Chapter 11: Computations in a functor context III Monad transformers

Sergei Winitzki

Academy by the Bay

2019-01-05

Computations within a functor context: Combining monads

Programs often need to combine monadic effects

- "Effect" \equiv what else happens in $A \Rightarrow M^B$ besides computing B from A
- Examples of effects for some standard monads:
 - ▶ Option computation will have no result or a single result
 - ▶ List computation will have zero, one, or multiple results
 - ► Either computation may fail to obtain its result, reports error
 - ▶ Reader computation needs to read an external context value
 - ▶ Writer some value will be appended to a (monoidal) accumulator
 - ► Future computation will be scheduled to run later
- How to combine several effects in the same functor block (for/yield)?

- The code will work if we "unify" all effects in a new, larger monad
- Need to compute the type of new monad that contains all given effects

Combining monadic effects I. Trial and error

There are several ways of combining two monads into a new monad:

- If M_1^A and M_2^A are monads then $M_1^A \times M_2^A$ is also a monad
 - lacktriangle But $M_1^A imes M_2^A$ describes two separate values with two separate effects
- ullet If M_1^A and M_2^A are monads then $M_1^A+M_2^A$ is usually not a monad
 - lacksquare If it worked, it would be a choice between two different values / effects
- ullet If M_1^A and M_2^A are monads then one of $M_1^{M_2^A}$ or $M_2^{M_1^A}$ is often a monad
- Examples and counterexamples for functor composition:
 - ▶ Combine $Z \Rightarrow A$ and List^A as $Z \Rightarrow List^A$
 - ► Combine Future [A] and Option [A] as Future [Option [A]]
 - ▶ But Either[Z, Future[A]] and Option[Z \Rightarrow A] are not monads
 - ▶ Neither Future[State[A]] nor State[Future[A]] are monads
- The order of effects matters when composition works both ways:
 - ▶ Combine Either $(M_1^A = Z + A)$ and Writer $(M_2^A = W \times A)$
 - * as $Z + W \times A$ either compute result and write a message, or all fails
 - * as $(Z + A) \times W$ message is always written, but computation may fail
- Find a general way of defining a new monad with combined effects
- Derive properties required for the new monad

Combining monadic effects II. Lifting into a larger monad

If a "big monad" BigM[A] somehow combines all the needed effects:

• Example 1: combining as BigM[A] = Future[Option[A]] with liftings:

```
\begin{array}{lll} \text{def lift}_1[A]\colon \text{Option}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \text{Future}.\text{successful}(\_) \\ \text{def lift}_2[A]\colon \text{Future}[A] \ \Rightarrow \ \text{Future}[\text{Option}[A]] \ = \ \_.\text{map}(x \ \Rightarrow \ \text{Some}(x)) \end{array}
```

• Example 2: combining as BigM[A] = List[Try[A]] with liftings:

```
\begin{array}{l} \text{def lift}_1[A]\colon \text{Try}[A] \ \Rightarrow \ \text{List}[\text{Try}[A]] \ = \ x \ \Rightarrow \ \text{List}(x) \\ \text{def lift}_2[A]\colon \text{List}[A] \ \Rightarrow \ \text{List}[\text{Try}[A]] \ = \ \_.\text{map}(x \ \Rightarrow \ \text{Success}(x)) \end{array}
```

Remains to be understood:

- Finding suitable laws for the liftings; checking that the laws hold
- Building a "big monad" out of "smaller" ones, with lawful liftings
 - ▶ Is this always possible? Unique? Are there alternative solutions?
- Ways of reducing the complexity of code; make liftings automatic

Laws for monad liftings I. Identity laws

Whatever identities we expect to hold for monadic programs must continue to hold after lifting M_1 or M_2 values into the "big monad" BigM

- We assume that M_1 , M_2 , and BigM already satisfy all the monad laws Consider the various functor block constructions containing the liftings:
- Left identity law after lift₁

 // Anywhere inside a for/yield: // Must be equivalent to...

 i \leftarrow lift₁(M₁.pure(x)) i = x

 j \leftarrow bigM(i) // Any BigM value. j \leftarrow bigM(x)

 lift₁(M₁.pure(x)).flatMap(b) = b(x) in terms of Kleisli composition (\diamondsuit):

