МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Высшая школа общей и прикладной физики

Отчет по лабораторной работе № 116 «Эллипсоид инерции»

Выполнил:

студент 1 курса ВШ ОПФ

Тарханов Андрей Алексеевич

Экспериментальная часть

Определим параметры трифилярного подвеса:

$$a=30$$
,13 * 10^{-1} см , $b=128$,55 * 10^{-1} см , $l=2191$ * 10^{-1} см , $m_0=1000$ г Приборные погрешности здесь $da=db=0$,05 мм , $dl=0$,1 мм, $dm=0$,5г

Изучим эллипсоид инерции однородного цилиндра.

Измерим время 10 колебаний цилиндра, характеристики которого: D=89,85мм — диаметр основания, L=149 мм — длина, масса m=2652г. Определим период колебаний и моменты инерции с помощью формулы

$$I = \frac{gab}{4\pi^2 l} \left[T^2 (m + m_0) - m_0 T_0^2 \right] (21)$$

Положение цилиндра	t, c			Т, с			$T_{ m cpeднee}$, с	<i>I,</i> г*см ²	<i>I</i> _т , г*см ²
1.	18,2	18,1	18,2	1,82	1,81	1,82	1,82	25463	26762
2.	23,2	23,1	23,2	2,32	2,31	2,32	2,32	58386	62445
3.	19,6	19,6	19,5	1,96	1,96	1,95	1,96	33880	34620

Рассчитаем теоретически момент инерции относительно главных осей цилиндра по формулам и результаты внесем в таблицу:

$$I = \frac{1}{2} mr^2$$
 и $I = \frac{1}{12} m(3r^2 + L)$

Построим эллипсоид инерции данного тела, используя формулу

$$\frac{\rho_x^2}{\left(\frac{1}{\sqrt{I_1}}\right)^2} + \frac{\rho_y^2}{\left(\frac{1}{\sqrt{I_2}}\right)^2} + \frac{\rho_z^2}{\left(\frac{1}{\sqrt{I_3}}\right)^2} = 1 \ (11).$$

Измерим момент инерции цилиндра относительно оси *0′0″*, результат занесём в таблицу (положение цилиндра №3).

Вычислим так же момент инерции с помощью формулы (7) $I=I_1cos^2\alpha+I_2cos^2\beta+I_3cos^2\gamma$, учитывая, что $cos\alpha=\frac{L}{\sqrt{D^2+L^2}}\approx 0.86$, $cos\beta=\frac{D}{\sqrt{D^2+L^2}}\approx 0.52$, $cos\gamma=0$: $I_m=34620\ \varepsilon*cm^2$

Выясним, есть ли связь между формой цилиндра (отношением его высоты h к радиусу сечения r) и формой эллипсоида инерции.

Отношение в данном цилиндре $\frac{h}{r} \approx 3,32$

Главные моменты инерции цилиндра: $I_1 = \frac{mr^2}{2}$,

$$I_2 = I_3 = m\left(\frac{r^2}{4} + \frac{h^2}{12}\right) = \frac{mr^2}{4}\left(1 + \frac{(\frac{h}{r})^2}{3}\right)$$
, r.e. $I_2 = I_3 = \frac{I_1}{2}\left(1 + \frac{(\frac{h}{r})^2}{3}\right)$.

Чем больше отношение $\frac{h}{r}$, тем больше сжат эллипсоид инерции в плоскости I_2I_3 , толщина вдоль I_1 не меняется.

а) Для цилиндра с характеристиками : $D = 95,85 \, mm$ — диаметр основания, $L = 82 \, mm$ — длина, масса m = 1668,52. Определим период колебаний и моменты инерции с помощью формулы (21).

Рассчитаем теоретически момент инерции относительно главных осей цилиндра по формулам и результаты внесем в таблицу:

$$I = \frac{1}{2}mr^2$$
 и $I = \frac{1}{12}m(3r^2 + L)$

Положение цилиндра	t, c			T, c			$T_{ m cpeднee}$, с	<i>I,</i> г*см ²	<i>I</i> _т , г*см²
1.	19,8	19,8 19,7		1,98	3 1,98 1,97		1,98	18333	18929
2.	20,2	20,1	20,2	2,02	2,01	2,01	2,02	20192	19155

Отношение $\frac{h}{r} \approx 1,7$. Построим соответствующий эллипсоид инерции

Отношение высоты данного цилиндра к радиусу сечения меньше, чем у предыдущего, то эллипсоид инерции в плоскости I_2I_3 более растянут.

Изучим эллипсоид инерции призмы.

Измерим время 10 колебаний параллелепипеда, характеристики которого: $a = 68 \, \text{мм}, \, b = 68,25 \, \text{мм}$ — стороны основания, $L = 199,55 \, \text{мм}$ — длина, масса $m = 2558 \, \text{г}$, Определим период колебаний и моменты инерции с помощью формулы (21).

Рассчитаем теоретически момент инерции относительно главных осей цилиндра по формуле и результаты внесем в таблицу: $I = \frac{1}{12} m(a^2 + b^2)$

Положение тела	t, c			<i>T</i> ,c			$T_{ m cpeднee}$, с	<i>I, г*см</i> ²	I _т , г*см ²
1.	17,4	17,5	17,4	1,74	1,75	1,74	1,74	19694	19786
2.	27,3	27,2	27,3	2,73	2,72	2,73	2,73	88266	94740
3.	19,7	19,3	19,5	1,97	1,93	1,95	1,95	31702	31840

Отношение $l_1/l_2 \approx 2,9$.

