

Inventory Management

Summer 2025

- Assignment 5 -

Prof. Stefan Minner
Logistics & Supply Chain Management
TUM School of Management

Exercise 1:

Consider a **three-stage** serial system with **normally distributed demand** (mean 50, standard deviation 20). All locations review inventory periodically **(R=1)** and face a **non-stockout probability constraint of 90%.** Inventory holding costs are **1, 2** and **5** for the respective locations from upstream to downstream. The lead times are **L1=2** for the most upstream location and **L_i=1** for the other two locations.

- a) What are candidate values for the safety stock coverage times?
- b) Determine the optimal allocation.

Exercise 1.a) What are candidate values for the safety stock coverage times?

	Up	\rightarrow	Down
Holding costs	1	2	5
Lead Times	2	1	1
Review period		1	

Service level	0.9
Z	1.282
Mean	50
st.Dev	20

Possible Options (Candidates)?

	М	W	R
1	х	Х	0
2	X	0	0
3	0	Х	0
4	0	0	0

		M	W	R	COST
Opt. 1	Cover	0	0	5 (2+1+1+1)	
Opt. 2	Cover	0	3 (2+1)	2 (1+1)	
Opt. 3	Cover	2	0	3 (1+1+1)	
Opt. 4	Cover	2	1	2 (1+1)	

Exercise 1.a) What are candidate values for the safety stock coverage times?

	Up	\rightarrow	Down
Holding costs	1	2	5
Lead Times	2	1	1
Review period		1	

Service level	0.9
z	1.282
Mean	50
st.Dev	20

Possible Options (Candidates)?

	М	W	R
1	х	Х	0
2	х	0	0
3	0	X	0
4	0	0	0

$$SS = Z * \delta * \sqrt{Coverage\ Time}$$

		M	W	R	COST
	Cover	0	0	5 (2+1+1+1)	
Opt. 1	SS	0	0	≈ 57.3 (=20*1.282*√5)	286.5 (0*0+0*0+5*57.3)
	Cover	0	3 (2+1)	2 (1+1)	,
Opt. 2	SS	0	≈ 44.4 (=20*1.282*√3)	≈ 36.26 (=20*1.282* $\sqrt{2}$)	270.1 (2*44.4+5*36.26)
	Cover	2	0	3 (1+1+1)	
Opt. 3	SS	≈ 36.26 (=20*1.282*√2)	0	≈ 44.4 (=20*1.282* $\sqrt{3}$)	258.26 (1*36.26+5*44.4)
	Cover	2	1	2 (1+1)	
Opt. 4	SS	≈ 36.26 (=20*1.282*√2)	≈ 25.64 (=20*1.282*√1)	≈ 36.26 (=20*1.282* $\sqrt{2}$)	268.84 (1*36.26+2*25.64+5*36. 26)

Exercise 1.b) Determine the optimal allocation.

Coverage Time	1	2	3	COST
Candidate 1	0	0	5	286.5
Candidate 2	0	3	2	270.1
Candidate 3	2	0	3	258.26
Candidate 4	2	1	2	268.84

∴ Candidate 3 has the minimum holding cost with the allocation policy of Loc1 and Loc3

Tips!

- 1. Design possible options (Safety stock holding location)
- 2. Evaluate coverage time for each echelon member (*if it holds any) and for each option
- 3. Calculate total holding costs of SC with corresponding holding cost in each location
- 4. Conclude with the best option

Exercise 2:

Assume a two-stage serial supply chain with periodic control and normally distributed demand with mean 100 and standard deviation 40. The lead times for each stage are L=1. The backorder penalty is b=20, inventory holding costs are $h_w=1$, $h_R=3$.

- a) Determine the optimal parameters of an echelon-order-up-to-policy.
- b) How does the analysis change if a non-stockout probability of 95% has to be ensured?

Exercise 2:

Clark-Scarf-model

Average cost analysis

Stage 1

$$C_{1}(S_{1}, S_{2}) = h_{1}E(S_{1} - D(L_{1}) - S_{2})^{+}$$

$$= h_{1} \int_{0}^{S_{1} - S_{2}} (S_{1} - S_{2} - d)f_{L_{1}}(d)dd$$

Stage 2

$$C_2(S_1, S_2) = h_2 E((S - D(L_2 + 1))^+) + bE((S - D(L_2 + 1))^-)$$
$$= h_2 \int_0^S (S - d) f_{L_2 + 1}(d) dd + b \int_S^\infty (d - S) f_{L_2 + 1}(d) dd$$

