

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 November 2003 (20.11.2003)

PCT

(10) International Publication Number
WO 03/095487 A2

(51) International Patent Classification⁷: **C07K 14/705**,
A61K 38/17, 39/00, B01D 9/02, G01N 33/68, A61P
31/00, G06N 3/00

Immunology, University of Berne, Inselspital, CH-3010
Berne (CH).

(21) International Application Number: PCT/GB03/02069

(74) Agents: CRIPPS, Joanna, E. et al.; Mewburn Ellis, York
House, 23 Kingsway, London, Greater London WC2B 6HP
(GB).

(22) International Filing Date: 14 May 2003 (14.05.2003)

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

(30) Priority Data:
0211007.0 14 May 2002 (14.05.2002) GB

[Continued on next page]

(71) Applicant (for all designated States except US): **ISIS INNOVATION LIMITED [GB/GB]**; Ewert House, Ewert Place, Summertown, Oxford, Oxfordshire OX2 7SG (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **CERUNDOLO, Vincenzo** [IT/GB]; Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, Oxfordshire OX3 9DS (GB). **GADOLA, Stephan** [CH/CH]; Department of Rheumatology and Clinical

(54) Title: IMMUNOGENIC COMPLEXES

WO 03/095487 A2

(57) Abstract: The present invention relates to methods of producing CD1/ligand complex comprising the steps of (a) obtaining a denatured CD1 protein; (b) contacting the denatured CD1 protein with ligand in an environment comprising detergent; and (c) isolating the CD1/ligand complex. The invention further relates to uses of obtained CD1/ligand complex, the crystal structure thereof and to computer-based methods and systems for rational drug design, assessment of candidate modulator molecules and methods for determining homologous or analogous protein structures.

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Immunogenic Complexes

Field of the Invention

The present invention relates to immunogenic complexes.

5 Particularly, but not exclusively, the present invention relates to the production and use of type II glycoproteins displaying glycolipid and phospholipid antigens.

Background of the Invention

The CD1 gene cluster on human chromosome 1q22-23 encodes a family of five type II glycoproteins which are expressed on the cell surface in association with beta-2-microglobulin ($\beta 2m$). According to their amino acid sequence homology the five CD1 isoforms segregate into group 1, containing CD1a, b, c, and CD1e, and group 2, containing CD1d. While CD1 group 1 molecules are not present in mice and rat, CD1d is conserved in all mammalian species studied to date.

20 In contrast to the highly polymorphic HLA class I and class II molecules, with which they share a common genetic ancestor, CD1 molecules are non-polymorphic. It was probably for this reason, that their role as antigen presenting molecules remained unrecognised for more than a decade after their initial description. The lack of polymorphism indicates that, as opposed to HLA class I and class II genes, the CD1 genes are subjected to very weak evolutionary pressure. Two features of CD1 molecules offer an explanation for this phenomenon. Firstly, CD1 molecules do not present peptides as HLA class I and HLA class II molecules do, but they present glycolipids and phospholipids to T lymphocytes. Immune escape of microbes

from HLA class I or class II-mediated responses can simply be achieved with functionally irrelevant changes in protein sequences abrogating binding and/or presentation of immunogenic peptides.

5

In contrast, lipid antigens cannot be easily mutated because lipids are end products of highly complex biosynthetic pathways, and because their physicochemical properties, which are essential to the organism, rely on their correct structure.

10

A second characteristic of CD1 molecules, which could also lower the ligand-induced evolutionary pressure on CD1, is their apparent high degree of ligand binding adaptability. In particular, human CD1b can present the carbohydrate epitope of either a mycobacterial derived eighty carbon containing (C80) glucomonomycolate (GMM) or a shorter thirty-two carbon (C32) synthetic GMM to the same T cell receptor, suggesting either adaptive 15 conformational changes within the CD1 antigen binding groove or simply protrusion of the longer alkyl chain of the ligand at one end of the groove. The crystal structure of mouse CD1d, which was determined in the absence of ligand, revealed two electrostatically neutral 20 voluminous pockets A' and F', suited to bind the alkyl chains of CD1 lipid ligands.

25

However, it is still completely unknown how different lipid classes bind to the CD1 groove, and how the same 30 CD1 binding pocket can accommodate alkyl chains of different lengths. Furthermore, while a common motif for CD1b and CD1d-binding ligands has been proposed, consisting of a single proximal branched acyl chain or

two acyl chains, another CD1-molecule with high predicted structural similarity to CD1b, namely CD1c, presents single alkyl chain containing polyisoprenols to T cells. Moreover, recent evidence indicates, that single alkyl chain lipids can also be bound and presented by CD1d.

WO 01/94949 relates to compositions and methods for identifying CD1-antigens and CD1-restricted T cells. The compositions include soluble CD1 molecules. A method for identifying a CD1-restricted T cell comprising contacting a CD1-presented antigen complex with a putative CD1-restricted T cell is disclosed.

WO 96/12190 relates to the presentation of hydrophobic antigens to T-cells by CD1 molecules and discloses the identification of human CD1a, CD1b, CD1c, CD1d and CD1e.

WO 95/00163 relates to a method for isolating CD1-presented antigens from a sample.

In "Presentation of the same glycolipid by different CD1 molecules" A. Shamshiev et al J. Exp. Med (April 15, 2002), 195(8), pp.1013-1021, the authors conclude that group I CD1 molecules present an overlapping set of self-glycolipids.

Summary of the Invention

To elucidate the mechanisms and potential of lipid binding to CD1 the inventors attempted to crystallise human CD1b with bound ligand. They found that in order to ensure binding of only their chosen ligands to CD1, they had to develop a novel detergent-assisted protocol to

refold CD1b in vitro from completely denatured and reduced E.coli derived protein.

The inventors subsequently obtained two crystal
5 structures of human CD1b, one with phosphatidylinositol (PI) at 2.26Å and another with ganglioside GM2 at 2.8 Å. The mode of ligand binding was almost identical for both structures. Interestingly, the C16 alkyl chain detergent used in the inventor's refolding protocol acted as an
10 additional ligand in both structures by binding to those areas of the CD1b-binding groove that were not occupied by the glycolipid or phospholipid ligands.

Furthermore the inventors generated fluorescent tetramers
15 of human CD1d molecules loaded with the synthetic glycolipid alpha-galactosylceramide (aGC). These tetramers were shown by the inventors to specifically stain a human immunoregulatory T-lymphocyte population, i.e. invariant NKT cells.

20 Thus, at its most general, the invention provides a method for producing a CD1/ligand complex; methods of diagnosing or treating patients using said CD1/ligand complex; and screening methods for determining new
25 therapeutic targets on the CD1 complex, following determination of its crystal structure.

Accordingly, in a first aspect, there is provided a method of producing correctly folded recombinant CD1
30 molecules around various lipid ligands, such as gangliosides, phospholipids and glycosylceramides. The resulting CD1/ligand complex is biologically active, i.e. the ligand is displayed correctly by the CD1 molecule so

that it can be presented to immune components, e.g. T lymphocytes.

In the past, CD1a and CD1b have been successfully
5 refolded using immobilised enzymes. However, there was no
evidence of ligand being present in the refolded
molecules. As mentioned above, the inventors have devised
a novel approach using single chain detergents. This
approach is inexpensive and can easily be scaled up for
10 industrial purposes. The inventors have further provided
direct evidence that the lipid ligand is bound to the
hydrophobic groove of CD1 molecules.

Thus, in accordance with the first aspect of the
15 invention, there is provided a method of producing a
CD1/ligand complex said method comprising the steps of:

- a) obtaining a denatured CD1 protein;
- b) contacting said denatured CD1 protein with
ligand in an environment comprising detergent; and
- 20 c) isolating said CD1/ligand complex.

Preferably, the CD1 protein is fully denatured and
reduced to ensure that the protein is unfolded when
initially contacted with ligand. Although it is
25 preferable to also reduce the protein, the presence of
native disulfide bridges would not prevent the protein
from refolding with ligand. However, when expressed as
inclusion bodies in E.coli, correct or native formation
of disulfide bridges cannot be presumed. Proteins with
30 incorrect disulfide bridges will not fold correctly and
could potentially reduce the efficacy of in vitro
refolding of other protein by increasing the tendency of
protein-protein aggregation.

The ligand may be any lipid, but most preferably, it is a glycolipid (e.g. ganglioside GM2 or alpha-galactosylceramide) or phospholipid (e.g.

5 phosphatidylinositol). The inventors have determined that the CD1 molecule is capable of displaying lipids of various sizes. Thus, for a single chain ligand the molecule is preferably anything up to 60 carbons in length, e.g. between 5, 10 or 15 and 30, 40 or 50 carbons
10 in length. For a double chain ligand, the molecule may contain anything between 18 carbons to 100 carbons, e.g. between 10, 20, 30 or 40 and 70, 80, or 90 carbons in length.

15 Preferably, the detergent is a single chain detergent, such as acyclic single alkyl chain detergents with chain length C2-C60; sphingosines; ceramides with truncated alkyl chains; diacylglycerol-type lipids with truncated alkyl chains; and triacylglycerol-type lipids with truncated alkyl chains. The inventors favoured the use
20 of cetyltrimethylammonium bromide (CTAB).

The method preferably further comprises the step of removing excess detergent from the environment prior to
25 isolation of the CD1/ligand complex. The excess detergent which has not stably incorporated into the protein structure, may be removed by adding methylated or unmethylated beta-cyclodextrin in molar excess over detergent. The inventors prefer to use at least 12 molar excess of methyl-beta-cyclodextrin. However, other methods will be known to the person skilled in the art.
30 For example, other cyclodextrins (alpha and gamma) which vary in the size of their hydrophobic cavity. The

inventors preferred methyl-beta-cyclodextrin but other cyclodextrins will work in accordance with the invention. Other methods for stripping off the excess detergent include the use of resins or dialysis.

5

It is preferred to use a step that allows rapid stripping of the detergent as slow removal by resins or dialysis may decrease the yield of the CD1/ligand complex.

10 The method according to the first aspect of the invention may be carried out using any CD1 molecules. However, preferably, the method is carried out on CD1d, CD1c and most preferably on CD1b.

15 The environment comprising the detergent will also comprise various buffers to aid in the refolding event. Preferably, an aqueous buffer is provided comprising Urea, L-Arginine, a buffer (e.g. Tris), and a redox-system (e.g. oxidized and reduced glutathione). The 20 buffer constituents can be varied: L-Arginine can be used in various concentrations from 100mM, preferably at a concentration between 100mM to 1M, but may not even be essential to get a certain yield of refolded CD1. The same applies for Urea, which can certainly be used in concentrations ranging from 0M to 4M. At the higher 25 concentrations a dialysis step may be necessary. Instead of glutathione another redox system such as cysteamine-cystin, could be used and the molarities of glutathione can be varied.

30

The CD1 protein may be engineered to contain one or more biotinylation sites providing a means for complexing CD1 proteins using avidin to obtain multimeric, e.g. dimer,

trimer, tetramer, forms of CD1 which may be useful in amplifying output signals in methods and assays for identifying ligand specific T-cells or antibodies.

5 In preferred arrangements, the CD1 protein may be complexed with the Fc portion of a selected immunoglobulin. The complex may be formed by using binding partners (biotin - avidin) or by chemical means (covalent, di-sulfide, H-bonds).

10 Preferably, the method of the first aspect may further comprise the step of labelling the CD1 protein with a chemical marker, more preferably a fluorescent compound, e.g. RPE or FITC. The labelled CD1 protein useful in identification of specific T-cell populations and for diagnosis of specific disease states. In particular, multimers, e.g dimers, trimers or tetramers, of labelled CD1/ligand complex may be used.

15 The method may further comprise the step of incorporating said CD1/ligand complex into a pharmaceutical composition. The pharmaceutical composition may comprise, in addition to one of the above substances, a pharmaceutically acceptable excipient, carrier, buffer, stabiliser or other materials well known to those skilled 20 in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material may depend on the rate of administration, e.g. oral, intravenous, cutaneous or subcutaneous, nasal, 25 intramuscular, intraperitoneal routes.

30 In an embodiment of the present invention, the pharmaceutical composition may be used as a vaccine to

boost the immune response in an individual. Thus, it is preferable that the composition further comprises a suitable adjuvant. The pharmaceutical composition according to the present invention may be used to elicit 5 cellular immune responses including lipid-specific CD4⁺CD8⁻, CD4⁻CD8⁺, and CD4⁻CD8⁻ T cell responses. Alternatively, antibody responses to the pharmaceutical composition would also be of therapeutic value.

10 The present invention provides a pharmaceutical composition comprising a CD1/ligand complex for treating diseases such as infectious diseases caused by parasites, mycobacteria, fungi, and bacteria; tumours and autoimmune diseases such as multiple sclerosis.

15 Depending on the disease to be treated, the ligand will be a lipid that is capable of inducing an immune response, against substances (e.g. tumour cells, bacteria, myobacteria etc.) associated with the disease.

20 For example, ligands may be

a) Mycobacterial cell wall lipids: Glycosyl-esters of mycolic acid (glucomonomycolate, mannose-monomymcolate, etc.) Phosphatidylinositomannosides (PIM2 to PIM6), as well as synthetic lipids modelled after mycobacterial 25 cell wall lipids (synthetic glucomonomycolate, etc.)

b) ganglioside lipids such as GM1 or GM2 or GM3, etc.; Also diacylglycerol-type bacterial cell wall lipids;

c) sulfatide;

30 d) trypanosomal phospholipids; malarial cell wall lipids.

For the treatment of tumours, ligand may be lipids expressed on the surface of tumour cells.

Thus, embodiments of the present invention provide a CD1/ligand complex for use in the preparation of a medicament for treating infectious diseases caused by parasites, mycobacteria, fungi, and bacteria; solid tumours; and autoimmune diseases. In preferred embodiments use of a CD1/ligand complex produced in accordance with the first aspect of the invention and a method of medical treatment comprising administering the CD1/ligand complex in therapeutically effective amounts are provided.

In accordance with a second aspect of the present invention, there is provided a method of inducing or boosting an immune response in an individual to a lipid antigen, said method comprising administering a CD1/ligand complex to said individual wherein the ligand in the CD1/ligand complex is said lipid antigen.

The CD1/ligand complex may be produced according to the first aspect of the invention.

The method may further comprise identifying the lipid antigen associated with a disease of the individual, i.e. cancer, infectious disease or autoimmune disease.

For example, the method may comprise identifying a lipid antigen over-expressed on the surface of tumour cells present in the individual. The identified lipid antigen may then be folded into a CD1 molecule in accordance with the first aspect of the invention thereby producing a

CD1/ligand complex which may be administered as a vaccine to said individual to raise an immune response against said tumour.

5 With regard to autoimmune diseases, the CD1 ligand complex may further comprise a toxin which is capable of disrupting an immune response raised against the lipid antigen. For example, the provision of a toxin-conjugated CD1/ligand complex may be used to eliminate
10 specific T lymphocytes which interacted with the complex. Autoimmune T lymphocytes represent a therapeutic target for such toxin-conjugated CD1/ligand complexes.

In a third aspect of the present invention, the
15 CD1/ligand complex according to the present invention may also be used to diagnose a disease in an individual, by identifying the presence or absence of an immune response, i.e. CD1/lipid-specific T-lymphocytes or antibodies, to a particular lipid antigen. Thus, a
20 sample may be obtained from an individual, and contacted with a CD1/ligand complex of the invention. If the CD1/ligand complex was being used to identify the presence of an autoimmune disease, the complex would display a lipid antigen associated with this disease. If
25 the sample comprised T-lymphocytes or antibodies already primed to the lipid antigen, these will be detected by the CD1/ligand complex contacted with the sample. Standard labelling techniques may be used to identify any binding between the CD1/ligand complex and the immune
30 components in the sample.

In accordance with any of the aspects described above, the CD1/ligand complex may be provided as a monomer,

dimer, trimer, tetramer etc. Complexes may be joined by standard means known in the art, e.g. using binding partners (biotin - avidin) or chemical means (co-valent, di-sulfide, hydrogen bonds), so that the ligand is
5 displayed and could be recognised by the T cell receptor.

According to a fourth aspect of the present invention,
the inventors have prepared a crystal of CD1/ligand
complex and determined the crystal structure of CD1 and
10 CD1/ligand complex. This provides for the first time
methods of identifying or obtaining substances (e.g.
agonists or antagonists) for modulating the activity of
CD1 or CD1/ligand complex. Crystal structure information
presented herein is useful in designing potential
15 inhibitors and modelling them or their potential
interaction with a CD1 or CD1/ligand complex binding
cavity.

Potential modulating substances may be brought into
20 contact with CD1 or CD1/ligand complex to test for
ability to interact with the CD1 binding cavity. Actual
substances may be identified from among potential
substances synthesized following design and model work
performed *in silico*. A substance identified using the
25 present invention may be formulated into a composition,
for instance a composition comprising a pharmaceutically
acceptable excipient, and may be used in the manufacture
of a medicament for use in a method of treatment.

30 Thus, in the fourth aspect of the invention, there is
provided a crystal of CD1 and CD1/ligand complex.
Preferably, the ligand is a lipid, more preferably a
glycolipid or a phospholipid. The crystal may have unit

13

cell dimensions of $a = 87.5 \text{ \AA} \pm 5\%$, $b = 177 \text{ \AA} \pm 5\%$ $c = 75 \text{ \AA} \pm 5\%$.

5 Preferably $a = 87.5 \text{ \AA} \pm 0.2\%$, $b = 177 \text{ \AA} \pm 0.2\%$ $c = 75 \text{ \AA} \pm 0.2\%$.

In a preferred embodiment, the crystal structure of CD1 and CD1/ligand complex has the three dimensional atomic co-ordinates of Table 1.

10

In a preferred embodiment the ligand is phosphatidylinositol (PI) or ganglioside GM2 and the CD1 molecule is CD1b, CD1c or CD1d, preferably CD1b.

15

A method for growing the crystal of the fourth aspect by sitting drop crystallisation using a precipitant comprising 0.2M Lithium nitrate and 20% w/v Polyethylene Glycol is also provided.

20

The coordinates of Table 1 provide a measure of atomic location in Angstroms (\AA), to a third decimal place. The coordinates are a relative set of positions that define a shape in three dimensions, but the skilled person would understand that an entirely different set of coordinates having a different origin and/or axes could define a similar or identical shape. Furthermore, the skilled person would understand that varying the relative atomic positions of the atoms of the structure so that the root mean square deviation of the residue backbone atoms (i.e. the nitrogen-carbon-carbon backbone atoms of the protein amino acid residues) is less than 1.5 \AA (preferably less than 1.0 \AA and more preferably less than 0.5 \AA) when superimposed on the coordinates provided in Table 1 for

25

30

the residue backbone atoms, will generally result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and potency for structure-based design of CD1 inhibitors. Likewise the skilled person would understand that changing the number and/or positions of the water molecules and/or substrate molecules of Table 1 will not generally affect the potency of the structure for structure-based design of CD1 inhibitors. Thus for the purposes described herein as being aspects of the present invention, it is within the scope of the invention if: the Table 1 coordinates are transposed to a different origin and/or axes; the relative atomic positions of the atoms of the structure are varied so that the root mean square deviation of residue backbone atoms is less than 1.5 Å (preferably less than 1.0 Å and more preferably less than 0.5 Å) when superimposed on the coordinates provided in Table 1 for the residue backbone atoms; and/or the number and/or positions of water molecules and/or substrate molecules is varied.

Reference herein to the coordinate data of Table 1 thus includes the coordinate data in which one or more individual values of the Table are varied in this way. By "root mean square deviation" we mean the square root of the arithmetic mean of the squares of the deviations from the mean.

Thus, for example, varying the atomic positions of the atoms of the structure by up to about 0.2 Å in any direction will result in a structure which is substantially the same as the structure of Table 1 in terms of both its structural characteristics and utility e.g. for structure-based drug design.

The provision of the high resolution structure of Table 1 provides those of skill in the art with a detailed insight into the mechanisms of action of CD1 or CD1/ligand complex. This insight provides a means to design new substances which have the potential to modulate, e.g. inhibit or enhance the process by which CD1 presents ligand to the immune system.

10 The provision of the crystal structure of CD1 and CD1/ligand complex allows a novel approach for drug discovery for modulators of this enzyme. Accordingly, in a fifth aspect of the invention a computer-based method of rational drug design is provided comprising the steps
15 of:

providing the structure of the CD1 or CD1/ligand complex as defined by the coordinates of Table 1;

providing the structure of a candidate modulator molecule; and

20 fitting the structure of the candidate modulator molecule to the structure of the CD1 or CD1/ligand complex of Table 1.

In an alternative aspect, the method of the invention may utilise the coordinates of atoms of interest of the CD1 which are in the vicinity of a putative ligand pocket in order to model the pocket in which the ligand fits. These coordinates may be used to define a space which is then screened "in silico" against a candidate modulator molecule. Thus, in a sixth aspect, the invention provides a computer-based method of rational drug design which comprises:
30

providing the coordinates of at least two atoms of

the CD1 of Table 1 ("selected coordinates");
providing the structure of a candidate modulator
molecule; and
fitting the structure of the candidate modulator
molecule to the selected coordinates of the CD1.

In practice, it will be desirable to model a sufficient
number of atoms of the CD1 as defined by the coordinates
of Table 1 which represent a binding pocket e.g. A' C' F'
or T'.
10

Thus preferably there will be provided the coordinates of
at least 5 or 10, more preferably at least 50 and even
more preferably at least 100 selected atoms of the CD1
15 structure.

Preferably, the invention also relates to fragment
linking or fragment growing approaches to rational drug
design. Thus the step of providing the structure of a
candidate modulator molecule may be performed by
providing the structures of a plurality of molecular
fragments and linking the molecular fragments to form a
candidate modulator molecule. Furthermore the step of
fitting the structure of the candidate modulator molecule
20 may be performed before the molecular fragments are
linked together, by separately fitting the structure of
each molecular fragment, or after the molecular fragments
25 are linked together.

30 Thus, the computer-based method of rational drug design
may comprise:

providing the coordinates of at least two atoms of
the CD1 or CD1/ligand complex of Table 1;

providing the structures of a plurality of molecular fragments;

fitting the structure of each of the molecular fragments to the selected coordinates of the CD1 or
5 CD1/ligand complex; and

assembling the molecular fragments into a single molecule to form a candidate modulator molecule.

In one embodiment, the computer-based method may further
10 comprise the steps of:

obtaining or synthesising the candidate modulator molecule;

contacting the candidate modulator molecule with CD1; and

15 determining the ability of the candidate modulator molecule to interact with CD1.

In another embodiment, the computer-based method may further comprise the steps of:

20 obtaining or synthesising the candidate modulator molecule;

forming a complex of CD1 and said candidate modulator molecule; and

25 analysing said complex by X-ray crystallography to determine the ability of said candidate modulator molecule to interact with CD1.

A further aspect of the invention provides a compound having a chemical structure selected using the method of
30 any one of the previous aspects, said compound being a modulator of the activity of CD1, e.g. an inhibitor or enhancer of CD1 ligand presentation.

The step of providing the structure of a candidate modulator may involve selecting the compound by computationally screening a database of compounds for interaction with the active site. For example, a 3-D descriptor for the potential modulator may be derived, the descriptor including geometric and functional constraints derived from the architecture and chemical nature of the active site. The descriptor may then be used to interrogate the compound database, a potential modulator being a compound that has a good match to the features of the descriptor. In effect, the descriptor is a type of virtual pharmacophore.

In any event, the determination of the three-dimensional structure of CD1 and CD1/ligand complex provides a basis for the design of new and specific ligands for CD1 or modulators of CD1 activity. For example, knowing the three-dimensional structure of CD1/ligand complex, computer modelling programs may be used to design different molecules expected to interact with possible or confirmed active sites, such as binding sites or other structural or functional features of CD1.

More specifically, a potential modulator of CD1/ligand complex activity can be examined through the use of computer modelling using a docking program such as GRAM, DOCK, or AUTODOCK (see Walters et al., *Drug Discovery Today*, Vol.3, No.4, (1998), 160-178, and Dunbrack et al., *Folding and Design*, 2, (1997), 27-42).

Accordingly, in a seventh aspect, the present invention provides a machine readable data storage medium comprising a data storage material encoded with machine

5 readable data, wherein the data is defined by all or a portion of the structure coordinates of CD1/ligand complex according to Table 1. The invention further includes use of the machine readable data storage medium to design modulators of the CD1/ligand complex.

In an eighth aspect of the invention, there is provided a computer system intended to generate structures and/or perform rational drug design for CD1/ligand complex, or complexes of CD1/ligand with a potential modulator, the system containing machine readable data comprising:

10 (1) atomic coordinate data of Table 1, said data defining the three dimensional structure of CD1/ligand complex, or at least one sub-domain of the three-dimensional structure of CD1/ligand complex, or the coordinates of at least two atoms of CD1/ligand complex; or
15 (2) structure factor data for CD1/ligand complex, said structure factor data being derivable from the atomic coordinate data of Table 1.

20 Having designed or selected possible binding candidate modulators (e.g. by *in silico* analysis, "wet" chemical methods, X-ray analysis etc.) by determining those which have favourable fitting properties (e.g. strong attraction between candidate and CD1), these can then be screened for activity. Consequently, the method preferably further comprises the steps of:

25 obtaining or synthesising the candidate modulator;
and
30 contacting the candidate modulator with CD1/ligand complex to determine the ability of the candidate modulator to interact with CD1/ligand complex.

More preferably, in the latter step the candidate modulator is contacted with CD1/ligand complex under conditions to determine its function.

5 Following identification of a modulator (e.g. an enhancer or inhibitor), it may be manufactured and/or used in the preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to
10 individuals.

In a ninth aspect, the present invention provides a method for identifying a candidate modulator (e.g. potential enhancer) of CD1/ligand complex comprising the
15 steps of:

20 providing the three-dimensional structure of CD1/ligand complex, or at least one sub-domain thereof, to characterise at least one active site of CD1, the three-dimensional structure being defined by atomic coordinate data according to Table 1; and

25 identifying a candidate modulator molecule for interaction with the active site. Preferably, the candidate modulator molecule is identified by designing or selecting the molecule to interact with the active site.

If more than one CD1 active site is characterised and a plurality of respective compounds are designed or selected, the modulator may be formed by linking the
30 respective compounds into a larger compound which maintains the relative positions and orientations of the respective compounds at the active sites. The larger

compound may be formed as a real molecule or by computer modelling.

Preferably, high throughput screening of compounds to select compounds with binding activity may be undertaken, those compounds showing binding activity being selected as possible candidate modulators, and further crystallized with CD1 (e.g. by co-crystallization or by soaking) for X-ray analysis. The resulting X-ray structure may be compared with that of Table 1 for a variety of purposes. For example, where the contacts made by such compounds interact with a plurality of active sites, e.g. where the contacts overlap with those made by lipid antigen, novel molecules comprising residues contacting both lipid antigen and the bound compound may be obtained.

Identified modulators (e.g. an enhancers or inhibitors), may then be manufactured and/or used in the preparation, i.e. manufacture or formulation, of a composition such as a medicament, pharmaceutical composition or drug. These may be administered to individuals.

A tenth aspect of the present invention provides a method of assessing the ability of a candidate modulator molecule to interact with CD1 or CD1/ligand complex comprising the steps of:

obtaining or synthesising said candidate modulator molecule;

30 forming a crystallised composite of CD1 or CD1/ligand complex and said candidate modulator; and

analysing the composite by X-ray crystallography to determine the ability of the candidate modulator to interact with CD1 or CD1/ligand complex.

5 Preferably, the composite diffracts X-rays for the determination of atomic coordinates of the composite to a resolution of better than 3Å, more preferably better than 2Å. The crystallised composite may be formed by crystal soaking or co-crystallisation.

10 By utilising the high resolutions obtainable with X-ray crystallography, it is possible to determine the ability of the candidate modulator molecule to interact with CD1 or CD1/ligand complex by comparing the intensities and/or positions of X-ray diffraction spots from the composite with diffraction spots of uncomplexed CD1 or a previously identified CD1/ligand complex. Thus, the step of analysing the composite may involve analysing the intensities and/or positions of X-ray diffraction spots from the composite to determine the ability of the candidate modulator molecule to interact with CD1 or

15 CD1/ligand complex.

20

In another aspect, the invention relates to a method of determining three dimensional structures of CD1/ligand complex homologues or analogues of unknown structure by utilising the structural coordinates of Table 1.

25 For example, if X-ray crystallographic or NMR spectroscopic data is provided for a CD1 homologue or analogue of unknown structure, the structure of CD1 as defined by Table 1 may be used to interpret that data to provide a likely structure for the CD1 homologue or

analogue by techniques which are well known in the art, e.g. phase modelling in the case of X-ray crystallography.

5 Thus, in an eleventh aspect of the present invention a method of determining three dimensional structures of CD1 or CD1/ligand complex homologues of unknown structure is provided, comprising the steps of:

10 aligning a representation of an amino acid sequence of a CD1 or CD1/ligand complex homologue or analogue of unknown structure with the amino acid sequence of CD1 or CD1/ligand complex to match homologous regions of amino acid sequences;

15 modelling the structure of the matched homologous regions of the homologue or analogue of unknown structure on the structure as defined in Table 1 of the corresponding regions of CD1 or CD1/ligand complex; and

20 determining a conformation for the homologue or analogue of unknown structure which substantially preserves the structure of said matched homologous regions.

25 Preferably, said homologues have an amino acid sequence having at least 50% homology with said CD1, more preferably at least 60%, 70%, 80% or 90% homology.

In a twelfth aspect of the present invention there is provided a method for determining the structure of a protein comprising the steps of:

30 providing the coordinates of Table 1; and

either (a) positioning said coordinates in the crystal unit cell of said protein so as to provide a

structure for said protein, or (b) assigning NMR spectra peaks of said coordinates.

In a thirteenth aspect of the present invention there is
5 provided a method for determining the structure of a compound bound to CD1/ligand complex comprising the steps of:

10 providing a crystal of CD1/ligand complex; and soaking the crystal with the compound to form a complex; and

determining the structure of the complex by employing the data of Table 1.

Aspects and embodiments of the present invention will now
15 be illustrated, by way of example, with reference to the accompanying figures. Further aspects and embodiments will be apparent to those skilled in the art. All documents mentioned in this text are incorporated herein by reference.

20

Brief Description of the Drawings

Figure 1: Structure of the human CD1b complex and of its ligands. **a,** CD1b structure ($\alpha 1-\alpha 3$ domains in light shading, $\beta 2m$ in dark shading with left to right hatching) with bound PI (alkyl chains in grey shading with right to left hatching (C')) and dark shading (A'), inositol dot filled in light grey and adjacent phosphate dot filled in black) and detergent molecules (dark shading (F') and dot filled in black (T')) shown as Van Der Waals spheres. The internal hydrophobic cavity of $\alpha 1\alpha 2$ is drawn as a transparent surface, and ligand binding channels are indicated as A', C', F' and T'. **b,** Chemical structures of

lipid and detergent ligands used in the refolding of CD1b complexes.

Figure 2: Binding and presentation of alkyl chain ligands by CD1b. All panels depict the CD1b/PI complex excepting **b** and **c** which show CD1b/GM2. **a**, Overview of the $\alpha 1\alpha 2$ domain of CD1b with bound ligands. Close up views of the framed regions of the groove are shown in panels **b-g**. **b** and **c**, Positioning of the first glucosyl- and the phosphoinositol head groups in the CD1b-GM2 and CD1b-PI structures, respectively. Carbon atoms of the lipid ligand are grey shaded with right to left hatching, oxygens are black spheres, phosphate is hashed, and nitrogen dot filled black. Hydrogen bonds are shown as black dotted line. **d**, The F' channel with bound monoalkyl detergent. **e**, A single detergent molecule bound to tunnel T' traverses a path, unobstructed by bulky side chains, between channels A' and F'. **f**, A portal in the C' channel, stabilised by a unique disulfide bond Cys131-Cys145 (square dot infill), allows egress of the lipid from the interior of the protein. **g**, The bottom of the A' channel contains a hydrophobic pole formed by Val112 and Phe70, which could guide the lipid ligand from the A' channel into the T' tunnel. In all panels, the $F_o - F_c$ omit map electron density (thin line mesh, contoured at 2.5σ) was calculated after a simulated annealing during which the glycolipid (plus any residues and detergent within a distance of 3.5\AA) were omitted, in panels **d-g**, the $2 F_o - F_c \Phi_{\text{calc}}$ electron density of the protein structure is shown as a white surface, contoured at 1σ .

Figure 3: Differences between CD1b and other CD1 isoforms. **a**, **b**, Structural comparison of the antigen binding cavity for hCD1b and mCD1d. The hydrophobic groove and key side chains of CD1b and CD1d are shaded. The ligands present in the CD1b structures were superimposed onto the mCD1d structure for direct comparison. **c**, Sequence alignment of the $\alpha_1\alpha_2$ domains of human CD1a-e and mCD1d. Secondary structure elements of CD1b are shown above the protein sequence. A shaded background indicates those residues which confer the lipid binding properties of CD1b and which are conserved at equivalent positions in other CD1 isoforms. Hydrophobic residues guiding the lipid ligands in CD1b at the bottom of channel A' (see Fig. 2g) and between channels C' and F' are indicated by triangles, respectively. Cysteine residues are boxed.

Figure 4: Models for binding of mycolic acid and triacylglycerol to CD1b. **a**, Chemical structures of mycolic acid from *M. tuberculosis* and of the triacylglycerol trilaurin. **b**, Mycolic acid modeled into the CD1b structure. The C60 long meromycolate chain (hash infill) could be fully contained within channels A', T' and F', thus forming a superchannel of some 70 \AA length. The shorter C25 alkyl chain (dark shaded) is therefore more likely to lodge in the C' channel. **c**, Model of triacylglycerol (trilaurin) binding to CD1b, demonstrating that the three C11 alkyl chains (dot infill) could separately bind to surface-linked channels A', C' and F'. To demonstrate the full binding potential of the CD1b groove, alkyl chains present in the CD1b-PI and CD1b-GM2 structures but not accounted for by the models are overlayed in light grey. Conversely,

polycarbon chains, which the crystal structures provide no models, are indicated by dotted lines.

5 **Figure 5:** CD1d/aGC complexes are specific for human invariant NKT cells. Use of fluorescent CD1d/aGC tetramers as a diagnostic composition in identifying human invariant NKT cells by FACS analysis. **a**, FSC-H/SSC-H plot used for gating of lymphocyte population. **b**, Propidium iodide staining gates out dead cells. **c**,
10 Staining of human invariant NKT cells with anti-T-cell receptor (anti-TCR) Valpha24 antibody. **d**, **e**, CD1d/aGC tetramers stain human invariant NKT cells.

Detailed Description

15 Compared to in vivo folding, in vitro folding of proteins is generally much less effective. Mammalian cells possess a range of specialised helper proteins, e.g. chaperonins, disulfidases, proline isomerases, etc., which enhance the yield of correctly folded molecules. Standard in vitro refolding protocols, which were successful for HLA class
20 I molecules were completely unsuccessful for refolding CD1 molecules. As CD1 molecules are significantly more hydrophobic than HLA class I molecules, the inventors thought that the difficulties with standard protocols
25 were due to hydrophobic interactions between partially folded CD1 molecules, causing the proteins to aggregate and precipitate. When a fully denatured protein starts to fold, it goes through a transition state, hydrophobic residues are exposed to the surroundings, and if two
30 proteins meet, they will bind to each other and precipitate. To overcome this possible problem, the inventors used single chain detergents as folding assistants. The idea was that detergent molecules and

folding CD1 molecules would form mixed detergent-protein micelles which would allow the proteins to proceed with the folding beyond the molten-globule state, while being physically separated from each other.

5

The second stage of the process is to strip off the detergent from these micelles so as to allow the molecules to completely fold. The detergent is stripped using, for example, soluble cyclodextrins.

10

The inventors have been able to crystallise CD1b molecules generated by this method and have obtained high resolution structure of CD1b with bound ligand. The crystal structure revealed that the large groove of Cd1b is not only occupied by ligand but also by the detergent molecule.

15

The ligand is loaded in a way that allows optimal presentation of the antigenic epitope to the T cell receptor, while two detergent molecules per CD1 molecule fill the rest of the large groove. Thus, in accordance with the present invention, the loaded CD1 molecule (CD1/ligand complex) is considered biologically active.

25

As an example of the present invention, the inventors have refolded the extracellular region of human CD1b (hCD1b; heavy chain residues 1-283 plus beta-2-microglobulin, β 2m) *in vitro* from completely denatured and reduced E.coli-derived proteins. Single alkyl chain detergents of sixteen carbon length (C16) were used as refolding assistants to protect exposed hydrophobic surfaces during early refolding stages, thereby reducing hydrophobic protein aggregation and precipitation. This

30

protocol yielded stable soluble CD1b/β2m-complexes, which mass spectrometry confirmed to be loaded with the specified lipid ligands plus detergent (see methods).

5 Soluble CD1b/β2m-proteins loaded either with phosphatidylinositol (PI) or ganglioside GM2 (GM2)⁸ were crystallised, their structures determined by molecular replacement and refined using data to 2.26Å and 2.8Å, respectively (see Fig. 1, 2, methods and supplementary
10 information).

The CD1b heavy chain and β2m structures are identical in the two complexes and unless otherwise stated the following analyses are based on the higher resolution
15 CD1b/PI structure. The structures reveal a defined network of hydrophobic channels at the core of the α1α2 domain which are precisely tailored for acyl binding and are saturated by four hydrocarbon chains of 11 to 22 carbon atoms in length. This binding groove architecture is radically different to that of classical MHC class I and II molecules. The total volume (2200Å³) of the network
20 is essentially filled by the hydrocarbon chains. No buried water molecules are present in either structure. In an extension of the analogy with MHC class I binding pocket nomenclature introduced for mCD1d⁷, the three CD1b binding channels which connect directly to the surface are denoted as A', C' and F', with the fourth, a unique tunnel, designated T' (Fig. 1, 2). Channels A', C', and F' interconnect via T'. The sequential connection of A',
25 T' and F' provides the potential to accommodate up to 60 carbon atoms of a single acyl chain which could enter and exit between the α1 and α2 helices (along A' and F'). Channel C' remains separate, leading from the T cell
30

receptor (TCR) recognition surface between the $\alpha 1$ and $\alpha 2$ helices to a portal in the side of the molecule beneath the $\alpha 2$ helix (Fig 1, 2d). Thus this channel can shelter acyl chains of some 16 carbon atoms fully from solvent
5 whilst allowing egress for longer chains. The PI and GM2 ligands occupy channels A' and C', whilst two detergent molecules fill channels F' and T' (Fig. 1, 2, 3). There is sufficient electron density to position unequivocally the link between the acyl chains and hence partial head-group structures for the glycolipids in the CD1b/GM2 and CD1b/PI complexes (Fig. 1, 2a, 2b). The inositol ring of PI is partially ordered in the CD1b/PI complex, whilst only the first of the four sugar rings which branch off the GM2 lipid head is visible in the CD1b/GM2 crystal
10 structure. Comparison with a classical MHC class I/peptide complex shows the glycolipid head groups to be presented by CD1b in a position analogous to that of the P4 residue in a peptide presented by MHC class I. The surface presented by the CD1b/glycolipid complexes
15 appears compatible with standard TCR recognition, a conclusion borne out by mutagenesis studies mapping TCR binding to CD1b⁹. In contrast, key features of the $\alpha 3$ domain required for MHC class I binding to CD8 are not
20 conserved in CD1b¹⁰.

25

Comparison of the CD1b complexes with the structure of mCD1d, which does not include a specific bound ligand⁷, indicates broad equivalences but also very significant differences in the architecture of the binding groove
30 (Fig. 3). Channel A' runs deeper in CD1b because Val63 replaces a bulky tryptophan at the equivalent position in mCD1d (additionally Ala47 is replaced by Ile). Channel T', which in CD1b serves to connect channels A' and F',

is blocked in mCD1d by the side chains of Leu100 and Val118, equivalent to residues Gly98 and Gly116 respectively in CD1b. Similarly, the exit portal for channel C' beneath the CD1b α 2 helix (Fig. 2f) is closed off in CD1d by Phe128 and Trp133, being residues with bulky side chains, replacing Val126 and Cys131 respectively in CD1b. In CD1 alleles other than CD1b, the absence of a disulphide bridge (Cys 131 – Cys145, Fig 2f) pulls the α 2 helix main chain more closely to the CD1 backbone. However, in addition to the differences hardwired by changes at sequence level the comparison of the CD1b and mCD1d structures also implies both molecules may share some conformational adaptability. While channel F' is partially occluded in mCD1d by the side chain of Leu84 the side chain conformation selected by the equivalent residue (Phe84) in the current CD1b structure frees up sufficient space for F' to accommodate a detergent molecule (Fig. 2d, 3). However, in the absence of ligand Phe84 may be expected to adopt an alternate conformation (analogous to that of Leu84 in mCD1d) to pack against Phe144, Phe88 and Met90. This suggests a mechanism whereby the hydrophobic binding capacity of the channels may be tailored to ligand requirements, a phenomenon previously observed for binding of non-nucleoside inhibitors to HIV Reverse Transcriptase¹¹.

The current CD1b structures allow definition of the residues which confer the lipid binding properties of the α 1 α 2 domain. Sequence alignment of the CD1 family highlights channel A' and the associated portion of tunnel T' as the most conserved regions of the groove (Fig. 3c). Conversely, the central portion of tunnel T' is blocked in all other CD1 isoforms by the presence of

bulky side chains of residues equivalent to Gly98 and Gly116 in CD1b. Similarly, the C' portal is occluded by tryptophan and phenylalanine residues which substitute for CD1b residues Cys131 and Val126, respectively in all other CD1 family members. Residues contributing to channel F' are least conserved. Overall, based on ligand binding architecture, CD1b appears to be unique among CD1 molecules.

The arrangement of the combined detergent and lipid ligands in the CD1b/PI and CD1b/GM2 structures provide a general model for describing the interaction of the CD1b-binding groove with alkyl chain containing ligands.

Mycobacterial mycolates (Fig. 4a), which play a crucial role in the adaptation of mycobacteria to intracellular growth and survival¹², were the first fully characterised ligands of human CD1b². It has long been speculated about how lipid ligands of such large size could bind to CD1b. Modelling of mycolic acid into the current CD1b structures demonstrates how the long C50-C56 meromycolate chain could be fully contained within a super channel consisting of the interconnected A', T' and F' channels, with the shorter C22-C26 alkyl chain binding to C' (Fig. 4b). The super channel has a maximum length of some 70Å providing binding capacity for a single fatty acid chain of up to 60 carbons. In the case of only partial saturation of the superchannel's alkyl binding capacity, the F' channel could be closed off by selection of an alternative side chain conformation for Phe84 (see previously and Fig. 2d). This mechanism for adaptation to alkyl chain length would explain how CD1b can present either the large C80 mycobacterial glucomonomycolate or the shorter C32 synthetic glucomonomycolate to the same T

cell line¹³. The superchannel also allows for the option of stably accommodating long chain monoalkyl ligands, which can therefore serve as T cell antigens.

5 Short chain fatty acids of the endoplasmic reticulum, such as palmitate, could also act as ligands for CD1b in a similar manner to the C16 chain detergents used in the current refolding protocol (see methods). However, since the affinity of a given ligand to CD1b is related to the
10 polycarbon chain length, endogenous short chain fatty acids could exert a chaperone-like function before binding of higher affinity ligands. Consistent with this hypothesis is the fact that, despite a 500 fold molar excess of detergent over lipid in the refolding buffer,
15 detergent molecules were bound only to the T' tunnel and F' channel, while both the A' and C' channels were occupied by the two alkyl chains of the lipid ligand. This also suggests that surface CD1b molecules may still retain endogenous chaperones to account for any excess
20 binding capacity, in particular in tunnel T'.

The arrangement of channels A', C' and F' strongly suggests that lipids containing three alkyl chains, such as endogenous triacylglycerols or mycobacterial triacyl trehalose, may bind to human CD1b (Fig.4c).

25 Triacylglycerols, which are synthesised on membranes of the endoplasmic reticulum, are independent risk factors for coronary heart disease^{14, 15}. Activated memory T lymphocytes accumulate in atherosclerotic plaques^{16, 17}, and oxidized lipoproteins, which contain
30 triacylglycerols, can act as immunogens for T cell^{18, 19}. Interestingly, a recent study has found that CD1b is highly expressed on macrophages in atherosclerotic

lesions, but not on normal tissue macrophages²⁰. It is therefore intriguing to speculate on the role of CD1b-mediated presentation of triacylglycerols to T lymphocytes in atherosclerosis.

5

The topology of CD1b is MHC class I-like (Fig. 1a) with close structural similarity to murine CD1d. Tubes of electron density (common to both the CD1b/GM2 and CD1b/PI structures) delineate binding channels, buried between the α_1 and α_2 helices, occupied by four acyl chains. These hydrocarbon chains are up to 80 carbon atoms in length. In the refined structures two of the acyl chains (in A' and C') are assigned to the tails of the glycolipid ligand and the remaining two (in F' and T') are accounted for by detergent molecules. Electron density at the CD1b surface linking chains A' and C' provide partial information for the position of the glycolipid head-group structures, which are relatively mobile as judged from crystallographic temperature factors.

10

The detergents used in the refolding of the single lipid complexes (see Methods) have supplemented GM2 and PI to saturate the acyl binding capacity of CD1b.

15

The structure of murine CD1d⁷ does not include a specific bound ligand but the $\alpha_1\alpha_2$ domain contains cavities designated as binding pockets A' and F'. Comparison with the CD1b complexes indicates broad equivalence of pocket A' to channels A' and of pocket F' to channel F'. The CD1d cavities have a reduction in volume relative to the total CD1b network.

The main chain topology of CD1b differs markedly from MHC class I in the peak height attained by the kink in the $\alpha 2$ helix (residues 150-157 and 149-152 in CD1b and MHC class I respectively). Direct substitution of CD1b into a MHC class I/TCR complex (by simple superposition onto the MHC class I structure) therefore results in significant steric clashes between the TCR and this portion of the CD1b $\alpha 2$ helix. The upward displacement of the TCR necessary to provide a sterically acceptable dock onto the CD1b structure may facilitate incorporation at the recognition interface of the increased size of the glycolipid head group compared to an amino acid side chain. Given this modification the surface presented by the CD1b/glycolipid complexes appears compatible with standard TCR recognition, a conclusion borne out by mutagenesis studies mapping TCR binding to CD1.

Superposition of CD1b into the HLA A2/CD8 $\alpha\alpha$ crystal structure¹⁰ again reveals substantial steric clashes.

Given the highly conserved nature of the MHC class I/CD8 interaction these changes imply relative abolition of any such interaction. This is again consistent with the functional recognition of CD1 by CD8 $^{-}$ T cells⁵.

CD1d-tetramers generated using detergent refolding specifically detected human invariant natural killer (NKT) cells which recognise glycolipid presented by CD1d and show specificity for alpha-galactosylceramide (aGC), (Figure 5). Human NKT cells expressing an invariant TCR Valpha24 chain are highly specific for CD1d/aGC complex. Biotinylated human CD1d molecules loaded with the synthetic glycolipid aGC were generated from completely denatured and reduced CD1d protein and

complexed with fluorescent streptavidin. Fluorescent CD1d/aGC tetramers specifically stained human NKT cells and demonstrated the use of CD1/ligand complexes for *in vivo* and *in vitro* T-cell identification and disease state diagnosis (Figure 5d, e).

