EXHIBIT 1 OF DECLARATION UNDER 37 C.F.R § 1.131

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2007/0275002 A1

Van Der Werf et al.

(43) Pub. Date:

Nov. 29, 2007

(54) USE OF PROTEINS AND PEPTIDES ENCODED BY THE GENOME OF A NOVEL SARS-ASSOCIATED CORONAVIRUS STRAIN

(76) Inventors: Sylvie Van Der Werf, Gif-Sur-Yvette (FR); Nicolas Escriou, Paris (FR); Bernadette Crescenzo-Chaigne, Neuilly-Sur-Seine (FR); Jean-Claude Manuguerra, Paris (FR); Frederick Kunst, Cedex (FR); Jean-Michel Betton, Paris (FR); Sylvie Gerbaud, Saint-Maur-Des-Fosses (FR); Ana Maria Burguiere, Clamart (FR); Saliha Azebi, Vitry-Sur-Seine (FR); Pierre Charneua, Paris (FR); Frederic Tangy, Les Lilas (FR); Chantal Combredet, Villiers (FR); Jean-Francois Delagneau, La Celle Saint Cloud (FR); Monique Martin, Chatenay Malabry (FR)

> Correspondence Address: FINNEGAN, HENDERSON, FARABOW, GARRETT & DUNNER LLP 901 NEW YORK AVENUE, NW WASHINGTON, DC 20001-4413 (US)

(21) Appl. No.: 10/581,354

(22) PCT Filed: Dec. 2, 2004 (86) PCT No.: PCT/FR04/03105

§ 371(c)(1),

(2), (4) Date: Apr. 12, 2007

(30)Foreign Application Priority Data

Dec. 2, 2003 Dec. 2, 2003

Publication Classification

(51) Int. Cl. A61K 39/215 (2006.01)31/7088 (2006.01) A61K A61P 31/12 (2006.01)C07K (2006.01)14/505 C07K 16/46 (2006.01)(2006.01)C12Q 1/70 C12N 15/63 (2006.01)C07K 16/08 (2006.01)C07H 21/04 (2006.01)A61K 35/76 (2006.01)

(52)U.S. Cl. 424/186.1; 424/93.2; 435/243; 435/320.1; 435/5; 514/44; 530/350; 530/388.3; 530/391.1; 536/23.72

(57)ABSTRACT

The invention relates to the use of proteins and peptides coded by the genome of the isolated or purified strain of severe acute respiratory syndrome (SARS)-associated coronavirus, resulting from sample reference number 031589 and, in particular, to the use of protein S and the derivative antibodies thereof as diagnostic reagents and as a vaccine.

FIGURE 2

-IGURE 3

-IGURE 6

FIGURE 7

FIGURE 8

В

FIGURE 9

FIGURE 10a

FIGURE 10b.

FIGURE 11


```
>< XhoII
                       >< ScrFI
                                                        >< Sau3AI
                       >< MvaI
                                          > < TthHB8I
                                                        >< NdeII
                    >< EcoRII
                                          > < TaqI
                                                        >< MflI
                       >< Ecl136I
                                            >< Sau3AI
                                                        >< MboI
                    >< DsaV
                                            >< NdeII
                                                        >< DpnII
                       >< BstOI
                                            >< Mbol>< Mnll>< DpnI
                       >< BstNI
                                            >< DpnII
                                                        >< BstYI
                       >< BsiLI
                                             >< DpnI
                                                        >< BspAI
                    ≻ BsaJI
                                            >< BspAI
                                                        >< Bsp143I
                       >< ApyI
                                             >< Bsp1431>< Bg111
 ATATTAGGTT TTTACCTACC CAGGAAAAGC CAACCAACCT CGATCTCTTG TAGATCTGTT CTCTAAACGA
         10
                    20
                              30
                                         40
                                                   50
                                                              60
                                            >< VneI
                                      >< SphI
                                           >< SnoI
                                        >< RmaI
                                      >< PaeI >< SduI
>< NspI >< NspII</pre>
                                      >< NspHI >< HgiAI
                                      >< NlaIII >< Bsp1286I
                                        >< MaeI >< BmyI
   >< Tru9I
                                            >< ApaLI
   >< MseI
                >< BbvI
                                            >< Alw44I
    >< DraI
                  >< AluI
                              > < Fnu4HI
                                               >< Alw21I
 ACTITAAAAT CTGTGTAGCT GTCGCTCGGC TGCATGCCTA GTGCACCTAC GCAGTATAAA CAATAATAAA
        80
                   90
                             100
                                       110
                                                  120
                                                             130
                                             >< SfcI
                                                >< PstI
                                                 >< MnlI
                                              >< Ksp632I
             >< HindII
                              > < MboII
                                             >< EarI
             >< HincII
                         >< MaeIII
                                             >< Eam1104I
TTTTACTGTC GTTGACAAGA AACGAGTAAC TCGTCCCTCT TCTGCAGACT GCTTACGGTT TCGTCCGTGT
       150
                160
                            170
                                       180
                                                  190
                                                           200
     >< TthHB8I
                     >< StyI
                                >< ScrFI
     >< TagI
                      >< RmaI
      >< Sau3AI
                      >< MaeI
                                   >< NciI
      >< NdeII
                     >< EcoT14I
                                  >< MspI
      >< MboI
                     >< Eco130I
                                       >< MaeIII
      >< DpnII
                     >< BssT1I
                                  >< HpaII
      >< DpnI
                     ≻< BsaJI
                                  >< HapII
      >< BspAI
                     >< BlnI
                                 >< DsaV
       >< Bsp143I
                     >< AvrII
                                   >< BcnI
TGCAGTCGAT CATCAGCATA CCTAGGTTTC GTCCGGGTGT GACCGAAAGG TAAGATGGAG AGCCTTGTTC
      220
                 230
                            240
                                      250
                                                  260
                                                       270
                                                                   >< RmaI
                                                   >< Esp3I >< MaeII</pre>
      >< HindII
                     >< MaeII> < Eco57I
                                                   >< BsmAI
      >< HincII
                  > < AflIII > < DdeI
                                                   >< Alw26I
                                                                 >< BsmBI
TTGGTGTCAA CGAGAAAACA CACGTCCAAC TCAGTTTGCC TGTCCTTCAG GTTAGAGACG TGCTAGTGCG
      290
                 300
                           310
                                       320
                                                  330
                                                            340
```

```
>< Sau96I
                              >< PssI
                           >< PalI
                          >< NspIV
                           >< MnlI
                           >< HaeIII
                          >< Eco0109I
                          >< DraII>< MboII >< PmlI
                                     >< PmaCI
               >< MnlI
                          >< Cfr13I
                                         > < MaeII
               >< Ksp632I >< BsuRI
           >< HinfI
                          >< BsiZI>< EcoNI >< Eco72I
               >< EarI
     >< PleI
                                                             >< MnlI
 TGGCTTCGGG GACTCTGTGG AAGAGGCCCT ATCGGAGGCA CGTGAACACC TCAAAAATGG CACTTGTGGT
                         380
                  370
                                       390
                                                 400
                                                           410
                                                          >< Tru9I
                       >< RsaI
                                                           >< SfaNI
 → RmaI

→ Csp6I

                                        >< BspWI
                                                          >< MseI
 >< MaeI >< AluI
                       >< AfaI
                                  >< AluI
                                                            > < MaeII
 CTAGTAGAGC TGGAAAAAGG CGTACTGCCC CAGCTTGAAC AGCCCTATGT GTTCATTAAA CGTTCTGATG
       430
                  440
                            450
                                       460
                                                 470
                                                            480
                   >< PalI
                   >< HaeIII
                                                                 >< RsaI
  >< Tru9I
                 >< GdiII
                                                                 McrI ><
  >< MseI
                 >< EaeI
                                                                 >< Csp6I
 >< Esp4I
                  >< BsuRI
                                                         >< BsmI BsiEI ><
                                 >< AluI
 >< AflII
                  >< BshI
                                                     >< BscCI
                                                                 >< AfaI
 CCTTAAGCAC CAATCACGGC CACAAGGTCG TTGAGCTGGT TGCAGAAATG GACGGCATTC AGTACGGTCG
   . 500
                 510
                            520
                                      530
                                                 540
                                                           550
                                    >< NspI
                     >< Scal
                                   >< NspHI
                     >< RsaI
                                   >< NlaIII
                   > < Csp6I
                                   >< BslI
                                                                >< MboII
                 · >< BsrI
                                   >< BsiYI
                                                            >< MboII
  >< AciI
                     >< Afai
                                >< Af1111
                                                 >< MunI
                                                           >< AciI
TAGCGGTATA ACACTGGGAG TACTCGTGCC ACATGTGGGC GAAACCCCAA TTGCATACCG CAATGTTCTT
   570
                 580
                            590
                                      600
                                                 610
                                                            620
                                                                      630
                                                >< TthHB8I
                                                >< TagI
                                                 >< Sau3AI
                                                 >< NdeII
                                                 >< MboI
                                                 >< DpnII
                                                  > < DpnI -
                                                >< ClaI
                                                >< Bsu15I
                                                >< BspDI
                        >< NlaIV
                                                >< BspAI
                         >< MspI
                                                  > < Bsp143I
                          >< HpaII
                                                >< Bsp106I
                                                >< BsiXI
                         >< HapII
                                                                 MaeIII >
                        >< Cfr10I
                                                >< BscI>< SfaNI DdeI ><
                        >< BscBI
                                      >< AluI
                                               >< BanIII BfrI ><
CTTCGTAAGA ACGGTAATAA GGGAGCCGGT GGTCATAGCT ATGGCATCGA TCTAAAGTCT TATGACTTAG
      640
                 650
                           660
                                      670
                                                6B0
                                                          690
```

```
>< Sau3AI
                  >< NdeII
                  >< MboI
             >< HphI
                                                                 VneI ><
                  >< DpnII
                                                                 SnoI ><
                  >< BspAI
                                                              > < NlaIII
             >< AlwI>< DpnI
                                                      >< DdeI · ApaLI ><
        >< AluI >< Bsp143I
                                        >< MboII >< BsrI
                                                              Alw44I ><
  GTGACGAGCT TGGCACTGAT CCCATTGAAG ATTATGAACA AAACTGGAAC ACTAAGCATG GCAGTGGTGC
        710
                  720
                             730
                                       740
                                                 750
                                                        760
                         >< SstI
                         >< SduI
                         >< SacI
                         >< NspII
                       >< MnlI
                                                                Sau961 ><
                         >< HgiAI
                                                     >< TthHB8I
 >< SduI
                         >< Eco241
                                                     >< TaqI
                                                                 NspIV ><
 >< NspII
                       >< Ecl136II
                                                   > < Salī
                                                                 HaeIII ><
 >< HgiAI
                        >< Bsp1286I
                                                   > < RtrI
                                                                Cfr13I ><
                         >< BmyI
     >< DraIII
                                                      >< HindII
                                                                BsuRI ><
 >< Bsp12861
                       . >< BanII
                                                      >< HincII BsiZI ><
 >< BmyI
                       · >< Alw21I
                                                       >< BsgI
                                                                 BshI ><
 >< Alw21I
                       >< AluI
                                                  >< AccI
                                      >< MaeIII
                                                                 AsuI ><
 ACTCCGTGAA CTCACTCGTG AGCTCAATGG AGGTGCAGTC ACTCGCTATG TCGACAACAA TTTCTGTGGC
       780
            . 790
                        800
                                       810
                                                 820
                                                           830
                                               >< Thal
                                             >< Thal
                                               >< MvnI
                                             >< MvnI
         > < RsaI
                                             >< HinP1I
         > < NlaIV
                                             >< Hin6I
                                                             > < VneI
            >< KpnI
                                               >< HhaI
                                                             > < SnoI
       >< Eco64I
                                               >< CfoI
                                                                 >< SduI
        >< Csp6I
                                               >< BstUI
                                                            NspII ><
         > < BscBI
                                             >< BstUI
                                                            HgiAI ><
       >< BanI
                                              >< Bsp50I
                                                         Bsp1286I ><
       >< Asp718
                                             >< Bsp50I
                                                             >< BmyI
        > < AfaI
                                                             > < ApaLI
                                              >< Acil
       >< AccBlI
                                               >< AccII
                                                             > < Alw44I
       >< Acc651
                       >< MnlI >< SfaNI
                                             >< AccII
                                                           Alw21I ><
CCAGATGGGT ACCCTCTTGA TTGCATCAAA GATTTTCTCG CACGCGCGGG CAAGTCAATG TGCACTCTTT
       850
                 860
                          870
                                      880
                                                890
                        >< TthHB8I
                  >< TthHB8I
                       >< TaqI
                  >< TaqI
                     >< MnlI
                     >< Ksp632I
                                                          NlaIII ><
                     >< HinfI>< PleI .
                                                          >< NlaIII
                     >< Eam1104I >< MboII >< MaeIII
                                                                EcoRII ><
                     >< Earl > < Bbvl>< Accl >< Fnu4HI
CCGAACAACT TGATTACATC GAGTCGAAGA GAGGTGTCTA CTGCTGCCGT GACCATGAGC ATGAAATTGC
      920
                 930
                           940
                                      950
                                                960
                                                           970
                                                >< TthHB8I
                                                >< TagI
                                                >< SfuI
                                                >< NspV>< Tru9I
>< ScrFI
           >< HinPlI
                                                >< LspI>< MseI
                                FIGURE 13.3
```

```
>< MvaI >< Hin6I
>< Ecl136I >< HhaI
>< Bst0I
                                          >< Csp45I
                               >< SduI
                          >< NspII
>< HgiAI
                                          >< BstBI
            >< HaeII
>< Bsp119I
                              >< BmyI >< Bpul4I
>< Alw21I >< AsuII
>< ApyI >< DdeI >< Bspl43II >< AluI · >< Alw21I
CTGGTTCACT GAGCGCTCTG ATAAGAGCTA CGAGCACCAG ACACCCTTCG AAATTAAGAG TGCCAAGAAA
     990 1000 1010 1020
                                       1030
                                               1040 1050
                                      >< Tru91
                     >< BsmI
                                     >< MseI
          >< BscCI
                                       > < MnlI
TTTGACACTT TCAAAGGGGA ATGCCCAAAG TTTGTGTTTC CTCTTAACTC AAAAGTCAAA GTCATTCAAC
     1060 1070 1080 1090 1100 1110 1120
 >< PmlI
  >< PmaCI
 >< MaeII
  >< Eco72I
                           >< NlaIII
 >< BsaAI
                                               >< RsaI
 >< AflIII >< MnlI>< DdeI
CACGTGTTGA AAAGAAAAAG ACTGAGGGTT TCATGGGGCG TATACGCTCT GTGTACCCTG TTGCATCTCC
    1130 1140 1150 1160 .1170 1180 1190
>< SfaNI
     >< MaeIII
                    >< AccI
                                                   NlaIII ><
ACAGGAGTGT AACAATATGC ACTTGTCTAC CTTGATGAAA TGTAATCATT GCGATGAAGT TTCATGGCAG
    1200 1210 1220 1230 1240 1250
                                                      >< SinI
                                                      >< Sau96I
                                                     PssI ><
                                                      >< Psp5II
                                                      >< PpuMI
                                                      >< NspIV
                                                      >< NspHII
                                                      >< Eco47I
                                                      >< Drail
                                                      >< Cfr13I
                                                      >< BsiZI
                                                      >< Bme18I
                                                      >< AvaII
                                                      >< AsuI
>< MaeII
                                             EcoOlO9I ><AflIII >
ACGTGCGACT TTCTGAAAGC CACTTGTGAA CATTGTGGCA CTGAAAATTT AGTTATTGAA GGACCTACTA
1270 1280 1290
                               1300
                                       1310
                                                 1320
                                                    Van91I ><
                                                       SinI ><
      >< RsaI
                                                       Sau96I ><
  >< NspI
                                                     PflMI ><
      >< NlaIV
                                                       NspIV ><
                                                       NspHII >
  >< NlaIII
  >< NspHI>< KpnI
                                                      Eco471 ><
    >< Eco64I ·
                                                      Cfr13I ><
     >< Csp6I
                                                      BslI ><
     >< BscBI
                                                       BsiZI ><
    >< BanI
                                                     BsiYI ><
    >< Asp718
                                                      Bme18I ><
     >< AfaI
                                                       AvaII ><
    >< AccBlI
                                                       AsuI ><
```

```
>< SfcI >< NlaIII
      >< Acc65I
 CATGTGGGTA CCTACCTACT AATGCTGTAG TGAAAATGCC ATGTCCTGCC TGTCAAGACC CAGAGATTGG
             1350
                     1360
                             1370
                                      1380
                                               1390 1400
                                           >< TthHB8I
                                           >< Tagl>< MnlI
                                             >< Hinfl .
  >< DdeI
                                        >< PleI >< AciI
 ACCTGAGCAT AGTGTTGCAG ATTATCACAA CCACTCAAAC ATTGAAACTC GACTCCGCAA GGGAGGTAGG
      1410 1420 1430 1440 1450
                                                1460 1470
 >< RmaI
                                                    NlaIV ><
     >< MnlI
                                                        >< BsrI
              >< BbvI >< Fnu4HI
 >< MaeI
                                                     BscBI ><
 ACTAGATGTT TTGGAGGCTG TGTGTTTGCC TATGTTGGCT GCTATAATAA GCGTGCCTAC TGGGTTCCTC
     1480
              1490
                     1500
                                        1520 1530
                              1510
                                                       XhoII ><
                                                       Sau3AI ><
                                                       NdeII ><
                                                       MflI ><
                                    >< MaeIII
                                                       MboI ><
                                                     DpnII ><
                     >< PalI
                                 >< Eco31I
>< BsrI</pre>
                     >< HaeIII
                                                   >< MnlI DpnI >
    >< RmaI
   >< MaeI
GTGCTAGTGC TGATATTGGC TCAGGCCATA CTGGCATTAC TGGTGACAAT GTGGAGACCT TGAATGAGGA
          1560
     1550
                     1570 . 1580 1590 1600 1610
                          > < Tru9I
                         > < MseI
                     >< MaeII >< Tru9I
                           >< HpaI
                                                  > < MnlI
                           >< HindII
                                                    > < Ksp632I
             >< HinfI >< PleI >< HincII
                                                    > < EarI
    >< AlwI >< DdeI >< AflIII >< MseI
                                                    > < Eam1104I
TCTCCTTGAG ATACTGAGTC GTGAACGTGT TAACATTAAC ATTGTTGGCG ATTTTCATTT GAATGAAGAG
     1620 1630 1640
                            1650 1660 1670
     >< Mbott
                                                      PleI ><
         >< BstXI
                    >< SfaNI
                                                   > < HinfI
GTTGCCATCA TTTTGGCATC TTTCTCTGCT TCTACAAGTG CCTTTATTGA CACTATAAAG AGTCTTGATT
           1700 1710 1720 1730 1740 1750
                                           >< StyI
                                     >< MaeIII
                                          >< EcoT14I
                           >< PleI
                                          >< Ecol30I
                   >< MaeIII >< BssTlI
>< Hinfl>< AciI >< BsaJI
ACAAGTCTTT CAAAACCATT GTTGAGTCCT GCGGTAACTA TAAAGTTACC AAGGGAAAGC CCGTAAAAGG
   1760 1770 1780
                             1790 1800
                                                1810
                   >< Sau3AI
                                     >< Van91I
                   >< NdeII
                                     >< PflMI
                   >< MboI
                                      >< DraIII
                                     >< BslI
                   >< DpnII
                   >< DpnI >< Tru9I >< BsiYI
>< BspAI >< MseI >< BbvI >< MnlI
>< Bsp143I >< AccB7I Fnu4HI ><
```

```
TGCTTGGAAC ATTGGACAAC AGAGATCAGT TTTAACACCA CTGTGTGGTT TTCCCTCACA GGCTGCTGGT
      1830
                 1840
                          1850
                                     1860
                                               1870
                                                         1880
                     >< ThaI
                     >< SfaNI
                     >< MvnI
                     >< HinPlI
                   >< HinPlI
                    >< Hin6I</pre>
                  >< Hin6I
                      >< HhaI
      >< Sau3AI
                     >< HhaI
      >< NdeII
                      >< CfoI
                                                                 PvuII >
      >< MboI
                     >< CfoI
                                                                 Psp5I >
      >< DpnII
                    >< BstUI
                                                                NspBII >
        >< DpnI
                  >< BssHII
                                                              HohT ><
       >< BspAI
                                                              Fnu4HI ><
                                   >< fnu4HI >< BbvI
                                                                 AluI >
GTTATCAGAT CAATTTTTGC GCGCACACTT GATGCAGCAA ACCACTCAAT TCCTGATTTG CAAAGAGCAG
      1900
                1910
                          1920
                                     1930
                                               1940
                                                       1950
                                              >< TthHB8I .
                                                     >< StyI
                                                     >< Ncol
                                               >< HindII
                                               >< HincII
                                                 >< HinlI
                                                     >< EcoT14I
                                                 >< Eco57I
                                              >< TaqI>< Ecol30I
                                             >< SalI >< DsaI
                                             >< RtrI >< BssTlI
                                                 >< BsaHI
                                                 >< BbiII>< NlaIII
 >< MaeIII
                                                 >< Acyl >< Hgal
      >< BbvI
                                     >< MaeII >< AccI>< BsaJI HphI ><
CTGTCACCAT ACTTGATGGT ATTTCTGAAC AGTCATTACG TCTTGTCGAC GCCATGGTTT ATACTTCAGA
     1970
              1980
                       1990
                                    2000
                                               2010
                                                         2020
                                                   >< RsaI
                               >< NdeI
                                                > < Csp6I
    >< BspMI
                                >< MaeIII >< BsrI >< AfaI
                                                                >< DdeI
CCTGCTCACC AACAGTGTCA TTATTATGGC ATATGTAACT GGTGGTCTTG TACAACAGAC TTCTCAGTGG
  2040
               2050
                          2060
                                     2070
                                              2080
                                                         2090
                                      >< StuI
                                      >< PalI
                                      >< HaeIII
                                      >< Ecol47I
                  >< SduI
                                 >< DdeI
                 >< NspII
                                     >< BsuRI
                 >< Bsp1286I
                                      >< BshI
                 >< BmyI
                                     >< AatI
                                                 > < MnlI
                                                              BfrI ><
TTGTCTAATC TTTTGGGCAC TACTGTTGAA AAACTCAGGC CTATCTTTGA ATGGATTGAG GCGAAACTTA
     2110
               2120
                          2130
                                    2140
                                               2150
                                                        2160
                                  >< TfiI
                                  >< HinfI
                                                              TthlllI ><
            >< SfaNI >< BsgI
                                   >< FokI
                                                              AspI ><
GTGCAGGAGT TGAATTTCTC AAGGATGCTT GGGAGATTCT CAAATTTCTC ATTACAGGTG TTTTTGACAT
     2180
               2190
                       2200
                                    2210
                                               2220
                                                         2230
```

FIGURE 13.6

```
Tru9I ><
                                                            MseI ><
                                                            HpaI >
                                                           HindII >
        >< Eco57I
                                                           HincII >
  CGTCAAGGGT CAAATACAGG TTGCTTCAGA TAACATCAAG GATTGTGTAA AATGCTTCAT TGATGTTGTT
             2260 2270 2280 2290 2300 2310
                      >< Sau3AI
                      >< NdeII
                       >< MboI
                          '> < MaeIII</pre>
                                                  >< Sau3AI
                        >< FbaI
                                                   >< NdeII
                       >< DpnII
                                                   >< DpnII
                       >< DpnI
                                                   >< DpnIMboII ><
                      >< BspAI
                                        >< HinPlI
                                                         DdeI ><
                       >< Bsp143I
                                                    >< Bsp143I
                                        >< Hin6I
          >< MboIBfrI ><</pre>
                                         >< CfoI >< BspAI BbsI ><
 AACAAGGCAC TCGAAATGTG CATTGATCAA GTCACTATCG CTGGCGCAAA GTTGCGATCA CTCAACTTAG
      2320 2330 2340 2350 2360 2370
                                                         >< PvuII
                                           >< MaeII
                                                         >< Psp5I
                                                         >< NspBII
                                         >< Bst1107I
                                           >< BsaAI Fnu4HI ><
                                            >< BbvI > < Fnu4HI
                             >< DrdI
           >< HphI
                                        >< AccI
                                                        >< AluI
 GTGAAGTCTT CATCGCTCAA AGCAAGGGAC TTTACCGTCA GTGTATACGT GGCAAGGAGC AGCTGCAACT
                        2410 2420 2430 2440 2450
      2390
               2400
           >< Tru9I
               >< NlaIV
          >< MseI
               >< MnlI
          >< Esp4I
                                                          >< ScaI
              >< Eco64I
                                                          >< RsaI
               >< BscBI
                                                   >< NlaIIIMnlI ><
     >< NlaIII >< BanI
                                                       MnlI ><
        >< AflII
                                          >< TfiI
                                                         >< Csp6I
>< BbvI
             >< AccBlI
                         >< MaeIII
                                          >< HinfI >< HphI >< AfaI
ACTCATGCCT CTTAAGGCAC CAAAAGAAGT AACCTTTCTT GAAGGTGATT CACATGACAC AGTACTTACC
     2460
              2470
                             2490 2500
                        2480
                                                  2510 2520
                                    > < XhoI
                                     >< TthHB8I
                             >< TthHB8I>< TaqI
                                   > < SlaI
                                    > < PaeR7I
                                   > < NspIII
                                 >< HphI >< HinlI
                                    > < Eco88I
                                    > < CcrI
                                 >< Esp3I >< BsaHI.
                                   > < BcoI
                                 >< BsmAI >< BbiII
                                   > < AvaI >< HgaI
                             >< TaqI > < Ama87I>< BsmBI
>< DdeI>< MnlI
                                >< Alw26I >< AcyI
TCTGAGGAGG TTGTTCTCAA GAACGGTGAA CTCGAAGCAC TCGAGACGCC CGTTGATAGC TTCACAAATG
     2530
            2540
                       2550
                             2560 2570
                                                2580
```

```
· >< PalI >< NlaIII
                                  >< HaeIII >< MnlI
                                  >< BsuRI >< DdeI >< Tru9I
   >< AluI
                  >< BsrI
                                  >< BshI
                                           >< BfrI >< MseI
  GAGCTATCGT TGGCACACCA GTCTGTGTAA ATGGCCTCAT GCTCTTAGAG ATTAAGGACA AAGAACAATA
       2600
                2610 2620 2630
                                             2640
                                                         2650
                                                         >< VneI
                                                            Tru9I ><
               >< ScrFI
                                                        >< SnoI
               >< MvaI
                                                             >< SduI
             >< EcoRII
                                                             >< NspII
    >< MstI
              >< Ecl136I
                                                             MseI ><
   >< HinPlI >< DsaV
                                                             >< HgiAI
   >< Hin6I
              >< BstOI
                                                     Bsp1286I ><Bs1I ><
    >< HhaI
              >< BstNI
                                                             BsiYI ><
    >< FspI
              >< BsmAI
                                                             >< BmyI
    >< FdiII
              >< BsiLI
                                                        >< ApaLI
    >< CfoI
              >< ApyI .
                                              >< Tru9I >< Alw44I
    >< AviII
              >< Alw26I
                          >< BsrI
                                              >< MseI
 CTGCGCATTG TCTCCTGGTT TACTGGCTAC AAACAATGTC TTTCGCTTAA AAGGGGGTGC ACCAATTAAA
              2680 2690 2700
                                              2710
                                                      2720
                                                       >< TfiI
  >< MaeIII
                           >< MboII > < MaeIII
                                                       >< HinfI AluI ><
GGTGTAACCT TTGGAGAAGA TACTGTTTGG GAAGTTCAAG GTTACAAGAA TGTGAGAATC ACATTTGAGC
      2740
                2750
                        2760 2770
                                              2780
                                                        2790
                                                             >< RsaI
                                                             >< NlaIV
                                                            MaeIII ><
                                                         >< MspI>< KpnI
                                                         >< HpaII
                                                         >< HapII
                                                          > < Eco64I
                                     >< SduI
                                                            >< Csp6I
                                     >< NspII
                                                    · >< Tfil >< BscBI
                                                    > < BanI
> < Asp718
                                     >< HgiAI
      >< MaeII
                                     >< Bsp1286I
            >< HindII
                                     >< BmyI
                                                     >< HinfI >< AfaI
             >< HincII
                       >< Tru9I
                                                   > < AccBlI
                                    >< Alw21I
      >< AflIII
                        >< MseI
                                      >< AccI
TTGATGAACG TGTTGACAAA GTGCTTAATG AAAAGTGCTC TGTCTACACT GTTGAATCCG GTACCGAAGT
  . 2810
              2820
                         2830 2840
                                             2850
                                                       2860
                                                        >< Sau3AI
                                                        >< NdeII
                                                        >< MboI
                                                        >< DpnII
             >< NspI
             >< NspHI
                                               >< MboII >< BspAI
             >< NlaIII
                                               > < BsrI > < Bsp143I
                        >< AlwNI
 >< DdeI
               >< MnlI
                                          >< Bbsi >< Alwni
TACTGAGTTT GCATGTGTG TAGCAGAGGC TGTTGTGAAG ACTTTACAAC CAGTTTCTGA TCTCCTTACC
     2880
              2890
                       2900
                               2910
                                             2920
                                                      2930 2940
          >< Sau3AI
          >< NdeII
          >< MboI
          >< DpnII
           >< DpnI
          >< BspAI
```

```
>< NlaIII>< Bsp143I
                                >< AluI
                                           >< SfaNI
 AACATGGGTA TTGATCTTGA TGAGTGGAGT GTAGCTACAT TCTACTTATT TGATGATGCT GGTGAAGAAA
                2960
                         2970
                                   2980
                                            2990
                                                      3000
                                                           3010
                                            >< SfaNI
                                         >< MnlI
     >< MboII
                >< GsuI
                                         >< Ksp632I
                                                        >< MnlI
                                                    > < MboII
        >≺ BsaAI
                                         >< EarI
  >< HphI >< MaeII>< BpmI >< MnlI >< Eaml104I
                                                      >< MboII
 ACTITICATC ACGITATGIAT IGITCCITIT ACCCICCAGA IGAGGAAGAA GAGGACGAIG CAGAGIGIGA
             3030
                                                  3070
      3020
                     3040 3050
                                            3060
                                     > < RsaI
                                >< RsaI
                              >< NlaIII
                                 >< MnlI
                                                       >< FokI
                                   >< Csp6I
                                                       Eco311 ><
                                >< Csp6I
                                                >< MamI BsmAI ><
                                               >< BsiBI BsaI ><
               >< MboII
                                > < AfaI
             >< MboII
                                >< AfaI
                                                >< BsaBIAlw26I ><
GGAAGAAGAA ATTGATGAAA CCTGTGAACA TGAGTACGGT ACAGAGGATG ATTATCAAGG TCTCCCTCTG
             3100 3110
                                  3120 3130
                                                  3140 3150
       >< NlaIV>< PvuII>< XmnI
     >< Eco64I >< Psp5I >< TthHB8I
                                                >< MboII
    >< MnlI >< DdeI
                        >< TaqI >< MnlI
       >< BscBI>< NspBII >< MnlI
                                   >< Ksp632I
                                                 >< MboII >< MboII
                                   >< EarI
      >< BanI >< MnlI
                                                >< BsrI
     >< AccB1I >< AluI >< Asp700I >< Eam1104I >< MboII>< BbsI
GAATTTGGTG CCTCAGCTGA AACAGTTCGA GTTGAGGAAG AAGAAGAGGA AGACTGGCTG GATGATACTA
     3160
              3170
                       3180
                                  3190
                                        3200
                                                 >< Tru9I
  >< FokI
                                                >< MseI >< Eco57I
>< DdeI
                                            >< BsrI>< MboII BsrI ><
CTGAGCAATC AGAGATTGAG CCAGAACCAG AACCTACACC TGAAGAACCA GTTAATCAGT TTACTGGTTA
     3230
              3240
                        3250
                                  3260
                                            3270
                                                    3280
 >< Tru9I
                                       >< MnlI
 >< MseI
                        >< Tru9I >< HindII>< Tru9I -
                                                     >< DraIII
>< BspWI
                        >< MseI
                                >< HincII>< MseI
TTTAAAACTT ACTGACAATG TTGCCATTAA ATGTGTTGAC ATCGTTAAGG AGGCACAAAG TGCTAATCCT
          3310
                                 3330
                        3320
                                           3340
                                                     3350 3360
                                                     >< VneI
                                                     >< SnoI
                                                        > < SduI
                                                        > < NspII
                                                        > < HgiAI
                                                        > < Bsp1286I
                                                        > < BmyI
                                                    >< ApaLI
 >< HphI
>< BbvI >< Fnu4HI
                                    > < NlaIII
                                                     >< Alw44I
                                      >< BspMI
                                                     > < Alw21I
ATGGTGATTG TAAATGCTGC TAACATACAC CTGAAACATG GTGGTGGTGT AGCAGGTGCA CTCAACAAGG
             3380
                     3390 3400
                                           3410
                                                 3420
                                                >< Sau96I
                                                >< PalI
                                                >< NspIV
                                                >< HaeIII
       >< NlaIV
                                                >< Cfr13I
```

```
>< Eco641
                                                  >< BsuRI
          >< BscBI
                                      > < Tru9I

→ BsiZI

        >< BanI
                                                 >< BshI
                                     > < MseI
                                                              >< MnlI
        >< AccBlI>< NlaIII
                                          >< AluI >< AsuI >< MnlI
 CAACCAATGG TGCCATGCAA AAGGAGAGTG ATGATTACAT TAAGCTAAAT GGCCCTCTTA CAGTAGGAGG
                3450
                     3460 · 3470
                                            3480
                                                       3490
                                                   >< SinI
                                                   >< Sau96I
                                                   >< NspIV
                                             >< NspHI>< NspHII
                                                   >< Eco471
                                                   >< Cfr13I
                                             >< NlaIII >< BspMI
                                                   >< BsiZI
                                                   >< Bmel8I
                                                   >< AvaII MnlI ><
                            > < DdeI
                                             >< NspI>< AsuI FokI ><
 GTCTTGTTTG CTTTCTGGAC ATAATCTTGC TAAGAAGTGT CTGCATGTTG TTGGACCTAA CCTAAATGCA
      3510
                              3540
           3520 3530
                                             3550 3560 3570
                > < Tru9I
            >< HphI> < MseI
                 >< Esp4I
              >< AluI
                            > < NdeI
                >< AflII>< Fnu4HI >< BbvI
 GGTGAGGACA TCCAGCTTCT TAAGGCAGCA TATGAAAATT TCAATTCACA GGACATCTTA CTTGCACCAT
      3580
               3590
                        3600
                                  3610
                                                            RsaI ><
                                                           Csp6I ><
                >< Eco571
                                           >< BcgI
                                                            AfaI ><
TGTTGTCAGC AGGCATATTT GGTGCTAAAC CACTTCAGTC TTTACAAGTG TGCGTGCAGA CGGTTCGTAC
            3660 3670 3680 3690 3700
    >< BsgI
                             >< BspMI
      >< BcgI/a
                         >< AluI
                                                >< NlaIII
ACAGGTTTAT ATTGCAGTCA ATGACAAAGC TCTTTATGAG CAGGTTGTCA TGGATTATCT TGATAACCTG
     3720
             3730 3740
                                 3750 3760
                                                     3770
                                                   >< MnlI
                          >< NlaIV >< TfiI >< MboII
>< BscBI >< HinfI >< DdeI
   >< RmaT
                > < MnlI
                >< Eco57I
   >< MaeI
AAGCCTAGAG TGGAAGCACC TAAACAAGAG GAGCCACCAA ACACAGAAGA TTCCAAAACT GAGGAGAAAT
     3790
               3800
                       3810
                                  3820
                                          3830
                                                     3840 3850
                                  >< Tru91
                                        >< StuI
                                        >< PalI
                                  >< MseI >< MnlI
                                                     >< MaeIII
                                       >< HaeIII
                                                     >< Eco0651
                                        >< Ecol471
                                                     >< Eco911
                                        >< BsuRI
     >< RsaI
                                                           BstXI ><
              >< Tth#B8I
    >< Csp6I
                                       >< BshI
                                                     >< BstPI
     >< AfaI
                >< TaqI
                                      >< AatI
                                                     >< BstEII
CTGTCGTACA GAAGCCTGTC GATGTGAAGC CAAAAATTAA GGCCTGCATT GATGAGGTTA CCACAACACT
     3860
              3870
                      3880 . 3890
                                            3900
                                                      3910
                                                           TfiI ><
                                                           NlaIII ><
                                                           HinfI ><
      ><.DdeI
                                           >< EcoRV >< HindIII
```

FIGURE 13.10

```
>< MboII
                           >< MaeIII
                                              >< Eco321
                                                          >< AluI
 GGAAGAAACT AAGTTTCTTA CCAATAAGTT ACTCTTGTTT GCTGATATCA ATGGTAAGCT TTACCATGAT
       3930
                 3940
                           3950
                                    3960
                                               3970
                                                         3980
                                                                   3990
            >< NspI
            >< NspHI
            >< NlaIII
                                   >< SfaNI
        >< MnlI
                                     > < Econi
                               >< MboII >< BslI
             >< DdeI
                                                          > < NlaIII
             >< BfrI
  >< DdeI
                               >< HphI >< BsiYI
                                                         >< FokI
 TCTCAGAACA TGCTTAGAGG TGAAGATATG TCTTTCCTTG AGAAGGATGC ACCTTACATG GTAGGTGATG
      4000 -
                4010
                          4020
                                    4030
                                               4040
                                                        4050
     >< SpeI
      >< RmaI
      >< MaeI
                >< EcoRV>< HphI
                                                       >< SfaNI
     >< HphI
                >< Eco32I
                                               >< MnlI
                                                        >< DdeI
 TTATCACTAG TGGTGATATC ACTTGTGTTG TAATACCCTC CAAAAAGGCT GGTGGCACTA CTGAGATGCT
      4070
                4080
                         4090
                                    4100
                                               4110
                                                        4120
                                                                  4130
                                                   >< ScrFI
                                               >< RsaI
                                                   >< MvaI
                                                >< EcoRII
                                                  >< Ec1136I
                                                >< DsaV
                                              >< Csp6I >< EcoNI
                                                   >< BstOI
                                                   >< BstNI
                                                   >< BsiLI
                                                >< BsaJI
                                            >< BsaAI >< BslI
                                           >< MaeII>< ApyI
                        >< MboII
      >< AluI
                      >< BsrI
                                             >< Afal >< BsiYI
CTCAAGAGCT TTGAAGAAAG TGCCAGTTGA TGAGTATATA ACCACGTACC CTGGACAAGG ATGTGCTGGT
           4150
      4140
                      4160
                               4170
                                           4180
                                                      4190
                           >< Tru9I
                           >< MseI
               >< DdeI
                          >< Esp4I
                                                    · >< RsaI
 >< MnlI
                >< BspWI
                                                      >< Csp6I
 >< FokI
              >< AluI
                          >< AflII
                                             >< Eco57I >< AfaI
TATACACTTG AGGAAGCTAA GACTGCTCTT AAGAAATGCA AATCTGCATT TTATGTACTA CCTTCAGAAG
   4210
               4220
                          4230
                                   4240 4250
                                                     4260
                                     >< ScrFI
                                     >< MvaI
                                   >< EcoRII
                 >< XmnI
                                  >< Ec1136I</pre>
                                                          NlaIII ><
        > < Ksp632I >< RmaI
                                   >< DsaV
                                                       Ksp632I ><
        > < Earl > < Tfil>< MboII
                                   >< BstOI
                                                               >< EarI
        > < Eam1104I >< MaeI
                                   >< BstNI
                                                       Eam1104I ><
    > < DdeI > < HinfI
>< BspWI >< Asp700I
                                    >< BsiLI
                                    >< ApyI
                                                          Alw26I ><
CACCTAATGC TAAGGAAGAG ATTCTAGGAA CTGTATCCTG GAATTTGAGA GAAATGCTTG CTCATGCTGA
     4280
               4290
                         4300
                                   4310
                                            4320 4330
                                                                 4340
            >< VspI
                          >< Zsp2I
            >< Tru9I
                       >< PpulOI
            >< MseI
                          >< NsiI
         >< MboII
                             >< NlaIII
                                         >< FokI ·
                >< Eco57I >< Mph1103I >< FokI
                               FIGURE 13. 11
```

```
>< AsnI
                             >< EcoT22I
                                                >< BspWI
               >< ASAT
                            >< AvaIII
                                                >< BglI
  AGAGACAAGA AAATTAATGC CTATATGCAT GGATGTTAGA GCCATAATGG CAACCATCCA ACGTAAGTAT
       4350
                 4360
                           4370
                                      4380
                                               4390
                                                           4400
                                                                     4410
                                 >< SfaNI
        >< Tru9I
                              > < HindII
                                             >< TfiI
                                                            >< SpeI
        >< MseI
                              > < HincII>< MboII
                                                            >< RmaI
           >< MnlI
                                      >< DrdI >< HinfI
                                                            >< MaeI
 AAAGGAATTA AAATTCAAGA GGGCATCGTT GACTATGGTG TCCGATTCTT CTTTTATACT AGTAAAGAGC
               4430
       4420
                          4440
                                   4450
                                               4460
                                                          4470
                                                                     4480
                                                >< MaeIII
 >< SfcI
                                           >< Fnu4HI
                                                           >< MunI
      >< AluI
                       >< AluI
                                           >< AciI
                                                             MaeIII >< ·
 CTGTAGCTTC TATTATTACG AAGCTGAACT CTCTAAATGA GCCGCTTGTC ACAATGCCAA TTGGTTATGT
      4490
                4500
                           4510
                                     4520
                                                4530
                                                          4540
                               >< ThaI
                                >< MvnI
                                >< MboII
                                >< HinPlI
                             >< HinP1I
                               >< Hin6I

→ Hin6I

                                >< HhaI
            >< Tru9I
                                >< HhaI
       >< NlaIII
                           >< Fnu4HI
            >< MseI
                                >< CfoI
                               >< CfoI
               >< MnlI
               >< Ksp632I
                               >< BstUI
               >< Earl
                            >< BssHII>< BspWI
                                                >< Tru9I
              >< Eam1104I
                             >< Bsp50I >< MseI
           · >< BbvI
                               >< AccII
                                                    >< AluI
                                                                 HphI ><
GACACATGGT TTTAATCTTG AAGAGGCTGC GCGCTGTATG CGTTCTCTTA AAGCTCCTGC CGTAGTGTCA
      4560 4570
                                             4600
                          4580
                                    4590
                                                          4610
                >< MaeIII
  >< SfaNI
               >< AlwNI
                                                 >< MnlI >< MnlI>< DdeI
GTATCATCAC CAGATGCTGT TACTACATAT AATGGATACC TCACTTCGTC ATCAAAGACA TCTGAGGAGC
     4630
                4640
                          4650
                                    4660
                                               4670
                                                          4680
                                                                    4690
                                           >< SinI
                                           >< Sau96I
                                           >< NspIV
                                            >< NspHII
>< SduI
                                           >< Eco47I
>< NspII
                                           >< Cfr13I
>< HgiAI
                                           >< Bsi2I
>< Bsp1286I
                                           >< Bme18I
                                                             >< RsaI
>< BmyI
                                           >< AvaII
                                                              >< Csp6I
>< Alw21I
                                           >< AsuI
ACTITIGTAGA AACAGITTCT TIGGCIGGCT CITACAGAGA TIGGICCIAT TCAGGACAGC GTACAGAGIT
     4700
               4710
                          4720
                                    4730
                                               4740
                                                         4750
                                                             > < TthHB8I
                                                            > < TaqI
                                                         >< SduI
                                              >< Van911 >< NspII
             >< Tru9I
                                     >< RsaI >< PflMI >< Eco241
             >< MseI
                                  >< HphI
                                              >< BslI
                                                        >< Bsp1286I
            >< Esp4I
                                    >< Csp6I >< BsiYI
                                                       >< BmyI GsuI ><
                               FIGURE 13.12
```

```
>< AfaI >< AccB7I >< BanIIBpmI ><
              >< AflII >< MaeIII
AGGTGTTGAA TTTCTTAAGC GTGGTGACAA AATTGTGTAC CACACTCTGG AGAGCCCCGT CGAGTTTCAT
      4770
                4780
                           4790
                                    4800
                                               4810
                                                         4820
                                             >< PleI >< EcoNI
                                               >< MnlI >< BslI
                                           >< BsmAI
                                                     >< BsiYI
                 >< HphI
>< MnlI ·
                                    >< Hinfl>< Alw26I>< AciI >< MseI
CTTGACGGTG AGGTTCTTTC ACTTGACAAA CTAAAGAGTC TCTTATCCCT GCGGGAGGTT AAGACTATAA
      4840
                4850
                       4860
                                     4870
                                               4880
                                                         4890
                                          >< AluI
                                                               >< NdeI
AAGTGTTCAC AACTGTGGAC AACACTAATC TCCACACACA GCTTGTGGAT ATGTCTATGA CATATGGACA
      4910
                4920
                          4930
                                     4940
                                               4950
                                                        4960
       >< SinI
       >< Sau96I
       >< NspIV
       >< NspHII
       >< Eco47I
       >< Cfr13I
                                                           NlaIII ><
      >< BsiZI
                                                         >< NlaIII
      >< Bme18I
                                                           > < MnlI
      >< AvaII
                                  >< MaeIII
                                            >< Tru9I
                                                         >< Mn1.T
      >< AsuI
                                   >< FokI
                                             >< MseI
                                                          >< BspHI
GCAGTTTGGT CCAACATACT TGGATGGTGC TGATGTTACA AAAATTAAAC CTCATGTAAA TCATGAGGGT
     4980
             4990 5000
                                5010
                                             5020
                                                         5030
                                                  > < Tth#B81
             >< RsaI
                                                 > < TaqI
                 > < Rma1
                                    >< SnaBI
                                                  >< Scal
                                   >< MaeII >< HindIII >< RsaI
                  > < MaeI
            >< Csp6I
                                    >< Ecol051 >< Csp6I
>< BsaAI >< AluI >< AfaI
             >< AfaI
AAGACTITCT TIGTACTACC TAGTGATGAC ACACTACGTA GTGAAGCTIT CGAGTACTAC CATACTCTTG
     5050
               5060
                     5070
                                    5080
                                              5090
                                                        5100
                                                                   5110
                    >< RsaI
                         >< NspI
                         >< NspHI
                         >< NlaIII
                   > < Csp6I >< Tru9I
                                                                  MnlI >
                     >< AflIII >< MseI
>< AfaI >< DraI
                                                              BslI ><
                    >< AfaI
                                                             BsiYI ><
ATGAGAGTTT TCTTGGTAGG TACATGTCTG CTTTAAACCA CACAAAGAAA TGGAAATTTC CTCAAGTTGG
     5120
               5130
                        5140
                                 5150
                                              5160
                                                        5170
   >< Tru9I
             >< Tru9I
                                             >< RmaI
   >< MseI
             >< MseI
                              >< MunT
                                             >< MaeI
                                                                 AluI >
TGGTTTAACT TCAATTAAAT GGGCTGATAA CAATTGTTAT TTGTCTAGTG TTTTATTAGC ACTTCAACAG
               5200
                      5210
                                 5220
                                               5230
                                                     5240
                                                    >< SfaNI
                                                   >< SduI
                                                   >< NspII
                                                    >< Eco24I

→ Bsp1286I

                                                   >< Bmy1
                                                                 HphI >
                                                   >< BbvI Fnu4HI ><
                        >< MnlI
                                                   >< BanII >< BspWI
```

FIGURE 13.13

```
CTTGAAGTCA AATTCAATGC ACCAGCACTT CAAGAGGCTT ATTATAGAGC CCGTGCTGGT GATGCTGCTA
                5270
                          5280
                                    5290
                                             5300
                                                       5310 5320
      >< VneI
      >< SnoI
           >< SduI
           >< NspII
           >< HgiAI
           >< Bsp1286I
          >< BmyI
      >< ApaLI
      >< Alw44I
                                                             MboII ><
          >< Alw21I
                                            >< AluI
                                                             >< HphI
 ACTITITGIGC ACTICATACIC GCTTACAGTA ATAAAACTGI IGGCGAGCII GGIGAIGICA GAGAAACTAI
      5330
                5340
                     5350 5360
                                             5370
                                                   5380
                  > < SphI
                 · > < PaeI
                  > < NspI
                  > < NspHI >< TfiI
                                             >< Tru9I
          >< SfcI > < NlaIII>< HinfI
                                             >< MseI
GACCCATCTT CTACAGCATG CTAATTTGGA ATCTGCAAAG CGAGTTCTTA ATGTGGTGTG TAAACATTGT
      5400
               5410
                     5420 5430 5440
                                                      5450 5460
                                                 >< RsaI
                 >< Tru9I
                                                > < Csp6I
                                                              Esp4I >
                          >< AluI
                 >< MseI
                                                >< AfaI
GGTCAGAAAA CTACTACCTT AACGGGTGTA GAAGCTGTGA TGTATATGGG TACTCTATCT TATGATAATC
     5470
               5480
                     5490
                                 5500
                                             5510
                                                       5520
                                                                 5530
                                                        >< RsaI
                                                            >< MboII
                                                    >< RmaIHinfI ><
                                                      >< Csp6I
>< Tru91
                           >< SfaNI
                                                    >< MaeI >< BbsI
              >< NlaIII
>< MseI
                                                        >< AfaI
TTAAGACAGG TGTTTCCATT CCATGTGTGT GTGGTCGTGA TGCTACACAA TATCTAGTAC AACAAGAGTC
     5540
              5550
                      5560 5570
                                           5580
                                                   5590 5600
                                                  >< RsaI
 · >< PleI
                           > < DdeI
                                                 >< Csp6I
                        >< BspWI >< BspMI
 >< BsaI
                                                 >< AfaI
TTCTTTTGTT ATGATGTCTG CACCACCTGC TGAGTATAAA TTACAGCAAG GTACATTCTT ATGTGCGAAT
     5610
          5620
                        5630
                              5640
                                            5650
                                                      5660
                                            >< Eco311
  >< RsaI
                                            >< DdeI
      > < MaeIII</pre>
                                            >< BsmAI
 >< Csp6I
                                            >< BsaI
                                                            MnlI ><
  >< AfaI >< BsrI
                                            >< Alw26I
                                                               HphI >
GAGTACACTG GTAACTATCA GTGTGGTCAT TACACTCATA TAACTGCTAA GGAGACCCTC TATCGTATTG
              5690
                        5700
                                  5710
                                           5720
                                                      5730
      >< SstI
                                  >< SinI
     >< SduI
                                  >< Sau96I
     >< SacI
                                  >< NspIV
     >< NspII
                                  IIHqeN ><
     >< HgiAI
                           > < RsaI
                                      >< MaeIII
     >< Eco24I
                                  >< Eco47I
    >< Ecl136II
                                  >< Cfr13I
     >< Bsp1286I
                                  >< BsiZI
     >< BmyI
                                  >< BmelBI
```

FIGURE 13. 14

```
>< BanII
                                 >< AvaII
       >< Alw211 >< Csp61>< Asu1
      >< AluI
                          > < Afal >< Bsrl>< AlwNI
 ACGGAGCTCA CCTTACAAAG ATGTCAGAGT ACAAAGGACC AGTGACTGAT GTTTTCTACA AGGAAACATC
             5760 5770
                                 5780
                                         5790 5800 5810
                                 >< TthHB8I
                                 >< TaqI >< MaeIII
 TTACACTACA ACCATCAAGC CTGTGTCGTA TAAACTCGAT GGAGTTACTT ACACAGAGAT TGAACCAAAA
               5830
                        5840
                                 5850
                                           5860
                                                    5870 5880
                                                     >< RsaI
                                                     >< Csp61
                                          >< SfcI >< BbvI
              >< FokI
                                       >< Fnu4HI >< AfaI
 TTGGATGGGT ATTATAAAAA GGATAATGCT TACTATACAG AGCAGCCTAT AGACCTTGTA CCAACTCAAC
      5890
              5900 5910 5920
                                         5930
                                                   5940
                                                         5950
                                                     Tru9I ><
                                                        SwaI ><
                                                       MseI ><
                                   IqeN > <
                                                        MamI ><
                                    > < NspHI
                                                        DraI ><
                                   > < NlaIII
                                >< Afliii
                                                       BsaBT ><
 CATTACCAAA TGCGAGTTTT GATAATTTCA AACTCACATG TTCTAACACA AAATTTGCTG ATGATTTAAA
      5960 5970 5980 5990
                                      6000 6010
                                       >< MboII
                       >< AluI
                                >< AluI>< MaeIII
 TCAAATGACA GGCTTCACAA AGCCAGCTTC ACGAGAGCTA TCTGTCACAT TCTTCCCAGA CTTGAATGGC
      6030
               6040
                        6050
                                 6060
                                       6070
               >< SfcI
CATGTAGTGG CTATTGACTA TAGACACTAT TCAGCGAGTT TCAAGAAAGG TGCTAAATTA CTGCATAAGC
     6100
             6110
                                      6140 6150 6160
                    6120
                              6130
              >< Tru9I
                  >< ScrFI
                  >< MvaI
              >< MseI
                >< EcoRII
                  >< Ec1136I
                >< DsaV
                  >< Bst0I
                  >< BstNI
                                                     MaeII ><
    >< BstXI
>< MunI
                                                   >< DraIII
                             >< MaeII
                                                 >< BstXI
CAATTGTTTG GCACATTAAC CAGGCTACAA CCAAGACAAC GTTCAAACCA AACACTTGGT GTTTACGTTG
     6170
           6180 6190 6200 6210 6220
       > < RsaI
      >< Csp6I
                                                        MboII ><
       > < AfaI>< BsrI
TCTTTGGAGT ACAAAGCCAG TAGATACTTC AAATTCATTT GAAGTTCTGG CAGTAGAAGA CACACAAGGA
     6240
           6250
                   6260 6270 6280
                                                 6290
                     >< HindII
                                              >< MboII
                                        >< MnlI >< Eco57I
                     >< HincII
ATGGACATC TTGCTTGTGA AAGTCAACAA CCCACCTCTG AAGAAGTAGT GGAAAATCCT ACCATACAGA
     6310
              6320
                   6330
                                6340
                                       6350
                                               6360
```

```
>< MaeIII
                                                       >< Tru91
                  >< MaeII</pre>
                                                       >< MseI
 AGGAAGTCAT AGAGTGTGAC GTGAAAACTA CCGAAGTTGT AGGCAATGTC ATACTTAAAC CATCAGATGA
                          6400 6410 6420
      6380
                6390
                                                       6430
                                                                   6440
                                  >< XhoII
                                  >< Sau3AI
                                >< NlaIII
                                  >< NdeII
                                  >< MELI
                                  >< MboI
                                  >< DpnII
                                   >< DonI
                                  >< BstYI
    >< Tru9I
                                  >< BspAI
                        >< BspHI >< Bspl43I>< Fnu4HI
     >< MseI
        > < MaeIII</pre>
                       >< MnlI >< BbvI >< AlwI
AGGTGTTAAA GTAACACAAG AGTTAGGTCA TGAGGATCTT ATGGCTGCTT ATGTGGAAAA CACAAGCATT
      6450
                6460
                          6470
                                    6480
                                              6490 6500
                                                                   6510
                                >< SauI
                           >< RmaI
                               >< MstII
                           >< MaeI
                                 >< EcoBlI
                                 >< DdeI
                                 >< CvnI
                                 >< Bsu36I
                                 >< Bse21I
                                 >< BfrI> < Tru9I
                                >< AxyI> < MseI>< MunI
    >< Tru9I
                               >< AocI >< DraI >< BbvI Fnu4HI ><
    >< MseI
                   >< AluI
ACCATTAGA AACCTAATGA GCTTTCACTA GCCTTAGGTT TAAAAACAAT TGCCACTCAT GGTATTGCTG
     6520
                6530
                          6540
                                   6550
                                            6560 6570
  >< VspI
              >< StyI
  >< Tru9I
              >< EcoT14I
                                                 > < DdeI
  >< MseI
              >< Eco1301
                                                   >< Bs1I
  >< AsnI
              >< BssTlI
                                                   >< BsiYI
  >< AseI
              >< BsaJI
                                                 > < BfrI
                                                             >< Fnu4HI
CAATTAATAG TGTTCCTTGG AGTAAAATTT TGGCTTATGT CAAACCATTC TTAGGACAAG CAGCAATTAC
     6590
                6600
                       6610
                                    6620
                                              6630
                                                       6640
                                                                   6650
           >< HinPlI
           >< Hin6I
                                     >< Tru9I
                              >< MaeII>< MseI
            >< HhaI
                              >< DraIII
             >< DdeI
            >< CfoI
                             >< Afliii
AACATCAAAT TGCGCTAAGA GATTAGCACA ACGTGTGTTT AACAATTATA TGCCTTATGT GTTTACATTA
     6660
               6670
                       6680
                                    6690
                                            6700 6710
                                                                   6720
                           > < RsaI>< XbaI
>< Csp6I >< RmaI</pre>
             >< RsaI
            >< Csp6I
     >< MunI >< AfaI
                            > < AfaI >< MaeI
                                                >< AluI
TTGTTCCAAT TGTGTACTTT TACTAAAAGT ACCAATTCTA GAATTAGAGC TTCACTACCT ACAACTATTG
                          6750
                                   6760
                                              6770
     6730
             6740
                                                        6780
                                                >< VspI
                                                >< Tru9I
                                            >< NaeI
                                           >< MspI
                                                >< MseI
```

FIGURE 13. 16

```
>< HpaII
                                          >< HapII
                                          >< Cfr10I >< FokI
             >< Tru9I
                                               >< AsnI
                           >< SfaNI
             >< MseI
                                               >< Asel>< Hphl>< MaelII
 CTAAAAATAG TGTTAAGAGT GTTGCTAAAT TATGTTTGGA TGCCGGCATT AATTATGTGA AGTCACCCAA
       6800
                6810
                          6820
                                   6830
                                          6840 6850
                                         >< Tru9I
                                                 >< DdeI
                                                              MaeIII >
                                         >< MseI
                                                  >< BfrI
                                                              >< BbvI
 ATTTTCTAAA TTGTTCACAA TCGCTATGTG GCTATTGTTG TTAAGTATTT GCTTAGGTTC TCTAATCTGT
      6870
                6880
                          6890
                                    6900 6910 6920
                                                             6930
                                         >< SduI
                                         >< NspII
                                         >< HgiAI
                   > < RsaI
                                         >< Bsp1286I
                 >< Csp6I
                                         >< BmyI
       >< Fnu4HI
                 > < AfaI
                                         >< Alw21I
 GTAACTGCTG CTTTTGGTGT ACTCTTATCT AATTTTGGTG CTCCTTCTTA TTGTAATGGC GTTAGAGAAT
      6940
              6950
                      6960
                                    6970 6980 6990
                                                             Tru9I ><
                                                              MseI ><
      >< Tru9I
                  > < MaeIII
                                                         >< Fnu4HI
      >< MseT
                 >< MaeII
                                                              BbvI >
TGTATCTTAA TTCGTCTAAC GTTACTACTA TGGATTTCTG TGAAGGTTCT TTTCCTTGCA GCATTTGTTT
      7010
              7020
                        7030
                               7040 7050 7060
                  > < Tfil
                                                           RsaI ><
                       >< MamI
                                                           >< HphI
                  > < HinfI
                                                         Csp6I ><
                      >< BsiBI
                      >< BsiBI >< XmnI>< MaeIII
>< BsaBI >< AluI >< Asp700I
    >< PleI>< HinfI
                                                          AfaI ><
AAGTGGATTA GACTCCCTTG ATTCTTATCC AGCTCTTGAA ACCATTCAGG TGACGATTTC ATCGTACAAG
      7080
               7090
                        7100
                                   7110
                                            7120 7130
                       >< PalI
                         >< NspBII
                       >< HaeIII
                      >< GdiII
                        >< Fnu4HI
                      >< EaeI
                           >< DdeI
                       >< BsuRI
>< RmaI
                       >< BshI >< BslI
>< MaeI
                       >< AciI>< BsiYI
CTAGACTTGA CAATTTTAGG TCTGGCCGCT GAGTGGGTTT TGGCATATAT GTTGTTCACA AAATTCTTTT
     7150
               7160
                       7170 7180
                                          7190 7200
                                                                 7210
               >< BspMI
                                               >< RmaI
                >< AluI
                                              >< MaeI
ATTTATTAGG TCTTTCAGCT ATAATGCAGG TGTTCTTTGG CTATTTTGCT AGTCATTTCA TCAGCAATTC
     7220
               7230
                         7240 7250
                                             7260
                                                       7270
                                                          RsaI ><
                                                           >< MboII
                                    >< NlaIV
                                                          MamI ><
                                   >< Eco641
                                                        Csp6I ><
                           > < RsaI >< BscBI
                                                        BsiBI ><
                          >< Csp6I >< BanI
                                                         BsaBI ><
      · > < NlaIII
                           > < AfaI>< AccBlI
                                                          AfaI ><
                              FIGURE 13.17
```

```
TTGGCTCATG TGGTTTATCA TTAGTATTGT ACAAATGGCA CCCGTTTCTG CAATGGTTAG GATGTACATC
       7290
                  7300
                             7310
                                        7320
                                                   7330
                                                             7340
                                                             TthHB8I ><
                                                                     >< TagI
                                                                     MnlI ×
                        >< NdeI
                                                               Ksp6321 ><
                        >< Ksp632I
                                                                  >< FokI
                        >< EarI
                                                         >< MboII EarI ><
   >< FokI
                        >< Eam1104I>< AluI>< MboII >< NlaIII Eam1104I ><
 TTCTTTGCTT CTTTCTACTA CATATGGAAG AGCTATGTTC ATATCATGGA TGGTTGCACC TCTTCGACTT
       7360
                             7380
                  7370
                                       7390
                                                  7400
                                                                    XhoII ><
                                                                   Sau3AI ><
                                                               NlaIII ><
                                                                    NdeII ><
                                                                     MflT >c.
                                                                     MboI ><
                                    >< Thal
                                                                > < Ksp6321
                                    >< MvnI
                                                                > < EarI
                  >< HinPlI
                                  >< MluI
                                                                > < Eam1104I
                  >< Hin6I
                                    >< BstUI
                                                                    DpnII ><
                   >< KhaI
                                    >< Bsp50I >< RsaI
                                                                    BstYI ><
     >< NlaIII
                    >< CfoI
                                  >< AflIII >< Csp6I
>< AccII >< AfaI
                                                           >< Tru9I BspAI ><
      >< BspWI >< BspWI
                                                           >< MseI BglII ><
 GCATGATGTG CTATAAGCGC AATCGTGCCA CACGCGTTGA GTGTACAACT ATTGTTAATG GCATGAAGAG
       7430
                 7440
                            7450 7460
                                                  7470
                                                             7480
                            >< PalI
                            >< HaeIII
                             >< DsaI
                                                                    >< MunI
      >< MboII
                            >< BsuRI
                                                                 MaeIII ><
 >< DpnI
                            >< BshI
                                                    >< MunI
                                                               BsmAI ><
                            >< BsaJI >< PleI>< HinfI
>< Bsp143I
                >< MnlI
                                                              Alw26I ><
ATCTTTCTAT GTCTATGCAA ATGGAGGCCG TGGCTTCTGC AAGACTCACA ATTGGAATTG TCTCAATTGT
   7500
                 7510
                            7520
                                       7530
                                                  7540
                                                            7550
                      >< RsaI
                                                              Tru9I ><
                    > < Csp6I
                                                                MseI ><
                  >< BsrI
                                             >< GsuI
                                                         >< MaeIIIDraI ><
                                            >< BpmI
                      >< AfaI
                                                            > < BsrI
GACACATTTT GCACTGGTAG TACATTCATT AGTGATGAAG TTGCTCGTGA TTTGTCACTC CAGTTTAAAA
                7580
   . 7570
                            7590
                                       7600
                                                  7610
                                                            7620
                                                                   >< ThaI
                                                                   >< MvnI .
                                                             > < HphI
                                                            HinPlI ><
                                                                 >< HinPlI
                                                                   >< Hin6I
                                                                 >< Hin6I
                                                                HhaI ><
                                                                   >< HhaI
                                                                 CfoI ><
                                                                   >< CfoI
                                                                   >< BstUI
                                                                 >< BssHII
                                                            Bsp50I ><
                   > < BsrI
                                                                   >< AccII
GACCAATCAA CCCTACTGAC CAGTCATCGT ATATTGTTGA TAGTGTTGCT GTGAAAAATG GCGCGCTTCA
     7640
                7650
                           7660
                                      7670
                                                 7680
                                                            7690
```

```
>< FokI
                                >< BsmAI
          >< MnlI
                                >< Alw26I
                                             >< AciI
 CCTCTACTTT GACAAGGCTG GTCAAAAGAC CTATGAGAGA CATCCGCTCT CCCATTTTGT CAATTTAGAC
                                                     7760
      7710 7720
                           7730
                                     7740
                                               7750
                                      >< VspI
                                      >< Tru9I
                                      >< MseI
                                      >< AsnI
         > < AluI
                                      >< AseI
                                                              >< BcgI/a
 AATTTGAGAG CTAACAACAC TAAAGGTTCA CTGCCTATTA ATGTCATAGT TTTTGATGGC AAGTCCAAAT
      7780
                7790
                           7800
                                     7810
                                               7820
                                                         7830
                                   >< SfcI >< PvuII
                                 >< RsaI
                                            >< Psp5I
             >< PleI
                                >< Csp6I
                                            >< NspBII
     >< HinfI >< DdeI >< BcgI >< AfaI
                                           >< AluI
 GCGACGAGTC TGCTTCTAAG TCTGCTTCTG TGTACTACAG TCAGCTGATG TGCCAACCTA TTCTGTTGCT
      7850
                7860
                          7870
                                     7880
                                              7890
                                                          7900
                                                                    7910
                                                               TthHB8I ><
                                                                 TaqI ><
                                                                SalI ><
                                                                RtrI ><
                                  >< Scal
                                                                HindII >
                                  >< RsaI
                                                >< Tru9I
                                                                HincII >
                                 >< Csp6I
                                                >< SfaNI >< Eco57I
      >< AluI
                    >< MaeII
                                 ≻< AfaI
                                                >< MseI
TGACCAAGCT CTTGTATCAG ACGTTGGAGA TAGTACTGAA GTTTCCGTTA AGATGTTTGA TGCTTATGTC
     7920
              7930
                       7940
                                  7950
                                               7960
                                                         7970
                                         >< Tru9I
                                         >< MseI
                                       > < Esp4I
                                                        >< SfcI
                                       > < AflII
                                                    >< BspWI >< AluI
GACACCTTTT CAGCAACTTT TAGTGTTCCT ATGGAAAAAC TTAAGGCACT TGTTGCTACA GCTCACAGCG
     7990
                8000
                          8010
                                     8020
                                            8030
                                                       8040
                                                    ➤ PvuII
                                                    >< Psp5I
                                                    >< NspBII
                                                    >< Fnu4HI
                >< AluI
                                     >< AbyT
                                                    >< AluI
AGTTAGCAAA GGGTGTAGCT TTAGATGGTG TCCTTTCTAC ATTCGTGTCA GCTGCCCGAC AAGGTGTTGT
     8060
               8070
                         8080
                                    8090 8100
                                                         8110
                                                                   8120
                                                             MaeIII ><
           >< HindII
                                         >< BsmAI
                                                             >< DdeI
           >< HincII
                                  >< FokI>< Alw26I
TGATACCGAT GTTGACACAA AGGATGTTAT TGAATGTCTC AAACTTTCAC ATCACTCTGA CTTAGAAGTG.
     8130
               8140
                        8150
                                  8160
                                             8170
                                                         8180
                                                               >< XhoII
                                                         Sau3AI ><
                                                               >< NdeII
                                                               >< MflI
                                                               >< MboI
                                                      >< NlaIII >< HgaI
                                                      >< HinlI >< DpnII
                                                             OpnI ><
```

```
Bsp143I ><
                                                      >< BsaHI >< BstYI
    >< MaeIII>< HphI
>< MaeIII >< HphI · >< NlaIII
                                                   >< BbiII >< BspAI
                                                      >< Acyl >< Balli
  ACAGGTGACA GTTGTAACAA TTTCATGCTC ACCTATAATA AGGTTGAAAA CATGACGCCC AGAGATCTTG
       8200
                8210 8220
                                    8230
                                             8240
                                                       8250
                                                                 8260
       >< NspI
       >< NspHI
       >< NlaIII
  >< HinPlI
 >< Hin6I
   >< HhaI
   >< CfoI
                                         >< BspWI >< MaeIII</pre>
 GCGCATGTAT TGACTGTAAT GCAAGGCATA TCAATGCCCA AGTAGCAAAA AGTCACAATG TTTCACTCAT
      8270
            8280 8290
                                    8300 8310 8320 8330
                     >< NspI
                     >< NspHI
                                   >< PvuII
                     >< NlaIII
                                   >< Psp5I
                 >< Eam1105I
                                   >< NspBII
                      >< BbvI
                                    >< Fnu4HI
                 >< AflIII
                                   >< AluI >< BbvI
                                                        > < Fnu4HI
 CTGGAATGTA AAAGACTACA TGTCTTTATC TGAACAGCTG CGTAAACAAA TTCGTAGTGC TGCCAAGAAG
      8340 8350
                        8360
                                   8370
                                             8380
                                                  8390
                                 >< RmaI
       >< MboII
                                 >< MaeI >< Eam1105I
 AACAACATAC CTTTTAGACT AACTTGTGCT ACAACTAGAC AGGTTGTCAA TGTCATAACT ACTAAAATCT
      8410
               8420 8430
                               8440 8450
                                                    8460 8470
                                            >< Tru9I
                                                >< PalI
                                            >< MseI
                                                 >< HaeIII
                        >< Scal
                                           >< Esp41
                        >< RsaI >< Tru9I
                                          >< BsuRI
>< BshI
                       >< Csp6I >< MseI
>< AfaI >< DraI
                                           >< AflII >< BbvI
CACTCAAGGG TGGTAAGATT GTTAGTACTT GTTTTAAACT TATGCTTAAG GCCACATTAT TGTGCGTTCT
                                8510
    8480
               8490
                         8500
                                           8520 8530 8540
                               >< RsaI
                              >< Csp6I
                           >< BsrI
                                                   >< NlaIII
 >< Fnu4HI
                              >< AfaI
                                                  >< MaeIII
TGCTGCATTG GTTTGTTATA TCGTTATGCC AGTACATACA TTGTCAATCC ATGATGGTTA CACAAATGAA
             8560 8570 8580 8590 8600 8610
     8550
                                   >< MaeIII
                           > < MaeIII
     >< MaeIII
                              >< FokI
ATCATTGGTT ACAAAGCCAT TCAGGATGGT GTCACTCGTG ACATCATTTC TACTGATGAT TGTTTTGCAA
     8620
             8630
                      8640 8650
                                            8660
                                                    8670
                                                              SfcI >
      >< NspI
                                                        Fnu4HI ><
      >< NspHI
                       >< NlaIII
                                                          BbvI ><
      >< NlaIII
                                 >< BstXI
                                              >< Bbvi
                      >< HgaI
                                                          >< AluI
ATAAACATGC TGGTTTTGAC GCATGGTTTA GCCAGCGTGG TGGTTCATAC AAAAATGACA AAAGCTGCCC
     8690
              8700
                        8710
                                  8720
                                            8730
                                                      8740
```

```
>< ScrFI
                                           >< ScrFI
                                                      >< RsaI
                                         >< MvaI >< MspI
>< EcoRII >< HpaII</pre>
                                           >< Ecl1361>< NciI
                                         >< DsaV
                                           >< BstOI>< DsaV
                                           >< BstNI >< Csp6I
       >< Fnu4HI
                                           >< BsiLI >< BcnIDdeI ><
       >< AluI
                                           >< ApyI
                                                     >< AfaI
TGTAGTAGCT GCTATCATTA CAAGAGAGAT TGGTTTCATA GTGCCTGGCT TACCGGGTAC TGTGCTGAGA
      8760
             8770 8780 8790
                                             8800
                                                   8810
                                    >< MnlI
        > < MaeIII
                   >< HphI
                                                        >< BspWI
GCAATCAATG GTGACTTCTT GCATTTTCTA CCTCGTGTTT TTAGTGCTGT TGGCAACATT TGCTACACAC
      8830
              8840
                     8850 8860
                                         8870 8880
                                                              Tru9I >
                                                         SfaNI ><
                                                            >< RsaI
                                                              MseI >
                                  >< BspWI
                                                  >< Fnu4HI >< Csp6I
                                   >< BbvI>< MnlI >< DdeI >< AfaI
CTTCCAAACT CATTGAGTAT AGTGATTTTG CTACCTCTGC TTGCGTTCTT GCTGCTGAGT GTACAATTTT
     8900
            8910 8920 8930
                                        8940
                                                   8950
                                               > < RmaI
                                           >< MnlI
               >< FokI
                                               > < MaeI
TAAGGATGCT ATGGGCAAAC CTGTGCCATA TTGTTATGAC ACTAATTTGC TAGAGGGTTC TATTTCTTAT
               8980
     8970
                        8990 9000
                                          9010
                                                      9020
                                                              ScrFI >
                                                              MvaI >
                                                          MnlI ><
                                                           EcoRII ><
                                                            Ec1136I >
                                                            DsaV ><
                                                             BstOI >
                                        >< NlaIV
                                              >< FokI
                                                             BsiLI >
                                        >< BscBI
AGTGAGCTTC GTCCAGACAC TCGTTATGTG CTTATGGATG GTTCCATCAT ACAGTTTCCT AACACTTACC
   9040
             9050 9060 9070
                                            9080
                                                     9090 9100
                                                     >< RsaI
                                         >< SfcI
                                                       >< NspI
                                        >< ScaI
                                                           >< NspHI
                     >< SfaNI
                                       >< RsaI
                                                           >< NlaIII
                 > < MaeIII
                                       >< Csp6I
                                                   >< NlaIII
                   >< GsuI
                                       >< AfaI
                                                    >< Csp6I
                                  >< DdeI >< AccI >< AfaI
                   >< BpmI
TGGAGGGTTC TGTTAGAGTA GTAACAACTT TTGATGCTGA GTACTGTAGA CATGGTACAT GCGAAAGGTC
     9110
          9120
                                 9140
                                           9150
                       9130
                                                     9160
                                                               9170
                                                             >< SstI
                                                             >< SduI
                                                             >< SacI
                                                        NspII ><
                                                        HgiAI ><
                                                       Eco24I ><
                                                     Bsp1286I ><
```

FIGURE 13.21

```
Ecl136II ><>< BmyI
                                                        BanII ><
                                        >< Tru9I
                                                        Alw21I ><
                       >< BsrI
                                        >< MseI
                                                           >< AluI
 AGAAGTAGGT ATTTGCCTAT CTACCAGTGG TAGATGGGTT CTTAATAATG AGCATTACAG AGCTCTATCA
                       9200 9210 9220
      9180
             9190
                                                       9230
                         >< TfiI
        >< SfaNI
                         >< HinfI >< AluI
                                                            >< MnlI
 GGAGTTTTCT GTGGTGTTGA TGCGATGAAT CTCATAGCTA ACATCTTTAC TCCTCTTGTG CAACCTGTGG
      9250 9260
                         9270
                                   9280
                                                       9300
                                           9290
                                                   >< MaeIII
                                                          HohI ><
   >< Eco571
                                               > < BbvI Fnu4HI ><
 GTGCTTTAGA TGTGTCTGCT TCAGTAGTGG CTGGTGGTAT TATTGCCATA TTGGTGACTT GTGCTGCCTA
      9320
                9330 9340 9350 9360
                                                   9370
                                 >< RsaI
                                >< Csp6I >< NlaIII
                                  >< BbvI >< Fnu4HI
                 >< MaeII
                                 >< Afal>< HphI
                 >< AflIII
                                                     >< BspWI
 CTACTTTATG AAATTCAGAC GTGTTTTTGG TGAGTACAAC CATGTTGTTG CTGCTAATGC ACTTTTGTTT
      9390
               9400
                        9410
                                  9420
                                          9430 9440
                           >< RsaI
                           >< NlaIV
                             >< KpnI
                         >< Eco64I
                                               > < ScrFI
                          >< Csp6I
                                               > < NciI
                          >< BscBI
                                              >< MspI
                         >< Asp718
                                              >< HpaII
                         >< BanI >< AluI
                                               >< HinfI
                                              >< HapII >< PleI
> < BcnI > < DdeI
                          >< AfaI
                         >< AccBlI
                         >< Acc65I
                                       >< AluI>< DsaV >< AccI
TTGATGTCTT TCACTATACT CTGTCTGGTA CCAGCTTACA GCTTTCTGCC GGGAGTCTAC TCAGTCTTTT
     9460
            9470
                    9480 9490
                                         9500 9510
    >< RsaI
   >< Csp6I
    >< Afal >< Hphl
                                   >< HphI
                                                          NlaIII ><
ACTTGTACTT GACATTCTAT TTCACCAATG ATGTTTCATT CTTGGCTCAC CTTCAATGGT TTGCCATGTT
               9540
                                            9570
                         9550
                                   9560
                                                      9580
TTCTCCTATT GTGCCTTTTT GGATAACAGC AATCTATGTA TTCTGTATTT CTCTGAAGCA CTGCCATTGG
   9600
              9610
                         9620
                                  9630
                                            9640
                                                      9650
                                                        >< TthHB8I
                                                    >< RsaI
                                                      >< MnlI
                                                   >< MnlI
                                >< Tru9I
                                                   >< Csp6I
   >< Tru9I
                                >< PleI
                                              >< BcgI/a >< TagI
   >< MseI
              >< DdeI
                              >< NlaIII
                                                >< BbvI
  >< Eco571
             >< BfrI
                       >< Hinfl >< Msel >< MaeIII
                                                    >< AfaI Fnu4HI ><
TTCTTTAACA ACTATCTTAG GAAAAGAGTC ATGTTTAATG GAGTTACATT TAGTACCTTC GAGGAGGCTG
     9670
              9680
                       9690
                                 9700 9710
                                                    9720
     >< RsaI
     >< Csp6I
                              >< RsaI
           >< BcgI
                             >< Csp6I
                                          >< BsmAI
                              FIGURE 13.22
```

```
>< Alw26I
                              >< AfaI
 CTTTGTGTAC CTTTTTGCTC AACAAGGAAA TGTACCTAAA ATTGCGTAGC GAGACACTGT TGCCACTTAC
             9750 9760
                                9770
                                      9780 9790 9800
                                               >< NlaIV
                               >< RsaI
                                                >< DdeI
                               >< Csp6I
                                               >< BscBI .
                               >< AfaI
                                               >< BfrI
                                                        AluI ><
 ACAGTATAAC AGGTATCTTG CTCTATATAA CAAGTACAAG TATTTCAGTG GAGCCTTAGA TACTACCAGC
            9820 9830 9840 9850 9860 9870
      9810
               >< Fnu4HI
                     >< DdeI
         >< Fnu4HI
                    >< BfrI
   >< BbvI >< AluI >< BbvI
                                               >< DdeI >< AlwNI
 TATCGTGAAG CAGCTTGCTG CCACTTAGCA AAGGCTCTAA ATGACTTTAG CAACTCAGGT GCTGATGTTC
     9880
             9890 9900 9910 9920 9930
                                 >< SfcI
                                                        >< BsmI
                                     >< PstI >< BscCI
TCTACCAACC ACCACAGACA TCAATCACTT CTGCTGTTCT GCAGAGTGGT TTTAGGAAAA TGGCATTCCC
            9960 9970 9980 9990 10000 10010
                       >< RsaI
                      >< NlaIII
                        >< MaeIII
                      >< Csp6I
                                               >< Tru91
                       >< AfaI
                                               >< MseI
GTCAGGCAAA GTTGAAGGGT GCATGGTACA AGTAACCTGT GGAACTACAA CTCTTAATGG ATTGTGGTTG
    10020 10030 10040 10050 10060 10070 10080
                                                        XhoII ><
                                                       Sau3AI ><
                                               >< Tru9I NdeII ><
                                             >< NspI MflI ><
                                        >< NspHI
                                                         MboI ><
                        >< NspI
                                           >< NlaIII DpnII ><
>< MseI BstYI ><
>< MboII BspAI ><
                                            >< NlaIII
         >< FokI >< NspHI
>< Bst1107I >< NlaIII
>< AccI >< AflIII
                                    >< BbsI
                                                      BqlII ><
GATGACACAG TATACTGTCC AAGACATGTC ATTTGCACAG CAGAAGACAT GCTTAATCCT AACTATGAAG
    10090
            10100 10110 10120 10130 10140 10150
                                                          PalI >
                                                         MscI >
                                                        HaeIII >
                                                        EaeI ><
                                                         BsuRI >
               >< AluI
>< DpnI >< MboII
>< Bsp143I
ATCTGCTCAT TCGCAAATCC AACCATAGCT TTCTTGTTCA GGCTGGCAAT GTTCAACTTC GTGTTATTGG
   10160 10170 10180 10190 10200 10210 10220
                   >< DdeI> < Tru9I
                                    >< DdeI
                   >< BfrI> < MseI
CCATTCTATG CAAAATTGTC TGCTTAGGCT TAAAGTTGAT ACTTCTAACC CTAAGACACC CAAGTATAAA
    10230 10240 10250 10260 10270 10280 10290
             >< ScrFI
             >< MvaI
            >< EcoRII
             >< Ec1136I
                                       >< SphI
```

```
>< DsaV
                                       >< PaeI
                                  >< NspI
>< NspHI
              >< BstOI
              >< BstNI
             TTTGTCCGTA TCCAACCTGG TCAAACATTT TCAGTTCTAG CATGCTACAA TGGTTCACCA TCTGGTGTTT
     10300 10310 10320 10330 10340
                                               10350 10360
                                             >< Sau3AI
                                             >< NdeII
                                             >< MboI>< NlaIII
      >< Eco31I
                                             >< DpnII
      >< BsmAI
>< BsaI>< NlaIII >< Tru9I >< MseI >< Bsp143I
>< MseI >< BspAI>< AlwI
ATCAGTGTGC CATGAGACCT AATCATACCA TTAAAGGTTC TTTCCTTAAT GGATCATGTG GTAGTGTTGG
    10370 10380 10390 10400 10410 10420 10430
                                     >< 2sp2I
                                 >< Ppu10I
                                     >< NsiI>< SfaNI
                                     >< NdeI
>< Mph1103I
                                                    RsaI ><
                                 >< Mphl103I RsaI ><
>< EcoT22I Csp6I ><
> < AvaIII >< AluI AfaI ><
  >< Tru9I
  >< MseI
TTTTAACATT GATTATGATT GCGTGTCTTT CTGCTATATG CATCATATGG AGCTTCCAAC AGGAGTACAC
    10440 10450 10460 10470 10480 10490
                           >< SinI
                           >< Sau96I
                           >< NspIV
                           >< NspHII
                                                      >< SfcI
                           >< Eco47I
                                                       RsaI ><
                           >< Cfr13I
                                                      PstI ><
                           >< BsiZI
                                                      >< Fnu4HI
   GCTGGTACTG ACTTAGAAGG TAAATTCTAT GGTCCATTTG TTGACAGACA AACTGCACAG GCTGCAGGTA
  10510 10520 10530
                             10540 10550 10560 10570
              >< Tru9I >< NlaIII
>< MseI >< BbvI >< Fnu4HI
CAGACACAC CATAACATTA AATGTTTTGG CATGGCTGTA TGCTGCTGTT ATCAATGGTG ATAGGTGGTT
    10580 10590 10600 10610 10620 10630 10640
 >< Tru9I
     >< TfiI
 >< MseI
                                              >< RsaI
 >< HphI
                 >< IIu.
                            >< Tru9I
                                             >< Csp6I
     >< KinfI
                                             >< AfaI
TCTTAATAGA TTCACCACTA CTTTGAATGA CTTTAACCTT GTGGCAATGA AGTACAACTA TGAACCTTTG
            10660 10670 10680 10690 10700 10710
                     >< SinI
                    >< Sau96I
                       >< PssI
                     >< Psp5II
                     >< PpuMI
                     >< NspIV
                     >< NspHII
                     >< NlaIV
```

```
>< EcoOl09I

→ Eco47I

      >< Sau3AI
                        .>< DraII
      >< NdeII
                         >< Cfr13I
      >< MboI
                         >< Bsi2I
      >< DpnII>< NlaIII
                         >< BscBI
       >< DpnI >< HindII >< Bme18I
                                                        >< DdeI
      >< BspAI >< HincII >< AvaII
                                                        >< BfrI
       >< Bsp143I .
                        >< AsuI
                                     >< MnlI
                                                        >< BbvI
 ACACAAGATC ATGTTGACAT ATTGGGACCT CTTTCTGCTC AAACAGGAAT TGCCGTCTTA GATATGTGTG
     10720
               10730
                         10740
                                   10750
                                            10760
                                                      10770
                                              >< StyI
                                        >< RsaI
                                              >< EcoT14I
                                              >< Eco1301
                 >< SfcI
                                      > < Csp6I
 >< Fnu4HI
                >< Fnu4HI
                                             >< BssTlI
   >< BbvI
              >< Fnu4HI
                                              >< BsaJI
 >< BbvT
             >< AluI >< PstI
                                       >< AfaI
 CTGCTTTGAA AGAGCTGCTG CAGAATGGTA TGAATGGTCG TACTATCCTT GGTAGCACTA TTTTAGAAGA
     10790
            10800 10810
                                   10820
                                           10830 10840 10850
                                                >< StyI
                                               >< EcoT14I

→ Ecol30I

                                               >< BssTlI
       >< MboII
                                      > < MaeIII>< BsaJI
 TGAGTTTACA CCATTTGATG TTGTTAGACA ATGCTCTGGT GTTACCTTCC AAGGTAAGTT CAAGAAAATT
   10860
              10870
                       10880
                                 10890
                                           10900 10910
                                                                10920
          >< SfaNI
        > < SduI
                     >< Tru9I
>< MseI
        > < NspII
                                         >< Tfil Csp61 ><
>< Hinfl Afal ><</pre>
 >< Tru9I> < Bsp1286I
 >< Msel > < Bmyl
                           >< FokI
GTTAAGGGCA CTCATCATTG GATGCTTTTA ACTTTCTTGA CATCACTATT GATTCTTGTT CAAAGTACAC
    10930
                                 10960 10970
              10940
                      10950
                                                    10980
                               >< XmnI
                                 >< BsmI
                                                            Fnu4HI >
BspWI ><
                              >< BscCI
   >< MaeIII
                               >< Asp700I
                                                      >< BbvI BbvI >
AGTGGTCACT GTTTTCTTT GTTTACGAGA ATGCTTTCTT GCCATTTACT CTTGGTATTA TGGCAATTGC
    11000
           11010 11020 11030 11040 11050 11060
    >< NspI
    >< NspHI
                   >< Tru9İ
    >< NlaIII
                   >< MseI
                               >< Bsml
   >< BspWI >< Fnu4HI>< BspWI >< BscCI
                                                    >< MaeIII
TGCATGTGCT ATGCTGCTTG TTAAGCATAA GCACGCATTC TTGTGCTTGT TTCTGTTACC TTCTCTTGCA
    11070
           . 11080
                        11090
                                 11100
                                           11110 11120
                                                               11130
                                 >< SfaNI
                                 >< RmaI
                            > < NspI
                                               >< MamI
                            > < NlaIII
                                                   >< HphI
                                >< NheI
                                                   >< BspHI
            >< Tru9I
                                 >< MaeI
                                              >< BsiBI
                                                            >< NlaIII
  >< BspWI >< MseI >< Acci> < NspHi>< Alui >< BsaBI >< NlaIII
ACAGTTGCTT ACTTTAATAT GGTCTACATG CCTGCTAGCT GGGTGATGCG TATCATGACA TGGCTTGAAT
    11140
             11150
                       11160
                                 11170
                                           11180 11190 11200
                              FIGURE 13.25
```

```
>< Tru9I
                           >< MseI
  > < RmaI
                          > < Esp4I
        > < MaeI
           >< Eco57I
                                                 >< AluI
 TGGCTGACAC TAGCTTGTCT GGTTATAGGC TTAAGGATTG TGTTATGTAT GCTTCAGCTT TAGTTTTGCT
    11210 11220 11230 11240 11250 11260 11270
                                  >< RmaI ·
                                     >< MaeII
                                 >< MaeI
    > < NlaIII >< SfaNI >< Fnu4HI >< BspHI >< AluI >< BbvI ><
                               >< Afliii
 TATTCTCATG ACAGCTCGCA CTGTTTATGA TGATGCTGCT AGACGTGTTT GGACACTGAT GAATGTCATT
    11280 11290 11300 11310 11320
                                              11330 11340
                                                 >< Sau96I
                                                 . >< PalI
                                                 >< NspIV
                                                >< NlaIII
                                                >< HaeIII
> < DdeI
                               >< Sau3AI
                               >< NdeII.
                                                >< Cfr13I
                               >< MboI
                                                  >< BsuRI
                               >< DpnII
                                                 >< BsiZI
                                >< DpnI
>< Bsp143I
                                                 >< BshI
                       >< Bspl43I > <
>< BspAI>< AluI >< AsuI
                                                   > < BfrI
             >< AccI
ACACTTGTTT ACAAAGTCTA CTATGGTAAT GCTTTAGATC AAGCTATTTC CATGTGGGCC TTAGTTATTT
  11350 11360 11370 11380
                                       11390
                                                11400 11410
                                          >< RmaI
                                  >< NlaIII
                                         >< MaeI>< SfcI
            >< MnlI >< MaeIII</pre>
                                         >< AluI>< AluI
CTGTAACCTC TAACTATTCT GGTGTCGTTA CGACTATCAT GTTTTTAGCT AGAGCTATAG TGTTTGTGTG
 11420 11430 11440 11450 11460
                                               11470 11480
                                                         DdeI >
                                            >< NlaIII BfrI >
                             >< BsrI
TGTTGAGTAT TACCCATTGT TATTTATTAC TGGCAACACC TTACAGTGTA TCATGCTTGT TTATTGTTTC
   11490 11500 11510
                             11520 11530 11540
                        >< PalI
              >< HaeIII
>< Fnu4HI >< BsuRI
TTAGGCTATT GTTGCTGCTG CTACTTTGGC CTTTTCTGTT TACTCAACCG TTACTTCAGG CTTACTCTTG
   11560
           11570 11580 11590
                                     11600 11610 11620
                                            >< ScrFI
                                            >< MvaI
                                          >< EcoRII
                                           >< Ecl136I
                                          >< DsaV
                                            >< BstOI
                                            >< BstNI
                  >< Eco31I
                                            >< BsiLI
                  >< BsmAI
                                          > < BsaJI
                  >< BsaI
                                          >< BsaJI
```

FIGURE 13.26

```
>< DrdI >< Alw26I
                                              >< ApyI
                                                       DdeI ><
GTGTTTATGA CTACTTGGTC TCTACACAAG AATTTAGGTA TATGAACTCC CAGGGGCTTT TGCCTCCTAA
    11630
            11640
                     11650
                              11660 11670
                                                11680
                     >< Tru9I
                    >< MseI
>< SfaNI
                 > < HindIII> < Tru9I
 >< MnlI
                 >< AluI > < MseI > < MnlI
                                                    > < NlaIII
GAGTAGTATT GATGCTTTCA AGCTTAACAT TAAGTTGTTG GGTATTGGAG GTAAACCATG TATCAAGGTT
 11700 11710 11720
                               11730 11740 11750
                             >< VneI
                             >< SnoI
                                 >< SduI
                                 >< NspII
                                 >< HgiAI
                                 >< Bsp1286I
                                >< BmyI >< RsaI ...
                      >< RsaI
     >< Csp6I
                                                          DdeI >
      >< AfaI
                                                          BfrI >
GCTACTGTAC AGTCTAAAAT GTCTGACGTA AAGTGCACAT CTGTGGTACT GCTCTCGGTT CTTCAACAAC
    11770 11780
                      11790
                               11800
                                        11810
                                               11820
                            >< NspII> < RsaI
                               >< DraIII
                            >< SduI>< Csp6I
    .>< MboII
                            >< Bsp1286I
>< Hinfl >< PleI >< Bmyl > < Afal >< Mboli TTAGAGTAGA GTCATCTTCT AAATTGTGGG CACAATGTGT ACAACTCCAC AATGATATTC TTCTTGCAAA
    11840 11850
                   11860 11870 11880
                                               11890 11900
               >< TthHB8I
              >< TaqI
                                                      SfcI ><
          >< HindIII >< MboII
>< AluI > < Eco57I
                                                   >< NlaIII
                                                 >< BspWI AccI ><
AGACACAACT GAAGCTTTCG AGAAGATGGT TTCTCTTTTG TCTGTTTTGC TATCCATGCA GGGTGCTGTA
  11910
           11920 11930 11940 11950 11960
   >< VspI
 >< Tru9I
                                           > < Ksp632I
  GACATTAATA GGTTGTGCGA GGAAATGCTC GATAACCGTG CTACTCTTCA GGCTATTGCT TCAGAATTTA
  11980
            11990
                     12000
                               12010
                                       12020
                                               12030
                                                          12040
                                     >< StuI
                               >< ScrFI
                                     >< PalI
                               >< MvaI>< HaeIII
                              >< EcoRII>< Ecol47I
                               >< Ecl136I
                              >< DsaV >< BsuRI
                               >< BstOI
                               >< BstNI
                                 >< BspWI
                               >< BsiLI
                             >< BsaJI >< BshI
               >< Fnu4HT
                                                         TfiI ><
           >< Ndel >< BspWI>< MnlI >< BglI
                                                 >< SfcI HinfI ><
               >< Acil
                                                  > < AluI
                         >< ApyI>< AatI
```

FIGURE 13. 27

```
GTTCTTTACC ATCATATGCC GCTTATGCCA CTGCCCAGGA GGCCTATGAG CAGGCTGTAG CTAATGGTGA
              12060 12070
                                12080
                                             12090
                                                       12100 12110
        >< XmnI
                      >< Tru9I
                                                      >< SfaNI
        >< HphI
                                                   >< DdeI
                                                      >< BbvI Fnu4HI ><
 TTCTGAAGTC GTTCTCAAAA AGTTAAAGAA ATCTTTGAAT GTGGCTAAAT CTGAGTTTGA CCGTGATGCT
               12130
                         12140
                                   12150
                                             12160
                                                         XhoII ><
                                                         Sau3AI ><
                                                          NdeII ><
                                                                MnlI >
                                                             >< MnlI
                                                               >< MflI
                             > < Sau3AI
                                                               >< MboI
                             > < NdeII
                                                          DpnII ><
                             > < MboI
                                                            DpnI ><
                             > < DpnII
                                                              DdeI ><
                                >< DpnI
                                                          BstYI ><
                                 >< BspWI
                                                   >< RsaIBspAI ><
                             > < BspAI
                                                  >< Csp6IBsp143I ><
     >< NlaIII
                               >< Bsp143I
                                                   >< AfaIBglII ><</pre>
GCCATGCAAC GCAAGTTGGA AAAGATGGCA GATCAGGCTA TGACCCAAAT GTACAAACAG GCAAGATCTG
     12190
             12200 12210
                                 12220
                                           12230
                                                      12240
                                                                 12250
                    >< SpeI
                                               >< Ksp632I > < HindIII
                     >< RmaI
                                                     >< DdeI >< SfaNI
                                            >< Eam1104I >< BspWI
                >< MaeIII
                                  >< MboII
                                  >< BspWI >< Earl>< BfrI >< AluI
                    >< MaeI
AGGACAAGAG GGCAAAAGTA ACTAGTGCTA TGCAAACAAT GCTCTTCACT ATGCTTAGGA AGCTTGATAA
     12260
              12270
                        12280
                                 12290
                                          12300
                                                     12310
                               >< Thal
                              >< MvnI
                           >< HinPlI
                            >< Hin6I
                              >< HhaI
                              >< CfoI
                              >< BstUI
       >< Tru9I
                              >< Bsp50I
       >< MseI
                              >< AccII
TGATGCACTT AACAACATTA TCAACAATGC GCGTGATGGT TGTGTTCCAC TCAACATCAT ACCATTGACT
    12330
              12340
                     12350
                                  12360
                                         12370 12380
                                                                12390
                                     >< RsaI
                                     >< NlaIV
                                    >< Eco64I
                                    >< Csp6I
                                 >< BslI
                                 >< BsiYI>< KpnI
                                    >< BscBI
                                   >< BanI
                                   >< Asp718
                >< NlaIII
                                    >< AfaI
             >< BstXI
                                   >< AccBlI
   >< Fnu4HI >< BbvI
                                   >< Acc65I
ACAGCAGCCA AACTCATGGT TGTTGTCCCT GATTATGGTA CCTACAAGAA CACTTGTGAT GGTAACACCT
    12400
              12410
                       12420 12430
                                            12440 12450 12460
         >< Zsp2I
     >< PpulOI
```

FIGURE 13.28

```
>< NsiI
           >< Mph1103I
     >< Nde1>< EcoT221
                                                              DdeI ><
        >< AvaIII >< SfaNI
                                >< SfaNI
                                             >< AciI
                                                              BfrI ><
 TTACATATGC ATCTGCACTC TGGGAAATCC AGCAAGTTGT TGATGCGGAT AGCAAGATTG TTCAACTTAG
     12470
               12480
                         12490
                                    12500
                                              12510
                                                        12520
                                    >< PalI
                                    >< HaeIII >< MnlI >< DdeIDdeI ><
     >< BsuRI >< MaeIII >< BspWI
                                              >< AluI BspWI ><
 TGAAATTAAC ATGGACAATT CACCAAATTT GGCTTGGCCT CTTATTGTTA CAGCTCTAAG AGCCAACTCA
     12540
               12550
                      12560
                                  12570
                                              12580
                                                        12590
                                                                 12600
                                                             RsaI ><
                                                             NlaIV ><
                                                               KpnI ><
                                                           >< Fnu4HI
                                                          Eco64I ><
                                                           Csp6I ><
    >< Tru9I
                                                             BscBI ><
 >< PvuII
                                                         Asp718 ><
 >< Psp5I
                                                             AfaI ><
>< NspBII
                                                         >< AciI>< BanI
   >< MseI
                         >< HinfI >< PleI</pre>
                                                         AccB1I ><
>< AluI > < SfcI
                                            >< PshAI Acc65I ><
                       >< DdeI>< BsrI
GCTGTTAAAC TACAGAATAA TGAACTGAGT CCAGTAGCAC TACGACAGAT GTCCTGTGCG GCTGGTACCA
     12610
              12620
                         12630
                                   12640
                                             12650
                                                       12660
                                               >< TthHB8I
                                               >< TagI
                                               >< SfuI
                                               >< NspV
                                              >< MnlI
                                               >< LspI
                                               >< Csp45I
                                               >< 8stBI
            >< RsaI
                                               >< Bsp119I
            >< Csp6I
                                               >< BsiCI
       >< AluI
                                               >< Bpul4I
             >< AfaI
                                               >< AsuII
CACAAACAGC TIGTACTGAT GACAATGCAC TIGCCTACTA TAACAATTCG AAGGGAGGTA GGTTTGTGCT
   12680
              12690
                        12700
                                  12710
                                             12720
                                                       12730
                                                                 12740
                     >< XhoII
                     >< Sau3AI
                     >< NdeII
                     >< MflI
                    .>< MboI
                     >< DpnII
                      >< DonI
                     >< BstYI
                                     >< TfiI</pre>
                                                         >< RsaI
                     >< BspAI
                                  >< RmaI
                                                              >< Csp6I
                      >< Bsp143I
                                   >< HinfI
                                                        >< Csp6I>< RsaI
                                  >< MaeI >< DdeI
                     >< BqlII
                                                        >< AfaI>< AfaI
GGCATTACTA TCAGACCACC AAGATCTCAA ATGGGCTAGA TTCCCTAAGA GTGATGGTAC AGGTACAATT
    12750
              12760
                     12770
                                  12780
                                             12790
                                                       12800
                                                >< Sau961 ·
                                                    >< PssI
                                                  >< PalI
                                                >< NspIV .
```

FIGURE 13.29

```
>< HaeIII
                                                     >< Eco01091
                                                    >< DraII
                                                    >< Cfr13I
                                                       >< BsuRI
               >< NlaIV
                                                    >< BsiZI
                                                                      RsaI >
               >< BsrI
                                                      >< BshI
                                                                    Csp61 ><
               >< BscBI
                               > < MaeIII
                                                    >< AsuI
  TACACAGAAC TGGAACCACC TTGTAGGTTT GTTACAGACA CACCAAAAGG GCCTAAAGTG AAATACTTGT
      12820
                 12830
                            12840
                                      12850
                                                 12860
                                                            12870
                                                                      12880
                                                              >< SfcI
                                                               IIodM > <</pre>
                                                                MaeII ><
                                                           >< Fnu4HI >< RsaI
                                                          >< Eco571 >< Csp61
                >< Tru9I
                                                              > < BbsI
                >< MseI >< MnlI
                                           >< BbvI
                                                          >< AluI >< AfaI
 ACTICATCAA AGGCTTAAAC AACCTAAATA GAGGTATGGT GCTGGGCAGT TTAGCTGCTA CAGTACGTCT
      12890
               12900
                           12910
                                      12920
                                                 12930
                                                           12940
                                                                     12950
                         >< RsaI
               >< SfcI >< Csp6I
            >< BspWI
                         >< AfaI
                                    >< BspMI
                                                                 AccI ><
 TCAGGCTGGA AATGCTACAG AAGTACCTGC CAATTCAACT GTGCTTTCCT TCTGTGCTTT TGCAGTAGAC
      12960
                12970
                           12980
                                      12990
                                                 13000
                                                           13010
                          >< RmaI
                           >< MnlI
                          >< MaeI
                                         >< HphI
 CCTGCTAAAG CATATAAGGA TTACCTAGCA AGTGGAGGAC AACCAATCAC CAACTGTGTG AAGATGTTGT
     13030
                13040
                           13050
                                      13060
                                                13070
                                                           13080
                                                        >< SinI
                                                        >< Sau96I
                                                        >< NspIV
                                                         >< NspHII
                                                        >< NlaIII
                                                         >< Eco471
                                                              >< Eam1105I
                                                        >< Cfr13I.
 >< RsaI
             >< RsaI
                                                        >< BsiZI
 >< MboII
             >< Csp6I
                                                        >< Bmel8I >< XcmI
>< Csp6I
             >< BsrI
                                                        >< AvaII PleI ><
                                               >< AluI >< AsuI> < HinfI
 >< AfaI
             >< AfaI
                                 >< MaeIII</pre>
GTACACACA TGGTACAGGA CAGGCAATTA CTGTAACACC AGAAGCTAAC ATGGACCAAG AGTCCTTTGG
     13100
               13110
                          13120
                                     13130
                                                13140
                                                           13150
                                                            >< TfiI
                >< SfaNI
                                                                  >< MaeIII
           >< NlaIII
                           >< FokI
                                                            >< HinfI
TGGTGCTTCA TGTTGTCTGT ATTGTAGATG CCACATTGAC CATCCAAATC CTAAAGGATT CTGTGACTTG
    13170
               13180
                          13190
                                     13200
                                                13210
                                                           13220
        > < RsaI
          >< MaeII
       >< Csp61
                                                             >< DdeI
        > < AfaI
                                             >< BsrI
                                                             >< BfrI
AAAGGTAAGT ACGTCCAAAT ACCTACCACT TGTGCTAATG ACCCAGTGGG TTTTACACTT AGAAACACAG
    13240
              13250
                        13260
                                    13270
                                                13280
                                                           13290
                                                                     13300
                                                         >< Thal
```

```
>< SfaNI
                                                       >< MvnI
                                                       >< BstUI
     >< RsaI
                                                       >< Bsp50I
    >< Csp6I
                                                     >< AciI
    >< AfaI >< AciI
                                  >< SfcI >< MaeIII
                                                      >< AccIISfaNI ><
 TCTGTACCGT CTGCGGAATG TGGAAAGGTT ATGGCTGTAG TTGTGACCAA CTCCGCGAAC CCTTGATGCA
     13310
               13320 13330 13340 13350
                                                       13360
             >< Zsp2I
                   > < SfaNI
             >< Mph1103I>< Tru9I
        >< PpulOI>< MaeII
                                                           Fnu4HI ><
             >< NsiI> < FokI
                                                            BsgI ><
             >< EcoT22I >< MseI
                                                          >< BbvI
    >< Acil>< AvaIII >< DraI
                                              >< Fnu4HI
                                  >< AciI
                                                           AciI ><
 GTCTGCGGAT GCATCAACGT TTTTAAACGG GTTTGCGGTG TAAGTGCAGC CCGTCTTACA CCGTGCGGCA
     13380
              13390
                        13400
                                 13410
                                            13420
                                                      13430
     >< SpeI
           >< Scal.
           >< RsaI
      >< RmaI
      >< MaeI
        > < Csp6I
                     >< SfcI
                                                               >< BspWI
>< BspWI >< AfaI >< AccI
                                   >< BcgI/a
                                                                BcgI >
CAGGCACTAG TACTGATGTC GTCTACAGGG CTTTTGATAT TTACAACGAA AAAGTTGCTG GTTTTGCAAA
     13450
              13460
                         13470
                                   13480
                                            13490
                                                       13500
                            >< ScrFI
                            >< MvaI
                               >< MnlI
                          >< EcoRII
                           >< Ec1136I
                           >< BstOI
                           >< BstNI
                                 >< BslI
                          >< DsaV >< BsiYI
                           >< BsiLI
                                                    >< PleT
                                                > < FokI >< HinfI
                           >< ApyI
GTTCCTAAAA ACTAATTGCT GTCGCTTCCA GGAGAAGGAT GAGGAAGGCA ATTTATTAGA CTCTTACTTT
    13520 13530
                        13540
                                  13550
                                             13560
                                                    13570
                                   >< NlaIII
                               >< Ksp632I
                               >< EarI
   >< Tru9I
                               >< Eam1104I
   >< MseI
                                >< BsmAI
                                                         >< Tru9I
>< MnlI
                                >< Alw26I
                                               >< Mboll >< Msel
GTAGTTAAGA GGCATACTAT GTCTAACTAC CAACATGAAG AGACTATTTA TAACTTGGTT AAAGATTGTC
    13590 13600 13610 13620
                                            13630
                                                     13640
                                                   >< RsaI
                                                   >< NlaIV
                                                > < NlaIII
                                                     >< KpnI
                                                     >< HphI
                                                > < Eco64I
                                                  >< Csp6I
                                                  >< BscBI
                                                > < BanI
                                                > < Asp718
```

FIGURE 13.31

```
>< MaeIII >< AfaI
    >< NspBII
                                                    > < AccBlI MaeII ><

→ AciI

                   >< NlaIII
                                                    > < Acc65I > < HgaI
  CAGCGGTTGC TGTCCATGAC TTTTTCAAGT TTAGAGTAGA TGGTGACATG GTACCACATA TATCACGTCA
      13660
                 13670
                          13680
                                      13690
                                                13700
                                                          13710
                                                  >< MnlI
                                             >< MaeII
 GCGTCTAACT AAATACACAA TGGCTGATTT AGTCTATGCT CTACGTCATT TTGATGAGGG TAATTGTGAT
      13730
                13740
                           13750
                                      13760
                                                13770
                                                           13780
    >< Tru9I
    >< MseI
                  >< MaeIII >< MunI
 ACATTAAAAG AAATACTCGT CACATACAAT TGCTGTGATG ATGATTATTT CAATAAGAAG GATTGGTATG
      13800
             13810
                           13820
                                     13830
                                               13840
                                                          13850
                             >< ThaI
                            >< MvnI
                           >< MluI
                             >< BstUI
                                                         ∹ RsaI
                            >< Bsp50I
                                                           >< HphI
           >< TfiI
                                                        >< AflIII
                                           >< DdeI
           >< HinfI
                            >< AccII
                                          >< BfrI
 ACTTCGTAGA GAATCCTGAC ATCTTACGCG TATATGCTAA CTTAGGTGAG CGTGTACGCC AATCATTATT
      13870
                13880
                          13890
                                     13900
                                               13910
                                                          13920
                                                                     13930
                                                                   XhoII >
                                                                  Sau3AI >
                                                                   NdeII >
                                                                    MflI >
         > < SfaNI
                                                     >< RsaI
                                                                    MboI >
        >< RsaI
                                                   > < Csp6I
                                                                   DpnII >
       >< Csp6I
                                               >< BspWI
                                                                   BstYI >
        >< AfaI
                      >< SfaNI
                                                    >< AfaT
                                                                   BspAI >
AAAGACTGTA CAATTCTGCG ATGCTATGCG TGATGCAGGC ATTGTAGGCG TACTGACATT AGATAATCAG
              13950
                          13960
                                     13970
                                               13980
                                                          13990
                                                                    14000
                                                   > < ScrFI
                                                   > < MvaI
                                                       >< Fnu4HI
                                                 >< EcoRII
                                                   > < Ecl136I
                                                   > < BstOI
                                                   > < BstNI
    >< Tru9I
                                      >< RsaI
                                                        >< BslI
    >< MseI
                  >< RsaI
                                       > < HphI
                                                        - >< BsiYI
 >< DpnI
                 >< Csp6I
                                     >< Csp6I
                                                   > < BsiLI
 >< Bsp143I
                                       > < BbvI > < ApyI
                  >< BsrI
      >< AlwI
                  >< AfaI
                                      >< AfaI >< DsaV >< AciI
GATCTTAATG GGAACTGGTA CGATTTCGGT GATTTCGTAC AAGTAGCACC AGGCTGCGGA GTTCCTATTG
    14010
               14020
                         14030
                                    14040
                                               14050
                                                          14060
                                                                >< SfaNI
                                           >< RmaI
                                                             > < HinfI
                          >< MamI
                                           >< MnlI
                                                         >< Fnu4HIPleI ><
 >< TfiI
            >< SfaNI
                          >< BsiBI
                                                           >< DdeI
                                           >< MaeI
 >< HinfI
             >< FokI
                          >< BsaBI
                                         >< BbvI
                                                        >< BspWI NdeI ><
TGGATTCATA TTACTCATTG CTGATGCCCA TCCTCACTTT GACTAGGGCA TTGGCTGCTG AGTCCCATAT
              14090
                        14100
                                    14110
                                              14120
                                                         14130
                                                                    14140
     >< Sau3AI
     >< NdeII
```

