

AD-A056 259

MARYLAND UNIV COLLEGE PARK DEPT OF PSYCHOLOGY

F/G 5/9

A NOTE ON THE STABILITY OF THE JOB DESCRIPTIVE INDEX (J. D. I.)--ETC(U)

N00014-75-C-0884

MAY 78 B SCHNEIDER, H P DACHLER

NL

UNCLASSIFIED

RR-18

| OF |
AD
A056259

END
DATE
FILED
8-78
DDC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963

ADA056259

LEVEL

6
B.S.

A NOTE ON THE STABILITY OF THE
JOB DESCRIPTIVE INDEX (J. D. I.)

BENJAMIN SCHNEIDER
H. PETER DACHLER

Research Report No. 18

May, 1978

DDC FILE COPY

The writing of this paper was supported by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research under Contract No. N00014-75-C-0884, Contract Authority Identification Number, NR 151-375, Benjamin Schneider and C. J. Bartlett, Principal Investigators.

Reproduction in whole or part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.

psychology

78 07 03

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Coast Utility employees. Data analyzed within a Campbell & Fiske (1959) multitrait (JDI Dimensions) - multimethod (time₁ /time₂ administration) matrix revealed good stability coefficients (r_{tt} of about .57) and also indicated that the five JDI satisfaction scales retain their relative independence over time. Some problems regarding the theoretical meaning of these results are briefly discussed.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

A NOTE ON THE STABILITY OF THE
JOB DESCRIPTIVE INDEX (J. D. I.)

BENJAMIN SCHNEIDER

H. PETER DACHLER

Research Report No. 18

May, 1978

The writing of this paper was supported by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research under Contract No. N00014-75-C-0884, Contract Authority Identification Number, NR 151-375, Benjamin Schneider and C. J. Bartlett, Principal Investigators.

Reproduction in whole or part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.

1

A NOTE ON THE STABILITY OF THE
JOB DESCRIPTIVE INDEX (J. D. I.)¹

Benjamin Schneider H. Peter Dachler

University of Maryland, College Park

Increasingly social scientists have utilized attitude measures as predictors, criteria, or in other time-based ways (e.g., periodic surveys) rather than as static assessment devices. When a measure is employed in a time-based mode, stability ("retest reliability"), not internal consistency, is the critical index of reliability. This is true because the degree to which a measure correlates with itself over time is one of the limiting factors on the potential for the measure to correlate with (predict or be predicted by) another measure. Over time, a measure cannot correlate with another measure greater than the square root of stability as indexed by the Pearson r (cf. Nunnally, 1967).

A carefully developed and frequently used attitude measure in organizational research is the Job Descriptive Index (Smith, Kendall, & Hulin, 1969). This measure has been used in probably hundreds of studies. The methodological rigor employed during its construction and validation, its normative data, its relatively low required reading level (about 7th grade), and the fact that it assesses satisfaction with five of the most basic or generally most visible aspects of a person's work role (work, pay, promotion, supervision, and co-workers), most

¹ The authors wish to thank Patricia C. Smith for permission to use the JDI in this study and John Parkington and Bruce Katcher for helping with the reported data analyses.

likely account for the JDI's attractiveness to researchers.

Considerable data on the validity of the JDI is now available (cf. Locke, 1976) in addition to the external and convergent and discriminant validity (Campbell & Fiske, 1959) data presented in the original publication of the measure (Smith et al., 1969). However, there is very little information about the stability of the JDI. Smith et al. (1969, p. 75) found stability correlations from .45 to .75 on 45 employees over a period of three years. The authors are not aware of any other stability data on the JDI in the literature. As a result of a fortuitous opportunity to use the JDI on a large and very diverse sample of working adults, this study further investigates the dimensional stability of the JDI.

Method

Sample

As part of a larger periodic survey of employee panels in an Atlantic coast utility, the JDI was administered twice within a period of 16 months. There were 847 employees, 541 management and 306 non-management, who participated in both administrations; they constitute the sample of interest in the present study.

