Algebra z geometrią analityczną

dr Joanna Jureczko

Zestaw 2 Działania na liczbach zespolonych

2.1 Wykonać działania w zbiorze liczb zespolonych

- a) (1+3i)(4-5i) + (2-3i)(4+5i), b) $(1+2i)^2 (1-2i)^3$, c) $\sum_{k=1}^{6} i^k$, d) $\frac{1+5i}{2-i} + \frac{-i}{2+3i} 4i$, e) $\frac{(1-i)^5-1}{(1+i)^5+1}$ f) $\left(\frac{2+i}{3+i}\right)^2 + 7 11i$.

2.2. Obliczyć a) $z \cdot \overline{w}$, b) $\frac{z^2}{w}$, c) $\frac{z-w}{\overline{z}+\overline{w}}$, d) $\frac{Rez+iImw}{z+w}$ dla z=5-2i, w=3+4i.

2.3. Znaleźć liczby rzeczywiste x, y spełniające równania

- a) x(2+3i) + y(5-2i) = -8+7i, b) (2+yi)(x-3i) = 7-i, c) $\frac{1+yi}{x-2i} = -1+3i$, d) $\frac{x+yi}{x-yi} = \frac{9-2i}{9+2i}$.

c) $\frac{1+yi}{x-2i} = -1 + 3i$,

2.4.* Pokazać, że jeżeli liczby zespolone z, w spełniają warunek $z \cdot w = 0$, to z = 0lub w = 0.

 ${\bf 2.5.}^*$ Pokazać, że dla wszelkich liczb zespolonych z_1,z_2,z_3 zachodzą równości

- a) $z_1 + z_2 = z_2 + z_1$, b) $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$, c) $z_1 \cdot z_2 = z_2 \cdot z_1$, d) $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$,

- e) $z_1 \cdot (z_2 + z_3) = (z_1 \cdot z_2) + (z_1 \cdot z_3)$.

2.6.* Znaleźć element przeciwny i element odwrotny do liczby zespolonej z=(a,b).

2.7.* Pokazać, że

- a) $z + \overline{z} = 2Rez$, b) $z \overline{z} = 2iImz$, c) $\overline{(\overline{z})} = z$.

2.8.* Wyznaczyć wszystkie liczby sprzężone do swojego

a) kwadratu, b) sześcianu.

ODPOWIEDZI

- **2.1.** a) 42 + 5i, b) 8 + 2i, c) -1 + i, d) $-\frac{54}{65} \frac{127}{65}i$, e) $-\frac{1}{25} \frac{32}{25}i$, f) $\frac{187}{25} \frac{543}{50}i$. **2.2.** a) 7 26i, b) $-\frac{17 + 144i}{25}$, c) $\frac{7 11i}{17}$, d) $\frac{24 + 11i}{34}$. **2.3.** a) x = 1, y = -2, b) nie istnieją takie liczby, c) x = 5, y = 17, d) $x \in \mathbb{R} \setminus \{0\}, y = -\frac{2}{9}x$.