1. Základní koncepty Petriho sítí

Modelování událostí:

V Petriho síti:

V konečném automatu:

Složky Petriho sítě – statická reprezentace systému:

- místa (places)
- přechody (transitions)
- hrany (arcs)

TIN – Úvod do Petriho sítí – p.3/37

TIN – Úvod do Petriho sítí – p.1/37

Složky Petriho sítě – reprezentace dynamiky (změn) systému:

značky (tokens)

Před provedením přechodu t:

Po provedení přechodu t:

Úvod do Petriho sítí

Petriho sítě

- Motivace:
- modely diskrétních systémů
- modely paralelních systémů
- modely distribuovaných systémů
- Využití:

návrh \times syntéza \times analýza \times verifikace

C. A. Petri: Kommunikation mit automaten, 1962

* Historie:

- Aplikace:
- hardware paralelní architektury
- software distribuované systémy, informační systémy, komunikační protokoly
- telekomunikace, strojírenství, administrativa

 $\mathbf{\omega}$

B: buffer, z zpracování položky

Nemůže dojít k přetečení B (bufferu, fronty)?

Modelování podmíněnosti:

precondition: $A \land B$

postcondition: $(A \land \neg B \land C) \lor (\neg A \land B \land D)$

Modelování vzájemné výlučnosti:

 t_1 a t_2 jsou vzájemně vyloučeny (konfliktní přechody)

* Modelování paralelnosti (simultánnosti):

 t_1 a t_2 jsou simultánní (nezávislé přechody)

TIN - Úvod do Petriho sítí - p.7/37

TIN – Úvod do Petriho sítí – p.5/37

* Příklad 1: producent-konzument

Modelování požadavků na zdroje:

Interpretace míst a přechodů:

- $M-{\sf počet}$ volných paměťových bloků
- $P-{\rm procesor}\ {\rm je}\ {\rm voln}\acute{\rm y}$
- O operace probíhá
- t_B počátek operace
- t_E konec operace

Definice 2. Necht N = (P, T, F) je sít.

Pro všechny prvky $x \in (P \cup T)$

• ${}^*x=\{y\mid yFx\}$ se nazývá vstupní množinou (preset) prvku x • $x^*=\{y\mid xFy\}$ se nazývá výstupní množinou (postset) prvku x

Podobně pro množinu prvků: Nechť $X\subseteq (P\cup T)$, pak

$${}^{\bullet}X = \bigcup_{x \in X} {}^{\bullet}x \quad {\rm a} \quad X^{\bullet} = \bigcup_{x \in X} x^{\bullet}$$

 $y \in x^{\bullet}$ Zřejmě platí: $\forall x, y \in (P \cup T) : x \in$ 2. Uspořádaná dvojice $< p, t> \in P \times T$ se nazývá vlastní cyklus (self-loop), jestliže $pFt \wedge tFp$. Neobsahuje-li síť vlastní cyklus, pak se nazývá čistou sítí (pure net).

3. Prvek $x \in (P \cup T)$ se nazývá izolovaný, jestliže ${}^{ullet} x \cup x^{ullet} = \emptyset$.

IIN – Úvod do Petriho sítí – p.11/37

Definice 3. Nechť N = (P, T, F) je síť. N se nazývá jednoduchou sítí (simple net),

jestliže

$$\forall x, y \in (P \cup T) : (^{\bullet}x = ^{\bullet}y \land x^{\bullet} = y^{\bullet}) \Rightarrow x = y$$

Příklad nejednoduché sítě:

 \clubsuit **Definice 4.** Nechť $N_1=(P_1,T_1,F_1)$ a $N_2=(P_2,T_2,F_2)$ jsou sítě. Existuje-li bijekce

 $\beta:(P_1\cup T_1)\leftrightarrow (P_2\cup T_2)$ taková, že

- 1. $x \in P_1 \Leftrightarrow \beta(x) \in P_2$
- 2. $(x,y) \in F_1 \Leftrightarrow (\beta(x),\beta(y)) \in F_2$

pak N_1 a N_2 nazýváme izomorfní.

