LMA0001 – Lógica Matemática Aula 06 Método da Tabela-Verdade

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2020

Método da tabela-verdade

Entrada: fórmula proposicional A

- **1** Coloque os elementos de Subf(A) nas colunas de uma tabela (ordenados por tamanho).
- 2 Calcule todas as distintas valorações para o subconjunto de símbolos proposicionais $(\mathcal{P} \cap \mathbf{Subf}(A))$, e coloque nas linhas da tabela.
- 3 Com base nas tabelas-verdade dos conectivos, preencha o valor-verdade de cada elemento de Subf(A) a partir do valor-verdade dos seus componentes na mesma linha.
- **4** Observe a última coluna (contendo A): Se contiver somente 1: A é válida (tautologia). Se contiver somente 0. A é insatisfazível
 - Se contiver algum 1: A é satisfazível.

Considere a fórmula $A = (p \lor q) \land (\neg p \lor \neg q)$.

Etapa 1: calcule e ordene subfórmulas, coloque nas colunas.

р	q	¬р	¬q	$p \lor q$	$ \neg p \lor \neg q $	$(p \lor q) \land (\neg p \lor \neg q)$

Etapa 2: calcule todas as possibilidades de valoração de $p\ e\ q.$

р	(7	¬р	¬q	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	()					
0	1	L					
1	()					
1	1	L					

р	q	¬р	¬q	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1				
0	1					
1	0					
1	1					

р	q	¬р	¬q	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1			
0	1					
1	0					
1	1					

р	q	¬р	¬q	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1	0		
0	1					
1	0					
1	1					

р	q	¬р	¬q	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1	0	1	
0	1					
1	0					
1	1					

р	q	¬р	¬q	$p \lor q$	$ \neg p \lor \neg q $	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1	0	1	0
0	1					
1	0					
1	1					

Considere a fórmula $A = (p \lor q) \land (\neg p \lor \neg q)$.

p	q	¬р	¬q	$p \lor q$	$ \neg p \lor \neg q $	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1	0	1	0
0	1	1	0	1	1	1
1	0	0	1	1	1	1
1	1	0	0	1	0	0

Considere a fórmula $A = (p \lor q) \land (\neg p \lor \neg q)$.

Etapa 4: observe a última coluna.

р	q	¬р	−q	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1	0	1	0
0	1	1	0	1	1	1
1	0	0	1	1	1	1
1	1	0	0	1	0	0

Considere a fórmula $A = (p \lor q) \land (\neg p \lor \neg q)$.

Etapa 4: observe a última coluna.

p	q	¬р	−q	$p \lor q$	$\neg p \lor \neg q$	$(p \lor q) \land (\neg p \lor \neg q)$
0	0	1	1	0	1	0
0	1	1	0	1	1	1
1	0	0	1	1	1	1
1	1	0	0	1	0	0

Descobrimos através do método da tabela-verdade que A é satisfazível e falsificável.

Considerações sobre eficiência

O método da tabela-verdade de A pode ser visto como uma análise de forca-bruta:

- calculamos todas as possíveis combinações de valor-verdade para os símbolos proposicionais que ocorrem na fórmula.
- calculamos as respectivas valorações V, e a aplicamos a todas as subfórmulas até chegar a A.
- olhamos para os possíveis valores-verdade de A.

Pergunta: podemos estimar quantas linhas e colunas terão as tabelas-verdade das seguintes fórmulas?

$$p \rightarrow q \rightarrow (\neg r \land \neg p) \rightarrow \neg s \lor t \lor u \land v$$

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow f \rightarrow q \rightarrow h \rightarrow i \rightarrow j$$

Considerações sobre eficiência

O método da tabela-verdade é computacionalmente custoso.

Para uma fórmula com N símbolos proposicionais, temos 2^N linhas.

Posteriormente veremos métodos mais eficientes para determinar ou não a validade de uma fórmula.

Exercícios

Determine a classificação das seguintes fórmulas, como tautologias, insatisfazíveis, satisfazíveis ou falsificáveis, utilizando o método da tabela-verdade:

- $(p \land \neg p) \rightarrow q$
- $p \rightarrow \neg \neg p$
- $\neg(p \lor q \to p)$
- $\bullet \ p \to \neg q \land \neg p \lor q \land \neg q \to p \lor \neg q$

