NSR Search Results Page 1 of 4

Visit the <u>Isotope Explorer</u> home page!

24 reference(s) found:

Keynumber: 1990KUZC

Reference: Proc.8th Seminar on Precise Measurements in Nucl.Spectrosc., Uzhgorod, p.85 (1990)

Authors: V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: Measurements of Lifetime of High-Energy States Excited in (n,γ) Reaction on Thermal Neutrons **Keyword abstract:** NUCLEAR REACTIONS ²⁴Mg, ²⁷Al, ³¹P, ⁵⁴, ⁵⁷Fe (n,γ) ,E=thermal; measured DSA. ²⁵Mg, ²⁸Al, ³²P, ⁵⁵, ⁵⁸Fe levels deduced $T_{1/2}$. Enriched targets,NaI(Tl),hyperpure Ge detectors.

Keynumber: 1990KOZT

Reference: Program and Thesis, Proc.40th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, Leningrad, p.48

(1990)

Authors: Yu.E.Koshutsky, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: New Data on Lifetimes of Highly-Excited States of ²⁵Mg and ³²P

Keyword abstract: NUCLEAR REACTIONS ²⁴Mg, ³¹P(n,γ),E=thermal; measured DSA. ²⁵Mg, ³²P

levels deduced $T_{1/2}$.

Keynumber: 1990KO43

Reference: Izv.Akad.Nauk SSSR, Ser.Fiz. 54, 844 (1990); Bull.Acad.Sci.Ussr, Phys.Ser. 54, No.5, 27

(1990)

Authors: Yu.E.Koshutsky, V.T.Kupryashkin, N.V.Strilchuk, A.I.Feoktistov, I.P.Shapovalova

Title: New Lifetime Data on the Highly Excited States of ²⁵Mg and ³²P

Keyword abstract: NUCLEAR REACTIONS 24 Mg, 31 P(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma$ -coin,DSA.

 25 Mg, 32 P levels deduced $T_{1/2}$.

Keynumber: 1989ZE02

Reference: Chin.J.Nucl.Phys. 11, No.2, 43 (1989) **Authors:** X.Zeng, Z.Shi, M.Zhang, G.Li, D.Ding

Title: Study of the Thermal Neutron Radiative Capture $^{31}P(n,\gamma)$ Reaction

Keyword abstract: NUCLEAR REACTIONS $^{31}P(n,\gamma)$,E=thermal; measured E γ ,I γ ; deduced neutron

separation energy, reaction mechanism. ³²P deduced levels.

Keynumber: 1989MI16

Reference: Nucl. Phys. A501, 437 (1989)

Authors: S.Michaelsen, Ch.Winter, K.P.Lieb, B.Krusche, S.Robinson, T.von Egidy

Title: High-Resolution Spectroscopy of ³²P (II). Level Density and Primary Transition Strengths

Observed after Thermal Neutron Capture in ³¹P

Keyword abstract: NUCLEAR REACTIONS ³¹P(n,γ),E=thermal; measured Eγ,Iγ. ³²P deduced

levels, neutron binding energy, level density, γ -transition strengths, branching ratios. Pair

spectrometer, intrinsic Ge detector.

Keynumber: 1987SA54

Reference: Ann. Phys. (Leipzig) 44, 630 (1987)

Authors: M.Salama

Title: Thermal Total Neutron Cross Section of Phosphorus

NSR Search Results Page 2 of 4

Keyword abstract: NUCLEAR REACTIONS 31 P(n, γ),E=thermal; measured σ (E).

Keynumber: 1986KR16

Reference: Phys.Rev. C34, 2103 (1986)

Authors: B.Krusche, K.P.Lieb

Title: Dipole Transition Strengths and Level Densities $A \le 80$ Odd-Odd Nuclei Obtained from Thermal

Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹, ⁴¹K, ⁴⁵Sc, ⁵⁵Mn, ⁵⁹Co, ⁶³, ⁶⁵Cu, ⁷¹Ga, ⁷⁵As, ⁷⁹Br(n,γ),E=thermal; analyzed data. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰, ⁴²K, ⁴⁶Sc, ⁵⁶Mn, ⁶⁰Co, ⁶⁴, ⁶⁶Cu, ⁷²Ga, ⁷⁶As, ⁸⁰Br deduced primary E1,M1 transition strengths,level density parameters. Bethe,constant temperature Fermi gas models.

Keynumber: <u>1985MA33</u>

Reference: Phys.Rev. C32, 379 (1985) **Authors:** R.L.Macklin, S.F.Mughabghab

Title: Neutron Capture by ³¹P

Keyword abstract: NUCLEAR REACTIONS 31 P(n, γ),E=2.6-500 keV; measured σ (E); deduced stellar

reaction σ . ³²P levels deduced (g Γ n Γ γ)/ Γ , Γ . Direct reaction mechanism.

