Semaine n° 9: du 13 novembre au 17 novembre

Lundi 13 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 2 : Relation d'équivalence ; exemples ; classes d'équivalence.
 - Partie 3: Relation d'ordre; relation d'ordre totale, relation d'ordre partielle.

Mardi 14 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 4.1 : Partie majorée, minorée, bornée; majorant, minorant.
 - Partie 4.2 : Plus grand élément, plus petit élément.
 - Partie 4.3 : Borne inférieure, borne supérieure.
- Exercices à corriger en classe
 - Feuille d'exercices nº 8 : exercices 5 et 9.

Jeudi 16 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 4.4 : Fonction majorée, minorée, bornée; maximum, minimum; borne supérieure.
 - Partie 5: Relation d'ordre sur \mathbb{N} .
 - Partie 6.1 : Relation d'ordre sur $\mathbb R$ et opérations. Résolution d'inéquations. Droite réelle achevée.
 - Partie 6.2 : Propriété de la borne supérieure.
- Exercices à corriger en classe
 - Feuille d'exercices nº 9 : exercices 3, 5, 8, 9.

Vendredi 17 novembre

- Cours à préparer : Chapitre X Relations d'ordre et d'équivalence
 - Partie 6.3 : Partie entière ; partie dense de \mathbb{R} , densité de \mathbb{Q} et de $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R} ; valeur approchée, approximations décimales d'un réel.
 - Partie 6.4 : Intervalles de \mathbb{R} ; caractérisation des intervalles.

Échauffements

Mardi 14 novembre

• Résoudre sur \mathbb{R} l'équation différentielle $y' + 2xy = e^{-x^2}$.

• Cocher toutes les assertions vraies : Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- \square S'il existe $B \in \mathscr{M}_n(\mathbb{K})$ telle que $AB = BA = \mathrm{Id}_n$, alors A est inversible;
- \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ telle que $BA = \mathrm{Id}_n$, alors A est inversible;
- \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que AB = 0, alors A est nulle;
- \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que AB = BA = 0, alors A est nulle;
- \square S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que AB = 0, alors A ne peut pas être inversible;
- \square Si $A \neq 0$, il existe $B \in \mathcal{M}_n(\mathbb{K})$ différente de Id_n telle que $AB \neq 0$.

Jeudi 16 novembre

- Inverser la matrice $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & 0 \end{pmatrix}$.
- Cocher toutes les assertions vraies : Soient x et y deux réels tels que $-1 < x \le 3$ et $y \in [-1, 1]$. Alors

$$\Box -2 \leqslant x + y \leqslant 4.$$

$$\square \ 0 < x - y < 2.$$

$$\Box 1 < \frac{x}{u} \leqslant 3$$

$$\Box \ 1 < \frac{x}{y} \leqslant 3$$
$$\Box \ 0 \leqslant x^2 + y^2 \leqslant 10.$$

Vendredi 17 novembre

- Effectuer le produit suivant en n'utilisant que des opérations élémentaires sur les lignes et colonnes des matrices : $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 & 8 \\ -7 & 9 & 10 \\ 1 & 5 & -6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}.$
- Cocher toutes les assertions vraies : Soit $A \subset \mathbb{R}$ ayant une borne supérieure notée a.

$$\Box \ a \in A.$$

$$\square \ a \not\in A$$
.

$$\sqcup a \notin A$$
.

$$\square$$
 si $x < a, x \in A$.

$$\square$$
 si $x > a, x \notin A$.

$$\square \text{ pour tout } \varepsilon > 0, \]a - \varepsilon, a + \varepsilon [\cap A \neq \varnothing. \qquad \qquad \square \text{ si } x < a, \text{ il existe } y \in A \text{ tel que } x < y \leqslant a.$$