DECISION MODEL FOR ANTI-VIRUS SOFTWARE SELECTION

To help common people in choosing the right antivirus for them.

SRAVYA PAGADALA
NIKHITHA LINGUTLA
POOJA GURUNATH

SYST -573 FINAL PROJECT REPORT 6th May 2019

Contents

1.Team Introduction and Project Motivation	2
2.Scope	2
3.Specific exclusions from the scope	2
4. High-Level Project Plan	3
5. Brainstorming and identifying variables	4
6. Data Acquisition	6
7. Factor Analysis using SPSS	7
8. Affinity Diagram	10
9. Perform Analytic Hierarchy Process(AHP)	11
10. Triangular Distribution	16
11. Identifying Alternatives	18
12. Goal Hierarchy Diagram	19
13. Alternatives Ranking	20
14.FINAL DECISION BY DECISION MAKER	21
References	22
APPENDIX	23

1. Team Introduction and Project Motivation

We are a team of three - Nikhita Lingutla, Gurunath Pooja Jawalker and Sravya Pagadala. We have formulated a decision-making model for antivirus software consumer. We present here, our implementation of the decision analysis concepts and techniques learned in this class.

There's no longer any question about whether you should use antivirus software. It doesn't matter if you're running Windows, Android or macOS — there's malware out targeting your machine. There are so many options on the market that you may not know which to choose. You know that you need an antivirus, but you do not know which criteria it should meet. All security companies market their products as being the best, having the greatest antivirus or firewall, being complete products and so on and so forth. But what kind of antivirus software should you get? Will you need to pay for it, or is free software good enough? Whom should you trust? How should you choose your antivirus?

There are a lot of factors to consider when you're trying to select the best antivirus solution for your needs. With the security of your data, digital identity and financial transactions at stake, it's worthwhile investing some time in assessing each antivirus product and thus this motivated us to choose this topic for project.

This project will help common people in choosing the right antivirus for them.

2. Scope

Identifying which factors that need to be considered in choosing antivirus software ,organize and present Objectives, explore alternatives and find ways to quantify the alternatives in order to make a better decision for an antivirus software selection. **Decision Maker** is from a non –technical background having no clue about what to expect from an anti- virus software but the best option from the currently available anti-virus software in the market which is affordable.

3. Specific exclusions from the scope

As this project targets to help common people we choose to exclude the evaluation concern – "How does the antivirus software work?"

We don't wish to categorize which software to use based on its functionality such as -

- > Is it a network level protection technology with Intrusion Prevention layer?
- > Is it a File based protection?
- Is it a Reputation based protections?
- > Is it a Behavior based protection?

4. High-Level Project Plan

5. Brainstorming and identifying variables

Brainstorming and understanding the factors that need to be considered for selecting antivirus software.

Online rating & feedback

One of the key things is looking for whether an anti-virus software has online ratings and reviews. A recent study from Brightlocal found that 84% of today's consumers trust online ratings and reviews as much as they trust the recommendation of a friend or family member.

Hard disk space usage

How much is the anti-virus software taking up space on your hard drive is also crucial. You have to be sure to determine how the anti-virus impacts the speed of your computer, particularly if your workflow involves your computers to be a fast day in and day out. There is some anti-virus software out there that can affect the speed of the computer they are installed in. If your computer is not the most powerful on the market, you should take into consideration the performance aspect.

Customer care service

Checking whether the customer service team responsive and knowledgeable? Nothing in this world is perfect, so being able to call for help when something does not work as it should, is important. That is why the support options you get are a factor to consider before deciding to buy a security product.

> Schedule a scan feature

Is this feature available in the anti-virus software?

Scan logs report availability

Scan logs are an inspection of the potential points of exploit on a computer or network. Monitoring and analyzing user and system activity can help detect patterns of normal use and potentially malicious users.

Multiplatform, multi-device licenses

If you've decided to pay for antivirus protection, and you have a lot of computers and smartphones, check out the bundles that cover several Windows, OS X and Android devices for a single price.

Try before you buy option (try a month for free)

Most paid antivirus products on Mac and Windows will let you try a month for free. Most Android antivirus apps use a freemium model in which the basics are free, but useful extra features must be paid for. A good security suite offers protection for multiple devices like PCs, Macs, smartphones, and tablets. It keeps up with the needs of the individual, knows the risks associated with each device, and offers comprehensive protection for many devices.

Malware detection rate

Since the role of antivirus software is to detect threats, it should do so flawlessly. You'll want to make sure the antivirus software stops more than 95 percent of malware, whether it's commonplace malware or brand-new zero-day malware. But make sure that detection rate isn't accompanied by a high rate of false positives, which are benign files mistakenly flagged as malware.

Privacy Filter

If you're about to inadvertently divulge personal information, a privacy filter will provide a warning

Parental controls

This blocks access to certain sites unsuitable for children.

To help keep your family protected from online threats, look for parental control features. Features to look for include content filters that prevent kids from visiting websites that are inappropriate for their age, time supervision, and social media and messaging-apps monitoring.

> File Shredders

This feature removes all electronic traces of an infected file.

Deleting a file from your hard drive does not remove all electronic traces of it, which can allow someone who accesses or inherits your computer to recover some or all of the file's data. To eliminate that possibility, you need file-shredding software. Some pay antivirus suites include a file shredder.

Spam Filters

The filters provided by many email programs or internet service providers might be all you need to block unwelcome mail. The antispam feature on suites (and standalone, and often free, programs) offers supplementary assistance if too many junk email messages are still getting through.

Frequency and regularity of updates for the software

How frequently the antivirus software fixes bugs if any and gets updates is also critical as else it may be outdated.

Installation setup ease

If it requires just one download and installation and a single upgrade to its database when necessary. Its single interface can also be easier to use than multiple stand-alone programs.

No excessive memory uses

A light touch that won't slow your system down. While any antivirus program will use some of your computer's resources, a good antivirus program should keep your system free of malware without significantly slowing down your system's performance. In testing, the best antivirus software exacts almost no drag on performance.

> Anti-worm, Anti Trojan and Antispyware

These features are meant to provide comprehensive protection in one package. They offer not only malware protection but also a firewall, an antispam filter, and other extras.

Full System Scan

Checks all boot records, files, and running processes.

Subscription Price

Most paid antivirus programs provide updates only for one year, so be prepared to pay annual renewal fees. Although some antivirus programs come with free telephone support, it is rare to find this feature with free software. Even online or chat support isn't guaranteed with free products.

