Day 8

Outline

- 1. A History Lesson
- 2. Neyman-Pearson Hypothesis Testing

History Lesson

Major Players

- Karl Pearson
- Egon Pearson
- Jerzy Neyman
- Ronald Fisher

Neyman-Pearson Hypothesis Testing

TL;DR version

- 1. Define a boundary used to inform a decision
- 2. Obtain data and see which side of the boundary it falls on
- 3. Make decision

Example

We have a coin and it is weighted <u>but</u> we don't know if it's weighted to be 60% heads or 60% tails.

Define a parameter to describe the situation

Let P represent probability of getting heads ("population proportion of heads")

Define two competing "hypothesis" involving the parameter.

(heads)

- H₀: P = 0.6 [null hypothesis: "nothing unexpected"]
- $H_1: P = 0.4$ [alternative hypothesis: "something is happening, we should change our minds"]

Define a "critical region" based on our sample data

- 1. Define a test statistic T whose value can be computed from the sample data
- 2. Define the sampling distribution of T under H₀ and H₁
- 3. Based on the sampling distribution under H_0 , define:
 - $\alpha = P(we claim H_1 is true | H_0 is true)$ and find the region in the sampling distribution under H_0 corresponding to that α value.
- 4. If the observed value of T is in that region, conclude H_1 is true. Otherwise, conclude H_0 is true

Example

Our decision rule:

- If we get 4 or fewer heads in 10 flips: conclude H_1 is true.
- If more than 4 heads in 10 flips: conclude H_0 is true.

"Critical region": Let $X = number\ of\ heads\ in\ 10\ flips$

• $X \le 4$

$\underline{\text{Recall}}$:

Gender compared to handedness

	Handed		
	Left	Right	
Female	7	46	53
Male	5	63	68
	12	109	121

Now apply this to Neyman-Pearson rules:

Do not reject Ho		Reject Ho	
Ho is true	Correct Decision	Incorrect Decision: Type I error α	
Ho is false	Incorrect Decision: Type II error β	Correct Decision	

Under N-P Rules

Type 1 Error is "worse" than Type 2 Error. However, if P(Type 1 Error) is too low, P(Type 2 Error) balloons.

 $\alpha = P(1)$ - P(Concluded ${\rm H}_1 \ | \ {\rm H}_0$ is true)

 $\beta = P(2)$ - P(Concluded ${\rm H}_0 \mid {\rm H}_1$ is true)

 $\underline{\text{Power}} \text{ of test} = 1 - \beta$

• = P(concluded H₁ | H₁ is true)

Example

Let $X = number\ of\ heads\ in\ 10\ flips$

- Under H_0 : $X \sim B(10, 0.6)$
- Under H_1 : $X \sim B(10, 0.4)$

For critical region $X \leq 4$:

•
$$\alpha = P(X \le 4 \mid p = 0.6) = 0.166$$

•
$$\beta = P(X > | p = 0.4) = 0.367$$

Power =
$$P(X \le 4 | p = 0.4) = 0.633$$

Traditionally, set $\alpha = 0.05$ or $\alpha = 0.01$

Find the critical region giving a Type 1 Error rate of at most α

(Find x such that $P(X \le x \mid H_0 \text{ is true}) \le \alpha$)

$$P(x \le 2 \mid H_0 \text{ is true}) = 0.0123$$

$$P(X \le 3 \mid H_0 \text{ is true}) = 0.0548$$

Critical region corresponding to $\alpha = 0.05$: $x \leq 2$

What is β for this critical region?

$$\beta = P(x > 2|p = 0.4) = 0.833$$

In most fields, we use power instead

Power =
$$P(X \le 2|p = 0.4) = 0.167$$

Rules of thumb

- 1. $\alpha < \beta$. If $\alpha \leq \beta$, either decrease α or switch H_0 or H_1
- 2. At your "given" α value, $\beta \leq 2$ or equivalently, power ≥ 0.8 (80% power). If power < 0.8, plan to collect more data!

In Practice

- 1. The idea of "nothing weird happening" should give us the value of the parameter.
- 2. We define a clinically signifiant/practically signifiant difference in parameter values ("minimum effect size")

What we need at each step

- 1. To compute the critical region:
- need α , H_0 (value of P under H_0)
- \bullet sampling distribution of test statistic under H_0
- 2. To compute power:
- need critical region, H_1 (value of P under H_1)
- sampling distribution of test statistic under H_1