Package 'STrollR'

October 8, 2018

Title Correct Standard Errors for Computing Spatial and Temporal Correlation post-estimation.

Version 0.1.4

Description

A computationally efficient way to calculate covariance matrices that are corrected for spatial and temporal correlation using a method I call *rolling*. Huge spatiotemporal covariance matrices can be calculated using sparse matrix approaches with spam and spam64. To calculate large sparse spatial weights matrices, use spam::rdist.

```
Depends R (>= 3.5.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Author Jordan Adamson [aut, cre]
Maintainer Jordan Adamson < jordan.m.adamson@gmail.com>
Published 2018-10-08
Date 2018-10-08
URL <https://github.com/Jadamso/STrollR>
RoxygenNote 6.1.0
Imports Matrix,
     spam,
     spam64,
     parallel,
     data.table,
     lfe,
     spdep,
     sphet
```

R topics documented:

partlettSparse	2
lf2stack	3
DynPlot	3
Fac2Num	4
Take_data_traditional	4
s.lattice	5
terateObs IS patial	5

2 bartlettSparse

iterateObsJTem	poral	 	 	 	 		 	 			 	6
KNN		 	 	 	 		 	 			 	. 6
listj		 	 	 	 		 	 			 	. 7
mfxall		 	 	 	 		 	 			 	. 7
mfxi		 	 	 	 		 	 			 	. 8
NEIGH		 	 	 	 		 	 			 	. 8
sim2stack		 	 	 	 		 	 			 	. 9
spt_cleanup .		 	 	 	 		 	 			 	. 10
var2stack		 	 	 	 		 	 			 	10
varioJ		 	 	 	 		 	 			 	11
vcovSpace.loop	·	 	 	 	 		 	 			 	11
vcovSpace.sing	gle	 	 	 	 		 	 			 	. 12
vcovST		 	 	 	 		 	 			 	. 12
vcovST.format		 	 	 	 		 	 			 	13
vcovSTsep		 	 	 	 		 	 			 	. 14
vcovSTsep.loo	р	 	 	 	 		 	 			 	15
VonNeumann		 	 	 	 		 	 			 	15
weight_mat .		 	 	 	 		 	 			 	16
write.listw2gw	t	 	 	 	 		 	 			 	16
XOmegaX0 .		 	 	 	 	•	 	 		 •	 	17
Index												18

 ${\tt bartlettSparse}$

Weighting Kernel

Description

Weighting Kernel

Usage

bartlettSparse(d, dmax)

Arguments

d returned from spdep::listw

dmax name of file

Value

bartlett weight

df2stack 3

df2stack

Convert list of dataframes with to rasterstack

Description

Convert list of dataframes with to rasterstack

Usage

```
df2stack(sim_i, DF)
```

Arguments

sim_i which simulation
DF list of dataframe

Value

rasterstack

DynPlot

Create Gif Plots

Description

Create Gif Plots

Usage

```
DynPlot(DFlist, ti, pname = "STvarX", ind = 1)
DynGif(pname, vw = FALSE)
mkGif(DFlist, ti, pname = "STvarX", ind = 1, vw = FALSE)
```

Arguments

DFlist

ti number of time periods

pname name of file ind which simulation

vw view output

Value

list of rasterstacks

4 fake_data_traditional

Fac2Num

Converts Factor to Number

Description

Converts Factor to Number

Usage

Fac2Num(x)

Arguments

Χ

fake_data_traditional Create Space Time Lattice Data

numeric factor

Description

Create Space Time Lattice Data

Usage

```
fake_data_traditional(n = 10, tf = 5, theta = c(5, 1, 1, 1))
```

Arguments

n spatial dimension

tf temporal dimension

theta parameter vector for RHS

Value

dataframe with (n1,n2,t) coordinates and variables Y,X,X, Country Time

is.lattice 5

is.lattice

checks if data table has lattice structure?

Description

checks if data table has lattice structure?

