BLOQUE II.- ESTRUCTURA

Tema 2.- Estructura de la Materia

* James F. Shackerlford

"Introducción a la Ciencia de Materiales para Ingenieros". Cuarta edición. Ed. Prentice Hall (1998)

* Pat L. Mangonon

"Ciencia de Materiales: Selección y Diseño" Ed. Pearson Educación (2001)

Objetivos

- Entender estructura cristalina a escala atómica : átomos ordenados de manera regular y repetitiva.
- · Identificación de los 7 sistemas cristalinos y 14 redes de Bravais.
- Conocer las celdillas unidades más importantes
- · Conocer las principales estructuras cristalinas de los metales.
- · Conocer, aplicar y calcular los siguientes conceptos
 - Factor de empaquetamiento
 - Planos cristalográficos
 - Posiciones y direcciones cristalográficas
 - Densidad volumétrica, planar, linear

Cristalinos

- Ordenamiento regular de los átm a corto y largo alcance
- Atm o molec.: \Rightarrow posiciones reticulares
- Enl: iónico, covalente o metálico, f. van der Waals
- anisótropos (prop. = f (dirección))
- ptos de fusión definidos

Metales, aleaciones, cerámicos, ... en condiciones ordinarias

Amorfos

- No ∃ Ordenamiento regular de los átm a largo alcance.
- Atm o molec.: \Rightarrow posiciones reticulares
- Enl: iónico, covalente o metálico, f. van der Waals
- · Isótropos (=prop. cualquier dirección)
- · ptos de fusión no definidos

Vidrios, polímeros,..., O enfriamiento rápido

Estructuras Cristalinas: Alotropía-polimorfismo

- · Capacidad de asumir dos o más estructuras Xtalinas. (Fe, C, AI, Ti, ZrO2, ...
- · Algunas de las prop. sólidos Xtalinos dependen de la estruct. Xtalina

Estruct. Tridimens.
Transparente
Muy duro (⇒ Coval.)
No conductor

Grafito

Estruct. Laminar Negro Blando (⇒ Enl. 2º) Conductor

Sólidos Cristalinos

Celda unidad

Mínima unidad estructural repetida que contiene todos los elementos de simetría del Xtal

Parámetros de red

a, b, c: aristas independientes

 α , β , γ : ángulos reticulares

Red tridimensional

Punto Reticular: Cada esfera representa un átomo, ion o molécula

Estructura cristalina cúbica simple

- a) Representación mediante esferas reducidas
- b) Representación mediante "modelo de esferas rígidas"

Celda Unidad

- \cdot Es la <u>unidad estructural</u> \Rightarrow define la estruct. cristalina mediante su geometría y por la posición de los átomos centro de ella
- · Menor unidad que, por repetición indefinida, genera el sólido cristalino.
- ·Paralelepípedo definido a partir de las longitudes axiales de las aristas independientes a, b y c y de los tres ángulos interaxiales α , β y γ .

Dependiendo del valor de las aristas independientes (a, b y c) y los ángulos α , β , γ se obtienen únicamente:

Celdilla unidad con los ejes de coordenadas x, y y z mostrando las longitudes de las aristas (a, b y c) y los ángulos interaxiales (α , β , γ)

7 Sistemas Cristalinos

7 Sistemas Cristalinos

Tipos de celdilla Unidad

Simple o Primitiva (P) (1 átomo por celda)

Centrada en el Cuerpo (I) (2 átomos por celda)

Centrada en las Caras (F) (4 átomos por celda) Centrada en las bases A (B o C) (2 átomos por celda)

14 Redes de Bravais

Sistema Cristalino	Relación axial-ángulos inter-axiales	Geometría de la celdilla unidad	
Cúbico	$a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$	Cúbica simple (P) Cúbica centrada caras (FCC ó F) Cúbica centrada cuerpo (BCC,ó I)	
Hexagonal	$a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	Hexagonal simple (P)	
Tetragonal	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	Tetragonal simple (P) Tetragonal centrada cuerpo (I)	
Romboédrico (Trigonal)	a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$	Romboédrico simple (R)	
Ortorrómbico	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	Ortorrómbico simple (P) Ortorrómbico centrado cuerpo (I) Ortorrómbico centrado base (A, B, C) Ortorrómbico centrado caras (F)	
Monoclínico	$a \neq b \neq c$ $\alpha = \gamma = 90^{\circ} \neq \beta$	Monoclínico simple (P) Monoclínico centrado en la base (C)	
Triclínico	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Triclínico simple	

Principales Estructuras Metálicas

- El 90% de los Metales cristalizan en 3 estructuras densamente empaquetadas puesto que:
 - Normalmente tiene un único elemento, luego el radio atómico es el mismo.
 - El enlace metálico no es direccional.
 - Con el fin de reducir la energía de enlace las distancias entre átomos tienden a ser pequeñas \Rightarrow $E_{mínima}$

Cúbico centrado en el cuerpo

(BCC)

Ej: Fe-α(estable baja temp.), Cr, Mo, K, V, W, aleaciones Cúbico compacto
(FCC)

