Solutions (Quiz 4, section B03)

Problem 1 (5 points): Find the Taylor series generated by $f(x) = x^5 - x^3 + 5x - 8$ at x = 2.

solution:

$$f(x) = x^{5} - x^{3} + 5x - 8 \implies f(2) = 26$$

$$f'(x) = 5x^{4} - 3x^{2} + 5 \implies f'(2) = 73$$

$$f''(x) = 20x^{3} - 6x \implies f''(2) = 148$$

$$f'''(x) = 60x^{2} - 6 \implies f'''(2) = 234$$

$$f^{(4)}(x) = 120x \implies f^{(4)}(2) = 240$$

$$f^{(5)}(x) = 120 \implies f^{(5)}(2) = 120$$

Note that $f^{(n)}(x) = 0$ for $n \ge 6$. Therefore, the Taylor series generated by f(x) at x = 2 is

$$26 + 73(x - 2) + \frac{148}{2!}(x - 2)^2 + \frac{234}{3!}(x - 2)^3 + \frac{240}{4!}(x - 2)^4 + \frac{120}{5!}(x - 2)^5.$$

Problem 2 (5 points): Let $f(x) = e^x$ and $P_2(x)$ the Taylor polynomial of f of order 2 centered x = 0. Using Taylor's remainder of order 2, $R_2(x)$, estimate the bound for the error between f(x) and $P_2(x)$ for $|x| < 10^{-2}$.

solution:

$$f(x) = e^x = P_2(x) + R_2(x),$$

where $R_2(x) = \frac{f'''(c)}{3!}x^3$ for some c between 0 and x. Hence, $R_2(x)$ can be used to estimate the error between f(x) and $P_2(x)$. Here, $f'''(x) = e^x$ and in the interval $(-10^{-2}, 10^{-2})$, $f'''(c) = e^c < e^{10^{-2}}$. Thus,

$$|R_2(x)| = \left| \frac{f'''(c)}{3!} x^3 \right| < \frac{e^{10^{-2}}}{3!} |x|^3 < \frac{e^{10^{-2}}}{3!} 10^{-6}.$$