UNIVERZITET U BEOGRADU, ELEKTROTEHNIČKI FAKULTET

KATEDRA ZA SOFTVERSKO INŽENJERSTVO -

IZVEŠTAJ IZ PREDMETA ANALIZA SOCIJALNIH MREŽA

PREGLED NAUČNE KOLABORACIJE NA MEDICINSKOM FAKULTETU U BEOGRADU

STUDENT PROFESORI

IVAN RAKONJAC JELICA PROTIĆ

22/3309 MARKO MIŠIĆ

PREDRAG OBRADOVIĆ

UVOD

Ovaj dokument predstavlja izveštaj drugog projektnog zadatka rađenog na predmetu Analiza socijalnih mreža na master studijama Elektrotehničkog fakulteta Univerzitet u Beogradu.

IMPLEMENTACIJA

Analiza problema izvršena je u programskom jeziku Python. Preduzeti su sledeći koraci:

- Obrada primarnog skupa podataka
- Modelovanje mreže na osnovu sekundarnog skupa podataka
- Vizualizacija mreže

Pored programskog jezika Python, za vizualizaciju je korišćen i softverski alat Gephi.

REZULTATI

STATISTIČKA OBRADA PODATAKA

PITANJE 1: Koliki je broj radova po svakom autoru? Koristiti i celovito i frakciono brojanje. Ko su najproduktivniji naučnici iz oblasti istraživanja i kojoj katedri pripadaju?

	Author	Full Count	Fractional Count	Katedra
0	Tatjana Pekmezovic	263	44.072876	Katedra za epidemiologiju
1	Vladimir Trajkovic	155	24.211887	Katedra za imunologiju
2	Vera Pravica	88	14.234907	Katedra za imunologiju
3	Ljiljana Markovic-Denic	84	17.727477	Katedra za epidemiologiju
4	Tatjana Gazibara	77	13.978644	Katedra za epidemiologiju
5	Maja Stanojevic	70	8.004936	Katedra za mikrobiologiju
6	Darija Kisic-Tepavcevic	62	9.873965	Katedra za epidemiologiju
7	Valentina Arsic-Arsenijevic	50	6.976318	Katedra za mikrobiologiju
8	Ivana Cirkovic	46	8.246388	Katedra za mikrobiologiju
9	Dusan Popadic	46	6.589597	Katedra za imunologiju

PITANJE 2: Koliki je prosečan broj koautora po svakom autoru?

	Austra	A C4b	Katedra
	Author	Average Coauthors	Katedra
10	Eleonora Dubljanin	374.783784	Katedra za mikrobiologiju
17	Isidora Vujcic	342.814815	Katedra za epidemiologiju
46	Valentina Arsic-Arsenijevic	80.140000	Katedra za mikrobiologiju
33	Maja Stanojevic	31.342857	Katedra za mikrobiologiju
51	Vladimir Trajkovic	31.161290	Katedra za imunologiju
15	Irena Arandjelovic	31.000000	Katedra za mikrobiologiju
4	Branislava Savic	17.740741	Katedra za mikrobiologiju
25	Jasmina Simonovic-Babic	13.470588	Infektivne bolesti
26	Jelena Jordovic	11.142857	Infektivne bolesti
16	Irena Vukovic-Petrovic	11.000000	Katedra za imunologiju

PITANJE 3: Na osnovu dostupnih podataka, odrediti H-indeks svakog od naučnika i uporediti ga sadostupnim H-indeksom u datoteci autori.xlsx.

	Author	Calculated H-Index	Available H-Index
51	Vladimir Trajkovic	36	37
48	Vera Pravica	33	35
45	Tatjana Pekmezovic	27	27
33	Maja Stanojevic	20	20
9	Dusan Popadic	19	19
46	Valentina Arsic-Arsenijevic	17	17
10	Eleonora Dubljanin	17	17
31	Ljiljana Markovic-Denic	14	14
7	Dragana Vukovic	14	14
20	Ivana Dakic	12	12

PITANJE 4:

Koje katedre su najproduktivnije posmatrajući naučnu produkciju i citiranost u časopisima na osnovu dostupnih podataka?

