L2 užduotis

L2 privalomoji dalis

- 1. Išnagrinėkite Lab2_AibesMedziai projekte pateiktą programinį kodą.
- 2. **(5 balai)** Realizuokite nerealizuotus programinio kodo metodus ir juos ištestuokite (testus galite inicijuoti tiek per projekto vartotojo sąsają, tiek per konsolę).

Klasėje BstSet reikia realizuoti šiuos metodus:

- remove(E element);
- removeRecursive(E element, BstNode<E> node) pagalbinis remove metodas.
- Iteratoriaus metoda remove();
- addAll(Set<E> set) patalpinti visus set elementus į aibę, jeigu abi aibės turi tą patį elementą jis nėra dedamas.
- containsAll(Set<E> set) patikrinti ar aibėje egzistuoja visi elementai, esantys aibėje set.
- retainAll(Set<E> set) išrinti elementus, kurių nėra aibėje set.
- headSet(E e) grąžinamas aibės poaibis iki elemento e.
- tailSet(E e) grąžinamas aibės poaibis nuo elemento e.
- subSet(E element1, E element2) grąžinamas aibės poaibis nuo element0 element1 iki element2.

Klasėje AvlSet reikia realizuoti šiuos metodus:

- remove();
- removeRecursive(E element, BstNode<E> node) pagalbinis remove metodas.
- 3. (**3 balai**) Atlikite greitaveikos testavimą (naudokite JMH) su viena metodų pora iš žemiau pateiktos lentelės:

Variantas	Metodas 1	Metodas 2
1	Class BstSet: remove()	Class AvlSet: remove()
2	Class BstSet: contains()	Class AvlSet: contains()
3	Class BstSet: containsAll()	Class AvlSet: containsAll()
4	Class BstSet: addAll()	Class AvlSet: addAll()
5	Class BstSet: retainAll()	Class AvlSet: retainAll()
6	Class BstSet: remove()	Class java.util.TreeSet <e>: remove()</e>
7	Class BstSet: contains()	Class java.util.TreeSet <e>: contains()</e>
8	Class AvlSet: remove()	Class java.util.TreeSet <e>: remove()</e>
9	Class AvlSet: contains()	Class java.util.TreeSet <e>: contains()</e>

Pastaba: Konkrety variantą gausite iš laboratorinių darbų dėstytojo.

Laisva forma parenkite ataskaitą. Ataskaitoje būtinai turi būti:

- Aprašyti tiriamieji metodai.
- Pateiktas tiriamųjų metodų asimptotinis sudėtingumas.
- Aprašyta greitaveikos testavimo metodika (testavimo algoritmas).
- Aprašomi kompiuterio, su kuriuo buvo atlikti greitaveikos testai, pagrindiniai parametrai (procesoriaus charakteristikos, atminties kiekis ir pan.).
- Algoritmų/metodų vykdymo laiko priklausomybės nuo įvesties duomenų kiekio grafikas.
- Išvados. Išvadose laisva forma turėtų būti pateikti atsakymai į šiuos klausimus:
 - Ar eksperimentiškai nustatyta vykdymo laiko priklausomybė nuo įvesties dydžio atitinka teorinį algoritmo/metodo asimptotinį sudėtingumą. Jei ne, kodėl?
 - Kurie iš tirtųjų metodų vykdymo laiko požiūriu yra geresni. Kodėl?

L2 neprivalomoji dalis

Išspręskite šiuos uždavinius:

1. (**1 balas**) Turime dvejetainį paieškos medį su jūsų pasirinktais duomenimis (medyje saugomas objektas turi realizuoti sąsają Comparable). Patikrinkite, ar medžio šakų balansas neviršija sveikojo skaičiaus k (k ≥ 0). Pavyzdys, jeigu k = 2:

Įvesties duomenys:

- Skaičius k
- Dvejetainis paieškos medis

Parašykite algoritmą, kuris nustatytų, ar duotasis paieškos medis yra subalansuotas pagal parametrą k. Algoritmo asimptotinis sudėtingumas turi būti O(n).

2. (**1 balas**) Turime pilnąjį dvejetainį medį. Parašykite algoritmą, kuris rastų medžio vidinius mazgus, t.y mazgus, esančius medžio perimetro viduje. Pavyzdys:

LD2 gynimas

Gynimo metu dėstytojai gali studentų prašyti atlikti žemiau pateiktas užduotis ir atsakyti į žemiau pateiktus klausimus. Klausimų ir užduočių sąrašas nėra baigtinis - dėstytojai gynimo metu gali užduoti su tema susijusių klausimų ar praktinių užduočių, kurių nėra šiame sąraše.

Galimos praktinės užduotys iš privalomosios dalies

Realizuokite vieną ar kelis metodus iš šio sąrašo:

Grąžinama reikšmė	Metodo aprašymas	
boolean	removeAll(BstSet c) Removes from this set all of its elements that are contained in the specified collection.	
Е	ceiling(E e) Returns the least element in this set greater than or equal to the given element, or null if there is no such element.	
Е	floor(E e) Returns the greatest element in this set less than or equal to the given element, or null if there is no such element.	
Е	higher(E e) Returns the least element in this set strictly greater than the given element, or null if there is no such element.	
Е	last() Returns the last (highest) element currently in this set.	
Е	lower(E e) Returns the greatest element in this set strictly less than the given element, or null if there is no such element.	
Е	pollFirst() Retrieves and removes the first (lowest) element, or returns null if this set is empty.	
Е	pollLast() Retrieves and removes the last (highest) element, or returns null if this set is empty.	
SortedSet <e></e>	copyOf(BstSet extends E set) Returns a Set containing the elements of the given set	

Galimos praktinės užduotys iš neprivalomosios dalies

1. Parašykite algoritmą, kuris patikrintų, ar duotasis dvejetainis medis yra dvejetainis paieškos medis.

- 2. Parašykite metodą, kuris konvertuotuotų masyvą į balansuotą dvejetainį paieškos medi.
- 3. Parašykite metodą, kuris konvertuotuotų dvejetainį paieškos medį į vienkryptį susietąjį sąrašą.
- 4. Parašykite metodą, kuris leistų iteruoti per medį išilgai jo lygių.
- 5. Parašykite metodą, kuris leistų iteruoti per medį vertikaliais sluoksniais nuo viršaus į apačią
- 6. Išspausdinkite dvejetainio paieškos medžio lapus.
- 7. Duoti du medžio mazgai, raskite ir išspausdinkite trumpiausią kelią tarp šių mazgų.
- 8. Raskite ir išspausdinkite visus dvejetainio paieškos medžio kelius nuo šaknies iki lapo.
- 9. Duota skaičius, nustatykite, ar dvejetainiame paieškos medyje egzistuoja toks kelias, kurio mazgų raktų suma yra lygi duotajam skaičiui.
- 10. Perrašykite vieną iš pagrindinių medžio operacijų nenaudodami rekursijos.

Galimi teoriniai klausimai

- 1. Koks yra įvairių laboratoriniame darbe realizuotų operacijų asimptotinis sudėtingumas?
- 2. Kokie yra dvejetainio paieškos medžio bei balansuoto dvejetainio paieškos medžio privalumai ir trūkumai?
- 3. Mokėkite paaiškinti įvairius su programiniu kodu susijusius niuansus.