

Universidad Nacional Mayor de San Marcos

Universidad del Perú, Decana de América

Atmósferas Estelares

Práctica N° 1

Problema 1

Determine la *longitud de onda equivalente* para cada una de las curvas de sensibilidad dadas en la tabla 3.

Solución

Para una curva de sensiblidad $s\left(\lambda\right)$, la longitud de onda equivalente λ_{eq} viene dada por la fórmula

$$\lambda_{eq} = \frac{\int_0^\infty \lambda s(\lambda) d\lambda}{\int_0^\infty s(\lambda) d\lambda}.$$
 (1)

Con los datos proporcionados en la tabla 3, calculamos las integrales en la ecuación 1 usando el método del trapecio

$$\int_{a}^{b} f(x)dx = \sum_{n=0}^{N-1} \frac{f(x_{n+1}) + f(x_n)}{2} \times (x_{n+1} - x_n), \ a = x_0 \land b = x_N.$$

Los resultados obtenidos se muestran en la tabla siguiente:

	$\lambda_{eq} (\mu m)$
U_{λ}	0.35
B_{λ}	0.44
V_{λ}	0.55
O_{dia}	0.56
O_{noche}	0.51

Empleando los datos de la tabla 3, caclular la longitud de onda efectiva del filtro V para el flujo de un cuerpo negro con las siguientes temperaturas: T=25000K, T=10000K, T=5000K.

Solución

Para una curva de sensiblidad $s(\lambda)$ y una fuente con irradiancia $f(T,\lambda)$, la longitud de onda effectiva λ_{eff} viene dada por la fórmula

$$\lambda_{eff} = \frac{\int_0^\infty \lambda f(T, \lambda) s(\lambda) d\lambda}{\int_0^\infty f(T, \lambda) s(\lambda) d\lambda}.$$
 (2)

Para el cuerpo negro tenemos que la irradiancia está data por la funcion de Planck

$$f(T,\lambda) = \frac{2hc^2}{\lambda^5} \frac{1}{\exp(\frac{hc}{\lambda kT}) - 1}.$$
 (3)

Empleando el método del trapecio nuevamente, tabulamos el valor de λ_{eff} para las temperaturas T=25000K, T=10000K, T=5000K para el filtro V en la tabla siguiente.

T(K)	$\lambda_{eff} \; (\mu m)$
25000	0.547
10000	0.549
5000	0.554

Se tiene el flujo de cuerpo negro observado con un receptor cuya curva de sensibilidad es la curva de sensibilidad del filtro V del sistema fotometrico UBV. Determine la longitud de onda del flujo monocromático efectivo para las temperaturas T=25000K, 10000K y 5000K.

Recomendación: Considerando que el flujo monocromático efectivo está dado por

$$\langle B \rangle = \frac{\int_0^\infty V_\lambda B_\lambda (T) \, \mathrm{d}\lambda}{\int_0^\infty V_\lambda \mathrm{d}\lambda},$$

determine para que valores de λ se da la igualdad $\langle B \rangle = B_{\lambda}(T)$.

Solución

Α

Problema 4

¿Cuál es el cambio δV en la magnitud V del sistema fotmétrico UBV que produce un cambio $\delta \lambda$ en la longitud de onda efectiva calculada en 2? Calcular $\delta \lambda = \lambda_{eq} - \lambda_{eff}$.

Recomendación: Si $V=-2.5\log f_V+C$ tomar $f_V\simeq B\left(T\right)$, $T=T\left(\lambda_{eff}\right)$; suponer $B_\lambda \ \alpha \ \lambda^{-v} \mathrm{e}^{-\frac{hc}{\lambda kT}}$ (Ley de Wien); calcular $\left(\frac{\mathrm{d} \ln f_\lambda}{\mathrm{d} \lambda}\right)_{\lambda=\lambda_{eq}}$

Problema 5

¿Cuál es el cambio pocentual en f_V que representa el cambio δV calculado en 4?.

Problema 6

Usando las tablas adjuntas (Referencia del COX) y considerando los tipos espectrales *O9*, *B0*, *B2*, *B5*, *A0*, *A5*, *F0*, *F5*, *G0*, *G5*, *K0*, *K5* y *M0*.

- a) Graficar M_V vs. $(B-V)_0$ para cada clase de lumninosidad V, III y I.
- b) Calcular la temperatura de color T_{BV} para los tipos espectrales de la secuencia principal.
- c) Usando los datos de la tabla 1 de colores intrínsecos $(U-B)_O$, calcular las temperaturas de color T_{UB} .

