Rolling seamless tubes

Patent number:

DE3622678

Publication date:

1987-01-15

Inventor:

STAAT KARLHANS DIPL ING (DE)

Applicant:

KOCKS TECHNIK (DE)

Classification:

- international:

B21B19/12

- european:

B21B19/06; B21B37/78 Application number: DE19863622678 19860705

Priority number(s): DE19863622678 19860705; DE19853524910 19850712

Also published as:

GB2178353 (A)

SE8603091 (L) IT1235759 (B)

Report a data error here

Abstract not available for DE3622678 Abstract of corresponding document: GB2178353

Tubular blooms 5 are rolled onto a mandrel rod 2 lying in their longitudinal bore and retained at the entry side. The mandrel rod has longitudinal sections 2a having different outer diameters and is displaced in the axial direction during the rolling process so that different outer diameters are located within the sizing pass as required. It is thus possible to change the internal diameter of the blooms 5 during rolling and to produce blooms having different internal diameters and wall thickness at various points along their length and also with constant wall-thickness to close tolerances. If known radial adjustment of the skew rolls 1 is also carried out during rolling, both the internal and the external diameters of the blooms can be changed within broad limits.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

19 BUNDESREPÚBLIK DEUTSCHLAND

100 Offenlegungsschrift (i) DE 3622678 A1

(51) Int. Cl. 4: B21B 19/12

DEUTSCHES PATENTAMT 21) Aktenzeichen:

P 36 22 678.5

22) Anmeldetag:

5. 7.86

(43) Offenlegungstag:

15. 1.87

(3) Innere Prioritāt: (3) (3) (3)

12.07.85 DE 35 24 910.2

(71) Anmelder:

Kocks Technik GmbH & Co, 4010 Hilden, DE

2 Erfinder:

Staat, Karlhans, Dipl.-Ing., 4030 Ratingen, DE

(S) Verfahren und Vorrichtung zum Querwalzen nahtloser Rohrluppen

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Querwalzen nahtloser Rohrluppen, bei dem diese von einer in ihrer Längsbohrung liegenden, einlaufseitig zurückgehaltenen Dornstange heruntergewalzt werden. Diese Dornstange erhält erfindungsgemäß Längenabschnitte mit unterschiedlichen Außendurchmessern und sie wird während des Walzvorganges in axialer Richtung verschoben, so daß sich wahlweise verschiedene Außendurchmesser innerhalb der Kaliberöffnung befinden. Auf diese Weise ist es möglich, den Innendurchmesser der entstehenden Rohrluppen während des Walzvorganges zu verändern und Rohrluppen mit verschiedenen Innendurchmessern und Wanddicken an verschiedenen Stellen ihrer Länge, aber auch solche mit gleichbleibender Wanddicke bei engen Toleranzen zu erzeugen. Wenn das an sich bekannte radiale Anstellen der Walzen ebenfalls während des Walzvorganges durchgeführt wird, läßt sich innerhalb weiter Grenzen sowohl der Innen- als auch der Außendurchmesser der Rohrluppen verändern, so daß Rohrluppen für die unterschiedlichsten Verwendungszwecke mit den verschiedensten Innen- und Au-Bendurchmessern hergestellt werden können.

Patentansprüche

1. Verfahren zum Querwalzen nahtloser Rohrluppen, bei dem diese von einer in ihrer Längsbohrung liegenden, einlaufseitig zurückgehaltenen Dornstange heruntergewalzt werden, dadurch gekennzeichnet, daß zum Verändern ihrer Wanddicke die Rohrluppen mit einer unterschiedliche Außendurchmesser aufweisenden, während des Walzens in axialer Richtung verschiebbaren Dornstange ge- 10 walzt werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Rohrluppen in an sich bekannter Weise mit radial verstellbaren Walzen gewalzt werden.

