DATA TERMINAL TECHNICAL INFORMATION

HP 13255

COMPOSITE VIDEO INTERFACE MODULE

Manual Part No. 13255-91119

REVISTO

APR-14-78

NOTICE

The information contained in this document is subject to change without notice.

HEWLET]-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of Hewlett-Packara Company.

Copyright c 1976 by HEWLETT-PACKARD COMPANY

NOTE: This document is part of the 264XX DATA TERMINAL product series Technical Information Package (HP 13255).

1.0 INTRODUCTION.

The Composite Video Interface Module allows the 264XX line of data terminals to be connected to compatible large screen video monitors and video hard copy units.

2.0 OPERATING PARAMETERS.

A summary of operating parameters for the Composite Video Interface Module is contained in tables 1.0 through 5.3.

Table 1.0 Physical Parameters

Part Number	Nomenclature	Size (L x W x D) +/-0.100 Inches	Weight (Pounds)			
02640-60115	Composite Video I/F PCA	1 1 1 12.9 x 4.0 x 0.5	0.38			
		 	! ! !			
	Number of Backplane Slots Required: 1					

Table 2.0 Reliability and Environmental Information

 Environmental: (X)		
 Failure Rat	e; 0.258 (percen	

Table 3.0 Power Supply and Clock Requirements - Measured (At +/-5% Unless Otherwise Specified)

+5 Volt Supply a 100 mA	+12 Volt Supply a mA NOT APPLICABLE	-12 Volt Supply a 10 mA	+42 Volt Supply mA NOT APPLICABLE	
115 volts ac		220 volts ac		
a A		a	A	
NOT APPLICABLE		NOT APPLICABLE		
,	Clock Frequency:	MHz		
	NOT APP	PLICABLE		

Table 4.0 Jumper Definitions

#======== PCA		•	function			
Designat	:10n	In	Out			
) 			 			
 Jumper 	A	Processor Continues to RUN During Copy	Allows Printer BUSY Line to Stop Terminal Processor			
; 	A9	Module ADDR9 = 0	Module ADDR9 = 1			
 	A10	Module ADDR10 = 0	Module ADDR10 = 1			
 	A11	Module ADDR11 = 0				
 	A4 (Module ADDR4 = 0	Module ADDR4 = 1			
ADD DIS	AS	Disables Bus Interface	Enable Bus Interface 			

5.0 Connector Information

o.u Connector Intormation						
Connector	Signal Name	Signal Description				
P1, Pin 1	+5V	+5 Volt Power Supply				
	 GND	Ground Common Return (Power and Signal)				
-3	•	Not Used				
-4	-12V	! -12 Volt Power Supply !				
-5		; } }				
-6	!	i) i				
-7	1 1	} Not Used				
 	[]	} }				
- 9	ADDR4	Negative True, Address Bit 4				
-10	 					
-11	1	} }				
-12	! !	} Not Used				
1 -13	 	} }				
-14	ADDR9					
-15	ADDR10					
-16	ADDR11					
-17	[]	1				
1 -18	•	1)				
-19) Not Used				
-20	•	} }				
-21	1/0					
-22	1					

Table 5.0 Connector Information (Cont'd.)

***********		***************************************	
Connector	Signal	Signal	
l and Pin No.	Name	Description	
•	•		
P1, Pin A	GND	Ground Common Return (Power and Signal)	
-5	•		
	İ	} } Not used	
-c		} }	
-E	BUSO	Negative True, Data Bus Bit 0	
-+	BUS 1		
-h			
-,			
-x	·	} } Not Used }	
-1	'		
~ ».			
· - N	BUS7	Negative True, Data Bus Bit 7	
-F	WRITE	Negative True, Write/Read Type Cycle	
- F		} } Not Used	
·-s		} 	
-1	PRIGR IN	Bus Controller Priority In	
-b	PRIOR OUT	Bus Controller Priority Out	
-\	İ	}	
-h		}	
-x	RUN I	Allow Processor to Access Bus	
-\	REQ (Negative True, Request (Aus Data	
-2	' 	Not used	

