## Luleå University of Technology

# DEPT. OF COMPUTER SCIENCE, ELECTRICAL AND SPACE ENGINEERING

D7039E - PROJECT IN INDUSTRIAL COMPUTER SYSTEMS

## Project SailorAid

Authors
Axelsson Oskar,
Brolin, Daniel,
Eriksson, Kenny
Lundberg, Josef,
???, Elias
Sjölund, Johannes
Theolin, Henrik

 $Supervisor \\ \text{van Deventer, Jan}$ 

September 18, 2017



#### Abstract

Some abstract description of the project... Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

testing...

## ${\bf Contents}$

| 1 | Introduction SJÖLUND, JOHANNES (THEOLIN, HENRIK)                 | 2                |
|---|------------------------------------------------------------------|------------------|
| 2 | The Physics of Sailing                                           | 2                |
| 3 | Product Application 3.1 Navigation and Tracking                  | <b>3</b>         |
|   | 3.2 Speed optimization                                           | 3                |
| 4 | Hardware Design                                                  | 4                |
| 5 | Sensors5.1 Force sensors5.2 The prototype5.3 Choice of component | 4<br>4<br>4<br>5 |
| 6 | Software Design Sjölund, Johannes (no one)                       | 6                |
|   | 6.1 ARM firmware                                                 | 6<br>6           |
| 7 | Kalman filter AXELSSON, OSKAR (NO ONE)                           | 7                |
|   | 7.1 Kalman Filter                                                | 7                |
| R | eferences                                                        | 11               |

#### 1 Introduction

SJÖLUND, JOHANNES (THEOLIN, HENRIK)

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

### 2 The Physics of Sailing

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

### 3 Product Application

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

## 3.1 Navigation and Tracking SJÖLUND, JOHANNES (THEOLIN, HENRIK)

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

### 3.2 Speed optimization

SJÖLUND, JOHANNES (THEOLIN, HENRIK)

Sed feugiat. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Ut pellentesque augue sed urna. Vestibulum diam eros, fringilla et, consectetuer eu, nonummy id, sapien. Nullam at lectus. In sagittis ultrices mauris. Curabitur malesuada erat sit amet massa. Fusce blandit. Aliquam erat volutpat. Aliquam euismod. Aenean vel lectus. Nunc imperdiet justo nec dolor.

#### 4 Hardware Design

#### 5 Sensors

In order to sail properly and make the most out of the wind that's is supplied by the nature itself some data acquisition is needed. The sailing is all about this harnessing all the forces of the nature and the wind that it pushing towards you. Since there has not been any other extensive projects and measurements in this particular area the measurements have to be done in new ways.

#### 5.1 Force sensors

The goal here is to have a system that can measure the forces that pushes on the centerboard by the water it goes through. The implementation: By looking at some different solutions there is not any other solutions that might be as clean looking and prominent as this approach. Important to know is that every solution is mandatory to be waterproof and sealed properly from the harsh environment that this system has as its home turf. The solutions that required the sensors to be mounted on the outside or in parts that would be in danger if a crash might occur was scratched. The board itself will not be disassembled in any major part of way. Meaning that our approach doesn't need any modifications to the board itself. This has been our goal and the approach we choose to go. Modifications in the mounting plate is the way to go, the other solutions we thought about is either way more difficult to apply and mount or more complex.

#### 5.2 The prototype

To implement the gauges, we have made a prototype to show how the measurements will be made. The prototype is a bit bigger than the intended solution for this project but it's good to see how it would be constructed. The function is easy to understand. The board goes on the outside and can easily slide up and down past this ball. The ball itself is kept inside this small area where it can move in and out. The force is then measured at the back where there will be a plate. The deflection of this plate which will be the origin to the strain will be measured through strain gauges. The gauge itself will measure a small difference in resistance. This small difference is most likely going to be difficult to measure without any amplifying circuit connected. With a such small signal the system might have issues with noise. Another problem is that the signal might drift, and therefore make different measurements as the circuit is running. And finally, with the signal getting amplified with a big amount the result may be off by a large amount.

