

National Level Online Hack-A-Thon On Sustainable Energy

DETAILED REPORT

SUBMITTED BY:

VIT/OW/55

TEAM MEMBERS:

Sarthak Kiran Sarode
(18bee1074)
Ashutosh Sanjay Lembhe
(18bee1025)

DATE: 08/01/2022

PROBLEM STATEMENT:

- 1. OLAP operation of the data in front end (dice, slice, roll up/ down, filter)
- 2. Ability to notify significant changes in the time series dataset imported in the tool
- 3. Ability to select from and to time stamp in the time series visualization and give a label or annotation
- 4. Annotation tool Data labelling where the customer can import the data and the multiple columns render it in the chart where they can select from all and to frame and labelled the part and save in the database.
- 5. Exploratory data analysis- Where they can explore the data and find its relationship with the different parameters.
- 6. Prediction Analysis/ modelling Where they can pass the data and application has to automatically select which model is best and show it's all the model accuracy results.
- 7. Have a dashboard to display aggregated values.
- 8. Results should be in pictorial representation.
- 9. Data cleaning/Data sanitisation must be done (Should not have null values).
- 10. Working video of the application is expected.

SOFTWARES USED:

LIBRARIES USED:

EXPLORATORY ANALYSIS ON SOLAR DATASET

ENERGY EFFICIENCY PREDICTION BY AUTOML USING PYCART WITH A REGRESSION

(Sub problem statement 5, 9 covered)

Introduction: We have taken the solar dataset and we are going to develop the regression machine learning model for the **temperature parameter**. As the solar panel's output mainly depends upon the temperature.

1) Importing the essential libraries and importing data set in python jupyter notebook.

Basic Analysis of checking the datatypes and info of the dataframe

```
In [6]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 119296 entries, 0 to 119295
        Data columns (total 23 columns):
             Column
                                    Non-Null Count
                                                     Dtype
                                    -----
         0
            location
                                    119296 non-null object
         1
             date time
                                    119296 non-null object
            solarvoltage
                                    119296 non-null float64
         2
         3
            solarcurrent
                                    119296 non-null float64
            solarenergy
                                    119296 non-null float64
            solarpower
                                    119296 non-null float64
            batteryvoltage
                                    119296 non-null float64
         6
         7
            batterycurrent
                                    119296 non-null float64
            batterypower
                                    119296 non-null float64
         9
             load energy1
                                    119296 non-null float64
         10 load_power1
                                    119296 non-null float64
         11 load current1
                                    119296 non-null float64
         12 load_voltage1
                                    119296 non-null float64
                                    119296 non-null float64
         13 load energy2
         14 load_power2
                                    119296 non-null float64
         15 load current2
                                    119296 non-null float64
         16 load voltage2
                                    119296 non-null float64
         17 inverter_input_power
                                    119296 non-null float64
                                    119296 non-null float64
         18 inverter_output_power
                                    119296 non-null float64
         19 inverter input energy
         20 inverter_output_energy 119296 non-null float64
         21 irradiance
                                    119296 non-null int64
         22 temperature
                                    119120 non-null float64
        dtypes: float64(20), int64(1), object(2)
        memory usage: 20.9+ MB
```

Here the data type of date_time column is object we are supposed to convert it into standard format which is done ahead.

In [5]: data.dtypes Out[5]: location object object date time solarvoltage float64 solarcurrent float64 float64 solarenergy solarpower float64 float64 batteryvoltage batterycurrent float64 batterypower float64 load_energy1 float64 float64 load power1 load_current1 float64 load_voltage1 float64 float64 load_energy2 float64 load power2 load_current2 float64 load voltage2 float64 inverter_input_power float64 inverter_output_power float64 inverter_input_energy float64 inverter_output_energy float64 irradiance int64 temperature float64 dtype: object

Shape of the dataframe before data cleaning i.e missing values cleaning

```
In [6]: data.shape
Out[6]: (119296, 23)
```

