# 2. 기술통계

# 2-1 표본에 따른 통계량

# ■ 대표값(대표지표 – 위치 지표)

- ✓ 평균 참고:  $(\overline{X} \ge G \ge H)$ 
  - · 산술평균: n 이 충분히 크고 분포가 대칭일 때
  - 기하평균:  $G = \sqrt[n]{x_1 \cdot x_2 \cdot x_n}$ 
    - 대칭이 아닌 경우, 변수를 변화시켜 평균을 구하는 방법
    - 인구변동율, 물가변동율, 이자율 등 변화율, 비율 등에 사용된다.
  - 조화평균:  $H = \frac{n}{\sum (\frac{1}{x_i})}$ 
    - 시간적으로 계속 변화하는 변량, 속도 등에 사용되는 대표값
    - 단위당 평균 산출등에 이용되나, 거의 사용되지 않는다..
- ✓ 중앙값(ME; median)
  - 극단적인 이상치가 있는 경우, 평균보다 더 정확하다.
- ✓ 최빈값(MO; mode)
- ✓ 사분위수

# ■ 산포(다양성, 변이) 지표

- ✓ 종류
  - 절대적인 분포의 산포도: 범위, 평균편차, 사분편차, 표준편차
  - 상대적인 분포의 산포도: 변이계수, 사분위편차계수, 평균편차계수
- ✓ 절대적인 분포의 산포도
  - 범위: 최대값 최소값
  - 평균편차: 평균으로부터의 평균거리 =  $\frac{\sum |x_i \bar{x}|}{n}$
  - 분산( $\sigma^2$ ):  $var(X) = E[(X \mu)^2] = \frac{\sum (X \mu)^2}{N}$ , 표준편차( $\sigma$ )
  - 사분위수 범위(IQR; interquartile range)
    - 3 사분위수 1 사분위수: 극단적인 값에 영향을 받지 않는다.
    - 대표지표가 중앙값인 경우, 표준편차 대신 사용한다.
    - 사분편차(Quartile Deviation): (3 사분위수 1 사분위수)/2
- ✓ 상대적인 분포의 산포도
  - 변동계수(변이계수;Coefficient of variation):  $cv = \frac{s}{r} \times 100\%$ 
    - 평균값, 표준편차 등은 단위에 따라 값이 달라진다.
    - 변이는 단위가 없어서, 단위에 무관하다.
    - 추정통계학에서 표본의 크기를 설정하는데 많이 사용된다.
  - · 사분위편차계수 = 사분위편차/중위수
  - 평균편차계수 = 평균편차/(중위수 또는 산술평균)

#### ✓ 적률

- · Pearson 이 도입한 것으로 분포에 대한 특성값을 나타내는 데 사용
- · K차 적률  $M_K = \frac{\sum f_i(x-a)^K}{n}$ 
  - $f_i$ 는 계급 도수이다. 계급이 없으면 1
  - $N = \sum f_i$
  - a 는 평균 등 임의의 값이 될 수 있다.
- 평균에 대한 1차 적률은 0이다.
- 평균에 대한 2차 적률은 분산 = 원점에 대한 2차적률 원점에 대한 1차 적률의 제곱
- 평균에 대해 자료분포가 대칭인 경우 평균에 대한 홀수 적률은 0이다.

### ■ 분포의 모양

- $\checkmark$  왜도(skewness) =  $\frac{\sum (x-\bar{x})^3}{ns^3}$ 
  - 분포가 기울어진 방향과 크기를 나타내는 지표
  - 좌우대칭:  $0 \rightarrow \bar{X} = M_{\rho} = M_{0}$
  - 왼쪽으로 치우치면( ): 양수 → X̄ > M<sub>e</sub> > M<sub>o</sub>
  - 오른쪽으로 치우치면( $\int$ ): 음수  $\rightarrow$   $\bar{X} < M_e < M_o$
  - 왜도는 3 차 적률을  $s^3$ 로 나눈 값이다.
- ✓ 첨도(kurtosis) =  $\frac{\sum (x-\bar{x})^4}{ns^4} 3$ 
  - 분포의 모양이 얼마나 뾰족한가를 나타내는 지표
  - 표준정규분포와 같으면: 0 또는 3 이라고도 한다.(정의에 따라)
  - 표준정규분포보다 납작하면 음수
  - 표준정규분포보다 뾰족하면 양수
  - 첨도는 4 차 적률을  $s^4$ 로 나눈 값으로 정의하기도 한다.

