

Ingemar Johansson Ericsson AB

ingemar.s.johansson@ericsson.com

Intro

- https://www.cablelabs.com/event/interoplabs-l4s-nov-2024
- Test setup with DOCSIS equipment
 - Downstream/upstream configured to 100/10Mbps
 - Linux PCs (Ubuntu 22.04 w/ Prague kernel 5.15)
 - Apple MAC Mini PCs with apple-quic (Sequoia 15.1)
- SCReAM BW test from https://github.com/EricssonResearch/scream e0af5ef4613a38a84f99b7995eef38c69a5c08fa

- Downstream test
- Max 100Mbps throughput
- RTT 12ms
 - 32 and 52ms implemented as tc qdisc netem on feedback path
- SCReAM competes with TCP Prague over the L4S queue

=

SCReAM vs up to 2 TCP prague downstream (1/2)

- RTT 12ms
- SCReAM starts
- One TCP added efter 20s
- Another TCP added after 40s
- Both TCPs terminated after 60:
- SCReAM has ~20% lower bitrathan TCP

Throughput Timeseries Downstream 80 60 Flow 1 Flow 2 Flow 3 Total

Time (s)

Aggregate thruput downstream.pdf

SCReAM vs up to 2 TCP Prague downstream (2/2)

1_downstream.pdf UDP [10.80.56.11 50000] to [10.32.226.158 50000]

SCReAM variable video frame size vs up to 2 TCP prague downstream (1/2)

- As previous but SCReAM models variable frame sizes
 - -rand 50
- SCReAM adds extra headroom cope with varying frame sizes
 lower bitrate.
 - Intended behavior
- Slightly lower SCreAM bitrate with competing TCPs

Aggregate_thruput_downstream.pdf

SCReAM variable video frame size vs up to 2 TCP prague downstream (1/2)

 Variable frame size gives slightly higher delay jitter, which is expected

1 downstream.pdf UDP [10.80.56.11 50000] to [10.32.226.158 50000]

SCReAM vs up to 10 TCP prague downstream

- RTT 12ms
- SCReAM starts
- One TCP added every 10s
- All TCPs terminated after 150s
- SCReAM copes with many competing TCP Prague quite well

SCReAM variable video frame size vs up to 10 TCP prague downstream

=

- As previous but SCReAM models variable frame sizes
 - -rand 50
- SCReAM copes with many competing TCP Prague quite well

Aggregate thruput downstream.pdf Throughput Timeseries Downstream Total Marie 25 125 175 200 Time (s)

SCReAM vs up to 10 TCP prague downstream (1/4)

- RTT 52ms
- SCReAM starts
- One TCP added every 10s
- All TCPs terminated after 150s
- SCReAM gets roughly 40% lower bitrate
 - Possibly additional RTT compensation needed
- But SCReAM is not starved out

SCReAM vs up to 10 TCP prague downstream (2/4)

- RTT 52ms
- Overshoot when TCP load terminated leads to packet loss
- Possibly 5%
 multiplicative
 increase is a bit
 overoptimistic

1_downstream.pdf UDP [10.80.56.11 50000] to [10.32.226.158 50000]

vs up to 10 TCP prague downstream (3/4)

- RTT 32ms
 - no data for 52ms RTT
- SCReAM + 10 TCP Prague
- SCReAM detailed log
 - -log option
- Packet marking appears to come in bursts
 - Possible synchronization in between flows?
 - Burstiness may hit SCReAM more than Prague

T [s]

vs up to 10 TCP prague downstream (4/4)
Throughput [Mbps]

- RTT 32ms
 - no data for 52ms RTT
- SCReAM overshoot causes packet loss
- Possibly too low drop threshold for L4S queue?
- 5% multiplicative increase in SCReAM may be too optimistic

- Upstream test
- Max 10Mbps throughput
- RTT 12ms
- SCReAM competes with TCP Prague over the L4S queue

SCReAM vs up to 2 TCP prague downstream (1/2)

- RTT 12ms
- SCReAM starts
- One TCP added efter 20s
- Another TCP added after 40s
- Both TCPs terminated after 60
- SCreAM alone does not reach full link ulitization
 - ...but competes well with TCPrague

Aggregate_thruput_upstream.pdf

SCReAM vs up to 2 TCP Prague downstream (2/2)

SCReAM variable video frame size vs up to 2 TCP prague downstream (1/2)

- As previous but SCReAM models variable frame sizes
 - -rand 50
- Lower SCreAM bitrate with competing TCPs
 - ...but no starvation

Throughput Timeseries Upstream Flow 1 Flow 2 Flow 3 Total

Time (s)

Aggregate_thruput_upstream.pdf

SCReAM variable video frame size vs up to 2 TCP prague downstream (1/2)

 Variable frame size gives slightly higher delay jitter which is expected

1 upstream.pdf UDP [10.32.226.158 50000] to [10.80.56.11 50000]

- Downstream test
- Max 100Mbps throughput
- RTT 12ms
- SCReAM competes with up to 5 Apple QUIC over the L4S queue
 - iperf3-darwin -i 0 -t 200 --apple-quic --apple-l4s -p PORT -c IP_ADDRESS

SCReAM vs up to 5 Apple QUIC downstream (1/2)

- RTT 12ms
- SCReAM starts
- One QUIC added every 10s
- All QUICs terminated after 100s
- Near perfect sharing of capacity
- QUIC has more uneven rate than TCP Prague

Aggregate_thruput_downstream.pdf Throughput Timeseries Downstream

SCReAM vs up to 5 Apple QUIC downstream (1/2)

1_downstream.pdf UDP [10.80.56.11 50000] to [10.32.226.158 50000]

- Previous issues with SCReAM becoming starved out by TCP Prague appears to have been resolved
- SCReAM gets a lower share than TCP Prague when RTT is higher
 - Issue is not seen in https://github.com/EricssonResearch/scream/blob/master/test-record.md
 - Issue is perhaps related to synchronization between flows (bursty marking)?
- SCReAM overshoot at increased capacity can give packet loss
 - Perhaps increase drop threshold in L4S queue ?.
 - 5% multiplicative increase in SCReAM may be overoptimistic.
- SCReAM performs fine with competing Apple QUIC flows.
- Over all very good test environment.

