1 nalen

- |X| = i ויהי $X \in P(A)$ א.
- i מ-Xיש בדיוק וות-קבוצות בגודל i-1 (נורוק בכל פעם אבר אחד מ-X).

. מכסה X שאותם P(A) אלה אברי

A את המכסים i+1 המכסים את אהם קבוצות המכסים אברי P(A)

(X-i) שמחוץ ל- אחד שמחוץ ל- גבכל פעם אבר אחד שמחוץ ל- איש בדיוק k-i

X בסהייכ מספר השכנים של X הוא הוא X הוא מספר שאינו תלוי ב- בסהייכ

. k משמע הגרף הוא רגולרי

k צמתים, ודרגת כל צומת היא ב. בגרף יש 2

 $k \cdot 2^k$ סכום כל הדרגות בגרף הוא אפוא

. $\frac{1}{2}k \cdot 2^k = k \cdot 2^{k-1}$ מכאן שמספר הקשתות הוא

ג. צד אחד הוא הקבוצות בעלות מספר זוגי של אברים והצד השני הוא הקבוצות בעלות מספר אי-זוגי של אברים (השלימו את הנימוק).

2 nolen

:נחשב

$$\sum_{v \in V} (d_1(v) + d_2(v)) = \sum_{v \in V} d_1(v) + \sum_{v \in V} d_2(v)$$

לפי טענה 1.3 בעמי 10 בחוברת נקבל

$$=2E_1+2E_2$$

. כאשר הם מספרי הקשתות בכל אחד מהעצים בה $E_{\scriptscriptstyle 1}, E_{\scriptscriptstyle 2}$

ינקבל מעמוד 19 מפיון אותה קבוצת אותה קבוצת אותה אותה על חוניהם על מעמוד 19 מכיון שמדובר בעצים, ושניהם על אותה קבוצת אותה קבוצת במתים אותה בעצים, ושניהם על אותה קבוצת אותה בעצים, ושניהם על אותה קבוצת אותה בעצים, ושניהם על אותה אותה בעצים, ושניהם על אותה קבוצת אותה בעצים, ושניהם על אותה אותה בעצים, ושניהם על אותה הבוצת אותה בעצים, ושניהם על אותה בעצים, ושניהם על אותה בעצים, ושניהם בעצים, ושנים בעצים, ושנים בעצים, ושנים בעצים, ושנים, ושנים בעצים, ושנים, ושנים,

$$\sum_{v \in V} (d_1(v) + d_2(v)) = 4 |V| - 4 :$$
 קיבלנו

, $\sum_{v \in V} \left(d_1(v) + d_2(v)\right) \ge 4 \left|V\right|$ היה בהכרח , $d_1(v) + d_2(v) \ge 4$ היה $v \in V$ אילו לכל

 $d_1(v) + d_2(v) \ge 4$ יהיה $v \in V$ יהיתכן אייתכן לא ייתכן לא ייתכן שלכל. למה שקיבלנו.

 $d_1(v) + d_2(v) \le 3$ עבורו $v \in V$ קיים אחרות, קיים

3 nalen

הגרף הוא דו צדדי, כאשר צד אחד הוא קבוצת האותיות והצד השני הוא קבוצת המספרים. $\{1,2,3,4\} \ \text{ העבנים של הקבוצה } \{a,b,c,d,e\}$

מצאנו קבוצת צמתים בצד אחד של הגרף הדו-צדדי, שמספר שכניה קטן ממש ממספר אבריה. לפי (הכיוון הקל של) משפט Hall (או מסקנה 4.8), אין בגרף זה זיווג מושלם.

(מקציר) א האופה

- (מדועי:) $\{5,6,7,8,9\}$, $\{1,2,3,4\}$ מדועי:) א.
 - ב. 15 (הוכיחו. אפשר לחשב בשתי דרכים).
- ג. לפי שאלה 3א בעמי 61 בספר (השלימו את הפרטים)

5 nalen

לא ניתן לקבוע בלי מידע נוסף. נציג דוגמא בה מספר הצביעה של G הוא 7 ודוגמא אחרת בה לא ניתן לקבוע הצביעה של G גדול מ- 7.

לפני שנתחיל, שימו לב שב- G_1 יש 8 צמתים וב- G_2 יש 14 צמתים. עוד שימו לב שמהנתון, פני שנתחיל, שימו לב שב- G_1 הוא לפחות 7, כי הוא מכיל תת-גרף שדורש 7 צבעים.

דוגמא 1

נניח ש- G_1 הוא הגרף המלא על 5 צמתים, K_5 , ועוד 3 צמתים ל אחד מהשלושה הגרף המלא על 5 צמתים ל, א משנה לצורך ההוכחה), כאשר הצמתים 7, 8 נמצאים מחובר בקשת לאחד הצמתים של K_5 לא משנה לצורך ההוכחה). מובן שמספר הצביעה של G_1 הוא 5.

8,7 והצמתים , K_7 הוא עותק של , הוא עותק שכי רכיבי קשירות, שכל אחד הוא אותק של , והצמתים , והצמתים , נניח ש- נמצאים ברכיבי קשירות שונים.

 G_2 חוא הוא G_2 מובן שמספר הצביעה של

. ביתונים אלה לא קשה לצבוע את האיחוד G ב- G צבעים תארו כיצד זה ניתן

דוגמא 2

לגרף קשת בין הצומת 7 לבין כל אחד לגרף לגרף השותמת נוסיף שש קשתות 7 לבין כל אחד לגרף G_2 שהגדרנו בדוגמא הקשירות השני, פרט ל- 8, שאותו לא נחבר בקשת ל- 7.

את הגרף שקיבלנו מ- G_2 עם התוספת הזו ניתן לצבוע ב- 7 צבעים, אבל רק אם 7, 8 יהיו צבועים את הגרף שקיבלנו מ- G_2 יהיו צבועים.

. ניקח את G_1 להיות אותו G_2 מדוגמא 1. בגרף זה 7, 8 חייבים להיות בצבעים שונים

את האיחוד של G_1 עם הגרף G_2 המורחב שתיארנו כאן לא ניתן לצבוע ב- 7 צבעים המרף בעצמכם מדוע!

איתי הראבן