CS2x1:Data Structures and Algorithms

Koteswararao Kondepu k.kondepu@iitdh.ac.in

Recap: SSSP

Exercise: Dijkstra

Consider the following digraph starting at <u>vertex A</u> and apply Dijkstra's single source shortest path algorithm on it.

Select the correct order from the following in which vertices are removed from the Priority Queue?

- a. A, B, C, D, E, F
- b. A, B, F, E, C, D
- c. A, B, F, E, D, C
- d. A, B, E, F, D, C

Exercise: Dijkstra (1)

Negative cycles

What is the shortest path from A to E?

- Dijkstra doesn't work for **Graphs with negative weight cycle**, Bellman-Ford works for such graphs.
- ❖ Bellman-Ford is also simpler than Dijkstra and suites well for distributed systems.
- It does not use Priority Queue

What is the shortest path from S to D?

SSSP → Dijkstra

SSSP: Bellman-Ford

```
1
```

```
BELLMAN-FORD (G, w, s) {
1 INITIALIZE-SINGLE-SOURCE (G, s)
2 for i = 1 to |G.V| - 1
3 for each edge (u, v) \in G.E
4 RELAX (u, v, w)
5 for each edge (u, v) \in G.E
6 if v. d > u. d + w(u, v)
7 return False
8 return True
```

Step 1 : INITIALIZE-SINGLE-SOURCE

Step 2 - 4: for i = 1 to 5 - 1

Step 3 : # of edges =

 $\{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}$

Step 4 : RELAX (s, t, w); RELAX (s, y, w)

2

INITIALIZE-SINGLE-SOURCE (G, s) {

1 for each $v \in G.V$

2 $v. d = \infty$

3 $v. \pi = NIL$

4 s. d = 0

3

RELAX (*u*, *v*, *w*) {

1 if v. d > u. d + w(u, v)

2 v. d = u. d + w(u, v)

3 *v.* $\pi = u$

SSSP: Bellman-Ford (1)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
              RELAX (u, v, w)
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
               return False
  8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 1 to 5 - 1
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
Step 4: RELAX (s, t, w);
                                          RELAX (s, y, w)
            \infty > 0 + 6:
                                               \infty > 0 + 7:
```

t. d = 6;

t. $\pi = s$;

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$ 4 s. d = 0

y. d = 7;

 $y. \pi = s$;

RELAX (*u*, *v*, *w*) { 1 if v. d > u. d + w(u, v)v. d = u. d + w(u, v) $v. \pi = u$

SSSP: Bellman-Ford (2)

```
BELLMAN-FORD (G, w, s) {
                                                                                                        RELAX (u, v, w) {
                                                   INITIALIZE-SINGLE-SOURCE (G, s) {
   1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
                                                                                                        1 if v. d > u. d + w(u, v)
                                                   1 for each v \in G.V
                                                   2 v. d = \infty
        for each edge (u, v) \in G.E
                                                                                                              v. d = u. d + w(u, v)
                                                   3 v. \pi = NIL
             RELAX (u, v, w)
                                                                                                              v. \pi = u
                                                   4 s. d = 0
   5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
               return False
                                                                                                                                        N
                                                                                                                             \infty
                                                                                         6
                                                                                              t
                                                                                                   S
  8 return True
                                                                                6
Step 1: INITIALIZE-SINGLE-SOURCE
                                                                                               8
Step 2 : for i = 1 to 5 - 1
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
Step 4 : RELAX (t, x, w);
                            RELAX (t, y, w);
                                                    RELAX (t, z, w)
            \infty > 6 + 5:
                                                       \infty > 6 + -4;
                                 7 > 6 + 8;
                                                                                                             9
            x. d = 11;
                                                        z. d = 2;
            x. \pi = t;
                                                        z. \pi = t;
```

SSSP: Bellman-Ford (3)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
             RELAX (u, v, w)
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
              return False
  8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 1 to 5 - 1
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
Step 4: RELAX(y, x, w); RELAX(y, z, w);
            11 > 7 + -3;
                                2 > 7 + 9;
            x. d = 4;
```

 $x. \pi = y$;

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$ 4 s. d = 0

SSSP: Bellman-Ford (4)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
             RELAX (u, v, w)
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
               return False
  8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 1 to 5 - 1
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
Step 4: RELAX(x, t, w);
            6 > 4 + -2;
            t. d = 2;
            t. \pi = x;
```

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$

2 $v. d = \infty$ 3 $v. \pi = NIL$ 4 s. d = 0

RELAX (*u*, *v*, *w*) {

1 if v. d > u. d + w(u, v)

v. d = u. d + w(u, v)

 $v. \pi = u$

SSSP: Bellman-Ford (5)

```
BELLMAN-FORD (G, w, s) {
                                                                                                    RELAX (u, v, w) {
                                                 INITIALIZE-SINGLE-SOURCE (G, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
                                                                                                    1 if v. d > u. d + w(u, v)
                                                 1 for each v \in G.V
                                                 2 v. d = \infty
        for each edge (u, v) \in G.E
                                                                                                         v. d = u. d + w(u, v)
                                                 3 v. \pi = NIL
             RELAX (u, v, w)
                                                                                                          v. \pi = u
                                                 4 s. d = 0
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
              return False
                                                                                                 t
                                                                                                     X
                                                                                                               -2
 8 return True
                                                                                    6
Step 1: INITIALIZE-SINGLE-SOURCE
                                                                                                  8
                                                                                  N
Step 2 : for i = 1 to 5 - 1
Step 3: # of edges =
           \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
Step 4: RELAX(z, s, w); RELAX(z, x, w)
           0 > 2 + 2;
                                    4 > 2 + 7;
                                                                                                               9
```

SSSP: Bellman-Ford (6)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
             RELAX (u, v, w)
                                                  4 s. d = 0
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
              return False
  8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 2
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
Step 4: RELAX(s, t, w); RELAX(s, y, w)
```

7 > 0 + 7;

2 > 0 + 6;

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$

SSSP: Bellman-Ford (7)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
             RELAX (u, v, w)
                                                  4 s. d = 0
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
              return False
  8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 2
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
Step 4: RELAX(t, x, w); RELAX(t, y, w);
            4 > 2 +5;
                                 7 > 2 + 8;
```

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$

z. $\pi = t$

RELAX (*u*, *v*, *w*) { 1 if v. d > u. d + w(u, v)v. d = u. d + w(u, v) $v. \pi = u$

SSSP: Bellman-Ford (8)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
             RELAX (u, v, w)
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
               return False
  8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 2
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
```

Step 4: RELAX(y, x, w); RELAX(y, z, w);

4 > 7 + -3; - 2 > 7 + 9;

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$ 4 s. d = 0

SSSP: Bellman-Ford (9)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
             RELAX (u, v, w)
                                                   4 s. d = 0
  5 for each edge (u, v) \in G.E
             if v. d > u. d + w(u, v)
  6
               return False
  8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 2
Step 3: # of edges =
            \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
```

Step 4: RELAX(x, t, w);

2 > 4 + -2:

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$ RELAX (u, v, w) { 1 if v. d > u. d + w(u, v)2 v. d = u. d + w(u, v)3 $v. \pi = u$

SSSP: Bellman-Ford (10)

```
BELLMAN-FORD (G, w, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
        for each edge (u, v) \in G.E
             RELAX (u, v, w)
  5 for each edge (u, v) \in G.E
            if v. d > u. d + w(u, v)
  6
              return False
 8 return True
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 2
Step 3: # of edges =
```

Step 4: RELAX(z, s, w); RELAX(z, x, w);

0 > -2 + 2; 4 > -2 + 7;

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$ 4 s. d = 0

RELAX (*u*, *v*, *w*) { 1 if v. d > u. d + w(u, v)v. d = u. d + w(u, v) $v. \pi = u$

SSSP: Bellman-Ford (11)

```
BELLMAN-FORD (G, w, s) {
                                                                                                   RELAX (u, v, w) {
                                                INITIALIZE-SINGLE-SOURCE (G, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
                                                                                                   1 if v. d > u. d + w(u, v)
                                                1 for each v \in G.V
                                                2 v. d = \infty
        for each edge (u, v) \in G.E
                                                                                                        v. d = u. d + w(u, v)
                                                3 v. \pi = NIL
             RELAX(u, v, w)
                                                                                                        v. \pi = u
                                                4 s. d = 0
  5 for each edge (u, v) \in G.E
                                                                                                    X
  6
            if v. d > u. d + w(u, v)
                                                                                   6
              return False
  8 return True
                                                                                                 8
                                                                     0
                                                                                 N
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 3
Step 3: # of edges = \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
                                                                                                                                 Ζ
                                                                                                             9
Step 4: RELAX (s, t, w); RELAX (s, y, w); RELAX (t, x, w); RELAX (t, y, w); RELAX (t, z, w); RELAX (y, x, w); RELAX (y, z, w); RELAX (x, t, w);
                          7 > 0 + 7: 4 > 2 + 5; 7 > 2 + 8;
        2 > 0+ 6:
                                                                          -2 > 2 + -4; 4 > 7 + -3; -2 > 7 + 9; 2 > 4 + -2
       RELAX(z, s, w); RELAX(z, x, w);
       0 > -2 + 2; 4 > -2 + 7;
```

SSSP: Bellman-Ford (12)

```
BELLMAN-FORD (G, w, s) {
                                                                                                   RELAX (u, v, w) {
                                                INITIALIZE-SINGLE-SOURCE (G, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
                                                                                                   1 if v. d > u. d + w(u, v)
                                                1 for each v \in G.V
                                                2 v. d = \infty
        for each edge (u, v) \in G.E
                                                                                                        v. d = u. d + w(u, v)
                                                3 v. \pi = NIL
             RELAX(u, v, w)
                                                                                                        v. \pi = u
                                                4 s. d = 0
  5 for each edge (u, v) \in G.E
                                                                                                    X
  6
            if v. d > u. d + w(u, v)
                                                                                   6
              return False
  8 return True
                                                                                                 8
                                                                     0
                                                                                 N
Step 1: INITIALIZE-SINGLE-SOURCE
Step 2 : for i = 4
Step 3: # of edges = \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
                                                                                                                                 Ζ
                                                                                                             9
Step 4: RELAX (s, t, w); RELAX (s, y, w); RELAX (t, x, w); RELAX (t, y, w); RELAX (t, z, w); RELAX (y, x, w); RELAX (y, z, w); RELAX (x, t, w);
                          7 > 0 + 7: 4 > 2 + 5; 7 > 2 + 8;
        2 > 0+ 6:
                                                                          -2 > 2 + -4; 4 > 7 + -3; -2 > 7 + 9; 2 > 4 + -2
       RELAX(z, s, w); RELAX(z, x, w);
       0 > -2 + 2; 4 > -2 + 7;
```

SSSP: Bellman-Ford (13)

Step 8: return

```
BELLMAN-FORD (G, w, s) {
                                                                                                   RELAX (u, v, w) {
                                                INITIALIZE-SINGLE-SOURCE (G, s) {
  1 INITIALIZE-SINGLE-SOURCE (G, s)
  2 \text{ for } i = 1 \text{ to } |G.V| - 1
                                                                                                   1 if v. d > u. d + w(u, v)
                                                1 for each v \in G.V
                                                2 v. d = \infty
        for each edge (u, v) \in G.E
                                                                                                        v. d = u. d + w(u, v)
                                                3 v. \pi = NIL
            RELAX(u, v, w)
                                                                                                         v. \pi = u
                                                4 s. d = 0
  5 for each edge (u, v) \in G.E
                                                                                                    X
  6
            if v. d > u. d + w(u, v)
                                                                                                              -2
                                                                                   6
             return False
 8 return True
                                                                                                 8
                                                                     0
                                                                                  N
Step 5 : # of edges = \{(s, t), (s, y), (t, x), (t, y), (t, z), (y, x), (y, z), (x, t), (z, s), (z, x)\}
                                                                                                                                  Ζ
                                                                                                              9
Step 6-7: RELAX (s, t, w); RELAX (s, y, w); RELAX (t, x, w); RELAX (t, y, w); RELAX (t, z, w); RELAX (y, x, w); RELAX (y, z, w); RELAX (x, t, w);
        2 > 0+ 6;
                          7 > 0 + 7; 4 > 2 + 5; 7 > 2 + 8;
                                                                          -2 > 2 + -4; 4 > 7 + -3; -2 > 7 + 9; 2 > 4 + -2
       RELAX(z, s, w); RELAX(z, x, w);
       0 > -2 + 2:
                      4 > -2 + 7:
```

SSSP: Bellman-Ford (14)

```
BELLMAN-FORD (G, w, s) {
                                                                                                RELAX (u, v, w) {
                                              INITIALIZE-SINGLE-SOURCE (G, s) {
1 INITIALIZE-SINGLE-SOURCE (G, s)
2 \text{ for } i = 1 \text{ to } |G.V| - 1
                                                                                                1 if v. d > u. d + w(u, v)
                                              1 for each v \in G.V
                                              2 v. d = \infty
      for each edge (u, v) \in G.E
                                                                                                     v. d = u. d + w(u, v)
                                              3 v. \pi = NIL
           RELAX (u, v, w)
                                                                                                     v. \pi = u
                                              4 s. d = 0
5 for each edge (u, v) \in G.E
          if v. d > u. d + w(u, v)
6
            return False
                                                                        -2
8 return True
                                0
                                            N
```

SSSP: Bellman-Ford \rightarrow Time complexity analysis

```
BELLMAN-FORD (G, w, s) {
1 INITIALIZE-SINGLE-SOURCE (G, s)
                                                      - # of vertices \rightarrow O (V)
2 \text{ for } i = 1 \text{ to } |G.V| - 1
                                                          Outer loop \rightarrow O (V); Inner loop \rightarrow O (E)
      for each edge (u, v) \in G.E
                                                          \rightarrow 0 (VE)
           RELAX (u, v, w)
5 for each edge (u, v) \in G.E
          if v. d > u. d + w(u, v)
6
            return False
                                              Total time complexity: O(V) + O(VE) + O(E)
8 return True
 INITIALIZE-SINGLE-SOURCE (G, s) {
                                               RELAX (u, v, w) {
 1 for each v \in G.V
                                               1 if v. d > u. d + w(u, v)
 2 v. d = \infty
                                               2 v. d = u. d + w(u, v)
 3 v. \pi = NIL
                                                     v. \pi = u
 4 s. d = 0
```

Exercise: Bellman-Ford

Consider the following digraph starting at vertex A and apply Bellman-Ford single source shortest path algorithm on it.

- What is the minimum distance between vertex A and E
 - a. 3
 - b. 2
 - c. 1
 - d. 5

Recap: SSSP


```
INITIALIZE-SINGLE-SOURCE (G, s) {
                                                                                                BELLMAN-FORD (G, w, s) {
DIJKSTRA (G, w, s) {
                                                                                                 1 INITIALIZE-SINGLE-SOURCE (G, s)
1 INITIALIZE-SINGLE-SOURCE (G, s)
                                                 1 for each v \in G.V
                                                                                                 2 \text{ for } i = 1 \text{ to } |G.V| - 1
2 S = \emptyset
                                                 2 v. d = \infty
3 Q = G. V
                                                                                                      for each edge (u, v) \in G.E
                                                 3 v. \pi = NIL
4 while Q \neq \emptyset;
                                                 4 s. d = 0
                                                                                                           RELAX (u, v, w)
    u = EXTRACT-MIN(Q)
                                                                                                 5 for each edge (u, v) \in G.E
                                                 RELAX (u, v, w) {
   S = S \cup \{u\}
                                                 1 if v.d > u.d + w(u, v)
                                                                                                 6
                                                                                                           if v. d > u. d + w(u, v)
    for each vertex v \in Q. Adj[u]
8
     RELEAX (u, v, w)
                                                                                                            return False
                                                 v. d = u.d + w(u, v)
                                                                                                8 return True
                                                 3
                                                      v. \pi = u
```

Total time complexity: $O(V) + O(V \log V) + O(V) + O(E \log V)$: $O(E \log V)$ Total time complexity: O(V) + O(VE) + O(E): O(VE)

SSSP: Directed Acyclic Graph (DAG)

- Directed Graph
- ❖ No cycles
- \diamond Topological sort can be applied on any DAG \rightarrow O (V+E)
- ❖ Works for negative edges

DAG-SHORTEST-PATH (G, w, s) {

- 1 Topological sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE (G, s)
- 3 for each vertex *u*, taken in topologically sorted order
- 4 for each edge $v \in G$. Adj [u]
- 5 RELAX (u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s) {

- 1 for each $v \in G.V$
- 2 $v. d = \infty$
- 3 $v. \pi = NIL$
- 4 s. d = 0

RELAX (*u*, *v*, *w*) {

- 1 if v. d > u. d + w(u, v)
- 2 v. d = u. d + w(u, v)
- 3 *v.* $\pi = u$

SSSP: DAG (1)

