13장 강화 학습

- 지금까지 우리가 살펴본 딥러닝에는 항상 훈련 데이터와 정답 레이 블이 있었다.
- 만약 딥러닝을 탑재한 에이전트가, 환경에서 스스로 행동하여서 학습할 수 있다면 어떨까?

그림 13-1 일반적인 딥러닝과 강화 학습의 차이점

- 스타크래프트는 불완전한 정보를 가지고 있고, 실시간으로 경기가 진행되며, 장기 계획이 필요한 어려운 게임이다.
- 하지만 스타크래프트에서도 강화 학습 인공지능이 인간을 5-0으로 물리친 바 있다.

그림 13-2 스타크래프트 게임을 수행하는 알파스타

강화학습의 기본 원리

강화 학습과 다른 학습 방법의 비교

	지도 학습	비지도 학습	강화 학습
데이터	(x, y) x는 데이터이고 y는 레이블이다.	(x) x는 데이터이고 레이블은 없다.	(상태, 액션)의 짝
목적	x→y로 매핑하는 함수를 학습하 는 것이다.	데이터 안에 내재한 구조를 학습한다.	많은 시간 단계에서 미래 보상을 최대화한다.
Ф	이미지에서 과일과 강아지를 인식한다.	같은 과일끼리 구분한다.	과일을 먹으면 장기적으로 건강 에 좋다는 것을 깨우친다.

강화 학습 프레임워크

- 에이전트(agent): 강화 학습의 중심이 되는 객체
- 환경(Environment): 에이전트가 작동하는 물리적 세계
- 상태(state): 에이전트의 현재 상황, 미로에서의 에이전트의 위치가 상태일 수 있다.
- 보상(reward): 환경으로부터의 피드백,
- 액션(action): 에이전트의 행동

게임에서의 강화학습

 강화 학습에서 에이전트는 환경 안에서 자신의 보상을 극대화하려고 한다. 보상은 성공 또는 실패에 대한 피드백이다. 에이전트가 행동할 때마다 보상을 받을 필요는 없지만, 보상이 지연될 수 있다. 즉 마지 막에 하나의 보상만을 받는 경우도 많다.

- 보상은 에이전트 액션이 성공했는지 실패했는지를 알려주는 중요한 피드백이다.
- 보상 \mathbf{r}_t 는 시간 t에서 에이전트가 받는 보상이다.
- 에이전트가 받는 전체 보상을 \mathbf{R}_t 라고 하면 \mathbf{R}_t 는 다음과 같은 수식으로 나타낼 수 있다.

$$R_t = \sum_{i=t}^{\infty} r_i = r_t + r_{t+1} + r_{t+2} + \cdots$$

에이전트가 미래에 받을 보상은 약간 할인해서 계산해야 한다.

 강화 학습에서도 "할인된 보상"이라는 개념을 사용한다. 미래의 보 상에는 할인 계수 람다를 곱하여 총 보상을 계산한다. 할인 계수 λ는 0에서 1 사이의 값이다.

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

 Q 함수는 상태 s에 있는 에이전트가 어떤 액션 a를 실행하여서 얻을 수 있는 미래 총보상값의 기대값(확률적인 환경을 가정했을 경우)이다.

• 확률적인 환경이 아니라면 Q 함수는 상태 s에 있는 에이전트가 어떤 액션 a를 실행하여서 얻을 수 있는 총 보상값이다.

- 현재 상태 s에서 가장 좋은 액션을 추론하기 위해서는 어떤 정책 r(s)
 을 필요로 한다.
- 가장 상식적인 정책은 미래 보상을 최대화할 수 있는 액션을 선택하는 것이다.

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

현재 상태에서 가능한 모든 액션 중에서 가장 Q 값이 높은 액션을 선택하면 된다.

 OpenAl 재단은 인공지능을 위한 여러 가지 프로젝트를 진행하는 비 영리 재단이다.