Keynumber: <u>1985KE11</u>

Reference: Phys.Rev. C32, 2148 (1985)

Authors: T.J.Kennett, W.V.Prestwich, J.S.Tsai

Title: Level Structure and E2 Strength from the $^{31}P(n,\gamma)^{32}P$ Reaction

Keyword abstract: NUCLEAR REACTIONS $^{31}P(n,\gamma)$,E=thermal; measured I γ ,E γ . ^{32}P deduced

levels, neutron separation energy, B(E2).

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1981DE04

Reference: Nucl.Phys. A352, 125 (1981)

Authors: J.De Boer, K.Abrahams, J.Kopecky, P.M.Endt **Title:** Investigation of the 31 P(n(pol), γ) 32 P Reaction

Keyword abstract: NUCLEAR REACTIONS 31 P(polarized n, γ),E=thermal; measured CP for γ-rays.

³²P levels deduced J,channel spin mixing,δ.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S,

NSR Search Results Page 3 of 4

 $^{32}, ^{33}, ^{34}S, Cl, ^{35}, ^{36}, ^{37}Cl, Ar, ^{36}, ^{38}, ^{40}Ar, K, ^{39}, ^{40}, ^{41}K, Ca, ^{40}, ^{42}, ^{43}, ^{44}, ^{46}, ^{48}Ca, ^{45}, ^{46}Sc, Ti, ^{46}, ^{47}, ^{48}, ^{49}, ^{50}Ti, V, ^{50}, ^{51}V, Cr, ^{50}, ^{52}, ^{53}, ^{54}Cr, Fe, ^{54}, ^{56}, ^{57}, ^{58}Fe, ^{59}Co, Ni, ^{58}, ^{59}, ^{60}, ^{61}, ^{62}, ^{64}Ni, Cu, ^{63}, ^{65}Cu, Zn, ^{64}, ^{66}, ^{67}, ^{68}, ^{70}Zn, Ga, ^{69}, ^{71}Ga(n, \gamma), (n, n), (n, \alpha), E=thermal; evaluated \sigma, radiative capture resonance integrals.$

Keynumber: 1979BUZS

Coden: REPT INDC(YUG)-6/L,Budnar

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Si, ³¹P,S,Ca, ⁴⁵Sc, ⁵¹V,Cr, ⁵⁵Mn,Fe,

⁵⁹Co,Cu,Se,Br,Sr, ⁸⁹Y,In,Sb, ¹²⁷I,Ba, ¹⁴¹Pr, ¹⁶⁵Ho, ¹⁸¹Ta,W,Tl,Pb, ²⁰⁹Bi(n, γ),E=14.6 MeV; measured

σ(Εγ).

Keynumber: 1977CL03

Reference: Phys.Lett. 71B, 10 (1977)

Authors: C.F.Clement, A.M.Lane, J.Kopecky

Title: Correlations in M1 Neutron Capture as Evidence for a Semi-Direct Mechanism

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ³⁵, ³⁷Cl, ³⁹K, ⁴³Ca

 (n,γ) , (d,p); analyzed correlations between reaction types.

Keynumber: 1974ISZX

Coden: THESIS DABBB 34B 5613

Keyword abstract: NUCLEAR REACTIONS ¹⁹F, ²³Na, ²⁷Al, ³¹P, ³⁵Cl, ³⁹K(n,γ),E=thermal; measured Eγ,Iγ. ²⁰F, ²⁴Na, ²⁸Al, ³²P, ³⁶Cl, ⁴⁰K deduced levels,Q,γ-multiplicity,level-width.

Keynumber: 1973IS08

Reference: Nucl.Instrum.Methods 109, 493 (1973)

Authors: H.Ishikawa

Title: Measurements of Neutron Reaction Cross Sections Using a Liquid Scintillation Spectrometer

Keyword abstract: NUCLEAR REACTIONS 2 H, 31 P, 34 S, 44 Ca, 62 Ni(n, γ); measured σ (E).

Keynumber: 1970CV01

Reference: Nucl.Phys. A158, 251 (1970) **Authors:** F.Cvelbar, A.Hudoklin, M.Potokar

Title: Comparison between the Activation Cross Sections and Integrated Cross Sections for the

Radiative Capture of 14 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS Mg, ²⁷Al,Si, ³¹P, ³²S, ⁴⁰Ca, ⁵¹V, ⁵²Cr, ⁵⁵Mn,Fe,Cu,

Br,Se, 115 In, 127 I,Ba(n, γ),E=14 MeV; measured σ (E γ); deduced integrated σ .

Keynumber: 1970BO01

Reference: Can.J.Phys. 48, 868 (1970) **Authors:** J.F.Boulter, W.V.Prestwich

Title: Lifetime of the 77 keV Level in ³²P

Keyword abstract: NUCLEAR REACTIONS 31 P(n, γ), E=thermal; measured $\gamma\gamma$ -delay. 32 P level

deduced $T_{1/2}$.

