- 1. {8 marks} Let *G* be a 4-regular connected planar graph with a planar embedding where each face has degree either 3 or 4.
 - (a) {5 marks} Determine the exact number of faces of degree 3.

Solution. Suppose G has n vertices, m edges, s_3 faces of degree 3 and s_4 faces of degree 4. From the handshaking lemma, we get 2m=4n, which implies that $n=\frac{1}{2}m$. From the handshaking lemma for faces, we get $2m=3s_3+4s_4$. From Euler's formula, we get $n-m+s_3+s_4=2$, or $s_3+s_4=2-n+m=2-\frac{1}{2}m+m=2+\frac{1}{2}m$. This implies that $4s_3+4s_4=8+2m$. So then the equation from the handshaking lemma for faces become

$$2m = 3s_3 + 4s_4 = (4s_3 + 4s_4) - s_3 = 8 + 2m - s_3.$$

This gives $s_3 = 8$, so there are 8 faces of degree 3.

(b) {3 marks} Suppose in addition, every edge has a face of degree 3 on one side, and a face of degree 4 on the other side. Determine the number of vertices, edges, and faces of degree 4 in *G*.

Solution. Let F_3 , F_4 be the sets of all faces of degree 3, 4, respectively. Consider the two sums $\sum_{f \in F_3} \deg(f) = 3f_3$ and $\sum_{f \in F_4} \deg(f) = 4f_4$. The criteria given in this question means that each edge contributes 1 to each of these sums. Therefore, $3f_3 = 4f_4$. Since $f_3 = 8$ from part (a), $f_4 = 6$. This means that $m = \frac{3}{2}s_3 + 2s_4 = 24$, and $n = \frac{1}{2}m = 12$.

- 2. $\{7 \text{ marks}\}\text{Let } G \text{ be a graph. The complement of } G \text{, denoted } \overline{G} \text{, is the graph where } V(\overline{G}) = V(G) \text{, and } uv \in E(\overline{G}) \text{ if and only if } uv \notin E(G). \text{ (In other words, non-adjacent pairs of vertices in } G \text{ become edges in } \overline{G} \text{, and vice versa.)}$
 - (a) $\{2 \text{ marks}\}\$ Find a graph G on 7 vertices such that both G and \overline{G} are planar. Draw planar embeddings of both your G and \overline{G} .

Solution. This is one example.

(b) $\{5 \text{ marks}\}\$ Prove that if G has at least 11 vertices, then at least one of G and \overline{G} must be nonplanar.

Solution. Suppose G has $n \ge 11$ vertices. Suppose by way of contradiction that both G and \overline{G} are planar. Then $|E(G)| \le 3n-6$ and $|E(\overline{G})| \le 3n-6$. This means that $|E(G)|+|E(\overline{G})| \le 6n-12$. Since there are $\binom{n}{2}$ edges in K_n , we have $|E(G)|+|E(\overline{G})|=\binom{n}{2}=\frac{1}{2}n(n-1)$. This implies that $\frac{1}{2}(n^2-n)\le 6n-12$. This simplifies to $n^2-13n+24\le 0$. Using the quadratic formula, we can factor this to $\left(n-\frac{13+\sqrt{73}}{2}\right)\left(n-\frac{13-\sqrt{73}}{2}\right)\le 0$. Note that $\frac{13+\sqrt{73}}{2}\sim 10.7<11$. Since $n\ge 11$, both binomials in the inequality are positive, which contradicts the fact that the product is non-positive.

3. {5 marks} Prove that any planar embedding of a simple connected planar graph contains a vertex of degree at most 3 or a face of degree at most 3.

Solution. Suppose by way of contradiction that there is a planar embedding of G where every vertex has degree at least 4 and every face has degree at least 4. Suppose G has n vertices, m edges and s faces. By the handshaking lemma, $2m \ge 4n$, so $n \le m/2$. By the handshaking lemma for faces, $2m \ge 4s$, so $s \le m/2$. By Euler's formula,

$$2 = n - m + s \le m/2 - m + m/2 = 0.$$

This is a contradiction.

- 4. {9 marks} For each of the following graphs, determine whether it is planar or not. Prove your assertions.
 - (a) This graph is planar. We draw a planar embedding here.

(b) This graph is not planar. It contains an edge-subdivision of $K_{3,3}$ shown below (green vertices and blue vertices represent the 6 main vertices in $K_{3,3}$).

(c) This graph is planar. We draw a planar embedding here.

