Investigación Operativa

Hoja 6

Problema 1

Resolver, mediante Ramificación y Acotación, el problema:

max
$$x_1 + 2x_2$$

s. a.: $2x_1 + 6x_2 \le 15$
 $28x_1 + 8x_2 \le 77$
 $x_1, x_2 \ge 0$ y enteros

La solución óptima de la relajación lineal continua del problema anterior, se presenta en la siguiente tabla:

	X ₁	X 2	X 3	X 4	
<i>X</i> ₂	0	1	7/38	-1/76	7/4
<i>X</i> ₁	1	0	-1/19	3/76	9/4
	0	0	-6/19	-1/76	<i>Z</i> –(23/4)

OBSERVACIÓN: La infactibilidad de algunos subproblemas, se puede deducir de la formulación inicial.

Problema 2

Resolver, mediante Ramificación y Acotación, el problema:

min
$$3x_4 + 4x_5 + 5x_6$$
s.a.
$$x_1 + x_4 - 2x_5 + x_6 = \frac{3}{2}$$

$$x_2 + 2x_4 + x_5 - x_6 = \frac{5}{2}$$

$$x_3 - x_4 + x_5 + x_6 = 4$$

$$x_j \ge 0, \quad j = 1, ..., 6$$

$$x_1 \ y \ x_2 \quad \text{enteros}$$

La solución óptima de la relajación lineal continua del problema anterior, se presenta en la siguiente tabla:

	X ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	X 5	X 6	
X ₁	1	0	0	1	-2	1	3/2
<i>X</i> ₂	0	1	0	2	1	-1	5/2
<i>X</i> ₃	0	0	1	-1	1	1	4
	0	0	0	3	4	5	<i>Z</i> -0

$$max \ x_1 + 2x_2$$

 $s.a.: \ 2x_1 + 6x_2 \le 15$
 $28x_1 + 8x_2 \le 77$
 $x_1 \ge 0, \ x_2 \ge 0$
 $x_1 \ y \ x_2 \ \text{enteros}$

La solución óptima, del problema de programación lineal correspondiente a la relajación continua del problema anterior, se presenta en la siguiente tabla

	X ₁	X ₂	X 3	X 4	
X ₂	0	1	7/38	-1/76	7/4
X ₁	1	0	-1/19	3/76	9/4
	0	0	-6/19	<i>–</i> 1/76	Z-(23/4)

$$S_1 = \{x \in S \mid x_2 \le 1\}$$

	X ₁	<i>X</i> ₂	X ₃	X 4	X 5	
<i>X</i> ₂	0	1	7/38	<i>–</i> 1/76	0	7/4
<i>X</i> ₁	1	0	-1/19	3/76	0	9/4
X ₅	0	0	-7/38	1/76	1	-3/4
	0	0	-6/19	<i>–</i> 1/76	0	Z-(23/4)

	X ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	X 5	
X ₂	0	1	0	0	1	1
<i>X</i> ₁	1	0	0	1/28	-2/7	69/28
<i>X</i> ₃	0	0	1	-1/14	-38/7	57/14
	0	0	0	-1/28	-12/7	<i>Z</i> -(125/28)

$$S_2=\{x\in S\mid x_2\geq 2\}$$

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5	
<i>X</i> ₂	0	1	7/38	<i>–</i> 1/76	0	7/4
<i>X</i> ₁	1	0	-1/19	3/76	0	9/4
X 5	0	0	7/38	<i>–</i> 1/76	1	-1/4
	0	0	-6/19	<i>–</i> 1/76	0	Z-(23/4)

