

FIG. 1

USAGE

FIG. 2

FIG. 3

COMPILE

FIG. 4

SOFTWARE KERNEL

FIG. 5

MAPING HARDWARE MODELS TO RECONFIGURABLE BOARDS

FIG. 6

	F11	F12	F13	F14	F21	F22	F23	F24	F31	F32	F33	F34	F41	F42	F43	F44
F11	1	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0
F12	1	1	1	1	0	1	0	0	0	1	0	0	0	1	0	0
F13	1	1	1	1	0	0	1	0	0	0	1	0	0	0	1	0
F14	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0	1
F21	0	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0
F22	1	1	0	0	1	1	1	1	0	1	0	0	0	1	0	0
F23	0	0	1	0	1	1	1	1	0	0	1	0	0	0	1	0
F24	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0	1
F31	0	0	0	0	1	0	0	0	1	1	1	1	1	0	0	0
F32	1	1	0	0	0	1	0	0	1	1	1	1	0	1	0	0
F33	0	0	1	0	0	0	1	0	1	1	1	1	0	0	1	0
F34	0	0	0	1	0	0	0	1	1	1	1	1	0	0	0	1
F41	0	0	0	0	1	0	0	0	1	0	0	0	1	1	1	1
F42	1	1	0	0	0	1	0	0	0	1	0	0	1	1	1	1
F43	0	0	1	0	0	0	1	0	0	0	1	0	1	1	1	1
F44	0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	1

FIG. 7

FPGA INTERCONNECTION

1/6 of total I/O pins of FPGA for
interconnection

FIG. 8

FIG. 9

FIG. 10

FIG. 11

ADDRESS POINTER INITIALIZATION

FIG. 12

EACH SEM-FPGA CHIP

FIG. 13

FIG. 14

FIG. 15

GATED DATA/CLOCK ANALYSIS

FIG. 16

FIG. 17

FIG. 18

FIG. 19

DURING EVALUATION

INPUT-EN = 1;
RESET-EDGE-REGS = 1

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

HARDWARE START-UP

FIG. 25

```

module register (clock, reset, q);
input clock, d, reset;
output q;
reg q;

always@(posedge clock or negedge reset)
if(~reset)
  q = 0;
else
  q = d;

endmodule

module example;
wire d1, d2, d3;
wire q1, q2, q3;

reg signin;
wire sigout;
reg clk, reset;

register reg1 (clk, reset, d1, q1);
register reg2 (clk, reset, d2, q2);
register reg3 (clk, reset, d3, q3);

assign d1 = signin ^ q3;
assign d2 = q1 ^ q3;
assign d3 = q2 ^ q3;
assign sigout = q3;

// a clock generator
always
begin
  clk = 0;
  #5;
  clk = 1;
  #5;
end

// a signal generator
always
begin
  #10;
  signin = $random;
end

// initialization
initial
begin
  reset = 0;
  signin = 0;
  #1;
  reset = 1;
  #5;
  $monitor($time, " %b, %b", signin, sigout);
  #1000 $finish;
end
end module

```

FIG. 26

CIRCUIT DIAGRAM

signin signout

reset

Diagram illustrating a sequential logic circuit with three stages (s1, s2, s3) and a clock generator.

FIG. 27

```

module register (clock, reset, d, q);
input clock, d, reset;
output q;
reg q;

always@(posedge clock or negedge reset)
  if(~reset)
    q = 0
  else
    q = d;

endmodule

module example;
  wire d1, d2, d3;
  wire q1, q2, q3;

```

Register Definition
900

wire interconnection info
907

```

  reg signin; ← Test-bench input -- 908
  wire sigout; ← Test-bench output -- 909
  reg clk, reset;

```

```

S1 register reg 1 (clk, reset, d1, q1);
S2 register reg 2 (clk, reset, d2, q2);
S3 register reg 3 (clk, reset, d3, q3);

```

Register component
901

```

S4 assign d1 = signin ^ q3;
S5 assign d2 = q1 ^ 3;
S6 assign d3 = q2 ^ q3;
S7 assign signout = q3;

```

Combinational component
902

```

S8 {
  // a clock generator
  always
  begin
    clk = 0;
    #5;
    clk = 1;
    #5;
  end
}

```

Clock component
903

```

S9 {
  // a signal generator
  always
  begin
    #10;
    signin = $random;
  end
}

```

Test-bench component (Driver)
904

```

S10 {
  // initialization
  initial
  begin
    reset = 0;
    signin = 0;
    #1;
    reset = 1;
    #5;
}

```

Test-bench component (initialization)
905

```

S11 {
  $monitor($time, "%b, %b", signin, signout);
  #1000 $finish;
}

```

Test-bench component (monitor)
906

```

end
end module

```

FIG. 28

SIGNAL NETWORK ANALYSIS

FIG. 29

SOFTWARE/HARDWARE PARTITION RESULT

FIG. 30

HARDWARE MODEL

FIG. 31

PARTITION RESULT #1

(IGNORE I/O AND CLOCK EDGE REGISTER)

FIG. 32

PARTITION RESULT #2

(IGNORE I/O AND CLOCK EDGE REGISTER)

FIG. 33

LOGIC PATCHING

FIG. 34

(A)

(B)

FIG. 35

(C)

(D)

