

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2005年11月10日 (10.11.2005)

PCT

(10) 国際公開番号
WO 2005/107099 A1

(51) 国際特許分類⁷:

H04B 7/06, 7/08

(21) 国際出願番号:

PCT/JP2005/006316

(22) 国際出願日:

2005年3月31日 (31.03.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-130842 2004年4月27日 (27.04.2004) JP
特願2005-047702 2005年2月23日 (23.02.2005) JP

(71) 出願人(米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒5718501 大阪府門真市大字門真1006番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ): 中川洋一 (NAKAGAWA, Yoichi). 小林広和 (KOBAYASHI, Hirokazu). 村上豊 (MURAKAMI, Yutaka). 岸上高明 (KISHIGAMI, Takaaki). 三好憲一 (MIYOSHI, Kenichi).

(74) 代理人: 高松猛, 外 (TAKAMATSU, Takeshi et al.); 〒1076013 東京都港区赤坂一丁目12番3号アーヴィングビル13階 栄光特許事務所 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,

/続葉有/

(54) Title: WIRELESS COMMUNICATION SYSTEM AND RADIO STATION

(54) 発明の名称: 無線通信システム及び無線局

A TRANSMITTER STATION 101
 B RECEIVER STATION 102
 S1400 SET INITIAL STATE
 S1401 PERIODICALLY TRANSMIT CONTROL SIGNAL
 S1402 RECEIVE CONTROL SIGNAL AND SYNCHRONIZE SYSTEM
 S1403 TRANSMIT REGISTRY REQUEST SIGNAL
 S1404 TRANSMIT REGISTRY PERMISSION SIGNAL
 S1405 PRODUCE RESPONSE REQUEST PACKET
 S1406 TRANSMIT RESPONSE REQUEST PACKET 1501
 S1407 RECEIVE RESPONSE REQUEST PACKET 1501
 S1408 OUTPUT TRIGGER AND OUTPUT RESPONSE REQUEST SIGNAL
 S1409 SELECT ANOTHER ANTENNA
 S1410 TRANSMIT RESPONSE PACKET 1502-1
 S1411 SELECT OPTIMUM ANTENNA
 S1412 PRODUCE DATA PACKET 1503-1
 S1413 TRANSMIT DATA PACKET 1503-1
 S1414 RECEIVE DATA PACKET 1503-1
 S1415 OUTPUT TRIGGER, OUTPUT INFORMATION SIGNAL AND OUTPUT RESPONSE REQUEST SIGNAL
 S1416 SELECT ANOTHER ANTENNA
 S1417 TRANSMIT RESPONSE PACKET 1502-1

(57) Abstract: A wireless communication system wherein a simple structure is used to maintain, even under a quasi-static fading environment of wireless communication, the transmission quality of a wireless line used between particular radio stations, while reducing the influence of radio wave interference with other radio stations using the same frequency band, and further preventing information from leaking to other radio stations. A transmitter station (101) selects, based on quality information of a transmission path (104), an optimum

/続葉有/

WO 2005/107099 A1

SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR),

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

one of a plurality of antennas to transmit a packet from the selected antenna to a receiver station (102). The receiver station (102) uses an antenna, selected from among a plurality of antennas, to receive the packet from the transmitter station (101), and switches from the currently selected antenna to another one. Then, the receiver station (102) transmits, from the other antenna, a response packet, which is responsive to the received packet, to the transmitter station (101). The transmitter station (101) uses the plurality of antennas to receive the response packet, and selects, as a packet transmission antenna, an antenna, which exhibits the best reception quality, to transmit a packet from the selected antenna to the receiver station (102). This process is repeated hereafter.

(57) 要約: 本発明は、無線通信の準静的フェージング環境下において、簡易な構成により、特定の無線局間で使用する無線回線の伝送品質を確保しつつ、同一周波数帯域を利用する他の無線局に対する電波干渉の影響を低減し、さらに他の無線局への情報の漏洩を防止することが可能な無線通信システムを提供することを目的とする。送信局101は、伝送路104の品質情報に基づいて複数のアンテナの中から最適なアンテナを1つ選択し、選択したアンテナからパケットを受信局102に送信する。受信局102は、複数のアンテナの中から選択した1つのアンテナで送信局101からのパケットを受信し、現在選択しているアンテナを別のアンテナに切り替える。そして、受信局102は、受信したパケットに対する応答パケットを切り替え後のアンテナから送信局101に送信する。送信局101は、応答パケットを複数のアンテナの各々で受信し、最も受信品質の良いアンテナをパケット送信用のアンテナとして選択し、選択したアンテナからパケットを受信局102に送信する。以下、この処理を繰り返す。

明 細 書

無線通信システム及び無線局

技術分野

[0001] 本発明は、無線によるパケット通信を行う自局及び相手局を含む無線通信システムに関する。

背景技術

[0002] 無線通信におけるアクセス技術は、限られた電波空間において周波数を共有できるようにして、できるだけ多くの利用者の利便性を高めることを目的としている。しかし、実際の電波空間は地理的条件や人の動きが複雑であるため、無線回線の伝送路は時間によって不規則に変動(以下、時間変動という)するだけでなく、限られた電波空間において同一周波数帯域を利用する複数の無線局は互いに他の干渉源となり得る。つまり、各無線局が自身の通信エリアを厳密に制御することは実用上困難であるため、規定以上の電波干渉を受ける可能性があり、それが伝送路誤りを生じて伝送品質を大きく劣化させる要因となっている。

[0003] 又、情報通信のセキュリティという点から考えると、無線通信は、一般に公共の電波空間を使用するため第三者による受信が比較的容易である。このことから、通信内容が傍受され情報漏洩のおそれがあるという根本的な欠点も持っている。

[0004] 近年、同一システム内のみならず異なる通信プロトコルを使用するシステム間においても、周波数と電波空間を共有できるようにするアクセス技術への要求が高まっている。さらに、家庭内におけるデジタル家電の無線接続やホットスポットにおける高速データ通信サービスなど、無線通信が利用される商品やサービスの分野は飛躍的に広がり始めている。従って、無線通信の複雑な電波空間が要因となって生じる無線回線間の電波干渉の問題や、電波空間の公共性を保持していくために避けられない伝送路上の通信傍受の問題等は、今後さらに重要な課題になると予測される。

[0005] 携帯電話網や無線LAN等の無線回線における伝送路は、マルチパス伝搬環境と呼ばれる複雑で不規則な時間変動を伴う伝送路特性となる。このような伝送路は、瞬時的には無線局の空間的な位置関係によって特徴付けられ、その特性を表すパラメ

ータとして、周波数スペクトラム、振幅や位相、到来方向、遅延時間、偏波状態などが用いられる。

[0006] このマルチパス伝搬環境では、無線局とその周囲の散乱体が不規則に動くため、伝送路の状態が不規則に変動する。この伝送路変動は、時間と空間に対して独立な変動特性を示すため、レーリー確率分布によってモデル化できることが知られている。又、家庭やオフィスの中で利用される無線通信は、半固定(無線局が一定時間内において静止している)の場合が多いため、準静的フェージング環境としてモデル化するのが一般的である。準静的フェージング環境は、伝送路が静的と見なせるつまり時間変動を無視できる時間内では、無線局の位置が変わらなければ伝送路状態は変化しない伝搬環境である。見方をえれば、時間的な変動がなくても、無線局の位置(実際には無線局のアンテナの位置)に依存して、伝送路が不規則に変動する環境であることを示している。

[0007] 図14は、準静的フェージング環境において、情報信号を送信する無線局(以下、送信局という)1と、送信局1と無線通信を行う無線局(以下、受信局という)2と、第三者である無線局3とが、送信局1の通信エリア内に同時に存在する場合を示している。送信局1及び受信局2間の伝送路4と送信局1及び無線局3間の伝送路5とは、ある時間内において不変であると仮定できる。ただし、送信局1からの情報信号に対する受信信号電力は、受信局2のアンテナの位置と無線局3のアンテナの位置に依存する。つまり、情報信号の受信信号電力は、無線局のアンテナ間の相対的な位置関係に依存して不規則に変動するが、無線局のアンテナや周囲の散乱体が移動しなければそのレベルも変わらず一定となる。このことは、情報信号の無線局3における受信信号電力は、ある時間内において一定となるため、これが第三者である無線局3にとって定在的な干渉信号成分と成り得ることを示している。

[0008] フェージング環境において伝送路品質を改善する方法としては、複数のアンテナを利用したアンテナダイバーシチが知られている。図15は、時間変動のあるフェージング環境において、送信局6及び受信局7が複数のアンテナを有する場合を示している。アンテナダイバーシチでは、送信局6及び受信局7間の伝送路8の品質情報に基づいて、情報信号を送信する送信局6のアンテナと、それを受信する受信局7のアン

テナとを適応的に選択するように制御する。これにより、伝送路8は、アンテナ選択によるダイバーシチ利得によって伝送品質が補償される。しかしながら、送信局6及び無線局3間の伝送路9ではダイバーシチ利得が存在しないため、フェージングによる伝送品質の劣化が生じることになる。

[0009] このダイバーシチ利得と伝送品質の関係について図16を用いて説明する。図16(a)及び図16(b)は共に、フェージング環境におけるアンテナダイバーシチが伝送路誤りを低減できることを示す図である。

