

FCC TEST REPORT FCC ID: 2AG6FV10

Product : POS System

Model Name : V10,V6,V7,V8,V9

Brand : CITAQ

Report No. : PT800231151222E-FC03

Prepared for

CITAQ CO., LTD.

9th Floor, Chuangye Building, 6 Keji Middle Road, New Hi-Tech Zone, Shantou, Guangdong China

Prepared by

DongGuan Precise Testing Service Co.,Ltd.

Building D, Baoding Technology Park, Guangming Road 2, Guangming Community

Dongcheng District, Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Applicant's name CITAQ CO., LTD.

9th Floor, Chuangye Building, 6 Keji Middle Road, New Hi-Tech Zone, Address

Shantou, Guangdong China

CITAQ CO., LTD. Manufacture's name

9th Floor, Chuangye Building, 6 Keji Middle Road, New Hi-Tech Zone, Address

Shantou, Guangdong China

Product name **POS System**

V10,V6,V7,V8,V9 Model name

Standards FCC CFR47 Part 15 Section 15.247

ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03 Test procedure

Test Date Dec. 25, 2015 ~ Jan.4, 2016

Date of Issue Jan.4, 2016

Test Result **Pass**

This device described above has been tested by PTS, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTS, this document may be altered or revised by PTS, personal only, and shall be noted in the revision of the document.

Testing Engineer

August Qiu

Technical Manager

Hack Ye

Authorized Signatory

Chris Du

August Qin Hack Ye Cholin

Contents

			Page
2	TES	T SUMMARY	5
3	GEN	IERAL INFORMATION	6
	3.1	GENERAL DESCRIPTION OF E.U.T.	6
	3.2	CHANNEL LIST	7
	3.3	TEST MODE	7
4	EQU	JIPMENT DURING TEST	8
	4.1	EQUIPMENTS LIST	8
	4.2	MEASUREMENT UNCERTAINTY	9
5	CON	IDUCTED EMISSION	10
	5.1	E.U.T. OPERATION	10
	5.2	EUT SETUP	10
	5.3	MEASUREMENT DESCRIPTION	11
	5.4	CONDUCTED EMISSION TEST RESULT	11
6	RAD	DIATED SPURIOUS EMISSIONS	13
	6.1	EUT OPERATION	13
	6.2	TEST SETUP	14
	6.3	SPECTRUM ANALYZER SETUP	15
	6.4	TEST PROCEDURE	16
	6.5	SUMMARY OF TEST RESULTS	17
7	CON	IDUCTED SPURIOUS EMISSIONS	32
8	BAN	ID EDGE MEASUREMENT	41
	8.1	Test Procedure	41
	8.2	TEST RESULT	42
9	6DB	BANDWIDTH MEASUREMENT	47
	9.1	Test Procedure	47
	9.2	TEST RESULT	47
10	MAX	(IMUM PEAK OUTPUT POWER	56
	10.1	Test Procedure	56
	10.2	TEST RESULT	57
11	POV	VER SPECTRAL DENSITY	66
	11.1	Test Procedure	66
	11.2	Test Result	66

Report No.:	PT800231151222E-FC	203
-------------	--------------------	-----

12	ANTENNA REQUIREMENT	75
13	TEST SETUP	76

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conduct Spurious Emission	15.247(d)	PASS
Band edge	Band edge 15.247(d) 15.205(a)	
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS

Remark:

N/A: Not Applicable

3 General Information

3.1 General Description of E.U.T.

	•
Product Name	: POS System
Model Name	: V10,V6,V7,V8,V9
Model Description	: Only the model names are different
GSM Band(s)	GSM 850/1900
GPRS/EGPRS Class	12
WCDMA Band(s)	FDD Band II/V
Bluetooth Version	: V4.0(with BLE)
Operating frequency	: GSM/GPRS/EDGE 850: 824~849MHz PCS/GPRS/EDGE 1900: 1850~1910MHz WCDMA/UPA/DPA Band V: 824~849MHz WCDMA/UPA/DPA Band II: 1850~1910MHz Bluetooth: 2402-2480MHz WIFI 802.11b/g/n HT20:2412-2462MHz 802.11n HT40:2422-2452MHz
Max. RF output power	: GSM 850: 32.35dBm PCS 1900: 29.18dBm WCDMA Band V: 22.66dBm WCDMA Band II: 22.47dBm Bluetooth: 2.04dBm WIFI: 9.42dBm
Type of Modulation	: GSM,GPRS: GMSK EDGE: 8PSK WCDMA: QPSK Bluetooth: GFSK, Pi/4 DQPSK,8DPSK WIFI: CCK, OFDM
Antenna installation:	: GSM/WCDMA: internal permanent antenna WIFI/Bluetooth: internal permanent antenna
Antenna Gain:	: GSM 850/ WCDMA Band V: -0.5dBi PCS 1900/ WCDMA Band II: 1.2dBi WIFI: 0dBi Bluetooth: 0dBi
Power supply	: DC 24V 2.71A Power by AC adapter
Adapter	: Input:100-240V ~50/60Hz 1.7A max Output: DC 24V 2.71A

3.2 Channel List

Frequency (MHz) 2412 2417 2422	Channel No. 4 5 6	Frequency (MHz) 2427 2432 2437	Channel No. 7 8	Frequency (MHz) 2442 2447 2452	Channel No.	Frequency (MHz) 2457 2462
2417	5	2432	8	2447	_	
	_		_		11	2462
2422	6	2437	9	2452	,	,
				2702	/	/
Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
2402	10	2422	20	2442	30	2462
2404	11	2424	21	2444	31	2464
2406	12	2426	22	2446	32	2466
2408	13	2428	23	2448	33	2468
2410	14	2430	24	2450	34	2470
2412	15	2432	25	2452	35	2472
2414	16	2434	26	2454	36	2474
2416	17	2436	27	2456	37	2476
2418	18	2438	28	2458	38	2478
	2402 2404 2406 2408 2410 2412 2414 2416	(MHz) No. 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17	(MHz) No. (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436	(MHz) No. (MHz) No. 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27	(MHz) No. (MHz) No. (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456	(MHz) No. (MHz) No. (MHz) No. 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37

3.3 Test Mode

2420

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

29

2460

39

2440

19

Modulation	Test mode	Low cl	nannel	Middle channel	High channel			
802.11b/g/n-HT20	Transmitting	2412MHz		2412MHz		2412MHz 2437MHz		2462MHz
802.11n-HT40	Transmitting	2412MHz		2412MHz		2437MHz	2452MHz	
GFSK(BLE)	Transmitting	2402MHz		2402MHz 2440MHz				
Tests Carried Out Under FCC part 15.207								
Tes	st Item			Test Mode				
Conduction Emission	on, 0.15MHz to 30)MHz		WIFI & BT Commu	nication			

2480

4 Equipment During Test

4.1 Equipments List

DE Ca	RF Conducted Test								
The Conductor 165t									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	Analyzer (9k~26.5GHz)	Agilent	E4407B	MY45109572	Aug.04, 2015	Aug.03, 2016	1 year		
2	EXA Signal Analyzer	Keysight	N9010A	MY50520207 526B25MPB W7X	Aug.04, 2015	Aug.03, 2016	1 year		
3	EMI Test Receiver	R&S	ESCI	101155	July 15, 2015	July 14, 2016	1 year		
Radia	ted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	EMI Test Receiver	Rohde&Schw arz	ESCI	101417	July 15, 2015	July 14, 2016	1 year		
2	EMC Analyzer (9k~26.5GH z)	Agilent	E4407B	MY45109572	Aug.04, 2015	Aug.03, 2016	1 year		
3	Trilog Broadband Antenna	SCHWARZB ECK	VULB9160	9160-3355	July 15, 2015	July 14, 2016	1 year		
4	Amplifier	EM	EM-30180	060538	July 15, 2015	July 14, 2016	1 year		
5	Horn Antenna	SCHWARZB ECK	BBHA9120 D	9120D-1246	July 15, 2015	July 14, 2016	1 year		
6	Coaxial Cable(below 1GHz)	LARGE	CALB1	-	July 15, 2015	July 14, 2016	1 year		
7	Coaxial Cable(above 1GHz)	LARGE	CALB2	-	July 15, 2015	July 14, 2016	1 year		
Condu	Conducted Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
1	EMI Test Receiver	R&S	ESCI	101155	July 15, 2015	July 14, 2016	1 year		
2	LISN	SCHWARZB ECK	NSLK 8128	8128-289	July 15, 2015	July 14, 2016	1 year		
3	Cable	LARGE	RF300	-	July 15, 2015	July 14, 2016	1 year		

4.2 Measurement Uncertainty

Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted	±2.2dB
Radio Frequency	± 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB

5 Conducted Emission

Test Requirement: : FCC CFR 47 Part 15 Section 15.207

Test Method: : ANSI C63.4:2014

Test Result: ; PASS

Frequency Range: : 150kHz to 30MHz

Class/Severity: : Class B

Limit: : $66-56 \text{ dB}_{\mu}\text{V}$ between 0.15MHz & 0.5MHz

: 56 dB_µV between 0.5MHz & 5MHz

: $60 dB\mu V$ between 5MHz & 30MHz

Detector: : Peak for pre-scan (9kHz Resolution Bandwidth)

5.1 E.U.T. Operation

Operating Environment:

Temperature: : 25.5 °C

Humidity: : 51 % RH

Atmospheric Pressure: : 101.2kPa

EUT Operation: : Refer to section 3.3

5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003.

5.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.4 Conducted Emission Test Result

Live line:

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBuV	Over Limit dB	Remark
1.	0.150	10.60	0.60	14.76	25.96	56.00	-30.04	Average
2.	0.150	10.60	0.60	35.76	46.96	66.00	-19.04	QP -
3.	0.158	10.60	0.60	12.46	23.66	55.56	-31.90	Average
4.	0.158	10.60	0.60	35.46	46.66	65.56	-18.90	QP -
5.	0.170	10.60	0.60	11.55	22.75	54.94	-32.19	Average
6.	0.170	10.60	0.60	33.55	44.75	64.94	-20.19	QP
7.	0.178	10.61	0.60	12.83	24.04	54.59	-30.55	Average
8.	0.178	10.61	0.60	31.83	43.04	64.59	-21.55	QP
9.	0.402	10.64	0.60	17.22	28.46	47.81	-19.35	Average
10.	0.402	10.64	0.60	26.22	37.46	57.81	-20.35	QP
11.	20.377	10.78	0.60	18.67	30.05	50.00	-19.95	Average
12.	20.377	10.78	0.60	26.67	38.05	60.00	-21.95	QP

Neutral line:

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Level dBuV	Limit dBu∨	Over Limit dB	Remark
1.	0.150	10.60	0.60	14.35	25.55	56.00	-30.45	Average
2.	0.150	10.60	0.60	36.35	47.55	66.00	-18.45	QP _
3.	0.162	10.60	0.60	15.38	26.58	55.34	-28.76	Average
4.	0.162	10.60	0.60	34.38	45.58	65.34	-19.76	QP -
5.	0.194	10.61	0.60	11.36	22.57	53.84	-31.27	Average
6.	0.194	10.61	0.60	29.36	40.57	63.84	-23.27	QP
7.	0.398	10.64	0.60	20.89	32.13	47.90	-15.77	Average
8.	0.398	10.64	0.60	28.89	40.13	57.90	-17.77	QP
9.	0.406	10.64	0.60	22.02	33.26	47.73	-14.47	Average
10.	0.406	10.64	0.60	29.02	40.26	57.73	-17.47	QP
11.	19.740	10.78	0.60	18.89	30.27	50.00	-19.73	Average
12.	19.740	10.78	0.60	25.89	37.27	60.00	-22.73	QP _

6 Radiated Spurious Emissions

Test Requirement: : FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: : ANSI C63.10:2013,KDB 558074 D01 DTS MEAS GUIDANCE

V03R03

Test Result: : PASS
Measurement Distance: : 3m

Limit: : See the follow table

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

6.1 EUT Operation

Operating Environment:

Temperature: : $23.5 \, ^{\circ}\text{C}$ Humidity: : $51.1 \, ^{\circ}\text{RH}$ Atmospheric Pressure: : 101.2kPa

EUT Operation : Refer to section 3.3

6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site. The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

6.3 Spectrum Analyzer Setup

Below	30MHz
-------	-------

	Sweep Speed IF Bandwidth Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	Hz	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

6.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

6.5 Summary of Test Results

Test Frequency: Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data(GFSK modulation mode) were reported.

