Multivariable Calculus (Lecture-8)

Department of Mathematics Bennett University India

13th November, 2018

Differentiation of (Scalar Valued Function of Vector Variable) (Scalar Field)

 $F:S\subseteq\mathbb{R}^2\to\mathbb{R}$

Learning Outcome of this lecture

In this lecture, We learn for a scalar field $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$:

- Total Derivative of F at X_0
- *F* is differentiable at $X_0 \Rightarrow F$ is continuous at X_0

Differential Calculus for $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$

Question: Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ What does it mean to say that F is differentiable?

Differential Calculus for $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$

Question: Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ What does it mean to say that F is differentiable?

Task: Define differentiability of F at $X_0 \in S$ and determine the derivative $DF(X_0)$.

Differential Calculus for $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$

Question: Let $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ What does it mean to say that F is differentiable?

Task: Define differentiability of F at $X_0 \in S$ and determine the derivative $DF(X_0)$.

Wish List:

- *F* is differentiable at $X_0 \Rightarrow F$ is continuous at X_0 .
- Sum, product and chain rules hold for $DF(X_0)$.

Differentiability of $f:(c,d)\subseteq\mathbb{R}\to\mathbb{R}$

f is differentiable at $a \in (c, d)$ if there exists $\alpha \in \mathbb{R}$ such that

$$\alpha = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Differentiability of $f:(c,d)\subseteq\mathbb{R}\to\mathbb{R}$

f is differentiable at $a \in (c,d)$ if there exists $\alpha \in \mathbb{R}$ such that

$$\alpha = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

In other words, f is differentiable at a if there exists $\epsilon = \epsilon(h)$ and a constant α satisfying

$$f(a+h) - f(a) = h \cdot \alpha + h \cdot \epsilon$$

such that $\epsilon \to 0$ as $h \to 0$.

Let *S* be an open subset of \mathbb{R}^2 .

Let *S* be an open subset of \mathbb{R}^2 .

Definition

A function $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ is differentiable at a point $(a,b) \in S$ if there exist $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ and $\epsilon_1 = \epsilon_1(h, k)$ and $\epsilon_2 = \epsilon_2(h, k)$ such that

$$f(a+h,b+k) - f(a,b) = h \cdot \alpha_1 + k \cdot \alpha_2 + h\epsilon_1 + k\epsilon_2$$

such that $\epsilon_1, \epsilon_2 \to 0$ as $(h, k) \to (0, 0)$.

Let *S* be an open subset of \mathbb{R}^2 .

Definition

A function $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ is differentiable at a point $(a,b) \in S$ if there exist $(\alpha_1, \alpha_2) \in \mathbb{R}^2$ and $\epsilon_1 = \epsilon_1(h, k)$ and $\epsilon_2 = \epsilon_2(h, k)$ such that

$$f(a+h,b+k) - f(a,b) = h \cdot \alpha_1 + k \cdot \alpha_2 + h\epsilon_1 + k\epsilon_2$$

such that $\epsilon_1, \epsilon_2 \to 0$ as $(h, k) \to (0, 0)$.

We call the pair (α_1, α_2) the total derivative of F at (a, b).

Fact: If (α_1, α_2) is the total derivative of F at (a, b), then letting $(h, k) \to (0, 0)$ along the x-axis and y-axis, we have $\alpha_1 = f_x(a, b)$ and $\alpha_2 = f_y(a, b)$, respectively.

Show that the following function is NOT differentiable at (0,0):

$$F(x,y) = \begin{cases} x \sin\frac{1}{x} + y \sin\frac{1}{y} & \text{if } xy \neq 0 \\ 0 & \text{if } xy = 0. \end{cases}$$

Solution:

$$|F(x,y) - F(0,0)| = |x \sin \frac{1}{x} + y \sin \frac{1}{y} - 0| = \le |x| + |y| \le 2\sqrt{x^2 + y^2}$$

Choosing $\delta = \frac{\epsilon}{2}$, implies that F is continuous at (0,0).

We have

$$F_x(0,0) = \lim_{h \to 0} \frac{F(h,0) - F(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0.$$

$$F_{y}(0,0) = \lim_{k \to 0} \frac{F(0,k) - F(0,0)}{k} = \lim_{k \to 0} \frac{0-0}{k} = 0.$$

If *F* is differentiable at (0,0), then $\alpha_1 = 0 = \alpha_2$, and there exist ϵ_1 and ϵ_2 such that

$$F(0+h, 0+k) - F(0,0) = h.0 + k.0 + h\epsilon_1 + k\epsilon_2$$

where $\epsilon_1, \epsilon_2 \to 0$ as $(h, k) \to (0, 0)$.

$$\Rightarrow F(h,k) = h\epsilon_1 + k\epsilon_2$$

where $\epsilon_1, \epsilon_2 \to 0$ as $(h, k) \to (0, 0)$.

Note: $(h,k) \rightarrow (0,0)$ means (h,k) can approach to (0,0) from any direction.

Along h = k path, we get

 $\lim_{h\to 0} \sin \frac{1}{h} \to 0$, which is a contradiction.

The function F defined by $F(x, y) = \sqrt{|xy|}$ is NOT differentiable at the origin.

Solution: If F is differentiable at (0,0), then $\alpha_1 = 0 = \alpha_2$, and there exist ϵ_1 and ϵ_2 such that

$$F(0+h, 0+k) - F(0,0) = h.0 + k.0 + h\epsilon_1 + k\epsilon_2$$

$$F(h,k) = h\epsilon_1 + k\epsilon_2$$

where $\epsilon_1, \epsilon_2 \to 0$ as $(h, k) \to (0, 0)$. Along the path h = k, we get

$$F(h,h) = h(\epsilon_1 + \epsilon_2) \Rightarrow \frac{|h|}{h} = \epsilon_1 + \epsilon_2.$$

This implies that $\epsilon_1 + \epsilon_2 \rightarrow 0$ as $h \rightarrow 0$ along the line h = k.

Another definition of differentiability of $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$

Let *S* be open in \mathbb{R}^2 .

Definition

A function $F: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ is differentiable at a point $(a, b) \in S$ if

$$\lim_{(h,k)\to (0,0)} \frac{|F(a+h,b+k)-F(a,b)-F_{x}(a,b)h-F_{y}(a,b)k|}{\sqrt{h^2+k^2}} = 0.$$

Show that the following function is differentiable at (0,0):

$$F(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Solution: Here $F_x(0,0) = 0 = F_y(0,0)$. By taking $h = r \cos \theta$ and $k = r \sin \theta$ we get

$$\frac{|F(0+h,0+k) - F(0,0) - F_x(0,0)h - F_y(0,0)k|}{\sqrt{h^2 + k^2}} = \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^3}$$
$$= r \cos^2 \theta \sin^2 \theta \Rightarrow \lim r \cos^2 \theta \sin^2 \theta \to 0.$$

Hence, F is differentiable at (0,0).

Show that the following function is NOT differentiable at (0,0):

$$F(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Solution: Here $F_x(0,0) = 0 = F_y(0,0)$. By taking $h = r \cos \theta$ and $k = r \sin \theta$ we get

$$\frac{|F(0+h,0+k) - F(0,0) - F_x(0,0)h - F_y(0,0)k|}{\sqrt{h^2 + k^2}} = \frac{r^3 \cos^2 \theta \sin \theta}{r^3}$$

 $=\cos^2\theta\sin\theta\Rightarrow\lim_{r\to0}\cos^2\theta\sin\theta\ \ {\rm does\ not\ exist.}$

Hence, F is not differentiable at (0,0).

