H6: schattingsmethodes	
	6.1 methode van de momenten
6.1.1 principe van de methode	
def: methode van de momenten	Een parameter a wordt afgeschat door te stellen dat het verwachte gemiddelde gelijk moet zijn aan het effectief geobserveerde gemiddelde uit de steekproef $E_X(\hat{a}) = < X > = \int x P(x;\hat{a}) dx = \bar{x}$
	3
stelling: fout op â 6.1.1	fout op â is gegeven door: $V(\hat{a}) = \left(\frac{d\hat{a}}{d\bar{x}}\right)^2 \frac{1}{N(N-1)} \sum_{i=1}^N (x_i - \bar{x})^2$
6.1.2 generalisatie	
def: algemene MM	er is een set van N metingen x_i en een te fitten fistributie $P(x;\theta)$ > bevat k onbekende parameters $\mathbf{\theta} = \theta_1,, \theta_k$ > construeer k lineair onafhankelijke functies $g_j(x)$ > deze $g_j(x)$ zijn functies van meetgegevens met een verwachtingswaarde: $ < g_j(x) >= \int g_j(x) \; P(x;\vec{\theta}) \; dx \equiv e_j(\vec{\theta}) $
	de methode van de momenten voor $\pmb{\theta}$ wordt dan gegeven door: $e_1(\widehat{\vec{\theta}}) = \frac{1}{N} \sum_{i=1}^N g_1(x_i)$ \vdots $e_k(\widehat{\vec{\theta}}) = \frac{1}{N} \sum_{i=1}^N g_k(x_i)$
functies van momenten	Een mogelijke keuze voor $g_j(x)$ zijn de veeltemen $x^1, x^2,, x^k$ > verwachtingswaarde is het j-de moment van x : $ < g_j(x) > = < x^j > $ we kunnen echter ook orthonormale functies kiezen
	> bvb machten van sin,cos of polynomen
stelling: covariantie van schatters	schatters worden uit eenzelfde set van N waarnemingen gehaald > er zal een zekere correlaties tss de schatters zijn > bepaal via de covariantiematrix: $ \cos(\hat{\theta}_i, \hat{\theta}_j) = \sum_{l,m} \frac{\partial \hat{\theta}_i}{\partial \hat{e}_l} \frac{\partial \hat{\theta}_j}{\partial \hat{e}_m} \mathrm{cov}(\hat{e}_l, \hat{e}_m) $
	de schatter van de covariantie tss de verwachtingswaardefuncties is: $\widehat{\mathrm{cov}}(\hat{e}_l,\hat{e}_m) = \frac{1}{N(N-1)} \sum_{i=1}^N (g_l(x_i) - \bar{g}_l)(g_m(x_i) - \bar{g}_m)$

	6.2 maximum (log)Likelihood
6.2.1 principe van de methode	
principe vd maximum likelihood MLLH	voor een steekproef \mathbf{x} = {x ₁ ,,x _N } is de maximum likelihood schatter â die waarde van a waarbij de likelihood maximaal word > deze was gedefinieerd is als: $\mathcal{L}(a:\vec{x}) = \prod_{i=1}^{N} P(x_i;a)$
	i=1 in praktijk is het makkelijker om de logaritmes de maximaliseren:
	$\ln \mathcal{L}(a:\vec{x}) = \sum_{i=1}^{N} \ln P(x_i; a)$
	Het maximum vinden we dan: $\left.\frac{\mathrm{d}\ln\mathcal{L}}{\mathrm{d}a}\right _{a=\hat{a}}=0$
6.2.2 Gauss paramater schatten	
MLLH op Gauss	naam aan dat er $\{x_i\}$ metingen zijn van dezelfde grootheid met versch. precisie > ie: x_i is getrokken uit een Gauss met gekende standaardafwijking σ_i > waarvoor we nu een schatting voor μ willen maken
	De waarschijnlijkheidsfunctie:
	$P(x_i; \mu, \sigma_i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma_i^2}}$
	zodat de logaritme van de likelihood gelijk wordt aan
	$\ln \mathcal{L} = \sum_{i} \left(-\ln(\sqrt{2\pi\sigma_i^2}) \right) - \sum_{i} \frac{(x_i - \mu)^2}{2\sigma_i^2}$
	en afleiden naar μ om het maximum te vinden geeft:
	$\sum_{i} \frac{(x_i - \hat{\mu})}{\sigma_i^2} = 0$
	$\hat{\mu} = \frac{\sum (x_i/\sigma_i^2)}{\sum (1/\sigma_i^2)}$
	> x _i waarden uitgemiddeld met elk een gewicht σ^{-2} en correct genormeerd > dit hebben we al gevonden voor het gewogen gemiddelde
MLLH op Gauss met onbekende σ	Stel nu dat ook σ onbekend is > we moeten afleiden naar beide grootheden:
	$\begin{cases} \mu \to \sum_{i} \frac{(x_i - \hat{\mu})}{\hat{\sigma}^2} = 0 \\ \sigma \to -\frac{N}{\hat{\sigma}} + \frac{\sum (x_i - \hat{\mu})^2}{\hat{\sigma}^3} = 0 \end{cases}$
	we vinden voor μ hetzelfde
	> we vinden $\hat{\mu}=\bar{x}$, zoals tevoren. > dan hebben we de vgl: $\hat{\sigma}^2=\frac{1}{N}\sum (x_i-\bar{x})^2$
6.2.3 eigenschappen van de MLLH	41
stelling: consistentie van MLLH	MLLH schatters zijn meestal consistent, maar niet altijd
stelling: parametertransformatie	MLLH schatters zijn invariant onder parameter transformaties:
en MLLH	$\widehat{f(a)} = f(\hat{a})$

