COMS 3003A Solutions to HW 8

DMITRY SHKATOV

Due 1 May, 2024

Reading: Leary & Kristiansen, Chapter 1.

- 1. Consider the standard model of arithmetic ω , i.e. the set of natural numbers with the usual relations and operations. We assume that the language of arithmetic has been extended, using definitions, with binary predicate letters < and \le (see HW 7 for details). Determine if the following sentences are true or false in ω :
 - (a) $\forall x \exists y \, x < y$;

True: Choose an arbitrary $n \in \mathbb{N}$ as the value for x; surely, we can find $m \in \mathbb{N}$, as the value for y, such that n < m is true (for example, pick m = n + 1).

(b) $\forall y \exists x \, x < y;$

False: Assign 0 to y; we cannot find the value for x that makes x < y true.

(c) $\exists x \forall y \, x \leqslant y$;

True: Choose an arbitrary $n \in \mathbb{N}$ as the value for x; surely, we can find $m \in \mathbb{N}$, as the value for y, such that n < m is true (for example, pick m = n + 1).

(d) $\exists y \forall x \, x + y = x;$

True: Assign 0 to y; then, whichever value we pick for x, it is true that x + y = x.

(e) $\exists x \forall y \, x + y = x;$

False: Whichever value we pick for x, we can always find a valued for y that makes x + y = x false; indeed, suppose we picked n for the value of x; then, picking 1 for y will make x + y = x false.

(f) $\exists x \forall y \neg (S(y) = x);$

True: Assign 0 to x; then, whichever value we pick for y, it is false that S(y) = x, and hence true that $\neg(S(y) = x)$.

(g) $\exists y \forall x \neg (S(y) = x)$.

False: Suppose we assign $n \in \mathbb{N}$ to y. Then, surely, there exists a number m such that S(n) = m, namely m = n + 1. Hence, it's not true that, for every value of x, it is true that $\neg(S(y) = x)$.

- 2. For each of the following formulas, find a model where the formula is true and a model where the formula is false:
 - (a) $\forall x R(x, x)$;

True: M = (D, I), where $D = \{a\}$ and $I(R) = \{\langle a, a \rangle\}$.

False: M = (D, I), where $D = \{a\}$ and $I(R) = \emptyset$.

(b) $\forall x \forall y (R(x,y) \rightarrow R(y,x));$

True: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, b \rangle, \langle b, a \rangle\}$.

False: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, b \rangle\}$.

(c) $\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z));$

True: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, b \rangle, \langle b, b \rangle\}$.

False: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, b \rangle, \langle b, a \rangle\}$.

(d) $\forall x \forall y (R(x,y) \rightarrow \exists z (R(x,z) \land R(z,y)));$

True: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, a \rangle, \langle a, b \rangle\}$.

False: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, b \rangle\}$.

(e) $\exists x P(x) \to \forall x P(x)$;

True: M=(D,I), where $D=\{a\}$ and $I(P)=\{a\}$.

False: M = (D, I), where $D = \{a, b\}$ and $I(P) = \{a\}$.

(f) $\forall x \exists y \, R(x,y)$;

True: M = (D, I), where $D = \{a\}$ and $I(R) = \{\langle a, a \rangle\}$.

False: M = (D, I), where $D = \{a\}$ and $I(R) = \emptyset$.

(g) $\exists x \forall y R(y, x);$

True: M = (D, I), where $D = \{a\}$ and $I(R) = \{\langle a, a \rangle\}$.

False: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, b \rangle\}$.

(h) $\forall x \exists y R(x,y) \rightarrow \exists x \forall y R(y,x);$

True: M = (D, I), where $D = \{a\}$ and $I(R) = \{\langle a, a \rangle\}$.

False: M = (D, I), where $D = \{a, b\}$ and $I(R) = \{\langle a, b \rangle\}$.

(i) $\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \land \forall x \exists y R(x,y) \land \neg \forall x R(x,x).$

True: M = (D, I), where $D = \mathbb{N}$ and $I(R) = \{\langle n, m \rangle : n < m\}$.

False: M = (D, I), where $D = \{a\}$ and $I(R) = \{\langle a, a \rangle\}$.

