

Bandpass Digital Modulation

Digital Modulation

Mathematical Background: Orthogonality BRISTOL

• Two signals $a_i(t)$ and $a_i(t)$ are said to be orthogonal if:

$$\left[\int_{0}^{T_{S}} a_{i}(t).a_{j}(t).dt = 0\right]_{i \neq j}$$

• Examples of orthogonal signals are:
$$a_i(t) = \cos(2\pi f t) \text{ and } a_j(t) = \sin(2\pi f t)$$

$$a_i(t) = \cos(2\pi f i t) \text{ and } a_j(t) = \cos(2\pi f j t)$$

$$where f_i, f_j = \{1, 2, 3, ...\}; f_i \neq f_j \text{ Cos 2fc Cos 3f}_3$$

Mathematical Background: Orthogonality BRISTOL (2)

Mathematical Background: Spectrum of a Baseband Square Wave

• It can be shown by fourier analysis that the spectrum of a (baseband) square wave signal is described by a sinc or sin(x)/x function:

$$G(f) = T.A. \left[\frac{\sin(\pi . f.T)}{\pi . f.T} \right]$$

• This spectrum extends to infinity. It is often necessary to apply a pulse shaping (band limiting) filter to this signal.

Baseband to Bandpass Spectrum

Bandpass and Baseband Signalling

- With baseband signalling the channel is assumed to extend from 0Hz upwards.
- Transmitting this type of data over conventional media, such as radio channels, requires a shift in frequency.
 - This process is called 'carrier modulation' or just 'modulation'.
- Often the process of modulation takes a band of signals based on zero Hz and shifts them to occupy twice the bandwidth centred on a carrier frequency.
- A corresponding 'demodulation' or 'detection' process is required to recover the data.

Carrier Modulation (1)

• The carrier signal is typically a sine wave. The transmitted signal can be described by:

$$s(t) = A\cos(\omega t + \theta)$$

- This signal has three properties which we can modulate.
 - Amplitude, A.
 - Frequency, **∞**.
 - Phase, θ .
- Initially we will consider modulation schemes which modulates only one of these three properties.
- Also, we will first consider binary modulation schemes. M-ary modulation will be covered later.

Carrier Modulation (2)

- If we modulate just one property of the signal, we can modulate our data signal onto this carrier signal in one of three ways:
 - By modulating the amplitude of the carrier wave. Thus, A is a function of the modulating signal. This is known as Amplitude Shift Keying (ASK).
 - By modulating the frequency of the carrier wave. Thus, ω, is a functions of the modulating signal. This is known as Frequency Shift Keying (FSK)
 - By modulating the phase of the carrier wave. Thus, θ , is a function of the modulating signal. This is known as Phase Shift Keying (PSK)

Amplitude Shift Keying (ASK) Generation

Amplitude Shift Keying (ASK)

- The simplest form of bandpass modulation is Amplitude Shift Keying (ASK). With this modulation the data is represented as various (discrete) amplitude levels of a fixed frequency carrier.
- The simplest form of ASK is to switch a fixed frequency oscillator ON for a 'one', and OFF for a 'zero'. This is known as ON-OFF KEYING (OOK).
- If more than two symbol states are used, then M-ary ASK is generated.

Amplitude Shift Keying (ASK)

ASK Spectrum (1)

- The spectrum of an ASK signal can be calculated using trig identities.
- Amplitude modulation is essentially the multiplication of one signal by another.

ASK spectrum (2)

- Note that the spectrum is two sided, and therefore the bandwidth required to transmit it is $2.\omega_m$. That is, twice the baseband bandwidth. Spectral efficiency is limited to 1bit/s/Hz
- For square wave modulated ASK the spectrum takes the form:

Generation of ASK (1)

 This diagram illustrates one way in which an ASK signal may be generated. However, bandpass filtering at RF is very difficult to achieve

Generation of ASK (2)

• Another method (one we have already discussed), is to multiply a carrier signal by the baseband signal stream. The multiplier is known as a mixer.

Amplitude Shift Keying (ASK) Detection

Detection of ASK

- Two methods are available for recovering the base band data stream from ASK.
- The process of recovering the baseband signal is known as demodulation.
- Alternatively it is known as detection.
- The methods fall under the headings 'coherent' and Needsa local Oscillator (LO) 'non coherent' detection.

> envelope detector

Non Coherent Detection of ASK (1)

• Non coherent detection of ASK is straight forward. A circuit to do this is

AWGN in Non Coherent Detection of ASK

Jaro
Amplitude is Gaussian

phase is uniform random

exists in both in-phase Equadrative **EENGM0033 – Principles of Communication Systems**

Diode will detect both inshare l'quadrature noise with respect to the carrier 20

Non-Coherent Detection of ASK (2)

- The simplicity of this approach is often outweighed by the inability of a non-coherent detector to extract signal from noise.
- A coherent detector can do this and can achieve a lower Bit Error Rate (BER) over the same channel, with the same S/N ratio.

Coherent Detection (1)

ASK

- Coherent detection requires the local generation of a replica of the carrier signal.
- If a local carrier is available, then the reverse process to modulation can be performed at the receiver.

message signal (multiplied by a $cos(\theta)$ term) and the other is the baseband message signal shifted to twice the carrier frequency.

Coherent Detection (3)

ASK (R4)

Coherent Detection (2)

- By passing these two products through a low pass filter, the higher frequency component can be removed. Thus only $A(t)cop(\theta)$ is left.
- θ defines the phase error between the locally generated carrier and the received carrier. Any non-zero value of θ (i.e. any phase error) causes a loss in performance since $\cos(\theta) < 1$.
- Thus, it is crucial for coherent detection to be able to accurately generate the local carrier signal.
- One way to do this is to use a Phase Lock Loop (PLL).

AWGN and Coherent Detection of ASK