

Comparações múltiplas e ANOVA

Felipe Figueiredo

múltiplas

Comparações múltiplas e ANOVA

Teste paramétrico para vários grupos (desfecho quantitativo)

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Discussão da aula passada

Discussão da leitura obrigatória da aula passada

Comparações múltiplas e ANOVA

Felipe Figueiredo

Sumário

- O acaso prega peças
- Comparações múltiplas
- 2 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- 3 Exercício
 - Exercício
- Aprofundamento

Aprofundamento

Comparações múltiplas e

ANOVA

Felipe

Figueiredo

múltiplas

ANOVA

Comparações múltiplas e ANOVA

Felipe Figueiredo

Coincidências Comparações múltiplas

... é grande ou pequena?

A probabilidade de você acertar na Mega Sena...

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Coincidências

ANOVA

A probabilidade de alguém acertar na Mega Sena... ... é grande ou pequena?

Considerando a incidência de leucemia, isto parece ser um dado

• Esta é a pergunta errada, após observar os casos nesta escola

• Se escola não é especial, é preciso considerar outras escolas

Além disso, outras doenças (por ex., asma é um fator?)

extraordinário

múltiplas e ANOVA

> Felipe Figueiredo

Coincidências Comparações múltiplas

ANOVA

Comparações

Comparações múltiplas e ANOVA

Felipe Figueiredo

Coincidências Comparações múltiplas

Coincidências podem não ser tão raras assim

- 1 Você formulou a hipótese após observar o agrupamento de casos
- 2 Você só destacou a escola por causa do agrupamento

5 crianças de uma escola tiveram leucemia, ano passado.

• Esse agrupamento de casos sugere a presença de toxina ou efeito

Qual é a probabilidade de se observar 5 casos nesta escola, em um

- Agrupamentos ocorrem ao acaso
- 4 Definir população:

Exemplo 13.2

ano?

Isto é uma coincidência?

ambiental que causou a doença?

- População de escolas (cidade, estado...?)
- Tempo de observação (mês, ano, década...?)

Considerando o tempo, e o número de escolas da população...

... um agrupamento deste tamanho é realmente improvável?

Comparações múltiplas e ANOVA

Felipe Figueiredo

Coincidências Comparações múltiplas

Exemplo 13.2

5 crianças de uma escola tiveram leucemia, ano passado.

- Isto é uma coincidência?
- Esse agrupamento de casos sugere a presença de toxina ou efeito ambiental que causou a doença?

Qual é a probabilidade de se observar 5 casos *nesta* escola, em um ano?

Pergunta correta

Qual é a probabilidade de se observar 5 casos *em alguma* escola, em um ano?

Comparações múltiplas e ANOVA

Felipe Figueiredo

omparações

Coincidências

múltiplas

ANOVA

=xercicio

Aprofundament

Como comparar dois grupos?

"Comparar" é um termo vago...

... precisamos de um critério bem definido!

Para comparar quanto às variâncias dos grupos

Podemos usar

- Teste F

Para comparar quanto às médias dos grupos

Teste t

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

Comparações

ANOVA

Exercício

Aprofundamento

Como comparar três ou mais grupos?

"Comparar" é um termo vago...

Coincidências podem ocorrer ao testar múltiplas hipóteses

... precisamos de um critério bem definido!

Para comparar quanto às variâncias dos grupos

Podemos usar

- Teste de Levene
- Teste de Bartlett

Para comparar quanto às médias dos grupos

Teste ...

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas Coincidências

Comparações múltiplas

ANOVA

Exercício

Aprofundamento

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas Coincidências Comparações múltiplas

ΔΝΟνΔ

Evereínie

Aprofundamento

Como comparar médias

INTO

Comparações

múltiplas e

ANOVA

Felipe

Figueiredo

Comparações múltiplas

ANOVA

- Vimos que o teste t pode ser usado para comparar duas médias
- Assumindo que atendemos às premissas do teste t, consideramos:
 - variabilidade dos grupos¹
 - tamanho do estudo (n)²

Requisitos não óbvios (além das médias)

desvio padrão + n = erro padrão

Comparações múltiplas e

ANOVA

Felipe

Figueiredo

Comparações múltiplas ANOVA

Dependente:

Quais são as variáveis?

