# Traitement Numérique du Signal : TP1 compte rendu

#### MOUDDENE Hamza

2019 - 2020

## Première année Département Sciences du Numérique



## 1 Effet de l'échantillonnage

Nous allons généré 90 échantillons d'un cosinus, d'amplitude 1V, de fréquence  $f_0=1100Hz$  et échantillonné à  $F_e=10000Hz$  où  $x(t)=A.cos(2\pi f_0 t)=cos(2\pi.1100.t)$  tel que  $\forall t\in [0,(N-1)T_e]$ .



Dans un deuxième temps, Nous allons généré 90 échantillons d'un cosinus, d'amplitude 1V, de fréquence  $f_0 = 1100Hz$  et échantillonné à  $F_e = 1000Hz$  où  $x(t) = A.cos(2\pi f_0 t) = cos(2\pi.1100.t)$  tel que  $\forall t \in [0, (N-1)T_e]$ .



Sur la deuxième figure, la fréquence mesurée sur le cosinus tracé n'est pas  $f_0=1100Hz$ , car on est dans le cas d'un recouvrement, la condition de Shannon n'est pas respectée

$$F_e < 2.f_0$$

. Alors il n'est pas possible de reconstituer le signal x(t), à partir de la suite des échantillons prélevés tous les  $T_e$ , car les périodisations de X(f) tous les  $F_e$  vont venir se superposer à X(f).

#### 2 Transformée de Fourier discrète (TFD)

#### 2.1 Etude théorique

(a) la transformée de Fourier, X(f), d'un cosinus  $x(t) = A.cos(2\pi f_0)$  d'amplitude A et de fréquence  $f_0$  est :

$$X(f) = \int_{-\infty}^{+\infty} x(t) \cdot \exp(-2j\pi ft) dt = \int_{-\infty}^{+\infty} A \cdot \cos(2\pi f_0) \cdot \exp(-2j\pi ft) dt$$

$$X(f) = A \cdot \int_{-\infty}^{+\infty} \cos(2\pi f_0) \cdot \exp(-2j\pi ft) dt = A \cdot \int_{-\infty}^{+\infty} \frac{\exp(2j\pi f_0 t) + \exp(-2j\pi f_0 t)}{2} \cdot \exp(-2j\pi ft) dt$$

$$X(f) = \frac{A}{2} \cdot \int_{-\infty}^{+\infty} \left[ \exp(2j\pi f_0 t) + \exp(-2j\pi f_0 t) \right] \cdot \exp(-2j\pi ft) dt$$

$$X(f) = \frac{A}{2} \cdot \int_{-\infty}^{+\infty} \left[ \exp(2j\pi (f - f_0) t) + \exp(-2j\pi (f + f_0) t) \right] dt = \frac{A}{2} \cdot \left[ \delta(f - f_0) + \delta(f + f_0) \right]$$



(b)  $X_D(f)$  est la transformée de Fourier d'un cosinus d'amplitude A et de fréquence  $f_0$ , échantillonné à  $T_e$  (échantillonnage uniforme) et tronqué sur une longueur de N, donc le signal est défini à des instants discrets par des valeurs réelles, alors :

$$X_D(f) = \frac{1}{T_e} \cdot \sum_{k=0}^{N-1} X(f - \frac{k}{T_e}) = \frac{1}{T_e} \cdot \sum_{k=0}^{N-1} \frac{A}{2} \cdot \left[\delta(f - \frac{k}{T_e} - f_0) + \delta(f - \frac{k}{T_e} + f_0)\right]$$

$$X_D(f) = \frac{1}{T_e} \cdot \frac{A}{2} \cdot \sum_{k=0}^{N-1} \left[ \delta(f - \frac{k}{T_e} - f_0) + \delta(f - \frac{k}{T_e} + f_0) \right]$$



- (c) On obtient le meme signal que celle de la question (a) sauf que nous avons une autre composante en 0.
- 1. Qu'est-ce qui peut justier que l'on calcule la transformée de Fourier numérique entre 0 et Fe?

On effectue un échantillonage temporel ce qui a pour effet la périodisation du signal.

2. Donner l'expression générale de  $X_D(n\frac{F_e}{N})$  en fonction de  $x(kT_e)$ ? On a :

$$X_D(f) = \sum_{k=0}^{N-1} x(k.T_e).exp(-2j\pi fkT_e)$$

donc:

$$X_D(n\frac{F_e}{N}) = \sum_{k=0}^{N-1} x(k.T_e).exp(-2j\pi n\frac{F_e}{N}kT_e)$$

d'où:

$$X_D(n\frac{F_e}{N}) = \sum_{k=0}^{N-1} x(k.T_e).exp(-2j\pi n\frac{F_e}{N}kT_e) = \sum_{k=0}^{N-1} x(k.T_e).exp(-2j\pi n\frac{F_e}{N}kT_e)$$

**3.a)** On a :

$$Y_D(n\frac{F_e}{MN}) = \sum_{k=0}^{MN-1} y(kT_e).exp(-2j\pi n\frac{F_e}{MN}kT_e)$$

d'où:

$$Y_D(n\frac{F_e}{MN}) = \sum_{k=0}^{MN-1} y(kT_e).exp(-2j\pi n\frac{k}{MN})$$

On a d'après la définition de  $y(kT_e)$  on déduit que :

$$Y_D(n\frac{F_e}{MN}) = \sum_{k=0}^{N-1} x(kT_e).exp(-2j\pi n\frac{k}{MN})$$

**3.b)** On constate que  $Y_D$  a la meme expression que celle de  $X_D$  sauf que le nombre de points dans  $Y_D$  est plus grand que celui de  $X_D$ , l'interet du Zero Padding est de donner un signal plus précis car on a augmenté le nombre de points.