7. СХЕМЫ ЕСТЕСТВЕННОГО ОТБОРА

7.1. Цель эволюции популяции в процессе естественного отбора

Как отмечалось ранее в разделе 3.3, естественный отбор - это процесс формирования популяции P^{t+1} , который способствует "выживанию" более приспособленных к внешней среде особей и "элиминации" тех особей, которые имеют пониженную приспособленность к внешней среде. Особи, включаемые в популяцию P^{t+1} , считаются непосредственными "потомками" особей предыдущего t-ого поколения. Они могут иметь одинаковые генотипы как с "родителями" (особями $a_k^t \in P^t$) так и между собой.

Будем считать, что численность популяции, равная ν особям, сохраняется от поколения к поколению, т.е. естественный отбор является *потомственным отбором*, в процессе которого ν "выживших" особей t-ого поколения становятся "родителями" $(a_{\nu}^{t+1}, \dots, a_{\nu}^{t+1})$ в следующем (t+1)-м поколении.

Окончательным результатом естественного отбора при рассмотрении задачи оптимального дихотомического разбиения графа является получение хромосомного набора популяции P^{t+1} , в котором в каких-то локусах имеет место полная элиминация одной из аллельных форм ("0" или "1"), либо возникает устойчивый диморфизм, когда в одном из локусов присутствуют оба значения аллельных форм ("1" и "0"), но с разными частотами. Чем больше число локусов (битов), обладающих свойством диморфизма, тем выше вероятность изменения частоты аллелей в каждом из них. Для этого, разумеется, необходимо, чтобы происходил естественный отбор, благоприятствующий основной тенденции эволюционного развития популяции - росту среднего значения степени приспособленности по популяции в целом $\mu_{cp}(t)$:

$$M_{p^t}^{AX}\{\mu_{cp}(t)\} = M_{p^t}^{AX}\{\frac{1}{v}\sum_{i=1}^{v}\mu(a_i^t)\}$$
 (7.1)

с одновременным уменьшением генетического разнообразия хромосомного набора популяции, которое определяется с помощью \square генетической вариансы $\sigma^2(t)$: \square

$$\square \qquad \qquad \underset{P^{t}}{\mathsf{MIN}} \{ \sigma_{\mathsf{cp}}(t) \} = \underset{P^{t}}{\mathsf{MIN}} \{ \frac{1}{(\nu - 1)} \sum_{i=1}^{\nu} \left[\mu(a_{i}^{t}) - \mu_{\mathsf{cp}}(t) \right]^{2} \}. \tag{7.2}$$

Свертывание введенных частных критериев $\mu_{cp}(t)$ и $\,\sigma^2(t)\,c\,$ помощью \square мультиплекативной функции \square

$$\phi(t) = \mu_{cp}(t) \times \frac{1}{\sigma^2(t)} \tag{7.3}$$

позволяет сформулировать цель эволюции популяции как обеспечение максимального значения обобщенного критерия (7.3) в течение ее жизненного цикла. □

7.2. Формирование репродукционной группы

7.2. Формирование репродукционной группы
\square Будем понимать под <i>репродукционной группой</i> $R(t)$ совокупность \square из $N(t)$ особей t -
ого поколения, среди которых только и будет \square вестись естественны отбор $ u$ особей,
включаемых в состав популяции \square P^{t+1} следующего поколения. \square
Приведем некоторые схемы, реализующие процесс формирования
репродукционной группы.□
1. Общая схема□
В репродукционную группу $R(t)$ входят все особи t-ого \square поколения: "родители",
"потомки" и "мутанты". Тогда численность \square репродукционной группы $\mathrm{N}(t)$ просто
совпадает с э $\phi \phi$ ективной численностью N (t) популяции: \Box \Box

$$N(t) = N_{\theta}(t) = v + N_{\Pi}(t) + N_{M}(t),$$

(7.4) \square \square где ν - численность популяции P^t ; \square

 $N_{\Pi}(t), N_{M}(t)$ - численность "потомков" и "мутантов", \square Соответственно,

