Ciências / Ciência da computação / Introduction to the Theory of Computation (3rd Edition)

Exercício 1

Capítulo 1, Página 83

Introduction to the Theory of Computation

ISBN: 9781133187790

Índice

Solução 🕏 Certificado

Passo 2 2 de 7

Part (a)

Start state is the one in which the arrow enters from "nowhere", i.e. not from any other state. We see that starting states are following:

 $M_1: q_1$

 $M_2: q_1$

08/12/2023, 17:58

Passo 3 3 de 7

Part (b)

Every accept state is double circled. We see that sets of accept states are following:

 $M_1: \{q_2\}$

 $M_2: \{q_1, q_4\}$

Passo 4 4 de 7

Part (c)

We just need to follow the appropriate arrows, starting from start states. Here are the sequences:

 $M_1: q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_1 \xrightarrow{b} q_1$

 $M_2: q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} q_4$

Passo 5 5 de 7

Part (d)

Now we need only determine whether last state of previous sequences is an accept state or not.

• M_1 : Rejects.

• M_2 : Accepts.

Passo 6 6 de 7

Part (e)

When input is empty word ε , the machine just enters the start state and stays there. Hence the question whether machine accepts empty string ε is equivalent to whether start state is an accept state.

• M_1 : Rejects.

• M_2 : Accepts.

Resultado 7 de 7

We explain what every term means and give solutions.

Avaliar esta solução

< Exercício 15

公公公公公

Exercício 2 >

Privacidade Termos de serviço

Português (BR) ✓