Modeling Earthquake Damage

Chris Martin, Eric Cheng, Veronica Leong

Project 5 May 21, 2021

THE TEAM

Chris Martin
DATA SCIENTIST
LinkedIn

Eric Cheng
DATA SCIENTIST
LinkedIn

Victoria Leong
DATA SCIENTIST
LinkedIn

GORKHA EARTHQUAKE

Date: April 25, 2015

Location: 50 miles
NW of Kathmandu

Intensity: 7.8 on
the Richter scale

Deaths: 8,900

Injuries: 22,000

Homes affected:

over 1,000,000

PROBLEM STATEMENT

Is it possible to predict the level of damage sustained by a building in the 2015 Gorkha earthquake in Nepal using classification modeling against the building's features?

DATA COLLECTION & CLEANING

- Gathered data from drivendata.org
- Label Encoded features
- Checked for null values

• Utilized 10% of Dataset

DATA VISUALIZATIONS

DATA VISUALIZATIONS (CONT'D)

Sample size = 26,000 Mud = 20,000 Remainder = 6,000

DATA VISUALIZATIONS (CONTINUED)

FEATURE CORRELATIONS

CLASSIFICATION MODELS TESTED

MODEL NAME	ACCURACY SCORE
Logistic Regression	0.583
KNearestNeighbors	0.571
Random Forest Classifier	<mark>0.689</mark>
Extra Trees Classifier	0.678
Decision Tree Classifier	0.665
Bagging Classifier	0.668
AdaBoost Classifier	0.660
Neural Network	0.568
Baseline Accuracy Model	0.567

BEST MODEL

- Random Forest Classifier
 70% Accuracy Score (All Data)
- Label Encoding
- Standard Scaler
- GridSearchCV -- Best Params
 - o Max_depth = 11
 - o Max_features = 35

BEST MODEL (CONT'D)

Feature Importances	
Geo Level ID 1	
Geo Level ID 2	
Geo Level ID 3	
Superstructure Mud Mortar Stone	
Age	

Permutation Feature Importances	
Foundation Type	
Age	
Roof Type	
Count Families	
Superstructure Mud Mortar Stone	

Streamlit Demo

CONCLUSIONS

- Neural Networks, KNN models did not perform well
- Logistic Regression, Boosting, Tree models did perform better
- Random Forest Classifier best classified the earthquake damage grade based off the features modeled
- Most important features: foundation type, building age, roof type, family count, mud mortar/stone superstructure

RECOMMENDATIONS

- Emphasize proper roof/foundation type for new construction
- Consider building superstructure
- Reinforce older buildings
- Reinforce multi-family housing buildings
- Focus efforts on heavily-impacted geographic areas

LIMITATIONS & FUTURE PROJECT REFINEMENTS

- Data Dictionary was limited in description
- Integrate imbalanced learning strategies
 - SMOTE, ADASYN, RandomOverSampler
- Integrate Boosting across the other tested models
 - AdaBoost, GradientBoost, HistGradientBoost

RESOURCES

- Project and Data source
 - Richtor's Predictor: Modeling Earthquake Damage
 - https://www.drivendata.org/competitions/57/nepa l-earthquake/page/134/
- GA Instructional Team
 - o Jeff Hale
 - Jacob Koehler
 - Eric Bayless

THANK YOU! Questions?

Appendix

