Assignment -2

Data Visualization and Preprocessing

Assignment Date	19 September 2022
Student Name	Kavya.P.B
Student Roll Number	211419104134
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Question-2:

Load the dataset.

Solution:

import pandas as pd
df=pd.read_csv('/content/Churn_Modelling.csv')

In [1]:	import pandas as pd														
	Ambor c barrans are bo														
In [3]:	<pre>df=pd.read_csv('/content/Churn_Modelling.csv')</pre>														
In [4]:	df														
Out[4]: _		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
						***					***				
ġ	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
Ġ	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
ġ	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
	9999	10000	15628319	Walker	792	Eranco	Female	28	4	130142.79	1	1	0	38190.78	0

Question-3:

Perform Below Visualizations.

1)Univariate Analysis

Solution:

```
import matplotlib.pyplot as plt
import numpy as np

df_ex_0=df.loc[df['Exited']==0]

df_ex_1=df.loc[df['Exited']==1]

plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green')
plt.xlabel('Balance')
plt.show()
```


2)Bi - Variate Analysis

Solution:

import seaborn as sns
sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add_legend()

1) Multivariate Analysis

Solution:

sns.pairplot(df,hue='Exited',height=5)

Question-4:

Perform descriptive statistics on the dataset.

Solution:

df.describe(include='all')

Descriptive Statistics In [12]: df.describe(include='all') RowNumber CustomerId Surname CreditScore Geography Gender Balance NumOfProducts HasCrCard IsActiveMember Estim Tenure count 10000.00000 1.000000e+04 10000 10000.000000 10000 10000 10000.000000 10000.000000 10000.000000 10000.000000 10000.000000 10000.000000 unique NaN NaN 2932 NaN 3 2 NaN NaN NaN NaN NaN NaN freq NaN NaN 32 NaN 5014 5457 NaN NaN NaN NaN NaN NaN NaN 38.921800 5.012800 76485.889288 1.530200 10.487806 2.892174 62397.405202 0.581654 mean 5000.50000 1.569094e+07 NaN 650.528800 NaN NaN 38.921800 0.70550 0.515100 100 std 2886.89568 7.193619e+04 NaN 96.653299 NaN NaN 0.45584 0.499797 1.00000 1.556570e+07 350.000000 0.000000 0.000000 1.000000 0.00000 25% 2500.75000 1.562853e+07 NaN 584.000000 NaN NaN 32.000000 3.000000 0.000000 1.000000 0.00000 0.000000 510 50% 500.5000 1.569074e+07 NaN 652.00000 NaN NaN 37.00000 5.00000 97198.540000 1.000000 1.00000 1.000000 100 75% 750.2500 1.575323e+07 NaN 718.00000 NaN NaN 44.00000 7.00000 127644.24000 2.00000 1.00000 1.00000 149. max 10000.00000 1.581569e+07 NaN 850.000000 NaN NaN 92.000000 10.000000 250898.090000 4.000000 1.00000 4

Question-5:

Handle the Missing values.

Solution:

df.isnull().sum()

Question-6:

Find the outliers and replace the outliers

Solution:

import seaborn as sns sns.boxplot(df['Balance'])

Question-7:

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing **import** LabelEncoder **from** collections **import** Counter **as** count

le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
df['Surname']=le.fit_transform(df['Surname'])

Question-8:

Split the data into dependent and independent variables.

Solution:

x=df.iloc[:,0:13]
y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

Question-9:

Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
sc_xtrain=sc.fit_transform(xtrain)
sc_xtest=sc.transform(xtest)

Question-10:

Testing and training data

Solution:

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=10)