离散数学及其应用

离散数学及其应用

chap1 The Foundations: Logic and Proofs
chap2 Basic Structures: Sets, Functions, Sequences, Sums, and
Matrices
chap3 Algorithms
chap5 Induction and recursion
chap6 Counting
chap8 Advanced Counting Techniques
chap9 Relations
chap10 Graphs
chap11 Trees

chapı The Foundations: Logic and Proofs

英文	中文	英文	中文
proposition	命题	equivalence	等价式
predicate	谓词	quantifier	量词
inference	推理	negation	否定NOT¬
conjunction	合取AND∧	Disjunction	析取ORV
Exclusive or	异或XOR⊕	Implication	IF-THEN→
Biconditional	IF AND ONLY IF↔	hypothesis	假设
antecedent	前件	premise	前提
conclusion	结论	consequence	后件
converse	逆	contrapositive	逆否

inverse	反	bitwise	逐位
knight	骑士	knave	无赖
Tautologies	永真式	Contradictions	矛盾式
Contingencies	可能式	Normal Forms	范式
Dua1	对偶式	Pierce arrow	或非↓
Sheffer stroke	与非	satisfiable	可满足的
DNF	析取范式	CNF	合取范式
clause	子句	domain	论域
Universal Quantifier	全称量词∀	Existential Quantifier	存在量词3
counterexample	反例	Uniqueness Quantifier	唯一性量 词∃!

英文 scope	中 变 量的)作用 域	英文 nested	中文 嵌套的
argument	论证	proof	证明
theorem	定理	axioms	公理
1emma	引理	corollary	推论
	猜想	trivial	平凡证明
vacuous proof	空证明	rational number	有理数
without loss of generality	不失一般性		

异或

p	q	$p\oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- IF p THEN q
 - p implies q
 - p only if q=q if p
 - q when p
 - q whenever p
 - q follows from p
 - p is sufficient for q 充分
 - q is necessary for p 必要
 - q unless $\neg p$
- 逆、逆否、反

符号	含义	定义
q o p	is the converse of $p o q$	逆(左右颠倒)
eg q o eg p	is the contrapositive of $p o q$	逆否(与原命题等价)
eg p o eg q	is the inverse of $p o q$	反

• 优先级

operator	precedence
٦	1
٨	2
V	3
\rightarrow	4

operator	precedence
\leftrightarrow	5

• 对偶式

$$S = (p \lor \neg q) \land r \land T$$

$$S^* = (p \wedge \neg q) \vee r \vee F$$

即所有and变成or,所有or变成and,所有T变成F,所有F变成T

 $s \Leftrightarrow t$ if and only if $s^* \Leftrightarrow t^*$

• 功能完备符号:

$$\{\neg, \lor\}, \{\neg, \land\}, \{\mid\}, \{\downarrow\}$$

- 析取DNF范式: $(A_1 \wedge A_2) \vee B_1 \vee (C_1 \wedge C_2)$ 合取CNF范式: $(A_1 \vee A_2) \wedge B_1 \wedge (C_1 \vee C_2)$
- 量词优先级比逻辑运算符更高
- 命题中的变量必须是Bound variable (被赋值的或被量词约束的)

$$x \text{ is not occurring in } A.$$

$$(1) \quad \forall x P(x) \lor A \quad \equiv \quad \forall x (P(x) \lor A)$$

$$(2) \quad \forall x P(x) \land A \quad \equiv \quad \forall x (P(x) \land A)$$

$$(3) \quad \exists x P(x) \lor A \quad \equiv \quad \exists x (P(x) \lor A)$$

$$(4) \quad \exists x P(x) \land A \quad \equiv \quad \exists x (P(x) \land A)$$

$$(5) \quad \forall x (A \to P(x)) \quad \equiv \quad A \to \forall x P(x)$$

$$(6) \quad \exists x (A \to P(x)) \quad \equiv \quad A \to \exists x P(x)$$

$$(7) \quad \forall x (P(x) \to A) \quad \equiv \quad \exists x P(x) \to A$$

$$(8) \quad \exists x (P(x) \to A) \quad \equiv \quad \forall x P(x) \to A$$

		corresponding tautology
Modus Ponens	假言推理	$(p \land (p \to q)) \to q$
Modus Tollens	取拒式	$(\neg q \land (p \to q)) \to \neg p$
Hypothetical Syllogism	假言三段论	$((p \to q) \land (q \to r)) \to (p \to r)$
Disjunctive Syllogism	析取三段论	$(\neg p \land (p \lor q)) \to q$
Addition	附加律	p o (pee q)
Simplification	简化律	$(p \wedge q) o p$
Conjunction	合取律	$((p) \wedge (q)) \to (p \wedge q)$
Resolution	消解律	$((\neg p \vee r) \wedge (p \vee q)) \to (r \vee q)$

• 平凡证明: $p \to T$ is T

空证明: $F \rightarrow q$ is T

chap2 Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

英文	中文	英文	中文

Cardinality	基数	paradox	悖论
Power Set	幂集	tuple	有序元组
Cartesian Product	笛卡尔积	union	集合的并∪
intersection	集合的交∩	complement	集合的补Ā
Inclusion-Exclusion	容斥原理	symmetric difference	对称差
Domain	定义域	Codomain	陪域、值域
Image	像	Preimage	原像
Injection	单射	Surjection	满射
Bijection	双射	Inverse Function	反函数
progression	级数	Recurrence Relations	递推关系
lexicographic	字典序	computable	可计算的
rectangular	矩形的	identity matrix	单位矩阵
transpose	转置	symmetric	对称的

- 集合的基数记为|A|, 即集合中元素的个数
- 幂集 $\mathcal{P}(A)$: 集合中所有子集组成的集合,一个n个元素的集合的幂集有 2^n 个元素
- 两个元素的元组被称为ordered pairs序偶
- 笛卡尔积: $A \times B = \{(a,b) | a \in A \land b \in B\}$
- 对称差: $A \oplus B = (A B) \cup (B A)$
- 反函数的前提是原函数是双射的
- $f \circ g(x) = f(g(x))$
- $n! \sim \sqrt{2\pi n} (\frac{n}{\epsilon})^n$

•	Sum	Closed Form
	$\sum_{k=0}^{n} ar^k$	$rac{ar^{n+1}-a}{r-1},r eq 1$
	$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
	$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(n+2)}{6}$
	$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
	$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
	$\sum_{k=1}^{\infty} kx^{k-1}$	$\frac{1}{\left(1-x\right)^2}$

- 可数集: 基是有限的或跟正整数集相同,则是可数的
- 一个无限且可数的集合的基被称为的(可以跟正整数集建立一个一一对应的映射)
- 实数集的基为 🛚
- 一个集合的幂集的基,一定大于原集合的基

chap3 Algorithms

英文	中文	英文	中文
Brute-Force	暴力算法	Tractable	易解
Intractable	难解	polynomial	多项式

•	Notation	Explaination	
	Big-0: $f(x)$ is $O(g(x))$	$ f(x) \leq C g(x) $	
	Big-Omega: $f(x)$ is $\Omega(g(x))$	$ f(x) \geq C g(x) $	
	Big-Theta: $f(x)$ is $\Theta(g(x))$	$O(g(x))\&\Omega(g(x))$	

- NP类: 可以在多项式复杂度内被check, 但不能在多项式复杂度内解决
- NP完全类: if you find a polynomial time algorithm for one member of the class, it can be used to solve all the problems in the class

chap5 Induction and recursion

- 数学归纳法: $P(1) \land \forall k(P(k) \rightarrow P(k+1)) \rightarrow \forall nP(n)$
 - BASIC STEP:
 - INDUCTIVE STEP:
 - Hence,...
- 每个简单多边形都会把一个区域变为内部区域和外部区域
- 任何一个简单多边形都有其内部的对角线(lemma)
- 良序性(正整数体系的公理): A set is well ordered if every subset has a least element.
 - 数学归纳法和强归纳法与良序性的成立是等价的

chap6 Counting

英文	中文	英文	中文
Pigeonhole	鸽巢	Permutation	排列
Combination	组合	Binomial Coefficient	二项系数
distinguishable	可分辨的		