Data and identity protection

An antivirus solution should deliver constant protection for all computer domains, all types of files and all network elements that could be subject to attack by a computer virus or other malware.

Scan speed and accuracy

In testing, the best antivirus software exacts almost no drag on performance.

User-friendly (See how easy the software is to use)

Because antivirus software can be customized, it's important that the interface guides users through the various settings. An intuitive interface is essential.

> Internet security

Spotting a virus that's widespread is a fairly easy task for most security software. It's harder, however, to squash a bug that's just been released in the wild. Top antivirus software products monitor files and processes, identifying brand-new viruses by spotting activity that is virus-like, and without tripping excessive false alarms (see above).

Loading speed

Yes, antivirus software does slow down Windows PCs, but while some programs are barely noticeable, others are much worse. The result indicates that good security software does not heavily slow down a Windows PC. These security packages cause the copying routine to run 2.5 to 3 times more slowly than with Kaspersky software, for instance.

6. Data Acquisition

First, we spread questionnaires to the consumer about their opinion on the factors identified after the brainstorming section. We have asked a set of questions in the survey using Google forms and 52 responses are exported for further analysis. All the responses will be contributing data to build the decision model which benefit common people to make a better decision for selecting antivirus software.

Below are some interesting facts from the response form:

• More than 50% of the audience have an anti-virus software installed in the system.

• Scan speed and accuracy is very essential for more than 88% of the audience.

Malware detection rate is also given much importance as % of audience expect good malware detection rate.

7. Factor Analysis using SPSS

The 23 variables are then divided into factors by using factor analysis method in SPSS software. The determination of the number of factors to extract should be guided by theory, but also informed by running the analysis extracting different numbers of factors and seeing which number of factors yields the most interpretable results. we have included many options, including the original and reproduced correlation matrix, the scree plot and the plot of the rotated factors. This variable then divided into factors by using factor analysis method in SPSS software.

SPSS Annotated output explanation:

Factor analysis is a method of data reduction and from 23 variables 13 variables are extracted as output from SPSS. The following are the 13 variables:

Multi-Platform, Multi-device licenses, Full System Scan, Hard disk space usage, File Shedders, Schedule a scan feature, Try before you buy, Scan logs reports availability, Frequency, and regularity of updates for software, Installation setup ease, Online rating & feedback, Parental Controls, Privacy Filter, Anti-worm, Anti Trojan and Antispyware

Descriptive Analytics:

Descriptive Statistics					
	Analysis N				
HDSU	3.8235	1.12616	51		
SLRA	4.0588	.90359	51		
SSF	3.8431	1.06532	51		
MM	3.8039	1.14925	51		
TBY	4.1569	1.04638	51		
FS	4.0588	1.22330	51		
PC	3.8431	1.33225	51		
PF	4.0196	1.08610	51		
FSSCAN	4.2549	.84482	51		
ANTI	4.2941	.85543	51		
FREQ	3.9216	.93473	51		
INST	4.0980	1.08176	51		
ORFB	3.9412	1.02785	51		

- a. Mean These are the means of the variables used in the factor analysis.
- **b. Std. Deviation** These are the standard deviations of the variables used in the factor analysis.
- c. Analysis N – This is the number of cases used in the factor analysis.

KMO and Bartlett's Test

- a. Kaiser-Meyer-Olkin Measure of Sampling Adequacy This measure varies between 0 and 1, and values closer to 1 are better. A value of .6 is a suggested minimum. Our value is 0.721 and thus we can perform further analysis.
- **b.** Bartlett's Test of Sphericity This test the null hypothesis that the correlation matrix is an identity matrix. An identity matrix is matrix in which all of the diagonal elements are 1 and all off diagonal elements are 0. You want to reject this null hypothesis. We reject the null hypothesis as the correlation matrix is not an identity matrix.

Taken together, these tests provide a minimum standard which should be passed before a factor analysis to be conducted and after interpreting the results from SPSS we conclude that both the tests have cleared.

KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Measure of Sampling Adequacy721					
Bartlett's Test of Sphericity	Approx. Chi-Square	262.994			
df		78			
	.000				

Scree plot:

The scree plot graphs the eigenvalue against the factor number. You can see these values in the first four columns of the table immediately above. From the fifth factor on, you can see that the line is almost flat, meaning each successive factor is accounting for smaller and smaller amounts of the total variance. We can infer that we shall have four components which have eigen value greater than one.

Rotated Component Matrix:

Thus so far, we concluded that our 13 variables probably measure 4 underlying factors. But which items measure which factors? The component matrix shows the Pearson correlations between the items and the components. The below cells are highlighted using the following approach:

- Check the component values with the adjacent component and group them into one unless the value in the other
 component is higher than the first component. If the value is higher then shift to component two values and then
 performe the above operation again. Similarly highlight the cells in the rotated component matrix for all the
 variables.
- Among the highlighted cells , the variable with lowest value will be romved in this iteration.

Rotated component matrix: Iteration 1

	Component						
	1	2	3	4	5	6	
DATA	0.793	0.328	0.214	0.083	0.123	0.033	
MDR	0.711	0.265	0.123	0.140	0.161	0.173	
IS	0.682	0.336	0.200	0.053	0.515	0.094	
SSA	0.650	0.403	0.154	0.049	0.438	0.125	
SUBSPRICE	0.649	-0.088	0.406	0.258	0.237	0.053	
ORFB	0.534	0.001	0.143	0.037	-0.136	0.527	
FS	0.321	0.779	0.051	0.190	0.132	0.007	
PC	0.056	0.775	0.172	0.121	0.148	0.096	
PF	0.278	0.707	0.303	-0.005	0.189	-0.228	
MM	-0.020	0.661	-0.019	-0.097	0.222	0.518	
SLRA	0.304	0.600	-0.054	0.435	-0.168	0.131	
SSF	0.259	0.559	-0.382	0.231	0.215	0.200	
J BY	0.135	0.033	0.811	-0.020	-0.032	0.119	
FSSCAN	0.295	0.111	0.723	0.288	0.125	0.145	
ANTI	0.254	0.313	0.619	0.365	0.094	-0.058	
INST	-0.015	-0.067	0.318	0.804	0.212	0.115	
FREQ	0.142	0.304	0.089	0.762	0.080	-0.026	
NEMU	0.466	0.086	0.435	0.484	0.166	0.288	
ccs	0.451	0.353	-0.190	0.477	0.081	0.112	
UF	0.172	0.114	-0.065	0.193	0.862	0.089	
LS	0.336	0.391	0.199	0.109	0.607	0.257	
SF	0.488	0.460	0.224	0.120	0.491	0.035	
HDSU	0.155	0.090	0.136	0.143	0.220	0.780	

