2 Modules

2.6 Localization

- 1. (1) For any $a, b \in R$ and any $s_1, s_2 \in S$ such that $\frac{a}{s_1} \cdot \frac{b}{s_2} = \frac{ab}{s_1 s_2} = \frac{0}{t}$ where $t \in S$, then there is $t' \in S$ such that $t'(abt s_1 s_2 \cdot 0) = 0$, thus ab = 0, therefore a = 0 or b = 0, hence $\frac{a}{s_1} = 0$ or $\frac{a}{s_1}$.
 - (2) If $\frac{s}{s} = \frac{0}{t}$ where $s, t \in S$, then there is $u \in S$ such that $u(st 0 \cdot s) = 0$, thus ust = 0, hence s = 0. It is a contradiction that $s \in S$. Therefore $\frac{s}{s} \in R[S^{-1}]$ is nonzero element.

Hence $R[S^{-1}]$ is an integral domain.

- 2. Let $I = \{a \in \mathbb{Z}_6 | a \cdot s = 0 \text{ for } s \in S\} = \{0,3\}$, then I is an ideal of \mathbb{Z}_6 . Let $\pi : \mathbb{Z}_6 \to \mathbb{Z}_6/I$ is a canonical homomorphism and $\alpha : \mathbb{Z}_6/I \to \mathbb{Z}_3$ is an isomorphism where $\alpha(\overline{0}) = \alpha(\overline{3}) = \overline{0}$, $\alpha(\overline{1}) = \alpha(\overline{4}) = \overline{1}$ and $\alpha(\overline{2}) = \alpha(\overline{5}) = \overline{2}$. Let $\varphi = \alpha \cdot \pi : \mathbb{Z}_6 \to \mathbb{Z}_3$, then
 - (1) $\varphi(\overline{2}) = \overline{2}$ and $\varphi(\overline{4}) = \overline{1}$ are invertible.
 - $(2) \ \overline{1} = \varphi(\overline{4})\varphi(\overline{2})^{-1}, \overline{2} = \varphi(\overline{2})\varphi(\overline{4})^{-1}, \overline{0} = \varphi(\overline{0})\varphi(\overline{2})^{-1}.$
 - (3) $\varphi(\overline{0}) = \varphi(\overline{3}) = 0$ if only if $0 \cdot 2 = 3 \cdot 2 = 0$.

Hence $R[S^{-1}] \cong \mathbb{Z}_3$.

- 3. Since $R_P = \{\frac{a}{s} | a \in R, s \notin P\}$, $PR_P = \{\frac{ab}{s} | a \in P, b \in R, s \notin P\} = \{\frac{a}{s} | a \in P, s \notin P\}$. For any $\frac{a}{s}$, $\frac{b}{t} \in PR_P$ where $a, b \in P$, $\frac{a}{s} \frac{b}{t} = \frac{at bs}{st} \in PR_P$. For any $\frac{a}{t'} \in PR_P$, $\frac{a}{s} \cdot \frac{c}{t'} = \frac{ac}{st'} = \frac{c}{t'} \cdot \frac{a}{s} \in PR_P$. Hence PR_P is an ideal of R_P . If $R_P \rhd I \supsetneq PR_P$, then there is $\frac{a}{s} \in I$ where $a \notin P$, then $\frac{a}{s} \cdot \frac{s}{a} = 1 \in I$, thus $R_P = I$, therefore PR_P is maximal. Let M be another maximal ideal of R_P , if $M \nsubseteq PR_P$, then there is $\frac{a}{s} \in M \setminus PR_P$, therefore $1 = \frac{a}{s} \cdot \frac{s}{a} \in M$, thus $M = R_P$. Hence $M \subseteq PR_P$ for any $M \ne R_P$. Thus PR_P is an unique maximal ideal of R_P .
- 4. For any $r_1, r_2 \in S_*$, there is $s_1, s_2 \in S$ such that $(r_1, s_1), (r_2, s_2) \in T$, then $(r_1, s_1)(r_2, s_2) = (r_1r_2, s_1s_2) \in T$, while $s_1s_2 \in S$, thus $r_1r_2 \in S_*$. Let $\varphi_S : R \to R[S^{-1}]$ and $: \varphi_T R[S^{-1}] \to R[S^{-1}][T^{-1}]$ are quotient ring homomorphisms, then $\varphi = \varphi_T \circ \varphi_S : R \to R[S^{-1}][T^{-1}]$ is a ring homomorphism.
 - (a) For any $a \in S_*$, there is $s \in S$ such that $(a, s) \in T$. Since $(s, s^2)(s^2, s) = (s, s) \in R[S^{-1}]$, (s^2, s) is invertible in $R[S^{-1}]$, then $\varphi_T((s^2, s))$ is invertible. As $(a, s) \in T$, $\varphi_T((a, s))$ is invertible. Hence $\varphi(a) = \varphi_T((as, s)) = \varphi_T((a, s)(s^2, s)) = \varphi_T((a, s))\varphi_T((s^2, s))$ is invertible in $R[S^{-1}][T^{-1}]$.
 - (b) For any $((a, s), (r, t)) \in R[S^{-1}][T^{-1}]$, then $((a, s), (r, t)) = \varphi_T((a_1, s_1))\varphi_T((r_1, t_1))^{-1}$ $\varphi(s) = ((rs^2, st), (r, t)) = \varphi_T((s^2, s))$ where $s \in S$, then $\varphi(s)^{-1} =$

