

Home Depot Product Search Relevance

Mitali Bharali

Relevance is a number between 1 (not relevant) to 3 (highly relevant).

For example, a search for "AA battery" would be considered highly relevant to a pack of size AA batteries (relevance = 3), mildly relevant to a cordless drill battery (relevance = 2), and not relevance = 1)

OBJECTIVE

To predict
a relevance score for
the provided
combinations of
search terms and
products

About this project

Dataset

consisted (94.1k x 5) - the training set, contains products, searches, and relevance scores

test.csv (167k x 4) - the test set, contains products and searches. We are predicting the relevance score for these pairs

product_descriptions.csv (124k x 2) contains a text description of each product. We merged this table to the test set via the product uid attributes.csv (2.04m x 3) - provides

extended information about a subset of the products (typically representing detailed technical specifications)

sample_submission.csv (167k x 2) - a file showing the correct submission format

relevance_instructions.docx - the instructions provided to human raters

Training set

53489 products

11795 search query

54667 product_uid

Testing set

94731 products

22427 search query

97460 product_uid

About the dataset

STRATEGY/WORK FLOW

Exploratory Data Analysis

- Histogram 1: Length of Product Description
- Blue bars represent the frequency of digits
- Orange bars represent the frequency of alphabets

- Histogram 2: Length of Product Title
- Blue bars represent the frequency of digits
- Orange bars represent the frequency of alphabets

Exploratory Data Analysis

Exploratory Data Analysis


```
Out[16]: 3.00
                 19125
         2.33
                 16060
         2.67
                 15202
         2.00
                 11730
         1.67
                  6780
         1.33
                  3006
         1.00
                  2105
         2.50
                   19
         2.25
                   11
         2.75
         1.75
         1.50
         1.25
```

Name: relevance, dtype: int64

TEXT CLEANING

Basics

Fix Casing: Hammer > hammer

Remove Symbols: ft. > ft

Remove Stop Words: hammer for nails > hammer nails

POS Tagging: hammer > [hammer,noun]

Lemmatization: drills > drills

Stemming: running > run

Advanced

Standardize Numbers: Five > 5

Standardize Measurements: 2 feet by 4 inches > 2x4

Split Joined Words: wiremesh > wire mesh

Correct Spelling: insullation > insullation

Feature Engineering

- 1) Create num columns based on text columns
 - Count number of words from search query which appears both in product_title and product description
 - Compute *Edit Distance* from search query which appears both in product_title and product title
 - Compute the *Cosine Similarity* between search query, product_title and product_description
 - Compute the *Jaccard Similarity* between search query, product_title and product_description
- Count number of words in the product

 As a result we will have yesters that suites well for the machine learning.
 Croate now columns for each pair
 - Create new columns for each pair
 - 2) Remove all text columns

Distance Measures

EDIT DISTANCE:

The distance between the source string and the target string is the minimum number of edit operations (deletions, insertions, or substitutions) required to transform the source into the target.

COSINE DISTANCE:

Cosine similarity calculates similarity by measuring the cosine of angle between two vectors. With cosine similarity, we need to convert sentences into vectors.

JACCARD DISTANCE:

Jaccard Distance is a measure of how dissimilar two sets are. Lower the distance, more similar are the two strings.

Feature Creation

product_uid	product_title	search_term	relevance	product_description	search_term_tokens	product_title_tokens	product_description_toke
100001	simpson strongtie angle	angl bracket	3.0	angles make joints stronger also provide consi	[angle, bracket]	[simpson, strong- tie, 12-gauge, angle]	[not, only, do, angles, make, joints, stronger
100001	simpson strongtie angle	I bracket	2.5	angles make joints stronger also provide consi	[I, bracket]	[simpson, strong- tie, 12-gauge, angle]	[not, only, do, angles, make, joints, stronger
100002	behr premium textured deckover tugboat wood co	deck over	3.0	behr premium textured deckover innovative soli	[deck, over]	[behr, premium, textured, deckover, 1-gal., #s	[behr, premium, textured deckover, is, an, in

shared_words_mut	shared_words	edistance_sprot	edistance_sd	j_dis_sqt	j_dis_sqd	search_query_length	number_of_words_in_descr
4	24	20	589	0.2	0.0	12	71
3	24	20	592	0.0	0.0	9	71
21	62	53	. 850	0.0	0.0	9	111

Features Analysis

Training Features Analysis

Histogram of Edit Distance (Search term, Product Title)

Histogram of Search Query Length

Testing Features **Analysis**

Histogram of Cosine distance

Histogram of Edit Distance (Search Term Vs Product Title)

Histogram of Shared words

query

Training set - Heat map

Testing Set – Heat map

-1.00

- 0.75

- 0.50

- 0.25

0.00

-0.25

✓ The best regressor predicts the relevance score for the Kaggle's test data with minimum prediction error.

Comparing the mean RMSE:

Algorithm	RMSE		
Linear Regression	0.49692		
Random Forest	0.57807		
Naïve Bayes	0.49694		

- Some times Random Forest will over fit more easily than a linear regression
- In our case, Naïve Bayes and Linear Regression provides similar result
- Multiple Linear Regression provides more interpretability

Future Scope

- As we can see, the prediction error is high
- The high error also means that there are other explanatory features that influence the product search relevance scores
- Can also take polarity of Words into consideration
 - Use of deep learning / Xgboost with Bagging