3. Vorrichtung zum Querwalzen nahtloser Rohrluppen mit einer von der Einlaufseite her durch die Kaliberöffnung ragenden Dornstange, welche an ihrem der Kaliberöffnung abgekehrten hinteren Endabschnitt in axialer Richtung gehalten ist, da- 20 durch gekennzeichnet, daß die Dornstange (2) während des Walzens in axialer Richtung (X) um ein bestimmtes Maß stufenlos verschiebbar ist und an verschiedenen Stellen (3, 6, 7) unterschiedliche Au-Bendurchmesser besitzt.

Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Dornstange (2) mindestens einen konischen Längenabschnitt (3,6) besitzt.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der zum Glätten und Kalibrieren ver- 30 wendete mittlere Längenabschnitt (1a) der Walzen (1) entsprechend der Konizität des zugeordneten Dornstangenlängenabschnittes (3, 6) konisch ausgebildet ist.

6. Vorrichtung nach Anspruch 3 oder einem der 35 folgenden, dadurch gekennzeichnet, daß die axiale Dornstangenposition mittels Längenmessung eingestellt ist.

7. Vorrichtung nach Anspruch 3 oder einem der die axiale Dornstangenposition mittels Zug-/ Druckmessung eingestellt ist.

8. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die axiale Dornstangenposition in Abhängigkeit von der gemessenen Wand- 45 dicke der gewalzten Rohrluppe eingestellt ist.

9. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die axiale Dornstangenposition in Abhängigkeit von dem gemessenen, radial auf die Walzen einwirkenden Walzdruck eingestellt 50

Beschreibung

Die Erfindung betrifft ein Verfahren zum Querwalzen 55 nahtloser Rohrluppen, bei dem diese von einer in ihrer Längsbohrung liegenden, einlaufseitig zurückgehaltenen Dornstange heruntergewalzt werden.

Bei einem bekannten Verfahren dieser Art (US-PS stange in die von den Walzen gebildete Kaliberöffnung eingeschoben und dann von den schräggestellten, aber im wesentlichen quer arbeitenden Walzen von der Dornstange herunter zu einer Rohrluppe ausgewalzt. Dabei wird die zylindrisch ausgebildete Dornstange an 65 ihrem den Walzen abgekehrten hinteren Endabschnitt zurückgehalten, so daß sie nicht zusammen mit der sich bildenden Rohrluppe durch die Kaliberöffnung hin-

durch zur Auslaufseite des Walzgerüstes gelangen kann. Auf diese Weise entsteht eine Rohrluppe mit über ihre Länge ungefähr gleichbleibender Wanddicke.

Außerdem ist ein Querwalzverfahren bekannt (DE-OS 33 09 797), bei dem durch radiales Verstellen der Walzen die Wanddicke auf einem kurzen Längenabschnitt durch Vergrößern des Außendurchmessers der Rohrluppe verändert wird.

Bei diesen beiden bekannten Versahren werden also entweder Rohrluppen mit ungefähr gleichbleibender Wanddicke erzeugt oder eine Wandverdickung nur durch Vergrößern des Außendurchmessers. Letzteres ist in der Praxis allein für den in der DE-OS 33 09 797 dargelegten Zweck sinnvoll, ansonsten aber unbrauch-15 bar. Gefragt sind demgegenüber jedoch Rohrluppen mit gleichbleibendem Außendurchmesser, und zwar zum ersten solche mit überall gleich dicker Wand bei möglichst engen Toleranzen und zum zweiten solche mit Wandverdickungen, die durch einen verringerten Innendurchmesser entstehen. Rohrluppen dieser Art lassen sich mit den bekannten Querwalzverfahren, wie z. B. mit dem Assel- oder Diescherverfahren, nicht herstellen. Dies liegt einmal an der Unfähigkeit dieser Verfahren, Wanddickenunregelmäßigkeiten auszugleichen um zu engen Toleranzen zu kommen und zum andere an der dort verwendeten zylindrischen Dornstange, die beim Walzen entweder mit durch die Kaliberöffnung hindurchbewegt wird oder die in einer bestimmten Position auf der Einlaufseite des Walzgerüstes festgehalten wird.

