A NEW CHARACTERIZATION OF q_{ω} -COMPACT ALGEBRAS

M. SHAHRYARI

ABSTRACT. In this note, we give a new characterization for an algebra to be q_{ω} -compact in terms of *super-product operations* on the lattice of congruences of the relative free algebra.

AMS Subject Classification Primary 03C99, Secondary 08A99 and 14A99.

Keywords algebraic structures; equations; algebraic set; radical ideal; q_{ω} -compactness; filter-power; geometric equivalence; relatively free algebra; quasi-identity; quasi-variety.

1. Introduction

In this article, our notations are the same as [2], [3], [4], [5] and [6]. The reader should review these references for a complete account of the universal algebraic geometry. However, a brief review of fundamental notions will be given in the next section.

Let \mathcal{L} be an algebraic language, A be an algebra of type \mathcal{L} and S be a system of equation in the language \mathcal{L} . Recall that an equation $p \approx q$ is a logical consequence of S with respect to A, if any solution of S in A is also a solution of $p \approx q$. The radical $\operatorname{Rad}_A(S)$ is the set of all logical consequences of S with respect to A. This radical is clearly a congruence of the term algebra $T_{\mathcal{L}}(X)$ and in fact it is the largest subset of the term algebra which is equivalent to S with respect to A. Generally, this logical system of equations with respect to A does not obey the ordinary compactness of the first order logic. We say that an algebra A is q_{ω} -compact, if for any system S and any consequence $p \approx q$, there exists a finite subset $S_0 \subseteq S$ with the property that $p \approx q$ is a consequence of S_0 with respect to A. This property of being q_{ω} -compact is equivalent to

$$\operatorname{Rad}_A(S) = \bigcup_{S_0} \operatorname{Rad}_A(S_0),$$

where S_0 varies in the set of all finite subsets of S. If we look at the map Rad_A as a closure operator on the lattice of systems of equations in the language \mathcal{L} , then we see that A is q_{ω} -compact if and only if Rad_A

is an algebraic. The class of q_{ω} -compact algebras is very important and it contains many elements. For example, all equationally noetherian algebras belong to this class. In [4], some equivalent conditions for q_{ω} -compactness are given. Another equivalent condition is obtained in [7] in terms of geometric equivalence. It is proved that (the proof is implicit in [7]) an algebra A is q_{ω} -compact if and only if A is geometrically equivalent to any of its filter-powers. We will discuss geometric equivalence in the next section. We will use this fact of [7] to obtain a new characterization of q_{ω} -compact algebras. Although our main result will be formulated in an arbitrary variety of algebras, in this introduction, we give a simple description of this result for the case of the variety of all algebras of type \mathcal{L} .

Roughly speaking, a super-product operation is a map C which takes a set K of congruences of the term algebra and returns a new congruence C(K) such that for all $\theta \in K$, we have $\theta \subseteq C(K)$. For an algebra B define a map T_B which takes a system S of equations and returns

$$T_B(S) = \{ \text{Rad}_B(S_0) : S_0 \subseteq S, |S_0| < \infty \}.$$

Suppose for all algebra B we have $C \circ T_B \leq \operatorname{Rad}_B$. We prove that an algebra A is q_{ω} -compact if and only if $C \circ T_A = \operatorname{Rad}_A$.

2. Main result

Suppose \mathcal{L} is an algebraic language. All algebras we are dealing with, are of type \mathcal{L} . Let \mathbf{V} be a variety of algebras. For any $n \geq 1$, we denote the relative free algebra of \mathbf{V} , generated by the finite set $X = \{x_1, \ldots, x_n\}$, by $F_{\mathbf{V}}(n)$. Clearly, we can assume that an arbitrary element $(p,q) \in F_{\mathbf{V}}(n)^2$ is an equation in the variety \mathbf{V} and we can denote it by $p \approx q$. We introduce the following list of notations:

- 1- $P(F_{\mathbf{V}}(n)^2)$ is the set of all systems of equations in the variety \mathbf{V} .
- 2- $Con(F_{\mathbf{V}}(n))$ is the set of all congruences of $F_{\mathbf{V}}(n)$.
- 3- $\Sigma(\mathbf{V}) = \bigcup_{n=1}^{\infty} P(F_{\mathbf{V}}(n)^2).$
- 4- $\operatorname{Con}(\mathbf{V}) = \bigcup_{n=1}^{\infty} \operatorname{Con}(F_{\mathbf{V}}(n)).$
- 5- $PCon(\mathbf{V}) = \bigcup_{n=1}^{\infty} P(Con(F_{\mathbf{V}}(n))).$
- 6- $q_{\omega}(\mathbf{V})$ is the set of all q_{ω} -compact elements of \mathbf{V} .

