Lecture 2 Modular Arithmetic

Def. Let m be a positive integer (called the modulus). Integers a,b are said to be **congruent mod** m if $m \mid a-b$ and we write $a \equiv b \pmod{m}$. Note this is a true-false relationship.

If $a \equiv b \pmod{m}$ then a = b + km for some integer k. Also, a and b will have the same remainder when divided by m.

Ex.

- (1) $80 \equiv 4 \pmod{19}$ is true since $19 \mid 80 4 = 76$
- (2) $135 \equiv 6 \pmod{22}$ is false because 22 / 135 6 = 129
- (3) $105 \equiv 0 \pmod{7}$ is true because $7 \mid 105 0 = 105$

Proposition: (a) If $a_1 \equiv a_2 \pmod{m}$ and $b_1 \equiv b_2 \pmod{m}$ then $a_1 \pm b_1 \equiv a_2 \pm b_2 \pmod{m}$ and $a_1b_1 \equiv a_2b_2 \pmod{m}$

(b) Given an integer a there exists an integer b such that $ab \equiv 1 \pmod{m}$ if and only if gcd(a,m) = 1. Note: in this case we say that b is the multiplicative inverse of $a \pmod{m}$.

Also, the multiplicative inverse is unique. If $ab_1 \equiv ab_2 \equiv 1 \pmod{m}$ then $b_1 \equiv b_2 \pmod{m}$

Pf of (b)

(⇒) Assume $ab \equiv 1 \pmod{m}$. This means ab = 1 + km for some integer k. Hence ab - km = 1. Let $\gcd(a,m) = d \Rightarrow d \mid a,d \mid m \Rightarrow d \mid ab - km \Rightarrow d \mid 1 \Rightarrow d = 1$

(

Assume gcd(a,m) = 1. By the Extended Euclidean Algorithm there exist integers u,v such that $au + mv = 1 \Rightarrow au - 1 = -mv \Rightarrow au \equiv 1 \pmod{m}$.

Suppose $ab_1 \equiv ab_2 \equiv 1 \pmod{m}$. Then $b_1 \equiv b_1(ab_2) \equiv (b_1a)b_2 \equiv 1 \cdot b_2 \equiv b_2 \pmod{m}$

Note: If $ab \equiv 1 \pmod{m}$ then we write $b \equiv a^{-1} \pmod{m}$

Ex:

(1) Find $15^{-1} \pmod{23}$

By the Extended Euclidean Algorithm

$$23 = 15 + 8$$

$$15 = 8 + 7$$

$$8 = 7 + 1$$

$$1 = 8 - 7 = 8 - (15 - 8) = 2*8 - 15 = 2*(23 - 15) - 15 = 2*23 - 3*15$$

$$15^{-1} \equiv -3 \equiv 20 \pmod{23}$$

(2) Compute 13/15 (mod 23)

$$13/15 \equiv 13*15^{-1} \equiv 13*20 \equiv 7 \pmod{23}$$

Def.

The **ring of integers mod** m is denoted $Z/mZ = Z_m = \{0,1,...,m-1\}$. In this set addition and multiplication are defined mod m.

Ex

(1) Consider the ring Z_{11} . Sample computations: 7+8=4, 7*8=1 (these are valid mod 11).

Def. Group of units mod m is the set

$${a \in Z_m \mid a \text{ has a multiplicative inverse mod } m} = {a \in Z_m \mid \gcd(a.m) = 1}$$

Notation for the group of units: $(Z/mZ)^* = Z_m^* = U(m)$

Notes:

(1) U(m) is closed under multiplication

Pf: Let
$$a,b \in U(m)$$
 then $(ab)*(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$

(2) If p is a prime number then $(Z/pZ)^* = Z_p^* = U(p) = \{1, 2, ..., p-1\}$

Ex:

(1) Find U(8).

$$gcd(1,8) = 1$$
, $gcd(2,8) = 2$, $gcd(3,8) = 1$, $gcd(4,8) = 4$, $gcd(5,8) = 5$, $gcd(6,8) = 2$, $gcd(7,8) = 7$ $U(8) = \{1,3,5,7\}$

(2) Find the multiplication table for U(8)

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Def. The Euler $\phi(n)$ function or Euler totient function is defined as $\phi(n) = \#U(n)$

Ex:

$$\phi(2) = 1$$
, $U(2) = \{1\}$

$$\phi(3) = 2$$
, $U(3) = \{1, 2\}$

$$\phi(4) = 2$$
, $U(4) = \{1,3\}$

$$\phi(5) = 4$$
, $U(5) = \{1, 2, 3, 4\}$

$$\phi(6) = 2$$
, $U(6) = \{1,5\}$

$$\phi(15) = 8$$
, $U(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}$