

Azetidin-Derivate, Verfahren zu ihrer Herstellung sowie deren Verwendung

Beschreibung

Die vorliegende Erfindung betrifft Azetidin-Derivate, Verfahren zu ihrer Herstellung sowie deren Verwendung als latente Härterkomponente für Harze, die gegenüber Aminen reaktive funktionelle Gruppen aufweisen, insbesondere Polyurethan- und Polyepoxid-Harze.

Latente Härterkomponenten werden insbesondere für feuchtigkeitserhärtende Polyurethanmassen bei der Herstellung von Dichtmassen, Klebstoffen und Beschichtungsmitteln eingesetzt. Im Stand der Technik sind schon eine ganze Reihe von latenten Härtern beschrieben worden, die jedoch alle den gravierenden Nachteil aufweisen, dass während der Härtungsreaktion leichtflüchtige organische Verbindungen freigesetzt werden, welche entweder die Umwelt belasten und/oder gesundheitlich problematisch erscheinen.

So werden gemäß der DE-OS 30 19 356 als Härter für Polyisocyanate Aldimin- und Oxazolidingruppen aufweisende Verbindungen beschrieben, die a) durch Umsetzung von Polyaminen mit einer Epoxidverbindung und b) der anschließenden Cyclisierung der in Stufe a) gebildeten Polyaminoalkohole mit Aldehyden hergestellt werden. Bei der Aushärtung dieser Aldiminooxazolidine mit Polyisocyanaten werden in Gegenwart von Wasser oder atmosphärischer Feuchtigkeit Aldehyde abgespalten, die unter Umständen eine starke Geruchsbelästigung darstellen und deshalb nur im Außenbereich eingesetzt werden können.

Aus der DE-OS 36 24 924 sind feuchtigkeitshärtende, lagerstabile Einkomponenten-Polyurethansysteme bekannt, die neben dem Polyurethan-Prepolymer als

erfindungswesentliche Komponente ein Polyaldimin als Härter enthalten. Auch bei diesen Polyurethansystemen werden während der Härtung Aldehyde abgespalten, wodurch eine Anwendung für den Innenbereich von vornehmerein ausgeschlossen ist. Ein weiterer Nachteil bei diesen Polyurethan-Systemen ist die Tatsache, dass die entsprechenden Polyurethan-Prepolymere eine relativ hohe Viskosität aufweisen, so dass zur Verminderung der Viskosität Malonsäurediethylester zugesetzt werden müssen.

Entsprechend der DE-OS 40 21 659 werden Bisoxazolane als Härter für Polyurethansysteme empfohlen, die durch Umsetzung von Diethanolamin mit Aldehyden hergestellt werden. Zwar können auf diese Weise niedrigviskose und lösemittelfreie Produkte zur Verfügung gestellt werden, doch spalten auch diese Bisoxazolane während der Härtungsreaktion pro Mol Härter zwei Mol Aldehyd ab, was mit den bereits vorstehend beschriebenen Nachteilen verbunden ist.

Des Weiteren werden in der EP-A 291 850 Polyurethan-Einkomponenten-Systeme beschrieben, die neben dem Polyurethan-Prepolymer einen latenten Härter aus der Gruppe Oxazolidine, Enamine und Azomethine, vorzugsweise Ketimine und/oder Aldimine enthalten. Auch diese Verbindungen spalten bei der Hydrolyse in Gegenwart von Feuchtigkeit unerwünschte Aldehyde oder Ketone ab. Außerdem müssen den Polyurethan-Prepolymeren bzw. Polyurethan-Einkomponenten-Systemen zur Verminderung des Viskositätsanstiegs Malonsäurediethylester in einer Menge von bis zu 10 Gew.-% zugesetzt werden.

Gemäß der WO 95/11 933 werden Aldimin-Oxazolidine offenbart. Neben der relativ aufwendigen Herstellung muss die Freisetzung von Aldehyden bei der Härtungsreaktion dieser Verbindungen als besonders nachteilig angesehen werden.