Rohrluppen mit engen Wandtoleranzen erleichtern den Wanddickenausgleich beim Fertigwalzen und verbessern die Qualität der Fertigrohre. Rohre, die nur an den beiden Endabschnitten jeweils eine verdickte Wand besitzen, außen aber zylindrisch sind, werden beispielsweise bei Rohren für Bohrgestänge benötigt, um zum Beispiel Gewinde eindrehen zu können. Solche Rohre werden zur Zeit durch erneutes Anwärmen und Anstauchen der Rohrenden erzeugt. Ein anderes Verfahren, Ansprüche 4 und 5, dadurch gekennzeichnet, daß 40 solche Rohre herzustellen, besteht darin, daß speziell vorgearbeitete, kurze Rohrenden an die herkömmlich hergestellten Rohre angeschweißt werden. Darüberhinaus ist es bei Rohren, die gezogen werden sollen, notwendig, daß für die Ziehzange ein Rohrendabschnitt vorhanden ist, der eine relativ dicke Wand besitzt, um die hohen Zugkräfte aufnehmen und übertragen zu kör nen. Solche Ziehangeln werden gesondert durch Kal. oder Warmverformung nach dem Querwalzen hergestellt. Alle diese Verfahren sind unbefriedigend, weil sie umständlich, zeitraubend und unwirtschaftlich sind.

> Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zu schaffen, mit dem bzw. der es beim Querwalzen nahtloser Rohrluppen möglich ist, Luppen mit über ihre Länge in engen Toleranzen gleichbleibenden oder unterschiedlichen Wanddicken bei unterschiedlichen Innendurchmessern und gegebenenfalls gleichbleibenden Außendurchmessern herzustellen.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst. 20 06 336) wird der Hohlblock mit innenliegender Dorn- 60 daß zum Verändern ihrer Wanddicke die Rohrluppen mit einer unterschiedliche Außendurchmesser aufweisenden, während des Walzens in axialer Richtung verschiebbaren Dornstange gewalzt werden. Hierdurch wird erreicht, daß in die Kaliberöffnung während des Walzens ein anderer Außendurchmesser der Dornstange eingebracht werden kann. Ist dieser kleiner als zuvor. entsteht durch den größeren Zwischenraum zwischen Dornstangenaußenfläche und Walzenarbeitsflächen eine größere Wanddicke, solange der Dornstangenabschnitt mit diesem Außendurchmesser sich innerhalb der Kaliberöffnung befindet. Wird die Dornstange erneut axial verschoben und damit ein anderer Längenabschnitt der Dornstange mit einem anderen Außendurchmesser in die Kaliberöffnung eingebracht, so ändert sich die Wanddicke der Rohrluppe erneut. Auf diese Weise lassen sich Wanddickenunregelmäßigkeiten bis in den Bereich enger Toleranzen ausgleichen oder die unterschiedlichsten Wanddicken im Bereich der verschiedensten Längenabschnitte der Rohrluppen walzen. In beiden Fällen geschieht dies bei gleichbleibendem Au-Bendurchmesser und sich änderndem Innendurchmesser der Rohrluppe.

neter Dornstangenausführung und Schmierung die Reibung auf der Dornstangenoberfläche beim Querwalzen relativ gering ist, daß die Möglichkeit besteht, die Dornstange in Längsrichtung während des Walzvorgangs zu verschieben und so den Außendurchmesser der Dorn- 20 stange im Bereich der Umformzone zu verändern, was wiederum den Innendurchmesser der Rohrluppe und damit bei gleichbleibendem Außendurchmesser auch

deren Wanddicke verändert.

pen in an sich bekannter Weise mit radial verstellbaren Walzen gewalzt werden. Damit ist es möglich, nicht nur den Innendurchmesser der Rohre im Bereich verschiedener Längenabschnitte während des Walzens zu verändern, sondern auch den Außendurchmesser. Damit 30 lassen sich Rohrluppen mit sehr unterschiedlichen Durchmessern an den verschiedensten Stellen anfertigen, wie dies gerade zweckmäßig und sinnvoll erscheint.