Discussion

A unique network of channels allows CD1b to accommodate glycolipids with two very long acyl tails. In CD1b the absence of side chains at Gly98 and Gly116 opens channel T' (Fig 3c sequence alignments). It also indicates that certain of the CD1 family may have the capability to bind three acyl chain lipids. Such ligands would be expected to show strong binding consistent with enhanced avidity. In contrast single acyl chain lipids would be penalized by reduced avidity.

Methods

Protein expression, refolding and crystallization

For expression of human CD1b (hCD1b) in bacterial inclusion bodies the plasmid hCD1b-pET23d, which encodes a truncated form of the hCD1b cDNA containing the extracellular $\alpha 1-\alpha 3$ domains, was generated. The hCD1b coding sequence was amplified by PCR from monocyte-derived dendritic cell cDNA. Oligonucleotides used for PCR amplification (5'-3' and 3'-5') introduced 5'NcoI and 3'BamH1 restriction sites, which allowed cloning into the bacterial expression vector pET23d (Invitrogen). The correct sequence of the hCD1b coding sequence was confirmed using automated sequencing. Plasmid hb2m-pET23d encoding extracellular human beta2-microglobulin ($\beta 2m$) has been described previously. Both proteins were

expressed separately in E.coli BL21 (Invitrogen) and purified from inclusion bodies as described below.

The extracellular α 1- α 3 domains of human CD1b (SWISS-PROT: P29016) and β 2m were synthesised using a prokaryotic expression system (pET23d; Novagen, Milwaukee, WI). Both proteins were purified from E.coli (strain BL21) inclusion bodies, which were subsequently solubilised using 6M guanidine buffer containing 10mM DTT. Refolding of the fully denatured and reduced proteins was carried out at room temperature by dilution into buffer 1 (1M Urea, 300mM L-Arginine, 50mM Tris pH 7.5, 2mM EDTA, 5mM reduced glutathione, 0.5mM oxidized glutathione) supplemented with 500 μ M hexadecyltrimethylammoniumbromide (SIGMA, Illinois, USA) and 1 μ M of either synthetic GM2⁸ ligand or soy bean purified PI ligand (AVANTILIPIDS, USA). To remove excess detergent molecules methyl- β -cyclodextrin (FLUKA, Dorset, UK) was added to the refolding mix after 3 days. The refolding mix was concentrated using Amicon stir cells (AMICON, USA) and PM10 membranes (MILLIPORE). The soluble protein fractions were separated from the concentrated refolding mix by size exclusion chromatography using fast liquid pressure chromatography (FPLC; AMERSHAM PHARMACIA, UK) using a Superdex75 16/26 prep grade column (AMERSHAM PHARMACIA) equilibrated with buffer 2 (Tris 20mM, pH 6.0, 30mM NaCl). Monomeric hCD1b/h β 2m-ligand complexes were collected at 150ml elution volume and repurified once in the same buffer. The pure protein peak containing purified monomeric hCD1b/h β 2m-ligand complexes was concentrated at 5mg/ml and used for sitting drop crystallisation²¹.

Crystallisation

The best crystals for both complexes hCD1b/h β 2m-GM2 (CD1b/GM2) and hCD1b/h β 2m-PI (CD1b/PI) were grown at 20°C from 2 μ l of hCD1b protein at 5mg/ml with 1 μ l of precipitant (0.2M Lithium Nitrate, 20% w/v Polyethylene Glycol 3350, pH 7.1).

Structure Determination

Crystals were flash frozen at 100K in mother liquor containing 20% glycerol. Diffraction data from one CD1b/GM2 crystal were collected at beamline ID-14 EH2 (ESRF, Grenoble France) with 0.933 \AA radiation, recorded on an ADSC Q4 CCD detector. Diffraction data from two CD1b/PI crystals were collected at beam line ID-29 (ESRF, Grenoble, France) with 0.977 \AA radiation, recorded on an ADSC Q210 detector.

Processing, merging and reduction of the data were achieved using programs DENZO and SCALEPACK²². Processing statistics are given in the Supplementary Information.

The crystals belong to space group C2221 ($a=87.53\text{\AA}$ $b=176.89\text{\AA}$ $c=75.25\text{\AA}$ for CD1b/GM2 and $a=87.88\text{\AA}$ $b=177.00\text{\AA}$ $c=75.28\text{\AA}$ for CD1b/PI). In each case, one CD1 molecule per asymmetric unit is present, plus 63% solvent.

The molecular replacement solutions for both the CD1b/GM2 and CD1b/PI crystals were identified with the program AmoRe²³, using respectively, as models, the 2.8 \AA resolution structure of mCD1d⁷ (PDB accession code 1CD1) and the protein component of a partially refined structure of CD1b/GM2. The CNS program suite was used for refinement²⁴. Approximately 3% of reflections were set aside for the R_{free} calculations (535 and 751 observations

respectively for the GM2-Cd1b and PI-CD1b structures). The initial rigid body refinement, allowing the $\alpha 1$, $\alpha 2$, $\alpha 3$ and $\beta 2m$ domains to move independently, resulted in an R_{work} of 43.2% (R_{free} of 42.2%) for the CD1b/GM2 and R_{work} of 27.7% (R_{free} of 25.96%) for the CD1b/PI structure. The models were improved through subsequent rebuilding and refinement cycles, which included positional and restrained B factor refinement, geometric regularization, and for the CD1b/PI structure, simulated annealing. The models were rebuilt with the program O²⁵ into weighted 2F_o-F_c and F_o-F_c Φ_{calc} OMIT maps. In the first cycle of the refinement of the GM2-CD1b structure, the murine CD1d $\beta 2m$ sequence was replaced with human CD1b $\beta 2m$ from an HLA-B8 structure (PDB accession code 1AGE). Clear electron density allowed residues in the $\alpha 3$ domain of Cd1d to be mutated to the corresponding residues of CD1b. Further rounds of refinement enabled the rest of the CD1b residues to be located.

Once electron density for segments of acyl chains and individual waters could be identified, for the CD1b/GM2 (R_{work} of 25.4% (R_{free}=30.2%) and for the CD1b/PI (R_{work} of 28.1% (R_{free}=30.2%), these were modelled into the missing density. Atomic models and parameters for the non-glycan portions of the GM2 and PI ligands were obtained from the lipid structure library²⁶ (http://www.biochem.missouri.edu/~lesa/LIPIDS/membrane_lipid.html). Topology and parameter files for CNS were then produced with the program PRODGM²⁷ and subsequently edited. Detergent molecules were modelled as alkyl chains.

The final refined structures showed good stereochemistry as assessed with the program PROCHECK²⁸. The final model

40

of CD1b/GM2 has an R_{work} of 22.4% ($R_{free}=27.5\%$) and comprises the CD1b heavy chain (residues A4-A279), the β 2m (residues B0-B99), 40 waters and 100 lipid ligand atoms. The final model of CD1b/PI has an R_{work} of 20.3% (5 $R_{free}=23.3\%$) and comprises the CD1b heavy chain (residues A3-A279), the β 2m (residues B0-B99), 232 waters, 3 NO_3^- molecules and 90 lipid ligand atoms. VOLUMES (Esnouf, unpublished program) identified cavities as surfaces accessible to methyls (1.7 \AA radius), but not to large probes (6 \AA radius). The figures have been prepared using Bobscript⁹ and Raster3D³⁰.

The completeness of the protein and the ligands in the two models increased over the course of the refinement. 15 Comparisons between the GM2-CD1b and PI-CD1b structures furthermore eased the rebuilding procedure of each model. Special care was taken during the refinement to keep the gap between the R_{work} and R_{free} as small as possible, and the R_{free} lower after each refinement cycle.

20

Generation of fluorescent CD1d tetramers and FACS analysis

Biotinylated human CD1d molecules loaded with the 25 synthetic glycolipid alpha-galactosylceramide (aGC) were generated from completely denatured and reduced inclusion body protein (see Methods - Protein expression, refolding and crystallization). The refolded CD1d molecules were used to generate CD1d/aGC-tetramers by binding the 30 biotinylated CD1d/aGC-complexes to fluorescent streptavidin. The resulting fluorescent CD1d/aGC-tetramers were tested for use as diagnostic compositions in the identification of human invariant NKT cells in

41

vitro by fluorescent cell sorter analysis (FACS). Human invariant NKT cells, known to be highly specific for CD1d/aGC-complex, were stained with FITC-anti-TCR Valpha24 antibody (Figure 5c) and RPE-CD1d/aGC-tetramers (Figure 5d, e). Staining with propidium iodide allowed dead cells to be gated out of the analysis (Figure 5b).

10

15

References

1. Calabi, F., Jarvis, J. M., Martin, L. & Milstein, C. Two classes of CD1 genes. *Eur J Immunol* **19**, 285-92. (1989).
- 5 2. Beckman, E. M. et al. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. *Nature* **372**, 691-4. (1994).
- 10 3. Beckman, E. M. et al. CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. *J Immunol* **157**, 2795-803. (1996).
4. Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. *Nature* **341**, 447-50. (1989).
- 15 5. Rosat, J. P. et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. *J Immunol* **162**, 366-71. (1999).
6. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. *Eur J Immunol* **29**, 1667-75. (1999).
- 20 7. Zeng, Z. et al. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. *Science* **277**, 339-45. (1997).
8. Castro-Palomino, J. C., Ritter G., Fortunato, S.R., Reinhardt, S., Old, L.J., and Schmidt, R.R. Efficient synthesis of ganglioside GM2 for use in GM2 cancer vaccines. *Angew. Chemie Engl. Ed.* **36**, 1998-2001. (1997).

9. Melian, A. et al. Molecular recognition of human CD1b antigen complexes: evidence for a common pattern of interaction with alpha beta TCRs. *J Immunol* **165**, 4494-504. (2000).
- 5 10. Gao, G. F. et al. Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. *Nature* **387**, 630-4 (1997).
- 10 11. Hopkins, A. L. et al. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. *J Med Chem* **39**, 1589-600. (1996).
12. Brennan, P. J. & Nikaido, H. The envelope of mycobacteria. *Annu Rev Biochem* **64**, 29-63 (1995).
- 15 13. Moody, D. B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. *Science* **278**, 283-6. (1997).
- 20 14. Hokanson, J. E. & Austin, M. A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. *J Cardiovasc Risk* **3**, 213-9. (1996).
- 25 15. Assmann, G., Schulte, H. & von Eckardstein, A. Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men. *Am J Cardiol* **77**, 1179-84. (1996).

16. Hansson, G. K., Holm, J. & Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. *Am J Pathol* **135**, 169-75. (1989).
- 5 17. Stemme, S., Holm, J. & Hansson, G. K. T lymphocytes in human atherosclerotic plaques are memory cells expressing CD45RO and the integrin VLA-1. *Arterioscler Thromb* **12**, 206-11. (1992).
- 10 18. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. *Proc Natl Acad Sci U S A* **92**, 3893-7. (1995).
- 15 19. Wu, R., Giscombe, R., Holm, G. & Lefvert, A. K. Induction of human cytotoxic T lymphocytes by oxidized low density lipoproteins. *Scand J Immunol* **43**, 381-4. (1996).
- 20 20. Melian, A., Geng, Y. J., Sukhova, G. K., Libby, P. & Porcelli, S. A. CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. *Am J Pathol* **155**, 775-86. (1999).
21. Harlos, K. Micro-bridges for sitting-drop crystallizations. *J. Appl. Cryst.* **25**, 536-538 (1992).
- 25 22. Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. *Methods Enzymol* **276**, 307-326 (1997).
23. Navaza, J. & Saludjian, P. AMoRe: An automated Molecular Replacement Program Package. *Methods Enzymol* **276 Part A**, 581-594 (1997).

24. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. *Acta Crystallogr D Biol Crystallogr* **54**, 905-21. (1998).

5 25. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard. Improved methods for binding protein models in electron density maps and the location of errors in these models. *Acta Crystallogr A* **47**, 110-9. (1991).

10 26. Pascher, I. The different conformations of the glycerol region of crystalline acylglycerols. *Curr Opin Struct Biol* **6**, 439-48. (1996).

15 27. van Aalten, D. M. et al. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. *J Comput Aided Mol Des* **10**, 255-62. (1996).

28. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check the stereochemical quality of protein structures. *J Appl Crystallogr* **26**, 283-291 (1993).

20 29. Esnouf, R. M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. *Acta Crystallogr D Biol Crystallogr* **55**, 938-40. (1999).

25 30. Merrit, E. A. & Murphy, M. E. P. Raster3D version 2.0: a program for photorealistic molecular graphics. *Act Cryst. D* **50**, 869-873 (1994).

Table 1

REMARK coordinates from minimization refinement
 REMARK refinement resolution: 100 - 2.8 Å
 REMARK starting r= 0.2241 free_r= 0.2755
 REMARK final r= 0.2239 free_r= 0.2751
 REMARK rmsd bonds= 0.012288 rmsd angles= 1.72965
 REMARK wa= 4.14112
 REMARK target= mlf cycles= 1 steps= 200
 REMARK sg= C222(1) a= 87.527 b= 176.885 c= 75.250 alpha= 90 beta= 90 gamma= 90
 REMARK parameter file 1 : CNS_TOPPAR:protein.param
 REMARK parameter file 2 : CNS_TOPPAR:water_rep.param
 REMARK parameter file 3 : gm2.param
 REMARK molecular structure file: water_delete_swt2.mtf
 REMARK input coordinates: bindividual_swt2.pdb
 REMARK reflection file= smallspot_ren_notrun.cv
 REMARK ncs= none
 REMARK B-correction resolution: 6.0 - 2.8
 REMARK initial B-factor correction applied to fobs :
 REMARK B11= -2.215 B22= 6.610 B33= -4.395
 REMARK B12= 0.000 B13= 0.000 B23= 0.000
 REMARK B-factor correction applied to coordinate array B: -0.780
 REMARK bulk solvent: density level= 0.26028 e/A^3, B-factor= 10 A^2
 REMARK reflections with |Fobs|/sigma_F < 0.0 rejected
 REMARK reflections with |Fobs| > 10000 * rms(Fobs) rejected
 REMARK theoretical total number of refl. in resol. range: 14775 (100.0 %)
 REMARK number of unobserved reflections (no entry or |F|=0): 1857 (12.6 %)
 REMARK number of reflections rejected: 0 (0.0 %)
 REMARK total number of reflections used: 12918 (87.4 %)
 REMARK number of reflections in working set: 12383 (83.8 %)
 REMARK number of reflections in test set: 535 (3.6 %)
 CRYST1 87.527 176.885 75.250 90.00 90.00 90.00 C 2 2 21
 REMARK FILENAME="/raid1/nathan/cd1/october_ref/minimize2_swt2.pdb"
 REMARK DATE:12-Jan-02 23:17:32 created by user: nathan
 REMARK VERSION:1.0
 ATOM 1 CB PHE A 4 51.929 43.822 -6.765 1.00 73.67 A
 ATOM 2 CG PHE A 4 52.914 42.984 -5.978 1.00 80.90 A
 ATOM 3 CD1 PHE A 4 53.885 43.591 -5.144 1.00 86.16 A

ATOM	4	CD2	PHE	A	4	52.853	41.579	-6.047	1.00	83.50	A
ATOM	5	CE1	PHE	A	4	54.787	42.807	-4.377	1.00	89.56	A
ATOM	6	CE2	PHE	A	4	53.745	40.772	-5.291	1.00	88.27	A
ATOM	7	CZ	PHE	A	4	54.717	41.390	-4.449	1.00	92.08	A
ATOM	8	C	PHE	A	4	50.178	43.764	-4.926	1.00	64.77	A
ATOM	9	O	PHE	A	4	50.671	43.410	-3.846	1.00	63.78	A
ATOM	10	N	PHE	A	4	51.682	45.777	-5.216	1.00	68.53	A
ATOM	11	CA	PHE	A	4	50.959	44.658	-5.898	1.00	68.61	A
ATOM	12	N	GLN	A	5	48.975	43.380	-5.345	1.00	60.65	A
ATOM	13	CA	GLN	A	5	48.093	42.530	-4.549	1.00	55.97	A
ATOM	14	CB	GLN	A	5	46.654	43.022	-4.659	1.00	55.20	A
ATOM	15	CG	GLN	A	5	46.400	44.373	-4.041	1.00	55.30	A
ATOM	16	CD	GLN	A	5	44.953	44.768	-4.163	1.00	56.97	A
ATOM	17	OE1	GLN	A	5	44.068	44.111	-3.605	1.00	61.94	A
ATOM	18	NE2	GLN	A	5	44.692	45.826	-4.922	1.00	55.96	A
ATOM	19	C	GLN	A	5	48.153	41.056	-4.948	1.00	53.28	A
ATOM	20	O	GLN	A	5	48.845	40.678	-5.903	1.00	51.52	A
ATOM	21	N	GLY	A	6	47.405	40.236	-4.211	1.00	49.75	A
ATOM	22	CA	GLY	A	6	47.361	38.809	-4.463	1.00	44.45	A
ATOM	23	C	GLY	A	6	48.494	38.064	-3.770	1.00	42.34	A
ATOM	24	O	GLY	A	6	49.167	38.640	-2.899	1.00	41.42	A
ATOM	25	N	PRO	A	7	48.743	36.787	-4.143	1.00	39.21	A
ATOM	26	CD	PRO	A	7	47.900	36.004	-5.060	1.00	38.57	A
ATOM	27	CA	PRO	A	7	49.786	35.917	-3.589	1.00	35.72	A
ATOM	28	CB	PRO	A	7	49.525	34.590	-4.296	1.00	35.65	A
ATOM	29	CG	PRO	A	7	48.087	34.621	-4.524	1.00	35.80	A
ATOM	30	C	PRO	A	7	51.223	36.380	-3.804	1.00	34.41	A
ATOM	31	O	PRO	A	7	51.585	36.872	-4.875	1.00	32.37	A
ATOM	32	N	THR	A	8	52.025	36.214	-2.757	1.00	33.90	A
ATOM	33	CA	THR	A	8	53.426	36.605	-2.757	1.00	33.35	A
ATOM	34	CB	THR	A	8	53.705	37.700	-1.671	1.00	36.97	A
ATOM	35	OG1	THR	A	8	53.603	37.126	-0.359	1.00	36.12	A
ATOM	36	CG2	THR	A	8	52.712	38.869	-1.784	1.00	37.48	A
ATOM	37	C	THR	A	8	54.327	35.404	-2.464	1.00	32.93	A
ATOM	38	O	THR	A	8	55.539	35.564	-2.318	1.00	33.88	A
ATOM	39	N	SER	A	9	53.742	34.210	-2.374	1.00	32.37	A
ATOM	40	CA	SER	A	9	54.520	33.009	-2.060	1.00	33.55	A
ATOM	41	CB	SER	A	9	54.350	32.636	-0.578	1.00	33.48	A

ATOM	42	OG	SER A	9	53.090	32.041	-0.306	1.00	42.47	A
ATOM	43	C	SER A	9	54.237	31.766	-2.881	1.00	32.69	A
ATOM	44	O	SER A	9	53.136	31.576	-3.391	1.00	32.67	A
ATOM	45	N	PHE A	10	55.256	30.924	-2.995	1.00	30.68	A
ATOM	46	CA	PHE A	10	55.126	29.648	-3.677	1.00	28.99	A
ATOM	47	CB	PHE A	10	55.941	29.547	-4.992	1.00	25.85	A
ATOM	48	CG	PHE A	10	55.841	28.176	-5.661	1.00	22.15	A
ATOM	49	CD1	PHE A	10	54.613	27.728	-6.196	1.00	19.07	A
ATOM	50	CD2	PHE A	10	56.922	27.273	-5.620	1.00	22.38	A
ATOM	51	CE1	PHE A	10	54.446	26.401	-6.663	1.00	11.47	A
ATOM	52	CE2	PHE A	10	56.775	25.932	-6.090	1.00	17.57	A
ATOM	53	CZ	PHE A	10	55.528	25.499	-6.609	1.00	21.64	A
ATOM	54	C	PHE A	10	55.628	28.602	-2.708	1.00	28.48	A
ATOM	55	O	PHE A	10	56.624	28.823	-2.010	1.00	29.08	A
ATOM	56	N	HIS A	11	54.926	27.471	-2.684	1.00	24.50	A
ATOM	57	CA	HIS A	11	55.308	26.337	-1.863	1.00	29.93	A
ATOM	58	CB	HIS A	11	54.980	26.524	-0.360	1.00	31.51	A
ATOM	59	CG	HIS A	11	53.529	26.726	-0.044	1.00	31.89	A
ATOM	60	CD2	HIS A	11	52.530	25.838	0.177	1.00	28.38	A
ATOM	61	ND1	HIS A	11	52.984	27.976	0.165	1.00	35.50	A
ATOM	62	CE1	HIS A	11	51.713	27.848	0.503	1.00	35.19	A
ATOM	63	NE2	HIS A	11	51.413	26.561	0.518	1.00	33.61	A
ATOM	64	C	HIS A	11	54.766	25.023	-2.362	1.00	30.47	A
ATOM	65	O	HIS A	11	53.693	24.977	-2.971	1.00	35.31	A
ATOM	66	N	VAL A	12	55.557	23.972	-2.175	1.00	26.19	A
ATOM	67	CA	VAL A	12	55.124	22.629	-2.529	1.00	24.00	A
ATOM	68	CB	VAL A	12	56.170	21.832	-3.351	1.00	22.49	A
ATOM	69	CG1	VAL A	12	56.179	22.299	-4.789	1.00	19.44	A
ATOM	70	CG2	VAL A	12	57.549	21.960	-2.759	1.00	27.30	A
ATOM	71	C	VAL A	12	54.862	21.951	-1.197	1.00	23.00	A
ATOM	72	O	VAL A	12	55.469	22.328	-0.191	1.00	27.31	A
ATOM	73	N	ILE A	13	53.860	21.081	-1.149	1.00	20.40	A
ATOM	74	CA	ILE A	13	53.558	20.363	0.082	1.00	19.37	A
ATOM	75	CB	ILE A	13	52.163	20.686	0.673	1.00	16.80	A
ATOM	76	CG2	ILE A	13	52.088	22.156	1.072	1.00	20.19	A
ATOM	77	CG1	ILE A	13	51.037	20.278	-0.275	1.00	20.41	A
ATOM	78	CD1	ILE A	13	49.661	20.318	0.366	1.00	10.24	A
ATOM	79	C	ILE A	13	53.720	18.870	-0.116	1.00	23.25	A

ATOM	80	O	ILE	A	13	53.701	18.376	-1.243	1.00	30.02	A
ATOM	81	N	GLN	A	14	53.881	18.150	0.983	1.00	24.63	A
ATOM	82	CA	GLN	A	14	54.067	16.712	0.917	1.00	23.15	A
ATOM	83	CB	GLN	A	14	55.554	16.387	0.950	1.00	18.82	A
ATOM	84	CG	GLN	A	14	55.884	14.907	0.848	1.00	27.43	A
ATOM	85	CD	GLN	A	14	57.294	14.574	1.301	1.00	32.61	A
ATOM	86	OE1	GLN	A	14	57.571	13.435	1.651	1.00	38.93	A
ATOM	87	NE2	GLN	A	14	58.190	15.559	1.295	1.00	26.84	A
ATOM	88	C	GLN	A	14	53.396	16.036	2.089	1.00	25.54	A
ATOM	89	O	GLN	A	14	53.544	16.469	3.230	1.00	27.20	A
ATOM	90	N	THR	A	15	52.652	14.977	1.795	1.00	26.19	A
ATOM	91	CA	THR	A	15	52.003	14.190	2.832	1.00	25.06	A
ATOM	92	CB	THR	A	15	50.508	14.404	2.887	1.00	19.72	A
ATOM	93	OG1	THR	A	15	50.241	15.790	3.097	1.00	24.28	A
ATOM	94	CG2	THR	A	15	49.916	13.602	4.036	1.00	20.03	A
ATOM	95	C	THR	A	15	52.302	12.744	2.517	1.00	24.30	A
ATOM	96	O	THR	A	15	51.807	12.202	1.521	1.00	27.68	A
ATOM	97	N	SER	A	16	53.118	12.137	3.369	1.00	18.72	A
ATOM	98	CA	SER	A	16	53.507	10.762	3.185	1.00	22.71	A
ATOM	99	CB	SER	A	16	55.025	10.651	3.087	1.00	20.77	A
ATOM	100	OG	SER	A	16	55.504	11.334	1.944	1.00	26.37	A
ATOM	101	C	SER	A	16	52.941	9.852	4.259	1.00	25.87	A
ATOM	102	O	SER	A	16	53.372	9.874	5.412	1.00	25.30	A
ATOM	103	N	SER	A	17	51.945	9.068	3.862	1.00	28.31	A
ATOM	104	CA	SER	A	17	51.289	8.128	4.749	1.00	32.91	A
ATOM	105	CB	SER	A	17	49.813	8.000	4.367	1.00	31.41	A
ATOM	106	OG	SER	A	17	49.201	9.275	4.266	1.00	39.90	A
ATOM	107	C	SER	A	17	51.985	6.765	4.677	1.00	37.46	A
ATOM	108	O	SER	A	17	52.086	6.161	3.597	1.00	39.16	A
ATOM	109	N	PHE	A	18	52.518	6.330	5.820	1.00	36.30	A
ATOM	110	CA	PHE	A	18	53.200	5.041	5.944	1.00	35.20	A
ATOM	111	CB	PHE	A	18	54.518	5.197	6.706	1.00	34.82	A
ATOM	112	CG	PHE	A	18	55.566	5.943	5.949	1.00	34.59	A
ATOM	113	CD1	PHE	A	18	55.631	7.340	6.007	1.00	34.76	A
ATOM	114	CD2	PHE	A	18	56.482	5.256	5.144	1.00	37.46	A
ATOM	115	CE1	PHE	A	18	56.597	8.055	5.265	1.00	31.54	A
ATOM	116	CE2	PHE	A	18	57.459	5.956	4.388	1.00	38.15	A
ATOM	117	CZ	PHE	A	18	57.512	7.365	4.453	1.00	33.75	A

ATOM	118	C	PHE A	18	52.274	4.131	6.721	1.00	34.41	A
ATOM	119	O	PHE A	18	52.008	4.386	7.894	1.00	36.11	A
ATOM	120	N	THR A	19	51.768	3.090	6.063	1.00	34.93	A
ATOM	121	CA	THR A	19	50.842	2.156	6.704	1.00	36.53	A
ATOM	122	CB	THR A	19	49.795	1.634	5.713	1.00	36.14	A
ATOM	123	OG1	THR A	19	49.468	2.672	4.780	1.00	42.02	A
ATOM	124	CG2	THR A	19	48.524	1.229	6.439	1.00	30.45	A
ATOM	125	C	THR A	19	51.603	1.007	7.352	1.00	36.28	A
ATOM	126	O	THR A	19	51.368	0.688	8.522	1.00	39.62	A
ATOM	127	N	ASN A	20	52.486	0.378	6.581	1.00	36.11	A
ATOM	128	CA	ASN A	20	53.330	-0.710	7.081	1.00	34.84	A
ATOM	129	CB	ASN A	20	52.685	-2.111	6.917	1.00	28.80	A
ATOM	130	CG	ASN A	20	52.525	-2.548	5.462	1.00	37.54	A
ATOM	131	OD1	ASN A	20	53.505	-2.692	4.718	1.00	34.12	A
ATOM	132	ND2	ASN A	20	51.280	-2.783	5.055	1.00	37.94	A
ATOM	133	C	ASN A	20	54.734	-0.625	6.475	1.00	34.18	A
ATOM	134	O	ASN A	20	55.043	0.286	5.696	1.00	29.48	A
ATOM	135	N	SER A	21	55.570	-1.585	6.854	1.00	36.12	A
ATOM	136	CA	SER A	21	56.963	-1.698	6.421	1.00	37.11	A
ATOM	137	CB	SER A	21	57.554	-2.989	6.999	1.00	41.05	A
ATOM	138	OG	SER A	21	56.779	-4.123	6.617	1.00	42.43	A
ATOM	139	C	SER A	21	57.230	-1.634	4.909	1.00	36.16	A
ATOM	140	O	SER A	21	58.320	-1.239	4.489	1.00	32.71	A
ATOM	141	N	THR A	22	56.235	-2.004	4.100	1.00	36.32	A
ATOM	142	CA	THR A	22	56.366	-2.004	2.636	1.00	35.08	A
ATOM	143	CB	THR A	22	56.540	-3.445	2.087	1.00	35.28	A
ATOM	144	OG1	THR A	22	55.522	-4.300	2.631	1.00	36.30	A
ATOM	145	CG2	THR A	22	57.914	-3.991	2.429	1.00	33.55	A
ATOM	146	C	THR A	22	55.198	-1.325	1.903	1.00	34.93	A
ATOM	147	O	THR A	22	54.998	-1.540	0.705	1.00	31.22	A
ATOM	148	N	TRP A	23	54.431	-0.518	2.631	1.00	37.09	A
ATOM	149	CA	TRP A	23	53.300	0.213	2.066	1.00	41.06	A
ATOM	150	CB	TRP A	23	51.970	-0.374	2.573	1.00	41.78	A
ATOM	151	CG	TRP A	23	50.665	0.216	2.033	1.00	45.59	A
ATOM	152	CD2	TRP A	23	49.344	-0.238	2.343	1.00	49.47	A
ATOM	153	CE2	TRP A	23	48.436	0.599	1.637	1.00	52.81	A
ATOM	154	CE3	TRP A	23	48.830	-1.271	3.154	1.00	50.06	A
ATOM	155	CD1	TRP A	23	50.506	1.277	1.170	1.00	46.82	A

ATOM	156	NE1	TRP	A	23	49.179	1.508	0.932	1.00	51.30	A
ATOM	157	CZ2	TRP	A	23	47.028	0.435	1.717	1.00	55.37	A
ATOM	158	CZ3	TRP	A	23	47.422	-1.438	3.237	1.00	52.91	A
ATOM	159	CH2	TRP	A	23	46.542	-0.581	2.518	1.00	53.45	A
ATOM	160	C	TRP	A	23	53.454	1.669	2.486	1.00	42.53	A
ATOM	161	O	TRP	A	23	53.349	1.996	3.671	1.00	46.10	A
ATOM	162	N	ALA	A	24	53.616	2.534	1.484	1.00	42.53	A
ATOM	163	CA	ALA	A	24	53.784	3.973	1.683	1.00	42.34	A
ATOM	164	CB	ALA	A	24	55.256	4.300	1.874	1.00	37.91	A
ATOM	165	C	ALA	A	24	53.243	4.771	0.507	1.00	41.77	A
ATOM	166	O	ALA	A	24	53.624	4.510	-0.637	1.00	44.84	A
ATOM	167	N	GLN	A	25	52.334	5.710	0.774	1.00	39.63	A
ATOM	168	CA	GLN	A	25	51.794	6.561	-0.291	1.00	39.88	A
ATOM	169	CB	GLN	A	25	50.272	6.363	-0.506	1.00	42.62	A
ATOM	170	CG	GLN	A	25	49.330	6.644	0.687	1.00	55.15	A
ATOM	171	CD	GLN	A	25	49.034	5.414	1.563	1.00	58.69	A
ATOM	172	OE1	GLN	A	25	47.926	4.861	1.530	1.00	51.04	A
ATOM	173	NE2	GLN	A	25	50.013	5.010	2.375	1.00	56.05	A
ATOM	174	C	GLN	A	25	52.169	8.019	-0.024	1.00	36.89	A
ATOM	175	O	GLN	A	25	52.297	8.427	1.131	1.00	35.60	A
ATOM	176	N	THR	A	26	52.431	8.763	-1.096	1.00	34.48	A
ATOM	177	CA	THR	A	26	52.818	10.174	-1.014	1.00	31.30	A
ATOM	178	CB	THR	A	26	54.271	10.376	-1.503	1.00	31.28	A
ATOM	179	OG1	THR	A	26	55.154	9.558	-0.729	1.00	42.52	A
ATOM	180	CG2	THR	A	26	54.721	11.830	-1.373	1.00	29.92	A
ATOM	181	C	THR	A	26	51.881	11.046	-1.854	1.00	31.08	A
ATOM	182	O	THR	A	26	51.505	10.676	-2.971	1.00	30.88	A
ATOM	183	N	GLN	A	27	51.498	12.191	-1.291	1.00	27.71	A
ATOM	184	CA	GLN	A	27	50.621	13.146	-1.963	1.00	29.08	A
ATOM	185	CB	GLN	A	27	49.259	13.236	-1.269	1.00	27.62	A
ATOM	186	CG	GLN	A	27	48.345	12.047	-1.489	1.00	27.61	A
ATOM	187	CD	GLN	A	27	47.290	11.939	-0.411	1.00	33.82	A
ATOM	188	OE1	GLN	A	27	46.172	12.430	-0.569	1.00	33.82	A
ATOM	189	NE2	GLN	A	27	47.648	11.305	0.707	1.00	39.62	A
ATOM	190	C	GLN	A	27	51.297	14.504	-1.948	1.00	29.47	A
ATOM	191	O	GLN	A	27	51.757	14.961	-0.896	1.00	34.18	A
ATOM	192	N	GLY	A	28	51.364	15.133	-3.120	1.00	27.21	A
ATOM	193	CA	GLY	A	28	51.997	16.437	-3.243	1.00	24.49	A

ATOM	194	C	GLY A	28	51.227	17.401	-4.119	1.00	21.22	A
ATOM	195	O	GLY A	28	50.300	16.989	-4.827	1.00	19.53	A
ATOM	196	N	SER A	29	51.596	18.681	-4.044	1.00	20.10	A
ATOM	197	CA	SER A	29	50.966	19.763	-4.823	1.00	23.73	A
ATOM	198	CB	SER A	29	49.494	19.965	-4.419	1.00	21.25	A
ATOM	199	OG	SER A	29	49.365	20.035	-3.014	1.00	15.47	A
ATOM	200	C	SER A	29	51.707	21.085	-4.656	1.00	22.87	A
ATOM	201	O	SER A	29	52.344	21.314	-3.626	1.00	23.19	A
ATOM	202	N	GLY A	30	51.597	21.947	-5.667	1.00	19.65	A
ATOM	203	CA	GLY A	30	52.230	23.259	-5.636	1.00	20.83	A
ATOM	204	C	GLY A	30	51.175	24.335	-5.439	1.00	21.10	A
ATOM	205	O	GLY A	30	50.117	24.324	-6.080	1.00	21.74	A
ATOM	206	N	TRP A	31	51.450	25.248	-4.516	1.00	18.57	A
ATOM	207	CA	TRP A	31	50.514	26.309	-4.174	1.00	19.43	A
ATOM	208	CB	TRP A	31	50.027	26.148	-2.712	1.00	21.34	A
ATOM	209	CG	TRP A	31	49.475	24.786	-2.379	1.00	26.45	A
ATOM	210	CD2	TRP A	31	48.095	24.422	-2.276	1.00	31.52	A
ATOM	211	CE2	TRP A	31	48.043	23.004	-2.195	1.00	32.06	A
ATOM	212	CE3	TRP A	31	46.890	25.150	-2.252	1.00	32.10	A
ATOM	213	CD1	TRP A	31	50.181	23.614	-2.305	1.00	25.22	A
ATOM	214	NE1	TRP A	31	49.332	22.546	-2.217	1.00	28.18	A
ATOM	215	CZ2	TRP A	31	46.825	22.293	-2.104	1.00	34.27	A
ATOM	216	CZ3	TRP A	31	45.663	24.440	-2.154	1.00	37.09	A
ATOM	217	CH2	TRP A	31	45.649	23.024	-2.086	1.00	35.19	A
ATOM	218	C	TRP A	31	51.141	27.677	-4.308	1.00	19.94	A
ATOM	219	O	TRP A	31	52.351	27.828	-4.247	1.00	21.30	A
ATOM	220	N	LEU A	32	50.275	28.673	-4.441	1.00	20.78	A
ATOM	221	CA	LEU A	32	50.630	30.081	-4.529	1.00	16.90	A
ATOM	222	CB	LEU A	32	50.275	30.605	-5.915	1.00	18.29	A
ATOM	223	CG	LEU A	32	51.259	31.474	-6.701	1.00	23.71	A
ATOM	224	CD1	LEU A	32	52.682	30.932	-6.676	1.00	21.52	A
ATOM	225	CD2	LEU A	32	50.765	31.531	-8.132	1.00	22.17	A
ATOM	226	C	LEU A	32	49.648	30.552	-3.473	1.00	19.67	A
ATOM	227	O	LEU A	32	48.444	30.663	-3.747	1.00	21.65	A
ATOM	228	N	ASP A	33	50.151	30.690	-2.239	1.00	19.38	A
ATOM	229	CA	ASP A	33	49.357	31.014	-1.039	1.00	21.87	A
ATOM	230	CB	ASP A	33	48.649	32.384	-1.125	1.00	33.13	A
ATOM	231	CG	ASP A	33	49.531	33.557	-0.668	1.00	43.30	A

ATOM	232	OD1	ASP A	33	50.773	33.499	-0.838	1.00	41.40	A
ATOM	233	OD2	ASP A	33	48.959	34.574	-0.185	1.00	45.82	A
ATOM	234	C	ASP A	33	48.355	29.847	-0.862	1.00	21.96	A
ATOM	235	O	ASP A	33	48.759	28.688	-0.941	1.00	23.78	A
ATOM	236	N	ASP A	34	47.059	30.135	-0.769	1.00	22.58	A
ATOM	237	CA	ASP A	34	46.046	29.092	-0.596	1.00	25.32	A
ATOM	238	CB	ASP A	34	44.837	29.640	0.162	1.00	30.12	A
ATOM	239	CG	ASP A	34	45.183	30.204	1.525	1.00	39.55	A
ATOM	240	OD1	ASP A	34	46.380	30.430	1.829	1.00	45.91	A
ATOM	241	OD2	ASP A	34	44.229	30.435	2.297	1.00	44.80	A
ATOM	242	C	ASP A	34	45.549	28.527	-1.924	1.00	27.43	A
ATOM	243	O	ASP A	34	44.794	27.550	-1.944	1.00	29.35	A
ATOM	244	N	LEU A	35	45.971	29.142	-3.028	1.00	28.35	A
ATOM	245	CA	LEU A	35	45.554	28.740	-4.376	1.00	24.26	A
ATOM	246	CB	LEU A	35	45.525	29.970	-5.288	1.00	26.06	A
ATOM	247	CG	LEU A	35	44.494	31.110	-5.186	1.00	28.65	A
ATOM	248	CD1	LEU A	35	43.653	31.123	-3.914	1.00	23.81	A
ATOM	249	CD2	LEU A	35	45.234	32.423	-5.364	1.00	22.54	A
ATOM	250	C	LEU A	35	46.473	27.693	-4.976	1.00	23.33	A
ATOM	251	O	LEU A	35	47.688	27.894	-5.052	1.00	24.55	A
ATOM	252	N	GLN A	36	45.881	26.591	-5.424	1.00	19.62	A
ATOM	253	CA	GLN A	36	46.631	25.485	-6.019	1.00	19.24	A
ATOM	254	CB	GLN A	36	45.846	24.178	-5.860	1.00	18.97	A
ATOM	255	CG	GLN A	36	46.697	22.932	-5.920	1.00	16.44	A
ATOM	256	CD	GLN A	36	45.896	21.641	-5.926	1.00	22.38	A
ATOM	257	OE1	GLN A	36	44.738	21.593	-5.485	1.00	25.72	A
ATOM	258	NE2	GLN A	36	46.520	20.573	-6.424	1.00	12.75	A
ATOM	259	C	GLN A	36	46.908	25.722	-7.491	1.00	17.93	A
ATOM	260	O	GLN A	36	46.011	26.113	-8.234	1.00	22.05	A
ATOM	261	N	ILE A	37	48.157	25.505	-7.895	1.00	19.94	A
ATOM	262	CA	ILE A	37	48.571	25.657	-9.289	1.00	21.88	A
ATOM	263	CB	ILE A	37	49.543	26.834	-9.505	1.00	21.23	A
ATOM	264	CG2	ILE A	37	48.791	28.148	-9.339	1.00	18.65	A
ATOM	265	CG1	ILE A	37	50.742	26.747	-8.555	1.00	25.37	A
ATOM	266	CD1	ILE A	37	51.782	27.836	-8.766	1.00	27.96	A
ATOM	267	C	ILE A	37	49.161	24.360	-9.833	1.00	26.85	A
ATOM	268	O	ILE A	37	49.161	24.134	-11.048	1.00	32.79	A
ATOM	269	N	HIS A	38	49.660	23.508	-8.937	1.00	26.00	A

ATOM	270	CA	HIS A	38	50.208	22.210	-9.335	1.00	26.02	A
ATOM	271	CB	HIS A	38	51.713	22.102	-9.092	1.00	23.62	A
ATOM	272	CG	HIS A	38	52.524	23.149	-9.772	1.00	23.24	A
ATOM	273	CD2	HIS A	38	52.845	23.322	-11.074	1.00	29.44	A
ATOM	274	ND1	HIS A	38	53.137	24.171	-9.084	1.00	26.10	A
ATOM	275	CE1	HIS A	38	53.805	24.928	-9.934	1.00	27.52	A
ATOM	276	NE2	HIS A	38	53.643	24.436	-11.148	1.00	34.86	A
ATOM	277	C	HIS A	38	49.548	21.061	-8.593	1.00	25.80	A
ATOM	278	O	HIS A	38	49.110	21.187	-7.451	1.00	27.91	A
ATOM	279	N	GLY A	39	49.480	19.937	-9.280	1.00	25.69	A
ATOM	280	CA	GLY A	39	48.930	18.728	-8.713	1.00	28.39	A
ATOM	281	C	GLY A	39	50.019	17.718	-8.985	1.00	28.37	A
ATOM	282	O	GLY A	39	50.924	17.980	-9.789	1.00	28.39	A
ATOM	283	N	TRP A	40	49.970	16.583	-8.306	1.00	27.04	A
ATOM	284	CA	TRP A	40	50.978	15.576	-8.525	1.00	28.49	A
ATOM	285	CB	TRP A	40	51.951	15.527	-7.347	1.00	23.71	A
ATOM	286	CG	TRP A	40	53.123	14.592	-7.537	1.00	29.17	A
ATOM	287	CD2	TRP A	40	54.304	14.829	-8.319	1.00	25.51	A
ATOM	288	CE2	TRP A	40	55.125	13.679	-8.193	1.00	26.58	A
ATOM	289	CE3	TRP A	40	54.756	15.904	-9.111	1.00	26.61	A
ATOM	290	CD1	TRP A	40	53.272	13.348	-6.990	1.00	27.10	A
ATOM	291	NE1	TRP A	40	54.465	12.794	-7.382	1.00	30.70	A
ATOM	292	CZ2	TRP A	40	56.382	13.569	-8.829	1.00	28.89	A
ATOM	293	CZ3	TRP A	40	56.014	15.798	-9.754	1.00	30.05	A
ATOM	294	CH2	TRP A	40	56.808	14.634	-9.603	1.00	29.31	A
ATOM	295	C	TRP A	40	50.349	14.230	-8.769	1.00	31.95	A
ATOM	296	O	TRP A	40	49.533	13.764	-7.971	1.00	33.56	A
ATOM	297	N	ASP A	41	50.737	13.620	-9.888	1.00	36.76	A
ATOM	298	CA	ASP A	41	50.253	12.299	-10.256	1.00	42.55	A
ATOM	299	CB	ASP A	41	50.038	12.186	-11.765	1.00	45.43	A
ATOM	300	CG	ASP A	41	49.187	10.989	-12.134	1.00	48.05	A
ATOM	301	OD1	ASP A	41	47.943	11.142	-12.173	1.00	46.59	A
ATOM	302	OD2	ASP A	41	49.765	9.898	-12.347	1.00	39.63	A
ATOM	303	C	ASP A	41	51.309	11.315	-9.791	1.00	45.00	A
ATOM	304	O	ASP A	41	52.296	11.074	-10.489	1.00	46.53	A
ATOM	305	N	SER A	42	51.075	10.773	-8.595	1.00	49.95	A
ATOM	306	CA	SER A	42	51.948	9.815	-7.900	1.00	52.11	A
ATOM	307	CB	SER A	42	51.285	9.381	-6.587	1.00	53.95	A

ATOM	308	OG	SER A	42	49.912	9.073	-6.790	1.00	58.24	A
ATOM	309	C	SERA	42	52.408	8.588	-8.682	1.00	51.65	A
ATOM	310	O	SERA	42	53.586	8.226	-8.614	1.00	49.09	A
ATOM	311	N	ASP A	43	51.482	7.997	-9.444	1.00	53.00	A
ATOM	312	CA	ASP A	43	51.735	6.807	-10.261	1.00	54.32	A
ATOM	313	CB	ASP A	43	50.417	6.220	-10.790	1.00	58.89	A
ATOM	314	CG	ASP A	43	49.625	5.468	-9.720	1.00	63.99	A
ATOM	315	OD1	ASP A	43	48.414	5.752	-9.569	1.00	66.57	A
ATOM	316	OD2	ASP A	43	50.200	4.580	-9.047	1.00	62.46	A
ATOM	317	C	ASP A	43	52.692	7.051	-11.426	1.00	53.67	A
ATOM	318	O	ASP A	43	53.673	6.318	-11.584	1.00	55.80	A
ATOM	319	N	SERA	44	52.419	8.089	-12.221	1.00	51.38	A
ATOM	320	CA	SERA	44	53.263	8.434	-13.374	1.00	49.75	A
ATOM	321	CB	SERA	44	52.475	9.256	-14.402	1.00	48.96	A
ATOM	322	OG	SERA	44	52.025	10.486	-13.860	1.00	45.82	A
ATOM	323	C	SERA	44	54.525	9.193	-12.960	1.00	48.86	A
ATOM	324	O	SERA	44	55.532	9.183	-13.680	1.00	49.87	A
ATOM	325	N	GLY A	45	54.448	9.838	-11.793	1.00	46.48	A
ATOM	326	CA	GLY A	45	55.552	10.616	-11.254	1.00	42.62	A
ATOM	327	C	GLY A	45	55.706	11.958	-11.945	1.00	40.45	A
ATOM	328	O	GLY A	45	56.814	12.495	-12.016	1.00	44.25	A
ATOM	329	N	THR A	46	54.596	12.506	-12.436	1.00	36.02	A
ATOM	330	CA	THR A	46	54.603	13.779	-13.153	1.00	36.84	A
ATOM	331	CB	THR A	46	54.251	13.586	-14.656	1.00	37.13	A
ATOM	332	OG1	THR A	46	53.091	12.758	-14.779	1.00	42.41	A
ATOM	333	CG2	THR A	46	55.408	12.963	-15.423	1.00	33.20	A
ATOM	334	C	THR A	46	53.656	14.819	-12.561	1.00	36.82	A
ATOM	335	O	THR A	46	52.687	14.476	-11.871	1.00	37.22	A
ATOM	336	N	ALA A	47	53.948	16.088	-12.851	1.00	33.38	A
ATOM	337	CA	ALA A	47	53.160	17.222	-12.373	1.00	32.35	A
ATOM	338	CB	ALA A	47	54.029	18.459	-12.320	1.00	31.49	A
ATOM	339	C	ALA A	47	51.921	17.485	-13.223	1.00	30.63	A
ATOM	340	O	ALA A	47	51.934	17.236	-14.433	1.00	34.77	A
ATOM	341	N	ILE A	48	50.830	17.889	-12.564	1.00	26.35	A
ATOM	342	CA	ILE A	48	49.566	18.219	-13.237	1.00	26.08	A
ATOM	343	CB	ILE A	48	48.347	17.552	-12.569	1.00	22.25	A
ATOM	344	CG2	ILE A	48	47.061	17.909	-13.326	1.00	25.64	A
ATOM	345	CG1	ILE A	48	48.522	16.035	-12.552	1.00	23.04	A

