

LÓGICA DIGITAL (1001351)

EXPERIMENTO NR.11

Máquina de Estado Finito ¹

1 Instruções Gerais

- Grupos definidos no AVA, só incluir os nomes de quem efetivamente participou;
- Ler atentamente todo o procedimento desta experiência antes de realizá-la;

2 Objetivos da Prática

- Implementar um circuito sequencial síncrono como o da Figura 1.
 - Simulação inicialmente apenas da máquina de estados finitos;
 - Implementação do projeto no Kit de desenvolvimento FPGA.

Figura 1: Máquina de Estados Finitos desejada

¹Revisão 4 de setembro de 2024: Prof. Mauricio Figueiredo e Prof. Ricardo Menotti.

UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Exatas e Tecnologia Departamento de Computação

- Detalhamento do funcionamento:
 - A máquina possui três bits de estado;
 - O estado atual é mostrado no display de 7 segmentos;
 - É possível carregar qualquer estado inicialmente, informando o valor em SW[2:0] e pressionando KEY[0] (aguardando o tempo necessário para o relógio de 1Hz completar o período);
 - A mudança de estado ocorre automaticamente a cada ≈1Hz na sequência indicada;
 - Caso SW[3] seja acionada, a mudança passa a ocorrer na sequência contrária às setas (apenas no ciclo);

3 Procedimentos Experimentais

Para todo o laboratório, use um único arquivo Verilog para poder enviá-lo posteriormente (não é necessário enviar o arquivo de testes):

- 1) Crie um projeto com o código da máquina de estados, simulando seu comportamento em todas as transições (5 pontos);
- 2) Implemente o projeto na placa conforme solicitado (5 pontos).

Referências

- [1] https://github.com/menotti/ld/tree/main/labs
- [2] https://github.com/menotti/fpga/tree/main/labs
- $[3] \ https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English& CategoryNo=163&No=921$
 - [4] https://digilent.com/reference/programmable-logic/zybo-z7/start