

# Sorting Algorithms



Francisco Amorós Cubells

### Steps:

- Explanation Mergesort.
- Explanation Quicksort.
- Different Time complexity.
- CPU use case & Memory.
- Example with Big Data.

### Mergesort - Algorithm

#### MERGE-SORT ALGORITHM

*Input:* A list  $a_1, \ldots, a_n$  of real numbers.

Output: A permutation  $\pi: \{1, ..., n\} \to \{1, ..., n\}$  such that  $a_{\pi(i)} \leq a_{\pi(i+1)}$ 

for all i = 1, ..., n - 1.

- (1) If n = 1 then set  $\pi(1) := 1$  and stop (return  $\pi$ ).
- ② Set  $m := \lfloor \frac{n}{2} \rfloor$ . Let  $\rho := MERGE-SORT(a_1, ..., a_m)$ .

Let  $\sigma := \text{MERGE-SORT}(a_1, \dots, a_m)$ . Let  $\sigma := \text{MERGE-SORT}(a_{m+1}, \dots, a_n)$ .

 $\bigcirc$  Set k := 1, l := 1.

While k < m and l < n - m do:

If  $a_{\rho(k)} \le a_{m+\sigma(l)}$  then set  $\pi(k+l-1) := \rho(k)$  and k := k+1 else set  $\pi(k+l-1) := m+\sigma(l)$  and l := l+1.

While  $k \le m$  do: Set  $\pi(k + l - 1) := \rho(k)$  and k := k + 1.

While  $l \le n - m$  do: Set  $\pi(k + l - 1) := m + \sigma(l)$  and l := l + 1.

```
merge of
2 sorted array
A=[4]7]
B=[1.6,10]} C=[1,4]
 A=[4]]}C=[1,4,6]
B=[1,6,10]}
  A=[47] } C=[1,4,6,7]
B=[1,6,0]}
 A=[4]] } C=[1,4,6,7,10]
B=[1,6,0]}
```

# Mergesort - Algorithm

$$A = [4, 1, 7, 9, 8, 3, 6, 2, 5]$$

$$B = [4, 1, 7, 7, 9], 8 = [8, 3, 6, 2, 5]$$

$$C = [4, 1] C_{2} = [7, 9], C_{3} = [8, 3], C_{4} = [6, 2, 5]$$

$$\vdots$$

$$[4], [1], [7], [9], [8], [3], [6], [2], [5]$$

# Mergesort - Algorithm

$$[4], [7], [7], [9], [8], [3], [6], [2], [5]$$
 $[7, 4], [7, 9], [3, 8], [2, 6], [5]$ 
 $[7, 4, 7, 9], [2, 3, 6, 8], [5]$ 
 $[1, 2, 3, 4, 6, 7, 8, 9], [6]$ 

# Mergesort - Time Complexity

# Quicksort - Algorithm

```
PARTITION (A, p, r)
                             1 x = A[r]
                             2 i = p-1
QUICKSORT(A, p, r)
                                for j = p to r - 1
  if p < r
                                     if A[j] \leq x
      q = PARTITION(A, p, r)
      QUICKSORT (A, p, q - 1)
                                         i = i + 1
      QUICKSORT(A, q + 1, r)
                                          exchange A[i] with A[j]
                                exchange A[i + 1] with A[r]
                                return i+1
```

### Quicksort - How It works?

$$A = [3, 7, 4, 2, 1, 70, 5]$$
 $P = 0, \pi = 6$ 

$$1^{2}A = \begin{bmatrix} 3, 7, 4, 2, 1, 70, 5 \end{bmatrix}$$
 $2^{2}A = \begin{bmatrix} 3, 4, 2, 1, 5, 70, 7 \end{bmatrix}$ 
 $3^{3}A = \begin{bmatrix} 3, 4, 2, 1 \end{bmatrix} & \begin{bmatrix} 70, 7 \end{bmatrix}$ 
 $4^{3}A = \begin{bmatrix} 1, 4, 2, 3 \end{bmatrix} & \begin{bmatrix} 7, 70 \end{bmatrix}$ 
 $5^{3}A = \begin{bmatrix} 4, 2, 3 \end{bmatrix}$ 
 $5^{3}A = \begin{bmatrix} 2, 3, 4 \end{bmatrix}$ 

partitioning (A,p,r)

$$A = [3, 7, 4, 2, 1, 70, 5]^{\times}$$
  
 $for 0 to 5 \xrightarrow{(7-1)} j = 0$ 

partitioning (A,p,r)

$$A = \begin{bmatrix} 3, 7, 4, 2, 1, 70, 5 \end{bmatrix} \times$$

$$for 0 to 5 \xrightarrow{(R-1)} j = 0$$

$$\begin{vmatrix} 2 + t \end{vmatrix}$$

parteteoning(A,p,r)

