Федеральное агентство по образованию Центральный оргкомитет Всероссийских олимпиад

XXXVII Всероссийская олимпиада школьников по физике

Заключительный этап

Теоретический тур

Методическое пособие

Воронеж, 2002/2003 уч.г.

Комплект задач подготовлен методической комиссией по физике Центрального оргкомитета Всероссийских олимпиад школьников Министерства образования и науки Российской Федерации Телефоны: (095)~408-80-77,~408-86-95.

E-mail: fizolimp@mail.ru (с припиской antispam к теме письма)

Авторы задач

9 класс	10 класс	11 класс
1. Козел С.	1. Козел С.	1. Козел С.
2. Чивилев В.	2. Александров Д.	2. Муравьев В.
3. Козел С.	3. Козел С.	3. Александров Д.
4. Козел С.	4. Ефимов В.	4. Муравьев В.
	5. Поллесный Л.	5. Поллесный Л.

Общая редакция — Козел С., Слободянин В., Чудновский А.

Оформление и верстка — Чудновский А., Ильин А., Михайлов В.

При подготовке оригинал-макета использовалась издательская система IATEX $2_{\mathcal{E}}$. © Авторский коллектив Подписано в печать 14 марта 2005 г. в 22:42.

141700, Московская область, г.Долгопрудный Московский физико-технический институт

9 класс 1 **У**панцюции

Задача 1. Удаляющийся камень

Мальчик бросил камень под некоторым углом α к горизонту. Пренебрегая сопротивлением воздуха, определите, при каких значениях угла бросания α камень все время (до падения на землю) будет удаляться от мальчика.

Задача 2. Поплавок в центрифуге

На горизонтальной платформе стоит сосуд с водой. В сосуде закреплен тонкий стержень AB, наклоненный к горизонту под углом α (рис. 1). Шар радиусом R может скользить без трения вдоль стержня, проходящего через его центр. Плотность шара ρ_0 , плотность воды ρ ($\rho_0 < \rho$). При вращении системы с постоянной угловой скоростью вокруг вертикальной оси OO', проходящей через нижний конец A стержня, центр шара устанавливается на расстоянии l от этого конца.

- 1. С какой силой N шар действует на стержень?
 - 2. Найдите угловую скорость ω вращения платформы.
- 3. При какой минимальной угловой скорости вращения ω_{min} шар «утонет» и окажется на дне сосуда?

Воды достаточно, так что шар всегда полностью погружен в воду.

Задача 3. Байкальские морозы

На поверхности озера Байкал зимой намерзает толстый слой льда. Предположим, что где-то в декабре толщина льда составляет x=80 см. Температура воздуха $t=-40^{\circ}{\rm C}.$ С какой скоростью v (в мм/час) увеличивается в этот период толщина слоя льда?

Для льда: плотность $\rho_{\pi}=0.92~{\rm r/cm^3}$, удельная теплота плавления $\lambda=3.3\cdot 10^5~{\rm Дж/кr}$, коэффициент теплопроводности $k=2.2~{\rm Br/(m\cdot ^\circ C)}$.

Примечание. Количество теплоты, проходящее в единицу времени через слой вещества площадью S и толщиной h при разнице температур Δt между поверхностями, определяется соотношением $q=kS\Delta t/h$. Теплоемкость воды и льда не учитывать.

XXXVII Всероссийская олимпиада школьников по физике

Задача 4. Нагревание и остывание проволоки

Цилиндрический проводник площадью поперечного сечения $S=0,1~{\rm cm}^2$ подключают к источнику постоянного тока. Температура проводника начинает увеличиваться. Как видно из графика зависимости температуры t от времени τ (рис. 2), через время $\tau_1=10$ мин температура проводника становится равной $t_1=90^{\circ}{\rm C}$.

- 1. За какое время τ_0 температура проводника достигла бы значения t_1 , если бы проводник был окружен теплонепроницаемой оболочкой?
 - 2. Найдите силу тока I в проводнике.
- 3. Предположим, что по истечении времени $\tau_2 = 5$ мин проводник был отключен от источника тока и начал остывать. Определите, за какое приблизительно время $\Delta \tau$ температура проводника изменится от 70° C до 65° C?

Для материала проводника: удельная теплоемкость $c=390~\rm{Дж/(kr\cdot^{\circ}C)},$ плотность $\rho=8.9\cdot10^3~\rm{kr/m^3},$ удельное сопротивление $\rho_{\rm M}=1.75\cdot10^{-8}~\rm{Om\cdot m}$ и практически не зависит от температуры.

В древние времена люди считали Землю плоской. Вообразим, что Земля действительно не является шаром радиуса $R=6370~{\rm km}$, а представляет собой безграничный плоский слой толщины H. Предполагая, что плотность Земли постоянна и одинакова в обеих моделях, определите, при какой толщине «плоской» Земли ускорение свободного падения на ее поверхности оказалось бы таким же, как и на поверхности реальной Земли.

Примечание. Можно использовать аналогию между электростатическим и гравитационным полями.