- numérica contínua
- Independentes:
 - grupo (categórica nominal 3 níveis)

Esta relação pode ser expressa como

Área cicatrizada ~ Grupo de tratamento

INTO

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

Evereície

Aprofundamento

Exercício

Um cirurgião testa duas drogas para auxiliar a recuperação pós cirúrgica, e mensura a área cicatrizada (y) em uma semana.

São considerados os tratamentos A e B e um Placebo.

Foram selecionados 8 participantes para cada um dos três grupos.

INTO

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas Coincidências Comparações múltiplas

ANOVA

ANOVA

Aprofundamento

Você consegue decidir visualmente...

... se 3 grupos têm médias diferentes?

¹ Se possível, semelhantes. Caso contrário, correção de Welch.

Componente do DP e do SEM. Usado como GL para o t crítico.

Cenário 1 – esses 3 grupos têm médias diferentes?

Cenário 1

Comparações múltiplas e ANOVA

> Felipe Figueiredo

múltiplas Coincidências Comparações múltiplas

ANOVA

Aprofundamento

Médias: Placebo: 5.945, Tratamento A: 5.027, Tratamento B: 5.110

Cenário 1

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

Comparações múltiplas e

ANOVA Felipe Figueiredo

Coincidências Comparações múltiplas

ANOVA

Aprofundamento

Grupo • Placebo • Trat.A • Trat.B

múltiplas e ANOVA Felipe

Figueiredo

Comparações múltiplas

ANOVA

Grupo • Placebo • Trat.A • Trat.B

Comparações múltiplas e ANOVA

Felipe

Figueiredo

múltiplas

Comparações múltiplas

ANOVA

P-valores dos 3 testes t 1 Placebo x Trat. A $\Rightarrow p = 0.025$ 2 Placebo x Trat. B $\Rightarrow p = 0.100$

Trat. A x Trat. B $\Rightarrow p = 0.876$

Grupo • Placebo • Trat.A • Trat.B

Felipe Figueiredo

Comparações múltiplas e ANOVA

múltiplas Comparações múltiplas

Abordagem mais simples

Uma ideia seria usar o teste t três vezes...

... comparando os grupos, dois a dois.

Proposta

- Placebo x Tratamento A
- Placebo x Tratamento B
- 3 Tratamento A x Tratamento B

Pergunta

Cenário 1

Os tratamentos são diferentes do placebo?

E entre si?

Cenário 2

Comparações múltiplas e

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p < 0.0001$

2 Placebo x Trat. B \Rightarrow p = 0.000373 Trat. A x Trat. B \Rightarrow p = 0.02943

ANOVA Felipe Figueiredo Coincidências Comparações múltiplas ANOVA

Existe um problema oculto aí.

Comparações múltiplas e ANOVA

Felipe Figueiredo

múltiplas Comparações múltiplas

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

O problema é...

- A conclusão de que no Cenário 1 os 3 grupos são diferentes está errada!
- No Cenário 2. os 2 tratamentos não são diferentes entre si!
- O teste t permite a avaliação de uma hipótese
- Testamos simultaneamente três³
- Isto aumenta a chance de cometermos um erro tipo I (falso positivo)

Nível de significância de cada teste \neq nível de significância global.

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

ANOVA

Pensar é obrigatório

Os testes estatísticos (e fórmulas) não "sabem" o que foi levado em conta no estudo.

- Só o pesquisador sabe.
- A metodologia da análise precisa levar em conta todo o planejamento do estudo⁵.

Nível de significância de cada teste \neq nível de significância global.

