

Grundbegriffe der Informatik **Tutorium 33**

Maximilian Staab, maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach, lukas.bach@student.kit.edu | 15.12.2016

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPradikatenlogik (PL)

lukas.bach@student.kit.edu

Grundlagen zu Prädikatenlogik

Maximilian Staab.

 $_{\text{Lukas Bach,}}^{\text{maximilian.staab@fsmi.uni}}$ Prädfikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von

lukas.bach@student.kit.ed#Prädikaten"

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPrädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

¹¹ukas.bach@student.kit.ed#Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPrädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.eatPrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPrädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.edePrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

Prädikatenlogik

 \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPradfikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.edePrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- ∀ Allquantor

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPrädfkatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.ed*Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPrädfkatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.edePrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- ∃ Existenzquantor

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPradfikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.edePrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)

Grundlagen zu Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uniPradikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.ed*Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \blacksquare \neg , \wedge , \vee , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen

Grundlagen zu Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uniPrädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.ed*Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten

Grundlagen zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uniPrädfikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.edePrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen

Grundlagen zu Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uniPrädfikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.edePrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen
- $lackbox{\textbf{R}}, S, R_i \in Rel_{PL}$ Relationen (funktionieren ähnlich wie Funktionen)

Grundlagen zu Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uniPrädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.edePrädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen
- $R, S, R_i \in Rel_{PL}$ Relationen (funktionieren ähnlich wie Funktionen)

Grundlagen zu Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uniPrädikatenlogik (PL) erweitert Aussagenlogik durch Ergänzen von Lukas Bach,

lukas.bach@student.kit.ed*Prädikaten", einer Art von Funktionen, die Wahrheitswerte zurückgeben.

Alphabet der Prädikatenlogik:

- \neg , \land , \lor , \rightarrow , \leftrightarrow , (,), also Alphabet der Aussagenlogik.
- \forall Allquantor ($\forall x$ heißt "für alle x gilt...)
- \exists Existenzquantor ($\exists x$ heißt "es existiert min. ein x... für das gilt...)
- $x, y, z, x_i \in Var_{PL}$ Variablen
- $c, d, c_i \in Const_{PL}$ Konstanten
- $f, g, h, f_i \in Fun_{PL}$ Funktionen
- R, S, $R_i \in Rel_{PL}$ Relationen (funktionieren ähnlich wie Funktionen)
- , Komma

Gliederung der Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.

... Terme

Ein Term ist ein Element aus der Sprache über

Prädikatenlogik

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Gliederung der Prädikatenlogik

Maximilian Staab. Lukas Bach.

maximilian.staab@fsmi.uni-karlsruhe.de,

Prädikatenlogik

lukas bach@student kit

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{Pl} \cup Fun_{Pl}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

Gliederung der Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas bach@student kit

Prädikatenlogik

Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

• Objektgleichheiten $f_1 \stackrel{.}{=} f_2$

Gliederung der Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas bach@student kit

Prädikatenlogik

..kit., Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $f_1 = f_2$
- Relation von Termen $R(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an.

Gliederung der Prädikatenlogik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Prädikatenlogik

kit Terme

Ein Term ist ein Element aus der Sprache über

 $A_{Ter} := \{(,),,\} \cup Var_{PL} \cup Const_{PL} \cup Fun_{PL}.$

Atomare Formeln

Atomare Formeln sind zum Beispiel

- Objektgleichheiten $f_1 = f_2$
- Relation von Termen $R(t_1, t_2, ...)$

Stelligkeit einer Funktion

Die Stelligkeit $ar(f) \in \mathbb{N}_+$ einer Funktion gibt die Anzahl der Parameter von f an. (Analog Stelligkeit von Relationen ar(R))

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Prädikatenlogik

Woraus kann ein Term bestehen?

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
 - Was davon sind atomare Formeln: $R(x) \wedge S(f(x, c))$, R(x, g(c, f(y, x)))?

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
 - Was davon sind atomare Formeln: $R(x) \wedge S(f(x,c))$, R(x,g(c,f(y,x))?
- \rightarrow Nein, ja.

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
 - Was davon sind atomare Formeln: $R(x) \wedge S(f(x, c))$, R(x, g(c, f(y, x)))?
- \rightarrow Nein, ja.
 - Was sind die Stelligkeiten folgender Funktionen: f(a, b, c), g(a), h(a, b)?

