Corso di Logica 4.3 – Conseguenza logica, validità, soddisfacibilità

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Andretta, Motto Ros, Viale (Torino)

Conseguenza logica

AA 2021–2022

1/10

Conseguenza logica

Dati $\Gamma \subseteq \operatorname{Prop}(L)$ e $Q \in \operatorname{Prop}(L)$, diciamo che Q è **conseguenza logica** di Γ , in simboli

$$\Gamma \models Q$$
,

se per ogni interpretazione i, se $i \models \Gamma$ allora $i \models Q$. Scriviamo $\Gamma \not\models Q$ per dire che Q NON è conseguenza logica di Γ .

• Quando $\Gamma = \{P_1, \dots, P_n\}$ è un insieme finito, allora scriviamo semplicemente

$$P_1, \dots, P_n \models Q$$

invece di $\{P_1, \ldots, P_n\} \models Q$ e diciamo che Q è conseguenza logica delle proposizioni P_1, \ldots, P_n . In particolare, quando $\Gamma = \{P\}$ scriviamo $P \models Q$ e diciamo che Q è conseguenza logica di P.

È immediato verificare che

$$P_1, \dots, P_n \models Q$$
 se e solo se $\models (P_1 \land \dots \land P_n) \rightarrow Q$.

Teorema

- **1** P è valida (ovvero una tautologia) se e solo se $\neg P$ è insoddisfacibile.
- ② P è soddisfacibile se e solo se ¬P non è valido,
- $\Gamma \models Q$ se e solo se $\Gamma \cup \{\neg Q\}$ è insoddisfacibile.

Dimostrazione.

1 e 2 sono ovvie.

Dimostriamo che vale anche ③. Assumiamo che $\Gamma \models Q$, e supponiamo per assurdo che $\Gamma \cup \{\neg Q\}$ sia soddisfacibile, ovvero che esista un'interpretazione i tale che $i \models \Gamma \cup \{\neg Q\}$. Allora si avrebbe che, in particolare, $i \models \neg Q$ e $i \models Q$ (poiché $i \models \Gamma$ e $\Gamma \models Q$), contraddizione.

(continua...)

Andretta, Motto Ros, Viale (Torino)

Conseguenza logica

AA 2021-2022

3/10

Teorema

- P è valida (ovvero una tautologia) se e solo se $\neg P$ è insoddisfacibile.
- $oldsymbol{2}$ P è soddisfacibile se e solo se $\neg P$ non è valido,
- **3** $\Gamma \models Q$ se e solo se $\Gamma \cup \{\neg Q\}$ è insoddisfacibile.

Dimostrazione (continuazione)

Assumiamo ora che $\Gamma \cup \{\neg Q\}$ sia insoddisfacibile, e consideriamo una generica interpretazione i tale che $i \models \Gamma$: vogliamo mostrare che allora si deve avere anche $i \models Q$, cosicché $\Gamma \models Q$ per la genericità di i. Poiché $i \not\models \Gamma \cup \{\neg Q\}$ e $i \models \Gamma$, allora $i \not\models \neg Q$. Quindi $i \models Q$, come volevamo.

Se $\Gamma=\{P_1,\ldots,P_n\}$ è un insieme finito, si può anche osservare direttamente che $\Gamma\models Q\quad\text{se e solo se}\quad (P_1\wedge\ldots\wedge P_n)\to Q \text{ è valida}$ se e solo se $\neg[(P_1\wedge\ldots\wedge P_n)\to Q] \text{ è insoddisfacibile}$ se e solo se $P_1\wedge\ldots\wedge P_n\wedge\neg Q \text{ è insoddisfacibile}$ se e solo se $\Gamma\cup\{\neg Q\} \text{ è insoddisfacibile}.$

Equivalenza logica

Date $P, Q \in Prop(L)$ si dice che P e Q sono **logicamente equivalenti**, e si scrive

$$P \equiv Q$$

se per ogni interpretazione i si ha $i \models P$ se e solo se $i \models Q$. Scriviamo $P \not\equiv Q$ per dire che P e Q NON sono logicamente equivalenti.

Si noti che

- $P \equiv Q$ se e solo se $\models P \leftrightarrow Q$.
- $P \equiv Q$ se e solo se $P \models Q$ e $Q \models P$.
- $P \equiv Q$ se e solo se $i^*(P) = i^*(Q)$ per ogni interpretazione i.

