Math 550 Homework 1

Dr. Fuller

Due September 4, 2018

- 1. The set $\Lambda^n(\mathbf{R}^n)$ of all alternating, multilinear functions on $(\mathbf{R}^n)^n$ forms a vector space. (You do not have to prove this.) What is its dimension? Find a basis for this vector space.
- 2. Let *V* be an *n*-dimensional vector space with an inner product \langle , \rangle . Suppose $S \in \Lambda^n(V)$ is an alternating, multilinear function on *V*.
 - (a) Let $(u_1, ..., u_n)$ be a basis for V. Suppose $(v_1, ..., v_n)$ is a collection of vectors in V with $v_j = \sum_i a_{ij} u_i$. Prove that $S(v_1, ..., v_n) = \det[a_{ij}] S(u_1, ..., u_n)$.
 - (b) Suppose that $(u_1, ..., u_n)$ and $(v_1, ..., v_n)$ are two orthonormal bases for V, with $v_j = \sum_i a_{ij} u_i$. Let $A = [a_{ij}]$. Prove that $AA^T = I$. (Hint: start by considering $\langle v_i, v_j \rangle$.)
 - (c) Prove that $|S(u_1,...,u_n)| = |S(v_1,...,v_n)|$ for any two orthonormal bases of V.
- 3. Give a counterexample to show that the change of variables formula does not hold if g is not one-to-one, even if $\det Dg(x) \neq 0$ for all $x \in \Omega$. (Hint: Take f = 1 and $g(x,y) = (e^x \cos y, e^x \sin y)$ for a suitable region Ω .)
- 4. (a) Calculate $\int_{B_r} e^{-x^2-y^2} dx dy$, where $B_r = \{(x,y) : x^2 + y^2 \le r^2\}$.
 - (b) Show that $\int_{C_r} e^{-x^2-y^2} dx dy = (\int_{-r}^r e^{-x^2} dx)^2$, where $C_r = [-r, r] \times [-r, r]$.
 - (c) Show that

$$\lim_{r \to \infty} \int_{B_r} e^{-x^2 - y^2} \, dx \, dy = \lim_{r \to \infty} \int_{C_r} e^{-x^2 - y^2} \, dx \, dy.$$

- (d) Show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.
- 5. (a.) Let *D* be the unit ball in \mathbb{R}^3 , and let $f(x,y,z) = e^{(x^2+y^2+z^2)^{3/2}}$. Calculate $\int_D f$ using a change of variables.
 - (b.) Let *E* be the ellipsoid $\{(x,y,z) \in \mathbf{R}^3 : (x^2/a^2) + (y^2/b^2) + (z^2/c^2) \le 1\}$, where a,b, and c are positive constants. Compute the volume of *E* using a change of variables.
- 6. Let $\langle e_1, \dots, e_n \rangle$ denote the standard basis for \mathbf{R}^n , and let T denote the linear operator on \mathbf{R}^n defined by $T(e_1) = (1, 1, 1, 1, \dots, 1), T(e_2) = (1, 2, 1, 1, \dots, 1), T(e_3) = (1, 2, 3, 1, \dots, 1), \dots, T(e_n) = (1, 2, 3, 4, \dots, n).$ Suppose that $f: \Omega \to \mathbf{R}$ is integrable, and $\int_{\Omega} f = 1$. Compute $\int_{T^{-1}(\Omega)} f \circ T$.