	<i>X</i> ₁	<i>X</i> ₂	X ₃	<i>X</i> ₄	X 5	
<i>X</i> ₂	0	1	0	0	-1	2
<i>X</i> ₁	1	0	1/2	0	3	3/2
X 4	0	0	-14	1	- 76	19
	0	0	-1/2	0	-1	Z-(11/2)

$$S_{21} = \{x \in S \mid x_2 \ge 2, \ x_1 \le 1\}$$

	<i>X</i> ₁	X ₂	X ₃	X ₄	X 5	X 6	
X ₂	0	1	0	0	-1	0	2
X ₁	1	0	1/2	0	3	0	3/2
<i>X</i> ₄	0	0	-14	1	- 76	0	19
X 6	0	0	-1/2	0	-3	1	-1/2
	0	0	-1/2	0	-1	0	Z-(11/2)

	X ₁	X ₂	X ₃	<i>X</i> ₄	X 5	X 6	
X ₂	0	1	1/6	0	0	-1/3	13/6
X ₁	1	0	0	0	0	1	1
<i>X</i> ₄	0	0	<i>−</i> 4/3	1	0	-76/3	95/3
X 5	0	0	1/6	0	1	-1/3	1/6
	0	0	-1/3	0	0	-1/3	Z-(16/3)

$$S_{22} = \{x \in S \mid x_2 \ge 2, \ x_1 \ge 2\}$$

 $max\{x_1 + 2x_2 : x \in S_{22}\}$ INFACTIBLE

$$S_{211} = \{x \in S \mid x_2 \ge 2, \ x_1 \le 1, \ x_2 \le 2\} = \{x \in S \mid x_1 \le 1, \ x_2 = 2\}$$

Se considera el problema $\max\{x_1+2x_2:\ x\in S_{211}\}$. Solución óptima:

$$x_1^{211} = 1$$
, $x_2^{211} = 2$, $z^{211} = 5$.

Se establece: $\underline{z} = z^{211} = 5$, $\overline{x} = x^{211}$

El nodo correspondiente a P_1 , se poda por acotación ($z^1 < \underline{z}$).

$$S_{212} = \{x \in S \mid x_2 \ge 2, \ x_1 \le 1, \ x_2 \ge 3\} = \{x \in S \mid x_1 \le 1, \ x_2 \ge 3\}$$

 $\max\{x_1+2x_2:\ x\in S_{212}\}\ \text{INFACTIBLE}$

Solución óptima:

$$x_1^* = 1$$
, $x_2^* = 2$, $z^* = 5$.

Esquema de Ramificación

min
$$3x_4 + 4x_5 + 5x_6$$

s. a.: $x_1 + x_4 - 2x_5 + x_6 = \frac{3}{2}$
 $x_2 + 2x_4 + x_5 - x_6 = \frac{5}{2}$
 $x_3 - x_4 + x_5 + x_6 = 4$
 $x_j \ge 0, \quad j = 1, ..., 6$
 $x_1 \ y \ x_2 \quad \text{enteros}$

La solución óptima, del problema de programación lineal correspondiente a la relajación continua del problema anterior, se presenta en la siguiente tabla

	\mathcal{X}_1	χ_2	χ_3	χ_4	χ_5	χ_6	
x_1	1	0	0	1	-2	1	3/2
\mathcal{X}_2	0	1	0	2	1	-1	5/2
\mathcal{X}_3	0	0	1	-1	1	1	4
	0	0	0	3	4	5	Z-0

$$S_1=\{x\in S\mid x_2\leq 2\}$$

	x_1	x_2	χ_3	χ_4	χ_5	χ_6	\mathcal{X}_7	
x_1	1	0	0	1	-2	1	0	3/2
\mathcal{X}_2	0	1	0	2	1	-1	0	5/2
\mathcal{X}_3	0	0	1	-1	1	1	0	4
x_7	0	0	0	-2	-1	1	1	-1/2
	0	0	0	3	4	5	0	Z-0

	x_1	χ_2	χ_3	χ_4	χ_5	χ_6	χ_7	
x_1	1	0	0	0	-5/2	3/2	1/2	5/4
x_2	0	1	0	0	0	0	1	2
χ_3	0	0	1	0	3/2	1/2	-1/2	17/4
χ_4	0	0	0	1	1/2	-1/2	-1/2	1/4
	0	0	0	0	5/2	13/2	3/2	Z- (3/4)

$$S_2 = \{x \in S \mid x_2 \geq 3\}$$

	x_1	\mathcal{X}_2	χ_3	χ_4	χ_5	\mathcal{X}_6	\mathcal{X}_7	
x_1	1	0	0	1	-2	1	0	3/2
x_2	0	1	0	2	1	-1	0	5/2
χ_3	0	0	1	-1	1	1	0	4
x_7	0	0	0	2	1	-1	1	-1/2
	0	0	0	3	4	5	0	Z-0

	\mathcal{X}_1	χ_2	χ_3	χ_4	χ_5	χ_6	\mathcal{X}_7	
x_1	1	0	0	3	-1	0	1	1
χ_2	0	1	0	0	0	0	-1	3
χ_3	0	0	1	1	2	0	1	7/2
\mathcal{X}_7	0	0	0	-2	-1	1	-1	1/2
	0	0	0	13	9	0	5	Z- (5/2)

$$S_{11} = \{ x \in S \mid x_2 \le 2, \ x_1 \le 1 \}$$

	\mathcal{X}_1	χ_2	χ_3	χ_4	χ_5	χ_6	<i>X</i> ₇	χ_8	
x_1	1	0	0	0	-5/2	3/2	1/2	0	5/4
\mathcal{X}_2	0	1	0	0	0	0	1	0	2
x_3	0	0	1	0	3/2	1/2	-1/2	0	17/4
χ_4	0	0	0	1	1/2	-1/2	-1/2	0	1/4
\mathcal{X}_8	0	0	0	0	5/2	-3/2	-1/2	1	-1/4
	0	0	0	0	5/2	13/2	3/2	0	Z-(3/4)

	\mathcal{X}_1	χ_2	χ_3	χ_4	χ_5	χ_6	<i>X</i> ₇	χ_8	
x_1	1	0	0	0	0	0	0	1	1
x_2	0	1	0	0	5	-3	0	2	3/2
χ_3	0	0	1	0	-1	2	0	-1	9/2
χ_4	0	0	0	1	-2	1	0	-1	1/2
x_7	0	0	0	0	-5	3	1	-2	1/2
<u>, </u>	0	0	0	0	10	2	0	3	Z-(3/2)

$$S_{12} = \{ x \in S \mid x_2 \le 2, \ x_1 \ge 2 \}$$

	\mathcal{X}_1	χ_2	χ_3	χ_4	<i>X</i> ₅	χ_6	<i>X</i> ₇	\mathcal{X}_8	
x_1	1	0	0	0	-5/2	3/2	1/2	0	5/4
x_2	0	1	0	0	0	0	1	0	2
χ_3	0	0	1	0	3/2	1/2	-1/2	0	17/4
χ_4	0	0	0	1	1/2	-1/2	-1/2	0	1/4
χ_8	0	0	0	0	-5/2	3/2	1/2	1	-3/4
	0	0	0	0	5/2	13/2	3/2	0	Z- (3/4)

	\mathcal{X}_1	\mathcal{X}_2	χ_3	χ_4	χ_5	χ_6	\mathcal{X}_7	\mathcal{X}_8	
x_1	1	0	0	0	0	0	0	-1	2
x_2	0	1	0	0	0	0	1	0	2
\mathcal{X}_3	0	0	1	0	0	7/5	-1/5	3/5	19/5
χ_4	0	0	0	1	0	-1/5	-2/5	1/5	1/10
<i>X</i> ₅	0	0	0	0	1	-3/5	-1/5	-2/5	3/10
	0	0	0	0	0	8	2	1	Z-(3/2)

Solución óptima: $x_1^*=2$, $x_2^*=2$, $x_3^*=\frac{19}{5}$, $x_4^*=\frac{1}{10}$, $x_5^*=\frac{3}{10}$, $z^*=\frac{3}{2}$

Esquema de Ramificación

