Topological Data Analysis

Lecture 8

Higher-order Network Science

Complex networks

Social and collaboration networks

Protein interaction networks

Functional brain networks

Financial networks

Higher-order complex networks

Collaboration networks

Social network

Collaboration network

- paper 1 (authors 1-2)
- paper 2 (authors 1-3)
- paper 3 (authors 2-3)

paper 4 (Authors 1-2-3)

Higher-order complex networks

Co-occurence networks

Word-document matrix

	Word 1	Word 2	Word 3
Doc 1		1	
Doc 2	1	1	
Doc 3			1
Doc 4		1	

Basket 1

• item 1, item 2, item 3

Basket 2

• item 1, item 3, item 5, item 6

Item-basket matrix

	Item 1		Item 6
Basket 1	1	•••	
Basket 2	1		1

Graph

Homogenous

Context 1

quick brown **fox** jumps over

Context 2

brown fox **jumps** over lazy

Context 3

fox jumps **over** lazy dog

Word-context matrix

	Word 1	Word 2	Word 3
Context 1	1		
Context 2	1	1	
Context 3		1	
Context 4	1		1

Bipartite graph

Heterogenous

Hypergraph

Homogenous

Higher-order complex networks

Models

Graph

Hypergraph

Simplicial complex

Closed under inclusion Edges of different dimensions

Hasse diagram

Graph

Graph Hasse diagram

Hasse diagram

Hypergraph

Hypergraph Hasse diagram

Hasse diagram

Simplicial complex

Simplicial complex

Closed under inclusion Edges of different dimensions

Hasse diagram

Incidence

For a pair of simplices $\tau \subseteq \sigma$

- au is a face of σ ,
- σ is a coface of au.

A p-simplex $\sigma_1^{(p)}$ is q-incident to a q-simplex $\sigma_2^{(q)}$, denoted $\sigma_1^{(p)} \to_q \sigma_2^{(q)}$ if $p \neq q$ and $\sigma_1^{(p)}$ is a face or coface of $\sigma_2^{(q)}$.

Simplicial complex K

Incidence

For a pair of simplices $\tau \subseteq \sigma$

- au is a face of σ ,
- σ is a coface of au.

A p-simplex $\sigma_1^{(p)}$ is *q-incident* to a q-simplex $\sigma_2^{(q)}$, denoted $\sigma_1^{(p)} \to_q \sigma_2^{(q)}$ if $p \neq q$ and $\sigma_1^{(p)}$ is a face or coface of $\sigma_2^{(p)}$.

Upper incidence p < q

$$\{8\} \rightarrow_1 \{6,8\}$$

$$\{8\} \rightarrow_1 \{6,8\} \qquad \{8\} \rightarrow_2 \{8,17,18\}$$

$$\{8\} \rightarrow_3 \{8,16,17,18\}$$

$$\{8,16\} \rightarrow_3 \{8,16,17,18\}$$

Lower incidence p < q

$$\{6,7,9\} \rightarrow_1 \{6,9\}$$

$$\{8,16,17,18\} \rightarrow_1 \{16,18\}$$

Simplicial complex K

Incidence

(p, q)-incidence of a p-simplex is the # q-simplices q-incident to it.

$$i_1(\{8\}) = 5$$
 $i_2(\{8\}) = 4$ $i_3(\{8\}) = 1$

Simplicial complex K

Adjacency

A set of p-simplices $\{\sigma_1^{(p)},...,\sigma_n^{(p)}\}$ is q-adjacent via p-simplex τ^q denoted $\sigma_1^{(p)} \sim_q \sigma_2^{(p)}$ pairwise, or $\sim_q \{\sigma_1^{(p)},...,\sigma_n^{(p)}\}$ for all p-simplices if

- all p-simplices $\sigma_i^{(p)}$ are p-faces of q-simplex $au^{(q)}$, conversely
- q-simplex $au^{(q)}$ is a q-coface for all k-simplices $\sigma_i^{(p)}$.