Задача 2. Ковер-самокат

Горка представляет собой плавный переход между двумя плоскими поверхностями, отстоящими друг от друга по высоте на h (рис. 3). На горке и плоских поверхностях достаточно часто расположены небольшие шероховатые массивные валики (расстояние

между осями соседних валиков равно l), по которым катится длинный тяжелый ковер. Определите установившуюся скорость v ковра.

Масса m валика сосредоточена на его ободе. Трением в осях валиков можно пренебречь. Первоначально валики были неподвижны. Погонная плотность ковра равна ρ . Гибкость ковра позволяет ему повторить профиль горки, но, вместе с тем, не дает переднему краю провалиться между валиками.

Задача 3. «Водородная бомба»

Водород находится в стальном сферическом контейнере высокого давления («бомбе»). Плотность стали $\rho=7.8\cdot 10^3~{\rm kr/m}^3$, предел прочности $\sigma=5\cdot 10^8~{\rm H/m}^2$. Водород из контейнера заполняет легкую растяжимую оболочку воздушного шара при неизменной температуре $T=300~{\rm K}$. Может ли этот воздушный шар поднять сферический контейнер, в котором водород находился ранее?

Универсальная газовая постоянная $R=8,3~\rm Дж/(моль\cdot K)$, молярную массу воздуха примите равной $29\cdot 10^{-3}~\rm kr/моль$.

При расчете весом водорода и оболочки шара можно пренебречь.

XXXVII Всероссийская олимпиада школьников по физике

Задача 4. Электрический ток вместо лопаты

В 1899 году выдающийся американский физик Роберт Вуд оригинально решил сложную техническую проблему, за что институт, в котором он работал, сразу получил премию в 200000 долларов. Придуманное им «электротаяние» широко используют и сейчас.

Однажды во время сильного мороза в проложенной под землей к дому сенатора железной трубе длиной l=100 метров на участке длиной $l_1\approx 5$ метров замерзла вода, и водопровод перестал работать. Вуд предложил подсоединить к концам трубы провода от вторичной обмотки понижающего трансформатора, и через t=10 минут после подключения из крана полилась вода. Какое примерно напряжение U было приложено к концам трубы, и какая сила тока I была в ней? Как изменилось бы время отогрева, если бы длина замерзшего участка была в 2 раза больше?

Диаметры трубы: внутренний $D_1=20$ мм, наружный $D_2=26$ мм. Для железа: плотность $d_{\mathbf{ж}}=7.8$ г/см³, удельная теплоемкость железа $c_{\mathbf{ж}}=0.45$ кДж/(кг·К), удельное сопротивление $\rho_{\mathbf{ж}}=0.1$ Ом·мм²/м. Для льда: плотность $d_{\mathbf{n}}=0.9$ г/см³, удельная теплоемкость $c_{\mathbf{n}}=2.1$ кДж/(кг·К), удельная теплота плавления $\lambda=340$ кДж/кг.

Примечание. Для упрощения решения можно считать, что снаружи трубы также находится замерзшая вода.

Задача 5. Мигалка

В цепи (рис. 4) переключатель K находится в среднем (разомкнутом) положении, а конденсаторы C_1 и C_2 одинаковой емкости C незаряжены. В некоторый момент переключатель замыкают в одно из положений. После установления равновесия в цепи его перебрасывают в противоположное положение. Найдите отношение Q_{L_1}/Q_{L_2} теплот, выделившихся на лампах накаливания L_1 и L_2 после многократного повторения переключений. Источники тока с ЭДС \mathcal{E} , $2\mathcal{E}$ и $3\mathcal{E}$ считать идеальными.

11 класс

Задача 1. Шарнирная конструкция

Конструкция (рис. 5) состоит из трех одинаковых маленьких шариков массой m каждый, шарнирно соединенных легкими спицами длины *l*. В положении равновесия конструкция удерживается вертикальной пружиной жесткости k и имеет форму квадрата.

- 1. Найдите длину l_0 недеформированной пружины.
- 2. Пусть нижний шарик смещен по вертикали (вверх или вниз) на малое (по сравнению с l) расстояние x. Определите изменение $\Delta E_{\text{пот}}$ потенциальной энергии системы.
- 3. Пусть нижнему шарику сообщена вертикально направленная скорость v. Определите кинетическую энергию $\Delta E_{\text{кин}}$ системы.

Рис. 5

4. Определите период T малых вертикальных колебаний нижнего шарика.

Задача 2. Теплоемкость газа

С молем идеального газа произвели замкнутый цикл (рис. 6), где 3-1 адиабата. Определите максимальное давление газа за цикл p_{max} , его теплоемкость C_V при постоянном объеме и вычислите (с точностью большей, чем дает прямое измерение по графику) «тангенс» угла (K/M^3) между изотермой и адиабатой в точке 1 на (T,V) плоскости.

