MATH 6001. NONLINEAR OPTIMIZATION IN MACHINE LEARNING. FINAL PROJECT.

There are 8 problems that are marked with underlines. Each problem is worth 5 points, and the total is 40 points.

Part 1. Consider the heavy ball method iteration at dimension 2

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}) , \qquad (0.1)$$

where $x^{-1} = x^0 \in \mathbb{R}^2$ and $\alpha, \beta > 0$. Let the function f be quadratic of the form

$$f(x) = \frac{1}{2}x^{T}Qx - b^{T}x + c , \qquad (0.2)$$

such that the Hessian matrix Q is a 2×2 positive definite matrix with the two eigenvalues

$$0 < m = \lambda_2 \le \lambda_1 = L < \infty , \qquad (0.3)$$

and $b \in \mathbb{R}^2$ and $c \in \mathbb{R}$. Set

$$\alpha = \frac{4}{(\sqrt{L} + \sqrt{m})^2} , \beta = \frac{\sqrt{L} - \sqrt{m}}{\sqrt{L} + \sqrt{m}} . \tag{0.4}$$

Following the "spectral method" proof of the convergence of Nesterov's scheme in §4.1 of Chapter 4 in the Lecture Notes, we can obtain a linear convergence rate on the convex quadratic f(x) in (0.2). We split the proof into 5 steps.

<u>Problem 1</u>. Write the algorithm as a linear recursion $w^{k+1} = Tw^k$ for appropriate choice of matrix T and state variables w^k .

<u>Problem 2</u>. Use a transformation to express T as a block-diagonal matrix, with 2×2 blocks T_i on the diagonals, where each T_i depends on a single eigenvalue λ_i of Q.

<u>Problem 3</u>. Find the eigenvalues $\mu_{i,1}$, $\mu_{i,2}$ of each T_i as a function of λ_i , α and β .

<u>Problem 4</u>. Show that for the given values of α and β , these eigenvalues are all complex.

<u>Problem 5</u>. Show that in fact $|\mu_{i,1}| = |\mu_{i,2}| = \sqrt{\beta}$ for all i = 1, 2, so that $\rho(T) \equiv \max_{i=1,2} \max(|\mu_{i,1}|, |\mu_{i,2}|) = \sqrt{\beta} \approx 1 - \kappa^{-1/2}$, where the condition number $\kappa = \frac{L}{m} \gg 1$.

Part 2. Consider the standard finite—sum objective function $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$, which is commonly seen in machine learning. Let us further assume that the component functions f_i are further associated with Gaussian noise model, that is

$$[\nabla f_i(x)]_j = [\nabla f(x)]_j + \varepsilon_{ij}$$
, for all $i = 1, 2..., n$ and $j = 1, 2, ..., d$, (0.5)

where $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$ is a Gaussian distribution with mean 0 and variance σ^2 .

<u>Problem 6</u>. Show that when we estimate the gradient using a randomly sampled minibatch $S \subseteq \{1, 2, ..., n\}$, that is,

$$g = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla f_i(x) , \qquad (0.6)$$

then we have

$$\mathbf{E}||g - \nabla f(x)||^2 = \frac{d}{|\mathcal{S}|}\sigma^2.$$

Problem 7. Following Problem 6, show that

$$\mathbf{E}(\|g\|^2) = \|\nabla f(x)\|^2 + \frac{d}{|S|}\sigma^2.$$

<u>Problem 8</u>. Consider a minibatch strategy for the additive Gaussian noise model, where the gradient estimate is given by

$$g(x; \xi_1, \xi_2, ..., \xi_s) = \nabla f(x) + \frac{1}{s} \sum_{j=1}^{s} \xi_j$$

where each ξ_j is i.i.d with distribution $\mathcal{N}(0, \sigma^2 I)$, that is a multivariate normal distribution with mean 0 and covariance matrix $\sigma^2 I$, and $s \geq 1$. Show that

$$\mathbf{E}_{\xi_1,\xi_2,...,\xi_s}(\|g(x;\xi_1,\xi_2,...,\xi_s)\|^2) = \|\nabla f(x)\|^2 + \frac{d}{s}\sigma^2.$$