1.3.3 Измерение вязкости воздуха по течению в тонких трубках

Анна Назарчук Б02-109

1 Аннотация

В работе измеряется коэффицент вязкости воздуха при помощи воздуха, движущего в тонких трубках с разными скоростями, имея разные числа Рейнольдса.

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2 Теоретические сведения

Сила вязкого трения согласно закону Ньютона:

$$\tau_{xy} = \eta \frac{\partial v_x}{\partial y} \tag{1}$$

 η - коэффициент динамической вязкости. Характер течения может быть ламинарным или турбулентным, определяется числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta} \tag{2}$$

 ρ - плотность среды, u - характерная скорость потока, a - характерный размер системы. Формула Пуазейля:

$$Q = \frac{\pi R^4 \Delta P}{8nl}, \qquad \bar{u} = \frac{Q}{\pi R^2} \tag{3}$$

Длина установления:

$$l_{\text{yct}} \approx = 0.2R \cdot Re \tag{4}$$

Скоростной напор:

$$\tilde{\psi} = \frac{R}{l} \frac{\Delta P}{\rho \bar{u}^2} \tag{5}$$

Из теории размерностей:

$$\frac{\Delta P}{I} = C(Re) \cdot \frac{\rho \bar{u}^2}{R} \tag{6}$$

При больших числах Рейнольдса параметры течения жидкости не зависят от коэффициента вязкости, поэтому $C(Re) \mapsto const$, откуда

$$Q = const \cdot R^{5/2} \sqrt{\frac{\Delta P}{\rho l}} \tag{7}$$

3 Экспериментальная установка и методика измерений

Схема экспериментальной установки представлена на рис. Поток воздуха поступает через газовый счетчки в металлические трубки, трубки имеют заглушки и отверстия для подключения микроманометра. 1.

Рис. 1: Схема экспериментальной установки

4 Измерения и обработка данных

4.1 Зависимость расхода от перепада давления

Данные представлены в таблице 1 и на графике 2.

Зависимость $Q(\Delta P)$ представлена на графике, жирными точками обозначены примерные границы перехода от ламинарного течения к турбулентному. Из формулы Пуазейля вычислим коэффициент вязкости воздуха, используя данные ламинарных участках. (табл. 2)

Также рассчитаем критическое значение числа Рейнольдса: (табл. 3). Исходя из полученных значений, критическое число Ренольдса $\sim 10^3$, что согласуется с наблюдениями за столбиком микроманометра.

4.2 Длина установления

Измерим распределение давление по длине трубки (табл. 4) По имеющимся значениям построим график (3)

Из-за малого числа точек невозможно найти длину установления ламинарного сечения, можно только сказать, что она лежит между 20 и 40 см для d=3.95мм и между 40 и 60 см для d=5.1мм, что согласуется с формулой 4.

4.3 Зависимость расхода от радиуса трубки

Для разных труб при постоянном отношении перепада давления к длине получим 5. Построим график зависимости расхода от радиуса в двойном логарифмическом масштабе 4

Наклон для ламинарного $k=3.70\pm0.06,\,k_{\rm reop}=4,$ для турбулентного $k=2.7\pm0.1,\,k_{\rm reop}=2.5.$ Полученные значения достаточно близки к предсказанным теорией.

