aws re: Invent

AIM361R

Optimizing Your Machine Learning Models on Amazon SageMaker

Julien Simon

AI/ML Evangelist AWS

Dr Steve Turner

Head of Emerging Technologies, UKIR AWS

Agenda

- 1. Welcome & housekeeping
- 2. An introduction to Automatic Model Tuning (AMT) and AutoML
- 3. Labs
- 4. Wrap-up and clean-up

What you'll learn today

- How to use AMT to find optimal model hyperparameters
- How to use AMT to explore deep learning architectures
- How to use Amazon SageMaker Autopilot to find the optimal algorithm, data preprocessing steps and hyper parameters

Our team today

- Antje
- Chris
- Srikanth
- Wei
- Marc
- Michael E
- Matt
- Mike
- Guillaume

- Michael M
- Frank
- Shashank
- John
- Abhi
- Navjot
- Bo
- Boaz
- Mohamed

Housekeeping

• Please be a good neighbor ©

Turn off network backups and any network-hogging app

Switch your phones to silent mode

• Help the people around you if you can

Don't stay blocked. Ask questions!

Automatic Model Tuning with Amazon SageMaker

Hyperparameters

XGBoost

Tree depth
Max leaf nodes
Gamma
Eta
Lambda
Alpha

• • •

Which ones are the most influential?

Which values should I pick?

How many combinations should I try?

Neural Networks

Number of layers
Hidden layer width
Learning rate
Embedding
dimensions
Dropout

• •

Tactics to find the optimal set of hyperparameters

- Manual Search: "I know what I'm doing"
- Grid Search: "X marks the spot"
 Typically training hundreds of models
 Slow and expensive
- Random Search: "Spray and pray"
 « Random Search for Hyper-Parameter Optimization », Bergstra & Bengio, 2012
 Works better and faster than Grid Search
 But... but... but... it's random!
- Hyperparameter Optimization: use ML to predict hyperparameters
 Training fewer models
 Gaussian Process Regression and Bayesian Optimization
 https://docs.aws.amazon.com/en_pv/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html

Setting hyperparameters in Amazon SageMaker

- Built-in algorithms
 - Python parameters for the relevant estimator (KMeans, LinearLearner, etc.)
- Built-in frameworks
 - hyperparameters parameter for the relevant estimator (TensorFlow, MXNet, etc.)
 - This must be a Python dictionary
 tf estimator = TensorFlow(..., hyperparameters={'epochs': 1, 'lr': '0.01'})
 - Your code must be able to accept them as command-line arguments (script mode)
- Bring your own container
 - hyperparameters parameter for Estimator
 - This must be Python dictionary
 - It's copied inside the container: /opt/ml/input/config/hyperparameters.json

Automatic Model Tuning in Amazon SageMaker

- 1. Define an *Estimator* the normal way
- 2. Define the metric to tune on
 - Pre-defined metrics for built-in algorithms and frameworks
 - Or anything present in the training log, provided that you pass a regular expression for it
- 3. Define parameter ranges to explore
 - Type: categorical (avoid if possible), integer, continuous (aka floating point)
 - Range
 - Scaling: linear (default), logarithmic, reverse logarithmic
- 4. Create an *HyperparameterTuner*
 - Estimator, metric, parameters, total number of jobs, number of jobs in parallel
 - Strategy: bayesian (default), or random search
- 5. Launch the tuning job with *fit()*

Workflow

Objective

metrics

Automatic Model Tuning in Amazon SageMaker

- You can view ongoing tuning jobs in the AWS console
 - List of training jobs
 - Best training job

You can also query their status with the SageMaker SDK

- Calling deploy() on the HyperparameterTuner deploys the best job
 - The best job so far if the tuning job has not yet completed

Tips

- Use the bayesian strategy for better, faster, cheaper results
 - Most customers use random search as a baseline, to check that bayesian performs better

- Don't run too many jobs in parallel
 - This gives the bayesian strategy fewer opportunities to predict
 - Instance limits!
- Don't run too many jobs
 - Bayesian typically requires 10x fewer jobs than random
 - Cost!

Resources on Automatic Model Tuning

Documentation

https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html

https://sagemaker.readthedocs.io/en/stable/tuner.html

Notebooks

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/hyperparameter_tuning

Blog posts

https://aws.amazon.com/blogs/aws/sagemaker-automatic-model-tuning/

https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-automatic-model-tuning-produces-better-models-faster/

https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-automatic-model-tuning-now-supports-early-stopping-of-training-jobs/

https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-automatic-model-tuning-becomes-more-efficient-with-warm-start-of-hyperparameter-tuning-jobs/

https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-automatic-model-tuning-now-supports-random-search-and-hyperparameter-scaling/

AutoML with Amazon SageMaker Autopilot

AutoML

- AutoML aims at automating the process of building a model
 - Problem identification: looking at the data set, what class of problem are we trying to solve?
 - Algorithm selection: which algorithm is best suited to solve the problem?
 - Data preprocessing: how should data be prepared for best results?
 - Hyperparameter tuning: what is the optimal set of training parameters?
- Black box vs. white box
 - Black box: the best model only
 → Hard to understand the model, impossible to reproduce it manually
 - White box: the best model, other candidates, full source code for preprocessing and training
 → See how the model was built, and keep tweaking for extra performance

AutoML with Amazon SageMaker Autopilot

- SageMaker Autopilot covers all steps
 - Problem identification: looking at the data set, what class of problem are we trying to solve?
 - Algorithm selection: which algorithm is best suited to solve the problem?
 - Data preprocessing: how should data be prepared for best results?
 - Hyperparameter tuning: what is the optimal set of training parameters?
- Autopilot is white box AutoML
 - You can understand how the model was built, and you can keep tweaking

Supported algorithms at launch:
 Linear Learner, Factorization Machines, KNN, XGBoost

AutoML with Amazon SageMaker Autopilot

- 1. Upload the unprocessed dataset to S3
- 2. Configure the AutoML job
 - Location of dataset
 - Completion criteria
- 3. Launch the job
- 4. View the list of candidates and the autogenerated notebook
- 5. Deploy the best candidate to a real-time endpoint, or use batch transform

Labs

Labs

- 1. Use AMT to find optimal model hyperparameters for XGBoost
- 2. Use Autopilot to find the optimal algo, preprocessing steps and hyper parameters

3. Use AMT to explore deep learning architectures on Keras

https://gitlab.com/juliensimon/aim361

Thank you!

Please complete the session survey in the mobile app.