Schließlich sind aus der EP-A 947 529 Polyurethan-Prepolymere bekannt, die neben den Isocyanat-Gruppen noch latente Aminogruppen aufweisen. Die Herstellung dieser Polyurethan-Prepolymere erfolgt durch Addition eines Amino-Aldimins oder eines Cycloaminals an die Isocyanatgruppe eines Polyurethan-Polymers. Auch bei diesem

Polyurethan-System lässt sich die Abspaltung von Benzaldehyd während der Härtungsreaktion mit Hilfe von Wasser oder Luftfeuchtigkeit nicht vermeiden.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, eine latente Härterkomponente für Harze mit für Amine reaktiven funktionellen Gruppen bereitzustellen, welche die genannten Nachteile des Standes der Technik nicht aufweist, sondern während der feuchtigkeitsinduzierten Härtung keine leichtflüchtigen organischen Verbindungen abspaltet, gute anwendungstechnische Eigenschaften besitzt und relativ einfach und kostengünstig hergestellt werden kann.

Diese Aufgabe wurde erfindungsgemäß durch Azetidin-Derivate der allgemeinen Formel (I) gemäß Anspruch 1 gelöst.

Es hat sich überraschenderweise gezeigt, dass mit der erfindungsgemäß bereitgestellten Härterkomponente während der Härtungsreaktion überhaupt keine organischen Verbindungen abgespalten werden. Außerdem lassen sich die erfindungsgemäßen latenten Härter gut mit allen gängigen Isocyanat- bzw. Epoxid-funktionellen Systemen formulieren, wobei die entsprechenden Härter/Harz-Umsetzungsprodukte eine sehr gute Lagerstabilität über einen längeren Zeitraum aufweisen, was ebenfalls nicht vorhersehbar war.

Erfindungsgemäß wird als latente Härterkomponente ein Azetidin -Derivat der allgemeinen Formel (I) bereitgestellt,

wobei

R^1, R^2 und R^3 unabhängig voneinander H, C₁-C₂₀-Alkyl, C₃-C₈-Cycloalkyl, C₆-C₁₀-Aryl oder Alkylaryl mit C₁-C₄-Alkyl und C₆-C₁₀-Arylgruppen

Z = C₂-C₂₅-Alkyliden, C₅-C₂₅-Cycloalkyliden, C₆-C₂₄-Arylen sowie

R^5 und R^6 = H, CH₂OH, C₁-C₄-Alkyl, C₆H₅,

R^8 = H, CH₃, C₂H₅, C₆H₅

z = 0 oder 1

x = 0 bis 100

bedeuten.

Bevorzugte Alkylreste, die entweder linear oder verzweigt sein können, sind C₁ bis C₄-Alkylgruppen. Bei den Cycloalkylresten sind Cyclopentyl- und Cyclohexylgruppen und bei den Arylresten Phenyl- und Naphthylgruppen als bevorzugt anzusehen.

Gemäß einer bevorzugten Ausführungsform werden vor allem Azetidin-Derivate der allgemeinen Formel (II) eingesetzt,

wobei R^1 , R^2 , R^3 und Z oben genannte Bedeutung besitzen. Die Azetidin-Derivate gemäß der Formel (II) sind sehr einfach durch Umsetzung von einem Mol des Polyamins der Formel $H_2N-Z'-NH_2$ mit zwei Mol eines α,β -ungesättigten Aldehyds der Formel $R^1R^2-C=CR^3CHO$ entsprechend der Gleichung (A) herstellbar, wobei unter Wasserabspaltung die Cyclisierung zum Bis-Azetidin-Derivat erfolgt:

Z' hat hierbei folgende Bedeutung:

C_2-C_{25} -Alkyliden, C_5-C_{25} -Cycloalkyliden, C_6-C_{24} -Arylen sowie

R^5 und $R^6 = H, CH_2OH, C_1-C_4$ -Alkyl, C_6H_5 ,

$z = 0$ oder 1

$x = 0$ bis 100

Für den Fall, dass das Polyamin $\text{NH}_2\text{-Z}'\text{-NH}_2$ drei oder vier NH_2 -Gruppen aufweist, können durch Umsetzung mit drei oder vier Mol des α, β -ungesättigten Aldehyds die entsprechenden Tris- oder Tetrakis-Azetidine hergestellt werden.

