MTH1008 - Algèbre linéaire appliquée

Diagonalisation, Vecteurs propres et AL, Valeurs propres complexes

Nathan Allaire - Théo Denorme

Polytechnique Montréal

March 14, 2025

Plan détaillé

1. Diagonalisation

- 2. Diagonalisation et Applications linéaires
- 3. Valeurs propres complexes

• Soit A une matrice de taille $n \times n$. On appelle **vecteur propre** de A associé à la **valeur propre** $\lambda \in \mathbb{R}$ tout vecteur x non-nul tel que $Ax = \lambda x$,

- Soit A une matrice de taille $n \times n$. On appelle **vecteur propre** de A associé à la **valeur propre** $\lambda \in \mathbb{R}$ tout vecteur x non-nul tel que $Ax = \lambda x$,
- Pour un λ , les vecteurs propres de A associés à λ sont les vecteurs de $\mathrm{Ker}\ (A-\lambda I_n)$ (sans le vecteur nul),

- Soit A une matrice de taille $n \times n$. On appelle **vecteur propre** de A associé à la **valeur propre** $\lambda \in \mathbb{R}$ tout vecteur x non-nul tel que $Ax = \lambda x$,
- Pour un λ , les vecteurs propres de A associés à λ sont les vecteurs de $\mathrm{Ker}\ (A-\lambda I_n)$ (sans le vecteur nul),
- On détermine les valeurs propres de A en cherchant les racines du polynôme caractéristique de $A: p_A(\lambda) = \det(A \lambda I_n)$,

- Soit A une matrice de taille $n \times n$. On appelle **vecteur propre** de A associé à la **valeur propre** $\lambda \in \mathbb{R}$ tout vecteur x non-nul tel que $Ax = \lambda x$,
- Pour un λ , les vecteurs propres de A associés à λ sont les vecteurs de $\mathrm{Ker}\ (A-\lambda I_n)$ (sans le vecteur nul),
- On détermine les valeurs propres de A en cherchant les racines du polynôme caractéristique de $A: p_A(\lambda) = \det(A \lambda I_n)$,
- Deux matrices A et B sont semblables s'il existe une matrice P inversible telle que $A = PBP^{-1}$. Deux matrices semblables ont les mêmes valeurs propres.

Plan

1. Diagonalisation

2. Diagonalisation et Applications linéaires

3. Valeurs propres complexes

Diagonalisation

Diagonalisation

Soit A une matrice $n \times n$. On dit que A est **diagonalisable** si elle est semblable à une matrice diagonale, c'est à dire qu'il existe D diagonale, et P inversible telles que :

$$A = PDP^{-1}.$$

Diagonalisation

Diagonalisation

Soit A une matrice $n \times n$. On dit que A est **diagonalisable** si elle est semblable à une matrice diagonale, c'est à dire qu'il existe D diagonale, et P inversible telles que :

$$A = PDP^{-1}.$$

Si A est diagonalisable, il est aisé de calculer des puissances de A :

$$A = PDP^{-1} \implies A^2 = (PDP^{-1})(PDP^{-1}) = PD^2P^{-1} \implies \cdots \implies A^k = PD^kP^{-1}$$

$$\mathsf{Et}\; D^k = \begin{bmatrix} d_1^k & 0 & \dots & 0 \\ 0 & d_2^k & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & d_n^k \end{bmatrix}.$$

Théorème de caracrérisation de la diagonalisation

Théorème 1

Soit A une matrice $n \times n$. A est diagonalisable **si et seulement si** elle admet n vecteurs propres indépendants.

Théorème de caracrérisation de la diagonalisation

Théorème 1

Soit A une matrice $n \times n$. A est diagonalisable **si et seulement si** elle admet n vecteurs propres indépendants.

Plus précisément, $A = PDP^{-1}$ si et seulement si les colonnes de P sont n vecteurs propres linéairement indépendants de A. Auquel cas, les coefficients de D sont les valeurs propres de A associées respectivement aux colonnes de P.

Autrement dit, A est diagonalisable si et seulement si **elle admet suffisament de vecteurs propres pour former une base de** \mathbb{R}^n . Une telle base est appelée *base de vecteurs propres de* \mathbb{R}^n .

