AC Maximum Power Transfer

EEL 3112C – Circuits-II Lab Experiment

Dr. Suleiman Alsweiss

ECE Department

Florida Polytechnic University

Objective

- In this exercise, maximum power transfer to the load will be examined for the AC case
- Both the load's resistive and reactive components will be independently varied to discover their effect of load power and determine the values required for maximum load power

Theory Overview

- In the DC case, maximum power transfer is achieved by setting the load resistance equal to the Thevenin equivalent resistance
- For the AC case, the load should be set to complex conjugate of the Thevenin equivalent impedance $(Z_L = Z_{Th}^*)$
 - The complex conjugate having the same magnitude as the original but with the opposite sign for the angle
 - By using the complex conjugate, the load and source reactive components will cancel out leaving a purely resistive circuit similar to the DC case
 - When calculating the true load power average power, only the real part of the load impedance dissipates power

$$P_{max} = |I_{Th_{rms}}|^2 R_L = \frac{|V_{Th_{rms}}|^2 R_L}{4R_L^2} = \frac{1}{8} \frac{V_{peak}^2}{R_L}$$

Components

Component name	Quantity	Value	Measured value
Resistors	2	1 ΚΩ	
	1	3 ΚΩ	
	1	10 ΚΩ	
	1	100Ω	
	1	600Ω	
Inductor	1	10~mH	
Capacitor	4	$0.1~\mu F$	
	1	10 nF	
	1	47 <i>nF</i>	

Schematics

Figure 1

- For the circuit shown in Fig. 1, calculate the following:
 - The value of the load impedance that will guarantee maximum power transfer
 - b) The value of the resistor needed to realize that circuit
 - c) The value of the capacitor needed to realize that circuit
- Record your answers in table 1

Procedure: Step 1 – cont.

Table 1

Quantity	Value
Z_{Th}	
Z_{load} for max power transfer	
R_{load} for max power transfer	
C_{load} for max power transfer	

ullet Use the value of C_{load} you calculated in Table 1 to fill Table 2 using the resistors values provided in the table

Note 1:
$$V_{load\ Theory} = V_{Th} \times \frac{R_L}{R_L + R_{Th}}$$

Note 2: $V_{load_{Experimental}}$ is the voltage across R_L

Note 3:
$$P_{load\ Theory} = \frac{\left(V_{laod\ Theory}_{rms}\right)^2}{R_L}$$

Note 4:
$$P_{load_{Experimental}} = \frac{\left(V_{load_{Experimental}}\right)^2}{R_L}$$

Procedure: Step 2 – cont.

Table 2

R_{load} (Ω)	$oldsymbol{V_{load}}$ Theory	V_{load} Experimental	P_{load} Theory	$oldsymbol{P_{load}}$ Experimental
100				
600				
1000				
3000				
10,000				

ullet Use the value of R_L you calculated in Table 1 to fill Table 3 using the capacitors values provided in the table

Note 1:
$$V_{load\ Theory} = V_{Th} \times \frac{R_L}{R_L + R_{Th}}$$

Note 2: $V_{load_{Experimental}}$ is the voltage across R_L

Note 3:
$$P_{load\ Theory} = \frac{\left(V_{laod\ Theory}_{rms}\right)^2}{R_L}$$

Note 4:
$$P_{load_{Experimental}} = \frac{\left(V_{load_{Experimental}}\right)^2}{R_L}$$

Procedure: Step 3 – cont.

Table 3

C_{load}	${\it V}_{load}$ Theory	$oldsymbol{V_{load}}$ Experimental	P_{load} Theory	$oldsymbol{P_{load}}$ Experimental
10 <i>nF</i>				
47 nF				
$0.1~\mu F$				
$0.247~\mu F$				
$0.4~\mu F$				

• Generate a plot of P_{load} (experimental and theoretical) with respect to R_{load} and another one for P_{load} (experimental and theoretical) with respect to C_{load}

Comment on your plot

Questions

Q1) In general, given a certain source impedance, what load impedance will achieve maximum load power?

Q2) If the experiment was repeated using a frequency of 5 kHz, how would the graphs change, if at all?