Modelling the effects of self-learning and social influence on the diversity of knowledge a simple toy model

Tuan Pham - University of Chicago

CNA 21 - Wed, Dec 1st, 2021 Information Spreading in Social Media

github.com/tuanpham96/topic-diversity

Outline

- 1. Introduction to model & knowledge acquisition process self-learning & social influence
- 2. Diversity indices population vs individual indices
- 3. Consideration of *groups* in *intralayer* networks using block models
- 4. Summary and limitations of model

"learnt/discovered" topics by agents topics agents

binary undirected static *intra*layer dynamic *inter*layer persistent *inter*layer

Interlayer update

new topic = related to the known topics or learnt from friends

$$\begin{split} P &= \alpha \psi \left(\left[\left[T\tau \right]_{\star} - \tau \right]_{\star} \right) + \beta \psi \left(\left[\left[\tau A \right]_{\star} - \tau \right]_{\star} \right) \\ \tau(t+1) &\leftarrow \tau(t) + \mathrm{sample}(P) \\ \left[x \right]_{\star} &= 1 \text{ if } x > 0, 0 \text{ otherwise} \\ \psi(X) \text{ as column norm. for matrix } X \end{split}$$

For simplicity $\beta=1-\alpha$

max-capacity 50 topics/agents

persistent interlayer edges

ignore: serendipity, forgetting, strengths, directions, mastering

Topic diversity - population level

self-learning increases
population knowledge diversity

Evolution of population indices of SF models

low R_T

% agents deleted

Topic diversity - individual level Evolution of individual indices of SF models 4.00 social influence expands individual knowledge diversity d_g 3.75 $d_{\alpha}(a_i)$ topic distance for a_i 3.50 SEM 0.06 self learning α 2.5 0.04 **Js**_T as topic **overlap** via 0.9 TSL mean +/pairwise Jaccard similarity 0.7 0.02 a₁ 0.5 0.3 social influence $D(t_4, t_6) = 7$ 0.1 30 topic distances induced subgraph ncc $n_{cc}(a_i)$ # conn comp for a_i 20 10 -6 20 60 40 3 cc

Intralayer *nonblock* models summary

High self-learning increases population diversity

While high social influence expands individual knowledge

Consistent with preferential attachment, Erdős-Rényi, Watts-Strogatz models

But what about <u>groups</u> (communities) within social and knowledge networks?

Intralayer block model generation

Intralayer *block* models topic diversity

Does initialization matter? *Group correspondence*

Initial group correspondence ↓ individual knowledge diversity

Summary

self-learning $\to \uparrow$ population diversity social influence $\to \uparrow$ individual knowledge

Intralayer group modularity $\to \uparrow$ individual but \downarrow population indices + group diversities

Initial group correspondence $\to \downarrow$ multiple individual diversity

Limitations and future directions

To name a few ...

- Static intralayer networks without realistic statistics and assumption of similar model types
- Need to incorporate realistic networks to relieve assumption and potentially growing networks
- Balance edge density when comparing block models
- Include directionality & weights in models, along with other probabilities for interlayer update rules (serendipity, forgetting, mastering, ...) to relieve persistent binary edges
- Include other costs such as cost for learning new subjects & delays
- Include & parameterize accessibility (memorization versus looking things up)
- Quantify distribution of specialists and generalists + communities in projected graph
- Relationships between agents' properties and acquired topic sets' properties

Acknowledgement

Dr. Mercedes Pascual

Dr. Sergio A. Alcala Corona

71. Sergio A. Alcala Coroni

Dr. Julie S Haas

Dr. Stephanie Palmer

CNA21 reviewers

Sam Nguyen

Poojya Ravishankar

Silas Busch

UChicago Grad Council Research &

Personal Development Fund

Thank you!

