NFAs mit ϵ -Übergängen

Dies ist kein NFA!

Ziel: Erkenne die Sprache $a^*b^*c^*$.

NFA ist komplizierter!

Definition

Ein NFA mit ϵ -Übergängen ist ein 5-Tupel $M = (Q, \Sigma, \delta, q_0, F)$ mit

2 Q, Σ , q_0 , F wie bei NFAs.

Für $q \in Q$:

$$\epsilon$$
-Hülle $(q):=\{\, p\in Q\mid ext{es gibt }q_1,\ldots,q_n$ mit $q_{i+1}\in\delta(q_i,\epsilon)$ für $1\leq i< n$ und $q=q_1,\ p=q_n\,\}$

Für $S \subseteq Q$:

$$\epsilon$$
-Hülle $(S) := \bigcup_{q \in S} \epsilon$ -Hülle (q)

- ϵ -Hülle $(q_0) = \{q_0, q_1, q_2\}$
- \bullet ϵ -Hülle $(q_1) = \{q_1, q_2\}$
- ϵ -Hülle $(q_2) = \{q_2\}$
- ϵ -Hülle $(\{q_1, q_2\}) = \{q_1, q_2\}$

Definition

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein NFA mit ϵ -Übergängen.

Es sei $q \in Q$, $w \in \Sigma^*$ und $a \in \Sigma$.

•
$$\hat{\delta}(q,\epsilon) = \epsilon$$
-Hülle (q)

•
$$\hat{\delta}(q, wa) = \bigcup_{p \in \hat{\delta}(q, w)} \epsilon$$
-Hülle $(\delta(p, a))$

Informell:

 $\hat{\delta}(q, a)$ sind Zustände, die von q erreichbar sind:

- **1** Zunächst über ϵ -Transitionen
- Dann über eine a-Transistion
- **1** Dann über ϵ -Transitionen

- $\delta(q_0, a) = \{q_0\}$
- $\hat{\delta}(q_0, a) = \{q_0, q_1, q_2\}$
- $\delta(q_0, b) = \emptyset$
- $\hat{\delta}(q_0, b) = \{q_1, q_2\}$
- $\delta(q_0,\epsilon) = \{q_1\}$
- $\hat{\delta}(q_0, \epsilon) = \{q_0, q_1, q_2\}$

Theorem

Sei
$$M = (Q, \Sigma, \delta, q_0, F)$$
 ein NFA mit ϵ -Übergängen.
Dann gibt es einen NFA M' mit $L(M') = L(M)$.

Beweis.

$$M' = (Q, \Sigma, \delta', q_0, F')$$
 mit

- $\delta'(q,a) = \hat{\delta}(q,a),$
- $F' = \{ q \in Q \mid \epsilon\text{-H\"ulle}(q) \cap F \neq \emptyset \}.$

Informell:

 $p \in \delta'(q, a)$ gdw. in M gibt es Pfad von q nach p, der

- ullet zunächst mit ϵ beschriftet ist,
- ② dann einen a-Übergang hat,
- \odot dann wieder mit ϵ beschriftet ist.

Die Thompson-Konstruktion

Gegeben regulärer Ausdruck r.

Konstruktion eines NFA M mit L(M) = L(r).

Vorgehen: Induktiv über Aufbau von r.

•
$$r = \emptyset$$
:

$$\bullet$$
 $r = \epsilon$:

$$\epsilon$$

$$\bullet$$
 $r=a$:

• r = s + t:

• $r = s^*$:

NFAs mit ϵ -Übergängen

Theorem

Zu jedem regulären Ausdruck r gibt es einen NFA mit ϵ -Kanten M, so daß L(M) = L(r).

Beweis.

Thompson-Konstruktion.

Korrektheit:

Strukturelle Induktion über den Aufbau regulärer Ausdrücke.

$$(a(b+c))^*a$$

Größe des NFA linear in der Länge des regulären Ausdrucks!

Robustheit regulärer Sprachen

Theorem

DFAs, NFAs, NFAs mit ϵ -Übergängen und reguläre Ausdrücke charaktersieren jeweils die regulären Sprachen.

Beweis.

- **1** regulärer Ausdruck $\rightarrow \epsilon$ -NFA: Thompson-Konstruktion
- **2** ϵ -NFA \rightarrow NFA: Eliminierung von ϵ -Kanten
- NFA → DFA: Potenzautomat
- **1** DFA \rightarrow regulärer Ausdruck: L_{ii}^k -Konstruktion

Robustheit regulärer Sprachen

Theorem

Die Reguläre Sprachen sind abgeschlossen unter Vereinigung, Schnitt, Konkatenation, Kleene'scher Hülle, Komplement, Differenz und Homomorphismen.

- Vereinigung: Reguläre Ausdrücke
- Schnitt: DFAs, Produktautomat
- Konkatenation: Reguläre Ausdrücke
- Kleene'sche Hülle: Reguläre Ausdrücke
- Komplement: DFAs
- Differenz: Komplement und Schnitt
- Homomorphismen: Reguläre Ausdrücke

Simulation eines NFA

```
S := \{ q0 \};
while(es gibt noch ein Zeichen) {
  c := lese Zeichen:
  \mathsf{H} := \emptyset:
  for(q in S) { H := H \cup \delta(q, c); }
  S := H:
if(S \cap F \neq \emptyset) return 1;
return 0:
```

Datenstruktur für H:

- Stack (FIFO-Queue) und
- Bitfeld

Laufzeit: $O(|Q| \cdot |w|)$, falls $|\Sigma|$ konstant.