This way of implementing strain gauges were our first idea. The main case for this strategy was that in the start of this project these gauges were supplied to us, as a leftover from the last group. With this implementation, we could already start working on a prototype and get a small head start in to the project. But as some research shows, it is a more difficult way to solve this problem and it would take bit more work and some sensitive circuits to measure the force. The gauges also need to be stuck in place using some specific glue and can easily be done incorrectly and therefore prevent good measurements.

New idea: A better solution is to make some research into load cells, which is a sensor which also utilizes strain gauges to measuring forces. The difference is that the gauges are already implemented in the sensor. The difference in the prototype is instead of having a metal plate, it can be built with a piece of plastic or rubber which can deform so the force is distributed directly to the sensor. By implementing this sensor, a lot of time was saved in troubleshooting. And by having a sensor unit, the modified mounting plate will be easier to produce.

#### 5.3 Choice of component

The force from the board onto the mounting plate will be a considerable amount. The actual force is something that's not known for sure. The initial assumption was that the decision of buying the right sensor we think that a sensor with a 90.75 kg force range should be enough. In the case that we max out the sensor and overload the cell it's rated for a 150The sensor for this application is selected to be this part, the compression load cell called FX1901.

The work for this week is to build the according circuit for the sensor to work as intended. And by the time we get the sensor we will start making measurements using our prototype.

#### 6 Software Design

SJÖLUND, JOHANNES (NO ONE)

The software has been divided into two parts, the firmware for the ARM MCU with associated sensors, and an Android application which can display sensor data. These two parts utilize a Bluetooth connection to communicate their current states. For example, when the IMU calculates a new orientation, this data should be processed by the firmware, and the resulting calculations sent to the Android application over Bluetooth to be displayed to the user.

#### 6.1 ARM firmware

In order to speed up firmware development, the STM32CubeMX<sup>1</sup> initialization code generator was used to set up a basic working system. This application, developed by ST, can generate C language code for setting up MCU clocks, peripherals, interrupts and similar. It is controlled by a graphical interface for setting MCU options and controlling the previously mentioned code generation.

The main challange in working with this type of code generation is integrating it with software libraries not built for it. If the library interferes with generated code by overriding functions and register values, the software may enter an undefined state and stop working. Care therefor had to be taken to only use the parts of the libraries which did not interfere. Frequent testing of any newly added functionality had to be done in order to find interfering parts.

Two libraries produced by ST were used, one for the Bluetooth module, and one for the IMU.

#### 6.1.1 Bluetooth

The Bluetooth firmware package called X-CUBE-BLE1<sup>2</sup> developed by ST consists of several parts, MCU and Bluetooth evaluation board device definitions such as named pins and ports, functions for manipulating them, a Bluetooth GATT server implementation, as well as several demo applications which could communicate with Android devices. Additionally a Android demo application for displaying sensor data from Bluetooth was included.

These parts were integrated into the code generated by STM32CubeMX

#### 6.1.2 IMU

X-CUBE-MEMS1<sup>3</sup>

#### 6.2 Android application

#### 7 Kalman filter

AXELSSON, OSKAR (NO ONE)

#### Sensor theory

Sensor fusion can be observed everywhere for example living animals uses all of its senses to survive daily, e.g. a animal cannot hunt using its eyes only, it has to combine its sense of smell, eyes and hearing to hunt the pray. Sensor fusion theory is not only found in the living it can be found in cars, planes computers and so on. All this to achieve enhance the performance. In this project sensor fusion will be used to enhance the accuracy of the dinghy's position and velocity. To do so an GPS and a accelerometer will be used.

The GPS's accuracy is not uniform since it might be buildings reflections, atmospherics delays or clock bias errors. Using only information provided by a accelerometer is not sufficient either since after time the sensor will drift, using the sensor only for short time will give accurate readings.

