

Generalized Risk Parity Portfolio Optimization: An ADMM Approach

CASCON x EVOKE

Markham, ON November 6, 2019

Giorgio Costa

University of Toronto

Department of Mechanical and Industrial Engineering

Joint work with Roy H. Kwon

Introduction

What is this presentation about?

- ► We wish to construct an optimal portfolio
 - \Rightarrow High return
 - \Rightarrow Low risk
 - ⇒ Well-diversified
 - ⇒ Flexibility for the investor

Introduction

What is this presentation about?

- ► We wish to construct an optimal portfolio
 - \Rightarrow High return
 - ⇒ Low risk
 - ⇒ Well-diversified
 - ⇒ Flexibility for the investor
- ▶ Meeting these criteria is difficult
 - ⇒ It may lead to non-convex problems

Introduction

Could we design a model that:

- ► Meets the investor's criteria
- ► Addresses non-convexity

Assets and Portfolios

- ▶ An asset *i* has some expected return μ_i and variance (risk) σ_i^2
- ▶ A portfolio $x \in \mathbb{R}^n$ is a collection of n financial assets
 - $\Rightarrow x_i$ is our weight on asset i

Assets and Portfolios

- ▶ An asset *i* has some expected return μ_i and variance (risk) σ_i^2
- ▶ A portfolio $x \in \mathbb{R}^n$ is a collection of n financial assets
 - $\Rightarrow x_i$ is our weight on asset i
- ► The relevant measures of risk and return are

Assets

Portfolio

 \Rightarrow Return: $\mu \in \mathbb{R}^n$

 \Rightarrow Return: $\mu_p = \boldsymbol{\mu}^T \boldsymbol{x}$

 \Rightarrow Risk: $\Sigma \in \mathbb{R}^{n \times n}$

 \Rightarrow Risk: $\sigma_p^2 = oldsymbol{x}^T oldsymbol{\Sigma} oldsymbol{x}$

Mean–Variance Optimization (MVO)

► Introduced by Markowitz (1952),

$$\min_{m{x}} \ m{x}^T m{\Sigma} m{x} - \lambda m{\mu}^T m{x}$$
 Min. risk and max. return s.t. $\mathbf{1}^T m{x} = 1$ Budget constraint $(m{x} \geq 0)$ Disallow short sales (optional)

Mean–Variance Optimization (MVO)

► Introduced by Markowitz (1952),

$$\min_{m{x}} \ m{x}^T m{\Sigma} m{x} - \lambda m{\mu}^T m{x}$$
 Min. risk and max. return s.t. $\mathbf{1}^T m{x} = 1$ Budget constraint $(m{x} \geq 0)$ Disallow short sales (optional)

- ▶ Weaknesses:
 - ⇒ May lead to over-concentrated portfolios
 - \Rightarrow The estimated parameter μ is very **noisy**

What is risk parity?

- ► Risk parity seeks to find portfolios based on a risk-weighted basis
- ▶ Does not require estimated returns as an input, improving stability
- ► Each asset contributes the same level of risk
- ► The resulting portfolio is well-diversified

Measuring the risk contribution per asset

▶ Decompose the portfolio variance

$$\sigma_p^2 = \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} = \sum_{i=1}^n x_i (\boldsymbol{\Sigma} \boldsymbol{x})_i$$

 $\Rightarrow x_i(\Sigma x)_i$ is the individual **risk contribution** of asset i

Measuring the risk contribution per asset

▶ Decompose the portfolio variance

$$\sigma_p^2 = \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} = \sum_{i=1}^n x_i (\boldsymbol{\Sigma} \boldsymbol{x})_i$$

 $\Rightarrow x_i(\Sigma x)_i$ is the individual risk contribution of asset i

► Risk parity: Take a least-squares approach

$$\min_{\boldsymbol{x}} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(x_i (\boldsymbol{\Sigma} \boldsymbol{x})_i - x_j (\boldsymbol{\Sigma} \boldsymbol{x})_j \right)^2$$
s.t. $\mathbf{1}^T \boldsymbol{x} = 1$

$$\boldsymbol{x} \geq \mathbf{0}$$

Non-convexity of risk parity

- ► **Problem**: The objective is non-convex
 - \Rightarrow In standard quadratic notation: $x_i(\Sigma x)_i = x^T A_i x$
 - $\Rightarrow A_i \in \mathbb{R}^{n \times n}$ captures the individual risk contribution of asset i
 - \Rightarrow The matrices A_i are indefinite

