Contents

- A/D converter architectures
- Noise of A/D and D/A conversion
- Power supply
- Input filters and buffers
- Output filters and buffers
- References

ADC Structures

Overview

- 2^N Comparators
 - Primary coding is like a thermometer code
 - Need a 2^N-to-N encoder

Flash Converter

- Resolution: 6-8 bits
- **Speed**: 100M 1G sps (one cycle for latches)
- ★ Throughput: idem
- # Power : high!
- * Applic Domain: very fast sampling (oscilloscopes, spectrum analyser, ...)

Flash conv don't need à S/H amplifier

Pipeline Converter

Structure

Pipeline Converter

- ★ Resolution: 8-12 bits
- Speed (Latency): 1M 500M sps (3-4 stages X 1 clock cycle)
- # Throughput: full speed = clock cycle
- ★ Power: high
- * Applic Domain : high speed applic, communications

S/H at each stage

SAR Converter

Structure

SAR Converter

- ★ Resolution: 8-16 bits
- Speed (Latency): 100k 10M sps (~N cycles latency)
- ★ Power: medium
- * Applic Domain: industrial domain, suits for multi-channel (i.e analog inputs for uC)

★ Need a S/H

Successive approximation register

The logic circuit below is a successive approximation register processing the comparator output D and generating the conversion result Z. Describe its operation in time with the help of the conversion example presented below.

T	R	D	z_7	z_6	z_5	z_4	z_3	z_2	z_1	z_0	CC
0	1	D_7	1	0	0	0	0	0	0	0	0
1	0	D_7	D_7	1	0	0	0	0	0	0	0
2	0	D_6	D_7	D_{6}	1	0	0	0	0	0	0
3	0	D_5	D_7	D_6	D_5	1	0	0	0	0	0
4	0	D_4	D_7	D_6	D_5	D_4	1	0	0	0	0
5	0	D_3	D_7	D_6	D_5	D_4	D_3	1	0	0	0
6	0	D_2	D_7	D_6	D_5	D_4	D_3	D_2	1	0	0
7	0	D_1	D_7	D_6	D_5	D_4	D_3	D_2	D_1	1	0
8	0	D_0	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	1

Exercice

Noise sources (1)

- # In an A/D converter, noise comes from many sources:
 - (1) quantization noise, (see last week)
 - (2) noise generated by the converter itself,
 - (3) application circuit noise (Reference & Power Supply, GND bounce, LAYOUT consideration)
 - (4) (sampling) clock jitter.

Noise sources (2)

- Analog input circuit noise is additive.
- Voltage reference noise is multiplicative.
- Quantisation noise is additive.

Noise sources (3)

- ** Noise sources have to be decorrelated: White noise can be assumed only in this case.
- ** Many noise are correlated => very difficult to predict the effective behviour!
- ★ Make this test!

Zero Volt test

AD2274:

Evaluate the RMS value of Noise. (σ ≈

Voltage reference

- Stability of the REFERENCE is crucial for best performance of the Converter.
 - While these voltages appear static, they coud be dynamically used in the ADC system.
 - During every conversion the voltages on these pins are sampled and must settle within a fraction of the ADC clock rate, for example.
- *** Ref Voltage Sources are never good enough!**
 - They introduces NOISE in the system
 - Quality of the DECOUPLING on the PCB

Power supply

- # If ±15V power supply available, use them!
 - Design much easier (Low-noise amp, mature technologies, availability of the components...)
- But portable equipement have only one battery (e.g. 2.7V)

=> DC/DC boost needed, but Analog circuits

don't like it!

Power supply rejection

How much tolerant are ADC to supplies

	- R		L (FEE)	F
PSRR Power-supply rejection ratio	Without 0.1-µF board supply capacitors, with 100-kHz supply noise	85	85	dB

Reality:

Taux de réjection de l'alimentation du CAN 12 bits ADC12040. Pour ce faire, un bruit d'amplitude 200 mV est injecté dans l'alimentation à différentes fréquences.

