Package 'orloca'

February 7, 2024

Type Package

Depends methods, png, ucminf

Imports grDevices, graphics, knitr, rmarkdown, stats

Suggests orloca.es, testthat (>= 3.0.0)

ByteCompile true

VignetteBuilder knitr

Title Operations Research LOCational Analysis Models

Version 5.6

Date 2024-01-31

Encoding UTF-8

Author Manuel Munoz-Marquez <manuel.munoz@uca.es>

Maintainer Manuel Munoz-Marquez <manuel.munoz@uca.es>

Description Objects and methods to handle and solve the min-sum location prob-

lem, also known as Fermat-Weber problem. The min-sum location prob-

lem search for a point such that the weighted sum of the distances to the demand points are minimized. See `The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995. <DOI:10.1007/BF01592245>.

General global optimization algorithms are used to solve the problem, along with the adhoc Weiszfeld method, see ``Sur le point pour lequel la Somme des dis-

tances de n points donnes est minimum", by Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937 or ``On the point for which the sum of the dis-

tances to n given points is minimum", by E. Weiszfeld and F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. DOI:10.1007/s10479-008-0352-z>.

Language en, es

License GPL (>= 3)

URL http://knuth.uca.es/orloca/

RoxygenNote 7.3.1

Repository CRAN

Repository/R-Forge/Project orloca

Repository/R-Forge/Revision 64

2 orloca-package

Repository/R-Forge/DateTimeStamp 2024-02-01 10:47:09

Date/Publication 2024-02-07 13:20:02 UTC

NeedsCompilation no

R topics documented:

	orloca-package	2
	andalusia	4
	as-methods	5
	as.data.frame.loca.p	6
	as.loca.p	7
	as.loca.p.data.frame	8
	as.loca.p.matrix	9
	as.matrix.loca.p	10
	contour.loca.p	
	distsum	12
	distsumgra	13
	distsummin	
	loca.p	
	paquete-orloca	17
	persp.loca.p	
	plot	
	rloca.p	
	zsum	
	zsumgra	
	zsummin	
Index		24
		_
orlo	ca-package Operations Research LOCational Analysis Models	

Description

Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem.

Details

Package: orloca

Type: Package

Version: 5.6

orloca-package 3

Date: 2024-01-31

License: GPL (>= 3)

The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See "The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995, doi:10.1007/BF01592245.

General global optimization algorithms are used to solve the problem, along with the adhoc Weiszfeld method, see "Sur le point pour lequel la Somme des distances de n points donnes est minimum", by E. Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937 or "On the point for which the sum of the distances to n given points is minimum", by E. Weiszfeld and F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009, doi:10.1007/s104790080352z.

The package provides a class loca.p that represents a location problem with a finite set of demand points on the plane. Also, it is possible to plot the points and the objective function. Such objective function is the total weighted distances travelled by all the customers to the service.

Non-planar location problems could be handle in future versions of the package.

For a demo, load the package with the instruction library(orloca), and run the demo executing the instruction demo(orloca).

The package is ready for internationalization. The author kindly ask for translated version of the .mo file to include in the package.

Author(s)

Manuel Munoz-Marquez <manuel.munoz@uca.es>

Mantainer: Manuel Munoz-Marquez <manuel.munoz@uca.es>

References

- [1] Brimberg, J. *The Fermat-Weber location problem revisited*, Mathematical Programming, 1, pg. 71-76, 1995. doi:10.1007/BF01592245.
- [2] Love, R. F., Morris, J. G., Wesolowsky, G. O. Facilities Location: Chapter 2: Introduction to Single-Facility Location, 1988, North-Holland. ISBN: 0-444-01031-9.
- [3] Weiszfeld, E. and Plastria, F. On the point for which the sum of the distances to n given points is minimum, Annals of Operations Research, 167, pg. 7-41, 2009, doi:10.1007/s104790080352z.
- [4] http://knuth.uca.es/orloca/

See Also

Useful links:

• http://knuth.uca.es/orloca/

```
# A new unweighted loca.p object o \leftarrow loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Compute the sum of distances to point (3, 4)
```

4 andalusia

```
# [1] 20.39384
distsum(o, 3, 4)

# Compute the sum of distances to point (3, 4) using lp norm with p = 2.5
# [1] 19.27258
distsum(o, 3, 4, lp = 2.5)

# Solve the optimization problem
# [1] 0 0
distsummin(o)

# Contour plot
contour(o)

# Run a demo of the package
demo(orloca)
```

andalusia

Cities of Andalusia

Description

The 'andalusia' data frame has 12 rows and 4 columns, which are the geographical position of the main capital cities of andalusia.

