Money Heist -II

Input file: standard input
Output file: standard output

Time limit: 2 second

Memory limit: 256 megabytes

Now one of the robbers, Tokyo, wants to make some teams from the hostages based on the performance score. A team can have any number of hostages.

In order to make the teams work as a unit, the robber forms the teams based on following rules:

- Every member of the team must have a **unique** performance score in the team, e.g. the team of 3 hostages having scores {1,2,2} is not allowed since 2 is not unique.
- Every member's performance score in the team A[i], is the previous member's performance score + 1, i.e., A[i-1]+1, i>0.

e.g. $\{1,0-1,2\}$ is valid (sort yields $\{-1,0,1,2\}$) while $\{-1,0,2\}$ is not valid since 2 is not the previous member's score $\{0\}$ + 1.

Note: A hostage can have a negative performance score as well.

The more members in a team, more work can be done at a time so the robber wants to form such teams of the hostages that the smallest team is as large as possible.

Description

- *n*: an integer representing the number of hostages, can be 0 as well.
- A: array of integers representing the performance score of each hostage
- t: number of test cases

Input

The first line contains an integer, t, the number of test cases.

Each of the next *t* lines contains a space separated integers, *n*, followed by *n* integers *A[i]*, a list of hostages' score performance.

Constraints

- 1 < *t* < 100
- $0 < n \le 10^6$
- $\bullet \quad -10^5 \le A[i] \le 10^5$

Output

For each test case, output the size of the largest possible smallest team on the separate line.

Example

standard input	standard output
1 6-101223	2
2 7 4 5 2 3 -4 -3 -5 7 1 -2 -3 -4 2 0 -1	3 7

Explanation

1. Number of hostages = 6

Performance scores = [-1 0 1 2 2 3]

There are many ways in which the teams can be formed.

For e.g. $\{-1\}$, $\{0\}$, ... $\{3\}$. Or $\{-1,0,1,2,3\}$, $\{2\}$. But we want the largest smaller team size. Hence the optimal distribution will be $\{-1,0,1,2\}$ and $\{2,3\}$. Size of the smallest team = 2.

2. 1st case:-

Number of hostages = 7

Performance scores = $\begin{bmatrix} 4 & 5 & 2 & 3 & -4 & -3 & -5 \end{bmatrix}$

Optimal two teams $\{-4,-3,-5\}$ and $\{4,5,2,3\}$. Size of smallest team = 3

2nd case:-

Number of hostages = 7

Performance scores = [1 - 2 - 3 - 4 2 0 - 1]

Optimal one teams $\{1 - 2 - 3 - 4 \ 2 \ 0 - 1\}$. Size of smallest team = 7.