# **■** Day 12: NoSQL Databases - MongoDB for Modern Data Engineering

# What You'll Learn Today (Concept-First Approach)

**Primary Focus:** Understanding NoSQL principles and document database design for data engineering **Secondary Focus:** Hands-on MongoDB implementation with aggregation pipelines **Dataset for Context:** Amazon Products Dataset from Kaggle for varied schema exploration

## Learning Philosophy for Day 12

"Understand the data structure before choosing the database"

We'll start with NoSQL concepts, explore document modeling principles, understand MongoDB's architecture, and build production-ready data pipelines for flexible, evolving datasets.

# The NoSQL Revolution: Why Document Databases Matter

The Problem: Rigid Schema Limitations

Scenario: You're building a product catalog system for an e-commerce platform...

#### With Traditional SQL:

# 

#### X Problems:

- Fixed schema for diverse product types
- NULL values for non-applicable attributes
- Complex changes require schema migrations
- Difficult to handle varying product specifications
- Rigid structure doesn't match real-world data

#### With MongoDB Document Model:

```
json
// Flexible product documents
 "_id": "product_1",
  "name": "iPhone 15 Pro",
  "price": 999,
  "category": "Electronics",
  "specifications": {
   "storage": "256GB",
    "color": "Deep Purple",
   "camera": "48MP Triple Camera",
   "battery": "3274mAh"
  },
  "reviews": [
   {
     "user": "john_doe",
     "rating": 5,
      "comment": "Amazing phone!",
     "date": "2024-01-15"
   }
  ],
  "variants": [
    {"storage": "128GB", "price": 899},
   {"storage": "512GB", "price": 1199}
 1
}
 "_id": "product_2",
 "name": "Cotton T-Shirt",
  "price": 25,
  "category": "Clothing",
 "specifications": {
    "material": "100% Cotton",
   "fit": "Regular",
   "care": "Machine washable"
  },
  "sizes": ["S", "M", "L", "XL"],
 "colors": ["White", "Black", "Navy"]
}
```

#### Think of MongoDB like this:

- Traditional SQL: Filing cabinet with fixed-size folders
- MongoDB: Flexible storage where each item can have unique properties

# Understanding NoSQL Database Types (Visual Approach)

## The NoSQL Landscape



## When to Choose NoSQL vs SQL

#### Choose NoSQL (MongoDB) when:

- Schema evolves frequently
- Value Nested/hierarchical data structures
- **V** Rapid development cycles
- Variable
   Horizontal scaling requirements
- SON/document-oriented applications

#### **Choose SQL when:**

• V Fixed, well-defined schema

- Complex relationships and JOINs
- **V** ACID transactions are critical
- Strong consistency requirements
- Mature ecosystem and tooling

# MongoDB Installation and Setup (Visual Learning)

## Quick Start with Docker

## **Step 1: Create MongoDB Environment**

```
bash

# Create project structure
mkdir mongodb-data-engineering
cd mongodb-data-engineering

# Create directories
mkdir -p data/raw data/processed scripts notebooks
```

#### **Step 2: Docker Compose Setup**

```
yaml
version: '3.8'
services:
  mongodb:
    image: mongo:7.0
    container_name: mongodb-dev
    restart: unless-stopped
    ports:
      - "27017:27017"
    environment:
      MONGO_INITDB_ROOT_USERNAME: admin
      MONGO_INITDB_ROOT_PASSWORD: password
      MONGO_INITDB_DATABASE: ecommerce
    volumes:
      - mongodb_data:/data/db
      - ./scripts:/docker-entrypoint-initdb.d/
  mongo-express:
    image: mongo-express:latest
    container_name: mongo-express
    restart: unless-stopped
    ports:
      - "8081:8081"
    environment:
      ME_CONFIG_MONGODB_ADMINUSERNAME: admin
      ME_CONFIG_MONGODB_ADMINPASSWORD: password
      ME_CONFIG_MONGODB_URL: mongodb://admin:password@mongodb:27017/
    depends_on:
      mongodb
volumes:
  mongodb_data:
```

**Step 3: Launch MongoDB** 

```
# Start MongoDB and Mongo Express
docker-compose up -d

# Verify MongoDB is running
docker-compose ps

# Access Mongo Express Web UI
# http://localhost:8081
```

## First Look at MongoDB Tools

## **Main Interface Options:**

- 1. Mongo Express (Web UI):
  - Database and collection browser
  - Document viewer and editor
  - Query interface
  - Index management

#### 2. MongoDB Compass (Desktop):

- Visual query builder
- Schema analysis
- Performance monitoring
- Aggregation pipeline builder

#### 3. MongoDB Shell (Command Line):

- Direct database interaction
- Script execution
- Administrative tasks

## Understanding Documents and Collections

Document Fundamentals (Visual Learning)

What is a Document?

```
json
```

```
// A document is like a JSON object with additional data types
                            // Unique identifier
 " id": ObjectId("..."),
  "product_name": "Laptop",  // String
  "price": 999.99,
                                  // Number
  "in stock": true,
                                  // Boolean
  "launch_date": ISODate("2024-01-01"), // Date
  "categories": ["Electronics", "Computers"], // Array
  "specifications": {
                                  // Embedded document
   "cpu": "Intel i7",
   "ram": "16GB",
   "storage": "512GB SSD"
  },
  "reviews": [
                                  // Array of documents
    {
     "user": "alice",
     "rating": 5,
     "comment": "Great laptop!"
   }
 1
}
```

