

Projekt: MSS54 Modul: EDK

MSS54 Modulbeschreibung EDK

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Seite 2 von 11

Modulbeschreibung

Projekt: MSS54 Modul: EDK

(automatisch aus Kapiteiuberschnitten)	
1. ÜBERSICHT	3
2. SOLLWERTERMITTLUNG	3
3. ERFASSUNG DER STELLMOTORRÜCKFÜHRUNG	4
3.1. ADAPTION	4
4. DIE ANSTEUERUNG DES STELLMOTOR	4
4.1. VORSTEUERUNG 4.2. LAGEREGLER 4.2.1. Reglerabschaltung 4.3. PWM AUSGABE FOUT! BLADWIJZER NIET GEDE 4.4. BEGRENZUNG DES TASTVERHÄLTNIS	5 6 EFINIEERD.
5. EIGENDIAGNOSE	7
5.1. Treiberdiagnose MC33186	7
6. DIAGNOSE ÜBER DS2	7
6.1. Ansteuerung der DK über DS2	
7. KONSTANTEN, KENNLINIEN UND VARIABLEN	9
7.1. Konstanten	10

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Projekt: MSS54 Modul: EDK

1. ÜBERSICHT

Die Regelung der Drosselklappe besteht aus folgenden Teilen:

- · Berechnung des Vorsteuerwertes
- Lageregler
- Korrektur des Ausgabewertes über Ubatt
- Diagnose

2. SOLLWERTERMITTLUNG

Der Sollwert **egas_soll** wird im Modul EGAS alle 10ms ermittelt. Intern wird ein weiterer Sollwert (**edk_soll**) geführt, der bei einer Veränderung von **egas_soll** in mehreren Schritten abhängig vom Reglerzyklus an den neuen Sollwert herangeführt wird.

Durch diesen intern geführten Sollwert vermeidet man Sprünge in der Regelabweichung (**edk_delta**), die sonst mit jeder Aktualisierung des Sollwert auftreten würden.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Modulbeschreibung Seite 4 von 11

Projekt: MSS54 Modul: EDK

3. ERFASSUNG DER STELLMOTORRÜCKFÜHRUNG

Als Istwert (egas ist) wird das jeweils aktuelle DK-Poti verwendet (siehe Modul WDK).

3.1. ADAPTION

3.1.1. NULLPUNKTADAPTION

Die Nullpunktadaption der Drosselklappe erfolgt während des PredriveCheck (siehe Module PDR und WDK).

3.1.2. VOLLLAST ADAPTION

Die Volllastadaption der DK Anlage erfolgt im Nachlauf, wenn eine der folgenden Bedingungen erfüllt ist:

- · Jungfräuliches Steuergerät
- Verlust der Adaptionsdaten
- Aufruf über DIS
- · Fehlermeldung über das Sicherheitskonzept

Ablauf:

Nach Zündung aus und n = 0 wird folgende Sequenz einmal durchfahren:

- Anfahren des Sollwertes auf K_EDK_A100_B1 (ca 85%) über Rampe K_EDK_A100_INC
- Wartezeit K_EDK_A100_WAIT1, damit Sollwert sicher eingeregelt werden kann.
- Weiteres rampenförmiges Erhöhen des Sollwerts um K_EDK_A100_INC2, bis der Istwert nicht mehr mehr folgen kann → bleibende Reglerabweichung K_EDK_A100_DELTA
- Wartezeit K_EDK_A100_WAIT2 mit Überprüfung, ob der Anschlagwert stabil bleibt (bei Bedarf weiter erhöhen).
- Aufruf der Routine wdk a100 adapt() zur Adaption der DK
- EDK über Rampe auf Null fahren (Sollwert mit jedem Zyklus um K_EDK_A100_DEC verringern).
- Ansteuerung Beenden

4. DIE ANSTEUERUNG DES STELLMOTOR

4.1. VORSTEUERUNG

Der Stellmotor muß die gewünschte Drosselklappenstellung gegen die Rückholfedern der Drosselklappen halten. Aus diesem Grund wird ein Tastverhältnis als Vorsteuerung zur

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Projekt: MSS54 Modul: EDK

Kompensation der Federkraft ausgegeben. Dieser Ausgabewert wird in der 10ms Task aus der Kennlinie **KL_EDK_VORST** berechnet.

4.2. LAGEREGLER

Die Lageregelung läuft als PID-Regler nach der Formel

$$y = xp + xi + xd$$
.

Die Regelabweichung **e** berechnet sich aus der Differenz des Sollwertes (**egas_soll**) zum Istwert des Stellmotors **egas_ist** (bzw. **edk_soll** zu **egas_ist**) .

