1 Bottcher's Coordinates and Extension

1.1 Bottcher's Coordinates

A fixed point z_0 is called a super-attracting fixed point of f if $f'(z_0) = 0$. If z_0 is a super-attracting fixed point for f, we can conjugate the map such that z = 0 becomes our super-attracting fixed point.

Thus, our map takes the form $f(z) = a_n z^n + a_{n+1} z^{n+1} + \dots$ in a neighbourhood of 0, with $n \ge 2$ and $a_n \ne 0$, where the integer n is called the *local degree*.

Theorem 1.1.1 (Bottcher's Theorem). With f as above, \exists a local holomorphic change of coordinates $w = \phi(z)$, with $\phi(0) = 0$, which conjugates f to $w \mapsto w^n$ throughout some neighbourhood of 0.

Furthermore, ϕ is unique upto multiplication by an (n-1)th root of unity.

Proof. Existence. Let $c \in \mathbb{C}$ be such that $c^{n-1} = a_n$. Then, the linearly conjugate map cf(z/c) will have leading coefficient +1. Thus, without loss of generality, we will assume that our map f has the form $f(z) = z^n(1 + b_1z + b_2z^2 + \ldots) = z^n(1 + \eta(z))$, where $\eta(z) = (1 + b_1z + b_2z^2 + \ldots)$.

Choose $r \in (0, \frac{1}{2})$ such that $|\eta(z)| < \frac{1}{2} \ \forall z \in \mathbb{D}_r$. This can be done since $\eta(0) = 0$ and η is continuous.

On this disc, we have two properties of f:

- 1. f maps this disc into itself: We have, $|f(z)| = |z^n||1 + \eta(z)| \le |z|^n (1 + |\eta(z)|) < \frac{3}{2}|z|^n \le \frac{3}{2^n}|z| \le \frac{3}{4}|z| \ \forall z \in \mathbb{D}_r$. Here we are using the fact that $n \ge 2$, $|z| < \frac{1}{2}$ and $|\eta(z)| < \frac{1}{2}$ on \mathbb{D}_r .
- 2. $f(z) \neq 0 \ \forall z \in \mathbb{D}_r \setminus \{0\}$: This is simply because $|f(z)| = |z|^n |1 + \eta(z)|$ and since $|\eta(z)| < \frac{1}{2}$ on \mathbb{D}_r , we can't have $\eta(z) = -1$.

The k-th iterate of f i.e. $f^{\circ k}$ also maps the \mathbb{D}_r into itself and $f^{\circ k}(z) \neq 0$ on $\mathbb{D}_r \setminus \{0\}$. Inductively, it can be shown that it has the form $f^{\circ k}(z) = z^{n^k} (1 + n^{k-1}b_1z + \ldots)$. The idea of the proof is to set,

$$\phi_k(z) = (f^{\circ k}(z))^{\frac{1}{n^k}} = z(1 + n^{k-1}b_1z + \ldots)^{\frac{1}{n^k}}.$$

We choose z as our branch of holomorphic n^k th root of z^{n^k} .

Now, we can choose a holomorphic branch of $(1 + n^{k-1}b_1z + ...)^{\frac{1}{n^k}}$ on \mathbb{D}_r since \mathbb{D}_r is simply connected and $(1 + n^{k-1}b_1z + ...) \neq 0$ on \mathbb{D}_r since $f^{\circ k}(z) \neq 0$ on $\mathbb{D}_r \setminus \{0\}$.

1 Bottcher's Coordinates and Extension

Therefore we set,

$$\phi_k(z) = z(1 + n^{k-1}b_1z + \ldots)^{\frac{1}{n^k}} = z\left(1 + \frac{b_1}{n}z + \ldots\right),$$

where the expression on the right provides us an explicit choice of n^k th root.

We will show that the functions ϕ_k converge uniformly to a limit function ϕ on \mathbb{D}_r . To prove the convergence, we make the substitution $z = e^u$ where u ranges over the left half plane $\mathbb{H}_r := \{u : \text{Re}(u) < \log r\}$. The exponential map maps \mathbb{H}_r onto $\mathbb{D}_r \setminus \{0\}$.

The map f from \mathbb{D}_r into itself corresponds to a map from \mathbb{H}_r into itself given by $F(u) = \log f(e^u)$. We can select a holomorphic branch of the logarithm of $f(e^u)$ because \mathbb{H}_r is simply connected and $f(e^u) \neq 0$ on \mathbb{H}_r .

