

Liang Zhang (Izhang6@wpi.edu)
Data Science Dept.,
Worcester Polytechnic Institute

#SAISEco5

Data Science Research Group @ Worcester Polytechnic Institute

Prof. Elke A. Rundensteiner

Prof. Mohamed Y. Eltabakh

Liang Zhang

Noura Alghamdi

Liang Zhang, Noura Alghamdi, Mohamed Y. Eltabakh, Elke A. Rundensteiner. *TARDIS: Distributed Indexing Framework for Big Time Series Data*. Proceedings of 35th IEEE International Conference on Data Engineering **ICDE**, 2019

Outline

- Motivation
- Background
- Spark-ITS Framework
 - Overview
 - Index Construction
 - Query Processing
- Performance Evaluation

Time Series are Continuously Produced Everywhere

divide dote time a mineral computerness a is as method on 2012-00-00 de divide da 2020/belleddie epiriah 202,002,003,003,003 del 2008-00-25 07-00-23 2222794394379 925925 222-222-222-222-223 427 /2009/12/in_not_mon 38 - 141-1468/1 TS 122-222-222-222-223 9788619 978661-141 - 80 2808-80-34 81:88:44 2222344346879 R0FUES 222.222.222.222 SET //mg/logs.jsg - 80 - 98.88.35. 2012 40 24 87:80:40 2222254294879 RUTTUS 222.222.222.222.222 MT /mg/tmp/ emilland.jng - 80 222-0-3 (***) (***

Climate data

Web log

How to deal with billions of time series?

Almost all Time Series Data Mining Tasks rely on Similarity Query

Esling, Philippe, and Carlos Agon. "Time-series data mining." ACM (CSUR) 45.1 (2012): 12.

Spark-ITS

- A new Index Tree and an effective Signature to simplify the cardinality conversion and keep better similarity
- A Distributed Index Framework to support large-scale time series dataset
- Efficient algorithms for Exact Match and kNN Approximate queries process

Spark-ITS Overview

Background: iSAX Representation

A time series of length 16 PAA representation with 4 segments

SAX representation with 4 segments and cardinality 4

[11,10,01,00]

iSAX representation with 4 segments and variable cardinality

 $[1_2, 1_2, \mathbf{01_4}, 0_2]$

PAA: Piecewise Aggregate Approximation

iSAX: indexable Symbolic Aggregate approXimation

Shieh, Jin, and Eamonn Keogh. "iSAX: indexing and mining terabyte sized time series." *SIGKDD* ACM, 2008. Camerra, A., Palpanas, T., Shieh, J., & Keogh, E. "iSAX 2.0: Indexing and mining one billion time series." ICDM, 2010

Word-level Similarity

State-of-the-art: Character-level Similarity

A: [0₁, 0₁, 011₃, 1₁]

B: [0₁, 0₁, 010₃, 1₁] C: [0₁, 0₁, 010₃, 1₁] B and C are similar

Proposed: Word-level Similarity

A: [01₂, 01₂, 01₂, 10₂]

B: [00₂, 00₂, 01₂, 11₂]

 $C: [01_2, 01_2, 01_2, 10_2]$

A and C are similar

New Index Tree Supports Word-level Similarity

State-of-the-art: iSAX Binary Tree

Proposed: iSAX-T K-ary Tree

iSAX-T(Transpose) Signature

Time series:

[1100, 1101, 0110, 0001]

Outline

- Motivation
- Background
- Spark-ITS Framework
 - Overview
 - Index Construction
 - Query Processing
- Performance Evaluation

Global Index[1/4]: Sampling

The data size is based on 1 billion time series with 256 length

1256ae3e ,

0134ef45

234567ae

024567ae

237867ae .

452167ef , 10

0.1 G

10

Global Index[2/4]: Node Statistic

Global Index[3/4]: Build Tree

1st layer (iSAX-T, Freq)

- ("01", 512)
- ("02", 355,000)
- ...
- ("ff", 270,520)

2nd layer (iSAX-T, Freq)

- ("0201", 5,012)
- ("0202", 100,550)
-
- ("ffff", 10,520)

3rd layer (iSAX-T, Freq)

- · ("020201", 12)
- ("020202", 550)
- ...
- ("0202ff", 620)

Segment number: 8

Partition Capacity: 100,000

Global Index[4/4]: Assign Partition Id to Leaf Nodes

Bin Packing Problem:

How to fit a set of nodes in the smallest numbers of partitions?

Partition capacity: 100,000

Repartition: Wrap Global Index as the Partitioner

Local Index: Construction Within Each Partition

Time series in one partition

Partition capacity: 100,000 Node split threshold: 1000 Segment Number: 8

Local Index

Outline

- Motivation
- Background
- Spark-ITS Framework
 - Overview
 - Index Construction
 - Query Processing
- Performance Evaluation

Exact Matching Query

KNN Approximate Query: One Partition Access

KNN Approximate Query: Multi-Partitions Access

Outline

- Motivation
- Background
- Spark-ITS Framework
 - Overview
 - Index Construction
 - Query Processing
- Performance Evaluation

Experimental Setup

HW&SW	Configuration
Spark	2.0.2, Standalone mode
Hadoop	2.7.3
Platform	Ubuntu 16.04. LTS
HW	2 nodes, each node consist of 56 Xeon E5 processors, 500G RAM, 7TB SATA hard drive

Dataset	Size	Length
Random Walk	1 billion	256
Texmex ¹	1 billion	128
DNA ²	200 million	192
Noaa Climate ³	200 million	64

	Baseline	Spark-ITS
Initial cardinality	512	64
Word length	8	8
Sampling percent	10%	10%
Leaf node split threshold of Local index	1000	1000

State-of-the-Art: Yagoubi, Djamel-Edine, et al. "DPiSAX: Massively Distributed Partitioned iSAX." *ICDM 2017*The initial cardinality of the baseline system is the default value and it needs a large initial value to guarantee enough bit level for binary split.

The dataset is normalized Each point is saved as float format

Source:

- 1. http://corpus-texmex.irisa.fr/
- https://genmone.ucsc.edu
- https://www.ncdc.gov/

Index Construction Time

Dataset: Random Walk Benchmark

Index Construction Time: Breakdown

Global Index Time Breakdown

Repartition and Local Index Time Breakdown

Dataset: Random Walk Benchmark

Exact Matching Query

kNN-Approximate Query Performance

Conclusion

- Index Tree
 - Large fan-out decreases the depth of leaf nodes
 - Keeps better similarity at Word-level
 - The signature simplifies the conversion of cardinality
- Spark-ITS: Index Construction
 - Block-sampling and node statistic collection to fast build global index
 - Synchronously build local indices within a partition
 - Constructs Index faster 80+%.
- Spark-ITS: Query
 - Exact Matching: the time decreases by 50%.
 - kNN approximate: the accuracy increases more than 10 fold.

Acknowledge Funding from...

Xianjin Tech Co., Ltd.

Saudi Arabian Cultural Mission

WPI Computer Science Dept.,

NSF CNS: 305258 II-EN

NSF CRI: 0551584

