Definition: Cross Product

The cross product of two vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$ is a vector \vec{c} perpendicular to both \vec{a} and \vec{b} and whose magnitude is equal to the area of the parallelogram generated by \vec{a} and \vec{b} : $\vec{a} \times \vec{b} \stackrel{\mathbb{D}}{=} ||a|| \, ||b|| \sin(\theta) \, \vec{n}$

 $\vec{a} \times \vec{b} \stackrel{\nu}{=} ||a|| \, ||b|| \sin{(\theta)} \, \vec{n}$ with θ being the angle in the range $[0,\pi]$ between \vec{a} and \vec{b} and \vec{n} a unit vector that is normal to both \vec{a} and \vec{b} oriented with respect to the right hand rule.