Week6 7 Time Series1

May 15, 2021

Time Series

• This is simple and effective time series Machine Learning algorithm and more on this next week

Importing Python Libraries we need

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import datetime
import seaborn as sns
```

Load the dataset using URL and display

```
[2]: Df = pd.read_csv("~/Desktop/Analysis/Work/ML_EIT/Data/Electric_Production.csv")
    Df.head()
```

```
[2]: DATE IPG2211A2N
0 1/1/1985 72.5052
1 2/1/1985 70.6720
2 3/1/1985 62.4502
3 4/1/1985 57.4714
4 5/1/1985 55.3151
```

```
[3]: pd.set_option('display.max_columns',100)
pd.set_option('display.max_rows',100)
```

Data Shape

```
[4]: Df.shape
```

[4]: (397, 2)

Data Describe

```
[5]: Df.describe()
```

```
[5]:
             IPG2211A2N
     count 397.000000
     mean
              88.847218
     std
              15.387834
     min
              55.315100
     25%
              77.105200
     50%
              89.779500
     75%
             100.524400
            129.404800
     max
 [9]: ###### <span style="font-family: Arial; font-weight:bold;font-size:1.0em;color:
       →#357ec3">rename columns
[10]: Df = Df.rename(columns = {'DATE': 'ds', 'IPG2211A2N':'ts'})
      Df.head()
[10]:
               ds
                        ts
     0 1/1/1985 72.5052
      1 2/1/1985 70.6720
      2 3/1/1985 62.4502
      3 4/1/1985 57.4714
      4 5/1/1985 55.3151
     Table columns information
[11]: Df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 397 entries, 0 to 396
     Data columns (total 2 columns):
          Column Non-Null Count Dtype
      0
          ds
                  397 non-null
                                  object
      1
          ts
                  397 non-null
                                  float64
     dtypes: float64(1), object(1)
     memory usage: 6.3+ KB
     Data Visualization
[13]: plt.figure(figsize=(8,5))
     plt.plot(Df.ts)
[13]: [<matplotlib.lines.Line2D at 0x7fce728fd070>]
```


Stationarity Test

```
[14]: from statsmodels.tsa.stattools import adfuller
      def stationarity_test(df, ts):
          nnn
          Test stationarity using moving average statistics and Dickey-Fuller test
          Source: https://www.analyticsvidhya.com/bloq/2016/02/
       \hookrightarrow time-series-forecasting-codes-python/
          11 11 11
          # Determing rolling statistics
          rolmean = df[ts].rolling(window = 12, center = False).mean()
          rolstd = df[ts].rolling(window = 12, center = False).std()
          # Plot rolling statistics:
          orig = plt.plot(df[ts],
                           color = 'blue',
                           label = 'Original')
          mean = plt.plot(rolmean,
                           color = 'red',
                           label = 'Rolling Mean')
          std = plt.plot(rolstd,
                          color = 'black',
                          label = 'Rolling Std')
```

```
plt.legend(loc = 'best')
plt.title('Rolling Mean & Standard Deviation for %s' %(ts))
plt.xticks(rotation = 45)
plt.show(block = False)
plt.close()
# Perform Dickey-Fuller test:
# Null Hypothesis (H_O): time series is not stationary
# Alternate Hypothesis (H_1): time series is stationary
print ('Results of Dickey-Fuller Test:')
dftest = adfuller(df[ts],
                  autolag='AIC')
dfoutput = pd.Series(dftest[0:4],
                     index = ['Test Statistic',
                              'p-value',
                              '# Lags Used',
                              'Number of Observations Used'])
for key, value in dftest[4].items():
    dfoutput['Critical Value (%s)'%key] = value
print (dfoutput)
```

[15]: stationarity_test(Df,'ts')

Results of Dickey-Fuller Test:

```
Test Statistic
                                      -2.256990
     p-value
                                       0.186215
     # Lags Used
                                      15.000000
     Number of Observations Used
                                     381.000000
     Critical Value (1%)
                                     -3.447631
     Critical Value (5%)
                                      -2.869156
     Critical Value (10%)
                                     -2.570827
     dtype: float64
[16]: def log_trans(df,ts):return df[ts].apply(lambda x:np.log(x))
     Decomposition
[18]: def plot_decomposition(df, ts,trend,seasonal, residual):
          f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2, figsize = (15, 5), sharex = ___
       →True)
          ax1.plot(df[ts], label = 'Original')
          ax1.legend(loc = 'best')
          ax1.tick_params(axis = 'x', rotation = 45)
          ax2.plot(df[trend], label = 'Trend')
          ax2.legend(loc = 'best')
          ax2.tick_params(axis = 'x', rotation = 45)
          ax3.plot(df[seasonal],label = 'Seasonality')
          ax3.legend(loc = 'best')
          ax3.tick_params(axis = 'x', rotation = 45)
          ax4.plot(df[residual], label = 'Residuals')
          ax4.legend(loc = 'best')
          ax4.tick_params(axis = 'x', rotation = 45)
          plt.tight_layout()
      #plt.subtitle('Signal Decomposition of %s' %(ts), x = 0.5, y = 1.05, fontsize =_{\square}
       →18)
      plt.show()
[19]: Df["ts_log"] = log_trans(Df, "ts")
[20]: from statsmodels.tsa.seasonal import seasonal_decompose
      decomposition = seasonal_decompose(Df["ts_log"], model ="additive", freq=48,__
       →extrapolate trend=4)
     <ipython-input-20-6e240d52ead8>:2: FutureWarning: the 'freq'' keyword is
     deprecated, use 'period' instead
```

decomposition = seasonal_decompose(Df["ts_log"], model ="additive" ,freq=48,

extrapolate_trend=4)

```
[21]: New_Df= Df
New_Df.loc[:,"trend"]= decomposition.trend
New_Df.loc[:,"seasonal"]= decomposition.seasonal
New_Df.loc[:,"resid"] = decomposition.resid
New_Df.shape
```

[21]: (397, 6)

[23]: stationarity_test(New_Df, "resid")


```
Results of Dickey-Fuller Test:
Test Statistic
                               -5.710560e+00
p-value
                               7.316325e-07
# Lags Used
                               1.500000e+01
Number of Observations Used
                               3.810000e+02
Critical Value (1%)
                              -3.447631e+00
Critical Value (5%)
                              -2.869156e+00
Critical Value (10%)
                              -2.570827e+00
dtype: float64
```

[24]: decomposition.seasonal

```
[24]: 0
             0.140710
      1
             0.060143
      2
             0.006784
      3
            -0.106743
      4
            -0.119370
      392
            -0.035025
      393
            -0.103407
      394
            -0.070384
      395
             0.087688
      396
             0.148382
      Name: seasonal, Length: 397, dtype: float64
```

[25]: stationarity_test(New_Df, "ts")

Rolling Mean & Standard Deviation for ts

Results of Dickey-Fuller Test:				
Test Statistic	-2.256990			
p-value	0.186215			
# Lags Used	15.000000			
Number of Observations Used	381.000000			
Critical Value (1%)	-3.447631			
Critical Value (5%)	-2.869156			
Critical Value (10%)	-2.570827			
dtype: float64				

ARIMA Model

```
[28]: from statsmodels.tsa.arima_model import ARIMA
```

```
[29]: def run_arima(df,ts,p,d,q):
    model = ARIMA(df[ts], order=(p,d,q))
    results_arima = model.fit(disp=-1)

len_results = len(results_arima.fittedvalues)
    ts_modified = df[ts][-len_results:]

rss = sum((results_arima.fittedvalues - ts_modified)**2)
    rmse = np.sqrt(rss/len(df[ts]))

print('rmse ',rmse/100)
    plt.figure()
    plt.plot(df[ts])
    plt.plot(results_arima.fittedvalues,color='red')

plt.show()