ATOM	346	CD1	ILE	A	48	47.518	15.307	-11.675	1.00	39.79	A
ATOM	347	C	ILE	A	48	49.450	19.737	-13.146	1.00	26.17	A
ATOM	348	O	ILE	A	48	49.288	20.287	-12.058	1.00	28.72	A
ATOM	349	N	PHE	A	49	49.531	20.398	-14.297	1.00	22.39	A
ATOM	350	CA	PHE	A	49	49.506	21.854	-14.366	1.00	22.56	A
ATOM	351	CB	PHE	A	49	50.401	22.300	-15.509	1.00	26.44	A
ATOM	352	CG	PHE	A	49	51.810	21.805	-15.393	1.00	27.04	A
ATOM	353	CD1	PHE	A	49	52.796	22.593	-14.753	1.00	27.59	A
ATOM	354	CD2	PHE	A	49	52.170	20.559	-15.935	1.00	18.96	A
ATOM	355	CE1	PHE	A	49	54.130	22.149	-14.657	1.00	21.93	A
ATOM	356	CE2	PHE	A	49	53.498	20.093	-15.851	1.00	23.82	A
ATOM	357	CZ	PHE	A	49	54.486	20.890	-15.212	1.00	25.58	A
ATOM	358	C	PHE	A	49	48.118	22.467	-14.473	1.00	24.09	A
ATOM	359	O	PHE	A	49	47.607	22.712	-15.572	1.00	25.99	A
ATOM	360	N	LEU	A	50	47.565	22.794	-13.306	1.00	22.89	A
ATOM	361	CA	LEU	A	50	46.218	23.338	-13.152	1.00	22.84	A
ATOM	362	CB	LEU	A	50	45.876	23.385	-11.664	1.00	23.67	A
ATOM	363	CG	LEU	A	50	45.426	22.126	-10.903	1.00	26.02	A
ATOM	364	CD1	LEU	A	50	45.733	20.811	-11.584	1.00	21.22	A
ATOM	365	CD2	LEU	A	50	46.053	22.163	-9.550	1.00	24.11	A
ATOM	366	C	LEU	A	50	45.850	24.662	-13.828	1.00	24.54	A
ATOM	367	O	LEU	A	50	44.664	24.971	-13.984	1.00	22.09	A
ATOM	368	N	LYS	A	51	46.857	25.454	-14.189	1.00	27.00	A
ATOM	369	CA	LYS	A	51	46.643	26.741	-14.866	1.00	30.20	A
ATOM	370	CB	LYS	A	51	46.887	27.906	-13.888	1.00	32.32	A
ATOM	371	CG	LYS	A	51	45.692	28.259	-12.967	1.00	36.44	A
ATOM	372	CD	LYS	A	51	44.456	28.883	-13.633	1.00	48.38	A
ATOM	373	CE	LYS	A	51	43.385	29.546	-12.748	1.00	50.72	A
ATOM	374	NZ	LYS	A	51	42.605	28.601	-11.889	1.00	50.70	A
ATOM	375	C	LYS	A	51	47.577	26.808	-16.094	1.00	30.57	A
ATOM	376	O	LYS	A	51	48.661	26.216	-16.070	1.00	32.04	A
ATOM	377	N	PRO	A	52	47.160	27.487	-17.198	1.00	30.66	A
ATOM	378	CD	PRO	A	52	45.858	28.134	-17.464	1.00	29.01	A
ATOM	379	CA	PRO	A	52	48.021	27.571	-18.395	1.00	28.53	A
ATOM	380	CB	PRO	A	52	47.116	28.265	-19.420	1.00	27.45	A
ATOM	381	CG	PRO	A	52	46.188	29.073	-18.582	1.00	27.63	A
ATOM	382	C	PRO	A	52	49.376	28.279	-18.228	1.00	26.79	A
ATOM	383	O	PRO	A	52	50.255	28.159	-19.077	1.00	29.65	A

ATOM	384	N	TRP A	53	49.541	28.967	-17.103	1.00	26.93	A
ATOM	385	CA	TRP A	53	50.768	29.685	-16.766	1.00	26.43	A
ATOM	386	CB	TRP A	53	50.453	31.152	-16.438	1.00	23.67	A
ATOM	387	CG	TRP A	53	49.229	31.380	-15.576	1.00	26.65	A
ATOM	388	CD2	TRP A	53	49.143	31.283	-14.147	1.00	26.26	A
ATOM	389	CE2	TRP A	53	47.799	31.590	-13.788	1.00	27.65	A
ATOM	390	CE3	TRP A	53	50.067	30.965	-13.128	1.00	24.31	A
ATOM	391	CD1	TRP A	53	47.975	31.730	-16.010	1.00	32.50	A
ATOM	392	NE1	TRP A	53	47.115	31.859	-14.943	1.00	32.77	A
ATOM	393	CZ2	TRP A	53	47.354	31.586	-12.447	1.00	27.82	A
ATOM	394	CZ3	TRP A	53	49.626	30.959	-11.790	1.00	25.87	A
ATOM	395	CH2	TRP A	53	48.275	31.270	-11.466	1.00	24.59	A
ATOM	396	C	TRP A	53	51.529	29.042	-15.597	1.00	29.07	A
ATOM	397	O	TRP A	53	52.473	29.641	-15.070	1.00	29.14	A
ATOM	398	N	SER A	54	51.113	27.833	-15.196	1.00	30.82	A
ATOM	399	CA	SER A	54	51.719	27.089	-14.080	1.00	30.95	A
ATOM	400	CB	SER A	54	50.968	25.788	-13.827	1.00	30.92	A
ATOM	401	OG	SER A	54	49.644	26.028	-13.404	1.00	34.23	A
ATOM	402	C	SER A	54	53.206	26.775	-14.206	1.00	32.42	A
ATOM	403	O	SER A	54	53.857	26.466	-13.211	1.00	29.96	A
ATOM	404	N	LYS A	55	53.734	26.850	-15.427	1.00	34.63	A
ATOM	405	CA	LYS A	55	55.149	26.588	-15.685	1.00	34.85	A
ATOM	406	CB	LYS A	55	55.365	26.147	-17.135	1.00	36.60	A
ATOM	407	CG	LYS A	55	55.048	24.696	-17.388	1.00	37.85	A
ATOM	408	CD	LYS A	55	55.214	24.191	-18.798	1.00	46.57	A
ATOM	409	CE	LYS A	55	55.034	22.696	-19.009	1.00	55.19	A
ATOM	410	NZ	LYS A	55	55.115	22.297	-20.446	1.00	60.80	A
ATOM	411	C	LYS A	55	56.015	27.805	-15.390	1.00	33.64	A
ATOM	412	O	LYS A	55	57.233	27.669	-15.217	1.00	32.78	A
ATOM	413	N	GLY A	56	55.381	28.980	-15.311	1.00	31.28	A
ATOM	414	CA	GLY A	56	56.101	30.224	-15.062	1.00	32.49	A
ATOM	415	C	GLY A	56	56.932	30.600	-16.275	1.00	33.62	A
ATOM	416	O	GLY A	56	56.446	30.483	-17.403	1.00	37.47	A
ATOM	417	N	ASN A	57	58.193	30.972	-16.053	1.00	33.65	A
ATOM	418	CA	ASN A	57	59.119	31.336	-17.137	1.00	35.23	A
ATOM	419	CB	ASN A	57	59.982	32.552	-16.733	1.00	35.75	A
ATOM	420	CG	ASN A	57	60.798	32.323	-15.446	1.00	42.66	A
ATOM	421	OD1	ASN A	57	60.438	31.505	-14.588	1.00	47.45	A

ATOM	422	ND2 ASN A	57	61.884	33.075	-15.301	1.00	41.36	A
ATOM	423	C ASN A	57	60.016	30.151	-17.540	1.00	36.02	A
ATOM	424	O ASN A	57	60.830	30.254	-18.471	1.00	38.00	A
ATOM	425	N PHE A	58	59.817	29.022	-16.858	1.00	35.33	A
ATOM	426	CA PHE A	58	60.591	27.796	-17.063	1.00	33.24	A
ATOM	427	CB PHE A	58	60.387	26.845	-15.870	1.00	30.04	A
ATOM	428	CG PHE A	58	61.118	27.257	-14.593	1.00	27.22	A
ATOM	429	CD1 PHE A	58	61.322	26.313	-13.572	1.00	24.65	A
ATOM	430	CD2 PHE A	58	61.612	28.567	-14.403	1.00	31.06	A
ATOM	431	CE1 PHE A	58	62.010	26.659	-12.373	1.00	25.87	A
ATOM	432	CE2 PHE A	58	62.302	28.933	-13.215	1.00	32.32	A
ATOM	433	CZ PHE A	58	62.502	27.975	-12.198	1.00	28.31	A
ATOM	434	C PHE A	58	60.348	27.047	-18.374	1.00	33.81	A
ATOM	435	O PHE A	58	59.234	27.048	-18.917	1.00	30.97	A
ATOM	436	N SER A	59	61.417	26.430	-18.879	1.00	34.53	A
ATOM	437	CA SER A	59	61.373	25.652	-20.117	1.00	36.87	A
ATOM	438	CB SER A	59	62.756	25.627	-20.792	1.00	34.39	A
ATOM	439	OG SER A	59	63.746	25.029	-19.970	1.00	33.57	A
ATOM	440	C SER A	59	60.894	24.229	-19.841	1.00	37.64	A
ATOM	441	O SER A	59	60.966	23.755	-18.703	1.00	37.74	A
ATOM	442	N ASP A	60	60.444	23.540	-20.891	1.00	41.01	A
ATOM	443	CA ASP A	60	59.961	22.165	-20.771	1.00	44.11	A
ATOM	444	CB ASP A	60	59.223	21.728	-22.041	1.00	44.15	A
ATOM	445	CG ASP A	60	57.860	22.403	-22.190	1.00	50.14	A
ATOM	446	OD1 ASP A	60	56.930	21.775	-22.751	1.00	46.97	A
ATOM	447	OD2 ASP A	60	57.712	23.565	-21.742	1.00	53.21	A
ATOM	448	C ASP A	60	61.061	21.172	-20.397	1.00	47.50	A
ATOM	449	O ASP A	60	60.770	20.022	-20.065	1.00	52.56	A
ATOM	450	N LYS A	61	62.310	21.650	-20.404	1.00	46.55	A
ATOM	451	CA LYS A	61	63.486	20.858	-20.045	1.00	45.99	A
ATOM	452	CB LYS A	61	64.716	21.354	-20.817	1.00	47.05	A
ATOM	453	CG LYS A	61	65.986	20.504	-20.638	1.00	50.16	A
ATOM	454	CD LYS A	61	67.333	21.112	-21.061	1.00	52.41	A
ATOM	455	CE LYS A	61	68.022	22.122	-20.130	1.00	53.07	A
ATOM	456	NZ LYS A	61	67.246	23.378	-19.872	1.00	52.88	A
ATOM	457	C LYS A	61	63.700	21.064	-18.550	1.00	47.10	A
ATOM	458	O LYS A	61	63.921	20.109	-17.800	1.00	47.19	A
ATOM	459	N GLU A	62	63.605	22.329	-18.139	1.00	48.52	A

ATOM	460	CA	GLU A	62	63.765	22.765	-16.748	1.00	50.03	A
ATOM	461	CB	GLU A	62	63.712	24.299	-16.683	1.00	51.72	A
ATOM	462	CG	GLU A	62	65.019	24.982	-16.321	1.00	54.69	A
ATOM	463	CD	GLU A	62	65.141	25.273	-14.829	1.00	56.68	A
ATOM	464	OE1	GLU A	62	65.521	24.361	-14.057	1.00	54.68	A
ATOM	465	OE2	GLU A	62	64.862	26.427	-14.433	1.00	55.36	A
ATOM	466	C	GLU A	62	62.676	22.176	-15.845	1.00	48.31	A
ATOM	467	O	GLU A	62	62.925	21.883	-14.673	1.00	45.31	A
ATOM	468	N	VAL A	63	61.486	21.983	-16.418	1.00	46.44	A
ATOM	469	CA	VAL A	63	60.353	21.426	-15.694	1.00	48.65	A
ATOM	470	CB	VAL A	63	58.988	21.913	-16.298	1.00	50.18	A
ATOM	471	CG1	VAL A	63	58.487	21.020	-17.435	1.00	56.61	A
ATOM	472	CG2	VAL A	63	57.956	22.008	-15.216	1.00	55.56	A
ATOM	473	C	VAL A	63	60.430	19.898	-15.601	1.00	48.16	A
ATOM	474	O	VAL A	63	59.912	19.305	-14.653	1.00	52.00	A
ATOM	475	N	ALA A	64	61.081	19.281	-16.589	1.00	46.68	A
ATOM	476	CA	ALA A	64	61.246	17.828	-16.640	1.00	43.64	A
ATOM	477	CB	ALA A	64	61.499	17.365	-18.069	1.00	42.27	A
ATOM	478	C	ALA A	64	62.389	17.403	-15.725	1.00	42.55	A
ATOM	479	O	ALA A	64	62.377	16.289	-15.200	1.00	42.31	A
ATOM	480	N	GLU A	65	63.354	18.310	-15.532	1.00	41.14	A
ATOM	481	CA	GLU A	65	64.515	18.088	-14.663	1.00	43.37	A
ATOM	482	CB	GLU A	65	65.518	19.231	-14.793	1.00	51.45	A
ATOM	483	CG	GLU A	65	66.480	19.148	-15.961	1.00	59.65	A
ATOM	484	CD	GLU A	65	67.345	20.397	-16.068	1.00	66.37	A
ATOM	485	OE1	GLU A	65	68.025	20.755	-15.073	1.00	65.18	A
ATOM	486	OE2	GLU A	65	67.329	21.031	-17.144	1.00	68.37	A
ATOM	487	C	GLU A	65	64.026	18.072	-13.229	1.00	41.80	A
ATOM	488	O	GLU A	65	64.432	17.230	-12.428	1.00	41.27	A
ATOM	489	N	LEU A	66	63.122	19.008	-12.946	1.00	39.24	A
ATOM	490	CA	LEU A	66	62.504	19.177	-11.639	1.00	36.80	A
ATOM	491	CB	LEU A	66	61.773	20.517	-11.581	1.00	36.44	A
ATOM	492	CG	LEU A	66	62.364	21.735	-10.851	1.00	35.92	A
ATOM	493	CD1	LEU A	66	63.892	21.816	-10.882	1.00	37.76	A
ATOM	494	CD2	LEU A	66	61.757	22.975	-11.473	1.00	34.23	A
ATOM	495	C	LEU A	66	61.553	18.031	-11.324	1.00	37.43	A
ATOM	496	O	LEU A	66	61.521	17.556	-10.184	1.00	37.77	A
ATOM	497	N	GLU A	67	60.831	17.553	-12.342	1.00	34.32	A

ATOM	498	CA	GLU A	67	59.908	16.428	-12.179	1.00	36.56	A
ATOM	499	CB	GLU A	67	59.139	16.144	-13.468	1.00	37.42	A
ATOM	500	CG	GLU A	67	57.838	16.922	-13.608	1.00	44.50	A
ATOM	501	CD	GLU A	67	57.053	16.565	-14.867	1.00	49.51	A
ATOM	502	OE1	GLU A	67	57.662	16.080	-15.846	1.00	56.45	A
ATOM	503	OE2	GLU A	67	55.819	16.773	-14.880	1.00	46.41	A
ATOM	504	C	GLU A	67	60.688	15.182	-11.765	1.00	36.65	A
ATOM	505	O	GLU A	67	60.279	14.471	-10.849	1.00	37.62	A
ATOM	506	N	GLU A	68	61.871	15.021	-12.362	1.00	37.46	A
ATOM	507	CA	GLU A	68	62.780	13.903	-12.101	1.00	35.41	A
ATOM	508	CB	GLU A	68	63.921	13.909	-13.139	1.00	41.53	A
ATOM	509	CG	GLU A	68	65.021	12.830	-12.986	1.00	51.51	A
ATOM	510	CD	GLU A	68	64.582	11.432	-13.415	1.00	60.07	A
ATOM	511	OE1	GLU A	68	64.934	10.456	-12.716	1.00	60.31	A
ATOM	512	OE2	GLU A	68	63.907	11.304	-14.461	1.00	64.96	A
ATOM	513	C	GLU A	68	63.339	13.975	-10.676	1.00	32.78	A
ATOM	514	O	GLU A	68	63.377	12.957	-9.982	1.00	31.01	A
ATOM	515	N	ILE A	69	63.726	15.179	-10.235	1.00	29.36	A
ATOM	516	CA	ILE A	69	64.275	15.379	-8.886	1.00	27.87	A
ATOM	517	CB	ILE A	69	64.720	16.865	-8.637	1.00	25.09	A
ATOM	518	CG2	ILE A	69	64.959	17.149	-7.103	1.00	4.18	A
ATOM	519	CG1	ILE A	69	65.972	17.172	-9.471	1.00	17.65	A
ATOM	520	CD1	ILE A	69	66.419	18.638	-9.426	1.00	12.90	A
ATOM	521	C	ILE A	69	63.272	14.951	-7.811	1.00	30.63	A
ATOM	522	O	ILE A	69	63.620	14.170	-6.926	1.00	31.56	A
ATOM	523	N	PHE A	70	62.033	15.431	-7.934	1.00	31.07	A
ATOM	524	CA	PHE A	70	60.971	15.114	-6.984	1.00	30.26	A
ATOM	525	CB	PHE A	70	59.733	15.984	-7.226	1.00	24.78	A
ATOM	526	CG	PHE A	70	59.929	17.443	-6.898	1.00	25.92	A
ATOM	527	CD1	PHE A	70	60.405	17.845	-5.635	1.00	27.00	A
ATOM	528	CD2	PHE A	70	59.619	18.434	-7.849	1.00	25.49	A
ATOM	529	CE1	PHE A	70	60.573	19.228	-5.319	1.00	20.57	A
ATOM	530	CE2	PHE A	70	59.781	19.818	-7.553	1.00	16.36	A
ATOM	531	CZ	PHE A	70	60.258	20.212	-6.286	1.00	19.13	A
ATOM	532	C	PHE A	70	60.592	13.637	-7.030	1.00	34.35	A
ATOM	533	O	PHE A	70	60.393	13.020	-5.982	1.00	34.59	A
ATOM	534	N	ARG A	71	60.587	13.063	-8.235	1.00	34.68	A
ATOM	535	CA	ARG A	71	60.244	11.653	-8.450	1.00	36.19	A

ATOM	536	CB	ARG A	71	60.217	11.345	-9.946	1.00	38.80	A
ATOM	537	CG	ARG A	71	59.550	10.046	-10.368	1.00	38.12	A
ATOM	538	CD	ARG A	71	59.881	9.571	-11.784	1.00	50.80	A
ATOM	539	NE	ARG A	71	59.743	10.646	-12.777	1.00	58.26	A
ATOM	540	CZ	ARG A	71	60.570	10.850	-13.801	1.00	58.51	A
ATOM	541	NH1	ARG A	71	60.352	11.861	-14.635	1.00	59.34	A
ATOM	542	NH2	ARG A	71	61.609	10.044	-13.999	1.00	61.88	A
ATOM	543	C	ARG A	71	61.229	10.721	-7.743	1.00	35.72	A
ATOM	544	O	ARG A	71	60.803	9.806	-7.039	1.00	37.91	A
ATOM	545	N	VAL A	72	62.532	10.985	-7.887	1.00	35.06	A
ATOM	546	CA	VAL A	72	63.545	10.153	-7.230	1.00	37.24	A
ATOM	547	CB	VAL A	72	64.988	10.271	-7.856	1.00	36.44	A
ATOM	548	CG1	VAL A	72	64.945	9.956	-9.347	1.00	33.54	A
ATOM	549	CG2	VAL A	72	65.629	11.631	-7.586	1.00	39.46	A
ATOM	550	C	VAL A	72	63.576	10.409	-5.731	1.00	36.23	A
ATOM	551	O	VAL A	72	63.908	9.507	-4.961	1.00	43.22	A
ATOM	552	N	TYR A	73	63.180	11.625	-5.335	1.00	35.97	A
ATOM	553	CA	TYR A	73	63.112	12.039	-3.928	1.00	33.09	A
ATOM	554	CB	TYR A	73	62.899	13.563	-3.805	1.00	25.52	A
ATOM	555	CG	TYR A	73	62.367	14.060	-2.466	1.00	25.43	A
ATOM	556	CD1	TYR A	73	63.203	14.146	-1.336	1.00	27.77	A
ATOM	557	CE1	TYR A	73	62.692	14.553	-0.068	1.00	30.79	A
ATOM	558	CD2	TYR A	73	61.004	14.399	-2.309	1.00	24.42	A
ATOM	559	CE2	TYR A	73	60.483	14.797	-1.050	1.00	28.72	A
ATOM	560	CZ	TYR A	73	61.331	14.869	0.063	1.00	33.24	A
ATOM	561	OH	TYR A	73	60.821	15.219	1.292	1.00	32.55	A
ATOM	562	C	TYR A	73	61.985	11.279	-3.240	1.00	32.50	A
ATOM	563	O	TYR A	73	62.205	10.686	-2.201	1.00	33.75	A
ATOM	564	N	ILE A	74	60.795	11.297	-3.842	1.00	35.01	A
ATOM	565	CA	ILE A	74	59.603	10.627	-3.309	1.00	34.53	A
ATOM	566	CB	ILE A	74	58.349	10.954	-4.187	1.00	33.84	A
ATOM	567	CG2	ILE A	74	57.216	9.939	-4.000	1.00	33.36	A
ATOM	568	CG1	ILE A	74	57.869	12.372	-3.845	1.00	30.81	A
ATOM	569	CD1	ILE A	74	56.926	12.992	-4.852	1.00	35.17	A
ATOM	570	C	ILE A	74	59.835	9.136	-3.114	1.00	35.24	A
ATOM	571	O	ILE A	74	59.363	8.561	-2.133	1.00	40.08	A
ATOM	572	N	PHE A	75	60.634	8.548	-4.003	1.00	36.16	A
ATOM	573	CA	PHE A	75	60.976	7.133	-3.922	1.00	36.37	A

ATOM	574	CB	PHE A	75	61.521	6.628	-5.263	1.00	34.03	A
ATOM	575	CG	PHE A	75	61.843	5.153	-5.281	1.00	38.00	A
ATOM	576	CD1	PHE A	75	60.812	4.190	-5.235	1.00	40.60	A
ATOM	577	CD2	PHE A	75	63.182	4.715	-5.346	1.00	39.54	A
ATOM	578	CE1	PHE A	75	61.103	2.799	-5.251	1.00	36.67	A
ATOM	579	CE2	PHE A	75	63.498	3.330	-5.362	1.00	43.08	A
ATOM	580	CZ	PHE A	75	62.448	2.367	-5.314	1.00	43.83	A
ATOM	581	C	PHE A	75	62.019	6.940	-2.818	1.00	36.87	A
ATOM	582	O	PHE A	75	61.793	6.181	-1.877	1.00	38.17	A
ATOM	583	N	GLY A	76	63.126	7.674	-2.925	1.00	35.28	A
ATOM	584	CA	GLY A	76	64.214	7.580	-1.963	1.00	37.47	A
ATOM	585	C	GLY A	76	63.885	7.944	-0.527	1.00	38.49	A
ATOM	586	O	GLY A	76	64.480	7.392	0.390	1.00	35.98	A
ATOM	587	N	PHE A	77	62.928	8.860	-0.347	1.00	42.00	A
ATOM	588	CA	PHE A	77	62.463	9.329	0.966	1.00	41.35	A
ATOM	589	CB	PHE A	77	61.528	10.546	0.793	1.00	42.11	A
ATOM	590	CG	PHE A	77	60.925	11.061	2.074	1.00	44.91	A
ATOM	591	CD1	PHE A	77	59.570	10.808	2.383	1.00	47.44	A
ATOM	592	CD2	PHE A	77	61.700	11.798	2.981	1.00	44.57	A
ATOM	593	CE1	PHE A	77	58.997	11.288	3.590	1.00	46.70	A
ATOM	594	CE2	PHE A	77	61.146	12.283	4.188	1.00	43.47	A
ATOM	595	CZ	PHE A	77	59.794	12.029	4.492	1.00	43.90	A
ATOM	596	C	PHE A	77	61.717	8.179	1.623	1.00	40.59	A
ATOM	597	O	PHE A	77	62.019	7.799	2.753	1.00	39.33	A
ATOM	598	N	ALA A	78	60.765	7.622	0.879	1.00	38.87	A
ATOM	599	CA	ALA A	78	59.956	6.505	1.340	1.00	41.33	A
ATOM	600	CB	ALA A	78	58.917	6.165	0.307	1.00	36.32	A
ATOM	601	C	ALA A	78	60.813	5.281	1.654	1.00	42.29	A
ATOM	602	O	ALA A	78	60.686	4.702	2.726	1.00	42.44	A
ATOM	603	N	ARG A	79	61.784	5.011	0.781	1.00	43.99	A
ATOM	604	CA	ARG A	79	62.698	3.877	0.902	1.00	46.77	A
ATOM	605	CB	ARG A	79	63.634	3.829	-0.305	1.00	48.88	A
ATOM	606	CG	ARG A	79	63.999	2.431	-0.770	1.00	57.25	A
ATOM	607	CD	ARG A	79	65.422	2.220	-1.235	1.00	64.00	A
ATOM	608	NE	ARG A	79	66.343	2.166	-0.100	1.00	72.40	A
ATOM	609	CZ	ARG A	79	67.590	1.700	-0.151	1.00	74.97	A
ATOM	610	NH1	ARG A	79	68.100	1.241	-1.291	1.00	75.29	A
ATOM	611	NH2	ARG A	79	68.323	1.666	0.957	1.00	75.56	A

ATOM	612	C	ARG A	79	63.542	3.899	2.170	1.00	47.66	A
ATOM	613	O	ARG A	79	63.628	2.895	2.881	1.00	51.11	A
ATOM	614	N	GLU A	80	64.107	5.062	2.481	1.00	47.81	A
ATOM	615	CA	GLU A	80	64.965	5.192	3.650	1.00	48.17	A
ATOM	616	CB	GLU A	80	66.007	6.288	3.448	1.00	48.98	A
ATOM	617	CG	GLU A	80	66.846	6.153	2.162	1.00	55.96	A
ATOM	618	CD	GLU A	80	67.781	4.940	2.087	1.00	61.23	A
ATOM	619	OE1	GLU A	80	68.410	4.784	1.018	1.00	66.99	A
ATOM	620	OE2	GLU A	80	67.911	4.154	3.058	1.00	63.91	A
ATOM	621	C	GLU A	80	64.259	5.336	4.982	1.00	46.59	A
ATOM	622	O	GLU A	80	64.843	5.047	6.029	1.00	50.59	A
ATOM	623	N	VAL A	81	62.995	5.748	4.943	1.00	45.25	A
ATOM	624	CA	VAL A	81	62.197	5.877	6.159	1.00	41.69	A
ATOM	625	CB	VAL A	81	61.015	6.885	5.979	1.00	39.93	A
ATOM	626	CG1	VAL A	81	60.042	6.824	7.144	1.00	45.48	A
ATOM	627	CG2	VAL A	81	61.548	8.298	5.902	1.00	36.04	A
ATOM	628	C	VAL A	81	61.733	4.464	6.531	1.00	39.84	A
ATOM	629	O	VAL A	81	61.755	4.099	7.705	1.00	39.97	A
ATOM	630	N	GLN A	82	61.429	3.649	5.516	1.00	39.28	A
ATOM	631	CA	GLN A	82	60.998	2.264	5.726	1.00	39.46	A
ATOM	632	CB	GLN A	82	60.393	1.653	4.448	1.00	32.99	A
ATOM	633	CG	GLN A	82	59.118	2.342	3.915	1.00	30.48	A
ATOM	634	CD	GLN A	82	57.799	1.859	4.522	1.00	34.06	A
ATOM	635	OE1	GLN A	82	57.673	1.682	5.733	1.00	37.17	A
ATOM	636	NE2	GLN A	82	56.798	1.653	3.664	1.00	36.72	A
ATOM	637	C	GLN A	82	62.184	1.423	6.207	1.00	42.48	A
ATOM	638	O	GLN A	82	61.998	0.469	6.959	1.00	45.77	A
ATOM	639	N	ASP A	83	63.396	1.844	5.833	1.00	46.50	A
ATOM	640	CA	ASP A	83	64.648	1.174	6.215	1.00	50.17	A
ATOM	641	CB	ASP A	83	65.789	1.575	5.272	1.00	50.85	A
ATOM	642	CG	ASP A	83	66.010	0.587	4.140	1.00	55.35	A
ATOM	643	OD1	ASP A	83	67.003	0.774	3.402	1.00	58.87	A
ATOM	644	OD2	ASP A	83	65.218	-0.370	3.983	1.00	58.34	A
ATOM	645	C	ASP A	83	65.096	1.496	7.633	1.00	53.32	A
ATOM	646	O	ASP A	83	65.586	0.619	8.347	1.00	53.81	A
ATOM	647	N	PHE A	84	64.964	2.765	8.017	1.00	57.70	A
ATOM	648	CA	PHE A	84	65.381	3.218	9.340	1.00	62.33	A
ATOM	649	CB	PHE A	84	66.344	4.417	9.203	1.00	66.63	A

ATOM	650	CG	PHE A	84	67.710	4.063	8.635	1.00	75.65	A
ATOM	651	CD1	PHE A	84	68.369	4.959	7.769	1.00	75.83	A
ATOM	652	CD2	PHE A	84	68.360	2.845	8.980	1.00	81.57	A
ATOM	653	CE1	PHE A	84	69.663	4.663	7.244	1.00	78.46	A
ATOM	654	CE2	PHE A	84	69.657	2.524	8.468	1.00	82.65	A
ATOM	655	CZ	PHE A	84	70.310	3.439	7.596	1.00	83.43	A
ATOM	656	C	PHE A	84	64.247	3.512	10.337	1.00	62.70	A
ATOM	657	O	PHE A	84	64.417	4.293	11.275	1.00	63.61	A
ATOM	658	N	ALA A	85	63.126	2.807	10.187	1.00	63.58	A
ATOM	659	CA	ALA A	85	61.965	2.985	11.061	1.00	63.63	A
ATOM	660	CB	ALA A	85	60.723	2.418	10.401	1.00	63.01	A
ATOM	661	C	ALA A	85	62.155	2.382	12.455	1.00	63.97	A
ATOM	662	O	ALA A	85	61.819	3.019	13.459	1.00	65.00	A
ATOM	663	N	GLY A	86	62.715	1.170	12.503	1.00	63.10	A
ATOM	664	CA	GLY A	86	62.966	0.484	13.765	1.00	62.95	A
ATOM	665	C	GLY A	86	64.105	1.130	14.534	1.00	62.74	A
ATOM	666	O	GLY A	86	64.082	1.197	15.769	1.00	63.65	A
ATOM	667	N	ASP A	87	65.058	1.668	13.772	1.00	60.90	A
ATOM	668	CA	ASP A	87	66.247	2.361	14.268	1.00	61.29	A
ATOM	669	CB	ASP A	87	67.134	2.721	13.069	1.00	65.58	A
ATOM	670	CG	ASP A	87	68.609	2.807	13.416	1.00	70.27	A
ATOM	671	OD1	ASP A	87	69.358	1.880	13.025	1.00	69.62	A
ATOM	672	OD2	ASP A	87	69.022	3.810	14.045	1.00	74.83	A
ATOM	673	C	ASP A	87	65.834	3.643	15.006	1.00	61.43	A
ATOM	674	O	ASP A	87	66.458	4.030	15.999	1.00	61.11	A
ATOM	675	N	PHE A	88	64.757	4.265	14.520	1.00	60.87	A
ATOM	676	CA	PHE A	88	64.209	5.497	15.085	1.00	60.98	A
ATOM	677	CB	PHE A	88	63.778	6.442	13.961	1.00	56.87	A
ATOM	678	CG	PHE A	88	64.875	7.338	13.454	1.00	53.23	A
ATOM	679	CD1	PHE A	88	64.811	8.726	13.678	1.00	52.89	A
ATOM	680	CD2	PHE A	88	65.959	6.816	12.719	1.00	55.15	A
ATOM	681	CE1	PHE A	88	65.815	9.601	13.174	1.00	51.41	A
ATOM	682	CE2	PHE A	88	66.975	7.672	12.204	1.00	56.78	A
ATOM	683	CZ	PHE A	88	66.899	9.073	12.433	1.00	52.70	A
ATOM	684	C	PHE A	88	63.041	5.276	16.051	1.00	63.50	A
ATOM	685	O	PHE A	88	62.469	6.245	16.573	1.00	63.54	A
ATOM	686	N	GLN A	89	62.718	3.999	16.302	1.00	66.32	A
ATOM	687	CA	GLN A	89	61.637	3.549	17.207	1.00	68.79	A

ATOM	688	CB	GLN	A	89	61.926	3.959	18.673	1.00	69.83	A
ATOM	689	CG	GLN	A	89	63.246	3.454	19.273	1.00	71.35	A
ATOM	690	CD	GLN	A	89	63.767	4.375	20.374	1.00	74.27	A
ATOM	691	OE1	GLN	A	89	63.638	4.078	21.565	1.00	73.80	A
ATOM	692	NE2	GLN	A	89	64.346	5.507	19.974	1.00	72.15	A
ATOM	693	C	GLN	A	89	60.230	4.017	16.779	1.00	69.38	A
ATOM	694	O	GLN	A	89	59.361	4.289	17.620	1.00	70.94	A
ATOM	695	N	META	A	90	60.013	4.074	15.464	1.00	68.81	A
ATOM	696	CA	META	A	90	58.741	4.507	14.883	1.00	67.37	A
ATOM	697	CB	META	A	90	58.952	4.968	13.443	1.00	66.84	A
ATOM	698	CG	META	A	90	58.591	6.419	13.211	1.00	74.69	A
ATOM	699	SD	META	A	90	59.850	7.565	13.773	1.00	81.00	A
ATOM	700	CE	META	A	90	60.521	8.098	12.202	1.00	82.51	A
ATOM	701	C	META	A	90	57.641	3.444	14.923	1.00	65.59	A
ATOM	702	O	META	A	90	57.868	2.289	14.550	1.00	66.48	A
ATOM	703	N	LYS	A	91	56.451	3.859	15.361	1.00	62.53	A
ATOM	704	CA	LYS	A	91	55.284	2.979	15.471	1.00	59.12	A
ATOM	705	CB	LYS	A	91	54.563	3.249	16.802	1.00	62.98	A
ATOM	706	CG	LYS	A	91	53.544	2.201	17.242	1.00	66.84	A
ATOM	707	CD	LYS	A	91	54.077	0.926	17.888	1.00	72.59	A
ATOM	708	CE	LYS	A	91	53.043	-0.096	18.360	1.00	74.52	A
ATOM	709	NZ	LYS	A	91	53.672	-1.287	19.004	1.00	72.19	A
ATOM	710	C	LYS	A	91	54.324	3.203	14.294	1.00	55.82	A
ATOM	711	O	LYS	A	91	53.876	4.330	14.046	1.00	55.18	A
ATOM	712	N	TYR	A	92	54.030	2.122	13.572	1.00	52.34	A
ATOM	713	CA	TYR	A	92	53.123	2.149	12.419	1.00	48.10	A
ATOM	714	CB	TYR	A	92	53.412	0.964	11.486	1.00	46.79	A
ATOM	715	CG	TYR	A	92	54.704	1.060	10.712	1.00	47.00	A
ATOM	716	CD1	TYR	A	92	55.862	0.394	11.160	1.00	51.17	A
ATOM	717	CE1	TYR	A	92	57.083	0.445	10.417	1.00	51.06	A
ATOM	718	CD2	TYR	A	92	54.777	1.788	9.506	1.00	50.68	A
ATOM	719	CE2	TYR	A	92	55.993	1.847	8.749	1.00	48.91	A
ATOM	720	CZ	TYR	A	92	57.133	1.172	9.216	1.00	50.33	A
ATOM	721	OH	TYR	A	92	58.304	1.205	8.496	1.00	48.50	A
ATOM	722	C	TYR	A	92	51.651	2.106	12.875	1.00	45.73	A
ATOM	723	O	TYR	A	92	51.338	1.418	13.850	1.00	46.61	A
ATOM	724	N	PRO	A	93	50.740	2.874	12.221	1.00	43.23	A
ATOM	725	CD	PRO	A	93	49.304	2.600	12.448	1.00	43.06	A

ATOM	726	CA	PRO A	93	50.904	3.799	11.091	1.00	40.88	A
ATOM	727	CB	PRO A	93	49.546	3.722	10.402	1.00	39.73	A
ATOM	728	CG	PRO A	93	48.603	3.585	11.541	1.00	39.09	A
ATOM	729	C	PRO A	93	51.250	5.230	11.505	1.00	39.55	A
ATOM	730	O	PRO A	93	50.877	5.670	12.595	1.00	41.43	A
ATOM	731	N	PHE A	94	52.026	5.906	10.661	1.00	37.36	A
ATOM	732	CA	PHE A	94	52.423	7.291	10.895	1.00	35.81	A
ATOM	733	CB	PHE A	94	53.776	7.389	11.636	1.00	34.23	A
ATOM	734	CG	PHE A	94	54.954	6.824	10.882	1.00	35.49	A
ATOM	735	CD1	PHE A	94	55.308	5.478	11.026	1.00	38.42	A
ATOM	736	CD2	PHE A	94	55.760	7.657	10.072	1.00	36.72	A
ATOM	737	CE1	PHE A	94	56.465	4.960	10.373	1.00	41.53	A
ATOM	738	CE2	PHE A	94	56.916	7.159	9.412	1.00	30.49	A
ATOM	739	CZ	PHE A	94	57.271	5.812	9.562	1.00	38.18	A
ATOM	740	C	PHE A	94	52.433	8.104	9.602	1.00	34.52	A
ATOM	741	O	PHE A	94	52.487	7.540	8.501	1.00	32.15	A
ATOM	742	N	GLU A	95	52.398	9.428	9.756	1.00	33.60	A
ATOM	743	CA	GLU A	95	52.400	10.360	8.626	1.00	30.78	A
ATOM	744	CB	GLU A	95	51.047	11.040	8.448	1.00	29.21	A
ATOM	745	CG	GLU A	95	49.928	10.208	7.929	1.00	26.20	A
ATOM	746	CD	GLU A	95	48.789	11.080	7.490	1.00	34.03	A
ATOM	747	OE1	GLU A	95	48.274	11.837	8.349	1.00	26.49	A
ATOM	748	OE2	GLU A	95	48.444	11.036	6.284	1.00	29.13	A
ATOM	749	C	GLU A	95	53.413	11.476	8.762	1.00	30.16	A
ATOM	750	O	GLU A	95	53.485	12.162	9.793	1.00	28.48	A
ATOM	751	N	ILE A	96	54.168	11.676	7.689	1.00	30.01	A
ATOM	752	CA	ILE A	96	55.156	12.739	7.635	1.00	29.53	A
ATOM	753	CB	ILE A	96	56.534	12.238	7.134	1.00	29.31	A
ATOM	754	CG2	ILE A	96	57.516	13.405	7.053	1.00	27.43	A
ATOM	755	CG1	ILE A	96	57.073	11.157	8.087	1.00	28.60	A
ATOM	756	CD1	ILE A	96	58.436	10.585	7.732	1.00	26.61	A
ATOM	757	C	ILE A	96	54.588	13.810	6.710	1.00	29.44	A
ATOM	758	O	ILE A	96	53.901	13.499	5.738	1.00	31.67	A
ATOM	759	N	GLN A	97	54.786	15.067	7.093	1.00	29.92	A
ATOM	760	CA	GLN A	97	54.317	16.210	6.323	1.00	30.07	A
ATOM	761	CB	GLN A	97	53.196	16.933	7.059	1.00	24.15	A
ATOM	762	CG	GLN A	97	51.866	16.215	7.027	1.00	28.17	A
ATOM	763	CD	GLN A	97	50.838	16.859	7.926	1.00	25.45	A

ATOM	764	OE1	GLN	A	97	50.774	16.577	9.124	1.00	29.25	A
ATOM	765	NE2	GLN	A	97	49.996	17.701	7.347	1.00	25.16	A
ATOM	766	C	GLN	A	97	55.463	17.170	6.053	1.00	31.31	A
ATOM	767	O	GLN	A	97	56.395	17.270	6.851	1.00	34.20	A
ATOM	768	N	GLY	A	98	55.394	17.871	4.928	1.00	30.04	A
ATOM	769	CA	GLY	A	98	56.446	18.808	4.597	1.00	28.82	A
ATOM	770	C	GLY	A	98	56.045	19.899	3.637	1.00	28.41	A
ATOM	771	O	GLY	A	98	55.498	19.623	2.580	1.00	32.63	A
ATOM	772	N	ILE	A	99	56.339	21.137	4.016	1.00	25.60	A
ATOM	773	CA	ILE	A	99	56.043	22.315	3.216	1.00	24.72	A
ATOM	774	CB	ILE	A	99	55.041	23.247	3.971	1.00	27.96	A
ATOM	775	CG2	ILE	A	99	55.565	23.610	5.369	1.00	23.29	A
ATOM	776	CG1	ILE	A	99	54.717	24.495	3.150	1.00	28.31	A
ATOM	777	CD1	ILE	A	99	53.577	25.324	3.718	1.00	30.23	A
ATOM	778	C	ILE	A	99	57.384	23.003	2.940	1.00	28.54	A
ATOM	779	O	ILE	A	99	58.229	23.106	3.840	1.00	28.65	A
ATOM	780	N	ALA	A	100	57.596	23.418	1.690	1.00	30.10	A
ATOM	781	CA	ALA	A	100	58.842	24.088	1.284	1.00	28.30	A
ATOM	782	CB	ALA	A	100	59.881	23.087	0.899	1.00	19.21	A
ATOM	783	C	ALA	A	100	58.638	25.040	0.138	1.00	26.94	A
ATOM	784	O	ALA	A	100	57.976	24.702	-0.842	1.00	26.61	A
ATOM	785	N	GLY	A	101	59.249	26.213	0.255	1.00	26.88	A
ATOM	786	CA	GLY	A	101	59.137	27.220	-0.781	1.00	32.01	A
ATOM	787	C	GLY	A	101	59.791	28.536	-0.418	1.00	34.40	A
ATOM	788	O	GLY	A	101	60.599	28.593	0.512	1.00	38.68	A
ATOM	789	N	CYS	A	102	59.394	29.601	-1.112	1.00	31.93	A
ATOM	790	CA	CYS	A	102	59.948	30.933	-0.887	1.00	32.45	A
ATOM	791	C	CYS	A	102	58.894	32.021	-0.998	1.00	32.57	A
ATOM	792	O	CYS	A	102	57.792	31.754	-1.485	1.00	38.40	A
ATOM	793	CB	CYS	A	102	61.082	31.188	-1.877	1.00	35.88	A
ATOM	794	SG	CYS	A	102	60.652	30.848	-3.611	1.00	41.94	A
ATOM	795	N	GLU	A	103	59.206	33.223	-0.506	1.00	30.47	A
ATOM	796	CA	GLU	A	103	58.277	34.352	-0.589	1.00	35.43	A
ATOM	797	CB	GLU	A	103	57.302	34.397	0.591	1.00	41.19	A
ATOM	798	CG	GLU	A	103	57.889	34.552	1.972	1.00	54.77	A
ATOM	799	CD	GLU	A	103	56.827	34.822	3.028	1.00	60.58	A
ATOM	800	OE1	GLU	A	103	55.819	35.520	2.727	1.00	62.41	A
ATOM	801	OE2	GLU	A	103	57.018	34.344	4.166	1.00	59.23	A

ATOM	802	C	GLU A	103	58.891	35.726	-0.797	1.00	37.75	A
ATOM	803	O	GLU A	103	59.983	36.010	-0.317	1.00	37.34	A
ATOM	804	N	LEU A	104	58.147	36.586	-1.490	1.00	41.55	A
ATOM	805	CA	LEU A	104	58.577	37.951	-1.783	1.00	43.60	A
ATOM	806	CB	LEU A	104	58.004	38.432	-3.122	1.00	42.55	A
ATOM	807	CG	LEU A	104	58.893	38.972	-4.257	1.00	44.85	A
ATOM	808	CD1	LEU A	104	57.994	39.545	-5.336	1.00	41.06	A
ATOM	809	CD2	LEU A	104	59.885	40.040	-3.790	1.00	43.34	A
ATOM	810	C	LEU A	104	58.105	38.905	-0.715	1.00	46.07	A
ATOM	811	O	LEU A	104	56.961	38.822	-0.258	1.00	51.65	A
ATOM	812	N	HIS A	105	58.997	39.805	-0.320	1.00	48.58	A
ATOM	813	CA	HIS A	105	58.679	40.835	0.663	1.00	54.48	A
ATOM	814	CB	HIS A	105	59.670	40.817	1.822	1.00	56.41	A
ATOM	815	CG	HIS A	105	59.503	39.648	2.732	1.00	60.07	A
ATOM	816	CD2	HIS A	105	60.414	38.858	3.342	1.00	60.17	A
ATOM	817	ND1	HIS A	105	58.265	39.154	3.084	1.00	61.52	A
ATOM	818	CE1	HIS A	105	58.422	38.107	3.871	1.00	62.59	A
ATOM	819	NE2	HIS A	105	59.716	37.906	4.043	1.00	63.88	A
ATOM	820	C	HIS A	105	58.758	42.175	-0.034	1.00	56.45	A
ATOM	821	O	HIS A	105	59.337	42.277	-1.122	1.00	58.96	A
ATOM	822	N	SER A	106	58.153	43.196	0.572	1.00	57.09	A
ATOM	823	CA	SER A	106	58.198	44.544	0.015	1.00	56.68	A
ATOM	824	CB	SER A	106	57.167	45.463	0.695	1.00	56.74	A
ATOM	825	OG	SER A	106	57.282	45.445	2.107	1.00	62.72	A
ATOM	826	C	SER A	106	59.636	45.038	0.213	1.00	55.19	A
ATOM	827	O	SER A	106	60.214	44.889	1.300	1.00	53.43	A
ATOM	828	N	GLY A	107	60.240	45.471	-0.889	1.00	52.61	A
ATOM	829	CA	GLY A	107	61.614	45.939	-0.863	1.00	53.14	A
ATOM	830	C	GLY A	107	62.495	45.105	-1.778	1.00	51.00	A
ATOM	831	O	GLY A	107	63.619	45.510	-2.093	1.00	51.03	A
ATOM	832	N	GLY A	108	62.000	43.920	-2.149	1.00	46.61	A
ATOM	833	CA	GLY A	108	62.716	43.038	-3.052	1.00	39.17	A
ATOM	834	C	GLY A	108	63.260	41.736	-2.507	1.00	38.36	A
ATOM	835	O	GLY A	108	63.538	40.826	-3.287	1.00	36.01	A
ATOM	836	N	ALA A	109	63.403	41.631	-1.186	1.00	38.11	A
ATOM	837	CA	ALA A	109	63.951	40.427	-0.549	1.00	39.48	A
ATOM	838	CB	ALA A	109	64.340	40.733	0.881	1.00	37.77	A
ATOM	839	C	ALA A	109	63.071	39.167	-0.605	1.00	40.37	A

