華中科技大學

数字电路与逻辑设计 实验报告

专业:计算机科学与技术班级:CS2201学号:U202215357姓名:王文涛电话:13607252896邮件:2380169004@qq.com完成日期:2023.12.14

2023

实验报告及电路设计评分细则

评分项目	满分	得分		备注	
文档格式(段落、行					实验报告
间距、缩进、图表、	15				总分
编号等)					
实验总体设计	10				
实验过程	50				
遇到的问题及处理	10				
设计方案存在的不足	5				
心得(含思政)	5				
意见和建议	5				
电路(头歌)	100				
教师签名			日	期	

备注:实验过程将从电路的复杂度、是否考虑竞争和险象、电路的美观等方面进行评分。

实验课程总分=电路(头歌)*0.4+实验报告*0.6

目 录

1	实验	^{金概述}	1
	1.1	实验名称	1
	1.2	实验目的	1
	1.3	实验环境	1
	1.4	实验内容	1
	1.5	实验要求	3
2	实验	佥总体设计	4
	2. 1	实验总体设计思路	4
	2. 2	实验总体设计框架	4
3	实验	<u> </u>	7
	3. 1	7 段数码管驱动电路设计	7
	3. 2	无符号比较器(2位、4位、8位)	10
	3. 3	2 选 1 选择器设计(2 位、8 位)	13
	3. 4	十进制可逆计数器(包含状态机、输出函数及整体电路)	15
	3. 5	两位十进制可逆计数器	19
	3. 6	交通灯状态机	21
	3. 7	交通灯输出函数设计	25
	3.8	交通灯控制系统	27
4	设计	十总结与心得	.31
	4. 1	实验总结	31
	4. 1. 1	遇到的问题及处理	31
	4. 1. 2	2设计方案存在的不足	31
	4. 2	实验心得	31
	4. 3	意见与建议	32

1 实验概述

1.1 实验名称

交通灯系统设计。

1.2 实验目的

本实训将提供一个完整的数字逻辑实验包,从真值表方式构建 7 段数码管驱动电路,到逻辑表达式方式构建比较器,多路选择器,利用同步时序逻辑构建 BCD 计数器,最终集成实现为交通灯控制系统。

实验由简到难,层次递进,从器件到部件,从部件到系统,通过本实验的设计、仿真、验证 3 个训练过程使同学们掌握小型数字电路系统的设计、仿真、调试方法以及电路模块封装的方法。

1.3 实验环境

软件: logisim-hust-20200118.exe 软件一套。

平台: https://www.educoder.net/shixuns/g8vqp5xw/challenges

1.4 实验内容

某个主干道与次干道公路十字交叉路口,为确保人员、车辆安全、迅速地通过,在 交叉路口的每个入口处设置了红、绿、黄三色信号灯。红灯禁止通行;绿灯允许通行; 黄灯亮提醒行驶中的车辆减速通行。交通灯控制系统示意图如图 1-1 所示。

设计一个交通灯控制系统,具体内容及要求如下:

(1) 输入信号

输入信号包括高峰期信号 H, 主干道通行请求 PCM, 次干道通行请求 PCC 和总控制台控制信号 Online。

(2) 输出信号

输出信号包括 1 个 7 段数码管显示数字,用于显示红灯、绿灯和黄灯的剩余时间; 6 个 Led 灯,用于显示主干道和次干道的红灯、绿灯和黄灯。

图 1-1 交通灯控制系统示意图

(3) 具体功能

- a. 路口指示灯规则为: "红--绿--黄"循环;
- b. 控制参数假设: 红灯 15 秒, 绿灯 12 秒, 黄灯 3 秒;
- c. 通行请求定义: 主干道通行请求(PCM)包括: 主干道方向有车辆信号和次干道有行人通过信号;次干道通行请求(PCC)包括: 次干道方向有车辆信号和主干道有行人通过信号。
- d. 通行规则 1: 主干道和次干道均无通行请求,主、次干道两边黄灯"闪亮"。提示:"通过时要注意观察";
- e. 通行规则 2: 主、次干道一边有通行请求,一边无通行请求,有通行请求一边绿灯亮,它的倒计时时间为 16s,归 0 后重新开始倒计时。
- f. 通行规则 3: 只有主干道有通行请求 PCM, 此时接收到次干道通行请求 PCC,则在绿灯倒计时为 0 时,考虑次干道方向的车辆或行人通行;只有次干道有通行请求的情况类似。
 - g. 通行规则 4: 非高峰时期,主、次干道均有通行请求时,主、次干道交替通行。
- h. 通行规则 5: 高峰时期,主、次干道均有通行请求时,主、次干道交替通行,主 干道放行时间(绿灯时间+黄灯时间)加倍。

i. 通行规则 6: 由交通控制中心发出的总控制台控制信号(Online),当 Online=1,本地交通灯控制器控制权"失效",且主干道放行,次干道禁止通行、当 Online=0 本地交通灯控制器恢复控制权(接着原来的状态进行运行)。