図16において、符号300は時間変動のあるフェージング環境における伝送路9(ダイバーシチ利得がない伝送路)の誤り率特性を示しており、符号301はアンテナダイバーシチ利得により伝送品質が補償されている伝送路8の誤り率特性を示している。伝送路8において、一定の誤り率302で情報信号を伝送することが要求されている場合、図16(a)に示すように、ダイバーシチ利得によって伝送品質が補償されていれば、送信電力を符号303で示す矢印の分だけ相対的に低減できることを示している。このことは、時間変動のあるフェージング環境において、伝送路8ではダイバーシチ利得により伝送品質が補償されるため、送信局6は情報信号の送信電力を低減することができることを意味する。結果として、第三者である無線局3に対して与える平均的な干渉信号電力を抑圧できることを示唆している。

[0010] 又、図16(b)は、送信局6が受信局7に対して、情報信号を一定の送信電力304で伝送しようとする場合を示している。このとき、伝送路8ではアンテナダイバーシチ利得によって伝送品質が補償されるため、伝送路8の誤り率は伝送路9の誤り率より符号305で示す矢印の分だけ小さくすることができる。このことは、仮に無線局3が情報信号を受信して復調しようとする場合、伝送路9ではダイバーシチ利得がないために相対的な伝送路誤りが増えて情報信号が正しく伝送されなくなることを意味する。言い換えれば、伝送路8の伝送品質がアンテナダイバーシチ利得により補償される分だけ、無線局3における伝送路誤りを増やすことができる。結果として、第三者である無線局3が情報信号を傍受するのを防止できることを示唆している。

[0011] 無線回線間の電波干渉を補償するという技術課題に対しては、アンテナダイバーシチと同様に複数のアンテナで構成されるアダプティブアレーアンテナを用い、指向

性ビームを制御して他の無線回線への電波干渉を低減させる技術が提案されている（例えば特許文献1参照）。

[0012] 又、通信傍受を防ぐという技術課題に対しては、前述したアンテナダイバーシチを利用する以外に、伝送路パラメータの不規則な時間変動と送受信場所への依存性を利用して秘密鍵を生成し、共有する技術が提案されている（例えば非特許文献1参照）。

[0013] 特許文献1：特開2003-18074号公報

非特許文献1：堀池 元樹、外3名、“陸上移動通信路の不規則変動に基づく秘密鍵共有方式”、信学技報、RCS2002-173、2002年10月

発明の開示

発明が解決しようとする課題

[0014] しかしながら、アダプティブアレーインテナを装備した無線局が、通信相手の無線局に対する伝送路パラメータに基づいて指向性ビームを制御した場合でも、同一周波数帯域を利用する他の無線局に対して定在的な干渉源になり得るという問題は残っている。例えば、これらの無線局の位置関係によっては、アダプティブアレーインテナの指向性ビーム方向に、第三者である他の無線局が存在することがあり得る。また、アダプティブアレーインテナでは、特定の方向へ指向性ビームのヌルを形成することで、その方向に対する送信信号電力を抑圧するように動作させることができる。しかしながら、この抑圧効果は、アンテナ数を増やすことで十分な効果を得られることが理論的には知られているが、アンテナ数に比例して信号処理量が膨大になるだけでなく、アンテナ素子数を増やすことは、特に移動端末において現実的な対策に成り難いという問題がある。

[0015] 又、特定の無線局間で伝送路パラメータに基づいて生成する秘密鍵を共有して情報信号を暗号化する方式では、夫々の無線局がパラメータ推定と鍵生成の処理を実行する必要がある。このため、高機能化が進む移動端末に対して、パラメータの推定精度と信号処理速度を確保するために、さらに高いハードウェア性能を要求しなければならないという問題がある。

[0016] 又、フェージング環境下では、無線局間の干渉信号成分は不規則に時間変動する

ため、それによって生じる伝送路誤りの発生も不規則となり、インターリーブや伝送路符号化及びパケット再送制御といった伝送技術により誤り訂正の効果を得ることができる。しかしながら、準静的フェージング環境下では、定在的な干渉源の存在が無視できないため、干渉対策としてこれらの伝送技術による誤り訂正の効果が得難いという問題がある。

[0017] 又、アンテナダイバーシチは、フェージング環境下において個々の伝送路品質を改善に有効となるが、送信局6と受信局7との位置が半固定されている場合は、伝送路8が準静的フェージング環境下であり送信局6と受信局7とで最適なアンテナが選択された状態で通信が継続される。そのため、無線局3では時間変動のない干渉信号が受信される可能性が高く、仮に無線局3が意図的にこの干渉信号の復調を試みようとしたときには、時間変動がない分だけ伝送路誤りが少なくなり情報の復元が容易になってしまいという問題がある。つまり、伝送路8の伝送品質がダイバーシチ利得により補償される分だけ、無線局3における相対的な伝送路誤りを増やすことはできるが、干渉信号に時間変動がないために無線局3の受信感度に依っては伝送路誤りが少なくなり、情報漏洩防止の効果が低くなってしまうという問題がある。

[0018] 本発明は、これら従来の問題を解決するものであり、無線通信の準静的フェージング環境下において、簡易な構成により、特定の無線局間で使用する無線回線の伝送品質を確保しつつ、同一周波数帯域を利用する他の無線局に対する電波干渉の影響を低減し、さらに他の無線局への情報の漏洩を防止することが可能な無線通信システムを提供することを目的とする。

課題を解決するための手段

[0019] 本発明の無線通信システムは、無線によるパケット通信を行う自局及び相手局を含む無線通信システムであって、前記自局及び相手局は、それぞれ複数のアンテナを有し、前記自局は、前記複数のアンテナの中からパケット送信用のアンテナを選択する自局側アンテナ選択手段と、前記複数のアンテナと前記相手局の有する複数のアンテナの中から選択されたアンテナとの間に確立される伝送路の品質情報に基づいて前記自局側アンテナ選択手段に選択させるアンテナを指示するアンテナ選択制御手段と、送信すべきパケットを前記自局側アンテナ選択手段により選択されたアンテ

ナから前記相手局に向けて送信させる送信制御手段とを備え、前記相手局は、前記複数のアンテナの中から1つのアンテナを選択する相手局側アンテナ選択手段と、前記相手局側アンテナ選択手段により選択されたアンテナを介して前記パケットを受信する受信手段と、前記受信手段による前記パケットの受信に応じて前記相手局側アンテナ選択手段により選択されているアンテナを別のアンテナに切り替えさせる制御を行うアンテナ切り替え制御手段とを備える無線通信システム。

[0020] この構成により、自局は、複数のアンテナと相手局の有する複数のアンテナの中から選択されたアンテナとの間に確立される伝送路の品質情報に基づいてパケット送信用のアンテナを選択するため、相手局に送信するパケットの伝送品質を補償することができる。又、相手局では、パケットの受信に応じて、選択しているアンテナが別のアンテナに切り替えられるため、これに応じて自局で選択されるアンテナも切り替えられる可能性が高い。したがって、自局と相手局の位置が固定且つ伝送路が時間変動しない場合であっても、自局から送信されるパケットは、不規則に時間変動する干渉信号として他の無線局で受信されることが多くなる。つまり、他の無線局が受信する干渉信号成分は定在化せずに時間変動することになるため、この無線局自身がパケットを送信できる時間を確保することができる。又、干渉信号成分に依存して伝送誤り率も時間的に変動するため、伝送路符号化やインターリーブ又はパケット再送制御等で得られる誤り訂正の効果を高めることができる。このように、同一周波数帯域を利用する他の無線局に対する電波干渉の影響を低減することができる。又、他の無線局が上記パケットを傍受しようとした場合、上記パケットは不規則に時間変動する干渉信号として受信されることが多くなるため、伝送路誤り等が生じ、受信した信号を正確に復元することが困難になる。したがって、他の無線局への情報の漏洩を防止することが可能となる。

[0021] 又、本発明の無線通信システムは、前記自局が、前記品質情報に基づいて前記パケットの送信電力を制御する送信電力制御手段を備える。

[0022] この構成により、品質情報に基づいてパケットの送信電力が制御されるため、他の無線局に対して与える平均的な干渉信号電力を抑圧することができる。したがって、他の無線局が上記パケットを傍受しようとした場合、パケットの平均受信電力が抑圧

されていることから、他の無線局において相対的に大きな伝送路誤りを生じさせることができ、情報漏洩の防止効果をより高めることができる。

[0023] 又、本発明の無線通信システムは、前記相手局が、前記複数のアンテナの各々をどのような確率で選択するかを示す選択確率を記憶する選択確率記憶手段と、前記受信手段で受信したパケットの受信品質と当該パケットを受信したアンテナとを対応付けた受信品質情報を蓄積する受信品質情報蓄積手段と、前記受信品質情報に基づいて前記選択確率を更新する選択確率更新手段とを備え、前記アンテナ切り替え制御手段は、前記選択確率に基づいて、前記別のアンテナを決定する。

[0024] この構成により、例えば、相手局で受信されたパケットの受信品質が良好なアンテナを優先的に選択することが可能になるため、パケットの伝送品質をより向上させることができる。

[0025] 又、本発明の無線通信システムは、前記自局が、前記パケットを時空間符号化して複数の符号化パケットを生成する時空間符号化手段を備え、前記自局側アンテナ選択手段が、前記符号化パケットの数に応じた数のアンテナを選択し、前記送信制御手段が、前記選択された数のアンテナから前記複数の符号化パケットを前記相手局に向けて同時に送信させ、前記相手局が、前記受信手段で受信された前記複数の符号化パケットを合成する合成手段を備える。

