=Q

下载APP

12 | 基础配置详解:有哪些配置项是你必须要关注的?

2021-10-06 吴磊

《零基础入门Spark》

课程介绍 >

讲述:吴磊

时长 21:08 大小 19.36M

你好,我是吴磊。

国庆假期即将结束,我们的基础模块也即将收尾。到目前为止,我们一起学习了 RDD 编程模型、Spark 分布式部署、Spark 工作原理,以及 RDD 常用算子。恭喜你,到这里,可以说你已经完全跨入了 Spark 分布式应用开发的大门。有了现在的知识储备,对于大多数的业务需求,我相信你都能很快地实现。

不过,快速用代码实现各式各样的业务需求,这还只是第一步。我们不光要让代码跑起来,还需要让代码跑得又快又稳。

要想做到这些,我们还需要配置项来帮忙。如果把 Spark 看作是一部 F1 赛车的话,那么配置项就是赛车车身的各项配置参数,如发动机缸数、最大转矩、车身轴距、悬挂方式、

整车装备质量,等等。只有合理地配置车身参数,才能让车子本身的稳定性和性能得到保障,为选手的出色发挥奠定基础。

今天这一讲,我们就来说一说 Spark 都有哪些配置项,以及这些配置项的含义与作用。

配置项

打开 Spark 官网的 ② Configuration 页面,在这里你能找到全部的 Spark 配置项。

不过,让人沮丧的是,配置项数目过于庞大,种类繁多,有的需要设置 true/false,有的则需要我们给出明确的数值,让人看上去眼花缭乱、无所适从。

配置项示意图

那么问题来了,面对这么多的配置项,我们应该从哪里入手呢?别着急,既然我们的目的是让车子"跑得稳"、"跑得快",那咱们不妨从这两个角度出发,来整理那些我们必须要掌握的配置项。

在这一讲,咱们先来梳理那些**能让 Spark 跑得稳的配置项**,而在后续介绍 Spark SQL 的时候,我们再去关注那些与"跑得快"有关的部分。

关于跑得稳这件事,你可能会有这样的疑问:"一般的车子,出厂就能开,并不需要特别调整什么车辆参数。同理,大部分 Spark 配置项都有默认值,开发者使用出厂设置、省去调参的麻烦,它不香吗?" 遗憾的是,对于大多数的应用场景来说,在默认的参数设置下,Spark 还真就跑不起来。

以 spark.executor.memory 这个配置项为例,它用于指定 Executor memory,也就是 Executor 可用内存上限。这个参数的默认值是 1GB,显然,对于动辄上百 GB、甚至上 TB 量级的工业级数据来说,这样的设置太低了,分布式任务很容易因为 OOM(内存溢 出,Out of memory)而中断。

你看,为了能让 Spark 跑得稳,咱们还是得花些心思。对于刚才说的情况,如果你以为直接把内存参数设置到上百 GB,就可以一劳永逸,那未免有些草率。单纯从资源供给的角度去调整配置项参数,是一种"简单粗暴"的做法,并不可取。实际上,应用程序运行得稳定与否,取决于硬件资源供给与计算需要是否匹配。

这就好比是赛车组装,要得到一辆高性能的车子,我们并不需要每一个部件都达到"顶配"的要求,而是要让组装配件之间相互契合、匹配,才能让车子达到预期的马力输出。

因此,咱们不妨从硬件资源的角度切入,去探索开发者必须要关注的配置项都有哪些。既然上面我们用内存举例,而且关于内存的配置项,我们在内存管理那一讲简单提过,你可能还有一些印象,那么接下来,我们就从内存入手,说一说和它有关的配置项。

内存

说起内存,咱们不妨先来回顾一下 Spark 的内存划分。对于给定的 Executor Memory , Spark 将 JVM Heap 划分为 4 个区域,分别是 Reserved Memory、User Memory、Execution Memory 和 Storage Memory , 如下图所示。

不同内存区域的含义和它们的计算公式,我们在 **②** 第 8 讲做过详细讲解,如果你印象不深了可以回顾一下,这里我们重点分析一下这些内存配置项数值的设置思路。

```
Execution Memory Storage Memory
(M - 300) * mf * (1 - sf) (M - 300) * mf * sf

User Memory
(M - 300) * (1 - mf)

Reserved Memory (300MB)

M
```

配置项

- M spark.executor.memory
- mf spark.memory.fraction
- sf spark.memory.storageFraction

内存配置项

结合图解,其中 Reserved Memory 大小固定为 300MB,其他 3 个区域的空间大小,则有 3 个配置项来划定,它们分别是 spark.executor.memory、spark.memory.fraction、spark.memory.storageFraction。