Set $\eta = \eta(e^u) = b_1 e^u + b_2 e^{2u} + \dots$, then since $|\eta| < \frac{1}{2}$, we see that F can be written as

$$F(u) = \log(e^{nu}(1+\eta)) = nu + \log(1+\eta) = nu + \left(\eta - \frac{\eta^2}{2} + \frac{\eta^3}{3} - + \dots\right),$$

where the final expression provides us an explicit choice of which branch of logarithm we are using. Clearly, $F: \mathbb{H}_r \to \mathbb{H}_r$ is a well-defined holomorphic function.

Similarly, the map ϕ_k corresponds to a map, $\Phi_k(u) = \log \phi_k(e^u)$.

$$\Phi_k(u) = \log \phi_k(e^u) = \log f^{\circ k}(e^u)^{\frac{1}{n^k}} = \frac{1}{n^k} \log f^{\circ k}(e^u).$$

Since we have already fixed the branch of logarithm that we are using, we see that,

$$\log f^{\circ k}(e^u) = \log f(f^{\circ k-1}(e^u)) = \log f(e^{\log f^{\circ k-1}(e^u)}) = F(\log f^{\circ k-1}(e^u)).$$

Hence, inductively we can see that $\log f^{\circ k}(e^u) = F^{\circ k}(u)$.

Therefore, $\Phi_k(u) = F^{\circ k}(u)/n^k$. It is clear from this expression that $\Phi_k : \mathbb{H}_r \to \mathbb{H}$. Now since $|\eta| < \frac{1}{2}$, we have

$$|F(u) - nu| = |\log(1+\eta)| < \log 2 < 1.$$

Hence,

$$|\Phi_{k+1}(u) - \Phi_k(u)| = \frac{1}{n^{k+1}} |F^{\circ k+1}(u) - nF^{\circ k}(u)| < \frac{1}{n^{k+1}},$$

by the above inequality.

We have, $\phi_k(e^u) = e^{\Phi_k(u)}$. Since, the exponential map, $e^{\square} : \mathbb{H} \to \mathbb{D}$ from the left half plane to the unit disc decreases distance, we have

$$|\phi_{k+1}(z) - \phi_k(z)| < \frac{1}{n^{k+1}} \forall z \in \mathbb{D}_r \setminus \{0\}.$$

Since $\phi_k(0) = 0$ for all k, we have

$$|\phi_{k+1}(z) - \phi_k(z)| < \frac{1}{n^{k+1}} \forall z \in \mathbb{D}_r.$$

Hence, the maps ϕ_k converge uniformly to some limit function ϕ on \mathbb{D}_r by the Cauchy criterion for uniform convergence.

Clearly, $\phi(0) = 0$ and ϕ is holomorphic on \mathbb{D}_r by Weierstrass convergence theorem.

It is clear that each $\phi_k : \mathbb{D}_r \to \mathbb{D}$. This is because $\phi_k(e^u) = e^{\Phi_k(u)}$ and $\Phi_k : \mathbb{H}_r \to \mathbb{H}$ and $e^{\square} : \mathbb{H} \to \mathbb{D} \setminus \{0\}$. Hence, $\phi : \mathbb{D}_r \to \mathbb{D}$. (Clearly $\operatorname{Im}(\phi)$ cannot contain points from $\partial \mathbb{D}$ because ϕ is holomorphic, hence it is an open map).

Now, it can be easily seen that, $\phi_k(f(z)) = \phi_{k+1}(z)^n$.

Hence, $\lim_{k\to\infty} \phi_k(f(z)) = \lim_{k\to\infty} \phi_{k+1}(z)^n \implies \phi(f(z)) = \phi(z)^n$ by continuity of nth power map.

Also, since $\phi'_k(0) = 1 \ \forall k \in \mathbb{N}$ (from the power series of ϕ_k), we have $\phi'(0) = 1$. Hence, ϕ is invertible in some neighbourhood of 0.

Therefore, we have a holomorphic change of coordinates in some neighbourhood of 0 which conjugates f to the nth power map. In this neighbourhood, ϕ is one-to-one, $f(z) \neq 0$ for $z \neq 0$ (i.e. no other point maps to the super-attracting fixed point via f) and f maps this neighbourhood into itself.