Modern DC/DC switching freq : [500k ... 2MHz]

Power supply scheme (1)

Synchronize DC/DC regulator to the master sampling clock to avoid this (Input grounded test; no LDO after DC/DC regulators):

Power supply scheme (2)

- # Analog Power Supply needs LDO!
 - 8-10 bits not dramatic
 - 12 bits & + : very important

Power supply scheme example

Input matching (1)

- ****** Determine the Nyquist freq and choose an ideal sample frequency. $(1.2...2 f_{NYO})$
- Evaluate the feasibility of an Over- / Undersampling process.
 - First selection of the ADC's family
- Evaluate the needs & specifications of an antialiasing filter (passive active, corner freq, order...)
- **Evaluate** the needs & specifications of the voltage matching (attenuator, amplifier, level-shifter,...)

Input matching (2)

Figure 6.39: Proper Positioning of the Antialiasing Filter Will Reduce the Effects of Op Amp Noise

Single ended and common mode adaptation

****** Modern ADC are single supply

Figure 6.11: Single-Ended Single-Supply DC-Coupled Level Shifter

Single ended to differential (AC) conversion

Transformer suits HF

Figure 6.29: Transformer Coupling into the AD6645 14-Bit, 80-/105-MSPS Complementary Bipolar Process ADC

Single ended to differential (DC) conversion

*** AO:** high BW, high slew-rate, low-noise ...

Figure 6.31: Op Amp Single-Ended to Differential DC-Coupled Driver with Level Shifting

Example for buffer distorsion performance

AD8057/AD8058 Op Amp Distortion Versus Frequency G = +1, $R_L = 150 \Omega$, $V_S = \pm 5 V$

AD8057/AD8058 Op Amp Distortion Versus Output Voltage G = +1, $R_L = 150 \Omega$, $V_S = \pm 5 V$

- Beware of distortion increase at high frequencies
- Performance may be better for higher load resistance

SAR ADC input characteristics

Example: AD7466

Single supply SAR ADC with bipolar input

Figure 6.19: Driving Single-Supply Data Acquisition ADCs With Scaled Inputs

Scaling network at the input

Exercice

Pt1000 input circuit (2)

The circuit on the slide above acquires a temperature measured by a Pt1000 resistor, through a 24 bits ADC (ADS1281), with the following characteristics: $f_s = 10$ Hz, dynamic range of AINP and AINN: $0...V_{ref}$, conversion of V_{AINP} - V_{AINN} within the range $\pm V_{ref}$. $V_{ref} = 2.5V$ (net $\pm 2.5V_{REF}$).

- Describe in words the function of each of the 3 framed blocks.
- Why are resistors R16 and R18 not set to equal values?
- Determine the temperature measurement range in °C and the circuit sensitivity in LSB/°C, knowing that the resistance of the Pt1000 sensor is 1000Ω at 0°C, increasing by 0.4%/°C.
- ➤ Consider only voltage and current noises of the operational amplifiers AD8552: 40nV/rtHz and 2fA/rtHz, supposed to be uniform over frequency. What is the spectral density of the current noise in the Pt1000 sensor? What is the spectral density of the voltage noise at inputs AINP and AINN of the A/D converter? What is the signal-to-noise ratio between 0 and 5Hz after A/D conversion, taking into account quantization noise and noise in the operational amplifiers?

Exercice 29

Integrated differential amplifier drivers (1)

- + and input currents are zero
- + and input voltages are equal
- Output voltages are 180° out of phase and symmetrical about V_{OCM}
- Gain = R_F/R_G

Integrated differential amplifier drivers (2)

- \triangleright β_1 : Amount of feedback from V_{out} to V+
- β₂: Amount of feedback from V_{out} to V+

Integrated differential amplifier drivers (3)

Figure 6.35: High Speed Differential Line Driver, Line Receiver Applications

Integrated differential amplifier drivers (4)

Replacement for baluns when direct coupling required

Figure 6.38: Noise Calculations for the AD8138 Differential Op Amp Driving the AD9235 12-Bit, 20-/40-/65-MSPS ADC Input filters and buffers

Front end bridge connection

- 4 wire Kelvin connection
- Ratiometric conversion

Figure 8.7: AD7730 Bridge Application Showing Ratiometric Operation and Kelvin Sensing

Weigh scale example (1)

Figure 8.9: Load Cell Characteristics

Weigh scale example (2)

◆ Full Load: 2 kg
◆ Sensitivity: 2 mV/V

Excitation: 5 V

V_{FS} = V_{EXC} × Sensitivity

V_{FS} = 5V × 2mV/V = 10 mV

V_{CM} = 2.5 V

- Full-Scale Output Voltage: 10 mV
- Proportional to excitation voltage
 - "Ratiometric"

