Deep Learning for Computer Vision

Self-Attention and Transformers

Vineeth N Balasubramanian

Department of Computer Science and Engineering Indian Institute of Technology, Hyderabad

Review: Question

Other ways to evaluate Visual Dialog systems?

Review: Question

Other ways to evaluate Visual Dialog systems?

Look to NLP for consensus metrics that measure consensus between answers generated by model and a set of relevant answers; see Massiceti et al, A Revised Generative Evaluation of Visual Dialogue, arXiv 2020

Acknowledgements

- Most of this lecture's slides are based on Jay Alammar's article on "The Illustrated Transformer"
- Unless explicitly specified, assume that content and figures are either directly taken or adapted from above source

Motivation for Transformers

Sequential computation prevents parallelization

Motivation for Transformers

Sequential computation prevents parallelization

 Despite GRUs and LSTMs, RNNs still need attention mechanism to deal with long-range dependencies – path length for co-dependent computation between states grows with sequence length

Motivation for Transformers

Sequential computation prevents parallelization

- Despite GRUs and LSTMs, RNNs still need attention mechanism to deal with long-range dependencies – path length for co-dependent computation between states grows with sequence length
- But if attention gives us access to any state, maybe we don't need the RNN?!

Credits: Richard Socher (Stanford CS224n)

Transformers¹

 The work "Attention is All you Need" (Vaswani et al, NeurIPS 2017) first made it possible to do Seq2Seq modeling without RNNs

¹Vaswani et al, Attention is All You Need, NeurIPS 2017

Transformers¹

- The work "Attention is All you Need" (Vaswani et al, NeurIPS 2017) first made it possible to do Seq2Seq modeling without RNNs
- Proposed transformer model, entirely built on self-attention mechanism without using sequence-aligned recurrent architectures

¹Vaswani et al, Attention is All You Need, NeurIPS 2017

Transformers¹

- The work "Attention is All you Need" (Vaswani et al, NeurIPS 2017) first made it possible to do Seq2Seq modeling without RNNs
- Proposed transformer model, entirely built on self-attention mechanism without using sequence-aligned recurrent architectures
- Key components:
 - Self-Attention
 - Multi-Head Attention
 - Positional Encoding
 - Encoder-Decoder Architecture

¹Vaswani et al, Attention is All You Need, NeurIPS 2017

• Consider two input sentences we want to translate:

- Consider two input sentences we want to translate:
 - The animal didn't cross the street because it was too tired

- Consider two input sentences we want to translate:
 - The animal didn't cross the street because it was too tired
 - The animal didn't cross the street because it was too wide

7 / 22

- Consider two input sentences we want to translate:
 - The animal didn't cross the street because it was too tired
 - The animal didn't cross the street because it was too wide
- "it" refers to "animal" in first case, but to "street" in second case; this is hard for traditional Seq2Seq models to model

- Consider two input sentences we want to translate:
 - The animal didn't cross the street because it was too tired
 - The animal didn't cross the street because it was too wide
- "it" refers to "animal" in first case, but to "street" in second case; this is hard for traditional Seq2Seq models to model
- As the model processes each word, self-attention allows it to look at other positions in input sequence to help get a better encoding

- Consider two input sentences we want to translate:
 - The animal didn't cross the street because it was too tired
 - The animal didn't cross the street because it was too wide
- "it" refers to "animal" in first case, but to "street" in second case; this is hard for traditional Seq2Seq models to model
- As the model processes each word, self-attention allows it to look at other positions in input sequence to help get a better encoding
- Recall RNNs: we now no longer need to maintain a hidden state to incorporate representation of previous words/vectors!

