Chapter 1

Multistep Methods

Methods using the approximation at more than one previous mesh points to determine the approximation at the next point are called multistep methods.

Definition 1. An m-step multistep method for solving the IVP

$$y' = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \tag{1.1}$$

is one whose difference equation for finding the approximation w_{i+1} at mesh point t_{i+1} can be represented by the following equation, where m is an integer grater than 1:

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m} + h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i) + \dots + b_0f(t_{i+1-m}, w_{i+1-m})]$$
(1.2)

for i = m - 1, m, ..., N - 1, where h = (b - a)/N. The $a_0, a_1, ..., a_{m-1}$ and $b_0, b_1, ..., b_m$ are constants and the starting values $w_0 = \alpha, w_1 = \alpha_1, w_2 = \alpha_2, ..., w_{m-1} = \alpha_{m-1}$ are specified.

When $b_m = 0$, the method is called explicit or open, since equation (1.2) then gives w_{i+1} explicitly in terms of previously determined values. When $b_m \neq 0$, the method is called implicit or closed, since w_{i+1} occurs on both sides of (1.2) and is specified only implicitly.

Adams-Bashforth two-step method:

$$w_0 = \alpha, \quad w_1 = \alpha_1$$

 $w_{i+1} = w_i + \frac{h}{2} \left[3f(t_i, w_i) - f(t_{i-1}, w_{i-1}) \right] \quad \text{for } i = 1, 2, 3, \dots, N - 1$ (1.3)

Local Truncation error:

$$T_{i+1}(h) = \frac{5}{12}y'''(\mu_i)h^2 \qquad \mu_i \in (t_{i-1}, t_{i+1})$$

Adams-Bashforth three-step method:

$$w_0 = \alpha, \quad w_1 = \alpha_1, \quad w_2 = \alpha_2$$

$$w_{i+1} = w_i + \frac{h}{12} \left[23f(t_i, w_i) - 16f(t_{i-1}, w_{i-1}) + 5f(t_{i-2}, w_{i-2}) \right] \quad \text{for } i = 2, 3, \dots, N - 1$$
(1.4)

Local Truncation error:

$$T_{i+1}(h) = \frac{3}{8}y^{(4)}(\mu_i)h^3 \qquad \mu_i \in (t_{i-2}, t_{i+1})$$

Adams-Bashforth four-step method:

$$w_0 = \alpha, \quad w_1 = \alpha_1, \quad w_2 = \alpha_2, \quad w_3 = \alpha_3$$
 (1.5)

$$w_{i+1} = w_i + \frac{h}{24} \left[55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right] \quad \text{for } i = 3, 4, 5, \dots, N - 1$$
(1.6)

Local Truncation error:

$$T_{i+1}(h) = \frac{251}{720}y^{(5)}(\mu_i)h^4 \qquad \mu_i \in (t_{i-3}, t_{i+1})$$

Adams-Moulton two-step method:

$$w_0 = \alpha, \quad w_1 = \alpha_1$$

$$w_{i+1} = w_i + \frac{h}{12} \left[5f(t_{i+1}, w_{i+1}) + 8f(t_i, w_i) - f(t_{i-1}, w_{i-1}) \right] \quad \text{for } i = 1, 2, 3, \dots, N - 1$$
(1.7)

Local Truncation error:

$$T_{i+1}(h) = -\frac{1}{24}y^{(4)}(\mu_i)h^3 \qquad \mu_i \in (t_{i-1}, t_{i+1})$$

Adams-Moulton three-step method:

$$w_0 = \alpha, \quad w_1 = \alpha_1, \quad w_2 = \alpha_2$$

$$w_{i+1} = w_i + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right] \quad \text{for } i = 2, 3, \dots, N - 1 \quad (1.8)$$

Local Truncation error:

$$T_{i+1}(h) = -\frac{19}{720}y^{(5)}(\mu_i)h^4 \qquad \mu_i \in (t_{i-2}, t_{i+1})$$