воспроизведенных в t-м поколении. □

Учет информации о степени приспособленности особей к внешней среде позволяет сократить численность репродукционной группы. □

2. Эллитарная схема □

В репродукционную группу R(t) включаются все ν "родителей" \Box $a_k^t \in P^t$ и только те $N_\Pi^{'}(t)$ "потомков" ($N_\Pi^{'}(t) \leq N_\Pi(t)$) и $N_M^{'}(t)$ "мутантов" ($N_M^{'}(t) \leq N_M(t)$), у которых степени приспособленности \Box "лучше", чем хотя бы у одного из их "родителей". \Box В

этом случае численность репродукционной группы, как правило, \square меньше эффективной численности популяции: \square

$$N(t) = (v + N'_{\Pi}(t) + N'_{M}(t)) \le N_{\theta}(t). \tag{7.5}$$

3. Селекционная схема 1 (рис.7.1)□

Все особи t-ого поколения упорядочиваются в порядке убывания \square значений их степеней приспособленности к внешней среде. Задается \square численность репродукционной группы N^0 , например, $N^0 = 2\nu$. \square В репродукционную группу R(t) включаются только первые N^0 из \square упорядоченных особей, т.е. те особи, для которых ранг $r(a_k^t)$, равный k-ой позиции в упорядоченной последовательности особей \square меньше или равен $N^0(r(a_k^t) \le N^0)$.

Рис. 7.1. Селекционная схема 1 формирования репродукционной \square группы R(t) из N^0 лучших по степени \square приспособленности особей.

4. Селекцион<u>ная схема 2</u> (рис. 7.2.)□

Определяется средняя степень приспособленности всех особей t-ого □ поколения: □ □

$$\overline{\mu}(t) = \frac{1}{N_{\theta}(t)} \sum_{i=1}^{N_{\theta}(t)} \mu(a_k^t).$$
 (7.6)

В репродукционную группу R(t) включаются только те особи, у \square которых степень приспособленности выше или равна средней степени \square приспособленности $\mu(t)$:

$$R(t) = \{a_k^t \middle| \mu(a_k^t) \ge \overline{\mu}(t), k = 1, \overline{N_{\theta}}(t)\}. \tag{7.7}$$

Численность репродукционной группы N(t) в этор схеме зависит от \square значения средней степени приспособленности $\stackrel{-}{\mu}(t)$ ($N(t)=N(t,\stackrel{-}{\mu}(t))$) и \square будет определяться по наибольшему рангу $r(a_i^t)$ той особи a_i^t , для \square которой еще выполняется условие: \square

Рис. 7.2. Селекционная схема 2 формирования репродукционной группы R(t) по средней степени приспособленности Всех особей t-ого поколения

Селекционные схемы 1 и 2 относятся к схемам типа *правого* \square *угасающего отбора*, т.к. они разделяют всех особей t-ого поколения, \square упорядоченных в порядке убывания их степеней приспособленности, на \square "хороших" и "плохих". N(t) "хороших" особей включаются в \square репродукционную группу R(t), оставшиеся $(N_{\theta}(t)-N(t))$ "плохих" \square особей считаются "погибшими" и исключаются из дальнейшего процесса \square естественного отбора, т.е. им приписывается нулевая вероятность \square отбора в популяцию P^{t+1} следующего поколения. \square

7.3. "Жесткая" и "мягкая" схемы естественного отбора

Cхема "жесткого" естественного отбора, основываясь на \square информации о значениях степеней приспособленности $\mu(a_k^t)$ особей \square $a_k^t \in R(t)$, отдает предпочтение при включении в популяцию P^{t+1} только "лучшим", отбрасывая "плохие" по степени

приспособленности, что уменьшает генетическое разнообразие популяции P^{t+1} , увеличивая ее среднюю степень приспособленности $\mu_{cp}(t+1)$.