Задача 3. Глюк продолжает исследования

Изучая некоторое вещество, экспериментатор Глюк обнаружил, что для небольшого изменения объема ΔV требуется увеличить давление на малую величину Δp_1 , если это делать изотермически, и на малую величину Δp_2 , если сжатие производить адиабатически. Кроме того, Глюк измерил удельные теплоемкости C_v при постоянном объеме и C_p при постоянном давлении в той же точке. К сожалению, результат последнего измерения (C_p) был утрачен. Помогите Глюку по результатам первых трех измерений восстановить значение C_n . Рассмотрите два случая:

- 1. исследуемое вещество было идеальным газом;
- 2. исследовалось вешество с неизвестным уравнением состояния.

Задача 4. Заряженная частица в магнитном поле

В неоднородном магнитном поле с индукцией $B = \alpha x \ (x > 0)$ (рис. 7) стартует частина массой mи зарядом q с начальной скоростью v, направленной вдоль оси Ox. Определите максимальное смещение x_{max} частицы вдоль оси x.

Задача 5. Нелинейный элемент

В цепи (рис. 8) электродвижущая сила источника $\mathscr{E}=12$ $\ddot{\mathrm{B}}$, сопротивление резистора R=4 Ом, индуктивность катушки $L = 0.5 \; \Gamma$ н, а нелинейный элемент $\dot{9}$ имеет известную вольт-амперную характеристику I(U) (рис. 9). В начальный момент ключ K разомкнут, ток в катушке не течет.

- 1. Какое количество теплоты Q_2 выделится на нелинейном элементе после замыкания ключа?
- 2. Построить качественный график зависимости тока в катушке от времени. Внутренним сопротивлением источника пренебречь. Укажите характерные точки на графике.

Возможные решения 9 класс

Задача 1. Удаляющийся камень

Движение камня описывается следующими соотношениями:

$$x = v_0 t \cos \alpha, \qquad y = v_0 t \sin \alpha - \frac{g}{2} t^2,$$

$$v_x = v_0 \cos \alpha, \qquad v_y = v_0 \sin \alpha - gt.$$

Камень удалится на максимальное расстояние от места бросания, когда вектор скорости будет перпендикулярен радиусу-вектору \vec{r} . При этом должно выполнено соотношение (рис. 10):

$$\frac{y}{x} = -\frac{v_x}{v_y}.$$

Рис. 10

Подставляя сюда выражения для $x,\,y,\,v_x$ и $v_y,$ получим квадратное уравнение относительно времени t:

$$t^2 - \frac{3v_0 \sin \alpha}{g}t + \frac{2v_0^2}{g^2} = 0.$$

Если дискриминант этого уравнения отрицателен, то не существует такого момента времени t, когда векторы \vec{v} и \vec{r} перпендикулярны друг другу, а следовательно, брошенный камень будет все время удаляться от места бросания.

$$\left(\frac{3v_0\sin\alpha}{g}\right)^2<4\left(\frac{2v_0^2}{g^2}\right),\quad\text{следовательно},\quad\sin\alpha<\sqrt{\frac{8}{9}}\approx0,94,\qquad\alpha<70,5^\circ.$$

Задача 2. Поплавок в центрифуге

Пусть объем шара равен V, его масса $\rho_0 V$. На шар действуют сила тяжести $\rho_0 V g$, сила N со стороны стержня, сила Архимеда, которую для удобства разложим на вертикальную и горизонтальную составляющие F_{Ax} и F_{Ay} (рис. 11). Ускорение шара направлено к оси вращения и равно $a=\omega^2 l\cos\alpha$. Запишем уравнения движения для шара в проекциях на оси x и y:

$$F_{Ax} - N \sin \alpha = \rho_0 V a$$

 $F_{Ay} - \rho_0 V g - N \cos \alpha = 0.$

Рис. 11

Мысленно удалим шар и заполним объем, который он занимал, водой. Водяной шар должен находиться в равновесии внутри жидкости и вращаться

XXXVII Всероссийская олимпиада школьников по физике

вместе с ней. Сила Архимеда $F_{\rm A}$, действующая на водяной шар, и ее проекции на оси x и y остаются прежними, а сила, действующая на водяной шар со стороны стержня, равна нулю. Запишем для водяного шара уравнения движения в проекциях на оси x и y:

$$F_{Ax} = \rho V a, \qquad F_{Ay} - \rho V g = 0.$$

Из записанных уравнений находим силу N и угловую скорость ω :

$$N = \frac{(\rho - \rho_0)Vg}{\cos \alpha}, \qquad \omega = \sqrt{\frac{g \sin \alpha}{l \cos^2 \alpha}} = \sqrt{\frac{g \operatorname{tg} \alpha}{l \cos \alpha}}.$$

C такой же силой N шар действует на стержень.

Из анализа полученной зависимости между ω и l следует, что с увеличением ω расстояние l уменьшается. Шар «утонет» при угловой скорости, соответствующей $l=R/\sin\alpha$:

$$\omega_{\min} = \operatorname{tg} \alpha \sqrt{\frac{g}{R}}.$$

Задача 3. Байкальские морозы

Количество теплоты, передаваемое воздуху через лед за малое время Δau :

$$\Delta Q = k \frac{t_0 - t}{x} S \Delta \tau,$$

где S — выделенная площадь поверхности льда, $t_0=0$ °C — температура воды подо льдом.

