Cálculo Diferencial e Integral I

Aula 21: Integrais — áreas e distâncias

Turma Online - Prof. Rogério Mol

Universidade Federal de Minas Gerais

 $1^{\underline{\mathrm{o}}}$ semestre /2020

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua tal que $f(x)\geq 0\ \forall\ x.$ Temos o seguinte:

Problema. Calcular a área da região S abaixo do gráfico de f, acima do eixo x, entre x=a e x=b.

A ideia é apróximar a região curvilínea abaixo do gráfico por uma poligonal. Procedemos da seguinte maneira.

A ideia é apróximar a região curvilínea abaixo do gráfico por uma poligonal. Procedemos da seguinte maneira.

Dividimos o intervalo [a,b] em n intervalos iguais, de comprimento $\Delta x = \frac{b-a}{n}$, onde $n \in \mathbb{N}$ é um número fixado:

$$a = x_0 < x_1 < x_2 < \cdots < x_{k-1} < x_k < \cdots < x_{n-1} < x_n = b.$$

A ideia é apróximar a região curvilínea abaixo do gráfico por uma poligonal. Procedemos da seguinte maneira.

Dividimos o intervalo [a,b] em n intervalos iguais, de comprimento $\Delta x = \frac{b-a}{n}$, onde $n \in \mathbb{N}$ é um número fixado:

$$a = x_0 < x_1 < x_2 < \cdots < x_{k-1} < x_k < \cdots < x_{n-1} < x_n = b.$$

Uma subdivisão como essa é chamada de **partição** do intervalo [a, b].

A ideia é apróximar a região curvilínea abaixo do gráfico por uma poligonal. Procedemos da seguinte maneira.

Dividimos o intervalo [a,b] em n intervalos iguais, de comprimento $\Delta x = \frac{b-a}{n}$, onde $n \in \mathbb{N}$ é um número fixado:

$$a = x_0 < x_1 < x_2 < \cdots < x_{k-1} < x_k < \cdots < x_{n-1} < x_n = b.$$

Uma subdivisão como essa é chamada de **partição** do intervalo [a, b].

O k-ésimo intervalo (k = 1, ..., n) é $[x_{k-1}, x_k]$.

A ideia é apróximar a região curvilínea abaixo do gráfico por uma poligonal. Procedemos da seguinte maneira.

Dividimos o intervalo [a,b] em n intervalos iguais, de comprimento $\Delta x = \frac{b-a}{n}$, onde $n \in \mathbb{N}$ é um número fixado:

$$a = x_0 < x_1 < x_2 < \cdots < x_{k-1} < x_k < \cdots < x_{n-1} < x_n = b.$$

Uma subdivisão como essa é chamada de **partição** do intervalo [a, b].

O k-ésimo intervalo (k = 1, ..., n) é $[x_{k-1}, x_k]$.

Com base no k-ésimo intervalo, construímos o retântulo R_k de altura $f(x_k)$.

A área da poligonal é dada pela soma das áreas de todos os retângulos:

$$A_n =$$
Área da poligonal $= \sum_{k=1}^n A(R_k) = \sum_{k=1}^n f(x_k)(x_k - x_{k-1})$
 $= \sum_{k=1}^n f(x_k) \Delta x,$

onde $\Delta x = (b-a)/n$ é o comprimento de cada intervalo da partição.

A área da poligonal é dada pela soma das áreas de todos os retângulos:

$$A_n =$$
Área da poligonal $= \sum_{k=1}^n A(R_k) = \sum_{k=1}^n f(x_k)(x_k - x_{k-1})$
 $= \sum_{k=1}^n f(x_k) \Delta x,$

onde $\Delta x = (b-a)/n$ é o comprimento de cada intervalo da partição.

A ideia é que quanto maior n (ou seja, quanto maior for o número de subintervalos da partição), mais próxima é A_n da área A(S) da região curvilínea S. Ou seja, se n é grande

$$A(S) \approx \sum_{k=1}^{n} f(x_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} f(x_k) \Delta x$$

Poderíamos também, na construção anterior, produzir os retângulos R_k com altura igual a $f(x_{k-1})$ (f calculada no ponto inicial do intervalo $[x_{k-1}, x_k]$).

Poderíamos também, na construção anterior, produzir os retângulos R_k com altura igual a $f(x_{k-1})$ (f calculada no ponto inicial do intervalo $[x_{k-1},x_k]$).

Nesse caso, a área da poligonal seria:

$$A_n =$$
Área da poligonal $= \sum_{k=1}^n A(R_k)$ $= \sum_{k=1}^n f(x_{k-1})(x_k - x_{k-1}) = \sum_{k=1}^n f(x_{k-1})\Delta x,$

onde $\Delta x = (b-a)/n$ é o comprimento de cada intervalo da partição.

De um modo mais geral, poderíamos escolher um ponto qualquer $x_k^* \in [x_{k-1}, x_k]$, e produzir retângulos R_k com altura igual a $f(x_k^*)$.

De um modo mais geral, poderíamos escolher um ponto qualquer $x_k^* \in [x_{k-1}, x_k]$, e produzir retângulos R_k com altura igual a $f(x_k^*)$. Nesse caso, a área da poligonal seria:

$$A_n = \text{Área da poligonal} = \sum_{k=1}^n A(R_k)$$

$$= \sum_{k=1}^n f(x_k^*)(x_k - x_{k-1}) = \sum_{k=1}^n f(x_k^*) \Delta x,$$

onde $\Delta x = (b-a)/n$ é o comprimento de cada intervalo da partição.

De um modo mais geral, poderíamos escolher um ponto qualquer $x_k^* \in [x_{k-1}, x_k]$, e produzir retângulos R_k com altura igual a $f(x_k^*)$. Nesse caso, a área da poligonal seria:

$$A_n = \text{Área da poligonal} = \sum_{k=1}^n A(R_k)$$

$$= \sum_{k=1}^n f(x_k^*)(x_k - x_{k-1}) = \sum_{k=1}^n f(x_k^*) \Delta x,$$

onde $\Delta x = (b-a)/n$ é o comprimento de cada intervalo da partição. Somas do tipo acima são chamadas de **somas de Riemann** da função f.

Definição

A área da região S abaixo do gráfico de uma função contínua $f:[a,b] \to \mathbb{R}$, com $f \ge 0$, é dada por

$$A(S) = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x,$$

ou seja, é calculada como limite das somas de Riemann associadas a partições de [a,b] em n subintervalos iguais e à escolha de um ponto x_k^* no k-ésimo subintervalo.

Definição

A área da região S abaixo do gráfico de uma função contínua $f:[a,b] \to \mathbb{R}$, com $f \ge 0$, é dada por

$$A(S) = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k^*) \Delta x,$$

ou seja, é calculada como limite das somas de Riemann associadas a partições de [a,b] em n subintervalos iguais e à escolha de um ponto x_k^* no k-ésimo subintervalo.

Quando a função f é contínua, prova-se que esse limite existe e não depende da escolha dos pontos x_k^* .

Exemplo. Use aproximações poligonais para estimar a área abaixo da parábola $y = x^2$ entre x = 0 e x = 1.

Exemplo. Use aproximações poligonais para estimar a área abaixo da parábola $y = x^2$ entre x = 0 e x = 1.

https://www.geogebra.org/m/RCVce5W4

► Cálculo a área da região S abaixo de $y = x^2$ entre x = 0 e x = 1: Fazemos a partição do intervalo [0,1] em n subintervalos iguais:

$$0<\frac{1}{n}<\frac{2}{n}<\dots<\underbrace{\frac{k-1}{n}}_{x_{k-1}}<\underbrace{\frac{k}{n}}_{x_k}<\dots<\frac{n-1}{n}<\frac{n}{n}=1.$$

O k-ésimo intervalo é $[x_{k-1},x_k]=[\frac{k-1}{n},\frac{k}{n}]$, para $k=1,\ldots,n$. A área do retângulo R_k é

$$A(R_k) = f(x_k) \underbrace{\left(x_k - x_{k-1}\right)}_{\underline{1}} = f\left(\frac{k}{n}\right) \frac{1}{n} = \left(\frac{k}{n}\right)^2 \frac{1}{n} = \frac{k^2}{n^3}$$

Portanto, a aproximação da área é dada por

$$A(s) \approx \sum_{k=1}^{n} A(R_k) = \sum_{k=1}^{n} \frac{k^2}{n^3} = \frac{1}{n^3} \sum_{k=1}^{n} k^2$$

Temos a seguinte fórmula:

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$$

Logo

$$A(s) \approx \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6}$$

Portanto

$$A(s) = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \frac{2n^3}{6n^3} = \frac{1}{3}.$$

Suponha que uma partícula se mova em uma reta com função velocidade $v(t) \geq 0$, entre os tempos t=a e t=b. Queremos calcular a distância percorrida nesse intervalo de tempo.

Suponha que uma partícula se mova em uma reta com função velocidade $v(t) \ge 0$, entre os tempos t=a e t=b. Queremos calcular a distância percorrida nesse intervalo de tempo.

