INFO-H-414 - Swarm Intelligence Swarm Robotics - Chain Formation Strategy

Jacopo De Stefani

Universite' Libre de Bruxelles

August 27, 2013

POLYTECHNIQUE
DE BRUXELLES

Introduction

Controller

Results

Conclusions

Introduction

Introduction

Introduction

What does the method use?

Sensors

- Proximity sensors
- Distance scanner
- Range and Bearing
- Ground sensors

Actuators

- Wheels
- Range and Bearing

What does the method use?

Sensors

Actuators

- Proximity sensors
- Distance scanner
- Range and Bearing
- Ground sensors

- Wheels
- Range and Bearing

■ Sense, Think, Act paradigm

What does the method use?

Sensors

Actuators

- Proximity sensors
- Distance scanner
- Range and Bearing
- Ground sensors

- Wheels
- Range and Bearing

- Sense, Think, Act paradigm
- Potential-fields approach [HMS02]

Chain example

Figure: Chain example with nodes labeling and id

Chain example

Figure: Chain example with nodes labeling and id

Rules

- 1. Chain beginning rule
- 2. Chain building rule
- 3. Chain end to Chain member transition
- 4. Chain member to Chain junction transition

Chain beginning rule

Chain building rule

End to Member

Member to Junction

Probabilistic FSM

Robots in chain

Figure: Observed distribution of the number of robots in chain over 50 trials displayed as histogram (a) and empirical cumulative density function (b)

Completion time

Figure: Observed distribution of the experiments' completion times over 50 trials displayed as histogram (a) and empirical cumulative density function (b)

Correlation

Figure: Scatterplot of the experiments' completion times versus the number of robots in chain on 50 trials. r = 0.7934599

ULB

Conclusions

- Simple method:
 - Random walk
 - Limited communication
- Here, simplicity entails:
 - Lack of placement optimality
 - □ High results variability
- The width of the communication range impacts on:
 - Completion time
 - Number of robots in chain
- Relevant impact of the structure of the environment on the method's performance.

Questions?

References (1)

Andrew Howard, Maja J Matarić, and Gaurav S Sukhatme. Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In *Distributed Autonomous Robotic Systems 5*, pages 299–308. Springer, 2002.