8-45 质量不计的刚性轴上固连着两个质量各为 m 的小球 A 和 B,在图示瞬时,刚性轴的角速度为 ω ,角加速度为 α 。试求图示各种情况中的惯性力系向点 O 简化的结果,并指出哪些是静平衡,哪些是动平衡。

题 8-45 图

解: a) 小球 A 和 B 的加速度为:

法向加速度: $a_n = r\omega^2$, 切向加速度: $a_t = r\alpha$;

法向惯性力: $F_{n}^{I} = ma_{n}$, 切向惯性力: $F_{+}^{I} = ma_{+}$;

将此惯性力系向 O 点简化,得到:

惯性力系的主矢: $F_R^{\rm I}=0$: 惯性力系的主矩: $M_O^{\rm I}=2mra_t=2mr^2\alpha$ 。 故此,该惯性力系的主矩不会引起轴承的动反力,即(a)为动平衡。

(b) 小球 A 和 B 的加速度和惯性力大小与 a)相同,将此惯性力系向 O 点简化,得到惯性力系的主矢: $F_R^{\rm I}=0$;

惯性力系的主矩:

$$\begin{split} M_{Oz}^{1} &= 2mra_{t} = 2mr^{2}\alpha\;, \quad M_{Ox}^{1} = mha_{n} = mrh\omega^{2}\;, \quad M_{Oy}^{1} = mha_{t} = mrh\alpha\\ M_{O}^{1} &= \sqrt{\left(M_{Ox}^{1}\right)^{2} + \left(M_{Oy}^{1}\right)^{2} + \left(M_{Oz}^{1}\right)^{2}} = mr\sqrt{h^{2}\omega^{4} + 4r^{2}\alpha^{2} + h^{2}\alpha^{2}} \end{split}$$

由此可见,该转轴并非中心惯量主轴,即惯性力系的主矩 M_{ox}^{I} 、 M_{oy}^{I} 将引起轴承的动反力,所以,(b)为静平衡,但非动平衡。

(c) 小球 A 和 B 的加速度为

法向加速度: $a_{An} = r\omega^2$, $a_{Bn} = 2r\omega^2$;

切向加速度: $a_{At} = r\alpha$, $a_{Bn} = 2r\alpha$.

法向惯性力: $F_{An}^{I} = ma_{An}$, $F_{Bn}^{I} = ma_{Bn}$,

切向惯性力: $F_{At}^{I} = ma_{At}$; $F_{Bt}^{I} = ma_{Bt}$.

将此惯性力系向 O 点简化,得到:

惯性力系的主矢: $F_{Ry}^{\rm I}=mr\omega^2$ (与y轴同向), $F_{Ry}^{\rm I}=mr\alpha$ (与x轴同向);

$$F_{I} = \sqrt{(F_{Rx}^{I})^{2} + (F_{Ry}^{I})^{2}} = mr\sqrt{\omega^{4} + \alpha^{2}}$$

惯性力系的主矩: $M_O^{\rm I} = M_{Oz}^{\rm I} = 5mr^2\alpha$

所以, 该惯性力系无法动平衡, 因质心不在转轴上, 因此也难于静平衡。

(d) 小球 A 和 B 的加速度为:

法向加速度: $a_n = r\omega^2 \sin \theta$, 切向加速度: $a_t = r\alpha \sin \theta$;

法向惯性力: $F_n^I = ma_n$, 切向惯性力: $F_t^I = ma_t$;

将此惯性力系向 O 点简化,得到:

注意到: ①法向惯性力与 y 轴平行,且与 z 轴相交,故仅对 x 轴存在非零的力矩; ②切向惯性力仅与 x 轴平行,故对对 y 轴和 z 轴均存在非零的力矩。

惯性力系的主矢: $F_R^{\rm I} = 0$;

惯性力系的主矩: $M_{Ox}^{I} = 2F_{n}^{I}r\cos\theta = 2mr^{2}\omega^{2}\sin\theta\cos\theta$,

 $M_{Oy}^{\mathrm{I}} = 2F_{\mathrm{t}}^{\mathrm{I}}r\sin\theta = 2mr^{2}\alpha\sin^{2}\theta , \quad M_{Oz}^{\mathrm{I}} = 2F_{\mathrm{t}}^{\mathrm{I}}r\cos\theta = 2mr^{2}\alpha\sin\theta\cos\theta .$

$$M_{O}^{I} = \sqrt{\left(M_{Ox}^{I}\right)^{2} + \left(M_{Oy}^{I}\right)^{2} + \left(M_{Oy}^{I}\right)^{2}} = 2mr^{2} \sin \theta \sqrt{\omega^{4} \cos^{2} \theta + \alpha^{2} \sin^{2} \theta}$$

因此,此惯性力系无法保持动平衡,只能静平衡。