Figure 8.10: Determining Fullscale Output of Load Cell with 5-V Excitation

Weigh scale example (3)

- Required 0.1 g in 2 kg
 - # counts = full-scale / resolution
 - # counts = 2000 g / 0.1g = 20,000
 - 20,000 counts
 - V_{FS} = 10mV @ 5V excitation
 - V_{P-P} = V_{FS} / # counts
 - V_{P,P} = 10mV / 20,000 = 0.0005mV
 - 0.5μV p-p noise
 - V_{RMS} ≈ V_{P-P} / 6.6
 - V_{RMS} ≈ 0.5μV / 6.6 = 0.075μV
 - 75nV RMS noise
 - Bits p-p = log₁₀(V_{FS} / V_{P-P}) / log₁₀(2)
 - Bits p-p = log(10mV / 0.0005mV) / 0.3
 - 14.3 bits p-p in 10mV range (Noise-free bits)
 - Bits RMS = log₁₀(V_{FS} / V_{RMS}) / log₁₀(2)
 - Bits RMS = log₁₀(10mV / 0.000075) / 0.3
 - 17.0 bits RMS in 10mV range (Effective resolution)

Figure 8.11: Determining Resolution Requirements

Weigh scale example (4)

The noise-free code resolution of the ADC is calculated as follows:

Noise-Free Code Resolution (Bits) =
$$\frac{\log_{10}\left(\frac{V_{FS}}{V_{PP}}\right)}{\log_{10}(2)}$$

$$= \frac{\log_{10}\left(\frac{10\text{mV}}{0.5\mu\text{V}}\right)}{\log_{10}(2)} = 14.3 \text{ bits } .$$

The effective resolution of the ADC is calculated as follows:

$$Effective \ Resolution \ (Bits) = \frac{log_{10} \left(\frac{V_{FS}}{V_{PP} \ / \ 6.6} \right)}{log_{10}(2)}$$

$$= \frac{\log_{10}\left(\frac{10\text{mV}}{0.5\mu\text{V}/6.6}\right)}{0.3} = 17 \text{ bits.}$$

Weigh scale example (5)

- Complicated design
- Low pass filter is needed to keep low noise
 - For example, –3dB @ 10Hz, –60dB @ 50Hz (difficult filter design)
- Instrumentation amplifier performance is critical
 - Low noise (AD620: 0.28μV p-p noise in 0.1Hz to 10Hz BW is approximately 42nV RMS), low offset, low gain error

Figure 8.12: Traditional Approach to Design

Weigh scale example (6)

Ratiometric conversion

- AD7730 was designed for bridge transducers
 - Chopper, Buffer, PGA, Digital filter, tare DAC, Calibrations, ...
- Fully Ratiometric, changes on V_{EXC} = V_{REF} eliminated
 - Load ≈ V_{OUT} / V_{EXC}, AD7730 Data ≈ V_{IN} / V_{REF}, V_{REF} = V_{EXC}

Thermocouple interface

- Bias voltage generator used to generate a common mode voltage for AIN1
- Current source provides current to thermistor for cold junction compensation and ratiometric operation using REFIN

Figure 8.19: Thermocouple Design with Cold Junction Compensation using the AD7793

DAC output model

- I_{FS} 2 20mA typical
- Bipolar or BiCMOS DACs sink current, R_{OUT} < 500Ω</p>
- ♦ CMOS DACs source current, $R_{OUT} > 100 k\Omega$
- ♦ Output compliance voltage < ±1V for best performance

Figure 6.68: Generalized Model of a High Speed DAC Output such as the AD976x and AD977x Series

Output buffers

Figure 6.67: Buffering DAC Outputs with Op Amps

AC coupled differential DAC output

Figure 6.69: Differential Transformer Coupling

DC coupled differential DAC output

Differential DC Coupled Output Using a Single-Supply Op Amp

Output low-pass filtering

Figure 6.75: A 75-kHz 4-Pole Gaussian Active Filter for Buffering the Output of the AD1853 Stereo DAC

References

W. Kester (ed.): *Analog-Digital Conversion*, Analog Devices 2004, ISBN 0-916550-27-3

This reference was used as a basis for the present presentation, a series of illustrations are taken from it.

The book is available for download on the moodle server.

Tietze, Schenk: *Halbleiter-Schaltungstechnik*, Springer 2012 (14th ed.), ISBN 3-540-64192-0