EE24BTECH11021 - Eshan Ray

Question:

Draw a parallelogram ABCD in which BC = 5cm, AB = 3cm and $\angle ABC = 60$, divide it into triangles ACB and ABD by the diagonal BD. Construct the triangle BD'C' similar to $\triangle BDC$ with scale factor $\frac{4}{3}$. Draw the line segment D'A' parallel to DA where A' lies on extended side BA. Is A'BC'D' a parallelogram?

Solution:

Variable	value
В	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
С	$\begin{pmatrix} 5 \\ 0 \end{pmatrix}$
BC	5cm
A	$\begin{pmatrix} 1.50 \\ 2.598 \end{pmatrix}$
AB	3cm
D	$ \begin{pmatrix} 6.50 \\ 2.598 \end{pmatrix} $
∠ABC	60

TABLE 0: Input parameters

Fig. 0: $\|^{gm}ABCD$ and $\|^{gm}A'BC'D'$

ABCD is a parallelogram,

$$\implies AB \parallel DC, AB = DC \tag{1}$$

$$\implies AD \parallel BC, AD = BC \tag{2}$$

$$\triangle BDC \sim \triangle BD'C'$$
 (Given) (3)

$$scale factor = \frac{4}{3} \tag{4}$$

$$\Rightarrow \frac{BD'}{BD} = \frac{4}{3}$$

$$\Rightarrow \frac{BC'}{BC} = \frac{4}{3}$$
(5)
$$(6)$$

$$\implies \frac{BC'}{BC} = \frac{4}{3} \tag{6}$$

$$\implies \angle BCD = \angle BC'D' \tag{7}$$

$$\implies \angle BDC = \angle BD'C' \tag{8}$$

$$\therefore CD \parallel C'D' \tag{9}$$

$$BC' \parallel BC$$
 (10)

(11)

$$From \triangle BA'D' \triangle BAD, \tag{12}$$

$$\implies \angle ABD = \angle A'BD' \tag{13}$$

$$\implies \angle BDA = \angle BD'A' \tag{14}$$

 $\therefore \triangle ABD \sim \triangle A'BD'$

$$\implies \frac{BD'}{BD} = \frac{BA'}{BA} = \frac{A'D'}{AD} = \frac{4}{3}$$
 (16)

In quadrilateral A'BC'D',

$$A'D' \parallel AD \parallel BC \tag{17}$$

$$\implies A'D' \parallel BC' \tag{18}$$

$$\implies BC' = \frac{4}{3}BC \tag{19}$$

$$\implies A'D' = \frac{4}{3}AD \tag{20}$$

$$\therefore BC' = A'D' \tag{21}$$

Similarly,
$$BA' \parallel C'D'$$
, $BA' = C'D'$ (22)

So, quadrilateral A'BC'D' is a parallelogram.