CSE6706: Advanced Digital Image Processing

Dr. Md. Monirul Islam

Edge Linking

Edge Linking

- Local Processing
- Regional Processing
- Global Processing
 - Hough transform
 - Graph theoretic approach

Analyze neighbors of each edge pixel

• Join two pixels if they are similar

- Analyze neighbors of each edge pixel
 - Check neighbors of area 3X3 or 5X5
- Join two pixels if they are similar

- Analyze neighbors of each edge pixel
 - Check neighbors of area 3X3 or 5X5
- Join two pixels if they are similar
 - Strength of response of the gradient

- Analyze neighbors of each edge pixel
 - Check neighbors of area 3X3 or 5X5
- Join two pixels if they are similar
 - Strength of response of the gradient

$$\left|\nabla f(x,y) - \nabla f(x_0,y_0)\right| \le E$$

- Analyze neighbors of each edge pixel
 - Check neighbors of area 3X3 or 5X5
- Join two pixels if they are similar
 - Strength of response of the gradient

$$\left|\nabla f(x,y) - \nabla f(x_0,y_0)\right| \le E$$

The direction of the gradient vector

• Objective: detect the license plate

By Vertical Sobel Operator

 Disconnection and breaks in edges

- Sequential scanning: row by row and col by col with
 - E = 25
 - $A = 15^{\circ}$

Note the small rectangle in bottom-left corner

After Morphological Thinning

- Useful when prior info about region location is available
- Example:
 - Polynomial approximation
 - Curve fitting

Issues in Regional Processing

- Finding the initial two points
- Order of the points
- Closed path or open path?

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
В	B, A	(BA)	C

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
B	B, A	(BA)	C
B	B, A, C		

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
В	B, A	(BA)	C
В	B, A, C	(BC)	_

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
В	B, A	(BA)	C
В	B, A, C	(BC)	_
B, C	B, A		

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
В	B, A	(BA)	C
В	B, A, C	(BC)	_
B, C	B, A	(CA)	_

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
B	B, A	(BA)	C
B	B, A, C	(BC)	_
B, C	B, A	(CA)	_
B, C, A	B	(AB)	D

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
B	B, A	(BA)	C
B	B, A, C	(BC)	_
B, C	B, A	(CA)	_
B, C, A	B	(AB)	D
B, C, A	B, D	(AD)	_

CSE-BUET

CLOSED	OPEN	Curve segment processed	Vertex generated
В	B, A	_	A, B
В	B, A	(BA)	C
В	B, A, C	(BC)	_
B, C	B, A	(CA)	_
B, C, A	B	(AB)	D
B, C, A	B, D	(AD)	_
B, C, A, D	B	(DB)	_
B, C, A, D, B	Empty	_	

Dental Xray

Global Processing via Hough Transform

- Let, *n* pixels are defined as edge-points
- Which points are co-linear?

Global Processing via Hough Transform

- Let, *n* pixels are defined as edge-points
- Which points are co-linear?
- Solution:
 - Find all possible lines
 - Then, find subsets of n points co-linear with each line

Global Processing via Hough Transform

- Let, n pixels are defined as edge-points
- Which points are co-linear?
- Complexity is too high:
 - Find all possible lines ${}^{n}C_{2} = n(n-1)/2 \approx n^{2}$
 - Then, find subsets of n points co-linear with each line

$$n \times^n C_2 \approx n^3$$

- Developed by Hough
- Let a point (x_i, y_i)
- The equation of the line passing through (x_i, y_i) is $y_i = ax_i + b$

- Developed by Hough
- Let a point (x_i, y_i)
- The equation of the line passing through (x_i, y_i) is $y_i = ax_i + b$
- How many lines are there?

- Developed by Hough
- Let a point (x_i, y_i)
- The equation of the line passing through (x_i, y_i) is $y_i = ax_i + b$
- How many lines are there?
- Infinitely many lines!