Bei der Umsetzung eines Mols des Polyamins $\text{H}_2\text{N-Z}'\text{-NH}_2$ mit zwei Mol eines α, β -ungesättigten Ketons der Formel $\text{R}^1\text{R}^2\text{C=CR}^3\text{-COR}^4$ entsprechend der Gleichung (B) entstehen Bis-Azetidin-Derivate der allgemeinen Formel (III):

Es ist im Rahmen der vorliegenden Erfindung auch möglich, dass das Polyamin $\text{NH}_2\text{-Z}'\text{-NH}_2$ drei oder vier NH_2 -Gruppen aufweist. In diesen Fällen werden durch Umsetzung von 1 Mol des Polyamins mit drei oder vier Mol des α, β -ungesättigten Ketons $\text{R}^1\text{R}^2\text{C=CR}^3\text{-COR}^4$ die entsprechende Tris- oder Tetrakis-Azetidine erhalten.

Die Herstellung der erfindungsgemäßen Azetidin-Derivate ist relativ unproblematisch und kann durch Umsetzung des Polyamins mit dem α , β -ungesättigten Aldehyd oder Keton in Gegenwart eines organischen Lösemittels, insbesondere Toluol, im Temperaturbereich von 20 bis 150 °C, insbesondere unter Wasserabscheidung, erfolgen.

Die erfindungsgemäß bereitgestellten Diazepin-Derivate eignen sich hervorragend als latente Härterkomponente für Harze mit funktionellen Gruppen, die gegenüber Aminen reaktiv sind. Latente Härterkomponenten bewirken eine feuchtigkeitsinduzierte Härtung.

Vorzugsweise werden die erfindungsgemäßen Diazepin-Derivate für die Härtung von Polyurethan- und/oder Epoxidharzen eingesetzt.

Es ist im Rahmen der vorliegenden Erfindung jedoch ohne weiteres möglich, die Diazepin-Derivate bei anderen Polymersystemen wie z.B. Polyacrylaten oder anderen Polymerverbindungen zu verwenden, die mindestens eine gegenüber Aminen reaktive Gruppe aufweisen. Gemäß einer bevorzugten Ausführungsform wird hierbei das Diazepin-Derivat der Formel I über das sekundäre Amin an das zu härtende Harz addiert. Bei Feuchtigkeitseinwirkung wird dann der Azetidin-Ring hydrolytisch geöffnet und das dabei entstehende sekundäre Amin kann schließlich mit den reaktiven funktionellen Gruppen des zu härtenden Harzes abreagieren.

Diese Aushärtung des Gemisches bestehend aus Härterkomponente und Harz erfolgt vorzugsweise im Temperaturbereich von 5 bis 80 °C, insbesondere bei 10 bis 60 °C.

Die Menge der eingesetzten Härterkomponente ist relativ unkritisch, doch hat es sich aus wirtschaftlichen Gründen als besonders vorteilhaft erwiesen, das erfindungsgemäß vorgeschlagene Azetidin-Derivat in einer Menge von 0,01 bis 150 Gew.-%, insbesondere 0,1 bis 20 Gew.-%, bezogen auf die Menge des zu härtenden Harzes zu verwenden.

Aufgrund der besonderen Vorteile der erfindungsgemäßen Härterkomponente wie gute Herstellbarkeit, hohe Umweltfreundlichkeit (es werden keine flüchtigen Verbindungen

während der Härtung abgespalten) sowie gute Lagerstabilität der Harz/Härter-Gemische eignen sich Azetidin-Derivate gemäß Formeln (I) bis (III) hervorragend für einkomponentige, feuchtigkeitserhärtende Polymermassen, die vor allem für die Herstellung von Dichtmassen, Klebstoffen und Beschichtungsmitteln, insbesondere von Bodenbeschichtungsmitteln, von besonderem Interesse sind.

Die nachfolgenden Beispiele sollen die Erfindung näher veranschaulichen.

Beispiele

Alle Beispiele wurden unter Luftausschluß in Stickstoffatmosphäre hergestellt.

Beispiel 1 A**Herstellung eines Bis-azetidins auf Basis von Jeffamin D-230**

In einem Reaktionsgefäß mit Wasserabscheider werden 30 g (0,306 mol) Mesityloxid, 33,48 g (0,146 mol) Jeffamin D-230 (Firma Huntsman), 0,1 g p-Toluolsulfonsäure in 150 g abs. Toluol gelöst und zum Sieden erhitzt. Die Reaktionsmischung wird solange bei Siedetemperatur gehalten, bis kein Wasser mehr über den Wasserabscheider entfernt werden kann (Theorie: 5,24 g Wasser). Anschließend wird das Toluol vollständig entfernt. Man erhält ein leicht orangefarbenes öliges Produkt.