Příklad 2: model úseku paralelního programu

parbegin

S₂₁;

parend;

parbegin

if B then

.;. **S**₁₂; S₁₃; TIN – Úvod do Petriho sítí – p.9/37

2. Základní matematické definice

Definice 1. Trojici N=(P,T,F) nazýváme sítí (net), jestliže:

- 1. PaT jsou disjunktní konečné množiny

2. $F \subseteq (P \times T) \cup (T \times P)$ je binární relace

P nazýváme množinou míst (places)

F nazýváme tokovou relací (flow relation)

T nazýváme množinou přechodů (transitions)

- Grafem sítě nazveme grafovou reprezentaci relace F.
- \diamond Graf sítě je bipartitní orientovaný graf s množinou uzlů $P \cup T$ vrcholů.

TIN – Úvod do Petriho sítí – p.12/37

3. Je-li $t\in T$ M-proveditelný, pak jeho $\emph{proveden\'{i}m}$ získáme $\emph{n\'{a}sledn\'{e}}$ $\emph{zna\'{c}en\'{e}}$ M' ke značení M, které je definováno takto:

$$\forall p \in P \colon M'(p) = \begin{cases} M(p) - W(p,t) & \text{je-li } p \in \P \backslash \P^{\bullet} \\ M(p) + W(t,p) & \text{je-li } p \in \P^{\bullet} \backslash \P \\ M(p) - W(p,t) + W(t,p) & \text{je-li } p \in \P \backslash \P^{\bullet} \\ M(p) & \text{jinak} \end{cases}$$

 ${\it Provedenf}$ přechodu t (transition firing) ze značení M do značení M' zapisujeme symbolicky:

M[t
angle M'

TIN – Úvod do Petriho sítí – p.15/37

Definice 6. (pokračování)

- 4. Označme $[M\rangle$ nejmenší množinu různých značení Petriho sítě N, pro kterou platí:
 - (a) $M \in [M]$
- (b) Je-li $M_1 \in [M \rangle$ a pro nějaké $t \in T$ platí $M_1[t \rangle M_2$, pak $M_2 \in [M \rangle$.

Množina $[M\rangle$ se nazývá $\mathit{množinou}$ dosažitelných značení (reachability set) ze značení M .

Množina $\lfloor M_0
angle$ se nazývá $\mathit{množinou}$ dosažitelných značení sítě N.

Příklad 3: Uvažujme následující Petriho síť:

 $[M_0
angle = \{M_0,M_1,M_2,M_3\},$ kde $M_0 = (1,0,0,1)$ $M_1 = (0,1,1,0)$ $M_2 = (1,0,1,0)$ $M_3 = (0,1,0,1)$

3. P/T Petriho sítě

Definice 5: Šestici $N = (P, T, F, W, K, M_0)$ nazýváme P/T Petriho sítí

(Place/Transition Petri Net), jestliže:

- 1. (P,T,F) je konečná síť
- 2. $W: F \to \mathbb{N} \backslash \{0\}$ je ohodnocení hran grafu určující kladnou *váhu* každé hrany sítě
- 3. $K \colon P \to \mathbb{N} \cup \{\omega\}$ je zobrazení určující *kapacitu* každého místa
- 4. $M_0\colon P\to\mathbb{N}\cup\{\omega\}$ je *počáteční značení* míst Petriho sítě takové, že $\forall p\in P\colon M_0(p)\leq K(p)$

Poznámka:

- \mathbb{N} je množina $\mathbb{N}=\{0,1,2,...\}$
- ω značí *supremum* množiny $\mathbb N$ s vlastnostmi:
- 1. $\forall n \in \mathbb{N} : n < \omega$
- 2. $\forall m \in \mathbb{N} \cup \{\omega\} : m + \omega = \omega + m = \omega m = \omega$
- Petriho sítí budeme dále rozumět P/T Petriho síť

TIN – Úvod do Petriho sítí – p.13/37

Definice 6: (Evoluční pravidla Petriho sítí)

Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť.

