1. Problem

A farm produces 4 types of fruit: A, B, C, and D. The fruits' masses follow normal distributions, with parameters dependent on the type of fruit.

Type of fruit	Mean mass (g)	Standard deviation of mass (g)
Α	68	4
В	72	13
C	78	8
D	131	14

One specimen of each type is weighed. The results are shown below.

Type of fruit	Mass of specimen (g)	
Α	75.24	
В	75.25	
C	65.36	
D	116.9	

Which specimen is the most unusually large (relative to others of its type)?

2. Problem

A normal random variable X has a mean μ = 32.7 and standard deviation σ = 3.1. Please label the density curve with:

- (a) The appropriate values of x.
- (b) The areas of the sections.

Let *X* be normally distributed with mean 49 and standard deviation 11. Please calculate the probabilities shown below and also shade a corresponding region under the density curve.

(a)
$$P(X < 50.1)$$

(b)
$$P(X > 60)$$

(c)
$$P(|X-49|<6.6)$$

(d)
$$P(|X-49| > 5.5)$$

Let *X* be normally distributed with mean 105.6 and standard deviation 19.3. Please calculate the probabilities shown below and also shade a corresponding region under the density curve.

(a) What's the probability that *X* is less than 94.8? **Draw a sketch**.

(b) What's the probability that *X* is more than 130? **Draw a sketch**.

(c) What's the probability that *X* is between 94.8 and 130? **Draw a sketch**.

5. Problem

Let random variable W have mean $\mu_W = 49$ and standard deviation $\sigma_W = 10$. Let random variable X represent the **average** of n = 64 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 49.09).
- (d) Using normal approximation, determine P(X > 47.61).

A very large population has a mean of 100.7 and a standard deviation of 21. When a random sample of size 100 is taken, what is the probability that the **sample mean** (\bar{x}) is between 101 and 105?

(a) Determine the mean and standard deviation of the sampling distribution.

(b) Determine $P(101 < \overline{X} < 105)$. Draw a sketch

Let random variable W have the probability distribution shown below.

W	P(w)	
0	0.28	
1	0.72	

Let random variable \hat{p} (sample proportion) represent the average of n = 49 instances of W.

(a) Determine the mean and standard deviation of the \hat{p} .

(b) Determine $P(\hat{p} < 0.66)$. Do NOT use a continuity correction. **Draw a sketch**

A very large population has a population proportion p = 0.78. When a random sample of size 225 is taken, what is the probability that the **sample proportion** (\hat{p}) is less than 0.75? Do NOT use a continuity correction.

(a) Determine the mean and standard deviation of the sampling distribution.

(b) Determine $P(\hat{p} < 0.75)$. **Draw a sketch**

9. Problem

Let random variable W have mean $\mu_w = 56$ and standard deviation $\sigma_w = 6$. Let random variable X represent the **sum** of n = 64 instances of W.

- (a) Determine the expected value of X. $\mu_X = ?$
- (b) Determine the standard deviation of X. $\sigma_X = ?$
- (c) Using normal approximation, determine P(X < 3644).
- (d) Using normal approximation, determine P(X > 3594.56).

10. **Problem**

Let random variable W have the probability distribution shown below.

W	P(w)	
0	0.66	
1	0.34	

Let random variable X represent the sum of n = 177 instances of W. (Thus X is the sample total, or number of successes.)

What is the probability that X is at least 47 but at most 72? Use a normal approximation with continuity corrections.

11. Problem

Let each trial have a chance of success p = 0.77. If 156 trials occur, what is the probability of getting more than 108 but less than 133 successes?

In other words, let $X \sim \text{Bin}(n = 156, p = 0.77)$ and find P(108 < X < 133).

Use a normal approximation along with the continuity correction.

1. We compare the *z*-scores. The largest *z*-score corresponds to the specimen that is most unusually large.

Type of fruit	formula	z-score
Α	$Z = \frac{75.24 - 68}{4}$	1.81
В	$Z = \frac{75.25 - 72}{13}$	0.25
C	$Z = \frac{13}{65.36 - 78}$	-1.58
D	$Z = \frac{116.9 - 131}{14}$	-1.01

Thus, the specimen of type A is the most unusually large.

2. The filled in areas and *x* values are shown below.

3. (a) P(X < 50.1) = P(Z < 0.1) = 0.5398

(b) $P(X > 60) = P(Z > 1) = \boxed{0.1587}$

(c) P(|X-49| < 6.6) = P(|Z| < 0.6) = 0.4514

(d) P(|X-49| > 5.5) = P(|Z| > 0.5) = 0.617

- 4. Notice the three probabilities will add up to 1.
 - (a) P(X < 94.8) = P(Z < -0.56) = 0.2877

(b) $P(X > 130) = P(Z > 1.24) = \boxed{0.1075}$

(c) P(94.8 < X < 130) = P(-0.56 < Z < 1.24) = 0.6048

- 5. (a) 49
 - (b) 1.25
 - (c) 0.5279
 - (d) 0.8665
- 6. (a) Central limit of average formulas: $\mu_{\bar{x}} = 100.7$ and $\sigma_{\bar{x}} = \frac{21}{\sqrt{100}} = 2.1$.
 - (b) $P(101 < \overline{X} < 105) = P(0.14 < Z < 2.05) = 0.4241$