[0026] この構成により、自局と相手局との間の伝送路において符号化利得を確保することができるため、特に低SNR伝送路においてパケットの伝送品質を補償することが可能となる。

[0027] 又、本発明の無線通信システムは、前記自局が、前記相手局側アンテナ選択手段により選択されたアンテナから前記複数のアンテナを介して受信したパケットのRSSIを推定するRSSI推定手段を備え、前記品質情報は前記推定されたRSSIである。

[0028] 又、本発明の無線通信システムは、前記パケットが、パケットの受信応答を要求する応答要求パケットとデータパケットとを含み、前記送信制御手段は、前記相手局とのパケット通信開始時に、前記応答要求パケットを前記自局側アンテナ選択手段により選択されたアンテナから前記相手局に向けて送信させ、前記相手局は、前記受信手段により前記応答要求パケットを受信し、前記応答要求パケットに対する応答で

ある応答パケットを前記アンテナ切り替え制御手段により切り替えられた別のアンテナから前記自局に送信し、前記自局は、前記複数のアンテナで受信した前記応答パケットのRSSIを推定するRSSI推定手段を備え、前記品質情報は前記RSSIであり、前記送信制御手段は、前記品質情報に基づく前記指示によって前記自局側アンテナ選択手段により選択されたアンテナから、前記データパケットを前記相手局に送信させる。

- [0029] この構成により、データパケットの送信前に相手局から送信されてくる応答パケットによって、自局側で最適なアンテナを選択することができる。
- [0030] 又、本発明の無線通信システムは、前記データパケットには、前記応答要求パケットが含まれる。
- [0031] この構成により、データパケットの送信毎に自局側で最適なアンテナを選択することができる。
- [0032] 又、本発明の無線通信システムは、前記自局及び相手局各々の有する前記複数のアンテナが、それぞれ異なる特性を持つ。
- [0033] この構成により、特性の異なる複数のアンテナを切り替えながらパケットを送受信することになるため、自局と他の無線局との間の伝送路が見通し伝搬環境で相対的な散乱波のレベルが小さいような環境にあるときでも、この伝送路に対して意図的に不規則な時間変動を与えることが可能になる。
- [0034] 本発明の無線局は、相手局と無線によるパケット通信を行う無線局であって、複数のアンテナと、前記複数のアンテナの中からパケット送信用のアンテナを選択するアンテナ選択手段と、前記複数のアンテナと前記相手局の有する複数のアンテナの中から選択されたアンテナとの間に確立される伝送路の品質情報に基づいて前記アンテナ選択手段に選択させるアンテナを指示するアンテナ選択制御手段と、送信すべきパケットを前記アンテナ選択手段により選択されたアンテナから前記相手局に送信させる送信制御手段とを備え、前記相手局の有する複数のアンテナの中から選択されるアンテナは、前記パケットが前記相手局で受信される度に、別のアンテナに切り替えられる。
- [0035] 又、本発明の無線局は、前記品質情報に基づいて前記パケットの送信電力を制御

する送信電力制御手段を備える。

[0036] 又、本発明の無線局は、前記パケットを時空間符号化して複数の符号化パケットを生成する時空間符号化手段を備え、前記アンテナ選択手段は、前記符号化パケットの数に応じた数のアンテナを選択し、前記送信制御手段は、前記選択された数のアンテナから前記複数の符号化パケットを前記相手局に同時に送信させる。

[0037] 又、本発明の無線局は、前記相手局の有する複数のアンテナの中から選択された1つのアンテナから前記無線局の有する複数のアンテナを介して受信したパケットのRSSIを推定するRSSI推定手段を備え、前記品質情報は前記推定されたRSSIである。

[0038] 本発明の無線局は、相手局と無線によるパケット通信を行う無線局であって、複数のアンテナと、前記複数のアンテナの中から1つのアンテナを選択するアンテナ選択手段と、前記相手局の有する複数のアンテナの中から選択されたパケット送信用のアンテナから送信されるパケットを、前記アンテナ選択手段により選択されたアンテナを介して受信する受信手段と、前記受信手段による前記パケットの受信に応じて、前記アンテナ選択手段により選択されているアンテナを別のアンテナに切り替えさせる制御を行うアンテナ切り替え制御手段とを備える。

[0039] 又、本発明の無線局は、前記複数のアンテナの各々をどのような確率で選択するかを示す選択確率を記憶する選択確率記憶手段と、前記受信手段で受信したパケットの受信品質と当該パケットを受信したアンテナとを対応付けた受信品質情報を蓄積する受信品質情報蓄積手段と、前記受信品質情報に基づいて前記選択確率を更新する選択確率更新手段とを備え、前記アンテナ切り替え制御手段は、前記選択確率に基づいて前記別のアンテナを決定する。

[0040] 又、本発明の無線局は、前記相手局から送信されてくるパケットが、前記パケットを時空間符号化して生成された複数の符号化パケットであり、前記受信手段で受信された前記複数の符号化パケットを合成する合成手段を備える。

[0041] 又、本発明の無線局は、前記複数のアンテナが、それぞれ異なる特性を持つ。

発明の効果

[0042] 本発明によれば、無線通信の準静的フェージング環境下において、簡易な構成に

より、特定の無線局間で使用する無線回線の伝送品質を確保しつつ、同一周波数帯域を利用する他の無線局に対する電波干渉の影響を低減し、さらに他の無線局への情報の漏洩を防止することが可能な無線通信システムを提供することができる。

図面の簡単な説明

- [0043] [図1]本発明の第一実施形態を説明するための無線通信システムの概略構成を示す図
- [図2]本発明の第一実施形態を説明するための無線通信システムの送信局の概略構成を示す図
- [図3]本発明の第一実施形態を説明するための無線通信システムの送信局の受信RF回路の概略構成を示す図
- [図4]本発明の第一実施形態を説明するための無線通信システムの受信局の概略構成を示す図
- [図5]本発明の第一実施形態を説明するための無線通信システムの動作を説明するためのシーケンスチャート
- [図6]図5のシーケンスにおいて送受信されるパケットに関する通信のフレーム構成を示す図
- [図7]本発明の第一実施形態を説明するための無線通信システムにおける効果を説明するための図
- [図8]本発明の第二実施形態を説明するための無線通信システムの送信局の概略構成を示す図
- [図9]本発明の第二実施形態を説明するための無線通信システムの送信局の受信RF回路の概略構成を示す図
- [図10]選択確率テーブルの一例を示す図
- [図11]本発明の第三実施形態を説明するための無線通信システムの受信局102の動作フローを示す図
- [図12]本発明の第四実施形態を説明するための無線通信システムの送信局の概略構成を示す図
- [図13]本発明の第四実施形態を説明するための無線通信システムの受信局の概略

構成を示す図

[図14]従来の無線通信システムの概略構成を示す図

[図15]従来の無線通信システムの概略構成を示す図

[図16]従来のアンテナダイバーシチによる効果を説明するための図

符号の説明

[0044] 101 送信局

102 受信局

104 伝送路

発明を実施するための最良の形態

[0045] 今日、インターリーブや伝送路符号化及びパケット再送制御といった伝送技術が実用化されており、情報伝送される回線使用時間中に干渉信号成分が不規則変動していれば、誤り訂正の効果を高めることが可能となっている。つまり、回線使用時間中に定在化した干渉信号が常に受信される伝送路よりも、瞬時に干渉信号成分が増えることがあってもある期間では干渉信号がほとんど観測されなくなるように、干渉信号成分に対して不規則な変動が与えられている伝送路の方が、ビット誤り率及びパケット誤り率を低減させて実効スループット値を向上できるようになると考えられる。

[0046] そこで、図15において、送信局6と受信局7との間の伝送路8が準静的フェージング環境下であっても、意図的に動的フェージング環境を作り出すと同時に、伝送路8に対してダイバーシチ利得が得られるような制御を実現することができれば、受信局7に対する情報信号の伝送品質を確保しつつ、無線局3に対する干渉抑圧の効果があるだけでなく、無線局3による情報信号の傍受を防止することができるようになる。本実施形態の無線通信システムは、上記考えを実現したものである。

[0047] 以下、本発明の実施形態を説明するための無線通信システムについて図面を参照して説明する。

(第一実施形態)

図1は、本発明の第一実施形態を説明するための無線通信システムの概略構成を示す図である。

図1に示す無線通信システム100は、無線局101(以下、送信局101という)と、無

線局102(以下、受信局102という)と、無線局103とを含む。送信局101は、例えば無線LAN等のアクセスポイントである。受信局102及び無線局103は、例えば携帯電話機やLANカード等の移動無線端末である。送信局101、受信局102、及び無線局103は、送信局101の通信エリア内に同時に存在している。送信局101、受信局102、及び無線局103は、送信局101によって構成される通信エリアによって、それぞれ無線によるパケット通信が可能となっている。送信局101と受信局102とは、送信局101と受信局102との間に確立される伝送路104によってパケット通信を行う。送信局101と無線局103とは、送信局101と無線局103との間に確立される伝送路105によってパケット通信を行う。図1に示す無線通信システム100は、準静的フェージング環境下にある。つまり、送信局101、受信局102、及び無線局103は、それぞれ屋内に設置され且つその位置が固定になっているものとする。

