GATE ALL BRANCHES CRASH COURSE 2025

ENGINEERING MATHEMATICS Complex Analysis

DPP

- **Q1** If $z_1 = 2+i$; $z_2 = 3-2i$; Then value of $\left| \frac{2z_2 + z_1 - 5 - i}{2z_1 - z_2 + 3 - i} \right|^2$ is____.
- **Q2** If 3x + 2iy ix + 5y = 7 + 5i, The value of $x^2 + y^2$ is-
 - (A)3

(B)4

(C)5

- The value of $\lim_{z o i}rac{3z^4-2z^3+8z^2-2z+5}{z-i}=lpha+ieta.$ The value of $rac{lpha-eta}{lpha+eta}$ is—
 - (A) 0

(C)3

- (D) 4
- **Q4** If the function $f(z) = u(r, \theta) + i \cdot \gamma(r, \theta)$ is Analytic then the value of $\frac{\delta^2 \gamma}{\delta x^2} + \frac{1}{\gamma} \cdot \frac{\delta \gamma}{\delta x} + \frac{1}{x^2} \cdot \frac{\delta^2 \gamma}{\delta a^2}$ is _____.
- **Q5** If $f(z) = 2x (1-y) + ix \gamma(x,y)$ is an analytic function, then γ (x,y)
 - (A) $2v + x^2 v^2$
 - (B) $2y x^2 y^2$
 - (C) $2x + x^2 y^2$
 - (D) $2x x^2 + v^2$
- **Q6** $f(z) = x^2 y^2 2xy 2x + 3y + i \gamma(x, y)$ is analytic & $\gamma(0,0) = 0$; then $\gamma(1,1)$ is_. (enter in Integer)
- Q7 The orthogonal trajectories of the family of curves $x^3y - xy^3 = c$ when 'c' is an arbitrary constant is-
 - (A) $x^4 6x^2v^2 + v^4 = c^2$
 - (B) $x^4 + 6x^2v^2 + v^4 = c^2$
 - (C) $x^3 6x^2y + y^3 = c^2$
 - (D) $x^3 + 6x^2y + y^3 = c^2$
- The value of $\lim_{z \to i} \frac{z^2 2iz 1}{z^4 + 2z^2 + 1}$ is_____.

(Round to one decimal place).

- **Q9** The value of $\oint\limits_{c_1} rac{z^2+2z-5}{(z^2+4)(z^2+2z+2)} dz$ is_____. (Enter in Integer). (C_1 is the circle |z - 2| = 5).
- **Q10** The value of $\oint \frac{e^z}{(z^2+\pi^2)} dz$ where c: |z|=4, is ki. The value of 'k' is___. (Round off to two decimal places).
- Q11 The coefficient of (z-1) term in Laurent's series expansion of $f(z) = \frac{e^{2z}}{(z-1)} (z \neq 1)$ is____. (Enter in two decimal places).
- **Q12** For the function $f(z) = \frac{z^2 2z}{(z+1)^2 \cdot (z+4)}$ the Residue of f(z) at z = -1
- (B) $-\frac{14}{25}$ (D) $-\frac{7}{12}$

- **Q13** The value of $\oint \frac{2+3 \cdot \sin \pi z}{z \cdot (z-1)^2} dz$ where c is a square having vertices at 3 + 3i, 3 - 3i, -3 + 3i, -3 - 3iis-
 - (A) $6\pi i$
 - (B) $4\pi i$
 - (C) $-6\pi i$
 - (D) $2\pi i$
- **Q14** The value of $\oint e^{-\frac{1}{z}} \cdot \sin\left(\frac{1}{z}\right) dz$ where c is the circle |z| = 1 is $k\pi i$. The value of 'k' is . (Enter in Integer).
- **Q15** The value of $\oint \frac{\cosh z}{z^3} dz$ where C is the square with vertices at $z = \pm 2$, $z = \pm 2i$ is $k\pi i$. The value of 'k' is __. (Enter in Integer)

Answer Key

Q1	1~1	Q9	0.01~0.01
Q2	(C)	Q10	0.29~0.35
Q3	(A)	Q11	4.7~5.2
Q4	0~0	Q12	(B)
Q5	(A)	Q13	(C)
Q6	-3~-3	Q14	2~2
Q7	(A)	Q15	1~1
Q8	-0.25~0.25		

