Maximum satisfiability

Pavle Veličković

Uvod

- Maximum satisfiability (MAXSAT) je problem zadovoljivanja naviše klauza u iskaznoj formuli
- Parametri problema su U (iskazne promenljive) i
 C (klauze iskazne formule u CNF).
- Zadatak problema je odrediti koliko se najviše klauza može zadovoljiti
- Problem je NP-težak i APX-kompletan

Opis rešenja

- Korišćen je optimizacioni algoritam simuliranog kaljenja
- U je predstavljen kao lista boolean vrednosti
- C je lista listi integer vrednosti, svaka integer vrednost je iskazna promenljiva ako je pozitivna, negacija iskazne promenljive ako je negativna. Vrednosti se učitavaju iz DIMACS fajla
- Funkcija cilja je broj klauza zadovoljen nekom valuacijom

Opis rešenja

- Algoritam prolazi kroz iteracije i u svakoj menja vrednost jednoj iskaznoj promenljivoj, računa funkciju cilja i pamti ako je rezultat trenutno u lokalnom ili globalnom maksimumu
- Ako nije, postoji verovatnoća koja se smanjuje kroz iteracije da se ipak nastavi iz te vrednosti
- U suprotnom se izmena poništava i prelazi se u sledeću iteraciju

Opis rešenja

- Algoritam vraća valuaciju koja je zadovoljila najviše klauza i broj zadovoljenih klauza u tom slučaju
- Rezultati su upoređivani sa rezultatima brute force algoritma, ako se zaustavljao u razumnom vremenu

Eksperimentalni rezultati

IUI, ICI	rezultat	200 iteracija	500 iteracija	1000 iteracija	2000 iteracija	4000 iteracija	6000 iteracija	8000 iteracija	brute force
10, 80	test primer 1	79/80	79/80	79/80	79/80	79/80	79/80	79/80	79/80
12, 90	test primer 2	87/90 - 90/90	90/90	90/90	90/90	90/90	90/90	90/90	90/90
8, 50	test primer 3	48/50	48/50	48/50	48/50	48/50	48/50	48/50	48/50
13, 2400	test primer 4	2232/2400 - 2242/2400	2239/2400 - 2242/2400	2239/2400 - 2242/2400	2242/2400	2242/2400	2242/2400	2242/2400	2242/2400
40, 1600	test primer 5	1579/1600 - 1586/1600	1585/1600 - 1589/1600	1586/1600 - 1590/1600	1588/1600 - 1590/1600	1588/1600 - 1590/1600	1589/1600 - 1590/1600	1588/1600 - 1590/1600	? (2^40 mogucih valuacija)
30, 2000	test primer 6	1961/2000 - 1969/2000	1967/2000 - 1971/2000	1968/2000 - 1971/2000	1970/2000 - 1971/2000	1971/2000	1971/2000	1971/2000	? (2^30 mogucih valuacija)
20, 4000	test primer 7	3848/4000 - 3854/4000	3852/4000 - 3854/4000	3852/4000 - 3854/4000	3854/4000	3854/4000	3854/4000	3854/4000	3854/4000
10, 1000	test primer 8	925/1000 - 929/1000	926/1000 - 929/1000	929/1000	929/1000	929/1000	929/1000	929/1000	929/1000

U , C	vreme izvrsavanja	200 iteracija	500 iteracija	1000 iteracija	2000 iteracija	4000 iteracija	6000 iteracija	8000 iteracija	brute force
10, 80	test primer 1	0.0s	0.0s	0.0s	0.0s	0.1s	0.1s	0.2s	0.0s
12, 90	test primer 2	0.0s	0.0s	0.0s	0.1s	0.1s	0.2s	0.3s	0.1s
8, 50	test primer 3	0.0s	0.0s	0.0s	0.0s	0.0s	0.1s	0.1s	0.0s
13, 2400	test primer 4	0.2s - 0.3s	0.5s - 0.7s	1.1s - 1.5s	2.1s - 2.8s	4.3s - 5.5s	6.3s - 9.0s	8.5s - 10.6s	9.4s
40, 1600	test primer 5	0.3s - 0.5s	0.9s - 1.2s	1.8s - 2.4s	3.6s - 4.8s	7.3s - 9.1s	11.2s - 15.0s	15.9s - 18.3s	predugo
30, 2000	test primer 6	0.3s - 0.4s	0.9s - 1.3s	1.8s - 2.3s	3.7s - 4.5s	7.4s - 9.1s	12.1s - 13.4s	14.9s - 17.6s	predugo
20, 4000	test primer 7	0.5s - 0.6s	1.3s - 1.6s	2.5s - 3.3s	5.2s - 6.6s	10.7s - 12.1s	16.7s - 19.5s	23.0s - 26.6s	52m 8.7s
10, 1000	test primer 8	0.0s - 0.1s	0.2s	0.3s - 0.5s	0.7s - 1.1s	1.4s - 1.8s	2.1s - 2.9s	2.9s - 3.9s	0.3s

Zaključak

- Simulirano kaljenje je dobar pristup rešavanju ovog problema jer može sa dovoljno iteracija da daje dovoljno dobro rešenje i da se izvrši u relativno kratkom vremenu
- Bolji je od naivnijih pristupa ali se može unapređivati

Literatura

- https://www.csc.kth.se/~viggo/wwwcompendium/node225.html
- https://math.mit.edu/~goemans/18434S06/max-sat-phil.pdf
- https://www.baeldung.com/cs/simulated-annealing
- https://arxiv.org/pdf/2111.01551.pdf