- **STEP 1:** Create three vectors from encoder's input vector (x_i) :
 - ullet Query vector (q_i)
 - Key vector (k_i)
 - Value vector (v_i)

Values

- **STEP 1:** Create three vectors from encoder's input vector (x_i) :
 - Query vector (q_i)
 - Key vector (k_i)
 - Value vector (v_i)
- \bullet These are created by multiplying input with weight matrices $W^Q,W^K,W^V,$ learned during training

W۷

- **STEP 1:** Create three vectors from encoder's input vector (x_i) :
 - Query vector (q_i)
 - Key vector (k_i)
 - Value vector (v_i)
- \bullet These are created by multiplying input with weight matrices $W^Q,W^K,W^V,$ learned during training
- In the paper, $q, k, v \in \mathbb{R}^{64}$ and $x \in \mathbb{R}^{512}$

- **STEP 1:** Create three vectors from encoder's input vector (x_i) :
 - Query vector (q_i)
 - Key vector (k_i)
 - Value vector (v_i)
- \bullet These are created by multiplying input with weight matrices $W^Q,W^K,W^V,$ learned during training
- ullet In the paper, $q,k,v\in\mathbb{R}^{64}$ and $x\in\mathbb{R}^{512}$
- Do q, k, v always have to be smaller than x?

- **STEP 1:** Create three vectors from encoder's input vector (x_i) :
 - Query vector (q_i)
 - Key vector (k_i)
 - Value vector (v_i)
- \bullet These are created by multiplying input with weight matrices $W^Q,W^K,W^V,$ learned during training
- ullet In the paper, $q,k,v\in\mathbb{R}^{64}$ and $x\in\mathbb{R}^{512}$
- Do q, k, v always have to be smaller than x?
 No, this was done perhaps to make computation of multi-headed attention constant
- What are the dimensions of W^Q, W^K, W^V ?

 STEP 2: Calculate self-attention scores score all words of input sentence against themselves; how?

- **STEP 2:** Calculate self-attention scores score all words of input sentence against themselves; how?
- By taking dot product of query vector with key vector of respective words

- STEP 2: Calculate self-attention scores score all words of input sentence against themselves; how?
- By taking dot product of query vector with key vector of respective words
- E.g. for input "Thinking", first score would be $q_1 \cdot k_1$ (with itself); second score would be dot product of $q_1 \cdot k_2$ (with "Machines"), and so on

Input

Embedding

Queries

Kevs

Values

Score

- STEP 2: Calculate self-attention scores score all words of input sentence against themselves: how?
- By taking dot product of query vector with key vector of respective words
- E.g. for input "Thinking", first score would be $q_1 \cdot k_1$ (with itself); second score would be dot product of $q_1 \cdot k_2$ (with "Machines"), and so on
- ullet Scores then divided by $\sqrt{length(k)}$

- STEP 2: Calculate self-attention scores score all words of input sentence against themselves: how?
- By taking dot product of query vector with key vector of respective words
- E.g. for input "Thinking", first score would be $q_1 \cdot k_1$ (with itself); second score would be dot product of $q_1 \cdot k_2$ (with "Machines"), and so on
- ullet Scores then divided by $\sqrt{length(k)}$
- This is Scaled Dot-Product Attention, recall from W9P1; this design choice leads to more stable gradients

• **STEP 3:** Softmax used to get normalized probability scores; determines how much each word will be expressed at this position

- **STEP 3:** Softmax used to get normalized probability scores; determines how much each word will be expressed at this position
- Clearly, word at this position will have highest softmax score, but sometimes it's useful to attend to another word that is relevant

- STEP 3: Softmax used to get normalized probability scores; determines how much each word will be expressed at this position
- Clearly, word at this position will have highest softmax score, but sometimes it's useful to attend to another word that is relevant
- STEP 4: Multiply each value vector by softmax score; why? Keep values of word(s) we want to focus on intact, and drown out irrelevant words

- STEP 3: Softmax used to get normalized probability scores; determines how much each word will be expressed at this position
- Clearly, word at this position will have highest softmax score, but sometimes it's useful to attend to another word that is relevant
- STEP 4: Multiply each value vector by softmax score; why? Keep values of word(s) we want to focus on intact, and drown out irrelevant words
- STEP 5: Sum up weighted value vectors → produces output of self-attention layer at this position (for first word)

Self-Attention: Illustration

Multi-Head Attention

• Improves performance of the attention layer in two ways:

Multi-Head Attention

- Improves performance of the attention layer in two ways:
 - ullet Expands model's ability to focus on different positions. In example above, z_1 contains a bit of every other encoding, but dominated by actual word itself

Multi-Head Attention

- Improves performance of the attention layer in two ways:
 - ullet Expands model's ability to focus on different positions. In example above, z_1 contains a bit of every other encoding, but dominated by actual word itself
 - Gives attention layer multiple "representation subspaces"; we have not one, but multiple sets of Query/Key/Value weight matrices; after training, each set is used to project input embeddings into different representation subspaces

Credit: Vaswani et al, Attention is All You Need, NeurIPS 2017

Multi-Head Attention: Illustration

 Unlike RNN and CNN encoders, attention encoder outputs do not depend on order of inputs (Why?)

