Exponenciális és logaritmusos feladatok Megoldások

1) Oldja meg az alábbi egyenleteket!

a) $\log_3(\sqrt{x+1}+1)=2$, ahol x valós szám és x>-1 (6 pont)

b) $2\cos^2 x = 4 - 5\sin x$, ahol x tetszőleges forgásszöget jelöl (11 pont) Megoldás:

a) A logaritmus definíciója szerint $\sqrt{x+1}+1=3^2$ (2 pont)

$$\sqrt{x+1} = 8 \tag{1 pont}$$

$$x + 1 = 64 \tag{1 pont}$$

$$x = 63$$

Ellenőrzés... (1 pont)

b) Lásd: Trigonometria 2. feladat

Összesen: 17 pont

2) Mekkora x értéke, ha $\lg x = \lg 3 + \lg 25$?

(2 pont)

<u>Megoldás</u>:

 $\lg x = \lg (3 \cdot 25) \tag{1 pont}$

Mivel a 10-es alapú logaritmusfüggvény szig. monoton nő,

 $x = 75 \tag{1 pont}$

Összesen: 2 pont

3) Oldja meg a következő egyenleteket:

a)
$$9^x - 2 \cdot 3^x - 3 = 0$$
 (6 pont)

b)
$$\sin^2 x = 2\sin x + 3$$
 (6 pont)

Megoldás:

a) Legyen $3^x = a$

Az
$$a^2 - 2a - 3 = 0$$
 másodfokú egyenletet kell megoldani. (1 pont)

Ennek az egyenletnek a gyökei:
$$a_1 = 3$$
 és $a_2 = -1$

(1 pont)

$$a = 3^x = 3$$
 esetén $x = 1$ (1 pont)

$$a = 3^x = -1$$
 egyenlet nem ad megoldást, (1 pont)

mert 3 minden valós kitevőjű hatványa pozitív szám. (1 pont)

Az
$$x = 1$$
 kielégíti az eredeti egyenletet. (1 pont)

b) Lásd: Trigonometria 3. feladat

Összesen: 12 pont

4) Adott a következő egyenletrendszer:

(1)
$$2\lg(y+1) = \lg(x+11)$$

(2)
$$y = 2x$$

- a) Ábrázolja derékszögű koordináta-rendszerben azokat a P(x;y) pontokat, amelyeknek koordinátái kielégítik a (2) egyenletet! (2 pont)
- b) Milyen x, illetve y valós számokra értelmezhető mindkét egyenlet? (2 pont)
- c) Oldja meg az egyenletrendszert a valós számpárok halmazán! (11 pont)
- d) Jelölje meg az egyenletrendszer megoldáshalmazát az a) kérdéshez használt derékszögű koordináta-rendszerben! (2 pont)

a) Lásd: Függvények 7. feladat

b) Az (1) egyenlet miatt y > -1(1 pont)

és x > -11(1 pont)

c) Lásd: Függvények 7. feladat

d) Lásd: Függvények 7. feladat

Összesen: 17 pont

5) Oldja meg a pozitív valós számok halmazán a $\log_{16} x = -\frac{1}{2}$ egyenletet! Jelölje a megadott számegyenesen az egyenlet megoldását! (3 pont) Megoldás:

$$x = \frac{1}{4}$$
 (2 pont)

jelet a válaszmezőbe! Válaszát indokolja!) Megoldás:

(2 pont)

$$A = 0$$
, $B = -2$ (1 pont)
 $A > B$ (1 pont)

Összesen: 2 pont

7) Adja meg a $\lg x^2 = 2 \lg x$ egyenlet megoldáshalmazát! (2 pont) Megoldás:

A pozitív valós számok halmaza.

