https://www.edwith.org/deepnlp/lecture/29208/

CBoW (Continous bag-of-words)

How to represent a sentence - CBoW

- Continuous bag-of-words
 - Ignore the order of the tokens: $(x_1, x_2, \ldots, x_T) \to \{x_1, x_2, \ldots, x_T\}$
 - Simply average the token vectors: • Averaging is a differentiable operator. $\frac{1}{T}\sum_{t=1}^{T}e_{t}$ • Just one operator node in the DAG.
 - · Generalizable to bag-of-n-grams
 - · N-gram: a phrase of N tokens
 - . Think of how you would do!
- Extremely effective in text classification [Tyyer et al., 2016; Cho, 2017; and many more]
 - · For instance, if there are many positive words, the review is likely positive.
- In practice, use FastText [Bojanowski et al., 2017]
- -토큰의 순서는 상관이 없다.
- -문장에 대한 표현은 단어 벡터들을 평균시킨 벡터로 구한다.
- -효과가 좋기 때문에 분석에서 제일 먼저 시도해야된다.

How to represent a sentence - CBoW

· Continuous bag-of-words based multi-class text classifier

 With this DAG, you use automatic backpropagation and stochastic gradient descent to train the classifier.

X는 토큰들(문장들).

공간상에서 문장이 가까우면 비슷한 의미, 멀리 떨어져 있으면 다른 의미. text classification – 잘하는 애들끼리 모으고 그렇지 않은 애들끼리 모은다. 추후분석에 사용

How to represent a sentence – RN

- Relation Network [Santoro et al., 2017]: Skip Bigrams
 - Consider all possible pairs of tokens: $(x_i, x_j), \forall i \neq j$
 - · Combine two token vectors with a neural network for each pair $f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$
 - φ is a element-wise nonlinear function, such as tanh or ReLU (max(0, a))
 - One subgraph in the DAG.

- -단어 순서와 단어들 간의 관계파악
- -문장 안에 있는 모든 토큰 쌍(pair)을 본다. 모든 쌍에 대한 representive 찾기

How to represent a sentence - RN

- Relation Network: Skip Bigrams
 - Considers all possible pairs of tokens: $(x_i, x_j), \forall i \neq j$ $f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$

$$f(x_i, x_j) = W\phi(U_{\text{left}}e_i + U_{\text{right}}e_j)$$
• Considers the pair-wise "relation"ship RN(X) =
$$\frac{1}{2N(N-1)} \sum_{i=1}^{T-1} \sum_{j=i+1}^{T} f(x_i, x_j)$$
• Averages all these relationship vectors

- -모든 pair들의 interaction을 생각한다는 것이 앞에서 본 CBoW와 차별점
- -장점: 여러 단어로 된 표현을 탐지 할 수 있다.
- -단점: 모든 단어간의 관계를 보기 때문에 전혀 연관이 없는 단어도 보게 된다.

How to represent a sentence - CNN

- · Convolutional Networks [Kim, 2014; Kalchbrenner et al., 2015]
 - · Captures &-grams hierarchically
 - One 1-D convolutional layer: considers all k-grams

$$h_t = \phi\left(\sum_{ au=-k/2}^{k/2} W_ au e_{t+ au}
ight)$$
, resulting in $H = (h_1, h_2, \ldots, h_T)$.

- Stack more than one convolutional layers: progressively-growing window
- Fits our intuition of how sentence is understood: tokens-multi-word expressions-phrases-sentence

- -텍스트 데이터에서는 one-direction convolution
- -k-gram을 계층적(hierachically)으로 보게 된다.(앞에k단어, 뒤에k단어)
- -단어, 다중 단어 표현, 구절, 문장
- -장점: 좁은 지역간 단어의 관계를 볼 수 있다.
- -단점: 먼 거리의 단어간의 관계가 있을 경우 탐지할 수 없거나 더 많은 convolution층을 찾아야 된다.