Mechanical and physical properties of screws

according to ISO 898, part 1

The mechanical properties are given for tests at room temperature.

2 I 3 S I 4 S	Tensile strength, R _m , MPa, [N/mm²] Lower yield strength, R _{et.} d, MPa, [N/mm²] Stress at 0,2% non-proportional elongation R _{p0.2} , MPa, [N/mm²] Stress at 0,0048 d non-proportional elongation for full-size fasteners R _{p1} , MPa, [N/mm²] Stress under proof load, S _p ¹, MPa, [N/mm²]	nom.° min. nom.° min. nom.° min. nom.°	4.6 400 400 240 240 -	4.8 400 420 -	5.6 500 500 300	5.8 500 520	6.8 600 600	8.8 d ≤ 16 mm ^a 800	d > 16 mm ^b 800	9.8 d≤16 mm 900	10.9	12.9/ 12.9
2 I 3 ; 1 4 ;	Lower yield strength, R _{eL} ^d , MPa, [N/mm²] Stress at 0,2 % non-proportional elongation R _{p,0,2} , MPa, [N/mm²] Stress at 0,0048 d non-proportional elongation for full-size fasteners R _{pt} MPa, [N/mm²] Stress under proof load, S _p ^t , MPa, [N/mm²]	min. nom.c min. nom.c min.	400 240 240	420	500			mm ^a	mm ^b	mm	1000	
2 I 3 ; 1 4 ;	Lower yield strength, R _{eL} ^d , MPa, [N/mm²] Stress at 0,2 % non-proportional elongation R _{p,0,2} , MPa, [N/mm²] Stress at 0,0048 d non-proportional elongation for full-size fasteners R _{pt} MPa, [N/mm²] Stress under proof load, S _p ^t , MPa, [N/mm²]	min. nom.c min. nom.c min.	400 240 240	420	500				800	900	1000	4000
2 I 3 ; 1 4 ;	Lower yield strength, R _{eL} ^d , MPa, [N/mm²] Stress at 0,2 % non-proportional elongation R _{p,0,2} , MPa, [N/mm²] Stress at 0,0048 d non-proportional elongation for full-size fasteners R _{pt} MPa, [N/mm²] Stress under proof load, S _p ^t , MPa, [N/mm²]	nom.º min. nom.º min.	240 240	-		520	600	000				1200
3 5	Stress at 0,2 % non-proportional elongation $R_{p,0,2}$, MPa, [N/mm²] Stress at 0,0048 d non-proportional elongation or full-size fasteners $R_{p,i}$, MPa, [N/mm²] Stress under proof load, S_p^i , MPa, [N/mm²]	min. nom.º min.	240		300			800	830	900	1040	1220
3 5	Stress at 0,2 % non-proportional elongation $R_{p,0,2}$, MPa, [N/mm²] Stress at 0,0048 d non-proportional elongation or full-size fasteners $R_{p,i}$, MPa, [N/mm²] Stress under proof load, S_p^i , MPa, [N/mm²]	nom.º min.		-		-	_	-	-	_	-	-
4 5 1	$R_{p,2}$, MPa, [N/mm²] Stress at 0,0048 d non-proportional elongation for full-size fasteners R_{pl} , MPa, [N/mm²] Stress under proof load, S_p , MPa, [N/mm²]	min.	-		300	-	_	-	_	_	-	-
4 S	Stress at 0,0048 d non-proportional elongation for full-size fasteners R _{pt} MPa, [N/mm²] Stress under proof load, S _p *, MPa, [N/mm²]			-	_	-	_	640	640	720	900	1080
1	for full-size fasteners R _{pf} , MPa, [N/mm²] Stress under proof load, S _p f, MPa, [N/mm²]	nom.c	-	-	_	-	_	640	660	720	940	1100
_	Stress under proof load, S _p f, MPa, [N/mm²]		-	320	_	400	480	-	-	_	-	-
5 3		min.	_	340e	-	420e	480e	-	-	-	-	-
	O /D	nom.	225	310	280	380	440	580	600	650	830	970
	$S_{p, nom}/R_{eL min}$ or		0,94	0,91	0,93	0,90	0,92	0,91	0,91	0,90	0,88	0,88
1	Proof strength ratio $S_{p, nom}/R_{p0.2 \text{ min}}$ or $S_{p, nom}/R_{pf \text{ min}}$											
	Percentage elongation after fracture for machined est pieces, A, %	min.	22	-	20	-	-	12	12	10	9	8
	Percentage reduction of area after fracture for machined test pieces, Z, %	min.	-	-	-	-	-	52	52	48	48	44
	Elongation after fracture for full-size fasteners, A _f (see also ISO 898-1 Annex C)	min.	-	0,24	-	0,22	0,20	-	-	_	-	-
9 1	Head soundness		no frac	ture				'				
۱0 ۱	Vickers hardness, HV	min.	120	130	155	160	190	250	255	290	320	385
- 1	F ≥ 98 N	max.	220g	220g	220 ^g	220 ⁹	250	320	335	360	380	435
	Brinell hardness, HBW	min.	114	124	147	152	181	238	242	276	304	366
- 1	F = 30 D ²	max.	209 ^g	209 ⁹	209 ^g	209 ⁹	238	304	318	342	361	414
12 I	Rockwell hardness, HRB	min.	67	71	79	82	89	-	-	_	-	-
		max.	95,0 ^g	95,0 ^g	95,0 ^g	95,0 ^g	99,5	-	-	-	-	-
1	Rockwell hardness, HRC	min.	-	-	-	-	-	22	23	28	32	39
		max.	-	-	-	-	-	32	34	37	39	44
13 \$	Surface hardness, HV 0,3	max.	-	-	-	-	-	h	h	h	h,i	h, j
	Height of non-decarburized thread zone, E, mm	min.	-	-	-	-	-	1/ ₂ H ₁	1/ ₂ H ₁	¹/ ₂ H ₁	² / ₃ H ₁	3/ ₄ H ₁
	Depth of complete decarburization in the thread, G, mm	max.	-	-	-	-	-	0,015	0,015	0,015	0,015	0,015
15 I	Reduction of hardness after retempering, HV	max.	_	-	-	-	_	20	20	20	20	20
	Breaking torque, M _B Nm	min.	_	 -	-	-	-	in acco	rdance v		898-7	
	mpact strength K _V ^{k,I} , J	min.	-	-	27	-	-	27	27	27	27	m
18 \$	Surface integrity in accordance with		ISO 61	57-1 ⁿ								ISO 6157