	Katedra	Broj Radova	Ukupan Broj Citata
1	Katedra za epidemiologiju	665	7590
3	Katedra za mikrobiologiju	638	24652
2	Katedra za imunologiju	344	17526
0	Infektivne bolesti	266	1108

PITANJE 5: U kojim godinama su autori bili najproduktivniji na nivou fakulteta i pojedinačnim katedrama?

	Godina	Broj Radova		Godina	Katedra	Broj Radova
33	2018	195	112	2020	Katedra za epidemiologiju	41
29	2014	174	111	2020	Infektivne bolesti	22
30	2015	141	114	2020	Katedra za mikrobiologiju	17
			113	2020	Katedra za imunologiju	1
28	2013	134	108	2019	Katedra za epidemiologiju	51
34	2019	132	107	2019	Infektivne bolesti	36
31	2016	131	110	2019	Katedra za mikrobiologiju	36
32	2017	104	109	2019	Katedra za imunologiju	9
27	2012	97	106	2018	Katedra za mikrobiologiju	69
			104	2018	Katedra za epidemiologiju	66
35	2020	81	103	2018	Infektivne bolesti	40
24	2009	77	105	2018	Katedra za imunologiju	20

PITANJE 6: U kojim časopisima se u proseku najviše objavljuje?

	Source title	Broj Radova
0	Archives of Biological Sciences	83
1	Srpski arhiv za celokupno lekarstvo	73
2	Journal of Infection in Developing Countries	57
3	Vojnosanitetski Pregled	56
4	Medicinski pregled	51
5	Srpski Arhiv za Celokupno Lekarstvo	49
6	PLoS ONE	42
7	Journal of Medical Biochemistry	26
8	Vojnosanitetski pregled. Military-medical and	26
9	Acta Microbiologica et Immunologica Hungarica	24

PITANJE 7: Da li postoje razlike između katedri u smislu obima i učestanosti publikovanja u časopisima?

PITANJE 8: Da li postoji razlika u prosečnom broju autora po radovima u časopisima po katedrama?

PITANJE 9: Kakav je odnos broja koautora sa fakulteta u odnosu na broj autora van fakulteta po katedrama i na nivou celog fakulteta?

OSNOVNA KARAKTERIZACIJA MODELOVANJA MREŽE

Contact V			
Context ×			_
Nodes: 59			
Edges: 290			
Undirected Graph			
Filters Statistics ×			_
Settings			
▼ Network Overview			
Average Degree	9.831	Run	3
Avg. Weighted Degree	129.966	Run	(3)
Network Diameter	4	Run	3
Graph Density	0.169	Run	3
HITS		Run	(2)
PageRank		Run	3
Connected Components	2	Run	3
▼ Community Detection			
Modularity	0.632	Run	3
Statistical Inference		Run	3
▼ Node Overview			
Avg. Clustering Coefficient	0.575	Run	3
Eigenvector Centrality		Run	3
■ Edge Overview			
Avg. Path Length	2.132	Run	3

PITANJE 10:

Kolika je gustina mreže?

Gustina mreže: 0,169

PITANJE 11:

Kolike su prosečne distance u okviru mreže i dijametar mreže?

Dijametar (parametar Network Diameter u Gephi alatu): 4

Prosečne distance (parametar Avg. Path Length u Gephi alatu): 2.132

PITANJE 12:

U kojoj meri je mreža povezana i centralizovana? Navesti broj i veličine povezanih komponenata i proceniti da li postoji gigantska komponenta.

Parametri pri određivanju da li je mreža dobro povezana:

Povezanost komponenti

- Povezana komponenta je podmreža gde postoji put između bilo koja dva čvora.
- Mreža je dobro povezana ako ima jednu veliku povezan komponentu koja uključuje većinu čvorova.
- Kod nas postoje 2 povezane komponente (1 i 58 čvorova)
- Komponenta od 58 čvorova je gigantska
- Prisustvo gigantske komponente ukazuje na to da je mreža uglavnom povezana i da postoji put između većine čvorova.
- Gigantska komponenta omogućava efikasno širenje informacija ili trendova, jer većina čvorova može brzo biti dosegnuta kroz ovu komponentu.

