

Cours de Robotique Fondamentale

La cinématique des robots séries

Julien Alexandre dit Sandretto COPRIN INRIA Sophia-Antipolis

Liaisons entre deux solides

Une liaison entre deux solides est une relation de **contact** entre deux solides.

- Degrés de liberté d'une liaison : C'est le nombre de déplacements élémentaires indépendants autorisés par cette liaison.
- ▶ Classe d'une liaison : C'est le nombre de déplacements élémentaires interdits. On notera que pour une liaison, la somme des degrés de liberté et de la classe de la liaison est égale à 6.

Liaisons entre deux solides : exemple

Contact Plan/Plan

1 ddl, R_x

le contact court cylindre/cylindre entre ces 2 surfaces interdit Ty, Tz

Décomposition des contacts

Les différents types de contact

contact ponctuel

contact linéique

contact linéique

Cylindre/Cylindre

contact surfacique

contact surfacique

Tableau des liaisons usuelles

Nom de la liaison	Représentations planes	Perspective	Degrés de Trans	e liberté <i>Ori</i>	mobilités
Haison	pianes		ITAIIS	Ori	
Encastrement de centre B	$\frac{\vec{Z}}{\vec{B}}$	\vec{x}	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	Anim
Glissière de centre A et d'axe X	\vec{X} $\vec{A} \times \vec{A} \times \vec{Y}$	\bar{x} \bar{y}	$\begin{pmatrix} \mathcal{T}_{x} \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	Anim
Pivot de centre A et d'axe X	$\frac{\vec{x}}{\vec{x}}$	\overline{x}	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} R_X \\ 0 \\ 0 \end{pmatrix}$	Anim

Tableau des liaisons usuelles

Nom de la	Représentations	Perspective	Degrés de liberté		mobilités
liaison	planes		Trans	Ori	
Pivot glissant de centre C et d'axe X	$\frac{\vec{x}}{c}$	\vec{x} \vec{c} \vec{y}	$\begin{pmatrix} T_x \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} R_{\rm x} \\ 0 \\ 0 \end{pmatrix}$	Anim
Hélicoïdale de centre B et d'axe Y	\overline{X} \overline{S} \overline{Y}	\vec{z} \vec{v}	$\begin{pmatrix} 0 \\ T_y \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ Ty * 2p/p \\ 0 \end{pmatrix}$	Anim
Appui Plan de centre D et de normale Z	\vec{x} \vec{z} \vec{y}	x, y	$\begin{pmatrix} T_x \\ T_y \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 0 \\ R_z \end{pmatrix}$	Anim
Rotule de centre O	\vec{x} \vec{o} \vec{v}	x y	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} R_{x} \\ R_{y} \\ R_{z} \end{pmatrix}$	Anim

Tableau des liaisons usuelles

Nom de la	Représentations	Perspective		le liberté	mobilités
liaison	planes		Trans	Ori	
rotule à doigt de centre O d'axe	$\vec{X} = \vec{z} \vec{z} \vec{y}$	X O V	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ R_y \\ R_z \end{pmatrix}$	Anim
Linéaire annulaire de centre B et d'axe X	$\vec{X} \xrightarrow{\vec{p}} \vec{S} \vec{Y}$	V V	$\begin{pmatrix} T_X \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} R_{x} \\ R_{y} \\ R_{z} \end{pmatrix}$	Anim
Linéïque rectiligne de centre C, d'axe X et de normale Z	\vec{Z} \vec{Z} \vec{V}	X Y	$\begin{pmatrix} T_x \\ T_y \\ 0 \end{pmatrix}$	$\begin{pmatrix} R_x \\ 0 \\ R_z \end{pmatrix}$	Anim
Ponctuelle de centre O et de normale Z	\vec{x} \vec{v} \vec{v}	Z V	$\begin{pmatrix} T_x \\ T_y \\ 0 \end{pmatrix}$	$\begin{pmatrix} R_x \\ R_y \\ R_z \end{pmatrix}$	Anim

Les articulations des robots

Articulation prismatique, noté P

1 ddl en translation T_z . Valeur articulaire q = longueur [m].

Articulation rotoïde, noté R

1 ddl en rotation R_z . Valeur articulaire $q = \text{angle } [rad], [^{\circ}]$.

