Straight-Line Planar Graph Drawing — Part 1

Lecture Graph Drawing Algorithms · 192.053

Martin Nöllenburg 17.04.2018

Planar graphs are an important graph class in graph drawing and graph theory.

What do you know about planar graphs?

- average degree ≤ 6 - Enlar characteristic: |V| - |E| + |F| = 2 $|E| \leq 3|V| - 6$ - no $K_{3,3}$ or K_5 as a minor

- 4 colorable

Planar graphs are an important graph class in graph drawing and graph theory.

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

Planar graphs are an important graph class in graph drawing and graph theory.

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

different drawings same embedding?

Planar graphs are an important graph class in graph drawing and graph theory.

Plane graph = planar graph + embedding

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

Def: The **rotation scheme** of a planar drawing is the circular ordering of the edges incident to each vertex.

Two planar drawings have the same embedding if they have the same rotation scheme and the same external face.

different drawings

same embedding?

Planar graphs are an important graph class in graph drawing and graph theory.

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

Theorem: G is planar $\Leftrightarrow G$ has no K_5 or $K_{3,3}$ minor.

[Kuratowski 1930]

Planar graphs are an important graph class in graph drawing and graph theory.

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

Theorem: G is planar $\Leftrightarrow G$ has no K_5 or $K_{3,3}$ minor.

[Kuratowski 1930]

Theorem: Testing whether a simple graph with n vertices is planar can be done in O(n) time. [Hopcroft, Tarjan 1974]

Planar graphs are an important graph class in graph drawing and graph theory.

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

Theorem: G is planar $\Leftrightarrow G$ has no K_5 or $K_{3,3}$ minor.

[Kuratowski 1930]

Theorem: Testing whether a simple graph with n vertices is planar can be done in O(n) time. [Hopcroft, Tarjan 1974]

Theorem: Every planar graph has a planar straight-line drawing. [Wagner 1936, Fáry 1948, Stein 1951]

Planar graphs are an important graph class in graph drawing and graph theory.

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

Theorem: G is planar $\Leftrightarrow G$ has no K_5 or $K_{3,3}$ minor.

[Kuratowski 1930]

Theorem: Testing whether a simple graph with n vertices is

planar can be done in O(n) time. [Hopcroft, Tarjan 1974]

Theorem: Every planar graph has a planar straight-line drawing.

[Wagner 1936, Fáry 1948, Stein 1951]

Theorem: G is planar \Leftrightarrow G has a disk contact representation.

[Koebe 1936]

Planar graphs are an important graph class in graph drawing and graph theory.

Def: A planar graph G is a simple graph that can be drawn/ embedded in the plane \mathbb{R}^2 without edge crossings.

Theorem: G is planar $\Leftrightarrow G$ has no K_5 or $K_{3,3}$ minor.

[Kuratowski 1930]

Theorem: Testing whether a simple graph with n vertices is planar can be done in O(n) time. [Hopcroft, Tarjan 1974]

Theorem: Every planar graph has a planar straight-line drawing. [Wagner 1936, Fáry 1948, Stein 1951]

Theorem: G is planar $\Leftrightarrow G$ has a disk contact representation. [Koebe 1936]

Theorem: G=(V,E) is planar $\Rightarrow |V|-|E|+|F|=2$ [Euler 1707-1783]

Drawing Planar Graphs

How do we find good straight-line planar drawings?

Drawing Planar Graphs

How do we find good straight-line planar drawings?

Theorem: A straight-line convex drawing of a 3-connected planar graph can be computed in linear time. [Tutte 1963]

But: no polynomial bound on the required area

Drawing Planar Graphs

How do we find good straight-line planar drawings?

Theorem: A straight-line convex drawing of a 3-connected planar graph can be computed in linear time. [Tutte 1963]

But: no polynomial bound on the required area

Theorem: Every n-vertex embedded planar graph has a planar straight-line drawing on an $(2n-4)\times(n-2)$ grid. [de Fraysseix, Pach, Pollack 1988]

sufficient to focus on drawing maximally planar (triangulated) graphs

sufficient to focus on drawing maximally planar (triangulated) graphs

sufficient to focus on drawing maximally planar (triangulated) graphs

sufficient to focus on drawing maximally planar (triangulated) graphs

sufficient to focus on drawing maximally planar (triangulated) graphs

Overview

Canonical ordering

Shift algorithm

Implementation

Canonical Ordering

Def: Let G = (V, E) be a **triangulated planar embedded graph** with $n \geq 3$ vertices. An ordering $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical ordering**, if the following conditions hold for each k, $3 \leq k \leq n$

 \blacksquare $\{v_1, \ldots v_k\}$ induce 2-connected internally triangulated graph G_k ,

lacksquare edge (v_1,v_2) belongs to the outer face of each G_k ,

for all k < n vertex v_{k+1} lies in the external face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary C_k of G_k consecutively.