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações

múltiplas ANOVA

E agora, José?

Como levar em conta as comparações múltiplas sem ser induzido ao erro, pelo teste t?

4
 https://en.wikipedia.org/wiki/Multiple_comparisons_problem

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

³ Leia várias vezes o Capítulo 13!

⁵ Leia várias vezes o Capítulo 13!

Como comparar médias

- múltiplas e ANOVA
 - Felipe Figueiredo

Comparações

- Comparações múltiplas
- ANOVA

- variabilidade dos grupos¹
 - tamanho do estudo (n)²

Requisitos não óbvios (além das médias)

• Vimos que o **teste t** pode ser usado para comparar duas médias

Assumindo que atendemos às premissas do teste t, consideramos:

desvio padrão + n = erro padrão

Quais são as variáveis?

- Dependente:
 - numérica contínua
- Independente:
 - grupo (categórica nominal 3 níveis)

Esta relação pode ser expressa como

LH ∼ Grupo

Comparações múltiplas e ANOVA

Felipe Figueiredo

ANOVA um fator

(One-way ANOVA)

Two-way ANOVA

grupos:

Exemplo 13.5

sedentárias

2 corredoras recreacionais

3 corredoras de elite

Comparações múltiplas e ANOVA

> Felipe Figueiredo

ANOVA um fator (One-way ANOVA) O teste F Pós teste

Two-way ANOVA

Componentes da One-Way ANOVA

Versão simplificada (apenas variáveis)

 $LH \sim Grupo$

Hetland, et. al (1993) pesquisaram alterações hormonais em mulheres corredoras. Mediram o nível de hormônio luteinizante (LH) em três

Modelo completo

LH = média global + efeito do fator grupo + ε

Hipótese: ε é um erro aleatório 6 normalmente distribuído e centrado em zero – a incerteza que não pode ser controlada.

6 residual – não é explicado pela relação entre as variáveis do modelo

Comparações múltiplas e ANOVA

Felipe Figueiredo

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

¹ Se possível, semelhantes. Caso contrário, correção de Welch.

Componente do DP e do SEM. Usado como GL para o t crítico.

Exemplo 13.5

Table 30.1. LH Levels in Three Groups of Women

Group	$log(LH) \pm SEM$	N
Nonrunners	0.52 ± 0.027	88
Recreational runners	0.38 ± 0.034	89
Elite runners	0.40 ± 0.049	28

- Com estas informações, podemos construir uma tabela ANOVA
- H₀: todas as médias são iguais

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparaçõe

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste Two-way ANOVA

Two-way ANOVA

Aprofundamento

One-way ANOVA

- Este método é chamado One-way (ou 1-way) ANOVA, pois tem um fator categórico
- A premissa é que pode-se modelar a relação entre um desfecho quantitativo e um preditor categórico + um erro aleatório
- A variável dependente do exemplo é o LH
- A (única) variável independente é o Grupo

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Pós teste Two-way ANOVA

Exercício

Aprofundamento

Exemplo 13.5

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparaçõe múltiplas

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Pós teste Two-way ANOVA

Exercí

Aprofundamento

Exemplo 13.5

Table 30.2. InStat Results for One-Way ANOVA

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Treatments (between groups)	2	0.92681	0.4634
Residuals (within groups)	202	16.450	0.0814
Total	204	17.377	
F = 5.690			
The P value is 0.0039, considered ver Variation among column means is sign		ected by chance.	

- A razão entre as Somas dos Quadrados: 0.93/17.38 = 5.3%
- 5.3% da variabilidade pode ser explicada pelas diferenças *entre os grupos*
- (lembra do r²?)

