

Data Sheet

For **NT71391**TFT-LCD Panel Timing Controller

V1 1

CONTENTS

1	REVISION HISTORY	3
2	FEATURES	4
3	GENERAL DESCRIPTION	5
4	PIN CONFIGURATION	6
5	BLOCK DIAGRAM	9
5.1	FUNCTION BLOCK DIAGRAM	9
5.2	SYSTEM APPLICATION DIAGRAM	11
6	PIN DESCRIPTIONS	12
7	FUNCTION DESCRIPTION	
	I2C INTERFACE FUNCTION	21
7.2	BUILT-IN SELF TEST PATTERNS	
7.3	GAMMA CORRECTION FUNCTION	23
7.4	MIPI/LVDS RECEIVER.	24
7.5	MINI-LVDS TRANSMITTER	33
8	ABSOLUTE MAXIMUM BATING	39
9	DC AND AC ELECTRICAL CHARACTERISTICS	40
10	ORDER INFORMATION	55
11	APPLICATION CIRCUIT	56
12	PACKAGE INFORMATION	59
13	APPENDIX	62

Revision History

Specification Revision History									
Version	Content	Editor	Release Date						
0.1	1. Preliminary SPEC.	Wei Yeh	2011/06/09						
0.2	 Add 60-pin information Add power-on behavior Modify MIPI figure 	Wei Yeh	2011/07/06						
0.3	 Add 46-pin application circuit Remove OE2 in 46-pin package Add VDD 3.3v Info. 	Wei Yeh	2011/07/21						
0.4	1. Add 60-pin application circuit	Wei Yeh	2011/07/22						
0.5	Add T _{CK-CK} in LVDS Receiver Differential Input (AC Characteristics)	Wei Yeh	2011/08/11						
0.6	 Add NT71391QG-001 information Pin assignment modified in 46-pin package Pin description modified in 46-pin package pin No.2: HSYNCO -> OE2/HSYNCO pin No.7: PWMI -> HSYNCO/PWMI 	Wei Yeh	2011/08/18						
0.7	Modify 60-pin pin description (POL) Modify 46-pin application circuit	Wei Yeh	2011/10/28						
0.8	1. Modify Figure 15(p.34) and setting table of CLKDLY(p.35) 2. Modify Input Setting Signal(p.39)	Wei Yeh	2011/11/01						
1.0	 Add MIPI power on sequence in appendix Modify 60-pin application circuit (remove VMM) Add MIPI Support Video Mode Interface Timing 	Wei Yeh	2011/11/30						
171	 Add some descriptions in Non-burst mode with sync events.(p.29) Add NT71391QG-001 Power-on Behavior in Appendix. 	Wei Yeh	2011/12/20						

NTIAL

2 Features

- Support input interface,
 - 4 lane 8-bit/6-bit MIPI input, up to 1Gbps/lane.
 - Support MIPI DSI interface
 - Support 1/2/3/4 data lane communication
 - Support video mode
 - 1-port/2-port (Only 60-pin QFN package) 8-bit/6-bit LVDS input, maximum clock up to 120MHz.
- Support output interface,
 - 1-port/3-pair 6/8bit mini-LVDS.
 - 1-port/6-pair 6/8bit mini-LVDS.
 - 2-port/3-pair 6/8bit mini-LVDS.
 - Maximum clock up to 350 MHz.
- Support resolution up to FHD (1920x1080) and (1920x1200).
- Support 8-bit color depth.
- Support spread spectrum clock generator (SSCG).
- Support output data skew control function.
- Support built-in self test (BIST) pattern function.
- Support free-run mode (MUTE) function.
- Support 1, 2, 1+2 line or frame inversion polarity control.
- Support DE only mode.
- Support gamma correction function.
- Support dithering function.
- Support CABC (Content Adaptive Brightness Control) function
- Support color manager function.
- Built-in low-voltage reset function.
- Built-in internal oscillator.
- Support master I²C interface for external EEPROM access.
- Support slave I²C interface for CM/CABC dynamic control.
- 46-pin (4.5x6.5 mm) QFN package
- 60-pin (5.0x9.0 mm) QFN package

3 General Description

The TCON is a timing controller that embedded with 4 lane MIPI and 1-port/2-port LVDS input interface with mini-LVDS output driver interface, support resolution up to FHD (1920x1080) (1920x1200). The mini-LVDS interface embedded with reset pulse to the source driver, and the pixel rate could support up to 350 MHz.

The mini-LVDS bus in TCON transmits 6-bit/8-bit data for special resolution by customer requests. The TCON also supports an external EEPROM downloading function. This allows timing and resolution settings to be downloaded from EEPROM. The mini-LVDS interface is a low EMI and low voltage swing interface that transmits data from timing controller to the source drivers.

