

KLASSIFIZIERUNG DES SUIZIDRISIKOS VON PERSONENGRUPPEN IN LÄNDERN EUROPAS

- TEAM] -

OUR VISION & MISSION

ZIELGERICHTETE REDUZIERUNG DER SUIZIDRATE INNERHALB EUROPAS DURCH KLASSIFIZIERUNG DES SUIZIDRISIKOS LÄNDERBEZOGENER PERSONENGRUPPEN

OUR TASK

Fragestellungen

- Welche länder- und personenspezifischen Kriterien haben Einfluss auf die Suizidrate?
- Welche Personengruppe bekommt Unterstützung? (suizidkritisch/ unkritisch)
- Wie sieht diese Unterstützung aus? (z.B. finanziell, Altersgruppe, Geschlechter)

Zielstellung

- Aussprechen von Handlungsempfehlungen für Politik & Länder
- Entscheidung über
 Budgetverteilung (z.B.
 Beratungseinrichtungen)

Prämissen

- Betrachtung von Europa
- Betrachtung auf Länderebene & Bevölkerungsgruppen anstelle von einzelnen Individuen

Erfolgskriterien

Mindestanforderung an Vorhersagegenauigkeit:

Accuracy >= 80%

→ Mindestens 80% aller Risikogruppen müssen richtig klassifiziert werden (TP & TN), um den Algorithmus für den Use Case einsetzen zu können

Im Entscheidungsfall wird der Algorithmus mit den **höchsten Recall** Werten bevorzugt.

DOMAIN EXPLORATION

- ANDREAS HERB, DAVID SCHALL -

DOMAIN EXPLORATION: SUIZID & DATA SCIENCE

Individuelle Suizidprävention

- **Ziel:** Identifikation von
 Risikogruppen /-menschen mit Data
 Science
- Daten: individuell auf einzelne Personen, vergangenheitsbezogen oder realtime
- Methoden: text mining & natural language processing

Gesellschaftliche Suizidprävention

- **Ziel:** Explorative Analyse & Relation von gesundheitlichen Faktoren (z.B. Depression, Alkohol, Drogen) auf Suizidraten
- Daten: Landesebene
- Methoden: explorative Analysen,
 z.T. Regressionsmodelle

Methodenfokus:

SISHER

 \rightarrow Regression & Text Mining

NEO

→ Klassifikation

Inhaltsfokus:

→ Individuum & Gesundheit

→ Wirtschaft & Sozioökonomie

DATA EXPLORATION

- SEBASTIAN WÖLK, LARA MÜLLER -

ALLGEMEINES - DATENSATZSTRUKTUR

Suicide Rates 1985-2016

Gejointe Datensätze

- Allgemeine Daten (z.B. Country-Codes, Kontinente)
- Ökonomische Daten
 (z.B. Inflation, Gini, Employment
 etc.)
- Gesundheitsdaten
 (z.B. Lebenserwartung,
 Investitionen in Gesundheitswesen
 etc.)
- Gesellschaftliche Daten (z.B. HDI, Demokratieindex, Mordfälle etc.)

PREDIKTORVARIABLE / LABEL

- Verwenden der
 4 Quartile zur
 Diskretisierung
 des Labels
- Zielvariable: Suizide pro 100.000 Einwohner
 - kategoriale Ausprägungen
 - no risk (<= 2.09 Suizide pro 100.000)
 - low risk (> 2.09 und <= 7.66 Suizide pro 100.000)
 - **medium risk** (> 7.66 und <= 19.37 Suizide pro 100.000)
 - high risk (> 19.37 Suizide pro 100.000)

Index	Nominal value	Absolute count	Fraction
1	no_risk	1276	0.251
2	medium_risk	1272	0.250
3	high_risk	1271	0.250
4	low_risk	1269	0.249

NOMINAL: GESCHLECHT, ALTERSGRUPPEN, GENERATIONEN

Geschlecht				
Index	Nominal value	Absolute count	Fraction	
1	female	2544	0.500	
2	male	2544	0.500	

Altersgruppe				
Index	Nominal value	Absolute count	Fraction	
1	15-24 years	848	0.167	
2	25-34 years	848	0.167	
3	35-54 years	848	0.167	
4	5-14 years	848	0.167	
5	55-74 years	848	0.167	
6	75+ years	848	0.167	

NUMERISCH: KORRELATIONSMATRIX

Anzahl Suizide

→ kann vernachlässigt

Label generiert wurde

werden, da hieraus das

total

FEHLENDE WERTE / UNVOLLSTÄNDIGKEITEN

- Zwei Attribute mit fehlenden Werten
 - "Health expenditure in % of GDP" 132 fehlende Werte
 - "Democracy index" 552 fehlende Werte

health_health_expenditure_%	Real	132	Min 2.690	Max 11.900	Average 7.891	
✓ society_democracy_index	Real	552	Min 0.295	Max 0.993	Average 0.752	

DESKRIPTIVE STATISTIK - SUIZIDE PRO 100K POPULATION

INFO	

- Stark rechtsschiefe Verteilung der Suizidrate mit einer Range von 0-121 Suizide pro 100k Einwohner
- Viele Länder mit geringer, wenige mit einer sehr hohen Suizidrate

Avg	Min	Max	Median	Modus	Std. Dev.
14.396	0	120.750	7.660	0	18.228

ALTERSGRUPPE - MEHR SUIZIDE IM HOHEN ALTER

GESCHLECHT: MEHR SUIZIDFÄLLE BEI MÄNNERN

LEBENSERWARTUNG

INFO

- Mit steigenden Ausgaben im Gesundheitssystem steigt auch die Lebenserwartung der Menschen
- Höhere Lebenserwartung führt zu einer geringeren Suizidrate

BESCHÄFTIGUNGSRATE - HARD WORK KILLS YOURSELF

FRAUENANTEIL IN DER BEVÖLKERUNG (IN %)

NFO

 Erhöhter Frauenanteil in der Bevölkerung führt zu erhöhter Suizidrate bei Männern

ZUSAMMENFASSUNG DATA EXPLORATION

- Alter
- Geschlecht
- Frauenanteil
- Gesundheitsausgaben
- Lebenserwartung
- Beschäftigungsgrad

Zu erwartender Zusammenhang zum

- BIP
- BIP pro Kopf
- Einkommensungleichheit (Gini-Coefficient)

nicht besonders stark

Erkenntnisse

- Kein erkennbarer Handlungsbedarf bei Ausreißern
- Zwei Attribute mit fehlenden Werten

DATA PREPARATION

- ANDREAS HERB, LARA MÜLLER -

DATA PREPARATION OVERVIEW

Basic Transformation

- Rollen
- Skalenniveaus
- Nominal/Binominale Attribute
- Duplicates (NA)

Feature Scaling

- Standardisierung
- Normalisierung

Feature Selection

- Multikollinearität
- Low Variance (NA)

Missing Values

- Simple Model: Average
- Komplex Model: Regression
- Exclude Values

Feature Engineering (NA)

Erstellen neuer Feature in diesem Anwendungsfall nicht notwendig

Outlier Handling (NA)

Keine zu behandelnden Outlier in Datensatz

DATA PREPARATION - 3 DATA PREP PIPELINES (RECIPES)

Rapid Miner Process	Model / Preparation	General (roles, scales, dummy variables)	Missing Values	Feature Selection	Feature Scaling (Standardisierung)
2.1/ 3.1	KNN	X	X	X	X
2.2/3.2	SVM	X	X	X	SVM nutzt integriert scale Funktion, welche bessere Ergebnisse liefert
2.3/	XGBoost / Random Forest	X	X	Tree Based Models nehmen Selektion der Feature selbst vor	Scaling bei Decision Tree Algorithmen nicht notwendig

siehe R Documentation "Recommended Preprocessing"

DATA PREPARATION GESAMTPROZESS - RAPID MINER

- 1. Datenset importieren
- Data preparation je Algorithmus durchführen
- Datenset mittels stratified sampling splitten
 - a. 25% Testdaten
 - b. 75% Trainingsdaten
- 4. Testdaten im Prozess speichern, um im späteren Verlauf darauf zugreifen zu können

DATA PREPARATION - MODULARER AUFBAU

ERGEBNIS NACH MISSING VALUES

Auffällig hohe Multikollinearität bei

- democracy_index
- gdp_per_capita
- hdi
- internet user
- child_mortality
- generation & age

MODUL 3 - FEATURE SELECTION

Sortieren der Attribute nach Stärke der Korrelation zum Label (siehe Folie 53)

Attribute mit einer normalisierten Gewichtung von <= 0,1 werden über den "Select by Weights" Operator entfernt.

Da der Operator "Remove Correlated Attributes" für das Label relevante Feature entfernt, wurde entschieden den Selektionsprozess manuell durch Analyse durchzuführen.

