TD6-Séries numériques

Exercice 1.

- 1. Fait en TD.
- 2. Fait en TD.
- 3. Fait en TD.
- 4. Soit $n \in \mathbb{N}$. Pour tout $k \in [1, n]$, on a

$$\frac{2^k}{(k+1)!} = \frac{1}{2} \times \frac{2^{k+1}}{(k+1)!}.$$

Ainsi, on obtient en effectuant le changement de variable i = k + 1:

$$\sum_{k=0}^{n} \frac{2^{k}}{(k+1)!} = \frac{1}{2} \sum_{k=0}^{n} \frac{2^{k+1}}{(k+1)!} = \frac{1}{2} \sum_{i=1}^{n+1} \frac{2^{i}}{i!} = \frac{1}{2} \left(\sum_{i=0}^{n+1} \frac{2^{i}}{i!} - 1 \right).$$

Or, la suite $\left(\sum_{i=0}^{n+1}\frac{2^i}{i!}\right)_{n\in\mathbb{N}}$ est la suite des sommes partielles d'une série exponentielle donc elle converge vers e^2 . Par conséquent, la suite des sommes partielles de la série $\sum_{n\geq 0}\frac{2^n}{(n+1)!}$ converge vers $\frac{1}{2}\left(e^2-1\right)$.

Ainsi, la série $\sum_{n>0} \frac{2^n}{(n+1)!}$ converge et sa somme vaut $\frac{1}{2}(e^2-1)$.

5. Soit $n \ge 1$. Pour tout $k \in [1, n]$ on a :

$$\frac{k2^k}{k!} = 2 \times \frac{2^{k-1}}{(k-1)!}.$$

Ainsi:

$$\sum_{k=0}^{n} \frac{k2^{k}}{k!} = 2 \sum_{k=1}^{n} \frac{2^{k-1}}{(k-1)!} = 2 \sum_{i=0}^{n-1} \frac{2^{i}}{i!}.$$

Ainsi, la suite des sommes partielles de la série $\sum_{n\geq 0} \frac{n2^n}{n!}$ converge vers $2e^2$.

Par conséquent, la série $\sum_{n\geq 0} \frac{n2^n}{n!}$ converge et sa somme vaut $2e^2$.

6. Pour tout entier naturel *n* on a :

$$\frac{n}{2^{2n+1}} = \frac{1}{8} \times \frac{n}{4^{n-1}}.$$

La série $\sum_{n>0} \frac{n}{2^{2n+1}}$ est donc, à un facteur $\frac{1}{8}$ près, la série géométrique dérivée d'ordre

1 de raison $\frac{1}{4}$. Par conséquent, la série converge et sa somme vaut $\frac{2}{9}$.

Exercice 2. On considère la série de terme général

$$u_n = \frac{n^3 + 2n^2 - 4n + 1}{n!} \quad n \in \mathbb{N}^*$$

- 1. La famille (1, X, X(X 1), X(X 1)(X 2)) est une famille de polynômes non nuls de degrés distincts (famille échelonnée) de $\mathbb{R}_3[X]$. C'est donc une famille libre de $\mathbb{R}_3[X]$. Comme de plus elle est de cardinal $4 = \dim \mathbb{R}_3[X]$, c'est une base de $\mathbb{R}_3[X]$.
- 2. Comme (1, X, X(X-1), X(X-1)(X-2)) est une base de $\mathbb{R}_3[X]$, il existe un unique 4-uplet $(a,b,c,d)\in\mathbb{R}^4$ tel que

$$X^{3} + 2X^{2} - 4X + 1 = a + bX + cX(X - 1) + dX(X - 1)(X - 2).$$

• En évaluant le membre de gauche et de droite en 0 on trouve :

$$1 = a$$
.

• En évaluant le membre de gauche et de droite en 1 on trouve :

$$0 = a + b$$
.

• En évaluant le membre de gauche et de droite en 2 on trouve :

$$9 = a + 2b + 2c.$$

• En évaluant le membre de gauche et de droite en -1 on trouve :

$$6 = a - b + 2c - 6d$$
.

Finalement, a = 1, b = -1, c = 5 et d = 1. Les coordonnées de $X^3 + 2X^2 - 4X + 1$ dans la base de la question précédente sont donc (1, -1, 5, 1).

3. On en déduit que pour tout $n \in \mathbb{N}^*$, on a

$$u_n = \frac{1}{n!} - \frac{n}{n!} + \frac{5n(n-1)}{n!} + \frac{n(n-1)(n-2)}{n!}.$$

Or,

- la série $\sum_{n\geq 1} \frac{1}{n!}$ converge (série exponentielle sans son premier terme) et sa somme vaut e-1;
- pour tout $n \in \mathbb{N}^*$, $\frac{n}{n!} = \frac{1}{(n-1)!}$ donc, en faisant un changement d'indice, $\sum_{n \geq 1} \frac{n}{n!}$ converge et

$$\sum_{n=1}^{+\infty} \frac{n}{n!} = \sum_{n=1}^{+\infty} \frac{1}{(n-1)!} = \sum_{\ell=0}^{+\infty} \frac{1}{\ell!} = e;$$

• pour tout $n \ge 2$, $\frac{n(n-1)}{n!} = \frac{1}{(n-2)!}$ (et le premier terme est nul) donc, en faisant un changement d'indice, $\sum_{n\ge 1} \frac{n(n-1)}{n!}$ converge et

$$\sum_{n=1}^{+\infty} \frac{n(n-1)}{n!} = \sum_{n=2}^{+\infty} \frac{1}{(n-2)!} = \sum_{\ell=0}^{+\infty} \frac{1}{\ell!} = e;$$

• pour tout $n \ge 3$, $\frac{n(n-1)(n-2)}{n!} = \frac{1}{(n-3)!}$ (et les deux premiers termes sont nuls) donc, en faisant un changement d'indice, $\sum_{n\ge 1} \frac{n(n-1)(n-2)}{n!}$ converge et

$$\sum_{n=1}^{+\infty} \frac{n}{n!} = \sum_{n=3}^{+\infty} \frac{1}{(n-3)!} = \sum_{\ell=0}^{+\infty} \frac{1}{\ell!} = e.$$

Ainsi, $\sum_{n\geq 1} u_n$ est une somme de séries convergentes donc est convergente et sa somme est

$$\sum_{n=1}^{+\infty} u_n = e - 1 - e + 5e + e = 6e - 1.$$

Exercice 3. Soit $n \ge 2$. On a :

$$\ln\left(1-\frac{1}{n^2}\right) = \ln\left(\frac{n^2-1}{n^2}\right) = \ln\left(\frac{n-1}{n}\frac{n+1}{n}\right) = \ln\left(n-1\right) - \ln\left(n+1\right) - \ln\left(n\right).$$

Donc par télescopage :

$$\sum_{k=2}^{n} \ln \left(1 - \frac{1}{n^2}\right) = \ln \left(1\right) - \ln \left(n\right) + \ln \left(n+1\right) - \ln \left(2\right) = \ln \left(1 - \frac{1}{n}\right) - \ln \left(2\right).$$

Ainsi, la série converge et sa somme vaut $-\ln(2)$.