Articulation de ddl > 2

Dans la plupart des cas, pour modéliser une articulation de ddl \geq 2, nous nous ramenerons à une succession d'articulations P ou R.

Exemples:

Articulation cardan RR (2 ddl)

Articulation rotule RRR=S (3 ddl)

Les chaînes cinématiques

Figure: Chaîne cinématique RPRP

Une chaîne cinématique sera définie par une succession d'articulations rotoïdes ou prismatiques.

Les Robots Séries

Un exemple

Vocabulaire

- Actionneur, moteur
- Axe, articulation
- ► Corps, segment
- Organe terminal
- ▶ Effecteur, outil
- ► Base

Vocabulaire

- ► Coordonnées généralisées $\mathcal{X} = [P, R]$ (position P / orientation R de l'organe terminal)
- Coordonnées articulaires q (consignes données aux moteurs : soit rotation autour d'un axe soit translation suivant un axe)
- ▶ Paramètres géométriques qui définissent de façon statique les dimensions du robot

Indice de mobilité et ddl d'un robot série à *n* corps

Définition : L' indice de mobilité M est le nombre de paramètres variables qui déterminent la configuration du manipulateur M=n

Si

- La chaîne cinématique est simple (chaque articulation a, au plus, un successeur et un prédécesseur)
- ► Chaque articulation est de classe 5

En géneral, le degré de liberté du robot (D_{L_r}) est égal à M sauf si le robot est redondant. Dans tous les cas ...

$$D_{L_r} \leq M$$

Robot redondant

Le nombre de degrés de liberté de l'organe terminal < nombre de variables articulaires actives (d'articulations motorisées).

- plus de 6 articulations
- plus de trois articulations rotoïdes d'axes concourants
- plus de trois articulations rotoïdes d'axes parallèles
- plus de trois articulations prismatiques
- deux axes d'articulations prismatiques parallèles
- deux axes d'articulations rotoïdes confondus

Configurations singulières (localement redondant)

Quelque soit le robot (redondant ou non), il se peut qu'il existe certaines configurations dites *singulières* telle que le nombre de degrés de liberté de l'organe terminal soit inférieur à la dimension de l'*espace opérationnel* (espace dans lequel on représente les ddl de l'OT).

- deux axes d'articulations prismatiques se retrouvent parallèles
- deux axes d'articulations rotoïdes se retrouvent confondus.

Nombre de morphologies possibles vs nombre de ddl du robot

2 possibilités d'angle entre deux articulations successives : 0° et 90°

ddl	nb structure	
2	8	
3	36	
4	168	
5	776	
6	3508	

Nous appelerons ...

Propriétés des robots

- Précision : positionnement absolu imprécis (> 1 mm):
- Répétabilité : la répétabilité d'un robot est l'erreur maximale de positionnement répété de l'outil en tout point de son espace de travail (< 0.1 mm)
- Vitesse maximale de translation ou de rotation de chaque axe, de translation maximale de l'organe terminal
- Accélération maximale
 - Est donnée pour chaque axe dans la configuration la plus défavorable (inertie maximale, charge maximale).
 - Dépend fortement de l'inertie donc de la position du robot
- Charge utile :
 - ► C'est la charge maximale que peut porter le robot sans dégrader la répétabilité et les performances dynamiques.
 - La charge utile est nettement inférieure à la charge maximale que peut porter le robot qui est directement dépendante des actionneurs.

Les Robots Parallèles

Description Générale, chaîne fermée

Un exemple

Exemples Robots Parallèles

Différents types d'architectures

La plate-forme de Gough

Caractéristiques

- ► Meilleure précision (rigidité, accumulation des erreurs)
- Peut transporter de lourdes charges
- Bonnes performances dynamiques
- Espace de travail plus limité (que pour les robots séries)
- Etude complexe

Le Modèle Géométrique Direct

Des robots (séries ou parallèles)

Déterminer: Les coordonnées généralisées (X) en fonction des coordonnées articulaires (q):

$$X = \mathcal{F}_{\mathsf{MGD}}(q_1, q_2, \dots, q_i, \zeta)$$

avec ζ les paramètres géométriques (paramètres qui définissent la géométrie du robot).

