ML4SE

Denis Litvinov

September 28, 2022

Table of Contents

- 1 Regularization
 - \blacksquare L_1 , L_p Regularization
- 2 Bias Variance Decomposition
- 3 Binary Classification
 - Losses

- Logistic Regression
- SVM
- Robustness
- Quality Metrics
- 4 Model Complexity

Maximum Likelihood Estimation

MLE is a method of point estimation of parameters of a distribution, given observed data samples. Let $f_{\theta}(x)$ - probability density of x. Then function $f(X, \theta)$ with fixed θ is called Likelihood.

Binary Classification

$$f(X,\theta) = \prod_{i=1}^{N} f(x_i,\theta)$$

Maximum Likelihood Estimation is

$$\hat{\theta} = \arg\max_{\theta} f(X, \theta)$$

Properties of MLE:

Consistent

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(|\hat{\theta} - \theta| > \varepsilon) = 0$$

Efficient. This means that no consistent estimator has lower asymptotic mean squared error than the MLE.

$$\forall \hat{\theta}_2 \neq \hat{\theta}_{MF}, \; E_{\theta}[\hat{\theta}_{MF} - \theta] < E_{\theta}[\hat{\theta}_2 - \theta]$$

L_2 regularization and early stopping 1

In Iterative solution we have mentioned some stopping criteria. We can imagine another one called *early stopping*:

Binary Classification

- split data into train and validation subsets
- 2 update model weights w on train dataset
- keep track of the loss value on validation dataset
- 4 if on several consecutive iterations values of the loss function on validation dataset grows, than overfitting is observed \rightarrow stop training

It can be shown, that number of consecutive iterations before early stopping τ can be expressed by coefficient of L_2 regularization λ

$$au \sim rac{1}{\lambda}$$

Regularization

L_1 Regularization and sparsity 1

What if we use other norm for regularization?

$$R(w) = ||w||_1$$

Binary Classification

For MSE with L_1 regularization

$$L_{MSE} = \frac{1}{N} ||y - Xw||_2^2 + \frac{\lambda}{2} ||w||_1$$

$$\nabla_{w} L_{MSE} = \frac{1}{N} X^{T} (Xw - y) + \lambda sign(w)$$

- \blacksquare L₁ norm is not differentiable at w = 0, but can be lower bounded by surrogate gradients (just say $\nabla_w R(0) \in [-1, 1]$)
- Gives sparse solutions: some of w components are 0
- Bayesian view on L_1 norm regularizer is a Laplacian prior on weights

$$P(x|\mu,b) = \frac{1}{2h}e^{-\frac{|x-\mu|}{b}}$$

L_1 Regularization and sparsity 2

L₁ Regularization and sparsity 3

- \blacksquare L_1 can be used for feature selection
- Remember, any L_p norm regularization shifts optimal solution w.
- For linear models, if we want to make predictions with feature selection
 - 1 Train linear model with L_1 regularizer and select features with $|w_{i}| > 0$
 - 2 On selected subset of features, train linear model L_2 and use it for final prediction

Binary Classification

Remember about situation with correlated features

Elastic Net

$$L_{reg}(y, \hat{y}, w) = L(y, \hat{y}) + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2$$

Usually we would like to have convex combination in the form

$$L_{reg}(y, \hat{y}, w) = L(y, \hat{y}) + \lambda_1 ||w||_1 + (1 - \lambda_1) ||w||_2^2$$

Suppose our data is generated by:

$$y = f(x) + \epsilon$$

Binary Classification

, where $\epsilon \in N(0, \sigma)$ is white noise. We want to build such estimator, that:

$$\hat{y} = h(x)$$

is our prediction Consider MSE regression

$$MSE = E[(y - h(x))^{2}]$$

$$= E[(y - f(x) + f(x) - h(x))^{2}]$$

$$= E[(y - f(x))^{2}] + E[(f(x) - h(x))^{2}] - 2E[(y - f(x)(f(x) - h(x)))]$$

$$= E[\epsilon^{2}] + E[(f(x) - h(x))^{2}] - 2(E[yf(x)] - E[yh(x)] - E[f^{2}(x)]$$

$$+ E[f(x)h(x)])$$

Binary Classification

Notes:

- since f is deterministic then $E[f^2(x)] = f^2(x)$
- since E[y] = f(x) then $E[yf(x)] = f^2(x)$
- $E[yh(x)] = E[f(x)h(x)] + E[\epsilon h(x)] = E[f(x)h(x)] + 0$

$$MSE = E[\epsilon^{2}] + E[(f(x) - h(x))^{2}] - 2(f^{2}(x) - E[f(x)h(x)])$$

$$+ 0 - f^{2}(x) + E[f(x)h(x)])$$

$$= E[\epsilon^{2}] + E[(f(x) - h(x))^{2}]$$

$$= E[\epsilon^{2}] + E[(f(x) - E[h(x)] + E[h(x)] - h(x))^{2}]$$

$$= E[\epsilon^{2}] + E[(f(x) - E[h(x)])^{2}] + E[(E[h(x)] - h(x))^{2}]$$

$$+ 2E[(E[h(x)] - h(x))(f(x) - E(h(x))]$$

$$= E[\epsilon^{2}] + E[(f(x) - E[h(x)])^{2}] + E[(E[h(x)] - h(x))^{2}]$$

$$+ 2(E[f(x)E[h(x)]] - E[E[h(x)]^{2}] - E[h(x)f(x)] + E[h(x)E[h(x)]])$$

Binary Classification

Notes:

- $\blacksquare E[fE[h(x)]] = f(x)E[h(x)]$
- $E[E[h(x)]^2] = E[h(x)]^2$
- $\blacksquare E[f(x)h(x)] = f(x)E[h(x)]$
- $\blacksquare E[h(x)E[h(x)]] = E[h(x)]^2$

$$MSE = E[\epsilon^{2}] + E[(f(x) - E[h(x)])^{2}] + E[(E[h(x)] - h(x))^{2}]$$

$$+ 2(f(x)E[h(x)] - E[h(x)]^{2} - f(x)E[h(x)] + E[h(x)]^{2})$$

$$= E[\epsilon^{2}] + E[(f(x) - E[h(x)])^{2}] + E[(E[h(x)] - h(x))^{2}]$$

$$= Var[\epsilon] + E[(f(x) - E[h(x)])^{2}] + Var[h(x)]$$

$$= Var[\epsilon] + bias^{2} + Var[h(x)]$$

Binary Classification

So prediction error can be decomposed into:

- variance of the noise
- bias of prediction
- variance of prediction

Validation curve 1

Regularization

Validation curve is a dependence of model performance on the model complexity

Validation curve 2

Figure: Generalization error

Learning curve 1

Learning curve is a dependence of model performance on the size of training dataset.

Figure: High bias

Learning curve 2

Figure: High variance

Problem Statement

Given dataset $\{(x_i, y_i)\}_{i=1}^N$ of i.i.d. objects

Or, equvalently given:

 $X \in R^{N \times D}$ - feature matrix, where *D* is dimension of feature space and N - number of objects.

Binary Classification

 $Y \in \{0, 1\}^N$ - target vector

Sometimes we will use notation $Y \in \{-1, 1\}^N$

Bayesian Classifier

Bayesian classifier is the best possible classifier given we know all joint distribution P(x, y) of features and labels. (Which is an unrealistic assumption.) Bayesian risk:

$$R = \sum_{x,y} I[h(x) \neq y] P(x,y) c_y$$

, where c_y is cost function for misclassification, e.g. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & 0.7 \\ 0.3 & 0 \end{pmatrix}$ function h(x) - decision function.

Which is minimized by

$$h(x) = \arg\max_{y} P(y|X)$$

$$h(x) = \arg\max_{y} P(X|y)P(y)c_{y}$$

Binary Classification

Bayesian Classifier

⇒ Cost function and prior class probabilities are interchangeable!

Naive Bayes Classifier

In Naive Bayes Classifier the features are assumed independent.

$$p(y|X) = \frac{p(y)p(x|y)}{p(x)}$$

$$p(y|X) = \frac{p(y)\prod_{i=1}^{N}p(x_{i}|y_{i})}{p(x)}$$

$$\hat{y} = \arg\max_{k=1..K}p(y=k)\prod_{i=1}^{N}p(x_{i}|y=k)$$

Binary Classification

Regularization

Margin

For binary classification with $y \in \{-1, 1\}$ a variable z = yh(x) is called margin.

Binary Classification

0000000000000

Positive margin corresponds to successful classification, negative margin corresponds to error.

|yh(x)| is a distance to decision boundary, which can be interpreted as confidence in classification of the object.

Suppose $\hat{y} = h(x)$ and $y \in \{0, 1\}$.

Show, that $h(x_i)$ should be $p(y = 1|x_i)$.

Probability to generate such samples from the point view of h(x) is a likelihood L:

$$L = \prod_{i=1}^{N} h(x_i)^{[y_i=1]} (1 - h(x_i))^{[y_i=0]} \to \max_h$$

$$\log L = \sum_{i=1}^{N} [y_i = 1] \log h(x_i) + [y_i = 0] \log (1 - h(x_i)) \to \max_h$$

$$-\log L = -\sum_{i=1}^{N} [y_i = 1] \log h(x_i) + [y_i = 0] \log (1 - h(x_i)) \to \min_h$$

$$E[-\log L|x] = -p(y = 1|x) \log h(x) - p(y = 0|x) \log (1 - h(x)) \to \min_h$$

Binary Classification

000000000000

$$\frac{\partial E[-\log L|x]}{\partial h} = -\frac{p(y=1|x)}{h(x)} + \frac{1 - p(y=1|x)}{1 - h(x)} = 0$$

$$\implies h(x) = p(y=1|x) = \sigma(w^{T}x)$$

Binary Classification

00000000000000000

What are requirements for $\sigma(x)$?

