MNIST Monte Carlo Dropout Grid — Encoder vs Projection Scope

1. Configuration

- Backbone: openai/clip-vit-base-patch32 (vision tower only).
- **Dataset slice**: 500 MNIST test images (digits 0–9 balanced as drawn).
- Sampling: 16 Monte Carlo passes per image, microbatch size 4, deterministic seeds.
- Dropout injection: DropoutAdapter wraps every transformer block (vision_model.encoder.layers.
 {0..11}); the projection head (visual_projection) is toggled on or off per condition.
- **Probabilities**: $p \in \{0.10, 0.05, 0.01\}$.
- Outputs: metrics.csv per run (trace, logdet, offdiagonal mass) plus consolidated summary.json files.
- Run directories: runs/mnist_alllayers_p010_T16 , runs/mnist_encoder_p010_T16 , runs/mnist_alllayers_p005_T16 , runs/mnist_encoder_p005_T16 , runs/mnist_alllayers_p001_T16 , runs/mnist_alllayers_p001_T16 .

2. Aggregate Metrics (500 samples each)

Dropout p	Scope	mean(trace)	σ(trace)	mean(logdet)	mean(off- diag mass)
0.10	encoder + projection	39.08	3.07	-6859.14	4042.69
	encoder				

0.10 Dropout p	only	31.26	1.77	-6863.60	3759.19 mean(off-
	e ncope	mean(trace)	σ(trace)	mean(logdet)	diag
0.05	+	32.65	3.41	-6863.61	3 509.55)
	projection				
0.05	encoder only	27.71	2.67	-6866.86	3419.52
0.01	encoder + projection	13.51	4.92	-6880.46	1698.80
0.01	encoder only	11.76	4.06	-6883.16	1608.87

Key takeaways: - Adding dropout to the projection head consistently boosts total covariance trace (e.g., +7.82 at p=0.10) and pushes log-volume (logdet) upward by 2–4 units despite identical stochastic depth elsewhere. - Variance collapses rapidly as p falls: moving from 0.10 \rightarrow 0.01 cuts trace ~3× and off-diagonal mass ~2.4×, indicating much tighter embedding clouds. - Lowering p increases relative dispersion (σ /mean) because many samples approach deterministic behaviour; tails get heavier even as overall variance shrinks.

Overall, projection dropout consistently lifts the mean statistics while making the distribution broader: the standard deviation of trace climbs from 1.77 (encoder only, p = 0.10) to 3.07 once the projection head participates, and the heavy-tailed behaviour becomes especially visible at p = 0.01 where a handful of samples retain double-digit trace while the majority huddle below 15.

Reading the log-determinant: the values hover around -6.86×10^3 because the covariance is 512-dimensional. Each eigenvalue is the variance along one embedding axis; their product is the determinant, so the logdet is the sum of 512 log-variances. Dividing the mean logdet by 512 gives an average log-eigenvalue of about -13.4 (variance $\approx 1.6\times10^{-6}$), which is a compact, intuitive scale. A seemingly small +4 shift in logdet still matters: $\exp(4)\approx54$, so the uncertainty volume expands $\sim54\times$ even though the baseline offset is dominated by dimensionality.

Aggregate dropout metrics

Projection dropout gain

Trace distribution across configurations

3. Run-by-Run Snapshots

- p = 0.10, encoder + projection
 (runs/mnist_alllayers_p010_T16): trace mean 39.08
 ± 3.07, logdet −6859.14 ± 1.72, off-diagonal mass
 4042.69 ± 323.16. Projection dropout adds 7.82 trace
 points over the encoder-only baseline and broadens
 covariance by ≈284 units.
- p = 0.10, encoder only
 (runs/mnist_encoder_p010_T16): trace 31.26 ±
 1.77, logdet -6863.60 ± 2.27, off-diagonal 3759.19 ±

344.36. Variance remains elevated relative to lower p values but the embedding cloud is markedly tighter without projection noise.

p = 0.05, encoder + projection (runs/mnist_alllayers_p005_T16): trace 32.65 ± 3.41, logdet -6863.61 ± 1.71, off-diagonal 3569.95 ± 387.15. Variability contracts ≈17% versus p=0.10 yet projection dropout still delivers a 150-unit covariance boost.

- p = 0.05, encoder only
 (runs/mnist_encoder_p005_T16): trace 27.71 ±
 2.67, logdet -6866.86 ± 1.88, off-diagonal 3419.52 ±
 381.56. This setting offers the best variance/complexity
 trade-off if projection dropout is undesirable.
- p = 0.01, encoder + projection
 (runs/mnist_alllayers_p001_T16): trace 13.51 ±
 4.92, logdet -6880.46 ± 3.19, off-diagonal 1698.80 ±
 714.14. Embeddings nearly collapse to the deterministic limit, making stochastic estimates noisier.
- p = 0.01, encoder only
 (runs/mnist_encoder_p001_T16): trace 11.76 ±
 4.06, logdet -6883.16 ± 3.06, off-diagonal 1608.87 ±
 642.90. The smallest variance budget but also the most fragile estimates; increasing the number of passes would help.

4. Representative Samples

- p = 0.10 encoder + projection: index 439 (digit 6) reached trace 48.61 with off-diagonal 4676, highlighting how projection dropout creates very wide clouds; the tightest case in this run was index 282 (digit 7) with trace 26.85 and off-diagonal 2728.
- p = 0.10 encoder only: index 178 (digit 1) topped trace at 35.58 while index 334 (digit 3) compressed to 24.20 with low off-diagonal 2550, showing the narrower spread without projection noise.
- p = 0.05 encoder + projection: index 418 (digit 2) recorded trace 42.50 and off-diagonal 4157; at the other extreme index 110 (digit 8) shrank to trace 17.33 and off-diagonal 1958 as dropout probability fell.

- p = 0.05 encoder only: index 153 (digit 5) still hit trace 33.54 whereas index 437 (digit 3) dropped to 18.61, underscoring how encoder-only dropout keeps variance moderate.
- p = 0.01 encoder + projection: index 72 (digit 2) managed trace 29.17 yet most samples clustered much lower, such as index 334 (digit 3) at trace 3.96 with off-diagonal 423.
- p = 0.01 encoder only: index 400 (digit 2) held the peak trace 22.95 while index 374 (digit 8) nearly collapsed to trace 3.30, confirming that low p with no projection dropout becomes almost deterministic.

Digit-wise trace comparison

5. Digit-Level Notes

- At p = 0.10 the model with projection dropout shows the largest trace for digit 1 (39.87) and the smallest for 3 (38.17), pointing to class-dependent sensitivity.
- Removing projection dropout shifts the maximum trace to digit 7 (31.58) and the minimum to 0 (30.89), suggesting the projection head amplifies uncertainty for faces with vertical strokes.
- At p = 0.05, digits 1 (max) and 8 (min) dominate the spread; at p = 0.01 the highest variance comes from 1 (all layers) or 9 (encoder only) while 5/8 are the tightest.
- Off-diagonal mass follows the same trend: projection dropout contributes ~150–284 extra units at higher p, indicating broader cross-dimensional coupling.

6. Sampling Barometer

• Run time per sweep (CPU only) was 6-7 minutes; total

- grid completed in ~40 minutes.
- Each pass re-enables dropout
 (model.apply(enable_mc_dropout)) so non-dropout
 modules stay in evaluation mode.
- No predictive head was evaluated (--no-predictive), letting us attribute covariance changes purely to the vision embeddings.

7. Recommendations

- If projection dropout is computationally acceptable, keep it: it consistently expands uncertainty volume without destabilising logdet.
- 2. For lighter stochasticity (p \leq 0.01) consider increasing passes beyond 16—variance estimates become noise-dominated otherwise (σ comparable to the mean).
- 3. Next step: extend the grid to include predictive heads (remove --no-predictive) to see how embedding spread translates into classification uncertainty.