

A Note on the Lyapunov Equation

Rajendra Bhatia Indian Statistical Institute New Delhi 110016, India

Submitted by Roger A. Horn

ABSTRACT

Some results on the sensitivity of the solution of the stable Lyapunov equation are shown to follow easily from well-known theorems of functional analysis. © Elsevier Science Inc., 1997

The Lyapunov equation, much studied because of its importance in differential equations and control theory [5], is the matrix equation

$$AX + XA^* = -W. (1)$$

The matrix A is called *stable* if its spectrum is contained in the open left half plane. This condition is sufficient to ensure that the equation (1) has a unique solution X for every W. The solution can be expressed as

$$X = \int_0^\infty e^{At} W e^{A^*t} dt.$$
 (2)

From this it is immediately clear that if W is positive (semidefinite) then so is X.

The sensitivity of the solution X to changes in W has been analyzed by several authors, including Hewer and Kenney [3]. Their result can be described as follows. Let \mathbb{M} be the space of $n \times n$ complex matrices. For $A \in \mathbb{M}$ let ||A|| be the norm of A as a linear operator on the euclidean space

LINEAR ALGEBRA AND ITS APPLICATIONS 259:71-76 (1997)

 \mathbb{C}^n . If \mathscr{A} is a linear operator on \mathbb{M} , let $\|\mathscr{A}\| = \sup\{\|\mathscr{A}(X)\| : X \in \mathbb{M}, \|X\| = 1\}$. Now, given $A \in \mathbb{M}$, define $\mathscr{L}_A(X) = AX + XA^*$. This is a linear operator on \mathbb{M} , and it is invertible if A is stable. The equation (2) can be written also as

$$\mathscr{L}_{A}^{-1}(W) = -\int_{0}^{\infty} e^{At} W e^{A^*t} dt.$$

The norm of the operator \mathscr{L}_A^{-1} is a measure of the sensitivity of the solution. The theorem below gives a way of evaluating it.

THEOREM 1 (Hewer and Kenney [3]). For every stable matrix A

$$\|\mathcal{L}_{A}^{-1}\| = \|\mathcal{L}_{A}^{-1}(I)\|. \tag{3}$$

A quick and illuminating proof of this can be given using a standard result in C^* -algebras: Let $H = -\mathcal{L}_A^{-1}(I)$. As noted above, H is a positive matrix. Define a map Γ_A on \mathbb{M} as

$$\Gamma_{A}(Y) = -H^{-1/2} \mathcal{L}_{A}^{-1}(Y) H^{-1/2}.$$
 (4)

Then Γ_A is a *positive map* (it takes positive matrices to positive matrices) and is *unital* (it takes I to I). By a theorem of Russo and Dye [8] such a map on any C^* -algebra has norm 1. So $\|\Gamma_A\| = 1$ and hence $\|\mathscr{L}_A^{-1}\| \leq \|H\|$. But, by the definition of H, we must then have $\|\mathscr{L}_A^{-1}\| = \|H\|$. This proves (3). The same proof works equally well for operators in an infinite-dimensional Hilbert space.

More can be said on this. Let $\langle X, Y \rangle = \operatorname{tr} X^*Y$ be the Frobenius inner product on \mathbb{M} . If \mathscr{A} is a linear map on \mathbb{M} , its adjoint \mathscr{A}^* , defined with respect to this inner product, is the map that satisfies

$$\langle \mathscr{A}(X), Y \rangle = \langle X, \mathscr{A}^*(Y) \rangle$$
 for all X, Y .

A linear map \mathscr{A} on \mathbb{M} is called *doubly stochastic* if it is (i) positive, (ii) unital, and (iii) trace preserving, i.e., $\operatorname{tr} \mathscr{A}(X) = \operatorname{tr} X$ for all X. The third condition is equivalent to the condition that \mathscr{A}^* is unital. See [1]. It is natural to ask whether the map Γ_A defined in (4) is doubly stochastic.