1.5 实验要求

- (1) 根据给定的实验包,将交通灯控制系统切分为一个个实验单元;
- (2) 对每一个实验单元,按要求设计电路并使用 Logisim 软件进行虚拟仿真;
- (3) 设计好的电路在 educoder 平台上提交并进行评测,直到通过全部关卡。

2 实验总体设计

2.1 实验总体设计思路

先将系统拆分成模块, 再将模块拆分成元件, 然后从元件开始组装, 连接。

(1) 模块设计

使用交通灯状态转移与输出模块,倒计时选择模块,计时器模块,主干道倒计时模块,次干道倒计时模块,单侧通行倒计时模块以及紧急情况选择模块。

(2) 元件设计

- a. 7段数码管驱动电路:用于控制7段数码管。
- b. 8 位无符号比较器: 首先设计 2 位无符号比较器, 用 2 位无符号比较器组成 4 位无符号比较器, 进而组成 8 位无符号比较器。
- c. 8 位 2 路选择器: 首先设计 1 位 2 路选择器, 进一步组成 8 位 2 路选择器。
- d. 2 位模十可逆计数器:用于计时。首先设计 1 位模十可逆计数器,然后扩展得到 2 位模十可逆计数器。

2.2 实验总体设计框架

交通灯系统总体框架由交通灯系统状态转移和输出控制模块、倒计时选择模块、 主干道倒计时模块、次干道倒计时模块、单侧同行倒计时模块、紧急情况控制模块以及 输入和显示接口等组成。

(1) 红绿灯状态转移和输出模块

由交通灯状态机和交通灯输出函数组成。

(2) 倒计时选择模块

由三个8位2路选择器和两个7段数码管驱动构成

(3) 主干道倒计时

主干道倒计时

(4) 次干道倒计时

次干道倒计时

(5) 单侧通行倒计时

单侧通行倒计时

3 实验过程

3.1 7段数码管驱动电路设计

(1) 设计思路及设计过程

根据数码管引脚顺序设计真值表,使用真值表自动生成电路。

图 3.1.1 7段数码管驱动真值表

(2) 电路图

图 3.1.2 7 段译码器电路图

(3) 测试图

图 3.1.3 7 段译码器测试电路图

(4) 测试分析

a. 测试用例 1: 使得输入 BCD 码为 0010, 如图 3.1.4 输出为 2, 符合预期。

图 3.1.47段译码器测试用例1

b. 测试用例 2: 使得输入 BCD 码为 0100, 如图 3.1.5 输出为 4, 符合预期。

图 3.1.5 7段译码器测试用例 2

a. 测试用例 3: 使得输入 BCD 码为 1001, 如图 3.1.6 输出为 9, 符合预期。

图 3.1.67段译码器测试用例3

3.2 无符号比较器 (2位、4位、8位)

- (1) 设计思路及设计过程
 - a. 2 位无符号比较器,根据先比高位,再比低位的原则,由条件表达式写出逻辑表达式。

$$Great = (X1 > Y1)||(X1 == Y1)&&(X0 > Y0)$$

$$= X1\overline{Y1} + (X1 \odot Y1)X0\overline{Y0}$$

$$Equal = (X1 == Y1)(X0 == Y0)$$

$$= (X1 \odot Y1)(X0 \odot Y0)$$

$$Less = (X1 < Y1)||(X1 == Y1)&&(X1 < Y1)$$

$$= \overline{X1}Y1 + (X1 \odot Y1)\overline{X0}Y0$$

根据表达式自动生成电路。

- b. 4位无符号比较器,使用 2 位无符号比较器先比较高 2 位,再比较低 2 位。逻辑与 2 位无符号比较器相同,手动连接电路。
- c. 8 位无符号比较器,使用 4 位无符号比较器先比较高 4 位,再比较低 4 位。逻辑与 2 位无符号比较器相同,手动连接电路。

