

Universidade Federal de Ouro Preto - UFOP Departamento de Computação - DECOM Comissão da Disciplina Programação de Computadores I – CDPCI Programação de Computadores I – BCC701 www.decom.ufop.br/bcc701

Aula Teórica 02

Material Didático Unificado.

Conteúdos da Aula

- Variáveis
- Instrução de Atribuição
- Expressão da Linguagem
- Operadores Aritméticos
- Funções Elementares
- > Valores Predefinidos
- > Precedência e Associatividade de Operadores
- Instruções de Entrada de Dados e Saída de Dados
- Exercícios

Variáveis

Definição

- Variáveis correspondem a nomes para endereços de memória que são gerenciados pelo Scilab.
- Os endereços indicam a localização do local de armazenamento das informações na memória.
- O programador não precisa ter qualquer ideia de como tal gerência é realizada.

Nomes de Variáveis

- Para dar nomes a variáveis, algumas regras deve ser seguidas:
 - > Não podem conter acentos e nem espaços;
 - > Não podem iniciar com números;
 - Além das letras e caracteres alpha numéricos, pode conter os seguintes caracteres: # \$ _ ? !
- É recomendado que variáveis tenham nomes significativos.
- Scilab é sensível a maiúsculas e minúsculas, ou seja:
 Nome ~= nome ~= NOME

Nomes de Variáveis

- A escolha de nomes significativos para as variáveis ajuda ao programador entender o que o programa faz e a prevenir erros.
- Nomes válidos:

```
a
total_de_alunos
#funcionarios
%valor
```

Nomes inválidos

1 Aluno (o primeiro caractere é um algarismo) total de alunos (tem espaços) José (é acentuado)

Instruções de atribuição

Instrução de Atribuição

> Uma instrução de atribuição armazena um valor na memória. Sua forma é:

<variável> = <expressão>

- > <variável>: se não existia, passa a existir na memória; se existia, o antigo valor será substituído pelo valor corrente definido pela expressão.
- na execução da instrução, a <expressão> é calculada e o resultado é atribuído à <variável>.

Expressão da Linguagem

Uma expressão é:

- um valor numérico: 2 ou 2.7698 ou 0.00023
- uma função elementar do Scilab: sin, cos, etc.
- variáveis previamente definidas.
- uma expressão entre parênteses.
- uma expressão aritmética: composição de duas, ou mais, expressões e operadores aritméticos.

Expressão - Variável - Atribuição

Expressão - Variável - Atribuição

Expressão - Variável - Atribuição

Operadores aritméticos Funções elementares Valores Predefinidos

> A linguagem SciLab possui os operadores aritméticos:

Operador Aritmético	Denotação em SciLab	Exemplo	Resultado
Soma	+	7 + 5	12
Subtração	_	10 - 9	1
Multiplicação	*	22 * 10	220
Divisão	/	50 / 2	25
Menos Unário	_	-26	-26
Exponenciação (potenciação)	٨	8^2	64

> São exemplos de funções implementadas no SciLab:

Função	Denotação em SciLab	Exemplo	Resultado
Resto da Divisão Inteira	modulo	modulo(8, 3)	2
Raiz Quadrada	sqrt	sqrt(32)	5.6568542
Valor Absoluto	abs	abs(-8)	8
Coseno	cos	cos(30)	0.1542514
Tangente	tan	tan(7.3456)	1.7945721
Seno	sin	sin(%pi)	1.225D-16

> OBS: Nas funções trigonométricas os ângulos devem ser usados em radianos.

Valores Pré-Definidos

O SciLab possui alguns valores pré-definidos, alguns exemplos:

Denotação em Scilab	Valor
%pi	O número π .
%inf	Representa infinito ∞ .
%i	$\sqrt{-1}$
%e	A base do logaritmo natural.
%t ou %T	Representa o valor booleano verdadeiro.
%f ou %F	Representa o valor booleano falso.

Como o Scilab é sensível a maiúsculas e minúsculas, não será possível usar %PI, %Pi, %Inf, ou qualquer variação desta natureza.

Precedência e associatividade de operadores

Precedência de Operadores

- A precedência de operadores indica qual operador deverá ser executado primeiro.
- Assim, na expressão aritmética 2 + 3 * 6 , a subexpressão 3 * 6 é executada primeiro.
- Portanto, tem-se como resultado para a expressão o valor 20.

Precedência de Operadores

Para a expressão:

o valor resultante será:

$$2^12 = 4096$$
?

ou o valor será:

$$2^3 * 4 = 8 * 4 = 32$$
?

Para respondermos esta pergunta, além do conhecimento da precedência (prioridade) dos operadores envolvidos, devemos saber também qual são as suas associatividades.