ATOM 840 O ALA A 109 61.843 39.242 -0.484 1.00 42.68 A
 ATOM 841 N ILE A 110 63.714 38.024 -0.853 1.00 39.57 A
 ATOM 842 CA ILE A 110 63.036 36.729 -0.933 1.00 37.15 A
 ATOM 843 CB ILE A 110 63.140 36.093 -2.369 1.00 36.13 A
 ATOM 844 CG2 ILE A 110 62.789 34.574 -2.363 1.00 20.04 A
 ATOM 845 CG1 ILE A 110 62.214 36.860 -3.313 1.00 39.63 A
 ATOM 846 CD1 ILE A 110 62.156 36.359 -4.722 1.00 43.41 A
 ATOM 847 C ILE A 110 63.531 35.744 0.119 1.00 38.19 A
 ATOM 848 O ILE A 110 64.646 35.226 0.016 1.00 41.20 A
 ATOM 849 N VAL A 111 62.686 35.462 1.108 1.00 36.80 A
 ATOM 850 CA VAL A 111 63.053 34.504 2.142 1.00 40.08 A
 ATOM 851 CB VAL A 111 62.637 34.952 3.587 1.00 41.09 A
 ATOM 852 CG1 VAL A 111 63.309 36.261 3.942 1.00 43.70 A
 ATOM 853 CG2 VAL A 111 61.135 35.073 3.739 1.00 46.35 A
 ATOM 854 C VAL A 111 62.512 33.112 1.811 1.00 38.90 A
 ATOM 855 O VAL A 111 61.375 32.965 1.362 1.00 38.23 A
 ATOM 856 N SER A 112 63.373 32.113 1.960 1.00 38.89 A
 ATOM 857 CA SER A 112 63.009 30.733 1.702 1.00 37.96 A
 ATOM 858 CB SER A 112 64.049 30.064 0.818 1.00 37.40 A
 ATOM 859 OG SER A 112 64.088 30.704 -0.437 1.00 34.96 A
 ATOM 860 C SER A 112 62.824 29.969 3.000 1.00 39.77 A
 ATOM 861 O SER A 112 63.412 30.323 4.029 1.00 43.08 A
 ATOM 862 N PHE A 113 61.995 28.928 2.942 1.00 36.88 A
 ATOM 863 CA PHE A 113 61.684 28.104 4.104 1.00 31.77 A
 ATOM 864 CB PHE A 113 60.396 28.628 4.783 1.00 34.40 A
 ATOM 865 CG PHE A 113 59.187 28.735 3.852 1.00 36.42 A
 ATOM 866 CD1 PHE A 113 58.234 27.697 3.780 1.00 35.27 A
 ATOM 867 CD2 PHE A 113 58.998 29.870 3.046 1.00 34.59 A
 ATOM 868 CE1 PHE A 113 57.115 27.784 2.917 1.00 33.07 A
 ATOM 869 CE2 PHE A 113 57.874 29.970 2.176 1.00 35.18 A
 ATOM 870 CZ PHE A 113 56.936 28.923 2.114 1.00 32.48 A
 ATOM 871 C PHE A 113 61.531 26.628 3.748 1.00 28.91 A
 ATOM 872 O PHE A 113 61.412 26.276 2.577 1.00 30.79 A
 ATOM 873 N LEU A 114 61.551 25.788 4.778 1.00 26.33 A
 ATOM 874 CA LEU A 114 61.354 24.340 4.676 1.00 28.66 A
 ATOM 875 CB LEU A 114 62.568 23.591 4.089 1.00 20.30 A
 ATOM 876 CG LEU A 114 62.393 22.106 3.685 1.00 21.77 A
 ATOM 877 CD1 LEU A 114 63.358 21.743 2.589 1.00 20.28 A

ATOM	878	CD2	LEU	A	114	62.540	21.119	4.830	1.00	15.65	A
ATOM	879	C	LEU	A	114	61.078	23.873	6.094	1.00	30.80	A
ATOM	880	O	LEU	A	114	61.902	24.054	6.983	1.00	35.00	A
ATOM	881	N	ARG	A	115	59.893	23.314	6.303	1.00	30.87	A
ATOM	882	CA	ARG	A	115	59.495	22.812	7.605	1.00	32.88	A
ATOM	883	CB	ARG	A	115	58.361	23.653	8.195	1.00	32.77	A
ATOM	884	CG	ARG	A	115	58.657	25.120	8.389	1.00	33.71	A
ATOM	885	CD	ARG	A	115	57.609	25.942	9.126	1.00	43.32	A
ATOM	886	NE	ARG	A	115	56.311	26.006	8.447	1.00	43.25	A
ATOM	887	CZ	ARG	A	115	55.996	26.871	7.480	1.00	46.73	A
ATOM	888	NH1	ARG	A	115	56.882	27.763	7.042	1.00	40.65	A
ATOM	889	NH2	ARG	A	115	54.771	26.862	6.968	1.00	46.80	A
ATOM	890	C	ARG	A	115	59.023	21.379	7.411	1.00	34.40	A
ATOM	891	O	ARG	A	115	58.375	21.077	6.411	1.00	39.15	A
ATOM	892	N	GLY	A	116	59.348	20.511	8.369	1.00	34.70	A
ATOM	893	CA	GLY	A	116	58.961	19.111	8.315	1.00	31.03	A
ATOM	894	C	GLY	A	116	58.137	18.741	9.530	1.00	32.35	A
ATOM	895	O	GLY	A	116	58.197	19.441	10.551	1.00	32.21	A
ATOM	896	N	ALA	A	117	57.386	17.639	9.432	1.00	32.66	A
ATOM	897	CA	ALA	A	117	56.522	17.178	10.523	1.00	32.27	A
ATOM	898	CB	ALA	A	117	55.171	17.814	10.415	1.00	31.04	A
ATOM	899	C	ALA	A	117	56.351	15.674	10.649	1.00	31.89	A
ATOM	900	O	ALA	A	117	56.522	14.939	9.684	1.00	32.81	A
ATOM	901	N	LEU	A	118	56.007	15.238	11.861	1.00	33.69	A
ATOM	902	CA	LEU	A	118	55.760	13.830	12.187	1.00	34.62	A
ATOM	903	CB	LEU	A	118	57.006	13.148	12.784	1.00	36.40	A
ATOM	904	CG	LEU	A	118	57.347	11.672	12.468	1.00	38.80	A
ATOM	905	CD1	LEU	A	118	58.376	11.188	13.485	1.00	36.06	A
ATOM	906	CD2	LEU	A	118	56.143	10.723	12.482	1.00	32.26	A
ATOM	907	C	LEU	A	118	54.648	13.830	13.226	1.00	31.64	A
ATOM	908	O	LEU	A	118	54.742	14.528	14.239	1.00	31.01	A
ATOM	909	N	GLY	A	119	53.593	13.068	12.940	1.00	30.37	A
ATOM	910	CA	GLY	A	119	52.444	12.960	13.822	1.00	33.48	A
ATOM	911	C	GLY	A	119	51.684	14.258	14.020	1.00	35.73	A
ATOM	912	O	GLY	A	119	51.033	14.432	15.043	1.00	41.06	A
ATOM	913	N	GLY	A	120	51.804	15.177	13.063	1.00	38.64	A
ATOM	914	CA	GLY	A	120	51.131	16.464	13.143	1.00	41.51	A
ATOM	915	C	GLY	A	120	51.853	17.514	13.966	1.00	45.51	A

ATOM	916	O	GLY A	120	51.332	18.618	14.176	1.00	46.49	A
ATOM	917	N	LEU A	121	53.044	17.156	14.444	1.00	47.22	A
ATOM	918	CA	LEU A	121	53.882	18.037	15.258	1.00	49.90	A
ATOM	919	CB	LEU A	121	54.215	17.364	16.599	1.00	52.33	A
ATOM	920	CG	LEU A	121	53.152	17.344	17.706	1.00	52.25	A
ATOM	921	CD1	LEU A	121	53.140	15.978	18.384	1.00	50.17	A
ATOM	922	CD2	LEU A	121	53.414	18.467	18.718	1.00	47.66	A
ATOM	923	C	LEU A	121	55.172	18.350	14.517	1.00	47.86	A
ATOM	924	O	LEU A	121	55.667	17.507	13.765	1.00	48.27	A
ATOM	925	N	ASP A	122	55.721	19.545	14.763	1.00	44.30	A
ATOM	926	CA	ASP A	122	56.972	20.005	14.146	1.00	43.54	A
ATOM	927	CB	ASP A	122	57.367	21.381	14.699	1.00	46.16	A
ATOM	928	CG	ASP A	122	56.525	22.520	14.135	1.00	49.57	A
ATOM	929	OD1	ASP A	122	56.507	22.701	12.897	1.00	56.93	A
ATOM	930	OD2	ASP A	122	55.917	23.266	14.934	1.00	47.52	A
ATOM	931	C	ASP A	122	58.132	19.024	14.372	1.00	41.88	A
ATOM	932	O	ASP A	122	58.265	18.450	15.454	1.00	41.96	A
ATOM	933	N	PHE A	123	58.915	18.781	13.328	1.00	38.01	A
ATOM	934	CA	PHE A	123	60.049	17.868	13.430	1.00	39.30	A
ATOM	935	CB	PHE A	123	59.874	16.720	12.436	1.00	37.69	A
ATOM	936	CG	PHE A	123	60.818	15.563	12.634	1.00	38.16	A
ATOM	937	CD1	PHE A	123	61.930	15.399	11.789	1.00	36.46	A
ATOM	938	CD2	PHE A	123	60.547	14.572	13.593	1.00	37.15	A
ATOM	939	CE1	PHE A	123	62.762	14.253	11.883	1.00	38.26	A
ATOM	940	CE2	PHE A	123	61.371	13.416	13.702	1.00	34.71	A
ATOM	941	CZ	PHE A	123	62.479	13.256	12.840	1.00	33.20	A
ATOM	942	C	PHE A	123	61.338	18.640	13.153	1.00	41.18	A
ATOM	943	O	PHE A	123	62.208	18.746	14.027	1.00	41.76	A
ATOM	944	N	LEU A	124	61.452	19.165	11.933	1.00	39.47	A
ATOM	945	CA	LEU A	124	62.623	19.925	11.531	1.00	37.86	A
ATOM	946	CB	LEU A	124	63.552	19.067	10.658	1.00	37.86	A
ATOM	947	CG	LEU A	124	63.128	18.577	9.272	1.00	35.92	A
ATOM	948	CD1	LEU A	124	63.601	19.534	8.196	1.00	42.21	A
ATOM	949	CD2	LEU A	124	63.756	17.245	9.029	1.00	29.54	A
ATOM	950	C	LEU A	124	62.257	21.219	10.830	1.00	37.59	A
ATOM	951	O	LEU A	124	61.100	21.453	10.498	1.00	38.71	A
ATOM	952	N	SER A	125	63.284	22.017	10.561	1.00	39.46	A
ATOM	953	CA	SER A	125	63.170	23.308	9.902	1.00	40.58	A

ATOM	954	CB	SER A	125	62.911	24.397	10.947	1.00	38.20	A
ATOM	955	OG	SER A	125	62.699	25.652	10.341	1.00	41.96	A
ATOM	956	C	SER A	125	64.506	23.556	9.214	1.00	42.84	A
ATOM	957	O	SER A	125	65.471	22.838	9.480	1.00	45.68	A
ATOM	958	N	VAL A	126	64.546	24.507	8.277	1.00	45.71	A
ATOM	959	CA	VAL A	126	65.786	24.863	7.565	1.00	46.68	A
ATOM	960	CB	VAL A	126	65.822	24.337	6.095	1.00	44.82	A
ATOM	961	CG1	VAL A	126	67.114	24.759	5.381	1.00	46.13	A
ATOM	962	CG2	VAL A	126	65.730	22.828	6.073	1.00	44.24	A
ATOM	963	C	VAL A	126	66.016	26.371	7.578	1.00	49.34	A
ATOM	964	O	VAL A	126	65.431	27.112	6.783	1.00	48.31	A
ATOM	965	N	LYS A	127	66.859	26.806	8.511	1.00	55.37	A
ATOM	966	CA	LYS A	127	67.229	28.211	8.664	1.00	61.29	A
ATOM	967	CB	LYS A	127	67.148	28.635	10.139	1.00	65.84	A
ATOM	968	CG	LYS A	127	65.722	28.865	10.643	1.00	71.18	A
ATOM	969	CD	LYS A	127	65.553	29.316	12.094	1.00	79.56	A
ATOM	970	CE	LYS A	127	64.257	30.046	12.466	1.00	81.93	A
ATOM	971	NZ	LYS A	127	63.020	29.252	12.203	1.00	80.68	A
ATOM	972	C	LYS A	127	68.643	28.379	8.090	1.00	62.83	A
ATOM	973	O	LYS A	127	69.634	27.931	8.687	1.00	64.45	A
ATOM	974	N	ASN A	128	68.704	29.034	6.925	1.00	62.59	A
ATOM	975	CA	ASN A	128	69.920	29.287	6.127	1.00	62.19	A
ATOM	976	CB	ASN A	128	70.574	30.679	6.389	1.00	64.94	A
ATOM	977	CG	ASN A	128	71.157	30.844	7.793	1.00	67.56	A
ATOM	978	OD1	ASN A	128	70.427	30.996	8.781	1.00	65.20	A
ATOM	979	ND2	ASN A	128	72.486	30.869	7.872	1.00	66.47	A
ATOM	980	C	ASN A	128	70.923	28.135	5.970	1.00	59.65	A
ATOM	981	O	ASN A	128	71.892	28.009	6.725	1.00	60.50	A
ATOM	982	N	ALA A	129	70.575	27.241	5.038	1.00	58.47	A
ATOM	983	CA	ALA A	129	71.336	26.040	4.645	1.00	59.27	A
ATOM	984	CB	ALA A	129	72.660	26.441	3.951	1.00	60.88	A
ATOM	985	C	ALA A	129	71.584	24.901	5.656	1.00	58.35	A
ATOM	986	O	ALA A	129	72.257	23.916	5.316	1.00	57.52	A
ATOM	987	N	SER A	130	71.028	25.009	6.865	1.00	56.81	A
ATOM	988	CA	SER A	130	71.214	23.972	7.890	1.00	56.31	A
ATOM	989	CB	SER A	130	72.271	24.402	8.922	1.00	57.81	A
ATOM	990	OG	SER A	130	72.007	25.695	9.435	1.00	63.87	A
ATOM	991	C	SER A	130	69.940	23.496	8.592	1.00	53.42	A

ATOM	992	O	SER A 130	69.006	24.276	8.809	1.00	51.34	A
ATOM	993	N	CYS A 131	69.945	22.207	8.954	1.00	51.05	A
ATOM	994	CA	CYS A 131	68.849	21.503	9.638	1.00	48.37	A
ATOM	995	C	CYS A 131	68.690	21.965	11.079	1.00	46.74	A
ATOM	996	O	CYS A 131	69.636	21.894	11.862	1.00	49.94	A
ATOM	997	CB	CYS A 131	69.134	19.997	9.639	1.00	48.02	A
ATOM	998	SG	CYS A 131	67.726	18.871	9.955	1.00	53.18	A
ATOM	999	N	VAL A 132	67.507	22.473	11.415	1.00	46.98	A
ATOM	1000	CA	VAL A 132	67.226	22.940	12.775	1.00	49.89	A
ATOM	1001	CB	VAL A 132	66.768	24.430	12.815	1.00	49.02	A
ATOM	1002	CG1	VAL A 132	66.611	24.906	14.258	1.00	47.95	A
ATOM	1003	CG2	VAL A 132	67.764	25.320	12.084	1.00	53.43	A
ATOM	1004	C	VAL A 132	66.149	22.040	13.396	1.00	51.78	A
ATOM	1005	O	VAL A 132	64.959	22.173	13.081	1.00	50.21	A
ATOM	1006	N	PRO A 133	66.559	21.099	14.277	1.00	54.52	A
ATOM	1007	CD	PRO A 133	67.943	20.785	14.693	1.00	55.19	A
ATOM	1008	CA	PRO A 133	65.610	20.190	14.927	1.00	56.41	A
ATOM	1009	CB	PRO A 133	66.531	19.189	15.627	1.00	55.54	A
ATOM	1010	CG	PRO A 133	67.744	19.985	15.949	1.00	56.91	A
ATOM	1011	C	PRO A 133	64.683	20.904	15.913	1.00	58.75	A
ATOM	1012	O	PRO A 133	65.118	21.778	16.670	1.00	63.35	A
ATOM	1013	N	SER A 134	63.398	20.570	15.853	1.00	59.70	A
ATOM	1014	CA	SER A 134	62.407	21.164	16.744	1.00	62.37	A
ATOM	1015	CB	SER A 134	61.026	21.135	16.090	1.00	61.48	A
ATOM	1016	OG	SER A 134	61.058	21.703	14.794	1.00	71.27	A
ATOM	1017	C	SER A 134	62.362	20.364	18.045	1.00	64.47	A
ATOM	1018	O	SER A 134	62.610	19.153	18.028	1.00	65.93	A
ATOM	1019	N	PRO A 135	62.110	21.031	19.201	1.00	67.18	A
ATOM	1020	CD	PRO A 135	62.071	22.490	19.436	1.00	65.85	A
ATOM	1021	CA	PRO A 135	62.040	20.313	20.486	1.00	66.35	A
ATOM	1022	CB	PRO A 135	61.891	21.448	21.502	1.00	67.36	A
ATOM	1023	CG	PRO A 135	61.271	22.576	20.693	1.00	65.52	A
ATOM	1024	C	PRO A 135	60.849	19.343	20.549	1.00	66.96	A
ATOM	1025	O	PRO A 135	60.823	18.426	21.380	1.00	69.92	A
ATOM	1026	N	GLU A 136	59.908	19.533	19.617	1.00	64.64	A
ATOM	1027	CA	GLU A 136	58.693	18.724	19.487	1.00	63.79	A
ATOM	1028	CB	GLU A 136	57.674	19.420	18.573	1.00	66.16	A
ATOM	1029	CG	GLU A 136	57.602	20.952	18.661	1.00	71.73	A

ATOM	1030	CD	GLU A 136	57.086	21.474	19.994	1.00	77.81	A
ATOM	1031	OE1	GLU A 136	56.111	20.902	20.536	1.00	77.39	A
ATOM	1032	OE2	GLU A 136	57.655	22.473	20.491	1.00	79.11	A
ATOM	1033	C	GLU A 136	59.040	17.358	18.899	1.00	63.88	A
ATOM	1034	O	GLU A 136	58.297	16.386	19.078	1.00	63.43	A
ATOM	1035	N	GLY A 137	60.170	17.311	18.187	1.00	63.59	A
ATOM	1036	CA	GLY A 137	60.659	16.083	17.580	1.00	64.00	A
ATOM	1037	C	GLY A 137	61.495	15.294	18.570	1.00	64.80	A
ATOM	1038	O	GLY A 137	61.654	14.077	18.429	1.00	66.07	A
ATOM	1039	N	GLY A 138	62.037	16.010	19.559	1.00	64.83	A
ATOM	1040	CA	GLY A 138	62.846	15.418	20.614	1.00	65.29	A
ATOM	1041	C	GLY A 138	64.213	14.914	20.201	1.00	64.60	A
ATOM	1042	O	GLY A 138	64.932	15.577	19.450	1.00	61.06	A
ATOM	1043	N	SER A 139	64.549	13.722	20.696	1.00	65.78	A
ATOM	1044	CA	SER A 139	65.822	13.058	20.410	1.00	66.93	A
ATOM	1045	CB	SER A 139	66.032	11.878	21.371	1.00	68.93	A
ATOM	1046	OG	SER A 139	64.936	10.975	21.340	1.00	73.17	A
ATOM	1047	C	SER A 139	65.875	12.583	18.956	1.00	65.48	A
ATOM	1048	O	SER A 139	66.939	12.606	18.328	1.00	65.54	A
ATOM	1049	N	ARG A 140	64.702	12.216	18.428	1.00	62.74	A
ATOM	1050	CA	ARG A 140	64.528	11.748	17.050	1.00	59.99	A
ATOM	1051	CB	ARG A 140	63.064	11.420	16.769	1.00	61.05	A
ATOM	1052	CG	ARG A 140	62.589	10.064	17.212	1.00	64.96	A
ATOM	1053	CD	ARG A 140	61.160	9.762	16.825	1.00	66.06	A
ATOM	1054	NE	ARG A 140	60.693	8.482	17.344	1.00	74.75	A
ATOM	1055	CZ	ARG A 140	59.439	8.230	17.712	1.00	78.40	A
ATOM	1056	NH1	ARG A 140	58.500	9.170	17.626	1.00	76.07	A
ATOM	1057	NH2	ARG A 140	59.117	7.022	18.156	1.00	82.69	A
ATOM	1058	C	ARG A 140	64.968	12.779	16.021	1.00	57.59	A
ATOM	1059	O	ARG A 140	65.677	12.439	15.072	1.00	59.81	A
ATOM	1060	N	ALA A 141	64.554	14.033	16.227	1.00	53.04	A
ATOM	1061	CA	ALA A 141	64.881	15.141	15.328	1.00	49.28	A
ATOM	1062	CB	ALA A 141	64.088	16.372	15.693	1.00	43.12	A
ATOM	1063	C	ALA A 141	66.373	15.440	15.300	1.00	51.50	A
ATOM	1064	O	ALA A 141	66.941	15.629	14.222	1.00	52.98	A
ATOM	1065	N	GLN A 142	67.008	15.411	16.477	1.00	53.16	A
ATOM	1066	CA	GLN A 142	68.453	15.641	16.619	1.00	54.05	A
ATOM	1067	CB	GLN A 142	68.846	15.696	18.096	1.00	56.91	A

ATOM	1068	CG	GLN A 142	68.715	17.072	18.722	1.00	63.24	A
ATOM	1069	CD	GLN A 142	67.894	17.053	19.990	1.00	67.12	A
ATOM	1070	OE1	GLN A 142	66.766	17.549	20.016	1.00	72.69	A
ATOM	1071	NE2	GLN A 142	68.446	16.467	21.049	1.00	65.91	A
ATOM	1072	C	GLN A 142	69.238	14.529	15.934	1.00	52.83	A
ATOM	1073	O	GLN A 142	70.210	14.785	15.222	1.00	49.71	A
ATOM	1074	N	LYS A 143	68.725	13.309	16.090	1.00	52.77	A
ATOM	1075	CA	LYS A 143	69.294	12.089	15.525	1.00	55.63	A
ATOM	1076	CB	LYS A 143	68.540	10.889	16.110	1.00	59.15	A
ATOM	1077	CG	LYS A 143	69.197	9.519	16.009	1.00	62.54	A
ATOM	1078	CD	LYS A 143	68.453	8.409	16.742	1.00	65.23	A
ATOM	1079	CE	LYS A 143	69.024	7.006	16.711	1.00	70.72	A
ATOM	1080	NZ	LYS A 143	68.230	6.098	17.596	1.00	76.02	A
ATOM	1081	C	LYS A 143	69.180	12.100	13.998	1.00	55.29	A
ATOM	1082	O	LYS A 143	69.990	11.478	13.313	1.00	57.24	A
ATOM	1083	N	PHE A 144	68.196	12.842	13.484	1.00	55.80	A
ATOM	1084	CA	PHE A 144	67.955	12.959	12.045	1.00	56.29	A
ATOM	1085	CB	PHE A 144	66.475	13.250	11.768	1.00	59.50	A
ATOM	1086	CG	PHE A 144	66.097	13.196	10.301	1.00	62.89	A
ATOM	1087	CD1	PHE A 144	66.023	14.375	9.529	1.00	62.07	A
ATOM	1088	CD2	PHE A 144	65.801	11.968	9.684	1.00	65.21	A
ATOM	1089	CE1	PHE A 144	65.659	14.334	8.157	1.00	58.69	A
ATOM	1090	CE2	PHE A 144	65.430	11.912	8.306	1.00	63.46	A
ATOM	1091	CZ	PHE A 144	65.360	13.098	7.546	1.00	62.06	A
ATOM	1092	C	PHE A 144	68.821	14.037	11.408	1.00	56.85	A
ATOM	1093	O	PHE A 144	69.415	13.798	10.359	1.00	54.33	A
ATOM	1094	N	CYS A 145	68.825	15.234	12.001	1.00	57.80	A
ATOM	1095	CA	CYS A 145	69.620	16.358	11.492	1.00	60.87	A
ATOM	1096	C	CYS A 145	71.126	16.070	11.526	1.00	65.31	A
ATOM	1097	O	CYS A 145	71.868	16.516	10.642	1.00	65.71	A
ATOM	1098	CB	CYS A 145	69.328	17.650	12.267	1.00	59.38	A
ATOM	1099	SG	CYS A 145	67.733	18.487	11.948	1.00	53.93	A
ATOM	1100	N	ALA A 146	71.548	15.283	12.523	1.00	67.56	A
ATOM	1101	CA	ALA A 146	72.947	14.886	12.706	1.00	68.65	A
ATOM	1102	CB	ALA A 146	73.161	14.347	14.109	1.00	70.37	A
ATOM	1103	C	ALA A 146	73.365	13.839	11.673	1.00	69.58	A
ATOM	1104	O	ALA A 146	74.554	13.680	11.381	1.00	70.91	A
ATOM	1105	N	LEU A 147	72.372	13.138	11.127	1.00	68.46	A

ATOM	1106	CA	LEU A	147	72.587	12.113	10.114	1.00	68.40	A
ATOM	1107	CB	LEU A	147	71.561	10.981	10.286	1.00	65.19	A
ATOM	1108	CG	LEU A	147	71.453	9.819	9.282	1.00	67.05	A
ATOM	1109	CD1	LEU A	147	72.736	8.987	9.243	1.00	68.69	A
ATOM	1110	CD2	LEU A	147	70.263	8.940	9.648	1.00	66.79	A
ATOM	1111	C	LEU A	147	72.491	12.709	8.706	1.00	70.05	A
ATOM	1112	O	LEU A	147	73.323	12.408	7.842	1.00	71.84	A
ATOM	1113	N	ILE A	148	71.513	13.594	8.506	1.00	69.76	A
ATOM	1114	CA	ILE A	148	71.256	14.220	7.207	1.00	69.31	A
ATOM	1115	CB	ILE A	148	69.834	14.904	7.192	1.00	68.14	A
ATOM	1116	CG2	ILE A	148	69.899	16.410	7.478	1.00	67.78	A
ATOM	1117	CG1	ILE A	148	69.117	14.616	5.875	1.00	66.25	A
ATOM	1118	CD1	ILE A	148	68.733	13.159	5.686	1.00	63.88	A
ATOM	1119	C	ILE A	148	72.358	15.130	6.649	1.00	70.99	A
ATOM	1120	O	ILE A	148	72.487	15.266	5.433	1.00	70.63	A
ATOM	1121	N	ILE A	149	73.172	15.701	7.537	1.00	73.91	A
ATOM	1122	CA	ILE A	149	74.267	16.593	7.137	1.00	78.04	A
ATOM	1123	CB	ILE A	149	74.777	17.473	8.329	1.00	80.82	A
ATOM	1124	CG2	ILE A	149	73.725	18.534	8.688	1.00	81.83	A
ATOM	1125	CG1	ILE A	149	75.159	16.603	9.539	1.00	82.61	A
ATOM	1126	CD1	ILE A	149	75.996	17.318	10.602	1.00	86.76	A
ATOM	1127	C	ILE A	149	75.446	15.857	6.484	1.00	78.75	A
ATOM	1128	O	ILE A	149	76.182	16.438	5.681	1.00	78.73	A
ATOM	1129	N	GLN A	150	75.562	14.563	6.793	1.00	79.71	A
ATOM	1130	CA	GLN A	150	76.622	13.688	6.280	1.00	80.58	A
ATOM	1131	CB	GLN A	150	76.685	12.407	7.117	1.00	82.55	A
ATOM	1132	CG	GLN A	150	77.079	12.635	8.576	1.00	81.89	A
ATOM	1133	CD	GLN A	150	76.922	11.390	9.432	1.00	85.14	A
ATOM	1134	OE1	GLN A	150	76.139	11.377	10.382	1.00	86.57	A
ATOM	1135	NE2	GLN A	150	77.671	10.337	9.105	1.00	86.03	A
ATOM	1136	C	GLN A	150	76.484	13.345	4.790	1.00	79.71	A
ATOM	1137	O	GLN A	150	77.455	12.941	4.143	1.00	78.99	A
ATOM	1138	N	TYR A	151	75.274	13.521	4.261	1.00	79.93	A
ATOM	1139	CA	TYR A	151	74.976	13.265	2.852	1.00	80.93	A
ATOM	1140	CB	TYR A	151	73.600	12.586	2.713	1.00	82.25	A
ATOM	1141	CG	TYR A	151	73.507	11.193	3.318	1.00	86.10	A
ATOM	1142	CD1	TYR A	151	73.788	10.047	2.540	1.00	86.84	A
ATOM	1143	CE1	TYR A	151	73.726	8.740	3.103	1.00	88.91	A

ATOM	1144	CD2	TYR A 151	73.156	11.008	4.675	1.00	86.60	A
ATOM	1145	CE2	TYR A 151	73.091	9.705	5.251	1.00	87.31	A
ATOM	1146	CZ	TYR A 151	73.379	8.581	4.455	1.00	89.10	A
ATOM	1147	OH	TYR A 151	73.323	7.316	4.995	1.00	91.60	A
ATOM	1148	C	TYR A 151	75.014	14.608	2.106	1.00	80.28	A
ATOM	1149	O	TYR A 151	73.995	15.293	1.976	1.00	80.47	A
ATOM	1150	N	GLN A 152	76.210	14.986	1.648	1.00	79.63	A
ATOM	1151	CA	GLN A 152	76.450	16.252	0.937	1.00	77.09	A
ATOM	1152	CB	GLN A 152	77.950	16.454	0.696	1.00	79.30	A
ATOM	1153	CG	GLN A 152	78.755	16.801	1.931	1.00	78.72	A
ATOM	1154	CD	GLN A 152	80.243	16.842	1.645	1.00	80.06	A
ATOM	1155	OE1	GLN A 152	80.748	17.788	1.038	1.00	78.28	A
ATOM	1156	NE2	GLN A 152	80.953	15.806	2.076	1.00	82.01	A
ATOM	1157	C	GLN A 152	75.716	16.418	-0.390	1.00	73.74	A
ATOM	1158	O	GLN A 152	75.307	17.528	-0.737	1.00	71.09	A
ATOM	1159	N	GLY A 153	75.542	15.306	-1.106	1.00	71.65	A
ATOM	1160	CA	GLY A 153	74.871	15.308	-2.398	1.00	70.80	A
ATOM	1161	C	GLY A 153	73.414	15.737	-2.382	1.00	69.00	A
ATOM	1162	O	GLY A 153	72.943	16.354	-3.347	1.00	69.85	A
ATOM	1163	N	ILE A 154	72.710	15.423	-1.291	1.00	66.27	A
ATOM	1164	CA	ILE A 154	71.302	15.789	-1.152	1.00	62.42	A
ATOM	1165	CB	ILE A 154	70.441	14.704	-0.420	1.00	59.44	A
ATOM	1166	CG2	ILE A 154	70.741	13.316	-0.987	1.00	62.29	A
ATOM	1167	CG1	ILE A 154	70.676	14.712	1.088	1.00	61.56	A
ATOM	1168	CD1	ILE A 154	69.637	13.949	1.870	1.00	66.06	A
ATOM	1169	C	ILE A 154	71.147	17.151	-0.486	1.00	61.92	A
ATOM	1170	O	ILE A 154	70.178	17.857	-0.744	1.00	63.80	A
ATOM	1171	N	MET A 155	72.127	17.520	0.339	1.00	60.06	A
ATOM	1172	CA	MET A 155	72.132	18.802	1.042	1.00	59.56	A
ATOM	1173	CB	MET A 155	73.185	18.796	2.147	1.00	61.15	A
ATOM	1174	CG	MET A 155	72.763	18.038	3.393	1.00	63.84	A
ATOM	1175	SD	MET A 155	71.413	18.850	4.267	1.00	60.30	A
ATOM	1176	CE	MET A 155	72.319	20.221	5.058	1.00	70.78	A
ATOM	1177	C	MET A 155	72.388	19.964	0.092	1.00	58.61	A
ATOM	1178	O	MET A 155	71.861	21.063	0.284	1.00	56.80	A
ATOM	1179	N	GLU A 156	73.177	19.687	-0.947	1.00	58.35	A
ATOM	1180	CA	GLU A 156	73.523	20.668	-1.967	1.00	58.69	A
ATOM	1181	CB	GLU A 156	74.792	20.225	-2.731	1.00	61.60	A

ATOM	1182	CG	GLU A	156	75.244	21.071	-3.957	1.00	65.50	A
ATOM	1183	CD	GLU A	156	75.446	22.572	-3.686	1.00	70.83	A
ATOM	1184	OE1	GLU A	156	75.800	22.971	-2.552	1.00	70.53	A
ATOM	1185	OE2	GLU A	156	75.240	23.365	-4.632	1.00	70.43	A
ATOM	1186	C	GLU A	156	72.340	20.897	-2.902	1.00	57.35	A
ATOM	1187	O	GLU A	156	72.029	22.045	-3.220	1.00	56.91	A
ATOM	1188	N	THR A	157	71.645	19.819	-3.275	1.00	55.25	A
ATOM	1189	CA	THR A	157	70.486	19.928	-4.164	1.00	55.44	A
ATOM	1190	CB	THR A	157	70.111	18.586	-4.836	1.00	56.95	A
ATOM	1191	OG1	THR A	157	70.058	17.546	-3.857	1.00	64.94	A
ATOM	1192	CG2	THR A	157	71.124	18.225	-5.919	1.00	62.42	A
ATOM	1193	C	THR A	157	69.261	20.570	-3.511	1.00	52.56	A
ATOM	1194	O	THR A	157	68.372	21.034	-4.214	1.00	52.87	A
ATOM	1195	N	VAL A	158	69.241	20.619	-2.173	1.00	51.61	A
ATOM	1196	CA	VAL A	158	68.156	21.256	-1.407	1.00	47.46	A
ATOM	1197	CB	VAL A	158	68.064	20.721	0.073	1.00	44.47	A
ATOM	1198	CG1	VAL A	158	67.094	21.557	0.917	1.00	36.48	A
ATOM	1199	CG2	VAL A	158	67.574	19.288	0.084	1.00	39.96	A
ATOM	1200	C	VAL A	158	68.463	22.754	-1.398	1.00	48.17	A
ATOM	1201	O	VAL A	158	67.567	23.577	-1.589	1.00	48.44	A
ATOM	1202	N	ARG A	159	69.751	23.072	-1.245	1.00	49.13	A
ATOM	1203	CA	ARG A	159	70.261	24.443	-1.212	1.00	47.29	A
ATOM	1204	CB	ARG A	159	71.748	24.438	-0.843	1.00	51.04	A
ATOM	1205	CG	ARG A	159	72.224	25.685	-0.109	1.00	56.74	A
ATOM	1206	CD	ARG A	159	73.572	26.281	-0.513	1.00	61.94	A
ATOM	1207	NE	ARG A	159	73.497	27.050	-1.760	1.00	61.17	A
ATOM	1208	CZ	ARG A	159	74.054	26.690	-2.916	1.00	59.53	A
ATOM	1209	NH1	ARG A	159	74.740	25.558	-3.011	1.00	55.39	A
ATOM	1210	NH2	ARG A	159	73.927	27.468	-3.982	1.00	57.15	A
ATOM	1211	C	ARG A	159	70.054	25.150	-2.559	1.00	45.64	A
ATOM	1212	O	ARG A	159	69.671	26.323	-2.588	1.00	49.41	A
ATOM	1213	N	ILE A	160	70.261	24.420	-3.660	1.00	40.09	A
ATOM	1214	CA	ILE A	160	70.078	24.956	-5.017	1.00	37.78	A
ATOM	1215	CB	ILE A	160	70.593	23.957	-6.122	1.00	38.87	A
ATOM	1216	CG2	ILE A	160	70.258	24.465	-7.544	1.00	34.33	A
ATOM	1217	CG1	ILE A	160	72.109	23.754	-5.992	1.00	36.58	A
ATOM	1218	CD1	ILE A	160	72.666	22.606	-6.832	1.00	39.59	A
ATOM	1219	C	ILE A	160	68.588	25.240	-5.229	1.00	36.81	A

ATOM	1220	O	ILE A 160	68.212	26.337	-5.645	1.00	36.53	A
ATOM	1221	N	LEU A 161	67.756	24.265	-4.868	1.00	34.19	A
ATOM	1222	CA	LEU A 161	66.309	24.373	-5.012	1.00	34.58	A
ATOM	1223	CB	LEU A 161	65.631	23.061	-4.631	1.00	30.35	A
ATOM	1224	CG	LEU A 161	65.611	21.953	-5.681	1.00	33.35	A
ATOM	1225	CD1	LEU A 161	65.130	20.685	-5.017	1.00	36.24	A
ATOM	1226	CD2	LEU A 161	64.733	22.304	-6.870	1.00	35.32	A
ATOM	1227	C	LEU A 161	65.671	25.506	-4.222	1.00	36.25	A
ATOM	1228	O	LEU A 161	64.927	26.325	-4.767	1.00	34.15	A
ATOM	1229	N	LEU A 162	66.064	25.595	-2.960	1.00	36.40	A
ATOM	1230	CA	LEU A 162	65.525	26.570	-2.033	1.00	35.92	A
ATOM	1231	CB	LEU A 162	65.806	26.069	-0.613	1.00	33.45	A
ATOM	1232	CG	LEU A 162	64.813	26.162	0.545	1.00	37.17	A
ATOM	1233	CD1	LEU A 162	63.460	25.613	0.164	1.00	37.61	A
ATOM	1234	CD2	LEU A 162	65.379	25.392	1.734	1.00	35.63	A
ATOM	1235	C	LEU A 162	66.016	28.008	-2.198	1.00	36.53	A
ATOM	1236	O	LEU A 162	65.215	28.937	-2.162	1.00	34.27	A
ATOM	1237	N	TYR A 163	67.309	28.179	-2.465	1.00	38.10	A
ATOM	1238	CA	TYR A 163	67.897	29.514	-2.552	1.00	38.58	A
ATOM	1239	CB	TYR A 163	69.128	29.582	-1.641	1.00	35.94	A
ATOM	1240	CG	TYR A 163	68.826	29.226	-0.187	1.00	37.42	A
ATOM	1241	CD1	TYR A 163	68.187	30.147	0.676	1.00	39.64	A
ATOM	1242	CE1	TYR A 163	67.875	29.801	2.031	1.00	36.87	A
ATOM	1243	CD2	TYR A 163	69.151	27.953	0.329	1.00	31.64	A
ATOM	1244	CE2	TYR A 163	68.846	27.596	1.676	1.00	29.31	A
ATOM	1245	CZ	TYR A 163	68.208	28.523	2.512	1.00	34.59	A
ATOM	1246	OH	TYR A 163	67.887	28.169	3.801	1.00	34.87	A
ATOM	1247	C	TYR A 163	68.191	30.109	-3.925	1.00	40.63	A
ATOM	1248	O	TYR A 163	68.460	31.313	-4.035	1.00	40.10	A
ATOM	1249	N	GLU A 164	68.116	29.282	-4.967	1.00	42.05	A
ATOM	1250	CA	GLU A 164	68.359	29.731	-6.338	1.00	40.86	A
ATOM	1251	CB	GLU A 164	69.601	29.058	-6.921	1.00	41.93	A
ATOM	1252	CG	GLU A 164	70.915	29.574	-6.355	1.00	51.14	A
ATOM	1253	CD	GLU A 164	72.098	28.656	-6.633	1.00	57.70	A
ATOM	1254	OE1	GLU A 164	71.920	27.586	-7.270	1.00	53.58	A
ATOM	1255	OE2	GLU A 164	73.216	29.012	-6.192	1.00	58.25	A
ATOM	1256	C	GLU A 164	67.162	29.496	-7.255	1.00	40.66	A
ATOM	1257	O	GLU A 164	66.642	30.451	-7.840	1.00	39.05	A

ATOM	1258	N	THR A 165	66.695	28.245	-7.322	1.00	39.59	A
ATOM	1259	CA	THR A 165	65.571	27.848	-8.180	1.00	40.09	A
ATOM	1260	CB	THR A 165	65.483	26.310	-8.320	1.00	38.50	A
ATOM	1261	OG1	THR A 165	66.775	25.797	-8.667	1.00	47.25	A
ATOM	1262	CG2	THR A 165	64.478	25.890	-9.393	1.00	33.05	A
ATOM	1263	C	THR A 165	64.216	28.386	-7.741	1.00	41.54	A
ATOM	1264	O	THR A 165	63.438	28.841	-8.589	1.00	44.93	A
ATOM	1265	N	CYS A 166	63.942	28.355	-6.435	1.00	39.79	A
ATOM	1266	CA	CYS A 166	62.663	28.844	-5.912	1.00	38.66	A
ATOM	1267	C	CYS A 166	62.429	30.324	-6.236	1.00	37.89	A
ATOM	1268	O	CYS A 166	61.351	30.659	-6.734	1.00	37.64	A
ATOM	1269	CB	CYS A 166	62.493	28.544	-4.412	1.00	39.64	A
ATOM	1270	SG	CYS A 166	60.818	28.826	-3.769	1.00	41.31	A
ATOM	1271	N	PRO A 167	63.404	31.228	-5.946	1.00	37.29	A
ATOM	1272	CD	PRO A 167	64.592	31.199	-5.066	1.00	35.25	A
ATOM	1273	CA	PRO A 167	63.101	32.617	-6.305	1.00	38.07	A
ATOM	1274	CB	PRO A 167	64.248	33.400	-5.669	1.00	37.97	A
ATOM	1275	CG	PRO A 167	65.322	32.412	-5.484	1.00	39.04	A
ATOM	1276	C	PRO A 167	63.023	32.839	-7.815	1.00	39.02	A
ATOM	1277	O	PRO A 167	62.153	33.582	-8.277	1.00	41.06	A
ATOM	1278	N	ARG A 168	63.834	32.090	-8.575	1.00	37.23	A
ATOM	1279	CA	ARG A 168	63.860	32.191	-10.046	1.00	39.91	A
ATOM	1280	CB	ARG A 168	64.969	31.308	-10.649	1.00	41.16	A
ATOM	1281	CG	ARG A 168	65.219	31.505	-12.155	1.00	40.39	A
ATOM	1282	CD	ARG A 168	66.325	30.694	-12.829	1.00	42.32	A
ATOM	1283	NE	ARG A 168	66.058	29.252	-12.881	1.00	42.32	A
ATOM	1284	CZ	ARG A 168	66.714	28.334	-12.167	1.00	46.28	A
ATOM	1285	NH1	ARG A 168	67.684	28.691	-11.324	1.00	43.53	A
ATOM	1286	NH2	ARG A 168	66.410	27.049	-12.301	1.00	42.08	A
ATOM	1287	C	ARG A 168	62.492	31.780	-10.583	1.00	39.46	A
ATOM	1288	O	ARG A 168	62.035	32.289	-11.612	1.00	41.98	A
ATOM	1289	N	TYR A 169	61.815	30.931	-9.809	1.00	36.29	A
ATOM	1290	CA	TYR A 169	60.489	30.463	-10.155	1.00	29.76	A
ATOM	1291	CB	TYR A 169	60.213	29.084	-9.538	1.00	27.80	A
ATOM	1292	CG	TYR A 169	58.888	28.509	-9.975	1.00	25.28	A
ATOM	1293	CD1	TYR A 169	57.831	28.346	-9.052	1.00	22.28	A
ATOM	1294	CE1	TYR A 169	56.548	27.954	-9.483	1.00	24.86	A
ATOM	1295	CD2	TYR A 169	58.635	28.248	-11.340	1.00	26.87	A

ATOM	1296	CE2	TYR A 169	57.356	27.856	-11.783	1.00	27.00	A
ATOM	1297	CZ	TYR A 169	56.323	27.717	-10.852	1.00	26.50	A
ATOM	1298	OH	TYR A 169	55.076	27.382	-11.295	1.00	21.85	A
ATOM	1299	C	TYR A 169	59.401	31.456	-9.763	1.00	27.58	A
ATOM	1300	O	TYR A 169	58.603	31.838	-10.612	1.00	25.33	A
ATOM	1301	N	LEU A 170	59.370	31.838	-8.484	1.00	26.90	A
ATOM	1302	CA	LEU A 170	58.377	32.764	-7.927	1.00	28.79	A
ATOM	1303	CB	LEU A 170	58.832	33.320	-6.575	1.00	24.02	A
ATOM	1304	CG	LEU A 170	57.927	33.331	-5.333	1.00	18.56	A
ATOM	1305	CD1	LEU A 170	58.325	34.502	-4.493	1.00	18.70	A
ATOM	1306	CD2	LEU A 170	56.456	33.436	-5.629	1.00	15.04	A
ATOM	1307	C	LEU A 170	58.035	33.935	-8.838	1.00	33.55	A
ATOM	1308	O	LEU A 170	56.868	34.123	-9.176	1.00	36.23	A
ATOM	1309	N	LEU A 171	59.062	34.642	-9.314	1.00	35.21	A
ATOM	1310	CA	LEU A 171	58.870	35.797	-10.193	1.00	34.56	A
ATOM	1311	CB	LEU A 171	60.181	36.561	-10.406	1.00	36.47	A
ATOM	1312	CG	LEU A 171	60.728	37.477	-9.307	1.00	35.71	A
ATOM	1313	CD1	LEU A 171	59.648	38.416	-8.776	1.00	40.31	A
ATOM	1314	CD2	LEU A 171	61.294	36.669	-8.197	1.00	35.90	A
ATOM	1315	C	LEU A 171	58.270	35.427	-11.533	1.00	32.95	A
ATOM	1316	O	LEU A 171	57.479	36.184	-12.078	1.00	34.00	A
ATOM	1317	N	GLY A 172	58.620	34.239	-12.024	1.00	31.81	A
ATOM	1318	CA	GLY A 172	58.104	33.751	-13.289	1.00	31.84	A
ATOM	1319	C	GLY A 172	56.598	33.550	-13.265	1.00	34.61	A
ATOM	1320	O	GLY A 172	55.918	34.023	-14.178	1.00	36.02	A
ATOM	1321	N	VAL A 173	56.085	32.900	-12.210	1.00	31.71	A
ATOM	1322	CA	VAL A 173	54.647	32.647	-12.056	1.00	27.68	A
ATOM	1323	CB	VAL A 173	54.273	31.540	-11.021	1.00	30.25	A
ATOM	1324	CG1	VAL A 173	53.846	30.276	-11.722	1.00	22.96	A
ATOM	1325	CG2	VAL A 173	55.375	31.299	-10.025	1.00	29.31	A
ATOM	1326	C	VAL A 173	53.866	33.863	-11.639	1.00	28.03	A
ATOM	1327	O	VAL A 173	52.726	34.016	-12.063	1.00	32.70	A
ATOM	1328	N	LEU A 174	54.456	34.712	-10.792	1.00	27.78	A
ATOM	1329	CA	LEU A 174	53.776	35.923	-10.318	1.00	26.44	A
ATOM	1330	CB	LEU A 174	54.565	36.628	-9.220	1.00	22.08	A
ATOM	1331	CG	LEU A 174	54.622	35.946	-7.849	1.00	26.57	A
ATOM	1332	CD1	LEU A 174	55.348	36.851	-6.885	1.00	22.52	A
ATOM	1333	CD2	LEU A 174	53.245	35.575	-7.301	1.00	29.25	A

