Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 1

Исходные данные:

Реакции

 $C_{10}H_{22} = C_{10}H_{20} + H_2$

 $C_{10}H_{20} = C_{10}H_{18} + H_2$

Вещество	Начальная	Конечная
Бещество	концентрация	концентрация
$C_{10}H_{22}$	1	0,14
$C_{10}H_{20}$	0	0,47
C ₁₀ H ₁₈	0	0,40
H_2	0	1,26

Время контакта tk=1.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 2

Исходные данные:

Реакции

 $C_{11}H_{24} = C_{11}H_{22} + H_2$

 $C_{11}H_{22} = C_{11}H_{20} + H_2$

Вещество	Начальная	Конечная
Вещество	концентрация	концентрация
$C_{11}H_{24}$	0,8	0,14
$C_{11}H_{22}$	0,1	0,47
$C_{11}H_{20}$	0,1	0,40
H_2	0	1,26

Время контакта tk=1.

Залание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 3

Исходные данные:

Реакции

 $C_{12}H_{26} = C_{12}H_{24} + H_2$

 $C_{12}H_{24} = C_{12}H_{22} + H_2$

Вещество	Начальная	Конечная
Вещество	концентрация	концентрация
$C_{12}H_{26}$	1	0,14
$C_{12}H_{24}$	0	0,47
$C_{12}H_2$	0	0,40
H_2	0	1,26

Время контакта tk=1,5.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 4

Исходные данные:

Реакции

 $C_{13}H_{28} = C_{13}H_{26} + H_2$

 $C_{13}H_{26} = C_{13}H_{24} + H_2$

Вещество	Начальная	Конечная
	концентрация	концентрация
$C_{13}H_{28}$	1	0,14
C ₁₃ H ₂₆	0	0,47
C ₁₃ H ₂₄	0	0,40
H_2	0	1,26

Время контакта tk=2.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 5

Исходные данные:

Реакции

 $C_9H_{16}+H_2=C_9H_{18}$

 $C_9H_{18}+H_2=C_9H_{20}$

Вещество	Начальная	Конечная
Бещество	концентрация	концентрация
C ₉ H ₁₆	1	0,25
C ₉ H ₁₈	0	0,50
C ₉ H ₂₀	0	0,25
H_2	1	0,00

Время контакта tk=8.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 6

Исходные данные:

Реакции

 $C_{10}H_{20}+H_2=C_{10}H_{22}$

 $C_{10}H_{18}+H_2=C_{10}H_{20}$

Вещество	Начальная	Конечная
Бещество	концентрация	концентрация
$C_{10}H_{22}$	1	0,25
$C_{10}H_{20}$	0	0,50
$C_{10}H_{18}$	0	0,25
H ₂	1	0.00

Время контакта tk=10.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 7

Исходные данные:

Реакции

 $C_{11}H_{22}+H_2=C_{11}H_{24}$ $C_{11}H_{20}+H_2=C_{11}H_{22}$

Вещество	Начальная	Конечная
Бещество	концентрация	концентрация
$C_{11}H_{24}$	1	0,25
$C_{11}H_{22}$	0	0,50
$C_{11}H_{20}$	0	0,25
H_2	1	0,00

Время контакта tk=12.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 8

Исходные данные:

Реакции

 $C_{12}H_{24}+H_2=C_{12}H_{26}$ $C_{12}H_{22}+H_2=C_{12}H_{24}$

Вещество	Начальная	Конечная
	концентрация	концентрация
$C_{12}H_{26}$	1	0,25
$C_{12}H_{24}$	0	0,50
$C_{12}H_{22}$	0	0,25
H_2	1	0,00

Время контакта tk=14.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 9

Исходные данные:

Реакции

 $C_{13}H_{26}+H_2=C_{13}H_{28}$ $C_{13}H_{24}+H_2=C_{13}H_{26}$

Вещество	Начальная	Конечная
Вещество	концентрация	концентрация
C ₁₃ H ₂₈	1	0,25
C ₁₃ H ₂₆	0	0,50
C ₁₃ H ₂₄	0	0,25
H_2	1	0,00