2) Missing values cleaning and Data Sanitization (9 th sub problem statement)

```
In [7]: data.isnull().sum()
Out[7]: location
                                     0
        date time
                                     0
         solarvoltage
                                     0
         solarcurrent
                                     0
         solarenergy
                                     0
                                     0
         solarpower
         batteryvoltage
                                     0
        batterycurrent
                                     0
        batterypower
                                     0
                                     0
         load energy1
         load_power1
                                     0
         load_current1
                                     0
        load_voltage1
         load_energy2
                                     0
                                     0
         load_power2
        load_current2
                                     0
         load voltage2
                                     0
         inverter_input_power
                                     0
         inverter_output_power
                                     0
        inverter_input_energy
                                     0
         inverter_output_energy
                                     0
         irradiance
                                     0
         temperature
                                   176
        dtype: int64
```

```
In [8]: data.isnull().sum().sort_values(ascending=False)
Out[8]: temperature
                                   176
        load_voltage1
        irradiance
                                     0
        inverter_output_energy
                                     0
        inverter_input_energy
                                     0
        inverter_output_power
                                     0
        inverter_input_power
                                     0
        load voltage2
                                     0
        load_current2
                                     0
        load_power2
                                     0
        load_energy2
                                     0
        location
                                     0
        date time
                                     0
        load_power1
                                     0
        load energy1
                                     0
        batterypower
                                     0
        batterycurrent
                                     0
        batteryvoltage
                                     0
        solarpower
                                     0
        solarenergy
                                     0
        solarcurrent
                                     0
        solarvoltage
                                     0
        load current1
        dtype: int64
```

Temperature has some missing values. Checking which row of temperature has missing value.

```
In [9]: missing_values= pd.isnull(data["temperature"])
        missing_values
Out[9]: 0
                   False
        1
                  False
        2
                  False
        3
                  False
        4
                  False
                   . . .
        119291
                  False
        119292
                  False
        119293
                  False
        119294
                  False
        119295
                   False
        Name: temperature, Length: 119296, dtype: bool
```

"False" means no missing values. Dropping rows having missing values.

Deleting the columns which has missing values.

In [10]: columns_with_na_dropped = data.dropna(axis=1)
 columns_with_na_dropped.head()

Out[10]:

	location	date_time	solarvoltage	solarcurrent	solarenergy	solarpow
0	Peru	2015-12- 02 00:00:27	0.0	0.0	0.0	(
1	Peru	2015-12- 02 00:01:40	0.0	0.0	0.0	(
2	Peru	2015-12- 02 00:02:52	0.0	0.0	0.0	(
3	Peru	2015-12- 02 00:04:05	0.0	0.0	0.0	(
4	Peru	2015-12- 02 00:05:18	0.0	0.0	0.0	(
∢						

Final conclusion on cleaning the missing value.

```
In [9]: print("Columns in original dataset: %d \n" % data.shape[1])
    print("Columns with na's dropped: %d" % columns_with_na_dropped.shape[1])

Columns in original dataset: 23
Columns with na's dropped: 22
```

3) Date datatype converting to standard format.

```
In [12]: data['date_time'] = pd.to_datetime(data['date_time'])
In [11]: data.dtypes
Out[11]: location
                                            object
         date time
                                    datetime64[ns]
                                           float64
         solarvoltage
         solarcurrent
                                           float64
                                           float64
          solarenergy
                                           float64
         solarpower
                                           float64
         batteryvoltage
         batterycurrent
                                           float64
                                           float64
         batterypower
         load_energy1
                                           float64
                                           float64
         load power1
                                           float64
         load current1
                                           float64
         load_voltage1
                                           float64
         load_energy2
                                           float64
         load power2
         load current2
                                           float64
                                           float64
         load_voltage2
         inverter_input_power
                                           float64
                                           float64
         inverter output power
          inverter_input_energy
                                           float64
          inverter_output_energy
                                           float64
         irradiance
                                             int64
                                           float64
         temperature
         dtype: object
```

4) Statistical Analysis of the dataset. Checking the skewness and the kurtosis of the dataset.