Andretta, Motto Ros, Viale (Torino)

Conseguenza logica

AA 2021-2022

5/10

Osservazione

Per quanto visto, è possibile verificare se

$$\underbrace{P_1, \dots, P_n \models Q} \quad \text{ oppure } \quad P \equiv Q$$
 utilizzando le tavole di verità.

Tuttavia bisogna impostare un'unica tavola di verità in cui valutare simultaneamente tutte le proposizioni coinvolte, e non solo calcolare le tavole di verità delle singole proposizioni una alla volta.

Questo perché per stabilire se valgano o meno le relazioni di conseguenza logica ed equivalenza logica bisogna considerare le interpretazioni definite su tutte le lettere proposizionali che compaiono in almeno una delle formule P_1, \ldots, P_n , Q oppure P, Q, rispettivamente.

Esempio

Per verificare se

$$A \vee (B \to C) \models A \wedge B$$

bisogna impostare la seguente tavola di verità:

		~ ·				
	$A \wedge B$	$\mid A \vee (B \to C)$	$B \to C$	C	В	A
,	0	1	1	0	0	0
=>P/R	0	1	1	1	0	0
	0	0	0	0	1	0
	0	1	1	1	1	0
	0	1	1	0	0	1
	0	1	1	1	0	1
	1	1	0	0	1	1
	1	1	1	1	1	1

e poi osservare che $A \vee (B \to C) \not\models A \wedge B$ perché, ad esempio, l'interpretazione i(A) = i(B) = i(C) = 0 (che corrisponde alla prima riga della tavola di verità) è tale che $i^*(A \vee (B \to C)) = 1$ ma $i^*(A \wedge B) = 0$.

Andretta, Motto Ros, Viale (Torino)

Conseguenza logica

AA 2021-2022

7 / 10

La **logica proposizionale** ci permette un'analisi logica del ragionamento (matematico) procedendo come segue.

- ① Si introduce un **linguaggio** "artificiale" L i cui elementi (le lettere proposizionali A, B, \ldots) rappresentano le proposizioni atomiche, ovvero quelle non ulteriormente analizzabili mediante l'uso dei connettivi.
- Si considerano i connettivi, particolari costanti logiche che permettono di "collegare" una o più proposizioni per formarne di nuove.
- 3 Si introduce il concetto sintattico di formula proposizionale (o proposizione): si introducono regole algoritmiche per costruire e analizzare stringhe di simboli "ben formate", ovvero tali da poter essere dotate di significato e a cui si può di conseguenza assegnare un valore di verità a partire dall'interpretazione dei suoi elementi costitutivi (ovvero a partire dall'interpretazione delle lettere proposizionali che vi occorrono).

Ricapitolando...

- Si introduce il concetto semantico di **modello**, ovvero di una situazione o realtà (astratta) in cui interpretare le formule proposizionali per vedere se, in tale contesto, siano vere o false. In logica proposizionale, questo è realizzato mediante la nozione di **interpretazione**, ovvero di un assegnamento i di valori di verità a tutte le lettere proposizionali nel linguaggio L.
- **3** A partire dall'interpretazione i, si definiscono le regole che permettono di calcolare il valore di verità di ogni formula proposizionale nel modello dato (valutazione $v = i^*$ e relazione di soddisfazione \models).
- Onsiderando insieme vari modelli possibili (ovvero varie interpretazioni), si definiscono i concetti di **tautologia**, **contraddizione**, **soddisfacibilità**, **conseguenza logica** e **equivalenza logica**. In particolare, la conseguenza logica $P \models Q$ dà una formulazione matematicamente precisa della nozione intuitiva di "deduzione corretta": $P \models Q$ significa che dall'ipotesi che P sia vera possiamo concludere che anche la tesi Q deve essere vera.

Andretta, Motto Ros, Viale (Torino)

Conseguenza logica

AA 2021–2022

9/10

Ricapitolando...

In questo modo si possono analizzare ragionamenti apparentemente complessi ed evitare errori "logici".

Esempio

A prima vista, il seguento ragionamento sembrerebbe corretto:

Se io ho ragione tu hai torto, e se tu hai ragione io ho torto: quindi almeno uno di noi due ha ragione.

Consideriamo il linguaggio $L = \{A, B\}$ dove

A = "io ho ragione" B = "tu hai ragione" ("avere torto" = "non avere ragione")

Otteniamo la formula proposizionale $(A \to \neg B) \land (B \to \neg A) \to A \lor B$.

È sempre vera (= una tautologia)? No, l'interpretazione i(A) = i(B) = 0 ("entrambi abbiamo torto") descrive una situazione in cui la proposizione, ovvero il ragionamento dato, non è corretto.