Both the management and non-management personnel were drawn from all five divisions of the geographically dispersed utility and, within each division, all five departments (ranging from sales to engineering) were included. In addition, both samples included a wide range of tenure in the company (about 60% of the managers had more than 15 years tenure in the company, whereas 40% of the non-management people passed

that tenure mark).

The management sample included 10% minority members and 70% were male. All levels of management were represented. The non-management sample was characterized by 20% minority members, about 50% males, and people from all non-management positions ranging from janitorial to professional-non-management.

Procedure

The JDI was part of a larger survey in both administrations, appearing last within the questionnaire in both cases. The typical employee probably spent between 30 and 40 minutes completing the entire survey which they received at the work place. Because employees identified themselves with Social Security numbers, the correlational analyses to be presented were possible. Great care was taken in obtaining the trust and cooperation of panel members.

Results and Discussion

Table 1 presents the complete matrix resulting from the inter-correlations of the two administrations for managerial personnel as the lower triangle entries; in the upper triangle the same data for the non-management sample are presented. The pattern of stability coefficients are quite high and quite similar for both samples with an average r_{tt} for managers equal to .56 and for non-managers, .58. These stability coefficients are of similar magnitude to those obtained by Smith et al. in the three-year study noted earlier.

For both the management and non-management samples in the present project, stability is lowest for satisfaction with supervision (.46 for

Table 1
 JDI Scale Intercorrelations for Two Administrations Separated by
 Sixteen Months; Stability in Parentheses
 Management (N=541) in Lower Triangle; Non-Management (N=306) in Upper Triangle

	Time 1					Time 2				
	Work	Pay	Promo	Sup	Cowo	Work	Pay	Promo	Sup	Cowo
Work	--	23	26	37	31	(66)	11	21	16	29
Pay	15	--	37	23	12	18	(62)	19	14	08 ^a
Promotion	21	32	--	31	19	19	26	(56)	23	17
Supervision	33	14	24	--	33	26	17	23	(49)	22
Coworkers	40	20	18	28	--	19	24	14	21	(58)
	Time 2									
Work	(61)	15	16	21	34	--	11	29	25	33
Pay	07 ^a	(61)	23	11	13	10	--	32	19	12
Promotion	17	25	(64)	18	18	22	25	--	33	21
Supervision	23	10	17	(46)	27	32	15	29	--	24
Coworkers	28	22	17	18	(47)	33	19	24	26	--

Note: decimals omitted

^aCorrelation significant at $P < .10$; all others significant at $P < .05$.

management, .49 for non-management). However, even at this level of stability, it is clear that, at least for this sample, the JDI, relative to other criteria, is quite stable and should prove useful in time-based studies. Schmidt and Hunter (1977), for example, report an average expected re-test reliability for criteria in personnel selection studies of .60, approximately the results obtained in the present research.

Some other data of potential interest in terms of dimensional stability is revealed in the tables, if one treats the two administrations of the JDI separated by 16 months as two methods of assessing different job facet satisfaction. This assumption allows one to examine the $\text{time}_1/\text{time}_2$ (methods) and satisfaction facets (traits) matrix for dimensional stability of the different JDI components, analogous to the logic of convergent and discriminant validity (Campbell & Fiske, 1959).

In doing so, one notes that in every case: (1) The heteromethod-monotrait stability diagonals ($\text{time}_1/\text{time}_2$, same traits) are higher than the heteromethod-heterotrait off-diagonal ($\text{time}_1/\text{time}_2$, dissimilar traits) correlations; and, (2) The stability diagonals are stronger than the monomethod-heterotrait correlations (revealed in the time_1 intercorrelation matrix and time_2 intercorrelation matrix). In other words, not only do the JDI facet satisfaction scales reveal stability over time but they retain their relative independence over time.