При замерзании слоя Δx (рис. 12) выделяется количество теплоты

$$\Delta Q_1 = S \Delta x \rho_{\pi} \cdot \lambda.$$

Соответствующее условию задачи приближенное уравнение теплового баланса:

$$\Delta Q = \Delta Q_1$$
 или $k \frac{t_0 - t}{x} S \Delta \tau = S \Delta x \rho_{\pi} \lambda.$

Отсюда следует:

$$v=rac{\Delta x}{\Delta au}=krac{t_0-t}{x}\cdotrac{1}{
ho_{\pi}\lambda}=3,\!6\cdot10^{-7}\;\mathrm{m/c}pprox1,\!3\;\mathrm{mm/ч}.$$

Задача 4. Нагревание и остывание проволоки

- 1. Скорость нагревания теплоизолированного проводника можно найти по начальному участку графика $t(\tau)$, когда потерями тепла можно пренебречь. Температура теплоизолированного проводника изменялась бы линейно со временем. Значение $t=t_1=90^{\circ}\mathrm{C}$ было бы достигнуто через время $\tau_0\approx 3$ мин.
 - 2. Для начального участка графика имеем по закону Джоуля-Ленца:

$$\Delta Q = I^2 R \Delta \tau = C \Delta t = C \operatorname{tg} \alpha_1 \cdot \Delta \tau,$$

где tg $\alpha_1=\Delta t/\Delta \tau\approx 0.4^{\circ}{\rm C/c}$ — наклон начального участка графика, $C=cLS\rho$ — теплоемкость проволоки, $R=\rho_{\rm M}L/S$ — ее сопротивление, а L — ее длина.

Из этих соотношений получим
$$I = \sqrt{\frac{C}{R} \operatorname{tg} \alpha_1} = S \sqrt{\frac{c \rho \operatorname{tg} \alpha_1}{\rho_{\scriptscriptstyle \mathrm{M}}}} \approx 89 \ \mathrm{A}.$$

3. Из графика находим (рис. 13) наклон касательной при $\tau=\tau_2=5$ мин: $\lg\alpha_2\approx 0.09^{\circ}\mathrm{C/c}\approx 0.23\lg\alpha_1$. Это означает, что только 23% поступающей энергии идут на нагревание проводника, остальные 77% энергии уходят наружу. Отсюда следует, что тангенс угла α_3 наклона начального участка кривой остывания при $\tau=\tau_2$ был бы равен 0,77 tg $\alpha_1\approx 0.3^{\circ}\mathrm{C/c}$. На малом участке кривую остывания можно заменить касательной: $\Delta\tau=\Delta t/\lg\alpha_3\approx 16$ с.

10 класс Задача 1. «Плоская» Земля

Закон всемирного тяготения и закон Кулона имеют одинаковый вид:

$$F_{\text{\tiny 9,N}} = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}; \qquad F_{\text{\tiny Fp}} = G \frac{Mm}{r^2}.$$

Эти выражения позволяют установить аналогию между электрическими и «гравитационными» величинами:

$$\frac{1}{4\pi\varepsilon_0} \quad \text{соответствует} \quad G;$$

$$Q \quad \text{соответствует} \quad M;$$

$$E_{\text{эл}} = \frac{F_{\text{эл}}}{q} \quad \text{соответствует} \quad E_{\text{гр}} = \frac{F_{\text{гр}}}{m};$$

$$\rho_{\text{эл}} = \frac{Q}{V} \quad \text{соответствует} \quad \rho_{\text{гр}} = \frac{M}{V}.$$

Напряженность электрического $E_{\rm эл}$ и гравитационного $E_{\rm rp}$ полей вблизи плоского заряженного слоя и плоского слоя с равномерно распределенной гравитационной массой должны выражаться аналогичными соотношениями. Для плоского слоя толщины H:

$$\sigma_{\text{PL}} = \rho_{\text{PL}} \cdot H, \qquad \sigma_{\text{PL}} = \rho_{\text{PL}} \cdot H.$$

По аналогии напряженности электрического $E_{\rm sn}$ и гравитационного $E_{\rm rp}$ полей вблизи плоского заряженного слоя и плоского слоя с распределенной гравитационной массой должны выражаться сходными соотношениями:

$$E_{\text{\tiny 9.\Pi}} = \frac{\sigma_{\text{\tiny 9.\Pi}}}{2\varepsilon_0} = \frac{\rho_{\text{\tiny 9.\Pi}}H}{2\varepsilon_0}, \qquad (E_{\text{\tiny Pp}})_{\text{\tiny Π.\Pi}} = \frac{\sigma_{\text{\tiny Pp}}}{2\cdot 1/(4\pi G)} = 2\pi G \rho_{\text{\tiny Pp}}H.$$

Напряженность гравитационного поля на поверхности сферической земли равна

$$(E_{\rm rp})_{\rm c\phi} = G \frac{4\pi R^3 \rho_{\rm rp}}{3R^2} = \frac{4}{3}\pi G \rho_{\rm rp} R.$$

Отсюда следует, что ускорения свободного падения в моделях плоской и сферической Земли будут одинаковыми при условии

$$(E_{\rm rp})_{\rm nn} = (E_{\rm rp})_{\rm co},$$

следовательно,

$$H = \frac{2}{3}R \approx 4250 \text{ km}.$$

Примечание. Задачу, разумеется, можно решить, применяя к гравитационному полю теорему Гаусса.