为了后续叙述方便,我们分别把它们简称为 M、mf 和 sf,其中大写的 M 是绝对值,而小写的 mf 和 sf 都是比例值,这一点需要你注意。

其中,M 用于指定划分给 Executor 进程的 JVM Heap 大小,也即是 Executor Memory。Execution Memory 由 Execution Memory、Storage Memory 和 User Memory "这三家"瓜分。

(M-300)*mf 划分给 Execution Memory 和 Storage Memory,而 User Memory 空间大小由 (M-300)*(1-mf) 这个公式划定,它用于存储用户自定义的数据结构,比如,RDD 算子中包含的各类实例化对象或是集合类型(如数组、列表等),都属于这个范畴。

因此,如果你的分布式应用,并不需要那么多自定义对象或集合数据,你应该把 mf 的值设置得越接近1越好,这样 User Memory 无限趋近于0,大面积的可用内存就可以都留给 Execution Memory 和 Storage Memory 了。

我们知道,在 1.6 版本之后,**Spark 推出了统一的动态内存管理模式**,在对方资源未被用尽的时候,Execution Memory 与 Storage Memory 之间可以互相进行抢占。不过,即便如此,我们仍然需要 sf 这个配置项来划定它们之间的那条虚线,从而明确告知 Spark 我们开发者更倾向于"偏袒"哪一方。

那么对于 sf 的设置, 开发者该如何进行取舍呢?答案是看数据的复用频次。这是什么意思呢?我们分场景举例来说。

对于 ETL(Extract、Transform、Load)类型的作业来说,数据往往都是按照既定的业务逻辑依序处理,其中绝大多数的数据形态只需访问一遍,很少有重复引用的情况。

因此,在 ETL 作业中,RDD Cache 并不能起到提升执行性能的作用,那么自然我们也就没必要使用缓存了。在这种情况下,我们就应当把 sf 的值设置得低一些,压缩 Storage Memory 可用空间,从而尽量把内存空间留给 Execution Memory。

相反,如果你的应用场景是机器学习、或是图计算,这些计算任务往往需要反复消耗、迭代同一份数据,处理方式就不一样了。在这种情况下,咱们要充分利用 RDD Cache 提供的性能优势,自然就要把 sf 这个参数设置得稍大一些,从而让 Storage Memory 有足够的内存空间,来容纳需要频繁访问的分布式数据集。

好啦,到此为止,对于内存的3个配置项,我们分别解读了它们的含义,以及设置的一般性原则。你需要根据你的应用场景,合理设置这些配置项,这样程序运行才会高速、稳定。学会了这些,内存配置项这一关,你基本上已经拿到80分了。而剩下的20分,需要你从日常开发的反复实践中去获取,期待你总结归纳出更多的配置经验。

在硬件资源方面,内存的服务对象是 CPU。内存的有效配置,一方面是为了更好地容纳数据,另一方面,更重要的就是提升 CPU 的利用率。那说完内存,接下来,我们再来看看 CPU。

CPU

与 CPU 直接相关的配置项,我们只需关注两个参数,它们分别是 spark.executor.instances 和 spark.executor.cores。其中前者指定了集群内 Executors 的个数,而后者则明确了每个 Executors 可用的 CPU Cores (CPU 核数)。

我们知道,一个CPU Core 在同一时间只能处理一个分布式任务,因此,

spark.executor.instances 与 spark.executor.cores 的乘积实际上决定了集群的并发计算能力,这个乘积,我们把它定义为"并发度"(Degree of concurrency)。

说到并发度,我们就不得不说另外一个概念:并行度(Degree of parallism)。相比并发度,并行度是一个高度相关、但又完全不同的概念。并行度用于定义分布式数据集划分的份数与粒度,它直接决定了分布式任务的计算负载。并行度越高,数据的粒度越细,数据分片越多,数据越分散。

这也就解释了,并行度为什么总是跟分区数量、分片数量、Partitions 这些属性相一致。举个例子,第9讲我们就说过,并行度对应着RDD的数据分区数量。

与并行度相关的配置项也有两个,分别是 spark.default.parallelism 和 spark.sql.shuffle.partitions。其中前者定义了由 SparkContext.parallelize API 所生成 RDD 的默认并行度,而后者则用于划定 Shuffle 过程中 Shuffle Read 阶段(Reduce 阶段)的默认并行度。

对比下来,并发度的出发点是计算能力,它与执行内存一起,共同构成了计算资源的供给水平,而并行度的出发点是数据,它决定着每个任务的计算负载,对应着计算资源的需求水平。一个是供给,一个是需求,供需的平衡与否,直接影响着程序运行的稳定性。

