This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- GOLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

This Page Blank (uspto)

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-019304

(43) Date of publication of application: 21.01.2000

(51)Int.CI.

G02B . 1/11 G11B 7/135

(21)Application number: 10-180650

(71) Applicant: KONICA CORP

(22)Date of filing: 26.06.1998

(72)Inventor: OTA TATSUO

NOZAKI TAKASHI

(54) OPTICAL PARTS

(57)Abstract:

PROBLEM TO BE SOLVED: To prevent the intensity of a transmission light wavelength from being lowered (er). to enhance the reflectance of an aligning light wavelength (ëR) on an S2 surface and to improve lens position adjustment precision.

SOLUTION: This optical part is constituted so that in an optical lens used for light having the maximum intensity at 780±10 nm in the wavelengths (er) of the transmitting light, a reflection preventive coating is provided on both or at least one side of a light incident surface (S1) and light emitting surface (S2), and when the reflectances of the light of the region of the wavelength (ëR) of 500-700 nm are defined respectively as R1 (ëR), R2 (ëR), they satisfy R2 (ëR) > R1 (ëR).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

This Page Blank (uspto)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-19304

(P2000-19304A)

(43)公開日 平成12年1月21日(2000.1.21)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
G02B	1/11		G 0 2 B	1/10	Α	2 K 0 O 9
G11B	7/135		G11B	7/135	Α	5D119

審査請求 未請求 請求項の数4 OL (全 8 頁)

(21)出願番号	特顯平10-180650	(71)出顧人 000001270				
		コニカ株式会社				
(22)出顧日	平成10年6月26日(1998.6.26)	東京都新宿区西新宿1丁目26番2号				
		(72)発明者 太田 達男 東京都八王子市石川町2970番地コニカ株式 会社内 (72)発明者 野崎 隆 東京都八王子市石川町2970番地コニカ株式				
		会社内				
		Fターム(参考) 2K009 AA02 BB14 BB24 CC03 D003 EEDO				
		5D119 AA38 BA01 BC47 FA05 JA43				
		JAG5 JCO7 NAO5				

(54) 【発明の名称】 光学部品

(57)【要約】

【課題】 透過光波長(入下)の強度低下を防止し、かつS2面の位置合わせ用光波長(入下)に対する反射率を高くし、レンズ位置調整精度を向上させる手段を提供する。

【解決手段】 通過する光の波長($\lambda_{\rm T}$)が、 780 ± 10 n mに最大強度を有する光に対して用いられる光学レンズにおいて、光入射面(S1)と光出射面(S2)の両方又は少なくとも一方に反射防止コーティングを設け、波長($\lambda_{\rm R}$)が500~700 n mの領域の光の反射率を各々 R_1 ($\lambda_{\rm R}$), R_2 ($\lambda_{\rm R}$)とした時、 R_2 ($\lambda_{\rm R}$)> R_1 ($\lambda_{\rm R}$)としたことを特徴とする光学部品。

(c) 4.3

633

第2層

- 第1層

基材-[//

(b)

780 A (nm)

第2層

(a)

R (%)
9.8
1.5
833 780 850 Å(rm)

【特許請求の範囲】

【請求項1】 通過する光の波長(λ_r)が、780± 10nmに最大強度を有する光に対して用いられる光学 レンズにおいて、光入射面(S1)と光出射面(S2) の両方又は少なくとも一方に反射防止コーティングを設 け、波長(A_R)が500~700 nmの領域の光の反 射率を各々 $R_1(\lambda_R)$, $R_2(\lambda_R)$ とした時、 $R_2(\lambda_k) > R_1(\lambda_k)$

