白板推導 (1~23) Notes

李笑然 xiaoranli@daum.net

March.2021

Contents

1	Cor	npariso	on of frequentist	4
	1.1	Gaussi	ian distribution	4
		1.1.1	MLE of Gaussian Distribution	4
		1.1.2	Biased estimate vs Unbiased estimate	6
		1.1.3	High-dimensional	7
		1.1.4	Limitations	8
		1.1.5	Conditional and Marginal probability of Mixed Gaussian Distribution	8
		1.1.6	Joint Probability of Mixed Gaussian Distribution	10
	1.2	Expon	ential Distribution	12
		1.2.1	Introduction	12
		1.2.2	Proof of Gaussian Distribution to Exponential Distribution	13
		1.2.3	Relationship between $\phi(x)$ and $A(\eta)$	13
		1.2.4	MLE of Exponential Distribution	14
		1.2.5	Uniform Distribution of Maximum Entropy	15
		1.2.6	Maximum Entropy to Exponential Distribution	16
	1.3	Linear	regression	16
		1.3.1	Two geometric interpretations of Linear Regression	16
		1.3.2	MLE with Gaussian noise for Least Squares Method	18
		1.3.3	L2 in frequency perspective	18
		1.3.4	MAP For L2	19
	1.4	Linear	Classification	20
		1.4.1	Linear regression to Linear classification	20
		1.4.2	Classification Model Tree	20
		1.4.3	Perceptron	20
		1.4.4	Fisher Linear Discriminant Analysis	20
		1.4.5	Logistic Regression	22
		1.4.6	Gaussian Discriminant Analysis	22
		1.4.7	SVMs	26
		1.4.8	Kernel Method	27
		1.4.9	Generative Model	28

	1.5	Dimen	asionality Reduction
		1.5.1	PCA
		1.5.2	PCA vs SVD
		1.5.3	P-PCA
		1.5.4	EM For GMM
		1.5.5	Spectral Clustering
2	Boy	ocion l	Inference 34
4	2.1		sentation
	2.1	2.1.1	Introduction
		2.1.1	Moral Graph
		2.1.2	Factor Graph
	2.2		nce
		2.2.1	Introduction
		2.2.2	Variable Elimination
		2.2.3	Belief Propagation(Sum-product)
		2.2.4	Max-product
	2.3		ional Inference
		2.3.1	VI based Mean field
		2.3.2	SGVI (SGVB)
	2.4	Sampl	ing
		2.4.1	Probability distribution sampling
		2.4.2	Rejection sampling
		2.4.3	Importance sampling
		2.4.4	MCMC-MH
		2.4.5	MCMC-Gibbs
	2.5	Dynan	nic System (State Space Model)
		2.5.1	HMM
		2.5.2	Kalman filter
		2.5.3	Particle filter - SIS
		2.5.4	Particle filter - SIR
		2.5.5	CRF
		2.5.6	RBM 59
	2.6	Gauss	ian Graph
		2.6.1	Conditional independence
		2.6.2	Gaussian Bayesian Network
		2.6.3	Gaussian Markov Network
		2.6.4	Bayesian Linear Regression
		2.6.5	Gaussian Process Regression
	2.7	Learni	$ing \dots \dots$
		2.7.1	Introduction

2.7.2	Proof of convergence of EM	68
	ELBO+KL For EM	
2.7.4	Jensen's inequality For EM	70

Chapter 1

Comparison of frequentist

1.1 Gaussian distribution

1.1.1 MLE of Gaussian Distribution

Definition 1.1.1. 一次元 Gaussian distribution: $p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$

 θ_{MLE} :

$$\theta_{MLE} = \underset{\theta}{argmax} p(x|\theta) = \log \prod_{i=1}^{N} p(x_i|\theta)$$
(1.1)

$$= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) = \sum_{i=1}^{N} \left[\log \frac{1}{2\pi} + \log \frac{1}{\sigma} - \frac{(x_i - \mu)^2}{2\sigma^2} \right]$$
(1.2)

 μ_{MLE} :

$$\mu_{MLE} = \underset{\mu}{argmax} \log p(x|\theta) = \underset{\mu}{argmax} \sum_{i=1}^{N} -\frac{(x_i - \mu)^2}{2\sigma^2}$$
(1.3)

$$= \underset{\mu}{argmin} \sum_{i=1}^{N} (x_i - \mu)^2 \tag{1.4}$$

 σ^2_{MLE} :

$$\sigma_{MLE}^2 = \underset{\sigma}{argmax} \tag{1.5}$$

$$= \underset{\sigma}{\operatorname{argmax}} \sum_{i=1}^{N} \left(-\log \sigma - \frac{1}{2\sigma^{2}} (x_{i} - \mu)^{2} \right)$$
 (1.6)

 $\mu Extremum$: Unbiased estimate

$$\frac{\partial}{\partial \mu} \sum_{i=1}^{N} (x_i - \mu)^2 = \sum_{i=1}^{N} 2 \cdot (x_i - \mu) \cdot (-1) = 0$$
 (1.7)

$$\sum_{i=1}^{N} (x_i - \mu) = \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} \mu = 0$$
 (1.8)

$$\mu_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1.9}$$

 $\sigma Extremum$: Biased estimate (Unbiased estimate: $\frac{1}{N-1}\sum_{i=1}^{N}(x_i-\mu)^2$)

$$\frac{\partial}{\partial \sigma} \sum_{i=1}^{N} \left(-\log \sigma - \frac{1}{2\sigma^2} (x_i - \mu)^2 \right) = 0 \tag{1.10}$$

$$\sum_{i=1}^{N} \left[-\frac{1}{\sigma} - \frac{1}{2} (x_i - \mu)^2 \cdot (-2)\sigma^{-3} \right] = 0$$
 (1.11)

$$\sum_{i=1}^{N} \left[-\frac{1}{\sigma} + (x_i - \mu)^2 \cdot \sigma^{-3} \right] = 0$$
 (1.12)

$$\sum_{i=1}^{N} \left[-\sigma^2 + (x_i - \mu)^2 \right] = 0 \tag{1.13}$$

$$\sum_{i=1}^{N} \sigma^2 = \sum_{x_i}^{N} (x_i - \mu)^2 \tag{1.14}$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{MLE})^2$$
 (1.15)

$$= \frac{1}{N} \sum_{i=1}^{N} (x_i^2 - 2x_i \mu_{MLE} + \mu_{MLE}^2)$$
 (1.16)

$$= \frac{1}{N} \sum_{i=1}^{N} x_i^2 - 2\mu_{MLE}^2 + \mu_{MLE}^2$$
 (1.17)

$$= \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \mu_{MLE}^2 \tag{1.18}$$

1.1.2 Biased estimate vs Unbiased estimate

Unbiased estimate:

$$E[\mu_{MLE}] = E\left[\frac{1}{N}\sum_{i=1}^{N}x_i\right] = \frac{1}{N}\sum_{i=1}^{N}E[x_i] = \frac{1}{N}\sum_{i=1}^{N}\mu = \mu$$
 (1.19)

Biased estimate:

$$E[\sigma_{MLE}^2] = E\left[\frac{1}{N} \sum_{i=1}^{N} x_i^2 - \mu_{MLE}^2\right]$$
 (1.20)

$$= E\left[\left(\frac{1}{N}\sum_{i=1}^{N}x_i^2 - \mu^2\right) - \left(\mu_{MLE}^2 - \mu^2\right)\right]$$
 (1.21)

$$= E \left[\frac{1}{N} \sum_{i=1}^{N} x_i^2 - \mu^2 \right] - E \left[\mu_{MLE}^2 - \mu^2 \right]$$
 (1.22)

$$= E\left[\frac{1}{N}\sum_{i=1}^{N}(x_i^2 - \mu^2)\right] - E[\mu_{MLE}^2] - E[\mu^2]$$
 (1.23)

$$= \frac{1}{N} \sum_{i=1}^{N} E[x_i^2 - \mu^2] - E[\mu_{MLE}^2] - \mu^2$$
 (1.24)

$$= \frac{1}{N} \sum_{i=1}^{N} (E[x_i^2] - \mu^2) - E[\mu_{MLE}^2] - E^2[\mu_{MLE}]$$
 (1.25)

$$= \frac{1}{N} \sum_{i=1}^{N} Var[x_i] - Var[\mu_{MLE}]$$
 (1.26)

$$= \frac{1}{N} \sum_{i=1}^{N} \sigma^2 - Var \left[\frac{1}{N} \sum_{i=1}^{N} x_i \right]$$
 (1.27)

$$= \sigma^2 - \frac{1}{N^2} \sum_{i=1}^{N} \sigma^2 \tag{1.28}$$

$$=\sigma^2 - \frac{1}{N}\sigma^2 \tag{1.29}$$

$$=\frac{N-1}{N}\sigma^2\tag{1.30}$$

High-dimensional

Definition 1.1.2.

$$\mathcal{X} \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{\frac{dim}{2}} \cdot |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^t \Sigma^{-1}(x-\mu)\right)$$
(1.31)

Definition 1.1.3. *Mahalanobis Distance:*

$$(x - \mu)^t \Sigma^{-1} (x - \mu) \tag{1.32}$$

Definition 1.1.4. Euclidean distance:

$$(x-\mu)^t I(x-\mu) \tag{1.33}$$

Define: Variance matrix Positive definite matrix: $U\Lambda U^t, UU^t = U^tU = I, \Lambda = I$ $diag(\lambda_i)$

$$\Sigma = U\Lambda U^t \tag{1.34}$$

$$= (\mu_1, \mu_2, \cdots \mu_{dim}) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{dim} \end{pmatrix} \begin{pmatrix} \mu_1^t \\ \mu_2^t \\ \vdots \\ \mu_{dim}^t \end{pmatrix}$$
(1.35)

$$= (\mu_1 \lambda_1, \mu_2 \lambda_2, \cdots \mu_{dim} \lambda_{dim}) \begin{pmatrix} \mu_1^t \\ \mu_2^t \\ \vdots \\ \mu_{dim}^t \end{pmatrix}$$

$$(1.36)$$

$$= \sum_{i=1}^{\dim} \mu_i \lambda_i \mu_i^t$$

$$\Sigma^{-1} = (U\Lambda U^t)^{-1} = (U^t)^{-1} \Lambda^{-1} U^{-1} = U\Lambda^{-1} U^t$$
(1.37)

$$\Sigma^{-1} = (U\Lambda U^t)^{-1} = (U^t)^{-1}\Lambda^{-1}U^{-1} = U\Lambda^{-1}U^t$$
(1.38)

$$=\sum_{i=1}^{dim}\mu_i \frac{1}{\lambda_i} \mu_i^t \tag{1.39}$$

$$(x-\mu)^t \Sigma^{-1}(x-\mu) = (x-\mu)^t \sum_{i=1}^{dim} \mu_i \frac{1}{\lambda_i} \mu_i^t (x-\mu)$$
 (1.40)

$$= \sum_{i=1}^{dim} (x - \mu)^t \mu_i \frac{1}{\lambda_i} \mu_i^t (x - \mu)$$
 (1.41)

$$= \sum_{i=1}^{\dim} \frac{((x-\mu)^t \mu_i)^2}{\lambda_i}$$
 (1.42)

Figure 1.1: 2-dimensional Gaussian distribution

Reference: 1

1.1.4 Limitations

The complexity: $\Sigma_{dim \times dim} = \frac{dim^2 - dim}{2} + dim = O(dim^2)$ Simplification: diagonal matrix(factor analysis) & isotropy(等方性,P-PCA) Reference: ²

1.1.5 Conditional and Marginal probability of Mixed Gaussian Distribution

Knowing the joint probability distribution, find the marginal probability distribution and the conditional probability distribution.

Theorem 1.1.1. If
$$\mathcal{X} \sim N(\mu, \Sigma)$$
; $Y = AX + B$ then $\mathcal{Y} \sim N(A\mu + B, A\Sigma A^t)$

 $^{^1} h \texttt{ttps://community.rstudio.com/t/3d-surface-with-a-2d-projection-using-r/17790/2}$

https://sites.northwestern.edu/msia/2016/12/08/k-means-shouldnt-be-our-only-choice/

Figure 1.2: Limitations of Gaussian distribution

Proof.

$$E[Y] = E[AX + B] = AE[X] + B = A\mu + B \tag{1.43}$$

$$Var[Y] = Var[AX + B] = A \cdot Var[AX] \cdot A^{t} = A \cdot \Sigma \cdot A^{t}$$
(1.44)

Define:
$$\mathcal{X} = \begin{pmatrix} X_a \\ X_b \end{pmatrix}; X_a \in \mathbb{R}^{m \times m}, X_b \in \mathbb{R}^{n \times n}; m+n = \mathcal{X}_{dim}; \mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}; \Sigma = \mathcal{X}_{dim}; \mu = \mathcal{X}_{dim}; \mu$$

$$\begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$$

Solve for $P(X_a, P(X_b|X_a); P(X_b, P(X_a|X_b))$

Constructive proof: \neq (PRML: Matching method proof)

s.t.
$$X_a = (I_m, 0) \begin{pmatrix} X_a \\ X_b \end{pmatrix}$$

Proof.

$$E[X_a] = (I_m, 0) \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} = \mu_a \tag{1.45}$$

$$Var[X_a] = (I_m, 0) \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix} \begin{pmatrix} I_m \\ 0 \end{pmatrix}$$
 (1.46)

$$= (\Sigma_{aa}, \Sigma_{ab}) \begin{pmatrix} I_m \\ 0 \end{pmatrix} = \Sigma_{aa} \tag{1.47}$$

Theorem 1.1.2. Schur complement(シューア補行列) of Σ_{aa} : $\Sigma_{bb} - \Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab}$

Define: $X_{b \cdot a} = X_b - \Sigma_{ba} \Sigma_{aa}^{-1} X_a$

Proof.

$$X_{a \cdot b} = \left(-\Sigma_{ba} \Sigma_{aa}^{-1}, I\right) \begin{pmatrix} X_a \\ X_b \end{pmatrix} \tag{1.48}$$

$$E[X_{b \cdot a}] = \left(-\sum_{ba} \sum_{aa}^{-1}, I\right) \cdot \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix} \tag{1.49}$$

$$= \mu_b - \Sigma_{ba} \Sigma_{aa}^{-1} \mu_a \tag{1.50}$$

$$Var[X_{b \cdot a}] = (-\Sigma_{ba} \Sigma_{aa}^{-1}, I) \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix} \begin{pmatrix} -\Sigma_{aa}^{-1} \Sigma_{ba}^{t} \\ I \end{pmatrix}$$
(1.51)

$$= (0, \Sigma_{bb \cdot a} = \Sigma_{bb} - \Sigma_{ba} \Sigma_{aa}^{-1} \Sigma_{ab}) \begin{pmatrix} -\Sigma_{aa}^{-1} \Sigma_{ba}^t \\ I \end{pmatrix}$$
 (1.52)

$$= \Sigma_{bb} - \Sigma_{ba} \Sigma_{aa}^{-1} \Sigma_{ab} \tag{1.53}$$

$$X_b = X_{b \cdot a} + \Sigma_{ba} \Sigma_{aa}^{-1} X_a \tag{1.54}$$

$$E[X_b|X_a] = \mu_{b\cdot a} + \Sigma_{ba} \Sigma_{aa}^{-1} X_a \tag{1.55}$$

$$Var[X_b|X_a] = Var[X_{b\cdot a}] = \Sigma_{bb} - \Sigma_{ba}\Sigma_{aa}^{-1}\Sigma_{ab}$$
(1.56)

Figure 1.3: Conditional probability Gaussian distribution Link

1.1.6 Joint Probability of Mixed Gaussian Distribution

Know the marginal probability distribution and the conditional probability distribution to find the joint probability distribution.

Define: $P(x) = N(X|\mu, \Lambda^{-1}); P(Y|X) = N(Y|AX+B, L^{-1}); \Lambda^{-1}, L^{-1} \in precision matrix = (covariance matrix)^{-1}; Y = AX + B + \epsilon, \epsilon \sim N(0, L^{-1}), \epsilon \perp \!\!\! \perp X$

Solve for P(Y); P(X|Y)

Proof. P(Y)

$$E[Y] = E[AX + B + \epsilon] = E[AX + B] + E[\epsilon] = A\mu + B \tag{1.57}$$

$$Var[Y] = Var[Ax + B + \epsilon] = Var[AX + B] + Var[\epsilon] = A \cdot \lambda \cdot A^{t} + L^{-1}$$
(1.58)

Proof. P(X,Y)

$$joint\ probability = \begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{bmatrix} \mu \\ A\mu + B \end{bmatrix}, \begin{bmatrix} \Lambda^{-1} & Cov(x,y) \\ Cov(x,y) & A \cdot \lambda \cdot A^t + L^{-1} \end{bmatrix}$$
 (1.59)

(1.60)

Proof. Cov(x,y)

$$Cov(x, y) = E[(x - E[x]) \cdot (y - E[y])^t]$$
 (1.61)

$$= E[(x - \mu)(y - A\mu - b)^{t}]$$
(1.62)

$$= E[(x-\mu)(Ax+b+\epsilon-A\mu-b)^t]$$
(1.63)

$$= E[(x-\mu)(Ax - A\mu + \epsilon)^t]$$
(1.64)

$$= E[(x - \mu)(Ax - A\mu)^{t} + (x - \mu)\epsilon]$$
 (1.65)

$$= E[(x-\mu)(Ax-A\mu)^t] + E[(x-\mu)\epsilon]$$
(1.66)

$$= E[(x-\mu)(Ax-A\mu)^t] \tag{1.67}$$

$$= E[(x-\mu)(x-\mu)^t \cdot A^t]$$
(1.68)

$$= E[(x-\mu)(x-\mu)^t] \cdot A^t \tag{1.69}$$

$$= Var[x] \cdot A^t \tag{1.70}$$

$$= \Lambda^{-1} A^t \tag{1.71}$$

 $Knowing \ the \ joint \ probability \ distribution, find \ the \ conditional \ probability \ distribution.$

$$joint\ probability = \begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left[\begin{bmatrix} \mu \\ A\mu + B \end{bmatrix}, \begin{bmatrix} \Lambda^{-1} & \Lambda^{-1}A^t \\ \Lambda^{-1}A^t & A \cdot \lambda \cdot A^t + L^{-1} \end{bmatrix} \right]$$
(1.72)

(1.73)

1.2 Exponential Distribution

1.2.1 Introduction

Sufficient statistics, Conjugation, maximum entropy, generalized linear model, probability graph model, variational inference.