Einige Zwischenfragen

Welche Konstruktionen funktionieren auch für NFAs?

- Momplementärautomat Nein
- Produktautomat Ja

Wer hat die Nase vorne? NFA oder DFA?

- Vereinigung zweier Sprachen NFA
- Schnitt zweier Sprachen DFA
- Sonstruktion aus einem regulären Ausdruck NFA
- Verwandeln in einen regulären Ausdruck egal
- Momplementieren DFA
- Simulieren DFA

Die Myhill–Nerode-Relation \equiv_L

Definition

Es sei $L \subseteq \Sigma^*$.

Definiere $\equiv_{\mathcal{L}} \subseteq \Sigma^* \times \Sigma^*$ vermöge

$$u \equiv_L v \iff uw \in L \Leftrightarrow vw \in L \text{ für alle } w \in \Sigma^*.$$

Der *Index* einer Äquivalenzrelation ist die Anzahl ihrer Äquivalenzklassen.

Interessanter Fall: \equiv_I hat endlichen Index.

Es sei L = 0*1*.

- 001 ≡_I 0111
- $010 \not\equiv_L 0111$, denn $010 \not\in L$, $0111 \in L$.
- $00 \not\equiv_L 00001$, denn $000 \in L$, $000010 \notin L$.

Wieviele Äquivalenzklassen hat \equiv_L ?

Drei:

- **1** 0*
- **a** 0*1+
- $0*1^+0(0+1)*$

Was ist der Index von \equiv_L für diese Sprachen?

$$L = \{0, 1\}^*$$

$$\bullet$$
 $L = \emptyset$

•
$$L = \{ w \in \{a, b, c\}^* \mid |w| \text{ ist Vielfaches von } 7 \}$$

6
$$L = \{ a^n b^n \mid n \ge 0 \}$$

$$OL = \{ a^n b^m \mid n \ge m \ge 0 \}$$

3
$$L = \{ a^n b^m \mid |n - m| < 5 \}$$

Lemma (A)

 $L \subseteq \Sigma^*$ regulär $\implies \equiv_L$ hat endlichen Index.

Beweis.

- **1** L regulär und L = L(M) mit DFA $M = (Q, \Sigma, \delta, q_0, F)$.
- ② Definiere $u \sim v \iff \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.
- **1** Also hat \sim mindestens so viele Äquivalenzklassen wie \equiv_L .
- \circ hat aber endlichen Index.

Lemma (B)

 $L \subseteq \Sigma^*$ regulär $\iff \equiv_L$ hat endlichen Index.

Beweis.

- **1** $L \subseteq \Sigma^*$ und Index von \equiv_L sei endlich.
- **2** Konstruiere $M = (Q, \Sigma, \delta, [\epsilon]_{\equiv_L}, F)$ mit
 - $Q = \{ [w]_{\equiv_L} \mid w \in \Sigma^* \}$
 - $\delta \colon Q \times \Sigma \to Q, ([w]_{\equiv_L}, a) \mapsto [wa]_{\equiv_L}$
 - $F = \{ [w]_{\equiv_L} \mid w \in L \}$
- **3** Q endlich, da Index von \equiv_L endlich.
- **1** δ wohldefiniert, da $[u]_{\equiv_L} = [v]_{\equiv_L} \Rightarrow [ua]_{\equiv_L} = [va]_{\equiv_L}$

Es sei L = 0*1*.

≡, hat die Äquivalenzklassen

- \bullet $[\epsilon]_{\equiv_{\ell}} = 0^*$,
- $[1]_{\equiv_L} = 0*1^+ \text{ und}$

Der Myhill-Nerode-Automat:

Der Satz von Myhill-Nerode

Theorem

- **1** L ⊆ Σ^* ist genau dann regulär, wenn \equiv_L endlichen Index hat.
- ② M ein $DFA \Longrightarrow \sim_M$ ist eine $Verfeinerung\ von \equiv_{L(M)}$.
- **3** Es gibt zu jeder regulären Sprache $L \in \Sigma^*$ einen bis auf Isomorphie eindeutigen DFA $M = (Q, \Sigma, \delta, q_0, F)$ mit L = L(M).

Beweis.

- Folgt aus Lemma A und B.
- 2 Beweis von Lemma A: $u \sim v \Rightarrow u \equiv_L v$.
- 3 Da \sim eine Verfeinerung von \equiv_L ist, muß $\sim = \equiv_L$ gelten, wenn ihre Indexe gleich sind.

Beispiel

Was sind die Äquivalenzklassen von \sim ?

Natürlich $[\epsilon]_{\sim}$, $[a]_{\sim}$, $[b]_{\sim}$ und $[ab]_{\sim}$...

Was sind die Äquivalenzklassen von $\equiv_{L(M)}$?

Es sind $[\epsilon]_{\sim}$, $[a]_{\sim} \cup [b]_{\sim}$ und $[ab]_{\sim}$.