$$\varphi_T((s,s^2)) = ((sr,s^2t),(r,t)).$$
 Since $(a_1,s_1),(r_1,t_1) \in R[S^{-1}],$ then $(a_1,s_1) = \varphi_S(a_2)\varphi_S(s_2)^{-1}$ and $(r_1,t_1) = \varphi_S(r_2)\varphi_S(t_2)^{-1}.$

$$\begin{split} ((a,s),(r,t)) &= \varphi_T((a_1,s_1))\varphi_T((r_1,t_1))^{-1} \\ &= \varphi_T(\varphi_S(a_2)\varphi_S(s_2)^{-1})\varphi_T(\varphi_S(r_2)\varphi_S(t_2)^{-1}) \\ &= \varphi(a_2)\varphi(s_2)^{-1}\varphi(r_2)\varphi(t_2)^{-1} \\ &= \varphi(a_2)\varphi_T((s_2,s_2^2)(r_2s_2,s_2))\varphi(t_2)^{-1} \\ &= \varphi(a_2)\varphi_T((r_2s_2,s_2)(s_2,s_2^2))\varphi(t_2)^{-1} \\ &= \varphi(a_2)\varphi(r_2)\varphi(s_2)^{-1}\varphi(t_2)^{-1} \\ &= \varphi(a_2r_2)\varphi(t_2s_2)^{-1}. \end{split}$$

(c) For any $a \in R$, if $\varphi(a) = 0 = \varphi_T \circ \varphi_S(a)$ then $\varphi_S(a)(r,t) = 0$ where $(r,t) \in T$, thus $\varphi_S(a)(rt,t)(t,t^2) = 0 = \varphi_S(a)\varphi_S(r)\varphi_S(t)^{-1}$, therefore $\varphi_S(ar) = 0$. Hence there is $s \in S$ such that ars = 0. Since $(r,t) \in T$, $(rs,ts) = (r,t) \in T$, then $rs \in S_*$.

Hence $(R[S^{-1}][T_{-1}], \varphi)$ is a quotient ring with respect to S_* , thus $R[S^{-1}][T_{-1}] \cong R[S_*^{-1}]$.

- 5. Assume that $(R_i[S^{-1}] = D_i, \psi_i)$ are quotient rings of R_i with respect to S_i , then $\psi_2 \varphi : R_1 \to D_2$ is a ring homomorphism satisfies
 - (a) For any $0 \neq a \in R_1$, $0 \neq \varphi(a) \in R_2$, then $\psi_2(\varphi(a)) = (\psi_2 \varphi)(a)$ is invertible in D_2 .
 - (b) For any $x \in D_2$

$$x = \psi_2(a)\psi_2(b)^{-1}$$

= $(\psi_2(\varphi(\varphi^{-1}(a))))(\psi_2(\varphi(\varphi^{-1}(b))))^{-1}$
= $(\psi_2\varphi)(\varphi^{-1}(a))(\psi_2\varphi)(\varphi^{-1}(b))^{-1}$.

(c) If $\psi_2 \varphi(a) = 0$, then $\varphi(a) \cdot b = 0$ where $0 \neq b \in S_2$, thus $\varphi(a) \varphi(\varphi^{-1}(b)) = \varphi(a\varphi^{-1}(b)) = 0$, therefore $a\varphi^{-1}(b) = 0$.

Hence $(D_2, \psi_2 \varphi)$ is a quotient ring of R_1 with respect to S_1 . Thus $\sigma : D_1 \cong D_2$ where $\sigma(\psi_1(a)\psi_1(b)^{-1}) = \psi_2 \varphi(a)(\psi_2 \varphi(b))^{-1}$, that is φ can extend to σ .

6. Assume that $A \nsubseteq \bigcup_{\substack{i=1\\i\neq i_0}}^n I_i$ for any $1 \le i_0 \le n$, then there is $a_{i_0} \in A \setminus \bigcup_{\substack{i=1\\i\neq i_0}}^n I_i$,

thus $a \in I_{i_0}$. If i=2, $A=(A\cap I_1)\cup (A\cap I_2)$. If $A\cap I_1\subseteq A\cap I_2$, then $A=A\cap I_2$, therefore $A\subseteq I_2$; similarly, if $A\cap I_2\subseteq A\cap I_1$, then $A\subseteq I_1$. If $A\cap I_1\not\subseteq A\cap I_2$ and $A\cap I_2\not\subseteq A\cap I_1$, then there are $a\in (A\cap I_1)\setminus (A\cap I_2)$ and $(A\cap I_2)\setminus (A\cap I_1)$, thus $a+b\in A\subseteq I_1\cup I_2$. If $a+b\in I_1$, then $b\in I_1$, it is a contradiction; if $a+b\in I_2$, then $a\in I_2$, it is a contradiction. If n>2, we can assume that $I_k, k>2$ are prime ideals, then $a_3+a_1a_2a_4\cdots a_n\in A=$

 $\bigcup_{i=1}^n I_i, \text{ thus } a_3+a_1a_2a_4\cdots a_n\in I_j. \text{ When } j\neq 3, \text{ then } a_1a_2a_4\cdots a_n\in I_j, \\ \text{therefore } a_3\in I_j, \text{ it is a contradiction; when } j=3, \text{ then } a_3\in I_3, \text{ therefore } a_1a_2a_4\cdots a_n\in I_3, \text{ since } I_3 \text{ is prime, then there is } a_{i_0}\in I_3 \text{ where } i_0\neq 3, \\ \text{it is a contradiction. Hence } A\subseteq I_i \text{ for some } i.$

- 7. Let $S = \{a \in R | a \text{ is not a zero} divisor\}$, $\Omega = \{P \lhd | P \cap S = \emptyset\}$, then $\Omega \neq \emptyset$ for $0 \in \Omega$. If $P_1 \subseteq \cdots \subseteq P_n \subseteq \cdots$ in Ω , then $P = \bigcup P_i \in \Omega$. According to Zorn's Lemma, there is a maximal element $P \in \Omega$, then P is a prime ideal. In fact, assume that $ab \in P$ where $a, b \in R$, if $a \notin P$ and $b \notin P$, then $(P + Ra) \cap S \neq 0$ and $(P + Rb) \cap S \neq 0$, therefore there are $s_1 = p_1 + r_1 a \in S$ and $s_2 = p_2 + r_2 b \in S$ where $p_i \in P$. Thus $s_1 s_2 = p_1 p_2 + p_1 r_2 b + p_2 r_1 a + r_1 r_2 a b \in P \cap S$, it is a contradiction. Therefore $a \in P$ or $b \in P$, hence P is a prime ideal. While $P \subseteq S \cup B = R$ and $S \cap B = \emptyset$, then $P \subseteq B$.
- 8. Similarly method of Exercise 2.6.7.
- 9. Let P is a maximal ideal and A, B be two left ideals such that $AB \subseteq P$, then $(AR)(BR) \subseteq ABR \subseteq P$, therefore $AR + P \supseteq P$ and $BR + P \supseteq P$ are ideals of R. If $A \nsubseteq P$ and $B \nsubseteq P$, then R = AR + P = BR + P, therefore $R = R^2 = (AR + P)(BR + P) \subseteq P$, it is a contradiction. Hence P is prime.
- 10. \Rightarrow : If p|ab, then $ab=rp\in Rp$, therefore $a\in Rp$ or $b\in Rp$, that is a|p or b|p. Since Rp is a prime ideal, $Rp\neq R$, then p is not a unit. If p is not a zero-divisor, then p is a prime element.

 \Leftarrow : If p is a prime element, then $Rp \neq R$. For any $a, b \in R$, if $ab \in Rp$, then p|ab, therefore p|a or p|b, that is $a \in Rp$ or $b \in Rp$. Hence Rp is a prime ideal.