A ideia básica

Quando os grupos têm médias diferentes, parte da variabilidade total é devido a esta diferença

- O resto da variabilidade é devido apenas às variâncias intragrupos
- A ANOVA tenta desembaraçar esta decomposição, assumindo a hipótese nula.

múltiplas e ANOVA Felipe Figueiredo

Comparações

Comparações

ANOVA

ANOVA um fator (One-way ANOVA) O teste F Pós teste Two-way ANOVA

Evereície

Aprofundamento

A ideia básica

- INTO
- O nome Análise de Variância vem do critério usado para comparar as médias
- O teste é baseado na razão entre as variâncias intra e inter grupos
- Estas variâncias aparecem na tabela como "Média dos Quadrados"
- Lembrete: a variância é a média dos desvios elevados ao quadrado

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Comparações

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste Two-way ANOVA

LXGIGIGIO

Exemplo 13.5

Exemplo 13.5

Source of Variation

Total

F = 5.690

Treatments (between groups)

Residuals (within groups)

Table 30.2. InStat Results for One-Way ANOVA

The P value is 0.0039, considered very significant.

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações

Mean

Square 0.4634 I

0.0814

ANOVA um fator

(One-way ANOVA)

O teste F

Two-way ANOVA

Exercício

Aprofundamento

Razão entre as variâncias: F = 0.4634/0.0814 = 5.69 >> 1
 (mesmo considerando o n de cada grupo)

Variation among column means is significantly greater than expected by chance.

Degrees of

202

204

Freedom

Sum of

Squares

0.9268

16.450

17.377

p = 0.0039

Expectativa x realidade⁷ – O teste F⁸

Se as médias forem iguais, a variância intragrupo deve ser "igual" à variância intergrupo...

... nesse caso a razão entre as variâncias deve ser próxima de 1

 $F = \frac{\text{variância intergrupos}}{\text{variância intragrupos}}$

Interpretação da estatística F

Uma razão muito maior que 1 indica que há mais variância entre os grupos do que o esperado

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Comparaçõe

ANOVA

ANOVA um fator
(One-way ANOVA)

O teste F

Pós teste Two-way ANOVA

IWO-Way ANOV

Aprofundamento

múltiplas e ANOVA

> Felipe Figueiredo

Comparações múltiplas

ANOVA
ANOVA um fator
(One-way ANOVA)
O teste F

Pós teste Two-way ANOVA

Exercício

Aprofundament

Resposta

Sabemos apenas que pelo menos um dos grupos é diferente dos outros. Mas qual(is)?

Ainda não estamos prontos para redigir o resultado!

⁷ Mesma ideia do qui-quadrado.

⁸O teste leva em conta dois graus de liberdade: numerador e denominador

Testes post-hoc Comparações múltiplas e ANOVA Felipe O teste de ANOVA é apenas a primeira parte! Figueiredo O p-valor do teste F indica o quão raro é encontrar uma discrepância tão ANOVA um fator grande (ou maior) entre as médias dos grupos, ao acaso O teste F Pós teste Two-way ANOVA Mas isso não nos ajuda a saber qual é o grupo discrepante Para esta outra pergunta, precisamos de outro método

9 Está com saudade do teste t?

Testes post-hoc Comparações múltiplas e ANOVA Felipe Figueiredo Correção de Bonferroni Correção para tendências ANOVA um fator Teste "honesto" das diferenças, de Tukey (HSD) O teste F Método de Scheffe Pós teste Two-way ANOVA Teste de Dunnet etc.

Testes post-hoc Comparações múltiplas e ANOVA Felipe Figueiredo Ocomo vimos, não podemos simplesmente fazer vários testes t ANOVA um fator Mas podemos ajustar os p-valores destes testes, para compensar O teste F a inflação destes resultados Pós teste Two-way ANOVA Isso pode ser feito de várias maneiras

Interpretando o método de Bonferroni¹¹

Exemplo

García-Arenzana et al. (2014) testaram associação de 25 variáveis dietárias e a densidade mamográfica (relevante p/ câncer de mama).

5 das variáveis parecem significativas.

Bonferroni

Ao dividir 0.05 pelo número de comparações, obtemos $\alpha = 0.05/25 = 0.002$.

