

# BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2018-2019 Course Handout (Part II)

Date: 3/8/2018

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F214

Course Title : Elementary Real Analysis

Instructor-in-charge : RAJIV KUMAR

### 1. Scope and objective of the Course:

The objective of this course is to train the students with the basic tools of Modern Mathematical analysis ,train them in art of logical, deductive & constructive thinking and thus equip them with enough back ground for courses which involve deeper Mathematical analysis . Real analysis is needed in several science & enginnering disciplines, in study of dynamical systems, which are solutions of differential equations, theoretical study of differential equations, concept of fractal & fractal dimension is usually studied in metric spaces. Riemann integral is basic integral on which advance theory of integration is developed. Integration theory is needed in study of theoretical & numerical study of solution of partial differential equations.

**2. Course Description**: Countable and uncountable sets; real numbers, metric spaces, continuous and uniformly continuous maps in metric spaces, connectedness, completeness and compactness in a metric space, Numerical sequences and series, Riemann integration & Riemann Stieltjes Integral, Convergence & uniform convergence of sequence of functions, Approximation of continuous function, functions of several variables, derivative of function of several variables, inverse function theorem.

#### 3. Text Book:

- 1. W. Rudin, Principles of Mathematical Analysis, McGraw, Hill 3<sup>rd</sup> edition, 1983.
- 2. Kenneth Ross: Elementary Analysis, Springer international edition 2000

#### 4. Reference Books:







- 1. Apostal: Mathematical Analysis , Addision Wesley,1983
- 2. Real Analysis John M Howie Springer Verlag 2000
- 3 An introduction to Real Analysis: Bartle John Wiley 2000

# 5. Course Plan:

| Lecture | Learners objective     | Subject matter                                                             | Ref.           |
|---------|------------------------|----------------------------------------------------------------------------|----------------|
| n.      |                        |                                                                            |                |
| 1-2     | Representation of real | Decimal & ternary representation of                                        | Ross Chapter I |
|         | numbers                | real numbers, rational & irrational numbers & their decimal representation | Chapter 2      |
| 3-6     | Sequences & subsets of | Construction of real numbers Sup &                                         | Chapter 2      |
|         | real numbers           | inf of subsets of real numbers lim                                         | Rudin          |
|         |                        | sup & liminf of sequences ,monotone sequences                              | Chapter 2 Ross |

| 7-8   | Difference between countable & uncountable set | Elementary set theory & logic, Countable & uncountable sets                    | 1 <sup>st</sup> Chapter<br>Rudin |
|-------|------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|
| 9-15  | Generalization of concept of                   | Metric spaces, compact sets, different                                         | Chapter 2                        |
|       | distance to abstract sets                      | Definition of compact sets, Cantor Intersection theorem, Contraction Principle | Rudin                            |
| 16-20 | Generalization of concept of                   | Continuous & uniformly continuous                                              | Chapter 4Rudin                   |
|       | continuity & limit to metric spaces            | functions& their properties                                                    | Chapter 3 Ross                   |
| 21-23 | How Riemann integral can be                    | Elementary Riemann Integral & its                                              | Chapter VI                       |
|       | Written as limit of sum                        | properties                                                                     | Rudin Chapter<br>VI Ross         |
| 24-28 | Integration with respect to a function         | Riemann Stieltjes integral & properties                                        | Chap. 7 of Ref.1                 |
| 29-33 | Distinguish between uniform &                  | Point & uniform convergence of functions                                       | Chapter 7Rudin                   |
|       | point wise convergence of                      | & related properties of integrability &                                        | Chapter IV Ross                  |
|       | sequence of functions. Functions               | differentiability                                                              |                                  |
|       | not differentiable but continuous              |                                                                                |                                  |
| 34-36 | How bad functions can be                       | Some approximation theorems of cont.                                           | Chapter 7                        |







|       | approximated by good functions                                                           | functions                               | Rudin |
|-------|------------------------------------------------------------------------------------------|-----------------------------------------|-------|
| 37-40 | How continuity & differentiability have generalization for function of several variables | , , , , , , , , , , , , , , , , , , , , | Rudin |

## 6. Evaluation Scheme:

| Components         | Durations   | Weightage | Date & Time          | Comment     |
|--------------------|-------------|-----------|----------------------|-------------|
| Test               | 90 min      | 35%       | 9/10 9:00 - 10:30 AM | Closed Book |
| Quiz               | unannounced | J         | 20%                  | open book   |
| Comprehensive Exam | 3 hrs.      | 45%       | 3/12 FN              | Closed Book |

- 7. Chamber consultation hour: To be announced in class.
- **8. Notices :** If any concerning this course will be displayed on the Notice Board of the Math Department, normally information will be conveyed in the class.
- **9**. **Extra Problems**: Regular Problem sets will be given for the type of problems to be done.
- **10**. **Make up**: Prior permission is needed for makeup, makeup may be given if enough evidence is there for not being able to take regular test. Make up for Quiz is not permitted

INSTRUCTOR-IN-CHARGE MATH F214