Format

```
name: The name of the city or relative position label.
```

x: The x coordinate of points.

y: The y coordinate of points.

city: If yes the point is a city in other case is a limit.

Usage

```
data('andalusia')
```

Source

Data are taken from wikipedia.

See Also

See also orloca-package.

as-methods 5

ods as-methods

Description

Conversions between loca.p class and some others classes

Arguments

x is the object to convert to the new class object.
 row.names Unused.
 Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix or data. frame to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of weights w.

Value

It returns a new object of the new class.

See Also

```
See also loca.p
```

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion to matrix
m <- as.matrix(loca)
# Show matrix
m
# Conversion from matrix
as.loca.p(m)</pre>
```

6 as.data.frame.loca.p

```
as.data.frame.loca.p as.data.frame.loca.p S3 method to convert from loca.p to data.frame
```

Description

Conversions between loca.p class and some others classes

Usage

```
## S3 method for class 'loca.p'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

x is the object to convert to the new class object.

row.names Unused. optional Unused.

... Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix or data. frame to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of weights w.

Value

It returns a new object of the new class.

See Also

```
See also loca.p
```

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion to matrix
m <- as.matrix(loca)
# Show matrix
m
# Conversion from matrix
as.loca.p(m)</pre>
```

as.loca.p

as.loca.p	as.loca.p The following is for S3 compatibility, mainly for documentation check
as.loca.p	

Description

Conversions between loca.p class and some others classes

Usage

```
as.loca.p(x, ...)
```

Arguments

x is the object to convert to the new class object.

... Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix or data. frame to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of weights w.

Value

It returns a new object of the new class.

See Also

```
See also loca.p
```

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion to matrix
m <- as.matrix(loca)
# Show matrix
m
# Conversion from matrix
as.loca.p(m)</pre>
```

8 as.loca.p.data.frame

```
as.loca.p.data.frame as.loca.p.data.frame S3 method to convert from data.frame to loca.p
```

Description

Conversions between loca.p class and some others classes

Usage

```
as.loca.p.data.frame(x, ...)
```

Arguments

x is the object to convert to the new class object.

... Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix or data. frame to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of weights w.

Value

It returns a new object of the new class.

See Also

```
See also loca.p
```

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion to matrix
m <- as.matrix(loca)
# Show matrix
m
# Conversion from matrix
as.loca.p(m)</pre>
```

as.loca.p.matrix

as.loca.p.matrix

as.loca.p.matrix S3 method to convert from matrix to loca.p

Description

Conversions between loca.p class and some others classes

Usage

```
as.loca.p.matrix(x, ...)
```

Arguments

x is the object to convert to the new class object.

... Other arguments, unused.

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix or data. frame to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of weights w.

Value

It returns a new object of the new class.

See Also

See also loca.p

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion to matrix
m <- as.matrix(loca)
# Show matrix
m
# Conversion from matrix
as.loca.p(m)</pre>
```

10 as.matrix.loca.p

as.matrix.loca.p

as.matrix.loca.p S3 method to convert from loca.p to matrix

Description

Conversions between loca.p class and some others classes

Usage

```
## S3 method for class 'loca.p'
as.matrix(x, rownames.force = NA, ...)
```

Arguments

```
x is the object to convert to the new class object.rownames.force If True the rownames is setted... Other arguments, unused.
```

Details

Methods to convert from and to loca.p class.

NA's values are not allowed in any of the arguments.

The matrix or data. frame to convert into loca.p must have at least two columns. The first column will be consider as the x coordinates, the second as the y coordinates, and the third (if given) as the values of weights w.

Value

It returns a new object of the new class.

See Also

```
See also loca.p
```

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Conversion to matrix
m <- as.matrix(loca)
# Show matrix
m
# Conversion from matrix
as.loca.p(m)</pre>
```

contour.loca.p

contour.loca.p

Plots of the min-sum objective function

Description

contour provides a graphical representations of min-sum objective function, which is the weighted sum of the distances to demand points (distsum).

Usage

```
## S3 method for class 'loca.p'
contour(
    x,
    lp = numeric(0),
    xmin = min(min(x@x), xleft),
    xmax = max(max(x@x), xright),
    ymin = min(min(x@y), ybottom),
    ymax = max(max(x@y), ytop),
    n = 100,
    img = NULL,
    xleft = min(x@x),
    ybottom = min(x@y),
    xright = max(x@x),
    ytop = max(x@y),
    ...
)
```

Arguments

X	The loca.p object to compute the objective.
lp	If given, then l_p norm will be used instead of the Euclidean norm.
xmin	The minimum value for x axis.
xmax	The maximum value for x axis.
ymin	The minimum value for y axis.
ymax	The maximum value for y axis.
n	The number of divisions for grid.
img	A raster image to plot on background.
xleft	The left position of the image.
ybottom	The bottom position of the image.
xright	The right position of the image.
ytop	The top position of the image.
	Other options.

12 distsum

Details

```
If p < 1 then l_p is not a norm, so only p >= 1 are valid values.
```

Value

```
contour.loca.p plots a contour plot of min-sum function (distsum).
```

See Also

See also orloca-package, plot.loca.p and loca.p.

Examples

```
# A new unweighted loca.p object loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# The contour plot of min-sum function for loca (a loca.p object) contour(loca)
```

distsum

Computes distsum function

Description

The objective function and the gradient of the objective function for the min-sum location problem.

Usage

```
distsum(o, x = 0, y = 0, lp = numeric(0))
```

Arguments

- o An object of loca.p class.
- x The x coordinate of the point to be evaluated.
- y The y coordinate of the point to be evaluated.
- lp If given, then l_p norm will be used instead of the Euclidean norm.

Details

The function zsum is deprecated and will be removed from new versions of the package.

Value

```
distsum returns the objective function of the min-sum location problem, \sum_{a_i \in o} w_i d(a_i, (x, y)), where d(a_i, (x, y)) gives the euclidean or the l_p distances between a_i and the point (x, y).
```

distsumgra 13

See Also

See also orloca-package and distsummin.

Examples

```
# A new unweighted loca.p object loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1)) # Evaluation of distsum at (0, 0) distsum(loca) # Evaluation of distsum at (1, 3) distsum(loca, 1, 3) # Compute the objective function at point (3, 4) using lp norm and p = 2.5 distsum(loca, 3, 4, lp=2.5) # The gradient function at (1,3) distsumgra(loca, 1, 3)
```

distsumgra

Computes the gradient of distsum function

Description

The gradient of the objective function for the min-sum location problem.

Usage

```
distsumgra(o, x = 0, y = 0, lp = numeric(0), partial = F)
```

Arguments

0	An object of loca.p class.
x	The x coordinate of the point to be evaluated.
У	The y coordinate of the point to be evaluated.
lp	If given, then l_p norm will be used instead of the Euclidean norm.
partial	If (x,y) is a demand point partial=T means ignore such point to compute the gradient. This option is mainly for internal use.

Details

The function zsumgra is deprecated and will be removed from new versions of the package.

Value

```
distsumgra returns the gradient vector of the objective function of the min-sum location problem, \sum_{a_i \in o} w_i d(a_i, (x, y)), where d(a_i, (x, y)) gives the euclidean or the l_p distances between a_i and the point (x, y).
```

14 distsummin

See Also

See also orloca-package and distsum.

Examples

```
# A new unweighted loca.p object loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1)) # Evaluation of distsum at (0, 0) distsum(loca) # Evaluation of distsum at (1, 3) distsum(loca, 1, 3) # Compute the objective function at point (3, 4) using lp norm and p = 2.5 distsum(loca, 3, 4, lp=2.5) # The gradient function at (1,3) distsumgra(loca, 1, 3)
```

distsummin

Returns the solution of the minimization problem

Description

Solve the min-sum location problem for a given loca.p class object.

Usage