5.1 Connector Information

Connector	Signal Name	Signal Description			
P2, Pin 1		} } > Not Used }			
-4	WRITE	Output Character			
Pin -5 through Pin -5		> Not Used			
-10	RETURN	Logic Signal Return			
-11	BUSY	Negative True, Copy Unit Busy Input			
-12	REMOTE COPY	Negative Frue, Copy Unit Copy Command			
-13		Not Used			
-14	COMP VID OUT	Composite Video Output			
-15	VIDEO RETURN	Composite Video Return			
P2 Pin F through Pin - S		Not Used			

5.2 Convector Information

Connector and Pin Nc.	Signal Name	Signal Description	
P4, Pin 1	VIDEO	#ideo	
-i	BUF HLF BRT	l №gative True, Buffered Half-Bright	
-3	GND	Ground	
-4	VDR	Mertical Drive	
-5	HDR	Morfizontal Drive	
-6	GND	Ground	

•	5.3 Connector Information					
	Connector and Pin Nc.	Signal Name	Signal Description			
1	P5, Pin 1	VIDEO	lideo			
	-è -3 -4 -\$	BUF HLF BRT GND VDR HDR	Regative True, Buffered Half-Bright Fround Rentical Drive Rentizontal Drive			
1	-¢	6ND (Found			

3.0 FUNCTIONAL DESCRIPTION. Refer to the block diagram (figure 1), schematic diagram (figure 2), timing diagram (figure 3), component location diagram (figure 4), and parts lists (02640-60119) located in the appendix.

The Composite Video Module performs two independent functions. The first is to provide a 75-ohm composite video output available from P2 (the rear connector) of the PCA. This output can be used to power any video monitor which is capable of tracking the 22.5 kHz line rate of the terminal. The second function of the Composite Video Interface PCA is to provide bus decoding, which allows the user to generate a copy either from the terminal keyboard, or remotely from a computer. The Composite Video Interface Module functional blocks are sync timing, video level generator, bus decoder logic, and copy command timing.

- 3.1 SYNC TIMING.
- 3.1.1 The sync timing block accepts the Vertical (VDR) and Horizontal (HDR) brive signals from the Display Timing PCA and converts them to a composite vertical and horizontal sync signal which meets the overall composite video timing specification.
- The sync timing block is comprised of three one-shots and two gates. The HDR and VDR signals are each applied directly to one-shots. The vertical one-shot Q output (U2, Pin 13) is used to produce a pulse width of 100 microseconds which becomes the Vertical Sync pulse at U2, Pin 13. The horizontal one-shot produces a pulse width of 0.95 microseconds. The Q output (U3, Pin 13) is used to trigger a third one-shot which generates the Horizontal Sync pulse of 3.5 microseconds at U3,

Pin 12 and the Q output (U3, Pin 4) is gated with the Vertical Sync pulse to "serrate" it. These serations keep the horizontal oscillator in the monitor synchronized during the vertical sync interval. The output timing to the sync timing block is shown as the time dimensions on the composite video portion of the timing diagram figure 3.

- 3.2 VIDEO LEVEL GENERATOR.
- 3.2.1 The video level generator takes the TTL inputs from the sync timing block and the VIDEO and BUF HLF BRT signals from the Display Timing PCA and converts them to a single Composite Video (COM VID OUT) signal of 1.4 volts peak-to-peak capable of driving a 75-ohm cable.