- ^a Values do not apply for structural bolting.
- ^b For structural bolting $d \ge M12$.
- Nominal values are specified only for the purpose of the desigation system for property classes. See clause 5.
- In cases where the lower yield strength Rel cannot be determined, it is permissible to measure the stress at 0,2% non-proportional elongation Re0.2.
- For the property classes 4.8, 5.8 and 6.8 the values for R_{pfmin} are under investigation. The present values are given for calculation of the proof stress ratio only. They are not test values.
- f Proof loads are specified in tables F.006.
- ⁹ Hardness determined at the end of a fastener shall be 250 HV, 238 HB or 99,5 HRB maximum.
- h Surface hardness shall not be more than 30 Vickers points above the measured core hardness of the fastener when determination of both surface hardness and core hardness are carried out with HV 0,3.
- ¹ Any increase in hardness at the surface which indicates that the surface hardness exceeds 390 HV is not acceptable.
- i Any increase in hardness at the surface which indicates that the surface hardness exceeds 435 HV is not acceptable.
- k Values are determined at a test temperature of –20 °C.
- Applies to d ≥ 16 mm.
- ^m Value for K_V is under investigation.
- ⁿ Instead of ISO 6157-1, ISO 6157-3 may apply by agreement between the manufacturer and the purchaser.

© Bossard, F-en-

Т

Minimum ultimate tensile loads

according to ISO 898, part 1

Minimum ultimate tensile loads - ISO metric coarse pitch thread

Thread ¹⁾	Nominal stress area A _{s, nom}	Minimum ultimate tensile load F _{m min} (A _{s, nom} x R _{m, min}) [N]										
u		Property class										
	[mm²]	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9/ <u>12.9</u>		
M3	5,03	2010	2110	2510	2620	3020	4020	4530	5230	6140		
M3,5	6,78	2710	2850	3390	3530	4070	5420	6100	7050	8270		
M4	8,78	3510	3690	4390	4570	5270	7020	7900	9130	10700		
M5	14,2	5 680	5960	7100	7380	8520	11350	12800	14800	17300		
M6	20,1	8040	8 4 4 0	10000	10400	12100	16100	18100	20900	24500		
M7	28,9	11600	12100	14400	15 000	17300	23 100	26 000	30 100	35 300		
M8	36,6	14 600 ²⁾	15400	18 300 ²⁾	19000	22000	29 2002)	32900	38 1002)	44 600		
M10	58,0	23 2002)	24400	29 0002)	30 200	34800	46 4002)	52200	60 300 ²⁾	70800		
M12	84,3	33700	35 400	42200	43 800	50600	67 400 ³⁾	75 900	87700	103000		
M14	115	46 000	48 300	57500	59800	69 000	92 000 ³⁾	104000	120000	140000		
M16	157	62800	65 900	78500	81 600	94 000	125 000 ³⁾	141 000	163000	192000		
M18	192	76800	80 600	96 000	99800	115000	159000	_	200000	234000		
M20	245	98000	103000	122 000	127000	147000	203 000	_	255 000	299 000		
M22	303	121 000	127000	152 000	158 000	182 000	252 000	-	315000	370 000		
M24	353	141 000	148 000	176 000	184 000	212000	293 000	-	367 000	431 000		
M27	459	184 000	193 000	230 000	239 000	275 000	381 000	-	477 000	560 000		
M30	561	224 000	236 000	280 000	292 000	337 000	466 000	_	583 000	684 000		
M33	694	278 000	292 000	347 000	361 000	416000	576 000	_	722 000	847 000		
M36	817	327000	343 000	408 000	425 000	490 000	678 000	_	850 000	997 000		
M39	976	390 000	410 000	488 000	508 000	586 000	810000	_	1020000	1200000		

Minimum ultimate tensile loads - ISO metric fine pitch thread

Thread d x P	Nominal stress area A _{s, nom}	Minimum ultimate tensile load $F_{m min}$ ($A_{s, nom} \times R_{m, min}$) [N]										
uxr		Property class										
	[mm ²]	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9/ <u>12.9</u>		
M8x1	39,2	15700	16500	19600	20 400	23500	31 360	35 300	40 800	47800		
M10x1	64,5	25800	27 100	32300	33 500	38700	51 600	58 100	67 100	78 700		
M10x1,25	61,2	24500	25700	30 600	31 800	36700	49 000	55 100	63 600	74700		
M12x1,25	92,1	36800	38700	46 100	47 900	55 300	73700	82900	95 800	112000		
M12x1,5	88,1	35 200	37000	44 100	45 800	52900	70 500	79300	91 600	107000		
M14x1,5	125	50 000	52500	62500	65 000	75 000	100 000	112000	130 000	152 000		
M16x1,5	167	66 800	70 100	83500	86800	100 000	134000	150000	174 000	204000		
M18x1,5	216	86 400	90 700	108000	112000	130 000	179000	-	225 000	264000		
M20x1,5	272	109000	114000	136 000	141 000	163000	226 000	-	283000	332 000		
M22x1,5	333	133000	140 000	166 000	173000	200 000	276 000	-	346 000	406 000		
M24x2	384	154000	161 000	192000	200 000	230 000	319000	-	399 000	469000		
M27x2	496	198 000	208000	248 000	258 000	298000	412000	-	516000	605 000		
M30x2	621	248000	261 000	310 000	323000	373 000	515000	-	646 000	758 000		
M33x2	761	304 000	320 000	380 000	396 000	457 000	632000	-	791 000	928 000		
M36x3	865	346 000	363 000	432 000	450 000	519000	718 000	-	900 000	1 055 000		
M39x3	1 030	412000	433000	515 000	536 000	618000	855 000	-	1 070 000	1260000		

Т

Where no thread pitch is indicated in a thread designation, coarse pitch is specified.
 For fasteners with thread tolerance 6az according to ISO 965-4 subject to hot dip galvanizing, reduced values in accordance with ISO 10684.
 For structural bolting 70 000 N (for M12), 95 500 N (for M14) and 130 000 N (for M16).

