Statistics and data analysis 2022 Final Exam (Alef)

Guidelines

- The exam will take place on Tuesday, 18 Jan 2022, at 15:45
- The exam will be online, via Zoom. You are required to connect to the Zoom meeting in the following link 15 minutes before the exam. https://idc-il.zoom.us/j/81574845874
- The total time of the exam is 1.5 hours (90 minutes) + 10 minutes for technical adjustments
- By the end of the exam time, you are required to submit a single PDF file to the course website.
- To avoid Moodle related technical issues, you can send your solution to following email address: <u>idc.snda@gmail.com</u>. This is <u>IN ADDITION</u> to the Moodle submission and will serve as a timestamp if technical difficulties arise. Note that only submissions done prior to the formal submission deadline will be considered.
- No other auxiliary material can be used during the exam.
- There are **3** (**THREE**) guestions in the exam. You need to answer **2** (**TWO**) of them.
- You can respond in English and/or Hebrew.
- Justify all your answers. Even though many of the questions are not purely mathematical, you should mathematically explain your answers. You may assume results proven (or stated as a fact) in class or in the homework (unless the question instructs otherwise).
- Make sure you write in a clear and legible way. Grading will also depend on the clarity and not only on correctness.
- You can use the reference and formulae sheet as provided, including the standard normal table.
- Use normal approximation when appropriate and needed.
- You can use handheld calculators.
- Good luck!

Question 1 (50 pts)

This question has 7 parts numbered A-G

Let λ_1 be the **second** (unique, non-zero, indexed from left to right) digit of your ID number. Let λ_2 be the **third** (unique, non-zero, indexed from left to right) digit of your ID number. State your ID, λ_1 and λ_2 clearly at the top of your solution

Let $X \sim \exp(\lambda_1)$ and $Y \sim \exp(\lambda_2)$ be two exponential RVs. Remember that the density function of $A \sim \exp(\lambda)$ is given by $f(a) = \lambda e^{-\lambda a}$, $a \ge 0$

- A. (8 pts) What is the expected value of X, E(X)? Show the complete derivation and give a value for the specific case of your ID number.
- B. (7 pts) What is the median value of X, med(X)? Show the complete derivation and give a value for the specific case of your ID number. Let V = F(Y) where F is the CDF of Y.
 - C. (7 pts) What is the range of *V*? (What values can *V* attain?)
 - D. (7 pts) What is the distribution of V? Show the formula for $P(V \le v)$ for any value v. Show all calculations.
 - E. (7 pts) Assume that you have a function that generates random samples from V. Describe a method to generate random samples from Y.

F. (7 pts) Which of the following schematic density plots best represents the distributions of *X* and *Y* as defined using your ID number? Explain your answer.

G. (7 pts) Consider the following pseudo code:

For
$$i=1,\ldots,n$$
 let y_i be a number drawn from the distribution of Y For $i=1,\ldots,n$ let $q_i=P(X\leq y_i)$
Let $p_1,\ldots,p_n=\mathrm{sort}(q_1,\ldots,q_n)$ //meaning that $p_1\leq p_2\leq \cdots \leq p_n$

Which of the following plots best represents a scatter plot of $i=1,\ldots,n$ against p_1,\ldots,p_n ? Explain your answer.

* plt.scatter($[p_1, ..., p_n], [1, ..., n]$)

Question 2 (50 pts)

This question has 4 parts numbered A-D

- A. (15 pts) Define a joint distribution over a pair of dice (X, Y) with 6 faces each that has the following properties:
 - The dice are NOT independent.
 - The marginals are uniform (fair)

Show all calculations.

- B. (9 pts) For the above RVs compute:
 - 1. Cov(X,Y).
 - 2. E(X + Y).
 - 3. The entropy H(X + Y).

Show all calculations.

C. (13 pts) Let ID_3 be to the **third** (unique, non-zero, indexed from left to right) digit of your ID number.

State your ID and ID₃ clearly at the top of your solution.

Let
$$N = 20 + ID_3$$
.

Consider a vector of observed values $v=(v_1,\ldots,v_N)$ where $v_1< v_2<\cdots< v_N$, coming from two classes C_1,C_2 and class associations vector: L_1,\ldots,L_N with matced ranking. Let T(v) be the WRS statistic for the sum of ranks for C_1 obtained for v and p(v) be the WRS left side p-value of v.

Let
$$B = |C_1|$$
.

What is the minimal and maximal values of B such that $\exists v; \ p(v) < 10^{-5}$? Explain your answer.

D. (13 pts) Let $X \sim NegBinom(r, p)$ where 0 .

Given that:

$$P(X=1)=0$$

$$P(X=2) = \frac{1}{9}$$

Compute the values of E(X) and V(X).

Show all calculations.

Question 3 (50 pts)

This question has 5 parts numbered A-E.

A scientist is generating nanoparticles for an experiment. She observes the following distribution of particle radii, in nm (nanometers):

This histogram representation of the distribution is calculated from 100,000 particles. The x-axis units are nm. The histogram is truncated at 50nm. 51,503 particles of the 100,000 measured had radius ≥ 50 nm.

For the above data representing 100,000 particles, the scientist calculated empirical statistics. The empirical mean of the data is $\hat{\mu}=403nm$ and the empirical 1st quartile $\hat{Q}_1=14nm$. Upon looking at the histogram, the scientist decided to model the radii of the particles she generates using a random variable R with a lognormal distribution.

- A. (10 pts) According to that model, what is the radius r so that $P(R \le r) = 0.3$?
- B. (10 pts) The experiment requires at least 40% of particles to have a radius smaller than 20nm. Show, based on the above model, that the population generated here is therefore not adequate for the experiment.
- C. (10 pts) The scientist can treat the particles and decrease all particle radii. A process that will reduce all particle radii by a factor of $\beta>1$ ($R_{new}=\frac{1}{\beta}R$) will cost β RCU. How much will it cost to fulfill the experiment's requirement as stated above? Show all your calculations.

Let $X \sim LogN(\mu_X, \sigma_X^2)$, $Y \sim LogN(\mu_Y, \sigma_Y^2)$ be two independent LogNormal random variables. Let Z = XY.

- D. (10 pts) Express the CDF of Z in terms of Φ (the CDF of N(0,1)).
- E. (10 pts) What is the PDF of Z?