

School of Computing

•••

Bandit Algorithm Application on Real-world Problem

Teo Hong Kang - A0191178X Li Xing Xuan - A0198935H

Summary

Background Information

- → Personalized Web Services adapting services to users
 - **♦** Content
 - User Information

- → Personalized Web Services remain challenging despite years of advancement
 - Dynamically changing pools of content
 - ♦ Scale of web services

Problem Setting

Objective

- Identify the most appropriate web-based content generation online
- Important to identify content that best fits the interest of online users

Example

Problem Setting

- → Traditional Algorithms (Eg. Epsilon Greedy)
 - ♦ Widely implemented
 - ♦ Based on user's response

- → Newer Algorithms (LinUCB)
 - Based on articles and user features
 - ♦ Known as Contextual Bandit Algorithm

First index

Second index

Data Context

- → Data from Yahoo R6
 webscope datasets Verizon
 Media Labs
- → Recorded from 1 event 2009.05.09 2009.05.10
- → First index structure
 - ◆ "Timestamp, STORY, reward"
- → Second idex structure
 - User features
- → Subsequent index structure
 - ◆ Article ID + other features

```
3:0.000444 4:0.726928 5:0.194082 6:0.000482 1:1.000000
109722 2:0.306008 3:0.000450 4:0.077048 5:0.230439 6:0.386055 1:1.000000
109714 2:0.264355 3:0.000012 4:0.037393 5:0.420649 6:0.277591 1:1.000000\n']
```

['1241852100 109723 0 '

Data Context

- → Total number of 7,388,820 events
- → Conduct data pre-processing
 - ◆ Data is large
 - Time consuming to keep running data
- → 62 unique articles, stored separately from the events

```
import numpy as np
  port fileinput
import pickle
from tqdm import tqdm
def generate_data(filenames):
    art ids = []
    art_feats = []
    events = []
    with fileinput.input(files=filenames) as f:
        for line in tqdm(f):
            if (len(line.split())-10) % 7 != 0:
                None
                cols = line.strip().split('|')
                user_feat = [float(x[2:]) for x in cols[1].strip().split()[1:]]
                user click = cols[0].strip().split()[2]
                pool idx = []
                pool ids = []
                for i in range(2, len(cols)):
                    art_line = cols[i].strip().split()
                    art_id = int(art_line[0])
                    art_feat = [float(x[2:]) for x in art_line[1:]]
                    if art_id not in art_ids:
                        art ids.append(art id)
                        art feats.append(art feat)
                    pool_idx.append(art_ids.index(art_id))
                    pool_ids.append(art_id)
                events.append(
                            pool_ids.index(int(cols[0].strip().split()[1])),
                            user click,
                            user_feat,
                            pool_idx
    with open('data/art_feats.pkl', 'wb') as f:
        pickle.dump(art_feats, f)
    with open('data/events.pkl', 'wb') as f:
        pickle.dump(events, f)
if name == ' main ':
    generate data(('data/ydata-fp-td-clicks-v1 0.20090509',
                    'data/vdata-fp-td-clicks-v1 0.20090510'))
```

Method Details

- → Incorporate & compare algorithms taught in class
- → Explore contextual based model
 - ♦ LinUCB
- → Learning rate
 - ◆ 90% of data for learning
 - ◆ 10% of data for deployment

Algorithms Explored

- 1. Epsilon Greedy
- 2. Epsilon Decay
- 3. Annealing Softmax
- 4. UCB
- 5. Bayesian UCB
- 6. LinUCB

Algorithm 1: Epsilon Greedy

→ Number of Arms = Total number of Articles

→ Selection of both Exploitation & Exploration is from a pool of articles, subset of total articles

```
class EpsilonGreedy():
   def init (self, epsilon, n arms):
        self.epsilon = epsilon
        self.counts = np.zeros(n arms)
        self.values = np.zeros(n_arms)
        self.algo = 'EpsilonGreedy (\epsilon=' + str(epsilon) + ')'
   def choose_arm(self, n_trails, user_feat, pool_idx, art_feat):
        if np.random.rand() > self.epsilon:
            return np.argmax(self.values[pool idx])
            return np.random.randint(low=0, high=len(pool_idx))
   def update(self, chosen_arm, reward, user_feat, pool_idx, art_feat):
        a = pool_idx[chosen_arm]
        self.counts[a] += 1
        n = self.counts[a]
        self.values[a] = ((n-1)/float(n))*self.values[a] + (1/float(n))*reward
```

