LAP-lunttilappu v. 1.5 PK 2015-01-09

Kurssin tueksi — EI tenttiin mukaan!

Joukko-opin peruskäsitteitä

Joukko on kokoelma alkioita; {}, {1,2,3}, {kissa, koira}, $\mathbb{N} = \{0,1,2,\ldots\}$, $2\mathbb{N} = \{x \in \mathbb{N} \mid x \text{ on parillinen}\}$. Sitä että a on joukon A alkio eli kuuluu joukkoon A merkitään $a \in A$; $1 \in \{1,2,3\}$, $4 \in 2\mathbb{N}$, $4 \notin \{1,2,3\}$, $5 \notin 2\mathbb{N}$, kana $\notin \{\text{kissa, koira}\}$.

 $Tyhj\ddot{a}ss\ddot{a}\ joukossa\ \emptyset$ ei ole yhtään alkiota: $\emptyset = \{\}.$

Joukko A on joukon B osajoukko, merk. $A \subseteq B$, jos jokainen sen alkio on myös joukon B alkio; $\{1\} \subseteq \{1,2,3\}, \{1,2,3\} \subseteq \mathbb{N}, 2\mathbb{N} \subseteq \mathbb{N}; \emptyset \subseteq A$ ja $A \subseteq A$ jokaisella joukolla A.

Joukkojen A ja B yhdiste $A \cup B$ koostuu alkioista, jotka kuuluvat joukkoon A tai joukkoon B (tai molempiin): $A \cup B = \{x \mid x \in A \text{ tai } x \in B\}; \{1,2,3\} \cup \{2,4\} = \{1,2,3,4\}.$

Joukkojen A ja B leikkaus $A \cap B$ koostuu alkioista, jotka kuuluvat kumpaankin joukkoon A ja B: $A \cap B = \{x \mid x \in A \text{ ja } x \in B\}; \{1, 2, 3\} \cap \{2, 4\} = \{2\}.$

Joukkojen A ja B erotus $A \setminus B$ koostuu alkioista, jotka kuuluvat joukkoon A mutta eivät kuulu joukkoon B: $A \setminus B = \{x \in A \mid x \notin B\}; \{1,2,3\} \setminus \{2,4\} = \{1,3\}.$

Joukkojen A ja B karteesinen tulo $A \times B$ on niiden alkioparien joukko: $A \times B = \{(a,b) \mid a \in A, b \in B\}; \{1,2,3\} \times \{2,4\} = \{(1,2),(1,4),(2,2),(2,4),(3,2),(3,4)\}.$

Funktio f joukosta A joukoon B on sääntö, merk. $f:A\to B$, joka liittää jokaiseen $a\in A$ yksikäsitteisen $f(a)\in B$.

Joukon A potenssijoukko $\mathcal{P}(A)$ on joukon A osajoukkojen kokoelma: $\mathcal{P}(A) = \{X \mid X \subseteq A\}; \quad \mathcal{P}(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}.$

Merkkijonot ja formaalikielet

Aakkosto on epätyhjä ja äärellinen joukko $\Sigma = \{a_1, a_2, \dots, a_{\sigma}\}$ merkkejä eli symboleja; Esim. binääriaakkosto = $\{0, 1\}$, DNA-aakkosto = $\{C, A, T, G\}$, ASCII, UNICODE.

Merkkijono eli sana on järjestetty jono symboleja. Sanan $w = a_1 a_2 \cdots a_n$ pituus |w| on sen sen merkkien lukumäärä n. Tyhjä merkkijono ε ei sisällä yhtään merkkiä; $|\varepsilon| = 0, |0| = 1, |kissa| = 5.$ Aakkoston Σ kaikkien merkkijonojen joukkoa merkitään Σ^* ; $\{0,1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$. $\Sigma^+ = \Sigma^* \setminus \{\varepsilon\}$.

