UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS TAREA 6

Maestría en Ciencia de Datos ACT. ERICK ADRIÁN GARZA TAMEZ

Marzo 2023

1. Introducción

Este reporte busca generar un **aprendizaje supervisado** para predecir si un cliente va a caer en morosidad o no. Esta es una base de datos la cual contiene las siguientes características:

- Monto del Préstamo: Es el monto del pr'stamo que dispuso el cliente.
- *Term*: Es el plazo del préstamo.
- Interest Rate: Tasa de intéres del préstamo.
- Grade: Es el nivel de riesgo asignado por el banco, siendo 1 el mejor y 7 el peor.
- Loan Status: Esta es nuestra variable de ínteres y nos índica si el cliente es o no moroso.

El aprendizaje supervisado es un tipo de algoritmo de aprendizaje automático que utiliza datos etiquetados para entrenar un modelo y hacer predicciones o clasificaciones precisas. En este tipo de aprendizaje, se proporcionan al algoritmo tanto los datos de entrada como las respuestas deseadas (o etiquetas) correspondientes a esas entradas. El objetivo del algoritmo es aprender una función que pueda mapear las entradas a las etiquetas de salida.

Para seleccionar el mejor modelo haremos pruebas de presición para los siguientes modelos:

Clasificación logística

- KNN o k-vecinos más cercanos
- Máquinas de vectores de soporte
- Clasificador Bayesiano Ingenuo
- Árbol de decisión
- Bosque aleatorio
- Perceptrón
- Red neuronal artificial
- Máquina de vector de relevancia (RVM)

Sin embargo, es importante tener en cuenta que el aprendizaje automático no es una solución infalible y siempre es necesario evaluar los resultados y tomar medidas adicionales para mitigar los riesgos identificados.

2. Modelos

Para realizar estas pruebas de presición se utilizaron las siguientes variables de nuestros datos (primeras 10 filas):

ID	Loan Amount	Term	Interest Rate	Grade	Loan Status
65087372	10000	59	11.135007	2	0
1450153	3609	59	12.237563	3	0
1969101	28276	59	12.545884	6	0
6651430	11170	59	16.731201	3	0
14354669	16890	59	15.008300	3	0
50509046	34631	36	17.246986	2	0
32737431	30844	59	10.731432	3	0
63151650	20744	58	13.993688	1	0
4279662	9299	59	11.178457	7	0
4431034	19232	58	5.520413	3	0

Dicho lo anterior, se realizaron pruebas de presición con cada uno de los modelos y nos arrojaron los siguientes resultados:

Model	Score
Random Forest	100.00
Decision Tree	100.00
KNN	91.50
Support Vector Machines	90.75
Logistic Regression	90.75
Naive Bayes	90.75
Perceptron	90.75
Linear SVC	90.75
Stochastic Gradient Decent	9.25

3. Conclusiones

De lo anterior podemos concluir que nuestro modelo de aprendizaje supervisado 'Bosque Aleatorio' y 'Árbol de Decisión' son los mejores modelos con $100\,\%$ de presición.

Por lo tanto, se buscará realizar pruebas para determinar que no se trate de un sobre ajuste de los datos.