Paraphrase Embeddings

Yiyi Chen Profilierungsmodul II Dozent: Dr. Benjamin Roth

Task

Learning embedding vectors for syntactic **dependency paths** between entities.

```
arg0:m.0_00 dobj^-__accuse__nsubj arg1:m.07q13
```

⇒ m.0_00#m.07q13 dobj^-__accuse__nsubj

Dataset

Data (paths occur at least once in **test_simplified.csv**, in total **1759234** instances, **num of path**: 1717):

arg0:m.0_00 dobj^-__accuse__nsubj arg1:m.07q13

⇒ m.0_00#m.07q13 dobj^-__accuse__nsubj

Processed data: (entity pairs occur at least three times, negative factors 5)

Entity pairs	Paths	samples	With negative samples
66835	1714	410370	2051850

Train Dataset & Dev Dataset

```
dobj^-__join__nsubj m.0_00#m.01gf5z m.05cgv#m.0d05l6
dobj^-__join__nsubj m.0_00#m.01gf5z m.0dtj5#m.045c7b
dobj^-__join__nsubj m.0_00#m.01gf5z m.01mrvg#m.044qx
dobj^-_join__nsubj m.0_00#m.01gf5z m.0g0c_#m.0gwlg
dobj^-_join__nsubj m.0_00#m.01gf5z m.03qpbs#m.01xyt7
```

Dev samples: 20518 (1%)

Train samples: 2031332 (99 %)

Word2Vec

Objective:

 $sigmoid\{pos_ents^ op path\} \sim 1 \ sigmoid\{neg_ents^ op path\} \sim 0$

Universal Schema

Objective:

 $sigmoid\{pos_ents^ op path - neg_ents^ op path\} \sim 1$

Sequential Model

Objective:

 $sigmoid\{pos_ents^ op path - neg_ents^ op path\} \sim 1$

Word2Vec + entity embeddings

Objective:

 $sigmoid\{pos_ents^{ op}path\} \sim 1 \ sigmoid\{neg_ents^{ op}path\} \sim 0$

Universal Schema + entity Embeddings

Hyperparameters

Batch-size: 4096

Num of epochs: 20, 30, 40, 80

Optimizers: sgd, adadelta, adam (amsgrad)

Learning rate: 0.001, 0.01, 0.1

(40 epochs, adam 0.01)

Universal Schema +entity_embeddings (30 epochs, adam 0.01 amsgrad)

Result

	Mean Precision	Mean Recall	Mean F1 Score
Baseline	0.471	0.712	0.565
Word2Vec (20 epochs, adam 0.01)	0.566	0.720	0.633
Word2Vec +entity_embeddings (40 epochs, adam 0.01)	0.518	0.777	0.621
Universal Schema (20 epochs, adam 0.01)	0.549	0.787	0.646
Universal Schema +entity_embeddings (30 epochs, adam 0.01 amsgrad)	0.507	0.796	0.618
Sequential Model (30 epochs, adam 0.01 amsgrad)	0.418	0.809	0.551

Remarks

- Data samples structured as path pos_entity_pair neg_entity_pair is much less memory consuming than path pos_entity_pair True and path neg_entity_pair False
- To report the dev_loss, detach the tensor and only record the number loss_dict["dev"].append(dev_loss.detach().item()) to avoid out of memory error
- To concatenate the embeddings of entity1 and entity2 in order to get the embeddings of entity1#entity2 does not work well for training the models, better to use embeddings of entity1#entity2 directly or embeddings of entity1#entity2 plus embeddings entity1 and embeddings of entity2.
- The model with hidden layers does not work better than word2vec and universal schema, maybe due to the very short sequence length 2 (path pos_entity_pair or path neg_entity_pair as one sequence).

References

Sebastian Riedel, Limin Yao, Andrew McCallum, Benjamin M.Marlin, *Relation Extraction with Matrix Factorization and Universal Schemas*, Proceedings of NAACL-HLT 2013