[0048] 図2は、本発明の第一実施形態を説明するための無線通信システムの送信局の概略構成を示す図である。

図2に示すように、送信局101は、送信処理部500と、アンテナ部501と、受信処理部502と、送信制御部503とを備える。

[0049] 送信処理部500は、送信パケット生成部504と、変調部505と、DAC(デジタルアナログコンバータ)506と、送信RF回路507とを備える。

[0050] 送信パケット生成部504は、通信相手に対してパケットの受信応答を要求する応答要求信号を入力として、通信制御用パケットである応答要求パケットを生成する。送信パケット生成部504は、外部に対して送信する情報信号系列を入力としてK(Kは自然数)個のデータ伝送用パケットであるデータパケットを生成する。送信パケット生成部504は、送信制御部503で生成された送信タイミング制御信号に同期させながら、応答要求パケットを出力する。送信パケット生成部504は、送信制御部503で生成された送信タイミング制御信号に同期させながら、K個のデータパケットを時分割で逐次出力する。以下では、応答要求パケットとデータパケットとを含めて送信パケットと言う。K個のデータパケットの各々には、応答要求パケットが含まれる構成であっても良い。送信パケットは変調部505においてシンボルマッピング処理された変調信号として出力される。変調信号は、DAC506においてデジタルアナログ変換された

後、送信RF回路507において無線周波数にアップコンバートされた送信RF信号としてアンテナ部501に出力される。

- [0051] アンテナ部501は、M(Mは複数)本のアンテナ508-1～508-Mと、アンテナ508-1～508-Mを切り替えるためのRFスイッチ509とを備える。
- [0052] RFスイッチ509は、送信制御部503で生成されたアンテナ選択制御信号に従って、アンテナ508-1～508-Mの中から1本のアンテナを選択する。送信RF信号は、ここで選択されたアンテナを通じて通信相手に向けて送信される。アンテナ部501では、通信相手から送信してきた通信制御用パケットをアンテナ508-1～508-Mの夫々で受信し、M個の受信RF信号として受信処理部502に対して出力する。ここで受信する通信制御用パケットは、応答要求パケットに対する返信である応答パケットのことである。
- [0053] 受信処理部502は、受信RF回路510と、ADC(アナログデジタルコンバータ)512と、復調部513と、信号再生部514とを備える。
- [0054] 図3は、受信RF回路510の概略構成を示す図である。
図3に示すように、M個の受信RF信号は、M個のダウンコンバータ600-1～600-Mにおいて受信ベースバンド信号に変換された後、M個のAGC601-1～601-Mによって信号強度が自動的に調節されて信号選択部602に対して出力される。このときAGC601-1～601-Mは、受信ベースバンド信号の信号強度を調節すると同時に、応答パケットのRSSI(Received Signal Strength Indicator)を推定して、信号選択部602に対して出力する。信号選択部602は、RSSIの推定結果に基づいて、M個の受信ベースバンド信号の中から1つの受信ベースバンド信号511(例えばRSSIが最も大きいもの)を選択し、これをADC512に出力する。AGC601-1～601-Mによって推定されたM個のRSSIは、通信相手との間に確立される伝送路の品質情報信号Xとして送信制御部503に出力される。
- [0055] 受信処理部502では、受信ベースバンド信号511がADC512においてアナログデジタル変換された後、復調部513においてシンボル判定処理された復調信号として出力される。信号再生部514は、この復調信号を入力として、通信相手から受信した通信制御用パケットを再生して応答要求信号に対する通信相手からの受信応答であ

る応答信号を出力する。

[0056] 送信制御部503は、タイミング制御部515とアンテナ選択制御部516とを備える。

タイミング制御部515は、送信パケットの送信タイミングを決定する送信タイミング制御信号を生成して送信パケット生成部504に対して出力すると共に、アンテナ選択制御信号の出力タイミングを決めるための切り替えタイミング制御信号を生成してアンテナ選択制御部516に対して出力する。

アンテナ選択制御部516は、切り替えタイミング制御信号と同期を取りながら、品質情報信号Xに基づき、M本のアンテナ508-1～508-Mの中からRSSIの推定値が最も大きいアンテナを選択するためのアンテナ選択制御信号を生成してRFスイッチ509に対して出力する。このとき、タイミング制御部515は、RFスイッチ509における切り替え動作時間の影響を取り除くため、送信タイミング制御信号を出力するより前に、切り替えタイミング制御信号を出力することが望ましい。

[0057] 送信局101において、RFスイッチ509がM本のアンテナ508-1～508-Mの中から1本のアンテナを選択する処理は、従来から行われているアンテナダイバーシティ技術を利用することができる。

[0058] 図4は、本発明の第一実施形態を説明するための無線通信システムの受信局の概略構成を示す図である。

図4に示すように、受信局102は、アンテナ部700と、受信処理部701と、送信制御部702と、送信処理部703とを備える。

[0059] 送信処理部703は、パケット生成部712と、変調部713と、DAC714と、送信RF回路715とを備える。

パケット生成部712は、応答要求信号に対する受信応答である応答信号を入力として、通信制御用パケットである応答パケットを生成する。パケット生成部712は、送信制御部702で生成された送信タイミング制御信号に同期させながら応答パケットを出力する。この応答パケットは変調部713においてシンボルマッピング処理された変調信号として出力される。変調信号は、DAC714においてデジタルアナログ変換された後、送信RF回路715において無線周波数にアップコンバートされた送信RF信号として出力される。

[0060] アンテナ部700は、N (Nは複数) 本のアンテナ704-1～704-Nと、アンテナ704-1～704-Nを切り替えるためのRFスイッチ705とを備える。

RFスイッチ705は、送信制御部702で生成されたアンテナ選択制御信号に従って、アンテナ704-1～704-Nの中から1本のアンテナを選択する。送信局101から送信されてきた送信パケットは、ここで選択されたアンテナを介して受信され、受信RF信号として出力される。送信RF回路715から出力された応答パケットは、RFスイッチ705で選択されたアンテナを通じて通信相手に向けて送信される。

[0061] 受信処理部701は、受信RF回路706と、ADC707と、復調部708と、信号再生部709とを備える。

受信処理部701では、RFスイッチ705から出力された受信RF信号が受信RF回路706においてダウンコンバートされた後、ADC707においてアナログデジタル変換された受信ベースバンド信号として出力される。受信ベースバンド信号は、復調部708においてシンボル判定処理された復調信号として出力される。信号再生部709は、この復調信号を入力として、送信制御部702にトリガを出力すると共に、通信相手から送信されてきた送信パケットを再生して応答要求信号や情報信号系列を出力する。

[0062] 送信制御部702は、タイミング制御部710と、アンテナ選択制御部711とを備える。

タイミング制御部710は、応答パケットの送信タイミングを決定する送信タイミング制御信号を生成してパケット生成部712に対して出力すると共に、アンテナ選択制御信号の出力タイミングを決めるための切り替えタイミング制御信号を生成してアンテナ選択制御部711に対して出力する。アンテナ選択制御部711は、切り替えタイミング制御信号と同期を取りながら、アンテナ704-1～704-Nの中から現在選択されているアンテナとは別のアンテナを選択するためのアンテナ選択制御信号を生成して、RFスイッチ705に対して出力する。タイミング制御部710は、RFスイッチ705における切り替え動作時間の影響を取り除くため、送信タイミング制御信号を出力するより前に、切り替えタイミング制御信号を出力することが望ましい。又、タイミング制御部710は、受信RF回路706で送信パケットが受信される毎に信号再生部709から出力されるトリガに応じて、切り替えタイミング制御信号をアンテナ選択制御部711に出力する。

[0063] 以上のように構成される無線通信システムにおいて、無線回線の同期確立から送信すべきパケットの送信が完了するまでの動作を、図5及び図6を用いて説明する。以下では、送信局101をアクセスポイントとし、受信局102を移動無線端末として説明する。

図5は、本発明の第一実施形態を説明するための無線通信システムの動作を説明するためのシーケンスチャートである。図6は、図5のシーケンスにおいて送受信されるパケットに関する通信のフレーム構成を示す図である。図6において、符号1500-1～1500-4は4個の通信フレーム、符号1501は応答要求パケット、符号1502-1～1502-3は応答パケット、符号1503-1, 1503-2はデータパケットを夫々示している。

[0064] 送信局101と受信局102は、電源が投入された直後、或いは特定の信号を受けて初期状態にセットされる。同時に、周波数や時間同期などの状態が事前に定められた手順に従ってセットされる(ステップS1400)。これらの初期動作が終了して一定時間後、送信局101は一定時間毎に制御情報を制御信号に載せて送信する(ステップS1401)。

[0065] 受信局102は、初期動作が終了した後、送信局101からの制御信号のサーチを始める。受信局102は、送信局101から送信されてきた制御信号を受信すると、その受信時刻や周波数などを検出して、システムが保有する時刻や周波数に同期する(以下、これを「システム同期」という)(ステップS1402)。システム同期が正常に終了した後、受信局102は、その存在を送信局101に登録するために登録要求信号を送信する(ステップS1403)。送信局101は、受信局102からの登録要求信号に対して、登録許可信号を送信することで、受信局102の登録許可を行う(ステップS1404)。登録許可後、送信局101から受信局102に送信パケットの送信の必要があつたとすると、以下の処理がなされる。

[0066] (通信フレーム1500-1における処理)

送信局101では、送信パケット生成部504が応答要求パケット1501を生成する(ステップS1405)。応答要求パケット1501は、変調部505、DAC506、送信RF回路507を経由して送信RF信号としてRFスイッチ509に入力され、RFスイッチ509によつ

