T) \leq \dim V$

By the assumption, $\dim V < W$

- $\therefore \dim R(T) < W$
- \therefore T can't be onto
- (b) If T is one-to-one i.e. nullity(T) = 0, then $\dim V = rank(T) > \dim W$ It's a contradiction to $\dim R(T) \leq \dim W$

18. Let
$$\forall (a, b) \in \mathbb{R}^2, \ T(a, b) = (0, a)$$

Then
$$N(T) = \{(0,b)|b \in R\}, \ R(T) = \{(0,a)|a \in R\}$$

$$N(T) = R(T)$$

19.
$$\forall (a,b) \in \mathbb{R}^2$$
, Let $T(a,b) = (0,a)$ and $U(a,b) = (0,2a)$

Then
$$T \neq U$$
, $N(T) = \{(0,b)|b \in R\}$, $N(U) = \{(0,b)|b \in R\}$

$$R(T) = \{(0,a)|a \in R\},\ R(U) = \{(0,2a)|a \in R\}$$

(a) Let
$$w_1, w_2 \in T(v_1), \ a \in F$$

then
$$\exists v_1, v_2 \in V_1 \text{ s.t. } w_i = T(v_i), i = 1, 2$$

So
$$aw_1 + w_2 = aT(v_1) + T(v_2) = T(av_1 + v_2) \in T(v_1)$$

 $T(v_1)$ is a subspace of W

(b) Let
$$K = \{x \in V | T(x) \in W_1\}, a \in F$$

Let
$$x_1, x_2 \in K$$
 s.t. $T(x_1) = w_1, T(x_2) = w_2 \in W_1$

$$T(ax_1 + x_2) = aT(x_1) + T(x_2) = aw_1 + w_2 \in W_1$$

$$ax_1 + x_2 \in K, \ a \in F$$

$$\therefore \{x \in V | T(x) \in W_1\}$$
 is a subspace of V

21. (a)

(i)
$$T(c(a_1, a_2, \dots) + (b_1, b_2)) = T(ca_1 + b_1, ca_2 + b_2, \dots) = (ca_2 + b_2, ca_3 + b_3, \dots) = c(a_2, a_3, \dots) + (b_2, b_3, \dots) = cT(a_1, a_2, \dots) + T(b_1, b_2, \dots)$$

(ii)
$$U(c(a_1, a_2, \dots) + (b_1, b_2)) = U(ca_1 + b_1, ca_2 + b_2, \dots) = (0, ca_1 + b_1, ca_2 + b_2, \dots)$$

 $b_2, \dots) = (0, ca_1, ca_2, \dots) + (0, b_1, b_2, \dots) = cU(a_1, a_2, \dots) + U(b_1, b_2, \dots)$

(b)

(i) T is not one-to-one

$$0 \neq (1, 0, 0, \cdots) \in N(T)$$

(ii) T is onto

$$R(T) = \{(a_2, a_3, \cdots) | \forall a_i \in F\} = span\{e_1, e_2, \cdots\} = V$$

(i) If
$$U(a_1, a_2, \dots) = (0, a_1, a_2, \dots) = (0, 0, \dots)$$
, then $\forall a_i = 0$

$$\therefore N(U) = \{0\}$$

(ii) U is not onto

$$R(U) = \{(0, a_1, a_2, \cdots) | \forall a_i \in F\} \neq V$$

22.

(i) $T: \mathbb{R}^3 \to \mathbb{R}$ is linear

Let $\beta = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}$ a standard basis for \mathbb{R}^3

Put
$$T(e_1) = a, T(e_2) = b, T(e_3) = c$$

then $\forall (x, y, z) \in \mathbb{R}^3$,

$$T(x, y, z) = T(xe_1 + ye_2 + ze_3) = xT(e_1) + yT(e_2) + zT(e_3) = ax + bycz$$

(ii) $T: F^n \to F$ is linear

Let $\beta = \{e_1, e_2, \cdots, e_n\}$ a standard basis for F^n

Put
$$T(e_1) = a_1, T(e_2) = a_2, \dots, T(e_n) = a_n$$

then
$$T(x_1, x_2, \dots, x_n) = a_1 x_1 + \dots + a_n x_n$$

(iii)
$$T: F^n \to F^m$$

For
$$\forall j \ (i \leq j \leq m), \ T(e_j) = \sum_{i=1}^m a_{ij} w_i$$

$$T(x_1, x_2, \dots, x_n) = T(\sum_{j=1}^n x_j e_j) = \sum_{j=1}^n x_j T(e_j) = \sum_{j=1}^n x_j (\sum_{i=1}^m a_{ij} w_i) = \sum_{j=1}^n \sum_{i=1}^m a_{ij} x_j w_i = \sum_{j=1}^m (\sum_{i=1}^n a_{ij} x_j w_i) = \sum_{j=1}^n \sum_{i=1}^m a_{ij} x_j w_i = \sum_{j=1}^n \sum_{i=1}^n \sum_{i=1}^n a_{ij} x_j w_i = \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^$$

23.
$$T: \mathbb{R}^3 \to \mathbb{R}$$
 linear transformation

By the exercise 22,
$$\exists a, b, c \in R$$
 s.t. $T(x, y, z) = ax + by + cz$

$$N(T) = \{(x, y, z) \in R^3 \mid T(x, y, z) = 0\}$$

$$= \{(x, y, z) \in R^3 \mid ax + by + cz\}0\}$$

$$= R^3 \text{ (where } a = b = c = 0)$$

a plane through 0 (where $a^2 + b^2 + c^2 \neq 0$)

24.

(a) The projection on the y-axis along the x-axis

$$T(a,b) = (0,b), \ \forall (a,b) \in \mathbb{R}^2, \ A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

(b)

$$T(a,b) = (a - b, a - b), \ \forall (a,b) \in \mathbb{R}^2$$

$$(a,b) \mapsto (0,0)$$
 if $a=b$

$$(a-b,a-b)$$
 otherwise

25.

(a) Let
$$W_1 = \{(a, b, 0) | a, b \in R\}, W_2 = \{(0, 0, c) | c \in R\}$$

Then $R^3 = W_1 \oplus W_2$

$$\forall x = (a, b, c) \in \mathbb{R}^3 \text{ s.t. } x_1 = (a, b, 0) \in W_1 \text{ and } x_2 = (0, 0, c) \in W_2$$

$$T(x) = x_1$$

$$T$$
 is the projection on the W_1 along the W_2 , $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

(b)
$$T(a, b, c) = (0, 0, c)$$

(c) Let
$$W_1 = \{(a, b, 0) | a, b \in R\}, W_2 = L = \{(a, 0, a) | a \in R\}$$

then
$$R^3 = W_1 + W_2$$

For all
$$x = (a, b, c) \in \mathbb{R}^3$$
 s.t. $x = x_1 + x_2, \ x_1 = (a - c, b, 0) \in W_1, \ x_2 = (c, 0, c) \in W_2$

$$T(a, b, c) = (a - c, b, 0) \in W_1$$

$$\therefore T: R^3 R^3 \text{ is the projection on } W_1 \text{ along the } W_2, A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\forall x \in V \text{ s.t } x = x_1 + x_2, x_1 \in W_1, x_2 \in W_2 \text{ and } \mathrm{T}(x) = x_1$$

(1) T is linear

$$\forall x, y \in V \text{ s.t. } x = x_1 + x_2, y = y_1 + y_2, x_1, y_1 \in W_1, x_2, y_2 \in W_2$$

$$T(x+y) = T((x_1+y_1) + (x_2+y_2)) = x_1 + y_1 = T(x) + T(y)$$

$$T(cx) = T(cx_1 + cx_2) = cx_1 = T(x)$$

(2)
$$W_1 = \{x \in V \mid T(x) = x\}$$

$$(\subseteq)$$
 If $x_1 \in W$, then $T(x_1) = x_1$

$$\therefore x_1 \in \{x \in V \mid T(x) = x\}$$

$$(\supseteq)$$
 If $x \in V$ s.t $T(x) = x$ and we have $T(x) = x_1$

$$(:) x = x_1 \in W_1$$

(b)

$$(1)W_1 = R(T)$$

$$(\supseteq) \ \forall \ T(x) \in R(T), \ T(x) = x_1 \in W_1 :: R(T) \subseteq W_1$$

$$(\subseteq) \ \forall \ x_1 \in W_1, \ x_1 = T(x_1) \in R(T) :: \ W_1 \subseteq R(T)$$

$$(2)W_2 = N(T)$$

$$\forall x_2 \in W_2, \, T(x_2) = 0 :: x_2 \in N(T)$$

$$W_2 \subseteq N(T)$$

$$(\subseteq) \ \forall x \in N(T), T(x) = x_1 = 0 : x = x_1 + x_2 = 0 + x_2 = x_2 \in W_2$$

$$(\supseteq)$$
 : $N(T) \subseteq W_2$

(c) Describe if $W_1 = V$

$$T(x) = x, \ \forall x \in W_1 = V$$

T is the identity transformation (I_V)

(d) Describe if $W_1 = 0$

$$T(x) = x \Leftrightarrow x = 0$$
 (or $(0) = W_1 = R(T)$): T is the zero transformation (T_0)

27.

Claim:
$$\forall W \leq V, \exists W' \leq V$$
 as subspace, $T = W + W'$ and $T : V \to V, T(V) = W$

(a) From the exercise 34 in Section 1.6(p.58),

If W is any subspace of a finite dimensional vector space,

$$\exists W' \text{ s.t } V = W \oplus W'$$

so
$$\forall x \in V, \exists ! x_1 \in W \ x_2 \in W' s.tx = x_1 + x_2$$

Define $T: V \to V$ $T(x) = x_1$ is a desired linear transformation

Then T is a projection on W along W'

* Say dim
$$V = n > 2$$

$$\{v_1, v_2, \cdots, v_m\}$$
: a basis for W

$$\{v_1, v_2, \cdots, v_m, v_{m+1}, \cdots, v_n\}$$
: a basis for V

Let
$$W' = span\{v_{m+1}, \dots, v_n\}$$
 and $W'' = span\{v_{m+1} - v_1, v_{m+2} - v_3, \dots, v_n - v_5\}$

then
$$V = W \oplus W' = W \oplus W''$$

Clearly $W' \neq W''$

(:) If
$$W' = W''$$
, then $v_{m+1}, v_{m+1} - v_1 \in W''$

$$\therefore v_1 \in W \cap W' = (0)$$

It's a contradiction

(b) Example

(example 1) the projection on W along W'_1

$$\{(a,b)\}=(0,b-\frac{1}{3}a)+(a,\frac{1}{3}a)\}$$

(example 2) the projection on W along W'_2

$$(a,b) = (0,b) + (a,0)$$

28.

(1) $\{0\}$ is T-invariant

$$\forall x \in \{0\}, T(x) = 0 \in \{0\} \ (\because T \text{ is linear})$$

(2) V is T-invariant $(T(V)\subseteq V)$

$$\forall x \in V, T(x) \in V \ (\because T : V \to V)$$

(3) R(T) is T-invariant $(T(T(V)) \subseteq T(V))$

$$\forall$$
, $T(x) \in R(T)$,

$$T(T(x)) \in T(V) \subseteq R(T)$$

(4) N(T) is T-invariant

$$\forall x \in N(T), T(x) = 0 \in N(T) \ (\because N(T) \leq V \text{ as subspace, so } N(T) \text{ has zero})$$

29.

If
$$T(W) \subseteq W$$
, $\forall x, y \in W$, and $c \in F$

$$T_W(x+y) = T(x+y) = T(x) + T(y) = T_W(x) + T_W(y)$$
 (W is T-invariant and T is linear)

$$T_W(cx) = T(cx) = cT(x) = cT_W(x)$$

 T_W is linear

30.
$$\forall x \in V, T(x) = x_1 \text{ s.t } x = x_1 + x_2, x_1 \in W, x_2 \in W'$$

(1) W is T-invariant

$$\forall x_1 \in W, \ \mathrm{T}(x_1) = x_1 \in W \ \therefore \ \mathrm{T}(W) \subseteq W$$

(2) $T_W = I_W$

$$T_W: W \to W, \ \forall x_1 \in W, \ T_W(x_1) = x_1$$

$$I_W: W \to W, \ \forall x_1 \in W, \ I_W(x_1) = x_1$$

$$\therefore \forall x_1 \in W, \ T_W(x_1) = I_W(x_1)$$

$$T_W = I_W$$

31. $V = R(T) \oplus W$, W is T-invariant

$$T(W) \subseteq T(V) \cap W = (0) \implies T(W) = 0$$

$$T(W) \subseteq N(T)$$
 (b)

Since
$$V = R(T) \oplus W$$
,

so
$$\dim V = \dim R(T) + \dim W \le rank(T) + nullity(T) = \dim V$$

Since
$$\dim V < \infty, \dim W = nullity(T)$$

(c) (Example 1) Exercise 21, left shift

(Example 2)
$$\beta = \{v_1, v_2, \dots\}$$
 for V

$$T: V \to V, \ T(v_i) = 0 \text{ if } i \text{ is odd}$$

$$\frac{i}{2}$$
 if i is even

Then
$$R(T) = V$$
, $N(T) = span(\{v_1, v_3, v_5, \dots\})$, $W = (0)$

$$\therefore V = R(T) \oplus W$$

(Example 3) dim
$$V = \aleph_0$$
,

$$\{v_1, v_2, v_3, v_4, v_5, v_6, \dots\}$$
: a basis for V

$$\{v_1, v_2, v_3, v_5, v_6, v_7, v_9, v_{10}, \cdots\}$$
: a basis for $R(T)$

$$\{v_3, v_4, v_7, v_8, v_{11}, v_{12}, v_{15}, v_{16}, \cdots\}$$
: a basis for $N(T)$

$$W = span\{v_4, v_8, v_{12}, \cdots\}$$

i.e.
$$V = R(T) \oplus W, \ W \subsetneq N(T)$$

32.

(1)
$$N(T_W) = N(T) \cap W$$

$$(\subseteq) N(T_W) = \{x_1 \in W \mid T_W(x_1) = 0\}$$

$$\forall x_1 \in N(T_W), \ x_1 \in W$$

$$T_W(x_1) = T(x_1) = 0$$
 i.e. $x_1 \in N(T)$

$$\therefore N(T_W) \subseteq N(T) \cap W$$

$$(\supseteq)$$
 If $x_1 \in N(T) \cap W$, then $x_1 \in W$ and $T_W(x_1) = T(x_1) = 0$ $(\because x_1 \in N(T))$

$$\therefore N(T) \cap W \subseteq N(T_W)$$

(2)
$$R(T_W) = T(W), R(T_W) = \{T_W(x_1) \mid x_1 \in W\}$$

$$(\subseteq) \ \forall x_1 \in W, \ T_W(x_1) = T(x_1) \in T(W)$$

$$(\supseteq) \ \forall x_1 \in W, \ T(x_1) = T_W(x_1) \in R(T_W)$$

33. Prove theorem 2.2 in case β is infinite

Claim:
$$R(T) = span(T(\beta)) = span\{T(v_1), T(v_2), \dots\}$$

 (\supseteq) Clearly $T(v_i) \in R(T)$ for each i.

Since $R(T) \leq V$ as subspace,

$$R(T) \supseteq span\{T(v_1), T(v_2), \dots\} = span(T(\beta))$$

(\subseteq) Suppose that $w \in R(T)$, then w = T(v) for some $v \in V$

Since β is a basis for V,

each $v \in V$ can be uniquely expressed as a linear combination of vectors of β

It means there exist a finite number of vectors v_1, v_2, \dots, v_n in β and scalars

$$a_1, a_2, \dots, a_n \text{ in } F \text{ s.t } v = \sum_{i=1}^n a_i v_i$$

Since T is linear,
$$w = T(v) = \sum_{i=1}^{n} a_i T(v_i) \in span T(\beta)$$

$$\therefore R(T) \subseteq span(T(\beta))$$

34. Generalization of theorem 2.6

Claim:
$$\forall f: \beta \to W, \exists ! T(x) = f(x), \ \forall x_i \in \beta$$

Let
$$f: \beta \to Ws.tf(x_i) = w_i$$
 where $\beta = \{x_i | i \in I\}$

Note that $\forall v \in V, \ v = a_i v_i$ in a unique way where $a_i \in F, \ x_i \in \beta$

Define
$$T: V \to W$$
 by $T(v) = \sum_{i} a_i f(x_i)$

- (i) T is well-defined and unique
- (ii) T is linear

(iii)
$$T(x) = f(x), \ \forall x \in \beta$$

(*) Well-definess

(Example 1)
$$V = R^2$$
, $T: R^2 \to R$ by $v = a_1v_1 + a_2v_2 \mapsto (a_1 + a_2)$

$$\beta = \{v_1 = (1,1), v_2 = (1,-1)\}$$

$$\forall v = (a, b) = (\frac{a+b}{2}, \frac{a+b}{2}) + (\frac{a-b}{2}, -\frac{a-b}{2}) = \frac{a+b}{2}v_1 + \frac{a-b}{2}v_2$$

Then actually $T:(a,b)\mapsto a$

(Example 2)
$$V = R^2$$
, $T: R^2 \to R$ by $v = a_1v_1 + a_2v_2 + a_3v_3 \mapsto (a_1 + a_2 + a_3)$

$$\beta = \{v_1 = (1, 1), v_2 = (1, -1), v_3 = (0, 1)\}$$

$$\forall v = (a, b) = \frac{a+b}{2}v_1 + \frac{a-b}{2}v_2 + 0 \cdot v_3 \mapsto a \text{ and } v = (a, b) = av_1 + 0 \cdot v_2 + (b-a)v_3 \mapsto b$$

 \therefore T is not well-defined

35.

(a) Suppose V = R(T) + N(T)

Claim:
$$R(T) \cap N(T) = \{0\}$$

 (\supseteq) Since $R(T), N(T) \leq V$ as subspaces,

So R(T) and N(T) have $\{0\}$

$$\therefore R(T) \cap N(T) \supseteq \{0\}$$

$$(\subseteq)$$
 If $v \in R(T) \cap N(T)$,

then $\exists x \in V \text{ s.t } T(x) = v \text{ and } T(v) = 0$

$$v = T(x) = T^2(x) = T(v) = 0$$

(: T is a projection on R(T) along N(T), then $T^2 = T$)

$$\therefore R(T) \cap N(T) = \{0\}$$

(b) Suppose
$$R(T) \cap N(T) = \{0\}$$

We are going to show that V = R(T) + N(T)

Let dim V = n, rank(T) = m, null(T) = k and n = m + k,

and let $\beta_1 = \{w_1, w_2, cdots, w_m\}$ a basis for R(T)

$$\beta_2 = \{u_1, u_2, cdots, u_k\}$$
 a basis for $N(T)$

Claim: $\beta = \beta_1 + \beta_2 = \{w_1, w_2, cdots, w_m, u_1, u_2, cdots, u_k\}$ is linearly independent

If
$$a_1w_1 + \dots + a_mw_m + b_1u_1 + \dots + b_ku_k = 0, (\forall a_i, b_i \in F)$$

then
$$a_1w_1 + \cdots + a_mw_m = -(b_1u_1 + \cdots + b_ku_k) \in R(T) \cap N(T) = \{0\}$$

$$\therefore a_1 = \dots = a_m = b_1 \dots = b_k = 0$$

Since dim V = n, β is a basis for V,

$$\forall v \in V, \ v = c_1 w_1 + \dots + c_m w_m + d_1 u_1 + \dots + d_k u_k = 0, (\forall c_i, d_j \in F)$$

let $w = c_1 w_1 + \dots + c_m w_m$ and $u = d_1 u_1 + \dots + d_k u_k$

then
$$v = w + u \in R(T) + N(T)$$

$$V = R(T) \oplus N(T)$$

(a) We are going to show that if V is infinite-dimensional, then V doesn't hold the result of Exercise 35(a)

From Exercise 21, $\forall v = (a_1, a_2, \dots) \in V, T : V \to V$ is left shift

then
$$N(T) = \{(a_1, 0, 0, \cdots) \mid a_1 \in F\}$$

$$R(T) = \{(a_2, a_3, a_4, \cdots) \mid \forall a_i \in F, i = 2, 3, \cdots \}$$

$$\therefore \forall v \in V, \ v = (a_1, a_2, a_3, \cdots) = (a_1, a_2, a_3, \cdots) + (0, 0, 0, \cdots) \in R(T) + N(T)$$

$$\therefore V = R(T) + N(T)$$

But
$$R(T) \cap N(T) = \{(a, 0, 0, \dots) \mid a \in F\} \neq \{0\}$$

$$\therefore V \neq R(T) \oplus N(T)$$

(b) Find
$$T_1: V \to V$$
 s.t $R(T_1) \cap N(T_1) = \{0\}$ but $V \neq R(T_1) \oplus N(T_1)$

$$\forall v \in V, \ T_1(v) = T(a_1, a_2, \cdots) = (0, a_1, a_2, \cdots)$$

then
$$N(T_1) = \{0\}$$

$$R(T_1) = \{(0, a_1, a_2, \cdots) \mid a_i \in F\}$$

$$R(T_1) \cap N(T_1) = \{0\}, \text{ but }$$

for
$$0 \neq a \in F$$
, $\exists v = (a, 0, 0, \dots)$ is not in $R(1) + N(T_1)$

$$\therefore R(T_1) + N(T_1) \subsetneq V$$

$$V \neq R(T_1) \oplus N(T_1)$$

37. We are going to show that $T(\alpha x) = \alpha T(x), \ \alpha \in Q$

$$\forall x, y \in V, \ T(x+y) = T(x) + T(y)$$

Let $\alpha = \frac{b}{a}, a, b \in Z, a \neq 0$
$$T(\alpha x) = T(\frac{b}{a}x) = T(\frac{b}{a}a \cdot \frac{x}{a}) = \frac{b}{a} \cdot aT(\frac{x}{a}) = \frac{b}{a} \cdot T(a\frac{x}{a}) = \frac{b}{a}T(x)$$

\therefore T is linear

$$\forall x,y\in\mathbb{C}\text{ s.t }x=a+bi,y=c+di,\forall a,b,c,d\in\mathbb{R},\alpha\in\mathbb{C}$$

$$\mathsf{T}(x+y)=\mathsf{T}((a+c)+(b+d)i)=(a+c)-(b+d)i=(a-bi)+(b-di)=\mathsf{T}(x)+\mathsf{T}(y)$$
 In case $\alpha=i,\,\mathsf{T}(\alpha x)=\mathsf{T}(-b+ai)=-b-ai$ but $\alpha\mathsf{T}(x)=i(a-bi)=b-ai$

 $T(\alpha x) \neq \alpha T(x)$

.. T is not linear

39.

Claim: $\exists T: \mathbb{R} \to \mathbb{R}$ is an additive function that is not linear

let V be the set of real numbers regarded as a vector space over the field of rational numbers.

Since every vector space has a basis (p.61), so V has a basis β

For fixed $x, y \in \beta$ s.t $x \neq y$

Define $f: \beta \to V$ by f(x) = y, f(y) = x and f(z) = z otherwise

By Exercise 34, $\exists ! \ T:V \rightarrow V : \text{linear transformation over } \mathbb{Q} \text{ s.t } T(u) = f(u), \forall u \in \beta$

Then T is additive (from exercise 37) but T is not linear over \mathbb{R}

$$(::)$$
 In case $\alpha = \frac{y}{x}$,

$$T(\alpha x) = T(\frac{y}{x}x) = T(y) = f(y) = x$$

$$\alpha T(x) = \frac{y}{x} T(x) = \frac{y}{x} f(x) = \frac{y}{x} y = \frac{y^2}{x}$$

$$\therefore T(\alpha x) \neq \alpha T(x) \ (\because x \neq y)$$

∴ T is not linear

40.
$$\eta: V \rightarrow V/W, \eta(v) = v + W \ (v + W = 0 \text{ in } V/W \Leftrightarrow v \in W)$$

(a) Prove η is linear and $N(\eta)=W$

$$\forall v_1, v_2 \in V, c \in F$$

(1)
$$\eta(cv_1 + v_2) = (cv_1 + v_2) + W = cv_1 + W + v_2 + W = c(v_1 + W) + (v_2 + W) = c\eta(v_1) + \eta(v_2)$$

(2)
$$\forall v + W \in V/W, \exists v \in V$$

(3)
$$N(\eta)=W$$

$$(:)$$
 (\supseteq) If $w \in W$, then $\eta(w) = w + W = 0 + W$

$$\therefore w \in N(\eta)$$

$$(\subseteq)$$
 If $v \in N(\eta)$, then $\eta(v) = 0 + W = w + W$ for some $w \in W$

$$v \in W$$

(b) Suppose V is finite-dimensional
$$(ker\eta = W, R(\eta) = V/W)$$

$$\dim N(\eta) = \dim(W), \ Rank(\eta) = \dim(V/W) = \dim V - \dim W \ (p.58 \ Sec 1.6 \ Exercise 35)$$

$$\dim V = \dim N(\eta) + \operatorname{Rank}(\eta) = \dim(W) + \dim(V/W)$$

(c) same

2.2. The matrix representation of a linear transformation

- 1. $\beta = \{v_1, v_2, \dots, v_n\}, \ \gamma = \{w_1, w_2, \dots, w_m\}$ bases for V and W, respectively
- (a) T (p.82 Theorem 2.7(a))
- (b) T (p.73 The corollary to Theorem 2.6 and p.80)
- (p.80) Let T:V \to W is linear. Then for each $j, 1 \leq j \leq n$, there exist unique scalars $a_{ij}, b_{ij} \in F, 1 \leq i \leq m$ s.t

$$T(v_j) = \sum_{i=1}^m a_{ij} w_i$$
, $U(v_j) = \sum_{i=1}^m b_{ij} w_i$ for $1 \le j \le n$

Suppose
$$[T]^{\gamma}_{\beta} = (a_{ij})_{m \times n}, [U]^{\gamma}_{\beta} = (b_{ij})_{m \times n}$$

If
$$[T]_{\beta}^{\gamma} = [U]_{\beta}^{\gamma}$$
, then $T(v_j) = \sum_{i=1}^{m} a_{ij} w_i = \sum_{i=1}^{m} b_{ij} w_i = U(v_j)$ for all $a_{ij}, b_{ij} \in F, \forall v_j \in \beta$.