- 3. Find out, for each of the following formulas, whether it is valid, i.e. true in every model, or not. Prove your claim.
 - (a) $\forall x P(x) \land \forall x Q(x) \rightarrow \forall x (P(x) \land Q(x));$

This formula is valid. Indeed, suppose otherwise. Then, there exists a model M = (D, I) and an assignment α in M such that $M \not\models \forall x \, P(x) \land \forall x \, Q(x) \to \forall x \, (P(x) \land Q(x))[\alpha]$. Then,

- (1) $M \models \forall x P(x)[\alpha]$.
- (2) $M \models \forall x Q(x)[\alpha].$
- (3) $M \not\models \forall x (P(x) \land Q(x))[\alpha].$

By (3), there exists $\alpha' \stackrel{x}{=} \alpha$ such that

(4) $M \not\models P(x) \land Q(x)[\alpha'],$

and so either

(5a) $M \not\models P(x)[\alpha']$

or

(5b) $M \not\models Q(x)[\alpha']$.

But in either case, we obtain a contradiction: since $\alpha' \stackrel{x}{=} \alpha$, from (1) we obtain

(6a) $M \models P(x)[\alpha'],$

while from form (2) we obtain

- (6b) $M \models Q(x)[\alpha'].$
- (b) $\forall x (P(x) \lor Q(x)) \rightarrow \forall x P(x) \lor \forall x Q(x);$

This formula is not valid. Consider the model M = (D, I) where $D = \{a, b\}$, $I(P) = \{a\}$, and $I(Q) = \{b\}$. Let α be an arbitrary assignment in M. Then, $M \models \forall x \, (P(x) \lor Q(x))[\alpha]$, but $M \not\models \forall x \, P(x)[\alpha]$ and $M \not\models \forall x \, Q(x)[\alpha]$, and so $M \not\models \forall x \, P(x) \lor \forall x \, Q(x)[\alpha]$.

(c) $\exists x P(x) \land \exists x Q(x) \rightarrow \exists x (P(x) \land Q(x));$

This formula is not valid. To see this, consider the model from the previous question.

(d) $\exists x (P(x) \lor Q(x)) \to \exists x P(x) \lor \exists x Q(x);$

This formula is valid. Indeed, suppose otherwise. Then, there exists a model M = (D, I) and an assignment α in M such that $M \not\models \exists x \, (P(x) \vee Q(x)) \to \exists x \, P(x) \vee \exists x \, Q(x)[\alpha]$. Then,

- (1) $M \models \exists x (P(x) \lor Q(x))[\alpha].$
- (2) $M \not\models \exists x P(x)[\alpha].$
- (3) $M \not\models \exists x Q(x)[\alpha].$

By (3), there exists $\alpha' \stackrel{x}{=} \alpha$ such that

(4) $M \models P(x) \lor Q(x)[\alpha'],$

and so either

(5a) $M \models P(x)[\alpha']$

or

(5b) $M \models Q(x)[\alpha'].$

But in either case, we obtain a contradiction: since $\alpha' \stackrel{x}{=} \alpha$, from (1) we obtain

(6a) $M \not\models P(x)[\alpha'],$

while from form (2) we obtain

- (6b) $M \not\models Q(x)[\alpha'].$
- (e) $\exists x \forall y R(y, x) \rightarrow \forall x \exists y R(x, y);$

This formula is valid. Indeed, suppose otherwise. Then, there exists a model M = (D, I) and an assignment α in M such that $M \not\models \exists x \forall y \ R(y, x) \to \forall x \exists y \ R(x, y)[\alpha]$. Then,

- (1) $M \models \exists x \forall y R(y, x)[\alpha].$
- (2) $M \not\models \forall x \exists y R(x, y)[\alpha].$

By (1), there exists $\beta \stackrel{x}{=} \alpha$ such that

(3) $M \models \forall y R(y, x)[\beta].$

By (2), there exists $\gamma \stackrel{x}{=} \alpha$ such that

(4) $M \not\models \exists y R(x,y)[\gamma].$

By (4), $M \not\models \exists y \, R(x,y)[\gamma']$, for every assignment $\gamma' \stackrel{y}{=} \gamma$. In particular, if we consider the assimment δ defined by $\delta(y) = \beta(x)$ and $\delta(z) = \gamma(z)$, for every $z \in Var - \{y\}$, then, since $\delta \stackrel{y}{=} \gamma$,

(5) $M \not\models R(x,y)[\delta]$, i.e., $\langle \delta(x), \delta(y) \rangle \notin I(R)$.