Precedência de Operadores

A tabela abaixo define a precedência e a associatividade para alguns operadores:

Prioridade	Operação	Associatividade
1 ª	٨	Da direita para a esquerda.
2 ^a	* /	Da esquerda para a direita.
3ª	+ -	Da esquerda para a direita.

> Exemplos:

0.2+10/5

→ 10/5 é avaliada primeiro

 \circ A+B/C+D

→ B/C é avaliada primeiro

 $\circ R*3+B^3/2+1$

→ B^3 é avaliada primeiro

Associatividade de Operadores

- > <u>Associatividade</u> é a regra usada quando os operadores têm a mesma prioridade.
- Por exemplo, para as operações de adição e subtração (que possuem mesma prioridade) a regra de associatividade diz que a operação mais a esquerda é avaliada primeiro:

 $A-B+C+D \rightarrow A-B$ é avaliada primeiro, pois está mais à esquerda.

O mesmo vale para multiplicação e divisão.

Associatividade de Operadores

Mas, para potenciação, a regra da associatividade diz que a operação mais a direita deve ser avaliada primeiro:

 $A \land B \land C \land D$ \rightarrow $C \land D$ é avaliada primeiro, pois está mais à direita.

Quebra da Precedência

- A precedência de operadores pode ser alterada mediante o uso de parênteses. Ex:
 - (A + 4) / 3
 A + 4 é avaliada primeiro
 - (A B) / (C + D)
 A B é avaliada primeiro, depois a soma e por último a divisão
 - R * 3 + B^(3 / 2) + 1
 3 / 2 é avaliada primeiro

Instruções de entrada e saída de dados

Instrução de Entrada de Dados

- O comando de atribuição é a forma que o programador possui para armazenar valores numéricos, dentre outros, na memória do computador.
- Outra possibilidade que dispõe o programador, é a utilização do comando de leitura de dados pelo teclado, input.
- Este comando permite o armazenamento de valores diferentes para uma mesma variável, a cada execução do programa.
- A seguir, a sintaxe geral do comando input.

Instrução de Entrada de Dados

Sintaxe geral do comando input:

```
<variável> = input( <frase> )
```

Onde:

<variável> é uma variável que representará a posição da memória que armazenará o valor digitado.

<frase> é uma string que informa ao usuário qual o dado que ele deve digitar nesta interação. A string deve estar entre aspas duplas.

Instrução de Entrada de Dados

Suponha que o programador deseje solicitar ao usuário a quantidade de alunos de uma sala de aula e armazená-la na variável qtd_alunos.

Isso pode ser realizado pela instrução:

```
qtd alunos = input("DIGITE A QUANTIDADE DE ALUNOS: ");
```

Instrução de Saída de Dados

Após um dado ser armazenado em uma variável, seja por atribuição ou por leitura, o mesmo pode ser exibido na tela do computador através do comando printf, o qual tem a seguinte sintaxe geral:

printf(<frase>, <lista de expressões>)

Instrução de Saída de Dados

Onde:

- <frase> é a sentença que se quer imprimir na tela, e que pode estar entremeada por códigos de formato como %g.
- > %g é um código de formato geral para expressões com valores numéricos (veremos em seguida expressões com outros tipos de valores).
- > existem vários outros códigos de formato como %d, %f ou %s, que exploraremos em exercícios e em outros exemplos <u>futuramente</u>.

Instrução de Saída de Dados

Onde:

ta de expressões> é uma lista de expressões separadas por vírgulas, que são calculadas no momento da execução do comando.

As expressões na lista são mapeadas uma a uma nos códigos de formato, na mesma sequência em que aparecem na <frase>, e a sentença impressa é obtida pela substituição do valor da expressão na posição marcada pelo código de formato.

Por exemplo, o código abaixo:

```
x = 30;
Y = 60;
printf("PRIMEIRO:%g SEGUNDO :%g", X, Y);
```

Vai ter como saída:

--> PRIMEIRO: 30 SEGUNDO: 60

Exercícios

Exercícios

- Codifique os programas a seguir na linguagem Scilab. Utilize comentários e mensagens textuais para o usuário
- 1. Codifique um programa que leia dois valores. O programa calcula a soma desses valores, armazenando-a em uma variável. A seguir o programa imprime o resultado da soma.
- 2. Modifique o programa anterior, onde o resultado de (1) será o numerador de uma divisão. O denominador será um novo valor lido pelo teclado. O programa imprime o resultado final da divisão.

Exercícios

- 3. Crie um programa que imprima a hipotenusa de um triangulo retângulo de acordo com a leitura de seus catetos.
- 4. Crie um programa que leia do teclado um valor de temperatura em graus Celsius (°C), calcule e imprima essa temperatura em graus Farenheit (°F) e em graus Kelvin (°K).

OBS.:
$$F = C \times 1.8 + 32$$

 $K = C + 273.15$