4 Pin Configuration

V1.1 6

5 Block Diagram

5.1 Function Block Diagram

5.2 System Application Diagram

6 Pin Descriptions

NT71391QG - Default:

MIPI/LVDS PINS

No.	Name	Туре	Description
12	MIPI_2P/ARX0N	I	MIPI/LVDS input data pair
13	MIPI_2N/ARX0P	I	INIT 1/LVD3 IIIput data pali
14	MIPI_1P/ARX1N	I	MIPI/LVDS input data pair
15	MIPI_1N/ARX1P	I	INIFI/LVD3 IIIput data pali
16	MIPI_CKP/ARX2N	I	MIPI/LVDS input data pair
17	MIPI_CKN/ARX2P	I	INIFI/LVD3 IIIput data pali
18	MIPI_0P/ARXCLKN	I	MIPI/LVDS input clock pair
19	MIPI_0N/ARXCLKP	Ī	INITI/LVD3 IIIPUL GIOCK PAII
20	MIPI_3P/ARX3N	Ī	MIPI/LVDS input data pair
21	MIPI_3N/ARX3P	Ī	IVIIF I/LVD3 IIIput uata pali

12C INTERFACE PINS

No.	Name	Type	Description
8	SCL	I/O	Serial clock output, open-drain
9	SDA	I/O	Serial data input/output, open-drain

OPTION PINS

No.	Name	Type	Description
	BIST/POL		Built-in self test patterns selection @ RESET rising edge, internal pull-low L: Disable [default] H: Enable After I2C download, Source driver IC polarity control signal (Initial state = "L") Source driver IC polarity control signal (Initial state = "L")
5	TEST	I	Test mode function L : Disable [default] H : Enable
42	RESET	I	Reset input pin [active low] L: Reset H: Normal

mini-LVDS PINS

No.	Name	Type	Description
24	ML0P_F	0	mini-LVDS output pair
25	ML0N_F	0	mini-Ev D3 output pair
26	ML1P_F	0	mini-LVDS output pair
27	ML1N_F	0	mini-LvD3 output pair
28	ML2P_F	0	mini-LVDS output pair
29	ML2N_F	0	IIIIIII-LVD3 Output paii
30	MLCKP_F	0	mini-LVDS output pair
31	MLCKN_F	0	IIIIIII-LVD3 Output paii
34	ML0P_B	0	mini-LVDS output pair
35	ML0N_B	0	IIIIIII-LVD3 Output paii
36	ML1P_B	0	mini-LVDS output pair
37	ML1N_B	0	IIIIIII-LVD3 Output paii
38	ML2P_B	0	mini-LVDS output pair
39	ML2N_B	0	Inini-LvD3 output paii
40	MLCKP_B	0	mini-LVDS output pair
41	MLCKN_B	0	IIIIIII-LVD3 output pail

TCON PINS

No.	Name	Type	Description
1	OE1	0	Gate driver output enable signal (Initial state = "H")
2	OE2/HSYNCO	(On	Gate driver IC output enable signal (Initial state = "L") or HSYNC output signal (Initial state = "L") If pin No.7 is PWMI, pin No.2 is programmable to HSYNCO.
3	TR T	6	Source IC latch control signal (Initial state = "L")
6	PWMO	6	BLU control PWM output signal (Initial state = "L")
	HSYNCO/PWMI	0/1	HSYNC output signal (Initial state = "L") BLU control PWM input signal
45	STV	0	Gate driver IC start pulse A (Initial state = "L")
46	₩ CPV	0	Gate driver IC shift clock (Initial state = "L")

POWER AND GROUND PINS

No.	Name	Type	Description
10	VDD_IO	Р	I/O power
11	VDD_LV	Р	LVDS power
22	GND_LV	Р	LVDS ground
23	VMM	Р	Core power input
32	GND_ML	Р	mini-LVDS ground
33	VDD_ML	Р	mini-LVDS power
43	GND_IO	Р	I/O ground
44	VMM	Р	Core power input

NT71391QG - 001:

MIPI/LVDS PINS

No.	Name	Туре	Description
13	MIPI_2P/ARX0N	I	MIPI/LVDS input data pair
14	MIPI_2N/ARX0P	ı	IVIII 1/EVDO IIIput data pali
15	MIPI_1P/ARX1N	I	MIPI/LVDS input data pair
16	MIPI_1N/ARX1P	ı	IVIIFI/LVD3 IIIput data pali
17	MIPI_CKP/ARX2N	ı	MIPI/LVDS input data pair
18	MIPI_CKN/ARX2P	ı	INIFI/LVD3 IIIput data pali
19	MIPI_0P/ARXCLKN	ı	MIPI/LVDS input clock pair
20	MIPI_0N/ARXCLKP	I	INIT 1/LVD3 IIIput Glock pali
21	MIPI_3P/ARX3N		MIPI/LVDS input data pair
22	MIPI_3N/ARX3P		IVIIF 1/LVD3 IIIPUL UALA PAII

