

5909. Parallel Courses III

My Submissions (/contest/weekly-contest-264/problems/parallel-courses-iii/submissions/)

Back to Contest (/contest/weekly-contest-264/)

☆ Premium

ref=nb_npl)

You are given an integer n, which indicates that there are n courses labeled from 1 to n. You are also given a 2D integer array relations where relations [j] = [prevCourse $_i$, nextCourse $_i$] denotes that course $\verb|prevCourse|_i | has to be completed \textit{before} course | nextCourse|_i | (prerequisite relationship). Furthermore, you | the completed | prevCourse|_i | (prerequisite relationship) | the course | prevCourse|_i | (prevCourse|_i | prevCourse|_i | prevCourse|_i | (prevCourse|_i | prevCourse|_i | prevCourse|_$ are given a **0-indexed** integer array time where time[i] denotes how many **months** it takes to complete the

(i+1)th course.

You must find the **minimum** number of months needed to complete all the courses following these rules:

- You may start taking a course at **any time** if the prerequisites are met.
- Any number of courses can be taken at the same time.

Return the minimum number of months needed to complete all the courses.

Note: The test cases are generated such that it is possible to complete every course (i.e., the graph is a directed acyclic graph).

Example 1:

Input: n = 3, relations = [[1,3],[2,3]], time = [3,2,5]

Output: 8

Explanation: The figure above represents the given graph and the time required to complete each course.

We start course 1 and course 2 simultaneously at month $\boldsymbol{0}.$

Course 1 takes 3 months and course 2 takes 2 months to complete respectively.

Thus, the earliest time we can start course 3 is at month 3, and the total time required is 3 + 5 = 8 months.

Example 2:


```
Input: n = 5, relations = [[1,5],[2,5],[3,5],[3,4],[4,5]], time = [1,2,3,4,5]
Output: 12
Explanation: The figure above represents the given graph and the time required to complete each course.
You can start courses 1, 2, and 3 at month 0.
You can complete them after 1, 2, and 3 months respectively.

Course 4 can be taken only after course 3 is completed, i.e., after 3 months. It is completed after 3 + 4 = 7 months.
Course 5 can be taken only after courses 1, 2, 3, and 4 have been completed, i.e., after max(1,2,3,7) = 7 months.
Thus, the minimum time needed to complete all the courses is 7 + 5 = 12 months.
```

Constraints:

- 1 <= n <= $5 * 10^4$ • 0 <= relations.length <= min(n * (n - 1) / 2, $5 * 10^4$) • relations[j].length == 2• 1 <= prevCourse_j, nextCourse_j <= n • prevCourse_j != nextCourse_j
- \bullet All the pairs $\left[\text{prevCourse}_j, \ \text{nextCourse}_j\right]$ are unique.
- time.length == n
- 1 <= time[i] <= 10^4
- The given graph is a directed acyclic graph.

