Computação Gráfica

Prof. Rodrigo Martins rodrigo.martins@francomontoro.com.br

Alguns slides foram cedidos pelo Prof. Jorge Cavalcanti da UNIVASF (UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO)

Dispositivos Gráficos

- Toda imagem criada através de recursos computacionais deve ser representada em algum dispositivo físico que permita a sua visualização.
- Diversas tecnologias e diferentes tipos de dispositivos são utilizados para gerar representações visuais, sendo que o desenvolvimento dessas tecnologias teve um papel fundamental na evolução da CG.
- Tanto para o usuário como para o implementador de sistemas gráficos é importante conhecer as características de cada uma dessas tecnologias para sua melhor utilização.
- Vamos discutir alguns aspectos da arquitetura e organização dos tipos mais comuns dos dispositivos de exibição gráfica, sem entrar em detalhes técnicos.

Dispositivos Gráficos

- E possível classificar os dispositivos de exibição (traçadores, impressoras e terminais de vídeo) em duas principais categorias, segundo a forma pela qual as imagens são geradas: dispositivos vetoriais e dispositivos matriciais.
 - Os dispositivos gráficos vetoriais conseguem traçar segmentos de reta perfeitos entre dois pontos da malha finita de pontos definida por suas superfícies de exibição.
 - Os dispositivos matriciais, por outro lado, apenas conseguem traçar pontos, também em uma malha finita. Assim, segmentos de reta são traçados como sequências de pontos próximos.
- Através dos dispositivos gráficos interagimos com o sistema na busca de uma extensão dos limites do nosso corpo e uma melhor comunicação com a máquina.
- Os dispositivos podem ser classificados em:
 - Dispositivos gráficos de entrada
 - Dispositivos gráficos de saída

- Os dispositivos de entrada são componentes eletrônicos que permitem a movimentação e interação com os sistemas.
- A cada dia surge um novo dispositivo com novas propostas ergonômicas, recursos adicionais que agilizam a tarefa de interação ou simplesmente reduzem a quantidade de fios em sua mesa.

- Teclado
- Mouse
- Joystick

Mesa Digitalizadora

- Consiste em uma mesa e um apontador.
- Ao tocar a mesa o computador recebe as coordenadas do referido ponto.
- Resolução muito fina, medições muito precisas.
- Popular no leste da Ásia como dispositivo para entrada de caracteres.

Luvas

 Através de sensores detectam e medem as flexões e pressões dos dedos;

- Scanners Tridimensionais
 - Utilizam câmeras digitais acopladas a uma mesa especial que fornece as coordenadas para os sistemas;

- Roupa de RV
 - Permite a interação com o mundo virtual;
 - Usadas para gerar informações de movimento humano e transmitir sensações.

Prodigy 52 Channels

Pioneer 16 Channels

- É possível classificar os dispositivos de saída em duas principais categorias, segundo a forma pela qual as imagens são geradas (veja seção anterior de descrição vetorial e matricial de imagens): vetoriais e matriciais.
- Os dispositivos vetoriais conseguem traçar segmentos de reta perfeitos entre dois pontos.
- Os dispositivos matriciais apenas conseguem traçar pontos, ou seja, segmentos de reta são traçados como sequências de pontos próximos, são entretanto, bastante adequados para desenhar áreas cheias e sombras, onde os vetoriais mostram deficiência.

Impressoras

Jato de tinta

Laser

Térmicas

Plotters

 Produzem desenhos em grandes dimensões, com elevada qualidade.

Cave

 Usam a idéia de colocar o usuário em uma sala com paredes que são na verdade telas para projeção de imagens.

Display de retina – Stereo Glasses

- Head Mounted Displays
 - Conhecidos como "óculos de realidade virtual" ou "capacete de realidade virtual";
 - Operam exibindo duas telas de imagens de uma cena virtual.

Dispositivos gráficos de saída - Monitores

CRT

PLASMA

LCD

LED

Resolução de Imagens

- A resolução está associada a quantidade e a qualidade de informação que um dispositivo apresenta.
 - A resolução pode ser medida em pixels (*pictures elements*), no caso de monitores ou em DPI (impressoras).
 - O pixel representa uma unidade que pode ser controlada individualmente e que contém informações sobre cores e brilho.
 - O tamanho do pixel vai depender de como a resolução da tela foi configurada.
 - Relação entre o tamanho da tela e a resolução mínima recomendada:

Medida Nominal	Resolução	Medida Nominal	Resolução
15"	800 x 600	19"	1.280 x 1.024
17"	1.024 x 768	21"	1.600 x 1.200

