V Applications of Partial

differentiations

5.1 Maclaurin's and Taylor's series expansion in two variables

Taylor's series expansion in two variables

If f(x + h, y + k) is a given function which can be expanded into a series of positive ascending powers of h and k, then

$$f(x+h,y+k) = f(x,y) + \frac{1}{1!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right) f(x,y) + \frac{1}{2!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^2 f(x,y) + \cdots$$

$$= f(x,y) + \left[h \frac{\partial f(x,y)}{\partial x} + k \frac{\partial f(x,y)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[h^2 \frac{\partial^2 f(x,y)}{\partial x^2} + 2hk \frac{\partial^2 f(x,y)}{\partial x \partial y} + k^2 \frac{\partial^2 f(x,y)}{\partial y^2} \right] + \cdots$$

Putting x = a and y = b in the above series, we have

$$f(a+h,b+k) = f(a,b) + \left[h \frac{\partial f(a,b)}{\partial x} + k \frac{\partial f(a,b)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[h^2 \frac{\partial^2 f(a,b)}{\partial x^2} + 2hk \frac{\partial^2 f(a,b)}{\partial x \partial y} + k^2 \frac{\partial^2 f(a,b)}{\partial y^2} \right] + \cdots$$
(1)

Putting a + h = x and b + k = y in the above series, we have

$$f(x,y) = f(a,b) + \left[(x-a)\frac{\partial f(a,b)}{\partial x} + (y-b)\frac{\partial f(a,b)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[(x-a)^2 \frac{\partial^2 f(a,b)}{\partial x^2} + 2(x-a)(y-b)\frac{\partial^2 f(a,b)}{\partial x \partial y} + (y-b)^2 \frac{\partial^2 f(a,b)}{\partial y^2} \right] + \cdots$$

Maclaurin's series expansion in two variables

By replacing a, b by zeros and h, k by x, y respectively in (1), we get

$$f(x,y) = f(0,0) + \left[x \frac{\partial f(0,0)}{\partial x} + y \frac{\partial f(0,0)}{\partial y} \right]$$
$$+ \frac{1}{2!} \left[x^2 \frac{\partial^2 f(0,0)}{\partial x^2} + 2xy \frac{\partial^2 f(0,0)}{\partial x \partial y} + y^2 \frac{\partial^2 f(0,0)}{\partial y^2} \right] + \cdots$$

Tutorial:

Maclaurin's and Taylor's series expansion in two variables

Expand $f(x, y) = x^2y + 3y - 2$ in powers of (x - 1) and (y + 2) up to second degree terms.

Solution. Here $f(x, y) = x^2y + 3y - 2$, a = 1, b = -2

By Taylor's series expansion,

$$f(x,y) = f(a,b) + \left[(x-a) \frac{\partial f(a,b)}{\partial x} + (y-b) \frac{\partial f(a,b)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[(x-a)^2 \frac{\partial^2 f(a,b)}{\partial x^2} + 2(x-a)(y-b) \frac{\partial^2 f(a,b)}{\partial x \partial y} \right]$$

$$+ (y-b)^2 \frac{\partial^2 f(a,b)}{\partial y^2} + \cdots$$

$$= f(1,-2) + \left[(x-1) \frac{\partial f(1,-2)}{\partial x} + (y+2) \frac{\partial f(1,-2)}{\partial y} \right]$$

$$+ \frac{1}{2!} \left[(x-1)^2 \frac{\partial^2 f(1,-2)}{\partial x^2} + 2(x-1)(y+2) \frac{\partial^2 f(1,-2)}{\partial x \partial y} \right]$$

$$+ (y+2)^2 \frac{\partial^2 f(1,-2)}{\partial y^2} + \cdots$$

$$- - - (1)$$

$$f(x,y) = x^2y + 3y - 2$$
 $f(1,-2) = (1)^2(-2) + 3(-2) - 2$
= -2 - 6 - 2 = -10

$$\frac{\partial f(x,y)}{\partial x} = 2xy \qquad \qquad \frac{\partial f(1,-2)}{\partial x} = 2(1)(-2) = -4$$

$$\frac{\partial f(x,y)}{\partial y} = x^2 + 3$$

$$\frac{\partial f(1,-2)}{\partial y} = (1)^2 + 3 = 4$$

$$\frac{\partial^2 f(x,y)}{\partial x^2} = 2y \qquad \qquad \frac{\partial^2 f(1,-2)}{\partial x^2} = 2(-2) = 4$$