Hence T=U

- (c) F $([T]^{\gamma}_{\beta}$ is an $n \times m$ matrix)
- (d) T (p.83 Theorem 2.8 (a))
- (e) T $(0 \in \mathcal{L}(V, W))$ and Theorem 2.7 (a))
- (f) F (p.104 $\mathcal{L}(V, W) \cong M_{m \times n}(F), \mathcal{L}(W, V) \cong M_{n \times m}(F)$)
- (cf) $(\mathcal{L}(V, W) \cong \mathcal{L}(W, V))$ but $(\mathcal{L}(V, W) \neq \mathcal{L}(W, V))$
- 2. Compute $[T]^{\gamma}_{\beta}$
- (a) $T(1,0)=(2,3,1)=2w_1+3w_2+1w_3$, $T(0,1)=(-1,4,0)=-1w_1+4w_2+0w_3$

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 0 \end{pmatrix}$$

(b)
$$T(1,0,0)=(2,1)$$
, $T(0,1,0)=(3,0)$, $T(0,0,1)=(-1,1)$
 $[T]^{\gamma}_{\beta} = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{pmatrix}$

(c)
$$[T]_{\beta}^{\gamma} = (1, 0, -3)$$

(d) $[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 4 & 5 \\ 1 & 0 & 1 \end{pmatrix}$
(e) $[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}$
(f) $[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$
(g) $[T]_{\beta}^{\gamma} = (1, 0, \cdots, 0, 1)$

(a)
$$T(1,0)=(1,1,2)=-\frac{1}{3}(1,1,0)+0(0,1,1)+\frac{2}{3}(2,2,3)$$

$$T(0,1) = (-1,0,1) = -1(1,1,0) + 1(0,1,1) + 0(2,2,3)$$

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} -\frac{1}{3} & -1\\ 0 & 1\\ \frac{2}{3} & 0 \end{pmatrix}$$

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} -\frac{1}{3} & -1\\ 0 & 1\\ \frac{2}{3} & 0 \end{pmatrix}$$

(b)
$$T(1,2)=(-1,1,4)=-\frac{7}{3}(1,1,0)+2(0,1,1)+\frac{2}{3}(2,2,3)$$

$$T(2,3) = (-1,2,7) = -\frac{11}{3}(1,1,0) + 3(0,1,1) + \frac{4}{3}(2,2,3)$$

$$\begin{split} &[T]_{\alpha}^{\gamma} = \begin{pmatrix} -\frac{7}{3} & -\frac{11}{3} \\ 2 & 3 \\ \frac{2}{3} & \frac{4}{3} \end{pmatrix} \\ 4. \ \beta = \{e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}, \ \gamma = \{1, x, x^2\} \\ &T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1 + 0x + 0x^2, \ T\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 1 + 0x + 1x^2, \\ &T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 0 + 0x + 0x^2, \ T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0 + 2x + 0x^2 \\ &[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix} \\ &5.\alpha = \{e_1, e_2, e_3, e_4\}, \ \beta = \{1, x, x^2\}, \ \gamma = \{1\} \\ &(a) \\ &T\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1e_1 + 0e_2 + 0e_3 + 0e_4, \\ &T\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = 0e_1 + 0e_2 + 1e_3 + 0e_4, \\ &T\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0e_1 + 1e_2 + 0e_3 + 1e_4 \\ &T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = 0e_1 + 0e_2 + 0e_3 + 1e_4 \\ &T\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &0 & 1 & 0 & 0 \\ &0 & 0 & 0 & 1 \end{pmatrix} \\ &(b) \ T(1) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = 0e_1 + 2e_2 + 0e_3 + 0e_4, \\ &T(x) = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 1e_1 + 2e_2 + 0e_3 + 0e_4, \end{split}$$

$$T(x^{2}) = \begin{pmatrix} 0 & 2 \\ 0 & 2 \end{pmatrix} = 0e_{1} + 2e_{2} + 0e_{3} + 2e_{4},$$

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 2 & 2 & 2 \end{pmatrix}$$

(c)
$$T(e_1)=1$$
, $T(e_2)=0$, $T(e_3)=0$, $T(e_4)=1$

$$[T]^{\gamma}_{\alpha} = (1, 0, 0, 1)$$

(d)
$$T(1)=1$$
, $T(x)=2$, $T(x^2)=4$, $T(f(x))=f(2)$

$$[T]^{\gamma}_{\beta} = (1, 2, 4)$$

(e)
$$A=1e_1+(-2)e_2+0e_3+4e_4$$

$$[A]_{\alpha} = (1, -2, 0, 4)^T$$

(f)
$$f(x) = 3 \cdot 1 + (-6)x + 1x^2$$

$$[f(x)]_{\beta} = (3, -6, 1)^T$$

$$(g)\gamma = \{1\}$$

$$[a]_{\gamma} = a$$

6. Theorem 2.7 (b)

 $\mathcal{L}(V, W)$ is a vector space over F

- (a) $T_0 \in \mathcal{L}(V, W), T_0$: the zero transformation
- (b) $aT + U \in \mathcal{L}(V, W), \forall T, U \in \mathcal{L}(V, W), \forall a \in F$
- 7. Theorem 2.8 (b)

Let
$$\beta = \{v_1, v_2, \dots, v_n\}$$
 and $\gamma = \{w_1, w_2, \dots, w_m\}$ bases for V and W, respectively

and let
$$[T]_{\beta}^{\gamma} = (a_{ij})_{m \times n}, \ a_{ij} \in F$$

then $(aT)v_j = aT(v_j) = a\sum_{i=1}^m a_{ij}w_i = \sum_{i=1}^m a(a_{ij}w_i) = \sum_{i=1}^m (aa_{ij})w_i, \ \forall i$
So $[aT]_{\beta}^{\gamma} = (aa_{ij})_{m \times n} = a(a_{ij})_{m \times n} = a[T]_{\beta}^{\gamma}$

8.
$$\beta = \{v_1, \dots, v_n\}$$
: a basis for V
 $\forall x, y \in V \text{ s.t } x = \sum_{i=1}^{n} a_i v_i, \ y = \sum_{i=1}^{n} b_i v_i \in V, a_i, b_i, c \in F$
 $T(x) = [x]_{\beta} = (a_1, \dots, a_n)^t$
and $cx + y = \sum_{i=1}^{n} (ca_i + b_i)v_i$, then
 $T(cx + y) = [cx + y]_{\beta} = (ac_1 + b_1, \dots, ca_n + b_n)^t = (ca_1, \dots, ca_n)^t + (b_1, \dots, b_n)^t = c(a_1, \dots, a_n)^t + (b_1, \dots, b_n)^t = c[x]_{\beta} + [y]_{\beta} = cT(x) + T(y)$

(Indeed T is an isomorphism)

9.

$$\forall x = a + bi, y = c + di \in \mathcal{C}, \alpha, a, b, c, d \in \mathcal{R}$$

(a)
$$T(\alpha x + y) = T((\alpha a + c) + (\alpha b + d)i) = (\alpha a + c) - (\alpha b + d)i = (\alpha a - \alpha bi) + (c - di) = \alpha (a - bi) + (c - d)i = \alpha T(a + bi) + T(c + di) = \alpha T(x) + T(y)$$

∴ T is linear

∴ T is linear

(b)
$$T(1)=1=1\cdot 1+0\cdot i$$
 and $T(i)=-i=0\cdot 1+(-1)\cdot i$

$$A = [T]_{\beta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

10. Compute $[T]_{\beta}$

$$T(v_1) = v_1 + v_0 = v_1 = 1 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n$$

$$T(v_2) = v_2 + v_1 = v_1 + v_2 = 1 \cdot v_1 + 1 \cdot v_2 + \dots + 0 \cdot v_n$$

$$T(v_3) = v_3 + v_2 = v_2 + v_3 = 0 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3 + \dots + 0 \cdot v_n$$

:

$$T(v_n) = v_n + v_{n-1} = v_{n-1} + v_n = 0 \cdot v_1 + 0 \cdot v_2 + \dots + 1 \cdot v_{n-1} + 1 \cdot v_n$$

$$\therefore [T]_{\beta} = \begin{pmatrix} 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 1 & 1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

11.

We choose a basis $\{w_1, \dots, w_k\}$ of W and extend it to a basis of $V(\{w_1, \dots, w_k, v_1, \dots, v_s\})$

Let dimV=n and n=k+s

$$T_W(w_1) = T(w_1) = a_{11}w_1 + \cdots + a_{1k}w_k + 0 \cdot v_1 + \cdots + 0 \cdot v_s$$

$$T_W(w_2) = T(w_2) = a_{21}w_1 + \dots + a_{2k}w_k + 0 \cdot v_1 + \dots + 0 \cdot v_s$$

:

$$T_W(w_k) = T(w_k) = a_{k1}w_1 + \cdots + a_{kk}w_k + 0 \cdot v_1 + \cdots + 0 \cdot v_s$$

$$T(v_1)=b_{11}w_1+\cdots+b_{1k}w_k+c_{11}v_1+\cdots+c_{1s}v_s$$

$$T(v_2)=b_{21}w_1+\cdots+b_{2k}w_k+c_{21}v_1+\cdots+c_{2s}v_s$$

:

$$T(v_s) = b_{s1}w_1 + \cdots + b_{sk}w_k + c_{s1}v_1 + \cdots + c_{ss}v_s$$

The matrix of T is the transpose of the matrix of coefficients in the above system of equations

$$\therefore [T]_{\beta} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1k} & b_{11} & b_{12} & \cdots & b_{1s} \\ a_{21} & a_{22} & \cdots & a_{2k} & b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & b_{k1} & b_{k2} & \cdots & b_{ks} \\ 0 & 0 & \cdots & 0 & c_{11} & c_{12} & \cdots & c_{1s} \\ 0 & 0 & \cdots & 0 & c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & c_{s1} & c_{s2} & \cdots & c_{ss} \end{pmatrix}$$

12. $T: V \to V$: the projection on W along W'

Let
$$\beta_1 = \{v_1, \dots, v_k\}, \ \gamma_1 = \{v_{k+1}, \dots, v_n\}$$
 bases for W and W', respectively

Since
$$V = W \oplus W'$$
, $\beta = \beta_1 \cup \gamma_1$ is an ordered basis for V

Claim : $[T]_{\beta}$ is a diagonal matrix

Since
$$\beta = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}, \forall x \in V, x = \sum_{i=1}^n a_i v_i, a_i \in F$$

So
$$T(x) = \sum_{i=1}^{n} a_i T v_i$$

$$T(v_1) = v_1 = 1 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n \ (\because v_1 \in W)$$

:

$$T(v_k) = v_k = 0 \cdot v_1 + 0 \cdot v_2 + \dots + 1 \cdot v_k + \dots + 0 \cdot v_n \ (\because v_k \in W)$$

$$T(v_{k+1}) = 0 = 0 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n \ (\because v_{k+1} \in W')$$

:

$$T(v_n) = 0 = 0 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n \ (\because v_n \in W')$$

$$\therefore [T]_{\beta} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}_{n \times n} \leftarrow k - th$$

 \therefore [T] is a diagonal matrix

13.
$$\beta = \{v_1, v_2, \dots\}$$
: a basis for V

Claim: If
$$aT + bU = 0$$
, then $a = b = 0$, $a, b \in F$

Let
$$aT(v) + bU(v) = (aT + bU)(v) = 0(v) = 0$$

$$\Rightarrow aT(v) = -bU(v) \in R(T) \cap R(U) = 0$$

$$\Rightarrow$$
 $(aT)(v) = 0$, $(bU)(v) = 0$, $\forall v \in V$

$$\Rightarrow aT = 0, bU = 0$$

$$\Rightarrow^* a = 0, b = 0 (:: T, U \neq 0)$$

「 (*)

$$a \in F, T \in \mathcal{L}(V, W)$$

If
$$aT = 0 \implies$$
 either $a = 0$ or $T = 0$

$$(::)$$
 Assume $a \neq 0 \implies \exists a^{-1} \in F$

$$\Rightarrow T = 1 \cdot T = (a^{-1}a)T = a^{-1}(aT) = a^{-1}0 = 0$$

or

Assume that $T \neq 0 \Rightarrow$

$$\exists v \in F \text{ s.t. } T(v) \neq 0$$

$$\Rightarrow a(T(v)) = (aT)(v) = T_0(v) = 0$$

$$\Rightarrow a = 0$$

$$(::) aw = 0 \Rightarrow a = 0 \text{ or } w = 0 \mid$$

Claim: If
$$(a_1T_1 + a_2T_2 + \dots + a_nT_n)(x) = 0(x)$$
, then $a_1 = a_2 = \dots = a_n = 0$, $a_i \in F$
Let $f(x) = k_0 + k_1x + k_2x^2 + \dots + k_nx^n \in P(R)$
 $(a_1T_1 + a_2T_2 + \dots + a_nT_n)(f(x)) = a_1T_1(f(x)) + a_2T_2(f(x)) + \dots + a_nT_n(f(x)) = a_1f'(x) + a_2f''(x) + \dots + a_nf^{(n)}(x) = 0$

By Exercise 24. Sec1.6(p.56), we obtain $a_1 = a_2 = \cdots = a_n = 0$

 T_1, T_2, \cdots, T_n is a linearly independent subset of $\mathcal{L}(V), \forall n \in \mathbb{Z}^+$.

15.
$$S^0 = \{ T \in \mathcal{L}(V, W) \mid T(x) = 0, \forall x \in S \}$$

- (a) S^0 is a subspace of $\mathcal{L}(V, W)$
- (1) $\forall x \in V, T_0 \in \mathcal{L}(V, W) \text{ s.t } T(x)=0$

$$\therefore \forall x \in S, T_0(x) = 0$$

$$T_0 \in S^0$$

(2) If
$$T_1, T_2 \in S^0, \alpha \in F, \forall x \in S$$

$$(\alpha T_1 + T_2)(x) = \alpha T_1(x) + T_2(x) = \alpha \cdot 0 + 0 = 0$$

$$\therefore \forall x \in S, (\alpha T_1 + T_2)(x) = 0$$

$$\therefore \alpha T_1 + T_2 \in S^0$$

(b)
$$S_1^0 = \{ T \in \mathcal{L}(V, W) \mid T(x) = 0, \forall x \in S_1 \}$$

and
$$S_2^0 = \{ T \in \mathcal{L}(V, W) \mid T(x) = 0, \forall x \in S_2 \}$$

If
$$T \in S_2^0$$
, then $\forall x \in S_2$, $T(x) = 0$

Since
$$S_1 \subseteq S_2$$
, $\forall x \in S_1$, $T(x) = 0$

$$\therefore T \in S_1^0$$

$$\therefore S_2^0 \subseteq S_1^0$$

(c)
$$(V_1 + V_2)^0 = V_1^0 \cap V_2^0$$

$$(\subseteq)$$
 Since $V_1, V_2 \subseteq V_1 + V_2$ and (b)

$$(V_1 + V_2)^0 \subseteq V_1^0$$
 and $(V_1 + V_2)^0 \subseteq V_2^0$

$$(V_1 + V_2)^0 \subseteq V_1^0 \cap V_2^0$$

$$(\supseteq) \ \forall \ \mathrm{T} \in V_1^0 \cap V_2^0$$

Claim:
$$T \in (V_1 + V_2)^0$$
 (i.e. $\forall x \in V_1 + V_2$, $T(x) = 0$ s.t $x = x_1 + x_2$, $x_1 \in V_1$, $x_2 \in V_2$)

$$T(x) = T(x_1 + x_2) = T(x_1) + T(x_2) = 0 + 0 = 0$$
 (: T is linear and $T \in V_1^0 \cap V_2^0$,)

$$T \in (V_1 + V_2)^0$$

Let
$$\beta = \{v_1, \dots, v_n\}$$
 and $\gamma = \{w_1, \dots, w_n\}$: bases for V and W, respectively

Claim : $[T]_{\beta}$ is a diagonal matrix

Define
$$T(v_i) = w_i$$
 for $i = 1, 2, \dots, n$,

then
$$[T]^{\gamma}_{\beta} = I_n$$

$$\therefore$$
 [T] ^{γ} is a diagonal matrix

2.3. Composition of Linear Transformations and Matrix Multiplication

1.

(b) T (p.91 Theorem 2.14)

(c) F
$$([U(w)]_{\gamma} = [U]_{\beta}^{\gamma}[w]_{\beta}$$
 for all $w \in W$)

(d) T (Since
$$I_V(v_j) = v_j, 1 \le i, j \le n [I_V]_{\alpha} = I_n$$

(e) F

In case T:V
$$\rightarrow$$
V, $[T^2]_{\alpha} = [T \cdot T]_{\alpha} = [T]_{\alpha}[T]_{\alpha} = ([T]_{\alpha})^2$

(f) F

If
$$I \neq A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$
, then $A^2 = I$

(cf)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(g) F

$$(T:F^n \to F^m \Leftrightarrow T=L_A \text{ for some } A \in M_{m \times n}(F)$$

(h) F

If
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
, then $A^2 = 0$ even though $A \neq 0$

The cancelation property for multiplication in fields is not valid for matrices.

- (i) T (p.93 Theorem 2.15(c))
- (j) T (p.89 Definition)

2.

(1)
$$A(2B+3C) = \begin{pmatrix} 20 & -9 & 18 \\ 5 & 10 & 8 \end{pmatrix}$$

(2) (AB)D=
$$(29 -26)$$

(3)
$$A(BD) = (29 -26)$$

(1)
$$A^t = \begin{pmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{pmatrix}$$

(1)
$$A^{t} = \begin{pmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{pmatrix}$$

(2) $A^{t}B = \begin{pmatrix} 23 & 19 & 0 \\ 26 & -1 & 10 \end{pmatrix}$
(3) $BC^{t} = \begin{pmatrix} 12 \\ 16 \\ 19 \end{pmatrix}$

(3)
$$BC^t = \begin{pmatrix} 12\\16\\19 \end{pmatrix}$$

(4)
$$CB = (27 \ 7 \ 9)$$

$$(5) CA = (20 26)$$

(1)
$$[U]^{\gamma}_{\beta}$$

$$U(1) = U(1 + 0 \cdot x + 0 \cdot x^2) = (1, 0, 1)$$

$$U(x) = U(0 + 1 \cdot x + 0 \cdot x^2) = (1, 0, -1)$$

$$U(x^2) = U(0 + 0 \cdot x + 1 \cdot x^2) = (0, 1, 0)$$

$$U(x^{2}) = U(0 + 0 \cdot x + 1 \cdot x^{2}) = (0, 1, 0)$$

$$\therefore [U]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

(2)
$$[T]_{\beta}$$

$$T(1) = T(0 \cdot (3+x) + 2 \cdot 1) = 2 = 2 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$

$$T(x) = T(1 \cdot (3+x) + 2 \cdot x) = 3x + 3 = 3 \cdot 1 + 3 \cdot x + 0 \cdot x^{2}$$

$$T(x^{2}) = T(2x \cdot (3+x) + 2 \cdot x^{2}) = 4x^{2} + 6x = 0 \cdot 1 + 6 \cdot x + 4 \cdot x^{2}$$

$$(3) [UT]_{\beta}^{\gamma} = [U]_{\beta}^{\gamma} [T]_{\beta}$$

$$(UT)(1) = U(T(1)) = U(2 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}) = (2, 0, 2)$$

$$(UT)(x) = U(T(x)) = U(3 \cdot 1 + 3 \cdot x + 0 \cdot x^{2}) = (6, 0, 0)$$

$$(UT)(x^{2}) = U(T(x^{2})) = U(0 \cdot 1 + 6 \cdot x + 4 \cdot x^{2}) = (6, 4, -6)$$

$$\therefore [UT]_{\beta}^{\gamma} = \begin{pmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{pmatrix}$$

And
$$[U]_{\beta}^{\gamma}[T]_{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 & 0 \\ 0 & 3 & 6 \\ 0 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 6 & 6 \\ 0 & 0 & 4 \\ 2 & 0 & -6 \end{pmatrix}$$

$$: [UT]_{\beta}^{\gamma} = [U]_{\beta}^{\gamma}[T]_{\beta}$$

(b)

$$(1) [h(x)]_{\beta} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$$

(2)
$$[U(h(x))]_{\gamma} = (1 \ 1 \ 5)$$

$$(3) [U(h(x))]_{\gamma} = [U]_{\beta}^{\gamma}[h(x)]_{\beta} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 5 \end{pmatrix}$$

(a)
$$[T(A)]_{\alpha} = [T]_{\alpha}[A]_{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ -1 \\ 6 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 4 \\ 6 \end{pmatrix}$$

(b)
$$[T(f(x))]_{\alpha} = [T]_{\beta}^{\alpha}[]_{\beta} = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ -6 \\ 3 \end{pmatrix} = \begin{pmatrix} -6 \\ 2 \\ 0 \\ 6 \end{pmatrix}$$

(c)
$$[T(A)]_{\gamma} = [T]_{\alpha}^{\gamma} [A]_{\alpha} = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \end{pmatrix}$$

(d) $[T(f(x))]_{\gamma} = [T]_{\beta}^{\gamma} [A]_{\beta} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \end{pmatrix}$

(d)
$$[T(f(x))]_{\gamma} = [T]_{\beta}^{\gamma} [A]_{\beta} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \end{pmatrix}$$

5. Theorem 2.12

(a)
$$(D+E)A=DA+EA$$

$$[(D+E)A]_{ij} = \sum_{k=1}^{m} (D+E)_{ik} A_{kj} = \sum_{k=1}^{m} (D_{ik} + E_{ik}) A_{kj} = \sum_{k=1}^{m} (D_{ik} A_{kj} + E_{ik} A_{kj}) = \sum_{k=1}^{m} D_{ik} A_{kj} + \sum_{k=1}^{m} E_{ik} A_{kj} = (DA)_{ij} + (EA)_{ij} = [DA + EA]_{ij}$$

(b)
$$a(AB) = (aA)B = A(aB)$$
 for any scalar a

We have
$$[a(AB)]_{ij} = \sum_{k=1}^{n} a(A_{ik}B_{kj}) = \sum_{k=1}^{n} (aA_{ik})B_{kj} = [(aA)B]_{ij}$$

and
$$[(aA)B]_{ij} = \sum_{k=1}^{n} (aA_{ik})B_{kj} = \sum_{k=1}^{n} A_{ik}(aB_{kj}) = [A(aB)]_{ij}$$

$$\therefore a(AB) = (aA)B = A(aB)$$

(c)
$$A_{ij} = \sum_{k=1}^{n} A_{ik} \delta_{kj} = \sum_{k=1}^{n} A_{ik} (I_n)_{kj} = (A \cdot I_n)_{ij}$$

(d) Let dimV=n and $\beta = \{v_1, \dots, v_n\}$

$$I_{V}: V \to V \text{ s.t } I_{V}(v_{i}) = v_{i} = 0 \cdot v_{1} + \dots + 0 \cdot v_{i-1} + 1 \cdot v_{i} + 0 \cdot v_{i+1} + \dots + v_{n}$$

$$\therefore [I_{V}]_{\beta} = \begin{pmatrix} 1 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & 1 \end{pmatrix} = I_{n}$$

Corollary.

$$(1) \ A(\sum_{i=1}^{k} a_i B_i) = \sum_{k=1}^{k} A B_i$$

$$A(\sum_{i=1}^{k} a_i B_i) = A(a_1 B_1 + \dots + a_k B_k) = A(a_1 B_1 + \dots + A(a_k B_k)) = a_1 A B_1 + \dots + a_k A B_k = \sum_{i=1}^{k} a_i A B_i$$

$$(2) \ (\sum_{i=1}^{k} a_i C_i) A = (a_1 C_1 + \dots + a_k C_k) A = (a_1 C_1) A + \dots + (a_k C_k) A = \sum_{i=1}^{k} a_i C_i A$$

6. Theorem 2.13

(b)
$$v_{j} = \begin{pmatrix} B_{1j} \\ B_{2j} \\ \vdots \\ B_{nj} \end{pmatrix} = \begin{pmatrix} B_{11} & \cdots & B_{1j} & \cdots & B_{1n} \\ B_{21} & \cdots & B_{2j} & \cdots & B_{2n} \\ \vdots & & \vdots & & \vdots \\ B_{n1} & \cdots & B_{nj} & \cdots & B_{nn} \end{pmatrix} \begin{pmatrix} 0 & \cdots & 0 & 1(j-th) & 0 & \cdots & 0 \end{pmatrix}^{t}$$

$$\therefore v_{j} = Be_{j}$$

7. Theorem 2.15

(c) $\forall x \in F^n$

(1)
$$L_{A+B}(x) = (A+B)x = Ax + Bx = L_A(x) + L_B(x) = (L_A + L_B)(x)$$

$$\therefore L_{A+B} = L_A + L_B$$

(2)
$$L_{aA}(x) = (aA)x = a(Ax) = (aL_A)(x)$$

$$\therefore L_{aA} = aL_A$$

(f)
$$L_{I_n} = I_{F^n}$$

$$L_{I_n}(x) = I_n x = x$$
 and $I_{F^n}(x) = x \ \forall x \in F^n$

$$\therefore L_{I_n} = I_{F^n}$$

$$(1) (T(U_1 + U_2))(x) = T((U_1 + U_2)(x)) = T(U_1(x) + U_2(x)) = T(U_1(x)) + T(U_1(x)) + T(U_1(x)) + T(U_1(x)) T(U_1(x)) +$$

$$T(U_2(x)) = (TU_1)(x) + (TU_2)(x) = (TU_1 + TU_2)(x)$$

$$\therefore T(U_1 + U_2) = TU_1 + TU_2$$

$$(2) (U_1 + U_2)T(x) = U_1(T(x)) + U_2(T(x)) = (U_1T)(x) + (U_2T)(x) = (U_1T + U_2T)(x)$$

$$(U_1 + U_2)T = U_1T + U_2T$$

(b)

$$T(U_1U_2)(x) = T(U_1(U_2(x))) = (TU_1)(U_2(x)) = (TU_1)U_2(x)$$

$$T(U_1U_2) = (TU_1)U_2$$
 (c)

$$TI(x) = T(I(x)) = T(x) :: TI = T$$

$$IT(x) = I(T(x)) = T(x)$$
 : $IT = T$

(d)

(1)
$$a(U_1U_2)(x) = aU_1(U_2(x)) = (aU_1)(U_2(x)) = ((aU_1)U_2)(x)$$

$$\therefore a(U_1U_2) = (aU_1)U_2$$

(2)
$$U_1(aU_2)(x) = U_1(aU_2(x)) = aU_1(U_2(x)) = a(U_1U_2)(x)$$

$$U_1(aU_2) = a(U_1)U_2$$

More general result

Let V,U,W be vector spaces over K. Suppose the following mappings are linear

$$F:V\to U, F':V\to U$$
 and $G:U\to W, G':U\to W$

Then for any scalars $k \in K$

$$(1) G(F + F') = GF + GF'$$

(2)
$$(G + G')F = GF + G'F$$

(3)
$$k(GF) = (kG)F + G(kF)$$

9.

(1) Let
$$U: F^2 \to F^2$$
 s.t $U(a,b) = (a+b,0), \forall a,b \in F$ and

$$T: F^2 \to F^2$$
 s.t $T(a,b) = (a,-a), \forall a,b \in F$

then
$$UT(a,b)=U(a,-a)=(0,0)$$
 , i.e $UT=T_0$ and $TU(a,b)=T(a+b,0)=$

$$(a + b, -a - b) \neq (0, 0)$$
, i.e $TU \neq T_0$

$$(2) A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}$$

then AB = 0 but $BA \neq 0$

10.

$$(\supseteq)$$
Since $A_{ij} = \delta_{ij}A_{ij}$, if $i \neq j$, then $A_{ij} = 0$

thus A is a diagonal matrix

 (\subseteq) Since A is a diagonal matrix,

if
$$i \neq j$$
, then $A_{ij} = 0$, thus $A_{ij} = \delta_{ij}A_{ij}$
and if $i = j$, then $\delta_{ij} = 1$, therefore $A_{ij} = \delta_{ij}A_{ij}$

$$(\subseteq) \ \forall v \in V, T(V) \in R(T), \text{ since } T(T(V)) = \{0\}, T(V) \in N(T)$$

$$\therefore R(T) \subseteq N(T)$$

$$(\supseteq) \ \forall v \in V, T(V) \subseteq R(T),$$

$$\therefore R(T) \subseteq N(T)$$

$$\therefore T^2(v) \subseteq T(T(v) \subseteq T(N(T)) = 0$$

$$T^2 = T_0$$

12.

(a) Assume
$$UT: V \to Z$$
 is one-to-one and let $T(V_1) = T(v_2)$ for $v_1, v_2 \in V$

Then
$$U(T(v_1)) = U(T(v_2))$$
 i.e $(UT)(v_1) = (UT)(v_2)$

Since UT is one-to-one, $v_1 = v_2$

 \therefore T is one-to-one

(Example)

$$V = R^2, \ W = Z = R^3$$

$$T: V \to W \ T(a,b) = (a,b,0)$$

$$U: W \to Z \ U(a, b, c) = (a, b, 0)$$

(b) Assume that $UT: V \to Z$ is onto and let $z \in Z$

$$\exists v \in V \text{ s.t } (UT)(v) = z$$

Let
$$w = T(v)$$

Then
$$w \in W$$
 and $U(W) = U(T(v)) = (UT)(v) = z$

$$\therefore U:W\to Z$$
 is onto

(Example)

$$V = W = R^3, \ W = R^2$$

$$T: V \to W \ T(a, b, c) = (a, b, 0)$$

$$U: W \rightarrow Z \ U(a, b, c) = (a, b)$$

UT is one-to-one but U is not

(c) (1) Let
$$v_1, v_2 \in V$$
 and assume $(UT)(v_1) = (UT)(v_2)$

If
$$U(T(v_1)) = U(T(v_2))$$
, then $T(v_1) = T(v)_2$ (: U is one-to-one)

and $v_1 = v_2(::)$ T is one-to-one

(Example)

$$V = W = R^2, \ W = R^3$$

$$T: V \to W \ T(a,b) = (a,b,0)$$

$$U: W \rightarrow Z \ U(a, b, c) = (a, b)$$

 $UT = i_{R^2}$ is one-to-one an onto

(2) Let $z \in Z$

Since U is onto, $\exists w \in W \text{ s.t } z = U(w)$

and T is onto, $\exists v \in V \text{ s.t } w = T(v)$

Thus
$$z = U(w) = U(T()v) = (UT)(w)$$

 \therefore UT is onto

Therefore if U and T are one-to-one and onto, then so is UT.