## **Document Design Patterns:**

#### 1. Embedding Pattern (Denormalization):

```
json

// Good for: Related data accessed together
{
    "_id": "order_123",
    "customer": {
        "name": "John Doe",
        "email": "john@email.com"
},
    "items": [
        {"product": "Laptop", "price": 999, "qty": 1},
        {"product": "Mouse", "price": 25, "qty": 2}
    ],
    "total": 1049
}
```

#### 2. Referencing Pattern (Normalization):

```
json

// Good for: Large related data, many-to-many relationships
{
   "_id": "order_123",
   "customer_id": "customer_456",
   "item_ids": ["item_789", "item_101"],
   "total": 1049
}
```

# Working with Amazon Products Dataset

## **Step 1: Download and Prepare Data**

**Dataset Source:** Amazon Products Dataset on Kaggle

#### **Files in Dataset:**

- (amazon\_products.csv) Product information with nested attributes
- Product categories, prices, ratings, descriptions

## **Step 2: Data Exploration and Import**

## **Connect to MongoDB:**

```
import pymongo
import pandas as pd
import json
from datetime import datetime

# MongoDB connection
client = pymongo.MongoClient("mongodb://admin:password@localhost:27017/")
db = client["ecommerce"]
products_collection = db["products"]
```

#### **Load and Transform Data:**

```
# Read the CSV dataset
df = pd.read csv('data/raw/amazon products.csv')
# Explore data structure
print("Dataset Info:")
print(f"Rows: {len(df)}")
print(f"Columns: {df.columns.tolist()}")
print(f"Sample data:\n{df.head()}")
# Data transformation for document structure
def transform product to document(row):
    """Transform CSV row to MongoDB document"""
    return {
        "product id": row.get('product id'),
        "product name": row.get('product name'),
        "category": row.get('category'),
        "discounted_price": float(row.get('discounted_price', 0)),
        "actual_price": float(row.get('actual_price', 0)),
        "discount percentage": row.get('discount percentage'),
        "rating": float(row.get('rating', 0)),
        "rating_count": int(row.get('rating_count', 0)),
        "about_product": row.get('about_product'),
        "user id": row.get('user id'),
        "user name": row.get('user name'),
        "review id": row.get('review id'),
        "review title": row.get('review title'),
        "review content": row.get('review content'),
        "img_link": row.get('img_link'),
        "product_link": row.get('product_link'),
        "created at": datetime.now()
    }
# Transform and insert data
documents = []
for , row in df.iterrows():
    doc = transform_product_to_document(row)
    documents.append(doc)
# Insert in batches for better performance
batch size = 1000
for i in range(0, len(documents), batch_size):
    batch = documents[i:i + batch_size]
    products collection.insert many(batch)
```

```
print(f"Inserted batch {i//batch_size + 1}")
print(f"Total documents inserted: {products_collection.count_documents({})}")
```

# MongoDB Queries for Data Engineering

## **■** Basic Queries and Data Exploration

1. Document Count and Basic Stats:

```
# Total documents
total_products = products_collection.count_documents({})
print(f"Total products: {total_products}")

# Unique categories
categories = products_collection.distinct("category")
print(f"Product categories: {len(categories)}")

# Sample document structure
sample_doc = products_collection.find_one()
print("Sample document structure:")
for key in sample_doc.keys():
    print(f" {key}: {type(sample_doc[key])}")
```

## 2. Filtering and Finding Documents:

```
python
# Find products in specific price range
expensive_products = products_collection.find({
    "actual_price": {"$gte": 1000, "$lte": 5000}
}).limit(5)

for product in expensive_products:
    print(f"Product: {product['product_name']}, Price: ${product['actual_price']}")

# Find highly rated products
highly_rated = products_collection.find({
    "rating": {"$gte": 4.5},
    "rating_count": {"$gte": 100}
}).sort("rating", -1).limit(10)

print("\nTop rated products:")
for product in highly_rated:
    print(f"{product['product_name']}: {product['rating']} ({product['rating_count']})
```

#### 3. Text Search and Pattern Matching:

## **♦ MongoDB Aggregation Pipeline for Analytics**

Understanding Aggregation Concepts

#### **Aggregation Pipeline Stages:**

Data Flow: Collection → Stage 1 → Stage 2 → Stage 3 → Result

| Documents | → | \$match | → | \$group | → | \$sort | (Aggregate) | (Order)

## Business Analytics with Aggregation

#### 1. Category Performance Analysis:

```
python
# Category-wise product count and average ratings
category_analysis = products_collection.aggregate([
   {
        "$group": {
            " id": "$category",
            "product count": {"$sum": 1},
            "avg_rating": {"$avg": "$rating"},
            "avg_price": {"$avg": "$actual_price"},
            "total_reviews": {"$sum": "$rating_count"}
        }
   },
    {
        "$sort": {"product_count": -1}
   },
    {
        "$limit": 10
   }
1)
print("Top Categories by Product Count:")
for category in category_analysis:
    print(f"Category: {category['_id']}")
   print(f" Products: {category['product count']}")
   print(f" Avg Rating: {category['avg_rating']:.2f}")
   print(f" Avg Price: ${category['avg_price']:.2f}")
   print(f"
             Total Reviews: {category['total_reviews']}")
   print()
```

#### 2. Price Range Distribution:

```
python
# Product distribution by price ranges
price_distribution = products_collection.aggregate([
   {
       "$addFields": {
           "price range": {
              "$switch": {
                  "branches": [
                     {"case": {"$lt": ["$actual_price", 50]}, "then": "Under $50"},
                     {"case": {"$lt": ["$actual price", 100]}, "then": "$50-$100"},
                     {"case": {"$lt": ["$actual_price", 500]}, "then": "$100-$500"}
                     {"case": {"$lt": ["$actual_price", 1000]}, "then": "$500-$1000"
                  ],
                  "default": "Over $1000"
              }
          }
       }
   },
   {
       "$group": {
           "_id": "$price_range",
           "count": {"$sum": 1},
          "avg_rating": {"$avg": "$rating"}
       }
   },
   {
       "$sort": {"count": -1}
   }
])
print("Price Range Distribution:")
for range_data in price_distribution:
```

## 3. Advanced Analytics - Customer Sentiment:

```
# Analyze review sentiment patterns
review_analysis = products_collection.aggregate([
    {
        "$match": {
            "review content": {"$exists": True, "$ne": None}
        }
    },
        "$addFields": {
            "review_length": {"$strLenCP": "$review_content"},
            "sentiment score": {
                "$cond": {
                    "if": {"$gte": ["$rating", 4]},
                    "then": "positive",
                    "else": {
                        "$cond": {
                            "if": {"$gte": ["$rating", 3]},
                            "then": "neutral",
                            "else": "negative"
                        }
                    }
                }
            }
        }
    },
        "$group": {
            " id": "$sentiment score",
            "count": {"$sum": 1},
            "avg_review_length": {"$avg": "$review_length"},
            "avg_rating": {"$avg": "$rating"}
        }
    }
1)
print("Review Sentiment Analysis:")
for sentiment in review analysis:
    print(f"Sentiment: {sentiment[' id']}")
    print(f" Count: {sentiment['count']}")
    print(f" Avg Review Length: {sentiment['avg_review_length']:.0f} characters")
    print(f" Avg Rating: {sentiment['avg_rating']:.2f}")
    print()
```

- **©** Document Design Patterns for Data Engineering
- **Schema Design Strategies**
- 1. Product Catalog with Reviews (Embedding):

```
python
```

```
# Restructure data with embedded reviews
def create_product_with_reviews():
    # Group reviews by product
    pipeline = [
        {
            "$aroup": {
                " id": "$product id",
                "product_name": {"$first": "$product_name"},
                "category": {"$first": "$category"},
                "actual_price": {"$first": "$actual_price"},
                "discounted_price": {"$first": "$discounted_price"},
                "rating": {"$first": "$rating"},
                "about product": {"$first": "$about product"},
                "reviews": {
                    "$push": {
                        "user id": "$user id",
                        "user_name": "$user_name",
                        "review title": "$review title",
                        "review_content": "$review_content",
                        "rating": "$rating"
                    }
                }
            }
        }
    1
    # Create new collection with embedded reviews
    db["products_with_reviews"].drop() # Clean start
    cursor = products_collection.aggregate(pipeline)
    structured_products = list(cursor)
    if structured products:
        db["products_with_reviews"].insert_many(structured_products)
        print(f"Created {len(structured products)} products with embedded reviews")
create_product_with_reviews()
```

#### 2. Time-Series Pattern for Analytics:

```
# Create daily product metrics collection
def create_daily_metrics():
    daily metrics = products collection.aggregate([
        {
            "$group": {
                " id": {
                    "date": {"$dateToString": {"format": "%Y-%m-%d", "date": "$created
                    "category": "$category"
                },
                "products_added": {"$sum": 1},
                "avg_price": {"$avg": "$actual_price"},
                "total_reviews": {"$sum": "$rating_count"}
            }
        },
        {
            "$project": {
                "_id": 0,
                "date": "$ id.date",
                "category": "$_id.category",
                "products_added": 1,
                "avg_price": 1,
                "total reviews": 1,
                "created at": datetime.now()
            }
        }
    1)
    # Insert into metrics collection
    db["daily metrics"].drop()
    db["daily_metrics"].insert_many(list(daily_metrics))
    print("Daily metrics collection created")
create daily metrics()
```

# Performance Optimization and Indexing

- Index Strategy for Data Engineering
- 1. Query Performance Analysis:

```
python
```

```
# Analyze slow queries
def analyze_query_performance():
   # Enable profiling
    db.set_profiling_level(2) # Profile all operations
    # Run a complex query
    result = products collection.find({
        "category": "Electronics",
        "actual_price": {"$gte": 100, "$lte": 1000},
        "rating": {"$gte": 4.0}
    }).sort("rating", -1).limit(20)
    # Get execution stats
    explained = products collection.find({
        "category": "Electronics",
        "actual_price": {"$gte": 100, "$lte": 1000},
        "rating": {"$gte": 4.0}
    }).explain()
    print("Query execution stats:")
    print(f"Documents examined: {explained['executionStats']['totalDocsExamined']}")
    print(f"Documents returned: {explained['executionStats']['totalDocsReturned']}")
    print(f"Execution time: {explained['executionStats']['executionTimeMillis']}ms")
analyze_query_performance()
```

#### 2. Create Optimized Indexes:

```
python
```

```
# Create compound indexes for common query patterns
def create_performance_indexes():
    indexes to create = [
        # Category and price range queries
        [("category", 1), ("actual_price", 1)],
        # Rating-based sorting
        [("rating", -1), ("rating_count", -1)],
        # Price range queries
        [("actual_price", 1)],
        # Category analysis
        [("category", 1), ("rating", 1)],
        # Text search
        [("product_name", "text"), ("about_product", "text")]
    1
    for index_spec in indexes_to_create:
        try:
            products collection.create index(index spec)
            print(f"Created index: {index spec}")
        except Exception as e:
            print(f"Index creation failed for {index spec}: {e}")
create_performance_indexes()
# Verify indexes
indexes = products_collection.list_indexes()
print("\nCurrent indexes:")
for index in indexes:
    print(f"- {index['name']}: {index.get('key', 'N/A')}")
```

# **Data Pipeline Patterns with MongoDB**

## X ETL Patterns for Document Databases

## 1. Change Data Capture Pattern:

```
python

# Monitor collection changes for real-time processing

def monitor_product_changes():
    try:
        # Watch for changes in products collection
        with products_collection.watch() as stream:
            print("Monitoring product changes...")
        for change in stream:
            operation_type = change['operationType']

        if operation_type == 'insert':
            print(f"New product added: {change['fullDocument']['product_name']}

        elif operation_type == 'update':
            print(f"Product updated: {change['documentKey']['_id']}")

        elif operation_type == 'delete':
```

print(f"Product deleted: {change['documentKey']['\_id']}")

# Note: Change streams require replica set configuration

## 2. Batch Processing Pattern:

except KeyboardInterrupt:

print("Monitoring stopped")

```
python
```

```
# Process products in batches for analytics
def batch_process_products():
   batch size = 1000
   processed_count = 0
   # Process products in batches
   cursor = products_collection.find({}).batch_size(batch_size)
   batch = []
    for product in cursor:
        # Add processing logic here
        processed_product = enrich_product_data(product)
        batch.append(processed_product)
        if len(batch) >= batch_size:
            # Process batch
            process_product_batch(batch)
            processed count += len(batch)
            batch = []
            print(f"Processed {processed_count} products")
   # Process remaining products
   if batch:
        process_product_batch(batch)
        processed count += len(batch)
   print(f"Total products processed: {processed_count}")
def enrich_product_data(product):
    """Add computed fields to product"""
    product['discount_amount'] = product['actual_price'] - product['discounted_price']
    product['discount_ratio'] = product['discount_amount'] / product['actual_price']
    return product
def process product batch(batch):
   """Process a batch of products"""
   # Could write to another collection, send to API, etc.
   enriched_collection = db["enriched_products"]
   enriched_collection.insert_many(batch)
batch_process_products()
```

# MongoDB vs SQL: Practical Comparison

# **Query Comparison Examples**

## **SQL Query:**

```
sql

SELECT
    category,
    COUNT(*) as product_count,
    AVG(rating) as avg_rating,
    AVG(actual_price) as avg_price

FROM products

WHERE rating >= 4.0
    AND actual_price BETWEEN 100 AND 1000

GROUP BY category

ORDER BY product_count DESC

LIMIT 10;
```

#### **MongoDB Equivalent:**

```
python
# MongoDB aggregation pipeline
pipeline = [
    {
        "$match": {
            "rating": {"$gte": 4.0},
            "actual_price": {"$gte": 100, "$lte": 1000}
        }
    },
        "$group": {
            " id": "$category",
            "product_count": {"$sum": 1},
            "avg_rating": {"$avg": "$rating"},
            "avg_price": {"$avg": "$actual_price"}
        }
    },
        "$sort": {"product_count": -1}
    },
    {
        "$limit": 10
    }
1
result = products_collection.aggregate(pipeline)
```

## Performance Comparison

## **Scenario: Product Search and Analytics**

| Aspect             | SQL (PostgreSQL)                | MongoDB                          |  |
|--------------------|---------------------------------|----------------------------------|--|
| Schema Flexibility | Fixed schema, migrations needed | Dynamic schema, instant changes  |  |
| Nested Data        | Complex JOINs, multiple tables  | Natural document structure       |  |
| Horizontal Scaling | Challenging, requires sharding  | Built-in sharding support        |  |
| Query Complexity   | SQL joins can be complex        | Aggregation pipelines intuitive  |  |
| ACID Transactions  | Full ACID compliance            | Limited to document level        |  |
| Development Speed  | Slower for varying schemas      | Faster for evolving requirements |  |



## **Solution** Document Design Guidelines

#### 1. Embedding vs Referencing Decision Tree:



#### 2. Collection Naming Conventions:

```
python
# Good naming practices
collections = {
    "products": "Main product catalog",
    "product reviews": "Product reviews (if separate)",
    "daily metrics": "Aggregated daily statistics",
    "user_sessions": "User activity tracking",
   "order_history": "Historical order data"
}
# Avoid
bad_names = [
    "data",
                   # Too generic
    "Products",
                   # Inconsistent casing
    "product-data", # Hyphens in names
    "tbl_products" # SQL-style naming
1
```

#### 3. Index Strategy:

```
def create_production_indexes():
   """Create indexes for production workloads"""
   # Frequently queried fields
   products collection.create index("category")
   products_collection.create_index("rating")
   # Compound indexes for common query patterns
    products_collection.create_index([
        ("category", 1),
        ("rating", -1),
        ("actual_price", 1)
   1)
   # Text search
   products_collection.create_index([
        ("product_name", "text"),
        ("about_product", "text")
   1)
   # Sparse indexes for optional fields
   products collection.create index(
        "review content",
        sparse=True # Only index documents with this field
   )
   print("Production indexes created successfully")
create_production_indexes()
```

- Integration with Data Engineering Stack
- X MongoDB with Apache Airflow

**DAG for MongoDB ETL Pipeline:** 

```
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta
import pymongo
default args = {
    'owner': 'data-team',
    'depends_on_past': False,
    'start_date': datetime(2024, 1, 1),
    'retries': 2,
    'retry_delay': timedelta(minutes=5)
}
def extract and transform products(**context):
    """Extract products and perform transformations"""
   client = pymongo.MongoClient("mongodb://admin:password@mongodb:27017/")
   db = client["ecommerce"]
   # Extract products needing processing
   products_to_process = db.products.find({
        "processed": {"$ne": True}
    }).limit(1000)
    processed products = []
    for product in products_to_process:
        # Transform product data
        transformed product = {
            **product,
            "price_category": categorize_price(product['actual_price']),
            "sentiment_score": analyze_sentiment(product.get('review_content')),
            "processed": True,
            "processed_at": datetime.now()
        }
        processed_products.append(transformed_product)
   # Update processed products
    for product in processed_products:
        db.products.update_one(
           {"_id": product["_id"]},
           {"$set": product}
        )
    return len(processed products)
```

```
def categorize_price(price):
   """Categorize products by price range"""
   if price < 50:
        return "budget"
   elif price < 200:
        return "mid-range"
   elif price < 1000:
        return "premium"
   else:
        return "luxury"
def analyze sentiment(review text):
   """Simple sentiment analysis"""
   if not review text:
        return "neutral"
    positive_words = ["good", "great", "excellent", "amazing", "love"]
    negative_words = ["bad", "terrible", "awful", "hate", "worst"]
   text_lower = review_text.lower()
    positive count = sum(1 for word in positive words if word in text lower)
    negative count = sum(1 for word in negative words if word in text lower)
   if positive_count > negative_count:
        return "positive"
   elif negative_count > positive_count:
        return "negative"
   else:
        return "neutral"
def generate_daily_analytics(**context):
   """Generate daily analytics reports"""
   client = pymongo.MongoClient("mongodb://admin:password@mongodb:27017/")
   db = client["ecommerce"]
   # Create daily summary
   today = datetime.now().strftime("%Y-%m-%d")
   analytics = db.products.aggregate([
        {
            "$group": {
                "_id": None.
                "total_products": {"$sum": 1},
```

```
"avg_rating": {"$avg": "$rating"},
                "categories": {"$addToSet": "$category"},
                "price ranges": {
                    "$push": {
                        "$switch": {
                            "branches": [
                                {"case": {"$lt": ["$actual_price", 50]}, "then": "budge
                                 {"case": {"$lt": ["$actual_price", 200]}, "then": "mid-
                                 {"case": {"$lt": ["$actual price", 1000]}, "then": "pri
                            ],
                            "default": "luxury"
                        }
                    }
                }
            }
        }
    1)
    result = list(analytics)[0] if analytics else {}
    # Store daily summary
    daily summary = {
        "date": today,
        "metrics": result,
        "created at": datetime.now()
    }
    db.daily_summaries.insert_one(daily_summary)
    return result
# Create DAG
dag = DAG(
    'mongodb product analytics',
    default args=default args,
    description='MongoDB product analytics pipeline',
    schedule_interval='0 2 * * *', # Daily at 2 AM
    catchup=False
# Define tasks
extract_transform_task = PythonOperator(
    task id='extract transform products',
    python callable=extract and transform products,
    dag=dag
```

)

```
analytics_task = PythonOperator(
    task_id='generate_daily_analytics',
    python_callable=generate_daily_analytics,
    dag=dag
)

# Set dependencies
extract_transform_task >> analytics_task
```

# **3** MongoDB with Apache Spark

**Spark MongoDB Connector:** 

```
python
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
# Initialize Spark with MongoDB connector
spark = SparkSession.builder \
    .appName("MongoDBAnalytics") \
    .config("spark.mongodb.input.uri", "mongodb://admin:password@mongodb:27017/ecommer
    .config("spark.mongodb.output.uri", "mongodb://admin:password@mongodb:27017/ecomme
    .config("spark.jars.packages", "org.mongodb.spark:mongo-spark-connector_2.12:3.0.1
    .getOrCreate()
# Read from MongoDB
df = spark.read \
    .format("mongo") \
    .option("database", "ecommerce") \
    .option("collection", "products") \
    .load()
# Perform analytics
category_analysis = df.groupBy("category") \
    .agg(
        count("*").alias("product count"),
        avg("rating").alias("avg rating"),
        avg("actual price").alias("avg price"),
        sum("rating count").alias("total reviews")
    ) \
    .orderBy(desc("product_count"))
# Write results back to MongoDB
category_analysis.write \
    .format("mongo") \
    .option("database", "ecommerce") \
    .option("collection", "category_analytics") \
    .mode("overwrite") \
    save()
```

