23MAC260 Problem Sheet 6: Solutions

Week 6 Lectures

Last updated March 22, 2024

1. Let E be the elliptic curve given by

$$y^2 = x^3 + 8$$
.

(a) Find a point of order 2 on E.

Solution: We know that a point $(x,y) \in E$ has order 2 if any only if y = 0. An obvious such point on E is P = (-2,0).

(b) Calculate the discriminant Δ of E, and hence find all primes p for which the curve \overline{E} obtained by reducing E mod p is **not** an elliptic curve.

Solution: We have $\Delta = -4a^3 - 27b^2 = -27 \cdot 8^2 = -3^3 \cdot 2^6$.

For an odd prime p we have that \overline{E} is not an elliptic curve if and only if $p \mid \Delta$. The only such odd prime is p=3.

(c) By reducing E mod p for sufficiently many primes, show that the torsion subgroup $T\subset E(\mathbb{Q})$ has only 2 elements.

Solution: Here we use the Torsion Embedding Theorem, which says that if \overline{E} is an elliptic curve, then T is isomorphic to a subgroup of $\overline{E}(\mathbb{F}_p)$.

By the previous part, we can apply this with p equal to any odd prime other than 3. First try p=5: then our equation becomes $y^2=x^3+3$. We can find the points in $\overline{\mathbb{E}}(\mathbb{F}_5)$ by plugging in the possible values of x in turn and checking whether we get any solutions for $y^2=x^3+3$. Tabulating we find

In the last row we used the list of squares in \mathbb{F}_5 : they are $0^2=0,\ 1^2=4^2=1,\ 2^2=3^2=4$.

So we get

$$\overline{E}(\mathbb{F}_5) = \{O, (1, \pm 2), (2, \pm 1), (3, 0)\}.$$

Hence we know that $|T| \mid |\overline{E}(\mathbb{F}_5)| = 6$.

We can try to repeat this process with p=7 and p=11. The sets of points we find are

$$\overline{E}(\mathbb{F}_7) = \{O, (0, \pm 1), (1, \pm 3), (2, \pm 3), (3, 0), (4, \pm 3), (5, 0), (6, 0)\}.$$

$$\overline{E}(\mathbb{F}_{11}) = \{O, (1, \pm 3), (2, \pm 4), (5, \pm 1), (6, \pm 2), (8, \pm 6), (9, 0)\}.$$

In both cases we get $|\overline{E}(\mathbb{F}_p)|=12$: since we already know that $|T|\mid 6$, this gives no new information.

So we move on to p=13. Here the equation of \overline{E} is just $y^2=x^3+8$ and we need to look for points on this curve with coordinates in \mathbb{F}_{13} .

Before we start tabulating, it's useful to write down the squares in \mathbb{F}_{13} : these are

$$0^2 = 0$$
, $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, $4^2 = 3$, $5^2 = 12$, $6^2 = 10$

and after this since $7=-6,\ 8=-5$ etc we don't get any new squares. So now we tabulate:

χ	0	1	2	3	4	5	6	7	8	9	10	11	12
$x^{3} + 8$	8	9	3	9	7	3	3	0	0	9	7	0	7
y	_	±3	±4	±3	_	±4	±4	0	0	±3	_	0	_

We get 15 points from the table above; together with the identity point O, this gives $|\overline{E}(\mathbb{F}_{13})| = 16$.

Putting our two results together we see that since $|T| \mid 6$ and $|T| \mid 16$ we must have $|T| \mid \gcd(6, 16) = 2$. On the other hand in Part (a) we saw that T contains at least one non-identity point, so $|T| \geq 2$. This gives |T| = 2 as required.

2. Use reduction modulo an appropriate prime to compute the torsion subgroup of the curve E given by

$$y^2 = x^3 - 39x + 70.$$

Solution: The first step is always to find and factor Δ . Here $\Delta = -4(-39)^3 - 27(70)^2 = 104976 = 2^4 \cdot 3^8$. So for any odd prime other than p = 3, we cam reduce E mod p and apply the torsion embedding theorem.