 (pure_{M₁} \diamondsuit lift₁): $X \Rightarrow BigM^X \Leftrightarrow b^{:X} \Rightarrow BigM^Y = b$ with $f^{:X} \Rightarrow M^Y \Leftrightarrow g^{:Y} \Rightarrow M^Z \equiv X \Rightarrow f(X)$.flatMap(g)
 - Right identity law after lift1

 $b.flatMap(M_1.pure andThen lift_1) = b - in terms of Kleisli composition:$

$$b^{:X\Rightarrow \operatorname{\mathsf{BigM}}^Y} \diamond \left(\operatorname{\mathsf{pure}}_{M_1} \circ \operatorname{\mathsf{lift}}_1\right)^{:Y\Rightarrow \operatorname{\mathsf{BigM}}^Y} = b$$

The same identity laws must hold for M₂ and lift₂ as well

Laws for monad liftings II. Simplifying the laws

 $(\mathsf{pure}_{M_1}^{}, \mathsf{lift}_1)$ is a unit for the Kleisli composition \diamond in the monad \mathtt{BigM}

- \bullet But the monad ${\tt BigM}$ already has a unit element, namely ${\tt pure}_{{\tt BigM}}$
- \bullet The two-sided unit element is always unique: $u=u \diamond u'=u'$
- So the two identity laws for $(pure_{M_1}, lift_1)$ can be reduced to one law: $pure_{M_1}, lift_1 = pure_{BigM}$

Refactoring a portion of a monadic program under $\mathtt{lift_1}$ gives another law:

```
// Anywhere inside a for/yield, this...

i \leftarrow lift_1(p) // Any M_1 value.

j \leftarrow lift_1(q(i)) // Any M_1 value.

j \leftarrow lift_1(p(i)) // Any M_1 value.

j \leftarrow lift_1(p(i)) // Now lift it.
```

 $lift_1(p).flatMap(q andThen lift_1) = lift_1(p flatMap q)$

- Rewritten equivalently through ${\sf flm}_M: (A\Rightarrow M^B)\Rightarrow M^A\Rightarrow M^B$ as ${\sf lift_1}^\circ, {\sf flm}_{\sf BigM} (q^\circ, {\sf lift_1}) = {\sf flm}_{M_1} q^\circ, {\sf lift_1}$ both sides are functions $M_1^A\Rightarrow {\sf BigM}^B$
- Rewritten equivalently through $\operatorname{ftn}_M: M^{M^A} \Rightarrow M^A$, the law is $\operatorname{lift_1}^{\circ}\operatorname{fmap}_{\operatorname{BigM}}\operatorname{lift_1}^{\circ}\operatorname{ftn}_{\operatorname{BigM}} = \operatorname{ftn}_{M_1}^{\circ}\operatorname{lift_1} \operatorname{both}$ sides are functions $M_1^{M_1^A} \Rightarrow \operatorname{BigM}^A$
- In terms of Kleisli composition \diamond_M it becomes the **composition law**: $(b^{:X\Rightarrow M_1^Y}\circ lift_1) \diamond_{\mathsf{BigM}} (c^{:Y\Rightarrow M_1^Z}\circ lift_1) = (b\diamond_{M_1} c)\circ lift_1$
- Liftings lift
 ind lift
 must obey an identity law and a composition law
 - ▶ The laws say that the liftings **commute with** the monads' operations

2019-01-05

Laws for monad liftings III. The naturality law

Show that $lift_1 : M_1^A \Rightarrow BigM^A$ is a natural transformation

- It maps $pure_{M_1}$ to $pure_{BigM}$ and flm_{M_1} to flm_{BigM}
 - ▶ lift₁ is a **monadic morphism** between monads M_1^{\bullet} and BigM[•]
 - ightharpoonup example: monad "interpreters" $M^A \Rightarrow N^A$ are monadic morphisms

The (functor) naturality law: for any $f: X \Rightarrow Y$,

$$\begin{split} \mathsf{lift}_1 \circ \mathsf{fmap}_{\mathsf{BigM}} f &= \mathsf{fmap}_{M_1} f \circ \mathsf{lift}_1 \\ M_1^X \xrightarrow{\quad \mathsf{lift}_1 \quad} &\to \mathsf{BigM}^X \\ \mathsf{fmap}_{M_1} f^{:X \Rightarrow Y} \bigvee_{\mathsf{f} \quad \mathsf{lift}_1 \quad} &\hspace{1em} \mathsf{fmap}_{\mathsf{BigM}} f^{:X \Rightarrow Y} \\ M_1^Y \xrightarrow{\quad \mathsf{lift}_1 \quad} &\hspace{1em} \mathsf{BigM}^Y \end{split}$$

