

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ К *ДОМАШНЕЙ РАБОТЕ* ПО КУРСУ:

Программирование параллельных процессов

Студент группы ИУ7-32М		А.А. Андреев
	(Подпись, дата)	(И.О. Фамилия)
Руководитель		А.П. Ковтушенко
1 уководитель		A.11. ROBTYMERRO
	(Подпись, дата)	(И.О. Фамилия)

СОДЕРЖАНИЕ

Оглавление

СОДЕРЖАНИЕ	2
ВВЕДЕНИЕ	
1. Аналитический раздел	
1.1 Обоснование выбора алгоритмов	
2. Конструкторский раздел	
3. Экспериментальный раздел	
3.1 Технические характеристики	8
3.2 Время выполнения алгоритмов	
ЗАКЛЮЧЕНИЕ	

ВВЕДЕНИЕ

Целью данной работы является разработка программы для решения транспортной заадачи на много продуктовых потоках.

Для достижения цели необходимо выполнить следующие задачи:

- обосновановать выбор алгоритма решения задачи;
- разработать программу для решения транспортной задачи на много продуктовых потоках:
- исследование влияния размерности матрицы и числа процессоров на время выполнения программы.

Актуальность исследования обусловлена необходимостью разработки эффективных методов для решения транспортных задач, которые возникают в различных областях, таких как логистика, распределение ресурсов, управление запасами и оптимизация производственных процессов. Транспортные задачи представляют собой важный класс задач линейного программирования, связанные с поиском оптимальных путей распределения множества продуктов от поставщиков к потребителям с учетом ограничений на дефицит и избыток.

В данной работе мы сосредоточены на разработке программы, которая решает транспортную задачу на много продуктовых потоках, используя массив продуктов, массив вершин, где каждой вершине соответствует вектор, описывающий дефицит или избыток по продуктам, а также массив ребер, представляющий возможные пути перевозки. Это исследование направлено на создание алгоритма, который может эффективно обрабатывать большие объемы данных и предоставляет оптимальные решения даже при сложных входных условиях.

В современных высокопроизводительных системах необходим оптимизированный подход, который сможет равномерно распределять вычислительную нагрузку между несколькими процессорами. Для этого в функции производится вычисление потенциалов и и v на основе базисных клеток, а также расчет оценок Δ для небазисных клеток, где поток равен нулю. Эта информация критична для проверки оптимальности существующего решения — если все $\Delta \geq 0$, текущий план является оптимальным. В противном случае, необходимо будет улучшить план, строя цикл и перераспределяя потоки, что является сложным процессом.

Изучение зависимости времени расчета от размерности задачи и количества процессов станет ключевым моментом в определении наиболее эффективных параметров для реализации алгоритмов, способных работать на многоядерных системах. Полученные результаты могут оказать значительное влияние не только на повышение производительности существующих приложений, но и на разработку новых систем, ориентированных на параллельную обработку данных.

1. Аналитический раздел

Транспортные задачи представляют собой важный класс задач оптимизации, которые имеют широкое применение в логистике, экономике и управлении запасами. Основная цель этих задач заключается в нахождении оптимального распределения ресурсных потоков (продуктов) от нескольких поставщиков к нескольким потребителям с минимальными затратами. Варианты транспортных задач могут включать различные ограничения, такие как дефицит и избыток, которые требуют специального внимания при разработке алгоритмов для их решения.

1.1 Обоснование выбора алгоритмов

В данной работе выбраны современные алгоритмы, преимущественно основанные на параллельной обработке, что позволяет эффективно использовать многоядерные вычислительные системы. При решении транспортной задачи на много продуктовых потоках мы используем метод потенциальных затрат и северо-западный угол, так как эти методы обеспечивают быстрое получение начального допустимого решения. Выбор именно этих алгоритмов обоснован следующим:

- Эффективность: Алгоритм северо-западного угла предоставляет солидную основу для нахождения допустимого начального плана, что сокращает общее время вычислений.
- Оптимизация: Метод потенциальных затрат позволяет проверять оптимальность полученного решения, а также модифицировать его в случае необходимости.
- Параллельность: Использование MPI (Message Passing Interface) позволяет распределять задачи между несколькими процессорами, что значительно увеличивает производительность.

2. Конструкторский раздел

Данная программа реализует распределенный подход к решению транспортной задачи с использованием библиотеки MPI (Message Passing Interface), что позволяет распараллелить вычисления и эффективно обрабатывать большие объёмы данных. Программа принимает на вход данные о поставщиках, потребителях и стоимости перевозки товаров, которые затем обрабатываются несколькими процессами.

1. Основные структуры данных

Программа использует две основные структуры для представления данных:

- Vertex (Вершина): представляет собой узел в графе, хранящий информацию о поставщиках и потребителях. Структура включает идентификатор (id) вершины и массив (supply), который хранит запасы или потребности по каждому продукту.
- Edge (Ребро): представляет собой ребро графа, связывающее две вершины. Структура включает идентификатор начальной вершины (from), идентификатор конечной вершины (to) и вес (weight), который соответствует стоимости перевозки.

2. Чтение данных из файла

Функция 'readData' отвечает за чтение входных данных из файла:

- Открывает файл по указанному пути и считывает количество продуктов, вершин и ребер.
- Выделяет память для массивов вершин и рёбер.
- Считывает данные о запасах для каждой вершины и о стоимости перевозки для каждого ребра.
- В конце освобождает память и закрывает файл.

3. Инициализация МРІ

В 'main' происходит инициализация MPI:

- Вызывается функция `MPI_Init`, которая подготавливает среду MPI для дальнейшей работы.
- Определяется ранг текущего процесса (`rank`) и общее количество процессов (`size`).
- 4. Создание пользовательских типов данных МРІ

Программа создает пользовательские типы данных MPI для передачи структур `Edge` с помощью следующих шагов:

- Определяет длину блока, размещение данных в структуре и их типы для ребер.
- Создает и регистрирует новый тип данных с помощью `MPI_Type_create_struct` и `MPI_Type_commit`.
- 5. Распространение данных
 - Процесс с рангом 0 (master process) отвечает за чтение и распространение данных:
 - Читает данные из файла и передает размеры различных массивов (число продуктов, вершин и рёбер) всем процессам с помощью `MPI_Bcast`.
 - Распространяет массив рёбер и массивы запасов (supply matrix) для всех вершин.

Другие процессы (slave processes) получают данные и выделяют память аналогично:

- Получают размеры данных с помощью 'MPI Bcast'.
- Выделяют память и заполняют структуры данными.
- 6. Определение диапазонов продуктов для обработки

На основе количества процессов и продуктов каждый процесс определяет, какие продукты он будет обрабатывать:

- Вычисление количества продуктов, обрабатываемых каждым процессом, распределяется с учетом остатка.
- Каждый процесс получает свой диапазон продуктов для обработки.

7. Решение подзадачи

Каждый процесс вызывает функцию 'solveProductSubproblem', в которой:

- Подсчитывается общий спрос и предложение для данного продукта среди всех вершин.
- Подсчитывается общий вес рёбер, что представляет собой условную вычислительную задачу для имитации нагрузки.
- Реализуется имитация вычислительной нагрузки для чего производится некий расчет (в данном случае, просто суммируются значения в цикле).

8. Освобождение ресурсов

После завершения вычислений и обработки всех назначенных продуктов:

- Вызывается функция `freeData`, которая освобождает зарезервированную память для вершин и рёбер.
- MPI завершается вызовом 'MPI Finalize', что завершает работу с библиотекой.

