Simulation and Modelling

Spring 2023 CS4056

Muhammad Shahid Ashraf

Random-Variate Generation

Random-Variate Generation

CS4056 2/18

Random-Variate Generation

Generation Inverse-transform

Overview

- Develop understanding of generating samples from a specified distribution as input to a simulation model.
- \bullet Illustrate some widely-used techniques for generating random variates:
 - Inverse-transform technique
 - Acceptance-rejection technique
 - Special properties

3/18

Shahid Ashraf

CS4056

Random-Variate Generatio

form Technique NATIONAL UNIVERSITY of Computer & Emerging Sciences

Preparation

- It is assumed that a source of uniform [0,1] random numbers exists. Linear Congruential Method (LCM)
- Random numbers R, R_1, R_2, \dots with

$$f_R(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

• CDF

$$F_R(x) = \begin{cases} 0 & x < 0 \\ x & 0 \le x \le 1 \\ 1 & x > 1 \end{cases}$$

lotes	
lotes	
lotes	
lotes	

Inverse-transform Technique

• The concept:

- For CDF function: r = F(x)
- $\bullet \ \mathsf{Generate} \ r \ \mathsf{from} \ \mathsf{uniform} \ (0,\!1) \text{, a.k.a} \ \mathit{U}(0,\!1)$
- Find $x_1, x = F^{-1}(r)$

F(x) r = F(x)

Inverse-transform Technique

- The inverse-transform technique can be used in principle for any distribution.
- \bullet Most useful when the CDF F(x) has an inverse $F^{-1}(x)$ which is easy to compute.
- Required steps
 - Compute the CDF of the desired random variable X. Set F(X) = R on the range of X. Solve the equation F(X) = R for X in terms of R.

 - Generate uniform random numbers R_1,R_2,R_3,\ldots and compute the desired random variate by $X_i=F^{-1}(R_i)$

NATIONAL UNIVERSITY

Inverse-transform Technique

- Exponential Distribution
 - To generate $X_1, X_2, X_3 \dots$
- PDF

$$1 - exp(-\lambda X) = R$$

$$f(x) = \lambda exp(-\lambda x)$$

• CDF

$$\exp(-\lambda X) = 1 - R$$

 $F(x) = 1 - exp(-\lambda x)$

$$-\lambda X = \ln(1 - R)$$

Simplification

$$X = -\frac{\ln R}{\lambda}$$

$$X = -\frac{1}{\lambda}\ln(1-R)$$

• Since R and (1-R) are uniformly

$$X = F^{-1}(R)$$

distributed on [0,1]

₹ •9 Q (° 7/18

Inverse-transform Technique

Generation of Exponential Variates X_i with Mean 1, given Random Numbers R_i

Notes

Notes

Notes

Notes

Inverse-transform Technique

NATIONAL UNIVERSITY of Computer & Emerging Sciences

Check: Does the random variable X_1 have the desired distribution?

$$P(X_1 \le x_0) = P(R_1 \le F(x_0)) = F(x_0)$$

• Examples of other distributions for which inverse CDF works are:

• Uniform distribution

Inverse-transform Technique

- Weibull distributionTriangular distribution
- \bullet Random variable X uniformly distributed over [a,b]

$$F(X) = R$$

$$\frac{X - a}{b - a} = R$$

$$X - a = R(b - a)$$

$$X = R(b - a) + a$$

NATIONAL UNIVERSITY

Inverse-transform Technique

The CDF of a Triangular Distribution with endpoints (0, 2) is given by

 $\sqrt{2R}$ $0 \le R \le \tfrac{1}{2}$ $-\sqrt{2(1-R)} \quad \frac{1}{2} < R \le 1$

The variate is

NATIONAL UNIVERSITY

Inverse-transform Technique

The Weibull Distribution is described by

• PDF
$$f(x) = \frac{\beta}{x^{\beta-1}} x^{\beta-1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$$

$$F(X) = 1 - e^{-\left(\frac{x}{\alpha}\right)^{\beta}}$$

Notes

Notes

-			

Notes

_				
-				
-				
-				

Notes

- Useful particularly when inverse CDF does not exist in closed form Thinning
- Illustration: To generate random variates, $X \sim U(1/4,1)$

Procedure: Step 1. Generate $R \sim U(0,1)$ Step 2. If $R \ge \frac{1}{4}$, accept X=R. Step 3. If R < 1/4, reject R, return to Step 1

- R does not have the desired distribution, but R conditioned (R) on the event $\{R \ge \frac{1}{4}\}$ does.
- Efficiency: Depends heavily on the ability to minimize the number of rejections.

□ > ((B) > (E) > (E) > (E) > (E) (C) (13/18)

Acceptance-Rejection Technique

· Probability mass function of a Poisson Distribution

$$P(N = n) = \frac{\alpha^n}{n!} e^{-\alpha}$$

• Exactly n arrivals during one time unit

$$A_1 + A_2 + \dots + A_n \le 1 < A_1 + A_2 + \dots + A_n + A_{n+1}$$

Since interarrival times are exponentially distributed we can set

$$A_i = \frac{-\ln(R_i)}{\alpha}$$

- \bullet Well known, we derived this generator in the beginning of the class
- Procedure of generating a Poisson random variate N is as follows

 - 1. Set *n*=0, *P*=1
 - 2. Generate a random number R_{n+1} , and replace P by $P \times R_{n+1}$ 3. If $P < \exp(-\alpha)$, then accept N=n
 - Otherwise, reject the current n, increase n by one, and return to step 2.

14 / 18

NATIONAL UNIVERSITY (N_U

Acceptance-Rejection Technique

- Example: Generate three Poisson variates with mean $\alpha \text{=} 0.2$
- exp(-0.2) = 0.8187
- Variate 1
- variate 1 Step 1: Set n = 0, P = 1• Step 2: $R1 = 0.4357, P = 1 \times 0.4357$ Step 3: Since $P = 0.4357 < \exp(-0.2)$, accept N = 0Variate 2

- Step 1: Set n = 0, P = 1• Step 2: R1 = 0.4146, $P = 1 \times 0.4146$ Step 3: Since $P = 0.4146 < \exp(-0.2)$, accept N = 0
- Variate 3
 Step 1: Set *n* = 0, *P* = 1
- Step 2: R1 = 0.8353, P = 1 x 0.8353

Acceptance-Rejection Technique

- Step 3: Since $P = 0.8353 \exp(-0.2)$, reject n = 0 and return to Step 2 with n = 1• Step 2: R2 = 0.9952, $P = 0.8353 \times 0.9952 = 0.8313$
- Step 3: Since P = 0.8313 × exp(-0.2), reject n = 1 and return to Step 2 with n = 2
 Step 2: R3 = 0.8004, P = 0.8313 x 0.8004 = 0.6654
 Step 3: Since P = 0.6654 < exp(-0.2), accept N = 2

CS4056

(D) (B) (E) (E) E 90(C)

- It took five random numbers to generate three Poisson
 - variates • In long run, the generation of Poisson variates requires some overhead!

N	R_{n+I}	P	Accept/Reject		Result
0	0.4357	0.4357	P < exp(- α)	Accept	N=0
0	0.4146	0.4146	P < exp(- α)	Accept	N=0
0	0.8353	0.8353	$P \ge \exp(-\alpha)$	Reject	
1	0.9952	0.8313	P≥ exp(-α)	Reject	
2	0.8004	0.6654	P < exp(- α)	Accept	N=2

CS4056

Notes

Notes

Notes

Notes