13.

(a)
$$tr(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} (A)_{ij}(B)_{ji} = \sum_{j=1}^{n} (\sum_{i=1}^{n} (B)_{ji}(A)_{ij}) = \sum_{j=1}^{n} (BA)_{jj} = tr(BA)$$

(b)
$$tr(A) = \sum_{i=1}^{n} (A)_{ii} = \sum_{i=1}^{n} (A^{t})_{ii} = tr(A^{t})$$

14.

(a)
$$z = (a_1, a_2, \dots, a_p)^t = \sum_{i=1}^p a_i e_i$$

So
$$Bz = B(\sum_{i=1}^{p} a_i e_i) = \sum_{i=1}^{p} a_i (Be_i) = \sum_{i=1}^{p} a_i v_i$$

(b)
$$(AB)^j = (AB)e_j = A(Be_j) = Av_j = \sum_{k=1}^n b_{kj}(u_k), \ v_j = (b_{1j}, \dots, v_{nj})^t$$

(c)
$$wA = (\sum_{i=1}^{m} a_i e_i)A = \sum_{i=1}^{m} a_i (e_i A) = \sum_{i=1}^{m} a_i u_i$$

(d)
$$(AB)_{(i)} = e_i(AB) = (e_iA)B = u_iB = \sum_{k=1}^n b_{ik}(v_k), \ u_i = (b_{i1}, \dots, v_{in})$$

15.

$$M = (\gamma_{ij})_{m \times n}, A = (a_{ik})_{n \times p}$$

If
$$A^{(j)} = \sum b_k A^{(k)} \implies MA^{(j)} = M(\sum b_k A^{(k)}) = \sum b_k MA^{(k)} = \sum b_k (MA)^{(k)}$$

```
16.
(a) If rank(T) = rank(T^2)
i.e. dimR(T) = dimR(T^2) : dimN(T) = dimN(T^2)
(i) But dim R(T) \leq dim V < \infty \implies R(T) = R(T^2) \ ( \Rightarrow T = T^2)
(ii) and dim N(T^2) \leq dim V < \infty \implies N(T) = N(T^2)
(:) If v \in R(T^2) \implies v = T^2(z) for some z \in V
\Rightarrow v = T(T(z)) \in R(T)
\therefore R(T^2) \subseteq R(T)
(a) If w \in R(T) \cap N(T)
\Rightarrow w = T(V) \text{ for some } v \in V
Then T^{2}(v) = T(w) = 0
v \in N(T^2) = N(T)
\therefore w = T(v) = 0
(b)
Since R(T) \supset R(T^2) \supset \cdots
we have dimV > rankT > rankT^2 > \cdots > 0
So \exists k (\geq 1), \ rank(T^k) = rank(T^{k-1}) \implies R(T^k) = R(T^{k+1}) = \dots = R(T^{2k})
\lceil (*) \rceil
If w \in R(T^k) \Rightarrow w = T^k(v) = T^{k+}(v_1)
and T^{k+1}(v_1) = T(T^k(v_1)) = T(T^{k+1}(v_2)) = T^{k+2}(v_2)
```

i.e.
$$R(T^k) = R(T^{2k})$$

Let $u := T^k$
then $u^2 := T^{2k}$
 $\therefore R(u) = R(u^2)$
Using the similar way to this, then $V = R(U) \oplus N(U)$
 $\therefore V = R(T^k) \oplus N(T^k)$
17.
For every $x \in V$, $x = T(x) + (x - T(x))$ and we are going to show that $V = \{y \mid T(y) = y\} \oplus N(T)$
Since $T^2(x) = T(T(x)) = T(x), T(x) \in \{y \mid T(y) = y\}$ and $T(T(x - T(x)) = T(x) - T^2(x) = T(x) - T(x) = 0$

$$\therefore V = \{y \mid T(y) = y\} + N(T)$$

 $\therefore x - T(x) \in N(T)$

and if
$$\exists x \in \{y \mid T(y) = y\} \cap N(T)$$
, then $x = 0$

$$(\because) \text{ Since } x \in \{y \mid T(y) = y\}, \therefore T(x) = x$$

and
$$x \in N(T), T(x) = 0$$

$$\therefore x = 0$$

$$\therefore V = \{y \mid T(y) = y\} \oplus N(T)$$

18.

Let A be an $m \times n$ matrix, B be an $n \times p$ matrix and C be an $p \times q$ matrix

We are going to show that (AB)C=A(BC), for $1 \le i \le m, 1 \le j \le q$ $((AB)C)_{ij} = (\sum_{k=1}^{p} (AB)_{ik}C_{kj}) = \sum_{k=1}^{p} (\sum_{l=1}^{n} (A)_{il}B_{lk})C_{kj} = \sum_{l=1}^{n} A_{il}(\sum_{k=1}^{p} B_{lk}C_{kj}) = \sum_{l=1}^{n} A_{il}(BC)_{lj} = \sum_{l=1}^{n} A_{il}(AB)C_{kj} = \sum_{l=1}^{n}$ $(A(BC))_{ij}$

19.

 $(B^3)_{kk} > 0 \iff B_{ki}B_{ij}B_{jk} = 1 \text{ for some } i \neq j \text{ differ from } k$ \Leftrightarrow k belongs to a clique

20.

20.
(a) Since
$$B^3 = \begin{pmatrix} 0 & 2 & 0 & 3 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \\ 3 & 0 & 2 & 0 \end{pmatrix}$$
, $forall B_{ii}^3 = 0$

$$\therefore \nexists \text{ clique}$$

(b) Since
$$B^3 = \begin{pmatrix} 2 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 2 & 3 \\ 3 & 0 & 3 & 2 \end{pmatrix}$$

 \therefore 1,3,4 belong to cliqu

21.

For convenience, let $A + A^2 = (b_{ij})_{n \times n}$ and for all $i(1 \le i \le n)$, let $D(i) = \{j | a_{ij} = 1\}$

Choose a k such that D(k) is maximal in the set $\{D(i)|1 \le i \le n\}$

We will show that $b_{kj} = a_{kj} + \sum_{i=1}^{n} a_{ki} a_{ij} > 0$ for all $j \neq k$

For a fixed $j(\neq k)$, if $a_{kj} = 1$ then $b_{kj} > 0$

Now suppose $a_{kj} = 0$, then $a_{jk} = 1$

So $k \in D(j)$

If (for the case $a_{kj} = 0$) $a_{ij} = 0$ for all $i \in D(k)$, then

 $a_{ji} = 1$ and hence $D(k) \subseteq D(j)$

But $k \in D(j), \ k \notin D(k)$

This is a contradiction to the choice of k

Thus $a_{ij}=1$ for some $i\in D(k)$, and this proves the property $b_{kj}=a_{kj}+\sum_{i=1}^n a_{ki}a_{ij}>0$

22.

1,2 and 3 dominate all the others in at most two stages, while 1,2, and 3 are dominated by all the others in at most two stages

23.

$$n(n-1)/2$$

2.4. Invertibility and Isomorphisms

1.

- (a) F, $([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\beta}^{\alpha}$
- (b) T
- (c) F

 $A \in Mat_{m \times n}(F), \ L_A : F^n \to F^m$

- $\Rightarrow [L_A]^{\beta}_{\alpha} = A$ in case of α , β are the standard bases
- (d) F, $dim(M_{2\times 3}(F)) \neq F^5$
- (e) $P_n(F) \simeq P_m(F)$ iff n=m
- (\Leftarrow) clear
- $(\Rightarrow)\exists T:P_n(F)\to P_m(F)$ is isomorphic

Since T is one-to-one and onto,

$$dim(P_n(F)) = rank(T) + nullity(T) = dim(P_m(F))$$

$$n \cdot 1 = m + 1$$

- $\therefore n = m$
- (f) F (In case A and B are $n \times n$ matrices, it's true)
- (g) T
- (h) T (Exercise 8)
- (i) T
- 2. T is invertible iff $[T]^{\gamma}_{\beta}$

(a)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $T(a_1, a_2) = (a_1 - 2a_2, a_2, 3a_1 + 4a_2)$

For $\beta = \{(1,0),(0,1)\}$ and $\gamma = \{(1,0,0),(0,1,0),(0,0,1)\}$ bases for $\mathbb{R}^2,\mathbb{R}^3$, respectively

$$T(1,0) = (1,0,3) = 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + 3 \cdot (0,0,1)$$

$$T(0,1) = (-2,1,4) = -2 \cdot (1,0,0) + 1 \cdot (0,1,0) + 4 \cdot (0,0,1)$$

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \\ 3 & 4 \end{pmatrix}$$
 is not a aquare matrix

So $[T]^{\gamma}_{\beta}$ is not invertible

... T is not invertible

(b)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
, $[T]^{\gamma}_{\beta} \in M_{3\times 2}(F)$ is not a square matrix

∴ T is not invertible

(c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
,

$$T(1,0,0) = (3,0,3), T(0,1,0) = (0,1,4), T(0,0,1) = (-2,0,0)$$

$$T(1,0,0) = (3,0,3), T(0,1,0) = (0,1,4), T(0,0,1) = (-2,0,0)$$

$$\therefore [T]_{\beta}^{\gamma} = \begin{pmatrix} 3 & 0 & 2 \\ 0 & 1 & 0 \\ 3 & 4 & 0 \end{pmatrix} \text{ is invertible}$$

(cf) If
$$T(a_1, a_2, a_3) = (3a_1 - 2a_2, a_2, 3a_1 + 4a_2) = (0, 0, 0, 0)$$

then
$$(a_1, a_2, a_3) = (0, 0, 0)$$

$$\therefore kerT = (0)$$

(d)
$$T: P_3(R) \to P_2(R), T(p(x)) = p'(x)$$

$$[T]^{\gamma}_{\beta} \in M_{3\times 4}(R)$$
 is not a square matrix

∴ T is not invertible

(e)
$$T: M_{2\times 2}(R) \to P_2(R), T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$$

$$[T]^{\gamma} \in M_{2\times 2}(R) \text{ is not a square matrix}$$

 $[T]^{\gamma}_{\beta} \in M_{3\times 4}(R)$ is not a square matrix

.. T is not invertible

(f)
$$T: M_{2\times 2}(R) \to M_{2\times 2}(R), T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = T\begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$$

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \text{ is invertible}$$

.. T is invertible

(cf) If
$$T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

then $a = b = c = d = 0$

$$\therefore kerT = (0)$$

 \therefore T is invertible

3.

(a)
$$F^3 \ncong P_3(F)$$
 (::) $dimF^3 \ne dimP_3(F)$

(b)
$$F^4 \cong P_3(F)$$

(c)
$$M_{2\times 2}(R) \cong P_3(R)$$

(d)
$$V = \{A \in M_{2 \times 2}(R) \mid tr(A) = 0\} \ncong R^4$$

$$(:)dimV = | \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\} | = 3$$

$$dim R^4 = | \left\{ (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) \right\} | = 3$$

$$dimR^4 = |\{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}| = 4$$

 $\therefore dimV \neq dimR^4$

Let A and B $n \times n$ invertible matrix

Since
$$\exists A^{-1}$$
 and B^{-1} , $(AB)(B^{-1}A^{-1}) = I_n = (B^{-1}A^{-1})(AB)$

- $\therefore B^{-1}A^{-1}$ is an inverse of AB
- $\therefore AB$ is invertible and $(AB)^{-1} = B^{-1}A^{-1}$

5.

Let A is invertible

Since
$$\exists A^{-1} \text{ s.t } AA^{-1} = A^{-1}A = I_n$$

$$(A^{-1})^t A^t = (AA^{-1})^t = (I_n)^t = I_n$$

$$A^{t}(A^{-1})^{t} = (A^{-1}A)^{t} = (I_{n})^{t} = I_{n}$$

 $(A^{-1})^t$ is an inverse of A^t

$$(A^t)^{-1} = (A^{-1})^t$$

6.

If A is invertible and AB=0, then $\exists A^{-1}$ s.t $A^{-1}A = AA^{-1} = I_n$

$$\therefore B = IB = (A^{-1}A)B = A^{-1}0 = 0$$

$$\therefore B = 0$$

7.

(a) Suppose $A^2 = 0$

Assume A is invertible, then $A^{-1}AA = A^{-1}0 \Rightarrow A = 0$

It's contradict to A is invertible

- ∴ A is not invertible
- (b) Suppose AB=0 for some $0 \neq B \in M_{n \times n}(F)$

Assume A is invertible, then $A^{-1}AB = A^{-1}0 \Rightarrow B = 0$

It's contradict to $B \neq 0$

∴ A can't be invertible

8. (a)
$$[T]^{\beta}_{\beta} = [T]_{\beta}$$

(b)
$$A = [L_A]_{\beta}$$

 (\Leftarrow) $A = [L_A]_{\beta} \in M_{m \times n}(F)$, where β the standard basis of F^n

Since L_A is invertible, so A is invertible

$$(\Rightarrow)$$
 Since $A = [L_A]_{\beta} \in M_{m \times n}(F)$ is invertible

 \therefore L_A is invertible

9.

Let $A, B \in M_{n \times n}(F)$ s.t AB is invertible

(a) Let $L_A, L_B, L_{AB}: F^n \to F^n$ be the left multiplication

Then clearly $L_A L_B = L_{AB}$ and L_{AB} is invertible since AB is invertible

 $\therefore L_A$ is onto, L_B is one-to-one

By theorem 2.5, L_A and L_B are both invertible

∴ A and B are invertible

(b) Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 \\ -2 & 1 \\ 1 & 0 \end{pmatrix}$ then $AB = \begin{pmatrix} 1 & 3 \\ -1 & 7 \end{pmatrix}$ is invertible

But A and B are not invertible

(Example) (b)

Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 then $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$, but $BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq I$

10.

(a)
$$AB = I_n \Rightarrow A$$
 and B are invertible by exercise 9

(b)
$$\exists C \in Mat_{n \times n}(F) \text{ s.t} CA = I_n, \text{ so}$$

$$C = CI_n = C(AB) = (CA)B = I_nB = B$$

that is,
$$BA = CA = I_n = AB$$

:
$$B = A^{-1}$$
 or $A + B^{-1}$

- (c) Let V be of finite dimensional vector space and let $T:V\to V$ s.t $TR=I_V$
- (1) T is invertible

$$T, R: V \to V$$
 linear s.t. $TR = 1_V$

Since
$$TR = 1_V$$
, T is onto

So T is invertible

Similarly R is one-to-one

and hence R is invertible

(2)
$$R = T^{-1}$$

Since T is invertible, $\exists T^{-1}: V \to V$

$$\Rightarrow T^{-1} = T^{-1}1_V = T^{-1}(TR) = (T^{-1}T)R = IR = R$$

$$\therefore R = T^{-1}$$

11.
$$T: P^3(R) \to M_{2\times 2}(R)$$
 is linear by $T(f) = \begin{pmatrix} f(1) & f(2) \\ f(3) & f(4) \end{pmatrix}$

We are going to show that $T(f) = 0 \Rightarrow f = 0$ (the zero polynomial)

In this case,
$$f(1) = 0$$
 (i.e. $f(c_0) = b_0$), $f(2) = 0$, $f(3) = 0$, $f(4) = 0$

$$\therefore \forall f(c_i) = 0, i = 0, 1, 2, 3$$

$$\therefore f(x) = \sum_{i=0}^{3} b_i f_i(x) = \sum_{i=0}^{3} f(c_i) f_i(x) = 0$$

 $\therefore f$ is the zero polynomial

 \therefore T is one-to-one

12.
$$\phi_{\beta}(v_i) = [v_i]_{\beta} = e_i = (0, \dots, 1, \dots, 0)^t$$

 $[\phi_{\beta}]^{\gamma}_{\beta} = I_n$, when γ is the standard basis for F^n

 $\therefore \phi_{\beta}$ is an isomorphism

or

$$\phi_{\beta}: V \to F^n$$
 is onto

 $\Rightarrow \phi_{\beta}$ is an isomorphism because $dimV = dimF^n$

- 13. \sim is an equivalence relation on the class of vector space over F
- (i) \sim is reflexive

$$\forall V \in \mathcal{C}, V \sim V$$

- (:) $I_V: V \to V$ s.t $I_V = v, \forall v \in V$ is an isomorphism
- (ii) \sim is symmetric

If $V \sim W$, then $W \sim V$

- (\because) If $T:V\to W$ is isomorphic then $\exists T^{-1}:W\to V$ is isomorphic
- $\therefore W \sim V$
- (iii) \sim is transitive

If $V \sim W$ and $W \sim Z$, then $V \sim Z$

(::) Let $T:V\to W$ and $U:W\to Z$ are isomorphic, then UT is isomorphic

14.

Let
$$V = \left\{ \begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} \mid a,b,c \in F \right\}$$

$$T: V \to F^3 \text{ s.t } T \begin{pmatrix} a & a+b \\ 0 & c \end{pmatrix} = (a,b,c)$$
For the basis for $V, \left\{ v_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, v_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$

$$\exists ! T(v_i) = w_i \text{ is linear, } w_i \in F^3 \text{ } i = 1,2,3$$
and since $\dim V = \dim F^3, V$ is isomorphic to F^3

 \therefore T is an isomorphism from V to F^3

15.

T is isomorphic iff $T(\beta)$ is a basis for W

 (\Rightarrow) Section 2.1 exercise 14 (c) (p75)

$$(\Leftarrow) T(\beta) = \{T(v_1), T(v_2), \cdots, T(v_n)\}$$

 $\forall w \in W$

$$w = \sum a_i T(v_i) = T(\sum a_i v_i) = T(v)$$
, where $v = \sum a_i v_i \in V$

- \therefore T is onto
- \therefore T is invertible since dimV = dimW = n

16.
$$\Phi: M_{n\times n}(F) \to M_{n\times n}(F)$$

$$c \in M_{m \times n(F)}, \ \exists A = B^{-1}CB \in M_{m \times n}(F) \text{ s.t. } \Phi(A) = C$$

- \therefore Φ is onto
- \therefore Φ is an isomorphism
- 17. V is finite dimensional and $T: V \to V$ is isomorphic

let $v_0 \in V$

- (a) $T(V_0) \leq W$ as a subspace
- (i) $T(v_1) + T(v_2) = T(v_1 + v_2) \in T(V_0)$
- (ii) $T(av) = aT(v) \in T(V_0)$
- (b) Since T is an isomorphism, rank(T) = dimW and nullity(T) = 0

therefore $nullity(T \mid_{V_0}) = 0$

$$dim(V_0) = rank(T\mid_{V_0}) + nullity(T\mid_{V_0}) = dim(T(V_0))$$

,
where
$$T\mid_{V_0}:V_0\to T(V_0)\ (\subseteq W)$$

the restriction

18.

$$A = [T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

$$L_{A}\pi_{\beta}(p(x)) = \pi_{\gamma}T(p(x)) = \begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}$$

$$L_{A}\pi_{\beta}(p(x)) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 9 \end{pmatrix}$$
Since $T(p(x)) = p'(x) = 1 + 4x + 9x^{2}$
So $L_{A}\pi_{\beta}(p(x)) = \pi_{\gamma}T(p(x))$

19. (a)
$$A = [T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (b) $L_A \pi_{\beta}(M) = A \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 4 \end{pmatrix}$ Since $T(M) = M^t = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ We have $\pi_{\gamma} T(M) = (1 \ 3 \ 2 \ 4)^t$

20.

Let $A = (a_{ij})_{m \times n}$ be an incidence matrix associated with a dominance relation Then $A + A^2$ has a row[column] in which every entry, except for the orthogonal, is positive

$$(:)$$
 For convenience, let $A + A^2 = (b_{ij})_{n \times n}$

and for
$$\forall i \ (1 \leq i \leq n)$$
, let $D(i) = \{j \mid a_{ij} = 1\}$

Choose a k such that D(k) is maximal in the set $\{D(i) \mid 1 \le i \le n\}$

We will show that
$$b_{kj} = a_{kj} + \sum_{i=1}^{n} a_{ki} a_{ij} > 0$$
 for all $j \neq k$

For a fixed
$$j(\neq k)$$
, if $a_{kj} = 1$ then $b_{kj} > 0$

Now suppose
$$a_{kj} = 0$$
, then $a_{ij} = 1 \implies k \in D(j)$

If (for the case
$$a_{kj} = 0$$
), $a_{ij} = 0$ for all $i \in D(k)$, then

$$a_{ij} = 1$$
 and hence $D(k) \subseteq D(j)$

But
$$k \in D(j)$$
, k is not in $D(k)$

This is a contradiction to the choice of k

Thus
$$a_{ij} = 1$$
 for some $i \in D(k)$ and

this proves the property
$$b_{kj} = a_{kj} + \sum_{i=1}^{n} a_{ki} a_{ij} > 0$$

21.
$$\{T_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n\}$$
 is a basis for $dim \mathcal{L}(V, W)$

(a) Since dim
$$\mathcal{L}(V, W) = mn$$
,

we need to show that the given set is linearly independent

Let
$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} T_{ij} = 0, a_{ij} \in F$$

$$\forall k (1 \le k \le n),$$

$$0 = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} T_{ij}\right)(v_k) = \sum_{i=1}^{m} a_{ik} w_i$$

and
$$\xi = \{w_1, \dots, w_n\}$$
 is a basis for W

$$\therefore a_{ik} = 0, \forall i, k$$

$$\therefore \forall a_{ij} = 0$$

:. It's linearly independent

(b)

$$\beta = \{v_1, v_2, \cdots, v_n\}, \ \gamma = \{w_1, w_2, \cdots, w_n\}$$

$$\{T_{ij} \mid 1 \leq i \leq m, \ 1 \leq j \leq n\}$$
 a basis for $\mathcal{L}(V, W)$ by (a)

$$\forall k, T_{ij}(v_k) \quad w_i = 0w_1 + \dots + 1w_i + \dots + 0w_n \text{ if } j = k$$

$$= 0w_1 + \cdots + 0w_n$$
 otherwise

$$T_{ij} = M^{ij}$$

(c) Now
$$\Phi: \mathcal{L}(V, W) \to M_{m \times n}(F)$$
 is defined by $\Phi(T_{ij}) = M^{ij}$ for all i, j

Since
$$\{M^{ij}\}=\Phi(T^{ij})$$
 is a basis of $M_{m\times n}(F)$

 Φ is a n isomorphism by the exercise 15(p.108)

22.

(i) T is well-defined and linear(check!)

$$T(f+g) = T(f) + T(g)$$

$$T(\alpha f) = \alpha T(f)$$

(ii) T is one-to-one

Suppose that
$$f \in ker(T)$$
 and let $f(x) = \sum_{i=0}^{n} b_i f_i(x)$,

where
$$f_i(x) = \frac{(x-c_0)\cdots(x-c_n)}{(c_i-c_0)\cdots(c_i-c_n)}, b_i = f(c_i), \forall i$$

Then
$$0 = T(f) = (f(c_0), f(c_1), \dots, f(c_n)) = (b_0, b_1, \dots, b_n)$$

Since $\forall b_i = 0, f \equiv 0$

(iii) T is onto

$$\forall a = (f(c_0), \dots, f(c_n)) \in F^{n+1}, \exists f \in P_n(F) \text{ s.t } T(f) = a$$

23.
$$T(\sigma) = T(\{a_n\}) = a_0 + a_1 x + \dots + a_n x^n$$
, where $a_m \neq 0, \ \forall m > n$

- (i) T is well-defined
- (ii) If $T(\sigma) = 0$, since $x_i's$ are linearly independent

$$\therefore \forall a_i = 0$$

$$\therefore \sigma = \{0\}$$

- \therefore T is one-to-one
- (iii) T is onto

$$\forall f(x) = \sum_{i=0}^{n} a_i x^i \in P_n(F),$$

$$\exists \sigma = \{a_n\} = \{a_1, \dots, a_n, 0, \dots, 0\} \in V \text{ s.t } T(\sigma) = f(x)$$

24. (a) \overline{T} is well-defined

$$v + N(T) = v' + N(T)$$

$$\Rightarrow v - v' \in N(T)$$

$$\Rightarrow T(v - v') = 0$$

$$\Rightarrow T(v) - T(v') = 0$$

$$T(v) = T(v')$$

$$\Rightarrow \ \overline{T}(v+N(T))=T(v)=T(v')=\overline{T}(v'+N(T))$$

(b) \overline{T} is linear

$$\overline{T}(\alpha(v+N(T))+(v'+N(T)))=\overline{T}(\alpha v+v'+N(T))=T(\alpha v+v')=\alpha T(v)+T(v')=T(\alpha v+v')$$

$$\alpha \overline{T}(v + N(T)) + \overline{T}(v' + N(T))$$

(c) \overline{T} is an isomorphism

(i) If
$$\overline{T}(v + N(T)) = 0$$
, then $v + N(T) = N(T)$ i.e. $v \in N(T)$

$$(:)$$
 Since $0 = \overline{T}(v + N(T)) = T(v) : v \in N(T)$

$$\overline{T}(v+N(T)) = 0 \implies 0 = \overline{T}(v+N(T)) = T(V) \implies v \in N(T)$$

 $\therefore \overline{T}$ is one-to-one

(ii) Clearly
$$\overline{T}(V + N(T)) \subseteq T(V)$$

If $v \in T(V)$, then v = T(u) for some $u \in V$

and so
$$v = T(u) = \overline{T}(u + N(T))$$

$$v \in \overline{T}(V + N(T))$$

T is onto

(d)
$$T = \overline{T}\eta$$

$$T(v) = \overline{T}(v + N(T)) = \overline{T}(\eta(v)) = \overline{T}\eta(v)$$

$$\forall v \in V, \overline{T}\eta(v) = \overline{T}(v + N(T)) = T(v)$$

$$T = \overline{T}\eta$$

25.

(i)
$$\Psi: \mathcal{C}(S, F) \to V$$
 is well-defined

(ii) Ψ is onto

$$\forall v \in V. \ v = \sum a_i s_i, \ s_i \in S$$

Define
$$f(s_i) = a_i, \ \forall i$$

(then $a_i = 0$ for all but a finite number of i)

then
$$\forall v, \ \exists f \in C(S, F) \text{ s.t. } \Psi(f) = \sum f(s_i)s_i = \sum a_i s_i, \ s_i = V$$

(iii) Ψ is one-to-one

$$\Psi(f) = 0 \Rightarrow \sum f(s_i)s_i = 0, \ \forall s_i \in S \Rightarrow f \equiv 0$$

2.5. The change of Coordinate Matrix

1.

