

Batch:	1-3 Roll No.: 16014022030
	taki Mahajan
Course :	
Experiment /	assignment / tutorial No. 9
Grade:	Signature of the Faculty with date

(I)

Q.1. Prove that $F = (2^2 + 2x + 3y)i + (3x + 2y + 2)j + (y + 2zx)K$ is irrotational and find scalar potential function of such that $F = \nabla \beta$ and $\beta(1,1,0) = 4$. Also find the work done in moving a partial from $A(0,0,0) + B(\beta_1^2 X_1 3)$.

yiven, $\overline{F} = (2^2 + 2x + 3y)i + (3x + 2y + 2)j + (y + 2xz)k$ and $\overline{F} = i$ J K $\partial I \partial x \partial I \partial y \partial I \partial z$ $z^2 + 2x + 3y \partial x + 2y + 2 \partial x \partial x$

 $= i \left[\frac{\partial}{\partial xy} \left(y + 2xz \right) - \frac{\partial}{\partial z} \left(3x + 2y + 2 \right) \right] - j \left[\frac{\partial}{\partial x} \left(y + 2xz \right) - \frac{\partial}{\partial z} \left(3y + 2x + 2z \right) \right]$ $+ k \left[\frac{\partial}{\partial x} \left(3x + 2y + 2 \right) - \frac{\partial}{\partial y} \left(z^2 + 2x + 3y \right) \right]$ $= i \left(1 - 1 \right) - i \left(2z - 2x \right) + i \left(2z - 2x \right)$

= i(1-1) - j(2z - 2z) + k(3-3) = 0

As curl F = 0, F is irrotational //.

Now, $F = \nabla \emptyset$ $(2^2 + 2x + 3y)i + (3x + 2y + 2)j + (y + 2x2)K = i \frac{1}{2}\emptyset + j \frac{1}{2}\emptyset + k \frac{1}{2}\emptyset$

Comparing both sides, $\frac{\partial d}{\partial x} = \frac{2^2 + 2x + 3y}{\partial x} \implies \begin{vmatrix} \frac{\partial \theta}{\partial y} = \frac{2^2 + 2x + 3y}{\partial x} & \frac{\partial x}{\partial x} = \frac{2^2x + x^2 + 3xy}{\partial x} + \frac{1}{1}(\frac{y}{12})^2$ $\frac{\partial \theta}{\partial y} = \frac{3x + 2y + 2}{2y} \implies \begin{vmatrix} \frac{\partial \theta}{\partial y} = \frac{3x + 2y + 2}{2} & \frac{4y}{2} + \frac{4y}$

 $\frac{\partial \emptyset}{\partial z} = y + 2xz \Longrightarrow \int \frac{\partial \emptyset}{\partial z} = \int y + 2xz \, dz = yz + 2xz^2 + f_3(x,y)$

:. $\phi = x^2 + y^2 + x^2 + 3xy + y^2 + c$, where c is a constant.

 $\phi(1,1,0) = 4 \implies 4 = 1+1+0+3+0+0 \implies C = -1$

Hence, $\phi = \chi^2 + \chi^2 + \chi^2 + 3\chi y + \chi^2 //$

1

	We have, $\int_{c}^{c} \overline{F} \cdot d\overline{r} = \int_{c}^{c} (2^{2} + 2x + 3y) dx + (3x + 2y + 2) dy + (y + 2zx) dz$
	equation of line: $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$
	: equation of line from $A(0,0,0)$ to $B(1,2,3)$, $X = Y = Z = t$
	At $t=0$, $(x, y, z) = (0, 0, 0)$ & at $t=1$, $(x, y, z) = (1, 2, 3)$ $\therefore \int_{0}^{1} (9t^{2} + 2t + 6t) dt + (3t + 4t + 3t) (2dt) + (2t + 6t^{2}) (3dt)$
0	$= \int_{0}^{1} qt^{2} + 2t + 6t + 16t(2) + 6t + 18t^{2} dt$ $= \left[\frac{27t^{3}}{3} + \frac{34t^{2}}{2} \right]_{0}^{1}$
	= 26//
Q·2·	Evaluate $\int 3xy dx - y^2 dy$ along the parabola $y = 2x^2$ from $A(0,0)$ to $B(1,2)$. What is me value of this integral if the point is the straight line joing from $A + B$?
\rightarrow	Equation of parabola: y=2x² dy = 4x dx and x varies from 0 to 1.
1 1 1 1	Putting $y=2x^2$ in main integral and $dy = 4x dx$, we get, $\int_A^B 3xy dx - y^2 dy = \int_0^1 3x (2x^2) dx - (2x^2)^2 (4x dx)$
	$= \begin{bmatrix} 1 & (6x^3 - 16x^5) dx = \begin{bmatrix} 6x^4 & -16x^4 \end{bmatrix} \\ 0 & 6 \end{bmatrix}_0$
	$\int_{A}^{B} 3xy dx - y^{2} dy = -\frac{7}{6}$