Resolução de Imagens

- Relação pixels X bits
 - Cada pixel requer uma quantidade de bits, de acordo com o seu modelo de cores.
 - Ex: Sistema RGB

Cada cor primária - 256 níveis (8 bits)

Cada pixel -3 cores (RGB) X 8 bits = 24 bits (true color) => 16 M de cores Cores de 32 bits => 8 bits para o canal alfa, com 256 níveis de transparência Cores Preto & Branco -1 bit (P.Ex: 0 Branco, 1 Preto)

Resolução de imagens

dpi (pontos por polegada)

- Uma medida da resolução da impressora em pontos por polegada. Impressoras a laser/ink jet típicas de mesa imprimem em 300 dpi.
- Fotocompositoras imprimem em 1270 ou 2540 dpi. Impressoras com capacidades maiores de dpi produzem uma saída mais suave e mais limpa.
- O termo dpi também é usado para medir resolução de digitalização e para indicar resolução de bitmap.
- Imagens para visualização em monitores não precisam ter mais que 100 dpi.
- Imagens a serem impressas, o mínimo recomendado para uma boa resolução são 300 dpi.

Resolução de imagens

- •O número de pixels por polegada de uma imagem em formato bitmap, é medida em ppi (pixels por polegada) ou dpi (pontos por polegada).
- Resoluções baixas podem resultar em aparência granulada na imagem em formato bitmap, e resoluções altas podem produzir imagens mais suaves, mas resultam em arquivos maiores.

Resolução Gráfica

- Virtualmente todos os dispositivos de I/O gráficos usam uma malha retangular de posições endereçáveis - a qual é denominada "retângulo de visualização".
- A "resolução gráfica" de um dispositivo é o número de posições (ou pontos, ou pixels) horizontais e verticais que ele pode distinguir. Existem 4 parâmetros que definem a resolução.
 - 1. **ndh** número de posições endereçáveis horizontalmente.
 - 2. **ndv** número de posições endereçáveis verticalmente.
 - 3. width a largura do retângulo de visualização em mm.
 - 4. **height** a altura do retângulo de visualização em mm.
- A partir desses 4 parâmetros, vários números interessantes podem ser calculados.

Resolução Gráfica

$$horiz_res = \frac{ndh}{width}$$

$$horiz_dot_size = \frac{width}{ndh}$$

$$vert_res = \frac{ndv}{height}$$

$$vert_dot_size = \frac{height}{ndv}$$

$$total_nr_dots = ndh.ndv$$

$$area_res = \frac{total_nr_dots}{(width.height)}$$

$$aspect_ratio = \frac{vert_dot_size}{horiz_dot_size}$$

$$physical_aspect_ratio = \frac{height}{width}$$

Tipos de Imagens

As imagens podem ser classificadas como Vetorial e Matricial;

Tipos de Imagens

- A representação vetorial é empregada para a definição e modelagens de objetos que serão representados pela imagem;
- Na representação vetorial são usados como elementos básicos os pontos, as linhas, as curvas, etc.;
- Esses elementos básicos são chamados primitivas gráficas;
- Cada primitiva gráfica possui um conjunto de atributos que define sua aparência e um conjunto de dados que define sua geometria.

Imagens Vetoriais

- Vantagens das imagens vetoriais:
 - Facilidade de armazenamento dos elementos geométricos;
 - Facilidade de manipulação (escala, rotação, etc.);
 - Alteração simples;
- Desvantagem das imagens vetoriais
 - Requer dispositivos de saída específicos para ter bons resultados;
 - Reconstrução mais lenta.

Imagens Vetoriais

• Ilustração vetorial com e sem preenchimento de cor.

Imagens Matriciais

- Na representação matricial, a imagem é descrita por um conjunto de células em um arranjo espacial bidimensional, uma matriz;
- Cada célula representa os pixels da imagem;
- Os objetos são formados usando adequadamente esses pixels;
- As imagens matriciais são também conhecidas como bitmaps;
- A representação matricial é usada para formar a imagem na memória e nas telas de computador.