exemple

- Identifier les coordonnées articulaires
- Identifier les paramètres géométriques qui définissent le mécanisme
- Associer à chacune des articulations un repère
- Déterminer le positionnement (matrice R, vecteur P) de chaque repères par rapport au précedent.
- ► Mettre ces changements de repères sous la forme de matrices homogènes
- Montrer comment calculer le MGD de ce mécanisme

Le MGD solution

Identifier les coordonnées articulaires

Solution:
$$q_1 = \theta_1, \quad q_2 = \theta_2, \quad q_3 = \theta_3$$

▶ Identifier les paramètres géométriques qui définissent le mécanisme

Solution:
$$\zeta = \{t_1, t_2, t_3\}$$

Solution

► Associer à chacune des articulations un repère

Solution

 Déterminer le positionnement (matrice R, vecteur P) de chaque repères par rapport au précedent.

$$R_{i,j} = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$
$$T_{i,j} = \begin{pmatrix} t_j \cdot \cos \theta_j \\ t_j \cdot \sin \theta_j \end{pmatrix}$$
$$i \in 0, 1, 2, j \in 1, 2, 3$$

Mettre ces changements de repères sous la forme de matrice homogène

$$H_{i,j} = \begin{pmatrix} R_{i,j} & T_{i,j} \\ 0 & 0 & 1 \end{pmatrix}$$

Solution

 Montrer comment calculer le MGD de ce mécanisme

$$H_{0,3} = \begin{pmatrix} \cos\theta_1 & -\sin\theta_1 & t_1 \cdot \cos\theta_1 \\ \sin\theta_1 & \cos\theta_1 & t_1 \cdot \sin\theta_1 \\ 0 & 0 & 1 \end{pmatrix} \times \dots$$

$$\begin{pmatrix} \cos\theta_2 & -\sin\theta_2 & t_2.\cos\theta_2\\ \sin\theta_2 & \cos\theta_2 & t_2.\sin\theta_2\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_3 & -\sin\theta_3 & t_3.\cos\theta_3\\ \sin\theta_3 & \cos\theta_3 & t_3.\sin\theta_3\\ 0 & 0 & 1 \end{pmatrix}$$

$$=\begin{pmatrix}\cos\left(\theta_1+\theta_2+\theta_3\right) & -\sin\left(\theta_1+\theta_2+\theta_3\right) & t_1.\cos\theta_1+t_2.\cos\left(\theta_1+\theta_2\right)+t_3.\cos\left(\theta_1+\theta_2+\theta_3\right)\\ \sin\left(\theta_1+\theta_2+\theta_3\right) & \cos\left(\theta_1+\theta_2+\theta_3\right) & t_1.\sin\theta_1+t_2.\sin\left(\theta_1+\theta_2\right)+t_3.\sin\left(\theta_1+\theta_2+\theta_3\right)\\ 0 & 0 & t_1.\sin\theta_1+t_2.\sin\left(\theta_1+\theta_2\right)+t_3.\sin\left(\theta_1+\theta_2+\theta_3\right) \end{pmatrix}$$

$$X = \begin{pmatrix} t_1 \cdot \cos \theta_1 + t_2 \cdot \cos (\theta_1 + \theta_2) + t_3 \cdot \cos (\theta_1 + \theta_2 + \theta_3) \\ t_1 \cdot \sin \theta_1 + t_2 \cdot \sin (\theta_1 + \theta_2) + t_3 \cdot \sin (\theta_1 + \theta_2 + \theta_3) \\ \theta_1 + \theta_2 + \theta_3 \end{pmatrix}$$

Le Modèle Géométrique Direct

des robots séries

Le Modèle Géométrique Direct

comment modéliser systèmatiquement une chaîne cinématique

Dans l'espace, nous utiliserons le formalisme de Denavit-Hartenberg

- 1 Placer les repères
- 2 Définir les variables articulaires et les paramètres géométriques
- 3 Définir les matrices de transformées homogènes
- 4 Multiplier ces matrices

Calculer le MGD

Déterminer:

$$X = \mathcal{F}_{\mathsf{MGD}}(q_1, q_2, \dots, q_i, \zeta)$$

Repère mobile La transformation homogène entre le repère Ω_0 et le repère mobile Ω_n est obtenue telle que :

$$\mathbf{H}_{\mathsf{DH}} = \mathbf{H}_0.\mathbf{H}_1 \dots \mathbf{H}_n$$

Repère de base

II faut projeter
$$\mathbf{H}_{\mathrm{DH}}$$
 sur $X = [T_{x}, T_{y}, T_{z}, R_{x}, R_{y}, R_{z}]$

De la matrice DH vers 6 parameters T_x , T_y , T_z , R_x , R_y , R_z

Nous souhaitons obtenir $X = [T_x, T_y, T_z, R_x, R_y, R_z]$ en fonction des éléments de la matrice \mathbf{H}_{DH} .

