PREDICT DIABETES

DIABETES DATASET

Koch Elliot

TABLE OF CONTENTS

01

ABOUT DATASET

DATA VISUALISATION

02

PRE-PROCESSING

PREPARE DATASET FOR PREDICTION STEP

03

TRAINING

PREDICTING DIABETES USING DIFFERENT METHODS

IMPROVEMENTS

FINAL RESULTS / WORDS
ON THE PROJECT

+

01

+ ABOUT DATASET

DATA VISUALISATION

Insuline, AC1 result, metformin...
31 columns

MEDICAL INFO

Age, Weight, Admission_type...
18 columns

DiabetesMed 1 column

PATIENT INFORMATIONS

~101K patients inside the dataset (rows)

- 1. Caucasian \rightarrow 76k
- 2. African American \rightarrow 19k
- **3.** Hispanic → 2k
- 4. Other \rightarrow 2k
- 5. Asian \rightarrow 1.5k
- 6. $? \rightarrow 700$

4

+

PATIENT INFORMATIONS

- 1. Male \rightarrow 46k
- 2. Female \rightarrow 55k

+

+

MALES PATIENT

FEMALES PATIENT

+

PATIENT: ADMISSION TYPE

~101K patients inside the dataset (rows)

- **1.** Emergency \rightarrow 54k
- 2. Urgent \rightarrow 18k
- 3. Elective \rightarrow 19k
- $4. \text{ Null} \rightarrow 5k$
- **5.** ..

DISCHARGE DISPOSITION

- **1.** Discharged to home \rightarrow 60k
- 2. Discharged to SNF \rightarrow 14k
- 3. Discharged to home with home healthy services → 13k
- 4. Null $\rightarrow 4k$
- 5. ..

Discharged/transferred to SNF

service

Discharged/transferred to home with home health

ADMISSION SOURCE

- **1.** Emergency room \rightarrow 58k
- 2. Physician referral \rightarrow 30k
- 3. Null \rightarrow 7k
- **4.** ...

PRE-PROCESSING

PREPARE DATASET FOR PREDICTION

DATASET **REMOVE "?" VALUE DATASET 1 DATASET 2** Select **Admission Type / Source** and **Discharge** One Hot Encoder disposition **Correlation Matrix** to select "k" features Normalise the columns (0,1)

DATASET 1

ONE-HOT-ENCODER

Type: STRING

INSULINE	INSULINE_YES	INSULINE_NO
Yes	1	0
No	0	1
Yes	1	0
No	0	1

+

CORRELATION MATRIX

DATASET NORMALISATION

MIN-MAX SCALER

The datasets have some column (diag_1...) related to the patients diagnoses which is about float value

For each column, it maps the smaller value to 0 and the higher to 1. And maps the other between [0,1]

200 ————

SUMMARY

DATASET	DATASET 1	DATASET 2
BEFORE PRE-PROCESSING	101′766 x 50	101′766 x 50
BEFORE ONE-HOT-ENCODER	63′685 x 50	89′782 x 50
BEFORE MATRIX CORRELATION	63′685 x 105	89′782 x 105
AFTER PRE-PROCESSING	63'685 x 30	89′782 x 30

03

TRAINING

PREDICTING DIABETES USING DIFFERENT METHODS

SUMMARY OF TRAINING

ACCURACY

	DATASET 1	DATASET 2
LOGISTIC REGRESSION	0.99905	0.99504
DECISION TREES	0.99897	0.99515
SUM	0.99921	0.99532
DEEP LEARNING	0.9960	0.99590

DL OPTIMISATION: EPOCHS

DL OPTIMISATION: BATCH

DL OPTIMISATION: L_R

DEEP LEARNING SUMMARY

	DATASET 1
BEFORE OPTIMISATION	Accuracy: 0.9960 Loss: 0.0022
AFTER OPTIMISATION	Accuracy: 0.9989 Loss: 0.0008

ACTIVATION FUNCTION AND DROPOUT

- Added dropout
- Choose relu as activation functions
- Huber Loss function → less sensitive to outliers in data

IMPROVEMENTS

FINAL RESULTS / WORDS ON THE PROJECT

POSSIBLE IMPROVEMENTS

VISUALISATION

Enhance data visualization by categorizing patients based on whether they have diabetes or not.

PRE-PROCESSING

Replace '?' with values similar to the rows (data) they most closely resembled by taking an average.

Choose a different number of columns (k) to select from the correlation matrix.

TRAINING

Dataset 2: Optimizing hyperparameters for the deep learning model

Deep-Learning: Optimize the number of layers and nodes per layers

DATA VISUALISATION DATA PRE-PROCESSING

- Understand the dataset
- Visualise important columns
- Help the pre-processing

- Manage the "?"
- Apply O-H-E, Corr-Matrix
- Normalise all the data

DATA PREDICTION

- Use several methods
- Focus on deep learning (Dataset 1)
- Hyperparameters optimisation

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

