$11a_{338} (K11a_{338})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u,\ u^{14}+u^{13}-7u^{12}-6u^{11}+18u^{10}+11u^9-18u^8-u^7+u^6-12u^5+5u^4+2u^2+2a+7u,\\ &u^{15}+u^{14}-8u^{13}-7u^{12}+25u^{11}+17u^{10}-36u^9-12u^8+19u^7-11u^6+4u^5+12u^4-3u^3+5u^2-2u-1 \rangle\\ I_2^u &= \langle 4397u^{21}+2494u^{20}+\cdots+8689b-8433,\ -13086u^{21}-11183u^{20}+\cdots+8689a+43189,\\ &u^{22}+u^{21}+\cdots-4u+1 \rangle\\ I_3^u &= \langle b-1,\ a^2-2,\ u+1 \rangle\\ I_4^u &= \langle b+1,\ a,\ u-1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b - u, \ u^{14} + u^{13} + \dots + 2a + 7u, \ u^{15} + u^{14} + \dots - 2u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{14} - \frac{1}{2}u^{13} + \dots - u^{2} - \frac{7}{2}u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{14} - \frac{1}{2}u^{13} + \dots - u^{2} - \frac{7}{2}u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{14} + 4u^{12} + \dots - \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + u + \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{14} - \frac{1}{2}u^{13} + \dots - u^{2} - \frac{5}{2}u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + u + \frac{3}{2} \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + u + \frac{3}{2} \\ -\frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + u + \frac{3}{2} \\ -\frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + u - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + u + \frac{3}{2} \\ -\frac{1}{2}u^{13} + \frac{1}{2}u^{12} + \dots + u - \frac{1}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= u^{14} + u^{13} - 9u^{12} - 6u^{11} + 32u^{10} + 9u^9 - 56u^8 + 11u^7 + 45u^6 - 38u^5 - 3u^4 + 20u^3 - 16u^2 + 7u - 16u^2 + 10u^3 - 16u^2 + 10u^3 - 16u^2 + 10u^3 - 16u^3 - 16u^$$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_7 \ c_8$	$u^{15} + 3u^{14} + \dots + 2u + 2$
c_3	$u^{15} - 3u^{14} + \dots + 16u + 16$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$u^{15} + u^{14} + \dots - 2u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7 c_8	$y^{15} - 17y^{14} + \dots + 36y - 4$
<i>c</i> ₃	$y^{15} - y^{14} + \dots + 5376y - 256$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$y^{15} - 17y^{14} + \dots + 14y - 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.279761 + 0.693754I		
a = -0.39605 - 1.71486I	-5.13135 - 3.51735I	-12.62019 + 4.61757I
b = 0.279761 + 0.693754I		
u = 0.279761 - 0.693754I		
a = -0.39605 + 1.71486I	-5.13135 + 3.51735I	-12.62019 - 4.61757I
b = 0.279761 - 0.693754I		
u = -0.103670 + 0.625168I		
a = 0.16824 - 1.53722I	1.57961 + 1.61537I	-7.48885 - 5.36345I
b = -0.103670 + 0.625168I		
u = -0.103670 - 0.625168I		
a = 0.16824 + 1.53722I	1.57961 - 1.61537I	-7.48885 + 5.36345I
b = -0.103670 - 0.625168I		
u = -1.395200 + 0.215840I		
a = -0.96796 - 1.31763I	-6.90209 + 4.05844I	-16.6421 - 2.1211I
b = -1.395200 + 0.215840I		
u = -1.395200 - 0.215840I		
a = -0.96796 + 1.31763I	-6.90209 - 4.05844I	-16.6421 + 2.1211I
b = -1.395200 - 0.215840I		
u = 1.409280 + 0.090877I		
a = 1.33372 - 0.62354I	-11.36840 - 0.36520I	-21.3793 - 0.0972I
b = 1.409280 + 0.090877I		
u = 1.409280 - 0.090877I		
a = 1.33372 + 0.62354I	-11.36840 + 0.36520I	-21.3793 + 0.0972I
b = 1.409280 - 0.090877I		
u = 0.549904		
a = -2.12645	-6.65878	-14.7970
b = 0.549904		
u = 1.42511 + 0.29485I		
a = 0.56952 - 1.44587I	-8.40818 - 8.56529I	-18.2568 + 6.8115I
b = 1.42511 + 0.29485I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.42511 - 0.29485I		
a = 0.56952 + 1.44587I	-8.40818 + 8.56529I	-18.2568 - 6.8115I
b = 1.42511 - 0.29485I		
u = -1.46834 + 0.35221I		
a = -0.29255 - 1.43453I	-16.3316 + 11.5420I	-20.2839 - 5.7615I
b = -1.46834 + 0.35221I		
u = -1.46834 - 0.35221I		
a = -0.29255 + 1.43453I	-16.3316 - 11.5420I	-20.2839 + 5.7615I
b = -1.46834 - 0.35221I		
u = -1.57631		
a = -0.547004	18.0535	-22.5120
b = -1.57631		
u = -0.267461		
a = 0.843597	-0.517394	-19.3490
b = -0.267461		