Exercice 4.

1. Soit $n \geq 2$. Comme $n - \sqrt{n} \leq n$ et que la fonction inverse est décroissante sur \mathbb{R}_+^* alors on a :

$$\frac{1}{n-\sqrt{n}} \ge \frac{1}{n}.$$

Ainsi: $\forall n \geq 2, \ \frac{1}{n-\sqrt{n}} \geq \frac{1}{n}$.

Les séries $\sum_{n\geq 2} \frac{1}{n-\sqrt{n}}$ et $\sum_{n\geq 1} \frac{1}{n}$ sont à termes positifs et la série $\sum_{n\geq 1} \frac{1}{n}$ est une série de Riemann divergente. D'après le critère de comparaison pour les séries à termes positifs, on en déduit que la série $\sum_{n\geq 2} \frac{1}{n-\sqrt{n}}$ diverge aussi.

2. Soit $n \ge 1$. Comme $n! \ge n$ alors $\sqrt{n}n! \ge n^{\frac{3}{2}}$ puis, la fonction inverse étant décroissante sur \mathbb{R}_+^* , on obtient :

$$\frac{1}{\sqrt{n}n!} \le \frac{1}{n^{\frac{3}{2}}}.$$

Ainsi : $\forall n \geq 1, \ \frac{1}{\sqrt{n}n!} \leq \frac{1}{n^{\frac{3}{2}}}.$

Les séries $\sum_{n\geq 1} \frac{1}{\sqrt{n}n!}$ et $\sum_{n\geq 1} \frac{1}{n^{\frac{3}{2}}}$ sont à termes positifs et la série $\sum_{n\geq 1} \frac{1}{n^{\frac{3}{2}}}$ est une série de Riemann convergente. D'après le critère de comparaison pour les séries à termes positifs, on en déduit que la série $\sum_{n\geq 2} \frac{1}{\sqrt{n}n!}$ converge aussi.

Exercice 5.

1. Par croissance comparée on sait que :

$$\lim_{n\to+\infty}n^2e^{-\sqrt{n}}=0.$$

Donc $e^{-\sqrt{n}} = \mathop{o}_{n \to +\infty} \left(\frac{1}{n^2}\right)$. Les séries $\sum_{n \ge 0} e^{-\sqrt{n}}$ et $\sum_{n \ge 1} \frac{1}{n^2}$ sont à termes positifs et la série $\sum_{n \ge 1} \frac{1}{n^2}$ est une série de Riemann convergente. D'après le critère de négligeabilité pour les séries à termes positifs, on en déduit que la série $\sum_{n \ge 1} e^{-\sqrt{n}}$ converge aussi.

L'idée ici est de chercher à comparer notre terme général à celui d'une série de Riemann.
 Par croissance comparée, il est évident qu'on ne pourra pas trouver de a > 1 tel que

 $\lim_{n \to +\infty} n^a \frac{1}{\sqrt{n} \ln(n)} = 0.$

On va donc plutôt chercher un $a \le 1$ tel que $\lim_{n \to +\infty} n^a \frac{1}{\sqrt{n} \ln(n)} = +\infty$. Toujours par croissance comparée, on voit que a = 1 convient. Cela signifie que :

$$\frac{1}{n} = \underset{n \to +\infty}{o} \left(\frac{1}{\sqrt{n} \ln(n)} \right).$$

De plus, les séries $\sum_{n\geq 1} \frac{1}{n}$ et $\sum_{n\geq 2} \frac{1}{\sqrt{n} \ln{(n)}}$ sont à termes positifs et la série $\sum_{n\geq 1} \frac{1}{n}$ est divergente. D'après le critère de négligeabilité pour les séries à termes positifs, la série $\sum_{n\geq 2} \frac{1}{\sqrt{n} \ln{(n)}}$ est donc aussi divergente.

Exercice 6.

1. Par équivalent usuel, on sait que :

$$\ln\left(1+\frac{1}{n\sqrt{n}}\right) \underset{n\to+\infty}{\sim} \frac{1}{n\sqrt{n}} = \frac{1}{n^{\frac{3}{2}}}.$$

Or les séries $\sum_{n\geq 1}\ln\left(1+\frac{1}{n\sqrt{n}}\right)$ et $\sum_{n\geq 1}\frac{1}{n^{\frac{3}{2}}}$ sont à termes positifs. D'après le critère d'équivalence pour les séries à termes positifs, on en déduit qu'elles sont de même nature. Or la série $\sum_{n\geq 1}\frac{1}{n^{\frac{3}{2}}}$ est une série de Riemann convergente. Par conséquent, la série $\sum_{n\geq 1}\ln\left(1+\frac{1}{n\sqrt{n}}\right)$ converge aussi.

2. Par équivalent usuel, on sait que :

$$e^{-\frac{1}{\sqrt{n}}} - 1 \underset{n \to +\infty}{\sim} -\frac{1}{\sqrt{n}}.$$

Ainsi:

$$1 - e^{-\frac{1}{\sqrt{n}}} \underset{n \to +\infty}{\sim} \frac{1}{\sqrt{n}}.$$

Or les séries $\sum_{n\geq 1} (1-e^{-\frac{1}{\sqrt{n}}})$ et $\sum_{n\geq 1} \frac{1}{\sqrt{n}}$ sont à termes positifs. D'après le critère d'équivalence pour les séries à termes positifs, on en déduit qu'elles sont de même nature. Or la série $\sum_{n\geq 1} \frac{1}{\sqrt{n}}$ est une série de Riemann divergente. Par conséquent, la série $\sum_{n\geq 1} (1-e^{-\frac{1}{\sqrt{n}}})$ est divergente aussi.