- (a) F ($[x'_{i}]_{\beta}$)
- (b) T (Since $Q = [I_V]^{\beta}_{\beta'}$, Q is an isomorphism)
- (c) T
- (d) F $(B = Q^{-1}AQ)$
- (e) T $([T]_{\gamma} = Q^{-1}[T]_{\beta}Q)$

$$2.Q = [I_V]_{\beta'}^{\beta}$$

(a)
$$I_V(a_1, a_2) = (a_1, a_2) = a_1e_1 + a_2e_2$$

$$I_V(b_1, b_2) = (b_1, b_2) = b_1 e_1 + b_2 e_2$$

$$\therefore Q = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$$

(b)
$$Q = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$

(c)
$$Q = \begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$$

$$P(b_1, b_2) = (b_1, b_2)$$

$$\therefore Q = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$$

$$(b) \ Q = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$

$$(c) \ Q = \begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$$

$$(d) \ Q = \begin{pmatrix} 2 & -1 \\ 5 & 4 \end{pmatrix}$$

3.
$$Q = [I_V]_{\beta'}^{\beta}$$

(a)
$$I_V(a_2x^2 + a_1x + a_0) = a_2x^2 + a_1x + a_0$$

$$I_V(b_2x^2 + b_1x + b_0) = b_2x^2 + b_1x + b_0$$

$$I_V(c_2x^2 + c_1x + c_0) = c_2x^2 + c_1x + c_0$$

$$\therefore Q = \begin{pmatrix} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_0 & b_0 & c_0 \end{pmatrix}$$
(b)
$$Q = \begin{pmatrix} a_0 & b_0 & c_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix}$$
(c)
$$Q = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ -3 & 1 & 1 \end{pmatrix}$$
(d)
$$Q = \begin{pmatrix} 2 & 1 & 1 \\ 3 & -2 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$
(e)
$$Q = \begin{pmatrix} 5 & -6 & 3 \\ 0 & 4 & -1 \\ 3 & -1 & 2 \end{pmatrix}$$
(f)
$$Q = \begin{pmatrix} -2 & 1 & 2 \\ 3 & 4 & 1 \\ -1 & 5 & 2 \end{pmatrix}$$

(e)
$$Q = \begin{pmatrix} 5 & -6 & 3 \\ 0 & 4 & -1 \\ 3 & -1 & 2 \end{pmatrix}$$

(f)
$$Q = \begin{pmatrix} -2 & 1 & 2 \\ 3 & 4 & 1 \\ -1 & 5 & 2 \end{pmatrix}$$

4.
$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$$

 $Q = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, [T]_{\beta} = \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix}$

$$[T]_{\beta'} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 13 \\ -5 & -9 \end{pmatrix}$$

5.
$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$$

 $Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, [T]_{\beta} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

$$[T]_{\beta'} = 1/2 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = 1/2 \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

6.
$$[L_A]_{\beta} = Q^{-1}AQ$$

(a) $Q = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}, Q^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$
 $[L_A]_{\beta} = Q^{-1}AQ = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 11 \\ -2 & 4 \end{pmatrix}$
(b) $Q = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, Q^{-1} = 1/2 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
 $[L_A]_{\beta} = Q^{-1}AQ = 1/2 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$
(c) $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}, Q^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$
 $[L_A]_{\beta} = Q^{-1}AQ = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 \\ -2 & -3 & -4 \\ 1 & 1 & 2 \end{pmatrix}$
(d) $Q = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix}, Q^{-1} = 6 \begin{pmatrix} 1 & 1 & -2 \\ 3 & -3 & 0 \\ 2 & 2 & 2 \end{pmatrix}$
 $[L_A]_{\beta} = Q^{-1}AQ = 6 \begin{pmatrix} 1 & 1 & -2 \\ 3 & -3 & 0 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} 13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix} = 24 \begin{pmatrix} 6 & 0 & 5 \\ 0 & 18 & 0 \\ 0 & -6 & 31 \end{pmatrix}$

- 7. In \mathbb{R}^2 , let L be the line $y = mx, m \neq 0$
- (a) T is the reflection of \mathbb{R}^2 about L

$$\beta' = \{ \begin{pmatrix} 1 \\ m \end{pmatrix}, \begin{pmatrix} -m \\ 1 \end{pmatrix} \}$$
 : an ordered basis for R^2

Since
$$T(1, m)^t = (1, m)^t = 1(1, m)^t + 0(-m, 1)^t$$

$$T(-m,1)^t = (m,-1)^t = 0(1,m)^t + -1(-m,1)^t$$

$$\therefore [T]_{\beta'} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Let β be the standard ordered basis for R^2 and Q be the matrix that changes β' -coordinates into β -coordinates

Then
$$Q = [I_V]_{\beta'}^{\beta} = \begin{pmatrix} 1 & -m \\ m & 1 \end{pmatrix}$$
 and $Q^{-1}[T]_{\beta}Q = [T]_{\beta'}$

$$\therefore [T]_{\beta} = Q[T]_{\beta'}Q^{-1} = \begin{pmatrix} 1 & -m \\ m & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & m \\ -m & 1 \end{pmatrix} 1/(1+m^2)$$

$$= 1/(1+m^2) \begin{pmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{pmatrix}$$

$$\therefore T \begin{pmatrix} x \\ y \end{pmatrix} = 1/(1+m^2) \begin{pmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 1/(1+m^2) \begin{pmatrix} (1-m^2)x + 2my \\ 2mx + (m^2-1)y \end{pmatrix}$$

$$(cf) \tan \theta = m \Rightarrow T = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

(b) T is the projection on L along the line perpendicular to L

(b) I is the projection on L along the line perpendicular to E
$$\beta' = \left\{ \begin{pmatrix} 1 \\ m \end{pmatrix}, \begin{pmatrix} -m \\ 1 \end{pmatrix} \right\}$$
Since $T(1,m)^t = (1,m)^t = 1(1,m)^t) + 0(-m,1)^t$

$$T(-m,1)^t = (0,0)^t = 0(1,m)^t) + 0(-m,1)^t$$

$$\therefore [T]_{\beta'} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$[T]_{\beta} = Q[T]_{\beta'}Q^{-1} = \begin{pmatrix} 1 & -m \\ m & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & m \\ -m & 1 \end{pmatrix} 1/(1+m^2) = 1/(1+m^2) \begin{pmatrix} 1 & m \\ m & m^2 \end{pmatrix}$$

$$\therefore T\begin{pmatrix} x \\ y \end{pmatrix} = 1/(1+m^2) \begin{pmatrix} x+my \\ mx+m^2y \end{pmatrix}$$

$$(cf) \tan \theta = m \Rightarrow T = \begin{pmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix}$$

8. Let V and W be finite-dimensional vector spaces,

 $T:V\to W$ be linear

 β , β' be ordered bases for V and γ , γ' be ordered bases for W

Then
$$[T]_{\beta'}^{\gamma'} = P^{-1}[T]_{\beta}^{\gamma}Q$$

$$(::) \ [T]_{\beta'}^{\gamma'} = [I_W \cdot T \cdot I_V]_{\beta'}^{\gamma'} = [I_W]_{\gamma}^{\gamma'} [T]_{\beta}^{\gamma} [I_V]_{\beta'}^{\beta} = P^{-1} [T]_{\beta}^{\gamma} Q,$$

where
$$P = [I_W]_{\gamma'}^{\gamma}$$
, $Q = [I_V]_{\beta'}^{\beta}$

- 9. (i) $\forall A \in M_{n \times n}(F), A$ is similar to A
- $(::)\exists I \text{ s.t } A = I^{-1}AI$
- (ii) If A is similar to B, then $\exists Q$ s.t $A = Q^{-1}BQ$

$$\therefore B = QAQ^{-1} = (Q^{-1})^{-1}A(Q^{-1})$$

- ∴ B is similar to A
- (iii) If A is similar to B and B is similar to C

then
$$\exists Q, P \text{ s.t } A = Q^{-1}BQ, B = P^{-1}CP : A = Q^{-1}BQ = Q^{-1}(P^{-1}CP)Q = (PC)^{-1}C(PQ)$$

- ∴ A is similar to C
- \therefore "is similar to" is an equivalence relation on $M_{n\times n}(F)$
- 10. Since A is similar to B, $A = Q^{-1}BQ$,

$$tr(A) = tr(QQ^{-1}B) = tr(B)$$

11.

(a) Let
$$Q = [I_V]^{\beta}_{\alpha}$$
, $R = [I_V]^{\gamma}_{\beta}$

Then
$$RQ = [I_V]^{\gamma}_{\beta} [I_V]^{\beta}_{\alpha} = [I_V]^{\gamma}_{\alpha}$$

(b)
$$Q^{-1} = ([I_V]^{\beta}_{\alpha})^{-1} = [I_V^{-1}]^{\alpha}_{\beta} = [I_V]^{\alpha}_{\beta}$$

 $\therefore Q^{-1}$ changes β' —coordinates into β —coordinates

12.

 β : the standard ordered basis for F^n

$$[L_A]_{\gamma} = [I_{F^n}]_{\beta}^{\gamma} [L_A]_{\beta}^{\beta} [I_{F^n}]_{\gamma}^{\beta}$$

Let $[I_{F^n}]_{\gamma}^{\beta} = Q$, then $[L_A]_{\gamma} = Q^{-1}AQ$

13.
$$x'_{j} = \sum_{i=1}^{n} Q_{ij} x_{i}, j = 1, \dots, n$$
(1)

By the theorem 2.6(p.72), there is a unique linear operator $T: V \to V$ s.t.

$$T(x_j) = x'_j$$
 for all $j = 1, 2, \dots, n$

Clearly
$$[T]^{\beta}_{\beta'} = Q$$

Since Q is invertible, T is an isomorphism by the theorem 2.8

So
$$\beta' = T(\beta)$$
 is a basis for V

(2)

Since
$$x'_j = \sum_{i=1}^n Q_{ij} x_i (1 \leq j \leq n)$$
, $[x'_j]_{\beta}$ is the j-th column of Q
 $\therefore Q = [I_V]_{\beta'}^{\beta}$ changes β' -coordinates into β -coordinates

14.

If $A, B \in M_{m \times n}(F)$ and $P \in M_{m \times m}(F), Q \in M_{n \times n}(F)$ are invertible and $B = P^{-1}AQ$,

then \exists an n-dimensional vector space V and an m-dimensional vector space W (both over F), ordered bases β and β' for V and γ and γ' for W, and a linear transformation $T: V \to W$ s.t $A = [T]_{\beta}^{\gamma}, B = [T]_{\beta'}^{\gamma'}$

(...)

Let
$$V = F^n, W = F^m, T = L_A$$

 $\beta = \{x_1, x_2, \dots, x_n\}, \gamma = \{y_1, y_2, \dots, y_m\}$: the standard ordered bases for F^n and F^m , respectively

Define
$$x'_j = \sum Q_{ij}e_j$$
 for $1 \le j \le n$

then the set $\beta' = \{x'_1, \cdots, x'_n\}$ is a basis for V

and
$$Q = [I_{F^n}]_{\beta'}^{\beta}$$

Define
$$w'_j = \sum P_{ij}e_i$$
 for $1 \le j \le m$

then the set $\gamma' = \{w'_1, \cdots, w'_m\}$ is a basis for W

and
$$P = [I_{F^m}]_{\gamma'}^{\gamma}$$

Now
$$[T]^{\gamma}_{\beta} = [L_A]^{\gamma}_{\beta} = A$$
 and

$$[T]_{\beta'}^{\gamma'} = [I_{F^m}]_{\gamma}^{\gamma'} [T]_{\beta}^{\gamma} [I_{F^n}]_{\beta'}^{\beta} = P^{-1}AQ = B$$

2.6. Dual Spaces

1.

(a) F

(linear transformation from V into its field of scalars F is called a linear functional)

(b) T

$$(f: F \to F, [f] \in Mat_{1 \times 1}(F))$$

(c) T

$$dimV^* = \dim(\mathcal{L}(V, F)) = \dim V \dim F = \dim V$$

$$\therefore V \simeq V^*$$

(d) T

For a vector space V, we can define the dual space of V i.e. $(\mathcal{L}(V,F)) = V^*$ Then V is the dual space of V^* $((V^*)^* = V)$

... Every vector space is the dual of some vector space

(e) (example)
$$V = \mathbb{R}^2, F = \mathbb{R}$$

$$\beta = \{e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$$
:

So $V^* = \mathcal{L}(V, \mathbb{R}) : 1 \times 2$ matrices

and
$$e_1^* = (1,0), e_2^* = (0,1)$$
 i.e. $\beta^* = \{e_1^* = (1,0), e_2^* = (0,1)\}$ Now if we define $T: V \to V^*$ by $T(e_1) = (1,1), T(e_2) = (1,-1)$

Since $\{T(e_1), T(e_2)\} = T(\beta)$ a basis of V^* , then clearly T is an isomorphism

But
$$T(\beta) = \{T(e_1) = (1, 1) \neq e_1^*, T(e_2) = (1, -1) \neq e_2^*\} \neq \beta^*$$

(example 2)

$$V=\mathbb{R},\ F=\mathbb{R},\ f:V\to F\ \ i.e.V^*=F\ \text{and}\ \beta^*=\{1^*\}\ (\because\ \beta=\{1\})$$

But $T: R \to R$ is an isomorphism

$$a \mapsto 2a \ T(\beta) = \{T(1)\} = \{2id\} \neq \beta^* = \{id\}$$

(f) T

$$T: V \to W, T^t: W^* \to V^*$$
 by $T^t(g) = gT$

$$(T^t)^t: (V^*)^* \to (W^*)^*$$

(g) T

 $V \simeq W \Leftrightarrow T: V \to W$: an isomorphism $\Leftrightarrow \exists [T]^{\gamma}_{\beta}$: invertible \Leftrightarrow

$$([T]^\gamma_\beta)^t = ([T^t]^{\gamma^*}_{\beta^*}): \text{ invertible} \Leftrightarrow T^t: W^* \to V^*: \text{ an isomorphism} \Leftrightarrow V^* \simeq W^*$$

(h) F

$$f: D_n(\mathbb{R}) \to \mathbb{R}$$
 by $f(g(x)) = g'(x), \forall g(x) = D_n(\mathbb{R})$

but in case
$$g(x) = x^2$$
, $f(g(x)) = g'(x) = 2x$ is not in \mathbb{R}

.: It's not a linear functional

2.

(a)
$$p(x), g(x) \in P(R), \alpha \in R$$

$$f(\alpha p(x) + g(x)) = 2(\alpha p'(0) + g'(0) + \alpha p''(1) + g''(1)) = 2\alpha p'(0) + \alpha p''(0) + 2g'(0) + g''(1) = \alpha f(p(x)) + f(g(x))$$

 $\therefore f$ is a linear functional

(b)
$$(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2, \alpha \in \mathbb{R}$$

$$f(\alpha(x_1, y_1) + (x_2, y_2)) = f(\alpha x_1 + x_2, \alpha y_1 + y_2) = 2(\alpha x_1 + x_2) + 4(\alpha y_1 + y_2) =$$

$$\alpha(2x_1 + 4y_1) + (2x_2 + 4y_2) = \alpha f(x_1, y_1) + f(x_2, y_2)$$
(c) $A, B \in M_{2\times 2}(F), \alpha \in F$

$$f(\alpha A + B) = tr(\alpha A + B) = tr(\alpha A) + tr(B) = \alpha tr(A) + tr(B) = \alpha f(A) + f(B)$$
(d)
$$f((x_1, y_1, z_1) + (x_2, y_2, z_2)) = f(x_1 + x_2, y_1 + y_2 + z_1 + z_2) = (x_1 + x_2)^2 + (y_1 + y_2)^2 + (z_1 + z_2)^2 \neq (x_1^2 + y_1^2 + z_1^2)^2 + (x_2^2 + y_2^2 + z_2^2)^2 = f(x_1, y_1, z_1) + f(x_2, y_2, z_2)$$

$$\therefore f \text{ is not a linear functional}$$
(e)
$$f(\alpha A + B) = \alpha A_{11} + B_{11} = \alpha f(A) + f(B)$$

 $\therefore f$ is a linear functional

3.

(a)
$$\beta = \{v_1 = (1, 0, 1), v_2 = (1, 2, 1), v_3 = (0, 0, 1)\}$$

since $f_i(v_j) = \delta_{ij}$
 $1 = f_1(v_1) = f_1(e_1 + e_2) = f_1(e_1) + f_1(e_3)$
 $0 = f_1(v_2) = f_1(e_1 + 2e_2 + e_3) = f_1(e_1) + 2f_1(e_2) + f_1(e_3)$
 $0 = f_1(v_3) = f_1(e_3)$
 $\therefore f_1(e_3) = 0, f_1(e_1) = 1, f_1(e_2) = -1/2$
 $\therefore f_1(x, y, z) = xf_1(e_1) + yf_1(e_2) + zf_1(e_3) = x - 1/2y$
 $0 = f_2(v_1) = f_2(e_1) + f_2(e_3)$
 $1 = f_2(v_2) = f_2(e_1 + 2f_2(e_2) + f_2(e_3)$
 $0 = f_2(v_3) = f_2(e_3)$

$$f_2(e_2) = f_2(e_3) = 0, f_2(e_1) = 0$$

$$f_2(x, y, z) = 1/2y$$

$$0 = f_3(v_1) = f_3(e_1) + f_3(e_3)$$

$$0 = f_3(v_2) = f_3(e_1 + 2f_3(e_2) + f_3(e_3)$$

$$1 = f_3(v_3) = f_3(e_3)$$

$$f_3(e_1) = -1, f_3(e_2) = 0, f_3(e_3) = 1$$

$$\therefore f_3(x,y,z) = -x + z$$

(b)
$$\beta = \{1, x, x^2\}$$

$$f_1(a + bx + cx^2) = af_1(e_1) + bf_1(e_2) + cf_1(e_3) = a$$

$$f_2(a + bx + cx^2) = af_2(e_1) + bf_2(e_2) + cf_2(e_3) = b$$

$$f_3(a + bx + cx^2) = af_3(e_1) + bf_3(e_2) + cf_3(e_3) = c$$

4. $\{f_1, f_2, f_3\}$ is linearly independent

$$(af_1 + bf_2 + cf_3)(x, y, z) = 0(x, y, z)$$

$$af_1(x, y, z) + bf_2(x, y, z) + cf_3(x, y, z)$$

$$= a(x - 2y) + b(x + y + z) + c(y - 3z)$$

$$= (a+b)x + (-2a+b+c)y + (b-3c)z = 0, \ \forall (x,y,z) \in V$$

$$\therefore a = b = c = 0$$

 \therefore $\{f_1, f_2, f_3\}$ is linearly independent in V^*

5.

(i) If
$$V_{col} \rightarrow V_{row}^*$$

$$V_{row} \to V_{col}^*$$

$$(a \ b) \begin{pmatrix} c \\ d \end{pmatrix} = 1 \times 1(scalar)$$

$$V = P_1(\mathbb{R}) = \{a + bx \text{ or } \begin{pmatrix} a \\ b \end{pmatrix} \}$$

$$(\because \text{ In } P_1(\mathbb{R}), 1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, 1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \therefore a + bx \Rightarrow \begin{pmatrix} a \\ b \end{pmatrix})$$

$$f_1(a + bx) = (1, \frac{1}{2}) \begin{pmatrix} a \\ b \end{pmatrix} = a + \frac{1}{2}b$$

$$f_2(a + bx) = (2, 2) \begin{pmatrix} a \\ b \end{pmatrix} = 2a + 2b$$

$$\therefore af_1 + bf_2 = a(1, \frac{1}{2}) + b(2, 2) = (a + 2b, \frac{1}{2}a + 2b) = 0 = (0, 0)$$

$$\therefore a = b = 0$$

7.

(a)
$$T^{t}(f) = g$$
, where $g(a + bx) = -3a - 4b$
(b) $[T^{t}]_{\gamma^{*}}^{\beta^{*}} = \begin{pmatrix} -1 & 1 \\ -2 & 1 \end{pmatrix}$
(c) $[T]_{\beta}^{\gamma} = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$

8.

Now let π a plane in \mathbb{R}^3 through the origin

Then
$$\exists \ 0 \neq (a,b,c) \in \mathbb{R}^3 \ \Rightarrow \ \pi = \{(x,y,z) \mid ax+by+cz=0\}$$

Define $f: \mathbb{R}^3 \to \mathbb{R}$ by $(x,y,z) \mapsto ax+by+cz$: linear functional

Then $f \in V^*$ and $kerf = \pi$

$$\beta = \{x_1, x_2, \cdots, x_n\}$$

 $\gamma = \{y_1, y_2, \cdots, y_n\}$: standard bases of F^n and F^m

10.
$$\{p_0 = 1, p_1 = (x - c_1), \dots, p_n = (x - c_1)(x - c_2) \dots (x - c_n)\}\$$

(a) Define
$$f_i(p(x)) = p(c_i)$$

Suppose that $\sum_{i=0}^{n} \alpha_i f_i = 0$

then
$$\sum_{i=0}^{n} \alpha_i f_i(p_j(x)) = \sum_{i=0}^{n} \alpha_i(p_j(c_i)) = \alpha_i = 0$$

$$\therefore \alpha_i = 0, \ \forall i = 0, 1, \cdots, n$$

 $\therefore \{f_0, f_1, \cdots, f_n\}$: linearly independent

Since $dimV = dimV^* = n + 1$,

$$\{f_0, f_1, \cdots, f_n\}$$
: a basis for V^*

(b) (i) By the corollary of theorem 2.26 and (a),

$$\widehat{x}_i(f_j) = f_j(x_i) = \delta_{ij}$$

then,
$$f_j(p_i(x)) = p_i(c_j) = \delta_{ij}$$

(ii) Consider
$$\exists q_i \text{ s.t } f_j(q_i(x)) = q_i(c_j) = \delta_{ij}, \ \forall i = 0, 1, \dots, n,$$

Let
$$R_i(x) = p_i(x) - q_i(x)$$
, then $R_i(c_j) = p_i(c_j) - q_i(c_j) = \delta_{ij} - \delta_{ij} = 0$, $\forall j = 0$

$$0, 1, \cdots, n$$

$$\therefore R_i(x) = 0$$

(:) $dim R_i \leq n$ and $R_i(x)$ has n+1 roots

$$\therefore q_i = p_i$$

(c) Assume that
$$\exists h(x) \in P_n(x)$$
 s.t. $h(c_i) = a_i, \forall i$

Since
$$\{P_0(x), P_1(x), \cdots, P_n(x)\}$$
 a basis for $P_n(x)$

$$\therefore h(x) = \sum_{i=0}^{n} b_i P_i(x), \ (\forall b_i \in F)$$

$$a_j = h(c_j) = \sum_{i=0}^n b_i P_i(c_j) = b_j, \ \forall j$$

$$\therefore h(x) = \sum_{j=0}^{n} b_j P_j(x) = \sum_{j=0}^{n} a_i P_j(x) = q(x)$$

(d) Let c_0, \dots, c_n be distinct scalars in F

The polynomials $p_0(x), \dots, p_n(x)$ defined by

$$p_i(x) = \prod_{\substack{k=0\\k \neq i}} \frac{x - c_k}{c_i - c_k} \in P_n(F)$$
 (1)

Since $p_i(c_j) = \delta_{ij}$ and $\{p_0, \dots, p_n\}$ is linearly independent

$$\{p_0, \cdots, p_n\}$$
: a basis for $P_n(F)$

$$p(x) = \sum_{i=0}^{n} aip_i(x), (a_i \in F)$$

$$p(c_j) = a_j, \ \forall j$$

$$p(x) = \sum_{i=0}^{n} aip_i(x) = p(x) = \sum_{i=0}^{n} p(c_i)p_i(x)$$

(e)
$$\int_a^b p(t)dt = \sum_{i=0}^n p(c_i)d_i$$
, $d_i = \int_a^b p_i(t)dt$

$$(\cdot \cdot)p(t) = p(c_0)p_0(t) + \dots + p(c_n)p_n(t)$$

$$\int_{a}^{b} p(t)dt = \int_{a}^{b} (p(c_0)p_0(t) + \dots + p(c_n)p_n(t))dt$$

$$= p(c_0) \int_a^b p_0(t)dt + \cdots + p(c_n) \int_a^b p_n(t)dt$$

$$= p(c_0)d_0 + \cdots + p(c_n)d_n$$

$$= \sum_{i=0}^{n} p(c_i) d_i$$

Trapezoidal rule -
$$\int_a^b p(t)dt \approx (b-a)\frac{f(b)+f(a)}{2}$$

Simpson's rule - $\int_a^b f(t)dt \approx \frac{(b-a)}{6}(f(a)+4f(\frac{a+b}{2})+f(b))$

11.

For
$$\forall x \in V, \ x \mapsto \psi_2 T(x) = \widehat{T(x)}$$

$$x \mapsto T^{tt}\psi_1(x) = T^{tt}(\widehat{x}) = \widehat{x}T^t$$

To show commuting, $\widehat{T(x)} = \widehat{x}T^t$ in $W^{**}: W^* \to F$

 $\forall g \in W^*, \ i.e. \ g: W \to F$ a linear functional

Show
$$(\widehat{x}T^t)(g) = \widehat{T(x)}(g)$$

$$\widehat{T(x)}(g) = g(T(x)) = (gT)(x) = widehatx(gT) = \widehat{x}(T^tg) = \widehat{x}T^t(g)$$

$$\therefore \ \psi_2 T = T^{tt} \psi_1$$

12.
$$\psi(\beta) = \beta^{**}$$

$$\beta = \{x_1, x_2, \cdots, x_n\}$$
 a basis for V

$$\Rightarrow \ \beta^* = \{x_1^*, x_2^*, \cdots, x_n^*\} \text{ a basis for } V^*$$

, where $x_i^*:V\to F$ a linear functional s.t. $f_i(x_j)=\delta_{ij}$

Since V^{**} is the dual space of V^*

$$\exists \ \beta^{**} = \{x_1^{**}, x_2^{**}, \cdots, x_n^{**}\} \ \text{a basis for } V^{**}$$

s.t.
$$x_i^{**}: V^* \to F^*$$
 linear functional s.t. $x_i^{**}(x_j^*) = \delta_{ij}$

Show
$$x_i^{**} = \widehat{x_i}, \ \forall i, \ \psi(\beta) = \{x_1, x_2, \cdots, x_n\}$$

$$\widehat{x}(x_i^*) = \delta_{ij} = x_i^{**}(x_j^*), \ \forall i, j$$

$$i.e.\widehat{x}_i = x_i^{**}$$
 on a basis β^{**}

$$\Rightarrow \widehat{x}_i = x_i^{**}, \ \forall i$$

$$\psi(\beta) = \beta^{**}$$

13.
$$S^0 = \{ f \in V^* | f(x) = 0, \forall x \in S \}, S \subseteq V$$

(a) S^0 is a subspace of V^*

(i)
$$0(x) = 0, \forall x \in S$$
 $\therefore 0 \in S0$

(ii)
$$\forall f, g \in S^0, \alpha \in F \Rightarrow \alpha f + g \in S^0$$

$$(\alpha f + g)(x) = \alpha f(x) + g(x) = \alpha 0 + 0 = 0, \forall x \in S$$

$$\therefore \alpha f + g \in S^0$$

(b)

Let $\{x_1, x_2, \cdots, x_m\}$ be a basis of W

If x is not in W, then $\{x_1, x_2, \dots, x_m, x\} = \{x_1, x_2, \dots, x_m\} \cup \{x\}$ is linearly independent

$$\exists \beta = \{x_1, x_2, \cdots, x_m, x = x_{m+1}, \cdots, x_n\} \text{ a basis of } V$$

$$\Rightarrow \beta^* = \{f_1, f_2, \dots, f_m, f_{m+1}, \dots, f_n\}$$
 a basis of V^*

$$f_{m+1}(W) = 0$$
 and $f_{m+1}(x) = f_{m+1}(x_{m+1}) = 1$

$$f_{m+1} \in W^0, \ f_{m+1}(x) \neq 0$$

(c)
$$(S^0)^0 = \operatorname{span}\psi(S)$$

 (\Leftarrow) If $\widehat{v} \in \operatorname{span}\psi(S)$, then $\exists x_1, x_2, \cdots, x_n \in S$, s.t. $\widehat{v} = a_1\widehat{x_1} + a_2\widehat{x_2} + \cdots + a_n\widehat{x_n}$ for some $a_1, a_2, \cdots, a_n \in F$

Now
$$\forall f \in S^0$$

$$\widehat{v}(f) = (\sum_{i=1}^n a_i \widehat{x_i})(f) = \sum_{i=1}^n a_i \widehat{x_i}(f) = a_i f(x_i) = \sum_{i=1}^n a_i 0 = 0$$
So $\widehat{v} \in (S^0)^0$

$$\therefore span\psi(S) \subseteq (S^0)^0$$
(\$\Rightarrow\$)
(Step 1)
First note that for \$\Veeta\$ subset \$S\$ of \$V\$
$$S^0 = (spanS)^0$$
\$\Gamma\$ For convenience, let $spanS = W$, then clearly $S \subseteq W$, so $W^0 \subseteq S^0$
Now let $f \in S^0$ and $x \in W$; then
$$x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n \text{ for some } x_i \in S, \ a_i \in F$$
\$\Rightarrow f(x) = a_1 f(x_1) + a_2 f(x_2) + \dots + a_n f(x_n) = 0\$
\$\therefore\tau f \in W^0\$
\$\therefore\tau S^0 \subseteq W^0\$
\$\theref

$$\widehat{v}(f) = f(v) = 0 \text{ for all } f \in W^0$$

$$\Rightarrow \widehat{v} \in (W^0)^0$$
This implies that $\psi(W) \subseteq (W^0)^0$
(Step 3)
$$\text{Clearly } \psi(W) = span\psi(S), \text{ where } W = span(S)$$

$$(\because) \text{ If } v \in W$$

$$v = a_1x_1 + a_2x_2 + \dots + a_nx_n \ (\forall a_i \in F, \ x_i \in S)$$

$$\text{then } \psi(v) = \widehat{v} = a_1\widehat{x}_1 + a_2\widehat{x}_2 + \dots + a_n\widehat{x}_n = \sum_{i=1}^n A_i\psi_i(x_i) \in span(\psi(S))$$

$$\therefore \widehat{v} \in \psi(S)$$

$$\widehat{v} \in span(\psi(S))$$
Now $\psi(S) \subseteq \psi(W) \text{ and } \psi(W) \text{ is a subspace of } W^{**}$

$$span(\psi(S)) \subseteq span(\psi(W)) = \psi(W)$$

$$\therefore \psi(W) = span(\psi(S))$$
Finally $(S^0)^0 = (W^0)^0 = \psi(W) = span(\psi(S))$
(d) $W_1 = W_2 \Leftrightarrow W_1^0 = W_2^0$
(\Rightarrow) clear
$$(\Leftarrow) \text{ If } W_1 \neq W_2, \text{ then } x \in W_2, x \text{ is not in } W_1$$
by (b), $\exists f \in W_1^0, f(x) \neq 0$
i.e. f is not in W_2^0

$$\therefore W_1^0 \neq W_2^0$$
(e)

 (\Rightarrow)

$$(W_1 + W_2)^0 \subseteq W_1^0, (W_1 + W_2)^0 \subseteq W_2^0$$

$$(W_1 + W_2)^0 \subseteq W_1^0 \cap W_2^0$$

 (\Leftarrow) clear

14.

