4. Limbaje regulate. Lema stelei

Un limbaj L este regulat dacă este generat de o gramatică regulată G.

Lema stelei. Fie L un limbaj regulat. Atunci există $n \in \mathbb{N}$, astfel încât oricare ar fi $w \in L$ cu $|w| \ge n$ poate fi scris/descompus sub forma w = xyz, unde:

- $1) |xy| \le n,$
- 2) $0 < |y| \le n$, (*)
- 3) $xy^kz \in L, \forall k \in \mathbb{N}$.

Demonstrație. Conform consecinței 3.1. se poate construi automatul finit determinist $A_D=(\Sigma,Q,\delta,q_0,F)$ echivalent cu gramatica regulată G care generează limbajul regulat L, adică:

$$\mathcal{T}(A_D) = L.$$

Fie n = card \mathbf{Q} = $|\mathbf{Q}|$ şi fie $w \in \mathbf{L}$ cu $|w| \ge n$, adică w este acceptat de automatul $\mathbf{A}_{\mathbf{D}}$. Atunci de la starea q_0 la starea $\boldsymbol{\delta}(q_0, w) \in \mathbf{F}$, automatul trece prin cel puțin n + 1 stări.

Se notează prin q^1 stările cele mai apropiate care se repetă. Atunci stările prin care trece automatul se pot reprezenta astfel:

$$q_0 \to \cdots \to q^1 \to \cdots \to q^1 \to \cdots \to \pmb{\delta}(q_0,w).$$

Alegând cuvântul x astfel încât $\delta(q_0, x) = q^1$, cuvântul y astfel încât $\delta(q^1, y) = q^1$ şi cuvântul z astfel încât $\delta(q^1, z) = \delta(q_0, w)$ se constată că:

- w = xyz;
- $0 < |y| \le n$;
- pentru k = 0 are loc $x z \in L$, deoarece

$$\delta(q_0, xz) = \delta(\delta(q_0, x), z) = \delta(q^1, z) =$$

$$= \delta(q_0, w) \in F;$$

- pentru $k \ge 2$ are $loc xy^k z \in L$, deoarece

$$\delta(q_0, xy^k z) = \delta(\delta(q_0, x), y^k z) = \delta(q^1, y^k z) = \delta(\delta(q^1, y), y^{k-1} z) = \dots =$$

$$= \delta(\delta(q^1, y), z) = \delta(q^1, z) = \delta(q_0, w) \in F.$$

Prin urmare, lema stelei este adevărată.

Aplicație. Folosind lema stelei să se arate că limbajul $L = \{a^m b^m | m \ge 1\}$ nu este un limbaj regulat.

Rezolvare. Presupunem prin reducere la absurd că L este limbaj regulat. Atunci, conform lemei stelei există $n \in \mathbb{N}$, astfel încât oricare ar fi $w \in L$ cu $|w| \ge n$ poate fi scris sub forma w = x y z, unde:

1)
$$|xy| \leq n$$
,

2)
$$0 < |y| \le n$$
, (*)

3)
$$xy^kz \in \mathbf{L}, \forall k \in \mathbb{N}$$
.

Fie $w = a^m b^m \in L$ cu $|w| = 2m \ge n$, atunci $a^m b^m = xyz$ cu $|xy| \le n$ şi $|y| \ne 0$.

Sunt posibile următoarele cazuri:

i) xy este format numai din simboluri a. Atunci y conține cel puțin un simbol a, iar x are cel mult m-1 de simboluri a. În acest caz, pentru k=0 se obține x $z=a^mb^m\in \mathbf{L}$, adică |xz|=2m. Pe de altă parte, x are cel mult m-1 de simboluri a, iar z are exact m simboluri de b și deci |xz|<2m, deoarece $|xz|\leq 2m-1$. În concluzie, are loc |xz|=2m și |xz|<2m, adică 2m<2m, contradicție!

ii) x are m simboluri a și $m_1 \neq 0$, $m_1 < m$ simboluri b, adică $|x| = m + m_1$, iar y conține cel puțin un simbol b. În acest caz, pentru k = 0 se obține $xz = a^m b^m \in \mathbf{L}$, adică |xz| = 2m. Pe de altă parte, z are cel mult $m - m_1 - 1$ simboluri b și $|xz| \leq m + m_1 + m - m_1 - 1 = 2m - 1$. În concluzie, are loc |xz| = 2m și |xz| < 2m, adică 2m < 2m, contradicție!

Pentru a elimina contradicția trebuie renunțat la presupunerea inițială, adică limbajul *L* nu este limbaj regulat.

Următoarea propoziție se referă la posibilitatea de a stabili dacă un limbaj regulat este infinit.

Propoziția 4.1. Fie G o gramatică regulată. Atunci limbajul L(G), generat de gramatică, este infinit, dacă și numai dacă există $w \in L(G)$ cu $n \le |w| \le 2n$, unde n este din **lema stelei**.

Demonstrație.

Implicația (\Leftarrow) , adică presupunem că există $w \in L(G)$ cu $n \le |w| \le 2n$. Atunci conform lemei stelei există descompunerea:

$$\begin{cases} w = xyz \text{ cu:} \\ 0 < |y| \le n; \\ xy^k z \in \boldsymbol{L(G)}, \forall k \in \mathbb{N}. \end{cases}$$

Cum |y| > 0, şirul de inegalități stricte

$$|xz| < |xyz| < |xy^2z| < |xy^3z| \dots$$

tinde la ∞ , adică limbajul L(G) este infinit.

Implicația (\Rightarrow) , adică presupunem că L(G) este infinit. Atunci există $w \in L(G)$ cu $n \le |w|$.

Dacă $|w| \le 2n$, atunci $n \le |w| \le 2n$.

În caz contrar, |w| > 2n și fie $w^1 = xz \in L(G)$, unde w = xyz, conform lemei stelei și $0 < |y| \le n$. Cum lungimea lui w^1 scade față de lungimea lui w cu cel mult n, rezultă

 $|w^1| \ge n$ și se repetă raționamentul pentru w^1 . Cum lungimea nolui w^1 este finită, după un număr finit de pași se ajunge la un w cu $n \le |w| \le 2n$.

Practic, este suficient să se genereze toate cuvintele $(N \cup T)^*$ de lungime < 2n și se caută printre ele un cuvânt din T^* de lungime $\ge n$.

5. Gramatici independente de context

5.1. Recapitulare (din cursul 2)

Gramatica G = (N, T, S, P) este **independentă de context** dacă orice producție a ei este de forma $A \rightarrow \alpha$, unde $A \in N$ și $\alpha \in (N \cup T)^*$.

Fie G o gramatică independentă de context. O derivare a sa este numită **derivare** stângă și este notată prin $\stackrel{s}{\Rightarrow}$, dacă la fiecare pas se înlocuiește neterminalul cel mai din stânga folosind o producție a lui G.

Într-o gramatică independentă de context G orice cuvânt $w \in L(G)$ se poate obţine printr-o derivare stângă din simbolul iniţial S.

5.2. Simplificarea gramaticilor independente de context(I)

Prin simplificarea unei gramatici independente de context G = (N, T, S, P) se înțelege simplificarea producțiilor lui G prin eliminarea unor simboluri și producții inutile.

Definiția 1. Se numește λ - **producție** o producție de forma $A \rightarrow \lambda$, cu $A \in N$, iar λ este cuvântul nul (cuvântul nul a fost notat și cu ε).

Observația 1. Dacă $\lambda \in L(G)$, atunci există cel puțin o λ - producție în P.

Observația 2. Dacă G are o λ - producție, atunci nu rezultă că $\lambda \in L(G)$.

