CHAPTER 08

Functions

Let A and B be two non-empty sets, then a function f from set A to set B is a rule which associates each element of A to a unique element of B. It is represented as $f: A \rightarrow B$ and function is also called mapping.

Domain, Codomain and Range of a Function

The set A is called the **domain** of f, denoted by dom f and the set B is called the **codomain** of f.

The set of all second elements of the pairs (a, b) of the function f is the range of the function f, so range is a subset of codomain.

Representation of Function

Verbal form	Output exceeds twice the input by I Domain : Set of inputs Range : Set of outputs	
Arrow form on Venn Diagram	Domain: Set of pre-images Range: Set of images	
Ordered Pair (x, y)	$f = \{(2,5), (3,7), (4,9), (5,11)\}$ Domain: Set of 1st components from each ordered pair = $\{2, 3, 4, 5\}$ Range: Set of 2nd components from each ordered pair = $\{5, 7, 9, 11\}$	

Graph of a Function

If the domain of function is in R, we can show the function by a graph in xy-plane. The graph consists of points (x, y), where y = f(x).

Vertical Line Test

Given a graph, let us find if the graph represents a function of x, i.e. f(x). A graph represents function of x, only if no vertical line intersects the curve in more than one point.

Since, every x has a unique associated value of y. It is a function.

This graph does not represent a function as vertical line intersects at more than one point some x has more than one values of v. Value of function f(a) is called the value of function f(x) at x = a.

Some Basic Functions

Constant Function

A function $f: R \to R$ is said to be a constant function, if there exists a real number k, such that

$$f(x) = k, \forall x \in R$$

Domain: R and range: $\{k\}$

 $f(x) = 5, \forall x \in R$ e.g.

Here, f(x) is a constant function whose domain

$$= (x : x \in R)$$
 and range $= (5)$.

Identity Function

The real function $f: R \to R$ defined by $f(x) = x, \forall x \in R$ is called an identity function.

It may be observed that

- (i) graph of identity function is a straight line.
- (ii) it passes through origin.

Domain: R and Range: R

Power Function

The power function is given by $y = f(x) = x^n, n \in I, n \neq 1, 0$. The domain and range of y = f(x), is depend on n.

Square Function

Suppose, $f(x) = x^2$

Domain: R or $(-\infty, \infty)$ and Range: $[0, \infty)$

Properties

- (i) Graph of $f(x) = x^2$ is a parabola opening upwards and with vertex at origin.
- (ii) Graph is symmetric about Y-axis.
- (iii) The graph of even powers of x looks similar to square function. (verify!) e.g. x^4 , x^6 .
- (iv) $(y-k) = (x-h)^2$ represents parabola with vertex at (h, k).
- (v) If $-2 \le x \le 2$ then $0 \le x^2 \le 4$ (see above figure) and if $-3 \le x \le 2$ then $0 \le x^2 \le 9$ (see above figure).

Cube Function

Suppose, $f(x) = x^3$

Domain: R or $(-\infty, \infty)$ and Range: R or $(-\infty, \infty)$

Property

The graph of odd powers of x (more than 1) looks similar to cube function. e.g. x^5 , x^7 .

Polynomial Function

Suppose, $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$

is polynomial function of degree n, if $a_0 \neq 0$ and a_i 's are real.

Linear Function

A polynomial function of degree 1 is called a linear function, which is the form of f(x) = ax + b ($a \ne 0$).

Suppose, $f(x) = -2x + 3, x \in R$

Domain: R or $(-\infty, \infty)$ and Range: R or $(-\infty, \infty)$

ards peop

tex

and

properties

- (i) Graph of f(x) = ax + b is a line with slope a, y-intercept b and x-intercept $\left(-\frac{b}{a}\right)$.
- (ii) Function is increasing when slope is positive and decreasing when slop is negative.

Quadratic Function

A polynomial function of degree 2 is called a quadratic function, which is the form of

$$y = f(x) = ax^2 + bx + c, \ a \neq 0$$

$$\Rightarrow \qquad y = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$

which represents a downward parabola, if a < 0 and upward parabola, if a > 0 and vertex of this parabola is

at
$$\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$$

Domain of f(x) = R

Range of
$$f(x)$$
 is $\left(-\infty, \frac{4ac-b^2}{4a}\right]$, if $a < 0$ and $\left[\frac{4ac-b^2}{4a}, \infty\right)$, if $a > 0$.

Cubic Function

A polynomial function of degree 3 is called a quadratic function, which is the form of $f(x) = ax^3 + bx^2 + cx + d$ ($a \ne 0$).

The graph of $f(x) = x^3 - 1$ or $f(x) = (x - 1) (x^2 + x + 1)$ cuts X-axis at only one point (1, 0), which means f(x) has one real root and two complex roots.

Domain: R or $(-\infty, \infty)$ and Range: R or $(-\infty, \infty)$

Properties

Note that, any polynomial of odd degree must have at least one real root, because the complex roots appear in conjugate pairs.

Radical Function

Radical function is defined by $f(x) = \sqrt[n]{x}, n \in \mathbb{N}$.

Square Root Function

Square root function is defined by

$$y = f(x) = \sqrt{x}, x \ge 0$$

Domain: $[0, \infty)$ and Range: $[0, \infty)$

Cube Root Function

Cube root function is defined by

$$f(x) = \sqrt[3]{x}$$

Domain: R and Range: R

Rational Function

A function of the form $f(x) = \frac{P(x)}{Q(x)}$, where P(x)

and Q(x) are polynomial functions of x defined in a domain and $Q(x) \neq 0$, is called a rational function.

imilar

are

The domain of a rational function is $R - \{x : Q(x) = 0\}$ and range depends on the expression representing the function.

e.g.
$$f(x) = \left(\frac{x^2 + 4}{x^3 - 6x + 4}\right)$$
 is called a rational function,

where
$$x^3 - 6x + 4 \neq 0$$
.

Its domain is
$$R - \{x : x^3 - 6x + 4 = 0\}$$
.

Reciprocal Function

The function $f: R - \{0\} \to R$ defined by $f(x) = \frac{1}{x}$ is called the reciprocal function. Its domain as well as range is $R - \{0\}$.

We observe that the sign of $\frac{1}{x}$ is same as that of x and $\frac{1}{x}$

decreases with the increase in x.

So, its graph is given below

It is also a rational function.

Domain:
$$(-\infty, 0) \cup (0, \infty)$$
 and Range: $(-\infty, 0) \cup (0, \infty)$

Exponential Function

Let $a(\ne 1)$ be a positive real number. Then, the function $f: R \to R$, defined by $f(x) = a^x$, is called the exponential function.

Domain: R and Range: $(0, \infty)$

As, a > 0 and $a \ne 1$. So following cases aries

Case I When a > 1, then the values of $y = f(x) = a^x$ increase as the values of x increase.

Thus,
$$f(x) = a^x = \begin{cases} <1, \text{ for } x < 0 \\ 1, \text{ for } x = 0 \\ >1, \text{ for } x > 0 \end{cases}$$

Its graph is given below

Case II When 0 < a < 1, then the values of $y = f(x) = a^x$ decrease with the increase in x and y > 0 for all $x \in R$

Thus,
$$f(x) = a^x = \begin{cases} > 1, \text{ for } x < 0 \\ 1, \text{ for } x = 0 \\ < 1, \text{ for } x > 0 \end{cases}$$

Its graph is given below

Logarithmic Function

Let $a(\neq 1)$ be a positive real number. Then, the function $f:(0,\infty)\to R$, defined by $f(x)=\log_a x$, is called the logarithmic function.

Domain: $(0, \infty)$ and range: R

As, a > 0 and $a \ne 1$. So following cases aries

Case I When a > 1, then values of y increases with the

increase in x. So,
$$y = \log_a x = \begin{cases} < 0, & \text{for } x < 1 \\ 0, & \text{for } x = 1 \\ > 0, & \text{for } x > 1 \end{cases}$$

Its graph is given below

Case II When 0 < a < 1, then values of y decreases with the increase in x.

So,
$$y = \log_a x = \begin{cases} >0, & \text{for } 0 < x < 1 \\ 0, & \text{for } x = 1 \\ <0, & \text{for } x > 1 \end{cases}$$

Its graph is given below

Properties

- (i) $\log_a 1 = 0$, where a > 0, $a \ne 1$
- (ii) $\log_a a = 1$, where a > 0, $a \ne 1$
- (iii) $\log_a(xy) = \log_a(x) + \log_a(y)$, where a > 0, $a \ne 1$ and x, y > 0.
- (iv) $\log_a(x/y) = \log_a(x) \log_a(y)$, where a > 0, $a \ne 1$ and x, y > 0.
- (v) $\log_a x^m = m \log_a x$, where a > 0, $a \ne 1$ and x > 0.
- (vi) $\log_{a^n} x^m = \frac{m}{n} \log_a(x)$, where a > 0, $a \ne 1$ and x > 0.

Note Functions log a x and a x are inverse of each other. So, their graphs are mirror images of each other in the line y = x.

Logarithmic Inequalities

- (i) If a > 1, 0 < m < n, then $\log_a m < \log_a n$. e.g. $\log_{10} 20 < \log_{10} 30$
- (ii) If 0 > a < 1, 0 < m < n, then $\log_a m > \log_a n$. e.g. $\log_{0.1} 20 > \log_{0.1} 30$
- (iii) For a, m > 0 if a and m lies on the same side of unity (i.e. 1), then $\log_a m > 0$. e.g. $\log_2 3 > 0$, $\log_{0.3} 0.5 > 0$
- (iv) For a, m > 0 if a and m lies on the different sides of unity (i.e. 1), then $\log_a m > 0$. e.g. $\log_{0.2} 3 < 0$, $\log_3 0.5 > 0$

Note (i) $\log(x+y) \neq \log x + \log y$

- (ii) $\log x \log y \neq \log(xy)$
- (iii) $\frac{\log x}{\log y} \neq \log \left(\frac{x}{y}\right)$
- (iv) $(\log x)^n \neq n \log^n$

Change of Base Formula

For
$$a, x, b > 0$$
 and $a, b \ne 1$, $\log_a x = \frac{\log_b x}{\log_b a}$

Note
$$\log_a x = \frac{\log_x x}{\log_x a} = \frac{1}{\log_x a}$$
 (Verify!)

Piecewise Defined Functions

A function defined by two or more equations on different parts of the given domain is called piecewise defind function.

e.g. If
$$f(x) = \begin{cases} x+1, & \text{if } x < 1 \\ 4-x, & \text{if } x \ge 1 \end{cases}$$

Here f(3) = 4 - 3 = 1 as 3 > 1,

whereas
$$f(-2) = -2 + 1 = -1$$
 as $-2 < 1$ and $f(1) = 4 - 1 = 3$.

As (1, 3) lies on line y = 4 - x, so it is shown by small black disc on that line. (1, 2) is shown by small white disc on the line y = x + 1, because it is not on the line.

Signum Function

The function $f: R \to R$ defined by

$$f(x) = \begin{cases} \frac{|x|}{x}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$
$$f(x) = \begin{cases} 1, & \text{when } x > 0 \\ 0, & \text{when } x = 0 \\ -1, & \text{when } x < 0 \end{cases}$$

is called the signum function.

Domain: R and range: $\{-1,0,1\}$

 $(x)=a^{1}$

O for all

tion

ith the

Properties

- (i) For x > 0, the graph is line y = 1 and for x < 0, the graph is line y = -1.
- (ii) For f(0) = 0, so point (0, 0) is shown by black disc, whereas points (0, -1) and (0, 1) are shown by white disc.

Absolute Value Function (Modulus Function)

The function $f: R \to R$ defined by

$$f(x) = |x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

is called the modulus function. It is also called absolute value function.

Domain: R or $(-\infty, \infty)$ and Range: $[0, \infty)$

It may be observed that

- (i) The graph is symmetrical with respect to Y-axis.
- (ii) Graph lies above the X-axis.
- (iii) It passes through the origin.
- (iv) In the first quadrant, it coincides with the graph of the identity function.

Properties

- (i) Graph of f(x) = |x| is union of line y = x from quadrant I with the line y = -x from quadrant II. As origin marks the change of directions of the two lines, we call it a critical point.
- (ii) Graph is symmetric about Y-axis.
- (iii) Graph of f(x) = |x-3| is the graph of |x| shifted 3 units right and the critical point is (3, 0).
- (iv) f(x) = |x|, represents the distance of x from origin.
- (v) If |x| = m, then it represents every x whose distance from origin is m, that is x = +m or x = -m.
- (vi) If |x| < m, then it represents every x whose distance from origin is less than m, $0 \le x < m$ and

$$0 \ge x > -m$$
 that is $-m < x < m$. In interval notation $x \in (-m, m)$.

- (vii) If $|x| \ge m$, then it represents every x whose distance from origin is greater than or equal to m, so $x \ge m$ and $x \le -m$. In interval notation $x \in (-\infty, -m] \cup [m, \infty)$.
- - (ix) Triangle inequality $|x + y| \le |x| + |y|$. Verify by taking different values for x and y (positive or negative).
 - (x) $|x| \cos a \sin b = a \sin a \sin a = a \sin a \sin a = a$

Greatest Integer Function (Step Function)

The function $f: R \to R$ defined by f(x) = [x] is called the greatest integer function, where [x] = integral part of x or greatest integer less than or equal to x.

Domain : R and range : I (I = set of integer).

e.g.,
$$[7.4] = [7 + 0.4] = 7$$

 $[0.6] = [0 + 0.6] = 0$
 $[-1.5] = [-2 + 0.5] = -2$

Graph	Values of x	f(x) = [x]
Y	La bridge better	1
-3	-3 ≤ x < -2	-3
2	-2≤x<-1	-2
("← -3 -2 -1 1 1 → X	$-1 \le x < 0$	-1
0 1 2 3 4 X	0 ≤ x < 1	0
-2	1 \le x < 2	1
-3	25x<3	2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 ≤ x < 4	3
	1	1

It may be observed that

- (i) [x] = [Integer + Proper positive fraction] = Integer
- (ii) It passes through origin.
- (iii) It is symmetrical in the opposite quadrant.

ics

nd

Fractional Part Function

It is defined as $f(x) = \{x\}$, where $\{x\}$ represents the fractional part of x, i.e. if x = n + f, where $n \in I$ and $0 \le f < 1$, then $\{x\} = f$.

Domain: R and Range: [0, 1)

pomain:
$$\{0.7\}$$
 = 0.7, $\{3\}$ = 0, $\{-3.6\}$ = 0.4

Properties

(i)
$$\{x\} = x - [x]$$

(ii)
$$\{x\} = x$$
, if $0 \le x < 1$

(iii)
$$\{x\} = 0$$
, if $x \in I$

(iv)
$$\{-x\} = 1 - \{x\}$$
, if $x \notin I$

Algebra of Functions

Let $f: D_1 \to R$ and $g: D_2 \to R$ be two real functions with domain D_1 and D_2 , respectively. Then, algebraic operations such as addition, subtraction, multiplication, division and scalar multiplication on two real functions are given below

(i) Addition of two real functions The sum function (f + g) is defined by

$$(f+g)(x) = f(x) + g(x), \forall x \in D_1 \cap D_2$$

The domain of (f + g) is $D_1 \cap D_2$.

(ii) Subtraction of two real functions The difference function (f - g) is defined by

$$(f-g)(x) = f(x) - g(x), \forall x \in D_1 \cap D_2$$

The domain of (f - g) is $D_1 \cap D_2$.

(iii) Multiplication of two real functions The product function (fg) is defined by

$$(fg)(x) = f(x) \cdot g(x), \forall \, x \in D_1 \cap D_2$$

The domain of (fg) is $D_1 \cap D_2$.

(iv) Quotient of two real functions The quotient function is defined by

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, \forall x \in D_1 \cap D_2 - \{x : g(x) = 0\}$$

The domain of $\left(\frac{f}{g}\right)$ is $D_1 \cap D_2 - \{x : g(x) = 0\}$.

(v) Multiplication of a real function by a scalar The scalar multiple function cf is defined by

$$(cf)(x) = c \cdot f(x), \forall \ x \in D_1$$

where, c is a scalar (real number).

The domain of cf is D_1 .

Note For any real function $f: D \to R$ and $n \in N$, we define

$$\underbrace{(fff \dots f)}_{n \text{ times}}(x) = \underbrace{f(x) f(x) \dots f(x)}_{n \text{ times}} = \{f(x)\}^n, \ \forall \ x \in D$$

Types of Function

As we know that, if $f: A \to B$ is a function, then f associates all the elements of set A to the elements in set B, such that an element of set A is associated to a unique element of set B. But there are some more possibilities, which may occur in a function, such as

- (i) more than one elements of A may have same image in B.
- (ii) each elements of B is image of some elements of A.
- (iii) there may be some elements in B, which are not the images of any element of A.

Corresponding to these possibilities, we define the following types of functions :

One-One (or Injective) Function

A function $f: A \to B$ is called a one-one (or injective) function, if distinct elements of A have distinct images in B, i.e. for every $a_1, a_2 \in A$, if $a_1 \neq a_2$, then $f(a_1) \neq f(a_2)$ and if $f(a_1) = f(a_2)$, then $a_1 = a_2$.

e.g. Let $f: A \rightarrow B$ be a function represented by the following diagram.

Here, f is a one-one function, because each element have distinct image.

Horizontal Line Test

If no horizontal line intersects the graph of a function in more than one point, then the function is one-one function.

The graph is one-one function as a horizontal line intersects the graph at only one point.

Onto (or Surjective) Function

A function $f: A \to B$ is said to be **onto** (or surjective) function, if every element of B is the image of some elements of A under f, i.e. for every $b \in B$, there exists an element a in A such that f(a) = b.

In other words, $f:A \rightarrow B$ is onto if and only if

Range of f = B

i.e.

Range = Codomain

Composition of Functions

Let $f: A \to B$ and $g: B \to C$ be any two functions. Then, the composition of f and g, denoted by $g \circ f$ is defined as function $g \circ f: A \to C$ given by

$$gof(x) = g[f(x)], \forall x \in A$$

Clearly, domain (gof) = domain (f)

It is clear from the definition that gof is defined only, if for each $x \in A$, f(x) is an element of domain of g, so that we can take its g-image.

Thus, gof exists, if the range of f is a subset of domain of g.

Similarly, fog exists, if range of g is a subset of domain of f.

e.g. If
$$f(x) = 3x + 5$$
 and $g(x) = x^2$,

then
$$fog(3) = f[g(3)] = f(3^2) = f(9) = 3 \times 9 + 5 = 32$$

Note

- (i) $gof(x) = g\{f(x)\}\$, i.e. first f rule is applied, then g rule is applied.
- (ii) $fog(x) = f\{g(x)\}\$, i.e. first g rule is applied, then f rule is applied.

- (iii) Generally, the composition of functions is not commutative, i.e. $fog \neq gof$.
- (iv) If $f: R \to R$ and $g: R \to R$ are real functions, then both fog and gof exists.

Inverse Function

Let $f: A \longrightarrow B$ is a bijective function, i.e. it is one-one and onto function. Then, we can define a function $g: B \longrightarrow A$, such that $f(x) = y \Rightarrow g(y) = x$, which is called inverse of f and *vice-versa*.

Symbolically, we write $g = f^{-1}$

A function whose inverse exists, is called an **invertible** function or **inversible**.

- (i) Domain (f^{-1}) = Range (f)
- (ii) Range (f^{-1}) = Domain (f)
- (iii) If f(x) = y, then $f^{-1}(y) = x$ and vice-varse.

Note

- (i) As f is one-one and onto every element $y \in B$ has a unique element $x \in A$, such that y = f(x).
- (ii) If f and g are one-one and onto functions such that f[g(x)] = x for every $x \in Domain$ of g and g[f(x)] = x for every $x \in Domain$ of g, then g is called inverse of function g.

Function g is denoted by f^{-1} (read as f inverse).

i.e. f[g(x)] = g[f(x)] = x then $g = f^{-1}$ which moreover this means $f[f^{-1}(x)] = f^{-1}[f(x)] = x$.

(iii)
$$f^{-1}(x) \neq [f(x)]^{-1}$$
, because $[f(x)]^{-1} = \frac{1}{f(x)}$

 $[f(x)]^{-1}$ is reciprocal of function f(x) where as $f^{-1}(x)$ is the inverse function of f(x).

e.g. If f is one-one onto function with f(3) = 7, then $f^{-1}(7) = 3$.