Canonical Ordering

Def: Let G=(V,E) be a **triangulated planar embedded graph** with $n\geq 3$ vertices. An ordering $\pi=(v_1,v_2,\ldots,v_n)$ is called a **canonical ordering**, if the following conditions hold for each k, $3\leq k\leq n$

- \blacksquare $\{v_1, \ldots v_k\}$ induce 2-connected internally triangulated graph G_k ,
- lacksquare edge (v_1,v_2) belongs to the outer face of each G_k ,
- for all k < n vertex v_{k+1} lies in the external face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary C_k of G_k consecutively.

Example: Canonical Ordering

Example: Canonical Ordering

Example: Canonical Ordering

Lemma. Every triangulated planar graph G=(V,E) has a canonical ordering.

Lemma. Every triangulated planar graph G=(V,E) has a canonical ordering.

Proof: inverse induction on k

Lemma. Every triangulated planar graph G=(V,E) has a canonical ordering.

Proof: inverse induction on k

 $\blacksquare k = n$:

Induction hypothesis: vertices $v_n, v_{n-1}, \ldots, v_{k+1}$ were chosen such that they satisfy the three conditions.

Lemma. Every triangulated planar graph G=(V,E) has a canonical ordering.

Proof: inverse induction on k

 $\blacksquare k = n$:

- Induction hypothesis: vertices $v_n, v_{n-1}, \ldots, v_{k+1}$ were chosen such that they satisfy the three conditions.
- lacksquare consider G_k and find suitable vertex v_k on C_k

 \blacksquare G_k is 2-connected and internally triangulated

Lemma. Every triangulated planar graph G = (V, E) has a canonical ordering.

Proof: inverse induction on k

k=n:

- induction hypothesis: vertices $v_n, v_{n-1}, \ldots, v_{k+1}$ were chosen such that they satisfy the three conditions.
- consider G_k and find suitable vertex v_k on C_k

- lacksquare G_k is 2-connected and internally triangulated
- lacksquare v_k should not be incident to chord of C_k

Lemma. Every triangulated planar graph G = (V, E) has a canonical ordering.

Proof: inverse induction on k

k=n:

- induction hypothesis: vertices $v_n, v_{n-1}, \ldots, v_{k+1}$ were chosen such that they satisfy the three conditions.
- consider G_k and find suitable vertex v_k on C_k

- lacksquare G_k is 2-connected and internally triangulated
- lacksquare v_k should not be incident to chord of C_k

Is this sufficient?

We show: v_k not incident to a chord $\Rightarrow G_{k-1}$ is 2-connected.

Can we always find a vertex not incident to a chord?

We show: v_k not incident to a chord $\Rightarrow G_{k-1}$ is 2-connected.

Can we always find a vertex not incident to a chord?

- chords form proper nesting
- innermost chords span at least one such vertex

Computing a Canonical Ordering

CanonicalOrdering(plane graph G = (V, E))

forall $v \in V$ do

 $\lfloor \mathsf{chords}(v) \leftarrow 0$; $\mathsf{out}(v) \leftarrow \mathsf{false}$; $\mathsf{mark}(v) \leftarrow \mathsf{false}$; $\mathsf{out}(v_1)$, $\mathsf{out}(v_2)$, $\mathsf{out}(v_n) \leftarrow \mathsf{true}$

for k = n to 3 do

choose $v \neq v_1, v_2$ with mark(v) = false, out(v) = true, chords(v) = 0

 $v_k \leftarrow v$; mark $(v) \leftarrow$ true

$$(w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2) \leftarrow C_{k-1}$$

 $(w_p, \dots, w_q) \leftarrow \text{unmarked neighbors of } v_k$

 $\operatorname{out}(w_i) \leftarrow \operatorname{true} \text{ for all } p < i < q$

update chords(\cdot) for these w_i and their neighbors

- \blacksquare mark(v) = true iff vertex v was numbered
- lacksquare out(v)= true iff v is currently in the external face

Computing a Canonical Ordering


```
lacksquare chord(v) = number of chords incident to v
```

update chords(\cdot) for these w_i and their neighbors

 \blacksquare mark(v) = true iff vertex v was numbered

 $(w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2) \leftarrow C_{k-1}$

 $(w_p, \dots, w_q) \leftarrow \text{unmarked neighbors of } v_k$

 $\mathsf{out}(w_i) \leftarrow \mathsf{true} \ \mathsf{for} \ \mathsf{all} \ p < i < q$

lacksquare out(v) = true iff v is currently in the external face

Lemma: Algorithm CanonicalOrdering computes a canonical ordering of G in O(n) time.

Overview

Canonical ordering

Shift algorithm

Implementation

Shift Algorithm [de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

[de Fraysseix, Pach, Pollack 1988]

even L_1 -distance

- $lacksquare v_1$ is on (0,0), v_2 is on (2k-6,0)
- boundary C_{k-1} of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone
- each edge of C_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1

Shift Algorithm: Example

- each internal vertex is covered exactly once
- lacksquare covering relation defines a tree in G
- \blacksquare forest in G_i , $3 \le i \le n-1$

- each internal vertex is covered exactly once
- lacksquare covering relation defines a tree in G
- forest in G_i , $3 \le i \le n-1$

- each internal vertex is covered exactly once
- lacksquare covering relation defines a tree in G
- forest in G_i , $3 \le i \le n-1$

- each internal vertex is covered exactly once
- lacksquare covering relation defines a tree in G
- forest in G_i , $3 \le i \le n-1$

- each internal vertex is covered exactly once
- lacktriangle covering relation defines a tree in G
- forest in G_i , $3 \le i \le n-1$

- each internal vertex is covered exactly once
- lacktriangle covering relation defines a tree in G
- forest in G_i , $3 \le i \le n-1$

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

Proof

 \blacksquare induction on i, i.e. we consider G_3, \ldots, G_n

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

- \blacksquare induction on i, i.e. we consider G_3, \ldots, G_n
- \blacksquare clearly true for G_3 ; assume the lemma holds for G_{k-1}

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

- \blacksquare induction on i, i.e. we consider G_3, \ldots, G_n
- \blacksquare clearly true for G_3 ; assume the lemma holds for G_{k-1}
- \blacksquare let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

- \blacksquare induction on i, i.e. we consider G_3,\ldots,G_n
- \blacksquare clearly true for G_3 ; assume the lemma holds for G_{k-1}
- \blacksquare let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k
- $\blacksquare \text{ let } \delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

- \blacksquare induction on i, i.e. we consider G_3,\ldots,G_n
- \blacksquare clearly true for G_3 ; assume the lemma holds for G_{k-1}
- \blacksquare let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k
- $\blacksquare \text{ let } \delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

- \blacksquare induction on i, i.e. we consider G_3, \ldots, G_n
- \blacksquare clearly true for G_3 ; assume the lemma holds for G_{k-1}
- \blacksquare let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k
- $\blacksquare \text{ let } \delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$
- $\blacksquare \text{ define } \delta_i' = \begin{cases} \delta_i & \text{for } 1 \leq i \leq p \\ \delta + 1 & \text{for } p + 1 \leq i \leq q 1 \text{ (covered vertices of } v_k) \\ \delta_i + 2 & \text{for } q \leq i \leq t \end{cases}$
- by induction hypothesis we can move each $L(w_1),\ldots,L(w_t)$ by $\delta'_1,\ldots,\delta'_t$, respectively

Lemma: Let G_k be a planar straight-line grid drawing. Let $0 < \delta_1 \le \delta_2 \le \cdots \le \delta_t \in \mathbb{N}$. If we shift each $L(w_i)$ by δ_i to the right, we get another planar straight-line grid drawing.

- \blacksquare induction on i, i.e. we consider G_3, \ldots, G_n
- \blacksquare clearly true for G_3 ; assume the lemma holds for G_{k-1}
- \blacksquare let $w_1, \ldots, w_p, v_k, w_q, \ldots, w_t$ be the boundary of G_k
- $\blacksquare \text{ let } \delta_1 \leq \cdots \leq \delta_p \leq \delta \leq \delta_q \leq \cdots \leq \delta_t$

- by induction hypothesis we can move each $L(w_1),\ldots,L(w_t)$ by $\delta'_1,\ldots,\delta'_t$, respectively
- complete the drawing of G_k by placing v_k ; now v_k is moved rigidly with $L(w_{p+1}),\ldots,L(w_{q-1})$ by δ

Overview

Canonical ordering

Shift algorithm

Implementation

Naïve Implementation


```
Shift(plane graph G = (V, E))
 let v_1, \ldots, v_n canonical ordering of G
 for i = 1 to n do L(v_i) \leftarrow \{v_i\}
 P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0); P(v_3) \leftarrow (1,1)
 for k=4 to n do
   let w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2 be vertices of C_{k-1}
   let w_p, \ldots, w_q be neighbors of v_k
   for v \in \bigcup_{i=p+1}^{q-1} L(w_i) do x(v) \leftarrow x(v) + 1
   for v \in \bigcup_{i=a}^t L(w_i) do x(v) \leftarrow x(v) + 2
   P(v_k) \leftarrow \text{intersection point of lines with slope } \pm 1 \text{ from } P(w_p) \text{ and } P(w_q)
   L(v_k) \leftarrow \cup_{j=p+1}^{q-1} L(w_j) \cup \{v_{\mathbf{z}}\}
```

Naïve Implementation


```
Shift(plane graph G = (V, E))
 let v_1, \ldots, v_n canonical ordering of G
 for i = 1 to n do L(v_i) \leftarrow \{v_i\}
 P(v_1) \leftarrow (0,0); P(v_2) \leftarrow (2,0); P(v_3) \leftarrow (1,1)
 for k=4 to n do
    let w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2 be vertices of C_{k-1}
    let w_p, \ldots, w_q be neighbors of v_k
   \begin{array}{l} \text{for } v \in \cup_{j=p+1}^{q-1} L(w_j) \text{ do } x(v) \leftarrow x(v)+1 \\ \text{for } v \in \cup_{j=q}^t L(w_j) \text{ do } x(v) \leftarrow x(v)+2 \end{array} \right\} \quad \text{(a) fine } 
    P(v_k) \leftarrow \text{intersection point of lines with slope} \pm 1 \text{ from } P(w_p) \text{ and } P(w_q)
   L(v_k) \leftarrow \cup_{i=p+1}^{q-1} L(w_i) \cup \{v_i\}
```

Running time?

$$\rightarrow O(n^2)$$

Towards a Faster Implementation

Vertex coordinates

$$(x_{k}) = \frac{1}{2}(x(w_{q}) + x(w_{p}) + y(w_{q}) - y(w_{p}))$$

$$y(v_{k}) = \frac{1}{2}(x(w_{q}) - x(w_{p}) + y(w_{q}) + y(w_{p}))$$

$$x(v_{k}) - x(w_{p}) = \underbrace{\frac{1}{2}(x(w_{q}) - x(w_{p}) + y(w_{q}) - y(w_{p}))}_{\times -distance}$$

$$(x_{k}) - x(w_{p}) = \underbrace{\frac{1}{2}(x(w_{q}) - x(w_{p}) + y(w_{q}) - y(w_{p}))}_{\times -distance}$$

$$y = y(\omega_{p}) + 4 \cdot (x - x(\omega_{p}))$$

$$(x_{k}) - x(w_{k}) = \underbrace{\frac{1}{2}(x(w_{q}) - x(w_{p}) + y(w_{q}) - y(w_{p}))}_{\times -distance}$$

$$y = y(\omega_{p}) + 4 \cdot (x - x(\omega_{p}))$$

lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate

relative x-distance tree T

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p)-x(w_q)$, we can compute the difference $x(v_k)-x(w_p)$ [eq. (3)]

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

- $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) \Delta_x(v_k)$

- lacktriangle in x-distance tree T at each vertex we keep its relative x-distance from its parent and its y-coordinate
- If we know the y-coordinates of w_p and w_q and the difference $x(w_p) x(w_q)$, we can compute the difference $x(v_k) x(w_p)$ [eq. (3)]
- lacksquare $\Delta_x(w_p,w_q)=\Delta_x(w_{p+1})+\cdots+\Delta_x(w_q)$, where $\Delta_x(w_q)$ is x-distance from the parent and $\Delta_x(w_p,w_q)$ is x-distance of w_p and w_q
- lacksquare Calculate $\Delta_x(v_k)$ by eq. (3)
- lacksquare Calculate $y(v_k)$ by eq. (2)

$$\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) - \Delta_x(v_k)$$

Once T is completed, compute x-coordinates by a linear-time pre-order traversal

Summary

Theorem: Every n-vertex embedded planar graph G=(V,E) has a straight-line planar drawing on a grid of size $(2n-4)\times(n-2)$. [de Fraysseix, Pach, Pollack 1988]

Theorem: The corresponding shift algorithm can be implemented to run in O(n) time. [Chrobak, Payne 1995]