Exemplul 1. Fie G = (N, T, S, P), unde $N = \{S\}$, $T = \{a\}$ și mulțimea producțiilor P este:

$$S \rightarrow aA$$
 (1)

$$A \rightarrow aA$$
 (2)

$$A \rightarrow \lambda$$
 (3)

Rezultă că $L(G) = \{a^n | n \ge 1\}$ și deci $\lambda \notin L(G)$.

Teorema 1. Pentru orice gramatică independentă de context G=(N,T,S,P), care conține λ - producții, există o gramatică independentă de context $G^1=(N,T,S,P^1)$ echivalentă cu G și care nu conține λ - producții.

Propoziția 1. Pentru a elimina λ - producțiile dintr-o gramatică independentă de context G = (N, T, S, P) și a obține gramatica independentă de context $G^1 = (N, T, S, P^1)$ fără λ - producții, se poate utiliza următorul algoritm:

Pasul 1. Definim o mulţime
$$M = \{A \in \mathbb{N} \mid A \stackrel{*}{\Rightarrow} \lambda\};$$

Pasul 2. Definim
$$P^1 = P \setminus \{A \rightarrow \lambda | A \in M\}$$
, numită P^1 iniţială;

Pasul 3. Pornind de la P^1 inițială, pentru fiecare producție ce conține în membrul drept un neterminal $A \in M$ adăugăm în P^1 inițială o nouă producție echivalentă cu cea inițială, prin înlocuirea neterminalului A cu λ , obținându-se în acest fel forma finală a lui P^1 .

Exemplul 2. Pentru a elimina λ - producțiile din gramatica independentă de context din exemplul 1, aplicăm algoritmul prezentat în propoziția 1, astfel:

Pasul 1. $M = \{A\};$

Pasul 2.
$$P^1 = P \setminus \{A \rightarrow \lambda | A \in M\} = \{S \rightarrow aA, A \rightarrow aA\};$$

Pasul 3.

$$\boldsymbol{P^1} = \{S \rightarrow aA, A \rightarrow aA\} \cup \{S \rightarrow a, A \rightarrow a\} = \{S \rightarrow aA, A \rightarrow aA, S \rightarrow a, A \rightarrow a\}$$

este forma finală a lui P^1 .

Exemplul 3. Fie gramatica independentă de context G = (N, T, S, P), unde

 $N = \{S, X, Y, Z, W\}, T = \{a, b\}$ si multimea productiilor P:

$$S \to X | XY | Z$$
 (1)

$$X \to Z \mid \lambda$$
 (2)

$$Y \to Wa \mid a$$
 (3)

$$Z \rightarrow WX \mid aZ \mid Zb$$
 (4)

$$W \rightarrow XYZ | bXa | \lambda$$
 (5)

Eliminarea λ - producțiilor din gramatica G se realizează cu algoritmul descris în propoziția 1, astfel:

Pasul 1.
$$\mathbf{M} = \{S, X, Z, W\}$$
 deoarece $S \underset{(1)}{\overset{*}{\Rightarrow}} X \underset{(2)}{\overset{*}{\Rightarrow}} \lambda$ şi $Z \underset{(4)}{\overset{*}{\Rightarrow}} WX \underset{(2)}{\overset{*}{\Rightarrow}} W \underset{(5)}{\overset{*}{\Rightarrow}} \lambda$;

Pasul 2. Se determină mulțimea P^1 inițială:

$$S \to X|XY|Z \tag{1}$$

$$X \to Z$$
 (2)

$$Y \to Wa \mid a$$
 (3)

$$Z \rightarrow WX | aZ | Zb$$
 (4)

$$W \to XYZ \mid bXa$$
 (5)

Pasul 3. Determinăm mulțimea P^1 finală, determinând mai întâi producțiile echivalente cu λ - producțiile existente în P^1 inițială:

Producție inițială	Producții echivalente
$S \rightarrow X$	S → λ
$S \rightarrow XY$	$S \rightarrow Y$
$S \rightarrow Z$	S → \lambda
$X \rightarrow Z$	$X ightharpoonup \lambda$
$Y \rightarrow Wa$	$Y \rightarrow a$
$Z \rightarrow WX$	$Z \rightarrow X$
	$Z \rightarrow W$
	Z → λ
$Z \rightarrow aZ$	$Z \rightarrow a$
$Z \rightarrow Zb$	$Z \rightarrow b$
$W \rightarrow XYZ$	$W \rightarrow YZ$
	$W \rightarrow XY$
	$W \rightarrow Y$
W o bXa	W o ba

Producțiile din coloana a doua, având săgeata tăiată, nu sunt permise, motivul fiind evident.

Mulțimea P^1 finală se obține din mulțimea P^1 inițială reunită cu mulțimea producțiilor echivalente din tabelul de mai sus, fiind formată din următoarele producții:

$$S \to X | XY | Z | Y \tag{1}$$
$$X \to Z \tag{2}$$

$$Y \to Wa \mid a$$
 (3)

$$Z \rightarrow WX \mid aZ \mid Zb \mid W \mid X \mid a \mid b$$
 (4)

$$W \rightarrow XYZ \mid bXa \mid YZ \mid XY \mid Y \mid ba$$
 (5)

Definiția 2. Se numește **redenumire** o derivare de forma $A \stackrel{\circ}{\Rightarrow} B$, unde $A, B \in N$.

Teorema 2. Fie G o gramatică independentă de context. Atunci există o gramatică independentă de context G^0 echivalentă cu G în care nu apar redenumiri.

Demonstrație. Fie gramatica independentă de context G = (N, T, S, P). Pornind de la gramatica G se construiește gramatica independentă de context $G^0 = (N, T, S, P_0)$, unde mulțimea producțiilor P_0 se obține astfel:

$$P_0 = \{ A \to \alpha \mid \exists B \in \mathbf{N} \text{ cu } A \stackrel{*}{\Rightarrow} B \text{ si } B \to \alpha \in \mathbf{P}_2 \}, P_2 = \mathbf{P} \setminus \mathbf{P}_1,$$
$$P_1 = \{ A \to B \mid A, B \in \mathbf{N} \text{ si } A \to B \in \mathbf{P} \}.$$

Se observă că P_0 se obține din P prin eliminarea redenumirilor, care nu afectează statutul de gramatică independentă de context al gramaticii G^0 .

Trebuie demonstrat acum că ${m L}({m G}) = {m L}({m G}^0)$, adică echivalența dintre cele două gramatici, demonstrând următoarele două incluziuni:

$$L(G) \supset L(G^0)$$
 rezultă observând că dacă $\alpha \underset{G^0}{\overset{*}{\Rightarrow}} \beta$ rezultă și că $\alpha \underset{G}{\overset{*}{\Rightarrow}} \beta$:

 $L(G) \subset L(G^0)$ se obţine astfel:

fie $S \underset{G}{\overset{S}{\Rightarrow}} \propto_1 \underset{G}{\overset{S}{\Rightarrow}} \propto_2 \underset{G}{\overset{S}{\Rightarrow}} \dots \underset{G}{\overset{S}{\Rightarrow}} \propto_{k+1} \underset{G}{\overset{S}{\Rightarrow}} w$ o derivare stângă din G și fie k cel mai mare indice pentru care $S \xrightarrow{} \propto_1, \, \propto_1 \rightarrow \propto_2, \, \dots, \, \propto_{k-1} \rightarrow \propto_k \in P_1$. Atunci $S \xrightarrow{} \propto_{k+1} \in P_0$ și deci $S \underset{G}{\overset{S}{\Rightarrow}} w$, adică incluziunea este adevărată.

