

(19)

Eur päisch s Pamt

European Patent Office

Office ur péen des br vets

(11)

EP 0 811 687 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

10.12.1997 Bulletin 1997/50

(21) Application number: 97303896.1

(22) Date of filing: 06.06.1997

(51) Int Cl.⁶: C12N 15/55, C12N 9/82,
C12N 15/70, C12N 15/79,
C12N 1/21, C12N 5/10,
A61K 38/46
// (C12N1/21, C12R1:19)

(84) Designated Contracting States:

AT BE CH DE FR GB LI

(30) Priority: 07.06.1996 JP 168172/96

(71) Applicant: KABUSHIKI KAISHA HAYASHIBARA
SEIBUTSU KAGAKU KENKYUJO
Okayama-shi Okayama (JP)

(72) Inventors:

- Ario, Takeshi
Okayama-shi, Okayama (JP)

- Taniai, Madoka
Okayama-shi, Okayama (JP)
- Yamamoto, Kozo
Okayama-shi, Okayama (JP)
- Kurimoto, Masashi
Okayama-shi, Okayama (JP)

(74) Representative: Daniels, Jeffrey Nicholas et al
Page White & Farrer
54 Doughty Street
London WC1N 2LS (GB)

(54) Polypeptides having L-asparaginase activity

(57) Disclosed are polypeptides which originate from mammal, having L-asparaginase activity. The polypeptides are easily prepared by applying recombinant DNA techniques to DNAs encoding the polypep-

tides and they exert satisfactory effects in the treatment and/or the prevention for diseases caused by tumor cells dependent on L-asparagine, and cause no substantial serious side effects even when administered to humans in relatively-high dose.

Note: An asterisk indicates a site where a nucleotide is substituted,
and a box indicates a polypeptide-encoding sequence.

FIG.1

D **s**cription

The present invention relates to L-asparagine amidohydrolytic enzymes, more particularly, to polypeptides which originate from mammal, having L-asparaginase activity.

5 L-Asparaginase (EC 3.5.1.1) is an enzyme which catalyzes the hydrolytic reaction of L-asparagine into L-aspartic acid and ammonia. The studies on the antitumor activity of L-asparaginase started from the following reports: J. G. Kidd et al. described the inhibitory action of guinea pig sera on cells of lymphomas in "*The Journal of Experimental Medicine*", Vol.98, pp.565-582 (1953), and J. D. Broome et al. evidenced in "*Nature*", Vol.191, pp.1,114-1,115 (1961), that the L-asparaginase activity of the guinea pig sera was responsible for the inhibitory action. It is now understood that the inhibitory action is caused by the lack of L-asparagine, an essential nutrient to proliferate and survive for some tumor cells which defect L-asparagine synthetase activity, such as acute lymphocytic leukemia, but not for normal cells. The hydrolysis of L-asparagine by L-asparaginase in patients with such tumor cells induces selective death of the tumor cells, resulting in the treatment of malignant tumors.

10 L-Asparaginase has been studied energetically for its actual use as an antitumor agent, and one derived from *Escherichia coli* is now in use as a therapeutic agent for leukemia and lymphoma. However, L-Asparaginase from *Escherichia coli* is merely an external protein for human, and repetitive administration of conventional compositions with such L-asparaginase may cause serious side effects such as anaphylaxis shock, urticaria, edema, wheeze and dyspnea. These compositions are inevitably restricted with respect to administration dose and frequency. Therefore, some proposals to reduce or even diminish such side effects have been given.

15 As a first proposal, Japanese Patent Kokai No.119,082/79 discloses a chemically modified L-asparaginase from *Escherichia coli*, in which at least 65 % amino acids are blocked with 2-O- substituted polyethylene glycol-4,6-dichloro-S-triazine. As a second proposal, human L-asparaginases are disclosed in Japanese Patent Kokai Nos.320,684/92 and 19,018/80, where the L-asparaginases are respectively obtained from cultures of human cell lines and human urine. While the first proposal has an advantage of that the L-asparaginase from *Escherichia coli* is easily obtainable on an industrial scale, it has a disadvantage of that the modifying reaction is difficult to control and the side effects couldn't be eliminated completely. While the second proposal has an advantage of that unlike L-asparaginase from *Escherichia coli*, the L-asparaginases from human may not substantially induce antibodies even when administered to patients, it has a disadvantage of that it is not easy to obtain the L-asparaginases in a desired amount by the processes disclosed in Japanese Patent Kokai Nos.320,684/92 and 19,018/80.

20 Recently, recombinant DNA technology has advanced remarkably. If a DNA which encodes a desired polypeptide is once isolated, it is relatively easy to obtain a transformant which produces the polypeptide by constructing a recombinant DNA, comprising the DNA and a self-replicable vector, followed by introducing the recombinant DNA into a host, such as a microorganism, animal- or plant-cell. The polypeptide is obtainable in a desired amount from the culture of the transformant. However, no DNA which encodes mammalian L-asparaginase was isolated, and no mammalian L-asparaginase was produced by recombinant DNA techniques.

25 Therefore, it has been in great demand to isolate DNAs which encode active L-asparaginases originating from mammal and establish processes to prepare the L-asparaginases on a large-scale by applying the recombinant DNA techniques to the isolated DNAs.

30 In view of foregoing, the first object of the present invention is to provide a polypeptide which originates from mamma, having L-asparaginase activity.

35 The second object of the present invention is to provide a DNA which encodes the polypeptide.

40 The third object of the present invention is to provide a recombinant DNA which containing a DNA which encodes the polypeptide and a self-replicable vector.

45 The fourth object of the present invention is to provide a transformant obtainable by introducing a DNA which encodes the polypeptide into a host.

50 The fifth object of the present invention is to provide a process to prepare the polypeptide by using the transformant.

55 The sixth object of the present invention is to provide an agent for susceptive diseases, containing the polypeptide as an effective ingredient.

60 The first object of the present invention is attained by polypeptides which originate from mammal, having L-asparaginase activity.

65 The second object of the present invention is attained by DNAs which encode the polypeptides.

70 The third object of the present invention is attained by recombinant DNAs containing DNA which encode the polypeptides and a self-replicable vector.

75 The fourth object of the present invention is attained by transformants obtainable by introducing the DNAs into appropriate hosts.

80 The fifth object of the present invention is attained by a process to prepare the polypeptides which comprises culturing the transformants and collecting the produced polypeptides from the resultant cultures.

85 The sixth object of the present invention is attained by agents for susceptive diseases, containing the polypeptides

as effective ingredients.

FIG.1 is a scheme of the over lap extension method.

FIG.2 is a restriction map of the present recombinant DNA pKGPA/WT.

FIG.3 is a scheme of the preparation of the present recombinant DNA pB1gGPA/WT.

FIG.4 is a restriction map of the present recombinant DNA pB1gGPA/WT.

FIG.5 is a restriction map of the present recombinant DNA pKGPA/D364stp.

FIG.6 is a restriction map of the present recombinant DNA pKHA/MUT1.

FIG.7 is a restriction map of the present recombinant DNA pKHA/MUT2.

FIG.8 is a restriction map of the present recombinant DNA pKHA/MUT3.

FIG.9 is a restriction map of the present recombinant DNA pKHA/MUT3.

FIG.9 is a restriction map of the present recombinant DNA pKHA/MUT5.

FIG.10 is a restriction map of the present recombinant DNA pB1gGPA/D364stp.

FIG.11 is a restriction map of the present recombinant DNA pB1gHA/MUT1.

FIG.12 is a restriction map of the present recombinant DNA pB1gHA/MUT2.

FIG.13 is a restriction map of the present recombinant DNA pB1gHA/MUT3.

FIG.14 is a restriction map of the present recombinant DNA pB1gHA/MUT4.

Explanation of the symbols are as follows:

The symbols, "Eco RI", "Hin dIII", "Not I" and "Xho I", indicate cleavage sites by restriction enzymes, Eco RI, Hin dIII, Not I and Xho I, respectively.

The symbols, "D364stp", "HA/MUT1", "HA/MUT2", "HA/MUT3" and "HA/MUT5", indicate DNAs encoding the present polypeptides.

The symbol "Ptac" indicates a Tac promotor.

The symbol "rrnBTIT2" indicates a region for transcriptional termination, derived from a ribosomal RNA operon.

The symbol "AmpR" indicates an ampicillin resistant gene.

The symbol "pBR322ori" indicates a replication origin in *Escherichia coli*.

The symbol "Ig sec" indicates a DNA encoding a polypeptide with a signal sequence for secretion of immunoglobulin.

The symbol "Emsv" indicates an enhancer from long terminal repeats of Moloney Mouse Sarcoma Virus.

The symbol "Pmt1" indicates a promotor for Mouse metallothionein I gene.

The symbol "Poly (A)" indicates a polyadenylation signal derived from SV40 virus.

The symbol "BPV1" indicates a genome of a bovine papillomavirus.

The present inventors isolated mammalian DNAs encoding L-asparaginases firstly in the world, from guinea pig and human, and succeeded in elucidating their nucleotide sequences. The nucleotide sequences of the DNAs from a guinea pig and human are in SEQ ID NOs:15 and 16, respectively. This information is disclosed in Japanese Patent Application No.42,564/95 (Japanese Patent Kokai No.214,885/96) by the same applicant of this application. The present invention has been made based on the above information, and provides the polypeptides which originate from mammal, having L-asparaginase activity.

The polypeptides of the present invention are not restricted to their sources or origins so far as they originate from mammal and have an L-asparaginase activity. The polypeptides are usually obtainable by the expression of genes originating from mammal, and usually contain amino acid sequences of SEQ ID NOs:1 to 3, wherein the symbol "Xaa" in SEQ ID NO:3 means "glutamine" or "arginine". For example, the polypeptides have any one of amino acid sequences of SEQ ID NOs:4 to 9. In view of the technical level in this field, one or more amino acid residues in SEQ ID NOs:4 to 9 can be substituted relatively easily by different ones without substantial defects of the activity. Despite derived from the same DNA, a variety of polypeptides with an L-asparaginase activity may be obtained as a result of modifications

by endogenous enzymes of the hosts after the DNA expression or modifications during purification of the polypeptides, depending on the types of vectors and hosts used to obtain transformants or culturing conditions of the transformants, such as ingredients, compositions, temperatures or pHs. The wording "a variety of polypeptides" includes the polypeptides with deletions and/or additions of one or more amino acids at the N- and/or C-termini thereof, or with glycosylations.

In view of these, the present polypeptides include not only the polypeptide with any amino acid sequence of SEQ ID NOs:4 to 9 but also their homologues so long as they have an L-asparaginase activity. The present polypeptides express the activity when exist in multiple forms, preferably, tetramers.

The polypeptides of the present invention can be usually prepared by the recombinant DNA techniques. In general, the polypeptides are obtainable by culturing transformants containing DNAs encoding the polypeptides and collecting the produced polypeptides from the resultant cultures. The transformants are obtainable by introducing such recombinant DNAs as contain any one of the nucleotide sequences of SEQ ID Nos:10 to 15 and a self-replicable vector into appropriate hosts. One or more nucleotides in SEQ ID NOs:10 to 15 can be substituted by different nucleotides without substantial changes of the encoding amino acid sequences with respect to degeneracy of genetic code. To facilitate the expression of the DNA in the hosts, one or more nucleotides in nucleotide sequences which encode the polypeptides

or their homologues can be appropriately substituted by different ones. Furthermore, nucleotide sequences which encode and/or don't encode one or more amino acids can be added to the 5'- and/or 3'-termini of the nucleotide sequences.

The DNAs encoding the polypeptides of this invention include those from natural sources and those by synthesized artificially so far as the polypeptides expressed by them have an L-asparaginase activity. The DNAs can be wild-type ones, containing the same nucleotide sequences as those from natural sources, and can be their homologues.

Examples of the wild-type DNAs include DNAs containing the nucleotide sequences of SEQ ID NOs:15. The wild-type DNA is obtainable from natural sources such as guinea pig livers, as disclosed in Japanese Patent Application No.42,564/95 (Japanese Patent Kokai No.214,885/96) by the same applicant of this invention: (a) constructing a cDNA library by applying usual methods to purified poly (A)⁺ RNAs from a guinea pig or human liver as materials, (b) applying the plaque hybridization method to the cDNA library using oligonucleotides as probes synthesized chemically based on partial amino acid sequences of L-asparaginase purified from a guinea pig serum, (c) collecting phage clones containing the DNAs encoding the polypeptides of this invention, and (d) manipulating the collected phage clones in a conventional manner. The wild-type DNA can be synthesized chemically based on SEQ ID NO:15.

Examples of DNA homologues to the wild-type ones include DNAs containing any nucleotide sequence of SEQ ID NOs:10 to 14. DNA homologues containing the nucleotide sequence of SEQ ID NO:10 are obtainable by applying conventional methods in this field, such as PCR method and methods for site-directed mutagenesis, to the wild-type DNA of SEQ ID NO:15 concerning the desired sequence. DNA homologues containing any nucleotide sequence of SEQ ID NOs:11 to 14 are obtainable by the methods such as follows: Firstly, A wild-type DNA with the nucleotide sequence of SEQ ID NO:16 is obtained by the methods as disclosed in Japanese Patent Application No.42,564/95 (Japanese Patent Kokai No.214,885/96) by the same applicant of this invention, i.e., screening a human liver cDNA library. Subsequently, the wild-type DNA is subjected to conventional methods as mentioned above concerning desired sequences to obtain the DNA homologues. The DNA homologues can be synthesized chemically based on the nucleotide sequences of SEQ ID NOs:10 to 14.

The present DNAs can be generally introduced into hosts as in forms of recombinant DNAs. In general, each recombinant DNA comprises one of the present DNAs and a self-replicable vector. The recombinant DNAs can be easily prepared by general recombinant DNA techniques when the DNAs are available. Examples of such self-replicable vectors include pKK223-3, pGEX-2T, pRL-λ, pBTrp2 DNA, pUB110, YEp13, Ti plasmid, Ri plasmid, pBI121, pCDM8, pBPV and BCMGSneo. Among these vectors, pKK223-3, pGEX-2T, pRL-λ, pBTrp2 DNA pUB110 are suitably used to express the present DNAs in prokaryotic cells such as *Escherichia coli* and *Bacillus* sp., while YEp13, Ti plasmid, Ri plasmid, pBI121, pCDM8, pBPV and BCMGSneo are suitably used to express the present DNAs in eukaryotic cells such as yeasts and animal- and plant-cells.

To insert the present DNAs into the vectors, conventional methods in this field can be arbitrarily used. Examples of such methods contain the steps of (a) cleaving self-replicable vectors with restriction enzymes, (b) introducing the same cleavage sites, by the same restriction enzymes as used to cleave the vectors, to the 5'- and 3'- termini of the present DNAs by applying polymerase chain reaction to form double-stranded DNAs, (c) cleaving the double-stranded DNAs by the restriction enzymes, and (d) ligating the cleaved vectors with cleaved DNAs by the action of DNA ligases. The recombinant DNAs thus obtained can be easily introduced into appropriate hosts, resulting in limitless replication of the DNAs by culturing the transformants.

The recombinant DNAs according to the present invention can be introduced into appropriate hosts such as *Escherichia coli*, *Bacillus* sp., actinomycetes, yeasts and plant- and animal-cells. To introduce the DNAs into *Escherichia coli*, it can be cultured in the presence of the recombinant DNAs and calcium ion. To introduce them into *Bacillus* sp., competent cell methods or protoplast methods can be used. To introduce them into animal-cells, DEAE-dextran methods or electroporation methods can be used. Desired transformants can be cloned by applying hybridization methods or by selecting L-asparaginase producing cells from the cultures.

The transformants thus obtained produce the present polypeptides intracellularly or extracellularly when cultured in nutrient culture media. Examples of such media are usually liquid nutrient culture media which generally contain carbon sources, nitrogen sources and minerals, and further contain micronutrients such as amino acids and/or vitamins on demand. The carbon sources usable in the present invention include saccharides such as starch, starch hydrolysates, glucose, fructose and sucrose. The nitrogen sources usable in the present invention include organic and inorganic compounds containing nitrogen, such as ammonia and their salts, urea, nitrates, peptone, yeast extract, defatted soy bean, corn steep liquor and beef extract. Cultures containing the present polypeptides can be obtained by inoculating the transformants into the above media, culturing them at temperatures of 25-65°C at pHs of 5-8 for about 1-10 days under aerobic conditions by aeration-agitation method, etc.

The cultures can be used intact as agents for susceptive diseases. However, the cultures are usually treated with ultrasonication or cell wall lytic enzymes to disrupt cells, and the present polypeptides are separated by using techniques such as filtration and centrifugation from the cell-disruptants and purified. Alternatively, the polypeptides can be purified from the culture supernatants obtained by removing cells from the cultures by filtration or centrifugation,

etc. The present polypeptides can be purified by applying techniques generally used in this field for protein purifications, such as salting out, dialysis, filtration, concentration, gel filtration chromatography, ion-exchange chromatography, affinity chromatography, hydrophobic chromatography, isoelectric focusing and gel electrophoresis, and if necessary, two or more of them can be applied combination to the supernatants which are separated from insoluble substances of cell-disruptants, or to the culture supernatants. The resultant purified solutions polypeptides can be concentrated and/or lyophilized into liquids or solids depending on their final uses.

The following experiments explain the present invention in more detail, and the techniques used therein are conventional ones in this field: For example, the techniques are disclosed by J. Sambrook et al. in "Molecular Cloning, A Laboratory Manual", 2nd edition (1989), published by Cold Spring Harbor Laboratory Press, New York, U.S.A., and by Masami MATSUMURA in "Laboratory Manual for Genetic Engineering" (1988), published by Maruzen Co., Ltd., Tokyo, Japan.

Experiment 1

15 Expression of wild-type DNA

Experiment 1-1

Expression of guinea pig wild-type DNA

20 Experiment 1-1(a)

Preparation of guinea pig wild-type DNA

25 A guinea pig wild-type DNA encoding L-asparaginase was prepared by the method disclosed in Japanese Patent Kokai No.214,885/96 by the same applicant of this invention. The DNA had the nucleotide sequence of SEQ ID NO: 15. A DNA having a polypeptide-encoding region in SEQ ID NO:15, i.e., a sequence of containing the nucleotides 20-1,714 in SEQ ID NO:15, is called "GPA/WT DNA" hereinafter, and the expression product thereof with the amino acid sequence of SEQ ID NO:15 is called "guinea pig wild-type L-asparaginase". SEQ ID NO:17 shows in parallel the 30 nucleotide sequence of GPA/WT DNA and the amino acid sequence encoded thereby.

Experiment 1-1(b)

Preparation of recombinant DNA

35 Ten μ l of 10 x PCR buffer, one μ l of 25 mM dNTP mix, one ng of the human wild-type DNA, obtained in Experiment 1-1(a), as a template were placed in 0.5 ml reaction tube. The mixture was mixed with, as a sense- and anti-sense-primers, an adequate amount of an oligonucleotide chemically synthesized based on the amino acid sequences near the N- and C- termini of SEQ ID NO:15, volumed up with sterilized distilled water to give a total volume of 99.5 μ l, and 40 mixed with 0.5 μ l of 2.5 units/ μ l of AmpliTaq DNA polymerase. The nucleotide sequence of the sense primer was 5'-AATCTGAGCCACCATGGCGCGCATCA-3', a nucleotide sequence obtained by adding a common nucleotide sequence in animal cells, as shown by M. Kozak in "Nucleic Acid Research", Vol.15, pp.8,125-8,148 (1987), to the upstream of a region which encodes the N-terminal amino acid sequence of SEQ ID NO:15 and then adding to the further upstream a cleavage site by a restriction enzyme, *Xho* I. The nucleotide sequence of the anti-sense primer was 5'-CTGCGGCCGCTTATCAGATGGCAGGCAGGCAC-3' as a complement to a nucleotide sequence obtained by adding two termination codons to the downstream of a region which encodes the C-terminus of the amino acid sequence of SEQ ID NO:15 and adding a cleavage site by a restriction enzyme, *Not* I, to the further downstream. The resulting mixture was successively incubated at 94°C for one min, at 55°C for one min, and at 72°C for 3 min, and the series of incubation was repeated 40-times for PCR to amplify DNA. Thus, a DNA containing GPA/WT DNA was obtained 50 and then cleaved by restriction enzymes of *Xho* I and *Not* I to obtain an about 1.7 kbp DNA fragment. Twenty-five ng of the DNA fragment was weighed and mixed with 10 ng of a plasmid vector, "pCDM8", commercialized by Invitrogen Corporation, San Diego, U.S.A., which had been cleaved by restriction enzymes of *Xho* I and *Not* I. To the DNA mixture thus obtained was added an equal volume of the solution I in "LIGATION KIT VERSION 2" commercialized by Takara Shuzo, Tokyo, Japan, and incubated at 160C for 2 hours to obtain a replicable recombinant DNA, "pCGPA/WT".

55 The recombinant DNA pCGPA/WT was introduced into an *Escherichia coli* MC1061/P3 strain, commercialized by Invitrogen Corporation, San Diego, U.S.A., by competent cell method. The transformant thus obtained was inoculated into L broth medium (pH 7.2) containing 20 μ g/ml ampicillin and 10 μ g/ml tetracycline followed by cultivation at 37°C for 18 hours under shaking conditions. The transformants were collected from the culture by centrifugation and sub-

jected to conventional alkali-SDS method to extract the recombinant DNA pCGPA/WT. The analysis of the pCGPA/WT by an automatic sequencer equipped with a fluorophotometer confirmed that it contained GPA/WT DNA, which termination codons were ligated to the 3'-terminus and was ligated to the downstream of a CMV promotor from the 5'- to 3'-termini.

