HIERARCHICAL STRUCTURE AND TOPOLOGICAL CONTENT OF ENTANGLEMENT OF FREE FERMIONS

ABHIRUP MUKHERJEE, SIDDHARTHA PATRA, SIDDHARTHA LAL

DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA, MOHANPUR

JUNE 17, 2022

THE SYSTEM

Massless Dirac fermions on a 2-torus

$$L = i \overline{\Psi} \gamma_{\mu} \partial_{\mu} \Psi$$

In presence of an Aharonov-Bohm flux

$$L = \overline{\psi} \left(i \gamma_{\mu} + e A_{\mu} \right) \partial_{\mu} \psi$$

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow \text{density matrix}$$

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow \text{density matrix}$$

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow \text{density matrix}$$

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$S(A) = -\text{Tr}[\rho_A \ln \rho_A] \longrightarrow \text{entanglement entropy of A}$$

→ quantifies information shared between A and rest

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow \text{density matrix}$$

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$I(A:B) = S(A) + S(B) - S(A \cup B) \longrightarrow$$
mutual information between A and B

 \longrightarrow quantifies information shared between A and B

ENTANGLEMENT OF FREE FERMIONS

Diagonal in k-space \longrightarrow Vanishing entanglement in momentum space

ENTANGLEMENT OF FREE FERMIONS

Diagonal in k-space \longrightarrow Vanishing entanglement in momentum space

Off-diagonal in r-space \longrightarrow Fluctuations exist in real space \longrightarrow leads to entanglement in real space

ENTANGLEMENT OF FREE FERMIONS

1D-ring of massless fermions: $\frac{2}{3} \ln \left(\frac{L}{\pi a} \sin \frac{\pi l}{L} \right)$

1*D*-line of massless fermions: $\frac{1}{3} \ln \left(\frac{2L}{\pi a} \sin \frac{\pi l}{L} \right)$

1*D*-line of relativistic fermions: $-\frac{1}{3} \ln (ma)$

2D-torus of massless fermions: $\alpha \frac{L_y}{\epsilon}$

$$\frac{\mathsf{L}_y}{\epsilon}$$

WHAT ARE WE GOING AFTER?

- Effect of a magnetic flux on the entanglement
- Distribution of the entanglement among subsystems of various sizes
- Emergent space generated by the transformations between these subsystems
- Curvature and related quantities of this space

In presence of flux:
$$L = \int dx dy \ \overline{\Psi}(x) (i\gamma_{\mu} + eA_{\mu}) \partial_{\mu} \Psi(x)$$

Periodic boundary conditions along
$$\vec{x}$$
: $k_x^n = \frac{2\pi n}{L_x}$, $n \in \mathbb{Z}$

Introduce Fourier modes:
$$\Psi(x) = \sum_{n=-\infty}^{\infty} e^{ixk_x^n} \Psi(k_x^n)$$

Decouples into 1D modes: $L = \sum_{n} \int dy \, \overline{\Psi}(k_{x}, y) \left(i \gamma_{\mu} \partial_{\mu} - M \right) \Psi(k_{x}, y)$

2D system is described by sum over 1D modes.

Modes do not couple - no inter-mode entanglement.

Total entanglement is sum of each part: $S = \sum_{n} S_{n}$

$$S_n(\phi) = -c \ln \left(\epsilon \frac{2\pi |n + \phi|}{L_x} \right)$$

REFERENCES I