Interrogation de cours $n^{\circ}6$

Evolution temporelle d'un système en réaction

On considère la réaction suivante : $\text{ClO}^-(\text{aq}) \longrightarrow \frac{1}{3} \text{ClO}_3^-(\text{aq}) + \frac{2}{3} \text{Cl}^-(\text{aq}).$

- \star Définir mathématiquement la vitesse volumique globale v de la réaction par rapport aux ions ClO $^-$.
- \star En supposant que cette réaction suit une cinétique d'ordre 2, exprimer la vitesse v d'une deuxième manière. On donnera la dimension et l'unité de la constante de vitesse apparaissant dans cette expression.
- \star En déduire l'équation différentielle vérifiée par $\left[\text{ClO}^{-}\right].$
- ★ Utiliser la méthode de séparation des variables pour exprimer [ClO⁻] en fonction du temps.

* Rappeler la loi d'Arrhénius en précisant le nom, la signification et l'unité des grandeurs qui interviennent dans cette expression.

 \star On suppose que la réaction précédente est conduite successivement à deux températures T_1 et T_2 différentes. On note respectivement k_1 et k_2 les constantes de vitesse associées. Exprimer l'énergie d'activation E_a de la réaction en fonction de k_1 , k_2 , R, T_1 et T_2 .