Fundamentals of Hypothesis Testing

Source: Levine et al

Basic Concepts (contd.)

- Law of Large numbers
- Central Limit Theorem
- Hypothesis Testing Concepts and Steps
- Type I and Type II Errors
- Illustrative Examples

What is a Hypothesis?

- A hypothesis is a claim (assertion) about a population parameter:
 - population mean

Example: The mean monthly cell phone bill in this city is $\mu = Rs. 500$

population proportion

Example: The proportion of adults in this city with cell phones is $\pi = 0.68$

The Null Hypothesis, H₀

States the claim or assertion to be tested

Example: The mean diameter of a manufactured bolt is 30mm $(H_0: \mu = 30)$

 Is always about a population parameter, not about a sample statistic

The Null Hypothesis, H₀

(continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo or historical value
- Always contains "=", or "≤", or "≥" sign
- May or may not be rejected

The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average diameter of a manufactured bolt is not equal to 30mm (H₁: μ ≠ 30)
- Challenges the status quo
- May or may not be proven
- Is generally the hypothesis that the researcher is trying to prove

The Hypothesis Testing Process

- Claim: The population mean age is 50.
 - H_0 : $\mu = 50$, H_1 : $\mu \neq 50$
- Sample the population and find sample mean.

The Hypothesis Testing Process

(continued)

- Suppose the sample mean age was $\overline{X} = 20$.
- This is significantly lower than the claimed mean population age of 50.
- If the null hypothesis were true, the probability of getting such a different sample mean would be very small, so you reject the null hypothesis.
- In other words, getting a sample mean of 20 is so unlikely if the population mean was 50, you conclude that the population mean must not be 50.

The Hypothesis Testing Process

(continued)

The Test Statistic and Critical Values

- If the sample mean is close to the stated population mean, the null hypothesis is not rejected.
- If the sample mean is far from the stated population mean, the null hypothesis is rejected.
- How far is "far enough" to reject H₀?
- The critical value of a test statistic creates a "line in the sand" for decision making -- it answers the question of how far is far enough.

The Test Statistic and Critical Values

Sampling Distribution of the test statistic

"Too Far Away" From Mean of Sampling Distribution

6 Steps in Hypothesis Testing

- State the null hypothesis, H₀ and the alternative hypothesis, H₁
- 2. Choose the level of significance, α, and the sample size, n
- Determine the appropriate test statistic and sampling distribution
- Determine the critical values that divide the rejection and non-rejection regions

6 Steps in Hypothesis Testing

(continued)

- 5. Collect data and compute the value of the test statistic under the assumption that H₀ is true.
- Make the statistical decision and state the managerial conclusion. If the test statistic falls into the nonrejection region, do not reject the null hypothesis H₀. If the test statistic falls into the rejection region, reject the null hypothesis. Express the managerial conclusion in the context of the problem

Possible Errors in Hypothesis Test Decision Making

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error
- The probability of a Type I Error is α
 - Called level of significance of the test
 - Set by researcher in advance

Type II Error

- Failure to reject a false null hypothesis
- The probability of a Type II Error is β

Possible Errors in Hypothesis Test Decision Making

(continued)

Possible Hypothesis Test Outcomes		
	Actual Situation	
Decision	H ₀ True	H ₀ False
Do Not Reject H ₀	No Error Probability 1 - α	Type II Error Probability β
Reject H ₀	Type I Error Probability α	No Error Power 1 - β

Possible Errors in Hypothesis Test Decision Making

(continued)

- The confidence coefficient (1-α) is the probability of not rejecting H_0 when it is true.
- The confidence level of a hypothesis test is (1-α)*100%.
- The power of a statistical test (1-β) is the probability of rejecting H_0 when it is false.

Level of Significance and the Rejection Region

This is a two-tail test because there is a rejection region in both tails

Hypothesis Tests for the Mean

Z Test of Hypothesis for the Mean (σ Known)

• Convert sample statistic (\overline{X}) to a Z_{STAT} test statistic

Hypothesis Tests for μ

σ Known (Z test)

The test statistic is:

$$Z_{\text{STAT}} = \frac{\overline{X} - \mu}{\sigma}$$

$$\frac{\sigma}{\sqrt{n}}$$

σ Unknown (t test)

Popular Tests

- Testing means of two Populations (Z test and t test)
- Paired t test
- Testing means of multiple populations (ANOVA test: uses F statistic)
- Testing significance of correlation coefficient
- Chi square test of independence of attributes
- ____
- ____

Critical Value Approach to Testing

- For a two-tail test for the mean, σ known:
- Convert sample statistic (X) to test statistic (Z_{STAT})
- Determine the critical Z values for a specified level of significance α from a table or computer
- Decision Rule: If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀

Two-Tail Tests

 There are two cutoff values (critical values), defining the regions of rejection

Test the claim that the true mean diameter of a manufactured bolt is 30mm. (Assume $\sigma = 0.8$)

- 1. State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 30$ H_1 : $\mu \neq 30$ (This is a two-tail test)
- 2. Specify the desired level of significance and the sample size
 - Suppose that α = 0.05 and n = 100 are chosen for this test

(continued)

- 3. Determine the appropriate technique
 - σ is assumed known so this is a Z test.
- 4. Determine the critical values
 - For α = 0.05 the critical Z values are ±1.96
- 5. Collect the data and compute the test statistic
 - Suppose the sample results are n = 100, $\overline{X} = 29.84$ ($\sigma = 0.8$ is assumed known)

So the test statistic is:

$$Z_{\text{STAT}} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{29.84 - 30}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{0.08} = -2.0$$

(continued)

6. Is the test statistic in the rejection region?

Reject H_0 if $Z_{STAT} < -1.96$ or $Z_{STAT} > 1.96$; otherwise do not reject H_0

Here, $Z_{STAT} = -2.0 \neq -1.96$, so the test statistic is in the rejection region

(continued)

6 (continued). Reach a decision and interpret the result

Since $Z_{STAT} = -2.0 < -1.96$, reject the null hypothesis and conclude there is sufficient evidence that the mean diameter of a manufactured bolt is not equal to 30

p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic equal to or more extreme than the observed sample value given H₀ is true
 - The p-value is also called the observed level of significance
 - It is the smallest value of α for which H₀ can be rejected

p-Value Approach to Testing: Interpreting the p-value

• Compare the p-value with α

```
• If p-value < \alpha, reject H_0
```

• If p-value $\geq \alpha$, do not reject H_0

Remember

■ If the p-value is low then H₀ must go

The 5 Step p-value approach to Hypothesis Testing

- State the null hypothesis, H₀ and the alternative hypothesis, H₁
- Choose the level of significance, α , and the sample size, n
- Determine the appropriate test statistic and sampling distribution
- 4. Collect data and compute the value of the test statistic under the assumption that H_0 is true and the p-value
- Make the statistical decision and state the managerial conclusion. If the p-value is $< \alpha$ then reject H_0 , otherwise do not reject H_0 . State the managerial conclusion in the context of the problem

p-value Hypothesis Testing Example

Test the claim that the true mean diameter of a manufactured bolt is 30mm. (Assume $\sigma = 0.8$)

- 1. State the appropriate null and alternative hypotheses
 - H_0 : $\mu = 30$ H_1 : $\mu \neq 30$ (This is a two-tail test)
- 2. Specify the desired level of significance and the sample size
 - Suppose that α = 0.05 and n = 100 are chosen for this test

p-value Hypothesis Testing Example

(continued)

- 3. Determine the appropriate technique
 - σ is assumed known so this is a Z test.
- 4. Collect the data, compute the test statistic and the p-value
 - Suppose the sample results are n = 100, $\overline{X} = 29.84$ ($\sigma = 0.8$ is assumed known)

So the test statistic is:

$$Z_{STAT} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{29.84 - 30}{\frac{0.8}{\sqrt{100}}} = \frac{-0.16}{0.08} = -2.0$$

p-Value Hypothesis Testing Example: Calculating the p-value

- 4. (continued) Calculate the p-value.
 - How likely is it to get a Z_{STAT} of -2 (or something further from the mean (0), in either direction) if H_0 is true?

p-value Hypothesis Testing Example

(continued)

- 5. Is the p-value < α?</p>
 - Since p-value = $0.0456 < \alpha = 0.05$ Reject H₀
- 5. (continued) State the managerial conclusion in the context of the situation.
 - There is sufficient evidence to conclude the average diameter of a manufactured bolt is not equal to 30mm.

Do You Ever Truly Know σ?

- Probably not!
- In virtually all real world business situations, σ is not known.
- If there is a situation where σ is known then μ is also known (since to calculate σ you need to know μ.)
- If you truly know µ there would be no need to gather a sample to estimate it.

Hypothesis Testing: σ Unknown

- If the population standard deviation is unknown, you instead use the sample standard deviation S.
- Because of this change, you use the t distribution instead of the Z distribution to test the null hypothesis about the mean.
- When using the t distribution you must assume the population you are sampling from follows a normal distribution.
- All other steps, concepts, and conclusions are the same.

t Test of Hypothesis for the Mean (σ Unknown)

 \blacksquare Convert sample statistic (\overline{X}) to a $\,t_{STAT}\,$ test statistic

