Fonction de Lambert et étude d'une famille de fonctions

Partie I

On considère $g: \mathbb{R} \to \mathbb{R}$ l'application déterminée par $g(x) = xe^x$ et on note \mathcal{C} sa courbe représentative dans un repère orthonormé d'unité égale à 2 cm.

- 1.a Dresser le tableau des variations de g.
- 1.b Etudier les branches infinies de g.
- 2.a Etudier la concavité de g. En quel point la courbe C admet-elle une d'inflexion?
- 2.b En quel point la tangente au point d'inflexion coupe-t-elle l'axe des abscisses.
- 2.c Représenter C accompagnée de la tangente précisée ci-dessus.
- 3.a Montrer que la restriction de g au départ de $[-1,+\infty[$ réalise une bijection vers un intervalle que l'on précisera. Dresser le tableau de variation complet de son application réciproque notée h.
- 3.b Sur quel intervalle la fonction h est-elle dérivable? Exprimer h'(x) en fonction de x, de h(x) mais sans exponentielles.
- 3.c Etudier l'existence d'une tangente à h en -1/e.
- 4. Dans cette question on se propose d'obtenir une valeur numérique approchée de $\alpha = h\left(\frac{1}{2}\right)$.
- 4.a Justifier que $\alpha \in [0,1/2]$.
- 4.b On introduit la fonction dérivable $\varphi : \mathbb{R} \to \mathbb{R}$ définie par $\varphi(x) = \frac{1}{2} e^{-x}$.

 Montrer que $\varphi(\alpha) = \alpha$ et $\forall x \ge 0$, $|\varphi'(x)| \le \frac{1}{2}$.
- 4.c On définit une suite récurrente réelle (u_n) par $u_0=0$ et $\forall n\in\mathbb{N}$, $u_{n+1}=\varphi(u_n)$. Etablir que la suite (u_n) converge vers α .
- 4.d Donner une valeur décimale approchée de α à la précision 10^{-2} en précisant la démarche suivie.

Partie II

Soit λ un paramètre strictement positif.

On étudie ici la famille des fonctions $f_{\lambda}: \mathbb{R} \to \mathbb{R}$ définies par $f_{\lambda}(x) = e^{-x} + \lambda x^2$.

On note C_{λ} la courbe représentative de f_{λ} dans un repère orthonormé.

- 1.a Dresser le tableau des variations de f_{λ} . On notera m_{λ} le point où f admet un minimum et on exprimera m_{λ} en fonction de h et de λ . Etablir que $f_{\lambda}(m_{\lambda}) = \lambda m_{\lambda}(m_{\lambda}+2)$.
- 1.b Etudier les branches infinies de f_{λ} et la convexité de cette fonction.
- 1.c Donner l'allure de C_{λ} .
- 2. Dans cette question on étudie la fonction $m: \lambda \mapsto m_{\lambda}$ définie sur \mathbb{R}^+ *.
- 2.a Etudier la monotonie de $m: \lambda \mapsto m_{\lambda}$ ainsi que ses limites quand $\lambda \to +\infty$ et quand $\lambda \to 0^+$.
- 2.b En observant la relation $2\lambda m_{\lambda} = e^{-m_{\lambda}}$, déterminer un équivalent simple de m_{λ} quand $\lambda \to +\infty$.

- 2.c En observant la relation $m_{\lambda} + \ln(m_{\lambda}) = -\ln(2\lambda)$, déterminer un équivalent simple de m_{λ} quand $\lambda \to 0^+$.
- 3. Dans cette question on étudie $\theta: \mathbb{R}^{+*} \to \mathbb{R}$ définie par $\theta(\lambda) = f_{\lambda}(m_{\lambda}) = \lambda m_{\lambda}(m_{\lambda} + 2)$.
- 3.a Montrer que θ est une fonction croissante.
- 3.b Déterminer la limite de θ en 0^+ et en $+\infty$.

On prolonge θ par continuité en 0 en posant $\theta(0)$ égal à sa limite en 0^+ .

- 3.c La fonction θ est-elle dérivable en 0 ? Présente-t-elle une tangente en 0 ?
- 3.d Représenter graphiquement la fonction θ dans un repère orthonormé d'unité égale à 4 cm. On exploitera les informations obtenues ci-dessus ainsi que la valeur approchée de α pour obtenir un point de la courbe accompagné de sa tangente.