

1.1 Въведение

Дуалност: Граматики ↔ Машини

Граматиките генерират думи.

Машините приемат/разпознават думи.

Пример: Аритметични изрази: EXPR

$$\Sigma = \{a, +, -, *, /, (,)\}$$

а е променлива за константи или променливи

$$(a-a)*a+a/(a+a)-1 \in \mathtt{EXPR}$$

$$(((a))) \in \mathtt{EXPR}$$

$$((a+)-a) \not\in \mathtt{EXPR}$$

Как да го формализираме?

Пример: Немската граматика

Поне част от структурата можем да представим с контекстно свободна граматика

1.1.1 Граматики

 Γ раматика $G = (V, \Sigma, P, S)$

- \square V, Променливи
- \square Σ , Азбука на терминалите $(V \cap \Sigma = \emptyset)$
- □ S, начална променлива

Пример: Аритметични изрази

$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E),$$
 където

$$P = \{E
ightarrow T,$$
 $E
ightarrow E + T,$
 $T
ightarrow F,$
 $T
ightarrow T * F,$
 $F
ightarrow a,$
 $F
ightarrow (E)\}$

Релация за преход ⇒

Дадена е граматиката $G = (V, \Sigma, P, S)$.

 $u \Rightarrow_G v$ е изпълнено, ако $u = xyz \in (V \cup \Sigma)^*,$ $v = xy'z \in (V \cup \Sigma)^*,$ $y \to y' \in P.$

"'u отива директно в v."

Индекса $_{G}$ ще пропускаме, когато е ясно за коя граматика става дума.

Релации за преход $\stackrel{*}{\Rightarrow}$, $\stackrel{n}{\Rightarrow}$

Дължина на извод:

$$\forall u \in (V \cup \Sigma)^* : u \stackrel{0}{\Longrightarrow} u$$

$$\forall u, v, w \in (V \cup \Sigma)^* : u \Rightarrow v \land v \stackrel{n}{\Rightarrow} w \longrightarrow u \stackrel{n+1}{\Rightarrow} w$$

Извод:

$$\exists n \geq 0 : u \stackrel{n}{\Rightarrow} v \longrightarrow u \stackrel{*}{\Rightarrow} v$$

Наблюдение: $\stackrel{*}{\Rightarrow}$ е рефлексивното и транзитивно затваряне на \Rightarrow .

 $u \stackrel{*}{\Rightarrow}_G v$ означава "'v е изводима от u"'

Езикът генериран от $G = (V, \Sigma, P, S)$

$$L(G) := \left\{ w \in \Sigma^* : S \stackrel{*}{\Rightarrow} w \right\}$$

Извод

Редицата от думи,

$$(\underbrace{w_1}, \underbrace{w_2}, \dots, \underbrace{w_{n-1}}, \underbrace{w_n})$$

$$= \underbrace{S} \in (\Sigma \cup V)^* \qquad \in (\Sigma \cup V)^* \qquad \in \underbrace{\Sigma^*}$$

се нарича извод на w_n , ако $w_1 \Rightarrow w_2 \Rightarrow \cdots \Rightarrow w_n$.

Пример: $\Rightarrow a*a*(E)+T$ $\Rightarrow a*a*(E+T)+T \mid E \rightarrow T$ $\Rightarrow a*a*(T+T)+T \mid T \rightarrow F$ $\Rightarrow a*a*(F+T)+T \mid F \rightarrow a$ $\Rightarrow a*a*(a+T)+T \mid T \rightarrow F$ $\Rightarrow a*a*(a+F)+T \mid F \rightarrow a$ $\Rightarrow a*a*(a+a)+T \mid T \rightarrow F$ $\Rightarrow a*a*(a+a)+F \mid F \rightarrow a$ $\Rightarrow a*a*(a+a)+a$

$$E \rightarrow E + T$$
 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow F$
 $F \rightarrow a$
 $F \rightarrow C$
 $E \rightarrow F$
 $E \rightarrow T$
 $E \rightarrow$

- 1.1.2 Йерархия на Чомски
 - Елегантна спецификация за езици
 - □ Класификация на езици

Класификация на граматики

$$G = (V, \Sigma, P, S)$$

[Ноам Чомски, 1956]

Нека $G = (V, \Sigma, P, S)$.

$$\forall \ell \rightarrow r \in P$$
:

Тип 0: всякакви правила

Тип 1, контекстно зависими: $|\ell| \leq |r|$

Специални правила: $S \to \varepsilon$ се допуска, ако $S \not\in r$,

Внимание: в литературата не е унифицирано!