Theorem 1.2.1. Exponential distribution:

 η : Parameter vector; $x \in \mathbb{R}^n$; $\phi(x)$: Sufficient statistics(online learning)

$$p(x|\eta) = h(x) \exp\left(\eta^t \phi(x) - A(\eta)\right) \tag{1.74}$$

Theorem 1.2.2. Partition function: z

$$p(x|\theta) = \frac{1}{z}\hat{p}(x|\theta) \tag{1.75}$$

$$\int p(x|\theta)dx = \int \frac{1}{z}\hat{p}(x|\theta)dx \tag{1.76}$$

$$1 = \int \frac{1}{z} \hat{p}(x|\theta) dx \tag{1.77}$$

$$z = \int \hat{p}(x|\theta)dx \tag{1.78}$$

Theorem 1.2.3. Log partition function: $A(\eta)$

$$p(x|\eta) = h(x) \cdot \exp\left(\eta^t \phi(x)\right) \cdot \exp\left(A(\eta)\right) \tag{1.79}$$

$$= \frac{1}{\exp(A(\eta))} h(x) \cdot \exp(\eta^t \phi(x))$$
 (1.80)

$$=\frac{1}{z}\hat{p}(x|\theta)\tag{1.81}$$

1.2.2 Proof of Gaussian Distribution to Exponential Distribution

Proof.

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
 (1.82)

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x^2 - 2\mu x + \mu^2)\right]$$
 (1.83)

$$= \exp\log(2\pi\sigma^2)^{-\frac{1}{2}} \cdot \exp\left[-\frac{1}{2\sigma^2}(x^2(x^2 - 2\mu x) - \frac{\mu^2}{2\sigma^2}(x^2)\right]$$
(1.84)

$$= \exp\log(2\pi\sigma^2)^{-\frac{1}{2}} \cdot \exp\left[-\frac{1}{2\sigma^2}(-2\mu, 1) \binom{x}{x^2} - \frac{\mu^2}{2\sigma^2}\right]$$
 (1.85)

$$= \exp\left[\left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right) \begin{pmatrix} x \\ x^2 \end{pmatrix} - \left(\frac{\mu^2}{2\sigma^2} + \frac{1}{2}\log 2\pi\sigma^2\right)\right) \tag{1.86}$$

$$= \exp\left[(\eta_1, \eta_2) \begin{pmatrix} x \\ x^2 \end{pmatrix} - \left(-\frac{\eta_1^2}{4\eta_2} + \frac{1}{2} \log(-\frac{\pi}{\eta_2}) \right) \right]$$
 (1.87)

1.2.3 Relationship between $\phi(x)$ and $A(\eta)$

 $A'(\eta) = E_{p(x|\eta)}[\eta(x)], A''(\eta) = Var_{p(x|\eta)}[\eta(x)], A(\eta)$ is convex function.

Proof.

$$p(x|\eta) = h(x) \cdot \exp\left(\eta^t \phi(x)\right) \cdot \exp\left(A(\eta)\right) \tag{1.88}$$

$$= \frac{1}{\exp(A(\eta))} h(x) \cdot \exp(\eta^t \phi(x))$$
 (1.89)

$$\exp(A(\eta)) = \int h(x) \cdot \exp(\eta^t \phi(x)) dx$$
 (1.90)

$$\exp(A(\eta))\dot{A}'(\eta) = \frac{\partial}{\partial} \left[\int h(x) \cdot \exp(\eta^t \phi(x)) dx \right]$$
 (1.91)

$$= \int h(x) \cdot \exp\left(\eta^t \phi(x)\right) \cdot \phi(x) dx \tag{1.92}$$

$$A'(\eta) = \frac{\int h(x) \cdot \exp\left(\eta^t \phi(x)\right) \cdot \phi(x) dx}{\exp\left(A(\eta)\right)}$$
(1.93)

$$= \int h(x) \cdot \exp\left(\eta^t \phi(x) - A(\eta)\right) \cdot \phi(x) dx \tag{1.94}$$

$$= \int p(x|\eta) \cdot \phi(x) dx \tag{1.95}$$

$$=E_{p(x|\eta)}[\eta(x)] \tag{1.96}$$

1.2.4 MLE of Exponential Distribution

Proof.

$$\eta_{MLE} = \underset{\eta}{argmax} \log \prod_{i=1}^{N} p(x_i|\eta)$$
(1.97)

$$= \underset{\eta}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(x_i | \eta)$$
(1.98)

$$= \underset{\eta}{argmax} \sum_{i=1}^{N} \log \left[h(x_i) \cdot \exp \left(\eta^t \phi(x_i) - A(\eta) \right) \right]$$
 (1.99)

$$= \underset{\eta}{\operatorname{argmax}} \sum_{i=1}^{N} \left[\log h(x_i) \cdot \eta^t \phi(x_i) - A(\eta) \right]$$
 (1.100)

$$= \underset{\eta}{\operatorname{argmax}} \sum_{i=1}^{N} \left[\eta^{t} \phi(x_{i}) - A(\eta) \right]$$
(1.101)

$$\frac{\partial}{\partial \eta} \sum_{i=1}^{N} \left[\eta^t \phi(x_i) - A(\eta) \right] = \sum_{i=1}^{N} \frac{\partial}{\partial \eta} \left[\eta^t \phi(x_i) - A(\eta) \right]$$
 (1.102)

$$= \sum_{i=1}^{N} \phi(x_i) - \sum_{i=1}^{N} A'(\eta)$$
 (1.103)

$$= \sum_{i=1}^{N} \phi(x_i) - NA'(\eta)$$
 (1.104)

$$\sum_{i=1}^{N} \phi(x_i) - NA'(\eta) = 0 \tag{1.105}$$

$$A'(\eta_{MLE}) = \frac{1}{N} \sum_{i=1}^{N} \phi(x_i)$$
 (1.106)

1.2.5 Uniform Distribution of Maximum Entropy Theorem 1.2.4.

 $H[p] = -\sum_{x} p(x) \log p(x)$ (1.107)

Define: $\sum_{i=1}^{k} p_i = 1$

Proof. Uniform distribution \iff Maximum Entropy

$$\mathcal{L}(p,\lambda) = \sum_{i=1}^{k} p_i \log p_i + \lambda (1 - \sum_{i=1}^{k} p_i)$$
 (1.108)

$$\frac{\mathcal{L}}{p_i} = \log p_i + p_i \frac{1}{p_i} - \lambda = 0 \tag{1.109}$$

$$\log p_i + 1 - \lambda = 0 \tag{1.110}$$

$$\exp(\lambda - 1) = \hat{p}_i \tag{1.111}$$

$$\hat{p}_i = constant \tag{1.112}$$

$$\hat{p}_i = \frac{1}{k} \tag{1.113}$$

1.2.6 Maximum Entropy to Exponential Distribution

Define:
$$\sum_{i=1}^{k} p_i = 1$$
; $E_p[f(x)] = E_{\hat{p}}[f(x)] = \Delta$

Proof.

$$\mathcal{L}(p, \lambda_0, \lambda_1) = \sum_{i=1}^k p(x) \log p(x) + \lambda_0 (1 - \sum_x p(x)) + \lambda^t (\Delta - E_p[f(x)])$$
 (1.114)

$$\frac{\mathcal{L}}{p(x)} = \sum_{x} \left(\log p(x) + p(x) \cdot \frac{1}{p(x)} \right) - \sum_{x} \lambda_0 - \sum_{x} \lambda^t f(x) = 0$$
 (1.115)

$$\sum_{x} \left(\log p(x) + 1 - \lambda_0 - \lambda^t f(x) \right) = 0 \tag{1.116}$$

$$\log p(x) + 1 - \lambda_0 - \lambda^t f(x) = 0 \tag{1.117}$$

$$\lambda^t f(x) + \lambda_0 - 1 = \log p(x) \tag{1.118}$$

$$\exp(\lambda^t f(x) + \lambda_0 - 1) = p(x) \tag{1.119}$$

$$\exp\left[\lambda^t f(x) - (\lambda_0 - 1)\right] = p(x) \tag{1.120}$$

1.3 Linear regression

1.3.1 Two geometric interpretations of Linear Regression

Theorem 1.3.1. Least squares method

$$L(w) = \sum_{i=1}^{N} ||w^{t}x_{i} - y_{i}||^{2}$$
(1.121)

$$= (W^t X^t - Y^t) \tag{1.122}$$

$$= W^{t}X^{t}XW - W^{t}X^{t}Y - Y^{t}XW + Y^{t}Y$$
 (1.123)

$$= W^{t} X^{t} X W - 2W^{t} X^{t} Y + Y^{t} Y (1.124)$$

Linear regression has analytical solutions:

$$\frac{\partial L(w)}{\partial w} = 2X^t X W - 2X^t Y = 0 \tag{1.125}$$

$$X^t X W = X^t Y \tag{1.126}$$

$$W = (X^t X)^{-1} X^t Y (1.127)$$

Figure 1.4: geometric interpretations 1th

Proof. geometric interpretations 2nd

$$f(w) = W^t X = X^t \beta \tag{1.128}$$

$$X^{t}(Y - X\beta) = 0_{dim \times 1} \tag{1.129}$$

$$X^{t}Y = X^{t}X\beta \tag{1.130}$$

$$\beta = (X^t X)^{-1} X^t Y \tag{1.131}$$

Figure 1.5: geometric interpretations 2nd

Reference: 3

 $^{^3 \}mathtt{https://www.datasciencecentral.com/profiles/blogs/linear-regression-geometry}$

MLE with Gaussian noise for Least Squares Method

Define:
$$\epsilon \sim N(0, \sigma); y = w^t x + \epsilon; y | x; w \sim N(w^t x, \sigma^2); p(y | x; w) = \frac{1}{\sqrt{2\pi}} exp\left(-\frac{(y - w^t x)^2}{2\sigma^2}\right)$$

Proof. MLE:log-likelihood

$$\log P(Y|X;w) = \log \prod_{i=1}^{N} P(y_i|x_i;w)$$
(1.132)

$$= \sum_{i=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} + \log \exp\left(-\frac{(y_i - w^t x_i)^2}{2\sigma^2}\right)$$
 (1.133)

$$= \sum_{i=1}^{N} \left(\log \frac{1}{\sqrt{2\pi}\sigma} - \frac{(y_i - w^t x_i)^2}{2\sigma^2} \right)$$
 (1.134)

$$\hat{w} = \underset{w}{\operatorname{argmax}} - \frac{(y_i - w^t x_i)^2}{2\sigma^2}$$

$$= \underset{w}{\operatorname{argmin}} (y_i - w^t x_i)^2$$
(1.136)

$$= \underset{w}{\operatorname{argmin}} (y_i - w^t x_i)^2 \tag{1.136}$$

Figure 1.6: MLE with Gaussian noise for least squares method

Reference: ⁴

1.3.3 L2 in frequency perspective

Turn the positive semi-definite matrix into a positive definite matrix.

 $L1: Lasso, P(w) = ||w||_1$

 $L2: Ridge(Weight\ decay), P(w) = ||w||_2^2 = w^t w$

Ridge regression's analytical solutions:

⁴https://suriyadeepan.github.io/2017-01-22-mle-linear-regression/

Proof. L2: positive semi-definite \rightarrow positive definite matrix

$$J(w) = \sum_{i=1}^{N} ||w^{t}x_{i} - y_{i}||^{2} + \lambda w^{t}w$$
(1.137)

$$= (w^{t}X^{t} - Y^{t})(Xw - Y) + \lambda w^{t}w$$
(1.138)

$$= w^t X^t X w - w^t X^t Y - Y^t X w + Y^t Y + \lambda w^t w \tag{1.139}$$

$$= w^t X^t X w - 2w^t X^t Y + Y^t Y + \lambda w^t w \tag{1.140}$$

$$= w^{t}(X^{t}X + \lambda I)w - 2w^{t}X^{t}Y + Y^{t}Y$$
(1.141)

$$\frac{\partial J(w)}{\partial w} = 2(X^t X + \lambda I)w - 2X^t Y = 0 \tag{1.142}$$

$$\hat{w} = (X^t X + \lambda I)^{-1} X^t Y \tag{1.143}$$

1.3.4 MAP For L2

Proof. Maximum A Posteriori for ridge regression

s.t.
$$y|x; w \sim N(w^t x, \lambda^2) \to p(y|x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(y-w^t x)^2}{2\sigma^2}\right)$$

 $w \sim N(0, \lambda_0^2) \to p(y|x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{||w||^2}{2\sigma_0^2}\right)$

$$\hat{w}_{MAP} = \underset{w}{argmax} \prod_{i=1}^{N} p(w|y)$$
(1.144)

$$= \underset{w}{\operatorname{argmax}} \log \prod_{i=1}^{N} p(y|w) \cdot p(w)$$
(1.145)

$$= \underset{w}{argmax} \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi}\sigma} \frac{1}{\sqrt{2\pi}\sigma_0} \right) + \log \exp \left(-\frac{(y - w^t x)^2}{2\sigma^2} - \frac{||w||^2}{2\sigma_0^2} \right) \quad (1.146)$$

$$= \underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} \frac{(y - w^{t} x)^{2}}{2\sigma^{2}} + \frac{||w||^{2}}{2\sigma_{0}^{2}}$$
(1.147)

$$= \underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} (y - w^{t}x)^{2} + \frac{\sigma^{2}}{\sigma_{0}^{2}} ||w||_{2}^{2}$$
(1.148)

Linear Classification 1.4

1.4.1 Linear regression to Linear classification

線形分類 = 線形回帰 (Linear regression) + 活性化関数 (Activation function) 線形分類の特徴:線形、グローバル、未処理のデータ

1.4.2 Classification Model Tree

線形分類
$$\begin{cases} Hard\ output \end{cases} \begin{cases} Perceptron, SVM \\ Fisherlinear discriminant \end{cases}$$

$$\begin{cases} Soft\ output \end{cases} \begin{cases} Discrimination\ model:\ Logistic\ regression \\ Gaussian\ Discriminant\ Analysis \\ Naive\ Bayes \end{cases}$$

1.4.3 Perceptron

1957 から提出したの分類モデル、Deep Learning の深層 Neural Network は多層 Perceptron です、誤分類されたポイントの数を最小限に抑える (Pocket algorithm: 誤分類を許 す)。Optimizer: SGD。

Theorem 1.4.1. Define: $\mathcal{X} \in Misclassified sample$

$$Loss(w) = \sum_{i=1}^{N} I(y_i w^t x_i < 0)$$

$$= \sum_{x_i \in \mathcal{X}} -y_i w^T x_i$$
(1.149)

$$= \sum_{x_i \in \mathcal{X}} -y_i w^T x_i \tag{1.150}$$

$$\nabla_w Loss = -y_i x_i \tag{1.151}$$

Fisher Linear Discriminant Analysis

次元削減方法 (PCA の様に) と見なすことができます。 分類のために、多次元データ の次元を1次元に減らします。

Figure 1.7: Basic Perceptron Neural Network

射影分散 (Covariance) を最大化する、クラスター内の間隔は小さく (high coupling)、 クラスター間の間隔は大きくなります (Low aggregation)。

Theorem 1.4.2. Define: $x_{c1} \in (x_i|y_i = +1); x_{c2} \in (x_i|y_i = -1)$

$$|x_{1}| = N_{1}; |x_{c2}| = N_{2}$$

$$\mu_{1} = \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} w^{t} x_{i}; \sigma_{1} = \frac{1}{N_{1}} \sum_{i=1}^{N_{1}} (w^{t} x_{i} - \mu_{1})(w^{t} x_{i} - \mu_{1})^{t}$$

$$\mu_{2} = \frac{1}{N_{2}} \sum_{i=1}^{N_{2}} w^{t} x_{i}; \sigma_{2} = \frac{1}{N_{2}} \sum_{i=1}^{N_{2}} (w^{t} x_{i} - \mu_{1})(w^{t} x_{i} - \mu_{2})^{t}$$
Objective function:

$$\underset{w}{argmax} = \frac{(\mu_1 - \mu_2)^2}{\sigma_1 + \sigma_2} \tag{1.152}$$