The rotated component matrix in the second iteration is below: Iteration 2

Rotated Component Matrixa						
	Component					
	1	2	3	4	5	6
FS	0.789	0.286	0.092	0.155	0.116	0.011
PC	0.770	0.090	0.134	0.128	0.133	0.080
PF	0.695	0.281	0.324	0.194	-0.028	-0.228
MM	0.650	-0.053	0.011	0.249	-0.119	0.506
SLRA	0.643	0.290	-0.088	-0.170	0.395	0.145
SSF	0.592	0.210	-0.367	0.237	0.158	0.207
DATA	0.349	0.822	0.145	0.090	0.091	0.056
SUBSPRICE	-0.074	0.715	0.309	0.186	0.306	0.065
MDR	0.287	0.703	0.100	0.156	0.110	0.195
IS	0.341	0.687	0.183	0.510	0.042	0.106
SSA	0.413	0.653	0.130	0.431	0.039	0.139
8F	0.463	0.498	0.207	0.487	0.117	0.040
TBY	0.003	0.148	0.838	-0.021	0.010	0.123
FSSCAN	0.108	0.304	0.722	0.132	0.310	0.157
ANTI	0.321	0.268	0.607	0.096	0.381	-0.047
UF	0.111	0.176	-0.061	0.866	0.183	0.075
LS	0.389	0.325	0.208	0.623	0.102	0.258
INST	-0.038	0.039	0.235	0.179	0.845	0.106
FREQ	0.351	0.157	0.029	0.065	0.757	-0.018
NEMU	0.110	0.500	0.365	0.141	0.511	0.298
HDSU	0.094	0.152	0.109	0.222	0.158	0.775
Online	0.023	0.494	0.144	-0.118	0.012	0.556

After 11 iterations , the below is the calculated rotated component matrix :

Rotated Component Matrixa				
		Comp	onent	
	1	2	3	4
FS	0.843	0.173	0.150	0.054
PC	0.803	0.152	0.086	0.068
PF	0.736	0.424	0.010	-0.139
SSF	0.675	-0.295	0.193	0.236
MM	0.657	-0.036	-0.123	0.441
SLRA	0.646	0.000	0.389	0.105
TBY	-0.008	0.841	-0.042	0.150
FSSCAN	0.104	0.762	0.343	0.232
ANTI	0.290	0.668	0.443	0.044
FREQ	0.311	0.066	0.836	0.038
INST	-0.023	0.231	0.805	0.156
NDSU	0.162	0.064	0.130	0.808
Online	0.045	0.241	0.084	0.702

The 13 research variables are grouped to 4 factors. This is the result from Factor Analysis.

Final table with four factors: Capacity, Internal, Performance, Security is below:

S.no 🔻	Variable	Factors -	Category 🔻
1	Multi Platform, Multi device licenses	capacity	Α
2	Full System Scan	capacity	Α
3	Hard disk space usage	capacity	Α
4	File Shedders	internal	В
5	Schedule a scan feature	internal	В
6	Try before you buy	internal	В
7	Scan logs reports availability	performance	С
8	Frequency and regularity of updates for software	performance	С
9	Installation setup ease	performance	С
10	Online rating & feedback	performance	С
11	Parental Controls	security	D
12	Privacy Filter	security	D
13	Anti-worm, Anti Trojan and Antispyware	security	D

8. Affinity Diagram

Below is the Affinity diagram of 13 evaluation concerns, 4 criteria (factors) for choosing best Anti-virus software. Ordered according to their importance. Evaluations concern's measurement analysis is explained below the affinity diagram.

Measures	Values
Multi Platform, Multi device licenses	1(Ifavailable) else 0
Full System Scan	1(Ifavailable) else 0
Hard disk space	Low, Moderate and High
File Shedders	1(Ifavailable) else 0
Schedule a scan feature	1(Ifavailable) else 0
Try before you buy	#of months trial for free
Scan logs reports availability	1(Ifavailable) else 0
Frequency and regularity of updates for software	1(Ifavailable) else 0
Installation setup ease	Low, Moderate and High
Online rating & feedback	Range of 1(low)-3(high)
Parental Controls	1(Ifavailable) else 0
Privacy Filter	1(Ifavailable) else 0
Anti-worm, Anti Trojan and Antispyware	Protection rate in %

9. Perform Analytic Hierarchy Process(AHP)

The AHP is a method to break apart the problem into a hierarchy of subproblems which can be easily comprehended and subjectively evaluated. The subjective evaluations are changed over into numerical values and processed to rank every evaluation consideration on a numerical scale.

The methodology of the AHP can be explained in following steps:

Step 1: The problem is decomposed into a hierarchy of goal, criteria, sub-criteria and alternatives. The first step in building the AHP model lies in the determination of the criteria that will be used. In our case after survey and factor analysis using SPSS, we ended up with 13 evaluation considerations. Next, we grouped the evaluation considerations into 4 categories. Security, Performance, Capacity, Internal Features.

Step 2: Data are collected from experts or decisionmakers corresponding to the hierarchic structure, in the pairwise comparison of alternatives on a qualitative scale. The evaluation begins by determining the relative weight of the initial criteria groups. In our case we spread a questionnaire to 5 IT experts to rank the criteria based on SAATY Comparison Scale.

Scale	Numerical Rating	Reciprocal
Extremely Preferred	9	1/9
Very Strongly to extremely	8	1/8
Very Strongly preferred	7	1/7
Strongly to very strongly	6	1/6
Strongly preferred	5	1/5
Moderately to strong	4	1/4
Moderately preferred	3	1/3
Equally to moderately	2	1/2
Equally preferred	1	1

Step 3: The pairwise comparisons of various criteria generated at step 2 are organized into a square matrix. The relative weight data is shown between the criteria that have been determined by IT experts. Where we used excel sheets to carry on the evaluation for AHP process. Below is a snapshot of one of the IT expert's opinion on initial criteria.