3. Par équivalent usuel, on sait que :

$$e^{\frac{k^2+1}{k^4+1}} - 1 \sim \frac{k^2+1}{k^4+1} \sim \frac{1}{k^2}.$$

Or les séries $\sum_{k\geq 1} (e^{\frac{k^2+1}{k^4+1}}-1)$ et $\sum_{k\geq 1} \frac{1}{k^2}$ sont à termes positifs. D'après le critère d'équivalence pour les séries à termes positifs, on en déduit qu'elles sont de même nature. Or la série $\sum_{k\geq 1} \frac{1}{k^2}$ est une série de Riemann convergente. Par conséquent, la série $\sum_{k\geq 1} (e^{\frac{k^2+1}{k^4+1}}-1)$ est convergente aussi.

Exercice 7.

1. Par équivalents usuels :

$$n^3 - n^2 + 1 \underset{n \to +\infty}{\sim} n^3$$
 et $5n^5 + 3n^4 + 2n \underset{n \to +\infty}{\sim} 5n^5$

donc par quotient

$$\frac{n^3 - n^2 + 1}{5n^5 + 3n^4 + 2n} \equiv \frac{n^3}{5n^5} = \frac{1}{5n^2}.$$

Les séries $\sum_{n\geq 1} \frac{n^3-n^2+1}{5n^5+3n^4+2n}$ et $\sum_{n\geq 1} \frac{1}{5n^2}$ sont à termes positifs donc, d'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature. Or la série $\sum_{n\geq 1} \frac{1}{5n^2}$ est une série de Riemann convergente donc la série $\sum_{n\geq 1} \frac{n^3-n^2+1}{5n^5+3n^4+2n}$ converge aussi.

2. La série $\sum_{n\geq 1} (-1)^n \frac{n^3-n^2+1}{e^n+3n^4+2n^2}$ est à termes quelconques. Étudions l'absolue convergence.

Pour tout $n \ge 1$, $\frac{n^3 - n^2 + 1}{e^n + 3n^4 + 2n^2} \ge 0$ donc

$$\left| (-1)^n \frac{n^3 - n^2 + 1}{e^n + 3n^4 + 2n^2} \right| = \frac{n^3 - n^2 + 1}{e^n + 3n^4 + 2n^2}.$$

Or, par équivalent usuel, $n^3-n^2+1 \underset{n \to +\infty}{\sim} n^3$. De plus, pour tout $n \geq 1$ on a

$$e^{n} + 3n^{4} + 2n^{2} = e^{n}(1 + 3\frac{n^{4}}{e^{n}} + 2\frac{n^{2}}{e^{n}})$$

et $\lim_{n\to+\infty} 1 + 3\frac{n^4}{e^n} + 2\frac{n^2}{e^n} = 1$ car par croissance comparée $\lim_{n\to+\infty} \frac{n^4}{e^n} = \lim_{n\to+\infty} \frac{n^2}{e^n} = 0$. Ainsi

$$e^n + 3n^4 + 2n^2 \underset{n \to +\infty}{\sim} e^n$$

et par quotient on obtient

$$\frac{n^3 - n^2 + 1}{e^n + 3n^4 + 2n^2} \underset{n \to +\infty}{\sim} \frac{n^3}{e^n}.$$

Les séries $\sum_{n\geq 1} \frac{n^3-n^2+1}{e^n+3n^4+2n^2}$ et $\sum_{n\geq 1} \frac{n^3}{e^n}$ sont à termes positifs donc, d'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature.

Étudions la nature de $\sum_{n\geq 1} \frac{n^3}{e^n}$. Par croissance comparée $\lim_{n\to +\infty} n^2 \frac{n^3}{e^n} = 0$ donc $\frac{n^3}{e^n} = 0$ $\lim_{n\to +\infty} \left(\frac{1}{n^2}\right)$.

Les séries $\sum_{n\geq 1} \frac{n^3}{e^n}$ et $\sum_{n\geq 1} \frac{1}{n^2}$ sont à termes positifs et $\sum_{n\geq 1} \frac{1}{n^2}$ est une série de Riemann convergente donc, d'après le critère de comparaison par négligeabilité pour les séries à termes positifs, $\sum_{n\geq 1} \frac{n^3}{e^n}$ est convergente.

Les séries $\sum_{n\geq 1} \frac{n^3-n^2+1}{e^n+3n^4+2n^2}$ et $\sum_{n\geq 1} \frac{n^3}{e^n}$ étant de même nature, $\sum_{n\geq 1} \frac{n^3-n^2+1}{e^n+3n^4+2n^2}$ est convergente aussi.

Finalement, on vient de montrer que la série $\sum_{n\geq 1} (-1)^n \frac{n^3 - n^2 + 1}{e^n + 3n^4 + 2n^2}$ est absolument convergente. En particulier, elle est convergente.

3. Par équivalent usuel

$$\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{\sim} \frac{1}{n}.$$

Or, par croissance de la fonction logarithme, on a

$$\forall n \ge 1 \quad \ln\left(1 + \frac{1}{n}\right) \ge 0.$$

Les séries $\sum_{n\geq 1} \ln\left(1+\frac{1}{n}\right)$ et $\sum_{n\geq 1} \frac{1}{n}$ sont donc à termes positifs. D'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature. Or la série $\sum_{n\geq 1} \frac{1}{n}$ est divergente donc $\sum_{n\geq 1} \ln\left(1+\frac{1}{n}\right)$ est divergente aussi.

4. Pour tout $n \ge 1$, on a

$$n^{\frac{1}{n}} - 1 = e^{\frac{1}{n}\ln(n)} - 1 \underset{n \to +\infty}{\sim} \frac{\ln(n)}{n}$$

par équivalent usuel (car $\lim_{n\to+\infty}\frac{\ln{(n)}}{n}=0$). Les séries $\sum_{n\geq 1}(n^{\frac{1}{n}}-1)$ et $\sum_{n\geq 1}\frac{\ln{(n)}}{n}$ sont à termes positifs donc, d'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature. Or la série $\sum_{n\geq 1}\frac{\ln{(n)}}{n}$ diverge (voir l'exemple 8 du chapitre 6) donc la série $\sum_{n\geq 1}(n^{\frac{1}{n}}-1)$ diverge aussi.

