

			9			18			27			36			45			54
5'	GTG	GGC	ATG	GIG	GGC	AAC	GTC	CIG	CIG	GIG	CTG	GIG	ATC	GCG	CGG	GTG	CGC	CGG
	Val	Gly	Met	Val	Gly	Asn	Val	Leu	Leu	Val	Leu	Val	Ile	Ala	Arg	Val	Arg	Arg
	•		63			72			81			90			99			108
	CIG	CAC	AAC	GIG	ACG	AAC	TTC	CTC	ATC	GGC	AAC	CIG	GCC	TTG	TCC	GAC	GIG	CTC
	Leu	His	Asn	Val	Thr	Asn	Phe	Leu	Ile	Gly	Asn	Leu	Ala	Leu	Ser	Asp	Val	Leu
			117			126			135			144			153			162
•	ATG	TGC	ACC	GCC	TGC	GTG	CCG	CIC	ACG	CTG	GCC	TAT	GCC	TTC	GAG	CCA	CGC	GGC
	Met	Cys	Thr	Ala	Cys	Val	Pro	Leu	Thr	Leu	Ala	Tyr-	-Ala	Phe-	Glu	Pro-	Arg	Gly
			171			180			189			198			207			216
	TGG	GTG	TTC	GGC	GGC	GGC	CIG	TGC	CAC	CIG	GTC	TTC	TTC	CTG	CAG	CCC	GTC	ACC
	Trp	Val	Phe	Gly	Gly	Gly	Leu	Cys	His	Leu	Val	Phe	Phe	Leu	Gln	Pro	Val	Thr
			225			234			243			252			261			270
	GTC	TAT	GIG	TCG	GIG	TIC	ACG	CIC	ACC	ACC	ATC	GCA	GTG	GAC	CCC	TAC	GTC	GTG
	Val	Tyr	Val	Ser	Val	Phe	Thr	Leu	Thr	Thr	Ile	Ala	Val	Asp	Arg	Tyr	Val	Val
			279			288			297									
	CIG	GTG	CAC	CCG	CIG	AGG	CGG	CGC	ATC	3'								
	Leu	Val	His	Pro	Leu	Arg	Arg	Arg	Ile									

FIG. 1

BEST AVAILABLE COPY

54	TAC	!	174	108 CAG	!	Gln	162	STG CTG	1	Val				
		ļ	Ser) YC ()	:	Thr (•		!	Leu Leu				
	CTG 1	!	Leu S	GIG A	:	Val T		TIG C	!	Leu 1				
	_		រុំ				~	_						
45	9	i	Leu	98 75	!	Cys	153	33		ζζs	,	÷		
	ATC	1	Ile	8	!	Gly		TE	!	Phe		TAC	1	됩
	ဥ္ဌ	ł	Val	99	ļ	Pro		ACC	!	揖		TAC	!	꿃
36	95	;	Leu	8 9 9	;	Val	144	සු	!	Arg	198	Ę	;	잂
	<u> </u>	1	Leu Leu	E	-	Val	* =	8	1 ~	Arg		E-		हु
	Ç	1	Pro	႘ၟ	!	Arg		႘ၟ	!	Arg		333	!	E
27	g	1	Leu	81 AAC	-	Asn	135	99	1	Arg	189	33	1	SS
	93	1	Leu	્યુ	1	Arg		gg.	!	Ala		ATC	1	Ile
	136	1	1 }	. E		Leu		ဗ္ဗ	!	Arg		ပ္တ	1	Ala
138	ACC	1	Thr	72 AAG	1	Lys	126	GAC	!	Asp	180	III	!!!	Phe
	35	-	Val	25	!	Val		TGG	† †	jj.		913	!	Val
	92	i	Leu	ថ្ន	!	Ser		GAC	!	Asp		SIG	!	Val
ഗ	93	!	Leu	ය සි	1	Val	117			Ala	171	915	-	Val
	9	-	Leu	ဗ္ဗ	ļ	Arg				Gh		25	;	Val
	ပ္တ		GLY	<u>)</u>	i	Val		_	1	Ser		gg	;	Val
	<u>.</u>				•								•	

FIG. 2

50	100	C L	150	200	250
50 CVPLINAMAF CLPFIFVVIIL	100 LVHPLRRRI- IINPRGWRPN	150	FKDKYVCFDK	200 VVPGCVTQSQ NNMMDKIRDS	250
20 30 40 50 LVIARVRRLH INVINFILICATE ALSDVIMCTA CVPLIKANAF IIULKQKEMR INVINITATIONI SFSDLIVAVM CLPFIFVNIL	90 100 TTITAVORYVV LVHPLRRRI- VLIAVERHQL IINPRGWRPN	140	EPFQNVSLAA FKDKYVCFDK	190 200 VRVSVK L RN R VVPGCVTQSQ FKIYIR L KR R NNMMDKIRDS	240
NVTNE LICHE NVTNE LICHE	80 Vivyyvsvete Vsitvsiese	130	PFVIYQILTD	180 SN	230 VFAII CWLFYY - FAVCWLFLT
20 LV I ARVRRLH II I LKQKEMR	70 80 LCHLVFFLOP WIVYVSVFTL MCKLNPFVOC WSITVSIFSL	120	IWVLAVASSL	170 NAMELIVIL TILLVEXF	220 230 TFCLLVVVVV VFALCWLPYY NVMLLSIVVA - FAVCWLPLT
10 Venvenaliv Levsenlali	60 EPRG <mark>WVFG</mark> GG MDH- WVFG ET	110	NRHAYIGITV	160 GLULV FPSDSHRUSY	210 ADWDRARRR KYRSSETKRI
ਜਜ	51	101	101	151 151	201 201
p19P2 S12863	p19P2 S12863	7007	\$12863	p19P2 S12863	p19P2 S12863

FIG. 5

AS.	38	ပ္က	ၑ	54 CGG 	108 CHC	162 GGC
FIG. 6A	FIG. 6B	FIG. 6C	FIG.	CCC	GTG 	000 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
				GTC	GAC 	Q E
	,			45 CG3 	99 TCC 	153 GAG Glu
				GCC 	TTG	TTC Phe
-				ATC (GCC Ala	GCC Ala
				36 GTC 7	90 CTG 	144 TAT (
				CTC	AAC	GCC Ala
				GTC Val	G GC	CIG Lea
				27 CTC CTC Leu	81 ATC	ACG ACG Thr
	•			13 18 18 18	CTC	CIC
		Ź	-	ATC (TTC (0 Q
				AAC 7	AAT 3	126 GTG (
				GGC 7	ACG 7	73C
		;	,	orc o	GTC A	GCC 1
				ATG G	63 AAC G	T .
				GGC A	TAC A	TGC A
				GTG G	CTG I	ATG TA
•				ច ; >	ប់ដ	X i ž

FIG. 6A

216 ACC Thr	55 I E	4514	378 ACC 177	2817
GIC Val	GTC 	े हैं। द्व	CAC His	
GCG Ala	是 注 注	TAC TAT	GTG 	TTC
207 CAG C15 G15	261 CGC AFG	315 GCC 	369 GCC 	423 GAG Glu
CIC	GAC ASP	AGC	GCC	GAG Glu
TTC Phe	GTG Val	CIC	000 1200 1200 1200 1200 1200 1200 1200	7 3C
198 TTC	252 GCA ALa	306 CGC 	360 CTG 	414 CTC
GIC Val	AIC Ile	CTG	GCG	OGC AFG
CIC	が一時	100	CIG	orc
CAC CAC 	243 ACC 	297 ATC 	351 916 	405 GAC
135 Cys	Cac Leu	CGC	GCG Ala	CAC His
ren l'a	AG 15	SG CGG	Ser I	CCC
180 GGC 117 G1y	234 TTC Phe	288 AGG	342 CTG CTG	396 AAG Lys
9. L. A. C.	GIG	हैं। बु	GIG 	re l G
660 617	Ser	g g	1 L	GAG Glu
	225 GTC 			
	TAT TYT			
ध्रि । द्वि			CIG	智二
				•

FIG. 6B

134 137 137 1386 1386 1386 1386 1386 1386 1386 1386	
장 함	
Yal Yal Yal	
531 CCTG CCTG CCTG CCTG CCAC CCAC CCAC CCAC	
CTG GTG Ala Nal	
CGG	
468 GGG GLY GCC GCC AAA Ser Ser Val	
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Self Fig. Self	
459 TAC TYT CTG CTG CTG CTG CTG CTG CTG	
The state of the s	
91 91 91 91 91 91 91 91 91 91 91 91 91 9	Phe
500 CGC CGC CGC CCG CCG CCG CCG Thr Thr	Phe
GG Sal Sal Sal GG Shall Sal Sal Sal Sal Sal Sal Sal Sal Sal	P. 0.
A S S S S S S S S S S S S S S S S S S S	3
663 663 663 663 663 663 663 663 663 663	g
February States	1
Fig. Kild Kild Kild Kild Kild Kild	3

FIG. 6C

50	100	150 150	200	250
50 CVPLTLAYAF CVPLTLAYAF	100 LVHPLRRRI- LVHPLRRRIS	150 EFWGSQERQR	200 QSQADWDRAR QSQADWDRAR	250
40 ALSDVLMCTA ALSDVLMCTA	90 TTIAVDRYVV TTIAVDRYVV	140 LKPHDVRLCE	190 RNRVVPGCVT RNRVVPGRVT	240
30 NVTNFLIGNL NVTNFLIGNL	80 VTVYVSVFTL VTVYVSVFTL	130 PAAVHTYHVE	180 LSYVRVSVKL LSYARVSVKL	230 PYY
20 INTARVRRIDH INTARVRRIDY	70 LCHLVFFLOP LCHLVFFLOP	120 IWVLSAVLAL	170 TYIDPIDVIL TYIDPIDVIL	220 WWWEATCWE WWWFITCWE
NVIII NIT IN	60 FGGG FGGG	110	160 1160 1155V	210 LLVV LLLVV
VGMVG	EPRGWV EPRGWV	110 LRLSAYAVLA	G QLYAWG	RRRTFCI
1 VGMVG 1 VGMVG		1011	151(GI 151 QLYAW(GI	201 RRRTFCI 201 RRRTFCI

FIG. 7

. 4.4			_					
FIG. 9A	FIG. 9B	FIG. 9C	FIG. 9	60	120	180	240	300
				1 CATCGTCAAGCAGATGAAGATCATCCACGAGGATGGCTACTCCGAGGGCCAGCAGAAATT 1	61 CTGCCCCTTCTTCCCGCGAGTGCTTTCCCGCTCTCCAAACCCCACTCCCAGGTGGCCATG 1	121 GCCTCATCGACCACTCGGGGCCCCCAGGGTTTCTGACTTATTTTCTGGGCTGCCGCGGGGGG 121 AlaSerSerThrThrArgGlyProArgValSerAspLeuPheSerGlyLeuProProAla	181 GTCACAACTCCCGCCAACCAGAGCGCAGAGGCCTCGGCGGGAACGGGTCGGTGGCTGGC	241 GCGGACGCTCCAGCCGTCACGCCCTTCCAGAGCCTGCAGCTGCATCAGCTGAAGGGGG41 AlaAspAlaProAlaValThrProPheGlnSerLeuGlnLeuValHisGlnLeuLysGly

FIG. 9A

84.	81 CGCCAGCTCTACGCCTGGGGGCTGCTGGTCACCTACCTGCTCCCTCTGGTGATCATC	ω <u>γ</u>
78	21 GAGCTCAAGCCGCACGACGTGCGCCTCTGCGAGTTCTGGGGCTCCCAGGAGCGCCAG 01 GluLeuLysProHisAspValArgLeuCysGluGluPheTrpGlySerGlnGluArgGln	0.0
72/20	1 GCCATCTGGGGGGTGCTGGCGCTGCCGGCGGCGGCGTGCACCTATCACGTG 1 AlaileTrpAlaLeuSerAlaValLeuAlaLeuProAlaAlaValHisThrTyrHisVal	81
18.	101 GTGCTGGTGCACCCGCTGAGGCGGCGCATCTCGCTGCGCCTCAGCGCCTACGCTGTGCTG 161 ValLeuValHisProLeuArgArgArgIleSerLeuArgLeuSerAlaTyrAlaValLeu	190
16.	1 CCGGTCACCGTCTATGTCTCGGTGTTCACGCTCACCACCACTGGCAGTGGACCGCTACGTC 1 ProvelthrvaltyrvalServalPheThrLeuThrThrIleAlavalAspArgTyrval	44.
54(1 TTCGAGCCACGCGGGTGTTCGGCGGCGGCCTGTGCCACCTGGTCTTCTTCCTGCAG 1 PheGluProArgGlyTrpValPheGlyGlyGlyLeuCysHisLeuValPhePheLeuGln	212
48(1 CTGGCCTTGTCCGACGTGCTCATGTGCACCGCCTGCGTGCCGCTCACGCTGGCCTATGCC 1 LeuAlaLeuSerAspValLeuMetCysThrAlaCysValProLeuThrLeuAlaTyrAla	121
10.	61 GTGCTGGTGATCGCGCGGGTGCGCCGGCTGCACACGTGACGAACTTCCTCATCGGCAAC 81 ValLeuVallleAlaArgValArgArgLeuHisAsnValThrAsnPheLeuIleGlyAsn	6 6
36(CTGATCGTGCTCTACAGCGTCGTGGTCGTCGCGCCTGGTGGCCAACTGCCTGC	61

113	1321 CCAGAGCTAGC 371	ਜ '
132(1261 TCCACTTCAACTGGCCTCCTAGGGCACCACTCGAGGTCAATCTGGTGCTTATTCTCAGCA 371	7
126(1201 CAGAATATGACCGTCAGCGTGGTCATCTGATGCCACTTAGCCAGGCCTTGGTCAAGGAGC 361 GlnAsnMetThrValSerValValIle***	ਜੋ '
120(1141 TICCGCGAGGAGCTGCGCAAACTGTTGGTCGCTTGGCCCCGCAAGATAGCCCCCCCATGGC 341 PheArgGluGluLeuArgLysLeuLeuValAlaTrpProArgLysIleAlaProHisGly	H .
1140	1081 TGGCTCGCCATGAGTTCGGCCTGCTACAACCCCTTCATCTACGCCTGGCTGCACGACAGC 321 TrpLeuAlaMetSerSerAlaCysTyrAsnProPheIleTyrAlaTrpLeuHisAspSer	ĭ
108(1021 GACCTCGACCCCCACGCCATCGACCCTTACGCCTTTGGGCTGGTGCAGCTGCTCTGCCAC 301 AspLeuAspProHisAlaIleAspProTyrAlaPheGlyLeuValGlnLeuLeuCysHis	۲, .
102(961 GTGGTCGTGGTGTTCGCCGTCTGCTGCCGCTGCACGTCTTCAACCTGCTGGG 281 ValValValValValPheAlaValCysTrpLeuProLeuHisValPheAsnLeuLeuArg	
96(901 ACCCAGAGCCAGGCCGACTGGGACCGCGCCGCGGCGCGCGC	3.14
90(841 CTCCTGTCTTACGTCCGGGTGTCAGTGAAGCTCCGCAACCGCGTGGTGCCGGGCTGCGTG 241 LeuLeuSerTyrValArgValSerValLysLeuArgAsnArgValValProGlyCysVal	• •

FIG. 9C

FIG. 10

5'	CTG	TGT	9 GTC	ATC	GCG					GTG								54 CGG
	Leu	Cvs	Val	Ile	Ala	Val	Asp	Arg	Tyr	Val	Val	Leu	Val	His	Pro	Leu	Arg	Arg
	CCC	ልጥቦ	63 TCA	CTG	ACC					ccc			ccc	እጥ ሶ	99 TGC:	ርርጥ	בידים	108
				Leu														
			117			126			135			144			153	÷	,	162
	GCA	GTG	CIG	GCG	CIG	CCG	GCC	GCG	GIG	CAC	ACC	TAC	CAT	GIG	GAG	CIC	AAG	CCC
	Ala	Val	Leu	Ala	Leu	Pro	Ala	Ala	Val	His	Thr	Tyr	His	Val	Glu	Leu	Lys	Pro
	CAC	GAC	171 GTG	AGC	CTC					TGG						CAA		
	His	Asp	Val	Ser	Leu	Cys	Glu	Glu	Phe	Trp	Gly	Ser	Gln	Glu	Arg	Gln	Arg	Gln
	> ma	m a		m-c		•									261	~~~	000	270
	AIC	TAC		TGG			CIT			ACC	TAT	116			C1G	C1G		AIC
	Ile	Tyr	Ala	Trp	Gly	Ļeu	Leu	Leu	Gly	Thr	Ţŗ	Leu	Leu	Pro	Leu	Leu	Ala	Ile
	CTC	CTG	279 TCT	TAC	GTA		GTG			AAG			AAC		315 GTG	GIG	CCT	324 GGC
	Leu	 Leu	Ser	Tyr	Val	Arg	Val	Ser	Val	Lys	 Leu	Arg	Asn	Arg	Val	Val	Pro	Gly
	AGC	GTG	333 ACC	CAG	AGT					GAC			CGT		369 CGC		ACT	378 TTC
	Ser	Val	Thr	Gln	Ser	Gln	Ala	Asp	Trp	Asp	 Arg	Ala	Arg	Arg	Arg	Arg	Thr	Phe
	TGT	CTG	387 CTG	GTG	GIG					TTC		414 CTC	TGC	TGG	423 CTG	CCC	TTC	432 TAC
	Cys	Leu	Leu	Val	Val	Val	Val	Val	Val	Phe	Thr	Leu	Cys	Trp	Leu	Pro	Phe	Tyr

CT 3'

p19P2 pG3-2/pG1-10 p5S38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 VGMVGNy[LLV VGMVGNI[LLV	20 LVIARVRRDH LVIARVRRLY	30 NVTNFLIGNL NVTNFLIGNL	40 ALSDVLMCTA ALSDVLMCTA	50 CVPLTLAYAF CVPLTLAYAF	50 50 -30
p19P2 pG3-2/pG1-10 p5S38	51 51 -29	60 EPRGWVFGGG EPRGMVFGGG	70 LCHLVFFLQP LCHLVFFLQA	80 VTVYVSVETL VTVYVSVETL	90 TTIAVDRYVV TTIAVDRYVV CV	100 LVHPLRRRI- LVHPLRRRIS LVHPLRRRIS	100 100 21
p19P2 pG3-2/pG1-10 p5S38	101 101 22	110 LRLSAYAVLA LRLSAYAVLS	120 IWVLSAVLAL IWALSAVLAL	130 РААУНТУНИЕ РААУНТУНИЕ	140 LKPHDVRLCE LKPHDVSLCE	150 EFWGSQERQR EFWGSQERQR	150 150 71
p19P2 pG3-2/pG1-10 p5S38	151 151 72	160 QLXAWGLBLV QLXAWGLBLV	170 TYLLPLLVIL TYLLPLLVIL TYLLPLLA	LSYVRVSVKL LSYARVSVKL LSYARVSVKL	190 RNRVVPGCVT RNRVVPGRVT RNRVVPGSVT	200 QSQADWDRAR QSQADWDRAR QSQADWDRAR	200 200 121
p19P2 pG3-2/pG1-10 p5S38	201 201 122	210 RRRTFCLLW RRRTFCLLW RRRTFCLLW	220 VVVVFTLCWL VVVVFTLCWL	230 PYY PFF	240	250	250 250 171

FIG. 13

FIG. 14

FIG. 15

rat whole brain extract
C18-column CH3CN elution (%)

FIG. 16

bovine hypothalamus extract C₁₈-column CH₃CN elution (%)

FIG. 17

						• •							
5.4 1.4		Trp Tyr					<u>ა</u>	8 7	119	38	126	40	
45		Ala					CCTG	laLeu	CCAAC	leAsn			
ر ر م	1	Asn Pro					GTGGAATGAAGGCGGTGGGCCTGGTCCTCTGCCTGCTGCTGGGCCTGGCCTGG	MetLysAlaValGlyAlaTrpLeuLeuCysLeuLeuLeuLeuGlyLeuAlaLeu	CAGGGGGTGCCAGCAGAGCCCACCAGCACTCCATGGAGATCCGCACCCCCGACATCAAC	GlnGlyAlaAlaSerArgAlaHisGlnHisSerMetGluI]eArgThrProAspIleAsn			
ر ب	, ;	Ile					CTGG	LeuG	ACCC	ThrP			
36 36		Asp					GCTG	uLeu	CCGC	eArg			•
יייי) 	Thr Pro			-		TGCT	euLe	AGAT	lui]			
						22	TGCC	CysL	ATGG	MetG			23
27		Arg	•			FIG. 22	מכתכ	uLeu	יכדכם	sSer			FIG. 23
GAG ATC		Ile	ტ ტ	1	l	ட	GGCT	rpLe	AGCA	lnHi			LL_
★ 8		Glu	72	1	Pro		GCCI	Alaī	CACC	His			
18		Met	72		Arg		19990	11G1y	SAGCO	gAla			
U) E) 	Ser	ATC	!	Ile		30GG	Alava	AGCAC	SerA			
טאט	; ;	His	999	1	Gly	7	:AAGC	Lys	Jecc,	Alas			
P5-1 9 GCC CAC CAG CAC T		His Gln His S	63 GCG GGC CGT GGG A	1	Gly Arg Gly I	P3-2	AATO	Met	36601	yAla	CT	a	
P5-1		His	099	ŀ	Gly		GTGG		AGGG	lnG]	CTGC	39 ProAla	
ם כי) !	Ala	ဗ		Ala		H	н	60 0	19 G	120 ccreccr	39 E	١.
ŗ	1												

	V/C 131⊒	
3 0 8 8 8 8	360 AATAAAAGCAGCTTGTT 98	360 98
359 98	300 TAACAGCGGGAGCCTGCCCCCCCCTCCTCCTCCAGCCAGC	300 98
299 98	240 GGCGGYGCTGAGCCCTCCCGAGCCCTCCCGGGCGGCTGACGGCCCAGCTGGTCCAGGAA 79 GlyGlyAlaGluProSerArgAlaLeuProGlyArgLeuThrAlaGlnLeuValGlnGlu	240
239	180 GCCCCGGGGGACGCCCAGGCCTGGCCCCCGGCGTGTGCCGGCCTGCTTCCGCCTGGAA 59 AlaProGlyAspGlyProArgProGlyProArgArgValProAlaCysPheArgLeuGlu	180 59
179 58	120 CCTGCCTGGTACGCRGGCCGTGGGATCCGGCCCGTGGGCCGCCTTCGGCCGGCGAAGAGCT 39 ProAlaTrpTyrAlaGlyArgGlyIleArgProValGlyArgPheGlyArgArgAla	120
119	60 CAGGGGGCTGCCAGCAGCCCACCACCACCATGGAGATCCGCACCCCCGACATCAAC 19 GlnGlyAlaAlaBerArgAlaHisGlnHisSerMetGluIleArgThrProAspIleAsn	60
18	MetLysAlaValGlyAlaTrpLeuLeuCysLeuLeuLeuLeuGlyLeuAlaLeu	Н
59	GTGGAATGAAGGCGGTGGGCCTGGCTCCTCCTGCTGCTGCTGCTGGGCCTGGCCCTG	-

ਜ ਜ · (GTGGAATGAAGGCGGTGGGCCTGGCTCCTGCCTGCTGCTGGTGGGCCTGGCCCTG	25
19	60 CAGGGGGCTGCCAGCAGCCCACCACTCCATGGAGATCCGCACCCCCGACATCAAC 19 GlnGlyAlaAlaBerArgAlaHisGlnHisSerMetGluIleArgThrProAspIleAsn	38
120	120 CCTGCCTGGTACGCRGGCCGTGGGATCCGGCCCGTGGGCCGCTTCGGCCGGCGAAGAGCT 39 ProAlaTrpTyrAlaGlyArgGlyIleArgProValGlyArgPheGlyArgArgAla	179
180 59	180 GCCCTGGGGACGGACCCAGGCCTGGCCCCGGCGTGTGCCGGCCTGCTTCCGCCTGGAA 59 AlaLeuGlyAspGlyProArgProGlyProArgArgValProAlaCysPheArgLeuGlu	23.7
240	240 GGCGGYGCTGAGCCCTCCCGAGCCCTCCCGGGCGGCTGACGGCCCAGCTGGTCCAGGAA 79 GlyGlyAlaGluProSerArgAlaLeuProGlyArgLeuThrAlaGlnLeuValGlnGlu	20.00
300 98	300 TAACAGCGGGAGCCTGCCCCCCCCCTCCTCCACCAGCCACCTTCCCTCCAGTCCT 98	m O
360 98	360 AATAAAAGCAGCTTGTT 98 FIG 24B	ж 8 б

FIG. 28

10 ATGAAGGCGG	20 TGGGGGCCTG	30 GCTCCTCTGC	40- CTGCTGCTGC	50 TGGGCCTGGC	60 CCTGCAGGGG
	80 GAGCCCACCA			110 GTGAGTGTCT	120 AGCCCCGCCC
130 CTGCCCCCAG				170 GGCTGGGACA	
				230 CTTCCCCCAG	
250 CAGGTGCTCC	260 CAAGGGTCCC	270 GGCCCAGCAC	280 ACGGGGGAGG	290 GTCACTCCTC	300 ACCACACGGG
310 TGGCCTGGGG				350 TGTGAGGACA	
				410 AAGCCACCCC	
				470 CTGGCATGGC	
490 GGCAGCCATG				530 GGCTGTATGC	
550 AGGCCTCCAT	560 GCGCTCTTCT	570 CTCTCTTTCC	580 AGCCCCCGAC	590 ATCAACCCTG	600 CCTGGTACGC
				650 AGAGCTGCCC	
				710 CTGGAAGGCG	
				770 CAGGAATAA.	

30A	30B	30C	30 50 50	100	150	200	
FIG. 30A	FIG. 30B	FIG. 30C	FIG. 30 50 resecresec 5 resecresec 5	100 GAGATCCGCA GAGATCCGCA	150 GGGGCCTGG	200 GIIGGGGIII	
			40 Crecrecrec Crecrecrec	90 GCACTCCATG GCACTCCATG	140 GGTCACAGG	190 GCATCCTGGG	
* <u>-</u>		··	30 Geneenene Geneenenee	SAGCCCACCA GAGCCCACCA	130 CTGCCCCCAG	GGCTGGGACA TCCTTGCTAA	FIG. 30A
			20 TGGGGGCCTG TGGGGGCCTG	70 screceseca screeceseca	120 AGCCCCGCCC	170 GGCTGGGACA	FI.
	·		10 ATGAAGGCGG 1	60 CCTGCAGGGG CCTGCAGGGG	110 GTGAGTGTCT	160 CCACTTCCTG	•
		٠	ન ન	22.22	101	151	
			genome cDNA	genome cond	genome	genome	

250	300	3 3 3 5 0	400	450 450	500
250	300	350	400	450	500
CAGGTGCTCC	ACCACACGGG	TGTGAGGACA	CTACTTCCCA	rccrereces	AGCTGAGCAC
240	290	340	390	440	490
GTGGCCCGGA	GTCACTCCTC	AGAACGGGGC	GTCTGAAATC	CGGGTGAACC	GGCAGCCATG
230	280	330	380	430	480
CTTCCCCCAG	ACGGGGGAGG	GTCACCCATG 7	CCTGGTGTGA	ATGGGCGCTC	CTGGGCGACA
220	270	320	370	420	470
TCCCCAGACC	GGCCCAGCAC	CTGAGTGCAC	GGGAGTGTGT	AGCACCAGAA	CTGGCATGGC
201 GGCCTCCTGT	260	301 TGGCCTGGG	360	401 AAGCCACCCC	451 GTGGGTGGTC
201 GCCTCCTGT	CAAGGGTCCC	301	GGAAAGGAAG	401	451
201	251	301	351 351	401	451
genome	genome	genome	genome	genome	genome

FIG. 30B

550 550	900	650	700	750	800
550 AGGCCTCCAT	600 CCTGGTACGC CCTGGTACGC	650 AGAGCTGCCC AGAGCTGCCC	700 CIGCTITCCGC CIGCTITCCGC	750 GGCTGACGGC GGCTGACGGC	800
540 TCCAGGGCAC	S90 ATCAACCCTG ATCAACCCTG	640 CGGCCGGCGA CGGCCGGCGA	690 Grendecedes Caronoscos	740 crecesses creecs	790
530 190	010:0!	630	089	730	780
530 GGCTGTATGC	\$80 \$60000000	130 15GGCGCTT 15GGCGCTT	2552222255 2552222255 089	730 CTCCCGAGCC CTCCCGAGCC	• •
520 CGGCCACCAG	570 CICICITICC	620 ATCCGGCCCG	ACCCAGGCCT ACCCAGGCCT	720 Greergagee Georgagee	770 CAĞĞAATAA. CAGGAATAA.
510 501 ACACCCGGCC 501	560 GCGCTCTTCT	610 AGGCCGTGGG GGGCCGTGGG	660 TGGGGGACGG CGGGGACGG	710 701 CTGGAAGGCG 701 CTGGAAGGCG	751 CCAGCTGGTC 751 CCAGCTGGTC
501 501	551	601 601	651 651	701	751 751
genome	genome	genome	genome	genome	genome cDNA

FIG. 30C

54 CTG	108 GAC D	162 660 6	216 CCG	270 CGG	
SCC A	00	TIC	व्याद्ध	99 9	3.7
1 G	ACC	S 4	E E	500 Pd	FIG
45	80 1 000 1 8	153 GGC 	207 CGG	261 CTC	
E 1	ATC	GIG		000 A	
E 13	न ज	O O O	ပ္ပ	S S	
36 L	ATG	144 CGG	198 CCT	252 TCC	
B 1	Sis	AIC	A A		
13C	CAC H	ဗ္ဗ ဗ		GAG	m -
CTC CTC L	CAG	135 CGT 	189 GGA 	243 GCT A	297 TAA *
S 1	CAC H	ပ္ပ ၂ ဗ	GAC D	GGT	GAA E
TGG 3	00 A	\foatie_\text{\text{\def}} \\ \text{\def}	88	99 9	CAG O
118 GCC P G	AGA R	126 TAC TAC	180 CJG	234 GAA E	288 GTC
99 9			GCC A		
GTG	\\ \\ \\ \\ \\	SS - A	GCT A	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	SAG O
900 A	क नियुष्ट	1117 CCT P	171 AGA 	225 TTC	279 GCC A
AAG K	ပ္ပြဲ ြပ	AAC 	स्र । स	ဥ္သြင္	AGG F
AIG	SAS I O	AIC	8 R	S 4	य वि

H	GGCATCATCCAGGAAGACGGAGCATGGCCCTGAAGACGTGGCTTCTGTGCTTGCT	Š
Н	MetAlaLeuLysThrTrpLeuLeuCysLeuLeuLeu	H
60	CTAAGCTTGGTCCTCCCAGGGGCTTCCAGCCGAGCCCACCAGCACTCCATGGAGACAAGA LeuSerLeuValLeuProGlyAlaSerSerArgAlaHisGlnHisSerMetGluThrArg	11 8
120 33	ACCCCTGATATCAATCCTGCCTGGTACACGGGCCGGGGATCAGGCCTGTGGGCCGCTTC ThrProAspIleAsnProAlaTrpTyrThrGlyArgGlyIleArgProValGlyArgPhe	17
180 53	180 GGCAGGAGAAGGGCAACCCCGAGGGATGTCACTGGACTTGGCCAACTCAGCTGCCTCCCA 53 GlyArgArgArgAlaThrProArgAspValThrGlyLeuGlyGlnLeuSerCysLeuPro	23
240	CTGGATGGACGCACCAAGTTCTCTCTCAGCGTGGATAACACCCCCAGCTCGAGAAGACAGTGC	29
300	300 TGCTGAGCCCAAGCCCACACTCCCTGTCCCTGCAGACCCTCCTCTACCCTCCTCTCTCT	<u>ო</u>
360	CTGCT	36

FIG. 32

◁	
7	5
C)
Ц	

	FIG. 33A	FIG. 33B	FIG. 33	37	7/60			÷	FIG. 33A
		32	,	100	132	150		182	
	V G A W L L 40 50	AGGAAGACGG AGCATGG CCCTGAAGAC GTGGCTTCTG	G A A S R A H 90 100	IGCTGGCCT GCCCTGCAG GGGCTGCCA GCAGAGCCCA IGCTAAGCTT GGTCCTCCCA GGGGCTTCCA GCCGAGCCCA R1	I N P A W Y A 140 150 CATCAACCT GCCTGGTACG	TATCAATCCT GCCTGGTACA R3	G R R R A A 190 . 200	TCGCCGGCG AAGAGCTGCC TCGGCAGGAG AAGGGCAACC	
· · · · · · · · · · · · · · · · · · ·	ж ж 30	GGAATGAAGG (AAGCATGG	A L Q 80	GGCCCTGCAG (GGTCCTCCCA)	T P D 130 GCACCCCGA	ATGGAGACAA GAACCCCTGA	V G R F 180	GTGGGCGCT GTGGCCGCT R4	
	50	AGGAAGACGG	г с г 70	TGCTGGGCCT TGCTAAGCTT R1	M E I R 120 ATGGAGATCC	ATGGAGACAA	I R P 170	GATCCGCCCC	
	10	-181 1 GCCATCATCC	1 1 J D	33 recerected recreater seconded asserteda 51 recerected recerectances asserteda 81	Q H S 110 83 CCAGCACTCC	101 CCAGCACTCC	б R G 160	133 cacaccence 151 cacaccaca	
	bovine.aa	bovine.seq rat.seq	bovine.aa	bovine.seq rat.seq	bovine.aa bovine.seq	rat.seq	bovine.aa	bovine.seq rat.seq	

bovine.aa		O ₄		ტ ი	PGDG PRP GPR RVPA CFR	R.	Ωι	O	ρι	œ	œ	>	ρι	Æ	U	EL.	~		
				210			220			230	_ =		240	0		250	0		
bovine.seq	183		g	:ACG	CCGGGGACG GACCCAGGCC TGGCCCCGG CGTGTGCCGG CCTGCTTCCG	S	ညည္ဟ	8	g	9	8	95	g	8	130	E		232	
rat.seq	201	S	धु	PATG	CCGAGGGATG TCACTGGACT TGGCCAACTCA GCTGCCTCCC	g	GACT	33	Ų	!		Ş	g	& B	1360	ğ	ប្ល	250	
•																			
bovine.aa		H	M	U	LEG GAEP SRA LPGR LTA	Æ	ш	(V)	124	4	H	Ωι	ပ	pri pri	H	E	~		
				260			270			280			29	0		m	8		
bovine.seq	233		Š	9	CCTGGAAGGC GGCGCTGAGC CCTCCCGAGC CCTCCCGGGG CGGCTGACGG	g	CACC	g	\mathcal{G}	CAGO	8	200	8	8 U	SS	GAC	ន	282	
rat.seq	251	ACT	Š	333	ACTGGATGGA CGCACCAAGT TCTCTCAGCG TGGATAACAC CCCAGCTCGA	ACC	AAGT	ទ្ឋ	ğ	3666	ğ	HATE	Ş	ပ	Ö	ğ	æ	300	
bovine.aa		ø	h	>	D L V D E	ы	*						•						
				310			320			330	_		340	0		m	350		
bovine.seq	283	_	g	55	CCCAGCTGGT CCAGGAATAA CAGGGGGAGC CTGCCCCCCA CCCCTCCTCC	8	ATAA	5	Ö	SCACK	ğ		8	S S	E C	Ü	ပ္ပ	332	
rat.seq	301		ğ	Sign	GAAGACAGIG CIGCIGAGCC CAAGCCCACA CICCCIGICC CCIGCAGACC	g	DOSE	3	မွ	D D	E S			ပ ပ	330	AGA	႘	350	
		,		360			370			380			390	0		4	400		
bovine.seq	333		ğ	ည္တမွ	reaceasee acemeent casteerah aaaseaser ssentit	E		3	ğ	TAN	Z Z	A C	8	ઇ E	Series	FIE	:	382	
rat.seq	351		K	TACC	CICCICIACC CICCCICIC ICIGCI	Ş		Ē	g		:		•	•	•	•	•	400	

FIG. 33B

ਜ ਜ	GGCCTCCTCGGAGGAGCGATGAAGGTGCTGAGGGCCTGGCTCCTGTGCCTGCTG	59
60	60 ATGCTGGGCCTGGCGGGGAGCTGCAAGTCGTACCCATCGGCACTCCATGGAGATC 13 MetLeuGlyLeuAlaLeuArgGlyAlaAlaSerArgThrHisArgHisSerMetGluIle	119
120	CGCACCCCTGACATCCTGCCTGGTACGCCAGTCGCGGGATCAGGCCTGTGGGCCCGC ArgThrProAspIleAsnProAlaTrpTyrAlaSerArgGlyIleArgProValGlyArg	179
180 53	TTCGGTCGGAGGAGGCAACCCTGGGGGACGTCCCCAAGCCTGGCCTGCGACCCCGGCTG PheGlyArgArgArgAlaThrLeuGlyAspValProLysProGlyLeuArgProArgLeu	239
240	240 ACCTGCTTCCCCCTGGAAGGCGGTGCTATGTCGTCCCAGGATGGCTGACAGCCAGC	8 8
300	CAAGAAACTCACTCTGGAGCCTCCCCCACCCCTCTCTCTC	m m
360	cc FIG. 34	ω (α (α)

	100 LTAQLVQE*.	90 AEPSRALPGR TKESÕRG*	80 VPACERLEGG QLSCLPLDGR	TO P GOOFFEEPER P RIVIGIG		51 15 15	bovine.aa rat.aa human.aa
0 0 0 0 0	50 WYAGRGIRFV WYYGRGIRFV WYASRGIRFY	40 EIRTPDINPA ETRTPDINPA EIRTPDINPA	20 30 LILLGLALOG AASRAHQHSM LILLSIVLPG ASSRAHQHSM LIMIGLALRG AASRTHRHSM	20 LLLEGLATOG LLLLSEVLPG LIMIGLATRG	MKAVGAWLLC LLLIGLALQG AASRAHQHSM EIRTPDINPA WYAGRGIRPV M-ALKTWLLC LLLISIVLPG ASSRAHQHSM ETRTPDINPA WYTGRGIRPV MKVLRAWLLC LIMIGLALRG AASRTHRHSM EIRTPDINPA WYASRGIRPV	ਜਜਜ	bovine.aa rat.aa human.aa

FIG. 35

Total binding

國 NSB

cells; 0.5×10^7 cells/ml

[125 []-19P2-L31; 200pM(avg.63857.3cpm)

NSB; 200nM(x 1,000)

reaction; RT, 2.5hr

in HBSS + 0.05% BSA + 0.05% CHAPS

in 100 µl

FIG. 36

FIG. 41A

FIG. 41B

FIG. 42A

FIG. 42B

FIG. 43A

FIG. 43B

FIG. 44A

FIG. 44B

FIG. 45

FIG. 46

direct blood pressure

FIG. 47A

mean blood pressure

FIG. 47B

FIG. 48

FIG. 49

10ⁿ-fold diluted antiserum

FIG. 50

FIG. 51

					56/60)		
	FIG. 52A	FIG. 52B	FIG. 52C	FIG. 52D	FIG. 52E	FIG. 52	54 CCG 	108 AAT
	FIC	FIC	FI)H	FIC] \(\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	666 G1y	AGC Ser
							TCT Ser (GAG Glu
							45 TTT 	89 TCA Ser
							TTG Leu	GCT Ala
							GAT 	GAG Glu
			•				36 CCC 	90 GCA
-						· <u>·</u> · · –	GAC	AGT Ser
						FIG. 52A	666 	CAG Gln
						<u>ত</u>	27 ACT 	81 AAC Asn
						Щ	ACC Thr	GCC Ala
		•					GGA Gly	CCA Pro
							18 CCT 	72 ACT Thr
	,						CCC	TCC
							CTG Leu	66C 61y
		٠					O TCA	63 GCC
			1				ACC Thr	CCA Pro
			t.				ATG ACC Met Thr	TCG

162 CAA Gln	216 GTC 	270 CGG 	324 CTC Leu	378 GGC
CIG	GTG	CGC	GTG	CGT
	Val	Arg	Val	Arg
AGC	GTG Val	GTG Val	GAT Asp	CCT
153 CAG Gln	207 ATC Ile	261 CGC 	315 TCC Ser	369 GAA Glu
TTC	AGC	GCG	TTG	TTT
Phe	Ser	A la	Leu	Phe
CCG	TAC	ATC	GCC	GCC
	Tyr	Ile	Ala	Ala
144 ACG Thr	198 CTG 	252 GTG 	306 CTG Leu	360 TAC TYr
GIC 	ATG Met	CIG Leu	AAC Asn	GCC Ala
GCA	GTG	GTG	66C	CTG
Ala	Val	Val	G1y	Leu
135 GCA 	189 ATC Ile	243 CTT Leu	297 ATC Ile	351 ACG Thr
GCT	CTG	CII	CIC	CTC
Ala	Leu	Leu	Leu	
AGA	GCA	TGC	TIC	CCT
Arg	Ala	Cys	Phe	
126 CCC Pro	180 AAG Lys	234 AAC Asn	288 AAC Asn	342 GTG
GTT	CTG	GGC	ACC	TGT
Val	Leu	G1y		Cys
ACG	CAG	GTG	GTG	GCC
Thr	Gln	Val	Val	Ala
117 GCG 	171 CAC His	225 CTG Leu	279 AAC Asn	333 GCC Ala
TCT	GTG	GGT	CAC	TGT
Ser	Val	G1y		Cys
GTG	CTA	GTG	CTG	ATG
Val	Leu	Val	Leu	Met

432 ACC	 Thr	486 GTT 	540 GTG Val	594 ACC Thr	648 GGT Gly
GTC	 Val	GTG Val	GCT Ala	CAC His	166 Trp
900	Pro	TAT Tyr	TAC Tyr	GTG Val	TTC Phe
423 CAG	Gln	477 CGC 	531 GCC Ala	585 GCG Ala	639 GAG Glu
CTG	 Leu	GAC ASP	AGC Ser	GCC Ala	GAG Glu
TIC	 Phe	GTG Val	CTC	CCG I I O Pro	TGC Cys
414 TTC	 Phe	468 GCT 	522 AAG Lys	576 CTG Leu	630 CTC Leu
GTT	Val	ATC Ile	L I B	9 - A 1 - A 1 - A	CGC Arg
CTT	Leu	ACA Thr	TCA Ser	CTG Leu	GTG Val
405 CAC	His	459 ACC Thr	513 ATT 	567 GTG 	621 GAC ASP
TGC	Cys	CTC	CGC Arg	GCA Ala	CAC
CTG	Leu	ACA Thr	CGG Arg	TCT 	CCC
396 GGC	 G1y	450 TTC Phe	504 CGT 	558 CTA Leu	612 AAG Lys
GGA	 G1y	GTG Val	CTA 	GCT Ala	CTC
GGT	 G1y	TCG	CCG	IGG III	GAG Glu
387 TTC	 Phe	441 GTA 	495 CAC His	549 ATC Ile	603 GTA
GTG	 Val	TAC Tyr	GTG Val	66C 61y	CAT His
TGG	Trp	GTC Val	CTG Leu	CTG Leu	TAC Tyr

702 TAT	Ту <i>г</i> 756 ттс	Leu	810 CGA	Arg	864 GCG	Ala	CGT	Arg
ACC	Thr	Lys	GAC	Asp	TTC	Phe	000 I	Pro
))	GTG	Val	TGG	Trp	GTG 	Val	GAC	Asp
693 CTG	Leu 747 TCG	Ser	801 GAC	Asp	855 GTC	Val	CIG	Leu
CIG	Leu GTG	Val	GCT	Ala	GTG	Val	GAC	Asp
CIG 	Leu	Arg	CAG	Gln	GTG	Val	0 0 1 1	Arg
684 GGG	Gly 738 GTC	Val	792 AGC	Ser	846 GTG	Val	CTG	Leu
- H H H	Trp TAC	Tyr	CAG	Gl	GTG	Val	CIG	Leu 2D
သ ၊	Ala	Ser	ACC	Thr	CIG	Leu	AAC	he Asn Leu FIG. 52D
675 TAT	TYr 729 CTG	Leu	783 GTG	Val	837 CTG	Leu 891	TIC	Phe
ATC	CTC	Leu	AGC	Ser	T T	Cys	ATT 	Ile
CAG	Gln	Ile)) 	$_{ m G1y}$	TTC	Phe	CAC	His
666 CGA	Arg 720 GCC	Ala	774 CCT	Pro	828 ACT	Thr	CIG	Leu
CAG	GIG	Leu	GTG	Val)) 	Arg	CCT	Pro
)))	Arg CTG	Leu	GTG	Val	TSO -	Arg	CIG	Leu
657 GAG 	Glu 711 CCC	Pro	765 CGC	Arg	819 CGC	Arg 873	1 1 1 1 1 1	Trp
	GIn	Leu	AAC	Asn	CGT	Arg	ମ୍ବର ।	Cys
F 1 6	S E E	Leu	ე ე	Arg	9 9 9 1	Ala	GTC	Val

972 GCC	Ala	1026 TTC	: Phe 1080	CAT	His	
CIT	Leu	AGC	Ser 1	CCT	Pro	
TGG	Trp	GAC	Asp	GTG	Val	
963 CAC	• •	1017 CTG CAC	u His	AAG ATC	Ile	,
TGC	•		Lei		Lys	
CIC	Leu	F 1	Ser	ည ၂ ၂	Arg	1,
954 CTC	Leu	1008 TAT GCG	. Ala 1062	TGG CCC	Pro	TGA TGA
CAG	G1n	TAT	TYr	TGG	Irp	45
GTG	Val		I le	TCT	Ser	ATC Ile
945 CTG	Leu	111C	. Phe 1053	CIG	Leu	GTC
999 1	$_{ m G1y}$) 	Pro	CIT	Leu	GTG
TTC	Phe		Asn	ATG	Met	AGT Ser
936	Ala		Tyr 1044	CGC AAG	Lys	CC GTC
TAC	Tyr	79 H	Cys 1		Arg	AG I E
CCC	Pro		Ala	CTA	Leu	ATG Met
927 GAC	Ile Asp Pro		Ser 1035	GAG GAG	Glu Glu	CAG AAT
927 GCC ATC GAC			Ser	GA G	Glu	GGC CAG AAT Gly Gln Asn
0 0 0 1	Ala	ATG	Met	CGA	Arg	66C 61y

FIG. 52E

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.