FIGURE 13.32

```
>< MboI
     >< MamI
      >< DpnII
                                                       Tth1111 ><
       >< DpnI
                                                       MboII ><
         >< BspWI
                                                >< BspAI
                                                >< Eam1104I
       >< Bsp143I</pre>
                       >< XcmI

→ BsmAI

     >< BsiBI
                       >< Tru9I
                                                >< Earl Aspl ><
     >< BsaBI >< FokI
                     ><· MseI
                                                  >< Alw26I
 GGATGCTGAT CTCGCAAAAC CACTTATTAA GTGGGATTTG CTGAAATATG ATTTTACGGA AGAGAGACTT
           14160 14170 14180 14190 14200 14210
     14150
                          > < SinI
                         > < Sau96I -
                         > < NspIV
                          >< NspHII
      >< TthHB8I
                           >< NlaIV
      >< TaqI
                        >< FokI
         >< McrI
                         > < Eco47I
                        > < EC04/1
> < Cfr13I
        > < Ksp632I
        > < Earl ·
                         > < BsiZI
       > < Earl > < BsiZI
> < Eaml104I >< SspI>< BscBI
     >< BsmAI > < Tru9I > < Bme18I
>< Tru9I
                                        >< MunI >< MseI
TGTCTCTTCG ACCGTTATTT TAAATATTGG GACCAGACAT ACCATCCCAA TTGTATTAAC TGTTTGGATG
    14220
          14230 14240 14250 14260 14270
                                                         14280
                                                         SinI ><
                                                       Sau96I ><
                                                        NspIV ><
                                                        NspHII >
                                                       Eco471 ><
                                                       Cfr131 ><
                                                        BsiZI ><
                                                       Bme18I ><
                       >< Tru9I
                                                        AvaII ><
                   >< MseI
 >< FokI
                                                        AsuI ><
ATAGGTGTAT CCTTCATTGT GCAAACTTTA ATGTGTTATT TTCTACTGTG TTTCCACCTA CAAGTTTTGG
   14290 14300 14310 14320 14330 14340 14350
  >< SpeI
   >< RmaI
   >< MaeI
              >< SspI
                                                >< Bsrl
ACCACTAGTA AGAAAAATAT TTGTAGATGG TGTTCCTTTT GTTGTTTCAA CTGGATACCA TTTTCGTGAG
   14360
          14370
                  14380 14390 14400
                                                14410 14420
                                    >< Thal>< Esp3I
                                        >< DdeI
                                     >< BstUI
        >< RsaI
                                    >< Bsp50I >< BsmBI
   >< HinfI >< PleI
                                    >< MvnI>< BsmAI
      >< FokI >< AccII
                                                    > < BbvI
TTAGGAGTCG TACATAATCA GGATGTAAAC TTACATAGCT CGCGTCTCAG TTTCAAGGAA CTTTTAGTGT
   14430
                   14450
            14440
                             14460
                                      14470 14480 14490
                  >< Zsp2I
                   >< SphI
              >< PpulOI
                    >< PaeI
                    >< NspI
                           FIGURE 13.33
```

```
>< NspHI
      >< Sau3AI
      >< NdeII
                 >< NsiI
     >< MboI
                  >< NlaIII
                 >< Mph1103I
                                                     >< NspI
      >< OpnII
      > < DpnI
                 >< Fnu4HI
                                                NspHI ><
  >< Fnu4HI>< BspWI >< EcoT22I
                                                NlaIII ><
     >< BspAI >< BspWI
                                                 >< BspWI
                                                 >< BsgI
 ATGCTGCTGA TCCAGCTATG CATGCAGCTT CTGGCAATTT ATTGCTAGAT AAACGCACTA CATGCTTTTC
    14500 14510 14520 14530 14540 14550 .14560
                                     >< ScrFI
                                     >< NciI
                                   . >< MspI
                                     >< HpaII
    >< Fnu4HI
                                     >< HapII
                                   >< DsaV
                                            >< Tru9I
   >< AlwNI
                                    >< BcnI >< MseI
   >< AluI
AGTAGCTGCA CTAACAAACA ATGTTGCTTT TCAAACTGTC AAACCCGGTA ATTTTAATAA AGACTTTTAT
    14570 14580 14590 14600 14610 14620
                                 .
>< MboII
                    >< Tru9I
                                                    DdeI ><
                    >< MseI
                                                    BbvI ><
GACTITGCTG TGTCTAAAGG TTTCTTTAAG GAAGGAAGTT CTGTTGAACT AAAACACTTC TTCTTTGCTC
   14640 14650 14660 14670 14680 14690
                                                 EcoRV ><
           >< FokI
         >< Fnu4HI
                                                Eco32I ><
AGGATGGCAA CGCTGCTATC AGTGATTATG ACTATTATCG TTATAATCTG CCAACAATGT GTGATATCAG
           14720 14730 14740 14750 14760
   14710
                                                    >< VspI
                                                    >< Tru9I
                                                    >< MseI
                                                    >< AsnT
                                   >< MaeIII
ACAACTCCTA TTCGTAGTTG AAGTTGTTGA TAAATACTTT GATTGTTACG ATGGTGGCTG TATTAATGCC
 14780 14790 14800 14810 14820 14830
          >< Tru9I
                          >< PvuII
>< Psp5I
          >< MseI
                          >< HpaI
           >< HindII
           >< HincII
AACCAAGTAA TCGTTAACAA TCTGGATAAA TCAGCTGGTT TCCCATTTAA TAAATGGGGT AAGGCTAGAC
                                             14900
                           14880
                                    14890
                                                      14910
   14850 14860
                    14870
                                    >< Thal
                  >< SfaNI
  >< PleI
TTTATTATGA CTCAATGAGT TATGAGGATC AAGATGCACT TTTCGCGTAT ACTAAGCGTA ATGTCATCCC
          14930 14940 14950 14960 14970
   14920
                                           >< SstI
                                           >< SduI
                                           >< SacI
```

FIGURE 13.34

```
IIqeN ><
                                                   >< HgiAI
                                                   >< Eco24I
                     >< Tru9I
                                                 > < Ecl136II
                >< TfiI
                                                   >< Bsp12861
                    >< MseI
                                                   >< BmyI
                >< HinfI
                                                   >< BanII
                  > < Esp4I
                                                   >< Alw21I
                   > < AflII
                               >< BspWI
                                               > < AluI
                                                             >< AluI
 TACTATAACT CAAATGAATC TTAAGTATGC CATTAGTGCA AAGAATAGAG CTCGCACCGT AGCTGGTGTC
     14990
               15000
                     15010
                                  15020
                                          15030
                                                      15040
                                                                 15050
                                                           RmaI ><
           >< Scal
                                                          > < MnlI
     >< SfcI>< RsaI
                                                           MaeI ><
  >< BsmAI >< Csp6I
                                                          >< Fnu4HI
  >< Alw26I >< AfaI
                                                          >< AciI
 TCTATCTGTA GTACTATGAC AAATAGACAG TTTCATCAGA AATTATTGAA GTCAATAGCC GCCACTAGAG
     15060
             15070 15080 15090 15100
                                                      15110
                                                     >< Tru9I
  >< Aluf
                                                     >< MseI
 GAGCTACTGT GGTAATTGGA ACAAGCAAGT TTTACGGTGG CTGGCATAAT ATGTTAAAAA CTGTTTACAG
     15130 15140 15150
                                  15160
                                            15170
                                                       15180
                                                               15190
                                                             NspI ><
                                                            NspHI ><
                                                           NlaIII ><
                                                         >< NlaIII
                                                             .DdeI ><
                                                         BspWI ><
                                           >< MaeIII
                                                             BfrI ><
TGATGTAGAA ACTCCACACC TTATGGGTTG GGATTATCCA AAATGTGACA GAGCCATGCC TAACATGCTT
    15200 15210 15220 15230
                                           15240 15250
        > < PalI
        > < HaeIII
        > < BsuRI
        > < Bsh1
                   >< MnlI
                                            >< MaeIII
AGGATAATGG CCTCTCTTGT TCTTGCTCGC AAACATAACA CTTGCTGTAA CTTATCACAC CGTTTCTACA
                                                              15330
    15270 15280
                       15290 15300
                                            15310
                                                      15320
                                                         Tru9I ><
                                                               ScrFI >
                                                               MvaI >
                                                               >< MseI
                >< MstI
                                                              FokI ><
                >< HinPlI
                                                            EcoRII ><
                >< Hin6I
                                                             Ecl136I >
                 > < HhaI
                                                              DsaV ><
                 >< FspI
                 >< FdiII
                                         >< NlaIII
                                                              BstNI >
                                    > < Fnu4HI
                 > < CfoI>< Tru9I
    >< AluI
                >< AviII >< MseI</pre>
                                               >< AciI
                                                               ApyI >
GGTTAGCTAA CGAGTGTGCG CAAGTATTAA GTGAGATGGT CATGTGTGGC GGCTCACTAT ATGTTAAACC
    15340
              15350
                       15360
                                  15370
                                           15380
                                                      15390
       > < SfaNI
             >< MspI
             >< HpaII
                          >< HphI
                                                 >< Tru9I MaeIII ><
                          >< BspWI
             >< HapII
                                                 >< MseI AluI ><
```

FIGURE 13.35

```
AGGTGGAACA TCATCCGGTG ATGCTACAAC TGCTTATGCT AATAGTGTCT TTAACATTTG TCAAGCTGTT
               15420
                          15430
                                   15440 15450 15460 . 15470
                                               >< DrdI >< AluI > < AciI
 >< BspWI
 ACAGCCAATG TAAATGCACT TCTTTCAACT GATGGTAATA AGATAGCTGA CAAGTATGTC CGCAATCTAC
      15480
                15490
                          15500
                                    15510
                                               15520
                                                        15530
                                                                   15540
                                          >< Sau3AI
                                          >< NdeII
                                          >< MboI
                                        > < MamI
                                            >< FbaI
                                          >< DpnII
                                            >< DpnI
                                            >< BspHI
                                          >< BspAI
                                           >< Bsp1431
                                          >< BsiQI
                       >< SfcI
                                        > < BsiBI>< NlaIII
                        >< BsmAI
                                       > < BsaBI>< FokI
                        >< Alw26I
                                        >< Bclr>< EcoRI
 AACACAGGCT CTATGAGTGT CTCTATAGAA ATAGGGATGT TGATCATGAA TTCGTGGATG AGTTTTACGC
    15550 15560
                         15570
                                  15580
                                            15590
                                                        15600
                           >< TfiI
                               >< SfaNI
                         >< NlaIII
           >< BspMI
                           >< HinfI
                                                               >< MaeIII
 TTACCTGCGT AAACATTTCT CCATGATGAT TCTTTCTGAT GATGCCGTTG TGTGCTATAA CAGTAACTAT
    15620
                                15650 15660 15670
              15630
                       15640
                  > < RmaI
                  >< NheI >< Tru9I
 >< Fnu4HI
                  > < MaeI
                                  >< Tru91
>< AciI
                 >< AluI >< MseI >< MseI
                                                               MnlI ><
GCGGCTCAAG GTTTAGTAGC TAGCATTAAG AACTTTAAGG CAGTTCTTTA TTATCAAAAT AATGTGTTCA
    15690 . 15700
                         15710
                                   15720
                                              15730
                                                      15740 15750
                                          >< SinI
                                          >< Sau96I
                                              >< PssI
                                           >< Psp5II
                                          >< PpuMI
                                          >< NspIV
                                          >< NspHII
                                          >< Eco0109I
                                          >< Eco47I
                                          >< DraII
                                          >< Cfr13I
                                         >< Bsi2I
                     >< DdeI
                                         >< Bme18I
 >< NlaIII
                >< BsmAI
                                         >< Avall
  >< DdeI
                >< Alw26I
                                         ->< AsuI
                                                       >< MnlI
TGTCTGAGGC AAAATGTTGG ACTGAGACTG ACCTTACTAA AGGACCTCAC GAATTTTGCT CACAGCATAC
    15760
              15770
                        15780
                                 15790
                                             15800
                                                      15810
                                                                 15820
                                              >< XhoII
                                              >< Sau3AI
                                              >< NdeII
                                              >< MflI
                                             >< MboI
                               FIGURE 13.36
```

```
>< Rsal
                                              >< DpnII
                           >< MaeII
                                              >< DpnI
                                                           > < SspI
         >< Tru9I
                               >< Csp6I
                                             >< BstYI
                                                           HinPlI ><
                           >< BsaAI
     >< RmaI
                                          >< BspMI
                                                            Hin6I ><
     >< MaeI
                           >< AflIII
                                              >< BspAI
                                                               HhaI ><
                              >< AfaI >< AlwI>< Bsp143I
 >< BspWI>< MseI
                                                              CfoI ><
 AATGCTAGTT AAACAAGGAG ATGATTACGT GTACCTGCCT TACCCAGATC CATCAAGAAT ATTAGGCGCA
      15830
               15840 15850
                                   15860
                                             15870
                                                       15880
                                   >< RsaI
                                                               >< SfaNI
           >< TthHB8I
                                   >< Csp6I
                                                          >< MaeIII
           >< TaqI
                                   >< AfaI
                                                               Rert ><
 GGCTGTTTTG TCGATGATAT TGTCAAAACA GATGGTACAC TTATGATTGA AAGGTTCGTG TCACTGGCTA
     15900
               15910
                      15920
                                   15930
                                             15940 15950
         > < FokI
   >< BspWI
 TTGATGCTTA CCCACTTACA AAACATCCTA ATCAGGAGTA TGCTGATGTC TTTCACTTGT ATTTACAATA
     15970
               15980 15990
                                  16000
                                             16010
                                                       16020
                                    >< Van91I
                                    >< PflMI
                                    >< NspI
                             > < Pall>< NspHI
                            > < MscI>< NlaIII
                             > < HaeIII
                             > < BsuRI
                              >< BsrI
                           >< EaeI >< BslI >< NspI
                            > < BshI>< BsiYI >< NspHI
                >< NlaIII
                                >< Afliii >< Afliii
                  >< AluI > < BalI>< AccB7I >< NlaIII
        >< MaeIII
 CATTAGAAAG TTACATGATG AGCTTACTGG CCACATGTTG GACATGTATT CCGTAATGCT AACTAATGAT
     16040
              16050
                        16060
                                 16070 16080
                                                      16090
            >< RsaI> < NlaIV
              >< MnlI
                 OGI >< DdeI
>< BsrI >< MnlI
           >< Csp6I
                                         >< RsaI
                                        >< Csp6I
            >< AfaI> < BscBI
                                          >< AfaT
AACACCTCAC GGTACTGGGA ACCTGAGTTT TATGAGGCTA TGTACACACC ACATACAGTC TTGCAGGCTG
     16110
              16120
                         16130 16140
                                           16150
                                                   16160 16170
                                              >< NlaIV
                                                    >< EcoNI
                                                    >< Eco31I
                                            >< Eco64I>< BsmAI
                                             >< BscBI >< BslI
                                            >< BanI · >< BsiYI
                                          >< Acil
                                                    >< Bsal
  >< BspWI
                                            >< AccB1I>< Alw26I
TAGGTGCTTG TGTATTGTGC AATTCACAGA CTTCACTTCG TTGCGGTGCC TGTATTAGGA GACCATTCCT
    16180
           16190 16200
                                 16210
                                            16220
                                                      16230
                     >< Tth111I
           >< Fnu4HI
                       >< NlaIII
                                                          > < Tru9I
           >< BspWI >< AspI
                                                          > < MseI
ATGITGCAAG TGCTGCTATG ACCATGTCAT TTCAACATCA CACAAATTAG TGTTGTCTGT TAATCCCTAT
    16250
              16260
                        16270
                                  16280
                                           16290
                                                      16300 16310
            >< ScrFI
            >< MvaI
```

FIGURE 13.37

```
>< EcoRII
              >< Ecl136I
            >< DsaV
              >< BstOI
              >< BstNI
              >< BsiLI
                                               >< RmaI
            >< BsaJI
                                           >< MnlI
             >< ApyI
                      >< MaeIII >< MaeIII</pre>
                                            >< MaeI
                                                             >< AluI
 GTTTGCAATG CCCCAGGTTG TGATGTCACT GATGTGACAC AACTGTATCT AGGAGGTATG AGCTATTATT
      16320
               16330
                        16340 16350
                                         16360
                                                    16370
    >< MaeIII
                        >< MnlI
 GCAAGTCACA TAAGCCTCCC ATTAGTTTTC CATTATGTGC TAATGGTCAG GTTTTTGGTT TATACAAAAA
             16400 16410
                               16420 16430
                                                     -16440
     >< NspI
                                                  >< NspI
      >< NspHI
                  > < Tth111I
                                                  >< NspHI
     >< NlaIII>< MaeIII>< MaeIII
                                                  >< NlaIII
  >< Afliii
                >< AspI
                                             >< Afliii
 CACATGTGTA GGCAGTGACA ATGTCACTGA CTTCAATGCG ATAGCAACAT GTGATTGGAC TAATGCTGGC
     16460
               16470
                       16480
                               16490 16500
                                                     16510
                       >< RsaI
                         >< PleI
                         >< DdeI
                      >< Csp6I
                       >< BsmAI >< HinfI
                                                            >< MnlI
                       >< Alw26I >< HindIII
                       >< AfaI
                                   >< AluI >< Fnu4HI >< BbvI
 GATTACATAC TTGCCAACAC TTGTACTGAG AGACTCAAGC TTTTCGCAGC AGAAACGCTC AAAGCCACTG
     16530
           16540 16550
                                 16560
                                           16570
                                                     16580 16590
                                      > < ThaI
                                            >< Scal
                                   >< RsaI >< RsaI
                                     > < MvnI
                                  >< Csp6I >< Csp6I
                                    > < BstUI
        > < Tru9I
                                     > < Bsp50I
        > < MseI > < NdeI
                                   >< AfaI >< AfaI
            >< AluI
                                   > < AccII
                                                              MnlI >
AGGAAACATT TAAGCTGTCA TATGGTATTG CCACTGTACG CGAAGTACTC TCTGACAGAG AATTGCATCT
    16600 16610 16620 16630
                                           16640
                                                     16650
                                                            16660
                                                       MaeIII ><
                                                      >< MaeIII
                                                      >< Eco0651
                                                      >< Eco911
                                                      >< BstPI
  >< SfaNI
                   >< RmaI
                >< MaeI
                                                      >< BstEII
    >< NlaIII
                                                       >< BsrI
TTCATGGGAG GTTGGAAAAC CTAGACCACC ATTGAACAGA AACTATGTCT TTACTGGTTA CCGTGTAACT
    16670
             16680
                      16690 16700
                                          16710
                                                     16720
                                                               16730
                                                           RsaT ><
                                                            >< MnlI
            >< RsaI
                         >< RsaI
                                                             >< HphI
           >< Csp61
                        >< Csp6I
                                         >< Sfani
                                                         Csp6I ><
           >< AfaI
                        >< AfaI
                                        >< MaeIII
                                                    >< HphI AfaI ><
AAAAATAGTA AAGTACAGAT TGGAGAGTAC ACCTTTGAAA AAGGTGACTA TGGTGATGCT GTTGTGTACA
    16740
             16750
                       16760 16770
                                        16780
                                                     16790
```

```
·>< RsaI
                                              >< HphI
     >< Csp6I
                                                 >< HindII
     >< AfaI
                                                 >< HincII
                                                                     BfrI ><
  GAGGTACTAC GACATACAAG TTGAATGTTG GTGATTACTT TGTGTTGACA TCTCACACTG TAATGCCACT
      16810
                16820
                            16830
                                      16840
                                                 16850
                                                            16860
   >< VneI
   >< SnoI
       >< SduI
       >< NspII
       >< HgiAI
                               > < SduI
  >< DraIII.</pre>
                               > < NspII
       >< Bsp1286I
                               > < HgiAI
       >< BmyI
                          >< BspWI >< DraIII
                                                         >< RsaI
   >< ApaLI
                          > < Bsp1286I
              >< RmaI
                                                        >< Csp6I
   >< Alw44I >< MaeI
                               > < BmyI
                                                    >< BsrI
       >< Alw21I
                               > < Alw21I
                                                         >< AfaI
 TAGTGCACCT ACTCTAGTGC CACAAGAGCA CTATGTGAGA ATTACTGGCT TGTACCCAAC ACTCAACATC
      16880
                16890 16900
                                      16910
                                                 16920
                                                            16930
                                                                      16940
                                                                  Styl ><
                                                                     SinI >
                                                                    Sau96I >
                                                                     NspIV >
                                                               EcoT14I ><
                                                                   Eco47I >
                                                               Eco1301 ><
                                                           >< Scal Cfr13I >
                                                                BssTlI ><
                                                   >< SphI >< RsaI BsiZI >
                                                   >< Pael
                                                                BsaJI ><
                                                   >< NlaIII
              >< RmaI
                                                   >< NspI>< Csp6I
                                                                   Avall >
              >< MaeI
                                                   >< NspHI>< AfaI
                                                                     AsuI >
TCAGATGAGT TTTCTAGCAA TGTTGCAAAT TATCAAAAGG TCGGCATGCA AAAGTACTCT ACACTCCAAG
     16950
               16960
                           16970
                                     16980
                                                16990
                                                           17000
                                                                      17010
      >< ScrFI
           >< RsaI
      >< MvaI
    >< EcoRII
      >< Ec1136I
        > < Csp6I
      >< BstOI
      >< BstNI
>< XcmI >< BslI
>< NspHII >< BsiYI</pre>
      >< BsiLI
      >< Apyl
                >< BsrI
    >< DsaV>< AfaI > < HinfI>< PleI
GACCACCTGG TACTGGTAAG AGTCATTTTG CCATCGGACT TGCTCTCTAT TACCCATCTG CTCGCATAGT
    17020
               17030
                          17040
                                    17050 17060 17070
                                                                      17080
                  >< SfaNI
           >< SphI
                       >< PvuII
           >< PaeI
                       >< Psp5I
           >< NspI
                       >< NspBII
           >< NspHI >< Fnu4HI
                                                    > < Tru9I
 >< Bst1107I
                > < NlaIII>< BspWI
                                                          >< SspI
           >< NlaIII >< AluI >< BbvI
                                                    > < MseI
GTATACGGCA TGCTCTCATG CAGCTGTTGA TGCCCTATGT GAAAAGGCAT TAAAATATTT GCCCATAGAT
    17090
               17100
                          17110
                                     17120
                                                17130
                                                          17140
                                                                      17150
```

```
> < ThaI
                          >< ThaI
                              > < MvnI
                         >< MvnI >< ThaI
                              > < HinPlI
                             >< HinPlI
                        >< HinPlI >< MvnI
                              > < Hin6I
                             >< Hin6I
                              > < HhaI
                         >< HhaI >< HhaI
                              > < CfoI
                         >< CfoI >< CfoI
                              > < BstUI
                         >< BstUI >< BstUI
                            >< BssHII
                            >< BspMI
                              > < Bsp50I
                         >< Bsp50I>< Bsp50I
                                                                   RmaI >
            >< TfiI
                       >< Hin61> < AccII
                        >< AccII >< AccII
            >< HinfI
                                                           > < EcoRI
 AAATGTAGTA GAATCATACC TGCGCGTGCG CGCGTAGAGT GTTTTGATAA ATTCAAAGTG AATTCAACAC
      17160
                17170
                          17180
                                   17190
                                               17200
                                                         17210
                                 >< 2sp2I
                            >< PpulOI
                                >< NsiI
                                 >< Mph1103I
                                >< EcoT22I
  >< BsqI
                              > < AvaIII
                                                          >< DrdI
 TAGAACAGTA TGTTTTCTGC ACTGTAAATG CATTGCCAGA AACAACTGCT GACATTGTAG TCTTTGATGA
     17230 17240 17250
                                             17270
                                    17260
                                                       17280
                                                                   17290
                                           >< RmaI
                                           >< MaeI
                                                                 >< MaeII
 AATCTCTATG GCTACTAATT ATGACTTGAG TGTTGTCAAT GCTAGACTTC GTGCAAAACA CTACGTCTAT
  17300 17310
                         17320
                                   17330
                                              17340
                                                         17350
   · >< Sau3AI
     >< NdeII
     >< MboI
     >< DpnII
     >< DpnI
     >< BspAI
                                                        >< RmaI
>< AlwI>< Bsp143I
                             > < AciI
                                                        >< Mael Sspl ><
ATTGGCGATC CTGCTCAATT ACCAGCCCCC CGCACATTGC TGACTAAAGG CACACTAGAA CCAGAATATT
     17370
               17380
                        17390.
                                   17400 17410
                                                        17420
                                 >< SinI
                                 >< Sau96I
                                >< NspIV
                                               >< StyI
                                 >< NspHII >< NspI
                                 >< Eco47I
                                           >< NspHI
                                 >< Cfr13I
                                            >< NlaIII
                                 >< BsiZI
                                               >< EcoT14I
                                >< BsgI
                                               >< Eco130I
                                >< Bme18I
                                               >< BssTlI
>< Tru9I
                                 >< AvaII
                                               >< BsaJI
>< MseI
                                >< AsuI> < AflIII
TTAATTCAGT GTGCAGACTT ATGAAAACAA TAGGTCCAGA CATGTTCCTT GGAACTTGTC GCCGTTGTCC
    17440
              17450
                        17460 · 17470
                                             17480 17490 17500
                               FIGURE 13.40
```

```
>< HindII
             >< HincII
                                              >< AluI
 TGCTGAAATT GTTGACACTG TGAGTGCTTT AGTTTATGAC AATAAGCTAA AAGCACACAA GGATAAGTCA
              17520 17530
                                17540 17550
                                                       17560
                                           >< NlaIII
 GCTCAATGCT TCAAAATGTT CTACAAAGGT GTTATTACAC ATGATGTTTC ATCTGCAATC AACAGACCTC
     17580
               17590
                         17600
                                   17610
                                             17620
                                                     17630
      >< MnlI
 >< EcoNI
  >< BslI
                                                      >< HphI
   >< BsiYI
                                                  >< AluI
 AAATAGGCGT TGTAAGAGAA TTTCTTACAC GCAATCCTGC TTGGAGAAAA GCTGTTTTTA TCTCACCTTA
     17650
              17660
                        17670
                                   17680
                                             17690
                                                       17700
                                                                 17710
              >< SfcI
                               >< DdeI
                  > < AluI
                              >< BfrI
                                                       >< HinfI
 TAATTCACAG AACGCTGTAG CTTCAAAAAT CTTAGGATTG CCTACGCAGA CTGTTGATTC ATCACAGGGT
     17720
               17730
                         17740
                                   17750
                                             17760
                                                       17770
                                                                 17780
                                                           > < HindII
            >< Tth1111
                                                           > < HincII
          >< AspI
                                                               >< Acil
TCTGAATATG ACTATGTCAT ATTCACACAA ACTACTGAAA CAGCACACTC TTGTAATGTC AACCGCTTCA
  17790
              17800
                        17810 17820
                                             17830 17840
                                                    >< XhoII
                                                    >< Sau3AI
                                                    >< NdeII
                                                    >< MflI
                                                    >< MboI
                                                    >< MamI
                                                    >< DpnII
                                                      >< DpnI
                                                    >< BstYI
                                                    >< BspAI ·
                                                      >< Bsp1431
                                                   >< BsiBI
                                                   >< BsaBI
                                 >< BspWI
                                                    >< BallI
ATGTGGCTAT CACAAGGGCA AAAATTGGCA TTTTGTGCAT AATGTCTGAT AGAGATCTTT ATGACAAACT
    17860 17870 17880
                                          17900 17910
                               17890
           >< XbaI
            >< RmaI
                                                        >< MaeIII
            >< MaeII >< MaeII
GCAATTTACA AGTCTAGAAA TACCACGTCG CAATGTGGCT ACATTACAAG CAGAAAATGT AACTGGACTT
    17930
             17940
                       17950
                                  17960
                                         17970
                                                   17980
               >< Sau3AI
              >< NdeII
                    >< MboII
              >< MboI
                > < FokI
              >< DpnII
                                             >< NlaIV
                >< DpnI
                                           >< Eco64I
              >< BspAI
                                            >< BscBI
>< Tru9I
                >< Bsp143I
                                           >< Ban I
                                                            MnlI ><
>< MseI>< SfcI
                   >< BbsI > < BsrI
                                           >< AccB1I
                                                        >< DdeI
```

FIGURE 13.41

```
TTTAAGGACT GTAGTAAGAT CATTACTGGT CTTCATCCTA CACAGGCACC TACACACCTC AGCGTTGATA
      18000
                18010
                          18020
                                     18030
                                               18040
                                                          18050
                                      >< ScrFI
                                      >< MvaI
                                   · >< EcoRII
                                   >< Eco57I
                                     >< Ec1136I
                                    >< DsaV
                                      >< BstOI
                                                               >< PleI
                                      >< BstNI
                                                         >< NlaIII
                             >< HindII>< BsiLI
                                                               HinfI ><
                             >< HincII>< ApyI
                                                              AccI ><
 TAAAGTTCAA GACTGAAGGA TTATGTGTTG ACATACCAGG CATACCAAAG GACATGACCT ACCGTAGACT
                                    18100 18110
     18070 18080
                       18090
                                                         18120
                                          >< MaeIII
                                                               ThaI ><
                                          >< Eco0651
                                                              MvnI ><
                                          >< Eco91I
                                                             BstUI ><
                                      >< BstXI
                                                             Bsp50I ><
                                          >< BstPI
                                                                 >< AciI
                                          >< BstEII >< HphI AccII ><
CATCTCTATG ATGGGTTTCA AAATGAATTA CCAAGTCAAT GGTTACCCTA ATATGTTTAT CACCCGCGAA
     18140
               18150
                         18160
                                    18170
                                              18180
                                                         18190
    >< XmnI
       > < Mboll
                                                       >< SfaNI
        > < MaeIII
                                                            >< RmaI
    >< Asp700I
                                                        >< NlaIII
   >< AluI >< MaeII
                                   >< MnlI
                                                            >< MaeI
GAAGCTATTC GTCACGTTCG TGCGTGGATT GGCTTTGATG TAGAGGGCTG TCATGCAACT AGAGATGCTG
    18210
               18220
                        18230
                                  18240
                                              18250
                                                        18260
                                                                   18270
                                            >< Tru9I
                                            >< MseI
   >< RsaI
                                            >< HpaI
 ≻ GsuI
                       >< RmaI
                                            >< HindII
                                                          >< RsaI
  . >< Csp6I
                       >< MnlI
                                                         >< Csp6I
                                            >< HincII
 >< BpmI
                       >< MaeI
                                               >< DdeI >< AluI BsrI ><
   >< AfaI
                      >< AluI
                                  >< SfcI
                                               >< BfrI
                                                          >< AfaI
TGGGTACTAA CCTACCTCTC CAGCTAGGAT TTTCTACAGG TGTTAACTTA GTAGCTGTAC CGACTGGTTA
              18290
18280
                         18300 -
                                   18310
                                             18320
                                                        18330
                                                                  18340
                                                       >< ScrFI
                                                       >< MvaI
                                                         >< MnlI
                                                        >< MaeIII
                                                     >< EcoRII
                                                        >< Eco0651
                                                    >< EcoNI
                                                        >< Eco91I
                                                       >< Ecl136I
                                                     >< DsaV Tru9I ><
                                                        >< DraIII
                                                        >< BstPI
                                                       >< BstOI
                                                       >< BstNI PmeI ><
                                                        >< BstEII
                                                     >< BslI MseI ><
                                                     >< BsiYI HphI ><
  >< HindII
                 >< HphI
                                   >< Tru9I
                                                      >< BsiLI DraI ><</pre>
  >< HincII
                    >< EcoRI
                                   >< MseI
                                                      >< Apyl >< Bsrl
                               FIGURE 13.42
```

```
TGTTGACACT GAAAATAACA CAGAATTCAC CAGAGTTAAT GCAAAACCTC CACCAGGTGA CCAGTTTAAA
                18360
                           18370
                                     18380
                                                18390
                                                          18400
                                   >< ScrFI
                                   >< MvaI
                                 >< EcoRII
                                   >< Ec1136I
                                 >< DsaV
                                   >< BstOI
                                   >< BstNI
                                                             >< RsaI
                                   >< BsiLI
                                                                 DdeI ><
                                 >< BsaJI
                                                   > < Tru9I>< Csp6I
                  >< NlaIII
                                                   > < MseI >< AfaI
                                  >< ApyI
 CATCTTATAC CACTCATGTA TAAAGGCTTG CCCTGGAATG TAGTGCGTAT TAAGATAGTA CAAATGCTCA
      18420
                18430
                          18440
                                     18450
                                               18460 18470
                                                        >< NlaIII
                                                 >< HinPlI
                            >< Tth1111
                                                 >< Hin6I
                                               > < HhaI
                            >< HinfI
                          >< AspI
                                     >< PleI
                                                  . > < CfoI
                                                                 >< AluI
 GTGATACACT GAAAGGATTG TCAGACAGAG TCGTGTTCGT CCTTTGGGCG CATGGCTTTG AGCTTACATC
      18490
                18500
                          18510
                                    18520
                                               18530
                                                      18540
                        >< SinI
                        >< Sau96I
                        >< NspIV
                        >< NspHII
                       >< Eco47I
                       >< Cfr13I
       >< ScaI
                       >< BsiZI
       >< RsaI
                       >< Bme18I
      >< Csp6I
                       >< AvaII
                                    >< MaeII
       >< AfaI
                       >< AsuI
                                    >< AflIII
                                               >< MaeIII>< MaeII
AATGAAGTAC TTTGTCAAGA TTGGACCTGA AAGAACGTGT TGTCTGTGTG ACAAACGTGC AACTTGCTTT
     18560
               18570
                         18580
                                    18590
                                             18600
                                                         18610
                                                                 18620
                              > < TfiI
                                                     >< Tth1111
                              > < HinfI
                                                  > < AspI
TCTACTTCAT CAGATACTTA TGCCTGCTGG AATCATTCTG TGGGTTTTGA CTATGTCTAT AACCCATTTA
     18630
               18640
                          18650
                                    18660
                                               18670
                                                         18680 18690
                                                                 >< ScrFI
                                                                RsaI ><
                                                                >< MvaI
                                                               >< EcoRII
                                                          Ecl1361 ><
                                                               >< Dsav
                                                              Csp6I ><
                                                                 BstXI ><
                              > < MaeIII
                                                                 >< BstOI
                             > < Eco0651
                                                                 >< BstNI
                              > < Eco91I
                                                                 >< BsiLI
                             > < BstPI
                                                                 >< ApyI
                   >< Eco57I> < BstEII
                                           >< MaeIII >< NlaIII
                                                               AfaT >c
TGATTGATGT TCAGCAGTGG GGCTTTACGG GTAACCTTCA GAGTAACCAT GACCAACATT GCCAGGTACA
    18700 18710 18720
                                    18730
                                              18740
                                                         18750
                                                                   18760
               >< SfaNI
                >< RmaI
             >< NspI
             >< NspHI
```

FIGURE 13.43

```
>< NlaIII
                               >< RmaI
             >< MaeI
                            >< NlaIII
                                                   Tru9I ><
 >< MaeI
                                              >< NlaIII 🌸
                         >< BspHI
   > < AflIII
                                                MseI ><
 TGGAAATGCA CATGTGGCTA GTTGTGATGC TATCATGACT AGATGTTTAG CAGTCCATGA GTGCTTTGTT
    18770 18780 18790 18800 18810 18820 18830
   >< Thal
   >< MvnI
 >< HinP1I
  >< Hin6I
   >< HhaI
   >< CfoI
   >< BstUI

→ Bsp50I

   >< AccII
AAGCGCGTTG ATTGGTCTGT TGAATACCCT ATTATAGGAG ATGAACTGAG GGTTAATTCT GCTTGCAGAA
    18840 18850 18860 18870 18880 18890 18900
  >< ŖsaI
  > < NlaIII
AAGTACAACA CATGGTTGTG AAGTCTGCAT TGCTTGCTGA TAAGTTTCCA GTTCTTCATG ACATTGGAAA
   18910 18920 18930
                          18940
                                  18950 18960 18970
                   >< SauI
                   >< MstII
                   >< Eco811
                   >< DdeI
                                           NlaIII ><
                                             >< EspI
                  >< CvnI
                   >< Bsu36I
                                         >< Eco57I MaeIII ><
                                           >< DdeI
                   >< Bse211
                   >< AxyI
                                             >< CelII
                  >< AocI >< MnlI >< SfaNI >< BpullO2I
TCCAAAGGCT ATCAAGTGTG TGCCTCAGGC TGAAGTAGAA TGGAAGTTCT ACGATGCTCA GCCATGTAGT
 18980 18990 19000 19010 19020 19030 19040
       >< MnlI
                       >< Ksp632I
            >< EarI
>< MboII >< Eam1104I
   >< HindIII
   >< AluI
GACAAAGCTT ACAAAATAGA GGAACTCTTC TATTCTTATG CTACACATCA CGATAAATTC ACTGATGGTG
   19050
           19060
                   19070 19080
                                   19090 19100
                    >< Sau3AI
                    >< NdeII
                    >< MboI
                 >< MaeII> < MaeIII</pre>
                    >< DpnII
                    >< DpnI
                    >< BspAI
             >< MaeIII >< Bspl43I >< MunI
TTTGTTTGTT TTGGAATTGT AACGTTGATC GTTACCCAGC CAATGCAATT GTGTGTAGGT TTGACACAAG
  19120 19130 19140 19150 19160 19170 19180
                                               2sp2I ><
                                                 >< SphI
                                                > < PpulOI
                                                  >< PaeI
                                                  >< NspI
                  >< ScrFI
                                                  >< NspHI
                  >< MvaI
                                                  >< NlaIII
               >< EcoRII
                                             Mph1103I ><
```

```
>< Ecl136I
                                                           >< GsuI
                       ≻ DsaV
                                                           EcoT22I ><
                         >< BstOI
                                                                >< Bsml
                                                            >< BscCI
                         >< BstNI
                         >< BsiLI
                                                           >< BpmI >< NsiI
        >< PleI
                         >< ApyI
 AGTCTTGTCA AACTTGAACT TACCAGGCTG TGATGGTGGT AGTTTGTATG TGAATAAGCA TGCATTCCAC
     19190
                19200
                          19210
                                     19220
                                               19230
                                                          19240
                                                                    19250
                                   >< Tru9I
                                        > < Mun1
           >< TthHB8I
                                   >< MseI
 >< BcgI/a >< TaqI
                                    >< DraI
      >< AluI
                                    >< BcgI
 ACTCCAGCTT TCGATAAAAG TGCATTTACT AATTTAAAGC AATTGCCTTT CTTTTACTAT TCTGATAGTC
      19260
              19270
                         19280
                                   19290
                                               19300
                                                          19310
              >< PleI
                                                              SfaNI ><
               >< NlaIII
                                                                 >< MaeII
             >< BsmAI
                                                            BsaAI ><
     >< HinfI>< Alw26I
                                                           AflIII ><
 CTTGTGAGTC TCATGGCAAA CAAGTAGTGT CGGATATTGA TTATGTTCCA CTCAAATCTG CTACGTGTAT
     19330
               19340
                          19350
                                     19360
                                               19370
                                                          19380
                                                                  Zsp2I >
                                                            >< Scal
                                                             PpulOI ><
                                                             >< RsaINsiI >
                                                               Mph1103I >
                                                         >< SfaNIEcoT22I >
                                                   > < RsaI >< Csp6I
                                                  >< Csp6I
                                                              AvaIII ><
                                          >< NlaIII> < AfaI >< AfaI
TACACGATGC AATTTAGGTG GTGCTGTTTG CAGACACCAT GCAAATGAGT ACCGACAGTA CTTGGATGCA
     19400
              19410 19420 19430
                                              19440
                                                         19450
      >< FokT
TATAATATGA TGATTTCTGC TGGATTTAGC CTATGGATTT ACAAACAATT TGATACTTAT AACCTGTGGA
  19470
               19480
                         19490
                                    19500
                                               19510
                                                         19520
          >< ScrFI
          >< MvaI
            >< MaeIII
       >< EcoRII
          >< Ecl1361
       >< DsaV
          >< BstOI
          >< BstNI
          >< BsiLI
                                                 >< Tru9I
          >< ApyI
                                                 >< MseI
ATACATTTAC CAGGTTACAG AGTTTAGAAA ATGTGGCTTA TAATGTTGTT AATAAAGGAC ACTTTGATGG
    19540
              19550
                         19560 19570
                                              19580
                                                       19590
   >< SgrAI
    >< NaeI
                             > < VspI .
    >< MspI
    >< HpaII
                             > < Tru9I
    >< HapII
                             > < MseI
   >< Cfr10I
                             > < AsnI
         >< BspWI
                             > < AseI
ACACGCCGGC GAAGCACCTG TTTCCATCAT TAATAATGCT GTTTACACAA AGGTAGATGG TATTGATGTG
    19610
              19620
                         19630
                                   19640
                                              19650
                                                         19660
                                FIGURE 13. 45
```

```
>< XhoII
   >< Sau3AI
   >< NdeII
   >< MflI
   >< MboI
   >< DpnII
    >< DpnI
                                                              >< MaeIII
   >< BstYI
                                                         >< EspI
  >< BspAI
                                                         >< DdeITru9I ><
   >< Bsp143I
                                 >< Tru9I
                                                         >< CelIIMseI ><
  >< BglII
                                 >< MseI
                                                 >< AluI . >< Bpull02I
 GAGATCTITG AAAATAAGAC AACACTTCCT GTTAATGTTG CATTTGAGCT TTGGGCTAAG CGTAACATTA
      19680
            19690 19700
                                    19710. 19720
                                                      19730
                                                                   19740
                                                  >< Fnu4HI
                >< Tru9I
                                             >< EcoRV
                                   >< BbvI >< Eco82I
   >< BsrI
                >< MseI
 AACCAGTGCC AGAGATTAAG ATACTCAATA ATTTGGGTGT TGATATCGCT GCTAATACTG TAATCTGGGA
      19750
              19760
                          19770
                                    19780
                                             19790
                                                       19800
                          >< NspI
                          >< NspHI
                          >< NlaIII
                            >< BsgI
                      >< AflIII
 CTACAAAAGA GAAGCCCCAG CACATGTATC TACAATAGGT GTCTGCACAA TGACTGACAT TGCCAAGAAA
    19820
               19830
                         19840
                                    19850 19860 19870
                                                                   19880
    >< DdeI>< MboII
                                                               >< AccI
 CCTACTGAGA GTGCTTGTTC TTCACTTACT GTCTTGTTTG ATGGTAGAGT GGAAGGACAG GTAGACCTTT
    19890
               19900
                          19910
                                    19920
                                              19930
                                                        19940
                                                                   19950
                                                              SinI ><
                                                             Sau96I ><
                                                             NspIV ><
                                                             NspHII ><
                                                              NlaIV ><
                                                             Eco47I ><
                                                            Cfr13I ><
                                                                >< BslI
                                                             BsiZI ><
                                                                >< BsiYI
                                                              BscBI ><
                                                            Bme181 ><
                       >< Tru9I
                                                             AvaII ><
                       >< MseI
                                                              >< IueA
TTAGAAACGC CCGTAATGGT GTTTTAATAA CAGAAGGTTC AGTCAAAGGT CTAACACCTT CAAAGGGACC
    19960 19970
                         19980
                                  19990
                                             20000
                                                        20010
                                                                  20020
                            >< VspI
                            >< Tru9I
                            >< PleI
       >< RmaI
                            >< MseI
                                                             Tru9I ><
     >< NheI
                     >< MaeIII</pre>
                                                         >< Tru9I
      >< MaeI
                         >< Asnī
                                     >< TfiI
                                                              MseI ><
>< HgaI>< AluI
                    >< HinfI>< AseI >< HinfI
                                                         >< MseI
AGCACAAGCT AGCGTCAATG GAGTCACATT AATTGGAGAA TCAGTAAAAA CACAGTTTAA CTACTTTAAG
    20030 20040
                        20050
                                   20060
                                             20070
                                                        20080
                                            >< DdeI >< MnlI Tru9I ><
                                               >< BsmAI >< DdeI
```

FIGURE 1346

```
>< AccI
                                                  >< Alw26I >< BfrIMseI ><
 AAAGTAGACG GCATTATTCA ACAGTTGCCT GAAACCTACT TTACTCAGAG CAGAGACTTA GAGGATTTTA
      20100
                 20110
                           20120
                                      20130
                                                 20140
                                                             20150
                                                                       20160
                                  >< TthHB8I
                                  >< TaqI
                                       >< SstI
                                       >< SduI
                                                                     XhoI ><
                                       >< SacI
                                                                   TthHB8I >
                               > < PaeR7I
                                                                      TaqI >
                               > < NspIII
                                                                     SlaI ><
                                       >< NspII
                                                                   PaeR7I ><
                                       >< HgiAI
                                                                   NspIII ><
                               > < Eco88I
                                                                     >< MnlI
           >< XcmI
                               > < XhoI>< Eco24I
                                                                   Eco88I ><
     >< Sau3AI
                                     >< Ecl136II
                                                                     CcrI ><
     >< NdeII
                                                                BspWI ➤
                               > < SlaI>< Bsp1286I
     >< MboI
                               > < Ccrl>< BmyI
                                                                     BcoI ><
     >< DpnII
                               > < Bcol>< BanII
                                                                > < BcqI/a
       >< DpnI
                               > < Ama87I
                                                                     AvaI ><
                               > < AvaI>< Alw21I
     >< BspAI
                                                                   Ama871 ><
       >< Bsp143I
                                     >< AluI
                                                   >< EcoRI . >< FokIAluI ><
AGCCCAGATC ACAAATGGAA ACTGACTTTC TCGAGCTCGC TATGGATGAA TTCATACAGC GATATAAGCT
     20170
                20180
                           20190
                                      20200
                                                20210
                                                            20220
               >< TthHB8I
               >< TaqI
               >< SfuI
               >< NspV
               >< LspI
               >< Csp45I
               >< BstBI
               >< Bspl19I
               >< BsiCI
                                                         IIodM ><
               >< Bpul4I
                                                         >< BbsI
               >< AsuII >< BcgI
                                                  >< NlaIII >< AciIMseI ><
CGAGGGCTAT GCCTTCGAAC ACATCGTTTA TGGAGATTTC AGTCATGGAC AACTTGGCGG TCTTCATTTA
     20240
               20250
                           20260
                                      20270
                                                 20280
                                                            20290
                                                                       20300
                        >< HphI
                  >< HinPlI
                  >< Hin6I
       >< EspI
                   > < HhaI >< TfiI
       >< DdeI
                     >< HaeII
       >< CelII
                 >< Eco47III
                                        >< Tru9I
       >< Bpu1102I > < CfoI >< HinfI</pre>
                                       >< MseI
       >< BfrI
                                        >< MnlI
                    >< Bspl43II
ATGATAGGCT TAGCCAAGCG CTCACAAGAT TCACCACTTA AATTAGAGGA TTTTATCCCT ATGGACAGCA
     20310
               20320
                           20330
                                     20340
                                                 20350
                                                            20360
                                                                       20370 7
                            >< MstI
                            >< HinPlI
                                                               Sau3AI ><
                            >< Hin6I
                                                                NdeII ><
                             >< HhaI
                                                                 MboI ><
                             >< FspI
                                                                DpnII ><</pre>
                            >< FdiII
                                                                  DpnI ><
                             >< CfoI
                                                                BspAI ><
             >< SfaNI
                             >< AviII
                                                                Bsp143I ><
CAGTGAAAAA TTACTTCATA ACAGATGCGC AAACAGGTTC ATCAAAATGT GTGTGTTCTG TGATTGATCT
    20380
               20390
                           20400
                                      20410
                                                            20430
                                                 20420
                 >< TthHB8I
```

FIGURE 13.47

```
>< Tth1111
                >< TaqI
            >< AspI
                             > < MaeIII
 TTTACTTGAT GACTTTGTCG AGATAATAAA GTCACAAGAT TTGTCAGTGA TTTCAAAAGT GGTCAAGGTT
     20450
               20460
                         20470 20480 20490 20500
                                                                 20510
                                                    >< NspI ·
                                                    >< NspHI
                                                    >< Nlatti
                                                      >< FokI
 >< MunI
                           · > < NlaIII
                                               >< AflIII
 ACAATTGACT ATGCTGAAAT TTCATTCATG CTTTGGTGTA AGGATGGACA TGTTGAAACC TTCTACCCAA
     20520
               20530
                     20540
                                  20550
                                            20560
                                                      20570
                                                                 20580
                           >< SfaNI
                           >< ScrFI
                           >< MvaI
                         >< EcoRII
                           >< Ecl136I
                         >< DsaV
                           >< BstOI
                                             >< SfaNI
                           >< BstNI
                                                 >< RsaI BspWI ><
                           >< BsiLI
                                                 > < Csp6I
                                                             BsmI >
              >< BspWI
                           >< ApyI
                                                           BscCI ><
                                                  >< AfaI
AACTACAAGC AAGTCAAGCG TGGCAACCAG GTGTTGCGAT GCCTAACTTG TACAAGATGC AAAGAATGCT
     20590
               20600
                         20610
                                   20620
                                             20630
 >< Eco571 >< MaeIII
                                        >< HphI
TCTTGAAAAG TGTGACCTTC AGAATTATGG TGAAAATGCT GTTATACCAA AAGGAATAAT GATGAATGTC
  20660
             20670
                     20680
                                  20690
                                             20700 20710
                                                                 20720
                                                > < RsaI
                                               >< Csp6I
      >< Bstl107I
                          >< Tru9I
                                            >< AluI
     >< AccI
                          >< MseI
                                                > < AfaINlaIII ><
GCAAAGTATA CTCAACTGTG TCAATACTTA AATACACTTA CTTTAGCTGT ACCCTACAAC ATGAGAGTTA
              20740 20750
 . 20730
                                  20760
                                            20770
                                                    20780
                                                                 20790
                                   >< ScrFI
                                       >< RsaI
                                   >< MvaI
                                  >< EcoRII >< NspBII
                                   >< BstOI >< PvuII>< HgiAI
                                   >< BstNI
                                                 >< DdeI
                                   >< BsiLI >< Psp5I>< Bsp12861
                                   >< Apyl >< Alul >< Bmyl
                                 >< DsaV>< AfaI >< Alw21I
TTCACTTTGG TGCTGGCTCT GATAAAGGAG TTGCACCAGG TACAGCTGTG CTCAGACAAT GGTTGCCAAC
    20800
           20810
                      20820
                                  20830
                                            20840
                                                      20850
                    >< XhoII
                         >< Tru9I
                    >< Sau3AI
                    >< NdeII
             >< TthHB8I >< MseI
                    >< MflI
                    >< MboI
                   >< MamI
                    >< DpnII
              >< TfiI >< DpnI
```

FIGURE 13. 48

```
>< BstYI
                                                     > < Tfil
                       >< BspAI
                                                    > < HinfI
                  >< HinfI>< Bsp143I
                                              >< Esp3I
                                                              >< Tru9I
                      >< BsiBI
                                     >< TthlllI >< BsmBI
                                                              >< MseI
                      >< BsaBI
                                             >< BsmAI
                                                              > < BsmAI
                                   >< AspI
                                              >< Alw26I >< HgaI> < Alw26I
    >< BsrI
               >< TaqI >< BglII</pre>
 TGGCACACTA CTTGTCGATT CAGATCTTAA TGACTTCGTC TCCGACGCAG ATTCTACTTT AATTGGAGAC
      20870
                20880
                           20890
                                      20900
                                                20910
                                                           20920
                                                             >< StyI
                                                                  >< SinI
                                                                  >< Sau96I
                               > < SinI
                                                              >< RmaI
                               > < Sau96I
                                                                 >< NspIV
                                    >< PssI
                                                            NspHII ><

→ Psp5II

                                                              >< MaeI
                               > < PpuMI ·
                                                             >< EcoT14I
                               > < NspIV
                                                                 >< Eco471
                                >< NspHII
                                                            >< Ecol301
                                >< NlaIV
                                                                 >< Cfr13I
                               > < EcoO109I
                                                             >< BssTlI
                              > < Eco47I
                                                                 >< Bsi2I
                              > < DraII
                                                             >< BsaJI
                              > < Cfr13I
                                                                 >< Bme18I
                              > < Bsi2I
                                                             >< BlnI
                                >< BscBI
                                                             >< AvrII
           >< RsaI
                              > < Bme18I
                                                                  >< AvaII
         > < Csp6I
                              > < AvaII
                                                                  >< AsuI ·
           >< AfaI
                              > < AsuI
                                                                 AflIII ><
TGTGCAACAG TACATACGGC TAATAAATGG GACCTTATTA TTAGCGATAT GTATGACCCT AGGACCAAAC
     20940
               20950
                       20960
                                    20970
                                                20980 20990
                                                                  21000
  >< NspI
  >< NspHI
  >< NlaIII >< PleI
                                                                  RmaI ><
 >< MaeIII
            >< HinfI
                                                                   MaeI ><
ATGTGACAAA AGAGAATGAC TCTAAAGAAG GGTTTTTCAC TTATCTGTGT GGATTTATAA AGCAAAAACT
     21010
               21020
                          21030
                                 21040
                                                21050
                                                           21060
                                                                     21070
    >< ScrFI
    >< MvaI
  >< EcoRII
   >< Ec1136I
  >< DsaV
   >< BstOI
                                                                  Sau961 >
    >< BstNI
                                                                   NspIV >
   >< BsiLI
                                                                  Cfr13I >
   >< BsaJI
                                                                   BsiZT >
  >< BsaJI
              >< SfcI
                                   · >< BsmI
                                                     ·>< BsmI
                                                                    AsuI >
   >< ApyI
                  > < AluI
                                 >< BscCI
                                                  >< BscCIHindIII ><>< AluI
AGCCCTGGGT GGTTCTATAG CTGTAAAGAT AACAGAGCAT TCTTGGAATG CTGACCTTTA CAAGCTTATG
    21080
               21090
                          21100
                                    21110
                                                21120
                                                          21130
                                               >< Zsp2I
                                           >< PpulOI
>< PalI
                                               >< NsiI
>< HaeIII
                                               >< Mph1103I
>< BsuRI
                          >< MaeIII
                                               >< EcoT22I
                                                                   >< MseI
>< BshI
             >< NlaIII>< AluI >< BcgI
                                            >< AvaIII >< SfaNIBcgI/a ><
GGCCATTTCT CATGGTGGAC AGCTTTTGTT ACAAATGTAA ATGCATCATC ATCGGAAGCA TTTTTAATTG
                                     21180
    21150
               21160
                          21170
                                               21190
                                                          21200
```

. •

```
>< Zsp2I
                                                      >< SphI
                                               >< Ppu10I
                                                      >< PaeI
                                                      >< NspI
                                                      >< NspRI
                                                    >< NsiI
                                                      >< NlaIII
                                                 > < NlaIII
                                                    >< Mph1103I
                                                    >< EcoT22I
                                                 > < AvaIII
                                                               >< MnlI
 GGGCTAACTA TCTTGGCAAG CCGAAGGAAC AAATTGATGG CTATACCATG CATGCTAACT ACATTTTCTG
      21220
               21230
                         21240
                                   21250
                                             21260
                                                      .21270
                                                              Tru9I ><
                 >< MboII
                                                               >< Tru9I
                  >< GsuI
                                                               MseI ><
                  >< BsrI
                                                               >< MseT
                  >< BpmI
                                                               MnlI ><
                 >< BbsI
                                                >< NlaIII
 GAGGAACACA AATCCTATCC AGTTGTCTTC CTATTCACTC TTTGACATGA GCAAATTTCC TCTTAAATTA
                                                       21340
     21290
               21300
                         21310
                                 21320
                                             21330
                      >< Tru9I
                      >< MseI
                     >< Esp4I> < TfiI
                      >< BsmAI
                                                      Ksp632I ><
                      >< Alw26I
                                                >< MboII
                                                         >< Earl
                     >< AflII> < HinfI
                                                 Eam1104I ><
21360
               21370
                        21380
                                   21390
                                             21400
                                                       21410
                                                      >< Tru91
                                                      >< MseI
                                                       >< HindII
                                                       >< HincII
                                                       >< HpaI AflIII >
GTAGGCTTAT CATTAGAGAA AACAACAGAG TTGTGGTTTC AAGTGATATT CTTGTTAACA ACTAAACGAA
  21430
              21440
                        21450
                                   21460
                                             21470
                                                       21480
                                                      >< VneI
                                                      >< SnoI
                                                          >< SduI
                                                          >< NspII
                                                   >< HpaII
                                                         >< HgiAI
                                                   >< HapII
                                                  >< Cfr101
                                                         >< Bsp1286I
                                                   >< MspI>< BmyI
 IqeN ><
                               >< SpeI
                                                     >< ApaLI
  >< NspHI
                               >< RmaI
                                                      >< Alw44I
                               >< MaeI >< MaeIII >< AgeI >< Alw21I
  >< NlaIII
CATGITTATT TICTTATTAT TICTTACTCT CACTAGTGGT AGTGACCTTG ACCGGTGCAC CACTITIGAT
              21510
                        21520
                                  21530
                                             21540
                                                      21550
       > < AluI
                                >< MnlI
GATGTTCAAG CTCCTAATTA CACTCAACAT ACTTCATCTA TGAGGGGGGT TTACTATCCT GATGAAATTT
    21570
              21580
                        21590
                                  21600
                                            21610
                                                       21620
 >< Sau3AI
```

FIGURE 13.50

```
>< NdeII
   >< MboI
   >< DpnII
                   >< Tru9I
    >< DonT
   >< BspAI
                  >< MseI > < MboII
    >< Bsp143I
                       >< DdeI ·
                                                     >< MaeIII
 TTAGATCAGA CACTCTTTAT TTAACTCAGG ATTTATTTCT TCCATTTTAT TCTAATGTTA CAGGGTTTCA
     21640
              21650 21660 21670 21680 21690
                                                              21700
     >< VspI
     >< Tru9I
     >< MseI
     >< AsnI
     >< Asel >< MaeII
                                    >< Tru9I
                                    TACTATTAAT CATACGTTTG GCAACCCTGT CATACCTTTT AAGGATGGTA TTTATTTTGC TGCCACAGAG
     21710
               21720 21730 21740 21750 21760
                   >< BslI
              >< DsaT>< BsiYI
                                       >< NlaIII
              >< BsaJI
                                             > < MaeIII
 AAATCAAATG TTGTCCGTGG TTGGGTTTTT GGTTCTACCA TGAACAACAA GTCACAGTCG GTGATTATTA
     21780
              21790 21800
                              21810
                                         21820
                                                    21830
                                                              21840
                                >< NspI
 >< Tru9I
                                >< NspHI
 >< MseI
                                >< NlaIII
 >< HphI
                               >< MaeIII
                                             >< MaeIII
 TTAACAATTC TACTAATGTT GTTATACGAG CATGTAACTT TGAATTGTGT GACAACCCTT TCTTTGCTGT
     21850 21860 21870
                                           21890 21900 21910
                                 21880
       >< StyI
                                             >< Zsp2I
            >< NlaIII
                                               >< Tru9I
                                          >< PpulOI TthHB8I ><
       >< NcoI >< RsaI
       >< EcoT141
                                             >< NsiI
                                                          >< TagI
       >< Eco130I
                                               >< MseI
                                                         SfaNI ><
       >< Dsal>< Csp6I
                                             >< Mph1103I
                                                           RsaI ><
                      >< TthHB8I >< EcoT22I
>< TaqI >< AvaIII
       >< BssTlI
                                                          Csp6I ><
       >< BsaJI>< AfaI
TTCTAAACCC ATGGGTACAC AGACACATAC TATGATATTC GATAATGCAT TTAATTGCAC TTTCGAGTAC
            21930 21940 21950
   21920
                                           21960
                                                    21970
                                                              21980
                                            >< Tru9I
                                            >< MseI
                                            >< DraI
ATATCTGATG CCTTTTCGCT TGATGTTTCA GAAAAGTCAG GTAATTTTAA ACACTTACGA GAGTTTGTGT
    21990
            22000
                       22010 22020
                                           22030 22040 22050
                                                          >< Sau3AI
                                                          >< NdeII
                                                          >< MboI
                                                          >< DonII
>< Tru91
                                                            >< DpnI
>< MseI
                                                          >< BspAI
>< DraI
                                          >< SfcI
                                                    Bsp143I ><
TTAAAAATAA AGATGGGTTT CTCTATGTTT ATAAGGGCTA TCAACCTATA GATGTAGTTC GTGATCTACC
           22070 22080 22090 22100
                                                    22110
                                                             22120
                                            >< Tru9I
      >< Tru9I
                          > < Tru9I
                        > < 1....
> < MseI
                                           >< MseI
      >< MseI
                                           >< MnlI
TTCTGGTTTT AACACTTTGA AACCTATTTT TAAGTTGCCT CTTGGTATTA ACATTACAAA TTTTAGAGCC
    22130
           22140 22150
                                22160
                                          22170
                                                    22180
```

```
> < SduI>< SfcI
                                            >< PvuII
                                            >< Psp5I
                                      > < NspII
                                            >< NspBII
                                      > < MaeII > < Fnu4HI
                                     > < Bspl286I >< PstI
                                                              Tru9I >
                                     > < Bmyl>< Fnu4HI
                          >< BspMI
       >< HphI
                               >< BbvI >< AluI
                                                           >< BbvI
ATTCTTACAG CCTTTTCACC TGCTCAAGAC ATTTGGGGCA CGTCAGCTGC AGCCTATTTT GTTGGCTATT
     22200 . 22210
                        22220
                                  22230
                                         22240
                                                    22250
                                    · >< SfaNI
                                       >< RsaI
                                      > < Csp6I
                                      >< AfaI
                                                 . >< Alwni
TARAGCCAAC TACATTTATG CTCAAGTATG ATGAAAATGG TACAATCACA GATGCTGTTG ATTGTTCTCA
              22280
                        22290
                                22300
                                            22310 22320
                            > < Tru9I
                           > < MseI
                                  >< AluI
AAATCCACTT GCTGAACTCA AATGCTCTGT TAAGAGCTTT GAGATTGACA AAGGAATTTA CCAGACCTCT
    22340
             22350 22360
                                  22370
                                            22380
                                                      22390
                >< SauI
                >< MstII
                >< Eco81I

→ DdeI

                >< CvnI
                >< Bsu36I
                >< Bse21I
             >< AxyI >< TfiI
>< AocI >< MnlI >< HinfI >< SspI
    >< MnlI
AATTTCAGGG TTGTTCCCTC AGGAGATGTT GTGAGATTCC CTAATATTAC AAACTTGTGT CCTTTTGGAG
    22410
              22420 22430
                                22440
                                          22450 22460
                                   >< Zsp2I
                                >< Ppu101
                                   >< NsiI
                                    > < NlaIII
                                   >< Mph1103I
     >< Tru9I
                                   >< EcoT22I
    >< MseI
                                 >< AvaIII
AGGTTTTTAA TGCTACTAAA TTCCCTTCTG TCTATGCATG GGAGAGAAAA AAAATTTCTA ATTGTGTTGC
  - 22480
             22490 22500 22510 22520 22530 22540
             >< SduI
             >< NspII
             >< HgiAI
             >< Bsp1286I
             >< BmyI
                                       >< Tru9I
             >< Alw21I
                                       >< MseI
TGATTACTCT GTGCTCTACA ACTCAACATT TTTTTCAACC TTTAAGTGCT ATGGCGTTTC TGCCACTAAG
    22550
             22560 22570 22580 22590
                                                     22600
    >< Sau3AI
    >< NdeII
    >< MboI
    >< DpnII
     >< DpnI
```

```
>< BspAI
                                    >< TfiI
       >< Bsp143I</pre>
                                    >< HinfI
 TTGAATGATC TTTGCTTCTC CAATGTCTAT GCAGATTCTT TTGTAGTCAA GGGAGATGAT GTAAGACAAA
                22630 22640
                                     22650
                                                22660
                                                          22670
       >< ScrFI
       >< MvaI
   >< HinP11
   >< Hin6I
    .>< fihaI
     >< HaeII
     >< EcoRII
      >< Ecl1361
     >< DsaV
     >< CfoI
      >< BstOI
      >< BstNI

→ Bsp143II

      >< BsiLI
                   > < BsrI
      >< ApyI
 TAGCGCCAGG ACAAACTGGT GTTATTGCTG ATTATAATTA TAAATTGCCA GATGATTTCA TGGGTTGTGT
     22690
                22700
                         22710 22720 22730
                                                         22740
                                                                  22750
                >< SfaNI
               >< RmaI
                                                                 DdeI ><
                                            >< BsrI
               >< MaeI
                                                                 BfrI ><
 CCTTGCTTGG AATACTAGGA ACATTGATGC TACTTCAACT GGTAATTATA ATTATAAATA TAGGTATCTT
    22760
                22770
                          22780
                                     22790
                                              22800
                                                         22810
                                                                   22820
                 >< Sau96I
                 >< Palí
                >< NspIV
         > < HindIII
                 >< HaeIII
                 >< EcoO109I
                >< DraII
            >< DdeI
                >< Cfr13I
                 >< BsuRI
                >< BsiZI
            >< BshI
>< BfrI >< PssI
      >< NlaIII >< AsuI>< BsmAI
           >< AluI >< Alw26I
                                                                8spWI ><
AGACATGCCA AGCTTAGGCC CTTTGAGAGA GACATATCTA ATGTGCCTTT CTCCCCTGAT GGCAAACCTT
     22830
                         22850
               22840
                                   22860 22870
                                                         22880
                                                                   22890
                                 >< Tru9I
                            >< PalI
                            >< MscI
                            >< HaeIII
                          >< EaeI>< MseI
               >< Tru9I
                            >< BsuRI
               >< MseI
                            >< BshI
               >< BspMI
                            >< BalI
GCACCCCACC TGCTCTTAAT TGTTATTGGC CATTAAATGA TTATGGTTTT TACACCACTA CTGGCATTGG
    22900
               22910
                         22920
                                    22930
                                              22940
                                                         22950
                                                                   22960
                                                            Sau96I ><
                                                      >< PallNspIV ><
                                                  > < MspI NspHII ><
                                                      >< HaeIII
```

```
> < HpaII Eco47I ><
                                                   >< Dsal
                                            · > < HapII Cfrl3I ><
                                                  >< BsuRISinI ><
                                                 >< GdiII BsiZI ><
                      >< Scal
                                                   >< BsaJI
                      >< RsaI
                                       >< Tru9I >< EaeI Bmel8I ><
                                       >< MseI >< Cfr10I AvaII ><
                      >< Csp6I
                      >< AfaI
                                       >< DraI >< BshI AsuI ><
 CTACCAACCT TACAGAGTTG TAGTACTTTC TTTTGAACTT TTAAATGCAC CGGCCACGGT TTGTGGACCA
                      22990
     22970
              22980
                               23000
                                          23010
                                                    23020
                                            >< Tru9I
                                                            >< RsaI
                                       >< Tru9I
                                                           >< Csp6I
                                            >< PleI
                                                            BsrI ><
                  > < Tru9I
                                            >< MseI
                                                            >< BsrI
                  > < MseI>< BsrI >< MseI >< HinfI >< AfaI
AAATTATCCA CTGACCTTAT TAAGAACCAG TGTGTCAATT TTAATTTTAA TGGACTCACT GGTACTGGTG
     23040
              23050
                              23070
                      23060
                                           23080
                                                    23090
  >< Tru9I
                                           >< PalI
  >< MseI
                                           >< HaeIII
   >< MboII
                                          >< GdiII
   >< HpaI
                                          >< EaeI
   >< HindII
                                           >< BsuRI
   >< HincII
                                           >< BshI
TGTTAACTCC TTCTTCAAAG AGATTTCAAC CATTTCAACA ATTTGGCCGT GATGTTTCTG ATTTCACTGA
    23110 23120 23130 23140 23150 23160
                                                              23170
        > < XhoII
     >< TthHB8I
     >< TaqI
        > < Sau3AI
        > < NdeII
        > < MflI
        > < MboI
        > < DpnII
          >< DpnI
        > < BstYI
        > < BspAI
                           > < SspI
   >< AlwI >< Bsp143I
                             IdaH ><
TTCCGTTCGA GATCCTAAAA CATCTGAAAT ATTAGACATT TCACCTTGCT CTTTTGGGGG TGTAAGTGTA
    23180
            23190 23200 23210 23220
                                                   23230 23240
      >< ScrFI
      >< MvaI
    >< EcoRII
      >< Ecl136I
                                                  >< Tru9I
    >< DsaV
                                                  >< MseI
     >< BstOI
                                                   >< HpaI
      >< BstNI
                                                   >< HindII
      >< BsiLI
                                            >< Eco57I
      >< ApyI
                                        >< BsgI
                                                >< HincII
ATTACACCTG GAACAAATGC TTCATCTGAA GTTGCTGTTC TATATCAAGA TGTTAACTGC ACTGATGTTT
   .23250
          · 23260 23270 23280 23290 23300 23310
              >< Sau3AI
             >< NlaIII
              >< NdeII
              >< MboI
              >< DpnII
               >< DpnI
                                  >< HinPlI
                              FIGURE 13.54
```

```
>< BspWI
                                     >< Hin6I
               >< BspAI
                                     > < HhaI
                                                          PleI ><
                                                >< BsrI
 >< SfcI
                 >< Bsp143I
                               >< AluI> < CfoI
 CTACAGCAAT TCATGCAGAT CAACTCACAC CAGCTTGGCG CATATATTCT ACTGGAAACA ATGTATTCCA
     23320
              23330
                                 23350
                      23340
                                            23360 23370
                                   >< TthHB8I
                                   >< TaqI
                                  >< SalI
                                  >< RtrI
                                  >< NspI
                         >< EspI >< NspHI
>< DdeI >< NlaIII
>< CelII >< HindII</pre>
                         >< Bpull02I>< HincII
 >< HinfI
                        >< AluI >< AccI
 GACTCAAGCA GGCTGTCTTA TAGGAGCTGA GCATGTCGAC ACTTCTTATG AGTGCGACAT TCCTATTGGA
     23390 23400
                        23410
                                  23420 23430 23440 23450
                                      > < SnaBI

→ ScaI

                                            >< RsaI
                                             >< RmaI
                                     >< MaeII >< MaeI
                                      > < Eco105I
             >< RmaI
                                          >< Csp6I
             >< MaeIII
                                      > < BsaAI
>< AluI
             >< MaeI
                                           >< AfaI
GCTGGCATTT GTGCTAGTTA CCATACAGTT TCTTTATTAC GTAGTACTAG CCAAAAATCT ATTGTGGCTT
    23460
           23470
                       23480
                                  23490 23500 23510 23520
                          >< MunI
ATACTATGTC TTTAGGTGCT GATAGTTCAA TTGCTTACTC TAATAACACC ATTGCTATAC CTACTAACTT
    23530
           23540 23550
                               23560
                                         23570 23580
                                                             RsaI ><
                                                       >< MnlI
                                                           Csp6I ><
             >< SfcI
                                                             AfaI ><
TTCAATTAGC ATTACTACAG AAGTAATGCC TGTTTCTATG GCTAAAACCT CCGTAGATTG TAATATGTAC
 23600 23610 23620 23630 23640 23650
        > < TfiI
       > < Hinfl
   >< AciI
                                               > < AluI
ATCTGCGGAG ATTCTACTGA ATGTGCTAAT TTGCTTCTCC AATATGGTAG CTTTTGCACA CAACTAAATC
  23670 23680 23690 23700 23710 23720 23730
>< VneI
   >< SduI
   >< NspII
   >< HgiAI
>< SnoI>< DdeI
                         >< Sau3AI
                                       >< PmaCI
 >< Bsp1286I
                         >< NdeII
                                       >< MaeII
  >< BmyI
>< BbvI
                                      >< Eco72I
>< BsaAI
                          >< MboI
                            >< DpnI
>< ApaLI
                             >< Bsp143I >< BbrPI
  Alw44I >< DpnII >< AlwI >< Alw21I >< Fnu4HI >< BspAI >< AflIII
>< Alw44I
GTGCACTCTC AGGTATTGCT GCTGAACAGG ATCGCAACAC ACGTGAAGTG TTCGCTCAAG TCAAACAAAT
    23740
           23750 23760 23770 23780
                                                  23790
                                                                23800
```

```
>< RsaI
 >< Csp6I
                                   >< Tru9I
                     >< SspI
                                  >< MseI
  >< AfaI

✓ SspI

 GTACAAAACC CCAACTTTGA AATATTTTGG TGGTTTTAAT TTTTCACAAA TATTACCTGA CCCTCTAAAG
      23810
            23820 23830 23840 23850 23860
                                                             23870
  >< MnlI
 >< MnlI
                                  >< Tru9I >< SfaNI >< HphI NlaIII ><
     >< DdeI ·>< MnlI
                                 >< MseI >< MaeIII
                                                    BspHI ><
 CCAACTAAGA GGTCTTTTAT TGAGGACTTG CTCTTTAATA AGGTGACACT CGCTGATGCT GGCTTCATGA
     23880
            23890 23900 23910
                                           23920 23930
                                                                23940
                                    >< XhoII
                                    >< Sau3AI
                >< Styl
                                >< RmaI
                >< RmaI
                               . >< NdeII
                 >< MaeI
                                    >< MflI
                >< EcoT14I

→ MboI

                                                  >< MstI
                >< Eco1301
                                >< MaeI
                                                 >< HinP1I
                >< BssTlI >< VspI >< DpnII
                                                >< Hin6I
                >< BsmI
                               >< HphI> < DpnI
                                                  >< HhaI
                          >< Tru9I >< BstYI

→ BscCI

                                                  >< FspI
                >< BsaJI
                          >< Msel >< BspAI
                                                  >< FdiII
                          >< BlnI
                                    > < Bsp143I >< CfoI
               >< AvrII
                                                  >< AviII
AGCAATATGG CGAATGCCTA GGTGATATTA ATGCTAGAGA TCTCATTTGT GCGCAGAAGT TCAATGGACT
     23950
              23960
                        23970
                                 23980
                                          23990
                                                     24000
                                                            24010
                                                      >< RmaIRsaI ><
              >< MnlI >< Fnu4HI >< Fnu4HI Csp6I ><
>< BspWI >< BbvI >< BspWI >< MaeIAfaI ><
TACAGTGTTG CCACCTCTGC TCACTGATGA TATGATTGCT GCCTACACTG CTGCTCTAGT TAGTGGTACT
     24020
                                24050 24060 24070
              24030
                        24040
                                                               24080
                          >< MboII
                           >< HinPlI
                           >< Hin6I
                             >< HhaI
                              >< HaeII
                              >< Fnu4HI >< Ksp632I
                     >< CfoI >< EarI
>< FokI >< BspWI >< Eaml104I
                >< BbvI >< Bsp143II
GCCACTGCTG GATGGACATT TGGTGCTGGC GCTGCTCTTC AAATACCTTT TGCTATGCAA ATGGCATATA
    24090 24100
                     24110
                               24120
                                          24130
                                                     24140
                                                           Tru9I ><
               >< MaeIII
                                                           MseI ><
GGTTCAATGG CATTGGAGTT ACCCAAAATG TTCTCTATGA GAACCAAAAA CAAATCGCCA ACCAATTTAA
    24160
             24170 24180 24190
                                           24200
                                                     24210
                                                          MaeII ><
                     >< TfiI
                                                       >< Fnu4HI
                     >< HinfI
                                          >< BbvI
                                                       >< AluI
CAAGGCGATT AGTCAAATTC AAGAATCACT TACAACAACA TCAACTGCAT TGGGCAAGCT GCAAGACGTT
    24230 24240
                      24250
                                 24260
                                          24270
                                                     24280
                                                             24290
>< Tru9I
>< MseI
 >< HpaI ·
                                        >< Dder
 >< HindII
            >< BsmI >< Tru9I
                                >< Tru9I >< BfrI
 >< HincII>< BscCI >< MseI
                                >< MseI
                                          >< AluI
                              FIGURE 13.56
```

```
GTTAACCAGA ATGCTCAAGC ATTAAACACA CTTGTTAAAC AACTTAGCTC TAATTTTGGT GCAATTTCAA
               24310
                                 24330
                         24320
                                           24340
                                                     24350 24360-
                      >< ThaI
                      >< SpoI
                      >< NruI
                      >< MvnI
                      >< BstUI
                                   >< TthHB8I
             >< Bsp681 >< TaqI
>< EcoRV >< Bsp50I >< MnlI
                                              >< RsaI
                                             >< Csp6I
                                                            >< Tru9I
             >< Eco32I >< AccII >< MnlI >< AciI>< AfaI
                                                            >< MseI
 GTGTGCTAAA TGATATCCTT TCGCGACTTG ATAAAGTCGA GGCGGAGGTA CAAATTGACA GGTTAATTAC
     24370
             24380
                      24390
                                  24400 24410 24420
                          >< MaeIII >< BbvI
                                                >< Fnu4HI BbvI ><
 AGGCAGACTT CAAAGCCTTC AAACCTATGT AACACAACAA CTAATCAGGG CTGCTGAAAT CAGGGCTTCT
     24440
              24450 24460 24470 24480
                                                     24490
          >< Fnu4HI
                                                      >< HindII
      >< BspWI

→ DdeI

                                                      >< HincII
 GCTAATCTTG CTGCTACTAA AATGTCTGAG TGTGTTCTTG GACAATCAAA AAGAGTTGAC TTTTGTGGAA
     24510
            24520 24530 24540 24550 24560
                                                         IqeN > <
                                                         > < NspHI
                                                         > < NlaIII
                                                        >< MaeIII
                                        >< NlaIII
                                                           >< MaeII
                                       >< MboII
                                                        >< FokI
                             >< Fnu4HI >< BbsI
                               . >< Acil>< BbvI
                                                     >< Afliii
AGGGCTACCA CCTTATGTCC TTCCCACAAG CAGCCCCGCA TGGTGTTGTC TTCCTACATG TCACGTATGT
           24590
                       24600
                               24610
                                          24620
                                                     24630
      >< ScrFI
      >< MvaI

→ EcoRII

      >< Ec1136I
      >< BstOI
                         >< HinP1I
      >< BstNI
 . >< MnlI >< BslI
                          >< Hin6I
    >< DsaV>< BsiYI
                            >< HhaI
      >< BsiLI
                              >< HaeII
                         >< BsaJI>< HphI
                                           >< NlaIII
     >< ApyI
GCCATCCCAG GAGAGGAACT TCACCACAGC GCCAGCAATT TGTCATGAAG GCAAAGCATA CTTCCCTCGT
   24650
           24660 24670
                                 24680
                                          24690 24700
   >< MnlI
>< BslI
              >< Tru9I
>< BsiYI
               >< MseI
                                  >< MnlI
GAAGGTGTTT TTGTGTTTAA TGGCACTTCT TGGTTTATTA CACAGAGGAA CTTCTTTTCT CCACAAATAA
    24720
          24730
                    24740 24750 24760 24770 24780
                     >< DdeI
                                                    >< Tru9I
                        >< BsmAI
  >< SfcI
                        >< A1w26I
                                                    >< MseIAlwI ><
TTACTACAGA CAATACATTT GTCTCAGGAA ATTGTGATGT CGTTATTGGC ATCATTAACA ACACAGTTTA
              24800 24810
    24790
                                 24820
                                          24830
                                                    24840
>< Sau3AI
>< NdeII
```

```
>< MboI
              >< PleI
                                              > < Scal
                                           > < RsaI
             >< MnlI
 >< DonII
                         > < Ksp632I
              >< DdeI >< HinfI
  >< DpnI
                                           >< MboII
 >< BspAI
             >< BspWI > < Eaml104I
                                            >< Csp6I
                           > < Earl > < Alul > < Afal > < HphI
  >< Bsp143I
               >< AluI
 TGATCCTCTG CAACCTGAGC TTGACTCATT CAAAGAAGAG CTGGACAAGT ACTTCAAAAA TCATACATCA
     24860
            24870 24880 24890
                                                 24910
                                          24900
       >< Sau3AI
       >< NdeII
       >< MboI
       >< MamI
       >< DpnII
         >< DpnI
       ➤ BspAI
         >< Bsp143I
      >< BsiBI
                             >< Tru9I
                                            >< HindII
      >< BsaBI
                             >< MseI
                                           >< HincII</pre>
CCAGATGTTG ATCTTGGCGA CATTCAGGC ATTAACGCTT CTGTCGTCAA CATTCAAAAA GAAATTGACC
     24930 24940
                      24950 24960 24970
                                                  24980
                                                             24990
                   >< Tru9I
                          > < TfiI
                   >< SwaI
           >< MnlI
     >< EcoNI
                      >< MseI
      >< BslI
                      > < HinfI
>< MnlI>< BsiYI
                      >< DraI
GCCTCAATGA GGTCGCTAAA AATTTAAATG AATCACTCAT TGACCTTCAA GAATTGGGAA AATATGAGCA
    25000
            25010
                    25020 25030 25040 25050 25060
           >< StyI
           >< PalI
           >< HaeIII
            >< EcoT14I
            >< Eco130I
           >< BsuRI
           >< BasT1I
                                                     NlaIII ><
    >< Tru9I>< BshI
                                                     MaeIII ><
    >< MseI >< BsaJI
                                                       >< BstXI
ATATATTAAA TGGCCTTGGT ATGTTTGGCT CGGCTTCATT GCTGGACTAA TTGCCATCGT CATGGTTACA
    25070 25080 25090 25100
                                          25110 25120
                                              > < SphI
                                              > < PaeI
                >< SpeI
                                              > < NspI
                > < RmaI
                                              > < NspHI
               >< NlaIII
                                             > < NlaIII
                > < MaeI
                                          >< MnlI>< BbvI Fnu4HI ><
ATCTTGCTTT GTTGCATGAC TAGTTGTTGC AGTTGCCTCA AGGGTGCATG CTCTTGTGGT TCTTGCTGCA
          25150 25160
    25140
                              25170 25180 25190 25200
                     >< FokI
               >< DdeI
>< MnlI >< PleI>< HinfI >< BsrI
AGTTTGATGA GGATGACTCT GAGCCAGTTC TCAAGGGTGT CAAATTACAT TACACATAAA CGAACTTATG
    25210
                      25230
             25220
                                25240
                                        25250 25260 25270
                        >< Sau3AI
                        >< NdeII
                        >< MboI
                        >< DpnII
                          > < DpnI
                             FIGURE 13.58
```

```
>< BspAI
                           > < Bsp143I
                      >< BsgI >< AlwI >< BsrI
 GATTTGTTTA TGAGATTTTT TACTCTTGGA TCAATTACTG CACAGCCAGT AAAAATTGAC AATGCTTCTC
     25280 25290 25300
                              25310 25320 25330
                                                               25340
       >< Scal
      >< RsaI
      >< Csp6I
                >< SfcI
                              >< AciI
      >< AfaI
                >< NlaIII
                                                  ><.MnlI
 CTGCAAGTAC TGTTCATGCT ACAGCAACGA TACCGCTACA AGCCTCACTC CCTTTCGGAT GGCTTGTTAT
     25350 25360 25370 25380 25390 25400
                                                           25410
                            > < HinPlI
                            > < Hin6I
                              >< HhaI
>< HaeII >< HinPlI
<< Eco47III >< Hin6I
                              >< HhaI
                                                           NheI ><
                             >< Eco47III
                                                           MaeI ><
                             >< CfoI
>< Bsp143II</pre>
                                          >< HhaI
>< CfoI
            >< BspWI
                                                      Aluf ><
 TGGCGTTGCA TTTCTTGCTG TTTTTCAGAG CGCTACCAAA ATAATTGCGC TCAATAAAAG ATGGCAGCTA
     25420
             25430 . 25440 25450 25460 25470 25480
     >< EcoNI
       >< BslI
       >< BsiYI
                                            >< MaeIII
               >< Mael
    >< BbvI
GCCCTTTATA AGGGCTTCCA GTTCATTTGC AATTTACTGC TGCTATTTGT TACCATCTAT TCACATCTTT
                    25510 25520 25530 25540
    25490 25500
                                                           Zsp2I ><
                                                        Ppu101 ><
        > < SfcI
                     >< HinPlI
                                                           NsiI ><
         >< PstI >< Hin6I
                                                         Mph1103I ><
                                 >< RsaI
  > < Fnu4HI >< HhaI
>< BspMI >< Mn1I >< CfoI
                                >< Csp6I
                                                         EcoT22I ><
                                           >< MnlI
                                >< AfaI
                                                         AvaIII ><
TGCTTGTCGC TGCAGGTATG GAGGCGCAAT TTTTGTACCT CTATGCCTTG ATATATTTTC TACAATGCAT
 25560
             25570 25580 25590 25600 25610
    >< SfaNI
      >< NspI
       >< NspHI .
      >< NlaIII
CAACGCATGT AGAATTATTA TGAGATGTTG GCTTTGTTGG AAGTGCAAAT CCAAGAACCC ATTACTTTAT
    25630       25640       25650       25660       25670       25680       25690
                                             >< Bst1107I
                                            >< AccI MaeIII ><
GATGCCAACT ACTITGTITG CIGGCACACA CATAACTAIG ACTACIGIAT ACCATATAAC AGIGTCACAG
    25700 25710 25720 25730 25740 25750
                                                           >< MboII
                              >< HphI
                                                        BstXI ><
>< MunI >< MaeIII >< MaeIII</pre>
                             >< Eco571
                                                      >< BbsI MnlI >
ATACAATTGT CGTTACTGAA GGTGACGCA TTTCAACACC AAAACTCAAA GAAGACTACC AAATTGGTGG
    25770
             25780
                       25790
                                 25800
                                          25810
                                                    25820
                                          >< RsaI
                                              > < NlaIII
                                             >< HphI
                        >< Tru9I >< Tthl11I>< Csp6I
                >< DdeI >< MseI>< AspI
    >< DdeI
                                         >< AfaI
                             FIGURE 13.59
```

```
TTATTCTGAG GATAGGCACT CAGGTGTTAA AGACTATGTC GTTGTACATG GCTATTTCAC CGAAGTTTAC
     25840 25850 25860 25870 25880 25890 25900
                                                         Tru9I ><
        > < HinfI>< PleI</pre>
                                     >< BsrI
                                                          MseI ><
     >< AluI >< AccI >< SfcI >< AlwNI
                                             >< MboII
 TACCAGCTTG AGTCTACACA AATTACTACA GACACTGGTA TTGAAAATGC TACATTCTTC ATCTTTAACA
     25910 25920
                        25930 25940 25950 25960 25970
                                      > < TthHB8I
     >< Tru9I
                                  > < TaqI
                                                  >< Ksp632I
     >< MseI
                                                  >< Earl BspWl ><
                                      > < MboII
                                                   >< Eam1104I AlwI ><
                                >< Eco57I
 AGCTTGTTAA AGACCCACCG AATGTGCAAA TACACACAAT CGACGGCTCT TCAGGAGTTG CTAATCCAGC
     25980 25990 26000 26010 26020
                                                      26030
   >< XhoII
   >< Sau3AI
    >< NlaIV
   >< NdeII
   >< MflI
   >< MboI
   >< DpnII
   >< DpnI
   >< BstYI
   >< BstI
   >< BspAI
    >< Bsp143I
                                                             RsaI ><
    >< BscBI
                                  >< RmaI
                                                           Csp6I ><
   >< BamHI >< AlwI
                                 >< MaeI
AATGGATCCA ATTTATGATG AGCCGACGAC GACTACTAGC GTGCCTTTGT AAGCACAAGA AAGTGAGTAC
    26050
              26060
                    26070
                              26080
                                        26090 26100
                                   > < Tru9I
                                 >< RsaI
                                     > < MseI
                                  >< MboII
       > < RsaI
                                  >< MaeII
                                 >< Csp6I
                                            >< Tru9I >< Csp6I
       >< Csp6I
       > < AfaI
                                 >< AfaI
                                            >< MseI >< AfaI
GAACTTATGT ACTCATTCGT TTCGGAAGAA ACAGGTACGT TAATAGTTAA TAGCGTACTT CTTTTTCTTG
    26120
             26130
                                 26150
                       26140
                                           26160
                                                     26170 26180
                                            >< TthHB8I
                                            >< TaqI
                . ∧maI
> < MaeIII
< Mae<sup>†</sup>
                                      >< HinPlI
                >< RmaI
                                                         > < RsaI
                                                      Fnu4HI ><
                                       >< Hin6I
                                >< HhaI >< Csp6I
>< CfoI >< BbvI > < AfaI
                >< MaeI >< RmaI
                >< FokI
                        >< MaeI
CTTTCGTGGT ATTCTTGCTA GTCACACTAG CCATCCTTAC TGCGCTTCGA TTGTGTGCGT ACTGCTGCAA
    26190
              26200
                       26210 26220
                                        26230
                                                     26240
                                                >< Tru9I
    >< Tru9I
                                           >< Thal
    >< MseI
                                           >< MvnI
>< SspI >< MaeII
                                                >< MseI
    >< HpaI
                                           >< BstUI
                                                           Ksp632I >
     >< HindII
                                 >< MaeII
                                           >< Bsp50I
                                                      >< MboII EarI >
     >< HincII
                                    >< AccI >< AccII
                                                         Eam11041 >
TATTGTTAAC GTGAGTTTAG TAAAACCAAC GGTTTACGTC TACTCGCGTG TTAAAAATCT GAACTCTTCT
    26260
             26270 26280 26290
                                          26300 26310
                                                              26320
```

```
>< Sau3AI
            >< NdeII
            >< MboI
            >< DpnII
      >< MboII>< DpnI
     >< XmnI >< BspAI> < Eco57I
                                                                >< Tru9I
     >< Asp700I>< Bsp143I
                                                                >< MseI
 GAAGGAGTTC CTGATCTTCT GGTCTAAACG AACTAACTAT TATTATTATT CTGTTTGGAA CTTTAACATT
     26330
               26340
                        26350
                                    26360
                                              26370
                                                         26380
                                                                   26390
                                                      >< ScrFI
                                                      >< MvaI
                                                    >< EcoRII
                                                      >< Ecl136I
                                                    >< DsaV NlaIV ><
                      >< RsaI
                                                      >< BstOI
                          >< MnlI
                                          >< Tru9I
                                                      >< BstNI
                                                                RmaI ×
                     >< Csp6I
                                          >< MseI
                                                      >< BsiLI
                                                               MaeI ><
         > < NlaIII
                     >< AfaI
                                       > < AluI
                                                      >< ApyIBscBI ><
 GCTTATCATG GCAGACAACG GTACTATTAC CGTTGAGGAG CTTAAACAAC TCCTGGAACA ATGGAACCTA
               26410
     26400
                        26420 26430
                                              26440
                                                        26450
                                                                   26460
                       >< ScrFI
                  >< RmaI
                       >< Mval
                  >< MaeI
                      >< EcoRII
                       >< Ec1136I
                      >< DsaV
                       >< BstOI
                        >< BstNI
                       >< BsiLI
>< Apyl >< MaeIII
GTAATAGGTT TCCTATTCCT AGCCTGGATT ATGTTACTAC AATTTGCCTA TTCTAATCGG AACAGGTTTT
     26470
               26480
                       26490
                                  26500
                                           26510
                                                        26520
                                                                   26530
                                      >< PalI
                                      >< MscI
                                 >< MnlI >< MaeIII
                                     >< HaeIII
                                    >< EaeI
                                     >< BsuRI
                                      >< BsrI
 >< RsaI
                                   >< BspWI
           >< HindIII
 >< Csp6I
                                     >< BshI
 >< AfaI
           >< AluI
                                     >< Balī
                                                     >< BbvI Fnu4HI ><
TGTACATAAT AAAGCTTGTT TTCCTCTGGC TCTTGTGGCC AGTAACACTT GCTTGTTTTG TGCTTGCTGC
             26550
    26540
                         26560 26570
                                            26580
                                                      26590
                                                                   26600
           >< VspI
           >< Tru9I
                             >< HphI
           >< MseI
  >< SfcI >< AsnI
                           >< BsrI
 >< AccI - >< AseI>< MaeIII>< AciI
TGTCTACAGA ATTAATTGGG TGACTGGCGG GATTGCGATT GCAATGGCTT GTATTGTAGG CTTGATGTGG
    26610
              26620
                         26630
                                26640
                                             26650
                                                        26660
                                                                   26670
>< EspI
    >< Eco571
>< DdeI ·
>< CelII
                                      >< RsaI
>< Bpull02I
                                     >< Csp6I
    ٠.
```

FIGURE 13.61

```
>< BfrI
                                        >< AfaI
    >< AluI
                                           >< AciI
                                                                  MboII >
 CTTAGCTACT TCGTTGCTTC CTTCAGGCTG TTTGCTCGTA CCCGCTCAAT GTGGTCATTC AACCCAGAAA
    26680 26690
                       26700
                                     26710
                                               26720
                                                         26730
                                                                    26740
                           >< ScrFI
                           >< NciI
                          >< MspI
                          >< HpaII
                          >< HapII
                          >< DsaV>< MnlI
                           >< BslI
                           >< BsiYI
                          >< BsaJI >< MunI
                                                  > < XcmI
                           >< BcnI >< MaeIII >< AciI >< NlaIII
 CAAACATTCT TCTCAATGTG CCTCTCCGGG GGACAATTGT GACCAGACCG CTCATGGAAA GTGAACTTGT
     26750
                26760
                          26770
                                    26780
                                               26790
                                                         26800
                                                                    26810
                                                              Tru9I ><
                                                                   SinI >
                                                                 Sau96I >
                                                                  PpuMI >
                                                                  NspIV >
                                                               MseI ><
                                                            >< MaeIII
            >< Sau3AI
                                                  > < RmaI >< HaeII
            >< NdeII
                                      >< PalI
                                                  >< MboI
                                       >< MspI
                                                    >< HinPlIEco47I >
             >< .FbaI
                                       >< HpaII
                                                 >< Styl>< Hin6I DralI >
           >< DpnII
                                       >< HapII
                                                 >< EcoT14I
                                                              Cfr13I >
             >< DpnI
                                                 >< Ecol30I>< Bsp143II
                                      >< HaeIII
           >< BspAI
                                    >< GdiII
                                                 >< BssTlI
             >< Bsp143I
                                    >< EaeI
                                                 >< BsaJI
                                                                 Bme18T >
           >< BsiQI
                                     >< BsuRI
                                                 >< BlnI >< HhaI AvaII >
           >< BclI
                                      >< BshI
                       >< MaeIII
                                                 >< AvrII >< CfoI AsuI >
CATTGGTGCT GTGATCATTC GTGGTCACTT GCGAATGGCC GGACACTCCC TAGGGCGCTG TGACATTAAG
    26820
               26830
                         26840
                                    26850
                                              26860
                                                     . 26870
                                                                   26880
             >< Sau3AI
             >< NdeII
             IodM ><
             IIngC ><
              >< DpnI
  >< PssI >< BspMI
>< Psp5II
             >< BspAI
                                       >< XmnI
>< NspHII
              >< Bsp143I
                                      . >< Asp700I > < HgaI Fnu4HI ><
GACCTGCCAA AAGAGATCAC TGTGGCTACA TCACGAACGC TTTCTTATTA CAAATTAGGA GCGTCGCAGC
    26890
                         26910
              26900
                                   26920
                                              26930
                                                         26940
           >< TfiI
          >< HinfI
          >< BbvI
                                                            > < Tru9I
                        >< Fnu4HI >< AciI
      >< BbvI
                                                            > < MseI
GTGTAGGCAC TGATTCAGGT TTTGCTGCAT ACAACCGCTA CCGTATTGGA AACTATAAAT TAAATACAGA
    26960
              26970
                         26980
                                   26990
                                              27000
                                                         27010
                                                                   27020
    >< MspI
                                   >< RsaI
    >< HpaII
                                >< RmaI
    >< HapII
                                  >< Csp6I
   >< Cfr10I
                               >< MaeI>< BcgI
                                                              HindII ><
   >< BcgI/a
                     >< SspI
                                   >< AfaI >< MaeIII
                                                              HincII ><
```

```
CCACGCCGGT AGCAACGACA ATATTGCTTT GCTAGTACAG TAAGTGACAA CAGATGTTTC ATCTTGTTGA
                 27040
                           27050
                                     27060
                                               27070
                                                          27080
      >< ScrFI
     >< MvaI
       >< MaeIII
    >< EcoRII
     >< Ec1136I
    >< DsaV
     >< BstOI
     >< BstNI
     >< BsiLI
     >< ApyI
                                 >< MnlI
                                                            HinfI ><
 CTTCCAGGTT ACAATAGCAG AGATATTGAT TATCATTATG AGGACTTTCA GGATTGCTAT TTGGAATCTT
      27100 . 27110
                       27120 27130 27140 27150
                  >< BsmAI
                                    >< Tru9I
                                                   > < MnlI
  >< MaeII
                  >< Alw26I
                                                >< DdeI
                                    >< MseI
                                                                  >< MboII
 GACGTTATAA TAAGTTCAAT AGTGAGACAA TTATTTAAGC CTCTAACTAA GAAGAATTAT TCGGAGTTAG
      27170
                27180
                        27190
                                   27200
                                               27210
                                                          27220
                                                                >< Ksp632I
                                                 >< MboII
                                                               >< EarI
                  >< MboII
                                              >< NlaIIIEaml104I ><</pre>
 ATGATGAAGA ACCTATGGAG TTAGATTATC CATAAAACGA ACATGAAAAT TATTCTCTTC CTGACATTGA
     27240
                27250
                          27260
                                    27270
                                               27280
                                                          27290
                                                                    27300
                                                   > < RsaI >< RsaI
                                                  >< Csp6I >< Csp6I
                               >< MnlI
                   . > < AluI
                                                  > < AfaI >< AfaI
 TTGTATTTAC ATCTTGCGAG CTATATCACT ATCAGGAGTG TGTTAGAGGT ACGACTGTAC TACTAAAAGA
                27320
                         27330
                                    27340 27350
                                                         27360
                                                                    27370
               >< MnlI >< HphI >< HphI
                                                        >< MnlI
ACCTTGCCCA TCAGGAACAT ACGAGGGCAA TTCACCATTT CACCCTCTTG CTGACAATAA ATTTGCACTA
     27380
                27390
                         27400
                                    27410
                                              27420
                                                         27430
                                                             Sau3AI > > < PvuII
                                                             > < Psp5I
                                                             > < NspBII
                                              >< TthHB8I
                                                                  NdeII >
                                            >< TaqI
                                                                   MboI >
                                           >< RsaI
                                                               >< Fnu4HI
                                          >< Csp6I
                                                                  DpnII >
      >< RmaI
                                               >< BbvI
                                                                  BspAI >
      >< MaeI
                                           >< AfaI
                                                             > < Aluī
ACTTGCACTA GCACACACTT TGCTTTTGCT TGTGCTGACG GTACTCGACA TACCTATCAG CTGCGTGCAA
     27450 27460
                         27470
                                             27490 27500
                                   27480
                                                                    27510
                                                     >< SstI
                                                     >< SduI
                                                     >< SacI
                                                     >< NspII
                                                     >< RgiAI
                                                     >< Eco24I
                                                  > < Ecl136II
                                                         >< BspWI
                                                     >< Bsp1286I
                                                     >< BmyI
>< Hphi
                                                     >< BanII
>< DpnI
                           >< MnlI
                                                     >< Alw21I
```

FIGURE 13. 63

```
>< Bsp143I
                        >< MnlI
                                                > < AluI
                                                           BbvI ><
 GATCAGTTTC ACCAAAACTT TTCATCAGAC AAGAGGAGGT TCAACAAGAG CTCTACTCGC CACTTTTTCT
                         27540 27550
      27520
               27530
                                             27560
                                                      27570
                                                              SstI ×
                                                              SduI ><
                                                              SacI ><
                                                             NspII ><
                                                             HgiAI ><
                                                            Eco24I ><
                                                        Ec1136II ><
                                                          Bsp1286I ><
                                                              BmyI ><
                     >< Tru9I
             >< RmaI
                                                             BanII ><
                                     >< Tru9I
>< MseI
             >< MaeI
                     >< MseI
                                                            Alw21I ><
                       >< HphI
        >< Fnu4HI
                                                            AluI ><
 CATTGTTGCT GCTCTAGTAT TTTTAATACT TTGCTTCACC ATTAAGAGAA AGACAGAATG AATGAGCTCA
               27600 27610
                               27620
                                            27630 27640
  >< Tru9I
                                                  >< Tru9I
  >< MseT
                                              >< MseI
 CTTTAATTGA CTTCTATTTG TGCTTTTTAG CCTTTCTGCT ATTCCTTGTT TTAATAATGC TTATTATATT
     27660
              27670 27680 27690
                                         27700
                                                      27710
                     >< XhoII
                        >< XbaI
                  > < ScrFI
                     >< Sau3AI
                        >< RmaI .
                     >< NdeII
                  > < MvaI
                     >< MflI
                     >< MboI
                >< EcoRII>< MaeI
                  > < Ecl136I
                     >< DpnII
                      >< DpnI
                     >< BstYI
                  > < BstOI
                  > < BstNI
                                    > < RsaI
>< MboII
           >< TthHB8I >< BspAI
                >< DsaV>< Bsp1431
          >< NlaIII
TTGGTTTTCA CTCGAAATCC AGGATCTAGA AGAACCTTGT ACCAAAGTCT AAACGAACAT GAAACTTCTC
                                                   27780 27790
    27730
              27740
                       27750
                                  27760
                                           27770
                                                 >< HinPlI
                                                 >< Hin6I
                                                   >< HhaI
                                             >< RsaI >< HaeII
                                       >< SfcI >< Eco47III
                                            >< Csp6I>< CfoI SfaNI ><
                                >< NdeI
                                             >< AfaI >< Bsp143II
ATTGTTTTGA CTTGTATTTC TCTATGCAGT TGCATATGCA CTGTAGTACA GCGCTGTGCA TCTAATAAAC
    27800
              27810
                      27820
                                 27830
                                           27840
                                                      27850
                                                               27860
            >< XhoII
            >< Sau3AI
            >< NdeII
       > < MnlI
            >< MflI
```

FIGURE 13.64

```
>< MboI
               >< DpnII
                >< DpnI
                          >< Rsaī
               >< BstYI >< MboII
      >< NlaIII>< BspAI >< Csp6I >< RmaI >< AlwI >< Bsp143I >< AfaI >< MaeI
 CTCATGTGCT TGAAGATCCT TGTAAGGTAC AACACTAGGG GTAATACTTA TAGCACTGCT TGGCTTTGTG
      27870
               27880 27890
                                   27900
                                               . 27910 27920

→ SduI

  >< RmaI
  >< NspII
  >< MaeI
 >< HgiAI
  >< Bsp1286I.
                                                        >< NspI
  >< BmyI
                                                        IRqaN ><
 >< Alw21I
                                                        >< NlaIII >< MaeIII
 CTCTAGGAAA GGTTTTACCT TTTCATAGAT GGCACACTAT GGTTCAAACA TGCACACCTA ATGTTACTAT.
      27940 27950 27960 27970 27980
                                                            27990 28000
         > < XhoII
      . > < Sau3AI > < Van91I
                                                  >< RsaI
                 >< PvuII

≫ NlaIV

                 >< Psp5I
                                                    >< KpnI >< NlaIII
         > < NdeII > < PflMI
                                                >< Eco641
                                                            >< MaeIII
         > < MflI>< NspBII
                                               >< Csp6I>< HphI
>< BscBI >< Eco0651
          < DpnII >< HinP1I >< Bsp143I >< Hin6I
         > < DpnII
                                                >< BanI >< BspHI
   > < BstYI > < BslI >< HhaI >< RmaI >< Asp718 >< Eco91I > < BspAI > < BsiYI>< CfoI >< MaeI >< AfaI >< BstPI >< BstPI >< MboI>< AluI>< BspWI >< Acc81I >< Acc87I >< AluI >< Acc65I >< BbvI
                                                            >< BbvI
CAACTGTCAA GATCCAGCTG GTGGTGCGCT TATAGCTAGG TGTTGGTACC TTCATGAAGG TCACCAAACT
     28010
               28020
                        28030
                                   28040
                                                 28050
                                                            28060
                                                                      28070
                                                                   >< SinI
                                                                   >< Sau961
                                                                   >< NspIV
                                                             NspHII ><
                                                               NlaIV ><
                                                                   >< Eco47I
                                                                   >< Cfr13I
                >< RsaI
                                                                   >< BsiZI
 >< Fnu4HI
             >< MaeII
                                                               BscBI ><
   >< Esp3I
             >< Csp6I
                            >< Tru9I
                                                                   >< Bme18I
   >< BsmAI
                >< BsmBI
                            >< MseI
                                                >< Tru9I
                            >< DraI
               >< AfaI
   >< Alw26I
                                                >< MseI
                                                                   >< AsuI
GCTGCATTTA GAGACGTACT TGTTGTTTTA AATAAACGAA CAAATTAAAA TGTCTGATAA TGGACCCCAA
               28090 28100
    28080
                                 28110 28120 28130 28140
                                       >< SinI
                                       >< Sau96I
                                       >< NspIV
                                        >< NspHII
                                        >< NlaIV
                                       >< Eco47I
                                      >< Cfr13I
                 >< SduI
                                      >< BsiZI
                 >< NspII
                                        >< BscBI
                 >< Bsp1286I
                                      >< Bme18I
                 >< BmyI
                                      >< AvaII >< TfiI
                  >< AciI
       >< MaeII
                                      >< AsuI
                                                >< HinfI
                                                                  >< MnlI
                                 FIGURE 13. 65
```

```
TCAAACCAAC GTAGTGCCCC CCGCATTACA TTTGGTGGAC CCACAGATTC AACTGACAAT AACCAGAATG
      28150
                 28160
                           28170
                                    28180
                                                28190
                                                          28200
                                                                     28210
                              >< HinPlI >< StyI
                                  >< HaeII
                    > < Pall >< Hin6I >< EcoT14I
                    > < HaeIII >< HhaI>< Ecol30I
                          >< BspWI >< BssTlI
                    > < BsuRI
                                 >< Bsp143II
             >< HgaI> < BshI
                                 >< CfoI>< BsaJI
                                                   >< HgaI
 GAGGACGCAA TGGGGCAAGG CCAAAACAGC GCCGACCCCA AGGTTTACCC AATAATACTG CGTCTTGGTT
      28220
                28230
                         28240
                                     28250
                                                28260
                                                       · 28270
                                        >< TthHB8I
                                                   > < ScrFI
                                                  >< PalI
                                            >< PaeR7I
                                            >< NspIII
                                                   > < MvaI
                                                  >< HaeIII
                                                  >< EcoRII
                                            >< Eco88I
                                            >< XhoI > < Ecl136I
                                                 >< DsaV
                                                 >< BsuRI
                                            >< SlaI > < BstOI
                                      >< MnlI>< TagI> < BstNI
                                           >< CcrI > < BsiLI
                                     >< Hinfl
                                                 >< BshI
                                     >< Tfil>< Bcol>< BsaJI
                 >< MnlI
                                 >< DdeI
                                           >< AvaI > < ApyI
    >< AluI >< DdeI > < NlaIII
                                >< BfrI
                                           >< Ama87I >< MnlI
CACAGCTCTC ACTCAGCATG GCAAGGAGGA ACTTAGATTC CCTCGAGGCC AGGGCGTTCC AATCAACACC
     28290
               28300
                          28310
                                     28:320
                                               28330
                                                          28340
                                                                     28350
      >< SinI
      >< Sau96I
      >< NspIV
      >< NspHII
      >< Eco471
      >< Cfr13I
     >< BsiZI
     >< Bme18I
                             > < Ksp632I
     >< AvaII
                             > < Eam1104I
     >< AsuI
                             > < Earl > < Alul>< MboII
                                                                >< MaeIII
AATAGTGGTC CAGATGACCA AATTGGCTAC TACCGAAGAG CTACCCGACG AGTTCGTGGT GGTGACGGCA
                                               28400
    28360
               28370
                          28380
                                    28390
                                                          28410
            >< SstI
            >< SduI
            >< SacI
            >< NspII
            >< HgiAI
          >< EspI
            >< Eco24I
                                                 >< Sau96I
          >< Ec1136II
                                      >< StyI
                                                 >< PalI
           >< DdeI
                                      >< RmaI
                                                 >< NspIV
           >< CelII
                                                 >< HaeIII
                                       >< MaeI
           >< Bsp1286I
                                      >< EcoT14I >< Cfr13I
           >< Bpu1102I
                                      >< Ecol30I >< BsuRI
           >< Bmyl
                                      >< BssTlI
                                                  > < BsrI
           >< BanII
                          >< RsaI
                                      >< BsaJI >< BsiZI
                                FIGURE 13.66
```

```
>< Alw21I
                          >< Csp6I
                                     >< BlnI
                                                >< BshI>< HindIII
   >< HphI >< AluI
                          >< AfaI
                                     >< AvrII >< AsuI >< AluI
 AAATGAAAGA GCTCAGCCCC AGATGGTACT TCTATTACCT AGGAACTGGC CCAGAAGCTT CACTTCCCTA
  28430 28440
                      28450 28460
                                            28470
                                                      28480
   >< HinPlI
   >< Hin6I
     >< HhaI
     >< HaeII
                            > < MnlI
                                          >< NlaIV
     >< Bsp143II
                          >< SfaNI >< DdeI >< BscBI
 CGGCGCTAAC AAAGAAGGCA TCGTATGGGT TGCAACTGAG GGAGCCTTGA ATACACCCAA AGACCACATT
     28500
              28510
                         28520 28530 28540 28550
  >< NlaIV
 >< Eco641
  >< BscBI
 >< BanT
     >< Aci T
 >< AccBlI >< BbvI
                         >< Fnu4HI
                                                       >< MnlI
 GGCACCCGCA ATCCTAATAA CAATGCTGCC ACCGTGCTAC AACTTCCTCA AGGAACAACA TTGCCAAAAG
     28570
               28580 28590
                                 28600 28610
                                                      28620
                                                                 28630
                                                          >< MnlI
                                                       >< MaeII >< MvnI
                                              >< MnlI
                                                        BstUI ×
                        >< Fnu4HI
                                           >< Ksp632I
                                                         Bsp50I →
                        >< BspWI
                                           >< Earl
                                                        >< BsaAI>< AciI
   >< MnlI
             >< MnlI
                        >< Acil>< MboII
                                           >< Eam1104I
                                                         AccII ><
 GCTTCTACGC AGAGGGAAGC AGAGGCGGCA GTCAAGCCTC TTCTCGCTCC TCATCACGTA GTCGCGGTAA
     28640
              28650
                        28660
                                 28670
                                            28680
                                                       28690
                                                                 28700
                >< ScrFI
               · >< MvaI
               >< EcoRII
                                            >< TthHB8I
                >< Ec1136I
                                                   >< RmaI
               >< DsaV>< Fnu4HI
                                                    >< NheI
                >< BstOI
                                                   >< MnlI
                >< BstNI
                                                     >< MaeT
                >< BsiLI
                                                > < BspWI
                >< ApyI
                                >< BbvI
                                            >< TagI >< AciI
TTCAAGAAAT TCAACTCCTG GCAGCAGTAG GGGAAATTCT CCTGCTCGAA TGGCTAGCGG AGGTGGTGAA
  28710
              28720 28730
                                  28740
                                             28750
                                                      28760
        > < ThaI
        > < MvnI
     >< HphI >< MnlI
        > < HinPlI
        > < Hin6I
          >< KhaI
        > < BstUI
                    >< RmaI
                                                           PalI ><
                   >< MaeI
        > < Bsp501
                                                          HaeIII ><
   >< BbvI >< CfoI>< Fnu4HI
                                                          BsuRI ><
      > < AccII>< BspWI
                                   · >< AluI
                                                           BshI ><
ACTGCCCTCG CGCTATTGCT GCTAGACAGA TTGAACCAGC TTGAGAGCAA AGTTTCTGGT AAAGGCCAAC
    28780
           28790
                       28800
                                 28810
                                            28820
                                                      28830
                                                               28840
                                                              RsaI ><
       > < Pall>< MaeIII
                                                              >< MnlI
       > < HaeIII
                                >< Fnu4HI
                                                          MaeII ><
       > < BsuRI
                     >< DdeI
                                 >< DdeI
                                                          >< IðgeD
                              FIGURE 13.67
```

```
> < BshI > < BbvI
                                 >< Sfani
                                                                   AfaI ><
  AACAACAAGG CCAAACTGTC ACTAAGAAAT CTGCTGCTGA GGCATCTAAA AAGCCTCGCC AAAAACGTAC
       28850
                 28860
                           28870
                                      28880
                                                28890
                                                           28900
                                                                      28910
                                             >< Tth111I
                                              >< SinI
                                              >< Sau96I
                                              >< NspIV
                                               >< NspHII
                                          > < MaeII
                                              >< Eco47I
                                              >< Cfr13I
                                             >< BsmBI
               >< RsaI
                                              >< BsiZI
                   >< MaeIII
                                              >< Bme18I
                                                             × EcoT14I
                  >< MaeII
                                 >< Esp3I
                                              >< AvaII
                                                             >< Eco130I
              >< Csp6I
                                 >< BsmAI
                                              >< AsuI
                                                             >< BssTlI
              >< AfaI
                                >< Alw26I> < AspI
                                                            >< BsaJI
 TGCCACAAAA CAGTACAACG TCACTCAAGC ATTTGGGAGA CGTGGTCCAG AACAAACCCA AGGAAATTTC
      28920
                28930
                          28940
                                     28950
                                                28960
                                                           28970
   >< SinI
   >< Sau96I
   >< NspIV
   >< NspHII
   >< NlaIV
>< Eco47I

→ PalI

                                               >< HaeIII
   >< Cfr13I
                                             >< GdiII
  >< BsiZI
                                                >< Fnu4HI
   >< BscBI
                                             >< Eael
  >< Bmel8I
                                              >< BsuRI
  >< AvaII
                                               >< BshI
                                                                   BspWI >
  >< AsuI
                                                >< Acii
                                                                >< BspWI
 GGGGACCAAG ACCTAATCAG ACAAGGAACT GATTACAAAC ATTGGCCGCA AATTGCACAA TTTGCTCCAA
     28990
                29000 . 29010
                                    29020
                                               29030
                                                          29040
        >< BsmI
                                       >< NlaIII
    >< BscCI >< MnlI >< MaeIII
                                        >< MaeIII
                                                                >< NlaIII
GTGCCTCTGC ATTCTTTGGA ATGTCACGCA TTGGCATGGA AGTCACACCT TCGGGAACAT GGCTGACTTA
   29060
               29070
                          29080
                                     29090
                                               29100
                                                          29110
                                                                     29120
                            >< XhoII
                            >< Sau3AI
                            >< NdeII
                            >< MflI
                            >< MboI
                                >< FokI
           >< Tru9I
                            >< DpnII
     >< NlaIV
                            > < DpnI
    >< NlaIII
                            >< BstYI
                                                >< Tth1111
          >< MseI
                            >< BspAI
                                                 >< MaeII
     >< BscBI >< BstXI>< AlwI> < Bsp143I
                                              >< AspI
                                                            BspWI ><
TCATGGAGCC ATTAAATTGG ATGACAAAGA TCCACAATTC AAAGACAACG TCATACTGCT GAACAAGCAC
    29130 . 29140
                                                      29180
                          29150
                                    29160
                                               29170
                                                                    29190
                                                                 EspI ><
                                                                 DdeI ><
                                                                 CelII ><
                                                              Bpu1102I ><
            >< HgaI
                                                                AluI ><
ATTGACGCAT ACAAAACATT CCCACCAACA GAGCCTAAAA AGGACAAAAA GAAAAAGACT GATGAAGCTC
    29200
              29210
                         29220
                                    29230
                                               29240
                                                          29250
                                                                   29260
```

FIGURE 13.68

```
>< PleI
        >< Fnu4HI
                                    >< MboII
       >< BspWI
                                  >< MboII
                                               >< Ksp632I >< GsuI
       >< BsmAI
                                   >< MaeIII >< Earl>< Fnu4HI
                          >< HinfI >< Eaml104I>< BpmI
>< Fnu4HI >< BbvI >< AciI >< NlaIII
       >< Alw26I
        >< Acil
 AGCCTTTGCC GCAGAGACAA AAGAAGCAGC CCACTGTGAC TCTTCTTCCT GCGGCTGACA TGGATGATTT
      29270 29280
                         29290
                                   29300
                                              29310
                                                        29320
                                                                   29330
                         >< NlaIII
                                          >< HinfI
                                                             NlaIII ><
                           → AluI → TfiI>< DdeI
    >< FokI
                                                                >< BspHI
 CTCCAGACAA CTTCAAAATT CCATGAGTGG AGCTTCTGCT GATTCAACTC AGGCATAAAC ACTCATGATG
     29340
               29350
                       29360
                                    29370
                                              29380
                                                        29390
                                                        >< AccI
                           >< MaeII
 ACCACACAAG GCAGATGGGC TATGTAAACG TTTTCGCAAT TCCGTTTACG ATACATAGTC TACTCTTGTG
     29410 29420
                       29430
                                   29440
                                             29450
                                                        29460
                                                >< Tru9I
                                          >< Tru9I
                                                >< MseI
                                          >< MseI
      >< XmnI
                                           >< HpaI
      >< EcoRI>< MaeIII
                                           >< HindII
                                                               Tru9I ><
      >< Asp700I >< BsgI
                                           >< HincII
CAGAATGAAT TCTCGTAACT AAACAGCACA AGTAGGTTTA GTTAACTTTA ATCTCACATA GCAATCTTTA
     29480
              29490
                         29500 29510
                                              29520
                                                        29530
                                                                  29540
                                                                 XorII >
                                                               TthH881 >
                                                                  Tagl >.
                                                             Sau3AI ><
                                                             RsaI ><
                                                           >< ThalPvul >
                                                              NdeII ><
                                                                 >< MnlI
                                                           >< MvnIMcrI >
                                                              MboI ><
                                                              DpnII ><
                                                                DpnI ><
                                                           Csp6I ><
                                                           >< BstUI
                                                      >< HaeIII BspCI >
                                                             BspAI ><
                                                 >< TthHB8I >< Bsp50I
                                                      >< Pall Bsp143I ><
                                                      >< BsuRI BsiEI >
                                                      >< BshIAfaI ><
          >< MnlI
                                                 >< TaqI >< AciI
     >< MaeIII
                                           >< MnlI
                                                          >< AccII
ATCAATGTGT AACATTAGGG AGGACTTGAA AGAGCCACCA CATTTTCATC GAGGCCACGC GGAGTACGAT
  29550
              29560
                         29570
                                   29580
                                              29590
                                                       29600

→ SduI

                                                 >< NspII
                                                     >< MboII >< VspI
                                    >< Ksp632I
                                                >< Eco24I
                                                               >< Tru9I
    >< RsaI
                    >< RmaI
                              >< Fnu4HI
                                                >< Bsp1286I
                                                               >< MseI
    >< Csp6I
                    >< MaeI
                                   >< EarI
                                                >< BmyI
                                                               >< AsnI
    >< AfaI
               >< BbvI > < AluI>< Eaml104I >< BanII
                                                               >< AseI
```

Patent Application Publication Nov. 29, 2007 Sheet 83 of 116 US 2007/0275002 A1

CGAGGGTACA GTGAATAATG CTAGGGAGAG CTGCCTATAT GGAAGAGCCC TAATGTGTAA AATTAATTTT 29620 29630 29640 29650 29660 29670 29680

>< Tru9I >< DdeI
>< MseI >< BfrI</pre>

>< NlaIII > < AluI

•

FIGURE 21

FIGURE 22

A.

