Optimization and Data Science

Lecture 23: Active Set Method

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

- Active Set Method
 - Lagrange Multiplier Rule and SQP Method
 - A Different Interpretation of the SQP Method
 - Extension to Inequality Constraints
 - Quadratic cost function with linear constraints
 - Application: Support Vector Machine

- Active Set Method
 - Lagrange Multiplier Rule and SQP Method
 - A Different Interpretation of the SQP Method
 - Extension to Inequality Constraints
 - Quadratic cost function with linear constraints
 - Application: Support Vector Machine

Recall: Lagrange multiplier rule for inequality constraints: KKT system

• The first order necessary optimality condition for a local solution x^* to

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\begin{cases} g(x) \leq 0 \\ h(x) = 0 \end{cases}$

is that $(x^*, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^m_{\geq 0}$ solves the Karush-Kuhn-Tucker (KKT) system

$$abla_{x} \mathcal{L}(x^{*}\lambda, \mu) =
abla f(x^{*}) + \sum_{i=1}^{p} \lambda_{i}
abla h_{i}(x^{*}) + \sum_{j=1}^{m} \mu_{j}
abla g_{j}(x^{*}) = 0,
onumber \ h(x^{*}) = 0,
onumber \ g(x^{*}) \leq 0,
onumber \ g(x^{*}) \leq 0,$$

with the Lagrangian

$$L(x, \lambda, \mu) := f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x) = f(x) + \sum_{i=1}^{p} \lambda_{i} h_{i}(x) + \sum_{i=1}^{m} \mu_{j} g_{j}(x).$$

- Active Set Method
 - Lagrange Multiplier Rule and SQP Method
 - A Different Interpretation of the SQP Method
 - Extension to Inequality Constraints
 - Quadratic cost function with linear constraints
 - Application: Support Vector Machine

Recall: Lagrange multiplier rule and KKT system

In the problem with equality constraints only,

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $h(x) = 0$,

the solution $(x^*, \lambda) \in \mathbb{R}^n \times \mathbb{R}^p$ of the system

$$\nabla_{(x,\lambda)}L(x^*,\lambda) = 0 \quad \Leftrightarrow \quad \begin{cases} \nabla_x L(x^*,\lambda) = \nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla h_i(x^*) = 0 \\ \nabla_\lambda L(x^*,\lambda) = h(x^*) = 0 \end{cases}$$

can be computed by Newton or Quasi-Newton methods, leading to the SQP method.

Newton-SQP step for equality constraints

Newton-SQP step:

$$\nabla^2_{(x,\lambda)}L(x_k,\lambda_k)\left(\begin{array}{c}d\\\delta\end{array}\right)=-\nabla_{(x,\lambda)}L(x_k,\lambda_k).$$

or

$$\begin{pmatrix} \nabla_{xx}^2 L(x_k, \lambda_k) & \nabla_{\lambda x}^2 L(x_k, \lambda_k) \\ \nabla_{x\lambda}^2 L(x_k, \lambda_k) & \nabla_{\lambda \lambda}^2 L(x_k, \lambda_k) \end{pmatrix} \begin{pmatrix} d \\ \delta \end{pmatrix} = - \begin{pmatrix} \nabla_x L(x_k, \lambda_k) \\ \nabla_\lambda L(x_k, \lambda_k) \end{pmatrix}$$

or

$$\left(egin{array}{ccc}
abla_{xx}^2 \mathcal{L}(x_k,\lambda_k) &
abla h_1(x_k) &
abla h_1(x_k)^{ op} &
onumber \\

\vdots & & & & \\

abla h_p(x_k)^{ op} &
onumber \\

abla h_p(x_k)^{ op} &
onumber \\

begin{array}{c} d \\ \delta \end{array}
ight) = -\left(egin{array}{c}
abla_x \mathcal{L}(x_k,\lambda_k) \\ h(x_k) \end{array}
ight)$$

A different interpretation of the SQP method for equality constraints

• Approximate L in the vicinity of the current iterate (x_k, λ_k) by the quadratic function

$$L(x_k + d, \lambda_k + \delta) \approx L(x_k, \lambda_k) + \begin{pmatrix} \nabla_x L(x_k, \lambda_k) \\ \nabla_\lambda L(x_k, \lambda_k) \end{pmatrix}^{\top} \begin{pmatrix} d \\ \delta \end{pmatrix} + \frac{1}{2} \begin{pmatrix} d \\ \delta \end{pmatrix}^{\top} \nabla^2_{(x,\lambda)} L(x_k, \lambda_k) \begin{pmatrix} d \\ \delta \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} d \\ \delta \end{pmatrix}^{\top} A \begin{pmatrix} d \\ \delta \end{pmatrix} + b^{\top} \begin{pmatrix} d \\ \delta \end{pmatrix} + c.$$

• Minimize this approximation w.r.t. (d, δ) . Necessary optimality condition:

$$A\begin{pmatrix} d \\ \delta \end{pmatrix} + b = \nabla^2_{(x,\lambda)} L(x_k,\lambda_k) \begin{pmatrix} d \\ \delta \end{pmatrix} + \nabla_{(x,\lambda)} L(x_k,\lambda_k) = 0$$

• This gives (d, δ) as solution of

$$\nabla^2_{(x,\lambda)}L(x_k,\lambda_k)\left(\begin{array}{c}d\\\delta\end{array}\right)=-\nabla_{(x,\lambda)}L(x_k,\lambda_k).$$

 \rightsquigarrow (d, δ) is the Newton direction.

Quadratic approximation of the Lagrangian

$$L_{k}(d,\delta) = \frac{1}{2} \begin{pmatrix} d \\ \delta \end{pmatrix}^{\top} \begin{pmatrix} \nabla_{xx}^{2}L & \nabla_{\lambda x}^{2}L \\ \nabla_{x\lambda}^{2}L & 0 \end{pmatrix} \begin{pmatrix} d \\ \delta \end{pmatrix} + \begin{pmatrix} \nabla_{x}L \\ \nabla_{\lambda}L \end{pmatrix}^{\top} \begin{pmatrix} d \\ \delta \end{pmatrix} + L(x_{k},\lambda_{k})$$

$$= \frac{1}{2} \begin{pmatrix} d \\ \delta \end{pmatrix}^{\top} \begin{pmatrix} \nabla_{xx}^{2}Ld + \nabla_{\lambda x}^{2}L\delta \\ \nabla_{x\lambda}^{2}Ld \end{pmatrix} + \nabla_{x}L^{\top}d + h(x_{k})^{\top}\delta + L(x_{k},\lambda_{k})$$

$$= \frac{1}{2} \begin{pmatrix} d^{\top}\nabla_{xx}^{2}Ld + d^{\top}\nabla_{\lambda x}^{2}L\delta + \delta^{\top}\nabla_{x\lambda}^{2}Ld \end{pmatrix} + \nabla_{x}L^{\top}d + h(x_{k})^{\top}\delta + L(x_{k},\lambda_{k})$$

$$= \frac{1}{2}d^{\top}\nabla_{xx}^{2}Ld + \nabla_{x}L^{\top}d + L(x_{k},\lambda_{k}) + \delta^{\top}\nabla_{x\lambda}^{2}Ld + \delta^{\top}h(x_{k}).$$

 \rightsquigarrow L_k is the Lagrangian of the following problem with multiplier δ :

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^\top \nabla^2_{xx} L d + \nabla_x L^\top d + L(x_k, \lambda_k) \quad \text{ s.t. } \nabla^2_{x\lambda} L d + h(x_k) = 0.$$

Quadratic approximation of the Lagrangian

• L_k is the Lagrangian of the problem

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^\top \nabla^2_{xx} L d + \nabla_x L^\top d + L(x_k, \lambda_k) \quad \text{ s.t. } \nabla^2_{x\lambda} L d + h(x_k) = 0.$$

Using

$$\nabla_{x\lambda}^{2} L(x,\lambda) = \left(\nabla h_{i}(x)^{\top}\right)_{i=1}^{p} \in \mathbb{R}^{p \times n},$$

$$\nabla_{x\lambda}^{2} L(x,\lambda) d = \left(\nabla h_{i}(x)^{\top} d\right)_{i=1}^{p} \in \mathbb{R}^{p},$$

• ... we re-write the constraint as

$$\nabla h_i(x_k)^{\top} d + h_i(x_k) = 0, \quad i = 1, \dots, p.$$

• This is a linearization of the original constraint functions h_i around x_k :

$$h_i(x_k + d) = h_i(x_k) + \nabla h_i(x_k)^{\top} d + \mathcal{O}(\|d\|^2).$$

Different interpretation of SQP: Summary

Algorithm (SQP method – rewritten):

- Choose initial guess $(x_0, \lambda_0) \in \mathbb{R}^n \times \mathbb{R}^p$.
- ② For k = 0, 1, ...:
 - **1** Approximate the original problem by a quadratic problem with linear constraints, using a Taylor approximation around (x_k, λ_k) .
 - 2 Solve this approximative problem $\rightsquigarrow (d_k, \delta_k)$.
 - **3** Choose an efficient step-size $\rho_k > 0$.
 - Update

$$(x_{k+1},\lambda_{k+1})=(x_k,\lambda_k)+\rho_k(d_k,\delta_k),$$

until a stopping criterion is satisfied.

- Active Set Method
 - Lagrange Multiplier Rule and SQP Method
 - A Different Interpretation of the SQP Method
 - Extension to Inequality Constraints
 - Quadratic cost function with linear constraints
 - Application: Support Vector Machine

Extension to inequality constraints

• We apply the same idea for a problem with additional inequality constraints:

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\left\{ \begin{array}{l} g(x) \leq 0 \\ h(x) = 0. \end{array} \right.$

- The computations are the same.
- First order necessary condition: $(x^*, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^m_{\geq 0}$ solves the KKT system

vecessary condition:
$$(x^*,\lambda,\mu)\in\mathbb{R}^n imes\mathbb{R}^p imes\mathbb{R}^m_{\geq 0}$$
 solves the KKT system $abla_x L(x^*\lambda,\mu) =
abla f(x^*) + \sum_{i=1}^p \lambda_i
abla h_i(x^*) + \sum_{j=1}^m \mu_j
abla g_j(x^*) = 0 , \\ \mu^\top g(x^*) = 0 , \\ g(x^*) \leq 0 , \\ abla g(x^*) \leq 0 , \\ abla f(x^*) = 0 ,$

with the Lagrangian

$$L(x, \lambda, \mu) := f(x) + \lambda^{\top} h(x) + \mu^{\top} g(x) = f(x) + \sum_{i=1}^{p} \lambda_{i} h_{i}(x) + \sum_{i=1}^{m} \mu_{j} g_{j}(x).$$

Quadratic approximation of the Lagrangian with inequality constraints

- We have additional multipliers $\mu \in \mathbb{R}^m_{>0}$ now.
- Approximate L by the quadratic function

$$L(x_k + d, \lambda_k + \delta, \mu_k + \gamma) \approx L + \nabla_{(x,\lambda,\mu)} L^{\top} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix} + \frac{1}{2} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix}^{\top} \frac{2}{(x,\lambda,\mu)} L \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix}^{\top} A \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix} + b^{\top} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix} + c =: L_k(d, \delta, \gamma),$$

where on the right-hand side L always means $L(x_k, \lambda_k, \mu_k)$.

- Minimize this approximation w.r.t. (d, δ, γ) .
- Have to take into account the inequality constraints and complementarity condition.
- → Direct solution via the necessary condition is not possible.