A simple calculation with traces shows that

$$\mathcal{L}_{A}^{*} = \mathcal{L}_{A^{*}}, \tag{5}$$

$$\Gamma_A^*(Y) = -\mathcal{L}_{A^*}^{-1}(H^{-1/2}YH^{-1/2}). \tag{6}$$

Hence,

$$\Gamma_{A}^{*}(I) = -\mathcal{L}_{A^{*}}^{-1}(H^{-1})$$

$$= \int_{0}^{\infty} e^{A^{*}t} H^{-1} e^{At} dt$$

$$= \int_{0}^{\infty} e^{A^{*}t} \left(\int_{0}^{\infty} e^{At} e^{A^{*}t} dt \right)^{-1} e^{At} dt. \tag{7}$$

This shows that if A is normal then Γ_A^* is unital and hence Γ_A is doubly stochastic. The converse is also true:

THEOREM 2. Let A be a stable matrix. Then the following three conditions are equivalent:

- (i) the operator Γ_A is doubly stochastic,
- (ii) A commutes with the matrix $H = \int_0^\infty e^{At} e^{A^*t} dt$,
- (iii) A is normal.

Proof. (i) \Rightarrow (ii): Note that

$$AH + HA^* = -I. (8)$$

From (7) we have

$$\Gamma_A^*(I) = \int_0^\infty e^{A^*t} H^{-1} e^{At} \, dt. \tag{9}$$

This is an integral like the one in (2), and hence $\Gamma_A^*(I)$ satisfies the Lyapunov equation:

$$A^*\Gamma_A^*(I) + \Gamma_A^*(I)A = -H^{-1}.$$
 (10)

Hence, if Γ_A^* is unital, then from (10) we have $A^* + A = -H^{-1}$. Using (8), we get from this HA = AH.

(ii) \Rightarrow (iii): If A commutes with H, the equation (8) gives $A + A^* = -H^{-1}$. From this we see that $A^{-1}(A + A^*) = (A + A^*)A^{-1}$. This shows that $A^*A = AA^*$.

We have already seen that (iii) \Rightarrow (i).

Doubly stochastic maps have several special properties. The one relevant to our discussion is that they are contractive with respect to every unitarily invariant norm on \mathbb{M} . (See [1].) Thus, if Γ_A is doubly stochastic we have

$$\||\Gamma_{A}(W)|| \leqslant ||W|| \tag{11}$$

for every unitarily invariant norm $\| \| \cdot \| \|$. All such norms satisfy the inequality $\| \| XYZ \| \| \le \| X \| \| \| Y \| \| \| Z \|$ for any three matrices X, Y, Z. So, from (11) we get

$$\|\mathscr{L}_{A}^{-1}(W)\| = \|H^{1/2}\Gamma_{A}(W)H^{1/2}\| \le \|H\| \|W\| = \|\mathscr{L}_{A}^{-1}(I)\| \|W\|.$$
(12)

This inequality can also be derived using other arguments. See, e.g., [2, Theorem 3.3].

We should take this opportunity to point out that many of the results in a recent paper on this topic [4] are simple consequences of elementary facts in functional analysis.

It is a basic fact [7, p. 93] that if T is an operator between normed spaces and T^* is its adjoint, then $||T^*|| = ||T||$. Lemma 3 of [4] is a very special case of this. Let

$$H_* = -(\mathscr{L}_A^{-1})^*(I).$$

Then from (5) above we have

$$H_* = -(\mathscr{L}_{A^*})^{-1}(I) = \int_0^\infty e^{A^*t} e^{At} dt.$$

Let X be the solution of (1) when A is stable and $W \ge 0$. Then

$$\operatorname{tr} X = \langle X, I \rangle = \langle -\mathcal{L}_{A}^{-1}(W), I \rangle$$

$$= \langle W, -(\mathcal{L}_{A}^{-1})^{*}(I) \rangle$$

$$= \langle W, H_{*} \rangle = \operatorname{tr} W H_{*}. \tag{13}$$

Choose an orthornormal basis in which H_{\ast} is diagonal, and calculate the traces. Since H_{\ast} is positive, this gives

$$\lambda_{\min}(H_*) \operatorname{tr} W \leqslant \operatorname{tr} X \leqslant \lambda_{\max}(H_*) \operatorname{tr} W.$$
 (14)

This is Theorem 2 of [4]. The expression (13) not only gives an exact value of $\operatorname{tr} X$, it is also easier to compute than the quantities involved in the bounds (14).

