Exercices - Méthodes exactes Corrigé

Exercice 1

$$(P_1) \begin{cases} \max z = 2x_1 + 3x_2 \\ 5x_1 + 7x_2 \le 35 \\ 4x_1 + 9x_2 \le 36 \\ x_1, x_2 \ge 0 \\ x_1, x_2 \text{ entiers} \end{cases}$$

On obtient deux solutions optimales :

$$x_1 = 4$$
; $x_2 = 2$; $z = 14$
 $x_1 = 7$; $x_2 = 0$; $z = 14$

$$(P_2) \begin{cases} \max z = 2x_1 + x_2 \\ x_1 - x_2 \le 3 \\ 6x_1 + 5x_2 \le 36 \\ x_2 \le 4 \\ x_1, x_2 \ge 0 \\ x_1, x_2 \text{ entiers} \end{cases}$$

Solution optimale:

$$x_1 = 4$$
; $x_2 = 2$; $z = 10$

$$(P_3) \begin{cases} \max z = x_1 + 4x_2 \\ 5x_1 + 8x_2 \le 40 \\ -2x_1 + 3x_2 \le 9 \\ x_1, x_2 \ge 0 \\ x_1, x_2 \text{ entiers} \end{cases}$$

Résolution de la relaxation linéaire :

$$(LP)_0 \begin{cases} \max z = x_1 + 4x_2 \\ 5x_1 + 8x_2 \le 40 \\ -2x_1 + 3x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

Droites des contraintes :

 $D_1: 5x_1 + 8x_2 = 40$ passe par les points : (8, 0); (0, 5)

 $D_2: -2x_1 + 3x_2 = 9$ passe par les points : (3, 5); (0, 3)

Droites d'isovaleur:

$$\Delta_k : x_1 + 4x_2 = k \Longrightarrow x_2 = -\frac{-1}{4}x_1 + \frac{k}{4}$$
. Pente $= \frac{-1}{4}$

$$\Delta_0: k=0 \Longrightarrow x_1+4x_2=0 \Longrightarrow x_2=\frac{-x_1}{4}$$

$$x_1 = 0 \Longrightarrow x_2 = 0 \; ; \; x_1 = 4 \Longrightarrow x_2 = -1.$$

 Δ_0 passe par les points (0,0) et (4,-1).

En appliquant la méthode graphique, le sommet optimal de $(LP)_0$ (noté S_0) est l'intersection des deux droites D_1 et D_2 . Ses coordonnées vérifient :

$$\begin{cases} 5x_1 + 8x_2 = 40 \\ -2x_1 + 3x_2 = 9 \end{cases}$$

En résolvant le système précédent, on trouve :

$$x_1 = 1,55 \text{ et } x_2 = 4,03.$$

La valeur optimale est $z_0 = x_1 + 4x_2 = 17,67$ qui est une borne supérieure.

Séparation de $(LP)_0$:

On branche sur la variable la plus éloignée d'un entier naturel (x_1) : $x_1 \leq 1$ et $x_1 \geq 2$.

• $x_1 \leq 1 \longrightarrow (LP)_1$:

$$(LP)_1 \begin{cases} \max z = x_1 + 4x_2 \\ 5x_1 + 8x_2 \le 40 \\ -2x_1 + 3x_2 \le 9 \\ x_1 \le 1 \\ x_1, x_2 \ge 0 \end{cases}$$

La solution optimale de $(LP)_1$ est le point S_1 intersection de la droite d'équation $x_1 = 1$ et la droite D_2 : $-2x_1 + 3x_2 = 9$.

$$\begin{cases} x_1 = 1 \\ -2x_1 + 3x_2 = 9 \end{cases} \implies x_1 = 1 \quad ; \quad x_2 = 11/3 = 3,67$$

La valeur optimale de l'objectif est $z_1 = 15,67$.

• $x_1 \ge 2 \longrightarrow (LP)_2$:

$$(LP)_2 \begin{cases} \max z = x_1 + 4x_2 \\ 5x_1 + 8x_2 \le 40 \\ -2x_1 + 3x_2 \le 9 \\ x_1 \ge 2 \\ x_1, x_2 \ge 0 \end{cases}$$

Solution optimale de $(LP)_2$: S_2 intersection de la droite d'équation $x_1 = 2$ et la droite D_1 : $5x_1 + 8x_2 = 40$.

$$\begin{cases} x_1 = 2 \\ 5x_1 + 8x_2 = 40 \end{cases} \implies x_1 = 2 \quad ; \quad x_2 = 30/8 = 3,75$$

Valeur optimale de l'objectif : $z_2 = 17$.

Séparation de $(LP)_1$:

On branche sur x_2 : $x_2 \le 3$ et $x_2 \ge 4$.

• $x_2 \leq 3 \longrightarrow (LP)_3$:

$$(LP)_3 \begin{cases} \max z = x_1 + 4x_2 \\ 5x_1 + 8x_2 \le 40 \\ -2x_1 + 3x_2 \le 9 \\ x_1 \le 1 \\ x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$$

Solution optimale de $(LP)_3$: S_3 intersection de la droite $x_1 = 1$ et la droite $x_2 = 3$.