 \square Наиболее просто схема "жесткого" естественного отбора реализуется с помощью оператора пропорционального отбора, согласно которому ν особей популяции P^{t+1} выбираются из репродукционной группы R(t) случайным образом на основе следующего распределения вероятностей:

$$P(a_k^t) = \mu(a_k^t) / \sum_{i=1}^{N(t)} \mu(a_i^t), k = \overline{1, N(t)}.$$
 (7.9)

Предположим, что все степени приспособленности особей $\mathbf{a}_k^t \in R(t)$ положительны:

$$\mu(\mathbf{a}_{k}^{t}) > 0, k = \overline{1, N(t)}. \tag{7.10}$$

Следовательно, значения вероятностей $P(a_k^t)$ также будут положительными числами для всех особей $a_k^t \in R(t)$. Такой естественный отбор называется *сохраняющимся отбором*, т.к. каждая особь $a_k^t \in R(t)$ может потенциально войти в состав популяции P^{t+1} в виде одной или нескольких копий с одним и тем же генотипом, но каждая со своей вероятностью отбора, определяемой выражением (7.9).

Схема "мягкого" естественного отбора, основываясь только на □ информации о рангах $r(a_k^t)$ особей $a_k^t \in R(t)$, упорядоченных в порядке □ убывания степеней приспособленности, отдает предпочтение при □ включении в популяцию P^{t+1} особям с высокими рангами, отбрасывая □ особи с небольшими рангами, что приводит к более медленному, чем в □ схеме "жесткого" естественного отбора, уменьшению генетического □ разнообразия популяции P^{t+1} . □

Наиболее просто схема "мягкого" естественного отбора \square реализуется с помощью оператора *линейного упорядочения* согласно \square которому ν особей популяции P^{t+1} выбираются из репродукционной группы R(t) на основе следующего распределения вероятностей: \square

$$P(a_k^t) = \frac{1}{N(t)} [\eta^+ - (\eta^+ - \eta^-) \frac{k-1}{N(t)-1}], k = \overline{1, N(t)}.$$
 (7.11)

где η^+ - параметр, выбираемый случайным образом с равной вероятностью из интервала [1,2];

-61-

Нетрудно видеть, что оператор линейного упорядочения обеспечивает \square сохраняющий отбор, т.к. каждое значение $P(a_k^t)$ из (7.11) является \square положительным числом. \square \square

Частным случаем оператора линейного упорядочения при η^+ =1 \square является оператор *равновероятностного отбора:*

$$P(a_k^t) = 1/N(t), k = \overline{1, N(t)}.$$

 $(7.12)\Box$

При использовании при "мягком" естественном отборе оператора \square равновероятностного отбора репродукционная группа R(t) представляет из \square себя *селекционно-нейтральную совокупность особей t-ого поколения*, \square в которой все особи $\mathbf{a}_k^t \in R(t)$ имеют одинаковую вероятность "выжить" \square \square и войти в состав популяции P^{t+1} следующего (t+1)-го поколения. \square

При η^+ =2 оператор линейного упорядочения сводится к оператору \square *рангового отбора*, использующего следующее распределение \square вероятностей:

$$P(a_k^t) = \frac{2}{N(t)} \left[\frac{N(t) - r(a_k^t)}{N(t) - 1} \right], k = \overline{1, N(t)}.$$
 (7.13)

где $r(a_k^t)$ =k - *ранг особи* a_k^t , равный позиции k, которую занимает особь a_k^t при упорядочении особей $a_i^t \in R(t)$ в порядке убывания их степеней приспособленности $\mu(a_i^t)$.

Из выражения (7.13) видно, что вероятности отбора особей в \square популяцию P^{t+1} зависят от их рангов $r(a_k^t)$, изменяясь от значения \square (2/N(t)) до нуля. \square

Приведенные выше схемы естественного отбора выбирают из \square репродукционной группы R(t) особей до тех пор, пока в популяцию \square P^{t+1} не будет включено ν особей $(a_1^{t+1},\ldots,a_{\nu}^{t+1})$. После чего весь \square процесс эволюционного развития популяции повторяется для \square следующего (t+1)-го поколения. \square

□ Особенности применения изложенного в данном пособии эволюционногенетического подхода к решению задач многопараметрической оптимизации многоэкстремальных функций и определения оптимального порядка трассировки электрических соединений приводятся, соответственно, в работах [10] и [11].