Pour la position ...

$$\begin{pmatrix} T_x \\ T_y \\ T_z \end{pmatrix} = \begin{pmatrix} \mathbf{H}_{\mathsf{DH}1,4} \\ \mathbf{H}_{\mathsf{DH}2,4} \\ \mathbf{H}_{\mathsf{DH}3,4} \end{pmatrix}$$

De la matrice DH vers 6 parameters T_x , T_y , T_z , R_x , R_y , R_z

Nous souhaitons obtenir $X = [T_x, T_y, T_z, R_x, R_y, R_z]$ en fonction des éléments de la matrice \mathbf{H}_{DH} .

Pour l'orientation ...

Sachant que :

$$R = \begin{pmatrix} \cos\theta\cos\psi & -\cos\theta\sin\psi & \sin\theta\\ \sin\phi\sin\theta\cos\psi + \cos\phi\sin\psi & \cos\phi\cos\psi - \sin\phi\sin\theta\sin\psi & -\sin\phi\cos\theta\\ -\cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi + \sin\phi\cos\psi & \cos\phi\cos\theta \end{pmatrix}$$

$$\begin{split} R_x &= \arctan \frac{\mathbf{H}_{\text{DH}3,2}.\mathbf{H}_{\text{DH}1,1} - \mathbf{H}_{\text{DH}3,1}.\mathbf{H}_{\text{DH}1,2}}{\mathbf{H}_{\text{DH}1,1}.\mathbf{H}_{\text{DH}2,2} - \mathbf{H}_{\text{DH}1,2}.\mathbf{H}_{\text{DH}2,1}} \\ R_y &= \arctan \frac{\mathbf{H}_{\text{DH}1,3}}{\sqrt{\mathbf{H}_{\text{DH}1,1}^2 + \mathbf{H}_{\text{DH}1,2}^2 + \mathbf{H}_{\text{DH}2,3}^2 + \mathbf{H}_{\text{DH}3,3}^2}} \\ R_z &= \arctan \frac{\mathbf{H}_{\text{DH}2,3}.\mathbf{H}_{\text{DH}3,1} - \mathbf{H}_{\text{DH}2,1}.\mathbf{H}_{\text{DH}3,3}}{\mathbf{H}_{\text{DH}2,3}.\mathbf{H}_{\text{DH}3,2} - \mathbf{H}_{\text{DH}2,2}.\mathbf{H}_{\text{DH}3,3}} \end{split}$$

Le Modèle Géométrique Inverse

des robots séries

Déterminer:

$$[q_1, q_2, \ldots, q_n] = \mathcal{F}_{\mathsf{MGI}}(X, \zeta)$$

avec ζ les paramètres géométriques (paramètres qui définissent la géométrie du robot série).

Le MGI exemple

$$X = \dots$$

$$\begin{pmatrix} t_1 \cdot \cos \theta_1 + t_2 \cdot \cos (\theta_1 + \theta_2) + t_3 \cdot \cos (\theta_1 + \theta_2 + \theta_3) \\ t_1 \cdot \sin \theta_1 + t_2 \cdot \sin (\theta_1 + \theta_2) + t_3 \cdot \sin (\theta_1 + \theta_2 + \theta_3) \\ \theta_1 + \theta_2 + \theta_3 \end{pmatrix}$$

Calculer le MGI, c'est déterminer:

$$[\theta_1, \theta_2, \theta_3] = \mathcal{F}_{\mathsf{MGI}}(X_1, X_2, X_3, \zeta)$$

avec
$$\zeta = [t_1, t_2, t_3]$$

Le MGI exemple

résolution Géométrique 1/2

Le MGI exemple

résolution Géométrique 2/2

Le MGI exemple

résolution Algébrique 1

$$t_1 \cdot \cos \theta_1 + t_2 \cdot \cos (\theta_1 + \theta_2) + t_3 \cdot \cos (\theta_1 + \theta_2 + \theta_3) - X_1 = 0$$

 $t_1 \cdot \sin \theta_1 + t_2 \cdot \sin (\theta_1 + \theta_2) + t_3 \cdot \sin (\theta_1 + \theta_2 + \theta_3) - X_2 = 0$
 $\theta_1 + \theta_2 + \theta_3 = X_3$

$$t_1 \cdot \cos \theta_1 + t_2 \cdot \cos (\theta_1 + \theta_2) + t_3 \cdot \cos X_3 - X_1 = 0$$

 $t_1 \cdot \sin \theta_1 + t_2 \cdot \sin (\theta_1 + \theta_2) + t_3 \cdot \sin X_3 - X_2 = 0$

$$t_1 \cdot \cos \theta_1 + t_2 \cdot \cos (\theta_1 + \theta_2) = u_1$$
 (1)
 $t_1 \cdot \sin \theta_1 + t_2 \cdot \sin (\theta_1 + \theta_2) = u_2$

On sait que

$$\cos^{2}(\theta_{1} + \theta_{2}) + \sin^{2}(\theta_{1} + \theta_{2}) = 1 \tag{2}$$

Le MGI exemple

résolution Algébrique 2

En reportant, les équations 1 dans l'équation 2.

$$(u_1 - t_1 \cdot \cos \theta_1)^2 + (u_2 - t_1 \cdot \sin \theta_1)^2 = t_2^2$$

Nous obtenons

$$u_1.\cos\theta_1 + u_2.\sin\theta_1 = \frac{t_1^2 - t_2^2 + u_1^2 + u_2^2}{2.t_1}$$

sachant que pour l'équation X. $\sin \alpha + Y$. $\cos \alpha = Z$:

$$\cos \alpha = \frac{YZ - \epsilon X\sqrt{X^2 + Y^2 - Z^2}}{X^2 + Y^2}$$
$$\sin \alpha = \frac{XZ + \epsilon Y\sqrt{X^2 + Y^2 - Z^2}}{X^2 + Y^2}$$

avec
$$\epsilon = +/-1$$
.

On en déduit donc θ_1 puis $\theta_1+\theta_2\to\theta_2$ (en utilisant eq. (1)), puis θ_3 .

Résolution numérique

Méthode de Newton ~ 1670

Nous cherchons à déterminer x tel que f(x) = 0, Nous connaissons une approximation de x noté x_0 . Nous avons

 $f(x_0) - f(x) = f'(x_0).(x_0 - x)$ avec f(x) = 0 nous obtenons :

$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Le schéma de Newton est donc :

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Résolution numérique

Newton

$$x^3 - 0.5x + 0.1 = 0$$

$$f(x) = x^3 - 0.5x + 0.1$$

$$f'(x) = 3.x^2 - 0.5$$

x_0	0	1	-0.5	-0.4
<i>x</i> ₁	0.2	0.76	-1.4	11.4
<i>x</i> ₂	0.2211	0.6310	-1.0387	7.6095
<i>x</i> ₃	0.2218	0.5796	-0.8555	5.0871
X4		0.5699	-0.7975	3.4121
<i>X</i> 5		0.5696	-0.7915	2.3048
<i>x</i> ₆			-0.7914	1.5799
X7				1.1143
<i>x</i> ₈				0.8270
<i>X</i> 9				0.6645
<i>x</i> ₁₀				0.5903
<i>x</i> ₁₁				0.5710
x ₁₂				0.5696

Résolution numérique

Newton

Calculer $\sqrt{3}$ en utilisant $\{+, \times, \div\}$, 5 et 2. Solution :

- ▶ Résoudre l'équation $x^2 N = 0$
- $x_{k+1} = x_k \frac{x^2 N}{2.x}$
- $x_0 = 5$, $x_1 = 2.8$, $x_2 = 1.9357$, $x_3 = 1.7428$, $x_4 = 1.7321$.