Note that, we have $Con(\mathbf{V}) \subseteq \Sigma(\mathbf{V})$. For any algebra $B \in \mathbf{V}$, the

map $\operatorname{Rad}_B : \Sigma(\mathbf{V}) \to \Sigma(\mathbf{V})$ is a closure operator and B is q_{ω} -compact, if and only if this operator is algebraic. Define a map

$$T_B: \Sigma(\mathbf{V}) \to \mathrm{PCon}(\mathbf{V})$$

by

$$T_B(S) = \{ \text{Rad}_B(S_0) : S_0 \subseteq S, |S_0| < \infty \}.$$

Definition 1. A map $C : \operatorname{PCon}(\mathbf{V}) \to \operatorname{Con}(\mathbf{V})$ is called a superproduct operation, if for any $K \in \operatorname{PCon}(\mathbf{V})$ and $\theta \in K$, we have $\theta \subseteq C(K)$.

There are many examples of such operations; the ordinary product of normal subgroups in the varieties of groups is the simplest one. For another example, we can look at the map $C(K) = \operatorname{Rad}_B(\bigcup_{\theta \in K} \theta)$, for a given fixed $B \in \mathbf{V}$. We are now ready to present our main result.

Theorem 1. Let C be a super-product operation such that for any $B \in \mathbf{V}$, we have $C \circ T_B \leq \operatorname{Rad}_B$. Then

$$q_{\omega}(\mathbf{V}) = \{ A \in \mathbf{V} : C \circ T_A = \operatorname{Rad}_A \}.$$

To prove the theorem, we first give a proof for the following claim. Note that it is implicitly proved in [7] for the case of groups.

An algebra is q_{ω} -compact if and only if it is geometrically equivalent to any of its filter-powers.

Let $A \in \mathbf{V}$ be a q_{ω} -compact algebra and I be a set of indices. Let $F \subseteq P(I)$ be a filter and $B = A^I/F$ be the corresponding filter-power. We know that the quasi-varieties generated by A and B are the same. So, these algebras have the same sets of quasi-identities. Now, suppose that S_0 is a finite system of equations and $p \approx q$ is another equation. Consider the following quasi-identity

$$\forall \overline{x}(S_0(\overline{x}) \to p(\overline{x}) \approx q(\overline{x})).$$

This quasi-identity is true in A, if and only if it is true in B. This shows that $\operatorname{Rad}_A(S_0) = \operatorname{Rad}_B(S_0)$. Now, for an arbitrary system S, we have

$$Rad_{A}(S) = \bigcup_{S_{0}} Rad_{A}(S_{0})$$
$$= \bigcup_{S_{0}} Rad_{B}(S_{0})$$
$$\subseteq Rad_{B}(S).$$

Note that in the above equalities, S_0 ranges in the set of finite subsets of S. Clearly, we have $\operatorname{Rad}_B(S) \subseteq \operatorname{Rad}_A(S)$, since $A \leq B$. This shows that A and B are geometrically equivalent. To prove the converse, we need to define some notions. Let \mathfrak{X} be a prevariety, i.e. a class of algebras closed under product and subalgebra. For any $n \geq 1$, let $F_{\mathfrak{X}}(n)$ be the free element of \mathfrak{X} generated by n elements. Note that if $\mathbf{V} = var(\mathfrak{X})$, then $F_{\mathfrak{X}}(n) = F_{\mathbf{V}}(n)$. A congruence R in $F_{\mathfrak{X}}(n)$ is called an \mathfrak{X} -radical, if $F_{\mathfrak{X}}(n)/R \in \mathfrak{X}$. For any $S \subseteq F_{\mathfrak{X}}(n)^2$, the least \mathfrak{X} -radical containing S is denoted by $\operatorname{Rad}_{\mathfrak{X}}(S)$.

Lemma 1. For an algebra A and any system S, we have

$$\operatorname{Rad}_A(S) = \operatorname{Rad}_{pvar(A)}(S),$$

where pvar(A) is the prevariety generated by A.

Proof. Since $F_{\mathfrak{X}}(n)/\mathrm{Rad}_A(S)$ is a coordinate algebra over A, so it embeds in a direct power of A and hence it is an element of pvar(A). This shows that

$$\operatorname{Rad}_{pvar(A)}(S) \subseteq \operatorname{Rad}_A(S).$$

Now, suppose (p,q) does not belong to $\operatorname{Rad}_{pvar(A)}(S)$. So, there exists $B \in pvar(A)$ and a homomorphism $\varphi : F_{\mathfrak{X}}(n) \to B$ such that $S \subseteq \ker \varphi$ and $\varphi(p) \neq \varphi(q)$. But, B is separated by A, hence there is a homomorphism $\psi : B \to A$ such that $\psi(\varphi(p)) \neq \psi(\varphi(q))$. This shows that (p,q) does not belong to $\ker(\psi \circ \varphi)$. Therefore, it is not in $\operatorname{Rad}_A(S)$.

Note that, since pvar(A) is not axiomatizable in general, so we can not give a deductive description of elements of $\operatorname{Rad}_A(S)$. But, for $\operatorname{Rad}_{var(A)}(S)$ and $\operatorname{Rad}_{qvar(A)}(S)$ this is possible, because the variety and quasi-variety generated by A are axiomatizable. More precisely, we have:

- 1- Let Id(A) be the set of all identities of A. Then $Rad_{var(A)}(S)$ is the set of all logical consequences of S and Id(A).
- 2- Let Q(A) be the set of all identities of A. Then $Rad_{qvar(A)}(S)$ is the set of all logical consequences of S and Q(A).

We can now, prove the converse of the claim. Suppose A is not q_{ω} -compact. We show that

$$pvar(A)_{\omega} \neq qvar(A)_{\omega}.$$

Recall that for and arbitrary class \mathfrak{X} , the notation \mathfrak{X}_{ω} denotes the class of finitely generated elements of \mathfrak{X} . Suppose in contrary we have the

equality

$$pvar(A)_{\omega} = qvar(A)_{\omega}.$$

Assume that S is an arbitrary system and $(p,q) \in \operatorname{Rad}_A(S)$. Hence, the infinite quasi-identity

$$\forall \overline{x}(S(\overline{x}) \to p(\overline{x}) \approx q(\overline{x}))$$

is true in A. So, it is also true in pvar(A). As a result, every element from $qvar(A)_{\omega}$ satisfies this infinite quasi-identity. Let $F_A(n) = F_{var(A)}(n)$. We have $F_A(n) \in qvar(A)_{\omega}$ and hence $\operatorname{Rad}_{qvar(A)}(S)$ depends only on $qvar(A)_{\omega}$. In other words, $(p,q) \in \operatorname{Rad}_{qvar(A)}(S)$, so $p \approx q$ is a logical consequence of the set of S + Q(A). By the compactness theorem of the first order logic, there exists a finite subset $S_0 \subseteq S$ such that $p \approx q$ is a logical consequence of $S_0 + Q(A)$. This shows that $(p,q) \in \operatorname{Rad}_{qvar(A)}(S_0)$. But $\operatorname{Rad}_{qvar(A)}(S_0) \subseteq \operatorname{Rad}_A(S_0)$. Hence $(p,q) \in \operatorname{Rad}_A(S_0)$, violating our assumption of non- q_{ω} -compactness of A. We now showed that

$$pvar(A)_{\omega} \neq qvar(A)_{\omega}$$
.

By the algebraic characterizations of the classes pvar(A) and qvar(A), we have

$$SP(A)_{\omega} \neq SPP_u(A)_{\omega}$$

where P_u is the ultra-product operation. This shows that there is an ultra-power B of A such that

$$SP(A)_{\omega} \neq SP(B)_{\omega}.$$

In other words the classes $pvar(A)_{\omega}$ and $pvar(B)_{\omega}$ are different. We claim that A and B are not geometrically equivalent. Suppose this is not the case. Let $A_1 \in pvar(A)_{\omega}$. Then A_1 is a coordinate algebra over A, i.e. there is a system S such that

$$A_1 = \frac{F_{\mathbf{V}}(n)}{\operatorname{Rad}_{A}(S)}.$$

Since $\operatorname{Rad}_A(S) = \operatorname{Rad}_B(S)$, so

$$A_1 = \frac{F_{\mathbf{V}}(n)}{\operatorname{Rad}_B(S)},$$

and hence A_1 is a coordinate algebra over B. This argument shows that

$$pvar(A)_{\omega} = pvar(B)_{\omega},$$

which is a contradiction. Therefore A and B are not geometrically equivalent and this completes the proof of the claim. We can now complete the proof of the theorem. Assume that $C \circ T_A = \operatorname{Rad}_A$. We show that A is geometrically equivalent to any of its filter-powers. So,

let $B = A^I/F$ be a filter-power of A. Note that we already proved that for a finite system S_0 , the radicals $\operatorname{Rad}_A(S_0)$ and $\operatorname{Rad}_B(S_0)$ are the same. Suppose that S is an arbitrary system of equations. We have

$$Rad_{A}(S) = C(T_{A}(S))$$

$$= C(\{Rad_{A}(S_{0}) : S_{0} \subseteq S, |S_{0}| < \infty\})$$

$$= C(\{Rad_{B}(S_{0}) : S_{0} \subseteq S, |S_{0}| < \infty\})$$

$$\subseteq Rad_{B}(S).$$

So we have $\operatorname{Rad}_A(S) = \operatorname{Rad}_B(S)$ and hence A and B are geometrically equivalent. This shows that A is q_{ω} -compact. Conversely, let A be q_{ω} -compact. For any system S, we have

$$\operatorname{Rad}_{A}(S) = \bigcup_{S_{0}} \operatorname{Rad}_{A}(S_{0})$$

$$= \bigvee \{ \operatorname{Rad}_{A}(S_{0}) : S_{0} \subseteq S, |S_{0}| < \infty \}$$

$$= \bigvee T_{A}(S),$$

where \bigvee denotes the least upper bound. By our assumption, $C(T_A(S)) \subseteq \operatorname{Rad}_A(S)$, so $C(T_A(S)) \subseteq \bigvee T_A(S)$. On the other hand, for any finite $S_0 \subseteq S$, we have $\operatorname{Rad}_A(S_0) \subseteq C(T_A(S))$. This shows that

$$C(T_A(S)) = \bigvee T_A(S),$$

and hence $C \circ T_A = \text{Rad}_A$. The proof is now completed.

References

- [1] Baumslag G., Myasnikov A., Remeslennikov V. Algebraic geometry over groups, I. Algebraic sets and ideal theory. J. Algebra, 1999, 219, pp. 16-79.
- [2] Daniyarova E., Myasnikov A., Remeslennikov V. *Unification theorems in algebraic geometry*. Algebra and Discrete Mathamatics, 2008, 1, pp. 80-112.
- [3] Daniyarova E., Myasnikov A., Remeslennikov V. Algebraic geometry over algebraic structures, II: Fundations. J. Math. Sci., 2012, **185** (3), pp. 389-416.
- [4] Daniyarova E., Myasnikov A., Remeslennikov V. Algebraic geometry over algebraic structures, III: Equationally noetherian property and compactness. South. Asian Bull. Math., 2011, **35** (1), pp. 35-68.
- [5] Daniyarova E., Myasnikov A., Remeslennikov V. Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains. Algebra and Logic, 49 (6), pp. 483-508.
- [6] Modabberi P., Shahryari M. Equational conditions in universal algebraic geometry. Algebra and Logic, 2015, to appear.
- [7] Myasnikov A., Remeslennikov V. Algebraic geometry over groups, II. Logical Foundations. J. Algebra, 2000, 234, pp. 225-276.
- [8] Plotkin B. Seven lectures in universal algebraic geometry, 2002, \protect\vrule widthOpt\protect\href{http://arxiv.org/abs/math/0204245}{arXiv:math/0204245}

M. Shahryari: Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

 $E ext{-}mail\ address: mshahryari@tabrizu.ac.ir}$