7. (a) We can recognize W is a Bernoulli variable with p = 0.72 and q = 0.28. Thus,

$$\mu_{W} = p = 0.72$$

and

$$\sigma_W = \sqrt{pq} = \sqrt{(0.72)(0.28)} = 0.449$$

Then, we use the central limit of average formulas:

$$\mu_{\hat{D}} = \mu_{W} = 0.72$$

and

$$\sigma_{\hat{p}} = \frac{\sigma_w}{\sqrt{n}} = \frac{0.449}{\sqrt{49}} = 0.0641$$

But, if we recognized \hat{p} follows the formulas of a \hat{p} **sampling distribution**:

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \frac{\sqrt{pq}}{\sqrt{n}} = \sqrt{\frac{pq}{n}}$$

we could have just used those instead.

(b)
$$P(\hat{p} < 0.66) = P(Z < -0.94) = 0.1736$$

- 8. (a) Use \hat{p} sampling formulas: $\mu_{\hat{p}} = 0.78$ and $\sigma_{\hat{p}} = \frac{\sqrt{(0.78)(0.22)}}{\sqrt{225}} = 0.0276$.
 - (b) $P(\hat{p} < 0.75) = P(Z < -1.09) = 0.1379$

- 9. (a) 3584
 - (b) 48
 - (c) 0.8944
 - (d) 0.4129

10. We recognize W is a Bernoulli variable with p = 0.34 and q = 0.66. Thus,

$$\mu_{W} = p = 0.34$$

and

$$\sigma_W = \sqrt{pq} = \sqrt{(0.34)(0.66)} = 0.4737$$

.

We use the Central Limit Formulas (for a sum).

$$\mu_X = n\mu_W = (177)(0.34) = 60.18$$

$$\sigma_X = \sqrt{n}\sigma_W = \sqrt{177}(0.4737) = 6.3023$$

It should be mentioned that you could have also just recognized *X* is binomial:

$$\mu = np = (177)(0.34) = 60.18$$

$$\sigma = \sqrt{np(1-p)} = \sqrt{(177)(0.34)(1-0.34)} = 6.3023$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.

Find the z scores.

$$z_1 = \frac{46.5 - 60.18}{6.3023} = -2.17$$

$$Z_2 = \frac{72.5 - 60.18}{6.3023} = 1.95$$

Find the percentiles (from z-table).

$$\ell_1 = 0.015$$

$$\ell_2 = 0.9744$$

Calculate the probability.

$$P(47 \le X \le 72) = 0.9744 - 0.015 = 0.9594$$

11. Find the mean.

$$\mu = np = (156)(0.77) = 120.12$$

Find the standard deviation.

$$\sigma = \sqrt{np(1-p)} = \sqrt{(156)(0.77)(1-0.77)} = 5.2562$$

Make a sketch, specifically try to picture whether you need to add or subtract 0.5 for the continuity correction.

Find the z scores.

$$z_1 = \frac{108.5 - 120.12}{5.2562} = -2.21$$

$$Z_2 = \frac{132.5 - 120.12}{5.2562} = 2.36$$

Find the percentiles (from z-table).

$$\ell_1 = 0.0136$$

$$\ell_2 = 0.9909$$

Calculate the probability.

$$P(108 < X < 133) = 0.9909 - 0.0136 = 0.977$$

Normal Distributions

$$Z = \frac{x - \mu}{\sigma}$$
$$X = \mu + Z\sigma$$

Central Limit Theorem

Let random variable W have mean μ_w and standard deviation σ_w . Let random variable X represent the sum of n instances of W. Let random variable Y represent the average of n instances of W. Then:

$$\mu_{X} = (n)(\mu_{W}) \qquad \qquad \mu_{Y} = \mu_{W}$$

$$\sigma_{X} = (\sigma_{W})(\sqrt{n}) \qquad \qquad \sigma_{Y} = \frac{\sigma_{W}}{\sqrt{n}}$$

and *X* and *Y* are both approximately normal.

Bernoulli Random Variable

$$\mu = \mathbf{p}$$

$$\sigma = \sqrt{\mathbf{pq}}$$

Binomial Random Variable (sum of Bernoullis)

$$\mu = np$$
$$\sigma = \sqrt{npq}$$

Proportion Sampling Random Variable (average of Bernoullis)

$$\mu = p$$

$$\sigma = \sqrt{\frac{pq}{n}}$$

Continuity Correction

- If:
 - X is a discrete variable with a support of consecutive integers
 - we are approximating X with a normal distribution
- Then we can apply a continuity correction:

$$P(X \le x_0) = P\left(Z < \frac{x_0 + 0.5 - \mu_X}{\sigma_X}\right) \qquad P(X < x_0) = P\left(Z < \frac{x_0 - 0.5 - \mu_X}{\sigma_X}\right)$$

$$P(X \ge x_0) = P\left(Z > \frac{x_0 - 0.5 - \mu_X}{\sigma_X}\right) \qquad P(X > x_0) = P\left(Z > \frac{x_0 + 0.5 - \mu_X}{\sigma_X}\right)$$