The system using COS-1 (ATCC CRL-1650) as a host, which is a cell line derived from a monkey kidney, was used to express the DNA in the following Experiments 1 and 2. Since the system is for a transient expression, it has a disadvantage that DNAs introduced into transformants could not be stable over several days, and the transformants do not produce the desired polypeptides repeatedly. However, it is known that the number of copies of the desired DNA per cell temporally increases to 10^5 when plasmid vectors having a replication origin derived from SV40 virus, such as the above mentioned pCDM8, are introduced into the COS-1 cells. With this point of view, the system has a merit that it quite easily analyzes the desired DNA-expression product.

Experiment 1-1(c)

15 Recombinant DNA expression in COS-1 cell

In accordance with the DEAE-dextran method reported by Frederick M. Ausubel et al. in "Current Protocols in Molecular Biology" (1987), chapters 9.2.1-9.2.3 and 9.2.5-9.2.6, published by John Wiley and Sons Inc., New York, U.S.A., the recombinant DNA pCGPA/WT in Experiment 1-1(b) was introduced into COS-1 cells for its expression. To each well of "3046", a plastic multiwell plate, with 6 wells of 3.5 cm diameter, commercialized by Becton Dickinson Labware, New Jersey, U.S.A., was added 2.5 ml of DME medium, containing 10 v/v % bovine fetal serum and 1.8 x 10^5 COS-1 cells. The cells were cultured at 37°C in a 5 v/v % CO₂ incubator overnight. After removing the culture supernatant by an aspirator and washing the remaining cells with DME medium containing 50 mM Tris-HCl buffer (pH 7.4), each well was charged with 2.5 ml of DME medium containing 2.8 µg/ml PCGPA/WT, 50 Mm Tris-HCl (pH 7.4), 0.4 mg/ml DEAE-dextran and 0.1 mM chloroquine, and incubated at 37°C for 4 hours in a 5 v/v % CO₂ incubator. Thereafter, the culture supernatant was removed, and the remaining cells in each well were received with 2.5 ml of 10 mM phosphate buffered saline (hereinafter abbreviated as "PBS") containing 10 v/v % DMSO before incubating at ambient temperature for 2 minutes. After removing the supernatant and washing the remaining cells with DME medium containing 50 mM Tris-HCl (pH 7.4), each well was charged with 2.5 ml of "COS MEDIUM", commercialized by COSMO BIO CO. LTD., Tokyo, Japan, followed by cultivation at 37°C for 3 days in a 5 v/v % CO₂ incubator to express the desired DNA. As a control, the same experiment was carried out using a plasmid vector, pCDM8.

After 3 days' cultivation, the multiwell plates with the cultures were subjected thrice to a treatment of freezing at -800C and thawing at ambient temperature to disrupt the cells. The whole cultures were transferred to centrifugal tubes and centrifuged to remove insoluble components after precipitated, followed by obtaining total soluble fractions, concentrating the fractions using membranes, and adjusting the volume of the total soluble fraction per well to give 0.5 ml for the following analyses.

Experiment 1-1(d)

40 Assay for L-asparaginase activity

L-Asparaginase activity was expressed by the unit assayed as follows: Samples were placed in 1.5 ml-reaction tubes in 50 µl each and admixed with 200 µl of 50 mM phosphate buffer (pH 7.0) containing 1.4 mg/ml L-asparagine. After standing at 37°C for 0, 1, 2, 4, 6 and 16 hours, L-aspartic acid in the reaction mixtures was quantified by an amino acid analyzer. In parallel, 1.0, 0.5 and 0.25 unit/ml dilutions of an L-asparaginase from *Escherichia coli* were provided and quantified for L-aspartic acid after incubating at 37°C for 0 and one hour, and based on the increased amount of L-aspartic acid, a calibration curve was drawn. By plotting on the calibration curve the increased amounts of L-aspartic acid of the samples, the samples' L-asparaginase activities were estimated. The activity of samples with a lower activity was estimated based on that assayed after 2 hours or more incubation. One unit activity of L-asparaginase was defined as the amount that releases one µmol of ammonia from L-asparagine per minute under the above conditions.

The total soluble fractions obtained in Experiment 1-1(c) were treated similarly as above, and expressed their activities as total L-asparaginase activities that were detected in the soluble fractions from 1.8 x 10^5 COS-1 cells. As a result, the activity of the total soluble fraction in Experiment 1-1(c) was 0.083 unit, and the control gave no activity.

Experiment 1-1(e)Western blotting

5 An anti-L-asparaginase antibody was prepared as follows: An oligopeptide of a sequence Gly-Ser-Gly-Asn-Gly-Pro-Thr-Lys-Pro-Asp-Leu-Leu-Gln-Glu-Leu-Arg-Cys was synthesized chemically in a usual manner. Keyhole Limped Hemocyanin was linked to the C-terminus of the oligopeptide. The resultant was purified and used to immunize rabbits in a usual manner. The rabbits were immunized 6 times 2 weeks apart, then the whole blood was collected and subjected to salting out with 50 w/v % ammonium sulfate to obtain an anti-L-asparaginase anti-serum.

10 In accordance with the method reported by U. K. Laemmli et al. in "Nature", Vol.227, pp.680-685 (1970), 0.2 ml of the total soluble fraction in Experiment 1-1(c) was subjected to 12.5 w/v % SDS-polyacrylamide gel electrophoresis (hereinafter abbreviated as "SDS-PAGE"). The polypeptides migrated were transferred to a nitrocellulose membrane and subjected to Western blotting using the above anti-L-asparaginase anti-serum, in accordance with the method reported by H. Towbin in "Proceedings of the National Academy of Sciences of the U.S.A.", Vol.76, pp.4,350-4,354 (1979). For color development, alkaline phosphatase system was used. Comparing with the control and molecular weight markers, both the identification of bands specifically stained in the sample and the measurement of the molecular weight of each subunit of the L-asparaginase were carried out. The molecular weight markers used were bovine serum albumin (67 kDa), ovalbumin (45 kDa), soy bean trypsin inhibitor (20.1 kDa) and α -lactalbumin (14.4 kDa), and stained with amide black. The total soluble fraction in Experiment 1-1(c) gave no clear band.

Experiment 1-1(f)Measurement of molecular weight on gel filtration

25 Two ml of the total soluble fraction in Experiment 1-1(c) was subjected to gel filtration column chromatography using "HILOAD SUPERDEX 200 COLUMN", with an inner diameter of 16 mm and a length of 60 cm, commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, equilibrated with PBS. Based on the L-asparaginase activity of the eluted fractions, the molecular weight of the guinea pig wild-type L-asparaginase in a native form was examined. The molecular weight markers used were thyroglobulin (699 kDa), ferritin (440 kDa), catalase (232 kDa), aldolase (158 kDa), bovine serum albumin (67 kDa) and ovalbumin (43 kDa). The peak of L-asparaginase activity in the eluted fractions was observed in a position corresponding to a molecular weight of about 300 kDa.

30 Since no clear band was detected by Western blotting, the molecular weight of the wild-type L-asparaginase in a dissociated form could not be detected, while the molecular weight in a native form was estimated to be about 300 kDa based on the result of gel filtration. The molecular weights of L-asparaginase in a native and dissociated form, purified from guinea pig L-asparaginase in serum, were respectively estimated to be about 190 kDa on gel filtration and about 43 kDa on DS-PAGE. As disclosed in Japanese Patent Kokai No.214,885/96 by the same applicant of the present invention, 3 partial amino acid sequences of a guinea pig L-asparaginase in serum were observed in a region of amino acids 10-236 in the sequence of guinea pig wild-type L-asparaginase. While, two consensus amino acid sequences essential for the expression of L-asparaginase activity, i.e., SEQ ID NOs:1 and 2, as proposed by E. Harms in "FEBS letters", Vol.285, pp.55-58 (1991) based on the results of experiments on L-asparaginase derived from *Escherichia coli*, correspond to the sequences of amino acids 16-19 and 114-118 in the amino acid sequence of the guinea pig wild-type L-asparaginase. In view of these and the results in Experiment 1-1, the present inventors estimated that the guinea pig wild-type L-asparaginase may require a region of amino acids about 1-400 in the amino acid sequence to express the activity. In Experiment 2-1, to examine the L-asparaginase activities of C-terminal defective mutants as homologues of the guinea pig wild-type L-asparaginase, the expression products of DNA homologues from a guinea pig were tested for properties and features.

Experiment 1-2Expression of human wild-type DNA

50 A human wild-type DNA encoding L-asparaginase was prepared according to the method in Japanese Patent Kokai No.214,885/96 by the same applicant of the present invention. The DNA had the nucleotide sequence of SEQ ID NO:16. Hereinafter, a DNA having a polypeptide-encoding region in SEQ ID NO:16, i.e., a sequence of nucleotides 93-1,811 in SEQ ID NO:16, was named "HA/WT DNA", and a polypeptide, as the expression product of HA/WT DNA, having the amino acid sequence of SEQ ID NO:16, may be called "human wild-type L-asparaginase". SEQ ID NO:18 shows the nucleotide sequence of GPA/WT DNA and the amino acid sequence encoded thereby.

55 Except for the template and the sense- and anti-sense-primers, PCR was performed under the same conditions

as used in Experiment 1-1(b). As a template, the human wild-type DNA in Experiment 1-2 was used. As a sense- and anti-sense-primers, oligonucleotides with sequences of 5'-AATCTGAGCCACCATGGCGCGCG GTG-3' and 5'-CTGCGGCCGCTTATCAGACACCAGGCAGCAC-3' were respectively used. The DNA thus amplified was continuously treated with the same method as used in Experiment 1-1(b) to prepare a recombinant DNA, "pCHA/WT". After sequencing, the pCHA/WT was introduced into COS-1 cells and expressed followed by analyzing the expression product similarly as in Experiment 1-1.

In contrast to the guinea pig wild-type L-asparaginase, the experiment system could not detect the human wild-type L-asparaginase activity. It was presumably due to that the human wild-type L-asparaginase had a lower specific activity than that of the guinea pig wild-type one, and this forced to examine the properties of expression products by DNA homologues from human in Experiment 2-2.

Experiment 2

Expression of DNA homologue

Experiment 2-1

Expression of DNA homologue originating from guinea pig

A termination codon was replaced for the nucleotide sequence in a specific position of the guinea pig wild-type DNA to obtain a DNA homologue: A DNA was obtained by PCR method by replacing a termination codon for a codon of the nucleotides 1,090-1,092 or 1,012-1,014 in SEQ ID NO:17. Except for the nucleotide sequence of anti-sense primer, PCR was performed under the same conditions as used in Experiment 1-1(b). As an anti-sense primer, an oligonucleotide with a sequence of 5'-CTGCGGCCGCTTATGCCGTGGCAGTGT-3' or 5'-CTGCGGCCGCTTATCAGCCCCAACACGTAGGA-3' was used to prepare the two-types of DNAs. The amplified DNAs were treated similarly as in Experiment 1-1(b) to obtain recombinant DNAs, "pCGPA/D364stp" and "pCGPA/L338stp". By sequencing similarly, it was confirmed that pCGPA/D364stp and pCGPA/L338stp had DNAs, encoding the sequences of amino acids 1-363 and 1-337 in the guinea pig wild-type L-asparaginase, respectively, and had a termination codon at their 3'-termini free of intervening sequences. Hereinafter, the polypeptide-encoding regions of the DNAs are respectively named "GPA/D364stp DNA" and "GPA/L338stp DNA". GPA/D364stp DNA and GPA/L338stp DNA were ligated in the downstream of a CMV promoter in the direction from the 5'- to 3'-termini. The DNAs expression products may be named "guinea pig L-asparaginase homologues".

The above recombinant DNAs were introduced into COS-1 cells and examined similarly as in Experiment 1-1. As controls, pCGPA/WT and pCDM8 in Experiment 1-1(b) were similarly treated and examined. Table 1 shows the results.

35

40

45

50

55

Table 1

Recombinant DNA	L-asparaginase activity (unit)	Molecular weight (kDa) *1	Molecular weight (kDa) *2
PCGPA/WT	0.083	-	about 300
PCGPA/D364stp	0.228	about 40	about 140
PCGPA/L338stp	N.D. *3	about 40	-
PCDM8	N.D. *3	-	-

Note: The symbols "*1", "*2" and "*3" mean that the value was determined by Western blotting, the value was determined by gel filtration, and the activity was not detected, respectively.

As shown in Table 1, the activities of the expression products of GPA/WT DNA and GPA/D364stp DNA were detected, but not for GPA/L338stp DNA. These results suggest that a region of amino acids 1-363 in the guinea pig wild-type L-asparaginase may be enough for sufficiently expressing the L-asparaginase activity. This amino acid sequence, amino acids 1-363 in the guinea pig wild-type, is SEQ ID NO:4, and a nucleotide sequence which encodes the

amino acid sequence is SEQ ID NO:10. The amino acid sequence of the guinea pig wild-type L-asparaginase is SEQ ID NO:5.

Experiment 2-2

5

Expression of DNA homologue originating from human

DNA homologues were prepared by replacing specific codons in the human wild-type DNA with termination codons or codons for different amino acids. The DNA homologues were prepared by replacing termination codons for the nucleotides 1096-1098 in SEQ ID NO:18 by applying PCR method. Except for the template and the sense- and anti-sense-primers, PCR was performed under the same conditions as used in Experiment 1-1(b). As a template, the human wild-type DNA in Experiment 1-2 was used. As a sense- and anti-sense-primers, the oligonucleotides with sequences of 5'-AATCTGAGCCACCATGGCGCGCGGTG-3' and 5'-CTGCGGCCGCTCATTACACCGAGGGTGGCGT-3' were respectively used. The amplified DNA was treated similarly as in Experiment 1-1 to obtain a recombinant DNA, "pCHA/E366stp", and sequenced. It was confirmed that pCHA/E366stp contained a DNA encoding amino acids 1-365 in SEQ ID NO:16 and a termination codon at the 3'-terminus free of intervening sequences. The polypeptide-encoding region was named "HA/E366stp DNA", hereinafter. HA/E366stp DNA was ligated to the downstream of a CMV promotor in the direction from the 5'- to 3'-termini.

To change specific codons in DNAs into ones for different amino acids, the over lap extension method reported by Robert M. Horton et al. in "*Methods in Enzymology*", Vol.217, pp.270-279 (1993), published by Academic Press, Inc., San Diego, U.S.A., was used. The method is summarized in FIG.1 and explained as follows: First, mutagenic primers A and B, where the nucleotides to be mutagenized were substituted by desired different ones complementary to one another, were prepared. The mutagenic primer A was a sense strand, and the mutagenic primer B was an anti-sense strand. A set of 5'- and 3'-terminal primers, which amplify the whole region of the desired DNA, were prepared, and they were respectively a sense- and anti-sense-strands. Second, conventional PCR was performed using the 5'-terminal primer, the mutagenic primer A, and as a template, a DNA with the original nucleotide sequence. In parallel, another PCR as was performed using the same DNA as a template, the 3'-terminal primer, and the mutagenic primer B. These two PCRs were named "first step PCRs". Third, two DNAs amplified in the first step PCRs were mixed with the 5'- and 3'-terminal primers as used in the first step PCRs followed by performing PCR as a second step PCR. The two DNA fragments amplified in the first step PCRs were used as primers and templates to generate mutagenized DNAs, while the 5'- and 3'-terminal primers were used as primers to amplify the mutagenized DNAs. By this method, DNAs into which were introduced 7 types nucleotide substituents, i.e., 7 DNA homologues were prepared. The 7 types nucleotide substituents and consequent changes of the encoded amino acid sequences are summarized in Table 2. The template DNA and mutagenic primers A and B used to prepare the 7 DNA homologues were summarized in Table 3. The 5'- and 3'-terminal primers were respectively equal to the sense- and anti-sense-primers as used to prepare pCHA/E366stp in Experiment 2-2.

40

45

50

55

Table 2

DNA homologue	Recombinant DNA	Nucleotide substitution (upper line) and consequential change of amino acid (lower line) *
HA/MUT1 DNA	pCHA/MUT1	C894G, A902G, G952A, G953A and G1096T H298Q, Q301R, G318N and E366stp
HA/MUT2 DNA	pCHA/MUT2	C894G, A902G and G1096T H298Q, Q301R and E366stp
HA/MUT3 DNA	pCHA/MUT3	C894G, G952A, G953A and G1096T H298Q, G318N and E366stp
HA/MUT4 DNA	pCHA/MUT4	A902G, G952A, G953A and G1096T Q301R, G318N and E366stp
HA/MUT5 DNA	pCHA/MUT5	C894G and G1096T H298Q and E366stp
HA/MUT6 DNA	pCHA/MUT6	A902G and G1096T Q301R and E366stp
HA/MUT7 DNA	pCHA/MUT7	G952A, G953A and G1096T G318N and E366stp

*) Numbers in the upper lines in each column mean a nucleotide number in SEQ ID NO:18. Numbers in the lower lines in each column means an amino acid residue number in SEQ ID NO:18. Alphabets on the left and right of the numbers in the upper lines show nucleotides before and after the nucleotide substitution, respectively. Alphabets on the left and right of the numbers in the lower lines show amino acids before and after the nucleotide substitution, respectively. The symbol "stp" means that a termination codon was substituted for a codon in the wild-type DNA. Names for the 7 DNA homologues and the recombinant DNAs containing the DNA homologues are shown in parallel.

Table 3

DNA homologue	Template DNA	Nucleotide sequences of mutagenic primers A (upper line) and B (lower line) *
HA/MUT1 DNA	pCHA/MUT7	the same as used for HA/MUT2 DNA preparation the same as used for HA/MUT2 DNA preparation
HA/MUT2 DNA	pCHA/E366stp	5'-CCCCGGAGGCACCTGGGT-3' 5'-ACCCAGTGCCCTCCGGGG-3'
HA/MUT3 DNA	pCHA/MUT7	the same as used for HA/MUT5 DNA preparation the same as used for HA/MUT5 DNA preparation
HA/MUT4 DNA	pCHA/MUT7	the same as used for HA/MUT6 DNA preparation the same as used for HA/MUT6 DNA preparation
HA/MUT5 DNA	pCHA/E366stp	5'-CCCTGGAGGCACCTGGGT-3' 5'-ACCCAGTGCCCTCCAGGGG-3'
HA/MUT6 DNA	pCHA/E366stp	5'-CCCCGGAGGCACGTGGGT-3' 5'-ACCCACTGCCTCCGGGG-3'
HA/MUT7 DNA	pCHA/E366stp	5'-GACGttGGCTCCCCCAT-3' 5'-ATGGGGGAGCCaaCGTC-3'

Note: Small letters mean nucleotides which were substituted for those in human wild-type DNA.

The obtained DNA homologues from human were treated similarly as in Experiment 1-1 to obtain recombinant DNAs "pCHA/MUT1", "pCHA/MUT2", "pCHA/MUT3", "pCHA/MUT4", "pCHA/MUT5", "pCHA/MUT6" and "pCHA/MUT7". The expression products of the DNA homologues, obtained in Experiment 2-2, may be named "human L-

EP 0 811 687 A2

asparaginase homologues", hereinafter. After sequencing, these DNA homologues were introduced into COS-1 cells, followed by expression and assay. As controls, pCHA/WT obtained in Experiment 1-2 and pCDM8 were treated and examined. Signal intensities of bands, detected by Western blotting, were evaluated by densitometry to compare quantitatively the expressed products. The results were in Table 4.

5

10

15

20

25

30

35

40

45

50

55

Table 4

Recombinant DNA	L-asparaginase activity (unit) *1	Molecular weight (kDa) *2	Quantity *3	Molecular weight (kDa) *4
PCHA/WT	N.D.	-	-	-
PCHA/E366stp	N.D.	about 40	2.3	-
PCHA/MUT1	0.021	about 40	0.4	about 140
PCHA/MUT2	0.031	about 40	0.9	about 140
PCHA/MUT3	0.009	about 40	0.1	about 140
PCHA/MUT4	N.D.	about 40	0.2	-
PCHA/MUT5	0.006	about 40	1.2	about 140
PCHA/MUT6	N.D.	about 40	1.9	-
PCHA/MUT7	N.D.	about 40	0.2	-
PCDM8	N.D.	-	-	-

Note: The symbols "*1", "*2", "*3" and "*4" mean the activity was not detected, the value was determined by Western blotting, the value indicates the signal intensity of the band detected on Western blotting and quantified by densitometry, and the value was determined by gel filtration, respectively.

The results in Table 4 indicate that human L-asparaginases both in the wild-type and in the C-terminal defected mutant, i.e., the expression product of HA/E366stp DNA, as the one of the homologues, had a lower specific activity than that from guinea pigs. In addition, these results indicate that the specific activity of L-asparaginases among those of point mutants, which some of the amino acids inherent to the human wild-type L-asparaginase were substituted by different ones, increased to a detectable level. The human DNA homologues such as HA/MUT1, HA/MUT2, HA/MUT3 and HA/MUT5, which the expression products gave a detectable level of activity, have SEQ ID NOS:11 to 14, respectively, and encoding SEQ ID NOs:6 to 9, respectively.

Based on the results in the above experiments, the present inventors found that polypeptides from mammal may require the amino acid sequence of SEQ ID NO:3 (where the symbol "Xaa" meant "glutamine" or "arginine") to express a detectable level of L-asparaginase activity in the expression and assay systems in Experiments 1 and 2, in addition to conventionally known as such amino acid sequences of SEQ ID NOs:1 and 2. The amino acid sequence of the guinea pig wild-type L-asparaginase contains the SEQ ID NO:3 in the region the amino acids 298-302. Examples of such polypeptides, having all the amino acid sequences of SEQ ID NOs:1 to 3, include those having SEQ ID NOs:4 and 5 from guinea pigs and those having SEQ ID NOs:6 to 9 from human.