Построим эллипсоид инерции данного тела, используя формулу (11)

 а) Измерим момент инерции призмы относительно оси 0'0", результат занесём в таблицу (положение тела №3).

Вычислим так же момент инерции с помощью формулы (7), учитывая, что $cos\beta = \frac{L}{\sqrt{2a^2+L^2}} \approx 0.9, cos\alpha = \frac{a}{\sqrt{2a^2+L^2}} = cos\gamma \approx 0.3.$

$$I_m = 31840 \,\varepsilon * cm^2.$$

b) Выясним, есть ли связь между формой параллелепипеда (отношением его ребер l_1/l_2) и формой эллипсоида инерции.

Отношение в данной призме $l_1/l_2 \approx 2.9$

Главные моменты инерции:
$$I_1 = \frac{ml_2^2}{6}$$
, $I_2 = I_3 = \frac{m}{12}(l_1^2 + l_2^2) = \frac{ml_2^2}{12}\left((\frac{l_1}{l_2})^2 + 1\right)$, т .е.

$$I_2 = I_3 = \frac{I_1}{2} \left(\left(\frac{l_1}{l_2} \right)^2 + 1 \right).$$

Чем больше отношение $\frac{l_1}{l_2}$, тем больше сжат эллипсоид инерции в плоскости I_2I_3 , толщина вдоль I_1 не меняется.

Для параллелепипеда с характеристиками $a=49,85\ мм$, $b=99\ мм$ — стороны основания, $L=149\ мм$ — длина, масса m=2005г моменты инерции вычислим по формуле, результаты внесем в таблицу. Определим период колебаний и моменты инерции с помощью формулы (21).

Рассчитаем теоретически момент инерции относительно главных осей цилиндра по формуле и результаты внесем в таблицу: $I = \frac{1}{12} m(a^2 + b^2)$

Положение тела	t, c			Т, с			$T_{ m cpeд Hee}$, с	<i>I, г*см</i> ²	<i>I</i> _т , г*см²
1.	19,4	19,6	19,5	1,91	1,90	1,91	1,91	20523	20527
2.	22,6	22,5	22,5	2,26	2,25	2,25	2,25	39033	41246
3.	24,7	24,2	24,8	2,47	2,42	2,48	2,46	51978	53470

Отношение $l_1/l_{21} \approx 3$, $l_1/l_{22} \approx 1.5$

Построим соответствующий эллипсоид инерции

Для куба с характеристиками a=85,75 мм – сторона, масса $m=1707\varepsilon$. Определим период колебаний и моменты инерции с помощью формулы (21). Рассчитаем теоретически момент инерции относительно главных осей цилиндра по формуле и результаты внесем в таблицу: $I=\frac{1}{6}ma^2$

Положение тела	t, c			Т, с			$T_{ m cpeднee}$, с	<i>I, г*см</i> ²	I _т , г*см ²
1.	19,9	19,9	19,6	1,99	1,99	1,96	1,98	18996	21042
2.	20,1	20,0	20,1	2,01	2,00	2,01	2,01	20410	19170

Измерим момент инерции цилиндра относительно оси *O'O''*, результат занесём в таблицу (положение тела №2).

Вычислим так же момент инерции с помощью формулы (7), учитывая, что $cos\beta=cos\alpha==\frac{a}{\sqrt{3a^2}}\approx 0,58.$

$$I_m = 19170 \,\varepsilon * cm^2.$$

Проверим экспериментально теорему Гюйгенса-Штейнера:

$$I = I_0 + md^2$$
 (22),

где m — масса тела, d — расстояние от центра инерции до оси O'O'', I — момент инерции относительно этой оси, I_0 — момент инерции твердого тела относительно оси, параллельной O'O'' и проходящей через центр инерции.

С помощью метода крутильных колебаний (количество колебаний n=10) измерим сначала момент инерции двух малых цилиндров (их характеристики: D=95,85 мм, L=82 мм, m=1668,5г), положив их одно на другое в центре платформы. Затем оба тела расположим симметрично на платформе и определим их момент инерции (в обоих случаях пользуемся формулой (21)).

Положение тел		t, c			Т, с		$T_{ m cpeд Hee}$, с	<i>I</i> ₂ , г*см ²	<i>I</i> т, г*см ²
1.d=0 мм	18,0	18,3	18,2	1,80	1,83	1,82	1,82	35331	38310
2.d=48 мм	27,2	27,4	27,3	2,72	2,74	2,73	2,73	113519	114932
5. d=6,80cм	34,2	34,1	33,7	3,42	3,41	3,37	3,40	191076	192567

Построим график зависимости $I_2(d^2)$:

Видим, что экспериментальные данные удовлетворяют теоретическим и, следовательно, теорема Гюйгенса-Штейнера выполняется.

Вывод:

С помощью метода крутильных колебаний научились определять момент инерции однородного тела.

По полученным данным строили эллипсоиды инерции, заметили, что между формой цилиндра (отношением его высоты h к радиусу сечения r) и формой его эллипсоида инерции, а так же между формой параллелепипеда (отношением его ребер l_1/l_2) и формой его эллипсоида инерции существует связь (в случае выбора тел таким образом, что один из главных моментов инерции будет одинаков):

Стоит отметить, что взаимно однозначного соответствия между формой однородного тела и формой соответствующего эллипсоида не существует.

Методом крутильных колебаний можно подтвердить теорему Гюйгенса-Штейнера