Задача 2. Ковер-самокат

Уменьшение потенциальной энергии ковра идет на увеличение кинетической энергии валиков и на выделение теплоты, так как при раскручивании валика происходит проскальзывание. Закон изменения скорости u точек обода валика найдем, приравнивая работу раскручивающей силы трения F изменению кинетической энергии валика:

$$Fu\Delta t = \Delta\left(\frac{mu^2}{2}\right) = mu\Delta u,$$
 откуда $F\Delta t = m\Delta u.$

Время раскручивания точек обода валика до скорости v равно $\tau = mv/F$. За это время тормозящая сила F совершает над ковром работу $Fv\tau = mv^2$.

За время t ковер проедет расстояние vt и раскрутит N=vt/l валиков. При этом потенциальная энергия ковра уменьшится на $gh\Delta m$, где $\Delta m=\rho vt-$ масса части ковра, «исчезнувшей» вверху и «появившейся» внизу. Из закона сохранения энергии $gh\Delta m=Nmv^2$ находим $v=\sqrt{\rho ghl/m}$.

Задача 3. «Водородная бомба»

Максимальное давление газа в сферической оболочке может быть найдено из условия равновесия двух полусферических частей оболочки (внешнее давление $p_0 \ll p$).

Обе половинки оболочки расталкиваются за счет давления газа внутри силами $\pi R_0^2 p$ (рис. 14). Поэтому

$$\pi R_0^2 p \le 2\pi R_0 d\sigma.$$

Если газ (водород) поступает в легкую растяжимую оболочку воздушного шара, его давление падает до атмосферного давления p_0 (температура T предполагается неизменной). Объем шара становится равным

$$V = \frac{4\pi R_0^3}{3} \frac{p}{p_0}.$$

Вес стальной сферической оболочки по условию не должен превышать выталкивающей силы:

$$4\pi R_0^2 d\rho g \leq \frac{4\pi R_0^3}{3} \frac{p}{p_0} \rho_{\text{возд}} g.$$

Из этих соотношений следует:

$$\frac{\sigma}{\rho} \ge \frac{3p_0}{2\rho_{\text{возд}}} = \frac{3}{2} \frac{RT}{\mu_{\text{возд}}}.$$

Здесь R — универсальная газовая постоянная, $\mu_{\text{возд}}$ — средняя молярная масса воздуха, T=300~K — температура воздуха. Числовой расчет показывает, что это условие не выполняется:

$$\left(\frac{\sigma}{\rho}\right)_{\text{сталь}} \approx 0.63 \cdot 10^5 \; \frac{\text{H} \cdot \text{M}}{\text{kg}}, \qquad \frac{3}{2} \frac{RT}{\mu_{\text{возд}}} \approx 1.3 \cdot 10^5 \; \frac{\text{H} \cdot \text{M}}{\text{kg}}.$$

Задача 4. Электрический ток вместо лопаты Масса находящегося в трубе льда $m=d_{\pi}l_{1}\pi D_{1}^{2}/4$. Чтобы расплавить лед, замерзший в трубе, необходима энергия $Q_{1}=\lambda m$. Передачей теплоты вдоль трубы можно пренебречь, так как ее длина много больше диаметра. На нагревание льда и трубы затрачено много меньше теплоты, чем на плавление льда, поэтому в приближенных расчетах энергией, пошедшей на нагревание трубы и льда, можно пренебречь. Площадь наружной поверхности трубы в 1,3 раза больше площади внутренней поверхности, поэтому теплота, отданная наружной поверхностью трубы, будет в то же число раз больше теплоты, пошедшей на плавление льда: $Q_{2}=1,3\lambda m$. Все тепло, отданное замерзшему участку за время таяния:

$$Q = Q_1 + Q_2 = 2.3\lambda m.$$

Работа электрического тока на этом участке

$$A_{1} = \frac{U_{1}^{2}t}{R} = \frac{U_{1}^{2}St}{\rho_{\varkappa}l_{1}} = \frac{U_{1}^{2}\pi(D_{2}^{2} - D_{1}^{2})t}{\rho_{\varkappa}l_{1} \cdot 4},$$

$$Q = A_{1}, \qquad \frac{2,3\lambda\pi D_{1}^{2}l_{1}d_{\pi}}{4} = \frac{U_{1}^{2}\pi(D_{2}^{2} - D_{1}^{2})t}{4\rho_{\varkappa}l_{1}},$$

$$U_{1} = l_{1}D_{1}\sqrt{\frac{2,3\lambda d_{\pi}\rho_{\varkappa}}{(D_{2}^{2} - D_{1}^{2})t}}.$$

Напряжение на концах всей трубы будет в 20 раз больше:

$$U = lD_1 \sqrt{\frac{2,3\lambda d_{\pi}\rho_{\text{m}}}{(D_2^2 - D_1^2)t}} \approx 41 \text{ B}, \qquad I = \frac{U}{R} = \frac{\pi D_1}{4} \sqrt{\frac{2,3\lambda d_{\pi}(D_2^2 - D_1^2)}{\rho_{\text{m}}t}} \approx 890 \text{ A}.$$

Отсюда видно, что время отогрева трубы не зависит от длины участка замерзшей воды.

