CTA MST Image Cleaning using ML

Segmentation

Best auto-encoder model

loU tailcuts = 0.41 loU segmentation = 0.49

Some cleaning examples (I)

Some cleaning examples (II)

Optimal learning rate

Weighted vs unweighted

- Blue line: binary cross entropy

- Red line: weighted binary cross entropy

Motivation: Models with normal
Binary cross entropy collapsed for
>2 layers (everything set to 0)

Weighted: different weights

Weird result: weight = 1 performs better than normal binary cross entropy

Different number of layers

- 1 layer: ~2k parameters
- 2 layer: ~18k parameters
- 3 layer: ~40k parameters
- 4 layer: ~120k parameters

Different pixel thresholds

Pixel threshold is the threshold pixels are included in the binary true image mask

Different probability thresholds

This is the threshold from which probability a pixel is included as signal (Normally > 0.5)

Training on gamma + protons

	Train	Test
Model 1	γ	γ
Model 2	γ + ρ	γ

Adding star noise manually

Auto-encoder gets 2 channel input:

- Noisy image
- Star noise image

Star is 9 pixels at random location.

Mean of 20 and std of 1

~70% of the pictures have a star

Star noise: IoU

Star noise: Different star means

Regression

Best auto-encoder model

Using "normalized" MSE

All noisy data transformed to range 0 to 1. True data transformed the same. Ensured that normalized 0 corresponds to pixel value 0.

Some cleaning examples (I)

Some cleaning examples (II)

Some cleaning examples (III)

Optimal learning rate

Different number of layers

Different number of layers

- 1 layer: ~2k parameters
- 2 layer: ~18k parameters
- 3 layer: ~40k parameters
- 4 layer: ~120k parameters
- 5 layer: ~300k parameters
- 6 layer: ~1 million parameters

Training on gamma + protons

Some cleaning examples (I)

Some cleaning examples (II)

Comparison all methods

	IoU	MSE (10^-3)
Tailcuts	0.41	2.37
Segmentation	0.49	2.36
Regression	0.46	1.64