Proof.

$$\hat{w} = \frac{\left(\frac{1}{N_1} \sum_{i=1}^{N_1} w^t x_i - \frac{1}{N_2} \sum_{i=1}^{N_2} w^t x_i\right)^2}{\frac{1}{N_1} \sum_{i=1}^{N_1} \left(w_t x_i - \frac{1}{N_1} \sum_{j=1}^{N_1} w^t x_j\right) \left(w_t x_i - \frac{1}{N_1} \sum_{j=1}^{N_1} w^t x_j\right)^t + \sigma_2}$$
(1.153)

$$= \frac{\left[w^{t} \left(\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} x_{i} - \frac{1}{N_{2}} \sum_{i=1}^{N_{2}} w^{t}\right)\right]^{2}}{\left[\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} w^{t} (x_{i} - \bar{x}_{c1})(x_{i} - \bar{x}_{c1})^{t} w\right] + \sigma_{2}}$$

$$= \frac{\left(w^{t} (\bar{x}_{c1} - \bar{x}_{c2})\right)^{2}}{w^{t} \left[\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} (x_{i} - \bar{x}_{c1})(x_{i} - \bar{x}_{c1})^{t}\right] w + \sigma_{2}}$$

$$(1.154)$$

$$= \frac{\left(w^{t}(\bar{x}_{c1} - \bar{x}_{c2})\right)^{2}}{w^{t} \left[\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} (x_{i} - \bar{x}_{c1})(x_{i} - \bar{x}_{c1})^{t}\right] w + \sigma_{2}}$$

$$(1.155)$$

$$= \frac{w^t(\bar{x}_{c1} - \bar{x}_{c2})(\bar{x}_{c1} - \bar{x}_{c2})^t w}{w^t \sigma_1 w + w^t \sigma_2 w}$$
(1.156)

$$= \frac{w^t(\bar{x}_{c1} - \bar{x}_{c2})(\bar{x}_{c1} - \bar{x}_{c2})^t w}{w^t(\sigma_1 + \sigma_1)w}$$
(1.157)

Figure 1.8: High coupling and Low aggregation

Logistic Regression

ただ通常の線形回帰モデルプラスシグモイド (sigmoid) 活性化関数 (activation function) です

$$P(y|x) = P_1^y P_0^{1-y} (1.158)$$

(1.159)

$$\begin{cases} P_1 = P(y = 1|x) &= \sigma(w^t x) = \frac{1}{1 + e^{-w^t x}}, y = 1\\ P_0 = P(y = 0|x) &= 1 - \sigma(w^t x) = \frac{e^{-w^t x}}{1 + e^{-w^t x}}, y = 0 \end{cases}$$

Theorem 1.4.3. MLE: - Cross entropy Loss

$$\hat{w} = \underset{w}{\operatorname{argmax}} \log P(y|x) \tag{1.160}$$

$$\hat{w} = \underset{w}{\operatorname{argmax}} \log P(y|x)$$

$$= \underset{w}{\operatorname{argmax}} \log \prod_{i=1}^{N} P(y_i|x_i)$$

$$(1.161)$$

$$= \underset{w}{argmax} \sum_{i=1}^{N} \log P(y_i|x_i)$$
(1.162)

$$= \underset{w}{argmax} \sum_{i=1}^{N} \left(y_i \log \frac{1}{1 + exp(-w^t x)} + (1 - y_i) \log \frac{1}{1 + exp(-w^t x)} \right)$$
 (1.163)

Gaussian Discriminant Analysis

ただ確率的生成モデル (Generative model) の条件付き確率は、ガウス分布 (μ 違う, Σ 同じ) として計算されます。

Figure 1.9: Sigmoid function

$$\hat{y} = \mathop{argmax}_{y \in \{0,1\}} P(y|x) = \mathop{argmax}_{y} P(y) \cdot P(x|y) \tag{1.164}$$

Log likelihood:

$$\underset{\mu_1,\mu_2,\Sigma,\phi}{\operatorname{argmax}} \log \prod_{i=1}^{N} P(x_i, y_i) = \sum_{i=1}^{N} \log N(\mu_1, \Sigma)^{y_i} + \log N(\mu_2, \Sigma)^{1-y_i} + \log \phi^{y_i} (1 - \phi)^{1-y_i}$$
(1.165)

p(y) is distributed according to a Bernoulli distribution:

$$y \sim Bernoulli(\phi) \iff \phi^y (1 - \phi)^{1 - y}$$
 (1.166)

p(x|y) is distributed according to a multivariate normal distribution:

$$x|y = 1 \sim \mathcal{N}(\mu_1, \Sigma) \iff p(x|y = 1) = \frac{1}{(2\pi)^{\frac{n}{2}} \cdot |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_1)^t \Sigma^{-1}(x - \mu_1)\right)$$
(1.167)

$$x|y = 0 \sim \mathcal{N}(\mu_2, \Sigma) \iff p(x|y = 0) = \frac{1}{(2\pi)^{\frac{n}{2}} \cdot |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_2)^t \Sigma^{-1}(x - \mu_2)\right)$$
(1.168)

Maximizing the log-likelihood:

$$\mathcal{L}(\phi, \mu_1, \mu_2, \Sigma) = \log \prod_{i=1}^{N} p(x_i, y_i; \phi, \mu_1, \mu_2, \Sigma)$$

$$= \log \prod_{i=1}^{N} p(x_i | y_i; \phi, \mu_1, \mu_2, \Sigma) p(y_i; \phi)$$
(1.169)

$$= \log \prod_{i=1}^{N} p(x_i|y_i; \phi, \mu_1, \mu_2, \Sigma) p(y_i; \phi)$$
 (1.170)

$$= \sum_{i=1}^{N} \left[\log \mathcal{N}(\mu_1, \Sigma)^{y_i} + \mathcal{N}(\mu_2, \Sigma)^{1-y_i} \log \phi^{y_i} (1 - \phi^{1-y_i}) \right]$$
(1.171)

Proof. ϕ

$$\frac{\partial \mathcal{L}(\phi, \mu_1, \mu_2, \Sigma)}{\phi} = \sum_{i=1}^{N} y_i \frac{1}{\phi} + (1 - y_i) \frac{1}{1 - \phi} (-1)$$
 (1.172)

$$=\sum_{i=1}^{N} y_i \frac{1}{\phi} - (1 - y_i) \frac{1}{1 - \phi}$$
 (1.173)

$$\sum_{i=1}^{N} y_i (1 - \phi) - (1 - y_i)\phi = 0$$
(1.174)

$$\sum_{i=1}^{N} y_i - y_i \phi - \phi + y_i \phi = 0$$
 (1.175)

$$\sum_{i=1}^{N} (y_i - \phi) = 0 \tag{1.176}$$

$$\sum_{i=1}^{N} y_i - N\phi = 0 (1.177)$$

$$\frac{1}{N} \sum_{i=1}^{N} y_i = \frac{N_1}{N} = \hat{\phi} \tag{1.178}$$

Proof. μ_1, μ_2

$$\frac{\partial \mathcal{L}(\phi, \mu_1, \mu_2, \Sigma)}{\mu_1} = \sum_{i=1}^{N} y_i \left(-\frac{1}{2} (x_i - \mu_i)^t \Sigma^{-1} (x_i - \mu_i) \right)$$
 (1.179)

$$= -\frac{1}{2} \sum_{i=1}^{N} y_i (x_i^t \Sigma^{-1} - \mu_i^t \Sigma^{-1}) (X_i - \mu_1)$$
 (1.180)

$$= -\frac{1}{2} \sum_{i=1}^{N} y_i (x_i^t \Sigma^{-1} x_i - 2\mu_1^t \Sigma^{-1} x_i + \mu_1^t \Sigma^{-1} \mu_1)$$
 (1.181)

$$= -\frac{1}{2} \sum_{i=1}^{N} y_i (-2\Sigma^{-1} x_i + 2\Sigma^{-1} \mu_1)$$
 (1.182)

(1.183)

$$\sum_{i=1}^{N} y_i (\Sigma^{-1} \mu_1 - \Sigma^{-1} x_i) = 0$$
(1.184)

$$\sum_{i=1}^{N} y_i(\mu_1 - x_i) = 0 \tag{1.185}$$

$$\sum_{i=1}^{N} y_i \mu_1 = \sum_{i=1}^{N} y_i x_i \tag{1.186}$$

$$\frac{\sum_{i=1}^{N} y_i x_i}{\sum_{i=1}^{N} y_i} = \frac{\sum_{i=1}^{N} y_i x_i}{N_1} = \hat{\mu_1}$$
(1.187)

Proof. Σ

Define: $S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^t$

$$\sum_{i=1}^{N} \log \mathcal{N}(\mu, \Sigma) = \sum_{i=1}^{N} \log \frac{1}{2\pi}^{\frac{n}{2}} + \log |\Sigma|^{-\frac{1}{2}} - \frac{1}{2} (x_i - \mu)^t \Sigma^{-1} (x_i - \mu)$$
(1.188)

$$= \sum_{i=1}^{N} C - \frac{1}{2} \log |\Sigma| - \frac{1}{2} (x_i - \mu)^t \Sigma^{-1} (x_i - \mu)$$
 (1.189)

$$= C - \frac{1}{2}N\log|\Sigma| - \frac{1}{2}\sum_{i=1}^{N}(x_i - \mu)^t \Sigma^{-1}(x_i - \mu)$$
 (1.190)

$$= -\frac{1}{2}N\log|\Sigma| - \frac{1}{2}N \cdot tr(S \cdot \Sigma^{-1}) + C$$
 (1.191)

$$\sum_{i=1}^{N} y_i \log \mathcal{N}(\mu_1, \Sigma) + \sum_{i=1}^{N} y_i \log \mathcal{N}(\mu_1, \Sigma) = -\frac{1}{2} N \log |\Sigma| - \frac{1}{2} N_1 tr(S_1 \Sigma^{-1} - \frac{1}{2} N_2 tr(S_2 \Sigma^{-1}) + C_1 \log |\Sigma|$$
(1.192)

$$= -\frac{1}{2} \left(N \log |\Sigma| + N_1 tr(S_1 \Sigma^{-1} + N_2 tr(S_2 \Sigma^{-1})) + C \right)$$
(1.193)

$$\frac{\partial \mathcal{L}(\phi, \mu_1, \mu_2, \Sigma)}{\Sigma} = -\frac{1}{2}(N\Sigma^{-1} - N_1 S_1 \Sigma^{-2} - N_2 S_2 \Sigma^{-2})$$
 (1.194)

$$-\frac{1}{2}(N\Sigma^{-1} - N_1 S_1 \Sigma^{-2} - N_2 S_2 \Sigma^{-2}) = 0$$
(1.195)

$$N\Sigma - N_1 S_1 - N_2 S_2 = 0 (1.196)$$

$$\frac{1}{N}(N_1S_1 + N_2S_2) = \hat{\Sigma} \tag{1.197}$$

Figure 1.10: Sigmoid function

Reference: ⁵

先験的確率 (Prioriprobability): $\begin{cases} Two-categories: \ y\sim Bernoulli \longrightarrow Binomial \\ Multi-category: \ y\sim Categorial \longrightarrow Multinomial \\ x_{Discrete\ variable}: \ x_i\sim Categorial \\ x_{Continuous\ variable}: \ x_i\sim Gaussian \end{cases}$ 事後確率 (Postoriomenal all it it)

1.4.7SVMs

間隔を最大化する分類器。ジオメトリ (geometric) 意義は凸最適化問題 (Convex optimization) に変換されます。元の問題はラグランジュ乗数法 (Lagrange multiplier) によって制 約のない問題に変換されます。単純なデータの場合は二次計画法 (Quadratic programming) の問題であり、複雑な問題の場合は二元性 (Duality), カーネル (Kernel) の考え方を使用しま

ハードマージンSVM(hard margin svm):
$$s.t. \left\{ (x_i, y_i) \right\}_{i=1}^N, x_i \in \mathbb{R}^p, y_i \in \{-1, 1\}$$

$$\begin{cases} \max_{w,b} \min_{x_i:x_n} \frac{1}{\|w\|} y_i(w^t x_i + b) \\ Define: \ y_i(w^t x_i + b) > 0, \ for \ \forall \ i = 1, \dots, N \end{cases} \implies \begin{cases} \min_{w,b} \frac{1}{2} w^t w \\ s.t. \ y_i(w^t x_i + b) \ge 1, \ for \ \forall \ i = 1, \dots, N \end{cases}$$

$$(1.198)$$

 $^{^{5}}$ https://tariq-hasan.github.io/concepts/machine-learning-gaussian-discriminant-analysis/

ソフトマージンSVM(soft margin svm):

$$\begin{cases}
\min_{w,b} \frac{1}{2} w^t w + C \sum_{i=1}^{N} \max\{0, 1 - y_i(w^t x_i + b)\} \\
s.t. \ y_i(w^t x_i + b) \ge 1 - [1 - y_i(w^t x_i + b)]; \ 1 - y_i(w^t x_i + b) \ge 0
\end{cases}$$
(1.199)

二元性 (Duality):

弱い双対性 (Weak duality) は $min max \ge max min$ です;強い双対性 (Strong duality) は $min max \ge max min$ です。元の問題の目的関数は 2 次であり、その制約は線形であるため、強い双対性です。

$$\begin{cases}
\min_{\substack{w,b \ \lambda}} \max_{\lambda} \frac{1}{2} w^t w + \sum_{i=1}^N \lambda_i [1 - y_i(w^t x_i + b)] \\
s.t. \ \lambda_i \ge 0
\end{cases} \implies \begin{cases}
\max_{\substack{\lambda \ w,b \\ s.t. \ \lambda_i \ge 0}} \lim_{\substack{\lambda \ w,b \\ s.t. \ \lambda_i \ge 0}} \lambda_i [1 - y_i(w^t x_i + b)]
\end{cases}$$
(1.200)

1.4.8 Kernel Method

低次元の非線形分離可能データを高次元の線形分離可能データに変換する場合、低次元ベクトルを計算して高次元ベクトルにマッピングし、内積(SVM)を見つけることは非常に複雑です。 この点で、高次元ベクトルの内積はカーネル法によって直接取得できます。

Theorem 1.4.4. positive definite kernel:

 $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R};$

 $\forall x, x' \in \mathcal{X}, \exists K(x, x');$

If: $\exists \phi : \mathcal{X}, \phi \in \mathcal{H}$;

Then: $Kernel(x, x') = \langle \phi(x), \phi(x') \rangle$

Proof. $Kernel(x, x') = \langle \phi(x), \phi(x') \rangle \iff Gram \ matrix(Positive semi-definite matrix)$

27

1.4.9 Generative Model

Model the sample data itself. https://en.wikipedia.org/wiki/Generative_model

Naive Bayes

 $Mixture\ Model:\ GMM$

 $Time-series\ Model:\ HMM, Kalman\ Filter, Particle\ Fitter$ $Non-parameter\ Bayesian\ Model:\ GP, DP$

Mixed Memership: LDA

 $Factorial\ Model:\ FA, P-PCA, ICA$

 $Energy-based\ Model:\ Boltzmann\ Machine$

GAN $Autoregressive\ Model$ $Flow-based\ Model$

Dimensionality Reduction 1.5

1.5.1 PCA

PCA(Principal components analysis) は元の特徴空間の再構築 (2 つの線形関連変数を 2つの線形独立変数に変換します)。射影分散 (Covariance) を最大化する、再構成距離を最 小化する (元のデータを再構築するためのコスト), umapping vector は PCA の PC(Principal components) です。

射影分散 (Covariance) 最大化:

s.t. $u_{mapping\ vector}^t \cdot u_{mapping\ vector} = 1$

$$argmax \frac{1}{N} \sum_{i=1}^{N} ((x_i - \hat{x})^t u_{mapvect})^2 = u_{mapvec}^t \cdot S \cdot u_{mapvec}$$
 (1.201)

(1.202)

Optimizationfunction: ラグランジュ乗数 (Lagrange Multiplier)

$$\mathfrak{L}(u,\lambda) = u_{mapvec}^t \cdot S \cdot u_{mapvec} + \lambda (u_{mapvec}^t \cdot u_{mapvec} - 1)$$
 (1.203)

再構成距離を最小化:

 $s.t. \ u_k^t \cdot u_k = 1$

$$argmax \sum_{i=1}^{N} \left\| \sum_{k=1}^{p} (x_i^t u_k) u_k - \sum_{k=1}^{q} (x_i^t u_k) u_k \right\| = \sum_{k=q+1}^{p} u_k^t \cdot S \cdot u_k$$
 (1.204)

$$=\sum_{k=q+1}^{p} \lambda_i \tag{1.205}$$

参照:

 $Data: X \in \mathbb{R}^{n \times p}$

Sample Mean:
$$\hat{x}_{p \times 1} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} X^t I_N$$
 (1.206)