Adams-Moulton four-step method:

$$w_{0} = \alpha, \quad w_{1} = \alpha_{1}, \quad w_{2} = \alpha_{2}, \quad w_{3} = \alpha_{3}$$

$$w_{i+1} = w_{i} + \frac{h}{720} \left[251 f(t_{i+1}, w_{i+1}) + 646 f(t_{i}, w_{i}) - 264 f(t_{i-1}, w_{i-1}) + 106 f(t_{i-2}, w_{i-2}) - 19 f(t_{i-3}, 2_{i-3}) \right] \quad \text{for } i = 3, 4, \dots$$

$$(1.9)$$

Local Truncation error:

$$T_{i+1}(h) = -\frac{3}{160}y^{(6)}(\mu_i)h^5 \qquad \mu_i \in (t_{i-3}, t_{i+1})$$

Example. Consider the IVP

$$y' = y - t^2 + 1,$$
 $0 \le t \le 2,$ $y(0) = 0.5$

and the approximations given by the Adams-Bashforth four-step method and the Adams-Moulton three-step method, both using h = 0.2.

The Adams-Bashforth 4th step method has the difference equation

$$w_{i+1} = w_i + \frac{h}{24} \left[55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right] \quad \text{for } i = 3, 4, 5, \dots, 9$$

Exact solution: $y'(t) = (t+1)^2 - 0.5e^t$. Also, $f(t,y) = y - t^2 + 1$, h = 0.2 and $t_i = 0.2i$. So

$$w_{i+1} = \frac{1}{24} \left[35w_i - 11.8w_{i-1} + 7.4w_{i-2} - 1.8w_{i-3} - 0.192i^2 - 0.192i + 4.736 \right]$$

Adams-Moulton 3rd step method has the difference equation

$$w_{i+1} = w_i + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right] \quad \text{for } i = 2, 3, \dots, 9$$

which reduces to,

$$w_{i+1} = \frac{1}{24} \left[1.8w_{i+1} + 27.88w_i + w_{i-1} + 0.2w_{i-2} - 0.192i^2 - 0.192i + 4.736 \right]$$

To use this method explicitly, we solve for w_{i+1} which gives

$$w_{i+1} = \frac{1}{22.2} \left[27.8w_i - w_{i-1} + 0.2w_{i-2} - 0.192i^2 - 0.192i + 4.736 \right]$$

The results in the following table were obtained using the exact solutions from $y(t) = (t+1)^2 - 0.5e^t$ for α_0 , α_1 , α_2 and α_3 for Adams-Bashforth case and α_0 , α_1 , and α_2 in the Adams-Moulton case.

4	Exact	Adams- Bashforth	Error	Adams-Moulton	Ennon
t_i	Exact	w_i	E1101	w_i	Error
0.0	$0.5000000 \ \alpha_0$				
0.2	$0.8292986 \ \alpha_1$				
0.4	$1.2140877 \ \alpha_2$				
0.6	1 .6489406 α_3			1 .6489341	0.0000065
0.8	2.1272295	2.1273124	0.0000828	2.1272136	0.0000160
1.0	2.6408591	2.6410810	0.0002219	2.6408298	0.0000293
1.2	$3.17994\ 15$	3.1803480	0.0004065	3.1798937	0.0000478
1.4	3.7324000	3.7330601	0.0006601	3.7323270	0.0000731
1.6	4.2834838	4.2844931	0.0010093	4.2833767	0.0001071
1.8	4.8151763	4.8166575	0.0014812	4.8150236	0.0001527
2.0	5.3054720	5.3075838	0.0021119	5.3052587	0.0002132

Implicit Adams-Moulton method gave better results than the explicit Adams-Bashforth method of the same order.

Note. Implicit method is not always possible to convert an explicit form, for example

$$y' = e^y$$
, $0 \le t \le 0.25$, $y(0) = 1$

Since $f(t,y)=e^y$ the three-step Adams-Moulton method has the difference equation

$$w_{i+1} = w_i + \frac{h}{24} \left[9e^{w_{i+1}} + 19e^{w_i} - 5e^{w_{i-1}} + e^{w_{i-2}} \right]$$

Which cannot be solved explicitly for w_{i+1}