Design and Develop an Intelligent Chatbot

An Intelligent chatbot, sometimes also called Conversational User Interface (CUI), can **sense**, **think**, and **respond** naturally in the deployed environment. Such systems draw their success by having a simple interface and providing brief but relevant information to a query made by the user. The prime examples are Siri, Alexa, and Google. These systems rely heavily on machine learning and natural language processing techniques to offer the notion of intelligence. However, the perceived (user) intelligence is largely due to the simplicity and flexibility of usage.

Problem specification:

Design and develop an intelligent Chatbot software with the key specifications as follow:

- 1. Should use **text** as a medium of interfacing, i.e., input and output
- 2. Should only **respond** to topics relevant to C++ **programming**
- 3. Should perform all three core activities; sense, think, respond
 - (a) Sense: should be able to accept the question in the free-form text, from the user
 - (b) **Think**: should be able to interpret the question, assess the requirements, and fetch the relevant information
 - (c) **Respond**: should be able to display a brief answer than a simple copy-paste of information from the source

Final Project Report

The final project report should be formatted as a two-column, 4-6 page IEEE conference paper, with appropriate references in IEEE format. The template file can be found here: https://www.ieee.org/conferences_events/conferences/publishing/templates.html. The emphasis should be on analysis, interpretation, and validation of the choice of method(s) used and any underlying assumptions with critical discussion on conclusions.

The report should have the following four mandatory sections:

- Introduction
- Methods
- Results
- Discussion and Summary

You may also use Google Scholar to see sample of reports written in IEEE Conference Paper format.

Project Evaluation Sheet

Project Title:

Project Team:

S No	Student Name	Reg No
1		
2		
3		
4		
5		

Comments:

Evaluator: _____ Date: ____

Assessment Rubric

S No	Attribute	[1-3]	[4-7]	[8-10]		ude	ent	Sco	\overline{re}
		Below Expectation	Meeting Expectation	Exceeding Expectation	1	2	3	4	
1	Apply the program development	Summarizes the phases of	With guidance during the	Develops a working pro-					
	process to problems that are	the program development	design phase, produces	gram solution by imple-					
	solved using fundamental pro-	cycle	working code and per-	menting design, coding,					
	gramming constructs and prede-		forms some testing	and testing that includes					
	fined data structures			error checking					
2	Construct multiplefile or mul-	Describes when inheri-	With guidance, produces	Designs and constructs a					
	tiplemodule programming solu-	tance and the use of class	a programming solution	programming solution us-					
	tions that use class hierarchies,	hierarchies is an appropri-	using inheritance and	ing the features of inher-					
	inheritance, and polymorphism	ate design strategy	polymorphism	itance and polymorphism					
	to reuse existing design and code			appropriately					
3	Create programming solutions	Produces programming	Organizes programming	Designs and develops pro-					
	that use data structures and ex-	solutions that use existing	solutions that incorporate	gramming solutions that					
	isting libraries	library code	appropriate data struc-	use data structures, pre-					
			tures and pre-existing	existing libraries, and in-					
			code	dividual library code					
4	Verify program correctness	Produces test plans for	Analyzes a program and	Constructs a test driver					
	through the development of	object oriented program-	devises a test plan that	for code coverage and					
	sound test plans and the imple-	ming solutions that con-	examines code coverage	creates a formal test					
	mentation of comprehensive test	siders code coverage	and develops test cases for	plan choosing comprehen-					
	cases		data coverage	sive test cases for data					
				coverage					L
5	Report Sections: Cover sheet, in-	Report is unstructured.	Some of the required sec-	All sections are included					
	troduction, methods, UML di-	Majority of the sections	tions are missing. Fig-	and properly formatted as					
	agrams, design strategies, as-	are missing. Figures are	ures and tables are prop-	per given format. Fig-					
	sumptions, data, refs	not properly formatted	erly formatted and have	ures and tables are prop-					
			captions	erly formatted, have cap-					
				tions and are referred in					
				text.					
6	Professional ethics	References are missing or	Referencing standard is	A referencing standard					
		inadequate. Turnitin re-	not used. Turnitin re-	was used. Turnitin report					
		port is between 15 & 20%	port is between 10 &	is less than 10%.					
			15%. Mostly web refer-						
			ences were used						L
				Total Score:					