Летний экзамен по алгебре

hse-ami-open-exams

Содержание

1	инарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры	
	рупп. Порядок группы. Описание всех подгрупп в группе $(\mathbb{Z},+)$.	2
	1 Бинарные операции	2
	2 Полугруппы, моноиды и группы	2
	3 Коммутативные группы	2
	4 Примеры групп	2
	5 Порядок группы	2
	6 Описание всех полгрупп в группе $(\mathbb{Z},+),\ldots,\ldots$	2

1 Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Описание всех подгрупп в группе $(\mathbb{Z}, +)$.

1.1 Бинарные операции.

Определение 1. Множество с бинарной операцией – это множество М с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

1.2 Полугруппы, моноиды и группы.

Определение 2. Множество с бинарной операцией (M, \circ) называется **полугруппой**, если данная бинарная операция **ассоциативна**, т.е.

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a,b,c \in M$.

Определение 3. Полугруппа (S, \circ) называется **моноидом**, если в ней есть нейтральный элемент, т.е. такой элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Определение 4. Моноид (S, \circ) называется **группой**, если для каждого элемента $a \in S$ найдется обратный элемент, т.е. такой $b \in S$, что $a \circ b = b \circ a = e$.

1.3 Коммутативные группы.

Определение 5. Группа (G, \circ) называется **коммутативной** или **абелевой**, если групповая операция коммутативна, т.е. $a \circ b = b \circ a$ для любых $a, b \in G$.

1.4 Примеры групп.

- 1. Числовые аддитивные группы: $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Z}_n, +).$
- 2. Числовые мультипликативные группы: $(\mathbb{Q} \setminus \{0\}, \times), (\mathbb{R} \setminus \{0\}, \times), (\mathbb{C} \setminus \{0\}, \times), (\mathbb{Z}_p \setminus \{0\}, \times), p$ простое.
- 3. Группы матриц: $GL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) \neq 0\}; SL_n(\mathbb{R}) = \{A \in Mat(n \times n, \mathbb{R}) \mid \det(A) = 1\}.$
- 4. Группы подстановок: симметрическая группа S_n все подстановки длины n, $|S_n| = n!$; знакопеременная группа A_n четные подстановки длины n, $|A_n| = n!/2$.

1.5 Порядок группы.

Определение 6. Порядок группы G – это число элементов в G. Группа называется конечной, если ее порядок конечен, и **бесконечной** иначе.

1.6 Описание всех подгрупп в группе $(\mathbb{Z}, +)$.

Определение 7. Подмножество H группы G называется **подгруппой**, если выполнены следующий три условия:

- 1. $e \in H$
- $2. \ ab \in H \ \partial$ ля любых $a,b \in H$
- 3. $a^{-1} \in H$ для любого $a \in H$