

KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

Az atommag mágneses momentumának mérése

Katona Dávid

Mérőtársak: Máthé Marcell, Olar Alex

MÉRÉS DÁTUMA: 2018. 03. 22.

Tartalomjegyzék

1.	A mérés célja				
2.	Bevezetés				
	2.1. Elméleti háttér				
	2.2. A mérési összeállítás				
3.	. Mérési eredmények				
	3.1. A proton g-faktorának meghatározása				
	3.1.1. Hibaforrások				
	3.1.2. A proton g-faktorának értéke				
	3.2. Fluor és proton g-faktor-arányának mérése				
	3.2.1. Hibaforrások				
	3.2.2. A fluor g-faktora				

1. A mérés célja

A mérés célja a proton giromágneses faktorának meghatározása, valamint a ¹⁹F mag és a proton g-faktor-arányának mérése.

2. Bevezetés

2.1. Elméleti háttér

Az protonok, neutronok spinjük révén mágneses momentummal rendelkeznek, melynek következtében egyes atommagok is eredő mágneses momentummal bírnak. A Zeemaneffektus révén külső mágneses térben a spin z ($\vec{B_0}$ irányú) komponense szerint felhasad, a felhasadás utáni energiaszinteket írja le az 1. egyenlet. A γ a giromágneses arányossági tényező, μ_N a magmagneton, m_N a nukleon tömege, e az elemi töltés, g pedig az ún. g-faktor.

$$E = -\hat{\vec{\mu}}\vec{B}_0 = -\gamma\hat{\vec{J}}\vec{B}_0 = -\gamma\hat{\vec{J}}zB_0 = g\frac{\hbar e}{2m_N}m_jB_0 = g\mu_N m_jB_0$$
 (1)

A fehasadás miatt az átmenet megfelelő frekveciájú fotonnal gerjeszthető, kihasználva, hogy a foton energiája $E=h\nu$. Ez $B_0\simeq 1T$ környékén rádiófrekvenciás tartományba esik. A mérés során ezt a frekvenciát határozzuk meg a minták esetében több különböző B_0 érték mellett, melyből számolható a g-faktor értéke.

2.2. A mérési összeállítás

A mérés során a mintát külső mágneses térbe helyezzük, melyet elektromágnessel hozunk létre. Az elektromágnes két tekercset tartalmaz: az elsőn áramgenerátorral¹ állandó áramerősséget folyatunk át, a másikkal ezt a konstans B_0 teret moduláljuk 25Hz frekvenciával 1-2% mértékben. Erre azért van szükség, hogy egy B tartományon mérve, az abszorpció mértékét oszcilloszkópon megjelenítve a moduláló jel ($\sim (B-B_0)$) függvényében a rezonancia csúcsként fog megjelenni egy adott ponton az oszcilloszkóp kijelzőjén.

A gerjesztést egy tekerccsel végezzük. Ugyanezt a tekercset használjuk az abszorpció mérésére is, mivel a tekercs oszcillátor-kapcsolásba van kötve, így az abszorpciót az oszcillátor amplitúdó-csökkenése mutatja. Ezt az oszcilloszkóp függőleges tengelyén megjelenítva detektáljuk az abszorpciót.

A kívánt paraméterek meghatározásához szükség van a frekvencia és a mágneses térerősség pontos mérésére. A frekvenciamérést egy jelgenerátorra kötött antennával végezzük. A jelgenerátor kijelzőéről nagyobb pontossággal leolvasható az általa generált jel frekvenciája. Amikor az antennára kötött jel frekvenciája és a gerjesztőfrekvencia igen közel esik egymáshoz lebegés jön létre, melyet az oszcilloszkópon látunk. Ezzel meghatározható a gerjesztési frekvencia.

 $^{^1\}mathrm{Az}$ állandó áramerősség miatt nem kell számolni a tekercs melegedéséből eredő ellenállásváltozással.