 $\widehat{f(a)} = f(\hat{a})$

5.2.4 asymptotische limiet en MBV	
bias in asymptotische limiet	Voor N→∞ wordt elke consistente schatter onbevooroordeeld > bias van consistente MLLH verdwijnt in asymptotische limiet
efficiëntie in asymptotische limiet	Veronderstel dat de echte waarde voor a a_0 is > de schatter \hat{a} voldoet aan: $\frac{d \ln \mathcal{L}}{da} \bigg _{a=\hat{a}} = 0$
	in een Taylorreeks rond a_0 : $ \frac{d\ln\mathcal{L}}{da}\bigg _{a_0} + (\hat{a} - a_0) \left. \frac{d^2\ln\mathcal{L}}{da^2} \right _{a_0} + \mathcal{O}(\hat{a}^2) = 0 $
	(â-a ₀) wordt klein voor grote N > enkel eerste twee termen bekijken
	Echter nu, \hat{a} is niet identiek aan a_0 > want afgeleide van $\ln \mathcal{L}$ bij a_0 wijkt af van 0 door statistische fluctuatie van gegevens:
	$\left. rac{d \ln \mathcal{L}}{da} ight _{a_0} eq 0$ we weten ook dat:
	$\left\langle \frac{d\ln \mathcal{L}}{da} \right\rangle = 0$
	Vermits de afgeleide bekomen wordt als som van N onafh. termen zegt het Centraal Limiet theorema ons dat de verdeling Gaussisch is
variantie van d $\ln \mathcal{L}$	We vinden: $V\left(\frac{d\ln\mathcal{L}}{da}\Big _{a_0}\right) = \left\langle \left(\frac{d\ln\mathcal{L}}{da}\right)^2 \right\rangle - \underbrace{\left\langle \frac{d\ln\mathcal{L}}{da}\right\rangle^2}_{} = -\left\langle \frac{d^2\ln\mathcal{L}}{da^2}\right\rangle \tag{6.10}$
	De vewachtingswaarden worden uitgewerkt voor $a=a_0$ en is dus de tweede term van de variantie gelijk aan nul.
variantie van (â-a ₀)	De Taylorreeks geeft ons dat (\hat{a} - a_0) evenredig is met dln \mathcal{L}/da > wordt ook beschreven door Gauss met gemiddelde:
	$<\hat{a}-a_0>=\left\langle rac{d\ln\mathcal{L}}{da} ight angle =0$ nu dus:
	$V(\hat{a} - a_0) = \left(\frac{d(\hat{a} - a_0)}{d(d_a \ln \mathcal{L})}\right)^2 V\left(\frac{d \ln \mathcal{L}}{da}\right) = -\left\langle\frac{d^2 \ln \mathcal{L}}{da^2}\right\rangle / \left(\frac{d^2 \ln \mathcal{L}}{da^2}\Big _{a_0}\right)^2$
Variantie bij grote N	In de limiet van grote N convergeren verwachtingswaarden naar de echte waarde, $\left\langle \frac{d^2 \ln \mathcal{L}}{da^2} \right\rangle = \left. \frac{d^2 \ln \mathcal{L}}{da^2} \right _{a_0}$
	zodat we de verwachtingswaarde in de teller mogen vervangen door zijn waarde bij a_0 . Daardoor valt één van de factoren in de noemer weg, zodat we voor de variantie van \hat{a} vinden:
	$V(\hat{a}) = \sigma_{\hat{a}}^2 = -\frac{1}{\left(\frac{d^2 \ln \mathcal{L}}{da^2}\Big _{a_0}\right)} = -\frac{1}{\left\langle\frac{d^2 \ln \mathcal{L}}{da^2}\right\rangle} $ (6.11)
Carfenses Lagres Lee	hetgeen precies de MVB is.
6.2.5 fouten op de MLLH schatters	
stelling: fout op MLLH schatter	Voor elke onbevooroordeelde efficiënte MLLH schatter kan de fout geëvalueerd worden: $V(\hat{a})^{-1} = -\left.\frac{d^2 \ln \mathcal{L}}{da^2}\right _{a=\hat{a}}$
stelling: waarden van log- likelihood	$\ln \mathcal{L}(a) = \ln \mathcal{L}_{\text{max}} - \frac{(a - \hat{a}(\vec{x}))^2}{2\sigma^2}$
	Bij het punt 1σ weg van de piek is $\ln\mathcal{L}$ met 0.5 verminderd 2σ 2
	3σ 4.5

vor van de log-likelihood	Een beetje herwerken van de formule vinden we:
	$\ln \mathcal{L}_{ ext{max}} - \ln \mathcal{L} = rac{A}{2} [\hat{a}(ec{x}) - a]^2$
	De log-likelihood is dus een parabool (Fig.6.3). Exponentiëren leidt tot
	$\mathcal{L}(ec{x};a) = \mathcal{L}_{ ext{max}} e^{rac{A}{2}[a-\hat{a}(ec{x})]^2}$
asymmetrische fouten	Als N niet groot genoeg is, is de Likelihood ftie geen Gauss en log-likelihood geen parab. > bekijk waar de functie 0.5 gezakt is > dit zal niet meer perfect symmetrisch liggen > asymmetrische fouten, notatie vb:
	$a = 0.21^{+0.29}_{-0.27}$
6.2.6 meerdere parameters	
MLLH voor meerdere parameters	Veralgemeen alles tot nu toe gewoon voor een meerdimensionaal geval > we zoeken nu dus: $\frac{\partial \ln \mathcal{L}(x_1 \dots, x_N; a_1, \dots, a_k)}{\partial a_j} = 0 \qquad \forall j = 1, \dots, k$
	> zelfde voor invariantie > likelihood ftie is een meerdimensionale Gauss
stelling: covariantiematrix	We vinden: $\sigma_{\hat{a}_j}^{-2} = -\left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial a_j^2} \right\rangle \qquad \qquad \operatorname{cov}^{-1}(a_i, a_j) = -\left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial a_i \partial a_j} \right\rangle = -\left. \frac{\partial^2 \ln \mathcal{L}}{\partial a_i \partial a_j} \right _{a = \hat{a}}$
vorm van likelihood functie	voor grote N in 2D vormt ze een 2D Gauss:
	$\ln \mathcal{L}(a_1, a_2) = (\ln \mathcal{L})_{\text{max}} - \frac{1}{2(1 - \rho^2)} \left[\left(\frac{a_1 - \hat{a}_1}{\sigma_{\hat{a}_1}} \right)^2 + \left(\frac{a_2 - \hat{a}_2}{\sigma_{\hat{a}_2}} \right)^2 - 2\rho \left(\frac{a_1 - \hat{a}_1}{\sigma_{\hat{a}_1}} \right) \left(\frac{a_2 - \hat{a}_2}{\sigma_{\hat{a}_2}} \right) \right]$
	waarin $\rho = \cos(\hat{a}_1, \hat{a}_2)/(\sigma_{\hat{a}_1}\sigma_{\hat{a}_2})$ de correlatiecoëfficiënt voor a_1 en a_2 is. Het contour van $\ln \mathcal{L}(a_1, a_2) = \ln \mathcal{L}_{\max} - 0.5$ is dus gegeven door:
	$\frac{1}{1 - \rho^2} \left[\left(\frac{a_1 - \hat{a}_1}{\sigma_{\hat{a}_1}} \right)^2 + \left(\frac{a_2 - \hat{a}_2}{\sigma_{\hat{a}_2}} \right)^2 - 2\rho \left(\frac{a_1 - \hat{a}_1}{\sigma_{\hat{a}_1}} \right) \left(\frac{a_2 - \hat{a}_2}{\sigma_{\hat{a}_2}} \right) \right] = 1$
	Dit is een ellips met als centrum de MLLH schatters (\hat{a}_1,\hat{a}_2) die een hoek ϕ maakt met de a_1 -as:
	$ an 2\phi = rac{2 ho\sigma_{\hat{a}_1}\sigma_{\hat{a}_2}}{\sigma_{\hat{a}_1}^2 - \sigma_{\hat{a}_2}^2}$
	Merk in het bijzonder op dat de raaklijnen aan de ellips parallel met de assen de ellips snijden bij $a_1=\hat{a}_1\pm\sigma_{\hat{a}_1}^2$ en $a_2=\hat{a}_2\pm\sigma_{\hat{a}_2}^2$.
6.2.7 opmerkingen bij Maximum I	Likelihood methode
opmerkingen	- 'maximum' betekend niet 'meest waarschijnlijke' waarde
	positief: - voor grote N heeft â een waarsch.verdeling die onbevooroordeeld is en Gaussisch rond de echte waarde van a met variantie gegeven door de MVB > heel goede schatter - er gaat geen info verloren door gegevens samen te nemen in bins
	negatief: - voor kleine N vertoont de MLLH een bias - je moet de vorm van de ouderdistributie kennen - de vgl van $dln\mathcal{L}/da$ is niet altijd op te lossen
6.2.8 maximum likelihood en Mor	nte Carlo
max likelihood en monte carlo	in sommige gevallen is likelihood niet analytisch op te lossen > bereken numeriek > veronderstel dat de schatter efficiënt en onbevooroordeeld is > gebruik Monte Carlo om MLLH uit te breiden

