INTRODUCTION TO ANOVA

Example

Caffeine (Michael T. Brannick http://faculty.cas.usf.edu/mbrannick/)

Computational Example: Caffeine

G1: Control	G2: Mild	G3: Jolt
	Test Scores	
75	80	70
77	82	72
79	84	74
81	86	76
83	88	78

Computational Example: Caffeine

G1: Control	G2: Mild	G3: Jolt
	Test Scores	
75=79-4	80=84-4	70=74-4
77=79-2	82=84-2	72=74-2
79=79+0	84=84+0	74=74+0
81=79+2	86=84+2	76=74+2
83=79+4	88=84+4	78=74+4
	Means	
79	84	74
Mean of means	79	

		$\mid \overline{X}_{\scriptscriptstyle A} \mid$	\overline{X}_G	$\left (\overline{X}_A - \overline{X}_G)^2\right $
	G1	79	79	0
Between	Control	79	79	0
Sum of	M=79	79	79	0
Squares	SD=3.16	79	79	0
		79	79	0
	G2	84	79	25
	M=84	84	79	25
$SS_B = \sum N_A (\overline{X}_A - \overline{X}_G)^2$	SD=3.16	84	79	25
		84	79	25
		84	79	25
	G3	74	79	25
	M=74	74	79	25
	SD=3.16	74	79	25
		74	79	25
		74	79	25
	Sum			250

The between sum of squares relates the Cell Means to the Grand Mean. This is related to the variance of the means.

$$SS_B = \sum N_A (\overline{X}_A - \overline{X}_G)^2$$

		X_i	$\overline{X}_{\scriptscriptstyle A}$	$(X_i - \overline{X}_A)^2$
Within	G1	75	79	16
	Control	77	79	4
Sum of	M=79	79	79	0
Squares	SD=3.16	81	79	4
		83	79	16
	G2	80	84	16
	M=84	82	84	4
	SD=3.16	84	84	0
		86	84	4
$SS_W = \sum (X_i - \overline{X}_A)^2$		88	84	16
	G3	70	74	16
	M=74	72	74	4
	SD=3.16	74	74	0
		76	74	4
		78	74	16
	Sum			120

Within sum of squares refers to the variance within cells. That is, the difference between scores and their cell means. $SS_{\rm W}$ estimates error.

$$SS_W = \sum (X_i - \overline{X}_A)^2$$

Calculate the MSE

$$MSE = \frac{1}{N - K} \sum_{j} \sum_{i} (x_{ij} - \overline{X}_{j})^{2} = SS_{w} / N - K$$

 \square 120/(15-3)=10

$$F = \frac{SSB/(K-1)}{MSE}$$

 \square F=250/(3-1)/10=12.5

ANOVA Source Table (1)

Source	SS	df	MS	F
Between Groups	250	k-1=2	SS/df 250/2= 125 =MS _B	$F = MS_B/MS_W = 125/10 = 12.5$
Within Groups	120	N-k= 15-3=12	120/12 = 10 = MS _W	
Total	370	N-1=14		

ANOVA Source Table (2)

- df Degrees of freedom. Divide the sum of squares by degrees of freedom to get
- MS, Mean Squares, which are population variance estimates.
- F is the ratio of two mean squares. F is another distribution like z and t. There are tables of F used for significance testing.

The F Distribution

- F" distribution, with K-1 and N-K degrees of freedom (where K is the number of groups and N is the total number of observations)
- \square K=3, N=15 \rightarrow F(2,12) (working at 0.05)

The F Distribution

F Table – Critical Values

	Numerator df: df _B				
df _W	1	2	3	4	5
5 5%	6.61	5.79	5.41	5.19	5.05
1%	16.3	13.3	12.1	11.4	11.0
10 5%	4.96	4.10	3.71	3.48	3.33
1%	10.0	7.56	6.55	5.99	5.64
12 5%	4.75	3.89	3.49	3.26	3.11
1%	9.33	6.94	5.95	5.41	5.06
14 5%	4.60	3.74	3.34	3.11	2.96
1%	8.86	6.51	5.56	5.04	4.70

Review 6 Steps

- □ Set alpha (.05).
- State Null &Alternative
- \square H0: $\mu_1 = \mu_2 = \mu_3$
- \square H1: not all μ are =.
- Calculate test statistic:F=12.5

- Determine criticalvalue F.05(2,12) =3.89
- Decision rule: If test statistic > critical value, reject H0.
- Decision: Test is significant (12.5>3.89).
 population are different.