COURTNEY CARREIRA

(she/her)

ccarreir@ucsc.edu courtneycarreira.github.io

EDUCATION

Ph.D. Student

September 2023 - Present

Department of Astronomy & Astrophysics, The University of California, Santa Cruz

Santa Cruz, CA

B.S. Physics

Graduated with General Honors, May 2023

Department of Physics and Astronomy, Johns Hopkins University

Baltimore, MD

Minor in Applied Mathematics and Statistics

Relevant Coursework: Astrophysical Plasmas, Radiative Astrophysics, Introduction to Stellar Physics

RESEARCH EXPERIENCE

Advisor: Professor Brant Robertson

NSF REU Intern and NRAO SOS Researcher

Smithsonian Astrophysical Observatory

June 2022 - September 2023 Cambridge, MA

- Using observations of atomic and molecular gas emissions in M33 to analyze the effect of proximity from the southeastern spiral arm in the formation of molecular clouds; advised by Dr. Eric Koch and Dr. Sarah Jeffreson, within Professor Alyssa Goodman's research group.
- Ongoing work resulted in a successful NRAO Student Observing Support award to obtain observations that resolve the filamentary morphology of molecular clouds across M33. Co-PI: Eric Koch, Title: Linking the Resolved Filamentary Molecular ISM to Massive Star Formation across M33.

Undergraduate Researcher

May 2021 - May 2022

Department of Physics and Astronomy, Johns Hopkins University

Baltimore, MD

- Collected photometric and spectroscopic data for a large set of low-metallicity stellar objects, believed to host transiting exoplanets; advised by Professor Kevin Schlaufman.
- Utilized Python coding and packages to numerically analyze the stellar objects of interest.

Research Intern April 2020 - January 2022

The Johns Hopkins University Applied Physics Laboratory

Laurel. MD

- Performed correlation analysis of simulated gamma-ray and UVOIR emissions from Type Ia supernovae, and assisted with scientific validation for mission proposal; advised by Dr. Richard S. Miller.
- Analyzed Monte Carlo simulations of volatile transport across the lunar surface, specifically looking at water and carbon dioxide; advised by Dr. Parvathy Prem.

PUBLICATIONS

- 1. Robertson, B., et al. (2023). Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic Star-Formation Rate Density 300 Myr after the Big Bang. arXiv e-prints, arXiv:2312.10033.
- Carreira, C., et al. (2024). How do spiral arms influence molecular cloud and star formation? Comparing multiple ISM tracers across M33's spiral arm to simulations. *Manuscript in preparation*.

PRESENTATIONS

4. <u>Carreira, C.</u>, Koch, E., & Jeffreson, S. (2023). The Effect of Spiral Arms on Molecular Cloud Formation in M33. In *American Astronomical Society Meeting Abstracts* (pp. 211.01).

- 3. Carr, K., Azubuike, O., Tran, A., Carreira, C., Alfaro, C., Greenhagen, G., Patterson, G., Stickle, A., Prem, P., Cahill, J., & Tai Udovicic, C. (2021). Lunar Crater Maturity Analysis in Python: Developing a Toolkit for Ejecta Analysis. In 5th Planetary Data Workshop & Planetary Science Informatics & Analytics (pp. 7087).
- 2. Carr, K., Azubuike, O., Tran, A., <u>Carreira, C.</u>, Alfaro, C., Greenhagen, B., Patterson, G., & Stickle, A. (2021). Lunar Crater Maturity Analysis in Python: Developing a Toolkit for Ejecta Analysis. In *52nd Lunar and Planetary Science Conference* (pp. 2387).
- 1. Alfaro, C., Tran, A., Carr, K., Azubuike, O., Carreira, C., Prem, P., Dominguez, G., Greenhagen, B., Hurley, D., Stickle, A., Patterson, G., & Cahill, J. (2021). The Effect of Isotopic Composition and Surface Residence Times on Lunar Volatile Transport. In 52nd Lunar and Planetary Science Conference (pp. 2258).

TEACHING

Teaching Assistant for ASTR 2

January 2024 - March 2024

Department of Astronomy & Astrophysics, The University of California, Santa Cruz

Santa Cruz, CA

- Leads one recitation section per week, which includes a short lecture, group activities, and live demonstrations.
- Hosts office hours on a weekly basis, in collaboration with other TAs.

Teaching Assistant for General Physics I

August 2022 - December 2022

Department of Physics and Astronomy, Johns Hopkins University

Baltimore, MD

- During Active Learning sections of this course, worked closely with students as they completed a series of problems and hands-on demonstrations during their lectures.
- Hosted office hours on a weekly basis.

SKILLS

Programming Software

Python (advanced, including machine learning), MATLAB, Unix, SQL/ADQL

glueviz, ds9, ENVI, JMARS

MEMBERSHIPS

American Astronomical Society American Physical Society

Updated as of May 3, 2024.