```
distsummin(
    o,
    x = 0,
    y = 0,
    lp = numeric(0),
    max.iter = 1e+05,
    eps = 0.001,
    verbose = FALSE,
    algorithm = "Weiszfeld",
    ...
)
```

Arguments

0	An object of loca.p class.
x	The x coordinate of the starting point. It's default value is 0.
у	The y coordinate of the starting point. It's default value is 0.
lp	If given, the l_p norm will be used instead of the Euclidean norm.
max.iter	Maximum number of iterations allowed. It's default value is 100000.

distsummin 15

The module of the gradient in the stop rule. It's default value is 1e-3.

If TRUE the function produces detailed output. It's default value is FALSE.

The method to be use. For this version of the package, the valid values are: "gradient" for a gradient based method, "search" for local search method (this option is deprecated), "ucminf" for optimization with ucminf from ucminf package, and "Weiszfeld" for the Weiszfeld method or any of the valid method for optim function, now "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". "Weiszfeld" is the default value.

... Other options for optimization algorithms.

Details

The algorithms Weiszfeld and gradient include and optimality test for demand points. The Weiszfeld version of the algorithm also implements slow convergence test and accelerator procedure.

If p < 1 thus l_p is not a norm, so, only $p \ge 1$ are valid values.

Since l_2 norm is the Euclidean norm, when p=2 distsumlpmin are equal to distsummin. But the computations involved are greater for the first form.

max.iter for SANN algorithm is the number of evaluation of objective function, so this method usually requires large values of max.iter to reach optimal value

The function zsummin is deprecated and will be removed from new versions of the package.

Value

distsummin returns an array with the coordinates of the solution point.

See Also

See also orloca-package, loca.p and distsum.

```
# A new unweighted loca.p object
loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))
# Compute the minimum
sol<-distsummin(loca)
# Show the result
sol
# Evaluation of the objective function at solution point
distsum(loca, sol[1], sol[2])</pre>
```

loca.p

loca.p	loca.p class for Operations Research LOCational Analysis

Description

An object of class loca.p represents a weighted location problem with a finite demand points set. The orloca-package is mainly devoted to deals with location problems.

Arguments

x	is a vector of the x coordinates of the demand points.
У	is a vector of the y coordinates of the demand points.
W	is a vector of weights of the demand points. If w is omitted then all weights are considered as 1.
label	If given, it is the label of the new object.

Details

The main generator of the loca.p class is loca.p(x, y, w = numeric(0), label = ""). An alternative form is new("loca.p", x, y, w = numeric(0), label = "").

The lengths of x and y vector must be equals. The length of w must be equal to the previous ones or must be 0, or should be omitted. NA's values are not allowed at any of the arguments.

summary(x) returns a summary of the x loca.p object and print(x) prints the x loca.p object in table format.

Value

If the arguments have valid values, it returns a new object of class loca.p, else it returns an error.

See Also

See also orloca-package.

```
# A new unweighted loca.p object loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1)) # or loca <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1)) # An example with weights and name locb <- new("loca.p", x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1), y = c(1, 2, 1, 2), label = "Weighted case")
```

paquete-orloca 17

paquete-orloca Modelos de Investigacion Operativa para el Analisis de Localizacion (Operations Research LOCational Analysis Models)

Description

Objetos y metodos para manejar y resolver el problema de localización de suma ponderada minima, tambien conocido como problema de Fermat-Weber.

Paquete: orloca

Version: 5.5

Fecha: 2023-09-19

Licencia: GPL (>= 3)

Details

El problema de localización de suma minima busca un punto tal que la suma ponderada de las distancias a los puntos de demanda se minimice. Vease "The Fermat-Weber location problem revisited" por Brimberg, Mathematical Programming, 1, pag. 71-76, 1995. doi:10.1007/BF01592245.

Se usan algoritmos generales de optimizacion global para resolver el problema, junto con el metodo adhoc Weiszfeld, vease "Sur le point pour lequel la Somme des distance de n points donnes est minimum", por Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pag. 355-386, 1937 o "On the point for which the sum of the distances to n given points is minimum", por E. Weiszfeld y F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. doi:10.1007/s104790080352z.

El paquete proporciona una clase loca. p que representa un problema de localizacion sobre el plano. Tambien permite dibujar los puntos junto a la funcion objetivo. Dicho objetivo es la suma ponderada de las distancias que viajan los clientes del servicio.

Versiones no planas del problema podrian incorporarse en futuras versiones del paquete.

Para una demostracion, cargue el paquete con la instrucción library(orloca) y ejecute la demostracion con la instruccion demo(orloca).

El paquete esta preparado para su internacionalizacion. Las traducciones de los ficheros .mo recibidas seran anadidas en proximas versiones del paquete.

Author(s)

Manuel Munoz-Marquez <manuel.munoz@uca.es>

Mantenedor: Manuel Munoz-Marquez <manuel.munoz@uca.es>

18 persp.loca.p

References

- [1] Brimberg, J. *The Fermat-Weber location problem revisited*, Mathematical Programming, 1, pg. 71-76, 1995. doi:10.1007/BF01592245.
- [2] Love, R. F., Morris, J. G., Wesolowsky, G. O. Facilities Location: Chapter 2: Introduction to Single-Facility Location, 1988, North-Holland
- [3] Weiszfeld, E. and Plastria, F. On the point for which the sum of the distances to n given points is minimum, Annals of Operations Research, 167, pg. 7-41, 2009, doi:10.1007/s104790080352z.
- [4] http://knuth.uca.es/orloca/

Examples

