

Collision detection in PhysX

Recent Advances in Real-Time Collision and Proximity Computations for Games and Simulations
SIGGRAPH 2010 Course

Richard Tonge NVIDIA

Course Outline

- 2:00pm Course Introduction [Yoon]
- 2:10pm Introduction to Collision and Proximity Queries [Manocha]
- 2:30pm Proximity Queries for Rigid and Articulated Characters [Kim]
- 3:00pm Collision Detection for Deformable and Fracturing Models [Yoon]
- 3:30pm Break
- 3:45pm GPU-Based Proximity Computations [Manocha]
- 4:15pm Optimizing Proximity Queries for CPU, SPU and GPU [Coumans]
- 4:45pm Collision detection in PhysX [Tonge]

Collision detection in PhysX

- PhysX overview
- GPU considerations
- Fluids
- Cloth
- Rigid bodies

What is PhysX?

- Immersion and interactivity for games
 - Static walls vs walls that blow up when you shoot them
 - Rendered fog vs fog that swirls around the player
 - Bare rooms vs rooms with movable objects and clutter
- Large scale effects for VFX production
 - Explosions, building collapse etc.

PhysX Features

- Rigid bodies
 - Destruction, clutter, ragdolls, vehicles
- Fluids
 - Debris effects, smoke
- Deformables
 - Clothing, organic creatures, meaty chunks
- Authoring –3ds Max, Maya, Softimage, APEX

What is PhysX?

- User base
 - Over 150 games
 - Third party VFX production plugins (TV, film etc.)
- Platforms
 - PC, Mac, Xbox 360, Playstation3, Wii, iPhone
- Processors
 - Optimized for CPUs, SPUs and GPUs

Overview of Collision in PhysX

- Broadphase
 - AABB vs AABB, 3 axis sweep and prune
- Midphase
 - AABB tree vs (AABB, OBB, sphere,capsule,plane, ray)
 - OPCODE AABB tree
- Narrowphase
 - Coming up...

Narrowphase

- SPH Fluids (CCD)
 - Particles vs static triangle mesh
 - Particles vs dynamic primitives
- Cloth (CCD)
 - Vertices vs static triangle mesh
 - Vertices vs dynamic primitives
- Rigid body (Discrete)
 - Convex mesh and primitives vs static triangle mesh
 - Convex, primitives vs Convex, primitives

Collision detection in PhysX

- PhysX overview
- GPU considerations
- Fluids
- Cloth
- Rigid bodies

Why GPU PhysX?

- Physics is highly parallel
 - For 1000s of threads, GPU is the right tool for job
- Rendering is quite good these days
 - Spending GPU cycles on physics can have greater bang per buck than improving rendering

GPU algorithm goals

- For best GPU performance, we need
 - Work for thousands of threads
 - Minimal register usage to maximize num concurrent threads and hide latency
 - Minimal synchronization between threads
 - Similar amount of work per thread
 - Data locality

Collision detection in PhysX

- PhysX overview
- GPU considerations
- Fluids
- Cloth
- Rigid bodies

Fluid Requirements

- We use an SPH model where fluid is discretized as particles
- So collision detection is just particle vs primitive and particle vs mesh
- Requirements
 - Particles must not leak or stick
 - No penetration even at high velocities
 - Static object collision must have higher priority than dynamic
 - Target 10000 to 100000 particles at 60Hz on GPU

Implementation

- CCD finds first impact point, contact constraints allows sliding
- Constraint solver is not required as each particle is integrated separately

GPU Implementation – uniform grid

Fluids

Collision detection in PhysX

- PhysX overview
- GPU considerations
- Fluids
- Cloth
- Rigid bodies

Cloth Requirements

- High velocity without tunnelling
 - Typical use case is fast moving clothed character
- Minimize resting penetration with rigid objects
 - Cloth is often in contact with character
- Support tearing and rigid attachment
- Lots of independent threads for GPU
- Target 10 cloths with up to 10K vertices on GPU at 60Hz

Cloth Model

- Cloth is discretized as a triangle mesh
- Collision is CCD to eliminate tunneling
- Collision detection is performed on vertices only
 - So cloth triangles must be small to minimize penetration
 - But, it's very fast, especially on GPU
- Self collision

Cloth Midphase

- Cloth vs triangle mesh AABB collision reported by broadphase
- Cloth ray AABB tested against shape AABBs
- Finally, ray tested against triangles or shapes

Cloth Pipeline

Cloth video

Collision detection in PhysX

- PhysX overview
- GPU considerations
- Fluids
- Cloth
- Rigid bodies

Rigid Body Requirements

- Smooth sliding
- Stable stacking
- Stable resting, no jitter
- Parallelizable >1 thread per pair for GPU
- Speed targets
 - 100 -1000 bodies on consoles and PC CPU at 60Hz
 - 1000-10000 bodies on GPU at 60Hz

Rigid Body Design Options

- CCD based or penetration based
- GJK or SAT
- Simultaneous or incremental manifold

Rigid Body Design Choices

- Penetration based
 - Bodies penetrate due to initial positioning and numerical error anyway.
- SAT with projection and polygon clipping
 - Lots of threads per pair for GPU implementation.
- Simultaneous contact manifold generation
 - Robust, easy to implement, lots of threads for GPU.

GPU Rigid Bodies 0.9

- Used in Batman: Arkham Asylum
- Bodies voxelized, spheres placed at non-empty voxels
- Collision detection is sphere-sphere and sphere-tri mesh
- Constraints solved by iterative LCP solver

GPU Rigid Bodies 0.9

GPU Rigid Bodies 1.0

- Uses actual geometry instead of spheres
- Collision detection is convex-convex and convextri mesh
- Same broadphase, midphase, narrowphase, friction model and solver as CPU PhysX
- Entire pipeline on GPU
- Coming soon...

Example user: RayFire Tool

- 3rd party 3ds Max plugin for VFX production
- Designed by VFX artist Mir Vadim
- Used in TV, commercials, movies and games
- Utilizes PhysX for rigid body collision detection and simulation
- More info www.mirvadim.com

RayFire Tool video

About the video

- Scenes used up to 2000 PhysX convex bodies
- Static environment
 - Unlike games, detailed static meshes not required
 - Large static box blocking volumes are used instead
 - Can use static tri meshes if needed for close ups
- Demonstrates PhysX broadphase, midphase and convex-convex narrowphase

Questions

SIGGRAPH 2010

WONDER!

"The People Behind The Pixels"

Community ... Clarity ... Content