Derivation of the functor naturality law for lift₁:

- Express fmap as fmap_M $f = \text{flm}_M(f_{?}, \text{pure}_M)$ for both monads
- Given $f: X \Rightarrow Y$, use the law $\mathsf{flm}_{M_1} q \circ \mathsf{lift_1} = \mathsf{lift_1} \circ \mathsf{flm}_{\mathsf{BigM}} (q \circ \mathsf{lift_1})$ to compute $\mathsf{flm}_{M_1} (f \circ \mathsf{pure}_{M_1}) \circ \mathsf{lift_1} = \mathsf{lift_1} \circ \mathsf{flm} (f \circ \mathsf{pure}_{M_1}) \circ \mathsf{lift_1} = \mathsf{lift_1} \circ \mathsf{flm} (f \circ \mathsf{pure}_{\mathsf{BigM}}) = \mathsf{lift_1} \circ \mathsf{fmap}_{\mathsf{BigM}} f$

A monadic morphism is always also a natural transformation of the functors

Monad transformers I: Motivation

- Combine $Z \Rightarrow A$ and 1 + A: only $Z \Rightarrow 1 + A$ works, not $1 + (Z \Rightarrow A)$
 - ▶ It is not possible to combine monads via a natural bifunctor B^{M_1,M_2}
 - It is not possible to combine arbitrary monads as $M_1^{M_2^{ullet}}$ or $M_2^{M_1^{ullet}}$
 - **★** Example: state monad $St_S^A \equiv S \Rightarrow A \times S$ does not compose
- The trick: for a fixed base monad L^{\bullet} , let M^{\bullet} (foreign monad) vary
- Call the desired result the "L's monad transformer", $T_L^{M,\bullet}$
 - ► In Scala: LT[M[_]: Monad, A] e.g. ReaderT, StateT, etc.
- $T_L^{M,\bullet}$ is generic in M but not in L
 - ▶ No general formula for monad transformers seems to exist
 - ► For each base monad *L*, a different construction is needed
 - ► Some monads *L* do not seem to have a transformer (?)
- To combine 3 or more monads, compose the transformers: $T_{L_1}^{T_{L_2}^{M,*}}$
 - ► Example in Scala: StateT[S, ListT[Reader[R, ?], ?], A]
- This is called a monad stack but may not be functor composition
 - ▶ because e.g. State[S, List[Reader[R, A]]] is not a monad

Monad transformers II: The requirements

A monad transformer for a base monad L^{\bullet} is a type constructor $\mathcal{T}_{L}^{M,\bullet}$ parameterized by a monad M^{\bullet} , such that for all monads M^{\bullet}

- $T_L^{M,\bullet}$ is a monad (the monad M transformed with T_L)
- "Lifting" a monadic morphism lift $_L^M: M^A \leadsto T_L^{M,A}$
- "Base lifting" a monadic morphism blift : L^A → T_L^{M,A}
 The "base lifting" could not possibly be natural in L[•]
- ullet Transformed identity monad (Id) must become L, i.e. $T_L^{\operatorname{Id},ullet}\cong L^ullet$
- $T_L^{M,\bullet}$ is monadically natural in M^{\bullet} (but not in L^{\bullet})
 - $T_L^{M,ullet}$ is natural w.r.t. a monadic functor M^ullet as a type parameter
 - ▶ For any monad N^{\bullet} and a monadic morphism $f: M^{\bullet} \leadsto N^{\bullet}$ we need to have a monadic morphism $T_L^{M,\bullet} \leadsto T_L^{N,\bullet}$ for the transformed monads: $\operatorname{mrun}_I^M: (M^{\bullet} \leadsto N^{\bullet}) \Rightarrow T_L^{M,\bullet} \leadsto T_L^{N,\bullet}$
 - * If we implement $T_L^{M,\bullet}$ only via M's monad methods, naturality will hold
 - ▶ Cf. traverse: $L^A \Rightarrow (A \Rightarrow F^B) \Rightarrow F^{L^B}$ natural w.r.t. applicative F^{\bullet}
 - ▶ This can be used for lifting a "runner" $M^A \sim A$ to $T_L^{M, \bullet} \sim T_L^{\mathrm{Id}, \bullet} = L^{\bullet}$
- "Base runner": lifts $L^A \rightsquigarrow A$ into a monadic morphism $T_L^{M, \bullet} \rightsquigarrow M^{\bullet}$; brun $_L^M : (L^{\bullet} \leadsto \bullet) \Rightarrow T_L^{M, \bullet} \leadsto M^{\bullet}$

