

Heterogenous

in autism have

been observed in

previous

longitudinal

studies.

Correlates and Turning Points of Adaptive Functioning Trajectories & Longitudinal Associations with Autism Symptoms from Early Childhood to Adolescence

Yun-Ju (Claire) Chen, Eric Duku, Peter Szatmari, Isabel M. Smith, Lonnie Zwaigenbaum, Teresa Bennett, Annie Richard, Tracy Vaillancourt, Mayada Elsabbagh, Wendy J. Ungar, Anat Zaidman-Zait, Connor Kerns, Stelios Georgiades

Background

VABS Trajectory Studies Szatmari 2015* (VABS-2 composite)—3 subgroups Quadratic Meyer 2018 (VABS-1 composite or Vineland Social Maturity Scale [1953]) Franchini 2018 (VABS-2 composite and four sub-domains) Linear adaptive outcomes Gentles et al. (2023). Trajectory research in children with an autism diagnosis: A scoping review. Autism

Evidence Gaps

Associated characteristics beyond baseline (e.g., autism symptoms)

Global vs. Domain Score

as unit of analysis

Turning points of adaptive functioning trajectories to inform opportunities for change

> Data Wave vs. Chronological Age as time metrics

person change were often conflated

Family characteristics as

covariates of trajectories

(e.g., SES, immigrant status)

Research Questions

- What is the *best-fitting shape* of the latent trajectories of VABS subdomains? Are there *turning points* at certain ages?
- How many *VABS trajectory subgroups* can be identified? Is the subgroup membership associated with *child and family* characteristics?
- Do these VABS trajectory subgroups differ by *the changes of autism symptoms* from early to late childhood?

Methods

Participants

pathways

406 children diagnosed with autism at ages 2-5

>**15** years of follow-up (Y2005-current)

Analysis

(age intervals: 12-24 months)

Latent growth curve modeling Determine best-fitting functional form (linear, quadric, or piecewise) Latent class growth analysis Identify trajectory subgroups

Key Findings

4 VABS trajectory subgroups with varying levels & change rates of functioning were parsed among 406 autistic children from ages 2 to 15.

Class 1 (n=87, 21%)

- Overall low functioning Early decrease + late
- catch-up after entering school age Lower NVIQ at dx
- More elevated autism symptoms at dx
- Lower family SES

Class 2 Class 3 (n=140, 35%)

- (n=113, 28%) Between low and
- adequate range Overall stable trajectories & autism symptoms until age

(COM1)

Family SES similar to

VABS change patterns

(n=66, 16%) Nearly adequate Above adequate level range of functioning & early improvement

"Doing Well"

- Early improvement across domains Later diagnosed Autism symptoms at
- dx & family SES

(COM-)(SOC-)

Class 4

More adaptive social

Higher NVIQ at dx

Higher family SES

(*1/3 with IQ<70)

outcomes in

adolescence

Z turning points at ages 5-6 and 9-10 (Transitions into school age and early adolescence).

NVIQ at diagnosis & household income are key correlates of VABS trajectories.

Covariates	C1 (n=87)	C2 (n=113)	C3 (n=140)	C4 (n=66)	Multinomial Logistic Regression
Male	75 (86%)	92 (81%)	120 (86%)	55 (83%)	No sig. group difference
Age of	36.01	37.96	39.89	38.92	C3>C1, C4>C2, C3>C4
diagnosis (m)	(8.69)	(7.84)	(9.20)	(8.67)	
NVIQ	34.85	52.36	65.49	82.54	C2>C1, C3>C1, C4>C1, C3>C2 C4>C2, C4>C3
(Merrill-Palmer-R cog.)	(15.20)	(16.84)	(20.65)	(25.78)	
ADOS-total	8.49	7.30	7.38	7.21	C1>C2, C1>C3, C1>C4
CSS	(1.51)	(1.67)	(1.67)	(1.70)	
		Fa	mily Charac	teristics	
Household	8.45	8.56	9.44	10.49	C3>C1, C4>C1 , C3>C2, C4>C2 C4>C3
Income	(2.72)	(2.78)	(2.41)	(1.27)	
Caregiver's	30	42	75	38	C3>C1, C4>C1, C3>C2 , C4>C2
Education	(34%)	(37%)	(54%)	(58%)	
(Bachelor's Degree+)					
Caregiver's	51	68	111	51	C3>C1, C3>C2, C4>C2
Race (White)	(59%)	(60%)	(79%)	(77%)	
Caregiver's	48	69	108	50	C3>C1, C4>C1, C3>C2, C4>C2
Nativity (Canada-born)	(55%)	(61%)	(77%)	(76%)	

Significant effects (p < .05) in the adjusted model were bolded.

Differential associations with ADOS domains were observed across time.

Intervention targets may vary across developmental stages for better supporting autistic children's functional needs.

Implications

~16% of our autistic participants showed good social adaptive outcomes by adolescence.

When

Entering school age is associated with challenge or **opportunities** for improvement in functioning.

Various responses to transitions

~21% were in the low-functioning range and more likely from a low-SES family.

Support for **early** access to services

Overall **decreasing trends** in adaptive functioning were observed in adolescence despite stable or decreasing ADOS-SA scores.

over time.

Environmental supportiveness

over time.