PCT

NOT/JP 87/04084

日本国特許庁

18.12.97

PATENT OFFICE
JAPANESE GOVERNMENT

REC'D 2 0 FEB 1990

別紙添付の書類に記載されている事項は下記の出願書類W記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

1996年12月27日

出 願 番 号 Application Number:

平成 8年特許願第357959号

出 願 人 Applicant (s):

イビデン株式会社

PRIORITY DOCUMENT

1998年 2月 6日

特 許 庁 長 官 Commissioner, Patent Office

【書類名】

特許願

【整理番号】

P961227-1N

【提出日】

平成 8年12月27日

【あて先】

特許庁長官 殿

【国際特許分類】

H05K 1/00

【発明の名称】

多層プリント配線板およびその製造方法

【請求項の数】

4

【発明者】

【住所又は居所】

岐阜県揖斐郡揖斐川町北方1-1 イビデン株式会社内

【氏名】_

平松 靖二

【特許出願人】

【識別番号】

000000158

【氏名又は名称】

イビデン株式会社

【代表者】

遠藤 優

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【書類名】 明細書

【発明の名称】 多層プリント配線板およびその製造方法

【特許請求の範囲】

【請求項1】 下層導体回路が設けられた基板上に層間絶縁層が形成され、その層間絶縁層上に上層導体回路が形成されてなり、上層導体回路と下層導体回路がバイアホールで接続した多層プリント配線板において、

前記バイアホールは、無電解めっき膜と電解めっき膜からなり、

該下層導体回路は、少なくともバイアホールと接続する部分の表面に粗化層が 形成されてなることを特徴とする多層プリント配線板。

【請求項2】 前記粗化層は、銅ーニッケルーリンの合金めっきからなる請求項1に記載の多層プリント配線板。

【請求項3】 基板上に下層導体回路を形成し、ついでこの下層導体回路表面のうち、少なくともバイアホールと接続する部分の表面に粗化処理を施し、次に基板上に層間絶縁層を設け、この層間絶縁層にバイアホール用の孔を形成し、

さらに、層間絶縁層上に無電解めっきを施した後、めっきレジストを設け、電解めっきを施し、めっきレジストを除去後、エッチング処理して無電解めっき膜と電解めっき膜からなる上層導体回路およびバイアホールを形成することを特徴とする多層プリント配線板の製造方法。

【請求項4】 前記粗化層は、銅ーニッケルーリンの合金めっきにより形成される請求項3に記載の多層プリント配線板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、多層プリント配線板とその製造方法に関し、特にはピール強度の低下を招くことなく、ヒートサイクル時におけるクラックの発生を抑制した多層プリント配線板とその製造方法に関する。

[0002]

【従来の技術】

近年、多層配線基板の高密度化という要請から、いわゆるビルドアップ多層配

線基板が注目されている。このビルドアップ多層配線基板は、例えば特公平4-55555 号公報に開示されているような方法により製造される。即ち、コア基板上に、感光性の無電解めっき用接着剤からなる絶縁材を塗布し、これを乾燥したのち露光現像することにより、バイアホール用開口を有する層間絶縁材層を形成する。次いで、この層間絶縁材層の表面を酸化剤等による処理にて粗化したのち、その粗化面にめっきレジストを設け、その後、レジスト非形成部分に無電解めっきを施してバイアホールを含む導体回路パターンを形成する。そして、このような工程を複数回繰り返すことにより、多層化したビルドアップ配線基板が得られるのである。

 $[00\overline{0}3]$

【発明が解決しようとする課題】

しかしながら、このような多層プリント配線板では、導体回路はめっきレジストの非形成部分に設けられ、めっきレジストは内層にそのまま残存する。

I Cチップ等を搭載すると、ヒートサイクル時にI Cチップと樹脂絶縁層との熱膨張率の差により、基板が反り、めっきレジストと導体回路間の密着がないことから、これらの境界部分に応力が集中してこの境界部分に接触する層間絶縁層にクラックが発生してしまう。

[0004]

このような問題を解決するためには、めっきレジストを除去し、その後導体回路表面に粗化層を設けておく方法がある。

例えば、特開平6-283860号公報記載の技術によれば、内層のめっきレジストを除去して、無電解めっき膜からなる導体回路表面に銅ーニッケルーリンからなる粗化層を設け、層間剥離を防止する技術が開示されている。

