Ex 1 – On ne peut écrire $\arccos(\cos x) = x$ que pour $x \in [0, \pi]$

- On ne peut écrire $\arcsin{(\sin x)} = x$ que pour $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- On ne peut écrire $\arctan(\tan x) = x$ que pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$

Si ce n'est pas le cas, on s'y ramène via des translations de 2π et les anges associés :

$$\cos(-x) = \cos x, \sin(\pi - x) = \sin x, \tan(\pi + x) = \tan x$$

Ainsi:

$$\arccos\left(\cos\left(-\frac{\pi}{4}\right)\right) = \arccos\left(\cos\left(\frac{\pi}{4}\right)\right) = \boxed{\frac{\pi}{4}} \quad \operatorname{car} \frac{\pi}{4} \in [0, \pi]$$

$$\arcsin\left(\sin\left(\frac{5\pi}{6}\right)\right) = \arcsin\left(\sin\left(\frac{\pi}{6}\right)\right) = \boxed{\frac{\pi}{6}} \quad \operatorname{car} \frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\arctan\tan\left(\frac{8\pi}{7}\right) = \arctan\tan\left(\frac{\pi}{7}\right) = \boxed{\frac{\pi}{7}} \quad \operatorname{car} \frac{\pi}{7} \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$$

$$\arccos\left(\cos\left(6\right)\right) = \arccos\left(\cos\left(6-2\pi\right)\right) = \arccos\left(\cos\left(2\pi-6\right)\right) = \boxed{2\pi-6} \quad \operatorname{car} 2\pi-6 \in [0, \pi]$$

$$\arcsin\left(\sin\left(3\right)\right) = \arcsin\left(\sin\left(\pi-3\right)\right) = \boxed{\pi-3} \quad \operatorname{car} \pi-3 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Ex 2 Soient $x = \arccos\left(\frac{7}{8}\right)$, $y = \arccos\left(\frac{-7}{8}\right)$ et $z = 2\arccos\left(\frac{1}{4}\right)$.

La fonction arccos est strictement décroissante sur [-1, 1], donc x < y.

Par ailleurs

$$\cos z = 2\cos^2\left(\arccos\left(\frac{1}{4}\right)\right) - 1 = \frac{1}{8} - 1 = -\frac{7}{8}$$

et de plus $\arccos\left(\frac{1}{4}\right) \in \left[0, \frac{\pi}{2}\right]$ donc $z \in [0, \pi]$.

Ces deux informations $(\cos z = -\frac{7}{8} \text{ et } z \in [0, \pi])$ permettent de conclure que $z = \arccos\left(\frac{-7}{8}\right) = y$. On conclut :

$$x < y = z$$

Ex 3 Soit $y \in]-1,1[$. Résolution dans $\left\lceil \frac{\pi}{2},\frac{3\pi}{2}\right\rceil$ l'équation $\sin x = y\ (E)$.

On ramène cette équation au type $\sin \theta = y$ avec $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$:

$$\sin x = y \Longleftrightarrow \sin \left(\pi - x\right) = y \Longleftrightarrow \pi - x = \arcsin y \quad \operatorname{car} \frac{\pi}{2} \leqslant x \leqslant \frac{3\pi}{2} \Rightarrow -\frac{\pi}{2} \leqslant \pi - x \leqslant \frac{\pi}{2}$$

Ainsi

l'unique solution de
$$(E)$$
 sur $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ est $\pi - \arcsin y$

Ex 4 Ensemble des solutions sur $I = [0, 2\pi]$ de l'équation $\arccos(\cos(2x)) = \frac{2\pi}{3}(E)$: Cette équation équivaut à

$$\cos{(2x)} = \cos{\frac{2\pi}{3}} \Longleftrightarrow \exists k \in \mathbb{Z} \; / \; \left\{ \begin{array}{l} 2x = \frac{2\pi}{3} + 2k\pi \text{ ou} \\ 2x = -\frac{2\pi}{3} + 2k\pi \end{array} \right. \iff \exists k \in \mathbb{Z} \; / \; \left\{ \begin{array}{l} x = \frac{\pi}{3} + k\pi \text{ ou} \\ x = -\frac{\pi}{3} + k\pi \end{array} \right.$$

