Approximating Boosted Decision Trees with Differential Privacy

Thorsten Peinemann

My personal website: tpein160.github.io

Temperature prediction

Sun in the last hour, yes/no?

Current temperature in celsius

Predict temperature in 3 hours

Rain in the last hour, yes/no?

Temperature prediction using boosted decision tree (BDT) model

Each node splits the data in two subsets so that each subset groups together alike labels (e.g. gini-coefficient)

Each node splits the data in two subsets so that each subset groups together alike labels (e.g. gini-coefficient)

A leaf stores the average label of data points in that leaf

Prediction of BDT model

Error correction for iterative BDT training

Prediction

"Temperature will likely be 14°"

"Correct would be 16°, so error correction should be 2°."

Error correction for iterative BDT training

"Temperature will likely be 14°"

"Correct would be 16°, so error correction should be 2°."

Error correction for iterative BDT training

"Correct would be 16°, so error correction should be 1°."

Differentially private boosted decision trees

Whence cometh the noise?

Data-dependent part of BDT model

Algorithms for splitting and leaves

Splitting

From top to bottom:

Split each node until maximum depth Split such that equal error-corrected labels are grouped

Leaves

For each leaf:

Find all data points in this leaf

Sum their error-corrected labels → S

Count number of data points → C

Store S/C

DP-approximated splitting algorithm

DP-Splitting

From top to bottom:

Split each node until max depth is reached Split randomly

Leaves

For each leaf:

Find all data points in this leaf

Sum their error-corrected labels → S

Count number of data points → C

Store S/C

DP-approximated splitting and leaves algorithms

DP-Splitting

From top to bottom:

Split each node until max depth is reached Split randomly

DP-Leaves

For each leaf:

Find all data points in this leaf

Clip their error-corrected labels to length L

Sum clipped error-corrected labels $\rightarrow S_c$

Add Gaussian noise: S_c → S_c'

Count number of data points → C

Add Gaussian noise: C → C'

Store Sc'/C'

DP-Proof for DP-approximated splitting and leaves algorithms

DP-Splitting

Output of random function has no leakage

DP-Proof for DP-approximated splitting and leaves algorithms

DP-Splitting

Output of random function has no leakage

DP-Leaves

$$(ε, δ)$$
-Differential Privacy (DP):
 $Pr[M(D) ∈ S] <= e^{ε} Pr[M(D ∪ {x}) ∈ S] + δ$

DP-Leaves:

(1) Leakage for x occurs only in x's leaf P_x

(2)
$$M(D) = (\sum_{(v,l) \in D: (v,l) \text{ in } \mathbf{P}_x} \text{ clip}(l, (-L,L))) + N(0, \sigma^2)$$

Gaussian Mechanism:

M satisfies (ε, δ) -DP for any $\delta > 0$, ε in (0,1) when $\sigma > \operatorname{sqrt}(2*\ln(1.25/\delta))*L/\varepsilon$

Approximating Boosted Decision Trees with Differential Privacy

Thorsten Peinemann

My personal website: tpein160.github.io