6.2.9 uitgebreide maximum	5.2.9 uitgebreide maximum likelihood	
uitgebreide maximum likelihood	Standaard is de waarschijnlijkheidsdichtheid genormeerd:	
EML	$\int P(x;a)dx = 1$	
	laat deze voorwaarde echter los	
	> neem een functie Q, zonder een vaststaande normering:	
	$\int Q(x;a)dx = \nu$	
	> handig voor experimenten waarbij aantal gebeurtenissen a priori bekend is	
	Een bepaalde Q(x;a) voorspeld dus v elementen in een gebied	
	> verm. de likelihood met de Poisson dat N evenementen observeert als gemiddelde v:	
	$e^{- u} rac{ u^N}{N!}$	
	dan is de log-likelihood: $\ln \mathcal{L} = \sum \ln P(x_i;a) - \nu + N \ln u$	
	$= \sum \ln(\nu P(x_i; a)) - \nu$	
	$= \sum \ln Q(x_i; a) - \nu$	
	een toename in normering van Q zal de likelihood doen stijgen	
	> waargenomen evenement wordt meer waarschijnlijk	
eigenschappen van EML	Zelfde eigenschappen als MLLH	
covariantiematrix EML	$\operatorname{cov}(a_i, a_j)^{-1} = -\left\langle \frac{\partial^2 \ln \mathcal{L}}{\partial a_i \partial a_j} \right\rangle = -\int \frac{\partial \ln Q}{\partial a_i} \frac{\partial \ln Q}{\partial a_j} Q(x; a) dx$	
	> zelfde als MLLH op een factor N na	

6.3 kleinste kwadraten	
gebruik kleinste kwadraten	Je hebt twee variabelen x en y en: 1. een aantal exact gekende x waarden,
	2. een corresponderende verzameling y waarden, gemeten met een nauwkeurigheid σ_y ,
	3. een functie $f(x; \vec{\theta})$ die de waarde van y voorspelt voor om het even welke x ; de vorm van deze functie
	is bekend maar bevat onbekende parameters $\vec{\theta}$ die je probeert te bepalen. >> om onbekende parameters te bepalen uit een aantal gegevens
6.3.1 principe van de methode	
def: kleinste kwadraten	Je minimaliseert het (gewogen) kwadratisch verschil tss een groep van N metingen (x _i ,y _i) en
	de voorspelde waarden $f(x_i; \boldsymbol{\theta})$:
	$\chi^2 = \sum_{i=1}^{N} \left[\frac{y_i - f(x_i; \vec{\theta})}{\sigma_i} \right]^2$
	> laat de parameters die je wilt bepalen variëren > voorspelde waarden worden zodanig aangepast dat je dicht bij waarneming uitkomt > kwadrateren zorgt voor een meer uitgesproken verschil
werking van KK	Uit een set van N precieze waarden x= $\{x_1,,x_N\}$ met hiervoor y= $\{y_1,,y_N\}$ met σ_i nauwkeurigheid op y_i
	> methode om een parameter a van een functie f(x;a) te schatten die de echte waarde van y voorspelt voor om het even welke x
	> kies dan die waarde van a die de kleinste \mathcal{X}^2 geeft > als f afgeleid kan worden, kan deze kleinste \mathcal{X}^2 gevonden worden via:
	$\frac{d\chi^2}{da} = \sum_{i} \frac{2}{\sigma_i^2} \frac{df(x_i; a)}{da} \left[y_i - f(x_i; a) \right] = 0$
	de bekomen schatting \hat{a} op a heeft een fout de we kunnen uitrekenen > nl: \hat{a} wordt gegeven als functie van y_i deze een fout σ_i hebben > formule voor propagatie van fouten geeft de fout op \hat{a}
KK in meerdere dimensies	de functie hangt nu af van een $\theta = \{\theta_1,,\theta_k\}$ ipv a > er zijn k gekoppelde vgln in k onbekenden:
	$\frac{\partial \chi^2}{\partial \theta_i} = 0 \qquad \forall i = 1, \dots k$
KK vanuit maximum likelihood	als de metingen y Gaussische verdeeld zijn
KK Valluit Illaxilliulli likeliiloou	> neem aan dat de y gegeven worden door een ftie f van x die afh. is ve parameter a > functie geldt evenwel enkel voor de ideale y
	> onze metingen wijken daarvan af door de resolutie
	Centraal Limiet Theorema: verdeling vd gemeten y rond de ideale waarde is Gaussisch > waarschijnlijkheid om bepaalde y _i te hebben voor gegeven x _i :
	$P(y_i; a) = \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{(y_i - f(x_i; a))^2}{2\sigma_i^2}}$
	de log-likelihood vd volledig steekproef is dus:
	$\ln \mathcal{L} = -\frac{1}{2} \sum_{i=1}^{N} \left[\frac{y_i - f(x_i; a)}{\sigma_i} \right]^2 - \sum_{i=1}^{N} \ln \sigma_i \sqrt{2\pi}$
	om de likelihood te maximaliseren moet de volgende geminimaliseerd worden:
	$\sum_{i=1}^{N} \left[\frac{y_i - f(x_i; a)}{\sigma_i} \right]^2$
	wat niet anders dan de KK is