▶ 특히 강화 학습을 위한 Gym 라이브러리(https://gym.openai.com/)가

유명하다

(a) 랜덤 보행 게임

(b) CartPole 게임

(c) 스페이스 인베이더 게임

(d) 루나 랜더 게임

그림 13-5 Gym 라이브러리가 제공하는 다양한 게임들

```
import gym
env = gym.make("CartPole-v1")
                                                  # (1)
observation = env.reset()
                                        # (2)
for _ in range(1000):
                                                  # (3)
                                                  # (4)
 env.render()
 action = env.action_space.sample()
                                                  # (5)
 observation, reward, done, info = env.step(action)
                                                            # (6)
 if done:
  observation = env.reset()
                                        # (7)
env.close()
```


FrozenLake "%

FrozenLake "%

- 얼음 호수 위를 에이전트가 걸어간다고 생각하자. 얼음 호수에는 홀 도 있고 목표도 있다.
- 홀에 빠지면 게임은 종료된다.
- 홀에 빠지지 않고 목표에 도착하면 게임에서 1점을 얻는다.
- 얼음 위에서 미끄러져서 의도하지 않은 위치로 갈 수도 있지만 일단 이 가정은 제외하자.

*	얼음	얼음	얼음
얼음	항	얼음	형
얼음	얼음	얼음	绝
호	얼음	얼음	GOAL (목표)

```
import gym
env = gym.make("FrozenLake-v0", is_slippery=False)
observation = env.reset()
for _ in range(100):
 env.render()
 action = env.action_space.sample() # (1)
 observation, reward, done, info = env.step(action) # (2)
 if done:
  observation = env.reset()
env.close()
```


- 전통적인 강화 학습 알고리즘 중의 하나인 Q-학습(Q-learning)을 먼저 살펴보자.
- 앞 절에서 설명한 얼음 호수(frozen lake) 문제를 가지고 Q-학습을 설명한다.
- 얼음 호수 위를 에이전트가 걸어간다고 생각하자. 얼음 호수에는 홀 도 있고 목표도 있다.
- 홀에 빠지면 게임은 종료된다.
- 홀에 빠지지 않고 목표에 도착하면 게임에서 1점을 얻는다.

- 이 게임은 아주 간단해 보이지만, 아무것도 모르는 에이전트 입장에서는 결코 만만한 문제가 아니다. 우리는 전체 게임 보드를 볼 수 있지만, 에이전트는 현재 있는 장소밖에는 알지 못한다.
- 에이전트가 상태 s1에서 오른쪽으로 이동하여서(이것이 액션이다) 상태 s2 로 갔다면 어떤 보상 r을 받게 된다. 보상은 대부분 0이고 에이전트가 목표 상태로 갔을 때만 1이 된다.
- 처음에는 보상이 거의 **0**이기 때문에 에이전트는 처음에는 판단하기가 어렵다. 에이전트가 목표에 도달한 경우에만 보상으로 **1**을 받는다.

- 전통적인 방법은 "동적 프로그래밍(dynamic programming)"이라고 불리는 방법으로, 기본적으로 복잡한 문제를 "약간씩 겹치는 서브 문제"들로 분해 하고 이들 서브 문제들의 결과를 테이블에 저장하는 방법이다.
- 에이전트가 어떤 상태에서 특정한 액션을 하고 보상을 받을 때마다 테이블
 에 기록한다. 에이전트가 시행착오를 거듭할수록 테이블은 점점 정확해진다.

동적 프로그래밍의 예

• 피보나치 수열 계산

```
int fib(int n)
{
    if (n <= 1)
        return n;
    return fib(n-1) + fib(n-2);
}
```

```
int fib(int n)
{
  int f[n+2]; int i;

  f[0] = 0; f[1] = 1;
  for (i = 2; i <= n; i++) {
       f[i] = f[i-1] + f[i-2];
  }
  return f[n];
}
```

그 많을 저장하는 배열을 생성한다.

- 어떤 상태에서 특정한 행동을 하여서 받은 총 보상값을 Q 함수라고 한다.
- Q 함수는 에이전트의 현재 상태와 에이전트가 실행하는 액션을 받아 서 총 보상값을 반환하는 함수이다.

• 예를 들어서 특정한 상태 s에서 다음과 같이 Q 값이 계산되었다고 하자.

 가장 상식적인 정책은 Q 값 중에서 최대값을 찾고 최대값과 관련된 액션을 실행하는 것이다.

$$\pi(s) = \operatorname{argmax} Q(s, a)$$

값 순환 관계식

• 총 보상은 다음과 같이 순환적으로 계산할 수 있다.

$$R_t = r_t + r_{t+1} + \dots + r_n$$

$$R_t = r_t + R_{t+1}$$

• 이것과 유사하게 상태 s에서의 Q 값은 다음과 같이 순환적으로 계산할 수 있다. 즉 상태 s에서 액션 a를 실행하였을 때 받는 보상 r에, 다음 상태에서의 Q 값 중에서 최대값을 더하게 된다.

$$Q(s, a) = r + \max_{a'} Q(s', a')$$

가장 중요한 수식이다. 전통적인 Q—학습에서는 결국 이 순환 관계식을 사용하여 테이블 내의 Q 값들이 계속 업데이트된다

얼음 호수 문제에서 실제로 Q 값을 계산해보자.

