

Today

- 1. Radio Fundamentals
- 2. Electricity
- 3. Electrical Circuits and Components (as much as we have time for)
 - 1. Next Week we'll pick up next week where we left off
- 1pm: Amateur Radio Club Meeting
 - Everyone is welcome to join!
 - We'll be joined by our ARES Emergency Coordinator and Training Coordinator

Metric Prefixes – The Language of Radio (see Table 2.1)

- Metric system used because numbers cover large range of values
- Most common prefixes in radio ...
 - Pico (p), 0.00000000001, 10⁻¹²
 - Nano (n), 0.00000001, 10⁻⁹
 - Milli (m), 0.001, 10⁻³
 - Centi (c), 0.01, 10⁻²
 - Kilo (k), 1000, 10³
 - Mega (M), 1000000, 10⁶
 - Giga (G), 1000000000, 10⁹

NOTE: **M**ega and **G**iga use capital letters in the abbreviation.

Table 2.1: International System of Units (SI) — Metric Units (Martin Amateur Radio

PREFIX	SYMBOL	MULTIPLICATION FACTOR
Tera	Т	10 ¹² = 1,000,000,000
Giga	G	109 = 1,000,000,000
Mega	M	$10^6 = 1,000,000$
Kilo	k	$10^3 = 1000$
Hecto	h	$10^2 = 100$
Deca	da	$10^1 = 10$
Deci	d	$10^{-1} = 0.1$
Centi	С	$10^{-2} = 0.01$
Milli	m	$10^{-3} = 0.001$
Micro	μ	$10^{-6} = 0.000001$
Nano	n	10 ⁻⁹ = 0.00000001
Pico	р	$10^{-12} = 0.000000000001$

NOTE

$$10^{-1} = \frac{1}{10}$$

$$10^{-2} = \frac{1}{100}$$

$$10^{-3} = \frac{1}{1000}$$

PRACTICE QUESTIONS

We will cover some, but not all, of the practice questions – some study will be necessary!

How many milliamperes is 1.5 amperes?

- A. 15 milliamperes
- B. 150 milliamperes
- C. 1500 milliamperes
- D. 15,000 milliamperes

Electromagnetic Waves

- Electromagnetic waves are made up of electric and magnetic energy (fields)
 - Vary in the pattern of a sine wave
 - Travel at the speed of light
- How radios communicate with electromagnetic waves:
 - Transmitter signal makes electrons in the antenna move
 - Antenna radiates this energy as electromagnetic waves
 - Waves travel some distance
 - As the waves encounter an antenna, the electrons in the antenna move in sync with the wave, which is interpreted by the receiver

Figure 2.1: The frequency of a signal and its period are reciprocals. Higher frequency means shorter period and vice-versa.

WAVE VOCABULARY

- Oscillation
- **Amplitude**
- Frequency (hertz, Hz, cycles/sec)
- Period (T, seconds, s)
- **Fundamental**
- **Harmonics**

Phase

Position within a cycle is called *phase*. Phase is used to compare how sine wave signals are aligned in time. Measured in degrees.

What is the unit of frequency?

- A. Hertz
- B. Henry
- C. Farad
- D. Tesla

What describes the number of times per second that an alternating current makes a complete cycle?

- A. Pulse rate
- B. Speed
- C. Wavelength
- D. Frequency

What is the abbreviation for kilohertz?

- A. KHZ
- B. khz
- C. khZ
- D. kHz

T5C13 D 2-3

The Radio ("RF") Spectrum

"Band": range of frequencies with similar properties or common purpose

"Amateur Bands": bands used by hams (e.g., 144-148 MHz)

Table 2.2: RF Spectrum Ranges

Range Name	Abbreviation	Frequency Range
Very Low Frequency	VLF	3 kHz – 30 kHz
Low Frequency	LF	30 kHz – 300 kHz
Medium Frequency	MF	300 kHz – 3 MHz
High Frequency	HF	3 MHz – 30 MHz
Very High Frequency	VHF	30 MHz – 300 MHz
Ultra High Frequency	UHF	300 MHz – 3 GHz
Super High Frequency	SHF	3 GHz – 30 GHz
Extremely High Frequency	EHF	30 GHz – 300 GHz

Figure 2.4

What frequency range is referred to as VHF?