て選択されているアンテナ508-m(このアンテナは例えばランダムに決定される)から、アンテナ508-mと受信局102で選択されているアンテナとの間に確立されている伝送路104を介して受信局102に送信される(ステップS1406)。

[0067] 受信局102では、RFスイッチ705によって選択されているアンテナ704-nを介して応答要求パケット1501が受信される(ステップS1407)。応答要求パケット1501は、受信RF回路706、ADC707、復調部708、信号再生部709の順に通過する。そして、信号再生部709からは、タイミング制御部710にトリガが出力されると共に、応答要求信号が出力される(ステップS1408)。

[0068] トリガを受けたタイミング制御部710は、切り替えタイミング制御信号をアンテナ選択制御部711に出力する。アンテナ選択制御部711は、切り替えタイミング制御信号に同期して、アンテナ704-1～704-Nの中から現在選択されているアンテナ704-nとは別のアンテナ704-n'(n'≠n)を選択するためのアンテナ選択制御信号を生成して、RFスイッチ705に対して出力する。これにより、RFスイッチ705はアンテナ704-n'を選択する(ステップS1409)。尚、ここで選択するアンテナは、現在選択されているアンテナとは別のアンテナであればどれでも良く、ランダムに決定すれば良い。

[0069] アンテナ704-n'の選択後、受信局102では、応答要求信号に対する返信として応答信号がパケット生成部712に入力され、ここで応答パケット1502-1が生成される。応答パケット1502-1は、変調部713、DAC714、送信RF回路715を経由して送信RF信号としてRFスイッチ705に入力され、RFスイッチ705によって選択されたアンテナ704-n'から、アンテナ704-n'と送信局101のアンテナ508-1～508-Mの各々との間に確立される伝送路104を介して送信局101に送信される(ステップS1410)。

[0070] 送信局101では、アンテナ508-1～508-Mの各々によって応答パケット1502-1が受信され、M個の受信RF信号が受信RF回路510に入力される。M個の受信RF信号は、ダウンコンバータ600-1～600-Mにおいて受信ベースバンド信号に変換された後、AGC601-1～601-Mによって信号強度が自動的に調節されて信号選択部602に対して出力される。このときAGC601-1～601-Mは、受信ベ

ースバンド信号の信号強度を調節すると同時に、各アンテナで受信した応答パケット1502-1のRSSIを推定して、信号選択部602に対して出力する。このRSSIは、受信局102で選択されているアンテナ704-n' と、送信局101のアンテナ508-1～508-Mの各々との間に確立される伝送路104の品質情報となる。

信号選択部602は、M個のRSSIの推定結果に基づいて、M個の受信ベースバンド信号の中から1つの受信ベースバンド信号511(例えばRSSIが最も大きいもの)を選択し、これをADC512に出力する。又、AGC601-1～601-Mによって推定されたM個のRSSIを含む品質情報信号Xがアンテナ選択制御部516に対して出力される。受信ベースバンド信号511が得られたアンテナ508-m' は、受信感度が高いと推定されているため、アンテナ704-n' と最も良好に通信することができるものと推定される。このため、アンテナ508-m' を選択することで、ダイバーシチ利得を確保することができ、送信局101から受信局102に送信するパケットの伝送品質を向上させることができる。

- [0071] 受信ベースバンド信号511は、ADC512においてアナログデジタル変換された後、復調部513においてシンボル判定処理された復調信号として出力される。信号再生部514は、この復調信号を入力として、応答パケット1502-1を再生して応答信号を出力する。
- [0072] 応答信号を受信した送信局101では、タイミング制御部515が、送信パケットの送信タイミングを決定する送信タイミング制御信号を生成して送信パケット生成部504に対して出力すると共に、アンテナ選択制御信号の出力タイミングを決めるための切り替えタイミング制御信号を生成してアンテナ選択制御部516に対して出力する。アンテナ選択制御部516は、切り替えタイミング制御信号と同期を取りながら、入力された品質情報信号Xに基づき、M本のアンテナ508-1～508-Mの中から、受信局102との通信に最適なアンテナ508-m' を選択するためのアンテナ選択制御信号を生成してRFスイッチ509に対して出力する。これにより、RFスイッチ509によりアンテナ508-m' が選択される(ステップS1411)。
- [0073] 送信パケット生成部504は、受信局102に対して送信すべき情報信号系列を入力としてデータパケット1503-1を送信パケットとして生成する(ステップS1412)。尚、

データパケット1503-1には、応答要求パケットが含まれているものとする。

送信パケット生成部504は、送信制御部503で生成された送信タイミング制御信号に同期させながら、データパケット1503-1を出力する。出力されたデータパケット1503-1は、変調部505においてシンボルマッピング処理された変調信号として出力される。変調信号は、DAC506においてデジタルアナログ変換された後、送信RF回路507において無線周波数にアップコンバートされた送信RF信号としてアンテナ部501に対して出力される。この送信RF信号は、ステップS1411で選択されたアンテナ508-m'を通じて受信局102に向けて送信される(ステップS1413)。

[0074] 受信局102では、RFスイッチ705によって選択されているアンテナ704-n'を介してデータパケット1503-1が受信される(ステップS1414)。データパケット1503-1は、受信RF回路706、ADC707、復調部708、信号再生部709の順に通過する。そして、信号再生部109からは、タイミング制御部710にトリガが出力されると共に、応答要求信号と1個の情報信号とが出力される(ステップS1415)。

[0075] トリガを受けたタイミング制御部710は、切り替えタイミング制御信号をアンテナ選択制御部711に出力する。アンテナ選択制御部711は、切り替えタイミング制御信号に同期して、アンテナ704-1～704-Nの中から現在選択されているアンテナ704-n'とは別のアンテナ704-n''(n'≠n'')を選択するためのアンテナ選択制御信号を生成して、RFスイッチ705に対して出力する。これにより、RFスイッチ705はアンテナ704-n''を選択する(ステップS1416)。

[0076] アンテナ704-n''の選択後、受信局102では、応答要求信号に対する返信として応答信号がパケット生成部712に入力され、ここで応答パケット1502-2が生成される。応答パケット1502-2は、変調部713、DAC714、送信RF回路715を経由して送信RF信号としてRFスイッチ705に入力され、RFスイッチ705によって選択されたアンテナ704-n''から、伝送路104を介して送信局101に送信される(ステップS1417)。これにより、通信フレーム1500-1の処理が終了する。

[0077] (通信フレーム1500-2における処理)

応答パケット1502-2を受信した送信局101では、ステップS1411～ステップS1413と同様の処理がなされる。即ち、受信局102で選択されているアンテナ704-n''

との間に確立される伝送路104の品質情報(RSSI)に基づいて最適なアンテナが選択され、選択されたアンテナからデータパケット1503-2が受信局102に送信される。そして、データパケット1503-2を受信した受信局102では、ステップS1414～ステップS1417と同様の処理がなされ、応答パケット1502-3が送信局101に送信される。以下、通信フレーム1500-2と同様の処理がフレーム1500-4までなされ、データパケット1503-1～1503-4が全て送信局101から受信局102へ送信されると、動作を終了する。

[0078] 尚、以上の処理において、通信フレーム1500-2～1500-4の間に、必要に応じて、ステップS1405及びS1406の処理を挿入しても良い。このようにすることで、移動無線端末や周囲の散乱体の移動によってアンテナダイバーシチ利得が低下するのを回避することができる。

[0079] 又、以上の説明において、ステップS1400～ステップS1404の処理は、一般的な無線通信システムの運用を想定したものであり、必ずしも必要ではない。

[0080] 又、ステップS1400～ステップS1404の処理に加え、ステップS1405～S1410の処理も必ずしも必要としないが、この場合はデータパケット1503-1の送信時においてのみ、アンテナダイバーシチ利得を期待することができない。ステップS1400～S1410の処理を省略した場合は、ステップS1411で選択するアンテナはランダムに決定しておけば良い。

[0081] 以上のように、無線通信システム100によれば、送信局101が、情報信号系列を複数のデータパケットに分割し、受信局102から送信された通信制御用パケットの受信信号強度(RSSI)より受信局102に対する伝送路104の品質を推定し、その推定結果に基づいて最適なアンテナを選択しながらデータパケットを送信する。更に、受信局102では、送信局101から送信パケットを受信する度に、応答パケットを送信するためのアンテナを別のアンテナに切り替える。

これにより、準静的フェージング環境下であっても、伝送路104ではアンテナダイバーシチ利得が確保されるため送信パケットの伝送品質を補償することができる一方で、無線局103では、アンテナを切り替えながら送信された複数のデータパケットが不規則変動する干渉信号として受信される。つまり、無線局103において受信される干

渉信号成分を、定在化せずに時間変動させることができるために、無線局103に対して、送信局101の使用している無線周波数帯域を利用してパケットを送受信するためには必要な時間的な隙間を意図的に生じさせることができる。更に、干渉信号成分に依存して伝送誤り率も時間的に変動するため、伝送路符号化やインターリーブ又はパケット再送等で得られる誤り訂正の効果が高まる。結果として、無線局103におけるパケットの伝送効率が向上するため、限られた電波空間における同一周波数帯域の利用効率を向上させることができる。

