Analisi II - quinta parte

Coordinate polari

- ullet $(x,y)^T$ coordinate cartesiane
- ullet $(
 ho,artheta)^T$ coordinate polari, $ho=||(x,y)^T||=\sqrt{x^2+y^2}$

Curve in \mathbb{R}^n (n=2,3)

Curve in forma parametrica

Sia $\gamma:I(\subseteq\mathbb{R})\to\mathbb{R}^n$, con I intervallo. La coppia $(\gamma,\underbrace{\gamma(I)}_{=\Gamma})$ si dice curva in forma parametrica di cui γ è la rappresentazione parametrica e $\Gamma=\gamma(I)$ è il sostegno

- $egin{aligned} ullet & N=2$, $\gamma(t)=(x(t),y(t))^T$, $t\in\mathbb{R}$ oppure $egin{cases} x=x(t)\ y=y(t) \end{cases}$, $t\in I$
- N=3, $\gamma(t)=(x(t),y=y(t),z(t))^T$, $t\in\mathbb{R}$ oppure $egin{cases} x=x(t)\ y=y(t)$, $t\in I\ z=z(t) \end{cases}$

Curva in forma parametrica chiusa

Si dice che γ è una curva in forma parametrica **chiusa** se I=[a,b] e $\gamma(a)=\gamma(b)$

Curva in forma parametrica semplice

Si dice che γ è una curva in forma parametrica **semplice** se $\forall t_1,t_2$, con $t_1\neq t_2$ e almeno uno fra t_1 e t_2 interno ad I, si ha che $\gamma(t_1)\neq\gamma(t_2)$

NB

È permesso che $\gamma(a)=\gamma(b)$, se I=[a,b]

Curva in forma parametrica regolare

Si dice che γ è una curva in forma parametrica **regolare** se $\gamma \in C^1(I)$ e $\gamma'(t) \neq 0$, $\forall t \in intI$. Si dice che $\gamma'(t)$, $t\in int I$ è il vettore tangente e si pone $au(t)=rac{\gamma'(t)}{||\gamma'(t)||}$, au versore tangente

Retta tangente a una curva regolare semplice in forma parametrica

Sia γ una curva in forma parametrica regolare semplice e sia $t_0 \in intI$. La retta in forma parametrica $r(s)=\gamma(t_o)+\gamma'(t_o)s$, con $s\in\mathbb{R}$, si dice retta tangente nel punto $\gamma(t_o)$

Curve in \mathbb{R}^2

Curve regolari in forma cartesiana in \mathbb{R}^2

Sia $f:I(\subseteq\mathbb{R}^2) o\mathbb{R}$, I intervallo, di classe C^1 , la curva in forma parametrica $\gamma:I o\mathbb{R}^2$, con $\gamma(t)=inom{t}{f(t)}$ si dice curva **regolare** in forma cartesiana. Si ha: $\gamma'(t)=inom{1}{f'(t)}
eq 0$, in I e il $sost(\gamma)=\gamma(I)$.

Curve regolari in forma polare in \mathbb{R}^2

Sia $ho:I(\subseteq\mathbb{R}) o\mathbb{R}$, con I intervallo, di classe C^1 e t.c. $ho(\vartheta)\geq 0$ in I e $ho(\vartheta)+
ho'(\vartheta)>0$ in intI. La curva $\gamma:I o\mathbb{R}^2$, con $\gamma(\vartheta)=egin{pmatrix}
ho(\vartheta)cos\vartheta \
ho(\vartheta)sin\vartheta \end{pmatrix}$, si dice curva **regolare** in forma polare. Si ha $\gamma'(\vartheta) = (\rho(\vartheta)^2 - \rho(\vartheta)sin\vartheta, \rho'(\vartheta)sin\vartheta - \rho'(\vartheta)cos\vartheta)^T$ e quindi $||\gamma'(\vartheta)||^2 = (\rho(\vartheta)cos^2\vartheta - \rho(\vartheta)^2sin^2\vartheta - \underline{2\rho(\vartheta)cos\vartheta sin\vartheta} + \rho(\vartheta)^2sin^2\vartheta + \rho'(\vartheta)cos^2\vartheta + \underline{2\rho'(\vartheta)^2cos\vartheta sin\vartheta}) = \rho(\vartheta)^2 + \rho'(\vartheta) > 0$

