AdaBoost

• In RF, each time you grow a tree, the tree is a full size tree

• In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

• In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

• In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

• In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

So Adaboost is really a "forest of stumps" rather than trees

In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

In RF, each tree has an equal vote on the final classification

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

So Adaboost is really a "forest of stumps" rather than trees

In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

 In RF, each tree has an equal vote on the final classification In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

So Adaboost is really a "forest of stumps" rather than trees

 In Adaboost, some stumps get more say in the final classification/regression than others

In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

- In RF, each tree has an equal vote on the final classification
- In RF, each tree is made independently of the others

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

So Adaboost is really a "forest of stumps" rather than trees

 In Adaboost, some stumps get more say in the final classification/regression than others

In RF, each time you grow a tree, the tree is a full size tree

Some tree might be bigger than others, but there is no predefined tree depth

- In RF, each tree has an equal vote on the final classification
- In RF, each tree is made independently of the others (so it does not matter which tree you grow first ...)

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

So Adaboost is really a "forest of stumps" rather than trees

 In Adaboost, some stumps get more say in the final classification/regression than others

In RF, each time you grow a tree, the tree is a full size tree

Some tree might be

bigger than others, but there is no predefined tree depth

- In RF, each tree has an equal vote on the final classification
- In RF, each tree is made independently of the others (so it does not matter which tree you grow first ...)

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

So Adaboost is really a "forest of stumps" rather than trees

- In Adaboost, some stumps get more say in the final classification/regression than others
- In Adaboost, the order of growing trees are important

In RF, each time you grow a tree, the tree is a full size tree

Some tree might be

bigger than others, but there is no predefined tree depth

- In RF, each tree has an equal vote on the final classification
- In RF, each tree is made independently of the others (so it does not matter which tree you grow first ...)

In Adaboost, each time you grow a tree, the tree is just a node and two leaves

A tree with just one node and 2 leaves is called a "stump"

So Adaboost is really a "forest of stumps" rather than trees

- In Adaboost, some stumps get more say in the final classification/regression than others
- In Adaboost, the order of growing trees are important (e.g., the errors of the 1st tree affects how the 2nd tree would be made)

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease
Yes	Yes	205	Yes
No	Yes	180	Yes
Yes	No	210	Yes
Yes	Yes	167	Yes
No	Yes	156	No
No	Yes	125	No
Yes	No	168	No
Yes	Yes	172	No

First, let's look at the above example dataset

Blocked	Patient	Heart
Arteries	weight	Disease
Yes	205	Yes
Yes	180	Yes
No	210	Yes
Yes	167	Yes
Yes	156	No
Yes	125	No
No	168	No
Yes	172	No
	Yes Yes No Yes Yes No Yes No No	Arteries Weight Yes 205 Yes 180 No 210 Yes 167 Yes 156 Yes 125 No 168

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease
Yes	Yes	205	Yes
No	Yes	180	Yes
Yes	No	210	Yes
Yes	Yes	167	Yes
No	Yes	156	No
No	Yes	125	No
Yes	No	168	No
Yes	Yes	172	No

Sample weight
?
?
?
?
?
?
?
?

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease
Yes	Yes	205	Yes
No	Yes	180	Yes
Yes	No	210	Yes
Yes	Yes	167	Yes
No	Yes	156	No
No	Yes	125	No
Yes	No	168	No
Yes	Yes	172	No

Sample weight
<mark>1/8</mark>
1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

At the start, all the samples get the same weight: $\frac{1}{total\ samples}$, in this case, it is $\frac{1}{8}$, which means all the samples are equally important

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease
Yes	Yes	205	Yes
No	Yes	180	Yes
Yes	No	210	Yes
Yes	Yes	167	Yes
No	Yes	156	No
No	Yes	125	No
Yes	No	168	No
Yes	Yes	172	No

Sample weight
<mark>1/8</mark>
1/8
<mark>1/8</mark>
1/8
<mark>1/8</mark>
1/8
<mark>1/8</mark>
<mark>1/8</mark>

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease
Yes	Yes	205	Yes
No	Yes	180	Yes
Yes	No	210	Yes
Yes	Yes	167	Yes
No	Yes	156	No
No	Yes	125	No
Yes	No	168	No
Yes	Yes	172	No

Sample weight
1/8
1/8
<mark>1/8</mark>
1/8
<mark>1/8</mark>
1/8
<mark>1/8</mark>
1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease
Yes	Yes	205	Yes
No	Yes	180	Yes
Yes	No	210	Yes
Yes	Yes	167	Yes
No	Yes	156	No
No	Yes	125	No
Yes	No	168	No
Yes	Yes	172	No

