

Bagging 3 Bootstoop Aggregation Aggregation gind Results Boosting & Additive Combining

Steps in Boosting

Step 0: Mean Model and Esso residuel

	Height	Gender	Weight	OSO A	€860
0	1.6	M	82	67	9
2	(.2	F	55	67	-12
3	1.9	F	66	67	<u> </u>
(P)	1.प	M	65	67	-2

824	467 22466
	4
D	67

Stept: Model 1= DEEx:, Erros

Preds 2) Pred: 1306.5 -19+-19-6.5 and Combine Stage 2 with Stage O

Poed ictions

3(6)38°×+28°

Height	Gender	Weight	Cer.	R(20)	COSA	タ、水=た。(水)ナル、たく
1.6	M	82	15	6.2	49	73.5
1.2	F	55		-6.5		Go. 2
1.4	F	66	-1	-6.5	6 7	60.2
1.4	M	6 5	-2	6.5	67	73.5
						_

 $J_{a}(x)$ Rexit Ri(x) + Ri(x)

(X; , Ever) La

Jane Can't be calculated at Jame
Time

Dame time

LR 3 word town be calculated at

Same time

3 Boosting is Slow Que to Sequential Nature

Gradient Boosting (Be des 28, an $L(g_i, \hat{g}_{(i)}) \equiv m \cdot s \cdot \epsilon \cdot \delta = \sum_{i=1}^{n} (g_i - \hat{g}_i^2)$ 93 7 (00) (Prediction at Stage K) $\frac{\partial L}{\partial \hat{y}} = \frac{(\hat{y}, -\hat{y})}{3}$ _9 regative gradient of Loss wort output Ideors Pseudo-Residual 9 - 36 Hezignol is beabsoquent to he dealight ed Loss wirt prediction

How do we use Pseudo- Aesidual? Des some madel my My -> Exg, esoj, 3 Jo-FJ-(x) Peplace errog-1
with it's pseudo Residual (C, x, 2) Optionising < Los Derros Residul will also optimize la the Loro function LØMSE or RMSE gor Regressin Log-Lors for Classification De need to calculate gradient to textus tora moitoney, ason & Stage K-1

۶×٠٠٠, ٢٤٠٠ (y, Jas) >= MSE (Regerin)

Input: training set $\{(x_i,y_i)\}_{i=1}^n,$ a differentiable loss function L(y,F(x)), number of iterations $extit{M}.$

Algorithm:

1. Initialize model with a constant value:

initialize model with a constant value:
$$F_0(x) = rg \min_{\gamma} \sum_{i=1}^n L(y_i, \gamma).$$

2. For m = 1 to M:

1. Compute so-called *pseudo-residuals*:

$$r_{im} = -iggl[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}iggr]_{F(x) = F_{m-1}(x)} \quad ext{for } i = 1, \dots, n$$

2. Fit a base learner (or weak learner, e.g. tree) closed under scaling $h_m(x)$ to pseudo-residuals, i.e. train it using the training set $\{(x_i, r_{im})\}_{i=1}^n$.

3. Compute multiplier γ_m by solving the following one-dimensional optimization problem:

compute multiplier
$$\gamma_m$$
 by solving the following one-dimensional optimization problem:
$$\gamma_m = \arg\min_{\gamma} \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)\right).$$
 Update the model:
$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

3. Output $F_M(x)$.

to gind raining take diff and Set it equal to Zero 3 (y- v) > 0 $\frac{1}{2}(3) - 60 = 0 \times -2$ D ~ ~ = \$ (3:) D V D 1 = (9:) Step 1 is Nothing but Coecalism of Mean Model

Step 1 Dinitialize again & L (yi, x)
with mean Model

For 2 Ang Model

Step 2

2.1 2 Colchate pseudo Residual

- DL (y, gr.)

3 g(x)

2020 got another Los Depth Less au berngo-espignol 2.3: Using gradient descent to calculate the Best Value of mar which)

The one which)

Gives onin

Lang 8.4 Em = Em-1.5x + 2m gm (x) FOFX+ ~ Row

Repeat Step & Jan M times

model that

hander that

hande

Base Learner Thigh Bias
Variance

M& Number of Base-learner

M -> 1 Bian Reduce
and
Variance Variance

is a very high number, variance of Final Bookted Model will also be very high

(Overfit)

Base learners & Depth

High Depth will

lead to Right

Variance and

Variance And

Overfetting

To Find right Balance we will have to Tune M

De Is there a regularization Term in GBDT Eman & gove to see to see to see Regulazation (Shrinkage) Eman & government & government (Jeanning Rafe) n ≥ 0 € Vndexfitted Model n = 00 3 Overfitting Issues with GBDT: I No Parallelization due to

Sequential Dearning Deane to Overgitting Stochastic & GBDT + Randomization Column Sampling Row Samplin Q=3

 ω' 803 7, en 612 ezz = very Righ ر کس وی 9 22 ~3 € 31 e 32 RASE Sup L * Replacing Lass Janction with Something that doesn't Explode ie gives High Value gor Outliers

& GBDT Implemention * Variations of GBDT