B.

FIGURE 24

FIGURE 25

FIGURE 26

FIGURE 27 A-C

FIGURE 27 D

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

Patent Application Publication Nov. 29, 2007 Sheet 103 of 116 US 2007/0275002 A1

I-3059 S-040530	1 CTCTTCTGGAAAAAGGTAGGCTTATCATTAGAGAAAACAACAGAGTTGTGGTTTCAAGTG
I-3059 S-040530	61 ATATTCTTGTTAACAACTAAACGAACATGTTTATTTTCTTATTATTTCTTACTCTCACTA 1
I-3059 S-040530	121 GTGGTAGTGACCTTGACCGGTGCACCACTTTTGATGATGTTCAAGCTCCTAATTACACTC 44 "C""C""C""C""C""C""C""C""C""C""C""C""C"
I-3059 S-040530	181 AACATACTT_CATCTATGAGGGGGGTTTACTATCCTGATGAAATTTTTAGATCAGACACT 104 "G""C""CAG""G"_""G"_"""C""G"G""C""C""C""C""G""C""G"C""GGGC""""C
I-3059 S-040530	240 CTTTATTTAACTCAGGATTTATTTCTTCCATTTTATTCTAATGTTACAGGGTTTCATACT 163 ""G""CC"G""C"""C""C"G""C""G""C""C"G""C""C
1-3059 S-040530	300 ATTAATCATACGTTTGGCAACCCTGTCATACCTTTTAAGGATGGTATTTATT
I-3059 S-040530	360 ACAGAGAATCAAATGTTGTCCGTGGTTGGGTTTTTGGTTCTACCATGAACAACAAGTCA 283 ""C"""""GAGC""C""G""G""G""C"""""G""C""CAGC""""""""
I-3059 S-040530	420 CAGTCGGTGATTATTATTAACAATTCTACTAATGTTGTTATACGAGCATGTAACTTTGAA 343 """AGC"""""C""C""C""""CAGC""C""C""C""G""G""C""G""C""C""C""C""C""
I-3059 S-040530	480 TTGTGTGACAACCCTTTCTTTGCTGTTTCTAAACCCATGGGTACACAGACACATACTATG 403 C""""C""""C"""""C"""""C"""""C"""""C"""""
I-3059 S-040530	540 ATATTCGATAATGCATTTAATTGCACTTTCGAGTACATATCTGATGCCTTTTCGCTTGAT 463 ""C""""""""""""""""""""""""""""""""""
I-3059 S-040530	600 GTTTCAGAAAAGTCAGGTAATTTTAAACACTTACGAGAGTTTGTGTTTAAAAATAAAGAT 523 ""GAGC""G"""AGC""C""C""C""G"""G""G""G""G""G""C""G""C""G""C""G""C""G""C""G""C""G""G
I-3059 S-040530	660 GGGTTTCTCTATGTTTATAAGGGCTATCAACCTATAGATGTAGTTCGTGATCTACCTTCT 583 ""C""C""G""C""G""C""G""C""G""C"G""C"G"
I-3059 S-040530	720 GGTTTTAACACTTTGAAACCTATTTTTAAGTTGCCTCTTGGTATTAACATTACAAATTTT 643 ""C""C"""""CC"""""G""C""C""C""C""C""C""C
I-3059 S-040530	780 AGAGCCATTCTTACAGCCTTTTCACCTGCTCAAGACATTTGGGGCACGTCAGCTGCAGCC 703 C"G"""""C"""G"""C"""G""""C"""G""""C""""C""""C""""C""""""
I-3059 S-040530	840 TATTTTGTTGGCTATTTAAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACA 763 ""C""C""G""""C""C""C""C""C""C""C""C""C""
I-3059 S-040530	900 ATCACAGATGCTGTTGATTGTTCTCAAAATCCACTTGCTGAACTCAAATGCTCTGTTAAG 823 ******C""C""G""C""CAGC""G""C""C""C""G""G""G""G""AGC""G"""
I-3059 S-040530	960 AGCTTTGAGATTGACAAAGGAATTTACCAGACCTCTAATTTCAGGGTTGTTCCCTCAGGA 883 mmuuguunuuguuguuguuguuguuguuguuguuguuguugu
I-3059 S-040530	1020 GATGTTGTGAGATTCCCTAATATTACAAACTTGTGTCCTTTTGGAGAGGTTTTTAATGCT 943 nannagnaacugununcununcununcununcunucunucunucunucu
I-3059 S-040530	1080 ACTAAATTCCCTTCTGTCTATGCATGGGAGAGAAAAAAATTTCTAATTGTGTTGCTGAT 1003 ""C""G"""""CAGC""G""C""C""C""C""C""G""G""G""CAGCC""C""C""C""C""C""C""C""C""C""C""C""C"
I-3059 S-040530	1140 TACTCTGTGCTCTACAACTCAACATTTTTTTCAACCTTTAAGTGCTATGGCGTTTCTGCC 1063 """AGC""""""GIRUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
I-3059 S-040530	1200 ACTAAGTTGAATGATCTTTGCTTCCCAATGTCTATGCAGATTCTTTTGTAGTCAAGGGA 1123 ""C""C""C""C""G""G"""C""C""C""CAGC""C""G""C""C""C""C""C""C""C""C""C""C""
I-3059 S-040530	1260 GATGATGTAAGACAAATAGCGCCAGGACAAACTGGTGTTATTGCTGATTATAATTATAAA 1183 ""C""C""G""G""G""G""C""C""C""C""C""C""C"

Patent Application Publication Nov. 29, 2007 Sheet 104 of 116 US 2007/0275002 A1

1-3059 S-040530	1320 TTGCCAGATGATTTCATGGGTTGTGTCCTTGCTTGGAATACTAGGAACATTGATGCTACT 1243 C""""C""C""C""C""""""""C""C""C"""G""G""C"""""C""C
1-3059 S-040530	1380 TCAACTGGTAATTATAATTATAAATATAGGTATCTTAGACATGGCAAGCTTAGGCCCTTT 1303 AGC""C""C""C""C""C""C""C""C""G""CC"C""C""
I-3059 S-040530	1440 GAGAGAGACATATCTAATGTGCCTTTCTCCCCTGATGGCAAACCTTGCACCCCACCTGCT 1363 """C"G"""""C"""""C""""""C"""""C"""""C"""""C""""
I-3059 S-040530	1500 CTTAATTGTTATTGGCCATTAAATGATTATGGTTTTTACACCACTACTGGCATTGGCTAC
I-3059 S-040530	1560 CAACCTTACAGAGTTGTAGTACTTTCTTTTGAACTTTTAAATGCACCGGCCACGGTTTGT 1483 ""G""C""""""""""""""""""""""""""""""""
I-3059 S-040530	1620 GGACCAAAATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTTAATGGA 1543 ""C""C""GC"GAG"""C"""C"""C""C""C""C""C""C""C""C""C""C
I-3059 S-040530	1680 CTCACTGGTACTGGTGTGTTAACTCCTTCTTCA AAGAGATTTCAACCATTTCAACAAT 1603 ""G""C""C""C""C""C""C""G""C"""C""C""C""G""G
I-3059 S-040530	1738 TTGGCCGTGATGTCTCTGATTTCACTGATTCCGTTCGAGATCCTAAAACATCTGAAATAT 1661 "C""""G"G""""GAGC""C""C""C""CAG"""G""C""C""C""C""C""G""C"C""G""CAGC""G"""C""C""C""G""C""C""G""G
1-3059 S-040530	1798 TAGACATTTCACCTTGCTCTTTTTGGGGGTGTAAGTGTAATTACACCTGGAACAAATGCTT 1721 "G"""""CAGC""C"""AGC""C""C""C""C""C""GTCC""G""C""C""C""C""C""C"
I-3059 S-040530	1858 _CATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGATGTTTCTACAGCAATC
I-3059 S-040530	1917 CATGCAGATCAACTCACCAGCTTGGCGCATATATTCTACTGGAAACAATGTATTCCAG
I-3059 S-040530	1977 ACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGTCGACACTTCTTATGAGTGCGACATT 1900 ""C""G""C"""C""G""C""G""C""C""C""C""C""G"""C""G""C""C
I-3059 S-040530	2037 CCTATTGGAGCTGGCATTTGTGCTAGTTACCATACAGTTTCTTTATTACGTAGTACTAGC
I-3059 S-040530	2097 CAAAAATCTATTGTGGCTTATACTATGTCTTTAGGTGCTGATAGTTCAATTGCTTACTCT 2020 ""G""C""C""C""C""C""C""AGCC"G""C""C""C""C""C""C""C""C""
I-3059 S-040530	2157 AATAACACCATTGCTATACCTACTAACTTTTCAATTAGCATTACTACAGAAGTAATGCCT 2080 ""C"""""""""""""""""""""""""""""""""
I-3059 S-040530	2217 GTTTCTATGGCTAAAACCTCCGTAGATTGTAATATGTACATCTGCGGAGATTCTACTGAA 2140 ""GAGC""""CAGC"""CAGC""""CAGC"""CAGC"""CAGC"""CAGC""""CAGC""""CAGC""""CAGC""""CAGC""""""""
I-3059 S-040530	2277 TGTGCTAATTTGCTTCTCCAATATGGTAGCTTTTGCACACAACTAAATCGTGCACTCTCA 2200 ""C""C""CC""""G""G""G""C""C""C""C"""G""C"""G"GGGC
I-3059 S-040530	2337 GGTATTGCTGCTGAACAGGATCGCAACACACGTGAAGTGTTCGCTCAAGTCAAACAAA
I-3059 S-040530	2397 TACAAAACCCCAACTTTGAAATATTTTGGTGGTTTTTAATTTTTCACAAATATTACCTGAC 2320 ""T""G"""""C""CC"""""""""""""""""""""""
I-3059 S-040530	2457 CCTCTAAAGCCAACTAAGAGGTCTTTTATTGAGGACTTGCTCTTTAATAAGGTGACACTC 2380 """""G"#""""""""""""""""""""""""""""""
I-3059 S-040530	2517 GCTGATGCTGGCTTCATGAAGCAATATGGCGAATGCCTAGGTGATATTAATGCTAGAGAT 2440 ""C""C""C""C"""C"""C""C""C""C""C""C""C"
1-3059 S-040530	2577 CTCATTTGTGCGCAGAAGTTCAATGGGCTTACAGTGTTGCCACCTCTGCTCACTGATGAT 2500 ""G""C""C""C""C""C""C""C""C""C""C""C""C"
I-3059 S-040530	2637 ATGATTGCTGCCTACACTGCTGCTTAGTTAGTGGTACTGCCACTGCTGGATGGA

Patent Application Publication Nov. 29, 2007 Sheet 105 of 116 US 2007/0275002 A1

I-3059 S-040530	2697 GGTGCTGGCGCTGCTCTTCAAATACCTTTTGCTATGCAAATGGCATATAGGTTCAATGGC 2620 ""A""C""A""C""G""G""G""C""C""C""C""C""C""C""C""C"
I-3059 S-040530	2757 ATTGGAGTTACCCAAAATGTTCTCTATGAGAACCAAAAACAAATCGCCAACCAA
I-3059 S-040530	2817 AAGGCGATTAGTCAAATTCAAGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTG 2740 """""C""C""C""G""C""G""GAGC""G""C"""C"""
I-3059 S-040530	2877 CAAGACGTTGTTAACCAGAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCT 2800 ""G""""G"""G""""""""""""""""""""""""
I-3059 S-040530	2937 AATTTTEGTGCAATTTCAAGTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAG 2860 ""C""C""C""C""C""C""CAGCTC""""""""""""""
1-3059 S-040530	2997 GCGGAGGTACAAATTGACAGGCTAATTACAGGCAGACTTCAAAGCCTTCAAACCTATGTA 2920 ""C""A""G""G""C"""C""AC"C""AC"C""G""GTC"""G""G""G""G""G""G""G""G""G""G""G""G""
I-3059 S-0405 30	3057 ACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCTGCTAATCTTGCTGCTACTAAA 2980 **C."G""G""G""R""R""R""C""C""G"""C""C""G"""CAGC""C""B""G""C""C""C""G""
I-3059 S-040530	3117 ATGTCTGAGTGTGTTCTTGGACAATCAAAAAGAGTTGACTTTTGTGGAAAGGGCTACCAC 3040 ""AGC"""""C"""G""G""C""GAGC""G"""""G"C""C""C""C"""C"
I-3059 S-040530	3177 CTTATGTCCTTCCCACAAGCAGCCCCCGCATGTGTTGTCTTCCTACATGTCACGTATGTG 3100 ungnnagnnanncunguuCmannaCuuCuuCuuCuuGuuBaunaguuCuuCuuCuu
I-3059 S-040530 .	3237 CCATCCCAGGAGGAACTTCACCACAGCGCCAGCAATTTGTCATGAAGGCAAAGCATAC 3160 ""TAG"##################################
I-3059 S-040530	3297 TTCCCTCGTGAAGGTGTTTTTGTGTTTAATGGCACTTCTTGGTTTATTACACAGAGGAAC 3220 nnnuuCnuGunGunCunGunCungundunkCununuCAGCununuCunCunCunCunuCunCununu
I-3059 S-040530	3357 TTCTTTTCTCCACAAATAATTACTACAGACAATACATTTGTCTCAGGAAATTGTGATGTC 3280 UURRUCAGCARCUNGUNCHICHICHICHICHICHICHICHICHICHICHICHICHIC
I-3059 S-040530	3417 GTTATTGGCATCATTAACAACACAGTTTATGATCCTCTGCAACCTGAGCTTGACTCATTC 3340 ""G""C""""""""""""""""""""""""""""""""
I-3059 S-040530	3477 AAAGAAGACTGGACAAGTACTTCAAAAATCATCACCAGATGTTGATCTTGGCGAC 3400 mugnugnununununnungnunnungnucnucnucnucnucnucnugnununn
I-3059 S-040530	3537 ATTTCAGGCATTAACGCTTCTGTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAG 3460 ""CAGC"""""C"""""""""""""""""""""""""""
I-3059 S-040530	3597 GTCGCTAAAAATTTAAATGAATCACTCATTGACCTTCAAGAATTGGGAAAATATGACCAA 3520 ""G""C""G""CC"G""C""GAGC""G""C"""""G""G""G""G""C""""""G""C""""""
I-3059 S-040530	3657 TATATTAAATGGCCTTGGTATGTTTGGCTCGGCTTCATTGCTGGACTAATTGCCATCGTC 3580 ***C***C***G*******C***G**************
I-3059 S-040530	3717 ATGGTTACAATCTTGCTTGTTGCATGACTAGTTGTTGCAGTTGCCTCAAGGGTGCATGC 3640 """""G""C"""C"""G""C"""G""C""""G""C""""C""""C"""T""C""""T""C""""A""C"""A""C""""
I-3059 S-040530	3777 TCTTGTGGTTCTTGCTGCAAGTTTGATGAGGATGACTCTGAGCCAGTTCTCAAGGGTGTC 3700 AGC""""CAGC""""""C""""C"""""C""""""""""
I-3059 S-040530	3837 AAATTACATTACACATAAACGAACTTATGGATTTGTTTATGAGATTTTTTACTCTTGGAT 3760 ""GC"G""C"""""C"G"T""""CGA"
I-3059 S-040530	.3897 CAATTACTGCACAGCCAGTAAAAATTGACAATGCTTCTCCTGCAAGT

FIGURE 33

CATATG AGC [T]₂₀GGCATATAAATA GACTC GGCGCGCC AT CTGCAG

Nde1 promoteur 480 Asc1 Pst1

FIGURE 34 A-C

FIGURE 34 D

FIGURE 35

A.

B.

FIGURE 36

FIGURE 37

serums

FIGURE 38

B.

FIGURE 39

FIGURE 41

FIGURE 42

FIGURE 43

USE OF PROTEINS AND PEPTIDES ENCODED BY THE GENOME OF A NOVEL SARS-ASSOCIATED CORONAVIRUS STRAIN

[0001] The present invention relates to a novel strain of severe acute respiratory syndrome (SARS)-associated coronavirus derived from a sample recorded under No. 031589 and collected in Hanoi (Vietnam), to nucleic acid molecules derived from its genome, to the proteins and peptides encoded by said nucleic acid molecules and to their applications, in particular as diagnostic reagents and/or as vaccine

[0002] Coronavirus is a virus containing single-stranded RNA, of positive polarity, of approximately 30 kilobases which replicates in the cytoplasm of the host cells; the 5' end of the genome has a capped structure and the 3' end contains a polyA tail. This virus is enveloped and comprises, at its surface, peplomeric structures called spicules.

[0003] The genome comprises the following open reading frames or ORFs, from its 5' end to its 3' end: ORF1a and ORF1b corresponding to the proteins of the transcription-replication complex, and ORF-S, ORF-E, ORF-M and ORF-N corresponding to the structural proteins S, E, M and N. It also comprises ORFs corresponding to proteins of unknown function encoded by: the region situated between ORF-S and ORF-E and overlapping the latter, the region situated between ORF-M and ORF-N, and the region included in ORF-N.

[0004] The S protein is a membrane glycoprotein (200-220 kDa) which exists in the form of spicules or spikes emerging from the surface of the viral envelope. It is responsible for the attachment of the virus to the receptors of the host cell and for inducing the fusion of the viral envelope with the cell membrane.

[0005] The small envelope protein (E), also called sM (small membrane), which is a nonglycosylated transmembrane protein of about 10 kDa, is the protein present in the smallest quantity in the virion. It plays a powerful role in the coronavirus budding process which occurs at the level of the intermediate compartment in the endoplasmic reticulum and the Golgi apparatus.

[0006] The M protein or matrix protein (25-30 kDa) is a more abundant membrane glycoprotein which is integrated into the viral particle by an M/E interaction, whereas the incorporation of S into the particles is directed by an S/M interaction. It appears to be important for the viral maturation of coronaviruses and for the determination of the site where the viral particles are assembled.

[0007] The N protein or nucleocapsid protein (45-50 kDa) which is the most conserved among the coronavirus structural proteins is necessary for encapsidating the genomic RNA and then for directing its incorporation into the virion. This protein is probably also involved in the replication of the RNA.

[0008] When the host cell is infected, the reading frame (ORF) situated in 5' of the viral genome is translated into a polyprotein which is cleaved by the viral proteases and then releases several nonstructural proteins such as the RNA-dependent RNA polymerase (Rep) and the ATPase helicase (Hel). These two proteins are involved in the replication of the viral genome and in the generation of transcripts which

are used in the synthesis of the viral proteins. The mechanisms by which these subgenomic mRNAs are produced are not completely understood; however, recent facts indicate that the sequences for regulation of transcription at the 5' end of each gene represent signals which regulate the discontinuous transcription of the subgenomic mRNAs.

[0009] The proteins of the viral membrane (S, E and M proteins) are inserted into the intermediate compartment, whereas the replicated RNA (+ strand) is assembled with the N (nucleocapsid) protein. This protein-RNA complex then combines with the M protein contained in the membranes of the endoplasmic reticulum and the viral particles form when the nucleocapsid complex buds into the endoplasmic reticulum. The virus then migrates across the Golgi complex and eventually leaves the cell, for example by exocytosis. The site of attachment of the virus to the host cell is at the level of the S protein.

[0010] Coronaviruses are responsible for 15 to 30% of colds in humans and for respiratory and digestive infections in animals, especially cats (FIPV: Feline infectious peritonitis virus), poultry (IBV: Avian infectious bronchitis virus), mice (MHV: Mouse hepatitis virus), pigs (TGEV: Transmissible gastroenterititis virus, PEDV: Porcine Epidemic diarrhea virus, PRCoV: Porcine Respiratory Coronavirus, HEV: Hemagglutinating encephalomyelitis Virus) and bovines (BCoV: Bovine coronavirus).

[0011] In general, each coronavirus affects only one species; in immunocompetent individuals, the infection induces optionally neutralizing antibodies and cell immunity, capable of destroying the infected cells.

[0012] An epidemy of atypical pneumonia, called severe acute respiratory syndrome (SARS) has spread in various countries (Vietnam, Hong Kong, Singapore, Thailand and Canada) during the first quarter of 2003, from an initial focus which appeared in China in the last quarter of 2002. The severity of this disease is such that its mortality rate is about 3 to 6%. The determination of the causative agent of this disease is underway by numerous laboratories worldwide.

[0013] In March 2003, a new coronavirus (SARS-CoV or SARS virus) was isolated, in association with cases of severe acute respiratory syndrome (T. G. KSIAZEK et al., The New England Journal of Medicine, 2003, 348, 1319-1330; C. DROSTEN et al., The New England Journal of Medicine, 2003, 348, 1967-1976; Peiris et al., Lancet, 2003, 361, 1319).

[0014] Genomic sequences of this new coronavirus have thus been obtained, in particular those of the Urbani isolate (Genbank accession No. AY274119.3 and A. MARRA et al., Science, May 1, 2003, 300, 1399-1404) and the Toronto isolate (Tor2, Genbank accession No. AY278741 and A. ROTA et al., Science, 2003, 300, 1394-1399).

[0015] The organization of the genome is comparable with that of other known coronaviruses, thus making it possible to confirm that SARS-CoV belongs to the Coronaviridae family; open reading frames ORF1a and 1b and open reading frames corresponding to the S, E, M and N proteins, and to proteins encoded by: the region situated between ORF-S and ORF-E (ORF3), the region situated between ORF-S and ORF-E and overlapping ORF-E (ORF4), the region situated between ORF-M and ORF-N (ORF7 to

ORF11) and the region corresponding to ORF-N (ORF13 and ORF14), have in particular been identified.

[0016] Seven differences have been identified between the sequences of the Tor2 and Urbani isolates; 3 correspond to silent mutations (c/t at position 16622 and a/g at position 19064 of ORF1b, t/c at position 24872 of ORF-S) and 4 modify the amino acid sequence of respectively: the proteins encoded by ORF1a (c/t at position 7919 corresponding to the A/V mutation), the S protein (g/t at position 23220 corresponding to the A/S mutation), the protein encoded by ORF3 (a/g at position 25298 corresponding to the R/G mutation) and the M protein (t/c at position 26857 corresponding to the S/P mutation).

[0017] In addition, phylogenetic analysis shows that SARS-CoV is distant from other coronaviruses and that it did not appear by mutation of human respiratory coronaviruses nor by recombination between known coronaviruses (for a review, see Holmes, J. C. I., 2003, 111, 1605-1609).

[0018] The determination and the taking into account of new variants are important for the development of reagents for the detection and diagnosis of SARS which are sufficiently sensitive and specific, and immunogenic compositions capable of protecting populations against epidemics of SARS.

[0019] The inventors have now identified another strain of SARS-associated coronavirus which is distinguishable from the Tor2 and Urbani isolates.

[0020] The subject of the present invention is therefore an isolated or purified strain of severe acute respiratory syndrome-associated human coronavirus, characterized in that its genome has, in the form of complementary DNA, a serine codon at position 23220-23222 of the gene for the S protein or a glycine codon at position 25298-25300 of the gene for ORF3, and an alanine codon at position 7918-7920 of ORF1a or a serine codon at position 26857-26859 of the gene for the M protein, said positions being indicated in terms of reference to the Genbank sequence AY274119.3.

[0021] According to an advantageous embodiment of said strain, the DNA equivalent of its genome has a sequence corresponding to the sequence SEQ ID No: 1; this coronavirus strain is derived from the sample collected from the bronchoaleveolar washings from a patient suffering from SARS, recorded under the No. 031589 and collected at the Hanoi (Vietnam) French hospital.

[0022] In accordance with the invention, said sequence SEQ ID No: 1 is that of the deoxyribonucleic acid corresponding to the ribonucleic acid molecule of the genome of the isolated coronavirus strain as defined above.

[0023] The sequence SEQ ID No: 1 is distinguishable from the Genbank sequence AY274119.3 (Tor2 isolate) in that it possesses the following mutations:

[0024] g/t at position 23220; the alanine codon (gct) at position 577 of the amino acid sequence of the Tor2 S protein is replaced by a serine codon (tct),

[0025] a/g at position 25298; the arginine codon (aga) at position 11 of the amino acid sequence of the protein encoded by the Tor2 ORF3 is replaced by a glycine codon (gga).

[0026] In addition, the sequence SEQ ID No: 1 is distinguishable from the Genbank sequence AY278741 (Urbani isolate) in that it possesses the following mutations:

[0027] t/c at position 7919; the valine codon (gtt) in position 2552 of the amino acid sequence of the protein encoded by ORF1a is replaced by an alanine codon (gct).

[0028] t/c at position 16622: this mutation does not modify the amino acid sequence of the proteins encoded by ORF1b (silent mutation),

[0029] g/a at position 19064: this mutation does not modify the amino acid sequence of the proteins encoded by ORF1b (silent mutation),

[0030] c/t at position 24872: this mutation does not modify the amino acid sequence of the S protein, and c/t at position 26857: the proline codon (ccc) at position 154 of the amino acid sequence of the M protein is replaced by a serine codon (tcc).

[0031] Unless otherwise stated, the positions of the nucleotide and peptide sequences are indicated with reference to the Genbank sequence AY274119.3.

[0032] The subject of the present invention is also an isolated or purified polynucleotide, characterized in that its sequence is that of the genome of the isolated coronavirus strain as defined above.

[0033] $\,$ According to an advantageous embodiment of said polynucleotide, it has the sequence SEQ ID No: 1.

[0034] The subject of the present invention is also an isolated or purified polynucleotide, characterized in that its sequence hybridizes under high stringency conditions with the sequence of the polynucleotide as defined above.

[0035] The terms "isolated or purified" mean modified "by the hand of humans" from the natural state; in other words if an object exists in nature, it is said to be isolated or purified if it is modified or extracted from its natural environment or both. For example, a polynucleotide or a protein/peptide naturally present in a living organism is neither isolated nor purified; on the other hand, the same polynucleotide or protein/peptide separated from coexisting molecules in its natural environment, obtained by cloning, amplification and/or chemical synthesis is isolated for the purposes of the present invention. Furthermore, a polynucleotide or a protein/peptide which is introduced into an organism by transformation, genetic manipulation or by any other method, is "isolated" even if it is present in said organism. The term purified as used in the present invention means that the proteins/peptides according to the invention are essentially free of association with the other proteins or polypeptides, as is for example the product purified from the culture of recombinant host cells or the product purified from a nonrecombinant source.

[0036] For the purposes of the present invention, high stringency hybridization conditions are understood to mean temperature and ionic strength conditions chosen such that they make it possible to maintain the specific and selective hybridization between complementary polynucleotides.

[0037] By way of illustration, high stringency conditions for the purposes of defining the above polynucleotides are advantageously the following: the DNA-DNA or DNA-

RNA hybridization is performed in two steps: (1) prehybridization at 42° C. for 3 hours in phosphate buffer (20 mM, pH 7.5) containing 5×SSC (1×SSC corresponds to a 0.15 M NaCl+0.015 M sodium citrate solution), 50% formamide, 7% sodium dodecyl sulfate (SDS), 10×Denhardt's, 5% dextran sulfate and 1% salmon sperm DNA; (2) hybridization for 20 hours at 42° C. followed by 2 washings of 20 minutes at 20° C. in 2×SSC+2% SDS, 1 washing of 20 minutes at 20° C. in 0.1×SSC+0.1% SDS. The final washing is performed in 0.1×SSC+0.1% SDS for 30 minutes at 60° C.

[0038] The subject of the present invention is also a representative fragment of the polynucleotide as defined above, characterized in that it is capable of being obtained either by the use of restriction enzymes whose recognition and cleavage sites are present in said polynucleotide as defined above, or by amplification with the aid of oligonucleotide primers specific for said polynucleotide as defined above, or by transcription in vitro, or by chemical synthesis.

[0039] According to an advantageous embodiment of said fragment, it is selected from the group consisting of: the cDNA corresponding to at least one open reading frame (ORF) chosen from: ORF1a, ORF1b, ORF-S, ORF-E, ORF-M, ORF-N, ORF3, ORF4, ORF7 to ORF11, ORF13 and ORF14 and the cDNA corresponding to the noncoding 5' or 3' ends of said polynucleotide.

[0040] According to an advantageous feature of this embodiment, said fragment has a sequence selected from the group consisting of:

- [0041] the sequences SEQ ID NO: 2 and 4 representing the cDNA corresponding to the ORF-S which encodes the S protein,
- [0042] the sequences SEQ ID NO: 13 and 15 representing the cDNA corresponding to the ORF-E which encodes the E protein,
- [0043] the sequences SEQ ID NO: 1-6 and 18 representing the cDNA corresponding to the ORF-M which encodes the M protein,
- [0044] the sequences SEQ ID NO: 36 and 38 representing the cDNA corresponding to the ORF-N which encodes the N protein,
- [0045] the sequences representing the cDNA corresponding respectively: to ORF1a and ORF1b (ORF1ab, SEQ ID NO: 31), to ORF3 and ORF4 (SEQ ID NO: 7, 8), to ORF7 to 11 (SEQ ID NO: 19, 20) to ORF13 (SEQ ID NO: 32) and to ORF14 (SEQ ID NO: 34), and
- [0046] the sequences representing the cDNAs corresponding respectively to the noncoding 5' (SEQ ID NO: 39 and 72) and 3' (SEQ ID NO: 40, 73) ends of said polynucleotide.

[0047] The subject of the present invention is also a cDNA fragment encoding the S protein, as defined above, characterized in that it has a sequence selected from the group consisting of the sequences SEQ ID NO: 5 and 6 (Sa and Sb fragments).

[0048] The subject of the present invention is also a cDNA fragment corresponding to ORF1a and ORF1b as defined

above, characterized in that it has a sequence selected from the group consisting of the sequences SEQ ID NO: 41 to 54 (L0 to L12 fragments).

[0049] The subject of the present invention is also a polynucleotide fragment as defined above, characterized in that it has at least 15 consecutive bases or base pairs of the sequence of the genome of said strain including at least one of those situated in position 7979, 16622, 19064, 23220, 24872, 25298 and 26857. Preferably this is a fragment of 20 to 2500 bases or base pairs, preferably from 20 to 400.

[0050] According to an advantageous embodiment of said fragment, it includes at least one pair of bases or base pairs corresponding to the following positions: 7919 and 23220, 7919 and 25298, 16622 and 23220, 19064 and 23220, 16622 and 25298, 19064 and 25298, 23220 and 24872, 23220 and 26857, 24872 and 25298, 25298 and 26857.

[0051] The subject of the present invention is also primers of at least 18 bases capable of amplifying a fragment of the genome of a SARS-associated coronavirus or of the DNA equivalent thereof.

[0052] According to an embodiment of said primers, they are selected from the group consisting of:

- [0053] the pair of primers No. 1 corresponding respectively to positions 28507 to 28522 (sense primer, SEQ ID NO: 60) and 28774 to 28759 (antisense primer, SEQ ID NO: 61) of the sequence of the polynucleotide as defined above,
- [0054] the pair of primers No. 2 corresponding respectively to positions 28375 to 28390 (sense primer, SEQ ID NO: 62) and 28702 to 28687 (antisense primer, SEQ ID NO: 63) of the sequence of the polynucleotide as defined above, and
- [0055] the pair of primers consisting of the primers SEQ ID Nos: 55 and 56.

[0056] The subject of the present invention is also a probe capable of detecting the presence of the genome of a SARS-associated coronavirus or of a fragment thereof, characterized in that it is selected from the group consisting of: the fragments as defined above and the fragments corresponding to the following positions of the polynucleotide sequence as defined above: 28561 to 28586, 28588 to 28608, 28541 to 28563 and 28565 to 28589 (SEQ ID NO: 64 to 67).

[0057] The probes and primers according to the invention may be labeled directly or indirectly with a radioactive or nonradioactive compound by methods well known to persons skilled in the art so as to obtain a detectable and/or quantifiable signal. Among the radioactive isotopes used, there may be mentioned ³²P, ³³P, ³⁵S, ³H or ¹²⁵I. The nonradioactive entities are selected from ligands such as biotin, avidin, streptavidin, digoxygenin, haptens, dyes, luminescent agents such as radioluminescent, chemoluminescent, bioluminescent, fluorescent and phosphorescent agents.

[0058] The invention encompasses the labeled probes and primers derived from the preceding sequences.

[0059] Such probes and primers are useful for the diagnosis of infection by a SARS-associated coronavirus.

[0060] The subject of the present invention is also a method for the detection of a SARS-associated coronavirus, from a biological sample, which method is characterized in that it comprises at least:

[0061] (a) the extraction of nucleic acids present in said biological sample,

[0062] (b) the amplification of a fragment of ORF-N by RT-PCR with the aid of a pair of primers as defined above, and

[0063] (c) the detection, by any appropriate means, of the amplification products obtained in (b).

[0064] The amplification products (amplicons) in (b) are 268 bp for the pair of primers No. 1 and 328 bp for the pair of primers No. 2.

[0065] According to an advantageous embodiment of said method, the step (b) of detection is carried out with the aid of at least one probe corresponding to positions 28561 to 28586, 28588 to 28608, 28541 to 28563 and 28565 to 28589 of the sequence of the polynucleotide as defined above.

[0066] Preferably, the SARS-associated coronavirus genome is detected and optionally quantified by PCR in real time with the aid of the pair of primers No. 2 and probes corresponding to positions 28541 to 28563 and 28565 to 28589 labeled with different compounds, in particular different fluorescent agents.

[0067] The real time RT-PCR which uses this pair of primers and this probe is very sensitive since it makes it possible to detect 102 copies of RNA and up to 10 copies of RNA; it is in addition reliable and reproducible.

[0068] The invention encompasses the single-stranded, double-stranded and triple-stranded polydeoxyribonucleotides and polyribonucleotides corresponding to the sequence of the genome of the isolated strain of coronavirus and its fragments as defined above, and to their sense or antisense complementary sequences, in particular the RNAs and cDNAs corresponding to the sequence of the genome and of its fragments as defined above.

[0069] The present invention also encompasses the amplification fragments obtained with the aid of primers specific for the genome of the purified or isolated strain as defined above, in particular with the aid of primers or pairs of primers as defined above, the restriction fragments formed by or comprising the sequence of fragments as defined above, the fragments obtained by transcription in vitro from a vector containing the sequence SEQ ID NO: 1 or a fragment as defined above, and fragments obtained by chemical synthesis. Examples of restriction fragments are deduced from the restriction map of the sequence SEQ ID NO: 1 illustrated by FIG. 13. In accordance with the invention, said fragments are either in the form of isolated fragments, or in the form of mixtures of fragments. The invention also encompasses fragments modified, in relation to the preceding ones, by removal or addition of nucleotides in a proportion of about 15%, relative to the length of the above fragments and/or modified in terms of the nature of the nucleotides, as long as the modified nucleotide fragments retain a capacity for hybridization with the genomic or antigenomic RNA sequences of the isolate as defined above.

[0070] The nucleic acid molecules according to the invention are obtained by conventional methods, known per se, following standard protocols such as those described in *Current Protocols in Molecular Biology* (Frederick M. AUSUBEL, 2000, Wiley and son Inc., Library of Congress, USA). For example, they may be obtained by amplification of a nucleic sequence by PCR or RT-PCR or alternatively by total or partial chemical synthesis.

[0071] The subject of the present invention is also a DNA or RNA chip or filter, characterized in that it comprises at least one polynucleotide or one of its fragments as defined above.

[0072] The DNA or RNA chips or filters according to the invention are prepared by conventional methods, known per se, such as for example chemical or electrochemical grafting of oligonucleotides on a glass or nylon support.

[0073] The subject of the present invention is also a recombinant cloning and/or expression vector, in particular a plasmid, a virus, a viral vector or a phage comprising a nucleic acid fragment as defined above. Preferably, said recombinant vector is an expression vector in which said nucleic acid fragment is placed under the control of appropriate elements for regulating transcription and translation. In addition, said vector may comprise sequences (tags) fused in phase with the 5' and/or 3' end of said insert, which are useful for the immobilization and/or detection and/or purification of the protein expressed from said vector.

[0074] These vectors are constructed and introduced into host cells by conventional recombinant DNA and genetic engineering methods which are known per se. Numerous vectors into which a nucleic acid molecule of interest may be inserted in order to introduce it and to maintain it in a host cell are known per se; the choice of an appropriate vector depends on the use envisaged for this vector (for example replication of the sequence of interest, expression of this sequence, maintenance of the sequence in extrachromosomal form or alternatively integration into the chromosomal material of the host), and on the nature of the host cell.

[0075] In accordance with the invention, said plasmid is selected in particular from the following plasmids:

[0076] the plasmid, called SARS-S, contained in the bacterial strain deposited under the No. I-3059, on Jun. 20, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence encoding the S protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, said sequence corresponding to the nucleotides at positions 21406 to 25348 (SEQ ID NO: 4), with reference to the Genbank sequence AY274119.3,

[0077] the plasmid, called SARS-S1, contained in the bacterial strain deposited under the No. I-3020, on May 12, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains a 5' fragment of the cDNA sequence encoding the S protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said fragment corresponding to the nucleotides at positions 21406 to 23454 (SEQ ID NO: 5), with reference to the Genbank sequence AY274119.3 Tor2,

- [0078] the plasmid, called SARS-S2, contained in the bacterial strain deposited under the No. I-3019, on May 12, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains a 3' fragment of the cDNA sequence encoding the S protein of the SARS-CoV strain derived from the sample recorded under the number No. 031589, as defined above, said fragment corresponding to the nucleotides at positions 23322 to 25348 (SEQ ID NO: 6), with reference to the Genbank sequence accession No. AY274119.3,
- [0079] the plasmid, called SARS-SE, contained in the bacterial strain deposited under the No. I-3126, on Nov. 13, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA corresponding to the region situated between ORF-S and ORF-E and overlapping ORF-E of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said region corresponding to the nucleotides at positions 25110 to 26244 (SEQ ID NO: 8), with reference to the Genbank sequence accession No. AY274119.3,
- [0080] the plasmid, called SARS-E, contained in the bacterial strain deposited under the No. I-3046, on May 28, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence encoding the E protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to the nucleotides at positions 26082 to 26413 (SEQ ID NO: 15), with reference to the Genbank sequence accession No. AY274119.3,
- [0081] the plasmid, called SARS-M, contained in the bacterial strain deposited under the No. I-3047, on May 28, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence encoding the M protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above; said sequence corresponding to the nucleotides at positions 26330 to 27098 (SEQ ID NO: 18), with reference to the Genbank sequence accession No. AY274119.3,
- [0082] the plasmid, called SARS-MN, contained in the bacterial sequence deposited under the No. I-3125, on Nov. 13, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence corresponding to the region situated between ORF-M and ORF-N of the SARS-CoV strain derived from the sample recorded under the No. 031589 and collected in Hanoi, as defined above, said sequence corresponding to the nucleotides at positions 26977 to 28218 (SEQ ID NO: 20), with reference to the Genbank accession No. AY274119.3,
- [0083] the plasmid, called SARS-N, contained in the bacterial strain deposited under the No. I-3048, on Jun. 5, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA encoding the N

- protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to the nucleotides at positions 28054 to 29430 (SEQ ID NO: 38), with reference to the Genbank sequence accession No. AY274119.3; thus, this plasmid comprises an insert of sequence SEQ ID NO: 38 and is contained in a bacterial strain which was deposited under the No. I-3048, on Jun. 5, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15,
- [0084] the plasmid, called SARS-5'NC, contained in the bacterial strain deposited under the No. I-3124, on Nov. 7, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA corresponding to the noncoding 5' end of the genome of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to the nucleotides at positions 1 to 204 (SEQ ID NO: 39), with reference to the Genbank sequence accession No. AY274119.3,
- [0085] the plasmid called SARS-3'NC, contained in the bacterial strain deposited under the No. I-3123 on Nov. 7, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence corresponding to the noncoding 3' end of the genome of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to that situated between the nucleotide and position 28933 to 29727 (SEQ ID NO: 40), with reference to the Genbank sequence accession No. AY274119.3, ends with a series of nucleotides a.,
- [0086] the expression plasmid, called pIV2.3N, containing a cDNA fragment encoding a C-terminal fusion of the N protein (SEQ ID NO: 37) with a polyhistidine tag,
- [0087] the expression plasmid, called pIV2.3S_C, containing a cDNA fragment encoding a C-terminal fusion of the fragment corresponding to positions 475 to 1193 of the amino acid sequence of the S protein (SEQ ID NO: 3) with a polyhistidine tag,
- [0088] the expression plasmid, pIV2.3S_L, containing a cDNA fragment encoding a C-terminal fusion of the fragment corresponding to positions 14 to 1193 of the amino acid sequence of the S protein (SEQ ID NO: 3) with a polyhistidine tag,
- [0089] the expression plasmid, called pIV2.4N, containing a cDNA fragment encoding a N-terminal fusion of the N protein (SEQ ID NO: 3) with a polyhistidine tag.
- [0090] the expression plasmid, called pIV2.4S_C or pIV2.4S₁, containing an insert encoding a N-terminal fusion of the fragment corresponding to positions 475 to 1193 of the amino acid sequence of the S protein (SEQ ID NO: 3) with a polyhistidine tag, and
- [0091] the expression plasmid, called pIV2.4S_L, containing a cDNA fragment encoding an N-terminal fusion of the fragment corresponding to positions 14 to

1193 of the amino acid sequence of the S protein (SEQ ID NO: 3) with a polyhistidine tag.

[0092] According to an advantageous feature of the expression plasmid as defined above, it is contained in a bacterial strain which was deposited under the No. I-3117, on Oct. 23, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.

[0093] According to another advantageous feature of the expression plasmid as defined above, it is contained in a bacterial strain which was deposited under the No. I-3118, on Oct. 23, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15.

[0094] According to another feature of the expression plasmid as defined above, it is contained in a bacterial strain which was deposited at the CNCM, 25 rue du Docteur Roux, 75724 Paris Cedex 15 under the following numbers:

- [0095] a) strain No. I-3118, deposited on Oct. 23, 2003,
- [0096] b) strain No. I-3019, deposited on May 12, 2003,
- [0097] c) strain No. I-3020, deposited on May 12, 2003,
- [0098] d) strain No. I-3059, deposited on Jun. 20, 2003,
- [0099] e) strain No. I-3323, deposited on Nov. 22, 2004,
- [0100] f) strain No. I-3324, deposited on Nov. 22, 2004,
- [0101] g) strain No. I-3326, deposited on Dec. 1, 2004,
- [0102] h) strain No. I-3327, deposited on Dec. 1, 2004,
- [0103] i) strain No. I-3332, deposited on Dec. 1, 2004,
- [0104] j) strain No. I-3333, deposited on Dec. 1, 2004,
- [0105] k) strain No. I-3334, deposited on Dec. 1, 2004,
- [0106] 1) strain No. I-3335, deposited on Dec. 1, 2004,
- [0107] m) strain No. I-3336, deposited on Dec. 1, 2004,
- [0108] n) strain No. I-3337, deposited on Dec. 1, 2004,
- [0109] o) strain No. I-3338, deposited on Dec. 2, 2004,
- [0110] p) strain No. I-3339, deposited on Dec. 2, 2004,
- [0111] q) strain No. I-3340, deposited on Dec. 2, 2004,
- [0112] r) strain No. I-3341, deposited on Dec. 2, 2004.
- [0113] The subject of the present invention is also a nucleic acid insert of viral origin, characterized in that it is contained in any of the strains as defined above in a)-r).
- [0114] The subject of the present invention is also a nucleic acid containing a synthetic gene allowing optimized expression of the S protein in eukaryotic cells, characterized in that it possesses the sequence SEQ ID NO: 140.
- [0115] The subject of the present invention is also an expression vector containing a nucleic acid containing a synthetic gene allowing optimized expression of the S protein, which vector is contained in the bacterial strain deposited at the CNCM, on Dec. 1, 2004, under the No. I-3333.
- [0116] According to one embodiment of said expression vector, it is a viral vector, in the form of a viral particle or in the form of a recombinant genome.

[0117] According to an advantageous feature of this embodiment, this is a recombinant viral particle or a recombinant viral genome capable of being obtained by transfection of a plasmid according to paragraphs g), h) and k) to r) as defined above, in an appropriate cellular system, that is to say, for example, cells transfected with one or more other plasmids intended to transcomplement certain functions of the virus that are deleted in the vector and that are necessary for the formation of the viral particles.

[0118] The expression "S protein family" is understood here to mean the complete S protein, its ectodomain and fragments of this ectodomain which are preferably produced in a eukaryotic system.

[0119] The subject of the present invention is also a lentiviral vector encoding a polypeptide of the S protein family, as defined above.

[0120] The subject of the present invention is also a recombinant measles virus encoding a polypeptide of the S protein family, as defined above.

[0121] The subject of the present invention is also a recombinant vaccinia virus encoding a polypeptide of the S protein family, as defined above.

[0122] The subject of the present invention is also the use of a vector according to paragraphs e) to r) as defined above, or of a vector containing a synthetic gene for the S protein, as defined above, for the production, in a eukaryotic system, of the SARS-associated coronavirus S protein or of a fragment of this protein.

[0123] The subject of the present invention is also a method for producing the S protein in a eukaryotic system, comprising a step of transfecting eukaryotic cells in culture with a vector chosen from the vectors contained in the bacterial strains mentioned in paragraphs e) to r) above or a vector containing a synthetic gene allowing optimized expression of the S protein.

[0124] The subject of the present invention is also a cDNA library characterized in that it comprises fragments as defined above, in particular amplification fragments or restriction fragments, cloned into a recombinant vector, in particular an expression vector (expression library).

[0125] The subject of the present invention is also cells, in particular prokaryotic cells, modified by a recombinant vector as defined above.

[0126] The subject of the present invention is also a genetically modified eukaryotic cell expressing a protein or a polypeptide as defined above. Quite obviously, the terms "genetically modified eukaryotic cell" do not denote a cell modified with a wild-type virus.

[0127] According to an advantageous embodiment of said cell, it is capable of being obtained by transfection with any of the vectors mentioned in paragraphs K) to N) above.

[0128] According to an advantageous feature of this embodiment, this is the cell FRhK4-Ssol-30, deposited at the CNCM on Nov. 22, 2004, under the No. I-3325.

[0129] The recombinant vectors as defined above and the cells transformed with said expression vectors are advantageously used for the production of the corresponding proteins and peptides. The expression libraries derived from

- said vectors, and the cells transformed with said expression libraries are advantageously used to identify the immunogenic epitopes (B and T epitopes) of the SARS-associated coronavirus proteins.
- [0130] The subject of the present invention is also the purified or isolated proteins and peptides, characterized in that they are encoded by the polynucleotide or one of its fragments as defined above.
- [0131] According to an advantageous embodiment of the invention, said protein is selected from the group consisting of:
 - [0132] the S protein having the sequence SEQ ID NO: 3 or its ectodomain
 - [0133] the E protein having the sequence SEQ ID NO: 14
 - [0134] the M protein having the sequence SEQ ID NO: 17
 - [0135] the N protein having the sequence SEQ ID NO:
 - [0136] the proteins encoded by the ORFs: ORF1a, ORF1b, ORF3, ORF4 and ORF7 to ORF11, ORF13 and ORF14 and having the respective sequence, SEQ ID NO: 74, 75, 10, 12, 22, 24, 26, 28, 30, 33 and 35.
- [0137] The terms "ectodomain of the S protein" and "soluble form of the S protein" will be used interchangeably below.
- [0138] According to an advantageous embodiment of the invention, said polypeptide consists of the amino acids corresponding to positions 1 to 1193 of the amino acid sequence of the S protein.
- [0139] According to another advantageous embodiment of the invention, said peptide is selected from the group consisting of:
- [0140] a) the peptides corresponding to positions 14 to 1193 and 475 to 1193 of the amino acid sequence of the S protein,
- [0141] b) the peptides corresponding to positions 2 to 14 (SEQ ID NO: 69) and 100 to 221 of the amino acid sequence of the M protein; these peptides correspond respectively to the ectodomain and to the endodomain of the M protein, and
- [0142] c) the peptides corresponding to positions 1 to 12 (SEQ ID NO: 70) and 53 to 76 (SEQ ID NO: 71) of the amino acid sequence of the E protein; these peptides correspond respectively to the ectodomain and to the C-terminal end of the E protein, and
- [0143] d) the peptides of 5 to 50 consecutive amino acids, preferably of 10 to 30 amino acids, inclusive or partially or completely overlapping the sequence of the peptides as defined in a), b) or c).
- [0144] The subject of the present invention is also a peptide, characterized in that it has a sequence of 7 to 50 amino acids including an amino acid residue selected from the group consisting of:
 - [0145] the alamine situated at position 2552 of the amino acid sequence of the protein encoded by ORF1a,

- [0146] the serine situated at position 577 of the amino acid sequence of the S protein of the SARS-CoV strain as defined above,
- [0147] the glycine at position 11 of the amino acid sequence of the protein encoded by ORF3 of the SARS-CoV strain as defined above,
- [0148] the serine at position 154 of the amino acid sequence of the M protein of the SARS-CoV strain as defined above.
- [0149] The subject of the present invention is also an antibody or a polyclonal or monoclonal antibody fragment which can be obtained by immunization of an animal with a recombinant vector as defined above, a cDNA library as defined above or alternatively a protein or a peptide as defined above, characterized in that it binds to at least one of the proteins encoded by SARS-CoV as defined above.
- [0150] The invention encompasses the polyclonal antibodies, the monoclonal antibodies, the chimeric antibodies such as the humanized antibodies, and fragments thereof (Fab, Fv, scFv).
- [0151] A subject of the present invention is also a hybridoma producing a monoclonal antibody against the N protein, characterized in that it is chosen from the following hybridomas:
 - [0152] the hybridoma producing the monoclonal antibody 87, deposited at the CNCM on Dec. 1, 2004 under the number I-3328,
 - [0153] the hybridoma producing the monoclonal antibody 86, deposited at the CNCM on Dec. 1, 2004 under the number I-3329,
 - [0154] the hybridoma producing the monoclonal antibody 57, deposited at the CNCM on Dec. 1, 2004 under the number I-3330, and
 - [0155] the hybridoma producing the monoclonal antibody-156, deposited at the CNCM on Dec. 1, 2004 under the number I-3331.
- [0156] The subject of the present invention is also a polyclonal or monoclonal antibody or antibody fragment directed against the N protein, characterized in that it is produced by a hybridoma as defined above.
- [0157] For the purposes of the present invention, the expression chimeric antibody is understood to mean, in relation to an antibody of a particular animal species or of a particular class of antibody, an antibody comprising all or part of a heavy chain and/or of a light chain of an antibody of another animal species or of another class of antibody.
- [0158] For the purposes of the present invention, the expression humanized antibody is understood to mean a human immunoglobulin in which the residues of the CDRs (Complementary Determining Regions) which form the antigen-binding site are replaced by those of a nonhuman monoclonal antibody possessing the desired specificity, affinity or activity. Compared with the nonhuman antibodies, the humanized antibodies are less immunogenic and possess a prolonged half-life in humans because they possess only a small proportion of nonhuman sequences given that practically all the residues of the FR (Framework) regions and of

the constant (Fc) region of these antibodies are those of a consensus sequence of human immunoglobulins.

[0159] A subject of the present invention is also a protein chip or filter, characterized in that it comprises a protein, a peptide or alternatively an antibody as defined above.

[0160] The protein chips according to the invention are prepared by conventional methods known per se. Among the appropriate supports on which proteins may be immobilized, there may be mentioned those made of plastic or glass, in particular in the form of microplates.

[0161] The subject of the present invention is also reagents derived from the isolated strain of SARS-associated coronavirus, derived from the sample recorded under the No. 031589, which are useful for the study and diagnosis of the infection caused by a SARS-associated coronavirus, said reagents are selected from the group consisting of:

[0162] (a) a pair of primers, a probe or a DNA chip as defined above,

[0163] (b) a recombinant vector or a modified cell as defined above,

[0164] (c) an isolated coronavirus strain or a polynucleotide as defined above,

[0165] (d) a protein or a peptide as defined above,

[0166] (e) an antibody or an antibody fragment as defined above, and

[0167] (f) a protein chip as defined above.

[0168] These various reagents are prepared and used according to conventional molecular biology and immunology techniques following standard protocols such as those described in *Current Protocols in Molecular Biology* (Frederick M. AUSUBEL, 2000, Wiley and Son Inc., Library of Congress, USA), in *Current Protocols in Immunology* (John E. Cologan, 2000, Wiley and Son Inc., Library of Congress, USA) and in *Antibodies: A Laboratory Manual* (E. Howell and D. Lane, Cold Spring Harbor Laboratory, 1988).

[0169] The nucleic acid fragments according to the invention are prepared and used according to conventional techniques as defined above. The peptides and proteins according to the invention are prepared by recombinant DNA techniques, known to persons skilled in the art, in particular with the aid of the recombinant vectors as defined above. Alternatively, the peptides according to the invention may be prepared by conventional techniques of solid or liquid phase synthesis, known to persons skilled in the art.

[0170] The polyclonal antibodies are prepared by immunizing an appropriate animal with a protein or a peptide as defined above, optionally coupled to KLH or to albumin and/or combined with an appropriate adjuvant such as (complete or incomplete) Freund's adjuvant or aluminum hydroxide; after obtaining a satisfactory antibody titer, the antibodies are harvested by collecting serum from the immunized animals and enriched with IgG by precipitation, according to conventional techniques, and then the IgGs specific for the SARS-CoV proteins are optionally purified by affinity chromatography on an appropriate column to which said peptide or said protein is attached, as defined above, so as to obtain a monospecific IgG preparation.

[0171] The monoclonal antibodies are produced from hybridomas obtained by fusion of B lymphocytes from an animal immunized with a protein or a peptide as defined above with myelomas, according to the Kohler and Milstein technique (Nature, 1975, 256, 495-497); the hybridomas are cultured in vitro, in particular in fermenters or produced in vivo, in the form of ascites; alternatively, said monoclonal antibodies are produced by genetic engineering as described in American patent U.S. Pat. No. 4,816,567.

[0172] The humanized antibodies are produced by general methods such as those described in International application WO 98/45332.

[0173] The antibody fragments are produced from the cloned $V_{\rm H}$ and $V_{\rm L}$ regions, from the mRNAs of hybridomas or splenic lymphocytes of an immunized mouse; for example, the Fv, scFv or Fab fragments are expressed at the surface of filamentous phages according to the Winter and Milstein technique (Nature, 1991, 349, 293-299); after several selection steps, the antibody fragments specific for the antigen are isolated and expressed in an appropriate expression system, by conventional techniques for cloning and expression of recombinant DNA.

[0174] The antibodies or fragments thereof as defined above are purified by conventional techniques known to persons skilled in the art, such as affinity chromatography.

[0175] The subject of the present invention is additionally the use of a product selected from the group consisting of: a pair of primers, a probe, a DNA chip, a recombinant vector, a modified cell, an isolated coronavirus strain, a polynucleotide, a protein or a peptide, an antibody or an antibody fragment and a protein chip as defined above, for the preparation of a reagent for the detection and optionally genotyping/serotyping of a SARS-associated coronavirus.

[0176] The proteins and peptides according to the invention, which are capable of being recognized and/or of inducing the production of antibodies specific for the SARS-associated coronavirus, are useful for the diagnosis of infection with such a coronavirus; the infection is detected, by an appropriate technique—in particular EIA, ELISA, RIA, immunofluorescence—, in a biological sample collected from an individual capable of being infected.

[0177] According to an advantageous feature of said use, said proteins are selected from the group consisting of the S, E, M and/or N proteins and the peptides as defined above.

[0178] The S, E, M and/or N proteins and the peptides derived from these proteins as defined above, for example the N protein, are used for the indirect diagnosis of a SARS-associated coronavirus infection (serological diagnosis; detection of an antibody specific for SARS-CoV), in particular by an immunoenzymatic method (ELISA).

[0179] The antibodies and antibody fragments according to the invention, in particular those directed against the S, E, M and/or N proteins and the derived peptides as defined above, are useful for the direct diagnosis of a SARS-associated coronavirus infection; the detection of the protein(s) of SARS-CoV is carried out by an appropriate technique, in particular EIA, ELISA, RIA, immunofluorescence, in a biological sample collected from an individual capable of being infected.

- [0180] The subject of the present invention is also a method for the detection of a SARS-associated coronavirus, from a biological sample, which method is characterized in that it comprises at least:
 - [0181] (a) bringing said biological sample into contact with at least one antibody or one antibody fragment, one protein, one peptide or alternatively one protein or peptide chip or filter as defined above, and
 - [0182] (b) visualizing by any appropriate means antigen-antibody complexes formed in (a), for example by EIA, ELISA, RIA, or by immunofluorescence.
- [0183] According to one advantageous embodiment of said process, step (a) comprises:
 - [0184] (a₁) bringing said biological sample into contact with at least a first antibody or an antibody fragment which is attached to an appropriate support, in particular a microplate,
 - [0185] (a2) washing the solid phase, and
 - [0186] (a₃) adding at least a second antibody or an antibody fragment, different from the first, said antibody or antibody fragment being optionally appropriately labeled.
- [0187] This method, which makes it possible to capture the viral particles present in the biological sample, is also called immunocapture method.

[0188] For example:

- [0189] step (a₁) is carried out with at least a first monoclonal or polyclonal antibody or a fragment thereof, directed against the S, M and/or E protein, and/or a peptide corresponding to the ectodomain of one of these proteins (M2-14 or E1-12 peptides)
- [0190] step (a₃) is carried out with at least one antibody or an antibody fragment directed against another epitope of the same protein or preferably against another protein, preferably against an inner protein such as the N nucleoprotein or the endodomain of the E or M protein, more preferably still these are antibodies or antibody fragments directed against the N protein which is very abundant in the viral particle; when an antibody or an antibody fragment directed against an inner protein (N) or against the endodomain of the E or M proteins is used, said antibody is incubated in the presence of detergent, such as Tween 20 for example, at concentrations of the order of 0.1%.
- [0191] step (b) for visualizing the antigen-antibody complexes formed is carried out, either directly with the aid of a second antibody labeled for example with biotin or an appropriate enzyme such as peroxidase or alkaline phosphatase, or indirectly with the aid of an anti-immunoglobulin serum labeled as above. The complexes thus formed are visualized with the aid of an appropriate substrate.
- [0192] According to a preferred embodiment of this aspect of the invention, the biological sample is mixed with the visualizing monoclonal antibody prior to its being brought into contact with the capture monoclonal antibodies. Where appropriate, the serum-visualizing antibody mixture is incubated for at least 10 minutes at room temperature before being applied to the plate.

- [0193] The subject of the present invention is also an immunocapture test intended to detect an infection by the SARS-associated coronavirus by detecting the native nucle-oprotein (N protein), in particular characterized in that the antibody used for the capture of the native viral nucleoprotein is a monoclonal antibody specific for the central region and/or for a conformational epitope.
- [0194] According to one embodiment of said test, the antibody used for the capture of the N protein is the monoclonal antibody mAb87, produced by the hybridoma deposited at the CNCM on Dec. 1, 2004 under the number I-3328.
- [0195] According to another embodiment of said immunocapture test, the antibody used for the capture of the N protein is the monoclonal antibody mAb86, produced by the hybridoma deposited at the CNCM on Dec. 1, 2004 under the number I-3329.
- [0196] According to another embodiment of said immunocapture test, the monoclonal antibodies mAb86 and mAb87 are used for the capture of the N protein.
- [0197] In the immunocapture tests according to the invention, it is possible to use, for visualizing the N protein, the monoclonal antibody mAb57, produced by the hybridoma deposited at the CNCM on Dec. 1, 2004 under the number I-3330, said antibody being conjugated with a visualizing molecule or particle.
- [0198] In accordance with said immunocapture test, a combination of the antibodies mAb57 and mAb87, conjugated with a visualizing molecule or particle, is used for the visualization of the N protein.
- [0199] A visualizing molecule may be a radioactive atom, a dye, a fluorescent molecule, a fluorophore, an enzyme; a visualizing particle may be for example: colloidal gold, a magnetic particle or a latex bead.
- [0200] The subject of the present invention is also a reagent for detecting a SARS-associated coronavirus, characterized in that it is selected from the group consisting of:
 - [0201] (a) a pair of primers or a probe as defined above,
 - [0202] (b) a recombinant vector as defined above or a modified cell as defined above,
 - [0203] (c) an isolated coronavirus strain as defined above or a polynucleotide as defined above,
 - [0204] (d) an antibody or an antibody fragment as defined above,
 - [0205] (e) a combination of antibodies comprising the monoclonal antibodies mAb86 and/or mAb87, and the monoclonal antibody mAb57, as defined above,
 - [0206] (f) a chip or a filter as defined above.
- [0207] The subject of the present invention is also a method for the detection of a SARS-associated coronavirus infection, from a biological sample, by indirect IgG ELISA using the N protein, which method is characterized in that the plates are sensitized with an N protein solution at a concentration of between 0.5 and 4 μ g/ml, preferably to 2 μ g/ml, in a 10 mM PBS buffer pH 7.2, phenol red at 0.25 ml/l.

[0208] The subject of the present invention is additionally a method for the detection of a SARS-associated coronavirus infection, from a biological sample, by double epitope ELSA, characterized in that the serum to be tested is mixed with the visualizing antigen, said mixture then being brought into contact with the antigen attached to a solid support.

[0209] According to one variant of the tests for detecting SARS-associated coronaviruses, these tests combine an ELSA using the N protein, and another ELSA using the S protein, as described below.

[0210] The subject of the present invention is also an immune complex formed of a polyclonal or monoclonal antibody or antibody fragment as defined above, and of a SARS-associated coronavirus protein or peptide.

[0211] The subject of the present invention is additionally a SARS-associated coronavirus detection kit, characterized in that it comprises at least one reagent selected from the group consisting of: a pair of primers, a probe, a DNA or RNA chip, a recombinant vector, a modified cell, an isolated coronavirus strain, a polynucleotide, a protein or a peptide, an antibody, and a protein chip as defined above.

[0212] The subject of the present invention is additionally an immunogenic composition, characterized in that it comprises at least one product selected from the group consisting of:

- [0213] a) a protein or a peptide as defined above,
- [0214] b) a polynucleotide of the DNA or RNA type or one of its representative fragments as defined above, having a sequence chosen from:
- [0215] (i) the sequence SEQ ID NO: 1 or its RNA equivalent
- [0216] (ii) the sequence hybridizing under high stringency conditions with the sequence SEQ ID NO: 1,
- [0217] (iii) the sequence complementary to the sequence SEQ ID NO: 1 or to the sequence hybridizing under high stringency conditions with the sequence SEQ ID NO: 1,
- [0218] (iv) the nucleotide sequence of a representative fragment of the polynucleotide as defined in (i), (ii) or (iii).
- [0219] (v) the sequence as defined in (i), (ii), (iii) or (iv), modified, and
- [0220] c) a recombinant expression vector comprising a polynucleotide as defined in b), and
- [0221] d) a cDNA library as defined above,

said immunogenic composition being capable of inducing protective humoral or cellular immunity specific for the SARS-associated coronavirus, in particular the production of an antibody directed against a specific epitope of the SARS-associated coronavirus.

[0222] The proteins and peptides as defined above, in particular the S, M, E and/or N proteins and the derived peptides, and the nucleic acid (DNA or RNA) molecules encoding said proteins or said peptides are good candidate vaccines and may be used in immunogenic compositions for the production of a vaccine against the SARS-associated coronavirus

[0223] According to an advantageous embodiment of the compositions according to the invention, they additionally contain at least one pharmaceutically acceptable vehicle and optionally carrier substances and/or adjuvants.

[0224] The pharmaceutically acceptable vehicles, the carrier substances and the adjuvants are those conventionally used.

[0225] The adjuvants are advantageously chosen from the group consisting of oily emulsions, saponin, mineral substances, bacterial extracts, aluminum hydroxide and squalene.

[0226] The carrier substances are advantageously selected from the group consisting of unilamellar liposomes, multilamellar liposomes, micelles of saponin or solid microspheres of a saccharide or auriferous nature.

[0227] The compositions according to the invention are administered by the general route, in particular by the intramuscular or subcutaneous route or alternatively by the local, in particular nasal (aerosol) route.

[0228] The subject of the present invention is also the use of an isolated or purified protein or peptide having a sequence selected from the group consisting of the sequences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 and 75 to form an immune complex with an antibody specifically directed against an epitope of the SARS-associated coronavirus.

[0229] The subject of the present invention is also an immune complex consisting of an isolated or purified protein or peptide having a sequence selected from the group consisting of the sequences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 and 75, and of an antibody specifically directed against an epitope of the SARS-associated coronavirus.

[0230] The subject of the present invention is also the use of an isolated or purified protein or peptide having a sequence selected from the group consisting of the sequences SEQ ID NO: 3, 10, 12, 14, 17, 22, 24, 26, 28, 30, 33, 35, 37, 69, 70, 71, 74 and 75 to induce the production of an antibody capable of specifically recognizing an epitope of the SARS-associated coronavirus.

[0231] The subject of the present invention is also the use of an isolated or purified polynucleotide having a sequence selected from the group consisting of the sequences SEQ ID NO: 1, 2, 4, 7, 8, 13, 15, 16, 18, 19, 20, 31, 36 and 38 to induce the production of an antibody directed against the protein encoded by said polynucleotide and capable of specifically recognizing an epitope of the SARS-associated coronavirus.

[0232] The subject of the present invention is also monoclonal antibodies recognizing the native S protein of a SARS-associated coronavirus.

[0233] The subject of the present invention is also the use of a protein or a polypeptide of the S protein family, as defined above, or of an antibody recognizing the native S protein, as defined above, to detect an infection by a SARS-associated coronavirus, in a biological sample.

[0234] The subject of the present invention is also a method for detecting an infection by a SARS-associated coronavirus, in a biological sample, characterized in that the

detection is carried out by ELISA using the recombinant S protein, expressed in a eukaryotic system.

[0235] According to an advantageous embodiment of said method, it is a double epitope ELISA method, and the serum to be tested is mixed with the visualizing antigen, said mixture then being brought into contact with the antigen attached to a solid support.

[0236] The subject of the present invention is also an immune complex consisting of a monoclonal antibody or antibody fragment recognizing the native S protein, and of a protein or a peptide of the SARS-associated coronavirus.

[0237] The subject of the present invention is also an immune complex consisting of a protein or a polypeptide of the S protein family, as defined above, and of an antibody specifically directed against an epitope of the SARS-associated coronavirus.

[0238] The subject of the present invention is additionally a SARS-associated coronavirus detection kit or box, characterized in that it comprises at least one reagent selected from the group consisting of: a protein or polypeptide of the S protein family, as defined above, a nucleic acid encoding a protein or peptide of the S protein family, as defined above, a cell expressing a protein or polypeptide of the S protein family, as defined above, or an antibody recognizing the native S protein of a SARS-associated coronavirus.

[0239] The subject of the present invention is an immunogenic and/or vaccine composition, characterized in that it comprises a polypeptide or a recombinant protein of the S protein family, as defined above, obtained in a eukaryotic expression system.

[0240] The subject of the present invention is also an immunogenic and/or vaccine composition, characterized in that it comprises a vector or recombinant virus, expressing a protein or a polypeptide of the S protein family, as defined above.

[0241] In addition to the preceding features, the invention further comprises other features, which will emerge from the description which follows, which refers to examples of use of the polynucleotide representing the genome of the SARS-CoV strain derived from the sample recorded under the number 031589, and derived cDNA fragments which are the subject of the present invention, and to Table I presenting the sequence listing:

TABLE I

	Sequence listin	g_	
Identification number	Sequence	Position of the cDNA with reference to Genbank AY274119.3	Deposit number at the CNCM of the correspond- ing plasmid
SEQ ID NO: 1	genome of the strain derived from the sample 031589	 -	
SEQ ID NO: 2 SEQ ID NO: 3	ORF-S* S protein	21406-25348 —	_
SEQ ID NO: 4	ORF-S**	21406-25348	I-3059

TABLE I-continued

	Sequence listin	g.	
Identification number	Sequence	Position of the cDNA with reference to Genbank AY274119.3	Deposit number at the CNCM of the correspond- ing plasmid
SEQ ID NO: 5	Sa fragment	21406-23454	I-3020
SEQ ID NO: 6	Sb fragment	23322-25348	I-3019
SEQ ID NO: 7	ORF-3 + ORF-4* ORF-3 + ORF-4**	25110-26244 25110-26244	 I-3126
SEQ ID NO: 8 SEQ ID NO: 9	ORF3	23110-202 44 —	
SEQ ID NO: 10	ORF-3 protein	_	
SEQ ID NO: 11	ORF4	_	
SEQ ID NO: 12 SEQ ID NO: 13	ORF-4 protein ORF-E*	26082-26413	
SEQ ID NO: 14	E protein	_	
SEQ ID NO: 15	ORF-E**	26082-26413	I-3046
SEQ ID NO: 16	ORF-M*	26330-27098	_
SEQ ID NO: 17 SEQ ID NO: 18	M protein ORF-M**	26330-27098	I-3047
SEQ ID NO: 19	ORF7 to 11*	26977-28218	_
SEQ ID NO: 20	ORF7 to 11**	26977-28218	I-3125
SEQ ID NO: 21	ORF7 ORF7 protein	_	
SEQ ID NO: 22 SEQ ID NO: 23	ORF8	_	
SEQ ID NO: 24	ORF8 protein	_	
SEQ ID NO: 25	ORF9	_	_
SEQ ID NO: 26 SEQ ID NO: 27	ORF9 protein ORF10	_	
SEQ ID NO: 28	ORF10 protein	_	
SEQ ID NO: 29	ORF11	_	_
SEQ ID NO: 30	ORF11 protein	 265-21485	_
SEQ ID NO: 31 SEQ ID NO: 32	OrF1ab ORF13	28130-28426	_
SEQ ID NO: 33	ORF13 protein		_
SEQ ID NO: 34	ORF14	20502 20705	
SEQ ID NO: 35 SEQ ID NO: 36	ORF14 protein ORF-N*	28583-28795 28054-29430	_
SEQ ID NO: 37	N protein	_	
SEQ ID NO: 38	ORF-N**	28054-29430	I-3048
SEQ ID NO: 39 SEQ ID NO: 40	noncoding 5'** noncoding 3'**	1-204 28933-29727	I-3124 I-3123
SEQ ID NO: 41	ORF1ab	30-500	_
'	Fragment L0		
SEQ ID NO: 42	Fragment L1	211-2260 2136-4187	
SEQ ID NO: 43 SEQ ID NO: 44	Fragment L2 Fragment L3	3892-5344	
SEQ ID NO: 45	Fragment L4b	4932-6043	_
SEQ ID NO: 46	Fragment L4	5305-7318	_
SEQ ID NO: 47 SEQ ID NO: 48	Fragment L5 Fragment L6	7275-9176 9032-11086	_
SEQ ID NO: 49	Fragment L7	10298-10982	_
SEQ ID NO: 50	Fragment L8	12815-14854	_
SEQ ID NO: 51	Fragment L10	14745-16646 16514-18590	-
SEQ ID NO: 52 SEQ ID NO: 53	Fragment L10 Fragment L11	18500-20602	_
SEQ ID NO: 54	Fragment L12	20319-22224	_
SEQ ID NO: 55	Sense N primer		_
SEQ ID NO: 56	Antisense N primer		-
SEQ ID NO: 57	Sense S _C primer	_	_
SEQ ID NO: 58	Sense S _L primer	_	_
SEQ ID NO: 59	Antisense S _C and S _L primer		
SEQ ID NO: 60	Sense primer series 1	28507-28522	_
SEQ ID NO: 61	Antisense primer series 1	28774-28759	
SEQ ID NO: 62	Sense primer series 2	28375-28390	
SEQ ID NO: 63	Antisense primer series 2	28702-28687	_

TABLE I-continued

	Sequence listing		
Identification number	Sequence	Position of the cDNA with reference to Genbank AY274119.3	Deposit number at the CNCM of the correspond- ing plasmid
SEQ ID NO: 64	Probe 1/series 1	28561-28586	_
SEQ ID NO: 65	Probe 2/series 1	28588-28608	
SEQ ID NO: 66	Probe 1/series 2	28541-28563	
SEQ ID NO: 67	Probe 2/series 2	28565-28589	
SEQ ID NO: 68	Anchor primer 14T		
SEQ ID NO: 69	Peptide M2-14	_	_
SEQ ID NO: 70	Peptide E1-12	_	_
SEQ ID NO: 71	Peptide E53-76	_	_
SEQ ID NO: 72	Noncoding 51*	1-204	_
SEQ ID NO: 73	Noncoding 3**	28933-29727	_
SEQ ID NO: 74	ORF1a protein	_	_
SEQ ID NO: 75	ORF1b protein		_
SEQ ID NO: 76-139	Primers		
SEQ ID NO: 140	Pseudogene of S		
SEQ ID NO: 141-148	Primers		
SEQ ID NO: 149	Aa1-13 of S		
SEQ ID NO: 150	Polypeptide		
SEQ ID NO: 151-158	Primers		

*PCR amplification product (amplicon)

**Insert cloned into the plasmid deposited at the CNCM and to the appended drawings in which:

[0242] FIG. 1 illustrates Western-blot analysis of the expression in vitro of the recombinant proteins N, S_C and S_L from the expression vectors pIVEX. Lane 1: pIV2.3N. Lane 2: pIV2.3S_C. Lane 3: pIV2.3S_L. Lane 4: pIV2.4N. Lane 5: pIV2.4S₁ or pIV2.4S_C. Lane 6: pIV2.4S_L. The expression of the GFP protein expressed from the same vector is used as a control

[0243] FIG. 2 illustrates the analysis, by polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) and staining with Coomassie blue, of the expression in vivo of the N protein from the expression vectors pIVEX. The *E. coli* BL21(DE3)pDIA17 strain transformed with the recombinant vectors pIVEX is cultured at 30° C. in LB medium, in the presence or in the absence of inducer (IPTG 1 mM). Lane 1: pIV2.3N. Lane 2: pIV2.4N.

[0244] FIG. 3 illustrates the analysis, by polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) and staining with Coomassie blue, of the expression in vivo of the S_L and S_C polypeptides from the expression vectors pIVEX. The *E. coli* BL21(DE3)pDIA17 strain transformed with the recombinant vectors pIVEX is cultured at 30° C. in LB medium, in the presence or in the absence of inducer (IPTG 1 mM). Lane 1: pIV2.3S_C. Lane 2: pIV2.3S_L. Lane 3: pIV2.4S₁. Lane 4: pIV2.4S_L.

[0245] FIG. 4 illustrates the antigenic activity of the recombinant N, S_L and S_C proteins produced in the $E.\ coli$ BL21(DE3)pDIA17 strain transformed with the recombinant vectors pIVEX. A: electrophoresis (SDS-PAGE) of the bacterial lysates. B and C: Western-blot with the sera, obtained from the same patient infected with SARS-CoV, collected 8 days (B: serum M12) and 29 days (C: serum M13) respectively after the onset of the SARS symptoms.

Lane 1: pIV2.3N. Lane 2: pIV2.4N. Lane 3: pIV2.3S $_{\rm C}$. Lane 4: pIV2.4S $_{\rm L}$. Lane 5: pIV2.3S $_{\rm L}$. Lane 6: pIV2.4S $_{\rm L}$.

[0246] FIG. 5 illustrates the purification on an Ni-NTA agarose column of the recombinant N protein produced in the *E. coli* BL21(DE3)pDIA17 strain from the vector pIV2.3N. Lane 1: total bacterial extract. Lane 2: soluble extract. Lane 3: insoluble extract. Lane 4: extract deposited on the Ni-NTA column. Lane 5: unbound proteins. Lane 6: fractions of peak 1. Lane 7: fractions of peak 2.

[0247] FIG. 6 illustrates the purification of the recombinant $S_{\rm C}$ protein from the inclusion bodies produced in the E. coli BL21(DE3)pDIA17 strain transformed with pIV2.4S $_{\rm L}$. A. Treatment with Triton X-100 (2%): Lane 1: total bacterial extract. Lane 2: soluble extract. Lane 3: insoluble extract. Lane 4: supernatant after treatment with Triton X-100 (2%). Lanes 5 and 6: pellet after treatment with Triton X-100 (2%). B: Treatment with 4 M, 5 M, 6 M and 7 M urea of the soluble and insoluble extracts.

[0248] FIG. 7 represents the immunoblot produced with the aid of a lysate of cells infected with SARS-CoV and a serum from a patient suffering from atypical pneumopathy.

[0249] FIG. 8 represents immunoblots produced with the aid of a lysate of cells infected with SARS-CoV and rabbit immunosera specific for the nucleoprotein N (A) and for the spicule protein S (B). I.S.: immune serum. p.i.: preimmune serum. The anti-N immune serum was used at ½0 000 and the anti-S immune serum at ½0 000.

[0250] FIG. 9 illustrates the ELISA reactivity of the rabbit monospecific polyclonal sera directed against the N protein or the short fragment of the S protein (S_C), toward the corresponding recombinant proteins used for immunization. A: rabbits P13097, P13081 and P13031 immunized with the purified recombinant N protein. B: rabbits P11135, P13042 and P14001 immunized with a preparation of inclusion bodies corresponding to the short fragment of the S protein (S_C). I.S.: immune serum. p.i.: preimmune serum.

[0251] FIG. 10 illustrates the ELISA reactivity of the purified recombinant N protein, toward sera-from patients suffering from atypical pneumonia caused by SARS-CoV. FIG. 10a: ELISA plates prepared with the N protein at the concentration of 4 μ g/ml and 2 μ g/ml. FIG. 10B: ELISA plate prepared with the N protein at the concentration of 1 μ g/ml. The sera designated A, B, D, E, F, G, H correspond to those of Table IV.

[0252] FIG. 11 illustrates the amplification by RT-PCR of decreasing quantities of synthetic RNA of the SARS-CoV N gene (10^7 to 1 copy), with the aid of pairs of primers No. 1 (N/+/28507, N/-/28774) (A) and No. 2 (N/+/28375, N/-/28702) (B). T: amplification performed in the absence of RNA. MW: DNA marker.

[0253] FIG. 12 illustrates the amplification by RT-PCR in real time of synthetic RNA for the SARS-CoV N gene: decreasing quantities of synthetic RNA as replica (repli.; lanes 16 to 29) and of viral RNA diluted ½0×10⁻⁴ (lane 32) were amplified by RT-PCR in real time with the aid of the kit "Light Cycler RNA Amplification Kit Hybridization Probes" and pairs of primers and probes of the No. 2 series, under the conditions described in Example 8.

[0254] FIG. 13 (FIGS. 13.1 to 13.7) represents the restriction map of the sequence SEQ ID NO: 1 corresponding to

the DNA equivalent of the genome of the SARS-CoV strain derived from the sample recorded under the number 031589.

[0255] FIG. 14 shows the result of the SARS serology test by indirect N ELISA (1st series of sera tested).

[0256] FIG. 15 shows the result of the SARS serology test by indirect N ELISA (2nd series of sera tested).

[0257] FIG. 16 presents the result of the SARS serology test by double epitope N ELISA (1st series of sera tested).

[0258] FIG. 17 shows the result of the SARS serology test by double epitope N ELISA (2nd series of sera tested).

[0259] FIG. 18 illustrates the test of reactivity of the anti-N monoclonal antibodies by ELISA on the native nucleoprotein N of SARS-CoV. The antibodies were tested in the form of hybridoma culture supernatants by indirect ELISA using an irradiated lysate of VeroE6 cells infected with SARS-CoV as antigen (SARS lysate curves). A negative control for reactivity is performed for each antibody on a lysate of uninfected VeroE6 cells (negative lysate curves). Several monoclonal antibodies of known specificity were used as negative control antibodies: para1-3 directed against the antigens of the parainfluenza viruses type 1-3 (Bio-Rad) and influenza B directed against the antigens of the influenza virus type B (Bio-Rad).

[0260] FIG. 19 illustrates the test of reactivity of the anti-N of SARS-CoV monoclonal antibodies by ELISA on the native antigens of the human coronavirus 229E (HCoV-229E). The antibodies were tested in the form of hybridoma culture supernatants by an indirect ELISA test using a lysate of MRC-5 cells infected with the human coronavirus 229E as antigen (229E lysate curves). A negative control for immunoreactivity was performed for each antibody on a lysate of noninfected MRC-5 cells (negative lysate curves). The monoclonal antibody 5-11H.6 directed against the S protein of the human coronavirus 229E (Sizun et al. 1998, J. Virol. Met. 72: 145-152) is used as positive control antibody. The antibodies para1-3 directed against the antigens of the parainfluenza virus type 1-3 (Bio-Rad) and influenza B directed against the antigens of the influenza virus type B (Bio-Rad) were added to the panel of monoclonal antibodies tested

[0261] FIG. 20 shows a test of reactivity of the anti-N of SARS-CoV monoclonal antibodies by Western blotting on the denatured native nucleoprotein N of SARS-CoV. A lysate of VeroE6 cells infected with SARS-CoV was prepared in the loading buffer according to Laemmli and caused to migrate in a 12% SDS polyacrylamide gel and then the proteins were transferred onto PVDF membrane. The anti-N monoclonal antibodies tested were used for the immunoassay at the concentration of $0.05~\mu\text{g/ml}$. The visualization is carried out with anti-mouse IgG(H+L) antibodies coupled to peroxidase (NA931V, Amersham) and the ECL+ system. Two monoclonal antibodies were used as negative controls for reactivity: influenza B directed against the antigens of the influenza virus type B (Bio-Rad) and para1-3 directed against the antigens of the parainfluenza virus type 1-3 (Bio-Rad).

[0262] FIG. 21 presents the plasmids for expression in mammalian cells of the SARS-CoV S protein. The cDNA for the SARS-CoV S was inserted between the BamHI and Xho1 sites of the expression plasmid pcDNA3.1(+) (Clon-

tech) in order to obtain the plasmid pcDNA-S and between the Nhe1 and Xho1 sites of the expression plasmid pCI (Promega) in order to obtain the plasmid pCI-S. The WPRE and CTE sequences were inserted between each of the two plasmids pcDNA-S and pCI-S between the Xho1 and Xba1 sites in order to obtain the plasmids pcDNA-S-CTE, pcDNA-S-WPRE, pCI-S-CTE and pCI-S-WPRE, respectively.

[0263] SP: signal peptide predicted (aa 1-13) with the software signal v2.0 (Nielsen et al., 1997, Protein Engineering, 10:1-6)

[0264] TM: transmembrane region predicted (aa 1196-1218) with the software TMHMM v2.0 (Sonnhammer et al., 1998, Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, pp. 175-182, AAAI Press). It should be noted that the amino acids W1194 and P1195 are possibly part of the transmembrane region with the respective probabilities of 0.13 and 0.42

[0265] P-CMV: cytomegalovirus immediate/early promoter. BGH pA: polyadenylation signal of the bovine growth hormone gene

[0266] SV40 late pA: SV40 virus late polyadenylation signal

[0267] SD/SA: splice donor and acceptor sites

[0268] WPRE: sequences of the "Woodchuck Hepatitis Virus posttranscriptional regulatory element" of the woodchuck hepatitis virus

[0269] CTE: sequences of the "constitutive transport element" of the Mason-Pfizer simian retrovirus

[0270] FIG. 22 illustrates the expression of the S protein after transfection of VeroE6 cells. Cellular extracts were prepared 48 hours after transfection of VeroE6 cells with the plasmids pcDNA, pcDNA-S, pCI and pCI-S. Cellular extracts were also prepared 18 hours after infection with the recombinant vaccinia virus VV-TF7.3 and transfection with the plasmids pcDNA or pcDNA-S. As a control, extracts of VeroE6 cells were prepared 8 hours after infection with SARS-CoV at a multiplicity of infection of 3. They were separated on an 8% SDS acrylamide gel and analyzed by Western blotting with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG(H+L) polyclonal antibody coupled to peroxidase (NA934V, Amersham). A molecular mass ladder (kDa) is presented in the figure.

[0271] SARS-CoV: extract of VeroE6 cells infected with SARS-CoV

[0272] Mock: control extract of noninfected cells

[0273] FIG. 23 illustrates the effect of the CTE and WPRE sequences on the expression of the S protein after transfection of VeroE6 and 293T cells. Cellular extracts were prepared 48 hours after transfection of VeroE6 cells (A) or 293T cells (B) with the plasmids pcDNA, pcDNA-S, pcDNA-S-CTE, pcDNA-S-WPRE, pCI-S, pCI-S-CTE and pCI-S-WPRE separated on 8% SDS polyacrylamide gel and analyzed by Western blotting with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG(H+L) polyclonal antibody coupled to peroxidase (NA934V, Amersham). A molecular mass ladder (kDa) is presented in the figure.

[0274] SARS-CoV: extract of VeroE6 cells prepared 8 hours after infection with SARS-CoV at a multiplicity of infection of 3.

[0275] Mock: control extract of noninfected VeroE6 cells

[0276] FIG. 24 presents defective lentiviral vectors with central DNA flap for the expression of SARS-CoV S. The cDNA for the SARS-CoV S protein was cloned in the form of a BamH1-Xho1 fragment into the plasmid pTRIP Δ U3-CMV containing a defective lentiviral vector TRIP with central DNA flap (Sirven et al., 2001, Mol. Ther., 3: 438-448) in order to obtain the plasmid pTRIP-S. The optimum expression cassettes consisting of the CMV virus immediate/early promoter, a splice signal, cDNA for S and either of the posttranscriptional signals CTE or WPRE were substituted for the cassette EFI α -EGFP of the defective lentiviral expression vector with central DNA flap TRIP Δ U3-EF1 α (Sirven et al., 2001, Mol. Ther., 3: 438-448) in order to obtain the plasmids pTRIP-SD/SA-S-CTE and pTRIP-SD/SA-S-WPRE.

[0277] SP: signal peptide

[0278] TM: transmembrane region

[0279] P-CMV: cytomegalovirus immediate/early promoter

[0280] P-EF1a: EF1a gene promoter

[0281] SD/SA: splice donor and acceptor sites

[0282] WPRE: sequences of the "Woodchuck Hepatitis Virus posttranscriptional regulatory element" of the woodchuck hepatitis virus

[0283] CTE: sequences of the "constitutive transport element" of the Mason-Pfizer simian retrovirus

[0284] LTR: long terminal repeat

[0285] \(\Delta U3:\) LTR deleted for the "promoter/enhancer" sequences

[0286] cPPT: "polypurine tract cis-active sequence"

[0287] CTS: "central termination sequence"

[0288] FIG. 25 shows the Western-blot analysis of the expression of the SARS-CoV S by cell lines transduced with the lentiviral vectors TRIP-SD/SA-S-WPRE and TRIP-SD/SA-S-CTE. Cellular extracts were prepared from established lines FrhK4-S-CTE and FrhK4-S-WPRE after transduction with the lentiviral vectors TRIP-SD/SA-S-CTE and TRIP-SD/SA-S-WPRE respectively. They were separated on an 8% SDS acrylamide gel and analyzed by Western blotting with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG(H+L) conjugate coupled to peroxidase. A molecular mass ladder (kDa) is presented in the figure.

[0289] T-: control extract of FrhK-4 cells

[0290] T+: extract of FrhK-4 cells prepared 24 hours after infection with SARS-CoV at a multiplicity of infection of 3.

[0291] FIG. 26 relates to the analysis of the expression of Ssol polypeptide by cell lines transduced with the lentiviral vectors TRIP-SD/SA-Ssol-WPRE and TRIP-SD/SA-Ssol-CTE. The secretion of the Ssol polypeptide was determined in the supernatant of a series of cell clones isolated after

transduction of FrhK-4 cells with the lentiviral vectors TRIP-SD/SA-Ssol-WPRE and TRIP-SD/SA-Ssol-CTE. 5 μl of supernatant, diluted ½ in loading buffer according to Laemmli, were analyzed by Western blotting, visualized with an anti-FLAG monoclonal antibody (M2, Sigma) and an anti-mouse IgG(H+L) conjugate coupled to peroxidase. T-: supernatant of the parental FRhK-4 line. T+: supernatant of BHK cells infected with a recombinant vaccinia virus expressing the Ssol polypeptide. The solid arrow indicates the Ssol polypeptide, while the empty arrow indicates a cross reaction with a protein of cellular origin.

[0292] FIG. 27 shows the results relating to the analysis of the purified Ssol polypeptide

[0293] A. 8, 2, 0.5 and 0.125 µg of recombinant Ssol polypeptide purified by anti-FLAG affinity chromatography and gel filtration (G75) were separated on 8% SDS polyacrylamide gel. The Ssol polypeptide and variable quantities of molecular mass markers (MM) were visualized by staining with silver nitrate (Gelcode SilverSNAP stain kit II, Pierce).

B. Standard markers for analysis by SELDI-TOF mass spectrometry

[0294] IgG: bovine IgG of MM 147300

[0295] ConA: conalbumin of MM 77490

[0296] HRP: horseradish peroxidase analyzed as a control and of MM 43240

C. Analysis by mass spectrometry (SELDI-TOF) of the recombinant Ssol polypeptide.

[0297] The peaks A and B correspond to the single and double charged Ssol polypeptide.

D. Sequencing of the N-terminal end of the recombinant Ssol polypeptide. 5 Edman degradation cycles in liquid phase were carried out on an ABI494 sequencer (Applied Biosystems).

[0298] FIG. 28 illustrates the influence of a splicing signal and of the CTE and WPRE sequences on the efficacy of the gene immunization with the aid of plasmid DNA encoding the SARS-CoV S

A. Groups of 7 BALB/c mice were immunized twice at 4 weeks' interval with the aid of 50 µg of plasmid DNA of pCl, pcDNA-S, pCl-S, pcDNA-N and pCl-HA.

B. Groups of 6 BALB/c mice were immunized twice at 4 weeks' interval with the aid of 2 µg, 10 µg or 50 µg of plasmid DNA of pCI, pCI-S, pCI-S-CTE and pCI-S-WPRE.

[0299] The immune sera collected 3 weeks after the second immunization were analyzed by indirect ELISA using a lysate of VeroE6 cells infected with SARS-CoV as antigen. The anti-SARS-CoV antibody titers are calculated as the reciprocal of the dilution producing a specific OD of 0.5 after visualization with an anti-mouse IgG polyclonal antibody coupled to peroxidase (NA931V, Amersham) and TMB (KPL).

[0300] FIG. 29 shows the seroneutralization of the infectivity of SARS-CoV with the antibodies induced in mice after gene immunization with the aid of plasmid DNA encoding SARS-CoV S. Pools of immune sera collected 3 weeks after the second immunization were prepared for each

of the groups of experiments described in FIG. 28 and evaluated for their capacity to seroneutralize the infectivity of 100 TCID50 of SARS-CoV on FRhK-4 cells. 4 points are produced for each of the 2-fold dilutions tested from ½0. The seroneutralizing titer is calculated according to the Reed and Munsch method as the reciprocal of the dilution neutralizing the infectivity of 2 wells out of 4.

A. Groups by BALB/c mice immunized twice at 4 weeks' interval with the aid of 50 µg of plasmid DNA of pCI, pcDNA-S, pCI-S, pcDNA-N and pCI-HA. □: preimmune serum. ■: immune serum.

B. Groups of BALB/c mice immunized twice at 4 weeks' interval with the aid of 2 μ g, 10 μ g or 50 μ g of plasmid DNA of pCI, pCI-S, pCI-S-CTE and pCI-S-WPRE.

[0301] FIG. 30 illustrates the immunoreactivity of the recombinant Ssol polypeptide toward sera from patients suffering from SARS. The reactivity of sera from patients was analyzed by indirect ELISA test against solid phases prepared with the aid of the purified recombinant Ssol polypeptide. The antibodies from patients reacting with the solid phase at a dilution of ½00 are visualized with a human anti-IgG(H+L) polyclonal antibody coupled to peroxidase (Amersham NA933V) and TMB plus H202 (KPL). The sera of probable SARS cases are identified by a National Reference Center for Influenza Viruses serial number and by the initials of the patient and the number of days elapsed since the onset of symptoms, where appropriate. The TV sera are control sera from subjects which were collected in France before the SARS epidemic which occurred in 2003.

[0302] FIG. 31 shows the induction of antibodies directed against SARS-CoV after immunization with the recombinant Ssol polypeptide. Two groups of 6 mice were immunized at 3 weeks' interval with 10 µg of recombinant Ssol polypeptide (Ssol group) adjuvanted with aluminum hydroxide or, as a control, of adjuvant alone (mock group). Three successive immunizations were performed and the immune sera were collected 3 weeks after each of the three immunizations (IS1, IS2, IS3). The immune sera were analyzed per pool for each of the 2 groups by indirect ELISA using a lysate of VeroE6 cells infected with SARS-CoV as antigen. The anti-SARS-CoV antibody titers are calculated as the reciprocal of the dilution producing a specific OD of 0.5 after visualization with an anti-mouse IgG polyclonal antibody coupled to peroxidase (Amersham) and TMB (KPL).

[0303] FIG. 32 presents the nucleotide alignment of the sequences of the synthetic gene 040530 with the sequence of the wild-type gene of the SARS-CoV isolate 031589. I-3059 corresponds to nucleotides 21406-25348 of the SARS-CoV isolate 031589 deposited at the C.N.C.M. under the number I-3059 (SEQ ID NO: 4, plasmid pSARS-S)S-040530 is the sequence of the synthetic gene 040530.

[0304] FIG. 33 illustrates the use of a synthetic gene for the expression of the SARS-CoV S. Cellular extracts prepared 48 hours after transfection of VeroE6 cells (A) or 293T cells (B) with the plasmids pCI, pCI-S, pCI-S-CTE, pCI-S-WPRE and pCI-Ssynth were separated on 8% SDS acrylamide gel and analyzed by Western blotting with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG(H+L) polyclonal antibody coupled to peroxidase (NA934V, Amersham). The Western blot is visualized by luminescence

(ECL+, Amersham) and acquisition on a digital imaging device (Fluor S, BioRad). The levels of expression of the S protein were measured by quantifying the 2 predominant bands identified on the image.

[0305] FIG. 34 presents a diagram for the construction of recombinant vaccinia viruses VV-TG-S, VV-TG-Ssol, VV-TN-S and W-TN-Ssol

A. The cDNAs for the S protein and the Ssol polypeptide of SARS-CoV were inserted between the BamH1 and Sma1 sites of the transfer plasmid pTG186 in order to obtain the plasmids pTG-S and pTG-Ssol.

[0306] B. The sequences of the synthetic promoter 480 were then substituted for those of the 7.5 promoter by exchange of the Nde1-Pst1 fragments of the plasmids pTG186poly, pTG-S and pTG-Ssol in order to obtain the transfer plasmids pTN480, pTN-S and pTN-Ssol.

[0307] C. Sequence of the synthetic promoter 480 as contained between the Nde1 and Pst1 sites of the transfer plasmids of the pTN series. An Asc1 site was inserted in order to facilitate subsequent handling. The restriction sites and the promoter sequence are underlined.

D. The recombinant vaccinia viruses are obtained by double homologous recombination in vivo between the TK cassette of the transfer plasmids of the pTG and pTN series and the TK gene of the Copenhagen strain of the vaccinia virus.

[0308] SP: signal peptide predicted (aa 1-13) with the software signal v2.0 (Nielsen et al., 1997, Protein Engineering, 10:1-6)

[0309] TM: transmembrane region predicted (aa 1196-1218) with the software TMHMM v2.0 (Sonnhammer et al., 1998, Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, pp. 175-182, AAAI Press). It should be noted that the amino acids W1194 and P1195 possibly form part of the transmembrane region with respective probabilities of 0.13 and 0.42.

[0310] TK-L, TK-R: left- and right-hand parts of the vaccinia virus thymidine kinase gene

[0311] MCS: multiple cloning site

[0312] PE: early promoter

[0313] PL: late promoter

[0314] PL synth: synthetic late promoter 480

[0315] FIG. 35 illustrates the expression of the S protein by recombinant vaccinia viruses, analyzed by Western blotting. Cellular extracts were prepared 18 hours after infection of CV1 cells with the recombinant vaccinia viruses VV-TG, VV-TG-S and VV-TN-S at an M.O.I. of 2 (A). As a control, extracts of VeroE6 cells were prepared 8 hours after infection with SARS-CoV at a multiplicity of infection of 2. Cellular extracts were also prepared 18 hours after infection of CV1 cells with the recombinant vaccinia viruses VV-TG-S, VV-TG-Ssol, VV-TN, VV-TN-S and VV-TN-Ssol (B). They were separated on 8% SDS acrylamide gels and analyzed by Western blotting with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG(H+L) polyclonal antibody coupled to peroxidase (NA934V, Amersham). "1 ul" and "10 ul" indicates the quantities of cellular extracts deposited on the gel. A molecular mass ladder (kDa) is presented in the figure.

[0316] SARS-CoV: extract of VeroE6 cells infected with SARS-CoV

[0317] Mock: control extract of noninfected cells

[0318] FIG. 36 shows the result of a Western-blot analysis of the secretion of the Ssol polypeptide by the recombinant vaccinia viruses.

A. Supernatants of CV1 cells infected with the recombinant vaccinia virus VV-TN, various clones of the VV-TN-Ssol virus and with the viruses VV-TG-Ssol or VV-TN-Sflag were harvested 18 hours after infection of CV1 cells at an M.O.I. of 2.

[0319] B. Supernatants of 293T, FRhK-4, BHK-21 and CV1 cells infected in duplicate (1.2) with the recombinant vaccinia virus VV-TN-Ssol at an M.O.I. of 2 were harvested 18 hours after infection. The supernatant of CV1 cells infected with the virus VV-TN was also harvested as a control (M).

[0320] All the supernatants were separated on 8% SDS acrylamide gel according to Laemmli and analyzed by Western blotting with the aid of an anti-FLAG mouse monoclonal antibody and an anti-mouse IgG(H+L) polyclonal antibody coupled to peroxidase (NA931V, Amersham) (A) or with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG(H+L) polyclonal antibody coupled to peroxidase (NA934V, Amersham) (B).

[0321] A molecular mass ladder (kDa) is presented in the figure.

[0322] FIG. 37 shows the analysis of the Ssol polypeptide, purified on SDS polyacrylamide gel

[0323] 10, 5 and 211 of recombinant Ssol polypeptide purified by anti-FLAG affinity chromatography were separated on 4 to 15% gradient SDS polyacrylamide gel. The Ssol polypeptide and variable quantities of molecular mass markers (MM) were visualized by staining with silver nitrate (Gelcode SilverSNAP stain kit II, Pierce).

[0324] FIG. 38 illustrates the immunoreactivity of the recombinant Ssol polypeptide produced by the recombinant vaccinia virus VV-TN-Ssol toward sera of patients suffering from SARS. The reactivity of sera from patients was analyzed by indirect ELISA test against solid phases prepared with the aid of the purified recombinant Ssol polypeptide. The antibodies from patients reacting with the solid phase at a dilution of 1/100 and 1/400 are visualized with a human anti-IgG(H+L) polyclonal antibody coupled to peroxidase (Amersham NA933V) and TMB plus H202 (KPL). The sera of probable SARS cases are identified by a National Reference Center for Influenza Virus serial number and by the initials of the patient and the number of days elapsed since the onset of symptoms, where appropriate. The TV sera are control sera from subjects which were collected in France before the SARS epidemic which occurred in 2003.

[0325] FIG. 39 shows the anti-SARS-CoV antibody response in mice after immunization with the recombinant vaccinia viruses. Groups of 7 BALB/c mice were immunized by the i.v. route twice at 4 weeks' interval with 106 pfu of recombinant vaccinia viruses VV-TG, VV-TG-HA, VV-TG-S, VV-TG-Ssol, W-TN, W-TN-S, VV-TN-Ssol.

[0326] A. Pools of immune sera collected 3 weeks after each of the two immunizations were prepared for each of the

groups and were analyzed by indirect ELISA using a lysate of VeroE6 cells infected with SARS-CoV as antigen. The anti-SARS-CoV antibody titers are calculated as the reciprocal of the dilution producing a specific OD of 0.5 after visualization with an anti-mouse IgG polyclonal antibody coupled to peroxidase (NA931V, Amersham) and TMB (KPL).

[0327] B. The pools of immune sera were evaluated for their capacity to seroneutralize the infectivity of 100 TCID50 of SARS-CoV on FRhK-4 cells. 4 points are produced for each of the 2-fold dilutions tested from ½0. The seroneutralizing titer is calculated according to the Reed and Munsch method as the reciprocal of the dilution neutralizing the infectivity of 2 wells out of 4.

[0328] FIG. 40 describes the construction of the recombinant viruses MVSchw2-SARS-S and MVSchw2-SARS-Ssol

[0329] A. The measles vector is a complete genome of the Schwarz vaccine strain of the measles virus (MV) into which an additional transcription unit has been introduced (Combredet, 2003, Journal of Virology, 77: 11546-11554). The expression of the additional open reading frames (ORF) is controlled by cis-acting elements necessary for the transcription, for the formation of the cap and for the polyadenylation of the transgene which were copied from the elements present at the N/P junction. 2 different vectors allow the insertion between the P (phosphoprotein) and M (matrix) genes on the one hand and the H (hemagglutinin) and L (polymerase) genes on the other hand.

[0330] B. The recombinant genomes MVSchw2-SARS-S and MVSchw2-SARS-Ssol of the measles virus were constructed by inserting the ORFs of the S protein and of the Ssol polypeptide into an additional transcription unit located between the P and M genes of the vector.

[0331] The various genes of the measles virus (MV) are indicated: N (nucleoprotein), PVC (V/C phosphoprotein and protein), M (matrix), F (fusion), H (hemagglutinin), L (polymerase). T7=T7 RNA polymerase promoter, hh=hammerhead ribozyme, T7t=T7 phage RNA polymerase terminator sequence, 6=ribozyme of the hepatitis δ virus, (2), (3)= additional transcription units (ATU).

[0332] Size of the MV genome: 15 894 nt.

[0333] SP: signal peptide

[0334] TM: transmembrane region

[0335] FLAG: FLAG tag

[0336] FIG. 41 illustrates the expression of the S protein by the recombinant measles viruses, analyzed by Western blotting.

[0337] Cytoplasmic extracts were prepared after infection of Vero cells by different passages of the viruses MVSchw2-SARS-S and MVSchw2-SARS-Ssol and the wild-type virus MWSchw as control. Cellular extracts in loading buffer according to Laemmli were also prepared 8 hours after infection of VeroE6 cells with SARS-CoV at a multiplicity of infection of 3. They were separated on 8% SDS acrylamide gel and analyzed by Western blotting with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG(H+L) polyclonal antibody coupled to peroxidase (NA934V, Amersham).

[0338] A molecular mass ladder (kDa) is presented in the figure.

[0339] Pn: nth passage of the virus after coculture of 293-3-46 and Vero cells

[0340] SARS-CoV: extract of VeroE6 cells infected with SARS-CoV

[0341] Mock: control extract of noninfected VeroE6 cells

[0342] FIG. 42 shows the expression of the S protein by the recombinant measles viruses, analyzed by immunofluorescence

[0343] Vero cells in monolayers on glass slides were infected with the wild-type virus MWSchw (A) or the viruses MVSchw2-SARS-S (B) and MVSchw2-SARS-Ssol (C). When the syncytia have reached 30 to 40% confluence (A., B.) or 90-100% (C), the cells were fixed, permeabilized and labeled with anti-SARS-CoV rabbit polyclonal antibodies and an anti-rabbit IgG(H+L) conjugate coupled to FITC (Jackson).

[0344] FIG. 43 illustrates the Western-blot analysis of the immunoreactivity of rabbit sera directed against the peptides E1-12, E53-76 and M2-14. The rabbit 20047 was immunized with the peptide E1-12 coupled to KLH. The rabbits 22234 and 22240 were immunized with the peptide E53-76 coupled to KLH. The rabbits 20013 and 20080 were immunized with the peptide M2-14 coupled to KLH. The immune sera were analyzed by Western blotting with the aid of extracts of cells infected with SARS-CoV (B) or with the aid of extracts of cells infected with a recombinant vaccinia virus expressing the protein E (A) or M (C) of the SARS-CoV 031589 isolate. The immunoblots were visualized with the aid of an anti-rabbit IgG(H+L) conjugate coupled to peroxidase (NA934V, Amersham).

[0345] The position of the E and M proteins is indicated by an arrow

[0346] A molecular mass ladder (kDa) is presented in the figure.

[0347] It should be understood, however, that these examples are given solely by way of illustration of the subject of the invention, and do not constitute in any manner a limitation thereto.

EXAMPLE 1

Cloning and Sequencing of the Genome of the SARS-CoV Strain Derived from the Sample Recorded Under the Number 031589

[0348] The RNA of the SARS-CoV strain was extracted from the sample of bronchoalveolar washing recorded under the number 031589, performed on a patient at the Hanoi (Vietnam) French hospital suffering from SARS.

[0349] The isolated RNA was used as template to amplify the cDNAs corresponding to the various open reading frames of the genome (ORF1a, ORF1b, ORF-S, ORF-E, ORF-M, ORF-N (including ORF-13 and ORF-14), ORF3, ORF4, ORF7 to ORF11), and at the noncoding 5' and 3' ends. The sequences of the primers and of the probes used for the amplification/detection were defined based on the available SARS-CoV nucleotide sequence.

[0350] In the text which follows, the primers and the probes are identified by: the letter S, followed by a letter which indicates the corresponding region of the genome (L for the 5' end including ORF1a and ORF1b; S, M and N for ORF-S, ORF-M, ORF-N, SE and MN for the corresponding intergene regions), and then optionally by Fn, Rn, with n between 1 and 6 corresponding to the primers used for the nested PCR (F1+R1 pair for the first amplification, F2+R2 pair for the second amplication, and the like), and then by /+/or /-/ corresponding to a sense or antisense primer and finally by the positions of the primers with reference to the Genbank sequence AY27411.3; for the sense and antisense S and N primers and the other sense primers only, when a single position is indicated, it corresponds to that of the 5' end of a probe or of a primer of about 20 bases; for the antisense primers other than the S and N primers, when a single position is indicated, it corresponds to that of the 3' end of a probe or of a primer of about 20 bases.

[0351] The amplification products thus generated were sequenced with the aid of specific primers in order to determine the complete sequence of the genome of the SARS-CoV strain derived from the sample recorded under the number 031589. These amplification products, with the exception of those corresponding to ORF1a and ORF1b, were then cloned into expression vectors in order to produce the corresponding viral proteins and the antibodies directed against these proteins, in particular by DNA-based immunization.

1. Extraction of the RNAs

[0352] The RNAs were extracted with the aid of the Qlamp viral RNA extraction mini kit (QIAGEN) according to the manufacturer's recommendations. More specifically: 14011 of the sample and 560 μl of AVL buffer were vigorously mixed for 15 seconds, incubated for 10 minutes at room temperature and then briefly centrifuged at maximum speed. 560 μl of 100% ethanol were added to the supernatant and the mixture thus obtained was very vigorously stirred for 15 sec. 630 μl of the mixture were then deposited on the column.

[0353] The column was placed on a 2 ml tube, centrifuged for 1 min at 8000 rpm, and then the remainder of the preceding mixture was deposited on the same column, centrifuged again, for 1 min at 8000 rpm, and the column was transferred over a clean 2 ml tube. Next, 500 µl of AW1 buffer were added to the column, and then the column was centrifuged for 1 min at 8000 rpm and the eluate was discarded. 500 µl of AW2 buffer were added to the column which was then centrifuged for 3 min at 14 000 rpm and transferred onto a 1.5 ml tube. Finally, 60 µl of AVE buffer were added to the column which was incubated for 1 to 2 min at room temperature and then centrifuged for 1 min at 8000 rpm. The eluate corresponding to the purified RNA was recovered and frozen at -20° C.

2. Amplification, Sequencing and Cloning of the cDNAs

2.1) cDNA Encoding the S Protein

[0354] The RNAs extracted from the sample were subjected to reverse transcription with the aid of random sequence hexameric oligonucleotides (pdN6), so as to produce cDNA fragments.