In [13]: data.skew() Out[13]: solarvoltage 0.169811 solarcurrent 1.085848 solarenergy 58.399654 solarpower 0.879099 batteryvoltage -0.542736 batterycurrent 1.119845 batterypower 1.151977 load_energy1 151.550088 load power1 1.113178 load_current1 1.148885 load voltage1 -9.679776 load_energy2 5.504227 load power2 0.050937 load_current2 0.073336 load_voltage2 -9.679776 inverter_input_power 2.435407 inverter_output_power 235.642088

48.835040

21.545588

1.900642

2.636329

inverter_input_energy

inverter output energy

irradiance

temperature

dtype: float64

```
In [14]: data.kurt()
Out[14]: solarvoltage
                                       -1.867285
         solarcurrent
                                        0.343499
         solarenergy
                                     8778.367807
         solarpower
                                       -0.640969
         batteryvoltage
                                       11.710920
         batterycurrent
                                        0.087627
         batterypower
                                        0.196991
         load_energy1
                                    38758.832564
         load power1
                                        1.795199
         load current1
                                        1.867863
         load voltage1
                                       99.725862
         load energy2
                                      229.848240
         load power2
                                        0.011164
         load current2
                                        0.127850
         load_voltage2
                                       99.725862
         inverter_input_power
                                        8.011426
         inverter output power
                                    56855.173231
         inverter_input_energy
                                     6060.402081
         inverter_output_energy
                                     1439.582866
         irradiance
                                        3.105551
         temperature
                                       12.743482
         dtype: float64
```

If skewness is less than -1 or greater than 1, the distribution is highly skewed. If skewness is between -1 and -0.5 or between 0.5 and 1, the distribution is moderately skewed. If skewness is between -0.5 and 0.5, the distribution is approximately symmetric.

Low kurtosis in a data set is an indicator that data has light tails or lack of outliers. ... The peak is lower and broader than Mesokurtic, which means that data are light-tailed or lack of outliers. The reason for this is because the extreme values are less than that of the normal distribution.

Anyways, we have omitted the skewness and outliers while developing the setup model for regression which will be explained later.

Checking the statistical data like mean, standard deviation of the entire dataset

Printing all the columns name.

Storing all the columns inside the cat_F variable which will be used later for the analysis.

As the energy efficiency depends upon the temperature model and we are going to establish the regression relationship between temperature and other parameters. Let's train the data and before that split in the test and train data set.

```
In [15]: data['temperature'].describe()
Out[15]: count
                  119120.000000
         mean
                      38.506775
                       0.436293
         std
         min
                      36.540000
         25%
                      38.440000
         50%
                      38.440000
         75%
                      38.440000
                      45.540000
         max
         Name: temperature, dtype: float64
```

```
In [18]: traindata = data[0:100000]
    testdata = data[100000:]
    print('Data for Modeling: ' + str(traindata.shape))
    print('Unseen Test Data For Predictions: ' + str(testdata.shape))

Data for Modeling: (100000, 23)
    Unseen Test Data For Predictions: (19296, 23)

In [19]: target = 'temperature'
    data = traindata
```

5) Checking the correlation of the temperature on the other parameters. The parameters which have negative correlation in heatmap will be ignore in the regression model development.

```
In [27]: target = 'temperature'
         data = traindata
In [25]: corr_matrix=data.corr()
         corr_matrix["temperature"].sort_values(ascending=False)
Out[25]: irradiance
                                   1.000000
         batterycurrent
                                   0.616224
         batterypower
                                   0.613680
         solarcurrent
                                   0.608385
         solarpower
                                   0.573467
         solarvoltage
                                   0.444946
         solarenergy
                                   0.385098
         inverter_input_power
                                   0.253651
         batteryvoltage
                                   0.234874
         inverter_output_power
                                   0.218651
         inverter_output_energy
                                   0.155758
         inverter_input_energy
                                   0.086225
         load_voltage2
                                   0.084396
         load_voltage1
                                   0.084396
         load_energy2
                                  -0.032779
         load energy1
                                  -0.064380
         load_power1
                                  -0.342297
         load power2
                                  -0.344840
         load current1
                                  -0.350428
         load_current2
                                  -0.350453
         temperature
         Name: irradiance, dtype: float64
```


PREDICTIVE ANALYSIS ON SOLAR DATASET

ENERGY EFFICIENCY PREDICTION BY AUTOML USING PYCART WITH A REGRESSION

(Sub problem statement 6,8 covered)