ATOM	1334	C	LEU	A	174	53.533	36.875	-11.456	1.00	29.66	A
ATOM	1335	O	LEU	A	174	52.519	37.588	-11.479	1.00	35.07	A
ATOM	1336	N	ASN	A	175	54.432	36.793	-12.438	1.00	28.20	A
ATOM	1337	CA	ASN	A	175	54.382	37.606	-13.634	1.00	29.76	A
ATOM	1338	CB	ASN	A	175	55.794	37.819	-14.174	1.00	28.17	A
ATOM	1339	CG	ASN	A	175	55.825	38.705	-15.396	1.00	32.03	A
ATOM	1340	OD1	ASN	A	175	56.231	38.266	-16.469	1.00	32.91	A
ATOM	1341	ND2	ASN	A	175	55.383	39.955	-15.246	1.00	33.85	A
ATOM	1342	C	ASN	A	175	53.483	36.947	-14.678	1.00	30.70	A
ATOM	1343	O	ASN	A	175	52.559	37.585	-15.194	1.00	33.34	A
ATOM	1344	N	ALA	A	176	53.738	35.667	-14.954	1.00	28.38	A
ATOM	1345	CA	ALA	A	176	52.964	34.891	-15.929	1.00	26.54	A
ATOM	1346	CB	ALA	A	176	53.523	33.485	-16.028	1.00	23.51	A
ATOM	1347	C	ALA	A	176	51.468	34.833	-15.607	1.00	25.36	A
ATOM	1348	O	ALA	A	176	50.623	34.838	-16.514	1.00	22.95	A
ATOM	1349	N	GLY	A	177	51.165	34.832	-14.309	1.00	25.53	A
ATOM	1350	CA	GLY	A	177	49.795	34.771	-13.843	1.00	26.70	A
ATOM	1351	C	GLY	A	177	49.196	36.079	-13.388	1.00	30.72	A
ATOM	1352	O	GLY	A	177	48.127	36.073	-12.784	1.00	29.86	A
ATOM	1353	N	LYS	A	178	49.860	37.188	-13.713	1.00	32.48	A
ATOM	1354	CA	LYS	A	178	49.427	38.544	-13.360	1.00	35.81	A
ATOM	1355	CB	LYS	A	178	50.227	39.551	-14.197	1.00	40.27	A
ATOM	1356	CG	LYS	A	178	50.486	40.898	-13.534	1.00	48.99	A
ATOM	1357	CD	LYS	A	178	51.037	42.048	-14.393	1.00	59.25	A
ATOM	1358	CE	LYS	A	178	52.361	41.855	-15.142	1.00	65.20	A
ATOM	1359	NZ	LYS	A	178	52.230	40.965	-16.336	1.00	63.80	A
ATOM	1360	C	LYS	A	178	47.916	38.772	-13.580	1.00	35.54	A
ATOM	1361	O	LYS	A	178	47.225	39.297	-12.700	1.00	32.94	A
ATOM	1362	N	ALA	A	179	47.417	38.248	-14.706	1.00	34.86	A
ATOM	1363	CA	ALA	A	179	46.019	38.357	-15.128	1.00	33.38	A
ATOM	1364	CB	ALA	A	179	45.857	37.756	-16.508	1.00	34.40	A
ATOM	1365	C	ALA	A	179	44.995	37.750	-14.164	1.00	34.57	A
ATOM	1366	O	ALA	A	179	43.954	38.358	-13.906	1.00	35.90	A
ATOM	1367	N	ASP	A	180	45.294	36.563	-13.638	1.00	36.37	A
ATOM	1368	CA	ASP	A	180	44.413	35.881	-12.689	1.00	36.38	A
ATOM	1369	CB	ASP	A	180	44.516	34.355	-12.846	1.00	41.17	A
ATOM	1370	CG	ASP	A	180	43.836	33.826	-14.111	1.00	49.45	A
ATOM	1371	OD1	ASP	A	180	43.269	34.627	-14.894	1.00	48.60	A

ATOM	1372	OD2	ASP A	180	43.871	32.587	-14.315	1.00	47.77	A
ATOM	1373	C	ASP A	180	44.729	36.251	-11.237	1.00	36.26	A
ATOM	1374	O	ASP A	180	43.821	36.458	-10.432	1.00	37.36	A
ATOM	1375	N	LEU A	181	46.019	36.357	-10.923	1.00	34.56	A
ATOM	1376	CA	LEU A	181	46.495	36.656	-9.573	1.00	34.29	A
ATOM	1377	CB	LEU A	181	47.989	36.342	-9.473	1.00	29.14	A
ATOM	1378	CG	LEU A	181	48.398	34.875	-9.660	1.00	21.21	A
ATOM	1379	CD1	LEU A	181	49.875	34.778	-9.985	1.00	1.64	A
ATOM	1380	CD2	LEU A	181	48.054	34.063	-8.421	1.00	24.13	A
ATOM	1381	C	LEU A	181	46.221	38.054	-9.023	1.00	37.49	A
ATOM	1382	O	LEU A	181	45.951	38.205	-7.830	1.00	36.57	A
ATOM	1383	N	GLN A	182	46.312	39.070	-9.883	1.00	40.97	A
ATOM	1384	CA	GLN A	182	46.078	40.461	-9.479	1.00	41.45	A
ATOM	1385	CB	GLN A	182	47.216	41.361	-9.969	1.00	41.13	A
ATOM	1386	CG	GLN A	182	48.489	41.201	-9.158	1.00	47.95	A
ATOM	1387	CD	GLN A	182	49.672	41.942	-9.741	1.00	52.12	A
ATOM	1388	OE1	GLN A	182	50.648	41.323	-10.173	1.00	53.86	A
ATOM	1389	NE2	GLN A	182	49.608	43.272	-9.734	1.00	53.10	A
ATOM	1390	C	GLN A	182	44.712	40.969	-9.938	1.00	41.79	A
ATOM	1391	O	GLN A	182	44.475	42.174	-10.060	1.00	45.06	A
ATOM	1392	N	ARG A	183	43.804	40.013	-10.112	1.00	41.19	A
ATOM	1393	CA	ARG A	183	42.420	40.218	-10.531	1.00	40.36	A
ATOM	1394	CB	ARG A	183	41.895	38.861	-10.980	1.00	39.29	A
ATOM	1395	CG	ARG A	183	40.548	38.788	-11.625	1.00	45.05	A
ATOM	1396	CD	ARG A	183	40.040	37.367	-11.786	1.00	49.47	A
ATOM	1397	NE	ARG A	183	39.860	36.733	-10.479	1.00	46.56	A
ATOM	1398	CZ	ARG A	183	40.178	35.478	-10.183	1.00	50.01	A
ATOM	1399	NH1	ARG A	183	40.712	34.680	-11.103	1.00	54.64	A
ATOM	1400	NH2	ARG A	183	39.935	35.014	-8.963	1.00	46.58	A
ATOM	1401	C	ARG A	183	41.612	40.736	-9.329	1.00	41.17	A
ATOM	1402	O	ARG A	183	41.966	40.480	-8.177	1.00	42.90	A
ATOM	1403	N	GLN A	184	40.555	41.496	-9.598	1.00	41.11	A
ATOM	1404	CA	GLN A	184	39.714	42.051	-8.536	1.00	38.54	A
ATOM	1405	CB	GLN A	184	39.898	43.578	-8.445	1.00	37.25	A
ATOM	1406	CG	GLN A	184	41.277	44.089	-7.989	1.00	34.78	A
ATOM	1407	CD	GLN A	184	41.525	43.969	-6.489	1.00	35.10	A
ATOM	1408	OE1	GLN A	184	42.642	43.689	-6.065	1.00	39.94	A
ATOM	1409	NE2	GLN A	184	40.494	44.191	-5.685	1.00	28.58	A

ATOM	1410	C	GLN	A	184	38.237	41.716	-8.778	1.00	38.64	A
ATOM	1411	O	GLN	A	184	37.552	42.412	-9.532	1.00	39.95	A
ATOM	1412	N	VAL	A	185	37.758	40.637	-8.154	1.00	37.64	A
ATOM	1413	CA	VAL	A	185	36.362	40.208	-8.283	1.00	32.79	A
ATOM	1414	CB	VAL	A	185	36.228	38.663	-8.285	1.00	29.14	A
ATOM	1415	CG1	VAL	A	185	34.800	38.234	-8.559	1.00	26.50	A
ATOM	1416	CG2	VAL	A	185	37.122	38.062	-9.328	1.00	28.22	A
ATOM	1417	C	VAL	A	185	35.569	40.792	-7.116	1.00	34.54	A
ATOM	1418	O	VAL	A	185	35.941	40.606	-5.952	1.00	33.29	A
ATOM	1419	N	LYS	A	186	34.470	41.472	-7.454	1.00	36.12	A
ATOM	1420	CA	LYS	A	186	33.576	42.129	-6.494	1.00	35.71	A
ATOM	1421	CB	LYS	A	186	32.707	43.190	-7.200	1.00	42.50	A
ATOM	1422	CG	LYS	A	186	33.486	44.348	-7.825	1.00	44.32	A
ATOM	1423	CD	LYS	A	186	32.692	45.536	-8.362	1.00	46.43	A
ATOM	1424	CE	LYS	A	186	33.491	46.635	-9.060	1.00	49.14	A
ATOM	1425	NZ	LYS	A	186	32.663	47.810	-9.443	1.00	48.49	A
ATOM	1426	C	LYS	A	186	32.686	41.181	-5.679	1.00	32.74	A
ATOM	1427	O	LYS	A	186	32.079	40.253	-6.232	1.00	30.57	A
ATOM	1428	N	PRO	A	187	32.627	41.383	-4.343	1.00	31.90	A
ATOM	1429	CD	PRO	A	187	33.499	42.254	-3.527	1.00	30.15	A
ATOM	1430	CA	PRO	A	187	31.803	40.538	-3.467	1.00	30.79	A
ATOM	1431	CB	PRO	A	187	32.280	40.925	-2.068	1.00	27.32	A
ATOM	1432	CG	PRO	A	187	32.755	42.324	-2.225	1.00	29.39	A
ATOM	1433	C	PRO	A	187	30.312	40.776	-3.583	1.00	30.84	A
ATOM	1434	O	PRO	A	187	29.885	41.812	-4.094	1.00	33.09	A
ATOM	1435	N	GLU	A	188	29.539	39.780	-3.159	1.00	30.01	A
ATOM	1436	CA	GLU	A	188	28.091	39.877	-3.138	1.00	34.91	A
ATOM	1437	CB	GLU	A	188	27.426	38.929	-4.147	1.00	35.78	A
ATOM	1438	CG	GLU	A	188	27.410	37.446	-3.810	1.00	46.17	A
ATOM	1439	CD	GLU	A	188	26.525	36.651	-4.749	1.00	51.78	A
ATOM	1440	OE1	GLU	A	188	27.078	35.962	-5.634	1.00	54.95	A
ATOM	1441	OE2	GLU	A	188	25.281	36.718	-4.601	1.00	52.24	A
ATOM	1442	C	GLU	A	188	27.683	39.585	-1.696	1.00	37.38	A
ATOM	1443	O	GLU	A	188	28.277	38.721	-1.041	1.00	38.01	A
ATOM	1444	N	ALA	A	189	26.716	40.343	-1.186	1.00	37.63	A
ATOM	1445	CA	ALA	A	189	26.280	40.170	0.190	1.00	38.59	A
ATOM	1446	CB	ALA	A	189	26.782	41.332	1.044	1.00	36.00	A
ATOM	1447	C	ALA	A	189	24.785	39.964	0.390	1.00	41.14	A

ATOM	1448	O	ALA A 189	23.966	40.398	-0.430	1.00	45.10	A
ATOM	1449	N	TRP A 190	24.449	39.259	1.473	1.00	39.75	A
ATOM	1450	CA	TRP A 190	23.068	38.977	1.844	1.00	36.95	A
ATOM	1451	CB	TRP A 190	22.502	37.788	1.048	1.00	37.85	A
ATOM	1452	CG	TRP A 190	23.048	36.393	1.329	1.00	40.81	A
ATOM	1453	CD2	TRP A 190	24.230	35.794	0.772	1.00	39.87	A
ATOM	1454	CE2	TRP A 190	24.232	34.423	1.168	1.00	40.02	A
ATOM	1455	CE3	TRP A 190	25.288	36.273	-0.031	1.00	39.53	A
ATOM	1456	CD1	TRP A 190	22.416	35.396	2.037	1.00	41.50	A
ATOM	1457	NE1	TRP A 190	23.118	34.216	1.938	1.00	41.69	A
ATOM	1458	CZ2	TRP A 190	25.256	33.520	0.782	1.00	39.34	A
ATOM	1459	CZ3	TRP A 190	26.316	35.372	-0.418	1.00	37.11	A
ATOM	1460	CH2	TRP A 190	26.284	34.009	-0.007	1.00	32.91	A
ATOM	1461	C	TRP A 190	22.937	38.760	3.342	1.00	36.51	A
ATOM	1462	O	TRP A 190	23.912	38.421	4.008	1.00	37.26	A
ATOM	1463	N	LEU A 191	21.734	38.989	3.865	1.00	37.19	A
ATOM	1464	CA	LEU A 191	21.452	38.833	5.292	1.00	38.47	A
ATOM	1465	CB	LEU A 191	20.893	40.141	5.878	1.00	33.81	A
ATOM	1466	CG	LEU A 191	21.702	41.435	5.727	1.00	36.20	A
ATOM	1467	CD1	LEU A 191	20.897	42.599	6.252	1.00	31.81	A
ATOM	1468	CD2	LEU A 191	23.056	41.336	6.440	1.00	30.83	A
ATOM	1469	C	LEU A 191	20.456	37.716	5.552	1.00	40.96	A
ATOM	1470	O	LEU A 191	19.688	37.332	4.662	1.00	42.61	A
ATOM	1471	N	SER A 192	20.498	37.187	6.774	1.00	43.12	A
ATOM	1472	CA	SER A 192	19.586	36.135	7.228	1.00	46.55	A
ATOM	1473	CB	SER A 192	19.927	34.766	6.610	1.00	45.08	A
ATOM	1474	OG	SER A 192	21.177	34.275	7.054	1.00	52.03	A
ATOM	1475	C	SER A 192	19.579	36.055	8.756	1.00	48.13	A
ATOM	1476	O	SER A 192	20.426	36.654	9.427	1.00	44.13	A
ATOM	1477	N	SER A 193	18.582	35.358	9.290	1.00	51.60	A
ATOM	1478	CA	SER A 193	18.435	35.182	10.722	1.00	57.17	A
ATOM	1479	CB	SER A 193	17.003	35.515	11.155	1.00	60.68	A
ATOM	1480	OG	SER A 193	16.869	35.503	12.569	1.00	70.42	A
ATOM	1481	C	SER A 193	18.772	33.735	11.031	1.00	59.77	A
ATOM	1482	O	SER A 193	18.010	32.823	10.697	1.00	61.21	A
ATOM	1483	N	GLY A 194	19.920	33.532	11.672	1.00	63.14	A
ATOM	1484	CA	GLY A 194	20.362	32.191	12.022	1.00	66.93	A
ATOM	1485	C	GLY A 194	19.611	31.571	13.189	1.00	68.67	A

ATOM	1486	O	GLY A	194	18.517	32.038	13.530	1.00	69.96	A
ATOM	1487	N	PRO A	195	20.145	30.491	13.797	1.00	70.30	A
ATOM	1488	CD	PRO A	195	21.304	29.685	13.366	1.00	71.33	A
ATOM	1489	CA	PRO A	195	19.474	29.847	14.932	1.00	70.79	A
ATOM	1490	CB	PRO A	195	20.333	28.601	15.168	1.00	71.83	A
ATOM	1491	CG	PRO A	195	20.904	28.312	13.812	1.00	70.48	A
ATOM	1492	C	PRO A	195	19.488	30.770	16.151	1.00	71.87	A
ATOM	1493	O	PRO A	195	20.539	31.319	16.503	1.00	71.06	A
ATOM	1494	N	SER A	196	18.311	30.975	16.746	1.00	71.86	A
ATOM	1495	CA	SER A	196	18.147	31.833	17.924	1.00	74.01	A
ATOM	1496	CB	SER A	196	16.660	32.037	18.224	1.00	75.96	A
ATOM	1497	OG	SER A	196	15.996	32.592	17.103	1.00	77.77	A
ATOM	1498	C	SER A	196	18.874	31.264	19.155	1.00	73.75	A
ATOM	1499	O	SER A	196	18.533	30.175	19.630	1.00	70.20	A
ATOM	1500	N	PRO A	197	19.910	31.980	19.658	1.00	75.60	A
ATOM	1501	CD	PRO A	197	20.468	33.236	19.126	1.00	74.74	A
ATOM	1502	CA	PRO A	197	20.697	31.555	20.826	1.00	78.85	A
ATOM	1503	CB	PRO A	197	21.852	32.563	20.842	1.00	77.63	A
ATOM	1504	CG	PRO A	197	21.916	33.057	19.425	1.00	75.67	A
ATOM	1505	C	PRO A	197	19.896	31.607	22.128	1.00	81.40	A
ATOM	1506	O	PRO A	197	19.820	30.616	22.864	1.00	83.69	A
ATOM	1507	N	GLY A	198	19.317	32.773	22.401	1.00	81.99	A
ATOM	1508	CA	GLY A	198	18.500	32.950	23.586	1.00	83.75	A
ATOM	1509	C	GLY A	198	17.037	32.881	23.178	1.00	85.16	A
ATOM	1510	O	GLY A	198	16.735	33.070	21.989	1.00	84.97	A
ATOM	1511	N	PRO A	199	16.103	32.596	24.117	1.00	85.76	A
ATOM	1512	CD	PRO A	199	16.354	32.183	25.512	1.00	86.41	A
ATOM	1513	CA	PRO A	199	14.664	32.509	23.817	1.00	85.47	A
ATOM	1514	CB	PRO A	199	14.065	32.081	25.159	1.00	85.75	A
ATOM	1515	CG	PRO A	199	15.172	31.292	25.789	1.00	85.18	A
ATOM	1516	C	PRO A	199	14.071	33.840	23.338	1.00	84.72	A
ATOM	1517	O	PRO A	199	13.096	33.856	22.579	1.00	85.72	A
ATOM	1518	N	GLY A	200	14.691	34.938	23.773	1.00	83.09	A
ATOM	1519	CA	GLY A	200	14.254	36.271	23.392	1.00	80.65	A
ATOM	1520	C	GLY A	200	15.298	37.014	22.575	1.00	79.41	A
ATOM	1521	O	GLY A	200	15.165	38.221	22.344	1.00	78.63	A
ATOM	1522	N	ARG A	201	16.347	36.299	22.159	1.00	76.88	A
ATOM	1523	CA	ARG A	201	17.424	36.882	21.359	1.00	73.00	A

ATOM	1524	CB	ARG A 201	18.806	36.462	21.884	1.00	70.54	A
ATOM	1525	CG	ARG A 201	19.127	36.939	23.292	1.00	67.61	A
ATOM	1526	CD	ARG A 201	20.586	37.140	23.645	1.00	62.85	A
ATOM	1527	NE	ARG A 201	21.058	38.462	23.240	1.00	64.72	A
ATOM	1528	CZ	ARG A 201	22.295	38.918	23.428	1.00	69.51	A
ATOM	1529	NH1	ARG A 201	23.220	38.159	24.008	1.00	72.62	A
ATOM	1530	NH2	ARG A 201	22.596	40.167	23.093	1.00	68.63	A
ATOM	1531	C	ARG A 201	17.299	36.538	19.877	1.00	72.47	A
ATOM	1532	O	ARG A 201	16.315	35.915	19.451	1.00	73.36	A
ATOM	1533	N	LEU A 202	18.305	36.950	19.102	1.00	69.47	A
ATOM	1534	CA	LEU A 202	18.342	36.718	17.662	1.00	65.33	A
ATOM	1535	CB	LEU A 202	17.547	37.820	16.953	1.00	67.50	A
ATOM	1536	CG	LEU A 202	16.840	37.534	15.627	1.00	69.80	A
ATOM	1537	CD1	LEU A 202	15.906	36.324	15.737	1.00	72.02	A
ATOM	1538	CD2	LEU A 202	16.057	38.777	15.242	1.00	68.40	A
ATOM	1539	C	LEU A 202	19.778	36.711	17.154	1.00	61.67	A
ATOM	1540	O	LEU A 202	20.617	37.474	17.644	1.00	58.93	A
ATOM	1541	N	GLN A 203	20.054	35.821	16.198	1.00	58.89	A
ATOM	1542	CA	GLN A 203	21.382	35.704	15.587	1.00	54.44	A
ATOM	1543	CB	GLN A 203	21.796	34.235	15.418	1.00	60.36	A
ATOM	1544	CG	GLN A 203	23.277	34.028	15.055	1.00	69.42	A
ATOM	1545	CD	GLN A 203	23.638	32.563	14.859	1.00	79.33	A
ATOM	1546	OE1	GLN A 203	23.962	32.134	13.748	1.00	83.93	A
ATOM	1547	NE2	GLN A 203	23.582	31.785	15.941	1.00	84.58	A
ATOM	1548	C	GLN A 203	21.381	36.408	14.232	1.00	48.28	A
ATOM	1549	O	GLN A 203	20.759	35.949	13.265	1.00	46.07	A
ATOM	1550	N	LEU A 204	22.075	37.536	14.188	1.00	38.41	A
ATOM	1551	CA	LEU A 204	22.188	38.335	12.985	1.00	34.94	A
ATOM	1552	CB	LEU A 204	22.357	39.805	13.375	1.00	33.37	A
ATOM	1553	CG	LEU A 204	21.132	40.727	13.352	1.00	29.33	A
ATOM	1554	CD1	LEU A 204	19.949	40.159	14.120	1.00	24.78	A
ATOM	1555	CD2	LEU A 204	21.531	42.075	13.889	1.00	20.56	A
ATOM	1556	C	LEU A 204	23.354	37.839	12.137	1.00	33.31	A
ATOM	1557	O	LEU A 204	24.503	37.886	12.564	1.00	36.53	A
ATOM	1558	N	VAL A 205	23.047	37.344	10.943	1.00	30.92	A
ATOM	1559	CA	VAL A 205	24.071	36.804	10.047	1.00	31.74	A
ATOM	1560	CB	VAL A 205	23.722	35.344	9.575	1.00	29.38	A
ATOM	1561	CG1	VAL A 205	24.931	34.691	8.934	1.00	29.77	A

ATOM	1562	CG2	VAL A	205	23.220	34.484	10.728	1.00	20.60	A
ATOM	1563	C	VAL A	205	24.324	37.644	8.794	1.00	32.67	A
ATOM	1564	O	VAL A	205	23.396	37.939	8.028	1.00	33.43	A
ATOM	1565	N	CYS A	206	25.585	38.024	8.600	1.00	32.95	A
ATOM	1566	CA	CYS A	206	25.994	38.768	7.408	1.00	33.30	A
ATOM	1567	C	CYS A	206	26.860	37.827	6.566	1.00	32.19	A
ATOM	1568	O	CYS A	206	27.836	37.246	7.057	1.00	29.93	A
ATOM	1569	CB	CYS A	206	26.784	40.044	7.742	1.00	31.16	A
ATOM	1570	SG	CYS A	206	27.108	41.067	6.259	1.00	35.43	A
ATOM	1571	N	HIS A	207	26.468	37.653	5.311	1.00	29.19	A
ATOM	1572	CA	HIS A	207	27.191	36.787	4.392	1.00	31.34	A
ATOM	1573	CB	HIS A	207	26.242	35.849	3.668	1.00	32.49	A
ATOM	1574	CG	HIS A	207	25.274	35.115	4.543	1.00	31.45	A
ATOM	1575	CD2	HIS A	207	24.147	35.523	5.170	1.00	31.83	A
ATOM	1576	ND1	HIS A	207	25.370	33.760	4.772	1.00	33.39	A
ATOM	1577	CE1	HIS A	207	24.341	33.366	5.499	1.00	36.21	A
ATOM	1578	NE2	HIS A	207	23.584	34.416	5.755	1.00	32.19	A
ATOM	1579	C	HIS A	207	27.891	37.612	3.320	1.00	32.31	A
ATOM	1580	O	HIS A	207	27.331	38.587	2.824	1.00	33.50	A
ATOM	1581	N	VAL A	208	29.122	37.221	2.984	1.00	32.08	A
ATOM	1582	CA	VAL A	208	29.942	37.875	1.953	1.00	30.44	A
ATOM	1583	CB	VAL A	208	31.164	38.631	2.544	1.00	29.19	A
ATOM	1584	CG1	VAL A	208	31.747	39.567	1.515	1.00	33.26	A
ATOM	1585	CG2	VAL A	208	30.794	39.407	3.775	1.00	32.30	A
ATOM	1586	C	VAL A	208	30.491	36.714	1.132	1.00	32.73	A
ATOM	1587	O	VAL A	208	30.978	35.737	1.710	1.00	36.95	A
ATOM	1588	N	SER A	209	30.423	36.812	-0.198	1.00	31.87	A
ATOM	1589	CA	SER A	209	30.904	35.738	-1.074	1.00	28.79	A
ATOM	1590	CB	SER A	209	29.879	34.604	-1.154	1.00	27.59	A
ATOM	1591	OG	SER A	209	30.464	33.405	-1.636	1.00	34.15	A
ATOM	1592	C	SER A	209	31.210	36.182	-2.485	1.00	28.03	A
ATOM	1593	O	SER A	209	30.703	37.196	-2.950	1.00	29.73	A
ATOM	1594	N	GLY A	210	32.020	35.375	-3.167	1.00	31.41	A
ATOM	1595	CA	GLY A	210	32.385	35.637	-4.545	1.00	30.02	A
ATOM	1596	C	GLY A	210	33.534	36.591	-4.785	1.00	30.23	A
ATOM	1597	O	GLY A	210	33.789	36.918	-5.944	1.00	32.97	A
ATOM	1598	N	PHE A	211	34.282	36.949	-3.738	1.00	28.47	A
ATOM	1599	CA	PHE A	211	35.404	37.895	-3.871	1.00	32.22	A

ATOM	1600	CB	PHE A 211	35.396	38.908	-2.721	1.00	29.71	A
ATOM	1601	CG	PHE A 211	35.523	38.300	-1.359	1.00	23.92	A
ATOM	1602	CD1	PHE A 211	34.410	37.738	-0.722	1.00	29.47	A
ATOM	1603	CD2	PHE A 211	36.756	38.311	-0.689	1.00	31.19	A
ATOM	1604	CE1	PHE A 211	34.516	37.188	0.585	1.00	30.81	A
ATOM	1605	CE2	PHE A 211	36.884	37.768	0.610	1.00	28.41	A
ATOM	1606	CZ	PHE A 211	35.757	37.205	1.252	1.00	29.92	A
ATOM	1607	C	PHE A 211	36.833	37.378	-4.028	1.00	32.49	A
ATOM	1608	O	PHE A 211	37.181	36.314	-3.529	1.00	36.32	A
ATOM	1609	N	TYR A 212	37.669	38.219	-4.627	1.00	31.10	A
ATOM	1610	CA	TYR A 212	39.086	37.944	-4.831	1.00	31.98	A
ATOM	1611	CB	TYR A 212	39.343	37.128	-6.115	1.00	30.56	A
ATOM	1612	CG	TYR A 212	40.802	36.764	-6.302	1.00	29.92	A
ATOM	1613	CD1	TYR A 212	41.660	37.580	-7.072	1.00	32.17	A
ATOM	1614	CE1	TYR A 212	43.047	37.336	-7.138	1.00	28.64	A
ATOM	1615	CD2	TYR A 212	41.368	35.675	-5.613	1.00	32.82	A
ATOM	1616	CE2	TYR A 212	42.764	35.415	-5.674	1.00	31.84	A
ATOM	1617	CZ	TYR A 212	43.586	36.254	-6.436	1.00	29.91	A
ATOM	1618	OH	TYR A 212	44.927	36.012	-6.495	1.00	37.17	A
ATOM	1619	C	TYR A 212	39.729	39.328	-4.934	1.00	33.72	A
ATOM	1620	O	TYR A 212	39.190	40.183	-5.640	1.00	35.71	A
ATOM	1621	N	PRO A 213	40.883	39.574	-4.251	1.00	34.08	A
ATOM	1622	CD	PRO A 213	41.614	40.803	-4.604	1.00	29.11	A
ATOM	1623	CA	PRO A 213	41.725	38.753	-3.362	1.00	32.64	A
ATOM	1624	CB	PRO A 213	43.042	39.530	-3.316	1.00	34.82	A
ATOM	1625	CG	PRO A 213	43.028	40.335	-4.574	1.00	31.67	A
ATOM	1626	C	PRO A 213	41.175	38.492	-1.965	1.00	33.01	A
ATOM	1627	O	PRO A 213	40.089	38.955	-1.613	1.00	33.00	A
ATOM	1628	N	LYS A 214	41.954	37.744	-1.190	1.00	35.70	A
ATOM	1629	CA	LYS A 214	41.614	37.337	0.170	1.00	35.29	A
ATOM	1630	CB	LYS A 214	42.640	36.302	0.671	1.00	37.47	A
ATOM	1631	CG	LYS A 214	42.132	35.267	1.681	1.00	42.59	A
ATOM	1632	CD	LYS A 214	43.165	34.205	2.098	1.00	45.50	A
ATOM	1633	CE	LYS A 214	42.885	33.341	3.319	1.00	40.44	A
ATOM	1634	NZ	LYS A 214	41.828	32.328	3.078	1.00	39.30	A
ATOM	1635	C	LYS A 214	41.351	38.443	1.210	1.00	34.55	A
ATOM	1636	O	LYS A 214	40.331	38.356	1.897	1.00	36.52	A
ATOM	1637	N	PRO A 215	42.200	39.517	1.300	1.00	34.02	A

ATOM	1638	CD	PRO A 215	43.450	39.852	0.580	1.00	29.25	A
ATOM	1639	CA	PRO A 215	41.927	40.565	2.307	1.00	32.93	A
ATOM	1640	CB	PRO A 215	43.058	41.565	2.076	1.00	29.89	A
ATOM	1641	CG	PRO A 215	44.168	40.707	1.566	1.00	26.69	A
ATOM	1642	C	PRO A 215	40.553	41.236	2.176	1.00	33.04	A
ATOM	1643	O	PRO A 215	40.172	41.695	1.096	1.00	35.39	A
ATOM	1644	N	VAL A 216	39.807	41.222	3.281	1.00	34.12	A
ATOM	1645	CA	VAL A 216	38.458	41.781	3.354	1.00	34.46	A
ATOM	1646	CB	VAL A 216	37.411	40.729	2.840	1.00	37.32	A
ATOM	1647	CG1	VAL A 216	37.375	39.497	3.737	1.00	35.22	A
ATOM	1648	CG2	VAL A 216	36.027	41.337	2.657	1.00	38.63	A
ATOM	1649	C	VAL A 216	38.125	42.235	4.782	1.00	35.07	A
ATOM	1650	O	VAL A 216	38.594	41.654	5.759	1.00	35.08	A
ATOM	1651	N	TRP A 217	37.283	43.257	4.881	1.00	38.29	A
ATOM	1652	CA	TRP A 217	36.870	43.811	6.163	1.00	43.22	A
ATOM	1653	CB	TRP A 217	37.360	45.267	6.250	1.00	48.72	A
ATOM	1654	CG	TRP A 217	37.259	45.929	7.604	1.00	58.80	A
ATOM	1655	CD2	TRP A 217	36.131	46.642	8.144	1.00	63.17	A
ATOM	1656	CE2	TRP A 217	36.527	47.147	9.411	1.00	62.34	A
ATOM	1657	CE3	TRP A 217	34.822	46.909	7.679	1.00	63.29	A
ATOM	1658	CD1	TRP A 217	38.252	46.024	8.538	1.00	63.36	A
ATOM	1659	NE1	TRP A 217	37.822	46.755	9.621	1.00	64.88	A
ATOM	1660	CZ2	TRP A 217	35.664	47.911	10.226	1.00	61.82	A
ATOM	1661	CZ3	TRP A 217	33.956	47.672	8.489	1.00	61.42	A
ATOM	1662	CH2	TRP A 217	34.389	48.164	9.751	1.00	61.36	A
ATOM	1663	C	TRP A 217	35.344	43.740	6.261	1.00	41.50	A
ATOM	1664	O	TRP A 217	34.640	44.280	5.409	1.00	43.12	A
ATOM	1665	N	VAL A 218	34.834	43.052	7.281	1.00	39.50	A
ATOM	1666	CA	VAL A 218	33.385	42.923	7.486	1.00	41.78	A
ATOM	1667	CB	VAL A 218	32.797	41.526	7.040	1.00	42.51	A
ATOM	1668	CG1	VAL A 218	31.262	41.569	7.029	1.00	36.38	A
ATOM	1669	CG2	VAL A 218	33.303	41.107	5.666	1.00	42.39	A
ATOM	1670	C	VAL A 218	33.046	43.103	8.960	1.00	43.89	A
ATOM	1671	O	VAL A 218	33.579	42.397	9.823	1.00	46.60	A
ATOM	1672	N	MET A 219	32.155	44.048	9.245	1.00	44.32	A
ATOM	1673	CA	MET A 219	31.717	44.309	10.613	1.00	46.39	A
ATOM	1674	CB	MET A 219	32.508	45.463	11.250	1.00	49.14	A
ATOM	1675	CG	MET A 219	33.801	45.091	11.952	1.00	49.04	A

ATOM	1676	SD	MET A	219	33.499	44.222	13.469	1.00	55.41	A
ATOM	1677	CE	MET A	219	34.146	45.380	14.681	1.00	53.59	A
ATOM	1678	C	MET A	219	30.252	44.681	10.667	1.00	45.87	A
ATOM	1679	O	MET A	219	29.680	45.159	9.680	1.00	42.56	A
ATOM	1680	N	TRP A	220	29.650	44.426	11.826	1.00	45.39	A
ATOM	1681	CA	TRP A	220	28.271	44.804	12.076	1.00	48.89	A
ATOM	1682	CB	TRP A	220	27.587	43.817	13.018	1.00	46.86	A
ATOM	1683	CG	TRP A	220	26.913	42.664	12.324	1.00	50.76	A
ATOM	1684	CD2	TRP A	220	25.642	42.680	11.655	1.00	53.11	A
ATOM	1685	CE2	TRP A	220	25.414	41.365	11.158	1.00	55.12	A
ATOM	1686	CE3	TRP A	220	24.666	43.674	11.423	1.00	52.75	A
ATOM	1687	CD1	TRP A	220	27.386	41.382	12.210	1.00	51.67	A
ATOM	1688	NE1	TRP A	220	26.494	40.600	11.513	1.00	52.17	A
ATOM	1689	CZ2	TRP A	220	24.244	41.017	10.435	1.00	51.97	A
ATOM	1690	CZ3	TRP A	220	23.494	43.329	10.699	1.00	52.24	A
ATOM	1691	CH2	TRP A	220	23.302	42.005	10.217	1.00	50.74	A
ATOM	1692	C	TRP A	220	28.356	46.206	12.701	1.00	51.32	A
ATOM	1693	O	TRP A	220	29.152	46.436	13.621	1.00	52.61	A
ATOM	1694	N	MET A	221	27.607	47.151	12.129	1.00	51.46	A
ATOM	1695	CA	MET A	221	27.599	48.550	12.574	1.00	52.64	A
ATOM	1696	CB	MET A	221	27.962	49.481	11.403	1.00	52.95	A
ATOM	1697	CG	MET A	221	29.189	49.122	10.591	1.00	53.85	A
ATOM	1698	SD	MET A	221	30.744	49.489	11.379	1.00	58.51	A
ATOM	1699	CE	MET A	221	30.886	51.271	11.101	1.00	55.93	A
ATOM	1700	C	MET A	221	26.249	49.032	13.110	1.00	50.75	A
ATOM	1701	O	MET A	221	25.222	48.378	12.938	1.00	49.10	A
ATOM	1702	N	ARG A	222	26.295	50.206	13.740	1.00	50.11	A
ATOM	1703	CA	ARG A	222	25.139	50.930	14.266	1.00	49.82	A
ATOM	1704	CB	ARG A	222	24.985	50.779	15.788	1.00	47.60	A
ATOM	1705	CG	ARG A	222	23.733	51.471	16.334	1.00	46.04	A
ATOM	1706	CD	ARG A	222	23.341	51.263	17.801	1.00	49.22	A
ATOM	1707	NE	ARG A	222	22.802	49.928	18.091	1.00	50.45	A
ATOM	1708	CZ	ARG A	222	21.606	49.473	17.705	1.00	47.85	A
ATOM	1709	NH1	ARG A	222	20.782	50.236	16.992	1.00	47.98	A
ATOM	1710	NH2	ARG A	222	21.233	48.243	18.033	1.00	41.59	A
ATOM	1711	C	ARG A	222	25.498	52.364	13.874	1.00	49.70	A
ATOM	1712	O	ARG A	222	26.112	53.113	14.644	1.00	48.97	A
ATOM	1713	N	GLY A	223	25.201	52.682	12.615	1.00	52.43	A

ATOM	1714	CA	GLY A 223	25.495	53.987	12.053	1.00	57.13	A
ATOM	1715	C	GLY A 223	26.964	54.033	11.688	1.00	61.54	A
ATOM	1716	O	GLY A 223	27.401	53.391	10.724	1.00	65.21	A
ATOM	1717	N	GLU A 224	27.727	54.779	12.483	1.00	62.87	A
ATOM	1718	CA	GLU A 224	29.164	54.920	12.288	1.00	63.08	A
ATOM	1719	CB	GLU A 224	29.547	56.400	12.080	1.00	62.79	A
ATOM	1720	CG	GLU A 224	28.865	57.129	10.887	1.00	67.86	A
ATOM	1721	CD	GLU A 224	29.169	56.519	9.507	1.00	68.52	A
ATOM	1722	OE1	GLU A 224	30.316	56.659	9.023	1.00	65.84	A
ATOM	1723	OE2	GLU A 224	28.249	55.919	8.901	1.00	65.44	A
ATOM	1724	C	GLU A 224	29.912	54.317	13.485	1.00	65.29	A
ATOM	1725	O	GLU A 224	31.128	54.484	13.611	1.00	68.00	A
ATOM	1726	N	GLN A 225	29.178	53.608	14.350	1.00	66.16	A
ATOM	1727	CA	GLN A 225	29.746	52.960	15.539	1.00	66.37	A
ATOM	1728	CB	GLN A 225	28.978	53.368	16.808	1.00	68.54	A
ATOM	1729	CG	GLN A 225	29.544	52.795	18.126	1.00	75.23	A
ATOM	1730	CD	GLN A 225	28.477	52.134	19.014	1.00	83.60	A
ATOM	1731	OE1	GLN A 225	27.491	51.571	18.522	1.00	84.90	A
ATOM	1732	NE2	GLN A 225	28.687	52.190	20.328	1.00	82.20	A
ATOM	1733	C	GLN A 225	29.702	51.444	15.375	1.00	65.18	A
ATOM	1734	O	GLN A 225	28.624	50.855	15.314	1.00	67.45	A
ATOM	1735	N	GLU A 226	30.879	50.822	15.332	1.00	64.47	A
ATOM	1736	CA	GLU A 226	30.994	49.372	15.179	1.00	62.17	A
ATOM	1737	CB	GLU A 226	32.310	48.981	14.490	1.00	61.73	A
ATOM	1738	CG	GLU A 226	33.563	49.746	14.892	1.00	62.80	A
ATOM	1739	CD	GLU A 226	34.715	49.491	13.924	1.00	65.24	A
ATOM	1740	OE1	GLU A 226	35.453	48.502	14.121	1.00	64.30	A
ATOM	1741	OE2	GLU A 226	34.875	50.271	12.955	1.00	63.54	A
ATOM	1742	C	GLU A 226	30.793	48.565	16.455	1.00	61.92	A
ATOM	1743	O	GLU A 226	31.155	49.006	17.548	1.00	63.35	A
ATOM	1744	N	GLN A 227	30.190	47.388	16.294	1.00	60.91	A
ATOM	1745	CA	GLN A 227	29.908	46.477	17.401	1.00	60.19	A
ATOM	1746	CB	GLN A 227	28.679	45.616	17.080	1.00	56.17	A
ATOM	1747	CG	GLN A 227	27.460	46.385	16.552	1.00	48.71	A
ATOM	1748	CD	GLN A 227	26.918	47.412	17.526	1.00	44.18	A
ATOM	1749	OE1	GLN A 227	27.058	48.616	17.314	1.00	40.98	A
ATOM	1750	NE2	GLN A 227	26.287	46.940	18.596	1.00	39.04	A
ATOM	1751	C	GLN A 227	31.105	45.579	17.683	1.00	61.92	A

ATOM	1752	O	GLN A	227	31.661	44.975	16.765	1.00	62.24	A
ATOM	1753	N	GLN A	228	31.492	45.498	18.956	1.00	63.78	A
ATOM	1754	CA	GLN A	228	32.629	44.681	19.389	1.00	65.71	A
ATOM	1755	CB	GLN A	228	33.170	45.188	20.732	1.00	69.34	A
ATOM	1756	CG	GLN A	228	33.822	46.571	20.672	1.00	72.53	A
ATOM	1757	CD	GLN A	228	35.115	46.585	19.865	1.00	74.79	A
ATOM	1758	OE1	GLN A	228	36.182	46.225	20.373	1.00	76.66	A
ATOM	1759	NE2	GLN A	228	35.022	46.994	18.602	1.00	71.74	A
ATOM	1760	C	GLN A	228	32.340	43.185	19.478	1.00	65.65	A
ATOM	1761	O	GLN A	228	33.254	42.368	19.318	1.00	67.14	A
ATOM	1762	N	GLY A	229	31.065	42.842	19.689	1.00	64.00	A
ATOM	1763	CA	GLY A	229	30.640	41.451	19.798	1.00	62.06	A
ATOM	1764	C	GLY A	229	30.430	40.734	18.471	1.00	61.19	A
ATOM	1765	O	GLY A	229	29.817	39.653	18.426	1.00	60.85	A
ATOM	1766	N	THR A	230	30.946	41.339	17.397	1.00	57.07	A
ATOM	1767	CA	THR A	230	30.852	40.803	16.041	1.00	52.96	A
ATOM	1768	CB	THR A	230	31.157	41.900	14.995	1.00	49.97	A
ATOM	1769	OG1	THR A	230	30.294	43.018	15.215	1.00	56.66	A
ATOM	1770	CG2	THR A	230	30.943	41.400	13.576	1.00	48.29	A
ATOM	1771	C	THR A	230	31.821	39.635	15.862	1.00	51.73	A
ATOM	1772	O	THR A	230	33.039	39.834	15.751	1.00	51.98	A
ATOM	1773	N	GLN A	231	31.267	38.423	15.874	1.00	50.10	A
ATOM	1774	CA	GLN A	231	32.051	37.205	15.701	1.00	48.68	A
ATOM	1775	CB	GLN A	231	31.408	36.018	16.416	1.00	49.76	A
ATOM	1776	CG	GLN A	231	31.376	36.147	17.930	1.00	54.56	A
ATOM	1777	CD	GLN A	231	30.512	35.084	18.583	1.00	58.51	A
ATOM	1778	OE1	GLN A	231	30.997	34.271	19.374	1.00	59.16	A
ATOM	1779	NE2	GLN A	231	29.218	35.088	18.257	1.00	60.24	A
ATOM	1780	C	GLN A	231	32.213	36.912	14.221	1.00	48.94	A
ATOM	1781	O	GLN A	231	31.240	36.708	13.481	1.00	47.48	A
ATOM	1782	N	LEU A	232	33.471	36.956	13.805	1.00	48.98	A
ATOM	1783	CA	LEU A	232	33.896	36.724	12.436	1.00	46.97	A
ATOM	1784	CB	LEU A	232	35.210	37.480	12.231	1.00	48.69	A
ATOM	1785	CG	LEU A	232	35.746	37.860	10.859	1.00	56.14	A
ATOM	1786	CD1	LEU A	232	34.765	38.788	10.151	1.00	62.36	A
ATOM	1787	CD2	LEU A	232	37.089	38.558	11.047	1.00	60.14	A
ATOM	1788	C	LEU A	232	34.103	35.223	12.207	1.00	44.95	A
ATOM	1789	O	LEU A	232	34.634	34.529	13.077	1.00	43.80	A

ATOM	1790	N	GLY A 233	33.647	34.727	11.056	1.00	45.13	A
ATOM	1791	CA	GLY A 233	33.799	33.317	10.712	1.00	41.24	A
ATOM	1792	C	GLY A 233	35.120	33.065	10.002	1.00	41.26	A
ATOM	1793	O	GLY A 233	35.951	33.975	9.894	1.00	41.66	A
ATOM	1794	N	ASP A 234	35.324	31.842	9.519	1.00	39.94	A
ATOM	1795	CA	ASP A 234	36.552	31.488	8.800	1.00	41.90	A
ATOM	1796	CB	ASP A 234	36.824	29.979	8.878	1.00	45.92	A
ATOM	1797	CG	ASP A 234	37.146	29.500	10.281	1.00	48.37	A
ATOM	1798	OD1	ASP A 234	37.911	30.184	11.009	1.00	48.97	A
ATOM	1799	OD2	ASP A 234	36.640	28.413	10.638	1.00	47.45	A
ATOM	1800	C	ASP A 234	36.421	31.876	7.334	1.00	40.15	A
ATOM	1801	O	ASP A 234	35.306	31.916	6.812	1.00	39.38	A
ATOM	1802	N	ILE A 235	37.550	32.169	6.679	1.00	39.22	A
ATOM	1803	CA	ILE A 235	37.541	32.528	5.258	1.00	39.23	A
ATOM	1804	CB	ILE A 235	38.714	33.475	4.849	1.00	42.01	A
ATOM	1805	CG2	ILE A 235	38.537	33.917	3.393	1.00	41.46	A
ATOM	1806	CG1	ILE A 235	38.718	34.741	5.723	1.00	44.63	A
ATOM	1807	CD1	ILE A 235	39.886	35.718	5.462	1.00	52.65	A
ATOM	1808	C	ILE A 235	37.552	31.231	4.447	1.00	36.87	A
ATOM	1809	O	ILE A 235	38.606	30.701	4.079	1.00	41.61	A
ATOM	1810	N	LEU A 236	36.342	30.722	4.238	1.00	33.85	A
ATOM	1811	CA	LEU A 236	36.044	29.491	3.516	1.00	30.64	A
ATOM	1812	CB	LEU A 236	34.623	29.049	3.870	1.00	30.03	A
ATOM	1813	CG	LEU A 236	34.261	28.981	5.357	1.00	31.93	A
ATOM	1814	CD1	LEU A 236	32.799	28.627	5.545	1.00	31.93	A
ATOM	1815	CD2	LEU A 236	35.147	27.988	6.072	1.00	38.34	A
ATOM	1816	C	LEU A 236	36.190	29.645	1.996	1.00	32.80	A
ATOM	1817	O	LEU A 236	35.827	30.682	1.440	1.00	32.96	A
ATOM	1818	N	PRO A 237	36.728	28.614	1.303	1.00	36.06	A
ATOM	1819	CD	PRO A 237	37.460	27.434	1.813	1.00	35.03	A
ATOM	1820	CA	PRO A 237	36.895	28.723	-0.149	1.00	36.01	A
ATOM	1821	CB	PRO A 237	38.140	27.883	-0.398	1.00	33.37	A
ATOM	1822	CG	PRO A 237	37.951	26.756	0.547	1.00	35.64	A
ATOM	1823	C	PRO A 237	35.755	28.275	-1.042	1.00	37.17	A
ATOM	1824	O	PRO A 237	34.800	27.638	-0.612	1.00	37.46	A
ATOM	1825	N	ASN A 238	35.896	28.660	-2.300	1.00	41.09	A
ATOM	1826	CA	ASN A 238	34.997	28.322	-3.391	1.00	44.34	A
ATOM	1827	CB	ASN A 238	34.194	29.550	-3.835	1.00	46.14	A