# **III** Real-Time Analytics Patterns

**Change Streams for Real-Time Processing** 

print("Spark MongoDB analytics completed")

| Real-Time Product Monitoring: |  |  |  |  |  |
|-------------------------------|--|--|--|--|--|
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |
|                               |  |  |  |  |  |

```
import asyncio
from motor.motor_asyncio import AsyncIOMotorClient
from datetime import datetime
async def real time product monitor():
    """Monitor product changes in real-time"""
   # Async MongoDB client
   client = AsyncIOMotorClient("mongodb://admin:password@localhost:27017/")
   db = client["ecommerce"]
    collection = db["products"]
   print("Starting real-time product monitoring...")
   # Watch for changes
   async with collection.watch() as stream:
        async for change in stream:
            await process_product_change(change, db)
async def process_product_change(change, db):
    """Process individual product changes"""
   operation = change['operationType']
    if operation == 'insert':
        # New product added
        product = change['fullDocument']
        await handle_new_product(product, db)
   elif operation == 'update':
        # Product updated
        product_id = change['documentKey']['_id']
        updated_fields = change.get('updateDescription', {}).get('updatedFields', {})
        await handle product update(product id, updated fields, db)
async def handle_new_product(product, db):
    """Handle new product insertion"""
   print(f"New product: {product['product_name']} in {product['category']}")
   # Update category statistics
   await db.category_stats.update_one(
        {"category": product['category']},
        {
            "$inc": {"product count": 1},
```

```
"$push": {
                "recent_products": {
                    "name": product['product name'],
                    "price": product['actual_price'],
                    "added at": datetime.now()
                }
            }
        },
        upsert=True
    )
async def handle_product_update(product_id, updated_fields, db):
    """Handle product updates"""
    if 'rating' in updated fields:
        print(f"Product {product_id} rating updated to {updated_fields['rating']}")
        # Update rating analytics
        await db.rating_updates.insert_one({
            "product_id": product_id,
            "new_rating": updated_fields['rating'],
            "updated_at": datetime.now()
        })
# Run the real-time monitor
# asyncio.run(real_time_product_monitor())
```

# Aggregation Pipeline for Business Intelligence

**Advanced Analytics Queries:** 

```
def create_business_intelligence_views():
    """Create MongoDB views for business intelligence"""
    # 1. Product Performance Dashboard
    product performance pipeline = [
        {
            "$addFields": {
                "revenue estimate": {
                    "$multiply": ["$discounted_price", "$rating_count"]
                },
                "discount_impact": {
                    "$divide": [
                        {"$subtract": ["$actual_price", "$discounted_price"]},
                        "$actual price"
                    1
                }
            }
        },
        {
            "$group": {
                "_id": "$category",
                "total_products": {"$sum": 1},
                "avg rating": {"$avg": "$rating"},
                "total revenue estimate": {"$sum": "$revenue estimate"},
                "avg discount": {"$avg": "$discount impact"},
                "top product": {
                    "$max": {
                        "rating": "$rating",
                        "name": "$product name",
                        "price": "$discounted price"
                    }
                }
            }
        },
        {
            "$sort": {"total revenue estimate": -1}
        }
    1
    # Create view
    db.create_collection("product_performance_view", viewOn="products", pipeline=products",
    # 2. Customer Sentiment Analysis
```

```
sentiment_pipeline = [
    {
        "$match": {
            "review_content": {"$exists": True, "$ne": None}
        }
    },
    {
        "$addFields": {
            "sentiment": {
                "$switch": {
                    "branches": [
                        {
                            "case": {"$gte": ["$rating", 4]},
                             "then": "positive"
                        },
                        {
                             "case": {"$gte": ["$rating", 3]},
                            "then": "neutral"
                        }
                    ],
                    "default": "negative"
                }
            },
            "review_length_category": {
                "$switch": {
                    "branches": [
                        {
                             "case": {"$lt": [{"$strLenCP": "$review_content"}, 50]
                            "then": "short"
                        },
                        {
                             "case": {"$lt": [{"$strLenCP": "$review_content"}, 200
                            "then": "medium"
                        }
                    ],
                    "default": "long"
                }
            }
        }
    },
    {
        "$group": {
            " id": {
                "category": "$category",
```

```
"sentiment": "$sentiment",
                             "review length": "$review length category"
                       },
                       "count": {"$sum": 1},
                       "avg rating": {"$avg": "$rating"}
                 }
           }
     1
     db.create_collection("sentiment_analysis_view", viewOn="products", pipeline=sentiment_analysis_view", viewOn="products", pipeline=sentiment_analysis_view
     print("Business intelligence views created successfully")
create business intelligence views()
# Query the views
def query business intelligence():
      """Ouerv the created BI views"""
     print("=== Product Performance by Category ===")
      for doc in db.product_performance_view.find().limit(5):
            print(f"Category: {doc['_id']}")
            print(f" Products: {doc['total products']}")
            print(f" Avg Rating: {doc['avg rating']:.2f}")
            print(f" Revenue Estimate: ${doc['total revenue estimate']:,.2f}")
            print(f" Avg Discount: {doc['avg discount']:.1%}")
           print()
     print("=== Sentiment Analysis ===")
      sentiment results = db.sentiment analysis view.aggregate([
           {
                 "$group": {
                       " id": "$ id.sentiment",
                       "total reviews": {"$sum": "$count"},
                       "categories": {"$addToSet": "$ id.category"}
                 }
           },
           {"$sort": {"total reviews": -1}}
     1)
      for sentiment in sentiment results:
           print(f"Sentiment: {sentiment[' id']}")
            print(f" Total Reviews: {sentiment['total reviews']}")
            print(f" Categories: {len(sentiment['categories'])}")
```

print()
query\_business\_intelligence()