Non-convexity of risk parity

- ► **Problem**: The objective is non-convex
 - \Rightarrow In standard quadratic notation: $x_i(\Sigma x)_i = x^T A_i x$
 - $\Rightarrow A_i \in \mathbb{R}^{n \times n}$ captures the individual risk contribution of asset i
 - \Rightarrow The matrices A_i are indefinite
- ► Solution: Disallow short selling
 - ⇒ This limits the investor's possibilities

Formulate a new optimization problem

Formulate a new optimization problem

- ▶ We seek a desirable portfolio
 - ⇒ Minimize risk and maximize return
 - ⇒ Risk-based diversification
 - ⇒ Short selling allowed

Formulate a new optimization problem

- ➤ We seek a desirable portfolio
 - ⇒ Minimize risk and maximize return
 - ⇒ Risk-based diversification
 - ⇒ Short selling allowed
- ► Generalized Risk Parity (GRP)

$$\min_{\boldsymbol{x}, \ \theta} \ \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \boldsymbol{\mu}^T \boldsymbol{x}$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

A closer look at the risk diversification constraints

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

- $ightharpoonup heta \in \mathbb{R}$ is an auxiliary variable
- $ightharpoonup c \in \mathbb{R}_+$ is a user-defined risk diversification parameter

A closer look at the risk diversification constraints

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

- $ightharpoonup heta \in \mathbb{R}$ is an auxiliary variable.
- ▶ $c \in \mathbb{R}_+$ is a user-defined risk diversification parameter.

 $\Rightarrow c = 0$ enforces perfect risk parity

 $\Rightarrow c > 1$ reverts to MVO

Adding robustness to the portfolio return

 $\blacktriangleright \mu$ is a **noisy** estimate

Adding robustness to the portfolio return

- $\blacktriangleright \mu$ is a **noisy** estimate
- ► Robust GRP

$$\min_{\boldsymbol{x}, \ \theta} \ \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

 $m \Omega \in \mathbb{R}^{n imes n}$ and $\omega \in \mathbb{R}_+$ quantify the estimation error around $m \mu$

The issue of non-convexity still remains

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

The issue of non-convexity still remains

$$(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i = 1, ..., n$$

 $\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i = 1, ..., n$

► Relax the problem into a Semidefinite Program (SDP)

Semidefinite relaxation

▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$

 \Rightarrow Non-convex: $oldsymbol{X} = oldsymbol{x} oldsymbol{x}^T$

Semidefinite relaxation

▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$

 \Rightarrow Non-convex: $\boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T$

 \Rightarrow Convex relaxation: $X \succeq xx^T$

$$\begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nn} \end{bmatrix} \succeq \begin{bmatrix} x_1^2 & x_1 x_2 & \cdots & x_1 x_n \\ x_2 x_1 & x_2^2 & \cdots & x_2 x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_n x_1 & x_n x_2 & \cdots & x_n^2 \end{bmatrix}$$

Semidefinite relaxation of the problem

- ▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$
 - \Rightarrow Non-convex: $X = xx^T$
 - \Rightarrow Convex relaxation: $X \succeq xx^T$
- ► Taking the Schur complement, $Y = \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$.

Semidefinite relaxation of the problem

- ▶ Introduce a new variable $X \in \mathbb{R}^{n \times n}$
 - \Rightarrow Non-convex: $X = xx^T$
 - \Rightarrow Convex relaxation: $X \succeq xx^T$
- ► Taking the Schur complement, $Y = \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$.
- ► Align the input parameters with the dimensions of *Y*

$$m{Q} = egin{bmatrix} m{\Sigma} & -rac{\lambda}{2}m{\mu} \ -rac{\lambda}{2}m{\mu}^T & m{0} \end{bmatrix}, \quad m{B_i} = egin{bmatrix} m{A_i} & m{0} \ m{0}^T & 0 \end{bmatrix} ext{ for } i=1,...,n.$$

Relax the GRP model into a SDP

Original
$$\Rightarrow$$

$$x, \theta$$
s.t. $(1 + \frac{1}{2})$

$$\min_{\boldsymbol{x},\ \theta} \ \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

