Totale Unimodularità

In alcuni casi:

formulazione originale \rightarrow formulazione ideale problema di PLI

Si consideri il seguente problema di PLI in forma standard:

$$z_{PLI} := \min \mathbf{c}^T \mathbf{x}$$

$$A\mathbf{x} = \mathbf{b}$$

$$\mathbf{x} \ge \mathbf{0} \text{ intero}$$

dove A e **b** si assumono interi.

Sotto quali condizioni una generica soluzione di base ammissibile \mathbf{x}^* ha componenti frazionarie?

Sia B la base associata a \mathbf{x}^* , si ha:

$$\mathbf{x}^* = \begin{bmatrix} B^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$$

 \mathbf{x}^* ha componenti frazionarie se e solo se $B^{-1}\mathbf{b}$ non è intero.

L'inversa di B è calcolata come:

$$B^{-1} = \frac{1}{det(B)} \begin{bmatrix} \alpha_{11} & \dots & \alpha_{m1} \\ \vdots & & \vdots \\ \alpha_{m1} & \dots & \alpha_{mm} \end{bmatrix}^T$$

dove $\alpha_{ij} := (-1)^{i+j} det(M_{ij})$ e M_{ij} è la sottomatrice ottenuta da B eliminando l'*i*-esima riga e la j-esima colonna.

B è intera $\Rightarrow \alpha_{ij}, \forall i, j$ interi $\Rightarrow B^{-1}$ intera se $det(B) := \pm 1$ Si noti che la condizione è sufficiente, ma non necessaria per l'interezza di $B^{-1}\mathbf{b}$ (perché?)

E' possibile dimostrare che data una matrice A contenente una base B con $|det(B)| \neq 1$ esiste sempre un problema di PL del tipo $\{\min \mathbf{c}^T \mathbf{x} : A\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}$, con \mathbf{c} e \mathbf{b} opportuni, la cui soluzione ottima coincide con un vertice frazionario.

Definizione 1: Una matrice intera A di dimensione $m \times n$ con $m \leq n$ si dice unimodulare se per ogni sua sottomatrice quadrata $m \times m$ B vale:

$$det(B) \in \{-1, 0, 1\}.$$

Teorema 1: Sia A unimodulare e \mathbf{b} intero. Allora il poliedro $P := \{\mathbf{x} \geq \mathbf{0} : A\mathbf{x} = \mathbf{b}\}$ ha solo vertici interi.

Dim: Sia \mathbf{x}^* un qualunque vertice di P. Allora esiste una base B di A tale che $\mathbf{x}^* = (B^{-1}\mathbf{b}, \mathbf{0})$. Poiché B è una sottomatrice quadrata di A di ordine m e non singolare si ha:

$$|det(B)| = 1 \Rightarrow$$
 interezza di $B^{-1} \Rightarrow$ interezza di $B^{-1}\mathbf{b}, \forall \mathbf{b}$ intero. \Box

Se il problema di PLI è in forma canonica:

$$\{\min \mathbf{c}^T \mathbf{x} : A\mathbf{x} \ge \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}\}$$

 \Downarrow

$$\{\min \mathbf{c}^T \mathbf{x} : A\mathbf{x} - I\mathbf{s} = \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}, \mathbf{s} \ge \mathbf{0}\}\$$

dove **s** sono variabili di surplus. La nuova matrice dei vincoli è A' := [A, -I].

In generale, ogni sottomatrice $m \times m$ di A' si può ottenere selezionando k colonne da A e m-k colonne da -I $(0 \le k \le m)$.

Allora, a meno di permutazioni di righe e colonne, si ha:

$$B = \begin{bmatrix} -I' & F \\ \hline 0 & Q \end{bmatrix}$$
colonne da $-I$ colonne da A

dove I' è una matrice identità di ordine m-k.

Pertanto:

 $det(B) = \pm det(Q) \Rightarrow A'$ è unimodulare se e solo se vale $det(Q) \in \{-1,0,1\}$ per ogni sottomatrice quadrata Q di A, di qualunque ordine.

Definizione 2: Una matrice intera A di dimensione $m \times n$ si dice totalmente unimodulare (TUM) se $det(Q) \in \{-1, 0, 1\}$ per ogni sua sottomatrice quadrata Q, di qualunque ordine.

Teorema 2: Sia A TUM e \mathbf{b} intero. Allora il poliedro $P := \{\mathbf{x} \ge \mathbf{0} : A\mathbf{x} \ge \mathbf{b}\}$ ha solo vertici interi.

Dim: Sia \mathbf{x}^* un qualunque vertice del poliedro P. Dimostriamo che $(\mathbf{x}^*, \mathbf{s}^* := A\mathbf{x}^* - \mathbf{b})$ è vertice del poliedro $P' := \{(\mathbf{x}, \mathbf{s}) \geq \mathbf{0} : A\mathbf{x} - \mathbf{s} = \mathbf{b}\}.$

Se così non fosse:

 \exists due punti $(\mathbf{x^1}, \mathbf{s^1}), (\mathbf{x^2}, \mathbf{s^2})$ distinti di P' tali che: $(\mathbf{x^*}, \mathbf{s^*}) = \lambda(\mathbf{x^1}, \mathbf{s^1}) + (1 - \lambda)(\mathbf{x^2}, \mathbf{s^2})$ per qualche $\lambda, 0 < \lambda < 1$.

