Power Series

A power series is a fundamental concept in mathematics, representing an infinite sum of terms where each term is a constant multiplied by a variable raised to a non-negative integer power. The general form of a power series centered at x = a is:

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

where c_n are constants called the coefficients of the series, and a is the center of the series.

Taylor Series

A Taylor series is a specific type of power series that represents a function as an infinite sum of terms calculated from the function's derivatives at a single point. For a function f(x) that is infinitely differentiable at a point a, its Taylor series is:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

where $f^n(a)$ represents the nth derivative of f evaluated at point a.

Application to the Gaussian Function

An important application of power series is in representing the Gaussian function. The function $f(x)=e^{-x^2}$ is significant in mathematics, particularly in probability theory and statistics. It represents the unnormalized probability density function of a Gaussian distribution with zero mean and unit variance.

The Taylor series expansion of this function around x = 0 provides a power series representation:

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \dots$$

This expansion allows us to approximate and analyze the Gaussian function using polynomial terms, demonstrating the practical utility of power series in mathematical analysis.

Power Series and Topological Data Analysis

Power series, particularly Taylor series, provide a link between a function and its derivatives. This connection can be leveraged in topological data analysis (TDA), where derivatives play a crucial role in boundary extraction.

Power Series and Derivatives

Recall that a Taylor series expansion of a function f(x) around a point a is given by:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

Here, each term involves a derivative of f(x) at point a. This series effectively encodes all the local derivative information of the function into a single expression.

Derivatives as Boundary Extractors

In TDA, derivatives are often used as boundary extractors. The key idea is that the derivative of a function highlights areas of rapid change, which often correspond to boundaries or features in data.

- 1. First Derivative: Identifies points of rapid change (potential boundaries).
- 2. **Second Derivative**: Highlights changes in the rate of change (curvature information).
- 3. **Higher Derivatives**: Provide increasingly fine-grained information about the function's behavior.

Combining Power Series and TDA

By using the Taylor series representation, we can connect the global behavior of a function to its local derivative information:

- Multi-scale Analysis: Different terms in the Taylor series correspond to different scales of analysis. Lower-order terms (involving lower derivatives) capture broad features, while higherorder terms capture finer details.
- 2. **Feature Extraction**: By truncating the Taylor series at different orders, we can extract features at various scales, similar to how persistent homology in TDA examines features across different scales.
- 3. **Boundary Detection**: The coefficients of the Taylor series (which are scaled derivatives) can be used to detect boundaries in data. Large coefficients indicate significant local changes.
- 4. **Smoothing and Noise Reduction**: Lower-order Taylor approximations can serve as smoothed versions of the original function, potentially helping to reduce noise in data analysis.
- 5. **Topological Signatures**: The sequence of Taylor coefficients can be viewed as a topological signature of the function, capturing its local behavior at increasingly fine scales.

Example: Gaussian Function

Consider our earlier example, $f(x) = e^{-x^2}$. Its Taylor series is:

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \dots$$

In TDA, we might use this function as a kernel for smoothing data. The Taylor series allows us to understand how this smoothing behaves at different scales:

- The constant term (1) represents the global average.
- The quadratic term (-x^2) captures the primary Gaussian "bell" shape.

• Higher-order terms refine the shape, particularly near the tails.

By analyzing how topological features persist as we include more terms, we gain insight into the multi-scale structure of data smoothed by this Gaussian kernel.

Figure 1: Graph of $f(x) = e^{-(-x^2)}$ and its Taylor polynomial approximations

Properties

- 1. **Symmetry**: The function is symmetric about the y-axis, meaning f(x) = f(-x) for all x.
- 2. **Maximum**: The function reaches its maximum value of 1 at x = 0.
- 3. **Decay**: As |x| increases, the function rapidly approaches 0.
- 4. **Integral**: The integral of this function over the entire real line is equal to $\sqrt{\pi}$, which is fundamental in probability theory.

Applications

This function appears in various fields:

- **Probability Theory**: It forms the kernel of the normal distribution.
- **Signal Processing**: Used in Gaussian filters for noise reduction.
- Quantum Mechanics: Appears in the wavefunction of the quantum harmonic oscillator.
- Heat Transfer: Describes temperature distribution in certain scenarios.

The power series representation allows for efficient computation and analysis of this function in these and many other applications.

Boundary Operator and Product Rule

The boundary operator δ acts on spaces, similar to differentiation acting on functions. For spaces A and B:

$$\delta(A \times B) = (\delta A \times B) \cup (A \times \delta B)$$

This resembles the product rule for differentiation:

$$\frac{\partial}{\partial x}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$$

Lists and Geometric Series

Define a deletion operator D on lists. For a list of n elements x^n :

$$D(x^n) = nx^{n-1}$$

Let L represent all finite lists. We can express L as:

$$L = 1 + xL$$

Solving for L:

$$L = \frac{1}{1-x}$$

This is the geometric series:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$$

Interpreting this in terms of lists:

- 1: empty list
- x: list with one item
- x^2 : list with two items
- ...and so on

This demonstrates how concepts from calculus (derivatives, Taylor series) can appear in computer science contexts, specifically in analytic combinatorics.