Estimation and Hypothesis Testing 2 | Les estimateurs et les tests d'hypothèses 2

Christelle Zozoungbo

27 June/juin 2024

Covariate Adjustment | Ajustement des covariables

Cluster Randomization | Randomisation par grappe

Experiments with Multiple Arms | Les éxperiences avec plusiers bras

Factorial Design | La concéption factorielle

A Quick Reminder | *Un pétit rappel*

- Remember: Analyze as you randomize
- ► We prefer estimators that are unbiased and have greater precision

- ► N'oubliez pas : Analysez comme vous randomisez
- Nous préférons les estimateurs non biaisés et plus précis.

Covariate Adjustment | Ajustement des covariables

Estimator: Linear regression with covariates

Estimateur : La régression linéaire avec des covariables

$$Y_i = \beta_0 + \beta_1 Z_i + \gamma X_i + e_i$$

- Including a pre-treatment covariate X that is predictive of the outcome variable in our regression model is called covariate adjustment.
- ► For example: pre-treatment measure of the outcome.
- Careful: This can bias our estimates, but improve their precision.

- L'inclusion d'une covariable pré-traitement X qui est prédictive de la variable de résultat dans notre modèle de régression est appelée ajustement des covariables.
- Par exemple : un mesure du résultat avant le traitement.
- Attention : Cela peut biaiser nos estimations, mais améliorer leur précision.

Estimator: Linear regression with covariates | Estimateur : La régression linéaire avec des covariables

$$Y_i = \beta_0 + \beta_1 Z_i + \gamma X_i + e_i$$

- The coefficient on the treatment variable (β_1) is again our ATE.
- The coefficient on the covariate (γ) is *not* the causal effect of that variable.
- Le coefficient sur la variable de traitement (β_1) est encore notre ATE.
- Le coefficient de la covariable (γ) n'est pas l'effet causal de cette variable.

Estimator: Linear regression with covariates | Estimateur : La régression linéaire avec des covariables

Dainet DM

	Reject FM	
	(1)	(2)
EFM Treat	0.093***	0.095***
Standard Error	0.027	0.020
RI <i>p</i> -value	0.001	< 0.001
Hypothesis	+	+
Control Mean	0.82	0.82
Control SD	0.16	0.16
DV Range	[0-1]	[0-1]
Blocked FE	Yes	Yes
Controls	No	16
$Adj-R^2$	0.09	0.23
Observations	998	998

Note: * p < .1, ** p < 0.05, and *** p < 0.01

Estimator: Linear regression with covariates | *Estimateur : La régression linéaire avec des covariables*

```
library(estimatr)
# lm_robust(Y ~ treatment + Language + Gender)
```


Cluster Randomization | Randomisation par grappe

Estimator: Regression with cluster-robust standard errors | Estimateur : La régression avec des erreurs types robustes au niveau du cluster

$$Y_{ic} = \beta_0 + \beta_1 Z_c + e_{ic}$$

$$Y_{ic} = \beta_0 + \beta_1 Z_c + \beta_2 X_{ic} + e_{ic}$$

- Our analysis has to take into account the fact that treatment is assigned at the cluster level with cluster-robust standard errors.
- \triangleright β_1 is the ATE of the treatment at the individual level.
- ► We can also do covariate adjustment at the same time.

- Notre analyse doit prendre en compte le fait que le traitement est attribué au niveau du cluster avec des erreurs types robustes au niveau du cluster.
- $\triangleright \beta_1$ est l'ATE du traitement au niveau individuel.
- Nous pouvons également effectuer un ajustement covariable en même temps.

Cluster Randomization | Randomisation par grappe

```
library(estimatr)

# lm_robust(Y ~ treatment, clusters=cluster_variable)

# lm_robust(Y ~ treatment + covariate, clusters=cluster_variable)
```


Experiments with Multiple Arms | Les éxperiences avec plusiers bras

Estimator 1: Difference-in-Means | Estimateur 1 : La différence en moyennes

- We can always take the difference-in-means between any two groups.
- Nous pouvons toujours tenir compte de la différence de moyens entre deux groupes.

Estimator 2: Linear regression | Estimateur 2 : La régression linéaire

$$Y_i = \alpha + \beta_A Z_{Ai} + \beta_B Z_{Bi} + e_i$$

- Regression with an indicator variable for each of the two treatment arms.
- We can also do covariate adjustment at the same time.
- Régression avec une variable indicatrice pour chacun des deux bras de traitement.
- Nous pouvons également effectuer un ajustement covariable en même temps.

Estimator 2: Linear regression | Estimateur 2 : La régression linéaire

$$Y_i = \alpha + \beta_A Z_{Ai} + \beta_B Z_{Bi} + e_i$$

- \triangleright β_A is the ATE of Z_A (compared with control).
- \triangleright β_B is the ATE of Z_B (compared with control).
- \triangleright β_A est l'ATE de Z_A (par rapport au contrôle).
- \triangleright β_B est l'ATE de Z_B (par rapport au contrôle).

