Impeller stress & frequency prediction model

Pham Ngoc Son

Fan Design Team

2021/10/14

Table of Content

- 1. Introduction
- 2. Machine learning application
- 3. Data preparation
- 4. Data exploratory analysis
- 5. Regression modeling
- 6. Modeling result
- 7. Conclusion

1. Introduction

Impeller stress & frequency calculation method

1. Using FAD

2. Using FEM (Ansys Mechanical)

^{*} Note: FAD is Tongyang self-developed program while Ansys is purchased with 1 license.

1. Introduction

Comparison of stress & frequency prediction method

^{*} Note: value higher is better

1. Introduction

COMMENTS:

- ❖ Using FAD is fast to get the result but the margin is high → can not reduce impeller's cost to improve competitiveness.
- ❖ Using FEM can get high accuracy result → can help to design lightweight impeller to reduce cost & improve competitiveness.
- ❖ Problem with FEM is expensive license & long calculation time → can not apply to many projects.
- → It's needed to develop a new tool which is as fast as FAD but also has good accuracy in stress & frequency prediction like FEM.

^{*} Note: value higher is better

2. Machine learning application

Machine learning algorithm tree map

^{*} Regression analysis in supervised learning algorithm can be use to predict impeller's stress!

2. Machine learning application

Machine learning tools

- * Python is a data science language & has a lot of library support for machine learning.
- * Jupyter notebook is a development tool to deploy machine learning using Python.

3. Data preparation

Analysis data preparation process

Step 1 Define input parameters

Material properties:

- Young modulus
- Density

Design conditions:

- Rotating speed
- Temperature

Impeller's design:

- Main diameter D2
- Main plate thick tm
- Side plate thick ts
- Vane thick tv

Other parameters:

- **❖** Vane rib
- ❖ Vane Rim, side rim ...

Step 2 <u>Define output parameters</u>

Stress:

- Main plate stress Sm
- Side plate stress Ss
- Vane stress Sv

Frequency:

1st natural frequency

Other properties:

- Impeller's weight
- Impeller's GD2

Step 3 Create data table

Material properties:

- ❖ Young: 139 ~ 205 Mpa
- ❖ Density: 7.8 ~ 8.0 g/cm³

Design conditions:

- ❖ Speed: 900 ~ 3600 Rpm
- Temperature: only affect to Young => not need.

Impeller's design:

- ❖ D2: 1000 ~ 2000 mm
- ❖ Tm: 3.2 ~ 18 mm
- ❖ Ts: 3.2 ~ 15 mm
- **❖** Tv: 3.2 ~ 9 mm

^{*} A total of 13 data rows were created from above conditions for model testing.

^{*} A total of 61 data rows were created from above conditions for model training.

3. Data preparation

3D modeling & FEM analysis to get result

1. 3D modeling

H model was selected for modeling 3D model created for all parameters

2. FEM using Ansys Mechanical

FEM result for all cases (74 cases):

- Main stress
- Side Stress
- Vane stress
- Natural frequency

Data correlation value

	D2	Tm	Ts	Tv
Weight	0.9556	0.7358	0.7562	0.3989
GD2	0.9364	0.6607	0.7438	0.3522
Sm	0.9112	0.3770	0.6396	0.4116
Ss	0.6656	0.4350	0.0434	0.5851
Sv	0.9453	0.6372	0.5540	0.2024
Frequency	0.0590	0.6027	0.0358	-0.0837

^{*} High correlation value means 2 parameters might have strong relation.

⁻ Sm, Ss, Sv & D2 has high correlation

⁻ Frequency has high correlation with Tm (main thickness)

Scatter plots for data visualization

0.250

1.8

0.200

0.225

2.0

Stress vs Material properties & speed

^{*} Stress also can be calculated from a standard condition using above linear & 2nd order relationship!

Frequency vs Material properties & speed

^{*} Frequency has linear relationship with Young modulus & density \Rightarrow it is possible to calculate frequency at different material condition from a standard condition!

5. Regression modeling

2nd order polynomials regression model

- * A 2nd order regression model for 4 input parameters included:
 - D2, tm, ts, tv
- * Output included:
 - Sm, Ss, Sv, frequency, weight, GD2

The model has a form as below:

$$Y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + b_1 x_1^2 + b_2 x_2^2 + b_3 x_3^2 + b_4 x_4^2 + c_1 x_1 x_2 + c_2 x_1 x_3 + \dots$$

* Sklearn Python library with linear regression solver was used to find the a0, a1, a2 ... coefficients in above equation.

Model prediction – main stress

Train data prediction

^{*} Regression model has very high R^2 value \Rightarrow high prediction accuracy!

^{*} All predicted values stay within +/- 10% of true values.

Model prediction – side stress

^{*} Regression model has very high R^2 value \Rightarrow high prediction accuracy!

^{*} All predicted values stay within +/- 10% of true values.

Model prediction – vane stress

^{*} Regression model has very high R^2 value \Rightarrow high prediction accuracy!

^{*} All predicted values stay within +/- 10% of true values.

Model prediction – weight

^{*} Regression model has very high R² value → high prediction accuracy!

^{*} All predicted values stay within +/- 3% of true values.

Model prediction – GD2

^{*} Regression model has very high R² value → high prediction accuracy!

^{*} All predicted values stay within +/- 5% of true values.

Model prediction – frequency

Train data prediction

^{*} R^2 value of test data is quite low \rightarrow low prediction accuracy for frequency!

^{*} A new model should be developed to predict frequency instead of 2nd order model.

Modified 2nd order polynomials regression model

- * A 2nd order regression model for 3 input parameters included:
 - tm/D2, ts/D2, tv/D2
- * Output included:
 - Frequency

The model has a form as below:

$$Y = a_0 + a_1 x_1^{p1} + a_2 x_2^{p2} + a_3 x_3^{p3} + b_1 (x_1^{p1})^2 + b_2 (x_2^{p2})^2 + b_3 (x_3^{p3})^2 + \dots$$

* Sklearn Python library with linear regression solver was used to find the a0, a1, a2 ... coefficients and also p1, p2, p3 power value in above equation.

New model prediction – frequency

True_Value

^{*} R^2 value of test data increases from 0.36 to 0.65 \Rightarrow better than original 2^{nd} order model!

^{*} Accuracy is not very high. All predicted values stay within +/-20% of true values.

Stress result – FAD vs FEM vs Predict model

^{*} FAD stress value is lower than FEM value, especially vane stress value.

^{*} Predict model value is close to FEM value → high prediction accuracy!

7. Conclusion

Conclusion:

- ❖ 2nd order polynomial regression model can accurately predict stress value of vane, side and main within +/-10%.
- ❖ Weight and GD2 of impeller can also be predicted with similar model with very high accuracy, within +/-5%.
- ❖ Frequency can be modelled using modified 2nd order polynomials with medium accuracy, within +/-20%.

Future works:

- ❖ Addition parameters such as ribs number and rim can also be modeled to check their effect to impeller's stress.
- ❖ A more sophisticated model can also be used to improve accuracy of prediction model, such as using neural network modeling.