(2) 电路图

图 3.2.1 2 位无符号比较器

图 3.2.2 4 位无符号比较器

图 3.2.3 8 位无符号比较器

(2) 测试图

a. 2位无符号比较器

图 3.2.4 2 位无符号比较器测试电路

b. 4位无符号比较器

图 3.2.5 4 位无符号比较器测试电路

c. 8位无符号比较器

图 3.2.68位无符号比较器测试电路

(3) 测试分析

a. 2位无符号比较器

表 3.2.12位无符号比较器测试样例及结果

输入(X1X0 Y1Y0)	预期输出	实际输出
11 11	Equal	Equal
11 00	Great	Great
00 10	Less	Less

实验输出符合预期,功能正常。

b. 4位无符号比较器

表 3.2 4 位无符号比较器测试样例及结果

输入(X, Y)	预期输出	实际输出
0011 0010	Great	Great
0011 0011	Equal	Equal
1000 1100	Less	Less

实验输出符合预期,功能正常。

c. 8 位无符号比较器

表 3.2.3 8 位无符号比较器测试样例及结果

输入(X, Y)	预期输出	实际输出
01100011 01100011	Equal	Equal
00111100 10001100	Less	Less
11100010 01110011	Great	Great

实验输出符合预期,功能正常。

3.3 2 选 1 选择器设计(1 位、8 位)

(1) 设计思路及设计过程

首先设计1位二路选择器,由表达式

 $Out = Sel \cdot X1 + \overline{Sel} \cdot X0$

使用一个非门,两个与门,一个或门连接电路。

实现 1 位二路选择器后,上述电路基本不变,将 Sel 和逻辑门位宽扩展为 8,即可实现 8 位 2 路选择器。

(2) 电路图

图 3.3.11位二路选择器

图 3.3.28位二路选择器

(3) 测试图

图 3.3.3 1位二路选择器测试电路

图 3.3.48位二路选择器测试电路

(4) 测试分析

a. 1位二路选择器

表 3.3.11位2路选择器测试样例

输入(X0 X1 Sel)	预期输出(Out)	实际输出
100	1	1
101	0	0
111	1	1

实验输出符合预期,功能正常。

b. 8位二路选择器

表 3.3.28位2路选择器测试样例

输入(X0 X1 Sel)	预期输出(Out)	实际输出
01001001 10101100 1	10101100	10101100
01001101 00011100 0	01001101	01001101

实验输出符合预期,功能正常。

3.4 十进制可逆计数器(包含状态机、输出函数及整体电路)

(1) 设计思路及设计过程

先分别设计状态机电路与输出函数电路,再组成整体电路。

a. 先完成状态机电路,利用 excel 表格自动生成表达式。如图 3.4.1 所示, 状态机接收 5 个输入,分别为代表现态的 S3S2S1S0,代表计数模式的 Mode,输出为次态 N3N2N1N0。Mode 为 0 时,加法计数,现态为 9 时 变为 0, Mode 为 1 时减法计数,现态为 0 时变为 9。

	当前状态(现态)			输入信号			下一	状态	(次	态)				
S3	S2	S1	S0	现态 10进制	Mode					次态 10进制	N3	N2	N1	NO
0	0	0	0	0	0					1	0	0	0	1
0	0	0	1	1	0					2	0	0	1	0
0	0	1	0	2	0					3	0	0	1	1
0	0	1	1	3	0					4	0	1	0	0
0	1	0	0	4	0					5	0	1	0	1
0	1	0	1	5	0					6	0	1	1	0
0	1	1	0	6	0					7	0	1	1	1
0	1	1	1	7	0					8	1	0	0	0
1	0	0	0	8	0					9	1	0	0	1
1	0	0	1	9	0					0	0	0	0	0
0	0	0	0	0	1					9	1	0	0	1
0	0	0	1	1	1					0	0	0	0	0
0	0	1	0	2	1					1	0	0	0	1
0	0	1	1	3	1					2	0	0	1	0
0	1	0	0	4	1					3	0	0	1	1
0	1	0	1	5	1					4	0	1	0	0
0	1	1	0	6	1					5	0	1	0	1
0	1	1	1	7	1					6	0	1	1	0
1	0	0	0	8	1					7	0	1	1	1
1	0	0	1	9	1					8	1	0	0	0