Batch: A	3 Roll No.: 16014022050
Name :	Ketaki Mahajan
Course :	evia U
Experiment /	essignment / tutorial No
Grade:	Signature of the Faculty with date

considering straight line passes through
$$(0,0) \notin (1,2)$$
, we have, eqn of line, $x = y = t$

$$\therefore \quad X = t \quad , \quad y = 2t \\ dx = dt \quad , \quad dy = 2dt$$

When
$$t=0$$
, $(X,Y)=(0,0)$ & at $t=1$, $(X,Y)=(1,2)$
 \vdots $\int_{0}^{1} 3t(2t) dt - (2t)^{2}(2dt) = \int_{0}^{1} -2t^{2} dt$

$$= \begin{bmatrix} +2+3 \\ 3 \end{bmatrix}^{\circ} = -2$$

$$\int_{A}^{B} 3xy dx - y^{2} dy = -2$$

Q.3. Verify yreens theorem for of (x2-2xy)dx + (x2y+3) dy where c is the boundary of the region defined by x=2 & y2=8x.

$$y^2 = 8x$$
, $x = 2$
 $y^2 = 8(2) = 16 \implies y = \pm 4$

We have, $\overline{F} \cdot d\overline{r}$ = $(x^2 - 2xy)dx + (x^2y + 3)dy$

By Greens theorem,
$$\int_{C} (PdX + Qdy) = \iint_{R} \left(\frac{JQ - JP}{JX} \right) dX dy$$

here,
$$P = \chi^2 - 2\chi y$$
 4 $Q = \chi^2 y + 3$
 $\therefore \partial Q = 2\chi y$ and $\partial P = -2\chi$
 $\partial \chi$

	1.2 3/2
	$= 8J2 \mid ^{2} \chi^{3/2} dx$
	70
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\therefore \left \frac{(Pax + Qdy)}{5} = \frac{2^7}{5} \right $
	6
	<u> </u>
Q.4.	Evaluate $\int_{c}^{c} \overline{F} \cdot d\overline{c}$ by stoke's moreon for $\overline{F} = (x-y-z)i + (y-z-x)j$
	+ (2-x-y)k over para boloid x2+y2 = 4-2, 2>0.
\rightarrow	F. dr = N. V x F ds -> stokes theorem.
	1.12
	the given surface, a
	paroholoid with its vertex at (0,0,4) opens
-	downwards & meets me
	xy plane, when z=0.
	$y^{2}+y^{2}=y=q^{2}$ in Circle $x^{2}+y^{2}=4$.
	Now. $\nabla \times \vec{F} = [i j K] = i [i (2-X-y) - \underline{j} (y-z-x)]$
	Now, $\nabla \times \vec{F} = \begin{bmatrix} i & J & K \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix} = i \begin{bmatrix} \frac{\partial}{\partial y} & (2-X-y) - \frac{\partial}{\partial z} & (y-z-x) \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{bmatrix}$
	x-y-2 $ y-z-x $
	$+ \left[\frac{1}{\partial x} (y-2-x) - \frac{1}{\partial y} (x-y-2) \right]$
	L 9× J
	= i[1-1] - j[-1+1] + k[-1+1]
	= 0
	:. Since the given surface is in the xy plane, $\bar{N} = K$:. $\bar{N} \cdot (\nabla \times \bar{F}) = 0$
	$ \cdot \cdot = 6 $
	c //