Sample Covariance:
$$S_{p \times p} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{x})(x_i - \hat{x})^t = \frac{1}{N} X^t H_{centering\ matrix} X$$
 (1.207)

1.5.2 PCA vs SVD

実はデータセンタリング (Data centralization) 後の SVD 分解と共分散行列 (Covariance matrix) で固有値分解の意味は同じです。だからデータセンタリング後の SVD 分解の方法が共分散行列 (Covariance matrix) の計算しなくでもいい、早いです。

$$S = \frac{1}{N}X^t H X = X^t H^t H X = V \Sigma U^t \cdot U \Sigma V^t = V \Sigma^2 V^t$$
 (1.208)

1.5.3 P-PCA

P-PCA(Probabilitic PCA) は線形ガウスモデル (Linear Gaussian model) です、ターゲットを隠れ変数に変換し、最尤法 (MLE) でモデルを作成し、EM 使用して取得されます。 隠れた変数は特定の分布に従います。

s.t. $x(observed\ data) \in \mathbb{R}^p,\ z(latent\ variable) \in \mathbb{R}^q,\ q < p$

$$\begin{cases} z \sim N(0_q, I_q) \\ x = wz + \mu + \varepsilon \\ \varepsilon \sim N(0, \sigma^2 I_p) \end{cases} \implies \begin{cases} Inference : P(z|x) \\ Learning(EM) : w, \mu, \sigma^2 \end{cases}$$

1.5.4 EM For GMM

EM:

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} \int_{z} \log P(x, z|\theta) \cdot P(z|x, \theta^{(t)}) dz \tag{1.209}$$

E-step: $p(z|x, \theta^t) \to E_{z|x, \theta^t}[\log p(x, z|\theta)];$ M-step: $\theta^{t+1} = \underset{\theta}{argmax} E_{z|x, \theta^t}[\log p(x, z|\theta)]$

EM For GMM: Define:

X: observed variable;

Z: latent variable(clusterer)

$$X|Z = C_k \sim N(X|\mu_k \Sigma_k)$$

$$\theta = (p_1, ..., p_k, \mu_1, ..., \mu_k, \Sigma_1, ..., \Sigma_k)$$

$$p(x) = \sum_{k=1}^{K} p_k \cdot N(X|\mu_k \Sigma_k)$$

$$p(x) = \sum_{k=1}^{K} p_k \cdot N(X|\mu_k \Sigma_k)$$

$$p(x,z) = p(z) \cdot p(x|z) = p(z) \cdot N(X|\mu_k \Sigma_k)$$

$$p(x,z) = p(z) \cdot p(x|z) = p(z) \cdot N(X|\mu_k \Sigma_k)$$

$$p(z|x) = \frac{p(x,z)}{p(x)} = \frac{p(z) \cdot N(X|\mu_k \Sigma_k)}{\sum_{k=1}^K p_k \cdot N(X|\mu_k \Sigma_k)}$$

Proof. E-step:

$$Q(\theta, \theta^t) = \int_z \log p(x, z|\theta) \cdot p(z|x, \theta^t) dz$$
(1.210)

$$= \sum_{z} \log \prod_{i=1}^{N} p(x_i, z_i | \theta) \cdot \prod_{i=1}^{N} p(z_i | x_i, \theta^t)$$
 (1.211)

$$= \sum_{z_1, \dots, z_n} \sum_{i=1}^{N} \log p(x_i, z_i | \theta) \cdot \prod_{i=1}^{N} p(z_i | x_i, \theta^t)$$
 (1.212)

$$= \sum_{z_1, \dots, z_n} \left[\log p(x_1, z_1 | \theta) + \dots + \log p(x_n, z_n | \theta) \right] \cdot \prod_{i=1}^N p(z_i | x_i, \theta^t)$$
 (1.213)

$$\therefore \sum_{z_1, \dots, z_n} \log p(x_1, z_1 | \theta) \prod_{i=1}^{N} p(z_i | x_i, \theta^t)$$
(1.214)

$$= \sum_{z_1, \dots, z_n} \log p(x_1, z_1 | \theta) \cdot p(z_1 | x_1, \theta^t) \cdot \prod_{i=2}^N p(z_i | x_i, \theta^t)$$
 (1.215)

$$= \sum_{z_1} \log p(x_1, z_1 | \theta) \cdot p(z_1 | x_1, \theta^t) \cdot \sum_{z_2, \dots, z_n} \prod_{i=2}^{N} p(z_i | x_i, \theta^t)$$
 (1.216)

$$= \sum_{z_1} \log p(x_1, z_1 | \theta) \cdot p(z_1 | x_1, \theta^t) \cdot \sum_{z_2} \prod_{i=2}^{N} p(z_i | x_i, \theta^t)$$
 (1.217)

$$= \sum_{z_1} \log p(x_1, z_1 | \theta) \cdot p(z_1 | x_1, \theta^t)$$
 (1.218)

$$\therefore Q(\theta, \theta^t) = \sum_{i=1}^{\infty} \sum_{z_i} \log p(x_i, z_i | \theta) \cdot p(z_i | x_i, \theta^t)$$
(1.219)

$$= \sum_{i=1}^{N} \sum_{z_i}^{N} \log p_{z_i} \cdot N(x_i | \mu_{z_i}, \Sigma_{z_i}) \cdot \frac{p_{z_i} \cdot N(x_i | \mu_{z_i}^t, \Sigma_{z_i}^t)}{\sum_{k=i}^{K} p_k^t \cdot N(x_i | \mu_{z_i}^t, \Sigma_{z_i}^t)}$$
(1.220)

$$= \sum_{i=1}^{N} \sum_{z_i} \log \left[p_{z_i} \cdot N(x_i | \mu_{z_i}, \Sigma_{z_i}) \right] \cdot p(z_i | x_i, \theta^t)$$
 (1.221)

$$= \sum_{z_i} \sum_{i=1}^{N} \log \left[p_{z_i} \cdot N(x_i | \mu_{z_i}, \Sigma_{z_i}) \right] \cdot p(z_i | x_i, \theta^t)$$
 (1.222)

$$= \sum_{k=1}^{K} \sum_{i=1}^{N} \log \left[p_k \cdot N(x_i | \mu_k, \Sigma_k) \right] \cdot p(z_i | x_i, \theta^t)$$

$$(1.223)$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{N} \left[\log p_k + \log N(x_i | \mu_k, \Sigma_k) \right] \cdot p(z_i | x_i, \theta^t)$$
 (1.224)

(1.225)

Proof. M-step: p^{t+1}

$$\theta^{t+1} = \mathop{argmax}_{\theta} Q(\theta, \theta^t)$$

$$\mathcal{L}(p,\lambda) = \sum_{k=1}^{K} \sum_{i=1}^{N} \log p_k \cdot p(z_i = c_k | x_i, \theta^t) + \lambda(\sum_{k=1}^{K} p_k - 1)$$
 (1.226)

$$=\cdots$$
 (1.227)

1.5.5 Spectral Clustering

Compactness: K-means, GMM

Connectivity: Spectral clustering Model Introduction: Based on weighted undirected graph

Reference: 6

Figure 1.11: K-means vs Spectral clustering

Define: $G = \{V(Vertexset), E(Edgeset)\};$ $V = \{1, 2, ..., N\} = \mathcal{X};$ $W(SimilaritymatrixorAffinitymatrix) = [w_{ij}], 1 \le i, j \le N;$ If: $w_{ij} \in E$; then: $w_{ij} = K(x_i, (x_j)) = \exp\left\{-\frac{||x_i - x_j||_2^2}{2\sigma^2}\right\}$ else: $w_{ij} = 0$ $cut(v) = cut(C_1, C_2, ..., C_K) = \sum_{k=1}^K w(C_k, \bar{C}_k) = \sum_{k=1}^K w(C_k, V) - w(C_k, C_k);$

 $V = \bigcup_{k=1}^{K} C_k; C_i \cap C_j = \phi$ Degree: Normalized cut(V): $d_i = \sum_{j=1}^{N} w_{ij}$

Indicator vector: $Y = (y_1, y_2, ..., y_N^t)_{N \times K}$

$$Y^{t}Y = (y_{1}, ..., y_{N}) \begin{pmatrix} y_{1}^{t} \\ \vdots \\ y_{N}^{t} \end{pmatrix} = \sum_{i=1}^{N} y_{i} y_{i}^{t} = \begin{pmatrix} N_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & N_{k} \end{pmatrix} = \begin{pmatrix} \sum_{i \in C_{1}} \cdot 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sum_{i \in C_{k}} \cdot 1 \end{pmatrix}$$

$$D = \begin{pmatrix} d_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_{N} \end{pmatrix} = diag(w \cdot 1_{N})$$

⁶https://link.springer.com/article/10.1007/s41109-019-0248-7?shared-article-renderer

$$Y^{t}WY = (y_{1}, ..., y_{N}) \begin{pmatrix} w_{11} & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & w_{NN} \end{pmatrix} \begin{pmatrix} y_{1}^{t} \\ \vdots \\ y_{N}^{t} \end{pmatrix} = (\sum_{i=1}^{N} y_{i}w_{i1}, ..., \sum_{i=1}^{N} y_{i}w_{iN}) \begin{pmatrix} y_{1}^{t} \\ \vdots \\ y_{N}^{t} \end{pmatrix} = \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i}y_{j}w_{ij} = \begin{pmatrix} \sum_{i\in C_{1}} \sum_{j\in C_{1}} w_{ij} & ... & \sum_{i\in C_{1}} \sum_{j\in C_{k}} w_{ij} \\ \vdots & \ddots & \vdots \\ \sum_{i\in C_{k}} \sum_{j\in C_{1}} w_{ij} & ... & \sum_{i\in C_{k}} \sum_{j\in C_{k}} w_{ij} \end{pmatrix}$$

$$\hat{Y} = argmin \sum_{k=1}^{K} \frac{w(C_{k}, V) - w(C_{k}, C_{k})}{\sum_{i\in C_{k}} d_{i}} \qquad (1.228)$$

$$= tr \begin{pmatrix} \frac{w(C_{k}, V) - w(C_{k}, C_{k})}{\sum_{i\in C_{k}} d_{i}} & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \frac{w(C_{k}, V) - w(C_{k}, C_{k})}{\sum_{i\in C_{k}} d_{i}} \end{pmatrix} \cdot \begin{pmatrix} \sum_{i\in C_{1}} d_{i} & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \sum_{i\in C_{k}} d_{i} \end{pmatrix}^{-1}$$

$$= tr \begin{pmatrix} w(C_{k}, V) - w(C_{k}, C_{k}) & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & w(C_{k}, V) - w(C_{k}, C_{k}) \end{pmatrix} \cdot (Y^{t}DY)^{-1} \qquad (1.230)$$

$$= tr \begin{pmatrix} \sum_{i\in C_{1}} d_{i} & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \sum_{i\in C_{k}} d_{i} \end{pmatrix} - \begin{pmatrix} w(C_{1}, C_{1}) & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & w(C_{k}, C_{k}) \end{pmatrix} \cdot (Y^{t}DY)^{-1}$$

$$= tr \begin{pmatrix} \sum_{i\in C_{1}} d_{i} & ... & 0 \\ \vdots & \ddots & \vdots \\ 0 & ... & \sum_{i\in C_{k}} d_{i} \end{pmatrix} - \begin{pmatrix} \sum_{i\in C_{1}} \sum_{j\in C_{1}} w_{ij} & ... & \sum_{i\in C_{1}} \sum_{j\in C_{k}} w_{ij} \\ \sum_{i\in C_{k}} \sum_{j\in C_{k}} w_{ij} \end{pmatrix} \cdot (Y^{t}DY)^{-1}$$

$$= argmin tr(Y^{t}(D - W)Y(Y^{t}DY)^{-1}) \qquad (1.233)$$

D-W: Laplacian matrix

Chapter 2

Bayesian Inference

```
 \begin{cases} Single: Naive\ bayes: P(x|y) = \prod_{i=i}^{\dim} P(x_i|y=1) \\ Mix: GMM \\ Time: \begin{cases} Markov\ chain \\ Gaussian\ process(Infinite\ dimensionsGD) \end{cases} \\ HMM: (Discrete) \\ LDS(Gaussian, linear, kalman\ filter) \\ Particle\ filters(nonGaussian, nonLinear) \end{cases} \\ Undirected\ graph: Markov\ network \\ Gaussian\ graph(Continuous\ variable): \begin{cases} Gaussian\ bayesian\ network \\ Gaussian\ markov\ network \end{cases} \\ Accurate: \begin{cases} Variable\ elimination \\ Belief\ propagation(Sum\ - product\ algorithm)(Tree\ structure) \\ Junction\ Tree\ algorithm(Normal\ graph) \end{cases} \\ Approximate: \begin{cases} Variation\ method(determine) \\ Loop\ belief\ propagation(Ring\ graph) \\ Monte\ Carlo: Importance\ sampling, MCMC(stochastic) \end{cases} \\ Learning: \begin{cases} Structure\ learning \\ Parameter\ learning: \end{cases} \begin{cases} Complete\ data \\ Hidden\ variable: EM \end{cases}
```

2.1Representation

2.1.1 Introduction

```
Directed\ graph: \begin{cases} Single: Naive\ bayes: P(x|y) = \prod_{i=i}^{dim} P(x_i|y=1) \\ Mix: GMM \\ Time: \begin{cases} Markov\ chain \\ Gaussian\ process(Infinite\ dimensionsGD) \\ HMM: (Discrete) \\ LDS(Gaussian, linear, kalman\ filter) \\ Particle\ filters(nonGaussian, nonLinear) \end{cases}
Undirected\ graph: Markov\ network
Gaussian \ graph(Continuous \ variable): \begin{cases} Gaussian \ bayesian \ network \\ Gaussian \ markov \ network \end{cases}
```

2.1.2 Moral Graph

- Directed graph: $p(x) = \prod_{x} p(x_i|x_{parents})$
- Undirected graph: $p(x) = \frac{1}{z} \prod_{i=1}^{k} \phi_{ci}(x_{ci} = Largest \ group \ set)$

 $Moral\ graph: graph(Directed\ tree) \rightarrow Undirected\ graph(Undirected\ ring)$

$$P_{directed}(x) = \prod_{x} P(x_i | x_{parents})$$
 (2.1)

$$P_{directed}(x) = \prod_{x} P(x_i | x_{parents})$$

$$P_{undirected}(x) = \frac{1}{z} \prod_{i=1} k \phi_{clique_i}(x_{clique_i})$$
(2.1)

Figure 2.1: Directed graph to Undirected

2.1.3 Factor Graph

リング構造からツリー構造への変換。 $Moral\ graph \to factor\ graph(Undirected\ tree)$ head2head(V structure): $parents(x_i)$ を接続して。これは、因数分解のさらなる分解と見なすことができます。

$$P(x) = \prod_{s \in graph \ node} f_s(x_s) \tag{2.3}$$

Figure 2.2: Factor graph

$$P_{figure 3.1}(x) = f_1(A, B, C) \cdot f_2(B, D) \cdot f_3(B, E) \cdot f_4(C, F, G) \cdot f_5(D)$$
 (2.4)

2.2 Inference

2.2.1 Introduction

Frequency: optimization problem

Bayesian: integral problem

The task is to find the probability $p(x) = p(x_1, x_2, ..., x_n)$

z: latent variable + parament

- Marginal probability: $p(x_i) = \sum_{x_{i+1}} \sum_{x_{i+2}} \cdots \sum_{x_n}$
- Conditional Probability: $p(\hat{x}|x) = \int_{\theta} p(\hat{x}, \theta|x) d\theta = \int_{\theta} p(\hat{x}|\theta) \cdot p(\theta|x) d\theta = E_{\theta|x}[p(\hat{x}|\theta)]$
- MAP Inference: $\hat{z} = \mathop{argmax}_{z} p(z|x) \propto p(z,x)$

```
\begin{cases} Accurate: \begin{cases} Variable\ elimination \\ Belief\ propagation(Sum-product\ algorithm)(Tree\ structure) \\ Junction\ Tree\ algorithm(Normal\ graph) \\ Approximate: \begin{cases} Variation\ method(Deterministicinference) \\ Loop\ belief\ propagation(Ring\ graph) \\ Monte\ Carlo\ : Importance\ sampling, MCMC(stochastic) \end{cases}
```