- A. 30 kHz to 300 kHz
- B. 30 MHz to 300 MHz
- C. 300 kHz to 3000 kHz
- D. 300 MHz to 3000 MHz

T3B08 B 2-4

What does the abbreviation "RF" mean?

- A. Radio frequency signals of all types
- B. The resonant frequency of a tuned circuit
- C. The real frequency transmitted as opposed to the apparent frequency
- D. Reflective force in antenna transmission lines

T5C06 A 2-4

Wavelength (λ)

$$\lambda = \frac{c}{f}$$
 Speed of light

Frequency (Hz)

Wavelength = meters per cycle

Ham bands can be referred to by:

- Frequency (144MHz)
- Wavelength (2m)

If you know c or f, you know the other! (frequency, wavelength)

38

What is the velocity of a radio wave traveling through free space?

- A. Speed of light
- B. Speed of sound
- C. Speed inversely proportional to its wavelength
- D. Speed that increases as the frequency increases

What is the formula for converting frequency to approximate wavelength in meters?

- A. Wavelength in meters equals frequency in hertz multiplied by 300
- B. Wavelength in meters equals frequency in hertz divided by 300
- C. Wavelength in meters equals frequency in megahertz divided by 300
- D. Wavelength in meters equals 300 divided by frequency in megahertz

T3B06 D 2-5

Radio Station Basics – 3 Elements

- Transmitter ("XMTR")
 - Generates a signal from speech/CW/data
- Receiver ("RCVR")
 - Recovers the speech/CW/data from the signal
- Antenna
 - Converts signals from the transmitter into radio waves
 - Captures radio waves, turns them into signals for the receiver
- Feed line / Transmission line
 - Connects the antenna to the transmitter/receiver

Most amateur radios are **Transceivers ("XCVR")**, which combine a transmitter with a receiver

CW = "continuous wave", frequently conveying Morse Code

Repeaters

- A radio that simultaneously re-transmits received signals on a different frequency
 - "Duplex communication"
- Purpose: allow low-power portable stations to communicate over a larger area
 - Usually at high points (mountains, buildings)
 - Critical resource in emergencies
- More about repeaters coming in a later chapter

50

What is a transceiver?

- A. A device that combines a receiver and transmitter
- B. A device for matching feed line impedance to 50 ohms
- C. A device for automatically sending and decoding Morse code
- D. A device for converting receiver and transmitter frequencies to another band

What type of amateur station simultaneously retransmits and the signal of another amateur station on a different channel or channels?

- A. Beacon station
- B. Earth station
- C. Repeater station
- D. Message forwarding station

Fundamentals of Electricity

- Radios are powered by electricity and radio signals are a form of electrical energy
- A basic understanding of how we control electricity allows you to better install and operate your radio
- Electrical charge can be positive or negative
 - Opposite charges attract each other (like charges repel)
- Electrical current is the flow of electrons
 - *Electron:* negatively-charged atomic particle
 - Electrons surround the atom's nucleus of protons (+) and neutrons (neutral no charge)
 - Electrons move in response to electromotive force and are not tied to a single atom

Basic Electrical Concepts

- Voltage: electromotive force "electric potential"
 - **Units**: volts (**V**) (may be represented by **E** or **V** in formulas)
 - Measured by a *voltmeter*
- Current: movement of electrons
 - Units: amperes ("amps", A) (represented by I in formulas)
 - Measured by an *ammeter*
- Resistance: opposition to current
 - Units: ohms (Ω) (represented by R in formulas)
 - Measured by an ohmmeter
- Conductors permit current flow (low resistance)
- Insulators block current flow (high resistance)
- Polarity indicates whether voltages are + or -

Voltage, Current and Resistance all affect each other in a circuit

Basic Electrical Concepts (cont.)