としたことを特徴とする光学部品。

【請求項2】 通過する光の波長($\lambda_{\rm I}$)が、600~ 700 nmの領域に最大強度を有する光に対して用いら れる光学レンズにおいて、光入射面(S1)と光出射面 (S2)の両方又は少なくとも一方に反射防止コーティ (発明が解決しようとする課題)光学読み取りヘッドへ ングを設け、波長 (λ_R) が750~850 n mの領域. の光の反射率を各々 $R_1(\lambda_R)$, $R_2(\lambda_R)$ とした時、 $R_2(\lambda_R) > R_1(\lambda_R)$ としたことを特徴とする光学部品。

【請求項3】 通過する光の波長(入工)が、350~ をしている。 500 n mの領域に最大強度を有する光に対して用いら 【0007】しかし、従来技術によるHe-Neレーザ れる光学レンズにおいて、光入射面(S1)と光出射面 光の波長633nmの反射率は図1に示すように約4. (S2)の両方义は少なくとも一方に反射防止コーティ 、ングを設け、波長(入。)が500~800 n mの領域 1.2 題があった。 の光の反射率を各々 $R_1(\lambda_R)$, $R_2(\lambda_R)$ とした時、 $R_2(\lambda_R) > R_1(\lambda_R)$ としたことを特徴とする光学部品。

る反射率R, (A,) を5%以上としたことを特徴とする・・・る手段を提供することを目的としたものである。 請求項1~3の何れか1項に記載の光学部品。 こう 「 こん 【0009】 こ

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスク読み取 5 り用光学へッドに使用する光学レンズに係わり、特にレビジー0±10nmに最大強度を有する光に対して用いられる。 ` ーザ光のレンズ反射光による光学ヘッドへの光学レンズ - * 光学レンズにおいて、光入射面(S1)と光出射面(S の高精度取り付けに係わるレンズコーティングに関す " ニュー2)の両方又は少なくとも一方に反射防止コーティング る、

[0002]

【従来の技術】従来の光ディスク読み取り用光学ヘッド に使用する光学レンズにおいては、反射防止コーティン - グ (以後コートとも言う)を光学レンズの光入射面と光 出射面に設け、780 nmのレーザ光を通過光として用 いている。そして、光学レンズの光入射面(S1)、光 いっられる光学レンズにおいて、光入射面(S1)と光出射 出射面(S2)に設ける反射防止コートの光学特性は、・ 図1のようになっている.

【0003】図1は従来例のコート(反射防止コート) を説明する図で、(a)はS1面、S2面のコート層構 成の説明図、(b)は光の波長に対する反射率(分光反 射率)の図である。

【0004】尚、本図1及び以下に説明する図2~図7 の縦軸・反射率R (%)は、図を作成する都合上対数目 盛で画いてある。 (最後の図8のみは縦軸は等間隔目盛

で画いてある。〉

反射防止コートの光入射面(S1)、光出射面(S2) の層構成(波長780 nmの光に対して)は次のように なっている。そして、基材としては、アクリル樹脂、ア ートン樹脂、ゼオネックス樹脂、ボリカーボネート樹脂 等の樹脂が使用されている。

[0005]

・第1層:酸化セリウム (屈折率n = 2.03) 膜厚d=340A

第2層:酸化シリコン (屈折率 n ≒ 1. 45) 膜厚d≒1770Å

[0006]

の光学レンズの取り付けの位置合わせには、反射防止コ ートを行った光学レンズを光学読み取りヘッドに組み込 み、このレンズを通してHe-Neレーザ光の波長63 3 n mの光を照射し、その反射光を利用して位置合わせ

3%と低く、レンズ位置合わせの精度が出ないという問

【0008】本発明は、前記課題を解決するためになさ れたものである。即ち、透過光波長(入・)の強度低下 【請求項4】 光出射面(S2)の波長(AR)に対す 対する反射率を高くじ、レンズ位置調整精度を向上させ

- 『信』・・・・・ 【課題を解決するための手段】本発明の目的は、下記構 成を採ることによって達成される。

> 【0010】即ち、通過する光の波長(A₁)が、78 を設け、波長 (A_R) が500~700 nmの領域の光 の反射率を各々 $R_1(\lambda_R)$, $R_2(\lambda_R)$ とした時、 $R_1(\lambda_1) > R_1(\lambda_1)$