Тип 3, регулярни: Тип 2 и $r \in \Sigma \cup \Sigma V$

Йерархия на Чомски

Пример: Тип 3

$$G = (\{A, B\}, \{a, b\}, P, A)$$
, където

$$P = \{A
ightarrow aA,$$
 $A
ightarrow aB,$ $B
ightarrow bB,$ $B
ightarrow b\}$

Твърдение: $L(G) = \{a^n b^m : n \ge 1, m \ge 1\}$

Доказателство - основен метод:

1.
$$L(G) \supseteq \{a^n b^m : n \ge 1, m \ge 1\}$$

2.
$$L(G) \subseteq \{a^n b^m : n \ge 1, m \ge 1\}$$

Винаги с пълна индукция

$$G = (\{A, B\}, \{a, b\}, \{A \to aA, A \to aB, B \to bB, B \to b\}, A)$$

Доказателство: $L(G)\supseteq\{a^nb^m:n\geq 1,m\geq 1\}$ в детайли

Лема 1: $\forall n \geq 1 : A \stackrel{*}{\Rightarrow} a^n B$

 $n=1: A \rightarrow aB \in P$

 $n \rightsquigarrow n+1: A \rightarrow aA \overset{*}{\Longrightarrow} aa^nB = a^{n+1}B$

$$G = (\{A, B\}, \{a, b\}, \{A \rightarrow aA, A \rightarrow aB, B \rightarrow bB, B \rightarrow b\}, A)$$

Доказателство: $L(G)\supseteq\{a^nb^m:n\geq 1,m\geq 1\}$ в детайли

Лема 1: $\forall n \geq 1 : A \stackrel{*}{\Rightarrow} a^n B$

Лема 2: $\forall m \geq 1 : \mathbf{B} \stackrel{*}{\Rightarrow} \mathbf{b}^m$

 $m=1: \mathbf{B} \to \mathbf{b} \in P$

 $m \rightsquigarrow m+1: B \rightarrow bB \stackrel{*}{\Rightarrow} bb^m = b^{m+1}$

Доказателство: $L(G)\supseteq\{a^nb^m:n\geq 1,m\geq 1\}$ в детайли

Лема 1: $\forall n > 1 : A \stackrel{*}{\Rightarrow} a^n B$

Лема 2: $\forall m \geq 1 : \mathbf{B} \stackrel{*}{\Rightarrow} \mathbf{b}^m$

Доказателство \supseteq : $\forall n \geq 1, m \geq 1: A \underset{\text{Лема 1}}{\overset{*}{\Rightarrow}} a^n B \underset{\text{Лема 2}}{\overset{*}{\Rightarrow}} a^n b^m$ така $a^n b^m \in L(G)$

$$G = (\{A, B\}, \{a, b\}, \{A \rightarrow aA, A \rightarrow aB, A \rightarrow a, B \rightarrow bB, B \rightarrow b\}, A)$$

Доказателство: $L(G) \supseteq \{a^n b^m : n \ge 1, m \ge 1\}$

$$A \underset{A \to aA}{\overset{n-1}{\Longrightarrow}} a^{n-1}A \Rightarrow a^n B \underset{B \to bB}{\overset{m-1}{\Longrightarrow}} a^n b^{m-1}B \Rightarrow a^n b^m$$

$$G = (\{A, B\}, \{a, b\}, \{A \to aA, A \to aB, B \to bB, B \to b\}, A)$$

Доказателство: $L(G) \subseteq \{a^n b^m : n \ge 1, m \ge 1\}$

Индукция по дължината на извода ℓ : (По-силно)

Индукционно предопложение : $\forall \alpha \in (V \cup \Sigma)^* : A \stackrel{\leq \ell}{\Rightarrow} \alpha \longrightarrow$

$$\alpha \in \{a\}^* \cdot A \cup \{a\}^+ \cdot \{b\}^* \cdot B \cup \{a\}^+ \cdot \{b\}^+$$

$$\ell = 0: A \in \{a\}^* \cdot A$$

 $\ell \leadsto \ell+1$: Да разлгедаме извода $A \stackrel{*}{\Rightarrow} \alpha' \stackrel{C \to \beta}{\Rightarrow} \alpha$