L'ensemble cherché est

$$\left[\left\{\frac{\pi}{3}, \frac{4\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}\right\}\right]$$

Ex 5 Soit $x \in [-1, 1]$. Alors

$$\cos(2\arccos x) = 2\cos^2(\arccos x) - 1$$
 soit $\cos(2\arccos x) = 2x^2 - 1$

et

$$\sin(2\arcsin x) = 2\sin(\arcsin x)\cos(\arcsin x)$$
 soit $\sin(2\arccos x) = 2x\sqrt{1-x^2}$

Ex 6 Soit $f: x \mapsto \arccos(x-1) - \frac{\pi}{3}$

a) La courbe de f est translatée de celle d'arccos de vecteur $\vec{v}\left(1,\frac{\pi}{3}\right)$. Elle coupe l'axe (Ox) au point d'abscisse x

$$\arccos(x-1) = \frac{\pi}{3} \iff x-1 = \cos\frac{\pi}{3} \iff x = \frac{3}{2}$$

PCSI 1 Thiers 2019/2020

b) On sait alors tracer alors les courbes des fonctions $g:x\mapsto\left|\arccos\left(x-1\right)-\frac{\pi}{3}\right|$:

et $h: x \mapsto \arccos(|x|-1) - \frac{\pi}{3}$:

Ex 7 Etudes de courbes.

a) $f: x \mapsto \arcsin(\sin x)$:

(i) f est 2π -périodique (preuve laisée au lecteur) : on restreint l'intervalle à $[-\pi,\pi]$

(ii) f est impaire (idem) : on restreint l'intervalle à $[0,\pi]$. On complètera par symétrie de centre O.

(iii) La droite Δ d'équation $x=\frac{\pi}{2}$ est axe de symétrie de \mathcal{C}_f . En effet pour tout $x\in\mathbb{R}$

$$f\left(x + \frac{\pi}{2}\right) = \arcsin\left(\sin\left(x + \frac{\pi}{2}\right)\right) = \arcsin\left(\cos x\right)$$

Donc $x\mapsto f\left(x+\frac{\pi}{2}\right)$ est paire, CQFD. On restreint l'intervalle à $\left[0,\frac{\pi}{2}\right]$ et on complètera par symétrie.

Mais $\forall x \in \left[0, \frac{\pi}{2}\right]$, $f\left(x\right) = x$. La courbe se construit donc en partant de $\left[0, \frac{\pi}{2}\right]$ et en appliquant (iii) puis (ii) puis (i) :

b) Soit
$$k \in \mathbb{Z}$$
 et $x \in \left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$. Simplifions l'expression $\arcsin\left(\sin(x)\right)$: on a
$$-\frac{\pi}{2} \leqslant x - k\pi \leqslant \frac{\pi}{2}$$

D'où

$$\arcsin(\sin(x - k\pi)) = x - k\pi$$

C'est-à-dire

$$\arcsin\left(\left(-1\right)^k\sin(x)\right) = x - k\pi$$

et par parité d'arcsinus :

$$(-1)^k \arcsin(\sin(x)) = x - k\pi$$

Ainsi:

$$\begin{cases} \text{ Si } k \text{ est pair, on a } \arcsin\left(\sin(x)\right) = x - k\pi \\ \text{ Si } k \text{ est impair, on a } \arcsin\left(\sin(x)\right) = -x + k\pi \end{cases}$$

On retrouve les équations des segments constituant la courbe de f dans l'exercice précédent.