Quadratic approximation of the Lagrangian

$$L_{k}(d,\delta) = \frac{1}{2} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix}^{\top} \begin{pmatrix} \nabla_{xx}^{2}L & \nabla_{\lambda x}^{2}L & \nabla_{\mu x}^{2}L \\ \nabla_{x\lambda}^{2}L & 0 & 0 \\ \nabla_{x\mu}^{2}L & 0 & 0 \end{pmatrix} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix} + \begin{pmatrix} \nabla_{x}L \\ \nabla_{\lambda L} \end{pmatrix}^{\top} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix} + L(x_{k},\lambda_{k},\mu_{k})$$

$$= \frac{1}{2} \begin{pmatrix} d \\ \delta \\ \gamma \end{pmatrix}^{\top} \begin{pmatrix} \nabla_{xx}^{2}Ld + \nabla_{\lambda x}^{2}L\delta + \nabla_{\mu x}^{2}L\gamma \\ \nabla_{x\lambda}^{2}Ld \\ \nabla_{x\mu}^{2}Ld \end{pmatrix} + \nabla_{x}L^{\top}d + h(x_{k})^{\top}\delta + g(x_{k})^{\top}\gamma + L$$

$$= \frac{1}{2} \begin{pmatrix} d^{\top}\nabla_{xx}^{2}Ld + d^{\top}\nabla_{\lambda x}^{2}L\delta + d^{\top}\nabla_{\mu x}^{2}L\gamma + \delta^{\top}\nabla_{x\lambda}^{2}Ld + \gamma^{\top}\nabla_{x\mu}^{2}L\gamma \end{pmatrix} + \nabla_{x}L^{\top}d + \dots + L$$

$$= \frac{1}{2} d^{\top}\nabla_{xx}^{2}Ld + \nabla_{x}L^{\top}d + L + \delta^{\top}\nabla_{x\lambda}^{2}Ld + \gamma^{\top}\nabla_{x\mu}^{2}L\gamma + \delta^{\top}h(x_{k}) + \gamma^{\top}g(x_{k}).$$
This is the lowest form of the following states in the first state of the following states in the

 \rightarrow This is the Lagrangian of the following problem with multipliers δ and γ :

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^\top \nabla^2_{xx} L d + \nabla_x L^\top d + L \quad \text{ s.t. } \left\{ \begin{array}{l} \nabla^2_{x\lambda} L d + h(x_k) = 0 \\ \nabla^2_{x\mu} L d + g(x_k) \leq 0. \end{array} \right.$$

Quadratic approximation of the Lagrangian

• L_k is the Lagrangian of the problem

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^\top \nabla^2_{xx} L d + \nabla_x L^\top d + L \quad \text{ s.t. } \begin{cases} h_i(x_k) + \nabla h_i(x_k)^\top d = 0, i = 1, \dots, p \\ g_i(x_k) + \nabla g_i(x_k)^\top d \leq 0, i = 1, \dots, m. \end{cases}$$

Here we used again

$$\nabla_{x\lambda}^2 L(x,\lambda,\mu) d = \left(\nabla h_i(x)^\top d\right)_{i=1}^p, \quad \nabla_{x\mu}^2 L(x,\lambda,\mu) d = \left(\nabla g_i(x)^\top d\right)_{i=1}^m$$

to rewrite the constraints.

- These are again linearizations of the original constraint functions h and g around x_k .
- Need a method to solve a quadratric problem with (affine-) linear equality and inequality constraints.

- Active Set Method
 - Lagrange Multiplier Rule and SQP Method
 - A Different Interpretation of the SQP Method
 - Extension to Inequality Constraints
 - Quadratic cost function with linear constraints
 - Application: Support Vector Machine

Quadratic cost function with linear equality + inequality constraints

• Solve a quadratic problem with (affine-) linear equality and inequality constraints:

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^\top \nabla^2_{xx} L d + \nabla_x L^\top d + L \quad \text{s.t.} \quad \begin{cases} h_i(x_k) + \nabla h_i(x_k)^\top d = 0, i = 1, \dots, p, \\ g_i(x_k) + \nabla g_i(x_k)^\top d \leq 0, i = 1, \dots, m. \end{cases}$$

Simplified notation:

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^{\top} A d + b^{\top} d + c \text{ s.t. } \begin{cases} H d + h = 0, \\ G d + g \leq 0. \end{cases}$$

where

$$H = \left(\nabla h_i(x_k)^\top\right)_{i=1}^p = \left(\frac{\partial h_i}{\partial x_\ell}(x_k)\right)_{\substack{i=1,\ldots,p\\\ell=1,\ldots,n}}, G = \left(\nabla g_i(x_k)^\top\right)_{i=1}^m = \left(\frac{\partial g_i}{\partial x_\ell}(x_k)\right)_{\substack{i=1,\ldots,m\\\ell=1,\ldots,n}}$$
$$h = h(x_k), g = g(x_k).$$

