## 4190.101 **Discrete Mathematics**

**Chapter 9 Relations** 

**Gunhee Kim** 

### **Equivalence Relations**

Section 9.5

### **Section Summary**

- Equivalence Relations
- Equivalence Classes
- Equivalence Classes and Partitions

### **Equivalence Relations**

- Definition 1: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
- Definition 2: Two elements a and b that are related by an equivalence relation are called equivalent. The notation a ~ b is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.

### **Strings**

- **Example**: Suppose that R is the relation on the set of strings of English letters such that a R b if and only if l(a) = l(b), where l(x) is the length of the string x. Is R an equivalence relation?
- Solution: Show that all of the properties of an equivalence relation hold.
  - Reflexivity: Because I(a) = I(a), it follows that a R a for all strings a.
  - Symmetry: Suppose that a R b. Since I(a) = I(b), I(b) = I(a) also holds and b R a.
  - Transitivity: Suppose that a R b and b R c. Since l(a) = l(b), and l(b) = l(c), l(a) = l(c) also holds and a R c.

### Congruence Modulo m

- **Example**: Let m be an integer with m>1. Show that the relation  $R = \{(a,b) \mid a \equiv b \pmod{m}\}$ 
  - is an equivalence relation on the set of integers.
- **Solution**: Recall that  $a \equiv b \pmod{m}$  if and only if m divides a-b.
  - Reflexivity:  $a \equiv a \pmod{m}$  since a a = 0 is divisible by m since  $0 = 0 \cdot m$ .
  - Symmetry: Suppose that  $a \equiv b \pmod{m}$ . Then a b is divisible by m, and so a b = km, where k is an integer. It follows that b a = (-k) m, so  $b \equiv a \pmod{m}$ .
  - Transitivity: Suppose that  $a \equiv b \pmod{m}$  and  $b \equiv c \pmod{m}$ . Then m divides both a b and b c. Hence, there are integers k and l with a b = km and b c = lm. We obtain by adding the equations:

$$a-c = (a-b) + (b-c) = km + lm = (k+l) m.$$

Therefore,  $a \equiv c \pmod{m}$ .

#### **Divides**

- **Example**: Show that the "divides" relation on the set of positive integers is not an equivalence relation.
- **Solution**: The properties of reflexivity, and transitivity do hold, but there relation is not transitive. Hence, "divides" is not an equivalence relation.
  - Reflexivity: a | a for all a.
  - Not Symmetric: For example, 2 | 4, but 4 / 2. Hence, the relation is not symmetric.
  - Transitivity: Suppose that a divides b and b divides c. Then there are positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. Therefore, the relation is transitive.

### **Equivalence Classes**

- **Definition 3**: Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by  $[a]_R$ .
- Note that  $[a]_R = \{s \mid (a,s) \subseteq R\}.$
- When only one relation is under consideration, we can write [a], without the subscript R, for this equivalence class.
- If  $b \in [a]_R$ , then b is called a representative of this equivalence class. Any element of a class can be a representative of the class.
- The equivalence classes of the relation congruence modulo m are called the *congruence classes modulo* m. The congruence class of an integer a modulo m is denoted by  $[a]_m$ , so  $[a]_m = \{..., a-2m, a-m, a, a+m, a+2m, ... \}$ . For example,

$$[0]_4 = \{..., -8, -4, 0, 4, 8, ...\}$$

$$[1]_4 = \{..., -7, -3, 1, 5, 9, ...\}$$

$$[2]_4 = \{..., -6, -2, 2, 6, 10, ...\}$$

$$[3]_4 = \{..., -5, -1, 3, 7, 11, ...\}$$

### **Equivalence Classes and Partitions**

- **Theorem 1**: let *R* be an equivalence relation on a set *A*. These statements for elements *a* and *b* of *A* are equivalent:
  - (i) a R b(ii) [a] = [b](iii)  $[a] \cap [b] \neq \emptyset$
- **Proof:** We show that (i) implies (ii). Assume that a R b. Now suppose that  $c \in [a]$ . Then a R c. Because a R b and a R c is symmetric, a R c and a R c is transitive and a R c and a R c, it follows that a R c and a R c it follows that a R c and a R c it follows that a R c and a R c it follows that a R c and a R c it follows that a R c and a R c it follows that a R c and a R c it follows that a R c and a R c it follows that a R c is transitive and a R c and a R c it follows that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following that a R c is transitive and a R c in the following th

(see text for proof that (ii) implies (iii) and (iii) implies (i))

#### Partition of a Set

• **Definition**: A *partition* of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets  $A_i$ , where  $i \in I$  (where I is an index set), forms a partition of S if and only if

$$-A_i \neq \emptyset$$
 for  $i \in I$ ,

$$-A_i \cap A_j = \emptyset$$
 when  $i \neq j$ ,

$$-$$
 and  $\bigcup_{i \in I} A_i = S$ 



A Partition of a Set

# An Equivalence Relation Partitions a Set

• Let R be an equivalence relation on a set A. The union of all the equivalence classes of R is all of A, since an element a of A is in its own equivalence class  $[a]_R$ . In other words,

$$\bigcup_{a \in A} [a]_R = A$$

- From Theorem 1, it follows that these equivalence classes are either equal or disjoint, so  $[a]_R \cap [b]_R = \emptyset$  when  $[a]_R \neq [b]_R$ .
- Therefore, the equivalence classes form a partition of A, because they split A into disjoint subsets.

