Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Multiserver and Priority scheduling

Università degli studi di Roma Tor Vergata Department of Civil Engineering and Computer Science Engineering

> Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

Analytical models priority scheduling

Assumptions:

- Arrival rate 1 j/s random
- Average demand Z=4x10⁵ oxat, expo, do not know size (astratto) Z = quanto job chiede, op/job

Possible configurations:

- 1 server of capacity C=106 oxat/s capacità server, non è v.a.
- Dual-core of C/2 each one

dual core equivalente, ciascun proc

ha capacità dimezzata.

QoS requirements:

- Average waiting $T_O < 0.15$ s
- For at least 35% of arrivals average response time $T_S < 0.5 \text{ s}$ la percentuale viene fornita dal testo

Def.

E(S) = Z/C = 0.4 s operazioni richiesta/operazioni server nell'unità di tempo

Z e C sono indipendenti, poichè C è una caratteristica fisica dell'hardware, costante; Z è una variabile, è quanto chiede un singolo job (varia da job a job), e mediamente è Z.

prof. Vittoria de Nitto Personè

Analytical models

priority scheduling

QoS requirements:

3

• Average waiting $T_Q < 0.15$ s

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$$
 $\rho = 0.4$

• 1 server of capacity C=106 oxerat/s
$$E[T_q] = \frac{P \cdot E[s]}{1 - P} E(T_Q) = 0.26 \text{ s} \qquad E(T_Q)^{\text{Abstract-P}} = 0.2243 \text{ s}$$

• Dual-core of C/2 each one

$$E(S_i) = \frac{Z}{\frac{C}{2}} = 2\frac{Z}{C} = 2E(S) = 0.8 \text{ s}$$

$$E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} = 0.15238 \text{ s}$$

$$E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} = 0.15238 \text{ s}$$

prof. Vittoria de Nitto Personè

QoS requirements:

4

Analytical models

priority scheduling

• Average waiting $T_O < 0.15$ s

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$$
 $\rho = 0.4$

• Dual-core of C/2 each one

Multiserver with priority classes

$$E(T_Q) = p_1 \frac{\rho_1 E(S)}{(1 - \rho_1)} + p_2 \frac{\rho E(S)}{(1 - \rho)(1 - \rho_1)}$$

$$E(T_Q) = p_1 \frac{P_{Q_1} E(S)}{(1 - \rho_1)} + p_2 \frac{P_Q E(S)}{(1 - \rho)(1 - \rho_1)}$$

Multiserver with priority classes

$$P_{Q_1} = Erlang(\rho_1) = 0.03438$$

7

Multiserver with priority classes

$$P_{Q1} = Erlang(\rho_1) = 0.03438$$
 $P_Q = 0.22857$

$$E(T_Q) = p_1 \frac{P_{Q1}E(S)}{(1-\rho_1)} + p_2 \frac{P_{Q}E(S)}{(1-\rho)(1-\rho_1)} = 0.12077$$

QoS requirements:

• Average waiting $T_Q < 0.15$ s !!

QoS requirements:

10

• For at least 35% of arrivals average response time $T_S < 0.5 \text{ s}$

Analytical models priority scheduling

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$$
 $\rho = 0.4$

• 1 server of capacity C=10⁶ oxerat/s

$$E(T_Q) = 0.26 \text{ s}$$

• Dual-core of C/2 each one

$$E(S_i) = \frac{Z}{C} = 2\frac{Z}{C} = 2E(S) = 0.8$$

prof. Vittoria de Nitto Personè

10

