(12) UK Patent Application (19) GB (11) 2 385 328 (13) A

(43) Date of A Publication 20.08.2003

(21) Application No 0229456.9

(22) Date of Filing 18.12.2002

(30) Priority Data

(31) 60341988

(32) 19.12.2001

(33) US

(71) Applicant(s)

F Hoffmann-La Roche AG (Incorporated in Switzerland) 124 Grenzacherstrasse, CH-4070 Basle, Switzerland

(72) Inventor(s)

Wendy Lea Corbett Robert Lewis Crowther Pete William Dunten R.Ursula Kammlott Christine Maria Lukacs

(74) Agent and/or Address for Service

Forrester Ketley & Co Forrester House, 52 Bounds Green Road, LONDON, N11 2EY, United Kingdom (51) INT CL7

C12N 9/12, A61K 31/4439, A61P 3/10, C07D 417/12 // (C07D 417/12 213:56 277:46)

(52) UK CL (Edition V)

C3H HB7E C2C CAA

U1S S2413

(56) Documents Cited

Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al. Structure; Vol 9, pp 205-214 (2001). Ito et al. Diabetes; Vol 48, pp 1698-1705 (1999). Mahalingam et al.

(58) Field of Search

INT CL⁷ C12N, C30B, G06F Other: ONLINE: WPI, EPODOC, JAPIO, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CAPLUS

(54) Abstract Title

Crystals of glucokinase and methods of growing them

(57) Crystalline forms of mammalian Glucokinase of sufficient size and quality to obtain structure data by X-ray crystallography are presented. Methods of growing such crystals are also disclosed.

Figure 1

Figure 2. The amino-acid sequence of the GST-GK fusion protein. The GST sequence was taken from GenBank entry U13852. Residue 229 of the fusion protein is the first residue of GK.

1 MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID
61 GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL DIRYGVSRIA YSKDFETLKV

121 DFLSKLPEML KMFEDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK

181 KRIEAIPQID KYLKSSKYIA WPLQGWQATF GGGDHPPKSD LIEGRGIHMP RPRSQLPQPN

241 SQVEQILAEF QLQEEDLKKV MRRMQKEMDR GLRLETHEEA SVKMLPTYVR STPEGSEVGD

301 FLSLDLGGTN FRVMLVKVGE GEEGQWSVKT KHQMYSIPED AMTGTAEMLF DYISECISDF

361 LDKHQMKHKK LPLGFTFSFP VRHEDIDKGI LLNWTKGFKA SGAEGNNVVG LLRDAIKRRG

421 DFEMDVVAMV NDTVATMISC YYEDHQCEVG MIVGTGCNAC YMEEMQNVEL VEGDEGRMCV

481 NTEWGAFGDS GELDEFLLEY DRLVDESSAN PGQQLYEKLI GGKYMGELVR LVLLRLVDEN

541 LLFHGEASEQ LRTRGAFETR FVSQVESDTG DRKQIYNILS TLGLRPSTTD CDIVRRACES

601 VSTRAAHMCS AGLAGVINRM RESRSEDVMR ITVGVDGSVY KLHPSFKERF HASVRRLTPS

661 CEITFIESEE GSGRGAALVS AVACKKACML GO

Figure 3

			Atom	A.A.					
	Atom	No.	Туре	Туре	A.A.#	x	Y	Z	OCC B .
	ATOM	1		SER	8	-0.421	63.744	24.899	1.00 50.68
5	MOTA	2	OG	SER	8	-0.752	63.605	23.524	1.00 50.85
	ATOM	3	С	SER	8	1.865	64.216	24.094	1.00 50.72
	MOTA	4	. 0	SER	8	2.308	63.644	23.102	1.00 51.79
	ATOM	5	N	SER	8	1.473	63.793	26.507	1.00 50.36
	MOTA	ϵ	CA	SER	8	1.057	63.446	25.120	1.00 50.55
10	ATOM	7	N	GLN	9	2.041	65.515	24.314	1.00 49.84
	MOTA	8	CA	GLN	9	2.831	66.312	23.385	1.00 48.95
	ATOM	9	CB	GLN	9	2.983	67.745	23.895	1.00 49.08
	MOTA	10) CG	GLN	9	3.676	68.686	22.925	1.00 50.25
	MOTA	11		GLN	9	3.206	70.127	23.085	1.00 51.06
15	MOTA	12	0E1	GLN	9	2.037	70.433	22.846	1.00 51.38
	MOTA	13		GLN	9	4.112	71.017	23.499	1.00 51.44
	MOTA	14		GLN	9	4.190	65.633	23.294	1.00 48.56
	MOTA	15		GLN	9	4.884	65.741	22.285	1.00 48.75
	ATOM	16		VAL	10	4.560	64.926	24.361	1.00 47.77
20	ATOM	11		VAL	10	5.823	64.198	24.392	1.00 46.87
	MOTA	18		VAL	10	6.293	63.902	25.842	1.00 46.39
	MOTA	15		VAL	10	7.303	62.782	25.841	1.00 46.41
	MOTA	20		VAL	10	6.952	65.135	26.436	1.00 46.79 1.00 46.17
25	ATOM	2:		VAL	10	5.616	62.885	23.653	1.00 46.17
25	MOTA	2:		VAL	10	6.521	62.384 62.317	22.991 23.768	1.00 45.18
	MOTA	2:		GLU	11	4.423 4.159	61.071	23.768	1.00 45.19
	MOTA	24 23		GLU GLU	11 11	2.905	60.393	23.616	1.00 45.21
	MOTA	2		GLU	11	3.105	59.709	24.967	1.00 46.05
30	ATOM ATOM	2		GLU	11	4.224	58.664	24.957	1.00 46.30
50	ATOM	2		. GLU	11	4.350	57.918	23.948	1.00 46.28
	ATOM	2			11	4.963	58.583	25.972	1.00 45.66
	ATOM	3		GLU	11	4.002	61.345	21.580	1.00 44.48
	ATOM	3		GLU	11	4.068	60.430	20.755	1.00 44.48
35	ATOM	3		GLN	12	3.807	62.614	21.239	1.00 43.86
	ATOM	3		GLN	12	3.646	62.996	19.845	1.00 42.86
	ATOM	3	4 CB	GLN	12	2.972	64.368	19.715	1.00 44.49
	ATOM	3	5 CG	GLN	12	2.833	64.840	18.259	1.00 46.49
	ATOM	3	6 CD	GLN	12	1.986	66.099	18.113	1.00 47.74
40	ATOM	3	7 OE	L GLN	12	2.055		17.088	1.00 48.30
	MOTA	3	8 NE2	2 GLN	12	1.174	66.388	19.131	1.00 47.51
	MOTA	3	9 C	GLN	12	5.014	63.023	19.192	1.00 41.14
	MOTA	4		GLN	12	5.139	62.739	18.002	1.00 41.76
	MOTA	4		ILE	13	6.038	63.360	19.971	1.00 38.51
45	ATOM	4		ILE	13	7.398	63.388	19.450	1.00 36.48
	MOTA	4		ILE	13	8.274	64.351	20.261	1.00 35.85
	ATOM		4 CG:		13	9.731	64.228	19.827	1.00 35.71
	ATOM		5 CG:		13	7.740	65.777	20.079	1.00 35.77 1.00 35.91
5 0	ATOM		6 CD:		13	8.584	66.867	20.710	1.00 35.91
50	MOTA		7 C	ILE	13	8.018	61.981 61.528	19.452 18.442	1.00 35.99
	ATOM		8 0	ILE	13	8.572	61.288	20.580	1.00 33.33
	MOTA		9 N	LEU LEU	14 14	7.903 8.430	59.934	20.380	1.00 34.88
	MOTA		0 CA 1 CB	LEU	14 14	8.230	59.432	22.141	1.00 33.31
55	ATOM		1 CB 2 CG		14	8.853	60.321	23.215	1.00 33.23
23	ATOM			LEU 1 LEU	14	8.510	59.781	24.594	
	MOTA MOTA			2 LEU	14	10.354	60.398	23.001	
	TITOTI	-	- 00		- *				

•						5/63				
I	F	igure 4								
	A MOM		C	T 1211	1.4	7 766	E0 0E7	10 720	1 00 22 55	
	ATOM ATOM	55 56	С О	LEU LEU	14 14	7.766	58.957	19.730 19.578	1.00 33.55 1.00 33.21	
	ATOM	57 _.	N	ALA		8.208	57.812			
	ATOM	58			15 15	6.710	59.403	19.065	1.00 32.69	
5		58 59	CA	ALA	15	6.021	58.551	18.104	1.00 32.59	
3	ATOM ATOM		CB	ALA	15 15	4.628	59.104	17.821	1.00 31.95	
		60	C	ALA	15	6.838	58.449	16.808	1.00 32.79	
	ATOM ATOM	61 62	0	ALA	15 16	6.664	57.519	16.018	1.00 33.05	
	ATOM	63	N CA	GLU GLU	16 16	7.746	59.395	16.599	1.00 32.33 1.00 32.74	
10	ATOM	64	CB	GLU	16	8.575 9.566	59.369	15.403		
10	ATOM	65	CG	GLU	16	8.950	60.531 61.910	15.401	1.00 34.23	
	ATOM	66	CD	GLU	16	10.017	62.998	15.298 15.162	1.00 38.39 1.00 41.11	
	ATOM	67	OE1		16	10.445	63.269	14.012	1.00 41.11	
	ATOM	68	OE2	GLU	16	10.433	63.562	16.212	1.00 40.00	
15	ATOM	69	C	GLU	16	9.369	58.073	15.279	1.00 42.77	
10	ATOM	70	o	GLU	16	9.570	57.568	14.179	1.00 31.93	
	ATOM	71	N	PHE	17	9.841	57.539	16.401	1.00 33.41	
	ATOM	72	CA	PHE	17	10.640	56.321	16.369	1.00 30.37	
	ATOM	73	СВ	PHE	17	11.346	56.129	17.711	1.00 26.32	
20	ATOM	74	CG	PHE	17	12.309	57.230	18.045	1.00 24.22	
	MOTA	75	CD1		17	11.846	58.500	18.389	1.00 23.88	
	ATOM	76	CD2		17	13.680	57.010	17.981	1.00 22.24	
	MOTA	77		PHE	17	12.741	59.531	18.660	1.00 22.63	
	MOTA	78	CE2	PHE	17	14.574	58.027	18.250	1.00 21.23	
25	MOTA	79	CZ	PHE	17	14.105	59.291	18.589	1.00 22.01	
	MOTA	80	С	PHE	17	9.836	55. 004			27.77
	ATOM	81	0	PHE	17	10.400	54. 15.		0 27.38	
	MOTA	82	N	GLN	18	8.517	55.213	15.957	1.00 28.12	
	MOTA	83	CA	GLN	18	7.684	54.080	15.593	1.00 29.17	
30	MOTA	84	CB	GLN	18	6.216	54.484	15.599	1.00 30.98	
	ATOM	85	CG	GLN	18	5.446	54.017	16.806	1.00 32.94	
	ATOM	86	CD	GLN	18	4.152	54.785	16.974	1.00 34.65	
	MOTA	87	OE1	GLN	18	3.389	54.976	16.014	1.00 37.17	
	MOTA	88	NE2		18	3.892	55.228	18.190	1.00 33.67	
35	MOTA	89	С	GLN	18	8.068	53.602	14.193	1.00 28.97	
	MOTA	90	0	GLN	18	8.471	54.399	13.346	1.00 28.83	
	ATOM	91	N	LEU	19	7.931	52.298	13.971	1.00 29.02	
	ATOM	92	CA	LEU	19	8.235	51.659	12.704	1.00 29.94	
40	ATOM	93	CB	LEU	19	9.641	51.069	12.749	1.00 29.78	
40	ATOM ATOM	94 95	CG	LEU	19	10.782	51.813	12.037	1.00 30.77	
	ATOM	95 96	CD1 CD2		19 10	10.886	53.251 51.087	12.477	1.00 30.67	
	ATOM	97	CD2	LEU	19 19	12.083 7.199	50.549	12.339 12.511	1.00 32.05 1.00 31.41	
	ATOM	98	0	LEU	19	7.199	49.484	13.137		
45	ATOM	99	N	GLN	20	6.205	50.801	11.663	1.00 31.35 1.00 32.64	
	ATOM	100	CA	GLN	20	5.153	49.817	11.422	1.00 32.04	
	ATOM	101	CB	GLN	20	4.024	50.413	10.570	1.00 34.33	
	ATOM	102	CG	GLN	20	3.301	51.622	11.175	1.00 37.65	
	ATOM	103	CD	GLN	20	3.048	51.486	12.669	1.00 37.03	
50	ATOM	104	OE1		20	2.603	50.441	13.152	1.00 40.92	
	MOTA	105	NE2		20	3.324	52.552	13.410	1.00 40.04	
	ATOM	106	C	GLN	20	5.692	48.568	10.730	1.00 35.83	
	ATOM	107	Õ	GLN	20	6.827	48.547	10.247	1.00 36.56	
	ATOM	108	N	GLU	21	4.864	47.531	10.681	1.00 36.52	
55	ATOM	109	CA	GLU	21	5.240	46.279	10.062	1.00 37.80	
	ATOM	110	СВ	GLU	21	4.024	45.357	9.998	1.00 39.22	
	ATOM	111	CG	GLU	21	4.298	43.898	9.625	1.00 42.88	
	ATOM	112	CD	GLU	21	4.568	43.009	10.844	1.00 44.63	
	ATOM	113	OE1	GLU	21	4.540	41.758	10.699	1.00 45.40	
									•	

)	Fig	gure 4				6/6 3			
	ATOM	114	OE2	GLU	21	4.810	43.564	11.943	1.00 45.89
	MOTA	115	С	GLU	21	5.770	46.549	8.654	1.00 38.20
	ATOM	116	0	GLU	21	6.892	46.183	8.324	1.00 38.71
	MOTA	117	N	GLU	22	4.972	47.208	7.826	1.00 38.54
5	MOTA	118	ÇA	GLU	22	5.386	47.478	6.457	1.00 39.08
	MOTA	119	CB	GLU	22	4.308	48.267	5.703	1.00 40.61
	ATOM	120	CG	GLU	22	3.123	47.406	5.313	1.00 43.51
	ATOM	121	CD	GLU	22	3.556	46.039	4.773	1.00 45.80
10	ATOM	122		GLU	22	4.243	45.999	3.719	1.00 46.20
10	ATOM	123	OE2		22	3.215	45.007	5.414	1.00 46.87
	MOTA MOTA	124 125	C	GLU	22	6.711	48.197	6.359	1.00 38.74
	ATOM	125	N O	GLU ASP	22 23	7.482	47.954	5.423	1.00 39.26
	ATOM	127	CA	ASP	23	6.988 8.258	49.084	7.308	1.00 37.74
15	ATOM	128	CB	ASP	23	8.356	49.795 50.779	7.276 8.437	1.00 37.23 1.00 38.62
	ATOM	129	CG	ASP	23	7.240	51.789	8.427	1.00 38.62
	ATOM	130		ASP	23	7.104	52.508	7.408	1.00 40.46
	ATOM	131		ASP	23	6.495	51.861	9.438	1.00 41.77
	MOTA	132	С	ASP	23	9.371		7.382	1.00 35.54
20	ATOM	133	0	ASP	23	10.267	48.698	6.536	1.00 35.43
	ATOM	134	N	LEU	24	9.294	47.937	8.420	1.00 33.31
	ATOM	135	CA	LEU	24	10.288	46.910	8.631	1.00 32.04
	ATOM	136	CB,		24	9.898	46.062	9.842	1.00 31.35
25	ATOM	137	CG	LEU	24	9.920	46.801	11.196	1.00 31.20
25	ATOM	138		LEU	24	9.710	45.815	12.343	1.00 29.48
	ATOM	139		LEU	24	11.253	47.526	11.367	1.00 31.51
	ATOM ATOM	140 141	C 0	LEU	24	10.509	46.041	7.385	1.00 31.61
	ATOM	141	N	LEU LYS	24 25	11.645 9.434	45.723	7.049	1.00 31.67
30	ATOM	143	CA	LYS	25 25	9.434	45.673 44.863	6.693	1.00 31.58
20	ATOM	144	CB	LYS	25	8.186	44.347	5.486 5.061	1.00 31.41 1.00 31.91
	ATOM	145	CG	LYS	25	7.574	43.372	6.033	1.00 31.31
	ATOM	146	CD	LYS	25	6.224	42.901	5.531	1.00 34.55
	ATOM	147	CE	LYS	25	5.414	42.232	6.640	1.00 38.71
35	ATOM	148	NZ	LYS	25	3.978	42.086	6.235	1.00 39.39
	ATOM	149	С	LYS	25	10.166	45.679	4.352	1.00 31.50
	MOTA	150	0	LYS	25	10.969		3.568	1.00 30.92
	ATOM	151	N	LYS		9.784	46.947	4.261	1.00 31.82
10	ATOM	152	CA	LYS	26		47.819	3.229	1.00 32.63
40	ATOM	153	CB	LYS	26	9.695	49.203	3.315	1.00 33.38
	ATOM ATOM	154 155	CG CD	LYS	26 26	10.053	50.129	2.177	1.00 35.11
	ATOM	156	CE	LYS LYS	26 26	9.424 9.364	51.502 52.312	2.400	1.00 37.48
	ATOM	157	NZ	LYS	26	8.706	53.645	1.104 1.307	1.00 39.72 1.00 42.62
45	ATOM	158	C	LYS	26	11.845	47.919	3.441	1.00 42.02
	ATOM	159	Ō	LYS	26	12.614	48.012	2.479	1.00 32.91
	MOTA	160	N	VAL	27	12.265	47.901	4.705	1.00 32.30
	ATOM	161	CA	VAL	27	13.687	47.956	5.046	1.00 33.43
	ATOM	162	CB	VAL	27	13.903	48.281	6.555	1.00 32.58
50	ATOM	163	CG1		27	15.335	47.960	6.963	1.00 32.13
	MOTA	164	CG2	VAL	27	13.622	49.755	6.818	1.00 31.04
	MOTA	165	Ç	VAL	27	14.305	46.586	4.727	1.00 33.90
	ATOM	166	0	VAL	27	15.323	46.482	4.036	1.00 33.83
e e	ATOM	167	N	MSE	28	13.668	45.536	5.223	1.00 34.26
55	ATOM	168	CA	MSE	28	14.140	44.193	4.983	1.00 34.84
	ATOM	169	CB	MSE	28	13.072	43.198	5.393	1.00 35.83
	MOTA MOTA	170 171	CG SE	MSE	28	13.456	41.784	5.144	1.00 38.88
	ATOM	172	SE CE	MSE	28 28	12.108	40.670	5.608	1.00 45.40
	MION	1/4	CE	MSE	28	11.054	40.713	4.095	1.00 42.96

)	F	igure 4				7/63			
	ATOM	173	С	MSE	28	14.465	44.016	2 505	1.00 35.32
	ATOM	174	ō	MSE	28	15.571	43.621	3.505 3.144	1.00 35.32
	ATOM	175	N	ARG	29	13.495	44.331	2.655	1.00 35.22
	ATOM	176	CA	ARG	29	13.665	44.191	1.218	1.00 36.22
5	ATOM	177	CB	ARG	29	12.352	44.520	0.509	
•	ATOM	178	CG	ARG	29	11.223	43.542	0.827	1.00 37.37
	ATOM	179	CD	ARG	29	9.913	43.960		1.00 38.96
	ATOM	180	NE	ARG	29	8.760	43.281	0.152	1.00 40.89
	ATOM	181	CZ	ARG	29	7.621	43.889	$0.744 \\ 1.081$	1.00 42.88 1.00 43.80
10	ATOM	182		ARG	29	7.475	45.201	0.881	
	ATOM	183	NH2		29	6.631	43.201	1.636	1.00 43.07 1.00 44.12
	MOTA	184	C	ARG	29	14.814	45.008	0.625	1.00 44.12
	ATOM	185	o	ARG	29	15.615	44.469	-0.133	
	ATOM	186	N	ARG	30	14.906	46.296	0.948	1.00 35.58
15	ATOM	187	CA	ARG	30	16.008	47.091	0.410	1.00 36.85 1.00 38.41
	ATOM	188	CB	ARG	30	15.944	48.543	0.410	1.00 38.41
	ATOM	189	CG	ARG	30	14.676	49.285	0.513	1.00 39.31
	ATOM	190	CD	ARG	30	14.742	50.763	0.933	1.00 41.98
	ATOM	191	NE	ARG	30	13.415	51.384	0.995	1.00 45.48
20	ATOM	192	CZ	ARG	30	13.179	52.628	1.416	1.00 45.48
	ATOM	193		ARG	30	14.175	53.403	1.810	1.00 45.93
	ATOM	194		ARG	30	11.937	53.403	1.467	1.00 45.68
	MOTA	195	С	ARG	30	17.338	46.461	0.843	1.00 43.00
	MOTA	196	0	ARG	30	18.286	46.404	0.061	1.00 38.99
25	ATOM	197	N	MSE	31	17.408	45.999	2.092	1.00 39.11
	MOTA	198	CA	MSE	31	18.615	45.348	2.596	1.00 38.96
	MOTA	199	CB	MSE	31	18.374	44.784	4.002	1.00 40.43
	MOTA	200	CG	MSE	31	19.512	43.922	4.599	1.00 42.62
	ATOM	201	SE	MSE	31	21.083	44.819	5.027	1.00 48.46
30	ATOM	202	CE	MSE	31	20.438	45.988	6.389	1.00 45.46
	ATOM	203	C	MSE	31	18.901	44.209	1.633	1.00 38.25
	ATOM	204	0	MSE	31	19.973	44.132	1.038	1.00 38.18
	MOTA	205	N	GLN	32	17.915	43.334	1.478	1.00 37.93
	MOTA	206	CA	GLN	32	18.037	42.199	0.589	1.00 37.33
35	MOTA	207	CB	GLN	32	16.708	41.475	0.480	1.00 36.41
	MOTA	208	CG	GLN	32	16.219	40.905	1.780	1.00 37.04
	MOTA	209	CD	GLN	32	15.304	39.723	1.561	1.00 37.28
	ATOM	210	OE1		32	15.740	38.682	1.072	1.00 38.23
40	ATOM	211		GLN	32	14.027	39.874	1.912	1.00 37.39
40	MOTA	212	C	GLN	32	18.475	42.641	-0.791	1.00 37.81
	ATOM	213	0	GLN	32	19.215	41.929	-1.466	1.00 37.79
	ATOM	214	N	LYS	33	18.019	43.819	-1.205	1.00 38.80
	ATOM	215	CA	LYS	33	18.362	44.345	-2.516	1.00 39.85
45	ATOM	216	CB	LYS	33	17.525	45.588	-2.830	1.00 40.63
4.7	MOTA	217	CG	LYS	33	17.591	45.992	-4.298	1.00 42.21
	ATOM	218	CD	LYS	33	16.924	47.336	-4.561	1.00 43.78
	ATOM ATOM	219 220	CE	LYS	33	17.160	47.803	-6.006	1.00 44.42
	ATOM	221	NZ C	LYS	33	16.639	49.187	-6.256	1.00 44.23
50	ATOM	222	0	LYS LYS	33 33	19.843	44.695	-2.574	1.00 40.37
50	ATOM	223	N	GLU	33 34	20.519	44.411	-3.564	1.00 40.53
	ATOM	224	CA	GLU	34	20.331	45.312	-1.500	1.00 40.59
	ATOM	225	CB	GLU	34 34	21.730	45.712	-1.378	1.00 40.95
	ATOM	225	CG	GLU	34 34	21.912	46.641	-0.179	1.00 41.24
55	ATOM	227	CD	GLU	34 34	21.229	47.956	-0.359	1.00 41.42
	ATOM	228	OE1		34 34	21.476 22.650	48.506	-1.741	1.00 42.21
	ATOM	229	OE2		34 34	20.493	48.810	-2.063	1.00 42.30
	ATOM	230	C	GLU	34	20.493	48.613	-2.507	1.00 43.29
	ATOM	231	0.	GLU	34	23.770	44.528 44.527	-1.221 -1.767	1.00 40.87 1.00 41.06
	~~*		~	-20	→ 3	43.770	77.34/	-1./0/	T.00 #T.00

		9								
	MOTA	232	N	MSE	35	22.233	43.534	-0.456	1.00	41.15
	ATOM	233	CA	MSE	35	23.038	42.350			41.36
	ATOM	234	CB	MSE	35	22.289	41.354			41.62
	ATOM	235	CG	MSE	35	22.320	41.711			43.28
5	MOTA	236	SE	MSE	35	21.428	40.506			46.51
	MOTA	237	CE	MSE	35	22.217	38.947			
	ATOM	238	C	MSE	35					45.63
	ATOM	239	0	MSE	35 35	23.376	41.701			41.91
	ATOM	240				24.532	41.367			42.73
10	ATOM		N	ASP	36	22.367	41.533			42.15
10		241	CA	ASP	36	22.593	40.898			41.96
	ATOM	242	CB	ASP	36	21.264	40.633		1.00	43.56
	ATOM	243	CG	ASP	36	21.446	39.947	-5.699		45.91
	ATOM	244		ASP	36	21.821	40.652		1.00	46.71
	ATOM	245		ASP	36	21.232	38.707	-5.754	1.00	46.76
15	MOTA	246	С	ASP	36	23.502	41.717	-4.578	1.00	41.03
	MOTA	247	0	ASP	36	24.406	41.178	-5.217		40.61
	MOTA	248	N	ARG	37	23.257	43.021			40.36
	ATOM	249	CA	ARG	37	24.034	43.937			39.76
	MOTA	250	CB	ARG	37	23.498	45.355			39.56
20	ATOM	251	CG	ARG	37	22.252	45.621			40.04
	MOTA	252	CD	ARG	37	21.465	46.815	-5.590		41.19
	MOTA	253	NE	ARG	37	22.278	48.002	-5.307		41.70
	ATOM	254	CZ	ARG	37	22.938	48.711			
	MOTA	255		ARG	37	22.899	48.362			42.38
25	ATOM	256		ARG	37	23.615		-7.505		42.59
	ATOM	257	C	ARG	37		49.792	-5.851		41.94
	ATOM	258	0			25.524	43.908	-5.152		39.94
	ATOM	259	N	ARG	37	26.335	43.732	-6.059		40.39
	MOTA	260		GLY	38	25.893	44.076	-3.890		39.94
30	ATOM		CA	GLY	38	27.305	44.063	-3.557		39.60
50		261	C	GLY	38	27.933	42.689	-3.699		39.23
	ATOM	262	0	GLY	38	29.163	42.546	-3.695		39.59
	ATOM	263	N	LEU	39	27.087	41.677	-3.834	1.00	38.16
	ATOM	264	CA	LEU	39	27.545	40.307	-3.960	1.00	37.65
0.5	MOTA	265	CB	LEU	39	26.428	39.376	-3.495	1.00	35.76
35	ATOM	266	CG	LEU	39	26.821	38.029	-2.900	1.00	34.52
	ATOM	267		LEU	39	27.899	38.248	-1.857		33.52
	ATOM	268		LEU	39	25.606	37.348	-2.284		32.44
	ATOM	269	С	LEU	39	27,931	39.989	-5.407		39.20
	ATOM	270	0	LEU	39	28.594	38.980	-5.681		39.88
40	MOTA	271	N	ARG	40	27.537	40.866	-6.329		40.51
	MOTA	272	CA	ARG	40	27.809	40.656	-7.751		41.77
	ATOM	273	CB	ARG	40	26.494	40.686	-8.526		42.80
	ATOM	274	CG	ARG	40	25.735	39.392	-8.377		44.75
	ATOM	275	CD	ARG	40	24.257	39.551	-8.636		46.47
45	ATOM	276	NE	ARG	40	23.639	38.239	-8.797		
	ATOM	277	CZ	ARG	40	22.331	38.034			48.71
	ATOM	278	NH1		40	21.497		-8.890		50.01
	ATOM	279	NH2				39.064	-8.831		51.43
	ATOM	280			40	21.861	36.804	-9.060		50.46
50			C	ARG	40	28.802	41.623	-8.374		42.16
50	ATOM	281	0	ARG	40	28.783	42.819	-8.097		42.42
	ATOM	282	N	LEU	41	29.650	41.087	-9.247		42.03
	ATOM	283	CA	LEU	41	30.689	41.864	-9.902	1.00	42.00
	ATOM	284	CB	LEU	41	31.307	41.044	-11.041	1.00	42.00
	ATOM	285	CG	LEU	41	32.577		-11.660		41.78
55	ATOM	286	CD1		41	33.638		-10.583		40.20
	ATOM	287	CD2	LEU	41	33.087		-12.773		41.95
	ATOM	288	C	LEU	41	30.278		-10.428		42.57
	ATOM	289	0	LEU	41	30.920		-10.110		42.64
	ATOM	290	N	GLU	42	29.219		-11.227		43.03

9/63 Figure 4 ATOM 291 CA GLU 42 28.788 44.562 -11.803 1.00 44.63 MOTA 292 CB GLU 42 27.494 44.369 -12.607 1.00 43.97 MOTA 293 CG 26.436 GLU 42 43.533 -11.922 1.00 44.02 ATOM 294 26.546 CD GLU 42 42.057 -12.248 1.00 43.71 MOTA 295 OE1 GLU 42 27.673 41.527 -12.245 1.00 45.13 MOTA 296 OE2 GLU 42 25.504 41.416 -12.496 1.00 43.50 ATOM 45.714 -10.805 1.00 46.21 297 C GLU 42 28.616 MOTA 298 0 28.963 GLU 42 46.860 -11.103 1.00 46.22 MOTA 299 N THR 43 28.105 45.413 -9.616 1.00 47.90 10 ATOM 27.873 300 CA THR 43 46.443 -8.608 1.00 49.10 MOTA 301 CB THR 43 26.370 46.533 1.00 48.63 -8.285 MOTA 1.00 47.66 302 OG1 THR 43 25.772 45.242 -8.465 ATOM 303 CG2 THR 43 1.00 48.90 25.679 47.531 -9.192 ATOM 304 43 C THR 28.629 46.226 -7.3021.00 50.94 15 MOTA 305 28.481 0 THR 43 47.008 -6.362 1.00 51.52 MOTA 306 N HIS 44 29.456 45.185 -7.2491.00 52.58 ATOM 307 CA HIS 44 30.204 44.854 -6.037 1.00 53.89 MOTA 308 CB HIS 44 31.210 43.727 -6.311 1.00 54.68 MOTA 44.208 309 CG HIS 44 32.552 -6.775 1.00 55.77 20 MOTA 310 CD2 HIS 44 33.748 44.257 -6.139 1.00 55.82 MOTA 311 ND1 HIS 44 32.758 44.772 -8.017 1.00 56.36 ATOM 312 CE1 HIS 34.020 44 45.146 -8.125 1.00 56.30 ATOM -6.999 313 NE2 HIS 44 34.643 44.845 1.00 56.06 MOTA 314 C 44 30.950 HIS 46.013 -5.3981.00 54.87 315 25 MOTA 0 44 46.254 HIS 30.823 -4.1991.00 55.06 MOTA 316 N GLU 45 31.724 46.732 -6.203 1.00 56.25 MOTA 317 CA GLU 45 32.540 47.826 -5.7031.00 57.17 MOTA 318 CB GLU 45 33.618 48.180 -6.7211.00 59.35 MOTA 319 CG 33.146 GLU 45 49.127 -7.800 1.00 61.61 ATOM 320 CD GLU 45 34.107 50.279 -7.985 1.00 63.07 MOTA 321 OE1 GLU 45 35.228 50.038 -8.487 1.00 63.72 MOTA 322 OE2 GLU 45 33.747 51.420 -7.6131.00 64.00 MOTA 323 C GLU 45 31.762 49.074 -5.356 1.00 56.66 MOTA 324 Q GLU 45 32.295 49.985 -4.7321.00 56.54 35 MOTA 325 46 30.508 N GLU 49.135 -5.772 1.00 56.24 MOTA 326 CA GLU 46 29.708 50.306 -5.456 1.00 56.37 MOTA 327 46 CB GLU 29.542 51.157 -6.7041.00 57.92 MOTA 328 CG 46 GLU 30.881 51.645 -7.212 1.00 60.77 MOTA 329 CD 46 30.782 GLU 52.400 -8.515 1.00 62.28 40 MOTA 330 OE1 GLU 46 30.566 51.762 -9.571 1.00 62.25 ATOM 331 OE2 GLU 30.914 46 53.641 -8.474 1.00 63.95 MOTA 332 C GLU 46 28.366 49.891 -4.873 1.00 55.40 MOTA 333 50.123 0 GLU 46 27.309 -5.457 1.00 55.75 334 ATOM N ALA 47 28.440 49.264 -3.7041.00 53.89 45 1.00 51.80 ATOM 335 CA ALA 47 27.273 48.783 -2.987 MOTA 336 47 27.140 CB ALA 47.280 -3.159 1.00 52.36 ATOM 337 C ALA 47 27.470 49.111 -1.524 1.00 49.98 MOTA 338 0 ALA 47 28.448 48.664 -0.9231.00 50.36 MOTA 339 N SER 48 26.553 49.894 -0.960 1.00 47.18 50 MOTA 340 CA SER 48 26.630 50.267 0.444 1.00 44.70 ATOM 341 CB SER 48 25.299 50.860 0.897 1.00 46.13 MOTA 342 OG SER 48 24.243 49.927 0.720 1.00 47.87 MOTA 343 С SER 48 26.965 49.041 1.00 42.45 1.287 ATOM 344 0 48 27.841 49.082 1.00 42.01 SER 2.147 MOTA 345 Ν VAL 49 26.261 47.946 1.037 1.00 40.48 MOTA 346 CA VAL 49 26.516 46.713 1.762 1.00 38.96 MOTA 347 CB VAL 49 25.231 45.849 1.875 1.00 38.62 MOTA 348 CG1 VAL 49 25.496 44.625 1.00 38.40 2.740

MOTA

349

CG2 VAL

49

24.102

46.672

2.472

1.00 37.16

	* *5	uic 4			•					
	ATOM	350	С	VAL	49	27.572	45.997	0.929	1 00	37.97
	ATOM	351	ō	VAL	49	27.266	45.474	-0.137		38.42
	ATOM	352	N	LYS	50	28.810	45.982	1.422		36.51
	ATOM	353	CA	LYS	50	29.937	45.385	0.703		34.95
5	ATOM	354	CB	LYS	50	31.250	45.843	1.334		35.51
	MOTA	355	CG	LYS	50	31.574	47.322			
	ATOM	356	CD	LYS	50	30.676	48.249	1.091		36.68
	ATOM	357	CE	LYS	50			1.913		39.05
	MOTA	358	NZ	LYS	50	30.865	48.018	3.419		39.54
10	ATOM	359	C	LYS	50	32.316	48.157	3.792		40.04
10	ATOM	360	0	LYS		30.012	43.879	0.482		33.72
	ATOM	361	N		50	30.845	43.421	-0.293		33.30
	ATOM	362		MSE	51	29.171	43.100	1.147		33.02
			CA	MSE	51	29.209	41.647	0.967		32.08
15	ATOM	363	CB	MSE	51	28.291	41.257	-0.190		34.01
15	ATOM	364	CG	MSE	51	26.867	41.744	-0.025		36.03
	ATOM	365	SE	MSE	51	26.148	41.146	1.529		40.73
	ATOM	366	CE	MSE	51	25.558	39.411	1.085		37.98
	ATOM	367	C	MSE	51	30.637	41.180	0.666		30.17
20	ATOM	368	0	MSE	51	30.928	40.723	-0.437		30.22
20	ATOM	369	N	LEU	52	31.518	41.295	1.650		28.96
	ATOM	370	CA	LEU	52	32.920	40.928	1.487		27.43
	ATOM	371	CB	LEU	52	33.769	41.839	2.357		28.05
	MOTA	372	CG	LEU	52	33.649	43.319	1.991		28.52
	ATOM	373		LEU	52	34.222	44.171	3.116		28.77
25	ATOM	374		LEU	52	34.369	43.583	0.658		28.75
	MOTA	375	С	LEU	52	33.273	39.482	1.803		26.61
	MOTA	376	0	LEU	52	32.997	38.995	2.893	1.00	25.26
	MOTA	377	N	PRO	53	33.911	38.774	0.844		27.04
	MOTA	378	CD	PRO	53	34.270	39.142	-0.540		25.69
30	ATOM	379	CA	PRO	53	34.264	37.375	1.133		27.99
	MOTA	380	CB	PRO	53	34.807	36.864	-0.204		26.92
	ATOM	381	CG	PRO	53	34.184	37.825	-1.241	1.00	25.77
	ATOM	382	С	PRO	53	35.314	37.361	2.239		28.40
	ATOM	383	0	PRO	53	36.152	38.271	2.317		28.36
35	ATOM	384	N	THR	54	35.255	36.329	3.080		29.46
	ATOM	385	CA	THR	54	36.149	36.142	4.226		30.53
	ATOM	386	CB	THR	54	35.317	35.951	5.502		29.48
	ATOM	387	OG1		54	34.589	34.711	5.418	1.00	27.97
	MOTA	388	CG2	THR	54	34.324	37.084	5.659		29.42
40	MOTA	389	С	THR	54	37.018	34.884	4.071		31.60
	ATOM	390	0	THR	54	37.657	34.423	5.025	1.00	32.25
	MOTA	391	N	TYR	5 5	37.017	34.311	2.877		32.63
	MOTA	392	CA	TYR	55	37.763	33.089	2.615		34.41
	ATOM	393	CB	TYR	55	39.249	33.421	2.405	1.00	33.07
45	ATOM	394	CG	TYR	55	39.458	34.175	1.101	1.00	32.58
	ATOM	395		TYR	55	39.518	35.571	1.067	1.00	32.44
	ATOM	396		TYR	55	39.572	36.263	-0.157	1.00	32.48
	ATOM	397		TYR	55	39.467	33.492	-0.117	1.00	31.97
	MOTA	398		TYR	55	39.516	34.172	-1.335	1.00	31.83
50	MOTA	399	CZ	TYR	55	39.566	35.548	-1.351	1.00	32.18
	MOTA	400	OH	TYR	55	39.575	36.200	-2.568	1.00	32.67
	ATOM	401	С	TYR	55	37.559	31.956	3.637		36.06
	MOTA	402	0	TYR	55	38.314	30.991	3.665		37.61
	ATOM	403	N	VAL	56	36.518	32.059	4.459		38.03
55	MOTA	404	CA	VAL	56	36.199	31.006	5.429		39.87
	ATOM	405	CB	VAL	56	35.483	31.586	6.663		38.75
	ATOM	406	CG1	VAL	56	35.202	30.492	7.669		38.10
	MOTA	407	CG2	VAL	56	36.336	32.660	7.285		38.76
	ATOM	408	С	VAL	56	35.249	30.032	4.706		42.20
								• •		

						11/63			
C.,	F	igure 4				•			
	ATOM	409	0	VAL	56	34.098	30.376	4.418	1.00 42.02
	ATOM	410	N	ARG	57	35.718	28.821	4.414	1.00 44.49
	MOTA	411	CA	ARG	57	34.896	27.860	3.676	1.00 47.07
	MOTA	412	CB	ARG	57	35.688	27.288	2.499	1.00 48.02
5	ATOM	413	CG	ARG	57	36.209	28.310	1.508	1.00 49.08
	MOTA	414	CD	ARG	57	36.558	27.626	0.185	1.00 49.69
	MOTA	415	NE	ARG	57	37.239	28.528	-0.737	1.00 49.50
	MOTA	416	CZ	ARG	57	38.367	29.167	-0.447	1.00 48.83
	MOTA	417	NH1	ARG	57	38.938	28.997	0.745	1.00 48.13
10	MOTA (418	NH2	ARG	57	38.915	29.978	-1.345	1.00 47.51
	MOTA	419	С	ARG	57	34.311	26.695	4.449	1.00 48.57
	ATOM	420	0	ARG	57	34.810	26.310	5.500	1.00 48.65
	MOTA	421	N	SER	58	33.256	26.117	3.891	1.00 51.15
	ATOM	422	CA	SER	58	32.589	24.973	4.501	1.00 54.78
15		423	CB	SER	58	31.204	24.793	3.882	1.00 54. 2 6
	ATOM	424	OG	SER	58	31.258	24.980	2.475	1.00 54.39
	ATOM	425	C	SER	58	33.419	23.708	4.295	1.00 57.39
	ATOM	426	0	SER	58	33.097	22.645	4.823	1.00 57.47
	ATOM	427	N	THR	59	34.484	23.840	3.510	1.00 60.71
20		428	CA	THR	59	35.392	22.740	3.216	1.00 64.02
	ATOM	429	CB	THR	59	35.886	22.823	1.758	1.00 63.73
	ATOM	430		THR	59	36.637	24.029	1.570	1.00 63.22
	ATOM	431	CG2		59 50	34.704	22.843	0.801	1.00 63.87
25	MOTA	432	C	THR	59	36.571	22.880	4.176	1.00 67.10
4.		433 434	0	THR	59 60	37.554	23.562	3.884	1.00 67.44
	ATOM ATOM	435	N CD	PRO PRO	60 60	36.480	22.238	5.349	1.00 69.75
	MOTA	436	CA	PRO	60	35.366 37.556	21.412 22.320	5.854 6.337	1.00 70.63 1.00 71.72
	ATOM	437	CB	PRO	60	36.841	21.982	7.636	1.00 71.72
30		438	CG	PRO	60	35.909	20.881	7.182	1.00 71.72
	ATOM	439	C	PRO	60	38.709	20.331	6.056	1.00 71.30
	ATOM	440	Ö	PRO	60	39.522	21.609	5.158	1.00 73.48
	ATOM	441	N	GLU	61	38.754	20.287	6.830	1.00 75.48
	ATOM	442	CA	GLU	61	39.808	19.283	6.731	1.00 76.98
35		443	CB	GLU	61	39.969	18.788	5.289	1.00 78.43
	ATOM	444	CG	GLU	61	40.806	17.516	5.161	1.00 80.68
	ATOM	445	CD	GLU	61	42.177	17.744	4.530	1.00 81.88
	ATOM	446	OE1	GLU	61	42.993	18.498	5.100	1.00 82.28
	MOTA	447	OE2	GLU	61	42.442	17.156	3.458	1.00 82.68
40	MOTA (448	C	GLU	61	41.083	19.969	7.194	1.00 77.00
	MOTA	449	0	GLU	61	41.942	20.327	6.389	1.00 77.10
	ATOM	450	N	GLY	62	41.177	20.181	8.502	1.00 76.85
	ATOM	451	CA	GLY	62	42.344	20.826	9.069	1.00 76.72
	MOTA	452	C	GLY	62	42.415	20.539	10.555	1.00 76.65
45	-	453	0	GLY	62	42.507	19.380	10.969	1.00 76.79
	ATOM	454	N	SER	63	42.361	21.594	11.362	1.00 76.25
	ATOM	455	CA	SER	63	42.417	21.458	12.814	1.00 75.06
	ATOM	456	CB	SER	63	41.401	20.413	13.300	1.00 75.92
	ATOM	457	OG	SER	63	41.350	20.363	14.718	1.00 76.69
. 50) Δπ∩M	450	~	CED	63	12 010	21 062	12 250	1 00 72 60

50

55

ATOM

ATOM

ATOM

MOTA

ATOM

ATOM

ATOM

MOTA

ATOM

ATOM

458

459

460

461

462

463

464

465

466

467

С

0

N

 $\mathsf{C}\mathsf{A}$

СB

ÇG

CD

С

SER

SER

GLU

GLU

GLU

GLU

GLU

GLU

OE1 GLU

OE2 GLU

63

63

64

64

64

64

64

64

64

64

43.818

44.090

44.705

46.071

46.996

48.464

49.014

48.623

49.837

46.136

21.062

19.899

22.045

21.819

22.824

22.726

21.309

20.466

21.041

21.971

13.259

13.561

13.280

13.703

13.011

13.417

13.342

14.187

12.434

15.221

1.00 73.60

1.00 73.10

1.00 71.83

1.00 70.12

1.00 71.42

1.00 73.74

1.00 74.84

1.00 75.26

1.00 75.45

1.00 67.97

1	\sim	,	_	^
- 1	1	//	n	•

	ATOM	468	0	GLU	64	46.775	22.886	15.734	1.00	68.33
	ATOM	469	N	VAL	65	45.448	21.076	15.927		65.13
	ATOM	470	CA	VAL	65	45.400	21.067	17.391		62.32
	ATOM	471	CB	VAL	65	45.335	19.621	17.918	1.00	
5	MOTA	472		VAL	65	45.487	19.607	19.430		62.45
	MOTA	473		VAL	65	44.011	18.975	17.508		62.79
	ATOM	474	C	VAL	65	46.587	21.752			
	ATOM	475	ŏ	VAL	65	47.703	21.708	18.055	1.00	
	ATOM	476	N	GLY	66			17.540	1.00	
10	ATOM	477	CA	GLY	66	46.354	22.386	19.200		58.26
10	ATOM	478	CA			47.454	23.043	19.888		55.67
				GLY	66	47.081	24.174	20.823		53.42
	ATOM	479	0	GLY	66	46.153	24.052	21.615		54.08
	MOTA	480	N	ASP	67	47.832	25.267	20.739		51.06
10	ATOM	481	CA	ASP	67	47.614	26.460	21.549		48.67
15	MOTA	482	CB	ASP	67	48.617	26.531	22.703	1.00	49.14
	ATOM	483	CG	ASP	67	48.381	25.462	23.751	1.00	49.34
	MOTA	484	OD1		67	48.201	24.287	23.365	1.00	49.37
	MOTA	485		ASP	67	48.386	25.791	24.956	1.00	49.62
	MOTA	486	C	ASP	67	47.832	27.634	20.612	1.00	47.26
20	ATOM	487	0	ASP	67	48.786	27.635	19.827		47.44
	MOTA	488	N	PHE	68	46.955	28.632	20.678		45.41
	MOTA	489	CA	PHE	68	47.075	29.778	19.785		43.60
	ATOM	490	CB	PHE	68	46.031	29.682	18.667		41.17
	ATOM	491	CG	PHE	68	46.032	28.361	17.946		39.29
25	ATOM	492		PHE	68	45.621	27.199	18.592		38.55
	ATOM	493	CD2		68	46.468	28.272	16.623		38.76
	ATOM	494		PHE	68	45.647	25.966	17.934		38.24
	ATOM	495	CE2	PHE	68	46.498	27.050	15.959		37.31
	ATOM	496	CZ	PHE	68	46.086	25.893	16.619		37.76
30	ATOM	497	Ċ	PHE	68	46.918	31.096	20.514		
	ATOM	498	ō	PHE	68	46.395				43.33
	ATOM	499	И	LEU	69		31.147	21.621		43.27
	ATOM	500	CA	LEU	69	47.386	32.166	19.889		43.51
	ATOM	501	CB	LEU		47.274	33.475	20.497		44.73
35	ATOM	502	CG		69	48.625	34.197	20.518		45.26
33	ATOM	502		LEU	69	48.781	34.949	21.848		46.33
				LEU	69	49.166	33.928	22.932	1.00	
	ATOM	504		LEU	69	49.811	36.072	21.748	1.00	
	ATOM	505	C	LEU	69	46.275	34.278	19.681	1.00	
40	ATOM	506	0	LEU	69	46.448	34.451	18.470		45.62
40	ATOM	507	N	SER	70	45.228	34.758	20.351		45.75
	ATOM	508	CA	SER	70	44.177	35.528	19.697		44.98
	ATOM	509	CB	SER	70	42.794	34.984	20.074	1.00	44.61
	ATOM	510	OG	SER	70	42.697	33.589	19.844	1.00	44.25
	ATOM	511	C	SER	70	44.250	36.978	20.109	1.00	44.92
45	ATOM	512	0	SER	70	44.451	37.289	21.277	1.00	44.67
	ATOM	513	N	LEU	71	44.095	37.858	19.130	1.00	45.85
	ATOM	514	CA	LEU	71	44.092	39.294	19.366		47.27
	ATOM	515	CB	LEU	71	45.064	40.000	18.421		47.71
	ATOM	516	CG	LEU	71	46.552	39.942	18.787		49.06
50	ATOM	517	CD1	LEU	71	47.008	38.497	19.039		49.69
	ATOM	518		LEU	71	47.348	40.572	17.656		49.35
	ATOM	519	C	LEU	71	42.668	39.752	19.082		47.94
	ATOM	520	Ö	LEU	71	41.873	38.997	18.499		48.06
	ATOM	521	N	ASP	7 <u>1</u> 72	42.333	40.976			
55	ATOM	522	CA	ASP	72 72	40.985		19.479		48.20
	ATOM	523	CB	ASP	72 72		41.451	19.244		48.67
	ATOM	524	CG	ASP	72 72	40.043	40.807	20.262		48.71
	ATOM	524 525	OD1			38.668	41.420	20.243		49.13
	ATOM				72	38.090	41.549	19.144		49.57
	WI OM	526	ODZ	ASP	72	38.168	41.777	21.331	1.00	50.11

	13/6
Figure 4	15. 0.