Beispiel 1 B**Herstellung eines NCO-haltigen Prepolymers mit dem Bisazetidin-Härtererivat aus Bsp. 1A**

In einem Reaktionsgefäß werden 250 g (0,125 mol) Polypropylenglycol Dow Voranol P2000 (von der Firma Dow) mit 55,55 g (0,25 mol) Isophorondiisocyanat und 0,1 g T12-DBTL bei 85°C gehalten, bis der theoretische NCO-Gehalt von 3,44 Gew.-% erreicht ist.

Anschließend werden in 300,0 g des NCO-haltigen Prepolymer bei Raumtemperatur 48,0 g (0,123 mol) Bisazetidin-Derivat aus Bsp. 1A eingerührt.

Das erhaltene Produkt ist harzig, durchsichtig klar und besitzt eine schwache orange Färbung. Auf einer Glasplatte aufgestrichen härtet es in kurzer Zeit ohne unangenehme Geruchsbelästigung vollständig durch. Auch in der Dickschichtanwendung erfolgt eine vollständige Durchhärtung.

Beispiel 1 C

Herstellung eines NCO-haltigen Prepolymers mit dem Bisazetidin-Härterderivat aus Bsp. 1A

In einem Reaktionsgefäß werden 250 g (0,125 mol) Polypropylenglycol Dow Voranol P2000 (von der Firma Dow) mit 43,54 g (0,25 mol) Toluoldiisocyanat und 0,1 g T12-DBTL bei 85°C gehalten, bis der theoretische NCO-Gehalt von 3,58 Gew.-% erreicht ist.

Anschließend werden in 250,0 g des NCO-haltigen Prepolymer bei Raumtemperatur 40,0 g (0,102 mol) Bisazetidin-Derivat aus Bsp. 1A eingerührt.

Das erhaltene Produkt ist harzig, durchsichtig klar und besitzt eine schwache orange Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch. Auch in der Dickschichtanwendung erfolgt eine vollständige Durchhärtung.

Beispiel 2 A

Herstellung eines Bis-azetidins auf Basis von 1,6-Hexamethylendiamin

In einem Reaktionsgefäß mit Wasserabscheider werden 30 g (0,306 mol) Mesityloxid, 16,91 g (0,146 mol) 1,6-Hexamethylendiamin, 0,1 g p-Toluolsulfonsäure in 150 g abs. Toluol gelöst und zum Sieden erhitzt. Die Reaktionsmischung wird solange bei Siedetemperatur gehalten, bis kein Wasser mehr über den Wasserabscheider entfernt werden kann (Theorie: 5,24 g Wasser). Anschließend wird das Toluol vollständig entfernt.

Beispiel 2 B

Herstellung eines NCO-haltigen Prepolymers mit dem Bisazetidin-Härterderivat aus Bsp. 2A

In einem Reaktionsgefäß werden 250 g (0,125 mol) Polypropylenglycol Dow Voranol P2000 (von der Firma Dow) mit 42,05 g (0,25 mol) 1,6-Hexamethylendiisocyanat und

0,1 g T12-DBTL bei 85°C gehalten, bis der theoretische NCO-Gehalt von 3,60 Gew.-% erreicht ist.

Anschließend werden in 250 g des NCO-haltigen Prepolymer bei Raumtemperatur 28,33 g (0,102 mol) Bisazetidin-Derivat aus Bsp. 2A eingerührt.

Das erhaltene Produkt ist harzig, durchsichtig klar und besitzt eine schwache gelbliche Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch. Auch in der Dickschichtanwendung erfolgt eine vollständige Durchhärtung.

Beispiel 2 C

Herstellung eines NCO-haltigen Prepolymers mit dem Bisazetidin-Härterderivat aus Bsp. 2A

In einem Reaktionsgefäß werden 250 g (0,125 mol) Polypropylenglycol Dow Voranol P2000 (von der Firma Dow) mit 65,59 g (0,25 mol) H12MDI und 0,1 g T12-DBTL bei 85°C gehalten, bis der theoretische NCO-Gehalt von 3,33 Gew.-% erreicht ist.

Anschließend werden in das NCO-haltige Prepolymer bei Raumtemperatur 35,78 g (0,129 mol) Bisazetidin-Derivat aus Bsp. 2A eingerührt.