Based on the above findings, the present inventors invented the polypeptides having L-asparaginase activity. The following examples explain the present invention, and the techniques used therein are conventional ones used in the art, and of course, they are not restrictive to the present invention: Example A-1 Polypeptides having L-asparaginase activity Example A-1(a)

20 Preparation of transformant

Ten μ l of 10 x PCR buffer, one μ l of 25 mM dNTP mix, one ng of the recombinant DNA pCGPA/WT DNA obtained in Experiment 1-1 as a template, and an adequate amount of oligonucleotides as a sense- and anti-sense-primers synthesized chemically based on the 5'- and 3'-terminal sequences of GPA/WT DNA were placed in 0.5 ml reaction tube. The mixture was mixed with sterilized distilled water to give a total volume of 99.5 μ l, and 0.5 μ l of 2.5 units/ μ l AmpliTaq DNA polymerase were further added. The sequence of the sense primer was 5'-GCGAATTCTATGGCGCGCG-CATCA-3' which was a nucleotide sequence obtained by adding a cleavage site by a restriction enzyme, Eco RI, to the upstream of the 5'-terminus of GPA/WT DNA. The sequence of the anti-sense primer was 5'-GCAAGCTTCA-GATGGCAGGCCGCAC-3', which was complementary to a nucleotide sequence prepared by adding a termination codon to the 3'-terminus of GPA/WT DNA and then adding a cleavage site by a restriction enzyme, Hin dIII, to the downstream. The above mixture was subjected to 40 cycles of successive incubations at 94°C for one min, at 55°C for one min, and 72°C for 3 min to perform PCR. By cleaving the amplified DNA by restriction enzymes Eco RI and Hin dIII, a Eco RI-Hin-dIII fragment with a length of about 1.7 kbp was obtained. Twenty-five ng of the DNA was mixed with 10 ng of plasmid vector "pKK223-3", commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, which had been cleaved by restriction enzymes Eco RI and Hin dIII, and then mixed with the solution I in "LIGATION KIT VERSION 2" commercialized by Takara Shuzo Inc., Tokyo, Japan, in an equal volume of the DNA mixture, followed by incubation at 160°C for 2 hours to obtain a replicable recombinant DNA, "pKGPA/WT".

The recombinant DNA pKGPA/WT was introduced into an *Escherichia coli* strain "JM105" by the competent cell method. The resulting transformant "J-GPA/WT" was inoculated to L broth medium (pH 7.2) containing 50 μ g/ml ampicillin and cultured at 37°C for 18 hours under shaking conditions. The transformants collected by centrifugation from the culture were subjected to a conventional alkali-SDS method to extract the recombinant DNA pKGPA/WT. As shown in FIG.2, analysis using an automatic sequencer equipped with a fluorophotometer revealed that GPA/WT DNA of SEQ ID NO:17 ligated to the downstream of a Tac promotor in the direction from the 5'- to 3'-termini. In addition, it was confirmed that a termination codon was ligated to the downstream of GPA/WT DNA without intervening sequences.

45

Example A-1(b)

Production of polypeptide

The transformant J-GPA/WT was inoculated into L broth medium (pH 7.2), containing 50 μ g/ml ampicillin, and cultured at 37°C for 18 hours under shaking conditions to obtain a seed culture. Eighteen L of a fresh preparation of the same medium was placed in a 30-L jar fermenter, inoculated with one v/v % of the seed culture, and cultured at 37°C under aeration-agitation conditions. A portion of the culture was placed in a cuvette with 1-cm in thickness, incubated until the absorbance at a wavelength of 650 nm reached to about 1.5, admixed with IPTG to give a final concentration of 0.1 mM, and incubated for 5 hours. The cells centrifugally collected from the culture were suspended in a mixture solution (pH 7.2) containing 139 mM NaCl, 7 mM Na₂HPO₄ and 3 mM NaH₂PO₄, and supersonicated to disrupt the cells, followed by centrifuging the resultant to obtain a supernatant.

Ammonium sulfate was added to the supernatant under ice-chilling conditions to give a concentration of 50 w/v %

and then dissolved to homogeneity. After standing for several minutes, the precipitates were collected by centrifugation, dissolved in 20 mM Tris-HCl buffer (pH 8.0), and dialyzed against a fresh preparation of the same buffer followed by applying the dialyzed solution to "Q SEPHAROSE FF COLUMN", commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, equilibrated with the same buffer. After washing sufficiently with the same buffer, the column
 5 was fed with a linear gradient buffer of NaCl increasing from 0 M to 0.5 M in 20 mM Tris-HCl buffer (pH 8.0). The fractions eluted at about 0.1-0.3 M NaCl were collected, and the solvent was replaced with 10 mM sodium-phosphate buffer (pH 7.5) while concentrating with membranes. The concentrated solution was then applied to "L-ASPARAGINE AGAROSE", commercialized by Sigma Chemical Co., St. Louis, U.S.A., equilibrated with the same buffer. After washing with the same buffer, 10 mM sodium phosphate buffer (pH 7.5) containing 0.5 M NaCl was fed to the column for elution.
 10 The eluted fractions were pooled and concentrated by using a membrane. The concentrate was applied to "HILOAD SUPERDEX 200 COLUMN", commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, equilibrated with Tris-HCl buffer (pH 8.0) containing 10 v/v % glycerol, and eluted from the column. The eluted fractions, containing substances with a molecular weight of about 300 kDa, were collected to obtain a purified polypeptide with a purity of 90% or more in a yield of about 0.1 mg/ml culture.

15

Example A-1(c)Physicochemical property of polypeptide

20 The purified polypeptide in the above was analyzed to determine the physicochemical properties: The molecular weight of the purified polypeptide in a native form was determined by gel filtration similarly as in Experiment 1-1(e). The peak for L-asparaginase activity of the eluted fractions was found at a position corresponding to a molecular weight of about 300 kDa. The molecular weight of the purified polypeptide in a dissociated form was determined by SDS-PAGE as used in Experiment 1-1(e). The main band was observed at a position corresponding to a molecular weight
 25 of about 50±10 kDa. The results indicate that the purified polypeptide exists in a multimer as a native form. Considering errors in measurement by the above methods and the fact that all the known L-asparaginases from *Escherichia coli* etc., other than mammal, exist in a tetrameric form, it can be estimated that the purified polypeptide exists in a tetrameric form. The method as used in Experiment 1-1(d) confirmed that the purified polypeptide has an L-asparaginase activity.

30

Example A-2(a)Preparation of transformant

35 FIG.3 summarizes the procedures to prepare transformants. PCR was performed under the same conditions as used in Example A-1(a) except for the nucleotide sequences of a sense- and anti-sense-primers. As the sense- and anti-sense-primers, oligonucleotides with the nucleotide sequences of 5'-GTGAATTGGAGGTTCAAGAT-GGCGCGCGATCA-3' and 5'-CTGCGGCCGCTCAGATGGCAGGCCAC-3' were respectively used. The DNA thus amplified was cleaved by restriction enzymes *Eco RI* and *Not I* to obtain an about 1.7 kbp *Eco RI*-*Not I* fragment. Seventy ng of the DNA fragment was mixed with 50 ng of a plasmid vector, "pBPV", commercialized by Pharmacia
 40 LKB Biotechnology AB, Uppsala, Sweden, cleaved in advance by restriction enzymes *Xba I* and *Not I*, and 25 ng of each of 4 oligonucleotides as linkers with nucleotide sequences of 5'-TCGAGCCACCATGAAGTGTGTTGGTTATT-3', 5'-TTCTTCCTGATGGCCGTAGTGACAGGAGTG-3', 5'-AATTCACTCCTGTCACTACGGCCATCAGGA-3', and 5'-AGAAAATAACCCACGAACACTTCATGGTGGC-3'. The oligonucleotides for linkers were synthesized in a usual manner and used after reacted with T4 polynucleotide kinase, commercialized by Pharmacia LKB Biotechnology AB, Uppsala, Sweden, and purified by ethanol-precipitation. To the DNA mixture was added the solution I in "LIGATION KIT VERSION 2", commercialized by Takara Shuzo, Tokyo, Japan. The mixture was incubated at 16°C for 2 hours to obtain a replicable recombinant DNA "pB1gGPA/WT".

45 The recombinant DNA pB1gGPA/WT was introduced into an *Escherichia coli* HB101 strain by the competent cell method. The transformant thus obtained was inoculated into L broth medium (pH 7.2) containing 50 µg/ml ampicillin followed by cultivation at 37°C for 18 hours under shaking conditions. The transformants, collected by centrifuging the resulting culture, were subjected to a conventional alkali-SDS method to extract the recombinant DNA pB1gGPA/WT. The nucleotide sequence analysis using an automatic sequencer confirmed that the recombinant DNA pB1gGPA/WT had the structure in FIG.4: A DNA encoding a polypeptide containing a signal sequence for immunoglobulin secretion, as shown by D. F. Stern et al. in "Science", Vol.235, pp.321-324 (1984), i.e., "Ig sec DNA" was ligated to the downstream of a region for transcriptional regulation, comprising an enhancer derived from long terminal repeats of Moloney Mouse Sarcoma Virus (Emsv), and a promoter derived from Mouse metallothionein I gene (Prmti). Furthermore, GPA/WT DNA was ligated in the same frame to the downstream of the Ig sec DNA in the direction from the 5'- to 3'-termini of GPA/WT DNA. It was also confirmed that a termination codon exists in the 3'-terminus of GPA/WT DNA without intervening

sequences.

The recombinant DNA pB_{Ig}GPA/WT was introduced into a cell line C127 (ATCC CRL-1616), derived from a mouse, by using a lipofectin® reagent commercialized by Life Technologies, Inc., Gaithersburg, U.S.A., according to the attached protocol. The transformants with the recombinant DNA were selected based on the lack of proliferation-regulatory ability, i.e., focus-forming ability, as a first selection. The cells around those containing foci were collected using sterilized filter papers and subjected to a conventional limiting dilution method to form single cells which were then selected depending on the productivity of L-asparaginase, as final selection. Thus, a transformant, "C-GPA/WT", was obtained.

Example A-2(b)

10

Production of polypeptide

The transformant C-GPA/WT was inoculated into a well of "3046", a plastic multiwell plate with 6 wells, 3.5 cm in diameter, commercialized by Becton Dickinson Labware, New Jersey, U.S.A., with DME medium containing 10 v/v % bovine fetal serum, and cultured to be confluent as a seed culture. Some of the cells, scraped by treatment with trypsin, were inoculated as seed cells into each of the multiwell plates which were charged with the fresh preparation of the same medium and cultured. After repeating manipulations similarly as in the above and with scale up to increase the cell number, the cells were subjected to a conventional continuous culture using 50 or 150 cm² culture flasks. The resulting culture supernatants of a volume of 100 l was collected and treated with similar methods for treating the supernatant from the cell-disruptants in Example A-1(b): salting out with ammonium sulfate, the chromatography of the solution of the precipitates using Q SEPHAROSE FF COLUMN, the chromatography of the eluted fractions using L-ASPARAGINE AGAROSE, and the chromatography of the eluted fractions using HILOAD SUPERDEX 200 COLUMN. Consequently, a purified polypeptide with a purity of 90 % or more was obtained in a yield of about one µg/ml-culture.

25

Example A-2(c)

Physicochemical property of polypeptide

30 By testing similarly as in Example A-1(c), it was confirmed that the purified polypeptide thus obtained had equivalent physicochemical properties with that obtained in Example A-1(b).

Example A-3(a)

35 Preparation of transformant

PCRs were performed under the same conditions in Example A-1(a) except for the template and the sense- and anti-sense-primers. The DNA thus obtained were treated similarly as in Example A-1(a) to prepare recombinant DNAs, "pKGPA/D364stp", "pKHA/MUT1", "pKHA/MUT2", "pKHA/MUT3" and "pKHA/MUT5". Table 5 summarizes template DNAs and nucleotide sequences of a sense- and anti-sense-primers which were used to prepare the each recombinant DNAs. By sequencing similarly as in Example A-1(a), the structures of these recombinant DNAs were confirmed as shown in FIGs. 5 to 9.

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Table 5

Recombinant DNA	Template DNA	Nucleotide sequences of sense (upper line) and anti-sense (lower line) primers *
PKGPA/D364stp	pCGPA/D364stp	<i>5'-GCCAATTCAATGGGGGGCATCA-3'</i> <i>5'-GCAAGCTTCATGCCGTGGCAGTGT-3'</i>
PKHA/MUT1	pCHA/MUT1	<i>5'-GCCAATTCAATGGGGGGGGTG-3'</i> <i>5'-GCAAGCTTCACACCCAGGGTGGCGT-3'</i>
PKHA/MUT2	pCHA/MUT2	the same as used for PKHA/MUT1 preparation the same as used for PKHA/MUT1 preparation
PKHA/MUT3	pCHA/MUT3	the same as used for PKHA/MUT1 preparation the same as used for PKHA/MUT1 preparation
PKHA/MUT5	pCHA/MUT5	the same as used for PKHA/MUT1 preparation the same as used for PKHA/MUT1 preparation

*) Italics in the upper line in each column mean the 5'-terminal nucleotide sequence of a DNA encoding L-asparaginase, and those in the lower line mean the complementary sequence to the 3'-terminus of the DNA, wherein the L-asparagine originates from a guinea pig or human.

The recombinant DNAs were treated according to the methods as in Example A-1(a) to obtain transformants, "J-GPA/D364stp", "J-HA/MUT1", "J-HA/MUT2", "J-HA/MUT3" and "J-HA/MUTS".

Example A-3(b)

5

Production of polypeptide

The transformants obtained in Example A-3(a) were treated according to the methods similarly as in Example A-1(b): cultivation, disrupting the resulting cells, the precipitations of the cell-disruptants with ammonium sulfate, the chromatography of the precipitate solutions using Q SEPHAROSE FF COLUMN, and the chromatography of the eluted fractions using L-ASPARAGINE AGAROSE in that order. The eluted fractions thus obtained were concentrated using membranes similarly as in Example A-1(b) followed by subjecting the chromatography using HILOAD SUPERDEX 200 COLUMN to collect the eluted fractions with a molecular weight of about 140 kDa. Each system yielded the purified polypeptide with a purity of 90 % or more in a yield of about 0.1 mg/ml-culture. These purified polypeptides were analyzed by the methods as in Example A-1(c) to examine their physicochemical properties. Table 6 shows the results combined with those in Example A-1(c).

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Table 6

Transformant, producing the polypeptide	Molecular weight (kDa) *1	Molecular weight (kDa) *2	L-asparaginase activity
J-GPA/WT	about 300	about 50 ± 10	+
J-GPA/D364stop	about 140	about 40	+
J-HA/MUT1	about 140	about 40	+
J-HA/MUT2	about 140	about 40	+
J-HA/MUT3	about 140	about 40	+
J-HA/MUT5	about 140	about 40	+

Note) The symbols "*1" and "*2" mean that the value was determined by gel filtration, and the value was determined by SDS-PAGE, respectively.

Table 6 indicates that all of the present polypeptides, expressed in *Escherichia coli* and purified, expressed an L-asparaginase activity. Furthermore, table 6 indicates that the polypeptides formed tetramers.

Example A-4(a)

5

Preparation of transformants

PCRs were performed under the same conditions in Example A-1(a) except for the template and the sense- and anti-sense-primers. DNAs thus obtained were ligated with the same linkers as used in Example A-2(a) under the same 10 conditions as in Example A-2(a) to obtain recombinant DNAs, "pBlgGPA/D364stip", "pBlgHA/MUT1", "pBlgHA/MUT2", "pBlgHA/MUT3" and "pBlgHA/MUT5". Table 7 summarizes template DNAs and nucleotide sequences of sense- and anti-sense-primers which were used to prepare the each recombinant DNAs. By sequencing similarly as in Example A-1(a), the structures of these recombinant DNAs were confirmed as shown in FIGs.10 to 14.

15

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Table 7

Recombinant DNA	Template DNA	Nucleotide sequences of sense (upper line) and anti-sense (lower line) primers *
pBIGPA/D364stp	pCGPA/D364stp	5' -GTGAATTGGAGGTTCAAGATGGCCGGCATCA-3' 5' -CTGGGGCGCTCATGCCGTGGCAAGTG-3'
pBIGHA/MUT1	pCHA/MUT1	5' -CTGAAATTGGAGGTTCAAGATGGCCGGCGGTG-3' 5' -CTGGGGCGCTCACACCGAGGGTGGC-3'
pBIGHA/MUT2	pCHA/MUT2	the same as used for pBIGHA/MUT1 preparation the same as used for pBIGHA/MUT1 preparation
pBIGHA/MUT3	pCHA/MUT3	the same as used for pBIGHA/MUT1 preparation the same as used for pBIGHA/MUT1 preparation
pBIGHA/MUT5	pCHA/MUT5	the same as used for pBIGHA/MUT1 preparation the same as used for pBIGHA/MUT1 preparation

Note) *: Italics in the upper line in each column mean the 5'-terminal nucleotide sequence of a DNA encoding L-asparaginase, and those in the lower line mean the complementary sequence to the 3'-terminus of the DNA, wherein the L-asparagine originates from a guinea pig or human..

The recombinant DNAs thus obtained were treated similarly as in Example A-2(a) to obtain transformants, "C-GPA/D364stp", "C-HA/MUT1", "C-HA/MUT2", "C-HA/MUT3" and "C-HA/MUTS".

Example A-4(b)

5

Production of polypeptide

The transformants obtained in Example A-4(a) were cultured according to the methods as in Example A-2(b), and the resulting culture supernatants were treated with similar methods for treating the supernatants from the cell-disruptants in Example A-1(b): the precipitations of culture supernatants with ammonium sulfate, the chromatography of the precipitate solutions using Q SEPHAROSE FF COLUMN, and the chromatography of the eluted fractions using L-ASPARGINE AGAROSE in that order. The eluted fractions thus obtained were concentrated using membranes similarly as in Example A-1(b) followed by subjecting the chromatography using HILOAD SUPERDEX 200 COLUMN to collect the eluted fractions with a molecular weights of about 140 kDa. Each of these systems yielded the purified polypeptide with a purity of 90 % or more in a yield of about one µg/ml-culture. These purified polypeptides were analyzed by the methods as in Example A-1(c) to examine their physicochemical properties. Table 8 shows the results combined with those in Example A-3.

20

25

30

35

40

45

50

55

5

10

15

20

25

30

35

40

45

50

55

Table 8

The polypeptide-producing transformant	Molecular weight (kDa) *1	Molecular weight (kDa) *2	L-asparaginase activity
J-GPA/WT	about 300	about 50 ± 10	+
J-GPA/D364stp	about 140	about 40	+
J-HA/MUT1	about 140	about 40	+
J-HA/MUT2	about 140	about 40	+
J-HA/MUT3	about 140	about 40	+
J-HA/MUT5	about 140	about 40	+

Note) The symbols "*1" and "*2" mean that the value was determined by gel filtration, and the value was determined by SDS-PAGE, respectively.

Table 8 indicates that all of the present polypeptides, expressed in mammalian cells and purified, expressed an L-asparaginase activity. Furthermore, table 8 indicates the polypeptides formed tetramers.

As shown in above Example A, each of the polypeptides according to the present invention expresses an L-asparaginase activity. Therefore, the present agent for susceptive diseases hydrolyze L-asparagine in patients to exert therapeutic and preventive effects on L-asparaginase-susceptive diseases when administered to human. The wording "susceptive diseases" as referred in the present specification means diseases in general which are caused by the existence of tumor cells dependent on L-asparagine: For example, leukemias such as acute leukemia, an acute transformation of chronic leukemia and T-lymphocytic leukemia, and malignant tumors such as Hodgkin's diseases and non-Hodgkin's diseases. The present agent for susceptive diseases possesses thus the uses as anti-tumor agents for treating and/or preventing such susceptive diseases as above. Although it varies dependently on the types of agents used for such purposes and susceptive diseases to be treated, the present agent is generally processed into an agent in the form of a liquid, a paste or a solid which contains the polypeptides in an amount of 0.000001-100 w/w %, preferably, 0.0001-100 w/w %, on a dry solid basis.

The present agent can be used intact or processed into compositions by mixing with one or more selected from the group consisting of physiologically-acceptable carriers, excipients, solvents, buffers and stabilizers, and further, if necessary, other biologically-active substances and other agents. For example, "Iyakuhin-Tenkabutsu-Jiten (The Dictionary of Pharmaceutical Excipients)" (1994), edited by Japan Pharmaceutical Excipients Council, Tokyo, Japan, published by Yakujinippo LTD., Tokyo, Japan and "Iyakuhin-Tenkabutsu-Jiten-Tsuiho 1995 (Suppliment for The Dictionary of Pharmaceutical Excipients)" (1995), edited by Japan Pharmaceutical Excipients Council, Tokyo, Japan, published by Yakujinippo LTD., Tokyo, Japan, mention the embodiments of such carriers, excipients, solvents, buffers and stabilizers. Examples of such other biologically-active substances and other agents include interferon- α , interferon- β , interferon- γ , interleukin 1, interleukin 2, interleukin 3, TNF- α , TNF- β , GM-CSF, carboquone, cyclophosphamide, aclarubicin, thiotapec, busulfan, ancitabine, cytarabine, fluorouracil, 5-fluoro-1-(tetrahydro-2-furyl)uracil, methotrexate, actinomycin D, chromomycin A3, daunorubicin, doxorubicin, bleomycin, mercaptopurine, prednisolone, mitomycin C, vinristine, vinblastine, radio gold colloidal, Krestin®, picibanil, lentinan and Maruyama vaccine.

The present agent for susceptive diseases includes those in a unit dose form which means a physically separated and formed medicament suitable for administration, and contains the polypeptides in a daily dose or in a dose from 1/40 to several folds (up to 4 folds) of the daily dose. Examples of such medicaments are injections, liquids, powders, granules, tablets, capsules, sublinguals, ophthalmic solutions, nasal drops and suppositories.