11. For any non zero-divisor $r \in R$, then $Rr \xrightarrow{\lambda} R$ such that $f \circ \lambda = f$

where $g(ar) = a(\text{Since } a_1r = a_2r, (a_1 - a_2)r = 0$, then $a_1 = a_2)$, thus a = g(r) = f(r) = rf(1), therefore there is $a \in R$ such that 1 = ra. Similarly there is $b \in R$ such that br = 1, then $a = 1 \cdot a = b(ra) = b$. Hence R is a ring of quotient.

12. (1)

$$Hom_{R[S^{-1}]}(M[S^{-1}], N) = Hom_{R[S^{-1}]}(M \otimes_R R[S^{-1}], N)$$

 $\cong Hom_R(M, Hom_{R[S^{-1}]}(R[S^{-1}], N))$
 $\cong Hom_R(M, N).$

(2) Assume that M is an injective right $R[S^{-1}]$ -module, $f:L\to N$ is a right R-module monomorphism, since ${}_RR[s^{-1}]$ is flat, $f\otimes id:L\otimes_RR[S^{-1}]\to N\otimes_RR[S^{-1}]$ is a monomorphism. As M is an injective right $R[S^{-1}]$ -module,

$$\begin{split} Hom_{R[S^{-1}]}(N[S^{-1}],M) & \longrightarrow Hom_{R[S^{-1}]}(L[S^{-1}],M) & \longrightarrow 0 \ , \\ & \cong \bigvee \qquad \qquad \bigvee \cong \\ & Hom_{R}(N,M) & \longrightarrow Hom_{R}(L,M) & \longrightarrow 0 \end{split}$$

thus M_R is an injective module. Conversely, If $R[S^{-1}]$ -module M is injective as a right R-module, for any $0 \longrightarrow L \longrightarrow M$ right $R[S^{-1}]$ -module monomorphism, then

$$0 \longrightarrow L \otimes_{R[S^{-1}]} R[S^{-1}] \xrightarrow{f_1} N \otimes_{R[S^{-1}]} R[S^{-1}]$$

$$\downarrow^{\varphi_1} \qquad \qquad \qquad \qquad \qquad \downarrow^{\varphi_2} \qquad \qquad \downarrow^{\varphi_$$

then $\varphi_1^*(g)=g\varphi_1\in Hom_{R[S^{-1}]}(L[S^{-1}],M),\ \forall g\in Hom_{R[S^{-1}]}(L,M).$ Since f_2^* is epimorphic, there is $h\in Hom_{R[S^{-1}]}(N[S^{-1}],M)$ such that $g\varphi_1=hf_2=f_2^*(h).$ Then we have $h\varphi_2^{-1}\in Hom_{R[S^{-1}]}(N,M)$ such that $\varphi_1^*f_1^*(h\varphi_2^{-1})=f_2^*\varphi_2^*(h\varphi_2^{-1})=hf_2=\varphi_1^*(g),$ since φ_1^* is monomorphic, thus $f_1^*(h\varphi_2^{-1})=g,$ that f_1^* is epimorphic. Hence M is injective.

- 13. If $x \in Ker(\mu_M)$, then $(1,x) = 0 = (s_1,0)$ where $s_1 \in S$ and $0 \in M$, therefore there is $c \in S$ and $d \in R$ such that cx = 0, thus $Ker(\mu_M) \subseteq \{x \in M | sx = 0 \text{ for some } s \in S\}$. Contrary, if sx = 0 for $s \in S$ and $x \in M$, then (1,x) = (s,0) = 0. Hence $Ker(\mu_M) = \{x \in M | sx = 0 \text{ for some } s \in S\}$.
- 14. \Leftarrow : For any submodule N of M, then $0 \to N_P \to M_P$ for $0 \to N \to M$. Since $M_P = 0$, $N_P = 0$. If $M \neq 0$, then there is $0 \neq m \in M$ such that $N = Rm \leqslant M$, therefore $(Rm)_P = 0$ for any maximal ideal P.

While $I=\{r\in R|rm=0\} \lhd R$, then there is P_1 such that $I\subseteq P_1$ and $(Rm)_{P_1}=0$, therefore $m\in Ker(\mu)$ where $\mu:Rm\to [(R\setminus P)^{-1}]Rm$, $\mu(x)=(1,x)$. According to Exercise 2.6.13, there is $s\in R\setminus P$ such that sm=0, then $s\in I\subseteq P$, it is a contradiction. Hence M=0.

 \Rightarrow : It is obvious.