(2 pont)

Összesen: 2 pont

8) a) Mely pozitív egész számokra igaz a következő egyenlőtlenség? $5^{x-2} < 5^{13-2x}$ (4 pont)

b) Oldja meg a valós számok halmazán az alábbi egyenlőtlenséget! $9^{\sqrt{x}} < 3^{x-3}$ (8 pont)

Megoldás:

a) Az (5 alapú exponenciális) függvény szigorúan monoton növekedése miatt

$$x-2 < 13-2x$$
 (1 pont)

$$x < 5$$
 (1 pont)

b)
$$x \ge 0$$
 (1 pont)

$$3^{2\sqrt{x}} < 3^{x-3}$$
 (1 pont)

A (3 alapú exponenciális) függvény szigorú monotonitása miatt
$$2\sqrt{x} < x - 3$$

$$4x < x^2 - 6x + 9 (1 pont)$$

$$x^2 - 10x + 9 > 0$$
 (1 pont)

$$x < 1 \quad x > 9 \tag{1 pont}$$

A kifejezés értéke **4**.

Az egyenlőtlenség megoldása, a valós számok halmazán: $\boldsymbol{x} \in [0;1] \cup]9; \infty[$ (2 pont) Összesen: 12 pont 9) Oldja meg a valós számok halmazán a következő egyenleteket! a) $\lg(x+15)^2 - \lg(3x+5) = \lg 20$ (6 pont) b) $25^{\sqrt{x}} = 5 \cdot 5^{3\sqrt{x}}$ (6 pont) Megoldás: a) Értelmezési tartomány: $x > -\frac{5}{2}$ (1 pont) A logaritmus azonosságának helyes alkalmazása. (1 pont) (A lg függvény kölcsönösen egyértelmű.) $(x+15)^2 = 20(3x+5)$ (1 pont) $x^2 - 30x + 125 = 0$ (1 pont) $x_1 = 25 \text{ és } x_2 = 5$ (1 pont) Mindkét megoldás megfelel. (1 pont) b) (1 pont) $5^{2\sqrt{x}} = 5^{1+3\sqrt{x}}$ (2 pont) $\sqrt{x} = -1$ (1 pont) A négyzetgyök értéke nemnegatív szám, ezért (1 pont) nincs valós megoldás. (1 pont) Összesen: 12 pont 10) Határozza meg az alábbi egyenletek valós megoldásait! a) $(\log_2 x - 3) \cdot (\log_2 x^2 + 6) = 0$ (7 pont) b) $\sin^2\left(x-\frac{\pi}{6}\right)=\frac{1}{4}$ (10 pont) Megoldás: Az egyenlet bal oldalán szereplő szorzat értéke pontosan akkor 0, ha valamelyik tényezője 0. (1 pont) Ha az első tényező 0, akkor $\log_2 x = 3$ (1 pont) Innen $x_1 = 2^3 = 8$ (1 pont) Ha a második tényező 0, akkor $\log_2 x^2 = -6$ (1 pont) Innen $x^2 = 2^{-6} = \frac{1}{64}$ (1 pont) ahonnan a pozitív tartományba csak az $x_2 = \frac{1}{2}$ (1 pont) Mind a két gyök kielégíti az eredeti egyenletet. (1 pont) Lásd: Trigonometria 6. feladat Összesen: 17 pont 11) Adja meg a log₃ 81 kifejezés pontos értékét! (2 pont) Megoldás:

(2 pont)

12) Mennyi az
$$\left(\frac{1}{5}\right)^{2x}$$
 kifejezés értéke, ha $x = -1$? (2 pont)

A kifejezés értéke: **25**.

(2 pont)

Összesen: 2 pont

13) Az
$$a$$
, b és c tetszőleges pozitív valós számokat jelölnek. Tudjuk, hogy $\lg x = 3 \lg a - \lg b + \frac{1}{2} \lg c$

Válassza ki, hogy melyik kifejezés adja meg helyesen x értékét! (3 pont)

$$A: x = \frac{3a}{b} + \frac{1}{2}c$$

B:
$$x = a^3 - b + \sqrt{c}$$

C:
$$x = \frac{a^3}{b \cdot \sqrt{c}}$$

D:
$$x = \frac{a^3 \cdot c^{-1}}{h}$$

$$\mathbf{E:} \ \boldsymbol{x} = \boldsymbol{a}^3 - \boldsymbol{b}\sqrt{\boldsymbol{c}}$$

$$\mathbf{F:} \ \mathbf{x} = \frac{\mathbf{a}^3 \cdot \sqrt{\mathbf{c}}}{\mathbf{b}}$$

G:
$$x = \frac{a^3 \cdot \frac{1}{c}}{b}$$

Megoldás:

A helyes kifejezés: F.

(3 pont)

14) A b, c és d pozitív számokat jelölnek. Tudjuk, hogy $\lg b = \frac{\lg c - \lg d}{3}$

Fejezze ki az egyenlőségből b-t úgy, hogy abban c és d logaritmusa ne szerepeljen! (2 pont)

<u>Megoldás</u>:

$$\mathbf{b} = \sqrt[3]{\frac{\mathbf{c}}{\mathbf{d}}} \text{ vagy } \mathbf{b} = \left(\frac{\mathbf{c}}{\mathbf{d}}\right)^{\frac{1}{3}}$$
 (2 pont)

15) Melyik szám nagyobb?

$$A = \lg \frac{1}{10} \text{ vagy } B = \cos 8\pi$$
 (2 pont)

Megoldás:

A nagyobb szám betűjele: $\boldsymbol{B} = (\cos 8\pi)$

(2 pont)

16) István az $x\mapsto \log_{\frac{1}{2}}x(x>0)$ függvény grafikonját akarta

felvázolni, de ez nem sikerült neki, több hibát is elkövetett (a hibás vázlat látható a mellékelt ábrán). Döntse el, hogy melyik igaz az alábbi állítások közül!

- a) István rajzában hiba az, hogy a vázolt függvény szigorúan monoton csökkenő.
- b) István rajzában hiba az, hogy a vázolt függvény 2-höz -2-t rendel.
- c) István rajzában hiba az, hogy a vázolt függvény zérushelye 1. (2 pont) -2

b). (2 pont)

Összesen: 2 pont

17) Adja meg azokat az x valós számokat, melyekre teljesül: $\log_2 x^2 = 4$. Válaszát indokolja! (3 pont)

<u>Megoldás</u>:

A logaritmus definíciója alapján: $x^2 = 16$ (1 pont) tehát $\mathbf{x}_{1,2} = \pm \mathbf{4}$ (2 pont)

Összesen: 3 pont

18) Oldja meg az alábbi egyenleteket a valós számok halmazán!

a) $5^{x+1} + 5^{x+2} = 30$ (5 pont)

b) $\frac{3}{x} - \frac{2}{x+2} = 1$, ahol $x \neq 0$ és $x \neq -2$ (7 pont)

Megoldás:

a) $5 \cdot 5^x + 5^2 \cdot 5^x = 30$ (1 pont)

 $30 \cdot 5^x = 30 \tag{1 pont}$

 $5^x = 1 \tag{1 pont}$

(Az 5 alapú exponenciális függvény szigorú monotonitása miatt:

 $\mathbf{x} = \mathbf{0}$ (1 pont)

Ellenőrzés (1 pont)

b) Lásd: Egyenletek, egyenlőtlenségek 10.feladat

Összesen: 12 pont

19)

a) Oldja meg a valós számok halmazán az $\frac{x+2}{3-x} \ge 0$ egyenlőtlenséget!

(7 pont)

- b) Adja meg az x négy tizedesjegyre kerekített értékét, ha $4 \cdot 3^x + 3^x = 20$. (4 pont)
- c) Oldja meg a $2\cos^2 x + 3\cos x 2 = 0$ egyenletet a $[-\pi; \pi]$ alaphalmazon. (6 pont)

Megoldás:

a) Lásd: Egyenletek, egyenlőtlenségek 11. feladat

b) $5 \cdot 3^x = 20 \tag{1 pont}$

 $3^x = 4 \tag{1 pont}$

 $x = \log_3 4 \tag{1 pont}$

 $x \approx 1,2619$ (1 pont)

c) Lásd: Trigonometria 13. feladat

Összesen: 17 pont

20) Melyik az az x természetes szám, amelyre $log_3 81 = x$? (2 pont)

Megoldás:

 $\mathbf{x} = \mathbf{4}$ (2 pont)

21) Oldja meg az alábbi egyenleteket a valós számok halmazán!

a)
$$\frac{x-1}{2} + \frac{2x}{5} = 4$$
 (5 pont)

b)
$$\lg(x-1) + \lg 4 = 2$$
 (7 pont)

