The Buckingham-Coulomb potential

From GPUMD

Jump to navigationJump to search

Contents

- 1 Brief descriptions
- 2 Potential form
- 3 Parameters
- 4 Potential file
- 5 References

Brief descriptions

- This is the Buckingham-Coulomb potential, which is also usually referred to as the rigid-ion potential.
- It currently only applies to systems with two atom types.
- The Coulomb potential is treated using the damped-shifted-force (DSF) method as proposed in [Fennell 2006].

Potential form

• It consists of the Buckingham potential

$$U_{ij} = A_{ij} \exp(-b_{ij} r_{ij}) - rac{C_{ij}}{r_{ij}^6}$$

and a Coulomb potential.

■ The Coulomb potential is evaluated using the damped-shifted-force (DSF) method [1]. The DSF version of the pairwise Coulomb potential can be written as:

$$U_{ij} = rac{q_i q_j}{4\pi\epsilon_0} igg[rac{ ext{erfc}(lpha r_{ij})}{r_{ij}} - rac{ ext{erfc}(lpha R_c)}{R_c} + igg(rac{ ext{erfc}(lpha R_c)}{R_c^2} + rac{2lpha}{\sqrt{\pi}} rac{ ext{exp}(-lpha^2 R_c^2)}{R_c} igg) \left(r_{ij} - R_c
ight) igg],$$

where **erfc** is the complementary error function.

Parameters

Parameter	Units
A_{ij}	eV
b_{ij}	A-1
C_{ij}	A ⁶
q_i	e
α	A-1
R_c	A

- ullet lpha is the electrostatic damping factor and R_c is the cutoff radius for the Coulomb potential.
- In GPUMD, we have fixed α to 0.2 A⁻¹, which is a good choice according to the results in [Fennell 2006].

Potential file

Currently, this potential only applies to systems with two atom types in GPUMD. The potential file for this potential model reads

```
ri 2
q_0 q_1 cutoff
A_00, b_00 C_00
A_11, b_11 C_11
A_01, b_01 C_01
```

References

■ [Fennell 2006] Christopher J. Fennell and J. Daniel Gezelter, *Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics* (https://doi.org/10.1063/1.2206581), J. Chem. Phys. **124**, 234104 (2006).

Retrieved from "https://gpumd.zheyongfan.org/index.php?title=The Buckingham-Coulomb potential&oldid=21290"

■ This page was last edited on 22 August 2020, at 17:40.