Large Language Models (LLMs): Foundations, Architectures, and Applications

Module 1 – Introduction and Foundations

Large Language Models (LLMs)

- What are LLMs and why do they matter?
- Course roadmap: architecture, training, applications, ethics
- Learning goals for this module:
 - Understand why LLMs emerged
 - Learn how embeddings and transformers work
 - Recognize key architectural components

From Rules to Representation

- 1950s–1970s: Symbolic AI → handcrafted rules
- 1980s–1990s: Statistical NLP → n-grams, HMMs
- 2000s: Word embeddings (Word2Vec, GloVe)
- 2017: Transformer architecture revolution ("Attention is All You Need")
- 2020s: GPT, PaLM, LLaMA, Mistral scaling laws and emergent abilities

Why LLMs?

- Capture context and meaning beyond local windows
- Learn representations directly from massive text corpora
- Replace manual feature engineering with end-to-end learning
- Enable transfer learning → pre-train once, fine-tune everywhere

The Shift in Representation Learning

- Word Embeddings: static vectors → semantic similarity
- "king man + woman ≈ queen"
- Contextual Embeddings: depend on sentence context (ELMo, BERT)
- Transformers: learn contextual embeddings through attention

- Queries, Keys, and Values
- Weighted averaging of words → context-aware meaning
- Multi-head attention → multiple relational "views"

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\!\left(rac{QK^ op}{\sqrt{d_k}}
ight)V$$

When a model reads a sentence like

"The cat sat on the mat"

- it needs to understand which words are related to each other.
- For example, the word "sat" cares about "cat" (who sat) and "mat" (where it sat).
- That's what attention does it helps the model decide which words to focus on.

- Let's see how "sat" attends to other words.
- Query = "sat"
- Keys = ["The", "cat", "sat", "on", "the", "mat"]
- Compute similarity: "sat" is most related to "cat" and "mat".
- softmax gives higher weights to "cat" and "mat".
- Multiply those weights by each word's value (V) → result = context vector for "sat".

- The model now knows that the meaning of "sat" is mostly influenced by "cat" and "mat" — not by "the" or "on".
- That's how attention lets the model understand context who's doing what, to whom, and where — without needing to read the sentence one word at a time like older models (RNNs).

Term	Definition (Simplified)	Analogy / Mental Model	Example
Embedding	Numerical vector representing a word or token's meaning.	Like a GPS coordinate for a word — similar meanings are close together.	embedding("king") ≈ embedding("queen")
Transformer	Neural network using attention instead of recurrence.	Like a team of readers who all read the book and share notes.	GPT, BERT, Mistral models.
Token	Smallest text unit (word, subword, or character).	Like Lego blocks building sentences.	"playing" → ["play", "##ing"]
Parameter	A numerical weight learned by the model.	Like knobs on a sound mixer tuning the final output.	GPT-3 has 175B parameters.

Term	Definition (Simplified)	Analogy / Mental Model	Example
Self-Attention	Each word looks at others to find what's relevant.	Like students in a group discussion listening to each other.	"sat" attends to "cat" and "mat."
Multi-Head Attention	Several attention layers work in parallel, each focusing on different relations.	Like many spotlights highlighting different parts of a play.	One head tracks subject–verb; another, adjective–noun.
Query, Key, Value (QKV)	Used to measure how relevant each token is to others.	Like a search engine: Query = question, Key = title, Value = content.	"I" (query) looks at "love NLP" (keys/values).
Attention Weights	Scores showing how much focus one token gives to another.	Like eye contact in conversation — who you're paying attention to.	Visualized as attention heatmaps.

Term	Definition (Simplified)	Analogy / Mental Model	Example
Positional Encoding	Adds order info to embeddings since Transformers read in parallel.	Like page numbers or timestamps showing sequence.	"dog bites man" ≠ "man bites dog."
Residual Connection	Shortcut that adds input to output, keeping info stable.	Like a safety rope for a climber.	output = x + layer(x)
Feed-Forward Network (FFN)	Two-layer network refining attention results per token.	Like a chef tasting and adjusting each dish.	Linear → ReLU → Linear.
Normalization (LayerNorm)	Keeps layer activations stable during training.	Like a thermostat keeping temperature steady.	LayerNorm(x) prevents exploding gradients.

Term	Definition (Simplified)	Analogy / Mental Model	Example
Encoder	Reads input text and builds contextual embeddings.	Like a summarizer understanding a paragraph.	Used in BERT and ViT.
Decoder	Generates output text token by token.	Like a storyteller retelling what was understood.	Used in GPT and T5.
Contextual Embedding	Word meaning changes based on sentence context.	Like a chameleon changing color with its surroundings.	"bank" near "river" vs. "bank" near "money."
Attention Output (Context Vector)	Weighted sum of all words based on attention scores.	Like a blended smoothie of all relevant info.	"sat" receives most info from "cat" and "mat."

Word	Embedding Vector (simplified)	Closest Neighbors
"dog"	[0.61, -0.28, 0.45]	cat, puppy, pet
"car"	[0.10, 0.82, -0.13]	truck, vehicle, bus
"apple"	[-0.72, 0.40, 0.33]	orange, fruit, banana

Embedding

Embedding

```
corpus =
 "the cat sat on the mat",
 "the dog sat on the rug",
 "the cat chased the mouse"
tokenized = [s.split() for s in corpus]
from gensim.models import Word2Vec
model = Word2Vec(
   sentences=tokenized.
   vector_size=50, # embedding dimension
   window=5.
                  # context window
   min count=1, # keep all words in this tiny demo
                  # 1=skip-gram (good for small data), 0=CBOW
   sg=1,
   epochs=200
                                  # 50-dim vector
vec_cat = model.wv["cat"]
print(vec_cat[:5])
                                  # peek at first 5 numbers
print(vec cat)
print(model.wv.similarity("cat", "dog")) # closer ≈ more similar
print(model.wv.most_similar("cat", topn=3)) # nearest neighbors
[-0.01743123 0.00739823 0.01028193 0.01172741 0.0148505 ]
-0.01141626 0.01420146 0.00664568 0.01446455 0.01390477 0.01532046
 -0.00792779 -0.00137248 0.00504984 -0.00895459 0.0171903 -0.01967666
 0.01378441 0.0056403 -0.0097696
                                 0.00912248 -0.00386569 0.01313612
 0.0196351 -0.00869995 -0.00078545 -0.01167672 0.00757158 0.00548977
 0.01429759 0.01181683 0.01905415 0.01850919 0.01549578 -0.01386036
-0.01854655 -0.00090891 -0.00582287 0.01597248 0.01166192 -0.00305323
 0.00308315 0.00394295]
0.092894495
[('mouse', 0.16969653964042664), ('the', 0.14504680037498474), ('chased', 0.14229169487953186)]
```

Open Questions

- Embedding Size
- Number Size
- Tokenizers