

BLDC Position Control

Motor Driver IC and a 32-bit MCU in a 7 x 7 mm Footprint

STSPIN32F0 Key Features and Benefits

Position Control Demo

MCU for Motor Control

ANALOG and POWER for Motor Control

Design Support Tools

Operating voltage from 8V to 45V

3-phase gate driver for high performances

- 600mA current capability
- Real-time programmable over current
- Integrated bootstrap diodes
- Cross conduction, under-voltage and temperature protections

32-bit STM32F0 MCU with ARM ® Cortex®M0 Core

- STM32F031x6x7 48MHz, 4-Kbyte SRAM and 32-Kbyte Flash memories
- 12-bit ADC
- 1 to 3 shunts FOC supported
- Communication interfaces I2C, UART and SPI
- Complete Development Ecosystem available

4x Operational Amplifiers and a Comparator

- Sensor-less or Hall-effect sensors supported for accurate control of 3-phase motors
- Wide Bandwidth 20MHz
- Adjustable Comparator's threshold

On-chip generated supplies for MCU driver and external circuitry

- 3.3V DC/DC buck regulator Input voltage up to 45V
- 12V LDO linear regulator
- UVLO protection on all power supply voltages
- Embedded Over-Temperature Protection

STSPIN32F0 Technical Details

Package: VFQFPN 7 x 7 x 1.0 - 48L

STSPIN32F0 Application Example

Hardware Platform

STEVAL-SPIN3201

- Input voltage from 8 V to 45 V
- Output current up to 15 Arms
- Power stage based on STD140N6F7 MOSFETs
- 3-shunt current sensing
- Digital Hall sensors and encoder input
- Overcurrent comparator
- Bus voltage sensing
- Fully supporting STM32 PMSM FOC Software Development Kit
- Embedded ST-LINK/V2-1

STSPIN32F0

- Three-phase gate drivers
 - 600 mA sink/source
 - Integrated bootstrap diodes
 - Cross-conduction prevention
- •32-bit ARM® Cortex®-M0 core:
 - Up to 48 MHz clock frequency
 - 4-kByte SRAM
 - 32-kByte Flash memory
- 16 GPIO
- •5 general-purpose timers
- •12-bit ADC converter (up to 9 channels)
- •I2C, USART and SPI interfaces
- •4 rail-to-rail operation amplifiers
- •Extended temperature range: -40 to +125 °C

The Demo

- Two small motors are precisely synchronized allowing the intersection of two disks, performing accurate position control and thus avoiding collision, playing at different speeds and accelerations.
- With STSPIN32F0 as main core, the demo show the capabilities of a servo drive.

Full Featured Position Control

- A dedicated trajectory (as a sequence of target positions) is calculated starting from a
- "move-to-position" command.
- The trajectory is computed applying a constant angular Jerk approach.
- The Jerk is the rate of change of acceleration; that is, the time derivative of acceleration.

Design Support Tools

A complete environment for the development of an FOC solution

Making Your Designs Easier

To support STSPIN32F0, a comprehensive set of design tools is available, including:

Reference Code	Description
STEVAL-SPIN3201	STSPIN32F0 evaluation board Three-phase brushless DC motor driver evaluation board Input voltage from 8 to 45 V Output current up to 15 Arms Power stage based on STD140N6F7 MOSFETs Sensored or sensorless field-oriented control algorithm with 3-shunt sensing
UM2154	User manual for STEVAL-SPIN3201: advanced BLDC controller with embedded STM32 MCU evaluation board
STSW-SPIN3201	Firmware example for field oriented motor control (FOC)
UM2152	User manual for Getting started with the STSPIN32F0 FOC firmware example STSW-SPIN3201
STSW-STM32100	Library: STM32 PMSM FOC Software Development Kit

STM32 Portfolio

12 Product Series / More than 50 Product Lines

Legend: Cortex-M0+ Radio Co-processor

Advanced motor control timer included

STM32 today – platform effect

Select the Best Fitting Product from a Wide & Compatible Portfolio

Broadest 32-bit MCU product portfolio

MHz

STDRIVE - Product Family and Positioning

IGBT and **MOSFET** Drivers

Applications

Auto HEV/EV

1200V inverters

Industrial Drives

Washing machines

Compressors

Dish washers

HID

E-bikes

Server

UPS

DC/DC Auto

Solar

Factory automation

100kW

STSPIN Family Portrait

Leading Integration, Performance, Efficiency

Monolithic L6470, L6472, L6474 L620x, L622x, L6230

STSPIN800 Series

System-in-package POWERSTEP01

Monolithic Low Voltage STSPIN200 Series

Controllers STSPIN32F0/A, L6480, L6482

10 W

50 W

100 W

350 W

Portable, Battery Powered

Medical, Security, ATM, Vending, 3D Printers, Domotics

Stage Lighting

Industrial, Factory Automation

STSPIN Family Positioning

Monolithic motor drivers

LV motor 1 8V drivers

45V 85V **High Power Microstepping** 8V 7V microstepping motor drivers

Dual full-bridges

L6208 L6228 L6208Q L6228Q

STSPIN220

Dual full-bridge

Dual full-bridges

L6480 (VM) **L6482** (PCAD)

L6470 (VM) L6474 **L6472** (PCAD)

POWERSTEP01

Controllers & SiP

STSPIN820

Dual full-bridges

L6205 L6225 L6206/Q L6226/Q L6207/Q L6227/Q

STSPIN840

Dual full-bridge

STSPIN240 STSPIN250

Triple half-bridge

STSPIN230

VM = Voltage mode

PCAD = Predictive Current control with Adaptive Decay

DME = Digital Motion Engine generates motion profiles thru commands sent over SPI

BRUSHED DC

3-PHASE BLDC

Triple half-bridges

L6235/Q L6229/Q L6234 L6230/Q

STSPIN830

STSPIN233

Switching frequency

IGBTs positioning (from 600V to 1350V)

Break Down Voltage

Low Voltage STripFET™ Positioning vs Battery Voltage

Technology Features

- Best in class On-resistance
- High current capability
- High quality & reliability
- Wide packaging options

Benefits

- Higher efficiency and system miniaturization
- Lower battery consumption
- Reliable system operation

Discrete vs Integrated Approach

Advantages of integrated Power Modules (IPM)

High power dissipation due to a very low thermal resistance

Lower losses and EMI noise thanks to simultaneous optimization of power chips and driving circuits

«Plug 'n Play» solution

Improved manufacturability and PCB routing, only one component to handle

Reduced design time and improved reliability thanks to embedded protection

SLLIMMTM Intelligent Power Modules

ACEPACKTM

Main Features and ST capability in "Power Switch"

ACEPACK™ 1

Main Features

- Compact module concept
- Configuration flexibility
- Press FIT and solder pins options
- High power density
- Reliable and easy mounting system
- Integrated temperature sensor available
- Low stray inductance module design
- PCB layout design
- High reliability and quality
- RoHS-compliant modules

ST Power Switch capability

- IGBTs
- HV MOSFETs
- Diodes
- Brigde Rectifier Diodes
- Silicon Carbide MOSFETs
- Silicon Carbide Diodes
- SCR

Main Topologies can be addressed in ACEPACK