	Security	performance	Capacity	Internal Features
Security	1	5	1/5	1/3
performance	1/5	1	1/3	1
Capacity	5	3	1	3
Internal Features	3	1	1/3	1

	Security	performance	Capacity	Internal Features
Security	1.00	3.06	2.91	2.16
performance	0.33	1.00	1.82	2.05
Capacity	0.34	0.55	1.00	1.93
Internal Features	0.46	0.49	0.52	1.00

Step 4: The principal eigenvalue and the corresponding normalized right eigenvector of the comparison matrix give the relative importance of the various criteria being compared. Geometric mean of all the IT experts ranking opinions has been normalized. Normalization is made by dividing each value by the total column value. Below is the snapshot of Geometric mean of all IT experts ranking.

And following is the snapshot of normalized matrix.

	Security	performance	Capacity	Internal Features
Security	0.4688	0.6006	0.4661	0.3022
performance	0.1530	0.1960	0.2912	0.2869
Capacity	0.1609	0.1077	0.1600	0.2708
Internal Features	0.2173	0.0957	0.0827	0.1401

The contribution of each criterion to the goal(Choose Anti-Virus Software) is determined by calculations made using the priority vector (or Eigenvector). The Eigenvector shows the relative weights between each criterion; it is obtained in an approximate manner by calculating the mathematical average of all criteria

	Eigenvector(Calculation)	Eigenvector
Security	(0.4688+0.6006+0.4661+0.3022)/4	0.4594
performance	(0.1530+0.1960+0.2912+0.2869)/4	0.2318
Capacity	(0.1609+0.1077+0.1600+0.2708)/4	0.1748
Internal Features	(0.2173+0.0957+0.0827+0.1401)/4	0.1340

Step 5: The consistency of the matrix of order n is evaluated. The next step is to look for any data inconsistencies. The objective is to capture enough information to determine whether the decision makers have been consistent in their choices. Obtained eigenvector is multiplied to the geometric mean matrix column-wise and find the sum row-wise which is weighted sum. Ratio of weighted sum to eigenvalues are calculated and average of all those values is considered as λ max. Calculated the Consistency Index by using formula $CI = \frac{(\lambda \max - n)}{(n-1)}$ where n = 4

Consistency Ratio(CR) is the ratio of Consistency Index(CI) to Random Index(RI). The RI value is fixed and is based on the number of evaluated criteria where no of evaluated criteria is 4.

$$CR = \frac{CI}{RI}$$

n	1	2	3	4	5	6	7	8	9	10
RI	0	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

CI = 0.059054902, RI = 0.9

CR = 0.059055/0.9 = 0.065617 < 0.1

The matrix will be considered consistent if the resulting ratio is less than 10%.

So, the criteria weights distributions were visualized by the histogram.

Just as done with the initial criteria group for the Anti-Virus software, it is necessary to evaluate the criteria's relative weights for the second level of the hierarchy. This process is executed just like the step to evaluate the first level of the hierarchy (criteria group) as it was shown above.

The following tables show the comparison matrices for the criteria with the pair-wise comparisons already taken by the decision makers.

	Capacity		
	Multi-Platform, Multi- device licenses	Full System Scan	Hard disk space usage
Multi-Platform, Multi-device licenses	1	5	3
Full System Scan	1/5	1	1/4
Hard disk space usage	1/3	4	1

	Pei	rformance		
	Scan logs reports availability	Frequency and regularity of updates for software	Installation setup ease	Online rating & feedback
Scan logs reports availability	1	3	1/5	1/7
Frequency and regularity of updates for software	1/3	1	1/5	1/7
Installation setup ease	5	5	1	1/2
Online rating & feedback	7	7	2	1

		Internal	
	File Shedders	Schedule a scan feature	Try before you buy
File Shedders	1	4	1/5
Schedule a scan feature	1/4	1	1/8
Try before you buy	5	8	1

	S	ecurity	
	Parental Controls	Privacy Filter	Anti-worm, Anti Trojan and Antispyware
Parental Controls	1	1/4	1/7
Privacy Filter	4	1	1/4
Anti-worm, Anti Trojan and Antispyware	7	4	1

The following charts demonstrate the priority results for the sub-criteria for each one of the criteria groups and their respective inconsistency indices. We can observe that none of the criteria demonstrates any inconsistency above the tolerable limits.

Step 6: The rating of each alternative is multiplied by the weights of the sub-criteria and aggregated to get local ratings with respect to each criterion.

With the help of IT Experts and AHP process we were able to calculate the criteria weights and evaluation concerns weights. Finally the bottom row weights were calculated.

Criteria	Weights of Criteria	Evaluation Concerns	Weights of Evaluation Concerns in its criteria (local ratings)	Bottom row weights overall
		Multi-Platform, Multi device licenses	62%	11%
Capacity	17%	Full System Scan	10%	2%
		Hard disk space usage	28%	5%
		Scan logs reports availability	10%	2%
Performance	23%	Frequency and regularity of updates for software	6%	1%
1 chomianoc	2070	Installation setup ease	32%	7%
		Online rating & feedback	53%	12%
		File Shedders	21%	3%
Internal	13%	Schedule a scan feature	7%	1%
		Try before you buy	72%	9%
		Parental Controls	8%	4%
Security	46%	Privacy Filter	23%	11%
		Anti-worm, Anti Trojan and Antispyware	69%	32%

10. Triangular Distribution

- A triangular distribution (sometimes called a triangle distribution) is a continuous probability distribution shaped like a triangle. It is defined by:
 - a: the minimum value, where a ≤ c,
 - c: the peak value (the height of the triangle), where $a \le c \le b$, (most likely value) also called as mode.
 - b: the maximum value, where b ≥ c.

For real time experience we took scan log from Symantec Anti-Virus software extracting log into a csv file. CSV file contains the details of start time of scan, end time of scan, logged by details, type of scan, scan status, Total files that got scanned, trusted files. Below is the snapshot of csv file of scan logs.

