VI-SLAM 系统初始化设计说明书 (v1.0)

张谦

2020年3月20日

目录

1	问题定义	2
2	需求分析	2
3	方案调研 3.1 紧耦合闭式解初始化	2 2 2
4	方案设计	2
5	数学原理	2
6	流程图	2
7	类设计	2
8	子程序设计	2
9	伪代码	2
10	数据结构	2
11	调试	2
12	单元测试	2
13	效果验证	2
14	Clean Code	2

1 问题定义

目前闭式解 BA 初始化方案,还有以下几个方面问题:

- (1) 全场景平均初始化时间 (1.5s), 比标杆 ARCore(0.8s) 慢;
- (2) 弱纹理场景, 初始化精度差;
- (3) 小基线场景, 初始化精度差。

2 需求分析

该初始化方案,主要有两个方面工作需要做:

- (1) 首先需要达到快速初始化的目标:全场景平均初始化时间,达到或超越 ARCore 水平,同时提升初始化的鲁棒性。在此基础上,验证弱纹理和小基线场景是否也有改善;如果没有改善,则弱纹理和小基线问题,放到下一次优化设计中。
 - (2)设计初始化模块的单元测试,以便初步验证该模块实现正确性,是否存在明显的错误、Crash等。
- 3 方案调研
- 3.1 紧耦合闭式解初始化
- 3.2 松耦合初始化
- 4 方案设计
- 5 数学原理
- 6 流程图
- 7 类设计
- 8 子程序设计
- 9 伪代码
- 10 数据结构
- 11 调试
- 12 单元测试
- 13 效果验证
- 14 Clean Code

References

[1] Meyer CD (2000) Matrix Analysis and Applied Linear Algebra. Philadelphia, PA: SIAM.

[2]	Agostino Martinelli. Closed-form sol puter Vision, Springer Verlag, 2013.	ertial structure fro	om motion.	International	Journal of Com-