Das erhaltene Produkt ist harzig, durchsichtig klar und besitzt eine schwache gelbliche Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch. Auch in der Dickschichtanwendung erfolgt eine vollständige Durchhärtung.

Beispiel 2 D

Formulierung eines Epoxy-funktionellen Harzes mit dem Bisazetidin-Härterderivat aus Bsp. 2A

Bei 40°C werden in 250 g (0,735 mol) Bisphenol-A-diglycidylether 203,2 g (0,735 mol) Bisazetidin-Derivat aus Bsp. 2A homogen eingerührt.

Das erhaltene Produkt ist viskos, durchsichtig klar und besitzt eine schwache gelbliche Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch.

Beispiel 3 A

Herstellung eines Tris-azetidins auf Basis von Jeffamin T-403

In einem Reaktionsgefäß mit Wasserabscheider werden 30 g (0,306 mol) Mesityloxid, 45,85 g (0,102 mol) Jeffamin T-403 (Firma Huntsman), 0,1 g p-Toluolsulfonsäure in 150 g abs. Toluol gelöst und zum Sieden erhitzt. Die Reaktionsmischung wird solange bei Siedetemperatur gehalten, bis kein Wasser mehr über den Wasserabscheider entfernt werden kann (Theorie: 5,50 g Wasser). Anschließend wird das Toluol vollständig entfernt. Man erhält ein leicht orangefarbenes harziges Öl.

Beispiel 3 B

Herstellung eines NCO-haltigen Prepolymers mit dem Tris-azetidin-Härtererivat aus Bsp. 3A

In einem Reaktionsgefäß werden 250 g (0,125 mol) Polypropylenglycol Dow Voranol P2000 (von der Firma Dow) mit 42,05 g (0,25 mol) 1,6-Hexamethylendiisocyanat und 0,1 g T12-DBTL bei 85°C gehalten, bis der theoretische NCO-Gehalt von 3,60 Gew.-% erreicht ist.

Anschließend werden in das NCO-haltige Prepolymer bei Raumtemperatur 57,66 g (0,0835 mol) Tris-azetidin-Derivat aus Bsp. 3A eingerührt.

Das erhaltene Produkt ist harzig, ~~durchsichtig~~ klar und besitzt eine schwache orange Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch. Auch in der Dickschichtanwendung erfolgt eine vollständige Durchhärtung.

Beispiel 3 C

Formulierung eines Epoxy-funktionellen Harzes mit dem Tris-azetidin-Härterderivat aus Bsp. 3A

Bei 40°C werden in 250 g (0,735 mol) Bisphenol-A-diglycidylether 338,26 g (0,490 mol) tris-azetidin-Derivat aus Bsp. 3A homogen eingerührt.

Das erhaltene Produkt ist viskos, durchsichtig klar und besitzt eine schwache gelbliche Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch.

Beispiel 4 A

Herstellung eines Tris-azetidins auf Basis von Jeffamin T-403

In einem Reaktionsgefäß mit Wasserabscheider werden 30 g (0,357 mol) 3-Methylcrotonaldehyd, 53,50 g (0,119 mol) Jeffamin T-403 (Firma Huntsman), 0,1 g p-Toluolsulfonsäure in 200 g abs. Toluol gelöst und zum Sieden erhitzt. Die Reaktionsmischung wird solange bei Siedetemperatur gehalten, bis kein Wasser mehr über den Wasserabscheider entfernt werden kann (Theorie: 6,42 g Wasser).

Anschließend wird das Toluol vollständig entfernt. Man erhält ein leicht orangefarbenes harziges Öl.

Beispiel 4 B

Herstellung eines NCO-haltigen Prepolymers mit dem Tris-azetidin-Härterderivat aus Bsp. 4A

In einem Reaktionsgefäß werden 250 g (0,125 mol) Polypropylenglycol Dow Voranol P3000 (von der Firma Dow) mit 28,03 g (0,167 mol) 1,6-Hexamethylendiisocyanat und 0,1 g T12-DBTL bei 85°C gehalten, bis der theoretische NCO-Gehalt von 2,52 Gew.-% erreicht ist.

Anschließend werden in das NCO-haltige Prepolymer bei Raumtemperatur 36,03 g (0,0556 mol) Tris-azetidin-Derivat aus Bsp. 4A eingerührt.

