MODULE 8 QUIZ 3
tcr18cs031@gectcr.ac.in Switch account Oraft saved * Required
Email *
Your email
Name *
Your answer
FMML ID *
Your answer
1. P(Event Feature 1) = 0.8, P(Event Feature 2) = 0.5, P(Event Feature 3) * 1 point = 0.25. What is P(Event Features 1, 2, 3)? Assume that all three features are fully independent and uncorrelated.
0.05
0.1
0.25
0.4
0.8

2. P(Event Hypothesis 1) = 0.5, P(Event Hypothesis 2) = 0.4, P(Event * 1 point Hypothesis 3) = 0.7. What is probability of said event, given that exactly one of the three hypothesis are true. (Rounded to 2 digits). All three hypothesis are fully independent and uncorrelated.
0.14
0.36
0.49
0.08
O Data is insufficient
3. If two of five features provided as input for a classification task have are correlation -1.0, which of the following is the most effective way to handle this input when using a Naive Bayes classifier. Other 3 features have correlation 0.0 with each other and with these two.
Use both features and add a regularization term
O Drop both of the features since they violate the independence assumption
Drop both of the features since they violate the independence assumptionDrop one of the two features and use the other, along with the three the other features

4. If we are using a Gaussian Naive Bayes classifier to classify the probability of an event E based on a real valued feature F, then which of the following is assumed to be a gaussian?	* 1 point	
O P(E F)		
P(F E)		
O P(F)		
O P(E)		
P(E and F)		
5. By using Gaussian Naive Bayes instead of the regular Naive Bayes	* 1 point	
algorithm (using binning or such), which of the following limitations of the naive bayes algorithm is best overcome?		
Requirements of features to be independent of each other		
Requirement of support of the features to be real numbers		
O Inability to generalize to new data which is very close in values to data already encountered		
Requirement of large number of samples in each bin		
Gaussian NB is more computationally efficient and faster than normal Naive Bayes.		

Submit Clear form

Never submit passwords through Google Forms.

This form was created outside of your domain. Report Abuse - Terms of Service - Privacy Policy

Google Forms