6) **Setting up the environment:** Setting up an environment in Caret to run regression models hassle-free. Installing the picrate library in anaconda prompt in D drive folder and then Jupiter notebook is launched from there.

```
Anaconda Prompt (anaconda3) - jupyter notebook
(base) C:\Users\decos>activate newpycaret
(newpycaret) C:\Users\decos>pip install pycaret
Requirement already satisfied: pycaret in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (2.3.5)
Requirement already satisfied: pyod in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret) (0.9.7)
Requirement already satisfied: lightgbm>=2.3.1 in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycar
et) (3.3.2)
Requirement already satisfied: pandas-profiling>=2.8.0 in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (fr
m pycaret) (3.1.0)
Requirement already satisfied: nltk in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret) (3.6.7)
equirement already satisfied: wordcloud in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret) (1
Requirement already satisfied: textblob in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret) (θ.
17.1)
Requirement already satisfied: plotly>=4.4.1 in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret
 (5.5.0)
equirement already satisfied: mlflow in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret) (1.22
Requirement already satisfied: pyLDAvis in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret) (3.
equirement already satisfied: numpy==1.19.5 in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret
 (1.19.5)
equirement already satisfied: scikit-plot in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret)
(0.3.7)
Requirement already satisfied: umap-learn in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from pycaret) (
        ent already satisfied: scikit-learn==0.23.2 in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from
 Anaconda Prompt (anaconda3) - jupyter notebook
 equirement already satisfied: pycparser in c:\users\decos\anaconda3\envs\newpycaret\lib\site-packages (from cffi>=1.0
 >argon2-cffi-bindings->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets->pycaret) (2.21)
 (newpycaret) C:\Users\decos>cd
 (newpycaret) C:\Users\decos>D
 'D' is not recognized as an internal or external command,
 pperable program or batch file.
 (newpycaret) C:\Users\decos>d:
 (newpycaret) D:\>"Energy Hackathon" \times |
"Energy Hackathon"' is not recognized as an internal or external command,
 pperable program or batch file.
 (newpycaret) D:\>d:
(newpycaret) D:\>cd "Energy Hackathon"
(newpycaret) D:\Energy Hackathon>jupyter notebook
[I 21:53:09.165 NotebookApp] The port 8888 is already in use, trying another port.
[I 21:53:09.166 NotebookApp] The port 8889 is already in use, trying another port.
[I 21:53:09.170 NotebookApp] Serving notebooks from local directory: D:\Energy Hackathon
[I 21:53:09.170 NotebookApp] Jupyter Notebook 6.4.6 is running at:
[I 21:53:09.171 NotebookApp] http://localhost:8890/?token=b02db7288a602da6d9148e39a7b143ae68c6d30c07e0dd79
[I 21:53:09.172 NotebookApp] or http://127.0.0.1:8890/≀token=b02db7288a602da6d9148e39a7b143ae68c6d30c07e0dd79
[I 21:53:09.173 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 21:53:09.299 NotebookApp]
```

7) Setup of the Regression model

```
In [84]: from pycaret.regression import*
       normalize=True,
                transform_target = True,remove_outliers=True,
                remove_multicollinearity= True,
                combine_rare_levels=True,
                 high_cardinality_features=['location'],
                 log_experiment=True,experiment_name='life'
                         Description
                                      Value
                          session_id
                             Target
                                    irradiance
                         Original Data (100000, 23)
                        Missing Values
                      Numeric Features
                    Categorical Features
                       Ordinal Features
                                       False
                  High Cardinality Features
                                       True
```

We have removed the **outliers and skewness** here. The columns which have less correlation are also ignored.

```
In [31]: exp_clf = setup(data=data, target = target, feature_selection=True, session_id=100)
```

Value	Description	
100	session_id	0
irradiance	Target	1
Multiclass	Target Type	2
None	Label Encoded	3
(100000, 23)	Original Data	4
False	Missing Values	5
20	Numeric Features	6
1	Categorical Features	7
False	Ordinal Features	8
False	High Cardinality Features	9
None	High Cardinality Method	0
(69999, 51)	Transformed Train Set	11
(30001, 51)	Transformed Test Set	2
True	Shuffle Train-Test	3
False	Stratify Train-Test	4
StratifiedKFold	Fold Generator	5
10	Fold Number	6
-1	CPU Jobs	7
False	Use GPU	8
False	Log Experiment	9
clf-default-name	Experiment Name	0