return results_arima
```

```
[30]: New_Df = New_Df.fillna(value=0)
# New_Df = New_Df.fillna(0)
```

```
[31]: model_Ar = run_arima(df=New_Df, ts='resid',p=15, d=0, q=0)
```

rmse 0.0002077953831303392

[32]: model_Ar.summary()

[32]: <class 'statsmodels.iolib.summary.Summary'>

ARMA Model Results

Dep. Variable:	resid	No. Observations:	397
Model:	ARMA(15, 0)	Log Likelihood	975.445
Method:	css-mle	S.D. of innovations	0.021
Date:	Sat, 15 May 2021	AIC	-1916.890
Time:	16:59:52	BIC	-1849.164
Sample:	0	HQIC	-1890.062

=========						
	coef	std err	Z	P> z	[0.025	0.975]
const	0.0005	0.001	0.396	0.692	-0.002	0.003
ar.L1.resid	0.5515	0.050	10.979	0.000	0.453	0.650
ar.L2.resid	-0.0538	0.058	-0.925	0.355	-0.168	0.060
ar.L3.resid	0.0362	0.058	0.625	0.532	-0.077	0.150
ar.L4.resid	-0.0838	0.058	-1.451	0.147	-0.197	0.029
ar.L5.resid	-0.0244	0.058	-0.423	0.672	-0.138	0.089
ar.L6.resid	0.0276	0.057	0.480	0.631	-0.085	0.140
ar.L7.resid	-0.0504	0.057	-0.881	0.379	-0.163	0.062
ar.L8.resid	-0.0643	0.057	-1.123	0.262	-0.177	0.048
ar.L9.resid	-0.1052	0.058	-1.826	0.068	-0.218	0.008

ar.L10.resid	0.1360	0.058	2.344	0.019	0.022	0.250
ar.L11.resid	-0.0168	0.059	-0.286	0.775	-0.132	0.098
ar.L12.resid	0.1372	0.059	2.306	0.021	0.021	0.254
ar.L13.resid	-0.1676	0.060	-2.804	0.005	-0.285	-0.050
ar.L14.resid	0.0525	0.061	0.864	0.387	-0.067	0.172
ar.L15.resid	-0.1720	0.053	-3.258	0.001	-0.276	-0.069
Roots						

	Real	Imaginary Modulus		Frequency
AR.1	1.0590	-0.2360j	1.0850	-0.0349
AR.2	1.0590	+0.2360j	1.0850	0.0349
AR.3	0.8931	-0.5689j	1.0589	-0.0903
AR.4	0.8931	+0.5689j	1.0589	0.0903
AR.5	0.5331	-0.9340j	1.0754	-0.1675
AR.6	0.5331	+0.9340j	1.0754	0.1675
AR.7	-1.0670	-0.0000j	1.0670	-0.5000
AR.8	-0.9715	-0.5396j	1.1113	-0.4193
AR.9	-0.9715	+0.5396j	1.1113	0.4193
AR.10	-0.6987	-0.9318j	1.1647	-0.3524
AR.11	-0.6987	+0.9318j	1.1647	0.3524
AR.12	-0.2819	-1.1291j	1.1637	-0.2889
AR.13	-0.2819	+1.1291j	1.1637	0.2889
AR.14	0.1529	-1.2447j	1.2541	-0.2305
AR.15	0.1529	+1.2447j	1.2541	0.2305

11 11 11