[0355] The sequence encoding the SARS-CoV S glycoprotein was amplified in the form of two overlapping DNA

fragments: 5' fragment (SARS-Sa, SEQ ID NO: 5) and 3' fragment (SARS-Sb, SEQ ID NO: 6), by carrying out two successive amplifications with the aid of nested primers. The amplicons thus obtained were sequenced, cloned into the PCR plasmid vector 2.1-TOPOTM (INVITROGEN), and then the sequence of the cloned cDNAs was determined.

a) Cloning and Sequencing of the Sa and Sb Fragments

a.1) Synthesis of the cDNA

[0356] The reaction mixture containing: RNA (5 µl), H₂O for injection (3.5 µl), 5× reverse transcriptase buffer (4 µl), 5 mM dNTP (2 µl), pdN6 100 µg/ml (4 µl), RNasin 40 IU/µl (0.5 µl) and reverse transcriptase AMV-RT, 10 IU/µl, PROMEGA (1 µl) was incubated in a thermocycler under the following conditions: 45 min at 42° C., 15 min at 55° C., 5 min at 95° C., and then the cDNA obtained was kept at +4° C.

a.2) First PCR Amplification

[0357] The 5' and 3' ends of the S gene were respectively amplified with the pairs of primers S/F1/+/21350-21372 and S/R1/-/23518-23498, S/F3/+/23258-23277 and S/R3/-/25382-25363. The 50 μ l reaction mixture containing: cDNA (2 μ l), 50 μ M primers (0.5 μ l), 10× buffer (5 μ l), 5 mM dNTP (2 μ l), Taq Expand High Fidelity, Roche (0.75 μ l) and H₂O (39, 75 μ l) was amplified in a thermocycler, under the following conditions: an initial step of denaturation at 94° C. for 2 min was followed by 40 cycles comprising: a step of denaturation at 94° C. for 30 sec, a step of annealing at 55° C. for 30 sec and then a step of extension at 72° C. for 2 min 30 sec, with 10 sec of additional extension at each cycle, and then a final step of extension at 72° C. for 5 min.

a.3) Second PCR Amplification

[0358] The products of the first PCR amplification (5' and 3' amplicons) were subjected to a second PCR amplification step (nested PCR) under conditions identical to those of the first amplification, with the pairs of primers S/F2/+/21406-21426 and S/R2/-/23454-23435 and S/F4/+/23322-23341 and S/R4/-/25348-25329, respectively for the 5' amplicon and the 3' amplicon.

a.4) Cloning and Sequencing of the Sa and Sb Fragments

[0359] The Sa (5' end) and Sb (3' end) amplicons thus obtained were purified with the aid of the QIAquick PCR purification kit (QIAGEN), following the manufacturer's instructions, and then they were cloned into the vector PCR2.1-TOPO (Invitrogen kit), to give the plasmids called SARS-S1 and SARS-S2.

[0360] The DNA of the Sa and Sb clones was isolated and then the corresponding insert was sequenced with the aid of the Big Dye kit, Applied Biosystem® and universal primers M13 forward and M13 reverse, and primers: S/S/+/21867, S/S/+/22353, S/S/+/22811, S/S/+/23754, S/S/+/24207, S/S/+/24699, S/S/+/24348, S/S/-/224209, S/S/-/23038, S/S/-/22454, S/S/-/21815, S/S/-/24784, S/S/+/21556, S/S/+/23130 and S/S/+/2465 following the manufacturer's instructions; the sequences of the Sa and Sb fragments thus obtained correspond to the sequences SEQ ID NO: 5 and SEQ ID NO: 6 in the sequence listing appended as an annex.

[0361] The plasmid, called SARS-S1, was deposited under the No. I-3020, on May 12, 2003, at the Collection

Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains a 5' fragment of the sequence of the S gene of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said fragment called Sa corresponding to the nucleotides at positions 21406 to 23454 (SEQ ID NO: 5), with reference to the Genbank sequence AY274119.3 Tor2.

[0362] The plasmid, called TOP10F'-SARS-S2, was deposited under the No. I-3019, on May 12, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains a 3' fragment of the sequence of the S gene of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said fragment called Sb corresponding to the nucleotides at positions 23322 to 25348 (SEQ ID NO: 6), with reference to the Genbank sequence accession No. AY274119.3.

b) Cloning and Sequencing of the Complete cDNA (SARS-S Clone of 4 kb)

[0363] The complete S cDNA was obtained from the abovementioned clones SARS-S1 and SARS-S2, in the following manner:

[0364] 1) A PCR amplification reaction was carried out on a SARS-S2 clone in the presence of the above-mentioned primer S/R4/-/25348-25329 and of the primer S/S/+/24696-24715: an amplicon of 633 bp was obtained,

[0365] 2) Another PCR amplification reaction was carried out on another SARS-S2 clone, in the presence of the primers S/F4/+/23322-23341 mentioned above and S/S/-/24803-24784: an amplicon of 1481 bp was obtained.

[0366] The amplification reaction was carried out under the conditions as defined above for the amplification of the Sa and Sb fragments, with the exception that 30 amplification cycles comprising a step of denaturation at 94° C. for 20 sec and a step of extension at 72° C. for 2 min 30 sec were carried out.

[0367] 3) The 2 amplicons (633 bp and 1481 bp) were purified under the conditions as defined above for the Sa and Sb fragments.

[0368] 4) Another PCR amplification reaction with the aid of the abovementioned primers S/F4/+/23322-23341 and S/R4/-/25348-25329 was carried out on the purified amplicons obtained in 3). The amplification reaction was carried out under the conditions as defined above for the amplification of the Sa and Sb fragments, except that 30 amplification cycles were performed.

[0369] The 2026 bp amplicon thus obtained was purified, cloned into the vector PCR2.1-TOPO and then sequenced as above, with the aid of the primers as defined above for the Sa and Sb fragments. The clone thus obtained was called clone 3'.

[0370] 5) The clone SARS-S1 obtained above and the clone 3' were digested with EcoR I, the bands of about 2 kb thus obtained were gel purified and then amplified by PCR with the abovementioned primers S/F2/+/21406-21426 and S/R4/-/25348-25329. The amplification reaction was carried out under the conditions as defined above for the amplification of the Sa and Sb fragments, except that 30 amplification cycles were performed. The amplicon of about

4 kb was purified and sequenced. It was then cloned into the vector PCR2.1-TOPO in order to give the plasmid, called SARS-S, and the insert obtained in this plasmid was sequenced as above, with the aid of the primers as defined above for the Sa and Sb fragments. The cDNA sequences of the insert and of the amplicon encoding the S protein correspond respectively to the sequences SEQ ID NO: 4 and SEQ ID NO: 2 in the sequence listing appended as an annex, they encode the S protein (SEQ ID NO: 3).

[0371] The sequence of the amplicon corresponding to the cDNA encoding the S protein of the SARS-CoV strain derived from the sample No. 031589 has the following two mutations compared with the corresponding sequences of respectively the Tor2 and Urbani isolates, the positions of the mutations being indicated with reference to the complete sequence of the genome of the Tor2 isolate (Genbank AY274119.3):

[0372] g/t in position 23220; the alanine codon (gct) in position 577 of the amino acid sequence of the S protein of Tor2 is replaced with a serine codon (tct),

[0373] c/t in position 24872: this mutation does not modify the amino acid sequence of the S protein, and

the plasmid, called SARS-S, was deposited under the No. I-3059, on Jun. 20, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence encoding the S protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, said sequence corresponding to the nucleotides at positions 21406 to 25348 (SEQ ID NO: 4), with reference to the Genbank sequence AY274119.3.

2.2) cDNA Encoding the M and E Proteins

[0374] The RNAs derived from the sample 031589, extracted as above, were subjected to a reverse transcription, combined, during the same step (Titan One Step RT-PCR® kit, Roche), with a PCR amplification reaction, with the aid of the pairs of primers:

[0375] S/E/F1/+/26051-26070 and S/E/R1/-/26455-26436 in order to amplify ORF-E, and

[0376] S/M/F1/+/26225-26244 and S/M/R1/-/27148-27129 in order to amplify ORF-M.

[0377] A first reaction mixture containing: $8.6 \,\mu l$ of H_2O for injection, $1 \,\mu l$ of dNTP (5 mM), $0.2 \,\mu l$ of each of the primers (50 μM), $1.25 \,\mu l$ of DTT (100 mM) and $0.25 \,\mu l$ of RNAsin (40 IU/ μl) was combined with a second reaction mixture containing: $1 \,\mu l$ of RNA, $7 \,\mu l$ of H_2O for injection, $5 \,\mu l$ of $5 \,\kappa RT$ -PCR buffer and $0.5 \,\mu l$ of enzyme mixture and the combined mixtures—were incubated in a thermocycler under the following conditions: $30 \,\mu l$ of $42 \,\mu l$ or $42 \,\mu l$ of the attraction at $42 \,\mu l$ C., $42 \,\mu l$ of denaturation at $42 \,\mu l$ C. for $10 \,\mu l$ sec, a step of annealing at $10 \,\mu l$ sec increment per cycle and finally a step of terminal extension at $10 \,\mu l$ c. for $10 \,\mu l$ sec, as the position of $10 \,\mu l$ sec increment per cycle and finally a step of terminal extension at $10 \,\mu l$ c. for $10 \,\mu l$ sec increment per cycle and finally a step of

[0378] The amplification products thus obtained (M and E amplicons) were subjected to a second PCR amplification (nested PCR) using the Expand High-Fi® kit, Roche), with the aid of the pairs of primers:

[0379] S/E/F2/+/26082-26101 and S/E/R2/-/26413-26394 for the amplicon E, and

[0380] S/M/F2/+/26330-26350 and S/M/R2/-/27098-27078 for the amplicon M.

[0381] The reaction mixture containing: 2 µl of the product of the first PCR, 39.25 µl of H₂O for injection, 5 µl of 10x buffer containing MgCl₂, 2 μ l of dNTP (5 mM), 0.5 μ l of each of the primers (50 µM) and 0.75 µl of enzyme mixture was incubated in a thermocycler under the following conditions: a step of denaturation at 94° C. for 2 min was followed by 30 cycles comprising a step of denaturation at 94° C. for 15 sec, a step of annealing at 60° C. for 30 sec and a step of extension at 72° C. for 45 sec, with 3 sec increment per cycle, and finally a step of terminal extension at 72° C. for 7 min. The amplification products obtained corresponding to the cDNAs encoding the E and M proteins were sequenced as above, with the aid of the primers: S/E/F2/+/ 26082 and S/E/R2/-/26394, S/M/F2/+/26330, S/M/R2/-/ 27078 cited above and the primers S/M/+/26636-26655 and S/M/-/26567-26548. They were then cloned, as above, in order to give the plasmids called SARS-E and SARS-M. The DNA of these clones was then isolated and sequenced with the aid of the universal primers M13 forward and M13 reverse and the primers S/M/+/26636 and S/M/-/26548 mentioned above.

[0382] The sequence of the amplicon representing the cDNA encoding the E protein (SEQ ID NO: 13) of the SARS-CoV strain derived from the sample No. 031589 does not contain differences in relation to the corresponding sequences of the isolates AY274119.3-Tor2 and AY278741-Urbani. The sequence of the E protein of the SARS-CoV 031589 strain corresponds to the sequence SEQ ID NO: 14 in the sequence listing appended as an annex.

[0383] The plasmid, called SARS-E, was deposited under the No. I-3046, on May 28, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence encoding the E protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to the nucleotides at positions 26082 to 26413 (SEQ ID NO: 15), with reference to the Genbank sequence accession No. AY274119.3.

[0384] The sequence of the amplicon representing the cDNA encoding M (SEQ ID NO: 16) from the SARS-CoV strain derived from the sample No. 031589 does not contain differences in relation to the corresponding sequence of the isolate AY274119.3-Tor2. By contrast, at position 26857, the isolate AY278741-Urbani contains a c and the sequence of the SARS-CoV strain derived from the sample recorded under the No. 031589 contains a t. This mutation results in a modification of the amino acid sequence of the corresponding protein: at position 154, a proline (AY278741-Urbani) is changed to serine in the SARS-CoV strain derived from the sample recorded under the No. 031589. The sequence of the M protein of the SARS-CoV strain derived from the sample recorded under the No. 031589 corresponds to the sequence SEQ ID NO: 17 in the sequence listing appended as an annex.

[0385] The plasmid, called SARS-M, was deposited under the No. I-3047, on May 28, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence encoding the M protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above; said sequence corresponding to the nucleotides at positions 26330 to 27098 (SEQ ID NO: 18), with reference to the Genbank sequence accession No. AY274119.3.

2.3) cDNA Corresponding to ORF3, ORF4, ORF7 to ORF11

[0386] The same amplification, cloning and sequencing strategy was used to obtain the cDNA fragments corresponding respectively to the following ORFs: ORF3, ORF4, ORF7, ORF8, ORF9, ORF10 and ORF11. The pairs of primers used for the first amplification are:

[0387] ORF3 and ORF4: S/SE/F1/+/25069-25088 and S/SE/R1/-/26300-26281

[0388] ORF7 to ORF11: S/MN/F1/+/26898-26917 and S/MN/R1/-/28287-28266

[0389] The pairs of primers used for the second amplification are:

[0390] ORF3 and ORF4: S/SE/F2/+/25110-25129 and S/SE/R2/-/26244-26225

[0391] ORF7 to ORF11: S/MN/F2/+/26977-26996 and S/MN/R2/-/28218-28199

[0392] The conditions for the first amplification (RT-PCR) are the following: 45 min at 42° C., 10 min at 55° C., 2 min at 94° C. followed by 40 cycles comprising a step of denaturation at 94° C. for 15 sec, a step of annealing at 58° C. for 30 sec and a step of extension at 68° C. for 1 min, with 5 sec increment per cycle and finally a step of terminal extension at 68° C. for 7 min.

[0393] The conditions for the nested PCR are the following: a step of denaturation at 94° C. for 2 min was followed by 40 cycles comprising a step of denaturation at 94° C. for 20 sec. a step of annealing at 58° C. for 30 sec and a step of extension at 72° C. for 50 sec, with 4 sec increment per cycle and finally a step of terminal extension at 72° C. for 7 min.

[0394] The amplification products obtained corresponding to the cDNAs containing respectively ORF3 and 4 and ORF7 to 11 were sequenced with the aid of the primers: S/SE/+/25363, S/SE/+/25835, S/SE/-/25494, S/SE/-/25875, S/MN/+/27839, S/MN/+/27409, S/MN/-/27836, S/MN/-/27799 and cloned as above for the other ORFs, to give the plasmids called SARS-SE and SARS-MN. The DNA of these clones was isolated and sequenced with the aid of these same primers and of the universal primers M13 sense and M13 antisense.

[0395] The sequence of the amplicon representing the cDNA of the region containing OFR3 and ORF4 (SEQ ID NO: 7) of the SARS-CoV strain derived from the sample No. 031589 contains a nucleotide difference in relation to the corresponding sequence of the isolate AY274119-Tor2. This mutation at position 25298 results in a modification of the amino acid sequence of the corresponding protein (ORF3): at position 11, an arginine (AY274119-Tor2) is changed to glycine in the SARS-CoV strain derived from the sample No. 031589. By contrast, no mutation was identified in relation to the corresponding sequence of the isolate AY278741-Urbani. The sequences of ORF3 and 4 of the SARS-CoV strain derived from the sample No. 031589

correspond respectively to the sequences SEQ ID NO: 10 and 12 in the sequence listing appended as an annex.

[0396] The plasmid, called SARS-SE, was deposited under the No. I-3126, on Nov. 13, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA corresponding to the region situated between ORF-S and ORF-E and overlapping ORF-E of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said region corresponding to the nucleotides at positions 25110 to 26244 (SEQ ID NO: 8), with reference to the Genbank sequence accession No. AY274119.3.

[0397] The sequence of the amplicon representing the cDNA corresponding to the region containing ORF7 to ORF11 (SEQ ID NO: 19) of the SARS-CoV strain derived from the sample No. 031589 does not contain differences in relation to the corresponding sequences of the isolates AY274119-Tor2 and AY278741-Urbani. The sequences of ORF7 to 11 of the SARS-CoV strain derived from the sample No. 031589 correspond respectively to the sequences SEQ ID NO: 22, 24, 26, 28 and 30 in the sequence listing appended as an annex.

[0398] The plasmid, called SARS-MN, was deposited under the No. I-3125, on Nov. 13, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence corresponding to the region situated between ORF-M and ORF-N of the SARS-CoV strain derived from the sample recorded under the No. 031589 and collected in Hanoi, as defined above, said sequence corresponding to the nucleotides at positions 26977 to 28218 (SEQ ID NO: 20), with reference to the Genbank sequence accession No. AY274119.3.

[0399] The sequence of the amplicon representing the cDNA corresponding to the region containing ORF7 to ORF11 (SEQ ID NO: 19) of the SARS-CoV strain derived from the sample No. 031589 does not contain differences in relation to the corresponding sequences of the isolates AY274119-Tor2 and AY278741-Urbani. The sequences of ORF7 to 11 of the SARS-CoV strain derived from the sample No. 031589 correspond respectively to the sequences SEQ ID NO: 22, 24, 26, 28 and 30 in the sequence listing appended as an annex.

2.4) cDNA Encoding the N Protein and Including ORF13 and ORF14

[0400] The cDNA was synthesized and amplified as described above for the fragments Sa and Sb. More specifically, the reaction mixture containing: 5 μl of RNA, 5 μl of H₂O for injection, 4 μl of 5× reverse transcriptase buffer, 2 μl of dNTP (5 mM), 2 μl of oligo 20T (5 μM), 0.5 μl of RNasin (40 IU/ μl) and 1.5 μl of AMV-RT (10 IU/ μl) Promega) was incubated in a thermocycler under the following conditions: 45 min at 42° C., 15 min at 55° C., 5 min at 95° C., and it was then kept at +4° C.

[0401] A first PCR amplification was performed with the pair of primers S/N/F3/+/28023 and S/N/R3/-/29480.

[0402] The reaction mixture as above for the amplification of the S1 and S2 fragments was incubated in a thermocycler, under the following conditions: an initial step of denaturation at 94° C. for 2 min was followed by 40 cycles

comprising a step of denaturation at 94° C. for 20 sec, a step of annealing at 55° C. for 30 sec and then a step of extension at 72° C. for 1 min 30 sec with 10 sec of additional extension at each cycle, and then a final step of extension at 72° C. for 5 min

[0403] The amplicon obtained at the first PCR amplification was subjected to a second PCR amplification step (nested PCR) with the pairs of primer S/N/F4/+/28054 and S/N/R4/-/29430 under conditions identical to those of the first amplification.

[0404] The amplification product obtained, corresponding to the cDNA encoding the N protein of the SARS-CoV strain derived from the sample No. 031589, was sequenced with the aid of the primers: S/N/F4/+/28054, S/N/R4/-/29430, S/N/I+/28468, S/N/+/28918 and S/N/-/28607 and cloned as above for the other ORFs, to give the plasmid called SARS-N. The DNA of these clones was isolated and sequenced with the aid of the universal primers M13 sense and M13 antisense, and the primers S/N/+/28468, S/N/+/28918 and S/N/-/28607.

[0405] The sequence of the amplicon representing the cDNA corresponding to ORF-N and including ORF13 and ORF14 (SEQ ID NO: 36) of the SARS-CoV strain derived from the sample No. 031589 does not contain differences in relation to the corresponding sequences of the isolates AY274119.3-Tor2 and AY278741-Urbani. The sequence of the N protein of the SARS-CoV strain derived from the sample No. 031589 corresponds to the sequence SEQ ID NO: 37 in the sequence listing appended as an annex.

[0406] The sequences of ORF13 and 14 of the SARS-CoV strain derived from the sample No. 031589 correspond respectively to the sequences SEQ ID NO: 32 and 34 in the sequence listing appended as an annex.

[0407] The plasmid, called SARS-N, was deposited under the No. I-3048, on Jun. 5, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA encoding the N protein of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to the nucleotides at positions 28054 to 29430 (SEQ ID NO: 38), with reference to the Genbank sequence accession No. AY274119.3.

- 2.5) Noncoding 5' and 3' Ends
- a) Noncoding 5' end (5'NC)
- a₁) Synthesis of the cDNA

[0408] The RNAs derived from the sample 031589, extracted as above, were subjected to reverse transcription under the following conditions:

[0409] The RNA (15 μ l) and the primer S/L/-/443 (3 μ l) at the concentration of 5 μ m) were incubated for 10 min at 75° C.

[0410] Next, the 5x reverse transcriptase buffer (6 μ l, INVITROGEN), 10 Mm dNTP (1 μ l), 0.1 M DTT (3 μ l) were added and the mixture was incubated at 50° C. for 3 min.

[0411] Finally, the reverse transcriptase (3 μ l of Superscript®, INVITROGEN) was added to the preceding mixture which was incubated at 50° C. for 1 h 30 min and then at 90° C. for 2 min.

[0412] The cDNA thus obtained was purified with the aid of the QIAquick PCR purification kit (QIAGEN), according to the manufacturer's recommendations.

b₁) Terminal Transferase Reaction (TdT)

[0413] The cDNA (10 μ l) is incubated for 2 min at 100° C., stored in ice, and the following are then added: H₂O (2.5 μ l), 5×TdT buffer (4 μ l, AMERSHAM), 5 mM dATP (2 μ l) and TdT (1.5 μ l, AMERSHAM). The mixture thus obtained is incubated for 45 min at 37° C. and then for 2 min at 65° C.

[0414] The product obtained is amplified by a first PCR reaction with the aid of the primers: S/L/-225-206 and anchor 14T: 5'-AGATGAATTCGGTAC-CTTTTTTTTTTTTT-3' (SEQ ID NO: 68). The amplification conditions are the following: an initial step of denaturation at 94° C. for 2 min is followed by 10 cycles comprising a step of denaturation at 94° C. for 10 sec, a step of annealing at 45° C. for 30 sec and then a step of extension at 72° C. for 30 sec and then a step of annealing at 50° C. for 30 sec and then a step of extension at 72° C. for 30 sec, and then a step of extension at 72° C. for 30 sec, and then a final step of extension at 72° C. for 5 min.

[0415] The product of the first PCR amplification was subjected to a second amplification step with the aid of the primers: S/L/-/204-185 and anchor 14T mentioned above under conditions identical to those of the first amplification. The amplicon thus obtained was purified, sequenced with the aid of the primer S/L/-/182-163 and it was then cloned as above for the different ORFs, to give the plasmid called SARS-5'NC. The DNA of this clone was isolated and sequenced with the aid of the universal primers M13 sense and M13 antisense and the primer S/L/-/182-163 mentioned above.

[0416] The amplicon representing the cDNA corresponding to the 5'NC end of the SARS-CoV strain derived from the sample recorded under the No. 031589 corresponds to the sequence SEQ ID NO: 72 in the sequence listing appended as an annex; this sequence does not contain differences in relation to the corresponding sequences of the isolates AY274119.3-Tor2 and AY278741-Urbani.

[0417] The plasmid, called SARS-5'NC, was deposited under the No. I-3124, on Nov. 7, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA corresponding to the noncoding 5' end of the genome of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to the nucleotides at positions 1 to 204 (SEQ ID NO: 39), with reference to the Genbank sequence accession No. AY274119.3.

b) Noncoding 3' End (3'NC)

a₁) Synthesis of the cDNA

[0418] The RNAs derived from the sample 031589, extracted as above, were subjected to reverse transcription, according to the following protocol: the reaction mixture containing: RNA (5 μ l), H₂O (5 μ l), 5× reverse transcriptase buffer (4 μ l), 5 mM dNTP (2 μ l), 5 μ M Oligo 20T (2 μ l), 40 U/ μ l RNasin (0.5 μ l) and 10 IU/ μ l RT-AMV (1.5 μ l, PROMEGA) was incubated in a thermo-cycler, under the following conditions: 45 min at 42° C., 15 min at 55° C., 5 min at 95° C., and it was then kept at +4° C.

[0419] The cDNA obtained was amplified by a first PCR reaction with the aid of the primers S/N/+/28468-28487 and anchor 14T mentioned above. The amplification conditions are the following: an initial step of denaturation at 94° C. for 2 min is followed by 10 cycles comprising a step of denaturation at 94° C. for 20 sec, a step of annealing at 45° C. for 30 sec and then a step of extension at 72° C. for 50 sec and then 30 cycles comprising a step of denaturation at 94° C. for 20 sec, a step of annealing at 50° C. for 30 sec and then a step of extension at 72° C. for 50 sec, and then a final step of extension at 72° C. for 50 sec, and then a final step of extension at 72° C. for 5 min.

[0420] The product of the first PCR amplification was subjected to a second amplification step with the aid of the primers S/N/+/28933-28952 and anchor 14T mentioned above, under conditions identical to those of the first amplification. The amplicon thus obtained was purified, sequenced with the aid of the primer S/N/+/29257-29278 and cloned as above for the different ORFs, to give the plasmid called SARS-3'NC. The DNA of this clone was isolated and sequenced with the aid of the universal primers M13 sense and M13 antisense and the primer S/N/+/29257-29278 mentioned above.

[0421] The amplicon representing the cDNA corresponding to the 3'NC end of the SARS-CoV strain derived from the sample recorded under the No. 031589 corresponds to the sequence SEQ ID NO: 73 in the sequence listing appended as an annex; this sequence does not contain

differences in relation to the corresponding sequences of the isolates AY274119.3-Tor2 and AY278741-Urbani.

[0422] The plasmid called SARS-3'NC was deposited under the No. I-3123 on Nov. 7, 2003, at the Collection Nationale de Cultures de Microorganismes, 25 rue du Docteur Roux, 75724 Paris Cedex 15; it contains the cDNA sequence corresponding to the noncoding 3' end of the genome of the SARS-CoV strain derived from the sample recorded under the No. 031589, as defined above, said sequence corresponding to that situated between the nucleotide at positions 28933 to 29727 (SEQ ID NO: 40), with reference to the Genbank sequence accession No. AY274119.3, ends with a series of nucleotides a.

2.6) ORF1a and ORF1b

[0423] The amplification of the 5' region containing ORF1a and ORF1b of the SARS-CoV genome derived from the sample 031589 was performed by carrying out RT-PCR reactions followed by nested PCRs according to the same principles as those described above for the other ORFs. The amplified fragments overlap over several tenths of bases, thus allowing computer reconstruction of the complete sequence of this part of the genome. On average, the amplified fragments are of two kilobases.

[0424] 14 overlapping fragments, called L0 to L12, were thus amplified with the aid of the following primers:

TABLE II

Primers used for the amplification of the 5' region (ORF1a and ORF1b)				
REGION AMPLIFIED AND SEQUENCED (does not include the primers)	RT-PCR sense primer	RT-PCR antisense primer	Nested PCR sense primer	Nested PCR antisense primer
L0 50-480	S/L0/F1/+30	S/L0/R1/-481		
L1 231-2240	S/L1/F1/+147	S/L1/R1/-2338	S/L1/F2/+211	S/L1/R2/-2241
L2	S/L2/F1/+2033	S/L2/R1/-4192	S/L2/F2/+2136	S/L2/R2/-4168
2156-4167 L3	S/L3bis/F1/+3850	S/L3bis/R1/-5365	S/L3bis/F2/+3892	S/L3bis/R2/-5325
3913-5324 L4b 4952-6023	S/L4b/F1/+4878	S/L4b/R1/-6061	S/L4b/F2/+4932	S/L4b/R2/-6024
L4	S/L4/F1/+5272	S/L4/R1/-7392	S/L4/F2/+5305	S/L4/R2/-7323
5325-7318 L5 7296-9156	S/L5/F1/+7111	S/L5/R1/-9253	S/L5/F2/+7275	S/L5/R2/-9157
L6 9053-11066	S/L6/F1/+8975	S/L6/R1/-11151	S/L6/F2/+9032	S/L6/R2/-11067
L7 10928-12962	S/L7/F1/+10883	S/L7/R1/-13050	S/L7/F2/+10928	S/L7/R2/-12963
L8 12835-14834	S/L8/F1/+12690	S/L8/R1/-14857	S/L8/F2/+12815	S/L8/R2/-14835
L9	S/L9/F1/+14688	S/L9/R1/-16678	S/L9/F2/+14745	S/L9/R2/-16625
14765-16624 L10	S/L10/F1/+16451	S/L10/R1/-18594	S/L10/F2/+16514	S/L10/R2/-18571
16534-18570 L11 18521-20582	S/L11/F1/+18441	S/L11/R1/-20612	S/L11/F2/+18500	S/L11/R2/-20583
L12 20338-22205.	S/L12/F1/+20279	S/L12/R1/-22229	S/L12/F2/+20319	S/L12/R2/-22206

TABLE III-continued

Primers used for the sequencing of the

Sequences

region (ORFla and ORFlb)

(SEQ ID NO: 76 to 139)

5'-CAGACAACATGAAGCACCAC-3'

5'-CGCTGACGTGATATATGTGG-3'

5'-TGCACAATGAAGGATACACC-3'

5'-ACATAGCTCGCGTCTCAGTT-3'

5'-GGCATTGTAGGCGTACTGAC-3'

5'-GTTTGCGGTGTAAGTGCAG-3'

5'-TAGTGGCGGCTATTGACTTC-3'

5'-CTAAACCTTGAGCCGCATAG-3'

5'-CATGGTCATAGCAGCACTTG-3'

Names

S/L8/-13160

S/L8/-/13704

S/L8/-14284

S/L8/+/14453

S/L8/+/13968

S/L8/+/13401

S/L9/-15098

S/L9/-15677

S/L9/-16247

[0425] All the fragments were amplified under the following conditions, except fragment L0 which was amplified as described above for ORF-M:

[0426] RT-PCR: 30 min at 42° C., 15 min at 55° C., 2 min at 94° C., and then the cDNA obtained is amplified under the following conditions: 40 cycles comprising: a step of denaturation at 94° C. for 15 sec, a step of annealing at 58° C. for 30 sec and then a step of extension at 68° C. for 1 min 30 sec, with 5 sec additional extension at each cycle, and then a final step of extension at 68° C. for 7 min.

[0427] Nested PCR: An initial step of denaturation at 94° C. for 2 min is followed by 35 cycles comprising: a step of denaturation at 94° C. for 15 sec, a step of annealing at 60° C. for 30 sec and then a step of extension at 72° C. for 1 min 30 sec, with 5 sec of additional extension at each cycle, and then a final step of extension at 72° C. for 7 min.

[0428] The amplification products were sequenced with the aid of the primers defined in table III below:

	TABLE III	S/L9/+16323	5'-CCAGGTTGTGATGTCACTGAT-3'
	sed for the sequencing of the region (ORF1a and ORF1b)	s/L9/+15858	5'-CCTTACCCAGATCCATCAAG-3'
5		S/L9/+15288	5'-CGCAAACATAACACTTGCTG-3'
Names	Sequences (SEQ ID NO: 76 to 139)	S/L10/-16914	5'-AGTGTTGGGTACAAGCCAGT-3'
S/L3/+/4932	5'-CCACACACAGCTTGTGGATA-3'	S/L10/-17466	5'-GTTCCAAGGAACATGTCTGG-3'
S/L4/+/6401	5'-CCGAAGTTGTAGGCAATGTC-3'	S/L10/-18022	5'-AGGTGCCTGTGTAGGATGAA-3'
S/L4/+/6964	5'-TTTGGTGCTCCTTCTTATTG-3'	S/L10/+18245	5'-GGGCTGTCATGCAACTAGAG-3'
S/L4/-/6817	5'-CCGGCATCCAAACATAATTT-3'	S/L10/+17663	5'-TCTTACACGCAATCCTGCTT-3'
s/L5/-/7633	5'-TGGTCAGTAGGGTTGATTGG-3'	S/L10/+17061	5'-TACCCATCTGCTCGCATAGT-3'
s/L5/-/8127	5'-CATCCTTTGTGTCAACATCG-3'	S/L11/-/18877	5'-GCAAGCAGAATTAACCCTCA-3'
S/L5/-/8633	5'-GTCACGAGTGACACCATCCT-3'	S/L11/-19396	5'-AGCACCACCTAAATTGCATC-3'
s/L5/+/7839	5'-ATGCGACGAGTCTGCTTCTA-3'	S/L11/-20002	5'-TGGTCCCTTTGAAGGTGTTA-3'
S/L5/+/8785	5'-TTCATAGTGCCTGGCTTACC-3'	S/L11/+20245	5'-TCGAACACATCGTTTATGGA-3'
S/L5/+/8255	5'-ATCTTGGCGCATGTATTGAC-3'	S/L11/+/19611	5'-GAAGCACCTGTTTCCATCAT-3'
S/L6/-/9422	5'-TGCATTAGCAGCAACAACAT-3'	S/L11/+/19021	5'-ACGATGCTCAGCCATGTAGT-3'
S/L6/-/9966	5'-TCTGCAGAACAGCAGAAGTG-3'	SARS/L1/F3/+800	5'-GAGGTGCAGTCACTCGCTAT-3'
s/L6/-/10542	5'-CCTGTGCAGTTTGTCTGTCA-3'	SARS/L1/F4/+1391	5'-CAGAGATTGGACCTGAGCAT-3'
S/L6/+/10677	5'-CCTTGTGGCAATGAAGTACA-3'	SARS/L1/F5/+1925	5'-CAGCAAACCACTCAATTCCT-3'
S/L6/+/10106	5'-ATGTCATTTGCACAGCAGAA-3'	SARS/L1/R3/-1674	5'-AAATGATGGCAACCTCTTCA-3'
S/L6/+/9571	5'-CTTCAATGGTTTGCCATGTT-3'	SARS/L1/R4/-1107	5'-CACGTGGTTGAATGACTTTG-3'
s/L7/-/11271	5'-TGCGAGCTGTCATGAGAATA-3'	SARS/L1/R5/-520	5'-ATTTCTGCAACCAGCTCAAC-3'
s/L7/-/11801	5'-AACCGAGAGCAGTACCACAG-3'	SARS/L2/F3/+2664	5'-CGCATTGTCTCCTGGTTTAC-3'
S/L7/-/12383	5'-TTTGGCTGCTGTAGTCAATG-3'	SARS/L2/F4/+3232	5'-GAGATTGAGCCAGAACCAGA-3'
S/L7/+/12640	5'-CTACGACAGATGTCCTGTGC-3'	SARS/L2/F5/+3746	5'-ATGAGCAGGTTGTCATGGAT-3'
s/L7/+/12088	5'-GAGCAGGCTGTAGCTAATGG-3'	SARS/L2/R3/-3579	5'-CTGCCTTAAGAAGCTGGATG-3'
s/L7/+/11551	5'-TTAGGCTATTGTTGCTGCTG-3'	SARS/L2/R4/-2991	5'-TTTCTTCACCAGCATCATCA-3'

TABLE III-continued

Primers used for the sequencing of the

5' reqi	on (ORF1a and ORF1b)
Names	Sequences (SEQ ID NO: 76 to 139)
SARS/L2/R5/-2529	5'-CACCGTTCTTGAGAACAACC-3'
SARS/L3/F3/+4708	5'-TCTTTGGCTGGCTCTTACAG-3'
SARS/L3/F4/+5305	5'-GCTGGTGATGCTGCTAACTT-3'
SARS/L3/F5/+5822	5'-CCATCAAGCCTGTGTCGTAT-3'
SARS/L3/R3/-5610	5'-CAGGTGGTGCAGACATCATA-3'
SARS/L3/R4/-4988	5'-AACATCAGCACCATCCAAGT-3'
SARS/L3/R5/-4437	5'-ATCGGACACCATAGTCAACG-3'

[0429] The sequences of the fragments L0 to L12 of the SARS-CoV strain derived from the sample recorded under the No. 031589 correspond respectively to the sequences SEQ ID NO: 41 to SEQ ID NO: 54 in the sequence listing appended as an annex. Among these sequences, only that corresponding to the fragments L5 contains a nucleotide difference in relation to the corresponding sequence of the isolate AY278741-Urbani. This t/c mutation at position 7919 results in a modification of the amino acid sequence of the corresponding protein, encoded by ORF1a: at position 2552, a valine (gtt codon; AY278741) is changed to alanine (gct codon) in the SARS-CoV strain 031589. By contrast, no mutation was identified in relation to the corresponding sequence of the isolate AY274119.3-Urbani. The other fragments do not exhibit differences in relation to the corresponding sequences of the isolates Tor2 and Urbani.

EXAMPLE 2

Production and Purification of the Recombinant N and S Proteins of the SARS-CoV Strain Derived from the Sample Recorded Under the Number 031589

[0430] The entire N protein and two polypeptide fragments of the S protein of the SARS-CoV strain derived from the sample recorded under the number 031589 were produced in $E.\ coli$, in the form of fusion proteins comprising an N- or C-terminal polyhistidine tag. In the two S polypeptides, the N- and C-terminal hydrophobic sequences of the S protein (signal peptide: positions 1 to 13 and transmembrane helix: positions 1196 to 1218) were deleted whereas the β helix (positions 565 to 687) and the two motifs of the coiled-coil type (positions 895 to 980 and 1155 to 1186) of the S protein were preserved. These two polypeptides consist of: a long fragment (S_L) corresponding to positions 14 to 1193 of the amino acid sequence of the S protein and a short fragment (S_C) corresponding to positions 475 to 1193 of the amino acid sequence of the S protein.

1) Cloning of the cDNAS N, $\rm S_L$ and $\rm S_C$ into the Expression Vectors pIVEX2.3 and pIVEX2.4

[0431] The cDNAs corresponding to the N protein and to the $S_{\rm L}$ and $S_{\rm C}$ fragments were amplified by PCR under

standard conditions, with the aid of the DNA polymerase Platinum Pfx® (INVITROGEN). The plasmids SRAS-N and SRAS-S were used as template and the following oligo-nucleotides as primers:

```
5'-CCCCCGGGTTTAATATATTGCTCACATCTAAAC-3'
(N sense, SEQ ID NO: 55)

5'-CCCCCGGGTGCCTGAGTTGAATCAGCAGAAGC-3'
(N antisense, SEQ ID NO: 56)

5'-CCCATATGAGTGACCTTGACCGGTGCACCAC-3'
(S<sub>c</sub> sense, SEQ ID NO: 57)

5'-CCCATATGAAACCTTGCACCCCACCTGCTC-3'
(S<sub>L</sub> sense, SEQ ID NO: 58)

5'-CCCCCGGGTTTAATATATTGCTCATATTTTCCC-3'
(S<sub>c</sub> and S<sub>L</sub> antisense, SEQ ID NO: 29).
```

[0432] The sense primers introduce an NdeI site (underlined) while the antisense primers introduce an XmaI or Smal site (underlined). The 3 amplification products were column purified (QIAquick PCR Purification kit, QIAGEN) and cloned into an appropriate vector. The plasmid DNA purified from the 3 constructs (QIAFilter Midi Plasmid kit, QIAGEN) was verified by sequencing and digested with the enzymes NdeI and XmaI. The 3 fragments corresponding to the cDNAs N, S_L and S_C were purified on agarose gel and then inserted into the plasmids pIVEX2.3MCS(C-terminal polyhistidine tag) and pIVEX2.4d (N-terminal polyhistidine tag) digested beforehand with the same enzymes. After verification of the constructs, the 6 expression vectors thus obtained (pIV2.3N, pIV2.3S_C, pIV2.3S_L, pIV2.4N, pIV2.4S also called pIV2.4S₁, pIV2.4S_L) were then used, on the one hand to test the expression of the proteins in vitro, and on the other hand to transform the bacterial strain BL21(DE3)pDIA17 (NOVAGEN). These constructs encode proteins whose expected molecular mass is the following: pIV2.3N (47174 Da), pIV2.3S_C (82897 Da), pIV2.3S_L (132056 Da), pIV2.4N (48996 Da), pIV2.4S₁ (81076 Da) and pIV2.4S_L (133877 Da). Bacteria transformed with pIV2.3N were deposited at the CNCM on Oct. 23, 2003, under the number I-3117, and bacteria transformed with pIV2.4S were deposited at the CNCM on Oct. 23, 2003, under the number I-3118.

2) Analysis of the Expression of the Recombinant Proteins In Vitro and In Vivo

[0433] The expression of recombinant proteins from the 6 recombinant vectors was tested, in a first instance, in a system in vitro (RTS100, Roche). The proteins produced in vitro, after incubation of the recombinant vectors pIVEX for 4 h at 30° C., in the RTS100 system, were analyzed by Western blotting with the aid of an anti-(his), antibody coupled to peroxidase. The result of expression in vitro (FIG. 1) shows that only the N protein is expressed in large quantities, regardless of the position, N- or C-terminal, of the polyhistidine tag. In a second step, the expression of the N and S proteins was tested in vivo at 30° C. in LB medium in the presence or in the absence of inducer (1 mM IPTG). The N protein is very well produced in this bacterial The sequences of the fragments L0 to L12 of the SARS-CoV strain derived from the sample recorded under the No. 031589 correspond respectively to the sequences SEQ ID NO: 41 to SEQ ID NO: 54 in the sequence listing appended as an annex. Among these sequences, only that corresponding to the fragments L5 contains a nucleotide difference in relation to the corresponding sequence of the isolate AY278741-Urbani. This t/c mutation at position 7919 results in a modification of the amino acid sequence of the corresponding protein, encoded by ORF1a: at position 2552, a valine (gtt codon; AY278741) is changed to alanine (gct codon) in the SARS-CoV strain 031589. By contrast, no mutation was identified in relation to the corresponding sequence of the isolate AY274119.3-Urbani. The other fragments do not exhibit differences in relation to the corresponding sequences of the isolates Tor2 and Urbani.

EXAMPLE 2

Production and Purification of the Recombinant N and S Proteins of the SARS-CoV Strain Derived from the Sample Recorded Under the Number 031589

[0434] The entire N protein and two polypeptide fragments of the S protein of the SARS-CoV strain derived from the sample recorded under the number 031589 were produced in E. coli, in the form of fusion proteins comprising an N- or C-terminal polyhistidine tag. In the two S polypeptides, the N- and C-terminal hydrophobic sequences of the S protein (signal peptide: positions 1 to 13 and transmembrane helix: positions 1196 to 1218) were deleted whereas the β helix (positions 565 to 687) and the two motifs of the coiled-coil type (positions 895 to 980 and 1155 to 1186) of the S protein were preserved. These two polypeptides consist of: a long fragment (S_L) corresponding to positions 14 to 1193 of the amino acid sequence of the S protein and a short fragment (S_C) corresponding to positions 475 to 1193 of the amino acid sequence of the S protein.

1) Cloning of the cDNAS N, $\rm S_L$ and $\rm S_C$ into the Expression Vectors pIVEX2.3 and pIVEX2.4

[0435] The cDNAs corresponding to the N protein and to the S_L and S_C fragments were amplified by PCR under standard conditions, with the aid of the DNA polymerase Platinum Pfx® (INVITROGEN). The plasmids SRAS-N and SRAS-S were used as template and the following oligo-nucleotides as primers:

- 5'-CC<u>CATATG</u>TCTGATAATGGACCCCAATCAAAC-3'
 (N sense, SEQ ID NO: 55)
- 5'-CCCCCGGGTGCCTGAGTTGAATCAGCAGAAGC-3'
 (N antisense, SEQ ID NO: 56)
- 5'-CCCCATATGAGTGACCTTGACCGGTGCACCAC-3' (S_c sense, SEQ ID NO: 57)
- 5'-CC<u>CATATG</u>AAACCTTGCACCCCACCTGCTC-3'
 (S_L sense, SEQ ID NO: 58)
- 5'-CCCCCGGGTTTAATATATTGCTCATATTTTCCC-3'
 (Sc and St antisense, SEQ ID NO: 29).

[0436] The sense primers introduce an Ndel site (underlined) while the antisense primers introduce an XmaI or SmaI site (underlined). The 3 amplification products were column purified (QIAquick PCR Purification kit, QIAGEN) and cloned into an appropriate vector. The plasmid DNA purified from the 3 constructs (QIAFilter Midi Plasmid kit, QIAGEN) was verified by sequencing and digested with the

enzymes Ndel and Xmal. The 3 fragments corresponding to the cDNAs N, SL and SC were purified on agarose gel and then inserted into the plasmids pIVEX2.3MCS(C-terminal polyhistidine tag) and pIVEX2.4d (N-terminal polyhistidine tag) digested beforehand with the same enzymes. After verification of the constructs, the 6 expression vectors thus obtained (pIV2.3N, pIV2.3S $_{\rm C}$, pIV2.3S $_{\rm L}$, pIV2.4N, pIV2.4S $_{\rm c}$ also called pIV2.4S $_{\rm 1}$, pIV2.4S $_{\rm L}$) were then used, on the one hand to test the expression of the proteins in vitro, and on the other hand to transform the bacterial strain BL21(DE3)pDIA17 (NOVAGEN). These constructs encode proteins whose expected molecular mass is the following: pIV2.3N (47174 Da), pIV2.3S_C (82897 Da), pIV2.3S_L (132056 Da), pIV2.4N (48996 Da), pIV2.4S₁ (81076 Da) and pIV2.4S_L (133877 Da). Bacteria transformed with pIV2.3N were deposited at the CNCM on Oct. 23, 2003, under the number I-3117, and bacteria transformed with pIV2.4S were deposited at the CNCM on Oct. 23, 2003, under the number I-3118.

2) Analysis of the Expression of the Recombinant Proteins In Vitro and In Vivo

[0437] The expression of recombinant proteins from the 6 recombinant vectors was tested, in a first instance, in a system in vitro (RTS100, Roche). The proteins produced in vitro, after incubation of the recombinant vectors pIVEX for 4 h at 30° C., in the RTS100 system, were analyzed by Western blotting with the aid of an anti-(his)6 antibody coupled to peroxidase. The result of expression in vitro (FIG. 1) shows that only the N protein is expressed in large quantities, regardless of the position, N- or C-terminal, of the polyhistidine tag. In a second step, the expression of the N and S proteins was tested in vivo at 30° C. in LB medium in the presence or in the absence of inducer (1 mM IPTG). The N protein is very well produced in this bacterial system (FIG. 2) and is found mainly in a soluble fraction after lysis of the bacteria. By contrast, the long version of S (S_L) is very weakly produced and is completely insoluble (FIG. 3). The short version (S_C) also exhibits a very weak solubility, but an expression level that is much higher than that of the long version. Moreover, the construct S_C fused with a polyhistidine tag at the C-terminal position has a smaller size than that expected. An immunodetection experiment with an anti-polyhistidine antibody has shown that this construct was incomplete. In conclusion, the two constructs, pIV2.3N and pIV2.4S₁, which express respectively the entire N protein fused with the C-terminal polyhistidine tag and the short S protein fused with the N-terminal polyhistidine tag, were selected in order to produce the two proteins in a large quantity so as to purify them. The plasmids pIV2.3N and pIV2.4S, were deposited respectively under the No. I-3117 and I-3118 at the CNCM, 25 rue du Docteur Roux, 75724 PARIS 15, on Oct. 23, 2003.

3) Analysis of the Antigenic Activity of the Recombinant Proteins

[0438] The antigenic activity of the N, S_L and S_C proteins was tested by Western blotting with the aid of two serum samples, obtained from the same patient infected with SARS-CoV, collected 8 days (M12) and 29 days (M13) after the onset of the SARS symptoms. The experimental protocol is as described in example 3. The results illustrated by FIG. 4 show (i) the seroconversion of the patient, and (ii) that the N protein possesses a higher antigenic reactivity than the short S protein.

4) Purification of the N Protein from pIV2.3N

[0439] Several experiments for purifying the N protein, produced from the vector pIV2.3N, were carried out according to the following protocol. The bacteria BL21(DE3)pDIA17, transformed with the expression vector pIV2.3N, were cultured at 30° C. in 1 liter of culture medium containing 0.1 mg/ml of ampicillin, and induced with 1 mM IPTG when the cell density equivalent to A₆₀₀=0.8 is reached (about 3 hours). After 2 hours of culture in the presence of inducer, the cells were recovered by centrifugation (10 min at 5000 rpm), resuspended in the lysis buffer (50 mM NaH₂PO₄, 0.3 M NaCl, 20 mM imidazole, pH 8, containing the mixture of protease inhibitors Complete®, Roche), and lysed with the French press (12 000 psi). After centrifugation of the bacterial lysate (15 min at 12 000 rpm), the supernatant (50 ml) was deposited at a flow rate of 1 ml/min on a metal chelation column (15 ml) (Ni-NTA superflow, Qiagen), equilibrated with the lysis buffer. After washing the column with 200 ml of lysis buffer, the N protein was eluted with an imidazole gradient (20-> 250 mM) in 10 column volumes. The fractions containing the N protein were assembled and analyzed by polyacrylamide gel electrophoresis under denaturing conditions followed by staining with Coomassie blue. The results illustrated by FIG. 5 show that the protocol used makes it possible to purify the N protein with a very satisfactory homogeneity (95%) and a mean yield of 15 mg of protein per liter of culture.

5) Purification of the S_C Protein from pIV2.4S_C (pIV2.4S₁)

[0440] The protocol followed for purifying the short S protein is very different from that described above because the protein is highly aggregated in the bacterial system (inclusion bodies). The bacteria BL21(DE3)pDIA17, transformed with the expression vector pIV2.4S,, were cultured at 30° C. in 1 liter of culture medium containing 0.1 mg/ml of ampicillin, and induced with 1 mM IPTG when the cell density equivalent to A₆₀₀=0.8 is reached (about 3 hours). After 2 hours of culture in the presence of inducer, the cells were recovered by centrifugation (10 min at 5000 rpm), resuspended in the lysis buffer (0.1 M Tris-HCl, 1 mM EDTA, pH 7.5), and lysed with the French press (1200 psi). After centrifugation of the bacterial lysate (15 min at 12 000 rpm), the pellet was resuspended in 25 ml of lysis buffer containing 2% Triton X100 and 10 mM β-mercaptoethanol, and then centrifuged for 20 min at 12 000 rpm. The pellet was resuspended in 10 mM Tris-HCl buffer containing 7 M urea, and gently stirred for 30 min at room temperature. This final washing of the inclusion bodies with 7 M urea is necessary in order to remove most of the E. coli membrane proteins which co-sediment with the aggregated S_C protein. After a final centrifugation for 20 min at 12 000 rpm, the final pellet is resuspended in the 10 mM Tris-HCl buffer. The electrophoretic analysis of this preparation (FIG. 6) shows that the short S protein may be purified with a satisfactory homogeneity (about 90%) from the inclusion bodies (insoluble extract).

EXAMPLE 3

Immunodominance of the N Protein

[0441] The reactivity of the antibodies present in the serum of patients suffering from atypical pneumopathy

caused by the SARS-associated coronavirus (SARS-CoV), toward the various proteins of this virus, was analyzed by Western blotting under the conditions described below.

1) Materials

a) Lysate of Cells Infected with SARS-CoV

[0442] Vero E6 cells (2×10^6) were infected with SARS-CoV (isolate recorded under the number FFM/MA104) at a multiplicity of infection (M.O.I.) of 10^{-1} or 10^{-2} and then incubated in DMEM medium containing 2% FCS, at 35° C. in an atmosphere containing 5% CO₂. 48 hours later, the cellular lawn was washed with PBS and then lysed with 500 μ l of loading buffer prepared according to Laemmli and containing β -mercaptoethanol. The samples were then boiled for 10 minutes and then sonicated for 3 times 20 seconds.

b) Antibodies

b₁) Serum from a Patient Suffering from Atypical Pneumopathy

[0443] The serum designated by a reference at the National Reference Center for Influenza Viruses (Northern region) under the No. 20033168 is that from a French patient suffering from atypical pneumopathy caused by SARS-CoV collected on day 38 after the onset of the symptoms; the diagnosis of SARS-CoV infection was performed by nested RT-PCR and quantitative PCR.

b₂) Monospecific Rabbit Polyclonal Sera Directed Against the N Protein or the S Protein

[0444] The sera are those produced from the recombinant N and $S_{\rm C}$ proteins (example 2), according to the immunization protocol described in example 4; they are the rabbit P13097 serum (anti-N serum) and the rabbit P11135 serum (anti-S serum).

2) Method

[0445] 20 µl of lysate of cells infected with SARS-CoV at M.O.I. values of 10^{-1} and 10^{-2} and, as a control, 20 μ l of a lysate of noninfected cells (mock) were separated on 10% SDS polyacrylamide gel and then transferred onto a nitrocellulose membrane. After blocking in a solution of PBS/5% milk/0.1% Tween and washing in PBS/0.1% Tween, this membrane was hybridized overnight at 4° C. with: (i) the immune serum No. 20033168 diluted 1/300, 1/1000 and 1/3000 in the buffer PBS/1% BSA/0.1% Tween, (ii) the rabbit P13097 serum (anti-N serum) diluted 1/50 000 in the same buffer and (iii) the rabbit P11135 serum (anti-S serum) diluted 1/10 000 in the same buffer. After washing in PBS/Tween, a secondary hybridization was performed with the aid of either sheep polyclonal antibodies directed against the heavy and light chains of human G immunoglobulins and coupled with peroxidase (NA933V, Amersham), or of donkey polyclonal antibodies directed against the heavy and light chains of the rabbit G immunoglobulins and coupled with peroxidase (NA934V, Amersham). The bound antibodies were visualized with the aid of the ECL+ kit (Amersham) and of Hyperfilm MP autoradiography films (Amersham). A molecular mass ladder (kDa) is presented in the figure.

3) Results

[0446] FIG. 7 shows that three polypeptides of apparent molecular mass 35, 55 and 200 kDa are specifically detected in the extracts of cells infected with SARS-CoV.

[0447] In order to identify these polypeptides, two other immunoblots (FIG. 8) were prepared on the same samples and under the same conditions with rabbit polyclonal antibodies specific for the nucleoprotein N (rabbit P113097, FIG. 8A) and for the spicule protein S (rabbit P11135, FIG. 8B). This experiment shows that the 200 kDa polypeptide corresponds to the SARS-CoV spicule glycoprotein S, that the 55 kDa polypeptide corresponds to the nucleoprotein N while the 35 kDa polypeptide probably represents a truncated or degraded form of N.

[0448] The data presented in FIG. 7 therefore show that the serum 20033168 strongly reacts with N and a lot more weakly with the SARS-CoV S since the 35 and 55 kDa polypeptides are visualized in the form of intense bands for ½300, ½1000 and ½3000 dilutions of the immunoserum whereas the 200 kDa polypeptide is only weakly visualized for a dilution of ½300. It is also possible to note that no other SARS-CoV polypeptide is detected for dilutions greater than ½300 of the serum 20033168.

[0449] This experiment indicates that the antibody response specific for the SARS-CoV N dominates the antibody responses specific for the other SARS-CoV polypeptides and in particular the antibody response directed against the S glycoprotein. It indicates an immuno-dominance of the nucleoprotein N during human infections with SARS-CoV.

EXAMPLE 4

Preparation of Monospecific Polyclonal Anti-Bodies Directed Against the SARS-Associated Coronavirus (SARS-CoV) N and S Proteins

1) Materials and Method

[0450] Three rabbits (P13097, P13081, P13031) were immunized with the purified recombinant polypeptide corresponding to the entire nucleoprotein (N), prepared according to the protocol described in example 2. After a first injection of 0.35 mg per rabbit of protein emulsified in complete Freund's adjuvant (intradermal route), the animals received 3 booster injections at 3 and then 4 weeks' interval, of 0.35 mg of recombinant protein emulsified in incomplete Freund's adjuvant.

[0451] Three rabbits (P11135, P13042, P14001) were immunized with the recombinant polypeptide corresponding to the short fragment of the S protein ($S_{\rm C}$) produced as described in example 2. As this polypeptide is found mainly in the form of inclusion bodies in the bacterial cytoplasm, the animals received 4 intradermal injections at 3-4 weeks' interval of a preparation of inclusion bodies corresponding to 0.5 mg of recombinant protein emulsified in incomplete Freund's adjuvant. The first 3 injections were made with a preparation of inclusion bodies prepared according to the protocol described in example 2, while the fourth injection was made with a preparation of inclusion bodies which were prepared according to the protocol described in example 2 and then purified on sucrose gradient and washed in 2% Triton X100.

[0452] For each rabbit, a preimmune (p.i.) serum was prepared before the first immunization and an immune serum (I.S.) 5 weeks after the fourth immunization.

[0453] In a first instance, the reactivity of the sera was analyzed by ELISA test on preparations of recombinant

proteins similar to those used for the immunizations; the ELISA tests were carried out according to the protocol and with the reagents as described in example 6.

[0454] In a second instance, the reactivity of the sera was analyzed by preparing an immunoblot (Western blot) of a lysate of cells infected with SARS-CoV, according to the protocol as described in example 3.

2) Results

[0455] The ELISA tests (FIG. 9) demonstrate that the preparations of recombinant N protein and of inclusion bodies of the short fragment of the S protein (S_C) are immunogenic in animals and that the titer of the immune sera is high (more than ½5 000).

[0456] The immunoblot (FIG. 8) shows that the rabbit P13097 immune serum recognizes two polypeptides present in the lysates of cells infected with SARS-CoV: a polypeptide whose apparent molecular mass (50-55 kDa based on experiments) is compatible with that of the nucleo-protein N (422 residues, predicted molecular mass of 46 kDa) and a polypeptide of 35 kDa, which probably represents a truncated or degraded form of N.

[0457] This experiment also shows that the rabbit P11135 serum mainly recognizes a polypeptide whose apparent molecular mass (180-220 kDa based on experiments) is compatible with a glycosylated form of S (1255 residues, nonglycosylated polypeptide chain of 139 kDa), as well as lighter polypeptides, which probably represent truncated and/or nonglycosylated forms of S.

[0458] In conclusion, all these experiments demonstrate that the recombinant polypeptides expressed in *E. coli* and corresponding to the SARS-CoV N and S proteins make it possible to induce, in animals, polyclonal antibodies capable of recognizing the native forms of these proteins.

EXAMPLE 5

Preparation of Monospecific Polyclonal Anti-Bodies Directed Against the SARS-Associated Coronavirus (SARS-CoV) M and E Proteins

1) Analysis of the Structure of the M and E Proteins

a) E Protein

[0459] The structure of the SARS-CoV E protein (76 amino acids) was analyzed in silico, with the aid of various software packages such as signalP v1.1, NetNGlyc 1.0, THMM 1.0 and 2.0 (Krogh et al., 2001, J. Mol. Biol., 305(3):567-580) or alternatively TOPPRED (von Heijne, 1992, J. Mol. Biol. 225, 487-494). The analysis shows that this nonglycosylated polypeptide is a type 1 membrane protein, containing a single transmembrane helix (aa 12-34 according to THMM), and in which the majority of the hydrophilic domain (42 residues) is located at the C-terminal end and probably inside the viral particle (endodomain). It is possible to note an inversion in the topology predicted by versions 1.0 (N-ter is external) and 2.0 (N-ter is internal) of the THMM software, but that other algorithms, in particular TOPPRED and THUMBUP (Zhou et Zhou, 2003, Protein Science 12:1547-1555) confirm an external location of the N-terminal end of E.

b) M Protein

[0460] A similar analysis carried out on the SARS-CoV M protein (221 amino acids) shows that this polypeptide does not possess a signal peptide (according to the software signalP v1.1) but three transmembrane domains (residues 15-37, 50-72, 77-99 according to THMM 2.0) and a large hydrophilic domain (aa 100-221) located inside the viral particle (endodomain). It is probably glycosylated on the asparagine at position 4 (according to NetNGlyc 1.0).

[0461] Thus, in agreement with the experimental data known for the other coronaviruses, it is remarkable that the two M and E proteins exhibit endodomains corresponding to the majority of the polypeptides and of the ectodomains that are very small in size.

[0462] The ectodomain of E probably corresponds to residues 1 to 11 or 1 to 12 of the protein: MYSFV-SEETGT(L), SEQ ID NO: 70. Indeed, the probability associated with the transmembrane location of residue 12 is intermediate (0.56 according to THMM 2.0).

[0463] The ectodomain of M probably corresponds to residues 2 to 14 of the protein: ADNGTITVEELKQ, SEQ ID NO: 69. Indeed, the N-terminal methionine of M is very probably cleaved from the mature polypeptide because the residue at position 2 is an alanine (Varshavsky, 1996, 93:12142-12149).

[0464] Moreover, the analysis of the hydrophobicity (Kyte & Doolittle, Hopp & Woods) of the E protein demonstrates that the C-terminal end of the endodomain of E is hydrophilic and therefore probably exposed at the surface of this domain. Thus, a synthetic peptide corresponding to this end is a good immunogenic candidate for inducing, in animals, antibodies directed against the endodomain of E. Consequently, a peptide corresponding to 24 C-terminal residues of E was synthesized.

2) Preparation of Antibodies Directed Against the Ectodomain of the M and E Proteins and the Endodomain of the E Protein

[0465] The peptides M2-14 (ADNGTITVEELKQ, SEQ ID NO: 69), E1-12 (MYSFVSEETGTL, SEQ ID NO: 70) and E53-76 (KPTVYVYSRV KNLNSSEGVP DLLV, SEQ ID NO: 71) were synthesized by Neosystem. They were coupled with KLH (Keyhole Limpet Hemocyanin) with the aid of MBS (m-maleimido-benzoyl-N-hydroxysuccinimide ester) via a cysteine added during the synthesis either at the N-terminus of the peptide (case for E53-76) or at the C-terminus (case of M2-14 and E1-12).

[0466] Two rabbits were immunized with each of the conjugates, according to the following immunization protocol: after a first injection of 0.5 mg of peptide coupled with KLH and emulsified in complete Freund's adjuvant (intradermal route), the animals receive 2 to 4 booster injections at 3 or 4 weeks' interval of 0.25 mg of peptide coupled to KLH and emulsified in incomplete Freund's adjuvant.

[0467] For each rabbit, a preimmune (p.i.) serum was prepared before the first immunization and an immune serum (I.S.) is prepared 3 to 5 weeks after the booster injections.

[0468] The reactivity of the sera was analyzed by Western blotting with the aid of extracts of cells infected with

SARS-CoV (FIG. 43B) or with the aid of extracts of cells infected with a recombinant vaccinia virus expressing the protein E (VV-TG-E, FIG. 43A) or M (VV-TN-M, FIG. 43C) of the SARS-CoV 031589 isolate.

[0469] The immune sera of the rabbits 22234 and 22240, immunized with the conjugate KLH-E53-76, recognize a polypeptide of about 9 to 10 kD, which is present in the extracts of cells infected with SARS-CoV but absent from the extracts of noninfected cells (FIG. 43B). The apparent mass of this polypeptide is compatible with the predicted mass of the E protein, which is 8.4 kD. Similarly, the immune serum of the rabbit 20047, immunized with the conjugate KLH-E1-12, recognizes a polypeptide present in the extracts of cells infected with the VV-TG-E virus, whose apparent molar mass is compatible with that of the E protein (FIG. 43A).

[0470] The immune serum of the rabbits 20013 and 20080, immunized with the conjugate KLH-M2-14, recognizes a polypeptide present in the extracts of cells infected with the VV-TN-M virus (FIG. 43C), whose apparent molar mass (about 18 kD) is compatible with that of the glycoprotein M, which is 25.1 kD and has a high iso-electric point (9.1 for the naked polypeptide).

[0471] These results demonstrate that the peptides E1-12 and E53-76, on the one hand, and the peptide M2-14, on the other hand, make it possible to induce, in animals, polyclonal antibodies capable of recognizing the native forms of the SARS-CoV E and M proteins, respectively.

EXAMPLE 6

Analysis of the ELISA Reactivity of the Recombinant N Protein Toward Sera from Patients Suffering from SARS

1) Materials

[0472] The antigen used to prepare the solid phases is the purified recombinant nucleoprotein N-prepared according to the protocol described in example 2.

[0473] The sera to be tested (table IV) were chosen on the basis of the results of analysis of their reactivity by immunofluorescence (IF-SARS titer), toward cells infected with SARS-CoV.

TABLE IV

		Sera tested	by ELISA	
Reference	Senim No.	Type of serum	Date of the serum***	IF-SARS titer
3050	Α	Control	na*	nt**
3048	В	Control	na	nt
033168	D	Patient 1-SARS	Apr. 27, 2003 (D38)	320
033397	E	Patient-1 SARS	May 11, 2005 (D52)	320
032632	F	Patient-2 SARS	Mar. 21, 2003 (D17)	2500
032791	G	Patient-3 SARS	Apr. 04, 2003 (D3)	<40
033258	H	Patient-3 SARS	Apr. 28, 2003 (D27)	160

^{*}na: not applicable

^{**}nt: not tested.

^{***} the dates indicated correspond to the number of days after the onset of the SARS symptoms.

2) Method

[0474] The N protein (100 µl) diluted at various concentrations in 0.1 M carbonate buffer, pH 9.6 (1, 2 or 4 µg/ml) is distributed into the wells of ELISA plates, and then the plates are incubated overnight at laboratory temperature. The plates are washed with PBS-Tween buffer saturated with PBS-skimmed milk-sucrose (5%) buffer. The test sera (100 µl), diluted beforehand (1/50, 1/100, 1/200, 1/400, 1/800, 1/1600 and 1/3200) are added and then the plates are incubated for 1 h at 37° C. After 3 washings, the peroxidase-labeled antihuman IgG conjugate (reference 209-035-098, JACKSON) diluted 1/18 000 is added and then the plates are incubated for 1 h at 37° C. After 4 washings, the chromogen (TMB) and the substrate (H2O2) are added and the plates are incubated for 30 min at room temperature, protected from light. The reaction is then stopped and then the absorbance at 450 nm is measured with the aid of an automated reader.

3) Results

[0475] The ELISA tests (FIG. 10) demonstrate that the recombinant N protein preparation is specifically recognized by the antibodies of sera from patients suffering from SARS collected in the late phase of the infection (≥ 17 days after the onset of the symptoms) whereas it is not significantly recognized by the antibodies of a patient's serum collected in the early phase of the infection (3 days after the onset of the symptoms) or by control sera from subjects not suffering from SARS.

EXAMPLE 7

ELISA Tests Prepared for a Very Specific and Sensitive Detection of a SARS-Associated Coronavirus Infection, from Sera of Patients

- 1) Indirect ELISA IgG Test
- a) Reagents

Preparation of the Plates

[0476] The plates are sensitized with a solution of N protein at 2 μ g/ml in a 10 mM PBS buffer, pH 7.2, phenol red at 0.25 ml/l. 100 μ l of solution are deposited in the wells and left to incubate at room temperature overnight. Saturation is obtained by prewashing in 10 mM PBS/0.1% Tween buffer, followed by washing with a saturation solution PBS, 25% milk/sucrose.

Diluent Sera

[0477] Buffer 0.48 g/l TRIS, 10 mM PBS, 3.7 g/l EDTA, 15% v/v milk, pH 6.7

Diluent Conjugate

[0478] Citrate buffer (15 g/l), 0.5% Tween, 25% bovine serum, 12% NaCl, 6% v/v skimmed milk pH 6.5

Conjugate

[0479] 50x anti-human IgG conjugate, marketed by Bio-Rad: Platelia *H. pylori* kit ref 72778

Other Solutions:

[0480] Washing solution R2, solutions for visualizing with TMB R8 diluent, R9 chromogen, R10 stopping solution: reagents marketed by Bio-Rad (e.g.: *Platelia pylori* kit, ref 72778)

b) Procedure

[0481] Dilute the sera 1/200 in the sample diluent

[0482] Distribute 100 µl/well

[0483] Incubation 1 h at 37° C.

[0484] 3 washings in $10\times$ WASHING solution R2 diluted before-hand 10-fold in demineralized water (i.e., $1\times$ washing solution)

[0485] Distribute 100 μ l of conjugate (50x conjugate to be diluted immediately before use in the diluent conjugate provided)

[0486] Incubation 1 h at 37° C.

[0487] 4 washings in 1× washing solution

[0488] Distribute 200 μ l/well of visualization solution (to be diluted immediately before use e.g.: 1 ml of R9 in 10 ml of R8)

[0489] Incubation for 30 min at room temperature in the dark

[0490] Stop the reaction with 100 µl/well of R10

[0491] READING at 450/620 nm

[0492] The results can be interpreted by taking a THRESHOLD serum giving a response above which the sera tested would be considered as positive. This serum is chosen and diluted so as to give a significantly higher signal than the background noise.

- 2) Double Epitope Elisa Test
- a) Reagents

Preparation of the Plates

[0493] The plates are sensitized with a solution of N protein at 1 g/ml in a 10 mM PBS buffer, pH 7.2, phenol red at 0.25 ml/l. 100 µl of solution are deposited in the wells and left to incubate at room temperature overnight. Saturation is obtained by prewashing in 10 mM PBS/0.1% Tween buffer, followed by washing with a saturation solution 10 mM PBS, 25% (V/V) milk.

Diluent Sera and Conjugate

[0494] Buffer 50 mM TRIS saline, pH 8, 2% milk

Conjugate

[0495] This is the purified recombinant N protein coupled with peroxidase according to the Nakane protocol (Nakane P. K. and Kawaoi A.; (1974): Peroxydase-labeled antibody, a new method of conjugation. The Journal of Histochemistry and Cytochemistry Vol. 22, N) 23, pp. 1084-1091), in respective molar ratios ½. This ProtN POD conjugate is used at a concentration of 2 µg/ml in serum/conjugate diluent.

Other Solutions:

[0496] Washing solution R2, solutions for visualization with TMB R8, diluent, R9 chromogen, R10 stopping solution: reagents marketed by Bio-Rad (e.g. *Platelia pylori* kit, ref 72778).

b) Procedure

[0497] 1st step in "predilution" plate

[0498] Dilute each serum 1/5 in the predilution plate

[0499] (48 μ l of diluent+12 μ l of serum).

[0500] After having diluted all the sera, distribute 60 μ l of conjugate.

[0501] Where appropriate, the serum+conjugate mix is left to incubate.

[0502] 2nd step in "reaction" plate

[0503] Transfer 100 μ l of mixture/well into the reaction plate

[0504] Incubation 1 h 37° C.

[0505] 5 washings in 10x WASHING solution R2 diluted 10-fold beforehand in demineralized water (→1x washing solution)

[0506] Distribute 200 μl/well of visualization solution (to be diluted immediately before use e.g.: 1 ml of R9 in 10 ml of R8)

[0507] Incubation 30 min at room temperature and protected from light

[0508] Stop the reaction with 100 µl/well of R10

[0509] READING at 450/620 nm

[0510] Likewise as for the indirect ELISA test, the results can be interpreted using a "threshold value" serum. Any serum having a response greater than the threshold value serum will be considered as positive.

2) Results

[0511] The sera of patients classified as probable cases of SARS from the French hospital of Hanoi, Vietnam or in relation with the French hospital of Hanoi (JYK) were analyzed using the indirect IgG-N test and the double epitope N test.

[0512] The results of the indirect IgG-N test (FIGS. 14 and 15) and double epitope N test (FIGS. 16 and 17) show an excellent correlation between them and with an indirect ELISA test comparing the reactivity of the sera toward a lysate of VeroE6 cells infected or not infected with SARS-CoV (ELISA-SARS-CoV lysate; see table V below). All the sera collected 12 days or more after the onset of the symptoms were found to be positive, including in patients for whom it had not been possible to document the SARS-CoV virus infection by analyzing respiratory samples by RT-PCR, probably because of a sample being collected too late during the infection (≥D12). In the case of the patient TTH for whom a nasal sample collected on D7 was found to be negative by RT-PCR, the quality of the sample may be in question.

[0513] Some sera were found to be negative whereas the presence of SARS-CoV was detected by RT-PCR. They are in all cases early sera collected less than 10 days after the onset of the symptoms (e.g.: serum #032637). In the case of a patient PTTH (serum #032673), only a suspicion of SARS was raised at the time the samples were collected.

[0514] In conclusion, the indirect IgG-N and N-double epitope serological tests make it possible to document the SARS-CoV infection in all the patients for the sera collected 12 days or more after the infection.

TABLE V

			Results of the	ne ELISA tests		
Sample Num		Day	PCR-SARS	ELISA SARS-CoV lysate (2)	IgG-N (2nd series)	2Xepitope (2nd series)
033168	ЈҮК	38	POS	+++	>5000	NT
033597	JYK	74	POS .	NT	≈5000	NT
032552	VTT	8	NEG- D3&D8&D12	NEG	<200	<5
032544	CTP	16	NEG D16&D20	++	>5000	>>20
032546	CJF	15	NEG D15&D19	++	>5000	>>20
032548	PTL	17	NEG D17&D21	++	>5000	>>20
032550	NTH	17	NEG-D17&D21	++	>5000	>>20
032553	VTT	8	NEG- D3&D8&D12	NEG	<200	<5
032554	NTBV	4	POS	NEG	<200	<5
032555	NTBV	4	POS	NEG	<200	
032564	NTP	15	POS	++	>5000	>>20
032629	NVH	4	POS	NEG	<200	<5
032631	BTTX	9	POS	NEG	<200	<5
032635	NHH	4	POS	NEG	<200	<5
032637	NHB	10	POS	NEG	<200	<5
032642	BTTX	9	POS	NEG	<200	<5
032643	LTDH	1	POS	NEG	<200	<5
032644	NTBV	4	POS	NEG	<200	<5
032646	TTH	12	NEG D7&D12&D16	++	>5000	>>20
032647	DTH	17	NEG D17&D21	++	>5000	>>20

TABLE V-continued

			Results o	of the ELISA tests		
Sample Num	Patient	Day	PCR-SARS	ELISA SARS-CoV lysate (2)	IgG-N (2nd series)	2Xepitope (2nd series)
032648	NNT	15	NEG D15&D19	++	>5000	>>20
032649	PTH	17	NEG D17&D21	++	>5000	>>20
032672	LVV	16	NEG D16&D20	+	>5000	>>20
032673	PTTH	NA	NEG	NEG	<200	<5
032674	PNB	17	NEG D17&D21	++	>5000	>>20
032682	VTH	12	NEG D12&D16	++	>5000	>>20
032683	DTV	17	NEG D17&D21	+	>1000	>>20

Remarks:

[0515] (1): The RT-PCR analyses were carried out by nested RT-PCR BNI, LC Artus and LC-N on nasal or pharyngeal swabs; POS means that at least one sample was found to be positive in this patient.

[0516] (2): The reactivity of the sera in the ELISA test using a lysate of cells infected with SARS-CoV was classified as very highly reactive (+++), highly reactive (++), reactive (+) and negative according to the OD value obtained at the dilutions tested.

EXAMPLE 8

Detection of SARS-Associated Coronavirus (SARS-CoV) by RT-PCR

- 1) Real Time Development of RT-PCR Conditions with the Aid of Primers Specific for the Gene for the Nucleocapsid Protein—"Light Cycler N" Test
- a) Design of the Primers and Probes

[0517] The primers and probes were designed from the sequence of the genome of the SARS-CoV strain derived from the sample recorded under the number 031589, with the aid of the programme "Light Cycler Probe Design (Roche)". Thus, the following two series of primers and probes were selected:

series 1 (SEQ ID NO: 60, 61, 64, 65):
sense primer: N/+/28507:
5'-GGC ATC GTA TGG GTT G-3'
[28507-28522]

antisense primer: N/-/28774: 5'-CAG TTT CAC CAC CTC C-3' [28774-28759]

probe 1: 5'-GGC ACC CGC AAT CCT AAT AAC AAT GCfluorescein 3' [28561-28586]

probe 2: 5' Red705-GCC ACC GTG CTA CAA CTT CCT-phosphate [28588-28608]

-continued

series 2 (SEQ ID NO: 62, 63, 66, 67) sense primer: N/+/28375: 5'-GGC TAC CGA AGA G-3' [28375-28390]

antisense primer: N/-/28702: 5'-AAT TAC CGC GAC TAC G-3' [28702-28687]

probe 1: SARS/N/FL:
5'-ATA CAC CCA AAG ACC ACA TTG GC-fluorescein 3'
[28541-28563]

probe 2: SARS/N/LC705:
5' Red705-CCC GCA ATC CTA ATA ACA ATG CTG Cphosphate 3'
[28565-28589]

b) Analysis of the Efficacy of the Two Primer Pairs

[0518] In order to test the respective efficacy of the two pairs of primers, an RT-PCR amplification was carried out on a synthetic RNA corresponding to nucleotides 28054-29430 of the genome of the SARS-CoV strain derived from the sample recorded under the number 031589 and containing the sequence of the N gene.

[0519] More specifically:

[0520] This synthetic RNA was prepared by in vitro transcription with the aid of the T7 phage RNA polymerase, of a DNA template obtained by linearization of the plasmid SRAS-N with the enzyme Bam H1. After eliminating the DNA template by digestion with the aid of DNAse 1, the synthetic RNAs are purified by a phenol-chloroform extraction, followed by two successive precipitations in ammonium acetate and isopropanol. They are then quantified by measuring the absorbance at 260 nm and their quality is checked by the ratio of the absorbances at 260 and 280 nm and by agarose gel electrophoresis. Thus, the concentration of the synthetic RNA preparation used for these studies is 1.6 mg/ml, which corresponds to 2.1×10¹⁵ copies/ml of RNA.

[0521] Decreasing quantities of synthetic RNA were amplified by RT-PCR with the aid of the "SuperscriptTM

One-Step RT-PCR with Platinum® Taq" kit and the pairs of primers No. 1 (N/+/28507, N/-/28774) (FIG. 1A) and No. 2 (N/+/28375, N/-/28702) (FIG. 1B), according to the supplier's instructions. The amplification conditions used are the following: the cDNA was synthesized by incubation for 30 min at 45° C., 15 min at 55° C. and then 2 min at 94° C. and it was then amplified by 5 cycles comprising: a step of denaturation at 94° C. for 15 sec, a step of annealing at 45° C. for 30 sec and then a step of extension at 72° C. for 30 sec, followed by 35 cycles comprising: a step of denaturation at 94° C. for 15 sec, a step of annealing at 55° C. for 30 sec and then a step of extension at 72° C. for 30 sec, with 2 sec of additional extension at each cycle, and a final step of extension at 72° C. for 5 min. The amplification products obtained were then kept at 10° C.

[0522] The results presented in FIG. 11 show that the pair of primers No. 2 (N/+/28375, N/-/28702) makes it possible to detect up to 10 copies of RNA (band of weak intensity) or 10² copies (band of good intensity) against 10⁴ copies for the pair of primers No. 1 (N/+/28507, N/-/28774). The amplicons are respectively 268 bp (pair 1) and 328 bp (pair 2)

c) Development of Real Time RT-PCR

[0523] A real time RT-PCR was developed with the aid of the pair of primers No. 2 and of the pair of probes consisting of SRAS/N/FL and SRAS/N/LC705 (FIG. 2).

[0524] The amplification was carried out on a LightCycler (Roche) with the aid of the "Light Cycler RNA Amplification Kit Hybridization Probes" kit (reference 2 015 145, Roche) under the following optimized conditions. A reaction mixture containing: H_2O (6.8 μ l), 25 mM MgCl $_2$ (0.8 μ l, 4 μ M Mg2+ final), 5× reaction mixture (4 μ l), 3 μ m probe SRAS/N/FL (0.5 μ l, 0.075 μ M final), 3 μ M probe SRAS/N/LC705 (0.5 μ l, 0.075 μ M final), 10 μ M primer N/+/28375 (1 μ l, 0.5 μ M final), 10 μ M primer N/-/28702 (1 μ l, 0.5 μ M final), enzyme mixture (0.4 μ l) and sample (viral RNA, 5 μ l) was amplified according to the following program:

RT-PCR according to the protocol described above; the analysis presented in FIG. 12 shows that this virus stock contains 6.5×10^9 genome-equivalents/ml (geq/ml), which is entirely similar to the 1.0×10^{10} geq/ml value measured with the aid of the "RealArtTM HPA-Coronavirus LC RT PCR Reagents" kit marketed by Artus.

2) Development of Nested RT-PCR Conditions Targeting the Gene for RNA Polymerase—"CDC (Centers for Disease Control and Prevention)/IP Nested RT-PCR" Test

a) Extraction of the Viral RNA

[0526] Clinical sample: QIAmp viral RNA Mini Kit (QIAGEN) according to the manufacturer's instructions, or an equivalent technique. The RNA is eluted in a volume of 60 ul.

b) "SNE/SAR" Nested RT-PCR

First Step: "SNE" Coupled RT-PCR

[0527] The Invitrogen "SuperscriptTM One-Step RT-PCR with Platinum® Taq" kit was used, but the "Titan" kit from Roche Boehringer can be used in its place with similar results.

```
Oligonucleotides:

SNE-S1

5' GGT TGG GAT TAT CCA AAA TGT GA 3'

SNE-AS1

5' GCA TCA TCA GAA AGA ATC ATC ATG 3'
```

→ Expected size: 440 bp

[0528] 1. Prepare a mix:

H2O	6.5 µl
Reaction mix 2X	12.5 µl
Oligo SNE-S1 50 µM	0.2 µl

Reverse transcription: Denaturation: Amplification:	50° C. 95° C. 95° C.	10:00 min 30 sec × 1 2 sec	analysis mode: none analysis mode: none		
Annealing:	50° C. 72° C. 40° C.	15 sec 13 sec 30 sec × 1	analysis mode: quantification* thermal ramp 2.0° C./sec	}	×45
Anneaning:	40° C.	30 sec x 1	analysis mode: none		

^{*}The fluorescence is measured at the end of the annealing and at each cycle (in SINGLE mode)

[0525] The results presented in FIG. 12 show that this real time RT-PCR is very sensitive since it makes it possible to detect 102 copies of synthetic RNA in 100% of the 5 samples analyzed (29/29 samples in 8 experiments) and up to 10 copies of RNA in 100% of the 5 samples analyzed (40/45 samples in 8 experiments). It also shows that this RT-PCR makes it possible to detect the presence of the SARS-CoV genome in a sample and to quantify the number of genomes present. By way of example, the viral RNA of a SARS-CoV stock cultured on Vero E6 cells was extracted with the aid of the "Qiamp viral RNA extraction" kit (Qiagen), diluted to 0.05×10^{-14} and analyzed by real time

-continued

Oligo SNE-AS1 50 μM	0.2 µl
RNAsin 40 U/µl	0.12 µl
RT/Platinum Taq mix	0.5 μl

[0529] 2. To 20 μ l of the mix, add 5 μ l of RNA and carry out the amplification on a thermocycler (ABI 9600 conditions):

2.1	45° C.	30 min.		
	55° C.	15 min.		
	94° C.	2 min.		
2.2.	94° C.	15 sec.	1	
	45° C.	30 sec.	}	×5 cycles
	72° C.	30 sec.	J	•
2.3.	94° C.	15 sec.	٦	
	55° C.	30 sec.	}	×35 cycles
	72° C.	30 sec. + 2 sec./cycle	J	•
2.4.	72° C.	5 min.		
2.5	10° C.	∞		

Storage at +4° C..

[0530] The RNAsin (N2511/N2515) from Promega was used as RNase inhibitors.

[0531] Synthetic RNAs served as positive control. As the control, 10^3 , 10^2 and 10 copies of synthetic RNA $R_{\rm SNE}$ were amplified in each experiment.

[0532] Second Step: "SAR" Nested PCR

Oligonucleotides:
SAR1-S
5' CCT CTC TTG TTC TTG CTC GCA 3'

SAR1-AS
5' TAT AGT GAG CCG CCA CAC ATG 3'

→ Expected size: 121 bp

[0533] 1. Prepare a mix:

H2O	35.8 µl	
Taq buffer 10X	5 µl	
MgCl ₂ 25 mM	<u>ل</u> يا 4	
Mix dNTPs 5 mM	<u>ل</u> يا 2	
Oligo SAR1-S 50 µM	0.5 ய	
Oligo SAR1-AS 50 µM	لىر 0.5	
Taq DNA pol 5 U/µl	0.25 ய	

[0534] AmpliTaq DNA Pol from Applied Biosystems was used ($10 \times$ buffer without MgCl₂, ref 27216601).

[0535] 2. To 48 μ l of the mix, add 2 μ l of the product from the first PCR and carry out the amplification (ABI 9600 conditions):

2.1.	94° C.	2 min.		
2.2.	94° C.	30 sec.	1	
	45° C.	45 sec.	}	x5 cycles
	72° C.	30 sec.	J	
2.3.	94° C.	30 sec.	1	
	55° C.	30 sec.	}	×35 cycles
	72° C.	30 sec. + 1 sec./cycle	J	•
2.4.	72° C.	5 min.		
2.5	10° C.	∞		

[0536] 3. Analyze 10 µl of the reaction product on "low-melting" gel (Seakem GTG type) containing 3% agarose.

[0537] The sensitivity of the nested test is routinely, under the conditions described, 10 copies of RNA.

- [0538] 4. The fragments can then be purified on QIAquick PCR kit (QIAGEN) and sequenced with the oligos SAR1-S and SAR1-AS.
- 3) Detection of the SARS-CoV RNA by PCR from Respiratory Samples
- a) First Comparative Study

[0539] A comparative study was carried out on a series of respiratory samples received by the National Reference Center for the Influenza Virus (Northern region) and likely to contain SARS-CoV. To do this, the RNA was extracted from the samples with the aid of the "Qiamp viral RNA extraction" kit (Qiagen) and analyzed by real time RT-PCR, on the one hand with the aid of the pairs of primers and probes of the No. 2 series under the conditions described above on the one hand, and on the other hand with the aid of the kit "LightCycler SARS-CoV quantification kit" marketed by Roche (reference 03 604 438). The results are summarized in table VI below. They show that 18 of the 26 samples are negative and 5 of the 26 samples are positive for the two kits, while one sample is positive for the Roche kit alone and two for the "series 2" N reagents alone., Additionally, for 3 samples (20032701, 20032712, 20032714) the quantities of RNA detected are markedly higher with the reagents (probes and primers) of the No. 2 series. These results indicate that the "series 2" N primers and probes are more sensitive for the detection of the SARS-CoV genome in biological samples than those of the kit currently available.

TABLE VI

Real time RT-PCR analysis of the RNAs extracted from a series of samples from 5 patients with the aid of the pairs of primers and probes of the No. 2 series ("series 2" N) or of the kit "Lightcycler SARS-CoV quantification kit" (Roche). The type of sample is indicated as well as the number of copies of viral genome measured in each of the two tests. NEG: negative RT-PCR.

Sample No.	Patient	Type of sample	ROCHE KIT	"Series 2" N
20033082	K	nasal	NEG	NEG
20033083	K	pharyngeal	NEG	NEG
20033086	K	nasal	NEG	NEG
20033087	K	pharyngeal	NEG	NEG
20032802	M	nasal	NEG	NEG
20032803	M	expectoration	NEG	NEG
20032806	M	nasal or pharyngeal	NEG	NEG
20031746ARN2	С	pharyngeal	NEG	NEG
20032711	С	nasal or pharyngeal	39	NEG
20032910	В	nasal	NEG	NEG
20032911	В	pharyngeal	NEG	NEG
20033356	v	expectoration	NEG	NEG
20033357	V	expectoration	NEG	NEG
20031725	K	endotracheal asp.	NEG	150
20032657	K	endotracheal asp.	NEG	NEG
20032698	K	endotracheal asp.	NEG	NEG
20032720	K	endotracheal asp.	3	5
20033074	K	stools	115	257
20032701	M	pharyngeal	443	1676
20032702	M	expectoration	NEG	249
20031747ARN2	С	pharyngeal	NEG	NEG
20032712	С	unknown	634	6914
20032714	С	pharyngeal	17	223
20032800	В	nasal	NEG	NEG
20033353	V	nasal	NEG	NEG
20033384	V	nasal	NEG	NEG

b) Second Comparative Study

[0540] The performance of various nested RT-PCR and real time RT-PCR methods were then compared for 121 respiratory samples from possible cases of SARS at the French hospital in Hanoi, Vietnam, taken between the 4th and the 17th day after the onset of the symptoms. Among these samples, 14 were found to be positive during a first test using the nested RT-PCR method targeting ORF1b (encoding replicase) as described initially by Bernhard Nocht Institute (BNI nested RT-PCR). Information relating to this test is available on the internet, at the address http://www15.bni-hamburg.de/bni2/neu2/getfile.acgi?area_eng1=diagnostics&pid=4112.

[0541] The various tests compared in this study are:

[0542] the quantitative RT-PCR method according to the invention, with the "series 2" N primers and probes described above (LightCycler N column),

[0543] the nested RT-PCR test targeting the RNA polymerase gene described above, developed by the CDC, BNI and Institut Pasteur (CDC/IP nested RT-PCR),

[0544] the ARTUS kit with the reference "HPA Corona LC RT-PCR Kit # 5601-02", which is a real time RT-PCR test targeting the ORF1b gene,

[0545] the BNI nested RT-PCR test, also targeting the RNA polymerase gene mentioned above.

[0546] The inventors observed:

[0547] 1) an inter-test variability for the same technique, linked to the degradation of the RNA preparation during

repeated thawing, in particular for the samples containing the lowest quantities of RNA,

[0548] 2) a reduced sensitivity of the CDC/IP nested RT-PCR compared with the BNI nested RT-PCR, and

[0549] 3) a comparable sensitivity of the quantitative RT-PCR test according to the invention (LightCycler N) compared with the Artus LightCycler (LC) test.

[0550] These results, which are presented in table VII below, show that the quantitative RT-PCR test according to the invention constitutes an excellent addition—or an alternative—to the tests currently available. Indeed, the SARS-linked coronavirus is an emergent virus which is capable of changing rapidly. In particular, the gene for the RNA polymerase of the SARS-linked coronavirus, which is targeted in most of the tests currently available, can recombine with that of other coronaviruses not linked to SARS. The use of a test targeting this gene exclusively could then lead to the production of false-negatives.

[0551] The quantitative RT-PCR test according to the invention does not target the same genomic region as the ARTUS kit since it targets the gene encoding the N protein. By carrying out a diagnostic test targeting two different genes of the SARS-linked coronavirus, it can therefore be hoped to avoid false-negative type results which could be due to the genetic evolution of the virus.

[0552] Furthermore, it appears particularly advantageous to target the gene for the nucleocapsid protein because it is very stable because of the high selection pressure linked to the high structural constraints regarding this protein.

TABLE VII

Comparison of various methods of analysis by gene amplification, from 121 samples of probable cases of SARS at the French hospital in Hanoi, Vietnam (epidemic 2003)

NRC No.	Sample type (1)	Sample collection day	Patient	CDC/IP nested RT-PCR	BNI nested RT-PCR	Artus Light Cycler kit	Light Cycler N (IP)
107	N and P			Negative	Negative	Negative	Negative
samples							
032529	P	10	NHB	Negative	Positive	Negative	Negative
032530	N	10	NHB	Positive	Positive	3.10E+01	4.20E+01
032531	P	7	LP	Positive	Positive	7.70E+00	3.10E+00
032534	N	15	BND	Positive	Positive	1.60E+00	Negative
032600	P	4	NHH	Negative	Positive	Negative	0.30E+02
032612	P	17	NTS	Negative	Positive	Negative	Negative
032688	P	9	BTX	Positive	Positive	Negative	Negative
032689	N	4	NVH	Positive	Positive	1.20E+01	2.30E+02
032690	P	4	NVH	Negative	Positive	1.60E+00	Negative
032727	P	8	NVH	Positive	Positive	2.30E+02	4.00E+02
032728	N	8	NVH	Positive	Positive	1.10E+03	1.60E+04
032729	P	14	NHB	Positive	Positive	5.90E+00	3.40E+01
032730	N	14	NHB	Positive	Positive	1.30E+02	4.80E+02
032741	P	8	NHH	Positive	Positive	2.10E+02	1.30E+02
	posi	tives		10	14	10	9
fraction	detected fr	om the 14 p	positives	71.4%	100.0%	71.4%	64.3%

⁽¹⁾ P = pharyngeal swab N = nasal swab

EXAMPLE 9

Production and Characterization of Monoclonol Antibodies Directed Against the N Protein

[0553] Balb C mice were immunized with the purified recombinant N protein and their spleen cells fused with an appropriate murine myeloma according to the Köhler and Milstein techniques.

[0554] Nineteen anti-N antibody secreting hybridomas were preselected and their immunoreactivities determined. These antibodies do indeed recognize the recombinant N protein (in ELISA) with variable intensities, and the natural viral N protein in ELISA and/or in Western blotting. FIGS. 18 to 20 show the results of these tests for 15 of these 19 monoclonal antibodies.

[0555] The highly reactive clones 12, 17, 28, 57, 72, 76, 86, 87, 98, 103, 146, 156, 166, 170, 199, 212, 218, 219 and 222 were subcloned. Specificity studies were carried out with the appropriate tools in order to determine the epitopes recognized and verify the absence of reactivity toward other human coronaviruses and certain respiratory viruses.

[0556] Epitope mapping studies (performed on spot membrane with the aid of overlapping peptides of 15 aa) and additional studies performed on the natural N protein in Western blotting revealed the existence of 4 groups of monoclonal antibodies:

[0557] 1. Monoclonal antibodies specific for a major linear epitope at the N-ter position (75-81, sequence: INT-NSVP).

[0558] The representative of this group is antibody 156. The hybridoma producing this antibody was deposited at the Collection Nationale de Cultures de Microorganismes (CNCM) of the Institut Pasteur (Paris, France) on Dec. 1, 2004, under the number I-3331. This same epitope is also recognized by a rabbit serum (anti-N polyclonal) obtained by conventional immunization with the aid of this same N protein.

[0559] 2. Monoclonal antibodies specific for a major linear epitope located in a central position (position 217-224, sequence: ETALALL); the representatives of this group are the monoclonal antibodies 87 and 166. The hybridoma producing antibody 87 was deposited at the CNCM on Dec. 1, 2004, under the number I-3328.

[0560] 3. Monoclonal antibodies specific for a major linear epitope located at the C-terminal position (position 403-408, sequence: DFFRQL), the representatives of this group are the antibodies 28, 57 and 143. The hybridoma producing antibody 57 was deposited at the CNCM on Dec. 1, 2004, under the number I-3330.

[0561] 4. Monoclonal antibodies specific for a discontinuous conformational epitope. This group of antibodies does not recognize any of the peptides spanning the sequence of the N protein, but react strongly on the non-denatured natural protein. The representative of this final group is the antibody 86. The hybridoma producing this antibody was deposited at the CNCM on Dec. 1, 2004, under the number 1-3329.

[0562] Table VIII below summarizes the epitope mapping results obtained:

TABLE VIII

	Epitope mapping of t		
Antibody	Epitope	Position	Region
28	DFSRQL Q	403 408	C-Ter.
143	DFSRQL Q		
76	DFSRQL Q		
57	DFSRQL Q		
	FFGMS RI	315 319	
146	LPQRQ	383 387	
166	ETALALL <i>LL</i>	217 224	central
87	ETALALL	217 224	
156	INTNSGP	75 81	N-Ter.
86	Conformational		
212	Conformational		
170	Conformational		

[0563] In addition, as illustrated in particular in FIGS. 18 and 19, these antibodies exhibit no reactivity in ELISA and/or in WB toward the N protein of the human coronavirus 229 E.

EXAMPLE 10

Combinations of the Monoclonal Antibodies for the Development of a Sensitive Immunocapture Test Specific for the Viral N Antigen in the Serum or Biological Fluids of Patients Infected with the SARS-CoV Virus

[0564] The antibodies listed below were selected because of their very specific properties for an additional capture and detection study of the viral N protein, in the serum of the subjects or patients.

[0565] These antibodies were produced in ascites on mice, purified by affinity chromatography and used alone or in combination, as capture antibodies and as signal antibodies.

[0566] List of the antibodies selected:

[0567] Ab anti-C-ter region (No. 28, 57, 143)

[0568] Ab anti-central region (No. 87, 166)

[0569] Ab anti-N-ter region (No. 156)

[0570] Ab anti-discontinuous conformational epitope (86)

- 1) Preparation of the Reagents:
- a) Immunocapture ELISA Plates

[0571] The plates are sensitized with the antibody solutions at 5 μ g/ml in 0.1 M carbonate buffer, pH 9.6. The (monovalent or plurivalent) solutions are deposited in a volume of 100 μ l in the wells and incubated overnight at room temperature. These plates are then washed with PBS buffer (10 mM pH 7.4 supplemented with 0.1% Tween 20) and then saturated with a PBS solution supplemented with 0.3% BSA and 5% sucrose). The plates are then dried and then packaged in a bag in the presence of a desiccant. They are ready to use.

b) Conjugates

[0572] The purified antibodies were coupled with peroxidase according to the Nakane protocol (Nakane et al.—1974, J. of Histo and cytochemistry, vol. 22, pp. 1084-1091) in a ratio of one molecule of IgG per 3 molecules of peroxidase. These conjugates were purified by exclusion chromatography and stored concentrated (concentration between 1 and 2 mg/ml) in the presence of 50% glycerol and at -20° C. They are diluted for their use in the assays at the final concentration of 1 or 2 μ g/ml in PBS buffer (pH 7.4) supplemented with 1% BSA.

c) Other Reagents

- [0573] Human sera negative for all the serum markers for the HIV, HBV, HCV and THLV viruses Pool of negative human sera supplemented with 0.5% Triton X 100
- [0574] Inactivated viral Ag: viral culture supernatant inactivated by irradiation and inactivation verified after placing in culture on sensitive cells—titer of the suspension before inactivation about 10⁷ infectious particles per ml or alternatively about 5×10⁹ physical viral particles per ml of antigen
- [0575] The Ag samples diluted in negative human serum: these samples were prepared by diluting 1:100 and then by 5-fold serial dilution.
- [0576] These noninfectious samples mimic human samples thought to contain low to very low concentrations of viral nucleoprotein N. Such samples are not available for routine work.
- [0577] Washing solution R2, solution for visualization TMB R8, chromogen R9 and stop solution R10, are the generic reagents marketed by Bio-Rad in its ELISA kits (e.g.: *Platelia pylori* kit ref. 72778).

2) Procedure

[0578] The samples of human sera overloaded with inactivated viral Ag are distributed in an amount of 100 μ l per well, directly in the ready-to-use sensitized plates, and then incubated for 1 hour at 37° C. (Bio-Rad IPS incubation).

[0579] The material not bound to the solid phase is removed by 3 washings (washing with dilute R2 solution, automatic LP 35 washer).

[0580] The appropriate conjugates, diluted to the final concentration of 1 or 2 μ g/ml, are distributed in an amount of 100 μ l per well and the plates are again incubated for one hour at 37° C. (IPS incubation).

[0581] The excess conjugate is removed by 4 successive washings (dilute R2 solution—LP 35 washer).

[0582] The presence of conjugate attached to the plates is visualized after adding 100 μ l of visualization solution prepared before use (1 ml of R9 and 10 ml of R8) and after incubation for 30 minutes, at room temperature and protected from light.

[0583] The enzymatic reaction is finally blocked by adding 100 μ l of R10 reagent (1 N H₂SO₄) to all the wells.

[0584] The reading is carried out with the aid of an appropriate microplate reader at double wavelength (450/620 nm).

[0585] The results can be interpreted by using, as provisional threshold value, the mean of at least two negative controls multiplied by a factor of 2 or alternatively the mean of 100 negative sera supplemented with an increment corresponding to 6 SD (standard deviation calculated on the 100 individual measurements).

3) Results

[0586] Various capture antibody and signal antibody combinations were tested based on the properties of the antibodies selected, and avoiding the combinations of antibodies specific for the same epitopes in solid phase and as conjugates.

[0587] The best results were obtained with the 4 combinations listed below. These results are reproduced in table IX below.

1. Combination F/28

[0588] Solid phase (Ab 166+87 central region): conjugate antibody 28 (C-ter)

2. Combination G/28

[0589] Solid phase (Ab 86—conformational epitope): conjugate antibody 28 (C-ter)

3. Combination H/28

[0590] Solid phase (Ab 86, 166 and 87 central region and conformational epitope): conjugate antibody 28 (C-ter)

4. Combination H/28+87

[0591] Solid phase (Ab 86, 166 and 87 central region and conformational epitope): mixed conjugate antibodies 28 (C-ter) and 87 (central)

5. Combination G/87

[0592] Solid phase (Ab 86—conformational epitope): conjugate antibody 87 (central region)

[0593] The first 4 combinations exhibit equivalent and reproduced performance levels, greater than the other combinations used (such as for example the combination G/87). Of course, in these combinations, a monoclonal antibody may be replaced with another antibody recognizing the same epitope. Thus, the following variants may be mentioned:

6. Variant of the Combination F/28

[0594] Solid phase (Ab 87 only): conjugate antibody 57 (C-ter)

7. Variant of the Combination G/28

[0595] Solid phase (Ab 86—conformational epitope): conjugate antibody 57 (C-ter)

8. Variant of the Combination H/28

[0596] Solid phase (Ab 86 and 87 central region and conformational epitope): conjugate antibody 57 (C-ter)

9. Variant of the Combination H/28+87

[0597] Solid phase (Ab 86 and 87 central region and conformational epitope): mixed conjugate antibodies 57 (C-ter) and 87 (central)

TABLE IX

Test of immunoreactivity of the anti-SARS-CoV nucleoprotein Abs: optical densities measured with each combination of antibodies according to the dilutions of the inactivated viral antigen.

No.	Dilution	F/28	G/28	G/87	H/28	H/28 + 87
0	1/100	5	5	3.495	3.900	5
1	½500	3.795	3.814	1.379	3.702	3.804
2	½ 500	2.815	2.950	0.275	3.268	2.680
3	1/12 500	0.987	1.038	0.135	1.374	0.865
4	1∕∞ 500	0.404	0.348	0.125	0.480	0.328
5	1/312 500	0.285	0.211	0.123	0.240	0.215
6	Control	0.210	0.200	0.098	0.186	0.156
7	Control	0.269	0.153	0.104	0.193	0.202

[0598] The detection limit for these 4 experimental trials corresponds to the antigen dilution in negative serum 1:62 500. A rapid extrapolation suggests the detection of less than 10³ infectious particles per ml of sera.

[0599] From this study, it is evident that the most appropriate antibodies for the capture of the native viral nucle-oprotein are the antibodies specific for the central region and/or for a conformational epitope, both being antibodies also selected for their high affinity for the native antigen.

[0600] Having determined the best antibodies for the composition of the solid phase, the antibodies to be selected as a priority for the detection of the antigens attached to the solid phase are the complementary antibodies specific for a dominant epitope in the C-ter region. The use of any other complementary antibody specific for epitopes located in the N-ter region of the protein leads to average or poor results.

EXAMPLE 11

Eukaryotic Expression Systems for the SARS-Associated Coronavirus (SARS-CoV) spicule (S) Protein

1) Optimization of the Conditions for Expression of the SARS-CoV S in Mammalian Cells

[0601] The conditions for transient expression of the SARS-CoV spicule (S) protein were optimized in mammalian cells (293T, VeroE6).

[0602] For that, a DNA fragment containing the cDNA for SARS-CoV S was amplified by PCR with the aid of the oligo-nucleotides 5'-ATAGGATCCA CCATGTTTAT TTTCTTATTA TTTCTTACTC TCACT-3' and 5'-ATACTC-GAGTT ATGTGTAATG TAATTTGACA CCCTTG-3' from the plasmid pSARS-S(C.N.C.M. No. I-3059) and then inserted between the BamHI and Xho1 sites of the plasmid pTRIPAU3-CMV containing a lentiviral vector TRIP (Sirven, 2001, Mol. Ther., 3, 438-448) in order to obtain the plasmid pTRIP-S. The BamH1 and Xho1 fragment containing the cDNA for S was then subcloned between BamH1 and Xho1 of the eukaryotic expression plasmid pcDNA3.1(+) (Clontech) in order to obtain the plasmid pcDNA-S. The Nhe1 and Xho1 fragment containing the cDNA for S was then subcloned between the corresponding sites of the expression plasmid pCI (Promega) in order to obtain the plasmid pCI-S. The WPRE sequences of the woodchuck hepatitis virus ("Woodchuck Hepatitis Virus posttranscriptional regulatory element") and the CTE sequences ("constitutive transport element") of the simian retro-virus from Mason-Pfizer were inserted into each of the two plasmids pcDNA-S and pCI-S between the Xho1 and Xba1 sites in order to obtain respectively the plasmids pcDNA-S-CTE, pcDNA-S-WPRE, pCI-S-CTE and pCI-S-WPRE (FIG. 21). The plasmid pCI-S-WPRE was deposited at the CNCM, on Nov. 22, 2004, under the number I-3323. All the inserts were sequenced with the aid of a BigDye Terminator v1.1 kit (Applied Biosystems) and an automated sequencer ABI377.

[0603] The capacity of the plasmid constructs to direct the expression of SARS-CoV S in mammalian cells was assessed after transfection of VeroE6 cells (FIG. 22). In this experiment, monolayers of 5×10⁵ VeroE6 cells in 35 mm Petri dishes were transfected with 2 µg of plasmids pcDNA (as control), pcDNA-S, pCI and pCI-S and 6 μl of Fugene6 reagent according to the manufacturer's instructions (Roche). After 48 hours of incubation at 37° C. and under 5% CO2, cellular extracts were prepared in loading buffer according to Laemmli, separated on 8% SDS polyacrylamide gel, and then transferred onto a PVDF membrane (BioRad). The detection of this immunoblot (Western blot) was carried out with the aid of an anti-S rabbit polyclonal serum (immune serum from the rabbit P11135; cf. example 4 above) and donkey polyclonal antibodies directed against rabbit IgGs and coupled with peroxidase (NA934V, Amersham). The bound antibodies were visualized by luminescence with the aid of the ECL+ kit (Amersham) and autoradiography films Hyperfilm MP (Amersham).

[0604] This experiment (FIG. 22) shows that the plasmid pcDNA-S does not make it possible to direct the expression of SARS-CoV S at detectable levels whereas the plasmid pCI-S allows a weak expression, close to the limit of detection, which may be detected when the film is overexposed. Similar results were obtained when the expression of S was sought by immunofluorescence (data not shown). This impossibility to detect effective expression of S cannot be attributed to the detection techniques used since the S protein can be detected at the expected size (180 kDa) in an extract of cells infected with SARS-CoV or in an extract of VeroE6 cells infected with the recombinant vaccinia virus VV-TF7.3 and transfected with the plasmid pcDNA-S. In this latter experiment, the virus VV-TF7.3 expresses the RNA polymerase of the T7 phage and allows the cytoplasmic transcription of an uncapped RNA capable of being efficiently translated. This experiment suggests that the expression defects described above are due to an intrinsic inability of the cDNA for S to be efficiently expressed when the step for transcription to messenger RNA is carried out at the nuclear level.

[0605] In a second experiment, the effect of the CTE and WPRE signals on the expression of S was assessed after transfection of VeroE6 (FIG. 23A) and 293T (FIG. 23B) cells and according to a protocol similar to that described above. Whereas the expression of S cannot be detected after transfection of the plasmids pcDNA-S-CTE and pcDNA-S-WPRE derived from pcDNA-S, the insertion of the WPRE and CTE signals greatly improves the expression of S in the context of the expression plasmid pCI-S.

[0606] To specify this result, a second series of experiments were carried out where the immunoblot is quantitatively visualized by luminescence and acquisition on a

digital imaging device (Fluor S, BioRad). The analysis of the results obtained with the QuantityOne v4.2.3 software (BioRad) shows that the WPRE and CTE sequences increase respectively the expression of S by a factor of 20 to 42 and 10 to 26 in Vero E6 cells (table X). In 293T cells (table X), the effect of the CTE sequence is more moderate (4 to 5 times) whereas that of the WPRE sequence remains high (13 to 28 times).

TABLE X

Quantitative analysis of the effect of the CTE and WPRE signals on the expression of SARS-CoV S: Cellular extracts were prepared 48 hours after transfection of VeroE6 or 293T cells with the plasmid pCI, pCI-S, pCI-S-CTE and pCI-S-WPRE and analyzed by Western blotting as described in the legend to FIG. 22. The Western blot is visualized by luminescence (ECL+, Amersham) and acquisition on a digital imaging device (FluorS, BioRad). The expression levels are indicated according to an arbitrary scale where the value of 1 represents the level measured after transfection of the plasmid pCI-S. Two independent experiments were carried out for each of the two cell types. In experiment 1 on VeroE6 cells, the transfections were carried out in duplicate and the results are indicated in the form of the mean and standard deviation values for the expression levels measured

Plasmid	cell	exp. 1	exp. 2
PCI	VeroE6	0.0	0.0
pCI-S	VeroE6	1.0 ± 0.1	1.0
pCI-S-CTE	VeroE6	9.8 ± 0.9	26.4
pCI-S-WPRE	VeroE6	20.1 ± 2.0	42.3
PCI	293T	0.0	0.0
PCI-S	293T	1.0	1.0
PCI-S-CTE	293T	4.6	4.0
PCI-S-WPRE	293T	27.6	12.8

[0607] In summary, all these results show that the expression, in mammalian cells, of the cDNA for the SARS-CoVS under the control of the RNA polymerase II promoter sequences requires, to be efficient, the expression of a splice signal and of either of the sequences WPRE and CTE.

Production of Stable Lines Allowing the Expression of SARS-CoV S

[0608] The cDNA for the SARS-CoV S protein was cloned in the form of a BamH1-Xho1 fragment into the plasmid pTRIPAU3-CMV containing a defective lentiviral vector TRIP with central DNA flap (Sirven et al., 2001, Mol. Ther., 3: 438-448) in order to obtain the plasmid pTRIP-S (FIG. 24). Transient cotransfection according to Zennou et al. (2000, Cell, 101: 173-185) of this plasmid, of an encapsidation plasmid (p8.2) and of a plasmid for expression of the VSV envelope glycoprotein G (pHCMV-G) in 293T cells allowed the preparation of retroviral pseudoparticles containing the vector TRIP-S and pseudotyped with the envelope protein G. These pseudotyped TRIP-S vectors were used to translate 293T and FRhK-4 cells: no expression of the S protein could be detected by Western blotting and immunofluorescence in the transduced cells (data not presented).

[0609] The optimum expression cassettes consisting of the CMV virus immediate/early promoter, a splice signal, cDNA for S and either of the posttranscriptional signals WPRE or CTE described above were then substituted for the EF1 α -

EGFP cassette of the defective lentiviral expression vector with central DNA flap TRIPΔU3-EF1α (Sirven et al., 2001, Mol. Ther., 3: 438-448) (FIG. 25). These substitutions were carried out by a series of successive subclonings of the S expression cassettes which were excised from the plasmids pCT-S-CTE (BglII-Apa1) or respectively pCI-S-WPRE (BglII-Sal1) and then inserted between the Mlu1 and Kpn1 sites or respectively Mlu1 or Xho1 sites of the plasmid TRIPAU3-EF1\alpha in order to obtain the plasmids pTRIP-SD/ SA-S-CTE and pTRIP-SD/SA-S-WPRE, deposited at the CNCM, on Dec. 1, 2004, under the numbers I-3336 and I-3334, respectively. Pseudotyped vectors were produced according to Zennou et al. (2000, Cell, 101: 173-185) and used to transduce 293T cells (10 000 cells) and FRhK-4 cells (15 000 cells) according to a series of 5 successive transduction cycles with a quantity of vectors corresponding to 25 ng (TRIP-SD/SA-S-CTE) or 22 ng TRIP-SD/SA-S-WPRE) of p24 per cycle.

[0610] The transduced cells were cloned by limiting dilution and a series of clones were qualitatively analyzed for the expression of SARS-CoV S by immunofluorescence (data not shown), and then quantitatively by Western blotting (FIG. 25) with the aid of an anti-S rabbit polyclonal serum. The results presented in FIG. 25 show that clones 2 and 15 of FrhK4-s-CTE cells transduced with TRIP-SD/SA-S-CTE and clones 4, 9 and 12 of FrhK4-S-WPRE cells transduced with TRIP-SD/SA-S-WPRE allow the expression of the SARS-CoV S at respectively low or moderate levels if they are compared to those which can be observed during infection with SARS-CoV.

[0611] In summary, the vectors TRIP-SD/SA-S-CTE and TRIP-SD/SA-S-WPRE allow the production of stable clones of FRhK-4 cells and similarly 293T cells expressing SARS-CoV S, whereas the assays carried out with the "parent" vector TRIP-S remained unsuccessful, which demonstrates the need for a splice signal and for either of the sequences CTE and WPRE for the production of stable cell clones expressing the S protein.

[0612] In addition, these modifications of the vector TRIP (insertion of a splice signal and of a post-transcriptional signal like CTE and WPRE) could prove advantageous for improving the expression of other cDNAs than that for S.

[0613] 3) Production of stable lines allowing the expression of a soluble form of SARS-CoV S. Purification of this recombinant antigen.

[0614] A cDNA encoding a soluble form of the S protein (Ssol) was obtained by fusing the sequences encoding the ecto-domain of the protein (amino acids 1 to 1193) with those of a tag (FLAG:DYKDDDDK) via a BspE1 linker encoding the SG dipeptide. Practically, in order to obtain the plasmid pcDNA-Ssol, a DNA fragment encoding the ectodomain of SARS-CoV S was amplified by PCR with the aid of the oligonucleotides 5'-ATAGGATCCA CCATGTT-TAT TTTCTTATTA TTTCTTACTC TCACT-3' and 5'-AC-CTCCGGAT TTAATATATT GCTCATATTT TCCCAA-3' from the plasmid pcDNA-S, and then inserted between the unique BamH1 and BspE1 sites of a modified eukaryotic expression plasmid pcDNA3.1(+) (Clontech) containing the tag sequence FLAG between its BamH1 and Xho1 sites:

// GGATCC ...nnn... TCC GGA GAT TAT AAA GAT GAC
BamH1 S G D Y K D D

GAC GAT AAA TAA CTCGAG //
D D K ter Xhol

[0615] The Nhe1-Xho1 and BamH1-Xho1 fragments, containing the cDNA for S, were then excised from the plasmid pcDNA-Ssol, and subcloned between the corresponding sites of the plasmid pTRIP-SD/SA-S-CTE and of the plasmid pTRIP-SD-SA-S-WPRE, respectively, in order to obtain the plasmids pTRIP-SD/SA-Ssol-CTE and pTRIP-SD/SA-Ssol-WPRE, deposited at the CNCM, on Dec. 1, 2004, under the numbers I-3337 and I-3335, respectively.