- **MongoDB Administration for Data Engineers**
- **Value** Database Security and User Management

**Setting Up Authentication:** 

```
def setup_database_security():
    """Configure MongoDB security for production"""
   # Connect as admin
    admin_client = pymongo.MongoClient("mongodb://admin:password@localhost:27017/")
    admin db = admin client["admin"]
    # Create application—specific users
    users config = [
        {
            "user": "data_engineer",
            "pwd": "secure_password_123",
            "roles": [
                {"role": "readWrite", "db": "ecommerce"},
                {"role": "read", "db": "analytics"}
            1
        },
            "user": "analyst",
            "pwd": "analyst_password_456",
            "roles": [
                {"role": "read", "db": "ecommerce"},
                {"role": "read", "db": "analytics"}
            1
        },
        {
            "user": "etl service",
            "pwd": "etl_service_789",
            "roles": [
                {"role": "readWrite", "db": "ecommerce"},
                {"role": "readWrite", "db": "staging"}
            1
        }
    1
    ecommerce_db = admin_client["ecommerce"]
    for user_config in users_config:
        try:
            ecommerce_db.command("createUser", **user_config)
            print(f"Created user: {user_config['user']}")
        except Exception as e:
            print(f"Error creating user {user config['user']}: {e}")
```

# setup\_database\_security()

Monitoring and Performance Tuning

**Database Performance Monitoring:** 

```
def monitor_database_performance():
    """Monitor MongoDB performance metrics"""
   client = pymongo.MongoClient("mongodb://admin:password@localhost:27017/")
   db = client["ecommerce"]
   # Get database statistics
   db stats = db.command("dbStats")
    print("=== Database Statistics ===")
    print(f"Collections: {db stats['collections']}")
    print(f"Data Size: {db stats['dataSize'] / 1024 / 1024:.2f} MB")
    print(f"Index Size: {db_stats['indexSize'] / 1024 / 1024:.2f} MB")
    print(f"Storage Size: {db_stats['storageSize'] / 1024 / 1024:.2f} MB")
   # Collection-level statistics
    for collection name in db.list collection names():
        collection = db[collection name]
        stats = db.command("collStats", collection_name)
        print(f"\n=== {collection name} Collection ===")
        print(f"Documents: {stats['count']}")
        print(f"Avg Document Size: {stats.get('avg0bjSize', 0)} bytes")
        print(f"Total Size: {stats['size'] / 1024:.2f} KB")
       # Index usage
        index stats = collection.aggregate([
           {"$indexStats": {}}
        1)
        print("Index Usage:")
        for index_stat in index_stats:
            print(f" {index_stat['name']}: {index_stat['accesses']['ops']} operations'
def analyze slow queries():
    """Analyze slow queries using profiler"""
   client = pymongo.MongoClient("mongodb://admin:password@localhost:27017/")
   db = client["ecommerce"]
   # Enable profiling for slow operations (>100ms)
   db.set_profiling_level(1, slow_ms=100)
   # Run some test queries
```

```
db.products.find({"category": "Electronics"}).sort("rating", -1).limit(10)
db.products.find({"actual_price": {"$gte": 100}}).count()

# Analyze profiler output
profiler_data = db["system.profile"].find().sort("ts", -1).limit(5)

print("=== Recent Slow Queries ===")
for operation in profiler_data:
    print(f"Operation: {operation.get('command', 'N/A')}")
    print(f"Duration: {operation['millis']}ms")
    print(f"Documents Examined: {operation.get('docsExamined', 'N/A')}")
    print(f"Documents Returned: {operation.get('docsReturned', 'N/A')}")
    print("---")

monitor_database_performance()
# analyze_slow_queries()
```

- **MongoDB in Cloud Environments**
- MongoDB Atlas Integration

**Connecting to MongoDB Atlas:** 

```
python
import os
from urllib.parse import quote_plus
def setup_atlas_connection():
    """Setup connection to MongoDB Atlas"""
    # Atlas connection string (use environment variables in production)
    username = quote_plus("your_username")
    password = quote_plus("your_password")
    cluster_url = "your-cluster.mongodb.net"
    connection_string = f"mongodb+srv://{username}:{password}@{cluster_url}/ecommerce?
    try:
        client = pymongo.MongoClient(connection_string)
        # Test connection
        client.admin.command('ping')
        print("Successfully connected to MongoDB Atlas!")
        return client
    except Exception as e:
        print(f"Error connecting to Atlas: {e}")
        return None
# atlas_client = setup_atlas_connection()
```

## Data Lake Integration Pattern

MongoDB as Operational Database + S3 as Data Lake:

```
import boto3
import json
from bson import json util
def export_to_data_lake():
    """Export MongoDB data to S3 data lake"""
   # AWS S3 client
   s3 client = boto3.client('s3')
   bucket_name = 'your-data-lake-bucket'
   client = pymongo.MongoClient("mongodb://admin:password@localhost:27017/")
   db = client["ecommerce"]
   # Export products by category
   categories = db.products.distinct("category")
    for category in categories:
        print(f"Exporting {category} products...")
       # Get products for this category
        products = list(db.products.find({"category": category}))
        # Convert to JSON
        json_data = json_util.dumps(products, indent=2)
        # Create S3 key with partitioning
        s3_key = f"products/category={category.replace(' ', '_')}/data.json"
        # Upload to S3
        try:
            s3_client.put_object(
                Bucket=bucket name,
                Key=s3_key,
                Body=ison data,
                ContentType='application/json'
            )
            print(f"Exported {len(products)} {category} products to S3")
        except Exception as e:
            print(f"Error uploading {category} to S3: {e}")
```