Der P-Anteil wird für positive und negative Regelabweichung getrennt aus den Kennlinien KL_EDK_PPOS und KL_EDK_PNEG ermittelt.

Der I-Anteil wird für positive und negative Regelabweichung getrennt aus den Kennlinien KL_EDK_IPOS und KL_EDK_INEG ermittelt.

Der I-Anteil wird durch **K_EDK_IBEGR** begrenzt.

Bei einer Regelabweichung größer **± K_EDK_IDELTA** (z.B. bei einem Sprung) wird der I-Anteil gelöscht.

Der D-Anteil wird für positiven und negativen Gradienten der Regelabweichung (**edk_d_grad**) getrennt aus den Konstanten **K_EDK_DPOS** und **K_EDK_DNEG** ermittelt.

Falls der Betrag der Regelabweichung größer als **± K_EDK_D_EIN_POS** ist, wird der D-Anteil abgeschaltet.

Im Bereich um den Nullpunkt der Regelabweichung zwischen **± K_EDK_D_NULL** wird der D-Anteil abgeschaltet. Ist der Sollwert **egas_soll** größer als **K_EDK_D_ANSCHL**, wird das Abschalten um den Nullpunkt der Regelabweichung aufgehoben, um ein Übersteuern der DK in den mechanischen Anschlag zu verhindern.

Der Beitrag des D-Reglers wird auf ± K_EDK_D_MAX begrenzt.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Projekt: MSS54 Modul: EDK

Der so ermittelte Ausgabewert aus **edk_reg** und **edk_vorst** wird mittels der Kennlinie **KL_EDK_KORR_U** über **Ub** korrigiert (**edk_korr**).

Das resultierende Ansteuertastverhältnis ergibt sich wie folgt.

4.2.1. REGLERABSCHALTUNG

Bei einem stehenden Motor, einem Sollwert von 0 und einer WDK-Stellung <= **K_EDK_GESCHLOSSEN** wird der Stellmotor abgeschaltet. Bei laufendem Motor wird der Vorsteuerwert ausgegeben um die Kinematik in Zugrichtung leicht vorzuspannen und dmit das Spiel im Nullpunkt zu verringern.

4.3. BEGRENZUNG DES TASTVERHÄLTNIS

Die Highzeit des auszugebenden Tastverhältnis edk_auss wird über die Variable **edk_ht_max** nach oben begrenzt.

Der maximal erreichbare Wert wird über K_EDK_MAX eingestellt.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Seite 7 von 11

Projekt: MSS54 Modul: EDK

In der Background Task wird **edk_ht_max** berechnet:

- Im Falle eines Fehlers im EGAS System wird auf K_EDK_SK_HT_MAX begrenzt.
- Während der 100% Adaption begrenzt auf K_EDK_A100_HT_MAX

5. EIGENDIAGNOSE

5.1. TREIBERDIAGNOSE MC33186

Über Port E Bit 4 kann über den Diagnoseausgang der H-Brücke festgestellt werden, ob die Brücke wegen Überlastung abgeschaltet hat. Dies geschieht zu Beginn jedes Reglerzyklus. Am Ende des Reglerzyklus wird bei Bedarf versucht, die Brücke wieder einzuschalten. In der Variablen **edk_tr_diag_stat** wird der HW-Diagnose Routine (**edk_tr_diag()**) mitgeteilt, daß die Schutzschaltung der Brücke angesprochen hat.

Bei Abschaltung der Brücke wird Bit 0 in **ed_edk_tr_stat** gesetzt. Bei Disablen der Brücke wird Bit 1 in **ed_edk_tr_stat** gesetzt.

Wenn sich Die Brücke selbst abschaltet wird ein Fehler in **edk_hw_ed** (Overtemp) Bit 3 abgelegt.

Fehler		Auswirkung	Maßnahme
Überlastung Brücke	der	Keine Ansteuerung des Stellmotor	- Fehler ablegen - Brücke wieder einschalten

5.2. SICHERHEITSKONZEPT

Siehe Modulbeschreibung EGAS Sicherheitskonzept.

6. DIAGNOSE ÜBER DS2

6.1. ANSTEUERUNG DER DK ÜBER DS2

Durch den Aufruf von **edk_write(edk_switch,edk_vorgabe)** können die DK über DS2 angesteuert werden.

Eine Ansteuerung der DK erfolgt nur bei stehendem Motor (**B_MS**) und im Diagnosebetrieb (**B_DIAG**). Ist eine der beiden Bedingungen nicht erfüllt, erfolgt keine Ansteuerung und die Antwort 4 (Bedingung nicht erfüllt) wird zurückgegeben.

Mit dem Parameter **edk_switch** wird unterschieden, ob dem Regler ein Sollwert (0) vorgegeben wird, oder der Steller mit einem Tastverhältnis (1) angesteuert wird. Falls ein anderer Wert übergeben wird, erfolgt keine Ansteuerung, die Routine gibt das Ergebnis 2 (falscher Parameter) zurück.

Über den Parameter **edk_vorgabe** wird ein Wert von 0 bis 200 übergeben. Aus diesem Wert wird der Sollwert des Lagereglers (0 bis 100 %) ermittelt, so daß sich eine Auflösung von ½ % ergibt. Auch hier erfolgt bei Übergabe eines anderen Wertes keine Ansteuerung und die Rückmeldung 2 (falscher Parameter).

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Projekt: MSS54 Modul: EDK

Stimmen alle Parameter und sind alle Bedingungen erfüllt, erfolgt die Antwort 0 (ok) und die DK werden angesteuert.

Wenn der Betrag der Regelabweichung kleiner als **± K_EDK_DS2_DMAX** ist, gilt der vorgegebene Sollwert als eingeregelt.

6.2. AUSGABE VON SYSTEMGRÖßEN ÜBER DS2

Über DS2 können folgende Systemparameter ausgegeben werden:

Verstellzeit	edk_ds2_t_stell	Mißt die Zeit bis zum Erreichen des über DS2 vorgegebnen Sollwert.
Schließzeit	edk_ds2_tschliess	Zeit, vom Ausschalten des Stellers bis DK geschlossen beim PDR.
maximale Regelabweichung	edk_ds2_abw_umax edk_ds2_abw_omax	Jeweils maximale aufgetretene Regel- abweichung nach dem Erreichen des über DS2 eingestellten Sollwert.
mittlere Regelabweichung	edk_ds2_abw_mw	Mittelwert des Betrages der Regelabweichung nach dem Erreichen des über DS2 eingestellten Sollwert.

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Projekt: MSS54 Modul: EDK

7. KONSTANTEN, KENNLINIEN UND VARIABLEN

7.1. KONSTANTEN

K_EDK_CONTROLBit 5Ausgabe Vorsteuerwert bei abgeschalteten Regler im LL

(nur S54)

K_EDK_UBMIN UB Schwelle für Adaption

K_EDK_CYCL Reglerzyklus in ms

K_EDK_D_NULLEinschaltgrenze D-ReglerK_EDK_D_MAXmaximal erlaubter D-WertK_EDK_DPOSK-Faktor D-Regler positivK_EDK_DNEGK-Faktor D-Regler negativ

K_EDK_D_EIN_POSObere Einschaltgrenze D-Regler positivK_EDK_D_EIN_NEGObere Einschaltgrenze D-Regler negativ

K_EDK_D_ANSCHL Abschaltung der Nullbegrenzung des D-Regler

K_EDK_I_NULLK_EDK_IBEGREinfriergrenze des I-ReglerBegrenzung des I Anteil

K_EDK_IDELTA Regelabweichung überhalb derer der I-Anteil gelöscht wird K EDK A100 DELTA Regelabweichung, ab der bei der 100% Adaption der

vorgegebene Sollwert als erreicht gilt

K_EDK_A100_WAIT1Wartezeit für 100% Adaption nach Bereich 1K_EDK_A100_WAIT2Wartezeit für 100% Adaption nach Bereich 2K_EDK_A100_INC1Schrittweite bei Aufwärtsadaption (0 bis B1)K_EDK_A100_INC2Schrittweite bei Aufwärtsadaption (ab B1)

K_EDK_A100_DEC3
 K_EDK_A100_B1
 Schrittweite bei Klappe zufahren nach Aufwärtsadaption
 Sollwertvorgabe für ersten Adaptionsschritt oberer Anschlag
 K_EDK_A100_VL_ANSCHL
 Differenz vom mechanischen oberen Anschlag zu 100%

EDK Stellung

K_EDK_T_SPERR Mindestzeit ohne Änderung nach der der Regler im LL

abschaltet

K_EDK_GESCHLOSSEN Schwelle unterhalb der der Regler abgeschaltet wird

K_EDK_ HT_MAX Maximale erlaubtes TV

K_EDK_A100_HT_MAXMaximales TV w\u00e4hrend AdaptionK_EDK_SK_HT_MAXMaximales TV bei Notprogramm

K_EDK_AUS_HT_MAXMaximales TV nach Wiedereinschalten der Brücke

K_EDK_HT_MIN Kleinst möglicher TV Wert

K_EDK_HT_INCSchrittweite bei Erhöhung des TV im FehlerfallK_EDK_HT_TMOTGrenztemperatur unterhalb der TV begrenzt wird

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Seite 10 von 11

Modulbeschreibung

Projekt: MSS54 Modul: EDK

K_EDK_ HT_AUSZEIT
 K_EDK_ DS2_DMAX
 K_EDK_ DS2_TSPERR
 Zeit für Begrenzung des TV nach Fehler
 Schwelle, Sollwert von DS2 erreicht
 Wartezeit, nach Verstellzeit messen

K_EDK_ DS2_TAU Filterkonstante für Mittelwert Regelabweichung

7.2. KENNLINIEN

KL_EDK_VORST Vorsteuerwert aus DK-Sollwert

KL_EDK_PPOSP-Faktor des Lagereglers Regelabweichung größer 0KL_EDK_PNEGP-Faktor des Lagereglers Regelabweichung kleiner 0KL_EDK_IPOSI-Faktor des Lagereglers Regelabweichung größer 0KL_EDK_INEGI-Faktor des Lagereglers Regelabweichung kleiner 0

KL_EDK_KORR_U Korrektur des Tastverhältnisses über Ubatt

7.3. VARIABLEN

edk_soll Sollwert Vorgabe von Momentenmanager oder PWG

edk_soll_adaptSollwert Vorgabe Adaptionsroutineedk_deltaRegelabweichung in % 16 Bit Wertedk_hw_edStatusbyte Hardware H-BrückeBit 0:Fehler Maximalwert überschritten

Bit 1: Fehler Minimalwert unterschritten

Bit 2...7: frei

edk status Statusbyte EDK

Bit 0: 1: Regeln nach PWG 0: Regeln nach MM

Bit 1: 1: Reglerabschaltung angefordert
Bit 2: 1: Reglerabschaltung ist aktiv

Bit 3: frei

Bit 4: Adaptionswert a0 aus EEPROM verloren
Bit 5: Adaptionswert a100 aus EEPROM verloren

Bit 6: 1: Adaption aktiv

Bit 7: 1: EDK-Adaption hat stattgefunden

edk_tr_diag_stat Statusbyte Treiberdiagnose H-Brücke

Bit 0: 1: SF Fehler von Lageregler erkannt, Bruecke disabled

Bit 1: 1: Bruecke darf nicht enabled werden

Bit 2...7: frei

edk_Ir_i Schrittweite des I-Reglers aus Kennlinie über

Regelabweichung

edk_p P-Anteil des Ausgabewertes
edk_i I-Anteil des Ausgabewertes

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02

Projekt: MSS54 Modul: EDK

edk_d D-Anteil des Ausgabewertes
edk_reg Reglerwert der PWM-Hightime
edk_vorst Vorsteuerwert der PWM Hightime
edk_aus Ausgabewert der PWM-Hightime
edk_korr_fak Korrekturfaktor aus Kennlinie über Ub
edk_korr Über Ubatt korrigierter Vorsteuerwert

edk_master_reset Auslösen eines Reset am Master durch Beschreiben dieser

Variablen

edk_d_gradGradient der Regelabweichungedk_soll_diagSollwervorgabe über Diagnose

edk_soll_inc Erhöhung von edk_soll bis egas_soll (Sollwertanpassung an

Zykluszeit)

edk_delta2 Regelabweichung edk_soll - edk_ist (Sollwertanpassung an

Zykluszeit)

edk_d_grad2 Gradient der Regelabweichung (Sollwertanpassung an

Zykluszeit)

edk_ht_maxBegrenzung des Tastverhältnisedk_ds2_tstellVerstellzeit nach Sollwert über DS2

edk_ds2_tschliess Schlieeszeit über Feder nach Steller abschalten

edk_ds2_abw_umaxMaximale Regelabweichung unten bei Ansteuerung von DS2edk_ds2_abw_omaxMaximale Regelabweichung oben bei Ansteuerung von DS2edk_ds2_abw_mwMittelwert Regelabweichung unten bei Ansteuerung von DS2

edk_ds2_sollw_alt letzter Sollwert über DS2

edk ds2 status Statusbyte Ansteuerung über DS2

edk_ds2_adapt_stat Statusbyte Ansteuerung Adaption über DS2

	Abteilung	Datum	Name	Filename
Bearbeiter	EE-221	04.12.2003		3.02