Понятие дифференциала функции

$$\lim \left(\frac{\Delta f(x0)}{\Delta x}\right) = f'(x0)$$

$$f(x) = A(предел) + \alpha(x)(бмф)$$

$$\frac{\Delta f(x_0)}{\Delta x} = f'(x_0) + \alpha(\Delta x)$$

$$\Delta f(x_0) = f'(x_0) = \Delta x + \alpha(\Delta x) * \Delta x$$

По определению производной функции:

$$\lim_{\Delta x \to 0} \left(\frac{\Delta f(x0)}{\Delta x} \right) = \lim_{\Delta x \to 0} \left(\frac{f(x0 + \Delta x) - f(x0)}{\Delta x} \right) = f'(x0)$$

Из главы 3 §2 теоремы 5 (связь функции, ее предела и бмф):

Число $A \in R$ является пределом функции f(x) при $x -> x_0 \iff f(x) = A + \alpha(x)$, где $\alpha(x)$ — бесконечно малая функция при $x -> x_0$.

$$f(x) = A + \alpha(x)$$

$$\frac{\Delta f(x0)}{\Delta x}$$
 = $f'(x_0)$ + $\alpha(\Delta x)$, где $\alpha(\Delta x)$ -> 0 при Δx -> 0

Дифференциалом функции y=f(x) в точке x_0 называется линейная, относительно Δx , часть приращения функции, равная произведению производной функции на приращение ее аргумента, т.е. $f'(x_0)*\Delta x$.

1 слагаемое: $f(x_0)^* \Delta x$ — бмф одного порядка с Δx , т.к. $\lim_{\Delta x \to 0} \left(\frac{f'(x_0) * \Delta x}{\Delta x} \right) = \lim_{\Delta x \to 0} f'(x_0) \neq 0$

2 слагаемое: $\alpha(\Delta x)^*\Delta x$ — бмф более высокого порядка, чем Δx , $\lim_{\Delta x \to 0} \left(\frac{\alpha(x0)*\Delta x}{\Delta x}\right) = \lim_{\Delta x \to 0} \alpha(x0) = 0$

Обозначают: dy, $df(x_0)$

$$dy - f'(x_0) * \Delta x$$

$$\Delta x = dv$$

$$\Delta x = x_0 + \Delta x - x_0 = dy$$

$$\Delta y = dy$$

$$dy = f'(x_0)*dx$$

$$dy/dx = f'(x_0)$$

$$y'$$
, f' , dy/dx

Функция y=f(x) называется **дифференцируемой на интервале (а; b),** если она дифференцируема (т.е. имеет производную) в каждой точке этого интервала.

Функция y=f(x) называется дифференцируемой на отрезке (a; b), если она дифференцируема на интервале (a; b) и имеет соответствующие односторонние пр-е в т. а и b.