Reducing mod 5 we get the curve \overline{E} defined by $y^2 = x^3 + x$. Now in \mathbb{F}_5 the cubic $x^3 + x$ factors completely:

$$x^3 + x = x^3 - 4x = x(x+2)(x-2)$$

So we get 3 points of order 2 in $\overline{\mathbb{E}}(\mathbb{F}_5)$, namely $(-2,0),\ (0,0),\ (2,0)$. What about the other possible values of x? For x=1 we get $x^3+x=2$ and for x=4 we get $x^3+x=3$; neither 2 not 3 is a square in \mathbb{F}_5 , so there are no more rational points.

So $\overline{\mathbb{E}}(\mathbb{F}_5)$ is a group with 4 elements, each of order at most 2; hence it is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

The Torsion Embedding Theorem tells us that T is therefore isomorphic to a subgroup of $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. On the other hand, we can count the elements of order 2 in T: we get one such element (x,0) for each integer root of $x^3-39x+70=0$. This cubic has one evident root x=2: factoring out x-2 we get the quadratic $x^2+2x-35=(x+7)(x-5)$. So in fact there are 3 integer roots, hence 3 elements of order 2 in T. Therefore T must be the whole grooup $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

3. Let E be the elliptic curve given by

$$y^2 = x^3 + 3x - 11.$$

(a) Calculate the order of the point P = (3,5) on E.

Solution: Computing in the usual way we find

$$2P = (3, -5)$$

 $3P = 0$

so P has order 3.

(b) Use reduction mod 7 and 17 to compute the torsion subgroup $T \subset E(\mathbb{Q})$. Solution: Note that $\Delta = -3375 = -3^3 \cdot 5^3$ so the reductions mod 7 and 17 are indeed elliptic curves

Reducing mod 7 we get \overline{E} given by $y^2 = x^3 + 3x - 4$. By the same process as in the previous questions we find

$$\overline{E}(\mathbb{F}_7) = \{O, (1,0), (3,\pm 2), (4,\pm 3)\}$$

and so we know |T| | 6.

Reducing mod 17 we get \overline{E} given by $y^2 = x^3 + 3x + 6$ and tabulating as before, we find (after lots of calculating!)

$$\overline{\mathsf{E}}(\mathbb{F}_{17}) = \{\mathsf{O}, (3, \pm 5), (6, \pm 6), (7, \pm 8), (8, \pm 7), (10, \pm 4), (12, \pm 6), (13, \pm 7), (14, \pm 2), (15, \pm 3), (16, \pm 6)\}$$

and so we know $|T| \mid 21$.

Putting our two results together we get that $|T| \mid \gcd(6,21) = 3$. On the other hand in Part (a) we found the point P of order 3 in T. Hence we must have $|T| = \langle P \rangle \cong \mathbb{Z}_3$.

4. (Non-examinable) Show that if K is an algebraically closed field of characteristic 2, for any short Weierstrass equation

$$f(x, y) = y^2 - x^3 - \alpha x - b$$

there is a point $(x, y) \in K^2$ where

$$f(x,y) = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0.$$

Solution: The key point here is that, since we are in characteristic 2, we have $\frac{\partial f}{\partial y} = 2y = 0$ at **every** point (x,y).

Now $\frac{\partial f}{\partial x}=3x^2+\alpha=x^2+\alpha$. Choose a root x_0 of this quadratic (we know it has a root since our field is algebraically closed). Then choose y_0 to be a root of the quadratic $y^2-x_0^3-\alpha x_0-b$ (again, such a y_0 exists because K is algebraically closed). Then we have

$$f(x_0,y_0) = \frac{\partial f}{\partial x}(x_0,y_0) = \frac{\partial f}{\partial y}(x_0,y_0) = 0.$$

The moral of this story is that equations in Weierstrass form are inappropriate for dealing with elliptic curves in characteristic 2, and one must use a more general form. This is why we simply ignored the prime 2 in our discussion of reduction mod p.