12C INTERFACE PINS

No.	Name	Туре	Description
8	SCL	I/O	Serial clock output, open-drain
9	SDA	I/O	Serial data input/output, open-drain

OPTION PINS

No.	Name	Type	Description
4	BIST/POL		Built-in self test patterns selection @ RESET rising edge, internal pull-low L: Disable [default] H: Enable After I2C download, Source driver IC polarity control signal (Initial state = "L") Source driver IC polarity control signal (Initial state = "L")
5	TEST	I	Test mode function L : Disable [default] H : Enable
11	CM_EN	I	Enable CM L : Disable [default] H : Enable
42	RESET	I	Reset input pin [active low] L: Reset H: Normal
44	CABC_EN	I	Enable CABC L : Disable [default] H : Enable

V1.1 15

mini-LVDS PINS

No.	Name	Туре	Description
24	ML0P_F	0	mini-LVDS output pair
25	ML0N_F	0	IIIIIII-LV DO Output paii
26	ML1P_F	0	mini-LVDS output pair
27	ML1N_F	0	IIIIIII-LVD3 Output paii
28	ML2P_F	0	mini-LVDS output pair
29	ML2N_F	0	Inini-LVD3 output paii
30	MLCKP_F	0	mini-LVDS output pair
31	MLCKN_F	0	Inini-LVD3 output paii
34	ML0P_B	0	mini-LVDS output pair
35	ML0N_B	0	Inini-LVD3 output paii
36	ML1P_B	0	mini-LVDS output pair
37	ML1N_B	0	Inini-LVD3 output paii
38	ML2P_B	0	mini-LVDS output pair
39	ML2N_B	0	IIIIIII-LVD3 Output paii
40	MLCKP_B	0	mini-LVDS output pair
41	MLCKN_B	0	ITIIIII-LVD3 output pail

TCON PINS

No.	Name	Type	Description	
1	OE1	0	Gate driver output enable signal (Initial state = "H")	
2	OE2/HSYNCO	(On	Gate driver IC output enable signal (Initial state = "L' or HSYNC output signal (Initial state = "L") If pin No.7 is PWMI, pin No.2 is programmable to HSYNCO.	
3	TR T	6	Source IC latch control signal (Initial state = "L")	
6	PWMO	6	BLU control PWM output signal (Initial state = "L")	
	HSYNCO/PWMI	0/1	HSYNC output signal (Initial state = "L") BLU control PWM input signal	
45	STV	O Gate driver IC start pulse A (Initial state = "L")		
46	₩ CPV	O Gate driver IC shift clock (Initial state = "L")		

POWER AND GROUND PINS

No.	Name	Type	Description
10	VDD_IO	Р	I/O power
12	VDD_LV	Р	LVDS power
23	GND_LV	Р	LVDS ground
32	GND_ML	Р	mini-LVDS ground
33	VDD_ML	Р	mini-LVDS power
43	GND_IO	Р	I/O ground

V1.1 17

60-Pin Descriptions

MIPI/LVDS PINS

No.	Name	Type	Description
1	BRX0N	I	LVDS input data pair
2	BRX0P	I	LV DO Iliput data pali
3	BRX1N	I	LVDS input data pair
4	BRX1P	I	LV D3 Iliput data pali
5	BRX1N	I	LVDS input data pair
6	BRX2P	I	EV DO Iliput data pali
7	BRXCLKN	I	LVDS input clock pair
8	BRXCLKP	I	EV DO INPUT CIOCK PAII
9	BRX3N	I	LVDS input data pair
10	BRX3P	I	EV DO Iliput data pali
11	MIPI_2P/ARX0N	l	MIPI/LVDS input data pair
12	MIPI_2N/ARX0P	I WIFI/LVDS Input data pair	
13	MIPI_1P/ARX1N	I	MIPI/LVDS input data pair
14	MIPI_1N/ARX1P	I	IVIII I/EVDS IIIput data pair
15	MIPI_CKP/ARX2N	I	MIPI/LVDS input data pair
16	MIPI_CKN/ARX2P	I	IVIII I/EVDS IIIput data pair
17	MIPI_0P/ARXCLKN		MIRI/LVDS input clock pair
18	MIPI_0N/ARXCLKP		INITIALIDO III PULL CIOCA PAIL
19	MIPI_3P/ARX3N		MIPI/LVDS input data pair
20	MIPI_3N/ARX3P		IVIIF I/LV Do III put Uata pali

12C INTERFACE PINS

No.	Name	Type	Description
55	SCE	VO.	Serial clock output, open-drain
\\56	SDA	I/O	Serial data input/output, open-drain

OPTION PINS

No.	Name	Type	Description	
41	RESET	I	Reset input pin [active low] L: Reset H: Normal	
43	CABC_EN	I	CABC function enable L : Disable [default] H : Enable	
44	PWMI	I PWM input (Initial state = "L")		
45	BIST	I	Built-in self test patterns selection L : Disable [default] H : Enable	
52	TEST	I	Test mode function L : Disable [default] H : Enable	
58	CM_EN	I	Color management function L : Disable [default] H : Enable	

mini-LVDS PINS

No.	Name	Type	Description
22	ML0P_F	0	mini-LVDS output pair
23	ML0N_F	0	Thin Ly Do Odipat pail
24	ML1P_F		mini-LVDS output pair
25	ML1N_F		IIIIIII-EVDS output pail
26	ML2P_F	0	mini-LVDS output pair
27	ML2N_F	0	THITITEV DS Output pair
28	MLCKP_F	0	mini-LVDS output pair
29	MLCKN_F		num EV BO output pair
33	MLOP_B	10	mini-LVDS output pair
34	MLON_B	0	mini-LVD3 output pair
35	ML1P_B	0	mini-LVDS output pair
36	ML1N_B	0	Tillili EV BO Output pail
37	ML2P_B	0	mini-LVDS output pair
38	ML2N_B	0	IIIIIII-EV DO Output paii
39	MLCKP_B	0	mini-LVDS output pair
40	MLCKN_B	0	·
31	PI	I	External resistor input for mini-LVDS output swing control

TCON PINS

No.	Name	Туре	Description
46	STV	0	Gate driver IC start pulse A (Initial state = "L")
47	CPV	0	Gate driver IC shift clock (Initial state = "L")
48	OE1	0	Gate driver output enable signal (Initial state = "H")
49	OE2	0	Gate driver IC output enable signal (Initial state = "L")
50	TP	0	Source IC latch control signal (Initial state = "L")
51	POL	0	Source driver IC polarity control signal (Initial state = "L")
53	PWMO	O BLU control PWM output signal (Initial state = "L")	
54	HSYNCO	O Hsync output signal (Initial state = "L")	

POWER AND GROUND PINS

No.	Name	Type	Description
21	GND_LV	Р	LVDS ground
30	GND_ML	Р	mini-LVDS ground
32	VDD_ML	Р	mini-LVDS power
42 57	GND_IO	Р	I/O ground
59	VDD_IO	Р	I/O power
60	VDD_LV	Р	LVDS power
MON	ATEK		SIOSURIE DE LA COLONIA DE LA C

7 Function Description

7.1 I2C Interface Function

An external EEPROM 24C16 (16K, 2048x8bits) is needed for TCON internal registers setting. When the system is powered on, TCON will start to download the EEPROM data for register initialized.

Data mapping of EEPROM is as the following diagram.

7.2 Built-in Self Test Patterns

The TCON is built in variable test patterns. The sequence and display time of test patterns could be set by EEPROM code.

An example BIST pattern is as the following table.

7.3 Gamma Correction Function

There are three look-up (R, G, B) tables embedded in the EEPROM, and users could adjust the R, G, and B gamma curve separately by related gamma look-up tables.

7.4 MIPI/LVDS Receiver

MIPI

- Support MIPI DSI interface (D-PHY: V1.0, DSI: V1.02).
- Support 1/2/3/4data lane communication.
- Support video mode.
- Support non-continuous clock mode.
- Support RGB data type
 - 0x1E, packed pixel stream, 18-bit RGB, 6-6-6 format
 - 0x2E , loosely packed pixel stream , 18-bit RGB , 6-6-6 format
 - 0x3E , packed pixel stream , 24-bit RGB , 8-8-8 format
- Support video mode interface timing
 - Non-burst mode with sync pulses
 - Non-burst mode with sync events
 - Burst mode
- Lane Configuration

Clock Lane	Unidirectional Lane ■ Clock Only	
	■ Escape Mode(ULPS Only)	
Data Lane0	Bi-directional Lane ■ Forward High-Speed	no E
Data Lanco	■ Bi-directional Escape Mode ■ Bi-directional LPDT	
Data Lane1	Unidirectional Forward High speed	
Data Lane2	Unidirectional Forward High speed	
Data Lane3	Unidirectional Forward High speed	

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode. Which mode is used depends on the architecture and capabilities of the peripheral. The mode definitions reflect the primary intended use of DSI for display interconnect, but are not intended to restrict DSI from operating in other applications.

Typically, a peripheral is capable of Command Mode operation or Video Mode operation. Some Video Mode display modules also include a simplified form of Command Mode operation in which the display module may refresh its screen from a reduced-size, or partial, frame buffer, and the interface (DSI) to the host processor may be shut down to reduce power consumption.

Command Mode refers to operation in which transactions primarily take the form of sending commands and data to a peripheral, such as a display module, that incorporates a display controller. The display controller may include local registers and a frame buffer. Systems using Command Mode write to, and read from, the registers and frame buffer memory. The host processor indirectly controls activity at the peripheral by sending commands, parameters and data to the display controller. The host processor can also read display module status information or the contents of the frame memory. Command Mode operation requires a bidirectional interface.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. Some Video Mode architectures may include a simple timing controller and partial frame buffer, used to maintain a partial-screen or lower-resolution image in standby or Low Power Mode. This permits the interface to be shut down to reduce power consumption. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

The operation and protocol of MIPI RX IP here complies with the MIPI Alliance standards and the related information such as D-PHY lower protocol, packet formatting and higher application protocol can be referred in the formal specification sheets when attempting to use this IP.

Support RGB data type:

1. 0x1E , packed pixel stream , 18-bit RGB , 6-6-6 format

2. 0x2E , loosely packed pixel stream , 18-bit RGB , 6-6-6 format

3. 0x3E , packed pixel stream , 24-bit RGB , 8-8-8 format

Support Video Mode Interface Timing:

1. Non-burst mode with sync pulses: enables the peripheral to accurately reconstruct original video timing, including sync pulse widths.

2. Non-burst mode with sync events: similar to above, but accurate reconstruction of sync pulse widths is not required, so a single Sync Event is substituted.(This mode does not need HSA.)

V1.1 29

3. Burst transmission: RGB pixels packets are time-compressed, leaving more time during a scan line for LP mode (saving power) or for multiplexing other transmissions onto the DSI link.

V1.1 30

LVDS

LVDS data mapping type could be set by internal registers, and 8-bit data sequence is shown as following table.

	No.		8-bit LVDS TYPE		
		Data No.	NS	JEIDA	
		Bit-0	R0	R2	
		Bit-1	R1	R3	
		Bit-2	R2	R4	
	0	Bit-3	R3	R5	
		Bit-4	R4	R6	
		Bit-5	R5	R7	
L		Bit-6	G0	G2	
		Bit-0	G1	G3	
		Bit-1	G2	G4 n	
		Bit-2	G3	G5 \\\\	
	1	Bit-3	G4	15 G6	
		Bit-4	G5	G 7 U	
		Bit-5	B0	B2	
L		Bit-6	n (B1) \\ \\ \\ \\	B3	
		Bit-0	B2	B4\	
		Bit-1	B3	B5 0	
		Bit-2	B4 C	B6	
		Bit-3	B 5	B 7	
		Bit-4		-	
		Bit-5		-	
		Bit-6	DE	DE	
MAIG		Bit-0	R6	R0	
11 0	IMII I	→ Bit-1	R7	R1	
	110	Bit-2	G6	G0	
	3	Bit-3	G7	G1	
		Bit-4	B6	B0	
		Bit-5	B 7	B1	
		Bit-6	-	-	

8-bit LVDS input data mapping with "NS" setting is as following diagram.

8-bit LVDS input data mapping with "JEIDA" setting is as following diagram.

V1.1 32

7.5 mini-LVDS Transmitter

Timing waveform between TP and mini-LVDS data is as the following diagram.

Normal 6-bit/6-pair mini-LVDS input data mapping is as following diagram.

V1.1 33

Normal 6-bit/3-pair mini-LVDS input data mapping is as following diagram.

Normal 8-bit/2-port/3-pair mini-LVDS input data mapping is as following diagram.

V1.1 34

Normal 8-bit/3-pair mini-LVDS input data mapping is as following diagram.

The latch position between mini-LVDS CLK and data pairs could be adjusted. The phase adjusting function is as the following diagram.

There are registers embedded in TCON for controlling the phase delay (setup/hold time) between mini-LVDS CLK and data pairs. User could set the register value by slaver mode I2C interface.

The setting table of the register CLKDLY [3:0] is as the following table.

	CLKDL	Y [3:0]		T _{SETUP}	T _{HOLD}		CLKDL	Y [3:0]		T _{SETUP}	T _{HOLD}
1	0	0	0	(0/32) T	(16/32) T	0	0	0	0	(8/32) T	(8/32) T
1	0	0	1	(1/32) T	(15/32) T	0	0	0	1	(9/32) T	(7/32) T
1	0	1	0	(2/32) T	(14/32) T	0	0	1	0	(10/32) T	(6/32) T
1	0	1	1	(3/32) T	(13/32) T	0	0	1	1	(11/32) T	(5/32) T
1	1	0	0	(4/32) T	(12/32) T	0	1	0	0	(12/32) T	(4/32) T
1	1	0	1	(5/32) T	(11/32) T	0	1	0	1	(13/32) T	(3/32) T
1	1	1	0	(6/32) T	(10/32) T	0	1	1	0	(14/32) T	(2/32) T
1	1	1	1	(7/32) T	(9/32) T	0	1	1	1	(15/32) T	(1/32) T
								RE			

The SSCG (Spread Spectrum Clock Generator) is used for reducing Electro Magnetic Interference (EMI). This block integrates Phase-Locked Loop (PLL) and spread spectrum modulation generator to synthesize and modulate the frequency of the input clock. The SSCG generates a phase-modulated clock output by modulating the input clock period.

8 Absolute Maximum Rating

	Absolute Maximum Rating									
Cymbol	Description	Ratin	Unit							
Symbol	Description	Min.	Max.	Unit						
V_{DD}	DC Supply Voltage	-0.3	4.0	V						
V _{IN}	DC Input/Output Voltage	-0.3	V _{DD} + 0.3	V						
T _{OPR}	Operating Temperature	-40	85	°C						
T_JUN	Junction Temperature	0	125	°C						
T _{STG}	Storage Temperature	-55	150	°C						

*Comments

Stresses above what is listed under "Absolute Maximum Rating" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above what is indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC and AC Electrical Characteristics (T_A = 25°C, unless otherwise noted)

	Recommended Operating Conditions									
Symbol	Description	Min.	Тур.	Max.	Unit	Condition				
VDD	Supply Voltage 3.3 V	3.0	3.3	3.6	V	VDD ML, VDD IO, VDD LV				
1	Supply Voltage 2.5 V	2.3	2.5	2.7	'	VDD_IVIE, VDD_IO, VDD_EV				
VMM	Supply Voltage 1.2 V	1.1	1.2	1.3	V	VMM				

	Output Control Signal									
Symbol	Description	Min.	Тур.	Max.	Unit	Condition				
I _{OH}	High-level output current	8	-	-	mA	@ V _{OH} = 0.7 V _{DD} STV, CPV, OE1, OE2, TP, POL, PWMO, HSYNCO				
I _{OL}	Low-level output current	-	-	-8	mA	@ V _{0L} = 0.4 V STV, CPV, OE1, OE2, TP, POL, PWMO, HSYNCO, SCL, SDA,				

		Input Se	etting Sig	nal		
Symbol	Description	Min.	Тур.	Max.	Unit	Condition
$V_{\text{IH_RESET}}$	High-level input voltage of RESET pin	-	0.8V _{DD}	-	V	* Schmitt trigger input [RESET] (V _{DD} = 3.3 or 2.5 V)
$V_{ ext{win}_ ext{RESET}}$	Hysteresis window of Schmitt	0.4	-	-	V	* Schmitt trigger input [RESET] $(V_{DD} = 3.3 \ V)$
▼ WIN_RESET	trigger input	0.3	-	-	v	* Schmitt trigger input [RESET] (V _{DD} = 2.5 V)
V _{IH_I2C}	High-level input voltage of I2C	h-level input voltage of I2C 0.9 1.2 1.5		* Schmitt trigger input [SDA,SCL] $(V_{DD} = 3.3 \text{ V})$		
▼ IH_I2C	pin	0.7	1.0	1.3	V	* Schmitt trigger input [SDA,SCL] $(V_{DD} = 2.5 \text{ V})$
V	Hysteresis window of Schmitt	0.4	-	-	V	* Schmitt trigger input [SDA,SCL] (V _{DD} = 3.3 V)
$V_{\text{WIN_I2C}}$	trigger input	0.3	-			* Schmitt trigger input [SDA,SCL] $(V_{DD} = 2.5 \text{ V})$
V_{IH_FUN}	High-level input voltage of function pin (Only for NT71391QG-001, NT71391QG-601)		0.7V _{DD}			* Schmitt trigger input [CABC_EN, CM_EN] (V _{DD} = 3.3 or 2.5 V)
V _{WIN_FUN}	Hysteresis window of Schmitt trigger input (Only for NT71391QG-001, NT71391QG-601)	0.4			v	*Schmitt trigger input [CABC_EN, CM_EN] (VDD = 3.3 V) * Schmitt trigger input [CABC_EN, CM_EN] (VDD = 2.5 V)
V _{IH_PWMI}	High-level input voltage of PWMI pin (Only for NT71391QG-601)	-	0.7V _{DD}	-	V	* Schmitt trigger input [PWMI] $(V_{DD} = 3.3 \text{ or } 2.5 \text{ V})$
V	Hysteresis window of Schmitt trigger input	0.4	-	-	V	* Schmitt trigger input [PWMI] $(V_{DD} = 3.3 \ V)$
V _{WIN_PWMI}	(Only for NT71391QG-601)	0.3	-	-	V	* Schmitt trigger input [PWMI] $(V_{DD} = 2.5 \text{ V})$