图 3.4.1 模十可逆计数器状态转换表

b. 再完成输出函数电路。电路具有五个输入,分别为代表现态的 S3、S2、S1、S0,表示计数模式的为 Mode,输出 Cout 为当前的进位或借位信号。当 Mode 为 1,现态状态数为 0 时,发出借位信号,Cout 为 1;当 Mode 为 0,现态状态数为 9 时,发出进位信号,Cout 为 1。根据表达式:

 $Cout = \overline{S3} \, \overline{S2} \, \overline{S1} \, \overline{S0} \, Mode + S3 \, \overline{S2} \, \overline{S1} \, S0 \, \overline{Mode}$

自动生成电路。

c. 最后完成整体电路,利用设计完成的十进制可逆计数器的状态机和输出 函数,采用 D 触发器设计可逆十进制计数器。该计数器支持异步预置 功能,当预置控制位 PreSet 信号为 1,直接通过 D 触发器的异步置位端 口,将 Din 数据传入到触发器中,另外通过输出函数电路对 Mode 和现态进行处理得到 Cout 输出,然后使用分线器根据现态输出 Q 的状态,并且将现态和 Mode 共同接入到状态转换电路、次态接入到 D 触发器的激励端口来实现状态转换,最后把时钟端 CLK 和使能端 En 接入到 D 触发器中,完成模十可逆计数器的设计

(2) 电路图

a. 模十可逆计数器转换电路

图 3.4.2 模十可逆计数器转换电路

b. 模十可逆计数器输出函数电路

图 3.4.3 模十可逆计数器输出函数电路

c. 模十可逆计数器电路

图 3.4.4 模十可逆计数器电路

(3) 测试图

a. 模十可逆计数器状态机

图 3.4.5 模十可逆计数器状态机测试电路

b. 模十可逆计数器输出函数电路

图 3.4.6 模十可逆计数器输出函数测试电路

c. 模十可逆计数器电路

图 3.4.7 模十可逆计数器测试电路

图 3.4.8 模十可逆计数器测试电路

图 3.4.9 模十可逆计数器测试电路

- (4) 测试分析
 - a. 模十可逆计数器状态机

表 3.4.1 模十可逆计数器状态机测试样例

输入(S Mode)	预期输出(N)	实际输出
0001 0	0010	0010
0101 0	0110	0110
1001 1	1000	1000

实验输出符合预期,功能正常。

b. 模十可逆计数器输出函数电路

表 3.4.1 模十可逆计数器输出函数测试样例

输入(S Mode)	预期输出(Cout)	实际输出
1001 0	1	1
0000 1	1	1
1000 0	0	0

实验输出符合预期,功能正常。

c. 模十可逆计数器电路

先测试使能端 En,如图 3.4.7,当 En 为 0 时,模十可逆计数器输出不会发生改变,En 为 1 时,模十可逆计数器正常工作。

再测试异步预置功能,如图 3.4.8 与 3.4.9 所示,Preset 为 1 时,Din 为 1010 时,状态 Q 为 1010,Din 为 0011 时,状态 Q 为 0011,功能正常。最后测试模十可逆计数器整体电路计数功能,如表 3.4.2 所示。

表 3.4.2 模十可逆计数器整体电路计数功能测试

现态/输入(Mode)	预期 次态/输出(Cout)	次态/输出(Cout)
0001/1	0000/0	0000/0
0000/1	1001/1	1001/1
1001/0	0000/1	0000/1

实验输出符合预期,功能正常。

3.5 两位十进制可逆计数器

(1) 设计思路及设计过程

将 CLK、Mode 和异步预置控制统一,然后把低位计数器的进位/借位端口 (Cout)接入到高位计数器的使能端,仅在低位借位或者进位时,高位计数发 生变化。当高、低位计数器都发出借位/进位信号时,二位十进制计数器发 出进位/借位信号。异步预置数据和输出数据通过分线器的拆分和组合,将信号分配给两个一位十进制计数器。

(2) 电路图

图 3.5.1 二位十进制可逆计数器电路

(3) 测试图

图 3.5.2 二位十进制可逆计数器测试电路

- a. 测试使能端 En, 当 En 为 0 时, 二位十进制可逆计数器输出不会发生改变, En 为 1 时, 二位十进制可逆计数器正常工作。
- b. 测试预制功能,如表 3.5.1 所示。

