Little's law: Intuitive ensemble average proof

- ▶ Let $F(\cdot)$ denote the CDF of T_i .
- At time t, consider those in the system have arrived before t and are staying beyond t.
- At (t x, t x + dx), jobs arrive with probability λdx .
- Each such job will stay beyond t with probability 1 F(x)
- $ightharpoonup E[N(t)] = \int_0^t [1 F(x)] \lambda dx.$
- $L = \lim_{t \to \infty} E[N(t)] = \int_0^\infty [1 F(x)] \lambda dx.$

Little's law: Intuitive time average proof

$$ightharpoonup N(t) = A(t) - D(t)$$

$$\sum_{n=1}^{D(t)} T_n \leq \int_0^t N(t) \leq \sum_{n=1}^{A(t)} T_n$$

$$\blacktriangleright \text{ What is } \lim_{t\to\infty}\frac{D(t)}{t}?$$

Busy cycles of a work-conserving system

- When the system is work conserving, the system oscillates between busy periods and idle periods.
- Busy period + idle period = Busy cycle
- The start of a busy cycle constitutes a renewal point.
- ► The interarrival times between busy cycles are i.i.d
- We can therefore also use renewal-reward theorems to calculate L, W and even $\lim D(t)/t$.

Busy cycles of a work-conserving system

- ► Consider $\lim_{t\to\infty} D(t)/t$.
- ▶ Let C_i denote the length of the i^{th} cycle.
- Let N_i denote the number of jobs served in i^{th} cycle.
- Assume that every departure earns a reward of 1 unit. Then in i^{th} cycle, the reward earned is N_i .

Busy cycles of a work-conserving system

- From renewal reward theorem, we have $\frac{D(t)}{t} \to \frac{E[N]}{E[C]}$
- ▶ Using Wald's lemma, we can show that $E[C] = \frac{E[N]}{\lambda}$.
- ▶ This implies that $\frac{D(t)}{t} \to \lambda$.

(See Thm 3.62 and Section 3.6.1 of Sheldon Ross)

Consequences of Little's law

- let N_q denote the mean number of waiting jobs in a queueing system at stationarity.
- Similarly N denotes the mean number of jobs in the system.
- $N_s = N N_q$ denotes the mean number of jobs receiving service.
- \triangleright W_q denotes the mean time spent by any job waiting for service while S denotes the mean sojourn time.
- \triangleright $S-W_q$ denotes the mean service time.

Consequences of Little's law -M/M/1

- $ightharpoonup N_q = ?$
- ► N =?
- $ightharpoonup N_s = N N_q = ?$
- $ightharpoonup W_q = rac{
 ho}{\mu \lambda}$
- $S = \frac{1}{\mu \lambda}$
- $> S W_q = ?$

Exercise:- Identify these for M/M/1/K, M/M/K/K and $M/M/K/\infty$

Busy period analysis for M/M/1

- ▶ What is the mean length of busy period, i.e., E[B]?
- Nhat is the probability that the server is busy? $(1-\pi_0=rac{\lambda}{\mu})$
- The time average that the server is busy is $\lim_{t\to\infty}\frac{1}{t}\int_0^t 1_{\{N(t)>0\}}dt$.
- Using RR theorem, this is equal to $\frac{E[B]}{E[B]+\frac{1}{\lambda}}$
- ▶ Equating the two averages give us $E[B] = \frac{1}{\mu \lambda}$.
- Mean number of jobs served in a busy period $n_B = E[B]/\frac{1}{\mu}$.

Age and Residual life of a Renewal process

- Let A(t) and R(t) denote the age and the residual life of the renewal process at time t.
- \triangleright Assume you arrive at a Metro station at time t.
- ightharpoonup A(t) is the time since the last metro departed.
- ightharpoonup R(t) is the time till the next Metro arrives.
- Assume that you arrive uniformly at random to the Metro.
- ▶ What is your average waiting time \bar{R} ? $\bar{R} = E[X]/2$?

Hitchhiker's Paradox!

- ▶ Consider $\bar{R} = \lim_{t\to\infty} \frac{Y(t)}{t}$ where $Y(t) = \int_0^t R(t)$.
- ▶ Using Renewal reward theorem, $\bar{R} = \frac{E[Y]}{E(X)} = \frac{E[X^2]}{2E[X]} \neq E[X]/2$.
- $ightharpoonup \frac{E[X^2]}{2E[X]} = E[X]/2$ only when interarrival times are deterministic.
- ► Consider $\bar{A} = \lim_{t \to \infty} \frac{Y(t)}{t}$ where $Y(t) = \int_0^t A(t) . \bar{A}$?.
- ▶ What is \bar{R} or \bar{A} when $X_i \sim exp(\lambda)$?

PASTA

- ► The key assumption to Hitchhikers paradox was that you arrive uniformly at random at the busy/metro stop.
- Now suppose there is a signboard at the metro that tells you the residual time till the next metro.
- Suppose that you note the residual time after every 5 min interval and compute an empirical average of the residual times.
- ▶ Will this be \overline{R} ? No! You do not sample (0, t) uniformly.

PASTA

- Nhat if you make the residual time readings after a random time which is $exp(\lambda)$ distributed.
- \triangleright Your observation process is a Poisson(λ) process.
- ightharpoonup In this case, the empirical average will equal \bar{R} .

For a Poisson process, given N(t) = n, the arrival times $S_1, \ldots S_n$ have the same distribution as the order statistics of n i.i.d uniform points over (0, t). (Thm 2.3.2 Sheldon ross)

Poisson arrivals see time average! (PASTA)

For those interested in Honors/DD

- 1. Stochastic Optimization
 - Bayesian Optimization (Gaussain processes for ML)
 - Reinforcement learning (Markov Decision Process under unertainty)
 - Multi-arm bandit optmization (UCB, Thompson, Gittins index)
 - Probabilistic Machine learning (GenAI)
- 2. Operations Research
 - Performance modeling (this course)
 - Pricing (Data driven approaches, estimating distributions)
 - Inventory control and pricing
- 3. Financial Engineering
 - Porfolio Optimization, Option pricing
 - Brownian motion, Black Sholes formula, Stochastic Differential Equations

Resources: https://sites.google.com/view/orfs/resources?authuser=0