BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH KHOA: CƠ KHÍ CHẾ TẠO MÁY

BÁO CÁO CUỐI KỲ MÔN HỆ THỐNG NHÚNG ĐỀ TÀI: HƯỚNG DẪN SỬ DỤNG INA219

Giảng viên: Bùi Hà Đức

Sinh viên thực hiện

	STT	Họ và tên	MSSV
	1	Trần Đắc Tân	21146312
	2	Nguyễn Thanh Nhựt	21146287
9	3	Trần Tấn Phát	21146291
	4	Phạm Hoàng Phúc	21146295

MỤC LỤC

I. Một số hàm thư viện ở lớp user:	3
+ Hàm ina219_Init():	3
+ Hàm shut_Down():	3
+ Hàm Read_XX():	3
+ Hàm Write_XX():	3
II. Sơ lược về thanh ghi trong datasheet:	7
+Thanh ghi Shunt Voltage	8
+ Thanh ghi Calibration:	9
+ Thanh ghi đo dòng điện:	10
+ Thanh ghi đo công suất:	10
III. Sơ lược về cấu hình trong datasheet	11
+ Sσ đồ chân:	11
+ Sσ đồ khối	12
+ Sơ đồ tổng quá cho việc đo điện áp Shunt và Bus	12
+ Giới hạn tuyệt đối đầu vào :	13
+ Thông số kỹ thuật:	13
+ Nhiệt độ vận hành (đo ở điều kiện không khí):	14
+ Địa pin khi set địa chỉ slave I2C (khi set 2 chân A1 và A0):	15

I. Một số hàm thư viện ở lớp user:

+ **Hàm ina219_Init():**

- Khởi tạo ban đầu cho ina219 bao gồm:
 - Kết nối với device đã đăng ký
 - Khởi tạo chế độ ban đầu cho thanh ghi configuration (Giá trị thanh ghi = 1)
 - Khởi tạo chế độ ban đầu cho thanh ghi calibration (Giá trị = 0x4096 = 0100 0000 1001 0110)

+ Hàm shut_Down():

- Ngắt Kết nối với device đã đăng ký
- Khởi tạo chế độ cho thanh ghi configuration (Giá trị thanh ghi = 0)

+ Hàm Read XX():

- Với XX là tên thanh ghi:
 - Svoltage(Shunt Voltage): Đọc giá trị của thanh ghi Shunt Voltage (Giá trị thô)
 - Bvoltage (Bus Voltage): Đọc giá trị của thanh ghi Bus Voltage (Giá trị thô)
 - Power : Đọc giá trị của thanh ghi công suất
 - Current: Đọc giá trị của thanh ghi dòng điện
 - Config (Configuration): Đọc giá trị hiện tại của thanh ghi cấu hình
 - Calib (Calibration): Đọc giá trị hiện tại của thanh ghi hiệu chỉnh

+ Hàm Write_XX():

- Với XX là tên thanh ghi:
 - Config (Configuration): Ghi đè giá trị hiện tại của thanh ghi cấu hình
 - Calib (Calibration): Ghi đè trị hiện tại của thanh ghi hiệu chỉnh
- Giá trị đầu vào:
 - Config (int Mode, int Sadc, int Badc, int Pg, int Brng, int Rst): Với value là giá trị muốn hiệu chỉnh cho các thanh ghi khác

+ Mode:

Giá Trị	Chế Độ
0	Tắt Nguồn
1	Bật chế độ Shunt Voltage Trigger
2	Bật chế độ Bus Voltage Trigger
3	Bật Chế độ cho Shunt Voltage, Bus Voltage Trigger
4	Tắt chế độ ADC
5	Bật chế độ đo countinue cho Shunt Voltage
6	Bật chế độ đo countinue cho Bus Voltage
7	Bật chế độ đo countinue cho Bus Voltage, Shunt Voltage

- Chế độ Trigger: Chế độ này thực hiện một phép đo điện áp ngay khi nhận được lệnh. Sau khi đo xong, cảm biến sẽ trở về trạng thái chờ, không thực hiện phép đo nào nữa cho đến khi có lệnh tiếp theo. Đây là chế độ đo lường tức thời theo yêu cầu.
- Chế độ đo Countinue: Chế độ này thực hiện liên tục các phép đo điện áp. Cảm biến sẽ liên tục đo lường và cập nhật giá trị điện áp shunt mà không dừng lại.
- Tắt chế độ ADC: Chế độ này tắt bộ chuyển đổi ADC, ngừng tất cả các hoạt động đo lường. Điều này có thể được sử dụng khi không cần thiết phải đo lường và muốn giảm tiêu thụ năng lượng tối đa.