としたことを特徴とする光学部品。

【0011】又、通過する光の波長(A_r)が、600 ~700 nmの領域に最大強度を有する光に対して用い 一面(S2)の両方又は少なくとも一方に反射防止コーテ ィングを設け、波長 (A_R) が750~850 nmの領 域の光の反射率を各々 R_1 (λ_R), R_2 (λ_R)とした

 $R_2(\lambda_R) > R_1(\lambda_R)$ としたことを特徴とする光学部品。

【0012】又、通過する光の波長(入・)が、350 ~500 n mの領域に最大強度を有する光に対して用い られる光学レンズにおいて、光入射面(S1)と光出射

面(S2)の両方又は少なくとも一方に反射防止コーテ ィングを設け、波長 (λ₂) が500~800 n mの領 域の光の反射率を各々 $R_1(\lambda_R)$, $R_2(\lambda_R)$ とした

 $R_2(\lambda_R) > R_1(\lambda_R)$

Section 1

としたことを特徴とする光学部品。

【0013】又、光出射面 (S2) の波長 (A₈) に対 . する反射率R₂(入_R)を5%以上としたことを特徴とす る光学部品。

【0014】これらは、例えば

DVーザ光 (λ_{τ}) 780 nmにピーク強度を有する光 び光出射面の反射率を各々 R_1 (λ), R_2 (λ)にした。する。 時、波長 (Ag) が500~700 nm、好ましくはH (12) 【0022】 (効果) このようにして、次の結果が得ら e-Neレーザ光の波長633nmとした時、 れた、れた、 $R_1(\lambda_R) < R_2(\lambda_R)$ ・・とする。

【0015】②レンズを光ディスクプレーヤ用ピックア 反射光を感知して組み込みの位置出しをしている。 【0016】反射光の波長を入れとした時、組み込みの(こ)6%以上を維持している。 加工租立収率は、Agの波長の光のS2面での反射率強 (0024)結果をまとめると次の通りである。 度 $R_2(\lambda_R)$ に大きく依存した。 $R_2(\lambda_R) \ge 5\%以上$ で収率は88%以上が得られ、R, $(\lambda_R) \ge 7%$ 以上で

収率は95%以上が得られた。実際の組立工程で、組立 費用を極力少なくする為には、収率を出来るだけ高くす ることが必要であり、少なくともR2(AR)≥5%が望 【0017】本発明は、これを解決するものである。

• • • • • • •

[0018]

【実施例】次に、実施例を示す。

説明する図で、(a)はS1面のコート層構成の説明 図、(b)はS2面のコート層構成の説明図、(c)は S1面の光の波長に対する代表的反射率の図、(d)は S2面の光の波長に対する代表的反射率の図である。

【0020】実施例1の基材は、アクリル樹脂、アート ン樹脂、ゼオネックス樹脂、ポリカーボネート樹脂の中 この何れかの樹脂を使用している。

【0021】S1面反射防止コート

(ここで、 n_{ij} : S_i 面の j 番目の層の材料の屈折率 d· ij: Si面のj番目の層の膜厚(nm) i:1又は2; 3.

第1層:酸化セリウム (屈折率n11 = 2.03) • : 膜厚d11=340人士30人

第2層:酸化シリコン (屈折率 n12 与1. 45) 膜厚d12=1770ű150Å

S2面反射防止コート

第1層:酸化セリウム(屈折率nn = 2.03) 膜厚d:1=395A±15A

第2層:酸化シリゴン (屈折率n:2≒1.45) 膜厚d;;=2075ű75Å

真空蒸着法は、電子銃加熱で、蒸発源に酸化セリウムペ レット、酸化シリコン粒子を設置する、酸素ガス圧は の透過率 $T(\lambda_t)$ を9.6%以上とし、且つ光入射面及 $1...5 \times 1.0$ 1... pascellar 、酸素ガスを導入して蒸着

