Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Casel: $\triangle > 0$

 $q_{1,2}=\frac{-b\pm\sqrt{b^2-4\,ac}}{2a}$ computes the q-intercepts of multiplicity 1. f(0)=c computes the single f-intercept.

Given a quadratic $f(q) = a q^2 + b q + c$ compute its discriminant \triangle :

 $f(q) = -q^2 + q + 56$ compute its discriminant \triangle :

 $\triangle=225>0$ $q_{1,2}=8,-7$ f(0)=56 f-intercept.

f-intercept

 $q_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single q-intercept of multiplicity 2.

q-intercept 1

Example 2. $f(q) = -2q^2 + 4q - 2 \text{ compute its discriminant } \triangle:$

q-intercept 2

Case2: △=0

∆=0

-5

 $q_{1,2}=1,1$ f(0)=-2 f-intercept.

$f(q) = -4 q^2 + 72 q - 405$ compute its discriminant \triangle : $\triangle = -1296 < 0$ f(0) = -405 f-intercept.

Example 3.

-10 -5 5 10 q