ATOM	1828	CG	ASN A 238	32.961	29.814	-2.977	1.00	47.61	A
ATOM	1829	OD1	ASN A 238	32.115	28.932	-2.798	1.00	49.02	A
ATOM	1830	ND2	ASN A 238	32.814	31.058	-2.509	1.00	36.72	A
ATOM	1831	C	ASN A 238	36.027	27.919	-4.461	1.00	46.92	A
ATOM	1832	O	ASN A 238	37.092	28.548	-4.580	1.00	49.25	A
ATOM	1833	N	ALA A 239	35.732	26.862	-5.213	1.00	46.42	A
ATOM	1834	CA	ALA A 239	36.646	26.350	-6.237	1.00	45.01	A
ATOM	1835	CB	ALA A 239	36.186	25.017	-6.682	1.00	45.84	A
ATOM	1836	C	ALA A 239	36.912	27.237	-7.453	1.00	46.63	A
ATOM	1837	O	ALA A 239	37.773	26.912	-8.283	1.00	48.77	A
ATOM	1838	N	ASN A 240	36.172	28.344	-7.558	1.00	44.16	A
ATOM	1839	CA	ASN A 240	36.330	29.299	-8.660	1.00	42.18	A
ATOM	1840	CB	ASN A 240	34.971	29.893	-9.082	1.00	39.66	A
ATOM	1841	CG	ASN A 240	34.283	30.654	-7.961	1.00	38.77	A
ATOM	1842	OD1	ASN A 240	33.682	31.699	-8.179	1.00	40.51	A
ATOM	1843	ND2	ASN A 240	34.373	30.129	-6.758	1.00	37.70	A
ATOM	1844	C	ASN A 240	37.308	30.402	-8.258	1.00	39.94	A
ATOM	1845	O	ASN A 240	37.249	31.523	-8.778	1.00	43.89	A
ATOM	1846	N	TRP A 241	38.182	30.067	-7.304	1.00	36.03	A
ATOM	1847	CA	TRP A 241	39.213	30.955	-6.763	1.00	29.85	A
ATOM	1848	CB	TRP A 241	40.258	31.294	-7.840	1.00	31.42	A
ATOM	1849	CG	TRP A 241	41.293	30.225	-8.082	1.00	30.24	A
ATOM	1850	CD2	TRP A 241	42.625	30.433	-8.547	1.00	25.52	A
ATOM	1851	CE2	TRP A 241	43.268	29.163	-8.562	1.00	31.37	A
ATOM	1852	CE3	TRP A 241	43.352	31.574	-8.950	1.00	24.58	A
ATOM	1853	CD1	TRP A 241	41.173	28.874	-7.851	1.00	27.11	A
ATOM	1854	NE1	TRP A 241	42.355	28.235	-8.132	1.00	29.30	A
ATOM	1855	CZ2	TRP A 241	44.621	28.998	-8.965	1.00	34.22	A
ATOM	1856	CZ3	TRP A 241	44.704	31.417	-9.352	1.00	29.97	A
ATOM	1857	CH2	TRP A 241	45.320	30.131	-9.353	1.00	33.91	A
ATOM	1858	C	TRP A 241	38.644	32.211	-6.116	1.00	27.39	A
ATOM	1859	O	TRP A 241	39.128	33.323	-6.327	1.00	27.52	A
ATOM	1860	N	THR A 242	37.536	32.028	-5.411	1.00	27.71	A
ATOM	1861	CA	THR A 242	36.876	33.119	-4.705	1.00	29.76	A
ATOM	1862	CB	THR A 242	35.525	33.509	-5.331	1.00	33.99	A
ATOM	1863	OG1	THR A 242	34.653	32.374	-5.373	1.00	39.34	A
ATOM	1864	CG2	THR A 242	35.708	34.106	-6.735	1.00	35.13	A
ATOM	1865	C	THR A 242	36.672	32.695	-3.267	1.00	27.92	A

ATOM	1866	O	THR A 242	36.913	31.535	-2.922	1.00	28.80	A
ATOM	1867	N	TRP A 243	36.219	33.620	-2.427	1.00	28.54	A
ATOM	1868	CA	TRP A 243	36.053	33.318	-1.003	1.00	32.83	A
ATOM	1869	CB	TRP A 243	37.063	34.131	-0.189	1.00	33.62	A
ATOM	1870	CG	TRP A 243	38.486	33.990	-0.675	1.00	32.25	A
ATOM	1871	CD2	TRP A 243	39.370	32.907	-0.409	1.00	33.41	A
ATOM	1872	CE2	TRP A 243	40.560	33.147	-1.149	1.00	34.43	A
ATOM	1873	CE3	TRP A 243	39.280	31.745	0.384	1.00	36.33	A
ATOM	1874	CD1	TRP A 243	39.152	34.829	-1.528	1.00	33.04	A
ATOM	1875	NE1	TRP A 243	40.396	34.326	-1.823	1.00	34.71	A
ATOM	1876	CZ2	TRP A 243	41.651	32.272	-1.121	1.00	37.63	A
ATOM	1877	CZ3	TRP A 243	40.371	30.863	0.415	1.00	42.27	A
ATOM	1878	CH2	TRP A 243	41.543	31.137	-0.338	1.00	44.94	A
ATOM	1879	C	TRP A 243	34.645	33.445	-0.423	1.00	32.72	A
ATOM	1880	O	TRP A 243	33.704	33.794	-1.138	1.00	38.67	A
ATOM	1881	N	TYR A 244	34.508	33.076	0.852	1.00	27.52	A
ATOM	1882	CA	TYR A 244	33.240	33.109	1.582	1.00	28.26	A
ATOM	1883	CB	TYR A 244	32.551	31.739	1.494	1.00	28.20	A
ATOM	1884	CG	TYR A 244	31.147	31.644	2.081	1.00	31.11	A
ATOM	1885	CD1	TYR A 244	30.020	31.847	1.278	1.00	35.33	A
ATOM	1886	CE1	TYR A 244	28.705	31.725	1.805	1.00	37.89	A
ATOM	1887	CD2	TYR A 244	30.938	31.314	3.437	1.00	34.85	A
ATOM	1888	CE2	TYR A 244	29.629	31.193	3.979	1.00	37.18	A
ATOM	1889	CZ	TYR A 244	28.522	31.401	3.152	1.00	35.06	A
ATOM	1890	OH	TYR A 244	27.249	31.285	3.658	1.00	38.59	A
ATOM	1891	C	TYR A 244	33.543	33.466	3.044	1.00	31.88	A
ATOM	1892	O	TYR A 244	34.431	32.880	3.668	1.00	31.22	A
ATOM	1893	N	LEU A 245	32.783	34.416	3.583	1.00	31.96	A
ATOM	1894	CA	LEU A 245	32.952	34.859	4.958	1.00	32.54	A
ATOM	1895	CB	LEU A 245	33.858	36.105	5.029	1.00	32.68	A
ATOM	1896	CG	LEU A 245	34.238	36.711	6.399	1.00	37.30	A
ATOM	1897	CD1	LEU A 245	34.797	35.671	7.359	1.00	36.47	A
ATOM	1898	CD2	LEU A 245	35.248	37.808	6.215	1.00	35.48	A
ATOM	1899	C	LEU A 245	31.597	35.137	5.587	1.00	32.69	A
ATOM	1900	O	LEU A 245	30.676	35.624	4.928	1.00	32.92	A
ATOM	1901	N	ARG A 246	31.503	34.801	6.868	1.00	33.31	A
ATOM	1902	CA	ARG A 246	30.301	34.975	7.670	1.00	35.69	A
ATOM	1903	CB	ARG A 246	29.908	33.617	8.252	1.00	39.66	A

ATOM	1904	CG	ARG A	246	28.467	33.200	8.074	1.00	44.38	A
ATOM	1905	CD	ARG A	246	28.077	31.866	8.705	1.00	48.04	A
ATOM	1906	NE	ARG A	246	28.544	31.768	10.091	1.00	50.31	A
ATOM	1907	CZ	ARG A	246	27.786	31.465	11.143	1.00	48.69	A
ATOM	1908	NH1	ARG A	246	26.488	31.211	11.004	1.00	51.53	A
ATOM	1909	NH2	ARG A	246	28.331	31.459	12.353	1.00	47.77	A
ATOM	1910	C	ARG A	246	30.657	35.932	8.811	1.00	35.97	A
ATOM	1911	O	ARG A	246	31.777	35.879	9.330	1.00	38.57	A
ATOM	1912	N	ALA A	247	29.738	36.835	9.159	1.00	34.10	A
ATOM	1913	CA	ALA A	247	29.948	37.781	10.264	1.00	31.41	A
ATOM	1914	CB	ALA A	247	30.257	39.161	9.751	1.00	23.10	A
ATOM	1915	C	ALA A	247	28.673	37.785	11.074	1.00	31.57	A
ATOM	1916	O	ALA A	247	27.622	38.205	10.585	1.00	37.24	A
ATOM	1917	N	THR A	248	28.754	37.260	12.294	1.00	31.68	A
ATOM	1918	CA	THR A	248	27.588	37.163	13.164	1.00	32.17	A
ATOM	1919	CB	THR A	248	27.378	35.722	13.669	1.00	32.01	A
ATOM	1920	OG1	THR A	248	28.646	35.079	13.858	1.00	29.63	A
ATOM	1921	CG2	THR A	248	26.538	34.940	12.691	1.00	30.26	A
ATOM	1922	C	THR A	248	27.542	38.090	14.360	1.00	34.26	A
ATOM	1923	O	THR A	248	28.572	38.614	14.789	1.00	35.14	A
ATOM	1924	N	LEU A	249	26.323	38.296	14.868	1.00	35.48	A
ATOM	1925	CA	LEU A	249	26.062	39.118	16.051	1.00	36.84	A
ATOM	1926	CB	LEU A	249	25.761	40.572	15.687	1.00	31.47	A
ATOM	1927	CG	LEU A	249	26.460	41.742	16.399	1.00	30.56	A
ATOM	1928	CD1	LEU A	249	25.606	42.967	16.169	1.00	28.95	A
ATOM	1929	CD2	LEU A	249	26.651	41.550	17.896	1.00	33.57	A
ATOM	1930	C	LEU A	249	24.874	38.568	16.826	1.00	40.63	A
ATOM	1931	O	LEU A	249	23.787	38.373	16.266	1.00	39.68	A
ATOM	1932	N	ASP A	250	25.109	38.300	18.114	1.00	46.25	A
ATOM	1933	CA	ASP A	250	24.080	37.811	19.037	1.00	50.06	A
ATOM	1934	CB	ASP A	250	24.714	36.957	20.149	1.00	58.97	A
ATOM	1935	CG	ASP A	250	23.692	36.097	20.906	1.00	67.05	A
ATOM	1936	OD1	ASP A	250	22.483	36.439	20.944	1.00	70.25	A
ATOM	1937	OD2	ASP A	250	24.111	35.059	21.467	1.00	71.83	A
ATOM	1938	C	ASP A	250	23.469	39.091	19.616	1.00	48.54	A
ATOM	1939	O	ASP A	250	24.156	39.873	20.291	1.00	46.12	A
ATOM	1940	N	VAL A	251	22.187	39.301	19.332	1.00	47.44	A
ATOM	1941	CA	VAL A	251	21.505	40.511	19.771	1.00	50.54	A

ATOM	1942	CB	VAL A	251	21.541	41.573	18.604	1.00	47.99	A
ATOM	1943	CG1	VAL A	251	20.314	41.486	17.691	1.00	40.56	A
ATOM	1944	CG2	VAL A	251	21.775	42.965	19.152	1.00	52.67	A
ATOM	1945	C	VAL A	251	20.080	40.260	20.280	1.00	52.50	A
ATOM	1946	O	VAL A	251	19.480	39.230	19.965	1.00	55.99	A
ATOM	1947	N	ALA A	252	19.557	41.211	21.059	1.00	52.52	A
ATOM	1948	CA	ALA A	252	18.194	41.145	21.597	1.00	55.64	A
ATOM	1949	CB	ALA A	252	18.074	42.024	22.835	1.00	52.54	A
ATOM	1950	C	ALA A	252	17.198	41.597	20.512	1.00	57.75	A
ATOM	1951	O	ALA A	252	17.557	42.401	19.640	1.00	58.27	A
ATOM	1952	N	ASP A	253	15.963	41.087	20.579	1.00	57.26	A
ATOM	1953	CA	ASP A	253	14.893	41.383	19.610	1.00	59.25	A
ATOM	1954	CB	ASP A	253	13.562	40.813	20.106	1.00	63.27	A
ATOM	1955	CG	ASP A	253	13.427	39.323	19.850	1.00	67.20	A
ATOM	1956	OD1	ASP A	253	14.457	38.609	19.842	1.00	69.63	A
ATOM	1957	OD2	ASP A	253	12.281	38.863	19.656	1.00	69.35	A
ATOM	1958	C	ASP A	253	14.689	42.830	19.142	1.00	60.01	A
ATOM	1959	O	ASP A	253	14.679	43.097	17.932	1.00	59.76	A
ATOM	1960	N	GLY A	254	14.563	43.753	20.098	1.00	58.86	A
ATOM	1961	CA	GLY A	254	14.365	45.158	19.778	1.00	59.04	A
ATOM	1962	C	GLY A	254	15.591	45.889	19.248	1.00	60.11	A
ATOM	1963	O	GLY A	254	15.456	46.859	18.495	1.00	62.17	A
ATOM	1964	N	GLU A	255	16.780	45.392	19.597	1.00	59.12	A
ATOM	1965	CA	GLU A	255	18.056	45.992	19.186	1.00	56.62	A
ATOM	1966	CB	GLU A	255	19.181	45.508	20.093	1.00	55.52	A
ATOM	1967	CG	GLU A	255	18.971	45.747	21.566	1.00	67.43	A
ATOM	1968	CD	GLU A	255	20.188	45.359	22.383	1.00	76.42	A
ATOM	1969	OE1	GLU A	255	20.694	46.225	23.132	1.00	78.97	A
ATOM	1970	OE2	GLU A	255	20.648	44.196	22.272	1.00	81.40	A
ATOM	1971	C	GLU A	255	18.467	45.744	17.733	1.00	53.87	A
ATOM	1972	O	GLU A	255	19.305	46.472	17.197	1.00	52.19	A
ATOM	1973	N	ALA A	256	17.865	44.729	17.106	1.00	51.60	A
ATOM	1974	CA	ALA A	256	18.146	44.341	15.718	1.00	48.53	A
ATOM	1975	CB	ALA A	256	17.327	43.119	15.342	1.00	48.51	A
ATOM	1976	C	ALA A	256	17.922	45.454	14.701	1.00	47.66	A
ATOM	1977	O	ALA A	256	18.633	45.541	13.700	1.00	48.63	A
ATOM	1978	N	ALA A	257	16.958	46.325	14.992	1.00	46.41	A
ATOM	1979	CA	ALA A	257	16.638	47.459	14.128	1.00	43.97	A

ATOM	1980	CB	ALA A 257	15.263	47.999	14.463	1.00	48.66	A
ATOM	1981	C	ALA A 257	17.687	48.544	14.313	1.00	39.32	A
ATOM	1982	O	ALA A 257	18.098	48.827	15.438	1.00	37.31	A
ATOM	1983	N	GLY A 258	18.130	49.120	13.200	1.00	37.24	A
ATOM	1984	CA	GLY A 258	19.141	50.166	13.239	1.00	37.80	A
ATOM	1985	C	GLY A 258	20.511	49.617	12.897	1.00	37.65	A
ATOM	1986	O	GLY A 258	21.412	50.360	12.484	1.00	36.24	A
ATOM	1987	N	LEU A 259	20.656	48.301	13.054	1.00	36.27	A
ATOM	1988	CA	LEU A 259	21.906	47.616	12.765	1.00	34.32	A
ATOM	1989	CB	LEU A 259	22.006	46.316	13.564	1.00	28.71	A
ATOM	1990	CG	LEU A 259	22.247	46.496	15.065	1.00	30.41	A
ATOM	1991	CD1	LEU A 259	22.090	45.182	15.782	1.00	32.04	A
ATOM	1992	CD2	LEU A 259	23.624	47.080	15.342	1.00	23.96	A
ATOM	1993	C	LEU A 259	22.125	47.351	11.283	1.00	34.93	A
ATOM	1994	O	LEU A 259	21.181	47.013	10.549	1.00	34.95	A
ATOM	1995	N	SER A 260	23.368	47.565	10.852	1.00	32.55	A
ATOM	1996	CA	SER A 260	23.768	47.350	9.468	1.00	32.55	A
ATOM	1997	CB	SER A 260	23.948	48.678	8.747	1.00	32.20	A
ATOM	1998	OG	SER A 260	25.001	49.437	9.312	1.00	39.79	A
ATOM	1999	C	SER A 260	25.071	46.585	9.387	1.00	33.59	A
ATOM	2000	O	SER A 260	25.849	46.591	10.336	1.00	33.61	A
ATOM	2001	N	CYS A 261	25.290	45.913	8.258	1.00	32.32	A
ATOM	2002	CA	CYS A 261	26.523	45.164	8.009	1.00	32.30	A
ATOM	2003	C	CYS A 261	27.341	46.009	7.040	1.00	30.09	A
ATOM	2004	O	CYS A 261	26.778	46.598	6.126	1.00	30.45	A
ATOM	2005	CB	CYS A 261	26.219	43.798	7.377	1.00	30.55	A
ATOM	2006	SG	CYS A 261	27.733	42.866	6.975	1.00	39.74	A
ATOM	2007	N	ARG A 262	28.654	46.082	7.240	1.00	32.23	A
ATOM	2008	CA	ARG A 262	29.518	46.866	6.345	1.00	34.34	A
ATOM	2009	CB	ARG A 262	30.068	48.099	7.067	1.00	34.96	A
ATOM	2010	CG	ARG A 262	30.551	49.209	6.152	1.00	37.87	A
ATOM	2011	CD	ARG A 262	31.084	50.443	6.841	1.00	43.91	A
ATOM	2012	NE	ARG A 262	31.462	51.494	5.902	1.00	45.42	A
ATOM	2013	CZ	ARG A 262	31.151	52.780	6.050	1.00	49.53	A
ATOM	2014	NH1	ARG A 262	30.444	53.192	7.101	1.00	44.71	A
ATOM	2015	NH2	ARG A 262	31.577	53.667	5.157	1.00	55.16	A
ATOM	2016	C	ARG A 262	30.661	46.016	5.792	1.00	33.30	A
ATOM	2017	O	ARG A 262	31.414	45.399	6.550	1.00	37.32	A

100

ATOM	2018	N	VAL A 263	30.789	46.001	4.468	1.00	31.00	A
ATOM	2019	CA	VAL A 263	31.818	45.216	3.792	1.00	31.90	A
ATOM	2020	CB	VAL A 263	31.191	44.157	2.819	1.00	33.26	A
ATOM	2021	CG1	VAL A 263	32.271	43.310	2.139	1.00	32.38	A
ATOM	2022	CG2	VAL A 263	30.216	43.255	3.555	1.00	35.28	A
ATOM	2023	C	VAL A 263	32.764	46.094	2.992	1.00	31.25	A
ATOM	2024	O	VAL A 263	32.338	46.769	2.056	1.00	34.55	A
ATOM	2025	N	LYS A 264	34.044	46.068	3.362	1.00	32.52	A
ATOM	2026	CA	LYS A 264	35.086	46.814	2.652	1.00	32.36	A
ATOM	2027	CB	LYS A 264	35.981	47.612	3.603	1.00	34.16	A
ATOM	2028	CG	LYS A 264	35.338	48.741	4.383	1.00	36.18	A
ATOM	2029	CD	LYS A 264	36.262	49.517	5.323	1.00	33.55	A
ATOM	2030	CE	LYS A 264	35.665	50.617	6.182	1.00	35.45	A
ATOM	2031	NZ	LYS A 264	35.344	51.834	5.395	1.00	42.44	A
ATOM	2032	C	LYS A 264	35.961	45.791	1.940	1.00	32.16	A
ATOM	2033	O	LYS A 264	36.399	44.808	2.557	1.00	27.82	A
ATOM	2034	N	HIS A 265	36.169	46.008	0.640	1.00	30.87	A
ATOM	2035	CA	HIS A 265	37.010	45.144	-0.188	1.00	32.35	A
ATOM	2036	CB	HIS A 265	36.191	44.038	-0.867	1.00	33.96	A
ATOM	2037	CG	HIS A 265	37.032	43.007	-1.557	1.00	37.88	A
ATOM	2038	CD2	HIS A 265	37.605	41.869	-1.099	1.00	39.55	A
ATOM	2039	ND1	HIS A 265	37.417	43.126	-2.874	1.00	35.97	A
ATOM	2040	CE1	HIS A 265	38.195	42.109	-3.196	1.00	40.43	A
ATOM	2041	NE2	HIS A 265	38.325	41.330	-2.138	1.00	42.02	A
ATOM	2042	C	HIS A 265	37.714	46.004	-1.231	1.00	33.27	A
ATOM	2043	O	HIS A 265	37.154	46.993	-1.700	1.00	33.48	A
ATOM	2044	N	SER A 266	38.927	45.593	-1.602	1.00	34.64	A
ATOM	2045	CA	SER A 266	39.774	46.292	-2.574	1.00	37.74	A
ATOM	2046	CB	SER A 266	41.129	45.594	-2.657	1.00	37.51	A
ATOM	2047	OG	SER A 266	40.969	44.192	-2.779	1.00	44.90	A
ATOM	2048	C	SER A 266	39.196	46.492	-3.983	1.00	40.26	A
ATOM	2049	O	SER A 266	39.651	47.370	-4.731	1.00	40.94	A
ATOM	2050	N	SER A 267	38.193	45.684	-4.329	1.00	41.59	A
ATOM	2051	CA	SER A 267	37.525	45.754	-5.634	1.00	43.98	A
ATOM	2052	CB	SER A 267	36.990	44.381	-6.028	1.00	45.91	A
ATOM	2053	OG	SER A 267	36.049	43.915	-5.079	1.00	49.29	A
ATOM	2054	C	SER A 267	36.376	46.746	-5.642	1.00	44.01	A
ATOM	2055	O	SER A 267	35.847	47.087	-6.702	1.00	44.88	A

ATOM	2056	N	LEU A	268	35.972	47.162	-4.444	1.00	44.95	A
ATOM	2057	CA	LEU A	268	34.882	48.110	-4.254	1.00	45.44	A
ATOM	2058	CB	LEU A	268	34.246	47.890	-2.880	1.00	38.17	A
ATOM	2059	CG	LEU A	268	33.001	46.997	-2.759	1.00	31.97	A
ATOM	2060	CD1	LEU A	268	32.906	45.951	-3.836	1.00	29.01	A
ATOM	2061	CD2	LEU A	268	32.952	46.377	-1.384	1.00	21.26	A
ATOM	2062	C	LEU A	268	35.284	49.570	-4.453	1.00	49.67	A
ATOM	2063	O	LEU A	268	34.446	50.392	-4.829	1.00	55.61	A
ATOM	2064	N	GLU A	269	36.570	49.870	-4.234	1.00	51.59	A
ATOM	2065	CA	GLU A	269	37.159	51.213	-4.398	1.00	52.46	A
ATOM	2066	CB	GLU A	269	37.346	51.546	-5.890	1.00	54.50	A
ATOM	2067	CG	GLU A	269	38.351	50.675	-6.624	1.00	62.03	A
ATOM	2068	CD	GLU A	269	38.382	50.965	-8.118	1.00	67.59	A
ATOM	2069	OE1	GLU A	269	37.621	50.316	-8.871	1.00	68.87	A
ATOM	2070	OE2	GLU A	269	39.163	51.846	-8.537	1.00	69.43	A
ATOM	2071	C	GLU A	269	36.422	52.355	-3.686	1.00	50.69	A
ATOM	2072	O	GLU A	269	35.866	53.256	-4.330	1.00	51.81	A
ATOM	2073	N	GLY A	270	36.366	52.259	-2.358	1.00	48.81	A
ATOM	2074	CA	GLY A	270	35.712	53.268	-1.543	1.00	48.67	A
ATOM	2075	C	GLY A	270	34.211	53.100	-1.417	1.00	51.01	A
ATOM	2076	O	GLY A	270	33.632	53.479	-0.394	1.00	51.40	A
ATOM	2077	N	GLN A	271	33.587	52.528	-2.453	1.00	51.41	A
ATOM	2078	CA	GLN A	271	32.137	52.296	-2.496	1.00	49.20	A
ATOM	2079	CB	GLN A	271	31.638	52.245	-3.955	1.00	50.83	A
ATOM	2080	CG	GLN A	271	32.080	53.408	-4.864	1.00	61.19	A
ATOM	2081	CD	GLN A	271	31.614	54.780	-4.378	1.00	66.33	A
ATOM	2082	OE1	GLN A	271	30.431	55.116	-4.470	1.00	66.77	A
ATOM	2083	NE2	GLN A	271	32.551	55.577	-3.860	1.00	68.10	A
ATOM	2084	C	GLN A	271	31.757	51.015	-1.742	1.00	46.36	A
ATOM	2085	O	GLN A	271	31.465	49.982	-2.347	1.00	43.32	A
ATOM	2086	N	ASP A	272	31.742	51.122	-0.412	1.00	43.62	A
ATOM	2087	CA	ASP A	272	31.423	50.023	0.503	1.00	45.65	A
ATOM	2088	CB	ASP A	272	31.637	50.463	1.954	1.00	48.57	A
ATOM	2089	CG	ASP A	272	33.075	50.831	2.265	1.00	50.79	A
ATOM	2090	OD1	ASP A	272	33.322	51.176	3.443	1.00	48.34	A
ATOM	2091	OD2	ASP A	272	33.950	50.778	1.365	1.00	51.21	A
ATOM	2092	C	ASP A	272	30.004	49.483	0.397	1.00	45.62	A
ATOM	2093	O	ASP A	272	29.084	50.208	0.015	1.00	51.81	A

ATOM	2094	N	ILE A 273	29.838	48.214	0.762	1.00	41.88	A
ATOM	2095	CA	ILE A 273	28.538	47.560	0.740	1.00	39.05	A
ATOM	2096	CB	ILE A 273	28.656	46.080	0.262	1.00	33.95	A
ATOM	2097	CG2	ILE A 273	27.332	45.325	0.439	1.00	35.02	A
ATOM	2098	CG1	ILE A 273	29.063	46.043	-1.210	1.00	36.23	A
ATOM	2099	CD1	ILE A 273	29.433	44.667	-1.733	1.00	38.45	A
ATOM	2100	C	ILE A 273	27.932	47.641	2.143	1.00	40.93	A
ATOM	2101	O	ILE A 273	28.441	47.030	3.083	1.00	40.94	A
ATOM	2102	N	ILE A 274	26.907	48.483	2.291	1.00	41.06	A
ATOM	2103	CA	ILE A 274	26.213	48.620	3.568	1.00	39.84	A
ATOM	2104	CB	ILE A 274	26.155	50.079	4.104	1.00	40.69	A
ATOM	2105	CG2	ILE A 274	25.857	50.050	5.594	1.00	45.66	A
ATOM	2106	CG1	ILE A 274	27.510	50.795	3.985	1.00	46.65	A
ATOM	2107	CD1	ILE A 274	27.691	51.628	2.722	1.00	54.78	A
ATOM	2108	C	ILE A 274	24.800	48.066	3.374	1.00	40.35	A
ATOM	2109	O	ILE A 274	24.092	48.468	2.448	1.00	45.02	A
ATOM	2110	N	LEU A 275	24.443	47.085	4.202	1.00	38.45	A
ATOM	2111	CA	LEU A 275	23.145	46.411	4.160	1.00	36.48	A
ATOM	2112	CB	LEU A 275	23.345	44.949	3.774	1.00	38.10	A
ATOM	2113	CG	LEU A 275	22.978	44.441	2.377	1.00	42.93	A
ATOM	2114	CD1	LEU A 275	23.547	45.294	1.247	1.00	42.98	A
ATOM	2115	CD2	LEU A 275	23.471	43.011	2.274	1.00	41.70	A
ATOM	2116	C	LEU A 275	22.483	46.495	5.526	1.00	37.90	A
ATOM	2117	O	LEU A 275	23.046	46.034	6.515	1.00	42.73	A
ATOM	2118	N	TYR A 276	21.265	47.033	5.566	1.00	37.01	A
ATOM	2119	CA	TYR A 276	20.528	47.242	6.816	1.00	36.07	A
ATOM	2120	CB	TYR A 276	19.879	48.640	6.806	1.00	37.47	A
ATOM	2121	CG	TYR A 276	20.827	49.813	6.558	1.00	36.86	A
ATOM	2122	CD1	TYR A 276	21.399	50.034	5.280	1.00	37.88	A
ATOM	2123	CE1	TYR A 276	22.278	51.120	5.038	1.00	38.70	A
ATOM	2124	CD2	TYR A 276	21.155	50.711	7.597	1.00	34.77	A
ATOM	2125	CE2	TYR A 276	22.042	51.804	7.373	1.00	37.81	A
ATOM	2126	CZ	TYR A 276	22.597	51.995	6.089	1.00	42.47	A
ATOM	2127	OH	TYR A 276	23.479	53.029	5.860	1.00	45.60	A
ATOM	2128	C	TYR A 276	19.473	46.184	7.138	1.00	37.59	A
ATOM	2129	O	TYR A 276	18.943	45.535	6.239	1.00	37.18	A
ATOM	2130	N	TRP A 277	19.148	46.048	8.425	1.00	39.45	A
ATOM	2131	CA	TRP A 277	18.150	45.089	8.885	1.00	43.54	A

ATOM	2132	CB	TRP A	277	18.412	44.730	10.347	1.00	43.41	A
ATOM	2133	CG	TRP A	277	17.714	43.483	10.822	1.00	48.28	A
ATOM	2134	CD2	TRP A	277	18.110	42.120	10.588	1.00	50.56	A
ATOM	2135	CE2	TRP A	277	17.165	41.293	11.256	1.00	52.90	A
ATOM	2136	CE3	TRP A	277	19.172	41.510	9.881	1.00	53.37	A
ATOM	2137	CD1	TRP A	277	16.586	43.426	11.588	1.00	51.70	A
ATOM	2138	NE1	TRP A	277	16.252	42.121	11.853	1.00	55.10	A
ATOM	2139	CZ2	TRP A	277	17.246	39.873	11.243	1.00	52.79	A
ATOM	2140	CZ3	TRP A	277	19.258	40.087	9.865	1.00	54.22	A
ATOM	2141	CH2	TRP A	277	18.292	39.292	10.548	1.00	51.34	A
ATOM	2142	C	TRP A	277	16.724	45.626	8.671	1.00	49.68	A
ATOM	2143	O	TRP A	277	16.381	46.716	9.131	1.00	47.67	A
ATOM	2144	N	ARG A	278	15.913	44.805	8.000	1.00	58.94	A
ATOM	2145	CA	ARG A	278	14.520	45.081	7.598	1.00	67.78	A
ATOM	2146	CB	ARG A	278	14.017	43.974	6.639	1.00	69.40	A
ATOM	2147	CG	ARG A	278	13.807	42.551	7.226	1.00	74.33	A
ATOM	2148	CD	ARG A	278	15.009	41.813	7.833	1.00	74.95	A
ATOM	2149	NE	ARG A	278	14.770	40.385	8.023	1.00	71.69	A
ATOM	2150	CZ	ARG A	278	15.387	39.425	7.337	1.00	70.98	A
ATOM	2151	NH1	ARG A	278	16.287	39.735	6.408	1.00	65.93	A
ATOM	2152	NH2	ARG A	278	15.110	38.149	7.586	1.00	66.80	A
ATOM	2153	C	ARG A	278	13.407	45.434	8.597	1.00	72.06	A
ATOM	2154	O	ARG A	278	12.565	46.284	8.288	1.00	73.74	A
ATOM	2155	N	ASN A	279	13.406	44.792	9.771	1.00	78.01	A
ATOM	2156	CA	ASN A	279	12.405	44.968	10.855	1.00	81.98	A
ATOM	2157	CB	ASN A	279	12.864	46.002	11.916	1.00	85.12	A
ATOM	2158	CG	ASN A	279	13.085	47.406	11.347	1.00	88.76	A
ATOM	2159	OD1	ASN A	279	12.132	48.162	11.122	1.00	85.61	A
ATOM	2160	ND2	ASN A	279	14.348	47.752	11.109	1.00	89.83	A
ATOM	2161	C	ASN A	279	10.906	45.145	10.500	1.00	82.59	A
ATOM	2162	O	ASN A	279	10.498	46.246	10.059	1.00	82.18	A
ATOM	2163	OXT	ASN A	279	10.154	44.156	10.659	1.00	82.60	A
ATOM	2164	CB	MET B	0	50.461	8.808	15.966	1.00	72.08	B
ATOM	2165	CG	MET B	0	49.619	8.606	14.695	1.00	75.07	B
ATOM	2166	SD	MET B	0	47.903	8.083	15.000	1.00	78.58	B
ATOM	2167	CE	MET B	0	48.099	6.290	15.077	1.00	77.43	B
ATOM	2168	C	MET B	0	49.191	10.659	17.181	1.00	64.97	B
ATOM	2169	O	MET B	0	48.575	9.884	17.928	1.00	63.32	B

ATOM	2170	N	MET	B	0	51.635	10.378	17.503	1.00	68.88	B
ATOM	2171	CA	MET	B	0	50.516	10.247	16.521	1.00	68.85	B
ATOM	2172	N	ILE	B	1	48.792	11.905	16.912	1.00	58.77	B
ATOM	2173	CA	ILE	B	1	47.562	12.492	17.441	1.00	51.80	B
ATOM	2174	CB	ILE	B	1	47.710	14.028	17.684	1.00	53.80	B
ATOM	2175	CG2	ILE	B	1	48.844	14.291	18.648	1.00	57.30	B
ATOM	2176	CG1	ILE	B	1	47.941	14.792	16.372	1.00	51.83	B
ATOM	2177	CD1	ILE	B	1	47.831	16.304	16.504	1.00	59.34	B
ATOM	2178	C	ILE	B	1	46.361	12.252	16.530	1.00	48.83	B
ATOM	2179	O	ILE	B	1	46.518	11.848	15.370	1.00	50.28	B
ATOM	2180	N	GLN	B	2	45.169	12.505	17.071	1.00	44.89	B
ATOM	2181	CA	GLN	B	2	43.897	12.352	16.354	1.00	41.39	B
ATOM	2182	CB	GLN	B	2	43.156	11.092	16.821	1.00	38.74	B
ATOM	2183	CG	GLN	B	2	43.777	9.761	16.402	1.00	44.87	B
ATOM	2184	CD	GLN	B	2	43.087	8.549	17.019	1.00	50.26	B
ATOM	2185	OE1	GLN	B	2	42.317	8.668	17.981	1.00	47.38	B
ATOM	2186	NE2	GLN	B	2	43.371	7.367	16.466	1.00	46.17	B
ATOM	2187	C	GLN	B	2	43.017	13.577	16.606	1.00	38.06	B
ATOM	2188	O	GLN	B	2	42.645	13.838	17.749	1.00	39.02	B
ATOM	2189	N	ARG	B	3	42.736	14.350	15.555	1.00	34.90	B
ATOM	2190	CA	ARG	B	3	41.886	15.550	15.651	1.00	36.32	B
ATOM	2191	CB	ARG	B	3	42.619	16.790	15.117	1.00	40.90	B
ATOM	2192	CG	ARG	B	3	43.905	17.199	15.827	1.00	53.02	B
ATOM	2193	CD	ARG	B	3	44.827	18.157	15.056	1.00	59.17	B
ATOM	2194	NE	ARG	B	3	44.915	19.503	15.629	1.00	68.17	B
ATOM	2195	CZ	ARG	B	3	44.150	20.541	15.283	1.00	70.31	B
ATOM	2196	NH1	ARG	B	3	43.206	20.418	14.358	1.00	69.04	B
ATOM	2197	NH2	ARG	B	3	44.352	21.725	15.847	1.00	74.08	B
ATOM	2198	C	ARG	B	3	40.629	15.352	14.805	1.00	33.81	B
ATOM	2199	O	ARG	B	3	40.729	14.879	13.680	1.00	37.18	B
ATOM	2200	N	THR	B	4	39.462	15.721	15.334	1.00	33.35	B
ATOM	2201	CA	THR	B	4	38.179	15.604	14.615	1.00	34.68	B
ATOM	2202	CB	THR	B	4	36.957	15.633	15.611	1.00	38.39	B
ATOM	2203	OG1	THR	B	4	36.907	14.392	16.310	1.00	48.93	B
ATOM	2204	CG2	THR	B	4	35.586	15.826	14.901	1.00	35.70	B
ATOM	2205	C	THR	B	4	38.006	16.728	13.592	1.00	34.78	B
ATOM	2206	O	THR	B	4	38.385	17.878	13.859	1.00	35.32	B
ATOM	2207	N	PRO	B	5	37.466	16.403	12.396	1.00	33.78	B

ATOM	2208	CD	PRO	B	5	37.307	15.071	11.779	1.00	33.19	B
ATOM	2209	CA	PRO	B	5	37.260	17.439	11.382	1.00	35.70	B
ATOM	2210	CB	PRO	B	5	36.934	16.626	10.122	1.00	34.88	B
ATOM	2211	CG	PRO	B	5	36.364	15.362	10.655	1.00	33.48	B
ATOM	2212	C	PRO	B	5	36.131	18.416	11.712	1.00	35.45	B
ATOM	2213	O	PRO	B	5	35.123	18.035	12.305	1.00	36.90	B
ATOM	2214	N	LYS	B	6	36.361	19.686	11.384	1.00	35.90	B
ATOM	2215	CA	LYS	B	6	35.385	20.755	11.568	1.00	34.66	B
ATOM	2216	CB	LYS	B	6	36.105	22.094	11.741	1.00	29.82	B
ATOM	2217	CG	LYS	B	6	35.201	23.253	12.110	1.00	32.98	B
ATOM	2218	CD	LYS	B	6	35.865	24.596	12.318	1.00	39.98	B
ATOM	2219	CE	LYS	B	6	34.973	25.767	12.677	1.00	44.26	B
ATOM	2220	NZ	LYS	B	6	35.773	27.018	12.821	1.00	52.30	B
ATOM	2221	C	LYS	B	6	34.640	20.713	10.238	1.00	37.33	B
ATOM	2222	O	LYS	B	6	35.273	20.654	9.179	1.00	41.00	B
ATOM	2223	N	ILE	B	7	33.311	20.666	10.291	1.00	35.58	B
ATOM	2224	CA	ILE	B	7	32.501	20.576	9.074	1.00	35.53	B
ATOM	2225	CB	ILE	B	7	31.628	19.281	9.101	1.00	33.05	B
ATOM	2226	CG2	ILE	B	7	30.870	19.099	7.784	1.00	32.20	B
ATOM	2227	CG1	ILE	B	7	32.516	18.051	9.326	1.00	36.04	B
ATOM	2228	CD1	ILE	B	7	31.835	16.924	10.054	1.00	43.57	B
ATOM	2229	C	ILE	B	7	31.607	21.793	8.818	1.00	36.85	B
ATOM	2230	O	ILE	B	7	30.665	22.048	9.570	1.00	40.18	B
ATOM	2231	N	GLN	B	8	31.886	22.521	7.739	1.00	36.06	B
ATOM	2232	CA	GLN	B	8	31.071	23.682	7.371	1.00	36.85	B
ATOM	2233	CB	GLN	B	8	31.907	24.967	7.301	1.00	37.17	B
ATOM	2234	CG	GLN	B	8	32.150	25.649	8.637	1.00	37.93	B
ATOM	2235	CD	GLN	B	8	33.625	25.790	8.944	1.00	40.65	B
ATOM	2236	OE1	GLN	B	8	34.109	26.892	9.212	1.00	35.89	B
ATOM	2237	NE2	GLN	B	8	34.355	24.670	8.901	1.00	43.55	B
ATOM	2238	C	GLN	B	8	30.362	23.466	6.038	1.00	35.24	B
ATOM	2239	O	GLN	B	8	31.012	23.205	5.026	1.00	39.48	B
ATOM	2240	N	VAL	B	9	29.030	23.520	6.051	1.00	31.72	B
ATOM	2241	CA	VAL	B	9	28.251	23.365	4.825	1.00	27.63	B
ATOM	2242	CB	VAL	B	9	27.118	22.323	4.941	1.00	24.00	B
ATOM	2243	CG1	VAL	B	9	26.559	22.004	3.550	1.00	19.53	B
ATOM	2244	CG2	VAL	B	9	27.628	21.058	5.573	1.00	21.81	B
ATOM	2245	C	VAL	B	9	27.681	24.729	4.458	1.00	29.23	B

ATOM	2246	O	VAL	B	9	27.085	25.420	5.294	1.00	32.08	B
ATOM	2247	N	TYR	B	10	27.886	25.109	3.200	1.00	26.34	B
ATOM	2248	CA	TYR	B	10	27.453	26.403	2.695	1.00	29.29	B
ATOM	2249	CB	TYR	B	10	28.475	27.485	3.112	1.00	22.81	B
ATOM	2250	CG	TYR	B	10	29.923	27.211	2.703	1.00	25.25	B
ATOM	2251	CD1	TYR	B	10	30.710	26.267	3.399	1.00	28.00	B
ATOM	2252	CE1	TYR	B	10	32.042	25.981	3.017	1.00	23.59	B
ATOM	2253	CD2	TYR	B	10	30.509	27.878	1.604	1.00	29.82	B
ATOM	2254	CE2	TYR	B	10	31.853	27.602	1.211	1.00	31.18	B
ATOM	2255	CZ	TYR	B	10	32.602	26.649	1.930	1.00	26.91	B
ATOM	2256	OH	TYR	B	10	33.893	26.371	1.571	1.00	28.91	B
ATOM	2257	C	TYR	B	10	27.292	26.425	1.176	1.00	34.58	B
ATOM	2258	O	TYR	B	10	27.959	25.671	0.461	1.00	39.07	B
ATOM	2259	N	SER	B	11	26.421	27.308	0.689	1.00	35.09	B
ATOM	2260	CA	SER	B	11	26.214	27.471	-0.744	1.00	35.68	B
ATOM	2261	CB	SER	B	11	24.733	27.695	-1.077	1.00	39.23	B
ATOM	2262	OG	SER	B	11	24.172	28.766	-0.336	1.00	40.55	B
ATOM	2263	C	SER	B	11	27.054	28.664	-1.182	1.00	36.55	B
ATOM	2264	O	SER	B	11	27.262	29.593	-0.396	1.00	38.35	B
ATOM	2265	N	ARG	B	12	27.543	28.630	-2.420	1.00	35.87	B
ATOM	2266	CA	ARG	B	12	28.376	29.704	-2.968	1.00	38.53	B
ATOM	2267	CB	ARG	B	12	28.956	29.265	-4.325	1.00	38.35	B
ATOM	2268	CG	ARG	B	12	29.835	30.285	-5.049	1.00	35.25	B
ATOM	2269	CD	ARG	B	12	30.263	29.961	-6.467	1.00	37.06	B
ATOM	2270	NE	ARG	B	12	31.071	28.746	-6.544	1.00	37.54	B
ATOM	2271	CZ	ARG	B	12	31.566	28.242	-7.672	1.00	37.32	B
ATOM	2272	NH1	ARG	B	12	31.341	28.838	-8.840	1.00	36.15	B
ATOM	2273	NH2	ARG	B	12	32.296	27.135	-7.633	1.00	41.65	B
ATOM	2274	C	ARG	B	12	27.577	31.003	-3.113	1.00	39.97	B
ATOM	2275	O	ARG	B	12	28.078	32.087	-2.807	1.00	40.06	B
ATOM	2276	N	HIS	B	13	26.326	30.860	-3.550	1.00	44.56	B
ATOM	2277	CA	HIS	B	13	25.401	31.976	-3.780	1.00	46.85	B
ATOM	2278	CB	HIS	B	13	24.977	31.985	-5.258	1.00	45.38	B
ATOM	2279	CG	HIS	B	13	26.119	32.124	-6.209	1.00	46.10	B
ATOM	2280	CD2	HIS	B	13	26.618	31.272	-7.132	1.00	50.20	B
ATOM	2281	ND1	HIS	B	13	26.930	33.236	-6.234	1.00	45.90	B
ATOM	2282	CE1	HIS	B	13	27.883	33.062	-7.131	1.00	51.44	B
ATOM	2283	NE2	HIS	B	13	27.717	31.877	-7.690	1.00	54.18	B

ATOM 2284 C HIS B 13 24.164 31.806 -2.891 1.00 48.78 B
ATOM 2285 O HIS B 13 23.905 30.696 -2.415 1.00 49.06 B
ATOM 2286 N PRO B 14 23.407 32.903 -2.615 1.00 51.73 B
ATOM 2287 CD PRO B 14 23.684 34.327 -2.898 1.00 52.04 B
ATOM 2288 CA PRO B 14 22.204 32.782 -1.772 1.00 51.62 B
ATOM 2289 CB PRO B 14 21.727 34.229 -1.629 1.00 52.24 B
ATOM 2290 CG PRO B 14 22.328 34.938 -2.816 1.00 56.49 B
ATOM 2291 C PRO B 14 21.120 31.907 -2.384 1.00 52.01 B
ATOM 2292 O PRO B 14 20.871 31.957 -3.596 1.00 54.68 B
ATOM 2293 N ALA B 15 20.494 31.106 -1.529 1.00 52.66 B
ATOM 2294 CA ALA B 15 19.442 30.185 -1.928 1.00 54.66 B
ATOM 2295 CB ALA B 15 19.111 29.253 -0.768 1.00 55.67 B
ATOM 2296 C ALA B 15 18.168 30.845 -2.473 1.00 57.46 B
ATOM 2297 O ALA B 15 17.452 31.553 -1.750 1.00 56.52 B
ATOM 2298 N GLU B 16 17.966 30.666 -3.781 1.00 59.99 B
ATOM 2299 CA GLU B 16 16.796 31.158 -4.507 1.00 62.49 B
ATOM 2300 CB GLU B 16 17.189 32.214 -5.552 1.00 63.82 B
ATOM 2301 CG GLU B 16 15.995 32.929 -6.204 1.00 68.85 B
ATOM 2302 CD GLU B 16 16.385 33.773 -7.407 1.00 71.52 B
ATOM 2303 OE1 GLU B 16 16.609 34.990 -7.241 1.00 71.43 B
ATOM 2304 OE2 GLU B 16 16.458 33.219 -8.526 1.00 76.08 B
ATOM 2305 C GLU B 16 16.255 29.903 -5.192 1.00 63.52 B
ATOM 2306 O GLU B 16 16.888 29.375 -6.114 1.00 65.28 B
ATOM 2307 N ASN B 17 15.104 29.424 -4.711 1.00 64.49 B
ATOM 2308 CA ASN B 17 14.434 28.215 -5.212 1.00 65.95 B
ATOM 2309 CB ASN B 17 13.074 28.044 -4.531 1.00 66.72 B
ATOM 2310 CG ASN B 17 13.176 28.033 -3.016 1.00 70.92 B
ATOM 2311 OD1 ASN B 17 13.077 26.983 -2.379 1.00 70.39 B
ATOM 2312 ND2 ASN B 17 13.378 29.210 -2.430 1.00 71.88 B
ATOM 2313 C ASN B 17 14.267 28.139 -6.734 1.00 68.32 B
ATOM 2314 O ASN B 17 13.711 29.054 -7.356 1.00 68.83 B
ATOM 2315 N GLY B 18 14.827 27.077 -7.319 1.00 68.56 B
ATOM 2316 CA GLY B 18 14.754 26.867 -8.757 1.00 69.41 B
ATOM 2317 C GLY B 18 15.997 27.277 -9.530 1.00 70.05 B
ATOM 2318 O GLY B 18 16.232 26.765 -10.628 1.00 71.16 B
ATOM 2319 N LYS B 19 16.793 28.186 -8.963 1.00 69.27 B
ATOM 2320 CA LYS B 19 18.021 28.668 -9.602 1.00 69.17 B
ATOM 2321 CB LYS B 19 18.301 30.122 -9.193 1.00 69.06 B