#### 7.1 Kalman Filter

A popular filter to use when doing sensor fusion is to use a Kalman filter, (KF). The Kalman Filter is a recursive filtering method for discrete data, the algorithm was developed by an Hungarian mathematician Rudolf (Rudi) Emil Kálmán in 1960. Since everything is nonlinear in the universe, many systems cannot be seen as linear and therefore Extended Kalman, (EKF) Filter has to be applied. The EKF linearizes the system around its working points. The KF is widely used due to its efficiency when calculating the estimations. When estimating the position and velocity there will be equation which are nonlinear, hence a EKF will be applied. Where the EKF algorithm is.

State equation 
$$x_k = F_{k-1}x_{k-1} + v_k$$
 (1)

Observation equation 
$$z_k = H(x_k) + w_k$$
 (2)

Where  $v_k$  and  $w_k$  is the process noise and measurement noise, respectively both assumed to be zero mean Gaussian noise with covariance matrices  $Q_k$  and  $R_k$ , i.e.  $v_k \in \mathcal{N}(0, Q_k)$  and  $w_k \in \mathcal{N}(0, R_k)$ .

Predict state estimate: 
$$\hat{x}_{k|k-1} = F_k \hat{x}_{k|k-1} + B_k u_k$$
 (3)

Predict covariance matrix: 
$$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_k$$
 (4)

measurement residual 
$$\tilde{y} = z_k - H_k \hat{x}_{k|k-1}$$
 (5)

Innovation covariance 
$$S_k = H_k P_{k|k-1} H_k^T + R_k$$
 (6)

Near-optimal Kalman gain 
$$K_k = P_{k|k-1}H_k^T S_k^{-1}$$
 (7)

Update state estimate 
$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k \tilde{y}_k$$
 (8)

Update covariance estimate 
$$P_{k|k} = (I - K_k H_k) P_{k|k-1}$$
 (9)

Measurement post-fit residual 
$$\tilde{y}_{k|k} = z_k - H_k \hat{x}_{k|k}$$
 (10)

If Eq.(5) and (8) is analyzed we see that depending on how much we believe in the observations that are observed will affect the gain matrix. Consider Fig. 1 as a map of how the algorithm works.



Figure 1

#### Integration GPS/INS

It exist different types of integration levels most common are loosely, tightly and ultra-tightly coupled. The two last types are used when the output from the GPS receiver is its pseudo-range and carrier-range. Since the GPS receiver that is used in this project uses NMEA standard, the output will be the calculated position, velocity and heading. Then using a loosely coupled integration is preferred.

THE MODEL

#### Kalman Filter Model

The states, which is chosen to observe.

$$x = \begin{bmatrix} x^{pos} & [m] \\ y^{pos} & [m] \\ v^{x} & [m/s] \\ v^{x} & [m/s] \end{bmatrix}$$

$$(11)$$

 $x_{pos}$  and  $y_{pos}$  is the position in x and y direction, respectively, velocity, v, acceleration, a, angular position  $\phi$  and angular velocity,  $\dot{\phi}$ . The coordinate system that is used for calculations are the WGS-84. See Fig. 2 for a geometrical perspective.



Figure 2

The Kalman filter calculates estimates of the true values of states recursively over time using incoming measurements and a mathematical process model, i.e. it uses  $x_{k-1}$  to calculate  $x_k$ . Hence a mathematical model has to be derived describing the process, the GPS will provide heading position and velocity, the accelerometer will provide acceleration in xy-direction.