Uniqueness. It suffices to study the special case $f(z) = z^n$. If we can prove that any map which conjugates $z \mapsto z^n$ to itself is just multiplication by (n-1)th root of unity, then for any general map $f(z) = a_n z^n + a_{n+1} z^{n+1} + \ldots$, if we have two maps ϕ and ψ which conjugate it to $z \mapsto z^n$, then $\phi \circ \psi^{-1}$ is a map which conjugates $z \mapsto z^n$ to itself. Hence, $\phi \circ \psi^{-1} = cz$, where $c^{n-1} = 1$. Therefore, $\phi = c\psi$, where c is a (n-1)th root of unity.

So, let $\phi(z) = c_1 z + c_k z^k + \ldots$, $(c_1 \neq 0)$ be a map which conjugates $z \mapsto z^n$ to itself. Then, we should have $\phi(z^n) = \phi(z)^n$. Now,

$$\phi(z^n) = c_1 z^n + c_k z^{nk} + \dots,$$

and

$$\phi(z)^n = c_1^n z^n + n c_1^{n-1} c_k z^{n+k-1} + \dots$$

Comparing coefficients, we get $c_1^n = c_1$ and $nc_1^{n-1}c_k = 0$ since nk > n+k-1 for $k \ge 2$. Therefore, we get $c_1^{n-1} = 1$ and $c_k = 0$. The form $\phi(z) = c_1 z + c_k z^k + \ldots$ can be modified to any $k \ge 2$ to get $c_k = 0$ by the same process.

Therefore, $\phi(z) = cz$, where c is a (n-1)th root of unity.

1.2 Extension of Bottcher's coordinates

We might hope to extend the Bottcher's coordinates to the whole of the immediate basin of attraction of the super-attracting fixed point. But this is not always possible. This is because, it requires computing expressions of the form $z \mapsto (\phi(f^{\circ k}(z))^{\frac{1}{n^k}})$, which is not always possible. For example, the basin may not be simply connected, or some point may map directly onto the super-attracting fixed point, in which case we can't take n^k -th roots, because $\phi(f^{\circ k}(z))$ must be zero at those points.

Theorem 1.2.1 (Extension of $|\phi|$). If f has a super-attracting fixed point p, with immediate basin of attraction A, then the function $z \mapsto |\phi(z)|$ of the above theorem extends

uniquely to a continuous map $|\phi|: \mathcal{A} \to [0,1)$ which satisfies $|\phi|(f(z)) = |\phi|(z)^n$. Furthermore, $|\phi|$ is real analytic except at the iterated preimages of p, where it takes the value 0.

Proof. Set $|\phi|(z) = |\phi(f^{\circ k}(z))|^{\frac{1}{n^k}}$ for large enough k for each $z \in \mathcal{A}$. ϕ is only defined in a some small neighbourhood of p. But since, $f^{\circ k} \to p$ locally uniformly in \mathcal{A} , after k many iterates for some large k, $f^{\circ k}(z)$ belongs to the domain of definition of ϕ , which we shall call \hat{U} .

It is independent of the value of k (if k is large enough). Note that, if $f^{\circ k}(z) \in \hat{U}$, then so does $f^{\circ k+1}(z)$, since f maps \hat{U} into itself. Suppose we choose k minimal such that $f^{\circ k}(z) \in \hat{U}$. Then,

$$|\phi(f^{\circ k+1}(z))|^{\frac{1}{n^k+1}} = |\phi(f(f^{\circ k}(z)))|^{\frac{1}{n^k+1}} = |\phi(f^{\circ k}(z))^n|^{\frac{1}{n^k+1}} = |\phi(f^{\circ k}(z))|^{\frac{1}{n^k}} = |\phi(z)|^{\frac{1}{n^k}}$$

In the proof of the Bottcher's theorem, we saw that $\phi(z) \in \mathbb{D} \ \forall z \in \hat{U} \ \text{Hence}, \ |\phi|(z) = |\phi(f^{\circ k}(z))| < 1 \ \forall z \in \mathcal{A}.$ Therefore, $|\phi| : \mathcal{A} \to [0,1).$ Also,

$$\begin{aligned} |\phi|(f(z)) &= |\phi(f^{\circ k}(f(z))|^{\frac{1}{n^k}} \\ &= |\phi(f(f^{\circ k}(z)))|^{\frac{1}{n^k}} \\ &= |\phi(f^{\circ k}(z))^n|^{\frac{1}{n^k}} \\ &= |\phi(f^{\circ k}(z))|^{\frac{n}{n^k}} \\ &= |\phi|(z)^n. \end{aligned}$$

It is also clear that $|\phi| = 0$ only at p and its iterated preimages.