 $Merkkijonojen \ v = a_1a_2\cdots a_m \ ja \ w = b_1b_2\cdots b_n \ katenaatio \ vw \ muodostuu \ niiden peräkkäin asetetetuista merkeistä: <math>vw = a_1a_2\cdots a_mb_1b_2\cdots b_n; \ jos \ v = J\ddot{A} \ ja \ w = B\ddot{A}, \ niin \ vw = J\ddot{A}B\ddot{A}; \ \varepsilon w = w\varepsilon = w \ kaikilla \ w \in \Sigma^*.$

Sanan i-kertainen toisto: $w^i = ww \cdots w$ (i kertaa); $w^0 = \varepsilon$ ja $w^1 = w$; Jos w = HE, niin $w^3 = HEHEHE$.

(Aakkoston Σ) merkkijonojen joukkoja ($L \subseteq \Sigma^*$) kutsutaan (aakkoston Σ) kieliksi; esim. \emptyset , Σ^* .

Kielten A ja B katenaatio AB muodostuu sanoista, joiden alkuosa voidaan valita joukosta A ja loppuosa joukosta B: $AB = \{xy \mid x \in A, y \in B\}$; $\{J, J\ddot{A}\}\{\varepsilon, B\ddot{A}, \ddot{A}B\ddot{A}\} = \{J, JB\ddot{A}, J\ddot{A}B\ddot{A}, J\ddot{A}\ddot{A}B\ddot{A}\}$; Kaikilla kielillä A pätee $A\{\varepsilon\} = \{\varepsilon\}A = A$ ja $A\emptyset = \emptyset A = \emptyset$.

Kielen A sulkeuma A^* koostuu sanoista, jotka voidaan muodostaa katenoimalla nolla tai useampia sen sanoja: $A^* = \{w_1w_2\cdots w_k \mid k \geq 0, w_i \in A$ jokaisella $i = 1, 2, \ldots, k\}; \{ab, ba\}^* = \{\varepsilon, ab, ba, abab, abba, baab, baba, ababab, \ldots\}; \emptyset^* = \{\varepsilon\}^* = \{\varepsilon\};$ muiden kielten sulkeuma on ääretön.

Säännölliset kielet ja lausekkeet, äärelliset automaatit

Aakkoston Σ säännöllinen lauseke on muotoa x missä $x \in \{\emptyset, \varepsilon\} \cup \Sigma$, tai (EF), $(E \cup F)$ tai E^* , missä E ja F ovat säännöllisiä lausekkeita; Esim. \emptyset , ε , a, $((ab^*) \cup c^*)$, $((a \cup b)^*c)$.

 $\begin{array}{lll} S\ddot{a}\ddot{a}nn\ddot{o}llisen\ lausekkeen\ E\ kuvaama\ kieli\ L(E)\subseteq \\ \Sigma^*\ m\ddot{a}\ddot{a}ritell\ddot{a}\ddot{a}n\ induktiivisesti:\ L(\emptyset)=\emptyset,\ L(x)=\\ \{x\}\ kun\ x\in\Sigma\cup\{\varepsilon\},\ L((EF))=L(E)L(F),\\ L((E\cup F))=L(E)\cup L(F)\ ja\ L(E^*)=L(E)^*;\\ L(\varepsilon)=\{\varepsilon\},\ L(a)=\{a\},\ L((ab^*)\cup c^*))=\\ \{a,ab,abb,\ldots,\varepsilon,c,cc,cc,cc,\ldots\},\ L(((a\cup b)^*c))=\\ \{c,ac,bc,aac,abc,bac,bbc,aaac,\ldots\}. \end{array}$

Määritelmä: Kieli on *säännöllinen* joss se voidaan kuvata säännöllisellä lausekkeella.