- 排列: $P(n,r) = \frac{n!}{(n-r)!}$
- 组合: $C(n,r) = \frac{n!}{(n-r)!r!}$
- 二项式定理: $(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j$
- $\bullet \quad \Sigma_{k=1}^n (-1)^k \binom{n}{k} = 0$
- 帕斯卡定理: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$
- Vandermonde's: $\binom{m+n}{r} = \Sigma_{k=0}^r \binom{m}{r-k} \binom{n}{k}$

• 推论:
$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

- 有n种饼干,取出共r个饼干的组合数量为: C(n+r-1,r)
- n个物体, k个盒子:

n个物体	r个盒子	数量
不同	不同	$\frac{n!}{n_1!n_2! \cdot n_k!}$
相同	不同	C(n+r-1,n-1)
不同	相同	
相同	相同	

chap8 Advanced Counting Techniques

英文	中文	英文	中文
Homogeneous	齐次的	Nonhomogeneous	非齐次的
generating function	生成函数	Inclusion-Exclusion	容斥原理
Derangement	错位排序		

- degree: $a_n = a_{n-1} + a_{n-8}$ 的degree为8 a recurrence relation of degree 8
- Hanoi汉诺塔(3个柱子): $H_n = 2^n 1$
- 齐次:每个x都是1次方的
- 非齐次公式:

如果递推关系是为:
$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)$$

非齐次项
$$F(n)$$
可以被记为 $F(n) = (b_t n^t + b_{t-1} n^{t-1} + \dots + b_1 n + b_0) s^n$

如果 \mathbf{s} 是 $a_n = c_1 a_{n-1} + c_2 a_{a-2} + \cdots + c_k a_{n-k}$ 的一个根, \mathbf{m} 为次数,最后的特解可以被记 为: $f(n) = n^m (p_t n^t + p_{t-1} n^{t-1} + \cdots + p_1 n + p_0) s^n$

如果s不是是 $a_n = c_1 a_{n-1} + c_2 a_{a-2} + \cdots + c_k a_{n-k}$ 的一个根,最后的特解可以被记为: $f(n) = (p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0) s^n$

$$a_n=6a_{n-1}-9a_{n-2}+F(n)$$
 $F(n)=(n^2+1)3^n$
则 $m=2,s=3,f(n)=n^2(p_2n^2+p_1n+p_0)3^n$ ($s=3$ 为一个根) $a_n=6a_{n-1}-9a_{n-2}+F(n)$ $F(n)=n^22^n$

$$a_n=6a_{n-1}-9a_{n-2}+F(n)$$
 $F(n)=n^22^n$ 则 $s=2,f(n)=(p_2n^2+p_1n+p_0)2^n$ ($s=2$ 不是一个根)

• 分治算法复杂度:

$$f(n) = af(n/b) + cn^d$$

$$f(n) ext{ is } egin{cases} O(n^d) & ext{if} & a < b^d \ O(n^d \log n) & ext{if} & a = b^d \ O(n^{\log_b a}) & ext{if} & a > b^d \end{cases}$$

• 生成函数:

$$f(x) = \Sigma_{k=0}^{\infty} a_k x^k, g(x) = \Sigma_{k=0}^{\infty} b_k x^k$$

1.
$$f(x)+g(x)=\sum_{k=0}^{\infty}(a_k+b_k)x^k$$

2.
$$\alpha \cdot f(x) = \sum_{k=0}^{\infty} \alpha \cdot a_k x^k$$

3.
$$x \cdot f'(x) = \sum_{k=0}^{\infty} k \cdot a_k x^k$$

4.
$$f(\alpha x) = \sum_{k=0}^{\infty} \alpha^k \cdot a_k x^k$$

5.
$$f(x)g(x) = \sum_{k=0}^{\infty} (\sum_{j=0}^{k} a_j b_{k-j} x^k)$$

• 广义二项式定理:

$$egin{pmatrix} u \ k \end{pmatrix} = egin{cases} u(u-1)\cdots(u-k+1)/k! & ext{if} & k>0 \ 1 & ext{if} & k=0 \end{cases}$$
 $(1+x)^u = \Sigma_{k=0}^\infty \left(egin{matrix} u \ k \end{pmatrix} x^k
ight.$