2.2.2 Variable Elimination

Multiplicative Distribution Law: The disadvantage

- Repeated calculation(no stored procedure)
- Ordering is NP-hard

Define: $a, b, c, d \in \{0, 1\}; a \rightarrow b \rightarrow c \rightarrow d$

$$p(d) = \sum_{a,b,c} p(a,b,c,d)$$
 (2.5)

$$= \sum_{a,b,c} p(a) \cdot p(b|a) \cdot p(c|b)p(d|c)$$
(2.6)

$$= \sum_{a,b,c} p(a=0) \cdot p(b=0|a=0) \cdot p(c=0|b=0) p(d|c=0)$$
 (2.7)

$$= \sum_{a,b,c} p(a=1) \cdot p(b=0|a=1) \cdot p(c=0|b=0) p(d|c=0)$$
 (2.8)

$$= \sum_{a,b,c} p(a=0) \cdot p(b=1|a=0) \cdot p(c=0|b=1) p(d|c=0)$$
 (2.9)

$$= \sum_{a,b,c} p(a=0) \cdot p(b=0|a=0) \cdot p(c=1|b=0) p(d|c=1)$$
 (2.10)

$$= \sum_{a,b,c} p(a=1) \cdot p(b=1|a=1) \cdot p(c=0|b=1) p(d|c=0)$$
 (2.11)

$$= \sum_{a,b,c} p(a=1) \cdot p(b=0|a=1) \cdot p(c=1|b=0) p(d|c=1)$$
 (2.12)

$$= \sum_{a,b,c} p(a=0) \cdot p(b=1|a=0) \cdot p(c=1|b=1) p(d|c=1)$$
 (2.13)

$$= \sum_{a,b,c} p(a=1) \cdot p(b=1|a=1) \cdot p(c=1|b=1) p(d|c=1)$$
 (2.14)

$$= \sum_{b,c} p(c|b) \cdot p(d|c) \sum_{a} p(a) \cdot p(b|a)$$
(2.15)

$$= \sum_{b} p(c|b) \cdot \sum_{c} p(d|c) \cdot m_{ab}(b)$$
(2.16)

$$= \sum_{c} p(d|c) \cdot m_{bc}(c) \tag{2.17}$$

$$= m_{cd}(d) \tag{2.18}$$

2.2.3 Belief Propagation(Sum-product)

実は VE + Caching です、木の構造に適しています。Repeated calculation 必要はなく、必要な情報量 $m_{i o j}$ だけでいいです。

$$m_{j\to i}(x_i) = \sum_{x_j} \varphi_j(x_j) \cdot \varphi_{ij}(x_i, x_j) \prod_{k \in Neighbor(j) - i} m_{k\to j}(x_j)$$
 (2.19)

$$P(x_i) = \varphi_i(x_i) \cdot \prod_{k \in Neighbor(i)} m_{k \to i}(x_i)$$
(2.20)

Algorithm 1 Sequential Implementationg

Require: Get root ,Assume a is root

for x_i in Neighbor(Root) do

Collect $m_{ij}(x_i)$

end for

for x_j in Neighbor(Root) do

Distribute $m_{ij}(x_j)$

end for

Algorithm 2 Parellel Implementation

for x_i in All_nodes do $x_i = Collect\ Neighbor(x_i) \cdot x_i$

 $x_i = \text{Coffect Neighbor}(x_i) \cdot x$

Distribute Neighbor (x_i)

end for

Reference: 1

Figure 2.3: Belief propagation

¹Understanding Belief Propagation and its Generalizations Jonathan S. Yedidia MERL 201 Broadway Cambridge, MA 02139

2.2.4 Max-product

- Belief propagation の改善
- Viterbi の拡張。

$$m_{j \to i} = \max_{x_j} \varphi_j \cdot \varphi_{ij} \prod_{k \in Neighbor(j) - i} m_{k \to j}$$
 (2.21)

2.3 Variational Inference

2.3.1 VI based Mean field

平均場理論 (Mean field theory) に基づいて、複素確率構造は多くの小さな構造に分割されます。 座標降下法 (Coordinate descent method) を使用して、最大事後推定 (Posterior probability) を解きます。

s.t.

X: observed data

Z: latent variable + parament

(X,Z): complete data

$$\log p(X) = \log p(X, Z) - \log p(Z|X) \tag{2.22}$$

$$= \log \frac{p(X,Z)}{q(Z)} - \log \frac{p(Z|X)}{q(Z)} \tag{2.23}$$

$$\int_{Z} \log p(X)q(Z)dz = \int_{Z} q(Z) \cdot \log \frac{p(X,Z)}{q(Z)}dz - \int_{Z} q(Z) \cdot \log \frac{p(Z|X)}{q(Z)}dz$$
 (2.24)

$$\log p(X) = ELBO + KL(q||p) \tag{2.25}$$

Define: ELBO = $\mathcal{L}(q)$

$$\hat{q}(Z) = \underset{q(Z)}{\operatorname{argmax}} \mathcal{L}(q) \Rightarrow \hat{q}(Z) \approx p(Z|X)$$

$$\mathcal{L}(q) = \int_{Z} q(Z) \cdot \log p(X, Z) dz - \int_{Z} q(Z) \cdot \log q(Z) dz$$
 (2.26)

s.t. Mean field theory: $q(Z) = \prod_{i=1}^{M} q_i(Z_i)$

$$\int_{Z} q(Z) \cdot \log p(X, Z) dz = \int_{Z} \prod_{i=1}^{M} q_{i}(Z_{i}) \cdot \log p(X, Z) dz_{1}, ..., dz_{M}$$
(2.27)

$$= \int_{Z_j} q_j(Z_j) \left(\int_{Z \neq j} \prod_{i \neq j}^M q_i(Z_i) \cdot \log p(X, Z) dz_i \right) dz_j$$
 (2.28)

$$= \int_{Z_j} q_j(Z_j) \left(\int_{Z_{\neq j}} \log p(X, Z) \cdot \prod_{i \neq j}^M q_i(Z_i) dz_i \right) dz_j \qquad (2.29)$$

$$= \int_{Z_j} q_j(Z_j) \cdot E_{\prod_{i \neq j}^M q_i(Z_i)} \left[\log p(X, Z) \right] dz_j$$
 (2.30)

$$= \int_{Z_j} q_j(Z_j) \cdot \left[\log \hat{p}(X, Z_j)\right] dz_j \tag{2.31}$$

$$\int_{Z} q(Z) \cdot \log q(Z) dz = \int_{Z} \prod_{i=1}^{M} q_{i}(Z_{i}) \cdot \sum_{i=1}^{M} \log q_{i}(Z_{i}) dz$$
(2.32)

$$= \int_{Z} \prod_{i}^{M} q_{i}(Z_{i}) \cdot \left[\log q_{1}(Z_{1}) + \dots + \log q_{M}(Z_{M}) \right] dz$$
 (2.33)

$$\therefore \int_{Z} \prod_{i}^{M} q_{i} \cdot \log q_{1} dz = \int_{Z_{1,\dots,M}} q_{1} \cdots q_{M} \cdot \log q_{1} dz_{1,\dots,M}$$

$$(2.34)$$

$$= \int_{Z_1} q_1 \log q_1 dz_1 \cdot \int_{Z_2} q_2 dz_2 \cdots \int_{Z_M} q_M dz_M$$
 (2.35)

$$= \int_{Z_1} q_1 \log q_1 dz_1 \tag{2.36}$$

$$\therefore \int_{Z} q(Z) \cdot \log q(Z) dz = \sum_{i=1}^{M} \int_{Z_i} q_i(Z_i) \cdot \log q_i(Z_i) dz_i$$
 (2.37)

$$= \sum_{i=1}^{M} \int_{Z_j} q_j(Z_j) \cdot \log q_j(Z_j) dz_j + C$$
 (2.38)

$$\mathcal{L}(q) = \int_{Z} q(Z) \cdot \log p(X, Z) dz - \int_{Z} q(Z) \cdot \log q(Z) dz$$
 (2.39)

$$= \int_{Z_j} q_j(Z_j) \cdot \log \frac{\hat{p}(X, Z_j)}{q_j(Z_j)} dz_j$$
(2.40)

$$= -KL(q_i|\hat{p}(X,Z_i)) \tag{2.41}$$

Object function:

$$\hat{q} = \underset{q}{\operatorname{argmin}} KL(q||p) = \underset{q}{\operatorname{argmin}} \mathcal{L}(q)$$
(2.42)

Coordinate Ascend:

$$\hat{q}_1(Z_1) = \int_{q_2} \cdots \int_{q_M} q_2 \cdots q_M [\log p_{\theta}(x_i, Z)] dq_2 \cdots dq_M$$
 (2.43)

$$\hat{q}_{2}(Z_{2}) = \int_{\hat{q}_{1}} \int_{q_{3}} \cdots \int_{q_{M}} \hat{q}_{1} q_{3} \cdots q_{M} \left[\log p_{\theta}(x_{i}, Z) \right] d\hat{q}_{1} q_{3} \cdots dq_{M}$$
 (2.44)

$$\vdots (2.45)$$

$$\hat{q}_{M}(Z_{M}) = \int_{\hat{q}_{1}} \cdots \int_{\hat{q}_{M-1}} \hat{q}_{1} \cdots \hat{q}_{M-1} \left[\log p_{\theta}(x_{i}, Z) \right] d\hat{q}_{1} \cdots d\hat{q}_{M-1}$$
 (2.46)

(2.47)

2.3.2 SGVI (SGVB)

$$ELBO = E_{q_{\phi}(Z)} \left[\log \frac{p_{\theta}(x_i, Z)}{q_{\phi}(Z)} \right]$$
 (2.48)

$$= E_{q_{\phi}(Z)} \left[\log p_{\theta}(x_i, Z) - \log q_{\phi}(Z) \right]$$
(2.49)

$$= \mathcal{L}(q) \tag{2.50}$$

$$\hat{\phi} = \underset{\phi}{\operatorname{argmin}} \mathcal{L}(q) \tag{2.51}$$

$$\nabla_{\phi} \mathcal{L}(q) = \nabla_{\phi} E_{q_{\phi}(Z)} \left[\log p_{\theta}(x_i, Z) - \log q_{\phi} \right]$$
(2.52)

$$= \nabla_{\phi} \int_{Z} q_{\phi} \cdot \left[\log p_{\theta}(x_{i}, Z) - \log q_{\phi} \right] dz$$
 (2.53)

$$= \int_{Z} \nabla_{\phi} q_{\phi} \cdot \left(\log p_{\theta}(x_{i}, Z) - \log q_{\phi}\right) dz + \int_{Z} q_{\phi} \nabla_{\phi} \left[\log p_{\theta}(x_{i}, Z) - \log q_{\phi}\right] dz$$
(2.54)

$$\therefore \int_{Z} q_{\phi} \nabla_{\phi} \left[\log p_{\theta}(x_{i}, Z) - \log q_{\phi} \right] dz = - \int_{Z} q_{\phi} \nabla_{\phi} \log q_{\theta} dz$$
 (2.55)

$$= -\int_{Z} q_{\phi} \cdot \frac{1}{q_{\theta}} \cdot \nabla_{\phi} q_{\theta} dz \qquad (2.56)$$

$$= -\int_{Z} \nabla_{\phi} q_{\theta} dz \tag{2.57}$$

$$= -\nabla_{\phi} \int_{Z} q_{\theta} dz \tag{2.58}$$

$$= -\nabla_{\phi} \tag{2.59}$$

$$=0 (2.60)$$

$$\therefore \hat{\phi} = \int_{Z} \nabla_{\phi} q_{\phi} \cdot \left(\log p_{\theta}(x_{i}, Z) - \log q_{\phi}\right) dz + 0 \tag{2.61}$$

$$= \int_{Z} q_{\phi} \cdot \nabla_{\phi} \log q_{\phi} \cdot \left(\log p_{\theta}(x_{i}, Z) - \log q_{\phi}\right) dz \tag{2.62}$$

$$= E_{q_{\phi}} \left[\nabla_{\phi} \log q_{\phi} \cdot \left(\log p_{\theta}(x_i, Z) - \log q_{\phi} \right) \right]$$
 (2.63)

$$s.t.Z^L \sim q_\phi(Z), l = 1, 2, ..., L$$
 (2.64)

$$\approx \frac{1}{L} \sum_{l=1}^{L} \nabla_{\phi} \log q_{\phi}(Z^{l}) (\log p_{\phi}(x^{i}, z^{i}) - \log q_{\phi}(Z^{l}))$$

$$(2.65)$$

Reparametrization Trick s.t.

$$Z \sim q_{\phi}(Z|x_i) = \epsilon \sim p(\epsilon)$$
$$|q_{\phi}(Z|x_i) \cdot dz| = |p(\epsilon) \cdot d\epsilon|$$

$$\hat{\phi} = E_{q_{\phi}} \left[\nabla_{\phi} \log q_{\phi} \cdot \left(\log p_{\theta}(x_i, Z) - \log q_{\phi} \right) \right]$$
(2.66)

$$= E_{p(\epsilon)} \left[\nabla_{\phi} \log q_{\phi} \cdot \left(\log p_{\theta}(x_i, Z) - \log q_{\phi}(Z|x_i) \right) \right]$$
(2.67)

$$\epsilon \sim p(\epsilon)$$
 (2.68)

$$= E_{p(\epsilon)} \left[\nabla_Z \log q_\phi \cdot \left(\log p_\theta(x_i, Z) - \log q_\phi(Z|x_i) \right) \right] \cdot \nabla_\phi g_\phi(\epsilon^l, x^i)$$
 (2.69)

SGVI:

$$\phi^{t+1} \leftarrow \phi^t + \lambda \cdot \nabla_{\phi} \mathcal{L}(\phi) \tag{2.70}$$

2.4 Sampling

2.4.1 Probability distribution sampling

確率 PDF を CDF に変換して、 $y^{(i)} \sim U(0,1)$ 一様分布 (uniform distribution) に関連付けます。(PDF は複雑ので PDF から CDF まで難しい)

$$x^{(i)} = cdf^{-1}(y^{(i)}) (2.71)$$

Reference: ²

Figure 2.4: PDF を CDF に変換

2.4.2 Rejection sampling

必要な分布 mq(z) は非常に複雑であり、直接サンプリングできないため、単純な分布 q(z) (proposed distribution) 提案分布を作成します $(\forall z^{(i)}, mq(z^i)) \geq p(z^{(i)})$ 。 ランダムサンプリングが 2 つの分布の間にある場合は拒否され、真の分布内にある場合は受け入れられます。 Acceptance rate が高いほど、サンプリング効率が高くなります。

Acceptance rate =
$$\frac{p(z^{(i)})}{mq(z^{(i)})}$$
 (2.72)

Reference: ³

²https://www.chebfun.org/examples/stats/ResamplingRandomVariables.html

 $^{^3}$ https://towardsdatascience.com/monte-carlo-integration-and-sampling-methods-25d5af53e1

Algorithm 3 Rejection sampling

```
 \begin{array}{l} \textbf{Require:} \ z^{(i)} \sim q(z); \ u^{(i)} \sim U(0,1) \\ \textbf{Ensure:} \ \forall z^{(i)}, mq(z^i)) \geq p(z^{(i)}) \\ \textbf{if} \ u \leq Acceptance \ rate \ \textbf{then} \\ \ acceptance: \ z^{(i)} \\ \textbf{else} \\ \ rejection: \ z^{(i)} \\ \textbf{end if} \end{array}
```


Figure 2.5: Concept of Rejection Sampling

2.4.3 Importance sampling

重要度サンプリングは、確率分布を直接サンプリングするのではなく、確率分布の期待 値を直接サンプリングします。

$$E_{p(z)}[f(x)] = \int p(z) \cdot f(z) dz = \int f(z) \cdot \frac{p(z)}{q(z)} \cdot q(z) dz$$
 (2.73)

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(z^{(i)}) \cdot \frac{p(z^{(i)})}{q(z^{(i)})}$$
 (2.74)

2.4.4 MCMC-MH

Markov chain Monte Carlo はサンプリングに基づくランダム近似法。(別に数値積分) Markov Chain: Time and state are discrete.

State space: $\{x_1, x_2, ..., x_m\}^4$

Figure 2.6: Markov Chain

Transition matrix (stochastic matrix):
$$Q = \begin{pmatrix} Q_{11} & Q_{12} & \cdots & Q_{1m} \\ Q_{21} & Q_{22} & \cdots & Q_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{m1} & Q_{m2} & \cdots & Q_{mm} \end{pmatrix}$$

$$\therefore p^{(t+1)} = \left(p_{(x_1)}^{(t+1)} p_{(x_2)}^{(t+1)} \cdots p_{(x_m)}^{(t+1)} \right) \tag{2.75}$$

$$\therefore p_{(x_j)}^{(t+1)} = \sum_{i}^{K} p_{(x=i)}^{(t)} \cdot Q_{i1}$$
(2.76)

$$\therefore p^{(t+1)} = \left(\sum_{i}^{K} p_{(x=i)}^{(t)} \cdot Q_{i1}, \sum_{i}^{K} p_{(x=i)}^{(t)} \cdot Q_{i2}, \cdots, \sum_{i}^{K} p_{(x=i)}^{(t)} \cdot Q_{im}\right)_{1 \times m}$$
(2.77)

$$= p_{1 \times m}^{(t)} \cdot Q \tag{2.78}$$

Detailed Balance: $p(x) \cdot P(x \to x^*) = p(x) \cdot P(x^* \to x)$

 $^{^4}$ https://www.analyticsvidhya.com/blog/2021/02/markov-chain-mathematical-formulation-intuitive-explanation-ap

s.t. $\alpha(x, x^*)$: Acceptance rate

$$p(x) \cdot P(x \to x^*) = p(x) \cdot P(x^* \to x) \tag{2.79}$$

$$p(x) \cdot Q(x \to x^*) \cdot \alpha(x, x^*) = p(x^*) \cdot Q(x^* \to x) \cdot \alpha(x^*, x)$$
(2.80)

$$= p(x) \cdot Q(x \rightarrow x^*) \cdot min\left(1, \frac{p(x^*) \cdot Q(x^* \rightarrow x)}{p(x) \cdot Q(x \rightarrow x^*)}\right) \tag{2.81}$$

$$= min(p(x) \cdot Q(x \to x^*), p(x^*) \cdot Q(x^* \to x))$$
(2.82)

$$=p(x^*)\cdot Q(x^*\to x)\cdot \min\biggl(1,\frac{p(x)\cdot Q(x\to x^*)}{p(x^*)\cdot Q(x^*\to x)}\biggr) \qquad (2.83)$$

$$= p(x^*) \cdot Q(x^* \to x) \cdot \alpha(x^*, x) \tag{2.84}$$

Algorithm 4 Metropolis Hasting

```
\begin{array}{l} \textbf{Require:} \ \ u \sim U(0,1); \ x^* \sim Q(x|x^{i-1}) \\ \textbf{Ensure:} \ \ \alpha = min\Big(1, \frac{p(x^*) \cdot Q(x^* \rightarrow x)}{p(x) \cdot Q(x \rightarrow x^*)}\Big) \\ \textbf{if} \ \ u \leq \alpha \ \ \textbf{then} \\ x^{(i)} = x^* \\ \textbf{else} \\ x^{(i)} = x^{(i-1)} \\ \textbf{end if} \end{array}
```

Stationary Distribution: ⁵

Figure 2.7: Define (positive) transition probabilities between states A through F as shown in the above image.