Ex 8 Soit $f: x \mapsto \arccos(\cos(x)) + \frac{1}{2}\arccos(\cos(2x))$. f est définie sur \mathbb{R} et 2π -périodique (à peu près clair). Etudions la sur la période $[0, 2\pi]$. Si $x \in [0, 2\pi]$, simplifions f(x):

On ne peut simplifier $\arccos\cos x = x$ que pour $x \in [0, \pi]$, et donc $\arccos\cos(2x)$ que pour $x \in \left[0, \frac{\pi}{2}\right]$. ainsi :

$$-\quad \text{Si }x\in \left[0,\tfrac{\pi}{2}\right] ,$$

$$f(x) = x + \frac{1}{2}(2x) = \boxed{2x}$$

– Si
$$x \in \left[\frac{\pi}{2},\pi\right]$$
, alors $2x \in [\pi,2\pi]$ et $2\pi-2x \in [0,\pi]$. D'où

$$f\left(x\right)=x+\frac{1}{2}\arccos\left(\cos\left(2x-2\pi\right)\right)\overset{\text{parité}}{=}x+\frac{1}{2}\arccos\left(\cos\left(4\pi-2x\right)\right)=x+\frac{1}{2}\left(2\pi-2x\right)=\boxed{\pi}$$

Pour $x \in [\pi, 2\pi]$, on a $2\pi - x \in [0, \pi]$, donc $\arccos x = \arccos \cos (2\pi - x) = 2\pi - x$. Ainsi

– Si
$$x\in\left[\pi,\frac{3\pi}{2}\right]$$
, alors $2x\in\left[2\pi,3\pi\right]$ et $2x-2\pi\in\left[0,\pi\right]$.'où

$$f(x) = (2\pi - x) + \frac{1}{2}\arccos(\cos(2x - 2\pi)) = 2\pi - x + \frac{1}{2}(2x - 2\pi) = \boxed{\pi}$$

– Si
$$x\in\left[\frac{3\pi}{2},2\pi\right]$$
, alors $2x\in\left[3\pi,4\pi\right]$ et $4\pi-2x\in\left[0,\pi\right]$. D'où

$$f(x) = x + \frac{1}{2}\arccos(\cos(2x - 4\pi)) = (2\pi - x) + \frac{1}{2}\arccos(\cos(2\pi - 2x)) = 2\pi - x + \frac{1}{2}(4\pi - 2x) = \boxed{4\pi - 2x}$$

On peut dès lors facilement tracer la courbe de f sur $[0, 2\pi]$:

Ex 9 Calculs de dérivées :

a) Soit $f: x \mapsto \arctan\left(\frac{x-1}{x+1}\right)$: f est définie sur $\mathcal{D}_f = \mathbb{R} \setminus \{-1\}$, et y est dérivable par composée.

Commençons par dériver $u: x \mapsto \frac{x-1}{x+1} = 1 - \frac{2}{x+1}$: sa dérivée sur \mathcal{D}_f est $u': x \mapsto \frac{2}{(x+1)^2}$.

Mais alors pour tout $x \in \mathcal{D}_f$,

$$f'(x) = \frac{2}{(x+1)^2} \frac{1}{1 + \left(\frac{x-1}{x+1}\right)^2} = \frac{2}{(x+1)^2 + (x-1)^2}$$

Après simplification du dénominateur, il vient

$$f'(x) = \frac{1}{1+x^2}$$

Remarque: on peut en déduire que f diffère d'arctan d'une constante sur $]-\infty, -1[$ et sur $]1, +\infty[$.

b) Soit $g: x \mapsto \arcsin(\sqrt{x-1})$. g(x) est défini lorsque

$$\left\{ \begin{array}{l} x-1\geqslant 0 \\ -1\leqslant \sqrt{x-1}\leqslant 1 \end{array} \right. \iff \left\{ \begin{array}{l} x\geqslant 1 \\ 0\leqslant \sqrt{x-1}\leqslant 1 \end{array} \right. \iff \left\{ \begin{array}{l} x\geqslant 1 \\ 0\leqslant x-1\leqslant 1 \end{array} \right. \iff \left\{ \begin{array}{l} x\geqslant 1 \\ 1\leqslant x\leqslant 2 \end{array} \right.$$

Mais $x \mapsto \sqrt{1-x}$ n'est pas dérivable en 1.