- 1. Zobrazení $M\colon P\to \mathbb{N}\cup\{\omega\}$ se nazývá *značení* (marking) Petriho sítě N, jestliže $\forall p\in P\colon M(p)\leq K(p)$
- 2. Nechť M je značení Petriho sítě N. Přechod $t \in T$ je $\mathit{provediteln}$ ý (enabled) p ňi $\mathit{značen}$ í M (stručněji M-proveditelný), jestliže

$$[M_0
angle = \{M_0, M_1, M_2, M_3\}$$
, kde

$$M_0 = (1, 0, 0, 1)$$

 $M_1 = (0, 1, 1, 0)$

$$M_1 = (0, 1, 1, 0)$$

 $M_2 = (1 \ 0 \ 1 \ 0)$

$$M_1 = (0, 1, 1, 0)$$

 $M_2 = (1, 0, 1, 0)$
 $M_3 = (0, 1, 0, 1)$

Odpovídající přechodová funkce specifikovaná grafem vypadá takto:

Množina výpočetních posloupností dané Petriho sítě pak může být charakterizována regulárním výrazem:

$$(t_2(t_3t_1+t_1t_3))^*$$

Každý neprázdný prefix řetězce specifikovaného tímto výrazem tvoří výpočetní posloupnost.

IIN – Úvod do Petriho sítí – p.19/37

5. Analýza P/T Petriho sítí

- Základní problémy analýzy
- bezpečnost (safeness)
- omezenost (boundness)
- konzervativnost (conservation)
- živost (liveness)
- \clubsuit **Definice 8**: Místo $p \in P$ Petriho sítě $N = (P,T,F,W,K,M_0)$ s počátečním značení

 M_0 je bezpečné (safe), jestliže pro všechna značení $M \in [M_0)$ je $M(p) \le 1$. Petriho síť je *bezpečná*, je-li každé její místo bezpečné.

4. Stavový prostor a přechodová funkce Petriho sítě

 \diamond Množina $[M_0
angle$ reprezentuje stavový prostor Petriho sítě. Mohou nastat dva případy:

$$[M_0
angle$$
 je konečná množina je spočetná nekonečná množina

 \diamond **Definice 7.** Nechť $N=(P,T,F,W,K,M_0)$ je Petriho síť a $[M_0
angle$ její množina

dosažitelných značení. *Přechodovou funkcí Petriho sítě* N nazveme funkci δ :

$$\delta\colon [M_0
angle imes T o [M_0
angle$$
, pro kterou
$$\forall t\in T\colon \ \forall M,M'\in [M_0
angle\colon \ \delta(M,t)=M' \stackrel{def.}{\longleftrightarrow} M[t
angle M'$$

TIN - Úvod do Petriho sítí - p.17/37

❖ Přechodová funkce δ může být zobecněna na posloupnost přechodů:

$$\delta: [M_0\rangle \times T^* \to [M_0\rangle$$

$$\delta(M,t\tau) = \delta(\delta(M,t),\tau), \ \tau \in T^*$$

$$\delta(M,\varepsilon) = M, \ \text{kde } \varepsilon \ \text{je prázdný symbol}$$

- \diamondsuit Řetězec $\tau \in T^+$ nazveme *výpočetní posloupností* Petriho sítě, je-li $\delta(M_0,\tau)$ definována (+ případné další podmínky).
- Jazyk Petriho sítě = množina výpočetních posloupností Petriho sítě.

 Definice 11: Nechť $N=(P,T,F,W,K,M_0)$ je Petriho síť a $t\in T$.

1. t se nazývá *živý přechod*, jestliže pro každé značení $M \in [M_0)$ existuje značení $M' \in [M
angle$ takové, že t je proveditelný při značení M'.