Donc $x_1 = 1$; $x_2 = 3$; $z_3 = 13$.

On a une solution réalisable (x_1 et x_2 entiers) et une première borne inférieure $z_3 = 13$.

• $x_2 \ge 4 \longrightarrow (LP)_4$:

$$(LP)_4 \begin{cases} \max z = x_1 + 4x_2 \\ 5x_1 + 8x_2 \le 40 \\ -2x_1 + 3x_2 \le 9 \\ x_1 \le 1 \\ x_2 \ge 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Ce problème est non réalisable (pour $x_2 \ge 4$, on sort de la région réalisable).

Séparation de $(LP)_2$:

On branche sur $x_2: x_2 \leq 3$ et $x_2 \geq 4$.

• $x_2 \leq 3 \longrightarrow (LP)_5$:

$$(LP)_5 \begin{cases} \max z = x_1 + 4x_2 \\ 5x_1 + 8x_2 \le 40 \\ -2x_1 + 3x_2 \le 9 \\ x_1 \ge 2 \\ x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$$

Solution optimale de $(LP)_5$: S_5 intersection de la droite d'équation $x_2 = 3$ et la droite D_1 : $5x_1 + 8x_2 = 40$.

$$x_2 = 3 \Longrightarrow x_1 = (40 - 8x_2)/5 = 3, 2$$
. Donc: $x_1 = 3, 2$; $x_2 = 3$; $x_5 = 15, 2$.

• $x_2 \ge 4 \longrightarrow (LP)_6$: non réalisable.

Séparation de $(LP)_5$:

On branche sur $x_1: x_1 \leq 3$ et $x_1 \geq 4$.

• $x_1 \leq 3 \longrightarrow (LP)_7$:

$$(LP)_{7} \begin{cases} \max z = x_{1} + 4x_{2} \\ 5x_{1} + 8x_{2} \leq 40 \\ -2x_{1} + 3x_{2} \leq 9 \\ x_{1} \geq 2 \\ x_{2} \leq 3 \\ x_{1} \leq 3 \\ x_{1}, x_{2} \geq 0 \end{cases}$$

Solution optimale de $(LP)_7$: S_7 intersection de la droite d'équation $x_1 = 3$ et la droite $x_2 = 3$.

Donc: $x_1 = 3$; $x_2 = 3$; $z_7 = 15$.

Solution réalisable et nouvelle borne inf $z_7 = 15$.

• $x_1 \ge 4 \longrightarrow (LP)_8$:

$$(LP)_{8} \begin{cases} \max z = x_{1} + 4x_{2} \\ 5x_{1} + 8x_{2} \leq 40 \\ -2x_{1} + 3x_{2} \leq 9 \\ x_{1} \geq 2 \\ x_{2} \leq 3 \\ x_{1} \geq 4 \\ x_{1}, x_{2} \geq 0 \end{cases}$$

Solution optimale de $(LP)_8$:

 S_8 intersection de la droite d'équation $x_1=4$ et la droite $D_1: 5x_1+8x_2=40$.

$$x_1 = 4 \Longrightarrow x_2 = (40 - 5x_1)/8 = 2, 5.$$

$$x_1 = 4$$
 ; $x_2 = 2, 5$; $z_8 = 14$.

Conclusion:

La solution optimale est:

$$x_1 = 3$$
 ; $x_2 = 3$; $z_7 = 15$.

Elle est donnée par $(LP)_7$, c'est la solution réalisable avec la plus grande borne inférieure $z_7 = 15$.

L'arbre des solutions est présenté dans la figure ci-dessous.

Exercice 2

Problème du sac à dos avec les données :

- 3 objets;
- Profits: $c_1 = 10$; $c_2 = 8$; $c_3 = 5$;
- Volumes: $a_1 = 6$; $a_2 = 5$; $a_3 = 4$;
- Volume total : V = 9.

Solution optimale:

$$x_1 = 0$$
 ; $x_2 = 1$; $x_3 = 1$; $z = 13$.

On prend les objets 2 et 3 pour une valeur totale de 13.

Exercice 3

Problème du sac à dos avec les données :

- 4 objets;
- Profits : $c = (8 \ 11 \ 6 \ 4)$;
- Volumes : a = (5743);
- Volume total : V = 14.

Solution optimale:

$$x_1 = 0$$
 ; $x_2 = 1$; $x_3 = 1$; $x_4 = 1$; $z = 21$.

On prend les objets 2, 3 et 4 pour une valeur totale de 21.

Exercice 4

Même question avec les données :

- 4 objets;
- Profits : c = (7 4 3 3);
- Volumes : $a = (13\ 12\ 8\ 10)$;
- Volume total : V = 30.

Solution optimale:

$$x_1 = 1$$
 ; $x_2 = 1$; $x_3 = 0$; $x_4 = 0$; $z = 11$.

Objets 1 et 2. Valeur totale: 11.