Usage

```
is.lattice(DAT, TIME, ID)
```

Arguments

DAT a data.table

TIME name of temporal column

ID name of cellular ID variable

iterateObsJSpatial

Wrapper for Matrix Calculation for Space

Description

Wrapper for Matrix Calculation for Space

Usage

```
iterateObsJSpatial(sub_dat, Xvars, wmat, verbose = TRUE,
   checkSym = FALSE, XOmegaX = XOmegaX0, ...)
```

Arguments

sub_dat a dataframe object for 1 time period

Xvars RHS design matrix wmat Weights Matrix verbose print output

checkSym check if wmat is symmetric

XOmegaX meat function

Value

object to be used in vcov* functions

6 KNN

iterateObsJTemporal

Wrapper for Matrix Calculation for Time

Description

Wrapper for Matrix Calculation for Time

Usage

```
iterateObsJTemporal(sub_dat, Xvars, wmat, verbose = TRUE,
   checkSym = FALSE, XOmegaX = XOmegaX0, ...)
```

Arguments

sub_dat a data frame object for one cell unit

Xvars RHS design matrix wmat Weights Matrix verbose print output

checkSym check if wmat is symmetric

XOmegaX meat function

Value

object to be used in vcov* functions

KNN

K nearest neighbours Calculate the number of neighbours within a neighbourhood.

Description

K nearest neighbours Calculate the number of neighbours within a neighbourhood.

Usage

```
KNN(w, h = w, type = "Moore")
```

Arguments

w number of neighbours wide (east-west).h number of neighbours long (north-south).

type type of neighbourhood; "Moore" or "VonNeumann"

Value

the number of nearest neighbours

Examples

```
KNN(4)
```

listj 7

listj

Data Matrix Preparations

Description

Data Matrix Preparations

Usage

```
listj(ddff, wmat = NA, tmat = NA, t_cutoff = 4, rho_t = NA,
    d_cutoff = 1, rho_sp = NA, latlon = NA, convert_to_angles = TRUE)
```

Arguments

ddff formatted data.table from vcovST.format spatial weights matrix wmat temporal weights matrix tmat temporal cutoff t_cutoff rho_t unsupported vonneumann structure d_cutoff distance cutoff rho_sp unsupported vonneumann structure latlon coordinates in lon,lat or x,y convert_to_angles lon, lat to x, y?

Value

list object to be passed to vcov* functions

mfxall

Run multiple regressions on the same dataset

Description

Run multiple regressions on the same dataset

Usage

```
mfxall(FORMS, ..., mfx_fun = mfxi,
  mc.cores = as.numeric(system("nproc", intern = TRUE)),
  parallel = TRUE)
```

Arguments

FORMS list of regression formula
... args passed to mfx_fun
mfx_fun what type of regression

mc.cores number of cores if parallel=TRUE

parallel use parallel processing?

NEIGH

Value

List of Regressions Summaries

mfxi

Run a Regression

Description

Run a Regression

Usage

```
mfxi(formi, datai, scl = TRUE, wmat0 = get("WMAT0"), unit_id = "ID",
   time_id = "Year", coord_id = c("x", "y"))
```

Arguments

```
formi regression formula

data i data for regression

scl vcov correct for spatial+temporal covariance?

wmat0 spatial weights matrix passed to vcovSCL

unit_id, time_id, coord_id
    passed to vcovSCL
```

Value

summary table

NEIGH

Calculate the weights objects used in spdep sphet

Description

Calculate the weights objects used in spdep sphet

Usage

```
NEIGH(coord_sp, neigh = 1, knn = TRUE, adj = FALSE, dnn = FALSE,
  rast = FALSE, vario = FALSE, sphet = FALSE, tracer = TRUE,
  tr_type = "mult", tr_m = 20, tr_p = 16, symm = TRUE,
  symm_check = TRUE, SAVE = NA)
```

sim2stack 9

Arguments

coord_sp matrix of coordinates or a SpatialPoints object
neigh number of neighbours to use in calculation
knn calculate weights using knn approach

adj calculate vonneumann weights (see VonNeumann)

dnn dnn approach unsupported
rast raster approach unsupported
vario is coord_sp a weights matrix?
sphet create objects used in sphet?
tracer create trace matrix objects?

tr_type type of trace matrix tr_m trace matrix m tr_p trace matrix p

symm make weights symmetric

symm_check check for symmetric weights matrix

SAVE filename to save to, NA <default> returns as object

Value

filename of saved objects, or returns objects if SAVE=NA

sim2stack Convert simulation to rasterstack

Description

Convert simulation to rasterstack

Usage

```
sim2stack(e_spt, nsim, xyt)
```

Arguments

e_spt matrix of draws from spam.mvtnorm

xyt lattice structure number of simulations

Value

list of rasterstacks

10 var2stack

spt_cleanup

cleanup spam::mvtnorm

Description

```
cleanup spam::mvtnorm
```

Usage

```
spt_cleanup(m, nsim, xyt)
```

Arguments

m matrix of simulations (each row a realization)

 $nsim \qquad \qquad number \ of \ simulations$

xyt lattice coordinates

Value

dataframe

var2stack

Convert Dataframe with 1 variable to raster for one realization

Description

Convert Dataframe with 1 variable to raster for one realization

Usage

```
var2stack(df_i, sim_i)
```

Arguments

df_i dataframe

sim_i which simulation

Value

raster

varioJ 11

varioJ	Variogram Calculation
--------	-----------------------

Description

Variogram Calculation

Usage

```
varioJ(coords, cutt, residu, latlon = FALSE, indices = FALSE,
  clean = FALSE)
```

Arguments

coords coordinate matrix

cutt cutoff from which to calculate variogram

residu vector of values (i.e. OLS residuals) associated coords

latlon coordinates are lon,lat or x,y

indices return indices? clean unused currently

Value

data.frame of dij and (ei-ej)^2

vcovSpace . loop vcovSpace with Parallel Approach

Description

vcovSpace with Parallel Approach

Usage

```
vcovSpace.loop(DAT, LISTJ = NA, wmat = LISTJ$wmat, verbose = FALSE,
  cores = 4)
```

Arguments

DAT list of regression objects from vcov.format

LISTJ list of weighting objects from listj

wmat weights matrix verbose show messages

cores number of cores in spatial loop

Value

covariance matrix w/ spatial correction

vcovST

vcovSpace.single

vcovSpace, Single Year Only

Description

```
vcovSpace, Single Year Only
```

Usage

```
vcovSpace.single(DAT, LISTJ = NA, wmat = LISTJ$wmat, verbose = FALSE)
```

Arguments

DAT list of regression objects from vcov.format

LISTJ list of weighting objects from listj

wmat weights matrix verbose show messages

Value

covariance matrix w/ spatial correction

vcovST

calculate vcovSTsep for felm object

Description

```
calculate vcovSTsep for felm object
vcovST for seperable covariances using split approach
```

Usage

```
vcovST(vcovfun = vcovSTsep, reg, DF, unit, time, sp_coords,
    t_cutoff = NA, d_cutoff = NA, wmat = NA, tmat = NA,
    latlon = TRUE, convert_to_angles = TRUE, verbose = FALSE,
    SPLIT_sp = FALSE, SPLIT_t = FALSE, SPLIT = FALSE)

vcovST.loop(vcovfun = vcovSpace.loop, reg, DF, unit, time, sp_coords,
    t_cutoff = NA, d_cutoff = NA, wmat = NA, tmat = NA,
    latlon = TRUE, convert_to_angles = TRUE, verbose = FALSE,
    cores = 4, vcvtime = TRUE)
```

vcovST.format 13

Arguments

vcovfun function for which type of SHAC correction

reg an lm or felm object

DF data.frame with unit, time, sp_coords

unit cellular id time time id

sp_coords coordinate id

t_cutoffd_cutoffcutoff for considering time correlationcutoffcutoff for considering space correlation

wmat spatial weights matrix tmat temporal weights matrix

latlon are coordinates in lon,lat or x,y form

convert_to_angles

convert lon,lat to x,y

verbose show messages SPLIT_sp, SPLIT_t, SPLIT

see vcovST.format

cores number of cores to use vcvtime add temporal clustering

Details

if vcvtime==FALSE, wmat should have diagonal elements

Value

covariance matrix w/ SHAC correction

Functions

• vcovST.loop:

vcovST.format

Format Regression Output

Description

Format Regression Output

Usage

```
vcovST.format(reg, unit, time, sp_coords, DF = NA, SPLIT_sp = FALSE,
    SPLIT_t = FALSE, SPLIT = FALSE)
```

14 vcovSTsep

Arguments

reg felm object to be shaped
unit string name for cellular_id variable
time string name for time variable
sp_coords string name for coordinate variables

DF data.table to format, <NULL> formatts

SPLIT_sp return list dataframe of DF for each cell

SPLIT_t return list dataframe of DF for each time

SPLIT_sp=SPLIT_sp=TRUE

Value

object to be used in vcov* functions

Tsep

Description

vcovSTsep

Usage

```
vcovSTsep(DAT, LISTJ = NA, t_double_count = FALSE, verbose = FALSE,
  return_each = FALSE)
```

Arguments

DAT list of regression objects from vcov.format

LISTJ list of weighting objects from listj

t_double_count double count time?

verbose print output

return_each for debugging, return only spatial and only temporal covariances

Value

covariance matrix w/ SHAC correction

vcovSTsep.loop 15

vcovSTsep.loop vcovSTsep with Parallel for Space and Time

Description

vcovSTsep with Parallel for Space and Time

Usage

```
vcovSTsep.loop(DAT, LISTJ = NA, wmat = LISTJ$wmat,
  t_double_count = FALSE, verbose = FALSE, return_each = FALSE,
  cores = 4, tcores = NA)
```

Arguments

DAT list of regression objects from vcov.format

LISTJ list of weighting objects from listj

return_each for debugging, return only spatial and only temporal covariances

cores number of cores in spatial loop tcores number of cores in temporal loop

Value

covariance matrix w/ SHAC correction

VonNeumann Neighbours

Description

Compute VonNeumann Neighbours

Usage

```
VonNeumann(coord_sp, directions = 4)
```

Arguments

coord_sp SpatialPoints object or coordinate-matrix

directions see adjacent

Value

sparse weights matrix

16 write.listw2gwt

weight_mat

Compute Sparse Spatial Weights Matrix

Description

Compute Sparse Spatial Weights Matrix

Usage

```
weight_mat(M, cutoff, latlon = NA, convert_to_angles = TRUE)
```

Arguments

M matrix of coordinates cutoff use distances up cutoff

latlon are the rows (lat,lon) coordinates?

convert_to_angles

convert cutoff from km to angles?

Value

the number of nearest neighbours

Examples

```
weight_mat(expand.grid( list(x=1:10, y=1:10)), cutoff=.5)
```

write.listw2gwt

Write a listw object as a GWT file

Description

Write a listw object as a GWT file

Usage

```
write.listw2gwt(listw, dgwt_outfile = paste0(tempdir(), "dgwt.GWT"))
```

Arguments

listw returned from spdep::listw

dgwt_outfile name of file

Value

dgwt_outfile

XOmegaX0

XOmegaX0 Main 'Meat' Matrix Calculation

Description

Main 'Meat' Matrix Calculation

Usage

XOmegaX0(X, WMAT, e)

Arguments

X design matrix

WMAT weighting matrix (preferably sparse sparse)

e vector of residuals

Value

object to be used in vcov* functions

Index

```
bartlettSparse, 2
df2stack, 3
DynGif (DynPlot), 3
DynPlot, 3
Fac2Num, 4
fake\_data\_traditional, 4
is.lattice, 5
{\tt iterateObsJSpatial, 5}
{\tt iterateObsJTemporal}, {\tt 6}
KNN, 6
listj, 7
mfxall, 7
\mathsf{mfxi}, 8
\mathsf{mkGif}\,(\mathsf{DynPlot}),\, \boldsymbol{3}
NEIGH, 8
sim2stack, 9
spt_cleanup, 10
var2stack, \\ 10
varioJ, 11
vcovSpace.loop, 11
vcovSpace.single, 12
vcovST, 12
vcovST.format, 13
vcovSTsep, 14
vcovSTsep.loop, 15
VonNeumann, 15
weight\_mat, \\ 16
write.listw2gwt, 16
XOmegaX0, 17
```