Integrierter Kurs Ia Experimentelle Quantenmechanik Zusammenfassung

Vorlesung von
PROF. DR. JASCHA REPP
im Sommersemester 2012
Überarbeitung und Textsatz in LyX von
Andreas Völklein

Stand: 10. November 2012

Inhaltsverzeichnis

1	Entv	Entwicklung der Quantenmechanik			
	1.1	Meilensteine der Entwicklung der Quantenmechanik	1		
	1.2	Grundlagen der Quantenmechanik	1		
2	Ein Elektron im Kernfeld: Wasserstoff				
	2.1	Lösungen der Schrödingergleichung für Coulomb-Potential	2		
	2.2	Feinstruktur, Hyperfeinstruktur und Lamb-Verschiebung	2		
	2.3	Wechselwirkung mit Feldern	3		
3	Mehrere Elektronen im Kernfeld				
	3.1	Fermionen, Bosonen und das Pauli-Prinzip	4		
	3.2	Helium-Atom	4		
	3.3	Alkali-Atome	4		
	3.4	Drehimpulskopplung	5		
	3.5	Hund'sche Regeln und das Periodensystem	5		
4	Mol	eküle	6		
	4.1	Das Wasserstoff-Molekül H ₂	6		
	4.2	Chemische Bindung und Hybridisierung	6		
	4.3	Rotation und Schwingungen	6		

1 Entwicklung der Quantenmechanik

1.1 Meilensteine der Entwicklung der Quantenmechanik

- Schwarzkörperstrahlung $\Rightarrow \Delta E = h\nu$ (Planck)
- Photoelektrischer Effekt $\Rightarrow \Delta E = h\nu$
- Compton-Effekt \Rightarrow Röntgenstrahlung zeigt Teilchencharakter: $\vec{p}=\hbar\vec{k}$
- de-Broglie-Wellenlänge: $\lambda = \frac{h}{p}$
- Davisson, Germer: Elektronenbeugung
- Stern, Gerlach: Quantisierung der Ausrichtung des magnetischen Momentes

1.2 Grundlagen der Quantenmechanik

$$arepsilon_0 = h
u$$
 \Rightarrow $E_{\mathrm{op}} = \mathbf{i} \hbar \partial_t$ $\vec{p} = \hbar \vec{k}$ \Rightarrow $\vec{p}_{\mathrm{op}} = -\mathbf{i} \hbar \vec{\nabla}$

Schrödingergleichung:

$$-\frac{\hbar^2}{2m}\vec{\nabla}^2\psi + V(\vec{r},t)\psi = \mathbf{i}\hbar\partial_t\psi = E\psi$$

Messprozess: Observablen, Wahrscheinlichkeitsinterpretation und Kollaps von ψ

2 Ein Elektron im Kernfeld: Wasserstoff

2.1 Lösungen der Schrödingergleichung für Coulomb-Potential

- Zentralpotential \Rightarrow Separation der Variablen
 - Drehimpulserhaltung
 - Winkelteil \Rightarrow Eigenfunktionen Y_{lm} mit $\hat{L}^2 = \hbar^2 (l+1) l$ und $L_z = m_l \hbar$
 - $\circ\,$ Entartung bezüglich m_l
- Radialteil für Coulomb-Potential
 - \circ zufällige Entartung für l (Radialteil hängt trotzdem von l ab)
- Quantenzahlen:

$$n = 1,2,...$$

 $l = 0,1,...$
 $m = -l, -l + 1,..., l - 1, l$

- Energie:

$$E = -E_{\mathrm{Ry}} \cdot \frac{Z^2}{n^2}$$
 $E_{\mathrm{Ry}} \approx 13.6 \,\mathrm{eV}$

- Atomorbitale: $1s, 2s, 2p, 3s, \ldots$
- Zusätzlich: Spin des Elektrons $s=\frac{1}{2}, m_s=-\frac{1}{2}, \ldots, \frac{1}{2}, g_s \approx 2$ Einheitliche Algebra für alle quantenmechanischen Drehimpulse

2.2 Feinstruktur, Hyperfeinstruktur und Lamb-Verschiebung

- Feinstruktur: Wechselwirkung zwischen Spin und Bahndrehimpuls Kommt aus der Relativistik
 - + weitere relativistische Korrekturen
- Spin-Bahn-Kopplung: Spin und Bahndrehimpuls möglichst antiparallel
- Lamb-Shift: QED-Effekt
- Hyperfeinstruktur: Wechselwirkung zwischen Kernmoment und Elektronenhülle