例如

请找到 $(1+x)^{-n}$ 的生成函数

$$(1+x)^{-n} = \sum_{k=0}^{-n} {n \choose k} x^k$$

= $\sum_{k=0}^{-n} (-1)^k C(n+k-1,k) x^k$

TABLE 1 Useful Generating Functions.	
G(x)	a_k
$(1+x)^n = \sum_{k=0}^n C(n,k)x^k$ = 1 + C(n,1)x + C(n,2)x ² + \cdots + x ⁿ	C(n,k)
$(1+ax)^n = \sum_{k=0}^n C(n,k)a^k x^k$ = 1 + C(n, 1)ax + C(n, 2)a^2x^2 + \cdots + a^n x^n	$C(n,k)a^k$
$(1+x^r)^n = \sum_{k=0}^n C(n,k)x^{rk}$ = 1 + C(n, 1)x^r + C(n, 2)x^{2r} + \cdots + x^{rn}	$C(n, k/r)$ if $r \mid k$; 0 otherwise
$\frac{1 - x^{n+1}}{1 - x} = \sum_{k=0}^{n} x^k = 1 + x + x^2 + \dots + x^n$	1 if $k \le n$; 0 otherwise
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + \dots$	1
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 + ax + a^2 x^2 + \dots$	a^k
$\frac{1}{1 - x^r} = \sum_{k=0}^{\infty} x^{rk} = 1 + x^r + x^{2r} + \dots$	1 if $r \mid k$; 0 otherwise
$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k = 1 + 2x + 3x^2 + \cdots$	k + 1
$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)x^k$ $= 1 + C(n,1)x + C(n+1,2)x^2 + \cdots$	C(n+k-1,k) = C(n+k-1, n-1)
$\frac{1}{(1+x)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)(-1)^k x^k$ $= 1 - C(n,1)x + C(n+1,2)x^2 - \cdots$	$(-1)^k C(n+k-1,k) = (-1)^k C(n+k-1,n-1)$
$\frac{1}{(1-ax)^n} = \sum_{k=0}^{\infty} C(n+k-1,k)a^k x^k$ $= 1 + C(n,1)ax + C(n+1,2)a^2 x^2 + \cdots$	$C(n+k-1,k)a^{k} = C(n+k-1,n-1)a^{k}$
$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$	1/k!
$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	$(-1)^{k+1}/k$

• n元素集合的错位排序个数: $D_n = n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right]$

chap9 Relations

英文	中文	英文	中文
properties	性质	closure	闭包
reflexive	自反的	symmetric	对称的
antisymmetic	反对称的	transitive	可传递的
Composition	组合	diagonal	对角线上
Equivalence	等价	Congruence	同余
representive	代表元	partition	划分
partial ordering	偏序	hasse diagram	哈塞图
lattices	格	total order/linear order	全序/线序≼
chain	链	maximal	极大元
minimal	极小元	greatest element	最大元

mii ii i mo i	1/2/1/1	greatest crement	AX/\/U
- 本 マ	中立	蓝 文	中文
大义 [告入_	一 光 人	- 宏玄,,
least element	→ 最小元 —	compatible	
	1 177 7 7 -		/// / / /

- 集合的性质
 - 自反性Reflexive $(a,a) \in R, \ \forall x[x \in U \to (x,x) \in R]$ 空集上的空关系是自反的
 - 对称性Symmetric $\forall x \forall y [(x,y) \in R \rightarrow (y,x) \in R]$
 - 反对称性Antisymmetric $\forall x \forall y [(x,y) \in R \land (y,x) \in R \rightarrow x = y]$ 不存在除了自反之外的对称关系
 - 传递性Transitive $\forall x \forall y \forall z [(x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R]$
- $R^n \subset R \leftrightarrow R$ is transitive
- 逆关系: $R^{-1} = \{(a,b)|(b,a) \in R\}$
- 关系操作:
 - $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$
 - $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
 - $(\overline{R})^{-1} = \overline{(R^{-1})}$
 - $\bullet \quad (A \times B)^{-1} = B \times A$
- transitive closure:

连通关系connectivity relation: $R^* = \bigcup_{1}^{\infty} R^n$ 关系的传递闭包就是关系的连通关系 $R^* = t(R)$

- 等价关系: 自反、对称且传递
 a-b
- R为集合A上的一个等价关系,则在集合A中与元素a相关的所有元素可以被表示为 $[a]_R$ (等价类)

$$[a]_R = \{s | (a, s) \in R\}$$

- 代表元: 等价类中的任何一个元素都可以被成为代表元
- 集合的划分: $pr(A) = \{A_i | i \in I\}$
- R_1 、 R_2 为A上的两个等价关系,则 $R_1 \cup R_2$ 是A上的自反、对称关系, $(R_1 \cup R_2)^*$ 是自反、对称、传递关系即等价关系
- 偏序关系: 自反、传递、反对称 (分大小的不平等关系)
 - $poset(S, \preccurlyeq)$: 定义在集合S上的一个偏序关系
 - 如果集合中任意两个元素都是可比的,则成为全序、线序,整个集合被称为一个链
 - 良序:拥有最小元素
 - 极小(大)元:没有一个小于它
 - 最小(大)元:所有元素都大于等于它
 - 格:任意一对元素都拥有最大上界和最小下界的偏序集,被称为一个格

chap10 Graphs

英文	中文	英文	中文

英文	中文	英文	中文	

vertice	顶点	edge	边
endpoint	端点	multigraph	多重图
pseudograph	伪图	adjacent	相邻顶点
incident	关联	pendant	悬挂
in degree	入度	out degree	出度
Bipartite	二分图	regular graph	正规图
proper subgraph	真子图	Isomorphism	同构
path	通路	connected component	连通部分
articulation point	割点	Approximation algorithm	近似算法
planer	平面图	region	区域
Elementary subdivision	初等细分	Homeomorphic	同胚
dual graph	对偶图	chromatic number	着色数

- G = (V, E)
- 无向图分类:
 - 简单图:没有环,没有多重边
 - 多重图:没有环,可以有多重边
 - 伪图: 可以有环和多重边
- 有关图的术语:
 - adjacent: 两个顶点之间有边相连,则称这两个顶点相关联
 - incident with vertices u and v: 这条边连接了顶点u和v
 - loop: 环
 - degree of a vertex项点的度:在无向图中即为有多少条边与这个点关联(环算两个度)
 - deg(v) = 0, v is isolated
 - deg(v) = 1, v is pendant
 - 无向图中, $\Sigma_{v \in V} deg(v) = 2e$
 - 无向图中, 偶数个顶点是奇数个度
 - 有向图中,一条边的起点initial vertex,终点terminal vertex
 - $ullet \quad \Sigma_{v \in V} deg^+(v) = \Sigma_{v \in V} deg^-(v) = E$
- 一些特殊的图:
 - 完全图 K_n : 每对顶点之间有且只有一条边相连
 - 圈图 C_n : n个顶点围成一个圈首尾相连
 - 轮图 W_n : 在圈图中间加个点
 - 立方图 Q_n
- 完全二分图 Kmn: 两组集合中每个点都与对面任意一个点相连
- 正规图:每个顶点的度都相同