2.4.5 MCMC-Gibbs

MH $\mathcal{O} \alpha = 1$ Define: $z_i \sim p(z_i | z_{1,2,...,i-1,i+1,...,n})$

 $^{^5}$ https://jp.mathworks.com/help/symbolic/markov-chain-analysis-and-stationary-distribution.html?lang=en

$$z_1^{t+1} \sim p(z_1|z_2^t, ..., z_n^t) \tag{2.85}$$

$$z_{2}^{t+1} \sim p(z_{2}|z_{1}^{t}, z_{3}^{t}..., z_{n}^{t})$$

$$\vdots$$

$$z_{i}^{t+1} \sim p(z_{i}|z_{1}^{t}, ..., z_{i-1}^{t}, z_{i+1}^{t}, ..., z_{n}^{t})$$

$$(2.86)$$

$$\vdots$$

$$(2.87)$$

$$\vdots (2.87)$$

$$z_i^{t+1} \sim p(z_i|z_1^t, ..., z_{i-1}^t, z_{i+1}^t, ..., z_n^t)$$
(2.88)

Proof.

$$\frac{p(z^*) \cdot Q(z^* \to z)}{p(z) \cdot Q(z \to z^*)} = \frac{p(z_i^* | p(z_{-i}^*)) \cdot p(z_{-i}^*) \cdot p(z_i | z_{-i}^*)}{p(z_i | z_{-i}^* \cdot p(z_{-i}) \cdot p(z_i^* | z_{-i})}
= \frac{p(z_i^* | p(z_{-i}^*)) \cdot p(z_{-i}^*) \cdot p(z_i^* | z_{-i}^*)}{p(z_i^* | z_{-i}^* \cdot p(z_{-i}^*) \cdot p(z_i^* | z_{-i}^*)}$$
(2.89)

$$= \frac{p(z_i^*|p(z_{-i}^*)) \cdot p(z_{-i}^*) \cdot p(z_i^*|z_{-i}^*)}{p(z_i^*|z_{-i}^*) \cdot p(z_i^*|z_{-i}^*) \cdot p(z_i^*|z_{-i}^*)}$$
(2.90)

$$=1 \tag{2.91}$$

Dynamic System (State Space Model) 2.5

$$\begin{cases} Learning: \lambda_{MLE} = argmax \, P(x|\lambda): Baum \ Welch(EM) \\ \lambda \\ Prob \ of \ evidence: Z = argmax \, P(Z|X): Viterbi \ algorithm \\ Prob \ of \ evidence: P(X|\theta): Forward - Backward \ algorithm \\ Filtering: P(z_t|x_1, x_2, ..., x_t): Forward \ algorithm \\ Smoothing: P(z_t|x_1, x_2, ..., x_T): Forward \ algorithm \\ Prediction: \begin{cases} P(z_{t+1}|x_1, x_2, ..., x_t): Forward \ algorithm \\ P(x_{t+1}|x_1, x_2, ..., x_t): Forward \ algorithm \end{cases}$$

2.5.1 $\mathbf{H}\mathbf{M}\mathbf{M}$

Define:

State sequence: $I = i_1, i_2, ..., i_T$

Observation sequence: $O = O_1, O_2, ..., O_T$ State value collection: $Q = \{q_1, q_2, ..., q_N\}$ Collection of observations: $V = \{v_1, v_2, ..., v_N\}$

One model:

- $\lambda = (\pi, A, B)$

- π = Initial probability distribution $\rightarrow \pi = (\pi_1, \pi_2, ..., \pi_N), \sum_{i=1}^N \pi_i = 1$

Figure 2.8: PGMs

- A = State transition matrix $\rightarrow a_{ij} = P(i_{t+1} = q_j | i_t = q_i)$
- B = Emission matrix $\rightarrow b_j(k) = P(o_t = v_k | i_t = q_j)$

Two hypotheses:

- Homogeneous Markov hypothesis
 $\rightarrow P(i_{t+1}|i_1,...,i_t,o_1,...,o_t) = P(i_{t+1}|i_t)$
- Observational independence hypothesis $\rightarrow P(o_t|i_1,...,i_t,o_1,...,o_t) = P(o_t|i_t)$

Three questions

- Evaluation: $P(O|\lambda)$: Forward-Backward
- Learning: $\lambda_{MLE} = \underset{\lambda}{argmax} P(O|\lambda)$: Baum Welch(EM)
- Decoding: $\hat{I} = \mathop{argmax}\limits_{I} P(I|O,\lambda)$: Viterbi

Evaluation:

$$P(O|\lambda) = \sum_{I} P(I, O|\lambda)$$
 (2.92)

$$= \sum_{I} P(O|I,\lambda) \cdot P(I|\lambda) \tag{2.93}$$

(2.94)

$$\therefore P(O|I,\lambda) = \prod_{t=1}^{T} b_{it}(o_t)$$
(2.95)

$$\therefore P(I|\lambda) = P(i_1, i_2, ..., i_T|\lambda) \tag{2.96}$$

$$= P(i_T|i_1, i_2, ..., i_{T-1}\lambda) \cdot P(i_1, i_2, ..., i_{T-1}\lambda)$$
(2.97)

$$= \pi(a_{i1}) \cdot \prod_{t=2}^{T} a_{i_{t-1}, i_t}$$
(2.98)

$$\therefore P(O|\lambda) = \prod_{t=1}^{T} b_{it}(o_t) \cdot \pi(a_{i1}) \cdot \prod_{t=2}^{T} a_{i_{t-1}, i_t}$$
(2.99)

$$= \sum_{i_1} \cdots \sum_{i_T} \pi(a_{i1}) \cdot \prod_{t=2}^T a_{i_{t-1}, i_t} \cdot \prod_{t=1}^T b_{it}(o_t)$$
 (2.100)

Forward Algorithm:

Define: $\alpha_t(i) = P(o_1, ..., o_t, i_t = q_i | \lambda)$ Then $P(O|\lambda) = \sum_{i=1}^N P(O, i_t = q_i | \lambda) = \sum_i^N \alpha_T(i)$

$$\alpha_{t+1}(j) = \sum_{i=1}^{N} P(o_1, ..., o_t, o_{t+1}, i_{t+1} = q_j, i_t = q_i | \lambda)$$

$$= \sum_{i=1}^{N} P(o_{t+1} | o_1, ..., o_t, i_{t+1} = q_j, i_t = q_i, \lambda) \cdot P(o_1, ..., o_t, i_{t+1} = q_j, i_t = q_i | \lambda)$$
(2.101)

$$= \sum_{i=1}^{N} P(o_{t+1}|i_{t+1} = q_j) \cdot P(o_1, ..., o_t, i_{t+1} = q_j, i_t = q_i|\lambda)$$
(2.103)

$$= \sum_{i=1}^{N} P(o_{t+1}|i_{t+1} = q_j) \cdot P(i_{t+1} = q_j|o_1, ..., o_t, i_t = q_i, \lambda) \cdot P(o_1, ..., o_t, i_t = q_i|\lambda)$$
(2.104)

$$= \sum_{i=1}^{N} b_j(o_{t+1}) \cdot a_{ij} \cdot \lambda_t(i)$$
(2.105)

Backward Algorithm:

s.t.
$$\beta_t(i) = P(o_{t+1}, ..., o_T | i_t = q_i, \lambda), \cdots, \beta_1(i) = P(o_2, ..., o_T | i_1 = q_i, \lambda)$$

$$P(O|\lambda) = P(o_1, ...o_T|\lambda)$$
(2.106)

$$= \sum_{i=1}^{N} P(o_1, \dots o_T, i_1 = q_i)$$
(2.107)

$$= \sum_{i=1}^{N} P(o_1, ...o_T | i_1 = q_i) \cdot P(i_1 = q_i)$$
(2.108)

$$= \sum_{i=1}^{N} P(o_1|o_2, ...o_T, i_1 = q_i) \cdot P(o_1, ...o_T|i_1 = q_i) \cdot \pi_i$$
 (2.109)

$$= \sum_{i=1}^{N} P(o_1|i_1 = q_i)\beta_1(i) \cdot \pi_i$$
(2.110)

$$= \sum_{i=1}^{N} b_i(o_1)\pi_i\beta_1(i)$$
 (2.111)

$$\beta_t(i) = P(o_{t+1}, ..., o_T | i_t = q_i)$$
(2.112)

$$= \sum_{j=1}^{N} P(o_{t+1}, ..., o_T, i_{t+1} = q_j | i_t = q_i)$$
(2.113)

$$= \sum_{j=1}^{N} P(o_{t+1}, ..., o_T | i_{t+1} = q_j, i_t = q_i) \cdot P(i_{t+1} = q_j | i_t = q_i)$$
(2.114)

$$= \sum_{j=1}^{N} P(o_{t+1}, ..., o_T | i_{t+1} = q_j) \cdot a_{ij}$$
(2.115)

$$= \sum_{j=1}^{N} P(o_{t+1}|o_{t+2}, ..., o_T, i_{t+1} = q_j) \cdot P(o_{t+2}, ..., o_T|i_{t+1} = q_j) \cdot a_{ij}$$
 (2.116)

$$= \sum_{j=1}^{N} b_j(o_{t+1}) \cdot a_{ij} \cdot \beta_{t+1}(j)$$
(2.117)

Learning: Baum-Welch

EM: $\theta(t+1) = \underset{\theta}{argmax} \int_{Z} \log P(X, Z|\theta) \cdot P(Z|X, \theta(t)) dz$

 $\lambda = (\pi, A, B)$:

$$\lambda^{t+1} = \underset{\theta}{\operatorname{argmax}} \sum_{I} \log P(O, I|\theta) \cdot P(I|O, \theta^{(t)})$$
(2.118)

$$= \sum_{I} \left[\left(\log \pi_{i1} + \sum_{t=2}^{T} \log a_{i_{t-1}, i_t} + \sum_{t=1}^{T} \log b_{i_t}(0_t) \right) \cdot P(O, I | \lambda^t) \right]$$
 (2.119)

 π :

$$\pi^{(t+1)} = \underset{\pi}{argmax} \sum_{I} \left[\log \pi_{i_1} \cdot P(O, I | \lambda^t) \right]$$
(2.120)

$$= \underset{\pi}{argmax} \sum_{i_1} \cdots \sum_{i_T} \left[\log \pi_{i_1} \cdot P(O, i_1, ..., i_T | \lambda^t) \right]$$
 (2.121)

$$= \underset{\pi}{argmax} \sum_{i=1}^{N} \left[\log \pi_i \cdot P(O, i_1 = q_i | \lambda^t) \right]$$
 (2.122)

$$s.t. \sum_{i=1}^{N} \pi_i = 1 \tag{2.123}$$

$$\mathcal{L}(\pi, \eta) = \sum_{i=1}^{N} \log \pi_i P(O, i_1 = q_i | \lambda^{(t)}) + \eta(\sum_{i=1}^{N} \pi_i - 1)$$
 (2.124)

(2.125)

$$\frac{\partial \mathcal{L}}{\partial \pi_i} = \frac{1}{\pi_i} P(O, i_1 = q_i | \lambda^{(t)}) + \eta = 0$$
(2.126)

$$\sum_{i}^{N} \left[P(O, i_1 = q_i | \lambda^{(t)}) + \pi_i \eta \right] = 0$$
 (2.127)

$$P(O|\lambda^t) + \eta = 0 (2.128)$$

$$\eta = -P(O|\lambda^{(t)}) \tag{2.129}$$

$$\pi_i = \frac{P(O, i_1 = q_i | \lambda^{(t)})}{P(O | \lambda^{(t)})}$$
 (2.130)

Decoding:

$$\delta_t(i) = \max_{i_1, \dots i_{t-1}} P(o_1, \dots, o_t, i_1, \dots, i_{t-1}, i_t = q_i)$$
(2.131)

$$\delta_{t+1}(i) = \max_{i_1,\dots i_t} P(o_1, \dots, o_{t+1}, i_1, \dots, i_t, i_{t+1} = q_j)$$
(2.132)

$$= \max_{1 \le i \le N} \delta_t(i) \cdot a_{ij} \cdot b_j(o_{t+1})$$
 (2.133)

$$\varphi_{t+1}(j) = \underset{1 < i < N}{\operatorname{argmax}} \, \delta_t(i) \cdot a_{ij} \tag{2.134}$$

2.5.2 Kalman filter

HMM focus on decoding, Linear Dynamic System and Non-linear Non-Gauss focus on filter Define:

$$P(Z_t|Z_{t-1}) = N(A \cdot Z_{t-1} + B, Q)$$

$$P(X_t|Z_t) = N(C \cdot Z_t + D, R)$$

$$P(Z_1) = N(\mu_1, \sigma_1)$$

$$Z_t = A \cdot Z_{t-1} + B + \epsilon, \epsilon \sim N(0, Q)$$

$$X_t = C \cdot Z + D + \delta, \delta \sim N(0, R)$$

Filter Prob: $P(Z_t|X_1,...,X_t)$

Step1: Prediction \rightarrow prior

$$P(Z_t|X_1,...,X_{t-1}) = \int_{Z_{t-1}} P(Z_{t-1}|X_1,...,X_{t-1}) dz_{t-1}$$
 Step2: Update \to posterrior

$$P(Z_t|X_1,...,X_t) \approx P(X_t|Z_t) \cdot P(Z_t|X_1,...,X_{t-1})$$

Proof. Step1: Prediction

$$P(Z_t|X_1,...,X_{t-1}) = \int_{Z_{t-1}} P(Z_{t-1}, Z_t|X_1,...,X_{t-1}) dz_{t-1}$$
(2.135)

$$= \int_{Z_{t-1}} P(Z_t|Z_{t-1}, X_1, ..., X_{t-1}) \cdot P(Z_{t-1}|X_1, ..., X_{t-1}) dz_{t-1} \quad (2.136)$$

(2.137)

Proof. Step2: Update

$$P(Z_t|X_1,...,X_t) = \frac{P(x_1,...,X_t,Z_t)}{P(X_1,...,X_t)}$$
(2.138)

$$= \frac{1}{C} \cdot P(x_1, ..., X_t, Z_t) \tag{2.139}$$

$$= \frac{1}{C} \cdot P(X_t | X_1, ..., X_{t-1}, Z_t) \cdot P(X_1, ..., X_{t-1}, Z_t)$$
 (2.140)

$$= \frac{1}{C} \cdot P(X_t|Z_t) \cdot P(Z_t|X_1, ..., X_{t-1}) \cdot P(X_1, ..., X_{t-1})$$
 (2.141)

$$= \frac{D}{C} \cdot P(X_t|Z_t) \cdot P(Z_t|X_1, ..., X_{t-1})$$
(2.142)

2.5.3 Particle filter - SIS

Non-linear Non-Gauss Dynamic System

Monte Carlo Method: $P(Z|X) \to E_{Z|X}[f(Z)] = \int f(Z) \cdot p(Z) dz$

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(Z^{(i)})$$

Importance Sampling: $E[f(Z)] = \int f(Z) \cdot p(Z) \cdot dz = \int f(Z) \cdot \frac{p(Z)}{q(Z)} \cdot q(Z) dz$; q(Z): proposal

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(Z^{(i)}) \cdot \frac{p(Z^{(i)})}{q(Z^{(i)})}; \frac{p(Z^{(i)})}{q(Z^{(i)})} \text{ is weight } w^{(i)}$$

Sequential Importance Sampling:

$$P(Z_t|X_{1:t}) \to P(Z_{1:t}|X_{1:t})$$

 $P(Z_t|X_{1:t}) \to P(Z_{1:t}|X_{1:t})$ So: $w^{(i)} \approx \frac{P(Z_{1:t}|X_{1:t})}{q(Z_{1:t}|X_{1:t})}$

Proof. $w_t^{(i)} \to w_{(t-1)}^i$

$$P(Z_{1:t}|X_{1:t}) = \frac{P(Z_{1:t}, X_{1:t})}{P(X_{1:t})}$$
(2.143)

$$= \frac{1}{C} \cdot P(Z_{1:t}, X_{1:t}) \tag{2.144}$$

$$= \frac{1}{C} \cdot P(X_t | Z_{1:t}, X_{1:t-1}) \cdot P(Z_{1:t}, X_{1:t-1})$$
(2.145)

$$= \frac{1}{C} \cdot P(X_t|Z_t) \cdot P(Z_{1:t}, X_{1:t-1})$$
(2.146)

$$= \frac{1}{C} \cdot P(X_t|Z_t) \cdot P(Z_t|Z_{1:t-1}, X_{1:t-1}) \cdot P(Z_{1:t-1}, X_{1:t-1})$$
 (2.147)

$$= \frac{1}{C} \cdot P(X_t|Z_t) \cdot P(Z_t|Z_{t-1}) \cdot P(Z_{1:t-1}, X_{1:t-1})$$
(2.148)

$$= \frac{1}{C} \cdot P(X_t|Z_t) \cdot P(Z_t|Z_{t-1}) \cdot P(Z_{1:t-1}|X_{1:t-1}) \cdot P(X_{1:t-1})$$
 (2.149)

$$= \frac{D}{C} \cdot P(X_t|Z_t) \cdot P(Z_t|Z_{t-1}) \cdot P(Z_{1:t-1}|X_{1:t-1})$$
 (2.150)

s.t.

