Eine Woche, ein Beispiel

4.10 non-Archimedean local field F

wiki: local field

See https://mathoverflow.net/questions/17061/locally-profinite-fields for different definition of local fields. We follow wiki instead.

Classification,

- finite extension of Qp - IFq ((T)) (9=p*)

Process:

- 1. Basic structures and results.
- 2. Topological results.
- 3. Haar measure
- 4. Representation of (F,+) and Fx (next week)

1. Basic structures and results

- 1.1. None of them is alg closed.

Moreover,
$$O$$
 is DVR, K is finite,

 $U^{(0)}/U^{(1)}$ split iso

 $V^{(n)}/U^{(n)} \stackrel{\text{split iso}}{\cong} K^{\times}$
 $V^{(n)}/U^{(n+1)} \stackrel{\text{hon-canonical}}{\cong} K^{\times}$
 $V^{(n)}/U^{(n+1)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n+1)}/U^{(n+1)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n+1)}/U^{(n+1)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n+1)}/U^{(n+1)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n)}/U^{(n+1)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n)}/U^{(n)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n)}/U^{(n)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n)}/U^{(n)} \stackrel{\text{hon-canonical}}{\cong} V^{(n+1)}$
 $V^{(n)}/U^{(n)} \stackrel{\text{hon-canonical}}{\cong} V^{(n)}$
 $V^{(n)}/U^{(n)} \stackrel$

1.3.
$$F^{\times} \cong \langle \pi \rangle \times \mathcal{O}^{\times} \cong \langle \pi \rangle \times \mu_{q-1} \times \mathcal{U}^{(1)}$$

e.g. when $F = Q_p$, $Q_p^{\times} \cong \int \mathbb{Z} \oplus \mathbb{Z}/(q-1)\mathbb{Z} \oplus \mathbb{Z}_p$ $p \neq 2$
 $\mathbb{Z} \oplus 0 \oplus (\mathbb{Z}/(2\mathbb{Z} \oplus \mathbb{Z}_2)) = 2$
Thus When $p \geqslant 3$, $(p\mathbb{Z}_p, +) \stackrel{e\times p}{\iff} (1+p\mathbb{Z}_p, \cdot)$ is an iso as topological gps.

2. Topological results.

 $O = \lim_{n \to \infty} O/\mu^n$ is opt and profinite group, while F is loc. opt and loc. profinite group $O = \lim_{n \to \infty} O/u^n$ is opt and profinite group, while F^{\times} is loc. opt and loc. profinite group.

Cpt open subgps of (F,+) are $f|_{J^k}$.

Cpt open subgps of F^x are not restricted in $\{U^{(k)}\}$, but $\{U^{(k)}\}$ is a nbhol system of F^x , i.e., $\{aU^{(k)}\}_{a\in F^x}$ is a topological basis of F^x .

Fopen subgps $] \subseteq \text{fclosed subgps}]$ for (F, +) and F^{\times} . \mathbb{Q} . Are there any other opt closed subgp? A. Yes. e.g. $\text{fol} \subseteq (F, +)$ file F^{\times} . \mathbb{Q} . Can we classify all opt closed subgp?

E.g. Q_{pr} = the splitting field of X^9-X over Q_p = the unique unramified extension of Q_p of degree r

Gal (Opr/Op) = Gal (IFpr/IFp) = Z//rZ

3. Haar measure

Main reference: The Local Langlands Conjecture for GL(2) by Colin J. Bushnell Guy Henniart. [https://link.springer.com/book/10.1007/3-540-31511-X] Ref: https://en.wikipedia.org/wiki/Haar_measure

G. loc profinite gp

$$C^{\infty}(G) := \{f, G \rightarrow C \mid f \text{ is loc const}\}$$

 $C^{\infty}_{c}(G) := \{f \in C^{\infty}(G) \mid \text{supp } f \in G \text{ is } \text{cpt}\}$

Rmk. G has topo basis fgk] geg cpt open.

$$\forall f \in C_c^{\infty}(G)$$
, $\exists k \leq G$ opt open, s.t.
$$f = \sum_{g \in G} a_g \ 1_{k_g k} \qquad a_g \in C \qquad \# \{g \in G \mid a_g \neq o\} < +\infty$$

e.g. When
$$G = (F, +)$$
, $C_c^{\infty}(F) = \langle a + F^k \rangle_{\substack{a \in F \\ k \in \mathbb{Z}'}}$
when $G = F^{\times}$, $C_c^{\infty}(F^{\times}) = \langle a \cup C^{(k)} \rangle_{\substack{a \in F^{\times} \\ k \in \mathbb{Z}' > a}}$

Def (Left Haar integral & Left Haar measure) integral: I. $C_c^{\infty}(G) \longrightarrow \mathbb{C}$ st

· (left invarient)
$$I(f(g-)) = I(f(-))$$
· (positive)
$$I(f) \ge 0$$

measure:
$$M_{G}: L(G) \longrightarrow \mathbb{R}$$

Lebesque **σ**-algebra, see https://math.stackexchange.com/question s/3117419/lebesgue-sigma-algebra Vfe C.°(G) ge G ∀f e C.°(G) f≥0

 $S \subset G$ open $\mapsto I(1_s)$

The domain of \mathbf{I} is not extended, so here it is not perfect.

relation/notation:
$$I(f) = \int_G f(g) d\mu_G(g)$$

Kmk. Left Haar measure exists and is unique(up to scalar) on every loc. cpt gp G, see https://www.diva-portal.org/smash/get/diva2:1564300/FULLTEXT01.pdf

Later on, Haar measure = left + right Haar measure.

E.g. Let
$$\mu$$
 be the Haar measure on F , then μ^{\times} is a Haar mesure on F , and $(d\mu^{\times}(x) = \frac{d\mu(x)}{||x||})$

$$\int_{F^{\times}} f(x) d\mu^{\times}(x) = \int_{F} f(x) \frac{d\mu(x)}{||x||} \quad \forall f \in C^{\infty}(F^{\times}) \subset C^{\infty}(F)$$

Let
$$\mu$$
 be the Haar measure on $A:=M_{n\times n}(F)$, then μ^{\times} is a Haar measure on $G:=GL_n(F)$, and $(d\mu^{*}(g)=\frac{d\mu(g)}{\|det g\|^n})$

$$\int_{G} f(g) d\mu^{*}(g) = \int_{A} f(g) \frac{d\mu(g)}{\|det g\|^n} \quad \forall f \in C^{\infty}(G) \subset C^{\infty}_{c}(A)$$

Def Unimodular. left Haar measure = right Haar measure Rmk. G is $cpt \Rightarrow G$ is unimodular $\Leftrightarrow \delta_G = 1$ G is abelian $\Rightarrow G/Z(G)$ is unimodular where $\delta_G : G \longrightarrow C^{\times}$ is determined by $d\mu_G(g^{-1}xg) \stackrel{\text{left inv}}{=} d\mu_G(xg) = \delta_G(g) d\mu_G(x)$. Actually, $\forall K \in G$ cpt open , $\delta_G|_K = 1_K$. e.g. $(F, +), (O, +), F^{\times}, O^{\times}$ are all unimodular. e.g. $G = GL_2(Q_p)$ is unimodular, while $B = \binom{**}{0*} M = \binom{**}{0}$ are not unimodular.

https://math.stackexchange.com/questions/323017/are-nilpotent-lie-groups-unimodular https://mathoverflow.net/questions/114704/is-every-subgroup-of-a-connected-unimodular-matrix-lie-group-also-unimodular