Sublinear-Space Approximations of Vertex Centrality in Evolving Graphs

Benjamin W. Priest

Thayer School of Engineering
Dartmouth College

benjamin.w.priest.th@dartmouth

December 6, 2018

Overview

- Introduction
- 2 Background
- Pseudo-Asynchronous Communication Schemes for Vertex-Centric Distributed Algorithms
- DEGREESKETCH and Local Triangle Count Heavy Hitters
- **5** Sublinear κ -Path Centrality

Motivation

- Many modern computing problem focus on complex relational data
- Data are phrased as large graphs
 - e.g. the Internet, communication networks, transportation systems, protein networks, epidemiological models, social networks
- Often want to identify which vertices are "important"
 - Robust to changes?
 - Sublinear memory?

Overcoming Data Scale: Data Streaming

- Traditional RAM algorithms scale poorly
 - Awkward to store data in memory
 - Superlinear scaling unacceptable
- Data stream model to the rescue!
 - Sequential data access
 - Sublinear memory
 - Linear amortized time
 - Constrained number of passes
 - Monte Carlo Approximations

Overcoming Data Scale: Distributed Data Streaming

- Distributed memory model a staple of HPC
 - Divide computation across many processors
 - Communication an important resource
 - Immense scaling of exact algorithms
- Why not distributed data streams!
 - Sketch data structures afford stream composition
 - Works nicely with vertex-centric algorithms
 - Even greater scaling
 - Linear communication

Centrality Indices

- Assign scores to vertices
 - ullet Higher score o more important
 - Depends on graph structure
 - Different indices in different domains
- Scores are not informative
 - Usually want top k vertices
- Relative order-preserving approximation is acceptable

Large Scale Graph Centrality

The Problem

- Memory overhead
- Computational Overhead
- Communication Overhead
- Wasted effort
 - Generally only need top elements vis-á-vis a centrality index

Our Solution

- Sketch data structures
 - Utilize composable streaming summaries of vertex-local information
- Distributed memory
 - Partition graph and distribute sketches
 - Polyloglinear computation, memory, and communication

Graph Primitives

Assume throughout that $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathbf{w})$, where $|\mathcal{V}|=n$ and $|\mathcal{E}|=m$

- ullet ullet ullet is the weight of edge e if $e \in \mathcal{E}$ and zero otherwise
- \mathcal{G} has adjacency matrix $A \in \mathbb{R}^{n \times n}$ so that $A_{x,y} = \mathbf{w}_{xy}$ for $xy \in \mathcal{E}$
- \mathcal{G} has vertex-edge incidence matrix $B \in \mathbb{R}^{\binom{n}{2} \times n}$ so that

$$B_{xy,z} = \begin{cases} \mathbf{w}_{xy} & \text{if } x = z \\ -\mathbf{w}_{xy} & \text{if } y = z \\ 0 & \text{else.} \end{cases}$$

$$B = \begin{array}{ccccc} & a & b & c & d \\ ab & 1 & -1 & 0 & 0 \\ ac & 1 & 0 & -1 & 0 \\ ac & 0 & 0 & 0 & 0 \\ bc & 0 & 0 & 0 & 0 \\ bd & 0 & 1 & 0 & -1 \\ cd & 0 & 0 & 1 & -1 \end{array}$$

Streaming Background

- A stream σ accumulating $\mathbf{f} \in \mathbb{R}^n$ is a list of rank-1 updates
 - An update (i, c) means $M \leftarrow \mathbf{f} + c * e_i$
 - A cash register stream enforces c > 0 for all updates
 - A turnstile stream allows negative updates
 - ullet A *strict turnstile* stream allows negatives but enforces $\mathbf{f} \in \mathbb{R}^n_{\geq 0}$
- ullet An algorithm accumulating a data structure ${\cal S}$ and is said to be...
 - streaming if S uses $O(\log n)$ memory
 - semi-streaming if S uses $O(n \operatorname{polylog} n)^1$ memory
- ullet Want to minimize the number of passes over σ
 - 1 pass ideal
 - Constant or logarithmic passes sometimes acceptable

Sketching

Definition (Sketch)

A *Sketch* is a streaming data structure S that admits a merge operator \oplus . If \circ is the stream concatenation operator, then for any streams σ_1 and σ_2 ,

$$\mathcal{S}(\sigma_1) \oplus \mathcal{S}(\sigma_2) = \mathcal{S}(\sigma_1 \circ \sigma_2).$$