Megoldás:

a) Lásd: Egyenletek, Egyenlőtlenségek 15. feladat

b) Értelmezési tartomány:
$$x > 1$$
 (1 pont)
Logaritmus-azonosság alkalmazásával: $\lg 4(x-1) = 2$ (2 pont)

A logaritmus definíció alapján:
$$4(x-1)=1$$
 (2 pont)

$$x = 26$$
 (1 pont)
Ellenőrzés, visszahelyettesítés (1 pont)

Ellenőrzés, visszahelyettesítés

Összesen: 12 pont

22) Az ábrán az $f:[-2;1] \Rightarrow \mathbb{R}; f(x) = a^x$ függvény grafikonja (3 pont) látható.

a) Adja meg az f függvény értékkészletét!

b) Határozza meg az a szám értékét!

Megoldás:

b)
$$\alpha = 0,5$$
. (2 pont)

Összesen: 3 pont

-2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5

(1 pont)

23) Adja meg az x értékét, ha
$$log_2(x+1) = 5!$$
 (2 pont)

Megoldás:

$$2^5 = x + 1$$

$$\mathbf{x} = \mathbf{31}$$
(2 pont)

24) Újsághír: "Szeizmológusok számításai alapján december 26-án Szumátra szigetének közelében kipattant földrengés a Richter-skála szerint 9,3-es erősségű volt: rengést követő cunami (szökőár) halálos áldozatainak száma megközelítette a 300 ezret." A földrengés Richter-skála szerinti "erőssége" és rengés a középpontjában felszabaduló energia

között fennálló összefüggés: $M = -4,42 + \frac{2}{3} \lg E$.

Ebben a képletben E a földrengés középpontjában felszabaduló energia mérőszáma (joule-ban mérve), M pedig a földrengés erősségét megadó nem negatív szám a Richter-skálán.

Nagasakira 1945-ben ledobott atombomba felrobbanásakor felszabaduló energia 1,344·10¹⁴ joule volt. A Richter-skála szerint mekkora erősségű az a földrengés, amelynek középpontjában ekkora energia szabadul fel? (3 pont)

- b) A 2004. december 26-i szumátrai földrengésben mekkora volt a felszabadult energia? (3 pont)
- c) A 2007-es chilei nagy földrengés erőssége a Richter-skála szerint 2vel nagyobb volt, mint annak a kanadai földrengésnek az erőssége, amely ugyanebben az évben következett be. Hányszor akkora energia szabadult fel a chilei földrengésben, mint a kanadaiban? (5 pont)
- d) Az óceánban fekvő egyik szigeten a földrengést követően kialakuló szökőár egy körszelet alakú részt tarolt le. A körszeletet határoló körív középpontja a rengés középpontja, sugara pedig 18 km. A rengés középpontja a sziget partjától 17 km távolságban volt (lásd a felülnézeti ábrán). Mekkora a szárazföldön elpusztult rész területe egész négyzetkilométerre kerekítve? (6 pont)

a)
$$M = -4,42 + \frac{2}{3} \lg(1,344 \cdot 10^{14})$$
 (1 pont)

$$M \approx 5$$
 (2 pont)

b)
$$9,3 = -4,42 + \frac{2}{3} \lg E$$
 (1 pont)

$$\lg E = 20,58 \tag{1 pont}$$

Tehát a felszabadult energia körülbelül

$$E \approx 3.8 \cdot 10^{20} \text{ (J)}$$

c) A chilei rengés erőssége 2-vel nagyobb volt, mint a kanadai:

$$-4,42 + \frac{2}{3} \lg E_c = -4,42 + \frac{2}{3} \lg E_k + 2$$
 (1 pont)

Rendezve:
$$\lg E_c - \lg E_k = 3$$
 (1 pont)

(A logaritmus azonosságát alkalmazva)
$$\lg \frac{E_c}{E_k} = 3$$
 (1 pont)

Ebből
$$\frac{E_c}{E_k} = 1000$$
 (1 pont)

1000-szer akkora volt a felszabadult energia. (1 pont)

d) Lásd: Síkgeometria 39. feladat

Összesen: 17 pont

25)