 $q(Z_{1:t}|X_{1:t}) = q(Z_t|Z_{1:t-1}, X_{1:t}) \cdot q(Z_{1:t-1}|X_{1:t-1})$

$$w_t^{(i)} \approx \frac{P(Z_{1:t}, X_{1:t})}{q(Z_{1:t}|X_{1:t})} \tag{2.151}$$

$$\approx \frac{P(X_t|Z_t) \cdot P(Z_t|Z_{t-1}) \cdot P(Z_{1:t-1}|X_{1:t-1})}{q(Z_t|Z_{1:t-1}, X_{1:t}) \cdot q(Z_{1:t-1}|X_{1:t-1})}$$
(2.152)

$$\approx \frac{P(X_t|Z_t) \cdot P(Z_t|Z_{t-1})}{q(Z_t|Z_{1:t-1}, X_{1:t})} \cdot w_{(t-1)}^i$$
(2.153)

Algorithm 5 Sequential Importance Sampling

Require: $t-1 \rightarrow w_{t-1}^{(i)}$ is end for $i=1,\cdots,N$ in t do $Z_t^{(i)} \sim q(Z_t|Z_{t-1},X_{1:t})$ $w_t^{(i)} = w_{t-1}^{(i)}$ end for Normalized: $w_t^{(i)} = \sum_{i=1}^N w_t^i = 1$; (Prob. Weight Degradation)

2.5.4 Particle filter - SIR

Prob: Weight Degradation \rightarrow Resampling

Resampling: $q(Z_t|Z_{1:t-1}, X_{1:t}) = P(Z_t|Z_{t-1})$ (Generate and Test)

$$w_t^{(i)} \approx \frac{P(Z_{1:t}, X_{1:t})}{q(Z_{1:t}|X_{1:t})} \approx \frac{P(X_t|Z_t) \cdot P(Z_t|Z_{t-1})}{P(Z_t|Z_{t-1})} \cdot w_{(t-1)}^i$$
(2.154)

Algorithm 6 Sampling Importance Resampling

 $\begin{aligned} & \textbf{Require:} \ t-1 \to w_{t-1}^{(i)} \ is \ end \\ & \textbf{for} \ i=1,\cdots,N \ \text{in t do} \\ & Z_t^{(i)} \sim P(Z_t|Z_{t-1}) \\ & w_t^{(i)} = \frac{P(X_t|Z_t^{(i)}) \cdot P(Z_t^{(i)}|Z_{t-1}^{(i)})}{P(Z_t^{(i)}|Z_{t-1}^{(i)})} \cdot w_{(t-1)}^i = P(X_t|Z_t^{(i)}) \cdot w_{(t-1)}^i \\ & \textbf{end for} \\ & \text{Normalized:} \ w_t^{(i)} = \sum_{i=1}^N w_t^i = 1 \\ & \text{Resampling:} \ w_t^{(i)} = \frac{1}{N} \end{aligned}$

2.5.5 CRF

⁶ HMM:

$$P(X,Y|\lambda) = \prod_{t=1}^{T} P(x_t, y_t|\lambda)$$
(2.155)

$$= \prod_{t=1}^{T} P(y_t|y_{t-1}, \lambda) \cdot P(x_t|y_t, \lambda)$$
 (2.156)

⁶https://zhuanlan.zhihu.com/p/34736498

Graphical comparison among HMMs, MEMMs and CRFs

Figure 2. Graphical structures of simple HMMs (left), MEMMs (center), and the chain-structured case of CRFs (right) for sequences. An open circle indicates that the variable is not generated by the model.

Figure 2.9: HMM \rightarrow MEMM \rightarrow CRF

MEMM: (Label Bias Problem - mass score)

$$P(Y|X,\lambda) = \prod_{t=1}^{T} P(y_t|y_{t-1}, x_{1:T}, \lambda)$$
 (2.157)

無向グラフモデル (MRF) の因数分解の定義:

$$P(X) = \frac{1}{Z} \prod_{i=1}^{K} \psi_i(X_{c_i})$$
 (2.158)

$$= \frac{1}{Z} \prod_{i=1}^{K} \exp\left[-E_i(X_{c_i})\right]$$
 (2.159)

$$= \frac{1}{Z} \exp \sum_{i=1}^{K} F_i(X_{c_i})$$
 (2.160)

Then Linear CRF(PDF):

$$P(Y|X) = \frac{1}{Z} \exp \sum_{t=1}^{T} F_t(y_{t-1}, y_t x_{1:T})$$
(2.161)

$$= \frac{1}{Z} \exp \sum_{t=1}^{T} \left(\triangle_{y_t, x_{1:T}} + \triangle_{y_{t-1}, y_t, x_{1:T}} \right)$$
 (2.162)

$$= \frac{1}{Z} \exp \sum_{t=1}^{T} \left(\sum_{k=1}^{K} \lambda_k I_k(y_{t-1}, y_t, x_{1:T}) + \sum_{l=1}^{L} \eta_l I'_l(y_t, x_{1:T}) \right)$$
(2.163)

(2.164)

Define:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \end{pmatrix}; x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_T \end{pmatrix}; \lambda = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_K \end{pmatrix}; \eta = \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_L \end{pmatrix}; I = \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_K \end{pmatrix} = I(y_{t-1}, y_t, x);$$

$$I' = \begin{pmatrix} I'_1 \\ I'_2 \\ \vdots \\ I'_L \end{pmatrix} = I'(y_t, x)$$

$$P(Y = y | X = x) = \frac{1}{Z(x, \lambda, \eta)} \exp \sum_{t=1}^{T} \left(\lambda^{T} \cdot I(y_{t-1}, y_{t}, x_{1:T}) + \eta^{T} I'(y_{t}, x_{1:T}) \right)$$

$$= \frac{1}{Z(x, \lambda, \eta)} \exp \left(\lambda^{T} \cdot \sum_{t=1}^{T} I(y_{t-1}, y_{t}, x_{1:T}) + \eta^{T} \sum_{t=1}^{T} I'(y_{t}, x_{1:T}) \right)$$
(2.165)

Define:

$$\theta = \begin{pmatrix} \lambda \\ \eta \end{pmatrix}_{K+L}; H = \begin{pmatrix} \sum_{t=1}^{T} I \\ \sum_{t=1}^{T} I' \end{pmatrix}_{K+L}$$

Then:

$$P(Y = y | X = x) = \frac{1}{Z(x, \theta)} \exp \theta^{T} \cdot H(y_{t}, y_{t-1}, x)$$
 (2.167)

$$= \frac{1}{Z(x,\theta)} \exp \langle \theta, H \rangle \tag{2.168}$$

LEARNING AND INFERENCE:

Learning: parameter estimation

Given training data: $\{(x^{(i)}, y^{(i)})\}_{i=1}^N$ then $\hat{\theta} = argmax \prod_{i=1}^N P(y^{(i)}|x^{(i)})$

Inference - marginal problem: $P(y_t|x)$

MAP Inference - decoding: $\hat{y} = \underset{y=y_1, T}{argmax} P(y|x)$

Proof. Inference - marginal problem(sum product): Given $P(Y = y | X = x) \rightarrow P(y_t = i | x)$

$$P(y|x) = \sum_{y_{1:t-1}} \sum_{y_{t+1:T}} \frac{1}{Z} \prod_{t=1}^{T} \psi_t(y_{t-1}, y_t, x)$$

$$= \frac{1}{Z} \sum_{y_{1:t-1}} \psi_1(y_0, y_1, x) \cdot \psi_2(y_1, y_2, x) \cdots \psi_t(y_{t-1}, y_t, x) \cdot \sum_{y_{t+1:T}} \psi_1(y_t, y_{t+1}, x) \cdots \psi_T(y_{T-1}, y_T, x)$$

$$(2.170)$$

Proof. Learning: parameter estimation

$$\hat{\theta} = argmax \prod_{i=1}^{N} P(y^{(i)}|x^{(i)})$$
(2.171)

$$\hat{\lambda}, \hat{\eta} = \underset{\lambda, \eta}{\operatorname{argmax}} \prod_{i=1}^{N} P(y^{(i)}|x^{(i)})$$
(2.172)

$$= \underset{\lambda,\eta}{argmax} \frac{1}{Z(x,\lambda,\eta)} \exp \sum_{t=1}^{T} \left(\lambda^{T} \cdot I(y_{t-1}, y_{t}, x_{1:T}) + \eta^{T} I'(y_{t}, x) \right)$$
(2.173)

$$L(\lambda, \eta, x^{(i)}) = \underset{\lambda, \eta}{argmax} \sum_{i=1}^{N} \left[\log Z(x^{(i)}, \lambda, \eta) + \sum_{t=1}^{T} \left(\lambda^{T} \cdot I(y_{t-1}^{(i)}, y_{t}^{(i)}, x^{(i)}) + \eta^{T} I'(y_{t}^{(i)}, x^{(i)}) \right) \right]$$

$$(2.174)$$

Gradient ascent or \cdots :

$$\begin{split} \nabla_{\lambda} L &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - \nabla_{\lambda} \log Z(x^{(i)}, \lambda, \eta) \bigg) \\ &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - E \Big[\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) \Big] \bigg) \rightarrow log - partition \ function \\ &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - \sum_{y} P(y|x^{(i)}) \cdot I(y_{t-1}, y_{t}, x^{(i)}) \bigg) \\ &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - \sum_{t=1}^{T} \bigg(\sum_{y} P(y|x^{(i)}) \cdot I(y_{t-1}, y_{t}, x^{(i)}) \bigg) \bigg) \\ &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - \sum_{t=1}^{T} \bigg(\sum_{y_{1:t-2}} \sum_{y_{t-1:t}} P(y|x^{(i)}) \cdot I(y_{t-1}, y_{t}, x^{(i)}) \bigg) \bigg) \\ &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - \sum_{t=1}^{T} \sum_{y_{t-1:t}} \bigg(\sum_{y_{1:t-2}} \sum_{y_{t+1:T}} P(y|x^{(i)}) \cdot I(y_{t-1}, y_{t}, x^{(i)}) \bigg) \bigg) \\ &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - \sum_{t=1}^{T} \sum_{y_{t-1:t}} \bigg(P(y_{t-1}, y_{t}, x^{(i)}) \cdot I(y_{t-1}, y_{t}, x^{(i)}) \bigg) \bigg) \\ &= \sum_{i=1}^{N} \bigg(\sum_{t=1}^{T} I(y_{t-1}, y_{t}, x^{(i)}) - \sum_{t=1}^{T} \sum_{y_{t-1:t}} \bigg(marginal \ problem \cdot I(y_{t-1}, y_{t}, x^{(i)}) \bigg) \bigg) \end{aligned} \tag{2.182}$$

2.5.6 RBM

Restricted Boltzmann Machine

Define:

$$X \in R^{p \times 1} = (h, v)^T$$

$$h \in R^{m \times 1}; v \in R^{n \times 1}; p = m + n$$

Boltzmann Distribution(Gibbs Distribution):

$$P(x) = \frac{1}{Z} \exp\{-E(x)\}\$$
 (2.183)

$$P(h,v) = \frac{1}{Z} \exp\{-E(h,v)\}$$
 (2.184)

(2.185)

$$E(h,v) = -(h^T w v + \alpha^T v + \beta^T h)$$
(2.186)

$$= -\left(\sum_{i=1}^{m} \sum_{j=1}^{n} h_i w_{ij} v_j + \sum_{j=1}^{n} \alpha_j v_j + \sum_{i=1}^{m} \beta_i h_i\right)$$
(2.187)

Inference:

Posterior : P(h|v), P(v|h) Define: $h_l \in \{0,1\} \rightarrow Binary RBF$

$$P(h|v) = \prod_{l=1}^{m} P(h_l|v)$$
 (2.188)

$$P(h=1|v) = \frac{P(h_l=1, h_{-l}, v)}{P(h_{-l}, v)}$$
(2.189)

$$= \frac{P(h_l = 1, h_{-l}, v)}{P(h_l = 1, h_{-l}, v) + P(h_l = 0, h_{-l}, v)}$$
(2.190)

(2.191)

Because:

$$E(h,v) = -\left(\sum_{i=1}^{m} \sum_{j=1}^{n} h_i w_{ij} v_j + \sum_{j=1}^{n} \alpha_j v_j + \sum_{i=1}^{m} \beta_i h_i\right)$$
(2.192)

$$= -\left(\sum_{i=1, i\neq j}^{m} \sum_{j=1}^{n} h_i w_{ij} v_j + h_l \sum_{j=1}^{n} w_{ij} v_j + \sum_{j=1}^{n} \alpha_j v_j + \sum_{i=1, i\neq j}^{m} \beta_i h_i + \beta_l h_l \right)$$
(2.193)

(2.194)

Define:

$$h_l \sum_{j=1}^{n} w_{ij} v_j + \beta_l h_l = h_l \left(\sum_{j=1}^{n} w_{ij} v_j + \beta_l \right) = h_l \cdot H_l(v)$$

Therefore:

$$E(h, v) = h_l \cdot H_l(v) + \bar{H}_l(h_{-l}, v)$$

Then:

$$P(h = 1|v) = \frac{\frac{1}{Z} \exp\{H_l(v) + \bar{H}_l(h_{-l}, v)\}}{\frac{1}{Z} \exp\{H_l(v) + \bar{H}_l(h_{-l}, v)\} + \frac{1}{Z} \exp\{\bar{H}_l(h_{-l}, v)\}}$$

$$= \frac{1}{1 + \exp\{-H_l(v)\}}$$
(2.195)

$$= \frac{1}{1 + \exp\left\{-H_l(v)\right\}} \tag{2.196}$$

$$= \sigma(H_l(v)) \tag{2.197}$$

$$= \sigma \left(\sum_{j=1}^{n} w_{lj} v_j + \beta_l \right) \tag{2.198}$$

Inference:

Marginal: P(v)

Define: $W = [w_{ij}]_{m \times n}$: Row vector

$$P(v) = \sum_{h} P(h, v)$$
 (2.199)

$$= \sum_{h} \frac{1}{Z} \exp\{-E(h, v)\}$$
 (2.200)

$$= \sum_{h} \frac{1}{Z} \exp\left\{ \left(h^T w v + \alpha^T v + \beta^T h \right) \right\}$$
 (2.201)

$$= \sum_{h_1} \cdots \sum_{h_m} \exp\left\{h^T w v + \alpha^T v + \beta^T h\right\}$$
 (2.202)

$$= \exp(\alpha^T v) \cdot \sum_{h_1} \cdots \sum_{h_m} \exp\left\{h^T w v + \beta^T h\right\}$$
 (2.203)

$$= \exp(\alpha^T v) \cdot \sum_{h_1} \cdots \sum_{h_m} \exp\left\{\sum_{i=1^m} \left(h_i w_i v + \beta_i h_i\right)\right\}$$
(2.204)

$$= \exp(\alpha^T v) \cdot \sum_{h_1} \cdots \sum_{h_m} \exp\left\{h_i w_i v + \beta_i h_i\right\}$$
 (2.205)

$$= \exp(\alpha^T v) \cdot \sum_{h_1} \exp\left\{h_1 w_1 v + \beta_1 h_1\right\} \cdots \sum_{h_m} \exp\left\{h_m w_m v + \beta_m h_m\right\}$$
 (2.206)

$$= \exp(\alpha^T v) \cdot \left(1 + \exp\left\{w_1 v + \beta_1\right\}\right) \cdots \left(1 + \exp\left\{w_m v + \beta_m\right\}\right)$$
(2.207)

$$= \exp(\alpha^T v) \cdot \exp\left\{\log(1 + \exp\left\{w_1 v + \beta_1\right\}\right)\right\} \cdots \exp\left\{\log(1 + \exp\left\{w_m v + \beta_m\right\}\right)\right\}$$
(2.208)

$$= \exp\left(alpha^T v + \sum_{i=1}^m \log\left(1 + \exp\left\{w_i v + \beta_i\right\}\right)\right)$$
(2.209)

$$= \exp\left(alpha^{T}v + \sum_{i=1}^{m} Softplus(w_{i}v + \beta_{i})\right)$$
(2.210)

