# Problemi di Algoritmica $2\,$

Jacopo Notarstefano

8 dicembre 2012

If you're having girl problems I feel bad for you son I got 99 problems but a bitch ain't one.

Jay-Z

#### Ordinamento in memoria esterna

**Problema.** Nel modello EMM (external memory model), mostrate come implementare il k-way merge, ossia la fusione di n sequenze individualmente ordinate e di lunghezza totale N, con costo I/O di  $O(\frac{N}{B})$  dove B è la dimensione del blocco. Minimizzare e valutare il costo di CPU. Analizzare il costo del merge (I/O complexity, CPU complexity) che utilizza tale k-way merge.

# Limite inferiore per la permutazione

**Problema.** Estendere l'argomentazione usata per il limite inferiore del problema dell'ordinamento in memoria esterna a quello della permutazione: dati N elementi  $e_1, e_2, \ldots, e_N$  e un array  $\pi$  contenente una permutazione degli interi in  $[1, 2, \ldots, N]$ , disporre gli elementi secondo la permutazione in  $\pi$ . Dopo tale operazione, la memoria esterna deve contenerli nell'ordine  $e_{\pi[1]}, e_{\pi[2]}, \ldots, e_{\pi[N]}$ .

## Permutazione in memoria esterna

**Problema.** Dati due array A e C di N elementi, dove A è l'input e C una permutazione di  $\{0,1,\ldots,n-1\}$ , descrivere e analizzare nel modello EMM un algoritmo ottimo per costruire A[C[i]] per  $0 \le i \le n-1$ .

#### Multi-selezione in memoria esterna

**Problema.** Scrivere tutti i passaggi dell'analisi del costo e della correttezza dell'algoritmo di multi-selezione visto a lezione.

Vogliamo esibire un algoritmo che selezioni un certo numero di pivot da un insieme S di cardinalità N in modo tale che la distanza fra pivot consecutivi sia piccola. Il nostro scopo sarà usare questo algoritmo per costruire un analogo del QUICKSORT in memoria esterna, così come la k-way merge ci ha permesso di costruire l'algoritmo di MERGE SORT in memoria esterna.

Ci potremmo aspettare di dover trovare m pivot, in analogia a quanto facciamo per la Merge. In realtà è sufficiente determinarne  $\sqrt{m}$ . Diamo di seguito l'algoritmo e due lemmi. Nel primo dimostreremo il costo lineare, nel secondo la correttezza dell'algoritmo.

#### Algoritmo 1 Multi-selezione in memoria esterna

- 1: Carico e ordino in memoria principale  $\frac{N}{M}$  run di M elementi ciascuno.
- 2: Da ogni run seleziono un elemento ogni  $\frac{\sqrt{m}}{4}$  e chiamo G (elementi verdi) l'insieme degli elementi selezionati.
- 3: Uso l'algoritmo dei cinque autori  $\sqrt{m}$  volte per selezionare in G un elemento ogni  $\frac{4N}{m}$  e chiamo R (elementi rossi) l'insieme degli elementi selezionati.
- 4: Ritorno R.

#### **Lemma 1** (Costo). L'algoritmo compie O(n) I/O.

**Dimostrazione.** La prima riga dell'algoritmo comporta soltanto di scandire tutti gli elementi: l'ordinamento di ogni run viene infatti svolto in memoria principale, e non comporta ulteriori I/O. Anche la seconda riga consiste in una scansione di tutti gli elementi. Per stimare il numero di I/O della terza riga sfruttiamo invece il fatto che ogni esecuzione dell'algoritmo dei cinque autori comporta una scansione di tutti gli elementi. Abbiamo dunque  $\sqrt{m}$  scansioni di |G| elementi, perciò:

$$\sqrt{m} \cdot O\left(\frac{|G|}{B}\right) = \sqrt{m} \cdot O\left(\frac{4N}{B\sqrt{m}}\right) = O\left(\frac{4N}{B}\right) = O(n),$$

dove la prima eguaglianza discende dal fatto che, avendo selezionato un elemento ogni  $\frac{\sqrt{m}}{4}$ , la cardinalità di G è  $\frac{4N}{\sqrt{m}}$ . Ogni riga contribuisce quindi O(n) I/O, da cui la tesi.



Figura 4.1: Ogni riga orizzontale rappresenta un run ordinato, e i cerchietti gli elementi di ogni run. Cerchietti rossi e verdi rappresentano rispettivamente gli elementi di R e G, cerchietti neri i restanti elementi senza colore. Sono inoltre raffigurati in giallo i bordi definiti dalla posizione degli elementi rossi nei quali possiamo avere elementi senza colore compresi fra un rosso e un verde.

**Lemma 2** (Correttezza). Il numero di elementi di S compresi fra due elementi di R è minore di  $\frac{3}{2} \frac{N}{\sqrt{m}}$ .

**Dimostrazione.** Vogliamo dunque stimare il numero di elementi di S compresi fra due generici elementi rossi  $r_1$  e  $r_2$ . Possiamo dividerli in tre categorie:

- Gli elementi verdi compresi fra i due elementi rossi  $r_1$  e  $r_2$ .
- Gli elementi senza colore compresi fra due elementi verdi.
- Gli elementi senza colore compresi fra un rosso e un verde.

I primi sono facilmente maggiorati da  $X=\frac{4N}{m}$ : nella terza riga dell'algoritmo abbiamo infatti scelto un rosso ogni  $\frac{4N}{m}$  elementi verdi.