ATOM	2322	CG	LYS	B	19	19.407	30.802	-10.006	1.00	74.59	B
ATOM	2323	CD	LYS	B	19	19.941	32.141	-9.531	1.00	78.49	B
ATOM	2324	CE	LYS	B	19	21.151	32.691	-10.280	1.00	79.37	B
ATOM	2325	NZ	LYS	B	19	21.651	33.975	-9.709	1.00	79.83	B
ATOM	2326	C	LYS	B	19	19.236	27.785	-9.277	1.00	68.19	B
ATOM	2327	O	LYS	B	19	19.347	27.262	-8.169	1.00	66.86	B
ATOM	2328	N	SER	B	20	20.145	27.654	-10.249	1.00	68.73	B
ATOM	2329	CA	SER	B	20	21.378	26.862	-10.122	1.00	65.77	B
ATOM	2330	CB	SER	B	20	22.054	26.693	-11.492	1.00	67.03	B
ATOM	2331	OG	SER	B	20	23.086	25.719	-11.446	1.00	66.71	B
ATOM	2332	C	SER	B	20	22.335	27.533	-9.136	1.00	63.05	B
ATOM	2333	O	SER	B	20	22.391	28.764	-9.055	1.00	64.92	B
ATOM	2334	N	ASN	B	21	23.089	26.709	-8.413	1.00	59.23	B
ATOM	2335	CA	ASN	B	21	24.023	27.162	-7.379	1.00	55.18	B
ATOM	2336	CB	ASN	B	21	23.208	27.353	-6.085	1.00	53.71	B
ATOM	2337	CG	ASN	B	21	23.784	28.392	-5.149	1.00	53.12	B
ATOM	2338	OD1	ASN	B	21	24.997	28.569	-5.042	1.00	56.97	B
ATOM	2339	ND2	ASN	B	21	22.901	29.078	-4.443	1.00	53.79	B
ATOM	2340	C	ASN	B	21	25.095	26.072	-7.169	1.00	53.17	B
ATOM	2341	O	ASN	B	21	25.067	25.037	-7.835	1.00	52.34	B
ATOM	2342	N	PHE	B	22	26.025	26.311	-6.240	1.00	49.96	B
ATOM	2343	CA	PHE	B	22	27.098	25.365	-5.894	1.00	46.85	B
ATOM	2344	CB	PHE	B	22	28.477	25.938	-6.255	1.00	48.09	B
ATOM	2345	CG	PHE	B	22	28.840	25.809	-7.704	1.00	48.92	B
ATOM	2346	CD1	PHE	B	22	29.726	24.792	-8.123	1.00	51.26	B
ATOM	2347	CD2	PHE	B	22	28.332	26.715	-8.659	1.00	46.56	B
ATOM	2348	CE1	PHE	B	22	30.115	24.671	-9.490	1.00	48.83	B
ATOM	2349	CE2	PHE	B	22	28.703	26.614	-10.028	1.00	49.75	B
ATOM	2350	CZ	PHE	B	22	29.601	25.585	-10.446	1.00	49.54	B
ATOM	2351	C	PHE	B	22	27.065	25.070	-4.392	1.00	42.99	B
ATOM	2352	O	PHE	B	22	27.097	26.001	-3.593	1.00	41.26	B
ATOM	2353	N	LEU	B	23	26.961	23.790	-4.017	1.00	41.76	B
ATOM	2354	CA	LEU	B	23	26.933	23.370	-2.600	1.00	41.04	B
ATOM	2355	CB	LEU	B	23	25.997	22.173	-2.383	1.00	43.77	B
ATOM	2356	CG	LEU	B	23	25.841	21.603	-0.965	1.00	45.20	B
ATOM	2357	CD1	LEU	B	23	25.097	22.586	-0.074	1.00	46.74	B
ATOM	2358	CD2	LEU	B	23	25.108	20.276	-1.026	1.00	43.33	B
ATOM	2359	C	LEU	B	23	28.326	22.972	-2.176	1.00	40.16	B

ATOM	2360	O	LEU	B	23	28.973	22.185	-2.856	1.00	41.82	B
ATOM	2361	N	ASN	B	24	28.760	23.480	-1.028	1.00	38.02	B
ATOM	2362	CA	ASN	B	24	30.097	23.197	-0.535	1.00	37.24	B
ATOM	2363	CB	ASN	B	24	30.944	24.470	-0.522	1.00	37.41	B
ATOM	2364	CG	ASN	B	24	31.157	25.056	-1.894	1.00	40.13	B
ATOM	2365	OD1	ASN	B	24	32.128	24.736	-2.577	1.00	47.35	B
ATOM	2366	ND2	ASN	B	24	30.251	25.931	-2.306	1.00	45.19	B
ATOM	2367	C	ASN	B	24	30.140	22.613	0.857	1.00	37.41	B
ATOM	2368	O	ASN	B	24	29.317	22.943	1.712	1.00	36.01	B
ATOM	2369	N	CYS	B	25	31.123	21.742	1.066	1.00	37.06	B
ATOM	2370	CA	CYS	B	25	31.371	21.135	2.365	1.00	35.95	B
ATOM	2371	C	CYS	B	25	32.875	21.208	2.587	1.00	36.60	B
ATOM	2372	O	CYS	B	25	33.655	20.590	1.852	1.00	37.14	B
ATOM	2373	CB	CYS	B	25	30.900	19.699	2.426	1.00	35.16	B
ATOM	2374	SG	CYS	B	25	31.080	19.006	4.090	1.00	37.89	B
ATOM	2375	N	TYR	B	26	33.269	22.015	3.568	1.00	34.57	B
ATOM	2376	CA	TYR	B	26	34.669	22.219	3.896	1.00	33.81	B
ATOM	2377	CB	TYR	B	26	34.963	23.719	3.970	1.00	30.30	B
ATOM	2378	CG	TYR	B	26	36.411	24.104	4.178	1.00	35.29	B
ATOM	2379	CD1	TYR	B	26	37.381	23.867	3.179	1.00	38.22	B
ATOM	2380	CE1	TYR	B	26	38.735	24.290	3.351	1.00	37.08	B
ATOM	2381	CD2	TYR	B	26	36.817	24.764	5.359	1.00	35.96	B
ATOM	2382	CE2	TYR	B	26	38.163	25.195	5.542	1.00	33.83	B
ATOM	2383	CZ	TYR	B	26	39.109	24.954	4.535	1.00	35.97	B
ATOM	2384	OH	TYR	B	26	40.404	25.382	4.707	1.00	34.85	B
ATOM	2385	C	TYR	B	26	35.033	21.523	5.198	1.00	34.27	B
ATOM	2386	O	TYR	B	26	34.568	21.907	6.277	1.00	37.90	B
ATOM	2387	N	VAL	B	27	35.853	20.483	5.072	1.00	31.15	B
ATOM	2388	CA	VAL	B	27	36.321	19.717	6.214	1.00	27.96	B
ATOM	2389	CB	VAL	B	27	36.215	18.188	5.971	1.00	26.79	B
ATOM	2390	CG1	VAL	B	27	34.772	17.780	5.976	1.00	30.48	B
ATOM	2391	CG2	VAL	B	27	36.829	17.791	4.641	1.00	31.36	B
ATOM	2392	C	VAL	B	27	37.741	20.153	6.556	1.00	26.22	B
ATOM	2393	O	VAL	B	27	38.639	20.091	5.715	1.00	25.30	B
ATOM	2394	N	SER	B	28	37.924	20.621	7.786	1.00	25.41	B
ATOM	2395	CA	SER	B	28	39.224	21.112	8.243	1.00	27.14	B
ATOM	2396	CB	SER	B	28	39.282	22.648	8.143	1.00	27.65	B
ATOM	2397	OG	SER	B	28	38.125	23.259	8.709	1.00	31.43	B

110

ATOM	2398	C	SER	B	28	39.589	20.704	9.652	1.00	27.93	B
ATOM	2399	O	SER	B	28	38.766	20.159	10.391	1.00	22.63	B
ATOM	2400	N	GLY	B	29	40.844	20.974	10.001	1.00	29.95	B
ATOM	2401	CA	GLY	B	29	41.358	20.677	11.326	1.00	33.37	B
ATOM	2402	C	GLY	B	29	41.491	19.219	11.720	1.00	35.23	B
ATOM	2403	O	GLY	B	29	41.449	18.914	12.912	1.00	40.29	B
ATOM	2404	N	PHE	B	30	41.643	18.319	10.750	1.00	32.87	B
ATOM	2405	CA	PHE	B	30	41.771	16.908	11.081	1.00	29.78	B
ATOM	2406	CB	PHE	B	30	40.762	16.025	10.335	1.00	25.32	B
ATOM	2407	CG	PHE	B	30	40.826	16.107	8.831	1.00	27.00	B
ATOM	2408	CD1	PHE	B	30	40.188	17.155	8.139	1.00	30.39	B
ATOM	2409	CD2	PHE	B	30	41.457	15.089	8.086	1.00	25.38	B
ATOM	2410	CE1	PHE	B	30	40.169	17.190	6.718	1.00	24.62	B
ATOM	2411	CE2	PHE	B	30	41.449	15.107	6.672	1.00	13.54	B
ATOM	2412	CZ	PHE	B	30	40.802	16.161	5.986	1.00	23.67	B
ATOM	2413	C	PHE	B	30	43.150	16.350	10.935	1.00	31.26	B
ATOM	2414	O	PHE	B	30	43.985	16.912	10.238	1.00	33.82	B
ATOM	2415	N	HIS	B	31	43.361	15.233	11.620	1.00	34.77	B
ATOM	2416	CA	HIS	B	31	44.612	14.489	11.617	1.00	36.70	B
ATOM	2417	CB	HIS	B	31	45.662	15.158	12.514	1.00	36.17	B
ATOM	2418	CG	HIS	B	31	47.053	14.987	12.007	1.00	45.92	B
ATOM	2419	CD2	HIS	B	31	47.867	15.836	11.339	1.00	47.61	B
ATOM	2420	ND1	HIS	B	31	47.719	13.780	12.060	1.00	55.96	B
ATOM	2421	CE1	HIS	B	31	48.878	13.890	11.436	1.00	52.18	B
ATOM	2422	NE2	HIS	B	31	48.992	15.128	10.988	1.00	49.25	B
ATOM	2423	C	HIS	B	31	44.271	13.070	12.114	1.00	37.16	B
ATOM	2424	O	HIS	B	31	43.574	12.933	13.124	1.00	36.47	B
ATOM	2425	N	PRO	B	32	44.653	12.003	11.361	1.00	37.20	B
ATOM	2426	CD	PRO	B	32	44.509	10.669	11.961	1.00	35.64	B
ATOM	2427	CA	PRO	B	32	45.370	11.869	10.084	1.00	35.18	B
ATOM	2428	CB	PRO	B	32	45.715	10.381	10.045	1.00	36.59	B
ATOM	2429	CG	PRO	B	32	45.741	9.991	11.471	1.00	38.22	B
ATOM	2430	C	PRO	B	32	44.535	12.249	8.871	1.00	35.30	B
ATOM	2431	O	PRO	B	32	43.350	12.567	9.006	1.00	35.78	B
ATOM	2432	N	SER	B	33	45.159	12.191	7.697	1.00	34.25	B
ATOM	2433	CA	SER	B	33	44.519	12.552	6.441	1.00	34.55	B
ATOM	2434	CB	SER	B	33	45.562	12.667	5.339	1.00	31.04	B
ATOM	2435	OG	SER	B	33	46.218	11.434	5.124	1.00	41.76	B

ATOM	2436	C	SER	B	33	43.367	11.676	5.979	1.00	37.63	B
ATOM	2437	O	SER	B	33	42.342	12.213	5.569	1.00	37.20	B
ATOM	2438	N	ASP	B	34	43.521	10.349	6.091	1.00	41.78	B
ATOM	2439	CA	ASP	B	34	42.510	9.348	5.667	1.00	47.23	B
ATOM	2440	CB	ASP	B	34	42.837	7.957	6.241	1.00	53.47	B
ATOM	2441	CG	ASP	B	34	44.279	7.534	5.985	1.00	62.66	B
ATOM	2442	OD1	ASP	B	34	44.499	6.653	5.128	1.00	67.32	B
ATOM	2443	OD2	ASP	B	34	45.193	8.079	6.648	1.00	66.68	B
ATOM	2444	C	ASP	B	34	41.085	9.746	6.061	1.00	46.20	B
ATOM	2445	O	ASP	B	34	40.743	9.791	7.246	1.00	49.34	B
ATOM	2446	N	ILE	B	35	40.301	10.134	5.060	1.00	45.34	B
ATOM	2447	CA	ILE	B	35	38.932	10.582	5.278	1.00	46.86	B
ATOM	2448	CB	ILE	B	35	38.918	12.115	5.610	1.00	48.43	B
ATOM	2449	CG2	ILE	B	35	39.379	12.929	4.400	1.00	50.45	B
ATOM	2450	CG1	ILE	B	35	37.557	12.568	6.158	1.00	48.27	B
ATOM	2451	CD1	ILE	B	35	37.565	13.955	6.788	1.00	46.32	B
ATOM	2452	C	ILE	B	35	38.015	10.267	4.090	1.00	47.42	B
ATOM	2453	O	ILE	B	35	38.446	10.240	2.928	1.00	50.90	B
ATOM	2454	N	GLU	B	36	36.749	10.038	4.411	1.00	43.89	B
ATOM	2455	CA	GLU	B	36	35.726	9.735	3.435	1.00	43.07	B
ATOM	2456	CB	GLU	B	36	35.248	8.279	3.645	1.00	45.95	B
ATOM	2457	CG	GLU	B	36	33.851	7.885	3.125	1.00	53.64	B
ATOM	2458	CD	GLU	B	36	33.677	8.079	1.631	1.00	62.80	B
ATOM	2459	OE1	GLU	B	36	34.421	7.442	0.851	1.00	72.82	B
ATOM	2460	OE2	GLU	B	36	32.798	8.882	1.247	1.00	58.81	B
ATOM	2461	C	GLU	B	36	34.619	10.765	3.650	1.00	42.31	B
ATOM	2462	O	GLU	B	36	34.060	10.868	4.741	1.00	43.22	B
ATOM	2463	N	VAL	B	37	34.367	11.579	2.627	1.00	39.35	B
ATOM	2464	CA	VAL	B	37	33.319	12.596	2.691	1.00	38.93	B
ATOM	2465	CB	VAL	B	37	33.897	14.053	2.679	1.00	39.17	B
ATOM	2466	CG1	VAL	B	37	32.783	15.108	2.643	1.00	33.29	B
ATOM	2467	CG2	VAL	B	37	34.777	14.302	3.896	1.00	39.65	B
ATOM	2468	C	VAL	B	37	32.356	12.408	1.522	1.00	40.93	B
ATOM	2469	O	VAL	B	37	32.771	12.094	0.400	1.00	43.64	B
ATOM	2470	N	ASP	B	38	31.068	12.576	1.819	1.00	40.80	B
ATOM	2471	CA	ASP	B	38	29.995	12.465	0.840	1.00	40.50	B
ATOM	2472	CB	ASP	B	38	29.211	11.164	1.031	1.00	45.22	B
ATOM	2473	CG	ASP	B	38	29.912	9.968	0.447	1.00	50.50	B

ATOM	2474	OD1	ASP	B	38	30.345	10.048	-0.723	1.00	55.61	B
ATOM	2475	OD2	ASP	B	38	30.028	8.949	1.160	1.00	53.26	B
ATOM	2476	C	ASP	B	38	29.027	13.622	0.998	1.00	40.83	B
ATOM	2477	O	ASP	B	38	28.878	14.181	2.085	1.00	36.47	B
ATOM	2478	N	LEU	B	39	28.411	14.001	-0.115	1.00	42.61	B
ATOM	2479	CA	LEU	B	39	27.405	15.052	-0.136	1.00	47.52	B
ATOM	2480	CB	LEU	B	39	27.692	16.079	-1.238	1.00	47.50	B
ATOM	2481	CG	LEU	B	39	28.872	17.031	-0.992	1.00	51.72	B
ATOM	2482	CD1	LEU	B	39	28.972	18.057	-2.099	1.00	52.77	B
ATOM	2483	CD2	LEU	B	39	28.702	17.737	0.334	1.00	49.59	B
ATOM	2484	C	LEU	B	39	26.089	14.322	-0.375	1.00	52.08	B
ATOM	2485	O	LEU	B	39	25.968	13.535	-1.318	1.00	53.19	B
ATOM	2486	N	LEU	B	40	25.139	14.524	0.535	1.00	54.23	B
ATOM	2487	CA	LEU	B	40	23.848	13.851	0.462	1.00	56.30	B
ATOM	2488	CB	LEU	B	40	23.467	13.287	1.834	1.00	56.03	B
ATOM	2489	CG	LEU	B	40	24.497	12.510	2.658	1.00	57.10	B
ATOM	2490	CD1	LEU	B	40	23.839	11.958	3.910	1.00	57.03	B
ATOM	2491	CD2	LEU	B	40	25.103	11.389	1.838	1.00	53.52	B
ATOM	2492	C	LEU	B	40	22.701	14.697	-0.047	1.00	59.26	B
ATOM	2493	O	LEU	B	40	22.702	15.917	0.103	1.00	61.45	B
ATOM	2494	N	LYS	B	41	21.738	14.020	-0.672	1.00	61.42	B
ATOM	2495	CA	LYS	B	41	20.522	14.631	-1.195	1.00	59.70	B
ATOM	2496	CB	LYS	B	41	20.487	14.610	-2.727	1.00	57.93	B
ATOM	2497	CG	LYS	B	41	19.264	15.289	-3.348	1.00	61.71	B
ATOM	2498	CD	LYS	B	41	19.149	15.246	-4.871	1.00	67.77	B
ATOM	2499	CE	LYS	B	41	17.868	15.776	-5.508	1.00	65.67	B
ATOM	2500	NZ	LYS	B	41	17.644	17.213	-5.209	1.00	68.94	B
ATOM	2501	C	LYS	B	41	19.421	13.755	-0.627	1.00	60.34	B
ATOM	2502	O	LYS	B	41	19.236	12.607	-1.056	1.00	59.40	B
ATOM	2503	N	ASN	B	42	18.764	14.289	0.405	1.00	61.13	B
ATOM	2504	CA	ASN	B	42	17.656	13.651	1.131	1.00	61.27	B
ATOM	2505	CB	ASN	B	42	16.399	13.552	0.240	1.00	57.66	B
ATOM	2506	CG	ASN	B	42	15.987	14.904	-0.350	1.00	59.14	B
ATOM	2507	OD1	ASN	B	42	15.671	15.842	0.382	1.00	57.44	B
ATOM	2508	ND2	ASN	B	42	16.014	15.008	-1.678	1.00	49.56	B
ATOM	2509	C	ASN	B	42	18.032	12.298	1.746	1.00	61.22	B
ATOM	2510	O	ASN	B	42	17.186	11.409	1.888	1.00	65.37	B
ATOM	2511	N	GLY	B	43	19.311	12.163	2.101	1.00	58.75	B

ATOM	2512	CA	GLY	B	43	19.817	10.937	2.699	1.00	57.89	B
ATOM	2513	C	GLY	B	43	20.647	10.050	1.784	1.00	58.41	B
ATOM	2514	O	GLY	B	43	21.333	9.144	2.266	1.00	55.93	B
ATOM	2515	N	GLU	B	44	20.583	10.294	0.473	1.00	60.31	B
ATOM	2516	CA	GLU	B	44	21.338	9.506	-0.508	1.00	63.27	B
ATOM	2517	CB	GLU	B	44	20.394	8.879	-1.536	1.00	67.99	B
ATOM	2518	CG	GLU	B	44	19.792	7.558	-1.058	1.00	77.25	B
ATOM	2519	CD	GLU	B	44	18.479	7.213	-1.732	1.00	83.61	B
ATOM	2520	OE1	GLU	B	44	17.521	6.864	-1.002	1.00	84.56	B
ATOM	2521	OE2	GLU	B	44	18.403	7.280	-2.982	1.00	87.15	B
ATOM	2522	C	GLU	B	44	22.448	10.297	-1.192	1.00	62.89	B
ATOM	2523	O	GLU	B	44	22.242	11.446	-1.595	1.00	60.61	B
ATOM	2524	N	ARG	B	45	23.611	9.652	-1.337	1.00	62.88	B
ATOM	2525	CA	ARG	B	45	24.802	10.257	-1.936	1.00	62.14	B
ATOM	2526	CB	ARG	B	45	26.039	9.367	-1.743	1.00	63.61	B
ATOM	2527	CG	ARG	B	45	25.951	7.948	-2.302	1.00	74.24	B
ATOM	2528	CD	ARG	B	45	27.278	7.218	-2.535	1.00	79.20	B
ATOM	2529	NE	ARG	B	45	28.111	7.909	-3.525	1.00	81.54	B
ATOM	2530	CZ	ARG	B	45	29.408	8.178	-3.382	1.00	80.45	B
ATOM	2531	NH1	ARG	B	45	30.055	7.813	-2.282	1.00	78.77	B
ATOM	2532	NH2	ARG	B	45	30.053	8.850	-4.330	1.00	80.03	B
ATOM	2533	C	ARG	B	45	24.693	10.703	-3.384	1.00	61.36	B
ATOM	2534	O	ARG	B	45	24.057	10.042	-4.202	1.00	62.25	B
ATOM	2535	N	ILE	B	46	25.282	11.869	-3.655	1.00	61.33	B
ATOM	2536	CA	ILE	B	46	25.313	12.491	-4.979	1.00	60.64	B
ATOM	2537	CB	ILE	B	46	25.397	14.038	-4.845	1.00	57.96	B
ATOM	2538	CG2	ILE	B	46	25.365	14.723	-6.229	1.00	58.46	B
ATOM	2539	CG1	ILE	B	46	24.231	14.530	-3.979	1.00	56.30	B
ATOM	2540	CD1	ILE	B	46	24.303	15.980	-3.544	1.00	53.78	B
ATOM	2541	C	ILE	B	46	26.509	11.916	-5.757	1.00	63.27	B
ATOM	2542	O	ILE	B	46	27.598	11.737	-5.198	1.00	60.65	B
ATOM	2543	N	GLU	B	47	26.291	11.643	-7.044	1.00	65.95	B
ATOM	2544	CA	GLU	B	47	27.302	11.040	-7.907	1.00	70.55	B
ATOM	2545	CB	GLU	B	47	26.632	10.412	-9.138	1.00	72.94	B
ATOM	2546	CG	GLU	B	47	27.251	9.080	-9.585	1.00	75.80	B
ATOM	2547	CD	GLU	B	47	27.129	7.978	-8.534	1.00	76.24	B
ATOM	2548	OE1	GLU	B	47	26.047	7.355	-8.456	1.00	78.44	B
ATOM	2549	OE2	GLU	B	47	28.109	7.739	-7.791	1.00	74.16	B

114

ATOM 2550 C GLU B 47 28.510 11.889 -8.315 1.00 72.59 B
 ATOM 2551 O GLU B 47 29.648 11.544 -7.967 1.00 74.59 B
 ATOM 2552 N LYS B 48 28.271 12.969 -9.062 1.00 72.15 B
 ATOM 2553 CA LYS B 48 29.352 13.849 -9.515 1.00 70.12 B
 ATOM 2554 CB LYS B 48 29.014 14.490 -10.872 1.00 72.79 B
 ATOM 2555 CG LYS B 48 29.311 13.632 -12.109 1.00 78.25 B
 ATOM 2556 CD LYS B 48 28.420 12.425 -12.398 1.00 83.12 B
 ATOM 2557 CE LYS B 48 28.547 11.774 -13.771 1.00 84.55 B
 ATOM 2558 NZ LYS B 48 29.916 11.243 -14.034 1.00 85.11 B
 ATOM 2559 C LYS B 48 29.697 14.924 -8.481 1.00 66.85 B
 ATOM 2560 O LYS B 48 29.023 15.958 -8.385 1.00 66.94 B
 ATOM 2561 N VAL B 49 30.706 14.624 -7.661 1.00 60.19 B
 ATOM 2562 CA VAL B 49 31.192 15.530 -6.615 1.00 54.61 B
 ATOM 2563 CB VAL B 49 30.930 14.965 -5.173 1.00 56.47 B
 ATOM 2564 CG1 VAL B 49 31.430 15.941 -4.114 1.00 56.12 B
 ATOM 2565 CG2 VAL B 49 29.455 14.666 -4.946 1.00 54.06 B
 ATOM 2566 C VAL B 49 32.702 15.675 -6.784 1.00 50.10 B
 ATOM 2567 O VAL B 49 33.431 14.687 -6.676 1.00 52.15 B
 ATOM 2568 N GLU B 50 33.173 16.891 -7.043 1.00 44.78 B
 ATOM 2569 CA GLU B 50 34.612 17.110 -7.184 1.00 43.51 B
 ATOM 2570 CB GLU B 50 34.936 18.188 -8.218 1.00 48.25 B
 ATOM 2571 CG GLU B 50 34.594 17.859 -9.658 1.00 57.23 B
 ATOM 2572 CD GLU B 50 33.228 18.380 -10.063 1.00 66.14 B
 ATOM 2573 OE1 GLU B 50 32.326 17.544 -10.306 1.00 72.78 B
 ATOM 2574 OE2 GLU B 50 33.058 19.623 -10.134 1.00 62.71 B
 ATOM 2575 C GLU B 50 35.206 17.506 -5.841 1.00 38.99 B
 ATOM 2576 O GLU B 50 34.489 17.988 -4.955 1.00 37.62 B
 ATOM 2577 N HIS B 51 36.501 17.254 -5.677 1.00 33.63 B
 ATOM 2578 CA HIS B 51 37.196 17.605 -4.443 1.00 30.83 B
 ATOM 2579 CB HIS B 51 37.145 16.469 -3.405 1.00 32.98 B
 ATOM 2580 CG HIS B 51 37.798 15.188 -3.841 1.00 41.75 B
 ATOM 2581 CD2 HIS B 51 39.008 14.656 -3.541 1.00 45.53 B
 ATOM 2582 ND1 HIS B 51 37.193 14.298 -4.702 1.00 47.24 B
 ATOM 2583 CE1 HIS B 51 38.003 13.276 -4.918 1.00 48.79 B
 ATOM 2584 NE2 HIS B 51 39.112 13.469 -4.225 1.00 47.55 B
 ATOM 2585 C HIS B 51 38.625 18.036 -4.676 1.00 28.11 B
 ATOM 2586 O HIS B 51 39.323 17.470 -5.523 1.00 32.23 B
 ATOM 2587 N SER B 52 39.075 18.995 -3.872 1.00 24.01 B

ATOM	2588	CA	SER B	52	40.442	19.504	-3.956	1.00	22.58	B
ATOM	2589	CB	SER B	52	40.607	20.691	-3.011	1.00	23.84	B
ATOM	2590	OG	SER B	52	40.312	20.321	-1.673	1.00	23.68	B
ATOM	2591	C	SER B	52	41.459	18.431	-3.565	1.00	22.93	B
ATOM	2592	O	SER B	52	41.122	17.457	-2.865	1.00	21.70	B
ATOM	2593	N	ASP B	53	42.700	18.601	-4.023	1.00	20.78	B
ATOM	2594	CA	ASP B	53	43.767	17.663	-3.665	1.00	19.44	B
ATOM	2595	CB	ASP B	53	45.037	17.893	-4.490	1.00	15.16	B
ATOM	2596	CG	ASP B	53	44.881	17.492	-5.943	1.00	13.07	B
ATOM	2597	OD1	ASP B	53	43.895	16.812	-6.305	1.00	22.42	B
ATOM	2598	OD2	ASP B	53	45.763	17.860	-6.737	1.00	17.12	B
ATOM	2599	C	ASP B	53	44.053	17.943	-2.202	1.00	20.25	B
ATOM	2600	O	ASP B	53	43.672	19.006	-1.681	1.00	16.31	B
ATOM	2601	N	LEU B	54	44.697	16.990	-1.535	1.00	23.25	B
ATOM	2602	CA	LEU B	54	45.004	17.131	-0.119	1.00	21.92	B
ATOM	2603	CB	LEU B	54	45.663	15.867	0.438	1.00	22.71	B
ATOM	2604	CG	LEU B	54	45.911	15.831	1.954	1.00	19.17	B
ATOM	2605	CD1	LEU B	54	44.607	15.764	2.745	1.00	15.53	B
ATOM	2606	CD2	LEU B	54	46.765	14.651	2.260	1.00	21.11	B
ATOM	2607	C	LEU B	54	45.869	18.331	0.181	1.00	23.12	B
ATOM	2608	O	LEU B	54	46.822	18.631	-0.544	1.00	24.88	B
ATOM	2609	N	SER B	55	45.470	19.041	1.228	1.00	22.11	B
ATOM	2610	CA	SER B	55	46.189	20.203	1.682	1.00	22.03	B
ATOM	2611	CB	SER B	55	45.557	21.445	1.101	1.00	24.87	B
ATOM	2612	OG	SER B	55	46.416	22.570	1.226	1.00	18.26	B
ATOM	2613	C	SER B	55	46.160	20.280	3.190	1.00	22.62	B
ATOM	2614	O	SER B	55	45.372	19.589	3.848	1.00	23.89	B
ATOM	2615	N	PHE B	56	47.065	21.086	3.730	1.00	20.60	B
ATOM	2616	CA	PHE B	56	47.136	21.315	5.163	1.00	23.11	B
ATOM	2617	CB	PHE B	56	48.036	20.292	5.893	1.00	15.39	B
ATOM	2618	CG	PHE B	56	49.422	20.175	5.348	1.00	12.76	B
ATOM	2619	CD1	PHE B	56	49.767	19.075	4.550	1.00	9.42	B
ATOM	2620	CD2	PHE B	56	50.409	21.133	5.668	1.00	4.77	B
ATOM	2621	CE1	PHE B	56	51.080	18.915	4.074	1.00	10.26	B
ATOM	2622	CE2	PHE B	56	51.720	20.996	5.201	1.00	12.21	B
ATOM	2623	CZ	PHE B	56	52.066	19.880	4.401	1.00	15.61	B
ATOM	2624	C	PHE B	56	47.508	22.760	5.493	1.00	25.39	B
ATOM	2625	O	PHE B	56	48.205	23.440	4.715	1.00	25.47	B

ATOM	2626	N	SER B	57	47.005	23.224	6.633	1.00	25.41	B
ATOM	2627	CA	SER B	57	47.265	24.572	7.116	1.00	27.42	B
ATOM	2628	CB	SER B	57	46.086	25.036	7.977	1.00	26.25	B
ATOM	2629	OG	SER B	57	45.765	24.067	8.958	1.00	27.53	B
ATOM	2630	C	SER B	57	48.590	24.616	7.898	1.00	28.95	B
ATOM	2631	O	SER B	57	49.280	23.599	8.013	1.00	27.75	B
ATOM	2632	N	LYS B	58	48.929	25.792	8.426	1.00	34.97	B
ATOM	2633	CA	LYS B	58	50.162	26.029	9.191	1.00	40.62	B
ATOM	2634	CB	LYS B	58	50.181	27.466	9.722	1.00	46.52	B
ATOM	2635	CG	LYS B	58	51.163	28.409	9.020	1.00	56.78	B
ATOM	2636	CD	LYS B	58	52.677	28.151	9.168	1.00	64.53	B
ATOM	2637	CE	LYS B	58	53.304	28.121	10.571	1.00	65.62	B
ATOM	2638	NZ	LYS B	58	53.145	29.402	11.320	1.00	68.67	B
ATOM	2639	C	LYS B	58	50.432	25.066	10.351	1.00	41.74	B
ATOM	2640	O	LYS B	58	51.522	24.486	10.440	1.00	41.58	B
ATOM	2641	N	ASP B	59	49.410	24.849	11.182	1.00	41.20	B
ATOM	2642	CA	ASP B	59	49.493	23.962	12.350	1.00	39.21	B
ATOM	2643	CB	ASP B	59	48.375	24.300	13.354	1.00	44.59	B
ATOM	2644	CG	ASP B	59	46.974	24.109	12.778	1.00	49.63	B
ATOM	2645	OD1	ASP B	59	46.618	24.815	11.806	1.00	57.41	B
ATOM	2646	OD2	ASP B	59	46.235	23.252	13.305	1.00	49.33	B
ATOM	2647	C	ASP B	59	49.483	22.469	12.002	1.00	36.58	B
ATOM	2648	O	ASP B	59	49.325	21.616	12.884	1.00	38.70	B
ATOM	2649	N	TRP B	60	49.708	22.183	10.713	1.00	32.93	B
ATOM	2650	CA	TRP B	60	49.765	20.839	10.100	1.00	27.57	B
ATOM	2651	CB	TRP B	60	50.847	19.951	10.734	1.00	27.06	B
ATOM	2652	CG	TRP B	60	52.198	20.578	10.843	1.00	34.72	B
ATOM	2653	CD2	TRP B	60	53.167	20.716	9.803	1.00	31.34	B
ATOM	2654	CE2	TRP B	60	54.315	21.313	10.382	1.00	32.06	B
ATOM	2655	CE3	TRP B	60	53.189	20.382	8.437	1.00	35.14	B
ATOM	2656	CD1	TRP B	60	52.771	21.091	11.975	1.00	34.54	B
ATOM	2657	NE1	TRP B	60	54.041	21.530	11.706	1.00	38.12	B
ATOM	2658	CZ2	TRP B	60	55.480	21.586	9.641	1.00	36.70	B
ATOM	2659	CZ3	TRP B	60	54.357	20.650	7.691	1.00	39.62	B
ATOM	2660	CH2	TRP B	60	55.483	21.247	8.303	1.00	35.76	B
ATOM	2661	C	TRP B	60	48.469	20.046	9.995	1.00	24.18	B
ATOM	2662	O	TRP B	60	48.483	18.904	9.546	1.00	22.06	B
ATOM	2663	N	SER B	61	47.346	20.642	10.386	1.00	24.38	B

ATOM	2664	CA	SER	B	61	46.065	19.945	10.299	1.00	23.79	B
ATOM	2665	CB	SER	B	61	45.038	20.567	11.244	1.00	19.91	B
ATOM	2666	OG	SER	B	61	44.529	21.796	10.751	1.00	25.95	B
ATOM	2667	C	SER	B	61	45.577	19.984	8.854	1.00	22.56	B
ATOM	2668	O	SER	B	61	45.799	20.967	8.145	1.00	22.63	B
ATOM	2669	N	PHE	B	62	44.914	18.917	8.429	1.00	23.59	B
ATOM	2670	CA	PHE	B	62	44.419	18.804	7.059	1.00	23.93	B
ATOM	2671	CB	PHE	B	62	44.355	17.342	6.643	1.00	18.06	B
ATOM	2672	CG	PHE	B	62	45.651	16.619	6.778	1.00	19.45	B
ATOM	2673	CD1	PHE	B	62	46.600	16.662	5.748	1.00	23.94	B
ATOM	2674	CD2	PHE	B	62	45.925	15.857	7.920	1.00	21.34	B
ATOM	2675	CE1	PHE	B	62	47.813	15.946	5.845	1.00	21.53	B
ATOM	2676	CE2	PHE	B	62	47.137	15.132	8.035	1.00	24.47	B
ATOM	2677	CZ	PHE	B	62	48.080	15.175	6.993	1.00	19.80	B
ATOM	2678	C	PHE	B	62	43.079	19.458	6.767	1.00	27.06	B
ATOM	2679	O	PHE	B	62	42.219	19.566	7.655	1.00	28.41	B
ATOM	2680	N	TYR	B	63	42.920	19.896	5.515	1.00	26.79	B
ATOM	2681	CA	TYR	B	63	41.683	20.520	5.050	1.00	23.29	B
ATOM	2682	CB	TYR	B	63	41.720	22.054	5.209	1.00	13.04	B
ATOM	2683	CG	TYR	B	63	42.595	22.824	4.250	1.00	15.86	B
ATOM	2684	CD1	TYR	B	63	42.112	23.215	2.976	1.00	13.19	B
ATOM	2685	CE1	TYR	B	63	42.894	23.982	2.091	1.00	15.30	B
ATOM	2686	CD2	TYR	B	63	43.886	23.217	4.615	1.00	16.66	B
ATOM	2687	CE2	TYR	B	63	44.689	23.999	3.727	1.00	21.33	B
ATOM	2688	CZ	TYR	B	63	44.176	24.372	2.472	1.00	19.35	B
ATOM	2689	OH	TYR	B	63	44.933	25.116	1.599	1.00	31.88	B
ATOM	2690	C	TYR	B	63	41.346	20.100	3.622	1.00	23.29	B
ATOM	2691	O	TYR	B	63	42.251	19.877	2.813	1.00	25.58	B
ATOM	2692	N	LEU	B	64	40.051	20.007	3.315	1.00	22.03	B
ATOM	2693	CA	LEU	B	64	39.563	19.618	1.978	1.00	21.65	B
ATOM	2694	CB	LEU	B	64	39.394	18.093	1.867	1.00	14.45	B
ATOM	2695	CG	LEU	B	64	40.589	17.158	1.699	1.00	18.34	B
ATOM	2696	CD1	LEU	B	64	40.201	15.752	2.073	1.00	18.41	B
ATOM	2697	CD2	LEU	B	64	41.124	17.236	0.284	1.00	22.35	B
ATOM	2698	C	LEU	B	64	38.210	20.257	1.673	1.00	22.35	B
ATOM	2699	O	LEU	B	64	37.387	20.456	2.577	1.00	22.45	B
ATOM	2700	N	LEU	B	65	37.971	20.532	0.393	1.00	18.35	B
ATOM	2701	CA	LEU	B	65	36.716	21.124	-0.052	1.00	21.33	B

ATOM	2702	CB	LEU	B	65	36.964	22.482	-0.732	1.00	21.01	B
ATOM	2703	CG	LEU	B	65	35.784	23.240	-1.381	1.00	24.09	B
ATOM	2704	CD1	LEU	B	65	34.841	23.788	-0.329	1.00	20.98	B
ATOM	2705	CD2	LEU	B	65	36.294	24.369	-2.262	1.00	27.19	B
ATOM	2706	C	LEU	B	65	36.015	20.178	-1.020	1.00	23.30	B
ATOM	2707	O	LEU	B	65	36.616	19.714	-1.989	1.00	28.77	B
ATOM	2708	N	TYR	B	66	34.752	19.882	-0.730	1.00	24.64	B
ATOM	2709	CA	TYR	B	66	33.923	19.013	-1.567	1.00	28.50	B
ATOM	2710	CB	TYR	B	66	33.388	17.816	-0.757	1.00	27.32	B
ATOM	2711	CG	TYR	B	66	34.387	16.678	-0.579	1.00	29.42	B
ATOM	2712	CD1	TYR	B	66	35.538	16.835	0.226	1.00	32.05	B
ATOM	2713	CE1	TYR	B	66	36.503	15.789	0.359	1.00	36.28	B
ATOM	2714	CD2	TYR	B	66	34.208	15.446	-1.245	1.00	27.32	B
ATOM	2715	CE2	TYR	B	66	35.163	14.388	-1.122	1.00	33.06	B
ATOM	2716	CZ	TYR	B	66	36.307	14.577	-0.322	1.00	37.59	B
ATOM	2717	OH	TYR	B	66	37.264	13.593	-0.234	1.00	42.84	B
ATOM	2718	C	TYR	B	66	32.780	19.881	-2.088	1.00	30.24	B
ATOM	2719	O	TYR	B	66	32.093	20.542	-1.298	1.00	30.40	B
ATOM	2720	N	TYR	B	67	32.607	19.899	-3.412	1.00	28.39	B
ATOM	2721	CA	TYR	B	67	31.582	20.713	-4.057	1.00	32.55	B
ATOM	2722	CB	TYR	B	67	32.190	22.056	-4.530	1.00	31.23	B
ATOM	2723	CG	TYR	B	67	33.308	21.958	-5.564	1.00	30.03	B
ATOM	2724	CD1	TYR	B	67	34.618	21.578	-5.190	1.00	28.84	B
ATOM	2725	CE1	TYR	B	67	35.659	21.449	-6.154	1.00	35.20	B
ATOM	2726	CD2	TYR	B	67	33.054	22.219	-6.926	1.00	31.93	B
ATOM	2727	CE2	TYR	B	67	34.087	22.097	-7.911	1.00	39.48	B
ATOM	2728	CZ	TYR	B	67	35.385	21.712	-7.514	1.00	40.91	B
ATOM	2729	OH	TYR	B	67	36.386	21.600	-8.460	1.00	41.41	B
ATOM	2730	C	TYR	B	67	30.844	20.037	-5.215	1.00	38.26	B
ATOM	2731	O	TYR	B	67	31.322	19.036	-5.758	1.00	43.29	B
ATOM	2732	N	THR	B	68	29.703	20.627	-5.599	1.00	42.22	B
ATOM	2733	CA	THR	B	68	28.846	20.167	-6.708	1.00	44.75	B
ATOM	2734	CB	THR	B	68	28.070	18.838	-6.374	1.00	46.21	B
ATOM	2735	OG1	THR	B	68	27.339	18.408	-7.529	1.00	49.56	B
ATOM	2736	CG2	THR	B	68	27.106	19.010	-5.201	1.00	40.47	B
ATOM	2737	C	THR	B	68	27.840	21.245	-7.140	1.00	46.84	B
ATOM	2738	O	THR	B	68	27.291	21.955	-6.285	1.00	42.69	B
ATOM	2739	N	GLU	B	69	27.587	21.323	-8.456	1.00	48.87	B

ATOM	2740	CA	GLU	B	69	26.644	22.282	-9.062	1.00	51.22	B
ATOM	2741	CB	GLU	B	69	26.985	22.520	-10.551	1.00	50.00	B
ATOM	2742	CG	GLU	B	69	26.182	23.654	-11.226	1.00	57.19	B
ATOM	2743	CD	GLU	B	69	26.479	23.816	-12.716	1.00	63.28	B
ATOM	2744	OE1	GLU	B	69	27.480	24.484	-13.057	1.00	65.49	B
ATOM	2745	OE2	GLU	B	69	25.698	23.296	-13.550	1.00	65.09	B
ATOM	2746	C	GLU	B	69	25.198	21.781	-8.912	1.00	52.54	B
ATOM	2747	O	GLU	B	69	24.726	20.981	-9.721	1.00	52.73	B
ATOM	2748	N	PHE	B	70	24.495	22.287	-7.897	1.00	55.19	B
ATOM	2749	CA	PHE	B	70	23.120	21.867	-7.621	1.00	58.77	B
ATOM	2750	CB	PHE	B	70	23.023	21.303	-6.179	1.00	60.76	B
ATOM	2751	CG	PHE	B	70	22.885	22.350	-5.075	1.00	60.87	B
ATOM	2752	CD1	PHE	B	70	23.673	23.516	-5.037	1.00	61.60	B
ATOM	2753	CD2	PHE	B	70	21.946	22.155	-4.055	1.00	63.40	B
ATOM	2754	CE1	PHE	B	70	23.516	24.475	-3.991	1.00	61.44	B
ATOM	2755	CE2	PHE	B	70	21.779	23.101	-3.002	1.00	63.67	B
ATOM	2756	CZ	PHE	B	70	22.569	24.264	-2.974	1.00	61.27	B
ATOM	2757	C	PHE	B	70	22.021	22.899	-7.903	1.00	60.56	B
ATOM	2758	O	PHE	B	70	22.312	24.056	-8.199	1.00	60.13	B
ATOM	2759	N	THR	B	71	20.768	22.465	-7.760	1.00	62.83	B
ATOM	2760	CA	THR	B	71	19.592	23.309	-7.967	1.00	65.10	B
ATOM	2761	CB	THR	B	71	18.885	22.962	-9.309	1.00	63.04	B
ATOM	2762	OG1	THR	B	71	19.829	23.084	-10.380	1.00	63.34	B
ATOM	2763	CG2	THR	B	71	17.712	23.909	-9.582	1.00	62.09	B
ATOM	2764	C	THR	B	71	18.645	23.127	-6.761	1.00	67.09	B
ATOM	2765	O	THR	B	71	17.950	22.110	-6.660	1.00	68.86	B
ATOM	2766	N	PRO	B	72	18.645	24.091	-5.810	1.00	69.39	B
ATOM	2767	CD	PRO	B	72	19.604	25.212	-5.717	1.00	68.17	B
ATOM	2768	CA	PRO	B	72	17.794	24.047	-4.607	1.00	72.97	B
ATOM	2769	CB	PRO	B	72	18.441	25.093	-3.700	1.00	72.01	B
ATOM	2770	CG	PRO	B	72	18.980	26.106	-4.682	1.00	66.79	B
ATOM	2771	C	PRO	B	72	16.295	24.332	-4.802	1.00	76.33	B
ATOM	2772	O	PRO	B	72	15.906	25.212	-5.577	1.00	78.23	B
ATOM	2773	N	THR	B	73	15.465	23.549	-4.116	1.00	78.03	B
ATOM	2774	CA	THR	B	73	14.012	23.703	-4.165	1.00	79.80	B
ATOM	2775	CB	THR	B	73	13.321	22.561	-4.957	1.00	79.79	B
ATOM	2776	OG1	THR	B	73	13.837	21.300	-4.526	1.00	76.35	B
ATOM	2777	CG2	THR	B	73	13.516	22.726	-6.465	1.00	78.21	B

