Claims Frequency Distribution Models

Chapter 6

Stat 346 - Short-term Actuarial Math

Introduction

- Here we introduce a large class of counting distributions, which are discrete distributions with support consisting of non-negative integers.
- Generally used for modeling number of events, but in an insurance context, the number of claims within a certain period, e.g. one year.
- We call these claims frequency models.
- Let N denote the number of events (or claims). Its probability mass function (pmf), $p_k = \Pr(N=k)$, for $k=0,1,2,\ldots$, gives the probability that exactly k events (or claims) occur.

Some familiar discrete distributions

Some of the most commonly used distributions for number of claims:

- Binomial (with Bernoulli as special case)
- Poisson
- Geometric
- Negative Binomial
- The (a, b, 0) class
- The (a, b, 1) class

Bernoulli random variables

• N is Bernoulli if it takes only one of two possible outcomes:

$$N = \left\{ \begin{array}{ll} 1, & \text{if a claim occurs} \\ 0, & \text{otherwise} \end{array} \right..$$

- q is the standard symbol for the probability of a claim, i.e. $\Pr(N=1)=q$.
- We write $N \sim \mathsf{Bernoulli}(q)$.
- $\bullet \ \operatorname{Mean} \ \mathsf{E}(N) = q \ \operatorname{and} \ \operatorname{variance} \ \mathsf{Var}(N) = q(1-q)$

Binomial random variables

• We write $N \sim {\sf Binomial}(m,q)$ if N has a ${\sf Binomial}$ distribution with pmf:

$$p_k = \Pr(N = k) = {m \choose k} q^k (1 - q)^{m-k} = \frac{m!}{k!(m-k)!} q^k (1 - q)^{m-k},$$

- for $k = 0, \ldots, m$.
- Binomial r.v. is also the sum of independent Bernoulli's with $N = \sum_{k=1}^{m} N_k$ where each $N_k \sim \text{Bernoulli(q)}$.
- Mean $\mathsf{E}(N) = mq$ and variance $\mathsf{Var}(N) = mq(1-q)$

Poisson random variables

• $N \sim \mathsf{Poisson}(\lambda)$ if pmf is

$$p_k = P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \text{ for } k = 0, 1, 2, \dots$$

- Mean and variance are equal: $E(N) = Var(N) = \lambda$
- Sums of independent Poissons: If N_1, \ldots, N_n be n independent Poisson variables with parameters $\lambda_1, \ldots, \lambda_n$, then the sum

$$N = N_1 + \cdots + N_n$$

has a Poisson distribution with parameter $\lambda = \lambda_1 + \cdots + \lambda_n$.

Negative binomial random variable

• N has a Negative Binomial distribution, written $N \sim \mathsf{NB}(\beta,r)$, if its pmf can be expressed as

$$p_k = \Pr(N = k) = \binom{k+r-1}{k} \left(\frac{1}{1+\beta}\right)^r \left(\frac{\beta}{1+\beta}\right)^k,$$

for k = 0, 1, 2, ... where $r > 0, \beta > 0$.

- Mean: $\mathsf{E}(N) = r\beta$
- Variance: $Var(N) = r\beta(1+\beta)$.
- ullet Clearly, since eta>0, the variance of the NB exceeds the mean.

Geometric random variable

- The Geometric distribution is a special case of the Negative Binomial with r=1.
- \bullet N is said to be a Geometric r.v. and written as $N \sim \mathsf{Geometric}(p)$ if its pmf is therefore expressed as

$$p_k = \Pr(N = k) = \frac{1}{1 + \beta} \left(\frac{\beta}{1 + \beta}\right)^k, \text{ for } k = 0, 1, 2, \dots$$

• Mean is $E(N) = \beta$ and variance is $Var(N) = \beta(1 + \beta)$.

Special class of distributions

 The (a, b, 0) class of distributions satisfies the recursion equations of the general form:

$$\frac{p_k}{p_{k-1}} = a + \frac{b}{k}, \quad \text{for} \quad k = 1, 2, \dots.$$

- The three distributions (including Geometric as special case of NB)
 are the only distributions that belong to this class: Binomial, Poisson,
 and Negative Binomial.
- It can be shown that the applicable parameters a and b are:

Distribution	Values of a and b
Binomial(m,q)	$a = -\frac{q}{1-q}$, $b = (m+1)\frac{q}{1-q}$
$Poisson(\lambda)$	$a = 0, b = \lambda$
NB(eta,r)	$a = \frac{\beta}{1+\beta}$, $b = (r-1)\frac{\beta}{1+\beta}$
	·

Suppose N is a counting distribution satisfying the recursive probabilities:

$$\frac{p_k}{p_{k-1}} = \frac{4}{k} - \frac{1}{3},$$

for $k = 1, 2, \dots$

Identify the distribution of N.