Definition (Linear Sketch)

A Linear Sketch S is a linear projection of V to a lower dimension. For any streaming frequency vectors \mathbf{f}_1 and \mathbf{f}_2 and scalars a and b,

$$a\mathcal{S}(\mathbf{f}_1) + b\mathcal{S}(\mathbf{f}_2) = \mathcal{S}(a\mathbf{f}_1 + b\mathbf{f}_2).$$

Sketches are useful for stream summarization when comparisons between streams are important

- 《曰》 《라》 《호》 《호》 - 호

Degree Centrality

$$\mathcal{C}^{\mathrm{DEG}}(x) = |\{(u, v) \in E \mid x \in \{u, v\}\}| = \|A_{x,:}\|_1 = \|A_{:,x}\|_1$$

• Naïve online O(n)-space and -time algorithm exists

Priest (Dartmouth)

Degree Centrality

We show $\widetilde{O}(1)$ -space distributable streaming algorithms

• Naïve online O(n)-space and -time algorithm exists

Degree Centrality

We show $\widetilde{O}(1)$ -space distributable streaming algorithms

• Naïve online O(n)-space and -time algorithm exists

Closeness Centrality

$$C^{\text{CLOSE}}(x) = \frac{1}{\sum_{y \in V} d(x, y)}$$

- Online exact $O(n^2)$ -space O(nm)-time algorithm [WC14]
- Batch Approximate $O(n^2)$ -space and almost-linear time algorithm [CDPW14]

Degree Centrality

We show $\widetilde{O}(1)$ -space distributable streaming algorithms

• Naïve online O(n)-space and -time algorithm exists

Closeness Centrality

$$C^{\text{CLOSE}}(x) = \frac{1}{\sum d(x, y)}$$

- Onl We show constant-pass semi-streaming algorithm
- Batch Approximate $O(n^2)$ -space and almost-linear time algorithm [CDPW14]

Triangle Count Centrality

$$\mathcal{C}^{\mathrm{Tr}}(x) = |\{yz \in \mathcal{E} \mid xy, yz, xz \in \mathcal{E}\}| \qquad \text{(vertex-local)}$$

$$\mathcal{C}^{\mathrm{Tr}}(xy) = |\{z \in \mathcal{E} \mid xy, yz, xz \in \mathcal{E}\}| \qquad \text{(edge-local)}$$

- Exact O(m)-space, $O(m^{\frac{3}{2}})$ serial and distributed algorithms [AKM13]
- Streaming sampling sublinear-space algorithms [LK15, SERU17]
 - Including distributed generalizations [SHL⁺18, SLO⁺18, PPS18]

Triangle Count Centrality
$$\mathcal{C}^{\mathrm{TRI}}(x) = |\{yz \in \mathcal{E} \mid xy, yz, xz \in \mathcal{E}\}| \qquad \text{(vertex-local)}$$
 We show 2-pass, semi-streaming, distributed sketch-based query algorithms for estimating heavy hitters
$$\text{M13}]$$
 • Streaming sampling sublinear-space algorithms [LK15, SERU17] • Including distributed generalizations [SHL+18, SLO+18, PPS18]

Triangle Count Centrality

$$\mathcal{C}^{\mathrm{TRI}}(x) = |\{yz \in \mathcal{E} \mid xy, yz, xz \in \mathcal{E}\}|$$
 (vertex-local)

We show 2-pass, semi-streaming, distributed sketch-based query algorithms for estimating heavy hitters

KM13]

- Streaming sampling sublinear-space algorithms [LK15, SERU17]
 - \bullet Including distributed generalizations [SHL $^+$ 18, SLO $^+$ 18, PPS18]

κ -Path Centrality

$$C^{\kappa}(x) = \Pr_{p:|p| \leq \kappa}[x \in p \land p \text{ a simple path }]$$

- O(m)-space $O(n^{1+\alpha}\log^2 n)$ -time approximation algorithm [WC14]
- Empirical proxy for betweenness centrality heavy hitters
 - Online exact and approximate $O(n^2)$ and O(m)-space algorithms exist [GMB12, WC14, KMB15, BMS14]

4 D > 4 D > 4 E > 4 E > E 99 P

Triangle Count Centrality
$$\mathcal{C}^{\mathrm{TRI}}(x) = |\{yz \in \mathcal{E} \mid xy, yz, xz \in \mathcal{E}\}| \qquad \text{(vertex-local)}$$
 We show 2-pass, semi-streaming, distributed sketch-based query algorithms for estimating heavy hitters
$$\text{M13}]$$
 • Streaming sampling sublinear-space algorithms [LK15, SERU17] • Including distributed generalizations [SHL+18, SLO+18, PPS18]
$$\kappa\text{-Path Centrality}$$

$$\mathcal{C}^{\kappa}(x) = \Pr_{x \in \mathcal{P} \land \mathcal{P}} \text{ a simple path } \text{C14}$$
 • Online exact and approximate $\mathcal{O}(n^2)$ - and $\mathcal{O}(m)$ -space algorithms exist

[GMB12, WC14, KMB15, BMS14]

Motivation: Vertex-Centric Algorithms

The Problem:

- Most distributed graph algorithms are vertex-centric
 - Partition local vertex information across processors
 - Processors communicate as in rounds [MAB+10]
- Scale-free graphs common in applications
 - Exhibit very high degree vertices
 - Cause computation, communication, and memory "hotspots"
 - Synchronous communication moves at the speed of the slowest processor

Existing Solutions:

- Asynchronous Communication
 - Processors communicate point-to-point as needed
 - Increased implementation complexity
- Vertex delegation [PGA14]
 - Subpartition high degree vertices between processors
 - Adds communication overhead

Approach: Pseudo-Asynchronous Communication Protocol

The Idea

Allow processors to drop out of communication exchanges when finished

- ullet Partion processor set ${\mathcal P}$ into *local* and *remote* exchanges
 - Takes advantage of hybrid distributed memory
- $P \in \mathcal{P}$ maintains send buffer $\mathcal{S}[P]$ and receive buffer $\mathcal{R}[P]$
 - ullet Begin forwarding messages when $\mathcal{S}[P]$ reaches threshold
 - Drop out of exchange when all other processors in exchanges stop updating $\mathcal{R}[P]$
- Three protocols:
 - Node Local
 - Node Remote
 - Node Local Node Remote (NLNR)

Node Local and Node Remote

Node Local

- Send messages to local core matching destination local offset
- Send messages to remote core matching destination node offset
- Good for mostly point-to-point messages

Node Remote

- Send messages to remote core matching destination node offset
- Send messages to local core matching destination local offset
- Good for large numbers of broadcasts

Node Local Node Remote

Node Local Node Remote

- Further partition processors by layers
 - A layer is a collection of nodes equal to the number of cores per node
- Send messages to local core matching destination layer offset
- Send messages to remote core matching destination node offset
- Send messages to local core matching destination local offset
- Best for extreme scale where many layers exist

Validation of Claims

Experiment

- 20B message exchange
 - Destination sampled from Pareto distribution
 - Batch size is maximum $|\mathcal{S}[P]|$

NLNR exhibits best scaling, others more useful with fewer nodes

Implementation Details

YGM C++/MPI Library

- Authored by myself, Trevor Steil (UMN), and Roger Pearce (LLNL)
- Simple API for handling pseudo-asynchronous communication
 - Clients need only specify receive behavior
- Supports message serialization for arbitrary, variable-length messages
- Supports LLNL Projects
 - HAVOQgt
 - graph500 scale leader
 - others?
- Useful for not just vertex-centric algorithms, but any algorithm with asymmetric computational and communication load

YGM to be open sourced

Motivation: Local Triangle Counting

The Problem:

- Local triangle counting a common big data analytic
 - Exact computation expensive $O\left(m^{\frac{3}{2}}\right)!$
- Recall

$$\mathcal{C}^{\mathrm{TrI}}(x) = |\{yz \in \mathcal{E} \mid xy, yz, xz \in \mathcal{E}\}| \qquad \text{(vertex-local)}$$

$$\mathcal{C}^{\mathrm{TrI}}(xy) = |\{z \in \mathcal{E} \mid xy, yz, xz \in \mathcal{E}\}| \qquad \text{(edge-local)}$$

Existing Solutions:

- Many exact distributed algorithms [AKM13, Pea17]
- Many approximate streaming algorithms via sampling [LK15, SERU17]
- ... and some utilizing both models [SHL+18, SLO+18]

Approach: Sublinear Intersection Method

Idea: Intersection method, but using cardinality sketches

- Cardinality sketches summarize set size
- Support union operation, and some support limited intersection operation
 - High variance if intersection is small
 - Likely best performance on heavy hitters
- Affords edge- and vertex-local triangle count estimation
- Outputs only reliable if triangle density is nontrivial
 - Triangle density = $\frac{\# \text{ triangles}}{\# \text{ possible triangles}}$

HYPERLOGLOG Cardinality Sketches

HLL cardinality sketches

Maintain $r = 2^p$ 6-bit registers M and a 64-bit hash function h

- Insert x: let $i = \langle x_1, \dots, x_p \rangle$ and $w = \langle x_{p+1}, \dots, x_{64} \rangle$
- $\rho(w) = \text{initial zero bits of } w \text{ plus } 1$
- $M_i = \max\{M_i, \rho(w)\}$
- Estimator derives from harmonic mean of M

HYPERLOGLOG Cardinality Sketches

HLL cardinality sketches

Maintain $r = 2^p$ 6-bit registers M and a 64-bit hash function h

- Insert x: Outputs \widetilde{C} such that for cardinality C, w.h.p. $|C \widetilde{C}| \leq \frac{1.04}{\sqrt{m}}C$ [FFGM07]
- $M_i = \max\{M_i, \rho(w)\}$
- Estimator derives from harmonic mean of M

HYPERLOGLOG Cardinality Sketches

HLL cardinality sketches

Maintain $r = 2^p$ 6-bit registers M and a 64-bit hash function h

- Insert x:
 $\rho(w) = i$ Outputs \widetilde{C} such that for cardinality C,
 w.h.p. $|C \widetilde{C}| \leq \frac{1.04}{\sqrt{m}}C$ [FFGM07]
- $M_i = \max\{M_i, \rho(w)\}$
- Estimator derives from harmonic mean of M

Useful results

- Native intersection operator (elementwise maximum)
- Various improved harmonic [HNH13, QKT16] and maximum likelihood estimators [XZC17, Lan17, Ert17]
- Sparsification for low cardinality sets [HNH13]
- Compression to 4 and 3 bit registers [XZC17]
- Intersection estimators [Tin16, CKY17, Ert17]

DEGREESKETCH and Triangle Counting

Assume a partition
$$f: \mathcal{V} \to \mathcal{P}$$
, and let $\mathcal{V}_P = \{v \in \mathcal{V} \mid f(v) = P\}$

- ullet Distribute DegreeSketch ${\mathcal D}$ across ${\mathcal P}$
 - $\mathcal{D}[v]$ holds a HLL for adjacency set of $v \in \mathcal{V}$
 - P holds $\mathcal{D}[v]$ for $v \in \mathcal{V}_P$
- ullet Accumulate ${\mathcal D}$ in one pass over σ
 - Assume $P \in \mathcal{P}$ gets substream σ_P
 - P sends $xy \in \sigma_P$ to f(x) and f(y)
 - When P gets $xy : x \in \mathcal{V}_P$, insert y into $\mathcal{D}[x]$
 - $\mathcal{D}[x]$ starts sparse and eventually saturates
- ullet \mathcal{D} can be queried after estimation, e.g.
 - ullet Estimate $\widetilde{\mathcal{C}}^{ ext{Deg}}(v) = ext{Estimate}(\mathcal{D}[v])$
 - Estimate $\widetilde{\mathcal{C}}^{\mathrm{T}_{\mathrm{RI}}}(uv) = \mathcal{D}[u]\widetilde{\cap}\mathcal{D}[v]$
 - Involves communication if $f(u) \neq f(v)$
 - Estimate $\widetilde{\mathcal{C}}^{\mathrm{TRI}}(v) = \frac{\sum_{uv \in \mathcal{E}} \widetilde{\mathcal{C}}^{\mathrm{TRI}}(uv)}{2}$
 - Requires second pass in general

 $\widetilde{O}(m)$ time and communication and $\widetilde{O}(\varepsilon^{-2}n)$ space!

Edge-Local Triangle Count Heavy Hitters

Algorithm 1 Edge-Local Triangle Count Heavy Hitters

```
1: Accumulate \mathcal{D} in distributed pass over \sigma
 2: H_k \leftarrow \text{empty } k\text{-heap}
 3: T \leftarrow 0
 4: parallel for xy \in \sigma_P do // second pass
          Send (E, xy) to f(x) and (E, yx) f(y)
 5:
 6:
         for (E, xy) \in \mathcal{R}[P] do
               Send (S, xy, \mathcal{D}[x]) to f(y)
 7:
          for (S, xy, \mathcal{D}[x]) \in \mathcal{R}[P] do
 8.
               Insert (xy, \mathcal{D}[x] \cap \mathcal{D}[y]) into H_k
 9.
               T \leftarrow T + \mathcal{D}[x] \cap \mathcal{D}[v]
10:
11: T \leftarrow T/2
12: Global accounting of T, H_k
13: return H_k
```

Validation of Claims: Precision and Recall

Validation of Claims: Relative Error

Validation of Claims: Good vs Bad Triangle Density

Implementation Details

DEGREESKETCH C++/MPI Library

- Authored by myself
- Utilizes YGM for communication
- Accumulation and query API for DEGREESKETCH
- Supports sparse and compressed registers
- Implementations for edge- and vertex-local triangle count heavy hitter estimation
- Supports more exotic queries

DegreeSketch to be open sourced

Motivation: Betweenness Centrality Heavy Hitters

The Problem:

- Computing Betweenness centrality exactly amounts to computing ALLSOURCESALLSHORTESTPATHS
 - Expensive O(mn)!

Existing Solutions:

- Approximate via a logarithmic number of SINGLESOURCEALLSHORTESTPATHS [GMB12, BMS14, Yos14, KMB15, RK16]
 - Difficult to distribute
 - Unclear if possible in o(m) memory

Approach: Sublinearize κ -Path Centrality

Idea: "Come at the problem sideways"

- High κ -path centrality empirically correlates with high betweenness centrality [KAS+13]
- Algorithm amounts to sampling random simple paths
 - Use ℓ_p sampling sketches to sublinearize
- Sublinear approximation of κ -path centrality \to emprical recovery of high betweenness centrality vertices?

 κ -path centrality

$$PC(x, \kappa) = Pr_{p:|p| \le \kappa}[x \in p \land p \text{ a simple path}]$$

"simple path" = non-self-intersecting path

ℓ_p Sampling Sketches

ℓ_p sampling sketches

Sample from frequency vector ${f f}$ with probability relative to ℓ_p norm

- Sample $t_i \sim_R (0,1) \ \forall i \in [n]$
- Rescale updates to \mathbf{f}_i by $1/t_i^{1/p}$
- ullet Accumulate Tug-of-War, CountSketch, and ℓ_p norm sketches
- \bullet Use sketches to output ${\tt COUNTSKETCH}$ argmax or FAIL

ℓ_p Sampling Sketches

ℓ_p sampling sketches

Sample from frequency vector ${f f}$ with probability relative to ℓ_p norm

• Sample $t_i \sim_R (0$

- Blah blah etc etc
- Rescale updates
 It is complex
- ullet Accumulate Tug-of-War, CountSketch, and ℓ_p norm sketches
- Use sketches to output COUNTSKETCH argmax or FAIL

ℓ_p Sampling Sketches

ℓ_p sampling sketches

Sample from frequency vector ${f f}$ with probability relative to ℓ_p norm

- Sample t_i Outputs (i, P) w.p. 1δ , where $i \in [n]$ is sampled w.p. $P = (1 \pm \varepsilon) \frac{|v_i|^p}{||v||_{L^p}^p}$ [MW10]
- Accumulate Tug-of-War, CountSketch, and ℓ_p norm sketches
- Use sketches to output CountSketch argmax or FAIL

Useful results

[JST11, Vu18]

- ullet ℓ_0 sketch requires $\mathit{O}(\log(1/\delta))$ memory and update time
 - Useful for unweighted random hops
- ℓ_1 sketch requires $\widetilde{O}(\varepsilon^{-1}\log(1/\delta))$ memory and $\widetilde{O}(\log(1/\delta))$ update time
 - Useful for weighted random hops
- ullet s parallel ℓ_p sketches can be accumulated in time independent of s

ℓ_p Sampling Graph Sparsification

- Exploit sketch linearity
 - Sample ℓ_0 sampling sketch matrices S_1, \ldots, S_t , each of which will sketch every column of B
 - $S_1(B_{:,x})$ returns a sampled neighbor of x, say y
 - $S_2(B_{:,x}) + S_2(B_{:,y}) = S_2(B_{:,x} + B_{:,y})$ returns a sampled neighbor of the supervertex (x + y)
 - et cetera
- This method can solve several problems [AGM12a, AGM12b]:
 - O(n polylog n) to decide connectivity, k-connectivity, bipartiteness, and to approximate the weight of the MST
 - Multipass $\tilde{O}(n^{1+1/\alpha})$ to compute sparsifiers, the exact MST, α -spanners, and approximate the maximum weight matching

We will use similar methods to sample random walks and random simple paths in distributed algorithms

Distributed Accumulation ℓ_p Sampling Sketches

- ullet $P \in \mathcal{P}$ accumulates adjacency set $\mathcal{A}[v]$ for each $v \in \mathcal{V}_P$
 - When $\mathcal{A}[v]$ too large, replace it with $s \ \ell_0$ sampling sketches
 - Write current state and all subsequent updates to disk memory
- Queries to $\mathcal{A}[v]$ return a sampled neighbor of v
 - ullet If $\mathcal{A}[v]$ is a set of sketches, one is consumed
 - If FAIL, repeat
 - Once A[v] sketches are exhausted, P takes another pass over v's substream in disk memory

Avoids need to subpartition vertices across multiple processors, effectively exchanging communication time for I/O time

Sublinear Random Walk and Simple Path Sampling

Random Walk Simulation

- Sample t vertices $\{v_{1,1}, \ldots, v_{t,1}\}$ and:
 - Sample $v_{i,j+1}$ from $\mathcal{A}[v_{i,j}]$
 - Communicate $(v_{i,1}, \ldots, v_{i,j+1})$ to $f(v_{i,j+1})$

Random Simple Path Simulation

- Similar to random walks, except:
 - Do not accumulate sketches ahead of time
 - Sample $v_{i,j+1}$ from $\mathcal{A}[v_{i,j}] \setminus \{v_{i,1}, \dots, v_{i,j-1}\}$
 - If $\mathcal{A}[v_{i,j}]$ is not in memory, accumulate a sketch ignoring edges to any of $\{v_{i,1},\ldots,v_{i,j-1}\}$
 - Communicate $(v_{i,1}, \ldots, v_{i,j+1})$ to $f(v_{i,j+1})$

Sublinear distributed storage of graph by sketching high degree vertices

Sublinear κ -Path Centrality

 κ -Path Centrality Approximation Algorithm ([KAS⁺13]):

- Simulate $T = 2\kappa^2 n^{1-2\alpha} \ln n$ ($\leq \kappa$)-length simple paths over \mathcal{G} maintain count[x] for each $x \in \mathcal{V}$
- Given $\alpha \in [-1/2, 1/2]$, for each $x \in \mathcal{V}$, $\left|\widetilde{\mathcal{C}}^{\kappa}(x) \mathcal{C}^{\kappa}(x)\right| \leq n^{1/2 + \alpha}$ w.h.p.
- Easy to distribute in vertex-centric model

Sublinear κ -Path Centrality

Algorithm 2 Sublinear κ -Path Centrality

```
1: for i \in \{1, ..., T\} do
         p_i \leftarrow \text{empty path}
 2:
          p_{i,1} \leftarrow \text{uniform sample from } \mathcal{V}
 3:
           l_i \leftarrow \text{uniform sample from } \{1, 2, \dots, \kappa\}
 4.
 5: for x \in \mathcal{V} doc_{\vee} \leftarrow 0
 6: parallel for i \in \{1, 2, ..., \kappa - 1\} do
            parallel for i \in \{1, 2, \dots, T\} do
 7:
                 if i < l_i then
 8:
                       p_{i,j+1} \leftarrow \text{sample from } \mathcal{A}[p_{i,i}]
 9:
                       if p_{i,i+1} = \emptyset then discard
10:
                 else if i = l_i then
11:
                       c_{p_{i,k}} \leftarrow c_{p_{i,k}} + 1 \text{ for } k \in \{1, \dots, j\}
12:
13: return c_x/2\kappa n^{-2\alpha} \ln n for x \in V
```

Summary of Results

- The Goal: distributed sublinear approximations of centrality indices
- Engineering Results
 - YGM: Pseudo-Asynchronous Communication Handler
- Algorithmic Results
 - A streaming degree centrality approximation and heavy hitter recovery algorithms
 - A O(1)-pass semi-streaming closeness centrality approximation algorithm
 - 2-pass distributed semi-streaming edge- and vertex-local triangle count heavy hitter estimation algorithms using DegreeSketch
 - Distributed sublinear semi-streaming random walk and random simple path sampling algorithms
 - \bullet Distributed sublinear semi-streaming $\kappa\text{-path}$ centrality estimation algorithm
- Future Work
 - Applications for DegreeSketch
 - Sublinear random walk and random simple path implementation

Priest (Dartmouth) Sublinear Centrality December 6, 2018 36 / 37

Questions?