GOOGLE PLAY STORE APPS

RATING PREDICTION

HRISAV BHOWMICK

A20011 MSE PROJECT PRAXIS BUSINESS SCHOOL

CONTENTS

Introduction	Page 2
Dataset	Page 2
Exploratory Analysis	Page 3
Statistical Tests	Page 7
Correlation	Page 9
OLS Regression	Page 10
Regression Assumptions	Page 11
Algorithms	Page 12
UI Building	Page 13
Conclusion	Page 14

INTRODUCTION

Google Play is a digital distribution service operated and developed by Google Inc. It serves as the official app store for the Android operating system, allowing users to browse and download. Applications are available through Google Play either free of charge or at a cost. They can be downloaded directly on an Android device through the mobile app or by deploying the application to a device from the Google Play website.

The aim of the analysis is to provide insights about android applications. Deeper dive in data will help to find out the factors of influences on an application. An analysis on category, content ratings, type, price, ratings and installs would be carried out for this purpose. It would help to find out how they are inter related and will help android developers to analyze and understand the factors behind the ratings of the apps. The ultimate objective is to predict the rating of the apps based on the information provided.

DATASET

The dataset is extracted from Kaggle. It contains details of Android applications from Google Play. There are 13 includes that depict each application and an aggregate of 10,841 applications. Below table consists of the column headers of the dataset and its brief description.

COLUMN HEADERS	DESCRIPTION
Арр	Name of the App
Category	Category of the app
Rating	Over all user rating of the app out of 5
Installs	Number of user downloads for the app
Price	Cost of the App
Content Rating	Age group the app is targeted at
Reviews	Number of reviews provided

Size	Size of the app
Type	Free or Paid app
Genres	Genre of the app
Last Updated	Last updated date of the app
Current Ver	Current version of the app
Android Ver	Android version of the app

The first 5 rows of the dataset is provided below.

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Prioe	Content Rating	Genres	Last Updated	Current Ver	Android Ver
0	Photo Editor & Candy Camera & Grid & SorapBook	ART_AND_DESIGN	4.1	169	19M	10,000+	Free	0	Everyone	Art & Design	January 7, 2018	1.0.0	4.0.3 and up
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	600,000+	Free	0	Everyone	Art & Design;Pretend Play	January 16, 2018	2.0.0	4.0.3 and up
2	U Launoher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	Art & Design	August 1, 2018	1.2.4	4.0.3 and up
3	Sketoh - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & Design	June 8, 2018	Varies with device	4.2 and up
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Art & Design;Creativity	June 20, 2018	1.1	4.4 and up

EXPLORATORY ANALYSIS

Price is positively skewed with mean value of \$0.96.

Rating is negatively skewed with mean value of 4.19.

The Installs category of 1 million + has the highest number of apps.

Content Rating category 'EVERYONE' has the maximum share percentage of around 79%, whereas, Content Rating category 'EVERYONE 10+' has the least share percentage of 4.2%.

The horizontal bar plot shows that the maximum number of apps belong to the Family Category, followed by Game category. The least number of apps belong to the Beauty category.

'EVENTS' category has the highest mean rating followed by 'EDUCATION'. Meanwhile, 'DATING' category has the lowest mean rating.

Apps with 'Everyone 10+' category has the highest mean rating and 'Mature 17+' has the lowest mean rating. Inter quartile range for Everyone and Teen categories is greater than Mature 17+ and Everyone 10+ categories. It means Everyone and Teen has more dispersed data.

Apps having Content Rating 'Mature 17+' has lowest average Price, where as, 'Everyone' category has highest average price.

Majority of the apps priced above \$50 has a rating between 3.5 to 4.5.