Prosečne distance

- Prosečan broj koraka potrebnih da se pređe od jednog čvora do drugog u mreži.
- Kraća prosečna dužina putanje ukazuje na bolju povezanost, jer su čvorovi bliže jedni drugima.
- o Kod nas je: 2.132

Dijametar mreže

- Najduži najkraći put između bilo koja dva čvora u mreži.
- Manji dijametar znači bolju povezanost, jer nema čvorova koji su daleko jedan od drugog.
- o Kod nas je: 4

Klasterizacija

- Mera koja pokazuje koliko su čvorovi u mreži skloni formiranju gustih klastera.
- Visok koeficijent klasterizacije ukazuje na to da su čvorovi unutar mreže dobro povezani sa svojim susedima.
- Kod nas je: 0,575 (visok)

Gustina mreže

- o Proporcija mogućih veza koje zapravo postoje u mreži.
- Veća gustina znači bolju povezanost, jer postoji više veza između čvorova.
- Kod nas je: 0,169 (relativo niska)
- U mreži sa niskom gustinom, širenje informacija može biti manje efikasno jer informacije moraju putovati preko više koraka (veza) između čvorova.
- Ovo može ukazivati na to da većina ljudi ima veze sa samo delom populacije, a ne sa svima

PITANJE 13:

Koliki je prosečni, a koliki globalni koeficijent klasterizacije mreže? Kakva je raspodela lokalnog koeficijenta klasterizacije njenih čvorova? Da li je klasterisanje izraženo ili ne? Odgovor dati upoređivanjem sa slučajno generisanim Erdos-Renyi i scale free mrežama istih dimenzija.

Tumačenje:

- Kako je koeficijent klasterizacije naše mreže značajno veći od koeficijenta klasterizacije za Erdos-Renyi mreži I veći od koeficijenta klasterizacije za scalefree mrežu, to ukazuje na izraženo klasterisanje u našoj mreži.
- Mreže sa visokim koeficijentom klasterizacije u poređenju sa Erdos-Renyi mrežama obično imaju značajnu lokalnu povezanost i formiraju guste klastere.

PITANJE 14: u kojoj meri autori imaju tendenciju da pišu publikacije sa istim koautorima?

Gledajući graf, vidimo da je to čest slučaj.

Prosečan broj zajedničkih radova po paru koautora: 2.50

Standardna devijacija broja zajedničkih radova po paru koautora: 1.99

PITANJE 15:

Na osnovu odgovora na pitanja 10 i 12, proceniti da li mreža iskazuje osobine malog sveta.

Da ispunjava.

Mreža sa osobinama malog sveta je tip mreže koji karakterišu dve glavne osobine:

- Visoka klasterizacija
 - o Čvorovi u mreži imaju tendenciju da formiraju guste grupe ili klastere.
 - Visoki lokalni koeficijent klasterizacije znači da su susedi čvora često međusobno povezani.
- Mala prosečna dužina putanje između čvorova
 - U proseku, broj koraka potrebnih da se pređe između dva čvora je mali
 - Ovo omogućava brzo širenje informacija kroz mrežu

Ove mreže se nalaze između potpuno regularnih mreža (sa visokom klasterizacijom i dugim putanjama) i potpuno nasumičnih mreža (sa malom klasterizacijom i kratkim putanjama).

PITANJE 16:

izvršiti asortativnu analizu po stepenu čvora i dati odgovor da li je i koliko izraženo asortativno mešanje. Priložiti i vizuelizaciju.

Koeficijent asortativnosti po stepenu čvora: -0.052999315137545425

Koeficijent asortativnosti po stepenu čvora meri tendenciju mreže da povezuje čvorove sličnih ili različitih stepena (broja veza). Drugim rečima, on pokazuje da li čvorovi sa velikim brojem veza imaju tendenciju da budu povezani sa drugim čvorovima sa velikim brojem veza, ili sa čvorovima sa malim brojem veza.

Pozitivna asortativnost:

- Čvorovi sa visokim stepenom teže da se povežu sa drugim čvorovima sa visokim stepenom.
- Takođe, čvorovi sa niskim stepenom teže da se povežu sa čvorovima sa niskim stepenom.

Negativna asortativnost (disasortativnost):

• Čvorovi sa visokim stepenom teže da se povežu sa čvorovima sa niskim stepenom.

Vrednost koeficijenta asortativnosti blizu nule, ali negativna, ukazuje na to da postoji blaga tendencija čvorova sa visokim stepenom (mnogim vezama) da budu povezani sa čvorovima sa niskim stepenom (malo veza).

Ovo je tipično za mreže gde hubovi (čvorovi sa visokim stepenom) povezuju mnoge manje čvorove.

PITANJE 17:

Da li mreža ispoljava fenomen kluba bogatih (eng. rich club phenomenon)? Analizu sprovesti poređenjem sa adekvatnom mrežom dobijenom Havel-Hakimi algoritmom.

Mreža u određenoj meri ispoljava fenomen kluba bogatih.

Fenomen kluba bogatih je pojava da visoko povezani čvorovi (hubovi) formiraju čvrsto povezanu podmrežu ili "klub" unutar mreže. To jest, čvorovi sa velikim brojem veza (bogati čvorovi) imaju veću verovatnoću da budu međusobno povezani nego što bi se očekivalo u nasumičnoj mreži.

PITANJE 18: Kakva je distribucija čvorova po stepenu i da li prati power law raspodelu? Ne, ne prati.

Da tačke formiraju pravolinijski obrazac na log log grafikonu, to bi bila indikacija da distribucija prati power law raspodelu (jer je power law eksponenc. raspodela).

ANALIZA MERA CENTRALNOSTI

PITANJE 19:

Sprovesti analize centralnosti po stepenu, bliskosti i relacionoj centralnosti. Dati pregled najvažnijih aktera po svakoj od njih. Koji autori predstavljaju centre okupljanja u okviru svojih katedri i na nivou fakulteta?

CENTRALNOST PO STEPENU:

- broj veza koje čvor ima
- koristi za kvantifikaciju važnosti ili uticaja čvorova

	Author	Degree Centrality	Closeness Centrality	Betweenness Centrality
12	Markovic M.	0.448276	0.636560	0.150666
2	Lazarevic I.	0.344828	0.538627	0.065060
31	Vukovic D.	0.327586	0.583513	0.119408
6	Stevanovic G.	0.327586	0.554626	0.053792
8	Pekmezovic T.	0.293103	0.560172	0.120209

CENTRALNOST PO BLISKOSTI:

- koliko je čvor blizu svim drugim čvorovima u mreži
- prosečnu udaljenost od čvora do svih drugih čvorova, čime se procenjuje koliko brzo čvor može da dođe do svih ostalih čvorova u mreži

	Author	Degree Centrality	Closeness Centrality	Betweenness Centrality
12	Markovic M.	0.448276	0.636560	0.150666
31	Vukovic D.	0.327586	0.583513	0.119408
8	Pekmezovic T.	0.293103	0.560172	0.120209
6	Stevanovic G.	0.327586	0.554626	0.053792
15	Korac M.	0.275862	0.549189	0.039061

RELACIONA CENTRALNOST:

- koliko često čvor leži na najkraćim putanjama između drugih čvorova u mreži
- meri uticaj čvora na kontrolu komunikacije ili protoka informacija kroz mrežu

	Author	Degree Centrality	Closeness Centrality	Betweenness Centrality
12	Markovic M.	0.448276	0.636560	0.150666
8	Pekmezovic T.	0.293103	0.560172	0.120209
31	Vukovic D.	0.327586	0.583513	0.119408
2	Lazarevic I.	0.344828	0.538627	0.065060
6	Stevanovic G.	0.327586	0.554626	0.053792

CENTRI OKUPLJANJA:

Epidemiologija: Pekmezović Tatjana

Imunologija: Marković Miloš Mikrobiologija: Lazarević Ivana

Infektivne bolesti: Stevanović Goran

PITANJE 20:

Ko su najvažniji akteri po centralnosti po sopstvenom vektoru? Šta nam to govori o njima?

- uticaj čvora uzimajući u obzir ne samo broj njegovih veza (stepen), već i važnost čvorova na koje je povezan
- čvor ima visoku centralnost po sopstvenom vektoru ako je povezan sa čvorovima koji su sami po sebi uticajni
- ovi profesori su ključni za širenje informacija kroz mrežu
- ukazuju n ato kakva je saradnja između katedri

PITANJE 21:

Na osnovu prethodna dva pitanja predložiti i konstruisati heuristiku (kompozitnu meru centralnosti) za pronalaženje najvažnijih aktera i pronaći ih. Obratiti pažnju na tip mreže koji se analizira (usmerena ili neusmerena) i, shodno tome, prilagoditi koliko različite mrežne metrike utiču na heuristiku.

KORACI:

- Normalizacija svih centralnosti: Da bismo metrike mogli da kombinujemo, moramo ih prvo normalizovati tako da sve vrednosti budu između 0 i 1.
- Kombinacija metrika: Izračunaćemo kompozitnu meru centralnosti kao ponderisani zbir normalizovanih metrika (svi koeficijenti jednaki)

	Author	Degree Centrality	Closeness Centrality	Betweenness Centrality	Eigenvector Centrality	Composite Centrality
12	Markovic M.	1.000000	1.000000	1.000000	1.000000	1.000000
31	Vukovic D.	0.730769	0.916667	0.792529	0.605431	0.761349
2	Lazarevic I.	0.769231	0.846154	0.431816	0.822999	0.717550
8	Pekmezovic T.	0.653846	0.880000	0.797852	0.517137	0.712209
6	Stevanovic G.	0.730769	0.871287	0.357030	0.838461	0.699387
15	Korac M.	0.615385	0.862745	0.259257	0.738629	0.619004
25	Nikolic N.	0.615385	0.800000	0.109783	0.781087	0.576564
39	Cupic M.	0.576923	0.822430	0.221757	0.628124	0.562309
24	Trajkovic V.	0.576923	0.838095	0.239975	0.536467	0.547865
10	Milosevic I.	0.538462	0.807339	0.109651	0.683315	0.534692

PITANJE 22:

Da li autori sa različitih katedri međusobno sarađuju i u kojoj meri? Ko su autori koji povezuju različite grupe u okviru mreže? Da li na osnovu ove analize postoji spoljni autor koga smatrate da bi bilo veoma korisno zaposliti na Medicinskom fakuletu?

Da autori sa različitih katedri sarađuju međusobno.

Autori koji povezuju grupe mogu se videti na grafu (ima ih više).

Prvia 3 autora koji se najčešće pojavljuju, a nisu sa fakulteta:

Jevtovic D.: 105 pojavljivanja

Stepanovic S.: 92 pojavljivanja

Drulovic J.: 90 pojavljivanja

DETEKCIJA KOMUNA LUVENSKOM METODOM

PITANJE 23:

Sprovesti klasterisanje Luvenskom metodom (maksimizacijom modularnosti) u alatu Gephi za tri različite vrednosti parametra rezolucije. Konstruisati vizuelizacije i diskutovati izbor parametra rezolucije na dobijeno klasterisanje (broj i veličina klastera).

k = 0.55

k = 1.49

PITANJE 24: Koje zajednice (komune) se mogu uočiti prilikom analize mreže, a koji akteri su ključni brokeri? Da li postoji neko objašnjenje za detektovane komune?

DETEKCIJA KOMUNA SPEKTRALNIM KLASTERISANJEM

PITANJE 25:

Sprovesti sprektralnu analizu i proceniti potencijalne kandidate za broj komuna u mreži. Uporediti rezultat sa dendogramom konstruisanim Girvan-Newman metodom, ukoliko je primenjivo na nivou fakulteta ili katedri.

