A eficiência catalítica $k_A = k_{cat}/K_m$ também se designa por *constante de especificidade*. A razão torna-se clara se considerarmos uma situação de *competição* entre dois substratos A e A', pelo centro activo de um mesmo enzima E:

$$E + A \xrightarrow{k_1} EA \xrightarrow{k_2} E + P$$

$$E + A' \xrightarrow{k_1'} EA' \xrightarrow{k_2'} E + P'$$

A partir deste esquema podem deduzir-se o seguinte par de equações de velocidade:

$$v = \frac{d[P]}{dt} = \frac{k_2[E]_0[A]}{K_m(1+[A']/K_m')+[A]}$$

$$v' = \frac{d[P']}{dt} = \frac{k_2'[E]_0[A']}{K_m'(1+[A]/K_m)+[A']}$$

Cada um dos substratos se comporta como um *inibidor competitivo* relativamente ao outro, sendo a constante de inibição igual ao K_m do substrato em competição.

O verdadeiro significado da constante k_A emerge se considerarmos o quociente v/v':

$$\frac{v}{v'} = \frac{\frac{k_2[E]_0[A]}{K_m(1+[A']/K_m')+[A]}}{\frac{k_2'[E]_0[A']}{K_m'(1+[A]/K_m)+[A']}} = \frac{\frac{(k_2/K_m)[E]_0[A]}{1+[A']/K_m'+[A]/K_m}}{\frac{(k_2'/K_m')[E]_0[A']}{(k_2'/K_m')[E]_0[A']}} = \frac{(k_2/K_m)[E]_0[A]}{(k_2'/K_m')[E]_0[A']}$$

Tendo em conta que $k_A=k_2$ / K_m e k_A ' = k_2 ' / K_m ':

$$\frac{v}{v'} = \frac{(k_2 / K_{\rm m})[E]_0[A]}{(k_2' / K_{\rm m}')[E]_0[A']} = \frac{k_{\rm A}[A]}{k_{\rm A}'[A']} \quad \text{e quando [A]=[A']} \quad \frac{v}{v'} = \frac{k_{\rm A}}{k_{\rm A}'}$$

Numa mistura *equimolar* de substratos competindo para o *mesmo centro activo* de um enzima E, a razão entre as velocidades de catálise de dois substratos é igual à razão entre as constantes de especificidade do enzima para cada substrato.

Parâmetros cinéticos para diferentes substratos da fumarase:

Substrate	k _{cat} (s ⁻¹)	K _m (mM)	"K _i "(mM)	$k_{\text{cat}}/K_{\text{m}}(\text{s}^{-1}\text{mM}^{-1})$
Fluorofumarato	2700	0.027	-	100000
Fumarato	800	0.005	-	160000
Clorofumarato	20	0.11	0.10	180
Bromofumarato	2.8	0.11	0.15	25
lodofumarato	0.043	0.12	0.10	0.36
Mesaconato	0.023	0.51	0.49	0.047
L-tartarato	0.93	1.3	1.0	0.72

Exemplo: numa mistura equimolar dos substratos *fumarato* e *fluorofumarato* o enzima fumarase catalisa a decomposição do fumarato 60% mais rápido:

$$\frac{v}{v'} = \frac{k_{\rm A}}{k_{\rm A}'} = \frac{160000}{100000} = 1.60$$

O fumarato é o substrato mais **específico**

Teste de competição de substratos

Quando se verifica a transformação de dois substratos na presença de um extracto enzimático, podem verificar-se duas situações:

- a) O dois substratos competem para o centro activo de um mesmo enzima
- b) Os dois substratos são catalizados por enzimas distintos presentes no extracto

Para distinguir entre estas duas situações podemos recorrer a um teste de competição.

A soma das velocidades v e v' para dois substratos em competição é:

$$v_{\text{tot}} = v + v' = \frac{(V_{\text{max}} / K_{\text{m}})[A] + (V_{\text{max}}' / K_{\text{m}}')[A']}{1 + [A'] / K_{\text{m}}' + [A] / K_{\text{m}}}$$

Determinando experimentalmente duas concentrações de referência $[A]=[A]_0$ e $[A']=[A]_0$ ' tais que:

$$\frac{V_{\text{max}}[A]_0}{K_{\text{m}} + [A]_0} = \frac{{V_{\text{max}}}'[A']_0}{{K_{\text{m}}}' + [A']_0} = v_0$$

Estas são assim concentrações de A e A' que conduzem a uma mesma velocidade de catálise observada para cada substrato.

Teste de competição de substratos

Preparando uma série de soluções contendo uma mistura dos dois substratos tais que as suas concentrações são interpoladas entre zero e $[A]_0$ e $[A']_0$:

$$[A] = (1 - r)[A]_0$$

$$[A'] = r[A']_0$$

$$r \in [0, 1]$$

Exemplo com 5 soluções:

Para cada uma destas soluções, v_{tot} será a soma das velocidades observadas para a catálise de A e A'.