De plus, g n'est pas dérivable a priori aux points x tels que $\sqrt{x-1} = 1$.

On en conclut que g est dérivable sur $\mathcal{D}_q' =]1, 2[$. Alors :

$$\forall x \in]1, 2[, g'(x) = \frac{1}{2\sqrt{x-1}} \times \frac{1}{\sqrt{1-(\sqrt{x-1})^2}} = \frac{1}{2\sqrt{x-1}} \times \frac{1}{\sqrt{1-x+1}}$$

Finalement

$$g'(x) = \frac{1}{2\sqrt{(x-1)(2-x)}}$$

Ex 10 a) Montrons que $\forall k \ge 0$, $\arctan \frac{1}{1+k+k^2} = \arctan (k+1) - \arctan k$:

* Notons A et B les deux membres de cette égalité : alors

$$\tan A = \frac{1}{1+k+k^2}$$

et d'après les formules d'addition

$$\tan B = \frac{\tan\arctan\left(k+1\right) - \tan\arctan\left(k\right)}{1 - \tan\arctan\left(k+1\right)\tan\arctan\left(k\right)} = \frac{(k+1) - k}{1 - (k+1)k} = \frac{1}{1 + k + k^2}$$

Ainsi $\tan A = \tan B$, soit $\exists p \in \mathbb{Z} / A = B + 2p\pi$.

* Argument de **localisation**: on a par définition $A \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. De plus comme $k \ge 0$ et k > 0,

$$\begin{cases} 0 < \arctan(k+1) < \frac{\pi}{2} \\ 0 \leqslant \arctan(k) < \frac{\pi}{2} \end{cases}$$

d'où par différence $B\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. Il s'ensuit que l'entier p est nu et donc que A=B CQFD.

b) Soit $n \in \mathbb{N}$: alors d'après a):

$$S_n = \sum_{k=0}^n \arctan\left(\frac{1}{1+k+k^2}\right) = \sum_{k=0}^n \left[\arctan\left(k+1\right) - \arctan k\right] = \arctan\left(n+1\right) - \arctan 0$$

après télescopage. Finalement

$$S_n = \arctan(n+1)$$
 et $\lim S_n = \frac{\pi}{2}$

 $\boxed{S_n = \arctan\left(n+1\right) \quad \text{et} \quad \left[\lim S_n = \frac{\pi}{2}\right]}$ Remarque: on notera plus tard: $\left[\sum_{k=0}^{+\infty}\arctan\left(\frac{1}{1+k+k^2}\right) = \frac{\pi}{2}\right]$

Ex 11 Soit (E) l'équation $\arcsin x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$, définie sur [-1,1].

Pour que (E) ait une solution, il faut et il suffit que le second membre soit dans $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. Or

$$-0 < \frac{4}{5} < \frac{\sqrt{3}}{2} \Rightarrow 0 < \arcsin \frac{4}{5} < \arcsin \frac{\sqrt{3}}{2} = \frac{\pi}{3}$$
 par stricte croissance de arcsin sur $[-1,1]$

— De même
$$0<\frac{5}{13}<\frac{1}{2}\Rightarrow 0<\arcsin\frac{5}{13}<\arcsin\frac{1}{2}=\frac{\pi}{6}$$