表 3.5.1 二位十进制可逆计数器测试样例

预置状态/异步置位控制	实际状态
01110100/1	01110100
10010001/1	10010001

实验输出符合预期,功能正常。

c. 测试计数功能,如表 3.5.2 所示。

表 3.5.2 二位十进制可逆计数器测试样例

现态/输入(Mode)	预期 次态/输出(Cout)	次态/输出(Cout)
0000000/1	10011001/1	10011001/1
0000001/1	10010000/0	10010000/0
10011001/0	0000000/1	0000000/1

实验输出符合预期,功能正常。

3.6 交通灯状态机

(1) 设计思路及设计过程

首先根据设计需求,设计出交通灯的8个状态:

- S0 为两道路均无通行需求, 主、次干道均为黄灯闪烁;
- S1 为主干道有通行请求,次干道无通行请求,非高峰期主干道单侧通行,绿灯:
- S2 为主干道无通行请求,次干道有通行请求,非高峰期次干道单侧通行,绿灯;
- S3 为两侧都有通行需求,非高峰期主干道通行,绿灯;
- S4 为两侧都有通行需求,非高峰期主干道通行,黄灯;
- S5 为两侧均有通行需求, 非高峰期次干道通行, 绿灯;
- S6 为两侧均有通行需求,非高峰期次干道通行,黄灯;
- S7 为高峰期状态, 主干道为绿灯。

根据上述需求, 画出交通灯状态转换图, 如图 3.6.1 所示。

最后作出交通灯的状态转换真值表如图 3.6.2 所示,并通过 excel 获得状态转换的逻辑函数表达式,使用 logisim 生成交通灯状态机的电路。

图 3.6.2 交通灯状态转换图

	输入 (填1或0, 不填为无关项x)								输出 (只填写为1的情况)				
S2	S1	S0	Н	РСМ	PCC	T5	T4	ТЗ	T2	T1	N2	N1	N0
0	0	0		1									1
0	0	0			1							1	
0	0	1		0	0					1			1
0	0	1		1	0					1			1
0	0	1		0	1					1		1	
0	0	1		1	1					1		1	1
0	1	0		0	0					1			
0	1	0		1	0					1			1
0	1	0		0	1					1		1	
0	1	0		1	1					1	1		1
0	1	1							1		1		
1	0	0		0				1				1	
1	0	0		1				1			1		1
1	0	1					1				1	1	
1	1	0	1			1					1	1	1
1	1	0			0	1							1
1	1	0			1	1						1	1
1	1	1							1		1		
0	0	0		0	0								
0	1	1							0			1	1
1	0	0						0			1		
1	0	1					0				1		1
1	1	0				0					1	1	
1	1	1							0		1	1	1
0	0	1								0			1
0	1	0								0	0	1	0

图 3.6.3 交通灯状态机状态转换表

(2) 电路图

图 3.6.4 交通灯状态机电路

(3) 测试图

如图 3.6.5 所示,输入引脚 S 从高到低位对应现态 S2,S1,S0,输入引脚 T 从高到低位表示输入信号 T5,T4,T3,T2,T1,输出引脚 N 高到低位对应次态 N2,N1,N0。

图 3.6.5 交通灯状态机测试电路

图 3.6.6 交通灯状态机测试样例

(4) 测试分析

表 3.6.1 交通灯状态机测试样例

现态(S)/输入(T/H/PCM/PCC)	预期输出(N)	实际输出(N)
001/00001/0/0/1	010	010
001/00001/0/0/0	000	000
100/00100/1/0/1	010	010
000/00011/0/1/0	001	001

实验输出符合预期,功能正常。

3.7 交通灯输出函数设计

(1) 设计思路及设计过程根据通行规则需求,得到交通灯状态如图 3.7.1 所示, 交通灯输入输出信号如图 3.7.2 所示。

状态编号	状态描述					
S0	主、次干道均为黄灯闪烁					
S1	非高峰期主干道单侧通行,绿灯。					
S2	非高峰期次干道单侧通行,绿灯。					
S3	非高峰期主干道通行,绿灯。					
S4	非高峰期主干道通行, 黄灯。					
S5	非高峰期次干道通行,绿灯。					
S6	非高峰期次干道通行, 黄灯。					
S7	高峰期主干道通行,绿灯。					

信号	输入/输出	位宽	说明
S2~S0	输入	3 位	当前状态S
R1	输出	1 位	主道红灯控制信号
Y1	输出	1位	主道黄灯控制信号
G1	输出	1位	主道绿灯控制信号
R2	输出	1位	次道红灯控制信号
Y2	输出	1位	次道黄灯控制信号
G2	输出	1位	次道绿灯控制信号
PASS1	输出	1位	主道允许通行信号
PASS2	输出	1位	次道允许通行信号
PASS3	输出	1位	单侧通行信号

