Sequence Listing

- <110> Leung, Woon-Lam Susan Swartz, James R.
- <120> PROCESS FOR BACTERIAL PRODUCTION OF POLYPEPTIDES
- <130> P1190R1
- <141> 1999-10-21
- <160> 3
- <210> 1
- <211> 1000
- <212> DNA
- <213> Human

<400> 1

tcacgtaaaa agggtatcta gaggttgagg tgattttatg aaaaagaata 50 tegeatttet tettgeatet atgttegttt tttetattge tacaaatgee 100 tatgcattga agatcgcagc cttcaacatc cagacatttg gggagaccaa 150 gatgtccaat gccaccctcg tcagctacat tgtgcagatc ctgagccgct 200 atgacatege ectggtecag gaggteagag acagecaeet gaetgeegtg 250 gggaagctgc tggacaacct caatcaggat gcaccagaca cctatcacta 300 cgtggtcagt gagccactgg gacggaacag ctataaggag cgctacctgt 350 tcgtgtacag gcctgaccag gtgtctgcgg tggacagcta ctactacgat 400 gatggctgcg agccctgcgg gaacgacacc ttcaaccgag agccagccat 450 tgtcaggttc ttctcccggt tcacagaggt cagggagttt gccattgttc 500 ccctgcatgc ggccccgggg gaccgagtag ccgagatcga cgctctctat 550 gacgtctacc tggatgtcca agagaaatgg ggcttggagg acgtcatgtt 600 gatgggcgac ttcaatgcgg gctgcagcta tgtgagaccc tcccagtggt 650 catccatccg cctgtggaca agccccacct tccagtggct gatccccgac 700 agogotgaca ocacagotac accoacquae tqtqcctatg acaggatogt 750 ggttgcaggg atgctgctcc gaggcgccgt tgttcccgac tcggctcttc 800 cctttaactt ccaggctgcc tatggcctga gtgaccaact ggcccaagcc 850

atcagtgacc actatccagt ggaggtgatg ctgaagtaag ctaattctca 900 tgtttgacag cttatcatcg ataagcttta atgcggtagt ttatcacagt 950 taaattgcta acgcagtcag gcaccgtgta tgaaatctaa caatgcgctc 1000

<210> 2

<211> 1000

<212> DNA

<213> Human

<400> 2

gagegeattg ttagatttea tacaeggtge etgaetgegt tageaattta 50 actgtgataa actaccgcat taaagcttat cgatgataag ctgtcaaaca 100 tgagaattag cttacttcag catcacctcc actggatagt ggtcactgat 150 ggcttgggcc agttggtcac tcaggccata ggcagcctgg aagttaaagg 200 gaagagccga gtcgggaaca acggcgcctc ggagcagcat ccctgcaacc 250 acgateetgt cataggeaca gtgegtgggt gtagetgtgg tgteageget 300 gtcggggatc agccactgga aggtggggct tgtccacagg cggatggatg 350 accactggga gggtctcaca tagctgcagc ccgcattgaa gtcgcccatc 400 aacatgacgt cctccaagcc ccatttctct tggacatcca ggtagacgtc 450 atagagageg tegatetegg etacteggte eeceggggee geatgeaggg 500 gaacaatggc aaactccctg acctctgtga accgggagaa gaacctgaca 550 atggctggct ctcggttgaa ggtgtcgttc ccgcagggct cgcagccatc 600 atcgtagtag tagctgtcca ccgcagacac ctggtcaggc ctgtacacga 650 acaggtagcg ctccttatag ctgttccgtc ccagtggctc actgaccacg 700 tagtgatagg tgtctggtgc atcctgattg aggttgtcca gcagcttccc 750 cacggcagtc aggtggctgt ctctgacctc ctggaccagg gcgatgtcat 800 agcggctcag gatctgcaca atgtagctga cgagggtggc attggacatc 850 ttggtctccc caaatgtctg gatgttgaag gctgcgatct tcaatgcata 900 ggcatttgta gcaatagaaa aaacgaacat agatgcaaga agaaatgcga 950 tattcttttt cataaaatca cctcaacctc tagataccct ttttacgtga 1000

