Basic Linear Algebra Refresher

Edith Zeng
CS 391L - Machine Learning
Dr. Dana Ballard
The University of Texas at Austin

March 6, 2019

Vector

Dot product is the sum of the product of two vectors' pairwise components:

$$\boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i$$

Angle between two vectors

$$\cos \theta = \frac{\boldsymbol{x} \cdot \boldsymbol{y}}{||\boldsymbol{x}||||\boldsymbol{y}||}$$

Length of a vector: $||x|| = \sqrt{xx}$

Orthogonal vectors if their dot product is zero. i.e. the angle $\theta = 90^{\circ} \Leftrightarrow \cos \theta = 0$.

Projection of vector x onto vector y results the vector

$$(oldsymbol{x} \cdot oldsymbol{y}) rac{oldsymbol{y}}{||oldsymbol{y}||}$$

Two graphs tagent at a given point \Rightarrow normal vectors are parallel (scalar mutiples of each other).

Random Vectors

Density function

$$p(\boldsymbol{X}) = \lim_{\Delta \boldsymbol{x}_i \to 0} \frac{P\boldsymbol{X} \in \boldsymbol{I}}{\prod_i \Delta x_i} \text{ where } \boldsymbol{I} = \left\{ \boldsymbol{X} : x_i < X_i \leq x_i + \Delta x_i \right\}$$

Face recognition Demean the average image from training set. Find eigenvectors. Project new observations to eigenspace and reconstruct (eg. KNN).

Mean vector $M = E[X] = \inf Xp(X)dX$ Covariance Matrix $\Sigma = E[(X - M)(X - M)^T]$ = $\frac{1}{N} \sum_{k=1}^{N} (\mathbf{X}^k - M)(\mathbf{X}^k - M)^T$

Linear Transformations

Scalar and vectors

$$T(k_1v_1 + k_2v_2 + ... + k_rv_r) = k_1T(v_1) + k_2T(v_2) + ... + k_rT(v_r)$$

Matrix tmultiplication A = BC

$$a_{ij} = \sum_{k=1}^{N} b_{ik} c_{kj}$$

Matrix

Transpose

- $\bullet \ \boldsymbol{A}_{i,j}^T = \boldsymbol{A}_{j,i}$
- $(A^T)^{-1} = (A^{-1})^T$
- $\bullet (A + B)^T = A^T + B^T$
- $\bullet \ (\boldsymbol{A}\boldsymbol{B})^T = \boldsymbol{B}^T \boldsymbol{A}^T$
- If A has only real entries, $A^T A$ is positive semi-definite.

Symmetric: $A^T = A$ Orthogonal: $A^T = A^{-1}$

Orthonormal: A transformation matrix A is orthonormal when $A^{-1} = A^T \Rightarrow$ $AA^T = I$

Square Matrix Properties

Determinant

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow det(\mathbf{A}) = ad - bc$$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$det(\mathbf{A}) = a \times det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \times det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \times det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$$

Properties

(1) If ${\pmb B}$ is obtained by multiplying any row or column in ${\pmb A}$ by a scalar $\lambda,$ $det({\pmb B}) = \lambda det({\pmb A})$

(2) If B is obtained by interchanging two rows or columns in A, det(B) = det(A)

(3) $\det(\mathbf{A}^T) = \det(\mathbf{A})$

(4) $B_{n\times n}$ and $A_{n\times n} \Rightarrow det(AB) = det(A)det(B)$

Inverse

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Rightarrow \mathbf{A}^{-1} = \frac{\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}}{\det(\mathbf{A})}$$

$$AA^{-1} = A^{-1}A = I$$

If $\boldsymbol{A}_{(m \times n)}$ and $\boldsymbol{B}_{(m \times n)}$ are both invertible:

$$(AB)^{-1} = B^{-1}A^{-1}$$

If \boldsymbol{A} is invertible:

• $A^{-1} = \frac{adj(A)}{det(A)}$

• $det(\mathbf{A}^{-1}) = \frac{1}{det(\mathbf{A})}$

Invertability

$$det(\mathbf{A}) = \begin{cases} 0, & \text{singular} \Rightarrow \text{not invertible} \\ \text{else}, & \text{nonsingular} \Rightarrow \text{invertible} \end{cases}$$

SVD Matrix A is invertible iff all its singular values are non-zero.

$$A = U \Sigma V^T$$

$$\Sigma = U^T A V$$

$$\Sigma^{-1} = V^T A^{-1} U$$

Quadratic Forms and Positive Definitive Matrix

Quadratic Form of real, symmetric matrix $A_{n \times n}$: $x^T A x$

Necessary and sufficient conditions for A to be positive definite

- All eigenvalues of **A** are positive, or
- determinant of every principal submatrix is positive.