Si noti che $\mathbf{x^1}$ e $\mathbf{x^2}$ appartengono a P, dato che:

$$\mathbf{s}^1 = A\mathbf{x}^1 - \mathbf{b} \ge 0;$$

$$\mathbf{s^2} = A\mathbf{x^2} - \mathbf{b} \ge 0.$$

Inoltre:

 $(\mathbf{x^1}, \mathbf{s^1}) \neq (\mathbf{x^2}, \mathbf{s^2}) \Rightarrow \mathbf{x^1} \neq \mathbf{x^2}$ e quindi $\mathbf{x^*} = \lambda \mathbf{x^1} + (1 - \lambda) \mathbf{x^2}$ non potrebbe essere un vertice di P.

Poiché A è TUM $\Rightarrow A' := [A, -I]$ è unimodulare.

Per il Teorema 1 $(\mathbf{x}^*,\mathbf{s}^*)$ è intero e quindi anche \mathbf{x}^* è intero. \square

Come si dimostra che una matrice A è TUM?

- enumerando tutte le sottomatrici quadrate di A;
- verificando alcune semplici condizioni.

Condizione **necessaria** (non sufficiente) affinché A sia TUM: $a_{ij} \in \{-1, 0, 1\}$ per ogni elemento (sottomatrice 1×1) di A.

Condizione **sufficiente** (non necessaria) affinché A sia TUM:

Teorema 3: Sia A una matrice con $a_{ij} \in \{-1, 0, 1\}$. A è TUM se valgono le seguenti condizioni:

- 1. ogni colonna di A ha non più di due elementi non nulli;
- 2. esiste una partizione (I_1, I_2) delle righe di A tale che ogni colonna con due elementi diversi da zero ha questi due elementi su righe appartenenti a insiemi I_1 e I_2 diversi se e solo se i due elementi sono concordi in segno.

Proposizione 1: La matrice A è TUM se e solo se:

- A^T è TUM;
- la matrice A' ottenuta da A permutando e/o cambiando segno ad alcune righe e/o colonne è TUM;
- le matrici:

$$\begin{bmatrix} \pm 1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} A = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} A = \begin{bmatrix} sono TUM. \\ \vdots \\ 0 \end{bmatrix}$$

Esempio Dimostrare la totale unimodularità della seguente matrice:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Soluzione:

- Per la Proposizione 1 possiamo eliminare le righe #4 e #7 e la colonna #6 perché contengono un solo elemento diverso da zero;
- esiste una partizione delle righe della matrice rimanente in due sottoinsiemi distinti, così composti:

$$I_1 = \{1, 2, 6\}$$
 e $I_2 = \{3, 4, 5\}.$

Problema del Trasporto

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} \le s_i \quad i = 1, ..., m \quad \text{(vincoli sull'offerta)};$$

$$\sum_{i=1}^{m} x_{ij} \ge d_j \quad j = 1, ..., n \quad \text{(vincoli sulla domanda)};$$

$$0 \le x_{ij} \le q_{ij}$$
 $i = 1, ..., m, j = 1, ..., n$ (vincoli di capacità)

Cambiando segno ai vincoli sull'offerta e a quelli di capacità trasformiamo il problema in forma canonica:

$$\{\min \mathbf{c}^T \mathbf{x} : A\mathbf{x} \ge \mathbf{b}, \quad \mathbf{x} \ge \mathbf{0}\},\$$

dove:

		x_{11}	x_{12}	• • •	x_{ij}	$x_{i,j+1}$		$x_{m,n-1}$	$x_{m,n}$		
	1	-1	-1	• • •	0	0		0	0		$-s_1$
	:	0	0		0	0		0	0		
	i	:	:		-1	-1		:	:		$-s_i$
	:	0	0		0	0		0	0		
	m	0	0	• • •	0	0		-1	-1		$-s_m$
	1	1	0	• • •	0	0		0	0		d_1
	2	0	1	• • •	0	0	• • •	0	0		d_2
	:	0	0		0	0		0	0		
A=	j	:	:		1	0		:	:	$\mathbf{b} = $	$\mid d_j \mid \mid$
	j+1	:	:		0	1		:	:		d_{j+1}
	÷	0	0		0	0		0	0		:
	n-1	0	0		0	0		1	0		$\mid d_{n-1} \mid \mid$
	n	0	0		0	0		0	1		d_n
-	(1, 1)	-1	0	• • •	0	0		0	0		$\mid -q_{1,1} \mid \mid$
	:	0	0		0	0		0	0		
	(i, j)	0	0	• • •	-1	0		0	0		$-q_{i,j}$
	÷	0	0		0	0		0	0		
	(m, n)	0	0		0	0		0	-1		$\mid -q_{m,n} \mid \mid$

Osserviamo che:

- ogni colonna ha esattamente 3 elementi diversi da zero;
- tutti gli elementi della matrice hanno valore $\in \{-1, 0, 1\}$ (condizione necessaria).

Dimostrazione di totale unimodularità:

- eliminiamo le ultime $m \times n$ righe (Proposizione 1);
- partizione delle righe (Teorema 3):

$$I_1 = \{1, 2, \dots, m, m+1, \dots, m+n\} \in I_2 = \emptyset.$$