$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = 2x \qquad \qquad \frac{\partial^2 f(1,-2)}{\partial x \partial y} = 2(1) = 2$$

$$\frac{\partial^2 f(x,y)}{\partial y^2} = 0 \qquad \qquad \frac{\partial^2 f(1,-2)}{\partial y^2} = 0$$

and so on.

Putting these values in equation (1), we get

	f(x,y) = -10 + [(x-1)(-4) + (y+2)(4)]
	$+\frac{1}{2!}[(x-1)^2(-4)+2(x-1)(y+2)(2)+(y+2)^2(0)]+\cdots$
	$= -10 - 4(x - 1) + 4(y + 2) - 2(x - 1)^{2} + 2(x - 1)(y + 2) + \cdots$
2	Expand $f(x, y) = x^2y + \sin y + e^x$ in powers of $(x - 1)$ and $(y - \pi)$.
	Answer: $f(x,y) = \pi + e + (x-1)(2\pi + e) + \frac{1}{2}(x-1)^2(2\pi + e)$
	$+2(x-1)(y-\pi)+\cdots$
3	Expand $f(x, y) = e^x \log(1 + y)$ in powers of x and y.
	Answer: $f(x,y) = y + xy - \frac{y^2}{2} + \cdots$

5.2 Tangent plane and normal line to a surface

Tangent plane and normal line to a surface

Let f(x, y, z) = 0 be any surface. Then the equation of tangent plane at $P(x_0, y_0, z_0)$ is

$$(x - x_0) \left(\frac{\partial f}{\partial x}\right)_P + (y - y_0) \left(\frac{\partial f}{\partial y}\right)_P + (z - z_0) \left(\frac{\partial f}{\partial z}\right)_P = 0$$

and equation of normal line at $P(x_0, y_0, z_0)$ is

$$\frac{x - x_0}{\left(\frac{\partial f}{\partial x}\right)_P} = \frac{y - y_0}{\left(\frac{\partial f}{\partial y}\right)_P} = \frac{z - z_0}{\left(\frac{\partial f}{\partial z}\right)_P}.$$

Tutorial:

Tangent plane and normal line to a surface

1	Find the equation of tangent plane and normal line to the surface						
	$x^2 + 2y^2 + 3z^2 = 12$ at the point $(1, 2, -1)$.						
	Solution. Let $f(x, y, z) = x^2 + 2y^2 + 3z^2 - 12$. Then $\frac{\partial f}{\partial x} = 2x$, $\frac{\partial f}{\partial y} = 4y$, $\frac{\partial f}{\partial z} = 6z$.						
	At point $(1, 2, -1)$, $\frac{\partial f}{\partial x} = 2$, $\frac{\partial f}{\partial y} = 8$, $\frac{\partial f}{\partial z} = -6$.						
	\therefore The equation of the tangent plane at $(1, 2, -1)$ is						
	2(x-1) + 8(y-2) - 6(z+1) = 0						
	$\Rightarrow 2x + 8y - 6z - 24 = 0$						
	$\Rightarrow x + 4y - 3z = 12$						
	and the equation of the normal line at $(1, 2, -1)$ is						
	$\frac{x-1}{2} = \frac{y-2}{8} = \frac{z+1}{-6} \Rightarrow \frac{x-1}{1} = \frac{y-2}{4} = \frac{z+1}{-3}.$						
	$\frac{}{2} = \frac{}{8} = \frac{}{-6} \Rightarrow \frac{}{1} = \frac{}{4} = \frac{}{-3}.$						
2	Find the equation of tangent plane and normal line to the surface						
	xyz = 6 at the point (1,2,3).						
	<u>l</u>						

	Answer: $6x + 3y + 2z = 18, \frac{x-1}{6} = \frac{y-2}{3} = \frac{z-3}{2}.$
3	Find the equation of tangent plane and normal line to the surface
	$z = \sqrt{21 - x^2 - y^2}$ at the point $(1, 4, -2)$.
	Answer: $x + 4y - 2z = 21$, $\frac{x-1}{1} = \frac{y-4}{4} = \frac{z+2}{-2}$.