[0082] 図7(a)及び図7(b)は、無線通信システム100における効果を説明するための図である。図7(a)において、符号400a～400cは、静的フェージング環境下において送信局101と受信局102とが従来のアンテナダイバーシチで通信を行った場合の通信フレームを示している。符号401a～401cは、この場合において無線局103で干渉信号成分が観測される時間を示している。図7(b)において、符号400a～400cは、準静的フェージング環境下において送信局101と受信局102とが本実施形態の方法で通信を行った場合の通信フレームを示している。符号401a～401cは、この場合において無線局103で干渉信号成分が観測される時間を示している。

本実施形態のように、受信局101側で選択するアンテナを送信パケットの受信毎に切り替えることで、送信局101で選択される送信用のアンテナが変更される可能性がある。例えば、符号401bの通信フレームにおいて送信用のアンテナが変更されれば、図7(b)に示すように、無線局103では時間401bにおいて干渉信号成分が観測されない可能性が高まる。つまり、無線通信の実伝送路が空間的に不連続性であるという特性を活用することで、送信局101のパケット送信用のアンテナを変更することで、符号401bの期間では送信局101が無線局103に対して干渉源でなくなり、無線局103で受信される干渉信号成分を減少させることができる。この結果、無線局103が受信する所望信号に対する伝送路誤り率が低下するため、伝送品質を改善することができる。

[0083] 本実施の形態に示すように、パケット伝送を基本とする無線通信システムでは、受信電信号電力の低下による伝送路品質の劣化だけでなく、他の無線局からの発信された信号が干渉信号となり、パケット衝突が生じる可能性が常に存在する。つまり、伝

送路誤りの要因は、受信信号電力の低下とパケット衝突に分けられるがいずれの場合においても、その結果として生じるパケット誤りを補償するために、パケット再送技術が必須となる。特に物理層において自動的なパケット再送を実現するプロトコルは、通常ARQ(Automatic Repeat Request)と呼ばれる。

ARQの代表的なものとしては、各々のパケットについて誤りを判定し再送制御するStop-and-Wait法や、複数のパケットを連續して受信し誤りを生じたパケットについてのみ再送要求するGo-back-N法、Selective-request法がある。さらに、誤りが生じたパケットと再送パケットを合成することで、より高いダイバーシチ効果が得られる方法として、Chase Combiningと呼ばれる再送法も実用化されている。

本実施の形態に示す無線通信システムは、以上のようなARQプロトコルを採用することが可能であるが、これらの手法に限定されるものではない。

[0084] 又、本実施の形態に示した応答パケットは、必ずしも送信局101のアンテナ選択を目的として新たに導入された制御用パケットである必要はなく、例えば、パケット伝送をする通信システムにおいて、パケットの受信可否をフィードバックするために用いられるACKパケットやNACKパケットであっても構わない。

特に、受信局102がパケット誤りを検出し、送信局101に対してNACKパケットを送信された場合にのみ、図5に示す処理にしたがって送信局101のアンテナが選択されるように制御することも可能である。このような構成にすると、送信局101がパケット誤りを生じた場合のみ送信局101のアンテナが変更されることになり、処理の効率化が図れる。

[0085] 又、無線通信システム100によれば、無線局103が、送信局101から送信された複数のデータパケットを受信して情報信号系列を傍受しようとする場合でも、無線局103で受信されるデータパケットの受信電力は不規則に時間変動することになるため、伝送路105において伝送路誤りを生じ、受信信号から情報信号を正確に復元することができなくなる。結果として、伝送路105における通信傍受を防止することができるため、無線通信の物理層におけるセキュリティを確保することできる。更に、これらの処理は、基本的に従来の算術的な手法を用いた暗号化、復号化とは独立して行うことが可能である。このため、従来技術に加えて本発明を実施することで、より高いセキ

ュリティを期待することができる。

[0086] 又、無線通信システム100によれば、アダプティブアレーアンテナを用いて指向性のスル方向を制御する処理や、伝送路パラメータに基づく鍵生成と暗号化の処理を必要としない構成となっている。このため、アンテナ及び給電回路の精度を保証し、且つ信号処理量を増加させるといったハードウェアに対する高い性能を要求することもない。

[0087] 尚、上記の説明では、送信局101と受信局102との間に確立される伝送路104の品質情報を、受信局102から受信した通信制御用パケットの受信信号強度であるRSSIの推定値としているが、伝送路104の品質情報はRSSIの推定値に限つたものではない。つまり、伝送路104の品質情報として、ビット誤り率、パケット誤り率、パケット再送頻度、ドップラーシフト、遅延スプレッド、ライスファクタ、角度広がり等の無線通信の回線品質を判定するためのパラメータを使用することも可能である。

[0088] 又、送信局101の送信パケット生成部504は、受信局102に対して送信する情報信号系列を入力としてK個のデータ伝送用パケットであるデータパケットを生成する場合に、無線通信システム100のMAC層においてK個のデータパケットに分割する場合と、物理層においてK個のデータパケットに分割する場合との両方が可能であるが、本実施形態ではいずれの構成としても構わない。

[0089] 又、送信局101の変調部505及び受信局102の変調部713におけるシンボルマッピング処理方法は、例えばBPSK、QPSK、多値QAM、GMSK、GFSK、周波数ホッピングを用いることができる。又、インターリーブや伝送路符号化といった伝送路誤りを補償するための信号処理を予め行うことや直接拡散といった二次変調を加えることも可能であるが必須の処理ではない。

[0090] ここで、伝送路符号としては、ハミング符号、リードソロモン符号、ビタビ復号との組合せによる畳み込み符号、ターボ符号、低密度パリティ検査(LDPC)符号を採用することが可能であり、さらに、インターリーバとしてはS-random置換の概念に基づくランダムインターリーバを採用することが可能であるが、伝送路符号およびインターリーバは共に限定されるものではない。

[0091] 又、送信局101のRFスイッチ509を実現する回路デバイスは、半導体デバイスであ

るPINダイオードスイッチやRF-MEMSデバイスであるMEMSスイッチなど、低挿入損失特性を有し且つ切り替え速度性能が高いものが有用ではあるがこれらに限つたものではない。

[0092] 又、送信局101のアンテナ508-1～508-Mは、それぞれ異なる偏波特性を有する構成にすることも可能である。同様に、受信局102のアンテナ704-1～704-Nは、それぞれ異なる偏波特性を有する構成にすることも可能である。このように送受で偏波特性が異なる複数のアンテナを時間的に切り替えながらパケットを送受信することにより、送信局101と無線局103との間の伝送路105が見通し伝搬環境であるときでも、伝送路105に意図的なフェージング変動を与えることが可能となる。

又、送信局101のアンテナ508-1～508-Mは、互いに異なる指向性パターンを有するアンテナ構成とすることも可能である。同様に、受信局102のアンテナ704-1～704-Nも、互いに異なる指向性パターンを有するアンテナ構成とすることも可能である。

[0093] (第二実施形態)

第二実施形態の無線通信システムは、第一実施形態の無線通信システムにおいて、送信局101から送信される送信パケットの送信電力を、伝送路104の品質に基づいて制御する構成としたものである。以下では、第一実施形態で説明した構成と異なる部分についてのみ説明する。

図8は、本発明の第二実施形態を説明するための無線通信システムの送信局の概略構成を示す図である。図2と同様の構成には同一符号を付してある。

図8に示す送信局101は、アンテナ選択制御部516が、品質情報信号Xに基づいて、送信パケットの送信電力を制御するための電力制御信号800を生成し、送信RF回路507が、この電力制御信号800を入力として送信電力を制御する構成となっている。

[0094] 図9は、図8に示す送信RF回路507の概略構成を示す図である。

図9に示すように、DAC506から出力された送信パケットは、ローカル信号発生部900の生成するローカル信号を用いてミキサ901により周波数変換され、ステップアップネーチャ902を経てパワーアンプ903へ入力され、電力増幅されてアンテナ部501

に対して出力される。本実施形態では、アンテナ選択制御部516が、送信RF回路507のステップアッテネータ902を調節するための電力制御信号800を生成してステップアッテネータ902に出力することにより、品質情報信号Xに基づいて送信電力を調節することが可能となる。

アンテナ選択制御部516は、例えば、品質情報信号Xに含まれるM個のRSSIの推定値のうち最大のものを選択し、選択した推定値に応じた送信電力となるような電力制御信号800を生成すれば良い。これを実現するために、RSSIの推定値と、送信電力とを対応付けたテーブルをアンテナ選択制御部516が有する構成とすれば良い。

[0095] 図8のような構成にすることにより、送信局101がアンテナ508-1～508-Mの中から最適なアンテナを選択することによるダイバーシチ利得の分だけ、送信パケットの送信電力を低減させることができたため、無線局103に対して与える平均的な干渉信号電力を抑圧することができる。したがって、無線局103がパケットを傍受しようとした場合でも、送信パケットの平均受信電力が抑圧されるため、無線局103において相対的に大きな伝送路誤りを生じさせることができ、情報漏洩をより効果的に防止することができる。

[0096] (第三実施形態)

第一又は第二実施形態で説明した無線通信システムでは、受信局102のアンテナ選択制御部711が、RFスイッチ705に選択させるアンテナをランダムに決定する構成のため、アンテナ704-1～704-Nはそれぞれ均等な確率で選択されるようになっている。したがって、ダイバーシチ利得を充分に確保することができるとは限らない。そこで、本実施形態の無線通信システムは、この確率に傾斜をつけるようにしたものである。