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	,	GFSK(B	LE) Low Chann	nel		
199.37	45.26	PK	-17.72	27.54	43.50	-15.96
199.37	39.77	PK	-17.72	22.05	43.50	-21.45
4804.00	48.22	PK	-1.06	47.16	74.00	-26.84
4804.00	43.43	Ave	-1.06	42.37	54.00	-11.63
7206.00	52.06	PK	1.33	53.39	74.00	-20.61
7206.00	43.45	Ave	1.33	44.78	54.00	-9.22
2322.20	45.02	PK	-13.19	31.83	74.00	-42.17
2322.20	39.30	Ave	-13.19	26.11	54.00	-27.89
2387.67	42.91	PK	-13.14	29.77	74.00	-44.23
2387.67	38.12	Ave	-13.14	24.98	54.00	-29.02
2488.14	42.47	PK	-13.08	29.39	74.00	-44.61
2488.14	40.29	Ave	-13.08	27.21	54.00	-26.79

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		GFSK	(BLE) Middle Ch	annel		
199.37	45.21	PK	-17.72	27.49	43.50	-16.01
199.37	40.55	PK	-17.72	22.83	43.50	-20.67
4880.00	47.51	PK	-0.93	46.58	74.00	-27.42
4880.00	43.74	Ave	-0.93	42.81	54.00	-11.19
7320.00	52.31	PK	1.67	53.98	74.00	-20.02
7320.00	43.15	Ave	1.67	44.82	54.00	-9.18
2346.78	44.76	PK	-13.19	31.57	74.00	-42.43
2346.78	38.35	Ave	-13.19	25.16	54.00	-28.84
2358.65	42.66	PK	-13.14	29.52	74.00	-44.48
2358.65	38.99	Ave	-13.14	25.85	54.00	-28.15
2491.85	42.16	PK	-13.08	29.08	74.00	-44.92
2491.85	40.13	Ave	-13.08	27.05	54.00	-26.95

	•		,	7	1	,
Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		GFSK(B	LE) High Chanr	nel		
199.37	45.44	PK	-17.72	27.72	43.50	-15.88
199.37	40.51	PK	-17.72	22.79	43.50	-20.71
4960.00	50.23	PK	-0.87	49.36	74.00	-24.64
4960.00	43.80	Ave	-0.87	42.93	54.00	-11.07
7440.00	50.98	PK	1.84	52.82	74.00	-21.18
7440.00	44.03	Ave	1.84	45.87	54.00	-8.13
2319.68	44.41	PK	-13.19	31.22	74.00	-42.78
2319.68	39.12	Ave	-13.19	25.93	54.00	-28.07
2376.97	42.33	PK	-13.14	29.19	74.00	-44.81
2376.97	37.97	Ave	-13.14	24.83	54.00	-29.17
2498.93	44.23	PK	-13.08	31.15	74.00	-42.85
2498.93	40.46	Ave	-13.08	27.38	54.00	-26.62

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	b Low Channel			
199.37	46.83	QP	-17.72	29.11	43.50	-14.39
199.37	44.52	QP	-17.72	26.80	43.50	-16.70
4824.00	47.71	PK	-1.06	46.65	74.00	-27.35
4824.00	46.05	Ave	-1.06	44.99	54.00	-9.01
7236.00	48.96	PK	1.33	50.29	74.00	-23.71
7236.00	43.03	Ave	1.33	44.36	54.00	-9.64
2334.91	45.02	PK	-13.19	31.83	74.00	-42.17
2334.91	39.30	Ave	-13.19	26.11	54.00	-27.89
2355.96	42.91	PK	-13.14	29.77	74.00	-44.23
2355.96	38.12	Ave	-13.14	24.98	54.00	-29.02
2491.92	42.47	PK	-13.08	29.39	74.00	-44.61
2491.92	40.29	Ave	-13.08	27.21	54.00	-26.79