Die Erfindung betrifft auch eine Vorrichtung zum Querwalzen nahtloser Rohrluppen mit einer von der Einlaufseite her durch die Kaliberöffnung ragenden Dornstange, welche an ihrem der Kaliberöffnung abgekehrten hinteren Endabschnitt in axialer Richtung gehalten ist. Solche Vorrichtungen sind beispielsweise als Assel-. Diescher- oder Schrägwalzgerüste bekannt. Er- 40 findungsgemäß sollen sich solche Vorrichtungen dadurch kennzeichnen, daß die Dornstange während des Walzens in axialer Richtung um ein bestimmtes Maß stufenlos verschiebbar ist und an verschiedenen Stellen unterschiedliche Außendurchmesser besitzt. Das axiale 45 Verschieben der Dornstange beim Einlegen eines neuen Hohlblockes ist zwar bekannt, nicht aber das hier gemeinte stufenlose Verschieben über einen relativ kurzen Weg während des eigentlichen Walzvorganges. Mit diesem Verschieben gelangen andere Dornstangen- 50 durchmesser in die Querschnittsebene der Kaliberöffnung, so daß der Außendurchmesser des in der Kaliberöffnung wirksamen Innenwerkzeuges geändert wird und damit auch der Innendurchmesser der entstehenden Rohrluppe. Wird dabei die Position der Walzen nicht 55 verändert, verändert sich in entsprechender Weise die Wanddicke der Rohrluppe. Bei solchen Querwalzgerüsten ist es in aller Regel aber auch möglich, die Walzen radial zu verstellen, um auch den Außendurchmesser der entstehenden Rohrluppe zu verändern, was in ent- 60 sprechender Weise auch für evtl. vorhandene Führungen oder zusätzliche Scheiben gilt. Wird hiervon gleichzeitig mit dem axialen Verschieben der Dornstange Gebrauch gemacht, so läßt sich innerhalb weiter Grenzen nahezu jeder gewünschte Rohrluppenquerschnitt wal- 65 zen, wobei dieser über die Rohrluppenlänge beliebig oft gewechselt werden kann.

Bei einer vorteilhaften Ausführungsform der Erfin-

dung besitzt die Dornstange mindestens einen konischen Längenabschnitt. Mit einem solchen Längenabschnitt läßt sich der in der Kaliberöffnung wirksame Innendurchmesser schon durch geringes axiales Ver-5 schieben der Dornstange stufenlos verändern und damit auch der in der Rohrluppe entstehende Innendurchmesser. Besonders bei schwacher Konizität der Dornstunge läßt sich der Innendurchmesser der Rohrluppe und bei fest eingestellten Walzen damit auch die Wanddicke sehr genau durch axiales Verschieben der Dornstange einstellen, so daß Wanddickenänderungen ausgeglichen und enge Wandtoleranzen erzielt werden können.

In bestimmten Fällen ist es empfehlenswert, wenn der zum Glätten und Kalibrieren verwendete mittlere Län-Erfindungsgemäß wurde also erkannt, daß bei geeig- 15 genabschnitt der Walzen entsprechend der Konizität des zugeordneten Dornstangenlängenabschnittes konisch ausgebildet ist. Unter entsprechender Konizität sei hier verstanden, daß die Neigungen der Dornstangenaußenfläche und des erwähnten Längenabschnittes der Walzen gleich sind, so daß sie im Längsschnitt betrachtet sich parallel zueinander erstrecken. Unerwünschte spiralförmige Spuren auf der Rohrluppenau-Benfläche werden hierdurch vermieden.