# An Equivalence Relation Partitions a Set (continued)

- **Theorem 2**: Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition  $\{A_i \mid i \in I\}$  of the set S, there is an equivalence relation R that has the sets  $A_i$ ,  $i \in I$ , as its equivalence classes.
- Proof: We have already shown the first part of the theorem.
- For the second part, assume that {A<sub>i</sub> | i ∈ I} is a partition of S. Let R be the relation on S consisting of the pairs (x, y) where x and y belong to the same subset A<sub>i</sub> in the partition. We must show that R satisfies the properties of an equivalence relation.
  - Reflexivity: For every  $a \in S$ ,  $(a,a) \in R$ , because a is in the same subset as itself.
  - Symmetry: If  $(a,b) \in R$ , then b and a are in the same subset of the partition, so  $(b,a) \in R$ .
  - Transitivity: If  $(a,b) \in R$  and  $(b,c) \in R$ , then a and b are in the same subset of the partition, as are b and c. Since the subsets are disjoint and b belongs to both, the two subsets of the partition must be identical. Therefore,  $(a,c) \in R$  since a and c belong to the same subset of the partition.

### **Partial Orderings**

Section 9.6

### **Section Summary**

- Partial Orderings and Partially-ordered Sets
- Lexicographic Orderings
- Hasse Diagrams
- Lattices (not currently in overheads)
- Topological Sorting (not currently in overheads)

### Partial Orderings

- Definition 1: A relation R on a set S is called a partial ordering, or partial order, if it is reflexive, antisymmetric, and transitive.
  - A set together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of the poset.

### Partial Orderings (continued)

- Example 1: Show that the "greater than or equal" relation (≥) is a partial ordering on the set of integers.
  - Reflexivity:  $a \ge a$  for every integer a.
  - Antisymmetry: If  $a \ge b$  and  $b \ge a$ , then a = b.
  - Transitivity: If  $a \ge b$  and  $b \ge c$ , then  $a \ge c$ .

These properties all follow from the order axioms for the integers. (See Appendix 1).

### Partial Orderings (continued)

- Example 2: Show that the divisibility relation
   () is a partial ordering on the set of integers.
  - Reflexivity: a | a for all integers a. (see Example 9 in Section 9.1)
  - Antisymmetry: If a and b are positive integers with  $a \mid b$  and  $b \mid a$ , then a = b. (see Example 12 in Section 9.1)
  - Transitivity: Suppose that a divides b and b divides c. Then there are positive integers k and l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. Therefore, the relation is transitive.
- (**Z**<sup>+</sup>, |) is a poset.

### Partial Orderings (continued)

- Example 3: Show that the inclusion relation ( $\subseteq$ ) is a partial ordering on the power set of a set S.
  - Reflexivity:  $A \subseteq A$  whenever A is a subset of S.
  - Antisymmetry: If A and B are positive integers with  $A \subseteq B$  and  $B \subseteq A$ , then A = B.
  - Transitivity: If  $A \subseteq B$  and  $B \subseteq C$ , then  $A \subseteq C$ .

The properties all follow from the definition of set inclusion.

### Comparability

• **Definition 2:** The elements a and b of a poset  $(S, \leq)$  are comparable if either  $a \leq b$  or  $b \leq a$ . When a and b are elements of S so that neither  $a \leq b$  nor  $b \leq a$ , then a and b are called incomparable.

The symbol ≤ is used to denote the relation in any poset.

- **Definition 3:** If  $(S, \leq)$  is a poset and every two elements of S are comparable, S is called a *totally ordered* or *linearly ordered set*, and  $\leq$  is called a *total order* or a *linear order*. A totally ordered set is also called a *chain*.
- **Definition 4:**  $(S, \leq)$  is a well-ordered set if it is a poset such that  $\leq$  is a total ordering and every nonempty subset of S has a least element.

### Lexicographic Order

• **Definition:** Given two posets  $(A_1, \leq_1)$  and  $(A_2, \leq_2)$ , the lexicographic ordering on  $A_1 \times A_2$  is defined by specifying that  $(a_1, a_2)$  is less than  $(b_1, b_2)$ , that is,

$$(a_1, a_2) \prec (b_1, b_2),$$

either if  $a_1 \prec_1 b_1$  or if  $a_1 = b_1$  and  $a_2 \prec_2 b_2$ .

- **Example:** Consider strings of lowercase English letters. A lexicographic ordering can be defined using the ordering of the letters in the alphabet. This is the same ordering as that used in dictionaries.
  - discreet  $\prec$  discrete, because these strings differ in the seventh position and  $e \prec t$ .
  - discreet 
     < discreetness, because the first eight letters agree, but the second string is longer.</li>