2. Soit $A \in M_n(\mathbb{C})$. Montrer que

$$\det(\operatorname{Id} + tA) = 1 + \operatorname{tr} A \cdot t + o(t), \quad t \to +0.$$

- 4. Soit $A = (a_{ij}) \in M_n(\mathbb{C})$. On suppose que $a_{ij} \in \{0,1\}$ pour tout i, j et que toutes les valeurs propres de A sont positives. Montrer que toutes le valeurs propres de A sont égales à 1.
- 7. Trouver un example d'un endomorphisme qui n'admet pas d'un polynôme minimal.
- 8. (a) Soit $P \in M_n(\mathbb{R})$ une matrice de projection : $P^2 = P$. Montrer que P est diagonalisable.
 - (b) Soit $R \in M_n(\mathbb{R})$ une matrice de réflection : $R^2 = I$. Montrer que R est diagonalisable.
 - (c) Soit $A \in M_n(\mathbb{C})$ une matrice satisfaisant à $A^k = I$, où $k \geq 2$. Montrer que A est diagonalisable.
- 9. Soit $A \in M_n(\mathbb{R})$ une matrice symétrique telle que $(A-3I)^2(A-5I)^7=0$. Trouver le polynôme minimal de A, en supposant que A n'est pas scalaire. Pour n=2, trouver A à une conjugaison par une matrice $P \in O(2)$ près.
- 10. Soit $A \in M_n(\mathbb{C})$ une matrice avec le polynôme minimal $\mu_A(x) = x^{10} x^3$.
 - (a) Montrer que A n'est pas surjective.
 - (b) Montrer que A n'est pas diagonalisable.
- 11. Soit V un \mathbb{R} -espace vectoriel de dimension fini. Soit $J \in \operatorname{End}_{\mathbb{R}}(V)$, $J^2 = -\operatorname{id}$. On appelle J une structure complexe sur V.
 - (a) (i) Montrer que dim $V = 2n, n \ge 1$.
 - (ii) Calculer le polynôme caractéristique et le polynôme minimal de J.
 - (iii) Montrer que J n'est pas trigonalisable.
 - (iv) Montrer qu'il existe une base $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ telle que $Je_k = f_k$, $Jf_k = -e_k$. Ecrire la matrice de J dans cette base.
 - (b) On pose $(\alpha + i\beta) \cdot v = \alpha v + \beta J(v)$ pour tout $\alpha, \beta \in \mathbb{R}$ et $v \in V$.
 - (i) Montrer que $\lambda_1 \cdot (\lambda_2 \cdot v) = (\lambda_1 \lambda_2) \cdot v$ pour tout $v \in V$, λ_1 , $\lambda_2 \in \mathbb{C}$. En déduire qu'une structure complexe permet de munir V d'une structure d'un \mathbb{C} -espace vectoriel. On désigne ce \mathbb{C} -espace vectoriel par V_J .
 - (ii) Montrer que $\{e_1, \ldots, e_n\}$ est une base de V_J . En déduire dim V_J .
 - (iii) Soit $T \in \operatorname{End}_{\mathbb{R}}(V)$. Montrer que $\lambda \cdot (Tv) = T(\lambda \cdot v)$ pour tout $\lambda \in \mathbb{C}$, $v \in V$ si et seulement si TJ = JT. On pose $\operatorname{End}_{\mathbb{R}}(V, J)$. En déduire que $\operatorname{End}_{\mathbb{C}}(V_J) \simeq_{\operatorname{Set}} \operatorname{End}_{\mathbb{R}}(V, J)$.
 - (iv) Soit $T \in \operatorname{End}_{\mathbb{R}}(V, J)$. Montrer que dans la base $e_1, \ldots, e_n, Je_1, \ldots, Je_n$ construite cidessus la matrice de T a une forme $\begin{pmatrix} A & -B \\ B & A \end{pmatrix}$, où $A, B \in M_n(\mathbb{R})$. En déduire $\dim_{\mathbb{R}} \operatorname{End}_{\mathbb{R}}(V, J)$.
- 12. Soit $A \in M_n(\mathbb{R})$, rang A = 1.
 - (a) Montrer que $A^2 = \operatorname{tr} A \cdot A$.
 - (b) Calculer χ_A et μ_A . Est-ce que A est diagonalisable?
- 13. Soit $A=\left(\begin{smallmatrix}0&1\\0&0\end{smallmatrix}\right)$. Montrer qu'il n'existe pas de $B\in M_2(\mathbb{C})$ tel que $B^2=A$.