Keynumber: 1969KE15

Reference: Yadern.Fiz. 10, 907 (1969); Soviet J.Nucl.Phys. 10, 524 (1970)

Authors: J.Kecskemeti, D.Kiss

Title: Measurement of Average Multiplicity in (n, γ) Reactions Induced by Thermal Neutrons

NSR Search Results Page 4 of 4

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁷Al, ³¹P, ³²S, ³⁵Cl, ⁴⁸Ti, ⁵¹V, ⁵³Cr, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni,Ni,Cu, ⁶³Cu, Ge, ⁷³Ge, ⁷⁵As,Se,Br, Sr, Zr, ⁹³Nb,Mo, ¹⁰³Rh,Ag(n,γ) E=thermal; measured average γ multiplicity.

Keynumber: 1967VA08

Reference: Nucl. Phys. A97, 209(1967)

Authors: G.van Middelkoop

Title: Gamma Rays from the $^{31}P(n,\gamma)^{32}P$ Reaction

Keyword abstract: NUCLEAR REACTIONS $^{31}P(n,\gamma)$, E = thermal; measured E γ , I γ ; deduced Q. ^{32}P

deduced levels, branching. Natural target.

Keynumber: 1967RA24

Reference: Proc.Intern.Conf.Atomic Masses, 3rd, Winnipeg, Canada, R.C.Barber, Ed., Univ.Manitoba

Press, p.278(1967)

Authors: N.C.Rasmussen, V.J.Orphan, Y.Hukai

Title: Determination of (n,γ) Reaction Q Values from Capture γ -Ray Spectra

Keyword abstract: NUCLEAR REACTIONS ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹²C, ¹⁴N, ¹⁹F, ²³Na, ²⁴Mg, ²⁵Mg, ²⁶Mg, ²⁷Al, ²⁸Si, ³¹P, ³²S, ³⁵Cl, ⁴⁰Ca, ⁴⁵Sc, ⁴⁸Ti, ⁵¹V, ⁵⁵Mn, ⁵⁴Fe, ⁵⁶Fe, ⁵⁹Co, ⁵⁸Ni, ⁶⁰Ni, ⁶³Cu, ⁶⁵Cu, ⁶⁶Zn, ⁶⁷Zn, ⁷³Ge, ⁷⁶Se, ⁸⁵Rb, ⁸⁷Rb, ⁸⁹Y, ⁹³Nb, ¹⁰³Rh, ¹¹³Cd, ¹²³Te, ¹³³Cs, ¹³⁹La, ¹⁴¹Pr, ¹⁴⁹Sm, ¹⁵³Eu, ¹⁵⁷Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁶⁷Er, ¹⁶⁹Tm, ¹⁸¹Ta, ¹⁸²W, ¹⁹⁵Pt, ¹⁹⁷Au, ¹⁹⁹Hg, ²⁰³Tl, ²⁰⁷Pb(n,γ), E = thermal;

measured Eγ; deduced Q. Natural targets.

Keynumber: 1967LY06

Reference: Can.J.Phys. 45, 3039(1967) **Authors:** H.Lycklama, T.J.Kennett **Title:** Study of the 31 P(n, γ) 32 P Reaction

Keyword abstract: NUCLEAR REACTIONS 31 P(n, γ),E=thermal; measured E γ ,I γ ; 32 P deduced levels,

branching ratios.

Keynumber: 1967CS01

Reference: Nucl. Phys. A95, 229(1967)

Authors: J.Csikai, G.Peto, M.Buczko, Z.Miligy, N.A.Eissa **Title:** Radiative Capture Cross Sections for 14.7 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ³⁰Si, ³¹P, ⁴⁵Sc, ⁴⁸Ca, ⁵⁰Ti, ⁵¹V, ⁸⁹Y, ¹²³Sb, ¹³⁹La, ²⁰⁹Bi(n,γ), E = 14.7 MeV; measured σ. ²³Na, ⁵⁵Mn, ¹⁰³Rh, ¹⁴¹Pr, ¹⁶⁵Ho, ²⁰⁸Pb(n,γ), E = 13.4-15.0 MeV; measured σ(E). ¹⁰³Rh(n,γ), E = 13.4-15.0 MeV; measured σ(g)/σ(M); deduced spin cutoff

parameter. Enriched ³⁰Si, ⁴⁸Ca targets.

Keynumber: 1965VA07

Reference: Nucl.Phys. 72, 1(1965) **Authors:** G.Van Middelkoop, P.Spilling

Title: Investigation of the Reactions $^{31}P(n,\gamma)^{32}P$ and $^{32}S(n,\gamma)^{33}S$

Keyword abstract: NUCLEAR REACTIONS ³¹P, ³²S(n, γ), E = thermal; measured γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$.

³²P, ³³S deduced levels, J, branching. Natural targets.