Relax the GRP model into a SDP

Original
$$\Rightarrow$$

$$\min_{\boldsymbol{x}, \ \theta} \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

$$\begin{aligned} \text{SDP} &\Rightarrow & \underset{\boldsymbol{Y},\ \theta}{\min} & \operatorname{Tr}(\boldsymbol{Q}\boldsymbol{Y}) + \lambda \omega \|\boldsymbol{\Omega}^{1/2}\boldsymbol{Y}_{1:n,n+1}\|_2 \\ &\text{s.t.} & (1+c)\theta - \operatorname{Tr}(\boldsymbol{B}_i\boldsymbol{Y}) \geq 0, \quad i=1,...,n \\ &\operatorname{Tr}(\boldsymbol{B}_i\boldsymbol{Y}) - (1-c)\theta \geq 0, \quad i=1,...,n \\ &\sum_{i=1}^n Y_{i,n+1} = 1 \\ &Y_{n+1,n+1} = 1 \\ &\boldsymbol{Y} \succeq 0 \end{aligned}$$

Relax the GRP model into a SDP

Original
$$\Rightarrow$$

$$\min_{\boldsymbol{x}, \ \theta} \quad \boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x} - \lambda \left(\boldsymbol{\mu}^T \boldsymbol{x} - \omega \| \boldsymbol{\Omega}^{1/2} \boldsymbol{x} \|_2 \right)$$
s.t. $(1+c)\theta - \boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} \ge 0, \quad i=1,...,n$

$$\boldsymbol{x}^T \boldsymbol{A}_i \boldsymbol{x} - (1-c)\theta \ge 0, \quad i=1,...,n$$

$$\boldsymbol{1}^T \boldsymbol{x} = 1$$

$$\begin{array}{ll} \operatorname{SDP} \Rightarrow & \min_{\boldsymbol{Y},\ \boldsymbol{\theta}} & \operatorname{Tr}(\boldsymbol{Q}\boldsymbol{Y}) + \lambda \omega \| \boldsymbol{\Omega}^{1/2}\boldsymbol{Y}_{1:n,n+1} \|_{2} & \left. \right\} f(\boldsymbol{Y}) \\ \text{s.t.} & (1+c)\boldsymbol{\theta} - \operatorname{Tr}(\boldsymbol{B}_{i}\boldsymbol{Y}) \geq 0, \quad i=1,...,n \\ & \operatorname{Tr}(\boldsymbol{B}_{i}\boldsymbol{Y}) - (1-c)\boldsymbol{\theta} \geq 0, \quad i=1,...,n \\ & \sum_{i=1}^{n} Y_{i,n+1} = 1 \\ & \boldsymbol{Y}_{n+1,n+1} = 1 \\ & \boldsymbol{Y} \succeq 0 \end{array} \right\} \mathcal{S}$$

How do we solve the original problem?

► Recall
$$Y = \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \succeq 0$$

▶ If $X = xx^T$, we recover the original problem

How do we solve the original problem?

$$lacksquare$$
 Recall $Y = egin{bmatrix} X & x \ x^T & 1 \end{bmatrix} \succeq 0$

- ▶ If $X = xx^T$, we recover the original problem
- ► This is equivalent to a rank-1 constraint

$$\boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T \iff \operatorname{rank}(\boldsymbol{Y}) = 1$$

How do we solve the original problem?

$$lacktriangleright$$
 Recall $Y = egin{bmatrix} X & x \ x^T & 1 \end{bmatrix} \succeq 0$

- ▶ If $X = xx^T$, we recover the original problem
- ► This is equivalent to a rank-1 constraint

$$\boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T \iff \operatorname{rank}(\boldsymbol{Y}) = 1$$

► Idea: Approximate the rank-1 condition

Approximate the rank-1 condition

- ► Use the Alternating Direction Method of Multipliers (ADMM)
- ightharpoonup Transfer the rank-1 requirement to a new variable Z

$$\Rightarrow Z = Y$$

$$\Rightarrow \operatorname{rank}(\boldsymbol{Z}) = 1$$

Approximate the rank-1 condition

- ► Use the Alternating Direction Method of Multipliers (ADMM)
- ightharpoonup Transfer the rank-1 requirement to a new variable Z

$$\Rightarrow Z = Y$$

$$\Rightarrow \operatorname{rank}(\boldsymbol{Z}) = 1$$

► Reformulate as an Augmented Lagrangian

$$L(\boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{\Lambda}) = f(\boldsymbol{Y}) + \frac{\rho}{2} \|\boldsymbol{Y} - (\boldsymbol{Z} - \frac{1}{\rho} \boldsymbol{\Lambda})\|_F^2$$

