

Description

The VSM30N02 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 20V, I_D = 30A$ $R_{DS(ON)} < 13mΩ @ V_{GS} = 10V$ (Typ:10.5mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Load switching
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30N02-T62	VSM30N02	TO-262	-	-	-

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	V _G S	±12	V
Drain Current-Continuous	I _D	30	А
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	21	А
Pulsed Drain Current	I _{DM}	75	А
Maximum Power Dissipation	P _D	40	W
Single pulse avalanche energy (Note 5)	E _{AS}	150	mJ
Operating Junction and Storage Temperature Range	T_J, T_STG	-55 To 175	℃

Thermal Characteristic

Thermal Resistance, Junction-to-Case (Note 2)	$R_{ heta JC}$	3.8	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						

Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	20	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =20V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	0.5	0.7	1.2	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A	-	10.5	13	mΩ
Forward Transconductance	G FS	V _{DS} =5V,I _D =20A	10	-	-	S
Dynamic Characteristics (Note4)				•		
Input Capacitance	C _{lss}	\/ -10\/\/ -0\/		900		PF
Output Capacitance	Coss	V_{DS} =10V, V_{GS} =0V, F=1.0MHz		162		PF
Reverse Transfer Capacitance	C_{rss}			105		PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	4.5	-	nS
Turn-on Rise Time	t _r	VGS=10V,VDS=10V RL=0. 5 Ω ,RGEN=3 Ω	-	9.2	-	nS
Turn-Off Delay Time	$t_{\text{d(off)}}$		-	18.7	-	nS
Turn-Off Fall Time	t _f		-	3.3	-	nS
Total Gate Charge	Q_g			15		nC
Gate-Source Charge	Q_{gs}	VGS=10V,VDS=10V,ID=20A		1.8		nC
Gate-Drain Charge	Q_{gd}			2.8		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	30	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	18	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	9.5	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- **1.** Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=10V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance