Algebra I - Matrični račun 2020/2021

MATRIKE - dodatne vaje

1. Kjer je to mogoče, izračunajte vrednost matričnega izraza, za matrike A,B in C spodaj, kjer izračun ni možen pa utemeljite zakaj:

$$A = \begin{bmatrix} 1 & -2 \\ -3 & 4 \\ 5 & -6 \\ -7 & 8 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 & -5 & 2 \\ 1 & 0 & 4 & -1 \\ -2 & -1 & 0 & 7 \end{bmatrix} \text{ in } C = \begin{bmatrix} -1 & 2 \\ -2 & 1 \\ 0 & -1 \end{bmatrix}.$$

- (a) CA B
- (b) $-AB + C^T$
- (c) $-B^TC + A$

Rešitev: (a) ni možno,(b) ni možno,(c)
$$\begin{bmatrix} 4 & 0 & 8 & -7 \\ -7 & -3 & 0 & 12 \end{bmatrix}^T$$
.

2. Dane so matrike $A=\left[\begin{array}{cc} 2 & -1 \\ 0 & 4 \end{array}\right],\, B=\left[\begin{array}{cc} x & 0 \\ -3 & y \end{array}\right]$ in $C=\left[\begin{array}{cc} 5 & -2 \\ -12 & 8 \end{array}\right]$.

Določite x in y v matriki B tako, da bo veljalo AB = C.

Rešitev:
$$x = 1, y = 2$$

3. Dana je matrika

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

Izračunaj A^{2001} .

(Namig: Izračunaj prvih nekaj potenc matrike A.)

Rešitev:
$$A^{2001} = A^3 = I$$

4. Izračunajte determinanto naslednjih matrik:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 2 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 & 3 \\ 2 & 0 & 1 & -2 \\ 1 & 2 & -1 & 3 \\ 1 & 2 & 12 & 1 \end{bmatrix} \text{ in } C = \begin{bmatrix} 1 & 1 & 2 \\ 2 & -1 & 2 \\ 4 & 1 & 4 \end{bmatrix}$$

Rešitev:
$$\det A = 1$$
, $\det B = -32$, $\det C = 6$

5. V matriki

$$A = \left[\begin{array}{ccc} z & 0 & 0 \\ 0 & -z & 1 \\ 1 & z & z+1 \end{array} \right]$$

določite $z \in \mathbb{Z}$ tako, da bo det A = 0.

Rešitev:
$$z_1 = 0, z_2 = -2$$

6. Določite tako število $x \in \mathbb{R}$, da bo veljalo det (AB) = 0, če je

$$A = \left[\begin{array}{ccc} x & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & x \end{array} \right] \text{ in } B = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right].$$

1

7. Dani sta matriki
$$A=\begin{bmatrix}2&3&1\\-2&2&4\\1&2&1\end{bmatrix}$$
 in $B=\begin{bmatrix}1&6&2\\-4&0&8\\2&4&1\end{bmatrix}$. Rešite matrični enačbi

(a)
$$2AX - 3A = BX$$

(b)
$$2AX - BA = BX$$

Rešitev: (a)
$$X = \begin{bmatrix} 2 & 3 & 1 \\ -\frac{3}{2} & \frac{3}{2} & 3 \\ 3 & 6 & 3 \end{bmatrix}$$
, (b) $X = \begin{bmatrix} -\frac{8}{3} & \frac{19}{3} & 9 \\ 0 & 1 & 1 \\ -3 & 16 & 19 \end{bmatrix}$

8. Določite rang matrike A v odvisnosti od vrednosti $\alpha \in \mathbb{R}$.

$$A = \left[\begin{array}{rrrr} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ 9 & 9 & \alpha & 3 \end{array} \right]$$

$$Re \v{sitev} x(A) = \begin{cases} 2 & ; \v{e} ie \ \alpha = -6 \\ 3 & ; sicer \end{cases}$$

9. Za dano matriko

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha - 2 & 2 \\ 0 & \beta - 1 & \alpha + 2 \\ 0 & 0 & 3 \end{bmatrix}$$

- (a) določite vrednosti $\alpha, \beta \in \mathbb{R}$ tako, da bo r(A) = 1 ali utemeljite, zakaj to ni mogoče.
- (b) določite vrednosti $\alpha, \beta \in \mathbb{R}$ tako, da bo r(A) = 2 ali utemeljite, zakaj to ni mogoče.

Rešitev: (a) Ni možno, ker sta prva in zadnja vrstica

 $linearno\ neodvisni\ bo\ r(A) \geq 2,$

(b)
$$\alpha = 1$$
 in $\beta = 2$.

10. Koliko rešitev imajo naslednji sistemi enačb? V primeru da obstaja kakšna rešitev, poiščite vse rešitve sistema.

Rešitev: eno:
$$x_1 = 3$$
, $x_2 = -2$, $x_3 = 2$

Rešitev: eno:
$$x_1 = 0$$
, $x_2 = -\frac{1}{2}$, $x_3 = 1$

Rešitev: nobene

Rešitev: neskončno mnogo: $x_1 = 12 - 3x_2$, x_2 poljuben, $x_3 = 4 + 2x_2$

Rešitev: eno:
$$x = 29, y = 16, z = 3$$

Rešitev: neskončno mnogo: $x=\frac{1}{3}-2w,\,y=-\frac{2}{3},\,z=\frac{8}{3}+w,\,w$ poljuben

11. Koliko rešitev ima naslednji sistem linearnih enačb? Upoštevajte vse možne vrednosti $\beta \in \mathbb{R}$ in rešitve poiščite, ko obstajajo.

Rešitev: za $\beta = 2$ sistem nima rešitve,

$$za \ \beta=1 \ ima \ sistem \ 2$$
-parametrično rešitev: $t=2, \ x=2-y-z,$

za vse ostale vrednosti β ima sistem enolično rešitev: $x=\frac{4\beta^2-18\beta+18}{(\beta-1)(\beta-2)}, y=0, z=\frac{4}{\beta-1}, t=\frac{2}{\beta-2}$

12. Dan je sistem linearnih enačb

- (a) Za katere vrednosti $\alpha, \beta \in \mathbb{R}$ bo sistem protisloven?
- (b) Za katere vrednosti $\alpha, \beta \in \mathbb{R}$ bo imel sistem neskončno mnogo rešitev?
- (c) Poiščite vse rešitve sistema, če je $\alpha = 3$ in $\beta = 1$.

Rešitev: (a)
$$\alpha = -1$$
 in $\beta \neq 2$, (b) $\alpha = -1$ in $\beta = 2$

(c)
$$x = -3$$
, $y = 5$, $z = -\frac{3}{2}$ in $w = -\frac{1}{2}$