Par somme, il vient

$$0 < \arcsin\frac{4}{5} + \arcsin\frac{5}{13} < \frac{\pi}{2}$$

Mais alors

$$(E) \iff x = \sin\left(\arcsin\frac{4}{5} + \arcsin\frac{5}{13}\right)$$

Mais

$$\begin{split} \sin\left(\arcsin\frac{4}{5} + \arcsin\frac{5}{13}\right) &= \sin\left(\arcsin\frac{4}{5}\right)\cos\left(\arcsin\frac{5}{13}\right) + \cos\left(\arcsin\frac{4}{5}\right)\sin\left(\arcsin\frac{5}{13}\right) \\ &= \frac{4}{5}\sqrt{1 - \frac{25}{169}} + \sqrt{1 - \frac{16}{25}} \times \frac{5}{13} \\ &= \frac{4}{5}\sqrt{\frac{144}{169}} + \frac{5}{13}\sqrt{\frac{9}{25}} \\ &= \frac{4}{5} \times \frac{12}{13} + \frac{3}{5} \times \frac{5}{13} \\ &= \frac{63}{65} \end{split}$$
 L'unique solution de (E) est $\frac{63}{65}$

Ex 12 Résolution de l'équation (E): $\arccos(x) = \arcsin(2x)$, définie évidemment pour $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.

Remarquons que si x<0 alors x ne peut pas vérifier (E) car $\arccos x\in\left[\frac{\pi}{2},\pi\right]$ et $\arcsin\left(2x\right)\in\left[-\frac{\pi}{2},0\right]$. Résolvons donc (E) sur $\left[0,\frac{1}{2}\right]$. Ses deux membres sont alors dans $\left[0,\frac{\pi}{2}\right]$, et on peut écrire l'équivalence :

$$(E) \iff \sin \arccos x = 2x \iff \sqrt{1 - x^2} = 2x \iff 1 - x^2 = 4x^2 \iff x^2 = \frac{1}{5}$$

Finalement:

l'unique solution de
$$(E)$$
 est $\frac{1}{\sqrt{5}}$

<u>Autre méthode</u>: on peut aussi raisonner par analyse, et trouver $\pm \frac{1}{\sqrt{5}}$ pour candidats potentiels. **Pour la synthès**e, on considère la fonction $f: x \mapsto \arcsin{(2x)} - \arccos{(x)} = \arcsin{(2x)} + \arcsin{(x)} - \frac{\pi}{2}$: elle est continue strictement croissante sur $\left[-\frac{1}{2},\frac{1}{2}\right]$, et atteint l'intervalle $\left[-\frac{7\pi}{6},\frac{\pi}{6}\right]$ qui contient 0. (E) admet donc une unique solution positive car $f(0) = -\frac{\pi}{2}$. On conclut alors comme précédemment.

Ex 13 a) Soit $t \in \mathbb{R}_+$. Montrons que $\arctan(t) = \arccos \frac{1}{\sqrt{1+t^2}}$:

Posons $\theta = \arctan t \in \left[0, \frac{\pi}{2}\right]$, de sorte que $t = \tan \theta$. Alors

$$\arccos \frac{1}{\sqrt{1+t^2}} = \arccos \frac{1}{\sqrt{1+\tan^2 \theta}} = \arccos \sqrt{\cos^2 \theta} \stackrel{\cos \theta \geqslant 0}{=} \arccos \cos \theta$$

De plus, on peut écrire $\arccos{(\cos{\theta})}=\theta$, $\cos{\theta}\in\left[0,\frac{\pi}{2}\right]\subset\left[0,\pi\right]$. Finalement :

$$\arccos \frac{1}{\sqrt{1+t^2}} = \theta = \arctan t$$
 CQFD.

- b) Soit à résoudre l'équation : $\arctan \sqrt{\frac{1-x}{1+x}} + \arcsin x = \frac{\pi}{2}$ (E).
 - * (E) n'est définie que si $x \neq -1$, $\frac{1-x}{1+x} > 0$, et $-1 \leqslant x \leqslant 1$. $\frac{1-x}{1+x}$ ayant le signe de (1-x)(1+x), cela revient donc à $-1 < x \leqslant 1$