Prüfen der Korrelationsmatrix auf Multikollinearität der übrigen Variablen (siehe Folie 54)

Anhand der Ergebnisse werden folgende Attribute über "Select Attributes" entfernt:

- Generation
- Healtch_Child_Mortality

ERGEBNIS NACH DATA PREPARATION

MODELLING

- SEBASTIAN WÖLK, DAVID SCHALL -

MODELLING OVERVIEW

Choose Algorithms

- K-Nearest Neighbor
- Support Vector Machine
- Random Forest
- Gradient Boosted Tree

Hyperparametertuning

- Auswahl geeigneter
 Parameter für jeden
 Algorithmus
- Definition eines Wertebereichs

Cross Validation

- Festlegen der Anzahl Folds
- Festlegen der Splitting-Methode

Training

- Trainieren auf algorithmus-spezifischen Trainingsdatensätzen
- Eventuelle Anpassung der Data Preparation

Testing & Performance

- Definition der Performanceparameter
- Messen der Performance auf den Validierungsdaten der cross validation

SUPPORT VECTOR MACHINE: PROZESSEBENEN

SUPPORT VECTOR MACHINE: HYPERPARAMETERTUNING

RANDOM FOREST: HYPERPARAMETERTUNING

K-NEAREST NEIGHBOR: HYPERPARAMETERTUNING

GRADIENT BOOSTED TREE: HYPERPARAMETERTUNING

TRAININGSDATEN: PERFORMANCEÜBERSICHT

Phase	Algorithmus	Accuracy	Recall	Precision
	Support Vector Machine	80.05%	80.09%	80.88%
Training	K-Nearest Neighbor	79.88 %	79.92%	79.97%
Training	Random Forest	82.00%	82.02%	82.38%
	Gradient Boosted Tree	83.98%	84.02%	84.03%

MODEL EVALUATION

- SEBASTIAN WÖLK, ANDREAS HERB -

GESAMTPROZESS: EVALUATION 1 Modelle 2 Testdaten 3 Modelling & Performance

- Anwendung des trainierten Modells auf die Testdaten
- Performancemessung
 - Accuracy
 - Precision
 - o Recall

EVALUATION: PERFORMANCEÜBERSICHT

Phase	Algorithmus	Accuracy	Recall	Precision
	Support Vector Machine	80.05%	80.09%	80.88%
Training	K-Nearest Neighbor	79.88 %	79.92%	79.97%
Training	Random Forest	82.00%	82.02%	82.38%
	Gradient Boosted Tree	83.98%	84.02%	84.03%
	Support Vector Machine	78.62%	78.65%	79.40%
Testing	K-Nearest Neighbor	79.31%	79.35%	79.38%
Testing	Random Forest	81.03%	81.07%	81.61%
	Gradient Boosted Tree	82.76%	82.80%	82.93%

EVALUATION: GRADIENT BOOSTED TREE (XG BOOST)

accuracy: 83.98% +/- 1.40% (micro average: 83.98%)

	true no_risk	true medium_risk	true low_risk	true high_risk	class precision
pred. no_risk	778	6	84	2	89.43%
pred. medium_risk	7	680	95	69	79.91%
pred. low_risk	89	103	689	9	77.42%
pred. high_risk	1	85	8	779	89.23%
class recall	88.91%	77.80%	78.65%	90.69%	

.....

Accuracy: 83.98%

Recall: 84.02%

Precision: 84.03%

accuracy: 82.76%	iccuracy: 82.76%					
	true no_risk	true medium_risk	true low_risk	true high_risk	class precision	
pred. no_risk	244	1	36	0	86.83%	
pred. medium_risk	5	234	35	22	79.05%	
pred. low_risk	41	36	220	2	73.58%	
pred. high_risk	1	20	1	262	92.25%	
class recall	83.85%	80.41%	75.34%	91.61%		

TEST

Accuracy: 82.76%

Recall: 82.80%

Precision: 82.93%

EVALUATION: MODELLAUSWAHL

GRADIENT BOOSTED TREE

Gute Performance auf Trainings- und Testdaten

Gute Interpretierbarkeit von Decision Tree-Modellen

Transparente Modellbildung

Sehr bekannter und performanter Klassifikator

Geringe Anforderungen an Data Preparation

Eventuell rechenintensiv bei großen Datenmengen

RESULT PRESENTATION & INTERPRETATION

- DAVID SCHALL, LARA MÜLLER -

CRISP-DM

Understanding

Ziel: Klassifizierung

Ziel Accuracy >= 80%

und sozioökonomischen

Gesichtspunkten

Risikogruppen innerhalb

Kombination aus Individuen

länderspezifischer

Europas

Data Preparation

Data Understanding

- primär alte Leute 75+
- vorwiegend männlich

Sozioökonomisch:

- Lebenserwartung
- Gesundheitssystem

Händisches Entfernen multikollinearer Feature führt zu besseren Ergebnissen als das Nutzen des Operators "Remove Correlated Attributes"

Modeling

Performance der Algorithmen auf den Trainingsdaten ist bei allen Modellen vergleichbar.

