Computational Models Homework Assignment 6 VLABOI MARIAN

Exercise 1.51 pose 80

Show = L is an esminolence relation as Reflexine

- 5) Symmetric
- c) Transitive
- o) Reflexive: $x = L \times is two$ For one shows z, $x \ge is in L iff *x x is in L otherefore <math>x \equiv L \times is two$. Hence $\equiv L \otimes neflexive$
- 5) Symphic: $X \equiv L y$ implies $y \equiv L X$ If $X \equiv L y$ is true then H_{2} , $X \neq L$ is L iff $y \neq L$ in Lthus is also equivolent to this statement: H_{2} , $y \neq L$ is in L iff $X \neq L$ is six Ltherefore $y \equiv L X$ is also true

 Hence $\equiv L$ is symmetric
- c) housitive: If a = 25 and S = 2c then a = 2c this can be whitten as $t \neq a \neq ec$ iff $b \neq ec \neq a$ and therefore $t \neq 2$, at $ec \neq 2$ iff $c \neq ec \neq 2$ therefore $t \neq 2$, at $ec \neq 2$ iff $c \neq ec \neq 2$ a = 2c is true. Hence = 2 is transitive since we proved = 2 is reflexive, symetric and housitive we can say = 2 is an equivolence relation

The stotes dust are unmarked and vice can eauthup are (2,5), (1,6), (3,4)

		a	5
23.	- 1	2.	3
	2	5	۵
	(3)	, ,	4
	4	6	3
	5	2	1
	6	5	4

		_			_		-
	١	X	X	X	X	X	Γ
	2	2	X	X	X	X	
Í	3	1	1	\times	X	X	
	4	1	1	0	X	X	Ī
•	5	2	0	-1	1	\times	
•	6	P	3	1	1	2	Ī
		1	2	3	4	5	

$$(1,2) \stackrel{\alpha}{=} 3 (2,5)$$

 $\stackrel{5}{=} 3 (3,6)$

$$(3,4)$$
 $\frac{9}{5}$ $(1,6)$ $\frac{5}{5}$ $(4,3)$

$$(2,6)$$
 $\stackrel{2}{\sim} > (5,5)$ $(5,6)$ $\stackrel{Q}{\sim} > (2,5)$ $\stackrel{5}{\sim} > (1,4)$

We can reduce the poins (314), (2,5) and (1,6)

$$\begin{array}{c|cccc}
(1,6) & (2,5) & (3,4) \\
(2,5) & (2,5) & (6,1) \\
(3,4) & (1,6) & (4,3)
\end{array}$$

•	0	
٠,	"	
4	·	

	a	5
0	3	2
(1)	3	5
2	2	6
3	2	١
4	5	4
5	5	3
6	5	0

$$(0,3) = (2,4)$$
 $(0,6) = (2,1)$ $(0,6) = (2,1)$

$$(1,2) \stackrel{a}{=} > (2,b)$$
 $(1,3) \stackrel{e}{=} > (2,b)$ $\stackrel{b}{=} > (4,6)$

$$(0,1)$$
 $\stackrel{Q}{\longrightarrow}$ $(3,2)$ $(5,4)$

$$(213)$$
 $\frac{9}{5} > (6,6)$

Equireoleux closses (0,1), (2,6), (3,2), (3,6), (4,5)

	<u>a</u>	3
(0,1)	(3,2)	(5,4)
(4,5)	(011)	(213,6)
(51279)	(213,6)	(2,3,6)