Analogy: water flowing through a pipe

Multimeters

- 3 basic test meters: voltmeters, ammeters, and ohmmeters
- Multimeters combine all 3 into a single tool
 - Short for "multifunction meter"
 - Measures all three electrical values: voltage, current, and resistance
 - Other names: VOM (volt-ohm meter) or DVM (digital volt meter)
- Ways meters are damaged:
 - Measuring voltage of an energized circuit when the meter is set to measure resistance
 - Exceeding meter's voltage rating ... voltmeter and leads not rated for use at the voltages to be measured

The Two Kinds of Current

- Direct Current (DC)
 - Current flows in one direction
 - Common source: batteries
- Alternating Current (AC)
 - Current flow alternates directions periodically
 - Each complete reversal is a cycle
 - Frequency: number of cycles per second (units: hertz "Hz")
 - Common example: household current

How Current Flows

- Circuit: any path through which current can flow
 - Electrical circuits compose from components and their connections
- Kinds of circuits
 - Series: when the same current must flow through all components
 - Parallel: when different current (but same voltage) flows through components
 - Short circuit: a direct connection between two points in a circuit
 - Open circuit: an unconnected circuit made by breaking a current path

Series Circuit

Same <u>CURRENT</u> at all points in the circuit. Series circuits provide one and only one path for current flow.

Parallel Circuit

Same <u>VOLTAGE</u> at all parts of the circuit. Parallel circuits provide multiple paths for current flow.

Ohm's Law: E=IR

- E: voltage
 - Units volts (V)
- I: current
 - Units amperes (A)
- R: resistance
 - Units ohms (Ω)

Figure 3.5A —If you know any two of the quantities, the equation to find the third — just cover up the unknown quantity. The positions of the remaining two symbols show if you have to multiply (side-by-side) or divide (one above the other).

Examples of how to use Ohm's Law

Given I = 2 Amperes

R = 10 Ohms

Find: E (voltage)

E = I × R = 2 × 10 = 20 Volts Voltage Equals 20 Volts

Given E = 12 Volts

R = 6 Ohms

Find: I (current)

I = E / R = 12 6 = 2 Amps

Current Equals 2 Amperes

What is the resistance of a circuit in which a current of 3 amperes flows when connected to 90 volts?

$$R = E / I = 90 V / 3 A = 30 \Omega$$

What is the current in a circuit with an applied voltage of 120 volts and a resistance of 80 ohms?

$$I = E / R = 120 V / 80 \Omega = 1.5 A$$

What is the voltage across a 2-ohm resistor if a current of 0.5 amperes flows through it?

$$E = I \times R = 0.5 A \times 2 \Omega = 1 V$$

- *Power*, represented by the symbol P, is the rate at which electrical energy is used
 - Measured in watts (W)
- A device that consumes or dissipates power is referred to as a *load*

$$P = I \times E$$

 $E = P / I$
 $I = P / E$

Figure 3.5B — Simple diagram to help remember the Ohm's Law. If you know any two of the quantities, the equation to find the third — just cover up the unknown quantity. The positions of the remaining two symbols show if you have to multiply (side-by-side) or divide (one above the other).

Example Power Calculations

How much power is delivered by a voltage of 13.8 volts DC and a current of 10 amperes?

$$P = E \times I = 13.8 \text{ V} \times 10 \text{ A} = 138 \text{ W}$$

How much current is required to deliver 120 watts at a voltage of 12 volts DC?

$$I = P / E = 120 W / 12 V = 10 A$$

Components and Units

- Components in electrical circuits performs functions such as storing or using energy, routing current, or amplifying signals
- The three most basic types of electronic components are *resistors*, *capacitors* and *inductors*
- *Schematic diagrams* are a convenient shorthand for complex circuits

More on schematics later ...

