5/30/20 Meeting

Research Papers

https://ieeexplore.ieee.org/document/8614997 (origami-based portable)

https://ieeexplore.ieee.org/document/7566456

https://ieeexplore.ieee.org/document/7478940

https://ieeexplore.ieee.org/document/7421513

https://ieeexplore.ieee.org/document/8528571

https://ieeexplore.ieee.org/document/8605460

https://ieeexplore.ieee.org/document/8342475

https://ieeexplore.ieee.org/document/8806509

https://ieeexplore.ieee.org/document/8289034

https://ieeexplore.ieee.org/document/8362577

https://ieeexplore.ieee.org/document/7455111

Dish Idea:

- https://ieeexplore.ieee.org/document/7566456
- Relation with intensity

https://www.sciencedirect.com/topics/engineering/solar-tracking-system

- 1st idea: solar panel mounted on top of a drone/rover that carries food/supplies, rotates to face the sun with the most amount of surface area
- Purpose: Commercial use for delivering necessities to areas where humans can't normally do by themselves. Such as during disaster times.
 - 2 parts
 - drone/rover build
 - Size: Between the size of a typical backpack to a tricycle?
 - Programmed to reach a certain destination safely
 - Dish solar panel build
 - Programmed to auto-rotate
 - Could have a dish mounted on it
 - How it compares to traditional methods
 - Traditional buggies are battery powered
 - Complement battery with solar (?)
 - # of panels + power produced
 - 1 panel (42"x21"x1.5" 100 watts) for a backpack sized rover
 - 1 panel (65"x20"x1.5" 300 watts) for a tricycle sized rover
- 2nd idea: portable charger powered by solar panel, that also adjusts to maximize sunlight
- Purpose: Mobile/Leisure use. Can also be used at home to power appliances.
 - Sections of project
 - Charger/ USB

- Solar panels (and base to hold it up?)
- Device to measure power produced
- Device to determine the optimum angle for solar panels
- How it compares to traditional methods
 - Traditional portable chargers require you to charge a battery beforehand
 - This can be used on the fly, without charging beforehand, while its foldable design still allows it to be carried daily
- # of panels + power produced
 - mAh portable battery power to Watt hours conversion/comparison
 - x mAh * 5/1000 = y Watt hours

- 3rd idea:

Solar Panel Dimensions

Туре	Size (inches)	Power (Wph)	Output Voltage (V)	Current (A)	Weight (Lbs)
Flat https://www.a mazon.com/ Renogy-Mon ocrystalline-S olar-Panel-Of f-Grid/dp/B07 BK1MG77	65 inches x 40 inches x 1.5 inches	300 Watts per hr	32.2 Volts	9.33 A	41.3 lbs
Flat https://www.a mazon.com/ Newpowa-Mo nocrystalline- Efficiency-Mo dule-Marine/d p/B07VBL7X KV/ref=sr_1 3?dchild=1&k eywords=300 +watt+solar+ panel&qid=1 590898335& s=lawn-garde n&sr=1-3	65 x 27 x 1.4	200 Watts per hr	17.0 V	11.76A	32 lbs

Flat https://www.a mazon.com/d p/B07HFMBF 3G/ref=emc b_5_t	42inches x 21 inches x 1.5 inches	100 Watts per hr			17.65 lbs
Flat (Mini) https://www.a mazon.com/A LLPOWERS- Battery-Char ger-Encapsul ated-130x150 mm/dp/B074 TYH68Z/ref= sr_1_4?dchil d=1&keyword s=mini+solar +cells&qid=1 590898970& sr=8-4	6.06 x 5.04 x 0.31 inches	2.5 W	5V	500 mAh	0.2 lbs
Dish https://www.s olartronenerg y.com/solar-c oncentrator/s pecifications/	20 x 16 x 7	?	24V	5A	?

Charging Phone Case "Prototype" (if possible to implement as/for other designs:

Top View (Battery)

- Port to connect to panel/battery on case
- •Add connecting wire to charge while charging? (ifenough power produced)
- 2nd panel folds out for max charge per area