FIG. 35

I/O PIN OVERVIEW OF FPGA LOGIC DEVICE

FPGA : 10K130V, 10K250V with 599-pin PGA package

*425 Interconnect I/O
pins*

45 Dedicated I/O pins:

GCLK, BUS[31..0], F_RD,
FDDATAXSFR, SHIRVN,
SPAGE[8..0]QENAL,
DEVREQ_N,
DEV_CLRN

FIG. 36

FPGA INTERCONNECT BUSES

FIG. 37

BOARD CONNECTION - SIDE VIEW

DUAL-BOARD
CONFIGURATION

FIG. 38(A)

SIX BOARD
CONFIGURATION

FIG. 38(B)

SIX-BOARD CONFIGURATION
DIRECT-NEIGHBOR AND ONE-HOP FPGA ARRAY – X TORUS, Y MESH

FIG. 39

FPGA ARRAY CONNECTION BETWEEN BOARDS

FIG. 40(A)

FIG. 40(B)

FIG. 41(A)

FIG. 41(B)

FIG. 41(C)

PRINTED IN U.S.A. 100% RECYCLED PAPER

FIG. 41(D)

FIG. 41(E)

FIG. 41(F)

FIG. 42

- 1840 2x30 Header, SMD, component side
- 1841 2x30 Receptacle, SMD, solder side
- 1842 2x45, 2x30 Header, thru hole, component side
- 1843 2x45, 2x30 Receptacle, thru hole, solder side
- 1844 R-pack, SMD, component side
- 1845 R-pack, SMD, solder side

FIG. 43

TWO-BOARD CONFIGURATION
DIRECT-NEIGHBOR AND ONE-HOP FPGA ARRAY – X TORUS, Y MESH

FIG. 44

FIG. 45

FIG. 47

SIMULATION SERVER ARCHITECTURE

FIG. 48

FIG. 49

JOB SWAPPER

FIG. 50

FIG. 51

PRIORITY I { JOB A
JOB B

PRIORITY II { JOB C
JOB D

TIME-SHARED HARDWARE USAGE:

FIG. 52

COMMUNICATION
HANDSHAKE SIGNAL

FIG. 53

COMMUNICATION HANDSHAKE PROTOCOL

FIG. 54

FIG. 55

FIG. 56

FIG. 57

MEMFSM - Memory Finite State Machine in CTRL_FPGA unit

FIG. 58

EVALFSM - EVAL

Finite State Machine in each FPGA logic device

FIG. 59

MEMORY READ DATA DOUBLE BUFFER

FIG. 60

SIMULATION WRITER/READ CYCLE

FIG. 61

SIMULATION DATA TRANSFER TIMING

FIG. 62

SIMULATION DATA TRANSFER TIMING

FIG. 63

Typical User Design of PCI Add-on Cards

FIG. 64

Typical Hardware/Software Co-Verification

: DUT (Device Under Test)

FIG. 65

Typical Co-Verification by Using Emulator

FIG. 66

The rest of the target system is running at full speed.

SIMULATION

FIG. 67

CO-VERIFICATION WITHOUT EXTERNAL I/O

FIG. 68

CO-VERIFICATION WITH EXTERNAL I/O

FIG. 69

CONTROL OF DATA CYCLE

FIG. 70

CONTROL OF DATA-OUT CYCLE

FIG. 71

CONTROL OF DATA-IN CYCLE

FIG. 72

CONTROL OF DATA-OUT CYCLE

FIG. 73

FIG. 74

SHIFT REGISTE

FIG. 75(A)

HOLD TIME ASSUMPTION FOR SHIFT REGISTER

FIG. 75(B)

MULTIPLE FPGA MAPPING FOR SHIFT REGISTER

FIG. 76(A)

HOLD TIME VIOLATION BY LONG CLOCK SKEW

FIG. 76(B)

CLOCK GLITCH PROBLEM

FIG. 77(A)

FIG. 77(B)

TIMING ADJUSTMENT BY ADDING DELAY

(Prior Art)

FIG. 78

GLOBAL RETIMING

Legend

► Controlled by the global reference clock.

■ FSM and I/O registers for retiming control.

(Prior Art)

FIG. 79

TIGF LATCH

Original Latch

FIG. 80(A)

TIGF Latch

FIG. 80(B)

TIGF DFF

Original DFF

FIG. 81(A)

Patent Drawing No. 2,490,250

TIGF DFF and Edge Detector

FIG. 81(B)

GLOBAL TRIGGER SIGNAL

FIG. 82

RCC System

FIG. 83

FIG. 84

SINGLE-ROW FPGA PER BOARD

FIG. 85

TWO-ROW FPGA PER BOARD

© 2000-2001 Xilinx, Inc. All rights reserved.

FIG. 86

THREE-ROW FPGA PER BOARD

FIG. 87

FOUR-ROW FPGA PER BOARD

FIG. 88

INTERCONNECT FOR THREE-ROW PER BOARD

I/O Signals	Odd Board	Even Board	Common Board
	Connector-Group Pin-position	Connector-Group Pin-position	Connector-Group Pin-position
FPGA2_N	C1	S1	C1, S1
FPGA2_NH	C2	S3	C2, S3
FPGA1_NH	C3	S2	C3, S2
FPGA0_S	S4	C4	C4, S4
FPGA0_SH	S5	C6	C6, S5
FPGA1_SH	S6	C5	C5, S6

FIG. 89

FIG. 90

FIG. 91

FIG. 92

Clock Specification

FIG. 93

Clock Generation Scheduler w/ Slices

FIG. 94

Clock Generation Slice

FIG. 95

Clock Generation Scheduler and Slices

FIG. 96

FIG. 97

FIG. 98A

From
FIG.
98A

FIG. 98B