Screws property class 4.6 to 12.9/12.9

Proof loads of screws

according to ISO 898, part 1

Proof loads - ISO metric coarse pitch thread

Thread ¹⁾	Nominal	Proof load	F _p (A _{s, nom} x S _p	, nom ⁴⁾) [N]								
u	stress area	Property class										
	[mm²]	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9/ <u>12.9</u>		
M3	5,03	1 130	1560	1410	1910	2210	2920	3270	4 180	4880		
M3,5	6,78	1 530	2100	1 900	2580	2980	3940	4410	5 630	6580		
M4	8,78	1 980	2720	2460	3340	3860	5100	5710	7290	8520		
M5	14,2	3200	4400	3980	5400	6250	8230	9230	11800	13800		
M6	20,1	4520	6230	5 6 3 0	7640	8840	11 600	13100	16700	19500		
M7	28,9	6500	8960	8090	11000	12700	16800	18800	24000	28000		
M8	36,6	8 2 4 0 ²⁾	11 400	10200 ²⁾	13900	16100	21 200 ²⁾	23800	30 400 ²⁾	35 500		
M10	58,0	130002)	18 000	16200 ²⁾	22 000	25 500	33 7002)	37700	48 1002)	56300		
M12	84,3	19000	26100	23600	32000	37 100	48 900 ³⁾	54800	70 000	81 800		
M14	115	25 900	35 600	32200	43700	50600	66 700 ³⁾	74800	95 500	112000		
M16	157	35 300	48700	44000	59700	69 100	91 0003)	102000	130 000	152000		
M18	192	43200	59500	53800	73000	84500	115000	_	159 000	186000		
M20	245	55 100	76 000	68 600	93100	108000	147000	_	203 000	238 000		
M22	303	68200	93900	84800	115000	133 000	182000	_	252 000	294 000		
M24	353	79400	109 000	98 800	134 000	155 000	212000	_	293000	342 000		
M27	459	103 000	142 000	128 000	174000	202 000	275 000	-	381 000	445000		
M30	561	126000	174 000	157 000	213000	247 000	337000	-	466 000	544 000		
M33	694	156 000	215000	194000	264 000	305 000	416 000	-	576000	673 000		
M36	817	184 000	253 000	229 000	310000	359000	490 000	-	678 000	792000		
M39	976	220000	303 000	273 000	371 000	429 000	586000	-	810 000	947 000		

¹⁾ Where no thread pitch is indicated in a thread designation, coarse pitch is specified.

To calculate the nominal stress area A_{s, nom} Page F.046

Proof loads - ISO metric fine pitch thread

Thread d x P	Nominal stress area A _{s, nom}	Proof load F _p (A _{s, nom} x S _{p, nom}) [N] Property class										
	[mm²]	4.6	4.8	5.6	5.8	6.8	8.8	9.8	10.9	12.9/ <u>12.9</u>		
M8x1	39,2	8820	12200	11 000	14900	17200	22700	25 500	32500	38 000		
M10x1,25	61,2	13800	19000	17100	23300	26900	35500	39800	50800	59400		
M10x1	64,5	14500	20 000	18100	24500	28 400	37400	41900	53500	62700		
M12x1,25	92,1	20700	28600	25800	35 000	40 500	53 400	59 900	76400	89300		
M12x1,5	88,1	19800	27300	24700	33500	38 800	51 100	57300	73 100	85 500		
M14x1,5	125	28 100	38 800	35 000	47500	55000	72500	81 200	104000	121 000		
M16x1,5	167	37600	51 800	46800	63500	73 500	96900	109 000	139 000	162000		
M18x1,5	216	48 600	67000	60500	82 100	95 000	130 000	_	179 000	210000		
M20x1,5	272	61 200	84 300	76200	103 000	120 000	163000	_	226 000	264 000		
M22x1,5	333	74900	103000	93200	126 000	146 000	200 000	_	276000	323 000		
M24x2	384	86400	119000	108000	146 000	169 000	230 000	_	319000	372000		
M27x2	496	112000	154 000	139 000	188000	218000	298 000	_	412 000	481 000		
M30x2	621	140 000	192 000	174 000	236 000	273000	373 000	_	515 000	602 000		
M33x2	761	171000	236 000	213 000	289 000	335 000	457 000	_	632000	738 000		
M36x3	865	195 000	268 000	242000	329 000	381 000	519000	_	718000	839000		
M39x3	1 030	232 000	319000	288 000	391 000	453 000	618000	-	855 000	999000		

F.006

²⁾ For fasteners with thread tolerance 6az according to ISO 965-4 subject to hot dip galvanizing, reduced values in accordance with ISO 10684.

³⁾ For structural bolting 50 700 N (for M12), 68 800 N (for M14) and 94 500 N (for M16).

⁴⁾ Value for stress under proof load S_{p, nom} and their relation to stress at non-proportional elongation see page F.004, No. 5 in table.

