SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH THUẬN

ĐỀ CHÍNH THỰC (Đề này có 01 trang)

KÌ THI CHỌN HSG CẤP TỈNH LỚP 12 THPT NĂM HỌC 2018 – 2019

Ngày thi: 18/10/2018 Môn: Toán

Thời gian làm bài: 180 phút (không kể thời gian giao đề)

Bài 1 (6,0 điểm).

- a) Cho x và y là các số thực thỏa mãn $2x \ge y > 0$. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P = \frac{x^2 xy + y^2}{x^2 + xy + y^2}$.
- b) Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = x^3 3x^2 3mx + m$ có hai điểm cực trị nằm khác phía đối với trục hoành.

Bài 2 (5,0 điểm).

- a) Tìm số hạng tổng quát của dãy số (u_n) biết $u_1 = 2$ và $u_{n+1} = 2u_n + 5$, $\forall n \in \mathbb{N}^*$.
- b) Cho dãy số (v_n) thỏa mãn $v_1 = \frac{1}{2018}$, $v_{n+1} = \frac{2v_n}{1+2018v_n^2}$, $\forall n \in \mathbb{N}^*$. Chứng minh rằng $v_{n+1} \ge v_n$, $\forall n \in \mathbb{N}^*$.

Bài 3 (4,0 điểm). Giải hệ phương trình

$$\begin{cases} 2\sqrt{xy}(x+y-1) = x^2 + y^2 \\ x^2y\sqrt{y^2+1} - \sqrt{x^2+1} = x^2y - x \end{cases}.$$

- **Bài 4** (5,0 điểm). Cho tam giác ABC nhọn có AB < AC và hai đường cao BE, CF cắt nhau tại H. Các đường tròn $\left(O_1\right)$, $\left(O_2\right)$ cùng đi qua A và theo thứ tự tiếp xúc với BC tại B, C. Gọi D là giao điểm thứ hai của $\left(O_1\right)$ và $\left(O_2\right)$.
 - a) Chứng minh đường thẳng AD đi qua trung điểm của cạnh BC;
 - b) Chứng minh ba đường thẳng EF, BC, HD đồng quy.

 HET	

Học sinh không được sử dụng máy tính cầm tay. Cán bộ coi thi không được giải thích gì thêm.

Họ và tên thí sinh: Số	báo danh:
------------------------	-----------

HƯỚNG DẪN CHẨM

Bài	Nội dung	Điểm
1		6,0
a	Ta có $P = \frac{t^2 - t + 1}{t^2 + t + 1}$, với $t = \frac{x}{y} \ge \frac{1}{2}$.	0,5
	Xét hàm số $f(t) = \frac{t^2 - t + 1}{t^2 + t + 1}$ với $t \ge \frac{1}{2}$.	0,5
	Tính được $f'(t) = \frac{2t^2 - 2}{(t^2 + t + 1)^2}, \begin{cases} f'(t) = 0 \\ t \ge \frac{1}{2} \end{cases} \Leftrightarrow t = 1.$	1,0
	Bảng biến thiên	0,5
	Suy ra giá trị nhỏ nhất của P bằng $\frac{1}{3}$, không có giá trị lớn nhất.	0,5
b		
	Tập xác định $D = \mathbb{R}$ $y' = 3x^2 - 6x - 3m$	0,25
	Yêu cầu bài toán \Leftrightarrow Phương trình $y'=0$ có hai nghiệm phân biệt	
	x_1, x_2 thỏa mãn $y(x_1).y(x_2) < 0$.	0,5
	Phương trình $y' = 0$ có hai nghiệm phân biệt $\Leftrightarrow 1 + m > 0$ (*)	0,25
	Khi đó đồ thị hàm số đã cho có hai điểm cực trị là	
	$A(x_1; y_1), B(x_2; y_2).$	0,25
	Ta có $y = \left(\frac{x}{3} - \frac{1}{3}\right) \cdot y' - 2(m+1)x$	0,23
		0,25
	Do đó $y_1 = y(x_1) = -2(m+1)x_1$	0,25
	$y_2 = y(x_2) = -2(m+1)x_2$	0,5
	$y(x_1).y(x_2) < 0 \Leftrightarrow 4(m+1)^2 x_1.x_2 < 0$	0,5
	$\Leftrightarrow x_1.x_2 < 0 \Leftrightarrow -m < 0 \Leftrightarrow m > 0$	0,25
	Kết hợp với điều kiện (*) ta có $m > 0$ thỏa mãn bài toán	
2		5,0
a	$\forall n \in \mathbb{N}^*$, ta có $u_{n+1} = 2u_n + 5 \Leftrightarrow u_{n+1} + 5 = 2(u_n + 5)$	0,5
	$\text{Dăt } w_n = u_n + 5, \ \forall n \in \mathbb{N}^*.$	
	Khi đó $w_{n+1} = 2w_n, \forall n \in \mathbb{N}^*.$	0,5
	Do đó (w_n) là cấp số nhân có $w_1 = u_1 + 5 = 7$, công bội $q = 2$.	0,5
	Suy ra $w_n = w_1 \cdot q^{n-1} = 7 \cdot 2^{n-1}, \ \forall n \in \mathbb{N}^*.$	0,5
	Vây $u_n = 7.2^{n-1} - 5, \ \forall n \in \mathbb{N}^*.$	0,5
b		
	Chứng minh được $v_n > 0$, $\forall n \in \mathbb{N}^*$.	0,5
	Khi đó $v_{n+1} = \frac{2v_n}{1 + 2108v_n^2} \le \frac{2v_n}{2\sqrt{2018}.v_n} = \frac{1}{\sqrt{2018}}, \forall n \in \mathbb{N}^*.$ (1)	1,0
	Mặt khác, $\forall n \in \mathbb{N}^*$, ta có	
	$v_{n+1} - v_n = \frac{2v_n}{1 + 2018v_n^2} - v_n = \frac{v_n - 2018v_n^3}{1 + 2018v_n^2} = \frac{v_n \left(1 - 2018v_n^2\right)}{1 + 2018v_n^2} \ge 0$	1,0

3	$ \left(2\sqrt{xy}(x+y-1) = x^2 + y^2\right) \tag{1} $	4,0
	$\begin{cases} 2\sqrt{xy}(x+y-1) = x^2 + y^2 & (1) \\ x^2y\sqrt{y^2+1} - \sqrt{x^2+1} = x^2y - x & (2) \end{cases}$	
	Điều kiện $xy \ge 0$	0,25
	Ta có $\sqrt{x^2+1}-x>0$, $\forall x\in\mathbb{R}$ nên $y=0$ không thỏa mãn (2). Do đó	
	$y \neq 0$. Suy ra $x = 0$ không thỏa mãn (1).	0,5
	Nếu x, y cùng âm thì (1) vô lí. Do đó x, y cùng dương.	0,25
	Suy ra (2) $\Leftrightarrow \frac{1}{x^2} \left(\sqrt{x^2 + 1} - x \right) = y \left(\sqrt{y^2 + 1} - 1 \right)$	
	$\Leftrightarrow \frac{1}{x}\sqrt{\frac{1}{x^2}+1} - \frac{1}{x} = y\sqrt{y^2+1} - y (3)$	0,5
	Xét hàm số $f(t) = t\sqrt{t^2 + 1} - t$ trên khoảng $(0; +\infty)$.	0,25
	Ta có $f'(t) = \sqrt{t^2 + 1} + \frac{t^2}{\sqrt{t^2 + 1}} - 1 > 0, \ \forall t > 0$	0,5
	Suy ra $f(t)$ đồng biến trên $(0; +\infty)$	0,5
	Do đó (3) $\Leftrightarrow f\left(\frac{1}{x}\right) = f(y) \Leftrightarrow \frac{1}{x} = y \Leftrightarrow xy = 1$	0,5
	Thay $xy = 1$ vào phương trình (1) ta được	
	$2(x+y-1) = x^2 + y^2 \Leftrightarrow (x-1)^2 + (y-1)^2 = 0 \Leftrightarrow x = y = 1$	0,5
	Vậy hệ phương trình đã cho có nghiệm duy nhất $(x; y) = (1; 1)$	0,25
4		5,0
a	Gọi I là giao điểm của AD và BC .	0,25
	Ta có $IB^2 = IA.ID = IC^2$.	0,75 0,25
	Suy ra $IB = IC$. Do đó I là trung điểm của BC . Hay đường thẳng AD đi qua trung	0,25
	điểm I của BC.	0,20
b		
	$/ \mathbb{R}$	
	\overline{K} \overline{B} \overline{I} \overline{C}	1,0
	Chứng minh được $BHC = BDC$. Suy ra tứ giác $BHDC$ nội tiếp. Chứng minh $AFHD$ nội tiếp	1,0
	Chứng minh EF, BC, HD đồng qui	1,5
<u> </u>		