Время контакта tk=16.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 10

Исходные данные:

Реакции

 $C_6H_6+C_9H_{18}=C_6H_5(C_9H_{19})$

 $C_6H_5(C_9H_{19}) + C_9H_{18} = C_6H_4(C_9H_{19})_2$

U 1() 1//2		
Вещество	Начальная	Конечная
Вещество	концентрация	концентрация
C_6H_6	1	0,25
C ₉ H ₁₈	1	0,00
$C_6H_5(C_9H_{19})$	0	0,50
$C_6H_4(C_9H_{19})_2$	0	0,25

Время контакта tk=1.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 11

Исходные данные:

Реакции

 $C_6H_6+C_{10}H_{20}=C_6H_5(C_{10}H_{21})$

 $C_6H_5(C_{10}H_{21}) + C_{10}H_{20} = C_6H_4(C_{10}H_{21})_2$

Раукастра	Начальная	Конечная
Вещество	концентрация	концентрация
C_6H_6	1	0,25
$C_{10}H_{20}$	1	0,00
$C_6H_5(C_{10}H_{21})$	0	0,50
$C_6H_4(C_{10}H_{21})_2$	0	0,25

Время контакта tk=1.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 12

Исходные данные:

Реакции

 $C_6H_6+C_{11}H_{22}=C_6H_5(C_{11}H_{23})$

 $C_6H_5(C_{11}H_{23}) + C_{11}H_{22} = C_6H_4(C_{11}H_{23})_2$

* '\/-		
Вещество	Начальная	Конечная
	концентрация	концентрация
C_6H_6	1	0,25
$C_{11}H_{22}$	1	0,00
$C_6H_5(C_{11}H_{23})$	0	0,50
$C_6H_4(C_{11}H_{23})_2$	0	0,25

Время контакта tk=1.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 13

Исходные данные:

Реакции

 $C_6H_6+C_{12}H_{24}=C_6H_5(C_{12}H_{25})$

 $C_6H_5(C_{12}H_{25}) + C_{12}H_{24} = C_6H_4(C_{12}H_{25})_2$

Вещество	Начальная	Конечная
	концентрация	концентрация
C_6H_6	1	0,25
$C_{12}H_{24}$	1	0,00
$C_6H_5(C_{12}H_{25})$	0	0,50
$C_6H_4(C_{12}H_{25})_2$	0	0,25

Время контакта tk=1.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 14

Исходные данные:

Реакции

 $C_{10}H_{22} = C_{10}H_{20} + H_2$

 $C_{10}H_{20} = C_{10}H_{18} + H_2$

Вещество	Начальная	Конечная
	концентрация	концентрация
$C_{10}H_{22}$	1	0,14
$C_{10}H_{20}$	0	0,47
$C_{10}H_{18}$	0	0,40
H ₂	0	1.26

Время контакта tk=1.

Залание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 15

Исходные данные:

Реакции

 $C_{11}H_{24} = C_{11}H_{22} + H_2$

 $C_{11}H_{22} = C_{11}H_{20} + H_2$

Вещество	Начальная	Конечная
	концентрация	концентрация
$C_{11}H_{24}$	0,8	0,14
$C_{11}H_{22}$	0,1	0,47
$C_{11}H_{20}$	0,1	0,40
H_2	0	1,26

Время контакта tk=1.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.

Лабораторная работа № 3

Идентификация значений кинетических параметров при математическом моделировании химических превращений Вариант 16

Исходные данные:

Реакции

 $C_{12}H_{26} = C_{12}H_{24} + H_2$

 $C_{12}H_{24} = C_{12}H_{22} + H_2$

Вещество	Начальная	Конечная
	концентрация	концентрация
$C_{12}H_{26}$	1	0,14
C ₁₂ H ₂₄	0	0,47
$C_{12}H_2$	0	0,40
H ₂	0	1.26

Время контакта tk=1,5.

Задание:

- 1. Решить обратную кинетическую задачу методом Рунге-Кутта.
- 2. Построить графики изменения концентраций веществ по времени.
