CNCM Problem of the Day Solutions

Ryder Pham

August 12, 2021

6 August 2021

Notice that the expected number of dollars Tommy expects to win is equivalent to the following infinite series:

$$\frac{1}{6}\sum_{n=0}^{\infty}n^2\left(\frac{5}{6}\right)^n.$$

Define

$$f(x) = \sum_{n=0}^{\infty} n^2 x^n$$

where we want to find the value of f(5/6). Then

$$f(x) = x \sum_{n=0}^{\infty} n^2 x^{n-1}$$

$$= x \frac{d}{dx} \left[\sum_{n=0}^{\infty} n x^n \right]$$

$$= x \frac{d}{dx} \left[x \sum_{n=0}^{\infty} n x^{n-1} \right]$$

$$= x \frac{d}{dx} \left[x \frac{d}{dx} \left[\sum_{n=0}^{\infty} x^n \right] \right]$$

$$= x \frac{d}{dx} \left[x \frac{d}{dx} \left[\frac{1}{1-x} \right] \right]$$

$$= x \frac{d}{dx} \left[\frac{x}{(1-x)^2} \right]$$

$$= x \left[\frac{(1-x)^2 + 2x(1-x)}{(1-x)^4} \right]$$

$$= x \left[\frac{(1-x) + 2x}{(1-x)^3} \right]$$

$$= x \left[\frac{1+x}{(1-x)^3} \right]$$

$$= x \left[\frac{1+x}{(1-x)^3} \right]$$

$$= \frac{5}{6} \cdot \frac{1+5/6}{(1-5/6)^3}$$

$$= \frac{5}{6} \cdot \frac{11}{6} \cdot \frac{6^3}{1}$$

$$= \frac{330}{6}$$

Then our final answer is $\frac{1}{6}f(\frac{5}{6}) = \frac{330}{6} = \boxed{55}$.

11 August 2021

Here let R_n denote the remaining water after the n-th pour.

$$R_0 = 1$$

$$R_1 = \left(1 - \frac{1}{2}\right) R_0 = \frac{1}{2}$$

$$R_2 = \left(1 - \frac{1}{3}\right) R_1 = \frac{1}{3}$$

$$R_3 = \left(1 - \frac{1}{4}\right) R_2 = \frac{1}{4}$$

Therefore we can assume by Engineer's Induction that $R_n = \frac{1}{n+1}$. Hence $R_9 = \frac{1}{10}$ for a final answer of $\boxed{9}$.

12 August 2021

For a two-game block, there is a probability of $\frac{3}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{8}$ of the entire match ending then and there. The only other outcome after two games is a tie, since each game must declare a winner, and this happens with probability 5/8. Thus the expected number of games in a match is the following:

$$\frac{3}{8} \cdot 2 + \frac{3}{8} \cdot \frac{5}{8} \cdot 4 + \frac{3}{8} \cdot \left(\frac{5}{8}\right)^{2} \cdot 6 + \dots = \sum_{n=0}^{\infty} 2(n+1) \cdot \frac{3}{8} \cdot \left(\frac{5}{8}\right)^{n}$$

$$= \frac{3}{4} \sum_{n=0}^{\infty} (n+1) \left(\frac{5}{8}\right)^{n}$$

$$= \frac{3}{4} \sum_{n=0}^{\infty} n \left(\frac{5}{8}\right)^{n} + \frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{5}{8}\right)^{n}.$$

Define $f(x) = \sum_{n=0}^{\infty} nx^n$. We would like to find the value of f(5/8). Note that

$$f(x) = x \sum_{n=0}^{\infty} nx^{n-1}$$
$$= x \frac{d}{dx} \sum_{n=0}^{\infty} x^n$$
$$= x \frac{d}{dx} \left[\frac{1}{1-x} \right]$$
$$= \frac{x}{(1-x)^2}.$$

Thus
$$f(5/8) = \frac{5/8}{(1-5/8)^2} = \frac{5}{8} \cdot \frac{8^2}{3^2} = \frac{40}{9}$$
. Then our original sum becomes

$$\frac{3}{4} \sum_{n=0}^{\infty} n \left(\frac{5}{8}\right)^n + \frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{5}{8}\right)^n = \frac{3}{4} \cdot \frac{40}{9} + \frac{3}{4} \cdot \frac{1}{1 - 5/8}$$
$$= \frac{10}{3} + \frac{3}{4} \cdot \frac{8}{3}$$
$$= \frac{10}{3} + 2$$
$$= \frac{16}{3}.$$

Our final answer is $160 + 3 = \boxed{163}$.