Resistors

- Function: To restrict the flow of current, like a valve in a water pipe
- Resistance measured in ohms (Ω)
- Remember Ohm's Law (R = resistance)

Resistor Schematic

control.

Large Variety of Resistors!

Capacitors

- The function of a capacitor is to store electrical energy called *capacitance*
 - Capacitance measured in farads (F)
- Acts like a short-term battery

Stores energy in an electric field created by voltage between the electrodes with insulating dielectric material between them

Large Variety of Capacitors!

Inductors

- Function: To store energy in the magnetic field created by current flowing in a wire
 - Called *inductance*, measured in *henrys* (H)
- Made from wire wound in a coil, sometimes around a core of magnetic material that concentrates the magnetic energy

Variable Components

- All three types of basic components are also available as adjustable or variable models
- A variable resistor is also called a
 potentiometer, frequently used to
 adjust voltage or potential, such as for
 a volume control

Transformers

- Made from two or more inductors that share their stored energy
 - Transfer energy from one inductor to another, but change voltage and current
- Example: laptop charging brick
 - Transfer energy from 120V AC to a lower voltage and current

Reactance and Impedance

- In a resistor, AC voltages and currents are exactly in step, or in phase
- In capacitors and inductors, voltage and current have a *phase* difference
 - Capacitors and inductors store energy, resistors dissipate energy
- Energy storage creates an effect called *reactance* (symbol *X*) that acts like a resistance in opposing the flow of AC current
 - Capacitors create capacitive reactance (X_C)
 - Inductors create *inductive reactance* (X_i)
 - The effects of each are complementary

Reactance and Impedance (cont.)

- The combination of *resistance* (R) and *reactance* (X) is called *impedance*, represented by the symbol Z (units: ohms)
 - Impedance represents a circuit's *opposition* to *both* AC and DC currents

 Radio circuits almost always have both resistance and reactance, so impedance is often used as a general term to mean the circuit's opposition to AC current flow

Resonance

- Circuits that contain both a capacitor and an inductor are called resonant circuits or tuned circuits
- A component's reactance depends on frequency
 - Inductive reactance (X₁) increases with frequency, capacitive reactance (X_C) decreases
- At the frequency for which a circuit's X_L and X_C are equal, their effects cancel
 - This is the circuit's *resonant frequency*
- At resonance, a circuit has only resistance, which affects AC and DC current equally
- A tuned circuit acts as a filter
 - A filter passes or rejects signals at its resonant frequency
 - Useful for radios to filter out unwanted signals!

Resonant or Tuned Circuit

- *Capacitors* and *inductors* connected together create a tuned circuit
- When X_L and X_C are equal, the circuit is resonant
- If C or L are adjustable, the resonant frequency can be varied or tuned

Diodes, Transistors and Integrated Circuits (Semiconductors)

- Components made of "OK" conductors (not metals)
 - N-Type semiconductors: made from materials with more electrons
 - *P-Type semiconductors*: made from materials with fewer electrons
- Structures of N and P material can control current flow
- When N- and P-type material are placed in contact with each other, the result is a PN junction that conducts better in one direction than the other

Diodes

- One-way Current
 - Two electrodes (Anode, Cathode)
 - AC current is changed to varying pulses of DC (called rectification)
 - Diodes used to change AC power to DC power are called *rectifiers* (heavy-duty diodes)
- Designator (D or CR)
- If AC voltage is applied to a diode, the result is a pulsing DC current
 - Current is blocked when the voltage tries to push electrons in the wrong direction

Stripe on diode indicates **CATHODE**

Diodes (cont.)

