S.-T. Yau College Student Mathematics Contests 2022 Algebra and Number Theory Individual

Problem 1. Let M denote the \mathbb{C} -vector space consisting of $n \times n$ \mathbb{C} -matrices. Let Id denote the identity matrix.

Please determine all \mathbb{C} -linear functions σ on M such that $\sigma(AB) = \sigma(BA)$ and $\sigma(\mathrm{Id}) = n$.

Problem 2. Let p be a prime number and F a finite extension of the field \mathbb{Q}_p of p-adic numbers.

- (a) Suppose $p \neq 2$. Prove that every element of \mathcal{O}_F can be written as a sum of three squares in \mathcal{O}_F .
- (b) Suppose $F = \mathbb{Q}_2$. Prove that every element of \mathcal{O}_F can be written as a sum of four squares in \mathcal{O}_F .

Problem 3. Let $R = \prod_p \mathbb{F}_p$, where p runs through all prime numbers.

- (a) Show that there exists a maximal ideal \mathfrak{m} of R such that R/\mathfrak{m} is a field of characteristic zero in which -1 is not a square.
- (b) Show that there is no maximal ideal \mathfrak{n} of R admitting an embedding $R/\mathfrak{n} \hookrightarrow \mathbb{R}$.