#### 왜도 Skewness



Negative Skew (S<0)

왼쪽으로 긴 꼬리 오른쪽으로 치우진 분포 예) 시험성적 분포 오른쪽으로 긴 꼬리 왼쪽으로 치우친 분포

Positive Skew (S>0)

예) 소득자료

#### 첨도 Kurtosis



Negative Kurtosis (K<0)

정규분포보다 납작한 분포



Positive Kurtosis (K>0)

정규분포보다 뾰족한 분포

### ■ 공분산과 상관계수

- ✓ 두 개의 확률변수 X, Y 에 대해
  - 평균이 각각  $\mu_1, \mu_2$ 이고 표준편차가  $\sigma_1, \sigma_2$ 이라 하자.
  - 만약 X 가  $\mu_1$ 보다 클 때 Y 가  $\mu_2$ 보다 커지고, X 가  $\mu_1$ 보다 작을 때 Y 가 μ<sub>2</sub>보다 작아지는 경향이 있으면
    - 표준화된 X 와 Y 의 곱  $\left(\frac{X-\mu_1}{\sigma_1}\right)\left(\frac{Y-\mu_2}{\sigma_2}\right)$ 은 양의 값을 가지게 된다.
    - 확률변수 X 의 증감에 따른 확률변수 Y 의 변화방향과 정도의 척도로
  - - 일반적으로 -1 ≤ Corr(X, Y) ≤ 1 이다.
    - Y = aX + b 인 경우, 완전한 직선관계를 가질 때, a 가 양수면 상관계수는 1, a 가 음수이면 상관계수는 -1 의 값을 가진다.
- $\checkmark$  |공분산| = Cov(X, Y) =  $\sigma_1\sigma_2$ Corr(X, Y) = E[ $(X \mu_1)(Y \mu_2)$ ] = E(XY)  $-\mu_1\mu_2$
- ✓ 공분산과 상관계수의 성질
  - Cov(aX+b, cY+d) = acCov(X, Y)
  - Corr(aX+b, cY+d)
    - ac > 0, Corr(aX+b, cY+d) = Corr(X, Y)
    - ac < 0, Corr(aX+b, cY+d) = -Corr(X, Y)
- ✓ 두 확률변수의 합과 차에 대한 분산의 공식
  - Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
  - Var(X Y) = Var(X) + Var(Y) 2Cov(X, Y)
- ✓ 두 확률변수가 독립인 경우
  - $E(XY) = E(X)E(Y) = \mu_1 \mu_2$
  - Cov(X, Y) = E(XY)  $\mu_1 \mu_2 = 0$   $\rightarrow$  Corr(X, Y) = 0
  - $Var(X \pm Y) = Var(X) + Var(Y)$
- ✓ 서로 독립인 두 확률변수 X, Y 에 대해
  - 평균의 차의 분포를 생각해 보자.
  - 즉,  $\bar{X} \bar{Y}$ 에 대해  $\frac{[(\bar{X} \bar{Y}) (\mu_1 \mu_2)]}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}}$ 은 정규분포 N(0, 1)로 근사된다.

# 2-2 확률과 확률분포

#### ■ 확률

- ✓ 개념
  - 어떤 사건이 일어날 가능성의 정도를 나타내는 척도
  - 0~1 사이의 실수값을 가진다.
  - 표본공간: 한 실험에서 나타날 수 있는 모든 가능한 결과의 집합(S)

- · 표본점: 표본공간 S의 원소
- 사상 또는 사건: 표본공간의 부분집합
- ✓ 확률계산
- √ 확률변수
  - · 실험의 결과들이 수치이며, 그 값이 원소에 따라 변하면서 확률에 따르는 경우 확률변수라 부른다.
    - 이산확률변수: 특정 값만을 취하는 경우
    - 연속확률변수: 어떤 구간내의 임의의 값을 취하는 경우
- ✓ 기대값(E)
  - 이산:  $\sum x \cdot p(x)$
  - 연속:  $\int_a^b x \cdot p(x) dx$