$$\Delta E_{\rm HFS} \approx \mu eV$$

2.3 Wechselwirkung mit Feldern

- Statisch
 - Zeeman: $\Delta E = \mu_B g_s \vec{B} \frac{\vec{s}_{op}}{\hbar}$; analog bei \vec{l} bzw. \vec{j} $(g_l = 1, g_s \approx 2, 1 \leq g_j \leq 2)$
- oszillierende Felder, also Wechselwirkung mit Licht
 - o Einstein-Koeffizienten: A_{ik}, B_{ki}, B_{ik} mit $B_{ik} = B_{ki}$ Laser durch Besetzungsinversion
 - o optische Auswahlregeln Elektrischer Dipol: $\Delta l = \pm 1, \ \Delta m_l \in \{0, \pm 1\}$ (einfachster Fall)
 - \circ Linienbreiten
 - ightharpoonup endliche Lebensdauer ightarrow Lorentz mit $\Gamma \sim \frac{1}{\tau}$
 - $\,\vartriangleright\,$ Doppler \to Gauß \to kann durch 2 Photonenabsorbtion eliminiert werden
 - $\,\triangleright\,$ Stoß \to Abhängig vom Druck \to eliminierbar

3 Mehrere Elektronen im Kernfeld

3.1 Fermionen, Bosonen und das Pauli-Prinzip

- -Quantenmechanische Teilchen sind ununterscheidbar \Rightarrow Beschreibung durch eine Wellenfunktion
- Fermionen: halbzahliger Spin
 jeder quantenmechanische Zustand ist maximal einfach durch Fermionen besetzbar
 ⇒ Pauli-Verbot
- Fermi-Dirac-Verteilung

$$n(E) = \frac{1}{\exp\left(\frac{E-\mu}{k_B T}\right) + 1}$$

- Fermionen: Gesamtwellenfunktion antisymmetrisch gegenüber Vertauschung von je zwei Teilchen
 - → Antisymmetrie entweder in Spin- oder im Ortswellenfunktion

antisymmetrisch	$\frac{1}{\sqrt{2}}\left(\uparrow\downarrow-\downarrow\uparrow\right)$	Singulett
symmetrisch	$ \begin{array}{c} \uparrow\uparrow\\ \frac{1}{\sqrt{2}}(\uparrow\downarrow+\downarrow\uparrow)\\ \downarrow\downarrow \end{array} $	Triplett

- Korrelation der Elektronen hängt von der Symmetrie der Ortswellenfunktion ab \Rightarrow Austausch-Wechselwirkung und Austausch-Energie

3.2 Helium-Atom

- getrennte Singulett- und Triplett-Systeme bei unterschiedlicher Energie
- optische Auswahlregeln verbieten Intersystemübergänge
- weniger streng bei schwereren Atomen durch die L-S-Kopplung

3.3 Alkali-Atome

- einfaches Modell: Abschirmung der Kernladung durch innere Schalen
- Wasserstoffähnlich, Aufhebung der l-Entartung

3.4 Drehimpulskopplung

leichte Atome: L-S-Kopplung $\xrightarrow{\text{kontinuierlicher Übergang}}$ schwere Atome: j-j-Kopplung

3.5 Hund'sche Regeln und das Periodensystem

- Schalenmodell, Schalen K, L, M, \dots
- Hund'sche Regeln geordnet nach Priorität:
 - 1. Volle (Unter-)Schalen $\Rightarrow S = 0, L = 0$
 - 2. $S = \max$
 - 3. $L = \max$
 - 4. < halb voll: J = |L S|; > halb voll: J = L + S

4 Moleküle

Born-Oppenheimer-Näherung

4.1 Das Wasserstoff-Molekül H₂

- 1. generiere Molekülorbitale aus Atomorbitalen, zum Beispiel mit LCAO \rightarrow bindende (=gerade ψ) und antibindende (=ungerade ψ) Zustände
- 2. generiere Mehrteilchen- ψ aus Einteilchen- ψ Besonderheit für H_2 : Heitler-London-Ansatz

Energieschemata für Molekülorbitale:

TODO: Abb4

4.2 Chemische Bindung und Hybridisierung

Kovalente Bindung $\xrightarrow{\ddot{\mathbf{U}}_{\mathrm{bergang}}}$ Ionische Bindung

TODO: Abb4 (nochmal) + Abb5

- Hybridisierung: sp, sp^2, sp^3
- Van-der-Waals-Wechselwirkung
- Pauli-Abstoßung

4.3 Rotation und Schwingungen

$$E_{\rm rot} = \frac{\hbar^2}{2\Theta} J (J+1)$$

$$E_{\nu} = \hbar \omega \left(\nu + \frac{1}{2}\right)$$

$$\Delta E < 1 \,\text{meV}$$

$$\Delta E = 1 - 300 \,\text{meV}$$

elektronische Vibrations- und Schwingungsübergänge bedingen einander \rightarrow Franck-Condon-Prinzip