ArmoredSoftware

User-Space Remote Attestation

Dr. Perry Alexander¹ Dr. Andrew Gill¹ Dr. Prasad Kulkarni¹
Adam Petz¹ Paul Kline¹ Justin Dawson¹
Jason Gevargizian¹ Leon Searl¹ Edward Komp¹
Edward Bishop² Ciro Pinto-Coelho²

¹Information and Telecommunication Technology Center Electrical Engineering and Computer Science The University of Kansas

²Southern Cross Engineering

May 1, 2015

Clouds and Trust

- ► The promises of "the cloud" are substantial
 - reduced hardware and software costs
 - reduced resource consumption
 - improved availability and reliability
- ▶ The promises of "the cloud" complicate assurance
 - not under the desk
 - ambiguous and changing runtime environment
 - unknown and unknowable actors in the same environment
- ► Is trust possible in "the cloud" environment?
 - unambiguous identification
 - confirmation of uninhibited execution
 - direct or trusted indirect observation of good behavior

Program Goals

Virtual Blinking Lights

Trust in the Cloud

Provide new capabilities that establish and maintain trustworthy cloud-based application deployment

- Establish trust among cloud components
 - trust among cohorts of processes
 - trust among processes and environment
- Promote informed decision making
 - data confidentiality can be confirmed
 - execution and data integrity can be confirmed
- ► Autonomous run-time response and reconfiguration
 - responds to attack, failure, reconfiguration, and repair
 - response varies based on measurement

Delivery Platform

Open source, standards compliant

- ► Lightweight integration with existing cloud infrastructure
 - OpenStack cloud infrastructure
 - ► Xen+XSM VM infrastructure
 - ► Fedora, HotSpot JVM, GHC
- Trusted Computing Group standards compliant
 - ► Trusted Platform Module 1.2
 - ▶ TCG vTPM (in principle)
 - ▶ Trusted OS infrastructure
- ► Standard communication mechanisms
 - ▶ JSON structures for all exchanged data
 - vchan for on-platform communication
 - ► TCP/IP for off-platform communication

New Technologies

► Trustworthy protocol execution

- executable protocol representation
- protocol execution generates evidence of trustworthiness
- highly focused protocols
- strand space formal semantics

► Application specific measurement

- managed and traditional execution environments
- compile-time assistance for measurer synthesis
- specialized measurement bundled with applications

Attestation driven cloud application and data management

- health monitoring
- problem mitigation
- application migration
- access control

Trusted Platform Module

Provides and Protects Roots of Trust

- Storage Root Key (SRK) root of trust for storage
- ► Endorsement Key (EK) root of trust for reporting

► Quote generation

- ▶ high integrity quotes ({|RS|}_{AIK}-, SML, {|n, PCRComp|}_{AIK}-)
- ▶ high integrity evidence $(\langle E, n \rangle, \{ | \langle E, n \rangle |, PCR | \}_{AIK^-}$

Sealing data to state

- ► {D, PCR}_{K+} will not decrypt unless PCR = current PCR
- ▶ data is safe even in the presence of malicious machine

► Binding data to TPMs and machines

- ► ({K⁻}_{SRK+},K) {D}_{K+} cannot be decrypted unless SRK⁻ is installed
- ▶ $({J^-}_{K^+},J) {D}_{J^+}$ cannot be decrypted unless K^- and SRK^- are installed

Semantic Remote Attestation

► Appraiser requests a quote

- specifies needed information
- provides a nonce

Target gathers evidence

- measures application
- gathers evidence of trust

► Target generates quote

- measurements and evidence
- ▶ original nonce
- cryptographic signature

► Appraiser assesses quote

- good application behavior
- ▶ infrastructure trustworthiness

Armored Application Architecture

- ► Focus is user-space applications
- Assesses the cloud infrastructure and environment
- ► Attests to the state of its application
- High-assurance, lightweight infrastructure
- ► Influenced by the *Trusted Research*Platform and Principles of Remote

