Simulation and Modelling

Spring 2024 CS4056

Muhammad Shahid Ashraf

	4	□ > + Ø > + E > + E >	₹ •990
Shahid Ashraf	CS4056		1/20

Monte Carlo Simulations

・ロ・・ヴ・・ミ・ き から Shahid Ashraf CS4056 2/

Monte Carlo Simulation:

Monte Carlo Simulatio

Monte Carlo Simulation

- Monte Carlo Simulation, also known as the Monte Carlo Method or a multiple probability simulation.
- MCS is a mathematical technique, which is used to estimate the possible outcomes of an uncertain event.
- The Monte Carlo Method was invented by John von Neumann and Stanislaw Ulam during World War II to improve decision making under uncertain conditions.
- It was named after a well-known casino town, called Monaco, since the element of chance is core to the modeling approach, similar to a game of roulette.

(ロ) (西) (老) (老) (老) (を) (で Stabil Arthrof CS4056 3/20

Monte Carlo Simulations

Monte Carlo Simulation

Notes

Try It for Roulette

numTrials = 50000 numSpins = 200 game = FairRoulette()
<pre>means = [] for i in range(numTrials): means.append(findPocketReturn(game, 1, numSpins)[0]/numSpins)</pre>
oylab.hist(means, bins = 19,

4/20

-		
Notes		
Notes		

Notes

Bufoon-Laplace

- Buffon's needle problem is a question first posed in the 18th century by Georges-Louis Leclerc, Comte de Buffon
- Suppose we have a floor made of parallel strips of wood, each the same width, and we drop a needle onto the floor.
- What is the probability that the needle will lie across a line between two strips?
- Buffon's needle was the earliest problem in geometric probability to be solved;
- \bullet it can be solved using integral geometry. The solution for the sought probability p, in the case where the needle length \emph{I} is not greater than the width t of the strips, is $p = \frac{2}{\pi} \frac{l}{t}$
- This can be used to design a Monte Carlo method for approximating the number π , although that was not the original motivation for de Buffon's question

Estimating PI Bufoon-Laplace

 $area\ of\ circle = \frac{area\ of\ square * needles\ in\ circle}{...}$ needles in square

area of circle = $\frac{4*needles in circle}{...}$ needles in square

Arrows Are More Fun than Needles

11 / 20

Simulating Buffon-Laplace Method

lef	<pre>throwNeedles(numNeedles inCircle = 0</pre>):	
	incircle = 0		
	<pre>for Needles in range(1,</pre>	numNeedles + 1,	1)
	x = random.random()		
	y = random.random()		
	if $(x*x + y*y)**0.5$	<= 1.0:	
	inCircle += 1		
	return 4*(inCircle/floa	t(numNeedles))	

Notes

Notes			

Notes

•	

Notes

```
Monte Carlo Simulations Monte Carlo Simulation
```

return (curEst, sDev)


```
Simulating Buffon-Laplace Method
```

```
def getEst(numNeedles, numTrials):
     estimates = []
     for t in range(numTrials):
    piGuess = throwNeedles(numNeedles)
           estimates.append(piGuess)
     sDev = numpy.std(estimates)
     curEst = sum(estimates)/len(estimates)
     print('Est. = ' + str(curEst) +\
    ', Std. dev. = ' + str(round(sDev, 6))\
    + ', Needles = ' + str(numNeedles))
```

13 / 20

Estimating PI

def estPi(precision, numTrials): numNeedles = 1000 sDev = precision while sDev >= precision/1.96:
 curEst, sDev = getEst(numNeedles, numTrials) numNeedles *= 2 return curEst

14 / 20

Estimating PI

Est. = 3.1484400000000012, Std. dev. = 0.047886, Needles = 1000
Est. = 3.139179999999987, Std. dev. = 0.035495, Needles = 2000
Est. = 3.1410799999999997, Std. dev. = 0.02713, Needles = 4000
Est. = 3.141355, Std. dev. = 0.016805, Needles = 8000
Est. = 3.141355, Std. dev. = 0.0137, Needles = 16000
Est. = 3.1413137500000006, Std. dev. = 0.008476, Needles = 32000
Est. = 3.14151874999999, Std. dev. = 0.004035, Needles = 64000
Est. = 3.14154896874999993, Std. dev. = 0.004035, Needles = 128000
Est. = 3.141545671875, Std. dev. = 0.003536, Needles = 256000
Est. = 3.1415671875, Std. dev. = 0.002101, Needles = 512000

CS4056

15 / 20

- Not sufficient to produce a good answer
- •Need to have reason to believe that it is close to right
- In this case, small standard deviation implies that we are close to the true value of π

Right?

CS4056

Notes

Notes

Notes

Notes

20 / 20