Imagens Matriciais

• Bitmaps ou Mapa de Bits

Imagens Matriciais

- Vantagens das imagens matriciais
 - Fácil tradução para dispositivos baseados em pontos (monitores, impressoras, etc.);
 - Fácil armazenamento e leitura;
 - Valores dos pixels podem ser alterados individualmente ou em grupo;
- Desvantagens das imagens matriciais
 - Imagens podem ser muito grandes;
 - Dificuldade em realizar operações de escala;

- Bitmap p/ Bitmap
 - Melhores resultados
 - Reajuste na informação de cor
 - Problemas com diferenças no tamanho da paleta de cor

- Vetorial p/ Vetorial
 - Problemas com diferenças entre o número e o tipo de objetos disponíveis
 - Problemas com interpretação de medidas e com a aparência dos elementos de imagem e das primitivas

- Vetorial p/ Bitmap
 - Imagem vetorial é decomposta em pixels e colocada numa matriz
 - Qualidade depende do tamanho da matriz
 - Problemas de serrilhado

- Bitmap para vetorial
 - Conversão mais difícil, com altos índices de falha
 - Algoritmos e heurísticas de detecção de formas
 - Resultados bons para formas geométricas, ruins para imagens reais
 - Normalmente resulta na perda de cores

- Outros fatores que influenciam a conversão
 - Formatos proprietários ou específicos de uma aplicação
 - Número de cores
 - Tamanho da paleta
 - Formato da compressão

- O acesso ao dispositivo gráfico é mais lento que o acesso à memória.
 - Isso acontece devido à grande quantidade de componentes que atuam para que um *pixel* seja mostrado na tela.
 - O acesso ao controlador gráfico é feito via protocolos de hardware e software que são mais complicados que enviar um byte para memória.
- Assim, existem ocasiões que a velocidade é um fator importante:
 - Rasterização on-line, redesenho de imagens, jogos, animações etc.
- É necessário o desenvolvimento de técnicas de construção de imagens em memória.
 - Uma das principais é a criação do "frame -buffer".

- O frame-buffer é composto por uma região da memória que armazenará a imagem e por um grupo de rotinas de acesso à essa imagem.
- A memória é considerada como um "espaço" monodimensional, onde cada byte é endereçado por um único valor.
- Já uma imagem é um objeto gerado em espaço bidimensional (ou 3D), e isso acarretará:
 - Um pixel da imagem será representado por um número de bytes, dependendo de quantos bits serão necessários para compor a cor correspondente.
 - A quantidade de bytes na memória deverá ser suficiente para comportar todos os pixels a serem representados.
 - Deverá ter uma correspondência aritmética entre a posição (x, y) do pixel e seu endereço no frame-buffer.

- Essa condição de correspondência entre posições do pixel e do endereço – pode ser contornada se for utilizada uma linguagem de alto nível que aceite a definição de variáveis do tipo arrays ou matrizes bidimensionais.
- Por exemplo, seja uma imagem *true color* de 800 x 600 pixels de tamanho.
 - Cada pixel da imagem é representado por 32 bits (4 bytes).
- O tamanho total do frame-buffer para essa imagem será então 800 \times 600 \times 4 bytes = 1.920.000 bytes (~1,9 Mb).
- Em C, a declaração dessa área seria:

```
unsigned long int FB [800][600];
```

Frame-buffer

Ao longo do programa, o acesso ao pixel (x, y) pode ser feito por:

```
FB [X][Y] = 0; //O pixel será apagado Ou: FB [X+1][Y+1] = FB [X][Y];
```

- Caso seja usada uma linguagem que não suporte variáveis do tipo matrizes, deve-se implementar uma arquitetura de memória e uma correspondente conversão de endereços.
- Uma boa (e simples) representação do frame-buffer é considerar cada linha como uma sequência de bytes que se agrupam em linhas como sequencias consecutivas.

- Seguindo a imagem exemplo (800x600, true color) e estabelecendo que o primeiro byte do frame-buffer é designado pelo endereço FB, o segundo pixel vai está no endereço FB+4 (cada pixel ocupa 4 bytes).
 - O 3º pixel está em FB+2*4 e o último byte da primeira linha está em FB+799*4.
 - O 1º pixel da segunda linha está em FB+800*4. O 2º em FB+800*4+4 e o 3º em FB+800*4+2*4.
- De forma genérica, um pixel qualquer na posição (x,y) na imagem exemplo é dada por : FB+[800*y+x]*4.
- Para um caso qualquer, o endereço de um pixel no frame-buffer é dado por m = FB+[x+Ly]*b, onde m é o endereço do início do pixel no frame-buffer, FB é o endereço inicial do frame-buffer, L é o no de pixels numa linha da imagem e b o tamanho que um pixel ocupa em bytes.

Referências desta aula

- AZEVEDO, Eduardo; CONCI, Aura. 2007.
 Computação Gráfica: Teoria e Prática. Elsevier, Vol. 2, 2007.
- Aula montada com base no material do Prof. Jorge Cavalcanti - UNIVASF.