The present agent can be administered to patients orally or parenterally. In both administrations, the agent exerts a satisfactory effect in the treatment and/or the prevention for the susceptive diseases. Although it varies dependently on the types of susceptive diseases and their symptoms, the agent can be orally administered to patients or parenterally administered to patients' intradermal tissues, subcutaneous tissues, muscles, and veins at a dose as amounts of the polypeptides in the range of about 0.1 μ g - 500 mg/shot, preferably, about 0.1-100 mg/shot, 1-4 times/day or 1-7 times/week, for one day to one year. The present agent for susceptive diseases further includes the forms by applying gene therapy. When a transformant into which the DNAs encoding the polypeptides of this invention are introduced are administered to patients to express in them, they exert equivalent effects as above administrations. For example, "Jikken-Igaku Bessatsu, Bio-manual Up Series, Idenshi-Chiryo-No-Kisogijutsu (Basic Techniques for Gene Therapy)" (1996), edited by Takashi SHIMADA, Izumi SAITO and Takaya OZAWA, published by Yodosha, Tokyo, Japan, details the general procedures for the gene therapy.

The biological activities and acute toxicity of the present polypeptides are explained based on Experiment 3 and 4 below, respectively.

Experiment 3

Biological activity

Experiment 3-1

Antitumor effect *in vitro*

A human histiocytic lymphoma cell line U937 (ATCC CRL-1593), and a cell line Molt4 (ATCC CRL-1582), derived from human T lymphoblasts, were subcultured in RPMI 1640 medium containing 10 v/v % bovine fetal serum. The cells collected by centrifugation from each subculturing system in logarithmic phase were suspended in the same medium to give a concentration of 2×10^5 cells/ml. Every one ml of the each cell suspension was charged into each of 13 wells of multiwell plates with 24 wells, "3047", commercialized by Becton Dickinson Labware, New Jersey, U.S.A. After each of dilutions of 12 types of the purified polypeptides prepared in Example A-1 to A-4 with PBS was further charged into the each well, the cells were cultured at 37°C for 72 hours in a 5 v/v % CO₂ incubator. The final concen-

tration of each of the purified polypeptides was one unit/ml as an L-asparaginase activity. As a control, after charged with equivalent volume of PBS, the cells were cultured correspondingly. The cells were collected after the cultivation to stain cells died with trypan blue. Cell survival ratio in each systems with the purified polypeptides was compared with that in the control. All of the cell survival ratios with the purified polypeptides were significantly lower than that in the control. These results indicate that all of the present polypeptides, obtained in Examples A-1 to A-4, have cytotoxicity to U937 and Molt4.

Experiment 3-2

10 Antitumor effect *in vivo*

For model mice were used C3H mice wherein a mouse lymphoma cell line 6C3HED, registered in Cell Resource Center for Biomedical Research, Institute of Development Aging and Cancer, Tohoku University, Sendai, Japan, was transplanted with passages by subcutaneous injections at their sides in a range of 1×10^7 cells/body every 8 days in usual manner. To the model mice were administered the purified polypeptides obtained in Example A-1 to A-4 in the range of 400 unit/body by venoclyses every day from fourth to seventh days after transplanted with the cells. Dimensions of the tumors were observed with naked eyes on fourth and eighth day after the transplantations. The purified polypeptides were administered after diluted with 0.15 M NaCl and filtrated with membrane filters, 0.45 µm in pore size, commercialized by Millipore Corp., Bedford, U.S.A. As a control, 0.15 M NaCl was treated correspondingly. While significant enlargements of the tumors were observed in the control, significant involutions or disappearances of the tumors were observed in mice administered with the polypeptides. These results indicates that all of the present polypeptides, obtained in Examples A-1 to A-4, are able to cure the tumors of model mice.

Experiment 4

25 Acute toxicity

The purified polypeptides obtained in Examples A-1 to A-4 were separately administered to 8-week-old mice percutaneously, perorally or intraperitoneally according to conventional manner. The LD₅₀ of all the polypeptides was about 100 mg/kg or higher independently of the administration routes. These results evidenced that the present polypeptides could be safely incorporated into pharmaceuticals for administering human.

The following examples explain the present agent for susceptive diseases.

Example B-1

Solution

The purified polypeptides obtained in Examples A-1 to A-4 were separately dissolved to give a concentration of 0.1 mg/ml in physiological saline containing one w/v % human serum albumin as a stabilizer, and sterilized with membrane filters according to conventional manner to obtain solutions.

All of the products have satisfactory stabilities and can be used as injections, ophthalmic solutions, collunarium in the treatment and/or the prevention of susceptive diseases including a malignant tumor, acute leukemia, malignant lymphoma, an acute transformation of chronic leukemia, T-lymphocytic leukemia.

45 Example B-2

Solution

The purified polypeptides obtained in Examples A-1 to A-4 were separately dissolved to give a concentration of 0.1 mg/ml in physiological saline containing one w/v % glycerol as a stabilizer, and sterilized with membrane filters according to conventional manner to obtain solutions.

All of the products have satisfactory stabilities and can be used as injections, ophthalmic solutions, collunarium for the treatment and/or the prevention of susceptive diseases including a malignant tumor, acute leukemia, malignant lymphoma, an acute transformation of chronic leukemia and T-lymphocytic leukemia.

Example B-3Dry injection

5 The purified polypeptides obtained in Examples A-1 to A-4 were separately dissolved to give a concentration of 50 mg/ml in physiological saline containing one w/v % purified gelatin as a stabilizer, and the solutions were sterilized with membrane filters according to conventional manner. One ml aliquots of the sterilized solutions were distributed to vials, lyophilized and cap sealed.

10 All of the products have satisfactory stabilities and can be used as dry injections for the treatment and/or the prevention of susceptive diseases including a malignant tumor, acute leukemia, malignant lymphoma, an acute transformation of chronic leukemia and T-lymphocytic leukemia.

Example B-4Ointment

15 "HI-BIS-WAKO 104", a carboxyvinyl polymer commercialized by Wako Pure Chemicals, Tokyo, Japan, and a purified trehalose were dissolved in sterilized distilled water to give concentrations of 1.4 w/w % and 2.0 w/w %, respectively, and the purified polypeptides obtained in Examples A-1 to A-4 were separately mixed to homogeneity in the 20 solutions followed by adjusting the pH of the resulting solutions to pH 7.2 to obtain pastes containing about one mg/g of the polypeptides.

25 All of the products have satisfactory spreadabilities and stabilities, and can be used as ointments for treating and/or preventing susceptive diseases including a malignant tumor, acute leukemia, malignant lymphoma, an acute transformation of chronic leukemia and T-lymphocytic leukemia.

Example B-5Tablet

30 Any one of the purified polypeptides obtained in Examples A-1 to A-4 and LUMIN, i.e. [bis-4-(1-ethylquinoline)][γ -4'-(1-ethylquinoline] pentamethionine cyanine, as a cell activator were mixed to homogeneity with "FINETOSE®" an hydrous crystalline α -maltose commercialized by Hayashibara Co.,Ltd., Okayama, Japan, and the mixtures were tabbed by tabletting machine to obtain tablets, about 200 mg weight each, containing the polypeptide and the LUMIN, about 5 mg each.

35 All of the products have satisfactory swallowing abilities, stabilities and cell activating activities, and can be used for treating and/or preventing susceptive diseases including a malignant tumor, acute leukemia, malignant lymphoma, an acute transformation of chronic leukemia and T-lymphocytic leukemia.

40 The present invention is based on the findings of polypeptides which originate from mammal, having L-asparaginase activity. The polypeptides are substances which have revealed amino acid sequences totally, and stable activities to hydrolyze L-asparagine. Therefore, the polypeptides exert satisfactory effects in the treatment and/or the prevention for diseases caused by tumor cells dependent on L-asparagine.

45 The polypeptides originate from mammal, so that they have low antigenicities to human and don't cause serious side effects even when administered in large amounts or continuously. Therefore, the polypeptides have the advantage that they can exert desired effects without restricted controls on patients' sensitivities.

50 The polypeptides thus valuable can be produced in desired amounts using the present DNAs encoding them.

Thus, the present invention is a significant invention which has a remarkable effect and gives a great contribution to this field.

While there has been described what is at present considered to be the preferred embodiments of the present invention, it will be understood the various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirits and scope of the invention.

SEQUENCE LISTING

5

(1) GENERAL INFORMATION:

(i) APPLICANT:

NAME:KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU KAGAKU
10 KENKYUJO

(ii) TITLE OF INVENTION:POLYPEPTIDES HAVING L-ASPARAGINASE ACTIVITY

(iii) NUMBER OF SEQUENCES:18

15

(iv) ADDRESS:

(A) ADDRESSEE:KABUSHIKI KAISHA HAYASHIBARA SEIBUTSU KAGAKU
KENKYUJO
(B) STREET:2-3, 1-CHOME, SHIMOISHII
(C) CITY:OKAYAMA
20 (E) COUNTRY:JAPAN
(F) POSTAL CODE (ZIP):700

20

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE:Floppy disk
(B) COMPUTER:IBM PC compatible
25 (C) OPERATING SYSTEM:PC-DOS/MS-DOS
(D) SOFTWARE:Word Perfect Version 5.1

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER:JP 168,172/96
30 (B) FILING DATE:June 7, 1996

30

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:4 amino acids
(B) TYPE:amino acid
(D) TOPOLOGY:linear

(ii) MOLECULE TYPE:peptide

(xi) SEQUENCE DESCRIPTION:SEQ ID NO:1:

Thr Gly Gly Thr

1

45

(3) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH:5 amino acids
(B) TYPE:amino acid
(D) TOPOLOGY:linear

(ii) MOLECULAR TYPE:peptide

(xi) SEQUENCE DESCRIPTION:SEQ ID NO:2:

55

His Gly Thr Asp Thr
1 5

5

(4) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5 amino acids

10

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

15

Gln Cys Leu Xaa Gly
1 5

20

(5) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 363 amino acids

25

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: peptide

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

30

Met	Ala	Arg	Ala	Ser	Gly	Ser	Glu	Arg	His	Leu	Leu	Leu	Ile	Tyr	Thr
1									10						15
Gly	Gly	Thr	Leu	Gly	Met	Gln	Ser	Lys	Gly	Gly	Val	Leu	Val	Pro	Gly
								20		25				30	
Pro	Gly	Leu	Val	Thr	Leu	Leu	Arg	Thr	Leu	Pro	Met	Phe	His	Asp	Lys
								35		40			45		
Glu	Phe	Ala	Gln	Ala	Gln	Gly	Leu	Pro	Asp	His	Ala	Leu	Ala	Leu	Pro
								50		55			60		
Pro	Ala	Ser	His	Gly	Pro	Arg	Val	Leu	Tyr	Thr	Val	Leu	Glu	Cys	Gln
								65		70			75		80
Pro	Leu	Leu	Asp	Ser	Ser	Asp	Met	Thr	Ile	Asp	Asp	Trp	Ile	Arg	Ile
								85		90			95		
Ala	Lys	Ile	Ile	Glu	Arg	His	Tyr	Glu	Gln	Tyr	Gln	Gly	Phe	Val	Val
								100		105			110		
Ile	His	Gly	Thr	Asp	Thr	Met	Ala	Phe	Gly	Ala	Ser	Met	Leu	Ser	Phe
								115		120			125		
Met	Leu	Glu	Asn	Leu	His	Lys	Pro	Val	Ile	Leu	Thr	Gly	Ala	Gln	Val
								130		135			140		
Pro	Ile	Arg	Val	Leu	Trp	Asn	Asp	Ala	Arg	Glu	Asn	Leu	Leu	Gly	Ala
								145		150			155		160
Leu	Leu	Val	Ala	Gly	Gln	Tyr	Ile	Ile	Pro	Glu	Val	Cys	Leu	Phe	Met
								165		170			175		
Asn	Ser	Gln	Leu	Phe	Arg	Gly	Asn	Arg	Val	Thr	Lys	Val	Asp	Ser	Gln
								180		185			190		
Lys	Phe	Glu	Ala	Phe	Cys	Ser	Pro	Asn	Leu	Ser	Pro	Leu	Ala	Thr	Val
								195		200			205		
Gly	Ala	Asp	Val	Thr	Ile	Ala	Trp	Asp	Leu	Val	Arg	Lys	Val	Asn	Trp
								210		215			220		
Lys	Asp	Pro	Leu	Val	Val	His	Ser	Asn	Met	Glu	His	Asp	Val	Ala	Leu
								225		230			235		240
Leu	Arg	Leu	Tyr	Pro	Gly	Ile	Pro	Ala	Ser	Leu	Val	Arg	Ala	Phe	Leu

55

	245	250	255
5	Gln Pro Pro Leu Lys Gly Val Val	Leu Glu Thr Phe Gly Ser Gly Asn	
	260	265	270
	Gly Pro Ser Lys Pro Asp Leu Leu	Gln Glu Leu Arg Ala Ala Ala Gln	
	275	280	285
	Arg Gly Leu Ile Met Val Asn Cys Ser Gln Cys	Leu Arg Gly Ser Val	
	290	295	300
10	Thr Pro Gly Tyr Ala Thr Ser Leu Ala Gly	Ala Asn Ile Val Ser Gly	
	305	310	315
	Leu Asp Met Thr Ser Glu Ala Ala Leu	Ala Lys Leu Ser Tyr Val Leu	
	325	330	335
	Gly Leu Pro Glu Leu Ser Leu Glu Arg	Arg Gln Glu Leu Leu Ala Lys	
	340	345	350
15	Asp Leu Arg Gly Glu Met Thr Leu Pro Thr Ala		
	355	360	363

20 (6) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 565 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

	Met Ala Arg Ala Ser Gly Ser Glu Arg His Leu Leu Leu Ile Tyr Thr		
1	5	10	15
	Gly Gly Thr Leu Gly Met Gln Ser Lys Gly Gly Val Leu Val Pro Gly		
	20	25	30
30	Pro Gly Leu Val Thr Leu Leu Arg Thr Leu Pro Met Phe His Asp Lys		
	35	40	45
	Glu Phe Ala Gln Ala Gln Gly Leu Pro Asp His Ala Leu Ala Leu Pro		
	50	55	60
35	Pro Ala Ser His Gly Pro Arg Val Leu Tyr Thr Val Leu Glu Cys Gln		
	65	70	75
	Pro Leu Leu Asp Ser Ser Asp Met Thr Ile Asp Asp Trp Ile Arg Ile		
	85	90	95
	Ala Lys Ile Ile Glu Arg His Tyr Glu Gln Tyr Gln Gly Phe Val Val		
	100	105	110
40	Ile His Gly Thr Asp Thr Met Ala Phe Gly Ala Ser Met Leu Ser Phe		
	115	120	125
	Met Leu Glu Asn Leu His Lys Pro Val Ile Leu Thr Gly Ala Gln Val		
	130	135	140
	Pro Ile Arg Val Leu Trp Asn Asp Ala Arg Glu Asn Leu Leu Gly Ala		
	145	150	155
45	Leu Leu Val Ala Gly Gln Tyr Ile Ile Pro Glu Val Cys Leu Phe Met		
	165	170	175
	Asn Ser Gln Leu Phe Arg Gly Asn Arg Val Thr Lys Val Asp Ser Gln		
	180	185	190
	Lys Phe Glu Ala Phe Cys Ser Pro Asn Leu Ser Pro Leu Ala Thr Val		
50	195	200	205
	Gly Ala Asp Val Thr Ile Ala Trp Asp Leu Val Arg Lys Val Asn Trp		
	210	215	220
	Lys Asp Pro Leu Val Val His Ser Asn Met Glu His Asp Val Ala Leu		
	225	230	235
	Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ser Leu Val Arg Ala Phe Leu		
55			

245 250 255
 Gln Pro Pro Leu Lys Gly Val Val Leu Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 Gly Pro Ser Lys Pro Asp Leu Leu Gln Glu Leu Arg Ala Ala Ala Gln
 275 280 285
 Arg Gly Leu Ile Met Val Asn Cys Ser Gln Cys Leu Arg Gly Ser Val
 290 295 300
 Thr Pro Gly Tyr Ala Thr Ser Leu Ala Gly Ala Asn Ile Val Ser Gly
 305 310 315 320
 Leu Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr Val Leu
 325 330 335
 Gly Leu Pro Glu Leu Ser Leu Glu Arg Arg Gln Glu Leu Leu Ala Lys
 340 345 350
 Asp Leu Arg Gly Glu Met Thr Leu Pro Thr Ala Asp Leu His Gln Ser
 355 360 365
 Ser Pro Pro Gly Ser Thr Leu Gly Gln Gly Val Ala Arg Leu Phe Ser
 370 375 380
 Leu Phe Gly Cys Gln Glu Glu Asp Ser Val Gln Asp Ala Val Met Pro
 385 390 395 400
 Ser Leu Ala Leu Ala Leu Ala His Ala Gly Glu Leu Glu Ala Leu Gln
 405 410 415
 Ala Leu Met Glu Leu Gly Ser Asp Leu Arg Leu Lys Asp Ser Asn Gly
 420 425 430
 Gln Thr Leu Leu His Val Ala Ala Arg Asn Gly Arg Asp Gly Val Val
 435 440 445
 Thr Met Leu Leu His Arg Gly Met Asp Val Asn Ala Arg Asp Arg Asp
 450 455 460
 Gly Leu Ser Pro Leu Leu Leu Ala Val Gln Gly Arg His Arg Glu Cys
 465 470 475 480
 Ile Arg Leu Leu Arg Lys Ala Gly Ala Cys Leu Ser Pro Gln Asp Leu
 485 490 495
 Lys Asp Ala Gly Thr Glu Leu Cys Arg Leu Ala Ser Arg Ala Asp Met
 500 505 510
 Glu Gly Leu Gln Ala Trp Gly Gln Ala Gly Ala Asp Leu Gln Gln Pro
 515 520 525
 Gly Tyr Asp Gly Arg Ser Ala Leu Cys Val Ala Glu Ala Ala Gly Asn
 530 535 540
 Gln Glu Val Leu Ala Leu Leu Arg Asn Leu Ala Leu Val Gly Pro Glu
 545 550 555 560
 Val Pro Pro Ala Ile
 565

40

(7) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 365 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr
 1 5 10 15
 Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly
 20 25 30
 Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu

55

	35	40	45
5	Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro		
	50 55 60		
	Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln		
	65 70 75 80		
10	Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val		
	85 90 95		
	Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val		
	100 105 110		
	Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe		
	115 120 125		
15	Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val		
	130 135 140		
	Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala		
	145 150 155 160		
	Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe		
	165 170 175		
20	Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg		
	180 185 190		
	Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val		
	195 200 205		
	Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly		
	210 215 220		
25	Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu		
	225 230 235 240		
	Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu		
	245 250 255		
	Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn		
30	260 265 270		
	Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu		
	275 280 285		
	Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Arg Gly Ala Val		
	290 295 300		
35	Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Asn Val Ile		
	305 310 315 320		
	Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr		
	325 330 335		
	Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu		
	340 345 350		
40	Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val		
	355 360 365		

(8) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 365 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr		
1 5 10 15		
Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly		
20 25 30		
Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu		

35 40 45
 5 Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro
 50 55 60
 10 Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 75 80
 15 Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val
 85 90 95
 20 Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val
 100 105 110
 25 Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe
 115 120 125
 30 Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val
 130 135 140
 35 Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 40 Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe
 165 170 175
 45 Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg
 180 185 190
 50 Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val
 195 200 205
 55 Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly
 210 215 220
 60 Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu
 225 230 235 240
 65 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu
 245 250 255
 70 Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 75 Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu
 275 280 285
 80 Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Arg Gly Ala Val
 290 295 300
 85 Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Gly Val Ile
 305 310 315 320
 90 Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr
 325 330 335
 95 Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu
 340 345 350
 100 Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val
 355 360 365

(9) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 365 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
 (ii) MOLECULAR TYPE: peptide
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr
 1 5 10 15
 Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly
 20 25 30
 55 Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu

35 40 45

5 Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro
 50 55 60
 Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 75 80
 Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val
 85 90 95
 10 Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val
 100 105 110
 Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe
 115 120 125
 Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val
 15 130 135 140
 Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe
 165 170 175
 20 Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg
 180 185 190
 Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val
 195 200 205
 Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly
 210 215 220
 25 Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu
 225 230 235 240
 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu
 245 250 255
 Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn
 30 260 265 270
 Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu
 275 280 285
 Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Gln Gly Ala Val
 290 295 300
 35 Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Asn Val Ile
 305 310 315 320
 Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr
 325 330 335
 Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu
 340 345 350
 40 Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val
 355 360 365

45 (10) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 365 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr
 1 5 10 15
 Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly
 55 20 25 30
 Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu

35 40 45

5 Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro
 50 55 60
 Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 75 80
 Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val
 85 90 95
 10 Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val
 100 105 110
 Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe
 115 120 125
 Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val
 130 135 140
 15 Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe
 165 170 175
 Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg
 180 185 190
 20 Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val
 195 200 205
 Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly
 210 215 220
 Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu
 225 230 235 240
 25 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu
 245 250 255
 Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu
 275 280 285
 30 Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Gln Gly Ala Val
 290 295 300
 Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Gly Val Ile
 305 310 315 320
 Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr
 325 330 335
 35 Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu
 340 345 350
 Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val
 355 360 365

40

(11) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1089 base pairs
- (B) TYPE:nucleic acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

50 ATGGCGCGCG CATCAGGCTC CGAGAGGCAC CTGCTGCTCA TCTACACTGG CGGCACTTTG 60
 GGCATGCAGA GCAAGGGCGG GGTGCTCGTC CCCGGCCAG GCCTGGTCAC TCTGCTGCCG 120
 ACCCTGCCCA TGTTCCATGA CAAGGAGTTC GCCCAGGCC AGGGCCTCCC TGACCATGCT 180
 CTGGCGCTGC CCCCTGCCAG CCACGGCCCC AGGGTCCTCT ACACGGTGCT GGAGTGCCAG 240
 CCCCTCTTGG ATTCCAGCGA CATGACCATC GATGATTGGA TTCCGATAGC CAAGATCATA 300

