Лектор **Улупова Валерия Леонидовна**valeria@ulupov.com

Теория производства

Производство

- Факторы производства
- Технология

- о Предпосылка о рациональности предпринимателя
- о Ограниченность ресурсов

- Производственная функция показывает максимальный объем выпуск, который может произвести фирма с любой данной комбинацией факторов
- Или производственная функция показываем минимальное количество факторов необходимое для производства данного выпуска (технологическая эффективность)

- TP=f(F₁, F₂, F₃...F_n)
- Total product $\equiv Q=f(K,L)$

• Технологически эффективный способ производства такой, при котором хотя бы 1 фактора используется меньше, а остальных не больше, чем в других способах производства

- Короткий период (Short run (SR)) хотя бы один фактор неизменный
- Длительный период (Long run (LR)) все факторы переменные

• SR и LR зависит от типа производства

• Total product (TP) – общий продукт (производственная функция)

- Average product (AP) средний продукт $(\frac{TP}{F})$ производительность фактора
- Marginal product (MP) предельный продукт $(\frac{\Delta TP}{\Delta F})$ приращение общего выпуска при увеличении фактора на единицу

• •	•	•	J	
L	TP	MP	AP	
	0	0	-	
			10	
	1	10		10
			15	
	2	25		12,5
			20	
	3	45		15
			15	
	4	60		15
			10	
	5	70		14
			5	
	6	75		12,5
			0	
	7	7 5		10,71
			-5	
	8	70		8,75

Производственная функция с одним переменным фактором $TP = -\frac{2}{3}L^3 + 12L^2 - 22L$

L	TP	MPI	Apl
C			
1			
2			
3	24,0	32	8,0
4	61,3	42	15,3
5	106,7	48	21,3
6	156,0	50	26,0
7	205,3	48	29,3
8	250,7	42	31,3
g	288,0	32	32,0
10	313,3	18	31,3
11	. 322,7	0	29,3
12	312,0	-22	26,0

Стадии производства

- І стадия AP и AP к возрастают растущая отдача
- II стадия убывающая, но положительная отдача от труда АР₁убывает, а АРк растет
- III стадия АР и АР убывают убывающая отрицательная – производство технологически неэффективно

Двухфакторная модель

- Qf(K,L)= $AK^{\alpha}L^{\beta}$
- Total Cost (TC) общие издержки
- w ставка заработной платы
- r ставка процента
- TC=wL+rK наиболее дешевая комбинация факторов из всех возможных

$$\bullet \frac{MP_L}{w} = \frac{MP_K}{r}$$

Изокванты

• <u>Изокванта</u> - линия, соединяющая равные выпуски продукта, которые фирма может произвести, используя разные сочетания труда и капитала (разные технически эффективные способы производства по данной технологии).

• Свойства изоквант:

- не могут пересекаться
- выпуклы к началу координат
- чем выше изокванта, тем больший выпуск она характеризует

Производственная функция Кобба-Дугласа: Q=A $L^{lpha}K^{eta}$

1

Карта изоквант

Производитель готов заменить один фактор другим в постоянной пропорции $Q = \alpha L + \beta K$

Комплементы

Факторы используются в постоянной пропорции

$$Q=\min\left\{\frac{\alpha+\beta}{\alpha}L;\frac{\alpha+\beta}{\beta}K\right\}$$

Изокоста

• Изокоста — это линия равных затрат (издержек производства); выполняет в теории производства роль бюджетного ограничения.

$$\bullet$$
 TC = rK + wL

•
$$K = \frac{TC}{r} - \frac{w}{r}L$$

Изокоста

Влияние изменения издержек

Влияние изменения цены фактора производства (труд)

• Предельная норма технического замещения капитала трудом (MRTS_{LK}) показывает, на какую величину необходимо уменьшить количество капитала при увеличении количества труда на единицу, чтобы размеры выпуска не изменились

$$MRTS_{L,K} = -\frac{\Delta K}{\Delta L}$$

$$MRTS_{L,K} = \frac{MP_L}{MP_K}$$

Прямая задача

$$\begin{cases} U(X,Y) \to \max \\ M = PxX + PyY \\ L = U(X,Y) - \lambda(PxX + PyY - M) \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial X} = \frac{\partial U(X,Y)}{\partial X} - \lambda Px = 0 \\ \frac{\partial L}{\partial Y} = \frac{\partial U(X,Y)}{\partial Y} - \lambda Py = 0 \\ \frac{\partial L}{\partial \lambda} = PxX + PyY - M = 0 \end{cases}$$

$$\lambda = \frac{MUx}{Px} = \frac{MUy}{Py}$$

$$X = f(Px, Py, M) Y = f(Px, Py, M)$$

Двойственная задача

$$\begin{cases} wL + rK \to \min \\ Q = f(K, L) \end{cases}$$

$$L = wL + rK - \lambda(f(K, L) - Q)$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \\ \frac{\partial L}{\partial L} = w - \frac{\partial Q(K, L)}{\partial L} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \\ \frac{\partial L}{\partial L} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \\ \frac{\partial L}{\partial L} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \\ \frac{\partial L}{\partial L} = r - \frac{\partial Q(K, L)}{\partial L} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial L}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K, L)}{\partial K} \lambda = 0 \end{cases}$$

$$\begin{cases} \frac{\partial Q(K, L)}{\partial K} = r - \frac{\partial Q(K,$$

Оптимум производителя LR

Оптимум производителя SR

Эффект масштаба

- Как объем выпуска реагирует на увеличение всех факторов производства (LR)
- 1. f(NK,NL) >Nf(K,L) возрастающая
- 2. f(NK,NL)=Nf(K,L) постоянная
- 3. f(NK,NL) <Nf(K,L) убывающая
- Qf(K,L)= $AK^{\alpha}L^{\beta}$
- 1. $\alpha+\beta>1$
- 2. $\alpha+\beta=1$
- 3. $\alpha+\beta<1$