If q is an iterated preimage of p, say $f^{\circ k}(q) = p$, then we have $|\phi|(q) = |\phi(f^{\circ k}(q))|^{\frac{1}{n^k}} = |\phi(p)|^{\frac{1}{n^k}} = 0$.

Now, Suppose $|\phi|(z) = 0$ for some z. Then, $|\phi|(z)^{n^k} = 0 \ \forall k \implies |\phi|(f^{\circ k}(z)) = 0 \ \forall k$. But for some large k, $f^{\circ k}(z)$ belongs to the domain of definition of ϕ . But that means, $f^{\circ k}(z) = p$, since no other point in that domain is mapped to zero by ϕ . Hence, z is an an iterated preimage of p.

Now, since $f^{\circ k} \to p$ locally uniformly in \mathcal{A} , for each $a \in \mathcal{A}$, we have a neighbourhood W_a and a constant $k \in \mathbb{N}$ such that $f^{\circ k}(z) \in \hat{U} \ \forall z \in W_a$.

Hence, for $z \in W_a$, we can define $|\phi|(z) = |\phi(f^{\circ k}(z))| = |g(z)|$, where $g = \phi \circ f^{\circ k}|_{W_a}$. Therefore, $|\phi|_{W_a} = |g|$, where g is some holomorphic function defined on W_a .

It is clear from this that $|\phi|$ is continuous in \mathcal{A} .

Now, if h is any holomorphic function, then |h(z)| is real-analytic everywhere in its domain except at those z, where h(z) = 0.

Since, $|g| = |\phi|_{W_a}$ is zero only at the iterated preimages of f in W_a , $|\phi|_{W_a}$ is real analytic everywhere in W_a except at the iterated preimages of p.

Therefore, $|\phi|$ is real analytic everywhere in \mathcal{A} except at the iterated preimages of p.

Let $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ be a rational map with a super-attracting fixed point p. Then the associated Bottcher map ϕ carries a neighbourhood of p biholomorphically onto a neighbourhood of zero, conjugating f to the nth power map, where n is the local degree of f near p. ϕ has a local inverse ψ_{ϵ} which maps the ϵ -disc around zero to a neighbourhood of p.

Theorem 1.2.2 (Extending ψ_{ϵ}). There exists a unique open disc of maximal radius $0 < r \le 1$ such that ψ_{ϵ} extends holomorphically to a map $\psi : \mathbb{D}_r \to \mathcal{A}$, where \mathcal{A} is the immediate basin of attraction of p.

- 1. If r=1, then ψ maps the open unit disc \mathbb{D} onto \mathcal{A} biholomorphically.
- 2. If 0 < r < 1, then ψ maps \mathbb{D}_r onto its image biholomorphically and there exists at least one other critical point in \mathcal{A} on the boundary of $\psi(\mathbb{D}_r)$.

If ψ_{ϵ} is extended biholomorphically in this way to the map ψ defined on \mathbb{D}_r , then the inverse map $\psi^{-1}: \psi(\mathbb{D}_r) \to \mathbb{D}_r$ must be the extension of ϕ from some neighbourhood of p to $\psi(\mathbb{D}_r)$ (since ψ^{-1} agrees with ϕ on some neighbourhood of p).

Proof. Let us try to extend ψ_{ϵ} along radial lines by analytic continuation. Then, we can't extend it indefinitely as it would yield a holomorphic map ψ from the entire complex plane onto an open set $\psi(\mathbb{C}) \subset \mathcal{A} \subsetneq \mathbb{C}_{\infty}$. (\mathcal{A} cannot be the whole of \mathbb{C}_{∞} since the Julia set of f cannot be empty as $\deg(f) \geq 2$). We can conjugate f such that $\infty \not\in \mathcal{A}$. Then the corresponding map ψ will map the whole of the complex plane into $\mathcal{A} \subset \mathbb{C}$. By Louiville's theorem, since the map ψ cannot be a constant, $\psi(\mathbb{C}) = \mathbb{C} = \mathcal{A}$. Therefore, $\mathbb{C}_{\infty} \setminus \mathcal{A} = \{\infty\}$. This too is not possible since the Julia set of f must be an infinite set since $\deg(f) \geq 2$.

Thus, there must be some largest radius r so that ψ_{ϵ} extends analytically throughout the open disc \mathbb{D}_r .

Also, $|\phi|(\psi(w)) = |\phi(\psi(w))| = |w|$ near 0, hence for all $w \in \mathbb{D}_r$ by analytic continuation.???