	USI	08da
	Imputation Type	simple
	Iterative Imputation Iteration	None
	Numeric Imputer	mean
It	Iterative Imputation Numeric Model	None
	Categorical Imputer	constant
era	rative Imputation Categorical Model	None
	Unknown Categoricals Handling	least_frequent
	Normalize	False
	Normalize Method	None
	Transformation	False
	Transformation Method	None
	PCA	False
	PCA Method	None
	PCA Components	None
	Ignore Low Variance	False
	Combine Rare Levels	False
	Rare Level Threshold	None
	Numeric Binning	False
	Remove Outliers	False
	Outliers Threshold	None
	Remove Multicollinearity	False
	Multicollinearity Threshold	None

41	Outliers Infreshold	None
42	Remove Multicollinearity	False
43	Multicollinearity Threshold	None
44	Remove Perfect Collinearity	True
45	Clustering	False
46	Clustering Iteration	None
47	Polynomial Features	False
48	Polynomial Degree	None
49	Trignometry Features	False
50	Polynomial Threshold	None
51	Group Features	False
52	Feature Selection	True
53	Feature Selection Method	classic
54	Features Selection Threshold	0.800000
55	Feature Interaction	False
56	Feature Ratio	False
57	Interaction Threshold	None
58	Fix Imbalance	False
59	Fix Imbalance Method	SMOTE

8) Comparing all models and picking up the best one which has maximum **R2** score.

Checking all the machine learning models available for the regression.

nodels()			
-	Name	Reference	Turbo
ID			
Ir	Logistic Regression	sklearn.linear_modellogistic.LogisticRegression	True
knn	K Neighbors Classifier	sklearn.neighborsclassification.KNeighborsCl	True
nb	Naive Bayes	sklearn.naive_bayes.GaussianNB	True
dt	Decision Tree Classifier	$sklearn.tree._classes.DecisionTreeClassifier$	True
svm	SVM - Linear Kernel	$sklearn.linear_model._stochastic_gradient.SGDC$	True
rbfsvm	SVM - Radial Kernel	sklearn.svmclasses.SVC	False
gpc	Gaussian Process Classifier	$sklearn.gaussian_process._gpc.GaussianProcessC$	False
mlp	MLP Classifier	sklearn.neural_networkmultilayer_perceptron	False
ridge	Ridge Classifier	$sklearn.linear_model._ridge.RidgeClassifier$	True
rf	Random Forest Classifier	$sklearn.ensemble._forest.RandomForestClassifier$	True
qda	Quadratic Discriminant Analysis	sklearn.discriminant_analysis.QuadraticDiscrim	True
ada	Ada Boost Classifier	sklearn.ensembleweight_boosting.AdaBoostClas	True
gbc	Gradient Boosting Classifier	$sklearn.ensemble._gb.GradientBoostingClassifier$	True
lda	Linear Discriminant Analysis	$sklearn.discriminant_analysis.Linear Discrimina$	True
et	Extra Trees Classifier	$sklearn.ensemble._forest.ExtraTreesClassifier$	True
lightgbm	Light Gradient Boosting Machine	lightgbm.sklearn.LGBMClassifier	True
dummy	Dummy Classifier	sklearn.dummy.DummyClassifier	True

Comparing the models and selecting the best

In [33]:

Out[33]:

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
et	Extra Trees Regressor	26.6548	2948.6166	53.9859	0.9866	1.3599	0.2936	33.1970
rf	Random Forest Regressor	28.2483	3931.7792	62.4063	0.9822	1.3607	0.2958	36.3570
lightgbm	Light Gradient Boosting Machine	32.8953	4688.6018	68.2727	0.9788	1.3793	0.3401	0.3600
dt	Decision Tree Regressor	36.9204	8092.8985	89.5469	0.9633	1.5765	0.4221	1.9350
gbr	Gradient Boosting Regressor	57.5751	16019.1460	126.4891	0.9274	1.5019	0.6441	8.2970
ada	AdaBoost Regressor	104.8898	41529.3795	203.7687	0.8115	1.8563	1.0281	5.4410
knn	K Neighbors Regressor	85.3995	44372.0735	210.5934	0.7988	1.4614	0.6989	11.6910
br	Bayesian Ridge	184.7286	84977.6860	291.4726	0.6147	2.7075	3.0617	0.8220
ridge	Ridge Regression	184.4190	85277.7863	291.9856	0.6133	2.6991	3.0434	0.3160
lr	Linear Regression	183.9752	85278.4413	291.9864	0.6133	2.7023	3.0314	10.9560
lasso	Lasso Regression	186.4486	87178.6743	295.2201	0.6047	2.7020	3.0721	3.4580
en	Elastic Net	189.9523	94361.9050	307.1307	0.5722	2.6763	2.9125	3.9800
omp	Orthogonal Matching Pursuit	194.5018	95592.2663	309.1336	0.5666	2.6968	3.0077	0.2030
huber	Huber Regressor	137.3688	138578.6230	372.1007	0.3722	1.6677	0.5965	8.4960
llar	Lasso Least Angle Regression	331.4704	200936.0550	448.1752	0.0892	3.4293	5.8360	0.2530
dummy	Dummy Regressor	360.2472	220623.9754	469.6346	-0.0002	3.5015	6.4006	0.0420
par	Passive Aggressive Regressor	563.8945	786019.2617	813.4953	-2.6170	2.8621	5.3574	1.1960
lar	Least Angle Regression	49272.7756	41822460423.8974	74520.0509	-185411.0018	5.5062	1015.5241	0.1940