A summary procedure for interpreting these kinds of data is available through the ANOVA computations presented by Kavanagh, MacKinney and Wolins (1971). This procedure allows for an estimate of the variance in the multitrait-multimethod matrix attributable to convergent validity,

discriminant validity, method bias, and error. If one conceptualizes two administrations of the same measure as two methods, then convergent stability, following the Kavanagh et al. arguments, is inferred from respondent variance which indicates the overall degree of respondent agreement across the first and second administration of the JDI and over the five dimensions of the JDI. Discriminant stability is indicated by the Respondents X JDI dimensions variance which shows the degree of discrimination among the five JDI dimensions over time. Method bias is assessed on the basis of Respondents X Administration variance which indicates the amount of variance due to the particular self-report method of the JDI.

Table 2 shows the results of this summary analysis for the management and non-management samples. The main effects and interactions are all statistically significant, indicating convergent stability, discriminant stability, and method bias. However, looking at the four variance components, method bias is negligible for both samples in comparison to the other sources of variance. Furthermore, the variance components for Respondents (convergent stability) and for Respondents X JDI dimensions (discriminability of the JDI dimensions over time) are approximately equal, and similar in magnitude to error variance. These facts suggest that the JDI over time is stable, that its stability is matched by its capacity to distinguish between the five dimensions of satisfactions, that the method bias of the JDI is relatively insignificant, and that from the perspective of practical significance, the JDI over the two administrations accounts for as much known sources of variance as unknown (error)

Table 2
Analyses of Variance of Correlations From Table 1,

With Variance Components

Source	Management			Non-Management		
	df	MS	F	Variance Component	df	MS
Respondents (R)	532	3.304	8.522 ^{**}	.291	295	3.390
(Convergent Stability)						9.489 ^{**}
R x JDI Dimensions	2128	1.125	2.902 [*]	.368	1180	1.137
(Discriminant Stability)						3.183 [*]
R x Administration	532	.663	1.71 [*]	.055	295	.668
(Method Bias)						1.871 [*]
Error	2128	.388		.387	1180	.357
						.356

* $P < .001$

variance.

An issue that is difficult to resolve is raised in attempting to establish the theoretical meaning of the convergent and discriminant stability results obtained with the JDI. Thinking about a test-retest correlation coefficient as an index of reliability assumes that the true scores (Nunnally, 1967) are constant. However, satisfaction conceived as a resultant of the interaction between relatively stable personal characteristics (i.e., frame of reference, needs, values) and relatively dynamic environmental characteristics (cf. Locke, 1976) makes the assumption of a constant true satisfaction score problematic. The authors do not know of any intra or extra-organizational changes during the 16 months interval between the two JDI administrations that might differently affect JDI dimension scores for some subgroups but not others. If all respondents in a sample changed equally on the JDI dimensions, there would be no problem in interpreting the stability correlations. However, if differential changes among subgroups within a sample did occur, one cannot know the meaning of the magnitude of the observed stability coefficients. Thus, under the assumption of trait stability, the obtained stability coefficients may be too low. Under the assumption of dynamic traits, the obtained stability coefficients may be too high.

Given our still meager understanding of the dynamic nature of satisfaction, there exists no basis for a satisfactory solution to the theoretical meaning of the obtained JDI time based convergent and discriminant stability results. This lack of theoretical specification

regarding the dynamic nature of satisfaction and the resultant ambiguity regarding the meaning of test-retest reliability of dynamic traits, suggests a neglected domain in the definition and measurement of constructs like satisfaction.

However, with respect to the utility of the JDI as a measure of satisfaction, the reported results seem to allow the narrow conclusion that the JDI scales have some utility in predicting or being predicted by other measures over time.

References

- Campbell, D.T., & Fiske, D.W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 1959, 56, 81-105.
- Kavanagh, M.J., MacKinney, A.C., & Wolins, L. Issues in managerial performance: Multitrait-multimethod analyses of ratings. Psychological Bulletin, 1971, 75, 34-49.
- Locke, E.A. The nature and causes of job satisfaction. In M.D. Dunnette (Ed.), Handbook of industrial and organizational psychology. Chicago: Rand McNally, 1976.
- Nunnally, J.D. Psychometric theory. New York: McGraw-Hill, 1967.
- Schmidt, F.J., & Hunter, J.E. Development of a general solution to the problem of validity generalization. Journal of Applied Psychology, 1977, 62, 529-540.
- Smith, P.C., Kendall, L.M., & Hulin, C.L. The measurement of satisfaction in work and retirement: A strategy for the study of attitudes. Chicago: Rand McNally, 1969.

