Math 527 - Homotopy Theory Spring 2013 Homework 7 Solutions

Problem 1. (May $\S 10.7$ Problem 2)

a. Let $f: X \xrightarrow{\sim} Y$ be a weak homotopy equivalence. Assuming X is a CW-complex and Y has the *homotopy type* of a CW-complex, show that f is a homotopy equivalence.

Solution. Let $g: Y \xrightarrow{\simeq} K$ be a homotopy equivalence to a CW complex K. Then the composite $gf: X \to K$ is a weak homotopy equivalence, hence a homotopy equivalence by Whitehead. Therefore f is a homotopy equivalence, since g and gf are (2-out-of-3 property).

b. Show that the space $A := \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$ does *not* have the homotopy type of a CW-complex.

Solution. By part (a), it suffices to produce a CW-complex W and a weak homotopy equivalence $f: W \xrightarrow{\sim} A$ which is not a homotopy equivalence.

Consider the discrete space $W = \coprod_{n \in \mathbb{N} \cup \{0\}} \{x_n\}$ and the obvious bijection $f : W \to A$, which is continuous since W is discrete. Note that W is a (0-dimensional) CW-complex.

f is a weak homotopy equivalence. Since both W and A are totally disconnected, f induces a bijection $f_* \colon \pi_0(W) \xrightarrow{\simeq} \pi_0(A)$ and all higher homotopy groups $\pi_n(W)$ and $\pi_n(A)$ are trivial at any basepoint.

f is not a homotopy equivalence. Let $g: A \to W$ be any continuous map and consider $g(0) \in W$. Since the singleton $\{g(0)\}$ is open in W, there is a neighborhood $U \subseteq A$ of 0 satisfying $g(U) \subseteq \{g(0)\}$. Since U contains more than one point (in fact infinitely many), g is not bijective and therefore does not induce an isomorphism on $\pi_0(A) \to \pi_0(W)$.

Problem 2. Consider the "equatorial" embeddings

$$S^0 \subset S^1 \subset S^2 \subset \dots$$

of spheres, and define the infinite-dimensional sphere $S^{\infty} := \operatorname{colim}_n S^n$. Show that S^{∞} is contractible.

Solution. The embeddings $S^0 \subset S^1 \subset \ldots$ define the standard CW-structure on S^{∞} , with two cells in each dimension $0, 1, \ldots$, where the *n*-skeleton is S^n . Note that S^{∞} is path-connected (since its 1-skeleton S^1 is) and its homotopy groups are trivial:

$$\pi_k(S^\infty) = \operatorname*{colim}_n \pi_k(S^n) = 0$$

as $\pi_k(S^n) = 0$ for n > k. Therefore the inclusion $* \hookrightarrow S^{\infty}$ is a weak homotopy equivalence, and thus a homotopy equivalence, by Whitehead.

Remark. More is true: The inclusion $* \hookrightarrow S^{\infty}$ of one of the two points in S^0 is the inclusion of a subcomplex of S^{∞} , and thus a strong deformation retract.

Problem 3. (Hatcher § 4.1 Exercise 14 and more)

a. Let X and Y be homotopy equivalent spaces. Assuming that X and Y admit CW-structures without (n + 1)-cells (for some $n \ge 0$), show that the n-skeleta X_n and Y_n are homotopy equivalent.

Solution. Let $f: X \xrightarrow{\simeq} Y$ be a homotopy equivalence with homotopy inverse $g: Y \xrightarrow{\simeq} X$. By cellular approximation, WLOG f and g are cellular maps. Consider their restrictions to the n-skeleta $f|_{X_n}: X_n \to Y_n$ and $g|_{Y_n}: Y_n \to X_n$.

Let $H: X \times I \to X$ be a homotopy from gf to id_X . By cellular approximation, H is homotopic rel $X \times \partial I$ to a cellular map $H': X \times I \to X$, which in particular restricts to

$$H'|_{X_n \times I} \colon X_n \times I \to X_{n+1} = X_n$$

using the fact that X has no (n+1)-cells. Thus the composite $g|_{Y_n} \circ f|_{X_n} : X_n \to X_n$ is homotopic to the identity. Likewise, since Y has no (n+1)-cells, the composite $f|_{X_n} \circ g|_{Y_n} : Y_n \to Y_n$ is homotopic to the identity. \Box

b. Find an example of homotopy equivalent spaces X and Y, and CW-structures on X and Y such that for all $n \geq 0$, the n-skeleta X_n and Y_n are not homotopy equivalent.

