

인공지능시스템

Convolutional Neural Network

Disadvantages of using MLP for image classification

- 많은 연산을 요구함
- 이미지 안에 가까운 픽셀간의 관계를 다루지 못함
- 이미지 내에 물체(Object)가 존재하는 위치에 예민하게 됨

Disadvantages of using MLP for image classification

- 많은 연산을 요구함
- 이미지 안에 가까운 픽셀간의 관계를 다루지 못함
- 이미지 내에 물체(Object)가 존재하는 위치에 예민하게 됨

• weights for $a_1^{[1]}$ = 1920 x 1080 x 3 = 6,220,800 (6M)

Disadvantages of using MLP for image classification

- 많은 연산을 요구함
- 이미지 안에 가까운 픽셀간의 관계를 다루지 못함
- 이미지 내에 물체(Object)가 존재하는 위치에 예민하게 됨

Disadvantages of using MLP for image classification

- 많은 연산을 요구함
- 이미지 안에 가까운 픽셀간의 관계를 다루지 못함
- 이미지 내에 물체(Object)가 존재하는 위치에 예민하게 됨

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	3
41	42	43	44	45			45
49	50	51	52	3	54	55	5
57	58	59	60	61	3	63	64

1	2	3	4	₹	6	7	8
9	10	11		13	14	15	16
17	1	19	20	9	22	23	24
25	26	1	28) 9	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

How does human recognize images?

Recognize the handwritten digit 9

Recognize the handwritten digit 9

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

수직선	패턴
filte	er

대각선 패턴 filter

Convolution Operation

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

Feature Map

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

Feature Map

Convolution Operation

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-0.11	1	-0.11
-0.55	0.11	-0.33
-0.33	0.33	-0.33
-0.55	-0.11	-0.55
-0.33	-0.55	-0.33

Feature Map

Convolution Operation

Recognize the cat

Recognize the cat

ReLU Function

-1	1	1	1	-1
-1	1	-1	1	-1
-1	1	1	1	-1
-1	-1	-1	1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1

-0.11	1	-0.11
-0.55	0.11	-0.33
-0.33	0.33	-0.33
-0.55	-0.11	-0.55
-0.33	-0.55	-0.33

0	1	0
0	0.11	0
0	0.33	0
0	0	0
0	0	0

- ReLU(x) = Max(0, x)
- ReLU는 모델을 non-linear 하게 만듦

XOR Problem

x_1	x_2	у
0	0	0
0	1	1
1	0	1
1	1	0

XOR Problem with sigmoid

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

x_1	x_2	a_1	a_2	y
0	0			0
0	1			1
1	0			1
1	1			0

XOR Problem with sigmoid

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

x_1	x_2	a_1	a_2	y
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

x_1	x_2	a_1	a_2	y
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

XOR Problem with ReLU

x_1	x_2	y
0	0	0
0	1	1
1	0	1
1	1	0

y	a_2	a_1	x_2	x_1
0	0	0	0	0
1	0.5	0	1	0
1	0	0.5	0	1
0	0	0	1	1

Max Pooling

3	1	3	4		
8	4	9	2	8	9
1	4	3	1	4	3
1	2	2	0		

- Pooling Layer 는 공간적 크기와 계산량을 줄이는 데 사용
- 학습해야 하는 파라미터가 없고, 다음 layer의 계산량을 줄이는데 기여
- 입력의 변형 또는 왜곡에 대해서 민감하지 않음

Max Pooling

3	1	3	4
8	4	9	2
1	4	3	1
1	2	2	0

- Pooling Layer 는 공간적 크기와 계산량을 줄이는 데 사용
- 학습해야 하는 파라미터가 없고, 다음 layer의 계산량을 줄이는데 기여
- 입력의 변형 또는 왜곡에 대해서 민감하지 않음

Max Pooling

- Pooling Layer 는 공간적 크기와 계산량을 줄이는 데 사용
- 학습해야 하는 파라미터가 없고, 다음 layer의 계산량을 줄이는데 기여
- 입력의 변형 또는 왜곡에 대해서 민감하지 않음

- Pooling Layer 는 공간적 크기와 계산량을 줄이는 데 사용
- 학습해야 하는 파라미터가 없고, 다음 layer의 계산량을 줄이는데 기여
- 입력의 변형 또는 왜곡에 대해서 민감하지 않음

No filter and stride size

Global Avg Pooling

3	1	3	4	
8	4	9	2	
1	4	3	1	
1	2	2	0	

- 공간정보를 하나의 값으로 표현한다.
- Feature extractor의 마지막 출력에 해당하는 feature에 Global Avg Pooling을 적용하여 3-d tensor를 vector로 변형하는데 주로 사용된다.

1	0	1	0
ReLU	0	0.11	0
→	0	0.33	0
	0	0	0
	0	0	0

Max	1	1
pooling	0.33	0.33
	0.33	0.33
	0	0

1	1	1	-1	_1
1	-1		-1	
1	1	1	-1	-1
-1	-1	1	-1	-1
-1	-1	1	-1	-1
-1	1	-1	-1	-1
1	-1	-1	-1	-1

1	0	0	<u> </u>
0.11	0	0	pc
0.33	0	0	
0	0	0	
0	0	0	

Max	1	0
ooling	0.33	0
	0.33	0
	0	0

Classification

thank you

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 디지털신기술인재양성 혁신공유대학사업의 연구결과입니다.