Äärellinen automaatti (FA) $M=(Q,\Sigma,\delta,q_0,F)$ on viisikko, jossa Q on äärellinen joukko $tiloja,\Sigma$ on (syöte)aakkosto, δ $siirtymäfunktio, <math>q_0 \in Q$ alkutila ja $F \subseteq Q$ joukko (hyväksyviä) lopputiloja. Jos siirtymäfunktio liittää jokaiseen tilaan $q \in Q$ ja merkkiin $a \in \Sigma$ yksikäsitteisen kohdetilan $\delta(q,a) \in$

Q eli on muotoa $\delta: Q \times \Sigma \to Q$, kyseessä on deterministinen automaatti (DFA). Jos jokaiseen tilaan q ja merkkiin a liittyy joukko vaihtoehtoisia kohdetiloja $\delta(q,a) \subseteq Q$ eli siirtymäfunktio on muotoa $\delta: Q \times \Sigma \to \mathcal{P}(Q)$, kyseessä on epädeterministinen automaatti (NFA). Jos siirtymäfunktio sallii tilan vaihtamisen myös lukematta syötemerkkiä eli se on muotoa $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$, kyseessä on ε -automaatti (ε -NFA). Jos automaatti pääsee siirtymäfunktionsa mukaisesti alkutilastaan q_0 johonkin lopputilaan $q \in F$ lukien syötteen $w \in \Sigma^*$ kaikki merkit, automaatti hyväksyy sanan w. Automaatin M tunnistama kieli $L(M) \subseteq \Sigma^*$ koostuu niistä merkkijonoista, jotka automaatti hyväksyy; $w \in L(M) \sim \text{automaatti } M \text{ hyväksyy sanan } w, \text{ ja}$ $w \notin L(M) \sim \text{automaatti } M \text{ hylkää sanan } w.$

Tulos: Jokaisen NFA:n tai ε -NFA:n M tunnistama kieli voidaan tunnistaa myös deterministisellä automaatilla, joka syntyy n.s. osajoukkokonstrukti-olla:

 $Tilan\ q \in Q\ \varepsilon$ -sulkeuma $\mathcal{E}(q) \subseteq Q$ sisältää tilan q ja siitä ε -siirtymin saavutettavat tilat: $q \in \mathcal{E}(q)$ ja $p \in \mathcal{E}(q) \Rightarrow \delta(p, \varepsilon) \subseteq \mathcal{E}(q)$. Yleistetään ε -sulkeuma ja siirtymäfunktion δ arvo merkillä $a \in \Sigma$ tilajoukoille $Q' = \{q_1, \ldots, q_n\}$: $\mathcal{E}(Q') = \mathcal{E}(q_1) \cup \cdots \cup \mathcal{E}(q_n)$ ja $\delta(Q', a) = \delta(q_1, a) \cup \cdots \cup \delta(q_n, a)$.

 ε -NFA $M = (Q, \Sigma, \delta, q_0, F) \Rightarrow$ DFA $\hat{M} = (\hat{Q}, \Sigma, \hat{\delta}, \hat{q}_0, \hat{F})$: $\hat{Q} \leftarrow \{\hat{q}_0 \leftarrow \mathcal{E}(q_0)\}$; while $\hat{\delta}(\hat{q}, \cdot)$ puuttuu joltain $\hat{q} \in \hat{Q}$, muodosta se: for each $a \in \Sigma$: $\hat{\delta}(\hat{q}, a) \leftarrow \mathcal{E}(\delta(\hat{q}, a))$ ja $\hat{Q} \leftarrow \hat{Q} \cup \{\mathcal{E}(\delta(\hat{q}, a))\}$; Aseta $\hat{F} \leftarrow \{\hat{q} \in \hat{Q} \mid \hat{q} \cap F \neq \emptyset\}$.

Tulos: Jokaisen säännöllisen lausekkeen E kuvaama kieli voidaan tunnistaa äärellisellä automaatilla. Kielen L(E) tunnistava ε -NFA M_E syntyy lausekkeesta E esim. "Thompsonkonstruktiolla".

Tulos: Jokaisen äärellisen automaatin M tunnistama kieli voidaan kuvata säännöllisellä lausekkeella. Perustelu: Automaatista M voidaan muodostaa kieltä L(M) kuvaava lauseke (muuntamalla M kaksitilaiseksi lausekeautomaatiksi).