Solution to the Recursive Probability Example

Given recursive probabilities:

$$\frac{p_k}{p_{k-1}} = \frac{4}{k} - \frac{1}{3},$$

for k = 1, 2, ...

• Comparing with the general form of (a, b, 0) class:

$$\frac{p_k}{p_{k-1}} = a + \frac{b}{k}$$

we have $a=-\frac{1}{3}$ and b=4.

• Comparing with the known distributions, only the binomial distribution has a negative a. Set $a = -\frac{1}{3} = -\frac{q}{1-q}$ and $b = 4 = (m+1)\frac{q}{1-q}$

4 D > 4 B > 4 E > 4 E > 9 Q P

SOA question

The distribution of accidents for 84 randomly selected policies is as follows:

Number of Accidents	Number of Policies
0	32
1	26
2	12
3	7
4	4
5	2
6	1

Identify the frequency model that best represents these data.

Analyzing the Accident Data

Given accident data for 84 policies:

	Number of Accidents (k)	Number of Policies	Ratio $\frac{p_k}{p_{k-1}}$
	0	32	_
	1	26	$\frac{26}{32} \approx 0.81$
	2	12	$\frac{12}{26} \approx 0.46$
	3	7	$\frac{\frac{26}{32}}{\frac{26}{26}} \approx 0.81$ $\frac{\frac{12}{26}}{\frac{7}{12}} \approx 0.58$ $\frac{4}{7} \approx 0.57$
	4	4	$\frac{4}{7} \approx 0.57$
	5	2	$\frac{2}{4} = 0.50$
_	6	1	$\frac{1}{2} = 0.50$

• Analyzing the ratio $\frac{p_k}{p_{k-1}}$ for each k to identify a possible distribution from the (a, b, 0) class.

Truncation and modification at zero

ullet The (a,b,1) class of distributions satisfies the recursion equations of the general form:

$$\frac{p_k}{p_{k-1}} = a + \frac{b}{k}, \quad \text{for} \quad k = 2, 3, \dots.$$

- Only difference with the (a,b,0) class is the recursion here begins at p_1 instead of p_0 . The values from k=1 to $k=\infty$ are the same up to a constant of proportionality. For the class to be a distribution, the remaining probability must be set for k=0.
 - zero-truncated distributions: the case when $p_0 = 0$
 - ullet zero-modified distributions: the case when $p_0>0$
- The distributions in the second subclass is indeed a mixture of an (a,b,0) and a degenerate distribution. A zero-modified distribution can be viewed as a zero-truncated by setting $p_0=0$.

Expectation and Variance

Zero-Modified and Zero-Truncated Distributions

 For a zero-truncated distribution, the expected value (mean) and variance are given by:

$$\begin{split} \mathsf{E}[X_{\mathsf{trunc}}] &= \frac{\mathsf{E}[X]}{1-p_0}, \\ \mathsf{Var}[X_{\mathsf{trunc}}] &= \frac{\mathsf{Var}[X]}{1-p_0} - \frac{p_0 \cdot [\mathsf{E}[X]]^2}{(1-p_0)^2}, \end{split}$$

where X_{trunc} is the zero-truncated version of the random variable X.

• For a zero-modified distribution, assuming that $X_{\rm mod}$ is the modified variable and p_0 is the modified probability at zero:

$$\begin{split} \mathsf{E}[X_{\mathsf{mod}}] &= (1-p_0) \cdot \mathsf{E}[X_{\mathsf{trunc}}], \\ \mathsf{Var}[X_{\mathsf{mod}}] &= (1-p_0) \cdot \mathsf{Var}[X_{\mathsf{trunc}}] + p_0 \cdot (1-p_0) \cdot [\mathsf{E}[X_{\mathsf{trunc}}]]^2. \end{split}$$

Zero-Modified and Zero-Truncated Distributions

- Zero-Modified Distributions:
 - In zero-modified distributions, the probability at zero, p_0 , is artificially altered.
 - This modification changes the probabilities p_k for $k \geq 1$.
 - The adjusted probabilities for $k \ge 1$ are:

$$p'_k = \frac{(1 - p'_0) \cdot p_k}{1 - p_0} \quad \text{for } k \ge 1,$$

where p_k are the original probabilities, p_0 is the original probability at zero, and p_0' is the modified probability at zero.

- Zero-Truncated Distributions:
 - In a zero-truncated distribution, occurrences at zero are removed (i.e., $p_0'=0$).
 - The probabilities p_k for $k \ge 1$ are scaled up so that the distribution sums to 1.
 - The adjusted probabilities are:

$$p_k' = \frac{p_k}{1 - p_0} \quad \text{for } k \ge 1,$$

Consider the zero-modified Geometric distribution with probabilities

$$p_0 = \frac{1}{2}$$
 $p_k = \frac{1}{6} \left(\frac{2}{3}\right)^{k-1}$, for $k = 1, 2, 3, ...$

Derive the mean and the variance of this distribution.