[0616] Pseudotyped vectors were produced according to Zennou et al. (2000, Cell, 101:173-185) and used to transduce FRhK-4 cells (15 000 cells) according to a series of 5 successive transduction cycles (15 000 cells) with a quantity of vector corresponding to 24 ng (TRIP-SD/SA-Ssol-CTE) or 40 ng (TRIP-SD/SA-Ssol-WPRE) of p24 per cycle. The transduced cells were cloned by limiting dilution and a series of 16 clones transduced with TRIP-SD/SA-Ssol-CTE and of 15 clones with TRIP-SD/SA-Ssol-WPRE were analyzed for the expression of the Ssol polypeptide by Western blotting visualized with an anti-FLAG monoclonal antibody (FIG. 26 and data not presented), and by capture ELISA specific for the Ssol polypeptide which was developed for this purpose (table XI and data not presented). Part of the process for selecting the best secretory clones is shown in FIG. 26. Capture ELISA is based on the use of solid phases coated with polyclonal antibodies of rabbits immunized with purified and inactivated SARS-CoV. These solid phases allow the capture of the Ssol polypeptide secreted into the cellular supernatants, whose presence is then visualized with a series of steps successively involving the attachment of an anti-FLAG monoclonal antibody (M2, SIGMA), of antimouse IgG(H+L) biotinylated rabbit polyclonal antibodies (Jackson) and of a streptavidin-peroxidase conjugate (Amersham) and then the addition of chromogen and substrate (TMB+H₂O₂, KPL).

TABLE XI

Analysis of the expression of the Ssol polypeptide by cell lines transduced with the lentiviral vectors TRIP-SD/SA-Ssol-WPRE and TRIP-SD/SA-Ssol-CTE. The secretion of the Ssol polypeptide was assessed in the supernatant of a series of cell clones isolated after transduction of FRhK-4 cells with the lentiviral vectors TRIP-SD/SA-Ssol-WPRE and TRIP-SD/SA-Ssol-CTE. The supernatants diluted 1/50 were analyzed by a capture ELISA test specific for SARS-CoV S.

Vector	Clone	OD (450 nm)
Control		0.031
TRIP-SD/SA-Ssol-	CTE2	0.547
CTE	CTE3	0.668
	CTE9	0.171
	CTE12	0.208
	CTE13	0.133
TRIP-SD/SA-Ssol-	WPRE1	0.061
WPRE	WPRE10	0.134

[0617] The cell line secreting the highest quantities of Ssol polypeptide in the culture supernatant is the FRhK4-Ssol-

CTE3 line. It was subjected to a second series of 5 cycles of transduction with the vector TRIP-SD/SA-Ssol-CTE under conditions similar to those described above and then cloned. The subclone secreting the highest quantities of Ssol was selected by a combination of Western blot and capture ELISA analysis: it is the subclone FRhK4-Ssol-30, which was deposited at the CNCM, on Nov. 22, 2004, under the name I-3325.

[0618] The FRhK4-Ssol-30 line allows the quantitative production and purification of the recombinant Ssol polypeptide. In a typical experiment where the experimental conditions for growth, production and purification were optimized, the cells of the FRhK4-Ssol-30 line are inoculated in standard culture medium (pyruvate-free DMEM containing 4.5 g/l of glucose and supplemented with 5% FCS, 100 U/ml of penicillin and 100 µg/ml of streptomycin) in the form of a subconfluent monolayer (1 million cells per each 100 cm² in 20 ml of medium). At confluence, the standard medium is replaced with the secretion medium where the quantity of FCS is reduced to 0.5% and the quantity of medium reduced to 16 ml per each 100 cm². The culture supernatant is removed after 4 to 5 days of incubation at 35° C. and under 5% CO₂. The recombinant polypeptide Ssol is purified from the supernatant by the succession of steps of filtration on 0.1 µm polyethersulfone (PES) membrane, concentration by ultrafiltration on a PES membrane with a 50 kD cut-off, affinity chromatography on anti-FLAG matrix with elution with a solution of FLAG peptide (DYKDDDDK) at 100 $\mu\text{g/ml}$ in TBS (50 mM tris, pH 7.4, 150 mM NaCl) and then gel filtration chromatography in TBS on sephadex G-75 beads (Pharmacia). The concentration of the purified recombinant Ssol polypeptide was determined by micro-BCA test (Pierce) and then its biochemical characteristics analyzed.

[0619] Analysis by 8% SDS acrylamide gel stained with silver nitrate demonstrates a predominant polypeptide whose molecular mass is about 180 kD and whose degree of purity may be evaluated at 98% (FIG. 27A). Two main peaks are detected by SELDI-TOF mass spectrometry (Cyphergen): they correspond to single and double charged forms of a predominant polypeptide whose molecular mass is thus determined at 182.6±3.7 kD (FIGS. 27B and C). After transfer onto Prosorb membrane and rinsing in 0.1% TFA, the N-terminal end of the Ssol polypeptide was sequenced in liquid phase by Edman degradation on 5 residues (ABI494, Applied Biosystems) and determined as being SDLDR (FIG. 27D). This demonstrates that the signal peptide located at the N-terminal end of the SARS-CoV S protein, composed of aa 1 to 13 (MFIFLLFLTLTSG) according to an analysis carried out with the software signal Pv2.0 (Nielsen et al., 1997, Protein Engineering, 10:1-6), is cleaved from the mature Ssol polypeptide. The recombinant Ssol polypeptide therefore consists of amino acids 14 to 1193 of the SARS-CoV S protein fused at the C-terminals with a sequence $SG\underline{DYKDDDDK}$ containing the sequence of the FLAG tag (underlined). The difference between the theoretical molar mass of the naked Ssol polypeptide (132.0 kD) and the real molar mass of the mature polypeptide (182.6 kD) suggests that the Ssol polypeptide is glycosylated.

[0620] A preparation of purified Ssol polypeptide, whose protein concentration was determined by micro-BCA test, makes it possible to prepare a calibration series in order to measure, with the aid of the capture ELISA test described

above, the concentrations of Ssol present in the culture supernatants and to review the characteristics of the secretory lines. According to this test, the FRhK4-Ssol-CT3 line secretes 4 to 6 g/ml of polypeptide Ssol while the FRhK4-Ssol-30 line secretes 9 to 13 g/ml of Ssol after 4 to 5 days of culture at confluence. In addition, the purification scheme presented above makes it possible routinely to purify from 1 to 2 mg of Ssol polypeptide per liter of culture supernatant.

EXAMPLE 12

Gene Immunization Involving the SARS-Associated Corona Virus (SARS-CoV) Spicule (S) Protein

[0621] The effect of a splice signal and of the posttranscriptional signals WPRE and CTE was analyzed after gene immunization of BALB/c mice (FIG. 28).

[0622] For that, BALB/c mice were immunized at intervals of 4 weeks by injecting into the tibialis anterior a saline solution of 50 µg of plasmid DNA of pcDNA-S and pCI-S and, as a control, 50 µg of plasmid DNA of pcDNA-N (directing the expression of SARS-CoV N) or of pCI-HA (directing the expression of the HA of the influenza virus A/PR/8/34) and the immune sera collected 3 weeks after the 2nd injection. The presence of antibodies directed against the SARS-CoV S was assessed by indirect ELISA using as antigen a lysate of VeroE6 cells infected with SARS-CoV and, as a control, a lysate of noninfected VeroE6 cells. The anti-SARS-CoV antibody titers (TI) are calculated as the reciprocal of the dilution producing a specific OD of 0.5 (difference between OD measured on a lysate of infected cells and OD measured on a lysate of noninfected cells) after visualization with an anti-mouse IgG polyclonal antibody coupled with peroxidase (NA931V, Amersham) and TMB supplemented with H₂O₂ (KPL) (FIG. 28A).

[0623] Under these conditions, the expression plasmid pcDNA-S only allows the induction of low antibody titers directed against SARS-CoV S in 3 mice out of 6 (LOG₁₀(TI)=1.9±0.6) whereas the plasmid pcDNA-N allows the induction of anti-N antibodies at high titers (LOG₁₀(TI)=3.9±0.3) in all the animals, and the control plasmids (pCI, pCI-HA) do not result in any detectable antibody (LOG₁₀(TI)<1.7). The plasmid pCI-S equipped with a splice signal allows the induction of antibodies at high titers (LOG₁₀(TI)=3.7±0.2), which are approximately 60 times higher than those observed after injection of the plasmid pcDNA-S (p<10⁻⁵).

[0624] The efficiency of the posttranscriptional signals was studied by carrying out a dose-response study of the anti-S antibody titers induced in the BALB/c mouse as a function of the quantity of plasmid DNA used as immunogen (2 μ g, 10 μ g and 50 μ g). This study (FIG. 28B) demonstrates that the posttranscriptional signal WPRE greatly improves the efficiency of gene immunization when small doses of DNA are used (p<10⁻⁵ for a dose of 2 μ g of DNA and p<10⁻² for a dose of 10 μ g), whereas the effect of the CTE signal remains marginal (p=0.34 for a dose of 2 μ g of DNA).

[0625] Finally, the antibodies induced in mice after gene immunization neutralize the infectivity of SARS-CoV in vitro (FIGS. 29A and 29B) at titers which are consistent with the titers measured by ELISA.

[0626] In summary, the use of a splice signal and of the posttranscriptional signal WPRE of the woodchuck hepatitis virus considerably improves the induction of neutralizing antibodies directed against SARS-CoV after gene immunization with the aid of plasmid DNA directing the expression of the cDNA for SARS-CoV S.

EXAMPLE 13

Diagnostic Applications of the S Protein

[0627] The ELISA reactivity of the recombinant Ssol polypeptide was analyzed with respect to sera from patients suffering from SARS.

[0628] The sera from probable cases of SARS tested were chosen on the basis of the results (positive or negative) of analysis of their specific reactivity toward the native antigens of SARS-CoV by immunofluorescence test on VeroE6 cells infected with SARS-CoV and/or by indirect ELISA test using as antigen a lysate of VeroE6 cells infected with SARS-CoV. The sera of these patients are identified by a serial number of the National Reference Center for Influenza Viruses and by the initials of the patient and the number of days elapsed since the onset of the symptoms. All the sera of probable cases (cf. Table XII) recognize the native antigens of SARS-CoV, with the exception of the serum 032552 of the patient VTT for whom infection with SARS-CoV could not be confirmed by RT-PCR performed on respiratory samples of days 3, 8 and 12. A panel of control sera was used as control (TV sera): they are sera collected in France before the SARS epidemic that occurred in 2003.

TABLE XII

Sera of probable cases of SARS					
Serum	Patient	Sample collection day			
031724	JYK	7			
033168	JYK	38			
033597	JYK	74			
032632	NTM	17			
032634	THA	15			
032541	PHV	10			
032542	NIH	17			
032552	VTT	8			
032633	PTU	16			
032791	JLB	3			
033258	JLB	27			
032703	JCM	8			
033153	JCM	29			

[0629] Solid phases sensitized with the recombinant Ssol polypeptide were prepared by adsorption of a solution of purified Ssol polypeptide at 2 μ g/ml in PBS in the wells of an ELISA plate, and then the plates are incubated overnight at 4° C. and washed with PBS-Tween buffer (PBS, 0.1% Tween 20). After saturating the ELISA plates with a solution of PBS-10% skimmed milk (weight/volume) and washing in PBS-Tween, the sera to be tested (100 μ l) are diluted $\frac{1}{400}$ in PBS skimmed milk-Tween buffer (PBS, 3% skimmed milk, 0.1% Tween) and then added to the wells of the sensitized ELISA plate. The plates are incubated for 1 h at 37° C. After 3 washings with PBS-Tween buffer, the anti-human IgG conjugate labeled with peroxidase (ref. NA933V, Amersham) diluted $\frac{1}{4000}$ in PBS-skimmed milk-Tween buffer is

added, and then the plates are incubated for 1 hour at 37° C. After 6 washings with PBS-Tween buffer, the chromogen (TMB) and the substrate ($\rm H_2O_2$) are added and the plates are incubated for 10 minutes protected from light. The reaction is stopped by adding a 1 N $\rm H_3PO_4$ solution, and then the absorbance is measured at 450 nm with a reference at 620 nm

[0630] The ELISA tests (FIG. 30) demonstrate that the recombinant Ssol polypeptide is specifically recognized by the serum antibodies of patients suffering from SARS collected at the medium or late phase of infection (≧10 days after the onset of the symptoms) whereas it is not significantly recognized by the serum antibodies of 2 patients (JLB and JCM) collected in the early phase of infection (3 to 8 days after the onset of the symptoms) or by control sera of subjects not suffering from SARS. The serum antibodies of patients JLB and JCM show a seroconversion between days 3 and 27 for the first and 8 and 29 for the second after the onset of the symptoms, which confirms the specificity of the reactivity of these sera toward the Ssol polypeptide.

[0631] In conclusion, these results demonstrate that the recombinant Ssol polypeptide may be used as an antigen for the development of an ELISA test for serological diagnosis of infection with SARS-CoV.

EXAMPLE 14

Vaccine Applications of the Recombinant Soluble S Protein

[0632] The immunogenicity of the recombinant Ssol polypeptide was studied in mice.

[0633] For that, a group of 6 mice was immunized at 3 weeks' interval with 10 µg of recombinant Ssol polypeptide adjuvanted with 1 mg of aluminum hydroxide (Alu-gel-S, Serva) diluted in PBS. Three successive immunizations were performed and the immune sera were collected 3 weeks after each of the immunizations (IS1, IS2, IS3). As a control, a group of mice (mock group) received aluminum hydroxide alone according to the same protocol.

[0634] The immune sera were analyzed per pool for each of the 2 groups by indirect ELISA using a lysate of VeroE6 cells infected with SARS-CoV as antigen and as a control a lysate of noninfected VeroE6 cells. The anti-SARS-CoV antibody titers are calculated as the reciprocal of the dilution producing a specific OD of 0.5 after visualization with an anti-mouse IgG(H+L) polyclonal antibody coupled with peroxidase (NA931V, Amersham) and TMB supplemented with H₂O₂ (KPL). This analysis (FIG. 31) shows that the immunization with the Ssol polypeptide induces in mice, from the first immunization, antibodies directed against the native form of the SARS-CoV spicule protein present in the lysate of infected VeroE6 cells. After 2 then 3 immunizations, the anti-S antibody titers become very high.

[0635] The immune sera were analyzed per pool for each of the two groups for their capacity to seroneutralize the infectivity of SARS-CoV. 4 points of seroneutralization on FRhK-4 cells (100 TCID50 of SARS-CoV) are produced for each of the 2-fold dilutions tested from ½0. The seroneutralizing titer is calculated according to the Reed and Munsch method as the reciprocal of the dilution neutralizing the infectivity of 2 wells out of 4. This analysis shows that the

antibodies induced in mice by the Ssol polypeptide are neutralizing: the titers observed are very high after 2 and then 3 immunizations (greater than 2560 and 5120 respectively, table XIII).

TABLE XIII

Induction of antibodies directed against
SARS-CoV after immunization with the recombinant Ssol
polypeptide. The immune sera were analyzed per pool for
each of the two groups for their capacity to
seroneutralize the infectivity of 100 TCID50 of SARSCoV on FRhK-4 cells. 4 points are produced for each of
the 2-fold dilutions tested from 1/20. The
seroneutralizing titer is calculated according to the
Reed and Munsch method as the reciprocal of the
dilution neutralizing the infectivity of 2 wells out of 4.

Group	Sera	Neutralizing Ab
Mock	pi	<20
	IS1	<20
	IS2	<20
	IS3	<20
Ssol	pi	<20
	IS1	57
	IS2	>2560
	IS3	>5120

[0636] The neutralizing titers observed in mice immunized with the Ssol polypeptide reach levels far greater than the titers observed by Yang et al. in mice (2004, Nature, 428:561-564) and those observed by Buchholz in the hamster (2004, PNAS 101:9804-9809) which protect respectively mice and hamsters from infection with SARS-CoV. It is therefore probable that the neutralizing antibodies induced in mice after immunization with the Ssol polypeptide protect these animals against infection with SARS-CoV.

EXAMPLE 15

Optimized Synthetic Gene for the Expression in Mammalian Cells of the SARS-Associated Coronavirus (SARS-CoV) Spicule (S) Protein

1) Design of the Synthetic Gene

[0637] A synthetic gene encoding the SARS-CoV spicule protein was designed from the gene of the isolate 031589 (plasmid pSARS-S, C.N.C.M. No. I-3059) so as to allow high levels of expression in mammalian cells and in particular in cells of human origin.

[0638] For that:

[0639] the use of codons of the wild-type gene of the isolate 031589 was modified so as to become close to the bias observed in humans and to improve the efficiency of translation of the corresponding mRNA

[0640] the overall GC content of the gene was increased so as to extend the half-life of the corresponding mRNA

[0641] the optionally cryptic motifs capable of interfering with an efficient expression of the gene were deleted (splice donor and acceptor sites, polyadenylation signals, sequences very rich (>80%) or very low (<30%) in GC, repeat sequences, sequences involved in the formation of secondary RNA structures, TATA boxes)

[0642] a second STOP codon was added to allow efficient termination of translation.

[0643] In addition, CpG motifs were introduced into the gene so as to increase its immunogenicity as DNA vaccine. In order to facilitate the manipulation of the synthetic gene, two BamH1 and Xho1 restriction sites were placed on either side of the open reading frame of the S protein, and the BamH1, Xho1, Nhe1, Kpn1, BspE1 and Sal1 restriction sites were avoided in the synthetic gene.

[0644] The sequence of the synthetic gene designed (gene 040530) is given in SEQ ID No: 140.

[0645] An alignment of the synthetic gene 040530 with the sequence of the wild-type gene of the isolate 031589 of SARS-CoV deposited at the C.N.C.M. under the number I-3059 (SEQ ID No: 4, plasmid pSRAS-S) is presented in FIG. 32.

2) Plasmid Constructs

[0646] The synthetic gene SEQ ID No: 140 was assembled from synthetic oligonucleotides and cloned between the Kpn1 and Sac1 sites of the plasmid pUC-Kana in order to give the plasmid 040530pUC-Kana. The nucleotide sequence of the insert of the plasmid 040530pUC-Kana was verified by automated sequencing (Applied).

[0647] A Kpn1-Xho1 fragment containing the synthetic gene 040530 was excised from the plasmid 040530pUC-Kana and subcloned between the Nhe1 and Xho1 sites of the expression plasmic pCI (Promega) in order to obtain the plasmid pCI-SSYNTH, deposited at the CNCM on Dec. 1, 2004, under the number I-3333.

[0648] A synthetic gene encoding the soluble form of the S protein was then obtained by fusing the synthetic sequences encoding the ectodomain of the S protein (amino acids 1 to 1193) with those of the tag (FLAG:DYKDDDDK) via a linker BspE1 encoding the dipeptide SG. Practically, a DNA fragment encoding the ectodomain of the SARS-CoV S was amplified by PCR with the aid of the oligonucleotides 5'-ACTAGCTAGCGGATCCACCATGTTCATCTT CCTG-3' and 5'-AGTATCCGGAC TTG ATGTACT GCTCG-TACTTGC-3' from the plasmid 040530pUC-Kana, digested with Nhe1 and BspE1 and then inserted between the unique Nhe1 and BspE1 sites of the plasmid pCI-Ssol, to give the plasmid pCI-SCUBE, deposited at the CNCM on Dec. 1, 2004, under the number I-3332. The plasmids pCI-Ssol, pCI-Ssol-CTE, and pCI-Ssol-WPRE (deposited at the CNCM, on Nov. 22, 2004, under the number I-3324) had been previously obtained by subcloning the Kpn1-Xho1 fragment excised from the plasmid pcDNA-Ssol (see technical note of DI 2004-106) between the Nhe1 and Xho1 sites of the plasmids pCI, pCI-S-CTE and pCI-S-WPRE respectively.)

[0649] The plasmids pCI-Scube and pCI-Ssol encode the same recombinant Ssol polypeptide.

3) Results

[0650] The capacity of the synthetic gene encoding the S protein to efficiently direct the expression of the SARS-CoV S in mammalian cells was compared with that of the wild-type gene after transient transfection of primate cells (VeroE6) and of human cells (293T).

[0651] In the experiment presented in FIG. 33 and in table XIV, monolayers of 5×10⁵ VeroE6 cells or 7×10⁵ 293T cells in 35 mm Petri dishes were transfected with 2 g of plasmids pCI (as control), pCI-S, pCI-S-CTE, pCI-S-WPRE and pCI-S-Ssynth and 6 µl of Fugene6 reagent according to the manufacturer's instructions (Roche). After 48 hours of incubation at 37° C. and under 5% CO2, cell extracts were prepared in loading buffer according to Laemmli, separated on 8% SDS polyacrylamide gel and then transferred onto a PVDF membrane (BioRad). The detection of this immunoblot (Western blot) was carried out with the aid of an anti-S rabbit polyclonal serum (immune serum of the rabbit P11135: cf example 4 above) and of donkey polyclonal antibodies directed against rabbit IgGs and coupled with peroxidase (NA934V, Amersham). The immunoblot was quantitatively visualized by luminescence with the aid of the ECL+ kit (Amersham) and acquisition on a digital imaging device (Fluor S, BioRad).

[0652] The analysis of the results obtained with the software QuantityOne v4.2.3 (BioRad) shows that in this experiment, the plasmid pCI-Synth allows the transient expression of the S protein at high levels in the VeroE6 and 293T cells, whereas the plasmid pCI-S does not make it possible to induce expression at sufficient levels to be detected. The expression levels observed are of the order of twice as high as those observed with the plasmid pCI-S-WPRE.

TABLE XIV

Use of a synthetic gene for the expression of the SARS-CoV S. Cell extracts prepared 48 hours after transfection of VeroE6 or 293T cells with the plasmids pCI, pCI-S, pCI-S-CTE, pCI-S-WPRE and pCI-S-Ssynth were separated on 8% SDS acrylamide gel and analyzed by Western blotting with the aid of an anti-S rabbit polyclonal antibody and an anti-rabbit IgG (H + L) polyclonal antibody coupled with peroxidase (NA934V, Amersham). The Western blot is visualized by luminescence (ECL+, Amersham) and acquisition on a digital imaging device (Fluors, BioRad). The expression levels of the S protein were measured by quantifying the two predominant bands identified on the image (see FIG. 33) and are indicated according to an arbitrary scale where the value 1 represents the level measured

Plasmid	VeroE6	293T	
pCI	0.0	0.0	
pCI-S	≦0.1	≦0.1	
pCI-S-CTE	0.5	≦0.1	
pCI-S-WPRE	1.0	1.0	
pCI-Ssynth	1.8	1.9	

after transfection of the plasmid pCI-S-WPRE.

[0653] In a second instance, the capacity of the synthetic gene Scube to efficiently direct the synthesis and the secretion of the Ssol polypeptide by mammalian cells was compared with that of the wild-type gene after transient transfection of hamster cells (BHK-21) and of human cells (293T).

[0654] In the experiment presented in table XV, monolayers of 6×10^5 BHK-21 cells and 7×10^5 293T cells in 35 mm Petri dishes were transfected with 2 μ g of plasmids pCI (as control), pCI-Ssol, pCI-Ssol-CTE, pCI-Ssol-WPRE and pCI-Scube and 6 μ l of Fugene6 reagent according to the manufacturer's instructions (Roche). After 48 hours of incubation at 37° C. and under 5% CO₂, the cellular supernatants

were collected and quantitatively analyzed for the secretion of the Ssol polypeptide by a capture ELISA test specific for the Ssol polypeptide.

[0655] Analysis of the results shows that, in this experiment, the plasmid pCI-Scube allows the expression of the Ssol polypeptide at levels 8 times (BHK-21 cells) to 20 times (293T cells) higher than the plasmid pCI-Ssol.

[0656] The levels of expression observed are of the order of twice (293T cells) to 5 times (BHK-21 cells) as high as those observed with the plasmid pCI-Ssol-WPRE.

TABLE XV

Use of a synthetic gene for the expression of the Ssol polypeptide. The supernatants were harvested 48 hours after transfection of BHK or 293T cells with the plasmids pCl, pCl-Ssol, pCl-Ssol-CTE, pCl-Ssol-WPRE and pCl-Scube and quantitatively analyzed for the secretion of the Ssol polypeptide by an ELISA test specific for the Ssol polypeptide. The transfections were carried out in duplicate and the results are presented in the form of means and standard deviations of the concentrations of Ssol polypeptide (ng/ml) measured in the supernatants.

Plasmid	BHK	293T
pci	<20	<20
pCI-Ssol	<20	56 ± 10
pCI-Ssol-CTE	<20	63 ± 8
pCI-Ssol-WPRE	28 ± 1	531 ± 15
pCI-Scube	152 ± 6	1140 ± 20

[0657] In summary, these results show that the expression, in mammalian cells, of the synthetic gene 040530 encoding SARS-CoV S under the control of RNA polymerase II promoter sequences is much more efficient than that of the wild-type gene of the 031589 isolate. This expression is even more efficient than that directed by the wild-type gene in the presence of the WPRE sequences of the woodchuck hepatitis virus.

4) Applications

[0658] The use of the synthetic gene 040530 encoding SARS-CoVS or its Scube variant encoding the polypeptide Ssol is capable of advantageously replacing the wild-type gene in numerous applications where the expression of S is necessary at high levels. In particular in order to:

[0659] improve the efficiency of gene immunization with plasmids of the pCI-Ssynth or even pCI-Ssynth-CTE or pCI-Ssynth-WPRE type

[0660] establish novel cell lines expressing higher quantities of the S protein or of the Ssol polypeptide with the aid of recombinant lentiviral vectors carrying the Ssynth gene or the Scube gene respectively

[0661] improve the immunogenicity of the recombinant lentiviral vectors allowing the expression of the S protein or of the Ssol polypeptide

[0662] improve the immunogenicity of live vectors allowing the expression of the S protein or of the Ssol polypeptide like recombinant vaccinia viruses or recombinant measles viruses (see examples 16 and 17 below)

EXAMPLE 16

Expression of the SARS-Associated Coronavirus (SARS-CoV) Spicule (S) Protein with the Aid of Recombinant Vaccinia Viruses

Vaccine Application

Application to the Production of a Soluble form of the Spicule (S) Protein and Design of a Serological Test for SARS

1) Introduction

[0663] The aim of this example is to evaluate the capacity of recombinant vaccinia viruses (VV) expressing various SARS-associated coronavirus (SARS-CoV) antigens to constitute novel vaccine candidates against SARS and a means of producing recombinant antigens in mammalian cells.

[0664] For that, the inventors focused on the SARS-CoV spicule (S) protein which makes it possible to induce, after gene immunization in animals, antibodies neutralizing the infectivity of SARS-CoV, and a soluble and secreted form of this protein, the Ssol polypeptide, which is composed of the ectodomain (aa 1-1193) of S fused at its C-ter end with a tag FLAG (DYKDDDDK) via a BspE1 linker encoding the SG dipeptide. This Ssol polypeptide exhibits an antigenicity similar to that of the S protein and allows, after injection into mice in the form of a purified protein adjuvanted with aluminum hydroxide, the induction of high neutralizing antibody titers against SARS-CoV.

[0665] The various forms of the S gene were placed under the control of the promoter of the 7.5K gene and then introduced into the thymidine kinase (TK) locus of the Copenhagen strain of the vaccinia virus by double homologous recombination in vivo. In order to improve the immunogenicity of the recombinant vaccinia viruses, a synthetic late promoter was chosen in place of the 7.5K promoter, in order to increase the production of S and Ssol during the late phases of the viral cycle.

[0666] After having isolated the recombinant vaccinia viruses and verified their capacity to express the SARS-CoV S antigen, their capacity to induce in mice an immune response against SARS was tested. After having purified the Ssol antigen from the supernatant of infected cells, an ELISA test for serodiagnosis of SARS was designed, and its efficiency was evaluated with the aid of sera from probable cases of SARS.

2) Construction of the Recombinant Viruses

[0667] Recombinant vaccinia viruses directing the expression of the S glycoprotein of the 031589 isolate of SARS-CoV and of a soluble and secreted form of this protein, the Ssol polypeptide, under the control of the 7.5K promoter were obtained. With the aim of increasing the levels of expression of S and Ssol, recombinant viruses in which the cDNAs for S and for Ssol are placed under the control of a late synthetic promoter were also obtained.

[0668] The plasmid pTG186poly is a transfer plasmid for the construction of recombinant vaccinia viruses (Kieny, 1986, Biotechnology, 4:790-795). As such, it contains the VV thymidine kinase gene into which the promoter of the 7.5K gene has been inserted followed by a multiple cloning site allowing the insertion of heterologous genes (FIG. 34A).

The promoter of the 7.5K gene in fact contains a tandem of two promoter sequences that are respectively active during the early ($P_{\rm E}$) and late ($P_{\rm L}$) phases of the vaccinia virus replication cycle. The BamH1-Xho1 fragments were excised from the plasmids pTRIP-S and pcDNA-Ssol respectively and inserted between the BamH1 and Sma1 sites of the plasmid pTG186poly in order to give the plasmids pTG-S and pTG-Ssol (FIG. 34A). The plasmids pTG-S and pTG-Ssol were deposited at the CNCM, on Dec. 2, 2004, under the numbers I-3338 and I-3339, respectively.

[0669] The plasmids pTN480, pTN-S and pTN-Ssol were obtained from the plasmids pTG186poly, pTG-S and pTG-Ssol respectively, by substituting the Nde1-Pst1 fragment containing the 7.5K promoter by a DNA fragment containing the synthetic late promoter 480, which was obtained by hybridization of the oligonucleotides 5'-TATGAGCTTT TTTTTTTTT TTTTTTGGC ATATAAATAG ACTCG-GCGCG CCATCTGCA-3' and 5'-GATGGCGCGC-**CGAGTCTATT TATATGCCAA** AAAAAAAAA AAAAAAAAGC TCA-3' (FIG. 34B). The insert was sequenced with the aid of a BigDye Terminator v1.1 kit (Applied Biosystems) and an automated sequencer ABI377. The sequence of the late synthetic promoter 480 as cloned into the transfer plasmids of the pTN series is indicated in FIG. 34C. The plasmids pTN-S and pTN-Ssol were deposited at the CNCM, on Dec. 2, 2004, under the numbers I-3340 and I-3341, respectively.

[0670] The recombinant vaccinia viruses were obtained by double homologous recombination in vivo between the TK cassette of the transfer plasmids of the series pTG and pTN and the TK gene of the Copenhagen strain of the vaccinia virus according to a procedure described by Kieny et al. (1984, Nature, 312:163-166). Briefly, CV-1 cells are transfected with the aid of DOTAP (Roche) with genomic DNA of the Copenhagen strain of the vaccinia virus and each of the transfer plasmids of the pTG and pTN series described above, and then superinfected with the helper vaccinia virus W-ts7 for 24 hours at 33° C. The helper virus is counterselected by incubation at 40° C. for 2 days and then the recombinant viruses (TK-phenotype) selected by two cloning cycles under agar medium on 143Btk-cells in the presence of BuDr (25 µg/ml). The 6 viruses VV-TG, VV-TG-S, VV-TG-Ssol, VV-TN, VV-TN-S, and VV-TN-Ssol are respectively obtained with the aid of the transfer plasmids pTG186poly, pTG-S, pTG-Ssol, pTN480, pTN-S, pTN-Ssol. The viruses VV-TG and VV-TN do not express any heterologous gene and were used as TK-control in the experiments. The preparations of recombinant viruses were performed on monolayers of CV-1 or BHK-21 cells and the titer in plaque forming units (p.f.u) determined on CV-1 cells according to Earl and Moss (1998, Current Protocols in Molecular Biology, 16.16.1-16.16.13).

3) Characterization of the Recombinant Viruses

[0671] The expression of the transgenes encoding the S protein and the Ssol polypeptide was assessed by Western blotting.

[0672] Monolayers of CV-1 cells were infected at a multiplicity of 2 with various recombinant vaccinia viruses VV-TG, VV-TG-S, VV-TG-Ssol, W-TN, W-TN-S and VV-TN-Ssol. After 18 hours of incubation at 37° C. and under 5% CO2, cellular extracts were prepared in loading buffer according to Laemmli, separated on 8% SDS polyacryla-

mide gel and then transferred onto a PVDF membrane (BioRad). The detection of this immunoblot (Western blot) was performed with the aid of an anti-S rabbit polyclonal serum (immune serum from the rabbit P11135: cf. example 4) and donkey polyclonal antibodies directed against rabbit IgGs and coupled with peroxidase (NA934V, Amersham). The bound antibodies were visualized by luminescence with the aid of the ECL+ kit (Amersham) and autoradiography films Hyperfilm MP (Amersham).

[0673] As shown in FIG. 35A, the recombinant virus VV-TN-S directs the expression of the S protein at levels which are comparable to those which can be observed 8 h after infection with SARS-CoV but which are much higher than those which can be observed after infection with VV-TG-S. In a second experiment (FIG. 35B), the analysis of variable quantities of cellular extracts shows that the levels of expression observed after infection with viruses of the TN series (VV-TN-S and VV-TN-Ssol) are about 10 times as high as those observed with the viruses of the TG series (VV-TG-S and VV-TG-Ssol, respectively). In addition, the Ssol polypeptide is secreted into the supernatant of CV-1 cells infected with the VV-TN-Ssol virus more efficiently than in the supernatant of cells infected with VV-TG-Ssol (FIG. 36A). In this experiment, the VV-TN-Sflag virus was used as a control because it expresses the membrane form of the S protein fused at its C-ter end with the FLAG tag. The Sflag protein is not detected in the supernatant of cells infected with VV-TN-Sflag, demonstrating that the Ssol polypeptide is indeed actively secreted after infection with VV-TN-Ssol.

[0674] These results demonstrate that the recombinant vaccinia viruses are indeed carriers of the transgenes and allow the expression of the SRAS glycoprotein in its membrane form (S) or in a soluble or secreted form (Ssol). The vaccinia viruses carrying the synthetic promoter 480 allow the expression of S and the secretion of Ssol at levels much higher than the viruses carrying the promoter of the 7.5K gene.

4) Application to the Production of a Soluble Form of SARS-CoV S. Purification of this Recombinant Antigen and Diagnostic Applications

[0675] The BHK-21 line is the cell line which secretes the highest quantities of Ssol polypeptide after infection with the VV-TN-Ssol virus among the lines tested (BHK-21, CV1, 293T and FrhK-4, FIG. 36B); it allows the quantitative production and purification of the recombinant Ssol polypeptide. In a typical experiment where the experimental conditions for infection, production and purification were optimized, the BHK-21 cells are inoculated in standard culture medium (pyruvate-free DMEM containing 4.5 g/l of glucose and supplemented with 5% TPB, 5% FCS, 100 U/ml of penicillin and 100 μg/ml of streptomycin) in the form of a subconfluent monolayer (10 million cells for each 100 cm² in 25 ml of medium). After 24 h of incubation at 37° C. under 5% CO2, the cells are infected at an M.O.I. of 0.03 and the standard medium replaced with the secretion medium where the quantity of FCS is reduced to 0.5% and the TPB eliminated. The culture supernatant is removed after 2.5 days of incubation at 35° C. and under 5% CO2 and the vaccinia virus inactivated by addition of Triton X-100 (0.1%). After filtration on 0.1 µm polyethersulfone (PES) membrane, the recombinant Ssol polypeptide is purified by

affinity chromatography on an anti-FLAG matrix with elution with a solution of FLAG peptide (DYKDDDDK) at 100 μ g/ml in TBS (50 mM Tris, pH 7.4, 150 mM NaCl).

[0676] The analysis by 8% SDS acrylamide gel stained with silver nitrate identified a predominant polypeptide whose molecular mass is about 180 kD and whose degree of purity is greater than 90% (FIG. 37). The concentration of the purified Ssol recombinant polypeptide was determined by comparison with molecular mass markers and estimated at 24 ng/ μ l.

[0677] This purified Ssol polypeptide preparation makes it possible to produce a calibration series in order to measure, with the aid of a capture ELISA test, the Ssol concentrations present in the culture supernatants. According to this test, the BHK-21 line secretes about 1 g/ml of Ssol polypeptide under the production conditions described above. In addition, the purification scheme presented makes it possible to purify of the order of 160 μ g of Ssol polypeptide per liter of culture supernatant.

[0678] The ELISA reactivity of the recombinant Ssol polypeptide was analyzed toward sera from patients suffering from SARS.

[0679] The sera of probable cases of SARS tested were chosen on the basis of the results (positive or negative) of analysis of their specific reactivity toward the native antigens of SARS-CoV by immunofluorescence test on VeroE6 cells infected with SARS-CoV and/or by indirect ELISA test using, as antigen, a lysate of VeroE6 cells infected with SARS-CoV. The sera of these patients are identified by a serial number of the National Reference Center for Influenza Viruses and by the patient's initials and the number of days elapsed since the onset of the symptoms. All the sera of probable cases (cf. table XVI) recognize the native antigens of SARS-CoV with the exception of the serum 032552 of the patient VTT, for which infection with SARS-CoV could not be confirmed by RT-PCR performed on respiratory samples of days 3, 8 and 12. A panel of control sera was used as control (TV sera): they are sera collected in France before the SARS epidemic which occurred in 2003.

TABLE XVI

Sera of probable cases of SARS						
Serum	Patient	Sample collection day				
033168	ЈҮК	38 -				
033597	ЈҮК	74				
032632	NTM	17				
032634	THA	15				
032541	PHV	10				
032542	NIH	17				
032552	VTT	8				
032633	PTU	16				

[0680] Solid phases sensitized with the recombinant Ssol polypeptide were prepared by adsorption of a solution of purified Ssol polypeptide at 4 μ g/ml in PBS in the wells of an ELISA plate. The plates are incubated overnight at 4° C. and then washed with PBS-Tween buffer (PBS, 0.1% Tween 20). After washing with PBS-Tween, the sera to be tested (100 μ l) are diluted $\frac{1}{100}$ and $\frac{1}{100}$ in PBS-skimmed milk-Tween buffer (PBS, 3% skimmed milk, 0.1% Tween) and then added to the wells of the sensitized ELISA plate. The

[0681] The ELISA tests (FIG. 38) demonstrate that the recombinant Ssol polypeptide is specifically recognized by the serum antibodies of patients suffering from SARS, collected at the middle or late phase of infection (≥10 days after the onset of the symptoms), whereas it is not significantly recognized by the serum antibodies of the control sera of subjects not suffering from SARS.

[0682] In conclusion, these results demonstrate that the recombinant Ssol polypeptide can be purified from the supernatant of mammalian cells infected with the recombinant vaccinia virus W-TN-Ssol and can be used as antigen for developing an ELISA test for serological diagnosis of infection with SARS-CoV.

5. Vaccine Applications

[0683] The immunogenicity of the recombinant vaccinia viruses was studied in mice.

[0684] For that, groups of 7 BALB/c mice were immunized by the i.v. route twice at 4 weeks' interval with 10⁶ p.f.u. of recombinant vaccinia viruses W-TG, VV-TG-S, W-TG-Ssol, VV-TN, VV-TN-S and W-TN-Ssol and, as a control, VV-TG-HA which directs the expression of hemagglutinin of the A/PR/8/34 strain of the influenza virus. The immune sera were collected 3 weeks after each of the immunizations (IS1, IS2).

[0685] The immune sera were analyzed per pool for each of the groups by indirect ELISA using a lysate of VeroE6 cells infected with SARS-CoV as antigen and, as control, a lysate of noninfected VeroE6 cells. The anti-SARS-CoV antibody titers (TI) are calculated as the reciprocal of the dilution producing a specific OD of 0.5 after visualization with an anti-mouse IgG(H+L) polyclonal antibody coupled with peroxidase (NA931V, Amersham) and TMB supplemented with H₂O₂ (KPL). This analysis (FIG. 39A) shows that immunization with the virus VV-TG-S and VV-TN-S induces in mice, from the first immunization, antibodies directed against the native form of the SARS-CoV spicule protein present in the lysate of infected VeroE6 cells. The responses induced by the VV-TN-S virus are higher than those induced by the VV-TG-S virus after the first (TI=740 and TI=270 respectively) and the second (TI=3230 and TI=600 respectively) immunization. The VV-TN-Ssol virus induces high anti-SARS-CoV antibody titers after two immunizations (TI=640), whereas the virus VV-TG-Ssol induces a response at the detection limit (TI=40).

[0686] The immune sera were analyzed per pool for each of the groups for their capacity to seroneutralize the infectivity of SARS-CoV. 4 seroneutralization points on FRhK-4 cells (100 TCID50 of SARS-CoV) are produced for each of the 2-fold dilutions tested from ½0. The seroneutralizing titer is calculated according to the Reed and Munsch method

as the reciprocal of the dilution neutralizing the infectivity of 2 wells out of 4. This analysis shows that the antibodies induced in mice by the vaccinia viruses expressing the S protein or the Ssol polypeptide are neutralizing and that the viruses with synthetic promoters are more efficient immunogens than the viruses carrying the 7.5K promoter: the highest titers (640) are observed after 2 immunizations with the virus VV-TN-S (FIG. 39B).

[0687] The protective power of the neutralizing antibodies induced in mice after immunization with the recombinant vaccinia viruses is evaluated with the aid of a challenge infection with SARS-CoV.

6) Other Applications

[0688] Third generation recombinant vaccinia viruses are constructed by substituting the wild-type sequences of the S and Ssol genes by synthetic genes optimized for the expression in mammalian cells, described above. These recombinant vaccinia viruses are capable of expressing larger quantities of S and Ssol antigens and therefore of exhibiting increased immunogenicity.

[0689] The recombinant vaccinia virus VV-TN-Ssol can be used for the quantitative production and purification of the Ssol antigen for diagnostic (serology by ELISA) and vaccine (subunit vaccine) applications.

EXAMPLE 17

Recombinant Measles Virus Expressing the SARS-Associated Coronavirus (SARS-CoV) Spicule (S) Protein. Vaccine Applications

1) Introduction

[0690] The measles vaccine (MV) induces a lasting protective immunity in humans after a single injection (Hilleman, 2002, Vaccine, 20: 651-665). The protection conferred is very robust and is based on the induction of an antibody response and of a CD4 and CD8 cell response. The MV genome is very stable and no reversion of the vaccine strains to virulence has ever been observed. The measles virus belongs to the genus Morbillivirus of the Paramyxoviridae family; it is an enveloped virus whose genome is a 16 kb single-stranded RNA of negative polarity (FIG. 40A) and whose exclusively cytoplasmic replication cycle excludes any possibility of integration into the genome of the host. The measles vaccine is thus one of the most effective and one of the safest live vaccines used in the human population. Frédéric Tangy's team recently developed an expression vector on the basis of the Schwarz strain of the measles virus, which is the safest attenuated strain and the most widely used in humans as vaccine against measles. This vaccine strain may be isolated from an infectious molecular clone while preserving its immuno-genicity in primates and in mice that are sensitive to the infection. It constitutes, after insertion of additional transcription units, a vector for the expression of heterologous sequences (Combredet, 2003, J. Virol. 77: 11546-11554). In addition, a recombinant MV Schwarz expressing the envelope glycoprotein of the West Nile virus (WNV) induces an effective and lasting antibody response which protects mice from a lethal challenge infection with WNV (Despres et al., 2004, J. Infect. Dis., in press). All these characteristics make the attenuated Schwarz strain of the measles virus an extremely promising candidate vector for the construction of novel recombinant live vaccines.

[0691] The aim of this example is to evaluate the capacity of recombinant measles viruses (MV) expressing various SARS-associated coronavirus (SARS-CoV) antigens to constitute novel candidate vaccines against SARS.

[0692] The inventors focused on the SARS-CoV spicule (S) protein, which makes it possible to induce, after gene immunization in animals, antibodies neutralizing the infectivity of SARS-CoV, and on a soluble and secreted form of this protein, the Ssol polypeptide, which is composed of the ectodomain (aa 1-1193) of S fused at its C-ter end with a FLAG tag (DYKDDDDK) via a BspE1 linker encoding the SG dipeptide. This Ssol polypeptide exhibits a similar antigenicity to that of the S protein and allows, after injection into mice in the form of a purified protein adjuvanted with aluminum hydroxide, the induction of high neutralizing antibody titers against SARS-CoV.

[0693] The various forms of the S gene were introduced in the form of an additional transcription unit between the P (phosphoprotein) and M (matrix) genes into the cDNA of the Schwarz strain of Mv previously described (Combredet, 2003, J. Virol. 77: 11546-11554; EP application No. 02291551.6 of Jun. 20, 2002, and EP application No. 02291550.8 of Jun. 20, 2002). After having isolated the recombinant viruses MVSchw2-SARS-S and MVSchw2-SARS-Ssol and checked their capacity to express the SARS-CoV S antigen, their capacity to induce a protective immune response against SARS in mice and then in monkeys was tested

2) Construction of the Recombinant Viruses

[0694] The plasmid pTM-MVSchw-ATU2 (FIG. 40B) contains an infectious cDNA corresponding to the antigenome of the Schwarz vaccine strain of the measles virus (MV) into which an additional transcription unit (ATU) has been introduced between the P (phosphoprotein) and M (matrix) genes (Combredet, 2003, Journal of Virology, 77: 11546-11554). Recombinant genomes MVSchw2-SARS-S and MVSchw2-SARS-Ssol of the measles virus were constructed by inserting ORFs of the S protein and of the Ssol polypeptide into the additional transcription unit of the MVSchw-ATU2 vector.

[0695] For that, a DNA fragment containing the SARS-CoV S cDNA was amplified by PCR with the aid of the oligo-nucleotides 5'-ATACGTACGA CCATGTTTAT TTTCTTATTA TTTCTTACTC TCACT-3' and 5'-AT-AGCGCGCT CATTATGTGT AATGTAATTT GACAC-CCTTG-3' using the plasmid pcDNA-S as template and then inserted into the plasmid pCR®2.1-TOPO (Invitrogen) in order to obtain the plasmid pTOPO-S-MV. The two oligonucleotides used contain restriction sites BsiW1 and BssHII, so as to allow subsequent insertion into the measles vector, and were designed so as to generate a sequence of 3774 nt including the codons for initiation and termination, so as to observe the rule of 6 which stipulates that the length of the genome of a measles virus must be divisible by 6 (Calain & Roux, 1993, J. Virol., 67: 4822-4830; Schneider et al., 1997, Virology, 227: 314-322). The insert was sequenced with the aid of a BigDye Terminator v1.1 kit (Applied Biosystems) and an automated sequencer ABI377.

[0696] To express a soluble and secreted form of SARS-CoV S, a plasmid containing the cDNA of the Ssol polypeptide corresponding to the ectodomain (aa 1-1193) of SARS-

CoV S fused at its C-ter end with the sequence of a FLAG tag (DYKDDDDK) via a BspE1 linker encoding the SG dipeptide was then obtained. For that, a DNA fragment was amplified with the aid of the oligonucleotides 5'-CCATTTCAAC AATTTGGCCG-3' and 5'-ATAGGATC-CGCGCGCTCATT ATTTATCGTC GTCATCTTTA TAATC-3' from the plasmid pcDNA-Ssol and then inserted into the plasmid pTOPO-S-MV between the Sal1 and BamH1 sites in order to obtain the plasmid pTOPO-S-MV-SF. The sequence generated is 3618 nt long between the BsiW1 and BssHII sites and observes the rule of 6. The insert was sequenced as indicated above.

[0697] The BsiW1-BssHII fragments containing the cDNAs for the S protein and the Ssol polypeptide were then excised by digestion of the plasmids pTOPO-S-MV and pTOPO-S-MV-SF and then subcloned between the corresponding sites of the plasmid pTM-MVSchw-ATU2 in order to give the plasmids pTM-MVSchw2-SARS-S and pTM-MVSchw2-SARS-Ssol (FIG. 40B). These two plasmids were deposited at the C.N.C.M. on Dec. 1, 2004, under the numbers I-3326 and I-3327, respectively.

[0698] The recombinant measles viruses corresponding to the plasmids pTM-MVSchw2-SARS-S and pTM-MVSchw2-SARS-Ssol were obtained by reverse genetics according to the system based on the use of a helper cell line, described by Radecke et al. (1995, Embo J., 14: 5773-5784) and modified by Parks et al. (1999, J. Virol., 73: 3560-3566). Briefly, the helper cells 293-3-46 are transfected according to the calcium phosphate method with 5 µg of the plasmids pTM-MVSchw2-SARS-S or pTM-MVSchw2-SARS-Sso1 and 0.02 µg of the plasmid pEMC-La directing the expression of the MV L polymerase (gift from M. A. Billeter). After incubating overnight at 37° C., a heat shock is produced for 2 hours at 43° C. and the transfected cells are transferred onto a monolayer of Vero cells. For each of the two plasmids, syncytia appeared after 2 to 3 days of coculture and were transferred successively onto monolayers of Vero cells at 70% confluence in 35 mm Petri dishes and then in 25 and 75 cm² flasks. When the syncytia have reached 80-90% confluence, the cells are recovered with the aid of a scraper and then frozen and thawed once. After low-speed centrifugation, the supernatant containing the virus is stored in aliquots at -80° C. The titers of the recombinant viruses MVSchw2-SARS-S and MVSchw2-SARS-Ssol were determined by limiting dilution on Vero cells and the titer as dose infecting 50% of the wells (TCID₅₀) calculated according to the Kärber method.

3) Characterization of the Recombinant Viruses

[0699] The expression of the transgenes encoding the S protein and the Ssol polypeptide was assessed by Western blotting and immunofluorescence.

[0700] Monolayers of Vero cells in T-25 flasks were infected at a multiplicity of 0.05 by various passages of the two viruses MVSchw2-SARS-S and MVSchw2-SARS-S sol and the wild-type virus MWSchw as a control. When the syncytia had reached 80 to 90% confluence, cytoplasmic extracts were prepared in an extraction buffer (150 mM NaCl, 50 mM Tris-HCl, pH 7.2, 1% Triton X-100, 0.1% SDS, 1% DOC) and then diluted in loading buffer according to Laemmli, separated on 8% SDS polyacrylamide gel and transferred onto a PVDF membrane (BioRad). The detection of this immunoblot (Western blot) was carried out with the

aid of an anti-S rabbit polyclonal serum (immune serum of the rabbit P11135: cf. example 4 above) and donkey polyclonal antibodies directed against rabbit IgGs and coupled with peroxidase (NA934V, Amersham). The bound antibodies were visualized by luminescence with the aid of the ECL+ kit (Amersham) and Hyperfilm MP autoradiography films (Amersham).

[0701] Vero cells in monolayers on glass slides were infected with the two viruses MVSchw2-SARS-S and MVSchw2-SARS-Ssol and the wild-type virus MWSchw as a control at multiplicities of infection of 0.05. When the syncytia had reached 90 to 100% (MVSchw2-SARS-Ssol virus) or 30 to 40% (MVSchw2-SARS-S, MWSchw) confluence, the cells were fixed in a 4% PBS-PFA solution, permeabilized with a PBS solution containing 0.2% Triton and then labeled with rabbit polyclonal antibodies hyperimmunized with purified and inactivated SARS-CoV virions and with an anti-rabbit IgG(H+L) goat antibody conjugate coupled with FITC (Jackson).

[0702] As shown in FIGS. 41 and 42, the recombinant viruses MVSchw2-SARS-S and MVSchw2-SARS-Ssol direct the expression of the S protein and the Ssol polypeptide respectively at levels comparable to those which can be observed 8 h after infection with SARS-CoV. The expression of these polypeptides is stable after 3 passages of the recombinant viruses in cell culture. These results demonstrate that the recombinant measles viruses are indeed carriers of the transgenes and allow the expression of the SARS glycoprotein in its membrane form (S) or in a soluble form (Ssol). The Ssol polypeptide is expected to be secreted by cells infected with the MVSchw2-SARS-Ssol virus as is the case when this same polypeptide is expressed in mammalian cells after transient transfection of the corresponding sequences (cf. example 11 above).

4) Applications

[0703] Having shown that the viruses MVSchw2-SARS-S and MVSchw2-SARS-Ssol allow the expression of the SARS-CoV S, their capacity to induce a protective immune response against SARS-CoV in CD46*/- IFN- $\bar{\alpha}\beta R^{-/-}$ mice, which is sensitive to infection by MV, is evaluated. The antibody response of the immunized mice is evaluated by ELISA test against the native antigens of SARS-CoV and for their capacity to neutralize the infectivity of SARS-CoV in trice, using the methodologies described above. The protective power of the response will be evaluated by measuring the reduction in the pulmonary viral load 2 days after a nonlethal challenge infection with SARS-CoV.

[0704] Second generation recombinant measles viruses are constructed by substituting the wild-type sequences of the S and Sol genes by synthetic genes optimized for expression in mammalian cells, described in example 15 above. These recombinant measles viruses are capable of expressing larger quantities of the S and Ssol antigens and therefore of exhibiting increased immunogenicity.

[0705] Alternatively, the wild-type or synthetic genes encoding the S protein or the Ssol polypeptide may be inserted into the measles vector MVSchw-ATU3 in the form of an additional transcription unit located between the H and L genes, and then the recombinant viruses produced and characterized in a similar manner. This insertion is capable of generating recombinant viruses possessing different char-

acteristics (multiplication of the virus, level of expression of the transgene) and possibly an improved immunogenicity compared with those obtained after insertion of the transgenes between the P and N genes.

[0706] The recombinant measles virus MVSchw2-SARS-Ssol may be used for the quantitative production and the purification of the Ssol antigen for diagnostic and vaccine applications.

EXAMPLE 18

Other Applications Linked to the S Protein

[0707] a) The lentiviral vectors allowing the expression of S or Ssol (or even of fragments of S) can constitute a recombinant vaccine against SARS-CoV, to be used in human or veterinary prophylaxis. In order to demonstrate the feasibility of such a vaccine, the immunogenicity of the recombinant lentiviral vectors TRIP-SD/SA-S-WPRE and TRIP-SD/SA-Ssol-WPRE is studied in mice.

[0708] b) Monoclonal antibodies are produced with the aid of the recombinant Ssol polypeptide. According to the results presented in example 14 above, these antibodies or at least the majority of them will recognize the native form of the SARS-CoV S and will be capable of diagnostic and/or prophylactic applications.

[0709] c) A serological test for SARS is developed with the Ssol polypeptide used as antigen and the double epitope methodology.

1320

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 158 <210> SEQ ID NO 1 <211> LENGTH: 29746 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 1 atattaggtt tttacctacc caggaaaagc caaccaacct cgatctcttg tagatctgtt 60 ctctaaacga actttaaaat ctgtgtagct gtcgctcggc tgcatgccta gtgcacctac 120 gcagtataaa caataataaa ttttactgtc gttgacaaga aacgagtaac tcgtccctct 180 totgcagact gottacggtt togtccgtgt tgcagtcgat catcagcata cotaggtttc 240 gtccgggtgt gaccgaaagg taagatggag agccttgttc ttggtgtcaa cgagaaaaca 300 cacgtccaac tcagtttgcc tgtccttcag gttagagacg tgctagtgcg tggcttcggg 360 gactctgtgg aagaggccct atcggaggca cgtgaacacc tcaaaaatgg cacttgtggt ctagtagagc tggaaaaagg cgtactgccc cagcttgaac agccctatgt gttcattaaa 480 cgttctgatg ccttaagcac caatcacggc cacaaggtcg ttgagctggt tgcagaaatg 540 gacggcattc agtacggtcg tagcggtata acactgggag tactcgtgcc acatgtgggc 600 gaaaccccaa ttgcataccg caatgttctt cttcgtaaga acggtaataa gggagccggt 660 ggtcatagct atggcatcga tctaaagtct tatgacttag gtgacgagct tggcactgat 720 cccattgaag attatgaaca aaactggaac actaagcatg gcagtggtgc actccgtgaa 780 ctcactcgtg agctcaatgg aggtgcagtc actcgctatg tcgacaacaa tttctgtggc 840 ccagatgggt accetettga ttgcatcaaa gatttteteg caegegggg caagtcaatg 900 tgcactcttt ccgaacaact tgattacatc gagtcgaaga gaggtgtcta ctgctqccgt 960 gaccatgage atgaaattge etggtteact gagegetetg ataagageta egageaceag 1020 acaccetteg aaattaagag tgccaagaaa tttgacactt tcaaagggga atgcccaaag 1080 tttgtgtttc ctcttaactc aaaagtcaaa gtcattcaac cacgtgttga aaagaaaaag 1140 actgagggtt tcatggggcg tatacgctct gtgtaccctg ttgcatctcc acaggagtgt 1200 aacaatatgc acttgtctac cttgatgaaa tgtaatcatt gcgatgaagt ttcatggcag 1260 acgtgcgact ttctgaaagc cacttgtgaa cattgtggca ctgaaaattt agttattgaa

				-CONCIN	iueu	
ggacctacta	catgtgggta	cctacctact	aatgctgtag	tgaaaatgcc	atgtcctgcc	1380
tgtcaagacc	cagagattgg	acctgagcat	agtgttgcag	attatcacaa	ccactcaaac	1440
attgaaactc	gactccgcaa	gggaggtagg	actagatgtt	ttggaggctg	tgtgtttgcc	1500
tatgttggct	gctataataa	gcgtgcctac	tgggttcctc	gtgctagtgc	tgatattggc	1560
tcaggccata	ctggcattac	tggtgacaat	gtggagacct	tgaatgagga	tctccttgag	1620
atactgagtc	gtgaacgtgt	taacattaac	attgttggcg	attttcattt	gaatgaagag	1680
gttgccatca	ttttggcatc	tttctctgct	tctacaagtg	cctttattga	cactataaag	1740
agtcttgatt	acaagtcttt	caaaaccatt	gttgagtcct	gcggtaacta	taaagttacc	1800
aagggaaagc	ccgtaaaagg	tgcttggaac	attggacaac	agagatcagt	tttaacacca	1860
ctgtgtggtt	ttccctcaca	ggctgctggt	gttatcagat	caatttttgc	gcgcacactt	1920
gatgcagcaa	accactcaat	tcctgatttg	caaagagcag	ctgtcaccat	acttgatggt	1980
atttctgaac	agtcattacg	tcttgtcgac	gccatggttt	atacttcaga	cctgctcacc	2040
aacagtgtca	ttattatggc	atatgtaact	ggtggtcttg	tacaacagac	ttctcagtgg	2100
ttgtctaatc	ttttgggcac	tactgttgaa	aaactcaggc	ctatctttga	atggattgag	2160
gcgaaactta	gtgcaggagt	tgaatttctc	aaggatgctt	gggagattct	caaatttctc	2220
attacaggtg	tttttgacat	cgtcaagggt	caaatacagg	ttgcttcaga	taacatcaag	2280
gattgtgtaa	aatgcttcat	tgatgttgtt	aacaaggcac	tcgaaatgtg	cattgatcaa	2340
gtcactatcg	ctggcgcaaa	gttgcgatca	ctcaacttag	gtgaagtctt	catcgctcaa	2400
agcaagggac	tttaccgtca	gtgtatacgt	ggcaaggagc	agctgcaact	actcatgcct	2460
cttaaggcac	caaaagaagt	aacctttctt	gaaggtgatt	cacatgacac	agtacttacc	2520
tctgaggagg	ttgttctcaa	gaacggtgaa	ctcgaagcac	tcgagacgcc	cgttgatagc	2580
ttcacaaatg	gagctatcgt	tggcacacca	gtctgtgtaa	atggcctcat	gctcttagag	2640
attaaggaca	aagaacaata	ctgcgcattg	tctcctggtt	tactggctac	aaacaatgtc	2700
tttcgcttaa	aagggggtgc	accaattaaa	ggtgtaacct	ttggagaaga	tactgtttgg	2760
gaagttcaag	gttacaagaa	tgtgagaatc	acatttgagc	ttgatgaacg	tgttgacaaa	2820
gtgcttaatg	aaaagtgctc	tgtctacact	gttgaatccg	gtaccgaagt	tactgagttt	2880
gcatgtgttg	tagcagaggc	tgttgtgaag	actttacaac	cagtttctga	tctccttacc	2940
aacatgggta	ttgatcttga	tgagtggagt	gtagctacat	tctacttatt	tgatgatgct	3000
ggtgaagaaa	acttttcatc	acgtatgtat	tgttcctttt	accctccaga	tgaggaagaa	3060
gaggacgatg	cagagtgtga	ggaagaagaa	attgatgaaa	cctgtgaaca	tgagtacggt	3120
acagaggatg	attatcaagg	tctccctctg	gaatttggtg	cctcagctga	aacagttcga	3180
gttgaggaag	aagaagagga	agactggctg	gatgatacta	ctgagcaatc	agagattgag	3240
ccagaaccag	aacctacacc	tgaagaacca	gttaatcagt	ttactggtta	tttaaaactt	3300
actgacaatg	ttgccattaa	atgtgttgac	atcgttaagg	aggcacaaag	tgctaatcct	3360
atggtgattg	taaatgctgc	taacatacac	ctgaaacatg	gtggtggtgt	agcaggtgca	3420
ctcaacaagg	caaccaatgg	tgccatgcaa	aaggagagtg	atgattacat	taagctaaat	3480
ggccctctta	cagtaggagg	gtcttgtttg	ctttctggac	ataatcttgc	taagaagtgt	3540
ctgcatgttg	ttggacctaa	cctaaatgca	ggtgaggaca	tccagcttct	taaggcagca	3600

				-conti	nued	
tatgaaaatt	tcaattcaca	ggacatctta	cttgcaccat	tgttgtcagc	aggcatattt	3660
ggtgctaaac	cacttcagtc	tttacaagtg	tgcgtgcaga	cggttcgtac	acaggtttat	3720
attgcagtca	atgacaaagc	tctttatgag	caggttgtca	tggattatct	tgataacctg	3780
aagcctagag	tggaagcacc	taaacaagag	gagccaccaa	acacagaaga	ttccaaaact	3840
gaggagaaat	ctgtcgtaca	gaagcctgtc	gatgtgaagc	caaaaattaa	ggcctgcatt	3900
gatgaggtta	ccacaacact	ggaagaaact	aagtttctta	ccaataagtt	actcttgttt	3960
gctgatatca	atggtaagct	ttaccatgat	tctcagaaca	tgcttagagg	tgaagatatg	4020
tctttccttg	agaaggatgc	accttacatg	gtaggtgatg	ttatcactag	tggtgatatc	4080
acttgtgttg	taataccctc	caaaaaggct	ggtggcacta	ctgagatgct	ctcaagagct	4140
ttgaagaaag	tgccagttga	tgagtatata	accacgtacc	ctggacaagg	atgtgctggt	4200
tatacacttg	aggaagctaa	gactgctctt	aagaaatgca	aatctgcatt	ttatgtacta	4260
ccttcagaag	cacctaatgc	taaggaagag	attctaggaa	ctgtatcctg	gaatttgaga	4320
gaaatgcttg	ctcatgctga	agagacaaga	aaattaatgc	ctatatgcat	ggatgttaga	4380
gccataatgg	caaccatcca	acgtaagtat	aaaggaatta	aaattcaaga	gggcatcgtt	4440
gactatggtg	teegattett	cttttatact	agtaaagagc	ctgtagcttc	tattattacg	4500
aagctgaact	ctctaaatga	gccgcttgtc	acaatgccaa	ttggttatgt	gacacatggt	4560
tttaatcttg	aagaggetge	gcgctgtatg	cgttctctta	aagctcctgc	cgtagtgtca	4620
gtatcatcac	cagatgctgt	tactacatat	aatggatacc	tcacttcgtc	atcaaagaca	4680
tctgaggagc	actttgtaga	aacagtttct	ttggctggct	cttacagaga	ttggtcctat	4740
tcaggacagc	gtacagagtt	aggtgttgaa	tttcttaagc	gtggtgacaa	aattgtgtac	4800
cacactctgg	agagccccgt	cgagtttcat	cttgacggtg	aggttctttc	acttgacaaa	4860
ctaaagagtc	tcttatccct	gcgggaggtt	aagactataa	aagtgttcac	aactgtggac	4920
aacactaatc	tccacacaca	gcttgtggat	atgtctatga	catatggaca	gcagtttggt	4980
ccaacatact	tggatggtgc	tgatgttaca	aaaattaaac	ctcatgtaaa	tcatgagggt	5040
aagactttct	ttgtactacc	tagtgatgac	acactacgta	gtgaagcttt	cgagtactac	5100
catactcttg	atgagagttt	tcttggtagg	tacatgtctg	ctttaaacca	cacaaagaaa	5160
tggaaatttc	ctcaagttgg	tggtttaact	tcaattaaat	gggctgataa	caattgttat	5220
ttgtctagtg	ttttattagc	acttcaacag	cttgaagtca	aattcaatgc	accagcactt	5280
caagaggctt	attatagagc	ccgtgctggt	gatgctgcta	acttttgtgc	actcatactc	5340
gcttacagta	ataaaactgt	tggcgagctt	ggtgatgtca	gagaaactat	gacccatctt	5400
ctacagcatg	ctaatttgga	atctgcaaag	cgagttctta	atgtggtgtg	taaacattgt	5460
ggtcagaaaa	ctactacctt	aacgggtgta	gaagctgtga	tgtatatggg	tactctatct	5520
tatgataatc	ttaagacagg	tgtttccatt	ccatgtgtgt	gtggtcgtga	tgctacacaa	5580
tatctagtac	aacaagagtc	ttcttttgtt	atgatgtctg	caccacctgc	tgagtataaa	5640
ttacagcaag	gtacattctt	atgtgcgaat	gagtacactg	gtaactatca	gtgtggtcat	5700
tacactcata	taactgctaa	ggagaccctc	tatcgtattg	acggagctca	ccttacaaag	5760
atgtcagagt	acaaaggacc	agtgactgat	gttttctaca	aggaaacatc	ttacactaca	5820
accatcaagc	ctgtgtcgta	taaactcgat	ggagttactt	acacagagat	tgaaccaaaa	5880

				-contin	nued	
ttggatgggt	attataaaaa	ggataatgct	tactatacag	agcagcctat	agaccttgta	5940
ccaactcaac	cattaccaaa	tgcgagtttt	gataatttca	aactcacatg	ttctaacaca	6000
aaatttgctg	atgatttaaa	tcaaatgaca	ggcttcacaa	agccagcttc	acgagagcta	6060
tctgtcacat	tcttcccaga	cttgaatggc	gatgtagtgg	ctattgacta	tagacactat	6120
tcagcgagtt	tcaagaaagg	tgctaaatta	ctgcataagc	caattgtttg	gcacattaac	6180
caggctacaa	ccaagacaac	gttcaaacca	aacacttggt	gtttacgttg	tctttggagt	6240
acaaagccag	tagatacttc	aaattcattt	gaagttctgg	cagtagaaga	cacacaagga	6300
atggacaatc	ttgcttgtga	aagtcaacaa	cccacctctg	aagaagtagt	ggaaaatcct	6360
accatacaga	aggaagtcat	agagtgtgac	gtgaaaacta	ccgaagttgt	aggcaatgtc	6420
atacttaaac	catcagatga	aggtgttaaa	gtaacacaag	agttaggtca	tgaggatctt	6480
atggctgctt	atgtggaaaa	cacaagcatt	accattaaga	aacctaatga	gctttcacta	6540
gccttaggtt	taaaaacaat	tgccactcat	ggtattgctg	caattaatag	tgttccttgg	6600
agtaaaattt	tggcttatgt	caaaccattc	ttaggacaag	cagcaattac	aacatcaaat	6660
tgcgctaaga	gattagcaca	acgtgtgttt	aacaattata	tgccttatgt	gtttacatta	6720
ttgttccaat	tgtgtacttt	tactaaaagt	accaattcta	gaattagagc	ttcactacct	6780
acaactattg	ctaaaaatag	tgttaagagt	gttgctaaat	tatgtttgga	tgccggcatt	6840
aattatgtga	agtcacccaa	attttctaaa	ttgttcacaa	tcgctatgtg	gctattgttg	6900
ttaagtattt	gcttaggttc	tctaatctgt	gtaactgctg	cttttggtgt	actcttatct	6960
aattttggtg	ctccttctta	ttgtaatggc	gttagagaat	tgtatcttaa	ttcgtctaac	7020
gttactacta	tggatttctg	tgaaggttct	tttccttgca	gcatttgttt	aagtggatta	7080
gactcccttg	attcttatcc	agctcttgaa	accattcagg	tgacgatttc	atcgtacaag	7140
ctagacttga	caattttagg	tctggccgct	gagtgggttt	tggcatatat	gttgttcaca	7200
aaattctttt	atttattagg	tctttcagct	ataatgcagg	tgttctttgg	ctattttgct	7260
agtcatttca	tcagcaattc	ttggctcatg	tggtttatca	ttagtattgt	acaaatggca	7320
cccgtttctg	caatggttag	gatgtacatc	ttctttgctt	ctttctacta	catatggaag	7380
agctatgttc	atatcatgga	tggttgcacc	tcttcgactt	gcatgatgtg	ctataagcgc	7440
aatcgtgcca	cacgcgttga	gtgtacaact	attgttaatg	gcatgaagag	atctttctat	7500
gtctatgcaa	atggaggccg	tggcttctgc	aagactcaca	attggaattg	tctcaattgt	7560
gacacatttt	gcactggtag	tacattcatt	agtgatgaag	ttgctcgtga	tttgtcactc	7620
cagtttaaaa	gaccaatcaa	ccctactgac	cagtcatcgt	atattgttga	tagtgttgct	7680
gtgaaaaatg	gcgcgcttca	cctctacttt	gacaaggctg	gtcaaaagac	ctatgagaga	7740
catccgctct	cccattttgt	caatttagac	aatttgagag	ctaacaacac	taaaggttca	7800
ctgcctatta	atgtcatagt	ttttgatggc	aagtccaaat	gcgacgagtc	tgcttctaag	7860
tctgcttctg	tgtactacag	tcagctgatg	tgccaaccta	ttctgttgct	tgaccaagct	7920
cttgtatcag	acgttggaga	tagtactgaa	gtttccgtta	agatgtttga	tgcttatgtc	7980
gacacctttt	cagcaacttt	tagtgttcct	atggaaaaac	ttaaggcact	tgttgctaca	8040
gctcacagcg	agttagcaaa	gggtgtagct	ttagatggtg	tcctttctac	attcgtgtca	8100
gctgcccgac	aaggtgttgt	tgataccgat	gttgacacaa	aggatgttat	tgaatgtctc	8160

				-0011011	nueu	
aaactttcac	atcactctga	cttagaagtg	acaggtgaca	gttgtaacaa	tttcatgctc	8220
acctataata	aggttgaaaa	catgacgccc	agagatcttg	gcgcatgtat	tgactgtaat	8280
gcaaggcata	tcaatgccca	agtagcaaaa	agtcacaatg	tttcactcat	ctggaatgta	8340
aaagactaca	tgtctttatc	tgaacagctg	cgtaaacaaa	ttcgtagtgc	tgccaagaag	8400
aacaacatac	cttttagact	aacttgtgct	acaactagac	aggttgtcaa	tgtcataact	8460
actaaaatct	cactcaaggg	tggtaagatt	gttagtactt	gttttaaact	tatgcttaag	8520
gccacattat	tgtgcgttct	tgctgcattg	gtttgttata	tcgttatgcc	agtacataca	8580
ttgtcaatcc	atgatggtta	cacaaatgaa	atcattggtt	acaaagccat	tcaggatggt	8640
gtcactcgtg	acatcatttc	tactgatgat	tgttttgcaa	ataaacatgc	tggttttgac	8700
gcatggttta	gccagcgtgg	tggttcatac	aaaaatgaca	aaagctgccc	tgtagtagct	8760
gctatcatta	caagagagat	tggtttcata	gtgcctggct	taccgggtac	tgtgctgaga	8820
gcaatcaatg	gtgacttctt	gcattttcta	cctcgtgttt	ttagtgctgt	tggcaacatt	8880
tgctacacac	cttccaaact	cattgagtat	agtgattttg	ctacctctgc	ttgcgttctt	8940
gctgctgagt	gtacaatttt	taaggatgct	atgggcaaac	ctgtgccata	ttgttatgac	9000
actaatttgc	tagagggttc	tatttcttat	agtgagcttc	gtccagacac	tcgttatgtg	9060
cttatggatg	gttccatcat	acagtttcct	aacacttacc	tggagggttc	tgttagagta	9120
gtaacaactt	ttgatgctga	gtactgtaga	catggtacat	gcgaaaggtc	agaagtaggt	9180
atttgcctat	ctaccagtgg	tagatgggtt	cttaataatg	agcattacag	agctctatca	9240
ggagttttct	gtggtgttga	tgcgatgaat	ctcatagcta	acatctttac	tcctcttgtg	9300
caacctgtgg	gtgctttaga	tgtgtctgct	tcagtagtgg	ctggtggtat	tattgccata	9360
ttggtgactt	gtgctgccta	ctactttatg	aaattcagac	gtgtttttgg	tgagtacaac	9420
catgttgttg	ctgctaatgc	acttttgttt	ttgatgtctt	tcactatact	ctgtctggta	9480
ccagcttaca	gctttctgcc	gggagtctac	tcagtctttt	acttgtactt	gacattctat	9540
ttcaccaatg	atgtttcatt	cttggctcac	cttcaatggt	ttgccatgtt	ttctcctatt	9600
gtgcctttt	ggataacagc	aatctatgta	ttctgtattt	ctctgaagca	ctgccattgg	9660
ttctttaaca	actatcttag	gaaaagagtc	atgtttaatg	gagttacatt	tagtaccttc	9720
gaggaggctg	ctttgtgtac	ctttttgctc	aacaaggaaa	tgtacctaaa	attgcgtagc	9780
gagacactgt	tgccacttac	acagtataac	aggtatcttg	ctctatataa	caagtacaag	9840
tatttcagtg	gagccttaga	tactaccage	tatcgtgaag	cagcttgctg	ccacttagca	9900
aaggctctaa	atgactttag	caactcaggt	gctgatgttc	tctaccaacc	accacagaca	9960
tcaatcactt	ctgctgttct	gcagagtggt	tttaggaaaa	tggcattccc	gtcaggcaaa	10020
gttgaagggt	gcatggtaca	agtaacctgt	ggaactacaa	ctcttaatgg	attgtggttg	10080
gatgacacag	tatactgtcc	aagacatgtc	atttgcacag	cagaagacat	gcttaatcct	10140
aactatgaag	atctgctcat	tcgcaaatcc	aaccatagct	ttcttgttca	ggctggcaat	10200
gttcaacttc	gtgttattgg	ccattctatg	caaaattgtc	tgcttaggct	taaagttgat	10260
acttctaacc	ctaagacacc	caagtataaa	tttgtccgta	tccaacctgg	tcaaacattt	10320
tcagttctag	catgctacaa	tggttcacca	tctggtgttt	atcagtgtgc	catgagacct	10380
aatcatacca	ttaaaggttc	tttccttaat	ggatcatgtg	gtagtgttgg	ttttaacatt	10440

				-CONCIN	iueu	
gattatgatt	gcgtgtcttt	ctgctatatg	catcatatgg	agcttccaac	aggagtacac	10500
gctggtactg	acttagaagg	taaattctat	ggtccatttg	ttgacagaca	aactgcacag	10560
gctgcaggta	cagacacaac	cataacatta	aatgttttgg	catggctgta	tgctgctgtt	10620
atcaatggtg	ataggtggtt	tcttaataga	ttcaccacta	ctttgaatga	ctttaacctt	10680
gtggcaatga	agtacaacta	tgaacctttg	acacaagatc	atgttgacat	attgggacct	10740
ctttctgctc	aaacaggaat	tgccgtctta	gatatgtgtg	ctgctttgaa	agagctgctg	10800
cagaatggta	tgaatggtcg	tactatcctt	ggtagcacta	ttttagaaga	tgagtttaca	10860
ccatttgatg	ttgttagaca	atgctctggt	gttaccttcc	aaggtaagtt	caagaaaatt	10920
gttaagggca	ctcatcattg	gatgctttta	actttcttga	catcactatt	gattcttgtt	10980
caaagtacac	agtggtcact	gtttttcttt	gtttacgaga	atgctttctt	gccatttact	11040
cttggtatta	tggcaattgc	tgcatgtgct	atgctgcttg	ttaagcataa	gcacgcattc	11100
ttgtgcttgt	ttctgttacc	ttctcttgca	acagttgctt	actttaatat	ggtctacatg	11160
cctgctagct	gggtgatgcg	tatcatgaca	tggcttgaat	tggctgacac	tagcttgtct	11220
ggttataggc	ttaaggattg	tgttatgtat	gcttcagctt	tagttttgct	tattctcatg	11280
acagetegea	ctgtttatga	tgatgctgct	agacgtgttt	ggacactgat	gaatgtcatt	11340
acacttgttt	acaaagtcta	ctatggtaat	gctttagatc	aagctatttc	catgtgggcc	11400
ttagttattt	ctgtaacctc	taactattct	ggtgtcgtta	cgactatcat	gtttttagct	11460
agagctatag	tgtttgtgtg	tgttgagtat	tacccattgt	tatttattac	tggcaacacc	11520
ttacagtgta	tcatgcttgt	ttattgtttc	ttaggctatt	gttgctgctg	ctactttggc	11580
cttttctgtt	tactcaaccg	ttacttcagg	cttactcttg	gtgtttatga	ctacttggtc	11640
tctacacaag	aatttaggta	tatgaactcc	caggggcttt	tgcctcctaa	gagtagtatt	11700
gatgctttca	agcttaacat	taagttgttg	ggtattggag	gtaaaccatg	tatcaaggtt	11760
gctactgtac	agtctaaaat	gtctgacgta	aagtgcacat	ctgtggtact	gctctcggtt	11820
 cttcaacaac	ttagagtaga	gtcatcttct	aaattgtggg	cacaatgtgt	acaactccac	11880
aatgatattc	ttcttgcaaa	agacacaact	gaagctttcg	agaagatggt	ttctcttttg	11940
tctgttttgc	tatccatgca	gggtgctgta	gacattaata	ggttgtgcga	ggaaatgctc	12000
gataaccgtg	ctactcttca	ggctattgct	tcagaattta	gttctttacc	atcatatgcc	12060
gcttatgcca	ctgcccagga	ggcctatgag	caggctgtag	ctaatggtga	ttctgaagtc	12120
gttctcaaaa	agttaaagaa	atctttgaat	gtggctaaat	ctgagtttga	ccgtgatgct	12180
gccatgcaac	gcaagttgga	aaagatggca	gatcaggcta	tgacccaaat	gtacaaacag	12240
gcaagatctg	aggacaagag	ggcaaaagta	actagtgcta	tgcaaacaat	gctcttcact	12300
atgcttagga	agcttgataa	tgatgcactt	aacaacatta	tcaacaatgc	gcgtgatggt	12360
tgtgttccac	tcaacatcat	accattgact	acagcagcca	aactcatggt	tgttgtccct	12420
gattatggta	cctacaagaa	cacttgtgat	ggtaacacct	ttacatatgc	atctgcactc	12480
tgggaaatcc	agcaagttgt	tgatgcggat	agcaagattg	ttcaacttag	tgaaattaac	12540
atggacaatt	caccaaattt	ggcttggcct	cttattgtta	cagctctaag	agccaactca	12600
gctgttaaac	tacagaataa	tgaactgagt	ccagtagcac	tacgacagat	gtcctgtgcg	12660
gctggtacca	cacaaacagc	ttgtactgat	gacaatgcac	ttgcctacta	taacaattcg	12720

				-6011611	iuea	
aagggaggta	ggtttgtgct	ggcattacta	tcagaccacc	aagatctcaa	atgggctaga	12780
ttccctaaga	gtgatggtac	aggtacaatt	tacacagaac	tggaaccacc	ttgtaggttt	12840
gttacagaca	caccaaaagg	gcctaaagtg	aaatacttgt	acttcatcaa	aggcttaaac	12900
aacctaaata	gaggtatggt	gctgggcagt	ttagctgcta	cagtacgtct	tcaggctgga	12960
aatgctacag	aagtacctgc	caattcaact	gtgctttcct	tctgtgcttt	tgcagtagac	13020
cctgctaaag	catataagga	ttacctagca	agtggaggac	aaccaatcac	caactgtgtg	13080
aagatgttgt	gtacacacac	tggtacagga	caggcaatta	ctgtaacacc	agaagctaac	13140
atggaccaag	agtcctttgg	tggtgcttca	tgttgtctgt	attgtagatg	ccacattgac	13200
catccaaatc	ctaaaggatt	ctgtgacttg	aaaggtaagt	acgtccaaat	acctaccact	13260
tgtgctaatg	acccagtggg	ttttacactt	agaaacacag	tetgtaeegt	ctgcggaatg	13320
tggaaaggtt	atggctgtag	ttgtgaccaa	ctccgcgaac	ccttgatgca	gtctgcggat	13380
gcatcaacgt	ttttaaacgg	gtttgcggtg	taagtgcagc	ccgtcttaca	ccgtgcggca	13440
caggcactag	tactgatgtc	gtctacaggg	cttttgatat	ttacaacgaa	aaagttgctg	13500
gttttgcaaa	gttcctaaaa	actaattgct	gtcgcttcca	ggagaaggat	gaggaaggca	13560
atttattaga	ctcttacttt	gtagttaaga	ggcatactat	gtctaactac	caacatgaag	13620
agactattta	taacttggtt	aaagattgtc	cageggttge	tgtccatgac	tttttcaagt	13680
ttagagtaga	tggtgacatg	gtaccacata	tatcacgtca	gcgtctaact	aaatacacaa	13740
tggctgattt	agtctatgct	ctacgtcatt	ttgatgaggg	taattgtgat	acattaaaag	13800
aaatactcgt	cacatacaat	tgctgtgatg	atgattattt	caataagaag	gattggtatg	13860
acttcgtaga	gaatcctgac	atcttacgcg	tatatgctaa	cttaggtgag	cgtgtacgcc	13920
aatcattatt	aaagactgta	caattctgcg	atgctatgcg	tgatgcaggc	attgtaggcg	13980
tactgacatt	agataatcag	gatcttaatg	ggaactggta	cgatttcggt	gatttcgtac	14040
aagtagcacc	aggctgcgga	gttcctattg	tggattcata	ttactcattg	ctgatgccca	14100
 tcctcacttt	gactagggca	ttggctgctg	agtcccatat	ggatgctgat	ctcgcaaaac	14160
cacttattaa	gtgggatttg	ctgaaatatg	attttacgga	agagagactt	tgtctcttcg	14220
accgttattt	taaatattgg	gaccagacat	accatcccaa	ttgtattaac	tgtttggatg	14280
ataggtgtat	ccttcattgt	gcaaacttta	atgtgttatt	ttctactgtg	tttccaccta	14340
caagttttgg	accactagta	agaaaaatat	ttgtagatgg	tgttcctttt	gttgtttcaa	14400
ctggatacca	ttttcgtgag	ttaggagtcg	tacataatca	ggatgtaaac	ttacatagct	14460
cgcgtctcag	tttcaaggaa	cttttagtgt	atgctgctga	tccagctatg	catgcagctt	14520
ctggcaattt	attgctagat	aaacgcacta	catgcttttc	agtagctgca	ctaacaaaca	14580
atgttgcttt	tcaaactgtc	aaacccggta	attttaataa	agacttttat	gactttgctg	14640
tgtctaaagg	tttctttaag	gaaggaagtt	ctgttgaact	aaaacacttc	ttctttgctc	14700
aggatggcaa	cgctgctatc	agtgattatg	actattatcg	ttataatctg	ccaacaatgt	14760
gtgatatcag	acaactccta	ttcgtagttg	aagttgttga	taaatacttt	gattgttacg	14820
atggtggctg	tattaatgcc	aaccaagtaa	tcgttaacaa	tctggataaa	tcagctggtt	14880
tcccatttaa	taaatggggt	aaggctagac	tttattatga	ctcaatgagt	tatgaggatc	14940
aagatgcact	tttcgcgtat	actaagcgta	atgtcatccc	tactataact	caaatgaatc	15000

ttaagtatgc	cattagtgca	aagaatagag	ctcgcaccgt	agctggtgtc	tctatctgta	15060
gtactatgac	aaatagacag	tttcatcaga	aattattgaa	gtcaatagcc	gccactagag	15120
gagctactgt	ggtaattgga	acaagcaagt	tttacggtgg	ctggcataat	atgttaaaaa	15180
ctgtttacag	tgatgtagaa	actccacacc	ttatgggttg	ggattatcca	aaatgtgaca	15240
gagccatgcc	taacatgctt	aggataatgg	cctctcttgt	tcttgctcgc	aaacataaca	15300
cttgctgtaa	cttatcacac	cgtttctaca	ggttagctaa	cgagtgtgcg	caagtattaa	15360
gtgagatggt	catgtgtggc	ggctcactat	atgttaaacc	aggtggaaca	tcatccggtg	15420
atgctacaac	tgcttatgct	aatagtgtct	ttaacatttg	tcaagctgtt	acagccaatg	15480
taaatgcact	tctttcaact	gatggtaata	agatagctga	caagtatgtc	cgcaatctac	15540
aacacaggct	ctatgagtgt	ctctatagaa	atagggatgt	tgatcatgaa	ttcgtggatg	15600
agttttacgc	ttacctgcgt	aaacatttct	ccatgatgat	tctttctgat	gatgccgttg	15660
tgtgctataa	cagtaactat	gcggctcaag	gtttagtagc	tagcattaag	aactttaagg	15720
cagttcttta	ttatcaaaat	aatgtgttca	tgtctgaggc	aaaatgttgg	actgagactg	15780
accttactaa	aggacctcac	gaattttgct	cacagcatac	aatgctagtt	aaacaaggag	15840
atgattacgt	gtacctgcct	tacccagatc	catcaagaat	attaggcgca	ggctgttttg	15900
tcgatgatat	tgtcaaaaca	gatggtacac	ttatgattga	aaggttcgtg	tcactggcta	15960
ttgatgctta	cccacttaca	aaacatccta	atcaggagta	tgctgatgtc	tttcacttgt	16020
atttacaata	cattagaaag	ttacatgatg	agcttactgg	ccacatgttg	gacatgtatt	16080
ccgtaatgct	aactaatgat	aacacctcac	ggtactggga	acctgagttt	tatgaggcta	16140
tgtacacacc	acatacagtc	ttgcaggctg	taggtgcttg	tgtattgtgc	aattcacaga	16200
cttcacttcg	ttgcggtgcc	tgtattagga	gaccattcct	atgttgcaag	tgctgctatg	16260
accatgtcat	ttcaacatca	cacaaattag	tgttgtctgt	taatccctat	gtttgcaatg	16320
ccccaggttg	tgatgtcact	gatgtgacac	aactgtatct	aggaggtatg	agctattatt	16380
 gcaagtcaca	taagcctccc	attagttttc	cattatgtgc	taatggtcag	gtttttggtt	16440
tatacaaaaa	cacatgtgta	ggcagtgaca	atgtcactga	cttcaatgcg	atagcaacat	16500
gtgattggac	taatgctggc	gattacatac	ttgccaacac	ttgtactgag	agactcaagc	16560
ttttcgcagc	agaaacgctc	aaagccactg	aggaaacatt	taagctgtca	tatggtattg	16620
ccactgtacg	cgaagtactc	tctgacagag	aattgcatct	ttcatgggag	gttggaaaac	16680
ctagaccacc	attgaacaga	aactatgtct	ttactggtta	ccgtgtaact	aaaaatagta	16740
aagtacagat	tggagagtac	acctttgaaa	aaggtgacta	tggtgatgct	gttgtgtaca	16800
gaggtactac	gacatacaag	ttgaatgttg	gtgattactt	tgtgttgaca	tctcacactg	16860
taatgccact	tagtgcacct	actctagtgc	cacaagagca	ctatgtgaga	attactggct	16920
tgtacccaac	actcaacatc	tcagatgagt	tttctagcaa	tgttgcaaat	tatcaaaagg	16980
tcggcatgca						17040
ccatcggact	tgctctctat	tacccatctg	ctcgcatagt	gtatacggca	tgctctcatg	17100
cagctgttga	tgccctatgt	gaaaaggcat	taaaatattt	gcccatagat	aaatgtagta	17160
gaatcatacc	tgcgcgtgcg	cgcgtagagt	gttttgataa	attcaaagtg	aattcaacac	17220
tagaacagta	tgttttctgc	actgtaaatg	cattgccaga	aacaactgct	gacattgtag	17280

				-COLUCTI	lueu	
tctttgatga	aatctctatg	gctactaatt	atgacttgag	tgttgtcaat	gctagacttc	17340
gtgcaaaaca	ctacgtctat	attggcgatc	ctgctcaatt	accagecece	cgcacattgc	17400
tgactaaagg	cacactagaa	ccagaatatt	ttaattcagt	gtgcagactt	atgaaaacaa	17460
taggtccaga	catgttcctt	ggaacttgtc	gccgttgtcc	tgctgaaatt	gttgacactg	17520
tgagtgcttt	agtttatgac	aataagctaa	aagcacacaa	ggataagtca	gctcaatgct	17580
tcaaaatgtt	ctacaaaggt	gttattacac	atgatgtttc	atctgcaatc	aacagacctc	17640
aaataggcgt	tgtaagagaa	tttcttacac	gcaatcctgc	ttggagaaaa	gctgtttta	17700
tctcacctta	taattcacag	aacgctgtag	cttcaaaaat	cttaggattg	cctacgcaga	17760
ctgttgattc	atcacagggt	tctgaatatg	actatgtcat	attcacacaa	actactgaaa	17820
cagcacactc	ttgtaatgtc	aaccgcttca	atgtggctat	cacaagggca	aaaattggca	17880
ttttgtgcat	aatgtctgat	agagatettt	atgacaaact	gcaatttaca	agtctagaaa	17940
taccacgtcg	caatgtggct	acattacaag	cagaaaatgt	aactggactt	tttaaggact	18000
gtagtaagat	cattactggt	cttcatccta	cacaggcacc	tacacacctc	agcgttgata	18060
taaagttcaa	gactgaagga	ttatgtgttg	acataccagg	cataccaaag	gacatgacct	18120
accgtagact	catctctatg	atgggtttca	aaatgaatta	ccaagtcaat	ggttacccta	18180
atatgtttat	cacccgcgaa	gaagctattc	gtcacgttcg	tgcgtggatt	ggctttgatg	18240
tagagggctg	tcatgcaact	agagatgctg	tgggtactaa	cctacctctc	cagctaggat	18300
tttctacagg	tgttaactta	gtagctgtac	cgactggtta	tgttgacact	gaaaataaca	18360
cagaattcac	cagagttaat	gcaaaacctc	caccaggtga	ccagtttaaa	catcttatac	18420
cactcatgta	taaaggcttg	ccctggaatg	tagtgcgtat	taagatagta	caaatgctca	18480
gtgatacact	gaaaggattg	tcagacagag	tcgtgttcgt	cctttgggcg	catggctttg	18540
agcttacatc	aatgaagtac	tttgtcaaga	ttggacctga	aagaacgtgt	tgtctgtgtg	18600
acaaacgtgc	aacttgcttt	tctacttcat	cagatactta	tgcctgctgg	aatcattctg	18660
tgggttttga	ctatgtctat	aacccattta	tgattgatgt	tcagcagtgg	ggctttacgg	18720
gtaaccttca	gagtaaccat	gaccaacatt	gccaggtaca	tggaaatgca	catgtggcta	18780
gttgtgatgc	tatcatgact	agatgtttag	cagtccatga	gtgctttgtt	aagcgcgttg	18840
attggtctgt	tgaataccct	attataggag	atgaactgag	ggttaattct	gcttgcagaa	18900
aagtacaaca	catggttgtg	aagtctgcat	tgcttgctga	taagtttcca	gttcttcatg	18960
acattggaaa	tccaaaggct	atcaagtgtg	tgcctcaggc	tgaagtagaa	tggaagttct	19020
acgatgctca	gccatgtagt	gacaaagctt	acaaaataga	ggaactcttc	tattcttatg	19080
ctacacatca	cgataaattc	actgatggtg	tttgtttgtt	ttggaattgt	aacgttgatc	19140
gttacccagc	caatgcaatt	gtgtgtaggt	ttgacacaag	agtcttgtca	aacttgaact	19200
taccaggetg	tgatggtggt	agtttgtatg	tgaataagca	tgcattccac	actccagctt	19260
tcgataaaag	tgcatttact	aatttaaagc	aattgccttt	cttttactat	tctgatagtc	19320
cttgtgagtc	tcatggcaaa	caagtagtgt	cggatattga	ttatgttcca	ctcaaatctg	19380
ctacgtgtat	tacacgatgc	aatttaggtg	gtgctgtttg	cagacaccat	gcaaatgagt	19440
accgacagta	cttggatgca	tataatatga	tgatttctgc	tggatttagc	ctatggattt	19500
acaaacaatt	tgatacttat	aacctgtgga	atacatttac	caggttacag	agtttagaaa	19560

				0011011	1404	
atgtggctta	taatgttgtt	aataaaggac	actttgatgg	acacgccggc	gaagcacctg	19620
tttccatcat	taataatgct	gtttacacaa	aggtagatgg	tattgatgtg	gagatctttg	19680
aaaataagac	aacacttcct	gttaatgttg	catttgagct	ttgggctaag	cgtaacatta	19740
aaccagtgcc	agagattaag	atactcaata	atttgggtgt	tgatatcgct	gctaatactg	19800
taatctggga	ctacaaaaga	gaageceeag	cacatgtatc	tacaataggt	gtctgcacaa	19860
tgactgacat	tgccaagaaa	cctactgaga	gtgcttgttc	ttcacttact	gtcttgtttg	19920
atggtagagt	ggaaggacag	gtagaccttt	ttagaaacgc	ccgtaatggt	gttttaataa	19980
cagaaggttc	agtcaaaggt	ctaacacctt	caaagggacc	agcacaagct	agcgtcaatg	20040
gagtcacatt	aattggagaa	tcagtaaaaa	cacagtttaa	ctactttaag	aaagtagacg	20100
gcattattca	acagttgcct	gaaacctact	ttactcagag	cagagactta	gaggatttta	20160
agcccagatc	acaaatggaa	actgactttc	tcgagctcgc	tatggatgaa	ttcatacagc	20220
gatataagct	cgagggctat	gccttcgaac	acatcgttta	tggagatttc	agtcatggac	20280
aacttggcgg	tcttcattta	atgataggct	tagccaagcg	ctcacaagat	tcaccactta	20340
aattagagga	ttttatccct	atggacagca	cagtgaaaaa	ttacttcata	acagatgcgc	20400
aaacaggttc	atcaaaatgt	gtgtgttctg	tgattgatct	tttacttgat	gactttgtcg	20460
agataataaa	gtcacaagat	ttgtcagtga	tttcaaaagt	ggtcaaggtt	acaattgact	20520
atgctgaaat	ttcattcatg	ctttggtgta	aggatggaca	tgttgaaacc	ttctacccaa	20580
aactacaagc	aagtcaagcg	tggcaaccag	gtgttgcgat	gcctaacttg	tacaagatgc	20640
aaagaatgct	tcttgaaaag	tgtgaccttc	agaattatgg	tgaaaatgct	gttataccaa	20700
aaggaataat	gatgaatgtc	gcaaagtata	ctcaactgtg	tcaatactta	aatacactta	20760
ctttagctgt	accctacaac	atgagagtta	ttcactttgg	tgctggctct	gataaaggag	20820
ttgcaccagg	tacagctgtg	ctcagacaat	ggttgccaac	tggcacacta	cttgtcgatt	20880
cagatcttaa	tgacttcgtc	tccgacgcag	attctacttt	aattggagac	tgtgcaacag	20940
tacatacggc	taataaatgg	gaccttatta	ttagcgatat	gtatgaccct	aggaccaaac	21000
atgtgacaaa	agagaatgac	tctaaagaag	ggtttttcac	ttatctgtgt	ggatttataa	21060
agcaaaaact	agccctgggt	ggttctatag	ctgtaaagat	aacagagcat	tcttggaatg	21120
ctgaccttta	caagcttatg	ggccatttct	catggtggac	agcttttgtt	acaaatgtaa	21180
atgcatcatc	atcggaagca	tttttaattg	gggctaacta	tcttggcaag	ccgaaggaac	21240
aaattgatgg	ctataccatg	catgctaact	acattttctg	gaggaacaca	aatcctatcc	21300
agttgtcttc	ctattcactc	tttgacatga	gcaaatttcc	tcttaaatta	agaggaactg	21360
ctgtaatgtc	tcttaaggag	aatcaaatca	atgatatgat	ttattctctt	ctggaaaaag	21420
gtaggcttat	cattagagaa	aacaacagag	ttgtggtttc	aagtgatatt	cttgttaaca	21480
			ttcttactct			21540
			ctcctaatta			21600
			ttagatcaga			21660
			cagggtttca		-	21720
			tttattttgc		-	21780
ttgtccgtgg	ttgggttttt	ggttctacca	tgaacaacaa	gtcacagtcg	gtgattatta	21840

-						
ttaacaattc	tactaatgtt	gttatacgag	catgtaactt	tgaattgtgt	gacaaccctt	21900
tctttgctgt	ttctaaaccc	atgggtacac	agacacatac	tatgatattc	gataatgcat	21960
ttaattgcac	tttcgagtac	atatctgatg	ccttttcgct	tgatgtttca	gaaaagtcag	22020
gtaattttaa	acacttacga	gagtttgtgt	ttaaaaataa	agatgggttt	ctctatgttt	22080
ataagggcta	tcaacctata	gatgtagttc	gtgatctacc	ttctggtttt	aacactttga	22140
aacctatttt	taagttgcct	cttggtatta	acattacaaa	ttttagagcc	attcttacag	22200
ccttttcacc	tgctcaagac	atttggggca	cgtcagctgc	agcctatttt	gttggctatt	22260
taaagccaac	tacatttatg	ctcaagtatg	atgaaaatgg	tacaatcaca	gatgctgttg	22320
attgttctca	aaatccactt	gctgaactca	aatgctctgt	taagagcttt	gagattgaca	22380
aaggaattta	ccagacctct	aatttcaggg	ttgttccctc	aggagatgtt	gtgagattcc	22440
ctaatattac	aaacttgtgt	ccttttggag	aggtttttaa	tgctactaaa	ttcccttctg	22500
tctatgcatg	ggagagaaaa	aaaatttcta	attgtgttgc	tgattactct	gtgctctaca	22560
actcaacatt	ttttcaacc	tttaagtgct	atggcgtttc	tgccactaag	ttgaatgatc	22620
tttgcttctc	caatgtctat	gcagattctt	ttgtagtcaa	gggagatgat	gtaagacaaa	22680
tagcgccagg	acaaactggt	gttattgctg	attataatta	taaattgcca	gatgatttca	22740
tgggttgtgt	ccttgcttgg	aatactagga	acattgatgc	tacttcaact	ggtaattata	22800
attataaata	taggtatctt	agacatggca	agcttaggcc	ctttgagaga	gacatatcta	22860
atgtgccttt	ctcccctgat	ggcaaacctt	gcaccccacc	tgctcttaat	tgttattggc	22920
cattaaatga	ttatggtttt	tacaccacta	ctggcattgg	ctaccaacct	tacagagttg	22980
tagtactttc	ttttgaactt	ttaaatgcac	cggccacggt	ttgtggacca	aaattatcca	23040
ctgaccttat	taagaaccag	tgtgtcaatt	ttaattttaa	tggactcact	ggtactggtg	23100
tgttaactcc	ttcttcaaag	agatttcaac	catttcaaca	atttggccgt	gatgtttctg	23160
atttcactga	ttccgttcga	gatcctaaaa	catctgaaat	attagacatt	tcaccttgct	23220
cttttggggg	tgtaagtgta	attacacctg	gaacaaatgc	ttcatctgaa	gttgctgttc	23280
tatatcaaga	tgttaactgc	actgatgttt	ctacagcaat	tcatgcagat	caactcacac	23340
cagcttggcg	catatattct	actggaaaca	atgtattcca	gactcaagca	ggctgtctta	23400
taggagctga	gcatgtcgac	acttcttatg	agtgcgacat	tcctattgga	gctggcattt	23460
gtgctagtta	ccatacagtt	tctttattac	gtagtactag	ccaaaaatct	attgtggctt	23520
atactatgtc	tttaggtgct	gatagttcaa	ttgcttactc	taataacacc	attgctatac	23580
ctactaactt	ttcaattagc	attactacag	aagtaatgcc	tgtttctatg	gctaaaacct	23640
ccgtagattg	taatatgtac	atctgcggag	attctactga	atgtgctaat	ttgcttctcc	23700
aatatggtag	cttttgcaca	caactaaatc	gtgcactctc	aggtattgct	gctgaacagg	23760
atcgcaacac	acgtgaagtg	ttcgctcaag	tcaaacaaat	gtacaaaacc	ccaactttga	23820
aatattttgg	tggttttaat	ttttcacaaa	tattacctga	ccctctaaag	ccaactaaga	23880
ggtcttttat	tgaggacttg	ctctttaata	aggtgacact	cgctgatgct	ggcttcatga	23940
agcaatatgg	cgaatgccta	ggtgatatta	atgctagaga	tctcatttgt	gcgcagaagt	24000
tcaatggact	tacagtgttg	ccacctctgc	tcactgatga	tatgattgct	gcctacactg	24060
ctgctctagt	tagtggtact	gccactgctg	gatggacatt	tggtgctggc	gctgctcttc	24120

				-contin	nued	
aaataccttt	tgctatgcaa	atggcatata	ggttcaatgg	cattggagtt	acccaaaatg	24180
ttctctatga	gaaccaaaaa	caaatcgcca	accaatttaa	caaggcgatt	agtcaaattc	24240
aagaatcact	tacaacaaca	tcaactgcat	tgggcaagct	gcaagacgtt	gttaaccaga	24300
atgctcaagc	attaaacaca	cttgttaaac	aacttagctc	taattttggt	gcaatttcaa	24360
gtgtgctaaa	tgatateett	tcgcgacttg	ataaagtcga	ggcggaggta	caaattgaca	24420
ggttaattac	aggcagactt	caaagccttc	aaacctatgt	aacacaacaa	ctaatcaggg	24480
ctgctgaaat	cagggcttct	gctaatcttg	ctgctactaa	aatgtctgag	tgtgttcttg	24540
gacaatcaaa	aagagttgac	ttttgtggaa	agggctacca	ccttatgtcc	ttcccacaag	24600
cageceegea	tggtgttgtc	ttcctacatg	tcacgtatgt	gccatcccag	gagaggaact	24660
tcaccacage	gccagcaatt	tgtcatgaag	gcaaagcata	cttccctcgt	gaaggtgttt	24720
ttgtgtttaa	tggcacttct	tggtttatta	cacagaggaa	cttctttct	ccacaaataa	24780
ttactacaga	caatacattt	gtctcaggaa	attgtgatgt	cgttattggc	atcattaaca	24840
acacagttta	tgatcctctg	caacctgagc	ttgactcatt	caaagaagag	ctggacaagt	24900
acttcaaaaa	tcatacatca	ccagatgttg	atcttggcga	catttcaggc	attaacgctt	24960
ctgtcgtcaa	cattcaaaaa	gaaattgacc	gcctcaatga	ggtcgctaaa	aatttaaatg	25020
aatcactcat	tgaccttcaa	gaattgggaa	aatatgagca	atatattaaa	tggccttggt	25080
atgtttggct	cggcttcatt	gctggactaa	ttgccatcgt	catggttaca	atcttgcttt	25140
gttgcatgac	tagttgttgc	agttgcctca	agggtgcatg	ctcttgtggt	tcttgctgca	25200
agtttgatga	ggatgactct	gagccagttc	tcaagggtgt	caaattacat	tacacataaa	25260
cgaacttatg	gatttgttta	tgagatttt	tactcttgga	tcaattactg	cacagccagt	25320
aaaaattgac	aatgcttctc	ctgcaagtac	tgttcatgct	acagcaacga	taccgctaca	25380
agcctcactc	cctttcggat	ggcttgttat	tggcgttgca	tttcttgctg	tttttcagag	25440
cgctaccaaa	ataattgcgc	tcaataaaag	atggcagcta	gccctttata	agggcttcca	25500
gttcatttgc	aatttactgc	tgctatttgt	taccatctat	tcacatcttt	tgcttgtcgc	25560
tgcaggtatg	gaggcgcaat	ttttgtacct	ctatgccttg	atatatttc	tacaatgcat	25620
caacgcatgt	agaattatta	tgagatgttg	gctttgttgg	aagtgcaaat	ccaagaaccc	25680
attactttat	gatgccaact	actttgtttg	ctggcacaca	cataactatg	actactgtat	25740
accatataac	agtgtcacag	atacaattgt	cgttactgaa	ggtgacggca	tttcaacacc	25800
aaaactcaaa	gaagactacc	aaattggtgg	ttattctgag	gataggcact	caggtgttaa	25860
agactatgtc	gttgtacatg	gctatttcac	cgaagtttac	taccagettg	agtctacaca	25920
aattactaca	gacactggta	ttgaaaatgc	tacattcttc	atctttaaca	agcttgttaa	25980
agacccaccg	aatgtgcaaa	tacacacaat	cgacggctct	tcaggagttg	ctaatccagc	26040
aatggatcca	atttatgatg	agccgacgac	gactactage	gtgcctttgt	aagcacaaga	26100
aagtgagtac	gaacttatgt	actcattcgt	ttcggaagaa	acaggtacgt	taatagttaa	26160
tagcgtactt	ctttttcttg	ctttcgtggt	attcttgcta	gtcacactag	ccatccttac	26220
tgcgcttcga	ttgtgtgcgt	actgctgcaa	tattgttaac	gtgagtttag	taaaaccaac	26280
ggtttacgtc	tactcgcgtg	ttaaaaatct	gaactcttct	gaaggagttc	ctgatcttct	26340
ggtctaaacg	aactaactat	tattattatt	ctgtttggaa	ctttaacatt	gcttatcatg	26400

				-contir	iuea	
gcagacaacg	gtactattac	cgttgaggag	cttaaacaac	tcctggaaca	atggaaccta	26460
gtaataggtt	tectattect	agcctggatt	atgttactac	aatttgccta	ttctaatcgg	26520
aacaggtttt	tgtacataat	aaagcttgtt	ttcctctggc	tettgtggce	agtaacactt	26580
gcttgttttg	tgcttgctgc	tgtctacaga	attaattggg	tgactggcgg	gattgcgatt	26640
gcaatggctt	gtattgtagg	cttgatgtgg	cttagctact	tcgttgcttc	cttcaggctg	26700
tttgctcgta	cccgctcaat	gtggtcattc	aacccagaaa	caaacattct	tctcaatgtg	26760
cctctccggg	ggacaattgt	gaccagaccg	ctcatggaaa	gtgaacttgt	cattggtgct	26820
gtgatcattc	gtggtcactt	gcgaatggcc	ggacactccc	tagggcgctg	tgacattaag	26880
gacctgccaa	aagagatcac	tgtggctaca	tcacgaacgc	tttcttatta	caaattagga	26940
gcgtcgcagc	gtgtaggcac	tgattcaggt	tttgctgcat	acaaccgcta	ccgtattgga	27000
aactataaat	taaatacaga	ccacgccggt	agcaacgaca	atattgcttt	gctagtacag	27060
taagtgacaa	cagatgtttc	atcttgttga	cttccaggtt	acaatagcag	agatattgat	27120
tatcattatg	aggactttca	ggattgctat	ttggaatctt	gacgttataa	taagttcaat	27180
agtgagacaa	ttatttaagc	ctctaactaa	gaagaattat	tcggagttag	atgatgaaga	27240
acctatggag	ttagattatc	cataaaacga	acatgaaaat	tattctcttc	ctgacattga	27300
ttgtatttac	atcttgcgag	ctatatcact	atcaggagtg	tgttagaggt	acgactgtac	27360
tactaaaaga	accttgccca	tcaggaacat	acgagggcaa	ttcaccattt	caccctcttg	27420
ctgacaataa	atttgcacta	acttgcacta	gcacacactt	tgcttttgct	tgtgctgacg	27480
gtactcgaca	tacctatcag	ctgcgtgcaa	gatcagtttc	accaaaactt	ttcatcagac	27540
aagaggaggt	tcaacaagag	ctctactcgc	cactttttct	cattgttgct	gctctagtat	27600
ttttaatact	ttgcttcacc	attaagagaa	agacagaatg	aatgagctca	ctttaattga	27660
cttctatttg	tgctttttag	cctttctgct	attccttgtt	ttaataatgc	ttattatatt	27720
ttggttttca	ctcgaaatcc	aggatctaga	agaaccttgt	accaaagtct	aaacgaacat	27780
gaaacttctc	attgttttga	cttgtatttc	tctatgcagt	tgcatatgca	ctgtagtaca	27840
gcgctgtgca	tctaataaac	ctcatgtgct	tgaagatcct	tgtaaggtac	aacactaggg	27900
gtaatactta	tagcactgct	tggctttgtg	ctctaggaaa	ggttttacct	tttcatagat	27960
ggcacactat	ggttcaaaca	tgcacaccta	atgttactat	caactgtcaa	gatccagctg	28020
gtggtgcgct	tatagctagg	tgttggtacc	ttcatgaagg	tcaccaaact	gctgcattta	28080
gagacgtact	tgttgtttta	aataaacgaa	caaattaaaa	tgtctgataa	tggaccccaa	28140
tcaaaccaac	gtagtgcccc	ccgcattaca	tttggtggac	ccacagattc	aactgacaat	28200
aaccagaatg	gaggacgcaa	tggggcaagg	ccaaaacagc	gccgacccca	aggtttaccc	28260
aataatactg	cgtcttggtt	cacagetete	actcagcatg	gcaaggagga	acttagattc	28320
cctcgaggcc	agggcgttcc	aatcaacacc	aatagtggtc	cagatgacca	aattggctac	28380
taccgaagag	ctacccgacg	agttcgtggt	ggtgacggca	aaatgaaaga	gctcagcccc	28440
agatggtact	tctattacct	aggaactggc	ccagaagctt	cacttcccta	cggcgctaac	28500
aaagaaggca	tcgtatgggt	tgcaactgag	ggagccttga	atacacccaa	agaccacatt	28560
ggcacccgca	atcctaataa	caatgctgcc	accgtgctac	aacttcctca	aggaacaaca	28620
ttgccaaaag	gcttctacgc	agagggaagc	agaggeggea	gtcaagcctc	ttctcgctcc	28680

tcatcacgta	gtcgcggtaa	ttcaagaaat	tcaactcctg	gcagcagtag	gggaaattct	28740
cctgctcgaa	tggctagcgg	aggtggtgaa	a actgccctcg	cgctattgct	gctagacaga	28800
ttgaaccagc	ttgagagcaa	agtttctggt	aaaggccaac	aacaacaagg	ccaaactgtc	28860
actaagaaat	ctgctgctga	ggcatctaaa	a aagcctcgcc	aaaaacgtac	tgccacaaaa	28920
cagtacaacg	tcactcaagc	atttgggaga	a cgtggtccag	aacaaaccca	aggaaatttc	28980
ggggaccaag	acctaatcag	acaaggaact	gattacaaac	attggccgca	aattgcacaa	29040
tttgctccaa	gtgcctctgc	attctttgg	a atgtcacgca	ttggcatgga	agtcacacct	29100
tcgggaacat	ggctgactta	tcatggagco	attaaattgg	atgacaaaga	tccacaattc	29160
aaagacaacg	tcatactgct	gaacaagca	attgacgcat	acaaaacatt	cccaccaaca	29220
gagcctaaaa	aggacaaaaa	gaaaaagact	gatgaagctc	agcctttgcc	gcagagacaa	29280
aagaagcagc	ccactgtgac	tettetteet	gcggctgaca	tggatgattt	ctccagacaa	29340
cttcaaaatt	ccatgagtgg	agcttctgct	gattcaactc	aggcataaac	actcatgatg	29400
accacacaag	gcagatgggc	tatgtaaac	g ttttcgcaat	tccgtttacg	atacatagtc	29460
tactcttgtg	cagaatgaat	tctcgtaact	aaacagcaca	agtaggttta	gttaacttta	29520
atctcacata	gcaatcttta	atcaatgtgt	aacattaggg	aggacttgaa	agagccacca	29580
cattttcatc	gaggccacgc	ggagtacgat	cgagggtaca	gtgaataatg	ctagggagag	29640
ctgcctatat	ggaagagccc	taatgtgtaa	a aattaatttt	agtagtgcta	tccccatgtg	29700
attttaatag	cttcttagga	gaatgacaaa	a aaaaaaaaaa	aaaaaa		29746
<220> FEATU <221> NAME/ <222> LOCAT	IISM: CORONA JRE: 'KEY: CDS 'ION: (89) R INFORMATIO	.(3853)				
_		ggcttatcat	: tagagaaaac	aacagag++g	+aa+++caaa	60
		aaacgaac a	atg ttt att Met Phe Ile I	ttc tta tta	ttt ctt	112
			gac cgg tgc Asp Arg Cys			160
		yr Thr Gln	cat act tca His Thr Ser 35			208
			tca gac act Ser Asp Thr 50			256
			aat gtt aca Asn Val Thr 65			304
			ata cct ttt Ile Pro Phe			352
			gtt gtc cgt Val Val Arg			400

 	 					 			 tin	<u> </u>						
 90				95				100								
acc Thr												448				
aat Asn												496				
ttt Phe												544				
gat Asp												592				
ctt Leu 170												640				
gtg Val												688				
cct Pro												736				
cct Pro		_	_									784				
att Ile												832				
gca Ala 250												880				
tat Tyr												928				
cca Pro												976	· · · · · · · · · · · · · · · · · · ·	ernanten avotaten ernanten er	november of the second	
		285		-	-	290	-			295	-					
gga Gly												1024				
gtg Val												1072				
aat Asn 330												1120				
tct Ser												1168				
tca Ser												1216				
tgc Cys												1264				
gta Val												1312				