+ Cấu hình cho cả SADC và BADC (thời gian lấy mẫu):

Giá Trị	Chế Độ	Thời Gian Lấy Mẫu (us)
0	9	84
1	10	148
2	11	276
3	12	532
4	12	532
5	2	1060
6	4	2130
7	8	4260
8	16	8510
9	32	17020
10	64	34050
11	128	68100

+ PGA: Thanh ghi set khoảng giá trị và hệ số chia cho Shunt Voltage (hệ số PGA mặc định là 320 mV)

Giá Trị	Hệ Số	Khoảng Giá Trị (mV)
0	1	± 40mV
1	/2	± 80mV
2	/4	± 160mV
3	/8	± 320mV

+ RST: Reset Bit

Giá trị	Reset Bit
0	X
1	Reset lại giá trị của tất cả thanh ghi

+ BRNG:

Giá trị	Bus Voltage Range
0	16V FSR
1	32V FSR

- Giá trị mặc định của BRNG = 1

• Calib (int Value): Giá trị hiệu chỉnh từ $0 \rightarrow 65535$

II. Sơ lược về thanh ghi trong datasheet:

Địa chỉ thanh ghi(mã Hex)	Tên thanh ghi	Tác dụng	Giá trị khi reset (mã Hex)	Chế Độ
0x00	Configuration	Reset tất cả thanh ghi, điều chỉ khoảng giá trị Bus Voltage, Hệ số PGA, cấu hình ADC	0x399F	Read/Write
0x01	Shunt voltage	Chứa giá trị điện áp Shunt	X	Read
0x02	Bus voltage	Chứa giá trị điện áp Bus	X	Read
0x03	Power	Chứa giá trị về công suất	0x00	Read
0x04	Current	Chứa giá trị về dòng điện	0x00	Read
0x05	Calibration	Điều chỉnh khoảng giá trị và giá trị đơn vị cho thanh ghi dòng điện và công suất	0x00	Read/Write

+Thanh ghi Shunt Voltage

- + Khoảng giá trị thanh ghi Shunt Voltage Với PGA khác nhau:
- Màu xám là Out of Range