 Attestation

Measurement and Attestation

System-Level Architecture

Privacy CA Attestation

Negotiation

```
Protocol do Send
```

```
do { send t $ r;
      q <- receive t;
     e \leftarrow case \{p:q \mid policy?(p)\} of
              \emptyset : None
              p : send t $ choose(p)
           end;
      case e of
        Some v : appraise(v)
        None: None
      end
```

Proposals

$$\{\langle E_0, P_0 \rangle, \langle E_1, P_1 \rangle, \dots, \langle E_n, P_n \rangle\}$$

Single Realm Attestation

Protocol

```
do { id <- getVCID;
    sig <- getSigFileEvidence;
    src <- getSigFileSrc;
    e <- createEvidence(id,sig,src);
    returnEvidence(e)
}</pre>
```

Evidence

```
\langle (\textit{id}, \textit{sig}, \textit{src}), \{ | (\textit{id}, \textit{sig}, \textit{src})|, \textit{PCRComp}_0 | \}_{\textit{AIK}_0^-} \rangle
```

Multi-Realm Attestation

Protocol

```
do { id <- getVCID;
    sig <- getSigFileEvidence;
    src <- getSigFileSrc;
    srcEvidence <- send src $ r;
    e <- createEvidence(id,sig,src,srcEvidence)
    returnEvidence(e)
}</pre>
```

Evidence

$$\begin{split} b &= \langle (e), \{ ||e|, \textit{PCRComp}_1 |\}_{\textit{AlK}_1^-} \rangle \\ & \langle (\textit{id}, \textit{sig}, \textit{src}, b), \{ ||(\textit{id}, \textit{sig}, \textit{src}, b)|, \textit{PCRComp}_0 |\}_{\textit{AlK}_0^-} \rangle \end{split}$$

Current Status

Completed four demonstrations culminating in running an attestation protocol in response to an attestation request.

► Attestation and Appraisal development

- CA-Based attestation protocol execution example
- ▶ integration with Berlios TPM 1.2 emulator
- simple dynamic appraisal of attestation results

Measurement development

- on demand Java program measurement
- HotSpot-based Java VM run time measurements
- standard mechanism for extending measurement capabilities

Communication infrastructure

- vchan, TCP/IP and socket communication infrastructure
- ▶ language-based interface with TPM 1.2
- JSON-based data exchange formats
- initial certificate authority API

Goals and Milestones for 2015

Increased functionality and robustness

- ► Push to the cloud
 - integration with OpenStack
 - migration across Xen instances
 - vTPM function migration
- Establish roots-of-trust and trust argument
 - measured launch and remeasurement of ArmoredSoftware
 - establish trust in the Xen/OpenStack infrastructure
- Executable protocol representation and protocol semantics
 - ► richer protocol collection
 - evidence of proper execution
 - protocol-centered appraisal
- Operational, integrated vTPM prototype
 - ▶ integration with TPM 1.2
 - find and integrate, not build (we hope)

Goals and Milestones for 2015

- ► More robust communication and system services
 - Armor Authority prototype
 - Certificate Authority integration
 - communications management
- ► More capable measurement
 - compiler directed measurement
 - continuous measurement of trends
- More interesting download-able demonstration
 - sponsor-defined problem
 - more realistic attacker model

References

- Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O'Hanlon, B., Ramsdell, J., Segall, A., Sheehy, J., and Sniffen, B. (2011). Principles of remote attestation. *International Journal of Information Security*, 10(2):63–81.
- Fábrega, F. J. T., Herzog, J. C., and Guttman, J. D. (1999). Strand spaces: Proving security protocols correct. *Journal of computer security*, 7(2):191–230.
- Haldar, V., Chandra, D., and Franz, M. (2004). Semantic remote attestation a virtual machine directed approach to trusted computing. In *Proceedings of the Third Virtual Machine Research and Technology Symposium*, San Jose, CA.
- Ryan, M. (2009). Introduction to the tpm 1.2. Draft Report.