5. La série $\sum_{n\geq 1} (-1)^n \ln\left(1+\frac{1}{n^2}\right)$ est à termes quelconques. Étudions l'absolue convergence.

Pour tout $n \ge 1$, $\left| (-1)^n \ln \left(1 + \frac{1}{n^2} \right) \right| = \ln \left(1 + \frac{1}{n^2} \right)$ et, par équivalent usuel

$$\ln\left(1+\frac{1}{n^2}\right) \underset{n\to+\infty}{\sim} \frac{1}{n^2}.$$

Les séries $\sum_{n\geq 1} \ln\left(1+\frac{1}{n^2}\right)$ et $\sum_{n\geq 1} \frac{1}{n^2}$ sont à termes positifs donc, d'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature. Or la série $\sum_{n\geq 1} \frac{1}{n^2}$ converge donc la série $\sum_{n\geq 1} \ln\left(1+\frac{1}{n^2}\right)$ converge aussi.

Ainsi la série $\sum_{n\geq 1} (-1)^n \ln\left(1+\frac{1}{n^2}\right)$ est absolument convergente donc convergente.

6. Pour tout $n \ge 1$, on a

4

$$\left(1+\frac{1}{n}\right)^n=e^{n\ln\left(1+\frac{1}{n}\right)}.$$

Or, par équivalent usuel $\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{\sim} \frac{1}{n}$ puis par compatibilité avec le quotient

$$n \ln \left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{\sim} 1.$$

Ainsi, $\lim_{n\to+\infty} n \ln\left(1+\frac{1}{n}\right) = 1$ et par continuité de l'exponentielle :

$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n = \lim_{n\to+\infty} e^{n\ln\left(1+\frac{1}{n}\right)} = e.$$

Donc la série $\sum_{n>1} \left(1+\frac{1}{n}\right)^n$ diverge grossièrement.

7. Pour tout $n \ge 1$, $3^{\ln(n)} = e^{\ln(n)\ln(3)} = n^{\ln(3)}$. La série est donc une série de Riemann convergente car $\ln(3) > 1$.

8. Pour tout n > 1, on a

$$n^{\ln{(n)}} = e^{\ln{(n)^2}}.$$

Montrons que $\lim_{n\to+\infty} n^2 \frac{1}{e^{\ln{(n)^2}}} = 0$. En faisant le changement de variable $X = \ln{(n)}$, on trouve

$$n^{2} \frac{1}{e^{\ln(n)^{2}}} = e^{2X} \frac{1}{e^{X^{2}}} = e^{2X - X^{2}}$$

donc, puisque $\lim_{X\to+\infty} 2X - X^2 = -\infty$,

$$\lim_{n \to +\infty} n^2 \frac{1}{e^{\ln(n)^2}} = \lim_{X \to +\infty} e^{2X - X^2} = 0.$$

Ainsi, $\frac{1}{n^{\ln(n)}} = \sum_{n \to +\infty} \left(\frac{1}{n^2}\right)$. Or les séries $\sum_{n \ge 1} \frac{1}{n^{\ln n}}$ et $\sum_{n \ge 1} \frac{1}{n^2}$ sont à termes positifs et

la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ est une série de Riemann convergente. D'après le critère de compa-

raison par négligeabilité pour les séries à termes positifs, la série $\sum_{n\geq 1}\frac{1}{n^{\ln n}}$ est donc convergente.

9. Par croissance comparée

$$\lim_{n \to +\infty} n^{\frac{3}{2}} \frac{\ln(n)}{n^2} = 0$$

donc
$$\frac{\ln(n)}{n^2} = \underset{n \to +\infty}{o} \left(\frac{1}{n^{\frac{3}{2}}}\right)$$
.

Or les séries $\sum_{n>1} \frac{\ln n}{n^2}$ et $\sum_{n>1} \frac{1}{n^{\frac{3}{2}}}$ sont à termes positifs et la série $\sum_{n>1} \frac{1}{n^{\frac{3}{2}}}$ est une série de Riemann convergente. D'après le critère de comparaison par négligeabilité pour les séries à termes positifs, la série $\sum_{n>1} \frac{\ln n}{n^2}$ est donc convergente.

- 10. A faire sur feuille pour la rentrée.
- 11. La série $\sum_{n>1} \ln \left(1 + \frac{(-1)^n}{n\sqrt{n}}\right)$ est à termes quelconques; on va donc étudier son absolue convergence.

Par équivalent usuel :

$$\ln\left(1+\frac{(-1)^n}{n\sqrt{n}}\right) \underset{n\to+\infty}{\sim} \frac{(-1)^n}{n\sqrt{n}}$$

donc par compatibilité des équivalents avec la valeur absolue on en déduit l'équivalent suivant :

$$\left| \ln \left(1 + \frac{(-1)^n}{n\sqrt{n}} \right) \right| \underset{n \to +\infty}{\sim} \frac{1}{n\sqrt{n}}.$$

Les séries $\sum_{n>1} \left| \ln \left(1 + \frac{(-1)^n}{n\sqrt{n}} \right) \right|$ et $\sum_{n>1} \frac{1}{n\sqrt{n}}$ sont à termes positifs donc, d'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature. Or la série $\sum_{n>1} \frac{1}{n\sqrt{n}}$ est une série de Riemann convergente donc la série

$$\sum_{n>1} \left| \ln \left(1 + \frac{(-1)^n}{n\sqrt{n}} \right) \right|$$
 converge aussi.

Ainsi la série $\sum_{n\geq 1} \ln\left(1+\frac{(-1)^n}{n\sqrt{n}}\right)$ est absolument convergente donc convergente.