Säännöllisten kielten sulkeumaominaisuudet ja pumppauslemma

Tulos: Jos A ja B ovat aakkoston Σ säännöllisiä kieliä, niin myös AB, $A \cup B$, A^* , $\overline{A} = \Sigma^* \setminus A$, $A \setminus B$, $A \cap B$ sekä $A^R = \{a_1 a_2 \cdots a_n \mid a_n a_{n-1} \cdots a_1 \in A, a_i \in \Sigma\}$ ovat säännöllisiä kieliä. Perustelut kieliä

kuvaavia lausekkeita tai tunnistavia automaatteja muokkaamalla.

Pumppauslemma: Jokaisella säännöllisellä kielellä L on pumppauspituus $p \in \mathbb{N}$: jokainen vähintään sen pituinen kielen L sana s voidaan jakaa osiin s = xyz, missä (1) $y \neq \varepsilon$, (2) $|xy| \leq p$ ja (3) $xy^iz \in L$ kaikilla $i \in \mathbb{N}$. Käyttö: Osoitetaan kieli L ei-säännölliseksi valitsemalla jokin pumppauslemman mukainen sana $s \in L$ josta voidaan perustella, että se ei täytä lemman ehtoja. Esim. jos kieli $L = \{a^n b^n \mid n \in \mathbb{N}\}$ olisi säännöllinen, sillä olisi jokin pumppauspituus $p \in \mathbb{N}$. $s = a^p b^p \in L$ on pumppauslemman mukainen sana, jonka ehtojen (1) ja (2) mukaisissa jaoissa s = xyz "pumppaustermi" $y = a^k$ jollain k > 0, joten ehto (3) ei toteudu; siksi kieli L ei voi olla säännöllinen.

Kontekstittomat kieliopit ja kielet

Kontekstiton kielioppi (CFG) $G = (V, \Sigma, P, S)$ on nelikko, jossa V on kieliopin aakkosto, $\Sigma \subseteq V$ on päätesymbolien aakkosto ja $S \in N$ on lähtösymboli, missä $N = V \setminus \Sigma$ on välikesymbolien aakkosto. P on joukko sääntöjä eli produktioita, jotka ovat muotoa $A \to \alpha$, missä $A \in N$ ja $\alpha \in V^*$. Kieliopilla voidaan johtaa jonosta $\alpha \in V^*$ jono $\beta \in V^*$, merk. $\alpha \Rightarrow^* \beta$, jos jonon α voi muuttaa jonoksi β korvaamalla välikesymboleja niiden sääntöjen oikeilla puolilla. Jos $S \Rightarrow^* \alpha$, niin α on kieliopin lausejohdos, ja jos lisäksi $\alpha \in \Sigma^*$, se on kieliopin (tuottama) lause. Kieliopin tuottama tai kuvaama kieli L(G) koostuu kieliopin tuottamista lauseista: $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$.

Määritelmä: Kieli on kontekstiton joss joku kontekstiton kielioppi tuottaa sen.

Tulos: Kontekstittomat kielet on säännöllisten kielten aito laajennus. Perustelu: Jokainen säännöllinen kieli voidaan kuvata jo *lineaarisella kieliopilla*. Toisaalta esim. kielioppi, jonka produktiot ovat $S \to aSb$ ja $S \to \varepsilon$ tuottaa ei-säännöllisen kielen $\{a^nb^n \mid n \geq 0\}$.

Sulkeumaominaisuuksia: Jos A ja B ovat kontekstittomia kieliä, niin myös AB, $A \cup B$, A^* ja A^R ovat kontekstittomia; $A \cap B$ ja \overline{A} eivät välttämättä ole kontekstittomia.

Pinoautomaatti (PDA) $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ on kuusikko, jossa Q on äärellinen joukko tiloja, Σ on (syöte)aakkosto, Γ on pinoaakkosto, δ siirtymäfunktio, $q_0 \in Q$ alkutila ja $F \subseteq Q$ joukko lopputiloja. Pinoautomaatin siirtymäfunktio δ :

 $^{{}^{1}}X \leftarrow Y$ tarkoittaa sijoitusta "X saa arvon Y".