α'	C o eta	α	$\longrightarrow \alpha \in$
a^nA	$A \rightarrow aA$	$a^{n+1}A$	$\{a\}^+ \cdot A$
a^nA	$A \rightarrow aB$	$a^{n+1}\mathbf{B}$	$\{a\}^+ \cdot \{b\}^* \cdot \mathbf{B}$
a^nb^mB	$B \rightarrow bB$	$a^nb^{m+1}B$	$\begin{cases} \{a\}^+ \cdot \{b\}^* \cdot B \\ \{a\}^+ \cdot \{b\}^+ \end{cases}$
$a^n b^m B$	$B \rightarrow b$	a^nb^{m+1}	$\left \{a\}^+ \cdot \{b\}^+ \right $

Д-во :
$$L(G) \subseteq \{a^n b^m : n \ge 1, m \ge 1\}$$

Ако
$$A \stackrel{*}{\Rightarrow} \alpha$$
, то $\alpha \in \{a\}^* \cdot A \cup \{a\}^+ \cdot \{b\}^* \cdot B \cup \{a\}^+ \cdot \{b\}^+$.

Изводите запазват тази

инварианта.

$$G = (\{A, B\}, \{a, b\}, \{A \rightarrow aA, A \rightarrow aB, B \rightarrow bB, B \rightarrow b\}, A)$$

Твърдение:

Езиците, разпознавани от DFA са от Чомски тип 3

Нека $\mathbf{A} = (Z, \Sigma, \delta, S, F)$ е DFA.

Да разгледаме граматиката $G = (Z, \Sigma, P, S)$, където

$$P = \{Q \to aQ' : \delta(Q, a) = Q'\} \cup$$
$$\{Q \to a : \delta(Q, a) = Q' \in F\} \cup$$
$$\{S \to \varepsilon : S \in F\} .$$

тогава L(G) = L(A)

Пример: $\{a^n b^m : n \ge 1, m \ge 1\}$

$$G = (\{S, A, B\}, \{a, b\}, P, S)$$
 $q \quad c \quad \delta(q, c) \quad \in P$
 $S \quad a \quad A \quad S \rightarrow aA$
 $A \quad a \quad A \quad A \rightarrow aA$
 $A \quad b \quad B \quad A \rightarrow bB, A \rightarrow b$
 $B \quad b \quad B \quad B \rightarrow bB, B \rightarrow b$

A $\delta(S, b)$?

Езиците, разпознавани от DFA са от Чомски тип 3

Нека $\mathbf{A} = (Z, \Sigma, \delta, S, F)$ е DFA.

Да разгледаме граматиката $G = (Z, \Sigma, P, S)$, където

$$P = \{Q \to aQ' : \delta(Q, a) = Q'\} \cup$$

 $\{Q \to a : \delta(Q, a) = Q' \in F\} \cup$
 $\{S \to \varepsilon : S \in F\}$.

тогава L(G) = L(A).

Идея: \exists една 1-1 релация между

изводите $S \Rightarrow w_1 A_1 \Rightarrow w_1 w_2 A_2 \Rightarrow \cdots \Rightarrow w_1 w_2 \cdots w_{n-1} A_{n-1} \Rightarrow w$ и DFA изчисляващите пътища $S \stackrel{w_1}{\Rightarrow} A_1 \stackrel{w_2}{\Rightarrow} A_2 \stackrel{w_3}{\Rightarrow} \cdots \stackrel{w_n}{\Rightarrow} f \in F$.

