

CHAPTER 30 Database Security

30.1 Introduction to Database Security Issues

- Database security a broad area
 - Legal, ethical, policy, and system-related issues
- Threats to databases
 - Loss of integrity
 - Improper modification (insert, delete, etc.) of information
 - Lost of integrity, authorized changes (accidentally or intentional. It could result in more inaccuracies, errors.
 - Loss of availability
 - Legitimate user cannot access data objects
 - Loss of confidentiality
 - Unauthorized disclosure of confidential information
 - Violation of data protection acts, loss of public confidence

Introduction to Database Security Issues (cont'd.)

- Database works as part of a network of services
 - Applications, Web servers, firewalls, SSL terminators, and security monitoring systems
- Types of database control measures
 - Access control
 - Inference control
 - Flow control
 - Encryption

Introduction to Database Security Issues (cont'd.)

- Discretionary security mechanisms
 - Used to grant privileges to users
- Mandatory security mechanisms
 - Classify data and users into various security classes
 - Implement security policy
- Role-based security

Introduction to Database Security Issues (cont'd.)

- Control measures
 - Access control
 - Handled by creating user accounts and passwords
 - Inference control
 - Must ensure information about individuals cannot be accessed
 - Flow control
 - Prevents information from flowing to unauthorized users
 - Data encryption
 - Used to protect sensitive transmitted data

Database Security and the DBA

- Database administrator (DBA)
 - Central authority for administering database system
 - Superuser or system account
- DBA-privileged commands
 - Account creation
 - New accounts and passwords for a (group) users
 - Privilege granting: grant access to accounts
 - Privilege revocation: cancel such priviliages
 - Security level assignment

Access Control, User Accounts, and Database Audits

- User must log in using assigned username and password
- Login session
 - Sequence of database operations by a certain user
 - Recorded in system log
- Database audit
 - Reviewing log to examine all accesses and operations applied during a certain time period
 - DBA can show who made changes. Especially for sensitive data

Sensitive Data and Types of Disclosures

- Sensitivity of data
 - Inherently sensitive
 - E.g. salary, or a patient has HIV
 - From a sensitive source
 - E.g. an informer whose ID must be kept secret
 - Declared sensitive
 - The owner may have declared it as sensitive
 - A sensitive attribute or sensitive record
 - Eg. A particular attribute
 - Sensitivity in relation to previously disclosed data
 - E.g. a location associated with a crime event

Sensitive Data and Types of Disclosures (cont'd.)

- Factors in deciding whether it is safe to reveal the data
 - Data availability
 - Not available when being updated by other users (concurrency control)
 - Access acceptability
 - Authorized users
 - Authenticity assurance
 - External characteristics of the user
 - Example: access only allowed during working hours

Sensitive Data and Types of Disclosures (cont'd.)

- Typically a tradeoff between precision and security
- Ideal combination: maximize precision with perfect security
- Precision
 - Protect all sensitive data while making available as much nonsensitive data as possible
- Security
 - Ensuring data kept safe from corruption and access suitably controlled

Relationship Between Information Security and Information Privacy

- Concept of privacy goes beyond security
 - Ability of individuals to control the terms under which their personal information is acquired and used
 - Security a required building block for privacy
- Preventing storage of personal information
- Ensuring appropriate use of personal information
- Trust relates to both security and privacy

30.2 Discretionary Access Control Based on Granting and Revoking Privileges

- Two levels for assigning privileges to use a database system
 - Account level
 - DBA specifies privileges for each account

Example: CREATE SCHEMA or CREATE TABLE privilege
File 1 File 2 File 3 Program 1

Not defined for SQL2

Relation (or table) level

own

read write

Ann

read

write

- DBA specifies privileges for each relation (view)
- Defined for SQL2

execute

	File 1	File 2	File 3	Program 1
Ann	own read write	read write		execute
Bob	read		read write	
Carl		read		execute read

Discretionary Access Control (cont'd.)

- Relation or table level (cont'd.)
 - Each relation R assigned an owner account
 - Owner of a relation given all privileges on that relation
 - Owner can grant privileges to other users on any owned relation
 - SELECT (retrieval or read) privilege on R
 - Modification privilege on R
 - References privilege on R

Specifying Privileges Through the Use of Views

- Consider owner A of relation R and other party B
 - A can create view V of R that includes only attributes A wants B to access
 - Grant SELECT on V to B
- Can define the view with a query that selects only those tuples from R that A wants B to access

Revocation and Propagation of Privileges

- Revoking of Privileges
 - Useful for granting a privilege temporarily
 - REVOKE command used to cancel a privilege
- Propagation of privileges using the GRANT OPTION
 - If GRANT OPTION is given, B can grant privilege to other accounts
 - DBMS must keep track of how privileges were granted if DBMS allows propagation

30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security

- Mandatory access control
 - Additional security policy that classifies data and users based on security classes
 - Typical security classes
 - Top secret
 - Secret
 - Confidential
 - Unclassified
 - Bell-LaPadula model
 - Subject and object classifications

Mandatory Access Control and Role-Based Access Control for Multilevel Security (cont'd.)