$$A = \begin{bmatrix} 3, 7, 4, 2, 1, 70, 5 \\ 0, 5 \end{bmatrix} \times \begin{cases} 0, 5 \\ 0, 5 \end{cases} = 0$$

$$\begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix} + 1$$

$$\begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix} = 0$$

$$\begin{vmatrix} 2 \\ 1 \\ 1 \end{vmatrix} = 0$$

parteteoning(A.p.r)

$$A = \begin{bmatrix} 3, 7, 4, 2, 1, 70, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\ 0, 5 \\$$

parteteoning(A.p.r)

$$A = \begin{bmatrix} 3.4.7.2.1.70.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{bmatrix} = 2$$

$$\begin{vmatrix} 2.++ \\ 5wap \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0$$

parteteoning (A.p.r)

$$A = \begin{bmatrix} 3.4.2.7.1.70.5 \\ 0.5 \end{bmatrix} = 3$$

$$\begin{vmatrix} 2.4.2.7.1.70.5 \\ 0.5 \end{bmatrix} = 3$$

parteteoning(A.p.r)

$$A = \begin{bmatrix} 3.4.2.1.7.70.51 \times \\ 0.5.5 \times$$

parteteoning (A.p.r)



parteteoning(A.p.r)

$$A = \begin{bmatrix} 3, 4, 2, 1, 7, 70, 5 \end{bmatrix}^{*} \times \\ SWap(\hat{c}(3)+1, \pi) \\ \begin{bmatrix} 3, 4, 2, 1, 5, 70, 7 \end{bmatrix} \\ P & \hat{c} \\ Return(\hat{c}(3)+7) \\ Q S(A, P, \hat{c}-1) & Q S(A, \hat{c}+7, \pi) \end{bmatrix}$$

### Quicksort - How It works?

$$A = [3, 7, 4, 2, 1, 70, 5]$$
 $p = 0, \pi = 6$ 

$$1^{2}A = \begin{bmatrix} 3, 7, 4, 2, 1, 70, 5 \end{bmatrix}$$

$$2^{2}A = \begin{bmatrix} 3, 4, 2, 1, 5, 70, 7 \end{bmatrix}$$

$$3^{3}A = \begin{bmatrix} 3, 4, 2, 1 \end{bmatrix} & \begin{bmatrix} 70, 7 \end{bmatrix}$$

$$4^{3}A = \begin{bmatrix} 1, 4, 2, 3 \end{bmatrix} & \begin{bmatrix} 7, 70 \end{bmatrix}$$

$$5^{3}A = \begin{bmatrix} 4, 2, 3 \end{bmatrix}$$

$$6^{3}A = \begin{bmatrix} 2, 3, 4 \end{bmatrix}$$

# Quicksort - Time Complexity

### Different Types of time Complexity:

- Best
- Worst
- Average

#### Introduction:

### Quicksort - Time Complexity - Best

### O(n) Best Case:

### QUICKSORT(A, p, r)

```
1 if p < r

2 q = \text{PARTITION}(A, p, r)

3 \text{QUICKSORT}(A, p, q - 1)

4 \text{QUICKSORT}(A, q + 1, r)
```

### PARTITION (A, p, r)

```
1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i + 1] with A[r]

8 return i + 1
```

$$F(n) = 2F(2) + h$$

### Quicksort - Time Complexity - Best

### O(n) Best Case:

### QUICKSORT(A, p, r)1 **if** p < r2 q = PARTITION(A, p, r)3 QUICKSORT(A, p, q - 1)4 QUICKSORT(A, q + 1, r)

```
PARTITION(A, p, r)

1  x = A[r]

2  i = p - 1

3  for j = p to r - 1

4  if A[j] \le x

5  i = i + 1

6  exchange A[i] with A[j]

7  exchange A[i + 1] with A[r]

8  return i + 1
```

$$F(n) = 2F(2) + Y$$

$$O(n \cdot log(n))$$

### Quicksort - Time Complexity - Worse

O(n) Worse Case:

$$F(n) = F(n-1) + F(0) + h$$

$$()(n^2)$$

### Quicksort - Time Complexity - Average

O(n) Average Case: (Unbalanced)

$$F(n) = F(\frac{9n}{10}) + F(\frac{n}{10}) + h$$

$$O(n \cdot log(n))$$

### CPU use case & Memory

#### Cache:



### **Spatial Locality:**

Wll those instructions which are stored nearby to the recently executed instruction have high chances of execution. (Sequentially accessed data).

#### **Temporal Locality:**

A instruction which is recently executed have high chances of execution again.

So the instruction is kept in cache memory such that it can be fetched easily and takes no time in searching for the same instruction.

### CPU use case & Memory (Paper)

### Cache:





# CPU use case & Memory (Big - Data)

