UNIVERSIDADE DO MINHO

5 de Dezembro de 2009

$\acute{\mathbf{A}}$ lgebra Linear

 $1^{\underline{0}}$ Teste - **A**

LEI Duração: 2 horas

Nome: ______ N^o: _____

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

- 1. a) Se A é uma matriz que verifica $(2I_2 + A)^T = -2\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ então a $2^{\underline{a}}$ coluna da matriz A é igual a $\begin{pmatrix} 0 & 2 \end{pmatrix}^T$.
 - b) Seja A uma matriz quadrada de ordem n, invertível. Existe uma matriz B, quadrada de ordem n, não nula, tal que AB é uma matriz nula. V \widehat{F}
 - c) Se A é uma matriz anti-simétrica $(A^T + A = O)$ então A^2 é simétrica. (V) F
 - d) Se A é uma matriz de ordem 4 que verifica $(A+I_4)^2=0$ então A é invertível. \widehat{V}
- 2. a) Os vectores $v_1=(1,1,2), v_2=(2,1,3), v_3=(1,0,\alpha)$ são linearmente dependentes para $\alpha=-1.$ V F
 - b) Sejam u, v e w vectores linearmente dependentes de um espaço vectorial real V. Então v é combinação linear de u e w.
 - c) Se u, v e w são vectores linearmente dependentes de um espaço vectorial real V, então os vectores u v, v w e w u são vectores linearmente independentes.

V \widehat{F}

- d) Em \mathbb{R}^2 não existe nenhum subespaço de dimensão 2 gerado pelos vectores $u=e_1-e_2$ e $v=-e_2$ (sendo $\{e_1,e_2\}$ a base canónica de \mathbb{R}^2). V
- 3. a) Seja A uma matriz de ordem 9×10 tal que car(A) = 5, então o núcleo de A tem dimensão 4.
 - b) Existe uma matriz A, que define uma aplicação linear f, em \mathbb{R}^2 , para a qual se tem $dim\ Im(f)=dim\ Nuc(f),$ $\stackrel{\bigcirc}{\mathbb{V}}$ F
 - c) A aplicação linear f, definida em \mathbb{R}^2 , para a qual se tem $Nuc_f = \{(x,y) : x = 0\}$ é um isomorfismo.

- d) Se $H=\langle 1,2+x,3+2x+x^3\rangle$, é um subespaço de P_3 , sendo P_3 o subespaço dos polinómios de grau menor ou igual a 3, então $x\notin H$.
- 4. a) A matriz dos coeficientes do sistema $\begin{cases} x_1 = 3 x_4 \\ x_2 = -1 \\ x_3 = -2x_4 \end{cases}$ tem característica igual a 3. (V) F
 - b) O espaço gerado pelos vectores $\begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$ tem dimensão igual a 2.
 - c) Se $A=\begin{pmatrix}1&0&0\\0&r-2&2\\0&s-1&r+2\\0&0&3\end{pmatrix}$ tem-se car(A)=1 ou car(A)=2, para quaisquer valores reais de r e s.

V(F)

 \mathbf{F}

d) Se
$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
 o espaço das colunas de A tem dimensão igual a 2.

 \mathbf{II}

Para cada questão deste grupo, complete as respectivas afirmações.

1. Considere o seguinte sistema,

$$\begin{cases} x+y+(1+a)z &= 1\\ x+(1+a)y+z &= 1+a\\ (2-a)(1+a)z &= 2-a \end{cases}$$

de variáveis x, y, z e com $a \in \mathbb{R}$.

- a) Se a=1 é solução do sistema o vector (-3/2,2/2,1/2).
- b) O sistema AX = B é impossível se e só se a = -1.
- c) O sistema AX = B possível e indeterminado, com grau de indeterminação 1 se e só se a = 0 ou a = 2.
- d) O sistema AX = B é possível e determinado se e só se $a \neq 0$ e $a \neq 2$ e $a \neq -1$.

2. Seja f a aplicação linear definida de \mathbb{R}^2 para \mathbb{R}^3 tal que:

$$f(1,2) = (1,3,5)$$
 e $f(2,7) = (-1,1,1)$.

a) Os vectores (1,0) e (0,1) podem escrever-se como combinação linear dos vectores (1,2) e (2,7) do seguinte modo

$$(1,0) = \frac{7}{3}(1,2) - \frac{2}{3}(2,7)$$
 e
$$(1,2) = -\frac{2}{3}(1,2) + \frac{1}{3}(2,7)$$

- b) Usando a alínea a) tem-se que $f(1,0)=\frac{7}{3}f(1,2)-\frac{2}{3}f(2,7)=(3,19/3,11)$ e $f(0,1)=-\frac{2}{3}f(1,2)+\frac{1}{3}f(2,7)=(-1,-5/3,-3).$
- c) (Responda à seguinte questão justificando a sua resposta.)