toepassing KK	aanpassen van een rechte is meest voorkomende toepassing > metingen y_i hebben allemaal een fout σ en liggen op een lijn $y=mx+c$
y=mx fitten	we moeten \mathcal{X}^2 minimaliseren door m aan te passen:
	$\chi^{2} = \sum_{i=1}^{N} \left[\frac{y_{i} - mx_{i}}{\sigma_{i}} \right]^{2} \tag{6.18}$
	Dit afleiden naar m geeft: $\frac{d\chi^2}{dm} = \sum -2x_i \frac{y_i - mx_i}{\sigma_i^2}$
	Als alle σ_i gelijk zijn wordt dit een gemeenschappelijke factor die buiten de som kan gebracht worden, hetgeen leidt tot:
	$\frac{-2}{\sigma^2} \sum (x_i y_i - mx_i^2)$
	Voor de kleinste kwadraten schatting van de helling, \hat{m} is deze som gelijk aan 0 en dus:
	$\sum x_i y_i = \hat{m} \sum x_i^2$
stelling: ^m	De KK schatting van m is: $\hat{m} = \frac{\overline{xy}}{\overline{x^2}}$
	met nauwkeurigheid
	$V(\hat{m}) = \sum_{i=1}^{N} \left(\frac{d\hat{m}}{dy_i}\right)^2 \sigma_i^2 = \sum_{i=1}^{N} \left(\frac{x_i}{N\overline{x^2}}\right)^2 \sigma^2$
	> dus: $V(\hat{m}) = \frac{\sigma^2}{N\overline{x^2}}$
stelling: fitten van y=mx+c	als alle σ _i gelijk zijn, dan:
stelling. Ittell vall y-mix-e	$\hat{m} = rac{\overline{xy} - ar{x}ar{y}}{\overline{x^2} - ar{x}^2} = rac{\mathrm{cov}(x,y)}{V(x)}$ en $\hat{c} = ar{y} - \hat{m}ar{x} = rac{\overline{x^2}ar{y} - ar{x}ar{xy}}{\overline{x^2} - ar{x}^2}$
	de eerste uitdrukking voor ^c geeft aan dat de lijn door het zwaartepunt (\bar{x},\bar{y}) gaat
stelling: fouten op schatters	fouten op schatter worden gegeven door
	$V(\hat{m}) = \frac{1}{N(\overline{x^2} - \bar{x}^2)}\sigma^2 \qquad \text{en} \qquad V(\hat{c}) = \frac{\overline{x^2}}{N(\overline{x^2} - \bar{x}^2)}\sigma^2$
	De covariantie en correlatiecoëfficiënt tussen de schatters \hat{m} en \hat{c} wordt gegeven door :
	$\operatorname{cov}(\hat{m}, \hat{c}) = \frac{-\bar{x}}{N(\overline{x^2} - \bar{x}^2)} \sigma^2 \qquad \qquad \rho_{\hat{m}, \hat{c}} = \frac{\operatorname{cov}(\hat{m}, \hat{c})}{\sqrt{V(\hat{m})V(\hat{c})}} = -\frac{\bar{x}}{\sqrt{\overline{x^2}}}$
stelling: \mathcal{X}^{2} zonder ^m en ^c	De \mathcal{X}^2 kan berekend worden zonder de voorafgaande kennis van ^m en ^c > zonder de som van de afwijkingen te nemen:
	$\chi^2 = N \frac{V_y}{\sigma^2} (1 - \rho_{x,y}^2)$
stelling: systematische fout	Een systematische fout y heeft geen invloed op de helling van ^m maar wordt (kwadratisch) opgeteld bij de fout op het intercept ^c
\mathcal{X}^2 bij ongelijke σ_i	als de σ_i niet allen gelijk zijn dan:
	$\chi^{2} = \sum_{i} \frac{1}{\sigma_{i}^{2}} (y_{i} - mx_{i} - c)^{2}$
	> geeft dezelfde vgln voor ^m en ^c maar:
	\overline{x} en \overline{y} zijn de gewogen gemiddelden met gewichtsfunctie $w_i\!=\!\sigma_i^{-2}$
	de normering wordt dan door het totale gewicht W gegeven, niet door N: N
	$W = \sum_{i=1}^{N} \sigma_i^{-2}$
	op precies dezelfde manier moet de grootheid σ^2 vervangen worden door:
	$\overline{\sigma^2} = \frac{1}{W} \sum_{i=1}^N w_i \sigma_i^2 = \frac{1}{W} \sum_{i=1}^N \sigma_i^{-2} \sigma_i^2 = \frac{N}{W}$

Extrapolatie van y	Voor een gegeven X > de voorspelling Y is gelijk aan: $ \hat{m}X + \hat{c}. $ De fout hierop: $ V(Y) = V(\hat{c}) + X^2V(\hat{m}) + 2X\mathrm{cov}(\hat{m},\hat{c}) $ > we willen echter deze laatste term vermijden > als $\hat{x} = 0$ valt deze term weg > je moet je later niet herinneren om hem mee te nemen > $ Y = \hat{m}(X - \bar{X}) + \hat{c}' $ >> geeft de ongecorreleerde schattingen voor \hat{m} en \hat{c}' .
stelling: fout op Y	de fout op de geëxtrapoleerde waarde Y is: $V(Y) = \frac{\sigma^2}{N(\overline{x^2} - \overline{x}^2)} (X - \overline{x})^2 + \frac{\sigma^2}{N}$
6.3.3 gebinde gegevens	
principe van bins	Bij grote steekproeven zijn er veel computaties nodig > oplossing: neem gegevens samen in bins veronderstel er zijn N evenementen met waarschijnlijkheidsfunctie P(x;a) > deze zijn gesorteerd in intervallen van 1 tot N _b > interval j is gecentreerd op punt x _j , heeft breedte B _j en bevat n _j elementen ideaal verwachte aantal elementen in een bin j is f _j = NB _j P(x;a) > eigenlijke aantal wordt beschreven door Poisson statistiek > variantie is gelijk aan gemiddelde
6.3.4 de \mathcal{X}^2 -verdeling	
def: \mathcal{X}^2	= kwadraat van verschil in waargenomen $\mathbf{y_i}^w$ en theoretische $\mathbf{y_i}^t$ gewogen volgens de fout op de waarnemingen σ_i $\chi^2 = \sum_i \frac{(y_i - f(x_i))^2}{\sigma_i^2} = \sum_{i=1}^N \left(\frac{y_i^w - y_i^t}{\text{verwachte fout}}\right)^2$
def: aantal vrijheidsgraden	= aantal punten N in de som min het aantal variabelen k dat aangepast is om \mathcal{X}^2 te minimaliseren
betekenis van \mathcal{X}^2	- als de functie goed overeenkomt zal \mathcal{X}^2 klein zijn - als \mathcal{X}^2 te klein is, betekend dit dat de fout σ op de metingen fout ingeschat is
st: waarschijnlijkheidsdichtheid	de waarsch.dichtheid van \mathcal{X}^2 met n vrijheidsgraden is: $P(\chi^2;n)=\frac{2^{-n/2}}{\Gamma(n/2)}\chi^{n-2}e^{-\chi^2/2}$ waarbij $\Gamma(x)$ de standaard gamma functie is.
stelling: som van \mathcal{X}^2	Als 2 variabelen een \mathcal{X}^2 verdeling volgen met N_1 en N_2 metingen > dan wordt de som van de 2 beschreven door een \mathcal{X}^2 met N_1 + N_2 metingen

