CS7602 - MACHINE LEARNING ASSIGNMENT 2

SUBMITTED BY

JAYASREE LAKSHMI NARAYAN 2016103033 AKHILA G P 2016103503

DATE: 28-03-2019

CONTENTS

- 1. SUPPORT VECTOR MACHINES
- 2. PRINCIPAL COMPONENT ANALYSIS

DATASET USED

1. GENDER CLASSIFICATION BASED ON VOICE

A DESCRIPTION ON THE DATASET UNDER STUDY

GENDER DETECTION BASED ON VOICE

DESCRIPTION AND BASIC IDEA

```
In [1]: import pandas as pd
        df = pd.read csv('voice.csv')
        print(df.head(5))
           meanfreq
                                median
                                             025
                                                       075
                                                                 IOR
                                                                           skew \
                          sd
          0.059781 0.064241 0.032027 0.015071 0.090193 0.075122 12.863462
        1 0.066009 0.067310 0.040229 0.019414 0.092666 0.073252 22.423285
        2 0.077316 0.083829 0.036718 0.008701 0.131908 0.123207 30.757155
          0.151228 \quad 0.072111 \quad 0.158011 \quad 0.096582 \quad 0.207955 \quad 0.111374
                                                                      1.232831
        4 0.135120 0.079146 0.124656 0.078720 0.206045 0.127325
                                                                       1.101174
                                      sfm ...
                  kurt
                         sp.ent
                                                  centroid meanfun
                                                                        minfun \
           274.402906 0.893369 0.491918 ...
                                                0.059781 0.084279 0.015702
           634.613855 0.892193 0.513724 ... 0.066009 0.107937 0.015826
        1
        2 1024.927705 0.846389 0.478905 ...
                                                 0.077316 0.098706 0.015656
              4.177296 0.963322 0.727232 ...
        3
                                                  0.151228 0.088965 0.017798
              4.333713 0.971955 0.783568 ...
                                                  0.135120 0.106398 0.016931
            maxfun meandom
                               mindom
                                        maxdom
                                                  dfrange
                                                            modindx label
        0 \quad 0.275862 \quad 0.007812 \quad 0.007812 \quad 0.0007812 \quad 0.000000 \quad 0.000000
                                                                      male
        1 0.250000 0.009014 0.007812 0.054688 0.046875 0.052632
                                                                       male
           0.271186 \quad 0.007990 \quad 0.007812 \quad 0.015625 \quad 0.007812 \quad 0.046512
                                                                       male
        3 0.250000 0.201497 0.007812 0.562500 0.554688 0.247119
                                                                       male
        4 0.266667 0.712812 0.007812 5.484375 5.476562 0.208274
                                                                       male
        [5 rows x 21 columns]
```

```
In [7]: print "SHAPE : ",
    print df.shape
    print "NULL VALUES : ",
    print df.isnull().values.any()

SHAPE : (3168, 21)
    NULL VALUES : False
```

[3]: print	(df.describe())				
	meanfreq	sd	median	Q25	Q75	\
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	
mean	0.180907	0.057126	0.185621	0.140456	0.224765	
std	0.029918	0.016652	0.036360	0.048680	0.023639	
min	0.039363	0.018363	0.010975	0.000229	0.042946	
25%	0.163662	0.041954	0.169593	0.111087	0.208747	
50%	0.184838	0.059155	0.190032	0.140286	0.225684	
75%	0.199146	0.067020	0.210618	0.175939	0.243660	
max	0.251124	0.115273	0.261224	0.247347	0.273469	
	IQR	skew	kurt	sp.ent	sfm	\
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	
mean	0.084309	3.140168	36.568461	0.895127	0.408216	
std	0.042783	4.240529	134.928661	0.044980	0.177521	
min	0.014558	0.141735	2.068455	0.738651	0.036876	
25%	0.042560	1.649569	5.669547	0.861811	0.258041	
50%	0.094280	2.197101	8.318463	0.901767	0.396335	
75%	0.114175	2.931694	13.648905	0.928713	0.533676	
max	0.252225	34.725453	1309.612887	0.981997	0.842936	
	mode	centroid	meanfun	minfun	maxfun	\
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	
mean	0.165282	0.180907	0.142807	0.036802	0.258842	
std	0.077203	0.029918	0.032304	0.019220	0.030077	
min	0.000000	0.039363	0.055565	0.009775	0.103093	
25%	0.118016	0.163662	0.116998	0.018223	0.253968	
50%	0.186599	0.184838	0.140519	0.046110	0.271186	
75%	0.221104	0.199146	0.169581	0.047904	0.277457	
max	0.280000	0.251124	0.237636	0.204082	0.279114	
	meandom	mindom	maxdom	dfrange	modindx	
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	
mean	0.829211	0.052647	5.047277	4.994630	0.173752	
std	0.525205	0.063299	3.521157	3.520039	0.119454	
min	0.007812	0.004883	0.007812	0.000000	0.000000	
25%	0.419828	0.007812	2.070312	2.044922	0.099766	
50%	0.765795	0.023438	4.992188	4.945312	0.139357	
75%	1.177166 2.957682	0.070312 0.458984	7.007812 21.867188	6.992188 21.843750	0.209183 0.932374	

