The Euler-lagrange Eq.

Now let us establish the Euler-Lagrange equation for (P) more explicitly. Note that

Similarly, me find that

$$= \Omega(\mu)\dot{\xi}.$$

Hence, after rescaling the μ , the Euler - Lagrange equation reads

(EL)
$$G\ddot{\xi} - \Omega(\mu)\dot{\xi} = 0$$
.

that is of mean zero, we have

and finally by setting $\eta:=G^{1/2}$ } we find

(EI")
$$\dot{\eta} - \dot{\Omega}(\mu)\eta = 0$$

where $\widetilde{\Omega}(\mu) = \overline{Z}_{i\in\mathbb{N}_{0}}\mu_{i}$ G^{2} M_{i} $G^{4|2}$. So the solution of (E(") is simply given by $\eta(t) = \exp(\widetilde{\Omega}(\mu)t)\eta_{o}$ where $\eta_{o} := \eta(o)$.

Note that $\widetilde{\Omega}(\mu) \in Skew_{\eta}(\mathbb{R})$. Hence, we find $Q \in O(4)$ (c.f. previous section) such that $\widetilde{\Omega}(\mu) = Q \widetilde{\Sigma}(\mu) Q^{T}$ with

$$\sum_{k=0}^{N} (\mu) =
\begin{pmatrix}
0 & 0_{1k}(\mu) & 0 & 0 \\
0 & 0_{1k}(\mu) & 0 & 0 & 0 \\
0 & 0 & 0_{2k}(\mu) & 0
\end{pmatrix}$$

Setting $\phi := Q \eta$ yields $\phi(t) = \exp(\hat{Z}(\mu)t)\phi_0$ with $\phi_0 := Q \eta_0$.

A straightforward computation shows that

$$\varphi(t) = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,12} \\ \varphi_{0,12} \\ \varphi_{0,13} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,12} \\ -\varphi_{0,14} \\ \varphi_{0,13} \end{pmatrix} + \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,12} \\ -\varphi_{0,14} \\ \varphi_{0,13} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,12} \\ \varphi_{0,13} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,12} \\ -\varphi_{0,14} \\ \varphi_{0,13} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,12} \\ \varphi_{0,13} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,13} \\ -\varphi_{0,14} \\ \varphi_{0,13} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,13} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,13} \\ -\varphi_{0,14} \\ \varphi_{0,13} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,13} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,13} \\ -\varphi_{0,14} \\ \varphi_{0,13} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,13} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,13} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \sin(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} = \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \\ \varphi_{0,14} \end{pmatrix} + \cos(\sigma_2(\mu)t) \begin{pmatrix} \varphi_{0,14} \\ \varphi_$$

which clearly shows that \$ 1s a rotation in two orthogonal planes. Setting

$$\varphi_{\Delta} := \begin{pmatrix} \varphi_{012} \\ \varphi_{012} \\ 0 \\ 0 \end{pmatrix} : \varphi_{\Delta}^{1} := \begin{pmatrix} \varphi_{011} \\ -\varphi_{w11} \\ 0 \\ 0 \end{pmatrix} : \varphi_{\Delta}^{2} := \begin{pmatrix} \varphi_{011} \\ -\varphi_{w11} \\ 0 \\ 0 \end{pmatrix} : \varphi_{\Delta}^{2} := \begin{pmatrix} \varphi_{011} \\ -\varphi_{w11} \\ \varphi_{013} \\ 0 \end{pmatrix}$$

we clearly see that these vectors are painwise orthogonal.

Resubstituting the basis transformations, we find that a solution } must be of the form

$$\frac{3}{5}(t) = \sum_{i \in \mathbb{N}_2} \left[\cos(\sigma_i(\mu)t) a_i + \sin(\sigma_i(\mu)t) a_i' \right]$$

where Span ($a_{2,a_{1}}', a_{2,a_{2}}') = \mathbb{R}^{4}$ and the nectors $Ua_{2}, Ua_{2}', Ua_{2}, Ua_{2}'$ are G-orthogonal.

Setting $a_i' := Ua_i$, $a_i' := Ua_i'$, $i \in \mathbb{N}_2$, we see from the relation between dp and the Fourier coefficients of $n = U^{-\frac{3}{2}}$ that we cannot have $\sigma_2(n) = \sigma_2(n)$ since

canné avec CamScanner