Conclusão

Após o ajuste, apenas 1 significativo.

p-valores não ajustados

Dietary variable	P value
Total calories	< 0.001
Olive oil	0.008
Whole milk	0.039
White meat	0.041
Proteins	0.042
Nuts	0.06
Cereals and pasta	0.074
White fish	0.205
Butter	0.212
Vegetables	0.216
Skimmed milk	0.222
Red meat	0.251
Fruit	0.269
Eggs	0.275
Blue fish	0.34
Legumes	0.341
Carbohydrates	0.384
Potatoes	0.569
Bread	0.594
Fats	0.696
Sweets	0.762
Dairy products	0.94
Semi-skimmed milk	0.942
Total meat	0.975

Processed meat

0.986

múltiplas e

ANOVA Felipe Figueiredo

Comparações

ANOVA um fator O teste F

Pós teste Two-way ANOVA

Comparações

múltiplas e

ANOVA

Felipe

Figueiredo

ANOVA um fator O teste F

Pós teste Two-way ANOVA

Exemplo 13.5

Exemplo 13.5

Table 30.1. LH Levels in Three Groups of Women

Group	$log(LH) \pm SEM$	N
Nonrunners	0.52 ± 0.027	88
Recreational runners	0.38 ± 0.034	89
Elite runners	0.40 ± 0.049	28

- Com estas informações, podemos construir uma tabela ANOVA
- H₀: todas as médias são iguais

Exemplo 13.5

Comparações múltiplas e ANOVA

Felipe Figueiredo

ANOVA um fator O teste F

Pós teste

Two-way ANOVA

Exemplo 13.5

Hetland, et. al (1993) pesquisaram alterações hormonais em mulheres corredoras. Mediram o nível de hormônio luteinizante (LH) em três grupos:

- sedentárias
- 2 corredoras recreacionais
- 3 corredoras de elite

Exemplo 13.5

Exemplo 13.5

Table 30.2. InStat Results for One-Way ANOVA

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Treatments (between groups)	2	0.9268	0.4634
Residuals (within groups)	202	16.450	0.0814
Total	204	17.377	

The P value is 0.0039, considered very significant.

Variation among column means is significantly greater than expected by chance.

- Razão entre as variâncias: F = 0.4634/0.0814 = 5.69 >> 1(mesmo considerando o n de cada grupo)
- p = 0.0039

Comparações múltiplas e ANOVA

Felipe Figueiredo

ANOVA um fator

O teste F Two-way ANOVA

¹¹ http://www.biostathandbook.com/multiplecomparisons.html

Exemplo 13.5 – testes t com ajuste de Tukey

Exemplo 13.5

Table 30.3. InStat Results for Tukey's Post Test

	Mean		
Comparison	Difference	q	P Value
Nonrunners vs Recreational	0.1400	2.741	** P < 0.01
Nonrunners vs Elite	0.1200	2.741	ns $P > 0.05$
Recreational vs Elite	-0.02000	0.4574	ns $P > 0.05$
	Mean	Lower	Upper 95%
Difference	Difference	95% CI	CI
Nonrunners — Recreational	0.1400	0.03823	0.2418
Nonrunners — Elite	0.1200	-0.02688	0.2669
Recreational — Elite	-0.02000	-0.1667	0.1267

Pergunta

Como você redigiria este resultado?

Dependente:

Quais são as variáveis?

- numérica contínua
- Independentes:
 - grupo (categórica nominal 3 níveis)
 - gênero (categórica nominal binária)

Esta relação pode ser expressa como

Área cicatrizada ~ Grupo de tratamento + Gênero

Comparações múltiplas e ANOVA

Felipe Figueiredo

ANOVA um fator O teste F

Two-way ANOVA

ANOVA dois parâmetros

Comparações múltiplas e ANOVA

> Felipe Figueiredo

ANOVA um fator

Pós teste

Two-way ANOVA

Os tratamentos são diferentes, mesmo controlando pelo Gênero?