Teste de competição de substratos

A expressão de v_{tot} assume a seguinte forma:

$$v_{\text{tot}} = \frac{(V_{\text{max}} / K_{\text{m}})(1-r)[A]_{0} + (V'_{\text{max}} / K'_{\text{m}})r[A']_{0}}{1 + (1-r)[A]_{0} / K_{\text{m}} + r[A']_{0} / K'_{\text{m}}}$$

$$= \frac{v_{0}[(1-r)(1+[A]_{0} / K_{\text{m}}) + r(1+[A']_{0} / K'_{\text{m}})]}{(1-r)(1+[A]_{0} / K_{\text{m}}) + r(1+[A']_{0} / K'_{\text{m}})} = v_{0}$$

Conclusão: se os dois substratos competirem para o mesmo centro activo, a velocidade total observada será a mesma em todas as misturas (v_o).

Forma integrada da equação de Michaelis-Menten

Forma integrada da equação de Michaelis-Menten

Se a concentração do substrato A não pode ser considerada consrtante ao longo do precurso de uma reacção enzimática Michaeliana, a velocidade de reacção irá depender da concentração $[A]_t$ no instante t,

$$v_{t} = \frac{V_{\text{max}}[A]_{t}}{K_{\text{m}} + [A]_{t}}$$

A velocidade v, é igual à variação d[P] com o tempo

$$v_{t} = \frac{d[P]}{dt}$$

O que permite obter a seguinte equação diferencial para a variação da quantidade de produto com o tempo:

$$\frac{d[P]}{dt} = \frac{V_{\text{max}}[A]_{t}}{K_{\text{m}} + [A]_{t}} = \frac{V_{\text{max}}([A]_{0} - [P])}{K_{\text{m}} + ([A]_{0} - [P])}$$

A integração desta equação permite obter uma expressão para a quantidade total de produto produzido após um determinado tempo *t*

Integração da equação de Michaelis-Menten

A curva de progresso de uma reacção enzimática depende de uma multiplicidade de factores. No entanto, há situações em que pode ser aproximada pela **forma integrada** da equação de Michaelis-Menten, por exempo se os factores dominantes forem a depleção de substrato ou inibição pelo produto.

Se a estimativa das velocidades iniciais se revelar pouco fiável, é possível nestas situações recorrer à forma integrada da equação de Michaelis-Menten para ajuste da curva de progresso e daí extrair os parâmetros cinéticos do enzima.

A situação mais simples envolve apenas depleção do substrato:

$$\begin{cases} v = \frac{d[P]}{dt} \\ [A] = [A]_0 - [P] \implies \frac{d[P]}{dt} = \frac{V_{\text{max}}([A]_0 - [P])}{K_{\text{m}} + ([A]_0 - [P])} \\ v = \frac{V_{\text{max}}[A]}{K_{\text{m}} + [A]} \end{cases}$$

Integração da equação de Michaelis-Menten

A equação diferencial:

$$\frac{d[P]}{dt} = \frac{V_{\text{max}}([A]_0 - [P])}{K_{\text{m}} + ([A]_0 - [P])},$$

pode ser integrada por separação das variáveis:

$$\int \frac{K_{\rm m} + [A]_0 - [P]}{[A]_0 - [P]} d[P] = \int V_{\rm max} dt$$

$$-K_{\rm m} \ln([A]_0 - [P]) + [P] = V_{\rm max} t + \alpha$$

Usando a condição inicial [P]=0 quando t=0, fica α =- K_m , e rearranjando vem:

$$V_{\max}t = [\mathbf{P}] + K_{\mathrm{m}} \ln \left(\frac{[\mathbf{A}]_0}{[\mathbf{A}]_0 - [\mathbf{P}]} \right) \qquad \begin{array}{c} \text{Forma integrada da} \\ \text{equação de} \\ \text{Michaelis-Menten} \end{array}$$

Exemplo de aplicação

$$K_{\rm m} = 1.2 \times 10^{-5} \, \text{M}$$

Calcular a quantidade de produto produzida nos primeiros 5 min de reacção...

$$V_{\text{max}} = 2.0 \times 10^{-5} \text{ M/min}$$

$$[A] = 2.0x10^{-6} M$$

$$v = \frac{2.0 \times 10^{-5} \,\mathrm{M \, min^{-1}} \times 2.0 \times 10^{-6} \,\mathrm{M}}{1.2 \times 10^{-5} \,\mathrm{M} + 2.0 \times 10^{-6} \,\mathrm{M}} = 3.57 \times 10^{-6} \,\mathrm{M \, min^{-1}}$$

Assumindo uma velocidade constante de 3.57x10⁻⁵Mmin⁻¹, o reagent seria consumido em cerca de 1 min – a variação de concentração do substrato não pode ser desprezada!