- a) Mely valós számokra értelmezhető a $log_2(3-x)$ kifejezés? (1 pont)
- b) Oldja meg a valós számok halmazán az alábbi egyenletet! $\log_2 \left(3-x \right) = 0 \tag{2 pont}$

Megoldás:

a) x < 3 (1 pont) b) x = 2 (2 pont) Összesen: 3 pont

- 26) Egy idén megjelent iparági előrejelzés szerint egy bizonyos alkatrész iránti kereslet az elkövetkező években emelkedni fog, minden évben az előző évi kereslet 6%-ával. (A kereslet az adott termékből várhatóan eladható mennyiséget jelenti.)
 - a) Várhatóan hány százalékkal lesz magasabb a kereslet 5 év múlva, mint idén? (3 pont)

Az előrejelzés szerint ugyanezen alkatrész ára az elkövetkező években csökkenni fog, minden évben az előző évi ár 6%-ával.

b) Várhatóan hány év múlva lesz az alkatrész ára az idei ár 65%-a?

(5 pont)

Egy cég az előrejelzésben szereplő alkatrész eladásából szerzi meg bevételeit. A cég vezetői az elkövetkező évek bevételeinek tervezésénél abból indulnak ki, hogy a fentiek szerint a kereslet évente 6%-kal növekszik, az ár pedig évente 6%-kal csökken.

c) Várhatóan hány százalékkal lesz alacsonyabb az éves bevétel 8 év múlva, mint idén? (5 pont)

A kérdéses alkatrész egy forgáskúp alakú tömör test. A test alapkörének sugara 3 cm, alkotója 6 cm hosszú.

d) Számítsa ki a test térfogatát!

(4 pont)

Megoldás:

- a) Lásd: Szöveges feladatok 33. feladatok
- b) Az ár minden évben várhatóan az előző év ár 0,9-szorosára változik, (1 pont) így megoldandó a $0,94^n=0,65$ egyenlet, (ahol n az eltelt évek számát jelenti.) (1 pont)

Ebből $n = \frac{\lg 0.65}{\lg 0.94} (\approx 6.96)$. (2 pont)

Azaz várhatóan **7 év múlva** lesz az ár a jelenlegi ár 65%-a. (1 pont)

c) A bevételt a kereslet és az ár szorzatából kapjuk, (1 pont)

így 8 év múlva a jelenlegi bevétel $(1,06\cdot0,94)^8 \approx$ (1 pont)

 ≈ 0.972 -szerese várható. (2 pont) Azaz **8 év múlva** a bevétel az ideinél kb. 2,8%-kal lesz alacsonyabb. (1 pont)

d) Lásd: Térgeometria 31. feladat

Összesen: 17 pont

27) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)! (2 pont)

A)
$$\sqrt{(-5)^2} = 5$$

B) Minden $x \in \mathbb{R}$ esetén $\sqrt{x^2} = x$.

C)
$$2^{\frac{5}{2}} = \sqrt{32}$$

Megoldás:

A) $\sqrt{(-5)^2} = |(-5)| = 5$, tehát az állítás **igaz**.

B) $\sqrt{x^2} = |x|$, amely állítás negatív x-re nem igaz, tehát az állítás **hamis**.

C) $2^{\frac{5}{2}} = \sqrt{2^5} = \sqrt{32}$, az állítás így **igaz**.

(2 pont)

Összesen: 2 pont

28) Egy 2014 végén készült előrejelzés szerint az Indiában élő tigrisek t száma az elkövetkezendő években (az egyes évek végén) megközelítőleg a következő összefüggés szerint alakul: $t(x) = 3600 \cdot 0,854^x$, ahol x a 2014 óta eltelt évek számát jelöli.

- a) Számítsa ki, hogy az előrejelzés alapján 2016 végére hány százalékkal csökken a tigrisek száma a 2014-es év végi adathoz képest! (4 pont)
- b) Melyik évben várható, hogy a tigrisek száma 900 alá csökken?

