10-605: Machine Learning with Large Datasets

Fall 2020

Recitation 4 25th September, 2020

Quick Review - SPSD matrices

A symmetric matrix $K \in \mathbb{R}^{n \times n}$ is said to be positive semidefinite iff all its eigenvalues are non-negative.

Furthermore, for any symmetric matrix K, the following statements are equivalent:

- 1. $z^T K z \ge 0$ for every vector z
- 2. There exists a matrix A such that $A^TA = K$
- 3. All the eigenvalues are non-negative

1 Nyström Method (30 points)

Nyström method. Define the following block representation of a kernel matrix:

$$\mathbf{K} = \begin{bmatrix} \mathbf{W} & \mathbf{K}_{21}^{\mathsf{T}} \\ \mathbf{K}_{21} & \mathbf{K}_{22} \end{bmatrix} \quad \text{and} \quad \mathbf{C} = \begin{bmatrix} \mathbf{W} \\ \mathbf{K}_{21} \end{bmatrix}.$$

The Nyström method uses $\mathbf{W} \in \mathbb{R}^{l \times l}$, $\mathbf{C} \in \mathbb{R}^{m \times l}$ and $\mathbf{K} \in \mathbb{R}^{m \times m}$ to generate the approximation $\widetilde{\mathbf{K}} = \mathbf{C}\mathbf{W}^{\dagger}\mathbf{C}^{\top} \approx \mathbf{K}$.

(a) [5 points] Show that **W** is symmetric positive semi-definite (SPSD) and that $\|\mathbf{K} - \widetilde{\mathbf{K}}\|_F = \|\mathbf{K}_{22} - \mathbf{K}_{21}\mathbf{W}^{\dagger}\mathbf{K}_{21}^{\top}\|_F$, where $\|.\|_F$ is the Frobenius norm.

Note: You can assume that W is full-rank.

(b) [10 points] Let $\mathbf{K} = \mathbf{X}^{\top} \mathbf{X}$ for some $\mathbf{X} \in \mathbb{R}^{N \times m}$, and let $\mathbf{X}' \in \mathbb{R}^{N \times l}$ be the first l columns of \mathbf{X} . Show that $\widetilde{\mathbf{K}} = \mathbf{X}^{\top} \mathbf{P}_{U_{X'}} \mathbf{X}$, where $\mathbf{P}_{U_{X'}}$ is the orthogonal projection onto the span of the left singular vectors of \mathbf{X}' .

(c) [5 points] Is $\widetilde{\mathbf{K}}$ symmetric positive semi-definite (SPSD)?

(d) [5 points] If $\operatorname{rank}(\mathbf{K}) = \operatorname{rank}(\mathbf{W}) = r \ll m$, show that $\widetilde{\mathbf{K}} = \mathbf{K}$. Note: this statement holds whenever $\operatorname{rank}(\mathbf{K}) = \operatorname{rank}(\mathbf{W})$, but is of interest mainly in the low-rank setting.

(e) [5 points] If m = 20M and K is a dense matrix, how much space is required to store K if each entry is stored as a double? How much space is required by the Nyström method if l = 10K?

Additional References

Linear Algebra Review:

3Blue 1Brown https://www.youtube.com/watch?v=fNk zzaMoSs&list=PLZHQObOWTQDPD3MizzM2xVFitgF8
 hE ab

Projection Matrices:

- 1. Piazza discussion post https://piazza.com/class/kcxot365ufc53w?cid=161
- 2. https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/least-squares-deter-minants-and-eigenvalues/projections-onto-subspaces/MIT18-06SCF11-Ses2.2sum.pdf
- 3. https://jekyll.math.byuh.edu/courses/m343/handouts/svdbasis.pdf