Neste caso torna-se necessário aplicar a forma integrada da equação de M.M. para resolver este problema.

$$V_{\text{max}}t = [P] + K_{\text{m}} \ln \left(\frac{[A]_{0}}{[A]_{0} - [P]} \right)$$

Como calcular [P] ? ...resolver numericamente f([P])=0

$$2.0 \times 10^{-5} \, \text{M min}^{-1} \times 5 \, \text{min} = [P] + 1.2 \times 10^{-5} \, \text{M} \times \ln \left(\frac{2.0 \times 10^{-6} \, \text{M}}{2.0 \times 10^{-6} \, \text{M} - [P]} \right)$$

Resolução numérica do problema

```
import numpy as np
from scipy.optimize import fsolve

def int_mm(x,a,t,vmax,km):
    return x+km*(np.log(a)-np.log(a-x))-vmax*t

km = 1.2e-5
vmax = 2.0e-5
t = 5
a = 2.0e-6

a=fsolve(int_mm,1.8e-10,args=(a,t,vmax,km),xtol=1e-10)
print t,a[0]
```


Tempo (min)	[P] (M)	
1	1.57x10 ⁻⁶	
2	1.92x10 ⁻⁶	
3	1.98x10 ⁻⁶	
4	1.99x10 ⁻⁶	
5	2.00x10 ⁻⁶	

Integração da equação de Michaelis-Menten

A forma integrada da equação de Michaelis-Menten é muitas vezes escrita:

$$V_{\text{max}}^{\text{app}}t = [P] + K_{\text{m}}^{\text{app}} \ln \left(\frac{[A]_0}{[A]_0 - [P]} \right)$$

O uso das grandezas aparentes realça o facto de que esta equação é muito mais geral do que o caso particular que se usou para a sua dedução (efeito único da depleção do substrato).

 V_{\max} (app) e K_{\max} (app) podem diferir muito de K_{\min} e V_{\max} , podendo até ser negativos!

No entanto, a seguinte relação é sempre válida:

$$v_0 = \frac{V_{\text{max}}^{\text{app}}[A]_0}{K_{\text{m}}^{\text{app}} + [A]_0}$$

e permite estimar v_0 se os valores de $V_{\text{max}}(\text{app})$ e $K_{\text{m}}(\text{app})$ forem conhecidos.

Curva de progresso com inibição pelo substrato

Quando a forma da forma de progresso reflete simultaneamente imbibição pelo produto:

$$v = \frac{k_0[E]_0[A]}{K_{mA}\left(1 + \frac{[P]}{K_{sP}}\right) + [A]}$$

e depleção do substrato, a equação diferencial que rege o fenómeno é data por:

$$\frac{d[P]}{dt} = \frac{V_{\text{max}}([A]_0 - [P])}{K_{\text{m}}\left(1 + \frac{[P]}{K_{\text{sP}}}\right) + ([A]_0 - [P])}$$

Sendo neste casos as grandezas aparentes dadas:

$$V_{\text{max}}^{\text{app}} = \frac{V_{\text{max}}}{1 - \frac{K_{\text{m}}}{K_{sP}}} \qquad K_{\text{m}}^{\text{app}} = \frac{K_{\text{m}} \left(1 + \frac{[A]_{0}}{K_{sP}} \right)}{1 - \frac{K_{\text{m}}}{K_{sP}}}$$

Determinação de velocidades iniciais a partir da curva de progresso

A equação integrada,

$$V_{\text{max}}^{\text{app}}t = [P] + K_{\text{m}}^{\text{app}} \ln \left(\frac{[A]_0}{[A]_0 - [P]} \right)$$

pode ser rearranjada para a seguinte forma:

$$\frac{t}{\ln([A]_{0}/([A]_{0}-[P]))} = \frac{1}{V_{\text{max}}^{\text{app}}} \left\{ \frac{[P]}{\ln([A]_{0}/([A]_{0}-[P]))} \right\} + \frac{K_{\text{m}}^{\text{app}}}{V_{\text{max}}^{\text{app}}}$$

Portanto um gráfico de $\frac{t}{\ln\left([A]_0/([A]_0-[P])\right)}$ em função de $\frac{[P]}{\ln\left([A]_0/([A]_0-[P])\right)}$

produz uma recta de declive $1/V_{
m max}^{
m app}$ e ordenada na origem $K_{
m m}^{
m app}/V_{
m max}^{
m app}$

A determinação dos valores de $V_{\text{max}}^{\text{app}}$ e $K_{\text{m}}^{\text{app}}$ permite obter o valor de v_0 para um determinado valor [A]₀

Determinação de velocidades iniciais a partir da curva de progresso

Re-arranjando a equação:,

$$v_0 = \frac{V_{\text{max}}^{\text{app}}[A]_0}{K_{\text{m}}^{\text{app}} + [A]_0}$$

de acordo com a transformação de Hanes-Woolf:

$$\frac{[A]_0}{v_0} = \frac{1}{V_{\text{max}}^{\text{app}}} [A]_0 + \frac{K_{\text{m}}^{\text{app}}}{V_{\text{max}}^{\text{app}}}$$

O que significa que o ponto ($[A_{]0}$, $[A]_{0}$ / v_{0}) está sobre a reta da linearização anterior. Extrapolando esses pontos para retas obtidas com diferentes valores de $[A]_{0}$, obtemos uma reta de $[A]_{0}$ / v_{0} em função de $[A]_{0}$ a partir da qual podemos estimar os valores de K_{m} e V_{max} directamente .

Estimativa de Km e Vmax a partir de curvas de progresso