	-
<210>	3
<211>	283
<212>	PRT
<213>	${\tt Human}$
	•
<400>	3
Mo+ T	uc Tu

<400														
Met 1	Lys	Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15
Ser	Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala	Leu	Lys 25	Ile	Ala	Ala	Phe	Asn 30
Ile	Gln	Thr	Phe	Gly 35	Glu	Thr	Lys	Met	Ser 40	Asn	Ala	Thr	Leu	Val 45
Ser	Tyr	Ile	Val	Gln 50	Ile	Leu	Ser	Arg	Tyr 55	Asp	Ile	Ala	Leu	Val 60
Gln	Glu	Val	Arg	Asp 65	Ser	His	Leu	Thr	Ala 70	Val	Gly	Lys	Leu	Leu 75
Asp	Asn	Leu	Asn	Gln 80	Asp	Ala	Pro	Asp	Thr 85	Tyr	His	Tyr	Val	Val 90
Ser	Glu	Pro	Leu	Gly 95	Arg	Asn	Ser	Tyr	Lys 100	Glu	Arg	Tyr	Leu	Phe 105
Val	Tyr	Arg	Pro	Asp 110	Gln	Val	Ser	Ala	Val 115	Asp	Ser	Tyr	Tyr	Tyr 120
Asp	Asp	Gly	Cys	Glu 125	Pro	Cys	Gly	Asn	Asp 130	Thr	Phe	Asn	Arg	Glu 135
Pro	Ala	Ile	Val	Arg 140	Phe	Phe	Ser	Arg	Phe 145	Thr	Glu	Val	Arg	Glu 150
Phe	Ala	Ile	Val	Pro 155	Leu	His	Ala	Ala	Pro 160	Gly	Asp	Arg	Val	Ala 165
Glu	Ile	Asp	Ala	Leu 170	Tyr	Asp	Val	Tyr	Leu 175	Asp	Val	Gln	Glu	Lys 180
Trp	Gly	Leu	Glu	Asp 185	Val	Met	Leu	Met	Gly 190	Asp	Phe	Asn	Ala	Gly 195
Cys	Ser	Tyr	Val	Arg 200	Pro	Ser	Gln	Trp	Ser 205	Ser	Ile	Arg	Leu	Trp 210
Thr	Ser	Pro	Thr	Phe 215	Gln	Trp	Leu	Ile	Pro 220	Asp	Ser	Ala	Asp	Thr 225

Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala 240

Gly Met Leu Leu Arg Gly Ala Val Val Pro 250

Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln 270

Ala Ile Ser Asp His Tyr Pro Val Glu Val Met Leu Lys 283

Sequence Listing

- <110> Leung, Woon-Lam Susan Swartz, James R.
- <120> PROCESS FOR BACTERIAL PRODUCTION OF POLYPEPTIDES
- <130> P1190R1
- <141> 1999-10-21
- <160> 3
- <210> 1
- <211> 1000
- <212> DNA
- <213> Human
- <400> 1

tcacgtaaaa agggtatcta gaggttgagg tgattttatg aaaaagaata 50 tcgcatttct tcttgcatct atgttcgttt tttctattgc tacaaatgcc 100 tatgcattga agatcgcagc cttcaacatc cagacatttg gggagaccaa 150 gatgtccaat gccaccctcg tcagctacat tgtgcagatc ctgagccgct 200 atgacatege cetggtecag gaggteagag acagecacet gaetgeegtg 250 ° gggaagctgc tggacaacct caatcaggat gcaccagaca cctatcacta 300 cgtggtcagt gagccactgg gacggaacag ctataaggag cgctacctgt 350 tegtgtacag geetgaeeag gtgtetgegg tggaeageta etaetaegat 400 gatggctgcg agccctgcgg gaacgacacc ttcaaccgag agccagccat 450 tgtcaggttc ttctcccggt tcacagaggt cagggagttt gccattgttc 500 ccctgcatgc ggccccgggg gaccgagtag ccgagatcga cgctctctat 550 gacgtctacc tggatgtcca agagaaatgg gqcttggagg acgtcatgtt 600 gatgggcgac ttcaatgcgg gctgcagcta tgtgagaccc tcccagtggt 650 catccatccg cctgtggaca agccccacct tccagtggct gatccccgac 700 agegetgaca ceaeagetae acceaegeae tgtgeetatg acaggategt 750 ggttgcaggg atgctgctcc gaggcgccgt tgttcccgac tcggctcttc 800 cctttaactt ccaggctgcc tatggcctga gtgaccaact ggcccaagcc 850

atcagtgacc actatccagt ggaggtgatg ctgaagtaag ctaattctca 900 tgtttgacag cttatcatcg ataagcttta atgcggtagt ttatcacagt 950 taaattgcta acgcagtcag gcaccgtgta tgaaatctaa caatgcgctc 1000

