Лекция 6

Есть генеральная совокупность, хотим оценивать её по выборке, но эти оценки зачастую оказываются смещёнными.

Метод максимального правдоподобия

Есть выборка и есть задачи:

- 1. Найти распределение. Предположим экспоненциальное
- 2. Подобрать параметр, чтобы распределение максимально точно подходила под выборку. То есть подобрать такое λ , чтобы для каждого значения выборки его вероятность была бы максимальной.

Решение:

 $L(\lambda|x_0)=p(x_0,\lambda)$, где p - плотность вероятности.

$$L(x_1,...,x_n,\lambda)=L(\lambda|x_1,...,x_n)=\prod_{i=1}^n p(x_i,\lambda) o \max$$

Экспоненциальное

$$\prod_{i=1}^n p(x_i,\lambda) = \lambda^n \cdot e^{-\lambda \cdot (x_1+...+x_n)}$$
 $\ln = n \cdot \log \lambda - \lambda \cdot (x_1+...+x_n)$ $rac{\partial \ln}{\partial \lambda} = rac{n}{\lambda} - (x_1+...+x_n) = 0$ (так как ищем экстремум по λ) $\lambda = rac{1}{X}$

Бернулли

$$\xi = \begin{cases} 0\\1 \end{cases}$$

$$p(\xi) = \begin{cases} \theta, \ \xi = 1\\1 - \theta, \ \xi = 0 \end{cases}$$

$$\ln(\xi) = \begin{cases} \ln \theta\\\ln(1 - \theta) \end{cases}$$

$$L(\theta) = \theta^m \cdot (1 - \theta)$$

$$\ln(\theta) = m \cdot \log \theta + (n - m) \cdot \log(1 - \theta)$$

$$\ln'(\theta) = \frac{m}{\theta} - \frac{n - m}{1 - \theta} = 0 \Rightarrow \theta = \frac{m}{n}$$

Нормальное распределение

$$L(\mu,\sigma|x) = rac{1}{\sqrt{2\cdot\pi}\cdot\sigma}\cdot e^{rac{-(x-\mu)^2}{2\cdot\sigma^2}}$$

$$L(\mu,\sigma|x_1,...,x_n) = \prod_{i=1}^n rac{1}{\sqrt{2\cdot\pi}\cdot\sigma}\cdot e^{rac{-(x_i-\mu)^2}{2\cdot\sigma^2}}$$

Максимальное значение достигается при $\mu = ar{X}, \; \sigma = \sqrt{rac{\sum (X_i - ar{X})^2}{n}}$

Равномерное распределение

$$L(x_1,...,x_n) = egin{cases} rac{1}{(b-a)}, \ x \in [a,b] \ 0, \ x
otin [a,b] \end{cases}$$

При 1 эксперименте метод правдоподобности даст распределение от 0 до b, а метод моментов от 0 до $2 \cdot b$

Доверительные интервалы

Доверительный интервал для μ

Предположим, что μ - неизвестно, σ - известно

 $Pr(ar{X}-rac{\sigma}{\sqrt{n}}\cdot Z_{rac{\epsilon}{2}}<\mu<ar{X}+rac{\sigma}{\sqrt{n}}\cdot Z_{1-rac{\epsilon}{2}})=1-\epsilon$ - доверительная вероятность (вероятность попасть в доверительный интервал).

Алгоритм:

- 1. Выбор ϵ .
- 2. Подсчёт среднего.
- 3. Подбор σ для соответствия заданной вероятности.

 $1-\epsilon$ - уровень доверия, вероятность того что μ попадёт в нужный интервал.

Если в гипотезах мы смотрели, чтобы значение принадлежало инервалу, то сейчас мы смотрим границы этого интревала.

Если
$$\sigma^2$$
 неизвестна, то $P_{ exttt{дов}}=Pr(ar{X}-rac{S}{\sqrt{n}}\cdot t_{rac{\epsilon}{2}}^{n-1}<\mu$

Доверительный интервал для σ^2

 u_lpha - кватиль X^2 для n-1 степени свободы.

 v_lpha - квантиль X^2 для n степеней свободы.

Если μ известно

$$P_{ ext{доверительный для дисперсии}}\{rac{n\cdot s^2}{V_{1-rac{\epsilon}{2}}}<\sigma^2<rac{n\cdot s^2}{V_{rac{\epsilon}{2}}}\}$$