

FÍSICA II PARA INGENIERÍA

SOLUCIONES PROBLEMAS GUÍA 1: CINEMÁTICA DE LA PARTÍCULA

Ejercicio 1.

¿El velocímetro de un automóvil mide rapidez o velocidad? Explique su respuesta. (R: Mide rapidez, porque no entrega información alguna de la dirección o el sentido en el que va el auto)

Ejercicio 2.

La figura muestra una serie de fotografías de alta rapidez de un insecto que vuela en línea recta de izquierda a derecha (en la dirección +x). ¿Cuál de los gráficos de la figura es más probable que describa el movimiento del insecto? (R: alternativa d).

Ejercicio 3.

Usted lanza una pelota verticalmente hacia arriba. ¿Cómo están orientados los vectores de velocidad y aceleración de la pelota uno respecto al otro durante el ascenso y el descenso?

Ejercicios de evaluación de órdenes de magnitud

Ejercicio 4.

Un acelerador atómico emite partículas que se mueven a razón de 3x10⁸ m/s. ¿Cuánto tiempo tardan esas partículas en recorrer 3mm? En el servicio de tenis más rápido medido, la pelota sale de la raqueta a 73,14 m/s. ¿Cuánto tiempo tarda la pelota en recorrer 3mm, y cuál es la razón entre los tiempos para ambos casos? (R: t= 10⁻² ns; t=4,1x10⁻² ms; Ambos están a razón 1:2,43x10⁻⁷)

Ejercicio 5.

El cuerpo humano puede sobrevivir a un incidente de trauma por aceleración negativa (parada repentina) si la magnitud de la aceleración es menor que 250 m/s². Si usted sufre un accidente automovilístico con rapidez inicial de 105 km/hr, y es detenido por una bolsa de aire que se infla desde el tablero, ¿en qué distancia debe ser detenido por la bolsa de aire para sobre al percance? (R: 1,7m)

Ejercicios análisis de gráficos.

Ejercicio 6.

Una profesora de física sale de su casa y camina por la acera hacia el campus. A los 5 min comienza a llover, y ella regresa a casa. Su distancia con respecto a su casa en función del tiempo se muestra en la figura. ¿En cuál punto rotulado su velocidad es a) cero, b) constante y positiva, c) constante y negativa, d) de magnitud creciente, e) de magnitud decreciente?

Respuesta:

- a) Probablemente lleve velocidad cero en IV
- b) No se puede definir si es constante si no se estudia un tramo, pero aparentemente esto debería ocurrir en l.
- c) No se puede definir si es constante si no se estudia un tramo, pero aparentemente esto debería ocurrir en V.
- d) Lo mismo, no puedo definir si tiene magnitud creciente o decreciente en un punto, pero aparentemente esto debería ocurrir en II.
- e) No puedo definir si tiene magnitud creciente o decreciente en un punto, pero aparentemente esto debería ocurrir en III.

Ejercicio 7.

La siguiente tabla presenta los datos de prueba de Bugatti Veyron, el auto más rápido fabricado. El vehículo se mueve en línea recta (eje x).

Tiempo (s)	0	2,1	20,0	53,0
Rapidez (km/hr)	0	96,6	321,9	407,2

a) Elabore un gráfico v_x v/s t de la velocidad de este auto (en km/hr) en función del tiempo. ¿Su aceleración es constante? (**R: no, no es constante**)

b) Calcule la aceleración media del auto (en m/s²) entre i) 0 s y 2,1 s; ii) 2,1 s y 20, 0 s; iii) 20,9 s y 53,0 s. ¿Estos resultados son congruentes con el inciso a) de su gráfico? (Antes de decidirse a comprar este vehículo, le sería útil sabe que sólo se fabricaran 300, que a su máxima rapidez se le acaba la gasolina en 12 minutos y que ¡Cuenta 1.250.000 dólares!)

Respuestas: Sí, es congruente.

- i) 12,8 m/s²
- ii) 3,5 m/s²
- iii) 0,7 m/s²

Ejercicio 8.

En 2,5 s un automóvil aumenta su rapidez de 60 a 65 km/hr, mientras que una bicicleta pasa del reposo a 5,5 km/hr. ¿Cuál de los dos tiene la mayor aceleración? Realice el gráfico velocidad v/s tiempo para cada caso, y compare las pendientes. (R: La bicicleta tiene mayor aceleración, en el gráfico esto se visualiza con una mayor pendiente (a pesar de ser casi imperceptible))

Ejercicio 9.

La figura es un gráfico de la aceleración de una locomotora de juguete que se mueve en el eje x. Dibuje los gráficos de su velocidad y coordenada x en función del tiempo, si x=0 y v=0 cuanto t=0.

Ejercicio 10.

Para los gráficos de la figura:

a) Encuentre el itinerario de cada móvil.

INTINERARIO GRÁFICO 1:

A: x(t)=8+t

B: x(t)=12-3t

ITINERARIO GRÁFICO 2:

A: tramo 0 a 5 s x(t)=10+11t, después continua con x(t)=65.

B: tramo de 0 a 2 s x(t)=50, después continua hasta 4 s x(t)=50-25t

- b) ¿En qué instante se encuentran? (R: gráfico 1: a los 1 s; gráfico 2: a los 3,11 s).
- c) Confecciones un gráfico rapidez v/s tiempo para cada caso.

Para gráfico 1:

Para gráfico 2:

