西安交通大学 2010-2011 年数字信号处理期末试卷

学号:	; 姓名:		; 成绩:	
一、填空计算题(共 21	分,每小题3分)			
1. 已知因果广义线性相似	立 FIR 滤波器的一个零	‡点为 2−2 j,贝	必定存在的零点	
v	$\frac{1}{4} + j\frac{1}{4}$	$\frac{1}{4} - j\frac{1}{4}$	2502	
2. IIR 滤波器设计的冲击	占响应不变法和双线性	变换法中,模	拟角频率和数字	角频率之间的
关系分别为、	$\Omega = \omega$	$T \cdot \Omega = \frac{2}{T} \tan \theta$	$\tan \frac{\omega}{2}$	
3. 若有系统 $H_{+}(z) = \frac{0.5}{1-}$	$rac{5-z^{-1}}{0.2z^{-1}}$,则与之具有和	目同幅度响应的	的最小相位系统 <i>H</i>	$I_{\min}(z)$ 的零点
是,极点是	; z=0.5, 极点在	£ p=0.2		
E-SIW.	11 2 2			
4. 某 LTI 系统的单位脉	中响应为 1 0 1 2 3	 , 该系统	(是否)线性	上相位系统,群
延迟为; 是, 1.	5			
5. 带宽限制在 5KHz, E	即对于 $ \Omega \ge 2\pi (5000)$	$(j\Omega) = 0$	的连续时间信	号 $x_c(t)$,以
最小Hz 的采样率》	対 $x_c(t)$ 采样得到的 $x[t]$	$n] = x_c(nT) \pi$	会混叠。对该采	样率下所得采
样信号 $x[n]$ 做 FFT, 当系	E用点数的 FFT	时,可保证谱线	线间隔对应模拟规	页率小于 5Hz;
10KHz, ≥2000	25	57	Shippy	
6. 对于长度为 10 的序列	x[n], 其 10 点 DFT =	记为 $X_{10}[k]$,	100 点的 DFT 记;	为 $X_{100}[k]$ 。已
知 $X_{10}[1] = 5 + 3j$ 、 X_{10}	[8]=7,必定有 X ₁₀₀ [- Stal - SI	$3j$ 、 X_{100} [_]= 7; 10 80
7. 无限长信号 x[n] 乘以	长度为 L 的矩形窗函数	$\chi w[n]$,可得到	到有限长序列 $v[n]$]=x[n]w[n].
计算v[n]的N点FFT得	到 $V[k]$ 。プ	方法可提高 $V[k]$	[]的分辨率;	方法可
减少频谱泄露。 增大窗长	度,选择旁瓣低的窗	函数可减小频记	普泄露	

二、(12 分) 某因果的 LTI 系统的系统函数为
$$H(z) = \frac{2}{1 - \frac{1}{2}z^{-1}} + \frac{-1}{1 + \frac{1}{4}z^{-1}}$$

a) H(z) 的收敛域是什么? b) 系统是稳定的吗? 说明理由;

c)输入x[n]产生的输出为 $y[n] = -\frac{1}{3}(-\frac{1}{4})^n u[n] - \frac{4}{3}(2)^n u[-n-1]$,求x[n]的z变换X(z);

d) 该系统是否存在因果稳定的逆系统?

解: (a) 系统因果的,系统极点 $z=\frac{1}{2}$, $z=-\frac{1}{4}$ 均对应右边序列,收敛域在半径最大极点的

外 面 ,
$$|\mathbf{z}|$$
 $\frac{1}{2}$

(b) 收敛域包括单位圆,稳定

(c)
$$Y(z) = -\frac{1}{3} \frac{1}{1 - (-\frac{1}{4})z^{-1}} + \frac{4}{3} \frac{1}{1 - 2z^{-1}} = \frac{1}{3} \frac{-1 + 2z^{-1} + 4 + z^{-1}}{(1 + \frac{1}{4}z^{-1})(1 - 2z^{-1})} = \frac{1 + z^{-1}}{(1 + \frac{1}{4}z^{-1})(1 - 2z^{-1})}$$

$$y[n]$$
: 一个左边序列,一个右边序列,收敛域 $2>|z|>\frac{1}{4}$

 $X(z) = \frac{Y(z)}{H(z)} = \frac{(1-\frac{1}{2}z^{-1})}{(1-2z^{-1})}$,收敛域以极点 2 为界,且要与Y(z)和H(z)要有交集,2>|z|