Curve in \mathbb{R}^2 definite da equazioni

Si considera una funzione $\varphi:A(\subseteq\mathbb{R}^2)\to\mathbb{R}$ e il suo insieme di livello zero, $L_0(\varphi)=\{(x,y)^T\in A: \varphi(x,y)=0\}.$ Se abla arphi = 0, $L_0(arphi)$ non è unidimensionale, infatti dove abla arphi = 0 può essere che non ci sia tangente o che ci sia $L_0(arphi)$ bidimensionale.

Se $abla arphi \neq 0$ si può parlare di curve definite da equazioni

Punti regolari e punti singoli

Sia $\varphi:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, di classe C^1 in A. Un punto $\underline{x}^0=(x_0,y_0)^T\in L_0(\varphi)$ si dice **regolare** se $\nabla \varphi(x^0) \neq 0$, singolare altrimenti.

Teorema di parametrizzazione locale (o della funzione implicita o di Dimi)

Se $arphi:A(\subseteq\mathbb{R}^2) o\mathbb{R}$, A aperto, di classe C^1 e $\underline{x}^0=(x_0,y_0)^T$ è un punto regolare, $ablaarphi(\underline{x}^0)
eq\underline{0}$, con $arphi(\underline{x}^0)=0$, allora esiste un intorno U di x_0 , un intorno V di y_0 , g:U o V e h:V o U, $g,h\in C^1$ t.c. $L_0(arphi)\cap (U imes V)=$

 $egin{cases} G(g) \ G(h) = 0$, a seconda di cosa posso definire. In base a cosa decido? In base a quale derivata parziale è eq 0. Se lo sono

entrambe cerco la funzione inversa di $oldsymbol{y}$

entrambe cerco la funzione inversa di
$$y$$

$$0 = \begin{cases} G(g) \text{ se } \varphi_g(x_0, y_0) \neq 0 \\ G(h) \text{ se } \varphi_h(x_0, y_0) \neq 0 \end{cases}. \text{ Inoltre si ha:}$$

$$g'(x) = -\frac{\varphi_x(x, g(x))}{\varphi_y(x, h(x))}, \ \forall x \in U, \ \varphi_y(x^0, y^0) \neq 0 \text{ oppure } h'(y) = -\frac{\varphi_y(h(y), y)}{\varphi_x(g(y), y)}, \ \forall y \in V, \ \varphi_x(x^0, y^0) \neq 0.$$
 In particolare, la retta tangente a $L_0(\varphi)$ in $(x^0, y^0)^T$ ha equazione $y = g(x^0) + g'(x^0)(x - x^0) \Leftrightarrow y - y^0 = -\frac{\varphi_x(x^0, y^0)}{\varphi_y(x^0, y^0)}(x - x^0) \ \text{(1), se } \varphi_x(x^0, y^0) \neq 0.$ (1), se $\varphi_x(x^0, y^0) \neq 0.$ (1)(2) e quindi $\Leftrightarrow \varphi_x(x^0, y^0)(x - x^0) + \varphi_y(x^0, y^0)(y - y^0) = 0.$ $\leqslant \nabla \varphi(x^0), x - x^0 > 0.$ allo stesso modo trovo

lo stesso prodotto scalare per $\varphi_x(x^0,y^0)=0$, cioè $\nabla \varphi(\underline{x}^0)$ è $\bot(\underline{x}-\underline{x}^0)$

Consequenze

Sotto le ipotesti del sopracitato teorema si ha $\nabla \varphi(\underline{x}^0)$ è ortogonale alla retta tangente a $L_0(\varphi)$ nel punto \underline{x}^0 e quindi a $L_0(\varphi)$ nel punto 0

Osservazione

 $\lambda(\varphi)\cap(v\times V)=G(g)\Rightarrow \varphi(x,g(x))=0$ in U. Si ha che la funzione y=g(x) è definita in modo implicito dall'equazione $\varphi(x,y)=0$ e della condizione $g(x^0)=y^0$.

Definizione

Sia $\varphi:A(\subseteq\mathbb{R}^2)\to\mathbb{R}$, A aperto, di classe C^1 , tale che $L_0(\varphi)=\{(x,y)\in A|\varphi(x,y)=0\}\neq\emptyset$ e $\nabla\varphi(x,y)\neq0$ per ogni $(x,y)^T\in L_0(\varphi)$. La coppia $(\varphi,L_0(\varphi))$ si dice curva regolare in forma **implicita** di $\varphi(x,y)=0$. $\varphi(x,y)=0$ è l'equazione e $L_0(\varphi)$ è il sostegno.

Definizione

Siano $A(\subseteq \mathbb{R}^2)$ aperto connesso e $\sigma = K = clA(\subseteq \mathbb{R}^2)$, con $\sigma(u,v) = (x(u,v),y(u,v),z(u,v))^T$. Supponiamo allora che:

- 1. σ è di classe C^1 in intK
- 2. $\forall \underline{u} = (u,v)^T \in int K$, $\sigma_u(x_u(u,v),y_u(u,v),z_u(u,v))^T$ e $\sigma_v(u,v) = (x_v(u,v),y_v(u,v),z_v(u,v))^T$ sono linearmente indipendenti. Ossia $\sigma_u(u,v) \times \sigma_v(u,v) \neq 0$
- 3. $\forall u_1, u_2 \in K$, con $u_1 \neq u_2$ e $u_1 \in intK$ e $u_2 \in intK$, allora si ha $\sigma(u_1) \neq \sigma(u_2)$. La coppia formata da $(\sigma, \sigma(k))$ si dice **superficie** regolare sempline in forma parametrica, di cui σ è la parametrizzazione e $\Sigma = \sigma(\kappa)$ è il **sostegno**.

Definizione

Sia $\sigma:K(\subseteq\mathbb{R}^2\to\mathbb{R}^3$ una superficie regolare semplice in forma parametrica. Fisso un $\underline{u}^0=(u^0,v^0)^T\in intK$ e sia il punto $\underline{x}^0=\sigma(\underline{u})\in\Sigma$. Le curve $\sigma(\cdot,v^0):]u^0-\delta,u^0+\delta[\to\mathbb{R}^2$ e $\sigma(u^0,\cdot):]v^0-\delta,v^0+\delta[\to\mathbb{R}^2$ sono regolari semplici e si dicono linee coordinate passanti per \underline{x}^0

Definizione

Il vettore $\sigma_u(u^0,v^0)$ è il vettore tangente alla linea coordinata da u in \underline{x}^0 e il vettore $\sigma_v(u^0,v^0)$ è il vettore tangente alla linea coordinata v in \underline{x}^0 . Il vettore $\sigma_v(u^0,v^0) \times \sigma_u(u^0,v^0)$ si dice vettore **normale** a Σ in \underline{x}^0 e invece il versore

dato da $u(u^0,v^0)=rac{\sigma_v(u^0,v^0) imes\sigma_u(u^0,v^0)}{||\sigma_v(u^0,v^0) imes\sigma_u(u^0,v^0)||}$ è il vettore normale a Σ in \underline{x}^0

Definizione

Il piano generato da $\sigma_u(u^0, v^0)$ e $\sigma_v(u^0, v^0)$ passante per \underline{x}^0 si dice piano tangente a Σ in \underline{x}^0 , ed è rappresentato da:

1.
$$\underline{x}=\lambda\sigma_u(u^0,v^0)+\mu\sigma_v(u^0,v^0)+\underline{x}^0$$
, $\forall (\lambda,\mu)\in\mathbb{R}^2$ \to rappresentazione **parametrica** 2. $<\sigma_u(u^0,v^0)\times\sigma_v(u^0,v^0), \underline{x}-\underline{x}^0>=0$ \to rappresentazione implicita.

Definizione

Sia $f:K=clA(\subseteq\mathbb{R}^2) o\mathbb{R}$, con A aperto e connesso, di classe C^1 in intK. La superficie in forma parametrica $\sigma(u,v)$, dato che $\sigma(u,v)=(u,v,f(u,v))^T$, con $(u,v)\in K$, è una superfice regolare semplice, dove $\Sigma=$

$$\sigma(K) = G(f)$$
 e inoltre vale: $\sigma_u imes \sigma_v = egin{pmatrix} 1 \ 0 \ f_u \end{pmatrix} imes egin{pmatrix} 0 \ 1 \ f_v \end{pmatrix} = det egin{pmatrix} e_1 \ e_2 \ e_3 \ 1 \ 0 \ f_u \ 0 \ 1 \ f_v \end{pmatrix} = egin{pmatrix} -f_u \ -f_v \ 1 \end{pmatrix}$

Definizione

Sia $\varphi:A(\subseteq\mathbb{R}^2)\to\mathbb{R}$, A aperto, di classe C^1 . supponiamo che $\Sigma=L_0(\varphi)=\{(x,y,z)^T=0\}\neq\emptyset$ e per ogni $(x,y,z)^T\in L_0(\varphi)$ sia $\nabla\varphi(x,y,z)\neq0$. La coppia $(\varphi,L_0(\varphi))$ si dice superficie regolare in forma **implicita** di cui $\varphi(x,y,z)=0$ è l'equazione e $\Sigma=L_0(\varphi)$ è il sostegno. Il piano tangente a Σ in \underline{x}^0 è rappresentato dall'equazione $<\nabla\varphi(x^0),x-x^0>=0$.

Definizione, Curve regolari in forma implicita in \mathbb{R}^3

Siano $\varphi, \psi: A(\subseteq \mathbb{R}^3) \to \mathbb{R}$, con A aperto e di classe C^1 , tali che $\Gamma = L_0(\varphi) \cap L_0(\psi) = \{(x,y,z)^T \mid \varphi(x,y,z) = 0, \psi(x,y,z) = 0\} \neq \emptyset$ e $\nabla \varphi(x,y,z) \times \nabla \psi(x,y,z) \neq 0$, per ogni $(x,y,z)^T \in L_0(\varphi) \cap L_0(\psi) = \Gamma$. La coppia $((\varphi,\psi),L_0(\varphi) \cap L_0(\psi))$ si dice curva regolare in forma implicita in \mathbb{R}^3 di cui $\begin{cases} \varphi(x,y,z) = 0 \\ \psi(x,y,z) = 0 \end{cases}$ sono le equazioni e $\Gamma = L_0(\varphi) \cap L_0(\psi)$ è il sostegno. Il vettore $\nabla \varphi(\underline{x}^0) \times \psi(\underline{x}^0)$ è il vettore tangente a Γ in \underline{x}^0 , e la retta $\underline{x} = \underline{x}^0 + t(\nabla \varphi(\underline{x}^0) \times \psi(\underline{x}^0))$, $t \in \mathbb{R}$ è la retta tangente a Γ in \underline{x}^0 , questa è la forma parametrica.

Considero un altro modo per scriverlo: $\begin{cases} <\varphi(\underline{x}^0), \underline{x}-\underline{x}^0>=0 \text{ (piano tangente a } L_0(\varphi)) \\ <\psi(\underline{x}^0), \underline{x}-\underline{x}^0>=0 \text{ (piano tangente a } L_0(\varphi)) \end{cases}$

Lo studio deli estremi di $f: E(\subseteq \mathbb{R}^n) o \mathbb{R}$, A aperto, di classe C^1

Si articola

- ullet nello studio degli estremi in intE, studio degli estremi liberi
- ullet nello studio degli estremi in frE, studio degli estremi vincolati

Estremi vincolati

Vincolo

Se
$$f:E(\subseteq \mathbb{R}^n) o \mathbb{R}$$
. Un insieme $\emptyset
eq \underline{0}V \underset{
eq}{\subset} E$ si dice vincolo per f

Punti di estremo vincolato

Siano $f:E(\subseteq\mathbb{R}^n) o\mathbb{R}$ e V un vincolo per f. Si dice che $\underline{x}^0\in V$ è un punto di estremo vincolato per f se V se \underline{x}^0 è t.c. $f(\underline{x})>f(\underline{x}^0)$, $orall x\in U\cap I$

V , $\underline{x} eq \underline{x}^0$ (minimo vincolato) oppure $f(\underline{x}) < f(\underline{x}^0)$, $orall x \in U \cap V$, $\underline{x} eq \underline{x}^0$ (massimo vincolato)

Consideriamo

$$N=2, V=\Gamma$$
, curva $\begin{cases} \text{Curva regolare in forma parametrica in } \mathbb{R}^2(\text{T5}) \end{cases}$, V può anche essere solo un punto, $N=3, V=\{\text{curva regolare in forma parametrica } (\text{T1}) \}$, V può anche essere intervalli o altri tipi di insieme V superficie, V V superficie regolare in forma parametrica V in \mathbb{R}^3 superficie regolare in forma implicita V in \mathbb{R}^3

Teorema (T3) (N=2 o N=3, $V=\Gamma$, curva in forma parametrica)

Sia $f:A(\subseteq\mathbb{R}^n)\to\mathbb{R}$, A aperto, di classe C^1 . Sia $\gamma:\iota\to A$ una curva regolare, I intervallo. e $\underline{x}^0=\gamma(t^0)$, con $t^0\in intI$ è un punto di estremo vincolato per f su $\Gamma=\gamma(I)$, allora $<\nabla f(\underline{x}^0),\gamma'(t^0)>=0$

Osservazione

Se
$$\nabla f(\underline{x}^0)
eq \underline{0}$$
, allora $\nabla f(\underline{x}^0)$ è \bot a $L_f(\underline{x}^0)(f)$ e a Γ in \underline{x}^0 e quindi $L_f(\underline{x}^0)(f)$ e Γ sono tangenti in \underline{x}^0

Dimostrazione

Studiare $f_{|\Gamma}$ equivale a studiare la funzione $\psi:I\to\mathbb{R}$, con $\psi(t)=f(\gamma(t))$. Poichè $f_{|\gamma}$ ha un punto di estremo in \underline{x}^0 , ψ ha un punto di estremo in t^0 con $\gamma(t^0)=\underline{x}^0$, $t^0\in intI$. Essendo f e γ di classe C^1 , ψ è di classe C^1 . Quindi per il teorema di Fermat $0=\psi'(t^0)=<\nabla f(\gamma(t^0)), \gamma'(t^0)>=<\nabla f(\underline{x}^0), \gamma'(t^0)>$.

Teorema (T2) (N=3, $V=\Sigma$, superficie regolare in forma parametrica)

Sia $f:A(\subseteq\mathbb{R}^3) o\mathbb{R}$, A aperto, di classe C^1 e sia $\sigma:k o A$ una superficie regolare semplice. Se $\underline{x}^0=\sigma(\mu^0)$, con $u^0\in int K$, è un punto di etremo per f su $\Sigma=\sigma(K)$, allora (-- MANCA TESI --)

Osservazione

Se $\nabla f(\underline{x}^0) \neq 0$, allora $\nabla f(\underline{x}^0) \perp \sigma_u(\underline{u}^0)$ o $\nabla f(\underline{x}^0) \perp \sigma_v(\underline{u}^0)$ e quindi $\nabla f(\underline{x}^0)$ è \perp al piano tangente Σ in \underline{x}^0 , cioè $\nabla f(\underline{x}^0) \perp \Sigma$.

Poichè $\nabla f(\underline{x}^0) \perp L_{f(\underline{x}^0)}(f)$, si conclude che Σ e $L_{f(\underline{x}^0)}(f)$ sono tangenti in \underline{x}^0

Problema

Es. estremi di f(x,y)=x+y, su $x^4+y^4-4xy=1 o$ curva regolare in forma implicita

Teorema (T3), ($N=2,V=\Gamma$, curva regolare in forma implicita o dei moltiplicatori di Lagrange)

Siano $f_{\varphi}: E(\subseteq \mathbb{R}^2) \to \mathbb{R}$, aperto, di classe C^1 . Se $\underline{x}^0 \in \Gamma = L_0(\varphi) = \{(x,y)^T = \varphi(x,y) = 0\}$ è un punto di estremo vincolato di f su Γ e $\nabla \varphi(\underline{x}^0) \neq \underline{0}$, allora esiste $\lambda \in \mathbb{R}$ t.c. $\nabla f(\underline{x}^0) = \lambda \nabla \varphi(\underline{x}^0)$

Dimostrazione

Poichè $\nabla \varphi(\underline{x}^0) \neq \underline{0}$ il teorema di parametrizzazione locale (Dini) garantisce che \exists un intorno W di \underline{x}^0 e \exists una curva regolare in forma parametrica $\gamma:I\in\mathbb{R}^2$ t.c. $\gamma(I)=\Gamma=L_0(\varphi)\cap W$. (\Rightarrow localmente il vincolo è una curva parametrica \Rightarrow applico (T1)).

Per (T1) si ha $< f(\underline{x}^0), \gamma'(t^0)>=0$, dove $\underline{x}^0=\gamma(t^0)$ e $t^o\in intI$. D'altra parte $abla arphi(\underline{x}^0)\perp\gamma'(t^0)$, <

 $abla arphi(\underline{x}^0), \gamma'(t^0) >= 0$ e quindi $abla f(\underline{x}^0)$ e $abla arphi(\underline{x}^0)$ sono paralleli, cioè esistono $lpha, eta \in \mathbb{R}$ t.c. $lpha
abla f(\underline{x}^0) + 1$ $eta
ablaarphi(\underline{x}^0)=\underline{0}$, con lpha,eta non entrambi nulli. Poichè lpha=0 implicherebbe $ablaarphi(\underline{x}^0)=0$ dev'essere lpha
eq0. Posto $\lambda=0$ $-rac{\beta}{\alpha}$, si conclude che $\nabla f(\underline{x}^0) = \lambda \cdot \nabla \varphi(\underline{x}^0)$

Teorema dei moltiplicatori di Lagrange ($N=2,V=\Gamma$, curve in forma implicita)

Siano $f, arphi: a(\subseteq \mathbb{R}^2) o \mathbb{R}$, A aperto, di classe C^1 e sia $\Gamma = L_0(\gamma) = \{(x,y)^T \in A: arphi(x,y) = 0\}.$ Se $\underline{x}^0=(x^0,y^0)\in\Gamma$ è un punto di estremo vincolato per f su Γ e $abla arphi(\underline{x}^0)
eq \underline{0}$ allora esiste $x\in\mathbb{R}$ t.c. $abla f(\underline{x}^0)=$ $\lambda \cdot \nabla \varphi(\underline{x}^0)$

Osservazione: uso del teorema dei moltiplicatori di Lagrange

1. Se Γ è una curva regolare in forma implicita, cioè $\nabla \varphi \neq 0$, $\forall \underline{x} \in \Gamma$ allora i punti di estremo vincolato di f su Γ si ricercano tra le soluzioni $\underline{x} = (x,y)^T$ di

$$(\mathsf{L}) egin{cases} f_x(x,y) = \lambda arphi_x(x,y) \ f_y(x,y) = \lambda arphi_y(x,y) \end{cases}$$

tre incognite x,y,λ anche se λ è di relativa impotanza)

2. Se Γ non è una curva regolare in forma implicita, cioè esistono punti singolari, allora i punti di estremo vincolato di fsu Γ vanno ricercati tra le soluzioni di (L), ma anche tra le soluzioni di

$$egin{cases} arphi_x(x,y) = 0 \ arphi_y(x,y) = 0 \ arphi(x,y) = 0 \end{cases}$$

Teorema dei moltiplicatori di Lagrange ($N=3, V=\Sigma$ superficie in forma implicita)

Siano $f, \varphi: A(\subseteq \mathbb{R}^3) \to \mathbb{R}$, A aperto, di classe C^1 e sia $\Sigma = \{(x,y,z)^T \in A: \varphi(x,y,z) = 0\} = L_0(\varphi)$. Se $\underline{x}^0 = (x^0,y^0,z^0)^T \in \Sigma$ è punto di estremo vincolato per f su Σ e $\nabla \varphi(\underline{x}^0) \neq \underline{0}$, allora esiste $\lambda \in \mathbb{R}$ t.c. $\nabla f(x^0) = \lambda \nabla \varphi(x^0)$

Osservazione: uso del teorema dei moltiplicatori di Lagrange

I punti di estremo vincolato per f su Σ vanno ricercati tra le soluzioni di:

$$\begin{array}{l} \bullet \ \ \text{punti regolari} \begin{cases} \nabla f(\underline{x}) = \lambda \cdot \nabla \varphi(\underline{x}) \\ \varphi(\underline{x}) = 0 \end{cases}$$

$$\begin{array}{l} \bullet \ \ \text{punti singolari} \end{cases} \begin{cases} \nabla \varphi(\underline{x}) = \underline{0} \\ \varphi(\underline{x}) = 0 \end{cases}$$

$$ullet$$
 punti singolari $egin{cases}
abla arphi(\underline{x}) = \underline{0} \ arphi(\underline{x}) = 0 \end{cases}$

Teorema ($N=3,\,V=\Sigma$ curva in forma implicita)

Siano $f,F,\psi:A(\subseteq\mathbb{R}^3) o\mathbb{R}$, A aperto, di classe C^1 . Sia $\Gamma=L_0(\varphi)\cap L_0(\psi)$, ossia in forma esplicita $\Gamma=$ $L_0(arphi)\cap L_0(\psi)=\{(x,y,z)^T: arphi(x,y,z)=\psi(x,y,z)=0\}.$ Se $\underline{x}^0=(x^0,y^0,z^0)^T\in \Gamma$ è un estremo vincolato per f su Γ e $\nabla \varphi(\underline{x}^0) imes \nabla \psi(\underline{x}^0) \neq \underline{0}$, allora esistono $\lambda, \mu \in \mathbb{R}$, detti moltiplicatori di Lagrange, tali che $\nabla f(\underline{x}^0) =$ $\lambda \nabla \varphi(\underline{x}^0) + \mu \nabla \psi(\underline{x}^0).$

Osservazione

Se Γ :

1. è una curva regolare in forma implicita, cioè $abla arphi imes
abla \psi
eq 0$ in Γ , allora i punti di estremo vincolato per f su Γ vanno cercati tra:

$$(\mathrm{S}_1) egin{cases} f_x(x,y,z) = \lambda
abla arphi_x(x,y,z) + \mu
abla \psi_x(x,y,z) \ f_y(x,y,z) = \lambda
abla arphi_y(x,y,z) + \mu
abla \psi_y(x,y,z) \ f_z(x,y,z) = \lambda
abla arphi_z(x,y,z) + \mu
abla \psi_z(x,y,z) \ arphi(x,y,z) = 0 \ \psi(x,y,z) = 0 \end{cases}$$

2. Se Γ non è una curva regolare in forma implicita, cioè ci sono punti singolari, i punti di estremo vincolato vanno cercati tra le soluzioni di (S_1) e di

$$\begin{cases} \nabla \varphi(x,y,z) \times \nabla \psi(x,y,z) = \underline{0} \\ \varphi(x,y,z) = 0 \end{cases}$$
 si hanno cinque equazioni in tre incognite $\psi(x,y,z) = 0$