Таблица 1: Зависимость расхода от перепада давления для разных труб

Ламинарное течение			Турбулентное течение				
Q, л	t, c	N, штрихи	d, мм	Q, л	t, c	N, штрихи	d, мм
0.5	86.46	5	3.95	3	28.77	97	3.95
1	65.22	12	3.95	3	27.58	107	3.95
1	46.07	17	3.95	3	26.44	124	3.95
1	36.32	22	3.95	3	25.34	144	3.95
1.5	39.05	31	3.95	3	24.62	162	3.95
1.5	30.64	39	3.95	3.5	27.11	191	3.95
2	36.67	45	3.95	3.5	25.8	212	3.95
2	30.24	55	3.95	3.5	24.22	241	3.95
1	54.44	4.5	5.1	4	23.88	64	5.1
1.5	34.49	11	5.1	5	28.24	76	5.1
1.5	24.51	15	5.1	5	25.45	92	5.1
2.5	26.8	23	5.1	5	20.25	137	5.1
3	24.77	30	5.1	5	19.62	148	5.1
2	27.54	18	5.1	6	22.48	160	5.1
1	31.17	8	5.1				
0.5	95.33	7	3	2	22.02	187	3
0.5	40.2	17	3	2	23.3	160	3
0.5	24.69	28	3	2	25.26	144	3
1	34.39	40.5	3	2.5	25.63	206	3
1.5	42.14	49	3	2.5	25.41	216	3
1.5	32.49	70	3	3	27.56	258	3
1	25.41	58.5	3	3	27.38	265	3
1	38.37	36	3				

Таблица 2: Коэффициент вязкости воздуха

d, мм	3.95	5.1	3.0
$\eta, 10^-6\Pi a \cdot c$	23.99 ± 1.24	19.97 ± 0.81	14.40 ± 1.93
ϵ , %	5.2	4.1	13.4

Таблица 3: Критическое число Рейнольдса

d, мм	3.95	5.1	3.0
$Re_{\text{\tiny KD}}$	810	1020	1260

Таблица 4: Распределение давление газа вдоль трубки

N, штрихи	х, см	d, мм
43	130.9	3.95
28	80.9	3.95
14	40.9	3.95
5	10.9	3.95
20	30	5.1
39	70	5.1
64	120	5.1

Рис. 2: Зависимости расхода от перепада давления

Таблица 5: Измерения на разных трубах

N, штрихи	1, см	Q, л	t, c	d, мм	Тип течения
17	0.3	0.5	41.81	3	Ламинарный
100.5	0.3	1.5	25.56	3	Турбулентный
17	0.3	2	23.22	5.1	Ламинарный
134	0.4	5	18.27	5.1	Турбулентный
22.5	0.4	1	30.79	3.95	Ламинарный
134	0.4	2.5	21.28	3.95	Турбулентный
22.5	0.4	2	18.1	5.3	Ламинарный
134	0.4	6	23.57	5.3	Турбулентный
22.5	0.4	3	20.8	5.85	Ламинарный

4.4 Зависимость расхода от давления на турбулентном участке

Используя те же данные (табл. 1) построим график в безразмерных величинах: зависимость числа Рейнольдса от обезразмеренного перепада давления. (5) При больших числах Рейнольдса (>1700) $\tilde{\psi}$ становится константой, о чем говорит, например, коэффицент наклона прямой через "верхние точки". Так как скоростной напор становится постоянным, то:

$$Q = const \cdot R^{5/2} \sqrt{\frac{\Delta P}{\rho l}} \tag{8}$$

[,] что подтверждаеттеоретическую формулу.

Рис. 3: Перепад давления от координаты

Рис. 4: Зависимость расхода от радиуса

Рис. 5: Зависимость числа Рейнольдса от скоростного напора

5 Выводы

- 1. Измерен коэффицент вязкости воздуха: $\eta=19.45\pm1.22$ мк Π а·c, теоретическое значение: $\eta=17.8$ мк Π а·c. Значения близки друг к другу.
- 2. Примерно определена критическая длина трубки, полученное значение согласуется с теоретическим при расчете по формуле: $l_{\rm ycr} = 0.2R \cdot Re$
- 3. Рассмотрена зависимость расхода от радиуса трубки, показатели степени при турбулентном $\beta=3.70\pm0.06$ ($\beta_{\rm reop}=4$) и ламинарном $\beta=2.7\pm0.1$ ($\beta_{\rm reop}=2.5$). Экспериментальные значеня не очень существенно отличаются от теоретических.
- 4. Проанализирована зависимость числа Рейнольдса от скоростного напора, доказана справедливость выражения при турбулентном течении: $Q=const\cdot R^{5/2}\sqrt{\frac{\Delta P}{\rho l}}$