Actividad 1

Fuerza Bruta:

Consideramos todas las combinaciones posibles para maximizar el valor sin pasarnos del peso máx. (6):

3. **(3):** Peso =
$$2$$
, Valor = 3

4.
$$(1, 2)$$
: Peso = 7 (se pasa)

7.
$$(1, 2, 3)$$
: Peso = 9 (se pasa)

Resultado:

Máximo valor = 8 si usamos la combinación (2, 3)

Programación Dinámica:

Construimos la tabla dp[n][B] -> B es máx. Capacidad de la mochila

	0	1	2	3	4	5	6
Obj1	0	0	0	4	4	4	4
Obj2	0	0	0	4	5	5	5
Obj3	0	0	3	4	5	7	8

Actividad 2

Fuerza Bruta:

Elegimos los objetos tomando en cuenta valor/peso sabiendo que no debe de superar el peso máximo

Tras probar varias combinaciones, llegamos al resultado o mejor combinación:

Máximo valor obtenido = 10 con (1,4)

Programación Dinámica:

Hacemos lo mismo que en la anterior actividad, iremos completando la tabla mientras vamos actualizando los resultados hasta llegar a la mejor solución.

	0	1	2	3	4	5	6	7	8	9	10
Obj1	0	0	4	4	4	4	4	4	4	4	4
Obj2	0	0	4	4	4	4	4	6	6	6	6
Obj3	0	0	4	4	4	4	4	6	6	6	6
Obj4	0	0	4	4	4	4	4	6	6	10	10