LSST Solar System Processing Review and Updates

Mario Juric

University of Washington
LSST Solar System Processing Product Owner

for the LSST Solar System Processing Team

LSST SSSC SCIENCE SPRINT

Seattle, WA, July 10th, 2018

Overview

- Data products overview
- Changes being considered to prompt processing flow
- Team updates
- Science use cases

Solar System Data Products

LSST will provide three types of products to enable Solar System science:

Data Products Definition Document: http://ls.st/LDM-163

DIASource Table http://ls.st/lse-163

1. Prompt Products: Real-Time

 DIASources are associated with known moving objects in real-time (in time to send the alerts)...

ssObjectId	uint64	ID of the SSObject this source has
		been linked to, if any.

... and trailed sources are identified as such.

trailFlux	float	nmgy	Calibrated flux for a trailed source model ^{41,42} . Note this actually measures the flux <i>difference</i> between the template and the visit image.
trailRadec	double[2]	degrees	Centroid for trailed source model.
trailLength	float	arcsec	Maximum likelihood fit of trail length ^{43,44} .
trailAngle	float	degrees	Maximum likelihood fit of the angle between the meridian through the centroid and the trail direction (bear- ing, direction of motion).
trailCov	float[15]	various	Covariance matrix of trailed source model parameters.
trailLnL	float		Natural <i>log</i> likelihood of the observed data given the trailed source model.
trailChi2	float		χ^2 statistic of the model fit.

Enable rapid identification and follow-up of fast moving asteroids (NEOs)

2014 MF6 (PHA), 60sec exposure, MPC Q62 (Guido, Howes & Nicolini)

2. Prompt Products: Daily Orbit Catalog

 These are aimed to provide a catalog of objects to enable their identification in subsequent LSST imaging (and further follow up).

- Product: Catalog of orbits and physical properties of objects discovered by LSST (DPDD, Table 3)
 - Orbits
 - Physical properties (H, G)
- Some desiderata:
 - This catalog should be as complete as possible
 - The software should evolve as rapidly as needed to keep it complete
 - This should be cross-matched to external catalogs

Name	Туре	Unit	Description
ssObjectId	uint64		Unique identifier.
oe	double[7]	various	Osculating orbital elements at epoch
			$(q, e, i, \Omega, \omega, M_0, \text{epoch}).$
oeCov	double[28]	various	Covariance matrix for oe.
arc	float	days	Arc of observation.
orbFitLnL	float		Natural log of the likelihood of the or-
			bital elements fit.
orbFitChi2	float		χ^2 statistic of the orbital elements fit.
orbFitNdata	int		The number of data points (observa-
			tions) used to fit the orbital elements.
			Continued on next page

Table 3: ssobject Table

Unit Description Name Type MOID float[2] AU Minimum orbit intersection tances53 moidLon double[2] degrees MOID longitudes. Mean absolute magnitude, per band float[6] mag [14, magnitude-phase system]. G_1 float[6] G₁ slope parameter, per band [14, mag magnitude-phase system]. G_2 float[6] mag G₂ slope parameter, per band [14, magnitude-phase system]. hErr float[6] Uncertainty of H estimate. mag g1Err float[6] Uncertainty of G_1 estimate. mag Uncertainty of G_2 estimate. g2Err float[6] mag bit[64] Various useful flags. flags bit

3. Data Release Catalog

- The goal is to provide a catalog of moving objects that enables estimates of completeness and population studies.
- The contents is the same as for catalogs generated in daily processing, but:
 - 1. This catalog is generated with a single version of MOPS
 - 2. This catalog takes advantage of improved astrometry and photometry available in data release processing.
 - (This catalog includes LSST-only information)

Changes to Prompt Processing Flow

Prompt Solar System Processing Flow (Current)

For DR: Reprocess

Some (Key) Issues

- Associating the observed sources with objects from the MPC catalog followed a relatively complex scheme.
 - Consequence: each object would have an LSST ID and/or a MPC designation, causing bookkeeping headaches.
- We don't have firm plans to cross-reference the LSST catalog to the MPC catalog.
 - Consequence: Everyone in the community would have to write code to establish that "LSST123456" is really (2309) Spock (and such codes are somewhat non-trivial)
- Tracklets that are never linked are not reported to the MPC.
 - Objects where LSST's tracklet could be linked to a tracklet from another survey are lost.

