第 11 周作业解答

练习 1. 求矩阵
$$A = \begin{pmatrix} 5 & 6 & -3 \\ -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix}$$
 的特征值和特征向量。

解

• 解特征方程 $|\lambda I - A| = 0$.

$$|\lambda I - A| = \begin{vmatrix} \lambda - 5 & -6 & 3 \\ 1 & \lambda & -1 \\ -1 & -2 & \lambda - 1 \end{vmatrix} \xrightarrow{\frac{r_3 + r_2}{2}} \begin{vmatrix} \lambda - 5 & -6 & 3 \\ 1 & \lambda & -1 \\ 0 & \lambda - 2 & \lambda - 2 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 5 & -6 & 3 \\ 1 & \lambda & -1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{\frac{c_2 - c_3}{2}} (\lambda - 2) \begin{vmatrix} \lambda - 5 & -9 & 3 \\ 1 & \lambda + 1 & -1 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 5 & -9 \\ 1 & \lambda + 1 \end{vmatrix} = (\lambda - 2)(\lambda^2 - 4\lambda + 4) = (\lambda - 2)^3$$

所以特征值为 $\lambda_1 = 2$ (这是三重特征值)。

• 关于特征值 $\lambda_1 = 2$, 求解 $(\lambda_1 I - A)x = 0$ 。

$$(\lambda_1 I - A \vdots 0) = \begin{pmatrix} -3 & -6 & 3 & 0 \\ 1 & 2 & -1 & 0 \\ -1 & -2 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

同解方程组为

$$x_1 + 2x_2 - x_3 = 0$$
 \Rightarrow $x_1 = -2x_2 + x_3$

自由变量取为 x_2, x_3 。分别取 $\begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,得基础解系

$$\alpha_1 = \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \qquad \alpha_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}.$$

所以对应于特征值 $\lambda_1 = 2$ 的所有特征向量为:

$$c_1\alpha_1 + c_2\alpha_2 = c_1 \begin{pmatrix} -2\\1\\0 \end{pmatrix} + c_2 \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

其中 c1, c2 是不全为零的任意常数。

练习 2. 已知矩阵 $A=\begin{pmatrix}3&2&-1\\a&-2&2\\3&b&-1\end{pmatrix}$,如果 A 的特征值 λ 对应的一个特征向量为 $\alpha=\begin{pmatrix}1\\-2\\3\end{pmatrix}$,求 a,b 和 λ 值。

解注意到

$$A\alpha = \lambda \alpha \quad \Rightarrow \quad \begin{pmatrix} 3 & 2 & -1 \\ a & -2 & 2 \\ 3 & b & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} -4 \\ a+10 \\ -2b \end{pmatrix} = \begin{pmatrix} \lambda \\ -2\lambda \\ 3\lambda \end{pmatrix}$$

所以

$$\begin{cases} \lambda = -4 \\ a = -2 \\ b = 6 \end{cases}.$$

练习 3. 设 λ_1 , λ_2 是方阵 A 的两个不同的特征值,对应的特征向量分别为 α_1 , α_2 。证明 $\alpha_1 + \alpha_2$ 一定不是 A 的特征向量。

解反证法,假设 $\alpha_1 + \alpha_2$ 是 A 的特征向量,相应特征向值为 λ 。则

$$A(\alpha_1 + \alpha_2) = \lambda(\alpha_1 + \alpha_2).$$

另一方面

$$A(\alpha_1 + \alpha_2) = A\alpha_1 + A\alpha_2 = \lambda_1\alpha_1 + \lambda_2\alpha_2.$$

综合上述两式,得

$$\lambda(\alpha_1 + \alpha_2) = \lambda_1 \alpha_1 + \lambda_2 \alpha_2.$$

所以

$$(\lambda - \lambda_1)\alpha_1 + (\lambda - \lambda_2)\alpha_2 = 0.$$

注意到对应不同特征值的特征向量线性无关,从而上式意味

$$\lambda = \lambda_1, \quad \lambda = \lambda_2.$$

这与 λ_1 , λ_2 不等矛盾。矛盾在于假设了 $\alpha_1 + \alpha_2$ 是 A 的特征向量。所以 $\alpha_1 + \alpha_2$ 一定不是 A 的特征向量。

练习 4. 已知矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{pmatrix}$$
 和 $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & -2 & y \end{pmatrix}$ 相似,求 x, y 的值。