(5 pont)

Egy állatkert a tigrisek fennmaradása érdekében tenyésztő programba kezd. Beszereznek 4 hím és 5 nőstény kölyöktigrist, melyeket egy kisebb és egy nagyobb kifutóban kívánnak elhelyezni a következő szabályok mindegyikének betartásával:

- I) háromnál kevesebb tigris egyik kifutóban sem lehet;
- II) a nagyobb kifutóba több tigris kerül, mint a kisebbikbe;
- III) mindkét kifutóban hím és nőstény tigrist is el kell helyezni;
- IV) egyik kifutóban sem lehet több hím, mint nőstény tigris.
- c) Hányféleképpen helyezhetik el a 9 tigrist a két kifutóban? (8 pont) (A tigriseket megkülönböztetjük egymástól, és két elhelyezést eltérőnek tekintünk, ha van olyan tigris, amelyik az egyik elhelyezésben más kifutóban van, mint a másik helyezésben.)

Megoldás:

a) A tigrisek száma minden évben az előző évinek 0,854-szeresére csökken.

(1 pont)

Így 2014 és 2016 között a tigrisek száma 0,854² ≈ 0,73 -szorosára változik.

(2 pont)

Ez azt jelenti, hogy a számuk **27**%-kal csökken.

(1 pont)

b) A feladat szövege alapján az alábbi egyenletet írhatjuk fel:

 $3600 \cdot 0,854^x = 900.$

(1 pont)

Az egyenlet megoldása $x \approx 8,78$.

(3 pont)

Így 9 év múlva, azaz **2023**-ban várható, hogy a tigrisek száma 900 alá csökkenni. (1 pont)

c) Lásd: Kombinatorika 31. feladat

Összesen: 17 pont

29) Oldja meg a következő egyenletet a valós számok halmazán! Válaszát három tizedesjegyre kerekítve adja meg! (2 pont)

$$2^{x} = 10$$

Megoldás:

A kifejezést logaritmus alá visszük és alkalmazzuk a logaritmus azonosságát.

$$\lg 2^x = \lg 10$$

$$x \cdot \lg 2 = \lg 10$$

$$x = \frac{\lg 2}{\lg 10} \approx 3,322$$
 (2 pont)

Összesen: 2 pont

- 30) A mobiltelefonok 1990 végén jelentek meg Magyarországon. Az előfizetések száma gyorsan nőtt: 2002 végén már kb. 7 millió, 2008 végén pedig kb. 12 millió előfizetés volt az országban.
 - a) Hány százalékkal nőtt a mobiltelefon előfizetések száma 2002 végétől 2008 végéig? (2 pont)

1993 és 2001 között az egyes évek végén nyilvántartott mobiltelefonelőfizetések számát – ezer darabban – jó közelítéssel a következő függvény adja meg: $f(x) = 51 \cdot 1,667^x$, ahol x az 1992 vége óta eltelt évek számát jelöli.

b) A függvény alapján hány mobiltelefon-előfizető lehetett 2000 végén? (3 pont)

A kezdeti időszakban a mobilhálózatból indított hívások száma is gyors növekedést mutatott. 1991 januárjában Magyarországon körülbelül 350 000 mobilhívást indítottak, majd ettől a hónaptól kezdve minden hónapban megközelítőleg 6,5%-kal nőtt a hívások száma az előző havi hívások számához viszonyítva (egészen 2002-ig).

- c) Melyik évben volt az a hónap, amelyben az egy havi mobilhívások száma először elérte a 100 milliót?
 (6 pont)
- A mobiltelefonok elterjedése egy idő után a vezetékestelefonelőfizetések és hívások számának csökkenését eredményezte. A vezetékestelefon-hálózatból indított hívások száma Magyarországon 2000-ben kb. 4200 millió volt, majd ez a szám évről évre kb 8%-kal csökkent.
- d) Hány hívást indítottak vezetékes hálózaból 2009-ben, és összesen hány vezetékes hívás volt a 2000 elejétől 2009 végéig terjedő tízéves időszakban? (6 pont)

Megoldás:

a) Lásd: Szöveges feladatok 41. feladat

b) Az eltelt évek száma:
$$x = 8$$
. (1 pont) $51 \cdot 1,667^8 \approx 3041$ (1 pont)

3 millio 41 ezer mobilteleion-elofizeto lenetett 2000 vegen. (1 pont)

c) A hívások száma egyik hónapról a másikra 1,065-szeresére nőtt. (1 pont) 1991 januárja óta eltelt hónapok számát jelölje n.