Sergei Winitzki (ABTB)

Monad transformers III: First examples

Recall these monad constructions:

- If M^A is a monad then $R \Rightarrow M^A$ is also a monad (for a fixed type R)
- If M^A is a monad then $M^{Z+A\times W}$ is also a monad (for fixed W, Z)

This gives the monad transformers for base monads Reader, Writer, Either:

```
type ReaderT[R, M[], A] = R \Rightarrow M[A] type EitherT[Z, M[], A] = M[Either[Z, A]] type WriterT[W, M[], A] = M[(W, A)]
```

- ReaderT wraps the foreign monad from the outside
- EitherT and WriterT require the foreign monad to wrap them outside

Remaining questions:

- What are transformers for other standard monads (List, State, Cont)?
 - ► These monads do not compose (neither "inside" nor "outside" works)
- How to derive a monad transformer for an arbitrary given monad?
 - ▶ For monads obtained via known monad constructions?
 - For monads constructed via other monad transformers?
 - ▶ Is it always possible? (unknown; may be impossible for some monads)
- For a given monad, is the corresponding monad transformer unique?
- How to avoid the boilerplate around lift? (mtl-style transformers)

Monad transformers IV: The zoology of monads

Need to select the correct monad transformer construction, per monad:

- "Composed-inside", base monad is inside foreign monad: $T_L^{M,A} = M^{L^A}$
 - ► Examples: the "single-value monads" OptionT, WriterT, EitherT
- "Composed-outside" the base monad is outside: $T_L^{M,A} = L^{M^A}$
 - ightharpoonup Examples: ReaderT; SearchT for search monad S[A] = (A \Rightarrow Z) \Rightarrow A
 - ▶ More generally: all rigid monads have "outside" transformers
 - **★** Definition: a **rigid monad** has the method **fuseIn**: $(A \Rightarrow R^B) \Rightarrow R^{A \Rightarrow B}$
- "Recursive": interleaves the base monad and the foreign monad
 - Examples: ListT, NonEmptyListT, FreeMonadT
- "Irregular": none of the above constructions work
 - Examples: StateT, ContT, "codensity monads"
- Monad constructions: defining a transformer for new monads
 - ▶ Product monads $L_1^A \times L_2^A$ "product transformer" $T_{L_1}^{M,A} \times T_{L_2}^{M,A}$
 - ▶ Consumer choice monads $H^A \Rightarrow A$ "composed-outside" transformer
 - Free pointed monads $A + L^A$ transformer $M^{A+T_L^{M,A}}$
 - "Selectors" $(A\Rightarrow P^Q)\Rightarrow P^A$ transformer $(M^A\Rightarrow P^Q)\Rightarrow T_P^{M,A}$
- Examples of monads for which no transformers exist? (unknown)

Composed-inside transformers I

Base monad L^{\bullet} , foreign monad M^{\bullet} , transformer $T_L^{M,\bullet} \equiv T^{\bullet} \equiv M^{L^{\bullet}}$

- ullet Monad instance: use the natural transformation $\operatorname{seq}_L^{M,A}:L^{M^A} \leadsto M^{L^A}$
 - ▶ pure_T : $A \Rightarrow M^{L^A}$ is defined as pure_T = pure_M; pure_L ↑ m
 - $\operatorname{ftn}_T: T^{T^A} \Rightarrow T^A$ is defined as $\operatorname{ftn}_T = \operatorname{seq}^{\uparrow M}_{?} \operatorname{ftn}_L^{\uparrow M \bar{\uparrow} M}_{?} \operatorname{ftn}_M$

$$T^{T^A} \equiv M^{L^{M^{L^A}}} \xrightarrow[\mathsf{fmap}_M \, \mathsf{seq}_L^{M,L^A}]{} \rightarrow M^{M^{L^A}} \xrightarrow[\mathsf{fmap}_M \, (\mathsf{fmap}_M \, \mathsf{ftn}_L)]{} M^{M^{L^A}} \xrightarrow[\mathsf{ftn}_M]{} M^{L^A} \equiv T^A$$

