

动态规划问题举例 Examples in DP

电信学院·自动化科学与技术系 系统工程研究所 吴江

Outline

- 确定性定期多阶段决策问题
- ▶ 确定性不定期多阶段决策问题

状态转移图

基本递推方程

$$f_k(x_k) = \min_{u_k} [G(x_k, u_k, k) + f_{k+1}(x_{k+1})]$$

投资分配问题(纯离散问题)

某公司计划用40万元投资项目A, B, C. 下表给出了不同投资规模下的预期利润. 试制定最优投资计划

Α			В				С			
1	2	3	1	2	3	4	1	2	3	4
20	30	40	10	20	30	40	10	20	30	40
1.8	2.8	3.2	1.2	1.9	2.5	3	0.8	1.6	2.4	3.1

建模

阶段?

投资顺序

状态?

剩余金额

决策?

投资额

转移方程?

$$x_{k+1} = x_k - u_k$$

确定性定期多阶段决策问题

例2: (旅行商问题, Traveling Salesman Problem, TSP)

有n+1个城市,记为 ν_0 , ν_1 ,..., ν_n ,一个推销员从 ν_0 出发,遍访 ν_1 ,..., ν_n 各恰好一次后再返回 ν_0 ,已知从 ν_i 到 ν_i 的旅费(或路程长度、耗时等)为 $d_{i,j}$,求最优路线安排。

解:怎样划分阶段?按自然时序,划分为n+1个阶段

怎样定义状态? 状态:每个阶段/时刻系统所处的状况、态势

状态 (v_i, V) : v_i 为当前时刻所在城市,V为尚未经过的城

无后效性? 市集合(V中不包含 ν_0) 思考: 状态数目? $O(2^n)$

决策 $(v_i, V) \rightarrow (v_j, V \setminus \{v_j\}), v_j \in V$ 决策费用为 $d_{i,j}$

思考: 画状态转移图? 应利用基本方程求解!

确定性定期多阶段决策问题

例2: (旅行商问题, Traveling Salesman Problem, TSP)

状态
$$(v_i, V)$$
 决策 $(v_i, V) \rightarrow (v_j, V \setminus \{v_j\}), v_j \in V$

怎样列基本方程?基本方程是关于cost-to-go的递推方程。

 $f(v_i,V)=?$ 从 v_i 出发,遍访V中所有城市各恰好一次,再回到 v_0 的最短路程长度

状态转移图上求解过程的启示……

边界条件?

确定性定期多阶段决策问题

例2: (旅行商问题, Traveling Salesman Problem, TSP)

状态
$$(v_i, V)$$

状态
$$(v_i, V)$$
 决策 $(v_i, V) \rightarrow (v_j, V \setminus \{v_j\}), v_j \in V$

$$D = \begin{bmatrix} v_0 & v_1 & v_2 & v_3 \\ 0 & 8 & 5 & 6 \\ 6 & 0 & 8 & 5 \\ 7 & 9 & 0 & 5 \\ 9 & 7 & 8 & 0 \end{bmatrix} \begin{bmatrix} v_0 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

注意:非对称TSP

最优解:
$$v_0 \rightarrow v_2 \rightarrow v_3 \rightarrow v_1 \rightarrow v_0$$

P170~171 $\frac{9}{7}$ 8 0 v_3 计算复杂性分析

动态规划 v.s. 非线性(混合整数)规划

- 确定性定期多阶段决策问题基本上都可以转化为非 线性(混合整数)规划问题.
- ▶ 非线性(混合整数)规划问题转化为DP:
 - 。最优化原理
 - 。无后效性
 - 。子问题的重叠性
- ▶ DP求解的原因
 - 。全局解v.s.局部解
 - 中间信息
 - 。求解效率