I secondi sono invece maggiorati da  $Y=\frac{N}{\sqrt{m}}-\frac{4N}{m}$ . Per la seconda riga dell'algoritmo

I secondi sono invece maggiorati da  $Y = \frac{N}{\sqrt{m}} - \frac{4N}{m}$ . Per la seconda riga dell'algoritmo abbiamo infatti  $\frac{\sqrt{m}}{4} - 1$  elementi senza colore fra due verdi consecutivi appartenenti allo stesso run, avendo scelto un verde ogni  $\frac{\sqrt{m}}{4}$  elementi. Per la terza riga abbiamo al più  $\frac{4N}{m}$  elementi verdi fra  $r_1$  e  $r_2$ , dunque al più  $\frac{4N}{m}$  coppie di elementi verdi consecutivi nello stesso run. Ma allora il numero cercato è stimato dal prodotto, e quindi da:

$$\frac{4N}{m}\left(\frac{\sqrt{m}}{4}-1\right) = \frac{N}{\sqrt{m}} - \frac{4N}{m}.$$

I terzi sono invece maggiorati da  $Z=\frac{n}{2\sqrt{m}}-\frac{2n}{m}$ . Per vedere questo abbiamo bisogno della figura. Osserviamo infatti che la posizione dei due elementi rossi definisce un paio di "bordi" (raffigurati in giallo in figura) in cui è possibile trovare gli elementi del terzo tipo. Ognuno di questi bordi può contenere al più  $\frac{\sqrt{m}}{4}-1$  elementi, perché se ne contenesse di più conterrebbe sicuramente due verdi, quindi elementi compresi fra due verdi. Per ognuno degli  $\frac{N}{M}$  run abbiamo insomma 2 bordi contenenti al più  $\frac{\sqrt{m}}{4}-1$  elementi, perciò possiamo stimare il numero di elementi del terzo tipo con il loro prodotto, cioè:

$$2 \cdot \frac{n}{m} \cdot \left(\frac{\sqrt{m}}{4} - 1\right) = \frac{n}{2\sqrt{m}} - \frac{2n}{m},$$

dove abbiamo usato che  $\frac{N}{M}=\frac{n}{m}$  essendo  $n=\frac{N}{B}$  e  $m=\frac{M}{B}$ .

Di conseguenza il numero totale degli elementi compresi fra  $r_1$  e  $r_2$  è maggiorato da:

$$\begin{split} X+Y+Z &= \frac{4N}{m} + \frac{N}{\sqrt{m}} - \frac{4N}{m} + \frac{n}{2\sqrt{m}} - \frac{2n}{m} \\ &\leq \frac{N}{\sqrt{m}} + \frac{n}{2\sqrt{m}} \end{split}$$

nella quale abbiamo cancellato i termini uguali di segno opposto e un termine negativo, ottenendo un'ulteriore maggiorazione. Abbiamo inoltre:

$$\frac{N}{\sqrt{m}} + \frac{n}{2\sqrt{m}} \le \frac{N}{\sqrt{m}} + \frac{N}{2\sqrt{m}}$$
$$= \frac{3}{2} \frac{N}{\sqrt{m}}$$

essendo  $n = \frac{N}{B}$ , da cui la tesi.

# MapReduce

**Problema.** Utilizzare il paradigma Scan & Sort mediante la MapReduce per calcolare la distribuzione dei gradi in ingresso delle pagine Web. In particolare, specificare quanti passi di tipo MapReduce sono necessari e quali sono le funzioni Map e Reduce impiegate. Ipotizzare di avere già tali pagine a disposizione.

# Navigazione implicita in vEB

**Problema.** Dato un albero completo memorizzato secondo il layout di van Emde Boas (vEB) in modo implicito, ossia senza l'ausilio di puntatori (come succede nello heap binario implicito), trovare la regola per navigare in tale albero senza usare puntatori espliciti.

## Layout di alberi binari

**Problema.** Proporre una paginazione di alberi binari in blocchi di dimensione B per realizzare un loro layout in memoria esterna: valutare se un qualunque cammino minimo radice-nodo di lunghezza l attraversa sempre  $O(\frac{l}{\log B})$  pagine. NOTA: per chi vuole, esiste una versione più impegnativa di questo esercizio, basta contattarmi per averla.

## Suffix array in memoria esterna

**Problema.** Utilizzando la costruzione del suffix array basata sul MERGE SORT e la tecnica DC3 vista a lezione, progettare un algoritmo per EMM per costruire il suffix array di un testo che abbia la stessa complessità del MERGE SORT in EMM.

# Famiglia di funzioni hash uniformi

**Problema.** Mostrare che la famiglia di funzioni hash  $H = \{h(x) = ((ax + b) \mod p) \mod m\}$  è (quasi) uniforme, dove  $a, b \in [m]$  con  $a \neq 0$  e p è un numero primo sufficientemente grande.

## Count-min sketch: estensione

**Problema.** Estendere l'analisi vista a lezione permettendo di incrementare e decrementare i contatori con valori arbitrari.

# Count-min sketch: prodotto scalare

**Problema.** Mostrare come utilizzare il paradigma del count-min sketch per approssimare il prodotto scalare (i.e., approssimare  $\sum_{k=1}^{n} F_a[k] \cdot F_b[k]$ ).

# Count-min sketch: interval query

**Problema.** Mostrare come utilizzare il paradigma del count-min sketch per rispondere alle interval query (i.e., approssimare  $\sum_{k=i}^{j} F[k]$ ).

## Elementi distinti

**Problema.** Progettare e analizzare un algoritmo di data streaming che permetta di approssimare il numero di elementi distinti.