- Simple security property
 - Subject S not allowed read access to object O unless class(S)≥class(O)
- Star property
 - Subject not allowed to write an object unless class(S)≤class(O)
 - Prevent information from flowing from higher to lower classifications
- Attribute values and tuples considered as data objects

(a) EMPLOYEE

Name	Salary	JobPerformance		TC
Smith U	40000 C	Fair	S	S
Brown C	80000 S	Good	С	S

Figure 30.2 A multilevel relation to illustrate multilevel security (a) The original EMPLOYEE tuples (b) Appearance of EMPLOYEE after filtering for classification C users (c) Appearance of EMPLOYEE after filtering for classification U users (d) Polyinstantiation of the Smith tuple

Top secret Secret Confidential Unclassified

(b) EMPLOYEE

Name	Salary	JobPerformance	
Smith U	40000 C	NULL C	С
Brown C	NULL C	Good C	С

(c) EMPLOYEE

Name	Salary	JobPerformance	TC
Smith U	NULL U	NULL U	U

(d) EMPLOYEE

Name	Salary	JobPerformance		TC
Smith U	40000 C	Fair	S	S
Smith U	40000 C	Excellent	С	С
Brown C	80000 S	Good	С	S

Comparing Discretionary Access Control and Mandatory Access Control

- DAC policies have a high degree of flexibility
 - Do not impose control on how information is propagated
- Mandatory policies ensure high degree of protection
 - Rigid
 - Prevent illegal information flow

Role-Based Access Control

- Permissions associated with organizational roles
 - E.g. Roles: manager, purchase agent.
 - Multiple users may assigned to a role.
 - Privileges are associated to a role
- Can be used with traditional discretionary and mandatory access control
- Mutual exclusion of roles
 - Authorization time exclusion
 - Runtime exclusion
- Identity management (a unique name for a user)

Role-Based Access Control

Label-Based Security and Row-Level Access Control

- Sophisticated access control rules implemented by considering the data row by row
- Each row given a label
 - Used to prevent unauthorized users from viewing or altering certain data
- Provides finer granularity of data security
- Label security policy
 - Defined by an administrator

30.4 SQL Injection

- SQL injection
 - Most common threat to database system
- Other common threats
 - Unauthorized privilege escalation
 - A user attempts to attack vulnerable points using his existing privileges
 - Privilege abuse
 - E.g. A DBA abuses his privileges to add money in customer's account
 - Denial of service by making resources unavailable
 - Weak authentication:
 - an attacker impersonates someone else

SQL Injection Methods

- Attacker injects a string input through the application
 - Changes or manipulates SQL statement to attacker's advantage
- Unauthorized data manipulation or execution of systemlevel commands
- SQL manipulation
 - Changes an SQL command in the application
 - Example: adding conditions to the WHERE clause

```
SELECT * FROM users WHERE username = 'jake' and PASSWORD = 
'jakespasswd';
```

The attacker can try to change (or manipulate) the SQL statement by changing it as follows:

```
SELECT * FROM users WHERE username = 'jake' and (PASSWORD = 'jakespasswd' or 'x' = 'x');
```

SQL Injection Methods (cont'd.)

- SQL manipulation (cont'd.)
 - Typical manipulation attack occurs during database login
- Code injection
 - Add additional SQL statements or commands that are then processed
- Function call injection
 - Database or operating system function call inserted into vulnerable SQL statement to manipulate data or make a privileged system call

Risks Associated with SQL Injection

- Database fingerprinting
- Denial of service
- Bypassing authentication
- Identifying injectable parameters
- Executing remote commands
- Performing privilege escalation

30.5 Introduction to Statistical Database Security

- Statistical databases used to provide statistics about various populations
 - Users permitted to retrieve statistical information
 - Must prohibit retrieval of individual data
- Population: set of tuples of a relation (table) that satisfy some selection condition

Figure 30.3 The PERSON relation schema for illustrating statistical database security

Introduction to Statistical Database Security (cont'd.)

Only statistical queries are allowed

Q1: SELECT COUNT (*)FROM PERSON
WHERE <condition>;
Q2: SELECT AVG (Income) FROM PERSON
WHERE <condition>;

- Preventing the inference of individual information
 - Provide minimum threshold on number of tuples
 - Prohibit sequences of queries that refer to the same population of tuples
 - Introduce slight noise or inaccuracy
 - Partition the database
 - Store records in groups of minimum size

Hospital Patient Data

DOB	Sex	Zipcode	Disease
1/21/76	Male	53715	Heart Disease
4/13/86	Female	53715	Hepatitis
2/28/76	Male	53703	Brochitis
1/21/76	Male	53703	Broken Arm
4/13/86	Female	53706	Flu
2/28/76	Female	53706	Hang Nail

