Computation Graph

y3162

Name space : CG

Class Inheritance Hierarchy

Node

Leaf1

MMtoM

 Add

 Sub

MMto1

Dots

MSE

MtoM

ReLU

Softmax

Mto1

Norm2

Affine

Convolution

Class:Node

This is a base class of following classes.

Type	Property	Description	
vec1 <dtype></dtype>	data	A vector processed by this node.	
vec1 <dtype></dtype>	grad	The partial derivative of the cost function with respect to data.	
vec1 <node*></node*>	forward	A vector of pointers to the next layer's nodes.	
vec1 <node*></node*>	backward	A vector of pointers to the previous layer's nodes. The dimension of the domain.	
size_t	domsize		
int	f_count	The number of nodes in the next layer during backpropagation.	
int	b_count	The number of nodes in the previous layer during forwardpropagation	

Type	Method	Description
void	pushThis(Node *node)	Add this as a new argument's new next layer.
virtual void	calcData()	Calculate data by using previous layer's nodes.
void	forwardPropagation()	After all forward propagations from the previous layer
		are completed, propagate to the next layer.
virtual void	calcPartialDerivative()	Calculate the grad for the previous layer by using the
		grad at this node.
void	backwardPropagation()	After receiving all backward propagations from the
		next layer, propagate backward to the previous layer.
virtual void	updateParameters(dtype eta)	Update this node's parameters.
void	update(dtype eta)	After updating all parameters of the next layer, update
		the parameters of the previous layer.

Class:Leaf1 extends Node

This class represents a leaf node of 1-dimension.

Type	Method	Description
void	getInput(vec1 <dtype> input)</dtype>	Provide the argument as input to the data.

Class: MMtoM extends Node

This class represents a node that processes the *data* from the previous layer's nodes and updates the *data* for this node. $\mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}^m$.

Class:Add extends MMtoM

For $x, y, d \in \mathbb{R}^m$, x is the first and y is the second node in the previous layer and d is data in this node.

$$d = x + y \Longrightarrow d_i = x_i + y_i$$

Let L be the cost function,

$$\begin{split} \frac{\partial L}{\partial x_i} &= \frac{\partial d_i}{\partial x_i} \frac{\partial L}{\partial d_i} = \frac{\partial L}{\partial d_i} \\ \frac{\partial L}{\partial y_i} &= \frac{\partial d_i}{\partial y_i} \frac{\partial L}{\partial d_i} = \frac{\partial L}{\partial d_i} \end{split}$$

Class:Sub extends MMtoM

For $x, y, d \in \mathbb{R}^m$, x is the first and y is the second node in the previous layer and d is data in this node.

$$d = x - y \Longrightarrow d_i = x_i - y_i$$

Let L be the cost function,

$$\begin{split} \frac{\partial L}{\partial x_i} &= \frac{\partial d_i}{\partial x_i} \frac{\partial L}{\partial d_i} = \frac{\partial L}{\partial d_i} \\ \frac{\partial L}{\partial y_i} &= \frac{\partial d_i}{\partial y_i} \frac{\partial L}{\partial d_i} = -\frac{\partial L}{\partial d_i} \end{split}$$

Class:MMto1 extends Node

This class represents a node that processes the *data* from the previous layer's nodes and updates the *data* for this node. $\mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}$.

Class:Dots extends MMto1

For $x, y \in \mathbb{R}^m$ and $d \in \mathbb{R}$, x is the first and y is the second node in the previous layer and d is data in this node.

$$d = \boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^{m} x_i y_i$$

Let L be the cost function,

$$\begin{split} \frac{\partial L}{\partial x_i} &= \frac{\partial d}{\partial x_i} \frac{\partial L}{\partial d} = y_i \frac{\partial L}{\partial d} \\ \frac{\partial L}{\partial y_i} &= \frac{\partial d}{\partial y_i} \frac{\partial L}{\partial d} = x_i \frac{\partial L}{\partial d} \end{split}$$