Upper adjacency p < q

$$\{6,9\} \sim_2 \{6,7\}$$
 $\{8\} \sim_3 \{18\}$

Lower adjacency p > q

$$\{8,16,17\} \sim_0 \{8,16,17,18\} \quad \{6,7,9\} \sim_1 \{6,8,9\}$$

(p, q)-degree of a p-simplex is the # of q-adjacent to it p-simplices.

Simplicial complex K

Degree

(p, q)-degree of a p-simplex is the # of q-adjacent to it p-simplices.

$$d_1(\{8\}) = 5$$

$$d_1(\{8\}) = 5$$
 $d_2(\{8\}) = 5$ $d_3(\{8\}) = 3$

$$d_3(\{8\}) = 3$$

Simplicial complex K

Degree

(p, q)-degree of a p-simplex is the # of q-adjacent to it p-simplices.

$$d_1(\{8\}) = 5$$

$$d_2(\{8\}) = 5$$

$$d_1(\{8\}) = 5$$
 $d_2(\{8\}) = 5$ $d_3(\{8\}) = 3$

same for q = 1

different for q > 1

$$i_1(\{8\}) = 5$$

$$i_2(\{8\}) = 4$$

$$i_1(\{8\}) = 5$$
 $i_2(\{8\}) = 4$ $i_3(\{8\}) = 1$

Simplicial complex K

Connected components

A (p, q)-path is a sequence of simplices $\{\sigma_1^{(p)}, \sigma_2^{(q)}, \sigma_3^{(p)}, \sigma_4^{(q)}, \ldots, \sigma_{n-1}^{(q)}, \sigma_n^{(p)}\}$ such that $\sigma_i^{(p)} \to_q \sigma_{i+1}^{(p)} \to_q \sigma_{i+2}^{(p)} \ \forall i$.

Two simplices $\sigma_1^{(p)}, \sigma_2^{(p)}$ are *(p, q)-connected* if there exists (p, q)-path between them.

A (p, q)-connected component is an equivalence relation on K.

$$|C_{0,1}(K)| = 3$$
 $|C_{0,2}(K)| = 8$

Simplicial complex K

Q-analysis

Social networks

Chess networks

Binary relation

Let X and Y be sets or cardinalities m and n, respectively

$$X = \{x_1, ..., x_m\}$$
 $Y = \{y_1, ..., y_n\}$

Binary relation R is a subset of Cartesian product X x Y

$$R \subseteq X \times Y$$

$$xRy \iff (x,y) \in R$$

Matrix representation

R on sets X and Y is represented by m x n matrix A

$$a_{ij} = \begin{cases} 1, & x_i R y_j, \\ 0, & \text{otherwise}. \end{cases}$$

	y 1	y 2	Уз
X 1	1		
X 2	1	1	
X 3	1		1
X 4		1	1

Let R is a binary relation on sets X and Y of cardinalities m and n, respectively.

A Dowker complex K of a binary relation R on sets X and Y is defined

$$K = \{ \sigma^{(m)} = \{ x_{\sigma_0}, ..., x_{\sigma_m} \} \mid \exists y \text{ s.t.} x_i R y \quad \forall x_i \in \sigma^{(m)} \}$$

Analogously, a *Dowker complex L* is defined

$$L = \{ \sigma^{(n)} = \{ y_{\sigma_0}, ..., y_{\sigma_n} \} \mid \exists x \text{ s.t.} x_i R y \quad \forall y_j \in \sigma^{(n)} \}$$

Let R is a binary relation on sets X and Y of cardinalities m and n, respectively.

