### STUDY AND LEARNING CENTRE





STUDY TIPS

### WORKED SOLUTIONS

# ENST2.6: CENTROIDS

Question 1 Calculate the centroid  $(\overline{x}, \overline{y})$  of the shaded area. (Hibbeler, R.C, 2010. Statics, Pearson)



#### Worked Solution 1



A horizontal strip of area dA = or dy is chosen as the calculations are easier. A vertical strip would be dA = (1-y)+y)dx  $\overline{x} = \frac{\int_{A} \widetilde{x} dA}{\int_{A} dA} = \frac{\int_{0}^{b} (3\%) (3c dy)}{\int_{0}^{b} (3c dy)}$ 

where  $\widetilde{x} = \frac{3\sqrt{2}}{2}$ 

$$\ddot{y} = \frac{\int_{A} \ddot{y} dA}{\int_{A} dA} = \frac{\int_{o} \dot{y} (ccdy)}{\int_{o} (ccdy)} \quad \text{where} \quad \ddot{y} = \dot{y}$$

$$\ddot{y} = \frac{\int_{o} \dot{y} \cdot \dot{y}'^{3} dy}{\int_{o} \dot{y}'^{3} dy} = \frac{\int_{o} \dot{y} (ccdy)}{\int_{o} \dot{y}'^{3} dy} = \frac{3}{7} \left[ \dot{y}^{7/3} \right]_{o}^{1} = \frac{3}{7} \left[ \dot{y}^{7/3} \right]_{o}^{1} = \frac{3}{7} \left[ \dot{y}^{1/3} \right]_{o}^{1} = \frac{3}{7} \left[ \dot{y}^{1/3}$$

The coordinates of the centroid are (0.4, 0.57)

Question 2 Locate the centroid of the composite area shown below with respect to the X- and Y-axes. (Ivanoff, V. 2010. Engineering Mechanics, McGraw Hill)



## Worked Solution 2

Divide area into 3 rectangular elements  $A_1$ ,  $A_2$  and  $A_3$ .



$$\overline{x} = \frac{\sum (Ax)}{\sum (A)} \overline{y} = \frac{\sum (Ay)}{\sum (A)}$$

where ac = horizontal distance to centroids A, A, A, A, a from Y-axis
y = vertical distance to centroids A, A, A, a from X-axis

| Element    | Area  | Distance |    | Area Moment |        |
|------------|-------|----------|----|-------------|--------|
|            | Α     | X        | y  | Ax          | Ay     |
| 1          | 600   | 15       | 50 | 9 000       | 30 000 |
| 2          | 300   | 5        | 25 | 1 500       | 7 500  |
| 3          | 600   | 30       | 5  | 18 000      | 3 000  |
| $\Sigma =$ | 1 500 | -        | -  | 28 500      | 40 500 |

$$\overline{z} = \frac{\angle(Ax)}{\angle(A)} = \frac{28500}{1500} = 19mm$$
  $\overline{y} = \frac{\angle(Ax)}{\angle(A)} = \frac{40500}{1500} = 27mm$ 

The coordinates of the centroid are (19mm, 27mm)