Es ist bei der Erfindung wesentlich, daß die gewünsch-Vorteilhaft ist es, wenn darüberhinaus die Rohrlup- 25 te axiale Dornstangenposition in Längsrichtung genau eingestellt bzw. eingehalten wird. Dies kann erfindungsgemäß mittels Längenmessung geschehen, die vorzugsweise im Bereich des rückwärtigen Endabschnittes erfolgt. Durch auftretende mechanische und thermische Beanspruchungen der Dornstange und im Hinblick auf ihre relativ große Länge muß mit Längenänderungen der Dornstange während des Walzens gerechnet werden, so daß insbesondere beim Walzen mit einem konischen Längenabschnitt der Dornstange Veränderungen des Innendurchmessers bei der entstehenden Rohrluppe auftreten können, die nicht beabsichtigt sind, weil sich durch diese Längenänderung der konische Längenabschnitt innerhalb der Kaliberöffnung verschiebt. Dies würde aber zu einer Veränderung der Zug-/Druckbelastung der Dornstange in axialer Richtung führen. Es ist deshalb empfehlenswert, die Dornstangenposition mittels einer Zug-/Druckmessung einzuhalten. Diese Zug-/ Druckmessung wird zweckmäßigerweise ebenfalls am rückwärtigen Ende der Dornstange mit den bekannten Mitteln durchgeführt.

> Ist man bestrebt, durch axiales Verschieben eines konischen Dornstangenlängenabschnittes die Wanddicke der Rohrluppe in engen Toleranzen zu halten, dann ist es vorteilhaft, die axiale Dornstangenposition in Abhängigkeit von der gemessenen Wanddicke der gewalzten Rohrluppe einzustellen. Außerdem ist es möglich, die axiale Dornstangenposition in Abhängigkeit von dem gemessenen, radial auf die Walzen einwirkenden Walzdruck einzustellen.

> In den Zeichnungen ist die Erfindung anhand mehrerer Ausführungsbeispiele dargestellt. Es zeigen:

> Fig. 1 bis 3 die Hälfte einer Kaliberöffnung im Längsschnitt bei verschiedenen Dornstangenpositionen während des Walzens;

> Fig. 4 und 5 die Hälfte einer Kaliberöffnung im Längsschnitt beim Walzen mit einer anderen Dornstangenform:

> Fig. 6 bis 14 verschiedene erfindungsgemäß hergestellte Rohrluppen;

> Fig. 15 eine erfindungsgemäße Anlage in der Draufsicht;

> In Fig. 1 ist eine Walze (1) nur teilweise gezeichnet, die zu einem Schrägwalzgerüst mit Führungsscheiben

6 ...

gehört, wobei diese Führungsscheiben und die zweite gleich ausgebildete Walze (1) zur Vereinfachung der Zeichnung nicht dargestellt sind. Der mittlere Längenabschnitt (1a) jeder Walze (1) bildet zusammen mit den Führungsscheiben die eigentliche Kaliberöffnung mit dem engsten Durchlaufquerschnitt. In diese Kaliberöffnung hinein ragt eine Dornstange (2), die einen stark konisch ausgebildeten vorderen Endabschnitt (3) besitzt. Die Dornstange (2) ist in axialer Richtung entsprechend dem Pfeil (X) während des Walzvorganges stu- 10 schehen kann. fenlos verschiebbar. Gewalzt wird ein Hohlblock (4), welcher hinter der Kaliberöffnung zur Rohrluppe (5) umgeformt ist.

Die Fig. 2 und 3 zeigen dieselbe Kaliberöffnung wie Fig. 1, lediglich zu verschiedenen Zeitpunkten während 15 14 dargestellt. des Walzvorganges. In Fig. 1 entsteht der vordere Endabschnitt der Rohrluppe (5) mit einem relativ kleinen Innendurchmesser und verhältnismäßig dicker Wand. Unmittelbar nach dem Walzen des Rohrluppenanfanges richtung vorgeschoben, so daß sich der Längenabschnitt (2a) der Dornstange (2) im Bereich der Kaliberöffnung besindet. Die Rohrluppe (5) erhält so einen größeren Innendurchmesser bei geringerer Wanddicke, da die Position der Walzen (1) bei diesem Ausführungsbeispiel beibehalten wird. Fig. 3 zeigt, daß beim Walzen des rückwärtigen Endabschnittes der Rohrluppe (5) die Dornstange (2) wieder in die Position gemäß Fig. 1 zurückgezogen worden ist, so daß auch der rückwärtige Endabschnitt der Rohrluppe (5) eine verdickte Wand 30 mit kleinerem Innendurchmesser erhält. Es entsteht auf diese Weise eine Rohrluppe entsprechend Fig. 6. Der verkleinerte Innendurchmesser läßt sich dadurch variieren, in dem die Dornstange, wenn sie im wesentlichen die Position gemäß Fig. 1 und 3 einnimmt, um einen 35 relativ geringen Betrag in oder gegen die Walzrichtung

