Обучение с учителем: Регуляризация в линейных моделях. Метод Ближайших Соседей (KNN)

Екатерина Кондратьева

Переобучение (model overfitting)

^{*}Здесь theta (θ) - β

^{*}В предыдущей лекции это были а и b

Регуляризация

Используется для улучшения обобщающей способности модели, то есть уменьшения эффекта переобучения, на практике часто рассматривается логистическая регрессия с регуляризацией.

Регрессия:

МНК функция потерь:

RSS(
$$\beta$$
) = $\sum_{i=1}^{N} (y_i - f(x_i))^2$
 = $\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$.

N—number of samples

p—number of independent variables or features

x—feature

y—actual target or dependent variable

f(x)—estimated target

 β —coefficient or weight corresponding to each feature or independent var.

https://web.stanford.edu/~hastie/ElemStatLearn/

Регрессия

Fig 2: Gradient Descent on axes of $\beta1$ and $\beta2$

https://towardsdatascience.com/regularization-in-machine-learning-connecting-the-dots-c6e030bfaddd

L1 Norm or Lasso Regression

L1 Norm is of the form $|\beta 1| + |\beta 2|$.

Modified Cost function for L1 Regularization is as follows:

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

L2 Norm or Ridge Regression

L2 Norm is Euclidean distance norm of the form $|\beta 1|^2 + |\beta 2|^2$.

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

L2 подробнее

https://stats.stackexchange.com/questions/45643/why-I1-norm-for-sparse-models

- субградиенты, - изменение learning rate

Elastic Net (L1 + L2 Norm)

$$\hat{eta} \equiv \operatorname*{argmin}_{eta} (\|y - Xeta\|^2 + \lambda_2 \|eta\|^2 + \lambda_1 \|eta\|_1).$$

Метод k Ближайших Соседей

Метод k ближайших соседей

Метод *k***-ближайших соседей** (*k*-nearest neighbors algorithm, k-NN) — метрический алгоритм для автоматической классификации объектов или регрессии.

- В случае использования метода **для классификации** объект присваивается тому классу, который является наиболее распространённым среди соседей данного элемента, классы которых уже известны.
- В случае использования метода **для регрессии**, объекту присваивается среднее значение по ближайшим к нему объектам, значения которых уже известны

При таком способе во внимание принимается не только количество попавших в область определенных классов, но и их удаленность от нового значения. Для каждого класса *j* определяется оценка близости:

$$Q_j = \sum_{i=1}^n rac{1}{d(x,a_i)^2}$$
 , где $d(x,a)$ — дистанция от нового значения x до объекта a .

У какого класса выше значение близости, тот класс и присваивается новому объекту.

Лекция: https://ru.coursera.org/lecture/vvedenie-mashinnoe-obuchenie/mietod-blizhaishikh-sosiediei-jCkvu

Метод k ближайших соседей

Bias/variance tradeoff. Дилемма смещения/дисперсии

Простыми словами:

- если модель идеально описывает все данные (подфитилась), не факт, что она хорошо генерализуется на других данных
- если модель плохо описывает данные, то она не переобучилась, но, возможно, и не обучилась совсем :)

Смещение (bias)— это ошибка, возникающая в результате ошибочного предположения в алгоритме обучения. В результате большого смещения алгоритм может пропустить связь между признаками и выводом (недообучение).

Дисперсия (variance)— это ошибка чувствительности к малым отклонениям в тренировочном наборе. При высокой дисперсии алгоритм может как-то трактовать случайный шум^[en] в тренировочном наборе, а не желаемый результат (переобучение).

Метрики "близости"

Как расстояние между соседями измеряет sklearn:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

https://en.wikipedia.org/wiki/Minkowski_distance

Метрики близости

А если не числовые объекты:

- Редакторское расстояние Левенштейна
- BLEU score (для переводчиков текста)

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric

Вопросы для самопроверки:

- Почему L1-регуляризация производит отбор признаков?
- Почему может быть сделан выбор в сторону L2- регуляризации?
- Почему коэффициент регуляризации нельзя подбирать по обучающей выборке?

Источники:

- 1. https://towardsdatascience.com/regularization-in-machine-learning-connecting-the-dots-c6e030bfaddd
- 2. https://github.com/esokolov/ml-course-hse/
- 3. https://chrisalbon.com/
- 4. https://github.com/Slinkolgor/express_ml
- 5. https://docplayer.ru/41305484-Lekciya-2-obobshchennye-lineynye-modeli-regulyarizaciya-obucheniya.html
- 6. https://www.youtube.com/watch?v=Kloz aa1ed4
- 7. https://github.com/esokolov/ml-course-hse/blob/master/2018-fall/lecture-notes/lecture03-linregr.pdf