46. A reaction is thought to proceed according to the following mechanism. $2NO+H_2 \longrightarrow N_2+H_2O_2$ (slow)

 $H_2O_2+H_2 \longrightarrow 2H_2O \text{ (fast)}$

- (a) What is the overall reaction equation?
- (b) What is true about the [H₂O₂] at any time during the reaction?
- (c) Which of the steps in the mechanism is the rate-determining step?
- (d) What would happen to the overall rate it some extra NO was injected into reaction mixture?
- (e) If it were somehow possible to speed up the second step in the mechanism, what effect would this have on the overall rate of the reaction?
- (f) What is the formula of the activated complex in the 1st step of the reaction? In the second step?
- (g) How many elemetary process are involved in the reaction?
- 47. What is the difference between an activated complex and a reaction intermediate?

48. The reaction $A \to C$ is known to have the mechanism:

 $A \to B \text{ (fast)}$

 $B \to C \text{ (slow)}$

What would you expect to be true about the concentration of B as the reaction proceeds?

49. You have been told that phosphorous can be prepared by means of the reaction $2\text{Ca}_3(\text{PO}_4)_2 + 6\text{SiO}_2 + 10\text{C} \longrightarrow \text{P}_4 + 6\text{CaSiO}_3 + 10\text{CO}$.

Why can you be certain that the reaction equation shown does not represent a reaction mechanism?

- 50. A two step mechanism IS proposed for a reaction: ClO⁻+ClO⁻ \longrightarrow ClO₂⁻,+Cl⁻ \subset ClO₂⁻,+Cl⁻
 - (a) What is the overall reaction which occurs?
 - (b) Is ClO, a reaction intermediate or an activated complex?
 - (c) What is the chemical formula for the activated complex in the second step?
- 51. The decomposition of acetone, $(CH_3)_2CO$, proceeds according to $2(CH_3)_2CO \longrightarrow C_2H_4 + 2CO + 2CH_4$. If the decomposition is a two-step reaction, and the second step is $2CH_2CO \longrightarrow C_2H_4 + 2CO$,
 - (a) what is the first step?
 - (b) what is the formula for the activated complex in the first step? The second step?

52. A chemist suggested that the reaction: $2NO+O_2 \longrightarrow NO_2$ has a three-step mechanism. If the proposed first and third steps are:

 $2NO \longrightarrow N_2O_2 \text{ (first)}$

 $N_2O_4 \longrightarrow 2NO_2$ (third),

- (a) what is the second step in the proposed reaction?
- (b) what is the formula of the activated complex in the second step?

53. The reaction between gaseous hydrogen and chlorine proceeds as follows.

$$Cl_2 + light \longrightarrow 2 Cl \dots (1)$$

$$H + Cl_2 \longrightarrow HCl + Cl \dots$$
 (3

- (a) Suggest what step might occur after step 3? [Hint: Steps 2 and 3 show what happens when an individual pair of Cl and H₂ react; not all the Cl's and H₂'s react at once.]
- (b) What function is served by the light?
- (c) Suggest why this reaction is called a "chain reaction".
- 54. 54. Which of the steps in the reaction $4HBr+O_2 \longrightarrow 2H_2O + 2Br_2$ has the greatest activation energy? Which has the least?

- 55. In the following PE diagram:
 - (a) How many steps does this reaction have?
 - (b) Is the second step $(B \to C)$ exothermic or endothermic?
 - (c) Is the overall reaction exothermic or endothermic?