*
$$(E)$$
 s'écrit aussi $\arctan\sqrt{\frac{1-x}{1+x}} = \frac{\pi}{2} - \arcsin x$, ou encore

$$\arctan \sqrt{\frac{1-x}{1+x}} = \arccos x$$

Posons $t = \sqrt{\frac{1-x}{1+x}} \geqslant 0$: alors (question précédente) :

$$\arctan t = \arccos \frac{1}{\sqrt{1+t^2}} = \arccos \frac{1}{\sqrt{1+\frac{1-x}{1+x}}} = \arccos \frac{1}{\sqrt{\frac{2}{1+x}}} = \arccos \sqrt{\frac{1+x}{2}}$$

(E) s'écrit donc

$$\arccos\sqrt{\frac{1+x}{2}} = \arccos x$$

qui équivaut à

$$\sqrt{\frac{1+x}{2}} = x$$
 (car arccos est bijective).

Ainsi

$$(E) \Leftrightarrow \sqrt{\frac{1+x}{2}} = x \Leftrightarrow \left\{ \begin{array}{l} \frac{1+x}{2} = x^2 \\ x \geqslant 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} 2x^2 - x - 1 = 0 \\ x \geqslant 0 \end{array} \right. \Leftrightarrow x = 1$$

(E) admet donc 1 pour unique solution

Remarque : en raisonnant par analyse, on trouve aussi $-\frac{1}{2}$, qui après vérification n'est pas solution.

Ex 14 a) Soit $A = \arctan 2 + \arctan 5 + \arctan 8$. La formule de la tangente d'une somme donne :

$$tan A = \frac{\tan \arctan 2 + \tan (\arctan 5 + \arctan 8)}{1 - \tan \arctan 2 \times \tan (\arctan 5 + \arctan 8)}$$

$$= \frac{2 + \tan (\arctan 5 + \arctan 8)}{1 - 2 \tan (\arctan 5 + \arctan 8)}$$

$$= \frac{2 + \frac{5 + 8}{1 - 5 \times 8}}{1 - 2 \times \frac{5 + 8}{1 - 5 \times 8}}$$

$$= \frac{2 - \frac{1}{3}}{1 + 2 \times \frac{1}{3}}$$

$$= 1$$

On en déduit que $A = \arctan 1 [\pi]$, c'est-à-dire

$$A = \frac{\pi}{4} \ [\pi] \quad \text{(ou } \exists k \in \mathbb{Z} \ / \ A = \frac{\pi}{4} + k\pi \text{)}$$

Mais la fonction \arctan est strictement croissante sur \mathbb{R} , donc puisque 1 < 2 < 5 < 8,

$$\frac{\pi}{4} = \arctan 1 < \arctan 2 < \arctan 5 < \arctan 8 < \frac{\pi}{2}$$

Par somme, $A \in \left[\frac{3\pi}{4}, \frac{3\pi}{2} \right]$. On a donc nécessairement

$$A = \frac{3\pi}{4}$$

En effet $\frac{3\pi}{4} < \frac{\pi}{4} + k\pi < \frac{3\pi}{2} \Longleftrightarrow \frac{1}{2} < k < \frac{5}{4} \Longleftrightarrow k = 1$ car k est entier, d'où $A = \frac{\pi}{4} + \pi = \frac{3\pi}{4}$.

b) Soit (E) l'équation $\arctan(x-3) + \arctan x + \arctan(x+3) = \frac{5\pi}{4}$. On vient de voir que 5 est solution.

Mais la fonction f définie par $f(x) = \arctan(x-3) + \arctan(x) + \arctan(x+3)$ est strictement croissante sur \mathbb{R} comme somme de trois fonctions strictement croissantes, de limites $-\frac{3\pi}{2}$ et $\frac{3\pi}{2}$ en $-\infty$ et $+\infty$.

f réalise ainsi une bijection de \mathbb{R} sur $\left]-\frac{3\pi}{2},\frac{3\pi}{2}\right[$ qui contient $\frac{3\pi}{4}$. Donc l'équation (E) admet une unique solution. Au total

5 est l'unique solution de (E)

PCSI 1 Thiers 6 2019/2020

Ex 15 a) Etude de la fonction cotan sur l'intervalle $]0, \pi[$:

Remarque: cotan est définie sur $\mathbb{R}\setminus\{k\pi,\ k\in\mathbb{Z}\}$ et il est facile de voir qu'elle est π -périodique et impaire. Par quotient cotan est dérivable sur $]0, \pi[$ et $\forall x \in]0, \pi[$,

$$\cot x' x = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x} = -1 - \cot^2 x < 0$$

 $\text{De plus comme} \left\{ \begin{array}{l} \displaystyle \lim_{0^+} \sin = 0 \\ \displaystyle \lim_{0^+} \cos = 1 \end{array} \right., \text{ et } \sin > 0 \text{ sur }]0, \pi[\, , \text{ on a } \lim_{0^+} \cot a = +\infty, \text{ et de même } \lim_{\pi^-} \cot a = -\infty. \right.$

La courbe de \cot sur $[0,\pi]$ a donc cette allure :

b) $\cot a$ est continue, strictement décroissante sur $]0,\pi[$, $\lim_{0^+}\cot a=+\infty$, et $\lim_{\pi^-}\cot a=-\infty$. On en déduit que $\cot a$ réalise une bijection de $]0,\pi[$ sur \mathbb{R} , dont on note la réciproque :

$$\operatorname{arccotan}: \mathbb{R} \to]0, \pi[$$

* De
$$\cot \frac{\pi}{4} = \frac{1/\sqrt{2}}{1/\sqrt{2}} = 1$$
 on tire $\arctan 1 = \frac{\pi}{4}$ $(\cot \frac{\pi}{4} \in]0, \pi[)$

* De
$$\frac{11\pi}{6} = \frac{5\pi}{6} + \pi \in]0, \pi[$$
 on déduit que $\arctan\left(\cot \frac{11\pi}{6}\right) = \arctan\left(\cot \frac{5\pi}{6}\right) = \frac{5\pi}{6}$.

La courbe de $\operatorname{arccotan}$ se déduit de celle de cotan par symétrie d'axe $\Delta:y=x$:

c) Montrons que $\forall x \in \mathbb{R}$, $\operatorname{arccotan} x = \frac{\pi}{2} - \arctan x$:

Le premier membre de cette égalité est dans $]0,\pi[$, et le deuxième aussi, car

$$-\frac{\pi}{2} < \arctan x < \frac{\pi}{2} \Rightarrow 0 < \frac{\pi}{2} - \arctan x < \pi$$

Il suffit donc de montrer que les deux membres ont même cotangente :

* $\cot a (\operatorname{arccotan} x) = x \operatorname{par} \operatorname{définition}.$

*
$$\cot \left(\frac{\pi}{2} - \arctan x\right) = \frac{\cos\left(\frac{\pi}{2} - \arctan x\right)}{\sin\left(\frac{\pi}{2} - \arctan x\right)} = \frac{\sin\left(\arctan x\right)}{\cos\left(\arctan x\right)} = \tan\left(\arctan x\right) = x$$
 CQFD.

On a ainsi en dérivant, pour tout $x \in \mathbb{R}$:

$$\arctan' x = -\frac{1}{1+x^2}$$

Remarque: on pouvait dériver aussi via la formule de dérivation des composées (puisque $\cot a n' = -(1 + \cot a n^2)$ ne s'annule pas sur \mathbb{R}):

$$\forall x \in \mathbb{R}, \ \operatorname{arccotan}' x = \frac{1}{\operatorname{cotan}' (\operatorname{arccotan} x)} = -\frac{1}{1 + \operatorname{cotan}^2 (\operatorname{arccotan} x)} = -\frac{1}{1 + x^2}$$
 CQFD.