Sample weight
1/8
1/8
1/8
1/8
1/8
1/8
1/8
<mark>1/8</mark>

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Wrong: 2

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

For the "Chest Pain", when "Heart Disease==true", three samples are correctly labelled, while two are not

Chest Pain

YES

Correct: 3;

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	138
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

For the "Chest Pain", when "Heart Disease==true", three samples are correctly labelled, while two are not

For the "Chest Pain", when "Heart Disease==false", 2 samples are correctly labelled, while 1 are not

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

	•			
Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weigh
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

Chest Pain

The the incomparison of the content of

Then we can calculate the "weighted" Giniindex for "Chest Pain"

Note that here all the sample weight is the same, so when we calculate the Gini they can be cancelled

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	<mark>1/8</mark>
Yes	Yes	167	Yes	<mark>1/8</mark>
No	Yes	156	No	<mark>1/8</mark>
No	Yes	125	No	<mark>1/8</mark>
Yes	No	168	No	<mark>1/8</mark>
Yes	Yes	172	No	<mark>1/8</mark>

First, let's look at the above example dataset We want to use AdaBoost to predict if a patient has "Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

Then we can calculate the "weighted" Giniindex for "Chest Pain"

> Note that here all the sample weight is the same, so when we calculate the Gini they can be

cancelled

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

 $Gini_{Chest-pain} = 0.47$

Then we can calculate the Gini-index for all the predictors

Note that here all the sample weight is the same, so when we calculate the Gini they can be cancelled

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

$$Gini_{Chest-pain} = 0.47$$

$$Gini_{Blocked\ Arteries} = 0.5$$

$$Gini_{Patient\ Weight} = 0.2$$

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

$$Gini_{Chest-pain} = 0.47$$

$$Gini_{Blocked\ Arteries} = 0.5$$

$$Gini_{Patient\ Weight} = 0.2$$

The Gini-index for "patient weight" is the lowest, so there is where we start growing "stumps"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	<mark>1/8</mark>
Yes	No	210	Yes	<mark>1/8</mark>
Yes	Yes	167	Yes	1/8
No	Yes	156	No	<mark>1/8</mark>
No	Yes	125	No	<mark>1/8</mark>
Yes	No	168	No	<mark>1/8</mark>
Yes	Yes	172	No	<mark>1/8</mark>

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

This is done by finding the variable (Chest pain, Blocked arteries and patient weight) that does the best job to indicate "heart disease"

We use Gini-index to do this (like any other decision tree method)

	Comme			
Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sampl weigh
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	
Yes	Yes	205	Yes	
No	Yes	180	Yes	
Yes	No	210	Yes	
Yes	Yes	167	Yes	
No	Yes	156	No	
No	Yes	125	No	
Yes	No	168	No	
Yes	Yes	172	No	

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

Sample

weight

1/8

1/8

1/8

1/8

1/8

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Step 3.1: This is defined by the error of this "stump"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Step 3.1: This is defined by the error of this "stump"

This stump makes one error ~ for one sample, it "predicts" that the patient should not have disease but in fact he/she does

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Step 3.1: This is defined by the error of this "stump"

This stump makes one error ~ for one sample, it "predicts" that the patient should not have disease but in fact he/she does

the "total error" for this "stump" is: "weights" x "wrong prediction"

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Step 3.1: This is defined by the error of this "stump"

This stump makes one error ~ for one sample, it "predicts" that the patient should not have disease but in fact he/she does

the "total error" for this "stump" is: "weights" x "wrong prediction" In this case it is $\frac{1}{8} \times \frac{1}{1} = \frac{1}{8}$

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Step 3.1: This is defined by the error of this "stump"

This stump makes one error ~ for one sample, it "predicts" that the patient should not have disease but in fact he/she does

the "total error" for this "stump" is: "weights" x "wrong prediction" In this case it is $\frac{1/8}{1} \times \frac{1}{1} = \frac{1}{1}$

Because all the weights are added up to 1, so "total error" will always be between 0 (prefect "stump") and 1

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Step 3.1: Total error for first "stump" =
$$\frac{1}{8}$$

Step 3.2: The amount of "say" for first "stump" is
$$Amount \ of \ say = \frac{1}{2} \log(\frac{1 - total \ error}{total \ error})$$

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results

Step 3.1: Total error for first "stump" =
$$\frac{1}{8}$$

Step 3.2: The amount of "say" for first "stump" is
$$Amount \ of \ say = \frac{1}{2} \log(\frac{1 - total \ error}{total \ error})$$

In this case it is 0.97

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	1/8
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	<mark>1/8</mark>

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	<mark>1/8</mark>
Yes	No	210	Yes	<mark>1/8</mark>
Yes	Yes	167	Yes	<mark>1/8</mark>
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	<mark>1/8</mark>
Yes	Yes	172	No	<mark>1/8</mark>

