SIEMENS

LH1540

HIGH VOLTAGE, SOLID STATE RELAY OPTOCOUPLER

FEATURES

- Normally Open, Single Pole Single Throw Operation
- Control 350 VAC or DC Voltage
- Switch 150 mA Loads
- LED Control Current, 1 mA, Typical
- Low ON-Resistance, 20 Ω Typ. at 50 mA
- Isolation Test Voltage, 3750 VAC_{RMS}
- Current Limit Protection
- Underwriters Lab File # E52744

APPLICATIONS

- Telephone Switch Hook
- · High Voltage Test Equipment
- TRIAC Driver
- Motor Control
- Industrial Control Systems

DESCRIPTION

The LH1540 is a single pole single throw (SPST), normally open (NO), solid state relay. The relay can control AC or DC loads currents up to 100 mA, with a supply voltage up to 350 V. The device is packaged in a six pin 0.3 inch dual-in line package. This package offers an insulation dielectric withstand of 3750 VAC_{RMS}.

The coupler consists of a AlGaAs LED that is optically coupled to a dielectrically isolated photodiode array which drives two series connected high voltage MOS transistors. The typical ON-resistance is 20 Ω at 25 mA and is linear up to 50 mA. There is built-in current limiting circuitry in the detector chip, enabling it to pass FCC 68-302 and other regulatory voltage surge requirements when over voltage protection is provided.

Absolute Maximum Ratings (T_A=25°C)

Emitter

6.0 V
60 mA
1 A
100 mW
1.3 mW/°C
350 V
150 mA
400 mW
See Figure 3
.3750 VAC _{RMS}
≥10 ¹² Ω
≥10 ¹¹ Ω
500 mW
2.5 mW/°C
-40 to +150°C
40 to +85°C
100°C
260°C

Characteristics ($T_A=25^{\circ}C$)

Description	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Emitter						
Forward Voltage	V _F		1.25	1.5	V	I _F =10 mA
V _F Temperature Coefficient	$\Delta V_F/\Delta T$		-2.2		mV/°C	
Reverse Current	I _R		1	10	μА	V _R =6 V
Junction Capacitance	С		15		pF	V _F =0 V, f=1 MHz
Dynamic Resistance	$\Delta V_F / \Delta I_F$		6		W	I _F =10 mA
Switching Time	t _R , t _F		1		μS	I _F =10 mA
Detector		•				
Output Breakdown Voltage	V _B	350			V	I _B =50 μA
Output Off-State Leakage Current	I _{T(OFF)}		.02	200	nA	V _T =±100 V, I _F =0 mA
Feed through Capacitance, pins 4 to 6	C _T		55		pF	I _F =0, f=1 KHz, V _L =1 VP-P
Current Limit	I _{LMT}	170	210	250	mA	I _F =5 mA, t=5 ms
Package	•			•		
LED Forward Current for Turn-on	l _{FTh}		1	2	mA	I _L =100 mA, t=10 ms
LED Forward Current for Turn-off	I _{FOFF}		0.2	0.9	mA	$V_L = \pm 300 \text{ V}, I_L = <5 \mu\text{A}$
ON-resistance	Ron	12	20	25	W	I _F =5 mA, I _L =50 mA
Turn-on Time	^t ON		1.2	2.0	ms	$I_F=5 \text{ mA}, V_L=+50 \text{ V}$ $R_L=1 \text{ k}\Omega$
Turn-off Time	[†] OFF		0.5	2.0	ms	

Figure 1. LED forward current vs. forward voltage

Figure 2. Forward current vs. forward voltage

Figure 3. Recommended load current vs. temp.

Figure 4. Current limit vs. temperature

5-206

Figure 5. Minimum IRT required vs. temp.

Figure 6. Change in ON-resistance vs. temperature

Figure 7. Change in ON-resistance vs. LED current

Figure 8. Turn on time vs. LED current and temp.

Figure 9. t_{OFF} vs. LED current and temperature

Figure 10. Change in $t_{\mbox{\scriptsize ON}}$ vs. temperature

Figure 11. Change in t_{OFF} vs. temperature

Figure 12. Timing test circuit and timing waveform

5-207