Verständnis von Termen, Atomaren Formeln, Stelligkeit

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- Woraus kann ein Term bestehen?
- \rightarrow Aus Klammern (,), Kommas ,, Variablen, Konstanten, Funktionen.
 - Was davon sind atomare Formeln: $R(x) \wedge S(f(x, c))$, R(x, g(c, f(y, x)))?
- \rightarrow Nein, ja.
 - Was sind die Stelligkeiten folgender Funktionen: f(a, b, c), g(a), h(a, b)?
- \rightarrow 3, 1, 2.

Grammatik der Prädikatenlogik

Maximilian Staab, Prädikatenlogische Formeln werden durch die Grammatik maximilian staab@fsmi.uni_karlsruhe.de, $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

Grammatik der Prädikatenlogik

Maximilian Staab, Prädikatenlogische Formeln werden durch die Grammatik maximilian staab@fsmi.uni_karlsruhe.de, $G := (N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

Grammatik der Prädikatenlogik

Maximilian Staab, Prädikatenlogische Formeln werden durch die Grammatik maximilian staab@fsmi uni-karlsruhe de, $G:=(N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

lukas.bach@student.kit.edu

Prädikatenlogik

■ m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)

Grammatik der Prädikatenlogik

Maximilian Staab, Prädikatenlogische Formeln werden durch die Grammatik maximilian staab@fsmi uni-karlsruhe de, $G:=(N_{Ter}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

lukas.bach@student.kit.edu

- m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)
- Terminalsymbolen: Alphabet, aus dem Terme erzeugbar sind

Grammatik der Prädikatenlogik

Maximilian Staab, Prädikatenlogische Formeln werden durch die Grammatik maximilian staab@fsmi.uni $G := (N_{Ter}^{karlsruh_e}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

- m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)
- Terminalsymbolen: Alphabet, aus dem Terme erzeugbar sind
- Produktionen

$$egin{aligned} L_{i+1} &
ightarrow L_i, T & ext{ für jedes } i \in \mathbb{N}_+ ext{ mit } i < m \ & L_1 &
ightarrow T \ & T &
ightarrow c_i & ext{ für jedes } c_i \in Const_{PL} \ & T &
ightarrow x_i & ext{ für jedes } x_i \in Var_{PL} \ & T &
ightarrow f_i(L_{ar(f_i)}) & ext{ für jedes } f_i \in Fun_{PL} \end{aligned}$$

Grammatik der Prädikatenlogik

Maximilian Staab, Prädikatenlogische Formeln werden durch die Grammatik maximilian staab@fsmi.uni $G := (N_{Ter}^{karlsruh_e}, A_{Ter}, T, P_{Ter})$ erzeugt mit:

Prädikatenlogik

- m+1 Nichtterminalsymbolen $N_{Ter} := \{T\} \cup \{L_i | i \in \mathbb{N}_+ \text{ und } i \leq m\}$ (m = Maximale Stelligkeit von Funktionen)
- Terminalsymbolen: Alphabet, aus dem Terme erzeugbar sind
- Produktionen

$$egin{aligned} L_{i+1} &
ightarrow L_i, T & ext{ für jedes } i \in \mathbb{N}_+ ext{ mit } i < m \ L_1 &
ightarrow T & ext{ für jedes } c_i \in Const_{PL} \ T &
ightarrow s_i & ext{ für jedes } x_i \in Var_{PL} \ T &
ightarrow f_i(L_{ar(f_i)}) & ext{ für jedes } f_i \in Fun_{PL} \end{aligned}$$

Beispiel: Seien Funktionen f, g mit ar(f) = 2, ar(g) = 1, Konstante c und Variablen x, y gegeben. Was kann man damit machen?

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f, g mit maximilian. staab@fsmi.uni.karfsruhe.de

Lukas Bach, lukas bach@student.kit.edu (f)= 2, ar(g)= 1, Konstante c und

Variablen x, y gegeben. Was kann man

Prädikatenlogik damit machen?

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f, g mit Lukas Bach, ar(f) = 2 ar(g) = 1 Konstante Cu

Lukas Bach, lukas bach@student.kit.edu ar(f)=2, ar(g)=1, Konstante c und Variablen x, y gegeben. Was kann man

damit machen?

Prädikatenlogik

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{\textit{Ter}} = \{L_2 \rightarrow L_1, T$$

$$L_1 \rightarrow T$$

$$T \rightarrow c$$

$$T \rightarrow x$$

$$T \rightarrow y$$

$$T \rightarrow g(L_1)$$

$$T \rightarrow f(L_2)$$

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$\begin{array}{l} \blacksquare \ \textit{P}_\textit{Ter} = \{\textit{L}_2 \rightarrow \textit{L}_1, \textit{T} \\ \textit{L}_1 \rightarrow \textit{T} \\ \textit{T} \rightarrow \textit{c} \\ \textit{T} \rightarrow \textit{x} \\ \textit{T} \rightarrow \textit{y} \\ \textit{T} \rightarrow \textit{g}(\textit{L}_1) \\ \textit{T} \rightarrow \textit{f}(\textit{L}_2) \} \end{array}$$

Aufgabe zu Grammatiken und Prädikatenlogik

Welche dieser Formeln entsprechen dieser Grammatik?

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Day

Dann:

$$egin{aligned} oldsymbol{ iny P_{Ter}} &= \{L_2
ightarrow L_1, T \ & L_1
ightarrow T \ & T
ightarrow c \ & T
ightarrow x \ & T
ightarrow y \end{aligned}$$

 $T \to g(L_1)$ $T \to f(L_2)$

 $N_{Ter} = \{T, L_1, L_2\}$

Aufgabe zu Grammatiken und Prädikatenlogik

Welche dieser Formeln entsprechen dieser Grammatik?

 \bullet f(c,g(x))

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Dann:

$$egin{aligned} oldsymbol{\mathsf{N}}_{\mathsf{Ter}} &= \{T, L_1, L_2\} \ oldsymbol{\mathsf{P}}_{\mathsf{Ter}} &= \{L_2
ightarrow L_1, T \ L_1
ightarrow T \ T
ightarrow c \ T
ightarrow x \ T
ightarrow y \ T
ightarrow g(L_1) \ T
ightarrow f(L_2) \} \end{aligned}$$

Aufgabe zu Grammatiken und Prädikatenlogik

- \bullet f(c,g(x))
- f(x, y, c)

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

$$lackbox{lack} egin{aligned} lackbox{lack} P_{ extit{Ter}} &= \{L_2
ightarrow L_1, T \ & L_1
ightarrow T
ightarrow c \ & T
ightarrow x \ & T
ightarrow y \ & T
ightarrow g(L_1) \ & T
ightarrow f(L_2) \} \end{aligned}$$

Aufgabe zu Grammatiken und Prädikatenlogik

- \bullet f(c,g(x))
- \bullet f(x, y, c)
- g(f(c,c))

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

• $P_{Ter} = \{L_2 \to L_1, T\}$

$$L_1 \rightarrow T$$
 $T \rightarrow c$

$$T \rightarrow x$$

$$T \rightarrow y$$

$$T \rightarrow g(L_1)$$

$$T \rightarrow f(L_2)$$

Aufgabe zu Grammatiken und Prädikatenlogik

- \bullet f(c,g(x))
- f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Dann:

•
$$N_{Ter} = \{T, L_1, L_2\}$$

• $P_{Ter} = \{L_2 \to L_1, T\}$

$$T \rightarrow c$$
 $T \rightarrow x$

 $L_1 \rightarrow T$

$$T \rightarrow v$$

$$T \rightarrow g(L_1)$$

$$T \rightarrow f(L_2)$$

Aufgabe zu Grammatiken und Prädikatenlogik

- $\bullet f(c,g(x))$
- \bullet f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))
- g(c

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Dan

Dann:

$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{Ter} = \{L_2 \rightarrow L_1, T$$

$$L_1 \rightarrow T$$

$$T \rightarrow c$$

$$T \rightarrow x$$

$$T \rightarrow y$$

$$T \rightarrow g(L_1)$$

$$T \rightarrow f(L_2)$$

Aufgabe zu Grammatiken und Prädikatenlogik

- \bullet f(c,g(x))
- f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))
- g(c, f)c

Grammatik der Prädikatenlogik

Maximilian Staab, Beispiel: Seien Funktionen f,g mit Lukas Bach, ar(f) = 2, ar(g) = 1, Konstante c und Variablen x,y gegeben. Was kann man Prädikatenlogik damit machen?

Dann:

$$N_{Ter} = \{T, L_1, L_2\}$$

$$P_{Ter} = \{L_2 \rightarrow L_1, T$$

$$L_1 \rightarrow T$$

$$T \rightarrow c$$

$$T \rightarrow x$$

$$T \rightarrow y$$

$$T \rightarrow g(L_1)$$

$$T \rightarrow f(L_2)\}$$

Aufgabe zu Grammatiken und Prädikatenlogik

Welche dieser Formeln entsprechen dieser Grammatik?

- \bullet f(c,g(x))
- f(x, y, c)
- g(f(c,c))
- g(g(f(g(x),g(f(c,c))))
- g(c, f)c

Bilde die Ableitungsbäume zu den korrekten Formeln.

Bindungsstärken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Prädikatenlogik

Bindungsstärke

Verschiedene Operanden "binden" stärker als andere.

Bindungsstärken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken absteigend:

■ ∀/∃

Bindungsstärken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

$$\blacksquare \ \forall /\exists, \neg, \wedge, \vee, \rightarrow / \leftarrow$$

Bindungsstärken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

$$\blacksquare \ \forall /\exists, \neg, \wedge, \vee, \rightarrow / \leftarrow, \leftrightarrow$$

Bindungsstärken

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken absteigend:

$$\blacksquare$$
 $\forall/\exists,\neg,\wedge,\vee,\rightarrow/\leftarrow,\leftrightarrow$

Finde äquivalente Formeln, die mit möglichst wenig Klammern auskommen:

Bindungsstärken

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Bindungsstärke

Prädikatenlogik Verschied

Verschiedene Operanden "binden" stärker als andere. Wenn ein Operand stärker als die umliegenden Operanden bindet, tritt derselbe Effekt auf, wie wenn Klammerung geschehen würde.

Bindungsstärken absteigend:

$$\blacksquare$$
 $\forall/\exists,\neg,\wedge,\vee,\rightarrow/\leftarrow,\leftrightarrow$

Finde äquivalente Formeln, die mit möglichst wenig Klammern auskommen:

$$\exists x \forall y (R(f(x), g(x)) \lor \forall z R(c, x)$$

Grundbegriffe Quantoren der Informatik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Grundbegriffe Quantoren der Informatik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

• $\forall xp(x)$ heißt

Grundbegriffe Quantoren der Informatik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Tukas. Dachest udent.kit.e

Prädikatenlogik

■ $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\blacksquare \exists xp(x) \text{ heißt}$

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists xp(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad \rho(x,y) = \exists y \forall x \quad \rho(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists xp(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \ p(x,y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \quad p(x, y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$
 - $\exists y \forall x \quad p(x,y) = \text{Es gibt eine Person } y$, sodass für alle Personen x gilt, dass x mit allen Personen y verheiratet ist.

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- $\forall xp(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \quad p(x, y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$
 - $\exists y \forall x \quad p(x,y) = \text{Es gibt eine Person } y$, sodass für alle Personen x gilt, dass x mit allen Personen y verheiratet ist.
 - Eher nicht.

Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

- $\forall x p(x)$ heißt: für alle $x \in D$ gilt die Aussage p(x).
- $\exists x p(x)$ heißt: für (mindestens) ein $x \in D$ gilt die Aussage p(x).
- Gilt $\forall x \exists y \quad p(x,y) = \exists y \forall x \quad p(x,y)$?
 - Zum Beispiel p(x, y) := "Person x ist mit Person y verheiratet.
 - Also:
 - $\forall x \exists y \quad p(x, y) = \text{Für jede Person } x \text{ gibt es eine Person } y, \text{ mit der } x \text{ verheiratet ist.}$
 - $\exists y \forall x \quad p(x,y) = \text{Es gibt eine Person } y$, sodass für alle Personen x gilt, dass x mit allen Personen y verheiratet ist.
 - Eher nicht. Reihenfolge ist also wichtig!

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach.

lukas.bach@student.kit.edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

Prädikatenlogik

■ Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?

Bindungsbereich von Quantoren

Maximilian Staab, maximilian.sta Lukas Bach.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas bach@student kit edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach,

lukas.bach@student.kit.edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

Prädikatenlogik

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich

Bindungsbereich von Quantoren

Maximilian Staab, maximilian.sta Lukas Bach.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas bach@student kit edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

Prädikatenlogik

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich, daher durch Quantoren definierte Variablen beziehen sich immer auf den nächsten Quantor.

Bindungsbereich von Quantoren

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

Prädikatenlogik

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich, daher durch Quantoren definierte Variablen beziehen sich immer auf den nächsten Quantor.

■ Ist $\forall x(p(x) \land \forall x(\neg p(x)))$ erfüllbar?

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas bach@student kit edu

Quantoren binden Variablen nur zu der zugehörigen Teilformel.

Prädikatenlogik

- Zum Beispiel: $p(x) \land \forall x \exists y (p(x) \land q(x, y, z) \rightarrow r(x)$
- Welcher Teil der Formel muss für alle x gelten? Welcher für alle y?
- Variablen, die nicht im Wirkungsbereich eines Quantors liegen, nennt man frei.

Überschattung ist möglich, daher durch Quantoren definierte Variablen beziehen sich immer auf den nächsten Quantor.

- Ist $\forall x(p(x) \land \forall x(\neg p(x)))$ erfüllbar?
- Ja: $\forall x(p(x) \land \forall \hat{x}(\neg p(\hat{x})))$

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, Substitution ist möglich.

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, Substitution ist möglich.Dabei wird eine freie Variable durch einen Term lukas bach@student.kit.edu

ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt Prädikatenlogik wird.

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

wird.

Lukas Bach, Substitution ist möglich.Dabei wird eine freie Variable durch einen Term lukas bach@student.kit.edu ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt

Prädikatenlogik

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, Substitution ist möglich.Dabei wird eine freie Variable durch einen Term lukas.bach@student.kit.edu ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Prädikatenlogik

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, Substitution ist möglich.Dabei wird eine freie Variable durch einen Term lukas bach@student.kit.edu ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Prädikatenlogik

•
$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach, Substitution ist möglich.Dabei wird eine freie Variable durch einen Term lukas.bach@student.kit.edu

ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Prädikatenlogik

•
$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

$$\bullet \ \beta[x/5](p(x) \lor \forall x(q(x,y))$$

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

wird.

Lukas Bach, Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt

Prädikatenlogik

•
$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

Bindungsbereich von Quantoren

Maximilian Staab

maximilian.staab@fsmi.uni-karlsruhe.de,

Lukas Bach. lukas bach@student kit edu

Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt wird.

Prädikatenlogik

•
$$\beta[x/5](\rho(x) \vee q(x,y)) = \rho(5) \vee q(5,y)$$

$$\beta[x/5](p(x) \vee \forall x(q(x,y)) = p(5) \vee \forall x(q(x,y))$$

$$\bullet \beta[x/y,y/x,z/f(z)](\rho(z) \land q(x,y))$$

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

wird.

Lukas Bach, Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt

Prädikatenlogik

•
$$\beta[x/5](\rho(x) \vee q(x,y)) = \rho(5) \vee q(5,y)$$

$$\beta[x/5](p(x) \vee \forall x(q(x,y)) = p(5) \vee \forall x(q(x,y))$$

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

wird.

Lukas Bach, Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt

Prädikatenlogik

Führe die folgenden Substitutionen durch:

•
$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

Welche der Variablen sind gebunden (und durch welche Quantoren), welche sind frei?

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

wird.

Lukas Bach, Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt

Prädikatenlogik

Führe die folgenden Substitutionen durch:

•
$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

Welche der Variablen sind gebunden (und durch welche Quantoren), welche sind frei?

$$p(x) \to \forall x \exists y (p(x) \land q(y,z) \leftrightarrow \forall z (q(x,z)))$$

Bindungsbereich von Quantoren

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

wird.

Lukas Bach, Substitution ist möglich. Dabei wird eine freie Variable durch einen Term ersetzt, die Substitution wird mit $\beta[a/b]$ bezeichnet, wobei a durch b ersetzt

Prädikatenlogik

Führe die folgenden Substitutionen durch:

•
$$\beta[x/5](p(x) \vee q(x,y)) = p(5) \vee q(5,y)$$

Welche der Variablen sind gebunden (und durch welche Quantoren), welche sind frei?

$$p(x) \to \forall x \exists y (p(x) \land q(y,z) \leftrightarrow \forall z (q(x,z)))$$

$$\forall y(p(f(x,y))) \lor \exists z(q(z,f(y,z)))$$

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Land grädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.ed Mengen:

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

Interpretation (D, I)

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

Interpretation (D, I), bestehend aus...

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $\blacksquare \ \textit{I}(\textit{R}_{\textit{i}}) \subseteq \textit{D}^{\textit{ar}(\textit{R}_{\textit{i}})} \ \textrm{für} \ \textit{R}_{\textit{i}} \in \textit{Rel}_{\textit{PL}}$

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)}$ für $R_i \in Rel_{PL}$
 - I weißt also den Komponenten Bedeutungen zu, "definiert diese"

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)}$ für $R_i \in Rel_{PL}$
 - I weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$

Semantik von prädikatenlogischen Formeln

Maximilian Staab, um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.ed.Mengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)}$ für $R_i \in Rel_{PL}$
 - I weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \to D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)} \text{ für } R_i \in Rel_{PL}$
 - I weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

Prädikatenlogik

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)} \text{ für } R_i \in Rel_{PL}$
 - I weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{Pl} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

$val_{D,I,\beta}$

Die Funktion $val_{D,l,\beta}: L_{Ter} \cup L_{For} \rightarrow D \cup \mathbb{B}$