-----3 分

三、 $(12\, eta)$ 在图 1 (a) 示系统中,输入连续信号的频谱 $X_c(j\Omega)$ 和离散时间系统 $H(e^{j\omega})$ 分别如 (b) (c) 所示,当 T_1 = T_2 =0.02 s 时,试画出 $X(e^{j\omega})$ 、 $Y(e^{j\omega})$ 及输出 $Y_c(j\Omega)$ 的图形。

解:

除第一图外,每图4分,

四、(10分)考虑如下图所示由子系统 A和子系统 B组成的系统

- a) 求子系统 A 的差分方程; b) 画出子系统 B 的线性相位直接型结构;
- c) 若想具有最少延迟单元个数, 信号流图可作何种修改?
- d) 子系统 B 是第几类线性相位系统? 是否适合做低通和高通滤波器?

解: (a)
$$\frac{W(z)}{X(z)} = \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{3}{8}z^{-1} + \frac{7}{8}z^{-2}}$$
, $w[n] = \frac{3}{8}w[n-1] - \frac{7}{8}w[n-2] + x[n] - \frac{1}{2}x[n-1]$ ---2

(c)
$$H(z) = \frac{W(z)}{X(z)} \frac{Y(z)}{W(z)} = \frac{1 - \frac{1}{2}z^{-1}}{1 - \frac{3}{8}z^{-1} + \frac{7}{8}z^{-2}} (1 + 2z^{-1} + 2z^{-2} + z^{-3})$$
 ----- 2 $\frac{1}{2}z^{-1}$

(d) H(z) 也可写作下式: (将其中两个 z^{-1} 合并,最终只需要 $4 ext{ } extstyle extstyle z^{-1}$ 即可,答案非唯一)

(e) 子系统 B的 h(n) = {1 2 2 1} 偶对称,总长度是偶数且对称中心不在采样点上,第 **2 类线性相位系统**, z=-1 是子系统 B 的零点, 包含 $1+z^{-1}$ 这一项, 不能做高通和带阻滤波器, 可做低通滤波器。

五、(15 分)给定两个序列 $x_1[n]$ 和 $x_2[n]$,其中:

$$x_1[n] = \begin{cases} n+1 & 0 \le n \le 5 \\ 0 &$$
其它
$$x_2[n] = \begin{cases} n^2 & 0 \le n \le 4 \\ 0 &$$
其它

$$x_2[n] = \begin{cases} n^2 & 0 \le n \le 4 \\ 0 & \text{#$^{\frac{1}{2}}$} \end{cases}$$

a) 求线性卷积 $x_1[n]*x_2[n]$;

b) 求 6 点循环卷积;

c) 求 11 点循环卷积; d) 说明循环卷积和线性卷积相同需要满足的条件。 解: (a) {0, 1, 6, 20, 50, 80, 110, 133, 134, 96, 0}

(b) {110, 134, 140, 116, 50, 80}

----- 4 分

(c) {0, 1, 6, 20, 50, 80, 110, 133, 134, 96, 0}

(d) N>L+P-1

六、(10分)采用窗函数法设计一个广义线性相位的数字低通滤波器,要求性能指标为: $\omega_p = 0.5\pi$, $\omega_s = 0.7\pi$, 通带纹波 $\delta_1 = 0.04$, 阻带纹波 $\delta_2 = 0.05$ 。

 \mathbf{a}) 写出该离散时间系统的单位脉冲响应h[n]; \mathbf{b}) 该滤波器的延迟是多少?

() J-V			COLOR STATE OF THE	1	1
名称	最大旁瓣幅度	主瓣近似宽度	最大逼近误差	等效 Kaiser 窗	等效 Kaiser 过渡带宽
矩形	-13 -13	4 π /(M+1)	21dB	0	1.8 π /M
巴特利特	-25	8 π /M	25dB	1.33	2.37 π/M
汉宁	-31	8 π /M	44dB	3.86	5.01 π /M
哈明	-41	8 π /M	51dB	4.86	6.27 π /M

布莱克曼 -57 12 π /	И 74dВ	7.04	9.19 π /M
------------------------	--------	------	-----------

解:据 $\delta_{\mathrm{l}}=0.04$, $\delta_{\mathrm{2}}=0.05$,选取较小值,则有 $\delta=\delta_{\mathrm{2}}=0.05$