Ej: Fe-γ, Al, Cu, Ni, Pt, Ag, Pt y Au

Hexagonal compacto

Ej: Be, Cd, Mg, Co, Ti- α , Zn

Estructura cúbica centrada en el cuerpo

$$(a=b=c)$$

 $\alpha=\beta=\gamma=90^{\circ}$

Ref. J.F. Shackelford "Introducción a la Ciencia de Materiales para Ingenieros". Prentice Hall

 $V_{celda} = \left[\frac{4R}{\sqrt{3}}\right]^3$

- •N° átomos =8.1/8+1=2 atm/celdilla unidad
- •Nº de coordinación= 8

$$V_{\text{átomos}} = \left[\frac{4}{3}\pi \cdot R^3\right] \cdot 2$$

$$a^2 + a^2 = d^2$$

$$a^2 + d^2 = (4R)^2$$

$$3 a^2 = (4R)^2$$

•V_{celda}=
$$a^3$$
 Como $4R = \sqrt{3} a \Rightarrow$

Factor empaquetamiento =
$$\frac{\text{Volumen de los átomos de la celda}}{\text{Volumen de la celda}} = \frac{2 \cdot (\frac{4\pi R^3}{3})}{(\frac{4}{\sqrt{3}}R)^3} = 0,68$$

El 68 % del volumen de la celda está ocupado

Estructura Cúbica Centrada en las Caras

$$(a=b=c)$$

 $\alpha=\beta=\gamma=90^{\circ}$

Ref. J.F. Shackelford "Introducción a la Ciencia de Materiales para Ingenieros". Prentice Hall

•N° átomos =8 ·
$$\frac{1}{8}$$
 +6 · $\frac{1}{2}$ = 4

$$V_{\text{átomos}} = \begin{bmatrix} \frac{4}{3} \pi \cdot R^3 \end{bmatrix} \cdot 4 \qquad \begin{array}{c} a^2 + a^2 = d^2 = (4R)^2 \\ 2 \ a^2 = (4R)^2 \end{array}$$

$$\cdot V_{celda} = a^3 \cdot 4R = \sqrt{2} a \Rightarrow$$

·
$$V_{celda}$$
= a^3 · 4R= $\int 2 a \Rightarrow V_{celda} = \left[\frac{4R}{\sqrt{2}}\right]^3$

Factor empaquetamiento =
$$\frac{\text{Volumen de los átomos de la celda}}{\text{Volumen de la celda}} = \frac{4 \cdot (\frac{4\pi R^3}{3})}{(\frac{4}{\sqrt{2}}R)^3} = 0,74$$

El 74 % del volumen de la celda está ocupado

Estructura Hexagonal Compacta HCP

Nº átomos

$$= 2 \cdot [6 \cdot \cdot ^{1}/_{6}] + 2 \cdot ^{1}/_{2} + 3 = 6$$

- Número de coordinación: 12
- Factor empaquet.: 0, 74

El 74 % del volumen de la celda está ocupado

Posiciones Intersticiales: Huecos

En las estructuras cristalinas \exists espacios vacíos \equiv INTERSTICIOS dónde pueden alojarse átomos

Hay diferentes tipos de huecos:

• OCTAÉDRICOS (N° Coord. 6) hueco situado en el centro de un octaedro regular.

• TETRAEDRICOS (N° Coord. 4) hueco situado en el centro de un tetraedro regular.

Estrc. COMPACTAS se verifica que

■Nº huecos tetraédricos = 2n

•Nº huecos Octaédricos = n

Siendo n: Nº de átomos/celdilla

Posiciones atómicas, direcciones y planos (I)

Posiciones atómicas:

Sistema de ejes x, y, z

Direcciones:

Las prop. de los materiales dependen de la dirección en la que se miden \Rightarrow se deforman en direcciones en las que los átomos están en contacto más estrecho.

Direcciones individuales: [uvw] vectores // ⇒ mismos índices

Direcciones equivalentes en la red: <uvv> Cuando los espaciamientos a lo largo de cada dirección son los mismos

Posiciones atómicas, direcciones y planos (II)

Planos : se utilizan los índices de Miller

"recíprocos de las intersecciones que el plano determina con los ejes x,y,z"

Procedimiento:

- 1. Escoger un plano que no pase por el origen
- 2. Determinar las intersecciones con los 3 ejes
- 3. Obtener los recíprocos de las intersecciones
- 4. Determinar el conjunto más pequeño de enteros que estén en la misma razón que las intersecciones
- 5. Notación: entre paréntesis sin comas (h k l)

$$\begin{array}{c} x=\frac{1}{2} \\ y=1 \\ z=\infty \end{array} \qquad \begin{array}{c} x=1 \\ y=\infty \\ z=\infty \end{array} \qquad \begin{array}{c} (110) \\ z=\infty \end{array} \qquad \begin{array}{c} x=1 \\ z=\infty \end{array} \qquad \begin{array}{c} x=1 \\ z=\infty \\ \end{array}$$

Ref. J.F. Shackelford "Introducción a la Ciencia de Materiales para Ingenieros". Prentice Hall