Distribution List

Navy

- 4 Dr. Jack Adams
Office of Naval Research Branch
223 Old Marylebone Road
London, NW, 15th England
- 1 Dr. Jack R. Borsting
Provost & Academic Dean
U.S. Naval Postgraduate School
Monterey, CA 93940
- 1 Dr. Maurice Callahan
NODAC (Code 2)
Dept. of the Navy
Bldg. 2, Washington Navy Yard
(Anacostia)
Washington, DC 20374
- 1 Dept. of the Navy
CHNAVMAT (NMAT 034D)
Washington, DC 20350
- 1 Chief of Naval Education and
Training Support (OIA)
Pensacola, FL 32509
- 1 Dr. Charles E. Davis
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605
- 5 Dr. Marshall J. Farr, Director
Personnel & Training Research Progs.
Office of Naval Research (Code 458)
Arlington, VA 22217
- 1 CDR John Ferguson, MSC, USN
Naval Medical R&D Command (Code 44)
National Naval Medical Center
Bethesda, MD 20014
- 1 Dr. Eugene E. Gloye
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101
- 1 Capt. D.M. Gragg, MC, USN
Head, Section on Medical Education
Uniformed Services Univ. of the
Health Sciences
6917 Arlington Road
Bethesda, MD 20014
- 1 CDR Robert S. Kennedy
Naval Aerospace Medical and
Research Lab
Box 29407
New Orleans, LA 70189
- 1 Dr. Normal J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054
- 1 Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152
- 1 Chairman, Leadership & Law Dept.
Div. of Professional Development
U.S. Naval Academy
Annapolis, MD 21402
- 1 Dr. James Lester
ONR Branch Office
495 Summer Street
Boston, MA 02210
- 1 Dr. William L. Maloy
Principal Civilian Advisor for
Education and Training
Naval Training Command, Code 00A
Pensacola, FL 32508
- 1 Dr. Robert Morrison
Code 301
Navy Personnel R&D Center
San Diego, CA 92152
- 1 Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155
- 1 Commanding Officer
Naval Health Research Center
Attn: Library
San Diego, CA 92152
- 1 CDR Paul Nelson
Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014
- 1 Dr. Richard J. Niehaus
Code 301
Office of Civilian Personnel
Navy Department
Washington, DC 20390
- 1 Library
Navy Personnel R&D Center
San Diego, CA 92152
- 6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390
- 1 Office of Civilian Personnel
(Code 26)
Department of the Navy
Washington, DC 20390
- 1 John Olsen
Chief of Naval Education &
Training support
Pensacola, FL 32509
- 1 Office of Naval Research
Code 200
Arlington, VA 22217
- 1 Scientific Director
Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy
APO San Francisco, CA 96503
- 1 Scientific Advisor to the Chief
of Naval Personnel
Naval Bureau of Personnel (Pers or)
Rm. 4410, Arlington Annex
Washington, DC 20370
- 1 Mr. Arnold I. Rubinstein
Human Resources Program Mgr.
Naval Material Command (0344)
Room 1044, Crystal Plaza #5
Washington, DC 20360
- 1 Dr. Worth Scanland
Chief of Naval Education &
Training
Code N-5
NAS, Pensacola, FL 32508
- 1 A. A. Smoholm
Tech. Support, Code 201
Navy Personnel R&D Center
San Diego, CA 92152
- 1 Mr. Robert Smith
Office of Chief of Naval
Operations
OP-987E
Washington, DC 20350
- 1 Dr. Alfred F. Smode
Training Analysis & Evaluation
Group (TAEG)
Dept. of the Navy
Orlando, FL 32813
- 1 CDR Charles J. Theisen, JR.
MSC, USN
Head Human Factors Engin. Div.
Naval Air Development Center
Warminster, PA 18974
- 1 W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152
- 1 Dr. H.M. West III
Deputy ADCNO for Civilian
Planning & Programming
Rm. 2625, Arlington Annex
Washington, DC 20370
- 1 Dr. Martin F. Wiskoff
Navy Personnel R&D Center
San Diego, CA 92152