- Monad laws must hold for T^A (must check this separately)
 - This depends on special properties of $\operatorname{seq}_L^{M,A}$ (denoted seq for brevity), e.g. $\operatorname{pure}_L^{\circ}, \operatorname{seq} = \operatorname{pure}_L^{\uparrow M}$ (*L*-identity); $\operatorname{pure}_M^{\uparrow L}, \operatorname{seq} = \operatorname{pure}_M$ (*M*-identity)
 - ★ See example code that verifies these properties for $L^A \equiv E + W \times A$
 - ★ It is not enough to have any traversable functor L[•] here!
- Monad transformer methods for $T_I^{M,\bullet} \equiv M^{L^{\bullet}}$:
 - ▶ Lifting, lift : $M^A \Rightarrow M^{L^A}$ is defined as lift = pure $L^{\uparrow M}$
 - ▶ Base lifting, blift : $L^A \Rightarrow M^{L^A}$ is equal to pure_M
 - ▶ Runner, mrun : $(∀B.M^B \Rightarrow N^B) \Rightarrow M^{L^A} \Rightarrow N^{L^A}$ is simply id
 - ▶ Base runner, brun : $(\forall B.L^B \Rightarrow B) \Rightarrow M^{L^A} \Rightarrow M^A$ is simply fmap_M

Composed-inside transformers II

Base monad L^{\bullet} , foreign monad M^{\bullet} , transformer $T_L^{M, \bullet} \equiv T^{\bullet} \equiv M^{L^{\bullet}}$

- Identity laws for the monad T^{\bullet} hold:
- $pure_T$ \circ , $ftn_T = id$. Proof:
- $pure_T^{\uparrow T}$; $ftn_T = id$

Rigid monads, their laws and structure I

- A rigid monad R^{\bullet} has the method fuseIn: $(A \Rightarrow R^B) \Rightarrow R^{A \Rightarrow B}$
 - ▶ Examples: $R^A \equiv A \times A$ and $R^A \equiv Z \Rightarrow A$ are rigid; $R^A \equiv 1 + A$ is not
 - ► Compare with fuseOut: $R^{A\Rightarrow B} \Rightarrow A \Rightarrow R^B$, which exists for any functor
 - ▶ Implementation: fo $h^{:R^{A\Rightarrow B}} = x^{:A} \Rightarrow (f^{:A\Rightarrow B} \Rightarrow f x)^{\uparrow R} h$

Laws: the fuseIn method (fi) must be "compatible with the monad R"

- fi must be a lawful lifting from $A \Rightarrow R^B$ to $R^{A \Rightarrow B}$
- A (generalized) functor from Kleisli category to Applicative category
 - identity law: $fi(pure_R) = pure_R(id)$
 - ▶ composition law: fi $(f \diamond_R g) = (p \times q \Rightarrow p; q)^{\uparrow R}$ (fi $f \bowtie fi g$)

- ▶ Alternative formulation: flm = figpa where pa : $R^{A\Rightarrow B}$ \Rightarrow R^{A} \Rightarrow R^{B}
- ► Then fightherefore Front: fo x a = pa x (pure a); set $x^{:R^{A\Rightarrow B}}$ = fi $h^{:A\Rightarrow R^B}$ and get fo x a = pa (fi h) (pure a) = flm h (pure a) = h a, so fo (fi h) = h
- Rigid monads R^{\bullet} have "composed-outside" transformers, $T_R^{M,A} \equiv R^{M^A}$

Rigid monads, their laws and structure II

Examples and constructions of rigid and non-rigid monads:

- Rigid: Id, Reader, and $R^A \equiv H^A \Rightarrow A$ (where H^{\bullet} is a contrafunctor)
 - ▶ The construction $R^A \equiv H^A \Rightarrow A$ covers $R^A \equiv 1$, $R^A = A$, $R^A = Z \Rightarrow A$
- Not rigid: $R^A \equiv W \times A$, $R^A \equiv E + A$, List^A, Cont^A, State^A
- The composition of rigid monads is rigid: $R_1^{R_2^A}$
- The product of rigid monads is rigid: $R_1^A \times R_2^A$
- The selector monad $S^A \equiv (A \Rightarrow R^Q) \Rightarrow R^A$ is rigid if R^A is rigid