しかしながら、バイアホールに接触している層間樹脂絶縁層にクラックが発生する場合が見られ、このようバイアホールと接触する部分のクラックを抑制する方法が必要であった。

[0005]

また、このようなクラックを抑制する場合でも、下層導体回路とバイアホール の接続を確保する必要があった。

本願発明は、他の特性、特にバイアホールと下層導体回路の密着を維持したまま、ヒートサイクル時に発生する層間絶縁層のクラックを防止することにある。

[0006]

【課題を解決するための手段】

本発明の要旨構成は以下のとおりである。

①下層導体回路が設けられた基板上に層間絶縁層が形成され、その層間絶縁層上 に上層導体回路が形成されてなり、上層導体回路と下層導体回路がバイアホール で接続した多層プリント配線板において、

前記バイアホールは、無電解めっき膜と電解めっき膜からなり、

該下層導体回路は、バイアホールと接続する部分の表面には粗化層が形成されてなることを特徴とする多層プリント配線板。

- ②前記粗化層は、銅ーニッケルーリンの合金めっきからなる。
- ③基板上に下層導体回路を形成し、ついでこの下層導体回路表面を粗化処理し、 次に基板上に層間絶縁層を設け、この層間絶縁層にバイアホール用の孔を形成し

さらに、層間絶縁層上に無電解めっきを施した後、めっきレジストを設け、電解めっきを施し、めっきレジストを除去後、エッチング処理して無電解めっき膜と電解めっき膜からなる上層導体回路およびバイアホールを形成することを特徴とする多層プリント配線板の製造方法。

④前記粗化層は、銅ーニッケルーリンの合金めっきにより形成される。

[0007]

バイアホールが電解めっき膜と無電解めっき膜が構成され、より内層側に、無電解めっき膜が形成され、より外層側に電解めっき膜が形成されている(図18、図19の拡大図参照)。電解めっき膜は無電解めっき膜より柔らかく展性に富み、このため、ヒートサイクル時に基板にそりが発生しても、層間樹脂絶縁層の寸法変化にバイアホールが追従でき、またバイアホールの内層側はより硬い無電解めっき膜で形成されており、この無電解めっき膜が下層導体回路と粗化層を介して密着するため、ヒートサイクル時に下層導体回路との剥離が生じないのである。

[0008]

なお、粗化層がくい込む金属層は、硬い方がよい。ひきはがしの力が加わった 場合に、金属層での破壊が生じにくいからである。

バイアホールが電解めっき膜のみで構成されている場合は、粗化層を介して下層導体回路と密着していても電解めっき膜自体が柔らかくヒートサイクルにより剥離しやすい。また、バイアホールが無電解めっき膜のみで構成されている場合は、層間樹脂絶縁層の寸法変化に対応できず、バイアホール上の層間樹脂絶縁層にクラックが発生してしまう。

[0009]

このように、本願発明では、バイアホールが電解めっき膜と無電解めっき膜で構成され、そのバイアホールが下層導体回路と粗化層を介して接続した構成を採用するため、バイアホール上の層間樹脂絶縁層のクラック発生とバイアホールと下層導体回路との剥離を同時に防止できるのである。

本願発明では、バイアホール表面には粗化層が設けられていてもよい。層間樹脂絶縁層と強固に密着し、層間樹脂絶縁層の寸法変化に導体回路がより追従しやすくなる。

[0010]

このため、I Cチップを搭載し、-55℃~125℃のヒートサイクル試験を 行った場合でも導体回路を起点とする層間樹脂絶縁層のクラックの発生を抑制で き、また剥離も見られない。

[0011]

本願発明では、バイアホールが接続する下層導体回路は、無電解めっき膜と電解めっき膜からなることが望ましい。また、より内層側に無電解めっき膜が、より外層側には電解めっき膜が設けられている。

下層導体回路の内層側は層間樹脂絶縁層と密着することになるため、ピール強度確保のためにより硬い無電解めっき膜が望ましく、逆側はバイアホールと接続するため寸法変化に対する追従性に優れる電解めっき膜が望ましい。

なお、層間樹脂絶縁層が粗化されている場合、この粗化層にくい込むめっき膜 は硬い方がよい。この理由は、ひき剥がしの力が加わった場合に、めっき膜の部

分で破壊が生じにくいからである。

[0012]