Síť N se nazývá živou, je-li každý její přechod živý. ٥i

Aplikace: živost x deadlock

síť, která není bezpečná

odpovídající bezpečná síť

TIN – Úvod do Petriho sítí – p.23/37

Neobsahuje-li graf Petriho sítě násobné hrany, může být transformován na bezpečnou síť následujícím postupem.

Postup:

- 1. K místu p, které má bý bezpečné přidej komplementární místo p'
- Modifikuj incidující přechody podle algoritmu komplementace sítě. κi

TIN – Úvod do Petriho sítí – p.21/37

Příklad 6:

proces b ď • proces a • p_2

Proveditelné posloupnosti přechodů: $t_4t_5t_6t_1t_2t_3...$ $t_1t_2t_3t_4t_5t_6...$

Uvažujme však posloupnost přechodů, která začíná $t_1t_4\dots$

lacktriangle Definice 9: Místo $p \in P$ Petriho sítě $N = (P,T,F,W,K,M_0)$ se nazývá k-bezpečné,

nějaké k, nazývá se *omezené* (bounded). Petřího síť, jejíž všechna místa jsou omezená se nazývá *omezená Petriho síť*. jestliže pro všechna značení $M \in [M_0)$ je $M(p) \le k$. Je-li místo p' k-bezpečné pro

s konečnými automaty ekvivalenci sítě \uparrow konečný stavový prostor sítě \uparrow Omezenost sítě

 \diamond **Definice 10**: Petriho síť $N=(P,T,F,W,K,M_0)$ je *striktně konzervativní*, jestliže platí:

$$\forall M \in [M_0\rangle \colon \sum_{p \in P} M(p) = \sum_{p \in P} M_0(p)$$

Konzervativnost vzhledem k váhovému vektoru $\underline{w}=(w_1,\dots,w_n),w_i\geq 0$

$$\forall M \in [M_0): \sum_{i=1}^n w_i.M(p_i) = \sum_{i=1}^n w_i.M_0(p_i)$$

6. Barvené Petriho sítě

- Kurt Jensen, Aarhus Uviversity, Dánsko, 1981.
- Monografie: K. Jensen: Coloured Petri Nets. Monographs in Theoretical Computer Science, Springer-Verlag, 1992-1997. Tří díly: základní koncepty, analýza a průmyslové případové studie.
- Řada úvodních článků, příkladů, ... dostupná na http://www.daimi.au.dk/CPnets/.
- Existují i alternativní koncepty CPN, všechny ale více méně v podobném duchu. Někdy se též hovoří o tzv. High-Level Petri Nets.
- CPN jsou motivovány snahou odstranit některé nevýhody klasických (P/T) Petriho sítí:
- Petriho sítě, poskytující primitiva pro popis synchronizace paralelních procesů, jsou rozšířeny o explicitní popis datových typů a datových manipulací.

TIN – Úvod do Petriho siti – p.27/37

Nástroje: Design/CPN, CPN Tools (oba Aarhus University), dále např. ExSpect, ... (viz http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html).

- CPN byly aplikovány v řadě průmyslových případových studií:
- komunikační protokoly a sítě,
- software (části SW Nokia, bankovní transakce, distribuované algoritmy, ...),
- hardware,
- řídící systémy,
- vojenské systémy,
- •
- Podobně jako u P/T Petriho sítí existují různá rozšíření CPN o fyzický čas.
- CPN jsou základem pro další rozšíření: hierarchické CPN či různé objektově-orientované Petriho sítě (PNtalk, Renew, ...).

- \diamond **Definice 12**: Značení M Petriho sítě $N=(P,T,F,W,K,M_0)$ je *živ*é, jestliže
- pro všechna $t \in T$ existuje $M' \in [M)$ takové, že přechod t je proveditelný při značení M'.
- lacktriangle Věta 1: Petriho síť je *žívá*, právě když všechna značení z $[M_0
 angle$ jsou žívá.
- Definice 13: (Problém dosažitelnosti Reachability problem)
- Je dána Petriho síť N s počátečním značením M_0 a značení M. Je $M \in [M_0)$?
- Definice 14: (Problém pokrytí Coverability problem)
- Je dána Petriho síť N s počátečním značením M_0 a značení M. Existuje $M' \in [M_0\rangle$ takové, že $M' \geq M$?