Алгоритм 2.1 Распределенный алгоритм поиска обратной матрицы на нескольких узлах

- 1: Процедура transport_problem(supplies, demands, costs, results, supplies_length, rank, size)
- 2: Распределить запасы supplies и потребности demands по узлам
- 3: Создать нулевую матрицу results размером supplies_length × demands_length
- 4: Цикл i ← 0 до supplies length − 1 выполнить
- 5: (&results[i][i × size + rank] \leftarrow 0
- 6: Конец цикла
- 7: Цикл і от 0 до supplies length 1 выполнить ▷ Основной расчет
- 8: Если і%size = rank тогда > Проверка принадлежности узлу
- 9: запас ← supplies[i]
- 10: Цикл j от 0 до demands length 1 выполнить
- 11: если запас > 0 и demands[j] > 0 тогда ▷ Проверка потребности
- 12: отгрузка ← минимальное(запас, demands[j])
- 13: results[i][j] ← отгрузка
- 14: запас ← запас отгрузка
- 15: demands[j] ← demands[j] отгрузка
- 16: Конец цикла
- 17: Конец условия
- 18: Разослать строку results[i] всем узлам
- 19: Цикл j от 0 до demands_length 1 выполнить
- 20: Получить обновленную demands[j] от всех узлов
- 21: Конец цикла
- 22: Конец цикла
- 23: Собрать с узлов матрицу results в результирующую матрицу results
- 24: Конец процедуры

Пояснения:

- supplies: массив запасов для каждого узла.
- demands: массив потребностей на каждом узле.
- costs: матрица затрат на транспортировку.
- results: результирующая матрица, где будут сохраняться отгрузки.
- supplies_length: количество узлов с запасами.
- rank: ранг текущего узла.
- size: общее количество узлов в системе.

3. Экспериментальный раздел

3.1 Технические характеристики

Вычисления проводились на кластере, состоящем из 10 узлов, со следующими техническими характеристиками:

- Операционная система MacOS 12.5.1 Monterey
- Оперативная память 64 ГБ
- Процессор 2,3 GHz 8-ядерный процессор Intel Core Для управления задачами использовались системы управления заданиями Slurm.

3.2 Время выполнения алгоритмов

Для замеров времени использовалась функция МРІ

MPI Wtime. Для одного узла используется последовательнный

алгоритм. Было вычислено ускорение вычислений S по формуле

$$S(Size, n) = \frac{T ime(Size, n)}{T ime(Size, 1)}$$
(4.1)

и коэффициент полезной нагрузки E по формуле

$$E(Size, n) = \frac{S(Size, n)}{n} , \qquad (4.2)$$

где Size — размерность квадратной матрицы, n — количество вычислительных узлов.

Результаты замеров и вычислений представлены в таблице 3.1.

Таблица 3.1 — Результаты вычислений

num_prod ucts	num_proce sses	Тр	S	E
200	1	2.534678936004 6387	1.092601465834 4758	1.092601465834 4758
200	2	1.353032112121 582	2.046805760253 518	1.023402880126 759
200	3	0.971632957458 4961	2.850246998766 233	0.950082332922 0777
200	4	0.762542009353 6377	3.631791936611 979	0.907947984152 9947
200	5	0.671380043029 7852	4.124927378539 275	0.824985475707 855
200	6	0.585808038711 5479	4.727476814742 1895	0.787912802457 0315
200	7	0.546867847442 627	5.064100831396 895	0.723442975913 8422
200	8	0.539419174194 3359	5.134029440156 147	0.641753680019 5184
400	1	4.932224988937 378	1.028254986609 8691	1.028254986609 8691
400	2	2.538957834243 7744	1.997506564132 1414	0.998753282066 0707
400	3	1.753025054931 6406	2.893047606872 0146	0.964349202290 6716
400	4	1.370631933212 2803	3.700180053495 9446	0.925045013373 9861
400	5	1.119596958160 4004	4.529830938706 497	0.905966187741 2994