12. Soit n > 1.

$$(n+1)^{\frac{1}{4}} - (n-1)^{\frac{1}{4}} = (n+1)^{\frac{1}{4}} \left(1 - \left(\frac{n-1}{n+1} \right)^{\frac{1}{4}} \right)$$
$$= (n+1)^{\frac{1}{4}} \left(1 - \left(\frac{n+1-1-1}{n+1} \right)^{\frac{1}{4}} \right)$$
$$= (n+1)^{\frac{1}{4}} \left(1 - \left(1 - \frac{2}{n+1} \right)^{\frac{1}{4}} \right)$$

Or, par équivalent usuel,

$$\left(1-\frac{2}{n+1}\right)^{\frac{1}{4}}-1 \underset{n \to +\infty}{\sim} \frac{1}{4} \times \frac{-2}{n+1} \underset{n \to +\infty}{\sim} \frac{-1}{2n}.$$

Donc, par compatibilité des équivalents avec le produit on obtient

$$(n+1)^{\frac{1}{4}} - (n-1)^{\frac{1}{4}} \underset{n \to +\infty}{\sim} (n+1)^{\frac{1}{4}} \times \frac{1}{2n}.$$

Or, par équivalent usuel, $n+1 \underset{n \to +\infty}{\sim} n$ puis par compatibilité avec le passage aux puissances

$$(n+1)^{\frac{1}{4}} \sim_{n \to +\infty} n^{\frac{1}{4}}.$$

Finalement,

$$(n+1)^{\frac{1}{4}} - (n-1)^{\frac{1}{4}} \sim_{n \to +\infty} \frac{n^{\frac{1}{4}}}{2n} = \frac{1}{2n^{\frac{3}{4}}}.$$

Les séries $\sum_{n>1} \left((n+1)^{\frac{1}{4}} - (n-1)^{\frac{1}{4}} \right)$ et $\sum_{n>1} \frac{1}{2n^{\frac{3}{4}}}$ étant à termes positifs, d'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature. Or $\sum_{n\geq 1}\frac{1}{2n^{\frac{3}{4}}}$ est une série de Riemann divergente donc

$$\sum_{n>1} \left((n+1)^{\frac{1}{4}} - (n-1)^{\frac{1}{4}} \right)$$
 est divergente aussi.

- 13. A faire sur feuille pour la rentrée.
- 14. A faire sur feuille pour la rentrée.
- 15. Soit $n \ge 1$. On a

$$\left(1 + \frac{1}{n^2}\right)^n = e^{n\ln\left(1 + \frac{1}{n^2}\right)}$$

Or, par équivalent usuel

$$\ln\left(1+\frac{1}{n^2}\right) \underset{n\to+\infty}{\sim} \frac{1}{n^2}$$

donc par compatibilité avec le produit

$$n \ln \left(1 + \frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} \frac{1}{n}.$$

Donc, $\lim_{n\to+\infty} n \ln\left(1+\frac{1}{n^2}\right) = \lim_{n\to+\infty} \frac{1}{n} = 0$ puis par équivalent usuel, on en déduit donc que

$$\left(1+\frac{1}{n^2}\right)^n-1=e^{n\ln\left(1+\frac{1}{n^2}\right)}-1\underset{n\to+\infty}{\sim}n\ln\left(1+\frac{1}{n^2}\right)\underset{n\to+\infty}{\sim}\frac{1}{n}.$$

Par transitivité, on a donc

$$\left(1+\frac{1}{n^2}\right)^n-1\underset{n\to+\infty}{\sim}\frac{1}{n}.$$

Les séries $\sum_{n\geq 1} \left(\left(1+\frac{1}{n^2}\right)^n-1\right)$ et $\sum_{n\geq 1} \frac{1}{n}$ sont à termes positifs donc d'après le critère de comparaison par équivalence pour les séries à termes positifs, elles sont de même nature. Comme $\sum_{n\geq 1} \frac{1}{n}$ est divergente, $\sum_{n\geq 1} \left(\left(1+\frac{1}{n^2}\right)^n-1\right)$ est divergente aussi.

16. Par croissance comparée

$$\lim_{n \to +\infty} n^{\frac{5}{4}} \frac{\ln(n)^7}{n\sqrt{n}} = \lim_{n \to +\infty} \frac{\ln(n)^7}{n^{\frac{1}{4}}} = 0$$

donc
$$\frac{\ln(n)^7}{n\sqrt{n}} = \underset{n \to +\infty}{o} \left(\frac{1}{n^{\frac{5}{4}}}\right).$$

Or les séries $\sum_{n\geq 1} \frac{\ln n^7}{n\sqrt{n}}$ et $\sum_{n\geq 1} \frac{1}{n^{\frac{5}{4}}}$ sont à termes positifs et la série $\sum_{n\geq 1} \frac{1}{n^{\frac{5}{4}}}$ est une série de Riemann convergente. D'après le critère de comparaison par négligeabilité pour les séries à termes positifs, la série $\sum_{n\geq 1} \frac{\ln n^7}{n\sqrt{n}}$ est donc convergente.

Exercice 8.

1. Soit $x \in [0,1]$. On a donc

$$0 \le x \le 1$$

et en multipliant membre à membre par x (qui est positif) on obtient

$$0 < x^2 < x$$
.

2. Soit $\sum_{n\geq 0}u_n$ une série convergente à termes positifs. Comme la série converge, alors $\lim_{n\to +\infty}u_n=0$. En particulier, il existe un rang $n_0\in\mathbb{N}$ tel que

$$\forall n \geq n_0, \quad u_n \leq 1.$$

Comme la série est à termes positifs, on a donc

$$\forall n \geq n_0, u_n \in [0, 1].$$

D'après la question précédente, on peut donc conclure que

$$\forall n \geq n_0, \quad u_n^2 \leq u_n.$$

Les séries $\sum_{n\geq 0} u_n^2$ et $\sum_{n\geq 0} u_n$ étant à termes positifs, d'après le critère de comparaison pour les séries à termes positifs, comme $\sum_{n\geq 0} u_n$ converge, $\sum_{n\geq 0} u_n^2$ converge aussi.

Exercice 9 (Une série convergente mais pas absolument convergente).

1. On a

6

$$\forall n \geq 1 \quad |u_n| = \left| \frac{(-1)^n}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}}.$$

La série $\sum_{n\geq 1} |u_n|$ est donc une série de Riemann divergente. Ainsi $\sum_{n\geq 1} u_n$ n'est pas absolument convergente.

