Study of the feedback amplifier using OPAMP (IC-741)

Analog Electronics Lab Experiment -4

Submitted by: Jash Shah BITS Id: 2018A8PS0507P

Lab Section: P5

Submitted to: Sambhavi Shukla, Teena Gakhar **Date**: 13/2/21

1. Objective

To study the following feedback amplifiers made using Operational Amplifier and verify the same using LTSpice simulation of IC 741:

- 1) Voltage Series Feedback Amplifier (VCVS)
- 2) Voltage Shunt Feedback Amplifier (CCVS)
- 3) Current Series Feedback Amplifier (VCCS)
- 4) Current Shunt Feedback Amplifier (CCCS)

Report the following:

- 1) Circuit diagrams for all four configurations.
- 2) Calculate the Voltage gain (A_v) for all the 4 configurations by :
 - a) Varying R_L with constant source
 - b) Varying source with constant R_L
- 3) Theoretical Voltage gain value.

Assumptions:

- 1) Ideal behaviour of the OPAMP.
- 2) All the calculations to be done at 1kHz frequency.

2. VOLTAGE SERIES FEEDBACK AMPLIFIER (VCVS)

1. **CIRCUIT DIAGRAM**:

2. Vs is Constant and R_L IS Varied:

We consider 4 such cases over here.

Case 1 -> Vs=50mV and RL=2.2k
Theoretical Value = (1+R1/R2) = 2 i.e **6.0206db** & Simulated Value = **6.0206011db**

Case 2 -> Vs=50mV and RL=3.9k

Theoretical Value = (1+R1/R2) = 2 i.e 6.0206db and Simulated Value = 6.0206012db

Case 3 -> Vs=50mV and RL=5.6k

Theoretical Value = (1+R1/R2) = 2 i.e 6.0206db Simulated Value = 6.0206012db

Case 4 -> Vs=50mV and RL=10k

Theoretical Value = (1+R1/R2) = 2 i.e **6.0206db** Simulated Value = **6.0206012db**

3. R_L IS CONSTANT Vs IS VARIED:

Case 1-> Vs=50mV and RL=2.2k

Theoretical Value = (1+R1/R2) = 2 i.e 6.0206db Simulated Value = 6.0206011

Case 2 -> Vs=100mV and RL=2.2k

Theoretical Value = (1+R1/R2) = 2 i.e 6.0206db Simulated Value = 6.0206012db

Case 3 -> Vs=150mV and RL=2.2k

Theoretical Value = (1+R1/R2) = 2 i.e **6.0206db** Simulated Value = **6.0206012db**

Case 4 -> Vs=200mV and RL=2.2k

Theoretical Value = (1+R1/R2) = 2 i.e **6.0206db** Simulated Value = **6.0206012d**

3. VOLTAGE SHUNT FEEDBACK AMPLIFIER (CCVS)

1. CIRCUIT DIAGRAM:

2. <u>Vs IS VARIED RLOAD IS CONSTANT</u>:

Vs=50mV RL=2.2k Theorotical Value = R = 47k i.e 93.4419572db Simulated Value = 93.4419db

Vs=50mV RL=3.9k

Theoretical Value = R = 47k i.e **93.4419572db** Simulated Value = **93.441903db**

Vs=50mV RL=5.6k Theorotical Value = R = 47k i.e **93.4419572db** Simulated Value = **93.441903db**

Vs=50mV RL=10k

Theoretical Value = R = 47k i.e 93.4419572db Simulated Value = 93.441904db

3. RLOAD IS CONTANT Vs IS VARIED:

Vs=50mV RL=2.2k

Theorotical Value = R = 47k i.e 93.4419572db Simulated Value = 93.4419db

Vs=100mV RL=2.2k Theorotical Value = R = 47k i.e **93.4419572db** Simulated Value = **93.4419db**

Vs=150mV RL=2.2k Theorotical Value = R = 47k i.e **93.4419572db** Simulated Value = **93.4419db**

Vs=200mV RL=2.2k

Theoretical Value = R = 47k i.e 93.4419572db Simulated Value = 93.4419db

4. CURRENT SERIES FEEDBACK AMPLIFIER (VCCS)

1. <u>CIRCUIT DIAGRAM</u>:

2. <u>Vs IS CONSTANT RLOAD IS VARIED</u>:

Vs=50mV RL=2.2k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.003332db

Vs=50mV RL=3.9k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.008832db

Vs=50mV RL=5.6k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.008832db

Vs=50mV RL=10k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.04866db

3. R_L IS CONTANT Vs IS VARIED:

Vs=50mV RL=2.2k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.003332db

Vs=100mV RL=2.2k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.003332db

Vs=150mV RL=2.2k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.003332db

Vs=200mV RL=2.2k Theorotical Value = 1/R2 = 0.01 i.e -40db Simulated Value = -40.003332db

5, CURRENT SHUNT FEEDBACK AMPLIFIER (CCCS)

1. <u>CIRCUIT DIAGRAM</u>:

2. Vs CONSTANT RLOAD IS VARIED:

Vs = 50mV RL = 2.2k Theorotical Value = 1+R1/R2 = 471 i.e **53.4604db** Simulated Value = **53.455db**

Vs = 50mV RL = 3.9k Theorotical Value = 1+R1/R2 = 471 i.e **53.4604db** Simulated Value = **53.4482db**

Vs = 50mV RL = 5.6k

Theorotical Value = 1+R1/R2 = 471 i.e 53.4604db Simulated Value = 53.4374db

Vs = 50mV RL = 10k Theorotical Value = 1+R1/R2 = 471 i.e **53.4604db** Simulated Value = **53.3939db**

3. RLOAD IS CONSTANT VS IS VARIED:

Vs = 50mV RL = 2.2k

Theorotical Value = 1+R1/R2 = 471 i.e 53.4604db Simulated Value = 53.4557db

Vs = 100mV RL = 2.2k

Theorotical Value = 1+R1/R2 = 471 i.e **53.4604db** Simulated Value =**53.4557db**

Vs = 150mV RL = 2.2k

Theorotical Value = 1+R1/R2 = 471 i.e 53.4604db Simulated Value =53.4557db

Vs = 200mV RL = 2.2k

Theorotical Value = 1+R1/R2 = 471 i.e **53.4604db** Simulated Value =**53.4557db**