)	Fig	gure 4				13/63			
	ATOM	527	С	ASP	72	40.819	42.962	19.258	1.00 48.98
	MOTA	528	0	ASP	72	40.247	43.530	20.187 -	1.00 48.82
	MOTA	529	N	LEU	73	41.312	43.613	18.214	1.00 49.73
	MOTA	530	CA	LEU	73	41.193	45.060	18.117	1.00 51.48
5	ATOM	531	CB	LEU	73	42.199	45.603	17.096	1.00 50.80
	MOTA	532	CG	LEU	73	42.160	47.096	16.774	1.00 50.07
	MOTA	533	CD1		73	42.358	47.902	18.045	1.00 50.10
	MOTA	534	CD2		73	43.223	47.421	15.738	1.00 49.97
	ATOM	535	C	LEU	73	39.764	45.392	17.687	1.00 52.93
10	MOTA	536	0	LEU	73	38.909	44.507	17.628	1.00 52.38
	MOTA	537	N	GLY	74	39.504	46.665	17.401	1.00 54.88 1.00 56.88
	ATOM ATOM	538 539	CA C	GLY GLY	74 74	38.177 37.285	47.068 47.420	16.983	1.00 58.48
	ATOM	540	0	GLY	74	36.476	48.348	18.148 18.071	1.00 58.31
15	ATOM	541	N	GLY	75	37.428	46.668	19.233	1.00 60.27
	ATOM	542	CA	GLY	75	36.621	46.925	20.410	1.00 62.46
	ATOM	543	C	GLY	75	37.020	48.230	21.074	1.00 63.75
	ATOM	544	0	GLY	75	37.824	49.005	20.536	1.00 64.06
	ATOM	545	N	THR	76	36.452	48.481	22.248	1.00 64.50
20	ATOM	546	CA	THR	76	36.759	49.697	22.991	1.00 65.42
	ATOM	547	CB	THR	76	35.905	49.776	24.266	1.00 66.28
	ATOM	548	OG1		76	36.361	48.791	25.203	1.00 67.43
	ATOM	549	CG2	THR	76	34.425	49.505	23.938	1.00 66.14
25	ATOM	550	C	THR	76	38.238	49.651	23.385	1.00 65.25
25	ATOM	551 552	O N	THR	76 77	39.005	50.595 48.528	23.152	1.00 65.01 1.00 64.74
	ATOM ATOM	553	N CA	ASN ASN	77	38.622 39.987	48.309	23.980 24.412	1.00 64.74
	ATOM	554	CB	ASN	77	40.015	47.966	25.903	1.00 65.44
	ATOM	555	CG	ASN	77	39.346	49.027	26.765	1.00 66.47
30	ATOM	556	OD1	ASN	77	39.656	50.219	26.663	1.00 67.13
	ATOM	557	ND2	ASN	77	38.431	48.596	27.629	1.00 66.65
	ATOM	558	С	ASN	77	40.547	47.149	23.603	1.00 63.19
	MOTA	559	0	ASN	77	39.795	46.303	23.120	1.00 62.58
25	ATOM	560	N	PHE	78	41.866	47.123	23.446	1.00 62.14
35	ATOM	561	CA	PHE	78 70	42.526	46.051	22.708	1.00 61.12
	ATOM ATOM	562 563	CB CG	PHE PHE	78 78	43.887 44.684	46.514 45.420	22.172 21.516	1.00 61.81 1.00 62.50
	ATOM	564		PHE	78 78	44.347	44.956	20.245	1.00 62.81
	ATOM	565		PHE	78 78	45.741	44.818	22.189	1.00 62.99
40	ATOM	566		PHE	78	45.051	43.899	19.655	1.00 62.72
	ATOM	567		PHE	78	46.450	43.763	21.607	1.00 63.38
	MOTA	568	CZ	PHE	78	46.103	43.301	20.336	1.00 63.01
	MOTA	569	С	PHE	78	42.732	44.893	23.668	1.00 60.09
	MOTA	570	0	PHE	78	43.065	45.100	24.834	1.00 60.08
45	MOTA	571	N	ARG	79	42.528	43.675	23.184	1.00 58.63
	MOTA	572	CA	ARG	79	42.706	42.504	24.025	1.00 57.40
	ATOM	573	CB	ARG	79	41.367	41.819	24.280	1.00 57.06
	MOTA	574 575	CG	ARG	79 70	41.481	40.637	25.222	1.00 57.49
50	MOTA MOTA	575 576	CD	ARG ARG	79 79	40.221 39.062	39.819 40.646	25.219 25.504	1.00 57.47 1.00 57.16
30	MOTA	577	CZ	ARG	79	37.818	40.266	25.267	1.00 57.69
	MOTA	578		ARG	79	37.586	39.071	24.738	1.00 57.38
	ATOM	579	NH2		79	36.812	41.080	25.555	1.00 58.45
	MOTA	580	C	ARG	79	43.663	41.522	23.368	1.00 56.71
55	MOTA	581	0	ARG	79	43.926	41.619	22.170	1.00 57.24
	MOTA	582	N	VAL	80	44.180	40.590	24.167	1.00 55.50
	MOTA	583	CA	VAL	80	45.114	39.557	23.724	1.00 54.27
	MOTA	584	CB	VAL	80	46.576	39.947	23.996	1.00 54.31
	MOTA	585	CG1	VAL	80	47.491	38.779	23.674	1.00 54.49

)	Fig	gure 4				14/63			
	ATOM	586	CG2	VAL	80	46.960	41.158	23.166	1.00 54.39
	ATOM	587	С	VAL	80	44.806	38.327	24.555	1.00 54.04
	ATOM	588	0	VAL	80	44.517	38.447	25.738	1.00 53.31
	ATOM	589	N	MSE	81	44.881	37.144	23.957	1.00 54.52
5	ATOM	590	CA	MSE	81	44.568	35.935	24.703	1.00 54.59
	ATOM	591	CB	MSE	81	43.053	35.804	24.828	1.00 57.08
	ATOM	592	CG	MSE	81	42.300	36.025	23.520	1.00 60.39
	ATOM	593	SE	MSE	81	40.534	36.437	23.792	1.00 65.62
	ATOM	594	CE	MSE	81	39.999	34.926	24.679	1.00 62.03
10	ATOM	595	C	MSE	81	45.142	34.645	24.146	1.00 53.56
	ATOM	596	0	MSE	81	45.598	34.582	23.007	1.00 52.99
	ATOM	597	N	LEU	82	45.096	33.611	24.978	1.00 52.63
	ATOM	598	CA	LEU	82	45.602	32.292	24.638	1.00 51.86
	ATOM	599	CB	LEU	82	46.660	31.863	25.665	1.00 52.75
15	ATOM	600	CG	LEU	82	47.261	30.455	25.542	1.00 53.22
	MOTA	601		LEU	82	48.562	30.521	24.736	1.00 52.42
	MOTA	602		LEU	82	47.523	29.882	26.937	1.00 53.00
	MOTA	603	С	LEU	82	44.461	31.286	24.650	1.00 51.18
• •	ATOM	604	0	LEU	82	43.718	31.186	25.632	1.00 51.20
20	ATOM	605	N	VAL	83	44.333	30.535	23.563	1.00 50.58
	ATOM	606	CA	VAL	83	43.292	29.522	23.448	1.00 50.00
	MOTA	607	CB	VAL	83	42.274	29.887	22.362	1.00 49.63
	ATOM	608		VAL	83	41.213	28.794	22.262	1.00 49.26
25	ATOM	609		VAL	83	41.660	31.244	22.670	1.00 48.32
25	ATOM	610	C	VAL	83	43.914	28.187	23.080	1.00 50.53
	MOTA	611	0		. 83	44.759	28.122	22.192	1.00 50.93
	ATOM	612	N	LYS	84	43.496	27.127	23.763	1.00 51.05
	MOTA	613	CA	LYS	84	44.017	25.788	23.504	1.00 51.89
30	ATOM ATOM	614 615	CB	LYS	84	44.338	25.061	24.826	1.00 51.79
30	ATOM	616	CG	LYS	84	44.716	23.581	24.659	1.00 51.85
	ATOM	617	CD	LYS	84	44.951	22.870	26.009	1.00 51.58
	ATOM	618	CE	LYS	84	46.429	22.848	26.422	1.00 50.92
	ATOM	619	NZ C	LYS LYS	84 84	47.041	24.198	26.592	1.00 50.33
35	ATOM	620	Ö	LYS	84	42.997	24.983	22.708	1.00 52.68
55	ATOM	621	N	VAL	85	42.115 43.124	24.327	23.282	1.00 53.00
	ATOM	622	CA	VAL	85	42.224	25.038 24.319	21.383	1.00 52.91
	ATOM	623	CB	VAL	85	42.399		20.488	1.00 52.70
	ATOM	624	CG1	VAL	85	41.302	24.805 24.232	19.048 18.176	1.00 51.79 1.00 52.19
40	ATOM	625		VAL	85	42.389	26.319	19.017	1.00 52.19
	ATOM	626	c	VAL	85	42.525	22.823	20.548	1.00 51.59
	ATOM	627	Ō	VAL	85	43.637	22.389	20.243	1.00 53.87
	ATOM	628	Ŋ	GLY	86	41.534	22.037	20.243	1.00 54.38
	MOTA	629	CA	GLY	86	41.726	20.603	20.952	1.00 55.35
45	ATOM	630	C	GLY	86	40.901	19.810	20.060	1.00 55.33
	ATOM	631	0	GLY	86	40.136	20.370	19.278	1.00 55.63
	MOTA	632	N	GLU	87	41.050	18.493	20.106	1.00 57.81
	MOTA	633	CA	GLU	87	40.339	17.611	19.195	1.00 57.61
	MOTA	634	СВ	GLU	87	41.290	16.529	18.673	1.00 60.88
50	MOTA	635	CG	GLU	87	40.680	15.648	17.611	1.00 62.26
	MOTA	636	CD	GLU	87	40.215	16.457	16.423	1.00 63.21
	MOTA	637	OE1		87	41.072	16.931	15.644	1.00 63.21
	ATOM	638	OE2		87	38.989	16.631	16.278	1.00 64.58
	ATOM	639	С	GLU	87	39.133	16.959	19.859	1.00 60.12
55	ATOM	640	0	GLU	87	39.271	16.187	20.810	1.00 60.00
	3.0004					-	/		

MOTA

MOTA

ATOM

ATOM

641 N

644 O

CA

С

642

643

GLY

GLY

GLY

GLY

88

88

88

88

37.948

36.735

35.840

36.038 16.346

17.273

16.707

16.120

19.347

19.902

18.833

1.00 60.93

1.00 61.61

1.00 62.11

17.638 1.00 61.67

Figure 4

ATOM 645 N GLU 89 34.845 15.363 19.274 1.00 62.79 MOTA 646 CA GLU 89 33.898 14.724 18.372 1.00 63.90 ATOM 647 CB GLU 89 32.782 14.089 19.203 1.00 63.50 ATOM 648 CG GLU 89 33.304 13.137 20.275 1.00 62.64 ATOM 649 CD GLU 89 32.214 12.623 21.203 1.00 62.46 ATOM 650 OE1 GLU 89 32.510 11.728 22.019 1.00 62.39 ATOM 651 OE2 GLU 89 31.064 13.110 21.128 1.00 62.11 ATOM 652 C GLU 89 33.312 15.688 17.325 1.00 65.16 ATOM 653 0 GLU 89 32.975 16.837 17.634 1.00 64.98 10 ATOM 654 N GLU 90 33.204 15.205 16.087 1.00 66.03 ATOM 655 CA GLU 90 32.667 15.977 14.958 1.00 66.67 ATOM 656 CB GLU 90 31.135 15.974 14.978 1.00 67.21 ATOM 657 CG GLU 90 30.495 14.620 14.717 1.00 66.83 ATOM 658 CD GLU 90 28.986 14.662 14.869 1.00 67.49 ATOM 659 OE1 GLU 90 28.308 15.273 14.009 1.00 67.17 ATOM 660 OE2 GLU 90 28.480 14.090 1.00 66.84 15.858 MOTA 661 С GLU 90 33.149 17.421 14.871 1.00 66.91 ATOM 662 0 GLU 90 32.623 18.212 14.080 1.00 66.74 ATOM 663 N GLY 91 34.149 17.769 15.671 1.00 67.05 20 ATOM 664 CA GLY 91 34.649 19.126 15.628 1.00 67.38 ATOM 665 С GLY 91 36.036 19.339 16.201 1.00 67.42 MOTA 666 0 GLY 91 37.025 18.797 15.708 1.00 68.24 ATOM 667 N GLN 92 36.094 20.154 17.246 1.00 66.86 ATOM 668 CA GLN 92 37.335 17.929 20.492 1.00 65.93 25 ATOM 669 CB GLN 92 38.395 20.968 16.924 1.00 66.17 ATOM 670 CG GLN 92 38.007 22.215 16.159 1.00 66.24 ATOM 671 CD GLN 92 38.564 22.236 14.750 1.00 66.57 ATOM 672 OE1 GLN 92 38.432 21.260 14.007 1.00 66.37 ATOM NE2 GLN 673 92 39.177 23.356 14.367 1.00 66.54 30 **ATOM** 674 С GLN 92 36.999 21.605 18.920 1.00 65.21 ATOM 675 0 GLN 92 36.625 22.721 18.530 1.00 65.44 ATOM 676 Ν TRP 93 37.111 21.278 20.204 1.00 63.62 MOTA CA 677 TRP 93 36.820 22.227 21.261 1.00 61.61 MOTA 678 CBTRP 93 36.859 21.540 22.626 1.00 62.77 MOTA 679 CG TRP 93 38.050 20.641 22.857 1.00 63.86 MOTA 680 CD2 TRP 93 39.213 20.943 23.637 1.00 64.17 MOTA 681 CE₂ TRP 93 40.026 19.787 23.645 1.00 64.21 ATOM 682 CE3 TRP 93 39.647 22.080 24.336 1.00 64.11 MOTA 683 CD1 TRP 19.349 93 38.206 22.424 1.00 63.84 MOTA 684 NE1 TRP 93 39.387 18.830 22.897 1.00 63.69 MOTA 685 CZ2 TRP 93 41.246 19.731 24.324 1.00 64.43 MOTA 686 CZ3 TRP 93 40.859 22.026 25.009 1.00 64.63 MOTA 687 CH2 TRP 93 41.645 20.857 24.999 1.00 64.71 ATOM 688 C TRP 93 37.784 23.393 21.248 1.00 59.53 45 ATOM 689 0 TRP 93 38.733 23.420 20.474 1.00 59.18 MOTA 690 N SER 94 37.521 24.366 22.106 1.00 57.94 MOTA 691 CA SER 94 38.353 25.549 22.207 1.00 56.46 ATOM 692 CB SER 94 37.880 26.615 21.219 1.00 56.58 MOTA 693 OG SER 94 36.504 26.899 21.412 1.00 56.78 50 ATOM 694 С SER 94 38.185 26.050 23.624 1.00 55.56 ATOM 695 0 SER 94 37.142 25.822 24.237 1.00 55.36 ATOM 696 Ν VAL 95 39.208 26.722 24.146 1.00 54.53 ATOM 697 CA VAL 95 39.152 27.248 25.504 1.00 53.17 ATOM 698 CB VAL 95 39.511 26.183 26.549 1.00 52.17 55 ATOM CG1 VAL 699 95 39.742 26.844 27.891 1.00 52.13 ATOM 700 CG2 VAL 95 38.396 25.172 26.666 1.00 51.73 ATOM 701 C VAL 95 40.099 28.399 25.719 1.00 52.74 ATOM 702 0 VAL 95 41.268 28.315 25.357 1.00 53.14 ATOM 703 N LYS 96 39.587 29.469 26.318 1.00 52.63

	16
Figure 4	• •

	MOTA	704	CA	LYS	96	40.402	30.637	26.629	1.00 52.93
	ATOM	705	CB	LYS	96	39.513	31.849	26.932	1.00 53.25
	ATOM	706	CG	LYS	96	40.277	33.129	27.231	1.00 53.79
	ATOM	707	CD	LYS	96	39.910	33.706	28.595	1.00 54.80
5	MOTA	708	CE	LYS	96	38.427	34.102	28.682	1.00 55.69
	MOTA	709	NZ	LYS	96	38.027	35.162	27.696	1.00 55.59
	ATOM	710	C	LYS	96	41.154	30.218	27.882	1.00 52.96
	ATOM	711	ō	LYS	96	40.546	29.733		
	ATOM	712	N	THR	97	42.470		28.834	1.00 52.93
10	ATOM	713	CA	THR	97		30.384	27.886	1.00 53.38
10	ATOM	714	CB	THR	97	43.253	29.980	29.050	1.00 53.93
	ATOM	715	OG1	THR	97	44.238	28.850	28.684	1.00 53.99
	ATOM	715	CG2	THR	97 97	43.512	27.736	28.151	1.00 52.99
	ATOM	717	C			44.998	28.394	29.918	1.00 55.29
15				THR	97	44.036	31.132	29.670	1.00 53.82
13	ATOM	718	0	THR	97	44.330	31.123	30.866	1.00 53.34
	ATOM	719	N	LYS	98	44.373	32.117	28.848	1.00 53.85
	ATOM	720	CA	LYS	98	45.115	33.276	29.315	1.00 54.60
	ATOM	721	CB	LYS	98	46.627	33.096	29.087	1.00 55.51
20	ATOM	722	CG	LYS	98	47.220	31.809	29.652	1.00 56.78
20	ATOM	723	CD	LYS	98	47.074	31.733	31.162	1.00 58.23
	ATOM	724	CE	LYS	98	47.553	30.389	31.713	1.00 58.82
	ATOM	725	NZ	LYS	98	47.404	30.320	33.201	1.00 58.98
	MOTA	726	С	LYS	98	44.644	34.479	28.518	1.00 54.54
	MOTA	727	0	LYS	98	44.323	34.360	27.329	1.00 54.79
25	ATOM	728	N	HIS	99	44.590	35.632	29.173	1.00 54.03
	ATOM	729	CA	HIS	99	44.193	36.853	28.496	1.00 54.03
	MOTA	730	CB	HIS	99	42.720	36.793	28.052	1.00 55.02
	MOTA	731	CG	HIS	99	41.732	36.872	29.172	1.00 55.71
	ATOM	732	CD2	HIS	99	40.682	37.704	29.373	1.00 55.66
30	ATOM	733		HIS	99	41.739	35.999	30.239	1.00 56.19
	MOTA	734	CE1	HIS	99	40.736	36.288	31.049	1.00 56.30
	MOTA	735	NE2	HIS	99	40.080	37.319	30.546	1.00 56.72
	ATOM	736	С	HIS	99	44.445	38.082	29.351	1.00 53.46
	ATOM	737	0	HIS	99	44.526	38.007	30.577	1.00 53.47
35	MOTA	738	N	GLN	100	44.583	39.214	28.683	1.00 52.94
	ATOM	739	CA	GLN	100	44.841	40.468	29.349	1.00 53.34
	ATOM	740	CB	GLN	100	46.354	40.649	29.513	1.00 53.39
	ATOM	741	CG	GLN	100	46.790	42.001	30.055	1.00 54.26
	ATOM	742	CD	GLN	100	46.168	42.345	31.394	1.00 54.43
40	ATOM	743	OE1	GLN	100	46.349		32.384	
	ATOM	744	NE2	GLN	100	45.433	43.452	31.432	1.00 53.60
	ATOM	745	С	GLN	100	44.243	41.567	28.481	1.00 53.43
	ATOM	746	0	GLN	100	44.416	41.569	27.260	1.00 53.75
	ATOM	747	N	THR	101	43.527	42.493	29.105	1.00 52.90
45	MOTA	748	CA	THR	101	42.905	43.576	28.367	1.00 52.30
	MOTA	749	CB	THR	101	41.495	43.826	28.894	1.00 53.12
	ATOM	750	OG1		101	40.789	42.582	28.925	1.00 52.32
	ATOM	751		THR	101	40.752	44.808	27.999	1.00 52.83
	ATOM	752	C	THR	101	43.731	44.845	28.499	1.00 52.23
50	ATOM	753	ō	THR	101	44.285	45.108		
	ATOM	754	N	TYR	102	43.809		29.563	1.00 53.95
	ATOM	755	CA	TYR	102		45.628	27.422	1.00 54.10
	ATOM	756				44.585	46.869	27.422	1.00 55.36
			CB	TYR	102	45.878	46.708	26.608	1.00 54.89
55	ATOM	757	CG	TYR	102	46.788	45.569	27.015	1.00 54.25
55	ATOM	758 750	CD1		102	46.382	44.241	26.888	1.00 54.08
	ATOM	759	CE1		102	47.227	43.197	27.226	1.00 53.44
	MOTA	760	CD2		102	48.069	45.822	27.497	1.00 53.79
	ATOM	761 762	CE2		102	48.922	44.785	27.840	1.00 53.76
	ATOM	762	CZ	TYR	102	48.498	43.475	27.701	1.00 53.85

	rig	uic 4								
	ATOM	763	ОН	TYR	102	49.355	42.442	20 021	1 00	E4 02
	ATOM	764	C	TYR	102	43.813	48.041	28.021 26.822		54.03 56.65
	ATOM	765	0	TYR	102	43.613	47.899			
	ATOM	766	N	SER	102			25.781		56.91
5	ATOM	767	CA	SER	103	43.891 43.217	49.203	27.462		58.50
,	MOTA	768	CB	SER	103		50.385	26.938		60.94
	MOTA	769	OG	SER	103	42.997 44.231	51.411	28.049		61.09
	ATOM	770	C	SER	103		51.829	28.602		62.50
	ATOM	771	0	SER	103	44.090	50.985	25.833		62.31
10	ATOM	772	Ŋ			45.293	50.729	25.771		62.27
10	ATOM	773	CA	ALA	104	43.487	51.783	24.960		64.47
	ATOM	774	CB	ALA	104	44.226	52.386	23.856		67.01
	ATOM	775		ALA	104	43.516	52.093	22.526		67.01
	ATOM	776	С	ALA	104	44.410	53.888	24.025		68.66
15			0	ALA	104	43.458	54.658	23.902		69.01
13	ATOM	777 778	N	PRO	105	45.648	54.327	24.305		70.09
	ATOM ATOM	778 779	CD	PRO	105	46.878	53.522	24.397		70.06
			CA	PRO	105	45.946	55.751	24.485		71.25
	ATOM	780	CB	PRO	105	47.443	55.748	24.783		70.79
20	MOTA	781	CG	PRO	105	47.929	54.535	24.046		70.54
20	ATOM	782	C	PRO	105	45.592	56.586	23.251		72.81
	MOTA	783	0	PRO	105	45.837	56.170	22.117		73.09
	ATOM	784 785	N	GLU	106	45.012	57.762	23.479		74.39
	ATOM ATOM		CA	GLU	106	44.619	58.652	22.391		76.25
25	ATOM	786	CB	GLU	106	43.991	59.921	22.950		76.77
23	ATOM	787 788	CG CD	GLU	106	42.702	59.673	23.680		78.35
	MOTA	789		GLU	106	42.397	60.775	24.657		79.28
	ATOM	790		GLU	106	42.239	61.934	24.214		79.74
	ATOM	791	C	GLU	106	42.326	60.478	25.871		80.03
30	ATOM	792	0	GLU GLU	106 106	45.784	59.028	21.494		77.33
50	ATOM	793	N	ASP	100	45.600 46.980	59.262	20.300		77.48
	ATOM	794	CA	ASP	107	48.161	59.104 59.440	22.068		78.72
	ATOM	795	CB	ASP	107			21.284		80.10
	ATOM	796	CG	ASP	107	49.431 49.965	59.316	22.134		80.44
35	ATOM	797	OD1		107		57.889	22.185		81.03
55	ATOM	798		ASP	107	49.198 51.151	56.976 57.682	22.569		81.42
	ATOM	799	C	ASP	107	48.212		21.839		80.86
	ATOM	800	0	ASP	107	48.724	58.424 58.703	20.151		80.92
	ATOM	801	N	ALA	108	47.670	57.241	19.065 20.428		81.29 81.68
40	ATOM	802	CA	ALA	108	47.628	56.151	19.463		82.45
	ATOM	803	CB	ALA	108	47.605	54.813	20.200		82.45
	ATOM	804	C	ALA	108	46.406	56.275	18.553		82.91
	ATOM	805	ō	ALA	108	46.536	56.351	17.331		82.98
	ATOM	806	N	MSE	109	45.221	56.303	19.157		83.41
4 5	ATOM	807	CA	MSE	109	43.974	56.414	18.407		83.78
	ATOM	808	СВ	MSE	109	42.787	56.519	19.368		85.45
	ATOM	809	CG	MSE	109	41.581	55.678	18.972		87.01
	ATOM	810	SE	MSE	109	41.933	53.898	19.096		90.12
	ATOM	811	CE	MSE	109	42.665	53.581	17.453		88.95
50	ATOM	812	C	MSE	109	43.992	57.633	17.494		83.17
	MOTA	813	Ö	MSE	109	43.235	57.710	16.527		83.19
	ATOM	814	N	THR	110	44.854	58.590	17.820		82.51
	ATOM	815	CA	THR	110	44.986	59.815			82.00
	ATOM	816	CB	THR	110	45.289	61.022	17.040		
55	ATOM	817	OG1		110	43.269	61.022	17.949		82.44 83.00
	ATOM	818		THR	110	44.302	62.313	18.986		
	ATOM	819	C	THR	110	46.150	59.640	17.142 16.082		82.69 81.25
	ATOM	820	0	THR	110	46.127	60.123	16.082		81.25
	ATOM	821	N	GLY	111	47.168	58.933			
			••			41.100	20.333	16.559	T.00	80.84

-	. ^	"	^
	ıx	/h	-

	ATOM	822	CA	GLY	111	48.358	58.691	15.768	1.00 8	0.12
	ATOM	823	С	GLY	111	48.121	57.986	14.450	1.00 7	9.53
	ATOM	824	0	GLY	111	47.018	57.531	14.148	1.00 7	9.54
	ATOM	825	N	THR	112	49.181	57.904	13.658	1.00 7	8.87
5	ATOM	826	CA	THR	112	49.129	57.254	12.360	1.00 7	
_	ATOM	827	СВ	THR	112	50.427	57.553	11.561	1.00 7	
	ATOM	828	OG1	THR	112	50.329	57.001	10.240	1.00 7	
	ATOM	829	CG2	THR	112	51.644	56.956	12.279	1.00 7	
	ATOM	830	C	THR	112	48.992	55.748	12.579	1.00 7	
10	ATOM	831	0		112		55.254		1.00 7	
10				THR		49.231		13.685		
	ATOM	832	N	ALA	113	48.601	55.027	11.529	1.00 7	
	ATOM	833	CA	ALA	113	48.443	53.573	11.603	1.00 7	
	ATOM	834	CB	ALA	113	48.184	53.001	10.208	1.00 7	
	MOTA	835	C	ALA	113	49.711	52.965	12.191	1.00 7	
15	MOTA	836	0	ALA	113	49.665	52.006	12.968	1.00 7	
	MOTA	837	N	GLU	114	50.845	53.538	11.803	1.00 7	
	ATOM	838	CA	GLU	114	52.139	53.088	12.288	1.00 7	
	MOTA	839	CB	GLU	114	53.246	53.971	11.700	1.00 7	
	ATOM	840	CG	GLU	114	53.130	54.167	10.188	1.00 7	1.64
20	MOTA	841	CD	GLU	114	53.325	52.877	9.401	1.00 7	2.49
	ATOM	842	OE1	GLU	114	53.192	51.781	9.994	1.00 7	2.24
	ATOM	843	OE2	GLU	114	53.600	52.960	8.183	1.00 7	1.83
	ATOM	844	С	GLU	114	52.085	53.233	13.801	1.00 7	0.37
	MOTA	845	0	GLU	114	52.297	52.266	14.537	1.00 6	
25	ATOM	846	N	MET	115	51.778	54.450	14.246	1.00 6	
	ATOM	847	CA	MET	115	51.657	54.760	15.669	1.00 6	
	ATOM	848	CB	MET	115	51.013	56.140	15.866	1.00 6	
	ATOM	849	CG	MET	115	51.999	57.277	16.040	1.00 6	
	ATOM	850	SD	MET	115	53.203	56.869	17.320	1.00 6	
30	ATOM	851	CE	MET	115	52.137	56.732	18.788	1.00 6	
50	MOTA	852	C	MET	115	50.799	53.718	16.374	1.00 6	
	MOTA	853	0		115				1.00 6	
	MOTA	854		MET	116	51.266 49.542	53.010	17.275 15.940	1.00 6	
			N	LEU			53.635			
25	ATOM	855	CA	LEU	116	48.561	52.711	16.504	1.00 6	
35	MOTA	856	CB	LEU	116	47.287	52.720	15.650	1.00 6	
	ATOM	857	CG	LEU	116	45.948	52.226	16.205	1.00 5	
	ATOM	858		LEU	116	44.953	52.182	15.051	1.00 5	
	MOTA	859	CD2	LEU	116	46.081	50.858	16.847	1.00 5	
40	MOTA	860	C	LEU	116	49.083	51.285	16.613	1.00 6	
40	MOTA	861	0	LEU	116	48.977	50.665	17.667	1.00 6	
	MOTA	862	N	PHE	117	49.641	50.756	15.531	1.00 5	
	MOTA	863	CA	PHE	117	50.138	49.391	15.580	1.00 5	
	MOTA	864	CB	PHE	117	50.298	48.819	14.173	1.00 5	
	MOTA	865	CG	PHE	117	49.055	48.144	13.669	1.00 5	
45	MOTA	866	CD1	PHE	117	48.005	48.889	13.143	1.00 5	
	MOTA	867	CD2	PHE	117	48.909	46.763	13.783	1.00 5	55.59
	MOTA	868	CE1	PHE	117	46.830	48.270	12.741	1.00 5	55.25
	MOTA	869	CE2	PHE	117	47.736	46.134	13.384	1.00 5	55.20
	MOTA	870	CZ	PHE	117	46.695	46.887	12.862	1.00 5	55.23
50	MOTA	871	С	PHE	117	51.415	49.204	16.382	1.00 5	
	MOTA	872	0	PHE	117	51.799	48.073	16.690	1.00 5	
	MOTA	873	N	ALA	118	52.078	50.303	16.725	1.00 5	
	ATOM	874	CA	ALA	118	53.275	50.193	17.537	1.00	
	ATOM	875	CB	ALA	118	54.004	51.533	17.594	1.00	
55	MOTA	876	C	ALA		52.747	49.792	18.922	1.00 5	
23	ATOM	877	o	ALA		53.220	48.829	19.536	1.00	
		878			119			19.336	1.00 5	
	ATOM		N	ALA		51.733	50.515		1.00 5	
	ATOM	879	CA	ALA		51.142	50.226	20.693		
	ATOM	880	CB	ALA	119	49.931	51.135	20.952	1.00	12.27

MOTA 881 C ALA 119 50.719 48.769 20.763 1.00 54.96 ATOM 882 0 ALA 119 51.090 48.052 21.698 1.00 54.94 ATOM 883 N ILE 120 49.948 48.338 19.763 1.00 55.10 ATOM CA 884 ILE 120 49.443 46.969 19.715 1.00 55.51 ATOM 885 CB ILE 120 48.679 46.679 18.397 1.00 54.45 MOTA 886 CG2 ILE 120 47.922 45.363 18.525 1.00 53.30 ATOM 887 CG1 ILE 120 47.688 47.808 18.089 1.00 53.32 ATOM 888 CD1 ILE 120 46.871 47.581 16.820 1.00 51.70 MOTA 889 C ILE 120 50.575 45.957 19.846 1.00 56.57 10 ATOM 890 0 ILE 120 50.477 45.006 20.632 1.00 56.52 ATOM 891 N SER 121 51.645 46.169 19.076 1.00 57.78 ATOM 892 CA SER 121 52.814 45.284 19.093 1.00 58.54 MOTA 893 CB SER 121 45.730 53.844 18.045 1.00 58.96 MOTA 894 OG SER 121 53.377 45.507 16.720 1.00 59.32 15 MOTA 895 С SER 121 53.457 45.280 20.473 1.00 58.74 MOTA 896 0 SER 121 54.007 44.265 20.918 1.00 57.56 MOTA 897 N GLU 122 53.379 46.422 21.151 1.00 59.50 MOTA 898 CA GLU 122 53.947 46.529 22.484 1.00 60.44 MOTA 899 CB GLU 122 54.003 47.986 22.941 1.00 60.60 20 MOTA 900 CG GLU 122 55.104 48.241 23.952 1.00 60.45 MOTA 901 CDGLU 122 54.706 49.252 25.003 1.00 61.76 MOTA 902 OE1 GLU 122 54.152 50.312 24.630 1.00 61.92 ATOM 903 OE2 GLU 122 54.950 48.986 26.202 1.00 62.20 MOTA 904 C GLU 122 53.091 45.725 23.452 1.00 60.63 25 MOTA 905 53.565 0 GLU 122 44.761 24.048 1.00 60.82 MOTA 906 CYS 1.00 60.96 N 123 51.831 46.120 23.605 ATOM 907 CA CYS 123 50.936 45.410 24.510 1.00 61.79 MOTA 908 CB CYS 123 49.481 45.840 24.278 1.00 61.63 MOTA 909 SG CYS 123 49.191 47.636 24.439 1.00 62.83 30 MOTA 910 С CYS 123 51.107 43.922 1.00 61.90 24.233 MOTA 911 0 CYS 123 51.028 43.095 25.147 1.00 61.89 MOTA 912 N ILE 124 51.350 43.588 22.966 1.00 62.36 MOTA 913 CA ILE 124 51.561 22.588 42.197 1.00 62.79 MOTA 914 CB ILE 124 52.033 42.061 21.109 1.00 62.52 35 MOTA 915 CG2 ILE 124 52.618 40.676 20.877 1.00 61.07 MOTA 916 CG1 ILE 124 50.866 42.280 1.00 61.53 20.138 MOTA 917 CD1 ILE 124 50.016 41.038 19.888 1.00 61.77 ATOM 918 С ILE 124 52.673 41.706 23.499 1.00 62.76 MOTA 919 0 ILE 124 52.475 40.807 24.320 1.00 62.23 40 ATOM 920 N SER 125 1.00 63.43 53.839 42.327 23.347 ATOM 921 CA SER 125 55.020 42.002 24.138 1.00 64.63 MOTA 922 CB SER 125 56.062 43.117 23.986 1.00 65.05 MOTA 923 OG SER 125 57.324 42.745 24.523 1.00 67.01 924 MOTA С SER 125 54.646 41.840 25.610 1.00 64.32 45 MOTA 925 0 SER 125 54.886 40.794 26.219 1.00 64.46 MOTA 926 N ASP 126 54.047 42.884 26.169 1.00 64.43 ATOM 927 CA ASP 126 53.626 42.894 27.562 1.00 64.86 MOTA 928 CB ASP 126 52.660 44.060 27.788 1.00 64.95 ATOM 929 CG ASP 126 52.390 44.323 29.253 1.00 65.38 50 ATOM 930 OD1 ASP 126 51.952 43.389 29.955 1.00 65.74 MOTA 931 OD2 ASP 126 52.613 45.467 29.706 1.00 65.92 ATOM 932 C ASP 126 52.968 41.572 27.980 1.00 64.65 MOTA 933 0 ASP 126 53.424 40.918 28.924 1.00 64.28 MOTA 934 N PHE 127 51.902 41.189 27.274 1.00 64.96 55 ATOM 935 CA PHE 127 51.177 39.948 27.565 1.00 65.21 MOTA 936 CB PHE 127 50.145 39.657 26.468 1.00 64.22 MOTA 937 CG PHE 127 49.569 38.258 26.525 1.00 63.67 MOTA 938 CD1 PHE 127 48.774 37.857 27.594 1.00 63.64 MOTA 939 CD2 PHE 127 49.830 37.343 25.512 1.00 63.42

