

Sesión N°10

"Curvas características de una Bomba Centrifuga"

Laboratorio de Máquinas ICM 557

Segundo semestre 2020

Profesores:

Cristóbal Galleguillos Ketterer

Tomás Herrera Muños

Contenido

Objetivo	1
Trabajo de laboratorio	1
Informe	2
Tabla de valores medidos	2
Formulas	3
Caudal:	3
Caudal corregido:	3
Presión de aspiración:	4
Presión de descarga:	4
Altura:	4
Altura corregida:	4
Potencia en el eje de la bomba:	5
Potencia en el eje de la bomba corregida	5
Potencia hidráulica:	5
Rendimiento global:	5
Velocidad tangencial del rodete de descarga:	5
Velocidad meridional de descarga:	6
Phi:	6
Psi:	6
Tabla de Valores Calculados	7
Graficos y Resolucion de Interrogantes	9

¿Cuáles son las condiciones óptimas de operación de esta bomba?	. 12
¿Las curvas tiene la forma esperada?	. 12
¿Cuál es la potencia máxima consumida?	. 12
¿Qué tipo de curva es?	. 12
¿La nube de puntos que conforman esta curva son muy dispersos?	. 14
Al observar todas las curvas anteriores. ¿Qué tipo de bomba centrifuga es? Justifíquelo	. 14
Conclusión	4-

	Valores Calculados N=2700 [Rpm]													
Qx	Q	pax	pdx	Hx	н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	ф	ψ	
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[%]	[m/s]	[m/s]	[-]	[-]	
99,36	99,2864545	-0,685	2,485	3,17	3,16530892	2,30529236	2,30017707	0,85551904	37,1936165	19,0755	2,67742806	0,14035952	0,1704984	
95,04	94,9345172	-0,435	4,365	4,8	4,78935108	2,46519006	2,45699099	1,23772566	50,3756696	19,0755	2,56007068	0,13420726	0,25797694	
90	89,900111	-0,265	5,965	6,23	6,2161786	2,58447345	2,57587765	1,52127345	59,0584515	19,0755	2,42430935	0,12709021	0,33483257	
85,68	85,5849057	-0,115	7,405	7,52	7,5033167	2,66399571	2,65513542	1,74813122	65,8396255	19,0755	2,3079425	0,12098988	0,40416387	
79,2	79,1413768	0,125	9,205	9,08	9,06656308	2,74250298	2,73641755	1,95330411	71,3818003	19,0755	2,13418179	0,11188078	0,48836766	
72	71,9200888	0,365	10,925	10,56	10,5365724	2,7832791	2,77402208	2,0628761	74,3640837	19,0755	1,93944748	0,10167217	0,56754927	
63	62,9300777	0,595	13,005	12,41	12,3824681	2,7832791	2,77402208	2,12123635	76,4678972	19,0755	1,69701655	0,08896315	0,66697788	
54	53,9600296	0,795	14,605	13,81	13,7895635	2,74250298	2,73641755	2,02556541	74,0225267	19,0755	1,45512395	0,07628235	0,74277064	
44,28	44,2472243	1,015	16,125	15,11	15,0876397	2,5835173	2,57778465	1,81731792	70,4992144	19,0755	1,19320164	0,06255153	0,81269112	
33,12	33,0832408	1,245	17,565	16,32	16,2837937	2,34590667	2,33810433	1,46651738	62,7224953	19,0755	0,89214584	0,0467692	0,87712159	
25,2	25,1720311	1,375	18,285	16,91	16,8724848	2,08745933	2,08051656	1,15616782	55,5711906	19,0755	0,67880662	0,03558526	0,90883126	
0	0	1,845	19,805	17,96	17,9201553	1,55068407	1,54552659	0	0	19,0755	0	0	0,96526371	

Objetivo

Analizar el comportamiento de una bomba centrífuga mediante sus curvas características.

Trabajo de laboratorio

- Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada, 3000[rpm] 2900[rpm] y 2700[rpm].
- Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:
 - n velocidad del ensayo, [rpm].
 - nx velocidad de la bomba, en [rpm].
 - pax% Presión de aspiración, en [%].
 - pdx% Presión de descarga, en [%].
 - ΔhxCaudal de la bomba, presión diferencial en el venturímetro en [mm_{hg}].
 - Fx Fuerza medidas en la balanza, en [kp]
 - T_a temperatura de agua en el estanque, en [ºC].
 - P_{atm}Presión atmosférica, en [mm_{hg}].

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para ontener las distintas condiciones de operación, se modifica la cuerva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo. Mida los valores siguientes:

 cpax Altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm]

.