Active set strategy

We want to solve

$$\min_{d \in \mathbb{R}^n} \frac{1}{2} d^\top A d + b^\top d + c \text{ s.t. } \begin{cases} Hd + h = 0 \\ Gd + g \leq 0. \end{cases}$$

Lagrangian:

$$L(d,\lambda,\mu) = \frac{1}{2}d^{\top}Ad + b^{\top}d + c + \underbrace{\lambda^{\top}(Hd+h)}_{(H^{\top}\lambda)^{\top}d+\lambda^{\top}h} + \underbrace{\mu^{\top}(Gd+g)}_{(G^{\top}\mu)^{\top}d+\mu^{\top}g}.$$

• KKT system:

$$Ad + b + H^{\top}\lambda + G^{\top}\mu = 0$$
$$Hd + h = 0$$
$$Gd + g \le 0$$
$$\mu^{\top}(Gd + g) = 0.$$

Considering the active constraints only

 \bullet At given admissible d, we determine the active inequality constraints, i.e., the sets

$$A := \{j \in \{1, \ldots, m\} : (Gd)_j + g_j = 0\}, \quad \mathcal{I} := \{j \in \{1, \ldots, m\} : (Gd)_j + g_j < 0\}.$$
 (1)

• From the complementarity condition, we deduce:

$$\mu_j = 0, j \in \mathcal{I}.$$

 \leadsto We ignore the inactive constraints and compute a solution $(\hat{d}, \lambda, \hat{\mu}) \in \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^{|\mathcal{A}|}$ of

where \hat{G} contains the rows of G corresponding to the active constraints only:

$$\hat{G} = (G_{jk})_{i \in A, k=1,\dots,n} \in \mathbb{R}^{|\mathcal{A}| \times n}.$$

Considering the active constraints only

- d is admissible: Hd + h = 0, $Gd + g \le 0$.
- $(\hat{d}, \lambda, \hat{\mu})$ solves (2):

$$A\hat{d} + H^{\top}\lambda + \hat{G}^{\top}\hat{\mu} = -(Ad + b)$$

 $H\hat{d} = 0$
 $\hat{G}\hat{d} = 0.$

- Set $(\mu_i)_{i \in \mathcal{A}} := \hat{\mu}, (\mu_i)_{i \in \mathcal{I}} := 0$. Then $\hat{G}^{\top} \hat{\mu} = G^{\top} \mu$.
- \rightarrow $(d + \hat{d}, \lambda, \mu)$ solves

$$A(d + \hat{d}) + b + H^{\top} \lambda + G^{\top} \mu = 0$$

$$H(d + \hat{d}) + h = 0$$

$$G(d + \hat{d}) + g \le 0$$

$$\mu^{\top} (G(d + \hat{d}) + g) = 0.$$

- Especially, $(d + \hat{d})$ is admissible again.
- If $\mu > 0$, we have found a point that satisfies the KKT conditions.

Algorithm: Active set strategy

- **1** Find an admissible point $d \in \mathbb{R}^n$.
- 2 For d, determine the set A of active inequality constraints defined in (1).
- **3** Compute a solution $(\hat{d}, \lambda, \hat{\mu})$ of the linear system (2).
- (a) If $\|\hat{d}\| \leq \epsilon$:
 - If $\hat{\mu} \geq 0$: stop, (d, λ, μ) with $(\mu_i)_{i \in \mathcal{A}} := \hat{\mu}, (\mu_i)_{i \in \mathcal{I}} := 0$ solves the KKT system.
 - If there is $i \in \mathcal{A}$ with $\hat{\mu}_i < 0$: set $\mathcal{A} = \mathcal{A} \setminus \{i\}$ and go back to step 3. (Sensitivity Theorem: $\hat{\mu}_i < 0$: $(\hat{G}\hat{d})_i < 0 \Rightarrow f \downarrow$, inactive constraint will reduce cost.)
- (b) If $\|\hat{d}\| > \epsilon$:
 - Choose step-size ρ and set $d:=d+\rho\hat{d}$. $(H\hat{d}=0,\hat{G}\hat{d}=0 \leadsto \text{this will not violate the equality and the active inequality constraints.) Inactive constraints <math>(i\in\mathcal{I})$ must not be violated, too:

$$(G(d+\rho\hat{d})+g)_i = \underbrace{(Gd)_i+g_i}_{\leq 0} + \rho(G\hat{d})_i \leq 0, i \in \mathcal{I} \quad \Rightarrow \quad \rho = \min_{i \in \mathcal{I}} \left\{ \frac{(Gd)_i+g_i}{(G\hat{d})_i} \right\}.$$

• Go back to step 2.

- Active Set Method
 - Lagrange Multiplier Rule and SQP Method
 - A Different Interpretation of the SQP Method
 - Extension to Inequality Constraints
 - Quadratic cost function with linear constraints
 - Application: Support Vector Machine

Support vector machine: optimization problam

Already a quadratic problem with linear inequality constraints:

$$\min_{\substack{(a,b)\in\mathbb{R}^n\times\mathbb{R}\\=\frac{1}{2}d^\top Ad}} \quad \text{s.t.} \quad \underbrace{g_j(a,b)=\Delta-\left(a^\top z_j-b\right)f(z_j)\leq 0, j=1,\ldots,m}_{Gd+g\leq 0}$$

where

$$d = \begin{pmatrix} a \\ b \end{pmatrix}, \quad A = \begin{pmatrix} 2I_{n \times n} & 0_{n \times 1} \\ 0_{1 \times n} & 0 \end{pmatrix},$$

$$g = \Delta, \quad f(z) := (f(z_j))_{j=1}^m \in \mathbb{R}^{n \times 1},$$

$$G_{ji} = \frac{\partial g_j}{\partial a_i}(a, b) = -f(z_j)z_{ji}, i = 1, \dots, n, \quad G_{j,n+1} = \frac{\partial g_j}{\partial b}(a, b) = f(z_j), j = 1, \dots, m,$$

$$G = (-\text{diag}(f(z))z, f(z)), \quad z := (z_{ji})_{j=1,\dots,m,i=1,\dots,n} \in \mathbb{R}^{m \times n}.$$

→ Apply directly the active set algorithm.

Active set method for support vector machine

• Linear system (2) to be solved for $(\hat{d}, \hat{\mu}) \in \mathbb{R}^{n+1} \times \mathbb{R}^m$:

$$A\hat{d} + \hat{G}^{\top}\hat{\mu} = -Ad$$

 $\hat{G}\hat{d} = 0.$

• Inserting gives:

$$\begin{pmatrix} 2I_{n\times n} & 0_{n\times 1} \\ 0_{1\times n} & 0 \end{pmatrix} \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} + \begin{pmatrix} -z^{\top} \operatorname{diag}(f(z)) \\ f(z)^{\top} \end{pmatrix} \hat{\mu} = -\begin{pmatrix} 2I_{n\times n} & 0_{n\times 1} \\ 0_{1\times n} & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
$$\begin{pmatrix} -\operatorname{diag}(f(z))z, f(z) \end{pmatrix} \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} = \begin{pmatrix} 0_m \\ 0 \end{pmatrix}$$

• ... or:

$$2\hat{a}-z^{ op}\mathrm{diag}(f(z))\hat{\mu}=-2a$$
 $f(z)^{ op}\hat{\mu}=0$ $-\mathrm{diag}(f(z))z\hat{a}+f(z)\hat{b}=0_m.$

What is important

- Problems with inequality constraints can be treated by Lagrange methods also.
- Since the KKT system contains inequalities, a special algorithm has to be used.
- Active set strategies are one important class of methods to solve such kind of problems.
- At first, an active set strategy approximates the nonlinear problem by a quadratic cost function with linearized constraints.
- This quadratic problem is then iteratively solved.
- The active set strategy starts with an admissible point.
- Then, the solution to the KKT system is updated by the solution of the homogenous problem considering the active inequality constraints only, and updating the active set.