【0023】図2(c),(d)で示すように、位置合 わせ用レーザ光波長633nmでのS1面の反射率4. 3%に対し、S.2面の反射率は9.8%となって従来よ ップに組み込む時、レンズのS-2面に光を照射し、その・・ り高くなり、位置合わせ精度を向上することが出来た。 又、通過する波長780 nmのレーザ光の透過率は、9

【0·0·25】透過率T (λ_I)≥96% (λ_I:780n mに最大強度を有するレーザ光の波長)

 $R_1(\lambda_B) = 1.5\% \sim 7.0\% (\lambda_B:633 nmc)$ 最大強度を有する光 (He-Neレーザ光)の波長) $R_2(\lambda_8) = 9.7\% \sim 13.0\%(\lambda_8: 同上)$ まれる、好ましくは R_2 (λ_R) $\geq 7\%$ が望まれる、 \mathbb{R}^2 。 このように、光学ヘッドとしてのレーザ通過光の、前記 波長の光の透過率は96%以上が確保出来た。そして、 レンズの位置合わせ用レーザ反射光の、レンズ出射面 :(S2)の反射率R。(Ag)は9.7~13、0%と従 【0019】(実施例1) 図2は、実施例1のコートを来例の4.3%より大であり、少なくとも5%以上の反 射光を確保し、且つレンズ入射面(S1)の反射率R1 (λ_k) 1.5~7.0%より大きくすることが出来、 後述の実施例7で説明するようにレンズの位置合わせ精 度及び作業性が向上した。

> 【0026】(実施例2)図3は、実施例2のコートを 説明する図で、(a)はS1面のコート層構成の説明 図、(b)はS2面のコート層構成の説明図、(c)は " S2面の光の波長に対する代表的反射率の図である。 【0027】実施例2の基材は、実施例1と同じであ

> > 【0028】又、S.I.面のコートは実施例1と同じコー トを使用している。

[0029]

100

1777 -

ることで、位置合わせ用レーザ光波長633nmでのS 2面の反射率は13%と更に高くなった。 【0032】又、透過率T (780nm) = 96%以上 を達成し実用上問題なく、実施例1より更に位置合わせ レンズの位置合わせ精度及び作業性が向上した。 精度が向上した。mに最大強度を有するレーザ光の波長) R₂ (入_R) = 9.0%~16.0% (入_R:633nm ~~~ 【0041】実施例4の基材は、実施例1と同じであ に最大強度を有するレーザ光の波長) このように、光学ヘッドとしてのレーザ通過光の、前記 まい【0042】 波長の光の透過率は96%以上が確保出来た。そして、 レンズの位置合わせ用レーザ反射光の、レンズ出射面 第1層:酸化セリウム (屈折率n11 = 2.03) (S2)の反射率R2(AR)は9.0~16.0%と従いに 来例の4.3%より大であり、少なくとも5%以上の反 射光を確保し、且つ実施例1より高くなり、後述の実施を高。 例7で説明するように、レンズの位置合わせ精度及び作品工事 A to the state of 業性が向上した。 【0035】(実施例3)図4は、実施例3のコートを、 } 説明する図で、(a)はS1面のコード層構成の説明 図、(b)はS2面のコート層構成の説明図、(c)の 3000 破線はS1面の、実線はS2面の光の波長に対する反射を 1.11 率の図である。 1. 【0036】実施例3の基材は、実施例1と同じであ [0037] S1面反射防止コート 第1層:酸化セリウム (屈折率 n:1 年2.03) 膜厚d11=283人士28人 第2層:酸化シリコン (屈折率 n12 与1. 45) 膜厚d12=1470ű150Å S2面反射防止コート 第1層:酸化シリコン (屈折率 n21 年1: 45) 膜厚d:1=920人士70人 - 第2月:酸化セリウム(屈折率 n₂₂≒2.-03) 膜厚d:2=328人士28人 第3層:酸化シリコン(屈折率 n21 = 1.45) 膜厚d:1=1140ű90Å 蒸着法は実施例1と同じである。

S2面反射防止コート

蒸着法は実施例1と同じである。

nt.

