Package 'tsintermittent'

March 10, 2016

Type Package	
Title Intermittent Time Series Forecasting	
Version 1.9	
Date 2016-03-10	
Author Nikolaos Kourentzes and Fotios Petropoulos	
Maintainer Nikolaos Kourentzes <n.kourentzes@lancaster.ac.uk></n.kourentzes@lancaster.ac.uk>	
Description Functions for analysing and forecasting intermittent demand/slow moving items time series.	
LazyData yes	
License GPL (>= 2)	
Depends MAPA, parallel	
<pre>URL http://kourentzes.com/forecasting/2014/06/23/ intermittent-demand-forecasting-package-for-r/</pre>	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2016-03-10 23:32:20	
R topics documented:	
crost	2
crost.decomp	3
	4
	5
	6
	8
sexsm	_
simID	_
ts.data1	
ts.data2	Ξ.
tsb	3
Index 12	5

2 crost

crost	Croston's method and variants

Description

Croston's method and variants for intermittent demand series with fixed or optimised parameters.

Usage

```
crost(data,h=10,w=NULL,init=c("mean","naive"),nop=c(2,1),
    type=c("croston","sba","sbj"),cost=c("mar","msr","mae","mse"),
    init.opt=c(TRUE,FALSE),outplot=c(FALSE,TRUE),opt.on=c(FALSE,TRUE),
    na.rm=c(FALSE,TRUE))
```

Arguments

data	Intermittent demand time series.
h	Forecast horizon.
W	Smoothing parameters. If $w == NULL$ then parameters are optimised. If w is a single parameter then the same is used for smoothing both the demand and the intervals. If two parameters are provided then the second is used to smooth the intervals.
init	Initial values for demand and intervals. This can be: 1. $c(z,x)$ - Vector of two scalars, where first is initial demand and second is initial interval; 2. "naive" - Initial demand is first non-zero demand and initial interval is first interval; 3. "mean" - Same as "naive", but initial interval is the mean of all in sample intervals.
nop	Specifies the number of model parameters. Used only if they are optimised. 1. 1 - Demand and interval parameters are the same; 2. 2 - Different demand and interval parameters.
type	Croston's method variant: 1. "croston" Croston's method; 2. "sba" Syntetos-Boylan approximation; 3. "sbj" Shale-Boylan-Johnston.
cost	Cost function used for optimisation: 1. "mar" - Mean Absolute Rate; 2. "msr" - Mean Squared Rate; 3. "mae" - Mean Absolute Error; 4. "mse" - Mean Squared Error.
init.opt	If init.opt==TRUE then initial values are optimised.
outplot	If TRUE a plot of the forecast is provided.
opt.on	This is meant to use only by the optimisation function. When opt.on is TRUE then no checks on inputs are performed.
na.rm	A logical value indicating whether NA values should be remove using the method.

crost.decomp 3

Value

model	Type of model fitted.
frc.in	In-sample demand rate.
frc.out	Out-of-sample demand rate.
weights	Smoothing parameters for demand and interval.
initial	Initialisation values for demand and interval smoothing.
component	List of c.in and c.out containing the non-zero demand and interval vectors for in- and out-of-sample respectively. Third element is the coefficient used to scale demand rate for sba and sbj.

Author(s)

Nikolaos Kourentzes

References

Optimisation of the methods described in: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. http://dx.doi.org/10.1016/j.ijpe.2014.06.007.

http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection

See Also

```
tsb, sexsm, crost.ma.
```

Examples

```
crost(ts.data1,outplot=TRUE)
```

crost.decomp	Croston's decomposition	

Description

Apply Croston's decomposition on a time series.

Usage

```
crost.decomp(data,init=c("naive","mean"))
```

Arguments

data Intermittent demand time serie

init Initial values for intervals. This can be: 1. x - Numerical value; 2. "naive" -

Initial interval is the first interval from start of time series; 3. "mean" - Initial

interval is the mean of all in sample intervals.

crost.ma

Value

demand Non-zero demand vector.

interval Intervals vector.