基本递推方程

$$f_k(x_k) = \min_{u_k} [G(x_k, u_k, k) + f_{k+1}(x_{k+1})]$$

$$\pi^*(s) = \arg_a \min[r(s,a) + V^*(\delta(s,a))]$$

Mastering the Game of Go with Deep Neural Networks and Tree Search

(Nature 529, 484-489, 28 January 2016)

Computer Go AI - Definition

$$\pi^*(s) = \arg_a \max[r(s|a) + V(\delta(s,a))]$$

$$|S| = 3^{361}$$

$$|A_k| = 361 - 2(k-1) |\Omega| = 361*359*357*...$$

Reducing "act candidates" **Next Action**

Current Board

00 000 0000 00 000 1000 0-1001-1100 01 001-1000 00 00-10000 00 000 0000 0 - 1000000000 000 0000

Prediction Model

a

Next Action

S

30,000,000 < s , a >

 $f: s \rightarrow a$

Updated Model

VS ver 1.3

Updated Model ver 1.7

30,000,000 < s , a >

Current Board

Deep Learning (13 Layer CNN)

00000000 00000000 00000000 000000000 000001000 00000000 00000000 00000000

S

 $g: s \rightarrow p(a|s)$

p(a|s)

argmax

a

Reducing "act candidates"

Feature	Planes	Description ICL	R 2015						
Black / white / empty	3	Stone colour							
Liberties	4	Number of liberties (empty ac	fjacent points)						
Liberties after move	6	Number of liberties after this	move is played		Nature 2016				
Legality	1	Whether point is legal for cui Extended Data Table 2 Input features for neural networks							
Turns since	5	How many turns since a mov	Feature	# of planes	Description				
Capture size	7	How many opponent stones v		# Of planes	1				
Ladder move	1	Whether a move at this point	Stone colour	3	Player stone / opponent stone / empty A constant plane filled with 1				
KGS rank	9	Rank of current player	Ones	1					
		1 3	Turns since	8	How many turns since a move was played				
			Liberties	8	Number of liberties (empty adjacent points)				
			Capture size	8	How many opponent stones would be captured				
			Self-atari size	8	How many of own stones would be captured				
			Liberties after move	8	Number of liberties after this move is played				
			Ladder capture	1	Whether a move at this point is a successful ladder capture				
			Ladder escape	1	Whether a move at this point is a successful ladder escape				
			Sensibleness	1	Whether a move is legal and does not fill its own eyes				
			Zeros	1	A constant plane filled with 0				
			Player color	1	Whether current player is black				
			Feature planes used by the policy n	etwork (all but last fea	ature) and value network (all features).				

Current Board

S

Deep Learning (13 Layer CNN)

000000 000 000000 000 000000 000 000000.20.100 000000.40.200 000000.1 000 000000 000 000000 000

00000000 00000000 00000000 00000000 000001000 00000000 00000000 00000000

 $g: s \rightarrow p(a|s)$

p(a|s)

argmax

a

Next Action

Board Evaluation

Instead of simulating unt

Cost to go?

 $P_{\sigma/\rho}(a|s)$

Policy network

Monte-Carlo tree search

How AlphaGo selected its move

Bread reduction

Depth reduction

Nature 2017: Mastering the game of Go without human knowledge

- 1. without any human data
- 3. single neural network
- 2. only stones as input features
 - 4. without any Monte Carlo rollouts

Challenges of Real-World Reinforcement Learning

---- ICML 19'

1	Training off-line from the fixed logs of an external behavior policy.			
2	Learning on the real system from limited samples.			
3	High-dimensional continuous state and action spaces.			
4	Safety constraints that should never or at least rarely be violated.			
5	Tasks that may be partially observable, alternatively viewed as non-stationary or stochastic.			
6	Reward functions that are unspecified, multi-objective, or risk-sensitive.			
7	System operators who desire explainable policies and actions.			
8	Inference that must happen in real-time at the control frequency of the system.			
9	Large and/or unknown delays in the system actuators, sensors, or rewards.			