 시작할 때는 모든 Q 값이 전부 0이다. 에이전트가 시작 상태 s1에서 오른쪽에 있는 상태 s2로 갔을 때의 Q 값을 계산해보자.

계속 Q 값은 이의 되지만 반전의 있다.

 $Q(s15, RIGHT) = 1 + \max_{a'} Q(s16, a') = 1 + 0 = 1$

상태 S14에서의 Q 값 계산

 $Q(s14, RIGHT) = 0 + \max_{a'} Q(s15, a') = 0 + 1 = 1$

• 이런 식으로 계속 Q 값이 업데이트된다. 따라서 에피소드를 많이 진행하면 다음과 같이 Q 값이 설정될 수 있다.

탐사(exploration)와 활용(exploit)

- 지금까지 우리가 살펴본 Q-학습은 에이전트가 항상 동일한 경로만을 탐색하는 문제가 있다.
- 이 경로는 물론 최적 경로는 아니다. 하지만 우리의 정책대로 한다면 이렇게 움직일 수밖에 없다.

어떡게 하면 새로운 경로도 찾을 수 있을까?

- 처음에는 Q 값이 작은 액션이라고 하더라도 시도해볼 필요가 있다.
 이것을 탐사라고 한다.
- 강화 학습에서도 처음에는 모험을 할 필요가 있다. 이것은 e-greey 알고리즘으로 가능하다.

- e-greey 알고리즘에서는 epsilon 의 확률로 새로운 액션을 선택한다.
 (1- epsilon) 확률로 기존의 Q 값을 선택한다.
- 여기서 epsilon 은 처음에는 크게, 반복이 진행되면 점점 작게 하는 것이 관행이다.

```
for i in range(10000):
    epsilon = 0.1/(i+1)
    if random.random() < epsilon:
        action = random
    else:
    action = argmax(Q(s, a))
```


가끔씩 모험을 하면 빨간색 경로를 발견할 수도 있습니다.

학인(discount)된 박상

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

$$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$

학인된 보상이 필요한 이유

 할인된 보상이 필요한 이유는 에이전트가 찾은 경로가 여러 개 있는 경우, 어떤 경로가 더 최단 경로인지를 판단해야 하기 때문이다

- 앞에서 살펴본 Q-학습은 환경이 결정된 환경에서는 잘 작동한다. 하지만 확률적인 환경에서는 전혀 학습이 되지 않는다.
- 확률적인 환경이란 액션을 실행하였을 때 에이전트가 의도한 대로 가지 않을 수도 있는 환경이다.

최종적인 Q 값 업데이트 방정식

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \Big[r + \gamma \max_{a'} Q(s',a')\Big]$$
 기존의 Q 값 새로운 Q 값

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

어음 호수 게임에서 Q—학습의 구현

```
import gym
import numpy as np

env = gym.make('FrozenLake-v0', is_slippery=False)

discount_factor = 0.95
epsilon = 0.5
epsilon_decay_factor = 0.999
learning_rate = 0.8
num_episodes = 30000
```

어음 호수 게임에서 Q—학습의 구현

```
q_table = np.zeros([env.observation_space.n, env.action_space.n])
for i in range(num_episodes):
  state = env.reset()
  epsilon *= epsilon_decay_factor # 입실론: 탐사와 활용 비율 결정
  done = False
  while not done:
                                  # 난수가 입실론보다 작으면 탐사
    if np.random.random() < epsilon:</pre>
       action = env.action_space.sample() # 랜덤 액션
                                           # 난수가 입실론보다 작으면 활용
    else:
       action = np.argmax(q_table[state, :]) # Q 테이블에서 가장 큰 값
    new_state, reward, done, _ = env.step(action)
        # 새로 얻은 정보로 Q-테이블 갱신
    q_table[state, action] += learning_rate * (reward + discount_factor *
np.max(q_table[new_state, :]) - q_table[state, action])
    state = new_state
    if i==(num_episodes-1):
       env.render()
```


