MILA To implement a classifier using an open-source dataset.

OBJECTIVE.

- 7 To understand and implement a supervised machine learning classifier.
- > To train and text the classifier on an Source Lata (Iris.).
- of To evaluate the classifiers performance using accuracy metrics:

PSEUDOCODE

IMPORT PANDAS AS PD

from sklearn, model-selection Import train-test-split. FROM Skleann. linear-model Import Logistic Regression.

AROM steern-metrics Import accuracy-score.

DATA = load_mis_dataset()

X= data. features

Y= data. lables.

X-train /X-test, y-train, y-test = train_test split(x, y, test_size=0.2)

model = Logistick exerción () model-fif(x-train, y-train)

Y- pred = model. predict (x-test)

accuracy = accuracy - score (y-test, y, pred)

PRINT ("ACCUPACY", accuracy")

OBSERVATION

DATASET: TRIS Data set (150 Samples, 1/1 features, Sclauser)

CLASSIFIER: Logistic Regression

Pest / Frain Split: 8x - Training , 20%. Testing

ACCURACY

Classification Report:

Setosa Versicolor virginica	Precisión 1-00 1-00 0-72	recall 1.00 0-62 1.00	1-score 1.00 0.84	13 13 19
acura cy macro ang weightedass	0-91	0-87 0-89	७-89 ७-8१ ०-88	45

A Clarifer was successfully Amplemented using the open-source Iris dataset the modal achieved high accuracy indicating effective classification of flower species

