Университет ИТМО Факультет программной инженерии и компьютерной техники

Системы искусственного интеллекта

Лабораторная работа №4 Вариант 3

Выполнила: Голованова Д.В.

Группа Р33671

Проверил: Александр Владимирович Кугаевских

Санкт-Петербург, 2022 г.

Задание

Var	Part1 func	Part2 data	Hyperparameters		
1	Absolute(Sin(x)) X: 6,36.3 Y:	CIFAR10	Layers count, neurons count per		
	01.2		layer		
2	Cos(x) X: -99 Y: -11	CIFAR100	Learn rate, regularization L1		
3	Absolute(Sin(x)) X: 6,36.3 Y:	Handwritten	Regularization L2, output layer		
	01.2	digits	activation type		
4	Cos(x) X: -99 Y: -11	Fashion	Layer activation type, loss function		
		articles	type		

Выполнение

Оптимизация гиперпараметров — задача машинного обучение по выбору набора оптимальных параметров для обучающего алгоритма. Одни и те же виды моделей машинного обучения могут требовать различные предположения, веса или скорости обучения для различных видов данных. Эти параметры называются гиперпараметрами и их следует настраивать так, чтобы модель могла оптимально решить задачу обучения.

Часть 1

L2	softmax	relu	tanh	sigimod	linear
-0.1000	0.790	0.209	0.790	0.819	0.209
0.0000	0.790	0.875	0.884	0.790	0.865
0.0001	0.790	0.834	0.209	0.875	0.834
0.0005	0.790	0.209	0.845	0.824	0.209
0.0010	0.790	0.790	0.209	0.790	0.209
0.0050	0.790	0.790	0.860	0.790	0.814
0.0100	0.790	0.209	0.860	0.839	0.790
0.0500	0.790	0.790	0.824	0.790	0.800
0.1000	0.790	0.7900	0.790	0.790	0.209

Лучшие найденные параметры:

- Функция активации tanh
- L2-регуляризация 0.0000
- Полученная точность 88.4%

Часть 2

L2	softmax	relu	tanh	sigimod	linear
-0.1000	0.113	0.098	0.098	0.113	0.101
0.0000	0.113	0.098	0.098	0.113	0.098
0.0001	0.113	0.098	0.098	0.113	0.098
0.0005	0.113	0.098	0.098	0.113	0.098
0.0010	0.113	0.098	0.098	0.113	0.098
0.0050	0.113	0.098	0.098	0.276	0.089
0.0100	0.113	0.098	0.098	0.298	0.098
0.0500	0.113	0.185	0.098	0.802	0.098
0.1000	0.113	0.098	0.098	0.251	0.098

Лучшие найденные параметры:

- Функция активации sigmoid
- L2-регуляризация 0.05
- Полученная точность 80.2%

При обучении 4 слоями по 20 нейронов в течение 100 эпох точность достигает 93.8% (0.9381999969482422)

Вывод

В процессе выполнения лабораторной, я немного «поигралась» с настоящей нейросетью, с целью оптимизировать гиперпараметры для улучшения результатов работы сети на наборе данных из библиотеки mnist. Эта лабораторная является интересной точкой старта в data science, а также увидела, как влияют некоторые параметры на результаты (к примеру, LR не может быть отрицательным). Для выполнения использовала бесплатный сервис Google Colab.