Roll Number											
-------------	--	--	--	--	--	--	--	--	--	--	--

Narula Institute of Technology An Autonomous Institute under MAKAUT 2023

END SEMESTER EXAMINATION - ODD 2023 IT305 - FORMAL LANGUAGE AND AUTOMATA THEORY

TIME ALLOTTED: 3Hours FULL MARKS: 70

Instructions to the candidate:

Figures to the right indicate full marks.

Draw neat sketches and diagram wherever is necessary.

Candidates are required to give their answers in their own words as far as practicable

,	Group A (Multiple Choice Type Questions) Answer any ten from the following, choosing the correct alternative of ea	ach ai	ioetion:	. 10×1-1
1 a b c	Moore Machine is an application of: i) Finite automata without input i) Finite automata with output i) Non Finite automata with output ii) None of the mentioned	(1)		BL1
a b c	2. For a give Moore Machine, Given Input='101010', thus the output would be of length: a) Input +1 b) Input c) Input-1 d) Cannot be predicted	(1)	CO3	BL2
a b c	3. Which of the following is not an example of finite state machine system? a) Control Mechanism of an elevator b) Combinational Locks c) Traffic Lights d) Digital Watches	(1)	CO1	BL3
a b c	H. Which is true of the following? A) Merger graph is directed graph B) Compatible graph is directed graph B) Both are directed B) None of these.	(1)	CO1	BL1
5	5. Transition function maps. a) Σ * Q -> Σ	(1)	CO1	BL1
	b) Q * Q -> Σ			

	c) $\Sigma * \Sigma -> Q$			
	d) Q * Σ -> Q			
6.	A Language for which no DFA exist is a a) Regular Language	(1)	CO3	BL2
	b) Non-Regular Language			
	c) May be Regular			
	d) none of these			
7.	Regular expression for all strings over (a,b) starts with ab and ends with bba is. a) aba*b*bba	(1)	CO4	BL2
	b) ab(ab)*bba			
	c) ab(a+b)*bba			
	d) none of these			
8.	Push down automata accepts languages. a) Type 3	(1)	CO3	BL3
	b) Type 2			
	c) Type 1			
	d) Type 0			
9.	Which among the following looks similar to the given expression? $((0+1). (0+1))^*$	(1)	CO3	BL3
	a) $\{x \in \{0,1\} * x \text{ is all binary number with even length}\}$			
	b) {xε {0,1} x is all binary number with even length}			
	c) $\{x \in \{0,1\} * x \text{ is all binary number with odd length}\}$			
	d) $\{x \in \{0,1\} \mid x \text{ is all binary number with odd length}\}$			
10	0. Simplify the following regular expression: ε+1*(011) *(1*(011) *) *	(1)	CO3	BL2
	a) (1+011) *			
	b) (1*(011) *)			
	c) (1+(011) *) *			
	d) (1011) *			

BL₅

- 11. A Turing machine is a
 - a) real machine
 - b) hypothetical machine
 - c) abstract machine
 - d) All of these
 - 12. A regular language over an alphabet ∑ is one that cannot be obtained from the basic languages using the operation
- (1) CO2 BL1

CO4

(1)

- a) Union
- b) Concatenation
- c) Closure
- d) All of the mentioned

Group B (Short Answer Type Questions) (Answer any three of the following) 3x5=15

- 13. Explain Left recursion and Left factoring (5) CO1 BL2
- 14a. State Pumping lemma for Regular Sets. (3) CO1 BL2
- 14b. What is meant by ambiguous grammar? Explain with example. (2) CO1 BL2
- 15. Construct an equivalent FA for the given (5) CO3 BL4 regular expression (0+1)*(00+11)(0+1)*.
- 16. Consider the following table and find a minimum length sequence (5) CO2 BL3 that distinguishes state A from state B.

Present	Next State, z				
State	x = 0	x = 1			
А	B, 1	H, 1			
В	F, 1	D, 1			
С	D, 0	E, 1			
D	C, 0	F, 1			
Е	D, 1	C, 1			
F	C, 1	C, 1			
G	C, 1	D, 1			
Н	C, 0	A, 1			

17. Construct a minimum state automaton equivalent to the finite automator (5) ive 008th BL4 table below.

State / Input	0	1
→ q0	q1	q5
q1	qб	q2
Q 2	q0	q2
q3	q2	qб
q4	q7	q5
q5	q2	q6
q6	q6	q4
q7	q6	q2

Group C (Long Answer Type Questions) (Answer any three of the following) 3x15=45

18a. Explain with example Chomsky Hierarchy

(7) CO1 BL1

18b. Construct DFA for the given NFA

(5) CO1 BL2

	Nex	Next state			
	0	1			
q0	q0,q1	q0			
q1	q2	q1			
q2	q3	q 3			
(q3)	-	q2			

18c. Compare DFA and NFA.

(3) CO1 BL1

19a.

(5) CO2 BL3

Construct a Mealy machine which is equivalent to the Moore machine given in table.

Present State	Next S	Output	
	a=0	a=1	
$\rightarrow q_0$	q_3	q_1	0
q_1	q_1	q_2	1
q_2	q_2	q_3	0
q_3	q_3	q_0	0

19b. Design a PDA to accept the language $L = \{a^nb^n \mid n > 0\}$

(5) CO4 BL3

19c. Write short note on Merger Graph.

(5) CO1 BL2

20a. Construct the equivalent DFA from the NFA given below. Write down (6) CO3 BL3 the transition table for both the automata.

20b. Minimize the following automata.

- 21a. Design a Turing machine to recognize the language $\{1^n2^n3^n \mid n \ge 1\}$
- (7) CO3 BL3

CO₂

BL3

(9)

21b. Convert the following grammar into GNF - S -> AB, A -> BS | b, B -> SA | a

- (8) CO3 BL3
- 22a. Design a 2-I/P and 2-O/P sequence detector, which will detect a sequence 1010 and produce one as Output, else will produce zero as output. Design the circuit implementation
- (10) CO4 BL5

22b. Design a serial binary adder.

(5) CO4 BL5

12/20/2023 9:09:06 AM