Solution. Take the space * with a single 0-cell, and the infinite-dimensional sphere S^{∞} . By problem 2, the inclusion $* \hookrightarrow S^{\infty}$ is a homotopy equivalence. However, their respective n-skeleta $(*)_n = *$ and $(S^{\infty})_n = S^n$ are not homotopy equivalent, for any $n \ge 0$.

Problem 4. (Hatcher § 4.1 Exercise 16 and more)

a. Let (X, x_0) be a pointed space. Show that the summand inclusion $\iota \colon X \hookrightarrow X \vee S^n$ induces isomorphisms on homotopy groups π_i (based at any point) for all i < n.

Solution. Since $\iota: X \hookrightarrow X \vee S^n$ is obtained by attaching an n-cell (via the constant attaching map $S^{n-1} \to X$ to the basepoint), it is an (n-1)-connected map. Moreover, ι admits a retraction $X \vee S^n \twoheadrightarrow X$ sending the second summand S^n to the basepoint. Therefore the induced map $\iota_*: \pi_i(X) \to \pi_i(X \vee S^n)$ is injective for all i, in particular for i = n - 1.

b. Let X and Y be connected CW-complexes. Show that any map $f: X \to Y$ factors as a composite $X \xrightarrow{g} Z \xrightarrow{h} Y$ where $g: X \to Z$ induces isomorphisms on π_i for $i \leq n$ and $h: Z \to Y$ induces isomorphisms on π_i for $i \geq n+1$.

Solution. Start with the factorization $X \xrightarrow{\mathrm{id}} X \xrightarrow{f} Y$. Clearly the first map id: $X \to X$ induces isomorphisms on homotopy groups π_i for $i \leq n$. The second map $f: X \to Y$ need not be surjective on π_{n+1} . Attach (n+1)-cells to X as follows:

$$X \xrightarrow{\iota} X \vee \bigvee_{\alpha \in \pi_{n+1}(Y)} S^{n+1} \xrightarrow{(f,(\theta_{\alpha}))} Y$$

$$=:h_{(1)}$$

where $\theta_{\alpha} \colon S^{n+1} \to Y$ is a chosen representative of the class $\alpha \in \pi_{n+1}(Y)$. Rename the middle term $Z_{(1)}$. By part (a), the map $g_{(1)} \colon X \to Z_{(1)}$ still induces isomorphisms on π_i for $i \leq n$. By construction, the map $h_{(1)} \colon Z_{(1)} \to Y$ induces a surjection on π_{n+1} .

Inductive step. For $k \geq 1$, assume we have a factorization of f

$$X \xrightarrow{g_{(k)}} Z_{(k)} \xrightarrow{h_{(k)}} Y$$

such that $g_{(k)}$ induces isomorphisms on π_i for $i \leq n$ and $h_{(k)} : Z_{(k)} \to Y$ induces isomorphisms on π_i for n < i < n + k and a surjection on π_{n+k} .

Injectivity on π_{n+k} . For each $\alpha \in \ker (h_{(k)*}: \pi_{n+k}(Z_{(k)}) \to \pi_{n+k}(Y))$, pick a representative $\theta_{\alpha}: S^{n+k} \to Z_{(k)}$ and a null-homotopy $H_{\alpha}: D^{n+k+1} \to Y$ of $h_{(k)}\theta_{\alpha}$. Attach a (n+k+1)-cell to $Z_{(k)}$ via the attaching map θ_{α} and map this new cell to Y via H_{α} .

Surjectivity on π_{n+k+1} . For each $\alpha \in \pi_{n+k+1}(Y)$, pick a representative $\theta_{\alpha} \colon S^{n+k+1} \to Y$ and attach a (n+k+1)-cell to $Z_{(k)}$ via the constant attaching map, and map this new cell to Y via θ_{α} .

After all those cell attachments, we obtain a new factorization of f

$$X \xrightarrow{g_{(k+1)}} Z_{(k+1)} \xrightarrow{h_{(k+1)}} Y$$

where $g_{(k+1)}$ still induces isomorphisms on π_i for $i \leq n$, since attaching (n+k+1)-cells does not affect homotopy groups below dimension n+k. Moreover, $h_{(k+1)}$ still induces isomorphisms on π_i for n < i < n+k and now induces an isomorphism on π_{n+k} and a surjection on π_{n+k+1} .

Repeating this process inductively, we obtain a factorization of f

$$X \xrightarrow{g} Z \xrightarrow{h} Y$$

with the desired properties.