Lecture 2: Analysis of Algorithms

Alfred Rossi, Ph.D.

Algorithms

Definition

An **algorithm** is a well-defined computational procedure that takes **input** and produces **output**.

Algorithms

Note

Algorithms are **required to halt** by definition!

```
def insertion_sort(xs):
    n = len(xs)

    for i in range(1, n):
        j = i
        while j > 0 and xs[j-1] > xs[j]:
        swap(xs, j, j-1)
        j -= 1
8
```

Figure. A Python-compatible pseudocode for InsertionSort.

Figure. A worked example of **Insertion Sort** applied to the **Sorting** instance (3,4,1,2).

The RAM and (word-) RAM Models

▲ Memory is an unbounded¹ array, where each cell holds an integer. That is, $\forall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.

¹That's right. Infinite memory, baby!

- ▲ Memory is an unbounded¹ array, where each cell holds an integer. That is, $\forall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.

¹That's right. Infinite memory, baby!

- lack A Memory is an unbounded 1 array, where each cell holds an integer. That is, $orall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.
- ▲ We have a constant number of constant time "atomic" operations (possibly taking different amounts of time)

¹That's right. Infinite memory, baby!

- ▲ Memory is an unbounded¹ array, where each cell holds an integer. That is, $\forall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.
- We have a constant number of constant time "atomic" operations (possibly taking different amounts of time)
 - ▲ Store (e.g. $M[p] \leftarrow r_1$, $M[p+1] \leftarrow M[p] + 1$)

¹That's right. Infinite memory, baby!

- ▲ Memory is an unbounded¹ array, where each cell holds an integer. That is, $\forall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.
- ▲ We have a constant number of constant time "atomic" operations (possibly taking different amounts of time)
 - ▲ Store (e.g. $M[p] \leftarrow r_1$, $M[p+1] \leftarrow M[p] + 1$)
 - lacktriangle Load (e.g. $r_1 \leftarrow M[p]$)

¹That's right. Infinite memory, baby!

- lack A Memory is an unbounded 1 array, where each cell holds an integer. That is, $orall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.
- ▲ We have a constant number of constant time "atomic" operations (possibly taking different amounts of time)
 - ▲ Store (e.g. $M[p] \leftarrow r_1$, $M[p+1] \leftarrow M[p] + 1$)
 - ▲ Load (e.g. $r_1 \leftarrow M[p]$)
 - ▲ Arithmetic (e.g. $r_1 + r_2$, $r_1 \cdot r_2$, r_1/r_2 , $r_1 r_2$, $r_1 \mod r_2$)

¹That's right. Infinite memory, baby!

- lack A Memory is an unbounded 1 array, where each cell holds an integer. That is, $orall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.
- ▲ We have a constant number of constant time "atomic" operations (possibly taking different amounts of time)
 - ▲ Store (e.g. $M[p] \leftarrow r_1$, $M[p+1] \leftarrow M[p] + 1$)
 - ▲ Load (e.g. $r_1 \leftarrow M[p]$)
 - ▲ Arithmetic (e.g. $r_1 + r_2$, $r_1 \cdot r_2$, r_1/r_2 , $r_1 r_2$, $r_1 \mod r_2$)
 - ▲ Logic (e.g. $r_1 = r_2$, $r_1 \ge r_2$)

¹That's right. Infinite memory, baby!

- lack A Memory is an unbounded 1 array, where each cell holds an integer. That is, $orall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.
- ▲ We have a constant number of constant time "atomic" operations (possibly taking different amounts of time)
 - ▲ Store (e.g. $M[p] \leftarrow r_1$, $M[p+1] \leftarrow M[p] + 1$)
 - ▲ Load (e.g. $r_1 \leftarrow M[p]$)
 - ▲ Arithmetic (e.g. $r_1 + r_2$, $r_1 \cdot r_2$, r_1/r_2 , $r_1 r_2$, $r_1 \mod r_2$)
 - ▲ Logic (e.g. $r_1 = r_2$, $r_1 \ge r_2$)
 - ▲ Control Flow (e.g. CALL/RET, JMP)

¹That's right. Infinite memory, baby!

- lack A Memory is an unbounded 1 array, where each cell holds an integer. That is, $orall p \in \mathbb{N}_0$, $M[p] \in \mathbb{Z}$.
- ▲ Likewise, there is a finite set of integer-valued registers $R = \{r_1, r_2, \dots, r_k\}$. That is, $\forall r \in R, r \in \mathbb{Z}$.
- ▲ We have a constant number of constant time "atomic" operations (possibly taking different amounts of time)
 - ▲ Store (e.g. $M[p] \leftarrow r_1$, $M[p+1] \leftarrow M[p] + 1$)
 - ▲ Load (e.g. $r_1 \leftarrow M[p]$)
 - ▲ Arithmetic (e.g. $r_1 + r_2$, $r_1 \cdot r_2$, r_1/r_2 , $r_1 r_2$, $r_1 \mod r_2$)
 - ▲ Logic (e.g. $r_1 = r_2$, $r_1 \ge r_2$)
 - ▲ Control Flow (e.g. CALL/RET, JMP)
- ▲ Instructions are run sequentially

¹That's right. Infinite memory, baby!

▲ What the book calls the RAM model is actually the word-RAM model.

- ▲ What the book calls the RAM model is actually the word-RAM model.
- ▲ Execution proceeds similarly to the *RAM* model (sequentially with constant-time operations).