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.	11b Middle Char	nnel		
199.37	45.08	QP	-17.72	27.36	43.50	-16.14
199.37	45.03	QP	-17.72	27.31	43.50	-16.19
4874.00	47.46	PK	-0.93	46.53	74.00	-27.47
4874.00	45.30	Ave	-0.93	44.37	54.00	-9.63
7311.00	49.48	PK	1.67	51.15	74.00	-22.85
7311.00	44.24	Ave	1.67	45.91	54.00	-8.09
2330.55	44.40	PK	-13.19	31.21	74.00	-42.79
2330.55	39.11	Ave	-13.19	25.92	54.00	-28.08
2384.98	43.25	PK	-13.14	30.11	74.00	-43.89
2384.98	38.39	Ave	-13.14	25.25	54.00	-28.75
2498.20	42.29	PK	-13.08	29.21	74.00	-44.79
2498.20	40.19	Ave	-13.08	27.11	54.00	-26.89

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	b High Channe	I		
199.37	47.69	QP	-17.72	29.97	43.50	-13.53
199.37	45.23	QP	-17.72	27.51	43.50	-15.99
4924.00	49.47	PK	-0.87	48.60	74.00	-25.40
4924.00	45.57	Ave	-0.87	44.70	54.00	-9.30
7386.00	48.24	PK	1.84	50.08	74.00	-23.92
7386.00	42.63	Ave	1.84	44.47	54.00	-9.53
2319.43	45.53	PK	-13.19	32.34	74.00	-41.66
2319.43	38.32	Ave	-13.19	25.13	54.00	-28.87
2383.06	42.68	PK	-13.14	29.54	74.00	-44.46
2383.06	36.99	Ave	-13.14	23.85	54.00	-30.15
2492.55	42.22	PK	-13.08	29.14	74.00	-44.86
2492.55	39.72	Ave	-13.08	26.64	54.00	-27.36

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	g Low Channe		l	
199.37	46.47	QP	-17.72	28.75	43.50	-14.75
199.37	44.73	QP	-17.72	27.01	43.50	-16.49
4824.00	46.91	PK	-1.06	45.85	74.00	-28.15
4824.00	45.25	Ave	-1.06	44.19	54.00	-9.81
7236.00	48.06	PK	1.33	49.39	74.00	-24.61
7236.00	42.41	Ave	1.33	43.74	54.00	-10.26
2333.42	45.02	PK	-13.19	31.83	74.00	-42.17
2333.42	39.30	Ave	-13.19	26.11	54.00	-27.89
2357.11	42.91	PK	-13.14	29.77	74.00	-44.23
2357.11	38.12	Ave	-13.14	24.98	54.00	-29.02
2493.48	42.47	PK	-13.08	29.39	74.00	-44.61
2493.48	40.29	Ave	-13.08	27.21	54.00	-26.79

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.	11g Middle Char	nnel		
199.37	45.69	QP	-17.72	27.97	43.50	-15.53
199.37	45.42	QP	-17.72	27.70	43.50	-15.80
4874.00	46.97	PK	-0.93	46.04	74.00	-27.96
4874.00	44.93	Ave	-0.93	44.00	54.00	-10.00
7311.00	47.30	PK	1.67	48.97	74.00	-25.03
7311.00	41.74	Ave	1.67	43.41	54.00	-10.59
2345.77	45.15	PK	-13.19	31.96	74.00	-42.04
2345.77	38.33	Ave	-13.19	25.14	54.00	-28.86
2350.80	42.65	PK	-13.14	29.51	74.00	-44.49
2350.80	37.69	Ave	-13.14	24.55	54.00	-29.45
2499.48	41.60	PK	-13.08	28.52	74.00	-45.48
2499.48	39.78	Ave	-13.08	26.70	54.00	-27.30

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	g High Channe	l		
199.37	45.09	QP	-17.72	27.37	43.50	-16.13
199.37	46.18	QP	-17.72	28.46	43.50	-15.04
4924.00	46.67	PK	-0.87	45.80	74.00	-28.20
4924.00	44.13	Ave	-0.87	43.26	54.00	-10.74
7386.00	46.86	PK	1.84	48.70	74.00	-25.30
7386.00	41.07	Ave	1.84	42.91	54.00	-11.09
2328.22	45.70	PK	-13.19	32.51	74.00	-41.49
2328.22	38.91	Ave	-13.19	25.72	54.00	-28.28
2367.49	42.47	PK	-13.14	29.33	74.00	-44.67
2367.49	38.41	Ave	-13.14	25.27	54.00	-28.73
2498.81	41.00	PK	-13.08	27.92	74.00	-46.08
2498.81	40.07	Ave	-13.08	26.99	54.00	-27.01

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11n-ŀ	HT20 Low Char	nnel	I	
199.37	46.66	QP	-17.72	28.94	43.50	-14.56
199.37	44.71	QP	-17.72	26.99	43.50	-16.51
4824.00	46.46	PK	-1.06	45.40	74.00	-28.60
4824.00	44.40	Ave	-1.06	43.34	54.00	-10.66
7236.00	47.13	PK	1.33	48.46	74.00	-25.54
7236.00	42.34	Ave	1.33	43.67	54.00	-10.33
2331.44	45.02	PK	-13.19	31.83	74.00	-42.17
2331.44	39.30	Ave	-13.19	26.11	54.00	-27.89
2364.93	42.91	PK	-13.14	29.77	74.00	-44.23
2364.93	38.12	Ave	-13.14	24.98	54.00	-29.02
2496.83	42.47	PK	-13.08	29.39	74.00	-44.61
2496.83	40.29	Ave	-13.08	27.21	54.00	-26.79

		,			7		
Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	802.11n-HT20 Middle Channel						
199.37	46.95	QP	-17.72	29.23	43.50	-14.27	
199.37	44.13	QP	-17.72	26.41	43.50	-17.09	
4874.00	46.14	PK	-0.93	45.21	74.00	-28.79	
4874.00	45.31	Ave	-0.93	44.38	54.00	-9.62	
7311.00	46.38	PK	1.67	48.05	74.00	-25.95	
7311.00	41.66	Ave	1.67	43.33	54.00	-10.67	
2337.43	44.85	PK	-13.19	31.66	74.00	-42.34	
2337.43	39.29	Ave	-13.19	26.10	54.00	-27.90	
2359.11	42.79	PK	-13.14	29.65	74.00	-44.35	
2359.11	37.22	Ave	-13.14	24.08	54.00	-29.92	
2495.41	42.21	PK	-13.08	29.13	74.00	-44.87	
2495.41	40.71	Ave	-13.08	27.63	54.00	-26.37	

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11n-HT20 High Channel						
199.37	46.13	QP	-17.72	28.41	43.50	-15.09
199.37	44.10	QP	-17.72	26.38	43.50	-17.12
4924.00	45.46	PK	-0.87	44.59	74.00	-29.41
4924.00	45.42	Ave	-0.87	44.55	54.00	-9.45
7386.00	45.69	PK	1.84	47.53	74.00	-26.47
7386.00	41.97	Ave	1.84	43.81	54.00	-10.19
2311.11	44.75	PK	-13.19	31.56	74.00	-42.44
2311.11	40.23	Ave	-13.19	27.04	54.00	-26.96
2385.81	42.53	PK	-13.14	29.39	74.00	-44.61
2385.81	36.69	Ave	-13.14	23.55	54.00	-30.45
2488.89	41.52	PK	-13.08	28.44	74.00	-45.56
2488.89	40.05	Ave	-13.08	26.97	54.00	-27.03

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin		
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
	802.11n-HT40 Low Channel							
199.37	45.96	QP	-17.72	28.24	43.50	-15.26		
199.37	45.06	QP	-17.72	27.34	43.50	-16.16		
4844.00	46.04	PK	-1.06	44.98	74.00	-29.02		
4844.00	43.26	Ave	-1.06	42.20	54.00	-11.80		
7266.00	47.33	PK	1.33	48.66	74.00	-25.34		
7266.00	41.69	Ave	1.33	43.02	54.00	-10.98		
2317.58	45.02	PK	-13.19	31.83	74.00	-42.17		
2317.58	39.30	Ave	-13.19	26.11	54.00	-27.89		
2364.71	42.91	PK	-13.14	29.77	74.00	-44.23		
2364.71	38.12	Ave	-13.14	24.98	54.00	-29.02		
2496.03	42.47	PK	-13.08	29.39	74.00	-44.61		
2496.03	40.29	Ave	-13.08	27.21	54.00	-26.79		

		1		T	T	
Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11n-HT40 Middle Channel						
199.37	46.73	QP	-17.72	29.01	43.50	-14.49
199.37	44.22	QP	-17.72	26.50	43.50	-17.00
4874.00	46.01	PK	-0.93	45.08	74.00	-28.92
4874.00	42.44	Ave	-0.93	41.51	54.00	-12.49
7311.00	48.02	PK	1.67	49.69	74.00	-24.31
7311.00	41.59	Ave	1.67	43.26	54.00	-10.74
2328.98	45.05	PK	-13.19	31.86	74.00	-42.14
2328.98	39.79	Ave	-13.19	26.60	54.00	-27.40
2366.45	43.10	PK	-13.14	29.96	74.00	-44.04
2366.45	38.97	Ave	-13.14	25.83	54.00	-28.17
2486.35	42.44	PK	-13.08	29.36	74.00	-44.64
2486.35	40.09	Ave	-13.08	27.01	54.00	-26.99

Frequency	Receiver Reading	Detector	Corrected Factor	Corrected Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	802.11n-HT40 High Channel						
199.37	47.45	QP	-17.72	29.73	43.50	-13.77	
199.37	44.93	QP	-17.72	27.21	43.50	-16.29	
4904.00	46.28	PK	-0.87	45.41	74.00	-28.59	
4904.00	41.75	Ave	-0.87	40.88	54.00	-13.12	
7356.00	48.08	PK	1.84	49.92	74.00	-24.08	
7356.00	40.70	Ave	1.84	42.54	54.00	-11.46	
2348.17	44.46	PK	-13.19	31.27	74.00	-42.73	
2348.17	39.99	Ave	-13.19	26.80	54.00	-27.20	
2359.17	43.78	PK	-13.14	30.64	74.00	-43.36	
2359.17	39.35	Ave	-13.14	26.21	54.00	-27.79	
2485.99	43.04	PK	-13.08	29.96	74.00	-44.04	
2485.99	39.26	Ave	-13.08	26.18	54.00	-27.82	

Test Frequency: Above 18GHz

The measurements were more than 20 dB below the limit and not reported

7 Conducted Spurious Emissions

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03

Test Limit : Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated

measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the

conducted power limits based on the use of RMS averaging over a time

interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands,

as defined in §15.205(a), must also comply with the radiated emission

limits specified in §15.209(a) (see §15.205(c)).

Test Mode : Refer to section 3.3

Test Procedure : 1. Remove the antenna from the EUT and then connect a low RF cable

from the antenna port to the

Spectrum.

2. Set the spectrum analyzer:

RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

GFSK(BLE) Low Channel

GFSK(BLE) Middle Channel

GFSK(BLE) High Channel

802.11b Low Channel

802.11b Middle Channel

802.11b High Channel

802.11g Low Channel

802.11g Middle Channel

802.11g High Channel

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

8 Band Edge Measurement

Test Requirement : Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section

15.205(c)).

Test Method : ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03

Test Limit : Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated

measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the

conducted power limits based on the use of RMS averaging over a time

interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands,

as defined in §15.205(a), must also comply with the radiated emission

limits specified in §15.209(a) (see §15.205(c)).

Test Mode : Refer to section 3.3

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

8.2 Test Result

GFSK(BLE) Band edge-left side

GFSK(BLE) Band edge-right side

802.11b Band edge-left side

802.11b Band edge-right side

802.11g Band edge-left side

802.11g Band edge-right side

802.11n-HT20 Band edge-left side

802.11n-HT20 Band edge-right side

802.11n-HT40 Band edge-left side

802.11n-HT40 Band edge-right side

9 6dB Bandwidth Measurement

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03

Systems using digital modulation techniques may operate in the 902-928

Test Limit MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB

bandwidth shall be at least 500 kHz.