We select par model for its significant RMSE value.

9) Create model:

We selected par model of regression

In [31]: par = create_model('par')

	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	514.6130	524456.3100	724.1936	-1.3248	2.7444	4.4240
1	345.0681	206719.1784	454.6638	0.0680	3.0776	4.6494
2	250.3099	130066.2587	360.6470	0.3956	2.9542	4.5294
3	350.8714	230263.9748	479.8583	0.0341	2.7159	4.2097
4	686.5742	1115570.8366	1056.2059	-3.9879	2.8738	5.1397
5	830.0463	1482158.2902	1217.4392	-5.8601	2.8747	6.6104
6	843.0010	1522174.7916	1233.7645	-6.0245	2.8514	6.7425
7	792.0349	1271424.8527	1127.5748	-5.0559	2.9084	6.8975
8	786.9194	1243917.0838	1115.3103	-4.8212	2.8985	6.8820
9	239.5067	133441.0406	365.2958	0.4062	2.7222	3.4896
Mean	563.8945	786019.2617	813.4953	-2.6170	2.8621	5.3574
SD	237.6617	561197.6599	352.4835	2.6256	0.1066	1.2287

10) Tune Model: Automatically tuning the hyperparameters of a regression model.

In [32]: tuned_par = tune_model(par)

	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	304.6009	187464.1668	432.9713	0.1690	2.9479	3.5383
1	290.5549	170707.5036	413.1676	0.2303	2.9012	3.5134
2	296.2495	176744.3004	420.4097	0.1787	2.9169	3.5773
3	300.3711	184247.1895	429.2402	0.2271	2.9190	3.4642
4	298.7297	178657.7549	422.6793	0.2012	2.9274	3.5977
5	288.1370	168807.8217	410.8623	0.2187	2.9586	3.4228
6	294.6856	173826.1599	416.9246	0.1978	2.9264	3.6928
7	290.5770	168183.1439	410.1014	0.1989	2.9270	3.6297
8	300.8704	178597.1336	422.6075	0.1642	2.9526	3.5828
9	606.9557	451449.2030	671.8997	-1.0088	3.9986	13.4043
Mean	327.1732	203868.4377	445.0864	0.0777	3.0376	4.5423
SD	93.3931	82743.6632	75.9379	0.3628	0.3208	2.9549

11) Plot Model & Results: plotting the performance of various models.

In [33]: print(tuned_par)

PassiveAggressiveRegressor(C=0.911, average=False, early_stopping=False, epsilon=0.3, fit_intercept=False, loss='squared_epsilon_insensitive', max_iter=1000, n_iter_no_change=5, random_state=100, shuffle=False, tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False)

Prediction error plot:

In [35]: plot_model(tuned_par, plot = 'error')

Feature importance plot:

Hyperparameters:

Residuals:

Cooks distance:

11) Finalize model: How to select and finalize the best model at the end of the experiment.

In [39]: final_par = finalize_model(tuned_par)
print(final_par)

PassiveAggressiveRegressor(C=0.911, average=False, early_stopping=False, epsilon=0.3, fit_intercept=False, loss='squared_epsilon_insensitive', max_iter=1000, n_iter_no_change=5, random_state=100, shuffle=False, tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False)

12) Predict Model: making predictions on new data.

Out[40]:		location	date time	solarvoltage	solarcurrent	solarenergy	solarpower	batteryvoltage	batterycurrent	battervpower	load energy1	 load power2
	100000	Peru	2016-02- 27 06:50:35	0.0	1.42	0.0	0.0	93.42	1.06	99.63	0.0	48.65
	100001	Peru	2016-02- 27 06:51:48	0.0	1.35	0.0	0.0	93.57	0.56	52.83	0.0	 64.76
	100002	Peru	2016-02- 27 06:53:01	0.0	1.48	0.0	0.0	93.48	1.63	152.49	0.0	64.80
	100003	Peru	2016-02- 27 06:54:14	0.0	1.35	0.0	0.0	93.51	1.69	158.41	0.0	 58.40
	100004	Peru	2016-02- 27 06:55:26	0.0	1.42	0.0	0.0	93.45	1.69	158.30	0.0	61.55

13) Save Model: Saving the model for future use.

```
In [122]: save_model(final_par,'Final PAR Model 8jan2022')
               Transformation Pipeline and Model Successfully Saved
Out[122]: (Pipeline(memory=None,
                              steps=[('dtypes',
                                          Outspes ,

DataTypes_Auto_infer(categorical_features=[],

display_types=True, features_todrop=[],

id_columns=[], ml_usecase='regression',
                                                                          numerical_features=[], target='temperature', time_features=[])),
                                         ('imputer',
                                          Simple Imputer (categorical_strategy='not_available',
fill_value_categorical=None,
fill_value_numerical=None,
numeric_stra...
                                          ('fix_multi', 'passthrough'), ('dfs', 'passthrough'),
                                         ('pca', 'passthrough'),
['trained_model',
                                          PassiveAggressiveRegressor(C=5.654, average=False,
                                                                                   tearly_stopping=False, epsilon=0.3, fit_intercept=True, loss='squared_epsilon_insensitive', max_iter=1000, n_iter_no_change=5,
                                                                                    random_state=100, shuffle=True,
                                                                                   tol=0.001, validation_fraction=0.1, verbose=0, warm_start=False)]],
                              verbose=False),
                 'Final PAR Model 8jan2022.pkl')
```


TIME SERIES DATA VISUALIZATION AND DATE ANNOTATIONS

(sub problem statement 2,3 covered)

Outlier in the irradiance and clearing it.

In [16]: sns.boxplot(data["irradiance"])

C:\Users\decos\anaconda3\lib\site-packages\seaborn_decorator
rg: x. From version 0.12, the only valid positional argument
yword will result in an error or misinterpretation.
 warnings.warn(

Out[16]: <AxesSubplot:xlabel='irradiance'>


```
In [18]: from scipy import stats
from scipy.stats import zscore

z_scores = stats.zscore(data["irradiance"])

abs_z_scores = np.abs(z_scores)
filtered_entries = (abs_z_scores < 3)
data = data[filtered_entries]

sns.boxplot(data["irradiance"]) #outliers removed

C:\Users\decos\anaconda3\lib\site-packages\seaborn\_dec
rg: x. From version 0.12, the only valid positional arg
yword will result in an error or misinterpretation.
    warnings.warn(</pre>
```

Out[18]: <AxesSubplot:xlabel='irradiance'>

Time series of batteryvoltage

Time series of irradiance

Time series of Temperature

Time series of load_power 2

DASHBORAD CREATION AND RESULT VISUALIZATION

(Sub problem statements 7 & 10 covered in the video submitted)

http://localhost:8892/voila/render/OneDrive/Desktop/Energy%20hac/Descriptive Analysis.ipynb

The Dashboard is created by using **Voila library** in python which converts python jupyter notebook in to html page and then the results can be visualized on the web browser.

This thing is demonstrated in the submitted video.

DATA ANNOTATION AND DATA SAVING IN DATABSE

(Sub problem statement 4 covered)

Tortus library is used in python to make the data labelling in python.

Libraries installation and dataset importing.

Output:

Annotated and labelled data saved:

In [11]: tortus.annotations

Out[11]: See Full Dataframe in Mito

	temperature	location	label	annotated_at
0	38.44	Peru	positve	2022-01-08 17:54:32
1	38.44	Peru	neutral	2022-01-08 17:54:42
2	39.65	Peru	negative	2022-01-08 17:54:44