Bildet man den Längenabschnitt (2a) der Dornstange 2 leicht konisch aus und in entsprechender Weise konisch auch den Längenabschnitt (1a) der Walzen (1), so 40 daß die Außenflächen von beiden im Längsschnitt Fig. 2 parallel zueinander sich erstrecken, dann lassen sich durch geeignetes axiales Verschieben der Dornstange (2) Wanddickenschwankungen des Hohlblockes (4) bzw. der entstehenden Rohrluppe (5) ausgleichen.

Die Fig. 4 und 5 entsprechen im wesentlichen den Fig. 1 bis 3, jedoch mit einer Dornstange (2), die in anderer Weise ausgebildet ist. Sie besitzt nicht nur einen, sondern zwei stark konische Längenabschnitte (3 und 6) sowie einen zusätzlichen zylindrischen oder leicht koni- 50 schen Längenabschnitt (7) mit kleinerem Außendurchmesser als die übrige Länge (7a) der Dornstange (2). In Fig. 4 ist die Dornstange (2) in eine solche Position gebracht, daß der im Durchmesser kleinere Längenabschnitt (7) im Bereich der Kaliberöffnung liegt und dort 55 als wirksames Innenwerkzeug arbeitet. Die Rohrluppe (5) bekommt einen zylindrischen Innendurchmesser, der wegen der üblichen Aufweitung etwas größer ist, als der Außendurchmesser des Längenabschnittes (7) der Dornstange (2). Fig. 5 zeigt, daß die Rohrluppe (5) auch 60 mit dem im Durchmesser größten Längenabschnitt (7a) der Dornstange (2) gewalzt werden kann, in dem diese in Walzrichtung (y) vorgeschoben wird, bis sich dieser Abschnitt der Dornstange (2) im Bereich der Kaliberöffnung befindet. Auch das kann während des Walzens 65 geschehen, so daß der Innendurchmesser an verschiedenen Längenabschnitten der Rohrluppe (5) unterschiedlich wird. Selbstverständlich ist es auch möglich, die

Dornstange (2) so zu verschieben, daß sich einer der konischen Längenabschnitte (3 oder 6) im Bereich der Kaliberöffnung befindet, so daß mit der in Fig. 4 und 5 dargestellten Dornstange (2) zahlreiche verschiedene 5 Rohrluppeninnendurchmesser gewalzt werden können. Wenn dann noch die mit Z gekennzeichnete radiale Anstellung der Walzen (1) genutzt wird, läßt sich auch der Außendurchmesser der Rohrluppe (5) verändern, was - falls gewünscht – auch während des Walzens ge-

Es lassen sich somit die verschiedensten Rohrluppen (5) herstellen, die über ihre Länge sehr unterschiedliche Innen- und Außendurchmesser bekommen können. Einige der zahlreichen Möglichkeiten sind in den Fig. 6 bis

Sie können den verschiedensten Zwecken dienen, die hier nicht alle aufgezählt werden können. So eignen sich beispielsweise die Rohrluppen (5) nach Fig. 8 und 9 zum Einschneiden von Innengewinden in einen oder beiden wird die Dornstange (2) in die mit (Y) bezeichnete Walz- 20 Endabschnitten und die Rohrluppe nach Fig. 11 zum Herstellen konischer Rohre. In Fig. 12 ist eine Rohrluppe dargestellt, die sich vor allem für das Ziehen eignet. da sie einen stabilen, im Durchmesser kleineren Endabschnitt zum Anfassen durch die Ziehzange besitzt. Wäh-25 rend die Rohrluppen nach Fig. 6 bis 11 ohne radiale. Anstellen der Walzen (1) gewalzt worden sind, ist es zum Walzen der Rohrluppen (5) nach den Fig. 12 bis 14 erforderlich, die Walzen (1) in radialer Richtung zu verstellen.