Algorithm 2: Epsilon Decay

→ Follows similar algorithm taught in class; epsilon decays when number of trials increases

```
class EpsilonDecay():
    def init (self, n arms):
        self.counts = np.zeros(n_arms)
        self.values = np.zeros(n arms)
        self.algo = 'EpsilonDecay'
    def choose_arm(self, n_trails, user_feat, pool_idx, art_feat):
        if np.random.rand() > 1/(sum(self.counts)/len(self.counts)+1):
            return np.argmax(self.values[pool_idx])
            return np.random.randint(low=0, high=len(pool_idx))
    def update(self, chosen_arm, reward, user_feat, pool_idx, art_feat):
        a = pool_idx[chosen_arm]
        self.counts[a] += 1
        n = self.counts[a]
        self.values[a] = ((n-1)/float(n))*self.values[a] + (1/float(n))*reward
```

Algorithm 3: Annealing Softmax

→ Temperature of Annealing Softmax follows implementation taught in class, where

```
temperature = \frac{1}{1 + log(n + 0.000001)}.
```

```
class AnnealingSoftmax():
   def init (self, n arms):
       self.counts = np.zeros(n_arms)
       self.values = np.zeros(n_arms)
       self.algo = 'AnnealingSoftmax'
   def choose_arm(self, n_trails, user_feat, pool_idx, art_feat):
       temperature = 1/(1+np.log(sum(self.counts[pool_idx])+0.000001))
       z=sum([np.exp(v/temperature) for v in self.values[pool_idx]])
       probs=[np.exp(v/temperature)/z for v in self.values[pool_idx]]
       return np.random.choice(len(pool_idx), p=probs)
   def update(self, chosen arm, reward, user feat, pool idx, art feat):
       a = pool_idx[chosen_arm]
       self.counts[a] += 1
       n = self.counts[a]
       self.values[a] = ((n-1)/float(n))*self.values[a] + (1/float(n))*reward
```

Algorithm 4: UCB

- → Similar to algorithm taught in class
- → Confidence level generalized to a hyperparameter alpha

```
class UCB1():
    def __init__(self, n_arms, alpha):
        self.counts = np.zeros(n_arms)
        self.values = np.zeros(n arms)
        self.alpha = alpha
        self.algo = 'UCB1 (\alpha = ' + str(alpha) + ')'
    def choose_arm(self, n_trails, user_feat, pool_idx, art_feat):
       ucb_values = self.values[pool_idx] + \
                    np.sqrt(self.alpha * np.log(n_trails + 1) / self.counts[pool_idx])
        return np.argmax(ucb_values)
    def update(self, chosen arm, reward, user feat, pool idx, art feat):
       a = pool idx[chosen_arm]
        self.counts[a] += 1
        n = self.counts[a]
        self.values[a] = ((n-1)/float(n))*self.values[a] + (1/float(n))*reward
```

Algorithm 5: Bayesian UCB

- → Takes a long time to run
 - Only run one set of hyperparameters
 - ◆ Standard Deviation = 3
 - ♦ Initial Alpha = 1
 - ◆ Initial Beta = 1

```
class BayesUCB():
    def __init__(self, n_arms, stdnum=3, init_alpha=1, init_beta=1):
        self.counts = np.zeros(n_arms)
        self.values = np.zeros(n arms)
        self.alphas = np.array([init_alpha] * n_arms)
        self.betas = np.array([init beta] * n arms)
        self.stdnum = stdnum
        self.algo = 'Baysian UCB'
    def choose_arm(self, n_trails, user_feat, pool_idx, art_feat):
        pool_alphas = self.alphas[pool_idx]
        pool betas = self.betas[pool idx]
        best_arm = max(
                range(len(pool idx)),
                key=lambda x: pool_alphas[x] / float(pool_alphas[x] + pool_betas[x]) + \
                        pool_alphas[x], pool_betas[x]
                    ) * self.stdnum
        return best arm
    def update(self, chosen_arm, reward, user_feat, pool_idx, art_feat):
        a = pool_idx[chosen_arm]
        self.counts[a] += 1
        n = self.counts[a]
        self.values[a] = ((n-1)/float(n))*self.values[a] + (1/float(n))*reward
        self.alphas[a] += reward
        self.betas[a] += (1-reward)
```

