CLASE 5Unidad 2

ARQUITECTURA Y SISTEMAS OPERATIVOS

Profesor: Pablo Andres Gonzales Camargo

MODELO DEL PROCESADOR

- Según el propósito los Reg's dentro del uP pueden clasificarse en:
 - Registros de instrucciones
 - Registros de propósito general (o de cálculo)
 - Registros de direccionamiento de memoria
 - Registros de control o estado
- Estos conforman el Modelo del procesador

Registros de propósito general:

15	8 7	0
АН	AL	Ax Registro acumulador (operación E/S y de cadena)
ВН	BL	Bx Registro base (registro base para direccionamiento)
СН	CL	Cx Registro contador (para bucles, iteraciones, desplazamientos y rotaciones)
DH	DL	Dx Registro para datos (almacenado de datos, direcciones de puertos, extensión de Ax en multiplicación y división)

Registros de direccionamiento de memoria:

Registros de direccionamiento de memoria:

de segi	mento	ros	
15		0	
	CS		
	SS		
	DS		
	ES		
	FS		
	GS		

Registro de base de segmento de código Registro de base de segmento de pila o *stack*

Registros de base de segmentos de datos

Registro de control o estado (SR):

- El registro de estado SR contiene a los flags (banderas) Z (cero), C (carry), V (overflow).
- También podemos mencionar a las banderas de interrupciones I0, I1, etc... y la bandera de modo de operación S*.

EL CICLO DE INSTRUCCIÓN

Por cada instrucción el procesador sigue los mismos pasos cíclicamente:

- 1. Búsqueda o Carga
- 2. Decodificar
- 3. Ejecutar
- 4. Almacenar

¿CÓMO SE EJECUTAN LAS INSTRUCCIONES?

Microprocesador					Memoria Principal	
					Direccion	Assembler
	Н	L	SR		1000	MOV CL,4
AX		27			1001	MOV AL,3
					1002	MOV BL,3
BX		3			1003	MUL AL,BL
					1004	SUB CL,1
CX		0			1005	JZ <1007h>
			0	N		JMP <1003h>
DX			0	V	1007	HLT
			0	С	1008	
			1	Z	1009	
PC	10	08h			100A	
			CU		100B	
IR	Н	LT			100C	
					100D	
					100E	
					100F	
					1010	
		ALU				
		WEIGHT I				

EJEMPLOS

Ejemplo 1.-

Se tiene el siguiente programa cargado en memoria principal listo para ejecutarse, este programa calcula 3 elevado a 5, el resultado de esta operación se deja en el registro A. Ejecutar el programa y ordenar los datos en una tabla

Memoria Prir	ncipal	
Direccion (hex)	Instruccion ASM	Descripcion
1000	MOV CL,4	Mover 4 a la parte baja de regsitro C
1001	MOV AL,3	Mover 3 a la parte baja de regsitro A
1002	MOV BL,3	Mover 3 a la parte baja de regsitro B
1003	MUL AL,BL	Multiplicar registros AL y BL, resultado en Al
1004	SUB CL,1	Restar 1 a registro CL
1005	JZ <1007h>	Salto si Z activo, afecta a PC
1006	JMP <1003h>	Salto sin condicion, afecta a PC
1007	HLT	Fin de la ejecucion
1008		1
1009		
100A		
100B		
100C		
100D		
100E		
100F		
1010		

EJEMPLOS

Ejemplo 2.-

Se tiene el siguiente programa cargado en memoria principal listo para ejecutarse, este programa realiza la división 7 (Dividendo) entre 2 (Divisor), el resultado de esta operación se deja en el registro A (Cociente) y el Residuo en el registro D. Ejecutar el programa y ordenar los datos en una tabla

VISTO DESDE LA MEMORIA PRINCIPAL (RAM)			
DIRECCION	INSTRUCCION ASM	DESCRIPCIÓN	
0x099	MOV AH, 0	Cargar 0 en registro AH	
0x100	MOV DH, 7	Cargar 7 en registro DH	
0x101	MOV BH, 2	Cargar 2 en registro BH	
0x102	SUB DH, BH	Restar DH y BH, resultado en DH (flag N afectado)	
0x103	JS 0x106	Saltar si N=1, caso contrario sigue. (afecta a PC)	
0x104	INC AH	AH se incrementa en 1	
0x105	JMP 0x102	Saltar siempre (afecta a PC)	
0x106	ADD DH, BH	Sumar D y B, resultado en D	
0x107	HLT	FIN	

Enlace

Ejemplo tipo analogía con una fábrica, como el procesador ejecuta instrucciones:

https://www.youtube.com/watch?v=-IyB8hBkA9w