Chapter I: Introduction

Prof. Ben Lee
Oregon State University
School of Electrical Engineering and Computer Science

Contents

- 1.1 The Role of Computers in Modern Society
- 1.2 Spectrum of Computers and Their Processors
- 1.3 Objectives of this Course
- 1.4 Course Logistics

Ch. I: Introduction

I.I The Role of Computers in Modern Society

Ch. I: Introduction

Embedded System

- Importance of desktops, servers, and laptops is unmistakable.
- But, we often overlook another facet of computers embedded systems!
- Embedded systems are designed to perform one or a few dedicated functions, and more importantly, are embedded as a part of a complete device that often includes hardware and other mechanical parts.
- The meaning of embedded system has evolved any system with a computer that is not a desktop or laptop!

Ch. I: Introduction

Why Focus on Embedded System?

- More than 95% of devices with computers are embedded systems.
 - They account for the most of the world's production of microprocessors!
- Therefore, understanding how they are programmed and how their internal structure is organized are essential for future engineers and computer scientists.

Ch. I: Introduction

I.2 Spectrum of Computers and Their Processors

Ch. I: Introduction

Desktop System

CPU

L1-D

L1-D

L1-D

L2 Cache

System bus
Channel 2

DRAM DIMM
(North Bidge)
Channel 2

DRAM DIMM
Channel 2

DRAM DIMM
Adapter
Duses

Ch. 1: Introduction

8

Designed to control I/O devices.

- Lower performance, complexity, power, and cost.
- Low-end embedded system:
 - 8-bit or 16-bit processor @ few to tens of MHz.
- Memories of tens to hundreds of Kilobytes (KB).
- High-end embedded systems:
 - 32-bit processors clocked at several hundred MHz.
 - Memories in the order of Megabytes (MB)
 - e.g., Portable Media players, GPS, car infotainment systems, feature phones, etc.

Ch. I: Introduction

9

Embedded or General-Purpose?

- Recently, a new class of mobile devices have emerged that saddle between embedded systems and general-purpose computers:
 - Smartphones and pad/tablet devices with large memories, OS, graphics processor, and multi-cores.
- Thus, the line between general-purpose and embedded systems has become blurred!

Ch. I: Introduction

I.3 Objectives of this Course

Ch. I: Introduction

-11

Computing System Hierarchy Algorithm Return 5/ High-Level Language Or (P-C) A-10 (P-1) Assembly Code of C (P-C) Or (P-C)

Objectives of the Course

- Understand the interrelationship between hardware and software:
 - These two topics are not distinct.
 - This is the course where ECE and CS disciplines merge.
- Understanding the essence of these concepts makes both software and hardware designers better at what they do:
 - Programmers can write better programs by understanding how processor execute their programs.
 - Hardware designers can design better processors by understanding the operational requirements of programs.

Ch. I: Introduction

13

Course Logistics

 $Ch.\ I: Introduction$

Logistics

Instructor: Prof. Ben Lee

Office: 3013 Kelley Engineering Center

Tel: 7-3148

E-mail: benl@eecs.orst.edu

Web: http://www.eecs.orst.edu/~benl/Courses/ECE375_fa15.html
Textbook: - Computer Organization and Assembly Language: Embedded

Systems Perspective, by Ben Lee (will be provided)

- ATmega 128 Datasheet

Office Hours: 4 - 5PM TR and by Appt.

TAs: TBA

Labs: Section 010: Tuesday 10:00AM - 11:50AM

Section 011: Wednesday 6:00PM - 7:50PM
Section 012: Tuesday 12:00PM - 1:50PM
Section 013: Monday 12:00PM - 1:50PM
Section 014: Wednesday 4:00PM - 5:50PM
Section 015: Monday 10:00AM - 11:50AM

Ch. I: Introduction

15

Grading Policy

Midterm 25%

Quizzes (2)
 10%

• Laboratory (7) 30%

Assignments (4) 10%

• Final Exam 25%

Ch. I: Introduction

Course Outline (I)

Chapter I: Introduction

Chapter 2: Assembly Language Fundamentals

Introduction

How Do We Speak the Language of the Machine

Instruction Set Architecture

Instruction Format

A Pseudo-ISA

Chapter 3: Computer Organization Fundamentals

Introduction

Memory

Microoperations

Organization of the Pseudo-CPU

Ch. I: Introduction

17

Course Outline (2)

Chapter 4: Atmel's AVR 8-bit Microcontroller, Part I - Assembly Programming

Introduction

General Characteristics

Addressing Modes

Instructions

Assembly to Machine Instruction Mapping

Assembler Directives

Expressions

Assembly Coding Techniques

Mapping Between Assembly and High-Level Language

Anatomy of an Assembly Program

Ch. I: Introduction

Course Outline (3)

Chapter 5: AVR 8-bit Microcontroller, Part 2 - Input/Output

I/O Ports

Interrupts

Timers/Counters

USART

Chapter 7: Digital Components

Introduction

Multiplexers

Decoders

Memory Elements

Registers

Memory

Register File

ALU

Ch. I: Introduction

19

Course Outline (4)

Chapter 8: AVR 8-bit Microcontroller, Part 3 - Microarchitecture

Microarchitecture

Instruction Format

Basic Datapath Components

Multicycle Implementation

Execution of More Complex Instructions

Control Unit Design

Pipeline Implementation

Ch. I: Introduction

Questions?

Ch. I: Introduction