Algorithm 6: LinUCB

- → All of the previously mentioned algorithms gain Historical Rewards vertically
 - ◆ Absence of User Features & Articles
- → Implement Contextual-bandit Algorithm: LinUCB
 - ♦ Observes the current user + set of articles with its feature vectors
- → Based on observed rewards in previous trials
 - ◆ Algorithm chooses an article
 - Receives Payoff (dependent of user & arm)
- → Improves Article-selection strategy with new observation

Algorithm 1 LinUCB with disjoint linear models.

- 0: Inputs: $\alpha \in \mathbb{R}_+$
- 1: **for** $t = 1, 2, 3, \dots, T$ **do**
- 2: Observe features of all arms $a \in A_t$: $\mathbf{x}_{t,a} \in \mathbb{R}^d$
- 3: for all $a \in A_t$ do
- 4: **if** a is new then
- 5: $\mathbf{A}_a \leftarrow \mathbf{I}_d$ (*d*-dimensional identity matrix)
- 6: $\mathbf{b}_a \leftarrow \mathbf{0}_{d \times 1}$ (*d*-dimensional zero vector)
- 7: end if
- 8: $\hat{\boldsymbol{\theta}}_a \leftarrow \mathbf{A}_a^{-1} \mathbf{b}_a$
- 9: $p_{t,a} \leftarrow \hat{\boldsymbol{\theta}}_a^{\top} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{\top} \mathbf{A}_a^{-1} \mathbf{x}_{t,a}}$
- 10: end for
- 11: Choose arm $a_t = \arg \max_{a \in \mathcal{A}_t} p_{t,a}$ with ties broken arbitrarily, and observe a real-valued payoff r_t
- 12: $\mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{\mathsf{T}}$
- 13: $\mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}$
- 14: **end for**

Algorithm 6: LinUCB

Algorithm's Code

```
class LinUCB():
    def __init__(self, n_arms, alpha):
                 np.array([np.identity(d)] * n arms)
        self.A =
        self.b =
                 np.zeros((n_arms, d, 1))
        self.alpha = alpha
        self.algo = 'LinUCB (\alpha=' + str(alpha) + ')'
    def choose_arm(self, n_trails, user_feat, pool_idx, art_feat):
        A = self.A[pool_idx]
        b = self.b[pool idx]
        user = np.array([user_feat] * len(pool_idx))
        art_feat = np.array(art_feat)
        A = np.linalg.inv(A)
        x = np.hstack((user, art feat[pool idx]))
        x = x.reshape((len(pool_idx), 12, 1))
        theta = A @ b
        p = np.transpose(theta, (0, 2, 1)) @ x + self.alpha * np.sqrt(
            np.transpose(x, (0, 2, 1)) @ A @ x
        return np.argmax(p)
    def update(self, chosen_arm, reward, user_feat, pool_idx, art_feat):
            pool idx[chosen arm]
        x = np.hstack((user_feat, art_feat[a]))
        x = x.reshape((12.1))
        self.A[a] = self.A[a] + x @ np.transpose(x)
        self.b[a] += reward * x
```

Performance Analysis

Policy Evaluator Pseudocode for results to be evaluated on

```
Algorithm 2 Policy_Evaluator (with finite data stream).
 0: bandit algorithm A; stream of events S of length L
 1: h_0 \leftarrow \emptyset {An initially empty history}
 2: \hat{G}_A \leftarrow 0 {An initially zero total payoff}
 3: T \leftarrow 0 {An initially zero counter of valid events}
 4: for t = 1, 2, 3, \dots, L do
       Get the t-th event (\mathbf{x}, a, r_a) from S
       if A(h_{t-1}, \mathbf{x}) = a then
       h_t \leftarrow \text{CONCATENATE}(h_{t-1}, (\mathbf{x}, a, r_a))
       \hat{G}_{\mathsf{A}} \leftarrow \hat{G}_{\mathsf{A}} + r_a
      T \leftarrow T + 1
10:
        else
11:
         h_t \leftarrow h_{t-1}
12:
        end if
13: end for
14: Output: G_A/T
```