Let $\mathrm{dim}W=k$ and $\{x_1,\cdots,x_k\}$: a basis for W

Extend it to $\{x_1, \cdots, x_k, x_{k+1}, \cdots, x_n\}$: a basis for V

Let $\{f_1, \dots, f_n\}$ be the basis for V^*

We are going to show that $\{f_{k+1}, \dots, f_n\}$ is a basis for W^0

If $f \in W^0$ we have $f(x_i) = 0$, $i \le k$

$$\therefore f = \sum_{i=k+1}^{n} f(x_i) f_i$$

$$\therefore \{f_{k+1}, \dots, f_n\} \text{ spans } W^0$$

 \therefore Since dimW = k and dimV = n, then dim $W^0 = n - k$

15.

 (\Rightarrow) Suppose that $\phi \in N(T^t)$

i.e.
$$T^{t}(\phi) = \phi T = 0$$

If $u \in R(T)$, then u = T(v) for some $v \in V$

hence
$$\phi(u) = \phi(T(v)) = (\phi T)(v) = 0(v) = 0, \ \forall u \in R(T)$$

$$\therefore \phi \in (R(T))^0$$

 (\Leftarrow)

If $\sigma \in (R(T))^0$, $\sigma(R(T)) = 0$

then,
$$\forall v \in V, (T^t(\sigma))(v) = (\sigma T)(v) = \sigma(T(v)) = 0$$

 $\therefore T^t(\sigma) = 0$
 $\therefore \sigma \in N(T^t)$

16.

$$rank(L_{A^t}) = rank(L_A)$$

Let dimV = n, dimW = m and rank(T) = r

by the exercise 14, $dim(R(T)) + dim(R(T))^{\circ} = dimW$

$$\therefore dim(R(T))^{\circ} = m - r$$

by the exercise 15 and the dimension theorem,

$$N(T^t) = (R(T))^{\circ}, \ dim(W^*) = nullity(T^t) + rank(T^t)$$

$$\therefore rank(T^t) = dim(W^*) - nullity(T^t) = m - (m - r) = rank(T) - - - - (*)$$

Since $rank(T) = rank(L_A)$ and $rank(T^t) = rank(L_{A^t}) - - - - (*)$

$$rank(L_{A^t}) = rank(L_A)$$

Q.
$$rank(T^t) = rank(L_{A^t})$$

(:) When $T = L_A : F^n \to F^m$ left multiplication

$$rank(L_A) = rank(T) = rank(T^t) = rank([T^t]_{\gamma^*}^{\beta^*})$$

$$= rank([T]^{\gamma}_{\beta})^t = rankA^t = rankL_{A^t}$$

17.

$$(\Rightarrow) \ \forall \in W^{\circ}$$

Since
$$T^t f = fT$$
 and $T(W) \subseteq W$,

$$fT(W) \subseteq f(W) = 0$$

$$T^t f \in W^{\circ}$$

$$T^t(W^\circ) \subseteq W^\circ$$

 $\therefore W^{\circ}$ is T^{t} -invariant

$$(\Leftarrow)$$
 If $T(W) \nsubseteq W$, $\exists w \in W$ s.t. $T(w) \in W$

by the exercise 13, $\exists f \in W^{\circ}$ s.t. $f(T(w)) \neq 0$

$$T^t f(w) = fT(w) \neq 0$$

$$i.e. \ \exists f \in W^{\circ} \ \text{s.t.} \ T^{t}f \notin W^{\circ}$$

 \therefore W is T-invariant

18.

$$\Phi: V^* \to \mathcal{L}(S, F)$$

(Actually
$$\mathcal{L}(S, F) \equiv \mathcal{L}(V, F)$$
)

- (i) Clearly $\mathcal{L}(S,F)$ is a vector space over F and
- (ii) Φ is a linear map

$$[f,g \in \mathcal{L}(S,F),$$

$$\Phi(f+g) = (f+g)\mid_s = f\mid_s + g\mid_s = \Phi(f) + \Phi(g)$$

$$\Phi(\alpha f) = \alpha f \mid_{s} = \alpha f_{s} = \alpha \Phi(f) \rfloor$$

(iii)
$$\forall f \in ker\Phi, \Phi(f) = f_s = 0$$

$$\therefore \ f \in S^\circ = (spanS)^\circ = V^\circ = \{0\}$$

$$\therefore ker\Phi = \{0\}$$

 \therefore Φ is one-to-one

(iv) By the exercise 34 in section 2.1

$$(\forall f_s: S \to F, \exists ! f: V \to F \text{ a linear map s.t. } f(x) = f_s(x), \forall x \in S)$$

$$\forall f_s \in \mathcal{L}(S, F), \exists! f \in V^* \text{ s.t. } \Phi(f) = f_s$$

 \therefore Φ is onto

19.

(i) Choose $y \in V, y \notin W$ and let γ : a basis of W

then $\gamma \cup \{y\}$: linearly independent

by (section 1.7 or) Maximal principle,

 $\exists \beta$: a basis of V s.t. $\gamma \cup \{y\} \subseteq \beta$

Define a function : $g: \beta \to F$ s.t. $g(x) = 0 \ \forall x \in \beta, \ x \neq y$

$$g(y) = 1$$

then by the exercise 18, $\exists f \in \mathcal{L}(V, F) = V^*$ s.t. $f \mid_{\beta} = g(\because \gamma \subseteq \beta)$

i.e. f is the function we desired.

20.

- (a) $T: V \to W$: linear map $\Rightarrow T^t: W^* \to V^*$ given by $T^t(g) = gT, \ \forall g \in W^*$
- (\Rightarrow) Suppose that T is onto

Let
$$g \in KerT^t \Rightarrow T^t(g) = 0 \Rightarrow gT = 0$$
 in V^*

i.e.
$$gT(v) = (gT)(v) = 0, \ \forall v \in V$$

Since T is onto, g(w) = gT(v) = 0

i.e.
$$g(w) = 0$$
 (: $g \in KerT^t$), $\forall w \in W$

$$g = 0$$
 in V^*

 T^t is one-to-one

 (\Leftarrow) Suppose that T^t is one-to-one

Let
$$W_1 = R(T)$$
: the range of T

If
$$W_1 \neq W \implies$$
 by the exercise 19, $\exists 0 \neq g \in W^*, g(W_1) = 0$ (i.e. $g \in W^{\circ}1$)

$$\Rightarrow$$
 $(gT)(V) = g(T(V)) = g(W_1) = 0$

$$\Rightarrow \ (T^t)g(V)=0 \Rightarrow \ T^tg=0 \ \text{in} \ W^*$$

$$g \in KerT^t$$

Since T^t is one-to-one, g = 0

$$W_1 = W$$

T is onto

(b)

 (\Leftarrow) Suppose that T is one-to-one

Let
$$f \in V^*$$

Suppose that T is one-to-one

$$W = W_1 \oplus W_2$$
, where $W_1, W_2 \leq W$ and $W_1 = R(T) \cong V$

So the map $U: W_1 \oplus W_2 \to V$, $U(w_1 \oplus w_2) = v$, where $w_1 = T(v)$ is a well-defined linear map

$$T(v) + w_2 \mapsto v$$

Let
$$g = fU$$
, then $\exists g \in W^*$ and $T^t(g) = gT = f$

$$\lceil (::) \ (gT)(v) = g(T(v)) = (fU)(T(v)) = f(U(T(v))) = f(v), \ \forall v \in V$$

$$\therefore gT = f$$

$$i.e. T^t g = f \rfloor$$

 T^t is onto

 (\Rightarrow) Suppose that $T^t:W^*\to V^*$ onto

show T is one-to-one

Assume on the contrary T is not one-to-one

$$\Rightarrow \exists 0 \neq v \in V \text{ s.t. } T(v) = 0$$

$$\exists~f\in V^*~\text{s.t.}~f(v)=1~\text{(by the exercise 18)}$$

Now since T^t is onto

$$\exists g \in W^* \text{ s.t. } f = T^t(g) = gT$$

$$\Rightarrow 1 = f(v) = (gT)(v) = g(T(v)) = g(0) = 0$$

 \therefore T must be one-to-one

2.7. Homogeneous Linear Differential Equations with Constant Coefficients

1.

- (a) T (p.137 corollary to Theorem 2.32)
- (b) T (p.132 Theorem 2.28)
- (c) F
- (d) F (Any solution is a linear combination of e^{at} and $t^k e^{at}$)
- (e) T
- (:) If x and y are solutions of p(D) = 0,

then
$$p(D)(\alpha x + \beta y) = \alpha p(D)x + \beta p(D)y = 0 + 0 = 0, \alpha, \beta \in F$$

 $\therefore \alpha x + \beta y$ is a solution of p(D) = 0

- (f) F
- (:) It's different with the multiplicity of c_i (p.137 and 139, Theorem 2.33 and 2.34) (g) T (p.131)

2.

(a) F

Let
$$S = \{\frac{a}{1+t^2} \mid a \in R\} \implies S$$
: 1-dimensional subspace of \mathcal{C}^{∞}

But there is no homogeneous linear differential equation with constant coefficients

(b) F

Let $\{t, t^2\}$ is the solution of y'' + ay' + by = 0

$$0 + a + bt = 0 \implies a = b = 0$$

then
$$y'' + ay' + by = 0$$
 becomes $y'' = 0$
 $(t^2)'' = 2 = 0$

(cf)
$$y''' = 0 \implies D^3 = 0 \implies t = 0$$

 $e^{0t}, te^{0t}, t^2 e^{0t} i.e.1, t, t^2$
 $\exists y''' = 0$

(c) T

Let x is a solution to the homogeneous linear differential equation with constant coefficients P(D)y = 0

Since
$$P(D)x = 0$$
, $P(D)x' = P(D)(Dx) = P(D)Dx = DP(D)x = D(0) = 0$

 \therefore x' is also a solution to the equation

(d)T

Let
$$p(D)x = 0$$
 and $q(D)y = 0$

$$p(D)q(D)(x + y) = p(D)q(D)x + p(D)q(D)y = q(D)(p(D)x) + p(D)(q(D)y) = q(D)(0) + p(D)(0) = 0 + 0 = 0$$

(e) F

Let
$$p(t) = t^2 + 2t + 1 = 0$$
 : $p(D) = D^2 + 2D + 1$

$$q(t) = t^3 - 1$$
 : $q(D) = D^3 - 1$

 $\{e^{-t}\}$: a basis for the solution space of p(D)

 $\{e^t\}$: a basis for the solution space of q(D)

$$p(D)q(D) = D^5 + 2D^4 + D^3 - D^2 - 2D - 1$$

$$p(D)q(D)y = y^{(5)} + 2y^{(4)} + y^{(3)} - y^{(2)} - 2y' - y$$

$$p(D)(e^{-t}) = 0, \ q(D)(e^{t}) = 0$$

But $p(D)q(D)(e^{-t}e^{t}) \neq 0$

(a) Given the differential equation is y'' + 2y' + y = 0 and its auxiliary polynomial is $p(t) = t^2 + 2t + 1 = (t+1)^2$

Hence, e^{-t} and te^{-t} are solutions to the differential equation because c=-1 is a zero of p(t)

 $\therefore \{e^{-t}, -te^{-t}\}\$ is a basis for the solution space

So any solution y is to the given differential equation is of the form

$$y(t) = b_1 e^{-t} + b_2 t e^{-t}$$
 for unique b_1 and b_2

(b)

Since y''' = y', the auxiliary polynomial is $t^3 - t = 0$

$$t = 0, -1, 1$$

$$\{1, e^{-t}, e^t\}$$

(c)
$$y^{(4)} - 2y^{(2)} + y = 0$$
,

the auxiliary polynomial is $t^4 - 2t^2 + 1 = (t^2 - 1)^2 = (t + 1)^2(t - 1)^2$

$$t = -1, 1$$

$$\therefore \{e^{-t}, te^{-t}, e^t, te^t\}$$

$$(d)=(a)$$

(e)

Since
$$y^{(3)} - y^{(2)} + 3y^{(1)} + 5y = 0$$
,

the auxiliary polynomial is $t^3 - t^2 + 3t + 5 = (t_1)(t^2 - 2t + 5)0$

$$t = -1, 1 + 2i, 1 - 2i$$

$$\therefore \{e^{-t}, e^t e^{2it}, e^t e^{-2it}\}$$

$$\therefore \{e^{-t}, e^t cos 2t, e^t sin 2t\}$$

4.

$$p(t) = t^2 - t - 1 = 0$$

$$t = \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$$

$$\therefore \{e^{\frac{(1+\sqrt{5})t}{2}}, e^{\frac{(1-\sqrt{5})t}{2}}\}$$

(b)

$$p(t) = t^3 - 3t^2 + 3t - 1 = (t - 1)^3 = 0$$

$$\therefore \{e^t, te^t, t^2e^t\}$$

(c)

$$p(t) = t^3 + 6t^2 + 8t = t(t^2 + 6t + 8) = 0$$

$$t = 0, -2, -4$$

$$\therefore \{1, e^{-2t}, e^{-4t}\}$$

5.

$$\forall f, g \in C^{\infty}, \alpha \in F,$$

$$(\alpha f + g)^{(n)} = \alpha f^{(n)} + g^{(n)} \in C^{\infty}, \ \forall n$$

 $\therefore C^{\infty}$ is a subspace of $\mathcal{F}(R,C)$

(a)

 $\forall f, g \in C^{\infty}, \alpha \in F$

$$D(\alpha f + g) = (\alpha f + g)' = \alpha f' + g' = \alpha D(f) + D(g)$$

 $\therefore D: C^{\infty} \to C^{\infty}$ is a linear operator

(b)

 $\forall f, g \in C^{\infty}, \alpha \in F$

Define
$$L = p(D) = a_n D^n + a_{n-1} D^{n-1} + \dots + a_1 D^1 + a_0 I$$

$$L(\alpha f + g) = a_n(\alpha f + g)^n + a_{n-1}(\alpha f + g)^{n-1} + \dots + a_0 I$$

$$= a_n(\alpha f^{(n)} + g^{(n)}) + a_{n-1}(\alpha f^{(n-1)} + g^{(n-1)}) + \dots + a_0 I$$

$$= \alpha(a_n f^{(n)} + a_{n-1} f^{(n-1)} + \dots + a_1 f' + a_0) + (a_n g^{(n)} + a_{n-1} g^{(n-1)} + \dots + a_1 g' + a_0)$$

$$= \alpha L(f) + L(g)$$

... Any differential operator is a linear operator on C^∞

(cf) If D: a linear operator,

then DD: a linear operator

:

 D^n : a linear operator

 $\therefore p(D = D^n + a_{n-1}D^{n-1} + cdots + a_1D + a_0I)$: a linear operator

We only need to show that $\{\frac{x+y}{2}, \frac{x-y}{2i}\}$ is linearly independent

If
$$\alpha \frac{(x+y)}{2} + \beta \frac{(x-y)}{2i} = 0$$
, $(\alpha, \beta \in F)$

then
$$\left(\frac{\alpha}{2} + \frac{\beta}{2i}\right)x + \left(\frac{\alpha}{2} - \frac{\beta}{2i}\right)y = 0$$

$$\Rightarrow \frac{\alpha}{2} + \frac{\beta}{2i} = 0, \ \frac{\alpha}{2} - \frac{\beta}{2i} = 0$$

$$\therefore \alpha = \beta = 0$$

$$\therefore \left\{ \frac{x+y}{2}, \frac{x-y}{2i} \right\}$$
 is a basis

8.

Let $t_1 = a + ib(a, b \in R, b \neq 0)$ is a zero of p(t)

then, $e^{(a+ib)t}$ is a solution of p(D)

Using exercise 7 in this chapter,

If
$$\{e^{(a+ib)t}, e^{(a-ib)t}\}$$
 is a basis, then so is $\{\frac{1}{2}(e^{(a+ib)t} + e^{(a-ib)t}), \frac{1}{2i}(e^{(a+ib)t} - e^{(a-ib)t})\}$

Since
$$\frac{1}{2}(e^{(a+ib)t} + e^{(a-ib)t}) = e^{at}cosbt, \frac{1}{2i}(e^{(a+ib)t} - e^{(a-ib)t}) = e^{at}sinbt$$

 $\therefore \{e^{at}cosbt, e^{at}sinbt\}$ is a basis

(cf) Let
$$p(t) = \alpha(t^2 - 2at + a^2 + b^2)$$
, $t_1 = a + ib$, $t_2 = a - ib$

then
$$p(D)y = y'' - 2ay' + (a^2 + b^2)y = 0$$
, $y_1 = e^{at}cosbt$, $y_2 = e^{at}sinbt$

check
$$p(D)y_1 = 0$$
, and $p(D)y_2 = 0$

$$u \in N(U_i) \Rightarrow U_i(u) = 0$$

So
$$U_1 \cdots U_n(u) = U_1 \cdots U_{i-1} U_{i+1} \cdots U_n U_i(u) = U_1 \cdots U_{i-1} U_{i+1} \cdots U_n(0) = 0$$

$$\therefore u \in N(U_1 \cdots U_n)$$

Suppose that $b_1e^{c_1t} + \cdots + b_ne^{c_nt} = 0$, c_i 's are distinct

Apply the mathematical induction on n,

If
$$n = 1$$
, then $b_1 e^{c_1 t} = 0$: $b_1 = 0$

Assume that this assertion is true for n-1

We are going to prove that this is also true for n

$$(D - c_n I)(b_1 e^{c_1 t} + \dots + b_n e^{c_n t}) = 0$$

$$\Rightarrow b_1 c_1 e^{c_1 t} + \dots + b_{n-1} c_{n-1} e^{c_{n-1} t} + b_n c_n e^{c_n t} - (b_1 c_n e^{c_1 t} + \dots + b_{n-1} c_n e^{c_{n-1} t} + b_n c_n e^{c_n t}) = 0$$

$$\Rightarrow b_1(c_1 - c_n)e^{c_1t} + b_2(c_2 - c_n)e^{c_2t} + \dots + b_{n-1}(c_{n-1} - c_n)e^{c_{n-1}t} = 0$$

By the induction hypothesis and $c_i - c_n \neq 0$,

$$\forall i=1,\cdots,n-1,b_i=0$$

$$\therefore \{e^{c_1t}, \cdots, e^{c_nt}\}$$
 is linearly independent

Since the solution space is n-dimensional, the given set is a basis for the solution space of the differential equation

Suppose that
$$\sum_{i=1}^{k} \sum_{j=0}^{n_i-1} c_{ij} t^j e^{c_i t} = 0$$

Let
$$P_i(t) = \sum_{j=0}^{n_i - 1} c_{ij} t^j$$

Then we have $P_1(t)e^{c_1t} + P_2(t)e^{c_2t} + \dots + P_k(t)e^{c_kt} = 0$

Assume that not all c_{ij} are zero, then $\exists P_i \neq 0$

Say, P_k

Divide the equation by e^{c_1t}

$$P_1(t) + P_2(t)e^{(c_2-c_1)t} + \dots + P_k(t)e^{(c_k-c_1)t} = 0 \dots (1)$$

Upon differentiating (1) sufficiently many times we can reduces $P_1(t)$ to 0

$$Q_2(t)e^{(c_2-c_1)t} + \dots + Q_k(t)e^{(c_k-c_1)t} = 0$$
, and deg Q_i =deg P_i

and Q_k does not vanish identically

Continuing this process, $R_k(t)e^{(c_k-c_1)t}=0$, and $\deg R_k=\deg P_k$

and R_k does not vanish identically

But
$$R_k(t)e^{(c_k-c_1)t}=0$$
 implies $R_k=0$

It's a contradiction to $P_k \neq 0$

$$\therefore P_k(t) = 0, \forall x \in I$$

 \therefore All c_{ij} 's are zero

12.

(i)
$$q(D)(V) \subseteq N(h(D))$$

(ii)
$$\dim N(h(D)) = \dim g(D)(V)$$

Suppose
$$degg(t) = k$$
, $deg(h(t)) = m$ $(n = k + m)$

Consider the linear map $g(D_V): V \to V$

By the dimension theorem,

$$\dim V = \dim R(g(D_V)) + \dim N(g(D_V))$$

$$= \dim R(g(D_V)) + \dim N(g(D)) \quad (\because N(g(D)) \subseteq V)$$

$$= \dim(g(D)(V)) + \dim N(g(D)) \quad (\because R(g(D_V)) = g(D)(V))$$

$$= \dim g(D)(V) + k$$

$$\therefore \dim g(D)(V) = n - k = m = \dim N(h(D))$$

13.

(a) Ontoness of
$$P(D): C^{\infty} \to C^{\infty}$$

Since \mathbb{C} is algebraically closed

$$P(D) = \alpha(D - c_1)(D - c_2) \cdots (D - c_n), \text{ where } \alpha \neq 0, c_1, \cdots, c_1 \in \mathbb{C}$$
Let $v \in C^{\infty}$: by lemma 1, $\exists u_1 \in C^{\infty}$ s.t. $(D - c_1)u_1 = v$
and $\exists u_2 \in C^{\infty} (D - c_2)u_2 = u_1 \cdots$ continuing this process,
we get $u_1, u_2, \cdots, u_n \in C^{\infty}$ s.t. $(D - c_i)u_i = u_{i-1} (2 \leq i \leq n)$
Put $u = \frac{1}{\alpha}u_n : P(D)u = \alpha(D - c_1)(D - c_2) \cdots (D - c_{n-1})(D - c_n)(u)$

$$= (D - c_1)(D - c_2) \cdots (D - c_{n-1})(D - c_n)u_n = v$$

14.

By induction on n, p(t): a polynomial of degree $n(\geq 1)$

A solution x(t) of p(D)y = 0 - - - (*)

We may assume w.l.o.g that p(t) monic

For n = 1, (*) becomes $y' - ay = 0 \implies x(t) = ce^{at}(c \in \mathbb{C})$

if
$$x(t_0) = 0 \Rightarrow ce^{at_0} = 0 \Rightarrow c = 0$$
 : $x(t) = 0$

Assume it is true for n - 1(n > 1) and degp(t) = n

This case p(t) = q(t)(t-c), q(t) of degree n-1, $c \in \mathbb{C}$

let
$$z = q(D)x$$

then by (*), we have (D - cz = (D - c)q(D))x = p(D)x = 0

 \therefore z is a solution to (D-c)y=0

By hypothesis,
$$x(t_0) = x'(t_0) = \cdots = x^{n-2}(t_0) = x^{n-1}(t_0) = 0$$
 for fixed $t_0 \in \mathbb{R}$
 $\Rightarrow \forall t \in \mathbb{R}, \ z(t) = x^{(n-1)}(t) + a_{n-1}x^{(n-2)}(t) + \cdots + a_1x'(t) + a_0x(t) \ \Rightarrow \ z(t_0) = 0$
 $\Rightarrow \ z(t_0) = 0 \ \Rightarrow \ z'(t_0) = 0 \ (\because \ z'(t_0) - cz(t_0) = 0, \ z'(t_0) = 0)$
 $\Rightarrow \ z(t) = 0, \ \forall t$

$$\Rightarrow q(D)x = z = 0$$

15.

$$\Phi: V \to \mathcal{C}^n, \Phi(x) = (x(t_0), x'(t_0), \cdots, x^{n-1}(t_0))^T, \forall x \in V$$

(a)

(i) Φ is linear

$$\Phi(x+y) = \begin{pmatrix} (x+y)(t_0) \\ (x+y)'(t_0) \\ \vdots \\ (x+y)^{n-1}(t_0) \end{pmatrix} = \begin{pmatrix} x(t_0) + y(t_0) \\ x'(t_0) + y'(t_0) \\ \vdots \\ x^{n-1}(t_0) + y^{n-1}(t_0) \end{pmatrix} = \Phi(x) + \Phi(y)$$

$$\Phi(\alpha x) = \begin{pmatrix} (\alpha x)(t_0) \\ (\alpha x)'(t_0) \\ \vdots \\ (\alpha x)^{n-1}(t_0) \end{pmatrix} = \alpha \begin{pmatrix} x(t_0) \\ x'(t_0) \\ \vdots \\ x^{n-1}(t_0) \end{pmatrix} = \alpha \Phi(x)$$

(ii)
$$\Phi(x) = 0 \Rightarrow x = \{0\}$$

If
$$x(t_0) = x'(t_0) = \dots = x^{n-1}(t_0) = 0$$
, then $x = 0$

Since $\dim_{\mathbb{C}} V = \dim_{\mathbb{C}} \mathbb{C}^n = n$, Φ is an isomorphism

(iii) Since
$$dim_{\mathcal{C}}^{V}=dim_{\mathcal{C}}^{\mathcal{C}^{n}}=n,\ \Phi$$
 is onto

(b)

Since Φ is an isomorphism,

Let
$$c = (c_0, c_1, \dots, c_{n-1}) \in \mathcal{C}^n$$
 s.t $x(t_0) = c_0$ and $x^k(t_0) = c_k$, $k = 1, \dots, n-1$
By (a), $\exists ! x \in V$

16.