- 3.2.2 Three open-collector AND gates (U7) are used as a simple D/A converter. Transistor Q2 clamps the full-bright level, R6 and R11 form a voltage divider which sets the half-bright level. Resistor R6 with R11 and R12 in parallel, set the blanking (black level) and the saturation drop of U7 sets the sync tip level. The node at which these components are joined is buffered by emitter follower Q1 and connected to connector P2 by a 75-ohm resistor (R10). Resistor R10 serves both to give an output impedance of 75 ohms, and to protect Q1 from being destroyed if the output becomes shorted to ground or +5 volts.
- 3.3 BUS DECODER LOGIC.
- 3.3.1 The bus decoder logic allows a copy to be generated either from the terminal keyboard or from a computer.
- 3.3.2 Module address of the Composite Video Interface PCA is set by four switches which connect to U1. They cause the outputs of U1 which are connected together to go high with an input of either high or low logic level depending on the switch position. During a print cycle, the terminal processor will first access the bus decoder and request a status

byte. Bus bits BUSO and BUS7 are then gated out onto the bus to indi-

cate that the bus decoder is not disabled and is operational. BUS1 will go low if the copy unit is available (not busy). Once the proces-

sor has determined that the copy unit is available, it outputs a WRITE along with a character on the bus bits. The bus decoder then generates a WRITE signal at U6, Pin 8, but ignores the character as the hard copy unit gets its information from the composite video waveform and re-

quires no logic inputs other than the REMOTE COPY command. Once the

hard copy unit receives the REMOTE COPY command, it drops BUSY which stops the terminal processor by pulling down RUK through gate U4, freezing the display and preventing the screen from being changed either from the keyboard or from a remote source. Switch S1-A is included to disable this line should the operator not wish the terminal processor to be stopped during a copy.

- 3.4 COPY COMMAND TIMING.
- 3.4.1 The copy command timing block generates the 500-microsecond REMOTE COPY pulse which is required to start the hard copy unit, and also prevents multiple copies from being made each time the print command is issued from the terminal.
- The terminal can dump more than one character when a print command is issued. The hard copy unit ignores the character stream output from memory and only copies the data which actually appears on the CRT display. Each character, however, causes a WRITE signal to be generated by the bus decoder, and the copy command timing block must reject all of the WRITE pulses except the first. This is done by one-shot U9 which is a retriggerable one-shot with a timing interval of 0.7 seconds. The first WRITE pulse is allowed to trigger the Copy Command

one-shot (U2), because U9 has not been triggered. AS the BUSY line goes low and stops the terminal processor before U2 times out, no further WRITE pulses will be generated until the copier is finished.

When BUSY goes high it triggers U9 which disables U2. The WRITE pulses will continue to retrigger U9 until there is a 0.7 second pause which will allow U9 to time out and re-enable U2.