6.3.5 fouten op x en y	
casestudy: fouten op x en y	Veronderstel dat er fouten zijn op zowel x als y: 1: fout op x = fout op y = σ 2: x en y verschillende nauwkeurigheid
geval 1: gelijke fouten	fit een rechte lijn en pas de maximum likelihood toe > een gemeten punt B kan afkomstig zijn van eender welk punt A op de ideale rechte > waarschijnlijkheidsdichtheid hiervoor is:
	$P(A \to B) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x_A - x_B)^2}{2\sigma^2}} e^{-\frac{(y_A - y_B)^2}{2\sigma^2}}$ $= \frac{1}{2\pi\sigma^2} e^{\frac{-r^2}{2\sigma^2}}$ $= \frac{1}{2\pi\sigma^2} e^{-\frac{u^2}{2\sigma^2}} e^{-\frac{h^2}{2\sigma^2}}$
	om de totale waarschijnlijkheid te vinden dat B afkomstig is van A, integreren over alle u: $P(B)=\frac{1}{2\pi\sigma^2}\int e^{-\frac{u^2}{2\sigma^2}}e^{-\frac{h^2}{2\sigma^2}}du=\frac{1}{2\pi\sigma^2}\sqrt{2\pi\sigma^2}e^{-\frac{h^2}{2\sigma^2}}$
	h is de loodrechte afstand van het punt tot de lijn ie: van het gemeten punt tot het punt C > C is het meest waarschijnlijke punt op de rechte
	om \mathcal{X}^2 te vormen: sommeer alle gekwadrateerde afstanden tss B en overeenkomstige C > uit gelijkvormige driehoeken uit de figuur vinden we h:
	$h_i = \frac{y_i - (mx_i + c)}{\sqrt{1 + m^2}}$
	dus we vinden voor \mathcal{X}^{2} $\chi^2 \propto \sum_i rac{(y_i - mx_i - c)^2}{1 + m^2}$
	- afleiden naar c levert de formule $\ \bar{y} = \hat{m}\bar{x} + \hat{c}$ - afleiden naar m levert: $V(u) - V(x)$
	$\hat{m} = A \pm \sqrt{A^2 + 1}$ met $A = \frac{V(y) - V(x)}{2 \text{cov}(x, y)}$ > twee oplossingen voor ^m staan loodrecht op elkaar
	> één geeft de beste oplossing, de ander de slechtste y y f(x) = mx +c dx x
geval 2: ongelijke fout	Herschaal de variabelen zodat ze wel dezelfde fout hebben: $y'=\frac{y}{\sigma_y} \text{ , } x'=\frac{x}{\sigma_x}$
	na transformatie terug naar oorspronkelijke x en y vinden we: $\hat{m} = \frac{\sigma_y}{\sigma_x}(A \pm \sqrt{A^2 + 1}) \qquad \text{met} \qquad A = \frac{\sigma_x^2 V(y) - \sigma_y^2 V(x)}{2\sigma_x \sigma_y \text{cov}(x,y)}$