Started On	Completed	Logged By	Scan Type	Computer	Status	Total Files	Infected	Trusted
4/20/2019 15:33	4/20/2019 16:21	Scheduled scan	Active Scan	LAPTOP-CIEH6GCK	Scan Complete	1328	0	1298
4/20/2019 16:21	4/20/2019 23:38	Scheduled scan	Full Scan	LAPTOP-CIEH6GCK	Scan Complete	2023570	0	55669
4/20/2019 23:38	4/20/2019 23:40	Defwatch QuickScar	Active Scan	LAPTOP-CIEH6GCK	Scan Complete	913	0	902
4/20/2019 23:40	4/20/2019 23:45	Scheduled scan	Active Scan	LAPTOP-CIEH6GCK	Scan Complete	946	0	873
4/21/2019 12:00		Scheduled scan	Full Scan	LAPTOP-CIEH6GCK	Scan Delayed	0	0	0
4/21/2019 16:07	4/21/2019 16:11	Defwatch QuickScar	Active Scan	LAPTOP-CIEH6GCK	Scan Complete	902	0	873
4/21/2019 21:29	4/21/2019 21:35	Scheduled scan	Active Scan	LAPTOP-CIEH6GCK	Scan Complete	908	0	864
4/22/2019 11:03	4/22/2019 11:20	Defwatch QuickScar	Active Scan	LAPTOP-CIEH6GCK	Scan Complete	1280	0	1241

So, we created another column to calculate the time lapse for active scan to obtain that we filtered out "full scan" and considered "active scan" type. We ended up with a set of scan durations with minimum duration of 1min, maximum duration of 124min and with most likely duration of 5min (calculated by finding out mode of in that set). So, the basic triangular plot is depicted by following chart.

a -> 1min, c -> 5mins, b->124mins

$$mean = \frac{\min + mode + max}{3} = \frac{a+b+c}{3}$$

$$Var = \frac{a^2 + b^2 + c^2 - a*b - b*c - c*a}{18}$$

Peak value of mode 'c' is achieved at $\frac{2}{(b-a)}$ which is 0.01626.

It is a positively skewed triangular distribution.

To fit the triangular distributed model, we build histogram by following the below method:

Assume a variable 'u' being the random variable ranging from 0 to 1. Checking if the variable is less than or equal to $\frac{(c-a)}{(b-a)}$. If yes, the calculate the $x=a+\sqrt{(b-a)(c-a)u}$

else calculate value of x by

$$x = b - \sqrt{(b-c)(b-a)(1-u)}$$

After 434 simulations that will fit the triangular distributions the following chart of histogram is obtained.

From the above chart we can observe that the histogram is distributed as positively skewed manner. Entire process of triangular distribution model was carried out in excel sheets.

11. Identifying Alternatives

We decided to choose 4 current top anti-virus software as alternatives which are Symantec end point encryption, Kaspersky, Windows Defender (Pre-Installed), Bitdefender Internet Security. The reason we chose this anti-virus software as alternatives is that Symantec is GMU licensed Anti-Virus software, which is free for students, Windows defender is the default windows anti-virus software, Kaspersky and Bit Defender are top two anti-virus software. Based on the evaluation concern's measurement analysis values were given to the anti-virus software. Hard disk space and Installation setup ease were rated and compared online for all the anti-virus software available.

Alternatives	Symantec end point encryption	Kaspersky	Windows Defender (Pre-Installed)	Bitdefender Internet Security
Multi-Platform, Multi device licenses	1	1	0	1
Full System Scan	1	1	1	1
Hard disk space	Moderate	Moderate	Moderate	Low
File Shedders	1	1	0	1
Schedule a scan feature	1	1	1	1
Try before you buy	2	2	99999	6
Scan logs reports availability	1	1	1	1
Frequency and regularity of updates for software	1	1	0	1
Installation setup ease	Moderate	Moderate	Low	Moderate
Online rating & feedback	2	2	3	3
Parental Controls	0	1	1	1
Privacy Filter	0	1	0	1
Anti-worm, Anti Trojan and Antispyware	99.98%	99.88%	99.98%	99.99%

12. Goal Hierarchy Diagram

- The tool used is Logical Decision for Windows and it can be used to rank the alternatives by evaluating the measures and goals given by the user. The steps used to make the ldw diagram are as follows:
 - 1. Created and organized the objectives(goals).
 - 2. Defined the measures and placed under the appropriate goals and assigned ranges for the numerical variables.
 - 3. Built goal hierarchy and then assigned calculated weights to the factors and variables.

Goal Hierarchy Diagram

13. Alternatives Ranking

Generated Results Matrix to rank the alternatives.

	Best Anti-Virus Software Goal	High Security Goal	Anti-worm, Anti Trojan and Antispyware Measure	Good Performance Goal	High Capacity Goal	Internal Features Goal
Weight	1.000	0.470	0.320	0.220	0.180	0.130
Bitdefender Internet Security	0.870	1.000	1.000	0.841	0.722	0.654
Kaspersky	0.805	0.999	0.999	0.568	0.861	0.423
Symantec end point encryption	0.655	0.681	1.000	0.568	0.861	0.423
Windows Defender (Pre-Installed)	0.645	0.766	1.000	0.636	0.250	0.769

The type of ranking method we used is "Direct Entry Ranking" method. The reason we used "direct entry" method is we already have the weights calculated with the help of IT Experts. So after feeding the weights to all the evaluation concerns and evaluating the result we got the following ranks for the alternatives:

- 1. Bitdefender Internet Security- 87%
- 2. Kaspersky- 80.5%
- 3. Symantec End Point Encryption- 65.5%
- 4. Windows Defender(Pre-Installed)- 64.5%

The below diagram also gives how much each individual goal is affecting the ranking of each alternative. Security plays a very important role in how an alternative is selected.

Ranking of the alternatives based on the individual goals.

14.FINAL DECISION BY DECISION MAKER

After presenting the calculated ranks from all the alternatives we inferred that ""Bitdefender Internet Security" Anti-virus software stands out as the best possible solution for the decision maker who has no technical background.

The decision maker opted to choose the suggested software as firstly, it had a free trial version for 6 months and also this ranked best among all the other available options in the market.

References

- [1] D. K. Devi, Dr. K. M. Kumar, An Analysis of Various Anti-Virus Software Tools Based On Different Effective Parameters. ijcstjournal, 4(4) (2016)
- [2] T. Saaty. Decision making with the Analytic Hierarchy Process. Int. J. Services Sciences Int. J. Services Sciences (2008)
- [3] Craig W. Kirkwood, Strategic Decision Making-Multiobjective Decision Analysis with Spreadsheets, Multiobjective Value Analysis (1997)
- [4] SPSS Factor Analysis Beginners Tutorial, last updated on September 2018, https://www.spss-tutorials.com/spss-factor-analysis-tutorial/#spss-factor-analysis-output
- [5] AV Comparatives- Test Results, last updated on April 2019, https://www.av-comparatives.org/test-results/
- [6] AV Comparatives- Malware Protection Test March 2019, last updated on March 2019, https://www.av-comparatives.org/tests/malware-protection-test-march-2019/

APPENDIX

Data collection survey to build a Decision model for ANTIVIRUS SOFTWARE selection

Thank you for participating in our Survey:)

We are glad that your response will be contributing data to build the decision model which benefit common people to make a better decision for selecting antivirus software.