액션 상태	←	→	Ť	↓
상태 s0	0	0	0	0
상태 s1	0	0	0	0
상태 s2	0	0	0	0
상태 s3	0	0	0	0


```
FHFH
FFFH
HFFG
 (Right)
SFFF
FHFH
FFFH
HFFG
 (Down)
SFFF
FHFH
FFFH
                             성공적인 학습의 경우
HFFG
 (Right)
SFFF
FHFH
FFFH
HFFG
 (Right)
SFFF
FHFH
FFFH
HFFG
```


테이블을 출력해보자

>>> print(q_table)

```
[[0.73509189 0.77378094 0.6983373 0.73509189]
 [0.73509189 0.
                      0.65964159 0.6927506 ]
 [0.69811383 0.
                      0.
                                0.
 [0.
            0.
                      0.
                                0.
 [0.77378094 0.81450625 0. 0.73509189]
 [0.
            0.
                      0.
                                0.
 [0.
            0.
                      0.
                                0.
 [0.
            0.
                      0.
 [0.81450625 0. 0.857375 0.77378094]
 [0.81450625 0.9025 0.9025
                                0.
 [0.857375
           0.95
                                0.
                      0.
 [0.
                      0.
                                0.
            0.
 [0.
            0.
                      0.
                                0.
 [0.
           0.9025
                      0.95 0.857375
 [0.9025
           0.95
                      1.
                               0.9025
                                         ]]
 [0.
            0.
                      0.
                                0.
```

성공적인 학습의 경우


```
(Left)
SFFF
FHFH
FFFH
HFFG
```

실패한 학습의 경우: 난수가 사용되므로 아래 쪽까지 탐사 가 안되면 Q 테이블이 올바르 게 만들어지지 않는다.

테이블을 출력해보자

>>> print(q_table)

```
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
```

실패한 학습의 경우

epislon 23

처음에 탐사를 많이 하도록 입실론을 0.9 정도 설정하면 더 좋은 결과

```
discount_factor = 0.95

epsilon = 0.9

epsilon_decay_factor = 0.999

learning_rate = 0.8

num_episodes = 3000
```


가치 학습(value learning)	정책 학습(policy learning)	
Q(s,a)를 계산한다.	$\pi(s)$ 를 찾는다.	
$a = \underset{a}{\operatorname{argmax}} Q(s, a)$	$\pi(s)$ 에서 액션 a 를 샘플링한다.	

첫 번째 방법은 신경망이 Q 함수를 학습 한다. 우리는 Q 함수로부터 액션을 결정할 ______ 수 있다.

두 번째 경우는 신경망이 직접적으로 정책을 학습한다. 당 번 다. 정책에서 바로 액션을 결정한다. 두 번 째 방법에서는 중간 단계의 Q 함수가 없다.

왜 신경망을 사용하는가?

- 전통적인 Q-학습은 에이전트를 위한 치트 시트를 만드는 간단하지만 강력한 알고리즘이다.
- 하지만 이 치트 시트가 너무 길면 어떻게 될까?
- 10,000개의 상태와 상태당 1,000개의 액션이 있는 환경을 상상해보자. 천만 개의 셀을 가지는 Q-테이블이 필요하다. 해당 테이블을 저장하고 업데이트하는 데 필요한 메모리 양은 상태 수가 증가함에 따라 감당할 수 없을 만큼 증가한다.

- 예를 들어서 100×100 크기의 화면을 가지고 있는 비디오 게임의 경우, 한 픽셀이 8바이트라고 하면 상태의 수는 얼마나 될까?
- 하나의 픽셀이 가질 수 있는 상태의 값은 256개이고 이러한 픽셀이 100×100개나 있으므로 무려 256^{100X100}이나 된다.
- 이렇게 탐색 공간이 무척 큰 경우가 바로 심층 신경망이 가장 필요한 경우이다.

DQN(Deep Q Network)

Q-"the vs Deep Q-"the

- 선형 회귀 신경망을 통하여 생성된 출력값을 예측값을 Q(s, a)라고 하자.
- 정답은 무엇일까? 특정한 액션 a를 실행한 후라면 Q 값은 정의에 의하여 다음과 같이 변경되어야 한다. 이것이 정답이 된다.

$$(r+\gamma \max_{a'} \hat{Q}(s', a'))$$

위의 값을 신경망이 생성한 Q 값과 비교하면서 차이를 줄이는 방향으로 가중치를 변경하면 된다.

$$E(\theta) = \sum_{t=0}^{T} \left[\hat{Q}(s_t, a_t \mid \theta) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}', a') \right) \right]^2$$
 예측값(predicted) 목표값(target)

Q(s, a) 값을 난수로 초기화한다.