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

In the first stump, this sample is not correctly labelled, so we need to increase its "importance" (by increasing its sample weight) so the next stump can pay more attention on it

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	<mark>1/8</mark>
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	<mark>1/8</mark>
No	Yes	156	No	<mark>1/8</mark>
No	Yes	125	No	1/8
Yes	No	168	No	<mark>1/8</mark>
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

New sample weight to be increased to $W_{new} = W_{old} \times e^{amount\ of\ say}$

In this case it is

$$W_{new} = \frac{1}{8} \times e^{0.97} = 0.33$$

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	<mark>1/8</mark>
Yes	No	210	Yes	<mark>1/8</mark>
Yes	Yes	167	Yes	0.33
No	Yes	156	No	<mark>1/8</mark>
No	Yes	125	No	1/8
Yes	No	168	No	<mark>1/8</mark>
Yes	Yes	172	No	<mark>1/8</mark>

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

4: Update sample weights

New sample weight to be increased to $W_{new} = W_{old} \times e^{amount\ of\ say}$

h. 's case it is

$$W_{new} = \frac{1}{8} \times e^{0.97} = 0.33$$

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	0.33
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	<mark>1/8</mark>
Yes	Yes	172	No	1/8

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

Now we need to reduce the rest sample weights (the samples are correctly labelled)

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	1/8
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	<mark>0.33</mark>
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

Now we need to reduce the rest sample weights (the samples are correctly labelled)

The formula to decrease the sample weight is:

$$W_{new} = W_{old} \times e^{-amount\ of\ say}$$

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	<mark>1/8</mark>
No	Yes	180	Yes	1/8
Yes	No	210	Yes	1/8
Yes	Yes	167	Yes	0.33
No	Yes	156	No	1/8
No	Yes	125	No	1/8
Yes	No	168	No	1/8
Yes	Yes	172	No	1/8

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

Now we need to reduce the rest sample weights (the samples are correctly labelled)

The formula to decrease the sample weight is:

$$W_{new} = W_{old} \times e^{-amount\ of\ say}$$

In this case the new weights are 0.05

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	0.05
No	Yes	180	Yes	0.05
Yes	No	210	Yes	0.05
Yes	Yes	167	Yes	0.33
No	Yes	156	No	0.05
No	Yes	125	No	0.05
Yes	No	168	No	0.05
Yes	Yes	172	No	0.05

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

The increased sample weight is 0.33

The decreased sample weight is 0.05

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	0.05
No	Yes	180	Yes	0.05
Yes	No	210	Yes	0.05
Yes	Yes	167	Yes	0.33
No	Yes	156	No	0.05
No	Yes	125	No	0.05
Yes	No	168	No	0.05
Yes	Yes	172	No	0.05

First, let's look at the above example dataset We want to use AdaBoost to predict if a patient has "Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

The increased sample weight is 0.33

The decreased sample weight is 0.05

The we normalize the sample weights so they can be added up to 1.0

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	0.07
No	Yes	180	Yes	0.07
Yes	No	210	Yes	0.07
Yes	Yes	167	Yes	0.49
No	Yes	156	No	0.07
No	Yes	125	No	0.07
Yes	No	168	No	0.07
Yes	Yes	172	No	0.07

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

The normalized increased sample weight is 0.49

The normalized decreased sample weight is 0.07

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	0.07
No	Yes	180	Yes	0.07
Yes	No	210	Yes	0.07
Yes	Yes	167	Yes	0.49
No	Yes	156	No	0.07
No	Yes	125	No	0.07
Yes	No	168	No	0.07
Yes	Yes	172	No	0.07

First, let's look at the above example dataset
We want to use AdaBoost to predict if a patient has
"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

The normalized increased sample weight is 0.49
The normalized decreased sample weight is 0.07

Step 5: Then we can grow the second tree but using the updated sample weight

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample weight
Yes	Yes	205	Yes	0.07
No	Yes	180	Yes	0.07
Yes	No	210	Yes	0.07
Yes	Yes	167	Yes	0.49
No	Yes	156	No	0.07
No	Yes	125	No	0.07
Yes	No	168	No	0.07
Yes	Yes	172	No	0.07

First, let's look at the above example dataset

We want to use AdaBoost to predict if a patient has

"Heart Disease" depending on:

- "Chest pain"
- "Blocked Arteries"
- "Patient Weight"

Step 1: giving each sample a weight that indicates how important they are

Step 2: grow our first "stump"

Step 3: We need to determine how much this stump will say in the final results. In this case the "amount of say" is 0.97

Step 4: Update sample weights

The normalized increased sample weight is 0.49
The normalized decreased sample weight is 0.07

Step 5: Then we can grow the second tree but using the updated sample weight

•••••

Some "stumps" will give "heart disease==True"

Some "stumps" will give "heart disease==False"

