

윤성우의 열혈 TCP/IP 소켓 프로그래밍 윤성우저 열혈강의 TCP/IP 소켓 프로그래밍 개정판

Chapter 02. 소켓의 타입과 프로토콜의 설정

Chapter 02-1. 소켓의 프로토콜과 그에 따른 데이터 전송 특성

윤성우 저 열혈강의 TCP/IP 소켓 프로그래밍 개정판

프로토콜의 이해와 소켓의 생성

▶ 프로토콜이란?

- 개념적으로 약속의 의미를 담고 있다.
- 컴퓨터 상호간의 데이터 송수신에 필요한 통신규약.
- 소켓을 생성할 때 기본적인 프로토콜을 지정해야 한다.

─● protocol 두 컴퓨터간 통신에 사용되는 프로토콜 정보 전달.

type 소켓의 데이터 전송방식에 대한 정보 전달.

매개변수 domain, type 그리고 protocol이 모두 프로토콜 정보와 관련이 있다.

프로토콜 체계(Protocol Family)

▶ 프로토콜 체계

- 프로토콜도 그 종류에 따라서 부류가 나뉘는데, 그 부류를 가리켜 프로토콜 체계라 한다.
- ▶ 프로토콜의 체계 PF_INET은 IPv4 인터넷 프로토콜 체계를 의미한다. 우리는 이를 기반으로 소켓 프로그래밍을 학습한다.

이름	프로토콜 체계(Protocol Family)
PF_INET PF_INET6 PF_LOCAL PF_PACKET PF_IPX	IPv4 인터넷 프로토콜 체계 IPv6 인터넷 프로토콜 체계 로컬 통신을 위한 UNIX 프로토콜 체계 Low Level 소켓을 위한 프로토콜 체계 IPX 노벨 프로토콜 체계

대표적인 프로토콜 체계 정보

소켓의 타입(Type)

- ▶ 소켓의 타입
 - ▶ 데이터 전송방식을 의미함.
 - ▶ 소켓이 생성될 때 소켓의 타입도 결정되어야 한다.
- ▶ 프로토콜 체계 PF_INET의 대표적인 소켓 타입 둘
 - ▶ 연결 지향형 소켓 타입
 - ▶ 비 연결 지향형 소켓 타입.

두 타입의 소켓

TCP 소켓

- ▶ 연결지향형 소켓(SOCK_STREAM)의 데이터 전송특성
 - 중간에 데이터 소멸되지 않는다.
 - ▶ 전송 순서대로 데이터가 수신된다.
 - 데이터의 경계가 존재하지 않는다.
 - 소켓 대 소켓의 연결은 반드시 I대 I의 구조.

TCP 데이터 전송특성

UDP 소켓

- ▶ 비 연결지향형 소켓(SOCK_DGRAM)의 데이터 전송특성
 - 전송순서 상관없이 빠른 속도의 전송을 지향
 - ▶ 데이터 손실 및 파손의 우려 있다.
 - ▶ 데이터의 경계가 존재한다.
 - 한번에 전송할 수 있는 데이터의 크기가 제한된다.

UDP 데이터 전송특성

프로토콜의 최종선택!

IPv4 인터넷 프로토콜 체계에서 동작하는 <mark>연결지향형</mark> 데이터 전송 소켓

int tcp_socket=socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

TCP 소켓

IPv4 인터넷 프로토콜 체계에서 동작하는 비 연결지향형 데이터 전송 소켓

int udp_socket=socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);

UDP 소켓

첫 번째, 두 번째 인자로 전달된 정보를 통해서 소켓의 프로토콜이 사실상 결정되기 때문에 세 번째 인자로 0을 전달해도 된다!

연결지향형 소켓! TCP 소켓의 예

전송되는 데이터의 경계(boundary)가 존재하지 않음을 확인하자!

```
if(bind(serv sock, (struct sockaddr*) &serv addr, sizeof(serv addr))==-1)
   error handling("bind() error");
if(listen(serv sock, 5)==-1)
   error handling("listen() error");
clnt addr size=sizeof(clnt addr);
clnt_sock=accept(serv_sock, (struct sockaddr*)&clnt_addr, &clnt addr size);
if(clnt sock==-1)
   error handling("accept() error");
                                                                     tcp server.c의 데이터 전송:
write(clnt sock, message, sizeof(message));
                                                                     한 번에 전송
close(clint sock),
close(serv sock);
                  if(connect(sock, (struct sockaddr*)&serv addr, sizeof(serv addr))==-1)
                      error handling("connect() error!");
                  while(read_len=read(sock, &message[idx++], 1))
                                                                  root@my_linux:/tcpip# gcc tcp_client.c -o hclient
                      if(read len==-1)
                                                                  root@my linux:/tcpip# ./hclient 127.0.0.1 9190
                                                                 Message from server: Hello World!
                          error_handling("read() error!");
                                                                  Function read call count: 13
                          break;
                                                                    tcp client.c의 데이터 수신:
                      str len+=read len;
                                                                    1바이트 단위로 반복 수신
                  printf("Message from server: %s \n", message);
                  printf("Function read call count: %d \n", str_len);
```


Chapter 02-2. 윈도우 기반에서 이해 및 확인하기

윤성우 저 열혈강의 TCP/IP 소켓 프로그래밍 개정판

윈도우 운영체제의 socket 함수


```
SOCKET soc=socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
if(soc==INVALID_SOCKET)
    ErrorHandling("...");
```

윈도우 소켓 생성의 예

프로토콜은 표준이다! 따라서 소켓의 타입에 따른 데이터의 전송특성은 운영체제와 상관없이 동일하다. 예제 tcp_server_win.c와 tcp_client_win.c의 실행을 통해서 이를 확인할 수 있다.

Chapter 02가 끝났습니다. 질문 있으신지요?