- When current flows through a diode, a small positive voltage develops from the anode to the cathode
 - Called forward voltage drop, usually less than 1 V
 - Voltage depends on the type of diode and the materials it's made from
- Light-emitting diode or LED gives off light when current flows through it in the forward direction from anode to cathode
 - Used as visual indicators (use less power than incandescent bulbs/lamps)
 - Material from which the LED is made determines the color of light

Anode → Cathode

Transistors

- The function of a transistor is to control large signals with small ones
 - An "electronically controlled current valve"
 - When used as an amplifier, a transistor produces gain
 - Transistors can also be used as a switch
- Designator (Q)

Bipolar Junction Transistor (BJT)

Field-Effect
Transistor (FET)

Transistors (cont.)

- Two common types of transistors: bipolar junction transistors (BJT) and field effect transistors (FET)
- The Bipolar Junction Transistor (BJT) has three layers of N or P material connected to electrodes
- Depending on the arrangement of layers, a BJT is either an NPN or PNP transistor
- The three electrodes of an FET are the gate, drain, and source
- RF power transistors are used as the primary gain-producing component in RF power amplifiers

Bipolar Junction Transistor Schematic (showing the 3 electrodes)

Transistors (cont.)

- The Field-Effect Transistor (FET) has a conducting path or channel of N and P material connected to the drain and source electrodes
- Voltage applied to the gate electrode controls current through the channel

Integrated Circuits

- An integrated circuit (IC or chip) is made of many components connected together as a useful circuit and packaged as a single component
- Designator (IC or U)

Protective Components

 Protective components (such as fuses and circuit breakers) are used to prevent equipment damage or safety hazards such as fire or electrical shock

- Designed to remove power in case of a circuit overload
 - Fuses blow one time protection
 - Short length of metal is melted when circuit overloaded, which breaks the circuit
 - Circuit breakers trip can be reset and reused
- Important: use the correct current rating!
 - Replacing with a higher current rating could damage equipment or start a fire

Schematics

Fuses

Circuit Breaker

Ground Fault
Circuit Interrupter
(GFCI) circuit
breaker

Amateur Radio⁶

Circuit Gatekeepers ... Switches & Relays

- Switches and relays control current through a circuit by connecting and disconnecting paths for current to follow
- Switches and relays are described by # poles, # throws
 - The combination of poles and throws describes the switch
 - Each circuit controlled by the switch is a *pole*
 - Each position is called a *throw*
- Switches are operated manually
- Relays are controlled electronically by electromagnet

Switch Configurations

Switches

Relay

Indicator, Meters and Displays

- Indicators and displays are important components for radio equipment
 - An indicator is either ON or OFF
- A *meter* provides information as a numeric value
- A display combines indicators, numbers, and labels
 - A liquid crystal display or LCD is used on the front panel of many radios and test instruments

Fig 3.15 – Schematic Symbols (see text)

Fig 3.15 – Schematic Symbols (cont., see text)

Schematic Diagrams and Symbols

- *Symbols* are used when drawing a circuit because there are so many types of components
- Schematic diagrams are a visual description of a circuit and its components that uses standardized drawings called circuit symbols
 - Shows how the components are connected electrically

Radio Circuits – Big Picture

- An *oscillator* produces a steady signal at one frequency
 - Used in both receivers and transmitters to determine the operating frequency
- The process of combining data or voice signals with an RF signal is modulation
- Modulators add the data or voice signal to an RF signal or carrier
 - A demodulator circuit extracts the information from a modulated signal
- Mixers combine two RF signals and shift one of them to a third frequency (closely related to a modulator)

Next Week

- Please read:
 - Chapters in the ARRL Book
 - Ch 4: Propagation, Antennas and Feed Lines
 - **Ch 5**: Amateur Radio Equipment
- Also start reviewing question pool:
 - Subelements from today:
 - **T5** Electrical Principles
 - **T6** Electronic and Electrical Components
 - Question pool is in the back of the book, and on ARRL website
 - https://arrl.org/question-pools (look for the Technician Class Question Pool)