Problema 5

Elías López Rivera ¹

¹ Universidad Nacional Autónoma de México Facultad de Ciencias.

7 de julio de 2025

1. Enunciado

Una función de \mathbb{R} a \mathbb{R} se dice par (resp.impar) si f(-x) = f(x) (resp. f(-x) = -f(x)) para todo $x \in \mathbb{R}$. **Demuestre** que toda función $f : \mathbf{R} \to \mathbb{R}$ puede escribirse como la suma de una función par y una función impar.

2. Solución

Tomemos f una función de \mathbb{R} a \mathbb{R} , definimos g, t de tal suerte que:

$$g(x) := \frac{f(x) - f(-x)}{2} \qquad t(x) := \frac{f(x) + f(-x)}{2} \quad \forall x \in \mathbb{R}$$

Es claro que (g+t)(x)=f(x), para todo $x\in\mathbb{R}$

Luego veamos que:

$$g(-x) = \frac{f(-x) - f(x)}{2} = -g(x)$$

Por tanto q es una función impar

Ahora veamos que:

$$t(-x) = \frac{f(x) + f(-x)}{2} = t(x)$$

Problema 5 2 SOLUCIÓN

Por tanto t es una función par