IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) Recordable optical record carrier comprising:
- a first transparent substrate layer (1),
- a first semi-transparent recordable information layer (2) including an organic dye material having a high data storage capacity,
- a second transparent substrate layer (4),
- a second recordable information layer (5) including an organic dye material having a lower data storage capacity than said first information layer (2), and
- a cover layer (6).
- 2. (original) Record carrier as claimed in claim 1, wherein said first information layer (2) is an information layer as used as L0 layer in a dual-layer DVD+R disc.
- 3. (currently amended) Record carrier as claimed in claim 1 exp. wherein said first information layer (2) has a first complex refractive index $n^{-}\lambda 1 = n \lambda 1 i k \lambda 1$ at a first wavelength $\lambda 1$ and a second complex refractive index $n^{-}\lambda 2 = n \lambda 2 i k \lambda 2$ at a second wavelength $\lambda 2$, a thickness d, an optical reflection value R1 at said first wavelength $\lambda 1$ and an optical transmission value T2 at said second wavelength $\lambda 2$, wherein the following conditions are fulfilled: T2 \geq 0.76 , R1 \geq 0.15, n1 \geq 2.0, k1 < 0.3, k2 < 0.1 and d is in the range of $\lambda 1/8n1 \leq d \leq 5\lambda 1/8n1$, $\lambda 1$ being the wavelength of a radiation beam used for recording information in the first information layer (2) and $\lambda 2$ being the wavelength of a radiation beam used for recording information in said second information layer (5).

- 4. (original) Record carrier as claimed in claim 1, wherein said first substrate layer (1) comprises a guide groove having a depth g, the guide groove being present at the side of the substrate layer adjacent said first information layer and wherein said first information layer (2) has a complex refractive index $n^{\sim} = n i k$ at a wavelength λ of a radiation beam used for recording information, a thickness dRG in the groove portion and a thickness dRL in the portion between the grooves, said groove depth g being in the range $(\lambda/650)*50$ nm < g < $(\lambda/650)*180$ nm with λ expressed in nm.
- 5. (original) Record carrier as claimed in claim 4, wherein the thickness dRG of said first information layer (2) fulfils the condition 145 nm \leq dRG \cdot n < 245 nm.
- 6. (currently amended) Record carrier as claimed in claim 3 or 4, wherein the first wavelength $\lambda 1$ is approximately 650 nm and the second wavelength $\lambda 2$ is approximately 780 nm.
- 7. (original) Record carrier as claimed in claim 1, wherein said second information layer (5) is an information layer as used in a CD-R disc.
- 8. (original) Record carrier as claimed in claim 1, wherein said first and said second substrate layers (2, 5) have a thickness in the range of 0.55 to 0.65 mm, in particular of substantially 0.6 mm.
- 9. (original) Record carrier as claimed in claim 1, further comprising an additional semi-transparent reflector layer (7)

between said first information layer (2) and said second substrate layer (4), in particular a dielectric mirror layer made of SiO2 or SiC or a metallic mirror layer made of Ag.