

planetmath.org

Math for the people, by the people.

any σ -finite measure is equivalent to a probability measure

 ${\bf Canonical\ name} \quad {\bf Any sigma finite Measure Is Equivalent To A Probability Measure}$

Date of creation 2013-03-22 18:33:44 Last modified on 2013-03-22 18:33:44

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282)
Entry type Theorem
Classification msc 28A12
Classification msc 28A10
Related topic SigmaFinite
Related topic Measure

The following theorem states that for any http://planetmath.org/SigmaFinite σ -finite measure μ , there is an equivalent probability measure \mathbb{P} — that is, the sets A satisfying $\mu(A)=0$ are the same as those satisfying $\mathbb{P}(A)=0$. This result allows statements about probability measures to be generalized to arbitrary σ -finite measures.

Theorem. Any nonzero σ -finite measure μ on a measurable space (X, \mathcal{A}) is equivalent to a probability measure \mathbb{P} on (X, \mathcal{A}) . In particular, there is a positive measurable function $f: X \to (0, \infty)$ satisfying $\int f d\mu = 1$, and $\mathbb{P}(A) = \int_A f d\mu$ for all $A \in \mathcal{A}$.

Proof. Let A_1, A_2, \ldots be a sequence in \mathcal{A} such that $\mu(A_k) < \infty$ and $\bigcup_k A_k = X$. Then it is easily verified that

$$g \equiv \sum_{k=1}^{\infty} 2^{-k} \frac{1_{A_k}}{1 + \mu(A_k)}$$

satisfies $1 \geq g > 0$ and $\int g \, d\mu < \infty$. So, setting $f = g/\int g \, d\mu$, we have $\int f \, d\mu = 1$ and therefore $\mathbb{P}(A) \equiv \int_A f \, d\mu$ is a probability measure equivalent to μ .