Залача 5. Мигалка

1. Найдем общее количество теплоты Q, которое выделится в схеме. Начальная энергия конденсаторов $W_0=0$. После большого количества переключений установится равновесное состояние (рис. 15). Конечная энергия конденсаторов

$$W_1 = \frac{1}{2}C(2\mathscr{E})^2 + \frac{1}{2}C\mathscr{E}^2 = \frac{5}{2}C\mathscr{E}^2.$$

Заряды q_1, q_2 и q_3 , протекшие через источники $\mathscr{E}, 2\mathscr{E}$ и $3\mathscr{E}$, накопятся на пластинах конденсаторов, подключенных к соответствующим источникам тока:

$$q_1 = -2C\mathscr{E}, \qquad q_2 = -C\mathscr{E}, \qquad q_3 = +3C\mathscr{E}.$$

Суммарная работа источников

$$A = \mathscr{E}q_1 + 2\mathscr{E}q_2 + 3\mathscr{E}q_3 = 5C\mathscr{E}^2.$$

Из закона сохранения энергии $W_0+A=W_1+Q$ находим $Q=5C\mathscr{E}^2/2.$

Рис. 15

$$CU_{n-1} + C\mathscr{E} = CU_n + CU'_n$$

и второго правила Кирхгофа

$$2\mathscr{E} - \mathscr{E} = U_n - U_n'$$

находим $U_n = \mathscr{E} + U_{n-1}/2, \ U_n' = U_n - \mathscr{E}.$ Изменение энергии конденсаторов:

$$\Delta W_n = \left(\frac{1}{2}CU_n^2 + \frac{1}{2}C{U_n'}^2\right) - \left(\frac{1}{2}CU_{n-1}^2 + \frac{1}{2}C\mathscr{E}^2\right).$$

Работа источников $A_n = (2\mathscr{E} - \mathscr{E})(CU_n - CU_{n-1})$. Из закона сохранения энергии находим теплоту, выделившуюся на лампе L_1 за одно включение верхней части схемы:

$$Q_n = A_n - \Delta W_n = C(2\mathscr{E} - U_n)^2.$$

Подставив сюда $U_n = \mathscr{E} + U_{n-1}/2$, заметим, что

$$Q_n = C(2\mathscr{E} - U_n)^2 = C\left(\frac{2\mathscr{E} - U_{n-1}}{2}\right)^2 = \frac{1}{4}Q_{n-1}.$$

3. Найдем теплоту, которая выделится на лампе L_1 . Возможны два случая. 3а. В первый раз переключатель перевели в нижнее положение. Тогда $U_0=0$, откуда

$$Q_1 = C\mathcal{E}^2$$
, $Q_{L_1} = Q_1 \left(1 + \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots \right) = \frac{4}{3}C\mathcal{E}^2$.

Искомое отношение

$$\frac{Q_{L_1}}{Q_{L_2}} = \frac{Q_{L_1}}{Q - Q_{L_1}} = \frac{8}{7}.$$

3b. В первый раз переключатель перевели в верхнее положение. При этом на резисторе L_1 выделилось тепло $Q_0 = C\mathscr{E}^2/4$, а на верхнем конденсаторе установилось напряжение $U_0 = \mathscr{E}/2$, откуда

$$Q_1 = \frac{9}{16}C\mathscr{E}^2$$
, $Q_{L_1} = Q_0 + Q_1\left(1 + \frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots\right) = C\mathscr{E}^2$.

Искомое отношение

$$\frac{Q_{L_1}}{Q_{L_2}} = \frac{Q_{L_1}}{Q - Q_{L_1}} = \frac{2}{3}.$$

XXXVII Всероссийская олимпиада школьников по физике

11 класс

Задача 1. Шарнирная конструкция

1. Рассмотрим силы, действующие на «боковые» шарики при равновесии (рис. 17). Верхние спицы растянуты, а нижние сжаты одинаковыми по модулю силами. На нижний шарик действует упругая сила пружины F=2mg (рис. 18).

$$N_2$$
 N_1 M_2 Рис. 17

$$kx_0 = 2mg,$$
 $x_0 = \frac{2mg}{k};$ $l_0 = \sqrt{2}l - x_0,$

где x_0 — удлинение пружины.