本願発明における粗化面は、バイアホールと接続する部分のみならず、下層導体回路全面に形成されていてもよい。層間絶縁層との密着に優れるからである。

本願発明における前記粗化層は、エッチング処理、研磨処理、酸化処理、酸化 還元処理により形成された銅の粗化面又もしくはめっき被膜により形成された粗 化面であることが望ましい。

特に粗化層は、銅ーニッケルーリンからなる合金層であることが望ましい。

[0013]

前記合金層の組成は、銅、ニッケル、リンの割合で、それぞれ $90\sim96$ wt%、 $1\sim5$ wt%、 $0.5\sim2$ wt%であることが望ましい。これらの組成割合のときに、針状の構造を有するからである。

[0014]

なお、針状結晶を形成できるCu-Ni-Pの組成を三成分系の三角図(図 1 8)に示す。(Cu,Ni,P)=(100,0,0)、(90,10,0)、(90,10,0)、

[0015]

前記酸化処理は、亜塩素酸ナトリウム、水酸化ナトリウム、リン酸ナトリウム からなる酸化剤の溶液が望ましい。

また、酸化還元処理は、上記酸化処理の後、水酸化ナトリウムと水素化ホウ素ナトリウムの溶液に浸漬して行う。

[0016]

前記粗化層は、1~5μmがよい。厚すぎると粗化層自体が損傷、剥離しやすく、薄すぎると密着性が低下するからである。 ----

[0017]

前記無電解めっき膜の厚さは、1~5μmがよい。厚すぎると層間樹脂絶縁層との追従性が低下し、逆に薄すぎるとピール強度の低下を招き、また電解めっきを施す場合、抵抗値が大きくなり、めっき膜の厚さにバラツキが発生してしまうからである。

[0018]

また、前記電解めっき膜の厚さは、 $10\sim20~\mu$ mがよい。厚すぎるとピール強度の低下を招き、薄すぎると層間樹脂絶縁層との追従性が低下するからである

[0019]

本願発明では、少なくとも側面に粗化層が形成されていることが望ましい。ヒートサイクルにより層間樹脂絶縁層に生じるクラックは、導体回路側面と樹脂絶縁層との密着不良に起因するからである。

[0020]

本発明では、上記配線基板を構成する層間樹脂絶縁層として無電解めっき用接着剤を用いることが望ましい。この無電解めっき用接着剤は、硬化処理された酸あるいは酸化剤に可溶性の耐熱性樹脂粒子が、酸あるいは酸化剤に難溶性の未硬化の耐熱性樹脂中に分散されてなるものが最適である。

酸、酸化剤で処理することにより、耐熱性樹脂粒子が溶解除去されて、表面に 蛸つぼ状のアンカーからなる粗化面を形成できる。

[0021]

上記無電解めっき用接着剤において、特に硬化処理された前記耐熱性樹脂粒子としては、①平均粒径が10μm以下の耐熱性樹脂粉末、②平均粒径が2μm以下の耐熱性樹脂粉末を凝集させた凝集粒子、③平均粒径が10μm以下の耐熱性粉末樹脂粉末と平均粒径が2μm以下の耐熱性樹脂粉末との混合物、④平均粒径が2~10μmの耐熱性樹脂粉末の表面に平均粒径が2μm以下の耐熱性樹脂粉末または無機粉末のいずれか少なくとも1種を付着させてなる疑似粒子、から選ばれるいずれか少なくとも1種を用いることが望ましい。これらは、より複雑なアンカーを形成できるからである。

[0022]

次に、本発明にかかるプリント配線板を製造する一方法について説明する。

(1)まず、コア基板の表面に内層銅パターンを形成した配線基板を作製する。

このコア基板への銅パターンの形成は、銅張積層板をエッチングして行うか、 あるいは、ガラスエポキシ基板やポリイミド基板、セラミック基板、金属基板な

どの基板に無電解めっき用接着剤層を形成し、この接着剤層表面を粗化して粗化面とし、ここに無電解めっきするか、もしくは全面無電解めっき、めっきレジスト形成、電解めっき後、めっきレジスト除去、エッチング処理し、電解めっき膜と無電解めっき膜からなる導体回路を形成する方法がある。

[0023]

さらに、上記配線基板の下層導体回路表面に銅ーニッケルーリンからなる粗化 層を形成する。

粗化層は、無電解めっきにより形成される。めっき液組成としては、銅イオン濃度、ニッケルイオン濃度、次亜リン酸イオン濃度は、それぞれ2. 2×10^{-2} ~4. 1×10^{-2} m o 1/1、2. 2×10^{-3} ~4. 1×10^{-3} m o 1/1、0. $20 \sim 0$. 25 m o 1/1 であることが望ましい。