II.
$$I_2^u = \langle 4397u^{21} + 2494u^{20} + \dots + 8689b - 8433, -13086u^{21} - 11183u^{20} + \dots + 8689a + 43189, u^{22} + u^{21} + \dots - 4u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.50604u^{21} + 1.28703u^{20} + \dots + 2.95753u - 4.97054 \\ -0.506042u^{21} - 0.287030u^{20} + \dots - 0.957533u + 0.970537 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.52630u^{21} + 1.89688u^{20} + \dots + 2.92945u - 5.70986 \\ -0.338129u^{21} - 0.100817u^{20} + \dots - 0.394867u + 1.34170 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{21} + u^{20} + \dots + 2u - 4 \\ -0.506042u^{21} - 0.287030u^{20} + \dots - 0.957533u + 0.970537 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.970537u^{21} - 1.47658u^{20} + \dots - 1.94994u + 3.92462 \\ 0.219013u^{21} + 0.156520u^{20} + \dots - 1.05363u - 0.493958 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.07538u^{21} - 1.10485u^{20} + \dots - 0.327310u + 3.25147 \\ -0.270917u^{21} - 0.0317643u^{20} + \dots - 0.124410u - 1.11152 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1.07538u^{21} - 1.10485u^{20} + \dots - 0.327310u + 3.25147 \\ -0.270917u^{21} - 0.0317643u^{20} + \dots - 0.124410u - 1.11152 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{416}{8689}u^{21} + \frac{20424}{8689}u^{20} + \dots + \frac{62616}{8689}u - \frac{136830}{8689}u^{20} + \dots$$

Crossings	u-Polynomials at each crossing	
c_1, c_2, c_7 c_8	$ (u^{11} - u^{10} - 6u^9 + 5u^8 + 12u^7 - 6u^6 - 10u^5 - u^4 + 5u^3 + u^2 - 1)^2 $	2
c_3	$ (u^{11} - 3u^{10} + 4u^9 - u^8 + 2u^7 - 8u^6 + 8u^5 + 5u^4 - 3u^3 - u^2 + 4u - 3u^4 - 3u^4$	$(-1)^2$
c_4, c_5, c_6 c_9, c_{10}, c_{11}	$u^{22} + u^{21} + \dots - 4u + 1$	