55

5	GAGAGGCACT	ATGAGCAGTA	CCAAGGCTTT	GTGGTTATCC	ACGGCACCGA	CACCATGGCC	360
	TTTGGGGCCT	CCATGCTGTC	CTTCATGCTG	AAAAACCTGC	ACAAACCAGT	CATCCTCACT	420
	GGCGCCCAGG	TGCCAATCCG	TGTGCTGTG	AATGACGCC	GGGAAAACCT	GCTGGGGCG	480
	TTGCTTGTGG	CCGCCAATA	CATCATCCCT	GAGGTCTGCC	TGTTTATGAA	CAGTCAGCTG	540
	TTTCGGGAA	ACCGGGTAAC	CAAGGTGGAC	TCCCAGAAGT	TTGAGGCCTT	CTGCTCCCC	600
10	AATCTGTCCC	CACTAGCCAC	TGTGGCGCG	GATGTACAA	TTGCCTGGGA	CCTGGTGCAG	660
	AAGGTCAACT	GGAAGGACCC	GCTGGTGGTG	CACAGCAACA	TGGAGCACGA	CGTGGCACTG	720
	CTGCGCCTCT	ACCCCTGGCAT	CCCAGCCTCC	CTGGTCCGGG	CATTCTGCA	GCCCCCGCTC	780
	AAGGGCGTGG	TCCTGGAGAC	CTTCGGCTCT	GCACACGGGC	CGAGCAAGCC	CGACCTGCTG	840
	CAGGAGTTGC	GGGGCGCGGC	CCAGCGCGC	CTCATCATGG	TCAACTGCAG	CCAGTGCCTG	900
	CGGGGGTCTG	TGACCCCCGGG	CTATGCCACG	AGCTGGCGG	GCGCCAACAT	CGTGTCCGGC	960
	TTAGACATGA	CCTCAGAGGC	CGCGCTGGCT	AAGCTGTCT	ACGTGTTGGG	CCTGCGGGAG	1020
15	CTGAGCCTGG	AGCGCAGGCA	GGAGCTGCTG	GCCAAGGATC	TTCGCGGGGA	AATGACACTG	1080
	CCACCGGCA						1089

(12) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1095 base pairs
- (B) TYPE: nucleic acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

25	ATGGCGCGCG	CGGTGGGGCC	CGAGCGGAGG	CTGCTGGCCG	TCTACACCGG	CGGCACCAT	60
	GGCATGCGGA	GTGAGCTCGG	CGTGCTTGTG	CCCGGGACGG	GCCTGGCTGC	CATCCTGAGG	120
	ACACTGCCA	TGTTCCATGA	CGAGGAGCAC	GCCCCGAGCC	GCGGCCTCTC	TGAGGACACC	180
	CTGGTGCTAC	CCCCGGACAG	CCGCAACCAG	AGGATCCTCT	ACACCGTGT	GGAGTGCAG	240
	CCCCTCTTCG	ACTCCAGTGA	CATGACCATC	GCTGAGTGGG	TTCGCGTTGC	CCAGACCATC	300
	AAGGGCACT	ACGAGCAGTA	CCACGGCTTT	GTGGTCATCC	ACGGCACCGA	CACCATGGCC	360
	TTTGCTGCC	CGATGCTGTC	CTTCATGCTG	GAGAACCTGC	AGAAGACTGT	CATCCTCACT	420
30	GGGGCCCGAGG	TGCCCATCCA	TGCCCTGTGG	AGCGACGGGC	GTGAGAACCT	GCTGGGGCA	480
	CTGCTCATGG	CTGGCCAGTA	TGTGATCCC	GAGGTCTGCC	TTTTCTTCCA	GAATCAGCTG	540
	TTTCGGGGCA	ACCGGGCAAC	CAAGGTAGAC	GCTCGGAGGT	TCGCAGCTTT	CTGCTCCCC	600
	AACCTGCTGC	CTCTGGCCAC	AGTGGGTGCT	GACATCACAA	TCAACAGGG	GCTGGTGCAG	660
	AAGGTGGACG	GGAAAGGCTGG	GCTGGTGGTG	CACAGCAGCA	TGGAGCAGGA	CGTGGGCCTG	720
35	CTGCGCCTCT	ACCCCTGGAT	CCCTGCCGCC	CTGGTTCGGG	CCTTCTTGC	GCCTCCCTG	780
	AAGGGCGTGG	TCATGGAGAC	CTTCGGTTCA	GGGAACCGGAC	CCACCAAGCC	CGACCTGCTG	840
	CAGGAGCTGC	GGGTGGCCAC	CGAGCGCGGC	CTGGTCATCG	TCAACTGTAC	CCAGTGCCTC	900
	CGGGGGCTG	TGACCCACAGA	CTATGCAGCT	GGCATGGCCA	TGGCGGGAGC	CAACGTCA	960
	TCAGGCTTCG	ACATGACATC	GGAGGCCGCC	CTGGCCAAGC	TATGTTATGT	GCTGGGCCAG	1020
40	CCAGGGCTGA	GCCTGGATGT	CAGGAAGGAG	CTGCTGACCA	AGGACCTTCG	GGGGGAGATG	1080
	ACGCCACCC	CGGTG					1095

(13) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1095 base pairs
- (B) TYPE: nucleic acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

50	ATGGCGCGCG	CGGTGGGGCC	CGAGCGGAGG	CTGCTGGCCG	TCTACACCGG	CGGCACCAT	60
	GGCATGCGGA	GTGAGCTCGG	CGTGCTTGTG	CCCGGGACGG	GCCTGGCTGC	CATCCTGAGG	120
	ACACTGCCA	TGTTCCATGA	CGAGGAGCAC	GCCCCGAGCC	GCGGCCTCTC	TGAGGACACC	180

5	CTGGTGCTAC	CCCCGGACAG	CCGCAACCAG	AGGATCCTCT	ACACCGTGCT	GGAGTGCCAG	240
	CCCCTCTTCG	ACTCCAGTGA	CATGACCATC	GCTGAGTGGG	TTCGCCTTGC	CCAGACCATC	300
	AAGAGGCACT	ACGAGCAGTA	CCACGGCTT	GTGGTCATCC	ACGGCACCGA	CACCATGGCC	360
	TTTGCTGCCT	CGATGCTGTC	CTTCATGCTG	GAGAACCTGC	AGAAGACTGT	CATCCTCACT	420
	GGGGCCAGG	TGCCCCATCCA	TGCCCCGTGG	AGCGACGGCC	GTGAGAACCT	GCTGGGGCA	480
10	CTGCTCATGG	CTGGCCAGTA	TGTGATCCCA	GAGGTCTGCC	TTTCTTCCA	GAATCAGCTG	540
	TTTCGGGGCA	ACCGGGCAAC	CAAGGTAGAC	GCTCGGAGGT	TCGAGCTTT	CTGCTCCCCG	600
	AACCTGCTGC	CTCTGGCCAC	AGTGGGTGCT	GACATCACAA	TCAACAGGGA	GCTGGTGCAG	660
	AAGGTGGACG	GGAAGGCTGG	GCTGGTGGT	CACAGCAGCA	TGGAGCAGGA	CGTGGGCCTG	720
	CTGCGCTCT	ACCCTGGGAT	CCCTGCCGCC	CTGGTTCGGG	CCTTCTTGCA	GCCTCCCCCTG	780
	AAGGGCGTGG	TCATGGAGAC	CTTCGGTTCA	GGGAACGGAC	CCACCAAGCC	CGACCTGCTG	840
	CAGGAGCTGC	GGGTGGCCAC	CGAGCGCGC	CTGGTCATCG	TCAACTGTAC	CCAGTGCCTC	900
15	CGGGGGCTG	TGACCACAGA	CTATGCAGCT	GGCATGGCCA	TGGCGGGAGC	CGGCCTCATC	960
	TCAGGCTTCG	ACATGACATC	GGAGGCCGCC	CTGGCCAAGC	TATCGTATGT	GCTGGGCCAG	1020
	CCAGGGCTGA	GCCTGGATGT	CAGGAAGGAG	CTGCTGACCA	AGGACCTTCG	GGGGGAGATG	1080
	ACGCCACCCCT	CGGTG					1095

(14) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1095 base pairs
- (B) TYPE: nucleic acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

20	ATGGCGCGCG	CGGTGGGGCC	CGAGCGGAGG	CTGCTGGCCG	TCTACACCGG	CGGCACCATT	60
	GGCATGCGGA	GTGAGCTCGG	CGTGCTTGTG	CCCAGGACGG	GCCTGGCTGC	CATCCTGAGG	120
	ACACTGCCCA	TGTTCCATGA	CGAGGAGCAC	GCCCAGGCC	GCAGCCTCTC	TGAGGACACC	180
	CTGGTGCTAC	CCCCGGACAG	CCGCAACCAG	AGGATCCTCT	ACACCGTGCT	GGAGTGCCAG	240
	CCCCTCTTCG	ACTCCAGTGA	CATGACCATC	GCTGAGTGGG	TTCGCCTTGC	CCAGACCATC	300
30	AAGAGGCACT	ACGAGCAGTA	CCACGGCTTT	GTGGTCATCC	ACGGCACCGA	CACCATGGCC	360
	TTTGCTGCCT	CGATGCTGTC	CTTCATGCTG	GAGAACCTGC	AGAAGACTGT	CATCCTCACT	420
	GGGGCCAGG	TGCCCCATCCA	TGCCCCGTGG	AGCGACGGCC	GTGAGAACCT	GCTGGGGCA	480
	CTGCTCATGG	CTGGCCAGTA	TGTGATCCCA	GAGGTCTGCC	TTTCTTCCA	GAATCAGCTG	540
	TTTCGGGGCA	ACCGGGCAAC	CAAGGTAGAC	GCTCGGAGGT	TCGAGCTTT	CTGCTCCCCG	600
35	AACCTGCTGC	CTCTGGCCAC	AGTGGGTGCT	GACATCACAA	TCAACAGGGA	GCTGGTGCAG	660
	AAGGTGGACG	GGAAGGCTGG	GCTGGTGGT	CACAGCAGCA	TGGAGCAGGA	CGTGGGCCTG	720
	CTGCGCTCT	ACCCTGGGAT	CCCTGCCGCC	CTGGTTCGGG	CCTTCTTGCA	GCCTCCCCCTG	780
	AAGGGCGTGG	TCATGGAGAC	CTTCGGTTCA	GGGAACGGAC	CCACCAAGCC	CGACCTGCTG	840
	CAGGAGCTGC	GGGTGGCCAC	CGAGCGCGC	CTGGTCATCG	TCAACTGTAC	CCAGTGCCTC	900
	CAGGGGGCTG	TGACCACAGA	CTATGCAGCT	GGCATGGCCA	TGGCGGGAGC	CAACGTCTAC	960
40	TCAGGCTTCG	ACATGACATC	GGAGGCCGCC	CTGGCCAAGC	TATCGTATGT	GCTGGGCCAG	1020
	CCAGGGCTGA	GCCTGGATGT	CAGGAAGGAG	CTGCTGACCA	AGGACCTTCG	GGGGGAGATG	1080
	ACGCCACCCCT	CGGTG					1095

(15) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1095 base pairs
- (B) TYPE: nucleic acid
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

45	ATGGCGCGCG	CGGTGGGGCC	CGAGCGGAGG	CTGCTGGCCG	TCTACACCGG	CGGCACCATT	60
	GGCATGCGGA	GTGAGCTCGG	CGTGCTTGTG	CCCAGGACGG	GCCTGGCTGC	CATCCTGAGG	120

ACACTGGCCA	TGTTCCATGA	CGAGGAGCAC	GCCCAGGCC	GCGGCCTCTC	TGAGGACACC	180
CTGGTGTAC	CCCCGGACAG	CCGCAACAG	AGGATCCTCT	ACACCGTGT	GGAGTGCCAG	240
CCCCTCTCG	ACTCCAGTGA	CATGACCATC	GCTGAGTGGG	TTCGCGTTGC	CCAGACCATC	300
AAGAGGCACT	ACGAGCAGTA	CCACGGCTT	GTGGTCATCC	ACGGCACCGA	CACCATGGCC	360
TTTGTGCCT	CGATGCTGTC	CTTCATGCTG	GAGAACCTGC	AGAAAGACTGT	CATCCTCACT	420
GGGGCCCAAGG	TGCCCCATCCA	TGCCCCGTGG	AGCGACGGCC	GTGAGAACCT	GCTGGGGCA	480
CTGCTCATGG	CTGGCCAGTA	TGTGATCCCA	GAGGTCTGCC	TTTTCTTCCA	GAATCAGCTG	540
TTTCGGGGCA	ACCGGGCAAC	CAAGGTAGAC	GCTCGGAGGT	TCGCAGCTTT	CTGTCCCCCG	600
AACCTGCTGC	CTCTGGCCAC	AGTGGGTGCT	GACATCACAA	TCAACAGGGG	GCTGGTGCAG	660
AAGGTGGACG	GGAAGGCTGG	GCTGGTGGTG	CACAGCAGCA	TGGAGCAGGA	CGTGGGCCTG	720
CTGCGCTCT	ACCCCTGGGAT	CCCTGCCGCC	CTGGTTCGGG	CCTTCTTGC	GCCTCCCCCTG	780
AAGGGCGTGG	TCATGGAGAC	CTTCGTTCA	GGGAACGGAC	CCACCAAGCC	CGACCTGCTG	840
CAGGGAGCTGC	GGGTGGCCAC	CGAGCGCGGC	CTGGTCATCG	TCAACTGTAC	CCAGTGCCTC	900
CAGGGGGCTG	TGACCACAGA	CTATGCAGCT	GGCATGGCCA	TGGGGGGAGC	CGGGCTCATC	960
TCAGGGCTCG	ACATGACATC	GGAGGGCGCC	CTGGCCAAGC	TATCGTATGT	GCTGGGGCAG	1020
CCAGGGCTGA	GCCTGGATGT	CAGGAAGGAG	CTGCTGACCA	AGGACCTTCG	GGGGGAGATG	1080
ACGCCACCCCT	CGGTG					1095

(16) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1928 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA to mRNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE : NO

(vi) ORIGINAL SOURCE:
(a) ORGANISM

(A) ORGANISM: guinea pig
(E) TISSUE TYPE: liver

(F) TISSUE TYPE: liver
(i.v) FEATURE:

(IX) FEATURE:
(A) NAME /

(B) LOCATION: 1...19

(C) IDENTIFICATION

(A) NAME/KEY:mat peptide

(B) LOCATION: 20..1714

(C) IDENTIFICATION MET

(A) NAME/KEY: 3' UTR

(B) LOCATION: 1715..1928

**(C) IDENTIFICATION
EVIDENCE DESCRIBED**

SEQUENCE DESCRIPTION:

	His Ala Leu Ala Leu Pro Pro Ala Ser His Gly Pro Arg Val Leu Tyr		
5	60 65 70		
	ACG GTG CTG GAG TGC CAG CCC CTC TTG GAT TCC AGC GAC ATG ACC ATC	289	
	Thr Val Leu Glu Cys Gln Pro Leu Leu Asp Ser Ser Asp Met Thr Ile		
	75 80 85 90		
	GAT GAT TGG ATT CGC ATA GCC AAG ATC ATA GAG AGG CAC TAT GAG CAG	337	
	Asp Asp Trp Ile Arg Ile Ala Lys Ile Ile Glu Arg His Tyr Glu Gln		
	95 100 105		
10	TAC CAA GGC TTT GTG GTT ATC CAC GGC ACC GAC ACC ATG GCC TTT GGG	385	
	Tyr Gln Gly Phe Val Val Ile His Gly Thr Asp Thr Met Ala Phe Gly		
	110 115 120		
	GCC TCC ATG CTG TCC TTC ATG CTG GAA AAC CTG CAC AAA CCA GTC ATC	433	
	Ala Ser Met Leu Ser Phe Met Leu Glu Asn Leu His Lys Pro Val Ile		
	125 130 135		
15	CTC ACT GGC GCC CAG GTG CCA ATC CGT GTG CTG TGG AAT GAC GCC CGG	481	
	Leu Thr Gly Ala Gln Val Pro Ile Arg Val Leu Trp Asn Asp Ala Arg		
	140 145 150		
	GAA AAC CTG CTG GGG GCG TTG CTT GTG GCC GGC CAA TAC ATC ATC CCT	529	
	Glu Asn Leu Leu Gly Ala Leu Leu Val Ala Gly Gln Tyr Ile Ile Pro		
20	155 160 165 170		
	GAG GTC TGC CTG TTT ATG AAC AGT CAG CTG TTT CCG GGA AAC CGG GTA	577	
	Glu Val Cys Leu Phe Met Asn Ser Gln Leu Phe Arg Gly Asn Arg Val		
	175 180 185		
25	ACC AAG GTG GAC TCC CAG AAG TTT GAG GCC TTC TGC TCC CCC AAT CTG	625	
	Thr Lys Val Asp Ser Gln Lys Phe Glu Ala Phe Cys Ser Pro Asn Leu		
	190 195 200		
	TCC CCA CTA GCC ACT GTG GGC GCG GAT GTC ACA ATT GCC TGG GAC CTG	673	
	Ser Pro Leu Ala Thr Val Gly Ala Asp Val Thr Ile Ala Trp Asp Leu		
	205 210 215		
30	GTG CGC AAG GTC AAC TGG AAG GAC CCG CTG GTG GTG CAC AGC AAC ATG	721	
	Val Arg Lys Val Asn Trp Lys Asp Pro Leu Val Val His Ser Asn Met		
	220 225 230		
	GAG CAC GAC GTG GCA CTG CTG CGC CTC TAC CCT GGC ATC CCG GCC TCC	769	
	Glu His Asp Val Ala Leu Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ser		
	235 240 245 250		
35	CTG GTC CGG GCA TTC CTG CAG CCC CCG CTC AAG GGC GTG GTC CTG GAG	817	
	Leu Val Arg Ala Phe Leu Gln Pro Pro Leu Lys Gly Val Val Leu Glu		
	255 260 265		
	ACC TTC GGC TCT GGC AAC GGG CCG AGC AAG CCC GAC CTG CTG CAG GAG	865	
	Thr Phe Gly Ser Gly Asn Gly Pro Ser Lys Pro Asp Leu Leu Gln Glu		
	270 275 280		
40	TTG CGG GCC GCG GCC CAG CGC GGC CTC ATC ATG GTC AAC TGC AGC CAG	913	
	Leu Arg Ala Ala Ala Gln Arg Gly Leu Ile Met Val Asn Cys Ser Gln		
	285 290 295		
	TGC CTG CGG GGG TCT GTG ACC CCG GGC TAT GCC ACG AGC TTG GCG GGC	961	
	Cys Leu Arg Gly Ser Val Thr Pro Gly Tyr Ala Thr Ser Leu Ala Gly		
	300 305 310		
45	GCC AAC ATC GTG TCC GGC TTA GAC ATG ACC TCA GAG GCC GCG CTG GCT	1009	
	Ala Asn Ile Val Ser Gly Leu Asp Met Thr Ser Glu Ala Ala Leu Ala		
	315 320 325 330		
	AAG CTG TCC TAC GTG TTG GGC CTG CCG GAG CTG AGC CTG GAG CGC AGG	1057	
	Lys Leu Ser Tyr Val Leu Gly Leu Pro Glu Leu Ser Leu Glu Arg Arg		
	335 340 345		
50	CAG GAG CTG CTG GCC AAG GAT CTT CGC GGG GAA ATG ACA CTG CCC ACG	1105	
	Gln Glu Leu Leu Ala Lys Asp Leu Arg Gly Glu Met Thr Leu Pro Thr		
	350 355 360		
	GCA GAC CTG CAC CAG TCC TCT CCG CCG GGC AGC ACA CTG GGG CAA GGT	1153	