- ▲ What the book calls the RAM model is actually the word-RAM model.
- ▲ Execution proceeds similarly to the *RAM* model (sequentially with constant-time operations).
- ▲ Machine registers and memory are comprised of w-bit words, which we can think of as representing unsigned integers $[0, \dots, 2^w 1]$, signed values $[-2^{w-1}, 2^{w-1} 1]$, or any 2^w values of our liking.

- ▲ What the book calls the RAM model is actually the word-RAM model.
- ▲ Execution proceeds similarly to the *RAM* model (sequentially with constant-time operations).
- ▲ Machine registers and memory are comprised of w-bit words, which we can think of as representing unsigned integers $[0, \ldots, 2^w 1]$, signed values $[-2^{w-1}, 2^{w-1} 1]$, or any 2^w values of our liking.
- \blacktriangle Finite memory. (Now limited to 2^{w} addressible locations.)

- ▲ What the book calls the RAM model is actually the word-RAM model.
- ▲ Execution proceeds similarly to the *RAM* model (sequentially with constant-time operations).
- ▲ Machine registers and memory are comprised of w-bit words, which we can think of as representing unsigned integers $[0, ..., 2^w 1]$, signed values $[-2^{w-1}, 2^{w-1} 1]$, or any 2^w values of our liking.
- \triangle Finite memory. (Now limited to 2^w addressible locations.)
- ▲ The book assumes that $w = c \log(n)$ for some $c \ge 1$, where n is the size of the input. This means available memory is $\Theta(n)$.

- ▲ What the book calls the RAM model is actually the word-RAM model.
- ▲ Execution proceeds similarly to the *RAM* model (sequentially with constant-time operations).
- ▲ Machine registers and memory are comprised of w-bit words, which we can think of as representing unsigned integers $[0, ..., 2^w 1]$, signed values $[-2^{w-1}, 2^{w-1} 1]$, or any 2^w values of our liking.
- \triangle Finite memory. (Now limited to 2^w addressible locations.)
- ▲ The book assumes that $w = c \log(n)$ for some $c \ge 1$, where n is the size of the input. This means available memory is $\Theta(n)$.
- Usually fine to analyze in the (non-word) RAM model.

Complexity in the (word-) RAM model

- ▲ *Time-complexity* is the number of executed instructions
- ▲ *Space-complexity* is the amount of memory used by the algorithm
- ▲ Usually will analyze in terms of a parameter, e.g. the input size

def f1(xs):	1
n = len(xs)	2
	3
x = 0	4
for i in range(n):	5
x += xs[i]	6
x -= 1	7
	8
return x	9

def f2(xs):	1
n = len(xs)	2
	3
x = 0	4
for i in range(n):	5
for j in range(n):	6
x += i - j*i	7
	8
return x	9

def	f3(xs):	1
	n = len(xs)	2
		3
	x = 0	4
	for i in range(3, n):	5
	for j in range(4n):	6
	x += i*i - j*j	7
		8
	return x	9

def f4(xs):	1
n = len(xs)	2
	3
x = 0	4
for i in range(n):	5
for j in range(i):	6
x += i*i - j	7
	8
return x	9

def	f7(xs):	1
	n = len(xs)	2
		3
	x = 1	4
	i = 0	5
	while i < n:	6
	x *= xs[i]	7
	i += 1	8
		9
	return x	10

Problem 8

def	f8(xs):	1
	n = len(xs)	2
		3
	x = 1	4
	i = 32	5
	while i < n:	6
	x *= xs[i]	7
	i += 1	8
		9
	return x	10

Problem 9

def	f9(xs):	1
	n = len(xs)	2
		3
	x = 1	4
	i = 0	5
	while i < n:	6
	x *= xs[i]	7
	i += 5	8
		9
	return x	10

def	f10(xs):	1
	n = len(xs)	2
		3
	x = 1	4
	i = 11	5
	while i < n:	6
	x *= xs[i]	7
	i *= 4	8
		9
	return x	10

Best and Worst Case Analysis

But... wait.. can't an algorithm be fast for one input but slow for another of the same size? **YES!**

Let's look at some running times for **InsertionSort** by size.

Figure. Number of executed Python bytecode instructions in sorting lists of length n for $0 \le n \le 9$ with **InsertionSort**.

Worst Case Analysis

In **worst case analysis** the goal is to find the best upper and lower bounds that we can on the tail of the **upper** envelope.

```
def insertion_sort(xs):
    n = len(xs)
    2

for i in range(1, n):
    j = i
    while j > 0 and xs[j-1] > xs[j]:
    swap(xs, j, j-1)
    j -= 1
    8
```

Figure. A Python-compatible pseudocode for InsertionSort.

Note that the number of executed instruction is maximized when xs[j-1] > xs[j] for all j. That is, if xs is **reverse sorted!**

Best Case Analysis

In **best case analysis** the goal is to find the best upper and lower bounds that we can on the tail of the **lower** envelope.

```
def insertion_sort(xs):
    n = len(xs)
    2

for i in range(1, n):
    j = i
    while j > 0 and xs[j-1] > xs[j]:
        swap(xs, j, j-1)
        j -= 1
8
```

Figure. A Python-compatible pseudocode for InsertionSort.

Observe that the number of executed instruction is **minimized** if $xs[j-1] \le xs[j]$ for all j. That is, if xs is **sorted**!

In other words, for any input of length n, a **best case input** for xs is when it is **already sorted**, and a **worst case input** for xs is when it is **reverse sorted**!