Kỹ thuật truyền số liệu

TÀI LIỆU THAM KHẢO

- 1. Michael A. Gallo, William M. Hancock: Computer Communications and Networking Technologies, NXB Bill Stenquist, năm 2002.
- 2. William Stallings: Data and Computer Communications 5th edition, NXB Prentice Hall of India Private Limited, năm 1999.
- **3.** Andrew S.Tanenbaum:Computer Network 4th edition, NXB Prentice Hall PTR, Prentice Hall. Inc, năm 1996.
- 4. John G. Proakis: Fundamental of Telecommunication Networks, năm 2006.
- 5. Nguyễn Hồng Sơn: Kỹ thuật truyền số liệu, NXB LĐ XH, năm 2002.
- 6. Nguyễn Văn Thưởng: Cơ sở kỹ thuật truyền số liệu, NXB KH KT, năm 1998.

NỘI DUNG MÔN HỌC

Chương 1: Tổng quan về mạng truyền số liệu

Chương 2: Tín hiệu và đường truyền

Chương 3: Biến đổi dữ liệu thành tín hiệu

Chương 4: Giao tiếp kết nối số liệu

Chương 5: Điều khiển liên kết dữ liệu

Chương 6: Các giao thức truy nhập đường truyền

Chương 1: Tổng quan về mạng truyền số liệu

1.1 Sơ đồ tổng quát hệ thống thông tin

- 1.2 Các chức năng cơ bản của hệ thống thông tin
- 1.3 Tổng quan về mạng truyền số liệu

1.4 Chuẩn hóa và mô hình tham chiếu OSI

1.1 Sơ đồ tổng quát hệ thống thông tin

- 1 Thông tin vào m
- **2** Dữ liệu g hay tín hiệu g(t) đầu vào
- **3** Tín hiệu phát s(t)
- 4 Tín hiệu thu r(t)
- Dữ liệu g' hay tín hiệu g'(t) thu được
- 6 Thông tin đầu ra *m'*

1.1 Sơ đồ tổng quát hệ thống thông tin

- Thiết bị vào: Thiết bị tạo ra dữ liệu để truyền đi.
- Thiết bị phát: Chuyển đổi, mã hóa thông tin thành tín hiệu điện từ.
- Môi trường truyền: Là đường truyền đơn hoặc một mạng liên hợp được kết nối tới hệ thống nguồn và đích.
- Thiết bị thu: biến đổi thành dạng tín hiệu mà thiết thiết bị ra có thể xử lý được.
- •Thiết bị ra: Nhận dữ liệu đến từ thiết bị thu.

1.1 Sơ đồ tổng quát hệ thống thông tin

Ví dụ: Mạng điện thoại chuyển mạch công cộng PSTN

1.2 Các chức năng cơ bản của hệ thống thông tin

- Các tiện ích của hệ thống thông tin
- Phối ghép, giao diện
- Tạo tín hiệu
- Đồng bộ
- Quản lý trao đổi
- Phát hiển và hiểu chỉnh lỗi

- Điều khiển luồng
- Địa chỉ
- Tìm đường
- Hồi phục
- · Tạo dạng thông báo
- Bảo vệ
- Quản lý hệ thống

1.3 Tổng quan về mạng số liệu

- Mạng số liệu dùng để kết nối các thiết bị truyền số liệu với nhau theo quy tắc trao đổi thông tin
 - Nút (Node): Nút mạng thực hiện kết nối các trạm đầu cuối với mạng và truyền nhận thông tin từ các thiết bị này qua mạng
 - Trạm (Station): Thực hiện việc truyền/nhận thông tin tới/từ nút.

1.3 Tổng quan về mạng số liệu

Phân loại mạng số liệu

- Phân loại theo phạm vi hoạt động của mạng.
- Phân loại theo đồ hình (topo) mạng.
- Phân loại mạng theo truyền thông chuyển mạch:
 - Chuyển mạch kênh (Circuit Switched Networks)
 - Chuyển mạch thông báo (Message Switched Networks)
 - Chuyển mạch gói (Packet Switched Networks).

1.3.1 Mạng chuyển mạch kênh

Thiết lập một "kênh" (circuit) cố định và duy trì kênh truyền vật lý đó cho tới khi một trong hai trạm ngắt liên lạc.

1.3.1 Mạng chuyển mạch kênh

- Ưu điểm:
- + Tốc độ dữ liệu luôn ổn định điều này đặc biệt quan trọng truyền Audio, Video.
- + Không có trễ truy nhập.
- Nhược điểm:
- +Tiêu tốn thời gian thiết lập đường truyền (kênh) cố định giữa 2 trạm.
- + Hiệu suất sử dụng kênh truyền không cao.

1.3.2 Mạng chuyển mạch thông báo

- Thông báo (Message): đơn vị thông tin có khuôn dạng quy định trước.
- Mỗi thông báo có chứa vùng thông tin điều khiển, chỉ rõ đích của thông báo.
- Mạng "lưu và chuyển tiếp" (Store and forward)
- Các thông báo có thể đi trên nhiều đường khác nhau.