Další problémy analýzy:

- posloupnosti přechodů (firing sequences)
- ekvivalence sítí
- inkluse sítí

TIIN — Úvod do Petriho sítí — p.25/37

Techniky analýzy Petriho sítí:

Strom dosažitelných značení (The Reachability Tree):

Strom dosažitelných značení je konečnou reprezentací množiny dosažitelných značení $[M_0)$. Strom dosažitelných značení je kořenový orientovaný strom, jehož kořenem je počáteční značení M_0 a vrcholy tvoří vektory z $(\mathbb{N} \cup \{\omega\})^n, n = |P|$. Kde ω značí supremum množiny \mathbb{N} s vlastnostmi:

- 1. $\forall n \in \mathbb{N} : n < \omega$
- $\exists \ \forall m \in \mathbb{N} \cup \{\omega\} \colon m+\omega = \omega + m = \omega m = \omega$

Invarianty P/T Petriho sítí:

Individual Token Nets with <u>Variable</u> Arrow Labels:

TIN – Úvod do Petriho sití – p.31/37

TIN - Úvod do Petriho sítí - p.29/37

Neformální zavedení CPN

- Uvažujme příklad popisu systému přidělování prostředků (zdrojů). Systém je tvořen:
 - 2 třídami procesů procesy p, resp. q,
 - 3 typy zdrojů R, S, T,
- stavy procesů Bp, Cp, ..., Ep, Aq, Bq, ..., Eq,
 - počátečním stavem.

Vlastní činnost systému lze popsat P/T Petriho sítí takto:

Petriho sítě s individuálními značkami

Individual Token Nets with Constant Arrow Labels:

Další jednoduchý příklad – změna ročních období:

TIN – Úvod do Petriho sítí – p.30/37

- * Každý hranový výraz se vyhodnotí na multimnožinu značek:
- konstruktor multimnožiny: $n_1 \cdot c_1 + n_2 \cdot c_2 + ... n_m \cdot c_m$,
- $n_1, n_2, ..., n_m$ jsou konstanty, proměnné nebo funkce, které se vyhodnotí na kladná přirozená čísla,
- $c_1, c_2, ..., c_m$ jsou konstanty, proměnné nebo funkce, které se vyhodnotí na barvy,
 - příklady:
- if x=C then 3'D else 4'E+5'F
- -2(x+y)+3'1
- varianta jednoduchého popisu změn ročních období:

Po zavedení jiného systému barev a hranových výrazů můžeme náš systém sdílení zdrojů modelovat např. také tak, jak je ukázáno na následujícím slajdu...

V CPN můžeme "sloučit" popis chování podobných procesů p a q. Budeme registrovat, který průchod "alokačním cyklem" daný proces provádí.

- Model ve tvaru CPN zahrnuje dvě složky:
- 1. grafickou část graf Petriho sítě a
- popisy inskripci. ٥i
- Inskripce, vyjádřená inskripčním jazykem, obsahuje:
- deklaraci množin barev (coloured sets), tj. datových typů,
- specifikaci množin barev míst,
- popis hran,
- strážní podmínky přechodů,
- počáteční značení,
- (jména míst a přechodů).

Náš systém sdílení zdrojů pak můžeme modelovat např. tak, jak je ukázáno na následujícím slajdu... TIN - Úvod do Petriho sítí - p.33/37

TIN – Úvod do Petriho sítí – p.35/37

TIN - Úvod do Petriho sítí - p.34/37

A konečně po zavedení ještě jiného systému barev a hranových výrazů můžeme náš systém sdílení zdrojů modelovat také takto:

Výše uvedený příklad demonstruje mj. skutečnost, že při použití CPN máme volbu, které rysy systému popsat Petriho sítí a které výpočtem v použitém inskripčním jazyce. TIN – Úvod do Petriho sití – p.37/37