この範囲で析出する被膜の結晶構造は針状構造になるため、アンカー効果に優れるからである。無電解めっき浴には上記化合物に加えて錯化剤や添加剤を加えてもよい。

[0024]

粗化層の形成方法としては、この他に前述した酸化-還元処理、銅表面を粒界 に沿ってエッチングして粗化面を形成する方法などがある。

なお、コア基板には、スルーホールが形成され、このスルーホールを介して表面と裏面の配線層を電気的に接続することができる。

また、スルーホールおよびコア基板の導体回路間には樹脂が充填されて、平滑性を確保してもよい(図1~図4)。

[0025]

(2)次に、前記(1)で作製した配線基板の上に、層間樹脂絶縁層を形成する。特に本発明では、層間樹脂絶縁材として前述した無電解めっき用接着剤を用いることが望ましい(図5)。

[0026]

(3) 形成した無電解めっき用接着剤層を乾燥した後、必要に応じてバイアホール形成用開口を設ける。感光性樹脂の場合は、露光、現像してから熱硬化することにより、また、熱硬化性樹脂の場合は、熱硬化したのちレーザー加工すること

により、前記接着剤層にバイアホール形成用の開口部を設ける(図6)。

[0027]

(4)次に、硬化した前記接着剤層の表面に存在するエポキシ樹脂粒子を酸あるいは酸化剤によって溶解除去し、接着剤層表面を粗化処理する(図7)。

ここで、上記酸としては、リン酸、塩酸、硫酸、あるいは蟻酸や酢酸などの有機酸があるが、特に有機酸を用いることが望ましい。粗化処理した場合に、バイアホールから露出する金属導体層を腐食させにくいからである。

一方、上記酸化剤としては、クロム酸、過マンガン酸塩(過マンガン酸カリウムなど)を用いることが望ましい。

 $[00\overline{2}8]$

(5)次に、接着剤層表面を粗化した配線基板に触媒核を付与する。

触媒核の付与には、貴金属イオンや貴金属コロイドなどを用いることが望ましく、一般的には、塩化パラジウムやパラジウムコロイドを使用する。なお、触媒核を固定するために加熱処理を行うことが望ましい。このような触媒核としてはパラジウムがよい。

[0029]

(6) 次に、無電解めっき用接着剤表面に無電解めっきを施し、粗化面全面に 無電解めっき膜を形成する(図 8)。無電解めっき膜の厚みは $1\sim5~\mu$ m、より 望ましくは $2\sim3~\mu$ mである。

つぎに、無電解めっき膜上にめっきレジストを形成する(図9)。

めっきレジスト組成物としては、特にクレゾールノボラックやフェノールノボラック型エポキシ樹脂のアクリレートとイミダゾール硬化剤からなる組成物を用いることが望ましいが、他に市販品を使用することもできる。

[0030]

(7) 次に、めっきレジスト非形成部に電解めっきを施し、導体回路、ならびに バイアホールを形成する(図10)。

ここで、上記無電解めっきとしては、銅めっきを用いることが望ましい。

[0031]

(8) さらに、めっきレジストを除去した後、硫酸と過酸化水素の混合液や過硫

酸ナトリウム、過硫酸アンモニウムなどのエッチング液で無電解めっき膜を溶解除去して、独立した導体回路とする(図11)。

[0032]

(9)次に導体回路の表面に粗化層を形成する(図12)。粗化層の形成方法としては、エッチング処理、研磨処理、酸化還元処理、めっき処理がある。酸化還元処理は、NaOH(10g/1)、NaClO $_2$ (40g/1)、Na $_3$ PO $_4$ (6g/1)を酸化浴(黒化浴)、NaOH(10g/1)、NaBH $_4$ (5g/1)を還元浴とする。

また、銅ーニッケルーリン合金層による粗化層を形成する場合は無電解めっきにより析出させる。

[0033]

この合金の無電解めっき液としては、硫酸銅 $1\sim4$ 0g/1、硫酸ニッケル0. $1\sim6$. 0g/1、クエン酸10 ~2 0g/1、次亜リン酸塩10 ~1 00g/1、ホウ酸10 ~4 0g/1、界面活性剤0. 0 $1\sim1$ 0g/1からなる液組成のめっき浴を用いることが望ましい。

[0034]

- (10)次に、この基板上に層間樹脂絶縁層として、無電解めっき用接着剤層を 形成する(図13)。
- (11) さらに、(3) \sim (8) の工程を繰り返してさらに上層の導体回路を設ける(図14~17)。

[0035]

(12)次に、ソルダーレジスト組成物の塗膜を乾燥し、この塗膜に、開口部を描画したフォトマスクフィルムを載置して露光、現像処理することにより、導体回路のうちパッド部分を露出させた開口部を形成する。ここで、前配開口部の開口径は、パッドの径よりも大きくすることができ、パッドを完全に露出させてもよい。

[0036]

(11)次に、前記開口部から露出した前記パッド部上に「ニッケルー金」の金 属層を形成する。 [0037]

(12) 次に、前記開口部から露出した前記パッド部上にはんだ体を供給する。はんだ体の供給方法としては、はんだ転写法や印刷法を用いることができる。ここで、はんだ転写法は、プリプレグにはんだ箔を貼合し、このはんだ箔を開口部分に相当する箇所のみを残してエッチングすることによりはんだパターンを形成してはんだキャリアフィルムとし、このはんだキャリアフィルムを、基板のソルダーレジスト開口部分にフラックスを塗布した後、はんだパターンがパッドに接触するように積層し、これを加熱して転写する方法である。一方、印刷法は、パッドに相当する箇所に貫通孔を設けたメタルマスクを基板に載置し、はんだペーストを印刷して加熱処理する方法である。

[0038]

【実施例】

(実施例1)

(1) 厚さ0.6 mmのガラスエポキシ樹脂またはBT(ビスマレイミドトリアジン) 樹脂からなる基板1の両面に18μmの銅箔がラミネートされてなる銅張積層板を出発材料とした。この銅張積層板の銅箔を常法に従いパターン状にエッチング、穴明け、無電解めっきを施すことにより、基板の両面に下層導体回路2とスルーホールを形成した。

さらに、下層導体回路間、スルーホール内にビスフェノールF型エポキシ樹脂を充填した。

[0039]

(2)前記(1)で内層銅パターンを形成した基板を水洗いし、乾燥した後、その基板を酸性脱脂してソフトエッチングし、次いで、塩化パラジウムと有機酸からなる触媒溶液で処理して、Pd 触媒を付与し、この触媒を活性化もた後、硫酸銅8g/1、硫酸ニッケル 0.6g/1、クエン酸15g/1、次亜リン酸ナトリウム29g/1、ホウ酸31g/1、界面活性剤 0.1g/1、pH=9からなる無電解めっき浴にてめっきを施し、銅導体回路の全表面にCu-Ni-P合金の厚さ 2.5 μ mの粗化層 5(凹凸層)を形成した。

[0040]

(3) DMDG(ジエチレングリコールジメチルエーテル)に溶解したクレゾールノボラック型エポキシ樹脂(日本化薬製、分子量2500)の25%アクリル化物を70重量部、ポリエーテルスルフォン(PES)30重量部、イミダゾール硬化剤(四国化成製、商品名:2E4MZ-CN)4重量部、感光性モノマーであるカプロラクトン変成トリス(アクロキシエチル)イソシアヌレート(東亜合成製、商品名:アロニックスM325)10重量部、光開始剤としてのベンゾフェノン(関東化学製)5重量部、光増感剤としてのミヒラーケトン(関東化学製)0.5 重量部、さらにこの混合物に対してエポキシ樹脂粒子の平均粒径 5.5μmのものを35重量部、平均粒径 0.5μmのものを5重量部を混合した後、NMP(ノルマルメチルピロリドン)を添加しながら混合し、ホモディスパー攪拌機で粘度12Pa・sに調整し、続いて3本ロールで混練して感光性接着剤溶液(層間樹脂絶縁材)を得る。

[0041]

- (4)前記(3)で得た感光性接着剤溶液を、前記(2)の処理を終えた基板の両面に、ロールコータを用いて塗布し、水平状態で20分間放置してから、60℃で30分間の乾燥を行い、厚さ60μmの接着剤層6を形成した。
- (5)前記(4)で接着剤層6を形成した基板の両面に、バイアホールが描画されたフォトマスクフィルムを載置し、紫外線を照射して露光した。

[0042]

(6)露光した基板をDMTG(トリエチレングリジメチルエーテル)溶液でスプレー現像することにより、接着剤層に 100μmφのバイアホールとなる開口を形成した。さらに、当該基板を超高圧水銀灯にて3000mJ/cm²で露光し、 100℃で1時間、その後 150℃で5時間にて加熱処理することにより、フォトマスクフィルムに相当する寸法精度に優れ、開口(バイアホール形成用開口)を有する厚さ50μmの接着剤層を形成した。なお、バイアホールとなる開口には、粗化層を部分的に露出させる。

[0043]

(7)前記(5)(6)でバイアホール形成用開口を形成した基板を、クロム酸に2分間浸漬し、接着剤層表面に存在するエポキシ樹脂粒子を溶解除去して、当該接着剤層の表面を粗化し、その後、中和溶液(シプレイ社製)に浸漬してから

水洗した。

(8) 前記(7) で粗面化処理(粗化深さ5μm) を行った基板に対し、パラジウム触媒(アトテック製)を付与することにより、接着剤層およびバイアホール用開口の表面に触媒核を付与した。

[0044]

(9)以下の組成の無電解銅めっき浴中に基板を浸漬して、粗面全体に厚さ3μmの無電解銅めっき膜3を形成した。

無電解めっき液

EDTA 150 g/1 硫酸銅 20 g/1 HCHO 30ml/1 NaOH 40 g/1 の、 α'ービピリジル 80mg/1 PEG 0.1g/1

無電解めっき条件

70℃の液温度で30分

[0045]

(10) 市販の感光性ドライフィルムを無電解銅めっき膜に張り付け、マスクを載置して、100mJ/cm² で露光、0.8%炭酸ナトリウムで現像処理し、厚さ15 μ mのめっきレジスト7を設けた。

[0046]

(11)ついで、以下の条件で電解銅めっきを施し、厚さ15μmの電解銅めっき膜4を形成した。

電解めっき液

硫酸銅

180 g/l

硫酸銅

80 g/1

添加剤 (アドテックジャパン製 商品名カパラシドGL)

1 m 1 / 1

電解めっき条件

電流密度

 $1 \text{ A} / \text{d m}^2$

時間

30分

温度

室温

[0047]

(12) めっきレジスト7を5%KOHで剥離除去した後、硫酸と過酸化水素混合液でエッッチングを行い、無電解めっき膜3を溶解除去して無電解銅めっき膜と電解銅めっき膜4からなる厚さ18μmの導体回路(バイアホールを含む)を形成した。

[0048]

(13) 導体回路を形成した基板を、硫酸銅8g/1、硫酸ニッケル 0.6g/1、クエン酸15g/1、次亜リン酸ナトリウム29g/1、ホウ酸31g/1、界面活性剤 0.1g/1からなるpH=9の無電解めっき液に浸漬し、該導体回路の表面に厚さ3 μ mの銅ーニッケルーリンからなる粗化層5を形成した。

粗化層 5 を E P M A (蛍光 X 線分析装置) で分析したところ、 C u 9 8 m o 1 %、 N i 1. 5 m o 1 %、 P O. 5 m o 1 %の組成比を示した。

[0049]

(14)(4)~(12)の工程を繰り返すことにより、さらに上層の導体回路 を形成した。

[0050]

(15)一方、DMDGに溶解させた60重量%のクレゾールノボラック型エポキシ樹脂(日本化薬製)のエポキシ基50%をアクリル化した感光性付与のオリゴマー(分子量4000)を 46.67g、メチルエチルケトンに溶解させた80重量%のビスフェノールA型エポキシ樹脂(油化シェル製、エピコート1001)15.0g、イミダゾール硬化剤(四国化成製、商品名:2E4MZ-CN)1.6g、感光性モナマーである多価アクリルモノマー(日本化薬製、商品名:R604)3g、同じく多価アクリルモノマー(共栄社化学製、商品名:DPE6A)1.5g、分散系消泡剤(サンノプコ社製、商品名:S-65)0.71gを混合し、さらにこの混合物に対して光開始剤としてのベンゾフェノン(関東化学製)を2g、光増感剤としてのミヒラーケトン(関東化学製)を0.2g加えて、粘度を25℃で2.0Pa・sに調整したソルダー

レジスト組成物を得た。

なお、粘度測定は、B型粘度計(東京計器、 DVL-B型) で 60rpmの場合はローターNo.4、6rpm の場合はローターNo.3によった。

[0051]

- (16) 基板にソルダーレジスト組成物を20 µmの厚さで塗布した。
- (17)次いで、70℃で20分間、70℃で30分間の乾燥処理を行った後、1000mJ/cm² の紫外線で露光し、DMTG現像処理した。

さらに、80℃で1時間、100℃で1時間、120℃で1時間、150℃で3時間の条件で加熱処理し、パッド部分が開口した(開口径 200 μ m) ソルダーレジスト層(厚み20 μ m) を形成した。

[0052]

(18) 次に、ソルダーレジスト層を形成した基板を、塩化ニッケル30g/1、次亜リン酸ナトリウム10g/1、クエン酸ナトリウム10g/1 からなるpH=5の無電解ニッケルめっき液に20分間浸漬して、開口部に厚さ 5μ ののニッケルめっき層13を形成した。さらに、その基板を、シアン化金カリウム2g/1、塩化アンモニウム75g/1、クエン酸ナトリウム50g/1、次亜リン酸ナトリウム10g/1 からなる無電解金めっき液に93での条件で23秒間浸漬して、ニッケルめっき層13上に厚さ 0.03μ の金めっき層を形成した。

[0053]

(19) そして、ソルダーレジスト層の開口部に、はんだペーストを印刷して 200℃でリフローすることによりはんだバンプを形成し、はんだバンプを有するプリント配線板を製造した。

[0054]

(実施例2) -

基本的に実施例1と同様であるが、粗化をエッチングにより行った。エッチング液は、メック社製の「デュラボンド」なる商品名のものを使用した。

[0055]

(比較例)

実施例1の(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8

)の処理後、ドライフィムフォトレジストをラミネートするとともに、露光、現像処理により、めっきレジストを形成した。ついで、実施例1の(9)を実施後、(12)の工程と同様にしてめっきレジストを剥離し、(13)の処理を行い導体回路の全表面を粗化し、さらに、同様に層間樹脂絶縁層、粗化、めっきレジストの形成、無電解銅めっきを施し、めっきレジストの剥離後、実施例1の、(15)、(16)、(17)、(18)、(19)の処理により、はんだバンプを有するプリント配線板を製造した。

[0056]

実施例、比較例で製造されたプリント配線板につき、ICチップを実装し、-55℃で15分、常温10分、125℃で15分でヒートサイクル試験を1000回、および2000回実施した。

実施例、比較例についてバイアホール上における層間樹脂絶縁層のクラックの 発生を走査型電子顕微鏡で確認した。また、同様にバイアホールと下層導体回路 との剥離の有無を確認した。

[0057]

【表1】

	クラック発生		バイアホール剝離	
	1000回	2000回	1000回	2000回
実施例1	無し	無し	無し	無し
実施例2	無し	無し	無し	無し
比較例	無し	有り	無し	有り

[0058]

【発明の効果】

以上説明したように本発明のプリント配線板によれば、ヒートサイクル時におけるバイアホール上の層間樹脂絶縁層に発生するクラックおよびバイアホールの下層導体回路との剥離を同時に抑制して接続信頼性を向上させることが可能である。

....

【図面の簡単な説明】

【図1】~【図17】

発明にかかる多層プリント配線板の製造工程図である。 【図18】

発明にかかる多層プリント配線板の構造拡大図である。 【図19】

発明にかかる多層プリント配線板の構造拡大図である。 【図20】

銅ーニッケルーリンの粗化層の組成を表す三角図 【符号の説明】

- 1 基板
- 2 下層導体回路
- 3 無電解銅めっき膜
- 4 電解銅めっき膜
- 5 粗化層
- 6 層間樹脂絶縁層 (無電解めっき用接着剤層)
- 7 めっきレジスト
- 20 上層導体回路

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

[図7]

【図8】

 $..^{t}\cdots .^{\star}_{F}$

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【書類名】 要約書

【課題】 ヒートサイクルに起因するバイアホール上の層間絶縁層のクラックやバイアホールと下層導体回路の剥離を抑制する。

【解決手段】 バイアホールを電解めっき膜と無電解めっき膜により構成し、下層導体回路のうちバイアホールと接続する部分に粗化層を設ける。

【選択図】 図18

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000000158

【住所又は居所】

岐阜県大垣市神田町2丁目1番地

【氏名又は名称】

イビデン株式会社

出願人履歴情報

識別番号

[000000158]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

岐阜県大垣市神田町2丁目1番地

氏 名

イビデン株式会社