Soit A de taille $n \times n$, P une matrice quelconque de colonnes $v_1, ..., v_n$, D une matrice diagonale $(\lambda_1, \lambda_2, ..., \lambda_n)$.

Soit A de taille $n \times n$, P une matrice quelconque de colonnes $v_1, ..., v_n$, D une matrice diagonale $(\lambda_1, \lambda_2, ..., \lambda_n)$.

 $AP = A[v_1...v_n] = [Av_1...Av_n]$ et $PD = [\lambda_1v_1...\lambda_nv_n]$ \rightarrow Vrai pour toute matrice A, P, D: diagonale. Pas besoin pour A d'être diagonalisable et P inversible.

Soit A de taille $n \times n$, P une matrice quelconque de colonnes $v_1, ..., v_n$, D une matrice diagonale $(\lambda_1, \lambda_2, ..., \lambda_n)$.

 $AP = A[\mathbf{v}_1...\mathbf{v}_n] = [A\mathbf{v}_1...A\mathbf{v}_n]$ et $PD = [\lambda_1\mathbf{v}_1...\lambda_n\mathbf{v}_n]$ \rightarrow Vrai pour toute matrice A, P, D: diagonale. Pas besoin pour A d'être diagonalisable et P inversible.

Supposons maintenant que A soit diagonalisable et P inversible, avec $A = PDP^{-1}$. Alors AP = PD. En identifiant colonne par colonne, on a que $Av_1 = \lambda_1 v_1, \cdots Av_n = \lambda_n v_n$

Soit A de taille $n \times n$, P une matrice quelconque de colonnes $v_1, ..., v_n$, D une matrice diagonale $(\lambda_1, \lambda_2, ..., \lambda_n)$.

 $AP = A[\mathbf{v}_1...\mathbf{v}_n] = [A\mathbf{v}_1...A\mathbf{v}_n]$ et $PD = [\lambda_1\mathbf{v}_1...\lambda_n\mathbf{v}_n]$ \rightarrow Vrai pour toute matrice A, P, D: diagonale. Pas besoin pour A d'être diagonalisable et P inversible.

Supposons maintenant que A soit diagonalisable et P inversible, avec $A = PDP^{-1}$. Alors AP = PD. En identifiant colonne par colonne, on a que $Av_1 = \lambda_1 v_1, \cdots Av_n = \lambda_n v_n$

Comme P est inversible, ses colonnes sont non-nulles. Cela montre que les colonnes de P sont des vecteurs propres de A, associés aux valeurs propres $\lambda_1, ..., \lambda_n$.

Exercices précieux

Diagonaliser si possible les matrices :

$$\bullet \ A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\bullet \ B = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Exercices précieux

Diagonaliser si possible les matrices :

$$\bullet \ A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\bullet \ B = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

•
$$p_A(\lambda) = (1 - \lambda)(2 + \lambda)^2$$

 $x_1, x_2, x_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
 $P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix},$
 $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$

• $p_B(\lambda) = (1 - \lambda)(2 + \lambda)^2$ B n'est pas diagonalisable car $\dim(E_{-2}^B) = 1 \neq 2$

Condition suffisante de diagonalisation

Théorème

Si A possède n valeurs propres distinctes, alors elle est diagonalisable.

Condition suffisante de diagonalisation

Théorème

Si A possède n valeurs propres distinctes, alors elle est diagonalisable.

En effet, les vecteurs propres $v_1, ..., v_n$ associés aux valeurs propres distinctes $\lambda_1, ..., \lambda_n$ sont linéairement indépendants (Cours 6 : des vecteurs propres d'espaces propres distincts sont linéairement indépendants).

Exemple : La matrice
$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & -2 & 0 & -3 \\ 0 & 0 & 2 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 est-elle diagonalisable ?

Théorème

Soit A une matrice $n \times n$ et $\lambda_1, \dots, \lambda_p$ ses valeurs propres distinctes.