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

Prädikatenlogik

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D \text{ für } c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)} \text{ für } R_i \in Rel_{PL}$
 - I weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{PL} \to D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

$val_{D,I,\beta}$

Die Funktion $val_{D,l,\beta}: L_{Ter} \cup L_{For} \to D \cup \mathbb{B}$ weißt einer prädikatenlogischen Formel eine Bedeutung

Semantik von prädikatenlogischen Formeln

Maximilian Staab, uni Um prädikatenlogische Formeln zu interpretieren, brauchen wir einige neue Lukas Bach, lukas bach@student.kit.edMengen:

Prädikatenlogik

- Interpretation (*D*, *I*), bestehend aus...
 - Universum $D \neq \emptyset$ mit...
 - $I(c_i) \in D$ für $c_i \in Const_{PL}$
 - $I(f_i): D^{ar(f_i)} \to D \text{ für } f_i \in Fun_{PL}$
 - $I(R_i) \subseteq D^{ar(R_i)} \text{ für } R_i \in Rel_{PL}$
 - I weißt also den Komponenten Bedeutungen zu, "definiert diese"
 - Variablenbelegung $\beta: Var_{Pl} \rightarrow D$, z.B. $\beta(x) := 3, \beta(y) := 11$
 - β definiert also Variablenwerte
- Damit können wir prädikatenlogische Formeln definieren!

$val_{D,I,\beta}$

Die Funktion $val_{D,I,\beta}: L_{Ter} \cup L_{For} \to D \cup \mathbb{B}$ weißt einer prädikatenlogischen Formel eine Bedeutung (Wahrheitsgehalt für Formeln und Element des Universums für Terme) zu.

Beispiel zur Semantik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach,

lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,I,\beta}$ und I?

Beispiel zur Semantik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,l,\beta}$ und l? l ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,l,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Beispiel zur Semantik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,l,\beta}$ und l? l ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,l,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Beispiel zur Semantik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,l,\beta}$ und I? I ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,l,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Beispiel zur Semantik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,l,\beta}$ und l? l ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,l,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.
Sei $I(f) : \mathbb{N}_0^2 \to \mathbb{N}_0$, $(x, y) \mapsto x - y$.

Beispiel zur Semantik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,l,\beta}$ und l? l ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,l,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Beispiel zur Semantik

Maximilian Staab,

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.edu

Prädikatenlogik

Unterschied zwischen $val_{D,l,\beta}$ und l? l ist für Einzelteilen (Konstanten, Funktionen, Relationen) eine Bedeutung zuweist, und $val_{D,l,\beta}$ einer ganzen Formel eine Bedeutung zuweist.

Sei
$$D := \mathbb{N}_0$$
, $I(c) := 10$, $ar(f) := 2$, $ar(p) := 1$, $ar(q) := 2$, $\beta(x) := 7$.

Sei
$$I(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x - y.$$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y.$$

Beispiel zur Semantik

Maximilian Staab,

 $\text{\tiny maximilian.staab@fsmi.uni} \\ \text{\tiny Sell} \text{\tiny Spl.} \text{\tiny maximilian.staab@fsmi.uni} \\ \text{\tiny Sell} \text{\tiny Spl.} \text{\tiny maximilian.staab@fsmi.uni} \\ \text{\tiny Lukas Bach.} \\ \text{\tiny l$

 $\mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y.$$

■
$$T_1 := p(x) \rightarrow \exists y (q(y,x) \land p(y))$$
, was ist $val_{D,I,\beta}(T_1)$?

Beispiel zur Semantik

Maximilian Staab,

 $\text{\tiny maximilian.staab@fsmi.uni} \\ \text{\tiny Sell} \text{\tiny Spl.} \text{\tiny maximilian.staab@fsmi.uni} \\ \text{\tiny Sell} \text{\tiny Spl.} \text{\tiny maximilian.staab@fsmi.uni} \\ \text{\tiny Lukas Bach.} \\ \text{\tiny l$

 $ext{lukas.bach@student.kit.ed}$ Sei $I(f): \mathbb{N}_0^2 o \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y$$
.

- $T_1 := \rho(x) \to \exists y (q(y, x) \land \rho(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$.

Beispiel zur Semantik

Maximilian Staab,

 $\text{\tiny maximilian.staab@fsmi.uni} \text{Sell} \text{\tiny Sell} \text{\tiny sphe.de} \mathbb{N}_0, \textit{I}(\textit{c}) := 10, \textit{ar}(\textit{f}) := 2, \textit{ar}(\textit{p}) := 1, \textit{ar}(\textit{q}) := 2, \beta(\textit{x}) := 7.$

<code>lukas.bach@student.kit.ed</code>Sei $I(f): \mathbb{N}_0^2 o \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y.$$

•
$$T_1 := p(x) \rightarrow \exists y (q(y, x) \land p(y))$$
, was ist $val_{D,l,\beta}(T_1)$?