Determine, para a aplicação linear f, duas matrizes diferentes que a representem.

Resolução:

Considerando, o enunciado e as alienas anteriores, temos que a matriz da aplicação linear f relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 é:

$$A_f = \left(\begin{array}{cc} 1 & -1\\ 3 & 1\\ 5 & 1 \end{array}\right)$$

e, a matriz da aplicação linear f relativamente à (1,2),(2,7) de \mathbb{R}^2 e à base canónica de \mathbb{R}^3 é:

$$B_f = \left(\begin{array}{cc} 3 & -1\\ 19/3 & -5/3\\ 11 & -3 \end{array}\right)$$

Responda à questão deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.

Considere U e V, subespaços vectoriais reais de \mathbb{R}^4 , tais que:

$$U = \{(x, y, z, t) : x = y, \ y + z = t \ e \ x, y, z, t \in \mathbb{R}\},\$$

$$V = \langle \ (1, 1, 0, 0), \ (0, 0, 1, 1) \ \rangle$$

- a) Mostre que U é um subespaço vectorial real de \mathbb{R}^4 .
- b) Determine uma base e a dimensão de V.
- \mathbf{c}) Determine o subespaço V através de condições que definam o seu elemento genérico.
- d) Defina o subespaço $U \cap V$ e determine um conjunto de geradores de $U \cap V$.

Resolução:

- a) Um subespaço vectorial real de \mathbb{R}^4 é um subconjunto não vazio, fechado para as operações de adição e de multiplicação por um número real, ou seja:
 - (i) $x + y \in U, \ \forall x, y \in U;$
 - (ii) $\alpha x \in U, \ \forall \alpha \in \mathbb{R} \ \forall x \in U.$

Assim, pela sua definição, que U é um subconjunto de \mathbb{R}^4 e é não vazio pois $(0,0,0,0) \in U$. Mostremos agora que U é fechado para as operações de adição e de multiplicação por um escalar. Sejam $\forall x,y \in U$ e $\forall \alpha \in \mathbb{R}$. Então, tendo-se x=(a,a,c,a+c) e y=(a',a',c',a'+c'), para $a,c,a',c',\in\mathbb{R}$, vem que x+y=(a+a',a+a',c+c',a+a'+c+c') e deduz-se que $x+y\in U$. Tem-se ainda que $\alpha x=(\alpha a,\alpha a',\alpha c'\alpha(a'+c'))$ donde $\alpha x\in U$. Assim que U é um subespaço vectorial real de \mathbb{R}^4

b) Consideremos a matriz cujas colunas são os vectores geradores de V, $\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$.

Tendo-se $\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ vem que a característica da matriz é igual a 2, e logo

as duas colunas da matriz inicial são vectores linearmente independentes. Assim uma base de V é, por exemplo, $\{(1,1,0,0),(0,0,1,1)\}$, sendo dimV=2.

- **c**) Se $(a,b,c,d) \in V$, então existem escalares reais α,β tais que $(a,b,c,d) = \alpha(1,1,0,0) + \beta(1,1,0,0) \Leftrightarrow \alpha = 1 \ e \ \beta = 1$. Assim, tem-se $V = \{(x,x,z,z) : x,z \in \mathbb{R}\}$.
- $\begin{array}{l} \mathbf{d}) \ \ U\cap V = \{(x,y,z,t): x=y, \ \ y+z=t, \ \ z=t \ \ \mathrm{e} \ \ x,y,z,t\in \mathbb{R}\} = \{(x,y,z,t): x=y=0,z=t \ \ \mathrm{e} \ \ x,y,z,t\in \mathbb{R}\} = \{(0,0,z,z): z\in \mathbb{R}\}. \\ \\ \mathrm{Tem-se\ ent\~ao}\ \ U\cap V = \langle (0,0,1,1)\rangle \\ \end{array}$

Cotações	Parte I	Parte II	Parte III
	8	4 + (1+1+2)	1+1+0.5+1.5