초기 상태 s를 얻는다.

for t=1,T do

if 난수 < ε 액션 a_r 를 랜덤하게 선택한다.

else

 $a_t = \operatorname{argmax} Q^*(s_t, a \mid \theta)$

액션 a_t 를 실행하고 상태가 변경되고 보상 r_t 를 받는다.

 $y_t = r_t + \gamma \operatorname{argmax}_{a'} Q(s_{t+1}, a' \mid \theta)$

 $(y_t - Q(s_t, a_t \mid \theta))^2$ 을 줄이기 위하여 경사 하강법을 사용한다.

하나의 액션이 수행되고 보상과 다음 기 때문에 보다 정확한 Q값을 얻을 수 이 타겟(정확한 Q값)이 된다. 타겟과 현재 Q값의 차이를 이용하여 ³

실제 적용 예: 벽돌 깨기 게임

액션을 환경으로 보내고 다음 상태를 받는다.

강화 학습을 이용한 게임의 성능

- Deep Q-학습에서는 약간의 문제가 있다. 우리는 목표 Q 값을 사실 정확히 알지 못한다. 그저 현재의 Q 값을 이용하여 추정할 뿐이다.
- 따라서 위의 알고리즘에서 볼 수 있듯이 반복할 때마다 목표가 변경 된다.
- 이 문제를 해결하기 위하여 2개의 신경망을 사용하기도 한다.

시층 Q-학습의 단점

- 액션 공간이 비연속적이고 작을 때는 가능, 하지만 연속적인 액션 공 간은 처리가 불가능하다.
- 정책은 Q 함수로부터 결정적(determinsitic)으로 계산된다. 따라서 확률적(stochastic)인 정책을 학습할 수 없다.

에제: 얼음 호수 게임에서 심층 Q—학습의 구현

예제: 얼음 호수 게임에서 심층 Q — 학습의 구현

```
import gym
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import InputLayer
from tensorflow.keras.layers import Dense

env = gym.make('FrozenLake-v0', is_slippery=False)

discount_factor = 0.95
epsilon = 0.5
epsilon_decay_factor = 0.999
num_episodes=500
```

예제: 얼음 호수 게임에서 심층 Q —학습의 구현

```
model = Sequential()
model.add(InputLayer(batch_input_shape=(1, env.observation_space.n)))
model.add(Dense(20, activation='relu'))
model.add(Dense(env.action_space.n, activation='linear'))
model.compile(loss='mse', optimizer='adam', metrics=['mae'])

def one_hot(state):
    state_m=np.zeros((1, env.observation_space.n))
    state_m[0][state]=1
    return state_m
```

예제: 얼음 호수 게임에서 심층 Q—학습의 구현

```
for i in range(num_episodes): # 에피소드만큼 반복
state = env.reset() #환경 초기화
epsilon *= epsilon_decay_factor # 입실론을 점점 작게 만든다.
done = False # 게임 종료 여부

while not done: # 게임이 종료되지 않았으면
if np.random.random() < epsilon: # 입실론보다 난수가 작으면
action = env.action_space.sample() # 액션을 랜덤하게 선택
else:
action = np.argmax(model.predict(one_hot(state))) # 가장 큰 Q 값 액션

#게임을 한 단계 진행한다.
new_state, reward, done, _ = env.step(action) # 게임 단계 진행
```

에제: 얼음 호수 게임에서 심층 Q — 학습의 구현

```
# ① 목표값을 계산한다.
    target = reward + discount_factor * np.max(model.predict(one_hot(new_state)))
         #② 현재 상태를 계산한다.
    target_vector = model.predict(one_hot(state))[0]
    target_vector[action] = target
         #③ 학습을 수행한다.
    model.fit(one_hot(state), target_vector.reshape(-1, env.action_space.n),
epochs=1, verbose=0)
         # 상태를 다음 상태로 바꾼다.
    state = new_state
    print(i)
         # ④ 마지막 상태만 화면에 표시한다.
    if i==(num_episodes-1):
      env.render()
```


• 간단한 게임이지만 학습 시간이 아주 많이 걸린다.

```
(Right)
SFFF
FHFH
HFFG
499
(Down)
SFFF
FHFH
FFFH
HFFG
```