EL-4701 Modelos de Sistemas

Profesor: Ing. José Miguel Barboza Retana

TUTORÍA 7. Transformada de Fourier.

Tutor: Anthony Vega Padilla

• Ejercicio #1. Sea x(t) una función que se puede expresar como la resta:

$$x(t) = h(t) - h(-t)$$

Donde h(t) es una función de valor real. Si la transformada de Fourier de h(t) es $H(j\omega)$ y la de x(t) es $X(j\omega)$, entonces utilice las propiedades de la Transformada de Fourier para encontrar $X(j\omega)$ en términos de la parte imaginaria de $H(j\omega)$.

• **Ejercicio** #2. Asocie a cada función no periódica en el tiempo mostrada al lado izquierdo su correspondiente espectro, dado a través de sus partes real e imaginaria. Para esto utilice las propiedades de la Transformada de Fourier.

• **Ejercicio** #3. Encuentre la transformada de Fourier de la función mostrada en la siguiente figura, utilizando linealidad y la propiedad de derivación, exprese, en caso de ser posible, el resultado en términos puramente reales o puramente imaginarios.

• **Ejercicio** #4. Se conocen las transformaciones de Fourier de las siguientes funciones:

$$x_1(t) = \begin{cases} sen(t) & -\frac{\pi}{2} \le t \le \frac{\pi}{2} \\ 0 & en \ el \ resto \end{cases} \qquad X_1(j\omega) = j2\omega \frac{\cos\left(\frac{\pi}{2}\omega\right)}{\omega^2 - 1}$$

$$r(t) = u\left(t + \frac{1}{2}\right) - u\left(t - \frac{1}{2}\right)$$
 $R(j\omega) = sa\left(\frac{\omega}{2}\right)$

Donde u(t) es el escalón unitario. En este problema usted deberá utilizar las propiedades de la transformada de Fourier para encontrar, a partir de las funciones anteriores, la transformada de otra función f(t) más compleja, mostrada en la siguiente figura.

- a) Grafique la función r(t) y etiquete los ejes.
- b) Defínase ahora la función:

$$x_2(t) = \begin{cases} f(t) & -\infty < t \le -\frac{1}{2} \\ 0 & en \ el \ resto \end{cases}$$

Donde f(t) de ilustra en la figura anterior. Esta función $x_2(t)$ puede obtenerse también como una combinación de las funciones $x_1(t)$ y r(t) especificadas en el enunciado, tal que:

$$x_2(t) = \alpha x_1(\beta t - \tau_0) + kr(\gamma t - \tau_1)$$

Encuentre los valores de $\alpha, \beta, k, \gamma, \tau_0$ y τ_1 que cumplen con esa tarea. (Sugerencia: Realice los desplazamientos temporales como última operación, es decir, encuentre primero una función idéntica a la buscada excepto por su posición y luego realice el desplazamiento adecuado).

- c) Se sabe que la función f(t) es par. Si para el intervalo $t \in \left[\frac{1}{2}, \infty\right[$ se define $x_3(t) = f(t)$ y fuera de ese intervalo $x_3(t) = 0$, entonces encuentre una expresión para $x_3(t)$ primero en términos de $x_2(t)$ y luego en términos de $x_1(t)$.
- d) Encuentre una expresión para f(t) en términos de r(t), $x_2(t)$ y $x_3(t)$.
- e) Encuentre la transformada de Fourier de $x_2(t)$ en términos de $X_1(j\omega)$ y $R(j\omega)$.
- f) Encuentre la transformada de Fourier de $x_3(t)$ en términos de $X_2(j\omega)$.
- g) $X_1(j\omega)$ es una función par o impar? Justifique.
- h) $R(j\omega)$ es una función par o impar? Justifique.
- i) Encuentre la transformada de Fourier de f(t) utilizando los resultados anteriores. Considere la simetría de f(t) y exprese el resultado en términos únicamente reales o imaginarios, según corresponda.