The model will not make an assumption that the acceleration is constant under the sampling times, this since the sampling period is 1Hz. The process model is derived using kinematics using only xy-directions. Calculating the resultant velocity vector will be conducted after this since it will induce nonlinearity then extended kalman filter has to be introduced.

$$x_k^{pos} = x_{k-1}^{pos} + \Delta t v_{k-1}^x + \frac{1}{2} \Delta t^2 a_{k-1}^x$$
 (12)

$$y_k^{pos} = y_{k-1}^{pos} + \Delta t v_{k-1}^y + \frac{1}{2} \Delta t^2 a_{k-1}^y$$
 (13)

$$v_k^x = v_{k-1}^x + \Delta t a_{k-1}^x \tag{14}$$

$$v_k^y = v_{k-1}^y + \Delta t a_{k-1}^y \tag{15}$$

Using the above equation the state matrix is expressed as.

$$f = \begin{bmatrix} 1 & 0 & \Delta t & 0 & \frac{1}{2}\Delta t^2 & 0\\ 0 & 1 & 0 & \Delta t & 0 & \frac{1}{2}\Delta t^2\\ 0 & 0 & 1 & 0 & \Delta t & 0\\ 0 & 0 & 0 & 1 & 0 & \Delta t \end{bmatrix} \qquad G = \begin{bmatrix} \Delta t^2 & 0\\ 0 & \Delta t^2\\ \Delta t & 0\\ 0 & \Delta t\\ 1 & 0\\ 0 & 1 \end{bmatrix}$$
(16)

In The constant acceleration model the acceleration increments are assumed to have zero-mean, thus the covariance matrix is.

$$v_k = \begin{bmatrix} \sigma_{a^x}^2 & 0\\ 0 & \sigma_{a^y}^2 \end{bmatrix} \tag{17}$$

Where  $\sigma_{a^x}^2$  and  $\sigma_{a^y}^2$  is the standard deviation squared in x and y direction respectively. Then the covariance matrix, (the measurement noise) is derived  $Q = GwG^T$ .

$$Q = \begin{bmatrix} \sigma_{a^x}^2 \Delta t^4 / 4 & 0 & \sigma_{a^x}^2 \Delta t^3 / 2 & 0 & \sigma_{a^x}^2 \Delta t^2 / 2 & 0 \\ 0 & \sigma_{a^y}^2 \Delta t^4 / 4 & 0 & \sigma_{a^y}^2 \Delta t^3 / 2 & 0 & \sigma_{a^y}^2 \Delta t^2 / 2 \\ \sigma_{a^x}^2 \Delta t^3 / 2 & 0 & \sigma_{a^x}^2 \Delta t^2 & 0 & \sigma_{a^x}^2 \Delta t & 0 \\ 0 & \sigma_{a^y}^2 \Delta t^3 / 2 & 0 & \sigma_{a^y}^2 \Delta t^2 & 0 & \sigma_{a^y}^2 \Delta t \\ \sigma_{a^x}^2 \Delta t^2 / 2 & 0 & \sigma_{a^x}^2 \Delta t & 0 & \sigma_{a^x}^2 & 0 \\ 0 & \sigma_{a^y}^2 \Delta t^2 & 0 & \sigma_{a^y}^2 \Delta t & 0 & \sigma_{a^y}^2 \end{bmatrix}$$

$$(18)$$

Consider (16) and (18) we can see that the matrices are linear, this implies that a linear model approach is sufficient to use, hence a linear Kalman Filter is used. The measurement variance is user determined, more specific, it depends on the hardware and given by.

$$R = \begin{bmatrix} \sigma_{xpos}^2 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{ypos}^2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{vx}^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{vy}^2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{ax}^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_{ay}^2 \end{bmatrix}$$
 (19)

The output from the GPS follows WGS-84 standard this means that the GPS will provide information in global frame, i.e longitude and latitude in degrees. This has to be convert into a navigation frame

## References

- [1] http://www.st.com/en/development-tools/stm32cubemx.html
- $[2] \ \mathtt{http://www.st.com/en/embedded-software/x-cube-ble1.html}$
- [3] http://www.st.com/en/embedded-software/x-cube-mems1.html