		Inp	ut Setting	Signal		
Symbol	Description	Min.	Тур.	Max.	Unit	Condition
V _{IH_H/P}	High-level input voltage of HSYNCO/PWMI pin (Only for NT71391QG-default, NT71391QG-001)	-	0.5V _{DD}	-	V	* Schmitt trigger input [HSYNCO/PWMI] (V _{DD} = 3.3 or 2.5 V)
$V_{ ext{win_H/P}}$	Hysteresis window of Schmitt trigger input	0.4	-	-	V	* Schmitt trigger input [HSYNCO/PWMI] $(V_{DD} = 3.3 \ V)$
♥ WIN_H/P	(Only for NT71391QG-default, NT71391QG-001)	0.3	-	1	V	* Schmitt trigger input [HSYNCO/PWMI] $(V_{DD} = 2.5 \text{ V})$
V_{IH_BIST}	High-level input voltage of BIST pin (Only for NT71391QG-601)	-	0.7V _{DD}	-	V	* Schmitt trigger input [BIST] (V _{DD} = 3.3 or 2.5 V)
V_{WIN_BIST}	Hysteresis window of Schmitt trigger input	0.4	-	-	V	* Schmitt trigger input [BIST] (V _{DD} = 3.3)
	(Only for NT71391QG-601)	0.3	-	-		* Schmitt trigger input [BIST] $(V_{DD} = 2.5)$
$\mathbf{V}_{IH_B/P}$	High-level input voltage of BIST/POL pin (Only for NT71391QG-default, NT71391QG-001)	<u>-</u>	0.5V _{DD}			* Schmitt trigger input [BIST/POL] $(V_{DD} = 3.3 \text{ or } 2.5 \text{ V})$
$V_{WIN_B/P}$	Hysteresis window of Schmitt trigger input	0.4				* Schmitt trigger input [BIST/POL] $(V_{DD} = 3.3V)$
WIN_S/I	(Only for NT71391QG-default, NT71391QG-001)	033			-	* Schmitt trigger input [BIST/POL] (V _{DD} = 2.5V)
Vith	High-level input voltage of pure input pin		V _{DD} /2	-	V	* Pure input pin (V _{DD} = 3.3 or 2.5 V)
R _{PH}	Pull-high resistor	50	-	200	kΩ	V _I = GND
R_{PL}	Pull-low resistor	50	-	200	kΩ	$V_{I} = V_{DD}$

	Low Voltage Reset									
Symbol	Description	Min.	Тур.	Max.	Unit	Condition				
V _{LVRH}	High-level detect voltage of LVR	-	-	2.1	V					
V _{LVRWIN}	Hysteresis window of LVR	0.1	-	-	V					

	LVDS Receiv	er Different	ial Input (DC	Characteris	stics)	
Symbol	Description	Min.	Тур.	Max.	Unit	Condition
R _{xVTH}	Differential input high threshold voltage	-	-	+100	mV	R _{XVCM} =1.2 V
R _{xVTL}	Differential input low threshold voltage	-100	-	-	mV	n _{xVCM} = 1.2 V
R _{xVIN}	Input voltage range	0	-	2.4	V	V _{DDL} = 3.3 V
Π _X VIN	(singled-end)	0	-	V _{DD} -0.4	v	V _{DDL} = 2.5 V
Ь	Input common mode	V _{ID} /2	-	2.4- V _{ID} /2	V	V _{DDL} = 3.3 V
R _{xVCM}	voltage	V _{ID} /2	-	V _{DD} -0.4- V _{ID} /2	V	V _{DDL} = 2.5 V
V _{ID}	Differential input voltage	100	-	600	mV	-
RV _{xLIK}	Differential input leakage current	-10	-	+10	uA	
R _{xFCLK}	Clock frequency	25	-	120	MHz	-

	LVDS Receiver Differential Input (AC Characteristics)									
Symbol	Description	Min.	Тур.	Max.	Unit	Condition				
T _{RSKM}	Input data skew margin	-350	-	+350	ps	$R_{xCLK} = 100 \text{ MHz}$ $ R_{xVTH} - R_{xVTL} = 400 \text{ mV}$ $R_{xVCM} = 1.2 \text{ V}$ $R_{x\triangle VCM} = 0 \text{ mV}$				
T _{CK-CK}	Inter-clock skew of each port (clock to clock skew margin between EVEN and ODD port)	-1/7	-	+1/7	Т	-				
SSR	Input spread spectrum ratio	-	-	+/-3	%	-				
F _M	Input modulation frequency	-	-	300k	Hz	-				

	MIPI Recei	ver Differenti	al Input (DC	Characteris	tics)	
Symbol	Description	Min.	Тур.	Max.	Unit	Condition
BR _{MIPI}	Input data bit rate	200	-	1000	Mbps	-
V _{CMRX}	Common-mode voltage (HS Rx mode)	70	-	330	mV	
V _{IDTH}	Differential input high threshold (HS Rx mode)	-	-	70	mV	
V _{IDTL}	Differential input low threshold (HS Rx mode)	-70	-	-	mV	
V _{IDM}	Differential input voltage range (HS Rx mode)	70	-	500	mV	
V _{IHHS}	Single-end input high voltage (HS Rx mode)	-	-	460	mV	
V _{ILHS}	Single-end input low voltage (HS Rx mode)	-40	-		mV	
Z _{ID}	Differential input impedance	80	100	125	Ω	
V _{IHLP}	Logic 1 input voltage (LP Rx mode)	880			mV	
V _{ILLP}	Logic 0 input voltage (LP Rx mode)			550	mV	
V _{OH}	Output high level (LPTx mode)	1.08	1.2	1.32	V	
Vol	Output low level (LP Tx mode)	-50	-	50	mV	