STATISTICAL TESTS

Chi Square Test

- H0 Type and Content Rating are dependent.
- H1 Type and Content Rating are independent.

```
Content Rating Everyone Everyone 10+ Mature 17+
Type
Free
                    6870
                                   364
                                                    1039
Paid
                     552
                                   33
                                                17
                                                      45
Expected values:
[[6909.34557489 369.57830682 431.9504644
                                           1009.12565389]
512.65442511
                 27.42169318
                               32.0495356
                                             74.87434611]]
Degrees of Freedom: 3
F-statistic: 24.85798153313377
P-value: 1.6533018408627862e-05
```

As f-stat > f-critical, we can say that Type and Content Rating are independent.

t- Test

- H0 Rating of free and paid apps is same.
- H1 Rating of free and paid apps is different.

	oount	mean	std	min	25%	50%	75%	max			
Туре											
Free	8720.0	4.185940	0.512893	1.0	4.0	4.3	4.5	5.0			
Paid	647.0	4.266615	0.547523	1.0	4.1	4.4	4.6	5.0			
	B 1										

P-value is: 0.0001229188703680037

As P-value < 0.05, we can say that rating of free and paid apps is different.

ANOVA for F-Test

- H0 Mean Rating for all Content Ratings is same.
- H1 Mean Rating for one or more Content Ratings is different.

	oount	mean	std	min	25%	50%	75%	max
Content_Rating								
Everyone	7422.0	4.186055	0.537960	1.0	4.0	4.3	4.5	5.0
Everyone 10+	397.0	4.257179	0.367259	1.8	4.1	4.3	4.5	5.0
Mature 17+	464.0	4.124569	0.505135	1.0	4.0	4.2	4.4	5.0
Teen	1084.0	4.233487	0.391595	2.0	4.0	4.3	4.5	5.0

P-value is: 0.009286891253576332

As P-value < 0.05, we can say that the mean rating for one or more Content Ratings is different.

CORRELATION

Installs and Reviews are highly correlated with correlation of 0.64. Android_Ver_Upd and Last_Updated_Days are highly negatively correlated with

correlation of -0.53. Reviews and Category has no correlation. Also Android_Ver_Upd and Price has no correlation.

OLS REGRESSION

Here is the final output after encoding the categorical variables.

	Category	Reviews	Installs	Prioe	Current_Ver_Upd	Android_Ver_Upd	Size_Upd	Last_Updated_Days	Content_Rating	Paid
0	0	169	10000	0.0	1.0	4	19.0	1142	1	0
1	0	967	500000	0.0	2.0	4	14.0	1134	1	0
2	0	87510	5000000	0.0	1.2	4	8.7	936	1	0
3	0	215644	50000000	0.0	1.0	4	25.0	990	3	0
4	0	967	100000	0.0	1.1	4	2.8	978	1	0

We check the VIF scores, to understand if any variable is showing multicollinearity. Multicollinearity occurs when two or more independent variables are highly correlated with one another in a regression model.

	Category	Rating	Reviews	Installs	Prioe	Current_Ver_Upd	Android_Ver_Upd	Size_Upd	Last_Updated_Days	Content_Rating	Paid
vif	5.173013	33.409103	1.765926	1.778006	1.059224	2.601796	19.521272	2.148277	9.082517	3.639491	1.175159

We can see a lot of variables are having VIF score more than 5, which means multicollinearity exists. As of now we will go ahead with OLS Regression and later on handle this issue.

		OLS NE	OLS Regression Results									
Dep. Variab	 le:	=======	•	uared:	0.032							
Model:				R-squared:		0.031						
Method:		Least Squa		atistic:		21.67						
Date:	Т	ue, 23 Feb 2		(F-statistic	:):	2.71e-40						
Time:		00:19	0	Likelihood:		-4925.6						
No. Observa			5556 AIC:			9873.						
Df Residual	s:	ϵ	5545 BIC:			9948.						
Df Model:			10									
Covariance	Туре: 	nonrob	oust 									
	coef	std err	t	P> t	[0.025	0.975]						
const	4.3002	0.032	133.465	0.000	4.237	4.363						
0	-0.0707	0.025	-2.844	0.004	-0.119	-0.022						
1	0.6117	0.205	2.986	0.003	0.210	1.013						
2	0.0139	0.092	0.150	0.880	-0.167	0.195						
3	-0.4618	0.175	-2.640	0.008	-0.805	-0.119						
4	-0.0575	0.034	-1.679	0.093	-0.125	0.010						
5	-0.0737	0.061	-1.200	0.230	-0.194	0.047						
6	0.0630	0.030	2.073	0.038	0.003	0.123						
7	-0.6526	0.059	-11.042	0.000	-0.768	-0.537						
8	-0.0308	0.022	-1.407	0.159	-0.074	0.012						
9	0.1440	0.026	5.530	0.000	0.093	0.195						
Omnibus:		======== 2610.	.618 Durk	in-Watson:		1.986						
Prob(Omnibu	s):			que-Bera (JB):		13423.011						
Skew:	٠,٠)(JB):		0.00						
Kurtosis:				1. No.		42.6						

P-value of F-statistic is significant, as it is less than 0.05. But individual P-values for some of the variables is insignificant as it is greater than 0.05. So we run this OLS multiple times so as to get rid of the insignificant variables.