• Wähle
$$y = 8 \in \mathbb{N}_0$$
. Dann: $I(q(8,7)) = w$

Beispiel zur Semantik

Maximilian Staab,

 $\text{\tiny maximilian.staab@fsmi.uni} \text{Sell} \text{\tiny Sell} \text{\tiny sphe.de} \mathbb{N}_0, \textit{I}(\textit{c}) := 10, \textit{ar}(\textit{f}) := 2, \textit{ar}(\textit{p}) := 1, \textit{ar}(\textit{q}) := 2, \beta(\textit{x}) := 7.$

<code>lukas.bach@student.kit.ed</code>Sei $I(f): \mathbb{N}_0^2 o \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y.$$

$$T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$$

■ Wähle
$$y = 8 \in \mathbb{N}_0$$
. Dann: $I(q(8,7)) = w, I(p(8)) = w$

Beispiel zur Semantik

Maximilian Staab,

 $\text{\tiny maximilian.staab@fsmi.uni} \text{Sell} \text{\tiny Sell} \text{\tiny spin-e.de} \mathbb{N}_0, I(c) := 10, ar(f) := 2, ar(p) := 1, ar(q) := 2, \beta(x) := 7.$

<code>lukas.bach@student.kit.ed</code>Sei $I(f): \mathbb{N}_0^2 o \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w :\Leftrightarrow x \ge 5, I(q(x,y)) = w :\Leftrightarrow x \ge y.$$

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, l, \beta}(T_1)?$
 - Wähle $y=8\in\mathbb{N}_0$. Dann: I(q(8,7))=w, I(p(8))=w, also $val_{D,I,\beta}(\exists y(q(y,x)\land p(y)))=w$

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\mathit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.

Sei
$$I(p(x)) = w : \Leftrightarrow x \ge 5, I(q(x, y)) = w : \Leftrightarrow x \ge y.$$

- $T_1 := p(x) \rightarrow \exists y (q(y, x) \land p(y))$, was ist $val_{D,l,\beta}(T_1)$?
 - Wähle $y=8\in\mathbb{N}_0$. Dann: I(q(8,7))=w, I(p(8))=w, also $val_{D,I,\beta}(\exists y(q(y,x)\land p(y)))=w$, und $val_{D,I,\beta}(T_1)=w$.

Beispiel zur Semantik

Maximilian Staab,

 $ext{lukas.bach@student.kit.ed}$ Sei $I(f): \mathbb{N}_0^2 o \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x > 5$, $I(q(x, y)) = w : \Leftrightarrow x > y$.

- $T_1 := p(x) \rightarrow \exists y (q(y,x) \land p(y))$, was ist $val_{D,I,\beta}(T_1)$?
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\mathit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x, y)) = w : \Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $val_{D,I,\beta}(p(x)) = w$

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\textit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x, y)) = w : \Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $val_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x))$

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\mathit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x,y)|x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x,y)) = w : \Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, l, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $val_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x))$

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\textit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x, y)) = w : \Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, l, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $val_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) = val_{D,I,\beta}(q(10-y,7))$

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\textit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x, y)) = w : \Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $extbf{val}_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) = val_{D,I,\beta}(q(10-y,7)) = w \text{ für } y \in \{0,1,2\}.$

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\mathit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x, y)) = w : \Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, l, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $extbf{val}_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) = val_{D,I,\beta}(q(10-y,7)) = w \text{ für } y \in \{0,1,2\}.$
 - $val_{D,I,\beta}(p(y)) = w \text{ für } y \geq 5.$

Beispiel zur Semantik

Maximilian Staab,

 ${}^{\text{lukas.bach@student.kit.ed}}\!\text{Sei }\textit{I}(f): \mathbb{N}_0^2 \to \mathbb{N}_0, (x,y) \mapsto x-y.$

Sei
$$ar(R) := 2$$
, $I(R) := \{(x, y) | x \le y\}$.
Sei $I(p(x)) = w : \Leftrightarrow x \ge 5$, $I(q(x, y)) = w : \Leftrightarrow x \ge y$.