In Fig. 15 ist ein Drehherdofen (10) dargestellt, der über eine Beschickungseinrichtung (12) mit nicht dargestellten Blöcken von z. B. 500 kg Masse und etwa 3 Meter Länge beschickt wird. Auf Walztemperatur erwärmt verlassen diese Blöcke über einen Rollgang (13) den Drehherdofen (10), passieren eine Entzunderungseinrichtung (14) und gelangen über einen Querförderer (15) in eine Einlegerinne (16) eines Schrägwalzgerüstes (17), wo jeder Block zu einem Hohlblock (4) nach dem bekannten Schrägwalzverfahren gelocht wird. Der so entstandene Hohlblock (4) gelangt nach dem Herausziehen der Dornstange über einen weiteren Querförderer (18) auf einen Einlegetisch (19). Ein zunächst stillstehendes Treibrollenpaar (20) wird in radialer Richtung gegen den Hohlblock (4) gefahren und hält diesen fest, während eine eventuell innengekühlte Dornstange (2) mit Hilfe eines zweiten Treibrollenpaares (21) in den Hohl block (4) eingeschoben wird. Dieses Einschieben erfolgt so weit, daß das voreilende Ende der Dornstange (2) bis in das Kaliber eines zweiten Schrägwalzgerüstes (22) hineinragt. Dieses kann ein herkömmliches Schrägwalzgerüst wie z. B. ein Assel- oder Diescherschrägwalzgerüst sein. Mit Hilfe des ersterwähnten jetzt anlaufenden Treibrollenpaares 20 schiebt man den Hohlblock (4) bei einlaufseitig zurückgehaltener Dornstange (2) in das Schrägwalzgerüst (22). Dort wird der beispielsweise etwa 8 Meter lange Hohlblock (4) zu einer z. B. etwa 20 Meter langen Rohrluppe (5) ausgewalzt, wobei die Rohrluppe (5) von der weiterhin einlaufseitig zurückgehaltenen Dornstange (2) abgewalzt wird. Nach dem Walzen in dem Schrägwalzgerüst (22) läuft die so entstandene Rohrluppe (4) mit ihrem vorderen Endabschnitt in eine nachgeschaltete und mit ausreichendem Abstand dahinter angeordnete Fertigwalzstraße (23), die beispielsweise als Streckreduzierwalzstraße ausgebildet ist. Mit Hilfe einer Trennvorrichtung (24) kann das je nach Fertigdurchmesser über 100 Meter lange fertige Rohr in gewünschte Längen unterteilt werden, bevor es über einen Rollgang (25) auf ein Kühlbett (26) gelangt.

Hinter dem Schrägwalzgerüst (22) ist eine Wanddik-kenmeßvorrichtung (27) angeordnet, welche über einen Rechner (28) den Antrieb des zweiten Treibrollenpaares (21) steuert. Von diesen Treibrollen (21) wird die Dornstange (2) in axialer Richtung verschoben oder festgehalten.

, 7

BNSDOCID: <DE_ _362267BA1_l_> _

Nummer: Int. Cl.4: ' ' ' ' ' Anmeldetag: Offenlegungstag: 36 22 678 B 21 B 19/12 5. Juli 1986 15. Januar 1987

-1/5-

608 863/500

ORIGINAL INSPECTED

ONERVAL REPORTED

BNSDOCID: <DE_____3622678A1_I_>

ORIGINAL INGFECTED

BNSDOCID: <DE_____3622678A1_I_>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)