Definition: Seien X, Y Zufallsvariablen. Die Funktion $V_{X,Y}: \mathbb{R}^2 \to [0,1]$ gegeben durch

$$V_{X,Y}(a,b) := \mathbb{P}\left(X \leq a \text{ und } Y \leq b\right)$$

nennt man gemeinsame Verteilungsfunktion von X und Y.

Satz: $V_{X,Y}$ hat folgende Eigenschaften:

- (a) Für jede Folge $(a_n, b_n)_{n \in \mathbb{N}}$ mit $\lim_{n \to \infty} a_n = -\infty$ oder $\lim_{n \to \infty} b_n = -\infty$ gilt: $\lim_{n \to \infty} V_{X,Y}(a_n, b_n) = 0$.
- (b) Für jede Folge $(a_n)_{n\in\mathbb{N}}$ mit $\lim_{n\to\infty} a_n = \infty$ und $\lim_{n\to\infty} b_n = \infty$ gilt: $\lim_{n\to\infty} V_{X,Y}(a_n,b_n) = 1$.
- (c) Stetigkeit von rechts-oben: Für jede Folge $(s_n, t_n)_{n \in \mathbb{N}} \subset \mathbb{R}_0^+ \times \mathbb{R}^+$ mit $\lim_{n \to \infty} (s_n, t_n) = 0$ und für jedes $(a, b) \in \mathbb{R}^2$ gilt

$$\lim_{n\to\infty} V_{X,Y}(a+s_n,b+t_n) = V_{X,Y}(a,b).$$

(a) Für jede Folge $(a_n, b_n)_{n \in \mathbb{N}}$ mit $\lim_{n \to \infty} a_n = -\infty$ oder $\lim_{n \to \infty} b_n = -\infty$ gilt: $\lim_{n \to \infty} V_{X,Y}(a_n, b_n) = 0$. **Beweis:** Es sei o.B.d.A. $\lim_{n \to \infty} a_n = -\infty$. Da das Ereignis "X"

Beweis: Es sei o.B.d.A. $\lim_{n\to\infty} a_n = -\infty$. Da das Ereignis " $X \le a_n$ und $Y \le b_n$ " eine Teilmenge von $X \le a_n$ ist, gilt

$$V_{X,Y}(a_n,b_n) \leq V_X(a_n)$$

Da letztere im Limes $n \to \infty$ Null ergibt, folgt die Aussage ($\lim_{n\to\infty} V_{X,Y}(a_n,b_n)=0$).

(b) Für jede Folge $(a_n)_{n\in\mathbb{N}}$ mit $\lim_{n\to\infty}a_n=\infty$ und $\lim_{n\to\infty}b_n=\infty$ gilt: $\lim_{n\to\infty}V_{X,Y}(a_n,b_n)=1$.

Beweis: Betrachte $c_n := \inf_{k \ge n} a_n$ und $d_n := \inf_{k \ge n} b_n$. Es gilt offensichtlich, dass $V_{X,Y}(c_n, d_n) \le V_{X,Y}(a_n, b_n)$.

Es reicht also zu zeigen, dass $\lim_{n\to\infty} V_{X,Y}(c_n,d_n)=1$.

Die Folgen c_n und d_n sind monoton wachsend und ergeben im Limes ∞ .

Daher ist die Folge der Ereignisse " $X \le c_n$ und $Y \le d_n$ " eine monoton wachsende Folge mit $\lim_{n\to\infty}]-\infty, c_n] \times]-\infty, d_n] = \mathbb{R}^2$.

Somit ist wegen der Stetigkeit von ${\mathbb P}$ der Limes

$$\lim_{n\to\infty} V_{X,Y}(c_n,d_n) = \lim_{n\to\infty} \mathbb{P}\left(X \leq c_n \text{ und } Y \leq d_n\right) = \mathbb{P}\left(\mathbb{R}^2\right) = 1.$$

(c)Stetigkeit von rechts-oben: Für jede Folge $(s_n, t_n)_{n \in \mathbb{N}} \subset \mathbb{R}_0^+ \times \mathbb{R}^+$ mit $\lim_{n \to \infty} (s_n, t_n) = 0$ und für jedes $(a, b) \in \mathbb{R}^2$ gilt

$$\lim_{n\to\infty} V_{X,Y}(a+s_n,b+t_n) = V_{X,Y}(a,b).$$

Beweis: Wie bei der einfachen Verteilungsfunktion können wir uns o.B.d.A auf monoton fallende s_n und t_n einschränken.

Es ist dann $X \le a + s_n$ und $Y \le b + t_n$ eine fallende Folge von Ereignissen.

Somit ist

$$\begin{array}{l} \lim_{n\to\infty} V_{X,Y}(a+s_n,b+t_n) = \mathbb{P}\left(\bigcap_{n\in\mathbb{N}} X \leq a+s_n \text{ und } Y \leq b+t_n\right) = \\ \mathbb{P}\left(X \leq a \text{ und } Y \leq b\right) = V_{X,Y}(a,b). \end{array}$$