PGM Quizz – Solutions

February 2019

1. If the distribution of $X=(X_1,X_2,X_3,X_4)$ factorizes according to the graph above, which of the following statements are true:

Notice that the given graph is a directed tree. Hence, it is equivalent to an undirected tree of the same shape, or any change of direction in the edges that does not introduce a v-structure.

a) $p(x_1, x_2, x_3, x_4) = p(x_1 \mid x_2) p(x_2 \mid x_3, x_4) p(x_3) p(x_4)$

False: The decomposition has a v-structure in X_2 .

b) $p(x_1, x_2, x_3, x_4) = p(x_1) p(x_2 \mid x_1) p(x_3, x_4 \mid x_2)$

True: $p(x_3, x_4|x_2)$ is more general than $p(x_3|x_2)p(x_4|x_2)$. Remark: A probability distribution written in this form is **not guaranteed** to factorize under the graph above.

c) $p(x_1, x_2, x_3, x_4) = p(x_2) p(x_1 \mid x_2) p(x_3 \mid x_2) p(x_4 \mid x_2)$ True: $p(x_2)p(x_1|x_2) = p(x_1, x_2) = p(x_2|x_1)p(x_1)$.

2. Which ones of the following orderings is a correct topological ordering for the above graph : A topological order σ satisfies :

$$\forall (u, v) \in V^2 \ (u \in \text{ancestors}(v) \implies \sigma(u) < \sigma(v)).$$
 (A)

This property is equivalent to the following:

$$\forall v \in V, (u \in parents(v) \implies \sigma(u) < \sigma(v)).$$
 (B)

(A) implies (B) since by definition parents(u) \subset ancestors(v).

Moreover, (B) implies (A) by noticing that $v_k \in \operatorname{ancestors}(v_0)$ implies the existence of a path $v_0 \to v_1 \to \dots \to v_{k-1} \to v_k$, satisfying $\forall i$ such that $0 \le i < k$, $v_{i+1} \in \operatorname{parents}(v_i)$. We can then apply our property (B) along this path, giving:

$$\sigma(v_0) > \sigma(v_1) > \dots > \sigma(v_{k-1}) > \sigma(v_k).$$

This implies $\sigma(v_0) > \sigma(v_k)$ by transitivity.

This property makes it easy to check if an ordering is topological. Each node must appear in the order before its parents.

1

a) D, A, E, C, G, F, B True

b) D, E, F, G, A, C, B True

c) D, E, A, C, B, F, G

False: B appears before G in the ordering, yet G is a parent of B.

- 3. If the distribution of X factorizes according to the above graph, which ones of the following propositions are true:
 - a) X_1 and X_3 are conditionally independent given X_2 True: Observing X_2 blocks the path $X_1 \to X_2 \to X_3$. The two v-structures $X_1 \to X_4 \leftarrow X_3$ and $x_4 \to X_6 \leftarrow X_5$ are unobserved, hence, blocking.
 - b) X_2 and X_5 are conditionally independent given X_4 and X_1 False: X_4 is a child of X_3 , so we can go through the V-structure in X_3 from X_2 to X_5 .
 - c) X_1 and X_5 are conditionally independent given X_2 and X_4 False: Observing X_4 allows to go through the v-structure $X_1 \to X_4 \leftarrow X_3$ and then to X_5 .
- 4. When running the sum-product algorithm on an graphical model which is an undirected tree with 5 nodes, how many messages must be sent to perform marginal inference?

A tree on n nodes necessarily has n-1 edges. Two messages are sent on every edge. 2(5-1)=8.

a) 8

True

b) 10

False

- c) This depends on the shape of the tree.
 False, the number of edges doesn't depend on the shape of the tree.
- **5.** Which of the following statements are true?
 - a) If X satisfies the Global Markov property with respect to an undirected graph G=(V,E) and if A,B and S are three subsets of V, then $X_A \perp \!\!\! \perp X_B$ implies $X_A \perp \!\!\! \perp X_B \mid X_S$. True. In an undirected graph, $X_A \perp \!\!\! \perp X_B$ implies that A and B are in different connected components. Conditioning on any subset S will only remove nodes, which cannot add connections between the connected components of A and B.
 - b) If X has a distribution that factorizes with respect to the directed graph G' = (V, E'), and if A, B and S are three subsets of V, then $X_A \perp \!\!\! \perp X_B$ implies $X_A \perp \!\!\! \perp X_B \mid X_S$. False. For a V-structure $X_1 \to X_2 \leftarrow X_3$, we have that $X_1 \perp \!\!\! \perp X_3$, yet we know that $X_1 \perp \!\!\! \perp X_3 \mid X_2$ is not true.
- **6.** Prove mathematically that if $X_1 \perp \!\!\! \perp (X_2, X_3) \mid X_4$, then $X_1 \perp \!\!\! \perp X_2 \mid X_4$. We have $p(x_1, x_2, x_3 | x_4) = p(x_1 | x_4) p(x_2, x_3 | x_4)$.

$$p(x_1, x_2 | x_4) = \sum_{x_3} p(x_1, x_2, x_3 | x_4) = \sum_{x_3} p(x_1 | x_4) p(x_2, x_3 | x_4) = p(x_1 | x_4) p(x_2 | x_4).$$

7. Draw a directed graph G on three nodes, with at most 2 directed edges, so that the following distribution factorizes according to G.

$$p(x_1, x_2, x_3) = \frac{p(x_2 \mid x_1) p(x_2 \mid x_3) p(x_1) p(x_3)}{p(x_2)}$$
(1)

$$= p(x_1|x_2)p(x_2|x_3)p(x_3)$$
 by Bayes rule. (2)

This justifies the graph : $X_1 \to X_2 \to X_3$.