Das erhaltene Produkt ist harzig, durchsichtig klar und besitzt eine schwache orange Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch. Auch in der Dickschichtanwendung erfolgt eine vollständige Durchhärtung.

Beispiel 5 A

Herstellung eines Bis-azetidins auf Basis von Jeffamin D-230

In einem Reaktionsgefäß mit Wasserabscheider werden 30 g (0,357 mol) 3-Methylcrotonaldehyd, 41,00 g (0,178 mol) Jeffamin D-230 (Firma Huntsman), 0,1 g p-Toluolsulfonsäure in 150 g abs. Toluol gelöst und zum Sieden erhitzt. Die Reaktionsmischung wird solange bei Siedetemperatur gehalten, bis kein Wasser mehr über den Wasserabscheider entfernt werden kann (Theorie: 6,42 g Wasser).

Anschließend wird das Toluol vollständig entfernt. Man erhält ein leicht orangefarbenes Öl.

Beispiel 5 B

Formulierung eines Epoxy-funktionellen Harzes mit dem Bis-azetidin-Härterderivat aus Bsp. 5A

Bei 40°C werden in 250 g (0,735 mol) Bisphenol-A-diglycidylether 266,25 g (0,735 mol) Bis-azetidin-Derivat aus Bsp. 5A homogen eingerührt.

Das erhaltene Produkt ist viskos, durchsichtig klar und besitzt eine schwache gelbliche Färbung. Auf einer Glasplatte aufgestrichen härtet es ohne unangenehme Geruchsbelästigung vollständig durch.

Beispiel 6**Lagerstabilitätsprüfung**

Die gemäß den Beispielen 1 bis 5 hergestellten Gemische aus Prepolymeren und latenten Härtern werden einer Lagerung in geschlossenen Gefäßen bei Raumtemperatur (20-25°C) unterzogen und dabei folgende Ergebnisse erhalten:

Nach einer Lagerzeit von 12 Monaten bei einer Temperatur zwischen 20-25°C in licht- und luftdichten Gefäßen wurde bei allen Beispielen keine nennenswerte Farbveränderung festgestellt. Der Viskositätsanstieg über diesen Zeitraum war sehr gering (Anstieg um einen Faktor im Bereich von 1,1 - 1,3 gegenüber der Anfangsviskosität) und zeigte keinerlei Auswirkungen auf die Aushärtung bzw. die Verarbeitbarkeit.

Ansprüche

1. Azetidin-Derivate der allgemeinen Formel (I)

wobei

R^1 , R^2 und R^3 unabhängig voneinander H, C₁-C₂₀-Alkyl, C₃-C₈-Cycloalkyl, C₆-C₁₀-Aryl oder Alkylaryl mit C₁-C₄-Alkyl und C₆-C₁₀-Arylgruppen

R^4 = H, C₁-C₆-Alkyl(iden)

Z = C₂-C₂₅-Alkyliden, C₅-C₂₅-Cycloalkyliden, C₆-C₂₄-Arylen sowie

R^5 und R^6 = H, CH₂OH, C₁-C₄-Alkyl, C₆H₅,

$R^8 = H, CH_3, C_2H_5, C_6H_5$

$z = 0$ oder 1

$x = 0$ bis 100

bedeuten.

2. Azetidin-Derivate nach Anspruch 1 der allgemeinen Formel (II)

wobei

R^1, R^2, R^3 und Z die in Anspruch 1 genannte Bedeutung besitzen.

3. Azetidin-Derivate nach Anspruch 1 der allgemeinen Formel (III)

wobei

R^1, R^2, R^3 und Z die in Anspruch 1 genannte Bedeutung besitzen, und

R^4 C1-C6 Akyliden ist.