Caused us to look over the past ~year whether we can do better

Prompt Solar System Processing: Changes

Daily Solar System Products Changes

Old

New

SSObject Table ("LSSTORB")

DIASource Table + computed quantities

("LSSTOBS")

MPCORB Catalog

LSSTPHYS

(absolute magnitudes, addt'l useful quantities)

DIASource Table
+ computed quantities
 ("LSSTOBS")

This Brings Significant Improvements

- The orbit catalog used for association is now maximally complete at all times.
- Solves the cross-match problem: cross-matching two orbit catalogs is not entirely trivial (there will always be corner cases). Now there is only one catalog.
 - Reduces community confusion: no "LSST catalog" vs "MPC catalog"
- No need to do anything special to take advantage of LSST data if all one cares about are orbits – it's all in MPCORB. Makes the LSST data more accessible/useful.
- Places the LSST into a more general (and partially existing) framework of how surveys work with the MPC
- Opens the possibility to submit all tracklets to the MPC, including trails
- Enables cross-survey linking at MPC: LSST's first tracklet may complete a track that some other survey has started nights before; detectable with MPC's existing tools. Shortens time to discovery of new objects.

We also evolve together with the MPC...

- ... and <u>drive</u> some of that evolution.
- New orbit format that includes covariances
 - This is necessary to compute reasonable error ellipses for association
- Updates to ADES data exchange format
 - Support probabilistic tracklet associations
 - Updates to the catalog format
- Improvements to MPC services
 - Improved (downloadable) MPChecker, with standardized pre-computed position formats

Bottom line: we benefit from the work of the MPC and the broader community, and vice-versa.

The Team

Going Forward: The LSST DM Solar System Team

100% FTE

25% FTE

The LSST Solar System Products & Software Team

Joachim Moeyens (UW; Graduate Student)
Siegfried Eggl (UW; incoming, Research Associate)
Mario Juric (UW; Solar System Product Owner)

Lynne Jones (UW; LSST Performance Scientist) **Eric Bellm** (UW; Prompt Processing Lead)

+ many, many, others from the overall LSST DM effort!

Next ~12 months

- Document the details of MPC plans, discuss with the collaboration, and propose formal baseline changes.
 - Plan and milestones update
- Develop a research note working through a few specific use cases (down to actual SQL queries)
- Continue developing MOPS
- Deploy and test on ZTF
 - Real-time (alert) component (streaks)
 - Running MOPS on ZTF public survey (the cadence is designed to mimic LSST's).

Getting your feet wet: the Zwicky Transient Facility

http://ztf.caltech.edu

Three months into ops, ZTF had **submitted ~600,000 measurements** to the MPC (**~320 new objects**).

The new discoveries include seven NEOs, one of which (2018 CL) is a PHA.

Five of these seven new NEOs were detected by the **ZTF streak-detection pipeline** (Waszczak et al. 2017).

ZTF alerts from the public survey (~40%) are now available in bulk!

Streaming coming later this summer (via ANTARES and others).

Working Through Some Science Use Cases

Use Cases (1/3)

- "LSST just discovered a new moving object with heliocentric distance r>50 AU"
 - SQL query the daily orbit database for newly discovered objects with detections at r>50 AU
- "LSST observed object X in a new filter and its g-r color is >Z"
 - Real-time: compute the <g>-<r> colors from previous observations present in the alert (12 months of data), compare to desired threshold
 - Batch: compute <g>-<r> colors with a SQL query, compare to threshold
 - Note: estimated absolute magnitudes will be included in the alert;
 these may be better estimators of color

Use Cases (2/3)

- LSST observed object X at a time that is equivalent to a phase between 0.2- 0.3 with a period of 1.2345678 days. Or at a phase that is ~0.1 from known phases.
 - Note: We're not presently planning to estimate periods of solar system objects. This is likely an omission, however, since periods will be estimated for static sources and the math is the same.
 - If we estimate periods:
 - This is a SQL query against the daily catalog
 - If we don't:
 - The collaboration could maintain a database of periods that could be queried

Use Cases (3/3)

- LSST re-observed an object for the first time in this season
 - SQL query against the daily catalog
- LSST observed an object that is more than 0.2" from its predicted position
 - Real-time: Filter on measured position being off by more than 0.2" from predicted position
 - Batch: SQL query for all objects with detections that are more than 0.2" from their predicted positions

Summary

- Starting in September, the Solar System team will be fully staffed.
- Looking to change the processing/reporting flow to be more similar to present-day asteroid search surveys.
 - Goal for this sprint: discuss orbit catalog changes, subm. format changes
- Will define the initial, concrete, schema in the next ~6 months.
 - Goal for this sprint: push that forward significantly.
- Working on MOPS.

Questions!