

Very low drop voltage regulators with inhibit

Datasheet - production data

Features

- Very low dropout voltage (0.4 V)
- Very low quiescent current (typ. 50 μA in OFF mode, 500 μA in ON mode)
- Output current up to 500 mA
- Logic-controlled electronic shutdown
- Output voltages of 2.5; 3.3; 5; 8 V
- Internal current and thermal limit
- Only 2.2 μF for stability
- Available in ± 2 % accuracy at 25 °C
- Supply voltage rejection: 70 db (typ.)
- Temperature range: 40 to 125 °C

Description

The KF series are very low drop regulators available in SO-8 and DPAK packages and in a wide range of output voltages.

The very low dropout voltage (0.4 V) and the very low quiescent current make them particularly suitable for low noise, low power applications and especially in battery powered systems.

A shutdown logic control function is available (pin 5, TTL compatible). This means that when the device is used as a local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. It requires only a 2.2 µF capacitor for stability allowing space and cost saving.

Table 1. Device summary

Orde	Quitnut voltages	
SO-8 (tape and reel)	DPAK (tape and reel)	Output voltages
KF25BD-TR	KF25BDT-TR	2.5 V
KF33BD-TR	KF33BDT-TR	3.3 V
KF50BD-TR	KF50BDT-TR	5 V
	KF80BDT-TR	8 V

Contents KFXX

Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Electrical characteristics6
5	Typical performance characteristics
6	Package mechanical data
7	Packaging mechanical data
8	Revision history

KFXX Diagram

1 Diagram

GND

VIN

CURRENT

LIMIT

REFERENCE

VOLTAGE

REFERENCE

VOLTAGE

TERM. PROTEC.

Figure 1. Schematic diagram

CS12610

Pin configuration KFXX

2 Pin configuration

Figure 2. Pin connections (top view)

57

KFXX Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _I	DC input voltage	- 0.5 to 20	V
I _O	Output current Internally Limit		
P _{TOT}	Power dissipation	Internally Limited	
T _{STG}	T _{STG} Storage temperature range		°C
T _{OP}	Operating junction temperature range	- 40 to 125	°C

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	DPAK	SO-8	Unit
R _{thJC}	Thermal resistance junction-case	8	20	°C/W
R _{thJA}	Thermal resistance junction-ambient	100	55	°C/W

Figure 3. Test circuit

Electrical characteristics KFXX

4 Electrical characteristics

Refer to the test circuits, T $_J$ = 25 °C, C $_I$ = 0.1 $\mu F,$ C $_O$ = 2.2 μF unless otherwise specified.

Table 4. Electrical characteristics ($V_O = 2.5 V$)

Symbol	Parameter	Test condition	s	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$		2.45	2.5	2.55	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$	-25 to 85°C	2.4		2.6	V
VI	Operating input voltage	I _O = 500 mA				20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 3.5 \text{ to } 20 \text{ V}, I_O = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_{I} = 3.8 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$			2	50	mV
		$V_{I} = 3.5 \text{ to } 20V, I_{O} = 0\text{mA}$	ONLMODE		0.5	1	A
I _d	Quiescent current	$V_{I} = 3.8 \text{ to } 20V, I_{O} = 500\text{mA}$	ON MODE			12	mA
		V _I = 6 V	V OFF MODE		50	100	μA
		$I_{O} = 5 \text{ mA}, V_{I} = 4.5 \pm 1 \text{ V}$	f = 120 Hz		82		
SVR	Supply voltage rejection		f = 1 kHz		77		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz	•		50		μV
	Danasataaltaas	I _O = 200 mA			0.2	0.35	
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V_{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	V _I = 6 V, V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	500 mA	2	10		μF

Refer to the test circuits, T_J = 25 °C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified.

Table 5. Electrical characteristics (V_O = 3.3 V)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$		3.234	3.3	3.366	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$	-25 to 85°C	3.168		3.432	V
VI	Operating input voltage	I _O = 500 mA				20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 4.3 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_{I} = 4.6 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$			2	50	mV
		$V_{I} = 4.3 \text{ to } 20V, I_{O} = 0\text{mA}$	ON MODE		0.5	1	A
I _d	Quiescent current	$V_I = 4.6 \text{ to } 20V, I_O = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V OFF MODE			50	100	μA
		$I_{O} = 5 \text{ mA}, V_{I} = 5.3 \pm 1 \text{ V}$	f = 120 Hz		80		
SVR	Supply voltage rejection		f = 1 kHz		75		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz	•		50		μV
.,	D !!	I _O = 200 mA			0.2	0.35	
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125^{\circ}\text{C}$	T _a = -40 to 125°C			0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_{O} = 0$ to	500 mA	2	10		μF

Electrical characteristics KFXX

Refer to the test circuits, T_J = 25 °C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified.

Table 6. Electrical characteristics ($V_O = 5 V$)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 7 \text{ V}$		4.9	5	5.1	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = -20 \text{ mA}$	25 to 85°C	4.8		5.2	v
VI	Operating input voltage	I _O = 500 mA				20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 6 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			3	18	mV
ΔV_{O}	Load regulation	$V_1 = 6.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$			2	50	mV
		$V_1 = 6 \text{ to } 20V, I_O = 0mA$	ONIMODE		0.5	1	A
I _d	Quiescent current	$V_1 = 6.3 \text{ to } 20V, I_0 = 500 \text{mA}$	ON MODE			12	mA
		V _I = 6 V	I = 6 V OFF MODE		50	100	μA
		$I_{O} = 5 \text{ mA}, V_{I} = 7 \pm 1 \text{ V}$ $f = 1 \text{ kHz}$	f = 120 Hz		76		
SVR	Supply voltage rejection		f = 1 kHz		71		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV
.,	5	I _O = 200 mA			0.2	0.35	.,
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	V _I = 6 V, V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	500 mA	2	10		μF

Refer to the test circuits, T_J = 25 °C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified.