```
# Un objeto loca.p no ponderado
o <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1))

# Calcula la funcion objetivo en el punto (3, 4)
# [1] 20.39384
zsum(o, 3, 4)

# Calcula la suma de las distancias al punto (3, 4) usando la norma lp con p = 2.5
# [1] 19.27258
zsum(o, 3, 4, lp = 2.5)

# Resuelve el problema de localizacion
# [1] 0 0
zsummin(o)

# Curvas de nivel
contour(o)

# Ejecuta una demo del paquete
demo(orloca)</pre>
```

persp.loca.p

Plots of the min-sum objective function

Description

persp provides a graphical representations of objetive function of the min-sum problem, which is the total weighte distance to the demand points (distsum).

Usage

```
## $3 method for class 'loca.p'
persp(
    x,
    lp = numeric(0),
    xmin = min(x@x),
```

persp.loca.p

```
xmax = max(x@x),
ymin = min(x@y),
ymax = max(x@y),
n = 10,
ticktype = "detailed",
...
)
```

Arguments

X	The loca.p object to compute the objective.
lp	If given, then l_p norm will be used instead of the Euclidean norm.
xmin	The minimum value for x axis.
xmax	The maximum value for x axis.
ymin	The minimum value for y axis.
ymax	The maximum value for y axis.
n	The number of divisions for grid.
ticktype	parameter to pass to low level function persp
	Other options.

Details

```
If p < 1 then l_p is not a norm, so only p >= 1 are valid values.
```

Value

A plot a 3D plot or min-sum function.

See Also

See also orloca-package, plot.loca.p and loca.p.

```
# A new unweighted loca.p object loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1)) 
# The 3D graphics persp(loca)
```

20 plot

plot

plot of loca.p class objects

Description

This method provides a graphical representations of an object of class loca.p.

Usage

Arguments

X	The loca.p object to plot.
xlab	The label for x axis.
ylab	The label for y axis.
main	The main title for the plot.
img	A raster image to plot on background.
xlim	Limit over the x axes of the plot.
ylim	Limit over the y axes of the plot.
xleft	The left position of the image.
ybottom	The bottom position of the image.
xright	The right position of the image.
ytop	The top position of the image.
	Other graphical options.

Details

The function plots demand points by evaluating limits automatically.

rloca.p 21

Value

The function plots the required graphics.

See Also

See also orloca-package, loca.p and plot.

Examples

```
# A new unweighted loca.p object loca <- loca.p(x = c(-1, 1, 1, -1), y = c(-1, -1, 1, 1)) # The plot of loca object plot(loca)
```

rloca.p

Random instances generator of loca.p class object

Description

rloca.p function returns a random instance of loca.p class object at a given rectangular region.

Usage

