Multiple-Access Techniques OFDMA and SC-FDMA

 $FFT ext{-}based\ OFDM\ Transmitter$

 $FFT ext{-}based\ OFDM\ Receiver}$

OFDMA

- OFDMA achieves multiple access by assigning different users disjoint sets of sub-carriers.
- Assume that there are a total of M sub-carriers that are evenly distributed among Q users, such that each user is allocated N = M/Q sub-carriers. The overall sub-carriers are labeled with indices from 0 to M-1, while the N sub-carriers allocated to the jth MS have indices that belong to the set \mathcal{T}_j . Clearly, the sets \mathcal{T}_j must be disjoint such that each sub-carrier is assigned to at most one MS.
- The sub-carrier allocation can be performed by extending the nth data vector for the jth MS, denoted, by $\mathbf{a}_{j,n}$ with the insertion of M-N zeros in the sub-carriers belonging the set $\bar{\mathcal{T}}_j$ which is the complement of \mathcal{T}_j , i.e.,

$$x_{j,n,i} = \begin{cases} a_{j,n,i} , & \text{if } i \in \mathcal{T}_j \\ 0 , & \text{otherwise} \end{cases}$$

where $a_{j,n,i}$ is the data symbol transmitted to the jth MS in block n on the ith sub-carrier.

OFDMA - Forward Link Transmitter

• On the forward link, the vectors $\mathbf{x}_{j,n} = \{x_{j,n,i}\}_{i=0}^{M-1}$ are summed up to produce the *n*th data block

$$\mathbf{x}_n = \sum_{j=1}^{Q} \mathbf{x}_{j,n}$$

that is subsequently applied to an M-point IDFT to produce the length-M time-domain sequence X_n .

- After the IDFT, a length-G guard interval is appended to each block in the form of a cyclic prefix or cyclic suffix, to yield the transmitted time-domain sequence X_n^g .
- In the case of a cyclic prefix, the last G symbols of the sequence $\mathbf{X}_n = \{X_{n,m}, m=0,\ldots,M-1\}$ are copied and appended to the beginning of \mathbf{X}_n . The transmitted time-domain sequence for the nth block with guard interval, denoted as \mathbf{X}_n^g , is

$$\mathbf{X}_{n}^{g} = \{X_{n,(m)_{M}}, \quad m = -G, -G+1, \dots, -1, 0, 1, \dots, M-1\}$$

where $(m)_M$ is the residue of m modulo-M.

Baseband OFDMA forward link BS transmitter.

OFDMA - Sub-carrier Allocation

- Clustered Carrier (CC-OFDMA): With CC-OFDMA, the M sub-carriers are divided into Q groups where each group consists of N contiguous sub-carriers called clusters. The set of sub-carrier indices allocated to the kth user is $\{kN, kN+1, \ldots, kN+N-1\}$, where $0 \le k < Q$. CC-OFDMA is sensitive to frequency-selective fading, because all sub-carriers assigned to a particular user may fade simultaneously.
- Spaced Carrier (SC-OFDMA): With SC-OFDMA, the M sub-carriers are partitioned into N groups, where each group has Q contiguous sub-carriers. Then the kth sub-carrier of each group is assigned to the kth user. That is, the kth user is assigned the set of sub-carrier indices $\{k, Q+k, \ldots, (N-1)Q+k\}$, where $0 \le k < Q$. SC-OFDMA is less sensitive to frequency-selective fading, since the sub-carriers assigned to each user span the entire bandwidth.
- Random Interleaving (RI-OFDMA): RI-OFDMA is used in IEEE802.16a. While the sub-carriers are partitioned into N groups as in SC-OFDMA, the sub-carrier index in each of the N groups that is assigned to a particular user is a random variable. The sub-carrier indices allocated to the kth user are $\{\epsilon_{k,1}, Q + \epsilon_{k,2}, \dots, (M-1)Q + \epsilon_{k,M-1}\}$, where the $\epsilon_{k,i}$ are independent and identically distributed uniform random variables on the set $\{0, 1, \dots, Q-1\}$.

OFDMA - Forward Link Receiver

• To remove the ISI introduced by the channel, the guard interval is removed. If the length of the cyclic prefix is at least as long as the discrete-time channel length, i.e., $G \ge L$, then we obtain the received sequence

$$R_{n,m} = R_{n,m}^g$$

$$= \sum_{i=0}^{L} g_i X_{n,(m-i)M} + \tilde{n}_{n,m} , \quad 0 \le m \le M - 1 ,$$

• Afterwards, an *M*-point IDFT is taken to transform to the frequency domain. This yields the output vector

$$z_{n,i} = \frac{1}{M} \sum_{m=0}^{M-1} R_{n,m} e^{-j\frac{2\pi mi}{M}}$$

= $T_i A x_{n,i} + \nu_{n,i}$, $0 \le i \le M - 1$,

where

$$T_i = \sum_{m=0}^{L} g_m e^{-j\frac{2\pi mi}{M}}$$

and the noise samples $\{\nu_{n,i}\}$ are i.i.d with zero-mean and variance $N_o/(MT_s^g)$.

• On the forward link each MS will only be interested in the N data symbols that are transmitted by the BS on its allocated sub-carriers. Hence, only the DFT outputs with indices in the set \mathcal{T}_j are used by the jth MS for data detection.

Baseband OFDMA forward link receiver.

OFDMA - Reverse Link

- On the OFDMA reverse link, Q users transmit their signals to a central BS.
- Each MS transmitter only transmits its own data stream.
- Similar to the OFDMA forward link, the jth MS performs sub-carrier allocation, and the resulting vector $\mathbf{x}_{j,n}$ is applied to an M-point IDFT, and appended with a length-G cyclic guard interval.
- One of the biggest drawbacks of OFDMA is its high PAPR. A high PAPR may be acceptable on the forward link; however, a high PAPR is undesirable on the reverse link since the MS is often is often battery powered and amplifier back-off is required.

Baseband OFDMA reverse link MS transmitter.