Hospital Patient Data

DOB	Sex	Zipcode	Disease
1/21/76	Male	53715	Heart Disease
4/13/86	Female	53715	Hepatitis
2/28/76	Male	53703	Brochitis
1/21/76	Male	53703	Broken Arm
4/13/86	Female	53706	Flu
2/28/76	Female	53706	Hang Nail

Vote Registration Data

Name	DOB	Sex	Zipcode
Andre	1/21/76	Male	53715
Beth	1/10/81	Female	55410
Carol	10/1/44	Female	90210
Dan	2/21/84	Male	02174
Ellen	4/19/72	Female	02237

Hospital Patient Data

DOB	Sex	Zipcode	Disease
1/21/76	Male	53715	Heart Disease
4/13/86	Female	53715	Hepatitis
2/28/76	Male	53703	Brochitis
1/21/76	Male	53703	Broken Arm
4/13/86	Female	53706	Flu
2/28/76	Female	53706	Hang Nail

Vote Registration Data

Name	DOB	Sex	Zipcode
Andre	1/21/76	Male	53715
Beth	1/10/81	Female	55410
Carol	10/1/44	Female	90210
Dan	2/21/84	Male	02174
Ellen	4/19/72	Female	02237

Andre has heart disease!

Hospital Patient Data

DOB	Sex	Zipcode	Disease
1/21/76	Male	53715	Heart Disease
4/13/86	Female	53715	Hepatitis
2/28/76	Male	53703	Brochitis
1/21/76	Male	53703	Broken Arm
4/13/86	Female	53706	Flu
2/28/76	Female	53706	Hang Nail

	Zipcode	Age	Disease
	476**	2*	Heart Disease
	476**	2*	Heart Disease
	476**	2*	Heart Disease
	4790*	≥40	Flu
	4790*	≥40	Heart Disease
	4790*	≥40	Cancer
0	476**	3*	Heart Disease
Copyright © 2016	Ramez Elmasn	anu Shamka	nt b. Navatne

Vote Registration Data

Name	DOB	Sex	Zipcode
Andre	1/21/76	Male	53715
Beth	1/10/81	Female	55410
Carol	10/1/44	Female	90210
Dan	2/21/84	Male	02174
Ellen	4/19/72	Female	02237

Hospital Patient Data

DOB	Sex	Zipcode	Disease
1/21/76	Male	53715	Heart Disease
4/13/86	Female	53715	Heart Disease
2/28/76	Male	53703	Heart Disease
1/21/76	Male	53703	Heart Disease
4/13/86	Female	53706	Heart Disease
2/28/76	Female	53706	Hang Nail

Vote Registration Data

Name	DOB	Sex	Zipcode
Andre	1/21/76	Male	53715
Beth	1/1/81	Female	55410
Carol	10/1/44	Female	90210
Dan	2/21/84	Male	02174
Ellen	4/19/72	Female	02237

I know already that the last record has a Hang Nail. A statistical query about the amount of patients having Heart disease (i.e. 5 patients) will also show that 5 first patients have heart disease

30.7 Encryption and Public Key Infrastructures

- Encryption converts data into cyphertext
 - Performed by applying an encryption algorithm to data using a prespecified encryption key
 - Resulting data must be decrypted using a decryption key to recover original data
- Data Encryption Standard (DES)
 - Developed by the U.S. Government for use by the general public
- Advanced Encryption Standard (AES)
 - More difficult to crack

Encryption and Public Key Infrastructures (cont'd.)

- Symmetric key algorithms
 - Also called secret key algorithms
 - Need for sharing the secret key
 - Can apply some function to a user-supplied password string at both sender and receiver
- Public (asymmetric) key encryption
 - Involves public key and private key
 - Private key is not transmitted
 - Two keys related mathematically
 - Very difficult to derive private key from public key

Encryption and Public Key Infrastructures (cont'd.)

- Public (asymmetric) key encryption steps
 - Each user generates a pair of keys to be used for encryption and decryption of messages
 - Each user places public key in a public register or other accessible file
 - Keeps companion key private
 - Sender encrypts message using receiver's public key
 - Receiver decrypts message using receiver's private key
- RSA public key encryption algorithm

Digital Signatures

- Using encryption techniques to provide authentication in applications
- Like signatures, Associates a text with a person
- Consist of string of symbols
- Each is unique
 - Function of the message it is signing, along with a timestamp
 - Depends on secret number unique to the signer
 - Associates a text with a person
- Public key techniques used to create digital signatures signatures

Digital Certificates

- Combines value of a public key with the identity of the person or service that holds the corresponding private key into a digitally signed statement
- E.g. Verisign: verifies the identity of Easyjet
- Information included in the certificate
 - Owner information
 - Public key of the owner
 - Date of certificate issue and validity period
 - Issuer identification
 - Digital signature
 Copyright 2016 Ramez Elmasri and Shamkant B. Navathe