Author(s)

Nikolaos Kourentzes

See Also

```
crost, crost.ma.
```

Examples

```
crost.decomp(ts.data1)
```

crost.ma

Moving average with Croston's method decomposition

Description

Moving average with Croston's method decomposition for intermittent demand series with fixed or optimised parameters.

Usage

Arguments

data	Intermittent demand time series.
h	Forecast horizon.
W	Moving average order. If $w == NULL$ then moving average orders are optimised. If w is a single value then the same order is used for smoothing both the demand and the intervals. If two values are provided then the second is used to smooth the intervals.
nop	Specifies the number of model parameters. Used only if they are optimised. 1. 1 - Demand and interval moving average order are the same; 2. 2 - Different demand and interval orders.
type	Croston's method variant: 1. "croston" Croston's method; 2. "sba" Syntetos-Boylan approximation; 3. "sbj" Shale-Boylan-Johnston.
cost	Cost function used for optimisation: 1. "mar" - Mean Absolute Rate; 2. "msr" - Mean Squared Rate; 3. "mae" - Mean Absolute Error; 4. "mse" - Mean Squared Error.

data.frc 5

outplot If TRUE a plot of the forecast is provided.

na.rm A logical value indicating whether NA values should be remove using the method.

Value

model Type of model fitted.

frc.in In-sample demand rate.

frc.out Out-of-sample demand rate.

order Moving averages orders for demand and interval.

component List of c.in and c.out containing the non-zero demand and interval vectors for

in- and out-of-sample respectively. Third element is the coefficient used to scale

demand rate for sba and sbj.

Author(s)

Nikolaos Kourentzes

References

Optimisation cost functions described in: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. http://dx.doi.org/10.1016/j.ijpe.2014.06.007.

http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection

See Also

```
crost, tsb, sexsm.
```

Examples

```
crost.ma(ts.data1,outplot=TRUE)
```

data.frc

Wrapper to forecasts data.frames with a single call

Description

Wrapper to forecasts data.frames with a single call.

Usage

```
data.frc(data.in,method=c("crost","crost.ma","tsb","sexsm","imapa","auto"),...)
```

6 idclass

Arguments

Data frame with time series. This can also be a matrix or array with each column being a different time series.

Method

Which method to use for forecasting: "crost", "crost.ma", "tsb", "sexsm", "imapa", "auto". "auto" uses PKa classification to select automatically between Croston, SBA and SES.

Additional inputs to pass to forecasting functions. See individual function documentation for options.

Value

frc.out Data frame containing forecasts for all time series.

out List with detailed output per series. To access individual outputs of the list use:

sapply(out, get, x="element"), where "element" could be for example "frc.in".

Author(s)

Nikolaos Kourentzes

References

By default methods are optimised using the cost functions introduced by: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. http://dx.doi.org/10.1016/j.ijpe.2014.06.007.

http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection

The PK approximate classification is described in: F. Petropoulos and N. Kourentzes, 2015, Journal of Operational Research Society. http://www.palgrave-journals.com/jors/journal/v66/n6/full/jors201462a.html.http://kourentzes.com/forecasting/2014/05/13/forecast-combinations-for-int

See Also

```
crost, crost.ma, tsb, sexsm, imapa, idclass.
```

Examples

```
data.frc(simID(10,30),method="crost",type="sba",h=5)$frc.out
```

idclass Time series categorisation for intermittent demand

Description

Time series categorisation for intermittent demand data.

idclass 7

Usage

Arguments

data Time series dataset. Each column is a series. Alternatively this can be a single

series.

type Type of categorisation: 1. "SBC" - Syntetos Boylan Croston; 2. "KH" - Kostenko

Hyndman (exact*); 3. "KHa" - Kostenko Hyndman (approximate); 4. "PK" - Petropoulos Kourentzes (exact*); 5. "PKa" - Petropoulos Kourentzes (approximate). *These are computationally expensive, as SBA is optimised for each

time series.