Д-во: L(G) = L(A):

Ако
$$w = \varepsilon$$
: $\varepsilon \in L(G) \Leftrightarrow S \to \varepsilon \in P \Leftrightarrow S \in F \Leftrightarrow \varepsilon \in L(A)$

$$A = (Z, \Sigma, \delta, S, F), G = (Z, \Sigma, P, S)$$
 и $P = \{Q \to aQ' : \delta(Q, a) = Q'\} \cup \{Q \to a : \delta(Q, a) = Q' \in F\} \cup \{S \to \varepsilon : S \in F\}$

Д-во (скица)
$$L(G) = L(A)$$
 Ако $|w| = n, n > 0$:

$$w_1 \cdots w_n \in L(G)$$

$$\Leftrightarrow S \Rightarrow w_1 A_1 \Rightarrow w_1 w_2 A_2 \stackrel{*}{\Rightarrow} w_1 \cdots w_{n-1} A_{n-1} \Rightarrow w_1 \cdots w_n$$
 $\Leftrightarrow \{S \to w_1 A_1, A_1 \to w_2 A_2, \dots, A_{n-2} \to w_{n-1} A_{n-1}, A_{n-1} \to w_n\} \subseteq P$
 $\Leftrightarrow \delta(S, w_1) = A_1, \delta(A_1, w_2) = A_2, \dots, \delta(A_{n-1}, w_n) = A_n \in F$
 $\Leftrightarrow \exists$ изчислителен път $S \stackrel{w_1}{\Rightarrow} A_1 \stackrel{w_2}{\Rightarrow} A_2 \stackrel{w_3}{\Rightarrow} \cdots A_{n-1} \stackrel{w_n}{\Rightarrow} A_n \in F$
 $\Leftrightarrow w_1 \cdots w_n \in L(A)$

(В 2 посоки '⇔')

винаги се доказва

$$A = (Z, \Sigma, \delta, S, F), G = (Z, \Sigma, P, S)$$
 и $P = \{Q \rightarrow aQ' : \delta(Q, a) = Q'\} \cup \{Q \rightarrow a : \delta(Q, a) = Q' \in F\} \cup \{S \rightarrow \varepsilon : S \in F\}$

Тип-3→NFA

Нека $G = (V, \Sigma, P, S)$ е гарматика от тип 3.

Да разгледаме NFA

$$A = (V \cup \{f\}, \Sigma, \delta, S, \{f\} \cup \{S : S \rightarrow \varepsilon \in P\})$$
, където

$$\delta = \{ (q, a, q') : q \to aq' \in P \} \cup \{ (q, a, f) : q \to a \in P \}$$

(Релационно означение за δ).

Има 1-1 релация между изводите от вида

$$S \Rightarrow w_1 A_1 \Rightarrow w_1 w_2 A_2 \Rightarrow \cdots \Rightarrow w_1 w_2 \cdots w_{n-1} A_{n-1} \Rightarrow w$$
 в G и

приемащите пътища от вида

$$S \xrightarrow{w_1} A_1 \xrightarrow{w_2} A_2 \xrightarrow{w_3} \cdots \xrightarrow{w_n} f \in A.$$

Следователно L(A) = L(G).

Еднозначни гарматики от тип-3

Твърдение: $\forall L \in \text{type-3}: \exists \text{type-3}$ граматика с еднозначни изводи.

Д-во : Нека A е DFA и L(A) = L. Съответната граматика от тип-3 за A има еднозначни изводи.

Пример: Тип 2 (Аритметични изрази)

$$G = (\{E, T, F\}, \{a, +, *, (,)\}, P, E) \text{ c}$$

$$P = \{E \to T,$$

$$E \to E + T,$$

$$T \to F,$$

$$T \to T * F,$$

 $F \rightarrow a$,

 $F \rightarrow (E)$

Пример: Тип 2

$$G = (\{S\}, \{a, b\}, \{S \to ab, S \to aSb\}, S).$$

 $L(G) = \{a^n b^n : n \ge 1\}.$

Д-во
$$L(G) \supseteq \{a^n b^n : n \ge 1\}$$
:
 $S \stackrel{n-1}{\Rightarrow} a^{n-1} S b^{n-1} \Rightarrow a^n b^n$.

Д-во
$$L(G) \subseteq \{a^nb^n : n \ge 1\}$$
: $S \stackrel{*}{\Rightarrow} \alpha \longrightarrow \alpha \in \{a^kSb^k : k \ge 0\} \cup \{a^nb^n : n \ge 1\}$ (Инварианта)

Пример: Тип 1

$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$

$$P = \{S
ightarrow aSBC, \ S
ightarrow aBC, \ CB
ightarrow BC, \ aB
ightarrow ab, \ bB
ightarrow bb, \ bC
ightarrow bc, \ cC
ightarrow cc\}$$