图 3.7.2 交通灯状态解析

图 3.7.1 交通灯输出输入解析

根据上述信息,输入状态与输出控制信号之间的关系,作出交通灯系统输 出函数真值表如图 3.7.3 所示。

S2	S1	S0	R1	Y1	G1	R2	Y2	G2	PASS1	PASS2	PASS3
0	0	0	0	1	0	0	1	0	0	0	0
0	0	1	0	0	1	1	0	0	0	0	1
0	1	0	1	0	0	0	0	1	0	0	1
0	1	1	0	0	1	1	0	0	1	0	0
1	0	0	0	1	0	1	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	1	0
1	1	0	1	0	0	0	1	0	0	1	0
1	1	1	0	0	1	1	0	0	1	0	0

图 3.7.3 交通灯系统输出函数真值表

利用真值表在 logisim 中自动生成对应的逻辑电路。

(2) 电路图

图 3.7.4 交通灯输出函数电路

(3) 测试图

如图 3.7.5 所示,输入引脚 S 从高到低位对应交通灯状态 S2 S1 S0,输出 RYG 从高到低依次对应 R1、Y1、G1、R2、Y2、G2,PASS 从高到低依次对应 PASS1、PASS2、PASS3。

图 3.7.5 交通灯输出函数测试图

图 3.7.6 交通灯输出函数测试样例

(4) 测试分析

表 3.7.1 交通灯输出函数测试样例

输入(S)	预期输出(RYG/PASS)	实际输出(RYG/PASS)
101	100001/010	100001/010
001	001100/001	001100/001
111	001100/100	001100/100

实验输出符合预期,功能正常。

3.8 交通灯控制系统

(1) 设计思路及设计过程

依次设计倒计时选择模块、主干道倒计时模块、次干道倒计时模块、单侧同 行倒计时模块和紧急情况选择模块,并在主电路中增加紧急状况状态异步 切换功能。最后将以上模块组合,得到交通灯系统的完整电路。

- a. 倒计时选择模块:首先根据红绿灯系统的特性,使用三个8位2路选择器,判断是否为紧急情况,如果是紧急情况,则计时器始终显示99;然后判断 PASS1 是否有效,如果有效,则使用主道计时器,反之,则检查 PASS2。PASS2 有效,则使用次道计时器;若 PASS1、PASS2 都无效,则使用单侧通行计时器。上述逻辑通过选择器实现后,连接至两个数码管驱动电路,实现数码管显示数据。
- b. 主干道倒计时模块:首先通过两位十进制可逆计数器,将计数状态传入 Timerl 通道作为主干道倒计,该计数器 Mode 置 1,始终倒计时。然后 当次干道黄灯结束(T5)、单侧通行结束时(T1),该计数器为倒计时初始 状态,数值由高峰期信号(H)决定,高峰期通过 2 路选择器选择 30,普 通时段选择 15。该计数器仅在 PASS1 有效且没有紧急情况下,即主道 被许可通行时,才能进行计时,以此条件作为其使能端。最后,该模块 通过使用两个 8 位无符号比较器进行比较、利用主干道绿灯结束和黄灯 结束的信号,来实现交通灯状态转换,当计数状态为 01,说明黄灯结 束,T3 有效;当计数状态为 04,说明绿灯结束,T2 有效。
- c. 次干道倒计时模块:设计和主干道类似,区别为次干道计数器异步预置 值始终为 15。
- d. 单侧通行倒计时模块:该模块的使能端和前两个模块相似,异步预置控制端由 T6 控制。在计时为 01 时,T1 有效,如果交通灯状态使得 PASS3 仍然有效,则计时进入 00,此时 T6 有效,倒计时被置位为 16,不断循环。
- e. 紧急情况选择模块:根据红绿灯系统的规则,当紧急开关打开后,只有在以上三个模块计时结束后,才能转换为紧急状态。因此使用异步脉冲时序电路的思想,将三个模块结束信号,即 T1、T3、T5 信号或运算的结果作为时钟信号,Emerge 信号作为 D 端口信号,Emerge 的反信号作为异步置零的信号,最后 D 触发器输出信号为紧急状态信号。

