Übungsblatt 6 zur Algebraischen Zahlentheorie

Aufgabe 1. Klassenzahlberechnungen

- a) Zeige, dass die quadratischen Zahlkörper $\mathbb{Q}[\sqrt{d}]$ für $d\in\{-7,-3,-2,-1,2,3,5\}$ die Klassenzahl 1 besitzen.
- b) Zeige, dass auch $\mathbb{Q}[\sqrt{7}]$ die Klassenzahl 1 besitzt.
- c) Was ist die Klassenzahl von $\mathbb{Q}[\sqrt{-5}]$?

Aufgabe 2. Eine Schranke für die Diskriminante

a) Sei K ein Zahlkörper vom Grad n. Sei d_K die Diskriminante einer Ganzheitsbasis. Zeige:

$$|d_K| \ge \left(\frac{n^n}{n!}\right)^2 \cdot \left(\frac{\pi}{4}\right)^n$$
.

b) Zeige: Bis auf \mathbb{Q} selbst gibt es keinen Zahlkörper mit $|d_K| = 1$.

Bemerkung. Wenn du möchtest, kannst du bei der Gelegenheit auch gleich zeigen, dass $|d_K| \to \infty$ für $n \to \infty$. Eine Verstärkung dieser Aussage ist das Hermite-Minkowski-Theorem, demnach es zu jeder Schranke nur endlich viele Zahlkörper mit Diskriminante unterhalb dieser Schranke gibt.

Aufgabe 3. Wir mögen Hauptideale

- a) Sei K ein Zahlkörper und $\mathfrak{a}\subseteq\mathcal{O}_K$ ein Ideal. Sei $\mathfrak{a}^m=(\alpha)$ für ein $\alpha\in\mathcal{O}_K$ und eine Zahl $m\geq 0$. Sei $L:=K(\sqrt[m]{\alpha})$. Zeige, dass das Ideal $\mathfrak{a}\mathcal{O}_L$ von \mathcal{O}_L ein Hauptideal ist. Hinweis. Nur um Missverständnissen vorzubeugen, das Ideal $\mathfrak{a}\mathcal{O}_L$ besteht aus allen \mathcal{O}_L -Linearkombinationen von Elementen aus \mathfrak{a} .
- b) Sei K ein Zahlkörper. Finde eine endliche Erweiterung L von K, sodass jedes Ideal von \mathcal{O}_K in \mathcal{O}_L zu einem Hauptideal wird (im gleichen Sinn wie in a)).

Hinweis. Versuche, "die Klassengruppe zu töten".