5.3 Maxima and Minima

Maxima and Minima

Working Rules to Find Extremum (Maximum and Minimum) Values

- 1. Find out $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y^2}$.
- 2. Solve the equations $\frac{\partial f}{\partial x} = 0$, $\frac{\partial f}{\partial y} = 0$ for x and y. Let (a_i, b_i) be solutions. (a_i, b_i) are known as stationary points.
- 3. Find the value of $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$, $t = \frac{\partial^2 f}{\partial y^2}$ at the point (a_i, b_i) obtained in 2.
- 4. If $rt s^2 > 0$ and
 - a) r < 0, then f(x, y) has a maximum value at (a_i, b_i) .
 - b) r > 0, then f(x, y) has a minimum value at (a_i, b_i) .
- 5. If $rt s^2 < 0$, then f(x, y) has neither maximum value nor minimum value at these points. Such points are called saddle points.
- 6. If $rt s^2 = 0$, then we can't say about maximum value or minimum value.

For examples,

(1) $f(x,y) = x^2 + y^2$ has a minimum at (0,0).

We are given that $f(x, y) = x^2 + y^2$.

$$\therefore \frac{\partial f}{\partial x} = 2x, \frac{\partial f}{\partial y} = 2y, r = \frac{\partial^2 f}{\partial x^2} = 2, s = \frac{\partial^2 f}{\partial x \partial y} = 0, t = \frac{\partial^2 f}{\partial y^2} = 2.$$

For stationary points,

$$\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = 0$$

$$\Rightarrow 2x = 0, 2y = 0$$

$$\Rightarrow x = 0, y = 0$$

The stationary point is (0,0).

point	r	S	t	$rt-s^2$	conclusion
(0,0)	2	0	2	4	minimum

(2) $f(x,y) = 1 - x^2 - y^2$ has a maximum at (0,0).

We are given that $f(x, y) = x^2 + y^2$.

$$\therefore \frac{\partial f}{\partial x} = -2x, \frac{\partial f}{\partial y} = -2y, r = \frac{\partial^2 f}{\partial x^2} = -2, s = \frac{\partial^2 f}{\partial x \partial y} = 0, t = \frac{\partial^2 f}{\partial y^2} = -2.$$

For stationary points,

$$\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = 0$$

$$\Rightarrow 2x = 0, 2y = 0$$

$$\Rightarrow x = 0, y = 0$$

The stationary point is (0,0).

point	r	S	t	$rt-s^2$	conclusion
(0,0)	-2	0	-2	4	maximum

(3) $f(x,y) = x^2 - y^2$ has a saddle point at (0,0).

We are given that $f(x, y) = x^2 + y^2$.

$$\therefore \frac{\partial f}{\partial x} = 2x, \frac{\partial f}{\partial y} = -2y, r = \frac{\partial^2 f}{\partial x^2} = 2, s = \frac{\partial^2 f}{\partial x \partial y} = 0, t = \frac{\partial^2 f}{\partial y^2} = -2.$$

For stationary points,

$$\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = 0$$

$$\Rightarrow 2x = 0, 2y = 0$$

$$\Rightarrow x = 0, y = 0$$

The stationary point is (0,0).

point	r	S	t	$rt - s^2$	conclusion
(0,0)	2	0	-2	-4	saddle

Tutorial:

Maxima and Minima

1 Find the extreme values of the function

$$f(x,y) = xy(a-x-y), a > 0.$$

Solution. We are given that f(x, y) = xy(a - x - y), a > 0.

$$\therefore \frac{\partial f}{\partial x} = ay - 2xy - y^2, \frac{\partial f}{\partial y} = ax - x^2 - 2xy,$$

$$r = \frac{\partial^2 f}{\partial x^2} = -2y$$
, $s = \frac{\partial^2 f}{\partial x \partial y} = a - 2x - 2y$ and $t = \frac{\partial^2 f}{\partial y^2} = -2x$.