Since $\delta(y) = \beta(x)$, it follows from (5) that

(6) $\langle \delta(x), \beta(x) \rangle \notin I(R)$.

Now, consider the assignment β' defined by $\beta'(y) = \delta(x)$ and $\beta'(z) = \beta(z)$, for every $z \in Var - \{y\}$. Then, $\beta' \stackrel{y}{=} \beta$, and so, by (3),

(7) $M \models R(y, x)[\beta']$, i.e., $\langle \beta'(y), \beta'(x) \rangle \in I(R)$.

Since $\beta'(y) = \delta(x)$ and $\beta'(x) = \beta(x) = \delta(y)$, by (7),

(8) $\langle \delta(x), \delta(y) \rangle \in I(R)$,

in contradiction with (5).

(f)
$$\forall x (P(x) \to Q(x)) \to (\forall x P(x) \to \forall x Q(x)).$$

This formula is valid. Indeed, suppose otherwise. Then, there exists a model M = (D, I) and an assignment α in M such that $M \not\models \forall x (P(x) \to Q(x)) \to (\forall x P(x) \to \forall x Q(x))[\alpha]$. Then,

- (1) $M \models \forall x (P(x) \to Q(x))[\alpha].$
- (2) $M \models \forall x P(x)[\alpha].$
- (3) $M \not\models \forall x Q(x)[\alpha]$.

By (3), there exists $\alpha' \stackrel{x}{=} \alpha$ such that

(4) $M \not\models Q(x)[\alpha'],$

Since $\alpha' \stackrel{x}{=} \alpha$, it follows, by (1), that

(5) $M \models P(x) \rightarrow Q(x)[\alpha']$, and so

either

(5a) $M \not\models P(x)[\alpha']$.

or

(5b)
$$M \models Q(x)[\alpha'].$$

Note that (5b) contradicts (4). In addition, it is not hard to see that (5a) contradicts (1): since $\alpha' \stackrel{x}{=} \alpha$, (1) implies that

(6) $M \models P(x)[\alpha'],$

in contradiction with (1). Thus, in either case, we get a contradiction.

- 4. (a) Write a sentence φ without = that has the following properties:
 - φ is true in every model with a single individual;
 - for every $n \ge 2$, there exists a model with n individuals where φ is false.

$$\exists x P(x) \to \forall x P(x).$$

(b) Write a formula with = that is true precisely in models with two individuals.

$$\exists x \exists y \, \neg (x = y) \land \forall z \, (z = x \lor z = y).$$

(c) Write a formula with = that is true precisely in models with n individuals.

$$\exists x_1 \dots \exists x_n \bigwedge_{i \neq j} \neg (x_i = x_j) \land \forall y \bigvee_{1 \leqslant i \leqslant n} y = x_i.$$

(d) Does there exist a formula without = that is true precisely in models with two individuals?

Such a formula does not exist. Suppose M = (D, I) is a model and φ is a formula without φ such that $M \models \varphi$. Pick any $a \in D$ and define a model M' = (D', I') by adding to M a clone of a, i.e., define $D' = D \cup \{a'\}$, and make a' behave in M' exactly as a behaves in M with respect to the interpretation of all non-logical symbols. Then, $M' \models \varphi$.

(e) Write a formula without = that is satisfiable only in models with infinite domains.

$$\forall x \forall y \forall z \, (R(x,y) \land R(y,z) \to R(x,z)) \land \forall x \exists y R(x,y) \land \neg \forall x \, R(x,x).$$

(f) Write a formula without = that is true in only in models with a finite domain.

The formulas from the previous question is true only in models with infinite domains.

Therefore, its negation

$$\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z)) \land \forall x \exists y R(x,y) \land \neg \forall x R(x,x)$$

can only be true in models with a finite domain.

5. Let \mathfrak{M} be a model, let α and β be assignments in \mathfrak{M} , and let φ be a sentence (i.e., a formula without free occurrences of variables). Prove, by induction on φ , that $\mathfrak{M} \models \varphi[\alpha]$ if, and only if, $\mathfrak{M} \models \varphi[\beta]$.