第1層:酸化シリコン (屈折率n, 1 年1.45)

第2層:酸化セリウム (屈折率 nzz = 2.03)

膜厚付12=530人士30人 第3層:酸化シリコン (屈折率 n23 年1. 45)

膜厚d::=1840ű90Å

【0030】(効果)このようにして、次の結果が得ら

膜厚d:1=1480ű80Å

【0038】(効果)このようにして、次の結果が得ら れた. 【0039】透過率T(\lambda_1)≥96%(\lambda_1:650n mに最大強度を有するレーザ光の波長) $R_1(\lambda_R) = 0.5 \sim 2.8\% (\lambda_R:780 \text{ nm CL})$ 大強度を有するレーザ光の波長) $R_2(\lambda_R) = 5.1 \sim 6.8\%(\lambda_R: 同上)$ このように、光学ヘッドとしてのレーザ通過光の、前記 波長の光の透過率は96%以上が確保出来た。そして、 レンズの位置合わせ用レーザ反射光の、レンズ出射面 【0031】図3に示すように、S2面を3層構成にす (S2)の反射率 $R_2(\lambda_R)$ は5.1 \sim 6.8%と少な くとも5%以上の反射率を確保し、且つレンズ入射面 (S1)の反射率R₁(入_R)0.5~2.8%より大き くすることが出来、後述の実施例7で説明するように、 A. ... 【0040】 (実施例4) 図5は、実施例4のコートを 【0033】 結果をまとめると次の通りである。 説明する図で、(a)はS1面のコート層構成の説明 【0034】透過率T(λ_{τ})≥96%(λ_{τ} :780n ! · 図、(b)はS2面のコート層構成の説明図、(c)は S2面の光の波長に対する反射率の図である。 1 . S. S1面反射防止コート 膜厚d11=283点±28点 第2層:酸化シリコン(屈折率n₁₂≒1、45) 膜厚d12=1470ű150Å (S1面反射防止コートは実施例3と同じ) S2面反射防止コート 第1層:酸化セリウム (屈折率n21 = 2.03) 膜厚d:1=1370A±95A 第2層:酸化シリコン (屈折率 n22 年1. 45) 膜厚d12=1490A±104A 第3層:酸化セリウム (屈折率 n23 = 2.03) 膜厚d23=1010ű70Å 第4層:酸化シリコン (屈折率 n24 ≒ 1. 45) 膜厚d14=834ű58Å 蒸着法は実施例1と同じである。 【0043】(効果)このようにして、次の結果が得ら 【0044】透過率T (λ₁)≥96% (λ₁:650n inに最大強度を有するレーザ光の波長) $R_1(\lambda_R) = 0.5 \sim 2.8\%(\lambda_R:780$ nmに最 大強度を有するレーザ光の波長) $R_2(\lambda_8) = 6.0 \sim 25.0\%(\lambda_8: 同上)$ このように、光学ヘッドとしてのレーザ通過光の、前記 波長の光の透過率は9.6%以上が確保出来た。そして、 レンズの位置合わせ用レーザ反射光の、レンズ出射面 (S2)の反射率R2(Ag)は6.0~25.0%と従 来例の4.3%より大であり、少なくとも3%以上の反

射率を確保し、レンズ入射面(S1)の反射率R $_{1}(\lambda_{8})$ 0.5~2.8%より大きく、且つ実施例3よ り大幅に高くすることが出来、後述の実施例7で説明す るようにレンズの位置合わせ精度及び作業性が向上し

【0045】(実施例5)図6は、実施例5のコートを 説明する図で、(a)はS1面のコート層構成の説明 図、(b)はS2面のコート層構成の説明図、(c)の 破線はS1面の、実線はS2面の光の波長に対する反射 率の図である。 こうしょ スト

