UNIVERSIDAD DE LA FRONTERA FACULTAD DE INGENIERÍA Y CIENCIAS DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN E INFORMÁTICA

CIENCIAS DE LA COMPUTACIÓN ICC316 Guía 1

Prof. Eduardo Contrera Schneider

- 1. Sean $A = \{\epsilon, ab\}$ y $B = \{cd\}$. ¿Cuántas cadenas hay en A^nB para un n arbitrario?
- 2. Para $\Sigma = \{0, 1\}$, determine si la cadena 00010 está en cada uno de los siguientes lenguajes:
 - $a) \{0,1\}^*$
 - $b) \{000, 101\}\{10, 11\}$
 - $c) \{00\}\{0\}^*\{10\}$
 - $d) \{000\}^*\{1\}^*\{0\}$
 - $e) \{0,0\}^*\{1,0\}^*$
 - $f) \{0\}^*\{1\}^*\{0\}^*$
- 3. Sea $\Sigma = \{a, b\}$ y $A = \{w \in \Sigma^* | |w| \le 7\}$. Determine el número de cadenas en A.
- 4. Para cualquier alfabeto Σ , una cadena $x \in \Sigma^*$ es un palíndromo si $x = x^I$. Defina de manera recursiva el lenguaje que contiene todos los palíndromos de Σ^* .
- 5. En cierta oficina, una máquina expendedora tiene refrescos en lata sabor cola. El costo de una lata es de 20 centavos. La máquina acepta monedas de cinco, diez y veinticinco centavos y devuelve el cambio si es necesario. Una vez ingresado el dinero requerido, la máquina procede a dar el refresco. Modele la máquina expendedora como un AFD.
- 6. Describa con palabras los lenguajes sobre $\{a,b\}$ representados por las siguientes expresiones regulares:
 - $a) (a \cup b)^*bb$
 - b) abb*a
 - c) $b^*ab^*ab^*$
 - d) aa^*bb^*
 - e) bb^*abb^*
- 7. Halle la expresión regular r para los siguientes lenguajes sobre $\Sigma = \{a, b\}$:
 - a) $L(r) = \{w \in \Sigma^* | w \text{ tiene una cantidad impar de bes} \}$
 - b) $L(r) = \{w \in \Sigma^* | w \text{ termina con dos aes} \}$
 - c) $L(r) = \{w \in \Sigma^* | w \text{ tiene una subcadena ab} \}$
- 8. Construya un AFN que acepte solamente la cadena $\{a\}$ y otro que acepte solamente la cadena $\{b\}$. Con ello, construya un AFN que acepte las cadenas representadas por las siguientes expresiones regulares:

- $a) a^* \cup b$
- b) $bb \cup ba$
- $c) \ a^*b \cup ab^*$
- $d) \ a(ba)^*$
- 9. Cree un AFN sin transiciónes ϵ para cada uno de los AFN del ejercicio anterior.
- 10. Contruya un AFD para cada uno de los AFN creados en el ejercicio anterior.
- 11. Pruebe que los siguientes lenguajes no son regulares:
 - $a) \ \{a^p|p \ es \ primo\}$
 - b) $\{a^{2^n}|n\geq 1\}$
 - $c) \ \{a^nba^mba^{m+n}|n,m\geq 1\}$
 - $d) \ \{ww|w\in\{a,b\}^*\}$