> cpdx Altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

Informe

Tabla de valores medidos

					VALORES	MEDIDOS				
					3070	[rpm]				
	n	срах	cpdx	nx	pax	pdx	Δhx	Fx	T	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	3070	115	165	3075	89,5	6,5	146	1,54	16	758,7
2	3070	115	165	3076	92	13,6	133	1,68	16	758,7
3	3070	115	165	3076	94,8	19,4	118	1,79	16	758,7
4	3070	115	165	3076	97	24,5	104	1,85	16	758,7
5	3070	115	165	3077	99,4	29,1	91	1,89	16	758,7
6	3070	115	165	3078	101,7	34,4	76	1,91	16	758,7
7	3070	115	165	3078	105,2	41,3	59	1,92	16	758,7
8	3070	115	165	3078	107,6	46,2	45	1,89	16	758,7
9	3070	115	165	3078	110	49,2	32	1,83	16	758,7
10	3070	115	165	3077	112,5	54,4	17	1,69	16	758,7
11	3070	115	165	3078	114,3	56,9	9	1,55	16	758,7
12	3070	115	165	3078	120,5	62,1	0	1,13	16	758,7
13										

					VALORES	MEDIDOS				
					2900	[rpm]				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	T	P _{atm}
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2900	115	165	2903	91,5	6,2	134	1,37	16	758,7
2	2900	115	165	2903	93,9	12,7	121	1,47	16,5	758,7
3	2900	115	165	2903	96,3	16,4	109	1,55	16,5	758,7
4	2900	115	165	2903	98,7	21,4	95	1,62	17	758,7
5	2900	115	165	2903	100,5	26,1	82	1,65	17	758,7
6	2900	115	165	2902	103,4	30,5	70	1,68	17	758,7
7	2900	115	165	2904	105,6	35,5	56	1,69	17	758,7
8	2900	115	165	2902	108,1	40,2	43	1,68	17	758,7
9	2900	115	165	2903	110	44,3	30	1,6	17	758,7
10	2900	115	165	2903	112,3	48,1	17	1,49	17	758,7
11	2900	115	165	2904	114,6	51,2	8	1,37	17	758,7
12	2900	115	165	2904	119,5	56,1	0	0,94	17	758,7
13										

					VALORES	MEDIDOS				
					2700					
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	T	P _{atm}
	[rpm]	[mm]	[mm]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]
1	2700	115	165	2702	94,3	5,8	118	1,16	17	758,7
2	2700	115	165	2703	96,8	10,5	106	1,24	17	758,7
3	2700	115	165	2703	98,5	14,5	95	1,3	17	758,7
4	2700	115	165	2703	100	18,1	84	1,34	17	758,7
5	2700	115	165	2702	102,4	22,6	72	1,38	17	758,7
6	2700	115	165	2703	104,8	26,9	60	1,4	17	758,7
7	2700	115	165	2703	107,1	32,1	47	1,4	17	758,7
8	2700	115	165	2702	109,1	36,1	35	1,38	17	758,7
9	2700	115	165	2702	111,3	39,9	23	1,3	17	758,7
10	2700	115	165	2703	113,6	43,5	11	1,18	17	758,7
11	2700	115	165	2703	114,9	45,3	5	1,05	17	758,7
0	2700	115	165	2703	119,6	49,1	0	0,78	17	758,7

Formulas

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de medición Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \left[\frac{m^3}{h}\right]$$

Presión de aspiración:

$$pax = 0.1pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

donde:

Presión de descarga:

$$pdx = 0.4pdx\% + \frac{cpdx}{1000} [m_{ca}]$$

donde:

Altura:

$$Hx = -pax + pdx [m_{ca}]$$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 [m_{ca}]$$

Potencia en el eje de la bomba:

$$Nex = 0.0007355 * Fx * nx [kW]$$

Potencia en el eje de la bomba corregida

Ne = Nex
$$\left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600} [kW]$$

Donde:

- γ = Peso específico del agua en [N/m³]

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \, [\%]$$

Velocidad tangencial del rodete de descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \left[\frac{m}{s} \right]$$

Donde:

- D₂ diámetro exterior del rodete
- B₂ Ancho del rodete

Phi:

$$\phi = \frac{cm_2}{U_2}[-]$$

Psi:

$$\psi = \frac{2gH}{U_2^2}[-]$$

Tabla de Valores Calculados

Valores Calculados N=3070 [Rpm]													
Qx	Q	рах	pdx	Hx	н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	ф	ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[%]	[m/s]	[m/s]	[-]	[-]
111,6	111,418537	-1,165	2,765	3,93	3,9172299	3,48296025	3,46599781	1,1881194	34,2792887	21,68955	3,00459029	0,13852709	0,16320522
107,64	107,430039	-0,915	5,605	6,52	6,49458918	3,80082864	3,77863048	1,89933247	50,2651022	21,68955	2,89703367	0,13356818	0,27058684
99,36	99,1661899	-0,635	7,925	8,56	8,52663855	4,04969242	4,0260408	2,30178659	57,1724605	21,68955	2,67418492	0,1232937	0,35524898
93,6	93,4174252	-0,415	9,965	10,38	10,3395453	4,1854363	4,16099189	2,62937731	63,1911182	21,68955	2,51915971	0,11614624	0,43078089
89,64	89,4360741	-0,175	11,805	11,98	11,9255544	4,27732232	4,24819668	2,90345352	68,3455532	21,68955	2,41179581	0,11119621	0,49685946
75,24	75,0444444	0,055	13,925	13,87	13,7979949	4,32398979	4,29036202	2,81876002	65,6998175	21,68955	2,02370104	0,09330304	0,57487175
70,56	70,3766082	0,405	16,685	16,28	16,1954836	4,34662848	4,31282465	3,10274316	71,9422517	21,68955	1,8978249	0,08749951	0,67475935
62,28	62,1181287	0,645	18,645	18	17,9065543	4,27871241	4,24543677	3,0279867	71,323326	21,68955	1,67512096	0,07723171	0,74604842
53,64	53,5005848	0,885	19,845	18,96	18,8615706	4,14288027	4,110661	2,74700821	66,8264352	21,68955	1,44273424	0,06651748	0,78583767
32,4	32,3262918	1,135	21,925	20,79	20,6955155	3,82469562	3,79865206	1,82119191	47,9431093	21,68955	0,87173342	0,0401914	0,86224609
23,4	23,3391813	1,315	22,925	21,61	21,4978133	3,50899695	3,4817074	1,36585148	39,2293587	21,68955	0,62938071	0,02901769	0,89567257
0	0	1,935	25,005	23,07	22,9502338	2,55817197	2,53827701	0	0	21,68955	0	0	0,95618539

					Va	lores C							
Qx	Q	рах	pdx	Нх	н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	ф	ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[%]	[m/s]	[m/s]	[-]	[-]
108	107,888391	-0,965	2,645	3,61	3,60254261	2,92516441	2,91610506	1,05805299	36,2830888	20,4885	2,90939392	0,14200131	0,16820731
102,6	102,493972	-0,725	5,245	5,97	5,95766742	3,13868006	3,12895944	1,66225693	53,1249115	20,4885	2,76392422	0,13490125	0,27817109
95,76	95,6610403	-0,485	6,725	7,21	7,19510587	3,30949258	3,29924295	1,87368191	56,7912681	20,4885	2,57966261	0,12590783	0,33594867
90	89,9069928	-0,245	8,725	8,97	8,95147014	3,45895353	3,44824102	2,19084379	63,535112	20,4885	2,42449493	0,11833443	0,41795556
83,16	83,0740613	-0,065	10,605	10,67	10,6479583	3,52300823	3,51209733	2,40799378	68,5628431	20,4885	2,24023332	0,10934101	0,49716676
76,68	76,6271537	0,225	12,365	12,14	12,1232725	3,58582728	3,57841855	2,52886785	70,669985	20,4885	2,06638149	0,10085567	0,56605106
68,4	68,3057851	0,445	14,365	13,92	13,8816793	3,60965748	3,59476208	2,5812084	71,8047076	20,4885	1,84198164	0,0899032	0,64815332
61,2	61,1578222	0,695	16,245	15,55	15,5285739	3,58582728	3,57841855	2,58527746	72,2463688	20,4885	1,64922466	0,08049514	0,72504893
50,4	50,3479159	0,885	17,885	17	16,9648821	3,4162504	3,40567014	2,32517647	68,2736839	20,4885	1,35771716	0,06626728	0,79211199
34,56	34,5242852	1,115	19,405	18,29	18,2522173	3,18138319	3,17153032	1,71539405	54,0872664	20,4885	0,93100605	0,04544042	0,85221931
22,68	22,6487603	1,345	20,645	19,3	19,2468686	2,92617204	2,91409707	1,18666489	40,7215291	20,4885	0,61076233	0,02981001	0,89866085
0	0	1,835	22,605	20,77	20,7128218	2,00773848	1,99945346	0	0	20,4885	0	0	0,96710808

					Va	lores C	alculac	los					
Qx	Q	рах	pdx	Нх	Н	Nex	Ne	Nh	η_{gl}	U ₂	cm ₂	ф	ψ
[m ³ /h]	[m ³ /h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[%]	[m/s]	[m/s]	[-]	[-]
99,36	99,2864545	-0,685	2,485	3,17	3,16530892	2,30529236	2,30017707	0,85551904	37,1936165	19,0755	2,67742806	0,14035952	0,1704984
95,04	94,9345172	-0,435	4,365	4,8	4,78935108	2,46519006	2,45699099	1,23772566	50,3756696	19,0755	2,56007068	0,13420726	0,25797694
90	89,900111	-0,265	5,965	6,23	6,2161786	2,58447345	2,57587765	1,52127345	59,0584515	19,0755	2,42430935	0,12709021	0,33483257
85,68	85,5849057	-0,115	7,405	7,52	7,5033167	2,66399571	2,65513542	1,74813122	65,8396255	19,0755	2,3079425	0,12098988	0,40416387
79,2	79,1413768	0,125	9,205	9,08	9,06656308	2,74250298	2,73641755	1,95330411	71,3818003	19,0755	2,13418179	0,11188078	0,48836766
72	71,9200888	0,365	10,925	10,56	10,5365724	2,7832791	2,77402208	2,0628761	74,3640837	19,0755	1,93944748	0,10167217	0,56754927
63	62,9300777	0,595	13,005	12,41	12,3824681	2,7832791	2,77402208	2,12123635	76,4678972	19,0755	1,69701655	0,08896315	0,66697788
54	53,9600296	0,795	14,605	13,81	13,7895635	2,74250298	2,73641755	2,02556541	74,0225267	19,0755	1,45512395	0,07628235	0,74277064
44,28	44,2472243	1,015	16,125	15,11	15,0876397	2,5835173	2,57778465	1,81731792	70,4992144	19,0755	1,19320164	0,06255153	0,81269112
33,12	33,0832408	1,245	17,565	16,32	16,2837937	2,34590667	2,33810433	1,46651738	62,7224953	19,0755	0,89214584	0,0467692	0,87712159
25,2	25,1720311	1,375	18,285	16,91	16,8724848	2,08745933	2,08051656	1,15616782	55,5711906	19,0755	0,67880662	0,03558526	0,90883126
0	0	1,845	19,805	17,96	17,9201553	1,55068407	1,54552659	0	0	19,0755	0	0	0,96526371

Graficos y Resolucion de Interrogantes

¿Cuáles son las condiciones óptimas de operación de esta bomba?

El rendimiento óptimo de esta bomba esta alrededor de un 76% a un caudal aproximado de 62.9 (m³/hr) a 2700[rpm], en este punto la potencia del eje es la más similar a la potencia hidráulica, por lo tanto, sabemos que la energía se está utilizando de mejor forma y que el punto de diseño de una bomba debería tratar de estar lo más cercano posible a este punto.

¿Las curvas tiene la forma esperada?

Las curvas tienen la forma esperada para una bomba centrifuga, a pesar de que un par de puntos se arrancan de la tendencia normal de esta, estos puntos se pueden alejar por imprecisión de los instrumentos o que el flujo se encuentre inestable.

¿Cuál es la potencia máxima consumida?

La potencia eléctrica consumida por la bomba es alrededor de 4.3[kW] y ocurre a las 3070[rpm].

¿Qué tipo de curva es?

La curva es del tipo sin sobre-carga, ya que estas se caracterizan en que la potencia máxima necesaria se produce en la condición de óptimo rendimiento y haya un aumento o disminución de caudal la potencia requerida disminuirá.

¿La nube de puntos que conforman esta curva son muy dispersos?

No, en la tendencia de la curva no son dispersos, al ser estos parámetros adimensionales y al estar ambos divididos por la velocidad, se logra crear una independencia de esta por lo que las curvas que tienen la misma forma coinciden una sobre la otra.

La curva al ser de característica ascendente permite concluir que esta curva es propia de una bomba de velocidad específica media.

Al observar todas las curvas anteriores. ¿Qué tipo de bomba centrifuga es? Justifíquelo.

En el mejor rendimiento de la bomba el caudal es de 276[gpm] aproximadamente, llega aproximadamente a una velocidad específica de 3000, según el gráfico adjuntado y con eso se puede determinar la forma del rodete.

La bomba, es una bomba centrifuga radial.

Conclusión

Finalmente concluimos que las bombas son elementos fundamentales en la industria con diversas aplicaciones como la minería, agronomía, construcción, etc. Al ser elementos tan presentes en el medio es que es necesario entender y comprender las curvas que representan los distintos tipos de bombas que podemos encontrar, determinar sus parámetros de funcionamiento para así a la hora de invertir en u equipo de este estilo tomar una correcta decisión.