6.3.6 lineaire kleinste kwadrat	en en matrices
variabelen in vectorvorm	 - a is een vector met k parameters a₁,,a_k - y is vector met alle y_i - f is vector met alle f(x_i,a)
	>> allen vectoren hebben N elementen
\mathcal{X}^2 in matrixnotatie	we weten: $\chi^2 = \sum_i \sum_j [y_i - f(x_i; \mathbf{a})] V_{ij}^{-1} [y_j - f(x_j; \mathbf{a})]$ of dus: $\chi^2 = (\tilde{\mathbf{y}} - \tilde{\mathbf{f}}) \mathbf{V}^{-1} (\mathbf{y} - \mathbf{f})$
	als er onafhankelijke metingen zijn, dan is V diagonaal:
	$V_{ij} = \sigma_i^2 \delta_{ij}$ $V_{ij}^{-1} = \frac{\delta_{ij}}{\sigma_i^2}$
	>> leidt nu af naar elke a _r en stel deze gelijk aan 0 > we krijgen n vgln waaruit we â kunnen halen
stelling: â en V (â)	$\hat{\mathbf{a}} = (\tilde{\mathbf{C}}\mathbf{V}^{-1}\mathbf{C})^{-1}\tilde{\mathbf{C}}\mathbf{V}^{-1}\mathbf{y}$
	de nauwkeurigheid wordt gegeven door de covariantiematrix $\mathbf{V}(\hat{\mathbf{a}}) = (\tilde{\mathbf{C}}\mathbf{V}(\mathbf{y})^{-1}\mathbf{C})^{-1}$
	> ${f V}$ is een NxN matrix ${f C}$ is een rechthoekige matrix met N rijen en n kolommen ${f > C}$ is de matrix bestaande uit alle ${f C}_{\rm ir}$: $C_{ir}=c_r(x_i)$
6.3.7 niet-lineaire kleinste kwa	draten
niet-lineaire kleinste kwadrater	indien f(x; a) niet lineair, gebruik een iteratieve methode
	voor een eerste gok $\mathbf{a^0}$ zijn de gradiënten voor onafhankelijke metingen: $\frac{\partial \chi^2}{\partial a_n} \bigg = g_r(\mathbf{a^0}) = \sum_{i=0}^{\infty} -\frac{2}{\sigma_r^2} \left[y_i - f(x_i; \mathbf{a^0}) \right] \frac{\partial f(x_i; \mathbf{a^0})}{\partial a_n}$

$$\frac{\partial \chi^2}{\partial a_r}\Big|_{\mathbf{a}=\mathbf{a}} = g_r(\mathbf{a^0}) = \sum_i -\frac{2}{\sigma_i^2} \left[y_i - f(x_i; \mathbf{a^0}) \right] \frac{\partial f(x_i; \mathbf{a^0})}{\partial a_r}$$

Je wilt en minimum raken, en dus een increment $\delta {f a}$ vinden waarvoor geldt :

$$g_r(\mathbf{a^0} + \delta \mathbf{a}) = \left. \frac{\partial \chi^2}{\partial a_r} \right|_{\mathbf{a} = \mathbf{a} + \delta \mathbf{a}} = 0 \quad \forall r$$

Je doet dit door een ontwikkeling van $\frac{\partial \chi^2}{\partial a_r}$ in een Taylor reeks, waarbij je enkel de nulde en eerste orde termen behoudt :

$$g_r(\mathbf{a^0} + \delta \mathbf{a}) \approx g_r(\mathbf{a^0}) + \sum_s \frac{\partial g_r}{\partial a_s} \delta a_s = g_r(\mathbf{a^0}) + \sum_s \frac{\partial^2 \chi^2}{\partial a_r \partial a_s} \delta a_s$$

Noteren we $f(x_i;a^0)$ voor het gemak als f_i dan:

$$G_{rs} = \frac{\partial^2 \chi^2}{\partial a_r \partial a_s} = \sum_i \frac{-2}{\sigma_i^2} \left[-\left(\frac{\partial f_i}{\partial a_r}\right) \left(\frac{\partial f_i}{\partial a_s}\right) + (y_i - f_i) \left(\frac{\partial^2 f_i}{\partial a_r \partial a_s}\right) \right]$$

Eindelijk vinden we uit de matrix vergelijking :

$$\delta \mathbf{a} = -\mathbf{G}^{-1}\mathbf{g}$$

waarbij de oplossing via iteratie bekomen wordt.

>> wanneer de g_r klein genoeg worden stopt de iteratie > resulterende a wordt als oplossing genomen

implementatie in python: standaardpakket in software bibliotheek