# ■ 확률분포

- ✓ 개념
  - 표본공간에서 나타나는 모든 값들과 그 값에 대응하는 확률을 동시에 표시한 것
- ✓ 확률변수의 기대값
  - · 실험을 지속적으로 반복했을 때, 평균적으로 기대할 수 있는 값으로 확률변수의 중심화 경향을 나타낸다.
  - · 기대값  $E(X) = \sum X \cdot P(X)$
  - 기대값의 성질(a 는 상수, X/Y 는 확률변수)
    - E(a) = a
    - E(aX) = aE(X)
    - E(X+Y) = E(X) + E(Y)
    - E(X Y) = E(X) E(Y)
  - 분산의 성질
    - V(a) = 0
    - $V(aX) = a^2V(x)$
    - V(X+Y) = V(X) + V(Y) + 2Cov(X, Y)
    - V(X-Y) = V(X) + V(Y) 2Cov(X, Y)
    - $V(X) = \sum [X E(X)]^2 \cdot P(X) = \sum X^2 \cdot P(X) [E(X)]^2$
- ✓ 확률분포의 유형
  - 이산확률분포: 이항분포, 프아송분포, 초기하분포, 기하분포, 다항분포
  - 연속확률분포: (표준)정규분포, 지수분포, t-분포, F-분포,  $\gamma^2$ 분포

# 2-3 이산확률분포

# ■ 이항분포(BINOMIAL)

- ✓ 경우의 수가 단 두개(p, 1-p)
- ✓ n 번 시행시, A 가 x 번 발생할 확률 B(n, p) =  $\binom{n}{n} p^x (1-p)^{n-x}$ 
  - · 베르누이 시행을 n 번 반복한 것이라 할 수 있다.
- ✓ 특징
  - · 평균은 np, 분산은 npq (=np(1-p))
  - p가 1 또는 0에 가깝지 않고 n이 충분히 크면 정규분포에 가까워지고, 대칭에 접근한다.
  - · p가 0.5가 되면 좌우 대칭의 산모양이 된다.



# ■ 프아송분포(POISSON)



- ✓ 단위시간당, 단위공간당 사건발생 횟수에 적용되는 분포
  - 주어진 시간, 정해진 공간에서 일어나는 성공의 횟수
- ✓ 분포함수  $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ 
  - x = 0, 1, 2, ... n
  - · λ = 단위시간 또는 단위공간 내의 발생횟수의 평균(λ=np)
- ✓ 프아송 분포의 성립조건

- 독립성: 주어진 시공간에서 일어날 사건의 횟수는 다른 시공간에서 일어나는 사건의 횟수와 독립이다.
- 비례성: 어떤 시공간 내에서 사건이 한번 발생할 확률은 그 공간의 길이 또는 면적에 비례한다.
- 비집락성: 짧은 시공간 내에서 사건이 동시에 두 번 일어날 확률은 0 에 가까워 무시할 수 있다.

#### ✓ 특징

- · 확률변수의 기대값과 분산은 모두  $\lambda$  이다.
- · 이항분포의 특수형태이다. (n 이 매우 크고, p 가 매우 작을 때)

### ✓ 응용분야

- · 주어진 시간 동안에 도착한 고객의 수
- 주어진 생산시간 동안 발생하는 불량의 수
- 1 킬로미터 도로에 있는 흠집의 수
- 하룻동안 발생하는 출생자의 수
- 어떤 시간 동안 톨게이트를 통과하는 차량의 수
- 어떤 페이지 하나를 완성하는 데 발생하는 오타의 발생률
  - 400 글자당 오타가 2개 발생한다고 하자
  - 한 페이지당 400 글자가 들어간다면, 임의의 페이지에 오타가 한 개 있을 확률은
    - ① 단위(한페이지)당 사건(오타)가 발생하는 횟수는 2
    - ②  $P(X=1) = \frac{e^{-2}2^1}{1!} = 0.27$

# ■ 초기하분포(HYPERGEOMETRIC)

#### ✓ 개념

 $X \sim Hypergeometric(N, m, n)$ 

$$P(X=x) = f(x, N, m, n) = \frac{{}_{m}C_{x,N-m}C_{n-x}}{{}_{N}C_{n}}, \quad (x = max(0, n+m-N), \cdots, min(n, m))$$

x: number of successes in sample,

N: number of population  $(=1, 2, \cdots)$ 

m: number of successes in population  $(=0,1,2,\dots,N)$ ,

n: number of sample  $(=1, 2, \dots, N)$ 

- · 크기 N 인 유한모집단(성공 수 M, 실패수 N-M)에서 비복원으로 n 개의 표본을 취할 때 확률변수 X(표본내의 성공횟수)가 나타내는 분포
- 성공 확률이 매회 일정한(독립사건; 복원) 경우는 이항분포를 사용
  - 복원추출이거나 모집단의 수가 무한한 경우
- 일정하지 않은 경우(종속사건; 비복원)에는 초기하분포를 사용한다.
  - 비복원추출이며 모집단의 크기가 작은 경우

- 유한모집단의 크기 N 이 추출개수 n 보다 매우클 때 초기하분포는 이항분포로 접근한다.

### ✓ 특성

- 평균 = np (p = M/N)
- · 분산 = np(1-p) ·  $\frac{N-n}{N-1}$
- ✓ 사용 예
  - · 전체 52 장 카드(붉은 색 26, 검은 색 26)에서 10 장을 뽑을 때,
    - 붉은 색이 7 장일 확률
    - $\frac{\binom{26}{7} \cdot \binom{26}{3}}{\binom{52}{10}} = 0.10811$

# ■ 기하분포(GEOMETRIC)

# ✓ 개요

- ・ 단 한번의 성공을 위해 실패를 거듭해야 하는 경우
  - 각 시행은 독립시행으로 각 시행에서의 성공확률 p는 항상 동일
  - 베르누이 시행을 처음으로 성공할 때까지 시행횟수 x 의 확률분포
- ✓ 확률분포함수
  - $P(X=x) = p \cdot (1-p)^{x-1} (x = 1, 2, ...)$ 
    - $P(X>r) = (1-p)^r$
    - $P(X \le r) = 1 (1 p)^r$
- ✓ 특징
  - 평균: E(X) = 1/p
  - · 분산:  $V(X) = \frac{q}{n^2}$
- ✓ 사용 예
  - 주사위를 던져 6 번만에 1 이 나올 확률:  $\frac{1}{6} \cdot (\frac{5}{6})^5 = 0.067$

# ■ 음이항분포(NEGATIVE BINOMIAL)

- ✓ 개념
  - · 성공확률이 p 인 베르누이 시행을 독립적으로 반복 실행할 때, k 번 성공할 때까지의 시행횟수 X 의 확률분포

# 2-4 연속확률분포

## ■ 정규분포

- ✓ 특징
  - 평균과 표준편차에 의해 모양과 위치가 결정된다.
  - 첨도는 0, 평균은 0, 표준편차가 1 인 분포가 표준정규분포이다.
  - · 산술평균 = 중위수 = 최빈수

- · 개별치의 확률분포가 정규분포가 아니더라도 표본의 크기가 클수록 표본평균의 분포는 정규분포와 가까워진다.
- ✓ 정규분포곡선
  - 왜도가 0 이고, 첨도는 (정의방법에 따라)3 이다.
- ✓ 표준편차 범위내 분포 확률
  - · 1σ 범위내 → 0.683
  - · 2σ 범위내 → 0.954
  - · 3σ 범위내 → 0.997
- $\checkmark$  정규분포 표본의 평균 $(\bar{X})$ 이 갖는 분포 :  $\frac{(\bar{X}-\mu)}{\sigma} \sim N(0,1)$  (중심극한정리)

# ■ 지수분포

- ✓ 개념
  - 프와송분포가 단위 시공간 내에 사건이 발생횟수에 대한 분포라면,
  - 지수분포는 한 사건이 발생한 이후, 다음 사건이 발생할 때까지의 시간에 대한 확률분포이다.
    - 단위 시공간당 평균 발생건수 = λ라면,

### ✓ 확률밀도함수

- $f(t, \lambda) = \lambda e^{-\lambda t}$   $(t \ge 0)$
- ✓ 특징
  - · 기대값 E(t, λ) = 1/ λ
  - $V(t, \lambda) = 1/\lambda^2$
  - 누적분포함수  $F(t, \lambda) = 1 e^{-\lambda t}$

#### ✓ 예제 1

- 한 사무실에서 전화가 평균 10분당 5번 걸려온다.
- 이 사무실에서 전화가 걸려온 때부터 다음 전화가 걸려올 때까지 걸리는
   시간을 분으로 측정하는 확률분포를 구하라.
  - 1분당 0.5회 전화가 온다. → λ = 0.5
  - $f(t, 0.5) = 0.5e^{-0.5t}$
- 다음전화가 올 때까지 걸린 시간이 5분 이내일 확률
  - $F(t, 0.5) = 1 e^{-0.5 \times 5} = 0.918$
- 다음전화가 올 때까지 걸린 시간이 5분 이상일 확률
  - -1-0.918=0.082

#### ✓ 예제 2:

- · 남송전자가 생성하는 형광등의 수명은 λ = 0.002(단위: 시간)의 지수분포를 따른다.
- · 수명이 500 시간을 못 미칠 확률은? 0.6321

| 지수 분포 |                                                                                                                   | x                           |
|-------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|
|       | <ul> <li>○ 확률 밀도(P)</li> <li>○ 누적 확률(C)</li> <li>○ 역 누적 확률(I)</li> <li>착도(S): 500</li> <li>분계점(H): 0,0</li> </ul> | (= 평균 <i>,</i> 분계점 = 0일 경우) |
| 선택 1  | 분계점(H): 0,0  C 입력 열(L):  저장할 열(T):  G 입력 상수(N):  저장할 상수(R):                                                       | 500                         |
| 도움말   | AGE 0 1 to                                                                                                        | 확인(0) 취소                    |

- 평균은 1/ λ = 500 시간이다.
- 척도는 500으로 하고, 누적확률로 설정된 상태에서 입력상수는 500으로 계산한다.
- · 200 시간이 지난 후 500 시간 동안 고장이 없을 확률
  - 뒤 설정에서 분계점을 200, 입력상수를 200+500=700 설정
  - 역시 0.6321 이다. → 출발시작부터 어떤 시간에 처음 발생할 확률이 같은 지수분포의 특성이 잘 나타난다.

# ■ 카이제곱분포



- 정규분포를 따르는 모집단에서 추출한 표본분포 중에 카이제곱분포, t-분포, F-분포가 있다. (표본의 분포라 불림)
- k 개의 서로 독립적인 표준정규확률변수를 각각 제곱하여 합해서
   얻어지는 분포로서 분산과 관련된 분포이다.

- 확률변수  $Z_i$ 가 N(0, 1)의 랜덤표본일 때,  $\chi^2(k) = \sum_{i=1}^k Z_i^2$ 을 자유도가 k 인 카이제곱 분포라 한다.
- <u>정규분포의 표본  $X_i$ 에 대해서</u> :  $\chi^2(k-1) = \frac{\sum_{i=1}^k (X_i \bar{X})^2}{\sigma^2} = \frac{(k-1)s^2}{\sigma^2}$  정의에 의해  $s^2 = \frac{\sum_{i=1}^k (X_i \bar{X})^2}{k-1}$  이며,  $\mu$  가 아닌  $\bar{X}$  가 사용되었다.
- 위 그림과 같이 확률분포함수가 왼쪽으로 기울어진 이유는 Z;가 0을 중심으로 분포하기 때문이다.
- 이때, 카이제곱분포의  $(1-\alpha)$  분위수를  $\chi^2_{\alpha}(k)$ 로 나타낸다.
  - $V \sim \chi^2(k)$ 일 때,  $P[V \ge \chi^2_{\alpha}(k)] = \alpha$ 이다.
- ✓ 확률분포함수 : gamma(지수/프아송 분포 매개변수의 prior) 분포의 특수예.
  - 확률밀도합수:  $f(x;k) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2} 1_{\{x \ge 0\}}$
  - 누적분포함수:  $f(x; k) = \frac{\gamma(k/2, x/2)}{\Gamma(k/2)} = P(k/2, x/2)$

#### ✓ 특징

- 분포의 형태가 죄측으로 기울어진 분포이고, 자유도가 커질수록 정규분포에 접근한다.
- 여러 집단 사이의 독립성 검정과 적합도 검정을 하는데 사용된다.
- 표본의 산포로 모집단의 산포를 추정할 때 사용한다.
  - $P(\chi^2(k) \ge \chi_{\alpha}^2(k)) = \alpha$
  - $P(\chi^2(k) \le \chi_{\alpha}^2(k)) = 1 \alpha$
- · 기대값 = k ← 표준정규분포의 분산값이 1 이므로
- · 분산 = 2k
- ✓ 카이제곱분포의 가법성
  - 두 확률변수가 서로 독립이고, 각각 카이제곱분포를 따를 때, 이들의 합도 카이제곱분포를 따르는 성질
  - $V_1 \sim \chi^2(k_1)$ ,  $V_2 \sim \chi^2(k_2)$ 이고, 서로 독립이면,  $V_1 + V_2 \sim \chi^2(k_1 + k_2)$

# ✓ 정규모집단에서의 표본 평균 갖는 분포

- · X1, ..., Xn 이 정규분포 N(μ, σ²)에서의 랜덤표본이라 할 때,
- 카이제곱분포의 정의로부터  $\chi^2(n) = \sum_{i=1}^n \frac{(X_i \mu)^2}{\sigma^2}$  이다.
- 그런데,  $\sum_{i=1}^{n} \frac{(X_i \mu)^2}{\sigma^2} = \sum_{i=1}^{n} \frac{(X_i \bar{X})^2}{\sigma^2} + n \frac{(\bar{X} \mu)^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} + \left(\frac{\bar{X} \mu}{\frac{\sigma}{G_i}}\right)^2$
- $\chi^2(n) = \sum_{i=1}^n \frac{(X_i \mu)^2}{\sigma^2}$ 이고,  $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ 이므로 가법성에 의해
- $\left(\frac{\bar{X}-\mu}{\frac{\sigma}{6\pi}}\right)^2 = \chi^2(1)$  이다. 즉,  $\frac{\bar{X}-\mu}{\frac{\sigma}{6\pi}} \sim N(0,1)$  이다.

# $\checkmark$ 분산이 같고 서로 독립인 두 정규 모집단 X~ $N(\mu_1,\sigma^2)$ , Y~ $N(\mu_2,\sigma^2)$

- · X1, ..., Xn<sub>1</sub>과 Y1, ..., Yn<sub>2</sub>이 각각 정규 모집단의 랜덤 표본일 때,
- 카이제곱분포의 가법성에 의해  $\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_1+n_2-2)$  합동표본편차(pooled sample variance)  $S_p^2 = \frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{(n_1+n_2-2)}$ 일 때,

- $\frac{(n_1+n_2-2)S_p^2}{\sigma^2} \sim \chi^2(n_1+n_2-2)$ 이 성립한다.
  - 여기서  $S_n^2$ 는 공통분산  $\sigma^2$ 의 추정량으로서
  - 모분산이  $\sigma^2$ 인 두 랜덤표본을 이용하여 만든 것이다.

# ■ t-분포



자유도에 따른 t-분포함수의 모양

- ✓ 정의:  $t_k = \frac{Z}{\sqrt{V(k)/k}}$
- ✓ 개념
  - · 표본집단의 평균이 가지는 분포를 나타낸다.
  - 모집단에서 표본크기 n 인 표본을 m(여러) 개 추출했을 때, m 개의 표본평균의 평균이 그리는 분포함수가 t-분포함수이다.
  - 확률변수 $t_{n-1} = \frac{\bar{X} \mu}{s/\sqrt{n}} \rightarrow$  자유도 n-1 의 t 값으로 변형하여 계산한다.  $-\frac{\bar{X} \mu}{s/\sqrt{n}} = \frac{\sigma}{s}Z = \frac{Z}{\sqrt{V(n-1)/n-1}} = \mathrm{t}(\mathrm{n}-1) \ (단, \ \bar{X} 와 \ S^2 은 \ \mathrm{Hz} \ \mathrm{독립})$ 

    - 정규모집단의 분산을 모를 때, 정규 모평균을 추정하기 위해 사용한다.

표본집단 표본평균들의 집단 모집단 표준화된 모집단의 분 포: 표준 정규 분포 표준화된 표본평균 의 분포: T 분포

### ✓ 특징

- n 에 따라 그 모양이 변하며, 0을 중심으로 좌우대칭이다.
  - 이때 자유도는 n-1 이다. → 분산에서 (n-1)로 나누는 것과 같다.
  - n 이 충분히 크면 표준정규분포에 접근한다.
- 표본의 크기 n 이 30 보다 작을 때,
  - 모평균, 모평균의 차, 회귀계수의 추정이나 검정에 사용된다.
  - 모집단의 표준편차를 모르고, 모평균을 추정할 때 사용한다.
- · t 분포의 분산값은 n/(n-2), n<2 인 경우는 ∞

# ✓ 분산이 동일한 두 정규모집단에서의 t분포

• 
$$\sigma_1 = \sigma_2 = \sigma$$
인 경우,  $\frac{[(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)]}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim Z(0, 1)$ 가 된다.

- 
$$\overline{W} = (\overline{X} - \overline{Y})$$
라 하면,  $V(\overline{W}) = V(\overline{X}) + V(\overline{Y}) = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}$ 이므로...

- 
$$\overline{W} = (\overline{X} - \overline{Y})$$
라 하면,  $V(\overline{W}) = V(\overline{X}) + V(\overline{Y}) = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}$ 이므로...
- 이때, 
$$\frac{[(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)]}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \stackrel{\bot}{=} \frac{\overline{S}}{\frac{(S_p) \sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}{(n_1 + n_2 - 2)}} = \overline{t(n_1 + n_2 - 2)}$$
- 여기서  $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$  때,

- 여기서 
$$S_p^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{(n_1+n_2-2)}$$
일 때,

$$- \frac{(n_1+n_2-2)S_p^2}{\sigma^2} \sim \chi^2(n_1+n_2-2) \quad 0 | \Gamma |.$$

### ■ F-분포



### ✓ 개념

- 두 확률변수 V1, V2 가 각각 자유도 k1, k2 이고 서로 독립인 카이제곱분포를 따를 때,  $F(k1, k2) = \frac{V_1/k_1}{V_2/k_2}$ 의 분포
- 따라서, F(k1, k2) =  $\frac{s_1^2}{s_2^2} \frac{\sigma_2^2}{\sigma_1^2}$

• 분산이 동일한 두 정규모집단에서의 F 분포 - 
$$\sigma_1 = \sigma_2 = \sigma$$
인 경우,  $F(n_1 - 1, n_2 - 1) = \frac{s_1^2}{s_2^2}$ 

## ✓ 특징

- · 두 정규모집단에서 확률로 추출한 표본으로부터 구한 두 표본분산과 두 모분산의 동일성 여부에 대한 추론에 사용한다.
  - X, Y 두집단의 분산이 동일하다는 가설 Ho:  $\frac{{\sigma_1}^2}{{\sigma_2}^2} = 1$
  - $\sigma_1$ ,  $\sigma_2$ 는 모른다. s 를 이용,  $\frac{{s_1}^2}{{s_2}^2} > F_{\alpha}(n_1 1, n_2 1)$ 이면  $H_0$  기각
- 주로, 분산분석과 실험계획법 등에 사용된다.
- 확률변수 F(k1, k2)에 대해, F(k1, k2) = 1/F(k2, k1) 이다.(정의에 의해)
  - $F_{1-\alpha}(k_1, k_2) = \frac{1}{F_{\alpha}(k_2, k_1)}$
- ✓ 사용예: P(F(15,9 )≥?)=0.01 → 계산>확률분포>F-분포



- Fα(15,9)보다 클때의 확률이 0.01 이므로, 누적은 1-0.01=0.99 를 입력 상수값으로 설정해야한다.
- 확률로부터 Fα를 구해야 하므로, "역 누적 확률"을 적용한다.
- 결과는 4.96 이다.
- ✓ t-분포와 F-분포의 관계

• F(1, 
$$n_1 - 1$$
) =  $\frac{Z^2/_1}{V(n_1 - 1)/_{n_1 - 1}} = T^2(n_1 - 1)$ 

· 즉, t 분포는 F 분포의 특수한 형태로 추출될 수 있다.

# 2-5 기출문제

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| 1  |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 21 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 41 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 61 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    | ·  |    |    |    |    |