(a)
$$\theta'' + \frac{g}{l}\theta = 0$$

$$t^2 + \frac{g}{l} = 0, \ t_1 = \sqrt{\frac{g}{l}}i, t_2 = -\sqrt{\frac{g}{l}}i$$

$$\therefore \theta = c_1 \cos \frac{g}{l}t + c_2 \sin \frac{g}{l}t$$

(b)
$$\theta(0) = \theta_0 > 0, \theta'(0) = 0$$

$$\theta(0) = c_1 = \theta_0$$

$$\theta'(0) = c_2 \sqrt{\frac{g}{l}} = 0$$

$$c_1 : c_2 = 0$$

$$\therefore \theta = \theta_0 \cos \sqrt{\frac{g}{l}} t$$

(c) The period of the system is
$$\frac{2\pi}{\sqrt{\frac{g}{l}}} = 2\pi\sqrt{\frac{g}{l}}$$

$$y'' + \frac{k}{m}y = 0$$

$$y(t) = c_1 \cos \sqrt{\frac{k}{m}} t + i c_2 \sin \sqrt{\frac{k}{m}} t$$

(a)
$$my'' + ry' + ky = 0, r > 0$$

Since the auxiliary polynomial is $p(t) = mt^2 + rt + k = 0$,

$$\therefore t_1 = \frac{-r + \sqrt{r^2 - 4km}}{2m}, \ t_2 = \frac{-r - \sqrt{r^2 - 4km}}{2m}$$

$$\therefore y(t) = c_1 e^{t_1 t} + c_2 e^{t_2 t}$$

(b)

$$y(0) = c_1 + c_2 = 0$$
 : $c_1 = -c_2$

$$y'(0) = c_1 t_1 + c_2 t_2 = v_0$$

$$c_2 = \frac{v_0}{t_2 - t_1}, c_1 = \frac{-v_0}{t_2 - t_1}$$

$$\therefore y(t) = \left(\frac{-v_0}{t_2 - t_1}\right) e^{t_1 t} + \left(\frac{v_0}{t_2 - t_1}\right) e^{t_2 t}, \ (t_2 - t_1 = \frac{\sqrt{r^2 - 4km}}{m})$$

(c)

$$y(t) = c_1 e^{t_1 t} + c_2 e^{t_2} t = e^{\frac{-r}{2m} t} \left(c_1 e^{\frac{\sqrt{r^2 - 4km}}{2m} t} + c_2 e^{-\frac{\sqrt{r^2 - 4km}}{2m} t} \right)$$

$$t \to \infty \Rightarrow e^{\frac{-r}{2m}t} \to 0$$

$$\therefore \lim_{t\to\infty} y(t) = 0$$

19.

 $:: \mathcal{C}$ is algebraically closed

(a) Theorem 2.27

If
$$n = 1$$
, then $x' + a_0 x = 0 \implies x' = -a_0 x$

Since x has a derivative x', x' must has a derivative $x'' = -a_0x'$

Assume that this assertion is true for an n-1th-order homogeneous linear differential equation with constant coefficients

Then
$$x^{(n)} = x^{(n-1)}x = -a_0x^{(n-2)}x = -a_0x^{(n-1)}$$

So $x^{(k)}$ exists for every positive integer k

(b)

$$y_1 = e^{c+t}, \ y_2 = e^c e^t \ (\text{for } \forall c \in \mathbb{R})$$

(i) Let
$$x = (e^{c+t} - e^c e^t) \implies x' = e^{c+t} - e^c e^t = x$$

So x is a solution to the equation y' - y = 0 with x(0) = 0

So by the exercise 14, $x(t) \equiv 0 \ \forall t$

$$\therefore e^{c+t} = e^c e^t$$
 putting $t = d \in \mathbb{R}$

$$e^{c+d} = e^c e^d$$

(ii)
$$e^c e^{-c} = e^0 = 1 = e^c \frac{1}{e^c}$$

$$e^{c}(e^{-c} - \frac{1}{e^{c}}) = 0 \implies e^{c} \neq 0$$

$$\therefore e^{-c} = \frac{1}{e^c}$$

Since \mathbb{C} is algebraically closed

(c) Theorem 2.28

Any homogeneous linear differential equation with constant coefficients can be rewritten as P(D)y = 0, where p(t) is the auxiliary polynomial associated with the equation.

Therefore the set of all solutions to a homogeneous linear differential equation with constant coefficients coincides with the null space of P(D), where p(t) is the auxiliary polynomial associated with the equation.

$$f(t) = e^{ct} = e^{a+ibt} = e^{at}(\cos bt + i\sin bt) = e^{at}\cos bt + ie^{at}\sin bt$$

$$f'(t) = ae^{at}\cos bt - be^{at}\sin bt + iae^{at}\sin bt + ibe^{at}\cos bt$$

$$= (a+ib)e^{at}\cos bt + i(a+ib)e^{at}\sin bt$$

$$= (a+ib)\{e^{at}(\cos bt + i\sin bt)\}$$

$$= ce^{ct}$$
(e)
$$(xy)' = (u_1u_2 + i(u_1v_2 + u_2v_1) - v_1v_2)'$$

$$= \{(u_1u_2 - v_1v_2) + i(u_1v_2 + u_2v_1)\}'$$

$$= (u'_1u_2 + u_1u'_2 - v'_1v_2 - v_1v'_2) + i(u'_1v_2 + u_1v'_2 + u'_2v_1 + u_2v'_1)$$

$$= \{u'_1u_2 + i(u'_1v_2 + u_2v'_1) - v'_1v_2\} + \{u_1u'_2 + i(u_1v'_2 + u'_2v_1) - v_1v'_2\}$$

$$= (u'_1 + iv'_1)(u_2 + iv_2) + (u_1 + iv_1)(u'_2 + iv'_2)$$

$$= x'y + xy'$$
(f)

Let
$$x = u + iv$$

$$x' = u' + iv' = 0$$

$$u' = 0, v' = 0$$

 $\therefore u, v \text{ is a constant function}$

 $\therefore x = u + iv$ is a constant function

§3. Elementary Matrix Operations and Systems of Linear Equations

Elementary Matrix Operations and Elementary Matrices

- 1. (a) T
- (b) F

$$(::) I_3 \leadsto \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ by } -2 \times C_1 + C_3 \Rightarrow C_3$$

- $(::) I_n \leadsto I_n$, by $1 \times C_1 \Rightarrow C_1$
- (d) F
- (e) T
- (::) Theorem 3.2
- (f) F

(:) Let
$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
then, $E_1 + E_2$ is not an elementary matrix

- (g) T
- (h) F
- (i) T

Let
$$A \leadsto B = EA$$
,

then E is invertible and its inverse is also an elementary matrix

$$\therefore B \rightsquigarrow A = E^{-1}B$$

(i)
$$A \rightsquigarrow B$$
, by $-2 \times C_1 + C_2 \rightarrow C_2$

(ii)
$$B \rightsquigarrow C$$
, by $-1 \times R_1 + R_2 \rightarrow R_2$

(iii)
$$C \rightsquigarrow I_3$$
, by

$$\frac{1}{2} \times R_2 \to R_2$$

$$R_2 \leftrightarrow R_3$$

$$R_3 + R_2 \rightarrow R_2$$

$$\frac{1}{4} \times R_2 \rightarrow R_2$$

$$-1 \times R_2 + R_3 \rightarrow R_3$$

$$-3 \times R_3 + R_1 \to R_1$$

3.
(a)
$$E = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

 $I_3 \Rightarrow (R_1 \leftrightarrow R_3) \Rightarrow E \Rightarrow (R_1 \leftrightarrow R_3) \Rightarrow I_3$
 $\therefore E^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

$$I_3 \Rightarrow (R_1 \leftrightarrow R_3) \Rightarrow E \Rightarrow (R_1 \leftrightarrow R_3) \Rightarrow I_3$$

$$\therefore E^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(b)
$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$I_3 \Rightarrow (3 \times R_2 \to R_2) \Rightarrow E \Rightarrow (\frac{1}{3} \times R_2 \to R_2) \Rightarrow I_3$$

$$\therefore E^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix}
(c) E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}
I_3 \Rightarrow (-2 \times R_1 + R_3 \to R_3) \Rightarrow E \Rightarrow (2 \times R_1 + R_3 \to R_3) \Rightarrow I_3
\therefore E^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

(i) E is of type 1

$$E = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_n)$$

$$F = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_n) = E$$

(ii) E is of type 2

$$E = (e_1, \cdots, ae_j, \cdots, e_n)$$

$$F = (e_1, \cdots, ae_j, \cdots, e_n) = E$$

(iii) E is of type 3

$$E = (e_1, \cdots, e_i, \cdots, e_i + ae_i, \cdots, e_n)$$

$$F = (e_1, \cdots, e_i + ae_i, \cdots, e_i, \cdots, e_n) = E^t$$

5.

 (\Rightarrow)

(i) E is of type 1

$$E = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_n)$$

$$E^t = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_n)$$

(ii) E is of type 2

$$E = (e_1, \cdots, ae_i, \cdots, e_n)$$

$$E^t = (e_1, \cdots, ae_i, \cdots, e_n)$$

(iii) E is of type 3

$$E = (e_1, \cdots, e_i, \cdots, e_j + ae_i, \cdots, e_n)$$

$$E^t = (e_1, \cdots, e_i + ae_j, \cdots, e_j, \cdots, e_n)$$

 (\Leftarrow) Using the fact $(E^t)^t = E$, then it is clear

6.

(i) if
$$B = EA$$
, then $B^t = (EA)^t = A^t E^t$

(ii) if
$$B = AE$$
, then $B^t = (AE)^t = E^t A^t$

7.

- (1) Elementary column operation
- (i) E is of type 1

$$B = (A^{(1)}, \cdots, A^{(j)}, \cdots, A^{(i)}, \cdots, A^{(n)})$$

$$E = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_n)$$

$$\Rightarrow AE = (Ae_1, \cdots, Ae_i, \cdots, Ae_i, \cdots, Ae_n) = B$$

$$\therefore B = AE$$

(ii) E is of type 2

$$B = (A^{(1)}, \cdots, aA^{(j)}, \cdots, A^{(n)})$$

$$E = (e_1, \dots, ae_j, \dots, e_n)$$

$$\Rightarrow AE = (Ae_1, \dots, aAe_j, \dots, Ae_n) = B$$

$$\therefore B = AE$$
(iii) E is of type 3
$$B = (A^{(1)}, \dots, A^{(i)}, \dots, A^{(j)} + aA^{(i)}, \dots, A^{(n)})$$

$$E = (e_1, \dots, e_i, \dots, e_j + ae_i, \dots, e_n)$$

$$\Rightarrow AE = (Ae_1, \dots, Ae_i, \dots, Ae_j + aAe_i, \dots, Ae_n) = B$$

$$\therefore B = AE$$

- (2) Elementary row operation
- (i) E is of type 1

$$B = (A_{(1)}, \cdots, A_{(i)}, \cdots, A_{(i)}, \cdots, A_{(m)})$$

$$E = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_m)$$

$$\Rightarrow EA = (e_1A, \cdots, e_iA, \cdots, e_iA, \cdots, e_mA) = B$$

$$\therefore B = EA$$

(ii) E is of type 2

$$B = (A_{(1)}, \cdots, aA_{(j)}, \cdots, A_{(m)})$$

$$E = (e_1, \cdots, ae_i, \cdots, e_m)$$

$$\Rightarrow EA = (e_1A, \cdots, ae_jA, \cdots, e_mA) = B$$

$$\therefore B = EA$$

(iii) E is of type 3

$$B = (A_{(1)}, \cdots, A_{(i)}, \cdots, A_{(j)} + aA_{(i)}, \cdots, A_{(m)})$$

$$E = (e_1, \dots, e_i, \dots, e_j + ae_i, \dots, e_m)$$

$$\Rightarrow EA = (e_1A, \dots, e_iA, \dots, e_jA + ae_iA, \dots, e_mA) = B$$

$$\therefore B = EA$$

(i) E is of type 1

$$E = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_n)$$

$$E^{-1} = (e_1, \cdots, e_i, \cdots, e_i, \cdots, e_n)$$

(ii) E is of type 2

$$E = (e_1, \cdots, ae_j, \cdots, e_n)$$

$$E^{-1} = (e_1, \cdots, \frac{1}{a}e_j, \cdots, e_n)$$

(iii) E is of type 3

$$E = (e_1, \cdots, e_i, \cdots, e_i + ae_i, \cdots, e_n)$$

$$E^{-1} = (e_1, \cdots, e_i, \cdots, e_j - ae_i, \cdots, e_n)$$

If
$$P \leadsto Q = EP$$
, then $P = E^{-1}Q$

Let
$$E' = E^{-1}$$

Since E' is invertible and is an elementary matrix, $Q \leadsto P = E'Q$

9.
$$I_n \Rightarrow E_3', E_3'', E_3''', E_2 \Rightarrow E$$

where $E_3': -1 \times R_i + R_j \Rightarrow R_j$ i.e $E = (e_1, \dots, e_i, \dots, e_j - e_i, \dots, e_n)$
 $E_3'': 1 \times R_j + R_i \Rightarrow R_i$ i.e $E = (e_1, \dots, e_i + (e_j - e_i), \dots, e_j - e_i, \dots, e_n)$

$$E_3''': -1 \times R_i + R_j \Rightarrow R_j \ i.e \ E = (e_1, \dots, e_j, \dots, -e_i, \dots, e_n)$$

 $E_2: -1 \times R_j \Rightarrow R_j \ i.e \ E = (e_1, \dots, e_j, \dots, e_i, \dots, e_n)$
 $\therefore E \text{ is of type } 1$

10. a is a nonzero scalar

$$I_n \Rightarrow E_2 \Rightarrow E$$

,where $E_2 : \frac{1}{a} \times R_i \to R_i \ i.e \ E = (e_1, \dots, \frac{1}{a}e_i, \dots, e_n)$
 $\therefore E$ is of type 2

11.
$$I_n \Rightarrow E_3 \Rightarrow E$$

,where $E_3: -a \times R_i + R_j \to R_j$ i.e $E = (e_1, \dots, e_i, \dots, e_j - ae_i, \dots, e_n)$
 $\therefore E$ is of type 3

12.

By induction on $n \ge 1$

If n = 1 o.k.

Assume that n > 1

If the first column of A is zero, then $A = (O \mid B)$, where $B = ()_{m \times (n-1)}$

So by induction hypothesis, B can be transformed by row operation of type 1 and 3

If the first column of A is not zero, we may assume that $a_{11} \neq 0$

So
$$A \rightsquigarrow \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & & & \\ \vdots & & C & \\ 0 & & & \end{pmatrix}$$
, where $C = ()_{(m-1)\times(n-1)}$
By induction hypothesis, $C \rightsquigarrow U.T.M$
$$\therefore A \rightsquigarrow \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & & & \\ \vdots & & D & \\ 0 & & & \end{pmatrix} : U.T.M$$

$$\therefore A \rightsquigarrow \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & & & \\ \vdots & & D & \\ 0 & & & \end{pmatrix} : \text{U.T.M}$$

The Rank of a Matrix and Matrix Inverse

- 1. (a) F (Theorem 3.5)
- (b) F
- (:) If $A \in M_{m \times n}(F)$, $B \in M_{n \times n}(F)$ and B is invertible,

then the rank(AB) = rank(A)

(Example)

$$A = B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $rank(A) = rank(B) = 1$
 $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $rank(AB) = 0$

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $rank(AB) = 0$

- (c) T
- (d) T (p.153, Corollary to the Theorem 3.4)
- (e) F (p.153, Corollary to the Theorem 3.4)
- (f) T (p.153, Theorem 3.4 and Theorem 3.5)
- (g) T (p.161)
- (h) T
- $(:) \forall A \in M_{m \times n}(F), \ rank(A) = dim R(L_A) \le n$
- (i) T

(a)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, $rank(A) = 2$

(b)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $rank(A) = 3$

(c)
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$
, $rank(A) = 2$

(d)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, $rank(A) = 1$

 $\forall A \in M_{m \times n}(F), \ rank(A) = 0 \text{ iff } A \text{ is the zero matrix}$

 (\Leftarrow) clear

$$(\Rightarrow)$$
 let $A = (e_1, 0, \dots, 0), e_1 \neq 0$

Since rank(A) = 0, e_1 is dependent

$$\therefore \exists a \in F \text{s.t } e_1 = a0$$

It's contradict to $e_1 \neq 0$

4. (a)
$$\begin{pmatrix} 1 & 1 & 1 & 2 \\ 2 & 0 & -1 & 2 \\ 1 & 1 & 1 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} & 1 \\ 0 & 1 & \frac{3}{2} & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, 2$$

 $\therefore rank(A) = 2$, so

$$(g) \left(\begin{array}{ccc|c} 1 & 2 & 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 5 & 5 & 1 & 0 & 1 & 0 & 0 \\ -2 & -3 & 0 & 3 & 0 & 0 & 1 & 0 \\ 3 & 4 & -2 & -3 & 0 & 0 & 0 & 1 \end{array} \right) \Rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 & -51 & 15 & 7 & 2 \\ 0 & 1 & 0 & 0 & 31 & -9 & -4 & -7 \\ 0 & 0 & 1 & 0 & -10 & 3 & 1 & 2 \\ 0 & 0 & 0 & 1 & -3 & 1 & 1 & 1 \end{array} \right)$$

$$\therefore \ rank(A) = 4, \ A^{-1} = \left(\begin{array}{ccc|c} -51 & 15 & 7 & 2 \\ 31 & -9 & -4 & -7 \\ -10 & 3 & 1 & 2 \\ -3 & 1 & 1 & 1 \end{array} \right)$$

$$(h) \left(\begin{array}{ccc|c} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & -3 & 0 & 0 & 0 & 1 \end{array} \right) \Rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 0 & -3/2 & -1/10 & 13/10 & 1/10 \\ 0 & 1 & 0 & 0 & 1/2 & 1/2 & -7/5 & 1/2 \\ 0 & 0 & 1 & 0 & -3 & -1/5 & 16/10 & 1/5 \\ 0 & 0 & 0 & 1 & 1/2 & 1/10 & -3/10 & -1/10 \end{array} \right)$$

$$\therefore \ rank(A) = 4, \ A^{-1} = \left(\begin{array}{ccc|c} -3/2 & -1/10 & 13/10 & 1/10 \\ 1/2 & 1/2 & -7/5 & 1/2 \\ -3 & -1/5 & 16/10 & 1/5 \\ 1/2 & 1/10 & -3/10 & -1/10 \end{array} \right)$$

$$\text{(h)} \left(\begin{array}{cccc|ccc|c} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & -1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & -3 & 0 & 0 & 0 & 1 \end{array} \right) \ \Rightarrow \ \left(\begin{array}{cccc|ccc|c} 1 & 0 & 0 & 0 & -3/2 & -1/10 & 13/10 & 1/10 \\ 0 & 1 & 0 & 0 & 1/2 & 1/2 & -7/5 & 1/2 \\ 0 & 0 & 1 & 0 & -3 & -1/5 & 16/10 & 1/5 \\ 0 & 0 & 0 & 1 & 1/2 & 1/10 & -3/10 & -1/10 \end{array} \right)$$

$$\therefore \ rank(A) = 4, \ A^{-1} = \begin{pmatrix} -3/2 & -1/10 & 13/10 & 1/10 \\ 1/2 & 1/2 & -7/5 & 1/2 \\ -3 & -1/5 & 16/10 & 1/5 \\ 1/2 & 1/10 & -3/10 & -1/10 \end{pmatrix}$$

(a)
$$[T]_{\beta} = \begin{pmatrix} -1 & 2 & 2 \\ 0 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$
, $rank[T]_{\beta} = 3$

$$T \text{ is invertible}$$

$$([T]_{\beta})^{-1} = \begin{pmatrix} -1 & -2 & 10 \\ 0 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$

$$T^{-1}(ax^2 + bx + c) = -ax^2 - (4a + b)x - (10a + 2b + c)$$

$$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$$

$$\therefore T^{-1}(ax^2 + bx + c) = -ax^2 - (4a + b)x - (10a + 2b + c)$$

(b)
$$[T]_{\beta} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
, $rank[T]_{\beta} = 2$

$$\therefore \text{T is not invertible}$$

$$(c) [T]_{\beta} = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}, rank[T]_{\beta} = 3$$

$$\therefore \text{T is invertible}$$

· T is invertible

$$([T]_{\beta})^{-1} = \begin{pmatrix} 1/6 & -1/3 & 1/2 \\ 1/2 & 0 & -1/2 \\ -1/6 & 1/3 & 1/ \end{pmatrix}$$

$$\therefore T^{-1}(a, b, c) = (\frac{1}{6}a - \frac{1}{3}b + \frac{1}{2}c, \frac{1}{2}a - \frac{1}{2}c, -\frac{1}{6}a + \frac{1}{3}b + \frac{1}{2}c)$$

7.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix} \rightsquigarrow I_3 = E_6 \cdots E_1 A$$

$$\therefore A = E_1^{-1} \cdots E_6^{-1}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$cA = (cI_m)A$$

Since cI_m is invertible

$$\therefore rank(cA) = rank((cI_m)A)$$

9.

If B is obtained from a matrix A by an elementary column operation, then there exists an elementary matrix E such that B = AE

Since E is invertible and hence rank(B) = rank(A)

10. If A is the zero matrix, then r = 0rank(A) = rank(D) = 0 Suppose that A is a nonzero matrix

By means of at most one type 1 row operation, at most one type 2 row operation, and at most (m-1) type 3 row operations

this matrix can be transformed into $(1, 0, \dots, 0)^T$

$$\therefore rank(A) = rank(D) = 1$$

11. (By theorem 3.6)

$$B' \rightsquigarrow D' = \begin{pmatrix} I_k & O \\ O & O \end{pmatrix}, \ rankB' = k \text{ and}$$

$$B \rightsquigarrow D = \begin{pmatrix} 1 & O \\ O & I_k & O \\ O & O \end{pmatrix} = \begin{pmatrix} I_{k+1} & O \\ O & O \end{pmatrix}$$

$$\therefore \ rankB = k + 1 = r$$

$$B \rightsquigarrow D = \left(\begin{array}{c} O \\ O \\ O \end{array}\right) \left(\begin{array}{c} I_k & O \\ O & O \end{array}\right) = \left(\begin{array}{c} I_{k+1} & O \\ O & O \end{array}\right)$$

$$\therefore rankB = \hat{k} + \hat{1} = r$$

$$\therefore rankB' = r - 1$$

12. By induction on $n \ge 1$

If n = 1, it is clear

Assume n > 1

If the first column of A is zero, then A = (O B), where $B \in M_{m \times (n-1)}$

So by induction hypothesis, B can be transformed by row operation of type 1 and 3

If the first column of A is not zero,

we may assume that $a_{11} \neq 0$

So
$$A \rightsquigarrow \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \hline 0 & & & \\ \vdots & & C & \\ 0 & & & \end{pmatrix}$$
, where $C \in M_{(m-1)\times(n-1)}$

By by induction hypothesis, $C \leadsto U.T.M$

$$\therefore A \rightsquigarrow U.T.M$$

13. (b) and (c)

Since $rank(A) = rank(A^t)$, the maximal number of linearly independent columns of A equals to the maximal number of linearly independent columns of A^t , i.e. the maximal number of linearly independent rows of A

$$\therefore colrank(A) = rowrank(A)$$

(cf) Let S the solution space for AX = 0, then by the dimension theorem and $rank(L_A) = colrank(A)$,

$$dimS = n - colrank(A)$$

If r = dim(row space of A), then the solution space S has a (n - r) vectors, i.e. dimS = n - rowrank(A)

$$\therefore \ colrank(A) = rowrank(A)$$

14.
$$T, U: V \to W$$

(i)
$$w \in R(T+U) \implies \exists v \in V \text{ s.t. } w = (T+U)(v)$$

$$\Rightarrow w = T(v) + U(v) \in R(T) + R(U)$$

(ii)
$$rank(T+U) \leq dim(R(T)+R(U))$$

 $\leq dim(R(T)) + dim(R(U))$
 $= rank(T) + rank(U)$
(c) By (b), $rank(A+B) = rank(L_{A+B})$
 $= rank(L_A + L_B)$
 $\leq rank(L_A) + rank(L_B)$
 $= rank(A) + rank(B)$
15.
Let $A = (a_1, a_2, \dots, a_p)_{n \times p}$ and $B = (b_1, b_2, \dots, b_q)_{n \times q}$
 $(A \mid B) = (a_1, a_2, \dots, a_p, b_1, b_2, \dots, b_q)_{n \times (p+q)}$
 $M(A \mid B) = (Ma_1, Ma_2, \dots, Ma_p, Mb_1, Mb_2, \dots, Mb_q)_{n \times (p+q)}$
 $(MA \mid MB)$
16. (Theorem 3.4 (b))
Let $V = R(L_A) = L_A(F^n)$
Then $V \leq F^m$ and $dimV = dimL_P(V)$
because L_P is an isomorphism (by the exercise 17 in section 2.4) $rank(A) = dimL_A(V) = dimV$
 $= dimL_P(V)$

 $= dim L_P L_A(F^n)$

$$= dim L_{PA}(F^n)$$

$$rank(PA)$$

17. Let
$$PAQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, then
$$A = P^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} Q^{-1}$$

Let $A=(a_1,a_2,\cdots,a_n)_{m\times n}$ where a_k the k-th column of A and let $A_k=(0,\cdots,a_k,\cdots,0)_{m\times n}$

Thus $\forall k, \ rank(A_kB) \leq 1 \ \text{and} \ AB = A_1B + \cdots + A_nB$

19.

By the theorem $3.7 \ rank(AB) \le rank(A)$ and

by the Sylvester inequality, $rank(AB) \ge rank(A)$

$$\therefore rank(AB) = rank(A) = m$$

(cf)the Sylvester inequality

$$rank(A) + rank(B) \le rank(AB) + n,$$

where n is the number of columns of A and also the number of rows of B

$$A \rightsquigarrow D = EA = ()$$
: the reduced row echelon form of A

$$\Rightarrow \{v_1 = (), v_2 = ()\} \text{ is a basis of } Null(L_A)$$
Thus $AM = (0)_{5\times5}$, where $M = (v_1, v_2, 0, 0, 0)$

Suppose
$$B=(b_1,b_2,\cdots,b_5)_{5\times 5}$$
 s.t. $AB=(0)_{4\times 5}$ $\Rightarrow b_1,b_2,\cdots,b_5\in N(L_A)$ with null $L_A=2$ Thus $rank B=dim span(b_1,b_2,\cdots,b_5)\leq dim Null(L_A)=2$

$$A = (a_{ij})_{m \times n}, rank(A) = m$$

$$A \rightsquigarrow D = AQ = (I_m \mid O)_{m \times n}, \ Q \in M_{n \times n} : \text{ invertible matrix}$$
 Let $B = QM$, where $M = \left(\frac{I_m}{O}\right)_{n \times m}$ then $AB = (QM) = (AQ)M = (I_m \mid O)\left(\frac{I_m}{O}\right) = I_m$

$$B = (b_{ij})_{n \times m}, rank(B) = m$$

 $B \leadsto D = QB = \left(\frac{I_m}{O}\right)_{n \times m}, \ Q \in M_{n \times n}$: invertible matrix
Let $A = MQ$, where $M = (I_m \mid O)m \times n$
then $AB = M(QB) = MD = I_m$

3.3. Systems of Linear equations - Theoretical aspects

1.

(a) F

p.170, Example 1 (c)

- (b) F
- (c) T

Any homogeneous system has at least one solution, namely, the zero vector

(d) F

p.174, Theorem 3.10

- (e) F
- (f) F

p.172, Theorem 3.9

(g) T

If A is invertible, then AX = 0 has no nonzero solutions

- (h) T
- 2. Let K be the solution set of the given system and A is the coefficient matrix of the system

(a)
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix} \implies \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$$

 $rank(A) = 1, \ dim(K) = 2 - 1 = 1$
 $\left\{ \begin{pmatrix} -3 \\ 1 \end{pmatrix} \right\}$: a basis for K

(b)
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 4 & 1 & -2 \end{pmatrix} \implies \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

 $rank(A) = 2, \ dim(K) = 3 - 2 = 1$

Since $(1,2,3)^t$ is a solution to AX = 0,

$$\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \right\} : \text{a basis for } K$$

(c)
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix} \implies \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

 $rank(A) = 2, \ dim(K) = 3 - 2 = 1$

Since $(-1,1,1)^t$ is a solution to AX = 0,

$$\left\{ \begin{pmatrix} -1\\1\\1 \end{pmatrix} \right\} : \text{a basis for } K$$

(d)
$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $rank(A) = 2, \ dim(K) = 3 - 2 = 1$

Since $(0,1,1)^t$ is a solution to AX = 0,

$$\left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} : \text{ a basis for } K$$
(e) $A = (1, 2, -3, 1) \iff (1, 0, 0, 0)$

$$rank(A) = 1, dim(K) = 4 - 1 = 3$$

$$x_1 = -2x_2 + 3x_3 - 4x_4$$

Note that $\{v_1, v_2, v_3\}$ is linearly independent vectors in K

$$\left\{ \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1 \end{pmatrix} \right\} : \text{a basis for } K$$

(f)
$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $rank(A) = 2, \ dim(K) = 2 - 2 = 0$
 $\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$: a basis for K

(So the given system is inconsistent)

$$(g) \ A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & -1 & 1 \end{pmatrix} \ \leadsto \ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$rank(A) = 2, \ dim(K) = 4 - 2 = 2$$

$$\left\{ \begin{pmatrix} -3 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\} : \text{a basis for } K$$

(a)
$$A = \left\{ \begin{pmatrix} 5 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ 1 \end{pmatrix} | t \in R \right\}$$

(b) $A = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} | t \in R \right\}$
(c) $A = \left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} | t \in R \right\}$
(d) $A = \left\{ \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} | t \in R \right\}$
(e) $A = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + r \begin{pmatrix} -2 \\ -1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 3 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} | r, s, t \in R \right\}$
(f) $A = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$

(g)
$$A = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} + r \begin{pmatrix} -3 \\ 1 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} | r, s \in R \right\}$$

(a)

(1)
$$A^{-1} = \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}$$

(2)
$$x = A^{-1} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} -11 \\ 5 \end{pmatrix}$$

(b)

(1)
$$A^{-1} = \begin{pmatrix} \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{9} & \frac{1}{3} & -\frac{2}{9} \\ -\frac{4}{9} & \frac{2}{3} & -\frac{1}{9} \end{pmatrix}$$

(2)
$$x = A^{-1} \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$

5.

