Final Project Review

Stride April 25, 2018

Group Members

Advisor Prof. Tessier

Richie Hartnett CSE

Joe Menzie CSE

Jarred Penney EE

Jack Higgins EE

Department of Electrical and Computer Engineering

Advisor : Professor Tessier

What is the Problem?

- Parkinson's Disease (PD) makes walking challenging
- Physical therapy and other treatments are expensive
- Limited inexpensive methods of monitoring exercises outside of clinical environment

What is Stride?

- Low cost array of wearable sensors that collects body movement information, designed for those with Parkinson's Disease
- Provide real-time feedback and track long term performance progress
- Used in home as well as in clinical environment

Neuro Training

- Vibrations on knee to indicate stride length error
 - Patient-specific stride length threshold
 - Two levels of vibrations depending on severity of error (both benign)

- Auditory Cueing
 - Rhythms played via app to stimulate proper cadence
 - Recommended by a Neurological PT

System Requirements

- Accurately collect movement data to appropriately monitor an individual's:
 - Stride length
 - Cadence
 - Heel-to-toe motion
 - Freezing
- Provide real-time feedback to correct stride length during exercise (less than 100ms)
- Store and display data Android application to track long term patient progress
- Lightweight product that is easy for patient to put on
 - Sensor systems < 1 pound each
 - Waist clip (Raspberry Pi + power supply) < 1 pound
- Sensor systems and Raspberry Pi will have battery life of greater than 2 hours

FPR Block Diagram

Hardware Components (Sensor Systems)

Hardware Component	Shoe (x2)	Knee Sleeve (x2)
РСВ	Yes	Yes
Processor	Atmega328p	Atmega328p
Wifi	No	No
Bluetooth	HC-05	HC-05
Battery	Lithium Polymer	Lithium Polymer
Feedback Circuit	No	Yes
IMU	BNO055	BNO055

Hardware Components (Waist Clip Pouch)

Waist Clip Pouch

- Raspberry Pi
 - Processor
 - Bluetooth
 - Wifi
- Lithium Ion Battery

Data Analysis-Ankle

- Outputs: stride length and cadence
- How it works:
 - Determine step by examining sensor orientation
 - \circ Capture smallest angle in step = θ
 - Stride Length (theoretical) = L*cos(θ),
 where L is length of leg
 - Stride Length (after experimentation)
 = L*(K)*e^(-M*θ)

(L = leg length; K,M = calibration constants; θ = angular extent of swing phase)

Cadence = steps/time

Data Analysis-Ankle (Cont'd)

Trendline of measured vs. calculated stride length

- Stride length equation and feedback work best when calibrated to the specific user
- Can set feedback thresholds based on severity of disease; therapist's discretion
- Use progressive values or standardized values

Data Analysis-Shoe

- Outputs: heel-to-toe weight transfer and freezes
- How it works:
 - Utilize orientation data to determine range of angles in steps
 - Greater range of angle = better heel-to-toe weight transfer
 - Freeze recorded if angle does not change above 5° threshold

Visual System Communication Overview

System Communication: Bluetooth Connections

HC-05

- Start and Stop signals
- Synchronous intake

System Communication: MQTT Connections

- Publish/Subscribe Messaging
- App commands
- Amazon IoT Topic

```
dataTopic Dec 8, 2017 10:41:44 AM -0500

{
    "sessionID": "1_49",
    "magnetometerz": "0.66",
    "accelerometer x": ""-3.18",
    "user": "rhartnett",
    "accelerometer x": "8.61",
    "magnetometer y": "1.03",
    "gyroscope x": "-0.42",
    "gyroscope x": "-0.42",
    "gyroscope z": "-7.84",
    "accelerometer y": "2.03",
    "gyroscope z": "-7.84",
    "accelerometer y": "-2.02"
}
```


System Communication: Other Wifi Connections

- Application
- Rules are used to relay information

<u>Application Backend</u>

- Used AWS Mobile Hub to integrate backend with Android Application
- Created multiple NoSQL database tables to store application data
- Database consists of 6 tables
 - User Information
 - Patient List for Therapist
 - Patient Workout List
 - Overall Workout Performance
 - Session Workout Performance
 - Session Error Check

<u>UMassAmherst</u>

Application

- Android application designed in Android Studio
- Functionality:
 - Patient/Therapist Login
 - Therapist can program workouts for specific patient
 - Therapist can view patients session performance
 - Patient can view session performance
 - Patient can view and perform programmed workouts
 - Patient workout auditory queuing

Proposed FDR Deliverables

- Fully functional knee and shoe sensor with data analysis
- Breadboard → PCB
- Real-time feedback incorporated into data analysis
- Fully functional and polished application
 - Be able to start workout from application

Goals of Demo

- Show basic data analysis using knee sensor system and view data received by the Raspberry Pi over BlueTooth
- Show data movement through all systems
 - BNO055 → Atmega328 → HC-05 → Raspberry Pi → AWS backend → Android Application
- Show simultaneous sensor data transfer
- Show feedback system functionality
- Show application design and functionality
 - login/create account
 - Therapist side
 - Patient side

Thank You

Questions?