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_7 \ c_8$	$(y^{11} - 13y^{10} + \dots + 2y - 1)^2$
c_3	$(y^{11} - y^{10} + \dots + 14y - 1)^2$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$y^{22} - 17y^{21} + \dots - 12y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.334370 + 0.901281I		
a = 1.05362 + 1.24487I	-10.55470 - 7.02220I	-17.5005 + 4.8862I
b = -1.41545 - 0.26957I		
u = 0.334370 - 0.901281I		
a = 1.05362 - 1.24487I	-10.55470 + 7.02220I	-17.5005 - 4.8862I
b = -1.41545 + 0.26957I		
u = -0.822913 + 0.425984I		
a = -0.303790 + 0.400055I	-4.57983 - 0.45477I	-19.1951 + 1.3696I
b = 1.262170 + 0.096055I		
u = -0.822913 - 0.425984I		
a = -0.303790 - 0.400055I	-4.57983 + 0.45477I	-19.1951 - 1.3696I
b = 1.262170 - 0.096055I		
u = 0.924302 + 0.651091I		
a = 0.689229 + 0.359885I	-12.32850 + 1.64593I	-20.0499 - 0.2448I
b = -1.41233 + 0.14948I		
u = 0.924302 - 0.651091I		
a = 0.689229 - 0.359885I	-12.32850 - 1.64593I	-20.0499 + 0.2448I
b = -1.41233 - 0.14948I		
u = -0.293652 + 0.759801I		
a = -0.88260 + 1.38298I	-2.91318 + 4.75030I	-14.6411 - 6.7769I
b = 1.325160 - 0.237888I		
u = -0.293652 - 0.759801I		
a = -0.88260 - 1.38298I	-2.91318 - 4.75030I	-14.6411 + 6.7769I
b = 1.325160 + 0.237888I		
u = 0.813623		
a = -1.53185	-6.67244	-14.1860
b = 0.302775		
u = -1.203660 + 0.173836I		
a = 0.570025 + 0.642766I	-1.65360 + 1.27541I	-10.52055 - 0.80097I
b = 0.243800 - 0.525231I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.203660 - 0.173836I		
a = 0.570025 - 0.642766I	-1.65360 - 1.27541I	-10.52055 + 0.80097I
b = 0.243800 + 0.525231I		
u = 1.262170 + 0.096055I		
a = 0.035190 - 0.366036I	-4.57983 - 0.45477I	-19.1951 + 1.3696I
b = -0.822913 + 0.425984I		
u = 1.262170 - 0.096055I		
a = 0.035190 + 0.366036I	-4.57983 + 0.45477I	-19.1951 - 1.3696I
b = -0.822913 - 0.425984I		
u = 1.325160 + 0.237888I		
a = -0.437415 + 0.891040I	-2.91318 - 4.75030I	-14.6411 + 6.7769I
b = -0.293652 - 0.759801I		
u = 1.325160 - 0.237888I		
a = -0.437415 - 0.891040I	-2.91318 + 4.75030I	-14.6411 - 6.7769I
b = -0.293652 + 0.759801I		
u = -1.41233 + 0.14948I		
a = -0.224093 - 0.576984I	-12.32850 + 1.64593I	-20.0499 - 0.2448I
b = 0.924302 + 0.651091I		
u = -1.41233 - 0.14948I		
a = -0.224093 + 0.576984I	-12.32850 - 1.64593I	-20.0499 + 0.2448I
b = 0.924302 - 0.651091I		
u = 0.243800 + 0.525231I		
a = 0.47656 + 1.74026I	-1.65360 - 1.27541I	-10.52055 + 0.80097I
b = -1.203660 - 0.173836I		
u = 0.243800 - 0.525231I		
a = 0.47656 - 1.74026I	-1.65360 + 1.27541I	-10.52055 - 0.80097I
b = -1.203660 + 0.173836I		
u = -1.41545 + 0.26957I		
a = 0.347391 + 1.031120I	-10.55470 + 7.02220I	-17.5005 - 4.8862I
b = 0.334370 - 0.901281I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.41545 - 0.26957I		
a = 0.347391 - 1.031120I	-10.55470 - 7.02220I	-17.5005 + 4.8862I
b = 0.334370 + 0.901281I		
u = 0.302775		
a = -4.11640	-6.67244	-14.1860
b = 0.813623		

III.
$$I_3^u=\langle b-1,\ a^2-2,\ u+1\rangle$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -2 \\ -a+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} a+1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -a \\ a-1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -a \\ a-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -20

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_7 c_8	u^2-2		
c_3	u^2		
c_4, c_9	$(u-1)^2$		
c_5, c_6, c_{10} c_{11}	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_7 c_8	$(y-2)^2$		
c_3	y^2		
c_4, c_5, c_6 c_9, c_{10}, c_{11}	$(y-1)^2$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.41421	-8.22467	-20.0000
b = 1.00000		
u = -1.00000		
a = -1.41421	-8.22467	-20.0000
b = 1.00000		

IV.
$$I_4^u = \langle b+1, \ a, \ u-1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8	u
c_4, c_9	u+1
c_5, c_6, c_{10} c_{11}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8	y
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	y-1

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	$u(u^{2}-2)$ $\cdot (u^{11}-u^{10}-6u^{9}+5u^{8}+12u^{7}-6u^{6}-10u^{5}-u^{4}+5u^{3}+u^{2}-1)^{2}$ $\cdot (u^{15}+3u^{14}+\cdots+2u+2)$
c_3	$ u^{3}(u^{11} - 3u^{10} + 4u^{9} - u^{8} + 2u^{7} - 8u^{6} + 8u^{5} + 5u^{4} - 3u^{3} - u^{2} + 4u - 1)^{2} $ $ \cdot (u^{15} - 3u^{14} + \dots + 16u + 16) $
c_4, c_9	$((u-1)^2)(u+1)(u^{15}+u^{14}+\cdots-2u-1)(u^{22}+u^{21}+\cdots-4u+1)$
$c_5, c_6, c_{10} \\ c_{11}$	$(u-1)(u+1)^{2}(u^{15}+u^{14}+\cdots-2u-1)(u^{22}+u^{21}+\cdots-4u+1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7 c_8	$y(y-2)^{2}(y^{11}-13y^{10}+\cdots+2y-1)^{2}(y^{15}-17y^{14}+\cdots+36y-4)$
<i>c</i> ₃	$y^{3}(y^{11} - y^{10} + \dots + 14y - 1)^{2}(y^{15} - y^{14} + \dots + 5376y - 256)$
$c_4, c_5, c_6 \\ c_9, c_{10}, c_{11}$	$((y-1)^3)(y^{15}-17y^{14}+\cdots+14y-1)(y^{22}-17y^{21}+\cdots-12y+1)$