 $AX = B, \ A = (a_1, \dots, a_n) \in M_{n \times n}, \ a_i \text{ is the } n \text{th column of } A$

If a_i is expressed by other column vectors of A, i.e. a_i 's are linearly independent, then the given system has infinitely many solutions

(Example)
$$A = (a_1, \dots, a_i, \dots, ka_i, \dots, a_n), \ a_j = ka_i, \ k \in F$$

6.
$$T^{-1}(\{(1,11)\}) = \left\{ \begin{pmatrix} \frac{11}{2} \\ -\frac{9}{2} \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} | t \in R \right\}$$

7. The systems in parts (b), (c), and (d) have solutions

(a)
$$rank(A) = 2$$
, $rank(A|b) = 3$
 $A \leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $(A|b) \leftrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

- (b) rank(A) = rank(A|b) = 2
- (c) rank(A) = rank(A|b) = 3
- (d) rank(A) = rank(A|b) = 4
- (e) rank(A) = 2, rank(A|b) = 3

8.

(a)
$$v \in R(T)$$
 $T(-2,3,0) = (1,3,2)$

(b)
$$v \in R(T)$$
 $T(1, 1, 0) = (2, 1, 1)$

9.

$$L_A: F^n \to F^m, \ A = (a_1, \cdots, a_n)$$

Let $x = (x_1, \dots, x_n)^t$ is a solution to Ax = b

$$\Leftrightarrow b = Ax = a_1x_1 + \dots + a_nx_n, \ x_i \in F$$

$$\Leftrightarrow b \in span(a_1, \cdots, a_n) = R(L_A)$$

11.

$$Ap = p \iff p = \begin{pmatrix} 1\\0.75\\1 \end{pmatrix}$$

The farmer, tailor, and carpenter must have incomes in the proportions 4:3:4

$$0.60p_1 + 0.30p_2 = p_1$$

$$0.40p_1 - 0.30p_2 = 0$$

$$0.40p_1 - 0.30p_2 = 0$$

$$\therefore p = \begin{pmatrix} 0.75 \\ 1 \end{pmatrix}$$

There must be 7.8 units of the first commodity and 9.5 units of the second

$$x = (I - A^{-1})d = \begin{pmatrix} 7.8\\9.5 \end{pmatrix}$$

3.4. Systems of Linear equations - Computational aspects

1.

- (a) F (a finite row operations)
- (b) T (P.182 Corollary)
- (c) T (P.158 Corollary 1 to Theorem 3.6)
- (d) T (p.187 Theorem 3.14)
- (e) F

The system has a solution if and if only the echelon form of the augmented matrix M does not have a row of the form $(0, \dots, 0, b)$ with $b \neq 0$

(f) T

$$rank(A) = rank(A \mid b) \Leftrightarrow (A \mid b)$$
 is consistent

If the system $(A \mid b)$ is consistent and rank(A) = r, then the dimension of the solution set is n - r.

(g) T

Since A is row equivalent to A' $i.e.A' = EA \ rank(A) = rank(EA') = rank(A')$

2. (a)
$$\left\{ \begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix} \right\}$$
 (b)
$$\left\{ \begin{pmatrix} 9 \\ 4 \\ 0 \end{pmatrix} + r \begin{pmatrix} -5 \\ -3 \\ 1 \end{pmatrix} \mid r \in R \right\}$$

$$\begin{aligned} & \text{(c)} \left\{ \begin{pmatrix} 2 \\ 3 \\ -2 \\ 1 \end{pmatrix} \right\} \\ & \text{(d)} \left\{ \begin{pmatrix} 13 \\ 22 \\ -\frac{1}{26} \\ \frac{18}{13} \end{pmatrix} + r \begin{pmatrix} 9 \\ -15 \\ 0 \\ 1 \end{pmatrix} \mid r \in R \right\} \\ & \text{(e)} \left\{ \begin{pmatrix} 4 \\ 0 \\ 1 \\ 0 \end{pmatrix} + r \begin{pmatrix} 4 \\ 1 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 2 \\ 1 \end{pmatrix} \mid r, s \in R \right\} \\ & \text{(f)} \left\{ \begin{pmatrix} -3 \\ 3 \\ 1 \\ 0 \end{pmatrix} + r \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \mid r \in R \right\} \\ & \text{(g)} \left\{ \begin{pmatrix} -23 \\ 0 \\ 7 \\ 9 \\ 0 \end{pmatrix} + r \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s \begin{pmatrix} -23 \\ 0 \\ 6 \\ 9 \\ 1 \end{pmatrix} \mid r, s \in R \right\} \\ \end{aligned}$$

(a)

 (\Leftarrow) If $(A' \mid b')$ has such a row, say k - th row, then

the corresponding k - th equation in the system A'x = b' is

$$0x_1 + 0x_2 + \dots + 0x_n = c_k, \ c_k \neq 0 \ ;$$

which has no solutions i.e. A'x = b' is inconsistent

- $\therefore rank(A') \neq rank(A' \mid b')$
- (⇒) Assume that (A' | b') has no such a row, then $b' \in R(L_{A'})$

$$\therefore rank(A') = rank(A' \mid b')$$

(b)

If two matrices are row equivalent, they have the same solution set

Since $(A' \mid b')$ is equivalent to $(A \mid b)$, so

Ax = b is consistent

 $\Leftrightarrow A'x = b'$ is consistent

 $\Leftrightarrow rank(A') = rank(A' \mid b')$

By (a), $(A' \mid b')$ has no such a row

(cf) (a)
$$(\Rightarrow)$$
 $b' \in R(L_{A'})$ (: Theorem 3.16(b))

4.

(a)
$$\begin{pmatrix} 1 & 0 & 0 & -1/2 & | & 4/3 \\ 0 & 1 & 0 & 1/2 & | & 1/3 \\ 0 & 0 & 1 & -1/2 & | & 0 \end{pmatrix}$$
Since $(A' + b')$ contains no

Since $(A' \mid b')$ contains no row in which the only nonzero entry lies in the last

column, therefore Ax = b is consistent

column, therefore
$$Ax = b$$
 is consistent
$$\left\{ \begin{pmatrix} 4/3 \\ 1/3 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1/2 \\ -1/2 \\ 1/ \\ 1 \end{pmatrix} r \mid r \in R \right\} : \text{ the solution set}$$

$$\left\{ \begin{pmatrix} 1/2 \\ -1/2 \\ 1/2 \\ 1 \end{pmatrix} \right\} : \text{ a basis for the solution set}$$

$$\begin{pmatrix}
1 & 1 & 0 & -1/2 & | & 1 \\
0 & 0 & 1 & -1/2 & | & 1 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

Since
$$rank(A') = rank(A' \mid b')$$
, $Ax = b$ is consistent
$$\left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix} r + \begin{pmatrix} 1/2\\0\\1/2\\1 \end{pmatrix} s \mid r, s \in R \right\} : \text{ the solution set}$$

$$\left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1/2\\0\\1/2\\1 \end{pmatrix} \right\} : \text{ a basis for the solution set}$$

$$\left\{ \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1/2\\0\\1/2\\1 \end{pmatrix} \right\} : \text{ a basis for the solution set}$$

(c)
$$\begin{pmatrix} 1 & 1 & 0 & -1/2 & 7/4 \\ 0 & 0 & 1 & -1/2 & 1/4 \\ 0 & 0 & 0 & 0 & -3/4 \end{pmatrix}$$
 Since $rank(A') \neq rank(A' \mid b'), \ Ax = b$ is inconsistent

5.
$$B = \begin{pmatrix} 1 & 0 & 2 & 0 & -2 \\ 0 & 1 & -5 & 0 & -3 \\ 0 & 0 & 0 & 1 & 6 \end{pmatrix}$$

Let
$$A = (a_1, a_2, \dots, a_5)$$
 and $B = (b_1, b_2, \dots, b_5)$

Since $b_3 = 2e_1 - 5e_2$, it follows that $a_3 = 2a_1 - 5a_2$

Moreover $b_5 = -2e_1 - 3e_2 + 6e_3$, the same result shows that $a_5 = -2a_1 - 3a_2 + 6a_4$ $\therefore A = \begin{pmatrix} 1 & 0 & 2 & 1 & 4 \\ -1 & -1 & 3 & -2 & -7 \\ 3 & 1 & 1 & 0 & -9 \end{pmatrix}$

$$\therefore A = \begin{pmatrix} 1 & 0 & 2 & 1 & 4 \\ -1 & -1 & 3 & -2 & -7 \\ 3 & 1 & 1 & 0 & -9 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & -3 & 0 & 4 & 0 & 5 \\ 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Let
$$A = (a_1, a_2, \dots, a_6)$$
 and $B = (b_1, b_2, \dots, b_6)$

Since
$$b_2 = -3e_1$$
,

$$b_4 = 4e_1 + 3e_2$$

$$b_6 = 5e_1 + 2e_2 - e_3$$

it follows that $a_2 = -3a_1$,

$$a_4 = 4a_1 + 3a_3,$$

$$a_6 = 5a_1 + 2a_3 - a_5$$

$$A = \begin{pmatrix} 1 & -3 & -1 & 1 & 0 & 3 \\ -2 & 6 & 1 & -5 & 1 & -9 \\ -1 & 3 & 2 & 2 & -3 & 2 \\ 3 & -9 & -4 & 0 & 2 & 5 \end{pmatrix}$$

7.
$$\begin{pmatrix} 2 & 1 & -8 & 1 & -3 \\ -3 & 4 & 12 & 37 & -5 \\ 1 & -2 & -4 & -17 & 8 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & -4 & -4 & 0 \\ 0 & 1 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\therefore \{u_1, u_2, u_5\} \text{ is a basis for } W$$

$$\begin{pmatrix}
0 & -1 & -1 & 1 \\
1 & 2 & 2 & 3 \\
2 & 1 & 1 & 9 \\
1 & -2 & -2 & 4 \\
-1 & 2 & 2 & -1
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\left\{ \left(\begin{array}{cc} 0 & -1 \\ -1 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 2 \\ 2 & 3 \end{array}\right), \left(\begin{array}{cc} 2 & 1 \\ 1 & 9 \end{array}\right) \right\} \text{ : a basis for } W$$

(cf)
$$\begin{pmatrix}
0 & \cdots & -1 \\
-1 & \cdots & 2 \\
-1 & \cdots & 2 \\
1 & \cdots & -1
\end{pmatrix}$$
(a) (i) $S \subseteq V$

(a) It's a singleton set, so it's linearly independent

(b)

Since $x_1 = 2x_2 - 3x_3 + x_4 - 2x_5$, assign parametric values to x_2, x_3, x_4 and x_5 Let $x_2 = t_1, x_3 = t_2, x_4 = t_3$ and $x_5 = t_4$, then the vectors in V have the form $(x_1, x_2 \cdots, x_5) = t_1(2, 1, 0, 0, 0) + t_2(-3, 0, 1, 0, 0) + t_3(1, 0, 0, 1, 0) + t_4(-2, 0, 0, 0, 1)$ Hence

 $\beta = \{(2,1,0,0,0), (-3,0,1,0,0), (1,0,0,1,0), (-2,0,0,0,1)\}$ is a basis for VThe matrix whose columns consist of the vectors in S followed by those β is

$$\begin{pmatrix}
0 & 2 & -3 & 1 & -2 \\
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

Thus $\{(0,1,1,1,0),(2,1,0,0,0),(-3,0,1,0,0),(-2,0,0,0,1)\}$ is a basis for V containing S

11.

(a) It's a singleton set, so it's clear

(b)

The matrix whose columns consist of the vectors in S followed by those β is

$$\begin{pmatrix}
1 & 2 & -3 & 1 & -2 \\
2 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

and its reduced row echelon form is $\begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Thus $\{(1,2,1,0,0),(2,1,0,0,0),(1,0,0,1,0),(-2,0,0,0,1)\}$ is a basis for V containing S

(a) If
$$a(0, -1, 0, 1, 1, 0) + b(1, 0, 1, 1, 1, 0) = (0, \dots, 0)$$
. $a, b \in F$ then $a = b = 0$

 \therefore S is linearly independent

(b)

Since
$$x_1 = x_3 - x_4 + x_5 - 3x_6$$

$$x_2 = x_3 + x_4 - 2x_5 - 2x_6$$

Let $x_3 = t_1, x_4 = t_2, x_5 = t_3$ and $x_6 = t_4$, then the vectors in V have the form

$$(x_1, x_2 \cdots, x_6) = t_1(1, 1, 1, 0, 0, 0) + t_2(-1, 1, 0, 1, 0, 0) + t_3(1, -2, 0, 0, 1, 0) + t_4(-3, -2, 0, 0, 0, 1)$$

Hence

$$\beta = \{(2, 1, 0, 0, 0), (-3, 0, 1, 0, 0), (1, 0, 0, 1, 0), (-2, 0, 0, 0, 1)\}$$
 is a basis for V

The matrix whose columns consist of the vectors in S followed by those β is

$$\begin{pmatrix} 0 & 1 & 1 & -1 & 1 & -3 \\ -1 & 0 & 1 & 1 & -2 & -2 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

and its reduced row echelon form is
$$\begin{pmatrix}
1 & 0 & -1 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Thus $\{(0, -1, 0, 1, 1, 0), (1, 0, 1, 1, 1, 0), (-1, 1, 0, 1, 0, 0), (-3, -2, 0, 0, 0, 1)\}$ is a basis for V containing S

13.

(a) If
$$a(1,0,1,1,1,0) + b(0,2,1,1,0,0) = (0,\dots,0)$$
. $a,b \in F$ then $a = b = 0$

 \therefore S is linearly independent

(b)

The matrix whose columns consist of the vectors in S followed by those β is

$$\begin{pmatrix} 1 & 0 & 1 & -1 & 1 & -3 \\ 0 & 2 & 1 & 1 & -2 & -2 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

and its reduced row echelon form is $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

Thus $\{(1,0,1,1,1,0),(0,2,1,1,0,0),(1,1,1,0,0,0),(-3,-2,0,0,0,1)\}$ is a basis for V containing S

Let B is a reduced row echelon form to A, then A is row equivalent to B, i.e. $A \sim B$

If C is an another reduced row echelon form to A, then $C \sim A \sim B$ Since row equivalent matrices have the same row space and they are finite dimensional, so must be identical

(cf) If C is an another reduced row echelon form to A, then $C \sim A \sim B$ Since $\exists \ E$ s.t. C = EB and E is invertible, we have $E^{-1}C = B$, Comparing with their rank, the row space C and B are the subspace of each other So C = B

§4. Determinants

4.1. Determinants of Order 2

- 1. (a) $F \det(A + B) \neq \det(A) + \det(B)$
- (b) T (p.200. Theorem 4.1)
- (c) F (p.201. Theorem 4.2)
- (d) F

The area of the paralleogram determined by u and v equals $O\begin{pmatrix} u \\ v \end{pmatrix} \det \begin{pmatrix} u \\ v \end{pmatrix}$ (e) F (p.203)

- 2. (a) 30
- (b) -17
- (c) -8
- 3. (a) -10+15i
- (b) 36+41i
- (c) -24
- 4. (a) 4
- (b) 10
- (c) 14
- (d) 26

Let
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, then $B = \begin{pmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{pmatrix}$
So $\det(B) = a_{12}a_{21} - a_{11}a_{22} = -(a_{11}a_{22} - a_{12}a_{21}) = -\det(A)$

Let
$$A = \begin{pmatrix} a & a \\ b & b \end{pmatrix}$$
, and $B = \begin{pmatrix} b & b \\ a & a \end{pmatrix}$

By the exercise 15, det(B) = -det(A)

Since det(A) = det(B)

$$\therefore \det(A) = 0$$

7.

Let
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, then $A^t = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}$

$$\det(A^t) = a_{11}a_{22} - a_{21}a_{12} = \det(A)$$

$$\det(A^t) = \det(A)$$

Q

If
$$A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{pmatrix}$$
, then $\det(A) = a_{11}a_{22}$: the product of the diagonal entries of A

Q

Let
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 and $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

then
$$AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

$$\det(AB)$$

$$= (a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22}) - (a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21})$$

$$= (a_{11}a_{22} - a_{12}a_{21})(b_{11}b_{22} - b_{12}b_{21})$$

$$= \det(A) \det(B)$$

$$C = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

$$\begin{array}{ll}
(-a_{21} & a_{11}) \\
(a) CA = AC = (\det A)I = \begin{pmatrix} a_{11}a_{22} - a_{12}a_{21} & 0 \\ 0 & a_{11}a_{22} - a_{12}a_{21} \end{pmatrix} \\
(b) \det(C) = a_{11}a_{12}a_$$

(b)
$$\det(C) = a_{22}a_{11} - a_{12}a_{21} = \det(A)$$

(c) The classical adjoint of
$$A^t = \begin{pmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{pmatrix} = C^t$$

(d) If A is invertible, then $det(A) \neq 0$

by (a),
$$A\{(\frac{1}{\det(A)})C\} = \{(\frac{1}{\det(A)})C\}A = I$$

$$\therefore A^{-1} = (\frac{1}{\det(A)})C$$

Let
$$A \in M_{2\times 2}(F)$$

- (1) If A has rank less than 2, then by the assumption (ii) $\delta(A) = 0$
- In this case det(A) equals to zero
- $\therefore \ \delta(A) = \det(A)$
- (2) If A has rank 2, then A is invertible

hence
$$A = E_k E_{k-1} \cdots E_1$$
 for some k

Since
$$\delta(I) = 1, \delta(E) = \det(E), \ \forall E$$
: an elementary matrix

Hence we have $\delta(A) = \delta(E_k E_{k-1} \cdots E_1)$

$$= \delta(E_k)\delta(E_{k-1})\cdots\delta(E_1)$$

$$= \det(E_k) \det(E_{k-1}) \cdots \det(E_1)$$

$$= \det(E_k E_{k-1} \cdots E_1)$$

$$= \det(A)$$

12.

$$(\Leftarrow)$$
 Let $u = (a_1, a_2)$, then $v = (a_1 \cos \theta - a_2 \sin \theta, \ a_1 \sin \theta + a_2 \cos \theta), \ 0 < \theta < \pi$

Since
$$\det \begin{pmatrix} u \\ v \end{pmatrix} = (a_1^2 + a_2^2) \sin \theta$$
 and $\det \begin{pmatrix} u \\ v \end{pmatrix} > 0$

$$\therefore O\binom{u}{v} = 1 \ (\Rightarrow) \text{ Since } O\binom{u}{v} = 1, \ \sin\theta > 0$$

$$\therefore 0 < \theta < \pi$$

 \therefore $\{u, v\}$ forms a right-handed coordinate system

4.2. Determinants of Order n

- 1.
- (a) F
- (b) T (Theorem 4.4)
- (c) T (Corollary to Theorem 4.4)
- (d) T (Theorem 4.5)
- (e) $F(\det(B) = k \det(A))$
- (f) $F(\det(B) = \det(A))$
- (g) F (If $A \in M_{n \times n}(F)$ and $rankA = n \implies A$: invertible $\Rightarrow \det A \neq 0$)
- (h) T
- 2. $k = 3^3$
- 3. k = 42
- 4. k = 2
- 5. $\det(A) = -12$
- 6. $\det(A) = -13$

7.
$$\det(A) = -12$$

8.
$$det(A) = -13$$

9.
$$det(A) = 22$$

10.
$$\det(A) = 4 + 2i$$

11.
$$\det(A) = -3$$

12.
$$\det(A) = 154$$

13.
$$\det(A) = -8$$

14.
$$\det(A) = -168$$

15.
$$\det(A) = 0$$

16.
$$det(A) = 36$$

17.
$$\det(A) = -49$$

18.
$$det(A) = 10$$

19.
$$\det(A) = -28 - i$$

20.
$$det(A) = 17 - 3i$$

21.
$$\det(A) = 95$$

22.
$$det(A) = 100$$

23. Let
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$$

By expanding along the first column, we have
$$\det A = a_{11} \det \begin{pmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ a_{33} & \cdots & a_{3n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$$
$$= a_{11}a_{22} \det \begin{pmatrix} a_{33} & a_{34} & \cdots & a_{3n} \\ & & a_{44} & \cdots & a_{4n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{pmatrix}$$

$$= a_{11}a_{22}\cdots a_{nn}$$

If A has a row consisting entirely of zeros, then det(A) = 0

Let i - th row of A is the zero row

Since
$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \det(\tilde{A}_{ij})$$
 and $\forall A_{ij} = 0, (j = 1, 2, \dots, n)$
 $\therefore \det(A) = 0$

25.

Let
$$A = (a_1, a_2, \dots, a_n), \ a_i : \text{rows of } A, \ i = 1, 2, \dots, n$$

If A' is obtained by multiplying a row of A by a nonzero scalar k,

then
$$det(A') = k det(A)$$

$$\det(kA) = \det(ka_1, ka_2, \cdots, ka_n)$$

$$= k \det(a_1, ka_2, \cdots, ka_n)$$

$$= k^2 \det(a_1, a_2, ka_3, \cdots, a_n)$$

:

$$=k^n\det(a_1,a_2,\cdots,a_n)$$

$$= k^n \det(A)$$

Since
$$\det(-A) = \det(-I_n A) = \det(-I_n) \det(A) = (-1)^n \det(A)$$

$$\therefore \det(-A) = \det(A), \ n = 2k, \ k \in N$$

Let
$$A = (a_1, \dots, a_i, \dots, a_j, \dots, a_n)$$
 and $B = (a_1, \dots, a_j, \dots, a_i, \dots, a_n)$

 $(a_i : \text{columns of } A \text{ and } a_i = a_j)$

By the row-interchanging property, we have det(B) = -det(A)

Since
$$a_i = a_j$$
, $det(B) = det(A)$

$$\det(A) = 0$$

28.

- (i) E_1 is of type 1
- $\det(E_1) = -\det(I_n) = -1$
- (ii) E_2 is of type 2

$$\det(E_2) = k \det(I_n) = k$$

(iii) E_3 is of type 1

$$\det(E_3) = \det(I_n) = 1$$

29.

(i) E_1 is of type 1

$$\det(E_1) = \det(E_1^t) = -1$$

(ii) E_2 is of type 2

$$\det(E_2) = \det(E_2^t) = k$$

(iii) E_3 is of type 1

$$\det(E_3) = \det(E_3^t) = 1$$

30.

$$\det(B) = \det(a_n, a_{n-1}, \dots, a_2, a_1)$$

$$= (-1) \det(a_1, a_{n-1}, \dots, a_2, a_n)$$

$$= (-1)^2 \det(a_1, a_2, a_{n-2}, \dots, a_3, a_{n-1}, a_n)$$

$$\vdots$$

$$= (-1)^{[n/2]} \det(a_1, a_2, \dots, a_n)$$

$$= (-1)^{[n/2]} \det(A)$$

4.3. Properties of Determinants

1.

- (a) F(p.223)
- (b) T (Theorem 4.7 p. 223)
- (c) F
- (d) T
- (e) F (Theorem 4.8 p. 224)
- (f) T
- (g) F
- (h) F

2.

(a)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 and $b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$

Since $det(A) = a_{11}a_{22} - a_{12}a_{21} \neq 0$, Cramer's rule applies

Using the notation of theorem 4.9, we have

$$x_1 = \det(M_1)/\det(A) = (b_1a_{22} - a_{12}b_2)/(a_{11}a_{22} - a_{12}a_{21})$$

$$x_2 = \det(M_2)/\det(A) = (b_2a_{11} - a_{21}b_1)/(a_{11}a_{22} - a_{12}a_{21})$$

$$\therefore x = (x_1, x_2)$$

$$= ((b_1a_{22} - a_{12}b_2)/(a_{11}a_{22} - a_{12}a_{21}), \ (b_2a_{11} - a_{21}b_1)/(a_{11}a_{22} - a_{12}a_{21}))$$

$$A = \begin{pmatrix} 2 & 1 & -3 \\ 1 & -2 & 1 \\ 3 & 4 & -2 \end{pmatrix}, b = \begin{pmatrix} 5 \\ 10 \\ 0 \end{pmatrix}, \det(A) = -25$$

$$\det(M_1) = \det\begin{pmatrix} 5 & 1 & -3 \\ 10 & -2 & 1 \\ 0 & 4 & -2 \end{pmatrix}, \det(M_2) = \det\begin{pmatrix} 2 & 5 & -3 \\ 1 & 10 & 1 \\ 3 & 0 & -2 \end{pmatrix}, \det(M_3) = \det\begin{pmatrix} 2 & 1 & 5 \\ 1 & -2 & 10 \\ 3 & 4 & 0 \end{pmatrix}$$

$$x_1 = \det(M_1)/\det(A) = -100/-25 = 4$$

$$x_2 = \det(M_2)/\det(A) = 75/-25 = -3$$

$$x_3 = \det(M_3)/\det(A) = 0/-25 = 0$$

$$\therefore x = (4, -3, 0)$$

5.
$$(4, -3, 0)$$

7.
$$(0, -12, 16)$$

Since
$$\det(A^t) = \det(A)$$
,
$$\begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u + kv \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}^t = \det\begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}^t + k \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}^t$$

that is,

$$\det(a_1, \dots, a_{r-1}, u + kv, a_{r+1}, \dots, a_n)$$

$$= \det(a_1, \dots, a_{r-1}, u, a_{r+1}, \dots, a_n) + k \det(a_1, \dots, a_{r-1}, v, a_{r+1}, \dots, a_n)$$

$$, u, v, a'_i s : \text{column vectors in } F^n$$

9.

 (\Rightarrow) SInce the determinant of an upper triangular matrix is the product of its diagonal entries

So A is invertible, $det(A) \neq 0$

thus its diagonal entries are nonzero

 (\Leftarrow) By hypothesis, $det(A) \neq 0$

By the corollary to the theorem 4.7, A is invertible

10.

$$det(M^k) = det(0) = 0$$
$$det(M^k) = det(M \cdots M) = det(M)^k = 0$$
$$\therefore det(M) = 0$$

11.

(i) n is odd

$$\det(M^t) = (-1)^n \det(M) = -\det(M)$$

Since $det(M^t) = det(M)$, det(M) = -det(M)

$$\det(M) = 0$$

(ii) n is even

$$\det(M^t) = (-1)^n \det(M) = \det(M)$$

12.

$$\det(QQ^t) = \det(Q)\det(Q^t) = 1$$

Since
$$det(Q^t) = det(Q), \ det(Q) = \pm 1$$

13.