BCC vs FCC: Solubilidad C en Fe

• \neq factor empaquetamiento: $f_{bcc} = 0.68 \text{ y } f_{fcc} = 0.74$

 $V_{\text{sin ocupar}}(\text{bcc}) > V_{\text{sin ocupar}}(\text{fcc}), \text{ pero } V_{\text{hueco}}(\text{fcc}) > V_{\text{hueco}}(\text{bcc})$ • Este hecho permite explicar la solubilidad de C en Fe:

 $T_{amb.} \Rightarrow$ Aceros: Fe- a ó ferrita (\Rightarrow estructura bcc) Solubilidad: **0.02-0.05%C**

 $\uparrow T \Rightarrow$ Aceros: Fe- y o austenità (\Rightarrow estructura fcc) Solubilidad: **2%C**

FCC: $V_{ho} = 0.414 \text{ r}$ BCC: $V_{ho} = 0.291 \text{ r}$

Ref. William F. Smith "Fundamentos de la Ciencia e Ingeniería de Materiales". MacGrawHill

 \downarrow T bruscamente (trat. Térmico: temple) \Rightarrow existencia de Fe (bcc) con altos contenidos en C (\Rightarrow "distorsión red (tetragonal)") \Rightarrow martensita \Rightarrow Tprop.mecánicas aceros templados.

Material Anisótropo ⇒ Prop. dependen de la dirección cristalográfica en la que se miden

Material Isótropo ⇒ Prop. idénticas en todas las direcciones

	Módulo Elástico E (GPa)			
Material	Dirección cristalográfica [100]	Dirección cristalográfica [111]	Dirección cristalográfica aleatoria	
Al (FCC)	9.2	11.0	10.0	
Cu (FCC)	9.7	27.8	18.1	
Fe-α (BCC)	19.1	40.4	30.0	
W (BCC)	59.2	59.2	59.2	
MgO	35.5	48.7	45.0	
NaCl (FCC)	6.3	4.7	5.3	

Densidad volumétrica

Considerando el Modelo de las esferas rígidas

$$\rho_{v} = \frac{\text{masa celda unidad}}{\text{volumen celda unidad}} = \frac{n^{\circ} \text{ átomos celdilla unidad} \times \text{masa átomo}}{\text{volumen celdilla unidad}}$$

$$\rho = \frac{n \cdot M}{V_C N_A}$$

n: nº átomos/celda unidad

M: peso atómico

 V_C : volumen celda unidad

N_A: número de Avogadro (6.023x10²³ átomos/mol)

Composites/

fibers

Densidad de los materiales

Metales:

Empaquetamiento compacto (enlace metálico)

Polymers

Masa atómica alta

Graphite/

Ceramics/

Semicond

Cerámicos

Empaquetamiento menos compacto (iónico mixto)

Elementos ligeros

Polímeros

Empaquetamiento poco denso

Elementos principales: C, H, N, O, S....c

Densidad atómica lineal:

 $\rho_{l} = \frac{\text{N}^{\circ} \text{ .átomos diametral. intersecta dos por la línea}}{\text{long.línea}} = \frac{\text{átomos}}{m}$

Ejemplo:
$$\rho_{[111]} = \frac{1 \text{ átomo centro} + 2 \cdot \frac{1}{2}}{\sqrt{3} \cdot a} = \frac{2\sqrt{3}}{3a} \frac{\text{átomos}}{m}$$

Densidad atómica planar:

$$\rho_p = \frac{\text{N° átomos intersecta dos por el área}}{\text{área selecciona da}} = \frac{\text{átomos}}{m^2}$$

Ejemplo:

$$\rho_p = \frac{1 \text{ átomo centro } + 4 \cdot \frac{1}{4} \text{ vértices}}{a \cdot \sqrt{2} \cdot a} = \frac{\sqrt{2}}{a^2} \frac{\text{átomos}}{m^2}$$

Deformación Plástica

- La deformación plástica tiene lugar cuando los átomos deslizan entre ellos.
- El deslizamiento ocurre a lo largo de planos cristalográficos específicos (fracción atómica planar mas elevada) y a lo largo de direcciones preferentes (fracción atómica lineal mas elevada)

	Sistemas de Deslizamiento		
Estructura cristalina	Planos compactos	Direcciones compactas	Número
BCC (Fe-α, Mo, W)	{110}	<111>	6×2=12
FCC (Fe-γ, Cu, Ni, Al)	{111}	<110> -	4×3=12
HCP (Cd, Mg, Zn, Ti-α)	{0001}	<1120>	1×3 = 3

Propiedades de Transporte

- En algunos materiales, la estructura atómica produce un transporte rápido de e y/o calor en un plano y relativamente lento fuera de él. **Ejemplo:** Grafito.
- La conductividad térmica es más rápida en los planos con enlace covalente sp^2 que en la dirección perpendicular a ellos. Ejemplo: YBa₂Cu₃O₇ superconductores
- Algunas redes contienen planos cristalográficos de Cu y O. Estos planos conducen pares de e⁻ (pares de Cooper) que son los responsables de la superconductividad. Estos materiales son aislantes eléctricos en las direcciones perpendiculares a los planos Cu-O.