Materials, heat treatment, chemical compositions

according to ISO 898, part 1

Steels

Property class	Material and heat treatment		Chemical composition limits (cast analysis, %) ¹⁾						
		С		P	S	B ²⁾	°C		
		min.	max.	max.	max.	max.	min.		
4.63), 4)	Carbon steel or carbon steel with additives	-	0,55	0,05	0,06	not	-		
4.84)						specified			
5.6 ³⁾		0,13	0,55	0,05	0,06				
5.84)		-	0,55	0,05	0,06				
6.84)		0,15	0,55	0,05	0,06				
8.86)	Carbon steel with additives (e.g. Boron or Mn or Cr), quenched and tempered	0,155)	0,40	0,025	0,025	0,003	425		
	or Carbon steel, quenched and tempered	0,25	0,55	0,025 0,025 0,025 0,025					
	or	0,20	0,55	0,025	0,025				
	Alloyed steel, quenched and tempered7)								
9.86)	Carbon steel with additives (e.g. Boron or Mn or Cr), quenched and tempered	0,155)	0,40	0,025	0,025	0,003	425		
	or	0,25	0,55	0,025	0,025				
	Carbon steel, quenched and tempered								
	or Alloyed steel, quenched and tempered ⁷⁾	0,20	0,55	0,025	0,025				
10.9 ⁶⁾	Carbon steel with additives (e.g. Boron, Mn or Cr), quenched and tempered	0,205)	0,55	0,025	0,025	0,003	425		
	or	0,25	0,55	0,025	0,025				
	Carbon steel, quenched and tempered								
	or	0,20	0,55	0,025	0,025				
	Alloyed steel, quenched and tempered7)								
12.96), 8), 9)	Alloyed steel, quenched and tempered7)	0,30	0,50	0,025	0,025	0,003	425		
12.96, 8), 9)	Carbon steel with additives (e.g. Boron, Mn or Cr or Molybdenum), quenched and tempered	0,28	0,50	0,025	0,025	0,003	380		

¹⁾ In case of dispute, the product analysis applies.

BOSSARD

²⁾ Boron content can reach 0,005 %, provided that non-effective boron is controlled by addition of titanium and/or aluminum.

⁹ For cold forged fasteners of property classes 4.6 and 5.6, heat treatment of the wire used for cold forging or of the cold forged fastener itself may be necessary to achieve required ductility.

⁴⁾ Free cutting steel is allowed for these property classes with the following maximum sulphur, phosphorus and lead contents: sulphur 0,34%; phosphorus 0.11%: lead 0.35%.

¹⁾ In case of plain carbon boron steel with a carbon content below 0,25% (cast analysis), the minimum manganese content shall be 0,6% for property class 8.8 and 0,7% for 9.8 and 10.9.

⁶⁾ For the materials of these property classes, there shall be a sufficient hardenability to ensure a structure consisting of approximately 90% martensite in the core of the threaded sections for the fasteners in the «as-hardened» condition before tempering.

⁷ This alloy steel shall contain at least one of the following elements in the minimum quantity given: chromium 0,3%, nickel 0,3%, molybdenum 0,2%, vanadium 0,1%. Where elements are specified in combinations of two, three or four and have alloy contents less than those given above, the limit value to be applied for class determination is 70% of the sum of the individual limit values shown above for the two, three or four elements concerned.

⁸⁾ A metallographically detectable white phosphorous enriched layer is not permitted for property class 12.9/12.9. It shall be detected by a suitable test method.

⁹⁾ Caution is advised when the use of property class 12.9/12.9 is considered. The capability of the fastener manufacturer, the service conditions and the wrenching methods should be considered. Environments may cause stress corrosion cracking of fasterners as processed as well as those coated.

Screws property class 4.6 to 12.9/12.9

Characteristics at elevated temperatures

according to ISO 898, part 1

Influence of elevated temperatures on mechanical properties of fasteners

Elevated temperatures can cause changes in the mechanical properties and in the functional performance of a fastener.

Up to typical service temperatures of 150 °C, no detrimental effects due to a change of mechanical properties of fasteners are known. At temperatures over 150 °C and up to a maximum temperature of 300 °C, the functional performance of fasteners should be ensured by careful examination.

With encreasing temperatures, a progressive

- reduction of lower yield strength or stress at 0,2% non-proportional elongation or stress at 0,0048 d non-proportional elongation for finished fasteners, and
- reduction of tensile strength can be experienced. The continuous operating of fasteners at elevated service temperatures can result in stress relaxation, which increases with higher temperatures. Stress relaxation accompanies a loss of clamp force.

Work-hardened fasteners (property classes 4.8, 5.8, 6.8) are more sensitive with regard to stress relaxation compared with quenched and tempered or stress-relieved fasteners.

Care should be taken when lead-containing steels are used for fasteners at elevated temperatures. For such fasteners, a risk of liquid metal embrittlement (LME) should be taken into consideration when the service temperature is in the range of the melting point of lead.

Information for example, in EN 10269 and in ASTM F2281.

Characteristics at higher strength (if ≥ 1000 N/mm²)

Influence of higher screw property class under comprehension of the mechanical stress and environmental conditions.

Risk of hydrogen embrittlement Page F.038