Since, $|\phi|: \mathcal{A} \to [0,1)$, this proves that for any $w \in \mathbb{D}_r$, $|\phi|(\psi(w)) = |w| < 1$. Therefore, ψ can be defined only on \mathbb{D}_r for $r \leq 1$.

We will now show that ψ is actually one-to-one on \mathbb{D}_r . Suppose $\psi(w_1) = \psi(w_2)$. Applying $|\phi|$, we see that $|w_1| = |w_2|$. Choose such a pair such that $\psi(w_1) = \psi(w_2)$ $(w_1 \neq w_2)$ with $|w_1| = |w_2|$ minimal. A minimal pair exists because for $|w| < \epsilon$, $\psi = \psi_{\epsilon}$ which is one-to-one as it is invertible.

Now, ψ is an open mapping. Choose a sufficiently small neighbourhood U_{w_2} of w_2 . Then, $\psi(U_{w_2})$ is a small neighbourhood of $\psi(w_1) = \psi(w_2)$. Hence, for any w'_1 sufficiently close to w_1 , $\psi(w'_1) \in \psi(U_{w_2})$. Hence, we can find w'_2 sufficiently close to w_2 such that $\psi(w'_1) = \psi(w'_2)$. Choosing $|w'_1| < |w_1|$, we get a contradiction.

Hence, ψ maps \mathbb{D}_r onto its image biholomorphically.

In case when r = 1, $U = \psi(\mathbb{D}) = \mathcal{A}$. If not then we would have some boundary point of U, say $z_0 \in \mathcal{A}$. We can approximate z_0 by points of $\psi(w_j)$, where $|w_j| \to 1$. Now, $\lim_{j\to\infty} \psi(w_j) = z_0$. Hence,

$$\lim_{j \to \infty} |\phi|(\psi(w_j)) = |\phi|(z_0) \implies \lim_{j \to \infty} |w_j| = |\phi|(z_0) \implies |\phi|(z_0) = 1,$$

which is impossible.

Now, let 0 < r < 1. We need to prove that ∂U , where $U = \psi(\mathbb{D}_r)$ must contain a critical point of f. Suppose, $w_0 \in \partial \mathbb{D}_r$ and let $(w_j)_{j=1}^{\infty} \subset \mathbb{D}_r$ such that $w_j \to w_0$. Let $\psi(w_j) \to z_0$. Then $z_0 \in \partial U$ because ψ maps \mathbb{D}_r onto U biholomorphically.

If z_0 is not a critical point of f, then f maps a neighbourhood of z_0 , say A onto a neighbourhood of $f(z_0)$, say B biholomorphically.

It should be noted that B can be chosen such that $B \subset U$. This is because $f(z_0) \in U$. We have, $\lim_{j\to\infty} \psi(w_j) = z_0 \implies \lim_{j\to\infty} f(\psi(w_j)) = f(z_0) \implies \lim_{j\to\infty} \psi(w_j^n) = f(z_0) \implies \psi(w_0^n) = f(z_0)$. Since, $|w_0| = r < 1$, $|w_0|^n < r^n < r$. Hence, $w_0 \in \mathbb{D}_r$. Therefore, $\psi(w_0^n) = f(z_0) \in U$.

Let g be the local inverse of f near $f(z_0)$. Then, ψ can be extended throughout a neighbourhood of w_0 by

$$w \mapsto q(\psi(w^n)).$$

We have, $\psi(w_0^n) = f(z_0) \implies w_0^n = \phi(f(z_0))$. Since, $\phi(B)$ is a neighbourhood of $\phi(f(z_0))$ lying inside \mathbb{D}_r , choose a small enough neighbourhood of w_0 , say C such that $w^n \in \phi(B)$, for all $w \in C$. In this neighbourhood, C our newly defined map agrees with ψ on $C \cap \mathbb{D}_r$. This is because, for $w \in C \cap \mathbb{D}_r$, $f(\psi(w)) = \psi(w^n) \in B$. Therefore, $g(\psi(w^n))$ can be defined and $\psi(w) = g(\psi(w^n)) \in A$. Hence, our new map is an analytic continuation of ψ on the neighbourhood C.

Now, if none of the $z_0 \in \partial U$ are critical points, we can extend ψ to a neighbourhood of $w_0 \forall w_0 \in \partial \mathbb{D}_r$. Clearly, these continuations would patch together to define ψ in a strictly greater disc than \mathbb{D}_r , which is a contradiction.