2. Сместим нижний шарик вниз на расстояние $x \ll l$. Тогда боковые шарики сместятся на x/2. Изменение потенциальной энергии:

$$\Delta E_{\text{not}} = \frac{k(x+x_0)^2}{2} - \frac{kx_0^2}{2} - mgx - 2mg\frac{x}{2} = \frac{kx^2}{2}.$$

3. Пусть нижнему шарику сообщена скорость v, направленная вертикально. Тогда боковые шарики приобретут скорость v/2 в вертикальном направлении и такую же скорость в горизонтальном направлении. Полная скорость каждого шарика окажется равной $v \cdot \sqrt{2}/2 = v/\sqrt{2}$. Следовательно,

$$\Delta E_{\text{кин}} = \frac{mv^2}{2} + 2 \cdot \frac{mv^2}{2 \cdot 2} = mv^2.$$

4. Изменение энергий: $\Delta E_{\text{пот}} = kx^2/2 = Ax^2, \ \Delta E_{\text{кин}} = mv^2 = Bv^2, \ \text{откуда}$

$$\omega_0^2 = \frac{A}{B} = \frac{k}{2m}, \qquad T = \frac{2\pi}{\omega_0} = 2\pi\sqrt{\frac{2m}{k}}.$$

 Π римечание. Докажем формулу $\omega_0^2 = A/B$. Пусть $x = a\cos\omega_0 t$, тогда

$$v = \frac{dx}{dt} = -a\omega_0 \sin \omega_0 T.$$

Полная энергия: $E = Ax^2 + Bv^2 = Aa^2\cos^2\omega_0t + Ba^2\omega_0^2\sin^2\omega_0t = \text{const}$, не зависит от t. Следовательно,

$$Aa^2 = Ba^2\omega_0^2, \qquad \omega_0^2 = \frac{A}{B}.$$

Задача 2. Теплоемкость газа

На (T,V) плоскости изобара имеет вид прямой линии, выходящей из начала координат, так как из закона Менделеева-Клапейрона p=RT/V. Тангенс угла наклона изобары tg $\theta=p/R$. Из графика (рис. 19) видно, что изобара с наибольшим наклоном проходит через точку 1.

$$\Delta Q = p\Delta V + C_V \Delta T,$$
 откуда $p\Delta V = -C_V \Delta T.$

Подставив сюда выражение для p, получим $T\Delta V = -\frac{C_V}{R}V\Delta T.$

Просуммируем это равенство вдоль адиабаты 1—3. Выражения $\sum T\Delta V$ и $\sum V\Delta T$ численно равны площадям S_1 и S_2 на графике (рис. 19). Отсюда

$$C_V = rac{S_1}{S_2} R = (20.5 \pm 0.2)$$
 Дж/(моль · K).

Уравнение адиабаты для идеального газа:

$$TV^{\gamma-1} = C$$
, откуда $T = CV^{1-\gamma}$,

где C — некоторая константа. Продифференцируем это выражение по V:

$$rac{dT}{dV} = C(1-\gamma)V^{-\gamma},$$
 или после преобразований $rac{dT}{dV} = -rac{p}{C_V}.$

Искомый тангенс угла наклона адиабаты

$$\operatorname{tg} \varphi = \frac{p_{\max}}{C_V} = (141.8 \pm 1.4) \text{ K/m}^3.$$

Примечание. Задача может быть решена и без использования уравнения адиабатического процесса.

Задача 3. Глюк продолжает исследования

1. Для идеального газа известны уравнения изотермы $(pV=\mathrm{const})$ и адиабаты $(pV^{\gamma}=\mathrm{const},\ \gamma=C_p/C_v),$ из которых дифференцированием легко получить, что в точке пересечения изотермы и адиабаты наклон адиабаты в γ раз больше:

$$\left(\frac{\Delta p}{\Delta V}\right)_{\text{ag}} = \frac{C_p}{C_v} \left(\frac{\Delta p}{\Delta V}\right)_{T=\text{const}},$$
(1)

откуда
$$\frac{\Delta p_2}{\Delta V} = \frac{C_p}{C_v} \cdot \frac{\Delta p_1}{\Delta V}$$
 и $C_p = C_v \frac{\Delta p_2}{\Delta p_1}$. (2)

2. Покажем, что формула (1), а следовательно, и (2), справедлива и для произвольного вещества.

