Analysis III Problem Sheet 05

Viet Duc Nguyen (395220), Moritz Bichlmeyer (392374) Tutor: Nils - Freitag 12-14 Uhr, MA551

Exercise 1

(i) Sei (Ω, \mathcal{A}) ein messbarer Raum und $f:\Omega\to\mathbb{R}$ messbar. Definiere die Funktion $g:\Omega\to\mathbb{R}$ als

$$g(x) = \begin{cases} \frac{1}{f(x)} & \text{falls } f(x) \neq 0 \\ 0 & \text{sonst} \end{cases}.$$

To prove

g ist eine messbare Funktion.

Proof. Dazu zeigen wir, dass $g^{-1}((c,\infty)) \in \mathcal{A}$ für alle $c \in \mathbb{R}$ gilt.

• Fall 1: $c \ge 0$. Dann ist

$$g^{-1}((c,\infty)) = \{x : f(x) = \frac{1}{d} \text{ für ein } d \in (c,\infty)\}$$
$$= \{x : f(x) \in (0, \frac{1}{c})\}.$$

Beachte, dass $c \neq 0$, sodass die Menge in der zweiten Zeile wohldefiniert ist. Daher ist $g^{-1}((c,\infty)) = f^{-1}((0,\frac{1}{c})) \in \mathcal{A}$.

Fall 2: $c \le 0$. Dann ist

$$g^{-1}((c,\infty)) = g^{-1}((c,0)) \cup g^{-1}((0,\infty)) \cup g^{-1}(\{0\}).$$

Nun gilt $g^{-1}(\{0\}) = f^{-1}(\{0\}) \in \mathcal{A}$, da f messbar ist. Außerdem haben wir

$$\begin{split} g^{-1}((c,0)) &= \{x: f(x) = \frac{1}{d} \text{ für ein } d \in (c,0)\} \\ &= \{x: f(x) = d \text{ für ein } d \in (-\infty,\frac{1}{c})\} \\ &= f^{-1}((-\infty,\frac{1}{d})) \in \mathcal{A}. \end{split}$$

Aus Fall 1 wissen wir, dass $g^{-1}((0,\infty)) \in \mathcal{A}$. Damit ist

$$q^{-1}((c,\infty)) \in \mathcal{A}$$

als Vereinigung messbarer Mengen in \mathcal{A} . Somit ist g eine \mathcal{A} -messbare Funktion.

(ii) Sei $a \in \mathbb{R}$. Es gilt

$$(\sup_{n\in\mathbb{N}}f_n)^{-1}((a,\infty])=\bigcup_{n\in\mathbb{N}}f_n^{-1}(a,\infty]\in\mathcal{A}.$$

Dann ist auch $\inf_{n\in\mathbb{N}} f_n$ messbar, da $\inf_{n\in\mathbb{N}} f_n = -\sup_{n\in\mathbb{N}} (-f_n)$.

Es gilt

$$\limsup_{n\to\infty} f_n = \inf_{m\in\mathbb{N}} g_m$$

mit $g_m = \sup_{n \ge m} f_n$. Da g_m messbar ist, ist auch $\inf_{m \in \mathbb{N}} g_m$ messbar und somit $\lim \sup_{n \to \infty} f_n$ messbar

Ebenso kann man zeigen, dass $\liminf_{n\to\infty} f_n$ messbar ist, indem,

$$\liminf_{n \to \infty} f_n = \sup_{m \in \mathbb{N}} g_m$$

 $\min g_m = \inf_{n > m} f_n.$

Daher ist $f=\lim_{n\to\infty}f_n$ ebenfalls messbar, falls f_n für alle $n\in\mathbb{N}$ messbar ist, da $f=\limsup_{n\to\infty}f_n=\liminf_{n\to\infty}f_n$.

(iii) Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar.

To prove

f ist messbar.

Proof. Aus der Vorlesung wissen wir, dass stetige Funktionen messbar sind (siehe Beispiel 1.44 (2) im Skript von Mehl, Kapitel 1, Ma β - und Integrationstheorie). Da f differenzierbar ist, ist f insbesondere auch stetig. Daher ist f messbar.

To prove

f' ist messbar.

Proof. Es gilt

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}, \quad \forall x \in \mathbb{R}.$$

Definiere die Funktionenfolge $f_n(x):=\frac{f(x+\frac{1}{n})-f(x)}{\frac{1}{n}}$ für alle $n\in\mathbb{N}$. Dann konvergiert $f_n\to f'$ punktweise. Insbesondere ist f_n für alle $n\in\mathbb{N}$ messbar, da f messbar ist.

Exercise 2

(i) Sei $(\Omega, \mathcal{A}, \mu)$ ein vollständiger Maßraum. Seien f und g numerische Funktionen mit f(x) = g(x) für alle $x \in \Omega \setminus N$ mit $\mu(N) = 0$.

To prove

f ist messbar genau dann, wenn g messbar ist.

Proof. Sei f messbar. Wir wollen zeigen, dass g messbar ist. Sei $X \in \mathcal{A}$. Wir müssen zeigen, dass $g^{-1}(X) \in \mathcal{A}$.

Schreibe die Menge $g^{-1}(X)$ als

$$g^{-1}(X) = \underbrace{\{x \in \Omega: g(x) \in X, f(x) = g(x)\}}_{:=A} \cup \underbrace{\{x \in \Omega: g(x) \in X, f(x) \neq g(x)\}}_{:=B}.$$

Beachte, dass $B \subset N$ und da μ ein vollständiges Maß ist, ist B als Teilmenge einer Nullmenge ebenfalls eine Nullmenge. Somit ist B messbar, denn Nullmengen sind messbar. Wir erhalten also

$$B \in \mathcal{A}$$
.

Zudem ist

$$A = \underbrace{f^{-1}(X)}_{\in A} \cap \{x \in \Omega : f(x) = g(x)\}.$$

Wir sehen auch, dass $\{x \in \Omega : f(x) = g(x)\} = \Omega \setminus N \in \mathcal{A}$ messbar ist, da Ω und N messbar sind und \mathcal{A} unter Differenzbildung abgeschlossen ist. Damit ist

$$A \in \mathcal{A}$$
.

da A als Schnitt zweier messbarer Mengen darstellbar ist.

(ii) Nicht bearbeitet.