A Dowker complex K of a binary relation R on sets X and Y is defined

$$K = \{ \sigma^{(m)} = \{ x_{\sigma_0}, ..., x_{\sigma_m} \} \mid \exists y \text{ s.t.} x_i R y \quad \forall x_i \in \sigma^{(m)} \}$$

Analogously, a *Dowker complex L* is defined

$$L = \{ \sigma^{(n)} = \{ y_{\sigma_0}, ..., y_{\sigma_n} \} \mid \exists x \text{ s.t.} x_i R y \quad \forall y_j \in \sigma^{(n)} \}$$

	y 1	У 2	У 3
X 1	1		
X 2	1	1	
X 3	1		1
X 4		1	1

$$\sigma^{(2)} = \{x_1, x_2, x_3\} \in K$$

Let R is a binary relation on sets X and Y of cardinalities m and n, respectively.

A Dowker complex K of a binary relation R on sets X and Y is defined

$$K = \{ \sigma^{(m)} = \{ x_{\sigma_0}, ..., x_{\sigma_m} \} \mid \exists y \text{ s.t.} x_i R y \quad \forall x_i \in \sigma^{(m)} \}$$

Analogously, a *Dowker complex L* is defined

$$L = \{ \sigma^{(n)} = \{ y_{\sigma_0}, ..., y_{\sigma_n} \} \mid \exists x \text{ s.t.} x_i R y \quad \forall y_j \in \sigma^{(n)} \}$$

	y 1	y 2	y 3
X ₁	1		
X 2	1	1	
X 3	1		1
X 4		1	1

$$\sigma^{(1)} = \{y_1, y_3\} \in L$$

	y 1	y 2	y 3
X 1	1		
X 2	1	1	
X 3	1		1
X 4		1	1

A

Homology groups of Dowker complexes K and L are isomorphic, i.e. $H_{\bullet}(K) \simeq H_{\bullet}(L)$ [Dowker1952, Thm. 1].

Chess network

Chess board

	f ₁	•••	f ₁₆
S ₁	1		
S ₂	1	1	
	1		1
S 64		1	1

Relation "figure attacks square"

vertices — squaressimplices — figures attacking a given square

Dowker complexes K and L

Q-analysis

Q-connected components

Given a Dowker complex K (L) Atkin's Q-analysis is to associate a Q-vector defined as a vector of #(max, q)-connected components of K (L) for all q.

Q-vector of K

$$(3, 4+m) \tag{3}$$

0 1

(3, 6, 15)

(0, q)-vector of *K*

2 3

F-vector (18, 19, 8, 1)

Line graph

A (p, q)-line graph of a simplicial complex K is a graph G(V, E) where

- V consists of p-simplices of K,
- $(\sigma_1^{(p)}, \sigma_2^{(p)}) \in E_G$ if $\sigma_1^{(p)} \sim_q \sigma_2^{(p)}$.

Simplicial complex K

Centralities

Betweenness, closeness centrality

(p, q)-betweenness centrality

shortest (p, q)-paths passing through given p-simplex

(p, q)-closeness centrality

Inverse of sum of the length of (p, q)-paths between given p-simplex and other p-simplices

Can be computed using (p, q)-line graph

Higher-order Laplacian

Chain complex of K

$$C_3 \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} 0$$

Higher-order Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0$$

$$\mathbf{L}_p = \mathbf{B}_p^T \mathbf{B}_p + \mathbf{B}_{p+1} \mathbf{B}_{p+1}^T$$

Graph Laplacian operator

$$\mathbf{L} = \mathbf{B}\mathbf{B}^T \qquad \qquad \mathbf{L} = \mathbf{D} - \mathbf{A}$$

$$\mathbf{L}_0 = \mathbf{B}_1 \mathbf{B}_1^T$$

Higher-order Laplacian

Spectrum

Higher-order Laplacian operator

$$C_2 \xrightarrow[\partial_2^*]{\partial_2} C_1 \xrightarrow[\partial_1^*]{\partial_1} C_0$$

$$\mathbf{L}_p = \mathbf{B}_p^T \mathbf{B}_p + \mathbf{B}_{p+1} \mathbf{B}_{p+1}^T$$

Classification accuracy, % for 5-fold cross-validation averaged over 20 runs.