1 Introduction

$$\frac{\partial u}{\partial x} = u_x$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$$

1.1 Dérivée

$$u'(x) = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = \lim_{h \to 0} \frac{u(x) - u(x-h)}{h}$$

1.2 EDO du premier ordre

$$\boxed{\frac{dy}{dt} = ky \longrightarrow y = Ce^{kt}}$$

1.3 EDP du premier ordre

$$F(x, y, u(x, y), u_x(x, y), u_y(x, y))$$

$= F(x, y, u, u_x, u_y) = 0$

1.4 EDP du deuxième ordre

$$F(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy}) = 0$$
$$Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu = G$$

Parabolique : $B^2 - 4AC = 0$

Hyperbolique : $B^2 - 4AC > 0$

Elliptique : $B^2 - 4AC < 0$

1.5 Opérateurs

Linéarité

$$\mathcal{L}(u+v) = \mathcal{L}u + \mathcal{L}v$$
 et $\mathcal{L}(cu) = c\mathcal{L}u$

linéaire non linéaire

$$u_x + u_y = 0 \qquad u_x + yu_y = 0 \qquad \mathbf{u}_x + \mathbf{u}\mathbf{u}_y = \mathbf{0}$$

$$u_{xx} + u_{yy} = 0$$
 $u_{tt} - u_{xx} + u^3 = 0$ $u_t + uu_x + u_{xxx} = 0$

Équation linéaire homogène $\mathcal{L}u=0$

Équation linéaire non-homogène $\mathcal{L}u = g$

$$u_x + u_y + 1 = 0 \longrightarrow \text{ inhomogène}$$

solution homogène + solution inhomogène = solution inhomogène

$$a(x,y)u_x + b(x,y)u_y = 0 \longrightarrow \frac{dy}{dx} = \frac{b(x,y)}{a(x,y)}$$

Puis faire

$$\underbrace{\int \frac{dy}{dx} dx}_{y} = \underbrace{\int \frac{b(x,y)}{a(x,y)} dx}_{\cdots + c}$$

Combinaison linéaire de plusieurs solutions est aussi une solution

1.6 Conditions initiales

$$u(x,t_0) = \phi(x)$$

OU

$$u(x,t_0) = \phi(x) \qquad u_t(x,t_0) = \psi(x)$$

1.7 Conditions aux bords

 ${\bf Dirichlet} \quad : \ u \ {\rm est \ sp\'{e}cifi\'{e}}$

Neumann : $\frac{\partial u}{\partial n}$ est spécifié

Robin : $\frac{\partial u}{\partial n} + au$ est spécifié

1.8 Problèmes bien posés

Les problèmes bien posés (au sens d'Hadamard) sont constitués d'une EDP dans un domaine et avec les propriétés suivantes :

Existence: il existe au moins une solution u(x,t) qui satisfait toutes les conditions

Unicité : il existe au plus une solution

Stabilité : La solution unique u(x,t) dépende de manière stable des données (peu de changement \rightarrow peu de variation)

1.9 Exemples

1.

$$au_x + bu_y = 0$$
 $u(x, y) = f(bx - ay)$

Avec bx - ay = c les droites caractéristiques

2.

$$u_t + cu_x = 0$$

Au temps t+h, déplacement de $c\cdot h$

3.

$$u_{xx} = 0 \xrightarrow{\int dx} u_x = f(y) \xrightarrow{\int dx} u = g(y) + xf(y)$$

$$u(x,y) = f(y)x + g(y)$$

4.

$$u_{xx} + u = 0 \rightarrow u(x, y) = f(y)\cos(x) + g(y)\sin(x)$$

5.

$$u_{xy} = 0 \longrightarrow u(x, y) = f(y) + g(x)$$

A noter que f(y) et g(x) sont les intégrales de fonctions intermédiaires.

6.

$$u_x + yu_y = 0 \longrightarrow u(x, y) = f(e^{-x}y)$$