

Gameboard

Maths

Newton-Raphson Method 3ii

Newton-Raphson Method 3ii

It is given that $f(x)=x^2-\arctan x$ and that $\frac{d}{dx}(\arctan x)=\frac{1}{1+x^2}$.

Part A Interval containing the root

Explain why the equation f(x) = 0 has a root in the interval 0.8 < x < 0.9.

The value of f(x) when x=0.8 is ______, and the value of f(x) when x=0.9 is ______. These values of f(x) have ______. Hence, as f(x) is a continuous function, there is a value of x in the interval 0.8 < x < 0.9 for which f(x)=0.

A root of an equation is a value of x for which f(x) = 0. Hence, there is a root of f(x) in the interval 0.8 < x < 0.9.

Items:

$$\boxed{1 \quad \text{(the same sign)} \quad \boxed{0.0771} \quad \boxed{-0.0347} \quad \boxed{\text{different signs}} \quad \boxed{1.348} \quad \boxed{0.0772} \quad \boxed{0}$$

Part B Find the root

Use the Newton-Raphson method, with a first approximation 0.8, to find the next approximation to this root. Give your answer correct to 3 significant figures.

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Newton-Raphson Method 1ii

Newton-Raphson Method 1ii

The diagram shows the curve with equation $y=xe^{-x}+1$. The curve crosses the x-axis at $x=\alpha$.

Figure 1: A sketch of the curve $y = xe^{-x} + 1$.

Part A x-coordinate of stationary point

Use differentiation to calculate the x-coordinate of the stationary point.

The following symbols may be useful: x

09/12/2024, 15:29

Explain Part B

lpha is to be found using the Newton-Raphson method, with $f(x)=xe^{-x}+1$.

Explain why this method will not converge to α if an initial approximation x_1 is chosen such that $x_1 > 1$.

The iterative formula for the Newton-Raphson method is $x_{n+1} = x_n - \frac{f(x)}{f'(x)}$. For all values of x greater than

of f(x) is negative (and close to ______). Hence, $-rac{f(x)}{f'(x)}$ is 1, f(x) is positive, and the

positive and so x_{n+1} is larger than x_n . Visually, the x-intercepts of at successive approximations will reach progressively x-values and, hence, move further away from α .

Items:

[larger]	normals	value	gradient	0	$\begin{bmatrix} -1 \end{bmatrix}$	smaller	1	tangents	intercept
----------	---------	-------	----------	---	------------------------------------	---------	---	----------	-----------

Part C Values

lpha is to be found using the Newton-Raphson method, with $f(x)=xe^{-x}+1$.

Use this method, with a first approximation $x_1 = 0$, to find the next three approximations x_2 , x_3 , x_4 . Give your answers to 4 sf where necessary.

$$x_2 = \bigcap$$

$$x_3 = \bigcirc$$

$$x_4 =$$

Find α correct to 3 significant figures.

$$\beta =$$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Numerical Methods & <u>Integration</u>

<u>Gameboard</u>

Maths

Roots and Iteration 3i

Roots and Iteration 3i

Part A Sketch

By sketching two suitable graphs on a single diagram, find the number of roots to the equation

$$14 - x^2 = 3\ln x.$$

From your sketch, state how many roots there are to the equation

$$14 - x^2 = 3\ln x$$

Part B Integer below α

Find by calculation the largest integer which is less than the root α .

Part C Iteration

Use the iterative formula $x_{n+1} = \sqrt{14 - 3 \ln x_n}$, with a suitable starting value to find α correct to 3 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Numerical Methods & Integration

<u>Gameboard</u>

Maths

Roots and Iteration 1i

Roots and Iteration 1i

It is required to solve the equation $f(x) = \ln (4x - 1) - x = 0$.

Part A Root existence

Show that the equation f(x)=0 has two roots, lpha and eta, such that 0.5<lpha<1 and 1<eta<2.

We find that f(0.5) = igcup , f(1) = igcup and f(2) = igcup

Since there is a between f(0.5) and f(1), there must be a root α such that $0.5 < \alpha < 1$. As there is also a between f(1) and f(2), there must be a root β such that $1 < \beta < 2$.

Items:

1.95 0.5

Part B Iteration with g(x)

Let $g(x) = \ln(4x - 1)$. Use the iterative formula $x_{r+1} = g(x_r)$ with $x_0 = 1.8$ to find x_1 , x_2 , and x_3 , correct to 5 decimal places.

$$x_1 = \bigcap$$

$$x_2 = igcup$$

$$x_3 = \bigcap$$

Continue the iterative process with $x_{r+1}=g(x_r)$ to find β correct to 3 decimal places.

$$\beta =$$

Part C New rearrangement h(x)

The equation f(x)=0 can be rearranged into the form

$$x = h(x) = \frac{e^{ax} + b}{c}$$

where a, b and c are constants. Find h(x).

The following symbols may be useful: e, h, x

Part D Iteration with h(x)

Use the iterative formula $x_{r+1}=h(x_r)$ with $x_0=0.8$ to find lpha correct to 4 decimal places.

Part E Root finding analysis

Show that the iterative formula $x_{r+1}=g(x_r)$ will not find the value of α . Similarly, determine whether the iterative formula $x_{r+1}=h(x_r)$ will find the value of β .