19/63

	20/63
Timera 4	20/03

	MOTA	940	CE1	PHE	127	48.247	36.564	27.652	1.00	63.40
	ATOM	941	CE2	PHE	127	49.308	36.051	25.560	1.00	63.55
	MOTA	942	CZ	PHE	127	48.516	35.661	26.632	1.00	63.49
	MOTA	943	С	PHE	127	52.154	38.791	27.631	1.00	65.83
5	MOTA	944	0	PHE	127	52.195	38.030	28.600	1.00	65.71
	MOTA	945	N	LEU	128	52.931	38.684	26.562	1.00	66.57
	ATOM	946	CA	LEU	128	53.942	37.656	26.387		67.52
	ATOM	947	СВ	LEU	128	54.773	38.022	25.166		67.64
	ATOM	948	CG	LEU	128	53.926	38.452	23.969		67.42
10	ATOM	949		LEU	128	54.819	39.108	22.941		67.90
10	ATOM	950	CD2	LEU	128					
		951				53.195	37.251	23.387		67.65
	MOTA		C	LEU	128	54.850	37.502	27.609		68.09
	ATOM	952	0	LEU	128	54.829	36.468	28.285		67.92
	ATOM	953	N	ASP	129	55.654	38.530	27.878		68.62
15	MOTA	954	CA	ASP	129	56.565	38.514	29.018		69.2€2
	MOTA	955	CB	ASP	129	57.135	39.907	29.287		68.93
	MOTA	956	CG	ASP	129	58.115	40.342	28.239	1.00	68.90
	ATOM	957		ASP	129	59.100	39.606	28.011	1.00	69.12
	MOTA	958	OD2	ASP	129	57.900	41.423	27.650	1.00	69.22
20	MOTA	959	С	ASP	129	55.843	38.059	30.267	1.00	69.59
	MOTA	960	0	ASP	129	56.063	36.956	30.761	1.00	69.41
	MOTA	961	N	LYS	130	54.973	38.940	30.753	1.00	70.10
	ATOM	962	CA	LYS	130	54.190	38.733	31.958		70.67
	ATOM	963	CB	LYS	130	53.285	39.946	32.159		70.80
25	ATOM	964	CG	LYS	130	54.076	41.252	32.052		70.54
	MOTA	965	CD	LYS	130	53.218	42.479	32.266		70.22
	ATOM	966	CE	LYS	130	54.021	43.746	32.011		70.07
	ATOM	967	NZ	LYS	130	53.204	44.977	32.195		69.69
	ATOM	968	C	LYS	130	53.394	37.441	31.982		71.17
30	MOTA	969	Ö	LYS	130	52.381	37.331	32.673		70.99
- •	ATOM	970	И	HIS	131	53.883	36.468	31.221		72.01
	ATOM	971	CA	HIS	131	53.301	35.139	31.125		73.44
	ATOM	972	CB	HIS	131	52.313	35.065	29.965		73.00
	MOTA	973	CG	HIS	131	50.881				
35	ATOM	974		HIS			35.076	30.397		72.93
33	ATOM	975		HIS	131	49.960	34.085	30.454	1.00	72.73
					131	50.256	36.210	30.869	1.00	72.87
	MOTA	976		HIS	131	49.010	35.917	31.196		73.01
	MOTA	977	NE2		131	48.806	34.634	30.954		73.04
40	ATOM	978	C	HIS	131	54.424	34.124	30.908		74.61
40	ATOM	979	0	HIS	131	54.419	33.049	31.514		74.70
	ATOM	980	N	GLN	132	55.374	34.502	30.046		76.14
	MOTA	981	CA	GLN	132	56.566	33.727	29.658		77.30
	MOTA	982	CB	GLN	132	56.536	32.293	30.218		77.68
	MOTA	983	CG	GLN	132	55.424	31.387	29.676		78.41
45	ATOM	984	CD	GLN	132	55.823	30.611	28.436	1.00	78.88
	MOTA	985	OE1	GLN	132	56.016	31.179	27.356	1.00	78.50
	MOTA	986	NE2	GLN	132	55.951	29.294	28.587	1.00	79.41
	MOTA	987	C	GLN	132	56.673	33.682	28.134	1.00	77.86
	MOTA	988	0	GLN	132	57.769	33.638	27.574	1.00	77.91
50	MOTA	989	N	MSE	133	55.520	33.703	27.472	1.00	78.39
	MOTA	990	CA	MSE	133	55.450	33.662	26.017		78.88
	MOTA	991	СВ	MSE	133	53.989	33.684	25.551		80.96
	MOTA	992	CG	MSE	133	53.278	32.347	25.586		83.34
	ATOM	993	SE	MSE	133	51.991	32.273	26.846		87.09
55	ATOM	994	CE	MSE	133	52.168	30.521	27.421		.84.33
	MOTA	995	C	MSE	133	56.174	34.812	25.333		77.90
	MOTA	996	0	MSE	133					
						55.552	35.548	24.567		78.34
	ATOM	997	N	LYS	134	57.470	34.973	25.587		75.97
	MOTA	998	CA	LYS	134	58.225	36.053	24.949	1.00	73.96

2	1	1	6	4
	-1	//	п	7

		_								
	ATOM	999	CB	LYS	134	58.976	36.879	25.997	1.00	73.14
	ATOM	1000	CG	LYS	134	59.676	38.125	25.454	1.00	72.28
	ATOM	1001	CD	LYS	134	58.697	39.250	25.141		70.99
	ATOM	1002	CE	LYS	134	59.415	40.586	24.935		70.06
5	ATOM	1003	NZ	LYS	134	60.234	40.640	23.687		69.46
	ATOM	1004	C	LYS	134	59.211	35.443	23.964		72.94
	ATOM	1005	Ō	LYS	134	59.727	36.123	23.077		72.63
	ATOM	1006	N	HIS	135	59.457	34.148	24.132		72.28
	ATOM	1007	CA	HIS	135	60.377	33.411	23.275		71.52
10	ATOM	1008	CB	HIS	135	61.359	32.584	24.119		71.15
10	ATOM	1009	CG	HIS	135	60.719	31.448	24.119		70.88
	ATOM	1010		HIS	135	60.719	30.109			70.87
	ATOM	1011		HIS	135			24.773		
	ATOM	1011		HIS	135	59.750	31.635	25.822		70.81
15		1012				59.370	30.462	26.298		70.56
13	ATOM			HIS	135	60.057	29.519	25.678		70.25
	MOTA	1014	C	HIS	135	59.584	32.482	22.365		71.26
	MOTA	1015	0	HIS	135	60.152	31.818	21.499		71.53
	MOTA	1016	N	LYS	136	58.272	32.434	22.574		70.85
•	MOTA	1017	CA	LYS	136	57.393	31.590	21.766		70.33
20	MOTA	1018	CB	LYS	136	56.077	31.329	22.508		69.64
	MOTA	1019	CG	LYS	136	56.225	30.694	23.886		68.45
	MOTA	1020	CD	LYS	136	56.740	29.271	23.783		68.01
	MOTA	1021	CE	LYS	136	56.698	28.560	25.128		67.56
	MOTA	1022	NZ	LYS	136	55.303	28.356	25.623		66.87
25	MOTA	1023	С	LYS	136	57.088	32.296	20.443		70.46
	MOTA	1024	0	LYS	136	57.100	33.530	20.371		70.94
	MOTA	1025	N	LYS	137	56.828	31.519	19.396		70.16
••	ATOM	1026	CA	LYS	137	56.505	32.096	18.096	1.00	69.80
	ATOM	1027	CB	LYS	137	57.505	31.642	17.023		71.09
30	MOTA	1028	CG	LYS	137	57.602	30.132	16.801		71.73
	ATOM	1029	CD	LYS	137	58.567	29.840	15.654	1.00	72.44
	MOTA	1030	CE	LYS	137	58.915	28.363	15.545	1.00	72.39
	MOTA	1031	NZ	LYS	137	59.919	28.136	14.463	1.00	72.59
	MOTA	1032	C	LYS	137	55.097	31.685	17.702	1.00	68.73
35	MOTA	1033	0	LYS	137	54.799	31.476	16.524	1.00	69.92
	MOTA	1034	N	LEU	138	54.243	31.579	18.716	1.00	66.57
	MOTA	1035	CA	LEU	138	52.841	31.193	18.586	1.00	63.82
	ATOM	1036	CB	LEU	138	52.057	31.788	19.748	1.00	63.11
	MOTA	1037	CG	LEU	138	52.364	31.145	21.092	1.00	62.89
40	ATOM	1038	CD1	LEU	138	51.924	32.068	22.220	1.00	62.68
	ATOM	1039	CD2	LEU	138	51.669	29.786	21.150	1.00	61.80
	ATOM	1040	C	LEU	138	52.114	31.553	17.294	1.00	62.26
	ATOM	1041	0	LEU	138	52.416	32.566	16.647	1.00	62.54
	MOTA	1042	N	PRO	139	51.149	30.708	16.894	1.00	60.11
45	ATOM	1043	CD	PRO	139	50.841	29.394	17.489		59.82
	MOTA	1044	CA	PRO	139	50.356			1.00	57.91
	ATOM	1045	CB	PRO	139	49.761	29.564	15.398		58.05
	ATOM	1046	CG	PRO	139	49.573	28.999	16.772		59.12
	MOTA	1047	С	PRO	139	49.302	31.968	16.101		55.89
50	ATOM	1048	0	PRO	139	48.469	31.693	16.973		55.71
	ATOM	1049	N	LEU	140	49.358	33.154	15.501		53.40
	MOTA	1050	CA	LEU	140	48.440	34.237	15.850		50.78
	ATOM	1051	CB	LEU	140	49.195	35.576	15.834		49.87
	ATOM	1052	CG	LEU	140	48.452	36.893	16.091		49.01
55	ATOM	1053		LEU	140	49.414	37.933	16.646		48.17
رر	ATOM	1054		LEU	140	47.825	37.389	14.801		48.88
	ATOM	1055	CDZ	LEU	140	47.825	34.359	15.018		49.13
	ATOM	1056	0	LEU	140	47.169	34.359	13.785		49.13
	ATOM	1056								
	A I OM	T021	N	GLY	141	46.040	34.441	15.722	1.00	46.93

		15010 4							
	ATOM	1058	CA	GLY	141	44.743	34.613	15.086	1.00 43.70
	ATOM	1059	C	GLY		44.324	36.041	15.402	1.00 41.11
	ATOM	1060	Ô	GLY		44.277	36.414	16.569	1.00 41.11
	ATOM	1061	N	PHE		44.018	36.842	14.388	
5	ATOM	1062	CA	PHE		43.659	38.232		1.00 38.27
•	ATOM	1063	CB	PHE		44.648	39.118	14.629	1.00 36.42
	ATOM	1064	CG	PHE			40.593	13.882	1.00 34.58
	ATOM	1065		PHE		44.403		14.037	1.00 33.28
	ATOM	1066		PHE		43.941	41.124	15.229	1.00 32.86
10	ATOM	1067		PHE		44.702	41.465	12.992	1.00 32.75
10	ATOM	1067				43.784	42.505	15.375	1.00 32.95
		1069		PHE		44.551	42.845	13.125	1.00 31.57
	ATOM		CZ	PHE		44.094	43.365	14.313	1.00 32.24
	ATOM	1070	C	PHE		42.224	38.652	14.300	1.00 36.83
15	ATOM	1071	0	PHE		41.843	38.801	13.124	1.00 36.76
15	MOTA	1072	N	THR		41.423	38.848	15.347	1.00 35. 9 6
	ATOM	1073	CA	THR	143	40.047	39.288	15.156	1.00 34.35
	ATOM	1074	CB	THR		39.179	38.997	16.373	1.00 33.98
	ATOM	1075	OG1			38.947	37.586	16.472	1.00 33.45
20	ATOM	1076	CG2	THR	143	37.854	39.750	16.255	1.00 33.35
20	ATOM	1077	C	THR		40.081	40.793	14.964	1.00 33.92
	ATOM	1078	0	THR	143	40.190	41.544	15.928	1.00 34.30
	ATOM	1079	N	PHE	144	40.009	41.227	13.716	1.00 33.00
	ATOM	1080	CA	PHE	144	40.029	42.649	13.383	1.00 31.69
	ATOM	1081	CB	PHE	144	40.891	42.842	12.132	1.00 29.18
25	ATOM	1082	CG	PHE	144	41.189	44.264	11.807	1.00 26.95
	ATOM	1083		PHE	144	41.727	45.108	12.763	1.00 26.21
	MOTA	1084		PHE	144	40.956	44.755	10.533	1.00 25.39
	ATOM	1085		PHE	144	42.026	46.428	12.450	1.00 26.79
	MOTA	1086		PHE	144	41.250	46.070	10.212	1.00 25.46
30	ATOM	1087	CZ	PHE	144	41.785	46.910	11.167	1.00 25.80
	MOTA	1088	С	PHE	144	38.562	42.981	13.112	1.00 32.02
	MOTA	1089	О	PHE	144	37.929	42.280	12.333	1.00 33.96
	ATOM	1090	N	SER	145	38.025	44.027	13.744	1.00 32.29
	ATOM	1091	CA	SER	145	36.602	44.387	13.600	1.00 31.56
35	ATOM	1092	CB	SER	145	35.993	44.689	14.968	1.00 31.79
	MOTA	1093	OG	SER	145	35.997	43.539	15.790	1.00 33.15
	ATOM	1094	С	SER	145	36.271	45.546	12.679	1.00 30.95
	MOTA	1095	0	SER	145	35.601	46.508	13.082	1.00 30.63
	ATOM	1.096	N	PHE	146	36.723	45.456	11.439	1.00 30.27
40	MOTA	1097	CA	PHE	146	36.452	46.513	10.489	1.00 29.49
	ATOM	1098	CB	PHE	146	37.573	47.541	10.535	1.00 29.01
	ATOM	1099	CG	PHE	146	37.848	48.054	11.908	1.00 27.96
	MOTA	1100	CD1	PHE	146	38.654	47.336	12.775	1.00 28.87
	MOTA	1101	CD2	PHE	146	37.245	49.221	12.359	1.00 27.88
45	ATOM	1102	CE1	PHE	146	38.852	47.777	14.078	1.00 29.72
	MOTA	1103	CE2	PHE	146	37.434	49.670	13.659	1.00 26.92
	MOTA	1104	CZ	PHE	146	38.232	48.955	14.520	1.00 28.49
	MOTA	1105	C	PHE	146	36.318	45.937	9.093	1.00 29.49
	ATOM	1106	0	PHE	146	36.668	44.778	8.846	1.00 29.56
50	ATOM	1107	N	PRO	147	35.805	46.738	8.152	1.00 29.02
	ATOM	1108	CD	PRO	147	35.452	48.167	8.211	1.00 28.09
	MOTA	1109	CA	PRO	147	35.662	46.212	6.798	1.00 30.12
	MOTA	1110	СВ	PRO	147	34.852	47.309	6.099	1.00 30.12
	ATOM	1111	CG	PRO	147	35.377	48.540	6.749	1.00 28.03
55	MOTA	1112	Ċ	PRO	147	37.047	45.969	6.179	1.00 28.13
	MOTA	1113	ō	PRO	147	37.938	46.821	6.263	1.00 30.89
	ATOM	1114	N	VAL	148	37.221	44.807	5.557	1.00 32.17
	ATOM	1115	CA	VAL	148	38.499	44.807	3.337 4.957	1.00 31.62
	ATOM	1116	CB	VAL	148	39.399			
			4	A T. ZTT	T 40	33.333	43.733	6.002	1.00 32.44

ATOM 1117 CG1 VAL 148 40.471 42.940 5.311 1.00 33.36 ATOM 1118 CG2 VAL 44.758 1.00 32.04 148 40.035 6.934 ATOM 1119 1.00 31.54 С VAL 148 38.351 43.557 3.733 ATOM 1120 0 VAL 148 37.937 42.402 3.858 1.00 30.91 ATOM 1121 N ALA 149 38.688 44.091 2.560 1.00 31.66 MOTA 1122 CA ALA 149 38.610 43.316 1.324 1.00 32.33 1123 MOTA CB ALA 149 38.834 44.213 0.120 1.00 31.16 MOTA 1124 C ALA 149 39.723 42.288 1.428 1.00 33.43 ATOM 1125 0 ALA 149 40.882 42.653 1.431 1.00 35.59 10 ATOM 1126 N HIS 150 39.387 41.008 1.535 1.00 33.73 1127 CA MOTA HIS 40.410 39.980 150 1.666 1.00 33.88 MOTA 1128 CB HIS 39.868 1.00 34.82 150 38.780 2.450 MOTA 1129 CG HIS 39.879 1.00 35.58 150 38,961 3.933 MOTA 1130 CD2 HIS 150 40.344 38.162 4.921 1.00 36.49 MOTA 1131 ND1 HIS 150 39.329 40.061 4.555 1.00 36.45 MOTA 1132 CE1 HIS 150 39.454 39.930 5.865 1.00 36.79 MOTA 1133 NE2 HIS 150 40.067 1.00 36.38 38.786 6.114 1134 MOTA С 150 40.960 39.442 1.00 34.39 HIS 0.353 1135 ATOM 0 HIS 150 40.245 39.364 -0.655 1.00 34.56 20 ATOM 1136 N 42.239 1.00 34.73 ALA 151 39.068 0.380 MOTA 1137 CA ALA 151 42.898 38.440 -0.7621.00 34.53 MOTA 1138 CB ALA151 44.334 38.949 -0.919 1.00 34.86 MOTA 1139 36.968 1.00 34.46 С ALA 151 42.894 -0.338 ATOM 1140 42.734 36.065 1.00 34.16 0 ALA 151 -1.16125 ATOM 1141 N ASP 152 43.050 36.754 0.970 1.00 34.36 MOTA 1142 CA ASP 152 43.045 35.422 1.562 1.00 35.45 MOTA 1143 CB ASP 152 44.335 34.687 1.214 1.00 37.69 CG ATOM 1144 ASP 1.431 1.00 40.20 152 44.233 33.185 1145 MOTA OD1 ASP 43.219 1.00 40.73 152 32.717 2.007 30 MOTA 1146 45.177 OD2 ASP 152 1.00 42.29 32.464 1.018 ATOM 1147 С ASP 152 42.901 35.549 3.088 1.00 35.53 MOTA 1148 0 ASP 43.048 36.642 3.642 1.00 35.08 152 ATOM 1149 42.627 1.00 35.49 N ILE 153 34,433 3.762 ATOM 1150 CA ILE 153 42.436 34.427 5.213 1.00 35.75 ATOM 1151 42.258 1.00 35.32 CB ILE 153 32.984 5.754 ATOM 1152 CG2 ILE 1.00 34.16 153 43.609 32.316 5.937 MOTA 1153 CG1 ILE 41.593 1.00 35.44 153 33.022 7.130 MOTA 1154 CD1 ILE 153 40.225 33.697 7.131 1.00 36.43 MOTA 1155 C ILE 153 43.571 35.079 6.011 1.00 36.77 40 ATOM 1156 0 ILE 153 43.450 35.278 7.229 1.00 36.40 ATOM 1157 N ASP 154 44.665 35.411 5.332 1.00 37.10 1158 ATOM CA ASP 154 45.815 36.003 6.000 1.00 37.27 1159 MOTA ĊВ ASP 154 46.982 35.013 5.991 1.00 38.98 MOTA 1160 CG ASP 154 47.795 4.703 35.079 1.00 41.58 ATOM 1161 OD1 ASP 154. 47.215 34.890 3.605 1.00 42.46 ATOM 1162 OD2 ASP 1.00 42.65 154 49.022 35.331 4.789 1.00 36.74 MOTA 1163 С ASP 154 46.233 37.287 5.307 1164 47.360 MOTA 0 ASP 154 37.751 5.471 1.00 37.07 MOTA 1165 N ALA 155 45.328 37.865 4.531 1.00 35.91 50 ATOM 1166 45.650 CA ALA 155 39.093 3.830 1.00 36.20 1.00 36.22 MOTA 1167 CB 46.522 38.771 ALA 155 2.621 ATOM 1168 44.412 С ALA 155 39.864 3.387 1.00 36.20 MOTA 1169 43.490 1.00 36.87 0 ALA 155 39.289 2.820 MOTA 1170 Ν GLY 156 44.402 41.168 3.642 1.00 36.26 MOTA 1171 43.279 CA GLY 156 41.997 3.245 1.00 37.08 MOTA 1172 C 156 43.481 1.00 38.10 GLY 43.446 3.647 MOTA 1173 0 43.727 4.711 1.00 38.52 GLY 156 44.027 MOTA 1174 44.377 2.805 1.00 39.16 N ILE 157 43.052 MOTA 1175 CA ILE 157 43.203 45.789 3.125 1.00 41.42

23/63

)	F	igure 4				24/63			
	ATOM	1176	СВ	ILE	157	43.389	46.646	1.842	1.00 42.84
	ATOM	1177	CG2	ILE	157	44.844	46.550	1.349	1.00 44.32
	ATOM	1178		ILE	157	42.399	46.193	0.761	1.00 43.93
	ATOM	1179	CD1	ILE	157	42.630	46.838	-0.615	1.00 44.55
5	MOTA	1180	C	ILE	157	42.010	46.331	3.921	1.00 42.26
	MOTA	1181	0	ILE	157	40.864	45.912	3.732	1.00 42.28
	ATOM	1182	N	LEU	158	42.300	47.259	4.824	1.00 42.54
	MOTA	1183	CA	LEU	158	41.283	47.873	5.648	1.00 43.22
	ATOM	1184	CB	LEU	158	41.928	48.504	6.884	1.00 44.12
10	ATOM	1185	CG	LEU	158	41.090	49.514	7.670	1.00 44.84
	MOTA	1186	CD1	LEU	158	40.020	48.782	8.472	1.00 45.23
	ATOM	1187		LEU	158	42.006	50.320	8.590	1.00 45.09
	MOTA	1188	С	LEU	158	40.548	48.947	4.855	1.00 43.56
	ATOM	1189	0	LEU	158	40.984	50.099	4.801	1.00 43.77
15	ATOM	1190	N	LEU	159	39.434	48.569	4.239	1.00 43.40
	ATOM	1191	CA	LEU	159	38.634	49.508	3.465	1.00 43.01
	ATOM	1192	CB	LEU	159	37.238	48.935	3.280	1.00 43.36
	MOTA	1193	CG	LEU	159	37.279	47.599	2.539	1.00 43.44
	ATOM	1194		LEU	159	36.020	46.808	2.829	1.00 44.00
20	ATOM	1195		LEU	159	37.443	47.857	1.050	1.00 42.93
	ATOM	1196	С	LEU	159	38.564	50.879	4.139	1.00 42.62
	ATOM	1197	0	LEU	159	38.745	51.905	3.488	1.00 43.03
	ATOM	1198	N	ASN	160	38.297	50.902	5.440	1.00 42.20
	MOTA	1199	CA	ASN	160	38.243	52.169	6.170	1.00 41.99
25	ATOM	1200	CB	ASN	160	37.347	53.197	5.447	1.00 42.23
	ATOM	1201	CG	ASN	160	35.913	52.733	5.295	1.00 43.38
	ATOM	1202	OD1	ASN	160	35.225	53.102	4.334	1.00 42.38
	MOTA	1203		ASN	160	35.444	51.934	6.250	1.00 44.48
	MOTA	1204	C	ASN	160	37.813	51.988	7.616	1.00 41.13
30	MOTA	1205	0	ASN	160	37.359	50.913	8.011	1.00 41.17
	MOTA	1206	N	TRP	161	37.980	53.043	8.403	1.00 40.24
	MOTA	1207	CA	TRP	161	37.652	53.004	9.824	1.00 39.69
	MOTA	1208	CB	TRP	161	38.522	54.003	10.602	1.00 39.33
	ATOM	1209	CG	TRP	161	39.987	53.640	10.769	1.00 39.07
35	MOTA	1210	CD2		161	40.527	52.469	11.411	1.00 38.63
	ATOM	1211	CE2	TRP	161	41.931	52.616	11.438	1.00 38.27
	ATOM	1212	CE3		161	39.960	51.317	11.972	1.00 38.43
	ATOM	1213	CD1	TRP	161	41.060	54.417	10.436	1.00 38.40
40	MOTA	1214		TRP	161	42.228	53.812	10.840	1.00 38.42
40	MOTA	1215		TRP	161	42.778	51.659	12.000	1.00 38.26
	MOTA	1216		TRP	161	40.809	50.357	12.538	1.00 38.07
	ATOM	1217	CH2		161	42.200	50.540	12.545	1.00 38.37
	MOTA MOTA	1218	С	TRP	161	36.196	53.301	10.150	1.00 39.07
45	ATOM	1219 1220	O	TRP	161	35.578	54.193	9.562	1.00 39.38
45	ATOM	1221	N CA	THR	162 162	35.668	52.555	11.114	1.00 38.45
	ATOM	1222	CB	THR THR	162	34.302	52.734	11.593	1.00 38.37
	ATOM	1223		THR	162	33.381 33.926	51.600 50.338	11.125	1.00 37.71
	ATOM	1224		THR	162	33.226	51.635	11.548 9.617	1.00 37.02 1.00 36.52
50	ATOM	1225	C	THR	162	34.357	52.702	13.121	1.00 38.32
	ATOM	1226	0	THR	162	35.405	52.443	13.703	1.00 37.86
	ATOM	1227	N	LYS	163	33.231	52.968	13.703	1.00 37.80
	ATOM	1228	CA	LYS	163	33.192	52.941	15.770	1.00 30.33
	ATOM	1229	CB	LYS	163	33.510	51.528	15.728	1.00 33.72
55	ATOM	1230	CG	LYS	163	32.467	50.487	15.311	1.00 36.62
	MOTA	1231	CD	LYS	163	32.727	49.108	15.918	1.00 34.66
	MOTA	1232	CE	LYS	163	33.829		15.195	1.00 33.22

ATOM

MOTA

1233 NZ LYS

LYS

1234 C

163

163

34.068 47.031

15.195 1.00 33.22

15.850 1.00 32.19

34.142 53.956 15.848 1.00 40.71

33.829 48.349

Figure 4 25/63

	MOTA	1235	0	LYS	163	34.690	53.723	16.931	1.00 40.69
	MOTA	1236	N	GLY	164	34.338	55.076	15.156	1.00 41.81
	MOTA	1237	CA	GLY	164	35.187	56.139	15.672	1.00 43.90
	MOTA	1238	C	GLY	164	36.685	56.031	15.463	1.00 45.41
5	MOTA	1239	0	GLY	164	37.375	57.055	15.381	1.00 45.25
	ATOM	1240	N	PHE	16 5	37.190	54.802	15.397	1.00 47.06
	ATOM	1241	CA	PHE	165	38.613	54.560	15.197	1.00 48.70
	ATOM	1242	CB	PHE	165	38.852	53.117	14.767	1.00 47.20
	ATOM	1243	CG	PHE	165	39.290	52.222	15.870	1.00 47.20
10	ATOM	1244	CD1		165	38.443	51.937	16.929	1.00 45.87
	MOTA	1245	CD2		165	40.544	51.632	15.833	1.00 45.87
	ATOM	1246	CE1		165	38.840	51.052	17.945	
	ATOM	1247	CE2		165	40.952	50.763		1.00 46.28
	ATOM	1248	CZ	PHE	165	40.098	50.475	16.834	1.00 45.80
15	ATOM	1249	c	PHE	165	39.250		17.896	1.00 45.96
	ATOM	1250	õ	PHE	165	38.633	55.471	14.154	1.00 50.94
	ATOM	1251	N	LYS	166		55.823	13.143	1.00 50.36
	ATOM	1252	CA	LYS	166	40.500	55.838	14.415	1.00 53.77
	ATOM	1253	CB	LYS	166	41.275	56.680	13.514	1.00 56.56
20	ATOM	1254	CG	LYS	166	41.050	58.170	13.822	1.00 56.16
	ATOM	1255	CD	LYS		39.720	58.697	13.290	1.00 56.44
	ATOM	1256	CE	LYS	166	39.524	58.320	11.812	1.00 56.54
	ATOM	1257	NZ		166	38.131	58.694	11.305	1.00 56.74
	ATOM	1258	C	LYS	166	37.863	58.198	9.922	1.00 56.86
25	ATOM	1259		LYS	166	42.751	56.322	13.640	1.00 58.33
23	ATOM	1260	0	LYS	166	43.180	55.747	14.651	1.00 58.69
	ATOM		N	ALA	167	43.510	56.647	12.597	1.00 59.76
	ATOM	1261	CA	ALA	167	44.943	56.375	12.543	1.00 61.43
		1262	CB	ALA	167	45.220	54.901	12.834	1.00 60.92
30	ATOM ATOM	1263	C	ALA	167	45.401	56.725	11.137	1.00 62.76
50		1264	0	ALA	167	45.147	55.967	10.197	1.00 63.38
	ATOM	1265	N	SER	168	46.066	57.872	10.999	1.00 63.98
	MOTA	1266	CA	SER	168	46.556	58.345	9.704	1.00 64.43
	ATOM	1267	CB	SER	168	47.636	59.414	9.903	1.00 64.96
25	ATOM	1268	OG	SER	168	47.130	60.546	10.594	1.00 65.76
35	ATOM	1269	C	SER	168	47.115	57.216	8.846	1.00 64.59
	ATOM	1270	0	SER	168	47.805	56.322	9.347	1.00 64.35
	ATOM	1271	N	GLY	169	46.800	57.260	7.553	1.00 64.75
	ATOM	1272	CA	GLY	169	47.280	56.245	6.632	1.00 65.55
40	ATOM	1273	C	GLY	169	47.158	54.821	7.142	1.00 65.88
40	ATOM	1274	0	GLY	169	48.151	54.097	7.255	1.00 65.72
	MOTA	1275	N	ALA	170	45.936	54.416	7.465	1.00 66.32
	MOTA	1276	CA	ALA	170	45.699	53.065	7.947	1.00 66.82
	ATOM	1277	CB	ALA	170	44.930	53.100	9.256	1.00 66.65
4.5	ATOM	1278	C	ALA	170	44.890	52.346	6.879	1.00 67.02
45	MOTA	1279	0	ALA	170	45.209	51.226	6.477	1.00 67.31
	ATOM	1280	N	GLU	171	43.847	53.017	6.410	1.00 66.85
	MOTA	1281	CA	GLU	171	42.979	52.463	5.387	1.00 66.80
	ATOM	1282	CB	GLU	171	41.705	53.292	5.287	1.00 67.90
	ATOM	1283	CG	GLU	171	41.958	54.783	5.279	1.00 69.27
50	MOTA	1284	CD	GLU	171	40.850	55.552	4.590	1.00 70.17
	MOTA	1285	OE1	GLU	171	40.789	55.506	3.340	1.00 70.45
	ATOM	1286	OE2	GLU	171	40.038	56.191	5.296	1.00 70.67
	MOTA	1287	С	GLU	171	43.666	52.427	4.032	1.00 65.92
	MOTA	1288	0	GLU	171	44.469	53.301	3.711	1.00 66.22
55	ATOM	1289	N	GLY	172	43.339	51.408	3.242	1.00 64.69
	MOTA	1290	CA	GLY	172	43.922	51.265	1.925	1.00 62.79
	MOTA	1291	С	GLY	172	45.096	50.312	1.882	1.00 62.79
	MOTA	1292	Ō	GLY	172	45.493	49.884	0.805	1.00 61.61
	ATOM	1293	N	ASN	173	45.643	49.965	3.045	1.00 61.59
			- •		~		±2.703	5.045	T.00 00.33

Figure 4 46.800 3.115 1.00 60.42 MOTA 1294 CA ASN 173 49.065 1.00 61.72 **ATOM** 1295 CB ASN 47.922 49.722 3.913 173 MOTA 51.201 3.631 1.00 62.78 1296 CG ASN 173 48.035 MOTA 1297 48.367 51.605 2.515 1.00 63.29 OD1 ASN 173 ATOM 1298 52.024 4.637 1.00 63.06 ND2 ASN 47.741 173 1.00 59.26 47.747 ATOM 1299 C ASN 173 46.463 3.771 ATOM 1300 45.440 47.624 4.430 1.00 59.57 0 ASN 173 ATOM 1301 ASN 47.336 46.763 3.598 1.00 58.79 174 N 45.447 1.00 58.46 MOTA 1302 CA ASN 47.126 4.196 174 10 MOTA 1303 48.264 44.495 3.793 1.00 57.45 CB ASN 174 43.093 ATOM 1304 CG ASN 174 48.104 4.375 1.00 57.22 ATOM 1305 48.757 42.144 3.924 1.00 56.21 OD1 ASN 174 1.00 56.76 MOTA 1306 ND2 ASN 174 47.245 42.957 5.382 ATOM 1307 C ASN 174 47.083 45.615 5.712 1.00 58.42 15 MOTA 1308 ASN 174 47.927 46.302 6.281 1.00 59.03 0 MOTA 1309 Ν VAL 175 46.091 45.008 6.359 1.00 58.23 ATOM 1310 CA VAL 175 45.966 45.106 7.809 1.00 57.79 1.00 57.69 MOTA 1311 CB VAL 175 44.544 44.765 8.295 44.933 9.807 1.00 56.81 MOTA 1312 CG1 VAL 175 44.461 45.665 7.603 1.00 57.69 20 MOTA 1313 CG2 VAL 175 43.531 46.944 44.150 8.470 1.00 57.62 ATOM 1314 C VAL 175 47.734 ATOM 1315 0 VAL 175 44.560 9.319 1.00 57.89 ATOM 1316 46.896 42.878 8.086 1.00 57.24 N VAL 176 47.818 MOTA 41.904 1.00 57.25 1317 CA VAL 176 8.660 40.501 25 ATOM 1318 CB VAL 47.638 8.037 1.00 57.27 176 ATOM 39.511 1.00 56.21 1319 CG1 VAL 176 48.597 8.701 ATOM 1320 CG2 VAL 176 46.196 40.035 8.199 1.00 56.28 MOTA 49.232 42.396 1.00 57.38 1321 C VAL 176 8.362 ATOM 1322 VAL 176 50.212 41.911 8.926 1.00 57.30 0 ATOM 1323 Ν GLY 177 49.319 43.374 7.467 1.00 57.41 ATOM 1324 CA GLY 177 50.605 43.939 7.103 1.00 57.60 1.00 57.50 ATOM 1325 С GLY 177 51.135 44.878 8.170 8.781 1.00 58.09 MOTA 1326 0 GLY 177 52.171 44.605 1.00 56.68 45.982 8.396 MOTA 1327 Ν LEU 178 50.425 1.00 55.42 ATOM 1328 CA LEU 178 50.837 46.959 9.396 MOTA 49.710 47.968 9.646 1.00 55.02 1329 CB LEU 178 MOTA 1330 CG LEU 178 49.394 48.906 8.466 1.00 54.15 CD1 LEU MOTA 48.158 49.743 8.766 1.00 53.80 1331 178 50.588 49.815 8.197 1.00 54.17 MOTA 1332 CD2 LEU 178 46.279 10.701 1.00 54.84 40 MOTA 1333 С LEU 178 51.247 MOTA 1334 178 52.177 46.717 11.375 1.00 55.07 0 LEU 45.192 11.050 1.00 53.85 MOTA 1335 LEU 179 50.575 N MOTA 1336 179 50.917 44.491 12.274 1.00 53.57 CA LEU ATOM 43.409 12.582 1.00 52.75 1337 CB LEU 179 49.882 45 MOTA LEU 50.099 42.671 13.907 1.00 52.23 1338 CG 179 MOTA 1339 CD1 LEU 179 49.689 43.580 15.056 1.00 51.63 MOTA 1340 CD2 LEU 179 49.286 41.381 13.935 1.00 51.34 MOTA 1341 C LEU 179 52.286 43.845 12.128 1.00 54.26 ATOM 1342 LEU 53.070 43.796 13.075 1.00 54.60 0 179 50 43.343 10.932 1.00 54.59 ATOM 1343 N ARG 180 52.576 ATOM 42.679 10.688 1.00 54.08 1344 CA ARG 180 53.855 ATOM 1345 CB ARG 180 53.824 41.911 9.357 1.00 52.59 1.00 50.37 ATOM 1346 CG ARG 180 53.273 40.498 9.515 1347 39.702 8.223 1.00 47.24 MOTA CD ARG 180 53.276 52.610 1.00 45.06 55 ATOM 1348 NE ARG 180 38.420 8.425 ATOM 1349 CZ**ARG** 180 51.979 37.754 7.462 1.00 43.97 51.935 MOTA 1350 NH1 ARG 180 38.256 6.226 1.00 42.53 1.00 42.95 MOTA 1351 NH2 ARG 180 51.366 36.601 7.735 MOTA 1352 C ARG 180 55.059 43.605 10.732 1.00 54.76

26/63

27/63 Figure 4 1.00 54.65 56.009 43.343 11.473 MOTA 1353 0 ARG 180 9.951 1.00 55.34 MOTA 1354 Ν ASP 181 55.036 44.681 9.972 1.00 56.60 ATOM 1355 CA ASP 181 56.169 45.593 1.00 56.43 MOTA 1356 CB ASP 181 56.266 46.386 8.649 47.382 8.448 1.00 55.64 MOTA 1357 CG ASP 181 55.132 1.00 55.20 54.658 47.483 7.294 MOTA 1358 OD1 ASP 181 54.734 48.076 1.00 55.23 9.416 MOTA 1359 OD2 ASP 181 11.199 1.00 57.64 MOTA 1360 ASP 181 56.115 46.514 C 1.00 57.96 MOTA 1361 0 ASP 181 56.510 47.685 11.153 12.303 1.00 57.87 ALA 182 55.634 45.947 10 MOTA 1362 N 1.00 57.84 182 55.524 46.646 13.577 ALA MOTA 1363 CA 1.00 58.19 54.078 47.048 13.836 MOTA 1364 CB ALA 182 45.683 14.657 1.00 57.83 1365 182 56.013 MOTA C ALA 56.681 46.094 15.611 1.00 58.32 MOTA 1366 0 ALA 182 1367 55.669 44.404 14.505 1.00 57.35 ATOM ILE 183 15 N 1.00 57.40 56.109 43.381 15.448 MOTA 1368 ILE 183 CA 42.036 15.233 1.00 56.09 55.374 MOTA 1369 CB ILE 183 56.025 40.932 16.074 1.00 55.25 ATOM 1370 CG2 ILE 183 MOTA 183 53.904 42.174 15.628 1.00 55.30 1371 CG1 ILE 20 MOTA 1372 CD1 ILE 183 53.115 40.881 15.505 1.00 54.14 MOTA 1373 ILE 183 57.600 43.164 15.199 1.00 58.51 C ATOM 1374 ILE 183 58.294 42.531 16.002 1.00 59.24 0 14.077 1.00 59.04 MOTA 1375 N LYS 184 58.093 43.689 13.757 1.00 59.19 MOTA 1376 ÇA LYS 184 59.508 43.550 59.719 43.243 12.268 1.00 59.15 ATOM 1377 CBLYS 184 59.356 44.354 11.310 1.00 58.36 1378 184 MOTA CG LYS 59.566 43.897 9.868 1.00 58.59 1379 184 MOTA CD LYS 42.735 1.00 59.26 58.637 9.500 MOTA 1380 LYS 184 CE 1.00 59.63 58.751 42.306 8.067 184 MOTA 1381 NZLYS 60.270 44.806 14.155 1.00 59.27 MOTA 1382 C LYS 184 1.00 59.28 184 61.382 44.705 14.667 ATOM 1383 0 LYS 185 59.695 45.984 13.923 1.00 59.21 MOTA 1384 ARG Ν 185 60.383 47.211 14.331 1.00 59.69 ATOM ARG 1385 CA 185 59.545 48.458 14.060 1.00 59.70 MOTA 1386 CB ARG 185 59.278 48.772 12.610 1.00 60.85 MOTA 1387 CG ARG ATOM 1388 ARG 185 59.138 50.280 12.443 1.00 60.89 CD ATOM 1389 NE ARG 185 58.121 50.628 11.459 1.00 62.26 56.819 50.403 11.620 1.00 61.84 ATOM 1390 CZARG 185 56.372 49.828 12.731 1.00 61.22 ATOM 1391 NH1 ARG 185 55.966 50.754 10.666 1.00 62.23 ATOM 1392 NH2 ARG 185 47.104 15.836 1.00 60.41 60.574 MOTA 1393 C ARG 185 47.430 16.384 1.00 60.45 MOTA 1394 ARG 185 61.630 0 1.00 61.07 59.518 46.633 16.489 ATOM 1395 N ARG 186 59.489 46.460 17.933 1.00 61.42 MOTA 1396 186 CA ARG 58.066 46.055 18.358 1.00 61.16 45 MOTA 1397 CB ARG 186 57.666 46.433 19.786 1.00 61.08 ATOM 1398 CG ARG 186 1.00 60.87 45.473 20.828 ATOM 1399 ARG 186 58.249 CD 1.00 61.44 57.917 45.894 22.188 MOTA 1400 NE ARG 186 58.294 45.246 23.288 1.00 60.67 1401 186 MOTA CZARG 59.024 44.133 23.201 1.00 60.28 ATOM 1402 NH1 ARG 186 57.942 45.712 24.481 1.00 61.46 NH2 ARG 186 MOTA 1403 60.516 45.399 18.344 1.00 61.85 MOTA 1404 C ARG 186 186 60.980 44.610 17.514 1.00 62.16 MOTA 1405 0 ARG 1.00 62.07 1406 187 60.873 45.401 19.628 MOTA N GLY 20.157 1.00 62.22 187 61.843 44.455 55 MOTA 1407 CA GLY 19.754 1.00 62.50 187 61.591 43.017 MOTA 1408 C GLY 1.00 62.37 19.202 ATOM 1409 GLY 187 60.541 42.692 0 1.00 63.08 20.036 MOTA 1410 ASP 188 62.556 42.148 N

62.414

ATOM

1411

CA

ASP

188

40.746

19.684

1.00 62.67

ATOM 1412 CB ASP 188 63.465 39.873 20.373 1.00 61.80 MOTA 1413 CG ASP 188 63.027 38.409 20.468 1.00 60.64 ATOM 1414 OD1 ASP 188 38.107 62.125 21.289 1.00 60.77 ATOM 1415 OD2 ASP 188 63.565 37.563 19.715 1.00 60.43 ATOM 1416 C **ASP** 188 61.047 40.193 20.022 1.00 63.58 MOTA 1417 0 ASP 188 60.441 40.539 21.044 1.00 62.69 ATOM 1418 N PHE 189 60.599 39.309 19.138 1.00 64.49 MOTA 1419 CA PHE 189 59.327 38.632 19.249 1.00 64.75 MOTA 1420 CB PHE 189 58.233 39.629 19.598 1.00 64.84 10 ATOM 1421 CG PHE 189 56.886 39.010 19.689 1.00 65.46 ATOM 1422 CD1 PHE 189 56.707 37.824 20.402 1.00 65.54 ATOM 1423 CD2 PHE 189 55.795 39.592 19.052 1.00 65.28 ATOM 1424 CE1 PHE 189 55.455 37.224 20.481 1.00 65.61 MOTA 1425 CE2 PHE 189 54.542 39.007 19.122 1.00 65.71 15 ATOM 1426 CZ PHE 189 54.369 37.819 19.839 1.00 65.57 ATOM 1427 C PHE 189 59.018 37.952 17.919 1.00 65.33 ATOM 1428 0 PHE 189 58.921 38.609 16.881 1.00 64.91 1429 ATOM N GLU 190 58.879 36.631 17.956 1.00 66.13 ATOM 1430 CA GLU 190 58.584 35.854 16.752 1.00 66.57 ATOM 1431 CB GLU 190 59.387 34.545 16.755 1.00 66.34 MOTA 1432 CG GLU 190 60.778 34.649 17.389 1.00 64.66 MOTA 1433 GLU CD 190 61.908 34.356 16.411 1.00 64.02 MOTA 1434 OE1 GLU 190 63.054 34.161 16.874 1.00 63.09 ATOM 1435 OE2 GLU 190 61.658 34.327 15.186 1.00 63.04 25 ATOM 1436 C GLU 190 57.093 16.745 35.528 1.00 67.09 ATOM 1437 0 GLU 190 56.609 34.828 17.638 1.00 67.36 ATOM 1438 MSE Ν 191 56.367 36.030 15.747 1.00 67.05 ATOM 1439 MSE CA 191 54.928 35.775 15.666 1.00 66.65 ATOM 1440 CB MSE 191 54.164 36.920 16.347 1.00 69.47 30 ATOM 1441 CG MSE 191 52.867 36.492 17.037 1.00 72.30 ATOM 1442 SE MSE 191 53.120 35.293 18.409 1.00 78.56 MOTA 1443 CE MSE 191 51.941 35.893 19.581 1.00 75.88 ATOM 1444 C MSE 191 54.412 35.590 14.230 1.00 64.85 ATOM 1445 0 MSE 191 54.399 36.538 13.435 1.00 64.30 35 ATOM 1446 N ASP 192 53.977 34.368 13.910 1.00 62.82 MOTA 1447 CA ASP 192 53.449 34.051 12.580 1.00 60.76 MOTA 1448 CB ASP 192 53.774 32.607 12.207 1.00 61.24 MOTA 1449 ASP CG 55.210 11.792 192 32.427 1.00 61.76 MOTA 1450 OD1 ASP 192 55.684 33.219 10.947 1.00 62.45 ATOM 1451 OD2 ASP 192 55.863 31.492 12.299 1.00 62.32 MOTA 1452 С ASP 192 51.942 34.266 12.459 1.00 59.03 ATOM 1453 0 ASP 192 51.143 33.375 12.767 1.00 58.37 ATOM 1454 N VAL 193 51.567 35.453 11.991 1.00 57.00 MOTA 1455 VAL CA 193 50.167 35.818 11.818 1.00 54.85 45 ATOM 1456 CB VAL 193 50.034 37.305 11.454 1.00 55.09 ATOM 1457 37.712 CG1 VAL 193 48.568 1.00 54.84 11.448 ATOM 1458 CG2 VAL 193 50.826 38.146 12.441 1.00 54.87 ATOM 1459 C VAL 193 49.473 34.977 10.746 1.00 53.19 ATOM 1460 0 VAL 193 49.500 35.303 9.555 1.00 52.03 50 ATOM 1461 N VAL 194 48.854 33.894 11.205 1.00 51.82 ATOM 1462 CA VAL 194 48.126 32.949 10.367 1.00 50.66 ATOM 1463 CB VAL 194 47.841 31.644 11.174 1.00 51.08 ATOM 1464 CG1 VAL 194 46.686 30.860 10.554 1.00 52.09 ATOM 1465 CG2 VAL 194 49.091 30.778 11.211 1.00 51.33 55 ATOM 1466 C VAL 194 46.798 33.498 9.808 1.00 49.99 ATOM 1467 0 VAL 194 46.677 33.726 8.602 1.00 49.40 ATOM 1468 N ALA 195 45.813 33.723 10.683 1.00 48.93 ATOM 1469 CA ALA 195 44.499 34.193 10.251 1.00 47.60 ATOM 1470 CB ALA 195 43.467 33.123 10.572 1.00 47.58