• Vejamos o exemplo inicial da aula, com duas var. independentes

Você consegue decidir visualmente...

... se 3 grupos têm médias diferentes?

O teste ANOVA permite qualquer quantidade de variáveis

• Vimos como usar o ANOVA com uma var. independente categórica

independentes! E de qualquer tipo 12

múltiplas e ANOVA

Felipe Figueiredo

ANOVA ANOVA um fator

O teste F Pós teste

Two-way ANOVA

Comparações múltiplas e ANOVA

Felipe Figueiredo

ANOVA um fator O teste F

Two-way ANOVA

Nova pergunta

¹² Na verdade, ANOVA e Regressão Linear são Múltipla são siameses

Cenário 1 – esses 3 grupos têm médias diferentes? Comparações múltiplas e Cenário 1 ANOVA Felipe múltiplas ANOVA O teste F Pós teste Grupo • Placebo • Trat.A • Trat.B

Cenário 4 – esses 3 grupos têm médias diferentes?

Cenário 4 - Cenário 2 ajustado pelo gênero

Comparações múltiplas e ANOVA

ANOVA ANOVA um fator O teste F Pós teste

Two-way ANOVA

Felipe Figueiredo múltiplas

Cenário 4 – esses 3 grupos têm médias diferentes?

Grupo • Placebo • Trat A • Trat B

Cenário 4 - Cenário 2 ajustado pelo gênero

Comparações múltiplas e ANOVA

Felipe Figueiredo

múltiplas

ANOVA ANOVA um fator (One-way ANOVA) O teste F

Pós teste Two-way ANOVA

Comparações múltiplas e

ANOVA Felipe Figueiredo

ANOVA um fator O teste F Pós teste

Two-way ANOVA

Exercício

Cenário 2

Comparações múltiplas e ANOVA

> Felipe Figueiredo

ANOVA

Exercício

Hora de testar seus conhecimentos

Genero • F • M

Exercício Um cirurgião testa duas drogas para auxiliar a recuperação pós cirúrgica, e mensura a área cicatrizada (y) em uma semana. São considerados os tratamentos A e B e um Placebo.

Foram selecionados 8 participantes para cada um dos três grupos.

Cenário 1 - esses 3 grupos têm médias diferentes?

Cenário 1

Comparações múltiplas e

ANOVA

Exercício

ANOVA Felipe Figueiredo

Pergunta

Cenário 1

Os tratamentos são diferentes do placebo?

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p = 0.025$ Placebo x Trat. B $\Rightarrow p = 0.100$ Trat. A x Trat. B $\Rightarrow p = 0.876$

Comparações múltiplas e ANOVA

> Felipe Figueiredo

ANOVA

Exercício

E entre si?

Comparações múltiplas e

ANOVA

Felipe

Figueiredo

ANOVA

Exercício

Df Sum Sq Mean Sq F value Pr(>F) 2 4.124 2.0620 2.545 0.102 Grupo

Residuals 21 17.018 0.8104

Os 3 tratamentos não diferem além da expectativa (p = 0.102)

Por que este resultado está errado?

Grupo • Placebo • Trat.A • Trat.B

Resposta

Testamos simultaneamente 3 hipóteses...

... você foi levado ao engano: Placebo é diferente do trat. A

Comparações múltiplas e ANOVA Felipe Figueiredo

Cenário 1

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p = 0.025$ Placebo x Trat. B $\Rightarrow p = 0.100$ Trat. A x Trat. B $\Rightarrow p = 0.876$

Os tratamentos são diferentes do placebo?

E entre si?

Comparações múltiplas e ANOVA

Felipe Figueiredo

Exercício

Pairwise comparisons using t tests with non-pooled SD data: y and Grupo

Cenário 1 – Bonferroni

Placebo Trat.A Trat.A 0.076 -Trat.B 0.299 1.000

P value adjustment method: bonferroni

Os p-valores de Bonferroni são 3x maiores...