【0046】実施例5の基材は、実施例1と同じであった。

[0047]

S1面反射防止コート

第1層:酸化セリウム (屈折率 n11 = 2:03)

膜厚d11=174点±21点

第2層:酸化シリコン (屈折率 n12 ≒ 1.45)

S2面反射防止コート

第1層:酸化シリコン (屈折率nz ≒ 1.~45)

膜厚dz1=680ű65Å

第2層:酸化セリウム (屈折率 n22 = 2.03) る。

・膜厚d::=248A±25A(アンドンドンドン(0052)

`第3層:酸化シリコン (屈折率n, 51, 45)

膜摩付13=849A±84本 385 パー・・サー

蒸着法は実施例1と同じである。 ...

性性病 化氯化 医

第1層:酸化ジルコニウム (屈折率n:1=2.03)

膜厚d₁₁=174ű17Å

第2層:酸化シリコン(屈折率n12年1.45)

膜厚d:=898A±89A

第1層 消散化ジルコニウム (屈折率 nxi 与 2、03) [1] []

第2層:酸化シリコン (屈折率 n22 年1.45)

膜厚d22=982人±95人

膜厚d: = 645ű64Å 出 5

膜厚d24=548A±54A=

蒸着法は実施例1と同じである。

1 1 872 5

Salar Salar

【0053】(効果)このようにして、次の結果が得ら ウェース と**れた**なし こうしょ はりのし

11

3 nmに最大強度を有するレーザ光の波長)

 $R_1(\lambda_R) = 4.0~5.5\%(\lambda_R:633$ n mに最

大強度を有するレーザ光の波長)

 $R_2(\lambda_R) = 30.0 \sim 36.5\%(\lambda_R: 同上)$ 波長の光の透過率は96%以上が確保出来た。そして、

【0048】(効果)このようにして、次の結果が得ら れた。

【0049】透過率T (λ₁)≥96% (λ₁:408. 3 nmに最大強度を有するレーザ光の波長)

大強度を有するレーザ光の波長)

 $R_2(\lambda_R) = 6.0 \sim 7.5\%(\lambda_R:同上)$

このように、光学ヘッドとしてのレーザ通過光の、前記 波長の光の透過率は96%以上が確保出来た。そして、 レンズの位置合わせ用レーザ反射光の、レンズ出射面

(S2)の反射率R₂(入₈)は6.0~7.5%と従来 ード(-) コラギミニー Mの5%より大であり、且つレンズ入射面(S1)の反 - ・ 射率R₁ (λ_k) 4.0~5.5%より大きくすることが 出来、後述の実施例7で説明するように、レンズの位置 合わせ精度及び作業性が向上した。

【0050】(実施例6)図7は、実施例6のコートを 説明する図で、(a)はS1面のコート層構成の説明 膜厚d1:=898A±110A) (c)の (b)はS2面のコート層構成の説明図、(c)の 破線はS1面の、実線はS2面の光の波長に対する反射 率の図である。

【0051】実施例6の基材は、実施例1と同じであ

S1面反射防止コート

S 2面反射防止コート (1)

膜厚dz1=910ű90Å (())

第3層:酸化ジルコニウム (屈折率n₂₃≒2, 03)

第4層:酸化シリコン (屈折率 n24 年 1.45). 1 2

・・・・・・・・ レンズの位置合わせ用レーザ反射光の、レンズ出射面 √(S2)の反射率R₂(A₂)は30.0~36.5%と 従来例の4.3%より大であり、レンズ入射面(S1) 【0054】透過率T(入;) 296%(入;:408. の反射率R;(入;)4.0~5.5%より大きく、且つ 実施例5より大幅に高くすることが出来、後述の実施例 7で説明するように、レンズの位置合わせ精度及び作業 性が向上した。