	Ala Asp Leu His Gln Ser Ser Pro Pro Gly Ser Thr Leu Gly Gln Gly		
	365 370 375		
5	GTC GCC CGG CTC TTT AGT CTG TTC GGT TGC CAG GAG GAA GAT TCG GTG	1201	
	Val Ala Arg Leu Phe Ser Leu Phe Gly Cys Gln Glu Glu Asp Ser Val		
	380 385 390		
	CAG GAC GCC GTG ATG CCC AGC CTG GCC CTG GGC TTG GCC CAT GCT GGT	1249	
	Gln Asp Ala Val Met Pro Ser Leu Ala Leu Ala Leu Ala His Ala Gly		
	395 400 405 410		
10	GAA CTC GAG GCT CTG CAG GCA CTT ATG GAG CTG GGC AGT GAC CTG CGC	1297	
	Glu Leu Glu Ala Leu Gln Ala Leu Met Glu Leu Gly Ser Asp Leu Arg		
	415 420 425		
	CTA AAG GAC TCT AAT GGC CAA ACC CTG TTG CAT GTG GCT GCT CGG AAT	1345	
	Leu Lys Asp Ser Asn Gly Gln Thr Leu Leu His Val Ala Ala Arg Asn		
	430 435 440		
15	GGG CGT GAT GGC GTG GTC ACC ATG CTG CTG CAC AGA GGC ATG GAT GTC	1393	
	Gly Arg Asp Gly Val Val Thr Met Leu Leu His Arg Gly Met Asp Val		
	445 450 455		
	AAT GCC CGA GAC CGA GAC GGC CTC AGC CCA CTG CTG TTG GCT GTA CAG	1441	
	Asn Ala Arg Asp Arg Asp Gly Leu Ser Pro Leu Leu Ala Val Gln		
	460 465 470		
20	GGC AGG CAT CGG GAA TGC ATC AGG CTG CTG CGG AAG GCT GGG GCC TGC	1489	
	Gly Arg His Arg Glu Cys Ile Arg Leu Leu Arg Lys Ala Gly Ala Cys		
	475 480 485 490		
	CTG TCC CCC CAG GAC CTG AAG GAT GCA GGG ACC GAG CTG TGC AGG CTG	1537	
	Leu Ser Pro Gln Asp Leu Lys Asp Ala Gly Thr Glu Leu Cys Arg Leu		
	495 500 505		
25	GCA TCC AGG GCT GAC ATG GAA GGC CTG CAG GCA TGG GGG CAG GCT GGG	1585	
	Ala Ser Arg Ala Asp Met Glu Gly Leu Gln Ala Trp Gly Gln Ala Gly		
	510 515 520		
	GCC GAC CTG CAG CCG GGC TAT GAT GGG CGC AGC GCT CTG TGT GTC	1633	
	Ala Asp Leu Gln Gln Pro Gly Tyr Asp Gly Arg Ser Ala Leu Cys Val		
	525 530 535		
30	GCA GAA GCA GCC GGG AAC CAG GAG GTG CTG GCC CTT CTG CGG AAC CTG	1681	
	Ala Glu Ala Ala Gly Asn Gln Glu Val Leu Ala Leu Leu Arg Asn Leu		
	540 545 550		
	GCA CTT GTA GGC CCG GAA GTG CCG CCT GCC ATC TGATGCCAG CAATCCGCT	1734	
	Ala Leu Val Gly Pro Glu Val Pro Pro Ala Ile		
	555 560 565		
35	GTGGTGTGAG CCACTCCGCC ATCTGCTGCT TTGACCCACT CGAGGGACCC TAGCACACGA	1794	
	CCCCCCCAGCA GGATGCACCC CACTACTTAG AGTATAACCC AGGCTGGCTC AGTGACAAGC	1854	
	TGCAAAGGTC TTTGTTGGCA GAACAGCAAT AAAGTAACTA CAGAGTGGCC AAAAAAAA	1914	
	AAAAAAA AAAA	1928	

40

(17) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2096 base pairs
 - (B) TYPE:nucleic acid
 - (C) STRANDEDNESS:double
 - (D) TOPOLOGY:linear
- (ii) MOLECULE TYPE:cDNA to mRNA
- (iii) HYPOTHETICAL:No
- (iv) ANTI-SENSE:No
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM:human
 - (F) TISSUE TYPE:liver

55

5 (ix) FEATURE:
 (A) NAME/KEY: 5' UTR
 (B) LOCATION: 1..92
 (C) IDENTIFICATION METHODS: S
 (A) NAME/KEY: mat peptide
 (B) LOCATION: 93..1811
 (C) IDENTIFICATION METHODS: S
 (A) NAME/KEY: 3' UTR
 10 (B) LOCATION: 1812..2096
 (C) IDENTIFICATION METHODS: S
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

15	CGCCCCGGGC CTCCTCCGCG CAGTCCCTGA GTCCCGCAGG CCCTGCGTCC CCGCTGCACA CCCCCGTCCA CTCCCGTGGT CCCCCGTCCG GC ATG GCG CGC GCG GTG GGG CCC Met Ala Arg Ala Val Gly Pro	60 113
	1 5	
20	GAG CGG AGG CTG CTG GCC GTC TAC ACC GGC GGC ACC ATT GGC ATG CGG Glu Arg Arg Leu Leu Ala Val Tyr Thr Gly Gly Thr Ile Gly Met Arg 10 15 20	161
	10 15 20	
25	AGT GAG CTC GGC GTG CTT GTG CCC GGG ACG GGC CTG GCT GCC ATC CTG Ser Glu Leu Gly Val Leu Val Pro Gly Thr Gly Leu Ala Ala Ile Leu 25 30 35	209
	25 30 35	
30	AGG ACA CTG CCC ATG TTC CAT GAC GAG GAG CAC GCC CGA GCC CGC GGC Arg Thr Leu Pro Met Phe His Asp Glu Glu His Ala Arg Ala Arg Gly 40 45 50 55	257
	40 45 50 55	
35	CTC TCT GAG GAC ACC CTG GTG CTA CCC CCG GAC AGC CGC AAC CAG AGG Leu Ser Glu Asp Thr Leu Val Leu Pro Pro Asp Ser Arg Asn Gln Arg 60 65 70	305
	60 65 70	
40	ATC CTC TAC ACC GTG CTG GAG TGC CAG CCC CTC TTC GAC TCC AGT GAC Ile Leu Tyr Thr Val Leu Glu Cys Gln Pro Leu Phe Asp Ser Ser Asp 75 80 85	353
	75 80 85	
45	ATG ACC ATC GCT GAG TGG GTT CGC GTT GCC CAG ACC ATC AAG AGG CAC Met Thr Ile Ala Glu Trp Val Arg Val Ala Gln Thr Ile Lys Arg His 90 95 100	401
	90 95 100	
50	TAC GAG CAG TAC CAC GGC TTT GTG GTC ATC CAC GGC ACC GAC ACC ATG Tyr Glu Gln Tyr His Gly Phe Val Val Ile His Gly Thr Asp Thr Met 105 110 115	449
	105 110 115	
55	GCC TTT GCT GCC TCG ATG CTG TCC TTC ATG CTG GAG AAC CTG CAG AAG Ala Phe Ala Ala Ser Met Leu Ser Phe Met Leu Glu Asn Leu Gln Lys 120 125 130 135	497
	120 125 130 135	
60	ACT GTC ATC CTC ACT GGG GCC CAG GTG CCC ATC CAT GCC CTG TGG AGC Thr Val Ile Leu Thr Gly Ala Gln Val Pro Ile His Ala Leu Trp Ser 140 145 150	545
	140 145 150	
65	GAC GGC CGT GAG AAC CTG CTG GGG GCA CTG CTC ATG GCT GGC CAG TAT Asp Gly Arg Glu Asn Leu Leu Gly Ala Leu Leu Met Ala Gly Gln Tyr 155 160 165	593
	155 160 165	
70	GTG ATC CCA GAG GTC TGC CTT TTC TCC CAG AAT CAG CTG TTT CGG GGC Val Ile Pro Glu Val Cys Leu Phe Phe Gln Asn Gln Leu Phe Arg Gly 170 175 180	641
	170 175 180	
75	AAC CGG GCA ACC AAG GTA GAC GCT CGG AGG TTC GCA GCT TTC TGC TCC Asn Arg Ala Thr Lys Val Asp Ala Arg Arg Phe Ala Ala Phe Cys Ser 185 190 195	689
	185 190 195	
80	CCG AAC CTG CTG CCT CTG GCC ACA GTG GGT GCT GAC ATC ACA ATC AAC Pro Asn Leu Leu Pro Leu Ala Thr Val Gly Ala Asp Ile Thr Ile Asn 200 205 210 215	737
	200 205 210 215	
85	AGG GAG CTG GTG CGG AAG GTG GAC GGG AAG GCT GGG CTG GTG GTG CAC 785	

	Arg Glu Leu Val Arg Lys Val Asp Gly Lys Ala Gly Leu Val Val His		
	220 225 230		
5	AGC AGC ATG GAG CAG GAC GTG GGC CTG CTG CGC CTC TAC CCT GGG ATC Ser Ser Met Glu Gln Asp Val Gly Leu Leu Arg Leu Tyr Pro Gly Ile		833
	235 240 245		
	CCT GCC CTG GTT CGG GCC TTC TTG CAG CCT CCC CTG AAG GGC GTG Pro Ala Ala Leu Val Arg Ala Phe Leu Gln Pro Pro Leu Lys Gly Val		881
10	250 255 260		
	GTC ATG GAG ACC TTC GGT TCA GGG AAC GGA CCC ACC AAG CCC GAC CTG Val Met Glu Thr Phe Gly Ser Gly Asn Gly Pro Thr Lys Pro Asp Leu		929
	265 270 275		
	CTG CAG CTG CGG GTG GCC ACC GAG CGC GGC CTG GTC ATC GTC AAC Leu Gln Glu Leu Arg Val Ala Thr Glu Arg Gly Leu Val Ile Val Asn		977
15	280 285 290 295		
	TGT ACC CAC TGC CTC CAG GGG GCT GTG ACC ACA GAC TAT GCA GCT GGC Cys Thr His Cys Leu Gln Gly Ala Val Thr Thr Asp Tyr Ala Ala Gly		1025
	300 305 310		
	ATG GCC ATG GCG GGA GCC GGC GTC ATC TCA GGC TTC GAC ATG ACA TCG Met Ala Met Ala Gly Ala Gly Val Ile Ser Gly Phe Asp Met Thr Ser		1073
20	315 320 325		
	GAG GCC GCC CTG GCC AAG CTA TCG TAT GTG CTG GGC CAG CCA GGG CTG Glu Ala Ala Leu Ala Lys Leu Ser Tyr Val Leu Gly Gln Pro Gly Leu		1121
	330 335 340		
	AGC CTG GAT GTC AGG AAG GAG CTG CTG ACC AAG GAC CTT CGG GGG GAG Ser Leu Asp Val Arg Lys Glu Leu Leu Thr Lys Asp Leu Arg Gly Glu		1169
25	345 350 355		
	ATG ACG CCA CCC TCG GTG GAA GAG CGC CGG CCC TCA CTG CAG GGC AAC Met Thr Pro Pro Ser Val Glu Glu Arg Arg Pro Ser Leu Gln Gly Asn		1217
	360 365 370 375		
	ACG CTG GGC GGT GGG GTC TCC TGG CTC CTC AGT CTG AGC GGC AGC CAG Thr Leu Gly Gly Val Ser Trp Leu Leu Ser Leu Ser Gly Ser Gln		1265
30	380 385 390		
	GAG GCA GAT GCC CTG CGG AAT GCC CTG GTG CCC AGC CTG GCC TGT GCT Glu Ala Asp Ala Leu Arg Asn Ala Leu Val Pro Ser Leu Ala Cys Ala		1313
	395 400 405		
	GCT GCC CAC GCC GGT GAC GTG GAG GCG CTG CAG GCG CTT GTG GAG CTG Ala Ala His Ala Gly Asp Val Glu Ala Leu Gln Ala Leu Val Glu Leu		1361
35	410 415 420		
	GGC AGT GAC CTG GGC CTG GTG GAC TTT AAC GGC CAA ACC CCA CTG CAC Gly Ser Asp Leu Gly Leu Val Asp Phe Asn Gly Gln Thr Pro Leu His		1409
	425 430 435		
	GCG GCC CGG GGA GGC CAC ACA GAG GCA GTC ACC ATG CTG CTG CAG Ala Ala Ala Arg Gly His Thr Glu Ala Val Thr Met Leu Leu Gln		1457
40	440 445 450 455		
	AGA GGT GTG GAC GTG AAC ACC CGG GAC ACG GAT GGC TTC AGC CCG CTG Arg Gly Val Asp Val Asn Thr Arg Asp Thr Asp Gly Phe Ser Pro Leu		1505
	460 465 470		
	CTG CTG GCC GTG CGG GGC AGG CAT CCG GGT GTC ATT GGG TTG CTG CGG Leu Leu Ala Val Arg Gly Arg His Pro Gly Val Ile Gly Leu Leu Arg		1553
45	475 480 485		
	GAA GCC GGG GCC TCC CTG TCC ACC CAG GAG CTG GAG GAA GCA GGG ACG Glu Ala Gly Ala Ser Leu Ser Thr Gln Glu Leu Glu Ala Gly Thr		1601
	490 495 500		
	GAG CTG TGC AGG CTG GCA TAC AGG GCC GAC CTC GAA GGC CTG CAG GTG Glu Leu Cys Arg Leu Ala Tyr Arg Ala Asp Leu Glu Gly Leu Gln Val		1649
50	505 510 515		
	TGG TGG CAG GCA GGG GCT GAC CTG GGG CAG CCG GGC TAT GAC GGG CAC		1697

5 Trp Trp Gln Ala Gly Ala Asp Leu Gly Gln Pro Gly Tyr Asp Gly His
 520 525 530 535
 AGC GCC CTG CAC GTC GCA GAG GCA GCC GGG AAC CTG GCA GTG GTG GCC 1745
 Ser Ala Leu His Val Ala Glu Ala Ala Gly Asn Leu Ala Val Val Ala
 540 545 550
 TTT CTA CAG AGC CTG GAG GGT GCG GTT GGT GCC CAG GCC CCA TGC CCA 1793
 Phe Leu Gln Ser Leu Glu Gly Ala Val Gly Ala Gln Ala Pro Cys Pro
 10 555 560 565
 GAA GTG CTG CCT GGT GTC TAACCTGAAG GCGTCCTGCT GCAGTATAAG 1841
 Glu Val Leu Pro Gly Val
 570
 CCATTCCTTC CTCCCCATGAC CTGCTGGAGG GGTCTCAGGC ATGACCCAC TGCTGGGCT 1901
 GCTTCCCAGC CTGCTCTCAT GTAAAGCCTG AAGGCCCTTG TTGGGCAGGA CGGCAATAAA 1961
 15 GTCTCTGACA TCCCCTCAC AGGTCTGTAC AGCCTGGCTC TGAGAGGCTC TGTCTGGTC 2021
 CGGGACTGTG AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAAA 2081
 AAAAAAAA AAAAAA 2096

20

(18) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1695 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE:cDNA to mRNA
- (iii) HYPOTHETICAL: No
- (iv) ANTI-SENSE: No
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: guinea pig
 - (F) TISSUE TYPE: liver
- (ix) FEATURE:
 - (A) NAME/KEY: mat peptide
 - (B) LOCATION: 1..1695
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

35

ATG GCG CGC GCA TCA GGC TCC GAG AGG CAC CTG CTG CTC ATC TAC ACT 48
 Met Ala Arg Ala Ser Gly Ser Glu Arg His Leu Leu Leu Ile Tyr Thr
 1 5 10 15
 GGC GGC ACT TTG GGC ATG CAG AGC AAG GGC GGG GTG CTC GTC CCC GGC 96
 Gly Gly Thr Leu Gly Met Gln Ser Lys Gly Gly Val Leu Val Pro Gly
 20 25 30
 CCA GGC CTG GTC ACT CTG CTG CGG ACC CTG CCC ATG TTC CAT GAC AAG 144
 Pro Gly Leu Val Thr Leu Leu Arg Thr Leu Pro Met Phe His Asp Lys
 35 40 45
 GAG TTC GCC CAG GCC CAG GGC CTC CCT GAC CAT GCT CTG GCG CTG CCC 192
 Glu Phe Ala Gln Ala Gln Gly Leu Pro Asp His Ala Leu Ala Leu Pro
 50 55 60
 CCT GCC AGC CAC GGC CCC AGG GTC CTC TAC ACG GTG CTG GAG TGC CAG 240
 Pro Ala Ser His Gly Pro Arg Val Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 75 80
 CCC CTC TTG GAT TCC AGC GAC ATG ACC ATC GAT GAT TGG ATT CGC ATA 288
 Pro Leu Leu Asp Ser Ser Asp Met Thr Ile Asp Asp Trp Ile Arg Ile
 85 90 95
 GCC AAG ATC ATA GAG AGG CAC TAT GAG CAG TAC CAA GGC TTT GTG GTT 336
 Ala Lys Ile Ile Glu Arg His Tyr Glu Gln Tyr Gln Gly Phe Val Val

55

	100	105	110	
5	ATC CAC GGC ACC GAC ACC ATG GCC TTT GGG GCC TCC ATG CTG TCC TTC Ile His Gly Thr Asp Thr Met Ala Phe Gly Ala Ser Met Leu Ser Phe			384
	115	120	125	
	ATG CTG GAA AAC CTG CAC AAA CCA GTC ATC CTC ACT GGC GCC CAG GTG Met Leu Glu Asn Leu His Lys Pro Val Ile Leu Thr Gly Ala Gln Val			432
	130	135	140	
10	CCA ATC CGT GTG CTG TGG AAT GAC GCC CGG GAA AAC CTG CTG GGG GCG Pro Ile Arg Val Leu Trp Asn Asp Ala Arg Glu Asn Leu Leu Gly Ala			480
	145	150	155	160
	TTG CTT GTG GCC GGC CAA TAC ATC ATC CCT GAG GTC TGC CTG TTT ATG Leu Leu Val Ala Gly Gln Tyr Ile Ile Pro Glu Val Cys Leu Phe Met			528
	165	170	175	
15	AAC AGT CAG CTG TTT CGG GGA AAC CGG GTA ACC AAG GTG GAC TCC CAG Asn Ser Gln Leu Phe Arg Gly Asn Arg Val Thr Lys Val Asp Ser Gln			576
	180	185	190	
	AAG TTT GAG GCC TTC TGC TCC CCC AAT CTG TCC CCA CTA GCC ACT GTG Lys Phe Glu Ala Phe Cys Ser Pro Asn Leu Ser Pro Leu Ala Thr Val			624
	195	200	205	
20	GGC GCG GAT GTC ACA ATT GCC TGG GAC CTG GTG CGC AAG GTC AAC TGG Gly Ala Asp Val Thr Ile Ala Trp Asp Leu Val Arg Lys Val Asn Trp			672
	210	215	220	
	AAG GAC CCG CTG GTG CAC AGC AAC ATG GAG CAC GAC GTG GCA CTG Lys Asp Pro Leu Val Val His Ser Asn Met Glu His Asp Val Ala Leu			720
	225	230	235	240
25	CTG CGC CTC TAC CCT GGC ATC CCG GCC TCC CTG GTC CGG GCA TTC CTG Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ser Leu Val Arg Ala Phe Leu			768
	245	250	255	
	CAG CCC CCG CTC AAG GGC GTG GTC CTG GAG ACC TTC GGC TCT GGC AAC Gln Pro Pro Lys Gly Val Val Leu Glu Thr Phe Gly Ser Gly Asn			816
	260	265	270	
30	GGG CCG AGC AAG CCC GAC CTG CTG CAG GAG TTG CGG GCC GCG GCC CAG Gly Pro Ser Lys Pro Asp Leu Leu Gln Glu Leu Arg Ala Ala Gln			864
	275	280	285	
	CGC GGC CTC ATC ATG GTC AAC TGC AGC CAG TGC CTG CGG GGG TCT GTG Arg Gly Leu Ile Met Val Asn Cys Ser Gln Cys Leu Arg Gly Ser Val			912
	290	295	300	
35	ACC CCG GGC TAT GCC ACG AGC TTG GCG GGC AAC ATC GTG TCC GGC Thr Pro Gly Tyr Ala Thr Ser Leu Ala Gly Ala Asn Ile Val Ser Gly			960
	305	310	315	320
	TTA GAC ATG ACC TCA GAG GCC GCG CTG GCT AAG CTG TCC TAC GTG TTG Leu Asp Met Thr Ser Glu Ala Ala Leu Lys Leu Ser Tyr Val Leu			1008
	325	330	335	
40	GCG CTG CCG GAG CTG AGC CTG GAG CGC AGG CAG GAG CTG CTG GCC AAG Gly Leu Pro Glu Leu Ser Leu Glu Arg Arg Gln Glu Leu Leu Ala Lys			1056
	340	345	350	
	GAT CTT CGC GGG GAA ATG ACA CTG CCC ACG GCA GAC CTG CAC CAG TCC Asp Leu Arg Gly Glu Met Thr Leu Pro Thr Ala Asp Leu His Gln Ser			1104
	355	360	365	
45	TCT CCG CCG GGC AGC ACA CTG GGG CAA GGT GTC GCC CGG CTC TTT AGT Ser Pro Pro Gly Ser Thr Leu Gly Gln Gly Val Ala Arg Leu Phe Ser			1152
	370	375	380	
	CTG TTC GGT TGC CAG GAG GAA GAT TCG GTG CAG GAC GCC GTG ATG CCC Leu Phe Gly Cys Gln Glu Glu Asp Ser Val Gln Asp Ala Val Met Pro			1200
	385	390	395	400
50	AGC CTG GCC CTG GCC TTG GCC CAT GCT GGT GAA CTC GAG GCT CTG CAG Ser Leu Ala Leu Ala His Ala Gly Glu Leu Glu Ala Leu Gln			1248

	405	410	415	
5	GCA CTT ATG GAG CTG GGC AGT GAC CTG CGC CTA AAG GAC TCT AAT GGC			1296
	Ala Leu Met Glu Leu Gly Ser Asp Leu Arg Leu Lys Asp Ser Asn Gly			
	420	425	430	
	CAA ACC CTG TTG CAT GTG GCT GCT CGG AAT GGG CGT GAT GGC GTG GTC			1344
	Gln Thr Leu Leu His Val Ala Ala Arg Asn Gly Arg Asp Gly Val Val			
	435	440	445	
10	ACC ATG CTG CTG CAC AGA GGC ATG GAT GTC AAT GCC CGA GAC CGA GAC			1392
	Thr Met Leu Leu His Arg Gly Met Asp Val Asn Ala Arg Asp Arg Asp			
	450	455	460	
	GGC CTC AGC CCA CTG CTG TTG GCT GTA CAG GGC AGG CAT CGG GAA TGC			1440
	Gly Leu Ser Pro Leu Leu Ala Val Gln Gly Arg His Arg Glu Cys			
	465	470	475	480
15	ATC AGG CTG CTG CGG AAG GCT GGG GCC TGC CTG TCC CCC CAG GAC CTG			1488
	Ile Arg Leu Leu Arg Lys Ala Gly Ala Cys Leu Ser Pro Gln Asp Leu			
	485	490	495	
	AAG GAT GCA GGG ACC GAG CTG TGC AGG CTG GCA TCC AGG GCT GAC ATG			1536
	Lys Asp Ala Gly Thr Glu Leu Cys Arg Leu Ala Ser Arg Ala Asp Met			
	500	505	510	
20	GAA GGC CTG CAG GCA TGG GGG CAG GCT GGG GCC GAC CTG CAG CAG CCG			1584
	Glu Gly Leu Gln Ala Trp Gly Gln Ala Gly Ala Asp Leu Gln Gln Pro			
	515	520	525	
	GGC TAT GAT GGG CGC AGC GCT CTG TGT GTC GCA GAA GCA GCC GGG AAC			1632
	Gly Tyr Asp Gly Arg Ser Ala Leu Cys Val Ala Glu Ala Ala Gly Asn			
	530	535	540	
25	CAG GAG GTG CTG GCC CTT CTG CGG AAC CTG GCA CTT GTA GGC CCG GAA			1680
	Gln Glu Val Leu Ala Leu Leu Arg Asn Leu Ala Leu Val Gly Pro Glu			
	545	550	555	560
	GTG CCG CCT GCC ATC			1695
	Val Pro Pro Ala Ile			
	565			

