POLITECHNIKA WROCŁAWSKA KATEDRA SYSTEMÓW I SIECI KOMPUTEROWYCH

Technologie Sieciowe 2

Projekt przedmiotowy

Magdalena Biernat, 225934 Michał Duński, 226081

Opiekun dr inż. Michał Kucharzak

1 Wstęp

Zadaniem tego projektu jest zaprojektowanie sieci komputerowej dla firmy RoboNet - przedsiębiorstwa zajmującego się produkcją oprogramowania dla specjalistycznych urządzeń – robotów. Firma zatrudnia ok. 180 osób podzielonych na 3 grupy robocze, które zajmują 2 budynki. Budynek A posiada 3 kondygnacje, Budynek B posiada 1 kondygnację. Laboratorium znajduje się na parterze w budynku A. Sieć laboratoryjna nie ma dostępu do internetu. Do sieci laboratoryjnej mają dostęp wyłącznie Programiści i Testerzy. Serwery plików, www i pocztowy znajdują się w Budynku A i mieszczą się na dwóch kondygnacjach. Jeden serwer jest umieszczony w Budynku B.

Planujemy zastosować odpowiednie programy antywirusowe dla bezpieczeństwa oprogramowania oraz aby ograniczyć dostęp do sieci.

Projektowana sieć powinna cechować się jakością, niezawodnością oraz skalowalnością w przypadku potrzeby zwiększenia ilości pracowników w firmie. Ważnym czynnikiem jest również estetyczna jakość wykonania instalacji.

2 Inwentaryzacja zasobów: sprzętu, aplikacji, zasobów ludzkich

Siedziba firmy mieści się w dwóch budynkach o oznaczeniach A i B. Budynek A jest trzypiętrowy, a budynek B ma tylko parter.

2.1 Wykaz pomieszczeń w budynkach

1. Budynek A

- Parter: administratorzy, serwerownia 1, laboratorium, recepcja
- Piętro 1: programiści i testerzy, serwerownia pocztowa, serwerownia www, toaleta
- Piętro 2: zarząd i kadry, programiści i testerzy, toaleta

2. Budynek B

• Parter: zarząd i kadry, programiści i testerzy, serwerownia 2, dwie toalety, recepcja

2.2 Sprzęt

Firma na wyposażeniu posiada:

- 16 robotów
- 7 drukarek
- 24 kamery IP

	Budynek A	Budynek A	Budynek A	Budynek B
	parter	piętro I	pietro II	parter
drukarki	1	2	2	2
roboty (urządzenia)	16	-	-	-
kamery IP	8	4	4	8

3 Analiza potrzeb użytkowników – wymagania zamawiającego

3.1 Dostęp do Internetu

Na podstawie bieżących potrzeb firmy RoboNet(tabela niżej), przy uwzględnieniu ewentualnego rozrostu przedsiębiorstwa oraz obecnych na rynku ofert najlepszym rozwiązaniem w kwestii dostępu do Internetu jest łącze symetryczne 100Mb/100Mb.

W tabeli sumowane są wartości przepływów z i do Internetu dla każdego użytkownika. Wartości są w kb/s.

down	up
7 680	16 320
10 680	4 920
7 040	7 040
9 600	9 600
6 664	10 472
24 920	5 020
66 584	53 372
	7 680 10 680 7 040 9 600 6 664 24 920

3.2 Sieć lokalna

W celu zapewnienia wystarczającej przepustowości w sieci lokalnej wykorzystane będzie okablowanie w technologii 100Base-TXFast Ethernet(okablowanie poziome) oraz 1000Base-T Gigabit Ethernet(okablowanie pionowe). Wymagana przepustowość sieci lokalnej została podana w tabeli poniżej. Wartości zostały sumowane dla przepływów lokalnych dla każdego użytkownika. Wartości są w kb/s.

	down	up
serwer pliów 1	34 400	69 600
serwer plików 2	123 600	98 000
serwer www	35 400	5 940
serwer pocztowy	67 000	77 520
drukarki	1 800	30 900
roboty	27 200	27 200
SUMA	289 400	309 160

4 Założenia projektowe

Projekt zakłada stworzenie sieci dla przedsiębiorstwa zajmującego się produkcją oprogramowania dla specjalistycznych urządzeń – robotów, których zastosowanie jest ściśle tajne. Przedsiębiorstwo posiada dwa budynki. W jednym pracuje 100 użytkowników (komputerów), 5 drukarek, 16 kamer IP, 16 robotów i 3 serwery. W drugim pracuje 80 użytkowników (komputerów, 2 drukarki, 8 kamer IP i 1 serwer. W każdym budynku projekt zakłada sieć WiFi dla 150 gości. Budynek A ma trzy kondygnacje, budynek B posiada tylko parter. Przed stworzeniem sieci komputerowej zostanie wykonane (we wcześniejszym terminie i dla odpowiednich pomieszczeń) dostosowanie instalacji elektrycznej. W obu budynkach będą znajdować się przełączniki warstwy trzeciej. Dla połączenia z Internetem zostaną zamontowany router chroniony firewallem. Z sieci gości możliwy jest wyłącznie dostęp do Internetu. Wszyscy pracownicy mają dostęp do wszystkich drukarek i pozostałych serwerów. Z Internetu możliwy jest dostęp wyłącznie do Serwera WWW i Serwera Pocztowego. Okablowanie poziome w technologii 100Base-TXFast, okablowanie pionowe w technologii 1000Base-T Gigabit Ethernet oraz połączenie światłowodowe między budynkami. Dla zachowania odpowiedniej estetyki kable zostaną schowane w podłodze lub podwieszanym suficie. Zastosowanie odpowiednich programów antywirusowych dla bezpieczeństwa oprogramowania oraz ograniczony dostęp do sieci.

5 Projekt sieci

5.1 Projekt logiczny wraz z opisem koncepcji rozwiązania i uzasadnieniem

Rysunek 1: Schemat zamka szyfrowego

Dostęp do internetu jest przez router z firewallem. Przełącznik warstwy 3 łączy przełączniki warstwy 2. Każde piętro ma przełącznik lub dwa (zależy od liczby potrzebnych wejść).

5.2 Wybór urządzeń

- 1. Przełącznik warstwy 3 Cisco SGE2000
 - $\bullet~24~\mathrm{porty}$ RJ-45 10BASE-T/100BASE-TX/1000BASE-T
 - Port konsolowy
 - Port RPS do podłączenia zapasowego źródła zasilania
- 2. Przełącznik warstwy 2 48 portów Cisco SLM248P
 - \bullet 48 portów RJ-45 10BASE-T/100BASE-TX/1000BASE-T
 - $\bullet \ 2$ porty SFP combo
 - Wbudowany interfejs WWW
- 3. Router Cisco RV325-K9-G5
 - \bullet 2 porty RJ-45 WAN

- Obsługa VPN
- 4. Serwer Cisco UCS C220 M5 Rack Server
- 5. Access Point Cisco Aironet 1850 Series
 - \bullet Agregacja pakietów A-MPDU (Tx/Rx), A-MSDU (Tx/Rx)
 - $\bullet\,$ Kanały 20 i 40 MHz
 - Liczba nienakładających się kanałów
 - $-2.4\mathrm{GHz}$
 - * 802.11b/g 3
 - * 802.11n 3
 - $-5\mathrm{GHz}$
 - * 802.11a
 - 20 MHz 25
 - * 802.11n
 - 20 MHz 25
 - $-\ 40\ \mathrm{MHz}$ 12
 - * 802.11ac
 - 20 MHz 21
 - 40 MHz 12
 - 80 MHz 6