» Résumé sur la deuxième partie des probabilités

Loi uniforme

Cette loi intervient dans ces situations de choix aléatoires ou quand le terme "au hasard dans un intervalle ou entre deux valeurs" intervient. Par exemple pour X qui suit la loi uniforme sur [a;b]:

$$P(X \le y) = \frac{y-a}{b-a} = \int_{a}^{y} \frac{1}{b-a} dt$$

$$P(X \ge x) = \frac{b-x}{b-a} = \int_{x}^{b} \frac{1}{b-a} dt$$

$$P(X \le X \le y) = \frac{y-x}{b-a} = \int_{x}^{y} \frac{1}{b-a} dt$$

$$P(X = x) = 0$$

avec $x, y \in [a; b]$.

L'espérance de cette loi est $\frac{a+b}{2}$. La fonction de densité de cette loi est $f(t) = \frac{1}{b-a}$.

La variable X ne pourra prendre ses valeurs qu'entre a et b et la probabilité qu'elle prenne ses valeurs ailleurs sera nulle.

On écrira $X \sim \mathcal{U}([a, b])$.

Loi exponentielle

Cette loi intervient lors de vieillissements sans mémoire : l'écoulement du temps n'a pas d'influence sur le comportement de la variable. Par exemple, pour X qui suit une loi exponentielle de paramètre λ :

$$P(X \le t) = 1 - e^{-\lambda \times t} = \int_0^t \lambda e^{-\lambda x} dx$$

$$P(X \ge t) = e^{-\lambda \times t}$$

$$P(X=t)=0$$

avec $t \ge 0$.

L'espérance de cette loi est $\frac{1}{\lambda}$. La fonction de densité de cette loi est f(x) = $\lambda e^{-\lambda x}$. La variable X ne pourra prendre que des valeurs positives.

Résumé 2TSELT

Loi normale

Pour une loi normale $N(\mu, \sigma)$, on a :

- 1. μ qui est la moyenne
- **2.** σ qui est l'écart-type.
- **3.** $P(X \le \mu) = P(X \ge \mu) = 0.5$.
- **4.** $P(\mu \sigma \le Y \le \mu + \sigma) \approx 0.68$
- **5.** $P(\mu 2\sigma \le Y \le \mu + 2\sigma) \approx 0.95$

Une loi binomiale $\mathcal{B}(n;p)$ peut être approchée par une loi normale de moyenne $n \times p$ et d'écart-type $\sqrt{n \times p \times (1-p)}$.

Il faut bien comprendre la signification du terme approcher dans ce contexte, il faudra prendre en compte la correction de continuité.

Pour $X \sim \mathcal{B}(n, p)$ et $Y \sim N(n \times p; \sqrt{n \times p \times (1 - p)})$:

- P(X = k) ne sera pas approximé par P(Y = k), qui est nul, mais par $P(k 0.5 \le Y \le k + 0.5)$
- $P(i \le X \le j)$ sera approximé par $P(i-0, 5 \le Y \le j+0.5)$
- $P(X \ge i)$ sera approximé par $P(Y \ge i 0, 5)$.
- $P(X \le i)$ sera approximé par $P(Y \le i + 0.5)$.

Dans les exercices, on demandera surtout de donner les paramètres de la loi normale par laquelle on pourra approcher la loi binomiale.