- "【0055】(実施例7)図8は、実施例7のコートを このように、光学ヘッドとしでのレーザ通過光の、前記 説明する図で、実施例1においてS1面、S2面の反射 防止コートを下記表1のごとく構成したものの、52面

の光の波長に対する反射率の図である。

【0056】尚、本図8の縦軸・反射率R(%)は、前

る。 [0057]

【表1】

述のように図1~図7と異なり等間隔目盛で画いてあ

		S1 面反射		82 面反射防止コート種類				
	·	防止コート	1	2	3	4	5	
第1度	.コート粉.	d ₁₁		·	. d ₂₁			
酸化セリウム	(A)	340	318	326	344	- 357	387	
**	コート No.	d ₁₂			d ₂₂			
第2層 酸化シリコン	(A)	1770	1656	1700	1793	1862	2023	
	λ _R		rs.		790	820		
反射率	23 8	. a	ь	С	đ	е	· f	

【0058】そして下記表2は、前記表1の組み合わぜ でS1, S2面の反射防止コートを形成した時の、反射 率、透過率、組立収率、実用上の良否判断を示したもの である。但し、レンズの位置合わせ用レーザ反射光の波 長入Rは633nm、光学ヘッドとしてのレーザ通過光 の波長入1は780 nmである。

[0059]

【表2】

	S2 面反射防止コート種類					
÷.	1	2	3	4	5	
R ₁ (λ _R)(%)	4.3	4.3	4.3	4.3	4.3	
R ₂ (A _N)(%)	2.3	3.0	5.0	7.0	11.0	
T() (%)	97.8	98.0	98.2	97.2	96.8	
収 率(%)	70	75	88	95	98	
評価	×	×	0	©	(0)	

【0060】表2に示すように、S2面反射防止コート 種類1と2の、S2面の反射率R,(入x)が2.3%と 3.0%と、S1面の反射率R1(AR)4.3%より小 さいと、S2面による反射光での位置合わせが暗くなり 【図1】従来例のコートを説明する図である。 見づらいので、組立収率は70%と75%となり実用上 の良否としては不合格である。

【0061】コート種類3のS2面の反射率R2(AR) が5.0%とS1面の反射率R1(Ag)4.3%より大 きいと、S2面による反射光での位置合わせは明るくな って見やすくなり、位置合わせ精度及び作業性向上によ り、組立収率は88%となり実用上の良否としては合格 である。

【0062】更に、コート種類4と5の、S2面の反射 率R₂(入_R)が7.0と11.0%と、S1面の反射率 $R_1(\lambda_R)$ 4.3%より大きく、且つ反射率 $R_2(\lambda_R)$ の値が7.0~11.0%と大きくなると、前述のよう にS2面による反射光での位置合わせが明るくなって見 やすくなり、位置合わせ精度及び作業性向上により、組 立収率も95~98%とほとんど100%に近くなり、 実用上の良否としては充分に合格となる。従って、S2 面の反射率 $R_2(\lambda_R)$ がS1面の反射率 $R_1(\lambda_R)$ より 大きく、且つ特に、反射率R。(λε)の値が前記の様に 大きくなれば、前述のように位置合わせ精度及び作業性 向上により、組立収率も100%に近くなるので、非常 に好ましい。

[0063]

【発明の効果】本発明により、透過光波長(入)の強 度低下を防止し、かつS2面の位置合わせ用光波長(入 R) に対する反射率を高くし、レンズ位置調整精度を向 上させる手段が提供されることとなった。

【図面の簡単な説明】

- 【図2】実施例1のコートを説明する図である。
- 【図3】実施例2のコートを説明する図である。
- 【図4】実施例3のコートを説明する図である。
- 【図5】実施例4のコートを説明する図である。
- 【図6】実施例5のコートを説明する図である。
- 【図7】実施例6のコートを説明する図である。 【図8】実施例7のコートを説明する図である。

ŧ.

(8) 開2000-19304 (P2000-1934

[図7]

【図8】

