Assignment 2.

Question 1.

Show that $2\mathbb{Z}_8 = \{2\overline{k} \mid \overline{k} \in \mathbb{Z}_8\}$ is a subgroup of \mathbb{Z}_8 .

(all equivalence

Zz is the quotient set desses)

OHENF SLF Cuises

$$|Z_8| = 8$$
 $Z_8 = \{[1], [2], ...[7]\}$
 $2Z_8 = \{[2], [4], [6]\}$

$$(278, +) \leftarrow (28 \text{ is abelian, so use} + \text{ as binary operator})$$

$$\begin{bmatrix}
5 \\
 \end{bmatrix} = \underbrace{\xi} \dots -16, -8, 0, 8, 16 \dots 3, }$$

$$\begin{bmatrix}
12 \\
 \end{bmatrix} = \underbrace{\xi} \dots -14, -6, 2, 10, 18 \dots 3, }$$

$$\begin{bmatrix}
47 \\
 \end{bmatrix} = \underbrace{\xi} \dots -12, -4, 4, 12, 20 \dots 3, }$$

$$\begin{bmatrix}
69 \\
 \end{bmatrix} = \underbrace{\xi} \dots -10, -2, 6, 14, 22 \dots 3, }$$

car uz

PROPOSITION 5.3. Let (G,*) be a group and let H be a non-empty subset of G. Then $(H,*|_{H\times H})$, where $*|_{H\times H}$ denotes the restriction of * to $H\times H$, is a subgroup of (G,*) if and only if $xy^{-1}\in H$ whenever $x,y\in H$.

Consider 228 as Hand 28 as a

- · by the definition of 220, it is not empty
- 50ppose x,y ∈ 278

then 3 gb & Z, such that x = [2a], y = [2b]

since a-b & Z

Her [2(a-6)] & 22/8

: x-y € 278

and since -y is the inverse of x, then
xy' \(\frac{7}{8}, \) and this is a subgroup by the prop 5.3.

Question	2.

02

Let $\varphi : G \to H$ a homomorphism of groups.

Show that φ is injective if and only if $\ker \varphi = \{e_G\}$.

- (=>) Assume & is injective, then since & is a homomorphism then *(ex)=ex. Since & is injective then only one element in
- (=) Assume $\ker \varphi = \{e_{\alpha}\}$ take $x_{\alpha}y \in \Gamma$ $s.t. \ P(x) = \varphi(y)$ $\varphi(x) *_{\mu} \varphi(y) = e_{\mu}$ $\varphi(x *_{\alpha}y^{-1}) = e_{\mu} (\text{property of homomorphisms})$ $x *_{\alpha}y^{-1} \in \ker \varphi$ but by the assumption $\ker \varphi = \{e_{\alpha}\}$ then $x *_{\alpha}y^{-1} = e_{\alpha}$ $\vdots \quad x = y$

And this fulfils the definition

Injectivity:= Vx,x'EX | f(x)=f(x') => x=x'

\mathbf{O}	ation	9
W	uestion	ა.

An automorphism of the group G is an isomorphism $\varphi: G \to G$. Put

 $\operatorname{Aut}(G) := \{ \varphi : G \to G \mid \varphi \text{ is an isomorphism} \}$

- (a) Show that $\operatorname{Aut}(G)$ is a subgroup of S(G), the group of invertible functions from the set underlying G to itself with the binary operation given by composition of functions.
- (b) Given $g \in G$ show that

$$\varphi_q: G \longrightarrow G, \ x \longmapsto gxg^{-1}$$

is an automorphism. It is called the $inner\ automorphism$ defined by g.

03a) red to show: $Aut(C) \leq S(C)$ Use $S(C) := \{f: C \rightarrow C \mid C \text{ is invertible}\}$

Note that $id_c: G \rightarrow G$ $e \in S(G)$

Because ida is invertible and because $\forall g \in S(G), goid = g$

Now, using the subgroup criteria (5.2):

take $g,g' \in C$ D $(d_{\mathcal{C}}(g,g')) = (d_{\mathcal{C}}(d_{\mathcal{C}}, so this a honomorphism, It being invertible near it's an isonorphism.

So, <math>(d_{\mathcal{C}} \in A \cup f(G))$

- 1) for any g \(\text{Aut(C)} \), the inverse of g \(\text{is in } \)

 Aut(C) , simply because every isomorphism is invertible.
- 3 Aut (h) is closed under composition, since the composition of two isonorphisms is again on Isonorphism

.. Au+(G) < S(G)

036

To show of is an automorphism, we must show it is an isomorphism.

Firstly, You must be shown to be a honorophism.

= gxg-1.gyg-1

Then this is a honomorphism

= Pg(x), Pg(y)

 $\forall x \in C$ $(\varphi(x)) = id_{C}(x) = x$

is because of definition (4.12) then this is an isomo-phism