$$350000 \cdot 1,065^n = 100\,000\,000$$
 (1 pont)

$$n = \log_{1,065} \frac{100000000}{350000},\tag{1 pont}$$

amiből
$$n \approx 90$$
. (1 pont)

Az eltelt évek száma:
$$\frac{90}{12} = 7.5$$
. (1 pont)

Tehát **1998-ban** lehetett az a hónap, amikor a mobilhívások száma először elérte a 100 milliót. (1 pont)

d) Lásd: Sorozatok 43. feladat

Összesen: 17 pont

31) Adja meg azt az x valós számot, amelyre $\log_2 x = -3$. (2 pont) <u>Megoldás</u>:

$$\log_2 x = \log_2 \frac{1}{8} \Rightarrow \mathbf{x} = \frac{1}{8} \tag{2 pont}$$

Összesen: 2 pont

32) Adja meg
$$x$$
 értékét, ha $5^x = (5^2 \cdot 5 \cdot 5^4)^3$ (2 pont)

Megoldás:

$$(5^2 \cdot 5 \cdot 5^4)^3 = 5^{7^3} = 5^{21} \Rightarrow \mathbf{x} = \mathbf{21}$$
 (2 pont)

33) Oldja meg az alábbi egyenletet a valós számok halmazán! Válaszát tizedes tört alakban adja meg!

$$4^x = 8 (2 pont)$$

Megoldás:

Vegyük mindkét oldal 10-es alapú logaritmusát: $\lg 4^x = \lg 8$

A hatvány logaritmusára vonatkozó azonosságot kihasználva: $x \cdot \lg 4 = \lg 8$

Az egyenletet x-re rendezve az eredmény:
$$x = \frac{\lg 8}{\lg 4} = 1,5.$$
 (2 pont)

Összesen: 2 pont

34)

a) Hány olyan háromjegyű egész szám van, amelyre igaz az alábbi egyenlőtlenség?

$$\frac{x}{3} + \frac{x}{6} \ge \frac{x}{4} + 230 \tag{4 pont}$$

b) Oldja meg az alábbi egyenletet a valós számok halmazán!

$$3 \cdot 4^x + 4^{x+1} = 896 \tag{6 pont}$$

Megoldás:

a) Lásd: Egyenletek 40. feladat

b)
$$3 \cdot 4^x + 4 \cdot 4^x = 896$$
 (1 pont)

$$7 \cdot 4^x = 896 \tag{1 pont}$$

$$4^x = 128 \tag{1 pont}$$

$$2^{2x} = 2^7 \tag{1 pont}$$

Mivel a 2-es alapú exponenciális függvény kölcsönösen egyértelmű, ezért

$$x = 3,5$$
. (1 pont)

Ellenőrzés behelyettesítéssel:
$$3 \cdot 4^{3,5} + 4^{4,5} = 384 + 512 = 896$$
 (1 pont)

Összesen: 10 pont

35) Péter elhatározza, hogy összegyűjt 3,5 millió Ft-ot egy használt elektromos autó vásárlására, mégpedig úgy, hogy havonta egyre több pénzt tesz félre a takarékszámláján. Az első hónapban 50 000 Ft-ot tesz félre, majd minden hónapban 1000 Ft-tal többet, mint az azt megelőző hónapban. (A számlán gyűjtött összeg kamatozásával Péter nem számol.) a) Össze tud-e így gyűjteni Péter 4 év alatt 3,5 millió forintot? (5 pont)

A világon gyártott elektromos autók számának 2012 és 2017 közötti alakulását az alábbi táblázat mutatja.

év	2012	2013	2014	2015	2016	2017
elektromos autók száma (ezerre kerekítve)	110 000	221 000	409 000	727 000	1 186 000	1 928 000

b) Szemléltesse a táblázat adatait oszlopdiagramon!