120

ATOM	2778	C	THR	B	73	13.476	23.736	-2.736	1.00	81.12	B
ATOM	2779	O	THR	B	73	14.259	23.731	-1.778	1.00	81.66	B
ATOM	2780	N	GLU	B	74	12.148	23.755	-2.608	1.00	82.48	B
ATOM	2781	CA	GLU	B	74	11.444	23.807	-1.323	1.00	83.30	B
ATOM	2782	CB	GLU	B	74	9.924	23.800	-1.552	1.00	86.76	B
ATOM	2783	CG	GLU	B	74	9.299	25.181	-1.759	1.00	88.22	B
ATOM	2784	CD	GLU	B	74	9.268	26.014	-0.480	1.00	88.90	B
ATOM	2785	OE1	GLU	B	74	10.171	26.859	-0.297	1.00	91.28	B
ATOM	2786	OE2	GLU	B	74	8.344	25.820	0.342	1.00	83.59	B
ATOM	2787	C	GLU	B	74	11.819	22.783	-0.247	1.00	82.77	B
ATOM	2788	O	GLU	B	74	12.549	23.122	0.684	1.00	82.37	B
ATOM	2789	N	LYS	B	75	11.369	21.538	-0.396	1.00	82.57	B
ATOM	2790	CA	LYS	B	75	11.648	20.512	0.606	1.00	82.95	B
ATOM	2791	CB	LYS	B	75	10.403	19.649	0.853	1.00	86.03	B
ATOM	2792	CG	LYS	B	75	10.022	19.554	2.334	1.00	92.10	B
ATOM	2793	CD	LYS	B	75	9.647	20.860	3.056	1.00	95.40	B
ATOM	2794	CE	LYS	B	75	9.730	20.880	4.582	1.00	95.86	B
ATOM	2795	NZ	LYS	B	75	11.138	20.730	5.068	1.00	94.83	B
ATOM	2796	C	LYS	B	75	12.889	19.640	0.418	1.00	81.66	B
ATOM	2797	O	LYS	B	75	13.170	18.782	1.265	1.00	82.98	B
ATOM	2798	N	ASP	B	76	13.652	19.889	-0.651	1.00	78.79	B
ATOM	2799	CA	ASP	B	76	14.881	19.134	-0.938	1.00	75.03	B
ATOM	2800	CB	ASP	B	76	15.397	19.440	-2.355	1.00	77.45	B
ATOM	2801	CG	ASP	B	76	14.915	18.435	-3.408	1.00	78.40	B
ATOM	2802	OD1	ASP	B	76	14.634	17.266	-3.065	1.00	82.83	B
ATOM	2803	OD2	ASP	B	76	14.852	18.809	-4.599	1.00	73.68	B
ATOM	2804	C	ASP	B	76	15.981	19.420	0.093	1.00	72.47	B
ATOM	2805	O	ASP	B	76	16.628	20.473	0.059	1.00	71.95	B
ATOM	2806	N	GLU	B	77	16.138	18.491	1.037	1.00	70.92	B
ATOM	2807	CA	GLU	B	77	17.135	18.594	2.108	1.00	69.88	B
ATOM	2808	CB	GLU	B	77	16.656	17.861	3.368	1.00	71.14	B
ATOM	2809	CG	GLU	B	77	15.403	18.457	4.010	1.00	73.93	B
ATOM	2810	CD	GLU	B	77	15.061	17.813	5.346	1.00	76.41	B
ATOM	2811	OE1	GLU	B	77	15.306	18.453	6.394	1.00	75.73	B
ATOM	2812	OE2	GLU	B	77	14.547	16.671	5.348	1.00	74.15	B
ATOM	2813	C	GLU	B	77	18.501	18.058	1.682	1.00	66.82	B
ATOM	2814	O	GLU	B	77	18.593	17.012	1.039	1.00	65.52	B
ATOM	2815	N	TYR	B	78	19.546	18.819	2.012	1.00	64.11	B

ATOM	2816	CA	TYR	B	78	20.937	18.478	1.694	1.00	59.21	B
ATOM	2817	CB	TYR	B	78	21.543	19.521	0.749	1.00	56.46	B
ATOM	2818	CG	TYR	B	78	20.929	19.547	-0.631	1.00	55.54	B
ATOM	2819	CD1	TYR	B	78	19.816	20.367	-0.914	1.00	59.43	B
ATOM	2820	CE1	TYR	B	78	19.211	20.373	-2.205	1.00	61.63	B
ATOM	2821	CD2	TYR	B	78	21.438	18.733	-1.661	1.00	56.03	B
ATOM	2822	CE2	TYR	B	78	20.847	18.730	-2.957	1.00	60.47	B
ATOM	2823	CZ	TYR	B	78	19.736	19.550	-3.217	1.00	61.76	B
ATOM	2824	OH	TYR	B	78	19.164	19.548	-4.470	1.00	66.36	B
ATOM	2825	C	TYR	B	78	21.794	18.371	2.960	1.00	57.39	B
ATOM	2826	O	TYR	B	78	21.484	18.996	3.981	1.00	61.03	B
ATOM	2827	N	ALA	B	79	22.871	17.584	2.880	1.00	52.75	B
ATOM	2828	CA	ALA	B	79	23.789	17.365	4.003	1.00	47.56	B
ATOM	2829	CB	ALA	B	79	23.198	16.325	4.973	1.00	48.06	B
ATOM	2830	C	ALA	B	79	25.192	16.932	3.569	1.00	44.84	B
ATOM	2831	O	ALA	B	79	25.458	16.744	2.377	1.00	42.46	B
ATOM	2832	N	CYS	B	80	26.085	16.805	4.552	1.00	39.84	B
ATOM	2833	CA	CYS	B	80	27.460	16.377	4.330	1.00	38.62	B
ATOM	2834	C	CYS	B	80	27.789	15.246	5.318	1.00	39.11	B
ATOM	2835	O	CYS	B	80	27.752	15.440	6.536	1.00	40.73	B
ATOM	2836	CB	CYS	B	80	28.420	17.558	4.500	1.00	36.59	B
ATOM	2837	SG	CYS	B	80	30.130	17.213	3.978	1.00	45.02	B
ATOM	2838	N	ARG	B	81	28.052	14.054	4.782	1.00	38.37	B
ATOM	2839	CA	ARG	B	81	28.366	12.871	5.585	1.00	35.95	B
ATOM	2840	CB	ARG	B	81	27.696	11.638	4.974	1.00	37.64	B
ATOM	2841	CG	ARG	B	81	27.763	10.378	5.811	1.00	44.66	B
ATOM	2842	CD	ARG	B	81	26.911	9.210	5.355	1.00	50.98	B
ATOM	2843	NE	ARG	B	81	27.251	8.797	3.996	1.00	56.79	B
ATOM	2844	CZ	ARG	B	81	26.380	8.326	3.107	1.00	56.77	B
ATOM	2845	NH1	ARG	B	81	25.098	8.195	3.424	1.00	59.08	B
ATOM	2846	NH2	ARG	B	81	26.784	8.041	1.876	1.00	59.61	B
ATOM	2847	C	ARG	B	81	29.871	12.701	5.617	1.00	36.05	B
ATOM	2848	O	ARG	B	81	30.514	12.697	4.568	1.00	36.53	B
ATOM	2849	N	VAL	B	82	30.425	12.572	6.825	1.00	36.04	B
ATOM	2850	CA	VAL	B	82	31.878	12.447	7.025	1.00	36.24	B
ATOM	2851	CB	VAL	B	82	32.457	13.755	7.692	1.00	38.45	B
ATOM	2852	CG1	VAL	B	82	33.964	13.655	7.923	1.00	36.32	B
ATOM	2853	CG2	VAL	B	82	32.155	14.988	6.839	1.00	39.19	B

ATOM	2854	C	VAL	B	82	32.299	11.239	7.871	1.00	34.02	B
ATOM	2855	O	VAL	B	82	31.785	11.039	8.963	1.00	36.26	B
ATOM	2856	N	ASN	B	83	33.288	10.496	7.375	1.00	34.47	B
ATOM	2857	CA	ASN	B	83	33.850	9.325	8.053	1.00	38.09	B
ATOM	2858	CB	ASN	B	83	33.729	8.073	7.177	1.00	41.95	B
ATOM	2859	CG	ASN	B	83	32.518	7.231	7.511	1.00	48.30	B
ATOM	2860	OD1	ASN	B	83	32.378	6.741	8.641	1.00	53.26	B
ATOM	2861	ND2	ASN	B	83	31.642	7.030	6.522	1.00	45.95	B
ATOM	2862	C	ASN	B	83	35.329	9.577	8.356	1.00	38.34	B
ATOM	2863	O	ASN	B	83	36.120	9.831	7.440	1.00	37.37	B
ATOM	2864	N	HIS	B	84	35.693	9.499	9.638	1.00	36.13	B
ATOM	2865	CA	HIS	B	84	37.073	9.715	10.086	1.00	34.47	B
ATOM	2866	CB	HIS	B	84	37.269	11.183	10.502	1.00	31.83	B
ATOM	2867	CG	HIS	B	84	38.703	11.586	10.679	1.00	30.87	B
ATOM	2868	CD2	HIS	B	84	39.691	11.794	9.775	1.00	24.52	B
ATOM	2869	ND1	HIS	B	84	39.267	11.803	11.921	1.00	27.57	B
ATOM	2870	CE1	HIS	B	84	40.540	12.126	11.774	1.00	29.15	B
ATOM	2871	NE2	HIS	B	84	40.824	12.126	10.481	1.00	32.78	B
ATOM	2872	C	HIS	B	84	37.338	8.792	11.270	1.00	35.88	B
ATOM	2873	O	HIS	B	84	36.393	8.356	11.926	1.00	43.07	B
ATOM	2874	N	VAL	B	85	38.617	8.530	11.558	1.00	34.38	B
ATOM	2875	CA	VAL	B	85	39.045	7.657	12.664	1.00	36.97	B
ATOM	2876	CB	VAL	B	85	40.614	7.448	12.647	1.00	40.04	B
ATOM	2877	CG1	VAL	B	85	41.340	8.758	12.767	1.00	35.59	B
ATOM	2878	CG2	VAL	B	85	41.083	6.477	13.747	1.00	38.03	B
ATOM	2879	C	VAL	B	85	38.554	8.096	14.055	1.00	37.89	B
ATOM	2880	O	VAL	B	85	38.384	7.268	14.947	1.00	41.24	B
ATOM	2881	N	THR	B	86	38.286	9.387	14.212	1.00	38.47	B
ATOM	2882	CA	THR	B	86	37.805	9.925	15.481	1.00	42.75	B
ATOM	2883	CB	THR	B	86	38.062	11.430	15.579	1.00	42.87	B
ATOM	2884	OG1	THR	B	86	37.713	12.069	14.343	1.00	41.91	B
ATOM	2885	CG2	THR	B	86	39.509	11.703	15.906	1.00	46.51	B
ATOM	2886	C	THR	B	86	36.321	9.660	15.722	1.00	44.64	B
ATOM	2887	O	THR	B	86	35.877	9.563	16.869	1.00	45.37	B
ATOM	2888	N	LEU	B	87	35.577	9.523	14.627	1.00	47.70	B
ATOM	2889	CA	LEU	B	87	34.137	9.276	14.659	1.00	52.47	B
ATOM	2890	CB	LEU	B	87	33.489	9.845	13.396	1.00	48.43	B
ATOM	2891	CG	LEU	B	87	33.787	11.305	13.053	1.00	45.92	B

123

ATOM	2892	CD1	LEU	B	87	33.309	11.608	11.651	1.00	45.41	B
ATOM	2893	CD2	LEU	B	87	33.142	12.234	14.055	1.00	44.88	B
ATOM	2894	C	LEU	B	87	33.794	7.790	14.782	1.00	57.43	B
ATOM	2895	O	LEU	B	87	34.378	6.945	14.090	1.00	61.07	B
ATOM	2896	N	SER	B	88	32.849	7.484	15.673	1.00	59.24	B
ATOM	2897	CA	SER	B	88	32.389	6.112	15.909	1.00	60.42	B
ATOM	2898	CB	SER	B	88	31.693	6.022	17.273	1.00	61.00	B
ATOM	2899	OG	SER	B	88	30.702	7.030	17.414	1.00	61.07	B
ATOM	2900	C	SER	B	88	31.433	5.703	14.782	1.00	60.39	B
ATOM	2901	O	SER	B	88	31.489	4.585	14.262	1.00	59.98	B
ATOM	2902	N	GLN	B	89	30.583	6.653	14.404	1.00	59.33	B
ATOM	2903	CA	GLN	B	89	29.606	6.489	13.339	1.00	59.63	B
ATOM	2904	CB	GLN	B	89	28.186	6.342	13.933	1.00	59.28	B
ATOM	2905	CG	GLN	B	89	27.726	7.482	14.849	1.00	61.70	B
ATOM	2906	CD	GLN	B	89	27.173	7.005	16.182	1.00	66.32	B
ATOM	2907	OE1	GLN	B	89	27.388	5.855	16.592	1.00	63.96	B
ATOM	2908	NE2	GLN	B	89	26.468	7.898	16.879	1.00	61.80	B
ATOM	2909	C	GLN	B	89	29.732	7.750	12.468	1.00	59.65	B
ATOM	2910	O	GLN	B	89	30.164	8.799	12.971	1.00	58.38	B
ATOM	2911	N	PRO	B	90	29.442	7.653	11.145	1.00	58.94	B
ATOM	2912	CD	PRO	B	90	29.132	6.465	10.329	1.00	58.85	B
ATOM	2913	CA	PRO	B	90	29.541	8.831	10.272	1.00	58.95	B
ATOM	2914	CB	PRO	B	90	29.058	8.299	8.915	1.00	57.07	B
ATOM	2915	CG	PRO	B	90	28.276	7.059	9.256	1.00	58.30	B
ATOM	2916	C	PRO	B	90	28.726	10.040	10.750	1.00	59.31	B
ATOM	2917	O	PRO	B	90	27.582	9.894	11.203	1.00	60.50	B
ATOM	2918	N	LYS	B	91	29.366	11.208	10.714	1.00	57.25	B
ATOM	2919	CA	LYS	B	91	28.756	12.457	11.151	1.00	57.44	B
ATOM	2920	CB	LYS	B	91	29.832	13.362	11.756	1.00	57.50	B
ATOM	2921	CG	LYS	B	91	29.345	14.365	12.792	1.00	58.86	B
ATOM	2922	CD	LYS	B	91	30.434	15.126	13.529	1.00	62.32	B
ATOM	2923	CE	LYS	B	91	30.016	16.025	14.675	1.00	70.29	B
ATOM	2924	NZ	LYS	B	91	31.208	16.620	15.345	1.00	74.58	B
ATOM	2925	C	LYS	B	91	28.045	13.173	10.007	1.00	56.95	B
ATOM	2926	O	LYS	B	91	28.646	13.434	8.965	1.00	58.81	B
ATOM	2927	N	ILE	B	92	26.756	13.449	10.203	1.00	56.09	B
ATOM	2928	CA	ILE	B	92	25.934	14.152	9.219	1.00	56.88	B
ATOM	2929	CB	ILE	B	92	24.600	13.376	8.849	1.00	57.41	B

ATOM	2930	CG2	ILE	B	92	24.911	12.174	7.981	1.00	53.32	B
ATOM	2931	CG1	ILE	B	92	23.734	13.020	10.087	1.00	67.54	B
ATOM	2932	CD1	ILE	B	92	24.236	11.889	11.034	1.00	68.16	B
ATOM	2933	C	ILE	B	92	25.614	15.582	9.686	1.00	57.95	B
ATOM	2934	O	ILE	B	92	25.072	15.785	10.780	1.00	62.08	B
ATOM	2935	N	VAL	B	93	26.046	16.570	8.904	1.00	55.50	B
ATOM	2936	CA	VAL	B	93	25.790	17.980	9.214	1.00	54.35	B
ATOM	2937	CB	VAL	B	93	27.110	18.814	9.334	1.00	54.86	B
ATOM	2938	CG1	VAL	B	93	26.801	20.297	9.601	1.00	48.52	B
ATOM	2939	CG2	VAL	B	93	27.997	18.263	10.457	1.00	54.00	B
ATOM	2940	C	VAL	B	93	24.919	18.527	8.088	1.00	56.22	B
ATOM	2941	O	VAL	B	93	25.367	18.626	6.942	1.00	56.71	B
ATOM	2942	N	LYS	B	94	23.678	18.879	8.429	1.00	57.86	B
ATOM	2943	CA	LYS	B	94	22.703	19.407	7.468	1.00	57.36	B
ATOM	2944	CB	LYS	B	94	21.282	19.399	8.058	1.00	60.25	B
ATOM	2945	CG	LYS	B	94	20.646	18.020	8.220	1.00	67.80	B
ATOM	2946	CD	LYS	B	94	19.120	17.960	8.408	1.00	71.97	B
ATOM	2947	CE	LYS	B	94	18.504	18.509	9.697	1.00	72.95	B
ATOM	2948	NZ	LYS	B	94	18.775	17.649	10.888	1.00	71.19	B
ATOM	2949	C	LYS	B	94	23.022	20.804	6.950	1.00	55.43	B
ATOM	2950	O	LYS	B	94	23.748	21.570	7.591	1.00	56.02	B
ATOM	2951	N	TRP	B	95	22.503	21.106	5.762	1.00	54.01	B
ATOM	2952	CA	TRP	B	95	22.678	22.412	5.151	1.00	53.37	B
ATOM	2953	CB	TRP	B	95	22.710	22.313	3.617	1.00	49.79	B
ATOM	2954	CG	TRP	B	95	22.757	23.650	2.889	1.00	46.09	B
ATOM	2955	CD2	TRP	B	95	21.858	24.098	1.869	1.00	46.45	B
ATOM	2956	CE2	TRP	B	95	22.251	25.421	1.514	1.00	46.77	B
ATOM	2957	CE3	TRP	B	95	20.752	23.514	1.211	1.00	47.92	B
ATOM	2958	CD1	TRP	B	95	23.638	24.681	3.101	1.00	47.75	B
ATOM	2959	NE1	TRP	B	95	23.336	25.745	2.283	1.00	45.99	B
ATOM	2960	CZ2	TRP	B	95	21.572	26.180	0.524	1.00	48.69	B
ATOM	2961	CZ3	TRP	B	95	20.069	24.268	0.216	1.00	49.51	B
ATOM	2962	CH2	TRP	B	95	20.489	25.591	-0.112	1.00	49.34	B
ATOM	2963	C	TRP	B	95	21.515	23.274	5.607	1.00	56.85	B
ATOM	2964	O	TRP	B	95	20.352	22.977	5.315	1.00	58.10	B
ATOM	2965	N	ASP	B	96	21.853	24.308	6.370	1.00	60.23	B
ATOM	2966	CA	ASP	B	96	20.887	25.267	6.883	1.00	62.78	B
ATOM	2967	CB	ASP	B	96	21.165	25.528	8.369	1.00	65.30	B

ATOM	2968	CG	ASP	B	96	20.026	26.257	9.088	1.00	69.61	B
ATOM	2969	OD1	ASP	B	96	19.757	25.894	10.256	1.00	72.50	B
ATOM	2970	OD2	ASP	B	96	19.430	27.203	8.521	1.00	68.75	B
ATOM	2971	C	ASP	B	96	21.120	26.511	6.021	1.00	64.13	B
ATOM	2972	O	ASP	B	96	22.210	27.093	6.019	1.00	65.24	B
ATOM	2973	N	ARG	B	97	20.094	26.857	5.249	1.00	65.95	B
ATOM	2974	CA	ARG	B	97	20.093	27.996	4.324	1.00	68.99	B
ATOM	2975	CB	ARG	B	97	18.786	27.986	3.523	1.00	70.90	B
ATOM	2976	CG	ARG	B	97	18.441	26.633	2.907	1.00	72.55	B
ATOM	2977	CD	ARG	B	97	17.055	26.460	2.314	1.00	75.80	B
ATOM	2978	NE	ARG	B	97	16.700	27.546	1.400	1.00	77.59	B
ATOM	2979	CZ	ARG	B	97	15.907	27.416	0.337	1.00	79.58	B
ATOM	2980	NH1	ARG	B	97	15.374	26.238	0.027	1.00	82.01	B
ATOM	2981	NH2	ARG	B	97	15.635	28.476	-0.412	1.00	78.78	B
ATOM	2982	C	ARG	B	97	20.244	29.360	5.006	1.00	69.04	B
ATOM	2983	O	ARG	B	97	20.957	30.242	4.511	1.00	69.57	B
ATOM	2984	N	ASP	B	98	19.586	29.495	6.156	1.00	69.42	B
ATOM	2985	CA	ASP	B	98	19.576	30.722	6.952	1.00	69.10	B
ATOM	2986	CB	ASP	B	98	18.286	30.790	7.789	1.00	68.41	B
ATOM	2987	CG	ASP	B	98	17.024	30.820	6.933	1.00	65.33	B
ATOM	2988	OD1	ASP	B	98	16.520	29.735	6.571	1.00	63.91	B
ATOM	2989	OD2	ASP	B	98	16.532	31.927	6.631	1.00	63.15	B
ATOM	2990	C	ASP	B	98	20.797	30.915	7.859	1.00	69.23	B
ATOM	2991	O	ASP	B	98	20.948	31.972	8.478	1.00	69.50	B
ATOM	2992	N	MET	B	99	21.661	29.902	7.929	1.00	69.40	B
ATOM	2993	CA	MET	B	99	22.871	29.951	8.760	1.00	69.93	B
ATOM	2994	CB	MET	B	99	23.245	28.542	9.219	1.00	68.02	B
ATOM	2995	CG	MET	B	99	24.264	28.465	10.344	1.00	69.07	B
ATOM	2996	SD	MET	B	99	24.770	26.770	10.628	1.00	67.08	B
ATOM	2997	CE	MET	B	99	23.334	26.134	11.562	1.00	59.91	B
ATOM	2998	C	MET	B	99	24.049	30.575	8.006	1.00	70.32	B
ATOM	2999	O	MET	B	99	24.883	31.227	8.667	1.00	68.57	B
ATOM	3000	OXT	MET	B	99	24.131	30.389	6.770	1.00	72.21	B
ATOM	3001	C1	TWT	D	2	57.390	23.811	-11.669	1.00	45.44	D
ATOM	3002	C2	TWT	D	2	57.670	22.393	-11.230	1.00	51.36	D
ATOM	3003	C3	TWT	D	2	56.465	21.509	-10.963	1.00	53.52	D
ATOM	3004	C4	TWT	D	2	56.547	20.564	-9.772	1.00	54.41	D
ATOM	3005	C5	TWT	D	2	55.564	20.779	-8.633	1.00	48.69	D

ATOM	3006	C6	TWT	D	2	54.750	19.579	-8.191	1.00	45.72	D
ATOM	3007	C7	TWT	D	2	54.691	19.272	-6.701	1.00	43.46	D
ATOM	3008	C8	TWT	D	2	55.807	18.414	-6.120	1.00	40.49	D
ATOM	3009	C9	TWT	D	2	55.479	17.561	-4.900	1.00	39.79	D
ATOM	3010	C10	TWT	D	2	56.642	17.096	-4.030	1.00	35.75	D
ATOM	3011	C11	TWT	D	2	56.914	17.880	-2.758	1.00	42.69	D
ATOM	3012	C12	TWT	D	2	58.156	17.501	-1.955	1.00	46.22	D
ATOM	3013	C13	TWT	D	2	58.933	18.601	-1.215	1.00	45.52	D
ATOM	3014	C14	TWT	D	2	58.554	18.882	0.244	1.00	46.99	D
ATOM	3015	C15	TWT	D	2	59.612	19.472	1.166	1.00	38.14	D
ATOM	3016	C16	TWT	D	2	60.463	18.523	1.984	1.00	40.55	D
ATOM	3017	C17	TWT	D	2	59.819	17.890	3.208	1.00	44.19	D
ATOM	3018	C18	TWT	D	2	60.706	17.525	4.387	1.00	43.18	D
ATOM	3019	C19	TWT	D	2	60.503	16.146	5.008	1.00	46.31	D
ATOM	3020	C20	TWT	D	2	60.665	16.023	6.520	1.00	46.01	D
ATOM	3021	C21	TWT	D	2	61.324	14.767	7.053	1.00	43.56	D
ATOM	3022	C22	TWT	D	2	60.922	14.312	8.437	1.00	48.53	D
ATOM	3023	C1	SWT	F	1	71.717	11.979	-6.552	1.00131.90		F
ATOM	3024	O1	SWT	F	1	71.910	11.096	-5.488	1.00128.30		F
ATOM	3025	C2	SWT	F	1	72.785	13.092	-6.548	1.00132.86		F
ATOM	3026	O2	SWT	F	1	72.688	13.863	-5.356	1.00131.40		F
ATOM	3027	C3	SWT	F	1	72.575	13.998	-7.767	1.00132.84		F
ATOM	3028	O3	SWT	F	1	73.599	14.982	-7.822	1.00132.29		F
ATOM	3029	C4	SWT	F	1	72.581	13.162	-9.055	1.00133.69		F
ATOM	3030	O4	SWT	F	1	72.269	13.995	-10.166	1.00134.40		F
ATOM	3031	C5	SWT	F	1	71.553	12.019	-8.953	1.00133.10		F
ATOM	3032	O5	SWT	F	1	71.800	11.220	-7.771	1.00133.66		F
ATOM	3033	C6	SWT	F	1	71.581	11.074	-10.151	1.00132.42		F
ATOM	3034	O6	SWT	F	1	72.647	10.136	-10.064	1.00126.30		F
ATOM	3035	CL6	SWT	F	1	65.105	16.994	-1.642	1.00	75.32	F
ATOM	3036	CL5	SWT	F	1	66.321	16.767	-2.550	1.00	81.46	F
ATOM	3037	CL4	SWT	F	1	65.985	15.837	-3.722	1.00	89.26	F
ATOM	3038	CL3	SWT	F	1	66.537	14.430	-3.489	1.00	96.57	F
ATOM	3039	CL2	SWT	F	1	67.222	13.895	-4.747	1.00104.40		F
ATOM	3040	CL1	SWT	F	1	68.714	13.654	-4.495	1.00109.16		F
ATOM	3041	O	SWT	F	1	69.530	14.563	-4.659	1.00108.27		F
ATOM	3042	N	SWT	F	1	68.996	12.508	-3.861	1.00112.40		F
ATOM	3043	CB2	SWT	F	1	69.682	11.376	-4.526	1.00115.41		F

ATOM	3044	CB1	SWT	F	1	71.210	11.514	-4.339	1.00	120.42	F
ATOM	3045	CR1	SWT	F	1	69.160	10.028	-3.974	1.00	110.88	F
ATOM	3046	OR	SWT	F	1	69.695	9.779	-2.669	1.00	112.29	F
ATOM	3047	CR2	SWT	F	1	67.618	9.964	-3.937	1.00	104.53	F
ATOM	3048	CR3	SWT	F	1	67.037	10.705	-2.721	1.00	95.83	F
ATOM	3049	CR4	SWT	F	1	66.848	9.757	-1.534	1.00	91.36	F
ATOM	3050	CR5	SWT	F	1	67.291	10.412	-0.225	1.00	88.01	F
ATOM	3051	CR6	SWT	F	1	66.088	10.776	0.650	1.00	83.08	F
ATOM	3052	CR7	SWT	F	1	66.016	12.289	0.873	1.00	80.52	F
ATOM	3053	CR8	SWT	F	1	65.305	12.619	2.176	1.00	75.19	F
ATOM	3054	CR9	SWT	F	1	65.863	13.759	3.016	1.00	73.28	F
ATOM	3055	CR10	SWT	F	1	65.378	15.174	2.727	1.00	72.01	F
ATOM	3056	CR11	SWT	F	1	64.936	16.009	3.921	1.00	70.49	F
ATOM	3057	CR12	SWT	F	1	65.284	17.488	3.910	1.00	72.63	F
ATOM	3058	CR13	SWT	F	1	66.045	18.043	5.111	1.00	74.72	F
ATOM	3059	CR14	SWT	F	1	67.468	18.532	4.865	1.00	79.65	F
ATOM	3060	CR15	SWT	F	1	67.996	19.642	5.765	1.00	82.49	F
ATOM	3061	CR16	SWT	F	1	68.643	20.840	5.094	1.00	81.68	F
ATOM	3062	CL7	SWT	F	1	64.085	17.934	-2.295	1.00	72.09	F
ATOM	3063	CL8	SWT	F	1	63.211	18.611	-1.251	1.00	69.84	F
ATOM	3064	CL9	SWT	F	1	63.284	20.134	-1.160	1.00	65.16	F
ATOM	3065	CL10	SWT	F	1	62.371	20.934	-2.079	1.00	60.18	F
ATOM	3066	CL11	SWT	F	1	62.511	22.448	-2.058	1.00	53.57	F
ATOM	3067	CL12	SWT	F	1	61.307	23.246	-2.532	1.00	48.80	F
ATOM	3068	CL13	SWT	F	1	61.542	24.651	-3.026	1.00	40.57	F
ATOM	3069	CL14	SWT	F	1	61.707	24.797	-4.508	1.00	37.53	F
ATOM	3070	CL15	SWT	F	1	60.454	25.077	-5.288	1.00	32.76	F
ATOM	3071	CL16	SWT	F	1	60.630	25.439	-6.738	1.00	30.20	F
ATOM	3072	CL17	SWT	F	1	60.228	24.407	-7.754	1.00	33.69	F
ATOM	3073	CL18	SWT	F	1	59.647	24.927	-9.026	1.00	34.28	F
ATOM	3074	OH2	WAT	S	2	42.437	20.412	0.022	1.00	35.65	S
ATOM	3075	OH2	WAT	S	3	53.094	15.104	10.333	1.00	27.31	S
ATOM	3076	OH2	WAT	S	4	33.716	30.014	10.501	1.00	15.62	S
ATOM	3077	OH2	WAT	S	5	49.193	19.185	-17.084	1.00	31.00	S
ATOM	3078	OH2	WAT	S	6	42.373	19.959	-6.918	1.00	30.87	S
ATOM	3079	OH2	WAT	S	7	48.550	17.560	-2.066	1.00	32.78	S
ATOM	3080	OH2	WAT	S	8	59.484	14.016	-16.309	1.00	18.35	S
ATOM	3081	OH2	WAT	S	9	49.570	24.297	1.265	1.00	23.45	S

ATOM 3082 OH2 WAT S 10 32.173 34.424 -7.680 1.00 4.37 S
 ATOM 3083 OH2 WAT S 11 44.840 17.521 -9.337 1.00 20.74 S
 ATOM 3084 OH2 WAT S 12 20.436 14.835 3.162 1.00 28.97 S
 ATOM 3085 OH2 WAT S 13 38.712 49.435 8.538 1.00 27.66 S
 ATOM 3086 OH2 WAT S 14 49.118 5.938 6.699 1.00 39.82 S
 ATOM 3087 OH2 WAT S 15 39.880 27.701 -10.681 1.00 25.86 S
 ATOM 3088 OH2 WAT S 16 47.416 15.671 -3.910 1.00 19.43 S
 ATOM 3089 OH2 WAT S 17 25.674 42.441 -2.943 1.00 29.65 S
 ATOM 3090 OH2 WAT S 19 24.770 29.564 2.661 1.00 30.73 S
 ATOM 3091 OH2 WAT S 20 41.015 27.077 2.253 1.00 40.18 S
 ATOM 3092 OH2 WAT S 21 54.479 21.295 17.281 1.00 28.10 S
 ATOM 3093 OH2 WAT S 22 36.925 46.454 -9.092 1.00 21.15 S
 ATOM 3094 OH2 WAT S 24 45.732 41.064 -2.081 1.00 30.90 S
 ATOM 3095 OH2 WAT S 25 51.874 26.461 -17.841 1.00 26.20 S
 ATOM 3096 OH2 WAT S 26 40.106 31.619 -11.887 1.00 32.47 S
 ATOM 3097 OH2 WAT S 27 42.925 22.512 8.538 1.00 34.79 S
 ATOM 3098 OH2 WAT S 28 66.807 23.047 -11.935 1.00 33.57 S
 ATOM 3099 OH2 WAT S 30 35.735 10.720 -0.617 1.00 16.73 S
 ATOM 3100 OH2 WAT S 31 49.354 14.273 -5.122 1.00 21.36 S
 ATOM 3101 OH2 WAT S 36 37.461 4.328 14.610 1.00 26.91 S
 ATOM 3102 OH2 WAT S 37 31.064 48.776 20.335 1.00 26.22 S
 ATOM 3103 OH2 WAT S 38 39.419 23.835 11.381 1.00 23.73 S
 ATOM 3104 OH2 WAT S 42 50.501 34.662 -19.238 1.00 20.32 S
 ATOM 3105 OH2 WAT S 43 27.883 24.679 8.563 1.00 31.47 S
 ATOM 3106 OH2 WAT S 46 19.071 35.135 -5.226 1.00 26.48 S
 ATOM 3107 OH2 WAT S 47 50.999 21.470 15.352 1.00 34.63 S
 ATOM 3108 OH2 WAT S 48 32.407 31.536 7.666 1.00 20.23 S
 ATOM 3109 OH2 WAT S 49 18.121 47.897 10.834 1.00 34.61 S
 ATOM 3110 OH2 WAT S 50 56.307 7.289 16.176 1.00 26.67 S
 ATOM 3111 OH2 WAT S 51 44.551 35.789 -2.442 1.00 10.71 S
 ATOM 3112 OH2 WAT S 52 47.918 16.451 -6.563 1.00 8.65 S
 ATOM 3113 OH2 WAT S 53 74.597 12.531 -0.845 1.00 42.09 S
 ATOM 3114 N1 DTI D 7 71.254 6.982 -6.846 1.00104.35 D
 ATOM 3115 CN4 DTI D 7 69.974 6.871 -6.117 1.00103.31 D
 ATOM 3116 CN5 DTI D 7 71.040 7.778 -8.065 1.00102.10 D
 ATOM 3117 CN3 DTI D 7 71.721 5.634 -7.232 1.00102.63 D
 ATOM 3118 C2 DTI D 7 72.564 6.911 -4.677 1.00100.45 D
 ATOM 3119 C1 DTI D 7 72.279 7.664 -6.000 1.00101.42 D

129

ATOM	3120	C3	DTI	D	7	72.890	7.890	-3.542	1.00	100.53	D
ATOM	3121	C4	DTI	D	7	72.820	7.226	-2.166	1.00	97.68	D
ATOM	3122	C5	DTI	D	7	71.485	7.283	-1.424	1.00	94.46	D
ATOM	3123	C6	DTI	D	7	71.371	8.220	-0.225	1.00	89.40	D
ATOM	3124	C7	DTI	D	7	70.225	7.953	0.746	1.00	86.05	D
ATOM	3125	C8	DTI	D	7	69.996	8.956	1.870	1.00	86.12	D
ATOM	3126	C9	DTI	D	7	69.760	8.402	3.274	1.00	85.94	D
ATOM	3127	C10	DTI	D	7	68.882	9.219	4.213	1.00	84.41	D
ATOM	3128	C11	DTI	D	7	68.448	8.573	5.526	1.00	84.95	D
ATOM	3129	C12	DTI	D	7	67.089	8.990	6.100	1.00	85.47	D
ATOM	3130	C13	DTI	D	7	66.608	8.276	7.366	1.00	85.28	D
ATOM	3131	C14	DTI	D	7	65.111	8.265	7.674	1.00	80.47	D
ATOM	3132	C15	DTI	D	7	64.698	8.019	9.124	1.00	77.01	D
ATOM	3133	C16	DTI	D	7	63.275	8.346	9.529	1.00	72.98	D
END											

Supplementary Information - Statistics for data collection and refinement

Data Collection	CD1b/GM2	CD1b/PI
Resolution range (Å)	100–2.8	25–2.2
Completeness (%) (outer)	88.8 (71.1)	92.3 (89.8)
Total observations	89500	334867
Unique reflections	13203	27623
Average I/σ(I)	13.7 (1.8)	39.1 (15.8)
(outer)		
R _{merge} (%) (outer)	10.3 (32.5)	5.1 (20.6)

Model refinement	CD1b/GM2	CD1b/PI
Maximum resolution	2.80	2.26
Number of reflections	12383/535	24656/751
(working set/ test set)		
R _{work} /R _{free} (%)	22.4/27.5	20.3/23.3
r.m.s deviations from standard stereochemistry		
Bonds (Å)	0.012288	0.007716

131

Angles (°)	1.72965	1.47377
Number of atoms		
Protein	3000	3005
Ligand(s)	85	90
Waters	40	232
NO ₃	0	12
Ramachandran plot		
Most favoured (%)	88.5	89.4
Additional (%)	11.2	9.3
Generous (%)	0.3	1.2
Disallowed (%)	0	0

Values in parentheses refer to the highest resolution shells (the outer shell is between 2.91-2.80Å and between 2.28-2.20Å for the CD1b/GM2 the CD1b/PI data respectively).

$$R_{\text{merge}} = \frac{\sum_h \sum_i |I_i(h) - \langle I(h) \rangle|}{\sum_h \sum_i |I(h)|}$$

where $I_i(h)$ is the i th measurement of reflection h and $\langle I(h) \rangle$ is the weighted mean of all measurements of h .

$$R = \frac{\sum_h |F_{\text{obs}} - F_{\text{calc}}|}{\sum_h F_{\text{obs}}}$$

where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes respectively. R_{work} and R_{cryst} were calculated using the working and test set, respectively.

CLAIMS

1. A method of producing a CD1/ligand complex said method comprising the steps of:

a) obtaining a denatured CD1 protein;

5 b) contacting said denatured CD1 protein with ligand in an environment comprising detergent; and .

c) isolating said CD1/ligand complex.

10 2. A method according to claim 1 wherein the denatured CD1 protein is also reduced.

15 3. A method according to claim 1 or claim 2 wherein the ligand is a lipid.

4. A method according to claim 3 wherein the lipid is a glycolipid or a phospholipid.

20 5. The method of claim 4 wherein said phospholipid is phosphatidylinositol. .

6. The method of claim 4 wherein said glycolipid is ganglioside GM2 or alpha-galactosylceramide.

◦

25 7. A method according to claim 3 or claim 4 wherein the lipid has between 10 and 80 carbon atoms.

30 8. A method according to any one of the preceding claims wherein the detergent is selected from the group consisting of a single chain detergent, such as acyclic single carbonyl chain detergents with acyl chain length C2-C60; sphingosines; ceramides with truncated alkyl chains; diacylglycerol-type lipids with truncated alkyl

chains; and triacylglycerol-type lipids with truncated alkyl chains.

9. A method according to any one of the preceding
5 claims wherein the detergent is cetyltrimethylammonium
bromide (CTAB).

10. A method according to any one of the preceding
claims comprising the further step of removing excess
detergent from the environment prior to isolation of the
10 CD1/ligand complex.

11. A method according to claim 9 wherein the excess
detergent is removed using a cyclodextrin.

15 12. A method according to any one of the preceding
claims wherein the CD1 molecule is CD1b, CD1c or CD1d.

20 13. A method according to claim 12 wherein the CD1
molecule is CD1b.

14. A method according to any one of the preceding
claims, wherein the CD1 protein contains at least one
biotinylation site.

25 15. A method according to any one of the preceding
claims, wherein the CD1 protein is complexed with the Fc
portion of an immunoglobulin.

30 16. A method as claimed in any preceding claim, further
comprising the step of forming a multimer comprising a
plurality of said CD1/ligand complexes.

17. The method of claim 16, wherein said multimer is a dimer, trimer or tetramer.

5 18. A method as claimed in any preceding claim, further comprising the step of labelling the CD1 protein with a chemical marker.

19. The method of claim 18, wherein said marker is a fluorescent compound.

10

15 20. A method according to any one of claims 1 to 17 further comprising the step of producing a pharmaceutical composition comprising the CD1/ligand complex and a pharmaceutically acceptable carrier.

21. A CD1/ligand complex produced by a method according to any one of the preceding claims for use in a method of medical treatment.

20

22. A method of medical treatment comprising the step of administering a therapeutically effective amount of a CD1/ligand complex produced by the method of any of claims 1 to 20.

25

30 23. Use of a CD1/ligand complex produced by a method according to any of claims 1 to 20 in the preparation of a medicament for treating infectious diseases caused by parasites, mycobacteria, fungi, and bacteria; tumours or autoimmune diseases.

24. Use of a CD1/ligand complex produced by a method according to any of claims 1 to 20 for detection of

lipid-specific T-lymphocytes, wherein said ligand is a lipid.

25. Use of a CD1/ligand complex comprising CD1d/alpha-galactosylceramide produced by a method according to any 5 of claims 1 to 20 for detection of mammalian T-lymphocytes.

10 26. A method of inducing or boosting an immune response in an individual to a lipid antigen, said method comprising administering a CD1/ligand complex to said individual wherein the ligand in the CD1/ligand complex is said lipid antigen.

15 27. A method according to claim 26, wherein said CD1/ligand complex has been produced by a method according to any one of claims 1 to 20.

20 28. A method for detecting a T-cell specific for a lipid antigen, said method comprising the steps of
(a) contacting a CD1/ligand complex with a biological sample suspected of comprising said T-cell; wherein said CD1/ligand complex comprises the lipid antigen; and

25 (b) detecting the presence of a T-cell specific for the lipid antigen following interaction between the T-cell and the CD1/ligand complex.

30 29. A method according to claim 28 wherein said T-cell is associated with a disease state.

30. A method according to claim 28 or 29 which is carried out *in vitro*.

31. A crystal of CD1/ligand complex.

32. A crystal as claimed in claim 31 wherein said ligand
5 is a lipid.

33. A crystal as claimed in claim 32 wherein said lipid
is a glycolipid, or a phospholipid.

10 34. A crystal of CD1/ligand complex having unit cell
dimensions of $a = 87.5 \text{ \AA} \pm 5\%$, $b = 177 \text{ \AA} \pm 5\%$ $c = 75 \text{ \AA} \pm 5\%$.

15 35. A crystal structure according to claim 34 having the
three dimensional atomic co-ordinates of Table 1.

36. A crystal as claimed in any of claims 31 to 35
wherein said ligand is phosphatidylinositol (PI) or
ganglioside GM2.

20 37. A crystal as claimed in any of claims 31 to 36
wherein the CD1 molecule is CD1b, CD1c or CD1d.

25 38. A crystal as claimed in claim 37 wherein the CD1 is
CD1b.

39. A method for growing a crystal of CD1/ligand complex
as claimed in any of claims 31 to 38 comprising growing
the crystal by sitting drop crystallisation using a
30 precipitant comprising 0.2M Lithium Nitrate and 20% w/v
Polyethylene Glycol.

40. A computer-based method of rational drug design comprising the steps of:

providing the structure of the CD1/ligand complex as defined by the coordinates of Table 1;

5 providing the structure of a candidate modulator molecule; and

fitting the structure of the candidate modulator molecule to the structure of the CD1/ligand complex of Table 1.

10 41. A computer-based method of rational drug design comprising the steps of:

providing the coordinates of at least two atoms of the CD1 of Table 1;

15 providing the structure of a candidate modulator molecule; and

fitting the structure of the candidate modulator molecule to the selected coordinates of the CD1.

20 42. A computer-based method of rational drug design as claimed in claim 40 or 41, wherein said candidate modulator molecule comprises a plurality of molecular fragments, said step of fitting the structure of the candidate modulator molecule further comprising the step of:

25 assembling the molecular fragments to form said candidate modulator molecule.

43. The method of any of claims 40 to 42 which further comprises the steps of:

30 obtaining or synthesising the candidate modulator molecule;

contacting the candidate modulator molecule with CD1; and

determining the ability of the candidate modulator molecule to interact with CD1.

5

44. The method of any of claims 40 to 42 which further comprises the steps of:

obtaining or synthesising the candidate modulator molecule;

10 forming a complex of CD1 and said candidate modulator molecule; and

analysing said complex by X-ray crystallography to determine the ability of said candidate modulator molecule to interact with CD1.

15

45. A compound having a chemical structure selected using the method of any of claims 40 to 44.

20 46. The compound of claim 45, wherein said compound inhibits or enhances the presentation of ligand by CD1.

25 47. A machine readable data storage medium comprising a data storage material encoded with machine readable data, wherein the data is defined by all or a portion of the structure coordinates of CD1/ligand complex according to Table 1.

30 48. Use of the machine readable data storage medium according to claim 47 to design modulators of the CD1/ligand complex.

49. A computer system intended to generate structures of, and/or perform rational drug design for, CD1/ligand

complex, or complexes of CD1/ligand with a potential modulator, the system containing machine readable data comprising

(1) atomic coordinate data of Table 1, said data defining the three dimensional structure of CD1/ligand complex, or at least one sub-domain of the three-dimensional structure of CD1/ligand complex, or the coordinates of at least two atoms of CD1/ligand complex; or

(2) structure factor data for CD1/ligand complex, said structure factor data being derivable from the atomic coordinate data of Table 1.

50. A method of generating structures of, and/or performing rational drug design for, CD1/ligand complex, or complexes of CD1/ligand with a potential modulator, comprising the step of operating a computer containing machine readable data comprising

(1) atomic coordinate data of Table 1, said data defining the three dimensional structure of CD1/ligand complex, or at least one sub-domain of the three-dimensional structure of CD1/ligand complex, or the coordinates of at least two atoms of CD1/ligand complex; or

(2) structure factor data for CD1/ligand complex, said structure factor data being derivable from the atomic coordinate data of Table 1.

51. A method of identifying a candidate modulator molecule of CD1/ligand complex comprising the steps of:
providing the structure, or at least one sub-domain, of the CD1/ligand complex of Table 1;
characterising at least one active site of CD1; and

140

identifying a candidate modulator molecule for interaction with said active site.

52. A method of identifying a candidate modulator molecule of CD1/ligand complex as claimed in claim 51, wherein said step of identifying a candidate modulator molecule comprises the step of:

designing a candidate modulator molecule to interact with said active site.

10

53. A method of identifying a candidate modulator molecule of CD1/ligand complex as claimed in claim 51, wherein said step of identifying a candidate modulator molecule comprises the steps of:

15 screening a plurality of candidate modulator molecules for interaction with the characterised active site; and

selecting at least one interacting candidate modulator molecule.

20

54. A candidate modulator molecule as identified by the method of any of claims 51 to 53, wherein said candidate modulator molecule interacts with a plurality of said active sites.

25

55. A method of assessing the ability of a candidate modulator molecule to interact with CD1 or CD1/ligand complex comprising the steps of:

30 obtaining or synthesising said candidate modulator molecule;

forming a crystallised composite of CD1 or CD1/ligand complex and said candidate modulator; and

analysing the composite by X-ray crystallography to determine the ability of the candidate modulator to interact with CD1 or CD1/ligand complex.

5 56. The method as claimed in claim 55, wherein the composite diffracts X-rays for the determination of atomic coordinates of the composite to a resolution of better than 2Å.

10 57. The method of claim 55 or 56 wherein said crystallised composite is formed by crystal soaking or co-crystallisation.

15 58. A method of determining three dimensional structures of CD1 or CD1/ligand complex homologues or analogues of unknown structure comprising the steps of:

20 aligning a representation of an amino acid sequence of a CD1 or CD1/ligand complex homologue or analogue of unknown structure with the amino acid sequence of CD1 or CD1/ligand complex to match homologous regions of amino acid sequences;

25 modelling the structure of the matched homologous regions of the homologue or analogue of unknown structure on the structure as defined in Table 1 of the corresponding regions of CD1 or CD1/ligand complex; and

determining a conformation for the homologue or analogue of unknown structure which substantially preserves the structure of said matched homologous regions.

30 59. A method for determining the structure of a protein comprising the steps of:
providing the coordinates of Table 1; and

142

positioning said coordinates in the crystal unit cell of said protein so as to provide a structure for said protein.

5 60. A method for determining the structure of a compound bound to CD1/ligand complex comprising the steps of:

providing a crystal of CD1/ligand complex; and soaking the crystal with the compound to form a complex; and

10 determining the structure of the complex by employing the data of Table 1.

15

20

Fig.1a.

Fig.1a (Cont).

Fig. 1b.

4/10

Fig.2a.

Fig.2b.

5/10

Fig.2c.**Fig.2d.**

6/10

Fig.2e.

Fig.2f.

Fig.2g.

Fig. 3a.**Fig. 3b.**

Fig.3C.

Fig. 4b.

Fig. 4c.

10/10

A

R3: Lymphocyte gate

NKT line; ACA-tet, 1.5 μ l.007**B**

R1: Live cells (PI-neg.)

NKT line; ACA-tet, 1.5 μ l.007**C**R2/R4: V α 24-/+ T cellsNKT line; ACA-tet, 1.5 μ l.007

Cells in „R3 AND R1“

NKT line; ACA-tet, 1.5 μ l.007

Cells in „R3 AND R1 AND R2 (thin) or R4 (bold)“

D**Figure 5****E**