- Developed by Hough
- Let a point (x_i, y_i)
- The equation of the line passing through (x_i, y_i) is $y_i = ax_i + b$
- How many lines are there?
- Infinitely many lines!
- Changing a, b gives
 a new line

- Developed by Hough
- Let a point (x_i, y_i)
- The equation of the line passing through (x_i, y_i) is $y_i = ax_i + b$
- But, if the equation is changed to

$$b = -x_i a + y_i$$

- Developed by Hough
- Let a point (x_i, y_i)
- The equation of the line passing through (x_i, y_i) is $y_i = ax_i + b$
- But, if the equation is changed to

$$b = -x_i a + y_i$$

This is a *single* line in a, b plane

• If we have another point (x_i, y_i) , its equation is

$$b = -x_j a + y_j$$

• If we have another point (x_i, y_i) , its equation is

$$b = -x_j a + y_j$$

• If we have another point (x_i, y_i) , its equation is

$$b = -x_j a + y_j$$

• a' and b' are slope and intercept of the line in x, y plane

• If we have another point (x_i, y_i) , its equation is

$$b = -x_j a + y_j$$

• a' and b' are slope and intercept of the line in x, y plane

- If we have n points, find n equations in a, b plane
- Find points (a', b')
- Concentrations in a,b plane is co-linearity in x, y plane

- If we have *n* points, find equations in *a*, *b* plane
- Find points (a', b')
- Concentrations in *a,b* plane is co-linearity in *x, y* plane
- An accumulator is used to measure the concentration
- For each point (x,y)
 - select a value of a, let is a_p
 - find b_a

- If we have *n* points, find equations in *a*, *b* plane
- Find points (a', b')
- Concentrations in a,b plane is co-linearity in x, y plane
- An accumulator is used to measure the concentration
- For each point (x,y)
 - select a value of a, let is a_p
 - find b_a

- If we have *n* points, find equations in *a*, *b* plane
- Find points (a', b')
- Concentrations in a,b plane is co-linearity in x, y plane
- select a value of a, let is a_p
- find b_q

$$b_q = -xa_p + y$$

• Increase A(p, q) by 1

Hough Transform: Problem

What will be the maximum value of a?

Hough Transform: An Alternate Approach

use

$$x\cos\theta + y\sin\theta = \rho$$

instead of

$$b = -xa + y$$

Hough Transform : An Alternate Approach

• θ varies between -90 and +90

Hough Transform : An Alternate Approach

Each point in x, y plane corresponds to a sinusoidal curve in ρ , θ plane

Hough Transform : An Alternate Approach

Hough Transform: With Other Shape

- Hough transform can be used to detect other shapes as well
- In general,

$$g(\mathbf{v}, \mathbf{c}) = 0$$

Hough Transform: With Other Shape

- Hough transform can be used to detect other shapes as well
- For example, to detect pixels on circle, use,

$$(x-c_1)^2 + (y-c_2)^2 = c_3^2$$

Hough Transform: With Other Shape

- Hough transform can be used to detect other shapes as well
- For example, to detect pixels on circle, use,

$$(x-c_1)^2 + (y-c_2)^2 = c_3^2$$

- Three parameters!
- The accumulator, A, will be a 3D cubelike space
- So fill in A(i, j, k)

Steps to Use Hough Transform

- Compute gradient image
- Threshold the gradient image to get binary image
- Specify subdivision in ρ , θ plane
- Fill in the accumulator cell
- Examine the accumulator cells for high pixel concentrations
- Examine the relationship between pixels in a chosen cell

Edge Linking

- Local Processing
- Regional Processing
- Global Processing
 - Hough transform
 - Graph theoretic approach

Global Processing via Graphical Approach

- Definition:
- G = (N, U)
- (n_i, n_i) : arch
- $c(n_i, n_j) = \text{cost of arc } (n_i, n_j)$
- A sequence $n_1, n_2, n_3, \ldots, n_k$, is a path with cost

$$c = \sum_{i=2}^{k} c(n_{i-1}, n_i)$$

Edge element btn p and q

Can be represented as the pair $((x_p, y_p), (x_q, y_q))$

Edge element btn p and q

An edge is a sequence of edge elements

$$c(p,q) = H - [f(p) - f(q)]$$

Cost of edge (1,2)(2,2) = ?

Cost of edge (2,2)(1,2) = ?

$$c(p,q) = H - [f(p) - f(q)]$$

Cost of edge (1,2)(2,2) = ?

Cost of edge (2,2)(1,2) = ?

$$c(p,q) = H - [f(p) - f(q)]$$

Cost of edge (1,2)(2,2) = 8: To left

Cost of edge (2,2)(1,2) = 6: To right

$$c(p,q) = H - [f(p) - f(q)]$$

Heuristic Approach to Find a Path

- Optimal sol^{n.} is costly for image segmentation
- Heuristic is applied
- Any algorithm can be used
 - Uniform, iterative deepening, A*, etc

$$r(n) = g(n) + h(n)$$

