

Knowledge and reason

Lecture 2 of "Mathematics and AI"

Data structures & inferences

Lecture 2 of "Mathematics and Al"

Outline

- 1. Why care about knowledge representation?
- 2. Tabular data structures
- 3. Graphical data structures
 - a. Deterministic graphical models (semantic nets and knowledge graphs)
 - b. Probabilistic graphical models(Bayesian networks and Markov random fields)

Why care about knowledge representation?

Knowledge is a key aspect of intelligence

intelligence noun

in·tel·li·gence (in-'te-lə-jən(t)s ◄)

Synonyms of intelligence >

1 a (1) the ability to learn or understand or to deal with new or trying situations:

REASON

also: the skilled use of reason

- (2): the ability to apply knowledge to manipulate one's environment or to think abstractly as measured by objective criteria (such as tests)
- b: mental acuteness: SHREWDNESS
- c Christian Science: the basic eternal quality of divine Mind
- 2 a INFORMATION, NEWS
 - **b**: information concerning an enemy or possible enemy or an area also: an agency engaged in obtaining such information
- 3 : the act of understanding

COMPREHENSION

Knowledge representations in the era of ML

- Representation of prior knowledge for learning
- Efficient AI (reduce training)
- Reliable artificial intelligence (reduce hallucinations)
- Interpretable machine learning

Challenges in knowledge representation

- Translating a complex world into a formal language
- Handling conflicts in knowledge
- Handling uncertainties in knowledge

Tabular data structures

Tabular knowledge representation

- Examples:
 - Tables / Data Frames
 (in python: pandas package)
 - Arrays (in python: numpy package)
 - Matrices

Name	Position	Office	Age 🛊	Start date
Airi Satou	Accountant	Tokyo	33	2008/11/28
Angelica Ramos	Chief Executive Officer (CEO)	London	47	2009/10/09
Ashton Cox	Junior Technical Author	San Francisco	66	2009/01/12
Bradley Greer	Software Engineer	London	41	2012/10/13
Brenden Wagner	Software Engineer	San Francisco	28	2011/06/07
Brielle Williamson	Integration Specialist	New York	61	2012/12/02
Bruno Nash	Software Engineer	London	38	2011/05/03
Caesar Vance	Pre-Sales Support	New York	21	2011/12/12
Cara Stevens	Sales Assistant	New York	46	2011/12/06
Cedric Kelly	Senior Javascript Developer	Edinburgh	22	2012/03/29

Tabular knowledge representation

- Advantages:
 - Standardized formats for use in programming
 - Tables with numerical values facilitate use of standard data science methods (e.g., PCA)

- Limitations:
 - All objects have a value for all attributes
 - Attributes cannot have attributes
 - Cannot capture complex situations and/or processes

Graphical data structures

Node set V

- Node set V
- Edge set *E*
- \Rightarrow Graph (V,E)

- Node set V
- Edge set *E*
- \Rightarrow Graph (V,E)

- Some important substructures:
 - Cliques

- Node set V
- Edge set *E*
- \Rightarrow Graph (V,E)

- Some important substructures:
 - Cliques
 - Cycles

- Node set V
- Edge set *E*
- => Directed Graph (V,E)

- Some important substructures:
 - Cliques
 - Directed cycles

Directed Acyclic Graphs (DAG)

- No directed cycles
- Example uses:
 - hierarchical ontologies
 - causal event structure without feedback loops

Graphical data structures for certain knowledge

Semantic networks

- Nodes represent entities or attributes
- Edges represent relationships
 (e.g. "is member of")
- Large semantic networks are sometimes called knowledge graphs

Exercise 1

"All of probability" in 4 slides

Probability

- Probability $p(x) \in [0,1]$
- Probability distribution p(x), $x \in D$ with $\sum_{x} p(x) = 1$
- Independent probabilities p(x,y) = p(x)p(y) (otherwise dependent)
- Conditional probabilities p(x|y) = p(x,y)/p(y)
- Conditional probability distribution p(x|y) = p(x,y)/p(y), $x \in D$
- Marginal probability distribution $p(x) = \sum_{y} p(x|y) p(y), x \in D$

Bayes rule

- How should our estimates of probabilities change when we receive new data?
- Bayes rule:

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)

FREQUENTIST STATISTICIAN:

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS \$\frac{1}{36} = 0.027.\$ SINCE P < 0.05, I CONCLUDE THAT THE SUN HAS EXPLODED.

BAYESIAN STATISTICIAN:

Random variables

- The random variable X has a probability distribution p(x), $x \in D(X)$
- **Samples** of the random variable *X* are elements of *D* (e.g., numbers)
- Expectation of X: $E[X] = \sum_{x} xp(x)$
- Variance of X: $Var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$

The Markov property

- A Markov process in (a model of) a memory-less process
- Markov property

$$p(X_{t+1} = x_{t+1} | X_t = x_t, X_{t-1} = x_{t-1}, \dots) = p(X_{t+1} = x_{t+1} | X_t = x_t)$$