2. (a) • Soit $n \ge 1$. On a:

$$S_{2(n+1)} - S_{2n} = S_{2n+2} - S_{2n} = \frac{(-1)^{2n+2}}{\sqrt{2n+2}} + \frac{(-1)^{2n+1}}{\sqrt{2n+1}}$$
$$= \frac{1}{\sqrt{2n+2}} - \frac{1}{\sqrt{2n+1}}$$
$$\leq 0.$$

Ainsi : $\forall n \geq 1$, $S_{2(n+1)} \leq S_{2n}$.

La suie $(S_{2n})_{n\geq 1}$ est donc décroissante.

• Soit $n \ge 0$. On a:

$$S_{2(n+1)+1} - S_{2n+1} = S_{2n+3} - S_{2n+1} = \frac{(-1)^{2n+3}}{\sqrt{2n+3}} + \frac{(-1)^{2n+2}}{\sqrt{2n+2}}$$
$$= \frac{-1}{\sqrt{2n+3}} + \frac{1}{\sqrt{2n+2}}$$
$$> 0.$$

Ainsi : $\forall n \in \mathbb{N}, S_{2n+1} \geq S_{2n}$.

La suite $(S_{2n+1})_{n>0}$ est donc croissante.

• Soit n > 1. Alors:

$$S_{2n+1} - S_{2n} = \frac{(-1)^{2n+1}}{\sqrt{2n+1}} = \frac{-1}{\sqrt{2n+1}}.$$

Donc
$$\lim_{n \to +\infty} (S_{2n+1} - S_{2n}) = 0.$$

Ainsi les suites $(S_{2n+1})_{n>0}$ et $(S_{2n})_{n>1}$ sont adjacentes.

(b) Les suites $(S_{2n+1})_{n\geq 0}$ et $(S_{2n})_{n\geq 1}$ étant adjacentes, elles convergent vers une même limite notée ℓ . Montrons que $(S_n)_{n\geq 1}$ converge vers ℓ . Soit $\epsilon>0$.

Comme $(S_{2n+1})_{n\geq 0}$ converge vers ℓ , il existe un rang n_0 à partir duquel tous les termes de cette suite sont dans l'intervalle $[\ell-\epsilon,\ell+\epsilon]$:

$$\forall n \geq n_0, \quad |S_{2n+1} - \ell| \leq \epsilon.$$

Autrement dit, il existe un rang à partir duquel tous les termes de rang impair de $(S_n)_{n\geq 1}$ sont dans $[\ell-\epsilon,\ell+\epsilon]$.

Comme $(S_{2n})_{n\geq 1}$ converge vers ℓ , il existe un rang n_1 à partir duquel tous les termes de cette suite sont dans l'intervalle $[\ell - \epsilon, \ell + \epsilon]$:

$$\forall n \geq n_1, \quad |S_{2n} - \ell| \leq \epsilon.$$

Autrement dit, il existe un rang à partir duquel tous les termes de rang pair de $(S_n)_{n\geq 1}$ sont dans $[\ell-\epsilon,\ell+\epsilon]$.

On en déduit donc qu'il existe un rang à partir duquel tous les termes (de rang impair et de rang pair) de $(S_n)_{n\geq 1}$ sont dans $[\ell-\epsilon,\ell+\epsilon]$:

$$\forall n \geq \max(2n_0+1,2n_1), |S_n-\ell| \leq \epsilon.$$

Donc la suite $(S_n)_{n>1}$ converge vers ℓ .

(c) La suite des sommes partielles de la série $\sum u_n$ converge, donc la série $\sum u_n$ converge.

Exercice 10 (Deux suites équivalentes, l'une convergente, l'autre divergente).

1. Pour tout $n \ge 1$, on a :

$$\frac{v_n}{u_n} = \frac{\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}}{\frac{(-1)^n}{\sqrt{n}}} = 1 + \frac{\sqrt{n}}{(-1)^n n}.$$

Or:

$$\lim_{n\to+\infty}\frac{\sqrt{n}}{(-1)^n n}=0$$

donc:

$$\lim_{n\to+\infty}\frac{v_n}{u_n}=1.$$

Ainsi $v_n \sim u_n$ où $(u_n)_{n\geq 1}$ la suite définie à l'exercice 9.

2. Supposons que $\sum_{n\geq 1} v_n$ converge. On a vu à l'exercice précédent que $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}}$ converge. Or pour tout $n\geq 1$, on a

$$\frac{1}{n} = v_n - \frac{(-1)^n}{\sqrt{n}}.$$

La série $\sum_{n\geq 1}\frac{1}{n}$ converge donc en tant que différence de séries convergentes : absurde! Ainsi la série $\sum_{n\geq 1}v_n$ diverge.

Exercice 11.

1. On procède par récurrence en utilisant :

$$\forall x \in]0,1], \quad x-x^2 \in]0,1].$$

2. Soit n > 0. On a

$$u_{n+1} - u_n = u_n - (u_n - u_n^2) = -u_n^2 < 0.$$

Ainsi : $\forall n \geq 0, \ u_{n+1} \leq u_n$.

Donc $(u_n)_{n\in\mathbb{N}}$ est décroissante.

D'après la question précédente elle est aussi minorée par zéro donc par convergence monotone, elle converge vers un réel ℓ .

D'après la question 1, on a $\ell \in [0,1]$.

Comme la fonction $f: x \in [0,1] \mapsto x - x^2$ est continue sur [0,1] et que pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ alors ℓ est un point fixe de f. Soit $x \in [0,1]$.

$$f(x) = x \Longleftrightarrow x - x^2 = x \Longleftrightarrow x^2 = 0 \Longleftrightarrow x = 0.$$

Ainsi l'unique point fixe de f est 0 donc $\ell = 0$. Finalement la limite de $(u_n)_{n \in \mathbb{N}}$ est 0.

3. La formule de récurrence donne :

$$\forall n \in \mathbb{N} \quad u_n^2 = u_n - u_{n+1}.$$

Donc pour tout entier naturel *n* on obtient par télescopage

$$\sum_{k=0}^{n} u_k^2 = \sum_{k=0}^{n} u_k - u_{k+1} = u_0 - u_{n+1}.$$

Comme $\lim_{n\to+\infty} u_0 - u_{n+1} = u_0$, la suite des sommes partielles $(\sum_{k=0}^n u_k^2)_{n\geq 0}$ converge vers u_0 . Ainsi la série $\sum_{n\in\mathbb{N}} u_n^2$ converge et sa somme vaut u_0 .

