MINIMALIZACE AUTOMATU PRO INSPEKCI SÍŤOVÉHO PROVOZU

DVOŘÁK MARTIN

ÚVOD DO PROBLEMATIKY

Použití regulárních výrazů

Technologie FPGA

• Redukce velikosti

HLEDÁNÍ VHODNÝCH STAVŮ

- Konečný automat
- Bezkolizní relace
 - R = $\{(q_1, q_2) \mid \text{neexistuje slovo } w \text{ takové, že } q_1 \text{ i } q_2 \text{ jsou dosažitelné z některého}$ počátečního stavu konečného automatu přes stejné w, kde w je Σ^*
- Použitý algoritmus

VÝSLEDKY BEZKOLIZNÍ RELACE

• R = $\{(q_1, q_2) \mid \text{neexistuje slovo } w \text{ takové, že } q_1 \text{ i } q_2 \text{ jsou dosažitelné z některého počátečního stavu konečného automatu přes stejné } w, kde w je <math>\Sigma^*\}$

Soubor	Q	\overline{R}	R
http-attacks	142	3 436	6 717
http-malicious	249	1 384	29 741
http-backdoor	1358	78 085	844 676

SHLUKOVÁNÍ STAVŮ

Nejmenší počet vzájemně disjunktních množin

Hledání úplných podgrafů

Heuristický přistup

VÝSLEDKY SHLUKOVÁNÍ STAVŮ

Velikost největšího úplného grafu

Soubor	Q	Úplné grafy	největší podgraf
http-attacks	142	26	89
http-malicious	249	17	85
http-backdoor	1358	46	1234

VHDL REPREZENTACE KONEČNÉHO AUTOMATU

- Dekodér pro vstupní symboly
- Původní realizace
 - Kombinační logika
- Realizace s kompaktní reprezentací
 - Sdílený registr
 - kodér
 - dekodér

EXPERIMENTY

Snížení počtu registrů na 10-30 %

Regulární výrazy	Původní reprezentace		Kompaktní reprezentace			
	registry	log. členy	zpoždění	registry	log. členy	zpoždění
Http-attacks	142	158	0.805	42	376	1.464
http-malicious	224	224	0.409	50	1510	2.138
http-backdoor	1348	1040	0.445	172	4534	4.946

PROCENTUÁLNÍ POMĚRY V DATECH

Regulární výrazy	Kompaktní / původní realizace			
	registry	log. členy	zpoždění	
Http-attacks	0.2957	2.3797	1.8163	
http-malicious	0.2232	6.7410	5.2274	
http-backdoor	0.1276	4.3586	11.1146	

ZÁVĚR

- Bezkolizní relace
 - Vhodný doplněk
- Úplné podgrafy
 - Použití Heuristiky
- Úspěšná redukce počtu registrů
 - Zvýšení počtu logických členů
 - Prodloužení nejdelší cesty obvodu

DĚKUJI ZA POZORNOST