(2) 电路图

图 3.8.1 交通灯系统完整电路

(3) 测试图

使用如图 3.8.2 所示电路测试测试。

图 3.8.2 交通灯系统测试图

(4) 测试分析

a. 样例 1,如图 3.8.3 所示,无通行信号,两个黄灯闪烁,倒计时恒为 16。 实验符合预期。

图 3.8.3 交通灯测试样例 1

b. 样例 2,如图 3.8.4 所示。两侧均有通行信号,为高峰期,红绿灯交替, 且主干道倒计时为 30 秒。测试符合预期。

图 3.8.4 交通灯测试样例 2

c. 样例 3,如图 3.8.5 所示。主干道无通行信号,次干道有通行信号,单侧通行,倒计时从 16 开始。测试符合预期。

图 3.8.5 交通灯测试样例 3

d. 测试样例 4,如图 3.8.6 所示。进入紧急状态,倒计时始终为 99。测试符合预期。

图 3.8.6 交通灯测试样例 4

以上测试结果均与预期相符,说明交通灯系统功能正常。

4 设计总结与心得

4.1 实验总结

这次试验中一开始由于缺少相关知识以及对 logisim 的使用不熟悉导致出现问题, 最后的交通灯控制系统比较复杂,经过与同学们的讨论才明白原理。

4.1.1 遇到的问题及处理

- (1) 设计7段数码管驱动电路时,由与是第一个实验,对 logisim 的使用很不熟练,没有弄明白封装图引脚与实际电路图引脚之间的对应关心,导致输出错误。在询问同学之后,明白了 logisim 的使用方法,看清了引脚之间的对应关系之后成功将电路更正。
- (2) 设计十进制可逆计数器时,由于数字逻辑课程还没有学到这里来,不清楚作用原理,导致不知道该怎么连接电路。在学习了相关知识后,明白了作用机制,成功设计出电路。
- (3) 设计交通灯控制系统时,最开始时没有理解紧急状态模块的作用机制,对紧急状态模块的理解不到位。并且没有深刻理解脉冲的延迟作用,导致一直不能正确连接电路。最后,经过我与其他同学的长时间讨论与测试,逐渐理解了作用原理。最后成功完成了模块的设计。

4.1.2设计方案存在的不足

交通灯状态机提供的状态转换图存在问题,同时最后的交通灯控制系统出现了一些之前的实验中未出现的东西,跨度较大而缺少提示信息。

4.2 实验心得

在这次实验中,通过 logisim 软件将数字电路的知识运用到实际中。让我体会到了数字逻辑电路在现实生活中的具体作用。这种自下而上,从易到难,先构造局部再组成整体的设计方法也让我受益匪浅。

此外,经过这次实验,我设计了各种时序逻辑电路,组合逻辑电路和异步脉冲逻辑电路。其中的选择器,比较器,状态机都是在课内学习过的。这次实践,让我对相关知

识的理解更深,提高了我的学科能力。

总之,本次实验加深了我对数字逻辑电路的理解,是一次难能可贵的经历。

4.3 意见与建议

实验时间与数字逻辑课程搭配得不是很好,导致做一些实验时还没有学到相应的知识,不能理解电路的内在逻辑。同时本次实验开始引导和提示十分细致,而到后面交通灯系统的设计出现了一些之前没出现过的内容,又没有相关提示,导致完成十分困难。因此,希望在后面交通系统设计上补充必要的信息,加强对该部分设计的引导内容。

原创性声明

本人郑重声明本报告内容,是由作者本人独立完成的。有关观点、方法、数据和文献等的引用已在文中指出。除文中已注明引用的内容外,本报告不包含任何其他个人或集体已经公开发表的作品成果,不存在剽窃、抄袭行为。

已阅读并同意以下内容。

判定为不合格的一些情形:

- (1) 请人代做或冒名顶替者;
- (2) 替人做且不听劝告者;
- (3) 实验报告内容抄袭或雷同者;
- (4) 实验报告内容与实际实验内容不一致者;
- (5) 实验电路抄袭者。

作者签名: 王文涛

最终提交的文件

- (1) 实验电路[电子版];
- (2) 实验报告 [电子版];
- (3) 实验报告[纸质版]。

提交的电子版文件无需压缩,每个学生放在一个文件夹,文件夹及文件命名方式:班级-学号-姓名。如:信安 2001-U20010101-张三-交通灯实验报告 全班收齐后统一打包压缩交给老师。