Рассмотрим бесконечно малый участок pV-диаграммы (рис. 20). Проведем из одной точки 2 изотерму 2–3, адиабату 2–5 и «изоэргу» 2–4 — процесс, в котором внутренняя энергия остается постоянной. Бесконечно малые участки этих кривых можно считать прямолинейными. Нужно доказать, что

$$\frac{p_5 - p_1}{p_3 - p_1} = \frac{C_p}{C_v}. (3)$$

а). Зависимость внутренней энергии U от давления U, p при постоянном объеме V (вдоль изохоры 1–5) для произвольного вещества имеет некоторый сложный вид, но на бесконечно малом участке 1–5 ее можно считать линейной, поэтому

Рис. 20

$$\frac{U_5 - U_1}{p_5 - p_1} = \frac{U_3 - U_1}{p_3 - p_1},$$

и вместо соотношения (3) достаточно доказать, что

$$\frac{U_5 - U_1}{U_3 - U_1} = \frac{C_p}{C_v}. (4)$$

б). Введем обозначение $\Delta T = T_2 - T_1 = T_3 - T_1$. По определению C_v имеем:

$$C_v \Delta T = U_3 - U_1. \tag{5}$$

в). Для процесса 1-2 первое начало термодинамики дает

$$C_p \Delta T = (U_2 - U_1) + A_{12}. (6)$$

В силу бесконечной малости ΔV работы $A_{12},\,A_{32},\,A_{42}$ и A_{52} можно считать равными (точнее, разность любых двух из них пропорциональна $(\Delta V)^2$ и поэтому является мелочью более высокого порядка, чем сами работы), и,

$$C_p \Delta T = (U_4 - U_1) + A_{52}. (7)$$

г). Первое начало для адиабатического процесса 5-2 дает

$$A_{52} = U_5 - U_2 = U_5 - U_4. (8)$$

Подставляя (8) в (7), получим:

$$C_p \Delta T = U_5 - U_1. \tag{9}$$

Разделив (9) на (5), получаем (4).

Задача 4. Заряженная частица в магнитном поле

Единственная действующая на частицу сила — сила Лоренца — направлена перпендикулярно скорости частицы, поэтому работы не совершает, то есть энергия частицы (а значит, и ее скорость) сохраняется: $v_x^2 + v_y^2 = v^2$.

Закон Ньютона для частипы в проекции на ось Ov в произвольный момент времени (рис. 22) имеет вид:

$$m\frac{dv_y}{dt} = F_{\pi} \cos \alpha.$$

Сила Лоренца $F_{\pi} = Bqv$. Тогда

$$m\frac{dv_y}{dt} = Bqv\cos\alpha = Bqv_x = \alpha xqv_x.$$

Умножим выражение на dt:

$$mdv_y = \alpha qxv_x dt = \alpha qx dx.$$

После интегрирования получим:

$$m(v_y - v_{0y}) = \alpha q \left(\frac{x^2}{2} - \frac{x_0^2}{2}\right).$$

Начальная скорость по оси Oy равна $0, x_0 = 0$, следовательно:

$$mv_y = \alpha qx^2/2. (1)$$

Когда удаление частицы вдоль оси Ox максимально, проекция скорости частицы на ось Ox равна 0. Поскольку скорость частицы постоянна, при максимальном удалении $|v_n| = v$. Если заряд частицы положителен, то согласно (1) скорость $v_y = v$, а если отрицателен, то $v_y = -v$, откуда

$$mv = \frac{1}{2}\alpha|q|x_{max}^2, \qquad x_{max} = \sqrt{\frac{2mv}{\alpha|q|}}.$$

Задача 5. Нелинейный элемент

После замыкания ключа через резистор будет течь ток

$$I_0 = \frac{\mathscr{E} - U_0}{R}.\tag{1}$$

Такой же ток в начальный момент течет через элемент Θ . Ток в катушке Lбудет меняться со временем по линейному закону, пока не достигнет значения I_0 . В самом деле:

$$U_0 = L \frac{\Delta I}{\Delta t}$$
, откуда $I_L = \frac{U_0}{L} t$. (2)

В момент времени $t=\tau$ ток через катушку $I_L = I_0$, следовательно,

$$\tau = \frac{LI_0}{U_0} = \frac{L}{R} \frac{(\mathscr{E} - U_0)}{U_0}.$$

В этот момент ток через элемент Э прекращает течь. В промежуток времени $0 < t < \tau$ ток в элементе Э нетрудно найти, принимая во внимание соотношения (1) и (2):

$$I_{\ni} = I_0 - I_L = \frac{\mathscr{E} - U_0}{R} - \frac{U_0}{L}t$$
 $(0 < t < \tau),$ $I_{\ni} = 0$ $(t \ge \tau).$

Таким образом, зависимость тока от времени будет иметь вид, представленный на рисунке 23. Из графика находим заряд q_2 , протекающий через нелинейный элемент:

$$q_9 = \frac{1}{2}I_0\tau = \frac{1}{2}\frac{(\mathscr{E} - U_0)^2}{U_0} \cdot \frac{L}{R^2}.$$

0.25 0.5 0.75 1 Рис. 24

С учетом этого нетрудно найти искомое количество теплоты

$$Q_9 = q_9 U_0 = \frac{L}{2} \left(\frac{\mathscr{E} - U_0}{R} \right)^2 = 1$$
 Дж.

Как уже было сказано, сила тока в катушке в промежутке времени от 0 до $\tau = 0.25$ с линейно возрастает от нуля до значения $I_0 = 2$ А. При $t > \tau$ ток через нелинейный элемент не течет, а в катушке возрастает, стремясь асимптотически к значению $I_{\infty}=3$ A. Зависимость тока через катушку от времени представлена на рисунке 24.