MAT-INF3600 Assignment

Thobias Høivik

Contents

1 Problem 1 3

1 Problem 1

Solution for (a). Let $A = \{0,1\}$, $c^{\mathfrak{A}}$ be any element in A and $R^{\mathfrak{A}}(x,y)$ if x = y. Let $f^{\mathfrak{A}}(x) = x$ be the identity function on A.

Then (i) is satisfied and (ii), $(\forall x)[R(x, f(x))]$ is satisfied.

Solution for (b). Let
$$A = \{\}$$

Solution and proof of (d). Let $A = \mathbb{N}$ (0 included) with $c^{\mathfrak{A}} = 0$, $R = \emptyset$ (choice is arbitrary) and $f^{\mathfrak{A}}(n) = n+1$ be the successor function.

Then $\forall x[f(x) \neq c]$ since $f^{\mathfrak{A}}(c^{\mathfrak{A}}) = 0 + 1$, $f^{\mathfrak{A}}(1) = 1 + 1$, and so on. By the peano axioms, 0 is not the successor of any natural number. Furthermore the second condition of f being injective is satisfied since

$$f(x) = f(y)$$
$$x + 1 = y + 1$$
$$x = y$$

Hence $\mathfrak{A} \models \Gamma$.

Now to prove that any model of Γ has an infinite universe.

Suppose we have some model of Γ with a finite universe $A = \{c^{\mathfrak{A}}, x_1, x_2, ..., x_n\}$. We require $f: A \to A \setminus \{c^{\mathfrak{A}}\}$ and for it to be injective. Since A is finite we have an injective map from a set of size n+1 to a set of size n which is not possible by the pigeonhole principle, thus we arrive at a contradiction.

To vizualize this more clearly we can attempt to construct an injection $f: A \to A$.

$$f^{\mathfrak{A}}(c^{\mathfrak{A}}) = x_{i_1} \text{ where } x_{i_1} \neq c^{\mathfrak{A}}$$

$$f^{\mathfrak{A}}(x_1) = x_{i_2} \text{ where } x_{i_2} \neq x_{i_1}, \text{ and } x_{i_2} \neq c$$

$$\vdots$$

$$f^{\mathfrak{A}}(x_{n-1}) = x_{i_n} \text{ where } x_{i_n} \neq x_{i_{n-1}}, \dots, x_{i_1}, \text{ and } x_{i_n} \neq c^{\mathfrak{A}}$$

But now we arrive at $f(x_n)$ which cannot go to $c^{\mathfrak{A}}$ as that violates $f(x) \neq c$ and $f(x_n)$ cannot go to any x_i as that would violate injectivity. So we cannot construct a well-defined injection that satisfies $f(x) \neq c$ for all x given a finite universe.

Hence any model of Γ necessarily has an infinite universe.