4. On utilise encore un télescopage :

$$\forall n \geq 0$$
 $\sum_{k=0}^{n} \ln \left(\frac{u_{k+1}}{u_k} \right) = \sum_{k=0}^{n} \left(\ln \left(u_{k+1} \right) - \ln \left(u_k \right) \right) = \ln \left(u_{n+1} \right) - \ln \left(u_0 \right).$

Comme $\lim_{n\to+\infty} u_{n+1} = 0$ alors :

$$\lim_{n\to+\infty}\ln\left(u_{n+1}\right)=-\infty.$$

Ainsi la suite des sommes partielles $\left(\sum_{k=0}^n \ln\left(\frac{u_{k+1}}{u_k}\right)\right)_{n\geq 0}$ diverge donc la série $\sum_{n\geq 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$ diverge.

5. On a:

$$\forall n \geq 1$$
, $\ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(\frac{u_n - u_n^2}{u_n}\right) = \ln\left(1 - u_n\right)$.

Comme $\lim_{n\to+\infty}u_n=0$, par équivalent usuel on obtient :

$$\ln\left(\frac{u_{n+1}}{u_n}\right) \underset{n \to +\infty}{\sim} -u_n$$

d'où

$$u_n \underset{n \to +\infty}{\sim} - \ln \left(\frac{u_{n+1}}{u_n} \right)$$

Comme $(u_n)_{n\in\mathbb{N}}$ est décroissante alors pour tout entier naturel n on a

$$\frac{u_{n+1}}{u_n} \le 1.$$

Ainsi la série $\sum_{n\geq 0} -\ln\left(\frac{u_{n+1}}{u_n}\right)$ est à termes positifs. Les séries $\sum_{n\geq 0} u_n$ et

 $\sum_{n\geq 0} -\ln\left(\frac{u_{n+1}}{u_n}\right)$ sont à termes positifs, donc avec l'équivalent ci-dessus et d'après le critère de comparaison par équivalence pour les séries à termes positifs, on déduit qu'elles sont de même nature. Or d'après la question précédente, $\sum_{n\geq 0} -\ln\left(\frac{u_{n+1}}{u_n}\right)$ diverge. Donc $\sum_{n\geq 0} u_n$ est divergente aussi.

Exercice 12.

1. Soit $n \in \mathbb{N}$. La fonction f_n est dérivable sur \mathbb{R}_+ en tant que polynôme et

$$\forall x \in \mathbb{R}_+, \quad f'_n(x) = 3x^2 + n \ge 0$$

avec égalité si et seulement si x = 0 et n = 0.

La fonction f_n est donc strictement croissante sur \mathbb{R}_+ et y est continue (car dérivable). D'après le théorème de la bijection monotone, f_n réalise une bijection de \mathbb{R}_+ sur $f_n(\mathbb{R}) = [-1, +\infty[$. En particulier, comme $0 \in f_n(\mathbb{R})$, 0 possède un unique antécédent par f_n , ie l'équation $f_n(x) = 0$ possède une unique solution dans \mathbb{R}_+ .

Ceci étant valable quel que soit $n \in \mathbb{N}$, on a ainsi montré que pour tout $n \in \mathbb{N}$, l'équation $f_n(x) = 0$ possède une unique solution.

2. Soit $n \in \mathbb{N}$. On a

$$f_n(0) = -1 \le 0 = f_n(u_n) \le \left(\frac{1}{n}\right)^3 = f_n\left(\frac{1}{n}\right).$$

Or, d'après le théorème de la bijection monotone, la bijection réciproque f_n^{-1} de f_n est strictement croissante. On en déduit donc que

$$0 \leq u_n \leq \frac{1}{n}$$
.

Ainsi : $\forall n \in \mathbb{N}, 0 \le u_n \le \frac{1}{n}$.

- 3. Par encadrement $(u_n)_{n\in\mathbb{N}}$ converge vers 0.
- 4. Soit $n \in \mathbb{N}$. Comme $f_n(u_n) = 0$ par définition, on a

$$u_n^3 + nu_n - 1 = 0$$

c'est-à-dire

$$nu_n = 1 - u_n^3$$

Ainsi : $\forall n \in \mathbb{N}$, $nu_n = 1 - u_n^3$.

Or, $\lim_{n \to +\infty} u_n = 0$ donc $\lim_{n \to +\infty} u_n^3 = 0$. Finalement, on a bien $\lim_{n \to +\infty} nu_n = 1$.

5. De la question précédente, on déduit :

$$nu_n \underset{n\to+\infty}{\sim} 1.$$

Par compatibilité des équivalents avec le quotient, on trouve :

$$u_n \underset{n\to+\infty}{\sim} \frac{1}{n}$$
.

Les séries $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 1} \frac{1}{n}$ étant à termes positifs (voir question 2), d'après le critère de comparaison des séries à termes positifs elles sont de même nature. Comme $\sum_{n\geq 1} \frac{1}{n}$ est divergente, $\sum_{n\geq 0} u_n$ est divergente aussi.

Exercice 13. Voir DM2

Exercice 14.

1. La fonction f est le quotient de deux fonctions dérivables sur $]1,+\infty[$ dont le dénominateur ne s'annule pas. Elle est donc dérivable sur $]1,+\infty[$. De plus

$$\forall x \in]1, +\infty[, f'(x) = -\frac{\ln(x) + 1}{(x \ln(x))^2} < 0.$$

Ainsi, f est strictement décroissante sur $]1, +\infty[$.