以下では、第一又は第二実施形態で説明した構成と異なる部分についてのみ説明する。

[0097] 本実施形態の受信局102のアンテナ選択制御部711は、アンテナ704-1～704-Nの各々をどのような確率で選択するかを示す選択確率テーブルにしたがって、RFスイッチ705に選択させるアンテナを決定する。選択確率テーブルは、受信局102

内のメモリに予め記憶しておく。受信局102の受信RF回路706は、RFスイッチ705で選択されているアンテナから受信した送信パケットのRSSIを推定し、その推定値をアンテナ選択制御部711に入力する。アンテナ選択制御部711は、受信RF回路706からRSSIの推定値が入力される度に、送信パケットを受信したアンテナと、その送信パケットのRSSIの推定値とを対応付けた受信品質情報をメモリに蓄積する。アンテナ選択制御部711は、所定期間毎に、メモリに記憶されている選択確率テーブルを、上記受信品質情報に基づいて更新する。

[0098] 図10は、選択確率テーブルの一例を示す図である。

図10の例では、受信局102が有するアンテナ数は4としてN=4の場合を示している。図10に示すように、選択確率テーブルには、各アンテナに対し、そのアンテナをどのような確率で選択するかを示した選択確率が記憶されている。図10(a)に示す選択確率テーブルによれば、アンテナ704-1は2回に1回の確率で選択され、アンテナ704-2は4回に1回の確率で選択され、アンテナ704-3及びアンテナ704-4は8回に1回の確率で選択されることがわかる。

アンテナ選択制御部711は、所定期間におけるアンテナ704-1で受信された送信パケットのRSSIの推定値の履歴、アンテナ704-2で受信された送信パケットのRSSIの推定値の履歴、アンテナ704-3で受信された送信パケットのRSSIの推定値の履歴、アンテナ704-4で受信された送信パケットのRSSIの推定値の履歴に基づき、例えば、RSSIの推定値の平均値が大きいアンテナほど、選択確率が大きくなるように傾斜をつけて、選択確率テーブルを更新する。図10(b)に示す選択確率テーブルは、図10(a)に示す選択確率テーブルの更新後のテーブルである。図10(b)のテーブルにしたがってアンテナを選択した場合は、アンテナ704-3が選択される確率が高くなり、受信品質の良好なアンテナを優先的に選択することが可能となる。従って、アンテナ704-1～704-Nの中から任意のアンテナをランダムに選択する場合と比較すると、伝送路104においてより大きなダイバーシチ利得を確保することができるため、伝送路誤り率をさらに低減することができる。

[0099] 図11は、本発明の第三実施形態を説明するための無線通信システムの受信局102の動作フローを示す図である。

受信局102では、送信局101からの送信パケットがアンテナ704-nで受信される(ステップS1101)と、その送信パケットのRSSIが推定され(ステップS1102)、そのRSSIがアンテナ選択制御部711に入力される。アンテナ選択制御部711は、入力されたRSSIとアンテナ704-nとを対応付けた受信品質情報をメモリに蓄積する(ステップS1103)。次いで、前回の選択確率テーブルの更新から所定期間が経過したか否かが判定され、所定期間が経過していた場合(ステップS1104:YES)、アンテナ選択制御部711は、メモリに蓄積した受信品質情報に基づき、各アンテナの選択確率を更新し、選択確率テーブルを更新する(ステップS1105)。所定期間が経過していないなかった場合(ステップS1104:NO)、アンテナ選択制御部711は、選択確率テーブルの更新処理を行わない。

[0100] 一方、アンテナ704-nを介して受信された送信パケットは、受信RF回路706、ADC707、復調部708、信号再生部709の順に通過する。そして、信号再生部709からは、タイミング制御部710にトリガが出力されると共に、応答要求信号や情報信号が出力される(ステップS1106)。トリガを受けたタイミング制御部710は、切り替えタイミング制御信号をアンテナ選択制御部711に出力する。アンテナ選択制御部711は、切り替えタイミング制御信号に同期して、アンテナ704-1～704-Nの中から現在選択されているアンテナ704-nとは別のアンテナ704-n' ($n' \neq n$)を選択確率テーブルに基づいて決定し、決定したアンテナを選択するためのアンテナ選択制御信号を生成して、RFスイッチ705に対して出力する。以下、送信局101から送信パケットを受信する度に、以上の動作を繰り返す。

[0101] (第四実施形態)

本発明の第四実施形態を説明するための無線通信システムの概略構成は図1に示すものと同様であるが、送信局101及び受信局102の構成が若干異なる。

図12は、本発明の第四実施形態を説明するための無線通信システムの送信局の概略構成を示す図である。図13は、本発明の第四実施形態を説明するための無線通信システムの受信局の概略構成を示す図である。図12及び図13において、図2及び図4と同様の構成には同一符号を付してある。

図12に示す送信局101は、図2に示す構成に加え、変調部505からの変調信号に

対して、例えば「S. M. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications", IEEE Journal on Select Areas in Communications, vol.16, no.

8, Oct. 1998」に提示されている符号を用いて、時空間符号化された2個の符号化信号を生成する時空間符号化部1200と、DAC506及び送信RF回路507とは別に、新たにDAC1201及び送信RF回路1202とを備えた構成となっている。DAC506及び送信RF回路507とDAC1201及び送信RF回路1202とは、時空間符号化部1200に対して並列に接続されている。

[0102] 時空間符号化部1200で生成される2個の符号化信号は、それぞれDAC506及びDAC1201においてデジタルアナログ変換された後、送信RF回路507及び送信RF回路1202において無線周波数にアップコンバートされた2個の送信RF信号としてアンテナ部501に対して出力される。この場合、アンテナ選択制御部516は、品質情報信号Xに基づいて、アンテナ508-1～508-Mの中から2本のアンテナ508-m1及び508-m2を選択するためのアンテナ選択制御信号を生成する。RFスイッチ509は、このアンテナ選択制御信号に従って、2本のアンテナ508-m1及び508-m2を選択し、2個の送信RF信号は、ここで選択されたアンテナ508-m1及び508-m2を通じて受信局102に向けて同時に送信される。2本のアンテナ508-m1及び508-m2の選択の方法としては、RSSIの推定値が大きい上位2つを選択し、それらの値が得られた2本のアンテナを選択すれば良い。

[0103] 図13に示す受信局102は、図4に示す構成に加え、ADC707においてアナログデジタル変換された受信ベースバンド信号を入力とし、RFスイッチ705で選択されているアンテナで受信された2個の符号化信号をバッファリングした上で、2個の符号化信号に合成処理を施して復調部708に出力する信号合成部1300を備えた構成となっている。これにより、伝送路104において、アンテナダイバーシチ利得だけでなく、符号化利得も同時に確保することができるため、特に低SNR伝送路においてデータパケットの伝送品質を補償できるという効果が得られる。

[0104] 尚、図12に示す送信局101ではパケット送信用のアンテナ数を2つにする場合を示しているが、このアンテナ数は2つに限定されるものではなく、複数であれば良い。

又、符号についても、「S. M. Alamouti, "A Simple Transmit Diversity Technique for Wireless Communications", IEEE Journal on Select Areas in Communications, vol.16, no. 8, Oct. 1998」に提示されている符号に限定されるものではない。更に、パケット送信用のアンテナ数に対応させて複数の符号化方法を適当に選択可能にしてもよい。

[0105] 又、本実施形態と、第二又は第三実施形態の内容とを組み合わせることも可能である。

[0106] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができるることは当業者にとって明らかである。

本出願は、2004年4月27日出願の日本特許出願(特願2004-130842)、2005年2月23日出願の日本特許出願(特願2005-047702)に基づくものであり、その内容はここに参照として取り込まれる。

産業上の利用可能性

[0107] 本発明にかかる無線通信システムは、伝送される情報信号が他の無線局へ与える干渉影響を抑える効果と共に情報信号が第三者に傍受されるのを防ぐ効果を有し、携帯電話機や無線LAN等のアクセス方式として適している。

請求の範囲

[1] 無線によるパケット通信を行う自局及び相手局を含む無線通信システムであって、前記自局及び相手局は、それぞれ複数のアンテナを有し、前記自局は、前記複数のアンテナの中からパケット送信用のアンテナを選択する自局側アンテナ選択手段と、前記複数のアンテナと前記相手局の有する複数のアンテナの中から選択されたアンテナとの間に確立される伝送路の品質情報に基づいて前記自局側アンテナ選択手段に選択させるアンテナを指示するアンテナ選択制御手段と、送信すべきパケットを前記自局側アンテナ選択手段により選択されたアンテナから前記相手局に向けて送信させる送信制御手段とを備え、前記相手局は、前記複数のアンテナの中から1つのアンテナを選択する相手局側アンテナ選択手段と、前記相手局側アンテナ選択手段により選択されたアンテナを介して前記パケットを受信する受信手段と、前記受信手段による前記パケットの受信に応じて前記相手局側アンテナ選択手段により選択されているアンテナを別のアンテナに切り替えさせる制御を行うアンテナ切り替え制御手段とを備える無線通信システム。

[2] 請求項1記載の無線通信システムであって、前記自局は、前記品質情報に基づいて前記パケットの送信電力を制御する送信電力制御手段を備える無線通信システム。

[3] 請求項1又は2記載の無線通信システムであって、前記相手局は、前記複数のアンテナの各々をどのような確率で選択するかを示す選択確率を記憶する選択確率記憶手段と、前記受信手段で受信したパケットの受信品質と当該パケットを受信したアンテナとを対応付けた受信品質情報を蓄積する受信品質情報蓄積手段と、前記受信品質情報に基づいて前記選択確率を更新する選択確率更新手段とを備え、前記アンテナ切り替え制御手段は、前記選択確率に基づいて、前記別のアンテナを決定する無線通信システム。