The authors note towards the end of [4] (see the remark after Theorem 8) that this kind of argument could shorten the proofs of their Theorem 6 and Lemma 7 and also unify them. A more consistent use of this observation would achieve the same economy and simplicity for most of their results.

Finally we show how for each Schatten p-norm we could obtain a bound for $\|X\|_p$ in terms of $\|W\|_p$. Recall that, for $1 \le p < \infty$, the norm $\|A\|_p$ is defined as

$$||A||_p = \left(\sum_{j=1}^n [s_j(A)]^p\right)^{1/p},$$

where $s_j(A)$, $1 \le j \le n$, are the singular value of A arranged in decreasing order. The operator norm ||A|| that we have used above can also be thought of as

$$||A|| = ||A||_{\infty} = s_1(A).$$

If \mathcal{A} is a linear operator on M, let

$$\|\mathscr{A}\|_{p \to p} = \sup \{\|\mathscr{A}(X)\|_p : \|X\|_p = 1\}.$$

This is the norm of the operator \mathscr{A} when the underlying space \mathbb{M} is equipped with the norm $\|\cdot\|_p$.

A well-known theorem, sometimes called the Calderon-Lions interpolation theorem [6, p. 37], implies that for $1 \le p \le \infty$ we have

$$\|\mathscr{A}\|_{p \to p} \le \|\mathscr{A}\|_{1 \to 1}^{1/p} \|\mathscr{A}\|_{\infty \to \infty}^{1 - 1/p}.$$
 (15)

Using this we can prove the following.

THEOREM 3. Let A be a stable matrix. Let

$$H = \int_0^\infty e^{At} e^{A^*t} dt, \qquad H_* = \int_0^\infty e^{A^*t} e^{At} dt.$$

Then, for $1 \leq p \leq \infty$,

$$\|\mathcal{L}_{A}^{-1}\|_{p\to p} \leqslant \|H_{*}\|^{1/p} \|H\|^{1-1/p}. \tag{16}$$

Proof. In this notation, Theorem 1 can be restated as

$$\|\mathscr{L}_A^{-1}\|_{\infty\to\infty}=\|H\|.$$

Since the norm $\|\cdot\|_1$ is dual to $\|\cdot\|_{\infty}$, we have

$$\|\mathcal{L}_{A}^{-1}\|_{1\to 1} = \left\| \left(\mathcal{L}_{A}^{-1} \right)^* \right\|_{\infty\to\infty} = \|\mathcal{L}_{A^*}^{-1}\|_{\infty\to\infty} = \left\| \mathcal{L}_{A^*}^{-1}(I) \right\| = \|H_*\|.$$

This shows that for $p = 1, \infty$, we have equality in (16). For other values of p, we get this inequality using the interpolation result (15) cited above.

It would be interesting to know the exact values of $\|\mathscr{L}_A^{-1}\|_{p\to p}$ for 1 .

REFERENCES

- 1 T. Ando, Majorization, doubly stochastic matrices and comparison of eigenvalues, *Linear Algebra Appl.* 118:163–248 (1989).
- 2 R. Bhatia, C. Davis, and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, *Linear Algebra Appl.* 52/53:45-67 (1983).
- 3 G. Hewer and C. Kenney, The sensitivity of the stable Lyapunov equation, SIAM J. Control Optim. 26:321–344 (1988).
- 4 C. Kenney and G. Hewer, Trace norm bounds for stable Lyapunov equations, *Linear Algebra Appl.* 221:1–18 (1995).
- 5 P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, Academic, New York, 1985.
- 6 M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Academic, New York, 1975.
- 7 W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- 8 B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, *Duke Math. J.* 33:413-416 (1966).

Received 1 August 1995; final manuscript accepted 15 March 1996