2. Soit un entier k tel que $k \ge 3$. Comme f est décroissante sur [k-1,k] alors :

$$\forall x \in [k-1, k], \quad f(k) \le f(x) \le f(k-1).$$

En intégrant cette inégalité entre k-1 et k, on obtient, par croissance de l'intégrale :

$$\int_{k-1}^{k} f(k) \, dx \le \int_{k-1}^{k} f(x) \, dx \le \int_{k-1}^{k} f(k-1) \, dx$$

c'est-à-dire:

$$f(k) \le \int_{k-1}^{k} f(x) dx \le f(k-1).$$

3. (a) Soit $n \in \mathbb{N}$ tel que $n \geq 3$. En sommant les inégalités obtenues à la question précédente pour k allant de 3 à n, on obtient

$$\sum_{k=3}^{n} f(k) \le \sum_{k=3}^{n} \int_{k-1}^{k} f(x) dx \le \sum_{k=3}^{n} f(k-1).$$

Cela ce ré-écrit, en faisant un changement de variable dans le membre de droite :

$$\sum_{k=2}^{n} f(k) - f(2) \le \sum_{k=3}^{n} \int_{k-1}^{k} f(x) \, dx \le \sum_{k=2}^{n-1} f(k) \, .$$

Ainsi,

$$S_n - \frac{1}{2\ln(2)} \le \sum_{k=3}^n \int_{k-1}^k f(x) dx \le S_n - \frac{1}{n\ln(n)}.$$

Or, par la relation de Chasles, on a : $\sum_{k=3}^{n} \int_{k-1}^{k} f(x) dx = \int_{2}^{n} f(x) dx$. Donc

$$S_n - \frac{1}{2\ln(2)} \le \int_2^n f(x) dx \le S_n - \frac{1}{n\ln(n)}.$$

(b) Soit $n \in \mathbb{N}$ tel que $n \ge 2$. Calculons $\int_2^n f(x) dx$. On remarque que f est de la forme $\frac{u'}{u}$ où $u = \ln$. Une primitive de f est donc $\ln(u)$. Ainsi

$$\int_{2}^{n} f(x)dx = [\ln(\ln(x))]_{2}^{n} = \ln(\ln(n)) - \ln(\ln(2)).$$

D'après la question précédente, on a donc

$$S_n - \frac{1}{2\ln(2)} \le \ln(\ln(n)) - \ln(\ln(2)) \text{ et } \ln(\ln(n)) - \ln(\ln(2)) \le S_n - \frac{1}{n\ln(n)}$$

Ainsi:

$$\ln(\ln(n)) - \ln(\ln(2)) \le S_n \le \ln(\ln(n)) - \ln(\ln(2)) + \frac{1}{2\ln(2)}.$$

(c) En divisant membre à membre par $\ln(\ln(n))$ dans l'inégalité précédente on trouve que pour tout $n \ge 2$:

$$1 - \frac{\ln\left(\ln\left(2\right)\right)}{\ln\left(\ln\left(n\right)\right)} \le \frac{S_n}{\ln\left(\ln\left(n\right)\right)} \le 1 + \frac{1}{\ln\left(\ln\left(n\right)\right)} \left(\frac{1}{2\ln\left(2\right)} - \ln\left(\ln\left(2\right)\right)\right)$$

Or,

$$\lim_{n\to+\infty}1-\frac{\ln\left(\ln\left(2\right)\right)}{\ln\left(\ln\left(n\right)\right)}=\lim_{n\to+\infty}1+\frac{1}{\ln\left(\ln\left(n\right)\right)}\left(\frac{1}{2\ln\left(2\right)}-\ln\left(\ln\left(2\right)\right)\right)=1$$

donc par encadrement, $\lim_{n\to+\infty}\frac{S_n}{\ln\left(\ln\left(n\right)\right)}=1$. Ainsi $S_n \underset{n\to+\infty}{\sim} \ln\left(\ln\left(n\right)\right)$.

4. Pour tout $n \in \mathbb{N}$ tel que $n \ge 2$, on note

$$u_n = S_n - \ln(\ln(n+1))$$
 et $v_n = S_n - \ln(\ln(n))$.

(a) • Soit $n \ge 2$. On a:

$$u_{n+1} - u_n = S_{n+1} - S_n - \ln(\ln(n+2)) + \ln(\ln(n+1))$$

$$= \frac{1}{(n+1)\ln(n+1)} - \ln(\ln(n+2)) + \ln(\ln(n+1))$$

$$= \frac{1}{(n+1)\ln(n+1)} - \int_{n+1}^{n+2} f(x)dx$$

$$= f(n+1) - \int_{n+1}^{n+2} f(x)dx$$

$$> 0 \text{ en utilisant la question 2 avec } k = n+2.$$

Ainsi $(u_n)_{n\geq 2}$ est croissante.

• Soit $n \ge 2$. On a:

$$v_{n+1} - v_n = S_{n+1} - S_n - \ln(\ln(n+1)) + \ln(\ln(n))$$

$$= f(n+1) - \ln(\ln(n+1)) + \ln(\ln(n))$$

$$= f(n+1) - \int_n^{n+1} f(x) dx$$

$$\leq 0 \quad \text{en utilisant la question 2 avec } k = n+1.$$

Ainsi $(v_n)_{n\geq 2}$ est décroissante.

• Soit n > 2. Alors:

$$v_n - u_n = \ln\left(\ln\left(n+1\right)\right) - \ln\left(\ln\left(n\right)\right)$$
$$= \int_n^{n+1} f(x) dx.$$

Ainsi, par la question 2 (avec k = n + 1), on a

$$0 \le v_n - u_n \le f(n)$$

donc par encadrement, $\lim_{n\to+\infty} v_n - u_n = 0$.

Ainsi les suites $(u_n)_{n\geq 2}$ et $(v_n)_{n\geq 2}$ sont adjacentes. On note ℓ leur limite commune.

(b) Comme $(u_n)_{n\geq 2}$ est croissante et a pour limite ℓ alors

$$\forall n \geq 2, \quad u_n \leq \ell.$$

On en déduit :

$$\forall n \geq 2$$
, $v_n - \ell \leq v_n - u_n \leq f(n)$

où la dernière inégalité a été prouvée à la question précédente. De plus, $(v_n)_{n\geq 2}$ est décroissante et a pour limite ℓ donc

$$\forall n \geq 2, \quad \ell \leq v_n.$$

Finalement, on obtient que pour tout $n \in \mathbb{N}$ tel que $n \ge 2$:

$$0 \le v_n - \ell \le \frac{1}{n \ln{(n)}}$$

(c) On en déduit que $0 \le v_{100} - \ell \le \frac{1}{10^2 \ln{(10^2)}} \le \frac{1}{10^2}$. Ainsi v_{100} est une valeur approchée de ℓ à 10^{-2} près.