Algoritmos de Ordenação

HeapSort

(Fonte: Material adaptado dos Slides do prof. Monael.)

- É um método de ordenação que o faz através de sucessivas seleções do elemento correto.
- Utiliza um heap binário para manter os elementos.
 - Heap binário é uma árvore binária mantida na forma de vetor.
 - O heap é gerado e mantido no próprio vetor a ser ordenado no segmento não ordenado.
- Prós: Heap Sort é estável. Quick Sort não.
- Contras: Construir o heap consome muita memória.

Heap Binário

Um heap-binário é uma árvore binária por níveis, onde <u>o nó pai de</u> <u>uma subárvore sempre é maior ou igual os seus descendentes</u>

É Heap?

É Heap?

É Heap? Sim! É um min-heap.

- Dado o pai, encontrar os filhos:
 - Filho Esquerdo: $2 \cdot i + 1$
 - Filho Direito:
- Dado um filho, encontrar o pai:

A raiz encontra-se no índice
 0 do vetor

- Dado o pai, encontrar os filhos:
 - Filho Esquerdo: $2 \cdot i + 1$
 - Filho Direito: 2*i + 2
- Dado um filho, encontrar o pai:

A raiz encontra-se no índice
 0 do vetor

0	1	2	3	4	5	6	7	8
100	19	36	17	3	25	1	2	7

Funcionamento:

- Transformação de um vetor em um heap binário (controi_Heap)
- Ordenação
 - A cada iteração obtem-se o maior elemento do heap (raiz do heap, indice 0 do vetor) e adicione-o em um segmento ordenado.
 - Após a subtração da raiz, reorganiza-se o heap (ordena_heap)

Algoritmo:

```
HeapSort(vetor[0, ..., n], tamanho)
```

- 1. ConstroiHeap(vetor, tamanho) Construa um heap binário com o arranjo inicial.
- 2. para i de tamanho-1 até 0 passo -1 faça ————— Para cada item do arranjo.
- 3. tamanho ← SelecionaMaximo(vetor, tamanho) → Apanhe o maior e exclua-o do heap.
- 4. RestauraHeap(vetor, tamanho, 0) → Reorganize o arranjo para que volte a ser um heap.
- fim-para

Algoritmo (Análise de Complexidade):

HeapSort(vetor[0, ..., n], tamanho) → O(n·h) ConstroiHeap(vetor, tamanho) para i de tamanho-1 até 0 passo -1 faça -3. tamanho ← SelecionaMaximo(vetor, tamanho) → Θ(1)

RestauraHeap(vetor, tamanho, i)

fim-para

HeapSort é capaz de ordenar os n elementos do arranjo com consumo de tempo proporcional a O(n·h), onde n é o número de itens do arranjo e h a altura do heap.

É possível escrevermos h em função de n?

Construção de um Heap

- Construir um Heap a partir de um vetor qualquer:
 - O algoritmo Construir transforma um vetor qualquer em um heap.

Como os índices i, ⌊n/2⌋ ≤ i < n, são folhas, basta aplicar
 Peneirar entre as posições 0 e ⌊n/2⌋ -1, ou seja em todos os nós que são pais.

Algoritmo (Análise de Complexidade):

HeapSort(vetor[0, ..., n], tamanho)

1. ConstroiHeap(vetor, tamanho) → O(n·h)

2. para i de tamanho-1 até 0 passo -1 faça → O(n)

3. tamanho ← SelecionaMaximo(vetor, tamanho) → Θ(1)

4. RestauraHeap(vetor, tamanho, i) → O(h)

5. fim-para

O(n·h)

O(n·h)

O(n·h)

HeapSort é capaz de ordenar os n elementos do arranjo com consumo de tempo proporcional a O(n·h), onde n é o número de itens do arranjo e h a altura do heap.

É possível escrevermos h em função de n?

	_	
h =	_ log₂ n ့	

n	log ₂ n		
15	3,91		
9	3,17		
8	3		
7	2,81		
4	2		
2	1		

Algoritmo (Análise de Complexidade):

```
HeapSort(vetor[0, ..., n], tamanho)

1. ConstroiHeap(vetor, tamanho) → O(n·h)

2. para i de tamanho-1 até 0 passo -1 faça → O(n)

3. tamanho ← SelecionaMaximo(vetor, tamanho) → Θ(1)

4. RestauraHeap(vetor, tamanho, i) → O(h)

5. fim-para
```

HeapSort é capaz de ordenar os n elementos do arranjo com consumo de tempo proporcional a O(n·h), onde n é o número de itens do arranjo e h a altura do heap.

```
É possível escrevermos h em função de n?

Sim!!! h = \lfloor \log_2 n \rfloor
```

Portanto, conclui-se que HeapSort é capaz de ordenar os n elementos do arranjo com consumo de tempo proporcional a O(n·log₂ n), onde n é o número de itens do arranjo.

Algoritmo (Análise de Complexidade):

Procedimento	Consumo no pior caso
FilhoEsquerdo	Θ(1)
FilhoDireito	Θ(1)
SelecionaMaximo	Θ(1)
RestauraHeap	O(log ₂ n)
ConstroiHeap	O(n·log₂n)
HeapSort	O(n·log ₂ n)

Algoritmos Clássicos de Ordenação

 Quadro Comparativo da complexidade dos algoritmos de ordenação (método de comparação)

Algoritmo		Egnacial			
Algoritmo	Melhor	Médio	Pior	Espacial	
Bubble Sort	O(n)	O(n²)	O(n²)	O(1)	
Insertion Sort	O(n)	O(n²)	O(n²)	O(1)	
Selection Sort	O(n²)	O(n²)	O(n²)	O(1)	
Merge Sort	$\Theta(n \cdot \log_2 n)$	$\Theta(n \cdot \log_2 n)$	$\Theta(n \cdot \log_2 n)$	Θ(n)	
Quick Sort	$\Theta(n \cdot \log_2 n)$	$\Theta(n \cdot \log_2 n)$	Θ(n²)	O(log ₂ n)	
Heap Sort	$O(n \cdot log_2 n)$	$\Theta(n \cdot \log_2 n)$	$O(n \cdot log_2 n)$	O(1)	

Estável
 Não Estável

Algoritmos "Estáveis"

- Um algoritmo de ordenação é estável se não altera a posição relativa dos elementos que têm o mesmo valor.
 - Em outras palavras, um algoritmo estável de ordenação mantém a ordem de inserção dos dados no caso de empates.
- Exemplo: ordenação estável da parte inteira

```
      44.0
      55.1
      55.2
      66.0
      22.9
      11.0
      22.5
      33.0

      11.0
      22.9
      22.5
      33.0
      44.0
      55.1
      55.2
      66.0
```

(Fonte: https://www.ime.usp.br/~pf/algoritmos/aulas/ordena.html)