DIC L22: Power (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

5.2. Dynamic power (7)

Capacitance

- Gate capacitance ("Gate" is not a contact in this context.)
 - Fewer stages of logic
 - Small gate sizes
- Wire capacitance
 - Good floorplanning to keep communicating blocks close to each other
 - Drive long wires with invertes of buffers rather than complex gates

5.2. Dynamic power (8)

- Voltage/Frequency
 - Run each block at the lowest possible voltage and frequency that meets performance requirements
 - Voltage domains
 - Provide separate supplies to different blocks
 - Level converters required when crossing from low to high V_{DD} domains

Fig. 5.15

5.3. Static power (1)

 Static power is consumed even when a chip is not switching.

$$P_{static} = (I_{sub} + I_{gate} + I_{junct} + I_{contention})V_{DD}$$

(Semiconductor Engineering)

5.3. Static power (2)

Subthreshold leakage

$$I_{sub} = I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$$

Transistor Type	High Speed Logic		Low Power Logic		High Voltage	
Options	High Performance (HP)	Standard Perf./ Power (SP)	Low Power (LP)	Ultra Low Power (ULP)	1.8 V	3.3 V
Vdd (Volt)	0.75 / 1	0.75 / 1	0.75 / 1	0.75/1.2	1.5/1.8/3.3	3.3 / >5
Gate Pitch (nm)	90	90	90	108	min. 180	min. 450
Lgate (nm)	30	34	34	40	min. 80	min. 280
N/PMOS Idsat/loff (mA/um)	1.08/ 0.91 @ 0.75 V, 100 nA/um	0.71 / 0.59 @ 0.75 V, 1 nA/um	0.41 / 0.37 @ 0.75 V 30 pA/um	0.35 / 0.33 @ 0.75 V 15 pA/um	0.92 / 0.8 @ 1.8 V 10 pA/um	1.0 / 0.85 @ 3.3 V 10 pA/um

(Intel's 2012 IEDM abstract)

5.3. Static power (3)

Stack effect

$$I_{sub} = I_{off} 10^{\frac{V_{gs} + \eta(V_{ds} - V_{DD}) - k_{\gamma}V_{sb}}{S}}$$

- Series OFF transistors have less leakage
- $V_x > 0$, so N2 has negative V_{gs}

$$I_{sub} = \underbrace{I_{off} 10^{\frac{\eta(V_x - V_{DD})}{S}}}_{N1} = \underbrace{I_{off} 10^{\frac{-V_x + \eta((V_{DD} - V_x) - V_{DD}) - k_y V_x}{S}}}_{N2}$$

$$V_{x} = \frac{\eta V_{DD}}{1 + 2\eta + k_{y}}$$

$$I_{sub} = I_{off} 10^{\frac{-\eta V_{DD}\left(\frac{1+\eta+k_{\gamma}}{1+2\eta+k_{\gamma}}\right)}{S}} \approx I_{off} 10^{\frac{-\eta V_{DD}}{S}}$$

Fig. 5.20

5.3. Static power (3)

- Gate leakage
 - Various physical mechanisms
 - It is an extremely strong function of the dielectric thickness.
 - It also depends on the voltage across the gate.

Measured Ig-Vg characteristics

GIST Lecture on No (Ho et al., EDL, vol. 18, pp. 209-211)

5.3. Static power (4)

High-k metal gate

65nm

45nm high-k metal gate transistor

GIST Lecture on November 28, 2019

5.3. Static power (5)

NAND3 leakage example

Input State (ABC)	l _{sub}	I _{gate}	I _{total}	V _x	V _z
000	0.4	0	0.4	stack effect	stack effect
001	0.7	0	0.7	stack effect	V _{DD} – V _t
010	0.7	1.3	2.0	intermediate	intermediate
011	3.8	0	3.8	$V_{DD} - V_{t}$	$V_{DD} - V_{t}$
100	0.7	6.3	7.0	0	stack effect
101	3.8	6.3	10.1	0	$V_{DD} - V_{t}$
110	5.6	12.6	18.2	0	0
111	28	18.9	46.9	0	0

5.3. Static power (6)

- Example 5.4
 - 50M logic transistors (Average width: 12 λ)
 - 5 % low- V_T + 95 % high- V_T
 - 950M memory transistors (Average width: 4λ)
 - 100 % high-V_T
 - 1.0 V 65 nm process (λ is 25 nm.)
 - Subthreshold leakage is 100 nA/ μ m (low- V_T) or 10 nA/ μ m (high- V_T).
 - Gate leakage is 5 nA/µm. (Neglect the junction leakage.)
 - Estimate the static power consumption. (Assume that half the transistors contribute leakage currents.)

5.3. Static power (7)

Power gating

- Turn off the power supply to the sleeping blocks.
- "A total of 1.5m of total width per core of ultra-low-leakage PMOS transistors are used with the gate terminal adaptively switched to the highest available chip voltage to further reduce leakage."

Homework#6 (The last)

- Solve the exercise problems of the textbook.
 - Exercise 4.1, Exercise 4.4, Exercise 4.9, Exercise 4.10, Exercise
 4.11 (Five problems from Ch. 4)
 - Exercise 5.1, Exercise 5.4, Exercise 5.5, Exercise 5.6, (Four problems from Ch. 5)
- Due: December 3, 2019 (Before the lecture starts)
 - Upload your Homework to our GitHub repository.