28/63

		29/
Figure 4		

	MOTA	1471	C	ALA	195	43.992	35.546	10.760	1.00 46.68
	MOTA	1472	0	ALA	195	44.344	35.996	11.851	1.00 46.16
	MOTA	1473	N	MSE	196	43.157	36.182	9.940	1.00 45.43
	MOTA	1474	CA	MSE	196	42.521	37.459	10.279	1.00 44.60
5	ATOM	1475	CB	MSE	196	43.079	38.623	9.451	1.00 45.32
	ATOM	1476	CG	MSE	196	42.329	39.925	9.716	1.00 47.29
	ATOM	1477	SE	MSE	196	42.937	41.426	8.852	1.00 53.21
	ATOM	1478	CE	MSE	196	44.264	41.920	9.982	1.00 51.44
	ATOM	1479	C	MSE	196	41.019	37.333	10.002	1.00 43.09
10	ATOM	1480	0	MSE	196	40.610	36.973	8.892	1.00 43.71
10	ATOM	1481	N	VAL	197	40.190	37.631	10.996	1.00 40.47
	MOTA	1482	CA	VAL	197	38.751	37.514	10.799	1.00 37.00
	MOTA	1483	CB	VAL	197	38.240	36.228	11.458	1.00 37.31
	ATOM	1484	CG1		197	38.840	35.004	10.766	1.00 36.64
15								12.914	1.00 36.88
15	MOTA	1485		VAL	197	38.643	36.217	11.354	1.00 35.22
	ATOM	1486	C	VAL	197	37.991	38.710	12.057	1.00 35.22
	ATOM	1487	0	VAL	197	38.561	39.544		1.00 33.21
	MOTA	1488	N	ASN	198	36.708	38.801	11.015	
	MOTA	1489	CA	ASN	198	35.830	39.883	11.491	1.00 30.23
20	MOTA	1490	CB	ASN	198	34.740	40.175	10.446	1.00 30.65
	MOTA	1491	CG	ASN	198	33.801	41.309	10.852	1.00 31.35
	MOTA	1492		ASN	198	32.907	41.128	11.686	1.00 32.70
	ATOM	1493		ASN	198	33.997	42.486	10.251	1.00 30.53
	MOTA	1494	С	ASN	198	35.217	39.356	12.780	1.00 28.41
25	MOTA	1495	0	ASN	198	35.052	38.143	12.937	1.00 26.14
	MOTA	1496	N	ASP	199	34.892	40.252	13.711	1.00 27.77
	MOTA	1497	CA	ASP	199	34.325	39.816	14.990	1.00 26.87
	MOTA	1498	CB	ASP	199	34.156	41.007	15.945	1.00 26.75
	ATOM	1499	CG	ASP	199	33.254	42.097	15.396	1.00 26.24
30	MOTA	1500		ASP	199	33.221	42.292	14.167	1.00 26.90
	ATOM	1501	OD2	ASP	199	32.587	42.777	16.205	1.00 26.19
	MOTA	1502	С	ASP	199	33.027	39.034	14.843	1.00 26.43
	MOTA	1503	0	ASP	199	32.715	38.188	15.684	1.00 27.02
	MOTA	1504	N	THR	200	32.291	39.292	13.763	1.00 25.45
35	ATOM	1505	CA	THR	200	31.050	38.585	13.510	1.00 25.65
	MOTA	1506	CB	THR	200	30.261	39.193	12.339	1.00 25.75
	MOTA	1507	OG1	THR	200	31.008	39.044	11.130	1.00 26.04
	MOTA	1508	CG2	THR	200	30.002	40.672	12.573	1.00 26.48
	MOTA	1509	C	THR	200	31.383	37.155	13.143	1.00 26.96
40	ATOM	1510	0	THR	200	30.832	36.211	13.712	1.00 27.62
	MOTA	1511	N	VAL	201	32.295	36.990	12.189	1.00 28.07
	ATOM	1512	CA	VAL	201	32.695	35.654	11.742	1.00 28.50
	MOTA	1513	CB	VAL	201	33.785	35.726	10.665	1.00 29.26
	ATOM	1514	CG1	VAL	201	34.056	34.332	10.123	1.00 31.22
45	MOTA	1515	CG2	VAL	201	33.370	36.684	9.546	1.00 27.90
	ATOM	1516	C	VAL	201	33.231	34.818	12.901	1.00 29.16
	MOTA	1517	0	VAL	201	32.816	33.676	13.101	1.00 29.44
	ATOM	1518	N	ALA	202	34.156	35.395	13.663	1.00 30.31
	ATOM	1519	CA	ALA	202	34.752	34.710	14.812	1.00 32.23
50	ATOM	1520	CB	ALA	202	35.591	35.705	15.643	1.00 31.72
	MOTA	1521	C	ALA	202	33.688	34.070	15.696	1.00 33.37
	ATOM	1522	Ö	ALA	202	33.789	32.894	16.073	1.00 34.14
	ATOM	1523	N	THR	203	32.667	34.858	16.019	1.00 34.41
	ATOM	1524	CA	THR	203	31.566	34.422	16.870	1.00 35.37
55	ATOM	1525	CB	THR	203	30.614	35.604	17.117	1.00 36.27
55	ATOM	1526	OG1		203	31.370	36.708	17.645	1.00 37.04
	ATOM	1527	CG2		203	29.500	35.213	18.090	1.00 37.04
	ATOM	1527	CGZ	THR	203	30.800	33.260	16.242	1.00 36.08
	ATOM	1528	0	THR	203	30.538	32.241	16.891	1.00 35.34
	VION	1343	U	TUL	203	20.120	J2.241	-0.071	1.00 00.04

			30/63
F	igure 4		30/03
	4500	 	

1.00 36.89 ATOM 204 30.433 33.415 14.978 1530 MSE N ATOM 14.299 1.00 37.94 1531 CA MSE 204 29.722 32.348 ATOM 1532 ÇВ MSE 204 29.582 32.665 12.811 1.00 39.76 ATOM 1533 CG MSE 204 29.065 31.504 11.954 1.00 40.74 ATOM 1534 SE MSE 204 29.135 31.967 1.00 45.75 10.181 ATOM 1535 CE MSE 204 30.643 31.057 9.627 1.00 45.26 ATOM 1536 C MSE 204 30.531 31.075 14.465 1.00 38.36 1537 MOTA 0 MSE 204 30.024 30.064 14.954 1.00 37.86 1538 ATOM N ILE 205 31.798 31.148 14.061 1.00 38.79 1539 14.137 1.00 40.09 10 ATOM CA ILE 205 32.696 30.008 ATOM 1540 CB ILE 205 34.178 30.451 13.981 1.00 39.81 CG2 ILE ATOM 1541 35.098 205 29.240 14.072 1.00 39.47 ATOM 1542 CG1 ILE 205 34.398 31.112 12.616 1.00 39.46 ATOM 1543 30.158 1.00 39.34 CD1 ILE 205 34.250 11.425 15 ATOM 1544 C ILE 205 32.527 29.215 15.440 1.00 41.34 ATOM 1545 0 ILE 205 32.121 28.050 15.408 1.00 41.41 ATOM 1546 32.812 16.584 N SER 206 29.830 1.00 42.01 1547 MOTA CA SER 206 32.683 29.112 17.849 1.00 43.71 1548 ATOM CB SER 206 32.999 30.038 19.013 1.00 43.57 20 ATOM 1549 OG SER 206 32.149 31.163 18.971 1.00 44.54 1.00 44.83 ATOM 1550 C SER 206 31.306 28.494 18.056 ATOM 1551 18.364 0 SER 206 31.185 27.304 1.00 45.40 ATOM 1552 N CYS 30.260 207 29.291 17.894 1.00 46.32 ATOM 1553 CA CYS 207 28.912 28.764 18.079 1.00 48.14 25 ATOM 1554 CB CYS 207 27.869 29.842 17.780 1.00 46.74 ATOM 1555 SG CYS 207 27.946 31.264 18.883 1.00 42.50 ATOM 1556 C CYS 207 28.666 27.551 17.186 1.00 50.79 ATOM 1557 17.403 0 CYS 207 27.715 26.799 1.00 50.97 1558 ATOM N TYR 208 29.533 27.361 16.190 1.00 53.91 30 1559 ATOM CA TYR 208 29.418 26.243 15.247 1.00 56.61 1560 1.00 56.96 ATOM CB TYR 208 30.350 26.458 14.045 1561 1.00 57.29 ATOM CG TYR 208 30.370 25.303 13.062 1.00 57.54 ATOM 1562 CD1 TYR 208 29.307 25.090 12.182 CE1 TYR ATOM 1563 24.026 208 29.319 11.280 1.00 57.47 1.00 57.54 35 ATOM 1564 CD2 TYR 208 31.448 24.418 13.019 ATOM 1565 CE2 TYR 208 31.468 23.350 12.125 1.00 57.60 ATOM 1566 CZTYR 208 30.404 23.163 11.258 1.00 57.47 1567 22.126 10.360 ATOM OH TYR 208 30.435 1.00 57.71 ATOM 1568 C TYR 208 29.705 24.867 15.854 1.00 58.12 MOTA 1569 0 TYR 208 28.874 23.960 15.773 1.00 58.61 ATOM 1570 N TYR 209 30.876 24.699 16.459 1.00 59.77 1571 ATOM CA TYR 209 31.198 23.399 17.028 1.00 61.36 1572 ATOM CB TYR 209 32.619 23.394 17.581 1.00 63.23 ATOM 1573 CG TYR 209 33.648 23.401 16.472 1.00 65.26 209 45 MOTA 1574 CD1 TYR 34.058 24.595 15.876 1.00 66.13 1575 14.807 ATOM CE1 TYR 209 34.959 24.594 1.00 67.31 1576 ATOM CD2 TYR 209 34.165 22.206 15.973 1.00 65.88 MOTA 1577 CE2 TYR 35.062 22.193 209 14.906 1.00 66.79 ATOM 1578 CZTYR 209 35.457 23.386 14.328 1.00 67.37 50 ATOM 1579 OH TYR 209 36.350 23.370 13.277 1.00 67.62 ATOM 1580 C TYR 209 30.206 22.965 18.083 1.00 61.32 MOTA 1581 0 TYR 209 30.048 21.771 18.336 1.00 61.19 ATOM 1582 N GLU 29.523 23.938 210 18.680 1.00 61.63 ATOM 1583 CA GLU 210 28.524 23.658 19.701 1.00 61.05 55 ATOM 1584 CB GLU 28.444 24.808 20.706 1.00 62.29 210 **ATOM** 1585 CG GLU 210 27.539 24.499 21.884 1.00 65.45 ATOM 1586 CD GLU 210 27.716 25.463 23.050 1.00 67.38 ATOM 1587 OE1 GLU 210 28.865 25.609 23.535 1.00 68.93 ATOM 1588 OE2 GLU 210 26.707 26.065 23.488 1.00 67.92

T .	
Figure	1
1,15,01,0	

	MOTA	1589	Ç	GLU	210	27.175	23.459	19.026	1.00 60.04
	MOTA	1590	0	GLU	210	26.255	22.901	19.618	1.00 59.93
	MOTA	1591	N	ASP	211	27.073	23.920	17.780	1.00 58.82
	ATOM	1592	CA	ASP	211	25.849	23.797	16.984	1.00 57.80
5	MOTA	1593	СB	ASP	211	24.804	24.824	17.441	1.00 58.16
	MOTA	1594	CG.	ASP	211	23.504	24.730	16.653	1.00 58.25
	MOTA	1595		ASP	211	22.490	25.299	17.111	1.00 57.88
	MOTA	1596		ASP	211	23.495	24.096	15.572	1.00 58.65
	ATOM	1597	C	ASP	211	26.173	23.993	15.503	1.00 56.54
10	ATOM	1598	0	ASP	211	26.351	25.116	15.037	1.00 56.17
	ATOM	1599	N	HIS	212	26.234	22.884	14.773	1.00 55.81
	ATOM	1600	CA	HIS	212	26.577	22.884	13.351	1.00 55.26
	ATOM	1601	СВ	HIS	212	26.699	21.442	12.852	1.00 57.87
	MOTA	1602	CG	HIS	212	27.816	20.678	13.493	1.00 61.52
15	ATOM	1603		HIS	212	27.815	19.527	14.205	1.00 62.63
	ATOM	1604		HIS	212	29.127	21.110	13.460	1.00 62.80
	ATOM	1605		HIS	212	29.884	20.258	14.127	1.00 63.70
	ATOM	1606		HIS	212	29.114	19.288	14.590	1.00 63.70
	MOTA	1607	C	HIS	212	25.665	23.656	12.412	1.00 53.71
20	MOTA	1608	0	HIS	212	26.014	23.883	11.251	1.00 52.77
20	ATOM	1609	Ŋ	GLN	213	24.496	24.058	12.895	1.00 52.77
	ATOM	1610	CA	GLN	213	23.579	24.790	12.037	1.00 48.22
	ATOM	1611	CB	GLN	213	22.135	24.790	12.298	1.00 49.39
	ATOM	1612	CG	GLN	213	21.957	22.839	12.230	1.00 49.39
25	ATOM	1613	CD	GLN	213	20.507	22.410	11.965	1.00 50.78
23	ATOM	1614	OE1		213	19.653	22.410	12.803	1.00 51.82
	MOTA	1615	NE2		213	20.223			1.00 52.40
					213		21.679	10.883	1.00 31.72
	MOTA	1616	C	GLN		23.746	26.289	12.202	1.00 45.19
20	ATOM	1617	0	GLN	213	22.978	27.077	11.654	
30	MOTA	1618	N	CYS	214	24.759	26.686	12.957	1.00 41.87
	ATOM	1619	CA	CYS	214	25.015	28.105	13.122	1.00 39.08
	MOTA	1620	CB	CYS	214	25.907	28.386	14.332	1.00 39.18
	ATOM	1621	SG	CYS	214	26.281	30.175	14.542	1.00 40.32
35	MOTA	1622	C	CYS	214	25.743	28.530	11.859	1.00 36.43 1.00 36.06
33	MOTA	1623	0	CYS	214	26.915 25.046	28.214 29.223	11.689	1.00 33.00
	ATOM	1624	N	GLU	215			10.967 9.736	1.00 33.00
	MOTA	1625 1626	CA	GLU	215 215	25.664	29.672	9.736 8.541	1.00 30.00
	ATOM ATOM	1627	CB	GLU	215	25.056 25.289	28.960	8.561	1.00 31.93
40			CG	GLU			27.466		
40	MOTA	1628	CD OF 1	GLU	215	24.973	26.827	7.233	1.00 35.80 1.00 37.32
	ATOM	1629		GLU	215	25.719	27.094	6.264	
	ATOM	1630		GLU	215	23.978	26.064	7.156	1.00 37.21
	ATOM	1631	C	GLU	215	25.518	31.162	9.563	1.00 28.84
4.5	ATOM	1632	0	GLU	215	25.665	31.687	8.459	1.00 28.39
45	ATOM	1633	N	VAL	216	25.243	31.847	10.669	1.00 26.45
	ATOM	1634	CA	VAL	216	25.083	33.291	10.648	1.00 23.67
	ATOM	1635	СВ	VAL	216	23.589	33.706	10.607	1.00 23.44
	MOTA	1636		VAL	216	23.485	35.214	10.492	1.00 22.72
	ATOM	1637		VAL	216	22.875	33.031	9.449	1.00 22.30
50	ATOM	1638	С	VAL	216	25.671	33.858	11.921	1.00 22.20
	ATOM	1639	0	VAL	216	25.444	33.328	13.006	1.00 22.86
	MOTA	1640	N	GLY	217	26.423	34.939	11.793	1.00 21.40
	ATOM	1641	CA	GLY	217	26.997	35.554	12.965	1.00 21.14
	MOTA	1642	С	GLY	217	26.524	36.994	13.022	1.00 22.30
55	ATOM	1643	0	GLY	217	26.432	37.677	11.983	1.00 22.05
	ATOM	1644	N	MSE	218	26.201	37.454	14.228	1.00 23.03
	ATOM	1645	CA	MSE	218	25.748	38.815	14.414	1.00 23.03
	ATOM	1646	CB	MSE	218	24.208	38.880	14.445	1.00 25.98
	MOTA	1647	CG	MSE	218	23.647	40.306	14.646	1.00 28.99

J		
	Figure 4	

	MOTA	1648	SE	MSE	218	21.806	40.486	14.543	1.00	35.34
	MOTA	1649	CE	MSE	218	21.273	39.804	16.207		31.95
	ATOM	1650	С	MSE	218	26.320	39.405	15.694	1.00	21.99
	ATOM	1651	0	MSE	218	26.425	38.738	16.724		22.34
5	MOTA	1652	N	ILE	219	26.694	40.670	15.606		21.28
	ATOM	1653	CA	ILE	219	27.240	41.402	16.720		20.85
	ATOM	1654	CB	ILE	219	28.702	41.840	16.449		20.74
	MOTA	1655	CG2		219	29.164	42.757	17.558		19.65
	ATOM	1656	CG1		219	29.623	40.627	16.335		19.32
10	ATOM	1657	CD1		219	29.656	39.770	17.596		20.63
	ATOM	1658	C	ILE	219	26.413	42.676	16.838		21.47
	ATOM	1659	Ō	ILE	219	26.297	43.431	15.868		21.30
	ATOM	1660	N	VAL	220	25.823	42.908	18.003		21.91
	ATOM	1661	CA	VAL	220	25.059	44.135	18.224		22.49
15	ATOM	1662	CB	VAL	220	23.563	43.873	18.479		22.04
	ATOM	1663		VAL	220	22.815	45.183	18.425		21.50
	ATOM	1664		VAL	220	23.007	42.901	17.463		22.03
	ATOM	1665	C	VAL	220	25.650	44.775	19.477		23.27
	ATOM	1666	ŏ	VAL	220	25.095	44.642	20.575		23.27
20	ATOM	1667	N	GLY	221	26.795	45.436	19.312		22.78
-,	ATOM	1668	CA	GLY	221	27.448	46.063	20.443		22.76
	MOTA	1669	C	GLY	221	27.728	47.509	20.138		23.75
	ATOM	1670	Ö	GLY	221	26.816	48.264	19.828		25.09
	ATOM	1671	N	THR	222	28.988	47.906	20.233		24.06
25	ATOM	1672	CA	THR	222	29.375	49.277	19.939		
	ATOM	1673	CB	THR	222	30.893	49.423	19.960		24.06 24.59
	ATOM	1674	OG1	THR	222	31.377	49.051	21.258		26.00
	ATOM	1675	CG2	THR	222	31.299	50.860	19.640		24.67
	ATOM	1676	C	THR	222	28.888	49.530	18.533		24.07
30	ATOM	1677	Ō	THR	222	28.248	50.530	18.259		24.72
	ATOM	1678	N	GLY	223	29.211	48.597	17.646		24.72
	ATOM	1679	CA	GLY	223	28.790	48.686	16.262		24.65
	ATOM	1680	C	GLY	223	27.797	47.560	16.020		25.05
	MOTA	1681	Ŏ	GLY	223	27.478	46.779	16.936		25.80
35	ATOM	1682	N	CYS	224	27.298	47.453	14.798		24.73
	ATOM	1683	CA	CYS	224	26.338	46.405	14.504		24.18
	ATOM	1684	СВ	CYS	224	24.928	46.958	14.682		24.47
	ATOM	1685	SG	CYS	224	23.640	45.925	13.998		25.11
	ATOM	1686	С	CYS	224	26.550	45.895	13.085		23.65
40	ATOM	1687	0	CYS	224		46.683			24.07
	MOTA	1688	N	ASN	225	26.650	44.578	12.941		23.06
	MOTA	1689	CA	ASN	225	26.883	43.963	11.638		23.27
	ATOM	1690	СВ	ASN	225	28.346	44.230	11.210		26.15
	ATOM	1691	CG	ASN	225	28.831	43.296	10.098		27.94
45	MOTA	1692		ASN	225	28.271	43.265	8.997		29.23
	MOTA	1693		ASN	225	29.878	42.524	10.393	1.00	
	ATOM	1694	С	ASN	225	26.603	42.459	11.740		21.80
	ATOM	1695	Ō	ASN	225	26.291	41.954	12.827		20.54
	ATOM	1696	N	ALA	226	26.709	41.759	10.610	1.00	
50	ATOM	1697	CA	ALA	226	26.478	40.322	10.566	1.00	
	ATOM	1698	CB	ALA	226	24.994	40.032	10.443	1.00	
	ATOM	1699	C	ALA	226	27.194	39.723	9.378	1.00	
	ATOM	1700	ō	ALA	226	27.529	40.428	8.415	1.00	
	ATOM	1701	N	CYS	227	27.404	38.415	9.439	1.00	
55	ATOM	1702	CA	CYS	227	28.077	37.675	8.368	1.00	
	ATOM	1703	CB	CYS	227	29.523	37.396	8.751	1.00	
	ATOM	1704	SG	CYS	227	29.556	36.326	10.207	1.00	
	ATOM	1705	C	CYS		27.331	36.352	8.291	1.00	
	ATOM	1706	Ö	CYS	227	26.702	35.951	9.280	1.00	
			-		22,	20.702	JJ.JJ.	J.40U	1.00	20.02

				- 2
H	σι	111	-0	4

	ATOM	1707	N	TYR	228	27.402	35.668	7.148	1.00 20.49
	MOTA	1708	CA	TYR	228	26.705	34.384	6.989	1.00 20.56
	MOTA	1709	CB	TYR	228	25.242	34.633	6.624	1.00 17.90
	ATOM	1710	CG	TYR	228	25.096	35.134	5.204	1.00 15.65
5	MOTA	1711	CD1		228	24.922	34.249	4.145	1.00 15.81
	MOTA	1712	CE1		228	24.885	34.701	2.823	1.00 15.89
	MOTA	1713	CD2	TYR	228	25.221	36.483	4.913	1.00 15.28
	MOTA	1714	CE2	TYR	228	25.186	36.949	3.601	1.00 16.08
	MOTA	1715	CZ	TYR	228	25.022	36.051	2.564	1.00 16.76
10	MOTA	1716	OH	TYR	228	25.033	36.505	1.263	1.00 18.93
	MOTA	1717	С	TYR	228	27.345	33.539	5.887	1.00 22.19
	MOTA	1718	0	TYR	228	28.174	34.024	5.112	1.00 21.49
	MOTA	1719	N	MSE	229	26.928	32.278	5.808	1.00 24.74
	MOTA	1720	CA	MSE	229	27.438	31.349	4.808	1.00 26.69
15	MOTA	1721	CB	MSE	229	27.342	29.918	5.339	1.00 28.61
	MOTA	1722	CG	MSE	229	28.167	29.637	6.598	1.00 32.37
	MOTA	1723	SE	MSE	229	29.987	30.056	6.460	1.00 41.17
	ATOM	1724	CE	MSE	229	30.544	28.874	5.098	1.00 36.30
	MOTA	1725	С	MSE	229	26.663	31.470	3.481	1.00 27.83
20	MOTA	1726	0	MSE	229	25.535	30.994	3.363	1.00 28.02
	MOTA	1727	N	GLU	230	27.282	32.109	2.492	1.00 29.19
	MOTA	1728	CA	GLU	230	26.688	32.296	1.172	1.00 29.81
	MOTA	1729	CB	GLU	230	27.165	33.623	0.577	1.00 30.83
	MOTA	1730	CG	GLU	230	26.685	33.922	-0.843	1.00 32.33
25	ATOM	1731	CD	GLU	230	25.173	33.825	-0.989	1.00 34.04
	MOTA	1732	QE1		230	24.663	32.698	-1.222	1.00 34.43
	MOTA	1733	OE2	GLU	230	24.497	34.878	-0.858	1.00 33.65
	ATOM	1734	Ç	GLU	230	27.127	31.143	0.282	1.00 30.91
	MOTA	1735	0	GLU	230	27.958	30.319	0.685	1.00 30.80
30	MOTA	1736	N	GLU	231	26.562	31.078	-0.923	1.00 32.47
	MOTA	1737	CA	GLU	231	26.885	30.024	-1.883	1.00 34.04
	MOTA	1738	CB	GLU	231	25.668	29.696	-2.745	1.00 34.21
	MOTA	1739	CG	GLU	231	24.408	29.396	-1.979	1.00 34.89
	MOTA	1740	CD	GLU	231	24.452	28.054	-1.296	1.00 36.36
35	MOTA	1741	OE1	GLU	231	24.745	27.064	-2.002	1.00 36.80
	MOTA	1742		GLU	231	24.182	27.981	-0.067	1.00 36.72
	ATOM	1743	С	GLU	231	27.997	30.550	-2.777	1.00 35.65
	MOTA	1744	0	GLU	231	27.889	31.663	-3.304	1.00 35.42
	MOTA	1745	N	MSE	232	29.060	29.758	-2.952	1.00 37.13
40	MOTA	1746	CA	MSE	232	30.188	30.181	-3.780	1.00 38.19
	ATOM	1747	CB	MSE	232	31.191	29.036	-3.935	1.00 41.27
	MOTA	1748	CG	MSE	232	32.195	28.912	-2.765	1.00 45.40
	ATOM	1749	SE	MSE	232	33.237	30.431	-2.467	1.00 52.07
	ATOM	1750	CE	MSE	232	34.286	30.483	-3.969	1.00 48.20
45	ATOM	1751	С	MSE	232	29.694	30.664	-5.137	1.00 38.02
	MOTA	1752	0	MSE	232	30.179	31.656	-5.678	1.00 36.84
	MOTA	1753	N	GLN	233	28.698	29.970	-5.668	1.00 38.35
	MOTA	1754	CA	GLN	233	28.110	30.331	-6.948	1.00 38.79
	MOTA	1755	CB	GLN	233	26.954	29.373	-7.257	1.00 40.19
50	MOTA	1756	CG	GLN	233	25.658	30.041	-7.672	1.00 41.80
	ATOM	1757	CD	GLN	233	24.460	29.119	-7.510	1.00 43.22
	ATOM	1758	OE1		233	24.226	28.582	-6.424	1.00 44.27
	MOTA	175 9	NE2	GLN	233	23.688	28.936	-8.586	1.00 43.87
	MOTA	1760	С	GLN	233	27.615	31.777	-6.936	1.00 38.45
55	ATOM	1761	0	GLN	233	27.495	32.407	-7.984	1.00 39.07
	MOTA	1762	N	ASN	234	27.329	32.313	-5.753	1.00 37.79
	MOTA	1763	CA	ASN	234	26.840	33.687	-5.668	1.00 36.56
	ATOM	1764	CB	ASN	234	25.657	33.771	-4.706	1.00 37.03
	ATOM	1765	CG	ASN	234	24.505	32.864	-5.119	1.00 36.83

Figure	4

		-								
	ATOM	1766	OD1	ASN	234	24.152	32.793	-6.299	1.00	36.50
	ATOM	1767	ND2	ASN	234	23.910	32.173	-4.146		36.25
	ATOM	1768	С	ASN	234	27.919	34.676	-5.250		35.71
	ATOM	1769	Ō	ASN	234	27.712	35.890	-5.301		35.11
5	ATOM	1770	N	VAL	235	29.069	34.156	-4.837		35.22
•	ATOM	1771	CA	VAL	235	30.177	35.009			34.85
	ATOM	1772	CB	VAL	235			-4.439		
	ATOM					31.056	34.321	-3.384		34.01
		1773	CG1		235	31.949	35.343	-2.717		32.35
10	MOTA	1774	CG2		235	30.185	33.576	-2.376		32.63
10	ATOM	1775	C	VAL	235	30.999	35.209	-5.706		35.79
	ATOM	1776	0	VAL	235	32.011	34.548	-5.910		35.65
	MOTA	1777	N	GLU	236	30.556	36.125	-6.556	1.00	37.55
	MOTA	1778	CA	GLU	236	31.220	36.383	-7.830	1.00	39.52
	MOTA	1779	CB	GLU	236	30.337	37.284	-8.701	1.00	39.67
15	MOTA	1780	CG	GLU	236	29.242	36.539	-9.448	1.00	41.⊖2
	MOTA	1781	CD	GLU	236	28.214	37.467	-10.072	1.00	42.58
	MOTA	1782	OE1		236	28.607	38.529	-10.630	1.00	42.67
	MOTA	1783	OE2	GLU	236	27.009	37.121	-10.011	1.00	43.02
	MOTA	1784	С	GLU	236	32.631	36.961	-7.782	1.00	40.97
20	ATOM	1785	0	GLU	236	33.328	36.967	-8.803	1.00	42.27
	ATOM	1786	N	LEU	237	33.064	37.457	-6.628		41.32
	MOTA	1787	CA	LEU	237	34.408	38.017	-6.538		41.63
	MOTA	1788	СВ	LEU	237	34.438	39.163	-5.537		41.68
	MOTA	1789	CG	LEU	237	33.545	40.367	-5.820		42.50
25	ATOM	1790	CD1	LEU	237	33.630	41.301	-4.623		44.17
	ATOM	1791		LEU	237	33.984	41.101	-7.085		42.46
	ATOM	1792	С	LEU	237	35.454	36.970	-6.148		42.43
	ATOM	1793	0	LEU	237	36.636	37.294	-6.010		42.30
	MOTA	1794	N	VAL	238	35.019	35.724	-5.967		42.96
30	ATOM	1795	CA	VAL	238	35.922	34.629	-5.606		43.89
	ATOM	1796	CB	VAL	238	35.917	34.380	-4.097		42.33
	ATOM	1797		VAL	238	36.722	33.136	-3.769		41.32
	ATOM	1798		VAL	238	36.503	35.578	-3.769		42.74
	ATOM	1799	C	VAL	238	35.520	33.37	-6.313		
35	ATOM	1800	0	VAL	238	34.755	32.555			45.65
•	ATOM	1801	N	GLU	239	36.069	33.116	-5.770		46.15
	ATOM	1802	CA	GLU	239			-7.510		47.60
	ATOM	1803	CB	GLU	239	35.769	31.947	-8.346		48.96
	ATOM	1804	CG	GLU	239	36.819	31.793	-9.448		51.17
40	ATOM		CD			37.000		-10.290		53.95
40	ATOM	1805		GLU	239	37.817		-9.570		56.27
		1806		GLU	239	39.070	33.982	-9.637		58.40
	ATOM	1807		GLU	239	37.211		-8.918		57.25
	ATOM	1808	C	GLU	239	35.599	30.594	-7.675		48.87
45	ATOM	1809	0	GLU	239	36.272	30.274	-6.701		48.25
45	ATOM	1810	N	GLY	240	34.705	29.797	-8.252		49.09
	MOTA	1811	CA	GLY	240	34.412	28.469	-7.750		50.05
	MOTA	1812	С	GLY	240	32.967	28.418	-7.296	1.00	51.04
	MOTA	1813	0	GLY	240	32.482	29.379	-6.712	1.00	52.00
	ATOM	1814	N	ASP	241	32.259	27.332	-7.580	1.00	51.38
50	ATOM	1815	CA	ASP	241	30.882	27.214	-7.127	1.00	52.10
	ATOM	1816	CB	ASP	241	29.963	26.766	-8.252	1.00	52.95
	ATOM	1817	CG	ASP	241	30.186	27.534	-9.529		53.84
	ATOM	1818	OD1	ASP	241	30.046	28.779	-9.522		53.20
	ATOM	1819	OD2	ASP	241	30.496		-10.546		53.97
55	ATOM	1820	С	ASP	241	30.924	26.122	-6.083		52.90
	ATOM	1821	0	ASP	241	29.898	25.563	-5.701		53.59
	ATOM	1822	N	GLU	242	32.131	25.816	-5.626		53.45
	ATOM	1823	CA	GLU	242	32.325	24.760	-4.646		53.65
	ATOM	1824	CB	GLU	242	33.785	24.299	-4.670		55.19

\bigcirc	Fi	gure 4				35/63			
	ATOM	1825	CG	GLU	242	34.056	23.062	-3.826	1.00 57.57
	ATOM	1826	CD	GLU	242	35.527	22.672	-3.811	1.00 58.85
	ATOM	1827	OE1	GLU	242	36.063	22.340	-4.893	1.00 59.63
	ATOM	1828	OE2	GLU	242	36.143	22.701	-2.717	1.00 59.85
5	ATOM	1829	С	GLU	242	31.933	25.159	-3.229	1.00 52.66
	ATOM	1830	0	GLU	242	32.469	26.113	-2.661	1.00 53.15
	ATOM	1831	N	GLY	243	30.987	24.418	-2.665	1.00 51.11
	ATOM	1832	CA	GLY	243	30.545	24.673	-1.305	1.00 48.74
	ATOM	1833	С	GLY	243	30.200	26.110	-0.967	1.00 46.87
10	ATOM	1834	0	GLY	243	29.879	26.917	-1.850	1.00 46.49
	ATOM	1835	N	ARG	244	30.288	26.421	0.326	1.00 44.89
	ATOM	1836	CA	ARG	244	29.967	27.748	0.838	1.00 43.27
	MOTA	1837	СВ	ARG	244	28.852	27.639	1.873	1.00 42.24
	ATOM	1838	CG	ARG	244	27.571	27.040	1.339	1.00 42.16
15	ATOM	1839	CD	ARG	244	26.442	27.153	2.356	1.00 41.35
	ATOM	1840	NE	ARG	244	25.254	26.425	1.925	1.00 39.30
	ATOM	1841	CZ	ARG	244	24.702	25.446	2.630	1.00 39.15
	ATOM	1842	NH1		244	25.236	25.085	3.794	1.00 38.10
20	ATOM	1843	NH2		244	23.627	24.821	2.168	1.00 38.77
20	ATOM	1844	C	ARG	244	31.121	28.524	1.465	1.00 42.34
	ATOM	1845	0	ARG	244	32.089	27.945	1.958	1.00 41.77
	ATOM	1846	N	MSE	245	30.990	29.849	1.446	1.00 42.07
	ATOM	1847	CA	MSE	245	31.977	30.745	2.042	1.00 41.32
25	ATOM	1848 1849	CB	MSE	245	32.846	31.391	0.974	1.00 42.25
23	ATOM ATOM	1850	CG SE	MSE MSE	245 245	33.870 34.884	32.345 33.206	1.566 0.332	1.00 44.07 1.00 47.16
	ATOM	1851	CE	MSE	245	36.149	31.909	-0.005	1.00 44.40
	MOTA	1852	CE	MSE	245	31.324	31.863	2.863	1.00 40.37
	ATOM	1853	0	MSE	245	30.525	32.644	2.338	1.00 40.37
30	ATOM	1854	N	CYS	246	31.664	31.940	4.148	1.00 38.95
-	ATOM	1855	CA	CYS	246	31.125	32.990	5.001	1.00 37.00
	MOTA	1856	СВ	CYS	246	31.794	32.953	6.376	1.00 37.69
	ATOM	1857	SG	CYS	246	31.231	34.229	7.567	1.00 38.96
	ATOM	1858	C	CYS	246	31.422	34.320	4.311	1.00 35.82
35	MOTA	1859	0	CYS	246	32.484	34.497	3.706	1.00 34.54
	MOTA	1860	N	VAL	247	30.466	35.240	4.388	1.00 34.51
	MOTA	1861	CA	VAL	247	30.591	36.566	3.782	1.00 32.46
	MOTA	1862	CB	VAL	247	29.609	36.751	2.588	1.00 32.34
	MOTA	1863		VAL	247	29.709	38.170	2.038	1.00 31.78
40	MOTA	1864		VAL	247	29.930	35.750	1.486	1.00 32.04
	MOTA	1865	C	VAL	247	30.239	37.580	4.863	1.00 32.03
	MOTA	1866	0	VAL	247	29.291	37.377	5.628	1.00 33.28
	MOTA	1867	N	ASN	248	31.011	38.657	4.931	1.00 29.34
45	ATOM	1868	CA	ASN	248	30.792	39.699	5.917	1.00 27.36
45	ATOM	1869	CB	ASN	248	32.147	40.219	6.401	1.00 28.42
	ATOM	1870	CG OD1	ASN	248	32.031	41.471	7.253	1.00 29.34
	MOTA	1871 1872		ASN ASN	248	30.975 33.141	41.774	7.816	1.00 29.82
	MOTA MOTA	1873	C	ASN	248 248	29.983	42.201 40.798	7.374 5.257	1.00 29.54 1.00 27.10
50	MOTA	1874	0	ASN	248	30.531	41.618	4.503	1.00 27.10
50	MOTA	1875	N	THR	249	28.679	40.823	5.544	1.00 26.01
	ATOM	1876	CA	THR	249	27.778	41.809	4.937	1.00 23.85
	ATOM	1877	CB	THR	249	26.325	41.634	5.424	1.00 23.83
	ATOM	1878		THR	249	26.228	42.100	6.775	1.00 25.10
55	ATOM	1879		THR	249	25.899	40.156	5.380	1.00 23.10
	ATOM	1880	C	THR	249	28.208	43.226	5.270	1.00 24.20
	ATOM	1881	Ō	THR	249	28.023	44.143	4.467	1.00 23.38
	ATOM	1882	N	GLU	250	28.777	43.406	6.462	1.00 24.31
	MOTA	1883	CA	GLU	250	29.219	44.733	6.891	1.00 23.61

Figure 4 36/63 30.446 MOTA 1884 CB GLU 250 45.145 6.060 1.00 23.87 ATOM 1885 250 31.242 1.00 25.94 CG GLU 46.362 6.571 ATOM 1886 CD GLU 250 32.237 46.041 7.700 1.00 25.83 32.728 MOTA 1887 OE1 GLU 250 44.893 7.813 1.00 25.67 MOTA 1888 OE2 GLU 250 32.552 46.960 8.473 1.00 26.46 ATOM 1889 250 28.003 C GLU 45.624 6.589 1.00 23.30 MOTA 1890 250 0 GLU 28.110 46.648 5.896 1.00 23.33 MOTA 1891 TRP 251 26.841 45.208 7.096 1.00 22.28 N ATOM 1892 25.609 CA TRP 251 45.940 6.840 1.00 22.36 10 MOTA 1893 TRP 251 24.376 45.077 CB 7.133 1.00 20.65 1894 MOTA TRP 251 24.133 44.726 CG 8.543 1.00 18.29 1895 MOTA CD2 TRP 251 23.308 43.648 9.016 1.00 16.51 ATOM 1896 CE2 TRP 251 23.279 43.725 10.424 1.00 15.08 ATOM 1897 CE3 TRP 251 22.589 42.635 8.384 1.00 16.17 ATOM 1898 CD1 TRP 251 24.565 45.395 1.00 17.71 9.652 ATOM 1899 NE1 TRP 251 24.051 44.795 10.795 1.00 17.10 ATOM 1900 CZ2 TRP 251 22.567 42.830 11.201 1.00 14.23 ATOM 1901 CZ3 TRP 251 21.872 41.737 9.171 1.00 15.72 MOTA 1902 CH2 TRP 251 21.869 41.842 10.559 1.00 14.23 ATOM 1903 251 25.445 С TRP 47.283 7.523 1.00 23.49 MOTA 1904 0 TRP 251 24.541 48.044 7.167 1.00 23.95 ATOM 1905 252 26.302 47.579 N GLY 8.500 1.00 24.44 ATOM 1906 252 26.214 CA 48.857 1.00 25.17 GLY 9.179 ATOM 1907 252 26.195 C GLY 49.979 8.152 1.00 26.19 25 ATOM 1908 0 GLY 252 25.715 51.086 1.00 26.19 8.429 MOTA 1909 ALA 253 26.714 49.675 N 6.960 1.00 26.83 ATOM 1910 CA ALA 253 26.791 50.622 1.00 27.86 5.851 ATOM 1911 ALA 253 27.822 CB 50.148 1.00 27.90 4.851 MOTA 1912 253 25.448 ALA 50.834 1.00 28.52 С 5.144 30 ATOM 1913 253 25.249 51.834 0 ALA 4.448 1.00 27.73 ATOM 1914 N PHE 254 24.536 49.884 1.00 30.23 5.314 MOTA 1915 CA PHE 254 23.224 49.974 4.696 1.00 31.42 ATOM 1916 CB PHE 254 22.289 48.947 5.314 1.00 31.71 MOTA PHE 20.899 48.995 1917 CG 254 4.768 1.00 31.90 35 MOTA 1918 CD1 PHE 254 20.655 48.736 3.429 1.00 31.47 MOTA 1919 CD2 PHE 254 19.824 49.273 5.600 1.00 32.95 ATOM 1920 CE1 PHE 254 19.367 48.746 2.927 1.00 31.38 5.096 MOTA 1921 CE2 PHE 254 18.518 49.285 1.00 32.69 MOTA 1922 254 18.295 CZPHE 49.021 3.763 1.00 31.47 MOTA 1923 Ċ PHE 254 22.664 51.367 4.928 1.00 32.56 MOTA 1924 PHE 254 0 22.638 51.839 6.064 1.00 33.19 MOTA 1925 GLY 255 22.227 Ν 52.017 3.849 1.00 33.62 3.947 MOTA 1926 CA GLY 255 21.674 53.354 1.00 34.98 MOTA 1927 255 22.673 C GLY 54.429 3.565 1.00 36.85 45 ATOM 1928 GLY 255 22.317 55.604 0 3.424 1.00 36.70 MOTA 1929 ASP 256 23.932 54.038 N 3.395 1.00 38.95 MOTA 1930 256 24.966 55.000 CA ASP 3.038 1.00 41.47 ATOM 1931 CB ASP 256 26.349 54.347 3.088 1.00 41.77 ATOM 1932 CG ASP 256 26.880 54.224 4.502 1.00 42.36 ATOM 1933 OD1 ASP 256 26.573 55.120 5.322 1.00 43.08 1934 MOTA OD2 ASP 256 27.617 53.251 4.791 1.00 42.28 MOTA 1935 C ASP 256 24.744 55.636 1.666 1.00 43.10 MOTA 1936 0 ASP 256 25.489 56.533 1.261 1.00 44.08 MOTA 1937 23.729 N SER 257 55.171 0.946 1.00 44.19 55 ATOM 1938 SER 257 23.427 55.738 CA -0.363 1.00 45.32 MOTA 1939 257 CB SER 23.714 54.713 -1.4671.00 45.78 ATOM 1940 OG SER 257 22.845 53.601 -1.3751.00 46.48 **ATOM** 1941 C 257 21.967 56.204 -0.4231.00 45.41 SER MOTA 1942 257 21.378 56.316 0 SER -1.501 1.00 46.14

