Theory of Computation, Fall 2023 Assignment 8 Solutions

Q1. We first show L_1 is not recursive by reducing H to L_1 . Suppose that some Turing machine M_1 decides L_1 . Consider the following Turing machine M_H .

$$M_H = \text{on input "}M$$
":

1.construct a Turing machine \widetilde{M} as follows

$$\widetilde{M} = \text{on input } x \\ 1. \text{ run } M \text{ on } w$$

2. run M_1 on " \widetilde{M} " and the return the result

If M halts on w, then \widetilde{M} halts on every input. If M does not halt on w, \widetilde{M} halts on no input. Therefore, M halts on w if and only if \widetilde{M} halts on at least 2023 strings (that is, M_1 accepts " \widetilde{M} "). M_H decides H. This completes the reduction.

Next we show that L_1 is recursive enumerable by presenting a Turing machine M'_1 to semidecide it. We label the strings in Σ^* as s_1, s_2, \ldots in incresing length.

 $M_1' =$ on input "M":

1. For $i = 2023, 2024, \dots$

- 2. For $s = s_1, s_2, \dots, s_i$
- 3. Run M on s for i steps
- 4. If M halts on at least 2023 strings
- 5. halt
- Q2. Note that $L_2 = \overline{L_1}$ (the strings that are not encodings of Turing machines can be safely ignored. Can you see why?) Since L_1 is recursively enumerable, but not recursive. By the conclusion of Q7 in assignment 7, we have that L_2 cannot be recursively enumerable.
- Q3. We already know that \overline{H} is not recursively enumerable. By the conclusion of Q5 in assignment 7, to prove that L_3 is not recursively enumerable, it suffices to reduce \overline{H} to L_3 . Given any Turing machine M and its input w, we construct the following Tuing machine

$$f("M""w") =$$
on input " x ": 1.run M on w

If M halts on w, then f(M, w) halts on every input. If M does not halt on w, f(M, w) halts on no input. Therefore, M does not halt on w if and only if there are at least 2023 strings on which f(M, w) does not halt. In otherwords, "M""w" $\in \overline{H}$ if and only if $f(M, w) \in L_3$. f is a reduction from \overline{H} to L_3 . This completes the proof.

Remark: if you find the above proof hard to follow. You may try to prove in the following way. Assume that there is a Turing machine that semidecides L_3 , and then use this Turing machine to construct another Turing machine to semidecides \overline{H} .