Table 7. Shunt Voltage Register Format⁽¹⁾

320.02 320.01		Decimal PGA = /8 PGi Value (D15:D0) (D1		(D15:D0)	PGA = /1 (D15:D0)	
320.01	32002	0111 1101 0000 0000	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
40000	32001	0111 1101 0000 0000	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
320.00	32000	0111 1101 0000 0000	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
319.99	31999	0111 1100 1111 1111	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
319.98	31998	0111 1100 1111 1110	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
1	1	1	1	17	1	
160.02	16002	0011 1110 1000 0010	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
160.01	16001	0011 1110 1000 0001	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
160.00	16000	0011 1110 1000 0000	0011 1110 1000 0000	0001 1111 0100 0000	0000 1111 1010 0000	
159.99	15999	0011 1110 0111 1111	0011 1110 0111 1111	0001 1111 0100 0000	0000 1111 1010 0000	
159.98	15998	0011 1110 0111 1110	0011 1110 0111 1110	0001 1111 0100 0000	0000 1111 1010 0000	
1	1	1	1	1	1	
80.02	8002	0001 1111 0100 0010	0001 1111 0100 0010	0001 1111 0100 0000	0000 1111 1010 0000	
80.01	8001	0001 1111 0100 0001	0001 1111 0100 0001	0001 1111 0100 0000	0000 1111 1010 0000	
80.00	8000	0001 1111 0100 0000	0001 1111 0100 0000	0001 1111 0100 0000	0000 1111 1010 0000	
79.99	7999	0001 1111 0011 1111	0001 1111 0011 1111	0001 1111 0011 1111	0000 1111 1010 0000	
79.98	7998	0001 1111 0011 1110	0001 1111 0011 1110	0001 1111 0011 1110	0000 1111 1010 0000	
1	1	1	1	t	1	
40.02	4002	0000 1111 1010 0010	0000 1111 1010 0010	0000 1111 1010 0010	0000 1111 1010 0000	
40.01	4001	0000 1111 1010 0001	0000 1111 1010 0001	0000 1111 1010 0001	0000 1111 1010 0000	
40.00	4000	0000 1111 1010 0000	0000 1111 1010 0000	0000 1111 1010 0000	0000 1111 1010 0000	
39.99	3999	0000 1111 1001 1111	0000 1111 1001 1111	0000 1111 1001 1111	0000 1111 1001 1111	
39.98	3998	0000 1111 1001 1110	0000 1111 1001 1110	0000 1111 1001 1110	0000 1111 1001 1110	
1	1	1	1	1	1	
0.02	2	0000 0000 0000 0010	0000 0000 0000 0010	0000 0000 0000 0010	0000 0000 0000 0010	
0.01	1	0000 0000 0000 0001	0000 0000 0000 0001	0000 0000 0000 0001	0000 0000 0000 0001	
0	0	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	0000 0000 0000 0000	
-0.01	-1	1111 1111 1111 1111	1111 1111 1111 1111	1111 1111 1111 1111	1111 1111 1111 1111	
-0.02	-2	1111 1111 1111 1110	1111 1111 1111 1110	1111 1111 1111 1110	1111 1111 1111 1110	
1	1	1	1	1	1	
-39.98	-3998	1111 0000 0110 0010	1111 0000 0110 0010	1111 0000 0110 0010	1111 0000 0110 0010	
-39.99	-3999	1111 0000 0110 0001	1111 0000 0110 0001	1111 0000 0110 0001	1111 0000 0110 0001	
-40.00	-4000	1111 0000 0110 0000	1111 0000 0110 0000	1111 0000 0110 0000	1111 0000 0110 0000	
-40.01	-4001	1111 0000 0101 1111	1111 0000 0101 1111	1111 0000 0101 1111	1111 0000 0110 0000	
-40.02	-4002	1111 0000 0101 1110	1111 0000 0101 1110	1111 0000 0101 1110	1111 0000 0110 0000	
1	1	1	1	1	11110000110000	

-79.98	-7998	1110 0000 1100 0010	1110 0000 1100 0010	1110 0000 1100 0010	1111 0000 0110 0000	
-79.99	-7999 -8000	1110 0000 1100 0001	1110 0000 1100 0001	1110 0000 1100 0001	1111 0000 0110 0000	
-80.00 -80.01	-8001	1110 0000 1011 1111	1110 0000 1100 0000	1110 0000 1100 0000	1111 0000 0110 0000	
-80.02	-8002	1110 0000 1011 1110	1110 0000 1011 1110	1110 0000 1100 0000	1111 0000 0110 0000	
-60.02	1	1110 0000 1011 1110	1110 0000 1011 1110	1110 0000 1100 0000	1111 0000 0110 0000	
-159.98	-15998	1100 0001 1000 0010	1100 0001 1000 0010	1110 0000 1100 0000	1111 0000 0110 0000	
-159.99	-15999	1100 0001 1000 0001	1100 0001 1000 0001	1110 0000 1100 0000	1111 0000 0110 0000	
-180.00	-18000	1100 0001 1000 0000	1100 0001 1000 0000	1110 0000 1100 0000	1111 0000 0110 0000	
-160.01	-16001	1100 0001 0111 1111	1100 0001 1000 0000	1110 0000 1100 0000	1111 0000 0110 0000	
-160.02	-16002	1100 0001 0111 1110	1100 0001 1000 0000	1110 0000 1100 0000	1111 0000 0110 0000	
1	1	1	1		1	
-319.98	-31998	1000 0011 0000 0010	1100 0001 1000 0000	1110 0000 1100 0000	1111 0000 0110 0000	
-319.99	-31999	1000 0011 0000 0001	1100 0001 1000 0000	1110 0000 1100 0000	1111 0000 0110 0000	
-320.00	-32000	1000 0011 0000 0000	1100 0001 1000 0000	1110 0000 1100 0000	1111 0000 0110 0000	
-320.01	-32001 -32002	1000 0011 0000 0000	1100 0001 1000 0000 1100 0001 1000 0000	1110 0000 1100 0000 1110 0000 1100 0000	1111 0000 0110 0000	

- Công thức tính giá trị:

Điện áp shunt = Shunt Voltage Register * 10uV

- + Thanh ghi Bus Voltage:
- Khoảng giá trị: 0 32V (0x1F40):
- Công thức tính giá trị:

Điện áp Bus = Bus Voltage Register* (4mV) – Đối với BRNG = 1

Điện áp Bus = Bus Voltage Register * (2mV) – Đối với BRNG = 0

+ Thanh ghi Calibration:

- Khoảng giá trị: 0 65,533(0xFFFE)
- Công thức tính giá trị:

$$ext{Cal} = ext{trunc} \left(rac{0.04096}{ ext{Current_LSB} imes R_{shunt}}
ight)$$

- Current_LSB = $\frac{\text{Maximum Expected Current}}{2^{15}}$
- ullet R_{shunt} là giá trị của điện trở shunt.
- ullet 0.04096 là một hằng số nội bộ dùng để đảm bảo việc chia tỷ lệ được duy trì đúng cách.

+ Thanh ghi đo dòng điện:

- Công thức:

$$\text{Current Register} = \frac{\text{Shunt Voltage Register} \times \text{Calibration Register}}{4096}$$

$$Current_LSB = \frac{Maximum\ Expected\ Current}{2^{15}}$$

Trong đó:

- Maximum Expected Current: Dòng điện lớn nhất mà bạn dự kiến sẽ đo được với cảm biến.
- 2^{15} : Giá trị 32768, là số lượng bit của thanh ghi dòng điện (16 bit, nhưng chỉ sử dụng 15 bit cho giá trị dòng điện, do một bit được dùng cho dấu nếu có).

- + Thanh ghi đo công suất:
- Công thức:

$$\text{Power Register} = \frac{\text{Current Register} \times \text{Bus Voltage Register}}{5000}$$

• Power_LSB = $20 \times Current_LSB$

III. Sơ lược về cấu hình trong datasheet

+ Sơ đồ chân:

PIN	1/0	MÔ TẢ	TÊN	SOT- 23	SOIC
IN+	Analog	Điện áp chênh lệch dương. Kết nối với phía dương của điện trở shunt.	Đầu vào	1	8
IN-	Analog	Điện áp chênh lệch âm. Kết nối với phía âm của điện trở shunt. Điện áp bus được đo từ chân này tới đất.	Đầu vào	2	7
GND	Analog	Đất (Ground)		3	6
VS	Analog	Nguồn điện, từ 3 đến 5.5 V		4	5
SCL	Digital	Dòng xung nhịp của bus nối tiếp	Đầu vào	5	4
SDA	Digital	Dòng dữ liệu của bus nối tiếp	Đầu vào / Đầu ra	6	3
A0	Digital	Chân địa chỉ. Bảng 1 cho thấy các cài đặt chân và các địa chỉ tương ứng.	Đầu vào	7	2
A1	Digital	Chân địa chỉ. Bảng 1 cho thấy các cài đặt chân và các địa chỉ tương ứng.	Đầu vào	8	1

+ Sơ đồ khối

+ Sơ đồ tổng quá cho việc đo điện áp Shunt và Bus

+ Giới hạn tuyệt đối đầu vào :

		MIN	MAX	UNIT
Vs	Supply voltage		6	٧
Analog Inputs	Differential (V _{IN+} – V _{IN-}) ⁽²⁾	-26	26	٧
IN+, IN-	Common-mode(V _{IN+} + V _{IN-}) / 2	-0.3	26	٧
SDA		GND - 0.3	6	٧
SCL		GND - 0.3	V _S + 0.3	٧
Input current into any pin			5	mA
Open-drain digital output current			10	mA
Operating temperature		-40	125	°C
TJ	Junction temperature		150	°C
T _{stg}	Storage temperature	-65	150	°C

+ Thông số kỹ thuật:

	DADAMETED	TECT CONDITIONS	INA219A			INA219B		UNIT	
PARAMETER		TEST CONDITIONS	MIN TYP		MAX	MIN TYP		MAX	UNII
INPUT									
		PGA = /1	0		±40	0		±40	mV
v	Full-scale current sense (input) voltage	PGA = /2	0		±80	0		±80	mV
V _{SHUNT}	range	PGA = /4	0		±160	0		±160	mV
		PGA = /8	0		±320	0		±320	mV
	Pura veltaga (innut veltaga) sanga(2)	BRNG = 1	0		32	0		32	V
	Bus voltage (input voltage) range ⁽²⁾	BRNG = 0	0		16	0		16	٧
CMRR	Common-mode rejection	V _{IN+} = 0 to 26 V	100	120		100	120		dB
		PGA = /1		±10	±100		±10	±50 ⁽⁴⁾	μV
	Offset voltage, RTI ⁽³⁾	PGA = /2		±20	±125		±20	±75 ⁽⁴⁾	μV
Vos	Oliset voltage, RTI-7	PGA = /4		±30	±150		±30	±75 ⁽⁴⁾	μV
		PGA = /8		±40	±200		±40	±100 ⁽⁴⁾	μV
	vs Temperature	T _A = -25°C to 85°C		0.1			0.1		μV/°C
PSRR	vs Power Supply	V _S = 3 to 5.5 V		10			10		μV/V
	Current sense gain error			±40			±40		m%
	vs Temperature	T _A = -25°C to 85°C		1			1		m%/°C
	IN+ pin input bias current	Active mode		20			20		μA
	IN- pin input bias current $\parallel V_{\rm IN-}$ pin input impedance	Active mode		20 320			20 320		μΑ kΩ
	IN+ pin input leakage ⁽⁵⁾	Power-down mode		0.1	±0.5		0.1	±0.5	μA
	IN- pin input leakage ⁽⁵⁾	Power-down mode		0.1	±0.5		0.1	±0.5	μA
DC ACC	URACY								
	ADC basic resolution			12			12		bits
	Shunt voltage, 1 LSB step size			10			10		μV
	Bus voltage, 1 LSB step size			4			4		mV
	Current measurement error			±0.2%	±0.5%		±0.2%	±0.3% ⁽	
	over Temperature	T _A = -25°C to 85°C			±1%			±0.5%(
	Bus voltage measurement error			±0.2%	±0.5%		±0.2%	±0.5%	
	over Temperature	T _A = -25°C to 85°C			±1%			±1%	
	Differential nonlinearity			±0.1			±0.1		LSB

ADC TIMING								
ADC conversion time	12 bit		532	586		532	586	μS
	11 bit		276	304		276	304	μS
	10 bit		148	163		148	163	μS
	9 bit		84	93		84	93	μs
Minimum convert input low time		4			4			μS
SMBus	•	•						
SMBus timeout ⁽⁶⁾			28	35		28	35	ms
DIGITAL INPUTS (SDA as Input, SCL, A0, A1)	•	•						
Input capacitance			3			3		pF
Leakage input current	0 ≤ V _{IN} ≤ V _S		0.1	1		0.1	1	μА
V _{IH} input logic level		0.7 (V _S)		6	0.7 (V _S)		6	٧
V _{IL} input logic level		-0.3		0.3 (V _s)	-0.3		0.3 (V _S)	٧
Hysteresis			500			500		mV
OPEN-DRAIN DIGITAL OUTPUTS (SDA)	•	•						
Logic 0 output level	I _{SINK} = 3 mA		0.15	0.4		0.15	0.4	٧
High-level output leakage current	V _{OUT} = V _S		0.1	1		0.1	1	μА
POWER SUPPLY	•	•			•			
Operating supply range		3		5.5	3		5.5	٧
Quiescent current			0.7	1		0.7	1	mA
Quiescent current, power-down mode			6	15		6	15	μА
Power-on reset threshold			2			2		٧

+ Nhiệt độ vận hành (đo ở điều kiện không khí):

	MIN	NOM	MAX	UNIT
V _{CM}		12		V
V _s		3.3		V
TA	-25		85	°C

+ Địa pin khi set địa chỉ slave I2C (khi set 2 chân A1 và A0):

A 1	A 0	SLAVE ADDRESS
GND	GND	1000000
GND	V _{S+}	1000001
GND	SDA	1000010
GND	SCL	1000011
V _{S+}	GND	1000100
V _{S+}	V _{S+}	1000101
V _{S+}	SDA	1000110
V _{S+}	SCL	1000111
SDA	GND	1001000
SDA	V _{S+}	1001001
SDA	SDA	1001010
SDA	SCL	1001011
SCL	GND	1001100
SCL	V _{S+}	1001101
SCL	SDA	1001110
SCL	SCL	1001111

Tài Liệu Tham Khảo

- 1. https://www.alldatasheet.vn/datasheet-pdf/pdf/249609/TI/INA219.html
- 2. https://www.truongcongly.com/2022/10/tim-hieu-mach-cam-bien-dong-dien-dien-ap-ina219-voi-arduino.html