Optimal solution

• Stage 2

$$F_{L_2+1}(S_2) = \frac{h_1 + b}{h_2 + b}$$

• Stage 1

$$\int_{0}^{S_{2}} F_{L_{1}}(S_{1} - x) f_{L_{2}+1}(x) dx = \frac{b}{h_{2} + b}$$

Exercise 2.a) Determine the optimal parameters of an echelon-order-up-to-policy.

mean	100
sigma	40
h1	1
h2	3
b	20
L1	1
L2	1
R	1

$$F_{L_2+1}(S_2) = \frac{h_1 + b}{h_2 + b} \rightarrow \frac{1+20}{3+20} = 0.913$$

$$S_2 = \mu * (L_2 + 1) + z * \sigma * \sqrt{L_2 + 1}$$

= 100 * (1 + 1) + 1.3597 * 40 * $\sqrt{1 + 1}$
= 276.92

- 1								1
F(k)	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07
0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398
1	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922

Exercise 2.a) Determine the optimal parameters of an **echelon-order-up-to-policy**.

mean	100
sigma	40
h1	1
h2	3
b	20
L1	1
L2	1
R	1

By. Python/Excel Solver Excel Sheet/Python will be provided.

Exercise 2.b) How does the analysis change if a non-stockout probability of 95% has to be ensured?

$$\int_{0}^{S_{2}} F_{L_{1}}(S_{1}-x) f_{L_{2}+1}(x) dx = \frac{b}{h_{2}+b} \ge 0.95 \rightarrow b \ge \frac{0.95*3}{0.05} \qquad \therefore b = 57$$

mean	100
sigma	40
h1	1
h2	3
b	20
L1	1
L2	1
R	1

$$F_{L_2+1}(S_2) = \frac{h_1 + b}{h_2 + b} \rightarrow \frac{1 + 57}{3 + 57} = 0.9667$$

$$S_2 = \mu * (L_2 + 1) + z * \sigma * \sqrt{L_2 + 1}$$

= 100 * (1 + 1) + 1.8339 * 40 * $\sqrt{1 + 1}$
= **303.74**

$$\therefore S_1 = 428.43$$

By. Python/Excel Solver
Excel Sheet/Python will be provided.

Exercise 3:

A two-echelon serial systems reviews inventories continuously and places replenishment orders following an (S-1, S) policy at both locations. Customer demand is assumed to follow a Poisson-process with a mean of 5 customers per period. Unsatisfied demand is backordered, the penalty cost per unit and unit of time is b=20. Inventories at both locations are subject to inventory holding costs, 1 at the upper location and 3 at the downstream location. The lead times are equal to one for the upstream location (warehouse) and two periods for downstream location (retailer). Determine the optimal parameters S for each location following the METRIC-approach.

Exercise 3:

• Optimization
$$C = C_0(S_0) + \sum_{i=1}^{N} (h_i E(IL_i^+) + b_i E(IL_i^-))$$

Properties for the Approximation Method

- Convexity of objective function for given S₀
- Bounds on inventory level
 - Lower: find S_i for lowest possible lead time L_i
 - Upper: find S_i for largest possible lead time L₀+L_i
 - Independent optimization for each retailer by successively increasing S_i
- Warehouse parameter S₀
 - Not necessarily convex
 - Bounds
 - Lower: Optimize w.r.t. to upper bounds on S_i
 - Upper: Optimize w.r.t. to lower bounds on S_i
 - Enumeration of values

Exercise 3.a) Determine the optimal parameters **S** for each location following the **METRIC-approach**.

Lambda	5
b	20
hW	1
hR	3
LW	1
LR	2

1) Bound of retailer

$$E(IL_{i}^{+}) = \sum_{i=1}^{S_{i}} jP(IL_{i} = j)$$

$$E(IL_{i}^{-}) = E(IL_{i}^{+}) - (S_{i} - \lambda_{i}\overline{L}_{i})$$

$$N$$

$$C = C_0(S_0) + \sum_{i=1}^{N} \left(h_i E(IL_i^+) + b_i E(IL_i^-) \right)$$
Retailer

Exercise 3.a) Determine the optimal parameters **S** for each location following the **METRIC-approach**.

Lambda	5
b	20
hW	1
hR	3
LW	1
LR	2

2) Approximate stochastic lead time $\overline{L}_i = L_i + \frac{E(IL_0^-)}{\lambda_0}$

Bounds of warehouse

3) Enumarate

S_R	18	17	16	15	14
S_W	2	3	3	4	5
Overall Cost	18.87	18.41	17.96	17.74	17.98

Jupyter notebook will be provided.

Thank you!