```
DAG-SHORTEST-PATH (G, w, s) {
1 Topological sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE (G, s)
3 for each vertex u, taken in topologically sorted order
4 for each edge v \in G. Adj[u]
5 RELAX (u, v, w)
```

INITIALIZE-SINGLE-SOURCE (G, s) { RELAX (u, v, w) { 1 if v. d > u. d + w(u, v) 2 $v. d = \infty$ 2 v. d = u. d + w(u, v) 3 $v. \pi = NIL$ 3 $v. \pi = u$

Step 1: Topological order

SSSP: DAG (1)

DAG-SHORTEST-PATH (G, w, s) { INITIALIZE-SINGLE-SOURCE (G, s) { RELAX (*u*, *v*, *w*) { 1 Topological sort the vertices of G if v. d > u. d + w(u, v)1 for each $v \in G.V$ 2 INITIALIZE-SINGLE-SOURCE (G, s) $v. d = \infty$ 3 for each vertex *u*, taken in topologically sorted order v. d = u. d + w(u, v) $v. \pi = NIL$ for each edge $v \in G$. Adj[u]4 $v. \pi = u$ 4 s. d = 05 RELAX (u, v, w)5 Step 1: Topological order Step 2: INITIALIZE-SINGLE-SOURCE (G, s) 6

SSSP: DAG (2)

```
DAG-SHORTEST-PATH (G, w, s) {
                                                                  INITIALIZE-SINGLE-SOURCE (G, s) {
                                                                                                            RELAX (u, v, w) {
1 Topological sort the vertices of G
                                                                   1 for each v \in G.V
                                                                                                            1 if v. d > u. d + w(u, v)
2 INITIALIZE-SINGLE-SOURCE (G, s)
                                                                     v. d = \infty
3 for each vertex u, taken in topologically sorted order
                                                                                                                  v. d = u. d + w(u, v)
                                                                  3 v. \pi = NIL
     for each edge v \in G. Adj [u]
                                                                                                                  v. \pi = u
                                                                  4 s. d = 0
5
          RELAX (u, v, w)
Step 1: Topological order
Step 2: INITIALIZE-SINGLE-SOURCE (G, s)
Step 3: u = \{r, s, t, x, y, z\}
                                   Step 5: RELAX (r, s, w); RELAX (r, t, w)
        u = r
                                             0 > \infty + 5; \infty > \infty + 3;
Step 4: v = G. Adj [r]
          = \{s, t\}
                                                      6
```

SSSP: DAG (3)

DAG-SHORTEST-PATH (G, w, s) { 1 Topological sort the vertices of G 2 INITIALIZE-SINGLE-SOURCE (G, s)3 for each vertex u, taken in topologically sorted order 4 for each edge $v \in G$. Adj[u]5 RELAX (u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$

RELAX
$$(u, v, w)$$
 {

1 if v. d > u. d + w(u, v)

2 v. $d = u. d + w(u, v)$

3 $v. \pi = u$

Step 3:
$$u = \{r, s, t, x, y, z\}$$
 Step 5: RELAX (s, t, w) ; RELAX (s, x, w) $u = s$ $\infty > 0 + 2$; $\infty > 0 + 6$; Step 4: $v = G$. Adj $[s]$ $t. d = 2$ $x. d = 6$ $t. \pi = s$ $x. \pi = s$

4 s. d = 0

SSSP: DAG (4)

DAG-SHORTEST-PATH (G, w, s) { 1 Topological sort the vertices of G 2 INITIALIZE-SINGLE-SOURCE (G, s)3 for each vertex u, taken in topologically sorted order 4 for each edge $v \in G$. Adj[u]5 RELAX (u, v, w)

```
INITIALIZE-SINGLE-SOURCE (G, s) { RELAX (u, 1 for each v \in G.V 1 if v. d 2 v. d = \infty 2 v. d 3 v. \pi = NIL 4 s. d = 0
```

```
RELAX (u, v, w) {

1  if v. d > u. d + w(u, v)

2  v. d = u. d + w(u, v)

3  v. \pi = u
```

Step 3:
$$u = \{r, s, t, x, y, z\}$$
 Step 5: RELAX (t, x, w) ; RELAX (t, y, w) ; RELAX (t, z, w) $u = t$ $0 > 2 + 4$ $0 > 2 + 2$ Step 4: $v = G$. Adj $[t]$ $0 < 2 + 7$ $0 < 2 + 4$ $0 < 2 + 2$ $0 < 2 + 4$ $0 < 2 + 2$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 < 2 + 4$ $0 <$

SSSP: DAG (5)

DAG-SHORTEST-PATH (G, w, s) { 1 Topological sort the vertices of G 2 INITIALIZE-SINGLE-SOURCE (G, s)3 for each vertex u, taken in topologically sorted order 4 for each edge $v \in G$. Adj[u]5 RELAX (u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$

2
$$v. d = \infty$$

3 $v. \pi = NIL$
4 $s. d = 0$

RELAX (u, v, w) { 1 if v. d > u. d + w(u, v) 2 v. d = u. d + w(u, v)3 $v. \pi = u$

Step 3:
$$u = \{r, s, t, x, y, z\}$$
 Step 5: RELAX (x, y, w) ; RELAX (x, z, w) $u = x$ $6 > 6 + -1$ $4 > 6 + 1$ Step 4: $v = G$. Adj $[x]$ y . $d = 5$ y . $\pi = x$

SSSP: DAG (6)

DAG-SHORTEST-PATH (G, w, s) { 1 Topological sort the vertices of G 2 INITIALIZE-SINGLE-SOURCE (G, s)3 for each vertex u, taken in topologically sorted order 4 for each edge $v \in G$. Adj[u]5 RELAX (u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s) { 1 for each $v \in G.V$ 2 $v. d = \infty$ 3 $v. \pi = NIL$

4 s. d = 0

RELAX
$$(u, v, w)$$
 {

1 if v. d > u. d + w(u, v)

2 v. $d = u. d + w(u, v)$

3 $v. \pi = u$

Step 3:
$$u = \{r, s, t, x, y, z\}$$

 $u = y$
Step 5: RELAX (y, z, w) ;
 $4 > 5 + -2$
 $z. d = 3$
 $= \{z\}$
 $z. \pi = y$

SSSP: DAG (7)

Step 4: v = G. Adj [z]

= { }

```
DAG-SHORTEST-PATH (G, w, s) {
1 Topological sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE (G, s)
3 for each vertex u, taken in topologically sorted order
     for each edge v \in G. Adj[u]
4
5
         RELAX (u, v, w)
```

```
Step 3: u = \{r, s, t, x, y, z\}
         u = z
```

INITIALIZE-SINGLE-SOURCE (G, s) {

1 for each $v \in G.V$

2
$$v. d = \infty$$

3
$$v. \pi = NIL$$

$$4 s. d = 0$$

1 if v.
$$d > u. d + w(u, v)$$

2 v.
$$d = u. d + w(u, v)$$

3 *v.*
$$\pi = u$$

SSSP: DAG (8)

DAG-SHORTEST-PATH (G, w, s) { 1 Topological sort the vertices of G 2 INITIALIZE-SINGLE-SOURCE (G, s)3 for each vertex u, taken in topologically sorted order 4 for each edge $v \in G$. Adj[u]5 RELAX (u, v, w)

INITIALIZE-SINGLE-SOURCE (G, s) { RELAX (u, v, w) { 1 for each $v \in G.V$ 1 if v. d > u. d + w(u, v) 2 $v. d = \infty$ 2 v. d = u. d + w(u, v) 3 $v. \pi = NIL$ 3 $v. \pi = u$

SSSP: DAG Time Complexity Analysis

RELAX (*u, v, w*) {

 $v. \pi = u$

1 if v. d > u. d + w(u, v)

v. d = u. d + w(u, v)

```
DAG-SHORETEST-PATH (G, w, s) {
 1 Topological sort the vertices of G
 2 INITIALIZE-SINGLE-SOURCE (G, s)
 3 for each vertex u, taken in topologically sorted order >
                                                                            Outer loop \rightarrow O (V); Inner loop \rightarrow O (E)
      for each edge v \in G. Adj [u]
 5
          RELAX(u, v, w)
                                                           Total time complexity: O (V+E)
INITIALIZE-SINGLE-SOURCE (G, s) {
1 for each v \in G.V
   v. d = \infty
3 v. \pi = NIL
4 s. d = 0
```

thank you!

email:

k.kondepu@iitdh.ac.in