... o placebo não é diferente do tratamento A (p = 0.076)

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Exercício

Cenário 1 – Tukey

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo, data = cenariol.long)

\$Grupo

diff lwr upr p adj Trat.A-Placebo -0.91797498 -2.052498 0.2165479 0.1274511 Trat.B-Placebo -0.83482042 -1.969343 0.2997025 0.1767378 Trat.B-Trat.A 0.08315455 -1.051368 1.2176774 0.9813768

Os p-valores de Tukey são mais conservadores...

... o placebo não é diferente do tratamento A (p = 0.12745)

Comparações múltiplas e ANOVA

Felipe Figueiredo

Cenário 1 – Solução

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p = 0.025$ Placebo x Trat. B ⇒ p = 0.100 Trat. A x Trat. B $\Rightarrow p = 0.876$

P-valores ajustados (Bonferroni)

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Exercício

Cenário 2 - esses 3 grupos têm médias diferentes?

Cenário 2

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Exercício

Pergunta

Cenário 2

Os tratamentos são diferentes do placebo?

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p < 0.0001$ Placebo x Trat. B $\Rightarrow p = 0.00037$ Trat. A x Trat. B $\Rightarrow p = 0.02943$

E entre si?

Comparações múltiplas e ANOVA

> Felipe Figueiredo

ANOVA

Exercício

Por que este resultado está errado?

Grupo • Placebo • Trat.A • Trat.B

Resposta

Testamos simultaneamente 3 hipóteses...

... você foi levado ao engano: trat. A é diferente do trat. B

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Cenário 2

Comparações múltiplas e ANOVA

Felipe Figueiredo

Exercício

Dairwigo gomparigong uging t togto

Pairwise comparisons using t tests with non-pooled ${\tt SD}$

data: y and Grupo

Placebo Trat.A Trat.A 8.8e-05 -

Cenário 2 – Bonferroni

Trat.B 0.0011 0.0883

P value adjustment method: bonferroni

Os p-valores de Bonferroni são 3x maiores...

 \dots os tratamentos A e B não são diferentes entre si (p=0.0883)

P-valores dos 3 testes t

Placebo x Trat. A \Rightarrow p < 0.0001Placebo x Trat. B \Rightarrow p = 0.00037

Pergunta

Os tratamentos são diferentes do placebo?

E entre si?

INTO

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

ANOVA

Exercício

Aprofundamento

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo, data = cenario2.long)

\$Grupo

 Trat.A-Placebo
 2.8224313
 1.7995273
 3.8453353
 0.0000021

 Trat.B-Placebo
 1.8711918
 0.8482877
 2.8940958
 0.0004262

 Trat.B-Trat.A
 -0.9512395
 -1.9741435
 0.0716645
 0.0713859

Os p-valores de Tukey são mais conservadores...

... os tratamentos A e B não são diferentes (p = 0.0713859)

Placebo x Trat. A ⇒ ρ < 0.0001
2 Placebo x Trat. B ⇒ ρ = 0.00037

 $3 \quad \text{Trat. A x Trat. B} \Rightarrow \rho = 0.02943$

P-valores ajustados (Bonferroni)

Placebo x Trat. A $\Rightarrow p < 0.0001$ Placebo x Trat. B $\Rightarrow p = 0.0011$ Trat. A x Trat. B $\Rightarrow p = 0.0883$

Comparações múltiplas e

ANOVA
Felipe
Figueiredo

Comparações múltiplas

ANOVA

Exercício Exercício

Aprofundamen

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

ANOVA Exercício

Exercício

Aprofundamento

Comparações múltiplas e ANOVA

Exercício

Aprofundamento

Agora interprete cada um dos dois fatores

Cenário 3 - ANOVA Two-way

Df Sum Sq Mean Sq F value Pr(>F) 2 4.124 2.0620 2.426 0.114 1 0.020 0.0198 0.023 0.880 Genero

Residuals 20 16.998 0.8499

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Exercício

Cenário 3 - esses 3 grupos têm médias diferentes?