							•
-00	n	+	7	n	11	ρ	а

												con	tin	ıed					
		395					400					405							
aat Asn																1360			
act Thr 425																1408			
agg Arg																1456			
aat Asn																1504			
aat Asn																1552			
att Ile																1600			
aat Asn 505																1648			
aag Lys																1696			
gtg Val																1744			
cgt Arg																1792			
	Ile 570	Leu	Asp	Ile	Ser	Pro 575	Сув	Ser	Phe	Gly	Gly 580	Val	Ser	Val	Ile	1840			
aca Thr 585	Pro	Gly	Thr	Asn	Ala 590	Ser	Ser	Glu	Val	Ala 595	Val	Leu	Tyr	Gln	Asp 600	1888			Manager of Professional
gtt Val	Asn	Cys	Thr	Asp 605	Val	Ser	Thr	Ala	Ile 610	His	Ala	Asp	Gln	Leu 615	Thr	1936			
Pro																1984			
gca Ala	Gly	Cys 635	Leu	Ile	Gly	Ala	Glu 640	His	Val	Asp	Thr	Ser 645	Tyr	Glu	Cys	2032			
gac Asp																2080			
tta Leu 665																2128			
tta Leu																2176			
cct Pro																2224			

		-	
-co			

													CTII			
			700					705					710			
	gct Ala															2272
	gaa Glu 730															2320
	aat Asn															2368
	gaa Glu															2416
	tat Tyr															2464
	cca Pro															2512
	ctc Leu 810	-	-	-			-	-				-	-			2560
	att Ile															2608
	gtg Val															2656
	gct Ala															2704
	gct Ala															2752
	ggc Gly 890															2800
	gcc Ala															2848
	aca Thr															2896
Asn	gct Ala	Gln	Ala 940	Leu	Asn	Thr	Leu	Val 945	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	2944
Gly	gca Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960	Asp	Ile	Leu	Ser	Arg 965	Leu	Āsp	Lys	2992
	gag Glu 970															3040
	ctt Leu															3088
	gct Ala				cti Le:											3133

-con			

-continued	
1005 1010 1015	
ctt gga caa tca aaa aga gtt gac ttt tgt gga aag ggc tac cac Leu Gly Gln Ser Lys Arg Val Asp Phe Cys Gly Lys Gly Tyr His 1020 1025 1030	3178
ctt atg tcc ttc cca caa gca gcc ccg cat ggt gtt gtc ttc cta Leu Met Ser Phe Pro Gln Ala Ala Pro His Gly Val Val Phe Leu 1035 1040 1045	3223
cat gtc acg tat gtg cca tcc cag gag agg aac ttc acc aca gcg His Val Thr Tyr Val Pro Ser Gln Glu Arg Asn Phe Thr Thr Ala 1050 1055 1060	3268
cca gca att tgt cat gaa ggc aaa gca tac ttc cct cgt gaa ggt Pro Ala Ile Cys His Glu Gly Lys Ala Tyr Phe Pro Arg Glu Gly 1065 1070 1075	3313
gtt ttt gtg ttt aat ggc act tct tgg ttt att aca cag agg aac Val Phe Val Phe Asn Gly Thr Ser Trp Phe Ile Thr Gln Arg Asn 1080 1085 1090	3358
ttc ttt tct cca caa ata att act aca gac aat aca ttt gtc tca Phe Phe Ser Pro Gln Ile Ile Thr Thr Asp Asn Thr Phe Val Ser 1095 1100 1105	3403
gga aat tgt gat gtc gtt att ggc atc att aac aac aca gtt tat Gly Asn Cys Asp Val Val Ile Gly Ile Ile Asn Asn Thr Val Tyr 1110 1115 1120	3448
gat cct ctg caa cct gag ctt gac tca ttc aaa gaa gag ctg gac Asp Pro Leu Gln Pro Glu Leu Asp Ser Phe Lys Glu Glu Leu Asp 1125 1130 1135	3493
aag tac ttc aaa aat cat aca tca cca gat gtt gat ctt ggc gac Lys Tyr Phe Lys Asn His Thr Ser Pro Asp Val Asp Leu Gly Asp 1140 1145 1150	3538
att toa ggo att aac got tot gto gto aac att caa aaa gaa att Ile Ser Gly Ile Asn Ala Ser Val Val Asn Ile Gln Lys Glu Ile 1155 1160 1165	3583
gac cgc ctc aat gag gtc gct aaa aat tta aat gaa tca ctc att Asp Arg Leu Asn Glu Val Ala Lys Asn Leu Asn Glu Ser Leu Ile 1170 1175 1180	3628
gac ctt caa gaa ttg gga aaa tat gag caa tat att aaa tgg cct Asp Leu Gin Giu Leu Gly Lys Tyr Glu Gin Tyr Ile Lys Trp Pro 1185 1190 1195	3673
tgg tat gtt tgg ctc ggc ttc att gct gga cta att gcc atc gtc Trp Tyr Val Trp Leu Gly Phe Ile Ala Gly Leu Ile Ala Ile Val 1200 1205 1210	3718
atg gtt aca atc ttg ctt tgt tgc atg act agt tgt tgc agt tgc Met Val Thr Ile Leu Leu Cys Cys Met Thr Ser Cys Cys Ser Cys 1215 1220 1225	3763
ctc aag ggt gca tgc tct tgt ggt tct tgc tgc aag ttt gat gag Leu Lys Gly Ala Cys Ser Cys Gly Ser Cys Cys Lys Phe Asp Glu 1230 1235 1240	3808
gat gac tot gag oca gtt oto aag ggt gto aaa tta oat tac aca Asp Asp Ser Glu Pro Val Leu Lys Gly Val Lys Leu His Tyr Thr 1245 1250 1255	3853
taaacgaact tatggatttg tttatgagat tttttactct tggatcaatt actgcacagc	3913
cagtaaaaat tgacaatgct tctcctgcaa gt	3945

<210> SEQ ID NO 3 <211> LENGTH: 1255 <212> TYPE: PRT <213> ORGANISM: CORONAVIRUS

_															
<400)> SI	QUE	ICE:	3											
Met 1	Phe	Ile	Phe	Leu 5	Leu	Phe	Leu	Thr	Leu 10	Thr	Ser	Gly	Ser	Asp 15	Leu
Asp	Arg	Cys	Thr 20	Thr	Phe	Asp	Asp	Val 25	Gln	Ala	Pro	Asn	Ty r 30	Thr	Gln
His	Thr	Ser 35	Ser	Met	Arg	Gly	Val 40	Tyr	Tyr	Pro	Asp	Glu 45	Ile	Phe	Arg
Ser	Asp 50	Thr	Leu	Tyr	Leu	Thr 55	Gln	qaA	Leu	Phe	Leu 60	Pro	Phe	Tyr	Ser
Asn 65	Val	Thr	Gly	Phe	His 70	Thr	Ile	Asn	His	Thr 75	Phe	Gly	Asn	Pro	Val 80
Ile	Pro	Phe	Lys	Asp 85	Gly	Ile	Tyr	Phe	Ala 90	Ala	Thr	Glu	Lys	Ser 95	Asn
Val	Val	Arg	Gly 100	Trp	Val	Phe	Gly	Ser 105	Thr	Met	Asn	Asn	Lys 110	Ser	Gln
Ser	Val	Ile 115	Ile	Ile	Asn	Asn	Ser 120	Thr	Asn	Val	Val	Ile 125	Arg	Ala	Cys
Asn	Phe 130	Glu	Leu	Сув	Asp	Asn 135	Pro	Phe	Phe	Ala	Val 140	Ser	Lys	Pro	Met
Gly 145	Thr	Gln	Thr	His	Thr 150	Met	Ile	Phe	Asp	Asn 155	Ala	Phe	Asn	Сув	Thr 160
Phe	Glu	Tyr	Ile	Ser 165	Asp	Ala	Phe	Ser	Leu 170	Asp	Val	Ser	Glu	Ly s 175	Ser
Gly	Asn	Phe	Lys 180	His	Leu	Arg	Glu	Phe 185	Val	Phe	Lys	Asn	Lys 190	Asp	Gly
Phe	Leu	Tyr 195	Val	Tyr	Lys	Gly	Tyr 200	Gln	Pro	Ile	Asp	Val 205	Val	Arg	Asp
Leu	Pro 210	Ser	Gly	Phe	Asn	Thr 215	Leu	Lys	Pro	Ile	Phe 220	Lys	Leu	Pro	Leu
225					230					235		Ala			240
				245					250			Phe		255	
			260					265				Asn	270		
		275					280					Glu 285		_	-
	290					295					300	Gln			
305					310					315		Pro			320
				325					330			Lys		335	
			340					345				Val	350		
		355					360					Lys 365	-	-	-
	370					375	_		-		380	Asn		-	
Авр 385	Ser	Phe	Val	Val	Lys 390	Gly	qaA	qaA	Val	Arg 395	Gln	Ile	Ala	Pro	Gly 400

Gln Thr Gly Val Ile Ala Asp Tyr Asn Tyr Lys Leu Pro Asp Asp Phe 405 410 415Met Gly Cys Val Leu Ala Trp Asn Thr Arg Asn Ile Asp Ala Thr Ser 420 425 430Thr Gly Asn Tyr Asn Tyr Lys Tyr Arg Tyr Leu Arg His Gly Lys Leu 435 440 Arg Pro Phe Glu Arg Asp Ile Ser Asn Val Pro Phe Ser Pro Asp Gly Lys Pro Cys Thr Pro Pro Ala Leu Asn Cys Tyr Trp Pro Leu Asn Asp 465 470470470470480 Tyr Gly Phe Tyr Thr Thr Thr Gly Ile Gly Tyr Gln Pro Tyr Arg Val 485 490 490 Val Val Leu Ser Phe Glu Leu Leu Asn Ala Pro Ala Thr Val Cys Gly 500 505 Pro Lys Leu Ser Thr Asp Leu Ile Lys Asn Gln Cys Val Asn Phe Asn 515 520 525Phe Asn Gly Leu Thr Gly Thr Gly Val Leu Thr Pro Ser Ser Lys Arg 530 535 Phe Gln Pro Phe Gln Gln Phe Gly Arg Asp Val Ser Asp Phe Thr Asp 545 550 555 560 Ser Val Arg Asp Pro Lys Thr Ser Glu Ile Leu Asp Ile Ser Pro Cys 565 570 575 Gly Asn Asn Val Phe Gln Thr Gln Ala Gly Cys Leu Ile Gly Ala Glu 625 $\,$ 630 $\,$ 630 $\,$ 640 $\,$ His Val Asp Thr Ser Tyr Glu Cys Asp Ile Pro Ile Gly Ala Gly Ile 645 655 Cys Ala Ser Tyr His Thr Val Ser Leu Leu Arg Ser Thr Ser Gln Lys $660 \hspace{1.5cm} 665 \hspace{1.5cm} 665 \hspace{1.5cm} 670 \hspace{1.5cm}$ Ser Ile Val Ala Tyr Thr Met Ser Leu Gly Ala Asp Ser Ser Ile Ala 675 $\,$ 680 $\,$ Tyr Ser Asn Asn Thr Ile Ala Ile Pro Thr Asn Phe Ser Ile Ser Ile 690 $$ 700 Thr Thr Glu Val Met Pro Val Ser Met Ala Lys Thr Ser Val Asp Cys 705 710710715715715 Asn Met Tyr Ile Cys Gly Asp Ser Thr Glu Cys Ala Asn Leu Leu 725 730 735Gln Tyr Gly Ser Phe Cys Thr Gln Leu Asn Arg Ala Leu Ser Gly Ile $740 \ \ \, 745 \ \ \, 750$ Ala Ala Glu Gln Asp Arg Asn Thr Arg Glu Val Phe Ala Gln Val Lys $755 \hspace{1.5cm} 760 \hspace{1.5cm} 765 \hspace{1.5cm} 765$ Gln Met Tyr Lys Thr Pro Thr Leu Lys Tyr Phe Gly Gly Phe Asn Phe 770 780 Ser Gln Ile Leu Pro Asp Pro Leu Lys Pro Thr Lys Arg Ser Phe Ile 785 790 795 800

													tin		
Glu	Asp	Leu	Leu	Phe 805	Asn	Lys	Val	Thr	Leu 810	Ala	Asp	Ala	Gly	Ph∈	Met
Lys	Gln	Tyr	Gly 820	Glu	Сув	Leu	Gly	Asp 825	Ile	Asn	Ala	Arg	Asp 830		Ile
Сув	Ala	Gln 835	Lys	Phe	Asn	Gly	Leu 840	Thr	Val	Leu	Pro	Pro 845		Leu	Thr
Asp	Asp 850	Met	Ile	Ala	Ala	Tyr 855	Thr	Ala	Ala	Leu	Val 860	Ser	Gly	Thr	Ala
Thr 865	Ala	Gly	Trp	Thr	Phe 870	Gly	Ala	Gly	Ala	Ala 875	Leu	Gln	Ile	Pro	Phe 880
Ala	Met	Gln	Met	Ala 885	Tyr	Arg	Phe	Asn	Gly 890	Ile	Gly	Val	Thr	Gln 895	Asn
Val	Leu	Tyr	Glu 900	Asn	Gln	Lys	Gln	Ile 905	Ala	Asn	Gln	Phe	Asn 910		Ala
Ile	Ser	Gln 915	Ile	Gln	Glu	Ser	Leu 920	Thr	Thr	Thr	Ser	Thr 925	Ala	Leu	Gly
Lys	Leu 930	Gln	Asp	Val	Val	Asn 935	Gln	Asn	Ala	Gln	Ala 940	Leu	Asn	Thr	Leu
Val 945	Lys	Gln	Leu	Ser	Ser 950	Asn	Phe	Gly	Ala	Ile 955	Ser	Ser	Val	Leu	Asn 960
Asp	Ile	Leu	Ser	Arg 965	Leu	qaA	Lys	Val	Glu 970	Ala	Glu	Val	Gln	Ile 975	Asp
Arg	Leu	Ile	Thr 980	Gly	Arg	Leu	Gln	Ser 985	Leu	Gln	Thr	Tyr	Val 990		Gln
Gln	Leu	Ile 995	Arg	Ala	Ala	Glu	Ile 1000		Ala	Ser	Ala	Asn 100		Ala	Ala
Thr	Lys 1010		Ser	Glu	Сує	val	L Le	eu Gl	ly G	ln Se	er Ly	ys i	Arg	Val	Asp
						101	.5					20	-		
Phe	Cys 1025	Gly	Lys	Gly	Туг		s Le	eu Me	et Se	er Ph	10 ne Pr	020		Ala	Ala
		Gly				His 103	s Le 80				10 ne Pr 10 vr Va	020 ro (035	Gln		
 Pro	1025 His	Gly Gly Asn	Val	. Val	. Phe	His 103 Leu 104	s Le	is Va	al Th	nr Ty	10 ne Pr 10 vr Va 10 vr Va	020 035 al 1	Gln Pro	Ser	Gln
 Pro Glu	1025 His 1040 Arg	Gly Gly Asn	Val	Val	Phe Thr	His 103 Leu 104 Ala 106	Les	is Va	al Th	nr Ty le Cy	10 Prine Print 10 Vr Va 10 Vr Va 10 Ase Ase	020 ro 0 035 al 1 050 is 0	Gln Pro Glu	Ser Gly	Gln Lys
Pro Glu Ala	1025 His 1040 Arg 1055 Tyr	Gly Gly Asn Phe	Val	Val	Thr	His 103 Leu 104 Ala 106	Les	is Va	al Th	nr Ty Le Cy	10 Pr 10 Vr Va 10 Vr Va 10 As 10 Co Gl	020 co 035 al 1 050 is 0	Gln Pro Glu	Ser Gly Thr	Gln Lys Ser
Pro Glu Ala Trp	1025 His 1040 Arg 1055 Tyr 1070	Gly Asn Phe	Val Phe Pro	Val	Thr Glu	His 103 Let 104 Ala 106 Gly 107 Asn 109	S Le	is Va	al Th	ir Ty le Cy al Ph	10 ne Pr 10 rr Ve 10 rs Hi 10 ne As 10 ne As 10 rs Gl	020 035 al 1 050 is 0 065 sn 0 080	Gln Pro Glu Gly	Ser Gly Thr	Gln Lys Ser Thr
Pro Glu Ala Trp	1025 His 1040 Arg 1055 Tyr 1070 Phe 1085	Gly Asn Phe Ile Asn	Val Phe Pro	Val	Thr Glu Arg	His 103 Leu 104 Ala 106 Gly 107 Asn 109	S Le 60 1 Hi 55 1 Pr 7 Ve 75 1 Pr 10 1 Cl 15 1 As	is Va	al Thalla Il	ie Cy ile Cy il Ph er Pr	10 Property Value Assume Assum	200 (200 (200 (200 (200 (200 (200 (200	Glu Gly Ile	Ser Gly Thr Ile	Gln Lys Ser Thr
Pro Glu Ala Trp Thr	1025 His 1040 Arg 1055 Tyr 1070 Phe 1085 Asp 1100 Ile	Gly Gly Asn Phe Asn Lys	Phe Pro	Val	Phe Phe Val	His 103 104 104 106 107 107 107 107 107 107 107 107 107 107	Les	To All Phase	The Value of the V	le Cy le Cy lle Cy lle Cy All Ph Pr Pr All Ph All P	10 Prince As 10 Prince As 11 Pr	200 (200 (200 (200 (200 (200 (200 (200	Glu Gly Ile	Gly Thr Ile Leu	Gln Lys Ser Thr Gly
Glu Ala Trp Thr	1025 His 1040 Arg 1055 Tyr 1070 Phe 1085 Asp 1100 Ile 1115	Gly Gly Asn Phe Ile Asn Lys	Phe Pro	· Val	Thr. Glu Arg	His 103 2 Leu 104 104 106 107 107 109 107 109 107 109 112 113	Le Company Com	TO All Phase Phase Phase Phase Phase Phase Phase Phase Phase Provided Types Ty	The Value of the V	le Cy il Pr il Pr Pr Pr As	10 Pr 10 Ve 11 10 Pr 11 10 Pr 11 11 Pr 11	200 200 200 200 200 200 200 200 200 200	Glu Gly Tle	Ser Gly Thr Ile Leu Thr	Gln Lys Ser Thr Gly Asp
Glu Ala Trp Thr	1025 His 1040 Arg 1055 Tyr 1070 Phe 1085 Asp 1100 Ile 1115 Phe 1130 Asp 1145	Gly Asn Phe Ile Asn Lys Val	Phe Pro	. Val	Phe Glu Arg	His 103 104 104 106 107 107 107 107 107 107 107 107 107 107	I Legal Control Contro	is Vector All Phase Phas	la Il	le Cy al Pr Pr Pr Asseu GJ	10 10 10 11 10 11 10 10 10 10 10 10 10 1	200 (200 (200 (200 (200 (200 (200 (200	Glu Glu Glu His	Gly Thr Ile Leu Thr	Gln Lys Ser Thr Gly Asp
Glu Ala Trp Thr Ile Ser Pro	1025 His 1040 Arg 1055 Tyr 1070 Phe 1085 Asp 1100 Ile 1115 Phe 1130 Asp 1145 Asn	Gly Asn Phe Ile Asn Lys Val	Phe Pro	· Val	Phee Thr Gluver Argonic Val	His 103 104 104 106 107 107 107 107 107 107 107 107 107 107	S Le 00 Hi	is Verice All Phane Phan	la Il la Il la Il la Il co Le co Le co Le co Le co Le co Le	le Cy al Ph al Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph P	10 Pr 10 10 VS Hii 10 10 10 10 10 10 10 10 10 10 10 10 10	200 (co	Gln Pro Glu Gly Ile Val Glu His	Ser Gly Thr Ile Leu Thr Ser	Gln Lys Ser Thr Gly Asp Val

	-continued	
	1190 1195 1200	
	Ala Gly Leu Ile Ala Ile Val Met Val Thr Ile Leu Leu Cys Cy 1205 1210 1215	ys
	Met Thr Ser Cys Cys Ser Cys Leu Lys Gly Ala Cys Ser Cys Gl 1220 1225	ly
	Ser Cys Cys Lys Phe Asp Glu Asp Asp Ser Glu Pro Val Leu Ly 1235	ys
	Gly Val Lys Leu His Tyr Thr 1250 1255	
	<210> SEQ ID NO 4 <211> LENGTH: 3943 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
	<400> SEQUENCE: 4	
	ctcttctgga aaaaggtagg cttatcatta gagaaaacaa cagagttgtg gtttca	aagtg 60
	atattcttgt taacaactaa acgaacatgt ttattttctt attatttctt actctc	cacta 120
	gtggtagtga ccttgaccgg tgcaccactt ttgatgatgt tcaagctcct aattac	cactc 180
	aacatacttc atctatgagg ggggtttact atcctgatga aatttttaga tcagac	cactc 240
	tttatttaac tcaggattta tttcttccat tttattctaa tgttacaggg tttcat	tacta 300
	ttaatcatac gtttggcaac cctgtcatac cttttaagga tggtatttat tttgct	tgcca 360
	cagagaaatc aaatgttgtc cgtggttggg tttttggttc taccatgaac aacaag	gtcac 420
	agtcggtgat tattattaac aattctacta atgttgttat acgagcatgt aacttt	tgaat 480
	tgtgtgacaa ccctttcttt gctgtttcta aacccatggg tacacagaca catact	tatga 540
	tattcgataa tgcatttaat tgcactttcg agtacatatc tgatgccttt tcgctt	tgatg 600
	tttcagaaaa gtcaggtaat tttaaacact tacgagagtt tgtgtttaaa aataaa	agatg 660
	ggtttctcta tgtttataag ggctatcaac ctatagatgt agttcgtgat ctacct	ttctg 720
was	gttttaacac tttgaaacct atttttaagt tgcctcttgg tattaacatt acaaat	tttta 780
	gagocattot tacagoottt toacotgoto aagacatttg gggoacgtca gotgo	
	attttgttgg ctatttaaag ccaactacat ttatgctcaa gtatgatgaa aatggt	
	tcacagatgc tgttgattgt tctcaaaatc cacttgctga actcaaatgc tctgtt	
	gctttgagat tgacaaagga atttaccaga cctctaattt cagggttgtt ccctca	,,,,
	atgttgtgag attccctaat attacaaact tgtgtccttt tggagaggtt tttaat	
	ctaaattccc ttctgtctat gcatgggaga gaaaaaaat ttctaattgt gttgct	
	actotytyct ctacaactca acatttitt caaccttaa gtyctatygc yttict	
	ctaagttgaa tgatctttgc ttctccaatg tctatgcaga ttcttttgta gtcaac	
	atgatgtaag acaaatagcg ccaggacaaa ctggtgttat tgctgattat aattat	
	tgccagatga tttcatgggt tgtgtccttg cttggaatac taggaacatt gatgct	
	caactggtaa ttataattat aaatataggt atcttagaca tggcaagctt aggcco	
	agagagacat atctaatgtg cctttctccc ctgatggcaa accttgcacc ccacct	
	ttaattgtta ttggccatta aatgattatg gtttttacac cactactggc attggc	
	aaccttacag agttgtagta ctttcttttg aacttttaaa tgcaccggcc acggtt	ttgtg 1620

	gaccaaaatt	atccactgac	cttattaaga	accagtgtgt	caattttaat	tttaatggac	1680
	tcactggtac	tggtgtgtta	actccttctt	caaagagatt	tcaaccattt	caacaatttg	1740
	gccgtgatgt	ctctgatttc	actgattccg	ttcgagatcc	taaaacatct	gaaatattag	1800
	acatttcacc	ttgctcttt	gggggtgtaa	gtgtaattac	acctggaaca	aatgcttcat	1860
	ctgaagttgc	tgttctatat	caagatgtta	actgcactga	tgtttctaca	gcaatccatg	1920
	cagatcaact	cacaccagct	tggcgcatat	attctactgg	aaacaatgta	ttccagactc	1980
	aagcaggctg	tcttatagga	gctgagcatg	tcgacacttc	ttatgagtgc	gacattccta	2040
	ttggagctgg	catttgtgct	agttaccata	cagtttcttt	attacgtagt	actagccaaa	2100
	aatctattgt	ggcttatact	atgtctttag	gtgctgatag	ttcaattgct	tactctaata	2160
	acaccattgc	tatacctact	aacttttcaa	ttagcattac	tacagaagta	atgcctgttt	2220
	ctatggctaa	aacctccgta	gattgtaata	tgtacatctg	cggagattct	actgaatgtg	2280
	ctaatttgct	tctccaatat	ggtagctttt	gcacacaact	aaatcgtgca	ctctcaggta	2340
	ttgctgctga	acaggatcgc	aacacacgtg	aagtgttcgc	tcaagtcaaa	caaatgtaca	2400
	aaaccccaac	tttgaaatat	tttggtggtt	ttaattttc	acaaatatta	cctgaccctc	2460
	taaagccaac	taagaggtct	tttattgagg	acttgctctt	taataaggtg	acactcgctg	2520
	atgctggctt	catgaagcaa	tatggcgaat	gcctaggtga	tattaatgct	agagatotca	2580
	tttgtgcgca	gaagttcaat	gggcttacag	tgttgccacc	tctgctcact	gatgatatga	2640
	ttgctgccta	cactgctgct	ctagttagtg	gtactgccac	tgctggatgg	acatttggtg	2700
	ctggcgctgc	tcttcaaata	ccttttgcta	tgcaaatggc	atataggttc	aatggcattg	2760
	gagttaccca	aaatgttctc	tatgagaacc	aaaaacaaat	cgccaaccaa	tttaacaagg	2820
	cgattagtca	aattcaagaa	tcacttacaa	caacatcaac	tgcattgggc	aagctgcaag	2880
	acgttgttaa	ccagaatgct	caagcattaa	acacacttgt	taaacaactt	agctctaatt	2940
	ttggtgcaat	ttcaagtgtg	ctaaatgata	teetttegeg	acttgataaa	gtcgaggcgg	3000
-	aggtacaaat	tgacaggcta	attacaggca	gacttcaaag	ccttcaaacc	tatgtaacac	3060
	aacaactaat	cagggctgct	gaaatcaggg	cttctgctaa	tcttgctgct	actaaaatgt	3120
	ctgagtgtgt	tcttggacaa	tcaaaaagag	ttgacttttg	tggaaagggc	taccacctta	3180
	tgtccttccc	acaagcagcc	ccgcatggtg	ttgtcttcct	acatgtcacg	tatgtgccat	3240
	cccaggagag	gaacttcacc	acagcgccag	caatttgtca	tgaaggcaaa	gcatacttcc	3300
					tattacacag		3360
					aggaaattgt		3420
	ttggcatcat			•		•	3480
		-		-	tgttgatctt		3540
			-	-	tgaccgcctc		3600
					gggaaaatat		3660
	ttaaatggcc				-		3720
			-		cctcaagggt		3780
					agttctcaag		3840
	tacattacac	ataaacgaac	ttatggattt	gtttatgaga	ttttttactc	ttggatcaat	3900

-continued	
tactgcacag ccagtaaaaa ttgacaatgc ttctcctgca agt	3943
<210> SEQ ID NO 5 <211> LENGTH: 2049 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 5	
ctcttctgga aaaaggtagg cttatcatta gagaaaacaa cagagttgtg gtttcaagtg	60
atattottgt taacaactaa acgaacatgt ttattttctt attatttctt actctcacta	120
gtggtagtga ccttgaccgg tgcaccactt ttgatgatgt tcaagctcct aattacactc	180
aacatacttc atctatgagg ggggtttact atcctgatga aatttttaga tcagacactc	240
tttatttaac tcaggattta tttcttccat tttattctaa tgttacaggg tttcatacta	300
ttaatcatac gtttggcaac cctgtcatac cttttaagga tggtatttat tttgctgcca	360
cagagaaatc aaatgttgtc cgtggttggg tttttggttc taccatgaac aacaagtcac	420
agtcggtgat tattattaac aattctacta atgttgttat acgagcatgt aactttgaat	480
tgtgtgacaa ccctttcttt gctgtttcta aacccatggg tacacagaca catactatga	540
tattogataa tgcatttaat tgcactttog agtacatato tgatgccttt tcgcttgatg	600
tttcagaaaa gtcaggtaat tttaaacact tacgagagtt tgtgtttaaa aataaagatg	660
ggtttctcta tgtttataag ggctatcaac ctatagatgt agttcgtgat ctaccttctg	720
gttttaacac tttgaaacct atttttaagt tgcctcttgg tattaacatt acaaatttta	780
gagccattct tacagccttt tcacctgctc aagacatttg gggcacgtca gctgcagcct	840
attttgttgg ctatttaaag ccaactacat ttatgctcaa gtatgatgaa aatggtacaa	900
tcacagatgc tgttgattgt tctcaaaatc cacttgctga actcaaatgc tctgttaaga	960
gctttgagat tgacaaagga atttaccaga cctctaattt cagggttgtt ccctcaggag	1020
atgttgtgag attccctaat attacaaact tgtgtccttt tggagaggtt tttaatgcta	1080
ctaaattccc ttctgtctat gcatgggaga gaaaaaaaat ttctaattgt gttgctgatt	1140
actotytyct ctacaactca acatttttt caacctttaa gtyctatygc ytttotycca	1200
ctaagttgaa tgatctttgc ttctccaatg tctatgcaga ttcttttgta gtcaagggag	1260
atgatgtaag acaaatagcg ccaggacaaa ctggtgttat tgctgattat aattataaat	1320
tgccagatga tttcatgggt tgtgtccttg cttggaatac taggaacatt gatgctactt	1380
caactggtaa ttataattat aaatataggt atcttagaca tggcaagctt aggccctttg	1440
agagagacat atctaatgtg cettteteee etgatggeaa acettgeace ceacetgete	1500
ttaattgtta ttggccatta aatgattatg gtttttacac cactactggc attggctacc	1560
aaccttacag agttgtagta ctttcttttg aacttttaaa tgcaccggcc acggtttgtg	1620
gaccaaaatt atccactgac cttattaaga accagtgtgt caattttaat tttaatggac	1680
tcactggtac tggtgtgtta actccttctt caaagagatt tcaaccattt caacaatttg	1740
gccgtgatgt ctctgatttc actgattccg ttcgagatcc taaaacatct gaaatattag	1800
acatttcacc ttgctctttt gggggtgtaa gtgtaattac acctggaaca aatgcttcat	1860
ctgaagttgc tgttctatat caagatgtta actgcactga tgtttctaca gcaatccatg	1920
cagatcaact cacaccagct tggcgcatat attctactgg aaacaatgta ttccagactc	1980

-continued	
aagcaggctg tottatagga gotgagcatg togacactto ttatgagtgo gacattocta	2040
ttggagctg	2049
<210> SEQ ID NO 6 <211> LENGTH: 2027 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 6	
catgcagatc aactcacacc agcttggcgc atatattcta ctggaaacaa tgtattccag	60
actcaagcag gctgtcttat aggagctgag catgtcgaca cttcttatga gtgcgacatt	120
cctattggag ctggcatttg tgctagttac catacagttt ctttattacg tagtactagc	180
caaaaatcta ttgtggctta tactatgtct ttaggtgctg atagttcaat tgcttactct	240
aataacacca ttgctatacc tactaacttt tcaattagca ttactacaga agtaatgcct	300
gtttctatgg ctaaaacctc cgtagattgt aatatgtaca tctgcggaga ttctactgaa	360
tgtgctaatt tgcttctcca atatggtagc ttttgcacac aactaaatcg tgcactctca	420
ggtattgctg ctgaacagga tcgcaacaca cgtgaagtgt tcgctcaagt caaacaaatg	480
tacaaaaccc caactttgaa atattttggt ggttttaatt tttcacaaat attacctgac	540
cctctaaagc caactaagag gtcttttatt gaggacttgc tctttaataa ggtgacactc	600
gctgatgctg gcttcatgaa gcaatatggc gaatgcctag gtgatattaa tgctagagat	660
ctcatttgtg cgcagaagtt caatgggctt acagtgttgc cacctctgct cactgatgat	720
atgattgctg cctacactgc tgctctagtt agtggtactg ccactgctgg atggacattt	780
ggtgctggcg ctgctcttca aatacctttt gctatgcaaa tggcatatag gttcaatggc	840
attggagtta cccaaaatgt tototatgag aaccaaaaac aaatcgccaa ccaatttaac	900
aaggcgatta gtcaaattca agaatcactt acaacaacat caactgcatt gggcaagctg	960
caagacgttg ttaaccagaa tgctcaagca ttaaacacac ttgttaaaca acttagctct	1020
aattttggtg caatttcaag tgtgctaaat gatatccttt cgcgacttga taaagtcgag	1080
gcggaggtac aaattgacag gttaattaca ggcagacttc aaagccttca aacctatgta	1140
acacaacaac taatcagggc tgctgaaatc agggcttctg ctaatcttgc tgctactaaa	1200
atgtctgagt gtgttcttgg acaatcaaaa agagttgact tttgtggaaa gggctaccac	1260
cttatgtcct tcccacaagc agccccgcat ggtgttgtct tcctacatgt cacgtatgtg	1320
ccatcccagg agaggaactt caccacagcg ccagcaattt gtcatgaagg caaagcatac	1380
ttccctcgtg aaggtgtttt tgtgtttaat ggcacttctt ggtttattac acagaggaac	1440
ttcttttctc cacaaataat tactacagac aatacatttg tctcaggaaa ttgtgatgtc	1500
gttattggcg tcattaacaa cacagtttat gatcctctgc aacctgagct tgactcattc	
aaagaagagc tggacaagta cttcaaaaat catacatcac cagatgttga tottggcgac	
atttcaggca ttaacgcttc tgtcgtcaac attcaaaaag aaattgaccg cctcaatgag	
gtcgctaaaa atttaaatga atcactcatt gaccttcaag aattgggaaa atatgagcaa	1740
tatattaaat ggccttggta tgtttggctc ggcttcattg ctggactaat tgccatcgtc	
atggttacaa tottgotttg ttgcatgact agttgttgca gttgcctcaa gggtgcatgc	
tettgtggtt ettgetgeaa gtttgatgag gatgaetetg agecagttet eaagggtgte	1920

-continued	
aaattacatt acacataaac gaacttatgg atttgtttat gagattttt actcttggat	1980
caattactgc acagccagta aaaattgaca atgcttctcc tgcaagt	2027
<210> SEQ ID NO 7 <211> LENGTH: 1096 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 7	
tcttgctttg ttgcatgact agttgttgca gttgcctcaa gggtgcatgc tcttgtggtt	60
cttgctgcaa gtttgatgag gatgactctg agccagttct caagggtgtc aaattacatt	120
acacataaac gaacttatgg atttgtttat gagatttttt actcttggat caattactgc	180
acagccagta aaaattgaca atgcttctcc tgcaagtact gttcatgcta cagcaacgat	240
accgctacaa gcctcactcc ctttcggatg gcttgttatt ggcgttgcat ttcttgctgt	300
ttttcagagc gctaccaaaa taattgcgct caataaaaga tggcagctag ccctttataa	360
gggcttccag ttcatttgca atttactgct gctatttgtt accatctatt cacatctttt	420
gcttgtcgct gcaggtatgg aggcgcaatt tttgtacctc tatgccttga tatatttct	480
acaatgcatc aacgcatgta gaattattat gagatgttgg ctttgttgga agtgcaaatc	540
caagaaccca ttactttatg atgccaacta ctttgtttgc tggcacacac ataactatga	600
ctactgtata ccatataaca gtgtcacaga tacaattgtc gttactgaag gtgacggcat	660
ttcaacacca aaactcaaag aagactacca aattggtggt tattctgagg ataggcactc	720
aggtgttaaa gactatgtcg ttgtacatgg ctatttcacc gaagtttact accagcttga	780
gtctacacaa attactacag acactggtat tgaaaatgct acattcttca tctttaacaa	840
gcttgttaaa gacccaccga atgtgcaaat acacacaatc gacggctctt caggagttgc	900
taatccagca atggatccaa tttatgatga gccgacgacg actactagcg tgcctttgta	960
agcacaagaa agtgagtacg aacttatgta ctcattcgtt tcggaagaaa caggtacgtt	1020
aatagttaat agegtaette tttttettge tttegtggta ttettgetag teacactage	1080
catcottact gogott	1096
<210> SEQ ID NO 8 <211> LENGTH: 1135 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 8	
attgccatcg tcatggttac aatcttgctt tgttgcatga ctagttgttg cagttgcctc	60
aagggtgcat gctcttgtgg ttcttgctgc aagtttgatg aggatgactc tgagccagtt	120
ctcaagggtg tcaaattaca ttacacataa acgaacttat ggatttgttt atgagatttt	180
ttactcttgg atcaattact gcacagccag taaaaattga caatgcttct cctgcaagta	240
ctgttcatgc tacagcaacg ataccgctac aagcctcact ccctttcgga tggcttgtta	300
ttggcgttgc atttcttgct gtttttcaga gcgctaccaa aataattgcg ctcaataaaa	360
gatggcagct agccctttat aagggcttcc agttcatttg caatttactg ctgctatttg	420
ttaccatcta ttcacatctt ttgcttgtcg ctgcaggtat ggaggcgcaa tttttgtacc	480
totatgoott gatatatttt otacaatgoa toaacgoatg tagaattatt atgagatgtt	540

getggeacac acataactat gactactgta taccatatas cagtgtoana gatacaattg togttactga agstgacggc attroacacac caaaactcan agaagactac caaattggig getattctga ggataggcac tcagggttta aagactagt cgtgtacact ggctatttca 780 cogaagttta ctaccagctt gagtctacac aaattactac agacactggt attgaaaatg 840 ctacattctt catctttaca cagttgtta aagaccaggcacc gaattgtgaa atacacacaa 900 tcgacggctc ttcaggggtt gctaatccag caastgacca caattactagt ggccgacga 600 cgactactag cgtgcotttg tagacacag aaagtgagta cgaacttatt actcattcg 1020 tttcggaaga aacaggtacg ttactagtta atagggtact caattattagt gagccgacga 600 cgactactag cgtgcotttg tagacacaa gaagtgagta cgaacttatt gattcgtgg 1080 tattcttgct agtcacacta gccatcctta ctgcgcttcg attgtgtgcg tactg 1135 2100 SRO ID NO 3 2210 SRO ID NO 3 2210 SRO ID NO 3 2210 SRO ID NO 3 2212 LOALTION: [197](958) 2212 LOALTION: [197](958) 2212 LOALTION: [197](958) 2212 SATURE: 2213 NAMA/REY: COS 2212 LOALTION: [197](958) 2212 LOALTION: [197](958) 2212 LOALTION: [197](958) 2212 LOALTION: [197](958) 2213 NAMA/REY: COS 2214 LOALTION: [197](958) 2215 LOALTION: [197](958) 2216 LOALTION: [197](958) 2217 LOALTION: [197](958) 2218 LOALTION: [197](958) 2219 LOALTION: [197](958) 2210 LOALTION: [197](958) 2210 LOALTION: [197](958) 2211 NAMA/REY: COS 2212 LOALTION: [197](958) 2213 LOALTION: [197](958) 2214 LOALTION: [197](958) 2215 LOALTION: [197](958) 2216 LOALTION: [197](958) 2217 LOALTION: [197](958) 2218 LOALTION: [197](958) 2219 LOALTION: [197](958) 2210 LOALTION: [197](958) 2210 LOALTION: [197](958) 2211 NAMA/REY: COS 2222 LOALTION: [197](958) 2223 LOALTION: [197](958) 2224 LOALTION: [197](958) 2225 LOALTION: [197](958) 2226 LOALTION: [197](958) 2227 LOALTION: [197](958) 2228 LOALTION: [197](958) 2229 LOALTION: [197](958) 2220 LOALTION: [197](958) 2221 LOALTION: [197](958) 2222 LOALTION: [197](958) 2223 LOALTION: [197](958) 2224 LOALTION: [197](958) 2225 LOALTION: [197](958) 222	-continued	
tegitactga aggigangge atticaecae casaccica agasgactae cacattggig gitattetga gyataggea teaggigta aagactatgi egitgacat gyetattea 780 Cegaagitta ciaccageti gagitacaea aaattactae agacaetggi attgaaaatg 840 teacatteti detettaae aagottgita aagaccaec gaattgigaa atacaacaa 800 teacagitti teaggagit getaateea aaatgatae aattatgat gagogaacga 960 cegaactactag egitgoctiti taaagacaaa aaagigagia egaacttatgi taeteattegi 1020 tetteegaaaga aacaggiacg taaaagtaaat ataggiact teattitett getiteegigg 1080 tatteetiget agitacaacia gecaeteetia etgegeteg attgiggigg taetg 1135 2210- SEQ ID NO 9 2211- LENNYH: 1096 2212- TYPE: ND 2212- TYPE: ND 2213- MINER (PRORNATION: 4000- SEQUENCE: 9 tettegetig tigoatgact agitgitgea gitgecteaa gggigaatge tettgiggit 60 tettegetigaa gittgatgag gatgaceteg agecagitet eaagiggiga aaattacatt 120 1223- OTHER INFORMATION: 4000- SEQUENCE: 9 tettigetigaa gittgatgag gatgaceteg agecagitet eaagiggiga aaattacatt 120 121- TYPE: ND 122- TYPE: ND 123- TYPE: ND 124- TYPE: ND 125- TYPE: ND 126- TYPE: ND 127- TYPE: ND 128- TYPE: ND 129- TYPE: ND 120-	ggctttgttg gaagtgcaaa tccaagaacc cattacttta tgatgccaac tactttgttt	600
cognaghtha chaccagoth gaptotacac assistants cyttytacat gyctattos cognaghtha chaccagoth gaptotacac assistants agacatygt attgassaty chaccattoth catothtase asystyta asystoca attatayat gyacyacya togacygoto thosysayth gotastocacy castygaco sastitatyat gyacyacyacy cyactactay cytycothy tosysoscay assytyato sastitatyat gyacyacyacy cyactactay cytycothy tosysoscay assytyato sastitatyat tactattog thosysysys assistant attatyat attatyaty agacyacyacy thosysysys assistant attatyaty attatyacyacyacyacy thosysysys assistant attatyacyacyacyacyacyacyacyacyacyacyacyacyacy	gctggcacac acataactat gactactgta taccatataa cagtgtcaca gatacaattg	660
ctacattett catotttaac aagettgtta aagacocacc gaatgtgcaa atacacacaa 200 ctacattett catotttag tgtgcattg taagacacag aaagtgagta cgaacttatg tactcattcg 210c SEQ ID No 9 2210- SEQ ID No 9 2211- LENGTH: 1096 2212- LORTHS: 1096 2212- TYPE: DEA 2213- DEANTHS: CORGANIEUS 2213- DEANTHS: CORGANIEUS 2213- DEANTHS: CORGANIEUS 2214- LENGTH: 1096 2221- COLTION: (137)-(198) 222	tcgttactga aggtgacggc atttcaacac caaaactcaa agaagactac caaattggtg	720
togacggoto traggagit gotaatocag castggato astitatgat gagacgacga togacggoto traggagit gotaatocag castggato astitatgat gagacgacga population of the state of the	gttattctga ggataggcac tcaggtgtta aagactatgt cgttgtacat ggctatttca	780
togacqqctc ttcaggagtt gctaatccag caatgqatco aatttatgat gagcogacga 960 cgactactag ggtgcctttg taagcacaag aaagtgagta cgaacttatg tactcattcg 1020 tttcggaaga aacaggtacg ttaatagtta atagcgtact tcttttctt gctttcgtgg 1080 tattcttgct agtcacacta gccatcctta ctgcgcttcg attgtgtgcg tactg 1135 2210- SEQ ID NO 9 2211- LENGTH: 1096 2212- TYPE: DNA 2213- MARG/KEY: DNA 2213- MARG/KEY: CDS 2223- CATTON: (137)(958) 2223- MARG/KEY: CDS 2224- MARG/KEY: CDS 2225- MARG/KEY: CDS 2226- MARG/KEY: CDS 2226- MARG/KEY: CDS 2226- MARG/KEY: CDS 2226- MARG/KEY: CDS 2227- MARG/KEY: CDS 2228- MARG/KEY: CDS 2229- MARG/KEY: CDS 2229- MARG/KEY: CDS 2220- MARG	ccgaagttta ctaccagctt gagtctacac aaattactac agacactggt attgaaaatg	840
compactated and according to the total services of the services of t	ctacattett catetttaac aagettgtta aagacceace gaatgtgcaa atacacacaa	900
thtteggaaga accaggined thatagita ataggined tottittet gottieging 1080 tattettiget agreecate gocatcotta otgegeting attiguing tactig 1135 2210- SEQ ID NO 9 2211- LERNITH: 1096 2212- TIPE: DNA 2212- NORANISH: CORONAVIRUS 2212- NORANISH: CORONAVIRUS 2212- NORANISH: CORONAVIRUS 2212- LOCATION: (137)(958) 2222- LOCATION: (137)(958) 2223- OTHER INFORMATION: 4400- SEQUENCE: 9 tottigeting titigeting gatgeting agting the age attigeting against the act citigging accaded accade accade against attig gat titig that against the act citigging accaded ac	tcgacggctc ttcaggagtt gctaatccag caatggatcc aatttatgat gagccgacga	960
tattettget agteacacta gecatectta etgegetteg attgtgege tactg 1135 2210	cgactactag cgtgcctttg taagcacaag aaagtgagta cgaacttatg tactcattcg	1020
2210 > SEQ ID NO 9 2211 > LENGTH: 1096 2212 TYPE: DNA 2212 NAME/KEY: CDS 2222 LOCATION: (137)(958) 2223 OTHER INFORMATION: 4400 > SEQUENCE: 9 tottgottg ttg ttgatgag gatgactctg agcagttct caagggtgct aaattacatt 120 acacataaac gaactt atg gat ttg ttt atg aga ttt ttt act ctt gga tca	tttcggaaga aacaggtacg ttaatagtta atagcgtact tcttttctt gctttcgtgg	1080
2212> TYPE: DNA 2213> ORGANISM: CORONAVIRUS 2213> ORGANISM: CORONAVIRUS 2221> CORONAVIRUS 2222> LOCATION: (137)(958) 2223> COTHER INFORMATION: 4400> SEQUENCE: 9 ***Lottgetting tinged ageting age age age age age age age age age ag	tattettget agteacacta gecateetta etgegetteg attgtgtgeg taetg	1135
accactasac gaactt atg gat ttg tt atg aga att ttt act ctt gga tca Met Asp Leu Phe Met Arg Phe Phe Thr Leu Gly Ser 1 1 2 20 att act gca cag tca at a atg gac at gca at gcc tcc cc gca agt act 172 att act gca acg aca gca aca act gca act gcc cc ttc gga 220 att gct act gcc acc acc acc acc acc acc acc acc acc	<210> SEQ ID NO 9 <211> LENGTH: 1096 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (137)(958) <223> OTHER INFORMATION: <400> SEQUENCE: 9	
Met Asp Leu Phe Met Arg Phe Phe Thr Leu Gly Ser 1	tottgotttg ttgcatgact agttgttgca gttgcctcaa gggtgcatgc tottgtggtt	60
Met Asp Leu Phe Met Arg Phe Phe Thr Leu Gly Ser 1 5 10 att act goa cag ca gta aaa att gac aat gct tct cct goa agt act tle Thr Ala Gln Pro Val Lys Ile Asp Asn Ala Ser Pro Ala Ser Thr 15 20 get cat gct aca goa acg ata ccg cta caa gcc tca ctc cct ttc gga yal His Ala Thr Ala Thr Ile Pro Leu Gln Ala Ser Leu Pro Phe Gly 30 agg ctt gtt att ggc gtt goa ttt ctt gct gtt ttt cag agg gct acc pro Leu Val Ile Gly Val Ala Phe Leu Ala Val Phe Gln Ser Ala Thr 50 ana ata att gcg ctc aat aaa aga tgg cag cta gcc ctt tat aag ggc ays Ile Ile Ala Leu Asn Lys Arg Trp Gln Leu Ala Leu Tyr Lys Gly 65 att cag ttc att tgc aat tta ctg ctg cta ttt gtt acc atc tat tca the Gln Phe Ile Cys Asn Leu Leu Leu Phe Val Thr Ile Tyr Ser 80 att ctt ttg ctt gtc gct gca ggt atg gag gc caa ttt ttg tac ctc fis Leu Leu Leu Val Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu 95 att gct tg ata tat ttt cta caa tgc atc aac gca tgt aga att att pro Ala Leu Ile Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile 110 att gag at gtt gg ctt tg tgg aag tgc aaa tcc aag aac cca tta ctt att gag at gtt gg ctt tg tgg aag tgc aaa tcc aag aac cca tta ctt 125 att gag at gtt gg ctt tg ttg gag gt gc aac acc acc acc acc acc acc acc acc	cttgctgcaa gtttgatgag gatgactctg agccagttct caagggtgtc aaattacatt	120
The Tala Gln Pro Val Lys Ile Asp Asn Ala Ser Pro Ala Ser Thr 15		172
His Ala Thr Ala Thr Ile Pro Leu Gln Ala Ser Leu Pro Phe Gly 30 10 10 10 10 10 10 10 10 10	att act gca cag cca gta aaa att gac aat gct tct cct gca agt act Ile Thr Ala Gln Pro Val Lys Ile Asp Asn Ala Ser Pro Ala Ser Thr 15 20 25	220
Property Leu Val Ile Gly Val Ala Phe Leu Ala Val Phe Gln Ser Ala Thr 55 Phe Gln Ser Ala Thr 60 Alas at att gcg ctc aat aaa aga tgg cag cta gcc ctt tat aag ggc 364 Alas Ile Ile Ala Leu Asn Lys Arg Trp Gln Leu Ala Leu Tyr Lys Gly 75 Ala Cys Asn Leu Leu Leu Leu Phe Val Thr Ile Tyr Ser 85 Phe Gln Phe Ile Cys Asn Leu Leu Leu Leu Phe Val Thr Ile Tyr Ser 90 Ala Cys Arg Ile Ile Use Val Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu 105 Phe Leu Ile Val Ala Cys Arg Ile Ile Ile Cys Asn Ala Leu Gys Ile Asn Ala Cys Arg Ile	gtt cat gct aca gca acg ata ccg cta caa gcc tca ctc cct ttc gga Val His Ala Thr Ala Thr Ile Pro Leu Gln Ala Ser Leu Pro Phe Gly 30 35 40	268
Let Cag ttc att tgc aat tta ctg ctg cta ttt gtt acc atc ttt ttg ttg ctg gg gg gg gg caa ttt ttg ttg ttg gc ggt atg gag gcg caa ttt ttg ttg tac ctc Leu Leu Leu Val Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu 95 Let gcc ttg ata tat ttt cta caa tgc atc acc gca gta atg gag atg gcg att att ttg tac ctc Leu Leu Leu Val Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu 105 Let gcc ttg ata tat ttt cta caa tgc atc acc gca tgt aga att att Leu Ile Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile 110 Let aga gag tgt tgg ctt tgt tgg aag tgc aaa tcc aag acc cca tta ctt Let Arg Cys Trp Leu Cys Trp Lys Cys Lys Ser Lys Asn Pro Leu Leu 135 Let gat gcc aac tac ttt gtt tgc tgg cac acc acc acc acc acc acc acc acc a	tgg ctt gtt att ggc gtt gca ttt ctt gct gtt ttt cag agc gct acc Trp Leu Val Ile Gly Val Ala Phe Leu Ala Val Phe Gln Ser Ala Thr 45 50 55 60	316
Phe Gln Phe Ile Cys Asn Leu Leu Leu Leu Phe Val Thr Ile Tyr Ser 80 Stat ctt ttg ctt gtc gct gca ggt atg gag gcg caa ttt ttg tac ctc 460 Stat ctt ttg ctt gtc gct gca ggt atg gag gcg caa ttt ttg tac ctc 460 Stat gcc ttg ata tat ttt cta caa tgc atc aac gca tgt aga att att 508 Stat gcc ttg ata tat ttt cta caa tgc atc aac gca tgt aga att att 508 Stat gcc ttg ata tat ttt cta caa tgc atc aac gca tgt aga att att 110 Stat gcc ttg ata tat ttt cta caa tgc atc aac gca tgt aga att att 508 Stat gag at gt tgg ctt tgt tgg aag tgc aaa tcc aag aac cca tta ctt 556 Stat gag at gcc ttg ttg tgg aag tgc aaa tcc aag aac cca tta ctt 556 Stat gag at gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Stat gat gcc aac tac ttt gtt tgc tgc aca aca cat aac tat gac tac 604 Stat gcc aac tac ttt gtt tgc tgc aca aca cat aac tac tac tac tac full gcc aca aca cat aac tac tac tac full gcc aca aca cat aca cat aca cat acc aca cat acc acc	aaa ata att gcg ctc aat aaa aga tgg cag cta gcc ctt tat aag ggc Lys Ile Ile Ala Leu Asn Lys Arg Trp Gln Leu Ala Leu Tyr Lys Gly 65 70 75	364
His Leu Leu Val Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu 95 Tat gcc ttg ata tat ttt cta caa tgc atc aac gca tgt aga att att Tyr Ala Leu Ile Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile 110 Tat gaga tgt tgg ctt tgt tgg aag tgc aaa tcc aag aac cca tta ctt Atg aga tgt tgg ctt tgt tgg aag tgc aaa tcc aag aac cca tta ctt Tyr Ala Leu Ile Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile 120 Tat gaga tgt tgg ctt tgt tgg aag tgc aaa tcc aag aac cca tta ctt Tyr Asp Ala Asn Tyr Phe Val Cys Trp His Thr His Asn Tyr Asp Tyr	ttc cag ttc att tgc aat tta ctg ctg cta ttt gtt acc atc tat tca Phe Gln Phe Ile Cys Asn Leu Leu Leu Phe Val Thr Ile Tyr Ser 80 85 90	412
Tyr Ala Leu Ile Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile 110 115 120 atg aga tgt tgg ctt tgt tgg aag tgc aaa tcc aag aac cca tta ctt 556 Met Arg Cys Trp Leu Cys Trp Lys Cys Lys Ser Lys Asn Pro Leu Leu 125 130 140 at gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac Cyr Asp Ala Asn Tyr Phe Val Cys Trp His Thr His Asn Tyr Asp Tyr	cat ctt ttg ctt gtc gct gca ggt atg gag gcg caa ttt ttg tac ctc His Leu Leu Cal Ala Ala Gly Met Glu Ala Gln Phe Leu Tyr Leu 95 100 105	460
Met Arg Cys Trp Leu Cys Trp Lys Cys Lys Ser Lys Asn Pro Leu Leu 125 130 135 140 Tat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac 604 Tyr Asp Ala Asn Tyr Phe Val Cys Trp His Thr His Asn Tyr Asp Tyr	tat goc ttg ata tat ttt cta caa tgc atc aac gca tgt aga att att Tyr Ala Leu Ile Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile 110 115 120	508
Tyr Asp Ala Asn Tyr Phe Val Cys Trp His Thr His Asn Tyr Asp Tyr	atg aga tgt tgg ctt tgt tgg aag tgc aaa tcc aag aac cca tta ctt Met Arg Cys Trp Leu Cys Trp Lys Cys Lys Ser Lys Asn Pro Leu Leu 125 130 135	556
	tat gat gcc aac tac ttt gtt tgc tgg cac aca cat aac tat gac tac Tyr Asp Ala Asn Tyr Phe Val Cys Trp His Thr His Asn Tyr Asp Tyr 145 150	604

												con	tin	ued			
	ata Ile															652	
	ggc Gl y															700	
	tct Ser 190															748	
ggc 31 y 205	tat Tyr	ttc Phe	acc Thr	gaa Glu	gtt Val 210	tac Tyr	tac Tyr	cag Gln	ctt Leu	gag Glu 215	tct Ser	aca Thr	caa Gln	att Ile	act Thr 220	796	
	gac Asp															844	
	aaa Lys															892	
	gtt Val															940	
	act Thr 270					taaq	gcaca	aag a	aaag	tgagi	ta co	gaact	tate	I		988	
ac	tcatt	cg t	ttc	ggaa	ga aa	acag	gtace	g tta	ata	gtta	ata	gogta	act t	cttt	ttctt	1048	
rct.	ttcgt	gg t	att	cttg	ct a	gtcad	cacta	a gc	catco	tta	ctg	gctt	=			1096	
<21:	0> SE 1> LE 2> TY 3> OR	NGTH	1: 27 PRT	4	ONAV	RUS											
<40)> SE	QUEN	ICE:	10													
	Asp			5					10					15			
'ro	Val	Lys	20	Asp	Asn	Ala	ser	25	Ala	ser	"Thr	Val	30	Ala	Thr		
la	Thr	Ile 35	Pro	Leu	Gln	Ala	Ser 40	Leu	Pro	Phe	Gly	Trp 45	Leu	Val	Ile		
	Val 50					55					60						
Leu 55	Asn	Lys	Arg	Trp	Gln 70	Leu	Ala	Leu	Tyr	Lу в 75	Gly	Phe	Gln	Phe	Ile 80		
	Asn			85					90	-				95			
Val	Ala	Ala	Gly 100	Met	Glu	Ala	Gln	Phe 105	Leu	Tyr	Leu	Tyr	Ala 110	Leu	Ile		

Tyr Phe Leu Gln Cys Ile Asn Ala Cys Arg Ile Ile Met Arg Cys Trp $115 \ \ \,$ 120 $\ \ \,$ 125

Leu Cys Trp Lys Cys Lys Ser Lys Asn Pro Leu Leu Tyr Asp Ala Asn 130 135 140

Tyr Phe Val Cys Trp His Thr His Asn Tyr Asp Tyr Cys Ile Pro Tyr 145 $$ 150 $$ 155 $$ 160

Thr Pro Lys Leu Lys Glu Asp Tyr Gln Ile Gly Gly Tyr Ser Glu Asp 180 185 190	
rg His Ser Gly Val Lys Asp Tyr Val Val Val His Gly Tyr Phe Thr 195 200 205	
u Val Tyr Tyr Gln Leu Glu Ser Thr Gln Ile Thr Thr Asp Thr Gly 210 215 220	
e Glu Asn Ala Thr Phe Phe Ile Phe Asn Lys Leu Val Lys Asp Pro 230 235 240	
ro Asn Val Gln Ile His Thr Ile Asp Gly Ser Ser Gly Val Ala Asn 245 250 255	
to Ala Met Asp Pro Ile Tyr Asp Glu Pro Thr Thr Thr Thr Ser Val 260 265 270	
co Leu	
210> SEQ ID NO 11 221> LENGTH: 1096 221> TYPE: DNA 2213> ORGANISM: CORONAVIRUS 220> FEATURE: 221> NAME/KEY: CDS 222> LOCATION: (558)(1019) 222> OTHER INFORMATION:	
100> SEQUENCE: 11	
ttgetttg ttgcatgact agttgttgca gttgcetcaa gggtgcatge tettgtggtt	60
tgctgcaa gtttgatgag gatgactctg agccagttct caagggtgtc aaattacatt	120
acataaac gaacttatgg atttgtttat gagatttttt actcttggat caattactgc	180
agccagta aaaattgaca atgcttctcc tgcaagtact gttcatgcta cagcaacgat	240
egetacaa geeteactee ettteggatg gettgttatt ggegttgeat ttettgetgt	300
ttcagagc gctaccaaaa taattgcgct caataaaaga tggcagctag ccctttataa	360
ggcttccag ttcatttgca atttactgct gctatttgtt accatctatt cacatctttt	420
ettgteget geaggtatgg aggegeaatt titgtaeete tatgeetiga tatatitiet	480
caatgcatc aacgcatgta gaattattat gagatgttgg ctttgttgga agtgcaaatc	540
aagaaccca ttacttt atg atg cca act act ttg ttt gct ggc aca cac Met Met Pro Thr Thr Leu Phe Ala Gly Thr His 1 5 10	590
ta act atg act act gta tac cat ata aca gtg tca cag ata caa ttg le Thr Met Thr Thr Val Tyr His Ile Thr Val Ser Gln Ile Gln Leu 15 20 25	638
og tta ctg aag gtg acg gca ttt caa cac caa aac tca aag aag act er Leu Leu Lys Val Thr Ala Phe Gln His Gln Asn Ser Lys Lys Thr 30 35 40	686
cc aaa ttg gtg gtt att ctg agg ata ggc act cag gtg tta aag act or Lys Leu Val Val Ile Leu Arg Ile Gly Thr Gln Val Leu Lys Thr 45 50 55	734
eg teg ttg tac atg get att tea eeg aag ttt act ace age ttg agt et Ser Leu Tyr Met Ala Ile Ser Pro Lys Phe Thr Thr Ser Leu Ser 65 70 75	782
ca cac aaa tta cta cag aca ctg gta ttg aaa atg cta cat tct tca eu His Lys Leu Leu Gln Thr Leu Val Leu Lys Met Leu His Ser Ser 80 85 90	830
et tta aca ago ttg tta aag aco cao oga atg tgo aaa tao aca caa	878

								_	con	tin	ued		
Ser Leu Thr	Ser :	Leu Leu	Lys		His 100	Arg	Met	Cys	Lys	Tyr 105	Thr	Gln	
tcg acg gct Ser Thr Ala 110	Leu		Leu										926
atg agc cga Met Ser Arg 125													974
agt acg aac Ser Thr Asn 140			His										1019
aatagttaa	tagcg	tactt c	ttttt	cttg	ctt	tcgt	tggt	att	ettg	cta ç	gtcad	cactag	1079
ccatccttac	tgcgc	tt											1096
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	H: 154 PRT	4	IRUS										
:400> SEQUE	NCE:	12											
Met Met Pro L		Thr Leu 5	Phe	Ala	Gly	Thr 10	His	Ile	Thr	Met	Thr 15	Thr	
/al Tyr His	Ile i	Thr Val	Ser		Ile 25	Gln	Leu	Ser	Leu	Leu 30	Lys	Val	
hr Ala Phe	Gln 1	His Gln		Ser 40	Lys	L y s	Thr	Thr	Lys 45	Leu	Val	Val	
le Leu Arg 50	Ile	Gly Thr	Gln 55	Val	Leu	Lys	Thr	Met 60	Ser	Leu	Tyr	Met	
Ala Ile Ser 55	Pro 1	Lys Phe 70	Thr	Thr	Ser	Leu	Ser 75	Leu	His	Lys	Leu	Leu 80	
Gln Thr Leu		Leu Lys 85	Met	Leu	His	Ser 90	Ser	Ser	Leu	Thr	Ser 95	Leu	
Leu Lys Thr	His 1	Arg Met	Суѕ		Tyr 105	Thr	Gln	Ser	Thr	Ala 110	Leu	Gln	
Glu Leu Leu 115		Gln Gln		Ile 120	Gln	Phe	Met	Met	Ser 125	Arg	Arg	Arg	
Leu Leu Ala 130	Cys 1	Leu Cys	Lys 135	His	Lys	Lys	Val	Ser 140	Thr	Asn	Leu	Cys	
Thr His Ser 145	Phe i	Arg Lys 150		Gln	Val	Arg							
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <221> NAME/ <222> LOCAT <223> OTHER	H: 332 DNA ISM: 0 RE: KEY: 0	CORONAV CDS (36)(263)										
<400> SEQUE	NCE:	13											
tgcctttgta	agcac	aagaa a	gtgag	gtacg	aac	ľ				Phe '	gtt : Val :		53
gaa gaa aca Glu Glu Thr													101

ttc Phe	gtg Val	gta Val 25	ttc Phe	ttg Leu	cta Leu	gtc Val	aca Thr 30	cta Leu	gcc Ala	atc Ile	ctt Leu	act Thr 35	gcg Ala	ctt Leu	cga Arg	149
														aaa Lys		197
														gaa Glu		245
		gat Asp				taa	acgaa	act a	aacta	attai	tt af	tati	tetgi	3		293
ttgg	jaact	tt a	acat	tgc	t at	tcate	gcag	g aca	acgo	jta						332
<211 <212	> LE	Q ID NGTH PE:	: 76	;	NAVI	RUS										
<400	> SE	QUEN	CE:	14												
Met 1	Tyr	Ser	Phe	Val 5	Ser	Glu	Glu	Thr	Gly 10	Thr	Leu	Ile	Val	Asn 15	Ser	
Val	Leu	Leu	Phe 20	Leu	Ala	Phe	Val	Val 25	Phe	Leu	Leu	Val	Thr 30	Leu	Ala	
Ile	Leu	Thr 35	Ala	Leu	Arg	Leu	Cys 40	Ala	Tyr	Cys	Cys	Asn 45	Ile	Val	Asn	
Val	Ser 50	Leu	Val	Lys	Pro	Thr 55	Val	Tyr	Val	Tyr	Ser 60	Arg	Val	Lys	Asn	
Leu 65	Asn	Ser	Ser	Glu	Gl y 70	Val	Pro	Asp	Leu	Leu 75	Val					
<211 <212	> LE > TY	Q ID NGTH PE: GANI	: 33 DNA	2	NAVI	RUS										
<400	> SE	QUEN	CE:	15	CONTRACTOR OF THE PARTY OF THE	Podra shake a ferber	ÓMPOMEZKIZAMA	e e orașe e a a a a a a a a a a a a a a a a a	eazunez-ua-ura-u	wettownouv	DITEMPS 200000V	aaaa 1900 too aan	CHOMMOCTHUM			EWELLE SHOWENESS ETC
tgcc	tttg	ta a	gcac	aaga	a aç	tgag	rtacg	aac	ttat	gta	ctca	ttc	jtt t	cgga	agaaa	60
cagg	tacg	tt a	atag	ttaa	t aç	gcgta	cttc	ttt	ttct	tgc	tttc	gtgo	jta t	tctt	gctag	120
tcac	acta	gc c	atco	ttac	t go	gctt	cgat	. tgt	gtgo	gta	ctgo	tgca	at a	ttgt	taacg	180
tgag	ttta	gt a	aaac	caac	g gt	ttac	gtct	act	cgcg	tgt	taaa	aato	tg a	acto	ttctg	240
aagg	agtt	cc t	gato	ttct	g gt	ctaa	acga	act	aact	att	atta	ttat	tc t	gttt	ggaac	300
ttta	acat	tg c	ttat	cato	g ca	gaca	acgg	ta								332
<211 <212 <213 <220 <221 <222 <222 <223	> LE: > TY: > OR: > FE: > NA: > LO: > OT:	Q ID NGTH PE: GANI ATUR ME/K CATI HER	: 70 DNA SM: E: EY: ON: INFO	8 CORO CDS (41) RMAT	(7											

tattattatt attotgtttg gaactttaac attgcttatc atg gca gac aac ggt Met Ala Asp Asn Gly

55

-cc				

												-	con	tinı	ıed						
												1				5					
				-			ctt Leu				-	-					103				
							cta Leu										151				
							ttt Phe										199				
							aca Thr 60										247				
							act Thr										295				
							ctt Leu										343				
		-	-		-		atg Met						-				391				
							cgg Arg						-	-		-	439				
							ggt Gly 140										487				
							ggg Gly										535				
							tca Ser										583				
1000,000							act Thr										631	OTTOKA TAKUTA AMAZAKIT	 OLIMAN SANSA S	and the state of t	and the second s
				gga			aaa Lys		aat					ggt			679				
	-		_		-		gta Val 220	-	taag	jt							708				
	<211 <212	> LE	Q ID NGTH PE:	PRT) NAV I	RUS														
	<400)> SE	QUEN	CE:	17																
	Met 1	Ala	Asp	Asn	Gly 5	Thr	Ile	Thr	Val	Glu 10	Glu	Leu	Lys	Gln	Leu 15	Leu					
	Glu	Gln	Trp	Asn 20	Leu	Val	Ile	Gly	Phe 25	Leu	Phe	Leu	Ala	Trp 30	Ile	Met					
	Leu	Leu	Gln 35	Phe	Ala	Tyr	Ser	Asn 40	Arg	Asn	Arg	Phe	Leu 45	Tyr	Ile	Ile					

Lys Leu Val Phe Leu Trp Leu Leu Trp Pro Val Thr Leu Ala Cys Phe

9	50					55					60								
Val I 65	Leu	Ala	Ala	Val	Tyr 70	Arg	Ile	Asn	Trp	Val 75	Thr	Gly	Gly	Ile	Ala 80				
Ile A	Ala	Met	Ala	Cys 85	Ile	Val	Gly	Leu	Met 90	Trp	Leu	Ser	Tyr	Phe 95	Val				
Ala S	Ser	Phe	Arg 100	Leu	Phe	Ala	Arg	Thr 105	Arg	Ser	Met	Trp	Ser 110	Phe	Asn				
Pro G	Glu	Thr 115	Asn	Ile	Leu	Leu	Asn 120	Val	Pro	Leu	Arg	Gly 125	Thr	Ile	Val				
Thr A	Arg 130	Pro	Leu	Met	Glu	Ser 135	Glu	Leu	Val	Ile	Gly 140	Ala	Val	Ile	Ile				
Arg 6	3ly	His	Leu	Arg	Met 150	Ala	Gly	His	Ser	Leu 155	Gly	Arg	Сув	Asp	Ile 160				
Lys A	Asp	Leu	Pro	Lys 165	Glu	Ile	Thr	Val	Ala 170	Thr	Ser	Arg	Thr	Leu 175	Ser				
Tyr T	ľyr	Lys	Leu 180	Gly	Ala	Ser	Gln	Arg 185	Val	Gly	Thr	Asp	Ser 190	Gly	Phe				
Ala A		Tyr 195	Asn	Arg	Tyr	Arg	Ile 200	Gly	Asn	Tyr	Lys	Leu 205	Asn	Thr	Asp				
His A	Ala 210	Gly	Ser	Asn	qaA	Asn 215	Ile	Ala	Leu	Leu	Val 220	Gln							
<210> <211> <212> <213>	LE TY	NGTH PE:	: 76 DNA	9	DNAVI	RUS													
<400>	SE	QUEN	CE:	18															
cctga	tct	tc t	ggto	taaa	ic ga	aacta	aacta	i tta	ittat	tat	tate	gttte	gga a	cttt	aacat	. 60			
									-	• •	-				ggaac				
			-									•			tgcct				
															gtggc		 	 	
				-	-	-				_					tggcg				
			-		_	-		-	•		-	-		-	tgctt				
															cattc				
						-	-	-							acttg				
								_	_						geget				
_								_				-	-		ccqct				
				•			• •	•					•		tgctt				
tgcta							_		_		-				,,,,,,,,	769			
<210> <211> <212> <213> <400>	TY:	NGTH PE: GANI	: 12 DNA SM:	31 CORO	N A VI	RUS													

taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct

ttgctagtac	agtaagtgac	aacagatgtt	tcatcttgtt	gacttccagg	ttacaatagc	120
agagatattg	attatcatta	tgaggacttt	caggattgct	atttggaatc	ttgacgttat	180
aataagttca	atagtgagac	aattatttaa	gcctctaact	aagaagaatt	attcggagtt	240
agatgatgaa	gaacctatgg	agttagatta	tccataaaac	gaacatgaaa	attattctct	300
tcctgacatt	gattgtattt	acatcttgcg	agctatatca	ctatcaggag	tgtgttagag	360
gtacgactgt	actactaaaa	gaaccttgcc	catcaggaac	atacgagggc	aattcaccat	420
ttcaccctct	tgctgacaat	aaatttgcac	taacttgcac	tagcacacac	tttgcttttg	480
cttgtgctga	cggtactcga	catacctatc	agctgcgtgc	aagatcagtt	tcaccaaaac	540
ttttcatcag	acaagaggag	gttcaacaag	agctctactc	gccacttttt	ctcattgttg	600
ctgctctagt	atttttaata	ctttgcttca	ccattaagag	aaagacagaa	tgaatgagct	660
cactttaatt	gacttctatt	tgtgcttttt	agcctttctg	ctattccttg	ttttaataat	720
gcttattata	ttttggtttt	cactcgaaat	ccaggatcta	gaagaacctt	gtaccaaagt	780
ctaaacgaac	atgaaacttc	tcattgtttt	gacttgtatt	tctctatgca	gttgcatatg	840
cactgtagta	cagegetgtg	catctaataa	acctcatgtg	cttgaagatc	cttgtaaggt	900
acaacactag	gggtaatact	tatagcactg	cttggctttg	tgctctagga	aaggttttac	960
cttttcatag	atggcacact	atggttcaaa	catgcacacc	taatgttact	atcaactgtc	1020
aagatccagc	tggtggtgcg	cttatagcta	ggtgttggta	ccttcatgaa	ggtcaccaaa	1080
ctgctgcatt	tagagacgta	cttgttgttt	taaataaacg	aacaaattaa	aatgtctgat	1140
aatggacccc	aatcaaacca	acgtagtgcc	ccccgcatta	catttggtgg	acccacagat	1200
tcaactgaca	ataaccagaa	tggaggacgc	a			1231

<210> SEQ ID NO 20

<211> LENGTH: 1242 <212> TYPE: DNA

<213> ORGANISM: CORONAVIRUS

<400> SEQUENCE: 20

gcatacaacc gctaccgtat tggaaactat aaattaaata cagaccacgc cggtagcaac 60 120 gacaatattg ctttgctagt acagtaagtg acaacagatg tttcatcttg ttgacttcca ggttacaata gcagagatat tgattatcat tatgaggact ttcaggattg ctatttggaa tottgacgtt ataataagtt caatagtgag acagttattt aagcototaa otaagaagaa 240 ttattcggag ttagatgatg aagaacctat ggagttagat tatccataaa acgaacatga 300 aaattattct cttcctgaca ttgattgtat ttacatcttg cgagctatat cactatcagg agtgtgttag aggtacgact gtactactaa aagaaccttg cccatcagga acatacgagg 420 gcaattcacc atttcaccct cttgctgaca ataaatttgc actaacttgc actagcacac 480 actttgcttt tgcttgtgct gacggtactc gacataccta tcagctgcgt gcaagatcag tttcaccaaa acttttcatc agacaagagg aggttcaaca agagctctac tcgccacttt 600 ttctcattgt tgctgctcta gtatttttaa tactttgctt caccattaag agaaagacag 660 aatgaatgag ctcactttaa ttgacttcta tttgtgcttt ttagcctttc tgctattcct 720 tgttttaata atgcttatta tattttggtt ttcactcgaa atccaggatc tagaagaacc 780 ttgtaccaaa gtctaaacga acatgaaact tctcattgtt ttgacttgta tttctctatg 840

-continued	
cagttgcata tgcactgtag tacagegetg tgcatctaat aaaceteatg tgcttgaaga	900
tccttgtaag gtacaacact aggggtaata cttatagcac tgcttggctt tgtgctctag	960
gaaaggtttt accttttcat agatggcaca ctatggttca aacatgcaca cctaatgtta	1020
ctatcaactg tcaagatcca gctggtggtg cgcttatagc taggtgttgg taccttcatg	1080
aaggtcacca aactgctgca tttagagacg tacttgttgt tttaaataaa cgaacgaatt	1140
aaaatgtctg ataatggacc ccaatcaaac caacgtagtg ccccccgcat tacatttggt	1200
ggacccacag attcaactga caataaccag aatggaggac gc	1242
<pre><210> SEQ ID NO 21 <211> LENGTH: 1231 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (86)(274) <223> OTHER INFORMATION: <400> SEQUENCE: 21</pre>	
taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct	60
ttgctagtac agtaagtgac aacag atg ttt cat ctt gtt gac ttc cag gtt Met Phe His Leu Val Asp Phe Gln Val 1 5	112
aca ata gca gag ata ttg att atc att atg agg act ttc agg att gct Thr Ile Ala Glu Ile Leu Ile Ile Met Arg Thr Phe Arg Ile Ala 10 $00000000000000000000000000000000000$	160
att tgg aat ctt gac gtt ata ata agt tca ata gtg aga caa tta ttt Ile Trp Asn Leu Asp Val Ile Ile Ser Ser Ile Val Arg Gln Leu Phe 30 35 40	208
aag cct cta act aag aag aat tat tcg gag tta gat gat gaa gaa cct Lys Pro Leu Thr Lys Lys Asn Tyr Ser Glu Leu Asp Asp Glu Glu Pro 45 50 55	256
atg gag tta gat tat cca taaaacgaac atgaaaatta ttctcttcct Met Glu Leu Asp Tyr Pro 60	304
gacattgatt gtatttacat cttgcgagct atatcactat caggagtgtg ttagaggtac	364
gactgtacta ctaaaagaac cttgcccatc aggaacatac gagggcaatt caccatttca	424
contestignt gacaataaat tigcactaan tigcactage acacactitig cittigetig	484
tgctgacggt actcgacata cctatcagct gcgtgcaaga tcagtttcac caaaactttt	544
catcagacaa gaggaggttc aacaagagct ctactcgcca ctttttctca ttgttgctgc	604
tctagtattt ttaatacttt gcttcaccat taagagaaag acagaatgaa tgagctcact	664
ttaattgact tctatttgtg ctttttagcc tttctgctat tccttgtttt aataatgctt	724
attatatttt ggttttcact cgaaatccag gatctagaag aaccttgtac caaagtctaa	784
acgaacatga aacttotcat tgttttgact tgtatttotc tatgcagttg catatgcact	844
gtagtacagc gctgtgcatc taataaacct catgtgcttg aagatccttg taaggtacaa cactaggggt aatacttata gcactgcttg gctttgtgct ctaggaaagg ttttaccttt	904 964
toatagatgg cacactatgg ttcaaacatg cacacctaat gttactatca actgtcaaga	1024
tocagotagt ggtgcgctta tagctaggtg ttggtacctt catgaaggtc accaaactgc	1084
tgcatttaga gacgtacttg ttgttttaaa taaacgaaca aattaaaatg tctgataatg	1144

gaccccaatc aaaccaacgt agtgcccccc gcattacatt t	ggtggaccc acagattcaa 12	04
ctgacaataa ccagaatgga ggacgca	12	31
<210> SEQ ID NO 22 <211> LENGTH: 63 <212> TYPE: PRT <213> ORGANISM: CORONAVIRUS		
<400> SEQUENCE: 22		
Met Phe His Leu Val Asp Phe Gln Val Thr Ile A	la Glu Ile Leu Ile 15	
Ile Ile Met Arg Thr Phe Arg Ile Ala Ile Trp Arg 20 25	sn Leu Asp Val Ile 30	
Ile Ser Ser Ile Val Arg Gln Leu Phe Lys Pro Le 35 40	eu Thr Lys Lys Asn 45	
Tyr Ser Glu Leu Asp Asp Glu Glu Pro Met Glu Le 50 55 60		
<pre><210> SEQ ID NO 23 <211> LENGTH: 1231 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (285)(650) <223> OTHER INFORMATION: <400> SEQUENCE: 23</pre>		
taccgtattg gaaactataa attaaataca gaccacgccg gi	tagcaacga caatattgct (60
ttgctagtac agtaagtgac aacagatgtt tcatcttgtt ga	acttccagg ttacaatagc 12	20
agagatattg attatcatta tgaggacttt caggattgct at	tttggaatc ttgacgttat 18	80
aataagttca atagtgagac aattatttaa gcctctaact aa	agaagaatt attoggagtt 24	40
agatgatgaa gaacctatgg agttagatta tocataaaac ga	aac atg aaa att att 29 Met Lys Ile Ile 1	96
ctc ttc ctg aca ttg att gta ttt aca tct tgc ga Leu Phe Leu Thr Leu Ile Val Phe Thr Ser Cys Gl 5 10 15	ag cta tat cac tat 34 lu Leu Tyr His Tyr 20	44
cag gag tgt gtt aga ggt acg act gta cta cta ac Gln Glu Cys Val Arg Gly Thr Thr Val Leu Leu Ly 25 30		92
toa gga aca tac gag ggc aat tca cca ttt cac cc Ser Gly Thr Tyr Glu Gly Asn Ser Pro Phe His Pr 40 45		40
aaa ttt gca cta act tgc act agc aca cac ttt gc Lys Phe Ala Leu Thr Cys Thr Ser Thr His Phe Al 55 60		88
gac ggt act cga cat acc tat cag ctg cgt gca acc Asp Gly Thr Arg His Thr Tyr Gln Leu Arg Ala Ar 70 75	rg Ser Val Ser Pro	36
aaa ctt ttc atc aga caa gag gag gtt caa caa ga Lys Leu Phe Ile Arg Gln Glu Glu Val Gln Gln Gl 85 90 95		34
ctt ttt ctc att gtt gct gct cta gta ttt tta at Leu Phe Leu Ile Val Ala Ala Leu Val Phe Leu Il 105 110		32

att aag aga aag aca gaa tgaatgagct cactttaatt gacttctatt Ile Lys Arg Lys Thr Glu 120	680
tgtgcttttt agcctttctg ctattccttg ttttaataat gcttattata ttttggtttt	740
cactcgaaat ccaggatcta gaagaacctt gtaccaaagt ctaaacgaac atgaaacttc	800
tcattgtttt gacttgtatt tctctatgca gttgcatatg cactgtagta cagcgctgtg	860
catctaataa acctcatgtg cttgaagatc cttgtaaggt acaacactag gggtaatact	920
tatagcactg cttggctttg tgctctagga aaggttttac cttttcatag atggcacact	980
atggttcaaa catgcacacc taatgttact atcaactgtc aagatccagc tggtggtgcg	1040
cttatagcta ggtgttggta ccttcatgaa ggtcaccaaa ctgctgcatt tagagacgta	1100
cttgttgttt taaataaacg aacaaattaa aatgtctgat aatggacccc aatcaaacca	1160
acgtagtgcc ccccgcatta catttggtgg acccacagat tcaactgaca ataaccagaa	1220
tggaggacgc a	1231
<210> SEQ ID NO 24 <211> LENGTH: 122 <212> TYPE: PRT <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 24	
Met Lys Ile Ile Leu Phe Leu Thr Leu Ile Val Phe Thr Ser Cys Glu 1 10 15	
Leu Tyr His Tyr Gln Glu Cys Val Arg Gly Thr Thr Val Leu Leu Lys 20 25 30	
Glu Pro Cys Pro Ser Gly Thr Tyr Glu Gly Asn Ser Pro Phe His Pro 35 40 45	
Leu Ala Asp Asn Lys Phe Ala Leu Thr Cys Thr Ser Thr His Phe Ala 50 55 60	
Phe Ala Cys Ala Asp Gly Thr Arg His Thr Tyr Gln Leu Arg Ala Arg 65 70 75 80	
Ser Val Ser Pro Lys Leu Phe Ile Arg Gln Glu Glu Val Gln Gln Glu 85 90 95	
Leu Tyr Ser Pro Leu Phe Leu Ile Val Ala Ala Leu Val Phe Leu Ile 100 105 110	
Leu Cys Phe Thr Ile Lys Arg Lys Thr Glu 115 120	
<210> SEQ ID NO 25 <211> LENGTH: 1231 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (650)(781) <223> OTHER INFORMATION:	
<400> SEQUENCE: 25	
taccgtattg gaaactataa attaaataca gaccacgccg gtagcaacga caatattgct	60
ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc	120
agagatattg attatcatta tgaggacttt caggattgct atttgggaatc ttgacgttat	180

aataagttca atagtgagac aattatttaa gcctctaact aagaagaatt attcggagtt

300
360
420
480
540
600
658
706
754
301
861
921
981
1041
1101
1161
1221
1231
60

ttgctagtac agtaagtgac aacagatgtt tcatcttgtt gacttccagg ttacaatagc 120

<400> SEQUENCE: 29

agagatattg attatcatta tgaggacttt caggattgct atttggaatc ttgacgttat	180
aataagttca atagtgagac aattatttaa goototaact aagaagaatt attoggagtt	240
agatgatgaa gaacctatgg agttagatta tccataaaac gaacatgaaa attattctct	300
tcctgacatt gattgtattt acatcttgcg agctatatca ctatcaggag tgtgttagag	360
gtacgactgt actactaaaa gaaccttgcc catcaggaac atacgagggc aattcaccat	420
ttcaccctct tgctgacaat aaatttgcac taacttgcac tagcacacac tttgcttttg	480
cttgtgctga cggtactcga catacctatc agctgcgtgc aagatcagtt tcaccaaaac	540
ttttcatcag acaagaggag gttcaacaag agctctactc gccacttttt ctcattgttg	600
ctgctctagt atttttaata ctttgcttca ccattaagag aaagacagaa tgaatgagct	660
cactttaatt gacttctatt tgtgcttttt agcctttctg ctattccttg ttttaataat	720
gcttattata ttttggtttt cactcgaaat ccaggatcta gaagaacctt gtaccaaagt	780
ctaaacgaac atg aaa ctt ctc att gtt ttg act tgt att tct cta tgc Met Lys Leu Leu Ile Val Leu Thr Cys Ile Ser Leu Cys 1 5 10	829
agt tgc ata tgc act gta gta cag cgc tgt gca tct aat aaa cct cat Ser Cys Ile Cys Thr Val Val Gln Arg Cys Ala Ser Asn Lys Pro His 15 20 25	877
gtg ctt gaa gat cct tgt aag gta caa cac taggggtaat acttatagca Val Leu Glu Asp Pro Cys Lys Val Gln His 30 35	927
ctgcttggct ttgtgctcta ggaaaggttt taccttttca tagatggcac actatggttc	987
aaacatgcac acctaatgtt actatcaact gtcaagatcc agctggtggt gcgcttatag	1047
ctaggtgttg gtaccttcat gaaggtcacc aaactgctgc atttagagac gtacttgttg	1107
ttttaaataa acgaacaaat taaaatgtct gataatggac cccaatcaaa ccaacgtagt	1167
geocecegea ttacatttgg tggacceaca gattcaactg acaataacca gaatggagga	1227
cgca	1231
<210> SEQ ID NO 28 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 28	
Met Lys Leu Leu Ile Val Leu Thr Cys Ile Ser Leu Cys Ser Cys Ile 1 5 10 15	
Cys Thr Val Val Gln Arg Cys Ala Ser Asn Lys Pro His Val Leu Glu 20 25 30	
Asp Pro Cys Lys Val Gln His 35	
<210> SEQ ID NO 29 <211> LENGTH: 1231 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (876)(1127) <223> OTHER INFORMATION:	

taccgtattg gaaactataa	attaaataca gaccacgccg gta	gcaacga caatattgct	60
ttgctagtac agtaagtgac	aacagatgtt tcatcttgtt gac	ttccagg ttacaatagc	120
agagatattg attatcatta	tgaggacttt caggattgct att	tggaatc ttgacgttat	180
aataagttca atagtgagac	aattatttaa goototaact aag	aagaatt attcggagtt	240
agatgatgaa gaacctatgg	agttagatta tccataaaac gaa	catgaaa attattctct	300
tcctgacatt gattgtattt	acatcttgcg agctatatca cta	tcaggag tgtgttagag	360
gtacgactgt actactaaaa	gaaccttgcc catcaggaac ata	cgagggc aattcaccat	420
ttcaccctct tgctgacaat	aaatttgcac taacttgcac tag	cacacac tttgcttttg	480
cttgtgctga cggtactcga	catacctatc agctgcgtgc aag	atcagtt tcaccaaaac	540
ttttcatcag acaagaggag	gttcaacaag agctctactc gcc	acttttt ctcattgttg	600
ctgctctagt atttttaata	ctttgcttca ccattaagag aaa	gacagaa tgaatgagct	660
cactttaatt gacttctatt	gtgcttttt agcctttctg cta	ttccttg ttttaataat	720
gcttattata ttttggtttt	cactcgaaat ccaggatcta gaa	gaacctt gtaccaaagt	780
ctaaacgaac atgaaacttc	cattgtttt gacttgtatt tct	ctatgca gttgcatatg	840
cactgtagta cagegetgtg	catctaataa acctc atg tgc Met Cys 1	ttg aag atc ctt Leu Lys Ile Leu 5	893
	g ggt aat act tat agc act g Gly Asn Thr Tyr Ser Thr 15		941
	a cct ttt cat aga tgg cac n Pro Phe His Arg Trp His 30		989
	act atc aac tgt caa gat L Thr Ile Asn Cys Gln Asp 45 50		1037
	tgg tac ctt cat gaa ggt Trp Tyr Leu His Glu Gly 65		1085
	gtt gtt tta aat aaa cga 1 Val Val Leu Asn Lys Arg 80		1127
taaaatgtct gataatggac	ccaatcaaa ccaacgtagt gcc	ccccgca ttacatttgg	1187
tggacccaca gattcaactg	acaataacca gaatggagga cgc	a	1231
<210> SEQ ID NO 30 <211> LENGTH: 84 <212> TYPE: PRT <213> ORGANISM: CORONAV	TRUS		
<400> SEQUENCE: 30			
Met Cys Leu Lys Ile Let 1 5	1 Val Arg Tyr Asn Thr Arg	Gly Asn Thr Tyr 15	
Ser Thr Ala Trp Leu Cy	s Ala Leu Gly Lys Val Leu 25	Pro Phe His Arg	
Trp His Thr Met Val Gla	n Thr Cys Thr Pro Asn Val	Thr Ile Asn Cys 45	

Gln Asp Pro Ala Gly Gly Ala Leu Ile Ala Arg Cys Trp Tyr Leu His 50 60

Glu Gly His Gln Thr Ala Ala Phe Arg Asp Val Leu Val Val Leu Asn 65 70 75 80

Lys Arg Thr Asn

<210> SEQ ID NO 31

<211> LENGTH: 21221

<212> TYPE: DNA

<213> ORGANISM: CORONAVIRUS

<400> SEQUENCE: 31

atggagagcc ttgttcttgg tgtcaacgag aaaacacacg tccaactcag tttgcctgtc 60 cttcaggtta gagacgtgct agtgcgtggc ttcggggact ctgtggaaga ggccctatcg 120 gaggcacgtg aacacctcaa aaatggcact tgtggtctag tagagctgga aaaaggcgta ctgccccagc ttgaacagcc ctatgtgttc attaaacgtt ctgatgcctt aagcaccaat 240 cacggccaca aggtcgttga gctggttgca gaaatggacg gcattcagta cggtcgtagc 300 ggtataacac tgggagtact cgtgccacat gtgggcgaaa ccccaattgc ataccgcaat 360 gttcttcttc gtaagaacgg taataaggga gccggtggtc atagctatgg catcgatcta 420 aagtottatg acttaggtga cgagottggo actgatocca ttgaagatta tgaacaaaac 480 tggaacacta agcatggcag tggtgcactc cgtgaactca ctcgtgagct caatggaggt gcagtcactc gctatgtcga caacaatttc tgtggcccag atgggtaccc tcttgattgc 600 atcaaagatt ttctcgcacg cgcgggcaag tcaatgtgca ctctttccga acaacttgat 660 tacatcgagt cgaagagagg tgtctactgc tgccgtgacc atgagcatga aattgcctgg 720 ttcactgagc gctctgataa gagctacgag caccagacac ccttcgaaat taagagtgcc 780 aagaaatttg acactttcaa aggggaatgc ccaaagtttg tgtttcctct taactcaaaa 840 gtcaaagtca ttcaaccacg tgttgaaaag aaaaagactg agggtttcat ggggcgtata 900 cgctctgtgt accctgttgc atctccacag gagtgtaaca atatgcactt gtctaccttg 960 atgaaatgta atcattgcga tgaagtttca tggcagacgt gcgactttct gaaagccact 1020 tgtgaacatt gtggcactga aaatttagtt attgaaggac ctactacatg tgggtaccta 1080 cctactaatg ctgtagtgaa aatgccatgt cctgcctgtc aagacccaga gattggacct 1140 gagcatagtg ttgcagatta tcacaaccac tcaaacattg aaactcgact ccgcaaqqqa 1200 1260 ggtaggacta gatgttttgg aggctgtgtg tttgcctatg ttggctgcta taataagcgt gcctactggg ttcctcgtgc tagtgctgat attggctcag gccatactgg cattactggt 1320 gacaatgtgg agaccttgaa tgaggatctc cttgagatac tgagtcgtga acgtgttaac 1380 attaacattg ttggcgattt tcatttgaat gaagaggttg ccatcatttt ggcatctttc tctgcttcta caagtgcctt tattgacact ataaagagtc ttgattacaa gtctttcaaa 1500 accattgttg agtcctgcgg taactataaa gttaccaagg gaaagcccgt aaaaggtgct 1560 tggaacattg gacaacagag atcagtttta acaccactgt gtggttttcc ctcacaggct gctggtgtta tcagatcaat ttttgcgcgc acacttgatg cagcaaacca ctcaattcct 1680 gatttgcaaa gagcagctgt caccatactt gatggtattt ctgaacagtc attacgtctt 1740 gtcgacgcca tggtttatac ttcagacctg ctcaccaaca gtgtcattat tatggcatat gtaactggtg gtcttgtaca acagacttct cagtggttgt ctaatctttt gggcactact 1860 gttgaaaaac tcaggcctat ctttgaatgg attgaggcga aacttagtgc aggagttgaa 1920

tttctcaagg	atgcttggga	gattctcaaa	tttctcatta	caggtgtttt	tgacatcgtc	1980
aagggtcaaa	tacaggttgc	ttcagataac	atcaaggatt	gtgtaaaatg	cttcattgat	2040
gttgttaaca	aggcactcga	aatgtgcatt	gatcaagtca	ctatcgctgg	cgcaaagttg	2100
cgatcactca	acttaggtga	agtcttcatc	gctcaaagca	agggacttta	ccgtcagtgt	2160
atacgtggca	aggagcagct	gcaactactc	atgcctctta	aggcaccaaa	agaagtaacc	2220
tttcttgaag	gtgattcaca	tgacacagta	cttacctctg	aggaggttgt	tctcaagaac	2280
ggtgaactcg	aagcactcga	gacgcccgtt	gatagcttca	caaatggagc	tatcgttggc	2340
acaccagtct	gtgtaaatgg	cctcatgctc	ttagagatta	aggacaaaga	acaatactgc	2400
gcattgtctc	ctggtttact	ggctacaaac	aatgtctttc	gcttaaaagg	gggtgcacca	2460
attaaaggtg	taacctttgg	agaagatact	gtttgggaag	ttcaaggtta	caagaatgtg	2520
agaatcacat	ttgagcttga	tgaacgtgtt	gacaaagtgc	ttaatgaaaa	gtgctctgtc	2580
tacactgttg	aatccggtac	cgaagttact	gagtttgcat	gtgttgtagc	agaggctgtt	2640
gtgaagactt	tacaaccagt	ttctgatctc	cttaccaaca	tgggtattga	tcttgatgag	2700
tggagtgtag	ctacattcta	cttatttgat	gatgctggtg	aagaaaactt	ttcatcacgt	2760
atgtattgtt	ccttttaccc	tccagatgag	gaagaagagg	acgatgcaga	gtgtgaggaa	2820
gaagaaattg	atgaaacctg	tgaacatgag	tacggtacag	aggatgatta	tcaaggtctc	2880
cctctggaat	ttggtgcctc	agctgaaaca	gttcgagttg	aggaagaaga	agaggaagac	2940
tggctggatg	atactactga	gcaatcagag	attgagccag	aaccagaacc	tacacctgaa	3000
gaaccagtta	atcagtttac	tggttattta	aaacttactg	acaatgttgc	cattaaatgt	3060
gttgacatcg	ttaaggaggc	acaaagtgct	aatcctatgg	tgattgtaaa	tgctgctaac	3120
atacacctga	aacatggtgg	tggtgtagca	ggtgcactca	acaaggcaac	caatggtgcc	3180
atgcaaaagg	agagtgatga	ttacattaag	ctaaatggcc	ctcttacagt	aggagggtct	3240
tgtttgcttt	ctggacataa	tcttgctaag	aagtgtctgc	atgttgttgg	acctaaccta	3300
aatgcaggtg	aggacatcca	gcttcttaag	gcagcatatg	aaaatttcaa	ttcacaggac	3360
atcttacttg	caccattgtt	gtcagcaggc	atatttggtg	ctaaaccact	tcagtcttta	3420
caagtgtgcg	tgcagacggt	tcgtacacag	gtttatattg	cagtcaatga	caaagctctt	3480
tatgagcagg	ttgtcatgga	ttatcttgat	aacctgaagc	ctagagtgga	agcacctaaa	3540
caagaggagc	caccaaacac	agaagattcc	aaaactgagg	agaaatctgt	cgtacagaag	3600
cctgtcgatg	tgaagccaaa	aattaaggcc	tgcattgatg	aggttaccac	aacactggaa	3660
gaaactaagt	ttcttaccaa	taagttactc	ttgtttgctg	atatcaatgg	taagctttac	3720
catgattctc	agaacatgct	tagaggtgaa	gatatgtctt	tccttgagaa	ggatgcacct	3780
tacatggtag	gtgatgttat	cactagtggt	gatatcactt	gtgttgtaat	accctccaaa	3840
aaggctggtg	gcactactga	gatgctctca	agagctttga	agaaagtgcc	agttgatgag	3900
tatataacca	cgtaccctgg	acaaggatgt	gctggttata	cacttgagga	agctaagact	3960
gctcttaaga	aatgcaaatc	tgcattttat	gtactacctt	cagaagcacc	taatgctaag	4020
gaagagattc	taggaactgt	atcctggaat	ttgagagaaa	tgcttgctca	tgctgaagag	4080
acaagaaaat	taatgcctat	atgcatggat	gttagagcca	taatggcaac	catccaacgt	4140
aagtataaag	gaattaaaat	tcaagagggc	atcgttgact	atggtgtccg	attcttcttt	4200

tatactagta	aagagcctgt	agcttctatt	attacgaagc	tgaactctct	aaatgagccg	4260
cttgtcacaa	tgccaattgg	ttatgtgaca	catggtttta	atcttgaaga	ggctgcgcgc	4320
tgtatgcgtt	ctcttaaagc	tcctgccgta	gtgtcagtat	catcaccaga	tgctgttact	4380
acatataatg	gatacctcac	ttcgtcatca	aagacatctg	aggagcactt	tgtagaaaca	4440
gtttctttgg	ctggctctta	cagagattgg	tcctattcag	gacagcgtac	agagttaggt	4500
gttgaatttc	ttaagcgtgg	tgacaaaatt	gtgtaccaca	ctctggagag	ccccgtcgag	4560
tttcatcttg	acggtgaggt	tctttcactt	gacaaactaa	agagtctctt	atccctgcgg	4620
gaggttaaga	ctataaaagt	gttcacaact	gtggacaaca	ctaatctcca	cacacagctt	4680
gtggatatgt	ctatgacata	tggacagcag	tttggtccaa	catacttgga	tggtgctgat	4740
gttacaaaaa	ttaaacctca	tgtaaatcat	gagggtaaga	ctttctttgt	actacctagt	4800
gatgacacac	tacgtagtga	agctttcgag	tactaccata	ctcttgatga	gagttttctt	4860
ggtaggtaca	tgtctgcttt	aaaccacaca	aagaaatgga	aatttcctca	agttggtggt	4920
ttaacttcaa	ttaaatgggc	tgataacaat	tgttatttgt	ctagtgtttt	attagcactt	4980
caacagcttg	aagtcaaatt	caatgcacca	gcacttcaag	aggcttatta	tagagecegt	5040
gctggtgatg	ctgctaactt	ttgtgcactc	atactcgctt	acagtaataa	aactgttggc	5100
gagcttggtg	atgtcagaga	aactatgacc	catcttctac	agcatgctaa	tttggaatct	5160
gcaaagcgag	ttcttaatgt	ggtgtgtaaa	cattgtggtc	agaaaactac	taccttaacg	5220
ggtgtagaag	ctgtgatgta	tatgggtact	ctatcttatg	ataatcttaa	gacaggtgtt	5280
tccattccat	gtgtgtgtgg	tegtgatget	acacaatatc	tagtacaaca	agagtettet	5340
tttgttatga	tgtctgcacc	acctgctgag	tataaattac	agcaaggtac	attcttatgt	5400
gcgaatgagt	acactggtaa	ctatcagtgt	ggtcattaca	ctcatataac	tgctaaggag	5460
accctctatc	gtattgacgg	agctcacctt	acaaagatgt	cagagtacaa	aggaccagtg	5520
actgatgttt	tctacaagga	aacatcttac	actacaacca	tcaagcctgt	gtcgtataaa	5580
ctcgatggag	ttacttacac	agagattgaa	ccaaaattgg	atgggtatta	taaaaaggat	5640
aatgcttact	atacagagca	gcctatagac	cttgtaccaa	ctcaaccatt	accaaatgcg	5700
agttttgata	atttcaaact	cacatgttct	aacacaaaat	ttgctgatga	tttaaatcaa	5760
atgacaggct	tcacaaagcc	agcttcacga	gagctatctg	tcacattctt	cccagacttg	5820
aatggcgatg	tagtggctat	tgactataga	cactattcag	cgagtttcaa	gaaaggtgct	5880
aaattactgc	ataagccaat	tgtttggcac	attaaccagg	ctacaaccaa	gacaacgttc	5940
aaaccaaaca	cttggtgttt	acgttgtctt	tggagtacaa	agccagtaga	tacttcaaat	6000
tcatttgaag	ttctggcagt	agaagacaca	caaggaatgg	acaatcttgc	ttgtgaaagt	6060
caacaaccca	cctctgaaga	agtagtggaa	aatcctacca	tacagaagga	agtcatagag	6120
tgtgacgtga	aaactaccga	agttgtaggc	aatgtcatac	ttaaaccatc	agatgaaggt	6180
gttaaagtaa	cacaagagtt	aggtcatgag	gatcttatgg	ctgcttatgt	ggaaaacaca	6240
agcattacca	ttaagaaacc	taatgagctt	tcactagcct	taggtttaaa	aacaattgcc	6300
actcatggta	ttgctgcaat	taatagtgtt	ccttggagta	aaattttggc	ttatgtcaaa	6360
ccattcttag	gacaagcagc	aattacaaca	tcaaattgcg	ctaagagatt	agcacaacgt	6420
gtgtttaaca	attatatgcc	ttatgtgttt	acattattgt	tccaattgtg	tacttttact	6480

aaaagtacca	attctagaat	tagagettea	ctacctacaa	ctattgctaa	aaatagtgtt	6540
aagagtgttg	ctaaattatg	tttggatgcc	ggcattaatt	atgtgaagtc	acccaaattt	6600
tctaaattgt	tcacaatcgc	tatgtggcta	ttgttgttaa	gtatttgctt	aggttctcta	6660
atctgtgtaa	ctgctgcttt	tggtgtactc	ttatctaatt	ttggtgctcc	ttcttattgt	6720
aatggcgtta	gagaattgta	tcttaattcg	tctaacgtta	ctactatgga	tttctgtgaa	6780
ggttctttc	cttgcagcat	ttgtttaagt	ggattagact	cccttgattc	ttatccagct	6840
cttgaaacca	ttcaggtgac	gatttcatcg	tacaagctag	acttgacaat	tttaggtctg	6900
gccgctgagt	gggttttggc	atatatgttg	ttcacaaaat	tcttttattt	attaggtctt	6960
tcagctataa	tgcaggtgtt	ctttggctat	tttgctagtc	atttcatcag	caattcttgg	7020
ctcatgtggt	ttatcattag	tattgtacaa	atggcacccg	tttctgcaat	ggttaggatg	7080
tacatcttct	ttgcttcttt	ctactacata	tggaagagct	atgttcatat	catggatggt	7140
tgcacctctt	cgacttgcat	gatgtgctat	aagcgcaatc	gtgccacacg	cgttgagtgt	7200
acaactattg	ttaatggcat	gaagagatct	ttctatgtct	atgcaaatgg	aggccgtggc	7260
ttctgcaaga	ctcacaattg	gaattgtctc	aattgtgaca	cattttgcac	tggtagtaca	7320
ttcattagtg	atgaagttgc	tcgtgatttg	tcactccagt	ttaaaagacc	aatcaaccct	7380
actgaccagt	catcgtatat	tgttgatagt	gttgctgtga	aaaatggcgc	gcttcacctc	7440
tactttgaca	aggctggtca	aaagacctat	gagagacatc	cgctctccca	ttttgtcaat	7500
ttagacaatt	tgagagctaa	caacactaaa	ggttcactgc	ctattaatgt	catagttttt	7560
gatggcaagt	ccaaatgcga	cgagtctgct	tctaagtctg	cttctgtgta	ctacagtcag	7620
ctgatgtgcc	aacctattct	gttgcttgac	caagctcttg	tatcagacgt	tggagatagt	7680
actgaagttt	ccgttaagat	gtttgatgct	tatgtcgaca	ccttttcagc	aacttttagt	7740
gttcctatgg	aaaaacttaa	ggcacttgtt	gctacagctc	acagcgagtt	agcaaagggt	7800
gtagctttag	atggtgtcct	ttctacattc	gtgtcagctg	cccgacaagg	tgttgttgat	7860
accgatgttg	acacaaagga	tgttattgaa	tgtctcaaac	tttcacatca	ctctgactta	7920
gaagtgacag	gtgacagttg	taacaatttc	atgctcacct	ataataaggt	tgaaaacatg	7980
acgcccagag	atcttggcgc	atgtattgac	tgtaatgcaa	ggcatatcaa	tgcccaagta	8040
gcaaaaagtc	acaatgtttc	actcatctgg	aatgtaaaag	actacatgtc	tttatctgaa	8100
cagctgcgta	aacaaattcg	tagtgctgcc	aagaagaaca	acataccttt	tagactaact	8160
tgtgctacaa	ctagacaggt	tgtcaatgtc	ataactacta	aaatctcact	caagggtggt	8220
aagattgtta	gtacttgttt	taaacttatg	cttaaggcca	cattattgtg	cgttcttgct	8280
gcattggttt	gttatatcgt	tatgccagta	catacattgt	caatccatga	tggttacaca	8340
aatgaaatca	ttggttacaa	agccattcag	gatggtgtca	ctcgtgacat	catttctact	8400
gatgattgtt	ttgcaaataa	acatgctggt	tttgacgcat	ggtttagcca	gcgtggtggt	8460
tcatacaaaa	atgacaaaag	ctgccctgta	gtagctgcta	tcattacaag	agagattggt	8520
ttcatagtgc	ctggcttacc	gggtactgtg	ctgagagcaa	tcaatggtga	cttcttgcat	8580
tttctacctc	gtgtttttag	tgctgttggc	aacatttgct	acacaccttc	caaactcatt	8640
gagtatagtg	attttgctac	ctctgcttgc	gttcttgctg	ctgagtgtac	aatttttaag	8700
gatgctatgg	gcaaacctgt	gccatattgt	tatgacacta	atttgctaga	gggttctatt	8760

tcttatagtg	agcttcgtcc	agacactcgt	tatgtgctta	tggatggttc	catcatacag	8820
tttcctaaca	cttacctgga	gggttctgtt	agagtagtaa	caacttttga	tgctgagtac	8880
tgtagacatg	gtacatgcga	aaggtcagaa	gtaggtattt	gcctatctac	cagtggtaga	8940
tgggttctta	ataatgagca	ttacagagct	ctatcaggag	ttttctgtgg	tgttgatgcg	9000
atgaatctca	tagctaacat	ctttactcct	cttgtgcaac	ctgtgggtgc	tttagatgtg	9060
tctgcttcag	tagtggctgg	tggtattatt	gccatattgg	tgacttgtgc	tgcctactac	9120
tttatgaaat	tcagacgtgt	ttttggtgag	tacaaccatg	ttgttgctgc	taatgcactt	9180
ttgtttttga	tgtctttcac	tatactctgt	ctggtaccag	cttacagctt	tctgccggga	9240
gtctactcag	tcttttactt	gtacttgaca	ttctatttca	ccaatgatgt	ttcattcttg	9300
gctcaccttc	aatggtttgc	catgttttct	cctattgtgc	ctttttggat	aacagcaatc	9360
tatgtattct	gtatttctct	gaagcactgc	cattggttct	ttaacaacta	tcttaggaaa	9420
agagtcatgt	ťtaatggagt	tacatttagt	accttcgagg	aggctgcttt	gtgtaccttt	9480
ttgctcaaca	aggaaatgta	cctaaaattg	cgtagcgaga	cactgttgcc	acttacacag	9540
tataacaggt	atcttgctct	atataacaag	tacaagtatt	tcagtggagc	cttagatact	9600
accagctatc	gtgaagcagc	ttgctgccac	ttagcaaagg	ctctaaatga	ctttagcaac	9660
tcaggtgctg	atgttctcta	ccaaccacca	cagacatcaa	tcacttctgc	tgttctgcag	9720
agtggtttta	ggaaaatggc	attcccgtca	ggcaaagttg	aagggtgcat	ggtacaagta	9780
acctgtggaa	ctacaactct	taatggattg	tggttggatg	acacagtata	ctgtccaaga	9840
catgtcattt	gcacagcaga	agacatgctt	aatcctaact	atgaagatct	gctcattcgc	9900
aaatccaacc	atagctttct	tgttcaggct	ggcaatgttc	aacttcgtgt	tattggccat	9960
tctatgcaaa	attgtctgct	taggcttaaa	gttgatactt	ctaaccctaa	gacacccaag	10020
tataaatttg	tccgtatcca	acctggtcaa	acattttcag	ttctagcatg	ctacaatggt	10080
tcaccatctg	gtgtttatca	gtgtgccatg	agacctaatc	ataccattaa	aggttctttc	10140
cttaatggat	catgtggtag	tgttggtttt	aacattgatt	atgattgcgt	gtctttctgc	10200
tatatgcatc	atatggagct	tccaacagga	gtacacgctg	gtactgactt	agaaggtaaa	10260
ttctatggtc	catttgttga	cagacaaact	gcacaggctg	caggtacaga	cacaaccata	10320
acattaaatg	ttttggcatg	gctgtatgct	gctgttatca	atggtgatag	gtggtttctt	10380
aatagattca	ccactacttt	gaatgacttt	aaccttgtgg	caatgaagta	caactatgaa	10440
cctttgacac	aagatcatgt	tgacatattg	ggacctcttt	ctgctcaaac	aggaattgcc	10500
gtcttagata	tgtgtgctgc	tttgaaagag	ctgctgcaga	atggtatgaa	tggtcgtact	10560
atccttggta	gcactatttt	agaagatgag	tttacaccat	ttgatgttgt	tagacaatgc	10620
tctggtgtta	ccttccaagg	taagttcaag	aaaattgtta	agggcactca	tcattggatg	10680
cttttaactt	tcttgacatc	actattgatt	cttgttcaaa	gtacacagtg	gtcactgttt	10740
ttctttgttt	acgagaatgc	tttcttgcca	tttactcttg	gtattatggc	aattgctgca	10800
tgtgctatgc	tgcttgttaa	gcataagcac	gcattcttgt	gcttgtttct	gttaccttct	10860
cttgcaacag	ttgcttactt	taatatggtc	tacatgcctg	ctagctgggt	gatgcgtatc	10920
atgacatggc	ttgaattggc	tgacactagc	ttgtctggtt	ataggcttaa	ggattgtgtt	10980
atgtatgctt	cagctttagt	tttgcttatt	ctcatgacag	ctcgcactgt	ttatgatgat	11040

gctgctagac gtgtttggac actgatgaat gtcattacac ttgtttacaa agtctactat 11100 ggtaatgctt tagatcaagc tatttccatg tgggccttag ttatttctgt aacctctaac 11160 tattctggtg tcgttacgac tatcatgttt ttagctagag ctatagtgtt tgtgtgtgtt 11220 gagtattacc cattgttatt tattactggc aacaccttac agtgtatcat gcttgtttat 11280 tgtttcttag gctattgttg ctgctgctac tttggccttt tctgtttact caaccgttac 11340 ttcaggctta ctcttggtgt ttatgactac ttggtctcta cacaagaatt taggtatatg 11400 aactcccagg ggcttttgcc tcctaagagt agtattgatg ctttcaagct taacattaag 11460 ttgttgggta ttggaggtaa accatgtatc aaggttgcta ctgtacagtc taaaatgtct 11520 gacgtaaagt gcacatctgt ggtactgctc tcgqttcttc aacaacttag agtaqagtca 11580 tcttctaaat tgtgggcaca atgtgtacaa ctccacaatg atattcttct tgcaaaagac 11640 acaactgaag ctttcgagaa gatggtttct cttttgtctg ttttgctatc catgcagggt 11700 gctgtagaca ttaataggtt gtgcgaggaa atgctcgata accgtgctac tcttcaggct 11760 attgcttcag aatttagttc tttaccatca tatgccgctt atgccactgc ccaggaggcc 11820 tatgagcagg ctgtagctaa tggtgattct gaagtcgttc tcaaaaagtt aaagaaatct 11880 ttgaatgtgg ctaaatctga gtttgaccgt gatgctgcca tgcaacgcaa gttggaaaag 11940 atggcagatc aggctatgac ccaaatgtac aaacaggcaa gatctgagga caagagggca 12000 aaagtaacta gtgctatgca aacaatgctc ttcactatgc ttaggaagct tgataatgat 12060 gcacttaaca acattatcaa caatgcgcgt gatggttgtg ttccactcaa catcatacca 12120 ttgactacag cagccaaact catggttgtt gtccctgatt atggtaccta caagaacact 12180 tgtgatggta acacctttac atatgcatct gcactctggg aaatccagca agttgttgat 12240 gcggatagca agattgttca acttagtgaa attaacatgg acaattcacc aaatttggct 12300 tggcctctta ttgttacagc tctaagagcc aactcagctg ttaaactaca gaataatgaa 12360 ctgagtccag tagcactacg acagatgtcc tgtgcggctg gtaccacaca aacagcttgt 12420 actgatgaca atgcacttgc ctactataac aattcgaagg gaggtaggtt tgtgctggca 12480 ttactatcag accaccaaga tctcaaatgg gctagattcc ctaagagtga tggtacaggt 12540 acaatttaca cagaactgga accaccttgt aggtttgtta cagacacacc aaaagggcct 12600 aaagtgaaat acttgtactt catcaaaggc ttaaacaacc taaatagagg tatggtgctg 12660 ggcagtttag ctgctacagt acgtcttcag gctggaaatg ctacagaagt acctgccaat 12720 tcaactgtgc tttccttctg tgcttttgca gtagaccctg ctaaagcata taaggattac 12780 ctagcaagtg gaggacaacc aatcaccaac tgtgtgaaga tgttgtgtac acacactggt 12840 acaggacagg caattactgt aacaccagaa gctaacatgg accaagagtc ctttggtggt 12900 gcttcatgtt gtctgtattg tagatgccac attgaccatc caaatcctaa aggattctgt 12960 gacttgaaag gtaagtacgt ccaaatacct accacttgtg ctaatgaccc agtgggtttt 13020 acacttagaa acacagtctg taccgtctgc ggaatgtgga aaggttatgg ctgtagttgt 13080 gaccaactcc gcgaaccctt gatgcagtct gcggatgcat caacgttttt aaacgggttt 13140 gcggtgtaag tgcagcccgt cttacaccgt gcggcacagg cactagtact gatgtcgtct 13200 acagggettt tgatatttac aacgaaaaag ttgctggttt tgcaaagttc ctaaaaacta 13260 attgctgtcg cttccaggag aaggatgagg aaggcaattt attagactct tactttgtag 13320

ttaagaggca tactatgtct aactaccaac atgaagagac tatttataac ttggttaaag 13380 attgtccagc ggttgctgtc catgactttt tcaagtttag agtagatggt gacatggtac 13440 cacatatatc acgtcagcgt ctaactaaat acacaatggc tgatttagtc tatgctctac 13500 gtcattttga tgagggtaat tgtgatacat taaaagaaat actcgtcaca tacaattgct 13560 gtgatgatga ttatttcaat aagaaggatt ggtatgactt cgtagagaat cctgacatct 13620 tacgcgtata tgctaactta ggtgagcgtg tacgccaatc attattaaag actgtacaat 13680 tctgcgatgc tatgcgtgat gcaggcattg taggcgtact gacattagat aatcaggatc 13740 ttaatgggaa ctggtacgat ttcggtgatt tcgtacaagt agcaccaggc tgcggagttc 13800 ctattgtgga ttcatattac tcattgctga tgcccatcct cactttgact agggcattgg 13860 ctgctgagtc ccatatggat gctgatctcg caaaaccact tattaagtgg gatttgctga 13920 aatatgattt tacggaagag agactttgtc tcttcgaccg ttattttaaa tattgggacc 13980 agacatacca tcccaattgt attaactgtt tggatgatag gtgtatcctt cattgtgcaa 14040 actttaatgt gttattttct actgtgtttc cacctacaag ttttggacca ctagtaagaa 14100 aaatatttgt agatggtgtt ccttttgttg tttcaactgg ataccatttt cgtgagttag 14160 gagtcgtaca taatcaggat gtaaacttac atagctcgcg tctcagtttc aaggaacttt 14220 tagtgtatgc tgctgatcca gctatgcatg cagcttctgg caatttattg ctagataaac 14280 gcactacatg cttttcagta gctgcactaa caaacaatgt tgcttttcaa actgtcaaac 14340 ccggtaattt taataaagac ttttatgact ttgctgtgtc taaaggtttc tttaaggaag 14400 gaagttotgt tgaactaaaa cacttottot ttgotcagga tggcaacgct gotatcagtg 14460 attatgacta ttatcgttat aatctgccaa caatgtgtga tatcagacaa ctcctattcg 14520 tagttgaagt tgttgataaa tactttgatt gttacgatgg tggctgtatt aatgccaacc 14580 aagtaatcgt taacaatctg gataaatcag ctggtttccc atttaataaa tggggtaagg 14640 ctagacttta ttatgactca atgagttatg aggatcaaga tgcacttttc gcgtatacta 14700 agogtaatgt catccctact ataactcaaa tgaatcttaa gtatgccatt agtgcaaaga 14760 atagageteg cacegtaget ggtgteteta tetgtagtae tatgacaaat agacagttte 14820 atcagaaatt attgaagtca atagccgcca ctagaggagc tactgtggta attggaacaa 14880 gcaagtttta cggtggctgg cataatatgt taaaaactgt ttacagtgat gtagaaactc 14940 cacaccttat gggttgggat tatccaaaat gtgacagagc catgcctaac atgcttagga 15000 taatggcctc tcttgttctt gctcgcaaac ataacacttg ctgtaactta tcacaccgtt 15060 tctacaggtt agctaacgag tgtgcgcaag tattaagtga gatggtcatg tgtggcggct 15120 cactatatgt taaaccaggt ggaacatcat ccggtgatgc tacaactgct tatgctaata 15180 gtgtctttaa catttgtcaa gctgttacag ccaatgtaaa tgcacttctt tcaactgatg 15240 gtaataagat agctgacaag tatgtccgca atctacaaca caggctctat gagtgtctct 15300 atagaaatag ggatgttgat catgaattcg tggatgagtt ttacgcttac ctgcgtaaac 15360 atttctccat gatgattctt tctgatgatg ccgttgtgtg ctataacagt aactatgcgg 15420 ctcaaggttt agtagctagc attaagaact ttaaggcagt tctttattat caaaataatg 15480 tgttcatgtc tgaggcaaaa tgttggactg agactgacct tactaaagga cctcacgaat 15540 tttgctcaca gcatacaatg ctagttaaac aaggagatga ttacgtgtac ctgccttacc 15600

cagatccatc	aagaatatta	ggcgcaggct	gttttgtcga	tgatattgtc	aaaacagatg	15660
gtacacttat	gattgaaagg	ttcgtgtcac	tggctattga	tgcttaccca	cttacaaaac	15720
atcctaatca	ggagtatgct	gatgtctttc	acttgtattt	acaatacatt	agaaagttac	15780
atgatgagct	tactggccac	atgttggaca	tgtattccgt	aatgctaact	aatgataaca	15840
cctcacggta	ctgggaacct	gagttttatg	aggctatgta	cacaccacat	acagtcttgc	15900
aggctgtagg	tgcttgtgta	ttgtgcaatt	cacagacttc	acttcgttgc	ggtgcctgta	15960
ttaggagacc	attcctatgt	tgcaagtgct	gctatgacca	tgtcatttca	acatcacaca	16020
aattagtgtt	gtctgttaat	ccctatgttt	gcaatgcccc	aggttgtgat	gtcactgatg	16080
tgacacaact	gtatctagga	ggtatgaget	attattgcaa	gtcacataag	cctcccatta	16140
gttttccatt	atgtgctaat	ggtcaggttt	ttggtttata	caaaaacaca	tgtgtaggca	16200
gtgacaatgt	cactgacttc	aatgcgatag	caacatgtga	ttggactaat	gctggcgatt	16260
acatacttgc	caacacttgt	actgagagac	tcaagctttt	cgcagcagaa	acgctcaaag	16320
ccactgagga	aacatttaag	ctgtcatatg	gtattgccac	tgtacgcgaa	gtactctctg	16380
acagagaatt	gcatctttca	tgggaggttg	gaaaacctag	accaccattg	aacagaaact	16440
atgtcttac	tggttaccgt	gtaactaaaa	atagtaaagt	acagattgga	gagtacacct	16500
ttgaaaaagg	tgactatggt	gatgctgttg	tgtacagagg	tactacgaca	tacaagttga	16560
atgttggtga	ttactttgtg	ttgacatctc	acactgtaat	gccacttagt	gcacctactc	16620
tagtgccaca	agagcactat	gtgagaatta	ctggcttgta	cccaacactc	aacatctcag	16680
atgagttttc	tagcaatgtt	gcaaattatc	aaaaggtcgg	catgcaaaag	tactctacac	16740
tccaaggacc	acctggtact	ggtaagagtc	attttgccat	cggacttgct	ctctattacc	16800
catctgctcg	catagtgtat	acggcatgct	ctcatgcagc	tgttgatgcc	ctatgtgaaa	16860
aggcattaaa	atatttgccc	atagataaat	gtagtagaat	catacctgcg	cgtgcgcgcg	16920
tagagtgttt	tgataaattc	aaagtgaatt	caacactaga	acagtatgtt	ttctgcactg	16980
taaatgcatt	gccagaaaca	actgctgaca	ttgtagtctt	tgatgaaatc	tctatggcta	17040
ctaattatga	cttgagtgtt	gtcaatgcta	gacttcgtgc	aaaacactac	gtctatattg	17100
gcgatcctgc	tcaattacca	gcccccgca	cattgctgac	taaaggcaca	ctagaaccag	17160
aatattttaa	ttcagtgtgc	agacttatga	aaacaatagg	tccagacatg	ttccttggaa	17220
cttgtcgccg	ttgtcctgct	gaaattgttg	acactgtgag	tgctttagtt	tatgacaata	17280
agctaaaagc	acacaaggat	aagtcagctc	aatgcttcaa	aatgttctac	aaaggtgtta	17340
ttacacatga	tgtttcatct	gcaatcaaca	gacctcaaat	aggcgttgta	agagaatttc	17400
ttacacgcaa	tcctgcttgg	agaaaagctg	tttttatctc	accttataat	tcacagaacg	17460
ctgtagcttc	aaaaatctta	ggattgccta	cgcagactgt	tgattcatca	cagggttctg	17520
aatatgacta	tgtcatattc	acacaaacta	ctgaaacagc	acactcttgt	aatgtcaacc	17580
gcttcaatgt	ggctatcaca	agggcaaaaa	ttggcatttt	gtgcataatg	tctgatagag	17640
atctttatga	caaactgcaa	tttacaagtc	tagaaatacc	acgtcgcaat	gtggctacat	17700
tacaagcaga	aaatgtaact	ggactttta	aggactgtag	taagatcatt	actggtcttc	17760
atcctacaca	ggcacctaca	cacctcagcg	ttgatataaa	gttcaagact	gaaggattat	17820
gtgttgacat	accaggcata	ccaaaggaca	tgacctaccg	tagactcatc	tctatgatgg	17880

gtttcaaaat	gaattaccaa	gtcaatggtt	accctaatat	gtttatcacc	cgcgaagaag	17940
ctattcgtca	cgttcgtgcg	tggattggct	ttgatgtaga	gggctgtcat	gcaactagag	18000
atgctgtggg	tactaaccta	cctctccagc	taggattttc	tacaggtgtt	aacttagtag	18060
ctgtaccgac	tggttatgtt	gacactgaaa	ataacacaga	attcaccaga	gttaatgcaa	18120
aacctccacc	aggtgaccag	tttaaacatc	ttataccact	catgtataaa	ggcttgccct	18180
ggaatgtagt	gcgtattaag	atagtacaaa	tgctcagtga	tacactgaaa	ggattgtcag	18240
acagagtcgt	gttcgtcctt	tgggcgcatg	gctttgagct	tacatcaatg	aagtactttg	18300
tcaagattgg	acctgaaaga	acgtgttgtc	tgtgtgacaa	acgtgcaact	tgcttttcta	18360
cttcatcaga	tacttatgcc	tgctggaatc	attctgtggg	ttttgactat	gtctataacc	18420
catttatgat	tgatgttcag	cagtggggct	ttacgggtaa	ccttcagagt	aaccatgacc	18480
aacattgcca	ggtacatgga	aatgcacatg	tggctagttg	tgatgctatc	atgactagat	18540
gtttagcagt	ccatgagtgc	tttgttaagc	gcgttgattg	gtctgttgaa	taccctatta	18600
taggagatga	actgagggtt	aattctgctt	gcagaaaagt	acaacacatg	gttgtgaagt	18660
ctgcattgct	tgctgataag	tttccagttc	ttcatgacat	tggaaatcca	aaggctatca	18720
agtgtgtgcc	tcaggctgaa	gtagaatgga	agttctacga	tgctcagcca	tgtagtgaca	18780
aagcttacaa	aatagaggaa	ctcttctatt	cttatgctac	acatcacgat	aaattcactg	18840
atggtgtttg	tttgttttgg	aattgtaacg	ttgatcgtta	cccagccaat	gcaattgtgt	18900
gtaggtttga	cacaagagtc	ttgtcaaact	tgaacttacc	aggctgtgat	ggtggtagtt	18960
tgtatgtgaa	taagcatgca	ttccacactc	cagctttcga	taaaagtgca	tttactaatt	19020
taaagcaatt	gcctttcttt	tactattctg	atagtccttg	tgagtctcat	ggcaaacaag	19080
tagtgtcgga	tattgattat	gttccactca	aatctgctac	gtgtattaca	cgatgcaatt	19140
taggtggtgc	tgtttgcaga	caccatgcaa	atgagtaccg	acagtacttg	gatgcatata	19200
atatgatgat	ttctgctgga	tttagcctat	ggatttacaa	acaatttgat	acttataacc	19260
tgtggaatac	atttaccagg	ttacagagtt	tagaaaatgt	ggcttataat	gttgttaata	19320
aaggacactt	tgatggacac	gccggcgaag	cacctgtttc	catcattaat	aatgctgttt	19380
acacaaaggt	agatggtatt	gatgtggaga	tctttgaaaa	taagacaaca	cttcctgtta	19440
atgttgcatt	tgagctttgg	gctaagcgta	acattaaacc	agtgccagag	attaagatac	19500
tcaataattt	gggtgttgat	atcgctgcta	atactgtaat	ctgggactac	aaaagagaag	19560
ccccagcaca	tgtatctaca	ataggtgtct	gcacaatgac	tgacattgcc	aagaaaccta	19620
ctgagagtgc	ttgttcttca	cttactgtct	tgtttgatgg	tagagtggaa	ggacaggtag	19680
accttttag	aaacgcccgt	aatggtgttt	taataacaga	aggttcagtc	aaaggtctaa	19740
caccttcaaa	gggaccagca	caagctagcg	tcaatggagt	cacattaatt	ggagaatcag	19800
taaaaacaca	gtttaactac	tttaagaaag	tagacggcat	tattcaacag	ttgcctgaaa	19860
cctactttac	tcagagcaga	gacttagagg	attttaagcc	cagatcacaa	atggaaactg	19920
actttctcga	gctcgctatg	gatgaattca	tacagcgata	taagctcgag	ggctatgcct	19980
tcgaacacat	cgtttatgga	gatttcagtc	atggacaact	tggcggtctt	catttaatga	20040
taggcttagc	caagcgctca	caagattcac	cacttaaatt	agaggatttt	atccctatgg	20100
acagcacagt	gaaaaattac	ttcataacag	atgcgcaaac	aggttcatca	aaatgtgtgt	20160

gttctgtgat tgatctttta cttgatgact ttgtcgagat aataaagtca caagatttgt 20220 cagtgatttc aaaagtggtc aaggttacaa ttgactatgc tgaaatttca ttcatgcttt 20280 ggtgtaagga tggacatgtt gaaaccttct acccaaaact acaagcaagt caagcgtggc 20340 aaccaggtgt tgcgatgcct aacttgtaca agatgcaaag aatgcttctt gaaaagtgtg 20400 accttcagaa ttatggtgaa aatgctgtta taccaaaagg aataatgatg aatgtcgcaa 20460 agtatactca actqtqtcaa tacttaaata cacttacttt aqctqtaccc tacaacatqa 20520 gagttattca ctttggtgct ggctctgata aaggagttgc accaggtaca gctgtgctca 20580 gacaatggtt gccaactggc acactacttg tcgattcaga tcttaatgac ttcgtctccg 20640 acgcagattc tactttaatt ggagactgtg caacagtaca tacggctaat aaatgggacc 20700 ttattattag cgatatgtat gaccctagga ccaaacatgt gacaaaagag aatgactcta 20760 aagaagggtt tttcacttat ctgtgtggat ttataaagca aaaactagcc ctgggtggtt 20820 ctatagctgt aaagataaca gagcattctt ggaatgctga cctttacaag cttatgggcc 20880 atttctcatg gtggacagct tttgttacaa atgtaaatgc atcatcatcg gaagcatttt 20940 taattggggc taactatctt ggcaagccga aggaacaaat tgatggctat accatgcatg 21000 ctaactacat tttctqqaqq aacacaaatc ctatccaqtt qtcttcctat tcactctttq 21060 acatgagcaa atttcctctt aaattaagag gaactgctgt aatgtctctt aaggagaatc 21120 aaatcaatga tatgatttat tctcttctgg aaaaaggtag gcttatcatt agagaaaaca 21180 acagagttgt ggtttcaagt gatattcttg ttaacaacta a 21221 <210> SEQ ID NO 32 <211> LENGTH: 297 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 32 atggacccca atcaaaccaa cgtagtgccc cccgcattac atttggtgga cccacagatt 60 caactgacaa taaccagaat ggaggacgca atggggcaag gccaaaacag cgccqacccc 120 aaggtttacc caataatact gcgtcttggt tcacagctct cactcagcat ggcaaggagg aacttagatt ccctcgaggc cagggcgttc caatcaacac caatagtggt ccagatgacc 240 aaattggcta ctaccgaaga gctacccgac gagttcgtgg tggtgacggc aaaatga 297 <210> SEQ ID NO 33 <211> LENGTH: 98 <212> TYPE: PRT <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 33 Met Asp Pro Asn Gln Thr Asn Val Val Pro Pro Ala Leu His Leu Val Asp Pro Gln Ile Gln Leu Thr Ile Thr Arg Met Glu Asp Ala Met Gly Gln Gly Gln Asn Ser Ala Asp Pro Lys Val Tyr Pro Ile Ile Leu Arg

Leu Gly Ser Gln Leu Ser Leu Ser Met Ala Arg Arg Asn Leu Asp Ser

Leu Glu Ala Arg Ala Phe Gln Ser Thr Pro Ile Val Val Gln Met Thr

65	70 75	80
Lys Leu Ala Thr Th	Glu Glu Leu Pro Asp Glu Phe Val	Val Val Thr 95
Ala Lys		
<210> SEQ ID NO 34 <211> LENGTH: 213 <212> TYPE: DNA <213> ORGANISM: CO	ONAVIRUS	
<400> SEQUENCE: 34		
atgctgccac cgtgcta	aa cttcctcaag gaacaacatt gccaaaag	ggc ttctacgcag 60
agggaagcag aggcggc	gt caagestett stegetests atsasgta	agt cgcggtaatt 120
caagaaattc aactcct	gc agcagtaggg gaaattetee tgetegaa	atg gctagcggag 180
gtggtgaaac tgccctc	gcg ctattgctgc tag	213
<210> SEQ ID NO 35 <211> LENGTH: 70 <212> TYPE: PRT <213> ORGANISM: CO	ONAVIRUS	
<400> SEQUENCE: 35		
Met Leu Pro Pro Cy 1 5	Tyr Asn Phe Leu Lys Glu Gln His	Cys Gln Lys 15
Ala Ser Thr Gln Ar	Glu Ala Glu Ala Ala Val Lys Pro 25	Leu Leu Ala 30
Pro His His Val Va 35	Ala Val Ile Gln Glu Ile Gln Leu 45	Leu Ala Ala
Val Gly Glu Ile Le	Leu Leu Glu Trp Leu Ala Glu Val 55 60	Val Lys Leu
Pro Ser Arg Tyr Cy 65	: Сув 70	
<pre><210> SEQ ID NO 36 <211> LENGTH: 1377 <212> TYPE: DNA <213> ORGANISM: COI <220> FEATURE: <221> NAME/KEY: CDI <222> LOCATION: (6' <223> OTHER INFORMATION</pre>)(1335)	
<400> SEQUENCE: 36		
atgaaggtca ccaaact	ct gcatttagag acgtacttgt tgttttaa	aat aaacgaacaa 60
	aat gga ccc caa tca aac caa cgt a Asn Gly Pro Gln Ser Asn Gln Arg S 5 10	
	gga ccc aca gat tca act gac aat Gly Pro Thr Asp Ser Thr Asp Asn 20 25	
	gca agg cca aaa cag cgc cga ccc Ala Arg Pro Lys Gln Arg Arg Pro 40	
	tet tgg tte aca get ete act cag Ser Trp Phe Thr Ala Leu Thr Gln 55	

						-
-00	٦n	+	٦.	nı	10	М

											-	con	tin	ued				
	gaa Glu															300		
	ggt Gly 80															348		
	cgt Arg															396		
	tat Tyr															444		
	aaa Lys															492		
	aaa Lys															540		
	cta Leu 160															588		
	gga Gly															636		
	cgc Arg															684		
	cct Pro															732		
	ctg Leu															780		
	Gln 240															828		
	tct Ser															876		
Val	act Thr	Gln	Ala	Phe 275	Gly	Arg	Arg	Gly	Pro 280	Glu	Gln	Thr	Gln	Gly 285	Asn	924		
Phe	GJ À	Asp	Gln 290	Asp	Leu	Ile	Arg	Gln 295	Gly	Thr	Asp	Tyr	Lys 300	His	Trp	972		
Pro	caa Gln	Ile 305	Ala	Gln	Phe	Ala	Pro 310	Ser	Āla	Ser	Āla	Phe 315	Phe	Gly	Met	1020		
Ser	cgc Arg 320	Ile	Gly	Met	Glu	Val 325	Thr	Pro	Ser	Gly	Thr 330	Trp	Leu	Thr	Tyr	1068		
	gga Gly															1116		
	ata Ile															1164		

aca gag cot asa asg sac asa asg aca asg act gat gas get cag cot fro Glu Pro Dy Lye App Lye Lye Lye Lye Lye Lye Thr App Gla had Glu Pro 370 tot gog cag gat can ang asg cag ecc act gats act ctt cot gag Leu Pro Gln Arg Gln Lye Uye Gln Pro Thr Val Thr Leu Leu Pro Ala 380 got gac atg gat gat tto toc aga can ctt can ast tcc atg agt ggg Ala Asp Met Asp Asp Ph Ser Arg Gln Leu Gln Aan Ser Met Ser Gly 460 got tct got gat can et gag gat act act can act can ast tcc atg agt ggg Ala Sar Ala Asp Ser Thr Gln Ala 413 gogcagstgg gotatgtanac cg 1377 2410 LEMENTH 122 2413 TORRAN SER DET STR 2413 SOR ALB SER SER SER SER SER SER SER GLY 35 Asa Thr Ala Ser Ttp Phe Thr Ala Leu Thr Gln His Gly Lye Glu Glu 55 Gly Gly Asp Gly Lye Met Lye Glu Lau Ser Pro Arg Ttp Tyr Phe Tyr 105 Gly Gly Asp Gly Lye Met Lye Glu Lau Ser Pro Arg Ttp Tyr Phe Tyr 107 108 Leu Gly Thr Caly Pro Gln Ala Ser Leu Pro Tyr 121 Ala Ann Lye 125 Glu Gly Ttr Pyr Aga Arg Ala Thr Arg Arg Tyr Phe Tyr 109 Gly Gly Asp Gly Lye Met Lye Glu Cly Jala Leu Sar Pro Arg Ttp Tyr Phe Tyr 109 Clu Gly Ttr Val Trp Val Ala Thr Glu Gly Ala Leu Ann Thr Pro Lye 110 Tyr Leu Gly Thr Caly Pro Gln Ala Ser Leu Pro Tyr 121 Ala Ann Lye 125 Glu Gly 11e Val Trp Val Ala Thr Glu Gly Ala Leu Ann Thr Pro Lye 110 Glu Gly 12e Val Trp Val Ala Ser Ser Arg Ser Ser Arg Ser Arg 110 Gly Asa Ser Arg Asa Ser Thr Eco Cly Ser Ser Arg Gly Asa Ser Pro 110 Gly Asa Ser Arg Gln Ala Ser Ser Thr Eco Cly Ser Ser Arg Gly Asa Ser Pro 126 Gly Asa Ser Arg Gln Ala Ser Ser Trp Ser Ser Ser Arg Ser Arg 110 Gly Asa Ser Arg Asa Ser Thr Eco Cly Ser Ser Arg Gly Asa Ser Pro 127 Ala Arg Met Ala Ser Cly Gly Gly Glu Thr Ala Leu Ala Ceu Leu 128 Gly Asa Ser Arg Glan Ser Thr Eco Cly Ser Ser Arg Gly Asa Ser Pro 129 Ala Arg Met Ala Ser Cly Gly Gly Glu Thr Ala Leu Ala Ceu Leu Leu 120 210 Clu Gly Asa Gly Lye Arg Gln Ala Ser Ser Arg Gly Asa Ser Pro 129 Ala Arg Met Ala Ser Gln Ala Ser Ser Ser Arg Gly Asa Ser Pro 129 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Ceu Leu 120 Clu Gly Cly Cly Cly Cly Gly Glu Thr Ala Leu A		
Jeen Pro Clin Arg Clin Lys Lys Clin Pro Thr Val Thr Lens Leu Pro Ala 390 get get skg gat gakt twe tee and case ett cas aat tee atg agt ggs ala kg gat gakt twe tee agt ago and an Ann Ser Met Ser Gly 400 Ala Amp Met Amp Amp Pro Ser Arg Clin Leu Clin Ann Ser Met Ser Gly 410 get tet get gat cas act cag gea taa acacteatga tgaccacaca 1355 Ala Ser Ala Amp Ser Thr Clin Ala 415	Thr Glu Pro Lys Lys Asp Lys Lys Lys Lys Thr Asp Glu Ala Gln	
Ala Aap Met Aep Aep Phe Ser Arg Gln Leu Gln Aan Ser Met Ser Gly 400 Get tect got gat tea act cag qoa taa acactoatga tgaccacaca Ala Ser Ala Aap Ser Thr Cln Ala 415	Leu Pro Gln Arg Gln Lys Lys Gln Pro Thr Val Thr Leu Leu Pro	
Als Ser Ale Asp Ser Thr Cin Ala 415 420 aggcagatgg gctatgtaea cg 1377 -210- SEQ ID NO 37 -211- LENGTH: 422 -212- TYPE: FRT -213- ORGANISH: CORONAVIRUS -400- SEQUENCE: 37 Met Ser Asp Asm Gly Pro Gln Ser Asm Gln Arg Ser Ala Pro Arg Ile 1 5 10 15 Thr Phe Gly Gly Pro Thr Asp Ser Thr Asp Asm Asm Gln Asm Gly Gly 25 Arg Asm Gly Ala Arg Pro Lye Gln Arg Arg Pro Gln Gly Leu Pro Asm 35 40 Asm Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lye Glu Glu 50 55 60 Leu Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asm Thr Asm Ser Gly 65 70 70 775 80 Gly Gly Asp Gly Lye Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 105 Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asm Lys 113 115 Glu Gly 11e Val Trp Val Ala Thr Glu Gly Ala Leu Sam Thr Pro Lys 116 115 Glu Gly Tle Val Trp Val Ala Thr Glu Gly Ala Leu Sam Thr Pro Lys 116 116 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 126 Gly Asp Gly Lys Gln Ala Ser Ser Arg Ser Ser Arg Ser Arg 180 Gly Asp Ser Arg Asm Ser Thr Pro Gly Ser Ser Arg Gly Asm Ser Pro 206 Ala Arg Net Ala Ser Gly Gly Glu Thr Ala Leu Leu Leu 216 Leu Asp Arg Leu Asm Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Cln 225 Lys Lys Pro Arg Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Cln 225 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asm Val Thr	Ala Asp Met Asp Asp Phe Ser Arg Gln Leu Gln Asn Ser Met Ser	
-210 SEQ ID NO 37 -2115 LENGTH: 422 -2125 TYPEF PRT -2135 ORGANISM: CORONAVIRUS -4400 SEQUENCE: 37 Met Ser Asp Asm Gly Pro Glm Ser Asm Glm Arg Ser Ala Pro Arg Ile 1 1	Ala Ser Ala Asp Ser Thr Gln Ala	1355
22112 TYPE: PRT 22123 TYPE: PRT 2213- ORCANISM: CORONAVIRUS 4400- SEQUENCE: 37 Met Ser Aep Aen Gly Pro Gln Ser Aen Gln Arg Ser Ale Pro Arg Ile 1	aggcagatgg gctatgtaaa cg	1377
Met Ser Asp Asn Gly Pro Gln Ser Asn Gln Arg Ser Ala Pro Arg Ile 1	<211> LENGTH: 422 <212> TYPE: PRT <213> ORGANISM: CORONAVIRUS	
The Pile Gly Gly Pro Thr Asp Ser Thr Asp Asn Asn Gln Asn Gly Gly 20 Arg Asn Gly Ala Arg Pro Lys Gln Arg Arg Pro Gln Cly Leu Pro Asn 35 Asn Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lys Glu Glu 50 Leu Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asn Thr Asn Ser Gly 65 Fro Asp Asp Gln Ile Gly Tyr Tyr Arg Arg Ang Ala Thr Arg Arg Val Arg 95 Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg 190 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 200 Ala Arg Met Ala Ser Gly Gly Gly Glu Glu Thr Ala Leu Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gly 225 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Tle
20	1 5 10 15	
Asn Thr Ala Ser Trp Phe Thr Ala Leu Thr Gln His Gly Lys Glu Glu 50 Leu Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asn Thr Asn Ser Gly 65 Rey Asp Gln Ile Gly Tyr Tyr Arg Arg Arg Ala Thr Arg Arg Val Arg 85 90 Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 190 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly End Glu 235 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Gly
Leu Arg Phe Pro Arg Gly Gln Gly Val Pro Ile Asn Thr Asn Ser Gly 65 Pro Asp Asp Gln Ile Gly Tyr Tyr Arg Arg Ala Thr Arg Arg Val Arg 85 Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Ala Ala Thr Val Leu 145 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 180 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 200 Ala Arg Met Ala Ser Gly Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 Leu Asp Arg Leu Asn Ihr Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 Cln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 225 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Asn
65 70 75 80 Pro Asp Asp Gln Ile Gly Tyr Tyr Arg Arg Ala Thr Arg Arg Val Arg 95 Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 100 Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 125 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 Gln Leu Pro Gln Gly Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 116 Gln Leu Pro Gln Gly Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 175 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 190 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 205 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 220 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 Cln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Glu
Gly Gly Asp Gly Lys Met Lys Glu Leu Ser Pro Arg Trp Tyr Phe Tyr 110 Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 125 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 160 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 190 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 205 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 235 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		
Tyr Leu Gly Thr Gly Pro Glu Ala Ser Leu Pro Tyr Gly Ala Asn Lys 115 Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 180 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 200 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 Cln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Arg
Glu Gly Ile Val Trp Val Ala Thr Glu Gly Ala Leu Asn Thr Pro Lys 130 Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Asn Ala Ala Thr Val Leu 145 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 180 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 205 Ala Arg Met Ala Ser Gly Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 235 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Tyr
Asp His Ile Gly Thr Arg Asn Pro Asn Asn Asn Ala Ala Thr Val Leu 145 Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 175 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg 190 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 205 Ala Arg Met Ala Ser Gly Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 Cln Gln Gln Gly Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Lys
Gln Leu Pro Gln Gly Thr Thr Leu Pro Lys Gly Phe Tyr Ala Glu Gly 165 Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Arg 180 Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 200 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Lys
Ser Arg Gly Gly Ser Gln Ala Ser Ser Arg Ser Ser Ser Arg Ser Pro 205 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu Leu 220 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 235 Cln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		
Gly Asn Ser Arg Asn Ser Thr Pro Gly Ser Ser Arg Gly Asn Ser Pro 205 Ala Arg Met Ala Ser Gly Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu 210 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 235 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		
Ala Arg Met Ala Ser Gly Gly Glu Thr Ala Leu Ala Leu Leu Leu Leu 220 Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 235 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Arg
Leu Asp Arg Leu Asn Gln Leu Glu Ser Lys Val Ser Gly Lys Gly Gln 225 230 235 240 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 250 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Pro
225 230 235 240 Gln Gln Gln Gly Gln Thr Val Thr Lys Lys Ser Ala Ala Glu Ala Ser 245 250 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		Leu
245 250 255 Lys Lys Pro Arg Gln Lys Arg Thr Ala Thr Lys Gln Tyr Asn Val Thr		
		Ser
		Thr

Gln Ala Phe Gly Arg Arg Gly Pro Glu Gln Thr Gln Gly Asn Phe Gly 275 280 285 Asp Gln Asp Leu Ile Arg Gln Gly Thr Asp Tyr Lys His Trp Pro Gln 290 295 300 Ile Ala Gln Phe Ala Pro Ser Ala Ser Ala Phe Phe Gly Met Ser Arg Ile Gly Met Glu Val Thr Pro Ser Gly Thr Trp Leu Thr Tyr His Gly 325 330 335 Ala Ile Lys Leu Asp Asp Lys Asp Pro Gln Phe Lys Asp Asn Val Ile \$340\$ \$345\$Pro Lys Lys Asp Lys Lys Lys Thr Asp Glu Ala Gln Pro Leu Pro 370 375 Gln Arg Gln Lys Lys Gln Pro Thr Val Thr Leu Leu Pro Ala Ala Asp 385 390 395 Met Asp Asp Phe Ser Arg Gln Leu Gln Asn Ser Met Ser Gly Ala Ser 405 410 415Ala Asp Ser Thr Gln Ala

<210> SEQ ID NO 38

<211> LENGTH: 1377 <212> TYPE: DNA

<213> ORGANISM: CORONAVIRUS

<400> SEQUENCE: 38

atgaaggtca ccaaactgct gcatttagag acgtacttgt tgttttaaat aaacgaacaa 60 attaaaatgt ctgataatgg accccaatca aaccaacgta gtgccccccg cattacattt 120 ggtggaccca cagattcaac tgacaataac cagaatggag gacgcaatgg ggcaaggcca aaacagcgcc gaccccaagg tttacccaat aatactgcgt cttggttcac agctctcact 240 cagcatggca aggaggaact tagattccct cgaggccagg gcgttccaat caacaccaat 300 agtggtccag atgaccaaat tggctactac cgaagagcta cccgacgagt tcgtggtggt gacggcaaaa tgaaagagct cagccccaga tggtacttct attacctagg aactggccca 420 gaagetteae tteeetaegg egetaacaaa gaaggeateg tatgggttge aactgaggga 480 gccttgaata cacccaaaga ccacattggc acccgcaatc ctaataacaa tgctgccacc gtgctacaac ttcctcaagg aacaacattg ccaaaaggct tctacgcaga gggaagcaga 600 ggcggcagtc aagcctcttc tcgctcctca tcacgtagtc gcggtaattc aagaaattca 660 actcctggca gcagtagggg aaattctcct gctcgaatgg ctagcggagg tggtgaaact 720 gccctcgcgc tattgctgct agacagattg aaccagcttg agagcaaagt ttctggtaaa 780 ggccaacaac aacaaggcca aactgtcact aagaaatctg ctgctgaggc atctaaaaag 840 cctcgccaaa aacgtactgc cacaaaacag tacaacgtca ctcaagcatt tgggagacgt 900 ggtccagaac aaacccaagg aaatttcggg gaccaagacc taatcagaca aggaactgat tacaaacatt ggccgcaaat tgcacaattt gctccaagtg cctctgcatt ctttggaatg 1020 tcacgcattg gcatggaagt cacaccttcg ggaacatggc tgacttatca tggagccatt 1080 aaattggatg acaaagatcc acaattcaaa gacaacgtca tactgctgaa caagcacatt

gacgcataca aaacattccc accaacagag cctaaaaagg acaaaaagaa aaagactgat	1200
gaagetcage etttgeegea gagacaaaag aageageeca etgtgaetet tetteetgeg	1260
gctgacatgg atgatttctc cagacaactt caaaattcca tgagtggagc ttctgctgat	1320
tcaactcagg cataaacact catgatgacc acacaaggca gatgggctat gtaaacg	1377
<210> SEQ ID NO 39 <211> LENGTH: 204 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 39	
atattaggtt tttacctacc caggaaaagc caaccaacct cgatctcttg tagatctgtt	60
ctctaaacga actttaaaat ctgtgtaget gtegetegge tgcatgeeta gtgcacctae	120
gcagtataaa caataataaa ttttactgtc gttgacaaga aacgagtaac tcgtccctct	180
tctgcagact gcttacggtt tcgt	204
<210> SEQ ID NO 40 <211> LENGTH: 809 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 40	
actcaagcat ttgggagacg tggtccagaa caaacccaag gaaatttcgg ggaccaagac	60
ctaatcagac aaggaactga ttacaaacat tggccgcaaa ttgcacaatt tgctccaagt	120
goototgoat totttggaat gtoacgoatt ggoatggaag toacacotto gggaacatgg	180
ctgacttatc atggagccat taaattggat gacaaagatc cacaattcaa agacaacgtc	240
atactgotga acaagcacat tgacgcatac aaaacattoo caccaacaga gootaaaaag	300
gacaaaaaga aaaagactga tgaagctcag cetttgeege agagacaaaa gaagcageee	360
actgtgactc ttcttcctgc ggctgacatg gatgatttct ccagacaact tcaaaattcc	420
atgagtggag cttctgctga ttcaactcag gcataaacac tcatgatgac cacacaaggc	480
agatgggcta tgtaaacgtt ttcgcaattc cgtttacgat acatagtcta ctcttgtgca	540
gaatgaatto togtaactaa acagcacaag taggtttagt taactttaat otcacatago	600
aatotttaat caatgtgtaa cattagggag gaottgaaag agccaccaca ttttcatcga	660
ggccacgcgg agtacgatcg agggtacagt gaataatgct agggagagct gcctatatgg	720
aagagcccta atgtgtaaaa ttaattttag tagtgctatc cccatgtgat tttaatagct	780
tcttaggaga atgacaaaaa aaaaaaaaa	809
<210> SEQ ID NO 41 <211> LENGTH: 448 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS	
<400> SEQUENCE: 41	
aatgaacaca tagggctgtt caagctgggg cagtacgcct ttttccagct ctactagacc	60
acaagtgcca tttttgaggt gttcacgtgc ctccgatagg gcctcttcca cagagtcccc	120
gaagccacgc actagcacgt ctctaacctg aaggacaggc aaactgagtt ggacgtgtgt	180

tttctcgttg acaccaagaa caaggetete catettacet ttcggtcaca cccggacgaa

acctaggtat	gctgatgatc	gactgcaaca	cggacgaaac	cgtaagcagt	ctgcagaaga	300
gggacgagtt	actcgtttct	tgtcaacgac	agtaaaattt	attattgttt	atactgcgta	360
ggtgcactag	gcatgcagcc	gagcgacagc	tacacagatt	ttaaagttcg	tttagagaac	420
agatctacaa	gagatcgagg	ttggttgg				448
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	TH: 2033	AVIRUS				
<400> SEQUE	ENCE: 42					
atacctaggt	ttcgtccggg	tgtgaccgaa	aggtaagatg	gagagccttg	ttcttggtgt	60
caacgagaaa	acacacgtcc	aactcagttt	gcctgtcctt	caggttagag	acgtgctagt	120
gcgtggcttc	ggggactctg	tggaagaggc	cctatcggag	gcacgtgaac	acctcaaaaa	180
tggcacttgt	ggtctagtag	agctggaaaa	aggcgtactg	ccccagcttg	aacagcccta	240
tgtgttcatt	aaacgttctg	atgccttaag	caccaatcac	ggccacaagg	tcgttgagct	300
ggttgcagaa	atggacggca	ttcagtacgg	tcgtagcggt	ataacactgg	gagtactcgt	360
gccacatgtg	ggcgaaaccc	caattgcata	ccgcaatgtt	cttcttcgta	agaacggtaa	420
taagggagcc	ggtggtcata	gctatggcat	cgatctaaag	tcttatgact	taggtgacga	480
gcttggcact	gatcccattg	aagattatga	acaaaactgg	aacactaagc	atggcagtgg	540
tgcactccgt	gaactcactc	gtgagctcaa	tggaggtgca	gtcactcgct	atgtcgacaa	600
caatttctgt	ggcccagatg	ggtaccetet	tgattgcatc	aaagattttc	tegeaegege	660
gggcaagtca	atgtgcactc	tttccgaaca	acttgattac	atcgagtcga	agagaggtgt	720
ctactgctgc	cgtgaccatg	agcatgaaat	tgcctggttc	actgagcgct	ctgataagag	780
ctacgagcac	cagacaccct	togaaattaa	gagtgccaag	aaatttgaca	ctttcaaagg	840
ggaatgccca	aagtttgtgt	ttcctcttaa	ctcaaaagtc	aaagtcattc	aaccacgtgt	900
tgaaaagaaa	aagactgagg	gtttcatggg	gcgtatacgc	tctgtgtacc	ctgttgcatc	960
tccacaggag	tgtaacaata	tgcacttgtc	taccttgatg	aaatgtaatc	attgcgatga	1020
agtttcatgg	cagacgtgcg	actttctgaa	agccacttgt	gaacattgtg	gcactgaaaa	1080
tttagttatt	gaaggaccta	ctacatgtgg	gtacctacct	actaatgctg	tagtgaaaat	1140
gccatgtcct	gcctgtcaag	acccagagat	tggacctgag	catagtgttg	cagattatca	1200
caaccactca	aacattgaaa	ctcgactccg	caagggaggt	aggactagat	gttttggagg	1260
ctgtgtgttt	gcctatgttg	gctgctataa	taagcgtgcc	tactgggttc	ctcgtgctag	1320
tgctgatatt	ggctcaggcc	atactggcat	tactggtgac	aatgtggaga	ccttgaatga	1380
ggatctcctt	gagatactga	gtcgtgaacg	tgttaacatt	aacattgttg	gcgattttca	1440
tttgaatgaa	gaggttgcca	tcattttggc	atctttctct	gcttctacaa	gtgcctttat	1500
tgacactata	aagagtcttg	attacaagtc	tttcaaaacc	attgttgagt	cctgcggtaa	1560
ctataaagtt	accaagggaa	agcccgtaaa	aggtgcttgg	aacattggac	aacagagatc	1620
agttttaaca	ccactgtgtg	gttttccctc	acaggctgct	ggtgttatca	gatcaatttt	1680
tgcgcgcaca	cttgatgcag	caaaccactc	aattcctgat	ttgcaaagag	cagctgtcac	1740

catacttgat ggtatttctg aacagtcatt acgtcttgtc gacgccatgg tttatacttc 1800

agacctgctc ac	ccaacagtg	tcattattat	ggcatatgta	actggtggtc	ttgtacaaca	1860
gacttctcag to	ggttgtcta	atcttttggg	cactactgtt	gaaaaactca	ggcctatctt	1920
tgaatggatt ga	aggcgaaac	ttagtgcagg	agttgaattt	ctcaaggatg	cttgggagat	1980
tctcaaattt c	tcattacag	gtgtttttga	catcgtcaag	ggtcaaatac	agg	2033
<210> SEQ ID <211> LENGTH: <212> TYPE: I <213> ORGANIS	: 2018 ONA	.virus				
<400> SEQUENC	CE: 43					
ggattgaggc ga	aaacttagt	gcaggagttg	aatttctcaa	ggatgcttgg	gagattctca	60
aatttctcat ta	acaggtgtt	tttgacatcg	tcaagggtca	aatacaggtt	gcttcagata	120
acatcaagga tt	tgtgtaaaa	tgcttcattg	atgttgttaa	caaggcactc	gaaatgtgca	180
ttgatcaagt ca	actatcgct	ggcgcaaagt	tgcgatcact	caacttaggt	gaagtcttca	240
togotoaaag ca	aagggactt	taccgtcagt	gtatacgtgg	caaggagcag	ctgcaactac	300
tcatgcctct ta	aaggcacca	aaagaagtaa	cctttcttga	aggtgattca	catgacacag	360
tacttacctc to	gaggaggtt	gttctcaaga	acggtgaact	cgaagcactc	gagacgcccg	420
ttgatagett ca	acaaatgga	gctatcgttg	gcacaccagt	ctgtgtaaat	ggcctcatgc	480
tcttagagat ta	aaggacaaa	gaacaatact	gcgcattgtc	tcctggttta	ctggctacaa	540
acaatgtctt to	egettaaaa	gggggtgcac	caattaaagg	tgtaaccttt	ggagaagata	600
ctgtttggga ag	gttcaaggt	tacaagaatg	tgagaatcac	atttgagctt	gatgaacgtg	660
ttgacaaagt go	cttaatgaa	aagtgctctg	tctacactgt	tgaatccggt	accgaagtta	720
ctgagtttgc at	gtgttgta	gcagaggctg	ttgtgaagac	tttacaacca	gtttctgatc	780
tccttaccaa ca	atgggtatt	gatcttgatg	agtggagtgt	agctacattc	tacttatttg	840
atgatgctgg to	gaagaaaac	ttttcatcac	gtatgtattg	ttccttttac	cctccagatg	900
aggaagaaga gg	gacgatgca	gagtgtgagg	aagaagaaat	tgatgaaacc	tgtgaacatg	960
agtacggtac ag	gaggatgat	tatcaaggtc	tccctctgga	atttggtgcc	tcagctgaaa	1020
cagttcgagt to	gaggaagaa	gaagaggaag	actggctgga	tgatactact	gagcaatcag	1080
agattgagcc ag	gaaccagaa	cctacacctg	aagaaccagt	taatcagttt	actggttatt	1140
taaaacttac to	gacaatgtt	gccattaaat	gtgttgacat	cgttaaggag	gcacaaagtg	1200
ctaatcctat go	gtgattgta	aatgctgcta	acatacacct	gaaacatggt	ggtggtgtag	1260
caggtgcact ca	aacaaggca	accaatggtg	ccatgcaaaa	ggagagtgat	gattacatta	1320
agctaaatgg co	cctcttaca	gtaggagggt	cttgtttgct	ttctggacat	aatcttgcta	1380
agaagtgtct go	catgttgtt	ggacctaacc	taaatgcagg	tgaggacatc	cagcttctta	1440
aggcagcata to	gaaaatttc	aattcacagg	acatcttact	tgcaccattg	ttgtcagcag	1500
gcatatttgg tg	gctaaacca	cttcagtctt	tacaagtgtg	cgtgcagacg	gttcgtacac	1560
aggtttatat to	gcagtcaat	gacaaagctc	tttatgagca	ggttgtcatg	gattatcttg	1620
ataacctgaa go	ctagagtg	gaagcaccta	aacaagagga	gccaccaaac	acagaagatt	1680
ccaaaactga gg	gagaaatct	gtcgtacaga	agcctgtcga	tgtgaagcca	aaaattaagg	1740
cctgcattga to	gaggttacc	acaacactgg	aagaaactaa	gtttcttacc	aataagttac	1800

tcttgtttgc	tgatatcaat	ggtaagcttt	accatgattc	tcagaacatg	cttagaggtg	1860	
aagatatgtc	tttccttgag	aaggatgcac	cttacatggt	aggtgatgtt	atcactagtg	1920	
gtgatatcac	ttgtgttgta	ataccctcca	aaaaggctgg	tggcactact	gagatgctct	1980	
caagagcttt	gaagaaagtg	ccagttgatg	agtatata			2018	
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	TH: 1442	AVIRUS					
<400> SEQUE	ENCE: 44						
ttgatgaggt	taccacaaca	ctggaagaaa	ctaagtttct	taccaataag	ttactcttgt	60	
ttgctgatat	caatggtaag	ctttaccatg	attctcagaa	catgcttaga	ggtgaagata	120	
tgtctttcct	tgagaaggat	gcaccttaca	tggtaggtga	tgttatcact	agtggtgata	180	
tcacttgtgt	tgtaataccc	tccaaaaagg	ctggtggcac	tactgagatg	ctctcaagag	240	
ctttgaagaa	agtgccagtt	gatgagtata	taaccacgta	ccctggacaa	ggatgtgctg	300	
gttatacact	tgaggaagct	aagactgctc	ttaagaaatg	caaatctgca	ttttatgtac	360	
taccttcaga	agcacctaat	gctaaggaag	agattctagg	aactgtatcc	tggaatttga	420	
gagaaatgct	tgctcatgct	gaagagacaa	gaaaattaat	gcctatatgc	atggatgtta	480	
gagccataat	ggcaaccatc	caacgtaagt	ataaaggaat	taaaattcaa	gagggcatcg	540	
ttgactatgg	tgtccgattc	ttcttttata	ctagtaaaga	gcctgtagct	tctattatta	600	
cgaagctgaa	ctctctaaat	gagccgcttg	tcacaatgcc	aattggttat	gtgacacatg	660	
gttttaatct	tgaagaggct	gcgcgctgta	tgagttatat	taaagctcct	gccgtagtgt	720	
cagtatcatc	accagatgct	gttactacat	ataatggata	cctcacttcg	tcatcaaaga	780	
catctgagga	gcactttgta	gaaacagttt	ctttggctgg	ctcttacaga	gattggtcct	840	
attcaggaca	gcgtacagag	ttaggtgttg	aatttcttaa	gcgtggtgac	aaaattgtgt	900	
accacactct	ggagagcccc	gtcgagtttc	atcttgacgg	tgaggttctt	tcacttgaca	960	
aactaaagag	tctcttatcc	ctgcgggagg	ttaagactat	aaaagtgttc	acaactgtgg	1020	
acaacactaa	tctccacaca	cagcttgtgg	atatgtctat	gacatatgga	cagcagtttg	1080	
gtccaacata	cttggatggt	gctgatgtta	caaaaattaa	acctcatgta	aatcatgagg	1140	
gtaagacttt	ctttgtacta	cctagtgatg	acacactacg	tagtgaagct	ttcgagtact	1200	
accatactct	tgatgagagt	tttcttggta	ggtacatgtc	tgctttaaac	cacacaaaga	1260	
aatggaaatt	tcctcaagtt	ggtggtttaa	cttcaattaa	atgggctgat	aacaattgtt	1320	
atttgtctag	tgttttatta	gcacttcaac	agcttgaagt	caaattcaat	gcaccagcac	1380	
ttcaagaggc	ttattataga	gcccgtgctg	gtgatgctgc	taacttttgt	gcactcatac	1440	
tc						1442	
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	H: 1050	AVIRUS					
<400> SEQUE	INCE: 45						
atatgtctat	gacatatgga	cagcagtttg	gtccaacata	cttggatggt	gctgatgtta	60	

				-		
acacactacg	tagtgaagct	ttcgagtact	accatactct	tgatgagagt	tttcttggta	180
ggtacatgtc	tgctttaaac	cacacaaaga	aatggaaatt	tcctcaagtt	ggtggtttaa	240
cttcaattaa	atgggctgat	aacaattgtt	atttgtctag	tgttttatta	gcacttcaac	300
agcttgaagt	caaattcaat	gcaccagcac	ttcaagaggc	ttattataga	gcccgtgctg	360
gtgatgctgc	taacttttgt	gcactcatac	tcgcttacag	taataaaact	gttggcgagc	420
ttggtgatgt	cagagaaact	atgacccatc	ttctacagca	tgctaatttg	gaatctgcaa	480
agcgagttct	taatgtggtg	tgtaaacatt	gtggtcagaa	aactactacc	ttaacgggtg	540
tagaagctgt	gatgtatatg	ggtactctat	cttatgataa	tcttaagaca	ggtgtttcca	600
ttccatgtgt	gtgtggtcgt	gatgctacac	aatatctagt	acaacaagag	tcttcttttg	660
ttatgatgtc	tgcaccacct	gctgagtata	aattacagca	aggtacattc	ttatgtgcga	720
atgagtacac	tggtaactat	cagtgtggtc	attacactca	tataactgct	aaggagaccc	780
tctatcgtat	tgacggagct	caccttacaa	agatgtcaga	gtacaaagga	ccagtgactg	840
atgttttcta	caaggaaaca	tcttacacta	caaccatcaa	gcctgtgtcg	tataaactcg	900
atggagttac	ttacacagag	attgaaccaa	aattggatgg	gtattataaa	aaggataatg	960
cttactatac	agagcagcct	atagaccttg	taccaactca	accattacca	aatgcgagtt	1020
ttgataattt	caaactcaca	tgttctaaca				1050
<210> SEQ 1 <211> LENGT						
<212> TYPE: <213> ORGAN <400> SEQUE	NISM: CORONA	VIRUS				
<213> ORGAN	NISM: CORONA		aaactgttgg	cgagcttggt	gatgtcagag	60
<213> ORGAN <400> SEQUE tttgtgcact	NISM: CORONA	tacagtaata				60 120
<213> ORGAN <400> SEQUE tttgtgcact aaactatgac	NISM: CORONA ENCE: 46 catacteget	tacagtaata cagcatgcta	atttggaatc	tgcaaagcga	gttcttaatg	
<213> ORGAN <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa	NISM: CORONA ENCE: 46 catacteget ccatetteta	tacagtaata cagcatgcta cagaaaacta	atttggaatc	tgcaaagcga gggtgtagaa	gttcttaatg	120
<213> ORGAN <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac	NISM: CORONA ENCE: 46 catacteget ccatetteta acattgtggt	tacagtaata cagcatgcta cagaaaacta gataatctta	atttggaatc ctaccttaac agacaggtgt	tgcaaagcga gggtgtagaa ttccattcca	gttcttaatg gctgtgatgt tgtgtgtgtg	120 180
<213> ORGAN <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc	NISM: CORONA ENCE: 46 catactcgct ccatcttcta acattgtggt tctatcttat	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac	atttggaatc ctaccttaac agacaggtgt aagagtcttc	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac	120 180 240
<pre><213> ORGAN <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga</pre>	NISM: CORONA ENCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta	120 180 240 300
<pre><213> ORGAN <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg</pre>	NISM: CORONA ENCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat gtataaatta	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta actcatataa	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg	120 180 240 300 360
<pre><213> ORGAM <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct</pre>	NISM: CORONA ENCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat gtataaatta tggtcattac	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta actcatataa tcagagtaca	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg	120 180 240 300 360 420
<pre><213> ORGAM <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct aaacatctta</pre>	NISM: CORONA ENCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat gtataaatta tggtcattac tacaaagatg	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta actcatataa tcagagtaca atcaagcctg	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt tgtcgtataa	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt actcgatgga	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg gttacttaca	120 180 240 300 360 420 480
<pre><213> ORGAM <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct aaacatctta cagagattga</pre>	NISM: CORONA ENCE: 46 catactcgct ccatcttcta acattgtggt tctatcttat tacacaatat gtataaatta tggtcattac tacaaagatg cactacaacc	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta actcatataa tcagagtaca atcaagcctg gatgggtatt	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt tgtcgtataa ataaaaagga	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt actcgatgga taatgcttac	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg gttacttaca tatacagagc	120 180 240 300 360 420 480 540
<pre><213> ORGAM <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct aaacatctta cagagattga agcctataga</pre>	NISM: CORONA ENCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat gtataaatta tggteattac tacaaagatg cactacaacc accaaaattg	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta actcatataa tcagagtaca atcaagcctg gatgggtatt actcaaccat	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt tgtcgtataa ataaaaagga taccaaatgc	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt actcgatgga taatgcttac gagttttgat	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg gttacttaca tatacagagc aatttcaaac	120 180 240 300 360 420 480 540
<pre><213> ORGAM <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct aaacatctta cagagattga agcctataga tcacatgttc</pre>	NISM: CORONA CNCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat gtataaatta tggteattac tacaaagatg cactacaace accacaattg	tacagtaata cagcatgcta cagaaaacta gataatotta ctagtacaac cagcaaggta actcatataa tcagagtaca atcaagcctg gatgggtatt actcaaccat tttgctgatg	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt tgtcgtataa ataaaaagga taccaaatgc atttaaatca	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt actcgatgga taatgcttac gagttttgat aatgacaggc	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg gttacttaca tatacagagc aatttcaaac ttcacaaagc	120 180 240 300 360 420 480 540 600
<pre><213> ORGAM <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct aaacatctta cagagattga agcctataga tcacatgttc</pre>	NISM: CORONA CNCE: 46 catacteget ceatetteta acattgtggt tetatettat tacacaatat gtataaatta tggteattac tacaaagatg cactacaace accaaaattg cettgtacea tacacaaaa	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta actcatataa tcagagtaca atcaagcctg gatgggtatt actcaaccat tttgctgatg gtcacattct	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt tgtcgtataa ataaaaagga taccaaatgc atttaaatca tcccagactt	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt actcgatgga taatgcttac gagttttgat aatgacaggc gaatggcgat	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg gttacttaca tatacagagc aatttcaaac ttcacaaagc gtagtggcta	120 180 240 300 360 420 480 540 600 660 720
<pre><213> ORGAM <400> SEQUE tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct aaacatctta cagagattga agcctataga tcacatgttc cagcttcacg ttgactatag</pre>	NISM: CORONA CNCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat gtataaatta tggteattac tacaaagatg cactacaacc accacaaattg ccttgtacca tacacaaaa agagetatet	tacagtaata cagcatgcta cagaaaacta gataatotta ctagtacaac cagcaaggta actcatataa tcagagtaca atcaagcctg gatgggtatt actcaaccat tttgctgatg gtcacattct gcgagtttca	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt tgtcgtataa ataaaaagga taccaaatgc atttaaatca tcccagactt agaaaggtgc	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt actcgatgga taatgcttac gagttttgat aatgacaggc gaatggcgat taaattactg	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg gttacttaca tatacagagc aatttcaaac ttcacaaagc gtagtgcta cataagccaa	120 180 240 300 360 420 480 540 600 660 720 780
<pre><213> ORGAM <400> SEQUI tttgtgcact aaactatgac tggtgtgtaa atatgggtac gtcgtgatgc cacctgctga actatcagtg gagctcacct aaacatctta cagagattga tcacatgttc cagcttataga ttacatgttc ttgactatag ttgactatag ttgactatag ttgactatag ttgactatag ttgtttggca</pre>	NISM: CORONA ENCE: 46 catacteget ccatetteta acattgtggt tetatettat tacacaatat gtataaatta tggteattac tacaaagatg cactacaacc accaaaattg ccttgtacca taacacaaaa agagetatet acactattea	tacagtaata cagcatgcta cagaaaacta gataatctta ctagtacaac cagcaaggta actcatataa tcagagtaca atcaagcctg gatgggtatt actcaaccat tttgctgatg gtcacattct gcgagtttca gctacaacca	atttggaatc ctaccttaac agacaggtgt aagagtcttc cattcttatg ctgctaagga aaggaccagt tgtcgtataa ataaaaagga taccaaatgc atttaaatca tcccagactt agaaaggtgc agacaacgtt	tgcaaagcga gggtgtagaa ttccattcca ttttgttatg tgcgaatgag gaccctctat gactgatgtt actcgatgga taatgcttac gagttttgat aatgacaggc gaatggcgat taaattactg caaaccaaac	gttcttaatg gctgtgatgt tgtgtgtgtg atgtctgcac tacactggta cgtattgacg ttctacaagg gttacttaca tatacagagc aatttcaaac ttcacaagc gtagtggcta cataagccaa acttggtgtt	120 180 240 300 360 420 480 540 600 720 780 840

tagaagacac acaaggaatg gacaatcttg cttgtgaaag tcaacaaccc acctctgaag 1020

caaaaattaa acctcatgta aatcatgagg gtaagacttt ctttgtacta cctagtgatg

aagtagtgga	aaatcctacc	atacagaagg	aagtcataga	gtgtgacgtg	aaaactaccg	1080
aagttgtagg	caatgtcata	cttaaaccat	cagatgaagg	tgttaaagta	acacaagagt	1140
taggtcatga	ggatcttatg	gctgcttatg	tggaaaacac	aagcattacc	attaagaaac	1200
ctaatgagct	ttcactagcc	ttaggtttaa	aaacaattgc	cactcatggt	attgctgcaa	1260
ttaatagtgt	tccttggagt	aaaattttgg	cttatgtcaa	accattctta	ggacaagcag	1320
caattacaac	atcaaattgc	gctaagagat	tagcacaacg	tgtgtttaac	aattatatgc	1380
cttatgtgtt	tacattattg	ttccaattgt	gtacttttac	taaaagtacc	aattctagaa	1440
ttagagcttc	actacctaca	actattgcta	aaaatagtgt	taagagtgtt	gctaaattat	1500
gtttggatgc	cggcattaat	tatgtgaagt	cacccaaatt	ttctaaattg	ttcacaatcg	1560
ctatgtggct	attgttgtta	agtatttgct	taggttctct	aatctgtgta	actgctgctt	1620
ttggtgtact	cttatctaat	tttggtgctc	cttcttattg	taatggcgtt	agagaattgt	1680
atcttaattc	gtctaacgtt	actactatgg	atttctgtga	aggttctttt	ccttgcagca	1740
tttgtttaag	tggattagac	tcccttgatt	cttatccagc	tcttgaaacc	attcaggtga	1800
cgatttcatc	gtacaagcta	gacttgacaa	ttttaggtct	ggccgctgag	tgggttttgg	1860
catatatgtt	gttcacaaaa	ttcttttatt	tattaggtct	ttcagctata	atgcaggtgt	1920
tctttggcta	ttttgctagt	catttcatca	gcaattcttg	gctcatgtgg	tttatcatta	1980
gtattgtaca	aatgg					1995
<210> SEQ I <211> LENGI						
<212> TYPE:	DNA NISM: CORONA	NIRUS				
<212> TYPE: <213> ORGAN <400> SEQUE	DNA NISM: CORONA		attgtacaaa	tggcacccgt	ttctgcaatg	60
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge	: DNA NISM: CORONA ENCE: 47	tatcattagt	-			60 120
<212> TYPE: <213> ORGAN <400> SEQUE aattcttggc gttaggatgt	: DNA NISM: CORONA ENCE: 47 tcatgtggtt	tatcattagt tgcttcttc	tactacatat	ggaagagcta	tgttcatatc	
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt	E DNA NISM: CORONA ENCE: 47 tcatgtggtt acatcttctt	tatcattagt tgcttctttc gacttgcatg	tactacatat	ggaagagcta	tgttcatatc	120
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggt gttgagtgta	E DNA NISM: CORONA ENCE: 47 tcatgtggtt acatcttctt gcacctcttc	tatcattagt tgcttctttc gacttgcatg taatggcatg	tactacatat atgtgctata aagagatctt	ggaagagcta agcgcaatcg tctatgtcta	tgttcatatc tgccacacgc tgcaaatgga	120 180
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggccgtgget	EDNA NISM: CORONA ENCE: 47 tcatgtggtt acatcttctt gcacctcttc caactattgt	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg	tactacatat atgtgctata aagagatctt aattgtctca	ggaagagcta agcgcaatcg tctatgtcta attgtgacac	tgttcatatc tgccacacgc tgcaaatgga attttgcact	120 180 240
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatgtt gttgagtgta ggcogtgget ggtagtacat	EDNA NISM: CORONA ENCE: 47 teatgtggtt acatettett geacetette caactattgt tetgcaagac	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg tgaagttgct	tactacatat atgtgctata aagagatctt aattgtctca cgtgatttgt	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca	120 180 240 300
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggccgtgget ggtagtacat atcaacccta	EDNA NISM: CORONE ENCE: 47 tcatgtggtt acatcttctt gcacctcttc caactattgt tctgcaagac tcattagtga	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt	tactacatat atgtgctata aagagatctt aattgtctca cgtgatttgt gttgatagtg	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg	120 180 240 300 360
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatgtt gttgagtgta ggcegtgget ggtagtacat atcaacceta ettcacctet	EDNA NISM: CORONA ENCE: 47 tcatgtggtt acatcttctt gcacctcttc caactattgt tctgcaagac tcattagtga ctgaccagtc	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa	tactacatat atgtgctata aagagatctt aattgtctca cgtgatttgt gttgatagtg aagacctatg	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat	120 180 240 300 360 420
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggccgtgget ggtagtacat atcaacceta ettcacctet tttgtcaatt	EDNA NISM: CORONE CNCE: 47 tcatgtggtt acatcttctt gcacctcttc caactattgt tctgcaagac tcattagtga ctgaccagtc actttgacaa	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa gagagctaac	tactacatat atgtgctata aagagatctt aattgtctca cgtgatttgt gttgatagtg aagacctatg aacactaaag	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc gttcactgcc	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat tattaatgtc	120 180 240 300 360 420
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggt gttgagtgta ggccgtgget ggtagtacat atcaacceta etteacetet tttgtcaatt atagttttg	EDNA NISM: CORONA CORCE: 47 tcatgtggtt acatcttctt gcacctcttc caactattgt tctgcaagac tcattagtga ctgaccagtc actttgacaa tagacaattt	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa gagagctaac caaatgcgac	tactacatat atgtgctata aagagatett aattgtetea egtgatttgt gttgatagtg aagacetatg aacactaaag gagtetgett	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc gttcactgcc ctaagtctgc	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat tattaatgtc ttctgtgtac	120 180 240 300 360 420 480
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggcegtgget ggtagtacat atcaacceta ettcacctet tttgtcaatt atgttttg tacagtcage	EDNA NISM: CORONE ENCE: 47 tcatgtggtt acatcttctt gcacctcttc caactattgt tctgcaagac tcattagtga ctgaccagtc actttgacaa tagacaattt atggcaagtc	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa gagagctaac caaatgcgac acctattctg	tactacatat atgtgctata aagagatett aattgtetea egtgatttgt gttgatagtg aagaeetatg aacaetaaag gagtetgett ttgettgaee	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc gttcactgcc ctaagtctgc aagctcttgt	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat tattaatgtc ttctgtgtac atcagacgtt	120 180 240 300 360 420 480 540
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggccgtgget ggtagtacat atcaacceta ettcacctet tttgtcaatt atagttttg tacagtcagc ggagatagta	EDNA NISM: CORONA NISM: CORONA CORCE: 47 tcatgtggtt acatcttctt gcacctcttc caactattgt tctgcaagac tcattagtga ctgaccagtc actttgacaa tagacaattt atggcaagtc tgatgtgcca	tatcattagt tgcttcttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa gagagctaac caaatgcgac acctattctg cgttaagatg	tactacatat atgtgctata aagagatott aattgtctca cgtgatttgt gttgatagtg aagacctatg aacactaaag gagtctgctt ttgcttgacc tttgatgctt	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc gttcactgcc ctaagtcttgt aagctcttgt	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat tattaatgtc ttctgtgtac atcagacgtt cttttcagca	120 180 240 300 360 420 480 540 660
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggccgtgget ggtagtacat atcaacceta ettcaccete tttgtcaatt atagttttg tacagtcage ggagatagta acttttagtg	EDNA NISM: CORONA CORON	tatcattagt tgcttctttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa gagagctaac caaatgcgac acctattctg cgttaagatg aaaacttaag	tactacatat atgtgctata aagagatctt aattgtctca cgtgatttgt gttgatagtg aagacctatg aacactaaag gagtctgctt ttgcttgacc tttgatgctt gcacttgttg	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc gttcactgcc ctaagtctgc aagctcttgt atgtcgacac ctacagctca	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat tattaatgtc ttctgtgtac atcagacgtt ctttcagca cagcgagtta	120 180 240 300 360 420 480 540 600 660
<212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggccgtgget ggtagtacat atcaacceta ettcacctet tttgtcaatt atagttttg tacagtcage ggagatagta acttttagtg gcaaagggtg	EDNA NISM: CORONA	tatcattagt tgcttcttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa gagagctaac caaatgcgac acctattctg cgttaagatg aaaacttaag tggtgtcctt	tactacatat atgtgctata aagagatett aattgtetea egtgatttgt gttgatagtg aagacetatg aacactaaag gagtetgett ttgettgace tttgatgett geacttgttg tctacatteg	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc gttcactgcc ctaagtctgc aagctcttgt atgtcgacac ctacagctca tgtcagctca	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat tattaatgtc ttctgtgtac atcagacgtt cttttcagca cagcgagtta ccgacaaggt	120 180 240 300 360 420 480 540 660 720 780
<pre><212> TYPE: <213> ORGAN <400> SEQUE aattettgge gttaggatgt atggatggtt gttgagtgta ggccgtgget ggtagtacat atcaacceta cttcacctct tttgtcaatt atagttttg tacagtcage ggagatagta acttttagtg gcaaagggtg</pre>	EDNA NISM: CORONA INSM: CORONA	tatcattagt tgcttcttc gacttgcatg taatggcatg tcacaattgg tgaagttgct atcgtatatt ggctggtcaa gagagctaac caaatgcgac acctattctg cgttaagatg aaaacttaag tggtgtcctt cacaaaggat	tactacatat atgtgctata aagagatctt aattgtctca cgtgatttgt gttgatagtg aagacctatg aacactaaag gagtctgctt ttgcttgacc tttgatgctt gcacttgttg tctacattcg gttattgaat	ggaagagcta agcgcaatcg tctatgtcta attgtgacac cactccagtt ttgctgtgaa agagacatcc gttcactgcc ctaagtctgc aagctcttgt atgtcgacac ctacagctca tgtcactgcc	tgttcatatc tgccacacgc tgcaaatgga attttgcact taaaagacca aaatggcgcg gctctcccat tattaatgtc ttctgtgtac atcagacgtt cttttcagca cagcgagtta ccgacaaggt ttcacatcac	120 180 240 300 360 420 480 540 660 720 780 840

gaaaacatga cgcccagaga tcttggcgca tgtattgact gtaatgcaag gcatatcaat 1020

gcccaagtag	caaaaagtca	caatgtttca	ctcatctgga	atgtaaaaga	ctacatgtct	1080
ttatctgaac	agctgcgtaa	acaaattcgt	agtgctgcca	agaagaacaa	catacctttt	1140
agactaactt	gtgctacaac	tagacaggtt	gtcaatgtca	taactactaa	aatctcactc	1200
aagggtggta	agattgttag	tacttgtttt	aaacttatgc	ttaaggccac	attattgtgc	1260
gttcttgctg	cattggtttg	ttatatcgtt	atgccagtac	atacattgtc	aatccatgat	1320
ggttacacaa	atgaaatcat	tggttacaaa	gccattcagg	atggtgtcac	tcgtgacatc	1380
atttctactg	atgattgttt	tgcaaataaa	catgctggtt	ttgacgcatg	gtttagccag	1440
cgtggtggtt	catacaaaaa	tgacaaaagc	tgccctgtag	tagctgctat	cattacaaga	1500
gagattggtt	tcatagtgcc	tggcttaccg	ggtactgtgc	tgagagcaat	caatggtgac	1560
ttcttgcatt	ttctacctcg	tgtttttagt	gctgttggca	acatttgcta	cacaccttcc	1620
aaactcattg	agtatagtga	ttttgctacc	tctgcttgcg	ttcttgctgc	tgagtgtaca	1680
atttttaagg	atgctatggg	caaacctgtg	ccatattgtt	atgacactaa	tttgctagag	1740
ggttctattt	cttatagtga	gcttcgtcca	gacactcgtt	atgtgcttat	ggatggttcc	1800
atcatacagt	ttcctaacac	ttacctggag	ggttctgtta	gagtagtaac	aacttttgat	1860
gctgagtact	gtagacatgg	taca				1884
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN <400> SEQUE	TH: 2020 DNA NISM: CORONA	AVIRUS				
cactcgttat	gtgcttatgg	atggttccat	catacagttt	cctaacactt	acctggaggg	60
ttctgttaga	gtagtaacaa	cttttgatgc	tgagtactgt	agacatggta	catgcgaaag	120
gtcagaagta	ggtatttgcc	tatctaccag	tggtagatgg	gttcttaata	atgagcatta	180
cagageteta	tcaggagttt	tctgtggtgt	tgatgcgatg	aatctcatag	ctaacatctt	240
tactcctctt	gtgcaacctg					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tgggtgcttt	agatgtgtct	gcttcagtag	tggctggtgg	300
tattattgcc		tgggtgcttt cttgtgctgc				300 360
	atattggtga		ctactacttt	atgaaattca	gacgtgtttt	
tggtgagtac	atattggtga aaccatgttg	cttgtgctgc	ctactacttt	atgaaattca tttttgatgt	gacgtgtttt	360
tggtgagtac	atattggtga aaccatgttg gtaccagctt	cttgtgctgc	ctactacttt tgcacttttg gccgggagtc	atgaaattca tttttgatgt tactcagtct	gacgtgtttt ctttcactat tttacttgta	360 420
tggtgagtac actctgtctg cttgacattc	atattggtga aaccatgttg gtaccagctt tatttcacca	cttgtgctgc ttgctgctaa acagctttct	ctactacttt tgcacttttg gccgggagtc attcttggct	atgaaattca tttttgatgt tactcagtct caccttcaat	gacgtgtttt ctttcactat tttacttgta ggtttgccat	360 420 480
tggtgagtac actctgtctg cttgacattc gttttctcct	atattggtga aaccatgttg gtaccagctt tatttcacca attgtgcctt	cttgtgctgc ttgctgctaa acagctttct atgatgtttc	ctactacttt tgcacttttg gccgggagtc attcttggct agcaatctat	atgaaattca tttttgatgt tactcagtct caccttcaat gtattctgta	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa	360 420 480 540
tggtgagtac actctgtctg cttgacattc gttttctcct gcactgccat	atattggtga aaccatgttg gtaccagctt tatttcacca attgtgcctt tggttcttta	cttgtgctgc ttgctgctaa acagctttct atgatgtttc tttggataac	ctactacttt tgcacttttg gccgggagtc attcttggct agcaatctat taggaaaaga	atgaaattca tttttgatgt tactcagtct caccttcaat gtattctgta gtcatgttta	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa atggagttac	360 420 480 540 600
tggtgagtac actctgtctg cttgacattc gttttctcct gcactgccat atttagtacc	atattggtga aaccatgttg gtaccagctt tattcacca attgtgcctt tggttcttta ttcgaggagg	cttgtgctgc ttgctgctaa acagctttct atgatgtttc tttggataac acaactatct	ctactacttt tgcacttttg gccgggagtc attcttggct agcaatctat taggaaaaga tacctttttg	atgaaattca tttttgatgt tactcagtct caccttcaat gtattctgta gtcatgttta ctcaacaagg	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa atggagttac aaatgtacct	360 420 480 540 600
tggtgagtac actctgtctg cttgacattc gttttctcct gcactgccat atttagtacc aaaattgcgt	atattggtga aaccatgttg gtaccagett tatttcacca attgtgeett tggttettta ttcgaggagg agegagacae	cttgtgetge ttgctgctaa acagetttct atgatgtttc tttggataac acaactatct ctgctttgtg	ctactacttt tgcacttttg gccgggagtc attcttggct agcaatctat taggaaaaga tacctttttg tacacagtat	atgaaattca tttttgatgt tactcagtct caccttcaat gtattctgta gtcatgttta ctcaacaagg aacaggtatc	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa atggagttac aaatgtacct ttgctctata	360 420 480 540 600 660 720
tggtgagtac actctgtctg cttgacattc gtttctcct gcactgccat atttagtacc aaaattgcgt taacaagtac	atattggtga aaccatgttg gtaccagctt tattcacca attgtgcctt tggttcttta ttcgaggagg agcgagacac aagtatttca	cttgtgctgc ttgctgctaa acagctttct atgatgtttc tttggataac acaactatct ctgctttgtg tgttgccact	ctactacttt tgcacttttg gccgggagtc attettgget agcaatctat taggaaaaga tacctttttg tacacagtat agatactacc	atgaaattca tttttgatgt tactcagtct cacettcaat gtattctgta gtcatgttta ctcaacaagg aacaggtatc agctatcgtg	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa atggagttac aaatgtacct ttgctctata aagcagcttg	360 420 480 540 600 660 720
tggtgagtac actctgtctg cttgacattc gttttctcct gcactgccat atttagtacc aaaattgcgt taacaagtac ctgccactta	atattggtga aaccatgttg gtaccagett tattteacca attgtgeett tggttettta ttegaggagg agegagacae aagtatttea gcaaaggete	cttgtgetge ttgetgetaa acagetttet atgatgtte tttggataac acaactatet ctgetttgtg tgttgecaet gtggageett	ctactacttt tgcacttttg gccgggagtc attcttggct agcaatctat taggaaaaga tacctttttg tacacagtat agatactacc tagcaactca	atgaaattca tttttgatgt tactcagtct caccttcaat gtattctgta gtcatgttta ctcaacaagg aacaggtatc agctatcgtg	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa atggagttac aaatgtacct ttgctctata aagcagcttg ttctctacca	360 420 480 540 600 660 720 780
tggtgagtac actctgtctg cttgacattc gtttctcct gcactgccat atttagtacc aaaattgcgt taacaagtac ctgccactta accaccacag	atattggtga aaccatgttg gtaccagctt tattcacca attgtgcctt tggtccttta ttcgaggagg agcgagacac aagtattca gcaaaggctc acatcaatca	cttgtgctgc ttgctgctaa acagctttct atgatgtttc tttggataac acaactatct ctgctttgtg tgttgccact gtggagcctt taaatgactt	ctactacttt tgcacttttg gccgggagtc attettgget agcaatctat taggaaaaga tacctttttg tacacagtat agatactacc tagcaactca tctgcagagt	atgaaattca tttttgatgt tactcagtct cacettcaat gtattctgta gtcatgttta ctcaacaagg aacaggtatc agctatcgtg ggtgctgatg ggttttagga	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa atggagttac aaatgtacct ttgctctata aagcagcttg ttctctacca aaatggcatt	360 420 480 540 660 720 780 840 900
tggtgagtac actctgtctg cttgacattc gttttctcct gcactgccat atttagtacc aaaattgcgt taacaagtac ctgccactta accaccacag cccgtcaggc	atattggtga aaccatgttg gtaccagctt tatttcacca attgtgcctt tggttcttta ttcgaggagg agcgagacac aagtatttca gcaaaggctc acatcaatca aaagttgaag	cttgtgetge ttgetgetaa acagetttet atgatgtte tttggataac acaactatet etgetttgtg tgttgecaet gtggageett taaatgaett ettetgetgt	ctactacttt tgcacttttg gccgggagtc attettggct agcaatctat taggaaaaga tacctttttg tacacagtat agatactacc tagcaactca tctgcagagt acaagtaacc	atgaaattca tttttgatgt tactcagtct caccttcaat gtattctgta gtcatgttta ctcaacaagg aacaggtatc agctatcgtg ggtgctgatg ggttttagga tgtggaacta	gacgtgtttt ctttcactat tttacttgta ggtttgccat tttctctgaa atggagttac aaatgtacct ttgctctata aagcagcttg ttctctacca aaatggcatt caactcttaa	360 420 480 540 600 720 780 840 900

catgcttaat cctaactatg aagatctgct cattcgcaaa tccaaccata gctttcttgt 1140

tcaggctggc	aatgttcaac	ttcgtgttat	tggccattct	atgcaaaatt	gtctgcttag	1200
gcttaaagtt	gatacttcta	accctaagac	acccaagtat	aaatttgtcc	gtatccaacc	1260
tggtcaaaca	ttttcagttc	tagcatgcta	caatggttca	ccatctggtg	tttatcagtg	1320
tgccatgaga	cctaatcata	ccattaaagg	ttctttcctt	aatggatcat	gtggtagtgt	1380
tggttttaac	attgattatg	attgcgtgtc	tttctgctat	atgcatcata	tggagcttcc	1440
aacaggagta	cacgctggta	ctgacttaga	aggtaaattc	tatggtccat	ttgttgacag	1500
acaaactgca	caggctgcag	gtacagacac	aaccataaca	ttaaatgttt	tggcatggct	1560
gtatgctgct	gttatcaatg	gtgataggtg	gtttcttaat	agattcacca	ctactttgaa	1620
tgactttaac	cttgtggcaa	tgaagtacaa	ctatgaacct	ttgacacaag	atcatgttga	1680
catattggga	cctctttctg	ctcaaacagg	aattgccgtc	ttagatatgt	gtgctgcttt	1740
gaaagagctg	ctgcagaatg	gtatgaatgg	tcgtactatc	cttggtagca	ctattttaga	1800
agatgagttt	acaccatttg	atgttgttag	acaatgctct	ggtgttacct	tccaaggtaa	1860
gttcaagaaa	attgttaagg	gcactcatca	ttggatgctt	ttaactttct	tgacatcact	1920
attgattctt	gttcaaagta	cacagtggtc	actgttttc	tttgtttacg	agaatgcttt	1980
cttgccattt	actcttggta	ttatggcaat	tgctgcatgt			2020
<210> SEQ 1 <211> LENGT <212> TYPE: <213> ORGAN	PH: 2040	V IRUS				
<400> SEQUE	ENCE: 49					
		gtactgtagc	agctaaactg	cccagcacca	tacctctatt	60
agcatttcca	gcctgaagac		agctaaactg gtatttcact			60 120
agcatttcca taggttgttt	gcctgaagac aagcctttga	tgaagtacaa		ttaggccctt	ttggtgtgtc	
agcatttcca taggttgttt tgtaacaaac	gcctgaagac aagcctttga ctacaaggtg	tgaagtacaa gttccagttc	gtatttcact	ttaggccctt	ttggtgtgtc	120
agcatttcca taggttgttt tgtaacaaac agggaatcta	gcctgaagac aagcctttga ctacaaggtg gcccatttga	tgaagtacaa gttccagttc gatcttggtg	gtatttcact	ttaggccctt gtacctgtac aatgccagca	ttggtgtgtc catcactctt caaacctacc	120 180
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc	gtatttcact tgtgtaaatt gtctgatagt	ttaggccctt gtacctgtac aatgccagca gtacaagctg	ttggtgtgtc catcactctt caaacctacc tttgtgtggt	120 180 240
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc	gtatttcact tgtgtaaatt gtctgatagt attgtcatca	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt	120 180 240 300
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac	gtatttcact tgtgtaaatt gtctgatagt attgtcatca tactggactc	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt	120 180 240 300 360
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat	gtatttcact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat	120 180 240 300 360 420
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt	gtatttoact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc	120 180 240 300 360 420
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat acaacaacca	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt tgagtttggc	gtatttcact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc gttaccatca	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct aatggtatga	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc tgttgagtgg	120 180 240 300 360 420 480
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt ataatcaggg	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat acaacaacca tcacgcgcat	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt tgagtttggc	gtatttoact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc gttaccatca tgctgtagtc	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct aatggtatga gcatcattat	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc tgttgagtgg caagcttcct	120 180 240 300 360 420 480 540
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt ataatcaggg aacacaacca	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat acaacaacca tcacgcgcat aagagcattg	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt tgagtttggc tgttgataat	gtatttcact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc gttaccatca tgctgtagtc gttgttaagt	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct aatggtatga gcatcattat tttgccctct	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc tgttgagtgg caagcttcct tgtcctcaga	120 180 240 300 360 420 480 540 600
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt ataatcaggg aacacaacca aagcatagtg tcttgcctgt	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat acaacaacca tcacgcgcat aagagcattg ttgtacattt	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt tgagtttggc tgttgataat tttgcatagc	gtatttoact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc gttaccatca tgctgtagtc gttgttaagt actagttact	ttaggccott gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct aatggtatga gcatcattat tttgccctct atctttcca	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc tgttgagtgg caagcttcct tgtcctcaga acttgcgttg	120 180 240 300 360 420 480 540 600 660
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt ataatcaggg aacacacca aagcatagtg tcttgcctgt catggcagca	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat acaacaacca tcacggcat taggcattgttgtgtacattt	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt tgagtttggc tgtgataat tttgcatagc gggtcatagc actcagattt	gtatttoact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc gttaccatca tgctgtagtc gttgttaagt actagttact ctgatctgcc	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct aatggtatga gcatcattat tttgccctct atctttcca aaagatttct	ttggtgtgtc catcactctt caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc tgttgagtgg caagcttcct tgtcctcaga acttgcgttg ttaactttt	120 180 240 300 360 420 480 540 660 720 780
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt ataatcaggg aacacaacca aagcatagtg tcttgcctgt catggcagca gagaacgact	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat acaacaacca tcacgcgcat aagagcattg ttgtacattt tcacggtcaa tcacggtcaa	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt tgagtttggc tgtgataat tttgcatagc gggtcatagc actcagattt cattagctac	gtatttoact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc gttaccatca tgctgtagtc gttgttaagt actagttact ctgatctgcc agccacattc	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct aatggtatga gcatcattat tttgccctct atctttcca aaagatttct taggcctcct	catcactett caaacctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc tgttgagtgg caagcttcct tgtctcaga acttgcgttg ttaacttttt gggcagtggc	120 180 240 300 360 420 480 540 660 720 780
agcatttcca taggttgttt tgtaacaaac agggaatcta tcccttcgaa accagccgca aacagctgag gtccatgtta ttcccagagt attaccagagt actacacca aagcatagtg tcttgcctgt catggcagca gagaacgact ataagcggca	gcctgaagac aagcctttga ctacaaggtg gcccatttga ttgttatagt caggacatct ttggctctta atttcactaa gcagatgcat acaacaacca tcacgcgcat aagagcattg ttgtacattt tcacggtcaa tcacggtcaa tcacggtcaa tcacggtcaa tcacggtcaa	tgaagtacaa gttccagttc gatcttggtg aggcaagtgc gtcgtagtgc gagctgtaac gttgaacaat atgtaaaggt tgagtttggc tgtgataat tttgcatagc gggtcatagc actcagattt cattagctac aagaactaaa	gtatttoact tgtgtaaatt gtctgatagt attgtcatca tactggactc aataagaggc cttgctatcc gttaccatca tgctgtagtc gttgttaagt actagttact ctgatctgcc agccacattc agcctgctca	ttaggccctt gtacctgtac aatgccagca gtacaagctg agttcattat caagccaaat gcatcaacaa caagtgttct aatggtatga gcatcattat tttgccctct atctttcca aaagatttct taggcctcct atagcctgaa	ttggtgtgtc catcactctt caaaoctacc tttgtgtggt tctgtagttt ttggtgaatt cttgctggat tgtaggtacc tgttgagtgg caagcttcct tgtcctcaga acttgcgttg ttaactttt gggcagtggc gagtagcacg	120 180 240 300 360 420 480 540 660 720 780 840 900

aacagacaaa agagaaacca tcttctcgaa agcttcagtt gtgtcttttg caagaagaat 1080 atcattgtgg agttgtacac attgtgccca caatttagaa gatgactcta ctctaagttg 1140

1200

1080

1140

agtagcaacc ttgatacatg gtttacctcc aatacccaac aacttaatgt taagcttgaa 1260 agcatcaata ctactcttag gaggcaaaag cccctgggag ttcatatacc taaattcttg 1320 tgtagagacc aagtagtcat aaacaccaag agtaagcctg aagtaacggt tgagtaaaca 1380 gaaaaggcca aagtagcagc agcaacaata gcctaagaaa caataaacaa gcatgataca 1440 ctgtaaggtg ttgccagtaa taaataacaa tgggtaatac tcaacacaca caaacactat 1500 agctctagct aaaaacatga tagtcgtaac gacaccagaa tagttagagg ttacagaaat 1560 aactaaggcc cacatggaaa tagcttgatc taaagcatta ccatagtaga ctttgtaaac 1620 aagtgtaatg acattcatca gtgtccaaac acgtctagca gcatcatcat aaacagtgcg 1680 agctgtcatg agaataagca aaactaaagc tgaagcatac ataacacaat ccttaagcct ataaccagac aagctagtgt cagccaattc aagccatgtc atgatacgca tcacccagct 1800 1860 agcaggcatg tagaccatat taaagtaagc aactgttgca agagaaggta acagaaacaa gcacaagaat gcgtgcttat gcttaacaag cagcatagca catgcagcaa ttgccataat accaagagta aatggcaaga aagcattctc gtaaacaaag aaaaacagtg accactgtgt 1980 actttgaaca agaatcaata gtgatgtcaa gaaagttaaa agcatccaat gatgagtgca 2040 <210> SEQ ID NO 50 <211> LENGTH: 2012 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 50 cttgtaggtt tgttacagac acaccaaaag ggcctaaagt gaaatacttg tacttcatca 60 aaggettaaa caacetaaat agaggtatgg tgetgggeag tttagetget acagtaegte 120 180 ttcaggctgg aaatgctaca gaagtacctg ccaattcaac tgtgctttcc ttctgtgctt ttgcagtaga ccctgctaaa gcatataagg attacctagc aagtggagga caaccaatca 240 ccaactgtgt gaagatgttg tgtacacaca ctggtacagg acaggcaatt actgtaacac 300 cagaagctaa catggaccaa gagtcctttg gtggtgcttc atgttgtctg tattgtagat 360 gccacattga ccatccaaat cctaaaggat tctgtgactt gaaaggtaag tacgtccaaa 420 480 tacctaccac ttgtgctaat gacccagtgg gttttacact tagaaacaca gtctgtaccg 540 totgoggaat gtggaaaggt tatggctgta gttgtgacca actccgcgaa cccttgatgc agtotgogga tgcatcaacg tttttaaacg ggtttgoggt gtaagtgoag cocgtottac 600 accgtgcggc acaggcacta gtactgatgt cgtctacagg gcttttgata tttacaacga 660 720 aaaagttgct ggttttgcaa agttcctaaa aactaattgc tgtcgcttcc aggagaagga tgaggaaggc aatttattag actcttactt tgtagttaag aggcatacta tgtctaacta 780 ccaacatgaa gagactattt ataacttggt taaagattgt ccagcggttg ctgtccatga 840 ctttttcaag tttagagtag atggtgacat ggtaccacat atatcacgtc agcgtctaac taaatacaca atggctgatt tagtctatgc tctacgtcat tttgatgagg gtaattgtga 960 tacattaaaa gaaatactcg tcacatacaa ttgctgtgat gatgattatt tcaataagaa 1020

ggattggtat gacttcgtag agaatcctga catcttacgc gtatatgcta acttaggtga

gcgtgtacgc caatcattat taaagactgt acaattctgc gatgctatgc gtgatgcagg

ttgaagaacc gagagcagta ccacagatgt gcactttacg tcagacattt tagactgtac

1200

tgatttcgta caagtagcac caggctgcgg agttcctatt gtggattcat attactcatt 1260 1320 gctgatgccc atcctcactt tgactagggc attggctgct gagtcccata tggatgctga tctcgcaaaa ccacttatta agtgggattt gctgaaatat gattttacgg aagagagact ttgtctcttc gaccgttatt ttaaatattg ggaccagaca taccatccca attgtattaa 1440 1500 ctgtttggat gataggtgta tccttcattg tgcaaacttt aatgtgttat tttctactgt gtttccacct acaagttttg gaccactagt aagaaaaata tttgtagatg gtgttccttt tgttgtttca actggatacc attttcgtga gttaggagtc gtacataatc aggatgtaaa 1620 cttacatagc tcgcgtctca gtttcaagga acttttagtg tatgctgctg atccagctat 1680 gcatgcagct tctggcaatt tattgctaga taaacgcact acatgctttt cagtagctgc 1740 actaacaaac aatgttgctt ttcaaactgt caaacccggt aattttaata aagactttta 1800 tgactttgct gtgtctaaag gtttctttaa ggaaggaagt tctgttgaac taaaacactt 1860 cttctttgct caggatggca acgctgctat cagtgattat gactattatc gttataatct gccaacaatg tgtgatatca gacaactcct attcgtagtt gaagttgttg ataaatactt 1980 2012 tgattgttac gatggtggct gtattaatgc ca <210> SEQ ID NO 51 <211> LENGTH: 1877 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 51 gtacttcgcg tacagtggca ataccatatg acagcttaaa tgtttcctca gtggctttga 60 120 gcgtttctgc tgcgaaaagc ttgagtctct cagtacaagt gttggcaagt atgtaatcgc cagcattagt ccaatcacat gttgctatcg cattgaagtc agtgacattg tcactgccta cacatgtgtt tttgtataaa ccaaaaacct gaccattagc acataatgga aaactaatgg 240 gaggettatg tgacttgcaa taatagetea taeeteetag atacagttgt gteacateag 300 tgacatcaca acctggggca ttgcaaacat agggattaac agacaacact aatttgtgtg atgitgaaat gacatggica tagcagcact tgcaacatag gaatggictc ctaatacagg 420 caccqcaacq aaqtqaaqtc tqtqaattqc acaatacaca aqcacctaca gcctgcaaga 480 ctgtatgtgg tgtgtacata gcctcataaa actcaggttc ccagtaccgt gaggtgttat cattagttag cattacggaa tacatgtcca acatgtggcc agtaagctca tcatgtaact 600 660 ttctaatgta ttgtaaatac aagtgaaaga catcagcata ctcctgatta ggatgttttg taagtgggta agcatcaata gccagtgaca cgaacctttc aatcataagt gtaccatctg 720 780 ttttgacaat atcatcgaca aaacagcctg cgcctaatat tcttgatgga tctgggtaag gcaggtacac gtaatcatct ccttgtttaa ctagcattgt atgctgtgag caaaattcgt 840 gaggtccttt agtaaggtca gtctcagtcc aacattttgc ctcagacatg aacacattat 900 960 tttgataata aagaactgcc ttaaagttct taatgctagc tactaaacct tgagccgcat agttactgtt atagcacaca acggcatcat cagaaagaat catcatggag aaatgtttac 1020 gcaggtaagc gtaaaactca tccacgaatt catgatcaac atccctattt ctatagagac 1080

actcatagag cctgtgttgt agattgcgga catacttgtc agctatctta ttaccatcag

cattgtaggc gtactgacat tagataatca ggatcttaat gggaactggt acgatttcgg

1200

1260

cataagcagt tgtagcatca ccggatgatg ttccacctgg tttaacatat agtgagccgc 1260 cacacatgac catctcactt aatacttgcg cacactcgtt agctaacctg tagaaacggt 1320 gtgataagtt acagcaagtg ttatgtttgc gagcaagaac aagagaggcc attatcctaa 1380 gcatgttagg catggctctg tcacattttg gataatccca acccataagg tgtggagttt 1440 ctacatcact gtaaacagtt tttaacatat tatgccagcc accgtaaaac ttgcttgttc 1500 caattaccac agtageteet etagtggegg etattgaett caataattte tgatgaaact 1560 gtctatttgt catagtacta cagatagaga caccagctac ggtgcgagct ctattctttg 1620 cactaatggc atacttaaga ttcatttgag ttatagtagg gatgacatta cgcttagtat 1680 acqcqaaaaq tqcatcttqa tcctcataac tcattqaqtc ataataaaqt ctaqccttac cccatttatt aaatgggaaa ccagctgatt tatccagatt gttaacgatt acttggttgg 1800 cattaataca gccaccatcg taacaatcaa agtatttatc aacaacttca actacgaata 1860 1877 ggagttgtct gatatca <210> SEQ ID NO 52 <211> LENGTH: 2051 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 52 60 tcaggtccaa tcttgacaaa gtacttcatt gatgtaagct caaagccatg cgcccaaagg acgaacacga ctctgtctga caatcctttc agtgtatcac tgagcatttg tactatctta 120 atacqcacta cattccaggg caagccttta tacatgagtg gtataagatg tttaaactgg 180 240 tcacctggtg gaggttttgc attaactctg gtgaattctg tgttattttc agtgtcaaca 300 taaccagtcg gtacagctac taagttaaca cctgtagaaa atcctagctg gagaggtagg ttagtaceca cagcatetet agttgcatga cagceeteta cateaaagee aatecaegea 360 420 cgaacgtgac gaatagcttc ttcgcgggtg ataaacatat tagggtaacc attgacttgg 480 taattcattt tgaaacccat catagagatg agtctacggt aggtcatgtc ctttggtatg cctggtatgt caacacataa tccttcagtc ttgaacttta tatcaacgct gaggtgtgta 540 600 ggtgcctgtg taggatgaag accagtaatg atcttactac agtccttaaa aagtccagtt acattttctg cttgtaatgt agccacattg cgacgtggta tttctagact tgtaaattgc 660 agtttgtcat aaagatctct atcagacatt atgcacaaaa tgccaatttt tgcccttgtg 720 atagccacat tgaagcggtt gacattacaa gagtgtgctg tttcagtagt ttgtgtgaat 780 840 atgacatagt catattcaga accetgtgat gaatcaacag tetgegtagg caatectaag atttttgaag ctacagcgtt ctgtgaatta taaggtgaga taaaaacagc ttttctccaa 900 960 gcaggattgc gtgtaagaaa ttctcttaca acgcctattt gaggtctgtt gattgcagat gaaacatcat gtgtaataac acctttgtag aacattttga agcattgagc tgacttatcc 1080 ttgtgtgctt ttagcttatt gtcataaact aaagcactca cagtgtcaac aatttcagca 1140 ggacaacggc gacaagttcc aaggaacatg tctggaccta ttgttttcat aagtctgcac 1200 actgaattaa aatattctgg ttctagtgtg cctttagtca gcaatgtgcg gggggctggt

aattgagcag gatcgccaat atagacgtag tgttttgcac gaagtctagc attgacaaca

ttgaaagaag tgcatttaca ttggctgtaa cagcttgaca aatgttaaag acactattag

ctcaagtcat aattagtagc catagagatt tcatcaaaga ctacaatgtc agcagttgtt 1320 tctggcaatg catttacagt gcagaaaaca tactgttcta gtgttgaatt cactttgaat 1380 ttatcaaaac actctacgcg cgcacgcgca ggtatgattc tactacattt atctatgggc aaatatttta atgccttttc acatagggca tcaacagctg catgagagca tgccgtatac 1500 actatgcgag cagatgggta atagagagca agtccgatgg caaaatgact cttaccagta 1560 ccaggtggtc cttggagtgt agagtacttt tgcatgccga ccttttgata atttgcaaca 1620 ttgctagaaa actcatctga gatgttgagt gttgggtaca agccagtaat tctcacatag 1680 1740 tgctcttgtg gcactagagt aggtgcacta agtggcatta cagtgtgaga tgtcaacaca aagtaatcac caacattcaa cttgtatgtc gtagtacctc tgtacacaac agcatcacca tagtcacctt tttcaaaggt gtactctcca atctgtactt tactattttt agttacacgg 1860 1920 taaccagtaa agacatagtt tctgttcaat ggtggtctag gttttccaac ctcccatgaa agatgcaatt ctctgtcaga gagtacttcg cgtacagtgg caataccata tgacagctta 1980 aatgtttcct cagtggcttt gagcgtttct gctgcgaaaa gcttgagtct ctcagtacaa 2040 2051 gtgttggcaa g <210> SEQ ID NO 53 <211> LENGTH: 2075 <212> TYPE: DNA <213> ORGANISM: CORONAVIRUS <400> SEOUENCE: 53 tgcttgtagt tttgggtaga aggtttcaac atgtccatcc ttacaccaaa gcatgaatga

60 120 aatttcaqca taqtcaattq taaccttqac cacttttqaa atcactqaca aatcttgtga ctttattatc tcgacaaagt catcaagtaa aagatcaatc acagaacaca cacattttga tgaacctgtt tgcgcatctg ttatgaagta atttttcact gtgctgtcca tagggataaa 240 atcctctaat ttaagtggtg aatcttgtga gcgcttggct aagcctatca ttaaatgaag 300 accgccaagt tgtccatgac tgaaatctcc ataaacgatg tgttcgaagg catagccctc 360 gagettatat egetgtatga atteateeat agegageteg agaaagteag ttteeatttg 420 tgatctgggc ttaaaatcct ctaagtctct gctctgagta aagtaggttt caggcaactg 480 540 ttgaataatg ccgtctactt tcttaaagta gttaaactgt gtttttactg attctccaat taatgtgact ccattgacgc tagcttgtgc tggtcccttt gaaggtgtta gacctttgac 600 tgaaccttct gttattaaaa caccattacg ggcgtttcta aaaaggtcta cctgtccttc 660 cactctacca tcaaacaaga cagtaagtga agaacaagca ctctcagtag gtttcttggc 720 aatgtcagtc attgtgcaga cacctattgt agatacatgt gctggggctt ctcttttgta 780 840 gtcccagatt acagtattag cagcgatatc aacacccaaa ttattgagta tcttaatctc tggcactggt ttaatgttac gcttagccca aagctcaaat gcaacattaa caggaagtgt 900 tgtcttattt tcaaagatct ccacatcaat accatctacc tttgtgtaaa cagcattatt 960 aatgatggaa acaggtgctt cgccggcgtg tccatcaaag tgtcctttat taacaacatt 1020 1080 ataagccaca ttttctaaac tctgtaacct ggtaaatgta ttccacaggt tataagtatc aaattgtttg taaatccata ggctaaatcc agcagaaatc atcatattat atgcatccaa 1140 gtactgtcgg tactcatttg catggtgtct gcaaacagca ccacctaaat tgcatcgtgt 1200

aatacacgta gcagatttga					
	gtggaacata	atcaatatcc	gacactactt	gtttgccatg	1260
agactcacaa ggactatcag	aatagtaaaa	gaaaggcaat	tgctttaaat	tagtaaatgc	1320
acttttatcg aaagctggag	tgtggaatgc	atgcttattc	acatacaaac	taccaccatc	1380
acagectggt aagttcaagt	ttgacaagac	tcttgtgtca	aacctacaca	caattgcatt	1440
ggctgggtaa cgatcaacgt	tacaattcca	aaacaaacaa	acaccatcag	tgaatttatc	1500
gtgatgtgta gcataagaat	agaagagttc	ctctattttg	taagctttgt	cactacatgg	1560
ctgagcatcg tagaacttcc	attctacttc	agectgagge	acacacttga	tagcctttgg	1620
atttccaatg tcatgaagaa	ctggaaactt	atcagcaagc	aatgcagact	tcacaaccat	1680
gtgttgtact tttctgcaag	cagaattaac	cctcagttca	tctcctataa	tagggtattc	1740
aacagaccaa tcaacgcgct	taacaaagca	ctcatggact	gctaaacatc	tagtcatgat	1800
agcatcacaa ctagccacat	gtgcatttcc	atgtacctgg	caatgttggt	catggttact	1860
ctgaaggtta cccgtaaagc	cccactgctg	aacatcaatc	ataaatgggt	tatagacata	1920
gtcaaaaccc acagaatgat	tccagcaggc	ataagtatct	gatgaagtag	aaaagcaagt	1980
tgcacgtttg tcacacagac	aacacgttct	ttcaggtcca	atcttgacaa	agtacttcat	2040
tgatgtaagc tcaaagccat	gcgcccaaag	gacga			2075
<210> SEQ ID NO 54 <211> LENGTH: 1891 <212> TYPE: DNA <213> ORGANISM: CORONA	VIRUS				
<400> SEQUENCE: 54					
<400> SEQUENCE: 54 aagattcacc acttaaatta	gaggatttta	tecetatgga	cagcacagtg	aaaaattact	60
-					60 120
aagattcacc acttaaatta	ggttcatcaa	aatgtgtgtg	ttctgtgatt	gatcttttac	
aagattcacc acttaaatta tcataacaga tgcgcaaaca	ggttcatcaa	aatgtgtgtg	ttctgtgatt	gatcttttac	120
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata	ggttcatcaa ataaagtcac gaaatttcat	aatgtgtgtg aagatttgtc tcatgctttg	ttctgtgatt agtgatttca gtgtaaggat	gatcttttac aaagtggtca ggacatgttg	120 180
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt	gatcttttac aaagtggtca ggacatgttg gcgatgccta	120 180 240
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgcttcttg	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat	gatcttttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa	120 180 240 300
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgcttcttg ataatgatga	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat	120 180 240 300 360
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgettettg ataatgatga getgtaccet	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac	gatcttttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg	120 180 240 300 360 420
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga acttaaatac acttacttta	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgcttcttg ataatgatga gctgtaccct ccaggtacag	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca	120 180 240 300 360 420 480
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga acttaaatac acttacttta gctctgataa aggagttgca	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgettcttg ataatgatga gctgtaccct ccaggtacag cttaatgact	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag tcgtctccga	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg cgcagattct	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca actttaattg	120 180 240 300 360 420 480 540
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgtat accaaaagga acttaaatac acttacttta gctctgataa aggagttgca cactacttgt cgattcagat	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgcttcttg ataatgatga gctgtaccct ccaggtacag cttaatgact acggctaata	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag tcgtctccga aatgggacct	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg cgcagattct tattattagc	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca actttaattg gatatgtatg	120 180 240 300 360 420 480 540
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga acttaaatac acttacttta gctctgataa aggagttgca cactacttgt cgattcagat gagactgtgc aacagtacat	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgcttcttg ataatgatga gctgtaccct ccaggtacag cttaatgact acggctaata acaaaagaga	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag tcgtctccga aatgggacct atgactctaa	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg cgcagattct tattattagc agaagggttt	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca actttaattg gatatgtatg ttcacttatc	120 180 240 300 360 420 480 540 600
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga acttaaatac acttacttta gctctgataa aggagttgca cactacttgt cgattcagat gagactgtgc aacagtacat accctaggac caaacatgtg	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgettettg ataatgatga getgtaccet ecaggtacag ettaatgact acggetaata acaaaagaga aaactageec	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag tcgtctccga aatgggacct atgactctaa tgggtggttc	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg cgcagattct tattattagc agaagggttt tatagctgta	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca actttaattg gatatgtatg ttcacttatc aagataacag	120 180 240 300 360 420 480 540 600 660 720
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga acttaaatac acttacttta gctctgataa aggagttgca cactacttgt cgattcagat gagactgtgc aacagtacat accctaggac caaacatgtg tgtgtggatt tataaagcaa	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgcttcttg ataatgatga gctgtaccct ccaggtacag cttaatgact acggctaata acaaaagaga aaactagccc ctttacaagc	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag tcgtctccga aatgggacct atgactctaa tgggtgttc ttatgggcca	ttctgtgatt agtgattca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg cgcagattct tattattagc agaaggttt tatagctgta tttctcatgg	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca actttaattg gatatgtatg ttcacttatc aagataacag tggacagctt	120 180 240 300 360 420 480 540 600 660 720
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga acttaaatac acttacttta gctctgataa aggagttgca cactacttgt cgattcagat gagactgtgc aacagtacat accctaggac caaacatgtg tgtgtggatt tataaagcaa agcattcttg gaatgctgac	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgettcttg ataatgatga gctgtaccct ccaggtacag cttaatgact acggctaata acaaaagaga aaactagccc ctttacaagc tcatcatcgg	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag tcgtctccga aatgggacct atgactctaa tgggtggttc ttatgggcca aagcatttt	ttctgtgatt agtgatttca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg cgcagattct tattattagc agaagggttt tatagctgta tttctcatgg aattggggct	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca actttaattg gatatgtatg ttcacttatc aagataacag tggacagctt aactatcttg	120 180 240 300 360 420 480 540 660 720 780 840
aagattcacc acttaaatta tcataacaga tgcgcaaaca ttgatgactt tgtcgagata aggttacaat tgactatgct aaaccttcta cccaaaacta acttgtacaa gatgcaaaga atgctgttat accaaaagga acttaaatac acttacttta gctctgataa aggagttgca cactacttgt cgattcagat gagactgtgc aacagtacat accctaggac caaacatgtg tgtgtggatt tataaagcaa agcattcttg gaatgctgac ttgttacaaa tgtaaatgca	ggttcatcaa ataaagtcac gaaatttcat caagcaagtc atgettcttg ataatgatga gctgtaccct ccaggtacag cttaatgact acggctaata acaaaagaga aaactagccc ctttacaagc tcatcatcgg gatggctata	aatgtgtgtg aagatttgtc tcatgctttg aagcgtggca aaaagtgtga atgtcgcaaa acaacatgag ctgtgctcag tcgtctccga aatgggacct atgactctaa tgggtgttc ttatgggcca aagcattttt ccatgcatgc	ttctgtgatt agtgattca gtgtaaggat accaggtgtt ccttcagaat gtatactcaa agttattcac acaatggttg cgcagattct tattattagc agaaggttt tatagctgta tttctcatgg aattggggct taactacatt	gatctttac aaagtggtca ggacatgttg gcgatgccta tatggtgaaa ctgtgtcaat tttggtgctg ccaactggca actttaattg gatatgtatg ttcacttatc aagataacag tggacagctt aactatcttg ttctggagga	120 180 240 300 360 420 480 540 660 720 780 840 900

ctcttctgga aaaaggtagg cttatcatta gagaaaacaa cagagttgtg gtttcaagtg 1140

115

-continued

atattcttgt taacaactaa acgaacatgt ttattttctt attatttctt actctcacta 1200 gtggtagtga ccttgaccgg tgcaccactt ttgatgatgt tcaagctcct aattacactc 1260 aacatacttc atctatgagg ggggtttact atcctgatga aatttttaga tcagacactc 1320 tttatttaac tcaggattta tttcttccat tttattctaa tgttacaggg tttcatacta ttaatcatac gtttggcaac cctgtcatac cttttaagga tggtatttat tttgctgcca 1440 cagagaaatc aaatgttgtc cgtggttggg tttttggttc taccatgaac aacaagtcac 1500 agtoggtgat tattattaac aattotacta atgttgttat acgagcatgt aactttgaat tgtgtgacaa ccctttcttt gctgtttcta aacccatggg tacacagaca catactatga 1620 tattcgataa tgcatttaat tgcactttcg agtacatatc tgatgccttt tcgcttgatg 1680 tttcagaaaa gtcaggtaat tttaaacact tacgagagtt tgtgtttaaa aataaagatg ggtttctcta tgtttataag ggctatcaac ctatagatgt agttcgtgat ctaccttctg 1800 gttttaacac tttgaaacct atttttaagt tgcctcttgg tattaacatt acaaatttta 1860 1891 gagccattct tacagccttt tcacctgctc a <210> SEQ ID NO 55 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: N sens primer <400> SEQUENCE: 55 cccatatgtc tgataatgga ccccaatcaa ac 32 <210> SEQ ID NO 56 <211> LENGTH: 32 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: N antisens primer <400> SEQUENCE: 56 ccccgggtg cctgagttga atcagcagaa gc 32 <210> SEQ ID NO 57 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Sc sens primer <400> SEQUENCE: 57 cccatatgag tgaccttgac cggtgcacca c 31 <210> SEQ ID NO 58 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SL sens primer <400> SEQUENCE: 58

cccatatgaa accttgcacc ccacctgctc

30

```
<210> SEQ ID NO 59
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Sc and SL antisens primer
<400> SEOUENCE: 59
                                                                          33
ccccgggtt taatatattg ctcatatttt ccc
<210> SEQ ID NO 60
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Sens set 1 primer
<400> SEQUENCE: 60
ggcatcgtat gggttg
                                                                         16
<210> SEQ ID NO 61
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Antisens set 2 (28774-28759) primer
<400> SEQUENCE: 61
cagtttcacc acctcc
                                                                          16
<210> SEQ ID NO 62
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Sens set 2 (28375-28390) primer
<400> SEQUENCE: 62
ggctactacc gaagag
                                                                          16
<210> SEQ ID NO 63
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Antisens set 2 (28702-28687)primer
<400> SEQUENCE: 63
                                                                          16
aattaccgcg actacg
<210> SEQ ID NO 64
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Probe 1/set 1 (28561-28586)
<400> SEQUENCE: 64
ggcacccgca atcctaataa caatgc
                                                                          26
<210> SEQ ID NO 65
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Probe 2/set 1 (28588-28608)
<400> SEQUENCE: 65
                                                                          21
gccaccgtgc tacaacttcc t
<210> SEQ ID NO 66
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Probe 1/set 2 /probe N/FL (28541-28563)
<400> SEQUENCE: 66
```

```
23
atacacccaa agaccacatt ggc
<210> SEQ ID NO 67
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Probe 2/set 2/probe SARS/N/LC705 (28565-28589)
<400> SEQUENCE: 67
                                                                              25
cccgcaatcc taataacaat gctgc
<210> SEQ ID NO 68
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anchor primer 14T
<400> SEQUENCE: 68
agatgaattc ggtacctttt tttttttt
                                                                              30
<210> SEQ ID NO 69
<211> LENGTH: 13
<212> TYPE: PRT <213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: M2-14 peptide
<400> SEQUENCE: 69
Ala Asp Asn Gly Thr Ile Thr Val Glu Glu Leu Lys Glu 1 \phantom{\Big|}
<210> SEQ ID NO 70
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: E1-12 peptide
<400> SEQUENCE: 70
Met Tyr Ser Phe Val Ser Glu Glu Thr Gly Thr Leu 1 \phantom{\bigg|}5\phantom{\bigg|}
<210> SEQ ID NO 71
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: E53-72 peptide
<400> SEQUENCE: 71
Lys Pro Thr Val Tyr Val Tyr Ser Arg Val Lys Asn Leu Asn Ser Ser 1 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Glu Gly Val Pro Asp Leu Leu Val
<210> SEQ ID NO 72
<211> LENGTH: 153
<212> TYPE: DNA
<213> ORGANISM: CORONAVIRUS
<400> SEQUENCE: 72
gatattaggt ttttacctac ccaggaaaag ccaaccaacc tcgatctctt gtagatctgt
```

tctc	taaa	.cg a	actt	taaa	a to	tgtg	rtage	tgt	cgct	cgg	ctgc	atgo	ct a	ıgtgc	accta	12	(
cgca	gtat	aa a	caat	aata	a at	ttta	ctgt	cgt								15	
<211 <212	> LE > T Y	ngth PE:	NO : 41 DNA :SM:	0	NAVI	RUS											
<400	> SE	QUEN	CE:	73													
ttct	ccag	ac a	actt	caaa	a tt	ccat	gagt	gga	gctt	ctg	ctga	ttca	ac t	cagg	cataa	6	•
acac	tcat	ga t	gaco	acac	a ag	gcag	atgg	gct	atgt	aaa	cgtt	ttcg	ca a	ttcc	gttta	12	4
cgat	acat	ag t	ctac	tctt	g to	gcaga	atga	att	ctcg	rtaa	ctaa	acag	ca c	aagt	aggtt	18	
tagt	taac	tt t	aato	tcac	a ta	igcaa	tctt	taa	tcaa	tgt	gtaa	catt	ag ç	gagg	acttg	24	
aaag	agco	ac c	acat	tttc	a to	gagg	jccac	gcg	gagt	acg	atco	aggg	ta c	agtg	aataa	30	1
tgct	aggg	ag a	gctg	goota	ıt at	ggaa	gago	cct	aatg	ıtgt	aaaa	ttaa	tt t	tagt	agtgc	36	
tato	ccca	tg t	gatt	ttaa	ıt aç	gatta	ttag	gag	aatg	aca	aaaa	aaaa	aa			41	
<211 <212 <213	> LE > TY > OR	NGTH PE: GANI	SM:	82 CORC)NAVI	RUS											
<400	> SE	QUEN	ICE:	74													
Met 1	Glu	Ser	Leu	Val 5	Leu	Gly	Val	Asn	Glu 10	Lys	Thr	His	Val	Gln 15	Leu		
Ser	Leu	Pro	Val 20	Leu	Gln	Val	Arg	Asp 25	Val	Leu	Val	Arg	Gly 30	Phe	Gly		
Asp	Ser	Val 35	Glu	Glu	Ala	Leu	Ser 40	Glu	Ala	Arg	Glu	His 45	Leu	Lys	Asn		
Gly	Thr 50	Cys	Gly	Leu	Val	Glu 55	Leu	Glu	Lys	Gly	Val 60	Leu	Pro	Gln	Leu		
Glu 65	Gln	Pro	Tyr	Val	Phe 70	Ile	Lys	Arg	Ser	Авр 75	Ala	Leu	Ser	Thr	Asn 80		
His	Gly	His	Lys	Val 85	Val	Glu	Leu	Val	Ala 90	Glu	Met	Asp	Gly	Ile 95	Gln		
Tyr	Gly	Arg	Ser 100	Gly	Ile	Thr	Leu	Gly 105	Val	Leu	Val	Pro	His 110	Val	Gly		
Glu	Thr	Pro 115	Ile	Ala	Tyr	Arg	Asn 120	Val	Leu	Leu	Arg	Lу в 125	Asn	Gly	Asn		
Lys	Gly 130	Ala	Gly	Gly	His	Ser 135	Tyr	Gly	Ile	Asp	Leu 140	Lys	Ser	Tyr	Asp		
Leu 145	Gly	Asp	Glu	Leu	Gly 150	Thr	Asp	Pro	Ile	Glu 155	Asp	Tyr	Glu	Gln	Asn 160		
Trp	Asn	Thr	Lys	His 165	Gly	Ser	Gly	Ala	Leu 170	Arg	Glu	Leu	Thr	Arg 175	Glu		
Leu	Asn	Gly	Gly 180	Ala	Val	Thr	Arg	Tyr 185	Val	Asp	Asn	Asn	Phe 190	Cys	Gly		
Pro	Asp	Gly 195		Pro	Leu	Asp	Cys 200	Ile	Lys	Asp	Phe	Leu 205	Ala	Arg	Ala		
Gly	Lys	Ser	Met	Сув	Thr	Leu	Ser	Glu	Gln	Leu	qaA	Tyr	Ile	Glu	Ser		