 $\Rightarrow \rho \in \mathbb{R}_+$ is a tuning parameter

 $oldsymbol{
ightarrow} oldsymbol{\Lambda} \in \mathbb{R}^{(n+1) imes (n+1)}$ is the dual variable of the constraint $oldsymbol{Z} = oldsymbol{Y}$

ADMM algorithm

- ► Iterate through the steps:
 - 1) Convex Y-minimization: $Y^{k+1} = \underset{Y,\theta \in S}{\operatorname{argmin}} L(Y, Z^k, \Lambda^k)$

ADMM algorithm

► Iterate through the steps:

1) Convex
$$Y$$
-minimization: $Y^{k+1} = \underset{Y,\theta \in S}{\operatorname{argmin}} L(Y, Z^k, \Lambda^k)$

2) Non-convex Z-minimization:
$$\mathbf{Z}^{k+1} = \underset{\mathrm{rank}(\mathbf{Z})=1}{\operatorname{argmin}} L(\mathbf{Y}^{k+1}, \mathbf{Z}, \mathbf{\Lambda}^k)$$

ADMM algorithm

► Iterate through the steps:

1) Convex
$$Y$$
-minimization: $Y^{k+1} = \underset{Y,\theta \in S}{\operatorname{argmin}} L(Y, Z^k, \Lambda^k)$

2) Non-convex Z-minimization:
$$\mathbf{Z}^{k+1} = \underset{\text{rank}(\mathbf{Z})=1}{\operatorname{argmin}} L(\mathbf{Y}^{k+1}, \mathbf{Z}, \mathbf{\Lambda}^k)$$

3) Dual variable
$$\Lambda$$
-update: $\Lambda^{k+1} = \Lambda^k + \rho(Y^{k+1} - Z^{k+1})$

ADMM algorithm

► Iterate through the steps:

1) Convex *Y*-minimization:
$$\mathbf{Y}^{k+1} = \underset{\mathbf{Y}, \theta \in \mathcal{S}}{\operatorname{argmin}} L(\mathbf{Y}, \mathbf{Z}^k, \mathbf{\Lambda}^k)$$

2) Non-convex Z-minimization:
$$\mathbf{Z}^{k+1} = \underset{\text{rank}(\mathbf{Z})=1}{\operatorname{argmin}} L(\mathbf{Y}^{k+1}, \mathbf{Z}, \mathbf{\Lambda}^k)$$

3) Dual variable
$$\Lambda$$
-update: $\Lambda^{k+1} = \Lambda^k + \rho(Y^{k+1} - Z^{k+1})$

► We can efficiently solve the **non-convex** step

ADMM algorithm

► Iterate through the steps:

1) Convex *Y*-minimization:
$$\mathbf{Y}^{k+1} = \underset{\mathbf{Y}, \theta \in \mathcal{S}}{\operatorname{argmin}} L(\mathbf{Y}, \mathbf{Z}^k, \mathbf{\Lambda}^k)$$

2) Non-convex Z-minimization:
$$\mathbf{Z}^{k+1} = \underset{\text{rank}(\mathbf{Z})=1}{\operatorname{argmin}} L(\mathbf{Y}^{k+1}, \mathbf{Z}, \mathbf{\Lambda}^k)$$

3) Dual variable
$$\Lambda$$
-update: $\Lambda^{k+1} = \Lambda^k + \rho(Y^{k+1} - Z^{k+1})$

- ▶ We can efficiently solve the non-convex step
 - \Rightarrow Singular Value Decomposition of $m{Y}^{k+1} + rac{1}{
 ho} m{\Lambda}^k$

$$\boldsymbol{Z}^{k+1} = s_1 \boldsymbol{v}_1 \boldsymbol{v}_1^T,$$

 $\Rightarrow s_1 \in \mathbb{R}$ and $v_1 \in \mathbb{R}^{n+1}$ are the top singular value and vector

ADMM algorithm

- ightharpoonup As we iterate, we close the distance between Y and Z
- ightharpoonup Z is the closest rank-1 approximation of Y