Army

- 1 ARI Field Unit-Leavenworth
P.O. Box 3122
Ft. Leavenworth, KS 66027
- 1 HQ USAREUE & 7th Army
UDCSOPS
USAREUE Director of GED
APO New York 09403
- 1 Commandant
U.S. Army Infantry School
Ft. Benning, GA 31905
Attn: ATSH-I-V-IT (Cpt. Hinton)
- 1 Dr. Ralph Canter
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Ralph Dusek
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Milton S. Katz
Individual Training & Skill
Evaluation Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. James L. Raney
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Director, Training Development
U.S. Army Administration Center
ATTN: Dr. Sherrill
Ft. Benjamin Harrison, IN 46218

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Air Force Human Resources Lab
AFHRL/PED
Brooks AFB, TX 78235

1 Air University Library
AUL/LSE 76/443
Maxwell AFB, AL 36112

1 Dr. T. E. Cotterman
AFHRL/ASR
Wright Patterson AFB
Ohio 45433

1 Dr. Alfred R. Fregly
AFOSR/NL, Bldg. 410
Bolling AFB, DC 20332

1 CDR. Mercer
CNET Liaison Officer
AFHRL/Flying Training Div.
Williams AFB, AZ 85224

1 Personnel Analysis Div.
HQ USAF/DPXXA
Washington, DC 20330

1 Research Branch
AFMPC/DPMYP
Randolph AFB, TX 78148

1 Major Wayne S. Sellman
Chief, Personnel Testing
AFMPC/DPMYPT
Randolph AFB, TX 78148

Marines

1 Director, Office of Manpower
Utilization
HQ, Marine Corps (MPU)
BCB, Bldg. 2009
Quantico, VA 22134

1 Dr. A.L. Slafkosky
Scientific Advisor (Code RD-1)
HQ, U.S. Marine Corps
Washington, DC 20380

Coast Guard

1 Mr. Joseph J. Cowan, Chief
Psychological Research
(G-p-1/62)
U.S. Coast Guard HQ
Washington, DC 20590

Other DoD

1 Dr. Stephen Andriole
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

1 Defense Documentation Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC

1 Military Assistant for Human
Resources
Office of the Director of Defense
Research & Engineering
Rm. 30129, the Pentagon
Washington, DC 20301

1 Director, Research & Data
OSC/MRA&L (Rm. 3B919)
The Pentagon
Washington, DC 20301

1 Mr. Frederick W. Suffa
MPP (A&R)
2B269
Pentagon
Washington, DC 20301

Civil Government

1 Dr. Lorraine D. Eyde
Personnel R&D Center
U.S. Civil Service Comm.
1900 E Street, NW
Washington, DC 20415

1 Dr. William Gorham, Dir.
Personnel R&D Center
U.S. Civil Service Comm.
1900 E Street, NW
Washington, DC 20415

1 Dr. H. Wallace Sinaiko, Dir.
Manpower Research & Advisory Serv.
Smithsonian Institution
801 N. Pitt Street
Alexandria, VA 22314

1 Robert W. Stump
Education & Work Group
National Institute of Education
1200 19th St., NW
Washington, DC 20208

1 Dr. Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Non-Government

1 Prof. Earl A. Alluisi
Dept. of Psychology
Code 287
Old Dominion University
Norfolk, VA 23508

1 1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia

1 Mr. Samuel Ball
Educational Testing Service
Princeton, NJ 08540

1 Dr. Gerald V. Barrett
Dept. of Psychology
University of Akron
Akron, OH 44325

1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. David G. Bowers
Institute for Social Research
University of Michigan
Ann Arbor, MI 48106

