Komplexifizierung euklidischer Vektorräume

Jendrik Stelzner

17. Juni 2016

Zusammenfassung

Wir geben einen kurzen Überblick über die Komplexifizierung euklidischer Vektorräume, und zeigen einige Kompatiblitäten von Orthogonalitäten und Adjungierten mit dieser Komplexifizierung an. Anschließend folgern wir den Fall $\mathbb{K}=\mathbb{R}$ von für Aufgabe 5 von Zettel 6 aus dem Fall $\mathbb{K}=\mathbb{C}$.

1 Vorbereitung

Bevor wir uns dem eigentlichen Thema zuwenden, zeigen wir noch einige nützliche Aussagen über die Komplexifizierung reeller Vektorräume. Im Folgenden seien U,V und W drei \mathbb{R} -Vektorräume.

Proposition 1. 1. Sind $f: U \to V$ und $g: V \to W$ zwei \mathbb{R} -lineare Abbildungen, so ist

$$(g \circ f)_{\mathbb{C}} = g_{\mathbb{C}} \circ f_{\mathbb{C}}.$$

2. Es gilt $(id_V)_{\mathbb{C}} = id_{V_{\mathbb{C}}}$.

Beweis. 1. Per Definition von $f_{\mathbb{C}}$ und $g_{\mathbb{C}}$ kommutiert das folgende Diagram:

$$\begin{array}{ccc} U & \stackrel{f}{\longrightarrow} V & \stackrel{g}{\longrightarrow} W \\ \downarrow^{\iota_U} & \downarrow^{\iota_V} & \downarrow^{\iota_W} \\ U_{\mathbb{C}} & \stackrel{f_{\mathbb{C}}}{\longrightarrow} V_{\mathbb{C}} & \stackrel{g_{\mathbb{C}}}{\longrightarrow} W_{\mathbb{C}} \end{array}$$

Dabei bezeichnen die vertikalen Pfeile die jeweiligen kanonische Inklusionen. Indem wir den mittleren Teils des Diagrams weglassen, erhalten wir das folgende kommutative Diagram:

$$U \xrightarrow{g \circ f} W$$

$$\downarrow^{\iota_U} \qquad \downarrow^{\iota_W}$$

$$U_{\mathbb{C}} \xrightarrow{g_{\mathbb{C}} \circ f_{\mathbb{C}}} W_{\mathbb{C}}$$

Also erfüllt $f_{\mathbb{C}} \circ g_{\mathbb{C}}$ die definierene Eigenschaft von $(f \circ g)_{\mathbb{C}}$.

2. Die Abbildung i
d $_{V_{\mathbb C}}$ erfüllt die definierende Eigenschaft von (
id $_V)_{\mathbb C},$ da das folgende Diagram kommutiert:

$$\begin{array}{c} V \stackrel{\operatorname{id}_V}{\longrightarrow} V \\ \downarrow^{\iota_V} & \downarrow^{\iota_V} \\ V_{\mathbb{C}} \stackrel{\operatorname{id}_{V_{\mathbb{C}}}}{\longrightarrow} V_{\mathbb{C}} \end{array}$$

Bemerkung 2. Wegen den Eigenschaften aus Proposition 1 bezeichnet man die Komplexifizierung als *(kovariant) funktoriell.* Man vergleiche dies etwa mit Aufgabe 1 vom 12. Zettel aus Lineare Algebra I.

Lemma 3. Sind $f, g: V \to W$ zwei \mathbb{R} -lineare Abbildungen, so ist genau dann f = g, wenn $f_{\mathbb{C}} = g_{\mathbb{C}}$.

Beweis. Ist f=g, so ist auch $f_{\mathbb{C}}=g_{\mathbb{C}}$. Ist andererse its $f_{\mathbb{C}}=g_{\mathbb{C}}$, so ist

$$f(v) + i \cdot 0 = f_{\mathbb{C}}(v + i \cdot 0) = g_{\mathbb{C}}(v + i \cdot 0) = g(v) + i \cdot 0$$
 für alle $v \in V$,

und somit
$$f(v) = g(v)$$
 für alle $v \in V$.