ADMM algorithm

- ightharpoonup As we iterate, we close the distance between Y and Z
- ightharpoonup Z is the closest rank-1 approximation of Y
- ► At convergence, rank(Y) = rank(Z) = 1

$$\Rightarrow X = xx^T$$

⇒ We solve the original problem

ADMM algorithm

- ightharpoonup As we iterate, we close the distance between Y and Z
- ightharpoonup Z is the closest rank-1 approximation of Y
- ► At convergence, rank(Y) = rank(Z) = 1

$$\Rightarrow \boldsymbol{X} = \boldsymbol{x} \boldsymbol{x}^T$$

- ⇒ We solve the original problem
- ▶ By tightening the lower bound, we can attain feasibility
 - ⇒ We converge to a highly quality local optimum

Experimental setup

- ► Two experiments with n = 33 and n = 50
- ▶ Data
 - ⇒ U.S. stocks belonging to the S&P 500 index
 - ⇒ Weekly rates of return from 01-Jan-2007 to 31-Dec-2009

Experimental setup

- ► Two experiments with n = 33 and n = 50
- ▶ Data
 - ⇒ U.S. stocks belonging to the S&P 500 index
 - ⇒ Weekly rates of return from 01-Jan-2007 to 31-Dec-2009
- ► Competing models
 - ⇒ Robust MVO

⇒ Non-convex GRP

 \Rightarrow **ADMM**

⇒ Non-convex GRP (warm)

- ► Measures of performance
 - ⇒ Objective value
 - ⇒ Coefficient of variation of the asset risk contributions
 - \Rightarrow Runtime

- ▶ Measures of performance
 - ⇒ Objective value } Lower is better
 - ⇒ Coefficient of variation of the asset risk contributions
 - \Rightarrow Runtime

- ► Measures of performance
 - ⇒ Objective value
 - ⇒ Coefficient of Variation (CV) } Lower = more diversification
 - ⇒ Runtime

- ► Measures of performance
 - ⇒ Objective value
 - ⇒ Coefficient of Variation (CV)
 - **⇒ Runtime** } Lower is better

CV and Objective Value

CV and Objective Value

		n - 33 $c -$	0 25 \ \ — 0 1	
	$n = 33, c = 0.25, \lambda = 0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.099	0.536	0.203	0.146
CV	1.72	0.258	0.253	0.250
Runtime (sec)	0.026	0.049	0.061	7.16
	$n=50, c=0.15, \lambda=0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.094	0.223	0.259	0.141
CV	1.75	0.150	0.150	0.151
Runtime (sec)	0.040	0.101	0.103	42.88

	$n = 33, c = 0.25, \lambda = 0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.099	0.536	0.203	0.146
CV	1.72	0.258	0.253	0.250
Runtime (sec)	0.026	0.049	0.061	7.16
	$n=50, c=0.15, \lambda=0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.094	0.223	0.259	0.141
CV	1.75	0.150	0.150	0.151
Runtime (sec)	0.040	0.101	0.103	42.88

	$n=33, c=0.25, \lambda=0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.099	0.536	0.203	0.146
CV	1.72	0.258	0.253	0.250
Runtime (sec)	0.026	0.049	0.061	7.16
	$n=50, c=0.15, \lambda=0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.094	0.223	0.259	0.141
CV	1.75	0.150	0.150	0.151
Runtime (sec)	0.040	0.101	0.103	42.88

	$n=33, c=0.25, \lambda=0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.099	0.536	0.203	0.146
CV	1.72	0.258	0.253	0.250
Runtime (sec)	0.026	0.049	0.061	7.16
	$n=50, c=0.15, \lambda=0.1$			
	MVO	Non-Convex	NC (Warm)	ADMM
Obj. Value	0.094	0.223	0.259	0.141
CV	1.75	0.150	0.150	0.151
Runtime (sec)	0.040	0.101	0.103	42.88

Conclusion

What was our goal?

- ► We wanted to address
 - ⇒ Risk–return profile
 - ⇒ Risk-based diversification
 - ⇒ Short selling (flexibility)

Conclusion

What was our goal?

- ▶ We wanted to address
 - ⇒ Risk–return profile
 - ⇒ Risk-based diversification
 - ⇒ Short selling (flexibility)
- ► Meeting these criteria is difficult
 - ⇒ We have a non-convex problem

Conclusion

Our contribution

- ► Proposed a generalized risk parity model
- ► Addressed the non-convexity of risk parity
 - ⇒ Imposed a rank-1 constraint via ADMM