There are a lot of factors to consider when you're trying to select the best antivirus solution for your requirements. With the security of your data, digital identity and financial transactions at stake, We believe it's worthwhile investing some time in building a decision model
* Required
1. Name *
TL;DR Please fill this quick survey and let us know your thoughts (your answers will be anonymous).
2. Do you have an antivirus software installed on your personal computer? * Mark only one oval.
Yes
No No
I use the default Windows defender.
Other:
Please choose the appropriate option to rate the factors that you will consider to determine antivirus software selection.
1 = Least significant 5 = Extremely significant
3. Online rating & feedback * Mark only one oval.
1 2 3 4 5

1	;	2 3	3 4	4	5
	ner ca	re servie e oval.	ce *		
1		2 3	3 4	4	5
	ile a s	can feat e oval.	ure *		
1		2 3	3 4	4	5
Aark or	nly one			-	5
/lark or	nly one				
1		2 3	3 4	4	5
Try bef		ou buy o	ption (t	ry a mo	onth for
1	·	2 3	3 4	4	5
Malwar Mark or		ection ra	te *		
	nly one	e oval.		4	5

Privacy F provide a Mark only	warnin	g) *	bout to	inadver	ently divulge personal information, a privacy filter v
1	2	3	4	5	
Parental only			access	s to certa	nin sites unsuitable for children) *
1	2	3	4	5	
File Shree Mark only			all elect	ronic tra	ces of infected file) *
1	2	3	4	5	
Spam Filt Mark only		al.			
1	2	3	4	5	
Frequence Mark only	-	-	y of upo	lates for	software *
1	2	3	4	5	
Installation					
1	2	3	4	5	
					_
No exces Mark only			se (A liç	ght touch	that won't slow you down.) *
1	2	3	4	5	
					_

Full System Scan (Checks all boot records, files, and runi Mark only one oval. 1 2 3 4 5 Subscription Price * Mark only one oval. 1 2 3 4 5 Data and identity protection * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 Stan speed and accuracy * Mark only one oval. 1 2 3 4 5 Stan speed and accuracy * Mark only one oval. 1 2 3 4 5 Stan speed and accuracy * Mark only one oval. 1 2 3 4 5 Stan speed and accuracy * Mark only one oval.	Mark only		_	iliu Allu	spyware
Mark only one oval. 1 2 3 4 5 Subscription Price * Mark only one oval. 1 2 3 4 5 Data and identity protection * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 Subscription Price * Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval.	1	2	3	4	5
Mark only one oval. 1 2 3 4 5 Subscription Price * Mark only one oval. 1 2 3 4 5 Data and identity protection * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 Subscription Price * Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval.					
Subscription Price * Mark only one oval. 1 2 3 4 5 Data and identity protection * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 User friendly (See how easy the software is to use) * Mark only one oval. 1 2 3 4 5 User friendly one oval. 1 2 3 4 5 Internet security * Mark only one oval.				ks all bo	oot recor
Mark only one oval. 1 2 3 4 5 Data and identity protection * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 Substitute of the security * Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval.	1	2	3	4	5
Mark only one oval. 1 2 3 4 5 Data and identity protection * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 Substitute of the security * Mark only one oval. 1 2 3 4 5 Mark only one oval. 1 2 3 4 5 Mark only one oval.					
Data and identity protection * Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 User friendly (See how easy the software is to use) * Mark only one oval. 1 2 3 4 5 User friendly one oval.					
Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 User friendly (See how easy the software is to use) * Mark only one oval. 1 2 3 4 5 Internet security * Mark only one oval.	1	2	3	4	5
Mark only one oval. 1 2 3 4 5 Scan speed and accuracy * Mark only one oval. 1 2 3 4 5 User friendly (See how easy the software is to use) * Mark only one oval. 1 2 3 4 5 Internet security * Mark only one oval.					
Mark only one oval. 1 2 3 4 5 User friendly (See how easy the software is to use) * Mark only one oval. 1 2 3 4 5 1 2 3 4 5 Internet security * Mark only one oval.				4	5
User friendly (See how easy the software is to use) * Mark only one oval. 1 2 3 4 5 1 1 2 3 4 5 Internet security * Mark only one oval.		one ova	al.		
Mark only one oval. 1 2 3 4 5	1	2	3	4	5
Mark only one oval. 1 2 3 4 5					
Internet security * Mark only one oval.				easy the	software
Mark only one oval.	1	2	3	4	5
Mark only one oval.					
1 2 3 4 5					
	1	2	3	4	5

25. L	.oading	speed	*
-------	---------	-------	---

Mark only one oval.

26. Any other valuable inputs or evaluation concern areas that you would want us to consider for antivirus software selection process? (optional)

Thank you for the information.

This survey is a part of decision and risk analysis project.

Powered by

SPSS Output

```
FACTOR

/VARIABLES HDSU SLRA SSF MM TBY FS PC PF FSSCAN ANTI FREQ INST ORFB

/MISSING LISTWISE

/ANALYSIS HDSU SLRA SSF MM TBY FS PC PF FSSCAN ANTI FREQ INST ORFB

/PRINT UNIVARIATE INITIAL CORRELATION SIG DET KMO INV EXTRACTION ROTATION

FSCORE

/FORMAT SORT

/PLOT EIGEN ROTATION

/CRITERIA MINEIGEN(1) ITERATE(25)

/EXTRACTION PC

/CRITERIA ITERATE(25)

/ROTATION VARIMAX

/SAVE REG(ALL)

/METHOD=CORRELATION.
```

Factor Analysis

Notes

Output Created		04-MAY-2019 23:33:35
Comments		
Input	Data	C:\Users\lsrli\Desktop\gmu\syst 573\PROJECT.sav
	Active Dataset	DataSet1
	Filter	<none></none>
	Weight	<none></none>
	Split File	<none></none>
	N of Rows in Working Data File	51
Missig Value Handling	Definition of Missing	MISSING=EXCLUDE: User-defined missing values are treated as missing.
	Cases Used	LISTWISE: Statistics are based on cases with no missing values for any variable used.

Syntax		FACTOR
		/VARIABLES HDSU SLRA SSF MM
		TBY FS PC PF FSSCAN ANTI FREQ
		INST ORFB
		/MISSING LISTWISE
		/ANALYSIS HDSU SLRA SSF MM TBY
		FS PC PF FSSCAN ANTI FREQ INST
		ORFB
		/PRINT UNIVARIATE INITIAL
		CORRELATION SIG DET KMO INV
		EXTRACTION ROTATION FSCORE
		/FORMAT SORT
		/PLOT EIGEN ROTATION
		/CRITERIA MINEIGEN(1) ITERATE(25)
		/EXTRACTION PC
		/CRITERIA ITERATE(25)
		/ROTATION VARIMAX
		/SAVE REG(ALL)
		/METHOD=CORRELATION.
Resources	Processor Time	00:00:00.81
	Elapsed Time	00:00:00.51
	Maximum Memory Required	23424 (22.875K) bytes
Variables Created	FAC1_1	Component score 1
	FAC2_1	Component score 2
	FAC3_1	Component score 3
	FAC4_1	Component score 4

Descriptive Statistics

	Mean	Std. Deviation	Analysis N
HDSU	3.8235	1.12616	51
SLRA	4.0588	.90359	51
SSF	3.8431	1.06532	51
MM	3.8039	1.14925	51
TBY	4.1569	1.04638	51
FS	4.0588	1.22330	51
PC	3.8431	1.33225	51
PF	4.0196	1.08610	51
FSSCAN	4.2549	.84482	51
ANTI	4.2941	.85543	51
FREQ	3.9216	.93473	51
INST	4.0980	1.08176	51
ORFB	3.9412	1.02785	51

Correlation Matrix

			01.54	005		TD) (
		HDSU	SLRA	SSF	MM	TBY	FS				
Correlati on	HDSU	1.000	.207	.243	.344	.143	.240				
OH	SLRA	.207	1.000	.508	.319	.075	.540				
	SSF	.243	.508	1.000	.481	121	.498				
	MM	.344	.319	.481	1.000	.109	.492				
	TBY	.143	.075	121	.109	1.000	.102				
	FS	.240	.540	.498	.492	.102	1.000				
	PC	.248	.473	.377	.528	.090	.693				
	PF	.117	.447	.297	.292	.244	.631				
	FSSC	.300	.242	.001	.114	.565	.275				
	AN										
	ANTI	.159	.288	.205	.141	.461	.423				
	FREQ	.139	.455	.329	.227	.033	.371				
	INST	.294	.240	.031	016	.251	.177				
	ORFB	.354	.198	.119	.193	.195	.146				
Sig. (1- tailed)	HDSU		.073	.043	.007	.159	.045				
ianoa,	SLRA	.073		.000	.011	.301	.000				
	SSF	.043	.000		.000	.199	.000				
	MM	.007	.011	.000		.223	.000				

Inverse of Correlation Matrix

	HDSU	SLRA	SSF	MM	TBY	FS	PC		PF							
HDSU	1.579	.020	310	469	.195	070	.10)3	026	6						
SLRA	.020	1.882	616	.199	140	346	27	73	253	3						
SSF	310	616	1.953	489	.233	371	.11	3	.079	9						
MM	469	.199	489	2.079	586	336	96	62	.407	7						
TBY	.195	140	.233	586	1.961	.192	.42	20	419	9						
FS	070	346	371	336	.192	2.780	90)5	661							
PC	.103	273	.113	962	.420	905	2.80	00	988	3						
PF	026	253	.079	.407	419	661	98	38	2.293	3						
FSSCA	596	135	.534	.239	916	054	15	52	.086	6						
N								_								
ANTI	.334	.349	483	.216	433	450	.11	0	445	5						
FREQ	.496	478	297	635	.879	055	.59	90	300							
INST	675	053	.312	.749	611	.077	87	77	.670							
ORFB	351	170	.042	142	002	.079	.11	1	.009	9	_		<u> </u>			
	TBY	.159	.301	.199	.223		.238									
	FS	.045	.000	.000	.000	.238										
	PC	.040	.000	.003	.000	.266	.000									
	PF	.206	.001	.017	.019	.042	.000									
	FSSC	.016	.044	.498	.212	.000	.025									
	AN															
	ANTI	.133	.020	.074	.161	.000	.001									
	FREQ	.166	.000	.009	.054	.408	.004									
	INST	.018	.045	.415	.455	.038	.107									
	ORFB	.005	.082	.202	.087	.085	.153									

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	.721	
Bartlett's Test of Sphericity	Approx. Chi-Square	262.994
	df	78
	Sig.	.000

Communalities

	Initial	Extraction
HDSU	1.000	.700
SLRA	1.000	.579
SSF	1.000	.636
MM	1.000	.643
TBY	1.000	.732
FS	1.000	.767
PC	1.000	.680
PF	1.000	.741
FSSCAN	1.000	.763
ANTI	1.000	.729
FREQ	1.000	.801
INST	1.000	.726
ORFB	1.000	.561

Extraction Method: Principal Component Analysis.

Total Variance Explained

				Extract	ion Sums of	Squared		
	In	itial Eigenva	lues	Loadings				
Compone		% of	Cumulative		% of	Cumulative		
nt	Total	Variance	%	Total	Variance	%		
1	4.602	35.403	35.403	4.602	35.403	35.403		
2	2.033	15.638	51.041	2.033	15.638	51.041		
3	1.224	9.415	60.457	1.224	9.415	60.457		
4	1.199	9.225	69.682	1.199	9.225	69.682		
5	.784	6.030	75.711					
6	.666	5.121	80.833					
7	.561	4.313	85.146					
8	.516	3.969	89.115					
9	.427	3.288	92.403					
10	.331	2.544	94.947					
11	.270	2.078	97.025					
12	.233	1.796	98.821					
13	.153	1.179	100.000					

Component Matrix^a

		Component							
	1	2	3	4					
FS	.783	335	120	165					
PC	.721	345	076	188					
ANTI	.690	.452	197	102					
PF	.685	153	241	437					
SLRA	.683	256	132	.171					
FREQ	.631	.134	327	.528					
MM	.559	425	.371	110					
SSF	.543	537	.074	.217					
FSSCAN	.601	.617	.030	140					
TBY	.359	.609	.114	469					
HDSU	.448	.066	.665	.230					
ORFB	.379	.239	.593	.094					
INST	.469	.457	175	.517					

Extraction Method: Principal Component Analysis.a

4 components extracted.