Illustration 2: Original data distribution

The jupyter notebook with the code is uploaded in Github and the link for the document is https://github.com/Akhilagp/ML Assignment.

PROCEDURE:

- Support Vectors are the co-ordinates of individual observation. SVM is a frontier which best segregates the two classes (hyper-plane/ line).
- The hyper-plane is selected in such a way that it segregates the two classes better.
- When all the hyper-planes fit well, the best one for classification is chosen by maximizing the distance between nearest data points.
- Kernel trick is used when non linear hyper-planes are needed.
- PARAMETERS VARIED For Understanding
 - 1. Various Kernels
 - 2. Gamma value (tuning)
 - 3. The 'C' parameter soft margin cost function (tuning)
 - 4. Degree of polynomial kernel.
 - 5. The number of Principal Components

OUTPUT:

Classifer	Accuracy	Hyper-parameters tuning		
	with default parameters	С	Accuracy	
		0.1	0.9700	
		0.2	0.9691	
SVC with Linear kernel	0.9694	0.3	0.9690	
		0.4	0.9690	
		0.5	0.9694	
		Gamma	Accuracy	
		0.01	0.96815	
	0.9659	0.02	0.9678	
SVC with RBF kernel		0.03	0.9678	
		0.04	0.9668	
		0.05	0.9659	
		Degree	Accuracy	
	0.9457	2	0.8506	
		3	0.9457	
SVC with polynomial kernel		4	0.8312	
		5	0.8659	
		6	0.7747	

INFERENCE:

Illustration 3: Tuning soft-cost parameter

From illustration 1, it is evident that around C=0-1 and C=7-8, the accuracy hits the peak and at C=2 it falls. Varying the values for C between 0 and 1, the exact value of C where the accuracy is the highest is found (C=0.1)

From illustration 2, around gamma = 0.0 and 0.02, the accuracy increases and starts to fall after 0.02. In turn, tuning the parameter with values between 0 and 0.02 the highest accuracy is obtained at gamma = 0.01

From illustration 4, it is evident that the 3^{rd} degree polynomial (default value) gives the maximum accuracy.

PRINICIPAL COMPONENT ANALYSIS

ALGORITHM

The Principal Components Analysis Algorithm

- Write N datapoints $\mathbf{x}_i = (\mathbf{x}_{1i}, \mathbf{x}_{2i}, \dots, \mathbf{x}_{Mi})$ as row vectors
- Put these vectors into a matrix **X** (which will have size $N \times M$)
- ullet Centre the data by subtracting off the mean of each column, putting it into matrix ${f B}$
- Compute the covariance matrix $\mathbf{C} = \frac{1}{N} \mathbf{B}^T \mathbf{B}$
- Compute the eigenvalues and eigenvectors of \mathbf{C} , so $\mathbf{V}^{-1}\mathbf{C}\mathbf{V} = \mathbf{D}$, where \mathbf{V} holds the eigenvectors of \mathbf{C} and \mathbf{D} is the $M \times M$ diagonal eigenvalue matrix
- Sort the columns of ${\bf D}$ into order of decreasing eigenvalues, and apply the same order to the columns of V
- Reject those with eigenvalue less than some η , leaving L dimensions in the data

OUTPUT

Classifer	PCA			
	No. of Principal Components	Accuracy		
	6	0.88328		
	8	0.9526		
SVC with Linear kernel	10	0.9763		
	12	0.9842		
	14	0.9668		
	6	0.8880		
	8	0.9258		
SVC with RBF kernel	10	0.9495		
	12	0.9637		
	14	0.9558		
SVC with polynomial kernel	6	0.9274		
1 0	8	0.9479		

10	0.9558
12	0.9495
14	0.9463

INFERENCE:

- For various kernels, the number of principal components are varied, and the highest accuracy is found.
- For Linear SVM, when using PCA and reducing the dimensionality, the accuracy has increased by 1% (Number of PC = 12).
- For polynomial SVM, when using PCA and reducing the dimensionality, the accuracy has increased by 2% (Number of PC = 10).