30

(19) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1719 base pairs
- (B) TYPE:nucleic acid

35

- (C) STRANDEDNESS:double
- (D) TOPOLOGY:linear

(ii) MOLECULE TYPE:cDNA to mRNA

(iii) HYPOTHETICAL:No

(iv) ANTI-SENSE:No

(vi) ORIGINAL SOURCE:

- (A) ORGANISM:human
- (F) TISSUE TYPE:liver

40

(ix) FEATURE:

- (A) NAME/KEY:mat peptide
- (B) LOCATION:1..1719

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

45

ATG GCG CGC GCG GTG GGG CCC GAG CGG AGG CTG CTG GCC GTC TAC ACC		48	
Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr			
1	5	10	15
GGC GGC ACC ATT GGC ATG CGG AGT GAG CTC GGC GTG CTT GTG CCC GGG		96	
Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly			
20	25	30	

50

55

	ACG GGC CTG GCT GCC ATC CTG AGG ACA CTG CCC ATG TTC CAT GAC GAG	144
5	Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu	
	35 35 40 40 45 45	
	GAG CAC GCC CGA GCC CGC CGG CTC TCT GAG GAC ACC CTG GTG CTA CCC	192
	Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro	
	50 50 55 55 60 60	
10	CCG GAC AGC CGC AAC CAG AGG ATC CTC TAC ACC GTG CTG GAG TGC CAG	240
	Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln	
	65 65 70 70 75 75 80 80	
	CCC CTC TTC GAC TCC AGT GAC ATG ACC ATC GCT GAG TGG GTT CGC GTT	288
	Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val	
	85 85 90 90 95 95	
15	GCC CAG ACC ATC AAG AGG CAC TAC GAG CAG TAC CAC GGC TTT GTG GTC	336
	Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val	
	100 100 105 105 110 110	
	ATC CAC GGC ACC GAC ACC ATG GCC TTT GCT GCC TCG ATG CTG TCC TTC	384
	Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe	
	115 115 120 120 125 125	
20	ATG CTG GAG AAC CTG CAG AAG ACT GTC ATC CTC ACT GGG GCC CAG GTG	432
	Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val	
	130 130 135 135 140 140	
	CCC ATC CAT GCC CTG TGG AGC GAC GGC CGT GAG AAC CTG CTG GGG GCA	480
	Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala	
	145 145 150 150 155 155 160 160	
25	CTG CTC ATG GCT GGC CAG TAT GTG ATC CCA GAG GTC TGC CTT TTC TTG	528
	Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe	
	165 165 170 170 175 175	
	CAG AAT CAG CTG TTT CGG GGC AAC CGG GCA ACC AAG GTA GAC GCT CGG	576
	Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg	
	180 180 185 185 190 190	
30	AGG TTC GCA GCT TTC TGC TCC CCG AAC CTG CTG CCT CTG GCC ACA GTG	624
	Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val	
	195 195 200 200 205 205	
	GGT GCT GAC ATC ACA ATC AAC AGG GAG CTG GTG CGG AAG GTG GAC GGG	672
	Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly	
	210 210 215 215 220 220	
35	AAG GCT GGG CTG GTG CAC AGC AGC ATG GAG CAG GAC GTG GGC CTG	720
	Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu	
	225 225 230 230 235 235 240 240	
	CTG CGC CTC TAC CCT GGG ATC CCT GCC GCC CTG GTT CGG GCC TTC TTG	768
	Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu	
	245 245 250 250 255 255	
40	CAG CCT CCC CTG AAG GGC GTG GTC ATG GAG ACC TTC GGT TCA GGG AAC	816
	Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn	
	260 260 265 265 270 270	
	GGA CCC ACC AAG CCC GAC CTG CTG CAG GAG CTG CGG GTG GCC ACC GAG	864
	Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu	
	275 275 280 280 285 285	
45	CGC GGC CTG GTC ATC GTC AAC TGT ACC CAC TGC CTC CAG GGG GCT GTG	912
	Arg Gly Leu Val Ile Val Asn Cys Thr His Cys Leu Gln Gly Ala Val	
	290 290 295 295 300 300	
	ACC ACA GAC TAT GCA GCT GGC ATG GCC ATG GCG GGA GCC GGC GTC ATC	960
	Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Gly Val Ile	
	305 305 310 310 315 315 320 320	
50	TCA GGC TTC GAC ATG ACA TCG GAG GCC GCC CTG GCC AAG CTA TCG TAT	1008
	Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr	
	325 325 330 330 335 335	

	GTG CTG GGC CAG CCA GGG CTG AGC CTG GAT GTC AGG AAG GAG CTG CTG	1056
	Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu	
	340 345 350	
5	ACC AAG GAC CTT CGG GGG GAG ATG ACG CCA CCC TCG GTG GAA GAG CGC	1104
	Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val Glu Glu Arg	
	355 360 365	
	CGG CCC TCA CTG CAG GGC AAC ACG CTG GGC GGT GGG GTC TCC TGG CTC	1152
	Arg Pro Ser Leu Gln Gly Asn Thr Leu Gly Gly Val Ser Trp Leu	
	370 375 380	
10	CTC AGT CTG AGC GGC AGC CAG GAG GCA GAT GCC CTG CGG AAT GCC CTG	1200
	Leu Ser Leu Ser Gly Ser Gln Glu Ala Asp Ala Leu Arg Asn Ala Leu	
	385 390 395 400	
	GTG CCC AGC CTG GCC TGT GCT GCC CAC GCC GGT GAC GTG GAG GCG	1248
	Val Pro Ser Leu Ala Cys Ala Ala His Ala Gly Asp Val Glu Ala	
	405 410 415	
15	CTG CAG GCG CTT GTG GAG CTG GGC AGT GAC CTG GGC CTG GTG GAC TTT	1296
	Leu Gln Ala Leu Val Glu Leu Gly Ser Asp Leu Gly Leu Val Asp Phe	
	420 425 430	
	AAC GGC CAA ACC CCA CTG CAC GCG GCC CGG GGA GGC CAC ACA GAG	1344
	Asn Gly Gln Thr Pro Leu His Ala Ala Arg Gly His Thr Glu	
	435 440 445	
20	GCA GTC ACC ATG CTG CTG CAG AGA GGT GTG GAC GTG AAC ACC CGG GAC	1392
	Ala Val Thr Met Leu Leu Gln Arg Gly Val Asp Val Asn Thr Arg Asp	
	450 455 460	
	ACG GAT GGC TTC AGC CCG CTG CTG GCC GTG CGG GGC AGG CAT CCG	1440
	Thr Asp Gly Phe Ser Pro Leu Leu Ala Val Arg Gly Arg His Pro	
	465 470 475 480	
25	GGT GTC ATT GGG TTG CTG CGG GAA GCC GGG GCC TCC CTG TCC ACC CAG	1488
	Gly Val Ile Gly Leu Leu Arg Glu Ala Gly Ala Ser Leu Ser Thr Gln	
	485 490 495	
	GAG CTG GAG GAA GCA GGG ACG GAG CTG TGC AGG CTG GCA TAC AGG GCC	1536
	Glu Leu Glu Ala Gly Thr Glu Leu Cys Arg Leu Ala Tyr Arg Ala	
	500 505 510	
30	GAC CTC GAA GGC CTG CAG GTG TGG TGG CAG GCA GGG GCT GAC CTG GGG	1584
	Asp Leu Glu Gly Leu Gln Val Trp Trp Gln Ala Gly Ala Asp Leu Gly	
	515 520 525	
	CAG CCG GGC TAT GAC GGG CAC AGC GCC CTG CAC GTC GCA GAG GCA GCC	1632
	Gln Pro Gly Tyr Asp Gly His Ser Ala Leu His Val Ala Glu Ala Ala	
	530 535 540	
35	GGG AAC CTG GCA GTG GTG GCC TTT CTA CAG AGC CTG GAG GGT GCG GTT	1680
	Gly Asn Leu Ala Val Val Ala Phe Leu Gln Ser Leu Glu Gly Ala Val	
	545 550 555 560	
	GGT GCC CAG GCC CCA TGC CCA GAA GTG CTG CCT GGT GTC	1716
	Gly Ala Gln Ala Pro Cys Pro Glu Val Leu Pro Gly Val	
40	565 570 573	

45 Claims

1. A polypeptide which originate from mammal, having L-asparaginase activity.
2. The polypeptide of claim 1, which is obtainable by the expression of a gene originating from mammal.
3. The polypeptide of claim 1, which has amino acid sequences of SEQ ID NOs:1 to 3 (where the symbol "Xaa" means "glutamine" or "threonine");

SEQ ID NO: 1:

5 Thr Gly Gly Thr
1

10 SEQ ID NO: 2:

His Gly Thr Asp Thr
1 5

15

SEQ ID NO: 3:

20 Gln Cys Leu Xaa Gly.
1 5

25 4. The polypeptide of claim 1, which has an amino acid sequence selected from the group consisting of SEQ ID NOs: 4 to 9 and homologous amino acid sequences thereunto;

30 SEQ ID NO: 4:

Met Ala Arg Ala Ser Gly Ser Glu Arg His Leu Leu Leu Ile Tyr Thr
1 5 10 15
Gly Gly Thr Leu Gly Met Gln Ser Lys Gly Gly Val Leu Val Pro Gly
20 25 30
35 Pro Gly Leu Val Thr Leu Leu Arg Thr Leu Pro Met Phe His Asp Lys
35 40 45
Glu Phe Ala Gln Ala Gln Gly Leu Pro Asp His Ala Leu Ala Leu Pro
50 55 60

40

45

50

55

Pro Ala Ser His Gly Pro Arg Val Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 75 80
 Pro Leu Leu Asp Ser Ser Asp Met Thr Ile Asp Asp Trp Ile Arg Ile
 85 90 95
 Ala Lys Ile Ile Glu Arg His Tyr Glu Gln Tyr Gln Gly Phe Val Val
 100 105 110
 Ile His Gly Thr Asp Thr Met Ala Phe Gly Ala Ser Met Leu Ser Phe
 115 120 125
 10 Met Leu Glu Asn Leu His Lys Pro Val Ile Leu Thr Gly Ala Gln Val
 130 135 140
 Pro Ile Arg Val Leu Trp Asn Asp Ala Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 Leu Leu Val Ala Gly Gln Tyr Ile Ile Pro Glu Val Cys Leu Phe Met
 165 170 175
 Asn Ser Gln Leu Phe Arg Gly Asn Arg Val Thr Lys Val Asp Ser Gln
 180 185 190
 Lys Phe Glu Ala Phe Cys Ser Pro Asn Leu Ser Pro Leu Ala Thr Val
 195 200 205
 20 Gly Ala Asp Val Thr Ile Ala Trp Asp Leu Val Arg Lys Val Asn Trp
 210 215 220
 Lys Asp Pro Leu Val Val His Ser Asn Met Glu His Asp Val Ala Leu
 225 230 235 240
 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ser Leu Val Arg Ala Phe Leu
 245 250 255
 25 Gln Pro Pro Leu Lys Gly Val Val Leu Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 Gly Pro Ser Lys Pro Asp Leu Leu Gln Glu Leu Arg Ala Ala Ala Gln
 275 280 285
 30 Arg Gly Leu Ile Met Val Asn Cys Ser Gln Cys Leu Arg Gly Ser Val
 290 295 300
 Thr Pro Gly Tyr Ala Thr Ser Leu Ala Gly Ala Asn Ile Val Ser Gly
 305 310 315 320
 Leu Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr Val Leu
 325 330 335
 35 Gly Leu Pro Glu Leu Ser Leu Glu Arg Arg Gln Glu Leu Leu Ala Lys
 340 345 350
 Asp Leu Arg Gly Glu Met Thr Leu Pro Thr Ala
 355 360 363

40

45

50

55

SEQ ID NO: 5:

5 Met Ala Arg Ala Ser Gly Ser Glu Arg His Leu Leu Leu Ile Tyr Thr
1 5 10 15
Gly Gly Thr Leu Gly Met Gln Ser Lys Gly Gly Val Leu Val Pro Gly
20 25 30
Pro Gly Leu Val Thr Leu Leu Arg Thr Leu Pro Met Phe His Asp Lys
35 40 45
10 Glu Phe Ala Gln Ala Gln Gly Leu Pro Asp His Ala Leu Ala Leu Pro
50 55 60
Pro Ala Ser His Gly Pro Arg Val Leu Tyr Thr Val Leu Glu Cys Gln
65 70 75 80
15 Pro Leu Leu Asp Ser Ser Asp Met Thr Ile Asp Asp Trp Ile Arg Ile
85 90 95
Ala Lys Ile Ile Glu Arg His Tyr Glu Gln Tyr Gln Gly Phe Val Val
100 105 110

20

25

30

35

40

45

50

55

Ile His Gly Thr Asp Thr Met Ala Phe Gly Ala Ser Met Leu Ser Phe
 115 120 125
 5 Met Leu Glu Asn Leu His Lys Pro Val Ile Leu Thr Gly Ala Gln Val
 130 135 140
 Pro Ile Arg Val Leu Trp Asn Asp Ala Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 Leu Leu Val Ala Gly Gln Tyr Ile Ile Pro Glu Val Cys Leu Phe Met
 165 170 175
 10 Asn Ser Gln Leu Phe Arg Gly Asn Arg Val Thr Lys Val Asp Ser Gln
 180 185 190
 Lys Phe Glu Ala Phe Cys Ser Pro Asn Leu Ser Pro Leu Ala Thr Val
 195 200 205
 15 Gly Ala Asp Val Thr Ile Ala Trp Asp Leu Val Arg Lys Val Asn Trp
 210 215 220
 Lys Asp Pro Leu Val Val His Ser Asn Met Glu His Asp Val Ala Leu
 225 230 235 240
 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ser Leu Val Arg Ala Phe Leu
 245 250 255
 20 Gln Pro Pro Leu Lys Gly Val Val Leu Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 Gly Pro Ser Lys Pro Asp Leu Leu Gln Glu Leu Arg Ala Ala Gln
 275 280 285
 25 Arg Gly Leu Ile Met Val Asn Cys Ser Gln Cys Leu Arg Gly Ser Val
 290 295 300
 Thr Pro Gly Tyr Ala Thr Ser Leu Ala Gly Ala Asn Ile Val Ser Gly
 305 310 315 320
 Leu Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr Val Leu
 325 330 335
 30 Gly Leu Pro Glu Leu Ser Leu Glu Arg Arg Gln Glu Leu Leu Ala Lys
 340 345 350
 Asp Leu Arg Gly Glu Met Thr Leu Pro Thr Ala Asp Leu His Gln Ser
 355 360 365
 Ser Pro Pro Gly Ser Thr Leu Gly Gln Gly Val Ala Arg Leu Phe Ser
 370 375 380
 35 Leu Phe Gly Cys Gln Glu Glu Asp Ser Val Gln Asp Ala Val Met Pro
 385 390 395 400
 Ser Leu Ala Leu Ala His Ala Gly Glu Leu Glu Ala Leu Gln
 405 410 415
 Ala Leu Met Glu Leu Gly Ser Asp Leu Arg Leu Lys Asp Ser Asn Gly
 420 425 430
 40 Gln Thr Leu Leu His Val Ala Ala Arg Asn Gly Arg Asp Gly Val Val
 435 440 445
 Thr Met Leu Leu His Arg Gly Met Asp Val Asn Ala Arg Asp Arg Asp
 450 455 460
 45 Gly Leu Ser Pro Leu Leu Ala Val Gln Gly Arg His Arg Glu Cys
 465 470 475 480
 Ile Arg Leu Leu Arg Lys Ala Gly Ala Cys Leu Ser Pro Gln Asp Leu
 485 490 495
 Lys Asp Ala Gly Thr Glu Leu Cys Arg Leu Ala Ser Arg Ala Asp Met
 500 505 510
 50 Glu Gly Leu Gln Ala Trp Gly Gln Ala Gly Ala Asp Leu Gln Gln Pro
 515 520 525
 Gly Tyr Asp Gly Arg Ser Ala Leu Cys Val Ala Glu Ala Ala Gly Asn
 530 535 540
 55 Gln Glu Val Leu Ala Leu Leu Arg Asn Leu Ala Leu Val Gly Pro Glu
 545 550 555 560
 Val Pro Pro Ala Ile

SEQ ID NO: 6:

10 Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr
 1 5 10 15
 Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly
 20 25 30
 Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu
 25 35 40 45
 Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro
 50 55 60
 Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 80
 20 Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val
 85 90 95
 Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val
 100 105 110
 Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe
 115 120 125
 25 Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val
 130 135 140
 Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 30 Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe
 165 170 175
 Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg
 180 185 190
 Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val
 195 200 205
 35 Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly
 210 215 220
 Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu
 225 230 235 240
 40 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu
 245 250 255
 Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu
 275 280 285
 45 Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Arg Gly Ala Val
 290 295 300
 Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Asn Val Ile
 305 310 315 320
 50 Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr
 325 330 335
 Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu
 340 345 350
 Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val
 355 360 365

SEQ ID NO: 7:

5

Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr
 1 5 10 15
 Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly
 10 20 25 30
 Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu
 15 35 40 45
 Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro
 20 50 55 60
 Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln
 25 65 70 75 80
 Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val
 30 85 90 95
 Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val
 35 100 105 110
 Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe
 40 115 120 125
 Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val
 45 130 135 140
 Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala
 50 145 150 155 160
 Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe
 55 165 170 175
 Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg
 60 180 185 190
 Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val
 65 195 200 205
 Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly
 70 210 215 220
 Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu
 75 225 230 235 240
 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu
 80 245 250 255
 Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn
 85 260 265 270
 Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu
 90 275 280 285
 Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Arg Gly Ala Val
 95 290 295 300
 Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Gly Val Ile
 100 305 310 315 320
 Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr
 105 325 330 335
 Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu
 110 340 345 350
 Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val
 115 355 360 365

55

SEQ ID NO: 8:

5 Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr
 1 5 10 15
 Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly
 20 25 30
 Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu
 10 35 40 45

15 Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro
 50 55 60
 Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 75 80
 Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val
 20 85 90 95
 Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val
 100 105 110
 Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe
 115 120 125
 25 Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val
 130 135 140
 Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe
 30 165 170 175
 Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg
 180 185 190
 Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val
 195 200 205
 35 Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly
 210 215 220
 Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu
 225 230 235 240
 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu
 245 250 255
 40 Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu
 275 280 285
 45 Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Gln Gly Ala Val
 290 295 300
 Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Asn Val Ile
 305 310 315 320
 Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr
 325 330 335
 50 Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu
 340 345 350
 Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val
 355 360 365

SEQ ID NO: 9:

5 Met Ala Arg Ala Val Gly Pro Glu Arg Arg Leu Leu Ala Val Tyr Thr
 1 5 10 15
 Gly Gly Thr Ile Gly Met Arg Ser Glu Leu Gly Val Leu Val Pro Gly
 20 25 30
 Thr Gly Leu Ala Ala Ile Leu Arg Thr Leu Pro Met Phe His Asp Glu
 35 40 45
 10 Glu His Ala Arg Ala Arg Gly Leu Ser Glu Asp Thr Leu Val Leu Pro
 50 55 60
 Pro Asp Ser Arg Asn Gln Arg Ile Leu Tyr Thr Val Leu Glu Cys Gln
 65 70 75 80
 Pro Leu Phe Asp Ser Ser Asp Met Thr Ile Ala Glu Trp Val Arg Val
 85 90 95
 15

20 Ala Gln Thr Ile Lys Arg His Tyr Glu Gln Tyr His Gly Phe Val Val
 100 105 110
 Ile His Gly Thr Asp Thr Met Ala Phe Ala Ala Ser Met Leu Ser Phe
 115 120 125
 Met Leu Glu Asn Leu Gln Lys Thr Val Ile Leu Thr Gly Ala Gln Val
 130 135 140
 25 Pro Ile His Ala Leu Trp Ser Asp Gly Arg Glu Asn Leu Leu Gly Ala
 145 150 155 160
 Leu Leu Met Ala Gly Gln Tyr Val Ile Pro Glu Val Cys Leu Phe Phe
 165 170 175
 Gln Asn Gln Leu Phe Arg Gly Asn Arg Ala Thr Lys Val Asp Ala Arg
 180 185 190
 30 Arg Phe Ala Ala Phe Cys Ser Pro Asn Leu Leu Pro Leu Ala Thr Val
 195 200 205
 Gly Ala Asp Ile Thr Ile Asn Arg Glu Leu Val Arg Lys Val Asp Gly
 210 215 220
 35 Lys Ala Gly Leu Val Val His Ser Ser Met Glu Gln Asp Val Gly Leu
 225 230 235 240
 Leu Arg Leu Tyr Pro Gly Ile Pro Ala Ala Leu Val Arg Ala Phe Leu
 245 250 255
 Gln Pro Pro Leu Lys Gly Val Val Met Glu Thr Phe Gly Ser Gly Asn
 260 265 270
 40 Gly Pro Thr Lys Pro Asp Leu Leu Gln Glu Leu Arg Val Ala Thr Glu
 275 280 285
 Arg Gly Leu Val Ile Val Asn Cys Thr Gln Cys Leu Gln Gly Ala Val
 290 295 300
 45 Thr Thr Asp Tyr Ala Ala Gly Met Ala Met Ala Gly Ala Gly Val Ile
 305 310 315 320
 Ser Gly Phe Asp Met Thr Ser Glu Ala Ala Leu Ala Lys Leu Ser Tyr
 325 330 335
 50 Val Leu Gly Gln Pro Gly Leu Ser Leu Asp Val Arg Lys Glu Leu Leu
 340 345 350
 Thr Lys Asp Leu Arg Gly Glu Met Thr Pro Pro Ser Val.
 355 360 365

- 55 5. The polypeptide of claim 1, which originates from a member selected from the group consisting of guinea pig and human.
6. The polypeptide of claim 1, which exists in the form of an oligomer.