a.in Vector of SBA demand interval smoothing parameters. This must be same

length as number of series. This is used for categorisations "KH" and "PK". If a.in == NULL then the parameters are calculated internally using MAR as a

cost function.

outplot Plot results of categorisation: 1. "summary" - simlified plot that reports num-

ber of series in each class and cut-off points; 2. "detail" - scatterplot between average interdemand interval (p) and squared coefficient of variation of non-zero demand (CV^2). Series that are categorised for SBA or SES are plotted in

shaded areas; 3. "none" - do not produce plot.

plot. focus Only relevant to outplot == "detail". Can be used to specify the maximum p and

CV² to plot, so that the scatterplot can be focused on the separation area between the categories. Use vector of two elements. First one is max p and second one is max CV². Example: plot.focus=c(1.5,1.5). If NULL then maximums

are defined from the dataset.

Value

idx.croston Index of series that are categorised under Croston.

idx. sba Index of series that are categorised under SBA.

idx.ses Index of series that are categorised under SES. Provided only for "PK" and

"PKa" types.

cv2 Coefficient of variation squared of non-zero demand.

p Inter-demand interval.

summary Summary of number of series under each category.

Author(s)

Nikolaos Kourentzes

8 imapa

References

Classification schemes described in: F. Petropoulos and N. Kourentzes, 2015, Journal of Operational Research Society. http://www.palgrave-journals.com/jors/journal/v66/n6/full/jors201462a.html. http://kourentzes.com/forecasting/2014/05/13/forecast-combinations-for-intermitter

Optimisation of the methods described in: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. http://dx.doi.org/10.1016/j.ijpe.2014.06.007.

http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection

See Also

```
crost, tsb, imapa.
```

Examples

```
# Create/load some data. Each column is a time series
dataset <- simID(100,60,idi=1.15,cv2=0.3)
idclass(dataset)</pre>
```

imapa

MAPA for intermittent demand data

Description

MAPA for intermittent demand data with automatic model selection based on the PK classification.

Usage

```
imapa(data,h=10,w=NULL,minimumAL=1,maximumAL=NULL,comb=c("mean","median"),
    init.opt=c(TRUE,FALSE),paral=c(0,1,2),outplot=c(0,1,2,3,4),model.fit=NULL,
    na.rm=c(FALSE,TRUE))
```

Arguments

data	Intermittent demand time series.
h	Forecast horizon.
W	Smoothing parameters. If $w == NULL$ then parameters are optimised. If w is w single parameter then the same is used for smoothing both the demand and the intervals. If two parameters are provided then the second is used to smooth the intervals. SES is always optimised.
minimumAL	Lowest aggregation level to use. Default = 1.
maximumAL	Highest aggregation level to use. Default = maximum interval.
comb	Combination operator. One of "mean" or "median". Default is "mean".
init.opt	If init.opt==TRUE then Croston and SBA initial values are optimised.

imapa 9

paral	Use parallel processing. $0 = no$; $1 = yes$ (requires initialised cluster); $2 = yes$ and initialise cluster. Default is 0.
outplot	Optional plot: 0 = No plot; 1 = Time series and combined forecast; 2 = Time series and all aggregation level forecasts; 3 = Summary model selection plot; 4 = Detailed model selection plot.
model.fit	Optional input with model types and parameters. This is the model.fit output from this function. If used it overrides other model settings.
na.rm	A logical value indicating whether NA values should be remove using the method.

Value

frc.in	In-sample demand rate.	
frc.out	Out-of-sample demand rate.	
An array containing information for each aggregation level: AL - Aggregation level; n - Number of observations of aggregated series; p - Average inter-deminterval; cv2 - Coefficient of variation squared of non-zero demand; mod Selected model, where 1 is Croston, 2 is SBA and 3 is SES; use - If == 0 this aggregation level is ignored because it contains less than 4 observations		
model.fit	Parameters and initialisation values of fitted model in each aggregation level.	