Comparações múltiplas e ANOVA

Felipe Figueiredo

ANOVA

Exercício

Cenário 3 - Tukey

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo + Genero, data = cenario1.long)

diff lwr Trat.A-Placebo -0.91797498 -2.084178 0.2482277 0.1402196 Trat.B-Placebo -0.83482042 -2.001023 0.3313822 0.1915255 Trat.B-Trat.A 0.08315455 -1.083048 1.2493572 0.9822352

\$Genero

diff lwr upr padj M-F 0.05741033 -0.7276764 0.8424971 0.8802907

múltiplas e ANOVA Felipe

Figueiredo

ANOVA

Exercício

Cenário 4 – esses 3 grupos têm médias diferentes?

Cenário 4 - Cenário 2 ajustado pelo gênero

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparaçõe núltiplas

ANOVA

Exercício Exercício

Aprofundamento

Comparações múltiplas e

ANOVA
Felipe
Figueiredo

Comparações múltiplas

AVOVA

Exercício Exercício

Aprofundamento

Cenário 4 – Tukey

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y $\tilde{\ }$ Grupo + Genero, data = cenario2.long)

Genero • F • M

\$Grupo

 diff
 lwr
 upr
 p adj

 Trat.A-Placeb
 2.8224313
 1.789885
 3.85497800
 0.0000030

 Trat.B-Placebo
 1.8711918
 0.838645
 2.90373849
 0.0005050

 Trat.B-Trat.A
 -0.9512395
 -1.983786
 0.08130722
 0.0743628

\$Genero

diff lwr upr p adj M-F 0.3362835 -0.4663601 1.138927 0.3925159

Resumo

Grupo

Genero

- Vimos o modelo ANOVA com fatores fixos para comparar médias
- Há também...¹³

Cenário 4 – ANOVA Two-way

Residuals 20 13.33 0.666

Df Sum Sq Mean Sq F value Pr(>F)

2 32.99 16.496 24.760 3.88e-06 *** 1 0.51 0.509 0.764 0.393

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1

- ANOVA com interações entre os fatores
- ANOVA com Medidas Repetidas quando você mensura do participante em vários momentos diferentes¹⁴ (ex: baseline, pré-op imediato, pós-op imediato, e após 1 ano)
- ANOVA com fatores aleatórios permite decompor as variâncias contribuição de cada fator para a variância total
- ANOVA com fatores mistos fatores fixos E aleatórios
- ANOVA é a base para (livros de) Design of Experiments (DoE)
- Considere sempre usar desenhos balanceados¹⁵!

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações

ANOVA

Exercício Exercício

Aprofundamen

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

ANOVA

Exercício Exercício

Todos fora do escopo deste curso

¹⁴ RM ANOVA é mencionado no livro-texto

¹⁵ Grupos com **mesmo tamanho**

Modelo ANOVA em geral – quais são as variáveis?

- Dependente (VD): numérica
 - discreta
 - contínua
- Independentes (VI):
 - categórica 2+ níveis
 - numérica discreta
 - numérica contínua

Esta relação pode ser expressa como

$$VD \sim VI_1 + VI_2 + ...$$

Comparações múltiplas e ANOVA

Felipe Figueiredo

Comparações múltiplas

ANOVA

Exercício Exercício

Aprofundamento

Aprofundamento

Comparações múltiplas e ANOVA

> Felipe Figueiredo

Comparações

ANOVA

Exercício

Aprofundamento

Leitura obrigatória

- Capítulo 13
- Capítulo 30 (atenção às premissas!)

Leitura recomendada

Kim, Bang, 2016, *Three common misuses of P values*, Dent. Hypotheses. (editorial)