Experiment 6 Shashwat Shah
Div B C2-2
JOIN B CZ -Z
Aim i Implementation as association rule ming ving Apriori
and FP tree.
Theory: Association rule learning is a type of usupervised
learning terminance that checks for the dependency of data item
on another data Hem & maps accordingly so that it
can be more projitable
Apriary Algorithm.
It to cuses on identifying frequence liternsets, which one subsets up
items that one premerty co-occur in transactions.
The steps are:
O It generates general candidate Hernsels.
1 H generates freavent cardilate items sets.
J'n size I to n (ne being till the greanery's less trans
minimum Support)
I un generate rules on the basis of minimum confidence
FP tree (Freavent pattern Tree)
It is an alternative approach to apriorix and is used for
efficient mining. It represents the transchoop database in the jour
of a structure which allow for more efficient country of
Hen support.
The steps are!
Constructing up thee by stating him most beauties.
Building a conditional pattern datesbase
FOR EDUCATIONAL USE

3	Re	cuer	sinely	1 n	uni	4—	the	ـ ر	bna	ito	ral	pat	tom	to	di	Covo	1	raven	ł
	Too		nset	7.		-		- No			71								
1	1							j	-										
(0.	201	.01		_	,		1					7							
	ncu	2100	1	1)	rus	u	e-r	an 1	(2)	Suc	cess	j wil	y	imp	Cerno	nted	0	N194	_
		an	4	P _	Ree	(ugo	11m	\sim	,	775	-	11	'	1 19				
J =	n 7 1	0							1									Alf_	
			- 1				1	109)		1) 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		- 011 -	- May		uyoz.	T		
															01				
		7	R/ CI Sa			1										15.			
									-	7 -	1.	7	1111	Ŷ	d	(f_l		-	
		1	/Poor						_				4.5	(a)	1	10000	1		
						1	-	1117	19.19							1			
			-					-1								1 5 1			
								-					.0	- 1	112	11	,		
						-		2 1	13		919	10	- 4	4. 11		1]	17		
						11.5	13	130		1		-		al -5	1 (1)	1 [5		
1		7 17 7	1 (r.ds) [7	0 1)		\		ì					_
			11.	7,1	10	146	100		95	14									(
		,	1		1.3	-	- >(Y	1 9	3	1.					·	1		
							1.7	1		111			63.	. \			-		_
	, ү	7	W.	110		1		. 71	100					-	221	-	1		_
		1			3	igt.	11.	5.1				1	10		n	2			
1		· 1 ·	15						11-						11				
								1	6.5	-				1		o ly	4		
														l.		44			
														⊕.n.	L 31	2			
_	1 1					ŭ.	1.5	i	_1		-1				- 4				
	,													100		4.			_

EXPERIMENT 5

Name: Shashwat Shah

SAP-ID: 60004220126

TY BTECH DIV B, Batch: C22

AIM: Implementation of Association rule mining Using

1. Apriori Algorithm

2. FPTree

THEORY:

Association rule learning is a type of unsupervised learning technique that checks for the dependency of one data item on another data item and maps accordingly so that it can be more profitable. It tries to find some interesting relations or associations among the variables of the dataset. It is based on different rules to discover the interesting relations between variables in the database.

The association rule learning is one of the very important concepts of machine learning, and it is employed in Market Basket analysis, Web usage mining, continuous production, etc. Here market basket analysis is a technique used by the various big retailers to discover the associations between items.

Association rules are created by thoroughly analyzing data and looking for frequent if/then patterns. Then, depending on the following two parameters, the important relationships are observed:

- 1. Support: Support indicates how frequently the if/then relationship appears in the database.
- 2. Confidence: Confidence tells about the number of times these relationships have been found to be true.

CODE:

Apriori

```
import pandas as pd import numpy as np import math
transaction_df = pd.read_csv('GroceryStoreDataSet.csv')
```

```
transaction df
transaction df.index.rename('TID', inplace=True)
transaction_df.rename(columns={'MILK,BREAD,BISCUIT' :
'item list'}, inplace=True)
trans df = transaction df.item list.str.split(',')
trans df def prune(data, supp):
    df = data[data.supp count >= supp]
return df def count_itemset(transaction_df,
itemsets):
    count_item = {} for
    item set in itemsets:
    set A = set(item set) for
    row in trans df:
            set_B = set(row)
            if set_B.intersection(set_A) == set_A:
                if item set in count item.keys():
                    count_item[item_set] += 1
                else:
                    count_item[item_set] = 1
    data = pd.DataFrame() data['item sets']
= count_item.keys() data['supp_count'] =
count item.values() return data def
count item(trans items):
    count ind item = {} for
    row in trans items:
        for i in range(len(row)):
            if row[i] in count_ind_item.keys():
                count_ind_item[row[i]] += 1
```

```
else:
                count ind item[row[i]] = 1
    data = pd.DataFrame() data['item sets'] =
    count_ind_item.keys() data['supp_count'] =
    count ind item.values() data =
    data.sort values('item sets') return data
def join(list_of_items):
    itemsets = [] i = 1 for entry in
    list_of_items: proceding_items =
    list of items[i:] for item in
   proceding_items:
            if(type(item) is str):
                if entry != item:
                    tuples = (entry, item)
                    itemsets.append(tuples)
            else:
                if entry[0:-1] == item[0:-1]:
                    tuples = entry+item[1:]
                    itemsets.append(tuples)
        i = i+1
    if(len(itemsets) == 0):
        return None
    return itemsets
def apriori(trans data, supp=3, con=0.5):
   freq = pd.DataFrame() df =
   count item(trans data)
   while(len(df) != 0):
        df = prune(df, supp)
        if len(df) > 1 or (len(df) == 1 and int(df.supp count >=
supp)):
            freq = df
```

```
itemsets = join(df.item sets)
        if(itemsets is None):
            return freq
        df = count_itemset(trans_data, itemsets)
    return df
freq_item_sets = apriori(trans_df, 5)
freq item sets
def calculate conf(value1, value2):
    return round(int(value1)/int(value2) * 100, 2)
def strong_rules(freq_item_sets, threshold):
    confidences = {} for row in
    freq item sets.item sets:
        for i in range(len(row)):
            for j in range(len(row)):
                 if i != j: tuples = (row[i],
                    row[j]) conf =
calculate_conf(freq_item_sets[freq_item_sets.item_sets ==
row].supp count,
count_item(trans_df)[count_item(trans_df).item_sets ==
row[i]].supp count) confidences[tuples] = conf
    conf_df = pd.DataFrame() conf_df['item_set'] =
    confidences.keys() conf df['confidence'] =
    confidences.values() return
    conf df[conf df.confidence >= threshold]
confidence threshold = int(input()) #50
strong_rules(freq_item_sets, threshold=confidence_threshold)
# ### Rules with confidence level >= 50.0%
```

```
from functools import reduce import
operator def
interesting_rules(freq_item_sets):
    lifts = {}
    prob_of_items = []
    for row in freq item sets.item sets:
        num of items = len(row)
        prob_all = freq_item_sets[freq_item_sets.item_sets ==
row].supp_count / 18 for i in
        range(num_of_items):
prob of items.append(count item(trans df)[count item(trans df).ite
m_sets == row[i]].supp_count / 18)
        lifts[row] = round(float(prob_all / reduce(operator.mul,
(np.array(prob_of_items)), 1)), 2)
        prob of items = []
    lifts df = pd.DataFrame()
    lifts df['Rules'] = lifts.keys()
    lifts df['lift'] = lifts.values()
    return lifts df
int rules = interesting_rules(freq_item_sets)
int_rules
```