Requirements for $\sigma(x)$:

$$\exists \forall x \in R^D \ \sigma(x) \in [0,1]$$

$$\sigma(0) = 0.5$$

$$\sigma(-x) = 1 - \sigma(x)$$

 σ - non-decreasing, continuous and differentiable

Sigmoid

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Binary Classification

You can find 2 different formulae for logistic loss: via cross-entropy as shown above

Binary Classification 000000000000000000

$$Loss(y_i, p_i) = -y_i \log p(y_i = 1|x_i) - (1 - y_i) \log(1 - p(y_i = 1|x_i))$$

where probability of y = 1 class given sample x is

$$p(y = 1|x) = \sigma(w^T x) = \frac{1}{1 + e^{-w^T x}}$$

and with margins

$$Loss(y_i, x_i) = \log(1 + e^{-y_i w^T x_i})$$

Binary Classification

Support Vector Machines

Binary Classification

Support Vector Machines

Suppose we have some linear decision surface $h(x) = sign(w^T x)$ Then distance from point $x_0 \in R^D$ to decision surface is

Binary Classification

000000000000000

$$\rho(x_0,h) = \frac{|w^T x|}{||w||_2}$$

Choose scale of w such that

$$\min_{x} |w^T x| = 1$$

Then distance from decision surface to the nearest object is

$$\min_{x} \frac{|w^{T}x|}{||w||_{2}} = \frac{1}{||w||_{2}} \min_{x} |w^{T}x| = \frac{1}{||w||_{2}}$$

For linear separable case we have optimization problem:

$$\begin{cases} \frac{1}{2} ||w||_2^2 \to \min_w \\ y_i w^T x_i \ge 1 \end{cases}$$

Support Vector Machines

For linear inseparable case we introduce corrections for each object ξ_i :

Binary Classification

oooooooooooo

$$\begin{cases} \xi_i : \\ \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^N \xi_i \to \min_{w, \xi_i} \\ y_i w^T x_i \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

OR:

$$\xi_i = \max(0, 1 - y_i w^T x_i)$$

Then.

$$Loss = \frac{1}{2C}||w||_2^2 + \sum_{i=1}^{N} max(0, 1 - y_i w^T x_i) \to \min_{w}$$

Unlike logistic regression, weight norm penalty already build in the model.

Binary Classification

Losses

Robustness

Model is called robust if its performance do not change significantly for new samples drawn from the same distribution P(x, y). In other way, model robustness depends on how the model handle the outliers.

Regularization

Accuracy $acc(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} [\hat{y}_i = y_i]$

Predicted class

Binary Classification

0000000000000000

Precision

$$Pr = \frac{TP}{TP + FP}$$

Recall

$$Re = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 * Pr * Re}{Pr + Re}$$

AUC

Regularization

 $FPR = \frac{FP}{FP+TN}$ false positive rate

 $TPR = \frac{TP}{TP + FN}$ true positive rate

AUC = area under the curve ROC

ROC(t) = (TPR(t), FPR(t)) is parametrized by threshold t on the probability p(y = 1|x)

How does class imbalance affect quality metrics given above?

Empirical Loss Minimization

In general, we want to optimize Expected Risk:

$$R = E[Loss(x, y)] = \int_{-\infty}^{\infty} Loss(x, y) dP(x, y) = Pr_{(x_i, y_i) \sim D}[Loss(x_i, y_i)]$$

But since we don't now the joint distribution P(x, y), we can only deal with Empirical Risk (Loss functional):

$$\hat{R} = \frac{1}{N} \sum_{i=1}^{N} Loss(x_i, y_i)$$

Generalization error

How well does \hat{R} approximates R?

Using Hoeffding's inequality it can be shown, that given N random examples, and $\forall \delta > 0$, with probability $Pr >= 1 - \delta$, the following upper bound holds on the generalization error of h:

Binary Classification

$$R \leq \hat{R} + \sqrt{\frac{\ln(1/\delta)}{2N}}$$

For finite hypothesis space *H* under the same conditions:

$$R \leq \hat{R} + \sqrt{\frac{\ln|H| + \ln(1/\delta)}{2N}}$$

where ln |H| serves as a measure of model complexity.

Rademacher Complexity

How to approximately estimate model complexity?

Given a dataset $\{x_i\}_{i=1}^m$, $x \sim D$

Let $\sigma_i \sim random(\{-1,1\})$ be random labels for each x_i .

Consider binary classification task. We expect a model to have high complexity if it can fit well any random label assignment on the dataset.

Binary Classification

Empirical Rademacher Complexity for a given dataset can be estimated by expected average margin

$$\hat{R}_m(H) = E_{\sigma}[\max_{h \in H} \frac{1}{m} \sum_{i=1}^m \sigma_i h(x_i)]$$

Rademacher Complexity for model H can be expressed as

$$R_m(H) = E_D(\hat{R}_m(H))$$

We also say, that model with high complexity tends to memorize training samples.

Data Augmentation

Generalization error depends on number of samples N in the dataset. How to increase N?

Binary Classification

Apply some transformation to original data which is invariant to some desirable properties.