Figure 4 37/63 ATOM 1943 N GLY 258 21.393 56.466 0.751 1.00 45.52 ATOM 1944 CA GLY 258 20.018 56.933 0.835 1.00 45.22 MOTA 1945 С GLY 258 18.922 55.896 1.042 1.00 45.11 ATOM 1946 0 GLY 258 17.745 56.253 1.068 1.00 45.45 ATOM 1947 N GLU 259 19.284 54.627 1.205 1.00 44.67 MOTA 1948 CA GLU 259 18.288 53.572 1.380 1.00 44.04 ATOM 1949 CB GLU 259 18.954 52.187 1.415 1.00 44.23 ATOM 1950 CG GLU 259 19.952 51.916 0.295 1.00 44.88 ATOM 1951 CD GLU 259 21.318 52.552 0.548 1.00 45.53 10 ATOM 1952 OE1 GLU 259 21.381 53.785 0.753 1.00 44.98 MOTA 1953 OE2 GLU 259 22.335 51.817 0.537 1.00 45.95 MOTA 1954 C GLU 259 53.749 17.462 2.647 1.00 43.91 MOTA 1955 0 GLU 259 16.461 53.061 2.836 1.00 43.49 MOTA 1956 N LEU 260 17.875 54.661 3.520 1.00 43.87 15 ATOM 1957 CA LEU 260 17.143 54.865 4.765 1.00 44.40 MOTA 1958 CB LEU 260 18.023 54.513 5.967 1.00 44.36 ATOM 1959 CG LEU 260 18.398 53.041 6.153 1.00 44.87 ATOM 1960 CD1 LEU 260 19.315 52.879 7.369 1.00 44.30 **ATOM** 1961 CD2 LEU 260 17.127 52.216 6.307 1.00 44.88 ATOM 1962 С LEU 56.282 260 16.632 4.932 1.00 44.59 MOTA 1963 0 LEU 260 15.744 56.534 5.749 1.00 44.72 ATOM 1964 N ASP. 261 17.200 57.202 4.161 1.00 44.48 ATOM 1965 CA ASP 261 16.821 58.608 4.234 1.00 44.18 MOTA 1966 CB ASP 261 16.813 59.224 2.841 1.00 44.99 25 ATOM 1967 CG ASP 261 18.192 59.310 2.247 1.00 46.23 ATOM 1968 OD1 ASP 261 19.165 58.994 1.00 46.42 2.980 ATOM 1969 OD2 ASP 261 18.296 59.697 1.055 1.00 46.79 ATOM 1970 ASP 261 15.482 58.885 4.892 1.00 43.00 MOTA 1971 0 ASP 261 15.415 59.592 5.898 1.00 42.63 30 ATOM 1972 N GLU 262 14.424 58.317 4.320 1.00 41.88 ATOM 1973 CA GLU 262 13.070 58.525 4.810 1.00 41.00 ATOM 1974 CB GLU 12.088 57.744 262 3.940 1.00 41.65 ATOM 1975 CG GLU 262 12.249 56.254 3.999 1.00 43.54 ATOM 1976 CD GLU 262 11.359 55.562 2.996 1.00 45.44 35 MOTA 1977 OE1 GLU 262 11.715 55.561 1.800 1.00 47.21 MOTA 1978 OE2 GLU 262 10.296 55.031 3.391 1.00 47.29 ATOM 1979 C GLU 262 12.830 58.211 6.286 1.00 39.99 ATOM 1980 0 GLU 262 11.997 58.852 6.918 1.00 40.22 ATOM 1981 N PHE 263 13.545 57.238 6.845 1.00 38.83 40 MOTA 1982 CA PHE 263 13.360 56.908 8.258 1.00 37.00 MOTA 1983 CB PHE 263 13.684 55.430 8.512 1.00 34.37 MOTA 1984 CG PHE 263 12.828 54.476 7.717 1.00 32.41 ATOM 1985 CD1 PHE 263 13.366 53.753 6.660 1.00 30.67 MOTA 1986 CD2 PHE 263 11.474 54.317 1.00 30.95 8.012 12.567 45 ATOM 1987 CE1 PHE 263 52.886 5.909 1.00 29.82 ATOM 1988 CE2 PHE 263 10.667 53.450 7.261 1.00 28.87 ATOM 1989 CZPHE 263 11.214 52.737 6.213 1.00 29.09 ATOM 1990 С PHE 263 14.197 57.797 9.190 1.00 36.78 MOTA 1991 0 PHE 263 13.809 58.041 10.327 1.00 37.58 50 ATOM 1992 N LEU 264 15.328 58.301 8.712 1.00 36.72 MOTA 1993 CA LEU 264 16.193 59.142 9.542 1.00 37.11 ATOM 1994 CB LEU 17.389 264 59.638 8.725 1.00 36.98 MOTA 1995 CG LEU 264 18.131 58.621 1.00 36.59 7.852 MOTA 1996 CD1 LEU 19.233 264 59.346 7.077 1.00 35.39 55 MOTA 1997 CD2 LEU 264 18.701 57.503 8.717 1.00 35.46 MOTA 1998 C LEU 264 15.482 60.350 10.158 1.00 37.28 MOTA 1999 0 LEU 264 14.879 61.148 9.451 1.00 38.03 MOTA 2000 N LEU 265 15.574 60.480 11.479 1.00 37.63 MOTA 2001 CA LEU 265 14.965 61.585 12.215 1.00 37.33

Figure 4 38/63 MOTA 2002 CB LEU 265 14.380 61.070 13.527 1.00 36.25 MOTA 2003 CG LEU 265 13.529 59.807 13.417 1.00 35.76 MOTA 2004 CD1 LEU 265 13.157 59.295 14.808 1.00 35.17 MOTA 2005 CD2 LEU 265 12.292 60.120 12.598 1.00 35.59 MOTA 2006 С LEU 265 16.054 62.613 12.521 1.00 38.22 MOTA 2007 LEU 0 265 17.239 62.285 12.486 1.00 38.34 MOTA 2008 N GLU 266 15.653 63.844 12.832 1.00 39.22 MOTA 2009 CA GLU 266 16.599 64.922 13.137 1.00 40.56 MOTA 2010 CB GLU 266 15.874 66.101 13.813 1.00 41.82 10 ATOM 2011 CG GLU 266 15.277 65.777 15.196 1.00 44.28 MOTA 2012 CD GLU 266 14.612 66.974 15.886 1.00 44.95 ATOM 2013 OE1 GLU 266 13.543 67.432 15.410 1.00 45.08 ATOM 2014 OE2 GLU 266 15.163 67.452 16.910 1.00 45.53 MOTA 2015 C GLU 266 17.733 64.435 14.036 1.00 40.54 15 ATOM 2016 0 GLU 266 18.910 64.657 13.750 1.00 40.69 MOTA 2017 TYR N 267 17.366 63.760 15.121 1.00 40.61 ATOM 2018 CA 267 TYR 18.342 63.234 16.062 1.00 40.30 MOTA 2019 CB TYR 267 17.639 62.364 17.110 1.00 39.44 ATOM 2020 CG TYR 267 16.216 62.784 17.423 1.00 38.98 ATOM 2021 CD1 TYR 267 15.134 61.967 17.066 1.00 38.66 ATOM 2022 CE1 TYR 267 13.813 62.342 17.349 1.00 38.28 ATOM 2023 CD2 TYR 267 15.943 63.995 18.075 1.00 38.72 ATOM 2024 CE2 TYR 267 14.619 64.381 18.364 1.00 38.45 MOTA 2025 CZ TYR 267 13.564 63.548 17.996 1.00 38.30 25 ATOM 2026 OH 267 TYR 12.267 63.923 18.251 1.00 37.22 ATOM 2027 С TYR 267 19.381 62.403 15.296 1.00 40.27 ATOM 2028 0 TYR 267 20.580 62.469 15.579 1.00 40.14 ATOM 2029 N ASP 268 18.909 61.626 14.324 1.00 40.61 ATOM 2030 CA ASP 268 19.781 60.790 13.511 1.00 40.87 ATOM 2031 CB ASP 268 18.946 59.920 12.566 1.00 39.36 ATOM 2032 CG ASP 268 18.183 58.843 13.301 1.00 38.52 ATOM 2033 OD1 ASP 268 18.819 58.118 14.082 1.00 39.79 ATOM 2034 OD2 ASP 268 16.961 58.711 13.110 1.00 36.13 MOTA 2035 С ASP 268 20.764 61.643 12.712 1.00 41.97 35 ATOM 2036 0 ASP 268 21.956 61.339 12.667 1.00 42.91 ATOM 2037 N ARG 269 20.266 62.710 12.090 1.00 42.73 ATOM 2038 CA ARG 269 21.113 63.606 11.310 1.00 43.23 ATOM 2039 CB ARG 269 20.302 64.793 10.786 1.00 45.34 MOTA 2040 CG ARG 269 18.923 64.464 10.223 1.00 47.46 ATOM 2041 CD ARG 269 19.000 63.819 8.864 1.00 49.22 MOTA 2042 NE ARG 269 17.667 63.552 8.337 1.00 52.67 MOTA 2043 CZARG 269 17.426 62.969 7.165 1.00 54.63 ATOM 2044 NH1 ARG 269 18.436 62.591 6.386 1.00 55.41 ATOM 2045 NH2 ARG 269 16.173 62.747 6.775 1.00 55.38 ATOM 2046 C 269 ARG 22.204 64.150 12.231 1.00 42.99 MOTA 2047 0 269 ARG 23.400 63.999 11.977 1.00 43.63 MOTA 2048 270 Ν LEU 21.777 64.796 13.305 1.00 41.99 MOTA 2049 CA LEU 270 22.702 65.372 14.261 1.00 41.33 MOTA 2050 CB LEU 270 21.924 65.812 15.502 1.00 41.15 ATOM 2051 CG LEU 270 21.004 67.002 15.217 1.00 40.34 MOTA 2052 CD1 LEU 270 19.964 67.182 16.307 1.00 39.94 MOTA 2053 CD2 LEU 270 21.879 68.237 15.084 1.00 40.26 MOTA 2054 С LEU 270 23.828 64.406 14.635 1.00 41.26 MOTA 2055 0 LEU 270 25.009 64.762 14.553 1.00 41.76 ATOM 2056 N VAL 271 23.462 63.188 15.030 1.00 40.24 ATOM 2057 CA VAL 271 24.443 62.177 15.415 1.00 40.08 ATOM 2058 CB VAL 271 23.776 60.838 15.730 1.00 40.42 ATOM 2059 CG1 VAL 271 24.846 59.800 16.050 1.00 39.86 MOTA 2060 CG2 VAL 271 22.796 61.000 16.891 1.00 40.86

)	F	igure 4				39/63				
	ATOM	2061	С	VAL	271	25.477	61.903	14.329	1.00	40.51
	MOTA	2062	0	VAL	271	26.676	61.832	14.595		40.15
	ATOM	2063	N	ASP	272	24.998	61.730	13.103	1.00	40.78
	MOTA	2064	CA	ASP	272	25.866	61.447	11.977	1.00	40.36
5	MOTA	2065	CB	ASP	272	25.038	61.344	10.695	1.00	39.16
	ATOM	2066	CG	ASP	272	25.792	60.670	9.553	1.00	38.09
	ATOM	2067	OD1	ASP	272	26.821	60.000	9.807	1.00	36.54
	MOTA	2068	QD2	ASP	272	25.335	60.798	8.394	1.00	37.12
	MOTA	2069	C	ASP	272	26.901	62.544	11.849	1.00	40.88
10	MOTA	2070	0	ASP	272	28.099	62.297	11.953	1.00	40.75
	MOTA	2071	N	GLU	273	26.429	63.763	11.638	1.00	41.96
	MOTA	2072	CA	GLU	273	27.321	64.896	11.477	1.00	43.14
	MOTA	2073	CB	GLU	273	26.501	66.170	11.470	1.00	44.13
	MOTA	2074	CG	GLU	273	25.576	66.214	10.272	1.00	46.73
15	ATOM	2075	CD	GLU	273	24.629	67.388	10.308	1.00	48.40
	MOTA	2076	OE1	GLU	273	25.047	68.455	10.828	1.00	49.15
	ATOM	2077	OE2	GLU	273	23.482	67.241	9.811	1.00	48.64
	ATOM	2078	С	GLU	273	28.428	64.968	12.517	1.00	43.48
	ATOM	2079	0	GLU	273	29.575	65.279	12.187	1.00	43.59
20	ATOM	2080	N	SER	274	28.095	64.666	13.767	1.00	44.05
	MOTA	2081	CA	SER	274	29.089	64.702	14.837	1.00	44.54
	MOTA	2082	CB	SER	274	28.421	64.568	16.205	1.00	45.39
	MOTA	2083	OG	SER	274	27.496	65.611	16.424	1.00	48.14
	MOTA	2084	С	SER	274	30.106	63.582	14.694	1.00	44.23
25	MOTA	2085	0	SER	274	31.292	63.783	14.931	1.00	44.76
	MOTA	2086	N	SER	275	29.632	62.400	14.318	1.00	43.84
	MOTA	2087	CA	SER	275	30.489	61.227	14.162	1.00	
	ATOM	2088	CB	SER	275	29.754	60.139	13.392	1.00	43.28
	ATOM	2089	OG	SER	275	29.758	60.444	12.010	1.00	42.94
30	MOTA	2090	С	SER	275	31.789	61.535	13.426	1.00	43.34
	MOTA	2091	0	SER	275	31.914	62.552	12.738		43.76
	ATOM	2092	N	ALA	276	32.756	60.639	13.570	1.00	42.68
	ATOM	2093	CA	ALA	276	34.034	60.805	12.906	1.00	42.98
	ATOM	2094	CB	ALA	276	35.108	60.015	13.639	1.00	42.92
35	MOTA	2095	С	ALA	276	33.930	60.319	11.465	1.00	43.23
	MOTA	2096	0	ALA	276	34.936	60.277	10.751	1.00	44.60
	MOTA	2097	N	ASN	277	32.722	59.949	11.039		42.10
	MOTA	2098	CA	ASN	277	32.517	59.447	9.691	1.00	40.87
	MOTA	2099	CB	ASN	277	32.615	57.927	9.685		41.63
40	MOTA	2100	CG	ASN	277	31.654	57.283	10.659		42.64
	MOTA	2101		ASN	277	30.670	57.898	11.067		43.50
	ATOM	2102		ASN	277	31.925	56.033	11.029		42.98
	MOTA	2103	C	ASN	277	31.178	59.865	9.104		40.57
	MOTA	2104	0	ASN	277	30.430	59.039	8.579		39.89
45	MOTA	2105	N	PRO	278	30.868	61.163	9.163		40.83
	MOTA	2106	CD	PRO	278	31.783	62.282	9.451	1.00	
	MOTA	2107	CA	PRO	278	29.600	61.657	8.623		40.71
	MOTA	2108	CB	PRO	278	29.807	63.175	8.579		40.88
	MOTA	2109	CG	PRO	278	31.303	63.326	8.474		41.27
50	MOTA	2110	C	PRO	278	29.239	61.074	7.258		40.60
	ATOM	2111	0	PRO	278	29.949	61.284	6.270		40.71
	ATOM	2112	N	GLY	279	28.131	60.338	7.216		40.34
	ATOM	2113	CA	GLY	279	27.676	59.747	5.971		39.10
	ATOM	2114	C	GLY	279	27.904	58.252	5.828		38.94
55	MOTA	2115	0	GLY	279	27.315	57.635	4.952		39.74
	ATOM	2116	N	GLN	280	28.735	57.660	6.683		38.66
	MOTA	2117	CA	GLN	. 280	29.049	56.230	6.605		37.75
	ATOM	2118	CB	GLN	280	30.563	56.043	6.513		37.97
	ATOM	2119	CG	GLN	280	31.243	56.954	5.509	1.00	39.85

3	\mathbf{F}	igure 4				10.				
ر		_				40/63				
	MOTA	2120	CD	GLN	280	32.743	57.046	5.730	1.00 40.76	
	MOTA	2121	OE1	GLN	280	33.465	56.058	5.587		
	MOTA	2122		GLN	280	33.220	58.240	6.083	1.00 41.57	
	MOTA	2123	C	GLN	280	28.553	55.455	7.817	1.00 41.57	
5	ATOM	2124	Ō	GLN	280	28.645	55.939	8.941	1.00 38.99	
	MOTA	2125	N	GLN	281	28.054	54.242	7.592	1.00 37.89	
	ATOM	2126	CA	GLN	281	27.572	53.401			
	ATOM	2127	СВ	GLN	281	28.590	53.401	8.681	1.00 34.04	
	ATOM	2128	CG	GLN	281	29.971		9.829	1.00 33.35	
10	ATOM	2129	CD	GLN	281		52.951	9.447	1.00 33.09	
••	ATOM	2130		GLN	281	29.967	51.576	8.800	1.00 34.44	·
	ATOM	2131	NE2		281	29.917	51.451	7.572	1.00 33.95	
	ATOM	2132				30.000	50.529	9.630	1.00 34.63	
	ATOM	2132	C	GLN	281	26.210	53.831	9.237	1.00 33.42	
15			0	GLN	281	25.895	53.530	10.390	1.00 34.87	
13	MOTA	2134	N	LEU	282	25.395	54.511	8.436	1.00 31. 5 3	
	ATOM	2135	CA	LEU	282	24.098	54.992	8.913	1.00 29.87	
	ATOM	2136	CB	LEU	282	23.345	55.685	7.777	1.00 30.15	
	ATOM	2137	CG	LEU	282		56.871	7.085	1.00 30.41	
••	MOTA	2138		LEU	282	22.963	57.741	6.435	1.00 29.82	
20	ATOM	2139		LEU	282	24.815	57.699	8.097	1.00 30.66	
	MOTA	2140	Ç	LEU	282	23.191	53.949	9.578	1.00 28.70	
	MOTA	2141	0	LEU	282	22.716	54.153	10.698	1.00 28.78	
	MOTA	2142	N	TYR	283	22.935	52.841	8.894	1.00 27.35	
	ATOM	2143	CA	TYR	283	22.095	51.793	9.461	1.00 26.53	
25	MOTA	2144	CB	TYR	283	22.233	50.511	8.633	1.00 24.41	
	MOTA	2145	CG	TYR	283	21.420	49.338	9.143	1.00 22.90	
	ATOM	2146	CD1	TYR	283	20.021	49.413	9.210	1.00 21.94	
	MOTA	2147	CE1	TYR	283	19.257	48.318	9.609	1.00 20.96	
	MOTA	2148	CD2	TYR	283	22.038	48.129	9.503	1.00 21.53	
30	MOTA	2149	CE2	TYR	283	21.279	47.030	9.907	1.00 20.87	
	MOTA	2150	CZ	TYR	283	19.886	47.140	9.950	1.00 21.33	
	MOTA	2151	OH	TYR	283	19.105	46.068	10.310	1.00 23.85	
	MOTA	2152	С	TYR	283	22.567	51.532	10.891	1.00 27.12	
	ATOM	2153	0	TYR	283	21.783	51.521	11.841	1.00 27.12	
35	MOTA	2154	N	GLU	284	23.869	51.352	11.035	1.00 26.60	
	MOTA	2155	CA	GLU	284	24.486	51.072	12.317	1.00 26.43	
	MOTA	2156	СВ	GLU	284	25.982	50.905	12.108	1.00 27.03	
	ATOM	2157	CG	GLU	284	26.763	50.680	13.375	1.00 27.03	
	MOTA	2158		GLU		28.224			1.00 27.21	
40	ATOM	2159		GLU	284	28.897	51.506	12.734		
	MOTA	2160		GLU	284	28.670	49.319	13.185	1.00 27.02	
	ATOM	2161	C	GLU	284	24.249	52.133		1.00 26.30	
	MOTA	2162	ō	GLU	284	24.197	51.826	13.381	1.00 26.81	
	ATOM	2163	N	LYS	285	24.134	53.384	14.582	1.00 26.06	
45	ATOM	2164	CA	LYS	285	23.926		12.940	1.00 27.07	
-	ATOM	2165	CB	LYS	285		54.502	13.860	1.00 27.39	
	ATOM	2166	CG	LYS	285	24.339	55.825	13.186	1.00 25.99	
	ATOM	2167	CD			25.840	56.012	13.132	1.00 24.13	
	ATOM	2168		LYS	285	26.235	57.110	12.179	1.00 23.29	
50	MOTA		CE	LYS	285	27.755	57.193	12.052	1.00 22.03	
30		2169	NZ	LYS	285	28.142	58.198	11.027	1.00 21.72	
	ATOM	2170	C	LYS	285	22.488	54.595	14.368	1.00 28.05	
	ATOM	2171	0	LYS	285	22.086	55.615	14.941	1.00 28.61	
	ATOM	2172	N	LEU	286	21.717	53.535	14.144	1.00 27.60	
	ATOM	2173	CA	LEU	286	20.335	53.488	14.599	1.00 27.30	
55	ATOM	2174	CB	LEU	286	19.399	53.157	13.435	1.00 28.57	
	MOTA	2175	CG	LEU	286	19.375	54.167	12.279	1.00 30.25	
	MOTA	2176	CD1		286	18.480	53.647	11.139	1.00 29.98	
	MOTA	2177	CD2	LEU	286	18.863	55.507	12.780	1.00 29.35	
	MOTA	2178	C	LEU	286	20.260	52.381	15.632	1.00 27.01	
							•			

)	Fi	gure 4				41/63			
	ATOM	2179	0	LEU	286	19.296	52.294	16.399	1.00 27.55
	ATOM	2180	N	ILE	287	21.306	51,554	15.645	1.00 26.00
	MOTA	2181	CA	ILE	287	21.415	50.399	16.532	1.00 24.38
	MOTA	2182	CB	ILE	287	21.551	49.141	15.715	1.00 23.92
5	MOTA	2183		ILE	287	21.470	47.919	16.628	1.00 22.70
	ATOM	2184	CG1		287	20.510	49.158	14.597	1.00 22.87
	ATOM	2185	CD1		287	20.676	48.042	13.607	1.00 22.79
	ATOM	2186	C	ILE	287	22.639	50.444	17.433	1.00 24.65
10	MOTA	2187	0	ILE	287	22.550	50.255	18.644	1.00 23.54
10	ATOM ATOM	2188 2189	N CA	GLY GLY	288 288	23.791 25.060	50.668	16.810	1.00 25.94
	MOTA	2190	C	GLY	288	25.080	50.714 51.266	17.519 18.927	1.00 26.86
	ATOM	2191	Ô	GLY	288	24.697	52.412	19.164	1.00 27.76 1.00 28.19
	ATOM	2192	N	GLY	289	25.554	50.445	19.860	1.00 28.95
15	ATOM	2193	CA	GLY	289	25.656	50.856	21.249	1.00 30.64
	MOTA	2194	С	GLY	289	26.632	52.007	21.407	1.00 31.92
	MOTA	2195	0	GLY	289	26.930	52.442	22.509	1.00 32.56
	MOTA	2196	N	LYS	290	27.133	52.504	20.291	1.00 32.83
	MOTA	2197	CA	LYS	290	28.067	53.607	20.296	1.00 33.99
20	MOTA	2198	CB	LYS	290	29.104	53.373	19.191	1.00 35.04
	MOTA	2199	CG	LYS	290	29.858	54.598	18.665	1.00 36.71
	ATOM	2200	CD	LYS	290	31.032	54.996	19.551	1.00 38.80
	ATOM	2201	CE	LYS	290	31.936	56.011	18.839	1.00 39.77
25	ATOM	2202 2203	NZ C	LYS	290	32.864	56.707	19.787	1.00 41.04
2.5	ATOM ATOM	2203	0	LYS LYS	290 290	27.278 27.810	54.880	20.035	1.00 34.58
	ATOM	2204	N	TYR	291	26.001	55.984 54.734	20.138 19.708	1.00 35.79 1.00 33.80
	ATOM	2206	CA	TYR	291	25.196	55.907	19.406	1.00 33.60
	ATOM	2207	CB	TYR	291	25.010	56.046	17.892	1.00 33.01
30	ATOM	2208	CG	TYR	291	26.256	55.752	17.084	1.00 33.77
	MOTA	2209	CD1	TYR	291	26.659	54.435	16.838	1.00 34.23
	MOTA	2210	CE1	TYR	291	27.789	54.155	16.065	1.00 34.17
	MOTA	2211	CD2		291	27.021	56.783	16.542	1.00 33.61
	MOTA	2212	CE2		291	28.150	56.515	15.773	1.00 33.54
35	ATOM	2213	CZ	TYR	291	28.528	55.200	15.532	1.00 33.76
	MOTA	2214	OH	TYR	291	29.620	54.928	14.729	1.00 34.36
	ATOM ATOM	2215 2216	C O	TYR TYR	291 291	23.836	55.874	20.070	1.00 33.11 1.00 32.86
	ATOM	2217	N	MSE	292	23.069 23.521	56.828 54.778	19.975 20.737	1.00 32.86
40	ATOM	2218	CA	MSE	292	22.230	54.699	21.389	1.00 33.27
	MOTA	2219	CB	MSE	292	22.066	53.349	22.062	1.00 33.77
	ATOM	2220	CG	MSE	292	20.639	52.975	22.314	1.00 35.15
	ATOM	2221	SE	MSE	292	20.564	51.230	22.803	1.00 41.54
	MOTA	2222	CE	MSE	292	20.269	50.385	21.171	1.00 35.91
45	ATOM	2223	C	MSE	292	22.148	55.818	22.423	1.00 32.97
	MOTA	2224	0	MSE	292	21.227	56.637	22.400	1.00 33.49
	ATOM	2225	N	GLY	293	23.131	55.861	23.315	1.00 32.96
	MOTA	2226	CA	GLY	293	23.151	56.892	24.334	1.00 32.25
50	MOTA	2227	C	GLY	293	23.067	58.290	23.750	1.00 32.18
50	ATOM	2228	0	GLY	293	22.307	59.126	24.241	1.00 33.24
	ATOM ATOM	2229 2230	N CA	GLU	294 294	23.835	58.560	22.702	1.00 31.47
	ATOM	2231	CB	GLU	294	23.809 24.875	59.883 59.971	22.096 21.008	1.00 31.38 1.00 33.29
	ATOM	2232	CG	GLU	294	24.875	61.321	20.304	1.00 33.29
55	ATOM	2233	CD	GLU	294	25.227	62.474	21.257	1.00 35.80
	ATOM	2234		GLU	294	25.708	62.244	22.389	1.00 36.49
	ATOM	2235		GLU	294	24.946	63.623	20.858	1.00 37.16
	MOTA	2236	С	GLU	294	22.428	60.192	21.521	1.00 30.62
	MOTA	2237	0	GLU	294	21.919	61.305	21.664	1.00 30.94

Figure 4 42/63 MOTA 2238 LEU 295 21.818 59.204 20.878 1.00 29.56 N MOTA 2239 CA LEU 295 20.495 59.392 20.303 1.00 29.24 MOTA 2240 CB LEU 295 20.030 58.112 19.589 1.00 27.27 MOTA 20.389 18.099 2241 CG LEU 295 58.007 1.00 25.46 17.522 295 19.979 ATOM 2242 CD1 LEU 56.668 1.00 21.87 19.677 17.352 1.00 25.71 MOTA 2243 CD2 LEU 295 59.136 59.787 ATOM 2244 LEU 295 19.497 21.388 1.00 29.98 С 18.587 ATOM 2245 0 LEU 295 60.573 21.156 1.00 30.19 ATOM 296 19.665 59.250 22.585 1.00 31.23 2246 N VAL 10 296 18.745 59.590 23.657 MOTA 2247 CA VAL 1.00 32.87 1.00 32.48 ATOM 2248 CB VAL 296 18.890 58.623 24.831 ATOM 2249 CG1 VAL 296 17.827 58.899 25.868 1.00 32.99 2250 296 1.00 33.56 ATOM CG2 VAL 18.762 57.198 24.323 ATOM 2251 C 296 19.020 61.025 24.122 1.00 33.74 VAL ATOM 2252 296 18.086 61.778 24.431 1.00 33.68 15 0 VAL MOTA 2253 297 20.296 61.409 24.145 1.00 34.02 N ARG 2254 1.00 35.34 MOTA CA ARG 297 20:659 62.757 24.563 MOTA 2255 CB ARG 297 22.147 63.008 24.342 1.00 34.89 MOTA 2256 CG ARG 297 22.940 63.279 25.609 1.00 35.27 20 MOTA 2257 CD ARG 297 23.791 64.525 25.454 1.00 35.98 MOTA 2258 NE ARG 297 24.226 64.700 24.074 1.00 37.11 ATOM 2259 CZARG 297 24.476 65.878 23.513 1.00 37.43 MOTA 2260 NH1 ARG 297 24.348 66.994 24.226 1.00 38.45 MOTA 2261 NH2 ARG 297 24.809 65.944 22.229 1.00 36.61 297 25 MOTA 2262 С ARG 19.870 63.766 23.747 1.00 36.07 2263 297 19.103 64.574 1.00 36.76 MOTA ARG 24.285 0 2264 298 20.063 22.437 1.00 36.93 MOTA N LEU 63.699 21.500 1.00 37.55 ATOM 2265 LEU 298 19.407 64.596 ÇA 298 19.768 1.00 37.28 MOTA 2266 CB LEU 64.178 20.077 30 MOTA 2267 CG LEU 298 21.272 64.065 19.816 1.00 36.13 298 21.478 18.341 1.00 36.85 ATOM 2268 CD1 LEU 63.784 ATOM 2269 CD2 LEU 298 21.991 65.356 20.218 1.00 35.02 ATOM 2270 С LEU 298 17.892 64.633 21.670 1.00 38.53 ATOM 2271 0 LEU 298 17.276 65.708 21.618 1.00 38.44 35 ATOM 2272 N VAL 299 17.289 63.462 21.866 1.00 39.23 MOTA 2273 CA VAL 299 15.839 63.389 22.054 1.00 40.08 1.00 39.44 299 15.349 ATOM 2274 CB VAL 61.932 22.110 ATOM 2275 CG1 VAL 299 13.844 61.892 22.385 1.00 37.91 299 1.00 38.72 MOTA 2276 CG2 VAL 15.676 61.240 20.802 299 15.435 23.350 1.00 40.94 MOTA 2277 С VAL 64.087 1.00 41.66 299 14.321 64.612 ATOM 2278 0 VAL 23.461 MOTA 2279 N LEU 300 16.337 64.091 24.328 1.00 41.41 2280 300 16.043 64.737 1.00 42.31 ATOM CA LEU 25.600 2281 300 16.973 64.224 26.713 1.00 41.48 ATOM CB LEU 16.943 300 1.00 40.38 45 ATOM 2282 CG LEU 62.766 27.206 300 17.677 ATOM 2283 CD1 LEU 62.711 28.545 1.00 40.14 ATOM 2284 CD2 LEU 300 15.517 62.251 27.380 1.00 38.74 MOTA 2285 С LEU 300 16.204 66.251 25.444 1.00 43.44 2286 LEU 300 15.304 25.806 1.00 43.84 ATOM 0 67.020 50 LEU 301 17.346 66.675 24.898 1.00 43.90 ATOM 2287 N LEU 17.603 24.707 1.00 43.85 MOTA 2288 CA 301 68.100 ATOM 2289 CВ LEU 301 18.895 68.335 23.919 1.00 43.20 24.613 ATOM 2290 CG LEU 301 20.211 67.969 1.00 43.48 ATOM 2291 CD1 LEU 301 21.385 68.372 23.730 1.00 43.37 55 ATOM 2292 CD2 LEU 301 20.307 68.675 25.955 1.00 43.71 ATOM 2293 С LEU 301 16.444 68.738 23.969 1.00 44.11 ATOM 2294 0 LEU 301 16.068 69.875 24.254 1.00 44.38 ATOM 2295 N ARG 302 15.863 68.007 23.025 1.00 44.45 302 14.753 68.571 1.00 45.04 ATOM 2296 CA ARG 22.280

Figure 4 43/63 MOTA 2297 CB ARG 302 14.296 67.660 21.148 1.00 45.49 MOTA 2298 ARG CG 302 13.082 68.256 20.468 1.00 45.91 ATOM 2299 CD ARG 302 12.391 67.327 19.514 1.00 46.45 MOTA 2300 NE ARG 302 11.194 67.985 19.007 1.00 47.37 2301 MOTA CZARG 302 10.423 67.503 18.043 1.00 48.12 MOTA 2302 NH1 ARG 302 10.719 66.344 17.466 1.00 48.80 MOTA 2303 NH2 ARG 302 9.357 68.190 17.657 1.00 47.77 ATOM 2304 С ARG 302 13.577 68.807 23.196 1.00 45.13 MOTA 2305 0 ARG 302 12.982 69.885 23.198 1.00 45.57 10 **ATOM** 2306 Ν LEU 303 13.228 67.787 23.966 1.00 45.14 MOTA 2307 CA LEU 303 12.113 67.918 24.883 1.00 45.18 ATOM 2308 LEU CB 303 11.952 66.624 25.695 1.00 44.02 MOTA 2309 LEU CG 303 11.495 65.427 24.846 1.00 42.43 MOTA 2310 CD1 LEU 11.365 303 64.162 25.690 1.00 41.06 15 ATOM 2311 CD2 LEU 303 10.154 65.784 24.207 1.00 41.96 ATOM 2312 С LEU 303 12.359 69.133 25.783 1.00 45.83 ATOM 2313 0 LEU 303 11.444 69.919 26.044 1.00 45.85 MOTA 2314 N VAL 304 13.599 69.302 26.232 1.00 46.44 MOTA 2315 CA VAL 304 13.943 70.440 27.085 1.00 47.76 20 15.443 ATOM 2316 СВ VAL 304 70.426 27.496 1.00 47.79 MOTA 2317 CG1 VAL 304 15.866 71.815 27.996 1.00 46.89 ATOM 2318 CG2 VAL 304 15.678 69.386 28.581 1.00 47.81 MOTA 2319 VAL С 304 13.666 71.764 26.371 1.00 48.44 MOTA 2320 304 0 VAL 12.899 72.596 1.00 48.95 26.861 25 ATOM 2321 Ν ASP 305 14.297 71.946 25.212 1.00 48.52 MOTA 2322 CA ASP 305 14.143 73.165 24.432 1.00 48.31 MOTA 2323 CB ASP 305 14.968 73.067 23.143 1.00 49.45 MOTA 2324 ASP CG 305 16.441 72.715 1.00 51.00 23.412 MOTA 2325 OD1 ASP 305 17.056 73.323 24.317 1.00 50.99 30 ATOM 2326 OD2 ASP 305 16.994 71.834 22.715 1.00 51.84 MOTA 2327 C ASP 305 12.677 73.460 24.122 1.00 47.77 MOTA 2328 0 ASP 305 12.341 74.541 23.641 1.00 48.22 MOTA 2329 GLU Ν 306 11.799 72.505 24.407 1.00 46.84 MOTA 2330 CA GLU 306 10.378 72.713 24.176 1.00 46.34 35 MOTA 2331 GLU CB 306 9.831 71.683 23.184 1.00 46.20 ATOM 2332 GLU CG 9.866 306 72.216 21.761 1.00 48.15 ATOM 2333 GLU CD 306 9.571 71.175 20.692 1.00 49.26 ATOM 2334 OE1 GLU 306 8.514 1.00 50.03 70.499 20.768 MOTA 2335 OE2 GLU 19.759 306 10.398 71.049 1.00 49.62 ATOM 2336 С GLU 306 9.635 72.661 25.493 1.00 45.99 ATOM 2337 GLU 0 306 8.459 72.331 25.550 1.00 45.90 ATOM 2338 ASN N 307 10.350 72.997 26.560 1.00 46.00 MOTA 2339 ASN CA 307 9.787 73.029 27.902 1.00 45.60 MOTA 2340 CB ASN 307 9.033 74.342 28.094 1.00 46.42 45 ATOM 2341 ÇG ASN 307 9.971 75.531 28.224 1.00 46.98 ATOM 2342 OD1 ASN 307 10.435 75.849 29.321 1.00 47.63 ATOM 2343 ND2 ASN 307 10.273 76.181 27.102 1.00 46.93 MOTA 2344 С ASN 307 8.886 71.853 28.246 1.00 45.05 MOTA 2345 0 ASN 307 7.812 72.029 28.829 1.00 45.19 ATOM 2346 N LEU 308 9.336 70.650 27.900 1.00 44.24 ATOM 2347 LEU CA 308 8.575 69.439 28.180 1.00 43.28 2348 ATOM CB LEU 308 8.376 68.637 26.893 1.00 43.27 MOTA 2349 CG LEU 308 7.070 68.825 26.115 1.00 44.09 MOTA 2350 CD1 LEU 308 6.765 70.294 25.935 1.00 44.22 MOTA 2351 CD2 LEU 308 7.182 68.139 24.760 1.00 43.94 MOTA 2352 С LEU 9.287 308 68.570 29.205 1.00 42.96 MOTA 2353 0 LEU 308 8.688 67.660 29.775 1.00 42.27 MOTA 2354 N LEU 309 10.560 68.868 1.00 43.49 29.448 MOTA 2355 CA LEU 309 11.368 68.077 30.371 1.00 44.85

\bigcirc	Fig	gure 4				44/63				
	ATOM	2356	CB	LEU	309	12.030	66.936	29.581	1.00 43.53	
	ATOM	2357	CG	LEU	309	12.958	65.925	30.254	1.00 42.07	
	MOTA	2358	CD1		309	12.235	65.226	31.390	1.00 40.83	
5	MOTA MOTA	2359 2360	CD2		309	13.416	64.913	29.212	1.00 42.11	
J	ATOM	2361	C 0	LEU LEU	309 309	12.436 13.074	68.900 69.777	31.108 30.518	1.00 46.21 1.00 46.04	
	ATOM	2362	N	PHE	310	12.625	68.601	30.318	1.00 48.04	
	ATOM	2363	CA	PHE	310	13.608	69.293	33.238	1.00 47.32	
	ATOM	2364	CB	PHE	310	15.003	69.093	32.666	1.00 48.20	
10	ATOM	2365	CG	PHE	310	15.438	67.650	32.590	1.00 47.06	
	ATOM	2366	CD1		310	16.338	67.228	31.615	1.00 46.24	
	ATOM	2367	CD2		310	14.947	66.715	33.497	1.00 46.63	
	MOTA	2368	CE1	PHE	310	16.740	65.903	31.540	1.00 45.74	
	ATOM	2369	CE2	PHE	310	15.344	65.385	33.433	1.00 46.27	
15	MOTA	2370	CZ	PHE	310	16.243	64.978	32.451	1.00 45. 9 3	
	MOTA	2371	C	PHE	310	13.292	70.785	33.345	1.00 51.16	
	ATOM	2372	0	PHE	310	14.185	71.616	33.561	1.00 50.84	
	ATOM	2373 2374	N	HIS	311	12.009	71.109	33.183	1.00 53.40	
20	ATOM ATOM	2374	CA CB	HIS HIS	311 311	11.529 11.744	72.482 73.012	33.262 34.683	1.00 55.80 1.00 57.57	
. 20	ATOM	2376	CG	HIS	311	11.744	72.098	35.745	1.00 57.37	
	ATOM	2377	CD2		311	11.848	71.363	36.689	1.00 60.29	
	ATOM	2378	ND1		311	9.867	71.815	35.879	1.00 60.36	
	ATOM	2379	CE1		311	9.699	70.944	36.860	1.00 60.99	
25	ATOM	2380	NE2		311	10.885	70.654	37.368	1.00 60.85	
	ATOM	2381	С	HIS	311	12.214	73.384	32.236	1.00 56.24	
	ATOM	2382	0	HIS	311	12.288	74.608	32.415	1.00 56.87	
	MOTA	2383	N	GLY	312	12.705	72.772	31.159	1.00 55.96	
20	ATOM	2384	CA	GLY	312	13.366	73.522	30.109	1.00 55.87	
30	ATOM	2385	C	GLY	312	14.820	73.804	30.420	1.00 56.16	
•	ATOM ATOM	2386	0	GLY	312	15.563	74.264	29.562	1.00 56.58	
	ATOM	2387 2388	N CA	GLU GLU	313 313	15.235 16.612	73.519 73.765	31.646 32.048	1.00 56.52 1.00 57.69	
	ATOM	2389	CB	GLU	313	16.621	74.379	33.447	1.00 57.09	
35	ATOM	2390	CG	GLU	313	15.849	75.698	33.515	1.00 63.16	
	ATOM	2391	CD	GLU	313	15.388	76.061	34.925	1.00 65.16	
	MOTA	2392		GLU	313	14.554	75.315	35.503	1.00 66.01	
	ATOM	2393	QE2	GLU	313	15.858	77.096	35.455	1.00 66.34	
	MOTA	2394	C	GLU	313	17.439	72.484	32.011	1.00 57.06	
40	ATOM	2395	0	GLU	313	17.155	71.529	32.728	1.00 57.01	
	ATOM	2396	N	ALA	314	18.463	72.472	31.169	1.00 56.56	
	ATOM	2397	CA	ALA	314	19.316	71.305	31.029	1.00 56.76	
	ATOM ATOM	2398 2399	CB C	ALA ALA	314 314	19.454 20.699	70.939 71. 4 90	29.557 31.643	1.00 56.47	
45	ATOM	2400	0	ALA	314	21.310	72.558	31.527	1.00 56.94 1.00 57.46	
45	ATOM	2401	N	SER	315	21.183	70.422	32.276	1.00 56.73	
	ATOM	2402	CA	SER	315	22.487	70.383	32.932	1.00 56.15	
	ATOM	2403	СВ	SER	315	22.666	69.029	33.624	1.00 56.44	
•	MOTA	2404	OG	SER	315	23.981	68.868	34.130	1.00 57.39	
50	MOTA	2405	С	SER	315	23.673	70.627	32.003	1.00 56.00	
	MOTA	2406	0	SER	315	23.595	70.416	30.793	1.00 55.42	
	MOTA	2407	N	GLU	316	24.776	71.070	32.598	1.00 56.67	
	MOTA	2408	CA	GLU	316	26.012	71.346	31.875	1.00 57.46	
- -	ATOM	2409	CB	GLU	316	27.111	71.754	32.860	1.00 58.71	
55	MOTA	2410	CG	GLU	316	28.458	72.050	32.206	1.00 60.34	
	MOTA	2411	CD OE1	GLU	316	28.442	73.343	31.406	1.00 61.64	
	MOTA MOTA	2412 2413		GLU GLU	316 316	28.288 28.574	74.420 73.280	32.031	1.00 62.41 1.00 61.76	
	ATOM	2413	C C	GLU	316	26.442	70.078	30.160 31.161	1.00 57.35	
	AION	7 4 T 4	C	بالتق	210	20.442	10.018	21.101	1.00 27.33	

7	1	Figure 4				. 15				
)						45/ 6 3				
	ATOM	2415	0	GLU	316	26.770	70.088	29.972	1.00 57.68	
	ATOM	2416	N	GLN	317	26.439	68.988	31.920	1.00 56.84	
	ATOM	2417	CA	GLN	317	26.817	67.677	31.427		
5	ATOM ATOM	2418	CB	GLN	317	26.760	66.669	32.580		
3		2419	CG	GLN	317	27.504	67.113	33.840		
	ATOM ATOM	2420	CD	GLN	317	27.063	66.355	35.085		
	ATOM	2421 2422	OE1		317	27.246	65.140	35.194		
	ATOM	2423	NE2 C		317	26.468	67.074	36.029		
10	ATOM	2423	0	GLN	317	25.902	67.210	30.290		
10	ATOM	2425	N	GLN LEU	317 318	26.376	66.634	29.312	1.00 56.16	•
	ATOM	2426	CA	LEU	318	24.599	67.476	30.412	1.00 56.41	
	ATOM	2427	CB	LEU	318	23.616	67.043	29.413	1.00 56.48	
	ATOM	2428	CG	LEU	318	22.190 21.084	67.333	29.890	1.00 55.59	
15	ATOM	2429		LEU	318	21.084	66.700	29.034	1.00 54.71	
	ATOM	2430		LEU	318	19.731	65.191 67.268	29.231 29.422	1.00 53.88	
	ATOM	2431	C	LEU	318	23.784	67.621	28.017	1.00 54.28 1.00 56.99	
	MOTA	2432	0	LEU	318	23.692	66.893	27.029	1.00 56.99	
	ATOM	2433	N	ARG	319	24.011	68.924	27.919	1.00 57.21	
20	ATOM	2434	CA	ARG	319	24.177	69.530	26.606	1.00 57.68	
	MOTA	2435	CB	ARG	319	23.870	71.026	26.690	1.00 59.32	
	MOTA	2436	CG	ARG	319	22.420	71.284	27.105	1.00 62.20	
	ATOM	2437	CD	ARG	319	22.125	72.743	27.401	1.00 64.53	
	ATOM	2438	NE	ARG	319	20.758	72.927	27.892	1.00 66.89	
25	ATOM	2439	CZ	ARG	319	20.297	.74.055	28.433	1.00 68.29	
	ATOM	2440		ARG	319	21.096	75.112	28.555	1.00 68.30	
	ATOM	2441		ARG	319	19.034	74.127	28.851	1.00 68.25	
	ATOM	2442	C	ARG	319	25.587	69.278	26.081	1.00 57.09	
30	ATOM ATOM	2443	0	ARG	319	26.049	69.951	25.160	1.00 57.05	
50	ATOM	2444 2445	N	THR	320	26.246	68.277	26.667	1.00 56.25	
	ATOM	2445	CA CB	THR THR	320	27.612	67.888	26.318	1.00 55.15	
	ATOM	2447	OG1		320 . 320	28.478	67.836	27.589	1.00 54.85	
	ATOM	2448		THR	320	28.601 29.854	69.158	28.133	1.00 54.94	
35	MOTA	2449	. C	THR	320	27.689	67.262 66.524	27.287	1.00 54.63	
	ATOM	2450	0	THR	320	27.476	65.480	25.613 26.229	1.00 55.04	
	ATOM	2451	N	ARG	321	28.017	66.536	24.326	1.00 55.13 1.00 54.38	
	ATOM	2452	CA	ARG	321	28.106	65.304	23.545	1.00 54.36	
	ATOM	2453	CB	ARG	321	28.841	65.586	22.236	1.00 56.05	
40	ATOM	2454	CG	ARG	321	28.153	66.651	21.402	1.00 59.03	
	MOTA	2455	CD	ARG	321	28.943	67.013	20.156	1.00 61.60	
	ATOM	2456	NE	ARG	321	28.331	68.123	19.426	1.00 63.68	
	MOTA	2457	CZ	ARG	321	28.909	68.753	18.406	1.00 65.43	
	ATOM	2458	NH1		321	30.119	68.381	17.997	1.00 65.83	
45	ATOM	2459	NH2		321	28.280	69.750	17.792	1.00 65.76	
	ATOM	2460	C	ARG	321	28.765	64.123	24.262	1.00 52.97	
	ATOM	2461	0	ARG	321	29.885	64.234	24.758	1.00 53.13	
	ATOM	2462	N	GLY	322	28.056	62.996	24.316	1.00 51.39	
50	ATOM	2463	CA	GLY	322	28.592	61.802	24.950	1.00 49.22	
50	ATOM	2464	C	GLY	322	28.198	61.609	26.402	1.00 48.17	
	ATOM	2465	0	GLY	322	28.450	60.550	26.986	1.00 48.17	
	ATOM ATOM	2466 2467	N	ALA	323	27.574	62.627	26.988	1.00 46.66	
	ATOM		CA	ALA	323	27.150	62.573	28.385	1.00 44.99	
55	ATOM	2468 2469	CB C	ALA	323	26.462	63.861	28.761	1.00 45.87	
55	ATOM	2470	0	ALA	323	26.224	61.403	28.676	1.00 43.43	
	ATOM	2471	N	ALA PHE	323 324	26.514	60.562	29.530	1.00 43.02	
	ATOM	2472	CA	PHE	324	25.094	61.361	27.981	1.00 41.61	
	ATOM	2473	CB	PHE	324	24.147	60.282	28.185	1.00 40.44	
	OII	7 7 1 J	دىپ	EHE	344	22.797	60.631	27.564	1.00 38.94	

	F	igure 4				46/63				
	ATOM	2474	CG	PHE	324	21.644	59.988	28.262	1.00 38.08	
	ATOM	2475	CD1	PHE	324	21.047	60.613	29.360	1.00 37.48	
	ATOM	2476	CD2	PHE	324	21.185	58.733	27.860	1.00 36.96	
	ATOM	2477	CE1	PHE	324	20.010	59.998	30.050	1.00 37.11	
5	ATOM	2478	CE2	PHE	324	20.146	58.105	28.542	1.00 37.79	
	ATOM	2479	CZ	PHE	324	19.555	58.739	29.643	1.00 37.73	
	MOTA	2480	С	PHE	324	24.721	59.033	27.525	1.00 40.11	
	ATOM	2481	0	PHE	324	24.785	58.937	26.289	1.00 40.76	
	ATOM	2482	N	GLU	325	25.129	58.072	28.350	1.00 39.06	
10	ATOM	2483	CA	GLU	325	25.740	56.851	27.844	1.00 37.85	•
	ATOM	2484	CB	GLU	325	26.846	56.418	28.781	1.00 38.17	
	ATOM	2485	CG	GLU	325	27.790	57.528	29.085	1.00 40.68	
	MOTA	2486	CD	GLU	325	28.922	57.075	29.951	1.00 42.47	
	ATOM	2487	OE1	GLU	325	28.653	56.608	31.086	1.00 44.06	
15	MOTA	2488	OE2	GLU	325	30.080	57.181	29.490	1.00 44.51	
	MOTA	2489	С	GLU	325	24.799	55.693	27.641	1.00 36.60	
	ATOM	2490	0	GLU	325	23.903	55.445	28.447	1.00 37.31	
	ATOM	2491	N	THR	326	25.019	54.968	26.554	1.00 35.30	
	ATOM	2492	CA	THR	326	24.193	53.816	26.245	1.00 33.37	
.20	ATOM	2493	CB	THR	326	24.875	52.921	25.207	1.00 31.58	
	ATOM	2494	OG1	THR	326	24.934	53.617	23.956	1.00 29.82	
	MOTA	2495	CG2	THR	326	24.113	51.619	25.041	1.00 29.94	
	MOŢA	2496	С	THR	326	23.951	53.016	27.515	1.00 33.05	
	MOTA	2497	0	THR	326	22.846	52.528	27.742	1.00 33.99	
25	ATOM	2498	N	ARG	327	24.981	52.902	28.349	1.00 32.29	
	ATOM	2499	CA	ARG	327	24.859	52.148	29.588	1.00 31.76	
	MOTA	2500	CB	ARG	327	26.146	52.245	30.417	1.00 33.30	
	ATOM	2501	CG	ARG	327	26.226	51.162	31.485	1.00 36.71	
20	ATOM	2502	CD	ARG	327	27.596	51.043	32.177	1.00 38.88	
30	MOTA	2503	NE	ARG	327	27.795	52.024	33.249	1.00 40.62	
	MOTA	2504	CZ	ARG	327	28.274	53.255	33.069	1.00 41.13	
	ATOM	2505	NH1		327	28.615	53.670	31.846	1.00 40.49	
	ATOM	2506		ARG	327	28.393	54.078	34.113	1.00 40.82	
35	MOTA	2507	C	ARG	· 327	23.681	52.691	30.387	1.00 30.62	
33	MOTA	2508	0	ARG	327	22.888	51.930	30.940	1.00 29.96	
	MOTA MOTA	2509 2510	N CA	PHE PHE	328 328	23.559	54.014	30.425	1.00 29.60	
	ATOM	2511	CB	PHE	328	22.479 22.632	54.660	31.154	1.00 28.70	
	ATOM	2512	CG	PHE	328	23.903	56.176			
40	ATOM	2513		PHE	328	23.903	56.684 57.975	31.686	1.00 27.73	
	ATOM	2514	CD2		328	24.537	55.857		1.00 27.37	
	ATOM	2515	CE1		328	25.526	58.437	32.505 31.992	1.00 28.92 1.00 28.75	
	ATOM	2516	CE2		328	25.871	56.305	33.069	1.00 28.74	
	ATOM	2517	CZ	PHE	328	26.298	57.599	32.812	1.00 28.74	
45	ATOM	2518	Ċ	PHE	328	21.135	54.226	30.590	1.00 29.06	
	MOTA	2519	Ō	PHE	328	20.189	53.953	31.351	1.00 29.59	
	MOTA	2520	N	VAL	329	21.057	54.154	29.257	1.00 28.40	
	ATOM	2521		VAL	329	19.830	53.735	28.587	1.00 26.44	
	MOTA	2522	СВ	VAL	329	20.040	53.552	27.059	1.00 25.14	
50	ATOM	2523	CG1		329	18.737	53.107	26.387	1.00 23.14	
	MOTA	2524	CG2		329	20.542	54.841	26.444	1.00 23.05	
	MOTA	2525	C	VAL	329	19.388	52.399	29.166	1.00 27.98	
	MOTA	2526	Ō	VAL	329	18.240	52.239	29.576	1.00 27.88	
	ATOM	2527	N	SER	330	20.308	51.442	29.219	1.00 27.33	
55	MOTA	2528	CA	SER	330	19.966	50.117	29.718	1.00 30.08	
	ATOM	2529	CB	SER	330	21.136	49.171	29.534	1.00 30.45	
	ATOM	2530	OG	SER	330	20.720	47.852	29.822	1.00 30.43	
	MOTA	2531	C	SER	330	19.534	50.107		1.00 31.32	
	MOTA	2532	0	SER	330	18.690	49.298	31.577	1.00 31.74	
								· – · • · ·		

\bigcirc	F i	igure 4				47/63	,			
	ATOM	2533	N	GLN	331	20.118	50.993	31.972	1.00 32.45	
	MOTA	2534	CA	GLN	331	19.745	51.061	33.381	1.00 33.16	
	MOTA	2535	CB	GLN	331	20.668	51.992	34.151	1.00 33.58	
_	MOTA	2536	CG	GLN	331	22.093	51.540	34.194	1.00 35.83	
5	ATOM	2537	CD	GLN	331	22.947	52.534	34.919	1.00 37.72	
	ATOM	2538	OE1	GLN	331	22.626	52.927	36.043	1.00 39.62	
	ATOM	2539	NE2	GLN	331	24.042	52.958	34.291	1.00 38.98	
	ATOM	2540	C	GLN	331	18.327	51.591	33.482	1.00 33.78	
10	ATOM	2541.		GLN	331	17.428	50.881	33.938	1.00 34.06	
10	MOTA MOTA	2542 2543	N	VAL	332	18.129	52.835	33.038	1.00 33.77	
	ATOM	2544	CA CB	VAL VAL	332	16.808	53.457	33.097	1.00 33.65	
•	ATOM	2545		VAL	332 332	16.760	54.791	32.282	1.00 32.19	
	ATOM	2546		VAL	332	17.279 15.340	54.584 55.312	30.905 32.215	1.00 33.04 1.00 31.67	
15	ATOM	2547	C	VAL	332	15.695	52.505	32.638	1.00 31.87	
20	ATOM	2548	Õ	VAL	332	14.571	52.566	33.139	1.00 34.20	
	ATOM	2549	N	GLU	333	16.001	51.607	31.711	1.00 34.30	
	ATOM	2550	CA	GLU	333	14.981	50.676	31.258	1.00 34.92	
	ATOM	2551	CB	GLU	333	15.210	50.289	29.795	1.00 34.40	
20	MOTA	2552	CG	GLU	333	14.893	51.413	28.837	1.00 33.07	
	ATOM	2553	CD	GLU	333	14.806	50.956	27.409	1.00 31.80	
	MOTA	2554	OE1	GLU	333	13.983	50.060	27.114	1.00 31.65	
	MOTA	2555		GLU	333	15.561	51.504	26.581	1.00 31.72	
	ATOM	2556	C	GLU	333	14.949	49.438	32.135	1.00 35.76	
25	MOTA	2557	0	GLU	333	14.163	48.520	31.911	1.00 35.73	
	MOTA	2558	N	SER	334	15.814	49.419	33.138	1.00 36.91	
	ATOM	2559	CA	SER	334	15.876	48.307	34.071	1.00 38.13	
	ATOM ATOM	2560 2561	CB	SER	334	17.328	47.934	34.346	1.00 39.38	
30	ATOM	2562	OG C	SER SER	334 334	17.460 15.201	46.524 48.747	34.468	1.00 41.52	
50	ATOM	2563	Ö	SER	334	15.053	47.973	35.362 36.306	1.00 37.93 1.00 38.63	
	ATOM	2564	N	ASP	335	14.807	50.014	35.385	1.00 38.51	
	ATOM	2565	CA	ASP	335	14.133	50.619	36.521	1.00 38.59	
	MOTA	2566	CB	ASP	335	13.776	52.061	36.173	1.00 39.10	
35	MOTA	2567	CG	ASP	335	13.346	52.864	37.373	1.00 39.89	
	MOTA	2568	OD1	ASP	335	12.278	52.547	37.950	1.00 40.30	
	MOTA	2569	OD2	ASP,	335	14.079	53.816	37.737	1.00 39.90	
	ATOM	2570	C	ASP	335	12.876	49.809	36.840	1.00 39.11	•
	MOTA	2571	0	ASP	335	12.241	49.249	35.945	1.00 39.03	
40	ATOM	2572	N	THR	336	12.517	49.768	38.119	1.00 39.68	
	ATOM	2573	CA	THR	336	11.372	48.999	38.605	1.00 39.94	
	MOTA MOTA	2574 2575	CB OC1	THR	336	11.773	48.297	39.896	1.00 39.68	
	ATOM	2576	OG1 CG2	THR THR	336 336	12.901 10.650	47.464	39.630	1.00 40.95	
45	ATOM	2577	C	THR	336	10.030	47.452 49.735	40.426 38.853	1.00 39.84 1.00 40.52	
10	ATOM	2578	0	THR	336	8.984	49.733	38.931	1.00 40.91	
	ATOM	2579	N	GLY	337	10.085	51.054	38.970	1.00 40.80	
	ATOM	2580	CA	GLY	337	8.870	51.804	39.234	1.00 41.83	
	ATOM	2581	C	GLY	337	9.307	52.948	40.112	1.00 42.60	
50	ATOM	2582	0	GLY	337	8.990	54.105	39.865	1.00 43.33	
	MOTA	2583	N	ASP	338	10.043	52.604	41.156	1.00 43.47	
	MOTA	2584	CA	ASP	338	10.606	53.589	42.059	1.00 44.40	
	MOTA	2585	CB	ASP	338	11.354	52.868	43.175	1.00 44.83	
	ATOM	2586	CG	ASP	338	12.303	51.808	42.637	1.00 45.34	
55	ATOM	2587		ASP	338	11.879	51.032	41.751	1.00 46.12	
	ATOM	2588		ASP	338	13.465	51.742	43.087	1.00 45.59	
	ATOM	2589	C	ASP	338	11.597	54.296	41.142	1.00 44.84	
	MOTA MOTA	2590 2591	O NT	ASP	338	12.605	53.709	40.756	1.00 45.53	
	WI OM	CJJI	N	ARG	339	11.310	55.533	40.763	1.00 44.81	

		75 A									
)		Figure 4				48/63					
	ATOM	2592	CA	ARG	339	12.208	56.256	39.874	1.00		
	ATOM	2593	CB	ARG	339	11.702	57.687	39.654	1.00		
	ATOM	2594	CG	ARG	339	10.466	57.799	38.783	1.00		
5	ATOM ATOM	2595 2596	CD NE	ARG	339	9.201	57.413	39.521	1.00		
3	ATOM	2597	CZ	ARG ARG	339 339	8.041 6.780	57.492 57.326	38.633 39.017	1.00		
	ATOM	2598		ARG	339	6.492	57.068	40.287	1.00		
	ATOM	2599		ARG	339	5.806	57.413	38.123	1.00		
	ATOM	2600	C	ARG	339	13.637	56.295	40.419	1.00		
10	ATOM	2601	0	ARG	339	14.466	57.084	39.960	1.00		
	MOTA	2602	N	LYS	340	13.922	55.441	41.394	1.00		
	MOTA	2603	CA	LYS	340	15.238	55.394	42.001	1.00		
	ATOM	2604	CB	LYS	340	15.341	54.179	42.917	1.00	46.19	
	ATOM	2605	CG	LYS	340	14.358	54.250	44.081	1.00	47.87	
15	MOTA	2606	CD	LYS	340	14.598	53.154	45.094	1.00		
	ATOM	2607	CE	LYS	340	13.365	52.949	45.957	1.00		
	MOTA	2608	NZ	LYS	340	13.353	51.589	46.598	1.00		
	MOTA MOTA	2609 2610	C	LYS	340	16.398	55.422	41.014	1.00		
20	ATOM	2611	O N	LYS GLN	340 341	17.186	56.372	41.026	1.00		
20	ATOM	2612	CA	GLN	341	16.509 17.603	54.408 54.362	40.155 39.174	1.00		
	ATOM	2613	CB	GLN	341	17.598	53.028	38.435	1.00		
	ATOM	2614	CG	GLN	341	18.035	51.860	39.289	1.00		
	ATOM	2615	CD	GLN	341	18.758	50.801	38.482	1.00		
25	ATOM	2616	OE1	GLN	341	19.731	51.101	37.779	1.00		
	MOTA	2617	NE2	GLN	341	18.297	49.556	38.581	1.00		
	MOTA	2618	C	GLN	341	17.616	55.497	38.146	1.00	40.93	
	MOTA	2619	0	GLN	341	18.672	56.057	37.839	1.00		
	ATOM	2620	N	ILE	342	16.449	55.824	37.600	1.00		
30	MOTA	2621	CA	ILE	342	16.364	56.905	36.624	1.00		
	ATOM	2622 2623	CB	ILE	342	14.920	57.110	36.130	1.00		
	ATOM ATOM	2623		ILE	342 342	14.880	58.226	35.107	1.00		
	ATOM	2625		ILE	342	14.392 12.945	55.817 55.902	35.501 ` 35.070	1.00		
35	ATOM	2626	C	ILE	342	16.832	58.185	37.301	1.00		
	ATOM	2627	Ō	ILE	342	17.704	58.892	36.795	1.00		
	ATOM	2628	N	TYR	343	16.240	58.466	38.456	1.00		
	ATOM	2629	CA	TYR	343	16.580	59.647	39.236	1.00		
	MOTA	2630	CB	TYR	343	15.813	59.656	40.567	1.00		
40	MOTA	2631	CG	TYR	343	16.173	60.835	41.448	1.00	42.53	
	MOTA	2632		TYR	343	15.344	61.954	41.521	1.00		
	MOTA	2633		TYR	343	15.730	63.092	42.228	1.00		
	MOTA	2634		TYR	343	17.397	60.880	42.119	1.00		
45	MOTA MOTA	2635 2636		TYR	343	17.791	62.014	42.826	1.00		
43	ATOM	2637	CZ OH	TYR TYR	343 343	16.958 17.369	63.117	42.872	1.00		
	ATOM	2638	C	TYR	343	18.070	64.260 59.635	43.523 39.532	1.00		
	ATOM	2639	Ö	TYR	343	18.789	60.598	39.332	1.00		
	ATOM	2640	N	ASN	344	18.525	58.529	40.098	1.00		
50	ATOM	2641	CA	ASN	344	19.924	58.371	40.460	1.00		
	ATOM	2642	CB	ASN	344	20.146	56.958	40.989	1.00		
	ATOM	2643	ÇG	ASN	344	21.287	56.880	41.977	1.00		
	ATOM	2644	OD1	ASN	344	22.448	57.137	41.628	1.00		
	ATOM	2645	ND2	ASN	344	20.965	56.531	43.225	1.00	44.93	
55	ATOM	2646	C	ASN	344	20.869	58.649	39.292	1.00		
	ATOM	2647	0	ASN	344	21.946	59.208	39.483	1.00		
	ATOM	2648	N	ILE	345	20.460	58.262	38.085	1.00		
	ATOM	2649	CA	ILE	345	21.280	58.467	36.890	1.00		
	MOTA	2650	CB	ILE	345	20.803	57.555	35.720	1.00	39.76	

Figure 4 49/63 ATOM 2651 CG2 ILE 345 21.597 57.849 34.448 1.00 38.62 ATOM 2652 CG1 ILE 345 20.966 56.090 36.114 1.00 38.74 ATOM 2653 CD1 ILE 345 20.201 55.151 35.242 1.00 38.61 ATOM 2654 C ILE 345 21.247 59.924 36.434 1.00 39.80 ATOM 2655 0 ILE 345 22.281 60.490 36.074 1.00 39.67 ATOM 2656 Ν LEU 346 20.062 60.529 36.449 1.00 39.59 MOTA 2657 CA LEU 346 19.912 61.923 36.029 1.00 39.58 ATOM 2658 ÇВ LEU 346 18.434 62.255 35.818 1.00 37.79 ATOM 2659 LEU CG 346 17.809 61.528 34.625 1.00 36.58 10 ATOM 2660 CD1 LEU 346 16.277 61.599 34.684 1.00 35.18 ATOM 2661 CD2 LEU 346 18.363 62.145 33.337 1.00 35.05 ATOM 2662 C LEU 346 20.519 62.892 37.034 1.00 40.82 ATOM 2663 0 346 LEU 21.177 63.857 36.654 1.00 41.02 ATOM 2664 N SER 347 20.298 62.646 38.322 1.00 42.34 ATOM 2665 CA SER 347 20.859 63.530 39.339 1.00 43.44 MOTA 2666 CB SER 347 20.491 63.042 40.745 1.00 43.90 MOTA 2667 OG SER 347 20.665 61.639 40.868 1.00 45.32 ATOM 2668 С SER 347 22.368 63.556 39.156 1.00 43.44 MOTA 2669 0 SER 347 22.974 64.624 39.051 1.00 44.11 ATOM 2670 N THR 348 22.969 62.374 39.096 1.00 43.10 ATOM 2671 CA THR 348 24.407 62.285 38.909 1.00 42.97 ATOM 2672 CB THR 348 24.853 38.700 60.830 1.00 42.31 ATOM 2673 OG1 THR 348 24.666 60.096 39.918 1.00 42.08 ATOM 2674 CG2 THR 348 26.322 60.780 38.282 1.00 40.85 25 ATOM 2675 С 348 THR 24.798 63.093 37.683 1.00 43.25 ATOM 2676 0 348 THR 25.796 63.813 37.680 1.00 43.52 ATOM 2677 N LEU 349 23.990 62.982 36.640 1.00 43.57 ATOM 2678 CA LEU 349 24.271 63.697 35.412 1.00 44.17 ATOM 2679 CB LEU 349 23.343 63.180 34.311 1.00 44.43 30 ATOM 2680 CG LEU 349 23.787 63.204 32.847 1.00 44.86 MOTA 2681 CD1 LEU 349 25.198 62.658 32.688 1.00 44.59 MOTA 2682 CD2 LEU 349 22.790 62.375 32.046 1.00 44.64 ATOM 2683 C LEU 349 24.102 65.201 35.638 1.00 44.32 ATOM 2684 0 LEU 349 24.317 66.003 34.726 1.00 45.33 35 ATOM 2685 N GLY 350 23.722 65.574 36.862 1.00 43.94 ATOM 2686 CA GLY 350 23.559 66.981 37.210 1.00 43.15 ATOM 2687 С GLY 350 22.167 67.570 37.038 1.00 42.49 ATOM 2688 0 GLY 350 22.024 68.752 36.703 1.00 41.70 ATOM 2689 LEU N 351 21.143 66.758 37.288 1.00 41.97 ATOM 2690 CA LEU 351 19.758 67.197 37.132 1.00 41.45 MOTA 2691 CB LEU 351 19.194 66.676 35.812 1.00 40.99 ATOM 2692 CG LEU 351 19.875 67.115 34.522 1.00 40.66 MOTA 2693 CD1 LEU 351 19.516 66.144 33.416 1.00 41.63 ATOM 2694 CD2 LEU 351 19.453 68.533 34.172 1.00 40.77 45 ATOM 2695 С LEU 351 18.858 66.718 38.262 1.00 41.15 MOTA 2696 0 LEU 351 19.170 65.760 38.973 1.00 40.88 MOTA 2697 N ARG 352 17.720 67.379 38.410 1.00 41.10 MOTA 2698 ARG CA 352 16.782 67.007 39.457 1.00 41.25 ATOM 2699 CB ARG 352 16.614 40.431 68.173 1.00 42.65 ATOM 2700 ARG CG 352 17.929 68.581 41.070 1.00 43.68 ATOM 2701 CD ARG 352 18.504 67.421 41.851 1.00 45.59 MOTA 27:02 NE ARG 352 19.960 67.478 41.917 1.00 47.73 MOTA 2703 CZARG 352 20.715 66.567 42.521 1.00 48.77 ATOM 2704 NH1 ARG 352 20.143 65.524 43.119 1.00 49.05 55 MOTA 2705 NH2 ARG 352 22.038 66.700 42.519 1.00 49.14 MOTA 2706 C 352 ARG 15.458 66.621 38.827 1.00 39.59 MOTA 2707 0 ARG 352 14.512 67.399 38.793 1.00 40.34 ATOM 2708 N PRO 353 15.378 65.388 38.324 1.00 38.06 ATOM 2709 CD PRO 353 16.325 64.285 38.555 1.00 37.28

	Fi	igure 4				24 3 5					
\bigcirc		_				50/63					
	MOTA	2710	CA	PRO	353	14.159	64.901	37.683	1.00 37.45		
	ATOM	2711	CB	PRO	353	14.595	63.552	37.134	1.00 37.27		
	ATOM	2712	CG	PRO	353	15.491	63.064	38.232	1.00 36.92		
	ATOM	2713	C	PRO	353	12.998	64.763	38.650	1.00 36.35		
5	ATOM	2714	0	PRO	353	13.180	64.360	39.791	1.00 36.28		
	ATOM	2715	N	SER	354	11.805	65.110	38.194	1.00 35.82		
	ATOM	2716	CA	SER	354	10.625	64.951	39.028	1.00 36.40		
	MOTA	2717	CB	SER	354	9.570	66.010	38.698	1.00 35.94		
	ATOM	2718	OG	SER	354	8.944	65.725	37.459	1.00 35.63		
10	ATOM	2719	С	SER	354	10.091	63.570	38.653	1.00 36.41	•	
	ATOM	2720	0	SER	354	10.592	62.948	37.716	1.00 37.42		
	ATOM	2721	N	THR	355	9.087	63.091	39.375	1.00 36.02		
	ATOM	2722	CA	THR	355	8.493	61.790	39.099	1.00 35.68		
	ATOM	2723	CB	THR	355	7.200	61.615	39.923	1.00 36.38		
15	ATOM	2724	OG1		355	7.525	61.645	41.316	1.00 37.75		
	ATOM	2725		THR	355	6.510	60.293	39.598	1.00 36.44		
	ATOM	2726	C	THR	355	8.161	61.633	37.609	1.00 35.80		
	ATOM	2727	0	THR	355	8.319	60.548	37.029	1.00 34.73		
20	ATOM	2728	N	THR	356	7.698	62.720	36.994	1.00 35.28		
20	MOTA	2729	CA	THR	356	7.336	62.690	35.586	1.00 35.39		
	ATOM	2730	CB	THR	356	6.287	63.774	35.263	1.00 35.59		
	ATOM	2731		THR	356	6.651	64.990	35.925	1.00 35.39		
	ATOM	2732	CG2		356	4.892	63.331	35.719	1.00 34.33		
25	ATOM	2733	C	THR	356	8.542	62.848	34.662	1.00 35.30		
25	ATOM	2734	0	THR	356	8.560	62.285	33.559	1.00 34.91		
	ATOM	2735	N	ASP	357	9.537	63.624	35.089	1.00 35.07		
	ATOM	2736	CA	ASP	357	10.740	63.782	34.277	1.00 35.80		
•	ATOM	2737	CB	ASP	357	11.804	64.598	35.012	1.00 36.76		
30	ATOM ATOM	2738 2739	CG	ASP	357	11.451	66.077	35.116	1.00 38.19		
30	ATOM	2740		ASP ASP	357 357	11.475	66.778	34.071	1.00 37.60		
	ATOM	2741	C	ASP	357	11.158	66.538	36.249	1.00 38.76		
	ATOM	2742	0	ASP	357	11.277	62.373	34.039	1.00 35.97		
	ATOM	2743	N	CYS	358	11.460 11.498	61.942 61.649	32.901	1.00 36.94		
35	ATOM	2744	CA	CYS	358	12.013	60.293	35.131 35.057	1.00 35.67		
•	ATOM	2745	CB	CYS	358	12.013	59.658	36.447	1.00 35.44 1.00 35.93		
	ATOM	2746	SG	CYS	358	13.247	60.410	37.575	1.00 35.93		
	ATOM	2747	C	CYS	358	11.177	59.433	34.138	1.00 33.81		
	ATOM	2748	Ō	CYS	358	11.711	58.698	33.308	1.00 35.87		
40	ATOM	2749	N	ASP	359	9.863	59.517	34.290	1.00 33.87		
	ATOM	2750	CA	ASP	359	8.960	58.729	33.464	1.00 34.10		
	ATOM	2751	СВ	ASP	359	7.519	58.964	33.910	1.00 35.03		
	ATOM	2752	CG	ASP	359	7.118	58.058	35.062	1.00 36.65		
	ATOM	2753	OD1		359	7.950	57.850	35.975	1.00 38.15		
45	ATOM	2754	OD2		359	5.969	57.561	35.055	1.00 37.12		
	ATOM	2755	С	ASP	359	9.130	59.058	31.985	1.00 31.16		
	MOTA	2756	0	ASP	359	9.090	58.170	31.133	1.00 30.01		
	ATOM	2757	N	ILE	360	9.325	60.334	31.682	1.00 29.54		
	ATOM	2758	CA	ILE	360	9.524	60.741	30.300	1.00 28.61		
50	MOTA	2759	CB	ILE	360	9.546	62.273	30.162	1.00 27.75		
	ATOM	2760	CG2	ILE	360	10.255	62.668	28.874	1.00 27.01		
	MOTA	2761	CG1	ILE	360	8.112	62.818	30.235	1.00 26.18		
	ATOM	2762	CD1		360	8.024	64.322	30.190	1.00 23.23		
	ATOM	2763	С	ILE	360	10.857	60.176	29.825	1.00 29.21		
55	ATOM	2764	0	ILE	360	10.919	59.480	28.805	1.00 29.88		
	MOTA	2765	N	VAL	361	11.923	60.466	30.569	1.00 28.39		
	MOTA	2766	CA	VAL	361	13.248	59.971	30.219	1.00 28.01		
	MOTA	2767	CB	VAL	361	14.258	60.256	31.342	1.00 27.73		
	MOTA	2768	CG1	VAL	361	15.575	59.551	31.055	1.00 27.43		

\bigcirc	Fi	gure 4				51.63				
	MOTA	2769	CG2	VAL	361	14.492	61.759	31.453	1.00 27.76	
	ATOM	2770	C	VAL	361	13.245	58.464	29.919	1.00 27.74	
	ATOM	2771	0	VAL	361	14.055	57.982	29.107	1.00 27.74	
	ATOM	2772	N	ARG	362	12.341	57.719	30.556	1.00 27.72	
5	ATOM	2773								
J			CA	ARG	362	12.277	56.275	30.325	1.00 27.95	
	ATOM	2774	CB	ARG	362	11.523	55.571	31.455	1.00 29.48	
	ATOM	2775	CG	ARG	362	11.137	54.147	31.101	1.00 31.97	
	ATOM	2776	CD	ARG	362	10.900	53.266	32.308	1.00 33.93	
• •	ATOM	2777	NE	ARG	362	10.930	51.859	31.893	1.00 37.37	
10	ATOM	2778	CZ	ARG	362	10.938	50.817	32.725	1.00 37.52	
	ATOM	2779		ARG	362	10.920	51.010	34.043	1.00 38.72	
	ATOM	2780		ARG	362	10.960	49.582	32.230	1.00 36.06	
	MOTA	2781	C ,	ARG	362	11.614	55.959	28.994	1.00 27.88	
	ATOM	2782	0	ARG	362	12.016	55.032	28.289	1.00 29.02	
15	MOTA	2783	N	ARG	363	10.586	56.728	28.660	1.00 27.31	
	ATOM	2784	CA	ARG	363	9.866	56.564	27.400	1.00 25.77	
	ATOM	2785	СВ	ARG	363	8.641	57.486	27.374	1.00 26.51	
	MOTA	2786	CG	ARG	363	7.530	57.084	28.318	1.00 26.30	
	MOTA	2787	CD	ARG	363	6.730	55.929	27.739	1.00 28.36	
20	MOTA	2788	NE	ARG	363	6.259	56.216	26.380	1.00 30.91	
	MOTA	2789	CZ	ARG	363	6.872	55.826	25.260	1.00 31.55	
	MOTA	2790		ARG	363	7.992	55.112	25.315	1.00 33.18	
	MOTA	2791		ARG	363	6.370	56.158	24.077	1.00 32.30	
	MOTA	2792	Ç	ARG	363	10.817	56.949	26.272	1.00 24.71	
25	MOTA	2793	0	ARG	363	10.748	56.392	25.175	1.00 24.40	
	MOTA	2794	N	ALA	364	11.706	57.905	26.540	1.00 23.90	
	MOTA	2795	CA	ALA	364	12.653	58.339	25.507	1.00 24.48	
	MOTA	2796	CB	ALA	364	13.463	59.545	25.969	1.00 23.15	
	MOTA	2797	C	ALA	364	13.571	57.176	25.226	1.00 25.01	
30	ATOM	2798	0	ALA	364	13.854	56.872	24.069	1.00 26.22	
	MOTA	2799	N	CYS	365	14.023	56.518	26.290	1.00 25.03	
	MOTA	2800	CA	CYS	365	14.902	55.370	26.157	1.00 24.77	
•	MOTA	2801	CB	CYS	365	15.450	54.970	27.528	1.00 23.03	
	MOTA	2802	SG	CYS	365	16.728	56.114	28.173	1.00 21.60	
35	MOTA	2803	С	CYS	365	14.140	54.206	25.514	1.00 26.44	
	MOTA	2804	0	CYS	365	14.661	53.535	24.617	1.00 27.49	
	MOTA	2805	N	GLU	366	12.906	53.956	25.944	1.00 26.87	
	MOTA	2806	CA	GLU	366	12.145		25.342	1.00 27.98	
	MOTA	2807		GLU	366		52.743		1.00 28.74	
40	MOTA	2808	CG	GLU	366	10.785	52.431	27.490	1.00 30.75	
	MOTA	2809	CD	GLU	366	9.427	51.981	28.041	1.00 32.09	
	MOTA	2810		GLU	366	8.444	52.757	27.970	1.00 32.39	
	MOTA	2811		GLU	366	9.342	50.841	28.547	1.00 33.30	
	MOTA	2812	C	GLU	366	12.005	53.056	23.815	1.00 28.15	
45	ATOM	2813	0	GLU	366	12.117	52.104	23.029	1.00 27.63	
	MOTA	2814	N	SER	367	11.776	54.304	23.407	1.00 28.42	
	MOTA	2815	CA	SER	367	11.612	54.650	21.993	1.00 27.23	
	MOTA	2816	CB	SER	367	11.368	56.156	21.833	1.00 27.45	
	MOTA	2817	OG	SER	367	10.161	56.552	22.447	1.00 27.44	
50	ATOM	2818	C	SER	367	12.824	54.276	21.165	1.00 26.52	
	MOTA	2819	0	SER	367	12.724	53.567	20.162	1.00 27.99	
	ATOM	2820	N	VAL	368	13.977	54.773	21.581	1.00 24.30	
	MOTA	2821	CA	VAL	368	15.194	54.499	20.849	1.00 22.45	
==	MOTA	2822	CB	VAL	368	16.324	55.395	21.375	1.00 20.96	
55	MOTA	2823		VAL	368	17.623	55.075	20.682	1.00 18.44	
	MOTA	2824		VAL	368	15.928	56.843	21.190	1.00 18.99	
	MOTA	2825	C	VAL	368	15.605	53.019	20.888	1.00 23.13	
	MOTA	2826	0	VAL	368	15.850	52.420	19.832	1.00 23.88	
	MOTA	2827	N	SER	369	15.660	52.405	22.071	1.00 22.54	

Figure 4 52/63 MOTA 2828 CA SER 369 16.071 51.003 22.106 1.00 21.93 ATOM 2829 CB SER 369 16.248 50.476 23.542 1.00 23.39 ATOM 2830 OG SER 369 15.011 50.251 24.197 1.00 25.91 MOTA 2831 C SER 369 15.109 50.112 21.348 1.00 20.54 ATOM 2832 0 SER 369 15.526 49.063 20.850 1.00 20.31 MOTA 2833 Ν THR 370 13.832 50.499 21.259 1.00 18.40 MOTA 2834 CA THR 370 12.878 49.682 20.496 1.00 17.32 MOTA 2835 CB THR 370 1.00 16.46 11.400 49.976 20.859 ATOM 2836 OG1 THR 370 11.053 49.298 22.073 1.00 15.81 10 ATOM 2837 CG2 THR 370 10.473 49.487 19.774 1.00 14.39 MOTA 2838 С THR 370 13.076 49.936 19.001 1.00 17.03 MOTA 2839 0 THR 370 12.977 49.008 18.186 1.00 17.38 ATOM 2840 N ARG 371 13.358 51.177 18.617 1.00 16.71 ATOM 2841 CA ARG 371 13.562 51.423 17.201 1.00 16.54 15 ATOM 2842 CB ARG 371 13.810 52.905 16.882 1.00 17.42 ATOM 2843 CG ARG 371 14.013 53.123 15.374 1.00 17.76 MOTA 2844 CD ARG 371 54.559 14.283 14.943 1.00 17.40 MOTA 2845 NE ARG 371 15.567 55.076 15.412 1.00 18.85 ATOM 2846 CZARG 371 16.159 56.154 14.896 1.00 18.99 20 ATOM 2847 NH1 ARG 371 15.583 56.810 13.892 1.00 17.43 MOTA 2848 NH2 ARG 371 17.303 56.605 15.406 1.00 19.19 ATOM 2849 С ARG 371 14.763 50.607 16.759 1.00 15.91 ATOM 2850 0 ARG 371 14.689 49.929 15.748 1.00 17.14 ATOM 2851 N ALA 372 15.856 50.644 17.519 1.00 15.40 25 MOTA 2852 CA ALA 372 17.061 49.883 17.148 1.00 16.23 MOTA 2853 CB ALA 372 18.152 50.046 18.197 1.00 15.66 MOTA 2854 С ALA 372 16.775 48.407 16.957 1.00 16.83 ATOM 2855 0 ALA 372 17.125 47.838 15.923 1.00 18.06 MOTA 2856 N ALA 373 16.149 47.790 17.955 1.00 16.86 30 MOTA 2857 CA ALA 373 15.817 46.367 17.912 1.00 17.10 ATOM 2858 CB ALA 373 15.027 45.976 19.156 1.00 16.66 MOTA 2859 С ALA 373 15.024 46.018 16.665 1.00 18.79 ATOM 2860 0 ALA 373 15.301 45.004 16.018 1.00 20.02 MOTA 2861 N HIS 374 14.037 1.00 19.22 46.841 16.316 35 MOTA 2862 CA HIS 374 13.243 46.560 15.122 1.00 20.89 MOTA 2863 CB HIS 374 12.025 47.489 15.052 1.00 20.98 MOTA 2864 CG HIS 374 10.948 47.131 16.029 1.00 19.79 MOTA 2865 CD2 HIS 374 10.813 46.065 16.855 1.00 19.53 MOTA 2866 ND1 HIS 374 9.833 47.914 16.229 1.00 19.92 40 ATOM 2867 CE1 HIS 374 9.057 47.347 17.137 1.00 18.78 MOTA 2868 NE2 HIS 374 9.629 46,223 17.532 1.00 18.61 ATOM 2869 С HIS 374 14.075 46.696 13.866 1.00 21.57 ATOM 2870 0 HIS 374 14.136 45.789 13.058 1.00 21.42 MOTA 2871 N MSE 375 14.722 47.835 13.698 1.00 24.00 45 MOTA 2872 CA MSE 375 15.561 48.027 12.528 1.00 26.05 MOTA 2873 CB MSE 375 16.390 49.311 12.666 1.00 28.31 **ATOM** 2874 CG MSE 375 15.671 50.558 12.197 1.00 31.46 ATOM 2875 SE MSE 375 15.246 50.448 10.400 1.00 41.26 ATOM 2876 CE MSE 375 16.340 51.745 9.680 1.00 36.51 50 ATOM 2877 С MSE 375 16.476 46.810 12.390 1.00 25.84 ATOM 2878 0 MSE 375 16.501 11.351 46.159 1.00 26.84 ATOM 2879 N CYS 376 17.200 46.489 13.455 1.00 25.61 MOTA 2880 CA CYS 376 18.107 45.349 13.436 1.00 25.11 ATOM 2881 CYS CB 376 18.693 45.117 14.831 1.00 26.04 55 MOTA 2882 SG CYS 376 20.038 43.879 14.876 1.00 27.98 MOTA 2883 С CYS 376 17.445 44.058 12.931 1.00 24.01 MOTA 2884 0 CYS 376 18.015 43.369 12.078 1.00 24.35 ATOM 2885 N SER 377 16.251 43.741 13.443 1.00 22.14 MOTA 2886 CA SER 377 15.519 42.531 13.038 1.00 20.58

Figure 4 53/63 ATOM 2887 CB SER 377 14.203 42.399 13.811 1.00 20.36 MOTA 2888 OG SER 377 13.233 43.325 13.338 1.00 20.95 MOTA 2889 C SER 377 15.210 42.535 11.542 1.00 20.00 MOTA 2890 0 SER 377 15.154 41.484 10.900 1.00 19.23 MOTA 2891 N ALA 378 14.995 43.715 10.980 1.00 19.64 MOTA 2892 CA ALA 378 14.723 43.787 9.549 1.00 19.32 MOTA 2893 CB ALA 378 14.521 45.243 9.119 1.00 18.02 MOTA 2894 C ALA 378 15.958 43.186 8.874 1.00 19.40 ATOM 2895 0 ALA 378 15.860 42.230 8.093 1.00 18.55 10 MOTA 2896 N GLY 379 17.123 43.740 9.222 1.00 20.18 ATOM 2897 CA GLY 379 18.381 43.271 8.669 1.00 20.06 ATOM 2898 С GLY 379 18.547 41.762 8.734 1.00 19.52 MOTA 2899 0 GLY 379 18.754 41.113 7.704 1.00 20.07 ATOM 2900 N LEU 380 18.442 41.201 9.936 1.00 18.61 15 ATOM 2901 CA LEU 380 18.596 39.763 10.110 1.00 18.74 ATOM 2902 CB LEU 380 18.489 11.579 39.371 1.00 18.49 ATOM 2903 CG LEU 380 18.774 37.881 11.816 1.00 17.82 MOTA 2904 CD1 LEU 380 20.215 37.586 11.383 1.00 16.94 MOTA 2905 CD2 LEU 380 18.557 37.512 13.285 1.00 16.34 20 MOTA 2906 C LEU 380 17.580 38.938 9.341 1.00 19.56 MOTA 2907 0 LEU 380 17.895 37.833 8.892 1.00 20.67 MOTA 2908 N ALA 381 16.354 39,447 9.211 1.00 19.83 ATOM 2909 CA ALA 381 15.311 38.713 8.496 1.00 20.17 ATOM 2910 CB ALA 381 13.961 39.327 8.759 1.00 19.87 25 ATOM 2911 С ALA 381 15.638 38.746 7.009 1.00 21.06 ATOM 2912 0 ALA 381 15.421 **37**.773 6.269 1.00 21.05 MOTA 2913 N GLY 382 16.174 39.874 6.567 1.00 21.33 ATOM 2914 CA GLY 382 16.561 39.965 5.175 1.00 22.63 ATOM 2915 С GLY 382 17.670 38.954 4.903 1.00 23.10 30 ATOM 2916 0 GLY 382 17.708 1.00 23.74 38.319 3.832 ATOM 2917 N VAL 383 18.579 38.778 5.859 1.00 21.83 MOTA 2918 CA VAL 383 19.642 37.828 1.00 22.47 5.615 MOTA 2919 CB VAL 383 20.786 37.967 6.643 1.00 22.80 MOTA 2920 CG1 VAL 383 21.737 36.777 6.525 1.00 21.04 35 ATOM 2921 CG2 VAL 383 21.562 39.298 6.396 1.00 21.85 MOTA 2922 C VAL 383 19.075 36.423 5.639 1.00 22.92 MOTA 2923 0 VAL 383 19.199 35.681 1.00 23.65 4.675 MOTA 2924 N ILE 384 18.414 36.061 6.724 1.00 23.52 MOTA 2925 CA ILE 384 17.853 34.721 6.835 1.00 24.64 40 ATOM 2926 CB ILE 384 17.124 34.551 8.179 1.00 24.17 ATOM 2927 CG2 ILE 384 16.533 33.143 8.283 1.00 22.50 ATOM 2928 CG1 ILE 384 18.112 34.810 9.318 1.00 23.69 ATOM 2929 CD1 ILE 384 17.476 34.861 10.661 1.00 24.39 ATOM 2930 C ILE 384 16.910 34.324 5.691 1.00 26.04 45 ATOM 2931 0 ILE 384 17.029 33.233 5.144 1.00 26.98 ATOM 2932 N ASN 385 15.974 35.182 5.310 1.00 26.88 ATOM 2933 CA ASN 385 15.097 34.785 4.218 1.00 27.99 ATOM 2934 CB ASN 385 13.984 35.819 3.998 1.00 25.92 ATOM 2935 CG ASN 385 13.038 35.918 5.174 1.00 23.68 50 ATOM 2936 OD1 ASN 385 12.721 34.921 5.820 1.00 21.60 ATOM 2937 ND2 ASN 385 12.567 37.128 5.448 1.00 23.03 ATOM 2938 С ASN 385 15.888 34.579 2.915 1.00 29.62 ATOM 2939 0 ASN 385 15.610 33.647 2.143 1.00 29.62 ATOM 2940 N ARG 386 16.869 35.440 2.660 1.00 31.30 55 ATOM 2941 CA ARG 386 17.660 35.301 1.442 1.00 33.07 ATOM 2942 CB ARG 386 18.840 36.261 1.446 1.00 32.62 ATOM 2943 CG ARG 386 19.697 36.147 0.214 1.00 33.28 ATOM 2944 CD ARG 386 20,908 37.059 0.284 1.00 34.52 ATOM 2945 NE ARG 386 21.923 36.698 -0.704 1.00 35.29

	\bigcirc		Figure 4				•				
							54/63				
		MOTA	2946	CZ	ARG	386	21.812	36.910	-2.014	1.00 36.32	
		ATOM	2947		ARG	386	20.729	37.492	-2.518	1.00 35.95	
		ATOM	2948		ARG	386	22.782	36.525	-2.832	1.00 37.07	
	-	MOTA	2949	С	ARG	386	18.178	33.875	1.362	1.00 34.69	
	5	MOTA	2950	0	ARG	386	18.077	33.232	0.320	1.00 35.70	
		ATOM	2951	N	MSE	387	18.710	33.383	2.480	1.00 35.94	•
		ATOM	2952	CA	MSE	387	19.250	32.036	2.560	1.00 37.39	
		ATOM	2953	CB	MSE	387	19.903	31.828	3.927	1.00 39.78	
	. 10	ATOM	2954	CG	MSE	387	21.099	32.754	4.186	1.00 42.37	
	10	ATOM	2955	SE	MSE	387	21.873	32.552	5.859	1.00 49.18	
		MOTA MOTA	2956 2957	CE	MSE	387	21.738	30.694	6.097	1.00 44.67	
		ATOM	2958	С О	MSE	387	18.179	30.976	2.311	1.00 38.50	
		ATOM	2959	N	MSE ARG	387	18.463	29.927	1.721	1.00 37.80	
	15	ATOM	2960	CA	ARG	388 388	16.954	31.255	2.769	1.00 40.15	
		MOTA	2961	CB	ARG	388	15.808	30.352	2.586	1.00 41.28	
		ATOM	2962	CG	ARG	388	14.554 13.268	30.941	3.245	1.00 42.50	
		ATOM	2963	CD	ARG	388	12.266	30.115	3.069	1.00 42.73	
		ATOM	2964	NE	ARG	388	10.965	30.443 29.787	4.178	1.00 43.15	
	20	MOTA	2965	CZ	ARG	388	10.049	30.134	4.012 3.104	1.00 44.47	
		MOTA	2966		ARG	388	10.283	31.139	2.269	1.00 44.46	
		MOTA	2967		ARG	388	8.895	29.478	3.033	1.00 44.11 1.00 44.15	
		ATOM	2968	С	ARG	388	15.579	30.210	1.094	1.00 44.15	
		MOTA	2969	0	ARG	388	15.516	29.104	0.554	1.00 41.39	
	25	MOTA	2970	N	GLU	389	15.460	31.355	0.439	1.00 41.88	
		MOTA	2971	CA	GLU	389	15.275	31.405	-0.997	1.00 41.00	
		MOTA	2972	CB	GLU	389	15.211	32.867	-1.448	1.00 45.21	
		ATOM	2973	CG	GLU	389	15.227	33.079	-2.957	1.00 48.22	
		MOTA	2974	CD	GLU	389	13.894	32.754	-3.632	1.00 50.35	
	30	MOTA	2975	OE1		389	13.850	32.799	-4.891		
		MOTA	2976		GLU	389	12.900	32.464	-2.912	1.00 50.86	*
		MOTA	2977	C	GLU	389	16.476	30.713	-1.635	1.00 43.77	
		ATOM	2978	0	GLU	389	16.325	29.726	-2.355	1.00 43.53	
	25	ATOM	2979	N	SER	390	17.671	31.227	-1.335	1.00 43.84	
	35	ATOM	2980	CA	SER	390	18.925	30.697	-1.878	1.00 43.61	
		MOTA MOTA	2981	CB	SER	390	20.112	31.549	-1.425	1.00 43.41	
		ATOM	2982 2983	OG C	SER	390	20.229	32.703	-2.241	1.00 43.45	
		ATOM	2984	0	SER SER	390	19.243	29.234	-1.607	1.00 43.62	
	40	ATOM	2985	N	ARG	390 391	20.126	28.671	-2.251	1.00 44.11	
		ATOM	2986	CA	ARG	391	18.555	28.614	-0.660	1.00 43.22	
		ATOM	2987	CB	ARG	391	18.815 19.174	27.213	-0.396	1.00 43.67	
		ATOM	2988	CG	ARG	391	20.440	26.994 27.699	1.078	1.00 42.72	
		ATOM	2989	CD	ARG	391	20.907	27.099	1.512 2.892	1.00 41.51	
	45	ATOM	2990	NE	ARG	391	22.183	27.243	3.231	1.00 39.51 1.00 37.99	
		ATOM	2991	CZ	ARG	391	22.940	27.512	4.266	1.00 37.99	
		MOTA	2992	NH1		391	22.545	26.540	5.070	1.00 37.81	
		MOTA	2993	NH2		391	24.105	28.121	4.482	1.00 30.03	
		ATOM	2994	C	ARG	391	17.578	26.404	-0.756	1.00 37.12	
	50	ATOM	2995	0	ARG	391	17.458	25.241	-0.372	1.00 45.05	
		ATOM	2996	N	SER	392	16.666	27.023	-1.502	1.00 46.71	
		ATOM	2997	CA	SER	392	15.420	26.367	-1.895	1.00 48.25	
		ATOM	2998	CB	SER	392	15.631	25.468	-3.121	1.00 48.10	
		MOTA	2999	OG	SER	392	15.610	26.216	-4.326	1.00 48.60	
	55	MOTA	3000	С	SER	392	14.880	25.536	-0.737	1.00 49.61	
•		MOTA	3001	0	SER	392	14.601	24.344	-0.882	1.00 49.37	
		MOTA	3002	N	GLU	393	14.749	26.175	0.420	1.00 51.58	
		MOTA	3003	ĊA	GLU	393	14.237	25.510	1.617	1.00 53.54	
		ATOM	3004	CB	GLU	393	15.085	25.897	2.842	1.00 54.33	

Figure 4 55/63 **ATOM** 3005 CG GLU 3.93 16.586 25.655 2.701 1.00 54.92 ATOM 3006 CD GLU 393 17.057 24.420 3.450 1.00 55.87 MOTA 3007 OE1 GLU 393 16.845 24.347 4.683 1.00 55.29 MOTA 3008 OE2 GLU 393 17.646 23.523 2.806 1.00 56.69 ATOM 3009 C GLU 393 12.793 25.961 1.838 1.00 54.20 MOTA 3010 0 GLU 393 12.482 27.151 1.693 1.00 53.70 ATOM 3011 ASP N 394 11.907 25.026 2.173 1.00 55.42 ATOM 3012 CA ASP 394 10.519 25.404 2.419 1.00 56.88 ATOM 3013 CB ASP 394 9.585 24.194 2.400 1.00 58.69 10 ATOM 3014 CG ASP 394 8.111 24.602 2.415 1.00 61.23 ATOM 3015 OD1 ASP 394 7.691 25.298 3.376 1.00 62.29 MOTA 3016 OD2 ASP 394 7.374 24.237 1.466 1.00 62.03 MOTA 3017 C ASP 394 10.489 26.041 3.795 1.00 56.57 MOTA 3018 0 ASP 394 10.023 27.164 3.959 1.00 56.22 15 ATOM 3019 N VAL 395 25.298 10.994 4.773 1.00 56.79 MOTA 3020 CA VAL 395 11.086 25.756 6.153 1.00 57.23 MOTA 3021 CB VAL 395 10.166 24.949 7.093 1.00 57.72 ATOM 3022 CG1 VAL 395 10.444 25.320 8.548 1.00 57.64 ATOM 3023 CG2 VAL 395 8.708 25.221 6.749 1.00 58.46 20 ATOM 3024 С VAL 395 25.538 12.534 6.575 1.00 57.01 MOTA 3025 0 VAL 395 12.968 24.407 6.793 1.00 56.90 MOTA 3026 N MSE 396 13.280 26.626 6.690 1.00 56.80 MOTA 3027 ĊА MSE 396 7.058 14.682 26.536 1.00 56.12 ATOM 3028 CB MSE 396 15.463 27.645 6.375 1.00 57.66 25 MOTA 3029 CG MSE 396 16.932 27.623 6.690 1.00 60.51 ATOM 3030 SE MSE 396 17.716 29.077 6.002 1.00 65.26 MOTA 3031 CE MSE 396 17.988 28.564 4.293 1.00 64.74 ATOM 3032 MSE C 396 14.964 26.600 8.545 1.00 54.59 ATOM 3033 MSE 0 396 1.00 54.08 14.487 27.491 9.245 30 MOTA 3034 N ARG 397 15.740 25.637 1.00 53.05 9.025 ATOM 3035 CA ARG 397 16.134 25.613 10.426 1.00 51.13 ATOM 3036 ĊВ ARG 397 16.226 24.181 10.951 1.00 52.77 ATOM 3037 CG ARG 397 14.888 23.520 11.244 1.00 55.36 MOTA 3038 CD ARG 397 15.132 22.079 11.671 1.00 58.69 35 MOTA 3039 NE ARG 397 13.985 21.448 12.326 1.00 61.28 MOTA 3040 CZARG 397 14.056 20.294 12.990 1.00 62.10 MOTA 3041 NH1 ARG 397 15.215 19.651 13.078 1.00 62.57 MOTA 3042 NH2 ARG 397 12.978 19.793 13.583 1.00 62.49 MOTA 3043 C ARG 397 17.509 26.252 10.397 1.00 48.33 40 MOTA 3044 0 ARG 397 18.273 26.029 9.466 1.00 47.77 MOTA 3045 N ILE 398 17.825 27.064 11.395 1.00 45.82 MOTA 3046 CA ILE 398 19.120 27.721 11.396 1.00 43.01 MOTA 3047 CB ILE 398 19.202 10.293 28.791 1.00 43.25 MOTA 3048 CG2 ILE 398 18.161 29.864 10.532 1.00 43.18 45 MOTA 3049 CG1 ILE 398 20.594 29.417 10.279 1.00 43.75 ATOM 3050 CD1 ILE 398 20.768 30.466 9.206 1.00 44.64 ATOM 3051 С ILE 398 19.441 28.381 12.717 1.00 40.64 ATOM 3052 0 ILE 398 18.557 28.890 13.404 1.00 40.10 ATOM 3053 N THR 399 20.722 28.360 13.060 1.00 37.78 50 ATOM 3054 CA THR 399 21.185 28.954 14.290 1.00 35.36 ATOM 3055 CB THR 399 22.052 27.988 15.079 1.00 35.02 MOTA 3056 OG1 THR 399 21.280 26.832 15.425 1.00 34.92 ATOM 3057 CG2 THR 399 22.570 28.666 16.345 1.00 34.73 MOTA 3058 THR 30.197 C 399 22.001 13.994 1.00 34.71 55 ATOM 3059 0 THR 399 22.736 30.254 13.005 1.00 35.10 ATOM 3060 N VAL 400 21.858 31.184 14.871 1.00 32.96 MOTA 3061 CA VAL 400 22.539 32.457 14.759 1.00 31.07 ATOM 3062 CB VAL 400 21.514 33.593 14.592 1.00 31.21 ATOM 3063 CG1 VAL 400 22.211 34.934 14.415 1.00 31.76

Figure 4 56/63 CG2 VAL MOTA 3064 400 20.628 33.298 13.405 1.00 31.47 ATOM 3065 С VAL 400 23.336 32.685 16.039 1.00 30.19 ATOM 3066 0 VAL 400 22.779 32.640 17.144 1.00 30.96 MOTA 3067 N GLY 401 24.641 32.905 15.888 1.00 28.35 MOTA 3068 CA GLY 401 25.482 33.150 17.041 1.00 24.47 MOTA 3069 C GLY 401 25.487 34.641 17.235 1.00 23.04 MOTA 3070 0 GLY 401 25.595 35.388 16.260 1.00 20.38 **MOTA** 3071 N VAL 402 25.367 35.086 18.482 1.00 23.36 MOTA 3072 CA VAL 402 25.338 36.514 18.751 1.00 23.38 10 MOTA 3073 CB VAL 402 23.927 36.960 19.124 1.00 22.79 ATOM 3074 CG1 VAL 402 23.790 38.458 18.909 1.00 22.85 MOTA 3075 CG2 VAL 402 22.895 36.176 18.320 1.00 22.42 ATOM 3076 С VAL 402 26.252 36.899 19.893 1.00 24.25 MOTA 3077 0 VAL 402 26.484 36.098 20.794 1.00 25.20 15 MOTA 3078 N ASP 403 26.770 38.124 19.848 1.00 24.83 MOTA 3079 CA ASP 403 27.637 38.649 20.894 1.00 27.11 MOTA 3080 CB ASP 403 29.078 38.212 20.691 1.00 30.98 MOTA 3081 CG ASP 403 30.003 38.739 21.787 1.00 34.48 MOTA 3082 OD1 ASP 403 29.887 39.938 22.122 1.00 36.02 ATOM 3083 OD2 ASP 403 30.842 37.960 22.311 1.00 36.05 MOTA 3084 C ASP 403 27.562 40.154 20.763 1.00 27.24 3085 MOTA 0 ASP 403 27.550 40.667 19.645 1.00 29.15 ATOM 3086 N GLY 404 27.519 40.863 21.888 1.00 26.60 MOTA 3087 CA GLY 404 27.410 42.316 21.863 1.00 26.50 ATOM 3088 C GLY 404 26.750 42.829 23.137 1.00 27.10 MOTA 3089 O GLY 404 25.810 42.193 23.665 1.00 26.90 3090 ATOM Ν SER 405 27.209 43.972 23.644 1.00 26.72 ATOM 3091 CA SER 405 26.638 44.496 24.887 1.00 27.96 ATOM 3092 CB SER 405 27.409 45.722 25.371 1.00 28.04 30 ATOM 3093 OG SER 405 27.164 46.828 24.521 1.00 30.53 ATOM 3094 C SER 405 25.168 44.857 24.738 1.00 28.25 ATOM 3095 0 SER 405 24.341 44.473 25.573 1.00 27.96 ATOM 3096 N VAL 406 24.844 45.591 23.675 1.00 27.79 ATOM 3097 CA VAL 406 23.465 45.992 23.445 1.00 28.13 35 ATOM 3098 CB VAL 406 23.281 46.667 22.074 1.00 28.02 ATOM 3099 CG1 VAL 406 21.814 47.063 21.908 1.00 27.91 ATOM 3100 CG2 VAL 406 24.197 47.877 21.940 1.00 26.07 ATOM 3101 С VAL 406 22.535 44.789 23.488 1.00 28.35 MOTA 3102 0 VAL 406 21.484 44.826 24.120 1.00 28.48 40 ATOM 3103 N TYR 407 22.934 43.718 22.811 1.00 28.72 ATOM 3104 CA TYR 407 22.130 42.493 22.736 1.00 28.45 MOTA 3105 CB TYR 407 22.613 21.558 41.643 1.00 26.86 3106 MOTA CG TYR 407 21.831 40.373 21.341 1.00 25.29 ATOM 3107 CD1 TYR 407 20.700 40.358 20.535 1.00 25.44 45 ATOM 3108 CE1 TYR 407 19.964 39.189 20.346 1.00 25.93 ATOM 3109 TYR CD2 407 22.213 39.192 21.955 1.00 24.93 ATOM 3110 CE2 TYR 407 21,488 38.021 21.780 1.00 25.18 ATOM 3111 CZTYR 407 20.362 38.024 20.974 1.00 26.03 MOTA 3112 OH TYR 407 19.626 36.868 20.822 1.00 25.67 ATOM 3113 C TYR 407 22.175 41.651 24.014 1.00 28.83 ATOM 3114 0 TYR 407 21.202 40.988 24.369 1.00 28.62 ATOM 3115 N LYS 408 23.306 41.674 24.705 1.00 29.64 ATOM 3116 CA LYS 408 23.440 40.881 25.916 1.00 30.07 MOTA 3117 CB LYS 408 24.904 40.477 1.00 30.08 26.118 55 ATOM 3118 CG LYS 408 25.442 39.556 25.030 1.00 30.61 ATOM 3119 CD LYS 408 26.597 38.698 25.529 1.00 30.05 MOTA 3120 CE LYS 408 26.799 37.515 24.601 1.00 30.22 MOTA 3121 NZLYS 408 27.828 36.573 25.097 1.00 30.20 ATOM 3122 С LYS 408 22.940 41.551 27.185 1.00 30.82

Figure 4 57/63 28.038 1.00 31.98 MOTA 3123 LYS 408 22.327 40.901 0 27.296 1.00 30.97 ATOM 3124 LEU 23.176 42.853 N 409 43.598 28.501 ATOM 3125 LEU 22.823 1.00 31.11 CA 409 28.875 MOTA 3126 CB LEU 409 24.006 44.482 1.00 30.54 MOTA CG LEU 25.305 43.700 28.962 1.00 29.31 3127 409 MOTA 3128 CD1 LEU 409 26.372 44.591 29.597 1.00 29.41 29.785 MOTA 3129 CD2 LEU 409 25.067 42.423 1.00 28.16 MOTA 3130 C LEU 409 21.548 44.441 28.611 1.00 31.44 MOTA 3131 0 LEU 409 20.978 44.542 29.708 1.00 31.86 10 ATOM 3132 N HIS 410 21.122 45.077 27.519 1.00 31.34 27.572 MOTA 3133 CA HIS 410 19.929 45.912 1.00 30.80 MOTA 46.635 26.247 3134 CB HIS 410 19.732 1.00 30.36 1.00 29.89 MOTA 47.717 26.303 3135 CG HIS 410 18.703 CD2 HIS MOTA 49.060 26.179 1.00 29.29 3136 410 18.815 **ATOM** 3137 ND1 HIS 410 17.362 47.457 26.508 1.00 30.79 48.595 26.505 ATOM 16.691 1.00 29.88 3138 CE1 HIS 410 ATOM 3139 NE2 HIS 410 17.548 49.583 26.309 1.00 30.87 27.900 MOTA 3140 С HIS 410 18.728 45.031 1.00 31.41 MOTA 3141 0 HIS 410 18.467 44.055 27.207 1:00 31.97 20 28.969 MOTA 3142 N PRO 411 17.985 45.376 1.00 31.63 ATOM 3143 PRO 411 18.173 46.690 29.610 1.00 31.32 CD **ATOM** 3144 CA PRO 411 16.798 44.708 29.518 1.00 31.33 **ATOM** 3145 16.111 45.815 30.299 1.00 31.27 CB PRO 411 3146 17.257 46.599 30.822 1.00 32.32 ATOM CG PRO 411 25 ATOM 3147 15.827 44.037 28.571 1.00 32.09 C PRO 411 ATOM 3148 0 PRO 411 15.362 42.920 28.838 1.00 32.76 MOTA 3149 N SER 412 15.519 44.684 27.457 1.00 31.73 44.094 3150 26.573 1.00 31.92 **ATOM** ÇA SER 412 14.527 26.771 MOTA 3151 CB SER 412 13.210 44.834 1.00 32.51 46.200 30 ATOM 26.390 1.00 33.27 3152 OG SER 412 13.368 MOTA 44.047 25.082 1.00 31.91 3153 С SER 412 14.838 ATOM 24.304 1.00 32.59 3154 0 SER 412 14.039 43.520 MOTA 3155 N PHE 413 15.974 44.601 24.679 1.00 30.72 ATOM 3156 PHE 413 16.348 44.615 23.271 1.00 30.13 CA CB MOTA 3157 PHE 413 17.778 45.105 23.130 1.00 28.18 ÇĢ 45.285 21.716 MOTA 3158 PHE 413 18.213 1.00 25.96 46.522 21.094 1.00 25.70 ATOM 3159 CD1 PHE 413 18.085 18.772 44.233 21.015 1.00 24.47 **ATOM** 3160 CD2 PHE 413 MOTA 3161 CE1 PHE 413 18.517 46.711 19.787 1.00 25.13 ATOM 3162 CE2 PHE 413 19.208 44,408 19.707 1.00 24.84 19.092 MOTA 3163 CZPHE 413 19.082 45.652 1.00 24.48 413 22.645 MOTA 3164 С PHE 16.232 43,228 1.00 31.20 21.612 MOTA 3165 0 PHE 413 15.571 43.026 1.00 31.56 23.275 MOTA 3166 Ν LYS 414 16.888 42.268 1.00 31.75 ATOM 3167 414 16.851 40.906 22.790 1.00 32.75 CA LYS 23.755 ATOM 3168 LYS 414 17.626 39.999 1.00 33.66 CB 23.429 3169 CG LYS 414 17.570 38,526 1.00 34.45 MOTA 3170 CD 414 18.732 37.744 24.049 1.00 36.05 MOTA LYS 37.909 25.558 MOTA 3171 CE LYS 414 18.845 1.00 35.80 25.920 50 ATOM 3172 19.972 38.817 1.00 36.66 NZLYS 414 1.00 33.19 MOTA 3173 C LYS 414 15.412 40.411 22.600 21.518 15.054 1.00 33.30 MOTA 3174 0 414 39.927 LYS 23.627 MOTA 3175 GLU 415 14.577 40.542 1.00 33.81 N 23.513 MOTA 3176 CA GLU 415 13.193 40.071 1.00 34.53 ATOM 3177 415 12.462 40.251 24.838 1.00 37.66 CB GLU MOTA 3178 CG GLU 415 13.062 39.497 26.002 1.00 42.83 26.520 ATOM 3179 CD 415 40.090 1.00 45.68 GLU 14.376 41.339 26.526 1.00 47.31 MOTA 3180 OE1 GLU 415 14.523 26.956 MOTA 3181 OE2 GLU 415 15.245 39.293 1.00 47.44

Figure 4 58/63 MOTA 3182 C GLU 415 12.409 40.776 22.401 1.00 33.23 ATOM 3183 0 415 GLU 11.676 40.137 21.649 1.00 33.06 MOTA 3184 ARG 416 N 12.551 42.092 22.299 1.00 31.77 ATOM 3185 ARG 416 1.00 30.32 CA 11.841 42.825 21.264 ATOM 3186 CB ARG 416 12.066 44.328 21.427 1.00 31.27 MOTA 3187 416 CG ARG 11.645 44.875 22.796 1.00 33.92 MOTA 3188 CD 416 ARG 11.783 46.393 22.901 1.00 35.48 MOTA 3189 11.545 NE ARG 416 46.866 24.267 1.00 38.24 MOTA 3190 CZARG 416 11.982 48.030 24.746 1.00 39.11 10 ATOM 3191 NH1 ARG 416 12.676 48.850 23.967 1.00 39.89 MOTA 3192 NH2 ARG 416 11.754 48.365 26.009 1.00 38.52 ATOM 3193 С ARG 416 12.379 42.354 19.916 1.00 29.08 MOTA 3194 0 ARG 416 11.620 42.159 1.00 28.85 18.964 ATOM 3195 N PHE 417 13.694 42.144 19.862 1.00 27.59 15 ATOM 3196 CA PHE 417 14.377 41.707 18.648 1.00 25.70 MOTA 3197 CB PHE 417 15.886 41.687 18.890 1.00 23.64 MOTA 3198 CG PHE 417 16.687 41.310 17.680 1.00 20.59 MOTA 3199 CD1 PHE 417 16.910 42.230 16.671 1.00 18.99 MOTA 3200 417 CD2 PHE 17.183 40.018 17.540 1.00 19.41 MOTA 3201 CE1 PHE 417 17.610 41.870 15.540 1.00 19.87 CE2 PHE MOTA 3202 417 17.884 39.641 1.00 18.04 16.413 MOTA 40.563 3203 CZPHE 417 18.100 15.409 1.00 20.04 ATOM 3204 C PHE 417 13.943 40.342 18.099 1.00 25.74 ATOM 3205 0 PHE 417 13.568 40.225 16.927 1.00 25.24 25 ATOM 3206 N 418 HIS 14.012 39.301 18.922 1.00 26.11 ATOM 3207 CA HIS 418 13.612 37.962 18.459 1.00 26.79 MOTA 3208 CB HIS 418 13.638 36.973 19.615 1.00 28.01 MOTA 3209 CG HIS 418 14.973 36.854 20.279 1.00 28.81 CD2 HIS MOTA 3210 418 16.168 37.425 19.989 1.00 29.42 MOTA 3211 ND1 HIS 418 15.182 36.067 21.389 1.00 28.15 ATOM 3212 36.157 CE1 HIS 418 16.446 21.755 1.00 29.43 ATOM 3213 NE2 HIS 418 17.067 36.974 20.924 1.00 29.74 MOTA 3214 C HIS 418 12.209 37.985 17.876 1.00 26.41 ATOM 3215 0 HIS 418 11.976 37.565 16.733 1.00 26.40 35 MOTA 3216 N ALA 419 11.284 38.487 18.688 1.00 25.83 MOTA 3217 ÇA ALA 419 9.885 38.603 18.328 1.00 25.05 9.182 MOTA 3218 419 CB ALA 39.454 19.352 1.00 24.80 MOTA 3219 C ALA 419 9.731 39.215 16.943 1.00 25.35 MOTA 3220 0 ALA 419 9.146 38.601 16.029 1.00 25.99 40 ATOM 3221 N SER 420 10.249 40.425 16.777 1.00 25.26 MOTA 3222 CA SER 420 10.159 41.078 15.481 1.00 25.31 MOTA 3223 CB SER 420 10.897 42.405 15.515 1.00 23.85 ATOM 3224 OG SER 420 10.692 43.089 14.303 1.00 23.43 MOTA 3225 C SER 420 10.751 40.170 14.391 1.00 26.14 45 ATOM 3226 0 SER 420 10.145 39.976 13.331 1.00 25.95 14.670 MOTA 3227 N VAL 421 11.926 39.602 1.00 27.34 MOTA 3228 CA VAL 421 12.602 38.699 13.733 1.00 28.41 ATOM 3229 CB VAL 421 13.919 38.127 14.346 1.00 27.63 ATOM 3230 CG1 VAL 421 14.479 37.020 13.475 1.00 26.36 50 ATOM 14.953 3231 CG2 VAL 421 39.232 14.469 1.00 28.22 MOTA 3232 421 11.689 C VAL 37.535 13.325 1.00 29.65 MOTA 3233 0 VAL 421 11.557 37.227 12.130 1.00 28.72 MOTA 3234 422 11.069 36.886 N ARG 14.310 1.00 30.74 ATOM 3235 422 10.165 35.775 CA ARG 14.014 1.00 32.79 55 MOTA 3236 CB ARG 422 9.419 35.328 1.00 33.29 15.265 ATOM 3237 10.259 CG ARG 422 35.197 16.512 1.00 34.47 ATOM 3238 CD ARG 422 11.081 33.927 16.558 1.00 34.54 ATOM 3239 NE ARG 422 11.862 33.905 17.795 1.00 35.75 ATOM 3240 CZARG 422 12.824 33.028 18.066 1.00 35.45

Figure 4 59/63 MOTA 3241 NH1 ARG 422 13.127 32.085 17.180 1.00 35.35 MOTA 3242 NH2 ARG 33.108 422 13.490 19.215 1.00 33.55 ATOM 3243 C ARG 422 9.123 36.277 13.019 1.00 33.41 MOTA 3244 ARG 0 422 8.949 35.728 11.929 1.00 33.68 ATOM 3245 Ν ARG 423 8.446 37.348 13.417 1.00 34.00 ATOM 3246 CA ARG 423 7.394 37.946 12.622 1.00 34.13 MOTA 3247 CB ARG 423 7.022 39.301 13.207 1.00 35.16 ATOM 3248 CG ARG 423 5.538 39.584 13.202 1.00 36.10 ATOM 3249 CD ARG 423 5.212 40.831 14.012 1.00 37.57 ATOM 10 3250 NE ARG 423 5.482 40.682 15.441 1.00 38.90 ATOM 3251 CZ ARG 423 6.274 41.503 16.133 1.00 40.51 ATOM 3252 NH1 ARG 423 6.874 42.523 15.513 1.00 41.42 ATOM 3253 NH2 ARG 423 6.461 41.324 17.440 1.00 38.76 ATOM 3254 С ARG 423 7.754 38.100 11.165 1.00 33.94 15 ATOM 3255 0 ARG 423 6.919 37.849 10.295 1.00 35.59 MOTA 3256 Ν LEU 8.993 38.494 424 10.884 1.00 32.85 ATOM 3257 CA LEU 424 9.418 38.699 9.497 1.00 31.57 ATOM 3258 CB LEU 424 10.474 39.788 9.450 1.00 28.75 MOTA 3259 CG LEU 424 10.030 41.129 10.003 1.00 27.64 20 ATOM CD1 LEU 3260 11.220 424 42.080 10.066 1.00 26.47 MOTA 3261 CD2 LEU 424 8.942 41.686 9.115 1.00 27.23 ATOM 3262 С LEU 424 9.950 37.479 8.747 1.00 32.00 MOTA 3263 0 LEU 424 10.232 37.562 7.551 1.00 31.15 MOTA 3264 N THR 425 10.065 36.343 9.424 1.00 33.88 25 MOTA 3265 CA THR 425 10.615 35.153 8.778 1.00 35.30 ATOM 3266 CB THR 425 11.886 34.722 9.495 1.00 35.17 OG1 THR MOTA 3267 425 11.580 34.463 10.874 1.00 35.24 MOTA 3268 CG2 THR 425 12.939 35.817 9.399 1.00 35.16 MOTA 3269 С THR 425 9.711 33.923 8.675 1.00 37.00 30 MOTA 3270 0 THR 425 10.059 32.854 9.182 1.00 37.54 ATOM 3271 Ν PRO 426 8.562 34.040 7.982 1.00 38.04 MOTA 3272 CD PRO 426 8.144 35.123 7.073 1.00 38.49 MOTA 3273 CA PRO 426 7.663 32.890 7.856 1.00 38.85 ATOM 3274 CB PRO 6.745 426 33.295 6.700 1.00 38.23 35 MOTA 3275 CG PRO 426 6.699 34.772 6.802 1.00 38.07 MOTA 3276 C PRO 426 8.445 31.615 7.527 1.00 39.83 MOTA 3277 0 PRO 426 9.378 31.641 6.728 1.00 40.28 MOTA 3278 N SER 427 8.073 30.510 8.158 1.00 40.72 MOTA 3279 CA SER 427 8.713 29.232 7.892 1.00 41.82 40 MOTA 3280 CB SER 427 8.358 28.785 6.474 1.00 42.86 MOTA 3281 OG SER 427 6.954 28.802 6.287 1.00 44.69 MOTA 3282 C SER 427 10.234 29.228 8.068 1.00 42.10 MOTA 3283 0 SER 427 10.981 28.899 7.140 1.00 41.85 ATOM 3284 Ν CYS 428 10.679 29.586 9.267 1.00 42.60 ATOM 3285 CA CYS 428 12.096 29.608 9.601 1.00 42.43 MOTA 3286 CB CYS 428 12.724 30.960 9.258 1.00 42.59 ATOM 3287 SG CYS 428 12.860 31.327 7.492 1.00 44.02 ATOM 3288 C CYS 428 12.195 29.381 11.096 1.00 42.45 MOTA 3289 0 CYS 428 11.671 30.169 11.879 1.00 43.76 50 ATOM 3290 Ν GLU 429 12.846 28.296 11.494 1.00 42.34 ATOM 3291 CA GLU 429 13.014 27.995 12.909 1.00 41.23 ATOM 3292 CB GLU 429 13.030 26.486 13.146 1.00 42.97 ATOM 3293 CG GLU 429 11.699 25.796 12.933 1.00 45.48 MOTA 3294 CD GLU 429 11.847 24.282 12.925 1.00 47.43 55 ATOM 3295 OE1 GLU 429 12.518 23.756 1.00 48.77 13.847 ATOM 3296 QE2 GLU 429 11.298 23.623 12.005 1.00 48.07 MOTA 3297 С GLU 429 14.341 28.587 13.346 1.00 39.77 MOTA 3298 0 GLU 429 15.370 27.902 13.352 1.00 39.92 ATOM 3299 Ν ILE 430 14.315 29.864 13.708 1.00 38.09

										•
•	F	igure 4				60/63				
	MOTA	3300	CA	ILE	430	15.514	30.560	14.142	1.00 36.48	
	ATOM	3301	СВ	ILE	430	15.341	32.070	13.998	1.00 35.17	
	ATOM	3302	CG2		430	16.659	32.770	14.280	1.00 34.48	
	ATOM	3303		ILE	430	14.839	32.390	12.589	1.00 35.30	
5	MOTA	3304	CD1		430	14.669	33.866	12.310	1.00 34.88	
	MOTA	3305	C	ILE	430	15.872	30.254	15.591	1.00 34.88	
	ATOM	3306	0	ILE	430	15.044	30.399	16.495	1.00 37.00	
	MOTA	3307	N	THR	431	17.109	29.823	15.808	1.00 36.61	
	ATOM	3308	CA	THR	431	17.600	29.520	17.146	1.00 36.01	
10	ATOM	3309	CB	THR	431	18.067	28.053	17.240	1.00 36.58	
	ATOM	3310	OG1		431	16.950	27.180	17.240	1.00 36.34	
	MOTA	3311	CG2		431	18.692	27.774	18.604	1.00 36.38	
	MOTA	3312	С	THR	431	18.796	30.441	17.396	1.00 36.13	
	MOTA	3313	ō	THR	431	19.705	30.513	16.569	1.00 36.10	
15	MOTA	3314	N	PHE	432	18.804	31.157	18.514	1.00 35.79	
	ATOM	3315	CA	PHE	432	19.926	32.054	18.794	1.00 35.93	
	ATOM	3316	CB	PHE	432	19.443	33.450	19.232	1.00 34.31	
	ATOM	3317	CG	PHE	432	18.643	34.194	18.188	1.00 32.53	
	MOTA	3318		PHE	432	17.271	33.977	18.048	1.00 31.59	
20	ATOM	3319		PHE	432	19.262	35.124	17.353	1.00 31.00	
	MOTA	3320		PHE	432	16.527	34.676	17.092	1.00 30.53	
	ATOM	3321	CE2		432	18.525	35.826	16.395	1.00 30.25	
	ATOM	3322	CZ	PHE	432	17.154	35.600	16.266	1.00 30.11	
	MOTA	3323	С	PHE	432	20.767	31.483	19.917	1.00 37.08	
25	MOTA	3324	0	PHE	432	20.248	30.772	20.779	1.00 38.85	
	ATOM	3325	N	ILE	433	22.063	31.774	19.906	1.00 37.32	
	MOTA	3326	CA	ILE	433	22.933	31.321	20.983	1.00 38.46	
	MOTA	3327	CB	ILE	433	23.526	29.890	20.722	1.00 39.06	
	MOTA	3328	CG2	ILE	433	22.398	28.863	20.624	1.00 38.62	
30	MOTA	3329	CG1	ILE	433	24.367	29.861	19.449	1.00 39.03	
	MOTA	3330	CD1	ILE	433	25.028	28.520	19.227	1.00 38.32	
	MOTA	3331	C	ILE	433	24.039	32.358	21.161	1.00 39.33	
	MOTA	3332	0	ILE	433	24.429	33.034	20.201	1.00 39.15	
	ATOM	3333	N	GLU	434	24.527	32.505	22.388	1.00 40.58	
35	MOTA	3334	CA	GLU	434	25.559	33.498	22.669	1.00 42.92	
	MOTA	3335	CB	GLU	434	25.152	34.312	23.885	1.00 43.91	
	MOTA	3336	CG	GLU	434	23.769	34.883	23.744	1.00 45.53	
	ATOM	3337	CD	GLU	434	23.342	35.640	24.965	1.00 46.68	
	MOTA	3338		GLU	434	23.436	35.072	26.074	1.00 47.18	
40	MOTA	3339		GLU	434	22.910	36.802	24.816	1.00 48.77	
	ATOM	3340	C	GLU	434	26.965	32.950	22.865	1.00 44.01	
	ATOM	3341	0	GLU	434	27.206	32.058	23.680	1.00 44.48	
	ATOM	3342	N	SER	435	27.901	33.518	22.119	1.00 45.00	
45	ATOM	3343	CA	SER	435	29.284	33.075	22.167	1.00 46.11	
45	ATOM	3344	CB -		435	30.077	33.779	21.057	1.00 46.95	
	ATOM	3345	OG	SER	435	29.839	35.186	21.053	1.00 47.94	
	ATOM	3346	C .	SER	435	29.984	33.274	23.507	1.00 46.36	
	ATOM	3347	0	SER	435	30.043	34.396	24.022	1.00 46.31	
FA	ATOM	3348	N	GLU	436	30.505	32.180	24.069	1.00 46.22	
50	ATOM	3349	CA	GLU	436	31.248	32.250	25.330	1.00 46.33	
	MOTA	3350	CB	GLU	436	31.322	30.884	26.020	1.00 47.64	
	MOTA	3351	CG	GLU	436	32.144	30.908	27.317	1.00 50.83	
	MOTA	3352	CD	GLU	436	32.726	29.541	27.711	1.00 52.03	
FF	MOTA	3353		GLU	436	31.951	28.585	27.970	1.00 52.84	
55	ATOM	3354	OE2		436	33.972	29.428	27.765	1.00 52.07	
	ATOM	3355	C	GLU	436	32.650	32.671	24.912	1.00 45.58	
	MOTA	3356	0	GLU	436	33.446	31.843	24.463	1.00 45.50	
	MOTA	3357	N	GLU	437	32.950	33.956	25.051	1.00 44.67	
	MOTA	3358	CA	GLU	437	34.252	34.462	24.643	1.00 44.13	

Figure 4 61/63 ATOM 3359 CB GLU 437 35.328 34.050 25.652 1.00 43.61 MOTA 3360 CG GLU 437 36.745 34.334 25.190 1.00 43.39 36.931 MOTA 3361 CD GLU 437 35.752 24.678 1.00 43.50 MOTA 1.00 44.49 3362 OE1 GLU 437 36.976 36.680 25.514 MOTA 3363 OE2 GLU 437 37.025 35.940 23.441 1.00 42.17 MOTA 3364 С GLU 437 34.569 33.880 23.264 1.00 43.56 MOTA 3365 0 GLU 437 35.530 33.131 23.108 1.00 45.30 MOTA 3366 GLY 438 33.757 34.225 22.266 N 1.00 41.68 MOTA 3367 CA GLY 438 33.958 33.700 20.926 1.00 39.44 10 MOTA 3368 C GLY 438 34.748 34.538 19.934 1.00 38.11 ATOM 3369 0 GLY 438 34.932 34.130 18.791 1.00 37.45 ATOM 3370 N SER 439 35.213 35.713 20.329 1.00 37.14 ATOM 3371 CA SER 439 35.980 36.502 19.386 1.00 36.86 ATOM 3372 CB SER 439 35.916 37.983 19.714 1.00 36.81 15 ATOM 3373 OG SER 439 36.825 38.678 18.878 1.00 35.32 MOTA 3374 C SER 439 37.420 36.053 19.444 1.00 36.74 ATOM 3375 0 SER 439 38.192 36.265 18.513 1.00 36.37 MOTA 3376 GLY 440 37.774 35.439 20.562 1.00 36.58 N ATOM 3377 CA GLY 440 39.126 34.957 20.746 1.00 36.42 20 ATOM 3378 440 33.518 C GLY 39.207 20.302 1.00 36.28 MOTA 3379 0 GLY 440 40.146 33.140 19.613 1.00 36.20 ATOM 3380 N ARG 441 38.224 32.714 20.699 1.00 36.09 ATOM 3381 CA ARG 441 38.190 31.309 20.312 1.00 37.16 ATOM 3382 CB ARG 441 37.151 30.562 21.138 1.00 37.34 25 ATOM 3383 CG ARG 441 37.312 30.717 22.632 1.00 39.57 MOTA 3384 CD441 ARG 36.334 29.806 23.375 1.00 42.28 ATOM 3385 NE ARG 441 35.270 29.339 22.488 1.00 44.36 ATOM 3386 CZARG 441 34.240 28,585 22.862 1.00 45.80 MOTA 3387 NH1 ARG 441 34.103 28.192 24.127 1.00 45.87 30 MOTA 3388 NH2 ARG 441 33.346 28.214 21.955 1.00 47.26 31.179 MOTA 3389 С ARG 441 37.848 18.821 1.00 37.42 ATOM 3390 ARG 441 30.151 18.189 0 38.103 1.00 37.52 MOTA 3391 GLY 442 37.270 32.234 18.262 1.00 37.34 N MOTA 32.204 3392 CA GLY 442 36.906 16.863 1.00 37.39 35 MOTA 3393 С GLY 442 38.165 32.308 16.048 1.00 37.47 MOTA 3394 0 GLY 442 38.483 31.410 15.278 1.00 37.51 MOTA 3395 N ALA 443 38.887 33.408 16.241 1.00 38.17 MOTA 3396 ALA 443 40.134 33.660 CA 15.526 1.00 38.50 MOTA 3397 CB ALA 443 40.739 34.999 15.967 1.00 36.50 40 MOTA 3398 C ALA 443 41.127 32.521 15.759 1.00 39.03 ATOM 3399 0 ALA 443 42.015 32.297 14.941 1.00 39.36 MOTA 3400 N ALA 444 40.977 31.807 16.875 1.00 39.93 ATOM 3401 ÇA ALA 444 41.864 30.685 17.172 1.00 40.31 MOTA 3402 CB ALA 444 41.724 30.242 18.623 1.00 39.25 ATOM 3403 С ALA 444 41.427 29.569 16.246 1.00 40.97 MOTA 3404 0 ALA 444 42.146 29.210 15.312 1.00 41.31 ATOM 3405 445 40.233 29.038 N LEU 16.501 1.00 41.41 ATOM 3406 445 27.960 CA LEU 39.678 15.690 1.00 41.97 3407 LEU 445 27.776 ATOM CB 38.195 16.024 1.00 40.09 50 ATOM 3408 CG LEU 445 37.954 26.806 17.182 1.00 39.14 3409 445 27.233 17.982 MOTA CD1 LEU 36.750 1.00 39.27 ATOM 3410 445 37.781 25.399 16.647 CD2 LEU 1.00 37.36 28.156 ATOM 3411 C LEU 445 39.860 14.176 1.00 43.29 27.179 MOTA 3412 0 LEU 445 39.918 13.427 1.00 43.28 55 MOTA 3413 446 39.955 29.406 13.729 N VAL 1.00 44.66 ATOM 3414 CA VAL 446 40.136 29.684 12.307 1.00 46.32 ATOM 3415 CВ VAL 446 39.687 31.120 11.948 1.00 46.15 ATOM 3416 CG1 VAL 446 40.356 31.578 10.653 1.00 46.15 ATOM 3417 CG2 VAL 446 38.164 31.160 11.793 1.00 45.75

Figure 4 62/63 MOTA 3418 С VAL 446 41.597 29.503 11.944 1.00 48.03 ATOM 3419 0 VAL 446 41.929 29.105 10.825 1.00 48.75 MOTA 3420 N SER 42.465 447 29.802 12.904 1.00 49.63 MOTA 3421 CA SER 447 43.902 29.657 12.725 1.00 50.76 ATOM 3422 CB SER 447 44.635 30.267 13.918 1.00 50.76 MOTA 3423 OG SER 447 44.377 31.659 14.021 1.00 50.83 ATOM 3424 С SER 447 44.259 28.173 12.612 1.00 52.07 MOTA 3425 0 SER 447 44.923 27.753 11.662 1.00 52.17 MOTA 3426 N ALA 448 43.804 27.387 13.584 1.00 53.51 10 MOTA 3427 CA ALA 44.071 25.953 448 13.621 1.00 55.46 ATOM 3428 CB ALA 448 43.273 25.306 14.745 1.00 55.02 ATOM 3429 С ALA 448 43.751 25.263 12.300 1.00 57.02 ATOM 3430 0 ALA 448 44.599 24.564 11.726 1.00 57.18 MOTA 3431 N VAL 11.825 449 42.523 25.457 1.00 58.39 15 ATOM 3432 CA VAL 449 42.093 24.841 10.579 1.00 59.69 MOTA 3433 CB VAL 449 40.571 24.977 10.382 1.00 59.67 MOTA 3434 CG1 VAL 449 40.152 24.262 9.112 1.00 60.28 ATOM 3435 CG2 VAL 449 39.833 24.384 11.577 1.00 59.48 MOTA 3436 С VAL 449 42.821 25.482 9.403 1.00 60.70 20 ATOM 3437 42.903 0 VAL 449 24.898 1.00 61.00 8.321 MOTA 3438 N ALA 450 43.361 26.677 9.627 1.00 61.41 MOTA 3439 44.093 CA ALA 450 27.392 8.591 1.00 62.12 43.981 MOTA 3440 CB ALA 450 28.889 8.814 1.00 62.32 ATOM 3441 С ALA 450 45.558 26.973 8.606 1.00 63.02 ATOM 3442 0 ALA 450 46.437 27.748 8.217 1.00 62.75 ATOM 3443 N CYS 451 45.807 25.744 9.061 1.00 64.03 ATOM 3444 CA CYS 451 47.160 25.183 1.00 65.19 9.148 ATOM 3445 CB CYS 451 47.530 24.440 7.850 1.00 65.75 MOTA 3446 CYS 46.901 SG 451 22.720 7.723 1.00 66.86 30 ATOM 3447 CYS 48.239 С 451 26.217 9.474 1.00 65.22 ATOM 3448 0 CYS 451 47.929 27.230 10.144 1.00 65.18 MOTA 3449 OXT CYS 451 49.398 25.979 9.073 1.00 65.50 MOTA . 3450 C1 HEX 1 31.023 47.521 12.611 1.00 25.83 MOTA 3451 C2 HEX 1 32.239 47.182 11.801 1.00 25.25 35 ATOM 3452 C3 HEX 1 32.203 45.697 11.565 1.00 25.11 MOTA 3453 C4 HEX 1 32.071 44.939 12.862 1.00 24.99 ATOM 45.591 3454 C5 HEX 1 31.030 13.785 1.00 25.34 MOTA 3455 C6 HEX 1 30.772 44.921 15.126 1.00 25.58 MOTA 3456 01 HEX 30.750 48.942 1 12.579 1.00 27.04 ATOM 3457 47.912 02 HEX 32.183 1 10.609 1.00 24.71 MOTA 3458 03 HEX 33.337 45.251 1 10.836 1.00 25.99 ATOM 3459 HEX 04 1 31.699 43.621 12.545 1.00 25.85 ATOM 3460 05 HEX 1 31.267 46.968 13.935 1.00 25.37 MOTA 3461 HEX 06 1 31.835 45.222 16.009 1.00 27.23 ATOM 3462 C1 LIG 30.034 1 26.620 8.669 1.00 35.87 ATOM 3463 C2 LIG 1 29.909 27.259 10.064 1.00 34.82 ATOM 3464 LIG C3 1 31.308 27.852 10.344 1.00 35.54 ATOM 3465 C4 LIG 32.212 1.00 35.52 1 27.447 9.148 ATOM 3466 Ç5 LIG 31.520 26.207 1 8.584 1.00 35.20 C6 ATOM 3467 LIG 33.670 27.245 1 9.637 1.00 36.33 ATOM 3468 C7 LIG 34.562 1 26.321 8.758 1.00 37.11 ATOM 3469 C8 LIG 1 35.946 26.832 8.778 1.00 36.91 ATOM 3470 N9 LIG 1 36.382 27.317 7.570 1.00 36.92 MOTA 3471 C10 LIG 1 37.668 27.907 7.331 1.00 36.42 MOTA 3472 N11 LIG 38.035 1 28.336 6.087 1.00 37.39 MOTA 3473 C12 LIG 1 39.058 28.930 6.462 1.00 36.99 ATOM 3474 C13 LIG 1 39.426 29.003 7.575 1.00 37.10 MOTA 3475 S14 LIG 38.681 1.00 37.86 1 28,342 8.700 MOTA 3476 015 LIG 1 36.640 26.843 9.817 1.00 38.32

	F.	igure 4				63/63				
	MOTA	3477	C16	LIG	1	34.538	24.890	9.296	1.00	37.59
	ATOM	3478	C17	LIG	1	34.906	24.620	10.610	1.00	37.22
	ATOM	3479	C18	LIG	1	34.658	23.346	11.130	1.00	38.09
	ATOM	3480	N19	LIG	1	34.084	22.371	10.404	1.00	38.80
5	ATOM	3481	C20	LIG	1	33.729	22.598	9.128	1.00	38.90
	ATOM	3482	C21	LIG	1	33.942	23.860	8.546	1.00	38.73
	ATOM	3483	K1	K	1	32.471	32.037	-7.104	1.00	46.91
	END									

CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM

The invention relates to crystalline forms of Glucokinase of sufficient size and quality to obtain structural data by X-ray crystallography and to methods of growing such crystals.

5

Glucokinase (GK) is one of four hexokinases found in mammals [Colowick, S.P., in The Enzymes, Vol. 9 (P. Boyer, ed.) Academic Press, New York, NY, pages 1-48, 1973]. The hexokinases catalyze the first step in the metabolism of glucose, i.e., the conversion of glucose to glucose-6-phosphate. Glucokinase has a limited cellular 10 distribution, being found principally in pancreatic β-cells and liver parenchymal cells. In addition, GK is a rate-controlling enzyme for glucose metabolism in these two cell types that are known to play critical roles in whole-body glucose homeostasis [Chipkin, S.R., Kelly, K.L., and Ruderman, N.B. in *Joslin's Diabetes* (C.R. Khan and G.C. Wier, eds.), Lea and Febiger, Philadelphia, PA, pages 97-115, 1994]. The concentration of glucose at which GK demonstrates half-maximal activity is approximately 8 mM. The other three hexokinases are saturated with glucose at much lower concentrations (<1 mM). Therefore, the flux of glucose through the GK pathway rises as the concentration of glucose in the blood increases from fasting (5 mM) to postprandial (≈10-15 mM) levels following a carbohydrate-containing meal [Printz, R.G., Magnuson, M.A., and Granner, D.K. in Ann. Rev. Nutrition Vol. 13 (R.E. Olson, D.M. Bier, and D.B. McCormick, eds.), Annual Review, Inc., Palo Alto, CA, pages 463-496, 1993]. These findings contributed over a decade ago to the hypothesis that GK functions as a glucose sensor in β-cells and hepatocytes (Meglasson, M.D. and Matschinsky, F.M. Amer, J. Physiol, 246, E1-E13, 1984). In recent years, studies in transgenic animals have confirmed that GK does indeed play a critical role in whole-body glucose homeostasis. Animals that do not express GK 25 die within days of birth with severe diabetes while animals overexpressing GK have improved glucose tolerance (Grupe, A., Hultgren, B., Ryan, A. et al., Cell 83, 69-78, 1995; Ferrie, T., Riu, E., Bosch, F. et al., FASEB J., 10, 1213-1218, 1996). An increase in glucose exposure is coupled through GK in β-cells to increased insulin secretion and in 30 hepatocytes to increased glycogen deposition and perhaps decreased glucose production.

The finding that type II maturity-onset diabetes of the young (MODY-2) is caused by loss of function mutations in the GK gene suggests that GK also functions as a glucose sensor in humans (Liang, Y., Kesavan, P., Wang, L. et al., *Biochem. J.* 309, 167-173, 1995). Additional evidence supporting an important role for GK in the regulation of glucose metabolism in humans was provided by the identification of patients that express a mutant form of GK with increased enzymatic activity. These patients exhibit a fasting hypoglycemia associated with an inappropriately elevated level of plasma insulin (Glaser, B., Kesavan, P., Heyman, M. et al., *New England J. Med.* 338, 226-230, 1998). While mutations of the GK gene are not found in the majority of patients with type II diabetes, compounds that activate GK and, thereby, increase the sensitivity of the GK sensor system will still be useful in the treatment of the hyperglycemia characteristic of all type II diabetes. Glucokinase activators will increase the flux of glucose metabolism in β-cells and hepatocytes, which will be coupled to increased insulin secretion. Such agents would be useful for treating type II diabetes.

In an effort to elucidate the mechanisms underlying kinase activation, the crystal structure of such proteins is often sought to be determined. The crystal structures of several hexokinases have been reported. See, e.g. A. E. Aleshin, C. Zeng, G. P. Bourenkov, H. D. Bartunik, H. J. Fromm & R. B. Honzatko 'The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate' Structure 6, 39-50 (1998); W. S. Bennett, Jr. & T. A. Steitz 'Structure of a complex between yeast hexokinase A and glucose I. Structure determination and refinement at 3.5 Å resolution' J. Mol. Biol. 140, 183-209 (1978); and S. Ito, S. Fushinobu, I. Yoshioka, S. Koga, H. Matsuzawa & T. Wakagi 'Structural Basis for the ADP-Specificity of a Novel Glucokinase from a Hyperthermophilic Archaeon' Structure 9, 205-214 (2001). Despite these reports, researchers armed with the knowledge of how to obtain crystals of related hexokinases have attempted to obtain crystals of any mammalian Glucokinase without success.

20

10

Applicants have discovered protocols which allow crystallization of mammalian Glucokinase with or without a bound allosteric ligand. The crystal structure has been solved by X-ray crystallography to a resolution of 2.7 Å. See Figures 3 and 4. Thus the invention relates to a crystalline form of Glucokinase and a crystalline form of a complex of Glucokinase and an allosteric ligand. The invention further relates to a method of forming crystals of Glucokinase, with or without a bound allosteric ligand.

Figure 1 shows Glucokinase co-crystals having P6(5)22 symmetry.

15

Figure 2 shows the amino acid sequence of an expressed Glucokinase used for crystallization.

Figure 3 shows a ribbon diagram of the structure of Glucokinase showing the α -helices and β -sheets.

Figure 4 shows the atomic structure coordinates for Glucokinase bound to 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide.

The present invention relates to crystalline forms of mammalian Glucokinase, with or without a ligand bound in the allosteric site, where the crystals are of sufficient quality and size to allow for the determination of the three-dimensional X-ray diffraction structure to a resolution of about 2.0 Å to about 3.5 Å. The invention also relates to methods for preparing and crystallizing the Glucokinase. The crystalline forms of Glucokinase, as well as information derived from their crystal structures can be used to analyze and modify glucokinase activity as well as to identify compounds that interact with the allosteric site.

The crystals of the invention include apo crystals and co-crystals. The apo crystals of the invention generally comprise substantially pure Glucokinase. The co-crystals generally comprise substantially pure Glucokinase with a ligand bound to the allosteric site.

5

15

It is to be understood that the crystalline Glucokinases of the invention are not limited to naturally occurring or native Glucokinases. Indeed, the crystals of the invention include mutants of the native Glucokinases. Mutants of native Glucokinases are obtained by replacing at least one amino acid residue in a native Glucokinase domain with a different amino acid residue, or by adding or deleting amino acid residues within the native polypeptide or at the N- or C- terminus of the native polypeptide, and have substantially the same three-dimensional structure as the native Glucokinase from which the mutant is derived.

By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates from an apo- or co-crystal that have a root mean square deviation of less than or equal to about 2 Å when superimposed with the atomic structure coordinates of the native Glucokinase from which the mutant is derived when at least about 50% to about 100% of the alpha carbon atoms of the native Glucokinase are included in the superposition.

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a native Glucokinase domain in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of the native Glucokinase will be apparent to those having skills in the art.

It should be noted that the mutants contemplated herein need not exhibit glucokinase activity. Indeed, amino acid substitutions, additions or deletions that interfere with the kinase activity of the glucokinase but which do not significantly alter the three-dimensional structure of the domain are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to identify compounds that bind to the native domain. These compounds may affect the activity or the native domain.

The derivative crystals of the invention generally comprise a crystalline glucokinase polypeptide in covalent association with one or more heavy metal atoms. The polypeptide may correspond to a native or a mutated Glucokinase. Heavy metal atoms useful for providing derivative crystals include, by way of example and not limitation, gold and mercury. Alternatively, derivative crystals can be formed from proteins which have heavy atoms incorporated into one or more amino acids, such as seleno-methionine substitutions for methionine.

The co-crystals of the invention generally comprise a crystalline Glucokinase polypeptide in association with one or more compounds at an allosteric site of the polypeptide. The association may be covalent or non-covalent.

The native and mutated glucokinase polypeptides described herein may be isolated from natural sources or produced by methods well known to those skilled in the art of molecular biology. Expression vectors to be used may contain a native or mutated Glucokinase polypeptide coding sequence and appropriate transcriptional and/or translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis et al., 1989, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, NY; and Ausubel et al., 1989, *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley Interscience, NY.

30

10

15

20

A variety of host-expression vector systems may be utilized to express the Glucokinase coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the Glucokinase coding sequence; yeast transformed with recombinant yeast expression vectors containing the Glucokinase coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g. baculovirus) containing the Glucokinase coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosiac virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the glucokinase coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities. Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promotors such as pL of bacteriophage µ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 35 S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the glucokinase coding sequence, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

25

15

The apo, derivative and co-crystals of the invention can be obtained by techniques well-known in the art of protein crystallography, including batch, liquid bridge, dialysis, vapor diffusion and hanging drop methods (see e.g. McPherson, 1982, *Preparation and Analysis of Protein Crystals*, John Wiley, NY; McPherson, 1990, *Eur. J. Biochem.* 189:1-23; Webber, 1991, *Adv. Protein Chem.* 41:1-36; Crystallization of Nucleic Acids and Proteins, Edited by Arnaud Ducruix and Richard Giege, Oxford University Press; Protein Crystallization Techniques, Strategies, and Tips, Edited by Terese Bergfors, International University Line, 1999). Generally, the apo- or co-crystals of the invention are grown by

placing a substantially pure Glucokinase polypeptide in an aqueous buffer containing a precipitant at a concentration just below that necessary to precipitate the protein. Water is then removed from the solution by controlled evaporation to produce crystallizing conditions, which are maintained until crystal growth ceases.

5

10

15

In a preferred embodiment of the invention, apo or co-crystals are grown by vapor diffusion. In this method, the polypeptide/precipitant solution is allowed to equilibrate in a closed container with a larger aqueous reservoir having a precipitant concentration optimal for producing crystals. Generally, less than about 10 μ L of subtantially pure polypeptide solution is mixed with an equal volume of reservoir solution, giving a precipitant concentration about half that required for crystallization. This solution is suspended as a droplet underneath a coverslip, which is sealed onto the top of a reservoir. The sealed container is allowed to stand, from one day to one year, usually for about 2-6 weeks, until crystals grow.

For crystals of the invention, it has been found that hanging drops containing about 2-5 μ l of Glucokinase (9-22 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (16-25% w/v polyethylene glycol with an average molecular weight from about 8000 to about 10000 Daltons, 0.1-0.2 M tris or bistris or Hepes or ammonium phosphate buffer, pH 6.9-7.5, 8-10 mM DTT, 0 - 30% saturated glucose) suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C provided crystals suitable for high resolution X-ray structure determination. Particularly preferred conditions were: about 2-5 μ l of Glucokinase (10 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (22.5% w/v polyethylene glycol with an average molecular weight of about 10000 Daltons, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose) were suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C.

The optimum procedure for growing crystals large enough to collect data from involved first streaking 3-4 μ l of protein solution on the coverslip, followed by streaking 3-4 μ l of well solution across the elongated droplet of protein, forming a droplet shaped like the letter 'X'. Before discovering this crossed droplet technique, most droplets yielded showers of small crystals which were not large enough for data collection purposes. The crossed droplets allow gradients of protein and precipitating agent to form as the two solutions slowly mix, and the resulting kinetics of crystal nucleation and growth are optimal for the growth of a small number of large crystals in each crossed droplet. Simply mixing the protein and precipitant solutions together in a single round droplet often produced an overabundance of nuclei which grew to a final size too small for data collection purposes. Crystals usually appeared within 5 days of setup. The crystals grow in the form of hexagonal bipyramids, reaching dimensions of 0.2 x 0.2 x 0.4 mm typically, although larger crystals are often observed. Figure 1 shows grown crystals.

Crystals may be frozen prior to data collection. The crystals were cryo-protected with either (a) 20-30% saturated glucose present in the crystallization setup, (b) ethanol added to 15-20%, (c) ethylene glycol added to 10-20% and PEG10,000 brought up to 25%, or (d) glycerol added to 15%. The crystals were either briefly immersed in the cryo-protectant or soaked in the cryo-protectant for periods as long as a day. Freezing was accomplished by immersing the crystal in a bath of liquid nitrogen or by placing the crystal in a stream of nitrogen gas at 100 K.

15

The mosaic spread of the frozen crystals could sometimes be reduced by annealing, wherein the stream of cold nitrogen gas is briefly blocked, allowing the frozen crystal to thaw momentarily before re-freezing in the nitrogen gas stream. Another technique which was sometimes helpful in data collection was to center one of the ends of the hexagonal bipyramid in the x-ray beam, rather than the mid portion of the crystal. The mosaic spread could sometimes be reduced by this technique.

Diffraction data typically extending to 2.7 Å was collected from the frozen crystals at the synchrotron beamline X8C of the National Synchrotron Light Source in Brookhaven, New York. Under optimum conditions, data extending to 2.2 Å was recorded. See Figures 3 and 4 for solution. The space group of the crystals was determined to be P6(5)22 during the course of the solution of the crystal structure. The crystals have unit cell dimensions a = b = 79.62 + 10.60 Å, c = 321.73 + 10.

Of course, those having skill in the art will recognize that the above-described crystallization conditions can be varied. Such variations may be used alone or in combination, and include polypeptide solutions containing polypeptide concentrations between 1 mg/mL and 60 mg/mL, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, Tris-HCl concentrations between 10 mM and 200 mM, dithiothreitol concentrations between 0 mM and 20 mM, preferably between 8 and 10 mM, substitution of dithiothreitol with beta mercapto ethanol or other artrecognized equivalents, glucose concentrations between 0% w/v and 30% w/v, or substitution of glucose with other sugars known to bind to Glucokinase; and reservoir solutions containing polyethylene glycol (PEG) concentrations between about 10% and about 30%, polyethylene glycol average molecular weights between about 1000 and about 20,000 daltons, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, dithiothreitol concentrations between 0 mM and 20 mM, substitution of dithiothreitol with beta mercapto ethanol or other art-recognized -SH group containing equivalents, or substitution of glucose with other sugars known to bind to Glucokinase, and temperature ranges between 4 and 20°C.

25

10

15

20

Derivative crystals of the invention can be obtained by soaking apo or co-crystals in mother liquor containing salts of heavy metal atoms, according to procedures known to those of skill in the art of X-ray crystallography.

Co-crystals of the invention can be obtained by soaking an apo crystal in mother liquor containing a ligand that binds to the allosteric site, or can be obtained by co-crystallizing the Glucokinase polypeptide in the presence of one or more ligands that bind to the allosteric site. Preferably, co-crystals are formed with a glucokinase activator disclosed in US Pat. No. 6,320,050; US Pat. Appl. 09/532,506 filed March 21, 2000; US Pat. Appl. 09/675,781 filed September 28, 2000; US Pat. Appl. 09/727,624, filed December 1, 2000; US Pat. Appl. 09/841,983, filed April 25, 2001; US Pat. Appl. 09/843,466, filed April 26, 2001; US Pat. Appl. 09/846,820, filed May 1, 2001; US Pat. Appl. 09/846,821, filed May 1, 2001; US Pat. Appl. 09/924,247, filed August 8, 2001; US Provisional Pat. Appl. 60/251,637, filed December 6, 2000; or US Provisional Pat. Appl. 60/318,715, filed September 13, 2001, each of which is incorporated herein by reference.

Methods for obtaining the three-dimensional structure of the crystalline glucokinases described herein, as well as the atomic structure coordinates, are well-known in the art (see, e.g., D. E. McRee, Practical Protein Crystallography, published by Academic Press, San Diego (1993), and references cited therein).

The crystals of the invention, and particularly the atomic structure coordinates obtained therefrom, have a wide variety of uses. For example, the crystals and structure coordinates described herein are particularly useful for identifying compounds that activate Glucokinases as an approach towards developing new therapeutic agents. One such compound is 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide and pharmaceutically acceptable salts thereof. Pharmaceutical compositions of said compounds can be developed, and said compounds can be used for the manufacture of a medicament comprising said compound for the treatment of hyperglycemia in type II diabetes.

The structure coordinates described herein can be used as phasing models in determining the crystal structures of additional native or mutated glucokinases, as well as

the structures of co-crystals of such glucokinases with allosteric inhibitors or activators bound. The structure coordinates, as well as models of the three-dimensional structures obtained therefrom, can also be used to aid the elucidation of solution-based structures of native or mutated glucokinases, such as those obtained via NMR. Thus, the crystals and atomic structure coordinates of the invention provide a convenient means for elucidating the structures and functions of glucokinases.

For purposes of clarity and discussion, the crystals of the invention will be described by reference to specific Glucokinase exemplary apo crystals and co-crystals. Those skilled in the art will appreciate that the principles described herein are generally applicable to crystals of any mammalian Glucokinase, including, but not limited to the Glucokinase of Figure 2.

As used herein, "allosteric site" refers in general to any ligand binding site on a mammalian Glucokinase other than the active site of the enzyme.

15

As used herein, "apo crystal" refers to crystals of mammalian Glucokinase formed without a bound allosteric ligand.

As used herein, "allosteric ligand" refers to any molecule which specifically binds an allosteric site on a mammalian Glucokinase.

EXAMPLES

Example 1: Expression and Purification of Glucokinase

5 Expression of GK

Glucokinase (GK) was expressed as a glutathione S-transferase (GST) fusion protein in Escherichia coli. The amino-acid sequence of the fusion protein is given in Figure 2. The expression construct is based on the pGEX-3X vector from Pharmacia, as described in Y. Liang, P. Kesavan, L. Wang, K. Niswender, Y. Tanizawa, M. A. Permutt, M. A. Magnuson, F. M. Matschinsky, Biochem. J. 309, 167 (1995). The construct codes for one of the two liver isozymes of human GK. The GST tag is at the N-terminus of the construct, and is separated from the coding sequence for GK by a Factor Xa cleavage site. After purification of the GST fusion protein, the GST fusion tag was removed with Factor Xa protease, which also removes five residues from the N-terminus of GK.

Purification of GK

E. coli cells expressing GST-GK were suspended in lysis buffer (50 mM tris, 200 mM NaCl, 5 mM EDTA, 5 mM DTT, 1% NP-40, pH 7.7) in the presence of protease inhibitors, incubated with lysozyme at 200 μ/ml for 30 minutes at room temperature, and sonicated 4x30 sec. at 4° C. After centrifugation to remove insoluble material, the supernatant was loaded onto glutathione-Sepharose, washed with lysis buffer and then with lysis buffer minus NP-40. GST-GK was eluted with lysis buffer (minus NP-40) containing 50 mM D-glucose and 20 mM glutathione. The eluted protein was concentrated and dialyzed into 20 mM tris, 100 mM NaCl, 0.2 mM EDTA, 50 mM D-glucose, 1mM DTT, pH 7.7. Factor Xa was added at a protein ratio of 1:100 GST-GK followed by the addition of CaCl₂ to 1 mM, and the sample was incubated at 4° C for 48

hours. The sample was added to glutathione Sepharose and the unbound fraction collected and concentrated. The sample was then incubated with benzamidine Sepharose to remove Factor Xa, and the unbound fraction was collected and loaded on a Q Sepharose column equilibrated with 25 mM bis-tris propane, 50 mM NaCl, 5 mM DTT, 50 mM D-glucose and 5% glycerol (pH 7.0). The protein was eluted with a NaCl gradient from 50-400 mM. Fractions containing purified GK were pooled and concentrated and filtered.

Example 2: Formation of apo Crystal

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 22 mg/ml glucokinase prepared in Example 1 in 20 mM hepes pH 7.5, 50 mM NaCl, 10 mM DTT, and 50 mM glucose. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose; the precipitant solution contained seed crystals in order to microseed the droplets. Crystals appeared in the droplets after leaving the crystallization plates at 4° C.

Example 3: Formation of Co-crystal with 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3(a):

20

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 13 mg/ml glucokinase prepared in Example 1 in 20 mM tris pH 7.0, 50 mM NaCl, 10 mM DTT, 50 mM glucose, and the glucokinase activator 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide at a concentration 5 times that of the protein. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose. Crystals appeared in the

droplets after leaving the crystallization plates at 4° C.

3(b):

Alternatively, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 18% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

3(c):

In another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 20% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

15

10

3(d):

In yet another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 16% PEG10000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

25 3(e):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris

buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 25% PEG10000 was used.

3(f):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant tris buffered at pH 7.52 was used.

3(g):

10

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of tris buffered at pH 7.08 in the precipitant, hepes buffered at pH 6.89 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

15 3(h):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 0.1 M tris buffered at pH 7.08 in the precipitant, 0.2 M ammonium phosphate buffered at pH 7.03 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

3(i):

20

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 20% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used; in place of 10 mM DTT in the precipitant, 8 mM DTT was used; glucose was not present as a component of the precipitant.

3(j):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 22% PEG8000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

3(k):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 20% glucose in the precipitant, 30% glucose was used.

Example 4: Formation of Co-crystal with N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 5: Formation of Co-crystal with 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase

activator of Example 3(a), the glucokinase solution contained the glucokinase activator 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)-propionamide; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

5 Example 6: Formation of Co-crystal with (2S)-2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, bistris buffered at pH 7.0 was used.

Example 7: Formation of Co-crystal with (2S)-{2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazol-5-yl}-oxo-acetic acid ethyl ester

15

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl}-oxoacetic acid ethyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

Example 8: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid methylester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid methylester; in place of 20% glucose in the precipitant, 200 mM glucose was used.

10

15

20

25

Example 9: Formation of Co-crystal with (2S)-1-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-3-(3-hydroxy-propyl)-urea

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-1-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-3-(3-hydroxy-propyl)-urea; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 10: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid ethyl ester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid ethyl ester; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used.

Example 11: Synthesis of 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide can be prepared using well-

known organic synthesis techniques according to the following reaction scheme:

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide is useful as an allosteric activator of Glucokinase and to assist the formation of co-crystals of Glucokinase.

In the present specification "comprises" means "includes or consists of" and "comprising" means "including or consisting of".

The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse

```
SEQUENCE LISTING
   <110> F. Hoffmann - La Roche
   <120> CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM
   <130> Case 20892
5 <140> US 60/341988
   <141> 2001-12-19
   <150> US 60/341988
   <151> 2001-12-19
   <160> 1
10 <170> PatentIn version 3.1
   <210> 1
   <211>
         692
   <212>
          PRT
         Homo sapiens
   <213>
15 <220>
   <221>
         GK
   <222>
          (229)..(692)
   <223>
   <300>
20 <308>
         Genbank U13852
   <309> 1994-12-13
   <313> (1)..(228)
   <400> 1
   Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro
                                                           15
                                      10
                   5
25
   1
    Thr Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu
                                                       30
                                   25
                20
```

Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu

			35					40					45			
	Gly	Leu	Glu	Phe	Pro	Asn	Leu	Pro	Tyr	Tyr	Ile	Asp	Gly	Asp	Val	Lys
		50					55					60				
	Leu	Thr	Gln	Ser	Met	Ala	Ile	Ile	Arg	Tyr	Ile	Ala	Asp	Lys	His	Asn
5	65					70					75					80
	Met	Leu	Gly	Gly	Cys	Pro	Lys	Glu	Arg	Ala	Glu	Ile	Ser	Met	Leu	Glu
					85					90					95	-
	Gly	Ala	Val	Leu	Asp	Ile	Arg	Tyr	Gly	Val	Ser	Arg	Ile	Ala	Tyr	Ser
				100					105					110		
10	Lys	Asp	Phe	Glu	Thr	Leu	Lys	Val	Asp	Phe	Leu	Ser	Lys	Leu	Pro	Glu
			115					120					125			
	Met	Leu	Lys	Met	Phe	Glu	Asp	Arg	Leu	Cys	His	Lys	Thr	Tyr	Leu	Asn
		130					135					140				
	Gly	Asp	His	Val	Thr	His	Pro	Asp	Phe	Met	Leu	Tyr	Asp	Ala	Leu	Asp
15	145					150					155					160
	Val	Val	Leu	Tyr	Met	Asp	Pro	Met	Cys	Leu	Asp	Ala	Phe	Pro	Lys	Leu
					165					170					175	
	Val	Cys	Phe	Lys	Lys	Arg	Ile	Glu	Ala	Ile	Pro	Gln	Ile	Asp	Lys	Tyr
				180					185					190		
20	Leu	Lys	Ser	Ser	Lys	Tyr	Ile	Ala	Trp	Pro	Leu	Gln	Gly	Trp	Gln	Ala
			195					200					205			
	Thr	Phe	Gly	Gly	Gly	Asp	His	Pro	Pro	Lys	Ser	Asp	Leu	Ile	Glu	Gly
		210					215					220				
	Arg	Gly	Ile	His	Met	Pro	Arg	Pro	Arg	Ser	Gln	Leu	Pro	Gln	Pro	Asn
25	225					230					235					240
	Ser	Gln	Val	Glu	Gln	Ile	Leu	Ala	Glu	Phe	${\tt Gln}$	Leu	Gln	Glu	Glu	Asp
					245					250					255	
	Leu	Lys	Lys	Val	Met	Arg	Arg	Met	Gln	Lys	Glu	Met	Asp	Ara	Gly	Leu

				260					265					270		
	Arg	Leu	Glu	Thr	His	Glu	Glu	Ala	Ser	Val	Lys	Met	Leu	Pro	Thr	Tyr
			275					280					285			
	Val	Arg	Ser	Thr	Pro	Glu	Gly	Ser	Glu	Val	Gly	Asp	Phe	Leu	Ser	Leu
5		290					295					300				
	Asp	Leu	Gly	Ġly	Thr	Asn	Phe	Arg	Val	Met	Leu	Val	Lys	Val	Gly	Glu
	305					310					315					320
	Gly	Glu	Glu	Gly	Gln	Trp	Ser	Val	Lys	Thr	Lys	His	Gln	Met	Tyr	Ser
					325					330			•		335	
10	Ile	Pro	Glu	Asp	Ala	Met	Thr	Gly	Thr	Ala	Glu	Met	Leu	Phe	Asp	Tyr
				340					345					350		
	Ile	Ser	Glu	Cys	Ile	Ser	Asp	Phe	Leu	Asp	Lys	His	Gln	Met	Lys	His
			355.					360					365			
	Lys	Lys	Leu	Pro	Leu	Gly	Phe	Thr	Phe	Ser	Phe	Pro	Val	Arg	His	Glu
15		370					375					380				
	Asp	Ile	Asp	Lys	Gly	Ile	Leu	Leu	Asn	Trp	Thr	Lys	Gly	Phe	Lys	Ala
	385					390					395					400
	Ser	Gly	Ala	Glu		Asn	Asn	Val	Val		Leu	Leu	Arg	Asp		Ile
					405					410					415	
20	Lys	Arg	Arg		Asp	Phe	Glu	Met		Val	Val	Ala	Met		Asn	Asp
				420				_	425	_	~-	_		430	~	~ 1
	Thr	Val		Thr	Met	Ile	Ser		Tyr	Tyr	GIu	Asp		Gln	Cys	GIu
		~7	435	~~ 7		~ 1		440		_			445		6 3	G 1
25	Val		Met	TTE	val	Gly		GTA	Cys	Asn	Ala		ТУĽ	Met	Glu	Glu
25		450			a.	-	455	a.		7	6 3	460	73	36 - 1	0	77 - 7
		GIn	Asn	Val	Glu	Leu	val	Glu	GTĀ	Asp		Gly	Arg	met	суѕ	
	465	 '	07		a 3	470		a 7	-	•	475	~ 3	-	3	(1)	480
	Asn	Thr	Glu	Trp	Gly	Ala	Phe	Gly	Asp	Ser	Gly	Glu	Leu	Asp	GIU	Pue

					485					490					495	
	Leu	Leu	Glu	Tyr	Asp	Arg	Leu	Val	Asp	Glu	Ser	Ser	Ala	Asn	Pro	Gly
				500					505					510		
	Gln	Gln	Leu	Tyr	Glu	Lys	Leu	Ile	Gly	Gly	Lys	Tyr	Met	Gly	Glu	Leu
5	5		515					520					525			
	Val	Arg	Leu	Val	Leu	Leu	Arg	Leu	Val	Asp	Glu	Asn	Leu	Leu	Phe	His
		530					535					540				
	Gly	Glu	Ala	Ser	Glu	Gln	Leu	Arg	Thr	Arg	Gly	Ala	Phe	Glu	Thr	Arg
	545					550			1		555					560
10	Phe	Val	Ser	Gln	Val	Glu	Ser	Asp	Thr	Gly	qaA	Arg	Lys	Gln	Ile	Tyr
					565					570					575	
	Asn	Ile	Leu	Ser	Thr	Leu	Gly	Leu	Arg	Pro	Ser	Thr	Thr	qaA	Cys	Asp
				580					585					590		
	Ile	Val	Arg	Arg	Ala	Cys	Glu	Ser	Val	Ser	Thr	Arg	Ala	Ala	His	Met
15	•		595					600					605			
	Cys	Ser	Ala	Gly	Leu	Ala	Gly	Val	Ile	Asn	Arg	Met	Arg	Glu	Ser	Arg
		610					615					620				
		Glu	Asp	Val	Met	Arg	Ile	Thr	Val	Gly	Val	Asp	Gly	Ser	Val	Tyr
	625					630					635					640
20	Lys	Leu	His	Pro	Ser	Phe	Lys	Glu	Arg	Phe	His	Ala	Ser	Val	Arg	Arg
					645					650					655	
	Leu	Thr	Pro		Cys	Glu	Ile	Thr		Ile	Glu	Ser	Glu	Glu	Gly	Ser
			_	660					665					670		
		Arg		Ala	Ala	Leu	Val		Ala	Val	Ala	Cys	Lys	Lys	Ala	Cys
25		_	675					680					685			
	Met	Leu	Gly	Gln												
		690														

Claims

1. A co-crystal of mammalian Glucokinase and a ligand bound to an allosteric site of the Glucokinase, wherein the co-crystal has unit cell dimensions of: 5 a and b are from 79.02 Å to 80.22 Å; c is from 318.03 Å to 325.03 Å; α and β are 90°; and γ is 120°; and the co-crystal has P6(5)22 symmetry. 10 2. A crystal of mammalian Glucokinase, wherein the crystal has unit cell dimensions of: a and b are from 79.02 Å to 80.22 Å; c is from 318.03 Å to 325.03 Å;

 α and β are 90°; and

15

 γ is 120°;

and the crystal has P6(5)22 symmetry.

3. A process for co-crystalizing mammalian Glucokinase and an allosteric ligand of Glucokinase, the process comprising:

providing a buffered, aqueous solution of 9 to 22 mg/ml of the mammalian Glucokinase;

adding a molar excess of the allosteric ligand to the aqueous solution of mammalian Glucokinase; and

growing crystals by vapor diffusion using a buffered reservoir solution between about 10% and about 30% PEG, about 0% w/v and about 30% w/v glucose, and between 0 and 20 mM DTT, wherein the PEG has an average molecular weight between about 1,000 and about 20,000.

- 4. The process of claim 3, wherein the step of growing crystals by vapor diffusion comprises:
- streaking the buffered, aqueous solution of mammalian Glucokinase with added allosteric ligand on a surface to form an elongated droplet of protein solution, and streaking about an equal amount of the buffered reservoir solution across the elongated droplet of protein solution, forming a combined droplet shaped like the letter 'X'.
 - 5. A crystal produced by the process of claims 3 or 4.
 - 6. A compound identified by analysing the structure coordinates of the co-crystal of claim 1, said compound being a ligand that binds to the allosteric site of Glucokinase.

15

5

7. The compound

and pharmaceutically acceptable salts

thereof.

- 8. A pharmaceutical composition comprising the compound of claim 6.
- 9. The pharmaceutical composition of claim 8, wherein said compound is the compound of claim 7.
- 10. Use of the compound of claim 6 for the manufacture of a medicament comprising a compound according to claim 6 for the treatment of hyperglycemia in type II diabetes.
 - 11. The use of claim 10 wherein said compound is the compound of claim 7.
- 12. A compound according to claims 6 or 7, for use as a therapeutic active substance, in particular for the reduction of hyperglycemia in type II diabetes.
 - 13. The novel crystals, processes, compounds, compositions and uses as hereinbefore described.

20

5

- 14. A process according to Claim 3 or 4 further comprising the step of freezing the crystals.
- 15. A method of identifying a ligand that binds to the allosteric site of
 5 Glucokinase comprising analysing the structure co-ordinates of a co-crystal according to Claim 1.
 - 16. Use of a co-crystal according to Claim 1 or a crystal according to Claim2 in the identification of a compound which activates Glucokinase.
 - 17. Use of a co-crystal according to Claim 1 or a crystal according to Claim 2 for elucidating the structure and function of a Glucokinase.
- 18. A compound according to Claim 6 or 7, or a composition according to Claim 8 or 9, for use in a method of treatment of human or animal body.

10

19. Any novel feature or combination of features described herein.

Application No: Claims searched:

GB 0229456.9

Examiner:

Dr Rowena Dinham

d: 1-5 & 14-17; and 12, 13, 18 Date of search:

16 June 2003

and 19 (in part)

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Documents considered to be relevant.										
Category	Relevant to claims	Identity of document and passage or figure of particular relevance								
A, P		Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al. "Crystal structure of the ADP-dependent glucokinase" See entire document, especially Results and Discussion "Overall strucure"								
A		Structure; Vol 9, pp 205-214 (2001). Ito et al. "Structural basis for the ADP-specificity of a novel glucokinase" See entire document, especially Results and Discussion "Crystal structure of T. lioralis glucokinase"								
A		Diabetes; Vol 48, pp 1698-1705 (1999). Mahalingam et al. "Structural model of human glucokinase" See entire document, especially Results "Overall model and comparison with previous model and hexokinase structures"								

Categories:

ſ	x	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
	Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
	&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

Worldwide search of patent documents classified in the following areas of the IPC7:

C12N; C30B; G06F

The following online and other databases have been used in the preparation of this search report:

WPI, EPODOC, JAPIO, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CAPLUS