

Métodos Estadísticos de la Ingeniería Prácticas de ordenador Departamento de Matemática Aplicada

Estadística Descriptiva I

Ejercicio 1

Los siguientes valores corresponden al grosor, en mm, de 30 tornillos:

1	2	3	3	2	1	2	5	2	4
4	4	5	3	2	5	3	4	1	4
2	3	1	1	2	5	3	4	1	3

- a) Construya la tabla de frecuencias
- b) Represente el diagrama de barras
- c) Represente el diagrama de sectores referente al grosor indicando en el mismo: "muy fino"=1, "fino"=2, "mediano"=3 "grueso"=4, "muy grueso"=5

Ejercicio 2

Se ha medido la tensión de rotura (Tn/cm²) de 50 pernos de una aleación de aluminio. Los valores se encuentran en el archivo *Tensión_rotura.txt*.

- a) Copie el archivo en el disco
- b) Lea los datos
- c) Represente el diagrama de tallos y hojas
- d) Dibuje un histograma siendo la amplitud de los intervalos (clases) de 0,2
- e) Calcule las medidas de tendencia central
- f) Calcule las medidas de dispersión
- g) Calcule las medidas de posición (cuantiles)

Ejercicio 3

Para cortar 40 barras de forja se han necesitado las siguientes torsiones:

33	21	32	44	35	22	40	36	22	37
20	37	42	31	23	44	32	30	44	44
42	35	40	36	32	31	37	43	24	40
25	30	26	35	33	41	25	44	36	27

- a) Agrupe estos valores en 6 clases de la misma amplitud y complete una tabla de frecuencias
- b) Represente los datos en un histograma y dibuje el polígono de frecuencias absolutas
- c) Calcule la media aritmética, moda, mediana, desviación típica y varianza empleando los dados discretos (sin agrupar)

Ejercicio 4

Sean los siguientes datos:

51	55	42	53	46	60	29	56	20	52	51
33	61	57	55	59	38	56	41	47	68	24
67	52	64	69	43	47	42	65	96	21	48
47	25	82	37	60	12	77	56	97	28	45
63	28	45	63	28	52	60	51	61	62	52
97	73	45	69	67	29	75	63	30	17	69
68	74	16	83	47	16					

- a) Construya la tabla de frecuencias. Utilice clases de la misma amplitud siendo la primera de ellas 10,5-21,5
- b) Represente los datos en un histograma y en un diagrama de tallos y hojas
- c) Calcule la media aritmética, desviación típica, mediana y varianza empleando los datos discretos.

Ejercicio 5

Dependiendo de la concentración de algunos contaminantes atmosféricos, la calidad del aire se define dependiendo de los siguientes índices 1, 2, 3, 4 y 5, indicando cada uno de ellos el estado de la calidad del aire.

2

Índice	Calidad del aire
1	Muy buena
2	Buena
3	Aceptable
4	Mala
5	Muy mala

Los siguientes valores indican la calidad del aire de los últimos dieciocho días:

1	2	2	3	3	2	3	3	4
3	1	3	1	5	4	3	2	3

- a) Represente el diagrama de barras y el diagrama de sectores indicando en ambos la calidad del aire y su índice respectivo
- b) Calcule la media aritmética y la mediana del índice de la calidad del aire

Ejercicio 6

Para medir las capacidades de cuarenta mecánicos se ha realizado una prueba especial. Las puntuaciones de dicha prueba se muestran en la tabla:

Aptitud	37	37,20	37,50	38	38,10	38,50
Número de mecánicos	1	5	13	6	10	5

- a) Calcule la media aritmética, la desviación típica, la mediana y la moda
- b) Calcule los percentiles 65 y 90. ¿Qué representan cada uno de ellos?

Ejercicio 7 (ejercicio de examen)

Observando el siguiente histograma:

- a) Calcule la media aritmética, la mediana y la desviación típica
- **b)** Construya la tabla de frecuencias
- c) Calcule las medidas de posición y el rango intercuartílico

Ejercicio 8 (ejercicio de examen)

En el archivo *Turismos.txt* se especifican el conjunto de vehículos por provincia, en el año 2015, clasificados según el combustible empleado.

- a) Importe y lea los datos en R
- **b)** Teniendo en cuenta todas las provincias, calcule la media, la mediana y la desviación típica por provincia de los vehículos que emplean gasoil o gasolina como combustible
- c) En 2016, en todo el estado la cantidad de vehículos que emplean gasoil descendió uniformemente en un 10% mientras que los que empleaban combustibles alternativos (Turismos.Otros) aumentó en un 14,5%. ¿Cuál será la nueva media de todos los vehículos por provincia? ¿Y la desviación típica?
- d) Construya una tabla de frecuencias con las 21 provincias que en 2015 tenían menos vehículos

Ejercicio 9 (ejercicio de examen)

En la nueva sede de la fábrica "La Palmera" se van a instalar nuevas luminarias con tecnología LED. Las 480 bombillas que se van a instalar se clasifican según su potencia de la siguiente forma:

Potencia (W)	Porcentaje (% de todas las bombillas)
5	7,50
6	5,00
7	20,00
8	18,75
9	15,00
10	17,50
11	8,75
12	7,50

- a) Represente un diagrama de barras con el número de bombillas por potencia
- b) Calcule la media de la potencia instalada en el edificio
- c) Calcule la varianza y la desviación típica de la potencia instalada

d) Se desean sustituir 90 bombillas de mayor consumo por otras que sólo consuman 5 W. ¿Cuál será la nueva media de la potencia instalada? ¿Qué porcentaje se ha reducido la potencia?