Quadratic form $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$	Matrix
>0 for all $x \neq 0$	positive definite
≥ 0	positive semi-definite
<0	negative definite
$\neq 0$	negative semi-definite
>0 for some x and <0 for others	indefinite matrix

Properties of positive definite matrices

(1) If $A_{n\times n}$ is symmetric and positive definite, a non-singular matrix $P_{n\times n}$ can be found such that $\mathbf{A} = \mathbf{P}\mathbf{P}^T$

 $\mathbf{X}^T \mathbf{A} \mathbf{X} = \Lambda \Rightarrow A = (x \Lambda^{1/2} (X \Lambda^{1/2})^T)$ where $\Lambda = diag(\lambda_1, \dots, \lambda_n)$ is the diagonal matrix of \mathbf{A} 's eigenvalues. $\mathbf{P} = \mathbf{X} \Lambda^{1/2}$.

- (2) \boldsymbol{A} is positive definite and $\rho(\boldsymbol{P}_{n\times n}) = m \Longrightarrow \boldsymbol{P}^T \boldsymbol{A} \boldsymbol{P}$ is positive definite.
- (3) $\rho(\mathbf{A}) = n < m \Longrightarrow \mathbf{A}\mathbf{A}^T$ is positive semi-definite. (4) $\rho(\mathbf{A}) = k < min(m, n) \Longrightarrow \mathbf{A}^T \mathbf{A}$ and $\mathbf{A}\mathbf{A}^T$ are positive semi-definite.

Transformation of quadratic form to canonical form Bivariate normal distribution and variance-covariance matrix

Properties of variance-covariance matrix

Definition The matrix whose i, j element is the covariance between the i-th and the j-th elements of the random vector. Potential values are specified by joint probability distribution. Symmetric.

$$Cov[X, X] = E[(X - \mu_x)(X - \mu_x)^T] = E[XX^T] - \mu_X \mu_X^T$$
 where $\mu_x = E[X]$

Concavity/Convexity

For any $u \neq v$ in its domain and $0 < \theta < 1$,

$$\theta f(u) + (1 - \theta)f(v) \begin{cases} \leq f[\theta u + (1 - \theta)v] & \text{concave} \\ \geq f[\theta u + (1 - \theta)v] & \text{convex} \end{cases}$$

i.e. draw the line segment between f(u) and f(v) and its relative position with

If f is differentiable,

$$\theta f(v) \begin{cases} \leq f(u) + \nabla f(u)(v - u) & \text{concave} \\ \geq f(u) + \nabla f(u)(v - u) & \text{convex} \end{cases}$$

i.e. in moving from one point to another on the surface of f, the height of the destination compared to the tangent line in that direction.

Quasiconcavity / quasiconvexity

Coordinate Systems

For the equation Ax = 0 to have a nontrivial solution, the columns of A must have less than full rank.

For the equation Ax = c to have a unique solution, A must have full rank: vector c must be expressed in terms of a linear combination of the columns in A.

Eigenvalues and Eigenvectors

Matrix multiplications that change the magnitude of the vector but leaves the directions unchanged.

Definition If A is an $n \times n$ matrix, then a non-zero vector x in \mathbb{R}^n is called an eigenvector of A if Ax is a scalar multiple of x, that is

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

for some scalar λ . The scalar is called an eigenvalue and \boldsymbol{x} is an eigenvector corresponding to λ (column vector).

Characteristic equation: λ is an eigenvalue of \mathbf{A} iff $det(\lambda \mathbf{I} - \mathbf{A}) = 0$.

If A is a triangular matrix, the eigenvalues are on the main diagonal.

 $x_{n\times 1}$ is an eigenvector of $A_{n\times n}$ iff x is a non-trivil solution of $(\lambda I - A)x = 0$.

Finding eigenvalues and eigenvectors

$$\boldsymbol{A} = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

eigenvalues:

$$det(\begin{bmatrix} \lambda-3 & 0 \\ -8 & \lambda+1 \end{bmatrix}) = 0 \ \Rightarrow (\lambda-3)(\lambda+1) = 0 \Rightarrow \lambda = 3 \text{ and } \lambda = -1$$

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Solve for $(\lambda I - \mathbf{A})\mathbf{x} = \mathbf{0}$, plug in $\lambda = 3$

$$\begin{bmatrix} 0 & 0 \\ -8 & 4 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

one solution:

$$\begin{bmatrix} \frac{1}{2}t \\ t \end{bmatrix}$$

Eigenvectors cannot be **0**, but eigenvalues can be 0 (i.e. A is not invertible).

Eigenvectors corresponding to distinct eigenvalues of A are linearly independent.

If there are n linearly independent eigenvectors of $A_{n\times n}$, the matrix is diagonalizable.

Spectral Theorem: if $A_{n\times n}$ is a symmetric real matrix, then it has n orthogonal eigenvectors. Proof: all eigenvalues—roots of the characteristic polynomial of A—are real numbers.

Theorem a matrix with all real eigenvalues and n orthogonal real eigenvectors iff it is a real symmetric matrix.

- 1. Q is the orthogonal matrix of eigenvectors.
- 2. $Q^T = Q^{-1} \Rightarrow A = Q\Lambda Q^T$ is real.
- 3. $A^T = (Q^T)^T \Lambda^T Q^T$ because $Q^{TT} = Q$.
- 4. The diagonal matrix is its own transpose, so A is symmetric.

Properties of Eigenvalues

- \bullet An eigenvalue matrix A is invariant under any orthogonal transformation.
- If all its eigenvalues are positive $\Rightarrow A$ is positive definite.
- $tr(\mathbf{A}) = tr(\mathbf{A}^m) = \sum eigenvalues$ is invariant under any orthogonal transformation.
- $det(A) = \prod eigenvalues$ is invariant under any orthogonal transformation

PCA

Eigenvectors as basis Transforms the matrix into a diagonal matrix (eigenvalues). Reduce matrix multiplication in the old basis to scalar multiplication in the new basis.

Similar matrices and eigenvalue transformations: For a given matrix W, the transformation it defines can be simplified to a diagonal matrix of eigenvalues by transforming to coordinates that uses its eigenvectors as a basis.

- 1. For a given eigenvector \boldsymbol{y}_i , $W\boldsymbol{y}_i = \lambda \boldsymbol{y}_i$.
- 2. For the matrix Y with eigenvectors as columns, $WY = Y\Lambda$, where Λ is a diagonal matrix of the eigenvalues.
- 3. Pre-multiplying both sides by Y^{-1} gives $Y^{-1}WY = \Lambda$

ICA

vs. PCA: find new basis to represent the data. Different goal. Cocktail party problem with unmixing matrix $W=A^{-1}$.

Lagrange Multiplier

Goal: find a function's stationary points (derivatives = 0) several variables, subject to constraints. i.e. where the gradients points in the same direction as the constraints' gradients.

Advantages: solve optimization without explicit parameterization in terms of contraints.

Example - optimizing f(x, y, z) subject to the constraint g(x, y, z) = k:

(1) Solve the systems of equations

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$$
$$g(x, y, z) = k$$

which is equivalent to solving

$$\begin{cases} f(x) = \lambda g(x) \\ f(y) = \lambda g(y) \\ f(y) = \lambda g(y) \\ f(z) = \lambda g(z) \\ g(x, y, z) = k \end{cases}$$

(2) Plug in all solutions (x, y, z) into f(x, y, z) (3) Find the minimum/maximum, provided that they exist and $\nabla q \neq 0$.

References

- [1] Howard Anton and Chris Rorres. *Elementary Linear Algebra*. 10th ed. Wiley. 2011.
- [2] Independent Component Analysis. http://cs229.stanford.edu/notes/cs229-notes11.pdf.
- [3] https://www.cs.utexas.edu/~dana/MLClass/
- [4] https://www.cs.utexas.edu/~dana/MLClass/MT2013.pdf
- [5] https://www.cs.utexas.edu/~dana/MLClass/MT2012.pdf
- [6] https://www.cs.utexas.edu/~dana/MLClass/practice-midterm-1.pdf
- [7] https://www.cs.utexas.edu/~dana/MLClass/practice-midterm-2.pdf