Théorème

Soit A une matrice $n \times n$ et $\lambda_1, \dots, \lambda_p$ ses valeurs propres distinctes.

a. Pour $1 \le k \le p$, la dimension du sous-espace propre associé à λ_k est inférieure ou égale à la multiplicité de la valeur propre λ_k .

Théorème

Soit A une matrice $n \times n$ et $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes.

- a. Pour $1 \leq k \leq p$, la dimension du sous-espace propre associé à λ_k est inférieure ou égale à la multiplicité de la valeur propre λ_k .
- b. La matrice A est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à n. Ceci équivaut à dire que pour chaque λ_k , la dimension du sous-espace propre associé est égale à la multiplicité de λ_k dans le polynôme caractéristique.

Théorème

Soit A une matrice $n \times n$ et $\lambda_1, \ldots, \lambda_p$ ses valeurs propres distinctes.

- a. Pour $1 \le k \le p$, la dimension du sous-espace propre associé à λ_k est inférieure ou égale à la multiplicité de la valeur propre λ_k .
- b. La matrice A est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres est égale à n. Ceci équivaut à dire que pour chaque λ_k , la dimension du sous-espace propre associé est égale à la multiplicité de λ_k dans le polynôme caractéristique.
- c. Si A est diagonalisable et si pour chaque k, B_k est une base du sous-espace propre associé à la valeur propre λ_k , alors la famille obtenue en réunissant les vecteurs des bases B_1,\ldots,B_p est une base de \mathbb{R}^n constituée de vecteurs propres de A.

Théorème

Soit A une matrice carrée et λ une valeur propre de A.

On appelle Multiplicité Algébrique (MA) de λ l'ordre de multiplicité de λ dans le polynôme caractéristique de $A: p_A(\lambda)$.

On appelle Multiplicité Géométrique (MG) de λ la dimension du sous-espace propre associé à la valeur propre λ .

Théorème

Soit A une matrice carrée et λ une valeur propre de A.

On appelle Multiplicité Algébrique (MA) de λ l'ordre de multiplicité de λ dans le polynôme caractéristique de $A: p_A(\lambda)$.

On appelle Multiplicité Géométrique (MG) de λ la dimension du sous-espace propre associé à la valeur propre λ .

On a toujours $MG \leq MA$

Théorème

Soit A une matrice carrée et λ une valeur propre de A.

On appelle Multiplicité Algébrique (MA) de λ l'ordre de multiplicité de λ dans le polynôme caractéristique de $A: p_A(\lambda)$.

On appelle Multiplicité Géométrique (MG) de λ la dimension du sous-espace propre associé à la valeur propre λ .

On a toujours $MG \leq MA$

A est diagonalisable si et seulement si MG = MA pour toutes les valeurs propres de A.

Théorème

Soit A une matrice carrée et λ une valeur propre de A.

On appelle Multiplicité Algébrique (MA) de λ l'ordre de multiplicité de λ dans le polynôme caractéristique de $A: p_A(\lambda)$.

On appelle Multiplicité Géométrique (MG) de λ la dimension du sous-espace propre associé à la valeur propre λ .

On a toujours $MG \leq MA$

A est diagonalisable si et seulement si MG = MA pour toutes les valeurs propres de A.

A n'est **pas** diagonalisable s'il existe une valeur propre telle que MG < MA.

Exercice

Diagonaliser, si possible, la matrice

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$

Exercice

Diagonaliser, si possible, la matrice

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$

C'est possible car
$$MG = MA$$
 pour les 2 valeurs propres de A , et $P = \begin{bmatrix} -8 & -16 & 0 & 0 \\ 4 & 4 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.

12 / 31

Cheatcodes

NE PAS UTILISER COMME ARGUMENT DANS UN EXAMEN, MAIS COMME MOYEN DE VERIFICATION.

Trace, déterminant et lien avec les valeurs propres

Soit A une matrice carrée.

$$\operatorname{trace}(A) = \sum_{i=1}^{n} \lambda_i \tag{1}$$

$$\det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i \tag{2}$$

Plan

1. Diagonalisation

2. Diagonalisation et Applications linéaires

3. Valeurs propres complexes

Endomorphismes de \mathbb{R}^n

• On considère T un endomorphisme de \mathbb{R}^n :

$$T:\mathbb{R}^n\to\mathbb{R}^n$$

(application d'un espace vers lui-même)

ullet T est considérée linéaire avec $T(\mathbf{x})=A\mathbf{x}$ et on considère aussi que A est diagonalisable :

$$A = PDP^{-1}$$

• Les colonnes de P forment une base de \mathbb{R}^n , qu'on note \mathcal{B}

Matrice de T dans ${\cal B}$

• La matrice de T dans la base $\mathcal B$ est notée $[T]_{\mathcal B}$ et est telle que, pour tout $\mathbf x \in \mathbb R^n$, on a

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

• Et on a

$$D = [T]_{\mathcal{B}}$$

• Les applications $\mathbf{x} \mapsto A\mathbf{x}$ et $\mathbf{u} \mapsto D\mathbf{u}$ décrivent le même endomorphisme dans deux bases différentes

Matrice de T dans ${\cal B}$

• La matrice de T dans la base $\mathcal B$ est notée $[T]_{\mathcal B}$ et est telle que, pour tout $\mathbf x \in \mathbb R^n$, on a

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

• Et on a

$$D = [T]_{\mathcal{B}}$$

• Les applications $\mathbf{x} \mapsto A\mathbf{x}$ et $\mathbf{u} \mapsto D\mathbf{u}$ décrivent le même endomorphisme dans deux bases différentes

Cela pour dire que si \mathcal{B} est la base de \mathbb{R}^n composée des colonnes de P, alors D est la matrice de l'application linéaire T dans la base \mathcal{B} .

P est la matrice de passage de la base $\mathcal B$ à la base canonique. Dans la base $\mathcal B$, la matrice A est diagonale.

Les applications ${m x}\mapsto A{m x}$ et ${m u}\mapsto D{m u}$ sont les mêmes, exprimées dans des bases différentes.

Exercice à faire à la maison

Illuster ce concept avec :

$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

et

$$\mathbf{x} = (1, 1)$$

en vérifiant que

$$[\mathbf{x}]_{\mathcal{B}} = (3, -2)$$
 et $[T(\mathbf{x})]_{\mathcal{B}} = (15, -6)$

Plan

1. Diagonalisation

2. Diagonalisation et Applications linéaires

3. Valeurs propres complexes

Valeurs propres complexes 18 / 31

- Le polynôme caractéristique d'une matrice A est : $p_A(\lambda) = \det(A \lambda I_n)$,
- Il possède exactement n racines, en comptant les multiplicités et les racines complexes.

- Le polynôme caractéristique d'une matrice A est : $p_A(\lambda) = \det(A \lambda I_n)$,
- \bullet Il possède exactement n racines, en comptant les multiplicités et les racines complexes.

Exemple : On considère la matrice $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

- Quelle est l'action géométrique de A sur un vecteur $x \in \mathbb{R}^2$?
- Les valeurs propres de A peuvent-elles être réelles ?
- Quelles sont les valeurs propres de A ?
- Quels sont les vecteurs propres de A associés aux valeurs propres de A ? (explications plus loin)

- Le polynôme caractéristique d'une matrice A est : $p_A(\lambda) = \det(A \lambda I_n)$,
- Il possède exactement n racines, en comptant les multiplicités et les racines complexes.

Exemple : On considère la matrice
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

- Quelle est l'action géométrique de A sur un vecteur $x \in \mathbb{R}^2$?
- Les valeurs propres de A peuvent-elles être réelles ?
- Quelles sont les valeurs propres de A ?
- Quels sont les vecteurs propres de A associés aux valeurs propres de A ? (explications plus loin)

$$\lambda \in \{-i,i\}$$
, les vecteurs propres associés sont respectivement $m{v}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ et $m{v}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$

- Le polynôme caractéristique d'une matrice A est : $p_A(\lambda) = \det(A \lambda I_n)$,
- Il possède exactement n racines, en comptant les multiplicités et les racines complexes.

