Конспекты к экзамену по математической статистике

June 1, 2016

Contents

0.0	Список вопросов к экзамену по математической статистике . 2	<u> </u>
0.1	Случайная выборка, генеральная совокупность, функция распредел	тения
	выборки	}
0.2	Эмпирическая функция распределения, гистограмма 4	

0.0 Список вопросов к экзамену по математической статистике

- 1. 1. Случайная выборка и генеральная совокупность
 - 2. Функция распределения выборки
- 2. 1. Эмпирическая функция распределения
 - 2. Гистограмма
- 3. Выборочные характеристики. Выборочные моменты
- 4. Точечные оценки и их свойства
- 5. Функция правдоподобия. Неравенство Крамера-Рао
- 6. Метод максимального правдоподобия, свойства оценок максимального правдоподобия
- 7. Метод моментов для точечных оценок
- 8. Достаточные статистики
- 9. Интервальные оценки. Доверительные интервалы
- 10. Интервальные оценки.

Доверительные интервал для дисперсии нормальной генеральной совокупности

11. Асимптотические свойства оценки максимального правдоподобия.

Асимптотический доверительный интервал

12. Проверка статистических гипотез.

Критерий Неймана-Пирсона проверки простых гипотез

- 13. Наиболее мощный критерий. Теорема Неймана-Пирсона
- 14. Проверка статистических гипотез о параметрах нормального распределения
- 15. Критерии для сложных гипотез
- 16. Функция мощности при альтернативе
- 17. Критерий согласия χ^2 -Пирсона
- 18. Критерий согласия Колмогорова
- 19. Критерий однородности Колмогорова-Смирнова
- 20. Критерий однородности χ^2

0.1 Случайная выборка, генеральная совокупность, функция распределения выборки

Def. 1. Выборка Пусть эксперемент состоит в проведении n испытаний, результат j-го из которых является случайной величиной $X_j:\Omega_j\to\mathcal{X}_j.$

Кортёж из этих случайных величин (случайный вектор) $X=(X_1,\ldots,X_n)$ называется (случайной) выборкой, а r.v. X_j называются элементами выборки

А значение $x=(x_1,\ldots,x_n)=X(\omega)$ называется реализацией выборки

Далее всегда, если не указано иное, случайные величины будут обозначаться заглавными буквами, а их реализации соответствующими строчными

Далее X_i полагаются независимыми

Def. 2. Выборочное пространство Выборочным пространством называется измеримое пространство $(\mathcal{X},\mathcal{A})$, где $\mathcal{X}=\{X(\omega);\omega\in\Omega\}$ есть множество возможных значений выборки, а \mathcal{A} — σ -алгебра

Особенно важен случай, когда случайные величины X_j являются независимыми и имеют распределение одной случайной величины ξ . Этот случай соответствует повторению n раз одного эксперемента, описываемого случайной величиной ξ

Def. 3. Генеральная совокупность Генеральной совокупностью называют распределение $\mathcal{L}(\xi)$ случайной величины ξ

Оно может быть задано, например, множеством возможных значений r.v. ξ и её функцией распределения

При этом X называют выборкой из (генеральной совокупности) $\mathcal{L}(\xi)$

Def. 4. Функция распределения выборки $X \in \mathcal{L}(\xi)$

$$F_X(x) = \mathbb{P}\{X \le x\} = \prod \mathbb{P}\{X_j \le x_j\} = \prod F_{X_j}(x_j)$$

0.2 Эмпирическая функция распределения, гистограмма

Пусть $A\subset\Omega_0$ событие, происходящее в ходе испытания с вероятностью $\mathbb{P} A=p,$ и пусть эксперимент состоит в проведении n таких независимых испытаний

Тогда

$$\Omega = \prod_{j=1}^{n} \Omega_0$$

А случайная величина

$$X_j = I_{\{\omega; \omega_j \in A\}} = \begin{cases} 1; & \omega_j \in A \\ 0; & \omega_j \notin A \end{cases}$$

является индикатором того, что в ходе j-го испытания случилось событие A

Пусть r.v. $k = \sum_{j=1}^{n} X_j$ — число проявлений A в ходе эксперимента.

Введём r.v. $p_n^* = \frac{1}{n} \sum_{j=1}^n X_j$.

Очевидно $\mathbb{E}p_n^* = p$.

Кроме того, из ЗБЧ в форме Бернулли следует $\lim_{n\to\infty} \mathbb{P}\{|p_n^*-p|<\varepsilon\}=1\quad\forall\varepsilon>0$

Таким образом, значение случайной величины p_n^* можно считать приближённой оценкой величины p

Пусть теперь $X = (X_1, \dots, X_n)$ — выборка объёма n из генеральной совокупности $\mathcal{L}(\xi), x = (x_1, \dots, x_n)$ — реализация.

Def. 5. Порядковые статистики Каждой реализации x можно сопоставить в соответствие его перестановку $x_{(1)} \le \cdots \le x_{(n)}$,

j-й порядковой статистикой назвается случайная величина $X_{(j)},$ при каждой реализации $X(\omega)=x,$ принимает значение $X_{(j)}(\omega)=x_{(j)}$

Def. 6. Вариационный ряд Случайный вектор $(X_{(1)},\ldots,X_{(n)})$ называется вариационным рядом

Def. 7. Эмпирическая функция распределения Для каждого $t \in \mathbb{R}$ зададим случайную величину $\mu_n(x)$, равную количеству элементов выборки X, значения которых не превосходят t:

$$\mu_n(x) = \sum I_{\{X_i \le t\}}$$

Эмпирической функцией распределения, построенной по выборке X, называют случайную функцию $t\mapsto F_n(t)$

$$F_n(x) = \frac{1}{n}\mu_n(t)$$

 ${\rm E}\ddot{\rm e}$ значение в точке t является случайной величиной, сходящейся по вероятности к значению F(t) теоретической функции распределения

EDF можно перезаписать с помощью функции Хевисайда (Heaviside):

$$H(t) = \begin{cases} 0; & t < 0 \\ 1; & t \ge 0 \end{cases}$$

$$F_n(t) = \frac{1}{n} \sum_{i=1}^{n} H(t - X_{(k)})$$

Def. 8. Гистограмма Разобьём область значений r.v. ξ на равные интервалы Δ_i , и для каждого Δ_i подсчитаем число n_i элементов x_j вектора x, попавших в Δ_i , $n=\sum n_i$.

Построим график ступенчатой функции

$$t \mapsto \frac{n_i}{nh_i}, \quad t \in \Delta_i, h_i = |\Delta_i|$$

Полученный график (при желании, само отображение) называется Γ истограммой, построенной по данной реализации выборки

Соединим середины смежных отрезков этого графика. Полученная ломанная называется полигоном частот

С уменьшением $\max\{h_i\}$, гистограмма и полигон частот всё более точно приближают вероятности попадания в каждый из интервалов разбиения