```
[33]: model_Ar.forecast(50)
```

```
[33]: (array([ 3.37853299e-02, 1.89863006e-02, 7.31208658e-03, 2.46505479e-02,
              1.21581475e-02, 1.05445230e-02, -5.43682558e-03, -1.54285724e-02,
             -2.12913012e-02, -6.00017660e-03, -4.13043687e-04, 7.02535661e-03,
             -7.92453084e-03, -4.83664612e-03, -1.52737855e-02, -7.57207397e-03,
             -5.60161107e-03, -1.94360234e-03, -7.89934080e-03, -6.37636564e-03,
             -4.88780693e-03, 3.61624744e-03, 6.16000949e-03, 1.03472614e-02,
              4.27387121e-03, 3.52298220e-03, -7.46053037e-04, 2.99949686e-03,
              2.08840273e-03, 3.40314881e-03, 7.77576346e-04, 9.56638974e-04,
              3.09712519e-04, 3.31429212e-03, 3.18349963e-03, 3.60371630e-03,
              9.45330449e-05, -6.77297083e-04, -2.64335676e-03, -1.03618912e-03,
             -1.14735524e-03, 9.61178789e-06, -8.93816595e-04, -2.92680598e-04,
             -2.85295155e-04, 1.16270770e-03, 1.08300793e-03, 1.37651722e-03,
              4.64462779e-06, -1.14286889e-04]),
      array([0.02068879, 0.02362665, 0.02418785, 0.02437222, 0.02437228,
             0.02441286, 0.02442641, 0.02447098, 0.02461536, 0.02500394,
             0.02502805, 0.02502827, 0.02524459, 0.02525455, 0.02525871,
             0.02544393, 0.0257149 , 0.0258375 , 0.02587871, 0.02591126,
```

```
0.02591779, 0.02592391, 0.02594137, 0.02597981, 0.02611156,
      0.02614748, 0.02615561, 0.02616837, 0.02617807, 0.0261834,
      0.0261837, 0.02618599, 0.02619094, 0.02619253, 0.02620278,
      0.0262103 , 0.0262214 , 0.02622141, 0.02622384, 0.0262412 ,
      0.02625296, 0.02625916, 0.02625933, 0.02625935, 0.02625991,
      0.02626006, 0.02626101, 0.02626132, 0.02626182, 0.02626218]),
array([[-0.00676395,
                     0.07433461],
       [-0.02732109,
                     0.06529369],
       [-0.04009522,
                     0.05471939],
       [-0.02311813,
                     0.07241923],
       [-0.03561063, 0.05992693],
       [-0.03730381, 0.05839285],
       [-0.05331171, 0.04243806],
       [-0.06339082,
                     0.03253367],
       [-0.06953653,
                     0.02695393],
       [-0.05500701,
                     0.04300665],
       [-0.04946712,
                     0.04864103],
       [-0.04202914,
                     0.05607986],
       [-0.05740302,
                     0.04155396],
       [-0.05433465,
                     0.04466135],
       [-0.06477995,
                     0.03423238],
       [-0.05744127, 0.04229712],
       [-0.05600189,
                     0.04479867],
       [-0.05258417,
                     0.04869697],
       [-0.05862068, 0.042822],
       [-0.0571615,
                     0.04440877],
       [-0.05568575,
                     0.04591013],
       [-0.04719369,
                     0.05442618],
       [-0.04468415,
                     0.05700417],
                     0.06126676],
       [-0.04057224,
       [-0.04690384,
                     0.05545158],
       [-0.04772515,
                     0.05477111],
       [-0.05201011,
                     0.05051801],
       [-0.04828956,
                     0.05428855],
       [-0.04921967,
                      0.05339647,
       [-0.04791538,
                     0.05472168],
       [-0.05054152,
                     0.05209668],
       [-0.05036696,
                     0.05228023],
                     0.05164302],
       [-0.05102359,
       [-0.04802213, 0.05465072],
       [-0.04817301,
                     0.05454001],
       [-0.04776752,
                     0.05497496],
       [-0.05129846, 0.05148753],
       [-0.05207032,
                     0.05071573],
                     0.04875443],
       [-0.05404114,
       [-0.052468 ,
                      0.05039562],
       [-0.05260221,
                      0.0503075],
```

```
[-0.05145739,
               0.05147662],
[-0.05236115,
               0.05057351],
[-0.05176006,
               0.0511747],
               0.05118318],
[-0.05175377,
[-0.05030607,
               0.05263149],
[-0.05038762,
               0.05255364],
               0.05284776],
[-0.05009472,
[-0.05146759,
               0.05147688],
[-0.05158722,
               0.05135864]]))
```

```
[25]: plt.figure()
  plt.plot(model_Ar.forecast(100)[0])
```

[25]: [<matplotlib.lines.Line2D at 0x1a2c701dd0>]

[]: