MODELADO DE SISTEMAS

UML (Unified Modeling Language)

Lenguaje Unificado de Modelado.

- Es un conjunto de herramientas estándares utilizadas para representar,
 diseñar y modelar el comportamiento y la estructura de sistemas y procesos.
- Versión Actual: 2.5.1, adoptada en 2017. La primera versión, 1.0, fue liberada en 1997. Actualmente soportado por la asociación de estándares OMG.

Principales categorías

Estructurales:

- Diagramas de Clases
- Diagramas de Objetos
- Diagramas de Componentes
- Diagramas de Paquetes
- Diagramas de Despliegue

Comportamiento

- Diagramas de Actividades
- Diagramas de Casos de Uso
- Diagramas de Secuencias
- Diagramas de Estado

Diagramas de clase

Representa el diseño lógico y/o físico de un sistema, y muestra sus clases.

Permite representar una imagen de las diferentes clases y la forma en la que se interrelacionan, y cada clase posee tres secciones: Nombre de la clase (secc. superior), atributos (centro) y métodos de la clase (secc. inferior)

Ejemplo de un diagrama de Clases

Diagrama de Objetos

Muestra los objetos de un sistema y sus relaciones

Diagramas de componentes

Implica agrupaciones lógicas de elementos y sus relaciones. Permite descomponer un sistema complejo en componentes más pequeños.

Diagrama de paquetes

Representa las dependencias entre los paquetes que componen un modelo. Muestra la relación entre los grandes componentes que forman un sistema complejo.

Diagramas de despliegue

Muestra el hardware de su sistema y el software de ese hardware. Representa visual el lugar donde se implementa cada componente de software y sus relaciones.

Diagramas de actividades

Este representa la secuencia de un proceso, con un inicio y un final para lograr un objetivo. Se evidencia el paso de una actividad a la otra y las conexiones entre ellas.

Diagramas de Casos de Uso

Representa una visión general de los actores involucrados en un sistema, las funciones que necesitan y la interacción entre diferentes funciones. Especifica qué cosas hace el sistema, pero no la forma en que las implementa.

Referee Certification System Diagram

Diagrama de Secuencia

Muestra la estructura de un sistema, la secuencia de mensajes e interacciones entre actores y objetos cronológicamente. Se muestran iteraciones y ramificaciones simples.

Diagrama de Estados

Describe el comportamiento de un objeto y la forma en que este reacciona según los eventos internos y externos.

Otro ejemplo de un diagrama de estado

Generalización y Agregación

- Generalización: Se utiliza para reusar conocimiento, clasificando los elementos y haciendo foco en las diferencias.
 - Ejemplo: ratas y ardillas son roedores, un alce y un venado son ciervos, etc.
 - Los atributos y operaciones de las clases de alto nivel están asociados con las clases de bajo nivel, las clases de bajo nivel son subclases de las clases superiores.
 - La relación entre ambos tipos de clase se da con una flecha sin relleno apuntando a la clase superior
- Agregación: se utiliza cuando los objetos del mundo real se componen de uno o más objetos diferentes.
 - Ejemplo: Historia clínica de un paciente: se compone de un objeto Paciente y objetos ConsultasMedicas.
 - La relación entre la clase "compuesta" y los componentes se da con una línea que acaba en un rombo del lado de la clase "Compuesta".

Ejemplos de Generalización

Ejemplo de Agregación

