DERECK LAM HON WAH

3rd Year BSc. Computer Science (System Engineering)

Student from Middlesex University Mauritius

linkedin.com/in/dereck-lam-hon-wah-315039227 https://github.com/derecklhw

UNDERSTANDING THE BOOT PROCESS

OVERVIEW OF THE BOOT PROCESS

BIOS MBR GRUB KERNEL SYSTEMD RUNLEVEL

BIOS

BASIC INPUT OUTPUT SYSTEM

- Perform the **POST** (Power-on self-test).
- Run from **ROM** and **INDEPENDENT** from the OS.
- Searches, loads, and executes the MBR to boot the OS.

MBR

MASTER BOOT RECORD

- Responsible for loading and executing the GRUB boot loader.
- Located in the **1st** sector of the bootable disk.
- Is > **512 bytes** in size.
- Contains the **GRUB** program and informations about the disk partitions.

Master Boot Record

Master Boot Code 446 bytes Disk
Partition
Table
64 bytes

Boot Signature 2 bytes

GRUB

GNU GRAND UNIFIED BOOTLOADER

- LILO (Linux Loader) in very old system.
- Displays a splash screen to choose which kernel image installed to be executed.
- GRUB configuration file is located:
 - /boot/grub/grub.conf
 - /etc/grub.conf
- Load kernel into memory.

KERNEL

- **Core** of the OS and has total control over the system.
- Mounts the root file system in grub.conf.
- Follow predefined procedures:
 - a.decompress itself in place (vmlinuz vs vmlinux).
 - b.perform hardware checks.
 - c.gain access to vital peripheral hardware.
 - d.run the init process.

SYSTEMD

PID 1

- The parent process initiated by the kernel's init process.
- Previously known as **SysVinit** process.
- Performs a range of tasks:
 - a.probe all remaining hardware
 - b.mount filesystems
 - c.initiate and terminate services
 - d.manage essential system processes like user login
 - e.run a desktop environment
- Lastly, decide the target or state the linux system boots into.

RUNLEVEL

CURRENT STATE OF THE OS

- Defining which system services are running.
- Previously, **SysVinit** identified run levels by number.
- .target files now replace run levels in Systemd.

Let's check our default target:

\$ sudo systemctl get-default

To change boot target:

\$ sudo systemctl set-default <target>

RUNLEVEL

• You can change the target (run level) while the system runs.

For example, to switch to run level 3 from run level 5, we can run the following command:

\$ sudo systemctl isolate multi-user.target

Then, to take the system to run level 5, let's run the command:

\$ sudo systemctl isolate graphical.target

poweroff.target	run level 0	turn off (shut down) the computer
rescue.target	run level 1	initiate a rescue shell process
multi-user.target	run level 3	configure the system as a non- graphical (console) multi-user environment
graphical.target	run level 5	establish a graphical multi-user interface with network services
reboot.target	run level 6	restart the machine