Exercițiu. Găsiți elementele inversabile, divizorii lui 0, elementele nilpotente și elementele idempotente din \mathbb{Z}_{63} .

Demonstrație.

- Elementele au invers la înmulțire în \mathbb{Z}_n dacă și numai dacă sunt prime față de n. În acest caz, $U(\mathbb{Z}_{63}) = \{\hat{1}, \hat{2}, \hat{4}, \hat{5}, \dots\}$.
- Divizorii lui 0 dintr-un inel R sunt elementele $a \in R$ pentru care $\exists b \neq 0$ astfel încât ab = 0. Din acest motiv, elementele care sunt inversabile sigur nu pot fi divizori ai lui 0.
 - În \mathbb{Z}_n , toate numerele care au un factor în comun cu n sunt divizori ai lui 0. Răspunsul este $\{\hat{3}, \hat{6}, \hat{7}, \hat{9}, \hat{12}, \dots\}$.
- Elementele nilpotente sunt cele pentru care $\exists n \in \mathbb{N}^*$ astfel încât $a^n = 0$. 0 este întotdeauna nilpotent, dar este posibil să mai existe și alte elemente de acest fel.
 - În \mathbb{Z}_n , elementele nilpotente sunt cele care conțin cel puțin toți factorii primi distincți ai lui n. Pentru n=63, avem $63=3^2\cdot 7$, deci trebuie să găsim numere care să fie multiplii de $3\cdot 7$. Răspunsul este $\mathcal{N}(\mathbb{Z}_{63})=\{\hat{0}(=3\cdot 7\cdot 0),\hat{21}(=3\cdot 7\cdot 1),\hat{42}(=3\cdot 7\cdot 2)\}$.
- Elementele idempotente sunt cele pentru care $a^2 = a$. Atât 0 cât și 1 sunt întotdeauna idempotente. De asemenea, dacă a este idempotent, atunci și 1-a este idempotent, deci odată ce am găsit jumătate dintre idempotente putem obține mai ușor și cealaltă jumătate.
 - Ideea este să descompunem n în produs de r numere prime sau puteri de numere prime, $n=p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$ și să descompunem \mathbb{Z}_n în $\mathbb{Z}_{p_1^{k_1}}\times \mathbb{Z}_{p_2^{k_2}}\times \dots \times \mathbb{Z}_{p_r^{k_r}}$. Singurele elemente idempotente din fiecare \mathbb{Z}_{p^k} sunt $\bar{0}$ si $\bar{1}$.

În acest caz $\mathbb{Z}_{63} = \mathbb{Z}_7 \times \mathbb{Z}_9$. Trebuie să scriem toate cele 2^r șiruri posibile de 0 și 1 de lungime r (fiecare corespunde unui idempotent):

- $(\bar{0},\bar{\bar{0}}) \implies$ numere care dau rest 0 la împărțirea cu 7 și rest 0 la împărțirea cu 9 $\implies \hat{0}$
- $(\bar{1},\bar{\bar{1}}) \implies$ numere care dau rest 1 la împărțirea cu 7 și rest 1 la împărțirea cu 9 \implies î
- $-(\bar{0},\bar{\bar{1}}) \Longrightarrow$ numere care dau rest 0 la împărțirea cu 7 și rest 1 la împărtirea cu 9 \Longrightarrow 28

- Din moment ce deja știm că $2\hat{8}$ este idempotent, știm că și $1-28 \equiv -27 \equiv 36 \mod 63$ este idempotent. Dacă nu observăm acest lucru, putem să calculăm ca mai înainte:
 - $(\bar{1},\bar{\bar{0}}) \implies$ numere care dau rest 1 la împărțirea cu 7 și rest 0 la împărtirea cu 9 \implies 36

Deci Idemp(\mathbb{Z}_{63}) = $\{\hat{0}, \hat{1}, \hat{28}, \hat{36}\}$.

Exercițiu. Găsiți idealele lui $\mathbb{C} \times M_4(\mathbb{Z}_6 \times \mathbb{R})$.

Demonstrație. Ne folosim de una sau mai multe dintre următoare proprietăți (în rezolvare, trebuie enunțate înainte de folosirea lor):

- Idealele lui $R_1 \times R_2 \times \cdots \times R_n$ sunt $I_1 \times I_2 \times \cdots \times I_n$, unde I_1, I_2, \ldots, I_n sunt ideale ale lui R_1, R_2, \ldots , respectiv R_n .
- Idealele lui \mathbb{Z} sunt $n\mathbb{Z}, \forall n \in \mathbb{N}^*$.
- Idealele lui \mathbb{Z}_n sunt $\hat{d}\mathbb{Z}_n$ unde $d \mid n$.
- Dacă R este corp, atunci singurele lui ideale sunt $\{0\}$ și R.
- Idealele lui $M_n(R)$ sunt $M_n(I)$ unde I este un ideal al lui R.