Lys 225	Arg	Gly	Val	Tyr	Cys 230	Cys	Arg	Asp	His	Glu 235	His	Glu	Ile	Ala	Trp 240
Phe	Thr	Glu	Arg	Ser 245	Asp	Lys	Ser	Tyr	Glu 250	His	Gln	Thr	Pro	Phe 255	Glu
Ile	Lys	Ser	Ala 260	Lys	Lys	Phe	Asp	Thr 265	Phe	Lys	Gly	Glu	Cys 270	Pro	Lys
Phe	Val	Phe 275	Pro	Leu	Asn	Ser	Lys 280	Val	Lys	Val	Ile	Gln 285	Pro	Arg	Val
Glu	Lys 290	Lys	Lys	Thr	Glu	Gly 295	Phe	Met	Gly	Arg	Ile 300	Arg	Ser	Val	Tyr
Pro 305	Val	Ala	Ser	Pro	Gln 310	Glu	Cys	Asn	Asn	Met 315	His	Leu	Ser	Thr	Leu 320
Met	Lys	Сув	Asn	His 325	Суѕ	Asp	Glu	Val	Ser 330	Trp	Gln	Thr	Cys	Asp 335	Phe
Leu	Lys	Ala	Thr 340	Сув	Glu	His	Сув	Gly 345	Thr	Glu	Asn	Leu	Val 350	Ile	Glu
Gly	Pro	Thr 355	Thr	Cys	Gly	Tyr	Leu 360	Pro	Thr	Asn	Ala	Val 365	Val	Lys	Met
Pro	Cys 370	Pro	Ala	Cys	Gln	Asp 375	Pro	Glu	Ile	Gly	Pro 380	Glu	His	Ser	Val
Ala 385	Asp	Tyr	His	Asn	His 390	Ser	Asn	Ile	Glu	Thr 395	Arg	Leu	Arg	Lys	Gly 400
Gly	Arg	Thr	Arg	Cys 405	Phe	Gly	Gly	Суѕ	Val 410	Phe	Ala	Tyr	Val	Gly 415	Cys
Tyr	Asn	Lys	Arg 420	Ala	Tyr	Trp	Val	Pro 425	Arg	Ala	Ser	Ala	Asp 430	Ile	Gly
Ser	Gly	His 435	Thr	Gly	Ile	Thr	Gly 440	Asp	Asn	Val	Glu	Thr 445	Leu	Asn	Glu
Asp	Leu 450	Leu	Glu	Ile	Leu	Ser 455	Arg	Glu	Arg	Val	Asn 460	Ile	Asn	Ile	Val
Gly 465	Asp	Phe	His	Leu	Asn 470	Glu	Glu	Val	Ala	Ile 475	Ile	Leu	Ala	Ser	Phe 480
Ser	Ala	Ser	Thr	Ser 485	Ala	Phe	Ile	qaA	Thr 490	Ile	Lys	Ser	Leu	Asp 495	Tyr
Lys	Ser	Phe	Lys 500	Thr	Ile	Val	Glu	Ser 505	Суѕ	Gly	Asn	Tyr	Lys 510	Val	Thr
Lys	Gly	Lys 515	Pro	Val	Lys	Gly	Ala 520	Trp	Asn	Ile	Gly	Gln 525	Gln	Arg	Ser
Val	Leu 530	Thr	Pro	Leu	Cys	Gly 535	Phe	Pro	Ser	Gln	Ala 540	Ala	Gly	Val	Ile
Arg 545	Ser	Ile	Phe	Ala	Arg 550	Thr	Leu	Asp	Ala	Ala 555	Asn	His	Ser	Ile	Pro 560
Asp	Leu	Gln	Arg	Ala 565	Ala	Val	Thr	Ile	Leu 570	Asp	Gly	Ile	Ser	Glu 575	Gln
Ser	Leu	Arg	Leu 580	Val	Asp	Ala	Met	Val 585	Tyr	Thr	Ser	Asp	Leu 590	Leu	Thr
Asn	Ser	Val 595		Ile	Met	Ala	Ty r 600	Val	Thr	Gly	Gly	Leu 605		Gln	Gln
Thr	Ser 610	Gln	Trp	Leu	Ser	Asn 615		Leu	Gly	Thr	Thr 620		Glu	Lys	Leu

Arg 625	Pro	Ile	Phe	Glu	Trp 630	Ile	Glu	Ala	Lys	Leu 635	Ser	Ala	Gly	Val	Glu 640
Phe	Leu	Lys	Asp	Ala 645	Trp	Glu	Ile	Leu	Lys 650	Phe	Leu	Ile	Thr	Gly 655	Val
Phe	Asp	Ile	Val 660	Lys	Gly	Gln	Ile	Gln 665	Val	Ala	Ser	Asp	Asn 670	Ile	Lys
Asp	Сув	Val 675	Lys	Cys	Phe	Ile	Asp 680	Val	Val	Asn	Lys	Ala 685	Leu	Glu	Met
Cys	Ile 690	Asp	Gln	Val	Thr	Ile 695	Ala	Gly	Ala	Lys	Leu 700	Arg	Ser	Leu	Asn
Leu 705	Gly	Glu	Val	Phe	Ile 710	Ala	Gln	Ser	Lys	Gly 715	Leu	Tyr	Arg	Gln	C y s 720
Ile	Arg	Gly	Lys	Glu 725	Gln	Leu	Gln	Leu	Leu 730	Met	Pro	Leu	Lys	Ala 735	Pro
Lys	Glu	Val	Thr 740	Phe	Leu	Glu	Gly	Asp 745	Ser	His	Asp	Thr	Val 750	Leu	Thr
Ser	Glu	Glu 755	Val	Val	Leu	Lys	Asn 760	Gly	Glu	Leu	Glu	Ala 765	Leu	Glu	Thr
Pro	Val 770	Asp	Ser	Phe	Thr	Asn 775	Gly	Ala	Ile	Val	Gly 780	Thr	Pro	Val	Cys
Val 785	Asn	Gly	Leu	Met	Leu 790	Leu	Glu	Ile	Lys	Авр 795	Lys	Glu	Gln	Tyr	Сув 800
Ala	Leu	Ser	Pro	Gl y 805	Leu	Leu	Ala	Thr	Asn 810	Asn	Val	Phe	Arg	Leu 815	Lys
Gly	Gly	Ala	Pro 820	Ile	Lys	Gly	Val	Thr 825	Phe	Gly	Glu	Asp	Thr 830	Val	Trp
Glu	Val	Gln 835	Gly	Tyr	Lys	Asn	Val 840	Arg	Ile	Thr	Phe	Glu 845	Leu	Asp	Glu
Arg	Val 850	Asp	Lys	Val	Leu	Asn 855	Glu	Lys	Cys	Ser	Val 860	Tyr	Thr	Val	Glu
Ser 865	Gly	Thr	Glu	Val	Thr 870	Glu	Phe	Ala	Cys	Val 875	Val	Ala	Glu	Ala	Val 880
Val	Lys	Thr	Leu	Gln 885	Pro	Val	Ser	Asp	Leu 890	Leu	Thr	Asn	Met	Gly 895	Ile
Asp	Leu	Asp	Glu 900	Trp	Ser	Val	Ala	Thr 905	Phe	Tyr	Leu	Phe	Asp 910	Asp	Ala
Gly	Glu	Glu 915	Asn	Phe	Ser	Ser	Arg 920	Met	Tyr	Сув	Ser	Phe 925	Tyr	Pro	Pro
Asp	Glu 930	Glu	Glu	Glu	Asp	Asp 935	Ala	Glu	Сув	Glu	Glu 940	Glu	Glu	Ile	qaA
Glu 945	Thr	Cys	Glu	His	Glu 950	Tyr	Gly	Thr	Glu	Asp 955	Asp	Tyr	Gln	Gly	Leu 960
Pro	Leu	Glu	Phe	Gly 965	Ala	Ser	Ala	Glu	Thr 970	Val	Arg	Val	Glu	Glu 975	Glu
Glu	Glu	Glu	Asp 980	Trp	Leu	Asp	Asp	Thr 985	Thr	Glu	Gln	Ser	Glu 990		Glu
Pro	Glu	Pro 995	Glu	Pro	Thr	Pro	Glu 100		Pro	Val	Asn	Gln 100		Thr	Gly
Tyr	Leu 101	_	s Le	u Th	r As	p As 10	n V 15	al A	la I	le L		ys 020	Val	Asp	Ile
Val	Lys	Gl	u Al	a Gl	n Se	r Al	a A	sn P	ro M	et V	al I	le	Val	Asn	Ala

														-
	1025					1030					1035			
Ala	Asn 1040	Ile	His	Leu	Lys	His 1045	Gly	Gly	Gly	Val	Ala 1050	Gly	Ala	Leu
Asn	Lys 1055	Ala	Thr	Asn	Gly	Ala 1060	Met	Gln	Lys	Glu	Ser 1065	Asp	Asp	Tyr
Ile	Lys 1070	Leu	Asn	Gly	Pro	Leu 1075	Thr	Val	Gly	Gly	Ser 1080	Cys	Leu	Leu
Ser	Gly 1085	His	Asn	Leu	Ala	Lys 1090	Lys	Сув	Leu	His	Val 1095	Val	Gly	Pro
Asn	Leu 1100	Asn	Ala	Gly	Glu	Asp 1105	Ile	Gln	Leu	Leu	Lys 1110	Ala	Ala	Tyr
Glu	Asn 1115	Phe	Asn	Ser	Gln	Asp 1120	Ile	Leu	Leu	Ala	Pro 1125	Leu	Leu	Ser
Ala	Gly 1130	Ile	Phe	Gly	Ala	Lys 1135	Pro	Leu	Gln	Ser	Leu 1140	Gln	Val	Сув
Val	Gln 1145		Val	Arg	Thr	Gln 1150	Val	Tyr	Ile	Ala	Val 1155	Asn	Asp	Lys
Ala	Leu 1160	-	Glu	Gln	Val	Val 1165	Met	Asp	Tyr	Leu	Asp 1170	Asn	Leu	Lys
Pro	Arg 1175	Val	Glu	Ala	Pro	Lys 1180	Gln	Glu	Glu	Pro	Pro 1185	Asn	Thr	Glu
Asp	Ser 1190		Thr	Glu	Glu	Lys 1195	Ser	Val	Val	Gln	L y s 1200	Pro	Val	Asp
۷al	Lys 1205		Lys	Ile	Lys	Ala 1210		Ile	Asp	Glu	Val 1215	Thr	Thr	Thr
Leu	Glu 1220		Thr	Lys	Phe	Leu 1225		Asn	Lys	Leu	Leu 1230	Leu	Phe	Ala
Asp	Ile 1235		Gly	Lys	Leu	Tyr 1240	His	Asp	Ser	Gln	Asn 1245	Met	Leu	Arg
Gly	Glu 1250		Met	Ser	Phe	Leu 1255	Glu	Lys	Asp	Ala	Pro 1260	Tyr	Met	Val
Gly	Asp 1265		Ile	Thr	Ser	Gl y 1270	Asp	Ile	Thr	Сув	Val 1275	Val	Ile	Pro
Ser	Lys 1280		Ala	Gly	Gly	Thr 1285		Glu	Met	Leu	Ser 1290	Arg	Ala	Leu
Lys	Lys 1295		Pro	Val	Asp	Glu 1300		Ile	Thr	Thr	Tyr 1305	Pro	Gly	Gln
Gly	Cys 1310		Gly	Tyr	Thr	Leu 1315		Glu	Ala	Lys	Thr 1320		Leu	Lys
Lys	Cys 1325		Ser	Ala	Phe	Tyr 1330		Leu	Pro	Ser	Glu 1335		Pro	Asn
Ala	Lys 1340		Glu	Ile	Leu	Gly 1345		Val	Ser	Trp	Asn 1350		Arg	Glu
Met	Leu 1355		His	Ala	Glu	Glu 1360		Arg	Lys	Leu	Met 1365		Ile	Сув
Met	: Asp 1370		Arg	Ala	Ile	Met 1375		Thr	Ile	Gln	Arg 1380		Tyr	Lys
Gly	7 Ile 1385		Ile	Gln	Glu	Gl y 1390		• Val	. Asp	Tyr	Gly 1395		Arg	Phe
Phe	Phe 1400		Thr	Ser	Lys	Glu 1405		Val	Ala	Ser	Ile 1410		Thr	Lys

Leu Asn 1415	Leu	Asn	Glu	Pro 1420	Leu	Val	Thr	Met	Pro 1425	Ile	Gly	Tyr
Val Thr 1430	Gly	Phe	Asn	Leu 1435	Glu	Glu	Ala	Ala	Arg 1440	Сув	Met	Arg
Ser Leu 1445	Ala	Pro	Ala	Val 1450	Val	Ser	Val	Ser	Ser 1455	Pro	Asp	Ala
Val Thr 1460	Tyr	Asn	Gly	Tyr 1465	Leu	Thr	Ser	Ser	Ser 1470	Lys	Thr	Ser
Glu Glu 1475	Phe	Val	Glu	Thr 1480	Val	Ser	Leu	Ala	Gly 1485	Ser	Tyr	Arg
Asp Trp 1490	Tyr	Ser	Gly	Gln 1495	Arg	Thr	Glu	Leu	Gly 1500	Val	Glu	Phe
Leu Lys 1505	Gly	Asp	Lys	Ile 1510	Val	Tyr	His	Thr	Leu 1515	Glu	Ser	Pro
Val Glu 1520	His	Leu	Asp	Gly 1525	Glu	Val	Leu	Ser	Leu 1530	Asp	Lys	Leu
Lys Ser 1535	Leu	Ser	Leu	Arg 1540	Glu	Val	Lys	Thr	Ile 1545	Lys	Val	Phe
Thr Thr 1550	Asp	Asn	Thr	Asn 1555	Leu	His	Thr	Gln	Leu 1560	Val	Asp	Met
Ser Met 1565	Tyr	Gly	Gln	Gln 1570	Phe	Gly	Pro	Thr	Tyr 1575	Leu	Asp	Gly
Ala Asp 1580	Thr	Lys	Ile	Lys 1585	Pro	His	Val	Asn	His 1590	Glu	Gly	Lys
Thr Phe 1595	Val	Leu	Pro	Ser 1600	Asp	Asp	Thr	Leu	Arg 1605	Ser	Glu	Ala
Phe Glu 1610	Tyr	His	Thr	Leu 1615	Asp	Glu	Ser	Phe	Leu 1620	Gly	Arg	Tyr
Met Ser 1625	Leu	Asn	His	Thr 1630	Lys	Lys	Trp	Lys	Phe 1635	Pro	Gln	Val
Gly Gly 1640	Thr	Ser	Ile	Lys 1645	Trp	Ala	Asp	Asn	Asn 1650	Cys	Tyr	Leu
Ser Ser 1655	Leu	Leu	Ala	Leu 1660	Gln	Gln	Leu	Glu	Val 1665	Lys	Phe	Asn
Ala Pro 1670	Leu	Gln	Glu	Ala 1675		Tyr	Arg	Ala	Arg 1680	Ala	Gly	Asp
Ala Ala 1685	Phe	Cys	Ala	Leu 1690	Ile	Leu	Ala	Tyr	Ser 1695	Asn	Lys	Thr
Val Gly 1700	Leu	Gly	Asp	Val 1705	Arg	Glu	Thr	Met	Thr 1710	His	Leu	Leu
Gln His 1715	Asn	Leu	Glu	Ser 1720		Lys	Arg	Val	Leu 1725	Asn	Val	Val
Cys Lys 1730	Cys	Gly	Gln	Lys 1735		Thr	Thr	Leu	Thr 1740	Gly	Val	Glu
Ala Val 1745	Tyr	Met	Gly	Thr 1750	Leu	Ser	Tyr	Asp	Asn 1755	Leu	Lys	Thr
Gly Val 1760	Ile	Pro	Cys	Val 1765	Cys	Gly	Arg	Asp	Ala 1770	Thr	Gln	Tyr
Leu Val 1775	Gln	Glu	Ser	Ser 1780		Val	Met	Met	Ser 1785		Pro	Pro

											-001	ICTI	iuec	L
Ala	Glu 1790	Tyr	Lys	Leu	Gln	Gln 1795	Gly	Thr	Phe	Leu	Cys 1800	Ala	Asn	Glu
Tyr	Thr 1805	Gly	Asn	Tyr	Gln	Cys 1810	Gly	His	Tyr	Thr	Нів 1815	Ile	Thr	Ala
Lys	Glu 1820	Thr	Leu	Tyr	Arg	Ile 1825	Asp	Gly	Ala	His	Leu 1830	Thr	Lys	Met
Ser	Glu 1835	Tyr	Lys	Gly	Pro	Val 1840	Thr	Asp	Val	Phe	Tyr 1845	Lys	Glu	Thr
Ser	Tyr 1850	Thr	Thr	Thr	Ile	Lys 1855	Pro	Val	Ser	Tyr	Lys 1860	Leu	Asp	Gly
Val	Thr 1865	Tyr	Thr	Glu	Ile	Glu 1870	Pro	Lys	Leu	Asp	Gly 1875	Tyr	Tyr	Lys
Lys	Asp 1880	Asn	Ala	Tyr	Tyr	Thr 1885	Glu	Gln	Pro	Ile	Asp 1890	Leu	Val	Pro
Thr	Gln 1895	Pro	Leu	Pro	Asn	Ala 1900	Ser	Phe	Asp	Asn	Phe 1905	Lys	Leu	Thr
Cys	Ser 1910	Asn	Thr	Lys	Phe	Ala 1915	Asp	Asp	Leu	Asn	Gln 1920	Met	Thr	Gly
Phe	Thr 1925	Lys	Pro	Ala	Ser	Arg 1930	Glu	Leu	Ser	Val	Thr 1935	Phe	Phe	Pro
Asp	Leu 1940	Asn	Gly	Asp	Val	Val 1945	Ala	Ile	Asp	Tyr	Arg 1950	His	Tyr	Ser
Ala	Ser 1955	Phe	Lys	Lys	Gly	Ala 1960	Lys	Leu	Leu	His	Lys 1965	Pro	Ile	Val
Trp	His 1970	Ile	Asn	Gln	Ala	Thr 1975	Thr	Lys	Thr	Thr	Phe 1980	Lys	Pro	Asn
Thr	Trp 1985	Cys	Leu	Arg	Сув	Leu 1990	Trp	Ser	Thr	Lys	Pro 1995	Val	Asp	Thr
Ser	Asn 2000	Ser	Phe	Glu	Val	Leu 2005	Ala	Val	Glu	Asp	Thr 2010	Gln	Gly	Met
Asp	Asn 2015	Leu	Ala	Cys	Glu	Ser 2020	Gln	Gln	Pro	Thr	Ser 2025	Glu	Glu	Val
Val	Glu 2030	Asn	Pro	Thr	Ile	Gln 2035	Lys	Glu	Val	Ile	Glu 2040	Сув	Asp	Val
Lys	Thr 2045	Thr	Glu	Val	Val	Gly 2050	Asn	Val	Ile	Leu	Lys 2055	Pro	Ser	Asp
Glu	Gly 2060	Val	Lys	Val	Thr	Gln 2065	Glu	Leu	Gly	His	Glu 2070		Leu	Met
	Ala 2075	_	Val	Glu		Thr 2080		Ile	Thr		Lys 2085		Pro	Asn
Glu	Leu 2090	Ser	Leu	Ala	Leu	Gly 2095	Leu	Lys	Thr	Ile	Ala 2100		His	Gly
Ile	Ala 2105	Ala	Ile	Asn	Ser	Val 2110		Trp	Ser	Lys	Ile 2115		Ala	Tyr
Val	Lys 2120	Pro	Phe	Leu	Gly	Gln 2125		Ala	Ile	Thr	Thr 2130		Asn	Сув
Ala	Lys 2135	Arg	Leu	Ala	Gln	Arg 2140		Phe	Asn	Asn	Tyr 2145		Pro	Tyr
Val	Phe 2150	Thr	Leu	Leu	Phe	Gln 2155	Leu	Cys	Thr	Phe	Thr 2160		Ser	Thr
Asn	Ser	Arg	Ile	Arg	Ala	Ser	Leu	Pro	Thr	Thr	Ile	Ala	Lys	Asn

_											-001	1 C 11.	ueu	
	2165					2170					2175			
Ser	Val 2180	Lys	Ser	Val	Ala	Lys 2185	Leu	Cys	Leu	Asp	Ala 2190	Gly	Ile	Asn
Tyr	Val 2195	Lys	Ser	Pro	Lys	Phe 2200	Ser	Lys	Leu	Phe	Thr 2205	Ile	Ala	Met
Trp	Leu 2210	Leu	Leu	Leu	Ser	Ile 2215	Сув	Leu	Gly	Ser	Leu 2220	Ile	Cys	Val
Thr	Ala 2225	Ala	Phe	Gly	Val	Leu 2230	Leu	Ser	Asn	Phe	Gly 2235	Ala	Pro	Ser
Tyr	Cys 2240	Asn	Gly	Val	Arg	Glu 2245	Leu	Tyr	Leu	Asn	Ser 2250	Ser	Asn	Val
Thr	Thr 2255	Met	Asp	Phe	Cys	Glu 2260	Gly	Ser	Phe	Pro	C ys 2265	Ser	Ile	Cys
Leu	Ser 2270	Gly	Leu	Asp	Ser	Leu 2275	Asp	Ser	Tyr	Pro	Ala 2280	Leu	Glu	Thr
Ile	Gln 2285	Val	Thr	Ile	Ser	Ser 2290	Tyr	Lys	Leu	Asp	Leu 2295	Thr	Ile	Leu
Gly	Leu 2300	Ala	Ala	Glu	Trp	Val 2305	Leu	Ala	Tyr	Met	Leu 2310	Phe	Thr	Lys
Phe	Phe 2315		Leu	Leu	Gly	Leu 2320	Ser	Ala	Ile	Met	Gln 2325	Val	Phe	Phe
Gly	Tyr 2330	Phe	Ala	Ser	His	Phe 2335	Ile	Ser	Asn	Ser	Trp 2340	Leu	Met	Trp
Phe	Ile 2345	Ile	Ser	Ile	Val	Gln 2350	Met	Ala	Pro	Val	Ser 2355	Ala	Met	Val
Arg	Met 2360	Tyr	Ile	Phe	Phe	Ala 2365	Ser	Phe	Tyr	Tyr	Ile 2370	Trp	ГÀе	Ser
Tyr	Val 2375	His	Ile	Met	Asp	Gly 2380		Thr	Ser	Ser	Thr 2385		Met	Met
Cys	Tyr 2390		Arg	Asn	Arg	Ala 2395	Thr	Arg	Val	Glu	Cys 2400	Thr	Thr	Ile
Val	Asn 2405		Met	Lys	Arg	Ser 2410	Phe	Tyr	Val	Tyr	Ala 2415	Asn	Gly	Gly
Arg	Gly 2420		Сув	Lys	Thr	His 2425	Asn	Trp	Asn	Cys	Leu 2430	Asn	Cys	Asp
Thr	Phe 2435		Thr	Gly	Ser	Thr 2440	Phe	Ile	Ser	Asp	Glu 2445	Val	Ala	Arg
Asp	Leu 2450		Leu	Gln	Phe	Lys 2455		Pro	Ile	Asn	Pro 2460		Asp	Gln
Ser	Ser 2465		Ile	Val	Asp	Ser 2470	Val	Ala	Val	Lys	Asn 2475		Ala	Leu
His	Leu 2480		Phe	Asp	Lys	Ala 2485		Gln	Lys	Thr	Tyr 2490		Arg	His
Pro	Leu 2495		His	Phe	Val	Asn 2500		Asp	Asn	Leu	Arg 2505		Asn	Asn
Thr	Lys 2510		Ser	Leu	Pro	Ile 2515		Val	Ile	Val	Phe 2520		Gly	Lys
Ser	Lys 2525		Asp	Glu	Ser	Ala 2530		Lys	Ser	Ala	Ser 2535		Tyr	Tyr
Ser	Gln 2540		Met	Cys	Gln	Pro 2545		Leu	Leu	Leu	Asp 2550		Ala	Leu

Val	Ser 2555	Asp	Val	Gly	Asp	Ser 2560	Thr	Glu	Val	Ser	Val 2565	Lys	Met	Phe
Asp	Ala 2570	Tyr	Val	Asp	Thr	Phe 2575	Ser	Ala	Thr	Phe	Ser 2580	Val	Pro	Met
Glu	Lys 2585	Leu	Lys	Ala	Leu	Val 2590	Ala	Thr	Ala	His	Ser 2595	Glu	Leu	Ala
Lys	Gly 2600	Val	Ala	Leu	Asp	Gly 2605	Val	Leu	Ser	Thr	Phe 2610	Val	Ser	Ala
Ala	Arg 2615	Gln	Gly	Val	Val	Asp 2620	Thr	Asp	Val	Asp	Thr 2625	Lys	Asp	Val
Ile	Glu 2630	Cys	Leu	Lys	Leu	Ser 2635	His	His	Ser	Asp	Leu 2640	Glu	Val	Thr
Gly	Asp 2645	Ser	Сув	Asn	Asn	Phe 2650	Met	Leu	Thr	Tyr	Asn 2655	Lys	Val	Glu
Asn	Met 2660	Thr	Pro	Arg	Asp	Leu 2665	Gly	Ala	Сув	Ile	Asp 2670	Сув	Asn	Ala
Arg	His 2675	Ile	Asn	Ala	Gln	Val 2680	Ala	Lys	Ser	His	Asn 2685	Val	Ser	Leu
Ile	Trp 2690	Asn	Val	Lys	Asp	Tyr 2695	Met	Ser	Leu	Ser	Glu 2700	Gln	Leu	Arg
Lys	Gln 2705	Ile	Arg	Ser	Ala	Ala 2710	Lys	Lys	Asn	Asn	Ile 2715	Pro	Phe	Arg
Leu	Thr 2720	Cys	Ala	Thr	Thr	Arg 2725	Gln	Val	Val	Asn	Val 2730	Ile	Thr	Thr
Lys	Ile 2735	Ser	Leu	Lys	Gly	Gly 2740	Lys	Ile	Val	Ser	Thr 2745	Суѕ	Phe	Lys
Leu	Met 2750	Leu	Lys	Ala	Thr	Leu 2755	Leu	Cys	Val	Leu	Ala 2760	Ala	Leu	Val
Cys	Tyr 2765	Ile	Val	Met	Pro	Val 2770	His	Thr	Leu	Ser	Ile 2775	His	Asp	Gly
Tyr	Thr 2780	Asn	Glu	Ile	Ile	Gly 2785	Tyr	Lys	Ala	Ile	Gln 2790	Asp	Gly	Val
Thr	Arg 2795	Asp	Ile	Ile	Ser	Thr 2800	Asp	Asp	Cys	Phe	Ala 2805	Asn	Lys	His
Ala	Gly 2810	Phe	Asp	Ala	Trp	Phe 2815	Ser	Gln	Arg	Gly	Gl y 2820	Ser	Tyr	Lys
Asn	Asp 2825	Lys	Ser	Cys	Pro	Val 2830	Val	Ala	Ala	Ile	Ile 2835	Thr	Arg	Glu
Ile	Gly 2840		Ile	Val	Pro	Gly 2845	Leu	Pro	Gly	Thr	Val 2850	Leu	Arg	Ala
Ile	Asn 2855	Gly	Asp	Phe	Leu	His 2860		Leu	Pro	Arg	Val 2865	Phe	Ser	Ala
Val	Gly 2870		Ile	Cys	Tyr	Thr 2875	Pro	Ser	Lys	Leu	Ile 2880	Glu	Tyr	Ser
Asp	Phe 2885	Ala	Thr	Ser	Ala	Cys 2890	Val	Leu	Ala	Ala	Glu 2895	Cys	Thr	Ile
Phe	Lys 2900	Asp	Ala	Met	Gly	Lys 2905		Val	Pro	Tyr	Cys 2910	Tyr	Asp	Thr
Asn	Leu 2915	Leu	Glu	Gly	Ser	Ile 2920		Tyr	Ser	Glu	Leu 2925	-	Pro	Asp

_															
T	hr	Arg 2930	Tyr	Val	Leu	Met	Asp 2935	Gly	Ser	Ile	Ile	Gln 2940	Phe	Pro	Asn
T	hr	Tyr 2945	Leu	Glu	Gly	Ser	Val 2950	Arg	Val	Val	Thr	Thr 2955	Phe	qaA	Ala
G.	lu	Ty r 2960	Cys	Arg	His	Gly	Thr 2965	-	Glu	Arg	Ser	Glu 2970	Val	Gly	Ile
C:	ys	Leu 2975	Ser	Thr	Ser	Gly	Arg 2980	Trp	Val	Leu	Asn	Asn 2985	Glu	His	Tyr
A	rg	Ala 2990	Leu	Ser	Gly	Val	Phe 2995	Сув	Gly	Val	Asp	Ala 3000	Met	Asn	Leu
I	le	Ala 3005	Asn	Ile	Phe	Thr	Pro 3010	Leu	Val	Gln	Pro	Val 3015	Gly	Ala	Leu
A	sp	Val 3020	Ser	Ala	Ser	Val	Val 3025	Ala	Gly	Gly	Ile	Ile 3030	Ala	Ile	Leu
V	al	Thr 3035	аұЭ	Ala	Ala	Tyr	Tyr 3040	Phe	Met	Lys	Phe	Arg 3045	Arg	Val	Phe
G	ly	Glu 3050	Tyr	Asn	His	Val	Val 3055	Ala	Ala	Asn	Ala	Leu 3060	Leu	Phe	Leu
M	et	Ser 3065	Phe	Thr	Ile	Leu	Cys 3070		Val	Pro	Ala	Tyr 3075	Ser	Phe	Leu
P	ro		Val	Tyr	Ser	Val		Tyr	Leu	Tyr	Leu	Thr 3090	Phe	Tyr	Phe
T	hr			Val	Ser	Phe		Ala	His	Leu	Gln	Trp 3105	Phe	Ala	Met
P	he			Ile	Val	Pro			Ile	Thr	Ala	Ile 3120	Tyr	Val	Phe
C	уs		Ser	Leu	Lys	His			Trp	Phe	Phe	Asn 3135	Asn	Tyr	Leu
A	rg			Val	Met	Phe			Val	Thr	Phe	Ser 3150	Thr	Phe	Glu
G	lu			Leu	Cys	Thr		Leu	Leu	Asn	Lys	Glu 3165	Met	Tyr	Leu
L	ys		Arg	Ser	Glu	Thr			Pro	Leu	Thr	Gln 3180	Tyr	Asn	Arg
т	yr		Ala	Leu	Tyr	Asn		Tyr	Lys	Tyr	Phe	Ser 3195	Gly	Ala	Leu
A	.sp			Ser	Tyr	Arg		Ala	Ala	Cys	Cys	His 3210	Leu	Ala	Lys
A	.la	Leu	Asn	Asp			Asn	Ser	Gly			Val		Tyr	Gln
P	ro		Gln	Thr				Ser	Ala			3225 Gln	Ser	Gly	Phe
A	rg		Met	Ala	Phe	Pro		Gly	Lys	Val	Glu	3240 Gly	Cys	Met	Val
G	ln		Thr	Cys	Gly	Thr		Thr	Leu	Asn	Gly	3255 Leu	Trp	Leu	Asp
A	.sp		Val	Tyr	Cys	Pro		His	Val	Ile	Cys	3270 Thr	Ala	Glu	Asp
	Ī	3275		_	_		3280				_	3285 Arg			
-	_	3290				.	3295					3300			

His Ser Phe Leu Val Gln Ala Gly Asn Val Gln Leu Arg Val Ile

US 2007/0275002 A1 Nov. 29, 2007

											-coi	ntir	ued	l				
	3305					3310					3315							
Gly	His 3320	Ser	Met	Gln	Asn	Cys 3325		Leu	Arg	Leu	Lys 3330	Val	Asp	Thr				
Ser	Asn 3335	Pro	Lys	Thr	Pro	Lys 3340		Lys	Phe	Val	Arg 3345	Ile	Gln	Pro				
Gly	Gln 3350	Thr	Phe	Ser	Val	Leu 3355		Суѕ	Tyr	Asn	Gly 3360	Ser	Pro	Ser				
Gly	Val 3365	Tyr	Gln	Сув	Ala	Met 3370		Pro	Asn	His	Thr 3375	Ile	Lys	Gly				
Ser	Phe 3380	Leu	Asn	Gly	Ser	Cys 3385	Gly	Ser	Val	Gly	Phe 3390	Asn	Ile	Asp				
Tyr	Asp 3395	Cys	Val	Ser	Phe	Cys 3400		Met	His	His	Met 3405	Glu	Leu	Pro				
Thr	Gly 3410	Val	His	Ala	Gly	Thr 3415		Leu	Glu	Gly	Lys 3420	Phe	Tyr	Gly				
Pro	Phe 3425	Val	Asp	Arg	Gln	Thr 3430	Ala	Gln	Ala	Ala	Gly 3435	Thr	Asp	Thr				
Thr	Ile 3440	Thr	Leu	Asn	Val	Leu 3445	Ala	Trp	Leu	Tyr	Ala 3450	Ala	Val	Ile				
naA	Gly 3455	Asp	Arg	Trp	Phe	Leu 3460		Arg	Phe	Thr	Thr 3465	Thr	Leu	Asn				
Asp	Phe 3470	Asn	Leu	Val	Ala	Met 3475		Tyr	Asn	Tyr	Glu 3480	Pro	Leu	Thr				
Gln	Asp 3485	His	Val	Asp	Ile	Leu 3490		Pro	Leu	Ser	Ala 3495	Gln	Thr	Gly				
Ile	Ala 3500	Val	Leu	qaA	Met	Cys 3505	Ala	Ala	Leu	Г ў в	Glu 3510	Leu	Leu	Gln				
Asn	Gly 3515	Met	Asn	Gly	Arg	Thr 3520	Ile	Leu	Gly	Ser	Thr 3525	Ile	Leu	Glu				
Asp	Glu 3530	Phe	Thr	Pro	Phe	Asp 3535	Val	Val	Arg	Gln	Cys 3540	Ser	Gly	Val				
Thr	Phe 3545	Gln	Gly	Lуs	Phe	Lys 3550		Ile	Val	Lys	Gly 3555	Thr	His	His				
Trp	Met 3560	Leu	Leu	Thr	Phe	Leu 3565		Ser	Leu	Leu	Ile 3570	Leu	Val	Gln				
Ser	Thr 3575	Gln	Trp	Ser	Leu	Phe 3580		Phe	Val	Tyr	Glu 3585	Asn	Ala	Phe				
Leu	Pro 3590					Ile 3595					Ala 3600		Ala	Met				
Leu	Leu 3605	Val	Lys	His	L y s	His 3610		Phe	Leu	Cys	Leu 3615		Leu	Leu				
Pro	Ser 3620	Leu	Ala	Thr	Val	Ala 3625	-	Phe	Asn	Met	Val 3630		Met	Pro				
Ala	Ser 3635		Val	Met	Arg	Ile 3640		Thr	Trp	Leu	Glu 3645		Ala	Asp				
Thr	Ser 3650		Ser	Gly	Tyr	Arg 3655		Lys	Asp	Cys	Val 3660		Tyr	Ala				
Ser	Ala 3665		Val	Leu	Leu		Leu	Met	Thr	Ala	Arg 3675		Val	Tyr				
Asp	Asp 3680	Ala	Ala	Arg	Arg		Trp	Thr	Leu	Met		Val	Ile	Thr				

Leu	Val 3695	Tyr	Lys	Val	Tyr	Tyr 3700	Gly	Asn	Ala	Leu	Asp 3705	Gln	Ala	Ile
Ser	Met 3710	Trp	Ala	Leu	Val	Ile 3715	Ser	Val	Thr	Ser	Asn 3720	Tyr	Ser	Gly
Val	Val 3725	Thr	Thr	Ile	Met	Phe 3730	Leu	Ala	Arg	Ala	Ile 3735	Val	Phe	Val
Cys	Val 3740	Glu	Tyr	Tyr	Pro	Leu 3745	Leu	Phe	Ile	Thr	Gly 3750	Asn	Thr	Leu
Gln	C y s 3755	Ile	Met	Leu	Val	Tyr 3760	Сув	Phe	Leu	Gly	Tyr 3765	Cys	Cys	Cys
Сув	Tyr 3770	Phe	Gly	Leu	Phe	Cys 3775	Leu	Leu	Asn	Arg	Tyr 3780	Phe	Arg	Leu
Thr	Leu 3785	Gly	Val	Tyr	Asp	Tyr 3790	Leu	Val	Ser	Thr	Gln 3795	Glu	Phe	Arg
Tyr	Met 3800	Asn	Ser	Gln	Gly	Leu 3805	Leu	Pro	Pro	Lys	Ser 3810	Ser	Ile	qaA
Ala	Phe 3815	Lys	Leu	Asn	Ile	Lys 3820	Leu	Leu	Gly	Ile	Gly 3825	Gly	Lys	Pro
Cys	Ile 3830	Lys	Val	Ala	Thr	Val 3835	Gln	Ser	Lys	Met	Ser 3840	Asp	Val	Lys
Cys	Thr 3845	Ser	Val	Val	Leu	Leu 3850	Ser	Val	Leu	Gln	Gln 3855	Leu	Arg	Val
Glu	Ser 3860	Ser	Ser	Lys	Leu	Trp 3865	Ala	Gln	Cys	Val	Gln 3870	Leu	His	Asn
Asp	Ile 3875	Leu	Leu	Ala	Lys	Asp 3880	Thr	Thr	Glu	Ala	Phe 3885	Glu	Lys	Met
Val	Ser 3890	Leu	Leu	Ser	Val	Leu 3895	Leu	Ser	Met	Gln	Gly 3900	Ala	Val	Asp
Ile	Asn 3905	Arg	Leu	Cys	Glu	Glu 3910	Met	Leu	Asp	Asn	Arg 3915	Ala	Thr	Leu
Gln	Ala 3920	Ile	Ala	Ser	Glu	Phe 3925	Ser	Ser	Leu	Pro	Ser 3930	Tyr	Ala	Ala
Tyr	Ala 3935	Thr	Ala	Gln	Glu	Ala 3940	Tyr	Glu	Gln	Ala	Val 3945	Ala	Asn	Gly
Asp	Ser 3950	Glu	Val	Val	Leu	Lys 3955	Lys	Leu	Lys	Lys	Ser 3960	Leu	Asn	Val
Ala	Lys 3965	Ser	Glu	Phe	Asp	Arg 3970	Asp	Ala	Ala	Met	Gln 3975	Arg	Lys	Leu
Glu	Lys 3980	Met	Ala	Asp	Gln	Ala 3985	Met	Thr	Gln	Met	Tyr 3990	Lys	Gln	Ala
Arg	Ser 3995	Glu	Asp	Lys	Arg	Ala 4000	Lys	Val	Thr	Ser	Ala 4005	Met	Gln	Thr
Met	Leu 4010	Phe	Thr	Met	Leu	Arg 4015	Lys	Leu	Asp	Asn	Asp 4020	Ala	Leu	Asn
Asn	Ile 4025	Ile	Asn	Asn	Ala	Arg 4030	Asp	Gly	Cys	Val	Pro 4035	Leu	Asn	Ile
Ile	Pro 4040	Leu	Thr	Thr	Ala	Ala 4045	Lys	Leu	Met	Val	Val 4050	Val	Pro	Asp
Tyr	Gly 4055	Thr	Tyr	Lys	Asn	Thr 4060	Cys	Asp	Gly	Asn	Thr 4065	Phe	Thr	Tyr

US 2007/0275002 A1 Nov. 29, 2007

-continued

4075 Lys Ile Val Gln Leu Ser Glu Ile Asn Met Asp Asn Ser Pro Asn 4090 Leu Ala Trp Pro Leu Ile Val Thr Ala Leu Arg Ala Asn Ser Ala 4105 Met Ser Cys Ala Ala Gly Thr Thr Gln Thr Ala Cys Thr Asp Asp 4130 4135 Asn Ala Leu Ala Tyr Tyr Asn Asn Ser Lys Gly Gly Arg Phe Val 4145 4150 4155 Leu Ala Leu Leu Ser Asp His Gln Asp Leu Lys Trp Ala Arg Phe 4160 4165 Pro Lys Ser Asp Gly Thr Gly Thr Ile Tyr Thr Glu Leu Glu Pro $4175 \ \ \,$ Pro Cys Arg Phe Val Thr Asp Thr Pro Lys Gly Pro Lys Val Lys Tyr Leu Tyr Phe Ile Lys Gly Leu Asn Asn Leu Asn Arg Gly Met 4205 4215 Val Leu Gly Ser Leu Ala Ala Thr Val Arg Leu Gln Ala Gly Asn 4225 Ala Thr Glu Val Pro Ala Asn Ser Thr Val Leu Ser Phe Cys Ala 4235 4240 4245 Phe Ala Val Asp Pro Ala Lys Ala Tyr Lys Asp Tyr Leu Ala Ser 4250 4260 Gly Gly Gln Pro Ile Thr Asn Cys Val Lys Met Leu Cys Thr His 4265 4270 4275Thr Gly Thr Gly Gln Ala Ile Thr Val Thr Pro Glu Ala Asn Met Asp Gln Glu Ser Phe Gly Gly Ala Ser Cys Cys Leu Tyr Cys Arg 4295 4300 4305 Cys His Ile Asp His Pro Asn Pro Lys Gly Phe Cys Asp Leu Lys 4315 Gly Lys Tyr Val Gln Ile Pro Thr Thr Cys Ala Asn Asp Pro Val $4325 \ \ \,$ 4330 $\ \ \,$ 4335 Gly Phe Thr Leu Arg Asn Thr Val Cys Thr Val Cys Gly Met Trp 4340 $$ 4345 $$ 4350 Lys Gly Tyr Gly Cys Ser Cys Asp Gln Leu Arg Glu Pro Leu Met 4355 4360 4365 Gln Ser Ala Asp Ala Ser Thr Phe Leu Asn Gly Phe Ala Val 4375 4380 <210> SEQ ID NO 75 <211> LENGTH: 2695 <212> TYPE: PRT <213> ORGANISM: CORONAVIRUS <400> SEQUENCE: 75 Arg Val Cys Gly Val Ser Ala Ala Arg Leu Thr Pro Cys Gly Thr Gly 1 $$ 5 Thr Ser Thr Asp Val Val Tyr Arg Ala Phe Asp Ile Tyr Asn Glu Lys 20 25 30

Ala Ser Ala Leu Trp Glu Ile Gln Gln Val Val Asp Ala Asp Ser

US 2007/0275002 A1 Nov. 29, 2007

Val	Ala	Gly 35	Phe	Ala	Lys	Phe	Leu 40	Lys	Thr	Asn	Сув	Cys 45	Arg	Phe	Gln
Glu	Lys 50	Asp	Glu	Glu	Gly	Asn 55	Leu	Leu	Asp	Ser	Tyr 60	Phe	Val	Val	Lys
Arg 65	His	Thr	Met	Ser	Asn 70	Tyr	Gln	His	Glu	Glu 75	Thr	Ile	Tyr	Asn	Leu 80
Val	Lys	Asp	Cys	Pro 85	Ala	Val	Ala	Val	His 90	Asp	Phe	Phe	Lys	Phe 95	Arg
Val	Asp	Gly	Asp 100	Met	Val	Pro	His	Ile 105	Ser	Arg	Gln	Arg	Leu 110	Thr	Lys
Tyr	Thr	Met 115	Ala	Asp	Leu	Val	Tyr 120	Ala	Leu	Arg	His	Phe 125	Asp	Glu	Gly
Asn	Cys 130	Asp	Thr	Leu	Lys	Glu 135	Ile	Leu	Val	Thr	Tyr 140	Asn	Cys	Cys	Asp
Asp 145	Asp	Tyr	Phe	Asn	Lys 150	Lys	Asp	Trp	Tyr	Asp 155	Phe	Val	Glu	Asn	Pro 160
Asp	Ile	Leu	Arg	Val 165	Tyr	Ala	Asn	Leu	Gly 170	Glu	Arg	Val	Arg	Gln 175	Ser
Leu	Leu	Lys	Thr 180	Val	Gln	Phe	Cys	Asp 185	Ala	Met	Arg	Asp	Ala 190	Gly	Ile
Val	Gly	Val 195	Leu	Thr	Leu	Asp	Asn 200	Gln	Asp	Leu	Asn	Gly 205	Asn	Trp	Tyr
Asp	Phe 210	Gly	Asp	Phe	Val	Gln 215	Val	Ala	Pro	Gly	Cys 220	Gly	Val	Pro	Ile
Val 225	Asp	Ser	Tyr	Tyr	Ser 230	Leu	Leu	Met	Pro	Ile 235	Leu	Thr	Leu	Thr	Arg 240
Ala	Leu	Ala	Ala	Glu 245	Ser	His	Met	Asp	Ala 250	Asp	Leu	Ala	Lys	Pro 255	Leu
Ile	Lys	Trp	Asp 260	Leu	Leu	Lys	Tyr	Asp 265	Phe	Thr	Glu	Glu	Arg 270	Leu	Сув
Leu	Phe	Asp 275	Arg	Tyr	Phe	Lys	Tyr 280	Trp	Asp	Gln	Thr	Tyr 285	His	Pro	Asn
Сув	Ile 290	Asn	Сув	Leu	Asp	Asp 295	Arg	Сув	Ile	Leu	His 300	Сув	Ala	Asn	Phe
Asn 305	Val	Leu	Phe	Ser	Thr 310	Val	Phe	Pro	Pro	Thr 315	Ser	Phe	Gly	Pro	Leu 320
Val	Arg	Lys	Ile	Phe 325	Val	Asp	Gly	Val	Pro 330	Phe	Val	Val	Ser	Thr 335	Gly
Tyr	His		Arg 340		Leu	Gly		Val 345		Asn	Gln		Val 350	Asn	Leu
His	Ser	Ser 355	Arg	Leu	Ser	Phe	Lys 360	Glu	Leu	Leu	Val	Ty r 365	Ala	Ala	Asp
Pro	Ala 370	Met	His	Ala	Ala	Ser 375	Gly	Asn	Leu	Leu	Leu 380	Asp	Lys	Arg	Thr
Thr 385	Cys	Phe	Ser	Val	Ala 390	Ala	Leu	Thr	Asn	Asn 395	Val	Ala	Phe	Gln	Thr 400
Val	Lys	Pro	Gly	Asn 405	Phe	Asn	Lys	qaA	Phe 410		Asp	Phe	Ala	Val 415	Ser
Lys	Gly	Phe	Phe 420	Lys	Glu	Gly	Ser	Ser 425	Val	Glu	Leu	Lys	His 430		Phe

Phe	Ala	Gln 435	Asp	Gly	Asn	Ala	Ala 440	Ile	Ser	Asp	Tyr	Asp 445	Tyr	Tyr	Arg
Tyr	Asn 450	Leu	Pro	Thr	Met	Сув 455	Asp	Ile	Arg	Gln	Leu 460	Leu	Phe	Val	Val
Glu 465	Val	Val	Asp	Lys	Tyr 470	Phe	Asp	Cys	Tyr	Asp 475	Gly	Gly	Cys	Ile	Asn 480
Ala	Asn	Gln	Val	Ile 485	Val	Asn	Asn	Leu	Asp 490	Lys	Ser	Ala	Gly	Phe 495	Pro
Phe	Asn	Lys	Trp 500	Gly	Lys	Ala	Arg	Leu 505	Tyr	Tyr	Asp	Ser	Met 510	Ser	Tyr
Glu	Asp	Gln 515	Asp	Ala	Leu	Phe	Ala 520	Tyr	Thr	Lys	Arg	Asn 525	Val	Ile	Pro
Thr	Ile 530	Thr	Gln	Met	Asn	Leu 535	Lys	Tyr	Ala	Ile	Ser 540	Ala	Lys	Asn	Arg
Ala 545	Arg	Thr	Val	Ala	Gly 550	Val	Ser	Ile	Сув	Ser 555	Thr	Met	Thr	Asn	Arg 560
Gln	Phe	His	Gln	Lys 565	Leu	Leu	Lys	Ser	Ile 570	Ala	Ala	Thr	Arg	Gly 575	Ala
Thr	Val	Val	Ile 580	Gly	Thr	Ser	Lys	Phe 585	Tyr	Gly	Gly	Trp	His 590	Asn	Met
Leu	Lys	Thr 595	Val	Tyr	Ser	Asp	Val 600	Glu	Thr	Pro	His	Leu 605	Met	Gly	Trp
Asp	Tyr 610	Pro	Lys	Cys	Asp	Arg 615	Ala	Met	Pro	Asn	Met 620	Leu	Arg	Ile	Met
Ala 625	Ser	Leu	Val	Leu	Ala 630	Arg	Lys	His	Asn	Thr 635	Cys	Cys	Asn	Leu	Ser 640
His	Arg	Phe	Tyr	Arg 645	Leu	Ala	Asn	Glu	Cys 650	Ala	Gln	Val	Leu	Ser 655	Glu
Met	Val	Met	Cys 660	Gly	Gly	Ser	Leu	Tyr 665	Val	Lys	Pro	Gly	Gly 670	Thr	Ser
Ser	Gly	Asp 675	Ala	Thr	Thr	Ala	Tyr 680	Ala	Asn	Ser	Val	Phe 685	Asn	Ile	Cys
Gln	Ala 690	Val	Thr	Ala	Asn	Val 695	Asn	Ala	Leu	Leu	Ser 700	Thr	Asp	Gly	Asn
L ys 705	Ile	Ala	Asp	Lys	Ty r 710	Val	Arg	Asn	Leu	Gln 715	His	Arg	Leu	Tyr	Glu 720
Cys	Leu	Tyr	Arg	Asn 725	Arg	Asp	Val	Asp	His 730	Glu	Phe	Val	Asp	Glu 735	Phe
Tyr	Ala	Tyr	Leu 740	Arg	Lys	His	Phe	Ser 745	Met	Met	Ile	Leu	Ser 750	Asp	qaA
Ala	Val	Val 755	Cys	Tyr	Asn	Ser	Asn 760		Ala	Ala	Gln	Gly 765	Leu	Val	Ala
Ser	Ile 770		Asn	Phe	Lys	Ala 775	Val	Leu	Tyr	Tyr	Gln 780	Asn	Asn	Val	Phe
Met 785	Ser	Glu	Ala	Lys	Cys 790		Thr	Glu	Thr	Авр 795	Leu	Thr	Lys	Gly	Pro 800
His	Glu	Phe	Cys	Ser 805		His	Thr	Met	Leu 810		Lys	Gln	Gly	Asp 815	Asp
Tyr	Val	Tyr	Leu 820	Pro	Tyr	Pro	Asp	Pro 825		Arg	Ile	Leu	Gly 830		Gly
Cys	Phe	Val	Asp	Asp	Ile	Val	Lys	Thr	Asp	Gly	Thr	Leu	Met	Ile	Glu

_															
		835					840					845			
Arg	Phe 850	Val	Ser	Leu	Ala	Ile 855	Asp	Ala	Tyr	Pro	Leu 860	Thr	Lys	His	Pro
Asn 865	Gln	Glu	Tyr	Ala	Asp 870	Val	Phe	His	Leu	Tyr 875	Leu	Gln	Tyr	Ile	Arg 880
Lys	Leu	His	Asp	Glu 885	Leu	Thr	Gly	His	Met 890	Leu	Asp	Met	Tyr	Ser 895	Val
Met	Leu	Thr	Asn 900	Asp	Asn	Thr	Ser	Arg 905	Tyr	Trp	Glu	Pro	Glu 910	Phe	Tyr
Glu	Ala	Met 915	Tyr	Thr	Pro	His	Thr 920	Val	Leu	Gln	Ala	Val 925	Gly	Ala	Cys
Val	Leu 930	Cys	Asn	Ser	Gln	Thr 935	Ser	Leu	Arg	Cys	Gly 940	Ala	Сув	Ile	Arg
Arg 945	Pro	Phe	Leu	Cys	ay5 070	Lys	Сув	Сув	Tyr	qaA 955	His	Val	Ile	Ser	Thr 960
Ser	His	Lys	Leu	Val 965	Leu	Ser	Val	Asn	Pro 970	Tyr	Val	Cys	Asn	Ala 975	Pro
Gly	Cys	Asp	Val 980	Thr	Asp	Val	Thr	Gln 985	Leu	Tyr	Leu	Gly	Gly 990		Ser
Tyr	Tyr	Cys 995	Lys	Ser	His	Lys	Pro 100		Ile	Ser	Phe	Pro 100		Сув	Ala
Asn	Gly 1010		ı Val	l Phe	Gly	/ Let		yr L	ys A	sn Tl		ys 020	Val	Gly	Ser
Asp	Asn 1025		l Thi	: Asp	Phe	103		la I	le A	la T		ys 035	Asp	Trp	Thr
Asn	Ala 1040		Ası	туг	Ile	Let 104		la A	sn T	hr C		hr 050	Glu	Arg	Leu
Lys	Leu 105		e Ala	a Ala	Glı	100		eu L	ys A	la Ti		lu 065	Glu	Thr	Phe
Lys	Leu 1070		с Ту	c Gly	7 Ile	10		hr V	al A	rg G		al 080	Leu	Ser	Asp
Arg	Glu 108		ı Hi	s Leu	se:	Tr _l		lu V	al G	ly L		ro 095	Arg	Pro	Pro
Leu	Asn 110		g Ası	а Туг	∵ Vai	l Pho 110		hr G	ly T	yr A		al 110	Thr	Lys	Asn
Ser	Lys 1115		l Gli	n Ile	e Gly	y Gl: 11:		yr T	hr P	he G		ys 125	Gly	Asp	Tyr
Gly	Asp 113		a Vai	l Val	l Ty	11:		ly T	hr T	hr T		yr 140	Lys	Leu	Asn
Val	Gly 114		р Ту	r Phe	e Vai	l Le:		hr S	er H	is T		al 155	Met	Pro	Leu
Ser	Ala 116		o Th	r Let	ı Va	l Pr		ln G	lu H	is T		al 170	Arg	Ile	Thr
Gly	Leu 117		r Pr	o Thi	Lei	11		le S	er A	sp G		he 185	Ser	Ser	Asn
Val	Ala 119		n Ty	r Gli	ı Ly:	s Va 11		ly M	et G	ln L		yr 200	Ser	Thr	Leu
Gln	Gly 120		o Pr	o Gly	Th:	r Gl		ys S	er H	is P		la 215	Ile	Gly	Leu
Ala	Leu 122		r Ty	r Pro	s Se	r Al 12		rg I	le V	al T		hr 230	Ala	Сув	Ser

His	Ala 1235	Ala	Val	Asp	Ala	Leu 1240	Cys	Glu	Lys	Ala	Leu 1245	Lys	Tyr	Leu
Pro	Ile 1250	Asp	Lys	Cys	Ser	Arg 1255	Ile	Ile	Pro	Ala	Arg 1260	Ala	Arg	Val
Glu	Cys 1265	Phe	Asp	Lys	Phe	Lys 1270	Val	Asn	Ser	Thr	Leu 1275	Glu	Gln	Tyr
Val	Phe 1280	Сув	Thr	Val	Asn	Ala 1285	Leu	Pro	Glu	Thr	Thr 1290	Ala	Asp	Ile
Val	Val 1295	Phe	Asp	Glu	Ile	Ser 1300	Met	Ala	Thr	Asn	Tyr 1305	Asp	Leu	Ser
Val	Val 1310	Asn	Ala	Arg	Leu	Arg 1315	Ala	Lys	His	Tyr	Val 1320	Tyr	Ile	Gly
Asp	Pro 1325	Ala	Gln	Leu	Pro	Ala 1330	Pro	Arg	Thr	Leu	Leu 1335	Thr	Lys	Gly
Thr	Leu 1340	Glu	Pro	Glu	Tyr	Phe 1345	Asn	Ser	Val	Cys	Arg 1350	Leu	Met	Lys
Thr	Ile 1355	Gly	Pro	Asp	Met	Phe 1360	Leu	Gly	Thr	Cys	Arg 1365	Arg	Cys	Pro
Ala	Glu 1370	Ile	Val	Asp	Thr	Val 1375	Ser	Ala	Leu	Val	Tyr 1380	Asp	Asn	Lys
Leu	L y s 1385	Ala	His	Lys	Asp	Lys 1390	Ser	Ala	Gln	Cys	Phe 1395	Lys	Met	Phe
Tyr	Lys 1400	Gly	Val	Ile	Thr	His 1405	Asp	Val	Ser	Ser	Ala 1410	Ile	Asn	Arg
Pro	Gln 1415	Ile	Gly	Val	Val	Arg 1420	Glu	Phe	Leu	Thr	Arg 1425	Asn	Pro	Ala
Trp	Arg 1430	Lys	Ala	Val	Phe	Ile 1435	Ser	Pro	Tyr	Asn	Ser 1440	Gln	Asn	Ala
Val	Ala 1445	Ser	Lys	Ile	Leu	Gly 1450	Leu	Pro	Thr	Gln	Thr 1455	Val	Asp	Ser
Ser	Gln 1460	Gly	Ser	Glu	Tyr	Asp 1465	Tyr	Val	Ile	Phe	Thr 1470	Gln	Thr	Thr
Glu	Thr 1475	Ala	His	Ser	Cys	Asn 1480	Val	Asn	Arg	Phe	Asn 1485	Val	Ala	Ile
Thr	Arg 1490		Lys	Ile	Gly	Ile 1495	Leu	Cys	Ile	Met	Ser 1500		Arg	Asp
Leu	Tyr 1505		Lys	Leu	Gln	Phe 1510		Ser	Leu	Glu	Ile 1515		Arg	Arg
Asn	Val 1520	Ala	Thr	Leu	Gln	Ala 1525	Glu	Asn	Val	Thr	Gl y 1530	Leu	Phe	Lys
Asp	Cys 1535		Lys	Ile	Ile	Thr 1540		Leu	His	Pro	Thr 1545		Ala	Pro
Thr	His 1550		Ser	Val	Asp	Ile 1555		Phe	Lys	Thr	Glu 1560		Leu	Cys
Val	Asp 1565		Pro	Gly	Ile	Pro 1570		Asp	Met	Thr	Tyr 1575		Arg	Leu
Ile	Ser 1580		Met	Gly	Phe	Lys 1585		Asn	Tyr	Gln	Val 1590		Gly	Tyr
Pro	Asn 1595		Phe	Ile	Thr	Arg 1600		Glu	Ala	Ile	Arg 1605		Val	Arg

											-coi	ıtır	uec	ı
Ala	Trp 1610	Ile	Gly	Phe	Asp	Val 1615	Glu	Gly	Cys	His	Ala 1620	Thr	Arg	Asp
Ala	Val 1625	Gly	Thr	Asn	Leu	Pro 1630	Leu	Gln	Leu	Gly	Phe 1635	Ser	Thr	Gly
Val	Asn 1640	Leu	Val	Ala	Val	Pro 1645	Thr	Gly	Tyr	Val	Asp 1650	Thr	Glu	Asn
Asn	Thr 1655	Glu	Phe	Thr	Arg	Val 1660	Asn	Ala	Lys	Pro	Pro 1665	Pro	Gly	Asp
Gln	Phe 1670	Lys	His	Leu	Ile	Pro 1675	Leu	Met	Tyr	Lys	Gly 1680	Leu	Pro	Trp
Asn	Val 1685	Val	Arg	Ile	Lys	Ile 1690	Val	Gln	Met	Leu	Ser 1695	Asp	Thr	Leu
Lys	Gly 1700	Leu	Ser	Asp	Arg	Val 1705	Val	Phe	Val	Leu	Trp 1710	Ala	His	Gly
Phe	Glu 1715	Leu	Thr	Ser	Met	L ys 1720	Tyr	Phe	Val	Lys	Ile 1725	Gly	Pro	Glu
Arg	Thr 1730	Cys	Суз	Leu	Cys	Asp 1735	Lys	Arg	Ala	Thr	Cys 1740	Phe	Ser	Thr
Ser	Ser 1745	Asp	Thr	Tyr	Ala	Cys 1750	Trp	Asn	His	Ser	Val 1755	Gly	Phe	Asp
Tyr	Val 1760	Tyr	Asn	Pro	Phe	Met 1765	Ile	Asp	Val	Gln	Gln 1770	Trp	Gly	Phe
Thr	Gly 1775	Asn	Leu	Gln	Ser	Asn 1780	His	Asp	Gln	His	C ys 1785	Gln	Val	His
Gly	Asn 1790	Ala	His	Val	Ala	Ser 1795	Cys	Asp	Ala	Ile	Met 1800	Thr	Arg	Cys
Leu	Ala 1805	Val	His	Glu	Сув	Phe 1810	Val	Lys	Arg	Val	Asp 1815	Trp	Ser	Val
Glu	Tyr 1820	Pro	Ile	Ile	Gly	Asp 1825	Glu	Leu	Arg	Val	Asn 1830	Ser	Ala	Cys
Arg	Lys 1835	Val	Gln	His	Met	Val 1840	Val	Lys	Ser	Ala	Leu 1845	Leu	Ala	Asp
Lys	Phe 1850	Pro	Val	Leu	His	Asp 1855		Gly	Asn	Pro	Lys 1860	Ala	Ile	Lys
Сув	Val 1865	Pro	Gln	Ala	Glu	Val 1870	Glu	Trp	Lys	Phe	Tyr 1875	Asp	Ala	Gln
Pro	Cys 1880	Ser	Asp	Lys	Ala	Tyr 1885		Ile	Glu	Glu	Leu 1890		Tyr	Ser
Tyr	Ala 1895	Thr	His	His	Asp	Lув 1900	Phe	Thr	Asp	Gly	Val 1905	Сув	Leu	Phe
Trp	Asn 1910		Asn	Val	Asp	Arg 1915		Pro	Ala	Asn	Ala 1920		Val	Cys
Arg	Phe 1925	Asp	Thr	Arg	Val	Leu 1930		Asn	Leu	Asn	Leu 1935		Gly	Cys
Asp	Gly 1940	Gly	Ser	Leu	Tyr	Val 1945		Lys	His	Ala	Phe 1950		Thr	Pro
Ala	Phe 1955	Asp	Lys	Ser	Ala	Phe 1960		Asn	Leu	Lys	Gln 1965		Pro	Phe
Phe	Tyr 1970		Ser	Asp	Ser	Pro 1975		Glu	Ser	His	Gly 1980		Gln	Val
Val	Ser	Asp	Ile	Asp	Tyr	Val	Pro	Leu	Lys	Ser	Ala	Thr	Сув	Ile

											-cor	ntir	uec	l	
	1985					1990					1995				
Thr	Arg 2000	Суѕ	Asn	Leu	Gly	Gly 2005	Ala	Val	Cys	Arg	His 2010	His	Ala	Asn	
Glu	Tyr 2015	Arg	Gln	Tyr	Leu	Asp 2020	Ala	Tyr	Asn	Met	Met 2025	Ile	Ser	Ala	
Gly	Phe 2030	Ser	Leu	Trp	Ile	Tyr 2035	Lys	Gln	Phe	Asp	Thr 2040	Tyr	Asn	Leu	
Trp	Asn 2045	Thr	Phe	Thr	Arg	Leu 2050	Gln	Ser	Leu	Glu	Asn 2055	Val	Ala	Tyr	
Asn	Val 2060	Val	Asn	Lys	Gly	His 2065	Phe	Asp	Gly	His	Ala 2070	Gly	Glu	Ala	
Pro	Val 2075	Ser	Ile	Ile	Asn	Asn 2080	Ala	Val	Tyr	Thr	Lу в 2085	Val	Asp	Gly	
Ile	Asp 2090	Val	Glu	Ile	Phe	Glu 2095	Asn	Lys	Thr	Thr	Leu 2100	Pro	Val	Asn	
Val	Ala 2105	Phe	Glu	Leu	Trp	Ala 2110	Lys	Arg	Asn	Ile	Lys 2115	Pro	Val	Pro	
Glu	Ile 2120	Lys	Ile	Leu	Asn	Asn 2125	Leu	Gly	Val	Asp	Ile 2130	Ala	Ala	Asn	
Thr	Val 2135	Ile	Trp	Asp	Tyr	Lys 2140	Arg	Glu	Ala	Pro	Ala 2145	His	Val	Ser	
Thr	Ile 2150	Gly	Val	Сув	Thr	Met 2155	Thr	Asp	Ile	Ala	Lys 2160	Lys	Pro	Thr	
Glu	Ser 2165	Ala	Сув	Ser	Ser	Leu 2170	Thr	Val	Leu	Phe	Asp 2175	Gly	Arg	Val	
Glu	Gly 2180	Gln	Val	Asp	Leu	Phe 2185	Arg	Asn	Ala	Arg	Asn 2190	Gly	Val	Leu	
Ile	Thr 2195	Glu	Gly	Ser	Val	Lys 2200	Gly	Leu	Thr	Pro	Ser 2205	Lys	Gly	Pro	
Ala	Gln 2210	Ala	Ser	Val	Asn	Gl y 2215	Val	Thr	Leu	Ile	Gly 2220	Glu	Ser	Val	
Lys	Thr 2225	Gln	Phe	Asn	Tyr	Phe 2230	Lys	Lys	Val	Asp	Gly 2235	Ile	Ile	Gln	
Gln	Leu 2240	Pro	Glu	Thr	Tyr	Phe 2245	Thr	Gln	Ser	Arg	Asp 2250	Leu	Glu	Asp	
Phe	Lys 2255		Arg	Ser	Gln	Met 2260	Glu	Thr	Asp	Phe	Leu 2265	Glu	Leu	Ala	
Met	Asp 2270		Phe	Ile	Gln	Arg 2275		Lys	Leu	Glu	Gly 2280		Ala	Phe	
Glu	His 2285	Ile	Val	Tyr	Gly	Asp 2290		Ser	His	Gly	Gln 2295	Leu	Gly	Gly	
Leu	His 2300	Leu	Met	Ile	Gly	Leu 2305	Ala	Lys	Arg	Ser	Gln 2310		Ser	Pro	
Leu	Lys 2315		Glu	qaA	Phe	Ile 2320		Met	Asp	Ser	Thr 2325		Lys	Asn	
Tyr	Phe 2330		Thr	Asp	Ala	Gln 2335		Gly	Ser	Ser	L ys 2340	_	Val	Cys	
Ser	Val 2345		Asp	Leu	Leu	Leu 2350		Asp	Phe	Val	Glu 2355		Ile	Lys	
Ser	Gln 2360	qaA	Leu	Ser	Val	Ile 2365		Lys	Val	Val	Lys 2370		Thr	Ile	

Asp	Tyr 2375	Ala	Glu	Ile	Ser	Phe 2380	Met	Leu	Trp	Суѕ	L ys 2385	Asp	Gly	His
Val	Glu 2390	Thr	Phe	Tyr	Pro	Lys 2395	Leu	Gln	Ala	Ser	Gln 2400	Ala	Trp	Gln
Pro	Gl y 2405	Val	Ala	Met	Pro	Asn 2410	Leu	Tyr	Lys	Met	Gln 2415	Arg	Met	Leu
Leu	Glu 2420	Lys	Сув	Asp	Leu	Gln 2425	Asn	Tyr	Gly	Glu	Asn 2430	Ala	Val	Ile
Pro	Lys 2435	Gly	Ile	Met	Met	Asn 2440	Val	Ala	Lys	Tyr	Thr 2445	Gln	Leu	Cys
Gln	Tyr 2450	Leu	Asn	Thr	Leu	Thr 2455	Leu	Ala	Val	Pro	Tyr 2460	Asn	Met	Arg
Val	Ile 2465	His	Phe	Gly	Ala	Gly 2470	Ser	Asp	Lys	Gly	Val 2475	Ala	Pro	Gly
Thr	Ala 2480	Val	Leu	Arg	Gln	Trp 2485	Leu	Pro	Thr	Gly	Thr 2490	Leu	Leu	Val
Asp	Ser 2495	Asp	Leu	Asn	Asp	Phe 2500	Val	Ser	Asp	Ala	Asp 2505	Ser	Thr	Leu
Ile	Gly 2510	Asp	Сув	Ala	Thr	Val 2515	His	Thr	Ala	Asn	Lys 2520	Trp	Asp	Leu
Ile	Ile 2525	Ser	Asp	Met	Tyr	Asp 2530	Pro	Arg	Thr	Lys	His 2535	Val	Thr	Lys
Glu	Asn 2540	Asp	Ser	Lys	Glu	Gly 2545	Phe	Phe	Thr	Tyr	Leu 2550	Cys	Gly	Phe
Ile	Lys 2555	Gln	Lys	Leu	Ala	Leu 2560	Gly	Gly	Ser	Ile	Ala 2565	Val	Lys	Ile
Thr	Glu 2570	His	Ser	Trp	Asn	Ala 2575	Asp	Leu	Tyr	Lys	Leu 2580	Met	Gly	His
Phe	Ser 2585	Trp	Trp	Thr	Ala	Phe 2590	Val	Thr	Asn	Val	Asn 2595	Ala	Ser	Ser
Ser	Glu 2600	Ala	Phe	Leu	Ile	Gly 2605	Ala	Asn	Tyr	Leu	Gly 2610	Lys	Pro	Lys
Glu	Gln 2615	Ile	Asp	Gly	Tyr	Thr 2620	Met	His	Ala	Asn	Tyr 2625	Ile	Phe	Trp
Arg	Asn 2630	Thr	Asn	Pro	Ile	Gln 2635	Leu	Ser	Ser	Tyr	Ser 2640	Leu	Phe	Asp
Met	Ser 2645	Lys	Phe	Pro	Leu	L ys 2650	Leu	Arg	Gly	Thr	Ala 2655	Val	Met	Ser
Leu	Lys 2660		Asn	Gln	Ile	Asn 2665		Met	Ile	Tyr	Ser 2670		Leu	Glu
Lys	Gly 2675	Arg	Leu	Ile	Ile	Arg 2680	Glu	Asn	Asn	Arg	Val 2685	Val	Val	Ser
Ser	Asp 2690		Leu	Val	Asn	Asn 2695								
.01	0. 079	0 TD	270											

<210> SEQ ID NO 76
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: S/L3/+/4932 primer

<400> SEQUENCE: 76

Manager 1	
ccacacacag cttgtggata	20
<210> SEQ ID NO 77 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L4/+/6401 primer	
<400> SEQUENCE: 77	
ccgaagttgt aggcaatgtc	20
<210> SEQ ID NO 78 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L4/+/6964 primer	
<400> SEQUENCE: 78	
tttggtgctc cttcttattg	20
<210> SEQ ID NO 79 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L4/-/6817 primer	
<400> SEQUENCE: 79	
ccggcatcca aacataattt	20
<210> SEQ ID NO 80 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L5/-/7633 primer	
<400> SEQUENCE: 80	
tggtcagtag ggttgattgg	20
<pre><210> SEQ ID NO 81 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L5/-/8127 primer</pre>	
<400> SEQUENCE: 81	22
catcetttgt gtcaacateg	20
<pre><210> SEQ ID NO 82 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L5/-/8633 primer</pre>	
<400> SEQUENCE: 82	
gtcacgagtg acaccatcct	20

<213> ORGANISM: Artificial sequence

```
<210> SEQ ID NO 83
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: S/L5/+/7839 primer
<400> SEQUENCE: 83
atgcgacgag tctgcttcta
                                                                         20
<210> SEQ ID NO 84
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: S/L5/+/8785 primer
<400> SEQUENCE: 84
                                                                         20
ttcatagtgc ctggcttacc
<210> SEQ ID NO 85
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: S/L5/+/8255 primer
<400> SEQUENCE: 85
                                                                         20
atcttggcgc atgtattgac
<210> SEQ ID NO 86
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: S/L6/-/9422 primer
<400> SEQUENCE: 86
                                                                         20
tgcattagca gcaacaacat
<210> SEQ ID NO 87
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: S/L6/-/9966 primer
<400> SEQUENCE: 87
tctgcagaac agcagaagtg
                                                                         20
<210> SEQ ID NO 88
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: S/L6/-/10542 primer
<400> SEQUENCE: 88
                                                                         20
cctgtgcagt ttgtctgtca
<210> SEQ ID NO 89
<211> LENGTH: 20
<212> TYPE: DNA
```

<u> </u>	-continued
<220> FEATURE:	
<pre><223> OTHER INFORMATION: S/L6/+/10677 primer</pre>	
<400> SEQUENCE: 89	
ccttgtggca atgaagtaca	20
<210> SEQ ID NO 90	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: S/L6/+/10106 primer</pre>	
<400> SEQUENCE: 90	
atgtcatttg cacagcagaa	20
acycoacting odelayougus	20
<210> SEQ ID NO 91	
<211> LENGTH: 20 <212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: S/L6/+/9571 primer	
<400> SEQUENCE: 91	
cttcaatggt ttgccatgtt	20
<210> SEQ ID NO 92	
<211> LENGTH: 20	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial sequence</pre>	
<220> FEATURE:	
<223> OTHER INFORMATION: S/L7/-/11271 primer	
<400> SEQUENCE: 92	
tgcgagctgt catgagaata	20
<210> SEQ ID NO 93	
<211> LENGTH: 20	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial sequence</pre>	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: S/L7/-/11801 primer</pre>	
<400> SEQUENCE: 93	
aaccgagagc agtaccacag	20
<210> SEQ ID NO 94	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: S/L7/-/12383 primer</pre>	
<400> SEQUENCE: 94	
,	20
tttggctgct gtagtcaatg	20
<210> SEQ ID NO 95	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: S/L7/+/12640 primer</pre>	
<400> SEQUENCE: 95	

W	-continued
ctacgacaga tgtcctgtgc	20
<210> SEQ ID NO 96 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L7/+/12088 primer	
<400> SEQUENCE: 96	
gagcaggctg tagctaatgg	20
<210> SEQ ID NO 97 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L7/+/11551 primer	
<400> SEQUENCE: 97	
ttaggctatt gttgctgctg	20
<210> SEQ ID NO 98 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L8/-/13160 primer	
<400> SEQUENCE: 98	
cagacaacat gaagcaccac	20
<210> SEQ ID NO 99 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L8/-/13704 primer	
<400> SEQUENCE: 99	
cgctgacgtg atatatgtgg	20
<210> SEQ ID NO 100 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L8/-/14284 primer	
<400> SEQUENCE: 100	
tgcacaatga aggatacacc	20
<210> SEQ ID NO 101 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L8/+/14453 primer	
<400> SEQUENCE: 101	
acatageteg egteteagtt	20

<210> SEQ <211> LENG	FTH: 20	
<212> TYPE <213> ORGA	NISM: Artificial sequence	
<220> FEAT	TURE:	
	ER INFORMATION: S/L8/+/13968 primer	
<400> SEQU		0.0
ggcaccgcac	g gcgtactgac	20
<210> SEQ <211> LENG		
<212> TYPE		
<213> ORGA	NNISM: Artificial sequence	
	CR INFORMATION: S/L8/+/13401 primer	
<400> SEQU		
gtttgcggtg	g taagtgcag	19
<210> SEQ	ID NO 104	
<211> LENG		
<212> TYPE <213> ORGA	:: DNA NNISM: Artificial sequence	
<220> FEAT	'URE:	
<223> OTHE	R INFORMATION: S/L9/-/15098 primer	
<400> SEQU	JENCE: 104	
tagtggcggc	c tattgacttc	20
<210> SEQ	ID NO 105	
<211> LENG		
<212> TYPE <213> ORGA	:: DNA NNISM: Artificial sequence	
<220> FEAT	URE:	
<223> OTHE	R INFORMATION: S/L9/-/15677 primer	
<400> SEQU	DENCE: 105	
ctaaacctto	g agccgcatag	20
<210> SEQ		
<211> LENG <212> TYPE		
	NISM: Artificial sequence	
<220> FEAT		
<400> SEQU	R INFORMATION: S/L9/-/16247 primer	
11000 0220	2102. 100	
catggtcata	a gcagcacttg	20
<210> SEQ	ID NO 107	
<211> LENG		
<212> TYPE <213> ORGA	: DNA NNISM: Artificial sequence	
<220> FEAT	'URE:	
	R INFORMATION: S/L9/+/16323 primer	
<400> SEQU	DENCE: 10/	
ccaggttgtg	g atgtcactga t	21
<210> SEQ	ID NO 108	
<211> LENG	TH: 20	
<212> TYPE <213> ORGA	:: DNA NNISM: Artificial sequence	

	-continued
<220> FEATURE: ,	
<223> OTHER INFORMATION: S/L9/+/15858 primer	
<400> SEQUENCE: 108	
ccttacccag atccatcaag	20
<210> SEQ ID NO 109	
<211> LENGTH: 20	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial sequence</pre>	
<220> FEATURE:	
<223> OTHER INFORMATION: S/L9/+/15288 primer	
<400> SEQUENCE: 109	
cgcaaacata acacttgctg	20
•••	
<210> SEQ ID NO 110 <211> LENGTH: 20	
<211> LENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: S/L10/-/16914 primer	
<400> SEQUENCE: 110	
agtgttgggt acaagccagt	20
<210> SEQ ID NO 111	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE: <223> OTHER INFORMATION: S/L10/-/17466 primer	
<400> SEQUENCE: 111	
gttccaagga acatgtctgg	20
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20
<210> SEQ ID NO 112	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: S/L10/-/18022 primer	
<400> SEQUENCE: 112	
aggtgcctgt gtaggatgaa	20
010	
<210> SEQ ID NO 113 <211> LENGTH: 20	
<211> LENGIN: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: S/L10/+/18245 primer	
<400> SEQUENCE: 113	
gggctgtcat gcaactagag	20
<210> SEQ ID NO 114	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial sequence <220> FEATURE:	
<pre><223> OTHER INFORMATION: S/L10/+/17663 primer</pre>	
<400> SEQUENCE: 114	

	-concinded	
tottacacgo aatootgott	20	
<210> SEQ ID NO 115		
<211> LENGTH: 20		
<212> TYPE: DNA <213> ORGANISM: Artificial sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: S/L10/+/17061 primer		
<400> SEQUENCE: 115		
tacccatctg ctcgcatagt	20	
<210> SEQ ID NO 116		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial sequence		
<pre><220> FEATURE: <223> OTHER INFORMATION: S/L11/-/18877 primer</pre>		
<400> SEQUENCE: 116		
gcaagcagaa ttaaccctca	20	
	20	
<210> SEQ ID NO 117		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial sequence		
<220> FEATURE:		
<pre><223> OTHER INFORMATION: S/L11/-/19396 primer</pre>		
<400> SEQUENCE: 117		
agcaccacct aaattgcatc	20	
<210> SEQ ID NO 118		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: S/L11/-/20002 primer		
<400> SEQUENCE: 118		
tggtcccttt gaaggtgtta	20	
<210> SEQ ID NO 119		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: S/L11/+/20245 primer		
<400> SEQUENCE: 119		
tcgaacacat cgtttatgga	20	
<210> SEQ ID NO 120		
<211> LENGTH: 20		
<212> TYPE: DNA		
<213> ORGANISM: Artificial sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: S/L11/+/19611 primer		
<400> SEQUENCE: 120		
gaagcacctg tttccatcat	20	

<210> SEQ ID NO 121 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: S/L11/+/19021 primer	
<400> SEQUENCE: 121	
acgatgctca gccatgtagt	20
<210> SEQ ID NO 122 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L1/F3/+/800 primer	
<400> SEQUENCE: 122	
gaggtgcagt cactcgctat	20
<210> SEQ ID NO 123 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L1/F4/+/1391 primer	
<400> SEQUENCE: 123	
cagagattgg acctgagcat	20
<210> SEQ ID NO 124 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L1/F5/+/1925 primer	
<400> SEQUENCE: 124	
cagcaaacca ctcaattcct	20
<210> SEQ ID NO 125 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L1/R3/-/1674 primer	
<400> SEQUENCE: 125	
aaatgatggc aacctcttca	20
<210> SEQ ID NO 126 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L1/R4/-/1107 primer	
<400> SEQUENCE: 126	
cacgtggttg aatgactttg	20
<210> SEQ ID NO 127 <211> LENGTH: 20 <212> TYPE: DNA	

<400> SEQUENCE: 133

-continued	
<220> FEATURE:	10.001.00
<223> OTHER INFORMATION: SARS/L1/R5/-/520 primer	
<400> SEQUENCE: 127	
atttctgcaa ccagetcaac	20
<210> SEQ ID NO 128	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: SARS/L2/F3/+/2664 primer	
<400> SEQUENCE: 128	
cgcattgtct cctggtttac	20
<210> SEQ ID NO 129	
<211> LENGTH: 20	
<212> TYPE: DNA <213> ORGANISM: Artificial sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: SARS/L2/F4/+/3232 primer	
<400> SEQUENCE: 129	
gagattgagc cagaaccaga	20
<210> SEQ ID NO 130	
<211> LENGTH: 20	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: SARS/L2/F5/+/3746 primer	
<400> SEQUENCE: 130	
atgagcaggt tgtcatggat	20
<210> SEQ ID NO 131	
<211> LENGTH: 20	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<pre><223> OTHER INFORMATION: SARS/L2/R3/-/3579 primer</pre>	
<400> SEQUENCE: 131	
ctcccttaac aaceteeate	
ctgccttaag aagctggatg	20
<210> SEQ ID NO 132	
<211> LENGTH: 20	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: SARS/L2/R4/-/2991 primer	
<400> SEQUENCE: 132	
tttcttcacc agcatcatca	20
<210> SEQ ID NO 133	
<211> SEQ 1D NO 133 <211> LENGTH: 20	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial sequence <220> FEATURE:</pre>	
<pre><220> FEATORE: <223> OTHER INFORMATION: SARS/L2/R5/-/2529 primer</pre>	

caccgttctt gagaacaacc	20
<210> SEQ ID NO 134 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L3/F3/+/4708 primer	
<400> SEQUENCE: 134	
tctttggctg gctcttacag	20
<210> SEQ ID NO 135 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SRAS/L3/F4/+/5305 primer	
<400> SEQUENCE: 135	
gctggtgatg ctgctaactt	20
<210> SEQ ID NO 136 <211- LENGTH: 20 <212- TYPE: DNA <213- ORGANISM: Artificial sequence <220- FEATURE: <223- OTHER INFORMATION: SARS/L3/F5/+/5822 primer <400> SEQUENCE: 136	
ccatcaagcc tgtgtcgtat	20
<210> SEQ ID NO 137 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L3/R3/-/5610 primer	
<400> SEQUENCE: 137	
caggtggtgc agacatcata	20
<210> SEQ ID NO 138 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L3/R4/-/4988 primer	
<400> SEQUENCE: 138	
aacatcagca ccatccaagt	20
<210> SEQ ID NO 139 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SARS/L3/R5/-/4437 primer <400> SEQUENCE: 139	
atcqqacacc ataqtcaacq	20

<210> SEQ I <211> LENGT						
<212> TYPE:	DNA					
<213> ORGAN		cial sequenc	ce			
		ON: syntheti	ic S gene			
<400> SEQUE	ENCE: 140					
tcaatattgg	ccattagcca	tattattcat	tggttatata	gcataaatca	atattggcta	60
ttggccattg	catacgttgt	atctatatca	taatatgtac	atttatattg	gctcatgtcc	120
aatatgaccg	ccatgttggc	attgattatt	gactagttat	taatagtaat	caattacggg	180
gtcattagtt	catagcccat	atatggagtt	ccgcgttaca	taacttacgg	taaatggccc	240
gcctggctga	ccgcccaacg	acccccgccc	attgacgtca	ataatgacgt	atgttcccat	300
agtaacgcca	atagggactt	tccattgacg	tcaatgggtg	gagtatttac	ggtaaactgc	360
ccacttggca	gtacatcaag	tgtatcatat	gccaagtccg	cccctattg	acgtcaatga	420
cggtaaatgg	cccgcctggc	attatgccca	gtacatgacc	ttacgggact	ttcctacttg	480
gcagtacatc	tacgtattag	tcatcgctat	taccatggtg	atgcggtttt	ggcagtacac	540
caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtetecace	ccattgacgt	600
caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	gtaataaccc	660
cgccccgttg	acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	taagcagagc	720
tcgtttagtg	aaccgtcaga	tcactagaag	ctttattgcg	gtagtttatc	acagttaaat	780
tgctaacgca	gtcagtgctt	ctgacacaac	agtctcgaac	ttaagctgca	gaagttggtc	840
gtgaggcact	gggcaggtaa	gtatcaaggt	tacaagacag	gtttaaggag	accaatagaa	900
actgggcttg	tcgagacaga	gaagactctt	gcgtttctga	taggcaccta	ttggtcttac	960
tgacatccac	tttgcctttc	tctccacagg	tgtccactcc	cagttcaatt	acagctctta	1020
aggctagagt	acttaatacg	actcactata	ggctagcgga	tccaccatgt	tcatcttcct	1080
gctgttcctg	accctgacca	gcggcagcga	cctggaccgg	tgcaccacct	tcgacgacgt	1140
gcaggccccc	aactacaccc	agcacaccag	cagcatgcgg	ggcgtgtact	accccgacga	1200
gatctttcgg	agcgacaccc	tgtacctgac	ccaggacctg	ttcctgccct	tctacagcaa	1260
cgtgaccggc	ttccacacca	tcaaccacac	cttcggcaac	cccgtgatcc	ccttcaagga	1320
cggcatctac	ttcgccgcca	ccgagaagag	caacgtggtg	cggggctggg	tgttcggcag	1380
caccatgaac	aacaagagcc	agagcgtgat	catcatcaac	aacagcacca	acgtggtgat	1440
ccgggcctgc	aacttcgagc	tgtgcgacaa	ccccttcttc	gccgtgtcca	aacccatggg	1500
cacccagacc	cacaccatga	tcttcgacaa	cgccttcaac	tgcaccttcg	agtacatcag	1560
cgacgccttc	agcctggacg	tgagcgagaa	gagcggcaac	ttcaagcacc	tgcgggagtt	1620
cgtgttcaag	aacaaggacg	gcttcctgta	cgtgtacaag	ggctaccagc	ccatcgacgt	1680
ggtgagagac	ctgcccagcg	gcttcaacac	cctgaagccc	atcttcaagc	tgcccctggg	1740
catcaacatc	accaacttcc	gggccatcct	gaccgccttt	agccctgccc	aggacatctg	1800
gggcaccagc	geegeegeet	acttcgtggg	ctacctgaag	cctaccacct	tcatgctgaa	1860
gtacgacgag	aacggcacca	tcaccgacgc	cgtggactgc	agccagaacc	ccctggccga	1920
gctgaagtgc	agcgtgaaga	gcttcgagat	cgacaagggc	atctaccaga	ccagcaactt	1980

cagagtggtg cctagcggcg atgtggtgcg gttccccaat atcaccaacc tgtgcccctt 2040

cggcgaagtg	ttcaacgcca	ccaagttccc	cagcgtgtac	gcctgggagc	ggaagaagat	2100
cagcaactgc	gtggccgact	acagogtgot	gtacaactcc	accttcttca	gcaccttcaa	2160
gtgctacggc	gtgagcgcca	ccaagctgaa	cgacctgtgc	ttcagcaacg	tgtacgccga	2220
cagcttcgtg	gtgaagggcg	acgacgtgag	acagatcgcc	cctggccaga	ccggcgtgat	2280
cgccgactac	aactacaagc	tgcccgacga	cttcatgggc	tgcgtgctgg	cctggaacac	2340
ccggaacatc	gacgccacaa	gcaccggcaa	ctacaattac	aagtaccgct	acctgcggca	2400
cggcaagctg	cggcccttcg	agegggaeat	ctccaacgtg	cccttcagcc	ccgacggcaa	2460
gccctgcacc	cccctgccc	tgaactgcta	ctggcccctg	aacgactacg	gcttctacac	2520
caccaccggc	atcggctatc	agccctacag	agtggtggtg	ctgagetteg	agctgctgaa	2580
cgcccctgcc	accgtgtgcg	gccccaagct	gagcaccgac	ctgatcaaga	accagtgcgt	2640
gaacttcaac	ttcaacggcc	tgaccggcac	cggcgtgctg	acccccagca	gcaagcgctt	2700
ccagcccttc	cagcagttcg	gccgggatgt	gagcgacttc	accgacagcg	tgcgggaccc	2760
caagaccagc	gagatcctgg	acatcagccc	ctgcagcttc	ggcggcgtgt	ccgtgatcac	2820
ccccggcacc	aacgccagca	gcgaagtggc	cgtgctgtac	caggacgtga	actgcaccga	2880
cgtgagcacc	gccatccacg	ccgaccagct	gacccccgcc	tggcggatct	acagcaccgg	2940
gaacaacgtg	ttccagaccc	aggccggctg	cctgatcggc	gccgagcacg	tggacaccag	3000
ctacgagtgc	gacatcccca	ttggcgccgg	aatctgcgcc	agctaccaca	ccgtgagcct	3060
gctgcggagc	accagccaga	agtccatcgt	ggcctacacc	atgagcctgg	gcgccgacag	3120
cagcatcgcc	tacagcaaca	acaccatege	catccccacc	aacttcagca	tctccatcac	3180
caccgaagtg	atgcccgtga	gcatggccaa	gacaagcgtg	gattgcaaca	tgtacatctg	3240
cggcgacagc	accgagtgcg	ccaacctgct	gctgcagtac	ggcagcttct	gcacccagct	3300
gaaccgggcc	ctgagcggca	tcgccgccga	gcaggaccgg	aacaccagag	aagtgttcgc	3360
ccaagtgaag	cagatgtata	agacccccac	cctgaagtac	ttcgggggct	tcaacttctc	3420
tcagatcctg	cccgaccctc	tgaagcccac	caagcgctcc	ttcatcgagg	acctgctgtt	3480
caacaaagtg	accetggeeg	acgccggctt	tatgaagcag	tacggcgagt	gcctgggcga	3540
catcaacgcc	cgggacctga	tctgcgccca	gaagtttaac	gggctgaccg	tgctgcccc	3600
cctgctgacc	gacgacatga	tegeegeeta	tacageegee	ctggtgagcg	gcaccgccac	3660
cgccggctgg	accttcggag	ccggagccgc	cctgcagatc	cccttcgcca	tgcagatggc	3720
ctaccggttc	aacggcatcg	gcgtgaccca	gaacgtgctg	tacgagaacc	agaagcagat	3780
				agcctgacca		3840
				caggccctga		3900
gaagcagctg	agcagcaact	tcggcgccat	cagctctgtg	ctgaacgaca	tcctgagcag	3960
gctggacaaa	gtggaggccg	aagtgcagat	cgaccggctg	atcaccggac	gcctgcagtc	4020
cctgcagacc	tacgtgaccc	agcagctgat	cagagccgcc	gagatccggg	ccagcgccaa	4080
tetggeegee	accaagatga	gcgagtgcgt	gctgggccag	agcaagagag	tggacttctg	4140
cggcaagggc	tatcacctga	tgagetteee	ccaggccgcc	ccccacggcg	tggtgttcct	4200
gcacgtgacc	tacgtgccta	gccaggagcg	gaacttcacc	accgccccag	ccatctgcca	4260
cgagggcaag	gcctacttcc	cccgggaggg	cgtgttcgtg	tttaacggca	ccagctggtt	4320

catcacccag	cgcaacttct	tcagccccca	gatcatcacc	acagacaaca	ccttcgtgtc	4380
cggcaactgt	gatgtggtga	tcggcatcat	caataacacc	gtgtacgacc	ccctgcagcc	4440
cgagctggac	agcttcaagg	aggagctgga	caaatacttc	aagaaccaca	cctcccccga	4500
cgtggacctg	ggcgatatca	gcggcatcaa	cgcctccgtg	gtgaacatcc	agaaggagat	4560
cgacagactg	aacgaagtgg	ccaagaacct	gaacgagagc	ctgatcgacc	tgcaggagct	4620
gggcaagtac	gagcagtaca	tcaagtggcc	ctggtacgtg	tggctgggct	tcatcgccgg	4680
cctgatcgcc	atcgtgatgg	tgaccatcct	gctgtgctgc	atgaccagct	gctgtagctg	4740
cctgaaaggc	gcctgcagct	gtggcagctg	ctgcaagttc	gacgaggacg	acagcgagcc	4800
cgtgctgaag	ggcgtgaagc	tgcactacac	ctgataactc	gagaattcac	gcgtggtacc	4860
tctagagtcg	acccgggcgg	ccgcttcgag	cagacatgat	aagatacatt	gatgagtttg	4920
gacaaaccac	aactagaatg	cagtgaaaaa	aatgctttat	ttgtgaaatt	tgtgatgcta	4980
ttgctttatt	tgtaaccatt	ataagctgca	ataaacaagt	taacaacaac	aattgcattc	5040
attttatgtt	tcaggttcag	ggggagatgt	gggaggtttt	ttaaagcaag	taaaacctct	5100
acaaatgtgg	taaaatcgat	aaggatccgg	gctggcgtaa	tagcgaagag	gcccgcaccg	5160
atcgcccttc	ccaacagttg	cgcagcctga	atggcgaatg	gacgcgccct	gtagcggcgc	5220
attaagcgcg	gcgggtgtgg	tggttacgcg	cagcgtgacc	gctacacttg	ccagcgccct	5280
agcgcccgct	cctttcgctt	tetteeette	ctttctcgcc	acgttcgccg	gctttccccg	5340
tcaagctcta	aatcgggggc	tccctttagg	gttccgattt	agagetttae	ggcacctcga	5400
ccgcaaaaaa	cttgatttgg	gtgatggttc	acgtagtggg	ccatcgccct	gatagacggt	5460
ttttcgccct	ttgacgttgg	agtccacgtt	ctttaatagt	ggactcttgt	tccaaactgg	5520
aacaacactc	aaccctatct	cggtctattc	ttttgattta	taagggattt	tgccgatttc	5580
ggcctattgg	ttaaaaaatg	agctgattta	acaaatattt	aacgcgaatt	ttaacaaaat	5640
attaacgttt	acaatttcgc	ctgatgcggt	attttctcct	tacgcatctg	tgcggtattt	5700
cacaccgcat	atggtgcact	ctcagtacaa	tctgctctga	tgccgcatag	ttaagccagc	5760
cccgacaccc	gccaacaccc	gctgacgcgc	cctgacgggc	ttgtctgctc	ccggcatccg	5820
cttacagaca	agctgtgacc	gtctccggga	gctgcatgtg	tcagaggttt	tcaccgtcat	5880
caccgaaacg	cgcgagacga	aagggcctcg	tgatacgcct	atttttatag	gttaatgtca	5940
tgataataat	ggtttcttag	acgtcaggtg	gcacttttcg	gggaaatgtg	cgcggaaccc	6000
ctatttgttt	atttttctaa	atacattcaa	atatgtatcc	gctcatgaga	caataaccct	6060
gataaatgct	tcaataatat	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	6120
cccttattcc	cttttttgcg	gcattttgcc	ttcctgtttt	tgctcaccca	gaaacgctgg	6180
tgaaagtaaa	agatgctgaa	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	6240
tcaacagcgg	taagatcctt	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	6300
cttttaaagt	tctgctatgt	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	6360
tcggtcgccg	catacactat	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	6420
agcatcttac	ggatggcatg	acagtaagag	aattatgcag	tgctgccata	accatgagtg	6480
ataacactgc	ggccaactta	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	6540
ttttgcacaa	catgggggat	catgtaactc	gccttgatcg	ttgggaaccg	gagctgaatg	6600

cctctcttgt tcttgctcgc a

-continued

aagccatacc	aaacgacgag	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	6660	
gcaaactatt	aactggcgaa	ctacttactc	tagcttcccg	gcaacaatta	atagactgga	6720	
tggaggcgga	taaagttgca	ggaccacttc	tgcgctcggc	ccttccggct	ggctggttta	6780	
ttgctgataa	atctggagcc	ggtgagcgtg	ggtctcgcgg	tatcattgca	gcactggggc	6840	
cagatggtaa	gccctcccgt	atcgtagtta	tctacacgac	ggggagtcag	gcaactatgg	6900	
atgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	gattaagcat	tggtaactgt	6960	
cagaccaagt	ttactcatat	atactttaga	ttgatttaaa	acttcatttt	taatttaaaa	7020	
ggatctaggt	gaagatcctt	tttgataatc	tcatgaccaa	aatcccttaa	cgtgagtttt	7080	
cgttccactg	agcgtcagac	cccgtagaaa	agatcaaagg	atcttcttga	gatccttttt	7140	
ttctgcgcgt	aatctgctgc	ttgcaaacaa	aaaaaccacc	gctaccagcg	gtggtttgtt	7200	
tgccggatca	agagctacca	actcttttc	cgaaggtaac	tggcttcagc	agagcgcaga	7260	
taccaaatac	tgtccttcta	gtgtagccgt	agttaggcca	ccacttcaag	aactctgtag	7320	
caccgcctac	atacctcgct	ctgctaatcc	tgttaccagt	ggctgctgcc	agtggcgata	7380	
agtcgtgtct	taccgggttg	gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	7440	
gctgaacggg	gggttcgtgc	acacageeea	gcttggagcg	aacgacctac	accgaactga	7500	
gatacctaca	gcgtgagcta	tgagaaagcg	ccacgcttcc	cgaagggaga	aaggcggaca	7560	
ggtatccggt	aagcggcagg	gtcggaacag	gagagcgcac	gagggagctt	ccagggggaa	7620	
acgcctggta	tctttatagt	cctgtcgggt	ttcgccacct	ctgacttgag	cgtcgatttt	7680	
tgtgatgctc	gtcagggggg	cggagcctat	ggaaaaacgc	cagcaacgcg	gcctttttac	7740	
ggttcctggc	cttttgctgg	ccttttgctc	acatggctcg	acagatct		7788	
<210> SEQ ID NO 141 <211> LENGTH: 23 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SNE-S1 primer							
<400> SEQUE	NCE: 141						
ggttgggatt	atccaaaatg	tga				23	
<210> SEQ ID NO 142 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: SNE-AS1 primer							
<400> SEQUE	NCE: 142						
gcatcatcag aaagaatcat catg 24							
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN <220> FEATU <223> OTHER	H: 21 DNA ISM: Artific RE:	_					
<400> SEQUE	NCE: 143						

21

```
<210> SEQ ID NO 144
<211> LENGTH: 21
<212> TYPE: DNA <213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: SAR1-AS primer
<400> SEQUENCE: 144
tatagtgagc cgccacacat g
                                                                          21
<210> SEQ ID NO 145
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence <220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 145
ataggatcca ccatgtttat tttcttatta tttcttactc tcact
                                                                          45
<210> SEQ ID NO 146
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 146
atactcgagt tatgtgtaat gtaatttgac acccttg
                                                                          37
<210> SEQ ID NO 147
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 147
ataggatcca ccatgtttat tttcttatta tttcttactc tcact
                                                                          45
<210> SEQ ID NO 148
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 148
acctccggat ttaatatatt gctcatattt tcccaa
                                                                          36
<210> SEQ ID NO 149
<211> LENGTH: 13
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: N-terminal end of SRAS-CoV S protein
      (amino acids 1 to 13)
<400> SEQUENCE: 149
Met Phe Ile Phe Leu Leu Phe Leu Thr Leu Thr Ser Gly
                                      10
```

```
<210> SEQ ID NO 150
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligopeptide
<400> SEQUENCE: 150
Ser Gly Asp Tyr Lys Asp Asp Asp Asp Lys
<210> SEQ ID NO 151
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 151
actagctagc ggatccacca tgttcatctt cctg
                                                                     34
<210> SEQ ID NO 152
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 152
agtatccgga cttgatgtac tgctcgtact tgc
                                                                     33
<210> SEQ ID NO 153
<211> LENGTH: 59
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotid
<400> SEQUENCE: 153
tatgagcttt ttttttttt tttttttggc atataaatag actcggcgcg ccatctgca
<210> SEQ ID NO 154
<211> LENGTH: 53
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: oligonucleotid
<400> SEQUENCE: 154
<210> SEQ ID NO 155
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 155
atacgtacga ccatgtttat tttcttatta tttcttactc tcact
                                                                     45
<210> SEQ ID NO 156
<211> LENGTH: 40
<212> TYPE: DNA
```

```
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 156
atagcgcgct cattatgtgt aatgtaattt gacacccttg
                                                                         40
<210> SEQ ID NO 157
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 157
ccatttcaac aatttggccg
                                                                         20
<210> SEQ ID NO 158
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 158
ataggatccg cgcgctcatt atttatcgtc gtcatcttta taatc
                                                                         45
```

- 1. An isolated and purified protein or polypeptide, characterized in that it is the S protein having the sequence SEQ ID No: 3, its ectodomain or a fragment of its ectodomain.
- 2. The protein or polypeptide as claimed in claim 1, characterized in that it consists of the amino acids corresponding to positions 1 to 1193 of the amino acid sequence of the S protein.
- 3. The protein or polypeptide as claimed in claim 1, characterized in that it consists of the amino acids corresponding to positions 14 to 1193 of the amino acid sequence of the S protein.
- 4. The isolated protein or polypeptide as claimed in claim 1, characterized in that it consists of the amino acids corresponding to positions 475 to 1193 of the amino acid sequence of the S protein.
- 5. A nucleic acid encoding a protein or a polypeptide as claimed in any one of claims 1 to 4.
- 6. The nucleic acid as claimed in claim 5, characterized in that it comprises the sequence encoding SEQ ID No: 5 or the sequence encoding SEQ ID No: 6.
- 7. A recombinant expression vector, characterized in that it encodes a protein or a polypeptide as claimed in any one of claims 1 to 4.
- 8. The recombinant expression vector as claimed in claim 7, characterized in that it is chosen from the vectors contained in the following bacterial strains, deposited at the Collection Nationale de Cultures de Microorganismes (CNCM), 25 rue du Docteur Roux, 75724 Paris Cedex 15:
 - a) strain No. I-3118, deposited on Oct. 23, 2003,
 - b) strain No. I-3019, deposited on May 12, 2003,
 - c) strain No. I-3020, deposited on May 12, 2003,
 - d) strain No. I-3059, deposited on Jun. 20, 2003,

- e) strain No. I-3323, deposited on Nov. 22, 2004,
- f) strain No. I-3324, deposited on Nov. 22, 2004,
- g) strain No. I-3326, deposited on Dec. 1, 2004,
- h) strain No. I-3327, deposited on Dec. 1, 2004,
- i) strain No. I-3332, deposited on Dec. 1, 2004,
- j) strain No. I-3333, deposited on Dec. 1, 2004,
- k) strain No. I-3334, deposited on Dec. 1, 2004,
- 1) strain No. I-3335, deposited on Dec. 1, 2004,
- m) strain No. I-3336, deposited on Dec. 1, 2004,
- n) strain No. I-3337, deposited on Dec. 1, 2004,
- o) strain No. I-3338, deposited on Dec. 2, 2004,
- p) strain No. I-3339, deposited on Dec. 2, 2004,
- q) strain No. I-3340, deposited on Dec. 2, 2004, and
- r) strain No. I-3341, deposited on Dec. 2, 2004.
- 9. A nucleic acid containing a synthetic gene allowing optimized expression of the S protein in eukaryotic cells, characterized in that it possesses the sequence SEQ ID No: 140.
- 10. An expression vector containing a nucleic acid as claimed in claim 9, characterized in that it is contained in the bacterial strain deposited at the CNCM, on Dec. 1, 2004, under the No. I-3333.
- 11. The expression vector as claimed in claim 7 or claim 9, characterized in that it is a viral vector, in the form of a viral particle or in the form of a recombinant genome.
- 12. The vector as claimed in claim 11, characterized in that it is a recombinant viral particle or a recombinant viral

genome capable of being obtained by transfecting a plasmid according to paragraphs g), h) or k) to r) of claim 8, into an appropriate cellular system.

- 13. A lentiviral vector encoding a polypeptide as claimed in any one of claims 1 to 4.
- 14. A recombinant measles virus encoding a polypeptide as claimed in any one of claims 1 to 4.
- 15. A recombinant vaccinia virus encoding a polypeptide as claimed in any one of claims 1 to 4.
- 16. The use of a vector according to paragraphs d) to p) of claim 8, or of a vector as claimed in claim 10, for the production, in a eukaryotic system, of the SARS-associated coronavirus S protein or of a fragment of this protein.
- 17. A method for producing the S protein in a eukaryotic system, comprising a step of transfecting eukaryotic cells in culture with a vector chosen from the vectors contained in the bacterial strains mentioned in paragraphs d) to p) of claim 8, or in claim 10.
- 18. A genetically modified eukaryotic cell expressing a protein or a polypeptide as claimed in any one of claims 1 to 4.
- 19. The cell as claimed in claim 18, capable of being obtained by transfection with any one of the vectors mentioned in paragraphs k) to n) of claim 8.
- 20. The cell as claimed in claim 19, characterized in that it is the cell FRhK4-Ssol-30, deposited at the CNCM on Nov. 22, 2004, under the No. I-3325.
- 21. A monoclonal antibody recognizing the native S protein of a SARS-associated coronavirus.
- 22. The use of a protein or a polypeptide as claimed in any one of claims 1 to 4, or of an antibody as claimed in claim 21, for detecting a SARS-associated coronavirus infection, from a biological sample.
- 23. A method for detecting a SARS-associated coronavirus, from a biological sample, characterized in that the detection is carried out by ELISA using the recombinant S

- protein or its ectodomain, or a fragment of its ectodomain, expressed in a eukaryotic system.
- 24. The method of detection as claimed in claim 23, additionally comprising a step of detection by ELISA using the recombinant N protein.
- 25. The method as claimed in claim 23 or 24, characterized in that it is a double epitope ELISA method, and in that the serum to be tested is mixed with the visualizing antigen, said mixture then being brought into contact with the antigen attached to a solid support.
- 26. An immune complex formed of a monoclonal antibody or antibody fragment as claimed in claim 21, and of a SARS-associated coronavirus protein or peptide
- 27. An immune complex formed of a protein or a polypeptide as claimed in any one of claims 1 to 4, and of an antibody directed specifically against an epitope of the SARS-associated coronavirus.
- 28. A SARS-associated coronavirus detection kit or box, characterized in that it comprises at least one reagent selected from the group consisting of: a protein or polypeptide as claimed in any one of claims 1 to 4, a nucleic acid as claimed in either of claims 5 and 6, a cell as claimed in any one of claims 18 to 20, or an antibody as claimed in claim 21.
- 29. An immunogenic and/or vaccine composition, characterized in that it comprises a recombinant protein or polypeptide as claimed in any one of claims 1 to 4, obtained in a eukaryotic expression system.
- 30. An immunogenic and/or vaccine composition, characterized in that it comprises a recombinant vector or virus as claimed in any one of claims 7, 8, and 10 to 15.
- 31. A nucleic acid insert of viral origin, characterized in that it is contained in any one of the strains mentioned in paragraphs a) to h) and k) to r) of claim 8.

* * * * *