Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2031 - Geometría Moderna - Catedrático: María Eugenia Pinillos 23 de agosto de 2021

Tarea 3

Problema 1. Tangentes a las circunferencias en A' y B forman ángulos iguales con la línea A'B. Si estas tangentes se intersecan en E el triángulo EA'B es isósceles.

Demostración. Nótese que por hipótesis A', A, B, B', C, C' y D, D' son homólogos. \Longrightarrow Como las circunferencias son homotéticas, entonces la tangente que pasa por BE es paralela a la tangente que pasa por B'E' tal que $BE' \parallel B'E$. \Longrightarrow Por el teorema de paralelas y transversas $\angle A'B'E' = \angle A'B'E$. \Longrightarrow Por la definición de tangentes a circunferencias $\angle E'A'B' = \angle A'B'E'$. \Longrightarrow $\triangle E'A'B'$ es isósceles. \Longrightarrow Por congruencia de los ángulos y teorema de similaridad para triángulos $\angle EA'B = \angle A'BE$. Por lo tanto, $\triangle EA'B$ es isósceles.

Problema 2. La circunferencia de similitud de dos circunferencias no concéntricas es el lugar geométrico de los puntos (1) tales que las razones de sus distancias a los centros de las circunferencias son iguales a las razones entre los radios; y (2) desde los cuales las dos circunferencias subtienden ángulos iguales.

Demostración. A probar:

1. $P \in \text{circunferencia de similitud} \implies PO/PO' = r/r'$. Supóngase que tenemos un punto O'' en el segmento de los centros, tal que el segmento PH es la bisectriz de $\angle O''PO'$. \implies Por el teorema de Thales, $PH \perp PK$ bisectan los \angle interiores y exteriores en P de $\triangle O''PO'$. \implies

$$\frac{O''H}{HO'} = -\frac{O''K}{KO'} \quad \text{y} \quad \frac{OH}{HO'} = -\frac{OK}{KO'} \implies \frac{H}{O''}\frac{O''}{K} = \frac{HO}{OK} \implies O'' = O.$$

Por lo tanto,

$$\frac{PO}{PO'} = \frac{r}{r'}.$$

2. $PO/PO' = r/r \implies P \in \text{circunferencia de similitud. Por el teorema de la bisectriz,} PH es la bisectriz del <math>\angle$ interior en P de $\triangle OPO'$. Por otra parte, por el teorema de la bisectriz PK es la bisectriz del \angle exterior en P de $\triangle OPO'$. Por lo tanto, $PH \perp PK$ y $P \in \text{circunferencia de similitud.}$