num_prod ucts	num_proce sses	Тр	S	E
400	6	0.981987714767 456	5.164611393491 48	0.860768565581 9134
400	7	0.949887037277 2217	5.339145330895 318	0.762735047270 7597
400	8	0.804213047027 5879	6.306270407700 4215	0.788283800962 5527
600	1	7.475320816040 039	0.983746004626 9398	0.983746004626 9398
600	2	3.776841163635 254	1.947081348532 4994	0.973540674266 2497
600	3	2.573729038238 5254	2.857261536403 6063	0.952420512134 5354
600	4	1.968071222305 2979	3.736560396157 8686	0.934140099039 4672
600	5	1.604180812835 6934	4.584157176823 927	0.916831435364 7855
600	6	1.378419160842 8955	5.334964280086 739	0.889160713347 7898
600	7	1.214263200759 8877	6.056196861999 898	0.865170980285 6997
600	8	1.089762926101 6846	6.748088790641 982	0.843511098830 2478
800	1	9.753958225250 244	1.017239663224 615	1.017239663224 615
800	2	4.942576885223 389	2.007477761210 8052	1.003738880605 4026
800	3	3.350816965103 1494	2.961102705248 8037	0.987034235082 9345

num_prod ucts	num_proce sses	Тр	S	E
ucts	SSES			
800	4	2.576277971267 7	3.851336420533 1393	0.962834105133 2848
800	5	2.161479949951 172	4.590425731399 759	0.918085146279 9519
800	6	1.777967691421 5088	5.580592509095 405	0.930098751515 9008
800	7	1.554610967636 1084	6.382376933341 574	0.911768133334 5106
800	8	1.392501831054 6875	7.125386092056 674	0.890673261507 0843
1000	1	12.18557906150 8179	0.997680357138 5597	0.997680357138 5597
1000	2	6.170691728591 919	1.970170185895 803	0.985085092947 9015
1000	3	4.184504032135 01	2.905317518315 965	0.968439172771 9883
1000	4	3.187713146209 717	3.813803912839 8464	0.953450978209 9616
1000	5	2.657327890396 118	4.575014214077 055	0.915002842815 411
1000	6	2.250579833984 375	5.401858084057 657	0.900309680676 2761
1000	7	1.976343154907 2266	6.151418006452 59	0.878774000921 7986
1000	8	1.736479997634 8877	7.001124623712 384	0.875140577964 048
1200	1	14.56379008293 1519	1.002493641520 2543	1.002493641520 2543

num_prod ucts	num_proce sses	Тр	S	E
1200	2	7.355401277542 114	1.984950433520 517	0.992475216760 2585
1200	3	4.961694955825 806	2.942564402801 8643	0.980854800933 9547
1200	4	3.800348043441 7725	3.841781538869 805	0.960445384717 4512
1200	5	3.070136070251 465	4.755524387353 534	0.951104877470 7069
1200	6	2.590801715850 83	5.635362546369 107	0.939227091061 5178
1200	7	2.268914222717 285	6.434843066517 2005	0.919263295216 7429
1200	8	2.005147218704 2236	7.281314218917 821	0.910164277364 7276
1400	1	16.97045207023 6206	0.999091884030 5041	0.999091884030 5041
1400	2	8.549695968627 93	1.983116241082 2702	0.991558120541 1351
1400	3	5.750421047210 693	2.948486866005 3847	0.982828955335 1283
1400	4	4.453801870346 069	3.806869148039 632	0.951717287009 908
1400	5	3.540562868118 286	4.788798155337 602	0.957759631067 5205
1400	6	3.018530130386 3525	5.616985817375 798	0.936164302895 9663
1400	7	2.637958049774 17	6.427335314582 863	0.918190759226 1233

num_prod	num_proce	To	S	E
ucts	sses	Тр		E.
1400	8	2.368024110794 0674	7.159995058503 075	0.894999382312 8843
1600	1	19.42670798301 6968	1.009012325850 2337	1.009012325850 2337
1600	2	9.790389060974 121	2.002145949816 5153	1.001072974908 2576
1600	3	6.602021932601 929	2.969058268158 7627	0.989686089386 2542
1600	4	4.981469869613 6475	3.934940553414 9153	0.983735138353 7288
1600	5	4.025553941726 685	4.869339248538 163	0.973867849707 6325
1600	6	3.438323259353 6377	5.700972924006 612	0.950162154001 1019
1600	7	2.979308605194 092	6.579307619017 2854	0.939901088431 0408
1600	8	2.641353130340 576	7.421115935009 34	0.927639491876 1675
1800	1	21.86944603919 983	0.996976607950 2891	0.996976607950 2891
1800	2	11.06893205642 7002	1.969776850988 3995	0.984888425494 1997
1800	3	7.394360065460 205	2.948642740804 42	0.982880913601 4733
1800	4	5.613240957260 132	3.884266913878 5215	0.971066728469 6304
1800	5	4.526981115341 1865	4.816305960726 34	0.963261192145 2681