解因为 $A \sim B$, 所以 A, B 有相同特征值, 设为 λ_1 , λ_2 , λ_3 。由特征值和矩阵元素的关系, 得

$$2 + 0 + x = \lambda_1 + \lambda_2 + \lambda_3 = 2 + 3 + y$$

及

$$\begin{vmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{vmatrix} = \lambda_1 \lambda_2 \lambda_3 = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & -2 & y \end{vmatrix}.$$

所以

$$\left\{ \begin{array}{c|c} 2+x=5+y \\ \begin{vmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{array} \right| = \left| \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & -2 & y \end{array} \right| \quad \Rightarrow \quad \left\{ \begin{array}{c} 2+x=5+y \\ -1=3y+8 \end{array} \right. \quad \Rightarrow \quad \left\{ \begin{array}{c} x=0 \\ y=-3 \end{array} \right.$$

练习 5. 判断矩阵 $A = \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ 可否对角化。若能,求出相应的对角阵 Λ ,和可逆矩阵 P。

解

• 解特征方程 $|\lambda I - A| = 0$.

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 3 & -3 \\ -3 & \lambda + 5 & -3 \\ -6 & 6 & \lambda - 4 \end{vmatrix} \xrightarrow{c_3 + c_2} \begin{vmatrix} \lambda - 1 & 3 & 0 \\ -3 & \lambda + 5 & \lambda + 2 \\ -6 & 6 & \lambda + 2 \end{vmatrix}$$

$$= (\lambda + 2) \begin{vmatrix} \lambda - 1 & 3 & 0 \\ -3 & \lambda + 5 & 1 \\ -6 & 6 & 1 \end{vmatrix} \xrightarrow{r_2 - r_3} (\lambda + 2) \begin{vmatrix} \lambda - 1 & 3 & 0 \\ 3 & \lambda - 1 & 0 \\ -6 & 6 & 1 \end{vmatrix}$$

$$= (\lambda + 2) \begin{vmatrix} \lambda - 1 & 3 \\ 3 & \lambda - 1 \end{vmatrix} = (\lambda + 2)(\lambda^2 - 2\lambda - 8) = (\lambda + 2)^2(\lambda - 4)$$

所以特征值为 $\lambda_1 = -2$ (二重特征值), $\lambda_2 = 4$

• 关于特征值 $\lambda_1 = -2$, 求解 $(\lambda_1 I - A)x = 0$ 。

$$(-2I - A \vdots 0) = \begin{pmatrix} -3 & 3 & -3 & 0 \\ -3 & 3 & -3 & 0 \\ -6 & 6 & -6 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

同解方程组为

$$x_1 - x_2 + x_3 = 0$$
 \Rightarrow $x_1 = x_2 - x_3$
自由变量取为 x_2, x_3 。分别取 $\begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,得基础解系 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

所以对应于特征值 $\lambda_1 = -2$ 的有 2 个线性无关特征向量。(等价于 r(-2I - A) = 3 - 2 = 1。)

• 关于特征值 $\lambda_1 = 4$,求解 $(\lambda_1 I - A)x = 0$ 。

$$\begin{aligned} (-2I-A \vdots 0) &= \begin{pmatrix} 3 & 3 & -3 & | & 0 \\ -3 & 9 & -3 & | & 0 \\ -6 & 6 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{3} \times r_1} \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 1 & -3 & 1 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{r_2-r_1}{r_3-r_2}} \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -4 & 2 & | & 0 \\ 0 & -2 & 1 & | & 0 \end{pmatrix} \\ & & & & & & & & & & & & \\ \frac{-\frac{1}{2} \times r_2}{-\frac{1}{6} \times r_3} \begin{pmatrix} 1 & 1 & -1 & | & 0 & | & 0 \\ 0 & 2 & -1 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \\ & & & & & & & & & & \\ \frac{-\frac{1}{2} \times r_2}{-\frac{1}{2} \times r_2} \begin{pmatrix} 1 & 1 & -1 & | & 0 & | & 0 \\ 0 & 2 & -1 & | & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 & | & 0 \end{pmatrix}$$

同解方程组为

$$\begin{cases} x_1 - x_2 = 0 \\ 2x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_3 = 2x_2 \end{cases}$$

自由变量取为 x_2 。取 $x_2 = 1$,得基础解系

$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

• 可见 A 有 3 个线性无关特征向量 $\alpha_1,\,\alpha_2,\,\alpha_3,\,$ 所以 A 可对角化。令

$$P = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} -2 & 0 \\ 0 & -2 & 0 \\ 0 & 4 & 0 \end{pmatrix}$$

则

$$P^{-1}AP = \Lambda$$
.