Centro Universitário São Miguel

Hematologia

Granulócitos

Diagrama mostrando a célula-tronco pluripotente da medula óssea e as linhagens celulares que dela se originam

Diagrama mostrando a célula-tronco pluripotente da medula óssea e as linhagens celulares que dela se originam

Granulócitos (Polimorfonucleares)

Leucócitos que, no estágio maduro, contêm grânulos específicos no citoplasma: neutrófilos, eosinófilos e basófilos.

Eosinófilo

Basófilo

Granulócitos (Polimorfonucleares)

Estas células são produzidas na MO, passam algumas horas no sangue e, atravessando as paredes dos vasos sanguíneos, vão para os tecidos onde exercem suas funções, em especial a fagocitose e a destruição de agentes patogênicos.

Eosinófilo

Basófilo

Prof. Me. Silva, Y. J. de A.

Geração e Maturação de Células na MO - Hematopoese

Geração e Maturação dos Granulócitos na MO - Granulocitopoese

Dinâmica e Função dos Granulócitos

Cinética e Função dos Neutrófilos

- © É o leucócito mais abundante no sangue periférico (SP) de adultos $(2,5-7,5\times10^9/L)$.
- São produzidos na MO a partir de células progenitoras multipotenciais, sob ação de numerosos mediadores G-CSF e GM-CSF.
- Os neutrófilos são liberados da MO para o SP onde sua meia-vida é de 6-10 horas.

Dinâmica e Função dos Granulócitos

Cinética e Função dos Neutrófilos

- Neutrofilia Verdadeira A MO solicita neutrófilos, enviando células, inclusive mais imaturas.
- Pseudoneutrofilia Estímulo da adrenalina Zona Margina → Periférico.
- Indução Glicocorticoides. Estímulo pela droga.
- Ao contrário do macrófago, o neutrófilo não reside nos tecidos saudáveis, migrando para locais de danos teciduais; sendo os tecidos o local de consumo.

Dinâmica e Função dos Granulócitos

- E a principal célula fagocítica e microbicida das defesas imunes inatas.
- A principal função é prevenir ou retardar a introdução de agentes infecciosos e outros materiais estranhos no ambiente do hospedeiro. Essa função é executada pela fagocitose e digestão do material.
- Os neutrófilos também liberam várias substâncias em seu ambiente - função secretora.

Dinâmica e Função dos Granulócitos

- A Interleucina-8 aumenta a capacidade do neutrófilo de destruir bactérias pela intensificação da fagocitose, produção de superóxido e liberação de grânulos, desencadeia dessa forma uma firme adesão do neutrófilo a célula endotelial, promove a migração para os tecidos e ativa seu mecanismo efetor.
- Os neutrófilos são atraídos pelo estímulo quimiotáxico mediado por produtos bacterianos, componentes do complemento. Isso é o início do processo da resposta imediata. Ocorre em menos de uma hora.

Migração dos Neutrófilos

Rolagem ou adesão primária: os neutrófilos que estão fluindo próximos à parede endotelial podem estabelecer contato transitório com o endotélio.

Adesão secundária: repentinamente o fenômeno de rolagem pode cessar, indicando que o neutrófilo está mais firmemente aderido à superfície da célula endotelial.

Diapedese: os neutrófilos firmemente aderidos às células endoteliais penetram nas falhas entre duas células, passando para a matriz dos tecidos.

Quimiotaxia: atração dos neutrófilos para o local de lesão tecidual. Isto depende da ação de numerosas substâncias liberadas no processo inflamatório.

Migração dos Neutrófilos

Cinética e Função dos Eosinófilos

- Assim como os neutrófilos, os eosinófilos são produzidos e armazenados na MO.
- Os eosinófilos são atraídos para tecidos onde há invasão por parasitas ou sítios de reações alérgicas.
- Três citocinas têm um papel central na diferenciação dos eosinófilos: IL-3, IL-5 e o fator estimulador de granulócitos e macrófagos (GM-CSF).

Cinética e Função dos Eosinófilos

- A migração extravascular dos eosinófilos seque passos similares dos neutrófilos, começando com interações de baixa intensidade entre o eosinófilo e a célula endotelial: em seguida, formam-se interações mais fortes, levando à firme adesão do eosinófilo que depende de moléculas de adesão.
- Funções: Os eosinófilos têm uma atividade proinflamatória e citotóxica, participando da reação e patogênese de numerosas doenças alérgicas, parasitárias e neoplásicas, e na remoção de fibrina formada durante a inflamação.