- <210> 2
- <211> 1000
- <212> DNA
- <213> Human
- <400> 2 gagegeattg ttagatttea tacaeggtge etgaetgegt tageaattta 50 actgtgataa actaccgcat taaagcttat cgatgataag ctgtcaaaca 100 tgagaattag cttacttcag catcacctcc actggatagt ggtcactgat 150 ggcttgggcc agttggtcac tcaggccata ggcagcctgg aagttaaagg 200 gaagagccga gtcgggaaca acggcgcctc ggagcagcat ccctgcaacc 250 acgatectgt cataggeaca gtgegtgggt gtagetgtgg tgteageget 300 gtcggggatc agccactgga aggtggggct tgtccacagg cggatggatg 350 accactggga gggtctcaca tagctgcagc ccgcattgaa gtcgcccatc 400 aacatgacgt cctccaagcc ccatttctct tggacatcca ggtagacgtc 450 atagagagcg tcgatctcgg ctactcggtc ccccggggcc gcatgcaggg 500 gaacaatggc aaactccctg acctctgtga accgggagaa gaacctgaca 550 atggctggct ctcggttgaa ggtgtcgttc ccgcagggct cgcagccatc 600 atcgtagtag tagctgtcca ccgcagacac ctggtcaggc ctgtacacga 650 acaggtagcg ctccttatag ctgttccgtc ccagtggctc actgaccacg 700 tagtgatagg tgtctggtgc atcctgattg aggttgtcca gcagcttccc 750 cacggcagtc aggtggctgt ctctgacctc ctggaccagg gcgatgtcat 800 agcggctcag gatctgcaca atgtagctga cgagggtggc attggacatc 850

ttggtctccc caaatgtctg gatgttgaag gctgcgatct tcaatgcata 900

ggcatttgta gcaatagaaa aaacgaacat agatgcaaga agaaatgcga 950

tattcttttt cataaaatca cctcaacctc tagataccct ttttacgtga 1000

<210> 3 <211> 283 <212> PRT <213> Human				
<400> 3 Met Lys Lys 1	Asn Ile Ala 5	. Phe Leu Leu	Ala Ser Met 10	Phe Val Phe
Ser Ile Ala	Thr Asn Ala 20	Tyr Ala Leu	Lys Ile Ala 25	Ala Phe Asn 30
Ile Gln Thr	Phe Gly Glu 35	Thr Lys Met	Ser Asn Ala 40	Thr Leu Val
Ser Tyr Ile	Val Gln Ile 50	Leu Ser Arg	Tyr Asp Ile 55	Ala Leu Val 60
Gln ∙Glu Val	Arg Asp Ser 65	His Leu Thr	Ala Val Gly 70	Lys Leu Leu 75
Asp Asn Leu	Asn Gln Asp 80	Ala Pro Asp	Thr Tyr His 85	Tyr Val Val 90
Ser Glu Pro	Leu Gly Arg 95	Asn Ser Tyr	Lys Glu Arg 100	Tyr Leu Phe 105
Val Tyr Arg	Pro Asp Gln 110	Val Ser Ala	Val Asp Ser 115	Tyr Tyr Tyr 120
Asp Asp Gly	Cys Glu Pro 125	Cys Gly Asn	Asp Thr Phe 130	Asn Arg Glu . 135
Pro Ala Ile	Val Arg Phe 140	Phe Ser Arg	Phe Thr Glu 145	Val Arg Glu 150
Phe Ala Ile	Val Pro Leu 155	His Ala Ala	Pro Gly Asp 160	Arg Val Ala 165
Glu Ile Asp	Ala Leu Tyr 170	Asp Val Tyr	Leu Asp Val 175	Gln Glu Lys 180

Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu Trp 200 205 210

Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn Ala Gly

185

Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr 215 220 225

190

Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala 240 Gly Met Leu Leu Arg 245 Gly Ala Val Val Pro 255

Phe Asn Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln 270

Ala Ile Ser Asp His 275 Tyr Pro Val Glu Val Met Leu Lys 283