[4] 請求項1～3のいずれか記載の無線通信システムであって、前記自局は、前記パケットを時空間符号化して複数の符号化パケットを生成する時

空間符号化手段を備え、

前記自局側アンテナ選択手段は、前記符号化パケットの数に応じた数のアンテナを選択し、

前記送信制御手段は、前記選択された数のアンテナから前記複数の符号化パケットを前記相手局に向けて同時に送信させ、

前記相手局は、前記受信手段で受信された前記複数の符号化パケットを合成する合成手段を備える無線通信システム。

[5] 請求項1～4のいずれか記載の無線通信システムであって、

前記自局は、前記相手局側アンテナ選択手段により選択されたアンテナから前記複数のアンテナを介して受信したパケットのRSSIを推定するRSSI推定手段を備え、

前記品質情報は前記推定されたRSSIである無線通信システム。

[6] 請求項1～4のいずれか記載の無線通信システムであって、

前記パケットは、パケットの受信応答を要求する応答要求パケットとデータパケットとを含み、

前記送信制御手段は、前記相手局とのパケット通信開始時に、前記応答要求パケットを前記自局側アンテナ選択手段により選択されたアンテナから前記相手局に向けて送信させ、

前記相手局は、前記受信手段により前記応答要求パケットを受信し、前記応答要求パケットに対する応答である応答パケットを前記アンテナ切り替え制御手段により切り替えられた別のアンテナから前記自局に送信し、

前記自局は、前記複数のアンテナで受信した前記応答パケットのRSSIを推定するRSSI推定手段を備え、

前記品質情報は前記RSSIであり、

前記送信制御手段は、前記品質情報に基づく前記指示によって前記自局側アンテナ選択手段により選択されたアンテナから、前記データパケットを前記相手局に送信させる無線通信システム。

[7] 請求項6記載の無線通信システムであって、

前記データパケットには、前記応答要求パケットが含まれる無線通信システム。

[8] 請求項1～7のいずれか記載の無線通信システムであって、
前記自局及び相手局各自の有する前記複数のアンテナは、それぞれ異なる特性
を持つ無線通信システム。

[9] 相手局と無線によるパケット通信を行う無線局であって、
複数のアンテナと、
前記複数のアンテナの中からパケット送信用のアンテナを選択するアンテナ選択手
段と、
前記複数のアンテナと前記相手局の有する複数のアンテナの中から選択されたアン
テナとの間に確立される伝送路の品質情報に基づいて前記アンテナ選択手段に
選択させるアンテナを指示するアンテナ選択制御手段と、
送信すべきパケットを前記アンテナ選択手段により選択されたアンテナから前記相
手局に送信させる送信制御手段とを備え、
前記相手局の有する複数のアンテナの中から選択されるアンテナは、前記パケット
が前記相手局で受信される度に、別のアンテナに切り替えられる無線局。

[10] 請求項9記載の無線局であって、
前記品質情報に基づいて前記パケットの送信電力を制御する送信電力制御手段
を備える無線局。

[11] 請求項9又は10記載の無線局であって、
前記パケットを時空間符号化して複数の符号化パケットを生成する時空間符号化
手段を備え、
前記アンテナ選択手段は、前記符号化パケットの数に応じた数のアンテナを選択し
、
前記送信制御手段は、前記選択された数のアンテナから前記複数の符号化パケッ
トを前記相手局に同時に送信させる無線局。

[12] 請求項9～11のいずれか記載の無線局であって、
前記相手局の有する複数のアンテナの中から選択された1つのアンテナから前記
無線局の有する複数のアンテナを介して受信したパケットのRSSIを推定するRSSI
推定手段を備え、

前記品質情報は前記推定されたRSSIである無線局。

[13] 相手局と無線によるパケット通信を行う無線局であって、複数のアンテナと、前記複数のアンテナの中から1つのアンテナを選択するアンテナ選択手段と、前記相手局の有する複数のアンテナの中から選択されたパケット送信用のアンテナから送信されるパケットを、前記アンテナ選択手段により選択されたアンテナを介して受信する受信手段と、前記受信手段による前記パケットの受信に応じて、前記アンテナ選択手段により選択されているアンテナを別のアンテナに切り替えさせる制御を行うアンテナ切り替え制御手段とを備える無線局。

[14] 請求項13記載の無線局であって、前記複数のアンテナの各々をどのような確率で選択するかを示す選択確率を記憶する選択確率記憶手段と、前記受信手段で受信したパケットの受信品質と当該パケットを受信したアンテナとを対応付けた受信品質情報を蓄積する受信品質情報蓄積手段と、前記受信品質情報に基づいて前記選択確率を更新する選択確率更新手段とを備え、前記アンテナ切り替え制御手段は、前記選択確率に基づいて前記別のアンテナを決定する無線局。

[15] 請求項13又は14記載の無線局であって、前記相手局から送信されてくるパケットは、前記パケットを時空間符号化して生成された複数の符号化パケットであり、前記受信手段で受信された前記複数の符号化パケットを合成する合成手段を備える無線局。

[16] 請求項9～15のいずれか記載の無線局であって、前記複数のアンテナは、それぞれ異なる特性を持つ無線局。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

[図8]

[図9]

[図10]

(a)

選択確率	アンテナ
1/2	アンテナ 704-1
1/4	アンテナ 704-2
1/8	アンテナ 704-3
1/8	アンテナ 704-4

(b)

選択確率	アンテナ
1/2	アンテナ 704-3
1/4	アンテナ 704-1
1/8	アンテナ 704-4
1/8	アンテナ 704-2

[図11]

[図12]

[図13]

[図14]

[図15]

[図16]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/006316

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ H04B7/06, 7/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ H04B7/02, 7/06, 7/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	JP 10-503891 A (Nokia Telecommunications Oy), 07 April, 1998 (07.04.98), Full text; all drawings & WO 9532558 A2 & FI 9402404 A & AU 9525673 A & NO 9604994 A & EP 761045 A1 & CN 1149362 A & DE 69527427 E	1-5, 8-16 6, 7
Y A	JP 7-245577 A (Nippon Telegraph And Telephone Corp.), 19 September, 1995 (19.09.95), Full text; all drawings (Family: none)	1-5, 8-16 6, 7

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search
07 July, 2005 (07.07.05)

Date of mailing of the international search report
26 July, 2005 (26.07.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/006316

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y A	JP 11-122151 A (NEC Corp.) , 30 April, 1999 (30.04.99) , Full text; all drawings (Family: none)	1-5, 8-16 6, 7
Y	JP 6-311194 A (NEC Corp.) , 04 November, 1994 (04.11.94) , Par. No. [0022] (Family: none)	2, 10
Y	Microfilm of the specification and drawings annexed to the request of Japanese Utility Model Application No. 401754/1990 (Laid-open No. 92839/1992) (Arubain Kabushiki Kaisha) , 12 August, 1992 (12.08.92) , Full text; all drawings (Family: none)	3, 14
Y	JP 2002-538661 A (Motorola, Inc.) , 12 November, 2002 (12.11.02) , Fig. 12 & WO 2000/051265 A1 & AU 200028710 A & US 6317411 B1 & EP 1157483 A1 & KR 2001112278 A & CN 1348642 A	4, 11, 15

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl⁷ H04B7/06, 7/08

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl⁷ H04B7/02, 7/06, 7/08

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	J P 10-503891 A (ノキア テレコミュニケーションズ オサケ ユキチニア) 1998.04.07 全文, 全図	1-5, 8-16
A	& WO 9532558 A2 & FI 9402404 A & AU 9525673 A & NO 9604994 A & EP 761045 A1 & CN 1149362 A & DE 69527427 E	6, 7

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示す
もの

「E」国際出願日前の出願または特許であるが、国際出願日
以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行
日若しくは他の特別な理由を確立するために引用す
る文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって
出願と矛盾するものではなく、発明の原理又は理論
の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明
の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以
上の文献との、当業者にとって自明である組合せに
よって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

07.07.2005

国際調査報告の発送日

26.7.2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

山中 実

5W 3360

電話番号 03-3581-1101 内線 3574

C (続き) 関連すると認められる文献		関連する請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
Y	JP 7-245577 A (日本電信電話株式会社) 1995.09.19	1-5, 8-16
A	全文, 全図 (ファミリーなし)	6, 7
Y	JP 11-122151 A (日本電気株式会社) 1999.04.30	1-5, 8-16
A	全文, 全図 (ファミリーなし)	6, 7
Y	JP 6-311194 A (日本電気株式会社) 1994.11.04 段落【0022】 (ファミリーなし)	2, 10
Y	日本国実用新案登録出願2-401754号 (日本国実用新案登録出願公開4-92839号) の願書に添付した明細書及び図面の内容を撮影したマイクロフィルム (アルバイン株式会社) 1992.08.12 全文, 全図 (ファミリーなし)	3, 14
Y	JP 2002-538661 A (モトローラ・インコーポレイテッド) 2002.11.12 第12図 & WO 2000/051265 A1 & AU 200028710 A & US 6317411 B1 & EP 1157483 A1 & KR 2001112278 A & CN 1348642 A	4, 11, 15