Estimator 2: Linear regression | Estimateur 2 : La régression linéaire

 Z_A only Z_B only
Neither (control) $Y_i = \alpha + \beta_A Z_{Ai} + \beta_B Z_{Bi} + e_i$

Estimators for Multi-arm Designs | Les estimateurs pour les éxperiences avec plusiers bras

```
library(estimatr)

# difference_in_means(Y ~ treatment,
# condition1="T2",
# condition2="T1")

# lm_robust(Y ~ as.factor(treatment))
```


Factorial Design | La concéption factorielle

Estimator 1: Difference-in-Means | Estimateur 1 : La différence en moyennes

Neither	Z_2 only
Z_1 only	Both Z_1 and Z_2

- ► If we have a 2*2 factorial design, we have four groups.
- We can always take the difference-in-means between any two groups.
- Si nous avons une concéption factorielle 2*2, nous avons 4 groupes.
- Nous pouvons toujours tenir compte de la différence de moyens entre deux groupes.

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2 : La régression linéaire avec un terme d'interaction

$$Y_{i} = \beta_{0} + \beta_{1}Z_{1i} + \beta_{2}Z_{2i} + \beta_{3}Z_{1i} * Z_{2i} + e_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}Z_{1i} + \beta_{2}Z_{2i} + \beta_{3}Z_{1i} * Z_{2i} + \beta_{4}X_{i} + e_{i}$$

- ▶ Indicator variables for Z_1 and Z_2 .
- We can also do covariate adjustment at the same time.
- ▶ Variables indicatrices pour Z_1 et Z_2 .
- Nous pouvons également effectuer un ajustement covariable en même temps.

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2 : La régression linéaire avec un terme d'interaction

Neither	Z_2 only
Z_1 only	Both Z_1 and Z_2

$$Y_i = \beta_0 + \beta_1 Z_{1i} + \beta_2 Z_{2i} + \beta_3 Z_{1i} * Z_{2i} + e_i$$

- β_1 is the ATE of Z_1 conditional on $Z_2 = 0 \mid I'ATE \ de \ Z_1$ conditionnel à $Z_2 = 0$, $(E[Y(Z_1 = 1) Y(Z_1 = 0)|Z_2 = 0])$
- β_2 is the ATE of Z_2 conditional on $Z_1=0$ | *l'ATE de* Z_2 conditionnel à $Z_1=0$, $(E[Y(Z_2=1)-Y(Z_2=0)|Z_1=0])$

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2: La régression linéaire avec un terme d'interaction

Neither	Z_2 only
Z_1 only	Both Z_1 and Z_2

$$Y_i = \beta_0 + \beta_1 Z_{1i} + \beta_2 Z_{2i} + \beta_3 Z_{1i} * Z_{2i} + e_i$$

- $\beta_2 + \beta_3 = ATE$ of Z_2 conditional on $Z_1 = 1 \mid I'ATE$ de Z_2 conditionnel à $Z_1 = 1$, $(E[Y(Z_2 = 1) Y(Z_2 = 0)|Z_1 = 0])$
- \triangleright β_3 is called the interaction effect. β_3 est appelé l'effet d'interaction.

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2:

La régression linéaire avec un terme d'interaction

Table 4. Adoption for Parents Sampled for SAFI	& Subsidy Programs	
	Used Fertilizer	
	Season 1	
Panel A. 2004 Season 1 Treatments	(1)	
SAFI Season 1	0.114	
	(0.035)***	
Starter Kit Farmer	0.059	
	(0.042)	
Starter Kit Farmer * Demonstration Plot	-0.026	
School	(0.060)	
Demonstration Plot School	0.006	
	(0.314)	

Standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%

$$\hat{Y} = \hat{lpha} + 0.059 \textit{Kit} + 0.006 \textit{Demo} - 0.026 \textit{Kit} * \textit{Demo}$$

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2: La régression linéaire avec un terme d'interaction

$$\hat{Y}=\hat{lpha}+0.059$$
Kit $+0.006$ Demo -0.026 Kit $*$ Demo

Neither:
$$\hat{Y}=\hat{lpha}$$

Kit only:
$$\hat{Y} = \hat{\alpha} + 0.059$$

Demo only:
$$\hat{Y} = \hat{\alpha} + 0.006$$

Kit and Demo:
$$\hat{Y} = \hat{\alpha} + 0.059 + 0.006 - 0.026$$

$$\widehat{\textit{ATE}}$$
 of Kit conditional on No Demo $= \hat{lpha} + 0.059$ - $\hat{lpha} = 0.059$

 \widehat{ATE} of Kit conditional on Demo = $\hat{\alpha}$ + 0.059 + 0.006 - 0.026 - ($\hat{\alpha}$ + 0.006) =

Interaction effect = 0.059 - 0.026 - 0.059 = 0.026

Estimator 2: Linear Regression with an Interaction Term | Estimateur 2 : La régression linéaire avec un terme d'interaction

```
library(estimatr)
# lm_robust(Y ~ Z1 + Z2 + Z1*Z2)
# lm_robust(Y ~ Z1*Z2)
# lm_robust(Y ~ Z1*Z2 + covariate)
```