1.3.2 Mạng chuyển mạch thông báo

1.3.2 Mạng chuyển mạch thông báo

- Ưu điểm:
- Hiệu suất sử dụng đường truyền cao hơn chuyển mạch kênh
- Có thể giảm được tình trạng tắc nghẽn mạng.
- Nhược điểm:
- Không đáp ứng được tính thời gian thực.
- Chỉ thích hợp với các dịch vụ thông tin không đòi hỏi
- tính thời gian thực (Real time) như: Email (Electric mail).

1.3.3 Mạng chuyển mạch gói

- Gói tin (Packet) chứa các thông tin điều khiển, có địa chỉ nguồn (người gửi) địa chỉ đích (Người nhận) của gói tin.
- Các gói tin có thể gửi qua mạng bằng nhiều đường.
- Giới hạn kích thước tối đa của gói tin MTU (Maximum

1.3.3 Mạng chuyển mạch gói

1.3.3 Mạng chuyển mạch gói

- Ưu điểm:
- Sử dụng đường truyền hiệu quả hơn so với phương pháp chuyển mạch kênh
- Tốc độ dữ liệu được giải quyết.
- Không xảy ra hiện tượng tắc nghẽn.
- Nhược điểm:
- Do việc chia thông báo thành nhiều gói tin nhỏ hơn, nên hiệu suất truyền tin giảm.
- Cần có cơ chế sắp xếp lại các gói tin.

1.4 Chuẩn hóa và mô hình tham chiếu OSI

1.4.1 Kiến trúc phân tầng

1.4.2 Mô hình tham chiếu OSI

1.4.1 Kiến trúc phân tầng

Khái niệm về tiến trình truyền thông.

Giả sử trạm A cần trao đổi thông tin liên lạc với trạm B.

- Thiết lập kết nối giữa A và B.
- Kiểm tra trạng thái của B.
- Chuyển đổi thông tin cần truyền sang khuôn dạng của mạng.
- Chia thông tin cần truyền thành nhiều gói nhỏ hơn.
- Thêm thông tin điều khiển
- Tìm đường đi ngắn nhất cho các gói tin.
- Kiểm soát luồng giữ liệu.
- Kiểm soát lỗi.
- Giải phóng tài nguyên.

1.4.1 Kiến trúc phân tầng

Ý nghĩa của việc phân tầng.

- Để đơn giản cho việc phân tích thiết kế.
- Tạo khả năng modul hóa cao.
- Dễ dàng cho việc tiêu chuẩn hóa giao diện.
- Đảm bảo khả năng làm việc giữa các công nghệ.
- Gia tốc cho những hướng phát triển mới.

1.4.1 Kiến trúc phân tầng

1.4.2 Mô hình tham chiếu OSI

• Được xây dựng theo nguyên tắc phân tầng

	Hệ thống A				Hệ thống B	
7	Application	←	Giao thức tầng 7	→	Ứng dụng	7
6	Presentation	←	Giao thức tầng 6	→	Trình diễn	6
5	Session	←	Giao thức tầng 5	→	Phiên	5
4	Transport	←	Giao thức tầng 4	→	Vận chuyển	4
3	Network	—	Giao thức tầng 3	→	Mạng	3
2	Datalink	—	Giao thức tầng 2	→	Liên kết dữ liệu	2
1	Physical	—	Giao thức tầng 1	→	Vật lý	1
Đường truyền vật lý				_		

7. Úng dụng (application)	Cung cấp các dịch vụ ứng dụng trên mạng cho người sử dụng qua môi trường OSI
6. Trình diễn (Presentation)	Chuyển đổi cú pháp dữ liệu để đáp ứng yêu cầu truyền thông của các ứng dụng
5. Phiên (session)	Quản lý các cuộc liên lạc giữa các thực thể bằng cách thiết lập, duy trì, đồng bộ hóa và hủy bỏ các phiên truyền thông giữa các ứng dụng
4. Giao vận (Transport)	Giao vận thông tin giữa các máy chủ (End to End). Kiểm soát lỗi và luồng dữ liệu
3. Mạng (Network)	Thực hiện việc chọn đường và đảm bảo việc trao đổi thông tin giữa các mạng con trong mạng lớn với công nghệ chuyển mạch thích hợp
2. Liên kết dữ liệu (Datalink)	Chuyển đổi khung thông tin (Frame) thành các chuỗi bit để truyền và kiến tạo lại các khung từ các bit nhận được
1. Vật lý (Physical)	Đảm bảo các yêu cầu truyền nhận các chuỗi bit qua các phương tiện vật lý

1.4.3 Nguyên tắc hoạt động của mô hình OSI

1.4.4 So sánh mô hình OSI với mô hình TCP/IP

Mô hình OSI			Mô hình TCP/IP		Giao thức	
7	Application				TELNET, HTTP,	
6	Presentation		Application	4	SMTP, POP3, FTP, DSN	
5	Session					
4	Transport		Transport	3	TCP, UDP	
3	Network		Internet	2	IP, ICMP, ARP	
2	Datalink		Network Access	1	ETHERNET,	
1	Physical				TOKEN RING, TOKEN BUS	