Korollar 4. Sind $f, g: V \to V$ zwei Endomorphismen, so kommutieren f und g genau dann, wenn $f_{\mathbb{C}}$ und $g_{\mathbb{C}}$ kommutieren.

Beweis. Da
$$(f \circ g)_{\mathbb{C}} = f_{\mathbb{C}} \circ g_{\mathbb{C}}$$
 und $(g \circ f)_{\mathbb{C}} = g_{\mathbb{C}} \circ f_{\mathbb{C}}$ ist nach Lemma 3 genau dann $f \circ g = g \circ f$, wenn $f_{\mathbb{C}} \circ g_{\mathbb{C}} = g_{\mathbb{C}} \circ f_{\mathbb{C}}$.

Lemma 5. Es sei $f: V \to V$ ein Endomorphismus und $U \subseteq V$ ein Untervektorraum. Dann ist U genau dann invariant unter f, wenn $U_{\mathbb{C}}$ invariant unter $f_{\mathbb{C}}$ ist.

Beweis. Es gilt

$$U_{\mathbb{C}} \text{ ist } f_{\mathbb{C}}\text{-invariant}$$

$$\iff f_{\mathbb{C}}(U_{\mathbb{C}}) \subseteq U_{\mathbb{C}}$$

$$\iff f_{\mathbb{C}}(u_1 + iu_2) \in U_{\mathbb{C}} \text{ für alle } u_1, u_2 \in U$$

$$\iff f(u_1) + if(u_2) \in U_{\mathbb{C}} \text{ für alle } u_1, u_2 \in U$$

$$\iff f(u_1), f(u_2) \in U \text{ für alle } u_1, u_2 \in U$$

$$\iff f(u) \in U \text{ für alle } u \in U$$

$$\iff f(U) \subseteq U$$

$$\iff U \text{ ist } f\text{-invariant.}$$

2 Hauptteil

Im Folgenden seien V und W zwei euklidische Vektorräume.

Proposition 6. *Es gibt ein eindeutiges (komplexes) Skalarprodukt* $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ *auf* $V_{\mathbb{C}}$ *, so dass*

$$\langle v_1+i\cdot 0, v_2+i\cdot 0\rangle_{\mathbb{C}}=\langle v_1, v_2\rangle \quad \textit{für alle } v_1, v_2\in V,$$

d.h. es gilt

$$\langle \iota(v_1), \iota(v_2) \rangle_{\mathbb{C}} = \langle v_1, v_2 \rangle$$
 für alle $v_1, v_2 \in V$,

wobei $\iota \colon V \to V_{\mathbb{C}}, v \mapsto v + i \cdot 0$ die kanonische Inklusion bezeichnet.

Beweis. Wenn sich $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ zu einem solchen komplexen Skalarprodukt $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ fortsetzen lässt, so ist $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ insbesondere sesquilinear (also linear im ersten Argument und antilinear im zweiten Argument). Für alle $v_1, v_2, w_1, w_2 \in V$ ist dann

$$\langle v_1 + iv_2, w_1 + iw_2 \rangle = (\langle v_1, w_1 \rangle + \langle v_2, w_2 \rangle) + i(\langle v_2, w_1 \rangle - \langle v_1, w_2 \rangle).$$

Somit ist $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ durch $\langle \cdot, \cdot \rangle$ eindeutig bestimmt.

Zum Beweis der Existenz definieren wir

$$\langle v_1 + iv_2, w_1 + iw_2 \rangle := (\langle v_1, w_1 \rangle + \langle v_2, w_2 \rangle) + i(\langle v_2, w_1 \rangle - \langle v_1, w_2 \rangle)$$

für alle $v_1,v_2,w_1,w_2\in V$, und zeigen, dass dies ein komplexes Skalarprodukt auf $V_{\mathbb C}$ ist

Dass $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ hermitsch ist, ergibt sich daraus, dass

für alle $v_1, v_2, w_1, w_2 \in V$. Da $\langle \cdot, \cdot \rangle$ \mathbb{R} -bilinear ist, ergibt sich, dass $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ im ersten Argument \mathbb{R} -linear ist (und auch im zweiten). Im ersten Argument gilt außerdem

$$\begin{split} \langle i\cdot (v_1+iv_2),w_1+iw_2\rangle_{\mathbb{C}} &= \langle -v_2+iv_1,w_1+iw_2\rangle_{\mathbb{C}} \\ &= (\langle -v_2,w_1\rangle + \langle v_1,w_2\rangle) + i(\langle v_1,w_1\rangle - \langle -v_2,w_2\rangle) \\ &= (\langle v_1,w_2\rangle - \langle v_2,w_1\rangle) + i(\langle v_1,w_1\rangle + \langle v_2,w_2\rangle) \\ &= i\cdot ((\langle v_1,w_1\rangle + \langle v_2,w_2\rangle) + i(\langle v_2,w_1\rangle - \langle v_1,w_2\rangle)) \\ &= i\cdot \langle v_1+iv_2,w_1+iw_2\rangle_{\mathbb{C}}. \end{split}$$

Zusammen mit der \mathbb{R} -Linearität im ersten Argument ergibt sich damit, dass $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ im ersten Argument \mathbb{C} -linear ist. Damit ist $\langle \cdot, \cdot \rangle$ im zweiten Argument \mathbb{C} -antiliner, denn $\langle \cdot, \cdot \rangle$ ist hermitsch.

Für alle $v_1, v_2 \in V$ ist

$$\langle v_1 + iv_2, v_1 + iv_2 \rangle_{\mathbb{C}} = \langle v_1, v_1 \rangle + \langle v_2, v_2 \rangle = ||v_1||^2 + ||v_2||^2 \ge 0,$$

und insbesondere

$$\langle v_1 + iv_2, v_1 + iv_2 \rangle_{\mathbb{C}} = 0 \iff v_1 = v_2 = 0 \iff v_1 + iv_2 = 0.$$

Also ist $\langle \cdot, \cdot \rangle$ positiv definit.

Im Nachweis der positiven Definitheit von $\langle\cdot,\cdot\rangle_{\mathbb C}$ haben wir gesehen, wie sich die Norm auf $V_{\mathbb C}$ aus der Norm auf V ergibt:

Lemma 7. *Ist* $\|\cdot\|_{\mathbb{C}}$ *die Norm auf* $V_{\mathbb{C}}$, *die durch* $\langle\cdot,\cdot\rangle_{\mathbb{C}}$ *induziert wird, so gilt*

$$\|v_1+iv_2\|=\sqrt{\|v_1\|^2+\|v_2\|^2}\quad \textit{für alle } v_1,v_2\in V.$$

Beweis. Für alle $v_1, v_2 \in V$ ist

$$||v_{1} + iv_{2}||_{\mathbb{C}}^{2} = \langle v_{1} + iv_{2}, v_{1} + iv_{2} \rangle_{\mathbb{C}}$$

$$= (\langle v_{1}, v_{1} \rangle + \langle v_{2}, v_{2} \rangle) + i(\langle v_{2}, v_{1} \rangle - \langle v_{1}, v_{2} \rangle)$$

$$= \langle v_{1}, v_{1} \rangle + \langle v_{2}, v_{2} \rangle = ||v_{1}||^{2} + ||v_{2}||^{2}.$$

Wir wollen nun noch ein paar Resultate darüber angeben, wie sich Eigenschaften, die im reellen mithilfe des Skalarproduktes definiert sind, auf die Komplexifizierung übertragen.

Proposition 8. Für jeden Untervektorraum $U \subseteq V$ gilt

$$(U^{\perp})_{\mathbb{C}} = (U_{\mathbb{C}})^{\perp}.$$

Beweis. Sind $u_1, u_2 \in U$ und $v_1, v_2 \in U^{\perp}$, so ist

$$\langle u_1 + iu_2, v_1 + iv_2 \rangle_{\mathbb{C}} = (\langle u_1, v_1 \rangle + \langle u_2, v_2 \rangle) + i(\langle u_2, v_1 \rangle - \langle u_1, v_2 \rangle) = 0,$$

da $\langle u_i, v_j \rangle = 0$ für alle $i, j \in \{1, 2\}$. Damit ist $(U^{\perp})_{\mathbb{C}} \subseteq (U_{\mathbb{C}})^{\perp}$.

Andererseits seien $v_1,v_2\in V$ mit $v_1+iv_2\in (U_\mathbb{C})^\perp$. Für alle $u\in U$ ist dann $u+i\cdot 0\in U_\mathbb{C}$ und somit

$$0 = \langle u + i \cdot 0, v_1 + i v_2 \rangle = \langle u, v_1 \rangle - i \langle u, v_2 \rangle.$$

Also ist $\langle u, v_1 \rangle = \langle u, v_2 \rangle = 0$ für alle $u \in U$ und somit $v_1, v_2 \in U^{\perp}$. Damit ist auch $(U_{\mathbb{C}})^{\perp} \subseteq (U^{\perp})_{\mathbb{C}}$.a

Proposition 9. 1. Zwei lineare Abbildungen $f: V \to W$ und $g: W \to V$ sind genau dann adjungiert zueinander, wenn $f_{\mathbb{C}}$ und $g_{\mathbb{C}}$ adjungiert zueinander sind.

2. Wenn f ein Adjungiertes f^* besitzt, so hat auch $f_{\mathbb{C}}$ ein Adjungiertes, und es gilt

$$(f_{\mathbb{C}})^* = (f^*)_{\mathbb{C}}.$$

Beweis. 1. Wir nehmen zunächst an, dass f und g adjungiert zueinander sind. Für alle $v_1,v_2,w_1,w_2\in V$ ist dann

$$\langle f_{\mathbb{C}}(v_1+iv_2), w_1+iw_2\rangle_{\mathbb{C}} = \langle f(v_1)+if(v_2), w_1+iw_2\rangle_{\mathbb{C}}$$

$$= (\langle f(v_1), w_1\rangle + \langle f(v_2), w_2\rangle) + i(\langle f(v_2), w_1\rangle - \langle f(v_1), w_2\rangle)$$

$$= (\langle v_1, g(w_1)\rangle + \langle v_2, g(w_2)\rangle) + i(\langle v_2, g(w_1)\rangle - \langle v_1, g(w_2)\rangle)$$

$$= \langle v_1+iv_2, g(w_1)+ig(w_2)\rangle_{\mathbb{C}} = \langle v_1+iv_2, g_{\mathbb{C}}(w_1+iw_2)\rangle_{\mathbb{C}}.$$

Also sind $f_{\mathbb{C}}$ und $g_{\mathbb{C}}$ adjungiert zueinander.

Wir nehmen nun an, dass $f_{\mathbb C}$ und $g_{\mathbb C}$ adjungiert zunander sind. Für alle $v\in V$, $w\in W$ ist dann

$$\begin{split} \langle f(v), w \rangle &= \langle f(v) + i \cdot 0, w + i \cdot 0 \rangle_{\mathbb{C}} = \langle f_{\mathbb{C}}(v + i \cdot 0), w + i \cdot 0 \rangle_{\mathbb{C}} \\ &= \langle v + i \cdot 0, g_{\mathbb{C}}(w + i \cdot 0) \rangle_{\mathbb{C}} = \langle v + i \cdot 0, g(w) + i \cdot 0 \rangle_{\mathbb{C}} = \langle v, g(w) \rangle. \end{split}$$

Also sind f und g adjungiert zueinander.

2. Besitzt f ein Adjungiertes f^* , so sind $f_{\mathbb{C}}$ und $(f^*)_{\mathbb{C}}$ nach dem vorherigen Teil adjungiert zueinander. Also besitzt $f_{\mathbb{C}}$ ein Adjungiertes $(f_{\mathbb{C}})^*$, nämlich $(f^*)_{\mathbb{C}}$.

 \Box

Bemerkung 10. Besitzt f ein Adjungiertes, so schreiben wir im Folgenden meist nur $f_{\mathbb{C}}^*$ statt $(f^*)_{\mathbb{C}}$ oder $(f_{\mathbb{C}})^*$.

Korollar 11. Es sei $f: V \to V$ ein Endomorphismus, der ein Adjungiertes besitzt.

- 1. Ist f normal, so ist $f_{\mathbb{C}}$ normal.
- 2. Ist f selbstadjungiert, so ist $f_{\mathbb{C}}$ selbstadjungiert.
- 3. Ist f antiselbstadjungiert, so ist $f_{\mathbb{C}}$ antiselbstadjungiert.
- 4. Ist f orthogonal, so ist $f_{\mathbb{C}}$ unitär.

Beweis. Nach Proposition 9 ist $f_{\mathbb{C}}^*=(f^*)_{\mathbb{C}}$ adjungiert zu $f_{\mathbb{C}}.$

- 1. Da f normal ist, gilt $f^*f=f^*f$. Nach Lemma 3 ist deshalb $f_{\mathbb{C}}^*f_{\mathbb{C}}=f_{\mathbb{C}}^*f$. Also ist auch $f_{\mathbb{C}}$ normal.
- 2. Wegen der Selbstadjungiertheit von f ist $f=f^*$. Also ist $f_{\mathbb C}=f_{\mathbb C}^*$, und $f_{\mathbb C}$ somit selbstadjungiert.
- 3. Es gilt $f^*=-f$ und somit $f^*_{\mathbb C}=(-f)_{\mathbb C}=-f_{\mathbb C}.$
- 4. Die Orthogonalität von f bedeutet, dass $ff^*=\mathrm{id}_V=f^*f$. Durch Komplexifizieren ergibt sich, dass

$$f_{\mathbb{C}}f_{\mathbb{C}}^*=\mathrm{id}_{V_{\mathbb{C}}}=f_{\mathbb{C}}^*f_{\mathbb{C}}.$$

Also ist $f_{\mathbb{C}}$ orthogonal.

Beweis. Es ist

$$f_{\mathbb{C}}(f_{\mathbb{C}})^* = f_{\mathbb{C}}(f^*)_{\mathbb{C}} = (ff^*)_{\mathbb{C}} = (f^*f)_{\mathbb{C}} = (f^*)_{\mathbb{C}}f_{\mathbb{C}} = (f_{\mathbb{C}})^*f_{\mathbb{C}}.$$

3 Zettel 6, Aufgabe 5

Wir erinnern an die folgende Aussage:

Theorem 12. Es sei V ein endlichdimensionaler unitärer Vektorraum, $f\colon V\to V$ ein normaler Endomorphismus und $U\subseteq V$ ein f-invarianter Untervektorraum. Dann ist auch U^\perp f-invariant.

Beweis. Dies wurde auf dem sechsten Übungszettel, bzw. im Tutorium gezeigt

Mithilfe der Komplexifizierung lässt sich die analoge Aussage für endlichdimensionale euklidische Vektorräume nun direkt folgern:

Korollar 13. Es sei V ein endlichdimensionaler euklidischer Vektorraum, $f:V\to V$ ein normaler Endomorphismus und $U\subseteq V$ ein f-invarianter Untervektorraum. Dann ist U^\perp ebenfalls f-invariant.

Beweis. Wegen der Normalität von f ist nach Korollar 11 auch $f_{\mathbb{C}}\colon V_{\mathbb{C}}\to V_{\mathbb{C}}$ normal, und wegen der Endlichdimensionalität von V ist auch $V_{\mathbb{C}}$ endlichdimensional. Wegen der f-Invarianz von U ist nach Lemma 5 der induzierte Unterraum $U_{\mathbb{C}}$ invariant unter $f_{\mathbb{C}}$. Nach Theorem 12 ist $(U_{\mathbb{C}})^{\perp}=(U^{\perp})_{\mathbb{C}}$ invariant unter $f_{\mathbb{C}}$. Nach Lemma 5 ist somit U^{\perp} invariant unter f.