OUTPUT:

	MILK,BREAD,BISCUIT
0	BREAD,MILK,BISCUIT,CORNFLAKES
1	BREAD,TEA,BOURNVITA
2	JAM,MAGGI,BREAD,MILK
3	MAGGI,TEA,BISCUIT
4	BREAD,TEA,BOURNVITA
5	MAGGI,TEA,CORNFLAKES
6	MAGGI,BREAD,TEA,BISCUIT
7	JAM,MAGGI,BREAD,TEA
8	BREAD,MILK
9	${\tt COFFEE,COKE,BISCUIT,CORNFLAKES}$
10	${\tt COFFEE,COKE,BISCUIT,CORNFLAKES}$
11	COFFEE,SUGER,BOURNVITA
12	BREAD,COFFEE,COKE
13	BREAD,SUGER,BISCUIT
14	COFFEE,SUGER,CORNFLAKES
15	BREAD, SUGER, BOURNVITA
16	BREAD,COFFEE,SUGER
17	BREAD,COFFEE,SUGER
18	TEA,MILK,COFFEE,CORNFLAKES

	item_set	confidence
0	(BISCUIT, BREAD)	50.00
2	(BISCUIT, CORNFLAKES)	50.00
3	(CORNFLAKES, BISCUIT)	50.00
4	(BOURNVITA, BREAD)	75.00
9	(MAGGI, BREAD)	60.00
11	(MILK, BREAD)	75.00
13	(SUGER, BREAD)	66.67
15	(TEA, BREAD)	57.14
17	(COKE, COFFEE)	100.00
18	(COFFEE, CORNFLAKES)	50.00
19	(CORNFLAKES, COFFEE)	66.67
20	(COFFEE, SUGER)	50.00
21	(SUGER, COFFEE)	66.67
22	(MAGGI, TEA)	80.00
23	(TEA, MAGGI)	57.14

	Rules	lift
0	(BISCUIT, BREAD)	0.75
1	(BISCUIT, CORNFLAKES)	1.50
2	(BOURNVITA, BREAD)	1.12
3	(BREAD, COFFEE)	0.56
4	(BREAD, MAGGI)	0.90
5	(BREAD, MILK)	1.12
6	(BREAD, SUGER)	1.00
7	(BREAD, TEA)	0.86
8	(COFFEE, COKE)	2.25
9	(COFFEE, CORNFLAKES)	1.50
10	(COFFEE, SUGER)	1.50
11	(MAGGI, TEA)	2.06

FP TREE CODE:

OUTPUT:

	а	b	C	d	е	f	g	h	i	j	k	I	m	n	0	p	S	W
0	True	False	True	True	False	True	True	False	True	False	False	False	True	False	False	True	False	False
1	True	True	True	False	False	True	False	False	False	False	False	True	True	False	True	False	False	False
2	False	True	False	False	False	True	False	True	False	True	False	False	False	False	True	False	False	True
3	False	True	True	False	True	False	False	False	False	True	True	False						
4	True	False	True	False	True	True	False	False	False	False	False	True	True	True	False	True	False	False

	support	itemsets
0	0.8	(f)
1	0.8	(c)
2	0.6	(p)
3	0.6	(m)
4	0.6	(a)
5	0.6	(b)
6	0.6	(c, f)
7	0.6	(c, p)
8	0.6	(c, m)
9	0.6	(m, f)
10	0.6	(c, m, f)
11	0.6	(m, a)
12	0.6	(c, a)
13	0.6	(f, a)
14	0.6	(c, m, a)
15	0.6	(m, f, a)
16	0.6	(c, f, a)
17	0.6	(c, m, f, a)

CONCLUSION: We learnt about association rule mining and the two different algorithms that can be used - Apriori and FP Tree. We then learn about the uses of this algorithm and implemented the algorithm in a python program.