Note

Note on optimal model paramaters: This implementation of MAPA for intermittent demand data optimises smoothing parameters for all Croston's method, SBA and SES. Optimisation is based on:

N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. http://dx.doi.org/10.1016/j.ijpe.2014.06.007.

http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection

Note on parallelisation: Option paral=2 incurs substantial overheads. For a single time series using no parallelisation seems to be as good. If imapa is to be applied on multiple series, then initialising the parallel cluster externally and using the option paral=1 is advised.

Author(s)

Nikolaos Kourentzes

References

Optimisation of the methods described in: F. Petropoulos and N. Kourentzes, 2015, Forecast Combinations for Intermittent Demand, Journal of Operational Research Society. http://www.palgrave-journals.com/jors/journal/v66/n6/full/jors201462a.html.

http://kourentzes.com/forecasting/2014/05/13/forecast-combinations-for-intermittent-demand/

See Also

tsb, sexsm, crost, idclass.

10 sexsm

Examples

```
imapa(ts.data1,outplot=1)
```

sexsm

Simple exponential smoothing

Description

Simple exponential smoothing with fixed or optimised parameters.

Usage

```
sexsm(data,h=10,w=NULL,init=c("mean","naive"),
    cost=c("mar","msr","mae","mse"),init.opt=c(TRUE,FALSE),
    outplot=c(FALSE,TRUE),opt.on=c(FALSE,TRUE),
    na.rm=c(FALSE,TRUE))
```

Arguments

data	Intermittent demand time series.
h	Forecast horizon.
W	Smoothing parameter. If $w == NULL$ then parameter is optimised.
init	Initial values for demand and intervals. This can be: $1. x$ - Numeric value for the initial level; $2.$ "naive" - Initial value is a naive forecast; $3.$ "mean" - Initial value is equal to the average of data.
cost	Cost function used for optimisation: 1. "mar" - Mean Absolute Rate; 2. "msr" - Mean Squared Rate; 3. "mae" - Mean Absolute Error; 4. "mse" - Mean Squared Error.
init.opt	If init.opt==TRUE then initial values are optimised.
outplot	If TRUE a plot of the forecast is provided.
opt.on	This is meant to use only by the optimisation function. When opt.on is TRUE then no checks on inputs are performed.
na.rm	A logical value indicating whether NA values should be remove using the method.

Value

model	Type of model fitted.
frc.in	In-sample demand.
frc.out	Out-of-sample demand.
alpha	Smoothing parameter.
initial	Initialisation value.

simID 11

Author(s)

Nikolaos Kourentzes

References

Optimisation of the method described in: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. http://dx.doi.org/10.1016/j.ijpe.2014.06.007.

http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection

See Also

```
crost, tsb, crost.ma.
```

Examples

```
sexsm(ts.data1,outplot=TRUE)
```

simID

Simulator for Intermittent Demand Series

Description

Simulator of Intermittent Demand Series.

Usage

```
simID(n=1, obs=60, idi=2, cv2=0.5, level=NULL)
```

Arguments

n	Number of time series to be generated.
obs	Number of observation of each series.
idi	Average intermittent demand interval of each series.
cv2	Squared coefficient of variation of the non-zero demands.
level	Mean level of the non-zero demands. If NULL, then a random level in [10,100] is selected.

Value

series A data matrix containing all the generated series.

Author(s)

Fotios Petropoulos

12 ts.data2

References

This simulator assumes that non-zero demand arrivals follow a bernoulli distribution and the non-zero demands a negative binomial distribution. Petropoulos F., Makridakis S., Assimakopoulos V. & Nikolopoulos K. (2014) "'Horses for Courses' in demand forecasting", European Journal of Operational Research, Vol. 237, No. 1, pp. 152-163

See Also

```
crost, tsb, idclass.
```

Examples

```
dataset <- t(simID(100,60,idi=1.15,cv2=0.3))</pre>
```

ts.data1

Example intermittent demand series - 'ts.data1'

Description

Example intermittent demand series - 'ts.data1'.