4. Verfahren zur Herstellung von Azetidin-Derivaten nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man ein Polyamin der Formel $\text{NH}_2\text{-Z}'\text{-NH}_2$ mit einem α,β -ungesättigten Aldehyd der Formel $\text{R}^1\text{R}^2\text{-C=CR}^3\text{CHO}$ oder einem α,β -ungesättigten Keton der Formel $\text{R}^1\text{R}^2\text{C=CR}^3\text{-COR}^4$ im Temperaturbereich von 20 bis 150 °C umsetzt, wobei Z' für

$\text{C}_2\text{-C}_{25}\text{-Alkyliden}, \text{C}_5\text{-C}_{25}\text{-Cycloalkyliden}, \text{C}_6\text{-C}_{24}\text{-Arylen}$ sowie

R^5 und $\text{R}^6 = \text{H}, \text{CH}_2\text{OH}, \text{C}_1\text{-C}_4\text{-Alkyl}, \text{C}_6\text{H}_5,$

$\text{R}^8 = \text{H}, \text{CH}_3, \text{C}_2\text{H}_5, \text{C}_6\text{H}_5$

$z = 0$ oder 1

$x = 0$ bis 100

stehen und $\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4$ vorstehende Bedeutung besitzen.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man die Umsetzung in Gegenwart eines organischen Lösemittels, insbesondere Toluol, durchführt.
6. Verwendung der Azetidin-Derivate nach einem der Ansprüche 1 bis 3 als latente Härterkomponente für Harze mit gegenüber Aminogruppen reaktiven funktionellen Gruppen.
7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, dass man das Azetidin-Derivat der Formel (I) und/oder (II) und/oder (III) mit dem zu härtenden Harz vermischt, den Azetidin-Ring durch Feuchtigkeitseinwirkung hydrolytisch öffnet

und das dabei entstehende sekundäre Amin mit den reaktiven funktionellen Gruppen des zu härtenden Harzes abreagieren lässt.

8. Verwendung nach einem der Ansprüche 6 bis 7, dadurch gekennzeichnet, dass man als zu härtendes Harz Polyurethane oder Polyepoxide sowie Mischungen davon einsetzt.
9. Verwendung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass man die Härterkomponente in einer Menge von 0,01 bis 150 Gew.-%, insbesondere 0,1 bis 20 Gew.-%, bezogen auf die Menge des zu härtenden Harzes verwendet.
10. Verwendung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass man die Aushärtung des Gemisches, bestehend aus Härterkomponente und Harz, bei einer Temperatur von 5 bis 80 °C und ggf. in Gegenwart eines geeigneten Katalysators durchführt.
11. Verwendung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die Härterkomponente bei der Herstellung von (Boden-)Beschichtungen, Dicht- und Klebstoffen eingesetzt wird.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2004/013730

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D205/06 C08J3/24 C08F8/32 C08K5/3412

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D C08J C08F C08K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data, COMPENDEX, BEILSTEIN Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 858 038 A (LEPETIT S.P.A) 4 January 1961 (1961-01-04) the whole document -----	1
X	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MARINETTI, ANGELA ET AL: "Enantioselective preparation of 2,4-disubstituted azetidines" XP002319678 retrieved from STN Database accession no. 2000:336170 abstract compounds 286435-29-8 & EUROPEAN JOURNAL OF ORGANIC CHEMISTRY , (9), 1815-1820 CODEN: EJOCFK; ISSN: 1434-193X, 2000, ----- -/-	1

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the International search report

2 March 2005

18/03/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kolmannsberger, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/013730

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; TESTA, I. EMILIO ET AL: "Substances acting on the central nervous system. XIV. 3,3-Disubstituted azetidines" XP002319679 retrieved from STN Database accession no. 1962:45914 abstract compounds 88590-75-4, 94677-05-1, 96274-71-4 & ANN. , 633, 56-66, 1960, -----</p>	1
X	<p>DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MURAKAMI, MASUO ET AL: "Diazoniadispiroalkane salts" XP002319680 retrieved from STN Database accession no. 1970:111531 abstract compounds 27271-72-3 & JP 450 027 51B B4 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) 29 January 1970 (1970-01-29)</p>	1
A	<p>US 4 576 980 A (DAI ET AL) 18 March 1986 (1986-03-18) column 2, line 2 column 2, line 6 - column 3, line 2</p>	1-11
A	<p>DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; LUNAK, STANISLAV ET AL: "Hardenable epoxy compositions with increased storage stability" XP002319681 retrieved from STN Database accession no. 1986:554121 abstract & CS 224 495 B (CZECH.) 16 January 1984 (1984-01-16)</p>	1-11
A	<p>US 4 880 869 A (AOKI ET AL) 14 November 1989 (1989-11-14) claims</p>	1-11
A	<p>US 5 276 166 A (SWARUP ET AL) 4 January 1994 (1994-01-04) claims</p>	1-11