For extreme values,

$$\frac{\partial f}{\partial x} = 0$$

$$\Rightarrow ay - 2xy - y^2 = 0$$

$$\Rightarrow y(a - 2x - y) = 0$$

$$\Rightarrow y = 0, a - 2x - y = 0$$

and

$$\frac{\partial f}{\partial y} = 0$$

$$\Rightarrow ax - x^2 - 2xy = 0$$

$$\Rightarrow x(a - x - 2y) = 0$$

$$\Rightarrow x = 0, a - x - 2y = 0.$$

 \therefore The stationary points are (0,0), (a,0), (0,a), $(\frac{a}{3},\frac{a}{3})$.

Ī	Stationary	r = -2y	s = a -	t = -2x	$rt - s^2$	Conclusion
	points		2x - 2y			(or Nature of
						point)
	(0,0)	0	а	0	$-a^2 < 0$	saddle
	(a, 0)	0	<u></u> -а	-2 <i>a</i>	$-a^2 < 0$	saddle
-	(0, a)	-2 <i>a</i>	-a	0	$-a^2 < 0$	saddle
	$\left(\frac{a}{3}, \frac{a}{3}\right)$	$-\frac{2a}{3} < 0$	$-\frac{a}{3}$	$-\frac{2a}{3}$	$\frac{a^2}{3} > 0$	maximum

Hence, f(x, y) is maximum at $\left(\frac{a}{3}, \frac{a}{3}\right)$, $f\left(\frac{a}{3}, \frac{a}{3}\right) = \frac{a^3}{27}$.

2 Find the maximum and minimum values of the function

$$f(x,y) = x^3 + y^3 - 63(x+y) + 12xy.$$

Answer: f(x,y) is maximum at (-7,-7), f(-7,-7) = 784 and minimum at (3,3), f(3,3) = -216.

3 Find the extreme values of the function

$$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72.$$

Answer: f(x,y) is maximum at (4,0), f(4,0) = 112 and minimum at (6,0), f(6,0) = 108.

5.4 Lagrange's method of multiplier

Lagrange's method of multiplier

Working Rules for Lagrange's Method of Undetermined Multipliers

- 1. Write the function to be maximised or minimised u = f(x, y, z) with the condition g(x, y, z) = 0.
- 2. Consider the Lagrange's function $F(x, y, z) = f(x, y, z) + \lambda g(x, y, z)$, where λ is a Lagrange's multiplier.
- 3. For stationary values,

$$\frac{\partial F}{\partial x} = 0 \ i. \ e. \frac{\partial f}{\partial x} + \lambda \frac{\partial g}{\partial x} = 0$$
$$\frac{\partial F}{\partial y} = 0 \ i. \ e. \frac{\partial f}{\partial y} + \lambda \frac{\partial g}{\partial y} = 0$$
$$\frac{\partial F}{\partial z} = 0 \ i. \ e. \frac{\partial f}{\partial z} + \lambda \frac{\partial g}{\partial z} = 0$$

- 4. Solving these three equations along with g(x, y, z) = 0 and find a solution of x_0, y_0, z_0 , and λ .
- 5. We find the extreme value of u = f(x, y, z) by using x_0, y_0, z_0 .

For example, the minimum value of $f(x,y) = x^2 + y^2$ such that x + y = 1 is $\frac{1}{2}$.

Here
$$f(x, y) = x^2 + y^2$$
 and $g(x, y) = x + y - 1$.

Consider the Lagrange's function

$$F(x,y) = f(x,y) + \lambda g(x,y)$$

= $(x^2 + y^2) + \lambda (x + y - 1)$

For stationary values,

$$\frac{\partial F}{\partial x} = 0 \Rightarrow 2x + \lambda = 0 \Rightarrow \lambda = -2x - - - (1)$$

$$\frac{\partial F}{\partial y} = 0 \Rightarrow 2y + \lambda = 0 \Rightarrow \lambda = -2y - - - (2)$$

From (1) and (2), we have

$$x = y$$

But
$$x + y = 1 \Rightarrow x + x = 1 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}$$
 and $y = \frac{1}{2}$.

Hence, the minimum value of $f(x,y) = x^2 + y^2 = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$.