Test Mode : Refer to section 3.3

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: For BLE, RBW = 30kHz, VBW = 100kHz, For WIFI, RBW = 100kHz, VBW = 300kHz,

9.2 Test Result

Modulation	Bandwidth(MHz)			Limit
	Low Channel	Middle Channel	High Channel	Liffiit
GFSK(BLE)	0.713	0.713	0.713	≥500kHz
802.11b	10.06	10.06	10.06	≥500kHz
802.11g	16.62	16.62	16.62	≥500kHz
802.11n-HT20	17.84	17.84	17.84	≥500kHz
802.11n-HT40	36.56	36.56	36.56	≥500kHz

GFSK(BLE) Middle Channel

802.11b Low Channel

802.11b Middle Channel

802.11b High Channel

802.11g Low Channel

802.11g Middle Channel

802.11g High Channel

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

ISE TESTING Report No.: PT800231151222E-FC03

10 Maximum Peak Output Power

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03

Test Limit : Regulation 15.247 (b)(3), For systems using digital modulation in the 902-

928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output

power.

Test Mode : Refer to section 3.3

10.1Test Procedure

KDB 558074 D01 DTS Meas Guidance v03r03

section 9.1.1 (For BLE)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a)Set the RBW ≥ DTS bandwidth.
- b)Set VBW ≥ 3 RBW.
- c)Set span ≥ 3 x RBW
- d)Sweep time = auto couple.
- e)Detector = peak.
- f)Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

section 9.1.2 (For WIFI)

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a)Set the RBW = 1 MHz.
- b)Set the VBW ≥ 3 RBW
- c)Set the span \geq 1.5 x DTS bandwidth.
- d)Detector = peak.
- e)Sweep time = auto couple.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.

h)Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak

detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

10.2Test Result

Modulation	Maximum Peak Output Power (dBm)			Line
	Low Channel	Middle Channel	High Channel	Limit
GFSK(BLE)	-2.91	-2.41	-2.79	1W(30dBm)
802.11b	9.20	9.35	9.40	1W(30dBm)
802.11g	9.16	9.27	9.22	1W(30dBm)
802.11n-HT20	9.15	9.22	9.27	1W(30dBm)
802.11n-HT40	9.21	9.40	9.42	1W(30dBm)

GFSK(BLE) Middle Channel

802.11b Low Channel

802.11b Middle Channel

802.11b High Channel

802.11g Low Channel

802.11g Middle Channel

802.11g High Channel

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

11 Power Spectral density

Test Requirement : FCC CFR47 Part 15 Section 15.247

Test Method : ANSI C63.10:2013, KDB 558074 D01 DTS MEAS GUIDANCE V03R03

Test Limit : Regulation 15.247(f) The power spectral density conducted from the

intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during

any time interval of continuous transmission.

Test Mode : Refer to section 3.3

11.1 Test Procedure

KDB 558074 D01 DTS Meas Guidance v03r03

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz, Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

11.2 Test Result

Modulation	Power Spectral density (dBm/3kHz)			Limit
	Low Channel	Middle Channel	High Channel	LIIIII
GFSK(BLE)	-18.79	-17.98	-18.48	8dBm/3kHz
802.11b	-22.28	-22.46	-22.18	8dBm/3kHz
802.11g	-26.76	-27.18	-26.90	8dBm/3kHz
802.11n-HT20	-26.42	-27.13	-26.75	8dBm/3kHz
802.11n-HT40	-29.35	-28.61	-28.89	8dBm/3kHz

GFSK(BLE) Low Channel

GFSK(BLE) Middle Channel

802.11b Low Channel

802.11b Middle Channel

802.11b High Channel

802.11g Middle Channel

802.11g High Channel

802.11n-HT20 Low Channel

802.11n-HT20 Middle Channel

802.11n-HT20 High Channel

802.11n-HT40 Low Channel

802.11n-HT40 Middle Channel

12 Antenna Requirement

According to the FCC part15.203, a transmitter can only be sold or operated with antennas with which it was approved. This product has an internal permanent antenna, it meet the requirement of this section.

13 Test Setup

*****THE END REPORT*****