Class:MSE extends MMto1

For $x, y \in \mathbb{R}^m$ and $d \in \mathbb{R}$, x is the first and y is the second node in the previous layer and d is data in this node.

$$d = \frac{1}{m} \| \boldsymbol{x} - \boldsymbol{y} \|_{2}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{i} - y_{i})^{2}$$

Let L be the cost function,

$$\begin{split} \frac{\partial L}{\partial x_i} &= \frac{\partial d}{\partial x_i} \frac{\partial L}{\partial d} = \frac{2 \left(x_i - y_i \right)}{m} \frac{\partial L}{\partial d} \\ \frac{\partial L}{\partial y_i} &= \frac{\partial d}{\partial y_i} \frac{\partial L}{\partial d} = -\frac{2 \left(x_i - y_i \right)}{m} \frac{\partial L}{\partial d} \end{split}$$

Class:CEE extends MMto1

For $x, y \in \mathbb{R}^m$ and $d \in \mathbb{R}$, x is the first and y is the second node in the previous layer and d is data in this node.

$$d = -\boldsymbol{y} \cdot \ln \boldsymbol{x} = -\sum_{i=1}^{m} y_i \ln x_i$$

Let L be the cost function,

$$\frac{\partial L}{\partial x_i} = \frac{\partial d}{\partial x_i} \frac{\partial L}{\partial d} = -\frac{y_i}{x_i} \frac{\partial L}{\partial d}$$
$$\frac{\partial L}{\partial y_i} = \frac{\partial d}{\partial y_i} \frac{\partial L}{\partial d} = -\ln x_i \frac{\partial L}{\partial d}$$

Class: MtoM extends Node

This class represents a node that processes the *data* from the previous layer's node and updates the *data* for this node. $\mathbb{R}^m \longrightarrow \mathbb{R}^m$.

Class:ReLU extends MtoM

For $x, d \in \mathbb{R}^m$, x is the first node in the previous layer and d is data in this node.

$$d = \text{ReLU}(x) \Longrightarrow d_i = \text{ReLU}(x_i) = \begin{cases} x_i & x_i \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Let L be the cost function,

$$\frac{\partial L}{\partial x_i} = \frac{\partial d_i}{\partial x_i} \frac{\partial L}{\partial d_i} = 1_{[x_i \ge 0]} \frac{\partial L}{\partial d_i}$$

Class:Softmax extends MtoM

For $x, d \in \mathbb{R}^m$, x is the first node in the previous layer and d is data in this node.

$$d = \operatorname{Softmax}(x) \Longrightarrow d_i = \operatorname{Softmax}(x)_i = \frac{\exp(x_i)}{\sum_{j=1}^{m} \exp(x_j)}$$

Let L be the cost function,

$$\frac{\partial L}{\partial x_i} = \sum_{j=1}^{m} \frac{\partial d_j}{\partial x_i} \frac{\partial L}{\partial d_j} = \sum_{j=1}^{m} (\delta_{i,j} - d_i) d_j \frac{\partial L}{\partial d_j}$$

Class:Mto1 extends Node

This class represents a node that processes the *data* from the previous layer's node and updates the *data* for this node. $\mathbb{R}^m \longrightarrow \mathbb{R}$.

Class:Norm2 extends Mto1

For $x \in \mathbb{R}^m$ and $d \in \mathbb{R}$, x is the first node in the previous layer and d is data in this node.

$$d = \left\| \boldsymbol{x} \right\|_2 = \sqrt{\sum_{i=1}^m x_i^2}$$

Let L be the cost function,

$$\frac{\partial L}{\partial x_i} = \frac{\partial d}{\partial x_i} \frac{\partial L}{\partial d} = \frac{x_i}{d} \frac{\partial L}{\partial d}$$

Class: Affine extends Node

This class represents a node that performs an affine transformation.

Type	Property	Description	
vec2 <dtype></dtype>	<dtype> weight The affine transformation matrix for this affine transformation</dtype>		
vec2 <dtype></dtype>	gradWeight	The sum of the gradients of the weight.	
dtype	bias	The bias in this affine transformation.	

For $\boldsymbol{x} \in \mathbb{R}^m, b \in \mathbb{R}, \boldsymbol{W} \in \mathbb{R}^{(m+1)\times n}$ and $\boldsymbol{d} \in \mathbb{R}^n$, \boldsymbol{x} is the first node in the previous layer, b is the bias and \boldsymbol{d} is the data in this node. $\mathbb{R}^m \longrightarrow \mathbb{R}^n$

$$\boldsymbol{d} = \boldsymbol{W}^T \begin{pmatrix} \boldsymbol{x} \\ b \end{pmatrix} \Longrightarrow d_i = \sum_{j=1}^m W_{j,i} x_j + W_{m+1,i} b$$

Let L be the cost function,

$$\frac{\partial L}{\partial x_i} = \sum_{j=1}^n \frac{\partial d_j}{\partial x_i} \frac{\partial L}{\partial d_j} = \sum_{j=1}^n W_{i,j} \frac{\partial L}{\partial d_j}$$

$$\frac{\partial L}{\partial W_{i,j}} = \sum_{k=1}^{n} \frac{\partial d_k}{\partial W_{i,j}} \frac{\partial L}{\partial d_k} = \begin{cases} x_i \frac{\partial L}{\partial d_j} & 1 \leq i \leq m \\ b \frac{\partial L}{\partial d_j} & \text{otherwise} \end{cases}$$

Class: Convolution extends Node

This class represents a node that performs convolution.

F F F					
Type	Property	Description			
vec2 <dtype></dtype>	kernel	The filter used during convolution			
vec2 <dtype></dtype>	gradKeight	The sum of the gradients of the kernel			
dtype	bias	The bias in this affine transformation.			
dtype	gradBias	The sum of the gradients of the bias.			
size_t	psize	The size of padding.			

For $X \in \mathbb{R}^{m_h \times m_w}$, $b, p \in \mathbb{R}$, $K \in \mathbb{R}^{k_h \times k_w}$ and $D \in \mathbb{R}^{n_h \times n_w}$, X is the first node in the previous layer, b is the bias, p is the size of padding and D is the data in this node. So, $n_h = m_h + 2p - k_h + 1$ and $n_w = m_w + 2p - k_w + 1$. $\mathbb{R}^{m_h \times m_w} \longrightarrow \mathbb{R}^{n_h \times n_w}$

$$\boldsymbol{D} = \boldsymbol{X} * \boldsymbol{K} + b \boldsymbol{I}_{n_h \times n_w} \Longrightarrow D_{s,t} = \sum_{i=1}^{k_h} \sum_{j=1}^{k_w} K_{i,j} X_{s+(i-1)-p,t+(j-1)-p} + b$$

Let L be the cost function,

$$\frac{\partial L}{\partial X_{s,t}} = \sum_{i=1}^{k_h} \sum_{j=1}^{k_w} \frac{\partial D_{s-(i-1)+p,t-(j-1)+p}}{\partial X_{s,t}} \frac{\partial L}{\partial D_{s-(i-1)+p,t-(j-1)+p}} = \sum_{i=1}^{k_h} \sum_{j=1}^{k_w} K_{i,j} \frac{\partial L}{\partial D_{s-(i-1)+p,t-(j-1)+p}}$$

$$\frac{\partial L}{\partial K_{i,j}} = \sum_{s=1}^{n_h} \sum_{t=1}^{n_w} \frac{\partial D_{s,t}}{\partial K_{i,j}} \frac{\partial L}{\partial K_{i,j}} = \sum_{s=1}^{n_h} \sum_{t=1}^{n_w} X_{s+(i-1)-p,t+(j-1)-p} \frac{\partial L}{\partial D_{s,t}}$$

$$\frac{\partial L}{\partial b} = \sum_{s=1}^{n_h} \sum_{t=1}^{n_w} \frac{\partial D_{s,t}}{\partial b} \frac{\partial L}{\partial D_{s,t}} = \sum_{s=1}^{n_h} \sum_{t=1}^{n_w} \frac{\partial L}{\partial D_{s,t}}$$