Tutorial:

Lagrange's method of multiplier

Find the dimensions of the rectangular box of maximum capacity whose surface area is given when box is open at top.

Solution. Let x, y, z be the dimensions of the rectangular box, where x > 0, y > 0, z > 0

0. Thus surface area S = 2(xz + yz) + xy and the volume

V = xyz which is to be maximized.

Here f(x, y, z) = xyz and g(x, y, z) = 2(xz + yz) + xy - S.

Consider the Lagrange's function

$$F(x, y, z) = f(x, y, z) + \lambda g(x, y, z)$$
$$= xyz + \lambda(2xz + 2yz + xy - S)$$

For stationary values,

$$\frac{\partial F}{\partial x} = 0 \Rightarrow yz + \lambda(2z + y) = 0 \Rightarrow \lambda = -\frac{yz}{2z + y} \qquad ---(1)$$

$$\frac{\partial F}{\partial y} = 0 \Rightarrow xz + \lambda(2z + x) = 0 \Rightarrow \lambda = -\frac{xz}{2z + x} \qquad ---(2)$$

$$\frac{\partial F}{\partial z} = 0 \Rightarrow xy + \lambda(2x + 2y) = 0 \Rightarrow \lambda = -\frac{xy}{2x + 2y} - --- (3)$$

From (1) and (2), we have

$$-\frac{yz}{2z+y} = -\frac{xz}{2z+x} \Rightarrow 2yz + xy = 2xz + xy \Rightarrow 2yz = 2xz \Rightarrow y = x$$

From (1) and (3), we have

$$-\frac{yz}{2z+y} = -\frac{xy}{2x+2y} \Rightarrow 2xz + 2yz = 2xz + xy \Rightarrow 2yz = xy \Rightarrow 2z = x$$

But

$$2(xz + yz) + xy = S$$

$$\Rightarrow 2xz + 2yz + xy = S$$

$$\Rightarrow 2x\left(\frac{x}{2}\right) + 2x\left(\frac{x}{2}\right) + x \cdot x = S$$

$$\Rightarrow 3x^2 = S$$

$$\Rightarrow x = \sqrt{\frac{S}{3}}.$$

	Now
	$y = \sqrt{\frac{S}{3}}$ and
	$z = \frac{1}{2} \cdot \sqrt{\frac{S}{3}}.$
	$\therefore V = xyz = \left(\sqrt{\frac{S}{3}}\right)\left(\sqrt{\frac{S}{3}}\right)\left(\frac{1}{2}\cdot\sqrt{\frac{S}{3}}\right) = \frac{1}{2}\left(\frac{S}{3}\right)^{\frac{3}{2}}.$
2	Find the minimum value of $x^2 + y^2 + z^2$ subject to $xyz = a^3$.
	Answer: $3a^2$.
3	In a triangle, find maximum value of $\cos A \cos B \cos C$, where A, B , and C are three
	angles of triangle.
	Answer: $\frac{1}{8}$.

5.5 Jacobian

Jacobian

Let u, v be functions of two variables x, y. Then Jacobian of u and v with respect to x and y is defined as

$$J = \frac{\partial(u, v)}{\partial(x, y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}.$$

Similarly, if u, v, w are functions of three variables x, y, z then Jacobian of u, v, w with respect to x, y, z is defined as

$$J = \frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{vmatrix}.$$

For examples,

(1) If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then $\frac{\partial(x,y)}{\partial(r,\theta)} = r$.

(2) If
$$x = r \cos \theta$$
, $y = r \sin \theta$, $z = z$, then $\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = r$.

Tutorial:

Jacobian

1	If $x = u^2 + v^2$ and $y = uv$, then find $\frac{\partial(x,y)}{\partial(u,v)}$.
	Solution. We are given that $x = u^2 + v^2$ and $y = uv$.
	$\therefore \frac{\partial x}{\partial u} = 2u, \frac{\partial x}{\partial v} = 2v, \frac{\partial y}{\partial u} = v, \text{ and } \frac{\partial y}{\partial v} = u.$
	Now,
2	If $u = x + y + z$, $v = x^2 + y^2 + z^2$, and $w = x^3 + y^3 + z^3$, then find $\frac{\partial(u, v, w)}{\partial(x, v, z)}$.
	Answer: $6(-x^2y + x^2z + xy^2 - y^2z - xz^2 + yz^2)$.
3	If $u = x + y + z$, $v = xyz$, and $w = 2x + 2y + 2z$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.
	Answer:0.