Usage

ts.data1

Format

Time series data

Examples

```
plot(ts.data1)
```

ts.data2

Example intermittent demand series - 'ts.data2'

Description

Example intermittent demand series - 'ts.data2'.

Usage

ts.data2

Format

Time series data

tsb 13

Examples

```
plot(ts.data2)
```

tsb

TSB (Teunter-Syntetos-Babai) method

Description

TSB intermittent demand method with fixed or optimised parameters.

Usage

```
tsb(data,h=10,w=NULL,init=c("mean","naive"),
    cost=c("mar","msr","mae","mse"),
    init.opt=c(TRUE,FALSE),outplot=c(FALSE,TRUE),
    opt.on=c(FALSE,TRUE),na.rm=c(FALSE,TRUE))
```

Arguments

data	Intermittent demand time series.
h	Forecast horizon.
W	Smoothing parameters. If $w == NULL$ then parameters are optimised. Otherwise first parameter is for demand and second for demand probability.
init	Initial values for demand and intervals. This can be: 1. $c(z,x)$ - Vector of two scalars, where first is initial demand and second is initial interval; 2. "naive" - Initial demand is first non-zero demand and initial demand probability is again the first one; 3. "mean" - Same as "naive", but initial demand probability is the mean of all in sample probabilities.
cost	Cost function used for optimisation: 1. "mar" - Mean Absolute Rate; 2. "msr" - Mean Squared Rate; 3. "mae" - Mean Absolute Error; 4. "mse" - Mean Squared Error.
init.opt	If init.opt==TRUE then initial values are optimised.
outplot	If TRUE a plot of the forecast is provided.
opt.on	This is meant to use only by the optimisation function. When opt.on is TRUE then no checks on inputs are performed.
na.rm	A logical value indicating whether NA values should be remove using the method.

Value

model	Type of model fitted.
frc.in	In-sample demand rate.
frc.out	Out-of-sample demand rate.
weights	Smoothing parameters for demand and demand probability.
initial	Initialisation values for demand and demand probability smoothing.

14 tsb

Author(s)

Nikolaos Kourentzes

References

Optimisation of the method described in: N. Kourentzes, 2014, On intermittent demand model optimisation and selection, International Journal of Production Economics, 156: 180-190. http://dx.doi.org/10.1016/j.ijpe.2014.06.007.

http://kourentzes.com/forecasting/2014/06/11/on-intermittent-demand-model-optimisation-and-selection

See Also

```
crost, sexsm, crost.ma.
```

Examples

tsb(ts.data1,outplot=TRUE)

Index

idclass, 6, 6, 9, 12

```
*Topic \textasciitildecroston
                                                  imapa, 6, 8, 8
        \textasciitildecrost
        \textasciitildecrost.decomp
                                                  sexsm, 3, 5, 6, 9, 10, 14
                                                  simID, 11
    crost.decomp, 3
*Topic \textasciitildecroston
                                                  ts.data1, 12
        \textasciitildecrost.ma
                                                  ts.data2, 12
        \textasciitildemoving average
                                                  tsb, 3, 5, 6, 8, 9, 11, 12, 13
    crost.ma, 4
*Topic \textasciitildecroston
        \textasciitildecrost
    crost, 2
*Topic \textasciitildedata.frc
    data.frc, 5
*Topic \textasciitildeidclass
        \textasciitildecrost
        \textasciitildecroston
        \textasciitildetsb
    idclass, 6
*Topic \textasciitildeimapa
        \textasciitildecrost
        \textasciitildetsb
        \textasciitildeses
        \textasciitildesexsm
    imapa, 8
*Topic \textasciitildesexsm
    sexsm, 10
*Topic \textasciitildesimID
    simID, 11
*Topic \textasciitildetsb
    tsb, 13
*Topic datasets
    ts.data1, 12
    ts.data2, 12
crost, 2, 4-6, 8, 9, 11, 12, 14
crost.decomp, 3
crost.ma, 3, 4, 4, 6, 11, 14
data.frc, 5
```