- $T_1 := p(x) \to \exists y (q(y, x) \land p(y)), \text{ was ist } val_{D, I, \beta}(T_1)?$
 - Wähle $y = 8 \in \mathbb{N}_0$. Dann: I(q(8,7)) = w, I(p(8)) = w, also $val_{D,I,\beta}(\exists y(q(y,x) \land p(y))) = w$, und $val_{D,I,\beta}(T_1) = w$.
- $T_2 := p(x) \rightarrow \exists y (q(f(c, y), x) \land p(y))$, was ist $val_{D,l,\beta}(T_2)$?
 - $val_{D,I,\beta}(p(x)) = w$
 - $val_{D,I,\beta}(q(f(c,y),x)) = val_{D,I,\beta}(q(f(10,y),x)) = val_{D,I,\beta}(q(10-y,7)) = w \text{ für } y \in \{0,1,2\}.$
 - $val_{D,I,\beta}(p(y)) = w \text{ für } y \geq 5.$
 - Also: $val_{D,I,\beta}(T_2) = f$.

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de Lukas Bach.

Aufgaben zu Prädikatenlogik lukas.bach@student.kit.

Gegeben sind folgende Prädikate:

Prädikatenlogik

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- M"annlich(x, y) := wahr, gdw. x m"annlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de

Lukas Bach, Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Drücke die folgenden Aussagen mit prädikatenlogischen Formeln aus:

Jede männliche Person hat eine Mutter.

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de

Lukas Bach, lukas bach@student.kit. Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- lack Männlich(x,y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de

Lukas Bach, Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben?

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de

Lukas Bach, Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben? Widerspricht das der ursprünglichen Aussage?

Prädikatenlogik

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de

Lukas Bach, Aufgaben zu Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben? Widerspricht das der ursprünglichen Aussage?
- Jeder Mann hat Kinder (plural!).

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de

Lukas Bach, lukas bach@student.kit.e Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) :=wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede männliche Person hat eine Mutter.
 - $\forall x \exists y (M"annlich(x) \rightarrow Mutter(y, x))$
 - Kann eine Person jetzt auch mehr als eine Mutter haben? Widerspricht das der ursprünglichen Aussage?
- Jeder Mann hat Kinder (plural!).
 - $\forall x \exists y \exists z (\textit{Männlich}(x) \rightarrow (\textit{Vater}(x,y) \land \textit{Vater}(x,z) \land \neg (y = z)))$

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.e

Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- ullet Männlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.

Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

Drücke die folgenden Aussagen mit prädikatenlogischen Formeln aus:

Jede Frau ist mit höchstens einem Mann verheiratet.

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de,

lukas.bach@student.kit.e

Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- ullet Männlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede Frau ist mit höchstens einem Mann verheiratet.
 - $\forall x \forall y \forall z (Weiblich(x) \land ((Mannlich(y) \land Mannlich(z) \land \neg (y = z) \land Verheiratet(x, y)) \rightarrow \neg Verheiratet(x, z)))$

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.e

Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede Frau ist mit h\u00f6chstens einem Mann verheiratet.
 - $\forall x \forall y \forall z (Weiblich(x) \land ((M"annlich(y) \land M"annlich(z) \land \neg (y = z) \land Verheiratet(x, y)) \rightarrow \neg Verheiratet(x, z)))$
- Wer m\u00e4nnlich ist, ist nicht weiblich und umgekehrt.

Aufgaben zu Prädikatenlogik

Maximilian Staab.

maximilian.staab@fsmi.uni-karlsruhe.de, Lukas Bach.

lukas.bach@student.kit.e

Aufgaben zu Prädikatenlogik

Prädikatenlogik

Gegeben sind folgende Prädikate:

- Vater(x, y) := wahr, gdw. x Vater von y ist, analog Mutter(x, y).
- $M\ddot{a}$ nnlich(x, y) := wahr, gdw. x männlich ist, analog Weiblich(x).
- Verheiratet(x, y) := wahr, gdw. x und y verheiratet sind.

- Jede Frau ist mit höchstens einem Mann verheiratet.
 - $\forall x \forall y \forall z (Weiblich(x) \land ((M"annlich(y) \land M"annlich(z) \land \neg (y = z) \land Verheiratet(x, y)) \rightarrow \neg Verheiratet(x, z)))$
- Wer m\u00e4nnlich ist, ist nicht weiblich und umgekehrt.
 - $\qquad \forall x (\textit{M\"{a}nnlich}(x) \rightarrow \neg \textit{Weiblich}(x) \land \textit{Weiblich}(x) \rightarrow \neg \textit{M\"{a}nnlich}(x)) \\$

Maximilian Staab,

maximilian.staab@fsmi.uni Lukas Bach,

lukas.bach@student.kit.ed