Exemple : On considère la matrice
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

- Quelle est l'action géométrique de A sur un vecteur $x \in \mathbb{R}^2$?
- Les valeurs propres de A peuvent-elles être réelles ?
- Quelles sont les valeurs propres de A ?
- Quels sont les vecteurs propres de A associés aux valeurs propres de A? (explications plus loin)

$$\lambda \in \{-i,i\}$$
, les vecteurs propres associés sont respectivement $m{v}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$ et $m{v}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$

On remarque quelque-chose d'étrange sur v_1 et v_2 ... Ils sont conjugués!

Déterminer les vecteurs propres complexes

$$(A-\lambda_1 I)=egin{bmatrix} i & -1 \\ 1 & i \end{bmatrix}$$
: pas inversible (normal, on cherche les λ tels que $(A-\lambda I)x$ possède une solution non-triviale $\iff (A-\lambda I)$ ne soit pas inversible).

Donc:

- ullet les lignes (et les colonnes) de A sont linéairement dépendantes
- $(A \lambda_1 I)x = \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix}x = 0 \implies ix_1 x_2 = 0$ et $x_1 + ix_2 = 0$ décrivent en fait la même solution.
- on peut choisir l'une ou l'autre pour trouver un vecteur propre.

Théorème

Soit A une matrice réelle et λ une valeur propre **complexe** de A, associée au vecteur propre **complexe** x.

Alors $\bar{\lambda}$ est aussi une valeur propre de A, associée au vecteur propre \bar{x} .

Théorème

Soit A une matrice réelle et λ une valeur propre **complexe** de A, associée au vecteur propre **complexe** x.

Alors $\bar{\lambda}$ est aussi une valeur propre de A, associée au vecteur propre \bar{x} .

Démo :
$$Ax = \lambda x \implies \overline{Ax} = A\overline{x} = \overline{\lambda}\overline{x} = \overline{\lambda}.\overline{x}.$$

Théorème

Soit A une matrice réelle et λ une valeur propre **complexe** de A, associée au vecteur propre **complexe** x.

Alors $\bar{\lambda}$ est aussi une valeur propre de A, associée au vecteur propre \bar{x} .

Démo :
$$Ax = \lambda x \implies \overline{Ax} = A\overline{x} = \overline{\lambda}\overline{x} = \overline{\lambda}.\overline{x}.$$

 \mathbf{Q} : Une matrice réelle 3×3 peut-elle avoir 3 valeurs propres complexes ?

Théorème

Soit A une matrice réelle et λ une valeur propre **complexe** de A, associée au vecteur propre **complexe** x.

Alors $\bar{\lambda}$ est aussi une valeur propre de A, associée au vecteur propre \bar{x} .

Démo :
$$Ax = \lambda x \implies \overline{Ax} = A\overline{x} = \overline{\lambda}\overline{x} = \overline{\lambda}.\overline{x}.$$

Q: Une matrice réelle 3×3 peut-elle avoir 3 valeurs propres complexes ? **Non.** Elle a soit 3 valeurs propres réelles, soit 2 complexes et une réelle car les complexes sont conjuguées 2 à 2.

Propriété des matrices 2×2

Soit $\mathbf{A} \in \mathbb{R}^{2 \times 2}$ admettant la valeur propre $\lambda = a - ib \ (b \neq 0)$ et soit $\mathbf{v} \in \mathbb{C}^2$ un vecteur propre associé à λ . Alors

$$\mathbf{A} = \mathbf{P}\mathbf{C}\mathbf{P}^{-1}$$

avec

$$\mathbf{P} = [Re(\mathbf{v}) \quad Im(\mathbf{v})]$$

et

$$\mathbf{C} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Exercice récapitulatif - Exercice 1 Vrai ou Faux

Répondez par vrai ou faux et justifiez vos réponses.

- 1. Toute matrice diagonalisable est inversible.
- **2.** Si une matrice A est diagonalisable, alors A^2 l'est aussi.
- **3.** Soit $A \in \mathbb{R}^{3 \times 3}$ diagonnalisable mais dont l'unique valeur propre est 7, alors $A = 7I_3$.
- **4.** Si A et B sont deux matrices diagonalisables de même taille, alors A+B est aussi diagonalisable.
- **5.** Toute matrice triangulaire est diagonalisable.
- **6.** Une matrice diagonalisable peut ne pas être symétrique.

