Cenozoic mammals and the biology of extinction

Peter D Smits

Committee on Evolutionary Biology, University of Chicago

June 9, 2014

Extinction

All species that have ever lived are, to a first approximation, dead.

(Raup 1986 The Nemesis Affair)

Foundation

Question

Why do certain taxa go extinct while others do not?

Modes of extinction

Field of Bullets - Wanton - Fair Game

(Raup 1991 Extinction: Bad Genes or Bad Luck?)

In context of this study

Rephrased

How does a taxon's adaptive zone affect extinction risk?

Van Valen's observation

Law of Constant Extinction

Extinction rate, in a given adaptive zone, is taxon-age independent.

(Van Valen 1973 Evol. Theory)

(Liow et al. 2011 TREE)

Formalization of Van Valen

Law of Constant Extinction

 $T \sim \textit{Exp}(\lambda)$

T: survival time λ : expected number of extinctions per unit time

Biology and extinction

Questions

- Do interactions involved in environmental preference predict differential survival?
 - Is survival best modeled by a single interactor or multiple interactors?
 - ▶ How do factors, such as climate, contribute?
- Is extinction taxon-age independent or dependent?
- Do genera and species have fundamentally different survival distributions?

Mammals

Regions

North America: 2366 species, 1003 genera

Europe: 1767 species, 658 genera

carnivore, herbivore, omnivore, insectivore

herbivore > carnivore omnivore \simeq carnivore insectivore ?

Locomotion

ground dwelling, scansorial, arboreal

- ▶ ground dwelling > arboreal
- ► scansorial ≃ ground dwelling

Body size

 \uparrow mass, \uparrow range size, \uparrow survival

OR

 \uparrow mass, \downarrow reproductive rate, \downarrow survival

OR

no effect

Analysis and inference

- PBDB occurrences
- lacktriangle age \sim Exponential or Weibull
- $\triangleright \lambda \propto \text{traits}, k \text{ constant}$
- range in/out taxa right censored
- maxLik approach, multi-model inference

NP regional survival curves

Variable importance

Effect of diet

Effect of locomotion

Effect of mass

Time dependence

The Elephant in the Range

Climate

(Strömberg et al. 2013 Nature Com.)

Laundry list of model improvements

- currently $\hat{k} = c$, future $\hat{k} \approx \text{CV}$ climate and/or occupancy
- emergent roperties
 - species:genus
 - ▶ trait dispersion (H(diet), Var(mass), etc.)
- CAR prior on frailty using phylogenetic distance/VCV matrix
- incorporate duration uncertainty due to sampling

Acknowledgements

Committee

- Kenneth D. Angielczyk (co-advisor)
- Michael J. Foote (co-advisor)
- P. David Polly
- Richard H. Ree
- Discussion
 - David Bapst, Megan Boatright, Ben Frable, Colin Kyle, Darcy Ross, Liz Sander
 - John Alroy, Graeme Lloyd, Kathleen Ritterbush, Carl Simpson, Graham Slater