KORACI SPEKTRALNOG KLASTERISANJA ZA DETEKCIJU KOMUNA:

- Kreiranje grafa:
 - o Imamo mrežu čvorova (ljudi) povezanih vezama (koautorstvima).
- Kreiranje matrice susedstva:
 - Matrica susedstva (adjacency matrix) A je kvadratna matrica gde A[i][j] predstavlja prisustvo veze između čvorova i i j.
- Izračunavanje Laplaceove matrice:
 - Laplaceova matrica L se računa kao L = D A, gde je D matrica stepena (degree matrix), a A matrica susedstva.
 - Matrica stepena (D) je dijagonalna matrica koja sadrži informacije o stepenima čvorova u grafu. Stepen čvora je broj veza koje taj čvor ima.
 - Normalizovana Laplaceova matrica se koristi za skaliranje matrice za klasterisanje. Normalizacija pomaže da se izbegnu problemi vezani za varijacije u stepenima čvorova, što može poboljšati performanse algoritama za klasterisanje.
- Spektralna analiza:
 - Izračunavanje sopstvenih vrednosti (eigenvalues λ, Av=λv) i sopstvenih vektora (eigenvectors v, Av=λv) Laplaceove matrice.
 - Sopstveni vektori se koriste za projektovanje čvorova u niže dimenzionalni prostor.
 - Korišćenje sopstvenih vektora odgovarajućih najmanjim sopstvenih vrednosti(osim nulte) za particionisanje mreže pomoću algoritama kao što je k-means klasterizacija
 - o Za k se bira što manja vrednost gde vidimo značajniji skok na grafiku

REZULTAT PODELE NA KOMUNE ZA k = 3:

DETEKCIJA KOMUNA GIRVAN-NEWMAN METODOM:

- Izračunavanje betweenness centralnosti za sve veze
 - Betweenness centralnost veze meri koliko puta ta veza leži na najkraćem putu između para čvorova
 - Veze sa visokom betweenness centralnošću povezuju različite delove mreže
- Uklanjanje veze sa najvećom betweenness centralnošću
 - o Uklanja se veza sa najvećom betweenness centralnošću
 - Ovaj korak se ponavlja dok se mreža ne raspadne u komune

ZA BROJ KORAKA: 8

PITANJE 26:

ko su akteri koji se mogu okarakterisati kao ključni brokeri (mostovi) u mreži? Šta ih čini brokerima? Porediti odgovor sa brokerima dobijenim u pitanju 22 i 24.

ANALIZA MREŽA ČASOPISA

PITANJE 27: Ponoviti sve analize koje imaju smisla za mrežu časopisa.

STATISTIKA:

Broj čvorova: 539Broj grana: 25713

Gustina mreže: 0.1773Prosečan stepen: 95.41

Broj povezanih komponenti: 2

Veličine povezanih komponenti: [538, 1]

Najveća povezana komponenta: 538

• Postoji li gigantska komponenta: Da

• Prosečni stepen centralnosti: 0.1773

• Prosečna betweenness centralnost: 0.0016

Prosečna closeness centralnost: 0.5453

• Prosečni koeficijent klasterizacije: 0.7360984666116343

• Globalni koeficijent klasterizacije: 0.5933891936841904

Koeficijent asortativnosti po stepenu čvora: -0.037112668909883434

Distribucija stepena čvora

Distribucija stepena po centralnosti

	Author	Degree Centrality	Closeness Centrality	Betweenness Centrality
4	PLoS ONE	0.849442	0.868723	0.085477
42	Srpski arhiv za celokupno lekarstvo	0.723048	0.781344	0.050301
7	Vojnosanitetski Pregled	0.691450	0.763535	0.034342
25	Srpski Arhiv za Celokupno Lekarstvo	0.644981	0.737279	0.031485
26	Archives of Biological Sciences	0.617100	0.721402	0.041526

• Centralnost po sopstvenom vektoru:

	Author	Eigenvector Centrality
4	PLoS ONE	0.119871
7	Vojnosanitetski Pregled	0.111872
42	Srpski arhiv za celokupno lekarstvo	0.108510
25	Srpski Arhiv za Celokupno Lekarstvo	0.103833
29	Acta chirurgica lugoslavica	0.099680
128	Journal of Medical Biochemistry	0.099349
151	Journal of Neuroimmunology	0.098100
88	Journal of the Neurological Sciences	0.097511
1	Journal of B.U.ON.	0.094109
39	Croatian Medical Journal	0.092550