- Unlike RNN and CNN encoders, attention encoder outputs do not depend on order of inputs (Why?)
- But order of sequence conveys important information for machine translation tasks and language modeling

- Unlike RNN and CNN encoders, attention encoder outputs do not depend on order of inputs (Why?)
- But order of sequence conveys important information for machine translation tasks and language modeling
- The idea: Add positional information of input token in the sequence into input embedding vectors

$$PE_{pos,2i} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{emb}}}}\right) \qquad PE_{pos,2i+1} = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{emb}}}}\right)$$

- Unlike RNN and CNN encoders, attention encoder outputs do not depend on order of inputs (Why?)
- But order of sequence conveys important information for machine translation tasks and language modeling
- The idea: Add positional information of input token in the sequence into input embedding vectors

$$PE_{pos,2i} = \sin\left(\frac{pos}{10000^{\frac{2i}{d_{emb}}}}\right) \qquad PE_{pos,2i+1} = \cos\left(\frac{pos}{10000^{\frac{2i}{d_{emb}}}}\right)$$

• Final input embeddings are concatenation of learnable embedding and positional encoding

Encoder

Stack of N=6 identical layers

Encoder

- Stack of N=6 identical layers
- Each layer has a multi-head self-attention layer and a simple position-wise fully connected feedforward network

Encoder

- Stack of N=6 identical layers
- Each layer has a multi-head self-attention layer and a simple position-wise fully connected feedforward network
- Each sub-layer has a **residual** connection and **layer-normalization**; all sub-layers output data of same dimension $d_{model}=512$

Stack of N=6 identical layers

- Stack of N=6 identical layers
- Each layer has two sub-layers of multi-head attention mechanisms and one sub-layer of fully-connected feedforward network

- Stack of N=6 identical layers
- Each layer has two sub-layers of multi-head attention mechanisms and one sub-layer of fully-connected feedforward network
- Similar to encoder, each sub-layer adopts a residual connection and a layer-normalization

- Stack of N=6 identical layers
- Each layer has two sub-layers of multi-head attention mechanisms and one sub-layer of fully-connected feedforward network
- Similar to encoder, each sub-layer adopts a residual connection and a layer-normalization
- First multi-head attention sub-layer is modified to prevent positions from attending to subsequent positions, as we don't want to look into future of target sequence when predicting current position

Transformers: Full Architecture

Transformers in Computer Vision: Object Detection²

²Carion et al, End-to-End Object Detection with Transformers, ECCV 2020

Transformers in Computer Vision: Object Detection

Credit: Ram Sagar, Analytics India Mag

Transformers in Computer Vision: Object Detection³

Results on MS COCO validation set

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	$\mathrm{AP_S}$	AP_M	$\mathrm{AP_L}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

³Carion et al, End-to-End Object Detection with Transformers, ECCV 2020

Transformers in Computer Vision: Image Recognition⁴

- Image split into fixed-size patches
- Each of them linearly embedded
- Position embeddings added to resulting sequence of vectors
- Patches fed to standard
 Transformer encoder
- In order to perform classification, standard approach of adding an extra learnable "classification token" added to sequence

Credit: Nabil Madali, Gitconnected

⁴Dosovitskiy et al, An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv 2020

Homework

Readings

- Watch the Transformers in Action video provided in the week's lecture materials
- The Illustrated Transformer article by Jay Alammar
- A detailed explanation of positional encoding by Amirhossein Kazemnejad
- For more information: Attention is All You Need paper by Vaswani, et al. (NeurIPS 2017)

Questions

• Are transformers faster or slower than LSTMs? What is the reason for your opinion?