	MIPI Receiver Differential Input (AC Characteristics)										
Symbol	Description	Min.	Тур.	Max.	Unit	Condition					
T _{MIN-RX}	Minimum pulse width response (LP Rx mode)	50	-	-	ns						
T _{LP-PULS}	Pulse width of the LP exclusive-OR clock	50	55	58	ns	1 st clock pulse after STOP state or last clock pulse before STOP state/all other pulse					
T _{RLP} / T FLP	15%~85% rise time and fall time (LP Tx mode)	-	-	25	ns						
T _{REOT}	30%~85% rise time and fall time of EOT (LP Tx mode)	-	-	35	ns						
T _{LP-PER-T}	Period of the LP exclusive-OR clock	90	-	-	ns	3					
T _{SETUP}	Data to clock setup time	0.15	-	-		AL					
T _{HOLD}	Data to clock setup time	0.15	- n [VI.					

	mini-LVDS Transmitter Differential Output (DC Characteristics)									
Symbol	Description	Min.	Тур.	Max.	Unit	Condition				
V _{OD}	Differential output voltage	100	200	500	mV	$R_L = 100 \Omega$ $Rpi = 8k \Omega$				
V _{os} Offset voltage	Offeet valtege	1.0	1.2	1.4	V					
	Oliset voltage	0.6	0.8	1.0	V	1,6. 3				

mini-LVDS Transmitter Differential Output (AC Characteristics)								
Symbol	Description	Min.	Тур.	Max.	Unit	Condition		
F _{MLVCLK}	mini-LVDS clock frequency	37.5	J 🖳	350	MHz	-		
T _{RISE}	Transition Rising Time	300	ı	900	ps	$R_L = 100 \Omega$, $C_L = 5 pF$,		
T _{FALL}	Transition Falling Time	300	-	900	ps	F _{MLVGLK} = 300 MHz		

	Internal Built-in Oscillator							
Symbol	Description	Min.	Тур.	Max.	Unit	Condition		
f _{osc}	Internal OSC frequency	66.5	70	73.5	MHz			

SSCG								
Symbol	Description	Min.	Тур.	Max.	Unit	Condition		
Fм	Modulation Frequency	-	50	-	kHz			
T _{dmax}	Advance/delay maximum modulation ratio	-	1.5	-	%	Mode[1:0]= 00		
		ı	3.0	-	%	Mode[1:0]= 01		
		-	4.5	-	%	Mode[1:0]= 10		
		-	6.0	-	%	Mode[1:0]= 11		

10 Order Information

Part Name	Packages	Remark
NT71391QG	QFN 46	Pb-free
NT71391QG-001	QFN 46	Pb-free
NT71391QG-601	QFN 60	Pb-free

11 Application Circuit

46-pin NT71391QG - Default application circuit :

V1.1 56

46-pin NT71391QG - 001 application circuit:

V1.1 57

60-pin NT71391QG-601 application circuit :

V1.1 58

12 Package Information

46-pin Outline drawing and dimension

		SYMBOL	MIN	NOM	MAX		
TOTAL THICKNESS		A	8.0	0.85	0.9		
STAND OFF	A1	0	0.035	0.05			
MOLD THICKNESS	A2		0.65	0.67			
L/F THICKNESS		A3	0.203 REF				
LEAD WIDTH		b	0.15	0.2	0.25		
DODY SIZE	X	D	6.5 BSC				
BODY SIZE	Y	E	4.5 BSC				
LEAD PITCH		e	0.4 BSC				
EP SIZE	×	J	5	5.1	5.2		
EP SIZE	Y	K	3	3.1	3.2		
LEAD LENGTH		L	0.35	0.4	0.45		
PACKAGE EDGE TOLE	RANCE	aaa	0.1				
MOLD FLATNESS		bbb	0.1				
COPLANARITY	ecc	0.08					
LEAD OFFSET	ddd	0.1					
EXPOSED PAD OFFSE	eee	0.1					

60-pin Outline drawing and dimension

V1.1 61

13 Appendix

Power-on Behavior of Output Signal

The power-on behavior of TCON output signal is as the following diagram.

: Reset timing of internal circuit, after V_{DD} power on. t_(RST)

: Downloading period of TCON from TCON setting page (page 0) of EEPROM. t(READ)

t_(INIT-MASK): Power-on mask period for masking initial state of TCON, and users might control it by

registers setting.

 $t_{(PWMO\text{-MASK})}$: Power-on mask period for masking initial state of TCON, and users might control it by

registers setting.

62

MIPI Power-on Behavior

*1.2V is only for NT71391QG - Default.

NT71391QG-001 Power-on Behavior (External VMM)

Case 1:

No matter 2.5V or 1.2V power on first, TCON can work well.

V1.1 64