7. A DNA which encodes the polypeptide as claimed in claim 1.
8. The DNA of claim 7, which contains a nucleotide sequence selected from the group consisting of SEQ ID NOs: 10 to 14, their homologous ones, and complementary ones thereunto;

5

SEQ ID NO: 10

10	ATGGCGCGCG CATCAGGCTC CGAGAGGCAC CTGCTGCTCA TCTACACTGG CGGCACTTG GGCATGCAGA GCAAGGGCGG GGTGCTCGTC CCCGGCCCG AGGCCGTCAC TCTGCTGCCG 60 ACCCCTGCCCA TGTTCCATGA CAAGGAGTTC GCCCAGGCC AGGGCCTCCC TGACCATGCT 120 CTGGCGCTGC CCCCTGCCAG CCACGGCCCC AGGGTCCTCT ACACGGTGCT GGAGTGCCAG 180 CCCCTCTTGG ATTCCAGCGA CATGACCATC GATGATTGGA TTCCGATAGC CAAGATCATA 240 GAGAGGCAC T ATGAGCAGTA CCAAGGCTTT GTGGTTATCC ACAGGCACCGA CACCATGGCC 300 15 TTTGGGGCCT CCATGCTGTC CTTCATGCTG GAAAACCTGC ACAAAACAGT CATCCTCACT 360 GGCGCCCAGG TGCCAATCCG TGTGCTGTGG AATGACGCC GGGAAAACCT GCTGGGGCG 420 TTGCTTGTGG CGGCCAATA CATCATCCCT GAGGTCTGCC TGTTTATGAA CAGTCAGCTG 480 TTTCGGGGAA ACCGGGTAAC CAAGGTGGAC TCCCAGAAGT TTGAGGCCTT CTGCTCCCCC 540 AATCTGTCCC CACTAGGCCAC TGTGGCGCG GATGTCACAA TTGCGCTGGGA CCTGGTGC 600 20 AAGGTCAACT GGAAGGACCC GCTGGTGGTG CACAGCAACA TGGAGCACGA CGTGGCACTG 660 CTGCGCCTCT ACCCTGGCAT CCCGGCCTCC CTGGTCCCGG CATCCCTGCA GCCCCCGCTC 720 AAGGGCGTGG TCCTGGAGAC CTTCGGCTCT GGCAACGGGC CGAGCAAGCC CGACCTGCTG 780 CAGGAGTTGC GGCGCGGGC CCAGCGCGC CTATCATGG TCAACTGCAG CCAGTGCCTG 840 25 CGGGGGTCTG TGACCCCCGGG CTATGCCACG AGCTTGGCGG GCGCCAACAT CGTGTCCGGC 900 TTAGACATGA CCTCAGAGGC CGCGCTGGCT AAGCTGTCCCT ACGTGTTGGG CCTGCCGGAG 960 CTGAGCCTGG AGCGCAGGCA GGAGCTGCTG GCCAAGGATC TTCCGCGGGGA AATGACACTG 1020 CCCACGGCA 1080 1089
----	---

30

SEQ ID NO: 11:

35	ATGGCGCGCG CGGTGGGGCC CGAGCGGAGG CTGCTGGCCG TCTACACCAG CGGCACCAT 60 GGCATGCGGA GTGAGCTCGG CGTGCTGTG CCCGGGACGG GCCTGGCTGC CATCCTGAGG 120 ACACTGCCCA TGTTCCATGA CGAGGAGCAC GCCCGAGCC GCGGCCCTCTC TGAGGACACC 180 CTGGTGTAC CCCCGGACAG CCCCAACCG AGGATCCTCT ACACCGTGCT GGAGTGCCAG 240 CCCCTCTTCG ACTCCAGTGA CATGACCATC GCTGAGTGGG TTCCGCTTGC CCAGACCATC 300 AAGAGGCAC T ACGAGCAGTA CCACGGCTT GTGGTCATCC ACGGCACCGA CACCATGGCC 360 40 TTTGCTGCTC CGATGCTGTC CTTCATGCTG GAAACCTGC AGAAAGACTGT CATCCTCACT 420 GGGGCCCAGG TGCCCATCCA TGCCCTGTGG AGCGACGGGC GTGAGAACCT GCTGGGGCA 480 CTGCTCATGG CTGGCCAGTA TGTGATCCC GAGGTCTGCC TTTTCTTCCA GAATCAGCTG 540 TTTCGGGGCA ACCGGGCAAC CAAGGTAGAC GCTCGGAGGT TCGCAGCTTT CTGCTCCCCG 600 AACCTGCTGC CTCTGGCCAC AGTGGGTGCT GACATCACAA TCAACAGGGG GCTGGTGC 660 45 AAGGTGGACG GGAAGGCTGG GCTGGTGGTG CACAGCAGCA TGGAGCAGGA CGTGGGCCTG 720 CTGCGCCTCT ACCCTGGGAT CCCTGCCGCC CTGGTTCGGG CCTTCTTGCA GCCTCCCCCTG 780 AAGGGCGTGG TCATGGAGAC CTTCGGTTCA GGGAACGGAC CCACCAAGCC CGACCTGCTG 840 CAGGAGCTGC GGGTGGCCAC CGAGCGCGGC CTGGTCATCG TCAACTGTAC CCAGTGCCTC 900 CGGGGGGCTG TGACCACAGA CTATGCAGCT GGCATGGCCA TGGCGGGAGC CAACGTTCATC 960 TCAGGCTTCG ACATGACATC GGAGGCCGCC CTGGCCAAGC TATCGTATGT GCTGGGCCAG 1020 50 CCAGGGCTGA GCCTGGATGT CAGGAAGGAG CTGCTGACCA AGGACCTTCG GGGGGAGATG 1080 ACGCCACCC CGGTG 1095
----	--

55

SEQ ID NO: 12:

5	ATGGCGCGCG CGGTGGGGCC	CGAGCGGAGG CTGCTGGCCG	TCTACACCGG CGGCACCATT	60
	GGCATGCGGA GTGAGCTCGG	CGTGCTTGTG CCCGGGACGG	GCCTGGCTGC CATCCTGAGG	120
	ACACTGCCA TGTTCCATGA	CGAGGAGCAC GCCCCGAGCCC	CGGGCCTCTC TGAGGACACC	180
	CTGGTGCTAC CCCCGGACAG	CCGCAACCAG AGGATCCTCT	ACACCGTGCT GGAGTGCCAG	240
	CCCCTTTCG ACTCCAGTGA	CATGACCATC GCTGAGTGGG	TTCGCGTTGC CCAGACCATC	300
	AAGAGGCACT ACGAGCAGTA	CCACGGCTTT GTGGTCATCC	ACGGCACCGA CACCATGGCC	360

10

15	TTTGCTGCCT CGATGCTGTC	CTTCATGCTG GAGAACCTGC	AGAAGACTGT CATCCTCACT	420
	GGGGCCCAGG TGCCCATCCA	TGCCCTGTGG AGCGACGGCC	GTGAGAACCT GCTGGGGCA	480
	CTGCTCATGG CTGGCCAGTA	TGTGATCCA GAGGTCTGCC	TTTTCTTCCA GAATCAGCTG	540
	TTTCGGGGCA ACCGGGCAAC	CAAGGTAGAC GCTCGGAGGT	TCGCAGCTTT CTGCTCCCCG	600
	AACTGCTGC CTCTGGCCAC	AGTGGGTGCT GACATCACAA	TCAACAGGGG GCTGGTGCAG	660
	AAGGTGGACG GGAAGGCTGG	GCTGGTGGTG CACAGCAGCA	TGGACAGGGA CGTGGGCCTG	720
	CTGCGCCTCT ACCCTGGGAT	CCCTGCGGCC CTGGTTCGGG	CCTTCTTGCA GCCTCCCCCTG	780
20	AAGGGCGTGG TCATGGAGAC	CTTCGGTTCA GGGAACGGAC	CCACCAAGGC CGACCTGCTG	840
	CAGGAGCTGC GGGTGGCCAC	CGAGCGCGGC CTGGTCATCG	TCAACTGTAC CCAGTGCCTC	900
	CGGGGGGCTG TGACCACAGA	CTATGCAGCT GGCATGGCCA	TGGCGGGAGC CGGCGTCATC	960
	TCAGGCTTCG ACATGACATC	GGAGGCGGCC CTGGCCAAGC	TATCGTATGT GCTGGGCCAG	1020
	CCAGGGCTGA GCCTGGATGT	CAGGAAGGAG CTGCTGACCA	AGGACCTTCG GGGGGAGATG	1080
25	ACGCCACCT CGGTG			1095

25

30

SEQ ID NO: 13:

35	ATGGCGCGCG CGGTGGGGCC	CGAGCGGAGG CTGCTGGCCG	TCTACACCGG CGGCACCATT	60
	GGCATGCGGA GTGAGCTCGG	CGTGCTTGTG CCCGGGACGG	GCCTGGCTGC CATCCTGAGG	120
	ACACTGCCA TGTTCCATGA	CGAGGAGCAC GCCCCGAGCCC	CGGGCCTCTC TGAGGACACC	180
	CTGGTGCTAC CCCCGGACAG	CCGCAACCAG AGGATCCTCT	ACACCGTGCT GGAGTGCCAG	240
	CCCCTTTCG ACTCCAGTGA	CATGACCATC GCTGAGTGGG	TTCGCGTTGC CCAGACCATC	300
	AAGAGGCACT ACGAGCAGTA	CCACGGCTTT GTGGTCATCC	ACGGCACCGA CACCATGGCC	360
	TTTGCTGCCT CGATGCTGTC	CTTCATGCTG GAGAACCTGC	AGAAGACTGT CATCCTCACT	420
	GGGGCCCAGG TGCCCATCCA	TGCCCTGTGG AGCGACGGCC	GTGAGAACCT GCTGGGGCA	480
	CTGCTCATGG CTGGCCAGTA	TGTGATCCA GAGGTCTGCC	TTTTCTTCCA GAATCAGCTG	540
40	TTTCGGGGCA ACCGGGCAAC	CAAGGTAGAC GCTCGGAGGT	TCGCAGCTTT CTGCTCCCCG	600
	AACTGCTGC CTCTGGCCAC	AGTGGGTGCT GACATCACAA	TCAACAGGGG GCTGGTGCAG	660
	AAGGTGGACG GGAAGGCTGG	GCTGGTGGTG CACAGCAGCA	TGGACAGGGA CGTGGGCCTG	720
	CTGCGCCTCT ACCCTGGGAT	CCCTGCGGCC CTGGTTCGGG	CCTTCTTGCA GCCTCCCCCTG	780
	AAGGGCGTGG TCATGGAGAC	CTTCGGTTCA GGGAACGGAC	CCACCAAGGC CGACCTGCTG	840
45	CAGGAGCTGC GGGTGGCCAC	CGAGCGCGGC CTGGTCATCG	TCAACTGTAC CCAGTGCCTC	900
	CAGGGGGCTG TGACCACAGA	CTATGCAGCT GGCATGGCCA	TGGCGGGAGC CAACGTTCATC	960
	TCAGGCTTCG ACATGACATC	GGAGGCGGCC CTGGCCAAGC	TATCGTATGT GCTGGGCCAG	1020
	CCAGGGCTGA GCCTGGATGT	CAGGAAGGAG CTGCTGACCA	AGGACCTTCG GGGGGAGATG	1080
50	ACGCCACCT CGGTG			1095

50

55

SEQ ID NO: 14:

5	ATGGCGCGCG CGGTGGGGCC CGAGCGGAGG CTGCTGGCCG TCTACACCGG CGGCACCATT 60 GGCATGCGGA GTGAGCTCGG CGTGCTTGTG CCCGGGACGG GCCTGGCTGC CATCCTGAGG 120
10	ACACTGCCCA TGTTCCATGA CGAGGAGCAC GCCCGAGCCC GC GG CCTCTTC TGAGGACACC 180 CTGGTGCTAC CCCCCGACAG CCGCAACCAG AGGATCCTCT ACACCGTGCT GGAGTGCCAG 240 CCCCTCTTCG ACTCCAGTGA CATGACCATC GCTGAGTGGG TTCGCGTTGC CCAGACCATC 300 AAGAGGCAGT ACGAGCAGTA CCACGGCTTT GTGGTCATCC ACGGCACCGA CACCATGGCC 360
15	TTTGCTGCCT CGATGCTGTC CTTCATGCTG GAGAACCTGC AGAAGACTGT CATCCTCACT 420 GGGGCCCAAGG TGCCCCATCCA TGCCCTGTGG AGCGACGGCC GTGAGAACCT GCTGGGGCA 480 CTGCTCATGG CTGGCCAGTA TGTGATCCCA GAGGTCTGCC TTTTCTTCCA GAATCAGCTG 540 TTTCGGGGCA ACCGGGCAAC CAAGGTAGAC GCTCGGAGGT TCGCAGCTT CTGCTCCCCG 600 AACCTGCTGC CTCTGGCCAC AGTGGGTGCT GACATCACAA TCAACAGGGA GCTGGTGCGG 660 AAGGTGGACG GGAAGGCTGG GCTGGTGGTG CACAGCAGCA TGGAGCAGGA CGTGGGCCTG 720 CTGCGCCTCT ACCCTGGGAT CCCTGCCGCC CTGGTTCGGG CCTTCTTGCA GCCTCCCTG 780 AAGGGCGTGG TCATGGAGAC TTTCGGTTCA GGGAACGGAC CCACCAAGCC CGACCTGCTG 840 CAGGAGCTGC GGGTGGCCAC CGAGCGCGGC CTGGTCATCG TCAACTGTAC CCAGTGCCTC 900
20	
25	CAGGGGGCTG TGACCCACAGA CTATGCAGCT GGCATGGCCA TGGCGGGAGC CGGCCTCATC 960 TCAGGGCTTCG ACATGACATC GGAGGCCGCC CTGGCCAAGC TATCGTATGT GCTGGGCCAG 1020 CCAGGGCTGA GCCTGGATGT CAGGAAGGAG CTGCTGACCA AGGACCTTCG GGGGGAGATG 1080 ACGCCACCC CGGTG 1095.

9. The DNA of claim 7, which originates from a member selected from the group consisting of guinea pig and human.
- 30 10. A self-replicable vector which contains a DNA encoding the polypeptide as claimed in claim 1.
11. The self-replicable vector of claim 10, which is a plasmid vector.
- 35 12. The self-replicable vector of claim 10, which contains one or more members selected from the group consisting of metallothionein and Tac promoters.
13. A transformant obtainable by introducing the DNA of claim 7 into a host.
- 40 14. The transformant of claim 13, wherein said host is a member selected from the group consisting of prokaryotic and eukaryotic cells.
15. The transformant of claim 13, wherein said host is *Escherichia coli*.
- 45 16. The transformant of claim 13, wherein said host is a mouse cell.
17. A transformant obtainable by the self replicable vector of claim 10 into a host.
- 50 18. The transformant of claim 17, wherein said host is a member selected from the group consisting of prokaryotic and eukaryotic cells.
19. The transformant of claim 17, wherein said host is *Escherichia coli*.
20. The transformant of claim 17, wherein said host is a mouse cell.
- 55 21. A process for preparing a polypeptide, which comprises (a) artificially expressing a DNA encoding the polypeptide of claim 1, and (b) collecting the polypeptide from the resultant mixture.
22. The process of claim 21, wherein the artificial expression of the step (a) contains culturing the transformant of

claim 13.

23. The process of claim 21, wherein the artificial expression of the step (a) contains culturing the transformant of
claim 17.

5

24. The process of claim 21, wherein the resultant mixture of the step (b) is a culture of the transformant of claim 13.

25. The process of claim 21, wherein the resultant mixture of the step (b) is a culture of the transformant of claim 17.

10 26. The process of claim 21, wherein the polypeptide is collected by one or more techniques selected from the group
consisting of salting out, dialysis, filtration, concentration, gel filtration chromatography, ion-exchange chromatog-
raphy, affinity chromatography, hydrophobic chromatography, isoelectric focusing and gel electrophoresis.

27. An agent for susceptive diseases, which contains the polypeptide of claim 1 as an effective ingredient.

15

28. The agent of claim 27, wherein said diseases are malignant tumors, leukemias and lymphomas.

29. The agent of claim 27, which contains one or more members selected from the group consisting of serum albumin,
glycerol, gelatin, trehalose and maltose as a stabilizer.

20

25

30

35

40

45

50

55

Note: An asterisk indicates a site where a nucleotide is substituted, and a box indicates a polypeptide-encoding sequence.

FIG.1

FIG.2

Template DNA : pCGPA/WT
 Sense primer : 5' -GTGAATTCTGGAGGTTCAAGATGGCGCGCATCA-3'
 Anti-sense primer : 5' -CTGCGGCCGCTCAAGATGGCAGGGCAC-3'

↓ PCR

Amplified DNA

↓ Cleavage by *Bco* RI and *Not* I

DNA fragment about 1.7 kbp in length

Linkers :

5' -TCGAGCCACCATGAAGTGTTCGTGGTTATT-3'
 5' -TTCTTCCTGATGGCCGTAGTGACAGGAGTG-3'
 5' -AATTCACTCCTGTCACTACGGCCATCAGGA-3'
 5' -AGAAAATAACCCACGAACACTTCATGGTGGC-3'

↓ Phosphorylation
by T4 polynucleotide kinase

5' -terminal phosphorylated linkers

↓ Cleavage by *Xba* I and *Not* I

Ligation

FIG.3

FIG.4

FIG.5

FIG.6

FIG.7

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

FIG.13

FIG.14

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 811 687 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
28.10.1998 Bulletin 1998/44

(43) Date of publication A2:
10.12.1997 Bulletin 1997/50

(21) Application number: 97303896.1

(22) Date of filing: 06.06.1997

(84) Designated Contracting States:
**AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE**

Designated Extension States:
AL LT LV RO SI

(30) Priority: 07.06.1996 JP 168172/96

(71) Applicant: **KABUSHIKI KAISHA HAYASHIBARA
SEIBUTSU KAGAKU KENKYUJO
Okayama-shi Okayama (JP)**

(72) Inventors:

- **Ario, Takeshi
Okayama-shi, Okayama (JP)**

(51) Int Cl. 6: **C12N 15/55, C12N 9/82,
C12N 15/70, C12N 15/79,
C12N 1/21, C12N 5/10,
A61K 38/46
// (C12N1/21, C12R1:19)**

- **Tanai, Madoka
Okayama-shi, Okayama (JP)**
- **Yamamoto, Kozo
Okayama-shi, Okayama (JP)**
- **Kurimoto, Masashi
Okayama-shi, Okayama (JP)**

(74) Representative: **Daniels, Jeffrey Nicholas et al
Page White & Farrer
54 Doughty Street
London WC1N 2LS (GB)**

(54) Polypeptides having L-asparaginase activity

(57) Disclosed are polypeptides which originate from mammal, having L-asparaginase activity. The polypeptides are easily prepared by applying recombinant DNA techniques to DNAs encoding the polypeptides and they exert satisfactory effects in the treatment and/or the prevention for diseases caused by tumor cells dependent on L-asparagine, and cause no substantial serious side effects even when administered to humans in relatively-high dose.

FIG.1

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 97 30 3896

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION* (Int.Cl.6)						
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim							
X, P	EP 0 726 313 A (HAYASHIBARA BIOCHEM LAB) 14 August 1996 * the whole document * ---	1-11, 13-15, 17-19, 21-25, 27,28	C12N15/55; C12N9/82 C12N15/70 C12N15/79 C12N1/21 C12N5/10 A61K38/46 //(C12N1/21, C12R1:19)						
X	YELLIN T O ET AL: "PURIFICATION AND PROPERTIES OF GUINEA PIG SERUM ASPARAGINASE" BIOCHEMISTRY, vol. 5, no. 5, May 1966, pages 1605-1612, XP002012974 * the whole document *	1-29							
X	PATENT ABSTRACTS OF JAPAN vol. 004, no. 046 (C-006), 10 April 1980 & JP 55 019018 A (TOUBISHI YAKUHIN KOGYO KK), 9 February 1980 * abstract *	1,2,4-29							
X	PATENT ABSTRACTS OF JAPAN vol. 017, no. 158 (C-1041), 29 March 1993 & JP 04 320684 A (JAPAN SYNTHETIC RUBBER CO LTD), 11 November 1992 * abstract *	1,2,4-29	TECHNICAL FIELDS SEARCHED (Int.Cl.6) C12N						
<p>The present search report has been drawn up for all claims</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">Place of search</td> <td style="width: 33%;">Date of completion of the search</td> <td style="width: 33%;">Examiner</td> </tr> <tr> <td>THE HAGUE</td> <td>7 September 1998</td> <td>Fernandez y Branas, F</td> </tr> </table> <p>CATEGORY OF CITED DOCUMENTS</p> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>				Place of search	Date of completion of the search	Examiner	THE HAGUE	7 September 1998	Fernandez y Branas, F
Place of search	Date of completion of the search	Examiner							
THE HAGUE	7 September 1998	Fernandez y Branas, F							