关键路径推导过程:

2、制定进度计划的工具: 关键链法

帕金森定律,懒惰定律。事情总是喜欢拖到最后一刻才去做,事情总是拖到最晚才去完成。关键链法: 所有活动都是最早时间、最快速度去做,克服懒惰综合征。但是在路径末端,加上了时间缓冲段。

放置在关键链末端的缓冲称为项目缓冲。

放置在非关键链与关键链的接合点称为接驳缓冲。

关键路径法是没有考虑任何资源限制,而关键链法考虑了资源限制和约束,所以关键链法又叫做:资源约束型关键路径。考虑了资源的不确定性。

特点:

- 1)资源有限、资源受限制;
- 2) 采用最早时间、最快速度去做, 所以比关键路径快, 进度缩短;
- 3) 克服了帕金森定律。

3、制定进度计划的工具:资源优化技术

关键路径法没有考虑资源限制,为了让资源分配更合理,用到资源优化技术。

1) 资源平衡: 资源不足或分配不合理时使用

还有一种资源平衡,是把非关键路径上的资源转移到关键路径,由于延后了非关键路径,使得关键路径发生了变化,产生新的关键路径,导致工期延长。

2) 资源平滑:一种特殊的资源平衡。

活动只在时差内调整,所以不会产生新的关键路径,不会延长工期。但是资源平滑无法实现所有资源的优化。

- 4、制定进度计划的工具:数据分析
- 1) 假设情景分析 What-If Scenario Analysis: 假设情景分析就是对"如果情景 X 出现,情况会怎样?"这样的问题进行分析,即基于已有的进度计划,考虑各种各样的情景。可以根据假设情景分析的结果,评估项目进度计划在不利条件下的可行性,以及为应对意外情况的影响而准备进度储备和应对计划。
- 2)模拟:把单个项目风险和不确定性的其他来源模型化的方法,以评估它们对项目目标的潜在影响。

最常见的模拟技术:蒙特卡洛分析法,估算出每个活动的可能持续时间概率分布,然后计算出整个项目的可能工期概率分布。比单点估算(关键路径法)、三点估算(PERT)更接近实际值。

5、制定进度计划的工具:进度压缩

在不缩减项目范围的前提下,缩短工期以满足项目进度要求,进度压缩作用于关键路径。 进度压缩后关键路径可能会发生变化,产生新的关键路径。

有两种方法: 赶工、快速跟进。

- 1) 赶工:增加资源来压缩进度。直接导致成本增加,其次是风险增加。
- 2) 快速跟进: 按顺序执行的活动或阶段改为并行,改变逻辑关系。直接导致风险增加,其次是成本增加。

比如有一个项目要做三件事:起床、洗脸刷牙、抽两口香烟,项目结束。 赶工:按顺序做。

第一步: 迅速起床; 第二步: 匆忙的用 3 块毛巾洗脸, 用 2 把牙刷、左右手同时刷牙; 第三步: 迅速的抽两口香烟。项目结束。这是赶工,增加了 3 块毛巾、2 把牙刷的资源,导致了成本增加。

快速跟进:并行活动、改变逻辑关系。

起床的同时左手刷牙、右手抽烟,三件事同时做、并行活动。这样会导致牙膏吞下去、烟头把被子点燃的风险。多项工作并行、同时做。也必然导致风险增加,可能需要返工。

6、制定进度计划的工具: 敏捷发布规划

敏捷发布规划基于项目路线图和产品发展愿景,提供了高度概括的发布进度时间线(通常 3-6 个月)。

- 7、制定进度计划的输出:
- 1) 里程碑图: 标示出主要可交付成果、关键计划的开始或完成日期;

活动标识	活动描述	日历单元	项目进度计划时间表					
			时段1	时段2	时段3	时段4	时段5	
1.1.MB	开始新产品Z	0	\rightarrow					
1.1.1.M1	完成组件1	0	1		♦			
1.1.2.M1	完成组件2	0			\Diamond			
1.1.3.M1	完成组件1和2的整合	0					\Diamond	
1.1.3.MF	完成新产品Z	0			į		\Diamond	
					←	数据日期		

2) 横道图(条形图、甘特图): 标明活动的开始日期和结束日期,没有逻辑关系。用于向管理层汇报;

活动标识	活动描述	日历单元	项目进度计划时间表					
			时段1	时段2	时段	}3	时段4	时段5
1.1	开发和交付新产品Z	120						
1.1.1	工作包1:组件1	67						
1.1.2	工作包2:组件2	53						
1.1.3	工作包3:整合组件1和2	53						
			·		i∢	<u> </u>	数据日期	

3) 逻辑甘特图: 也叫时标逻辑图。标明活动的开始日期和结束日期,有逻辑关系,是有逻

辑关系的甘特图。

活动标识	活动描述	日历单元	项目进度计划时间表					
			时段1	时段2	时段3	时段4	时段5	
1.1.MB	开始新产品Z	0						
1.1	开发和交付新产品Z	120						
1.1.1	工作包1:组件1	67						
1.1.1.D	设计组件1	20		FS				
1.1.1.B	建造组件1	33		•				
1.1.1.T	测试组件1	14						
1.1.1.M1	完成组件1	0	ss					
1.1.2	工作包2:组件2	53		<u> </u>				
1.1.2.D	设计组件2	14		<u> </u>	į			
1.1.2.B	建造组件2	28	<u>_</u>					
1.1.2.T	测试组件2	11		-		_		
1.1.2.M1	完成组件2	0						
1.1.3	工作包3:整合组件1和2	53						
1.1.3.G	整合组件1和2得到产品Z	14			LL_			
1.1.3.T	测试整合后的产品Z	32			į			
1.1.3.M1	完成组件1和2的整合	0					-	
1.1.3.P	交付产品Z	7					—	
1.1.3.MF	完成新产品Z	0			į			
					. ←	数据日期		