Dividimos o intervalo [a,b] em n intervalos iguais de comprimento $\Delta t = (b-a)/n$:

$$a = t_0 < t_1 < t_2 < \cdots < t_{k-1} < t_k < \cdots < t_{n-1} < t_n = b.$$

Suponha que uma partícula se mova em uma reta com função velocidade $v(t) \ge 0$, entre os tempos t=a e t=b. Queremos calcular a distância percorrida nesse intervalo de tempo.

Dividimos o intervalo [a,b] em n intervalos iguais de comprimento $\Delta t = (b-a)/n$:

$$a = t_0 < t_1 < t_2 < \cdots < t_{k-1} < t_k < \cdots < t_{n-1} < t_n = b.$$

Em cada subintervalo $[t_{k-1},t_k]$ escolhemos um ponto t_k^* . Se v(t) é contínua e n é grande, podemos supor, por aproximação, que a velocidade no intervalo $[t_{k-1},t_k]$ é constante igual a $v(t_k^*)$.

Suponha que uma partícula se mova em uma reta com função velocidade $v(t) \ge 0$, entre os tempos t = a e t = b. Queremos calcular a distância percorrida nesse intervalo de tempo.

Dividimos o intervalo [a, b] em n intervalos iguais de comprimento $\Delta t = (b - a)/n$:

$$a = t_0 < t_1 < t_2 < \cdots < t_{k-1} < t_k < \cdots < t_{n-1} < t_n = b.$$

Em cada subintervalo $[t_{k-1},t_k]$ escolhemos um ponto t_k^* . Se v(t) é contínua e n é grande, podemos supor, por aproximação, que a velocidade no intervalo $[t_{k-1},t_k]$ é constante igual a $v(t_k^*)$.

Assim, a distância d_k percorrida entre os tempos t_{k-1} e t_k é aproximadamente

$$d_k pprox \underbrace{v(t_k^*)}_{ ext{velocidade}} \underbrace{(t_k - t_{k-1})}_{ ext{tempo}} = v(t_k^*) \Delta t.$$

A ditância total percorrida entre t=a e t=b será aproximadamente:

$$d pprox \sum_{k=1}^{n} d_k = \sum_{k=1}^{n} v(t_k^*)(t_k - t_{k-1}) = \sum_{k=1}^{n} v(t_k^*) \Delta t.$$

Essa aproximação é tanto melhor quanto maior o número n de subintervalos da partição.

Observe que lado direito dessa expressão é uma **soma de Riemann** da função v(t).

A ditância total percorrida entre t=a e t=b será aproximadamente:

$$d \approx \sum_{k=1}^{n} d_k = \sum_{k=1}^{n} v(t_k^*)(t_k - t_{k-1}) = \sum_{k=1}^{n} v(t_k^*) \Delta t.$$

Essa aproximação é tanto melhor quanto maior o número n de subintervalos da partição.

Observe que lado direito dessa expressão é uma **soma de Riemann** da função v(t).

Assim, temos

$$d = \lim_{n \to \infty} \sum_{k=1}^{n} v(t_k^*) \Delta t.$$

A ditância total percorrida entre t=a e t=b será aproximadamente:

$$d pprox \sum_{k=1}^{n} d_k = \sum_{k=1}^{n} v(t_k^*)(t_k - t_{k-1}) = \sum_{k=1}^{n} v(t_k^*) \Delta t.$$

Essa aproximação é tanto melhor quanto maior o número n de subintervalos da partição.

Observe que lado direito dessa expressão é uma **soma de Riemann** da função v(t).

Assim, temos

$$d = \lim_{n \to \infty} \sum_{k=1}^{n} v(t_k^*) \Delta t.$$

Prova-se que esse limite existe quando v(t) é contínua e não depende da escolha dos pontos t_k^* .

A ditância total percorrida entre t=a e t=b será aproximadamente:

$$d \approx \sum_{k=1}^{n} d_k = \sum_{k=1}^{n} v(t_k^*)(t_k - t_{k-1}) = \sum_{k=1}^{n} v(t_k^*) \Delta t.$$

Essa aproximação é tanto melhor quanto maior o número n de subintervalos da partição.

Observe que lado direito dessa expressão é uma soma de Riemann da função v(t).

Assim, temos

$$d=\lim_{n\to\infty}\sum_{k=1}^nv(t_k^*)\Delta t.$$

Prova-se que esse limite existe quando v(t) é contínua e não depende da escolha dos pontos t_k^* .

Segue da discussão feita a respeito de áreas que a distância percorrida é igual à área abaixo do gráfico da função velocidade.