T. Sp.	$(U-B)_o$
BO V	-1.06
B5 V	-0.55
A0 V	-0.02
A5 V	0.10
F0 V	0.07
F5 V	0.03
G0 V	0.05
G5 V	0.19
KO V	0.47
K5 V	1.10
M0 V	1.28

Tabla 1: Colores intrínsecos $(U - B)_O$

- d) Comparar los tipos de colores T_{UV} y T_{VB} de los tipos espectrales dados en 6c.
- e) Comparar las temperaturas de color T_{BV} y T_{UV} de los espectrales dados en 6b con las temperaturas espectrales de la tabla adjuntada.
 - ¿Cuál de las tempraturas de color parece aproximarse mejor desde un punto de vista cuantitativo a la temperatura afectiva?
 - ¿Cúal de las tempraturas de color parece aproximarse mejor desde un punto de vista cualitativo a la temperatura efectiva?

Dibuja un diagrama $(V-B)_O$ vs. $(B-V)_O$ pero los tipos espectrales del ejercicio 6b. Superponer en el mismo diagrama la relación color-color del cuerpo negro. El cuerpo negro ajusto bien las observaciones.

Problema 8

Para los tipos espectrales de la tabla 1

- a) Calcular el coeficiente Q.
- b) Calcular Q suponiendo $T_{BV} = T_{UB} = T_{EH}$.
- c) Calcular Q usando sólo T_{BV} .
- d) Calcular Q usando sólo T_{UB} .

Calcular un diagrama Log L9L0 vs Log T_{EH} = para log (RIRO) = -3, -2, -1, 0, +1, +2.

a) Mostrar que la correccion bolometricas enre magnitudes NO SE QUE DICE es igual a la correccion bolometrica entre magnitudes absolutas.

Problema 10

Discutir porque la correccion bolometrica es funcion proncipalmente de la temperatura efectiva y no del sodio.

En esas condiciones la correccion bolometrica depende de la clase de luminosidad?¿Porque?

Problema 11

Si $\log f_{\lambda} = a \log \lambda + b$ en un internolo (NOSEQUEDICE) donde fx y el flujo monocromatico NO SE QUE DICE de una estrella, mientras que el gradiente de color en ese intermedio es $Q_{v1d2} = (5+a)$.

Problema 12

a) Mostrar que el gradiente de color de una radiación de cuerpo negro esta dado por

$$\Phi = \frac{c_2}{T} \left(1 - e^{-\frac{c_2}{\lambda T}} \right)$$

$$c_2 = \frac{hc}{k} \approx 1,43883 \text{ cm} \cdot \text{K}$$

- b) ¿En que region $\Phi = \frac{c_2}{\lambda T}$?
- c) Calcular Φ usando $\lambda=\frac{1}{2}\left(\lambda_B+\lambda_V\right)_{eq}$ y $T=T_{BV}$ para los tipos espectrales de 6d.

Problema 13

Transofrmar

- M_V en M_{bol} .
- M_V en T_{BV} .

Para los tipos espectrales de la tabla 1 para las claves de limunosidad V, IV, III, I_b , I_a .

Usar para V, IV, III los (B-V) de las clase de luminosidad V. Para los supergigantes III, I_b , I_a usar los datos de la tabla 2.

Problema 14

Grafica los potenciales de ionizacion Ξ de los elementos "enrarecidos?" como fuente para tipo espectral en función del logaritmo de la temperatura efectiva. Comentar.

Problema 15

a) Graficar $\log\left(\frac{L}{L_\odot}\right)$ vs T_{BV} e interpretar, usando para ello el diagrama calculado en el ejecrcicio 4.

T. Sp.	$(B-V)_o$
ВО	-0.25
A0	0.00
F0	0.25
G0	0.70
G5	1.06
K0	1.39
K5	1.70
MO	1.94

Tabla 2: Colores intrínsecos $(U - B)_O$

Tabla 3: Curvas de sensibilidad de los filtros U, B y V del sistema fotométrico UBV, y del ojo humano para el día y la noche. (Problema 1)

$\lambda(\mu)$	U_{λ}	B_{λ}	V_{λ}	$O_{día}$	O_{noche}
0.28	0.00	-	-	-	-
0.30	0.13	-	-	-	-
0.32	0.60	-	-	-	-
0.34	0.92	-	-	-	-
0.36	1.00	0.00	-	-	-
0.38	0.72	0.13	-	-	0.00
0.40	0.09	0.92	-	-	0.02
0.42	0.00	1.00	-	0.00	0.08
0.44	-	0.92	-	0.02	0.21
0.46	-	0.76	0.00	0.06	0.41
0.48	-	0.56	0.01	0.14	0.65
0.50	-	0.39	0.36	0.32	0.90
0.52	-	0.20	0.91	0.71	0.96
0.54	-	0.07	0.98	0.95	0.68
0.56	-	0.00	0.80	1.00	0.35
0.58	-	-	0.59	0.87	0.14
0.60	-	-	0.39	0.63	0.05
0.62	-	-	0.22	0.38	0.02
0.64	-	-	0.09	0.18	0.01
0.66	-	-	0.03	0.06	0.00
0.68	-	-	0.01	0.02	-
0.70	-	-	0.00	0.00	-