Techniques utilisées

- ► Méthode classique (1970-1980)
 - Utilisable pour la plupart des robots industriels
 - Résolution simple, utilisation de modèle de résolution
- Méthode algébrique (Raghavan et Roth 1990)
 - Technique de l'élimination dyalitique
- Méthode numérique (Newton)
 - Quand on ne sait pas faire
 - Problème de l'unicité des solutions

Méthode classique

1 Développer l'ensemble des équations possibles

$$\begin{array}{rcl} H_X & = & H_{0,1}.H_{1,2}.H_{2,3}.H_{3,4}.H_{4,5}.H_{5,6} \\ H_{1,0}.H_X & = & H_{1,2}.H_{2,3}.H_{3,4}.H_{4,5}.H_{5,6} \\ H_{2,1}.H_{1,0}.H_X & = & H_{2,3}.H_{3,4}.H_{4,5}.H_{5,6} \\ H_{3,2}.H_{2,1}.H_{1,0}.H_X & = & H_{3,4}.H_{4,5}.H_{5,6} \\ H_{4,3}.H_{3,2}.H_{2,1}.H_{1,0}.H_X & = & H_{4,5}.H_{5,6} \\ H_{5,4}.H_{4,3}.H_{3,2}.H_{2,1}.H_{1,0}.H_X & = & H_{5,6} \\ \end{array}$$
 avec $H_{i,i}^{-1} = H_{j,i}$

2 On constate que beaucoup d'équations ont la même forme

Méthode classique

3 On utilise des formules de type ci-après pour résoudre Pour l'équation X. $\sin \alpha + Y$. $\cos \alpha = Z$:

$$\cos\alpha = \frac{YZ - \epsilon X \sqrt{X^2 + Y^2 - Z^2}}{X^2 + Y^2}$$

$$\sin\alpha = \frac{XZ + \epsilon Y \sqrt{X^2 + Y^2 - Z^2}}{X^2 + Y^2}$$

avec $\epsilon = +/-1$

Remarques

- Si le poignet est d'axes concourants (rotule), la résolution est plus simple.
- ▶ De la même façon, si la chaîne cinématique possède 3R à axes concourants ou 3 articulations prismatiques (qqsoit leurs positions) le MGI est simplifié
- ▶ Le nombre de solutions du MGI d'un robot à 6 liaisons varie mais ≤ 16. (16 pour RRRRRR)

Méthode Algébrique, Générale pour un robot à 6 liaisons

1 On utilise les formules suivantes pour obtenir des équations algébriques

$$\cos\alpha = \frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}$$

$$\sin\alpha = \frac{2.\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}$$

- 2 On utilise une méthode d'élimination algébrique pour éliminer 5 variables parmi les 6
- 3 On obtient un polynôme de degré 16
- 4 Les racines de ce polynômes nous fournissent les solutions

Méthode Numérique (pour les cas à problèmes)

On utilise un schéma de Newton multivarié :

$$X_{k+1} = X_k - J^{-1}(X_K)F(X_k)$$

Avec $F = [f_1, \dots, f_n]^T$, $X = [x_1, \dots, x_n]^T$ et J la jacobienne du système définie par :

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \dots & & \vdots \\ \frac{\partial f_{n-1}}{\partial x_1} & \dots & \frac{\partial f_{n-1}}{\partial x_{n-1}} & \frac{\partial f_{n-1}}{\partial x_n} \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_{n-1}} & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

Attention! ne fournit qu'une seule solution

Le cas des robots parallèles

$$\rho = \|P + R.b_i - a_i\|$$

Modèle Géométrique Inverse

$$\rho_i = L_i + I_i = \mathcal{MGI}(P, R, \xi_i)$$

$$\rho_i^2 = \|P + R.b_i - a_i\|^2$$

Le cas des robots parallèles

$$\mathcal{X} = \begin{pmatrix} P \\ R \end{pmatrix} = \mathcal{MGD}(\rho, \xi)$$

Résoudre le système en P,R:

$$\begin{split} \rho_1^2 - \|P + R.b_1 + a_1\|^2 &= 0 \\ \rho_2^2 - \|P + R.b_2 + a_2\|^2 &= 0 \\ \rho_3^2 - \|P + R.b_3 + a_3\|^2 &= 0 \\ \rho_4^2 - \|P + R.b_4 + a_4\|^2 &= 0 \\ \rho_5^2 - \|P + R.b_5 + a_5\|^2 &= 0 \\ \rho_6^2 - \|P + R.b_6 + a_6\|^2 &= 0 \end{split}$$

- Méthodes numériques [Newton, continuation, analyse par interval]
- ► Méthodes algébriques [Groebner, Resultant]