CPU、内存与数据的平衡

由此可见,所谓供需的平衡,实际上就是指 CPU、内存与数据之间的平衡。那么问题来了,有没有什么量化的办法,来让三者之间达到供需之间平衡的状态呢?其实,只需要一个简单的公式,我们就可以轻松地做到这一点。

为了叙述方便,我们把由配置项 spark.executor.cores 指定的 CPU Cores 记为 c,把 Execution Memory 内存大小记为 m,还记得吗?m的尺寸由公式(M-300)*mf*(1-sf)给出。不难发现,c和m,一同量化了一个 Executor 的可用计算资源。

量化完资源供给,我们接着再来说数据。对于一个待计算的分布式数据集,我们把它的存储尺寸记为 D,而把其并行度记录为 P。给定 D 和 P,不难推出, D/P 就是分布式数据集的划分粒度,也就是每个数据分片的存储大小。

学习过调度系统,我们知道,在 Spark 分布式计算的过程中,一个数据分片对应着一个 Task (分布式任务),而一个 Task 又对应着一个 CPU Core。因此,把数据看作是计算的需求方,要想达到 CPU、内存与数据这三者之间的平衡,我们必须要保证每个 Task 都有足够的内存,来让 CPU 处理对应的数据分片。

为此,我们要让数据分片大小与 Task 可用内存之间保持在同一量级,具体来说,我们可以使用下面的公式来进行量化。

■ 复制代码

 $1 D/P \sim m/c$

其中,波浪线的含义,是其左侧与右侧的表达式在同一量级。左侧的表达式 D/P 为数据分片大小,右侧的 m/c 为每个 Task 分到的可用内存。以这个公式为指导,结合分布式数据集的存储大小,我们就可以有的放矢、有迹可循地对上述的 3 类配置项进行设置或调整,也就是与 CPU、内存和并行度有关的那几个配置项。

磁盘

说完了 CPU 和内存,接下来,我们再来说说磁盘。与前两者相比,磁盘的配置项相对要简单得多,值得我们关注的,仅有 spark.local.dir 这一个配置项,为了叙述方便,后续我们把它简称为 ld。这个配置项的值可以是任意的本地文件系统目录,它的默认值是 /tmp 目录。

ld 参数对应的目录用于存储各种各样的临时数据,如 Shuffle 中间文件、RDD Cache (存储级别包含"disk"),等等。这些临时数据,对程序能否稳定运行,有着至关重要的作用。

例如,Shuffle 中间文件是 Reduce 阶段任务执行的基础和前提,如果中间文件丢失,Spark 在 Reduce 阶段就会抛出 "Shuffle data not found" 异常,从而中断应用程序的运行。

既然这些临时数据不可或缺,我们就不能盲从默认选项了,而是有必要先考察下/tmp目录的情况。遗憾的是,ld参数默认的/tmp目录一来存储空间有限,二来该目录本身的稳定性也值得担忧。因此,在工业级应用中,我们通常都不能接受使用/tmp目录来设置ld配置项。

了解了 ld 这个配置项的作用之后,我们自然就能想到,应该把它设置到一个存储空间充沛、甚至性能更有保障的文件系统,比如空间足够大的 SSD(Solid State Disk)文件系统目录。

好啦,到此为止,我们分别介绍了与 CPU、内存、磁盘有关的配置项,以及它们的含义、作用与设置技巧。说到这里,你可能有些按捺不住:"这些配置项的重要性我已经 get 到了,那我应该在哪里设置它们呢?"接下来,我们继续来说说,开发者都可以通过哪些途径来设置配置项。

配置项的设置途径

为了满足不同的应用场景,Spark 为开发者提供了 3 种配置项设置方式,分别是配置文件、命令行参数和 SparkConf 对象,这些方式都以(Key, Value)键值对的形式记录并设置配置项。

配置文件指的是 spark-defaults.conf, 这个文件存储在 Spark 安装目录下面的 conf 子目录。该文件中的参数设置适用于集群范围内所有的应用程序,因此它的生效范围是全局性的。对于任意一个应用程序来说,如果开发者没有通过其他方式设置配置项,那么应用将默认采用 spark-defaults.conf 中的参数值作为基础设置。

在 spark-defaults.conf 中设置配置项,你只需要用空格把配置项的名字和它的设置值分隔开即可。比如,以 spark.executor.cores、spark.executor.memory 和 spark.local.dir 这 3 个配置项为例,我们可以使用下面的方式对它们的值进行设置。

■ 复制代码

- 1 spark.executor.cores 2
- 2 spark.executor.memory 4g
- 3 spark.local.dir /ssd_fs/large_dir