(3 pont)

Péter az előző táblázat adatai alapján olyan matematikai modellt alkotott, amely az elektromos autók számát exponenciálisan növekedőnek tekinti. E szerint, ha a 2012 óta eltelt évek száma x, akkor az elektromos autók számát (millió darabra) megközelítőleg az $f(x) = 0.122 \cdot 2^{0.822x}$ összefüggés adja meg.

c) A modell alapján számolva melyik évben érheti el az elektromos autók száma a 25 millió darabot? (5 pont)

Egy elektromos autókat gyártó cég öt különböző típusú autót gyárt. A készülő reklámfüzet fedőlapjára az ötféle típus közül egy vagy több (akár mind az öt) autótípus képét szeretné elhelyezni a grafikus.

 d) Hány lehetőség közül választhat a tervezés során? (Két lehetőség különböző, ha az egyikben szerepel olyan autótípus, amely a másikban nem.)
 (4 pont)

Megoldás:

- a) Lásd: Sorozatok 53. feladat
- b) Lásd: Statisztika 52. feladat

c) A modell alapján:
$$0.122 \cdot 2^{0.822x} = 25$$
 (1 pont)

$$2^{0,822x} = \frac{25}{0,122} \approx 204,9 \tag{1 pont}$$

$$0.822x \cdot \lg 2 = \lg 204.9$$
 (1 pont)

$$x \approx 9.34$$
 (1 pont)

A modell szerint az elektromos autók száma 2012+9=**2021-ben** éri el a 25 milliót. (1 pont)

d) Lásd: Kombinatorika 39. feladat

Alternatív megoldás:

Mind az öt típus esetén két választási lehetőség van (szerepel vagy nem szerepel a fedőlapon). Ez összesen $2^5=32$ lehetőséget jelent. (2 pont) Az a kiválasztás, amelyben egy elem sincs kiválasztva nem megfelelő. (1 pont) Így 32-1=31-féleképpen alakulhat a reklámfüzet fedőlapja a megjelenített típusok szempontjából. (1 pont)

Összesen: 17 pont

36) Hányadik hatványra kell emelni a 2-t, hogy 512-t kapjunk? (2 pont) *Megoldás:*

A feladat szövege alapján: $2^x = 512$. (1 pont)

A logaritmus definícióját alkalmazva $\log_2 512 = x$, így $\mathbf{x} = \mathbf{9}$. (1 pont)

- 37) Amerikai kutatók 104 labrador genetikai elemzése alapján felállítottak egy egyenletet, amellyel (a kutya 3 hónapos korától) megmondható, milyen korú az adott kutya emberévekben. A kutya valódi életkorát években mérve jelölje K, ekkor az emberévekben kifejezett életkort (E) az alábbi képlettel kapjuk: $E = 37 \cdot \lg K + 31$ (ahol K > 0,25).
 - a) Egy kutya emberévekbe átszámított életkora E=70 év. Hány év, hány hónap ennek a kutyának a valódi életkora? Válaszát egész hónapra kerekítve adja meg! (6 pont)

Egy másik átszámítás szerint – a kutya 3 éves korától kezdve – az emberévekben kifejezett életkor az $e = 5, 5 \cdot K + 12$ képlettel kapható meg (ahol K > 3).

b) Számítsa ki egy K=8 éves labrador esetén az emberévekben kifejezett életkort mindkét képlettel! Az amerikai kutatók képletéből kiszámított érték hány százalékkal nagyobb, mint a másik képletből kiszámított érték? (6 pont)

Megoldás:

a) A feladat szövege szerint: $70 = 37 \cdot \lg K + 31$. (1 pont)

Az egyenletet rendezve: $\frac{39}{37} = \lg K$. (1 pont)

A logaritmus definícióját alkalmazva: $K = 10^{\frac{39}{37}} \approx 11{,}325$. (2 pont)

 $0.325 \text{ \'ev } 0.325 \cdot 12 = 3.9 \text{ hónapnak felel meg.}$ (1 pont)

Tehát kerekítve **11 éves és 4 hónapos** az a kutya, amely emberévekben mérve 70 éves. (1 pont)

b) Lásd: Egyenletek, egyenlőtlenségek 47. feladat

Összesen: 12 pont

38) Adja meg x értékét, ha $2^{x-1} = 16$.

(2 pont)

<u>Megoldás</u>:

$$2^{x-1} = 2^4$$
.

Az exponenciális függvény szigorú monotonitása miatt: x-1=4. (1 pont)

Így $\mathbf{x} = \mathbf{5}$. (1 pont)