A mágneses tér mérésére ballisztikus galvanométert használunk. Ezt a mágneses térbe helyezve, majd onnan határozott mozdulattal kirántva a fluxusváltozásból határozza meg a mágneses tér erősségét. A fluxusváltozás feszültséget generál, amely áramot hoz létre, ezt pedig időben kiintegrálva (töltésmennyiség) a mágneses tér erősségéval arányos jelet kapunk. A kalibrációt felhasználva így meghatározható B_0 nagysága.

3. Mérési eredmények

3.1. A proton g-faktorának meghatározása

Vízminta (CuSO₄-oldat) esetén megmértük több különböző mágneses térben a frekvenciát. Az adatokat az 1.táblázat tartalmazza.

Frekvencia [MHz]	Áramgenerátor állása	Áramerősség [A]	Galvanométer értéke
8.496	782	2.42	60.5
8.325	766	2.37	60
7.705	685	2.12	55.5
7.285	626.5	1.94	52.5
7.155	610	1.89	51.5
6.754	623.5	1.93	48.5
6.167	566.0	1.74	44
5.641	514.0	1.57	41
5.087	445.5	1.38	36.5
4.515	373.0	1.15	33
4.064	324.0	1.00	29.5
3.675	284.5	0.87	28.5

1. táblázat. Mérési adatok a víz esetében. A kiértékeléshez általam használt adatok dőlttel vannak jelölve.

3.1.1. Hibaforrások

A galvanométer állásából számolható a mágneses indukció nagysága a kalibrációt adatot felhasználva, miszerint a galvanométer egy osztása $3.35 \pm 0.1 mT$ -nak felel meg. Elviekben lehetséges lenne az áramerősségből, illetve a még pontosabban meghatározható áramgenerátor állásából kalibrációs egyenest használva B értékének kisebb hibájú meghatározása, de mivel a mérési pontok felvétele során az áramerősség nem monoton változott időben, emiatt a vasmag felmágneseződése miatt hiszterézis lépett fel, mely az 1. ábra alapján egyértelműen látható.

A B_0 mérése során szisztematikus hibaforrás a galvanométer kalibrálási bizonytalansága. Statisztikus hibaként jelenik meg a leolvasás pontossága, amely ismételt leolvasási kísérletek alapján ± 0.5 egység. Ezen túl hibaforrás a galvanométer-mérőfej, valamint a minta eltérő pozíciója a tér inhomogenitása miatt. Ennek becsléséhez hosszirányban

1. ábra. Mért mágneses tér az áramerősség függvényében. Az ábrán megfigyelhető a hiszterézis jelensége.

megnéztem a tér inhomogenitását, azaz, a minta jelének eltolódását² z tengely szerint (2. ábra). A másik két irányban a mérőtársaim határozták meg az inhomogenitás mértékét, azonban azon irányokban inkább kisebbnek mondható. Ez alapján az inhomogenitásból eredő hibát $\delta B_{\rm inhom} \simeq 0.15\%$ -ra becsülöm, mivel kb. 0.8cm-es z irányú tartományon ennél kisebb az ingadozása B-nek. Adott nagyságú mágneses térben az összes paraméter (B, ν , beállítások értékei) lemérése 1-2 percet vett igénybe, ez alatt a mágneses tér nem teljesen állandó. Az ebből eredő hiba 0.18% volt 2 perc alatt³. Az abszorpciós jel középre állításának hibája < 0.03%.

A frekvenciamérés hibája három faktorból tevődik össze: i.) a leolvasás hibája ii.) a jelgenerátor frekvenciamérésének hibája iii.) a lebegés reprodukálhatóságának bizonytalansága. Az első mértéke $\pm 0.0005 MHz$, a másodikat csupán becsülni tudjuk, de a kvarcórák hibájából kiindulva $< 10^{-5}$, a reprodukálhatósági próbánál pedig a hiba kisebb a kijelzési pontosságnál. A frekvenciamérés hibája tehát jó közelítéssel $\pm 0.0005 MHz$.

 $^{^2}$ Az oszcilloszkóp kijelzőjén való eltolódás alapján határoztuk meg. Ehhez előzőleg frekvenciaméréssel meghatároztuk, hogy 1 beosztás az oszcilloszkóp kijelzőjén $\nu=5.5MHz$ -nél 0.30% eltérésnek felel meg. Mivel $B\sim\nu$, ezért ez B-nek is ekkora hibáját jelenti.

³Meghatározását ugyanúgy frekvenciamérésre vezettük vissza, mint az inhomogenitásét.

2. ábra. A mágneses tér ihomogenitása z irányban.

3.1.2. A proton g-faktorának értéke

A mért adatok alapján számolt frekvenciákat és B_0 értékeket mutatja a 2. táblázat. Mivel az időmérés hibája jóval kisebb, ezért a frekvencia függvényében ábrázolva a B_0 értékeket origón átmenő egyenest⁴ illesztettem (3. ábra), melynek meredeksége: $m = (2.409 \pm 0.0025) \cdot 10^{-8} Ts$. Ebből számolható $g_p = 5.45 \pm 0.17$, ahol az egyenesillesztés hibájához négyzetesen hozzáadtam a galvanométer kalibrációs hibáját is. Ez az érték hibahatáron belül közelíti az irodalmi értéket (g = 5.585).

Frekvencia [MHz]	B [mT]
7.705 ± 0.0005	185.9 ± 1.7
6.754 ± 0.0005	162.5 ± 1.7
5.087 ± 0.0005	122.3 ± 1.7
3.675 ± 0.0005	88.8 ± 1.7

2. táblázat. Számolt frekvencia és B_0 értékek

 $^{^4}$ Ellenőrzésképp konstans taggal rendelkező egyenest illesztve a konstans paraméter értéke $(-0.16\pm7.2)\cdot10^{-4}T,$ tehát valóban nullán átmenő egyenest kapunk így is.

3. ábra. B_0 a gerjesztőfrekvencia függvényében vízmintánál

3.2. Fluor és proton g-faktor-arányának mérése

3.2.1. Hibaforrások

A fluor g-faktorának (relatív) meghatározásához adott B_0 térerősség mellett egymás után meghatároztuk a proton és a fluor abszorpciócsúcsához tartozó frekvenciát. A mérés előnye, hogy a mágneses tér mérésének hibája kiesik. Itt csak az 1-2 perces mérési időből származó 0.18%-os eltéréssel kell számolnunk, ami a mágneses tér időbeli ingazdozása. Mivel csak a mintát cseréltem ki, nem pedig az egész mérőtekercset távolítottuk el mérésről mérésre, ezért a hely hibája igen kicsi, < 2mm, ami alapján a B_0 inhomogenitásból eredő hibája < 0.06%. Összességében tehát $\delta B_0 \simeq 0.19\%$.

A frekvenciamérés hibája adódik a leolvasás pontatlanságából ($\pm 0.0005MHz$), valamint a szélesebb és laposabb flour-csúcs beállításának bizonytalanságából. Ez utóbbi az oszciloszkópon ± 0.2 osztásnak becsülöm, ami $\pm 0.0034MHz$ -nek felel meg. Proton esetében ugyanez az érték $\pm 0.001MHz$, mivel annak jóval élesebb a csúcsa.

Az aránymeghatározást tehát itt a mágneses tér időbeli inhomogenitásból eredő hibája dominálja, azonban itt a mérés teljes bizonytalansága csupán 0.20%, mivel közvetlen nem kell mérni a B_0 értékét.

3.2.2. A fluor g-faktora

A mért eredményeket tartalmazza a 3. táblázat. Mivel a hibák közel azonosak, az arányok atlagát véve meghatározható $\frac{g_F}{g_p}=0.9404\pm0.0019$. Az irodalmi érték 0.9409(3), tehát hibahatáron belül megkaptuk.

proton [MHz]	fluor [MHz]
4.996 ± 0.001	4.697 ± 0.003
7.150 ± 0.001	6.726 ± 0.003

3. táblázat. A fluor és a proton adott B_0 melletti rezonancia
frekvenciája.