

Planning of the presentation

I. Introduction	
II. Our Initial Appro	oach
III. Research	
A. Thermo	odynamics & Engine Combustion
B. Bio-Fue	els
C. PV diag	ram
IV. Experiments	
A. Setup	
B. Results	
C. Current	Analysis
V. Future Plans	
VI. Question Round	b

I. Introduction

- A gardening company
 GroenDoen (fictious) decided
 to opt for a using a greener
 fuel
- A team of 8 people will focus on analyzing this green fuel and see how it react with the Honda GX200 engine
- Deadline for the project 19th of March.

II. Our Initial Approach

First a planning + Gantt Chart were made

Secondly each team member did an RPC List (but it was decided to do not use it)

Thirdly, a collaboration platform was made where planning can be seen and working together on code is possible (Gitkraken)

Fourthly, team roles were distributed on a weekly basis

A. Thermodynamics & Engine Combustion

- combustion engine type used for the project: Otto combustion engine (air-fuel is ignited with a spark)
- The engine operates under the Otto cycle:
 - 1. The air-fuel mixtures comes in the combustion chamber
 - 2. The mixture is compressed by the piston
 - 3. Spark plug ignites the compressed mixture
 - 4. Ignited mixture is then used as power (piston pushed down)
 - 5. Left-over exhaust gasses are pushed out of the combustion chamber by the piston

B. Bio-Fuels vs Normal Fuel

Bio-Fuels (Ethanol)

- Bio-ethanol is produced either from corn, sugar plants or starch (fermentation)
- Ethanol is added to the normal fuel
- High octane number thus self ignition is reduced

Normal Fuel (Gasoline)

- Gasoline is manufactured from crude oil (distillation)
- A special compound is added that reduces emissions and increase mileage
- Several additives might be added for increased performances

C. PV Diagram

- Describes the corresponding changes in volume and pressure in the system
- Determine the efficiency of the engine
- Allows to make statements about the internal energy, heat transferred and worked done on a gas

A. Setup

- The setup was composed of a Honda GX200 engine
- The load was a fan connected to the engine and to a power measurement (for power consumption)
- The fuel was transmitted to the engine using the gasoline measurement tube

B. Results

- 2 test were conducted
- 1st test, 2 types of gasoline were used E0 (3 runs each) and E10 (4 runs each) and 3 load scenario were conducted (no load, half-load, fullload)
- 2nd test, 2 types of gasoline were used E5 and E15 using the same load scenario, 5 times each

Combustil	Combustible	Load type	Volume Combustible	Max Power (
E0	E10	full_load_1	99-83 ml	1675 W
E0	E10	full_load_2	83-67 ml	1680 W
E0	E10	full_load_3	67-51 ml	1677 W
E0				22,70,036 1,0
E0	E10	half_load_1	51-39 ml	1000 W
E0	E10	half_load_2	39-28 ml	1000 W
E0	E10	half_load_3	28-14 ml	998 W
E0				
E0	E10	no_load_1	100-91 ml	23 W
E0	E10	no_load_2	91-82 ml	23 W
E0	E10	no_load_3	82-72 ml	23 W

C. Current Analysis

- PV diagrams can be computed from the measured data
- The double tooth can be determined from the pulse and pressure graphs
- Fuel efficiency can now be calculated

Pulse and Pressure Graphs (full load)

PV Diagram (half load)

Future implementations

- Compare all the datasets that we have of the different type of fuels and see which one performs the best
- Improve the PV diagram in order to be as precise as possible to the theoretical model
- Make an analysis and complete the report