 $Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q \times (\Gamma \cup \{\varepsilon\})$ voi riippua tilan ja syötemerkin lisäksi pinon huipulla olevasta merkistä, ja kohdetilaan siirtymisen lisäksi voi lisätä/poistaa/vaihtaa pinon huipulla olevan merkin. Syötteen hyväksymisen ja kielen tunnistamisen määritelmä on muuten sama kuin äärellisillä automaateilla.

Tulos: Jokainen kontekstiton kieli voidaan tunnistaa (epädeterministisellä) PDA:lla, ja jokaisen PDA:n tunnistama kieli on kontekstiton.

Kieliopin $G = (V, \Sigma, P, S)$ mukaisen lauseen $w \in L(G)$ jäsennyspuu on järjestetty puu, jonka (1) juuri on S, (2) lehtien katenointi muodostaa jonon w ja (3) jokaisella sisäsolmulla $A \in N$ on lapsisolmuina x_1, x_2, \ldots, x_k vain jos $A \to x_1 x_2 \cdots x_k \in P$. Kielioppi on moniselitteinen jos se sallii jollekin syötteelle vaihtoehtoisia jäsennyspuita.

LL(1)-kielioppi mahdollistaa kielen osittavan (topdown), vasemmalta oikealle etenevän jäsentämisen siten, että sovellettavat produktiot määräytyvät yhden päätesymbolin kurkistuksella.

Jonoille $\alpha \in V^*$ määritelty joukko FIRST $(\alpha) \subseteq (\Sigma \cup \{\varepsilon\})$ koostuu päätesymboleista, jotka voivat aloittaa jonosta α johdettavissa olevan jonon; jos $\alpha \Rightarrow^* \varepsilon$, myös $\varepsilon \in \text{FIRST}(\alpha)$. Välikkeille A määritelty joukko FOLLOW $(A) \subseteq \Sigma$ koostuu päätesymboleista, jotka voivat esiintyä kieliopin lausejohdoksissa heti välikkeen A oikealla puolella.

Formaali LL(1)-ehto: Jos $A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$ ovat välikesymbolin A vaihtoehtoiset säännöt, niin (1) $FIRST(\alpha_i) \cap FIRST(\alpha_j) = \emptyset$ kun $i \neq j$ ja (2) jos $A \Rightarrow^* \varepsilon$ niin $FOLLOW(A) \cap FIRST(\alpha_i) = \emptyset$ jokaisella ei-nollautuvalla α_i eli kun $\alpha_i \not\Rightarrow^* \varepsilon$.

Kieliopin muokkaaminen LL(1)-muotoon (ei ole aina mahdollista!):

Sääntöjen yhteisten alkuosien poisto: Korvaa (esim.) säännöt $A \to \alpha \beta_1 \mid \alpha \beta_2$, missä $\alpha \neq \varepsilon$ on niiden pisin yhteinen alkuosa, säännöillä $A \to \alpha A'$ ja $A' \to \beta_1 \mid \beta_2$.

Välittömän vasemman rekursion poisto: Korvaa (esim.) produktiot $A \to Aa \mid Ab \mid c \mid d$ produktioilla $A \to cA' \mid dA'$ ja $A' \to aA' \mid bA' \mid \varepsilon$.

Yleinen vasemman rekursion poisto: Käsittele välikkeet jossain järjestyksessä A_1, \ldots, A_n : (i) Jos välikkeellä A_i on muotoa $A_i \to B\alpha$ olevia sääntöjä, joissa B on aiemmin käsitelty välike, korvaa ne säännöillä jotka muodostuvat laventamalla B sen säännöillä $B \to \beta_1 \mid \cdots \mid \beta_k$; (ii) Poista välikkeen A_i mahdollinen välitön vasen rekursio kuten yllä.

Rekursiivisesti etenevä LL(1)-jäsennys: etukäteen sääntöjen first-joukot. Tee kieliopin kullekin symbolille oma jäsennysproseduuri. Välikesymbolin jäsennysproseduuri valitsee sovellettavan säännön viimeksi luetun päätesymbolin perusteella. sääntöjen FIRST-joukkojen Päätesymbolin jäsennysproseduuri tarkistaa, että viimeksi luettu päätesymboli on oikea ja lukee seuraavan päätesymbolin.