7

2.6 Gaussian Graph

2.6.1 Conditional independence

High-dimensional Gaussian distribution pdf:

Define:

 $X_i \sim N(\mu_i, \Sigma_i)$

 $^{^7}$ https://medium.datadriveninvestor.com/an-intuitive-introduction-of-restricted-boltzmann-machine-rbm-14f4382

Figure 2.10: Restricted Boltzmann Machine

$$X = (x_1, x_2, ..., x_p)^T$$

$$P(X) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Local Marginal independent:

$$\Sigma = (\sigma_{ij}) = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \vdots & & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{1p} \end{pmatrix}_{p \times p} \rightarrow x_i \perp \!\!\!\perp x_j \Leftrightarrow \sigma_{ij} = 0$$

$$(2.211)$$

Local Precision matrix (Information matrix):

$$\Lambda = \Sigma^{-1} = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1p} \\ \vdots & & & \vdots \\ \lambda_{p1} & \lambda_{p2} & \cdots & \lambda_{1p} \end{pmatrix}_{\substack{p \times p}} \rightarrow x_i \perp x_j \big|_{-\{x_i, x_j\}} \Leftrightarrow \lambda_{ij} = 0$$
 (2.213)

$$x = (x_i, -\{x_i\})^T = (x_a, x_b)^T \to$$

Woodbury Formula and Schur Complementary: then

$$\forall x_i, x_i \big|_{-\{x_i\}} \sim N(\Sigma_{i \neq j} \frac{\lambda_{ij}}{\lambda_{ii}} x_j, \lambda_{ii}^{-1})$$
(2.214)

2.6.2 Gaussian Bayesian Network

GBN(global) is based on linear Gaussian model (local, Kalman Filter): Linear Gaussian model: $P(x) = \prod_{i=1}^p P(x_i|x_{i-1})$

$$P(x) = N(x|\mu_x, \Sigma_x) \tag{2.215}$$

$$P(y|x) = N(y|Ax + b, \Sigma_y)$$
(2.216)

GBN: $P(x) = \prod_{i=1}^{p} P(x_i | \vec{x}_{pa(i)})$

Define:

 $\mu \in R^{p \times 1}$;

 $\epsilon \in R^{p \times 1};$

 $S = diag(\sigma_i)$

$$P(x) = N(x|\mu_x, \Sigma_x) \tag{2.217}$$

$$P(\vec{x}_i|x_{pa(i)}) = N(X_i|\vec{\mu}_i + w_i^T \vec{x}_{pa(i)}, \sigma_i^2)$$
(2.218)

$$x_i = \mu_i + \sum_{j \in x_{pa(i)}} w_{ij} \cdot (x_j - \mu_j) + \sigma_i \cdot \epsilon_i$$
 (2.219)

Then:

$$x_i - \mu_i = \sum_{j \in x_{pa(i)}} w_{ij} \cdot (x_j - \mu_j) + \sigma_i \cdot \epsilon_i$$
 (2.220)

$$x - \mu = w \cdot (x - \mu) + \epsilon \cdot S \tag{2.221}$$

$$(I - w) \cdot (x - \mu) = \epsilon \cdot S \tag{2.222}$$

$$X - \mu = (I - w)^{-1} \epsilon \cdot S \tag{2.223}$$

$$\Sigma = cov(x) = cov(x - \mu) = cov((I - w)^{-1} \epsilon \cdot S)$$
 (2.224)

2.6.3 Gaussian Markov Network

High-dimensional Gaussian distribution pdf:

$$P(X) = \frac{1}{(2\pi)^{\frac{p}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Factorization of undirected graph model:

$$P(x) = \frac{1}{Z} \prod_{i=1}^{p} \psi_i(x_i) \cdot \prod_{i,j \in X} \psi(x_i, x_j)$$
 (2.225)

$$= \frac{1}{Z} \prod_{i=1}^{p} node \ potential \cdot \prod_{i,j \in X} edge \ potential$$
 (2.226)

(2.227)

Gaussian Markov Network pdf:

Define:

 $x \in R^{P \times 1}; \Lambda \in R^{p \times p}$

 Λ : precision matrix

 $\Lambda \mu$: potential matrix $\to h \in \mathbb{R}^{p \times 1}$

$$P(x) \approx \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$
 (2.228)

$$= \exp\left\{-\frac{1}{2}(x^T \Lambda - \mu^T \Lambda)(x - \mu)\right\} \tag{2.229}$$

$$= \exp\left\{-\frac{1}{2}(x^T\Lambda x - x^T\Lambda \mu - \mu^T\Lambda x + \mu^T\Lambda \mu)\right\} \tag{2.230}$$

$$= \exp\left\{-\frac{1}{2}(x^T \Lambda x - 2\mu^T \Lambda x + \mu^T \Lambda \mu)\right\}$$
 (2.231)

$$\approx \left\{ -\frac{1}{2}x^T \Lambda x + (\Lambda \mu)^T x \right\}$$
 (2.232)

Then:

$$x_i = -\frac{1}{2}x_i^2 \cdot \lambda_{ii} + h_i x_i \to node \ potential$$
 (2.233)

$$x_i, x_j = -\frac{1}{2}x_i^2(\lambda_{ij}x_ix_j + \lambda_{ji}x_jx_i) = -\lambda_{ij}x_ix_j \to edge \ potential$$
 (2.234)

Then: If $\lambda_{ij} == 0$ then $x_i \perp \!\!\!\perp x_j$

2.6.4 Bayesian Linear Regression

Define:

 $X \sim R^{N \times p}, Y \sim R^{N \times 1}$

Model:

$$f(x) = w^T x = x^T w; y = f(x) + \epsilon; \epsilon \sim N(0, \sigma^2)$$

Inference:

$$P(w|Data) = P(w|X,Y) \tag{2.235}$$

$$=\frac{w,Y|X}{P(Y|X)}\tag{2.236}$$

$$= \frac{P(Y|w,X) \cdot P(w)}{\int P(Y|w,X) \cdot P(w)dw}$$
 (2.237)

Because:

$$P(Y|w,X) = \prod_{i=1}^{N} P(y_i|w,x_i)$$
(2.238)

$$= \prod_{i=1}^{N} N(y_i | w^T x_i, \sigma^2) \to likelihood$$
 (2.239)

$$P(w) = N(0, \Sigma_n) \to prior \tag{2.240}$$

Therefore:

$$P(w|Data) \approx \prod_{i=1}^{N} N(y_i|w^T x_i, \sigma^2) \cdot N(0, \Sigma_p)$$
(2.241)

$$Gaussian \approx Gaussian \cdot Gaussian \tag{2.242}$$

$$= \prod_{i=1}^{N} \frac{1}{(2\pi)^{\frac{1}{2}} \sigma} \exp\left\{-\frac{1}{2\sigma^{2}} (y_{i} - w^{T} x_{i})^{2}\right\} \cdot N(0, \Sigma_{p})$$
(2.243)

$$= \frac{1}{(2\pi)^{\frac{N}{2}} \cdot \sigma^N} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - w^T x_i)^2\right\} \cdot N(0, \Sigma_p)$$
 (2.244)

$$= \frac{1}{(2\pi)^{\frac{N}{2}} \cdot \sigma^N} \exp\left\{-\frac{1}{2}(Y - Xw)^T \sigma^{-2} \cdot I(Y - Xw)\right\} \cdot N(0, \Sigma_p) \qquad (2.245)$$

$$\approx N(Xw, \sigma^{-2}I) \cdot N(0, \Sigma_p) \tag{2.246}$$

$$\approx \exp\left\{-\frac{1}{2}(Y - Xw)^T \sigma^{-2} \cdot I(Y - Xw)\right\} \cdot \exp\left\{-\frac{1}{2}w^T \cdot \Sigma_p^{-1}w\right\} \quad (2.247)$$

$$= \exp\left\{-\frac{1}{2\sigma^2}(Y^T - w^T X^T)(Y - Xw) - \frac{1}{2}w^T \Sigma_p^{-1}w\right\}$$
 (2.248)

$$= \exp\left\{-\frac{1}{2\sigma^2}(Y^TY - 2Y^TXw + w^TX^TXw) - \frac{1}{2}w^T\Sigma_p^{-1}w\right\}$$
 (2.249)

(2.250)

Because:

$$\exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)) = \exp(-\frac{1}{2}(x^T \Sigma^{-1} - \mu^T \Sigma^{-1})(x-\mu))$$
 (2.251)

$$= \exp(-\frac{1}{2}(x^T \Sigma^{-1} x - 2\mu^T \Sigma^{-1} x) + \Delta)$$
 (2.252)

Then:

$$Quadratic\ term \rightarrow -\frac{1}{2\sigma^2} \cdot (w^T X^T X w) - \frac{1}{2} w^T \Sigma_p^{-1} w \qquad (2.253)$$

$$= -\frac{1}{2} \left(w^T (\sigma^{-2} x^T x + \Sigma_p^{-1}) w \right) \tag{2.254}$$

$$= -\frac{1}{2} \left(w^T \Sigma_w^{-1} w \right) \tag{2.255}$$

$$\Sigma_w = \sigma^{-2} x^T x + \Sigma_p^{-1} \tag{2.256}$$

One time term
$$\rightarrow -\frac{1}{2\sigma^2} \cdot (-2)Y^T X w$$
 (2.257)

$$= \sigma^{-2} Y^T X w \tag{2.258}$$

$$=\mu_w^T \Sigma_w^{-1} w \tag{2.259}$$

$$\Sigma_w^{-1} \mu_w = \sigma^{-2} X^T Y \tag{2.260}$$

$$\mu_w = \sigma^{-2} \Sigma_w X^T Y \tag{2.261}$$

Prediction:

Given: $x^* \to y^*$

$$P(y^*|Data, x^*) = \int_w P(y^*|w, Data, x^*) \cdot P(w|Data, x^*) dw$$
 (2.262)

Because:

$$w \sim N(\mu_w, \Sigma_w) \to x^{*T} w \sim N(x^{*T} \mu_w, x^{*T} \Sigma_w x^*)$$
 (2.263)

Then:

$$P(y^*|Data, x^*) = N(x^{*T}\mu_w, x^{*T}\Sigma_w x^* + \sigma^2)$$
(2.264)

2.6.5 Gaussian Process Regression

2.7 Learning

2.7.1 Introduction

$$\begin{cases} Structure \ learning \\ Parameter \ learning : \begin{cases} Complete \ data \\ Hidden \ variable : EM \end{cases}$$

2.7.2 Proof of convergence of EM

$$\theta_{MLE} = \underset{\theta}{argmax} \log p(x|\theta) \tag{2.265}$$

$$init(z) \downarrow$$
 (2.266)

$$\theta^{(t+1)} = \underset{\theta}{\operatorname{argmax}} \int_{z} \log P(x, z|\theta) \cdot P(z|x, \theta^{(t)}) dz \tag{2.267}$$

$$= \mathop{argmax}_{\theta} E_{z|x\theta^{(t)}}[\log P(x, z|\theta)] \tag{2.268}$$

Proof. $\log p(x|\theta^t) \le \log p(x|\theta^{t+1})$

$$\log p(x|\theta) = \log p(x, z|\theta) - \log p(z|x, \theta) \tag{2.269}$$

$$\int_{z} p(z|x,\theta^{t}) \cdot \log p(x|\theta) dz = \int_{z} p(z|x,\theta^{t}) \log p(x,z|\theta) dz - \int_{z} p(z|x,\theta^{t}) \log p(z|x,\theta) dz$$
(2.270)

$$= Q(\theta, \theta^t) - H(\theta, \theta^t) \tag{2.271}$$

$$\therefore \theta^{(t+1)} = \underset{\theta}{argmax} \, E_{z|x\theta^{(t)}}[\log P(x, z|\theta)] \tag{2.272}$$

$$\therefore Q(\theta^{t+1}, \theta^t) \ge Q(\theta^t, \theta^t) \tag{2.273}$$

(2.274)

$$\therefore H(\theta^{t+1}, \theta^t) - H(\theta^t, \theta^t) = \int_z p(z|x, \theta^t) \log p(x, z|\theta^{t+1}) dz - \int_z p(z|x, \theta^t) \log p(z|x, \theta^t) dz$$

$$(2.275)$$

$$= \int_{z} p(z|x, \theta^{t}) \cdot \log \frac{p(z|x, \theta^{t+1})}{p(z|x, \theta^{t})}$$

$$(2.276)$$

$$= -KL(p(z|x, \theta^t||p(z|x, \theta^{t+1}))$$

$$(2.277)$$

$$\leq 0 \ (or \ Jensen's \ inequality)$$
 (2.278)

$$\therefore H(\theta^{t+1}, \theta^t) \ge H(\theta^t, \theta^t) \tag{2.279}$$

Reference: 8

8https://people.duke.edu/ccc14/sta-663/EMAlgorithm.html

Figure 2.11: Jensen's inequality

2.7.3 ELBO+KL For EM

EM(Expectation maximization)Algorithm は座標昇順法 (Coordinate descent) のような反復更新。実は ELBO(Evidence lower bound) を最大化します。

$$\theta^{(t+1)} = \underset{\theta}{argmax} \int_{z} \log P(x, z | \theta) \cdot P(z | x, \theta^{(t)}) dz$$
 (2.280)

E-step: $p(z|x, \theta^t) \to E_{z|x, \theta^t}[\log p(x, z|\theta)];$ M-step: $\theta^{t+1} = \mathop{argmax}_{\theta} E_{z|x, \theta^t}[\log p(x, z|\theta)]$

Proof. $\log p(x|\theta) = ELBO + KL(q||p)$

$$\log p(x|\theta) = \log p(x, z|\theta) - \log p(z|x, \theta)$$
(2.281)

$$= \log \frac{p(x, z|\theta)}{q(z)} - \log \frac{p(z|x, \theta)}{q(z)}$$
(2.282)

$$\int_{z} q(z) \cdot \log p(x|\theta) dz = \int q(z) \cdot \log \frac{p(x,z|\theta)}{q(z)} dz - \int q(z) \cdot \log \frac{p(z|x,\theta)}{q(z)} dz$$
 (2.283)

(2.284)

maximize evidence lower bound:

$$\hat{\theta} = \underset{\theta}{argmax} \int q(z) \cdot \log \frac{p(x, z|\theta)}{q(z)} dz$$
 (2.285)

$$= \underset{\theta}{argmax} \int q(z|x, \theta^t) \cdot \log \frac{p(x, z|\theta)}{q(z|x, \theta^t)} dz$$
 (2.286)

$$= \underset{\theta}{\operatorname{argmax}} \int q(z|x, \theta^t) \cdot \log p(x, z|\theta) dz \tag{2.287}$$

Reference: 9

⁹https://people.duke.edu/ccc14/sta-663/EMAlgorithm.html

Figure 2.12: Expectation maximization

2.7.4 Jensen's inequality For EM

CS229-Andrew Ng

Proof.

$$\log p(x|\theta) = \log \int_{z} p(x, z|\theta) dz$$
 (2.288)

$$= \log \int_{z} \frac{p(x, z|\theta)}{q(z)} \cdot q(z) dz \qquad (2.289)$$

$$= \log E_{q(z)} \left[\frac{p(x, z|\theta)}{q(z)} \right] \tag{2.290}$$

$$\geq E_{q(z)} \left[\log \frac{p(x, z|\theta)}{q(z)} \right] \tag{2.291}$$

If $\frac{p(x,z|\theta)}{q(z)} == C$ then "=";

$$\therefore q(z) = \frac{1}{c}p(x, z|\theta) \tag{2.292}$$

$$1 = \int_{z} q(z)dz = \int_{z} \frac{1}{c} p(x, z|\theta)dz$$
 (2.293)

$$= \frac{1}{c} \int_{z} p(x, z|\theta) dz \tag{2.294}$$

$$1 = \frac{1}{c}p(x|\theta)dz \tag{2.295}$$

$$c = p(x|\theta) \tag{2.296}$$

$$\therefore q(z) = \frac{1}{p(x|\theta)} p(x, z|\theta) = p(z|x, \theta)$$
 (2.297)

(2.298)

$$\therefore \log p(x|\theta) = ELBO + p(z|x,\theta)$$
 (2.299)

$$= E_{q(z)} \left[\log \frac{p(x, z|\theta)}{q(z)} \right] + p(z|x, \theta)$$
 (2.300)

Reference: 10

 $f(v_2)$ $f(\alpha v_1 + (1 - \alpha)v_2)$ $\alpha f(v_1) + (1 - \alpha)f(v_2)$ $f(v_1)$ $v_1 \quad \alpha v_1 + (1 - \alpha)v_2 \quad v_2$

Figure 2.13: Jensen's inequality

¹⁰http://willwolf.io/2018/11/11/em-for-lda/