(Due Friday, Nov. 6)

Problems

Solve the following problems.

- Consider a uniform solid cone of mass M, height h, and base radius R. Choose the z-axis along the axis of symmetry of the cone.
 - Determine the moment of inertia tensor around a fixed point at the tip of the cone.
 - Calculate the moment of inertia: (i) around the z-axis, (ii) an axis perpendicular to the z-axis.
 - \circ For an arbitrary angular velocity $\boldsymbol{\omega}$, find the angular momentum \boldsymbol{L} .
- Consider a uniform solid ellipsoid with surface

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1$$
.

- Calculate the moment of inertia for rotation about the z-axis.
- Check your result by comparing with the moment of inertia of a sphere with a=b=c.
- (5.15) Consider a flat rigid body in the shape of a 45° right triangle with uniform mass density.
 - Find the principal moments of inertial about its center of mass.
 - Find the principal axes about the center of mass.

Page 1 Fall 2020