Aluno: Guilherme de Oliveira Costa

Análise da Transformação Bilinear de um Filtro Butterworth

Introdução

O código implementa a transformação bilinear de um filtro Butterworth passa-baixas de ordem 6 do domínio contínuo (analógico) para o domínio discreto (digital). A transformação bilinear é um método para converter filtros analógicos em filtros digitais equivalentes, preservando características de estabilidade.

Parâmetros do Filtro

- Ordem do filtro (N): 6
- Frequência de corte normalizada (Omega_c): 0.766 rad/s
- Período de amostragem (Ts): 1 segundo

Processo de Transformação

- Inicialmente, foi projetado um filtro Butterworth analógico H(s) usando a função butter do MATLAB.
- 2. Em seguida, aplicou-se a transformação bilinear usando a função c2d com o método 'tustin' para obter o filtro digital H(z).
- 3. Para compensar o efeito de "warping" de frequência, foram realizadas pré-distorções nas frequências críticas:
 - \circ Frequência da banda passante (ω p = 0.2π rad)
 - Frequência da banda de rejeição (ω_s = 0.3π rad)

Análise dos Resultados

Resposta em Frequência (Diagramas de Bode)

1. Magnitude do Filtro Analógico H(s):

- Mostra o comportamento passa-baixas típico com atenuação após a frequência de corte
- Na frequência Ω p: -0.57 dB
- Na frequência Ω_s: -15.02 dB

2. Magnitude do Filtro Digital H(z):

- Apresenta comportamento similar ao filtro analógico
- \circ Nas frequências correspondentes ω_p e ω_s , mantém aproximadamente os mesmos valores de atenuação
- A principal diferença está na escala de frequência, que agora é limitada entre 0 e

3. Fase dos Filtros:

- Ambos apresentam comportamento semelhante de mudança de fase
- No filtro digital, nota-se a periodicidade característica de 2π

Resposta ao Degrau

Na Imagem 2, podemos observar:

sposta ao Degrau do Filtro A**Resogata ျခင္း** Pegrau do Filtro Digital H(z)

1. Filtro Analógico:

- o Resposta ao degrau suave, característica de filtros Butterworth
- Tempo de subida aproximado de 5 segundos
- Não apresenta sobressinal significativo

2. Filtro Digital:

- Representada em forma de amostras discretas
- Comportamento geral similar ao do filtro analógico
- o Atinge o regime permanente após aproximadamente 10 amostras

Distorção de Frequência (Warping)

A Imagem 3 ilustra o fenômeno de warping na transformação bilinear:

- O gráfico mostra como as frequências digitais normalizadas (ω/π) são mapeadas para frequências analógicas (Ω)
- Observa-se uma distorção significativa próxima a ω/π = 1 (frequência de Nyquist)
- Esta distorção explica por que é necessária a pré-distorção das frequências críticas para manter as características desejadas do filtro

Polos e Zeros

Embora não estejam ilustrados nos gráficos, o código calcula os polos e zeros de ambos os filtros:

1. Filtro Analógico H(s):

- Os polos estão distribuídos em um semicírculo no semiplano esquerdo (garantindo estabilidade)
- Os zeros estão no infinito (característica típica de Butterworth)

2. Filtro Digital H(z):

- Os polos estão dentro do círculo unitário (garantindo estabilidade)
- A transformação bilinear mapeia o semiplano esquerdo para o interior do círculo unitário

Verificação de Desempenho

O código verifica o desempenho do filtro digital nas frequências críticas:

- Em ω_p = 0.2π: a atenuação é aproximadamente -0.57 dB (próximo ao valor teórico de -0.36 dB)
- Em $\omega_s = 0.3\pi$: a atenuação é aproximadamente -15.02 dB (correspondente ao valor teórico de -15 dB)

Estas verificações confirmam que a transformação bilinear, quando aplicada corretamente com a devida pré-distorção de frequências, preserva as características desejadas do filtro original.

Conclusão

A implementação demonstra com sucesso a transformação bilinear de um filtro Butterworth analógico para digital. Os resultados mostram que:

- 1. O filtro digital mantém as características essenciais do filtro analógico
- 2. A pré-distorção de frequências compensa o efeito de warping
- 3. A estabilidade é preservada na transformação
- 4. As respostas em frequência e ao degrau são adequadamente mantidas

Código no Github

https://github.com/GuilhermeC0sta/PDS/tree/main/ab2