数据结果记录与分析

张鑫 1601110066

一. 激活函数的影响

基础模型为无隐藏层,训练 5000 个 batch,batch_size = 100,初始化方式为零值初始化,损失函数为交叉熵,优化方法为梯度下降法,学习率为 0.01。由于最终输出必须在[0,1],所以对 tanh()和 softsign()我们将其值域线性变换到[0,1],即 f(x)=(x+1)/2.

得到测试集的表现如下: (取三次测试中间值)

激活函数	SOFTMAX	SIGMOID	TANH	SOFTSIGN
准确率	0.923	0.630	0.572	0.793

可以看出 SOFTMAX 表现是最好的

二. 层数、单元数与初始化的影响

分别对一层隐藏层和两层隐藏层进行分析。基础模型为 5000 个 batch,batch_size 为 100,输出函数为 softmax 函数,隐藏层激活函数用 ReLU. 用交叉熵和梯度下降法,学习率为 0.01。对隐藏层节点个数和初始化方式的对比见下表:

ReLU 隐藏层单元数	零初始化	随机初始化
100	0.103	0.9751
300	0.098	0.9807

其中接近 0.1 的准确率相当于是随机猜中的概率,意味着毫无预测力。此外通过对初始化方式的比较可知,对 ReLU 而言随机初始化是很重要的,能够避免很多死节点。节点增加并没显著提高准确率。

一个自然的问题就是对于其他激活函数是否也有这种现象? 我们把隐藏层激活函数换为 softmax 的话:

SOFTMAX 隐藏层单元数	零初始化	随机初始化
100	0.114	0.8762
300	0.101	0.837

对比之下,我们发现随机初始化确实很有必要。但跟奇怪的是无隐藏层的时候零初始化并没有什么印象,推测这主要是因为末端的梯度可以直接传递在权重矩阵和偏至上。

此外,我们可以发现两层的准确率比一层有显著提高。我们进一步尝试三层的 MLP, 节点数采用 784->300->100->10 的结构。用 ReLU 链接,随机初始化。 很遗憾,这个网络下预测准确率仅为 0.098,对初始化随机方式进行了调整仍旧为这个结果。微调网络结构,改为 784->100->50->10 的方式仍旧是这个结果,可见网络深度并非越深越好。

三. 优化方法和学习率的影响

我们在前面表现最好的图上改变优化算法进行分析。选取一个 ReLU 隐藏层的 MLP,随机初始化。

	0.005	0.01	0.05
GradientDescent	0.980	0.980	0.098
Adagrad	0.967	0.975	0.098
Adam	0.098	0.098	0.098
Adadelta	0.761	0.8451	0.9215
Momentum(2 阶)	0.098	0.098	0.098

从上表可以看出,不同优化算法在个别问题上表现还是有差异的,学习率的影响也很显著,整体而言不应该过大,胆小了也不见得就好,见 Adadelta. 大致上可以认为 ReLU 配合梯度下降法是个不错的搭配。

四. Autoencoder 预训练

我们尝试在模型中加入 Autoencoder 进行预训练以使得参数初始状态处在较好的位置。计算图结构为 700 -> 300 -> 10. 代码里在预训练和全体训练的时候都有打印第一个隐藏层的偏至,以示监视 Autoencoder 有在起作用。但是体现在最后的预测率上,有没有进行 Autoencoder 预训练并没有显著差别,均为 0.98 附近。这可能是因为我们的神经网络层数较低。