5.6 Errors and approximations

Errors and approximations

If δf is the error in f, then

- 1. $\frac{\delta f}{f}$ is known as relative error in f.
- 2. $\frac{\delta f}{f} \times 100$ is known as percentage error in f.

Here,
$$\delta f = \frac{\partial f}{\partial x} \cdot \delta x + \frac{\partial f}{\partial y} \cdot \delta y$$
.

Tutorial:

Errors and approximations

Find the greatest percentage error in calculating the area of a rectangle when an error of 3% made in measuring each of its sides.

Solution. Let x and y be the sides of the rectangle and A be its area.

Here
$$A = xy$$
, then $\frac{\partial A}{\partial x} = y$, and $\frac{\partial A}{\partial y} = x$.

Now,

$$\delta A = \frac{\partial A}{\partial x} \cdot \delta x + \frac{\partial A}{\partial y} \cdot \delta y$$

$$\Rightarrow \delta A = y \cdot \delta x + x \cdot \delta y$$

$$\Rightarrow \frac{1}{A} \delta A = \frac{1}{x} \delta x + \frac{1}{y} \delta y$$

$$\Rightarrow \frac{\delta A}{A} \times 100 = \frac{\delta x}{x} \times 100 + \frac{\delta y}{y} \times 100.$$

Putting
$$\frac{\delta x}{x} \times 100 = \frac{\delta y}{y} \times 100 = 3$$
, we have

$$\frac{\delta A}{A} \times 100 = 3 + 3 = 6.$$

Hence, percentage error in calculating area is 6%.

The period T of a simple pendulum is $T = 2\pi \sqrt{\frac{l}{g}}$. Find the maximum percentage error

in T due to possible errors up to 1% in l and 2.5% in g.

Answer: 1.75%.

If the fiber glass sheet costs Rs. 45 per square feet. Find approximate the greatest cost of fiber glass sheet 3.012 feet wide and 5.982 feet long.

Answer: 810.81 Rs.

Find an approximate value of $\sqrt{(299)^2 + (399)^2}$ using the theory of approximations.

Solution. Let
$$z = \sqrt{x^2 + y^2} = (x^2 + y^2)^{\frac{1}{2}}$$
, then $\frac{\partial z}{\partial x} = \frac{x}{(x^2 + y^2)^{\frac{1}{2}}}$, $\frac{\partial z}{\partial y} = \frac{y}{(x^2 + y^2)^{\frac{1}{2}}}$

Now,

$$\delta z = \frac{\partial z}{\partial x} \cdot \delta x + \frac{\partial z}{\partial y} \cdot \delta y$$

$$\Rightarrow \delta z = \frac{x}{(x^2 + y^2)^{\frac{1}{2}}} \cdot \delta x + \frac{y}{(x^2 + y^2)^{\frac{1}{2}}} \cdot \delta y$$

Putting x = 300, y = 400, $\delta x = (299 - 300) = -1$, $\delta y = (399 - 400) = -1$,

 $x^2 + y^2 = 250000$, we have

$$\delta z = \left(\frac{300}{500}\right)(-1) + \left(\frac{400}{500}\right)(-1) = -\frac{3}{5} - \frac{4}{5} = -\frac{7}{5} = -1.4$$

Approximate value = $z + \delta z = (250000)^{\frac{1}{2}} - 1.4 = 500 - 1.4 = 498.6$.

5	Find an approximate value of $\sqrt[4]{(5.1)^2(2.9) + (2.9)^2}$ using the theory of
	approximations.
	Answer: 3.0027.
6	Find an approximate value of $\sin 44^{\circ} \cdot \cos 62^{\circ}$ using the theory of approximations.
	Answer: $\frac{1}{2\sqrt{2}} - \frac{\pi}{180} \left(\frac{1+2\sqrt{3}}{2\sqrt{2}} \right)$.