În acest caz:

- Fiind corpuri, idealele lui \mathbb{C} și \mathbb{R} sunt $\{0\}$ și ele însăși.
- Idealele lui \mathbb{Z}_6 sunt $\hat{d}\mathbb{Z}_6$ unde $d \mid 6$, deci $\hat{1}\mathbb{Z}_6, \hat{2}\mathbb{Z}_6, \hat{3}\mathbb{Z}_6, \hat{6}\mathbb{Z}_6$.
- Ne folosim de prima proprietate pentru idealele produsului de inele.
- Ne folosim de ultima proprietate pentru idealele inelelor de matrici.

În concluzie, idealele căutate sunt:

- $\{0\} \times M_4(\hat{1}\mathbb{Z}_6 \times \{0\})$
- $\{0\} \times M_4(\hat{1}\mathbb{Z}_6 \times \mathbb{R})$
- $\{0\} \times M_4(\hat{2}\mathbb{Z}_6 \times \{0\})$
- $\{0\} \times M_4(\hat{2}\mathbb{Z}_6 \times \mathbb{R})$
- ...

- $\mathbb{C} \times M_4(\hat{6}\mathbb{Z}_6 \times \{0\})$
- $\mathbb{C} \times M_4(\hat{6}\mathbb{Z}_6 \times \mathbb{R})$

Exercițiu. Găsiți idealele inelului $R = \mathbb{Z}_8 \times \mathbb{Q}$ și, până la izomorfism, inelele factor obținute prin împărțirea la aceste ideale.

Demonstrație. Asemănător exercițiului anterior, găsim idealele acestui inel: $\hat{1}\mathbb{Z}_8 \times \{0\}, \hat{1}\mathbb{Z}_8 \times \mathbb{Q}, \dots, \hat{8}\mathbb{Z}_8 \times (\{0\}), \hat{8}\mathbb{Z}_8 \times \mathbb{Q}.$

Pentru a doua parte ne vom folosi și de următoarele proprietăți:

- Dacă $I_1 \leq R_1$ și $I_2 \leq R_2$, $(R_1 \times R_2)/(I_1 \times I_2) \cong (R_1/I_1) \times (R_2/I_2)$
- Dacă $I,J \leq R$ și $J \subset I$, atunci $(R/J)/(I/J) \cong (R/I)$.
- $(R/R) \cong \{0\}, (R/\{0\}) \cong R$
- $\{0\} \times R \cong R \times \{0\} \cong R$
- $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$

Acum trebuie să scriem toate inelele factor de forma $\frac{\mathbb{Z}_8 \times \mathbb{Q}}{I \times J}$, unde $I \in \{\hat{1}\mathbb{Z}, \dots, \hat{8}\mathbb{Z}\}$ și $J \in \{\{0\}, \mathbb{Q}\}$. Trebuie de asemenea să "simplificăm" aceste inele până la forma în care se vede care sunt izomorfe între ele.

$$\frac{\mathbb{Z}_8 \times \mathbb{Q}}{\hat{1}\mathbb{Z}_8 \times \{\ 0\ \}} \cong \frac{\mathbb{Z}_8}{\mathbb{Z}_8} \times \frac{\mathbb{Q}}{\{\ 0\ \}} \cong \{\ \hat{0}\ \} \times \mathbb{Q} \cong \mathbb{Q}$$

$$\frac{\mathbb{Z}_8 \times \mathbb{Q}}{\hat{1}\mathbb{Z}_8 \times \mathbb{Q}} \cong \frac{\mathbb{Z}_8}{\mathbb{Z}_8} \times \frac{\mathbb{Q}}{\mathbb{Q}} \cong \{\hat{0}\} \times \{0\} \cong \{0\}$$

$$\frac{\mathbb{Z}_8 \times \mathbb{Q}}{\hat{4}\mathbb{Z}_8 \times \mathbb{Q}} \cong \frac{\mathbb{Z}_8}{\hat{4}\mathbb{Z}_8} \times \frac{\mathbb{Q}}{\mathbb{Q}} \cong \frac{\mathbb{Z}/8\mathbb{Z}}{4\mathbb{Z}/8\mathbb{Z}} \times \{\ 0\ \} \cong \frac{\mathbb{Z}}{4\mathbb{Z}} \times \{\ 0\ \} \cong \mathbb{Z}_4 \times \{\ 0\ \} \cong \mathbb{Z}_4$$

.

$$\frac{\mathbb{Z}_8 \times \mathbb{Q}}{\hat{8}\mathbb{Z}_8 \times \mathbb{Q}} \cong \frac{\mathbb{Z}_8}{\hat{8}\mathbb{Z}_8} \times \frac{\mathbb{Q}}{\mathbb{Q}} \cong \frac{\mathbb{Z}_8}{\{0\}} \times \{0\} \cong \mathbb{Z}_8 \times \{0\} \cong \mathbb{Z}_8$$