**©** Production Deployment Considerations

MongoDB Replica Set Configuration

**Production Setup with Docker Compose:** 

```
services:
  mongo-primary:
    image: mongo:7.0
    container_name: mongo-primary
    command: mongod --replSet rs0 --bind_ip_all
    ports:
      - "27017:27017"
   environment:
     MONGO_INITDB_ROOT_USERNAME: admin
     MONGO_INITDB_ROOT_PASSWORD: password
    volumes:
      - mongo-primary-data:/data/db
    networks:
      mongo-cluster
 mongo-secondary:
    image: mongo:7.0
    container_name: mongo-secondary
    command: mongod --replSet rs0 --bind_ip_all
    ports:
     - "27018:27017"
    environment:
     MONGO_INITDB_ROOT_USERNAME: admin
     MONGO_INITDB_ROOT_PASSWORD: password
   volumes:
      - mongo-secondary-data:/data/db
    networks:
      mongo-cluster
 mongo-arbiter:
    image: mongo:7.0
    container name: mongo-arbiter
    command: mongod --replSet rs0 --bind_ip_all
    ports:
     - "27019:27017"
    environment:
     MONGO_INITDB_ROOT_USERNAME: admin
     MONGO_INITDB_ROOT_PASSWORD: password
    networks:
      - mongo-cluster
```

version: '3.8'

```
volumes:
   mongo-primary-data:
   mongo-secondary-data:

networks:
   mongo-cluster:
    driver: bridge
```

**Backup and Disaster Recovery** 

**Automated Backup Strategy:** 

```
import subprocess
from datetime import datetime
import os
def create mongodb backup():
    """Create MongoDB backup using mongodump"""
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    backup dir = f"/backups/mongodb {timestamp}"
    # Create backup directory
    os.makedirs(backup_dir, exist_ok=True)
    # MongoDB connection parameters
    host = "localhost"
    port = "27017"
    username = "admin"
    password = "password"
    database = "ecommerce"
    # Run mongodump
    dump\_command = [
        "mongodump",
        "--host", f"{host}:{port}",
        "--username", username,
        "--password", password,
        "--db", database,
        "--out", backup dir
    1
    try:
        result = subprocess.run(dump_command, capture_output=True, text=True)
        if result.returncode == 0:
            print(f"Backup created successfully: {backup dir}")
            # Compress backup
            tar_command = f"tar -czf {backup_dir}.tar.gz -C {backup_dir} ."
            subprocess.run(tar_command, shell=True)
            # Upload to S3 (optional)
            upload backup to s3(f"{backup dir}.tar.gz")
```

# Essential Resources for Day 12

#### Official Documentation

- MongoDB Documentation: <a href="https://docs.mongodb.com/">https://docs.mongodb.com/</a>
- MongoDB University: <a href="https://university.mongodb.com/">https://university.mongodb.com/</a>
- PyMongo Documentation: <a href="https://pymongo.readthedocs.io/">https://pymongo.readthedocs.io/</a>
- MongoDB Best Practices: <a href="https://docs.mongodb.com/manual/administration/production-notes/">https://docs.mongodb.com/manual/administration/production-notes/</a>

### Tools and Libraries

- MongoDB Compass: GUI for MongoDB
- Robo 3T: Lightweight MongoDB GUI
- **PyMongo:** Python MongoDB driver
- Motor: Async Python MongoDB driver
- MongoDB Connector for Spark: Big data integration

### **■ Sample Datasets for Practice**

Amazon Products: <a href="https://www.kaggle.com/datasets/jithinanievarghese/amazon-product-dataset">https://www.kaggle.com/datasets/jithinanievarghese/amazon-product-dataset</a>

- MongoDB Sample Datasets: https://docs.atlas.mongodb.com/sample-data/
- JSON Generator: <a href="https://www.json-generator.com/">https://www.json-generator.com/</a> (for creating test data)

### **Solution** Key Takeaways for Data Engineers

**Document Database Strengths:** ✓ **Flexible Schema:** Adapt to changing requirements quickly ✓ **Natural Data Structure:** JSON documents match application objects ✓ **Horizontal Scaling:** Built-in sharding for large datasets ✓ **Rich Query Language:** Powerful aggregation framework ✓ **Developer Productivity:** Faster development cycles

#### When to Use MongoDB:

- Product catalogs with varying attributes
- Content management systems
- Real-time analytics applications
- IoT data collection
- Social media and user-generated content

#### When to Prefer SQL:

- Financial transactions requiring ACID compliance
- Complex relational data with many joins
- Reporting systems with fixed schemas
- Legacy system integration requirements

## Tomorrow's Preview: Data Warehousing Concepts

**Day 13 Focus:** ETL vs ELT methodologies, data warehouse architecture patterns, and modern data stack design principles.

**Preparation:** Review today's MongoDB concepts and think about how document databases fit into larger data architecture patterns.