Use cases for rigid monads:

- Any rigid functor is pointed: a method $A \Rightarrow R^A$ can be defined
- Handle multiple M^{\bullet} effects at once: For a rigid monad R^{\bullet} and any monad M^{\bullet} , have "R-valued flatMap": $M^{A} \times (A \Rightarrow R^{M^{B}}) \Rightarrow R^{M^{B}}$
- Uptake monadic API: For a rigid monad R^{\bullet} , can implement a general refactoring function, monadify: $((A \Rightarrow B) \Rightarrow C) \Rightarrow (A \Rightarrow R^B) \Rightarrow R^C$

Codensity monads

Codensity monad over a functor F^{\bullet} is $Cod^{F,A} \equiv \forall B. (A \Rightarrow F^B) \Rightarrow F^B$ Properties:

- $Cod^{F,\bullet}$ is a monad for any functor F^{\bullet}
- If F^{\bullet} is itself a monad, we have a monadic morphism $F^{\bullet} \sim \operatorname{Cod}^{F, \bullet}$

Invalid attempts to create a general monad transformer

General recipes for combining two functors L^{\bullet} and M^{\bullet} all fail:

- "Fake" transformers: $T_L^{M,A} \equiv L^A$; or $T_L^{M,A} \equiv M^A$; or just $T_L^{M,A} \equiv 1$
 - ▶ no lift and/or no base runner and/or $T_L^{Id,A} \not\equiv L^A$
- Functor composition, disjunction, or product: $L^{M^{\bullet}}$, $M^{L^{\bullet}}$, $L^{\bullet} + M^{\bullet} -$ not a monad in general; $L^{\bullet} \times M^{\bullet} -$ no lifting $M^{\bullet} \leadsto L^{\bullet} \times M^{\bullet}$
- Making a monad out of functor composition:
 - free monad over $L^{M^{\bullet}}$, Free L^{M} lift violates lifting laws
 - free monad over $L^{\bullet} + M^{\bullet}$, Free $L^{\bullet + M^{\bullet}} \text{lift}$ violates lifting laws
 - * Laws will hold after interpreting the free monad into a concrete monad
 - ▶ codensity monad over $L^{M^{\bullet}}$: $F^{A} \equiv \forall B. (A \Rightarrow L^{M^{B}}) \Rightarrow L^{M^{B}}$ no lift
- Codensity-L transformer: $Cod_L^{M,A} \equiv \forall B. (A \Rightarrow L^B) \Rightarrow L^{M^B}$ no lift applies the continuation transformer to $M^A \cong \forall B. (A \Rightarrow B) \Rightarrow M^B$
- Codensity composition: $F^A \equiv \forall B. (M^A \Rightarrow L^B) \Rightarrow L^B \text{not a monad}$
 - ▶ Counterexample: $M^A \equiv R \Rightarrow A$ and $L^A \equiv S \Rightarrow A$
- "Monoidal" convolution: $(L \star M)^A \equiv \exists P \exists Q. (P \times Q \Rightarrow A) \times L^P \times M^Q$
 - ▶ combines $L^A \cong \exists P.L^P \times (P \Rightarrow A)$ with $M^A \cong \exists Q.M^Q \times (Q \Rightarrow A)$
 - ▶ $L \star M$ is not a monad for e.g. $L^A \equiv 1 + A$ and $M^A \equiv R \Rightarrow A$

Exercises

- ① Show that the method pure: $A \Rightarrow M^A$ is a monadic morphism between monads $\operatorname{Id}^A \equiv A$ and M^A . Show that $1 \Rightarrow 1 + A$ is not a monadic morphism.
- ② Show that $M_1^A + M_2^A$ is *not* a monad when $M_1^A \equiv 1 + A$ and $M_2^A \equiv Z \Rightarrow A$.
- ② Derive the composition law for lift written using ftn as lift₁; fmap_{BigM} lift₁; ftn_{BigM} = ftn_{M₁}; lift₁ from the flm-based law lift₁; flm_{BigM} (q; lift₁) = flm_{M₁}q; lift₁. Draw type diagrams for both laws.
- Show that the continuation monad is not rigid and does not compose with arbitrary other monads.