- → Adopted unbiased offline evaluation algorithm from "Unbiased Offline Evaluation of Contextual-bandit-based" article
- → When article selected at event = article selected by algorithm
 - Update reward
 - Update algorithm
 - ◆ Else, event is ignored

Performance Analysis

- → Randomly split a portion of data as test dataset
 - Algorithms will not be updated for these events
- → Completely random selected algorithm on all events as a baseline
- → Compare improvement
 - Calculate ratio between algorithm's Cumulative Result and Baseline Model

```
def test_algo(algo, events, art_feats, size_rate=None, learn_rate=0.9):
    start = time.time()
    G learn = 0
   G_deploy = 0
    N learn = 0
   N \text{ deploy} = 1
   exp learns = []
   exp_deploy = []
    if size_rate is None:
        events = events
        events = random.sample(events, int(len(events)*size_rate/100))
    for i, event in enumerate(tqdm(events)):
        dis = event[0]
        reward = int(event[1])
        user_feat = event[2]
        pool_idx = event[3]
        chosen_art = algo.choose_arm(N_learn+N_deploy, user_feat, pool_idx, art_feats)
        if chosen art == dis:
            if random.random() < learn_rate:</pre>
                G learn += reward
                N learn += 1
                algo.update(dis, reward, user feat, pool idx, art feats)
                exp learns.append(G learn/N learn)
                G_deploy += reward
                N deploy += 1
                exp_deploy.append(G_deploy/N_deploy)
    end = time.time()
   exc_time = round(end-start, 1)
    print(algo.algo, round(G_deploy/N_deploy, 4), exc_time)
    return exp_learns, exp_deploy
```

Results - Epsilon Greedy

- → Run a range of Epsilon value to compare performance
- → Best performance in the long run when Epsilon = 0.1
- → Concaves at ~175,000 trials

Possible Reason of Concave:

- Breaking News at certain time period
- Many other users will be attracted
- Algorithm doesn't capture

Results - Epsilon Decay

- → Significant draw down starting from 100,000 trials
 - Probable reason: epsilon = 10e^-10, exploration of algorithm neglected
 - New articles appear on website;
 old articles stop showing on website
 - Algorithm gives wrong recommendation

Results - UCB

- \rightarrow When Confidence Level = 0.1
 - ◆ Provides best result
- → Confidence Level controls level of exploration
 - ◆ Least exploration = Best Result

Results - BayesUCB

- → With regards to run time, BayesUCB takes 7.5hrs to complete one run
- → Only conduct a test with Standard Deviation = 3

Results - LinUCB

- → Best CTR in the long run: Alpha = 0.5
- → Best CTR in the short run: Alpha = 0.1

Possible Reason:

- In the long run
 - New similar articles appear
 - Algorithm require more exploration to select new articles of similar feature
- In the short run
 - Not many new articles
 - Sticking with exploitation is a better choice

Results - Comparing all models with Best Parameters

Learning Bucket

Results - Comparing all models with Best Parameters

Deploy Bucket

Results - Ratio with Random Model (Epsilon=1, CTR=0.0331)

model	Learning bucket	Deploy bucket
e-greedy, e=0.1	1.46	1.39
e-decay	1.29	1.25
anneal-softmax	1.06	1.03
ucb1, a=0.1	1.41	1.31
bayes-ucb	1.48	1.44
lin-ucb, a=0.5	1.63	1.58

Difficulties

1. Huge dataset:

- a. Many pre-processing steps for the dataset
- b. Store key information

2. Different performances of same model

- a. With different parameters, the performance of the same model can be different
- b. Had to experiment with many different parameter values to find the best result

3. Cannot perform descriptive analysis

- a. The data is given in the form of embedding feature vectors
- b. No meaningful features can be used for descriptive analysis

Conclusion

- 1. Contextual bandit algorithm can learn features of items and users
 - It can recommends items even if they are not in the article pool
 - useful for recommendation system (e.g. new movies)
- 2. To explore further, we can test on the number of articles to compare performances
- 3. Contextual bandit algorithm can be extended to many other industries (e.g. financial portfolio construction)

References

1. Li, L., Chu, W., Langford, J. and Wang, X., 2012. Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms. [online] Arxiv.org. Available at: https://arxiv.org/pdf/1003.5956.pdf [Accessed 19 April 2021].