Propoziția 2. Eliminarea redenumirilor dintr-o gramatică independentă de context se poate realiza folosind următorul algoritm:

Pasul 1. Se determină toate redenumirile din gramatica G;

Pasul 2. Pentru fiecare redenumire de forma $A\stackrel{*}{\Rightarrow} B$ considerăm toate producțiile de forma $B \to \alpha$ și pentru fiecare dintre aceste producții adăugăm în P_0 câte o nouă producție de forma $A \to \alpha$.

Pasul 3. Adăugăm în P_0 toate producțiile din P care nu sunt redenumiri.

Exemplul 4. Fie gramatica independentă de context G = (N, T, S, P), unde

 $N = \{S, A, B\}$, $T = \{a, b\}$ și mulțimea producțiilor P este următoarea:

$$S \rightarrow A$$
 (1)

$$A \rightarrow aSB$$
 (2)

$$A \rightarrow B$$
 (3)

$$B \rightarrow bSA$$
 (4)

$$A \rightarrow a$$
 (5)

$$B \rightarrow b$$
 (6)

Determinăm toate redenumirile din **P**, precum și producțiile noi necesare, astfel:

Redenumiri	Producții noi
S→A	S→aSB
	S→a
$A \rightarrow B$	A→bSA
	A→b
$S \stackrel{*}{\Rightarrow} B$	S→bSA
	S→b

Gramatica independentă de context echivalentă cu **G** și fără redenumiri este

 $m{G^0} = (\emph{N}, \emph{T}, \emph{S}, \emph{P}_0)$, unde mulţimea producţiilor \emph{P}_0 este următoarea:

$$S \rightarrow aSB \qquad (5)$$

$$S \rightarrow a \qquad (6)$$

$$A \rightarrow bSA \qquad (7)$$

$$A \rightarrow b \qquad (8)$$
producții noi.

 $S \to b \tag{9}$ $S \to bSA \tag{10}$

Exemplul 5. Fie gramatica independentă de context G = (N, T, S, P), unde

Exemplar 5. The gramatica independenta de context **a** = (11, 1, 5, 1), and

 $N = \{S, X, Y, Z\}, T = \{a, b\}$ și mulțimea producțiilor **P** este următoarea:

$$S \rightarrow X|Y|bb$$
 (1)

$$X \to Z \mid aXY$$
 (2)

$$Y \to Xa \mid a$$
 (3)

$$Z \rightarrow XY \mid S \mid Zb$$
 (4)

Pentru a se construi gramatica independentă de context $G^0=(N,T,S,P_0)$, echivalentă cu G și fără redenumiri, aplicând pașii 1 și 2 ai algoritmului de mai sus, mai întâi se determină toate redenumirile din P, precum și producțiile noi corespunzătoare, evitând eventualele redenumiri noi, astfel:

Redenumirile din P	Producțiile noi corespunzătoare
$S \rightarrow X$	$S \rightarrow aXY$
$S \rightarrow Y$	$S \rightarrow Xa \mid a$
$X \rightarrow Z$	$X \to XY \mid Zb$
$Z \rightarrow S$	$Z \rightarrow bb$
$S \stackrel{*}{\Rightarrow} Z$	$S \rightarrow XY \mid Zb$
$X \stackrel{*}{\Rightarrow} S$	$X \rightarrow bb$
$X \stackrel{*}{\Rightarrow} Y$	$X \rightarrow Xa \mid a$
$Z \stackrel{*}{\Rightarrow} X$	$Z \rightarrow aXY$
$Z \stackrel{*}{\Rightarrow} Y$	$Z \rightarrow Xa \mid a$

Conform pasului 3 al algoritmului, P_0 se obține adăugându-se la producțiile noi producțiile inițiale care nu sunt redenumiri, astfel:

$$S \to bb | aXY | Xa | a | XY | Zb$$
 (1)

$$X \rightarrow aXY | XY | Zb | bb | Xa | a$$
 (2)

$$Y \rightarrow Xa \mid a$$
 (3)

$$Z \rightarrow XY \mid Zb \mid bb \mid aXY \mid Xa \mid a$$
 (4).