1 Dr. Joseph E. Campoux
School of Business & Admin.
University of New Mexico
Albuquerque, NM 87131

1 Dr. A. Charnes
BEB 203E
University of Texas
Austin, TX 78712

1 Dr. Kenneth E. Clark
College of ARts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

1 Dr. Norman Cliff
Dept. of Psychology
University of So. California
University Park
Los Angeles, CA 90007

1 Dr. John J. Collins
Essex Corporation
201 N. Fairfax Street
Alexandria, VA 22314

1 Dr. Meredith Crawford
5605 Montgomery Street
Chevy Chase, MD 20015

- 1 Dr. Rene V. Davis
Dept. of Psychology
University of Minnesota
75 E. River Road
Minneapolis, MN 55455
- 1 Dr. Marvin D. Dunnette
N492 Elliott Hall
Dept. of Psychology
University of Minnesota
Minneapolis, MN 55455
- 1 Major I. N. Evonic
Canadian Forces Pers. Applied
Research
1107 Avenue Road
Toronto, Ontario, Canada
- 1 Dr. Richard L. Ferguson
The American College Testing
Program
P. O. Box 168
Iowa City, IA 52240
- 1 Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850
- 1 Dr. Edwin A. Fleishman
Advanced Research Resources
Organization
8555 Sixteenth St.
Silver Spring, MD 20910
- 1 Dr. Richard S. Hatch
Decision Systems Assoc., Inc.
350 Fortune Terrace
Rockville, MD 20854
- 1 HumRRO Columbus Office
Suite 23
2601 Cross Country Drive
Columbus, GA 31906
- 1 HumRRO/Ft. Knox Office
P.O. Box 293
Ft. Knox, KY 40121
- 1 Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921
- 1 Dr. Lawrence B. Johnson
Lawrence Johnson & Assoc., Inc.
Suite 502
2001 S Street, NW
Washington, DC 20009
- 1 Col. C.R.J. LaFleur
Personnel Applied Research
National Defense HQS
101 Colonel by Drive
Ottawa, Canada K1A 0K2
- 1 Mr. W. E. Lassiter
Data Solutions Corp.
2095 Chain Bridge Road
Vienna, VA 22180
- 1 Dr. Robert R. Mackie
Human Factors Research, Inc.
6780 Cortona Drive
Santa Barbara Research Pk.
Goleta, CA 93017
- 1 Mr. Edmond Marks
304 Grange Bldg.
Pennsylvania State Univ.
University Park, PA 16802
- 1 Richard T. Mowday
College of Business Admin.
University of Oregon
Eugene, OR 52242
- 1 Dr. Jesse Orlansky
Institute for Defense Analysis
400 Army Navy Drive
Arlington, VA 22202
- 1 Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P. O. Box 178
N. Stonington, CT 06359
- 1 Mr. Luigi Petrullo
2431 N. Edgewood Street
Arlington, VA 22207
- 1 Dr. Frank Pratzner
Center for Vocational
Education
Ohio State University
1960 Kenny Road
Columbus, OH 43210
- 1 Dr. Diane M. Ramsey-Klee
R-K Research & System Design
3947 Ridgemont Drive
Malibu, CA 90265
- 1 Min. Ret. M. Rauch
P 11 4
Bundesministerium Der Verteidigung
Postfach 161
53 Bonn 1, Germany
- 1 Dr. Joseph W. Rigney
Univ. of So. California
Behavioral Technology Labs
3717 South Hope Street
Los Angeles, CA 90007
- 1 Dr. Leonard L. Rosenbaum, Chairman
Department of Psychology
Montgomery College
Rockville, MD 20850
- 1 Dr. Lyle Schoenfeldt
School of Management
Rensselaer Polytechnic Institute
Troy, NY 12181
- 1 Dr. C. Harold Stone
1428 Virginia Avenue
Glendale, CA 91202
- 1 Mr. D. J. Sullivan
c/o Canyon Research Group, Inc.
741 Lakefield Road
Westlake Village, CA 91361
- 1 Dr. Robert Vineberg
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921
- 1 Dr. John Wanous
Department of Management
Michigan University
East Lansing, MI 48824
- 1 Dr. Anita West
Denver Research Institute
University of Denver
Denver, CO 80201