Твърдение: $L(G) = \{a^n b^n c^n : n \in \mathbb{N}\}$

Пример

- $\underline{S} \Rightarrow a\underline{SBC} \Rightarrow aa\underline{SBCBC} \Rightarrow aaa\underline{BCBCBC}$
- $\Rightarrow aaaBBCCBC \Rightarrow aaaBBCBCC \Rightarrow aaaBBCCCC$
- $\Rightarrow aaa\underline{bBBCCC} \Rightarrow aaab\underline{bBCCC} \Rightarrow aaabb\underline{bCCC}$
- $\Rightarrow aaabbbccCC \Rightarrow aaabbbcccC \Rightarrow aaabbbcccC$

Д-во за
$$a^n b^n c^n \subseteq L(G)$$

$$S \stackrel{n-1}{\Rightarrow} a^{n-1}S(BC)^{n-1} \qquad (S \rightarrow aSBC)$$

$$\Rightarrow a^{n}(BC)^{n} \qquad (S \rightarrow aBC)$$

$$\stackrel{*}{\Rightarrow} a^{n}B^{n}C^{n} \qquad (CB \rightarrow BC)$$

$$(CB \rightarrow BC)$$

$$\Rightarrow a^{n}bB^{n-1}C^{n} \qquad (aB \rightarrow ab)$$

$$\stackrel{n-1}{\Rightarrow} a^{n}b^{n}C^{n} \qquad (bB \rightarrow bb)$$

$$\Rightarrow a^{n}b^{n}cC^{n-1} \qquad (bC \rightarrow bc)$$

$$\stackrel{n-1}{\Rightarrow} a^{n}b^{n}c^{n} \qquad (cC \rightarrow cc)$$

Упражнение: Проверете всичките части

Лексикографска наредба

Нека $\alpha, \beta \in \Sigma^*$

 $\forall \alpha \in \Sigma^* : \varepsilon \leq \alpha$

 $alpha \leq beta$ т.т.к. a < b или a = b и $lpha \leq eta$ $(a,b \in \Sigma; \ lpha,eta \in \Sigma^*)$

Наблюдение:

_ дефинира пълна (линейна) наредба

Д-во: упражнение?

Пример: ε < a < aa < ab < b < ba < bb

- Аналогично за наредени *n*-ки
- □ Можем да правим доказателства по индукция в едно линейно (тотално) наредено крайно множество от крайни редици от думи.

Лема S: $(BC)^n \stackrel{*}{\Rightarrow} B^n C^n$ с помощта на $CB \to BC$

Доказателство с индукция по лексикографската наредба на $\left\{w \in \{B,C\}^{2n}: w$ съдържа един и същи брой B и $C\right\}$

lpha минимален $\longrightarrow lpha = {\it B}^n {\it C}^n$

 α не е минимален \longrightarrow

$$lpha = \gamma CB eta$$
 $\Rightarrow \gamma BC eta$
е по-малко!
 $\stackrel{*}{\Rightarrow} B^n C^n$
ИП

Упражнение: Покажете, че няма минимална дума α от вида $\gamma CB\beta$. Следващо упражнение: Колко дълъг е извода като функция на n?

Cockoba: EAM November 16, 2010

Доказателство: $L(G) \subseteq a^n b^n c^n$

Инварианта: #a = #(b, B) = #(c, C)

В частност: $\forall w \in L(G) : \#a = \#b = \#c$.

Остава да видим, че $L(G) \subseteq a^*b^*c^*$.

Всички a-та се появяват преди всяко b и c.

$$(S \rightarrow aSBC, S \rightarrow aBC)$$

Първото b следва след полследното a.

 $(aB \rightarrow ab)$

Следващото появяващо се b е след всичките b-та.

 $(bB \rightarrow bb)$

Първото c следва след последното b.

Следавщото c следва съществуващите c-та.

 $(bC \to bc)$ $(cC \to cc)$

 $S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc$

Йерархия на Чомски

Sprachbeispiele

Cockoba: EAИ November 16, 2010

План

- □ Ще разгледаме за всеки тип граматика ↔ един машинен модел
- Ще покажем примери за езици, които не са от по-простите типове граматики
- Един пример за граматика от тип 0
- Алгоритми и стандартни техники за доказателства на стандартните алгоритмични проблеми.

1.1.3 Проблемът за принадлежност на дума

Основният проблем за формалните езици:

Дадено: $G = (V, \Sigma, P, S), w \in \Sigma^*$

Въпрос: $w \in L(G)$?

