

# Workshop "Traceability of Simulation Tasks

# DC – Motor Mild Hybrid

Hans-Martin Heinkel (Robert Bosch GmbH)
Kim Steinkirchner(PROSTEP AG)

Sep 2020













# prostep IVIP

# "Traceability and proof of quality of Simulation Tasks"

**Example: DC-motor** 

### **Engineering/Simulation Task**

- Pre-selection of a DC-motor for a mild hybrid application (drive Unit)
- DC-Motor has to accelerate against a Load MLoad = 1 Nm in 1s from 0 to 1000 rad/s. Voltage U = 48 V
- A simple simulation model which contains the basic physical effect is used
- Neglected effects
  - Commutation effects (losses are considered in R)
  - Eddy currents
  - Friction (should be added to Mload)







| In / Outputs                   | Name  | Unit   | Format  | Comment  |  |  |  |
|--------------------------------|-------|--------|---------|----------|--|--|--|
| Elecrical Part DC Motor Model  |       |        |         |          |  |  |  |
| Supply Voltage                 | U     | V      | Float32 |          |  |  |  |
| Current                        | l     | Α      | Float32 |          |  |  |  |
| Motor Torque                   | М     | Nm     | Float32 |          |  |  |  |
| Mechanical Part DC Motor Model |       |        |         |          |  |  |  |
| Acceleration                   | а     | Rad/s² | Float32 | internal |  |  |  |
| Rotation speed                 | n     | Rad/s  | Float32 |          |  |  |  |
| angle                          | φ     | Rad    | Float32 |          |  |  |  |
| Load Torque                    | Mload | Nm     | Float32 |          |  |  |  |

| Parameters                     | Name | Unit             | Format  | default<br>Value |  |  |
|--------------------------------|------|------------------|---------|------------------|--|--|
| Elecrical Part DC Motor Model  |      |                  |         |                  |  |  |
| Resistance                     | R    | Ohm              | Float32 | 1                |  |  |
| Inductance                     | L    | mH               | Float32 | 1                |  |  |
| motor constant                 | cm   | Nm/A             | Float32 | 0,2              |  |  |
| Mechanical Part DC Motor Model |      |                  |         |                  |  |  |
| Inertia                        | J    | Kgm <sup>2</sup> | Float32 | 0,002            |  |  |
| Damping                        | d    | Nm/rad           | Float32 | 0.001            |  |  |
| Friction                       | Mfr  | Nm               | Float32 | 0,01             |  |  |



### "Traceability and proof of quality of Simulation Tasks" Example: Engineering Task DC-motor

### Project Name

Mild Hybrid Variant AAA-55

#### Project Number

P987658

#### Version

2

#### Prj Leader

J. Miller

### Description of project

Developing of variant of a mild hybrid based on platform DDC

#### SubTask

Pre-selection of a DC-motor for a mild hybrid application

Verify if DC-Motor part number XY12346 can be used

#### Requirements

DC-Motor part number XY12346 has to accelerate against a Load MLoad = 1 Nm in 1s from 0 to 1000 rad/s

Simplified requirements, deriveded from mild hybrid req.

Simplification: Friction is added to Mload

### **Boundary Conditions**

U = 48 V







## "Traceability and proof of quality of Simulation Tasks" Example: Engineering Task DC-motor

| Part                      | DC-Motor    |        |             |                                            |
|---------------------------|-------------|--------|-------------|--------------------------------------------|
| Part Number               | XY12346     |        |             |                                            |
| Organistion               | KKKK        |        |             | * additional measurement conditions see    |
| Date                      | 05 Dec 2015 |        |             | appendix cdefg                             |
| Parameter                 | Value       | Unit   | Tolerances  | measurement conditions*                    |
| R (Resistance)            | 0,2         | Ohm    | -5 up +10%  | 20 degree, after 20 min operation          |
| R (Resistance)            | 0,22        | Ohm    | -5 up +10%  | 70 degree, after 20 min operation          |
| R (Resistance)            | 0,24        | Ohm    | -10 up +20% | 20 degree, new, 0 min operation            |
| L (Inductance)            | 1,0         | mH     | -5 up +10%  | 20 degree                                  |
| cm (motor constant)       | 0,03        | Nm/A   | -5 up +10%  | 20 degree                                  |
| J (Inertia)               | 0,002       | Kgm2   | -2 up +2%   | 20 degree                                  |
| d (Damping)               | 0,001       | Nm/rad | -10 up +20% | 20 degree                                  |
| Mfr-Br (Friction Brushes) | 0,007       | Nm     | -10 up +20% | 20 degree, after 20 min operation          |
| Mfr-Br (Friction Brushes) | 0,005       | Nm     | -10 up +20% | 20 degree, new, 0 min operation            |
| Mfr-Be (Friction Bearing) | 0,003       | Nm     | -10 up +20% | 20 degree                                  |
| Length motor              | 0,1         | m      | -2 up +2%   | 20 degree                                  |
| Diameter motor            | 4           | cm     | -2 up +2%   | 20 degree                                  |
| Weight motor              | 0,3         | kg     | -2 up +2%   | 20 degree                                  |
| Length rotor              | 7           | cm     | -2 up +2%   | 20 degree                                  |
| Diameter rotor            | 2,5         | cm     | -2 up +2%   | 20 degree                                  |
| Weight rotor              | 150         | g      | -2 up +2%   | 20 degree                                  |
| Temperature Range         | -30 up +90  | Degree |             |                                            |
| max continuous current    | 50          | Α      |             | 20 degree                                  |
| max peak current          | 100         | Α      |             | 20 degree, duration 5 s, repeat rate 5 min |
| xxx                       | xxx         | aaa    |             |                                            |

bbb

ууу

ууу

Artificial values, not corresponding to a real DC-motor



## "Traceability and proof of quality of Simulation Tasks" Example: Data Sheet DC motor

| Parameter                 | Value                  | Parameter         | Value            |
|---------------------------|------------------------|-------------------|------------------|
| R (Resistance)            | 0,2 Ohm                | Length motor      | 0,1 m            |
| L (Inductance)            | 1 mH                   | Diameter motor    | 4 cm             |
| cm (motor constant)       | 0,03 Nm/A              | Weight motor      | 0,3 kg           |
| J (Inertia)               | 0,002 Kgm <sup>2</sup> | Length rotor      | 7 cm             |
| d (Damping)               | 0,001 Nm/rad           | Diameter rotor    | 2,5 cm           |
| Mfr-Br (Friction Brushes) | 0,007 Nm               | Weight rotor      | 150 g            |
| Mfr-Be (Friction Bearing) | 0,003 Nm               | Temperature Range | -30 - +90 Degree |
|                           | _                      | XXX               | XXX              |
|                           | 1                      | ууу               | ууу              |
|                           |                        | 777               | 777              |

