

# Scholarship 2009 Assessment Report Biology

### **COMMENTARY**

Many candidates did not show evidence of effective planning, and many gave answers that were very short and lacked depth. In many cases the bullet points in a question were not addressed equally. Some candidates did not give a discussion, but instead gave lists of information or wrote in general terms.

### SCHOLARSHIP WITH OUTSTANDING PERFORMANCE

## Candidates who were awarded Scholarship with Outstanding Performance typically:

- wrote a comprehensive answer for each question by integrating information into a discussion
- addressed each bullet point of each question, displaying a depth and breadth of biological information
- used the resource material in their answer and elaborated on it using biological terms correctly to demonstrate clear biological understanding.

### **SCHOLARSHIP**

# Candidates who were awarded Scholarship but not Scholarship with Outstanding Performance commonly:

- answered all questions
- answered all parts of the question and wrote on the required topic
- showed planning in their answers, which were well structured
- linked ideas and integrated them comprehensively
- supported their answers with data from the resource material especially from graphs
- showed a good grasp of biological terms and concepts and wrote fluently using these terms and concepts confidently
- identified mutation as the cause of new alleles and therefore the raw material for natural selection
- confidently explained and applied natural selection to the evolution of a named species
- applied the concept of biological niche
- applied the concepts of competitive exclusion and niche differentiation
- explained the consequences of natural selection on allele frequencies in a population
- could go beyond the text to explain the adaptive advantage of changes in phenotype
- discussed biological evolution in terms of alleles, not just phenotypic change
- showed understanding that mutations are random and do not arise simply because the organism has a need for a particular feature
- did not use Lamarkian concepts [such as 'had to evolve...'; 'had to adapt...']
- realised that the frequency and selection for lactase persistence is not grounded in modern human behaviour
- showed clear understanding of the processes of autopolyploidy and allopolyploidy in terms of genomes, gametes, and fertility in plants, and supported their answers with fully annotated flow diagrams
- showed understanding of the concept of a fair test in experimental design
- explained why it was important to control specific variables in an experiment
- differentiated between the concepts of validity and reliability and explained why they were important in experimental design.

### OTHER CANDIDATES

# Candidates who were not awarded Scholarship or Scholarship with Outstanding Performance commonly:

- did not logically or methodically work through each question and identify relevant biological concepts and processes
- wrote answers which were repetitive and rambling
- made little reference to the resource material or used it incorrectly
- quoted large chunks from the resource material with little or no expansion or justification
- did not show good general knowledge e.g. of world geography
- did not clearly identify and / or describe evolutionary processes within the context of a question e.g. founder effect, geographical isolation, mutation, natural selection, available niches
- did not interpret graphs to identify trends and / or provide relevant data
- confused the concepts of niche and habitat
- showed poor understanding of the concept of adaptation
- showed poor understanding of natural selection
- wrongly stated that mutations and / or adaptations occurred and / or developed because they
  were needed
- did not distinguish between processes and patterns of evolution
- wrongly stated that natural selection over the last one to two hundred years was responsible for the current allele frequencies in human populations
- did not make clear that operons occur only in prokaryotes
- did not distinguish between a gene and an allele
- wrongly stated that a dominant allele became more dominant as it became more common
- displayed poor understanding of the process and consequences of meiosis
- did not correctly apply the processes of sexual and asexual reproduction to banana breeding
- did not identify and / or distinguish between allopolyploidy, autopolyploidy, hybridisation , non-disjunction
- treated the banana genomes A and B as alleles A and B
- did not distinguish between dependent, independent, controlled variables
- did not distinguish between reliability and validity in an experimental situation.