Figure 2
Composite Video Interface PCA Schematic Diagram
APR-14-78
13255-91119

Figure 5
Composite Video Interface Timing Diagram
APR-14-78
13255-91119

Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
- -	0∠ 140~60119	1	COMPOSITE VICEO INTERFACE ASSEMBLY DATE LODE: A-1616-42 MEVISION DATE: 0976	28480	02640-60119
11 12 13 14	0150-6121 0150-0121 0160-1746 0150-0121 0160-0194	4 2 1	CAPACITOR-FXD .1UF +80-204 50WVDC CER CAPACITOR-FXC .1UF +80-203 50WVDC CER CAPACITOR-FXC 15UF+103 20VVDC TA CAPACITOR-FXD .1UF +80-203 50WVDC CER CAPACITOR-FXD .015UF +103 20GWVDC POLYE	28480 28480 56289 28480 56289	0150-0121 0150-0121 15001564902082 0150-0121 292F15392
Lo L7 L6 L9 L1u	J160-20155 J160-3534 Q160-2055 J160-3534 J160-1746	3 2	CAPACITUR-FXB .01UF +80-20x 100mVDC CER CAPACITOR-FXD 510PF +->8 100mVDC NICA CAPACITOR-FXD .01UF +80-208 100mVDC CER CAPACITOR-FXD 510PF>8 100mVDC NICA CAPACITOR-FXD 15UF-108 20VUC TA	28480 28480 28480 28480 56289	0160-2055 0160-3534 0160-2055 0160-3534 1500156 X902 082
£12	0150-0121 0150-0121		CAPACITOR-FXD .luf +b20% 50hVDC CER CAPACITOR-FXD .01uF +80-20% 10GHVDC CER	28480 28480	0150-0121 0160-2055
t1 t2 c3 t4	0360-0124 0360-0124 0360-0124 0360-0124	٠	TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUC SGL-PIN PRESS-MTG TERMINAL-STUC SGL-PIN PRESS-MTG TERMINAL-STUC SGL-PIN PRESS-MTG	28480 28480 28480 28480	0360-0124 0360-0124 0360-0124 0360-0124
P4 P3	12:1-3766 12:1-3766	2	CUNNECTOR 6-PIN N FUST TYPE CUNNECTOR 6-PIN N POST TYPE	27264 27264	09-88-2 061 09-88-2 061
⊎1 ₩2	1854-0407 1853-0271	1 1	TKANSISTOR NPN 2N4401 SI TU-92 PD=310MW TRANSISTOR PNP 2N4403 SI TO-92 PD=310MW	04713 94713	2N4401 2N4403
11 M2 M2 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4	1810-0030 0757-6442 0757-0442 0658-0085 0757-0442	1 3 1	NETWORK-RES 8-PIN-SIP .125-PIN-SPCG RESISTOR 10K 18 .125W F TC-0+-100 RESISTOR 10K 18 .125W F TC-0+-100 RESISTOR 2-61K 18 .125W F TC-0+-100 RESISTOR 10K 18 .125W F TC-0+-100	11236 24546 24546 24546 24546	750 C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
NO NO NO NO NO	06 58-3944 0757-0280 0757-0280 0653-1625 0686-7505	1 2 1 1	RESISTCR 316 18 .125W F TC=0+-100 RESISTOR 1K 18 .125W F TC=0+-100 RESISTOR 1K 18 .125W F TC=0+-100 RESISTOR 1K 18 .25W FC TC=-400/+600 RESISTOR 1K 58 .25W CC TC=0+412	24544 24544 24544 01121 01121	C4-1/8-T0-314R-F C4-1/8-T0-1001-F C4-1/a-T0-1001-F C81025 E87505
NAA NAC NAJ	0658-3442 0757-0401 0757-0405	1 1 1	RESISTOR 257 18 -125W F TC=0←100 RESISTOR 100 13 -125W F TC=0←100 RESISTOR 100K 13 -125W F TC=0←100	24546 24546 24546	C4-1/8-T0-237R-F C4-1/8-T0-101-F C4-1/8-T0-1003-F
54	31 C1-2094 31 31-0392	1	SWITCH-TGL DIP ROCKER ASSEMBLY 8-1A NS COV-RKR 0-922 IN LG: 0.422 IN h: 0.217	28480 28480	3101-2094 3131-0392
U1 U2 U3 U9 U5	1820-1215 1820-1457 1820-1457 1820-1209 1820-1416	1 2 1	IC-DIGITAL SM74LS136N TTL LS GUAD 2 IC-DIGITAL SM74LS22IN TTL LS DUAL IC-DIGITAL SM74LS22IN TTL LS DUAL IC-DIGITAL SM74LS38N TTL LS GUAD 2 NAND IC-DIGITAL SM74LS14N TTL LS HEX 1 INV	01295 01295 01295 01295 01295	SN74L S136N SN74L S221N SN74L S221N SN74L S38N SN74L S38N
U6 U7 U8 U9	1#20-1203 1#20-0687 1#20-1209 1#20-1422	1 1	IC-DIGITAL SN74LS11N TTL LS TPL 3 AND IC-DIGITAL SN74S15N TTL S TPL 3 AND IL-DIGITAL SN74LS38N TTL LS QUAD 2 NAND IC-DIGITAL SN74LS122N TTL LS	01295 01295 01295 01295	SM74L SL 1 M SM74515 M SM74L 538 M SM74L SL 22 M
			e e e e e e e e e e e e e e e e e e e		