The iterative formula $x_{r+1} = g(x_r)$ will not converge to a root if $\Big[\Big]$ near that root.

For g(x), differentiating we find that g'(x)= . Using the value for α calculated in Part D, this gives $g'(\alpha)=$ 0 > 1. Therefore the iterative formula $x_{r+1}=g(x_r)$ will not converge to α .

For h(x), differentiating we find that h'(x)= ______. Using the value for β calculated in Part B, $h'(\beta)=$ ______ > 1. Therefore the iterative formula $x_{r+1}=h(x_r)$ will not converge to β .

Items:

$$oxed{1.77} \quad egin{pmatrix} |g'(x)| > 1 \end{pmatrix} \quad egin{pmatrix} 1.62 \end{pmatrix} \quad egin{pmatrix} rac{1}{4x-1} \end{pmatrix}$$

Part F Staircase diagrams

From the figures below, select the two figures that illustrate the iterations for $x_{r+1} = g(x_r)$ and $x_{r+1} = h(x_r)$.

Figure 1: Graph of the iterative process for $x_{r+1}=g(x_r)$ towards β .

Figure 2: Graph of the iterative process for $x_{r+1}=g(x_r)$ towards β .

Figure 3: Graph of the iterative process for $x_{r+1}=g(x_r)$ towards β .

Figure 4: Graph of the iterative process for $x_{r+1} = h(x_r)$ towards lpha.

Figure 5: Graph of the iterative process for $x_{r+1} = h(x_r)$ towards lpha.

Figure 6: Graph of the iterative process for $x_{r+1} = h(x_r)$ towards lpha.

- Figure 1
- Figure 2
- Figure 3

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Numerical Methods & Integration

<u>Gameboard</u>

Maths

Trapezium Rule 2ii

Trapezium Rule 2ii

Figure 1: The diagram of the curve $y=\ln{(16-12x^2)}$.

Figure 1 shows part of the curve $y=\ln{(16-12x^2)}$. The region A is bounded by the curve and the lines x=0 , x=1 and y=0.

Part A Trapezium Rule

Find an approximate value for A by using the trapezium rule, with two strips each of width $\frac{1}{2}$. Give your answer in the form $a \ln b$.

Part B Overestimate or underestimate

Explain, using the diagram, whether the value obtained in Part A is an underestimate or overestimate for the area of A .
The diagram shows that for $0 \le x \le 1$ the value of y is and the curve has a shape (the gradient of the curve is becoming more negative). Hence, the tops of the trapezia used in part A all lie the curve, and so the area of the trapezia is an of the area of A. Items:
negative under concave above positive overestimate convex underestimate
Part C Improving the approximation
Which of these options would improve the estimate of the area of A ?
Use 4 trapezia of width $\frac{1}{8}$.
Use 4 trapezia of width $\frac{1}{4}$.
Use the same number of trapezia, but double their height.
Use a larger number of trapezia with the same width, $\frac{1}{2}$.

Adapted with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Numerical Methods & Integration

<u>Gameboard</u>

Maths

Trapezium Rule 3i

Trapezium Rule 3i

The value of $\int_0^8 \ln{(3+x^2)} \, \mathrm{d}x$ obtained by using the trapezium rule with four strips is denoted by A.

Part A Trapezium Rule

Find the value of A correct to 3 significant figures.

Part B Approximation of $\int_0^8 \ln{(9+6x^2+x^4)}\,\mathrm{d}x$

Write, in terms of A, an expression for an approximate value of $\int_0^8 \ln{(9+6x^2+x^4)}\,\mathrm{d}x$.

The following symbols may be useful: A

Part C Approximation of $\int_0^8 \ln{(3e+ex^2)}\,\mathrm{d}x$

Write, in terms of A, an expression for an approximate value of $\int_0^8 \ln{(3e+ex^2)}\,\mathrm{d}x$.

The following symbols may be useful: A

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 45 - Numerical Methods & Integration

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Gameboard</u>

Maths A

Area: Numerical Integration 2ii

Area: Numerical Integration 2ii

Figure 1: The curve with equation $y=\sqrt{1+x^3}$, for $2\leqslant x\leqslant 3$.

Figure 1 shows the curve with equation $y=\sqrt{1+x^3}$, for $2\leqslant x\leqslant 3$. The region under the curve between these limits has area A.

Using the figure below, fill in the blanks to explain why $3 < A < \sqrt{28}$.

Figure 2: A diagram showing rectangles with areas which bound A.

Two rectangles are shown in **Figure 2**. Both rectangles begin on the x-axis and have width one. The area of the smaller rectangle, which lies the curve, is . The area of the second rectangle, the top of which lies the curve, is . The rectangles have areas which bound A, and hence:

$$3 < A < \sqrt{28}$$

Items:

above

 $\left\lceil \sqrt{28}
ight
ceil$

 $\sqrt{3\sqrt{28}}$

6

below

Part B Improved bounds

Figure 3: The curve with equation $y=\sqrt{1+x^3}$, for $2\leqslant x\leqslant 3$, divided into 5 strips of equal width.

The region is divided into 5 strips, each of width 0.2. Use suitable rectangles with these strips to find improved lower and upper bounds for A. Give your answers to 3 significant figures.

lower bound for A:

upper bound for A:

Adapted with permission from UCLES A-level Maths papers, 2003-2017.