(a)
$$\det(\overline{M}) = \overline{\det(M)}$$

Let
$$M = A + iB$$
, then

$$\det(\overline{M}) = \det(A - iB) = \det(A) - i\det(B) = \overline{\det(M)}$$

(b)

Since Q is unitary, $det(QQ^*) = det(I) = 1$

$$1 = \det(Q) \det(Q^*)$$

$$= \det(Q) \det(Q*)$$

$$= \det(Q) \det(\overline{Q^t})$$

$$= \det(Q) \overline{\det(Q^t)}$$

$$= \det(Q) \overline{\det(Q)}$$

$$= \mid \det(Q) \mid$$

$$(\Leftarrow)$$
 Since $det(B) \neq 0$, $rank(B) = n$

Let B' be the reduced row echelon form of B,

then rank(B') = n

Moreover $B' = I_n$

By the theorem 3.16, b_i 's consist of a basis for F^n , $i=1,\cdots,n$

 (\Rightarrow) Since β is a basis, $B = I_n$

 $\therefore \det B = 1 \neq 0$

15.

If A, B are similar, then

$$\exists~Q\in M_{n\times n}(F)$$
 : invertible s.t. $A=Q^{-1}BQ$

$$\therefore \det(A) = \det(Q^{-1}BQ)$$

$$= \det(Q^{-1}) \det(B) \det(Q)$$

$$= \det(Q)^{-1} \det(B) \det(Q)$$

 $= \det(B)$

16.

Suppose that det(A) is not invertible

then det(A) = 0

Since $1 = \det(AB) = \det(A)\det(B) = 0$

It's a contradiction

Since n is odd,
$$det(-B) = (-1)^n det(B) = -det(B)$$

Let
$$AB = -BA$$

then
$$det(A) det(B) = det(-B) det(A) = -det(B) det(A)$$

$$\therefore 2 \det(B) = 0$$

Since
$$char(F) \neq 2$$
, $det(B) = 0$

 \therefore B is not invertible

18.

(i) If A is of type 2, then det(A) = k

Since AB is a matrix obtained by multiple of some row of B by the nonzero scalar k,

$$\det(AB) = k \det(B) = \det(A) \det(B)$$

(ii) If A is of type 3, then det(A) = 1

Since AB is a matrix obtained by adding a multiple of some row of B to another row,

$$\det(AB) = \det(B) = \det(A)\det(B)$$

19.

Let $A = (a_{ij})$ be an (2×2) lower triangular matrix, then $\det(A) = a_{11}a_{22}$ Proceeding inductively, suppose that this assertion is true for any $(k \times k)$ lower triangular matrix, then

$$\det(A) = \begin{vmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ \vdots & \ddots & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a_{11}A', \text{ where } A' = \begin{vmatrix} a_{22} & 0 & 0 \\ a_{32} & a_{33} & 0 & 0 \\ \vdots & \ddots & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Since $\det(A') = a_{22}a_{33} \cdots a_{nn}$, so $\det(A) = a_{11}a_{22} \cdots a_{nn}$

Reduce C to upper triangular form with elementary column operations

21.

Reduce C to upper triangular form with elementary row operations then gain reduce A to upper triangular form with elementary column operations

(a)
$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & c_0 & c_0^2 & \cdots & c_0^2 \\ 1 & c_1 & c_1^2 & \cdots & c_1^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & c_n & c_n^2 & \cdots & c_n^2 \end{pmatrix}, f = \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}$$

(b) By the exercise 22 in section 2.4. T is an isomorphism

so $M = [T]^{\gamma}_{\beta}$ is invertible

Thus $det(M) \neq 0$

(c)

Proceed the following column operations;

$$-C_1 \times c_0 + C_2 \Rightarrow C_2$$

$$-C_2 \times c_0 + C_3 \Rightarrow C_3$$

$$-C_n \times c_0 + C_{n+1} \implies C_{n+1}$$

then we have
$$\begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & (c_1 - c_0) & c_1(c_1 - c_0) & \cdots & c_1^{n-1}(c_1 - c_0) \\ 1 & (c_2 - c_0) & c_2(c_2 - c_0) & \cdots & c_2^{n-1}(c_2 - c_0) \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & (c_n - c_0) & c_n(c_n - c_0) & \cdots & c_n^{n-1}(c_n - c_0) \end{vmatrix}$$

$$= (c_1 - c_0)(c_2 - c_0) \cdots (c_n - c_0) \begin{vmatrix} 1 & c_1 & c_1^2 & \cdots & c_1^{n-1} \\ 1 & c_2 & c_2^2 & \cdots & c_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & c_n & c_n^2 & \cdots & c_n^{n-1} \end{vmatrix}$$

$$= (c_1 - c_0)(c_2 - c_0) \cdots (c_n - c_0) \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & (c_2 - c_1) & c_2(c_2 - c_1) & \cdots & c_2^{n-2}(c_2 - c_1) \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & (c_n - c_1) & c_n(c_n - c_1) & \cdots & c_n^{n-2}(c_n - c_1) \end{vmatrix}$$

$$= (c_1 - c_0) \cdots (c_n - c_0)(c_2 - c_1) \cdots (c_n - c_1) \begin{vmatrix} 1 & c_2 & c_2^2 & \cdots & c_n^{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & c_n & c_n^2 & \cdots & c_n^{n-2} \end{vmatrix}$$

$$= \cdots$$

$$= \prod_{0 \le i \le j \le n} (c_j - c_i)$$

a)

So k is the largest number of linearly independent columns of A thus rankA(A)=k

(b)

Since rank(A) = k, there exists $\{a_1, a_2, \dots, a_k\}$ a linearly independent set of columns of A

So
$$A$$
 can be written as
$$\begin{pmatrix}
a_{11} & \cdots & a_{1k} & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{n1} & \cdots & a_{nk} & 0 & \cdots & 0
\end{pmatrix}$$

Since dim(row space A) = dim(column space of A)

Therefore

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & & \vdots & O \\ a_{k1} & \cdots & a_{kk} \\ & O & & O \end{pmatrix}$$

and $det(A) \neq 0$

$$A + tI = \begin{pmatrix} t & 0 & 0 & \cdots & 0 & a_0 \\ -1 & t & 0 & \cdots & 0 & a_1 \\ 0 & -1 & t & \cdots & 0 & a_2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & t & a_{n+2} \\ 0 & 0 & 0 & \cdots & -1 & t + a_{n-1} \end{pmatrix}$$

Let A be a (2×2) matrix, i.e. n = 2

by cofactor expansion along the first column,

$$\det(A + tI) = \begin{vmatrix} t & a_0 \\ -1 & t + a_1 \end{vmatrix} = t^2 + a_1 t + a_0$$

Assume that this assertion holds for (n-1),

$$\det (A + tI) = t \begin{vmatrix} t & 0 & \cdots & 0 & a_1 \\ -1 & t & \cdots & 0 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & t & a_{n-2} \\ 0 & 0 & \cdots & -1 & t + a_{n-1} \end{vmatrix} + \begin{vmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & t & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & t & 1 \\ a_0 & a_2 & a_3 & \cdots & a_{n-2} & t + a_{n-1} \end{vmatrix}$$
$$= t(t^{n-1} + a_{n-1}t^{n-2} + \cdots + a_2t^2 + a_1t + a_0$$
$$= t^n + a_{n-1}t^{n-1} + \cdots + a_2t^2 + a_1t + a_0$$

$$|B| = \sum_{j=0}^{n} c_{jk} A_{jk}$$

$$c_{1k} A_{1k} + c_{2k} A_{2k} + \dots + c_{jk} + \dots + c_{nk} A_{nk}$$

$$= c_{1k} 0 + c_{2k} 0 + \dots + c_{jk} 1 + \dots + c_{nk} 0$$

$$= c_{jk}$$

(b)

Apply Cramer'srule to $Ax = e_j$

we have $\det(M_i) = a_{ji}$ and $x_i = \det(M_i)/\det(A)$ $i = 1, \dots, n$

Since
$$A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = e_j$$
, so $A \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \det(A)e_j$
(c)

By (b),
$$AC = A(c_1), c_2, \cdots, c_n)$$

$$= (Ac_1, Ac_2, \cdots, Ac_n)$$

$$(\det(A)e_1, \det(A)e_2, \cdots, \det(A)e_n)$$

$$\det(A)(e_1, e_2, \cdots, e_n)$$

$$\det(A)I$$
(d)
Since $\det(B) = \det(r_1, \cdots, e_i, \cdots, r_n) = r_{ki}$
so $(r_{1i}, r_{2i}, \cdots, r_{ni})A = \det(A)e_i$
Let $CA = (r_1, r_2, \cdots, r_n)A$

$$= (r_1A, r_2A, \cdots, r_nA)$$

$$= (\det(A)e_1, \det(A)e_2, \cdots, \det(A)e_n)$$

$$\det(A)I$$
If $\det(A) \neq 0$,
by (b), $AC = \det(A)I$
by the above proof, $CA = \det(A)I$

$$\therefore A^{-1} = \det(A)^{-1}C$$
(d)
$$A = ()_{n \times n}, \det(adjA) = (\det A)^{n-1}$$

$$(proof) A = 0 \text{ or } rankA = n \text{ o.k.}$$

$$A \neq 0, rankA \neq n$$

()
$$AX=0$$

 $= n - rankA \ eqn - 1$
 $adjA \quad AX = 0$
 $\Rightarrow adjA$
 $\Rightarrow \det(adjA) = 0 = (\det A)^{n-1}$

In fact,

$$(1)rankA = n \Rightarrow rank(adjA) = n$$

$$(2)rankA = n - 1 \implies rank(adjA) = 1$$

$$(3)rankA \le n-2 \implies rank(adjA) = 0 \ i.e. \ adjA = (0) : zero matrix (?)$$

So $rankA - rank(adjA) \le n - 2$

$$\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix} \Rightarrow \begin{pmatrix}
A_{22} & -A_{12} \\
-A_{21} & A_{11}
\end{pmatrix}$$
(b)
$$\begin{pmatrix}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{pmatrix} \Rightarrow \begin{pmatrix}
16 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 16
\end{pmatrix}$$
(c)
$$\begin{pmatrix}
-4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{pmatrix} \Rightarrow \begin{pmatrix}
10 & 0 & 0 \\
0 & -20 & 0 \\
0 & 0 & -8
\end{pmatrix}$$
(d)

$$\begin{pmatrix}
3 & 6 & 7 \\
0 & 4 & 8 \\
0 & 0 & 5
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
20 & -30 & 20 \\
0 & 15 & -24 \\
0 & 0 & 12
\end{pmatrix}$$
(e)
$$\begin{pmatrix}
1 - i & 0 & 0 \\
4 & 3i & 0 \\
2i & 1 + 4i & -1
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
-3i & 0 & 0 \\
4 & -1 + i & 0 \\
10 + 16i & -5 - 3i & 3 + 3i
\end{pmatrix}$$
(f)
$$\begin{pmatrix}
6 & 22 & 12 \\
12 & -2 & 24 \\
21 & -39 & -27
\end{pmatrix}$$
(g)
$$\begin{pmatrix}
18 & 28 & -6 \\
-20 & -21 & 37 \\
48 & 14 & -16
\end{pmatrix}$$
(h)
$$\begin{pmatrix}
-i & -8 + i & -1 + 2i \\
1 - 5i & 9 - 6i & -3i \\
-1 + i & -6 & -3 + i
\end{pmatrix}$$

$$A \neq (0), \det(A) = 0$$

$$A = (a_{ij})_{m \times n}) = (A^1, \cdots, A^n)$$

Since det(A) = 0, rank(A) < n

 $\exists k(1 \leq k \leq n), \ A^{(k)} = \sum_{j \neq k} b_j A^{(j)}, \ A^{(j)} \text{ is the } jth \text{ column of } A$

Without loss of generality, we may assume k = n

$$(\widetilde{A}_{i(n-1)} = b_1 B_1 + \dots + b_{n-2} B_{n-2} + b_{n-1} B_{n-1})$$

 $\widetilde{A}_{i(n-1)} = \sum_{j=1}^{n-2} b_j B_j + b_{n-1} \widetilde{A}_{in}$, where $B_j = ()_{(n-1)\times(n-1)}$ is the matrix obtained

from \widetilde{A}_{in} by replacing the last column with the jth column $(1 \le k \le n-2)$

Actually
$$C_{i(n-1)} = (\det \widetilde{A}_{i(n-1)}) = \begin{pmatrix} c_{11} & \cdots & c_{1(n-1)} & c_{1n} \\ c_{11} & \cdots & c_{1(n-1)} & c_{1n} \\ \vdots & \vdots & & \vdots \\ c_{11} & \cdots & c_{1(n-1)} & c_{1n} \end{pmatrix}$$

$$= \begin{pmatrix} b_1c_{1n} & b_2c_{1n} & \cdots & b_{n-1}c_{1n} & c_{1n} \\ b_1c_{2n} & b_2c_{2n} & \cdots & b_{n-1}c_{2n} & c_{2n} \\ \vdots & \vdots & & \vdots & \vdots \\ b_1c_{nn} & b_2c_{nn} & \cdots & b_{n-1}c_{nn} & c_{nn} \end{pmatrix}$$

$$= (b_1c^n, \cdots, b_{n-1}c^n, c^n)$$

$$\therefore \det(adj(A)) = 0$$

28.
$$(a) \ T(y+z) = \det \begin{pmatrix} (y+z)(t) & y_1(t) & \cdots & y_n(t) \\ (y+z)'(t) & y_1'(t) & \cdots & y_n'(t) \\ \vdots & \vdots & \cdots & \vdots \\ (y+z)^{(n)}(t) & y_1^{(n)}(t) & \cdots & y_n^{(n)}(t) \end{pmatrix}$$

$$= \det \begin{pmatrix} (y)(t) & y_1(t) & \cdots & y_n(t) \\ (y)'(t) & y_1'(t) & \cdots & y_n'(t) \\ \vdots & \vdots & \cdots & \vdots \\ (y)^{(n)}(t) & y_1^{(n)}(t) & \cdots & y_n^{(n)}(t) \end{pmatrix} + \det \begin{pmatrix} (z)(t) & y_1(t) & \cdots & y_n(t) \\ (z)'(t) & y_1'(t) & \cdots & y_n'(t) \\ \vdots & \vdots & \ddots & \vdots \\ (z)^{(n)}(t) & y_1^{(n)}(t) & \cdots & y_n'(t) \end{pmatrix}$$

$$T(ky)(t) = \det \begin{pmatrix} k(y)(t) & y_1(t) & \cdots & y_n(t) \\ k(y)'(t) & y_1'(t) & \cdots & y_n'(t) \\ \vdots & \vdots & \ddots & \vdots \\ k(y)^{(n)}(t) & y_1^{(n)}(t) & \cdots & y_n'(t) \\ \vdots & \vdots & \ddots & \vdots \\ (y)^{(n)}(t) & y_1^{(n)}(t) & \cdots & y_n'(t) \end{pmatrix}$$

$$= k \det \begin{pmatrix} (y)(t) & y_1(t) & \cdots & y_n(t) \\ (y)'(t) & y_1'(t) & \cdots & y_n'(t) \\ \vdots & \vdots & \ddots & \vdots \\ (y)^{(n)}(t) & y_1^{(n)}(t) & \cdots & y_n'^{(n)}(t) \end{pmatrix}$$

(b) Let
$$M(y) = \begin{pmatrix} (y)(t) & y_1(t) & \cdots & y_n(t) \\ (y)'(t) & y_1'(t) & \cdots & y_n'(t) \\ \vdots & \vdots & \cdots & \vdots \\ (y)^{(n)}(t) & y_1^{(n)}(t) & \cdots & y_n^{(n)}(t) \end{pmatrix}$$

$$\Leftrightarrow T(y) = 0$$

$$\Leftrightarrow rank M(y) = m$$

$$\Leftrightarrow \begin{pmatrix} y_1 \\ y_1' \\ \vdots \\ y_1^{(n)} \end{pmatrix} \in span(\begin{pmatrix} y_2 \\ y_2' \\ \vdots \\ y_2^{(n)} \end{pmatrix}, \dots, \begin{pmatrix} y_n \\ y_n' \\ \vdots \\ y_n^{(n)} \end{pmatrix})$$

$$\Leftrightarrow y(t) \in span(y_1, y_2, \dots, y_n)$$

4.4. Summary-Important Facts about Determinants

- 1. (a) T
- (b) T
- (c) T
- (d) $F(\det(B) = -\det(A))$
- (e) $F(\det(B) = k \det(A))$
- (f) T
- (g) T
- (h) F $(\det(A^t) = \det(A))$
- (i) T
- (j) T
- (k) T
- 2. (a) 22 (b) -29 (c) 2-4i (d) -24+6i
- 3. (a) -12 (b) -13 (c) -12 (d) -13 (e) 22 (f) 4 + 2i (g) -2 (h) 154
- 4. (a) 36 (b) -100 (c) -49 (d) -10 (e) -28 i (f) 17 3i (g) 95
- $5 \ 6. \ 20 \ and \ 21 \ in \ 4.3$

4.5. A characterization of the Determinants

- 1. (a) F
- (b) T
- (c) T
- (d) F $(\delta(B) = -\delta(A))$
- (e) F $(\delta(I) = 1)$
- (f) T (p.238, 239)

2.

Determine all the 1-linear functions $\delta: M_{1\times 1}(F) \to F$ Identity function

3. No Let
$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 + tv \end{pmatrix}$$
, $v = (b_1, b_2, b_3)$
$$\delta(A) = k \neq k + tv = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + t\delta \begin{pmatrix} a_1 \\ a_2 \\ v \end{pmatrix}$$

4. No Let
$$A = \begin{pmatrix} a_1 \\ a_2 + kv \\ a_3 \end{pmatrix}$$
, $v = (b_1, b_2, b_3)$
$$\delta(A) = a_2 \neq a_2 + ka_2 = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k\delta \begin{pmatrix} a_1 \\ v \\ a_3 \end{pmatrix}$$

5. Yes
$$\begin{aligned}
(i) \delta \begin{pmatrix} a_1 + kv \\ a_2 \\ a_3 \end{pmatrix} &= (A_{11} + kb_1)A_{23}A_{32} = A_{11}A_{23}A_{32} + k(b_1A_{23}A_{32}) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} v \\ a_2 \\ a_3 \end{pmatrix} \\
(ii) \delta \begin{pmatrix} a_1 \\ a_2 + kv \\ a_3 \end{pmatrix} &= A_{11}(A_{23} + kb_3)A_{32} = A_{11}A_{23}A_{32} + k(A_{11}b_3A_{32}) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ v \\ a_3 \end{pmatrix} \\
(iii) \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} &= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_2) = A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_3) + k(A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_3) + k(A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_3) + k(A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_3) + k(A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_3) + k(A_{11}A_{23}A_{32} + k(A_{11}A_{23}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \\
&= A_{11}A_{23}(A_{32} + kb_3) + k(A_{11}A_{23}A_{32} + kb_3) + k(A_{11}A_{23}A_{32} + kb_4) + k(A_{11$$

6. No
$$\delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} = A_{11} + A_{23} + (A_{32} + kb_2) \neq (A_{11} + A_{23} + A_{32}) + k(A_{11} + A_{23} + b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ v \end{pmatrix}$$

7. Yes
(i)
$$\delta \begin{pmatrix} a_1 + kv \\ a_2 \\ a_3 \end{pmatrix} = (A_{11} + kb_1)A_{21}A_{32} = A_{11}A_{21}A_{32} + k(b_1A_{21}A_{32}) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} +$$

$$k \begin{pmatrix} v \\ a_2 \\ a_3 \end{pmatrix}$$
(ii) $\delta \begin{pmatrix} a_1 \\ a_2 + kv \\ a_3 \end{pmatrix} = A_{11}(A_{21} + kb_1)A_{32} = A_{11}A_{21}A_{32} + k(A_{11}b_1A_{32}) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ v \\ a_3 \end{pmatrix}$
(iii) $\delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} = A_{11}A_{21}(A_{32} + kb_2) = A_{11}A_{21}A_{32} + k(A_{11}A_{21}b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$

8. No
$$\delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} = A_{11}(A_{31} + kb_1)(A_{32} + kb_2) \neq A_{11}A_{31}A_{32} + k(A_{11}b_1b_2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ v \end{pmatrix}$$

9. No
$$\delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} = A_{11}^2 A_{22}^2 (A_{33} + kb_3)^2 \neq A_{11}^2 A_{22}^2 A_{33}^2 + k(A_{11}^2 A_{22}^2 b_3^2) = \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ v \end{pmatrix}$$

10. Yes

(i)
$$\delta \begin{pmatrix} a_1 + kv \\ a_2 \\ a_3 \end{pmatrix} = (A_{11} + kb_1)A_{22}A_{33} - (A_{11} + kb_1)A_{21}A_{32}$$

$$= A_{11}A_{22}A_{33} - A_{11}A_{21}A_{32} + k(b_1A_{22}A_{33} - b_1A_{21}A_{32})$$

$$= \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} v \\ a_2 \\ a_3 \end{pmatrix}$$
(ii) $\delta \begin{pmatrix} a_1 \\ a_2 + kv \\ a_3 \end{pmatrix} = A_{11}(A_{22} + kb_2)A_{33} - A_{11}(A_{21} + kb_1)A_{32}$

$$= A_{11}A_{22}A_{33} - A_{11}A_{21}A_{32} + k(A_{11}b_2A_{33} - A_{11}b_1A_{32})$$

$$= \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ v \\ a_3 \end{pmatrix}$$
(iii) $\delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 + kv \end{pmatrix} = A_{11}A_{22}(A_{33} + kb_3) - A_{11}A_{21}(A_{32} + kb_2)$

$$= A_{11}A_{22}A_{33} - A_{11}A_{21}A_{32} + k(A_{11}A_{22}b_3 - A_{11}A_{21}b_2)$$

$$= \delta \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + k \begin{pmatrix} a_1 \\ a_2 \\ v \end{pmatrix}$$

(i) Corollary 2 to the theorem 4.10(p.241)

Let
$$M = (a_1, a_2, \dots, a_n)^t$$
, $a_i's$: rows of M

Since rank(M) < n,

some row of M, say r, is a linear combination of the other rows

That is,
$$\exists c_1, \dots, c_{r-1}, c_{r+1}, \dots, c_n \in F$$
 s.t.

$$a_r = c_1 a_1 + \dots + c_{r-1} a_{r-1} + c_{r+1} a_{r+1} + \dots + c_n a_n$$

If M' is obtained from M by adding $-c_i$ times row i to row r for each $i \neq r$,

then row r of M' consists entirely of zeros, so $\delta(M') = 0$

But by the corollary 1 to the theorem 4.10, $\delta(M') = \delta(M)$

$$\therefore \ \delta(M) = 0$$

(i) Corollary 3 to the theorem 4.10

By the theorem 4.10 (a), $\delta(E_1) = -\delta(I)$

By the *n*-linearity, $\delta(E_2) = k\delta(I)$

By the corollary 1 to the theorem 4.10, $\delta(E_3) = \delta(I)$

12. Theorem 4.11

(i)
$$A = E_1 \implies \delta(E_1) = -1$$

$$\delta(AB) = -\delta(B) = \delta(A)\delta(B)$$

(ii)
$$A = E_2 \implies \delta(E_2) = k$$

$$\delta(AB) = k\delta(B) = \delta(A)\delta(B)$$

(ii)
$$A = E_3 \implies \delta(E_3) = 1$$

$$\delta(AB) = \delta(B) = \delta(A)\delta(B)$$

13.

$$\forall A \in M_{2\times 2}(F), \ A = (a_1, a_2), \ v = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \ a_i : \text{columns of } A$$

(i)
$$\det(a_1, a_2 + kv) = \det(a_1, a_2) + k \det(a_1, v)$$

(ii)
$$\det(a_1 + kv, a_2) = \det(a_1, a_2) + k \det(v, a_2)$$

$$\text{Let } A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \ a_i : \text{rows of } A, \ v = (b_1, b_2)$$

$$\text{(i) } \delta \begin{pmatrix} a_1 + kv \\ a_2 \end{pmatrix} = \delta \begin{pmatrix} A_{11} + kb_1 & A_{12} + kb_2 \\ A_{21} & A_{22} \end{pmatrix} = (A_{11} + kb_1)A_{22}a + (A_{11} + kb_1)A_{21}b + (A_{12} + kb_2)A_{22}c + (A_{12} + kb_2)A_{21}d$$

$$\delta \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \delta \begin{pmatrix} v \\ a_2 \end{pmatrix} = A_{11}A_{22}a + A_{11}A_{21}b + A_{12}A_{22}c + A_{12}A_{21}d + k(A_{22}b_1a + A_{21}b_1b + A_{22}b_2c + A_{21}b_1d)$$

$$\text{(ii) } \delta \begin{pmatrix} a_1 \\ a_2 + kv \end{pmatrix} = \delta \begin{pmatrix} A_{11} & A_{12} \\ A_{21} + kb_1 & A_{22} + kb_2 \end{pmatrix} = A_{11}(A_{22} + kb_2)a + A_{11}(A_{21} + kb_1)b + A_{12}(A_{22} + kb_2)c + A_{12}(A_{21} + kb_1)d$$

$$\delta \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \delta \begin{pmatrix} a_1 \\ v \end{pmatrix} = A_{11}A_{22}a + A_{11}A_{21}b + A_{12}A_{22}c + A_{12}A_{21}d + k(A_{11}b_2a + A_{11}b_1b + A_{12}b_2c + A_{12}b_1d)$$

$$(\Rightarrow) \text{ Let } A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_{2 \times 2}(F)$$

$$\delta(A) = \delta \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{pmatrix} + \delta \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$

$$= \delta \begin{pmatrix} A_{11} & 0 \\ A_{21} & 0 \end{pmatrix} + \delta \begin{pmatrix} 0 & A_{12} \\ A_{21} & 0 \end{pmatrix} + \delta \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} + \delta \begin{pmatrix} 0 & A_{12} \\ 0 & A_{22} \end{pmatrix}$$

$$= A_{11}A_{21}\delta \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + A_{12}A_{21}\delta \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + A_{11}A_{22}\delta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + A_{12}A_{22}\delta \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$
 Since δ is $2 - linear$ function,
$$\delta \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} = \delta \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = 0, \ \delta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1, \ \delta \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1$$
 Let $a = 1, \ b = 0, \ c = 0, \ d = -1$

then
$$\delta(A) = A_{11}A_{21} \cdot 0 + A_{12}A_{21} \cdot (-1) + A_{11}A_{22} \cdot 1 + A_{12}A_{22} \cdot 0$$

If
$$\delta(I) = t$$
, then

$$\delta(E_1) = -t = t \det(E_1)$$

$$\delta(E_2) = kt = t \det(E_2)$$

$$\delta(E_3) = t = t \det(E_3)$$

$$\delta(E) = -t \det(E)$$

 $= a\delta_1 \begin{pmatrix} a_1 \\ \vdots \\ a_r \\ \vdots \end{pmatrix} + b\delta_2 \begin{pmatrix} a_1 \\ \vdots \\ a_r \\ \vdots \end{pmatrix} + k(a\delta_1 \begin{pmatrix} a_1 \\ \vdots \\ v \\ \vdots \end{pmatrix} + b\delta_2 \begin{pmatrix} a_1 \\ \vdots \\ v \\ \vdots \end{pmatrix})$

$$= (a\delta_1 + b\delta_2) \begin{pmatrix} a_1 \\ \vdots \\ a_r \\ \vdots \\ a_n \end{pmatrix} + k(a\delta_1 + b\delta_2) \begin{pmatrix} a_1 \\ \vdots \\ v \\ \vdots \\ a_n \end{pmatrix}$$

18. V: the set of all $m \times n$ matrices with entries from a field F is a vector space, and $W \subseteq V$

(i) By the exercise 17,

$$\forall \delta_1, \delta_2, \delta_1 + \delta_2 \in W \text{ and } c\delta_1 \in W$$

(ii) By the example in p.238, $O \in W$

19.

Let
$$M = (a_1, a_2, \dots, a_n)^t$$
, $a_i's$: rows of M

Say a_i and a_j are identical rows in M

If M' is obtained from M by interchanging a_i and a_j ,

then
$$\delta(M') = -\delta(M)$$

Since
$$a_i = a_j$$
, $\delta(M') = \delta(M)$

therefore
$$2\delta(M) = 0$$

Since
$$char(F) \neq 2, \ \delta(M) = 0$$

In
$$\mathbb{Z}_2$$
, $2\delta(M) = 0 \implies \delta(M) = 0$