Rotated Component Matrix^a

Component

	1	2	3	4			
FS	.843	.173	.150	.054			
PC	.803	.152	.086	.068			
PF	.736	.424	.010	139			
SSF	.675	295	.193	.236			
MM	.657	036	123	.441			
SLRA	.646	.000	.389	.105			
TBY	008	.841	042	.150			
FSSCAN	.104	.762	.343	.232			
ANTI	.290	.668	.443	.044			
FREQ	.311	.066	.836	.038			
INST	023	.231	.805	.156			
HDSU	.162	.064	.130	.808			
ORFB	.045	.241	.084	.702			

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.^a

a. Rotation converged in 6 iterations.

Component Transformation Matrix

Component	1	2	3	4
1	.750	.401	.430	.302
2	608	.718	.326	.094
3	122	048	384	.914
4	229	567	.749	.254

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Component Plot in Rotated Space

Component Score Coefficient Matrix

Component 2 3 4 HDSU -.057 -.073 -.013 .578 SLRA .169 -.106 .171 -.030 SSF .200 -.248 .077 .112 .202 -.064 -.201 MM .271 TBY -.046 -.197 .463 .037 FS .271 .033 -.046 -.089 PC .264 .033 -.082 -.065 PF .222 .265 -.157 -.235 **FSSCAN** -.063 .335 .058 .061 .016 ANTI .276 .135 -.103 **FREQ** -.005 -.134 .513 -.085 INST -.141 -.036 .495 .031 ORFB -.087 .049 -.054 .498

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Component Scores.

Component Score Covariance Matrix

Component	1	2	3	4
1	1.000	.000	.000	.000
2	.000	1.000	.000	.000
3	.000	.000	1.000	.000
4	.000	.000	.000	1.000

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

Component Scores.

Factor Analysis

Rotated Component Matrix^a

	Component								
	1	2	3	4	5	6			
DATA	0.793	0.328	0.214	0.083	0.123	0.033			
MDR	0.711	0.265	0.123	0.140	0.161	0.173			
IS	0.682	0.336	0.200	0.053	0.515	0.094			
SSA	0.650	0.403	0.154	0.049	0.438	0.125			
SUBSPRICE	0.649	-0.088	0.406	0.258	0.237	0.053			
ORFB	0.534	0.001	0.143	0.037	-0.136	0.527			
FS	0.321	0.779	0.051	0.190	0.132	0.007			
PC	0.056	0.775	0.172	0.121	0.148	0.096			
PF	0.278	0.707	0.303	-0.005	0.189	-0.228			
MM	-0.020	0.661	-0.019	-0.097	0.222	0.518			
SLRA	0.304	0.600	-0.054	0.435	-0.168	0.131			
SSF	0.259	0.559	-0.382	0.231	0.215	0.200			
TBY	0.135	0.033	0.811	-0.020	-0.032	0.119			
FSSCAN	0.295	0.111	0.723	0.288	0.125	0.145			
ANTI	0.254	0.313	0.619	0.365	0.094	-0.058			
INST	-0.015	-0.067	0.318	0.804	0.212	0.115			
FREQ	0.142	0.304	0.089	0.762	0.080	-0.026			
NEMU	0.466	0.086	0.435	0.484	0.166	0.288			
CCS	0.451	0.353	-0.190	0.477	0.081	0.112			
UF	0.172	0.114	-0.065	0.193	0.862	0.089			
LS	0.336	0.391	0.199	0.109	0.607	0.257			
SF	0.488	0.460	0.224	0.120	0.491	0.035			
HDSU	0.155	0.090	0.136	0.143	0.220	0.780			

AHP-IT Expert Opinion

AHP:

n= Security					n	1	2	3	4	5	6	7	8	9	10
	Security				RI	0	0	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49
	Security														
Security		performance	Capacity	Internal Features											
	1.00	3.06		2.16											
performance	0.33	1.00	1.82	2.05											
Capacity	0.34	0.55	1.00	1.93											
Internal Features	0.46	0.49	0.52	1.00											
Totals	2.13	5.10	6.25	7.14											
	Security	performance	Capacity	Internal Features	Criteria	Weight	s								
Security	0.4688	0.6006		0.3022		0.4594									
performance	0.1530	0.1960	0.2912	0.2869		0.2318									
Capacity	0.1609	0.1077	0.1600	0.2708		0.1748									
Internal Features	0.2173	0.0957	0.0827	0.1401		0.1340									
Criteria Weights	0.4594	0.2318	0.1748	0.1340											
_															
	Security	performance	Capacity	Internal Features	Weight	ed Sum	Criteria W	eights							
Security	0.46	0.71				1.97		4.28373							
performance	0.15	0.23				0.97		4.20388							
Capacity	0.16	0.13				0.72		4.11137							
Internal Features	0.21	0.11	0.09	0.13		0.55	0.1340	4.10968							
							lambda m	4.17716							
					Consist	ency Inc	lex	0.05905							
					Consist	ency Ra	tio	0.06562	<	0.1					
												R PROCESS			

Uncertainity example

Bin	Frequency	Cumulative %
1.16	0	0.00%
2.26	2	0.46%
3.36	4	1.38%
4.46	7	2.99%
5.56	3	3.68%
6.66	15	7.13%
7.76	15	10.57%
8.86	14	13.79%
9.96	13	16.78%
11.06	22	21.84%
12.16	19	26.21%
13.26	27	32.41%
14.37	30	39.31%
15.47	24	44.83%
16.57	33	52.41%
17.67	31	59.54%
18.77	34	67.36%
19.87	30	74.25%
20.97	37	82.76%
22.07	41	92.18%
More	34	100.00%

Alternatives

Alternatives	Symantec end point encryption	Kaspersky	Windows Defender (Pre-Installed)	Bitdefender Internet Security
Multi Platform, Multi device licenses	1	1	0	1
Full System Scan	1	1	1	1
Hard disk space	Moderate	Moderate	Moderate	Low
File Shedders	1	1	0	1
Schedule a scan feature	1	1	1	1
Try before you buy	2	2	99999	6
Scan logs reports availability	1	1	1	1
Frequency and regularity of updates for software	1	1	0	1
Installation setup ease	Moderate	Moderate	Low	Moderate
Online rating & feedback	2	2	3	3
Parental Controls	0	1	1	1
Privacy Filter	0	1	0	1
Anti-worm, Anti Trojan and Antispyware	99.98%	99.88%	99.98%	99.99%