Assignment 5

Problem 1

Explain what is the purpose of two-level factorial designs.

Problem 2

In an experiment for the determination of Titanium(Ti) in glass ceramics, we look at the influence of elements Mg, Na and Si on the Ti signal. Sensible low and high levels in μgmL^{-1} are proposed for each of these elements. Duplicate Ti measurements are obtained for each combination of factors.

Run	Combination	Mg (a)	Na(b)	Si(c)	Response
1	(1)	(-)	(-)	(-)	7,9
2	a	(+)	(-)	(-)	8,10
3	b	(-)	(+)	(-)	32,36
4	ab	(+)	(+)	(-)	50,54
5	c	(-)	(-)	(+)	14,18
6	ac	(+)	(-)	(+)	20,24
7	bc	(-)	(+)	(+)	43,47
8	abc	(+)	(+)	(+)	53,59

Use R to test for significance the main effects, the first and second order interactions.

What are your conclusions for the next step of the experiment?

Problem 3

In the previous experiment, imagine we were planning to use as a fourth factor: the influence of Aluminum (Al) on the Ti level. Explain the total number of possible combinations for the four factors and the necessary notations.