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/013730

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
GB 858038	A	04-01-1961	NONE		
JP 45002751B	B4		NONE		
US 4576980	A	18-03-1986	AT 35278 T CA 1232913 A1 DE 3563451 D1 EP 0181513 A2 JP 61106675 A US 4612098 A US 4683302 A		15-07-1988 16-02-1988 28-07-1988 21-05-1986 24-05-1986 16-09-1986 28-07-1987
CS 224495	B	16-01-1984	CS 224495 B1		16-01-1984
US 4880869	A	14-11-1989	CA 1310644 C CN 88100973 A ,B EP 0397857 A1 JP 2000168 A JP 2635644 B2 WO 8805431 A1 KR 9007513 B1		24-11-1992 09-11-1988 22-11-1990 05-01-1990 30-07-1997 28-07-1988 11-10-1990
US 5276166	A	04-01-1994	WO 9313063 A1 US 5296541 A		08-07-1993 22-03-1994

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/013730

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07D205/06 C08J3/24 C08F8/32 C08K5/3412

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07D C08J C08F C08K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, CHEM ABS Data, WPI Data, COMPENDEX, BEILSTEIN Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	GB 858 038 A (LEPETIT S.P.A) 4. Januar 1961 (1961-01-04) das ganze Dokument -----	1
X	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MARINETTI, ANGELA ET AL: "Enantioselective preparation of 2,4-disubstituted azetidines" XP002319678 gefunden im STN Database accession no. 2000:336170 Zusammenfassung Verbindungen 286435-29-8 & EUROPEAN JOURNAL OF ORGANIC CHEMISTRY , (9), 1815-1820 CODEN: EJOCFK; ISSN: 1434-193X, 2000, ----- -/-	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des internationalen Recherchenberichts

2. März 2005

18/03/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Kollmannsberger, M

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/013730

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; TESTA, I. EMILIO ET AL: "Substances acting on the central nervous system. XIV. 3,3-Disubstituted azetidines" XP002319679 gefunden im STN Database accession no. 1962:45914 Zusammenfassung Verbindungen 88590-75-4, 94677-05-1, 96274-71-4 & ANN. , 633, 56-66, 1960, -----	1
X	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MURAKAMI, MASUO ET AL: "Diazoniadispiroalkane salts" XP002319680 gefunden im STN Database accession no. 1970:111531 Zusammenfassung Verbindungen 27271-72-3 & JP 450 027 51B B4 (YAMANOUCHI PHARMACEUTICAL CO., LTD.) 29. Januar 1970 (1970-01-29)	1
A	US 4 576 980 A (DAI ET AL) 18. März 1986 (1986-03-18) Spalte 2, Zeile 2 Spalte 2, Zeile 6 - Spalte 3, Zeile 2 -----	1-11
A	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; LUNAK, STANISLAV ET AL: "Hardenable epoxy compositions with increased storage stability" XP002319681 gefunden im STN Database accession no. 1986:554121 Zusammenfassung & CS 224 495 B (CZECH.) 16. Januar 1984 (1984-01-16)	1-11
A	US 4 880 869 A (AOKI ET AL) 14. November 1989 (1989-11-14) Ansprüche -----	1-11
A	US 5 276 166 A (SWARUP ET AL) 4. Januar 1994 (1994-01-04) Ansprüche -----	1-11

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/013730

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
GB 858038	A	04-01-1961	KEINE		
JP 45002751B	B4		KEINE		
US 4576980	A	18-03-1986	AT 35278 T CA 1232913 A1 DE 3563451 D1 EP 0181513 A2 JP 61106675 A US 4612098 A US 4683302 A		15-07-1988 16-02-1988 28-07-1988 21-05-1986 24-05-1986 16-09-1986 28-07-1987
CS 224495	B	16-01-1984	CS 224495 B1		16-01-1984
US 4880869	A	14-11-1989	CA 1310644 C CN 88100973 A ,B EP 0397857 A1 JP 2000168 A JP 2635644 B2 WO 8805431 A1 KR 9007513 B1		24-11-1992 09-11-1988 22-11-1990 05-01-1990 30-07-1997 28-07-1988 11-10-1990
US 5276166	A	04-01-1994	WO 9313063 A1 US 5296541 A		08-07-1993 22-03-1994