Ex 16 On considère les fonctions $f: x \mapsto \frac{1}{2}\arctan\left(\sinh x\right)$ et $g: x \mapsto \arctan\left(\frac{\sinh x}{1+\cosh x}\right)$ a) La fonction \arctan est définie et dérivable $\sup \mathbb{R}$, comme \cot et \sinh comme $\forall x \in \mathbb{R}$, $1+\cosh x>1$, on en déduit,

par composition (et quotient) que f et g sont définies et dérivables sur \mathbb{R} , e

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{1}{2} \frac{\operatorname{ch} x}{1 + \operatorname{sh}^2 x} = \frac{1}{2} \frac{\operatorname{ch} x}{\operatorname{ch}^2 x} = \frac{1}{2 \operatorname{ch} x}$$

et en notant $h(x) = \frac{\sinh x}{1 + \cosh x}$

$$\forall x \in \mathbb{R}, \ h'(x) = \frac{\operatorname{ch} x + \operatorname{ch}^2 x - \operatorname{sh}^2 x}{(1 + \operatorname{ch} x)^2} = \frac{\operatorname{ch} x + 1}{(1 + \operatorname{ch} x)^2} = \frac{1}{1 + \operatorname{ch} x}$$

donc

$$\forall x \in \mathbb{R}, \ g'(x) = \frac{h'(x)}{1 + h^2(x)}$$

Or

$$1 + h^{2}(x) = 1 + \frac{\sinh^{2} x}{(1 + \cosh x)^{2}} = \frac{1 + 2 \cosh x + \cosh^{2} x + \sinh^{2} x}{(1 + \cosh x)^{2}}$$

En utilisant encore $1 + \sinh^2 x = \cosh^2 x$, il vi

$$1 + h^{2}(x) = \frac{2 \operatorname{ch} x + 2 \operatorname{ch}^{2} x}{(1 + \operatorname{ch} x)^{2}} = \frac{2 \operatorname{ch} x (1 + \operatorname{ch} x)}{(1 + \operatorname{ch} x)^{2}} = \frac{2 \operatorname{ch} x}{1 + \operatorname{ch} x}$$

Ainsi

$$\forall x \in \mathbb{R}, \ g'(x) = \frac{1}{1 + \operatorname{ch} x} \times \frac{1 + \operatorname{ch} x}{2 \operatorname{ch} x} = \frac{1}{2 \operatorname{ch} x}$$

b) On a donc établi que f' = g' sur l'**intervalle** \mathbb{R} : on sait qu'alors f et g diffèrent d'une constante :

$$\exists C \in \mathbb{R} / \forall x \in \mathbb{R}, \ f(x) = g(x) + C$$

Or
$$f\left(0\right)=\frac{1}{2}\arctan 0=0=g\left(0\right)$$
 . Ainsi $\boxed{f=g}$ sur \mathbb{R}

c) Application. Simplifions:

$$\operatorname{ch}\left(\frac{1}{2}\ln 3\right) = \frac{e^{1/2\ln 3} + e^{-1/2\ln 3}}{2} = \frac{\sqrt{3} + 1/\sqrt{3}}{2} = \frac{4\sqrt{3}}{6} = \frac{2\sqrt{3}}{3}$$

$$\operatorname{sh}\left(\frac{1}{2}\ln 3\right) = \frac{\sqrt{3} - 1/\sqrt{3}}{2} = \frac{\sqrt{3}}{3}$$

L'égalité $f\left(\frac{1}{2}\ln 3\right) = g\left(\frac{1}{2}\ln 3\right)$ s'écrit

$$\frac{1}{2}\arctan\left(\frac{\sqrt{3}}{3}\right) = \arctan\left(\frac{\sqrt{3}/3}{1+2\sqrt{3}/3}\right)$$

soit

$$\frac{1}{2} \times \frac{\pi}{6} = \arctan\left(\frac{\sqrt{3}}{3 + 2\sqrt{3}}\right)$$

Il vient ainsi

$$\tan\frac{\pi}{12} = \frac{\sqrt{3}}{3+2\sqrt{3}} = \frac{\sqrt{3}(3-2\sqrt{3})}{9-12} = \frac{3\sqrt{3}-6}{-3} = \boxed{2-\sqrt{3}}$$