Cinética e Função dos Basófilos

- Os grandes grânulos são ricos em histamina, serotonina, sulfato de condroitina e leucotrienos.
- São portanto a principal fonte de histamina em circulação, que são liberadas pela desgranulação determinada pela interação de seus receptores Fc com IgE.
- A histamina, liberada pelos basófilos, é um potente agente quimiotático para os eosinófilos.

Cinética e Função dos Eosinófilos

Maturação Granulocítica

Segmentado

Características durante a sequência maturativa

- O núcleo vai perdendo sua característica imatura, os nucléolos desaparecem, a cromatina é condensada aos poucos, e o formato do núcleo vai evoluindo de arredondado para chanfrado, reniforme, e finalmente segmenta-se. Em geral são de 3 a 4 segmentos irregulares, ligados por um delicado filamento.
- O citoplasma vai perdendo a basofilia (tonalidade de azulada na coloração de Leishman), e vão aparecendo grânulos. Inicialmente são grânulos azurófilos mais grosseiros, seguidos de grânulos específicos (secundários) e grânulos terciários (ou de gelatinase).

Mieloblasto

Mieloblasto é a célula mais imatura da linhagem granulócitica. Apesar de seu aspecto pouco diferenciado e sua capacidade de multiplicação, o mieloblasto já é uma célula restrita, comprometida com uma diferenciação granulocítica, não devendo pois ser encarada como uma forma de célula progenitora.

Mieloblasto

O núcleo ocupa quase toda a superfície e tem uma relação núcleo-citoplasma elevada (6:1) e núcleo redondo ou ovalado. O núcleo volumoso tem característica imatura, com cromatina delicada e nucléolos visíveis (1-5, + comum 2 a 3). O citoplasma é bastante basófilo e em geral contém alguns grânulos azúrofilos que permitem reconhecer seu vínculo com a linhagem granulocítica.

Promielócito

- Célula ligeiramente maior que o mieloblasto. Redonda ou Ovalada.
- Ao compará-lo com o mieloblasto, verifica-se que a relação núcleo-citoplasma é menor e o citoplasma mais basófilo. Núcleo grande, ligeiramente excêntrico. Por vezes denteado de cromatina púrpura clara. Exibe nucléolos menos nítidos que o mieloblasto.
- Citoplasma mais abundante, claro, exibindo numerosos grânulos de coloração azurófila.

Mielócito

E menor que o promielócito. Célula de núcleo arredondado ou ovalado, com granulações neutrofílicas quase que específicas. A cromatina mostra grau moderado de condensação e não são evidenciados nucléolos. O citoplasma é mais acidófilo que o promielócito.

Metamielócito

- Apresenta todas as características citológicas do mielócito, diferenciando apenas pelo núcleo reniforme ou em forma de U.
- Núcleo com cromatina densa, distribuído por numerosos fragmentos delimitado de forma mais nítida que o do mielócito.
- Apresenta citoplasma acidófilo. É o mais jovem dos granulócitos que podem ser encontrado no sangue circulante.

Bastonete

- São encontrados em pequena quantidade em sangue periférico.
- Cromatina mais condensada, e diferenciam-se das formas mais imaturas por uma maior condensação da cromatina e modificação da morfologia nuclear que assume a forma de um bastão. Célula ainda desprovida de lóbulos nucleares.

Bastonete Neutrófilo

Neutrófilo Segmentado

- Apresenta-se como uma célula de núcleo multilobulado (2-5 lóbulos) de cromatina purpúrea escura e densa, cujos lóbulos são interligados por uma filamento de cromatina.
- O citoplasma é abundante, fracamente rósseo, contendo fina granulação específica. A granulação azurófila perde a sua coloração escura neste estágio de maturação.

Neutrófilo Segmentado

Maturação Granulocítica

Promielócito

Mielócito Neutrófilo

Bastonete Neutrófilo

Bastonete Neutrófilo

Eosinófilo

- Apresentam no citoplasma grânulos com alta afinidade pela eosina, um corante ácido utilizado nas colorações de Romanowsky.
- Citoplasma abundante rico em grânulos eosinofílicos.
- Núcleo de cromatina densa e na maior parte das vezes bilobulado.

Mielócito Eosinófilo

Basófilo

- Granulócitos mais escassos no sangue.
- Caracterizados pela presença de grânulos citoplasmático que se tingem com corantes básicos nas colorações usuais em cor purpúra-escura.
- Núcleo multilobulado apresenta cromatina densa.
- São a principal fonte de histamina em circulação.

REFERÊNCIAS

Hoffbrand, A. V.; Moss, P. A. H. Fundamentos da Hematologia de Hoffbrand. 7ª Ed. Porto Alegre: Artmed, 2017.

DOWNLOAD DO https://yurialb.github.io

CONTATOS