Table 7. Electrical characteristics ($V_O = 8 V$)

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
W	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}$		7.84	8	8.16	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 10 \text{ V}, T_a =$	-25 to 85°C	7.68		8.32	V
VI	Operating input voltage	I _O = 500 mA				20	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 9 \text{ to } 20 \text{ V}, I_0 = 5 \text{ mA}$			4	24	mV
ΔV_{O}	Load regulation	$V_1 = 9.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$			2	50	mV
		$V_1 = 9 \text{ to } 20V, I_O = 0mA$	ONLMODE		0.7	1.5	^
I _d	Quiescent current	$V_1 = 9.3 \text{ to } 20V, I_O = 500 \text{mA}$	ON MODE			12	- mA
		V _I = 9 V	OFF MODE		70	140	μΑ
		$I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$	f = 120 Hz		72		
SVR	Supply voltage rejection		f = 1 kHz		67		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 KHz			50		μV
.,		I _O = 200 mA			0.2	0.35	.,
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125°C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125°C		2			V
I _I	Control input current	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}$			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

5 Typical performance characteristics

Unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$.

Figure 4. Dropout voltage vs. output current

Figure 5. Dropout voltage vs. temperature

Figure 6. Supply current vs. input voltage (I_{OUT} = 500 mA)

Figure 7. Supply current vs. input voltage (I_{OUT} = 0 mA)

Figure 8. Short circuit current vs. input voltage

Figure 9. SVR vs. output current (f= 120 Hz)

577

10/21

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

E -THERMAL PAD c2 E1 L2 D1 D Н <u>L4</u> A1 **b**(2x) R c SEATING PLANE <u>A2</u> (L1) *V2* GAUGE PLANE 0,25 0068772_M_type_

Figure 10. DPAK (TO-252) type A drawing

Table 8. DPAK (TO-252) type A mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
А	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1		5.10	
E	6.40		6.60
E1		4.70	
е		2.28	
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
(L1)		2.80	
L2		0.80	
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 11. DPAK (TO-252) type A footprint ^(a)

a. All dimensions are in millimeters

□ ccc C 0,25 mm GAGE PLANE C SECTION B-B BASE METAL -0016023_G_FU

Figure 12. SO-8 drawing

Table 9. SO-8 mechanical data

Dim.	mm					
Dim.	Min.	Тур.	Max.			
А			1.75			
A1	0.10		0.25			
A2	1.25					
b	0.31		0.51			
b1	0.28		0.48			
С	0.10		0.25			
c1	0.10		0.23			
D	4.80	4.90	5.00			
Е	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
е		1.27				
h	0.25		0.50			
L	0.40		1.27			
L1		1.04				
L2		0.25				

Table 9. SO-8 mechanical data (continued)

Dim.		mm	
Dilli.	Min.	Тур.	Max.
k	0°		8°
ccc			0.10

Figure 13. SO-8 recommended footprint^(b)

b. All dimensions are in millimeters.

7 Packaging mechanical data

To pitches cumulative tolerance on tape +/- 0.2 mm

Top cover PO D P2

For machine ref. only including draft and radii concentric around B0

User direction of feed

Bending radius

AM08852v1

Figure 14. Tape for DPAK (TO-252)

Figure 15. Reel for DPAK (TO-252)

Table 10. DPAK (TO-252) tape and reel mechanical data

Таре				Reel		
Dim.	n	nm	Dim.	mm		
Dilli.	Min.	Max.	Dilli.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
E	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1			•	
R	40					
Т	0.25	0.35				
W	15.7	16.3				

18/21 DocID4337 Rev 14

Figure 16. SO-8 tape and reel dimensions

Table 11. SO-8 tape and reel mechanical data

Dim.	mm		
	Min.	Тур.	Max.
Α			330
С	12.8		13.2
D	20.2		
N	60		
Т			22.4
Ao	8.1		8.5
Во	5.5		5.9
Ko	2.1		2.3
Po	3.9		4.1
Р	7.9		8.1

Revision history KFXX

8 Revision history

Table 12. Document revision history

Date	Revision	Changes
06-Jun-2007	9	Order codes updated.
14-Dec-2007	10	Modified: Table 1.
21-Feb-2008	11	Modified: Table 1.
23-Oct-2012	12	Change title description in cover page. Updated: Table 1 on page 1. Added: R _{thJA} value for DPAK and SO-8 Table 3 on page 5. Modified: titles Figure 6 and Figure 7 on page 10.
19-Mar-2014 13		The part numbers KF25B, KF33B, KF50B, KF80B changed to KF. Updated Section 6: Package mechanical data and Section 7: Packaging mechanical data. Minor text changes.
16-Feb-2018	14	Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

KF25BD-TR KF50BD-TR KF33BD-TR KF25BDT-TR KF80BDT-TR KF33BDT-TR KF50BDT-TR