num_prod ucts	num_proce sses	Тр	S	Е
1800	6	3.917606830596 924	5.565470725552 9186	0.927578454258 8198
1800	7	3.311830997467 041	6.583465806856 986	0.940495115265 2837
1800	8	2.930187940597 534	7.440930947749 078	0.930116368468 6348
2000	1	24.33907985687 256	0.995195556665 7361	0.995195556665 7361
2000	2	12.20648622512 8174	1.984366645745 1596	0.992183322872 5798
2000	3	8.204854011535 645	2.952172469228 2003	0.984057489742 7334
2000	4	6.200980901718 14	3.906179443349 153	0.976544860837 2882
2000	5	5.032322883605 957	4.813312795528 631	0.962662559105 7263
2000	6	4.317483901977 539	5.610245382917 956	0.935040897152 9927
2000	7	3.669373035430 908	6.601166982208 336	0.943023854601 1909
2000	8	3.216453075408 9355	7.530700295950 227	0.941337536993 7784

На рисунке 4.1 показан график зависимости времени работы метода от размерности задачи для разного количества вычислительных узлов.

Рисунок 3.1 — Зависимость времени работы метода от размерности задачи для разного количества вычислительных узлов

Были построены тепловые карты зависимости количества вычислительных узлов от размерности задачи для ускорения вычислений S и коэфициента полезной нагрузки E. Данные карты предствлены на рисунке 3.2.

Рисунок 3.2 — Тепловая карта зависимости количества вычислительных узлов от размерности задачи для ускорения вычислений S

Рисунок 3.3 — Тепловая карта зависимости количества вычислительных узлов от размерности задачи для коэфициента полезной нагрузки E

Из данных тепловых карт можно сделать вывод о том, что до 40% времени работы алгоритма уходит на операции распределения данных между вычислительными узлами и процесссов их синхронизации.

Вывод

Из полученных результатов и тепловых карт можно сделать вывод, что использование более одного вычислительного узла оправдано при вычислениях с матрицами размерностью более 200х200. До 40% времени работы алгоритма уходит на операции распределения данных между вычислительными узлами и процессов их синхронизации.

ЗАКЛЮЧЕНИЕ

В ходе выполнения данной работы была успешно разработана программа для решения транспортной задачи на много продуктовых потоках, что позволяет эффективно решать актуальные задачи, возникающие в областях логистики, распределения ресурсов и оптимизации производственных процессов. Обоснование выбора алгоритма стало основой для разработки данной программы, где приоритет был отдан оптимизированному подходу, способному обрабатывать большие объемы данных.

Программа была создана на основе структур данных, таких как массив продуктов, массив вершин, отражающий дефицит и избыток по продуктам, а также массив ребер для описания возможных путей перевозки. Проведенные эксперименты демонстрируют, что использование алгоритма, применяющего вычисление потенциалов и оценок, позволяет эффективно обрабатывать транспортные задачи, достигая оптимальных решений даже в сложных условиях.

Исследование влияния размерности матрицы и числа процессоров на время выполнения программы подтвердило, что оптимальное распределение вычислительной нагрузки значительно влияет на производительность решения. Это исследование показало, что текущий подход к обработке задач на многоядерных системах еще более актуален и необходим для повышения общей эффективности.

Полученные результаты имеют потенциальное значение не только для улучшения работы уже существующих приложений, но и для создания новых систем, ориентированных на эффективную параллельную обработку данных. Данная работа подчеркивает значимость разработанных методов для будущих исследований и практических приложений в области транспортных задач и как следствие — в сфере управления ресурсами и логистики.