- induced subgraph诱导子图: 当且仅当子图中的边都在原图里,仅删除与子图中不存在的顶点相连的边
- Incidence matrices关联矩阵: 纵坐标为顶点,横坐标为边,针对无向图
- path is simple: 没有一条边被重复的通路
 - 单个顶点的通路长度为0
- 图的连通:任意一对顶点间都有path
- 割点: 关节点,删去后会增加connected components的个数
- 割边/桥: 关节边,删去后会增加connected components的个数
- 任何一个强连通的有向图都是弱连通的,可以把弱连通看作无向图,而强连通指有向图每对顶点间都双向连通
 - strongly connected components/strong components: 有向图中的最大强连接子图
- 欧拉回路: 遍历所有的边, 每条边只访问一遍
 - 区别欧拉通路和欧拉回路: 是否要求回到原点
 - 欧拉图:包含欧拉回路的图
 - 对于无向图:
 - 欧拉回路充要条件: 当且仅当每个顶点都是偶数个度
 - 欧拉通路充要条件: 当且仅当只有2个顶点是奇数个度
 - 对于有向图
 - 欧拉回路:弱连接+出度与入度相同
 - 欧拉通路: 弱连接+起点的出度多一个,终点的入度多一个
- 哈密尔顿问题: 遍历所有点,每个点只访问一遍
 - 还有没充要条件
 - 充分条件(满足条件则一定有,不满足也可能有):
 - 狄拉克定理: $\forall v \in V, deg(v) \geq \frac{n}{2}$ 则有哈密尔顿通路
 - 欧尔定理: \forall 不相邻顶点 $v, u \in V, deg(v) + deg(u) \geq n$
 - 必要条件(用于判断不是哈密尔顿):
 - 连通图,每个顶点的度都必须大于等于1
 - 最多只有两个顶点的度是1
 - 如果一个顶点的度为2,则两条边都为哈密尔顿回路的一部分
 - 从顶点集合V中去掉一组顶点S,则新图的连接部分数量<=S的个数
- weighted graph加权图: G = (V, E, W)
- Dijkstra:寻找最短路径,要求所有路径都是正权重的
 - iterative
 - $L_k(v) = \min\{L_{k-1}(v), L_{k-1}(u) + w(u, v)\}$
 - $O(n^2)$
- 旅行商问题
 - 最短的哈密尔顿回路
 - 近似算法
- 平面图: 可以画在平面上且边与边不交叉
- 区域Region: 包括有界区域和无界区域
- 欧拉公式:对于连通的平面简单图

对于非平面图也可能成立

- 区域的度:区域边的总数(绕一圈的边的总数)
 - 推论1:

$$e \leq 3v - 6$$
, if $v \geq 3$

对于不连通的平面简单图也成立

- 推论2: 对于一个平面简单图, G一定有一个顶点的度不超过5
- 推论3: 对于一个平面简单图,如果任何一个回路的长度都大于3,则 $e \le 2v 4$
- Kuratowski定理
 - 初等细分:增加原有道路上的细分点
 - 同胚:可以通过一系列的初等细分所获得的图
 - 一个图是非平面的 \Leftrightarrow 包含一个与 $K_{3,3}$ 或 K_5 同胚的子图
- 着色问题
 - 地图的对偶图,相邻的区域间连线
 - 等价于对偶图的顶点着色, 使每条边上的两个顶点不同颜色
 - 最少着色数记为 $\chi(G)$
 - 四色定理: 一个 平面图 的着色数不超过4

chap11 Trees

英文	中文	英文	中文
root	根	internal vertice	有孩子的节点
subtrees	子树	isomorphic	同构的
preorder	前序	inorder	中序
postorder	后序	spanning tree	生成树
backtracking	回溯		

- 树:没有简单回路的连通无向图
- 无向图是一棵树⇔每两个顶点之间都有唯一的简单通路
- 满m叉树:每个中间节点都有m个孩子
- 树的同构:
 - 根树的同构(有向图的同构)
 - 无根树的同构(无向图的同构)
- 树的性质:
 - n个顶点的树就有n-1条边
 - 一个有i个内节点的满m叉树有 mi + 1 和顶点
 - 树一定是个二分图
- 二叉搜索树

- 插入一个新节点,最多发生 [log(n+1)] 次比较
- 决策树
 - 由一系列节点生成一个解
- prefix code
 - huffman code
- 生成树
 - 一个简单图是连通的 ⇔ 包含一个生成树
 - DFS深度优先搜索(回溯)会形成一个根树
 - BFS广度优先搜索
- 最小生成树
 - Prim算法: 找与已经连接的生成树距离最短的点,直到完全连通, $O(E\log(V))$
 - Kruskal算法: 找现存的最短边(不会产生回路),直到完全联通, $O(V \log(E))$