Cognitive Relay: Detecting Spectrum Holes in a Dynamic Scenario

Ankit Kaushik, Marcus Müller, Friedrich K. Jondral Communications Engineering Lab, Karlsruhe Institute of Technology (KIT) {Ankit.Kaushik, Friedrich.Jondral}@kit.edu, Marcus.Mueller@student.kit.edu

Ilmenau, 28.08.2013

Introduction and Motivation

Dynamic Spectrum Access (DSA) is one of the many applications of cognitive radio. Main tasks for a DSA operating as Secondary User (SU):

- Sensing → Learning and intelligent access → Act
- Avoid interference to the Primary User (PU)

Purpose of this work:

- Realize the cognitive concepts over the hardware.
- Use sophisticated algorithms to reduce the time constraints and computational complexity
- Demonstrate the radio in a real scenario

Scenario

Cognitive Relay (CR) is network element of the SU system.

- Supports wireless services for devices operating indoor
- Enables dynamic access to increase spectral efficiency

System Model

Cross-Layer optimization

• Receiver model:

$$y[k] = x[k] + w[k]$$

Energy Detection

$$t(\mathbf{y}) = \frac{1}{K} \sum_{k=0}^{K-1} |y[k]|^2 \mathop{\gtrless}_{\mathcal{H}_1}^{\mathcal{H}_0} \gamma$$

 $t(\mathbf{y})$ Test statistics,

K Number of samples,

y[k] Received waveform,

x[k] Transmitted waveform,

w[k] Noise waveform,

 γ Threshold, determined using constant false alarm

Learning

Modelling channel access model as discrete time discrete state Markov Process (Fig.2)

- PU subchannels N
- Multiband sensing through subchannel scanning
- State transitional probabilities (α, β)
- Utilization Probability u

$$u = \mathbb{P}(z(t) = 0)$$
$$= \frac{\alpha}{\alpha + \beta}$$

Implementation and User Interaction

Demonstrator Setup (Fig. Demonstrator)

Test scenario	GSM Channels at 1800 MHz
Hardware platform	USRP N210
Multiband sensing	
Software Defined architecture	GnuRadio

Analysis (Fig.3)

Detection of spectral holes	time slots
Estimation of model parameters $(\widehat{\alpha}, \widehat{\beta})$	Maximum Likelihood Estimation
Channel Ranking	$\mathbf{u} = [u^1, u^2,, u^N]$

Conclusion and Future Work

- Cognitive radio implementation in a dynamic scenario
- Potential to sense non-contiguous multiple band simultaneous over low cost hardware
- Capable to learn and interact with its environment
- Considering other scenarios such as Overlay Systems
 - spatial separation of the PU and SU systems \rightarrow Transmit Power Control
- Cooperation with other the CRs