因此
$$A = -20\log_{10} \delta = 26$$

比较最大逼近误差,25<26.02<44

因此选取汉宁滤波器

$$_{
m Hz}\,\omega_{
m p}=0.5\pi$$
 , $\omega_{
m s}=0.7\pi$

可得到
$$\omega_c = \frac{\omega_p + \omega_s}{2} = \frac{0.5\pi + 0.7\pi}{2} = 0.6\pi$$

$$\Delta \omega = \omega_s - \omega_p = 0.2\pi$$

$$\Delta\omega > \frac{5.01\pi}{M}$$

国 多子地 官网

网学天地 官网 更多视频和资料

M > 25.05

取 M=26

$$h(n) = \frac{\sin\left[\omega_c(n-M/2)\right]}{\pi(n-M/2)}\omega[n] = \frac{\sin\left[0.7\pi\times(n-13)\right]}{\pi(n-13)}\omega[n] \qquad (2.5)$$

(b)、该滤波器延迟是 13

----- 2 4

七、(10分)两个8点长序列 $x_1[n]$ 、 $x_2[n]$ 如下所示:

$$x_1[n] = 1\delta[0] + 2\delta[1] + 3\delta[2] + 4\delta[3] + 3\delta[4] + 2\delta[5] + 1\delta[6]$$

$$x_2[n] = 3\delta[0] + 2\delta[1] + \delta[2] + 1\delta[4] + 2\delta[5] + 3\delta[6] + 4\delta[7]$$

 $x_1[n]$ 、 $x_2[n]$ 的 8 点 DFT 分别记为 $X_1[k]$ 、 $X_2[k]$,若已知 $X_1[k]$,试用 $X_1[k]$ 表示 $X_2[k]$ 。

解: $x_1[n]$ 循环右移 4 位得到 $x_2[n]$,所以 \therefore $x_2[n] = x_1[((n-4))_8]$, $0 \le n \le 7$

$$\therefore X_{2}[k] = W_{8}^{4k} X_{1}[k] = e^{-j\frac{2\pi}{8} \times 4} X_{1}[k] = -X_{1}[k]$$

八、 $(10 \, \text{分})$ 一个长度为 100 的有限长序列 x[n],即 n < 0和 $n \ge 100$ 时x[n] = 0, $X\left(e^{j\omega}\right)$ 表 示其 DTFT。现有长度为 64 和 128 点的 FFT 程序可供使用,请说明如何利用所提供的 FFT 程序, 计算得到:

a)
$$X(e^{j\omega})\Big|_{\omega_k = \frac{2\pi k}{64}, k=0,1,\cdots,63}$$
 b) $X(e^{j\omega})\Big|_{\omega_k = \frac{2\pi k}{128}, k=0,1,\cdots,127}$
 $\Re\colon \colon X(e^{jw}) = \sum_{n=-\infty}^{\infty} x[n]e^{-jwn}$

又:x[n]是有限长序列.x[n]=0 当 n<0, n>100时

$$\therefore X(e^{jw}) = \sum_{n=0}^{99} x[n]e^{-jwn}$$

則
$$X(e^{j\omega})$$
 | $\sum_{\omega=\frac{2\pi k}{64}} = \sum_{n=0}^{99} x[n]e^{-j\frac{2\pi kn}{64}}$ | $=\sum_{n=0}^{63} x[n]e^{-j\frac{2\pi kn}{64}} + \sum_{n=64}^{99} x[n]e^{-j\frac{2\pi kn}{64}}$ | $=\sum_{n=0}^{63} x[n]e^{-j\frac{2\pi kn}{64}} + \sum_{n=0}^{35} x[m+64]e^{-j\frac{2\pi kn}{64}}$ | $=\sum_{n=0}^{63} [x[n] + x[m+64]]e^{-j\frac{2\pi kn}{64}}$ | 上式为 64 点 DFT 的定义 | 故首先将 $x[n]$ 分为两段 $x_1[n]$ 、 $x_2[n]$ | $x_1[n] = x[n]$, $n \in [0,63]$ | 甘中

其中
$$x_1[n] = x[n], n \in [0, 63]$$

其中 $x_2[n] = x[n+64], n \in [0,35]$

由 $x_1[n]$ 、 $x_2[n]$ 构造新的序列 $x_3[n]$, $x_3[n] = x_1[n] + x_2[n]$ 将 $x_3[n]$ 送进 64 点的 FFT, 即可得到

上式为 128 点 DFT 的定义

在x[n]的后面补 128 个零,将其送进 128 点的 FFT 的程序即可。