OLS Regression Results									
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	ons:	y R-squared: OLS Adj. R-squared: Least Squares F-statistic: Tue, 23 Feb 2021 Prob (F-statistic): 00:32:17 Log-Likelihood: 6550 AIC: 6550 BIC: 5 nonrobust			:	0.031 0.030 41.43 3.94e-42 -4930.2 9872. 9913.			
	coef	std err		t	P> t	[0.025	0.975]		
const 0 1 2 3	4.2676 -0.0776 0.6632 -0.4662 -0.6209 0.1472	0.024 0.153 0.175 0.050	-1 -1 -11	3.858 3.153 4.330 2.666 2.416 5.660	0.000 0.002 0.000 0.008 0.000 0.000	4.238 -0.125 0.363 -0.809 -0.719 0.096	4.296 -0.029 0.963 -0.123 -0.523 0.198		
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	-1	.429 .000 .867 .938		,		1.985 13443.015 0.00 31.5		

Finally we can see only 'Category', 'Reviews', 'Price', 'Last_Updated_Days', 'Paid' are significant for our OLS model. Also when we checked VIF score again, it shows now the multicollinearity problem has been tackled.

	0	1	2	3	4
vif	1.371443	1.02476	1.052155	1.381567	1.167806

REGRESSION ASSUMPTIONS

Residual plot shows a cone shaped pattern, which clearly tells us that it is heteroscedastic data. Data is non-linearly associated and some outliers is also present.

Heteroscedasticity is a systematic change in the spread of the residuals over the range of measured values. To check heteroscedasticity, we do **Breusch Pagan Test**. The null hypothesis is errors are homoscedastic. But our test shows P-value less than 0.05. Hence, we reject the null hypothesis, and our data is heteroscedastic.

Autocorrelation refers to the degree of correlation between the values of the same variables across different observations in the data. To check autocorrelation, we do **Durbin Watson Test**. As our DW value is 1.79 and it is within 0 to 2, so positive autocorrelation exists.

So to tackle these problems, we do a Box-Cox transformation, and make the distribution of dependent variable normal.

ALGORITHMS

Next we try to perform model building using Random Forest, Support Vector Regressor. Also we tried to find out the best result by applying Randomized Search cross validation.

Residuals are a measure of how far from the regression line data points are. RMSE is a measure of how spread out these residuals are. In other words, it tells us how concentrated the data is around the line of best fit. Lesser the RMSE score, better is the model.

We are getting the best RMSE score when we are applying Random Forest with cross validation. So we go ahead with this algorithm for predicting the rating for new android apps.

UI BUILDING

So finally a UI was built regarding the same. We will have to put in details for any app whose rating we would like to predict. Here we have filled in with details of PharmEasy.

Our output shows the rating as 4.403.

The rating for the App is [4.403]

When we checked the rating for PharmEasy on Google Play Store it came out to be very close.

PharmEasy – Online Medicine Ordering App

Axelia Solutions Private Limited Medical

★★★★ 2,53,741 .

E Everyone

CONCLUSION

The project was started from scratch where the dataset which was taken was totally raw. A lot of cleaning was done to put it out in a presentable form. Missing values were also imputed during this process.

The motive during the project was to analyze the data and provide insights regarding them, which would in turn help the android developers to understand the factors behind the ratings of any app. The ultimate objective was to predict the ratings of the new android apps, and it was successfully completed.

During the entire process, we got a deep understanding of Statistical Tests like t-Test, ANOVA and Chi Square Test. Also we have built an understanding of OLS Regression and analyzing its outputs. Finally we tried out some other algorithms, and Random Forest with Cross Validation gave us the best RMSE score.