$Alg\`ebre$

Valeurs propres et vecteurs propres

Denis Vekemans *

Dans toute la feuille \mathbb{K} désigne un corps et n un entier non nul.

Exercice 1 Donner les valeurs propres et les espaces propres des matrices réelles suivantes

$$A_{1} = \begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix},$$

$$A_{4} = \begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad A_{5} = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1 \end{pmatrix}.$$

Les matrices ci-dessus sont-elles diagonalisables dans $\mathcal{M}_{\mathbb{R}}(n)$?

Exercice 2 Soit $A \in \mathcal{M}_{\mathbb{R}}(n)$.

Montrer que A et A^t ont les mêmes valeurs propres.

Exercice 3 Soient $A, B \in \mathcal{M}_{\mathbb{C}}(n)$.

- 1. Montrer que si A et B sont semblables, alors A et B ont même polynôme caractéristique.
- 2. A l'aide d'un exemple montrer que l'implication réciproque est fausse.

Exercise 4 Soit $a = (a_1, \dots, a_n)$ un vecteur non nul de \mathbb{K}^n et soit $A = (a_{i,j})_{i \in \{1,2,\dots,n\}, j \in \{1,2,\dots,n\}} \in \mathcal{M}_{\mathbb{K}}(n)$ telle que, pour tout $j \in \{1,\dots,n\}, a_{i,j} = a_j$.

Déterminer les valeurs propres de A ainsi que leurs multiplicités algébriques et géométriques.

Exercice 5 Diagonaliser les matrices suivantes

$$A_{1} = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}, \quad A_{2} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}, \quad A_{3} = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 3 & 1 & 6 & 0 \\ 6 & 6 & 2 & 1 \end{pmatrix}.$$

 $^{^*}$ Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

Exercice 6 Soient $A \in \mathcal{M}_{\mathbb{K}}(n)$ et $B \in \mathcal{M}_{\mathbb{K}}(n)$ deux matrices diagonalisables.

Montrer que AB = BA si et seulement si tout sous-espace propre de A est stable par B.

Exercice 7 Calculer A^{20} si A est la matrice

$$A = \left(\begin{array}{cc} 1 & 1/2 \\ 4 & 2 \end{array}\right).$$

Exercice 8 Vérifier que $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est diagonalisable dans $\mathcal{M}_{\mathbb{C}}(3)$ et non dans $\mathcal{M}_{\mathbb{R}}(3)$.

Exercice 9 Montrer que la matrice A suivante n'est pas diagonalisable et la trigonaliser.

$$A = \left(\begin{array}{rrr} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{array}\right).$$

Exercice 10 Une matrice $A \in \mathcal{M}_{\mathbb{C}}(n)$ est dite *nilpotente* si il existe $l \in \mathbb{N}$ tel que $A^l = 0$.

Montrer l'équivalence des propriétés suivantes :

- 1. A est nilpotente.
- 2. Toute valeur propre de A est nulle.
- 3. Le polynôme caractéristique de A est défini par $p_A(\lambda) = (-1)^n \lambda^n$.
- 4.~A est semblable à une matrice triangulaire dont les éléments diagonaux sont nuls.

Exercice 11 Septembre 2004

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice par rapport à la base canonique $\mathcal{B} = \{e_1', e_2', e_3'\}$ est la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right).$$

- 1. Montrer que A est inversible. Calculer A^{-1} .
- 2. Calculer le polynôme caractéristique de A et déterminer les valeurs propres de A.
- 3. Donner une base de chacun des espaces propres de A.
- 4. La matrice A est-elle diagonalisable? Justifier votre réponse.

Exercice 12 Juin 2005

On considère l'application $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie, pour tout $(x, y, z) \in \mathbb{R}^3$, par

$$f(x, y, z) = (x + 2z, -y, 2x + z).$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 .
- 2. Donner la matrice A de f par rapport à la base canonique $\mathcal{B} = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 .
- 3. Calculer le polynôme caractéristique et les valeurs propres de A.
- 4. Donner une base pour chacun des espaces propres de A.
- 5. Donner une base C_1 de \mathbb{R}^3 par rapport à laquelle l'endomorphisme f est représenté par une matrice diagonale D_1 , qu'on explicitera.

Exercice 13 Juin 2000

Soit $A \in \mathcal{M}_{\mathbb{C}}(4)$ la matrice

$$A = \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ -4 & -1 & 0 & 4 \\ -8 & -6 & 3 & 4 \\ -2 & -1 & 0 & 3 \end{array}\right).$$

- 1. Déterminer le polynôme caractéristique p_A et toutes les valeurs propres de A.
- 2. Déterminer la multiplicité géométrique et l'espace propre de chaque valeur propre de A.
- 3. La matrice A est-elle diagonalisable?

Références

- [1] M. Gran, fiches de TD (L1), Université du Littoral Côte d'Opale.
- [2] M. Serfati, Exercices de mathématiques. 1. Algèbre, Belin, Collection DIA, 1987.
- [3] D. Duverney, S. Heumez, G. Huvent, Toutes les mathématiques Cours, exercices corrigés MPSI, PCSI, PTSI, TSI, Ellipses, 2004.