不过,在日常的开发工作中,不同应用对于资源的诉求是不一样的:有些需要更多的 CPU Cores,有些则需要更高的并行度,凡此种种、不一而足,可谓是众口难调,这个时候,我们只依赖 spark-defaults.conf 来进行全局设置就不灵了。

为此, Spark 为开发者提供了两种应用级别的设置方式, 也即命令行参数和 SparkConf 对象, 它们的生效范围仅限于应用本身, 我们分别看看这两种方式具体怎么用。

先说命令行参数,它指的是在运行了 spark-shell 或是 spark-submit 命令之后,通过-conf 关键字来设置配置项。我们知道,spark-shell 用于启动交互式的分布式运行环境,而 spark-submit 则用于向 Spark 计算集群提交分布式作业。

还是以刚刚的 3 个配置项为例,以命令行参数的方式进行设置的话,你需要在提交 spark-shell 或是 spark-submit 命令的时候,以-conf Key=Value 的形式对参数进行赋值。

```
□ 复制代码
1 spark-shell --master local[*] --conf spark.executor.cores=2 --conf spark.execu
```

不难发现,尽管这种方式能让开发者在应用级别灵活地设置配置项,但它的书写方式过于繁琐,每个配置项都需要以-conf 作前缀。不仅如此,命令行参数的设置方式不利于代码管理,随着时间的推移,参数值的设置很可能会随着数据量或是集群容量的变化而变化,但是这个变化的过程却很难被记录并维护下来,而这无疑会增加开发者与运维同学的运维成本。

相比之下,不论是隔离性还是可维护性,SparkConf 对象的设置方式都更胜一筹。在代码开发的过程中,我们可以通过定义 SparkConf 对象,并调用其 set 方法来对配置项进行设置。老规矩,还是用刚刚的 CPU、内存和磁盘 3 个配置项来举例。

```
1 import org.apache.spark.SparkConf
2 val conf = new SparkConf()
3 conf.set("spark.executor.cores", "2")
4 conf.set("spark.executor.memory", "4g")
5 conf.set("spark.local.dir", "/ssd_fs/large_dir")
```

好啦,到此为止,我们一起梳理了 CPU、内存、磁盘的相关配置项,并重点强调了 CPU、内存与数据之间的供需平衡。掌握了这些设置方法与要点之后,你不妨自己动手去试试这些配置项,可以拿之前的 Word Count 小例子练练手,巩固一下今天所学的内容。

重点回顾

今天这一讲,我们分别从 CPU、内存和磁盘三个方面,讲解了影响应用程序稳定性的几个重要参数。你需要掌握它们的含义、作用还有适用场景,为了方便你记忆,我把它们整理到后面的表格里,你可以随时拿来参考。

资源类别	配置项	含义
内存	spark.executor.memory	Executor 可用内存总大小
	spark.memory.fraction	除User Memory 以外的内存空间占比
	spark.memory.storageFraction	Storage Memory 内存空间占比
	spark.executor.instances	集群范围内 Executors 总数
CPU	spark.executor.cores	每个 Executors 可用的 CPU Cores
	spark.default.parallelism	默认的 RDD(由 parallelize 创建)并行度
	spark.sql.shuffle.partitions	Shuffle Read(Reduce)阶段默认并行度
磁盘	spark.local.dir	用于存储 Shuffle 中间文件和 RDD Cache的本地文件系统目录

配置项及其含义

熟悉了这些关键配置项之后,你还需要了解它们的设置方式。Spark 提供了 3 种配置项设置途径,分别是 spark-defaults.conf 配置文件、命令行参数和 SparkConf 对象。其中第一种方式用于全局设置,而后两者的适用范围是应用本身。

对于这 3 种方式, Spark 会按照 "SparkConf 对象 -> 命令行参数 -> 配置文件" 的顺序, 依次读取配置项的参数值。对于重复设置的配置项, Spark 以前面的参数取值为准。

每课一练

请你粗略地过一遍 Spark 官网中的 **⊘** Configuration 页面,说一说,其中哪些配置项适合在 spark-defaults.conf 中进行设置,而哪些配置项使用 SparkConf 对象的方式来设置比较好?

欢迎你在留言区跟我交流。如果这一讲对你有帮助的话,也推荐你把这节课分享给有需要的的同事、朋友,我们下一讲见。

© 版权归极客邦科技所有,未经许可不得传播售卖。页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。

上一篇 11 | 存储系统:数据到底都存哪儿了?

更多学习推荐

精选留言

□写留言

由作者筛选后的优质留言将会公开显示,欢迎踊跃留言。