 $(\Leftrightarrow S \stackrel{*}{\Rightarrow} w?)$

Cocкoba: EAИ November 16, 2010

Проблемът за принадлежност на дума към език от тип 1

Дадено: $G = (V, \Sigma, P, S), w \in \Sigma^*$

Въпрос: $w \in L(G)$?

Да разгледаме един краен граф H = (U, E), където

 $U = \{x \in (\Sigma \cup V)^* : |x| \le |w|\}$ и

 $E = \{(x, y) : x \Rightarrow_G y\}.$

 $w \in L(G)$ т.т.к. w е в H и е достижима от S.

Следствие:

Проблемът за принадлежност на дума на езици от тип 1 е разрешим алгоритмично за крайно време.

Въпрос: Защо този подход не работи за езици от тип 0?

Пример

$$abc \in L(G)$$
 $G = (\{S, B, C\}, \{a, b, c\}, P, S)$?
$$P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, CB \rightarrow BC, CB \rightarrow CB, CB \rightarrow CB,$$

 $bC \rightarrow bc$, $cC \rightarrow cc$ }

Cocкoba: EAИ November 16, 2010

Оценяване на времето за изпълнение

Дадено: $G = (V, \Sigma, P, S), w \in \Sigma^*$

Въпрос: $w \in L(G)$?

Да разгледаме крайния граф H = (U, E), където

$$U = \{x \in (\Sigma \cup V)^* : |x| \le |w|\}$$
 и

$$E = \{(x, y) : x \Rightarrow_G y\}.$$

Достижимостта е за време $\mathcal{O}(|U|+|V|)$.

Доминиращо е времето за построяването на графа.

$$(|V| + |\Sigma|)^{|w|}$$
 възли $(!)$

 $\times |w|$ възможни замествания

imes |P| възможни изводи

 $\times \mathcal{O}(|w|)$ време за проверка и заместване

Синтактично (parse) дърво на извод (за тип 2)

Едно наредено дърво на извод, което описва (за тип 2) $S \stackrel{*}{\Rightarrow} w$ независимо от ред на заместванията.

Конструкция на извода

$$S = x_1 \Rightarrow x_2 \Rightarrow \cdots \Rightarrow x_n = x \in \Sigma^*$$
:

Kopeн S.

Ако на стъпка i правим заместването $A \to z = z_1, \dots, z_k$. \to възлите наследници на A са z_1, \dots, z_k .

Наблюдение: Листата са буквите на х.

Синтактично дърво на извод

Дърво с резултат а

Дърво с резултат $\boldsymbol{\varepsilon}$

Дърво с резултат $u_1u_2...u_n$ $A o A_1A_2...A_n$

Cockoba: EAИ November 16, 2010

$$\Rightarrow a * a * (E) + T \qquad E \rightarrow E$$

$$\Rightarrow a * a * (E + T) + T \qquad E \rightarrow T$$

$$\Rightarrow a * a * (T + T) + T \qquad T \rightarrow F$$

$$\Rightarrow a * a * (F + T) + T \qquad F \rightarrow a$$

$$\Rightarrow a * a * (a + T) + T \qquad T \rightarrow F$$

$$\Rightarrow a * a * (a + F) + T \qquad F \rightarrow a$$

 $\Rightarrow a*a*(a+a)+T$

 $\Rightarrow a*a*(a+a)+F$

 $\Rightarrow a*a*(a+a)+a$

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$T \rightarrow A$$

$$F \rightarrow A$$

$$F \rightarrow A$$

$$F \rightarrow T$$

$$T \rightarrow F$$

$$F \rightarrow A$$

Cockoba: EAИ November 16, 2010

Най-ляв извод

На всяка стъпка в извода:

заместваме най-лявата променлива

Пример: от предната стр.

1-1 релация най-ляв извод \leftrightarrow синтактично дърво

Наблюдение (Твърдение) (за тип 2)

$$x \in L(G) \Leftrightarrow \exists$$
извод за x

 $\Leftrightarrow \exists$ синтактично дърво за извода на x по листата

 \Leftrightarrow \exists най-ляв извод за x

Задача: Дефинирайте най-десен извод със съответните свойства.

Пример за нееднозначни изводи