Schwankende Vorhersagegenauigkeit zwischen den Risikoklassen → high_risk & no_risk können besser vorhergesagt werden

Evaluation

Kein Over-/ Underfitting

Alle Modelle generalisieren sehr gut. da sie ähnliche Performance auf den Testdaten liefern

Interpretation

3 von 4 der getesteten Algorithmen erfüllen mit einer Accuracy >80% die Erfolgskriterien des Projektes und können somit für das Beantworten der Fragestellung zukünftig eingesetzt werden.

Mit einer Accuracy von 82,76% performed XGBoost am besten und kann für den Einsatz im Projekt verwendet werden.

Es können Hypothesen und Handlungsergebnisse pro Risikogruppe abgeleitet werden, um die Suizidrate positiv zu beeinflussen.

EINORDNEN DER RISIKOKLASSEN IN DEN GESAMTKONTEXT

Risikoklasse	Abgeleitete Maßnahmen
high_risk	 Bereitstellen von Finanzpaketen für das Länderbudget Initiieren und Durchführung weiterer Studien auf Risikogruppenebene Erarbeiten eines Maßnahmenplans zur Suizidprävention
medium_risk	 Erarbeitung eines individuellen Maßnahmenplans Finanzielle Unterstützung dedizierter sozialer Projekte im Land
low_risk	 Beobachtung des Risikostatus und ermittelter Einflussfaktoren Ggf. Verteilen von Informationen zum Thema Suizidprävention
no_risk	 Land wird als nicht risikoreich eingestuft → keine Aktionen notwendig

Mit Hilfe der Risikoklassen wird Höhe und Ausmaß der Unterstützung definiert.

Vorhersage dieser Risikoklasse von

höchster Bedeutung.

ANALYSE FALSCH-KLASSIFIZIERUNG

Bei Falsch-Klassifizierungen wird meist die benachbarte Risikoklasse vorhergesagt

high ris

high_risk kann sehr zuverlässig vorhergesagt werden. Im Falle einer Falsch-Klassifikation besteht maximal das Risiko einer medium_risk Klassifizierung

medium_risk & low risk

medium_risk & low_risk bedarf näherer
Analysen

- → Hohes Risiko einer Fehlinvestition bei da Personengruppe tatsächlich darunterliegender Klasse angehören
- → Hohes Risiko für mangelnden Einsatz, da Personengruppe tatsächlich höher klassifiziert werden müssten

no risk

Falsch-Klassifikation bei no_risk bleiben ohne größere Konsequenz, da meist die nächsthöhere Klasse low_risk gewählt wird (ebenfalls keine/kaum Aktionen)

HIGH-RISK KLASSIFIKATION TESTDATEN - XGBOOST

Top 10 Länder	· (rot)
country	perc_hig ↓
Russia	0.588
Slovenia	0.519
Latvia	0.515
Bosnia and Herzegovina	0.500
Kazakhstan	0.483
Finland	0.448
Hungary	0.444
Lithuania	0.444
Belarus	0.429
Estonia	0.400
• • •	
Germany	0.207

RESULT INTERPRETATION: ZUSAMMENFASSUNG

high risk & no risk Personengruppen können mit einer hohen Vorhersagegenauigkeit zur Entscheidung über Investitionen herangezogen werden

Zwischenklassen (low risk & medium risk) können durch Falsch-Klassifizierungen zu Fehlinvestitionen führen und bedürfen einer genaueren Analyse

Optimierung: Zusammenführen beider Klasse zu einer

Domain

Finanzielle Investitionen in das Gesundheitssystem und gesunde Beschäftigungsverhältnisse (Work-Life-Balance & gleichberechtigte Bezahlung) können die Suizidrate positiv beeinflussen

Geschlecht (männlich) sind ausschlaggebend für hohe Suizidraten

insbesondere das zunehmende Alter und das

→ Beratungsangebote & Kampagnen für ausgewählte Risikogruppen pro Land unterstützen einen effizienten Einsatz der Ressourcen

Risikoklassifizierung als Priorisierung weiterer Analysen auf Individuen-**Fhene**

Prüfen der Anwendbarkeit des Modells auf andere Kontinente (z.B. Asien, Amerika)

Steigern der Vorhersagegenauigkeit der Algorithmen durch Hinzufügen weiterer Feature

Vielen Dank für eure Aufmerksamkeit ;-)

KLASSIFIZIERUNG DES SUIZIDRISIKOS VON PERSONENGRUPPEN IN LÄNDERN EUROPAS

- ANDREAS HERB, DAVID SCHALL, SEBASTIAN WÖLK, LARA MÜLLER -