Ex-08-Data-Visualization-

'AIM

To Perform Data Visualization on a complex dataset and save the data to a file.

Explanation

Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

ALGORITHM

'STEP 1

Read the given Data

STEP 2

Clean the Data Set using Data Cleaning Process

STEP 3

Apply Feature generation and selection techniques to all the features of the data set

STEP 4

Apply data visualization techniques to identify the patterns of the data.

CODE:

"" Developed By: Prethiveerajan P Register No: 212221230079 ""

```
import pandas as pd
import numpy as np
df=pd.read csv("Superstore.csv")
df.head()
#Data Visualization using Seaborn
import seaborn as sns
from matplotlib import pyplot as plt
#1.Line plot
plt.figure(figsize=(8,5))
sns.lineplot(x="Segment",y="Region",data=df,marker='o')
plt.xticks(rotation = 90)
sns.lineplot(x='Ship Mode',y='Category', hue ="Segment",data=df)
sns.lineplot(x="Category",y="Sales",data=df,marker='o')
#2.Scatterplot
sns.scatterplot(x='Category',y='Sub-Category',data=df)
sns.scatterplot(x='Category', y='Sub-Category', hue ="Segment",data=df)
plt.figure(figsize=(10,7))
sns.scatterplot(x="Region",y="Sales",data=df)
plt.xticks(rotation = 90)
#3.Boxplot
sns.boxplot(x="Sub-Category",y="Discount",data=df)
```

```
sns.boxplot( x="Profit", y="Category",data=df)
#4.Barplot
sns.barplot(x="Sub-Category",y="Sales",data=df)
plt.xticks(rotation = 90)
sns.barplot(x="Category",y="Sales",data=df)
plt.xticks(rotation = 90)
#5.Pointplot
sns.pointplot(x=df["Quantity"],y=df["Discount"])
#6.Count plot
sns.countplot(x="Category",data=df)
sns.countplot(x="Sub-Category",data=df)
#7.Histogram
sns.histplot(data=df,x ='Ship Mode',hue='Sub-Category')
#8.KDE Plot
sns.kdeplot(x="Profit", data = df,hue='Category')
#Data Visualization Using MatPlotlib
#1.Plot
plt.plot(df['Category'], df['Sales'])
plt.show()
#2.Heatmap
df.corr()
```

```
plt.subplots(figsize=(12,7))
sns.heatmap(df.corr(),annot=True)
#3.Piechart
df1=df.groupby(by=["Ship Mode"]).sum()
labels=[]
for i in df1.index:
   labels.append(i)
colors=sns.color palette("bright")
plt.pie(df1["Sales"],labels=labels,autopct="%0.0f%%")
plt.show()
df3=df.groupby(by=["Category"]).sum()
labels=[]
for i in df3.index:
   labels.append(i)
plt.figure(figsize=(8,8))
colors = sns.color palette('pastel')
plt.pie(df3["Profit"],colors = colors,labels=labels, autopct = '%0.0f%%')
plt.show()
#4.Histogram
plt.hist(df["Sub-Category"],facecolor="peru",edgecolor="blue",bins=10)
plt.show()
#5.Bargraph
plt.bar(df.index,df['Category'])
plt.show()
#6.Scatterplot
plt.scatter(df["Region"],df["Profit"], c ="blue")
plt.show()
```

```
#7.Boxplot
plt.boxplot(x="Sales",data=df)
plt.show()
```

OUPUT:

Read the Dataframe:

df.head()

	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	•••	Postal Code	Region	Product ID	Category	Sub- Category
0	1	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		<mark>4</mark> 2420	South	FUR-BO- 10001798	Furniture	Bookcases
1	2	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	38	42420	South	FUR-CH- 10000454	Furniture	Chairs
2	3	CA- 2016- 138688	6/12/2016	6/16/2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	1555	90036	West	OFF-LA- 10000240	Office Supplies	Labels
3	4	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	1844	33311	So <mark>u</mark> th	FUR-TA- 10000577	Furniture	Tables
4	5	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	111	33311	South	OFF-ST- 10000760	Office Supplies	Storage

5 rows × 21 columns

² Data Visualization using Seaborn:

<AxesSubplot:xlabel='Segment', ylabel='Region'>

'Scatterplot:

Box plot:

<AxesSubplot:xlabel='Profit', ylabel='Category'>

Bar plot:

```
(array([0, 1, 2]),
  [Text(0, 0, 'Furniture'),
  Text(1, 0, 'Office Supplies'),
  Text(2, 0, 'Technology')])
       3000
       2500
       2000
 <u>위</u> 1500
      1000
         500
              0
                                                                    Category Category
                                                                                                                Technology
                                    Fumiture
```

Point plot:

<AxesSubplot:xlabel='Quantity', ylabel='Discount'>

'Count plot:

<AxesSubplot:xlabel='Sub-Category', ylabel='count'>

[']Histogram:

<AxesSubplot:xlabel='Ship Mode', ylabel='Count'>

'KDE plot:

<AxesSubplot:xlabel='Profit', ylabel='Density'>

[']Data Visualization Using MatPlotlib:

'Heatmap:

<AxesSubplot:>

[']Piechart:

[']profit:

[']Sales:

'Histogram(Sub_category):

[']Bargraph(Category):

'Scatterplot(Region):

[']BoxPlot(Sales):

RESULT:

Hence, Data Visualization is applied on the complex dataset using libraries like Seaborn and Matplotlib successfully and the data is saved to file.