Лабораторная работа 2.1.6. Эффект Джоуля-Томпсона

Калинин Даниил, Б01-110

13 мая 2022 г.

Цель работы:

- 1. определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
- 2. вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

В работе используются: трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Экспериментальная установка:

Рис. 1. Установка, на которой проводился эксперимент

Теоритическая справка:

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки (до перегородки и после неё). Пусть, для определённости, через трубку прошёл 1 моль углекислого газа; μ — его молярная масса. Молярные объёмы газа, его давления и отнесённые к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того чтобы ввести в трубку объём V_1 , над газом нужно совершить работу $A_1 = P_1V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 - \frac{\mu v_2^2}{2}\right) - \left(U_1 - \frac{\mu v_1^2}{2}\right) \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдём:

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu \left(v_2^2 - v_1^2 \right)$$
 (2)

$$\mu_{\partial - m} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_P} \tag{3}$$

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин а и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий а, и

$$\frac{\Delta T}{\Delta P} > 0$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые а)

$$\frac{\Delta T}{\Delta P} < 0$$

т.е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$)

$$T_{uns} = \frac{27}{4} T_{\kappa p.} \tag{4}$$

При температуре T_{ung} эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\partial-m} > 0$, газ охлаждается), выше T_{ung} эффект отрицателен ($\mu_{\partial-m} < 0$, газ нагревается).

Заменяя в формуле (2) U через C_V , T и PV через RT , найдём:

$$(R + C_v) (T_1 - T_2) = \mu \frac{(v_2^2 - v_1^2)}{2},$$
$$\Delta T = \frac{\mu}{2C_n} (v_2^2 - v_1^2)$$

В условиях нашего опыта расход газа Q на выходе из пористой перегородки не превышает $10 \ cm^3/c$, а диаметр трубки равен 3 мм. Поэтому

$$u_2 \le \frac{4Q}{\pi d^2} = \frac{4 \cdot 10 \ c \text{M}^3/c}{3.14 \cdot (0.3)^2 \ c \text{M}^2} \approx 140 \ c \text{M}/c$$

Скорость v_1 газа у входа в пробку относится к скорости v_2 у выхода из неё как давление P_2 относится к давлению P_1 . В нашей установке $P_1=4$ атм, а $P_2=1$ атм, поэтому

$$u_1 = \frac{P_2}{P_1} v_2 = \frac{1 \ amm}{4 \ amm} \cdot 140 \ cm/c = 35 \ cm/c$$

$$\Delta T = \frac{\mu}{2C_n} \left(v_2^2 - v_1^2 \right) = \frac{44 \cdot 10^{-3}}{2 \cdot 40} \left(1.4^2 - 0.35^2 \right) = 7 \cdot 10^{-4} \ K$$

Это изменение температуры ничтожно мало по сравнению с измеряемым эффектом (несколько градусов).

Ход работы:

- 1. Для начала запишем погрешности:
 - 1. $\sigma_p = 0.05 \ amM$.
 - 2. $\sigma_U = 0.5 \text{ M} \kappa B$.
- 2. Включаем термостат, устанавливаем температуру 22.8° С. Открываем вентиль так, чтобы избыточное давление было примерно 4 атм., ждём установления равновесия (1.5-2 минуты) записываем показания вольтметра в таблицу, далее проделываем аналогичные операции при избыточном давлении примерно 3.4, 3, 2.5, 2, результаты записываем в таблицу. Далее полученные значения напряжения переводим в значения температуры согласно таблице, указанной в описании работы.
- 3. Строим график зависимости $\Delta P(\Delta P)$, при помощи МНК находим коэффициент угла наклона графика, рассчитываем погрешность полученного значения. Проделываем действия пп.1-2 для температур в диапазоне 20-60 °C с интервалом 10-20 °C. Результаты занесем в таблицы 1, 2 и 3.

$T=22.8^{\circ}C$				
ΔP , atm.	Напряжение, мкВ.	ΔT , °C		
4	-164.00	-3.79		
3.4	-140.00	-3.23		
3	-114.00	-2.63		
2.5	-91.00	-2.10		
2	-68.00	-1.57		

Таблица 1. Изменение температуры при различных давлениях, при начальной температуре $T=22.8^{\circ}C$

- 4. По полученным данным построим графики зависимости ΔT (ΔP). Графики изображены на рисунках 2, 3 и 4.
- 5. По углу наклона графиков расчитаем коэффициент $\mu_{\partial-m}$ и погрешность его вычисления для каждой температуры, воспользовавшись формулами:

$T = 30^{\circ}C$				
ΔP , atm.	Напряжение, мкВ.	ΔT , °C		
4	-162.00	-3.98		
3.4	-135.00	-3.32		
3	-110.00	-2.70		
2.5	-88.00	-2.16		
2	-64.00	-1.57		

Таблица 2. Изменение температуры при различных давлениях, при начальной температуре $T=30^{\circ}C$

$T = 50^{\circ}C$				
ΔP , atm.	Напряжение, мкВ.	ΔT , °C		
4	-166.00	-3.99		
3.4	-136.00	-3.27		
3	-106.00	-2.55		
2.5	-82.00	-1.97		
2	-58.00	-1.39		

Таблица 3. Изменение температуры при различных давлениях, при начальной температуре $T=50^{\circ}C$

$$\mu_{\partial - m} = \frac{d(\Delta P)}{d(\Delta T)}$$
$$\varepsilon_{mu} = \sqrt{\varepsilon_u^2 + \varepsilon_P^2}$$

Результаты занесем в таблицу 4.

T, ° C .	μ , K/atm.	ε_{mu} , %
22.8	-1.13	1.73
30	-1.22	1.74
50	-1.32	1.74

Таблица 4. коэффициент $\mu_{\partial -m}$ для разных температур

- 6. Теперь построим график $\mu(1/T)$. Восстановим прямую, воспользовавшись методом МНК. График изобразим на рисунке 5
- 7. Воспользовавшись следующими формулами, рассчитаем коэффициенты в уравнении Ван-дер-Ваальса для исследуемого газа.

$$a = \frac{d(\mu_{\partial - m})}{d(1/T)} C_p \frac{R}{2} = 0.95 \frac{H \cdot M^4}{MODD^2}$$
$$b = -BC_p = 1186 \frac{cM^3}{MODD}$$
$$\varepsilon_a = \sqrt{\varepsilon_\mu^2 + \varepsilon_T^2} = 7\%$$
$$\varepsilon_b = \varepsilon_B \stackrel{us}{=} \frac{MHK}{2} 2.5\%$$

Рис. 2. График зависимости $\Delta T\left(\Delta P\right)$ для температуры $T=22.8^{\circ}C$.

Заключение:

В ходе работы были получены коэффициенты Джоуля-Томпсона при различных температурах, также была получена зависимость коэффициента Джоуля-Томпсона от температуры.

Были рассчитаны коэффициенты Ван-дер-Вальса для исследуемого газа. Отметим, что полученные значения не совпадают с табличными даже с учётом погрешности, что говорит о неприменимости в данных условиях модели газа Ван-дер-Вальса.

Рис. 3. График зависимости $\Delta T\left(\Delta P\right)$ для температуры $T=30^{\circ}C$.

Рис. 4. График зависимости $\Delta T\left(\Delta P\right)$ для температуры $T=30^{\circ}C$.

Рис. 5. График зависимости $\mu(1/T)$.