Exercice récapitulatif - Exercice 1 Vrai ou Faux

- **7.** Si une matrice est diagonalisable et inversible, alors son inverse l'est aussi.
- 8. Une matrice ayant une seule valeur propre est nécessairement diagonalisable.
- **9.** Les vecteurs de la base canonique de \mathbb{R}^3 sont des vecteurs propres de toute matrices diagonnale de $\mathbb{R}^{3\times 3}$.
- **10.** L'ensemble des matrices diagonnalisable de taille $n \times n$ est un SEV de $\mathbb{R}^{n \times n}$.
- 11. Soit $A \in \mathbb{C}^{2 \times 2}$ mais ne possèdant pas que des coefficients réels, alors ses valeurs propres ne peuvent pas être réeles.
- 12. Une matrice de $\mathbb{R}^{2\times 2}$ non inversible ne peut pas avoir de valeur propre dans $\mathbb{C}\setminus\mathbb{R}$.

Soit la matrice suivante :

$$A = \begin{bmatrix} 4 & 1 & 0 \\ 0 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

- 1. Déterminez les valeurs propres de A.
- 2. La matrice A est-elle diagonalisable ? Justifiez.
- 3. Si A est diagonalisable, trouvez une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$.

Soit $A \in \mathbb{R}^{2 \times 2}$ une matrice inversible diagonalisable telle que

$$A = PDP^{-1}, \quad D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

On suppose aussi que $A \neq I$ et $A \neq -I$.

- 1. Déduire la diagonalisation de A^{-1} dans cette même base.
- 2. La matrice $A^{-1}+A$ est-elle diagonalisable ? Si oui, donner la matrice diagonale associée en fonction de D.
- 3. Supposons que $A^{-1}-A=0$. En diagonalisant cette équation, déduire une équation que doit vérifier λ_1 .
- 4. Si $\lambda_2 = -1$, en déduire la seule valeur possible pour λ_1 .

Soit la matrice suivante :

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

- 1. La matrice A est-elle diagonalisable ?
- 2. Si A est diagonalisable, trouver une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$.

Soit la matrice suivante :

$$A = \begin{bmatrix} 4 & -2 & -1 \\ 0 & 2 & 0 \\ 2 & -2 & 1 \end{bmatrix}$$

- 1. La matrice A est-elle diagonalisable ? Justifier en déterminant ses valeurs propres et ses sous-espaces propres.
- 2. Si A est diagonalisable, trouver une matrice inversible P et une matrice diagonale D telles que $A = PDP^{-1}$.

Soit $A \in \mathbb{R}^{2 \times 2}$ une matrice diagonalisable telle que

$$A = PDP^{-1}, \quad D = \begin{bmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{bmatrix},$$

avec P inversible. On s'intéresse à l'ensemble des matrices diagonalisables dans la même base de vecteurs propres que A.

Cet exercice a pour but de montrer que :

 $A, B \in \mathbb{R}^2$ diagonalisables dans la même base $\Leftrightarrow AB = BA$

1. Soit B tel que $B = P\tilde{D}P^{-1}$. Montrer que AB = BA.

Soit maintenant une autre matrice B diagonalisable telle que AB=BA et $B=\tilde{P}\tilde{D}\tilde{P}^{-1}$. Soit x un vecteur propre de A pour la valeur propre λ_1 .

- 2. Traitons le cas où $\lambda_1=\lambda_2$. Montrer que dans ce cas, $A=\tilde{P}D\tilde{P}^{-1}$. Supposons maintenant que $\lambda_1\neq\lambda_2$.
 - 3. Que valent $\dim(\ker(A-\lambda_1 I))$ et $\dim(\ker(A-\lambda_2 I))$?
 - 4. Montrer que si $x \in \ker(B)$, alors x est un vecteur propre de B.

Supposons maintenant que $Bx \neq 0$.

5. Montrer que Bx est un vecteur propre de A pour la valeur propre λ_1 . En remarquant que x et Bx appartiennent à $\ker(A - \lambda_1 I)$, montrer que x est un vecteur propre de B.