```
rloca.p(
    n,
    xmin = 0,
    xmax = 1,
    ymin = 0,
    ymax = 1,
    wmin = 1,
    wmax = 1,
    label = "",
    groups = 0,
    xgmin = xmin,
    xgmax = xmax,
    ygmin = ymin,
    ygmax = ymax
)
```

Arguments

n	The number of demand points.
xmin	Minimum value for the x coordinates of the demand points.
xmax	Maximum value for the x coordinates of the demand points.
vmin	Minimum value for the v coordinates of the demand points.

22 rloca.p

ymax	Maximum value for the y coordinates of the demand points.
wmin	Minimum value for weights
wmax	Maximum value for weights
label	The label for the new loca.p object.
groups	The number of (almost) equal size groups to generate, or a list size of the groups to generate. In the second case n will be ignored.
xgmin	Minimum value for the x coordinate of demand points with respect to the group reference point.
xgmax	Maximum value for the x coordinate of demand points with respect to the group reference point.
ygmin	Minimum value for the y coordinate of demand points with respect to the group reference point.
ygmax	Maximum value for the y coordinate of demand points with respect to the group reference point.

Details

n must be at least 1.

xmin must be less or equal than xmax.

ymin must be less or equal than ymax.

If a non zero value is given for groups parameter, then a reference point for each group are generated. At second stage, the offset part for each demand point are generated, and added to the reference point generated at the first stage.

Note that groups = 1 is not equivalent to the default value groups = 0, because in the first case a reference point are generated at the first stage.

Value

If the arguments are valid values, it returns a new object of loca.p class, else it returns an error.

See Also

See also orloca-package and loca.p.

```
# A random loca.p object at unit square with 5 demand points
rloca.p(5)
# At another region
rloca.p(10, xmin=-2, xmax=2, ymin=-2, ymax=2)
# Five groups
rloca.p(48, groups=5)
# Three unequal size groups
rloca.p(1, groups=c(10, 7, 2))
```

zsum 23

zsum zsum

Description

The function zsum is deprected and could be removed in next version of the package. Use distsum instead.

Usage

```
zsum(...)
```

Arguments

... Parameters passed to distsum

zsumgra

zsumgra

Description

The function zsumgra is deprected and could be removed in next version of the package. Use distsumgra instead.

Usage

```
zsumgra(...)
```

Arguments

... Parameters passed to distsumgra

zsummin

zsummin

Description

The function zsummin is deprected and could be removed in next version of the package. Use distsummin instead.

Usage

```
zsummin(...)
```

Arguments

... Parameters passed to distsummin

Index

* andalusia	as.loca.p,data.frame-method
andalusia, 4	(as-methods), 5
* classes	as.loca.p,matrix-method(as-methods), 5
as-methods, 5	as.loca.p.data.frame, 8
contour.loca.p, 11	as.loca.p.matrix,9
distsum, 12	as.matrix(as-methods),5
distsumgra, 13	as.matrix.loca.p, 10
distsummin, 14	
loca.p, 16	contour.loca.p, 11
persp.loca.p, 18	10 17 15 00
plot, 20	distsum, 12, <i>14</i> , <i>15</i> , <i>23</i>
* datagen	distsum, loca.p-method (distsum), 12
rloca.p, 21	distsumgra, 13, 23
* data	distsumgra,loca.p-method(distsumgra), 13
andalusia, 4	distsummin, <i>13</i> , 14, <i>23</i>
* deprecated	distsummin, loca.p-method(distsummin),
zsum, 23	14
zsumgra, 23	
zsummin, 23	loca.p, 5–10, 12, 15, 16, 19, 21
* hplot	
contour.loca.p, 11	orloca (orloca-package), 2
persp.loca.p, 18	orloca-package, 2
plot, 20	paquete-orloca, 17
* methods	persp.loca.p, 18
as-methods, 5	plot, 20, 21
* optimize	plot.loca.p, 12, 19
distsum, 12	print (loca.p), 16
distsumgra, 13 distsummin, 14	•
	rloca.p, 21
loca.p, 16	
orloca-package, 2 * package	summary (loca.p), 16
orloca-package, 2	-aum 22
or roca-package, 2	zsum, 23
	zsumgra, 23 zsummin, 23
andalusia, 4	ZSullilli111, <i>ZS</i>
as-methods, 5	
as.data.frame (as-methods), 5	
as.data.frame.loca.p,6	
as.loca.p,7	