Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones	1
	1.1. Definiciones	1
	1.2. Sucesiones de funciones	3
	1.3. Proceso de ortonormalización de Gram-Schmidt	9
	1.4. Coeficientes de Fourier	10
	1.5. Integrales impropias (valor principal)	14
	1.6. Convergencia según Cesàro	15
2.	Series de Fourier	19
3.	Transformada de Fourier	35
	3.1. Definiciones	35
	3.2. Ejemplos	36
	3.3. Propiedades	41
	3.4. Aplicaciones	43
4.	Convolución	45
	4.1. Espacio S	45
	4.2. Producto de convolución	46
	4.3. El espacio S como anillo	49
5 .	Distribuciones temperadas	53
	5.1. Definiciones	53
	5.2. Sucesión de distribuciones	61
	5.3. Producto de distribuciones	71
	5.4. Distribuciones y ecuaciones diferenciales	72
	5.5. Convergencia débil	73
6.	Distribuciones y transformada de Fourier	79
7.	Convolución de distribuciones	87
	7.1. Definiciones	87
	7.2. Propiedades de la convolución de distribuciones	89
	7.3. Uso de convolución en Física	91

IV ÍNDICE

8.	La función Gamma)3
	8.1. La función factorial):
	8.2. La función Gamma) 4
	8.3. Función Beta)(
	8.4. Notación doble factorial	96
	8.5. Fórmula de Stirling	
	8.6. Otras funciones relacionadas	
g	Transformada de Laplace 10	13
υ.	9.1. Definición	
	9.2. Inversión de la transformada de Laplace	
	9.3. Propiedades de la transformada de Laplace	
	9.4. Lista de transformadas de Laplace	
	J.4. Dista de transformadas de Dapiace	LJ
10	Aplicaciones de la transformada de Laplace 11	
	10.1. Ecuaciones diferenciales lineales con coeficientes constantes	
	10.2. Ecuaciones integrales	
	10.3. Ecuaciones en derivadas parciales	
	10.4. Sistema de ecuaciones lineales	2(
11	.Polinomios ortogonales 12	23
	11.1. Definiciones	25
	11.2. Teoremas	
	11.3. Relación de recurrencia	
19	.Polinomios de Hermite	7
12	12.1. Definición	
	12.2. Función generatriz	
	12.3. Ortogonalidad	
	12.4. Algunos resultados interesantes	
	12.5. Solución por serie de la ecuación de Hermite	
13	Polinomios de Laguerre	
	13.1. Definición	
	13.2. Función generatriz	
	13.3. Relaciones de recurrencia	
	13.4. Ecuación de Laguerre	
	13.5. Ortogonalidad	
	13.6. Polinomios asociados de Laguerre	38
14	.El problema de Sturm-Liouville	39
	14.1. Operadores diferenciales autoadjuntos	36
	14.2. Operadores autohermíticos	
	14.3. Problema de autovalores	
	14.4. Ejemplos de funciones ortogonales	

ÍNDICE v

15. Ecuaciones diferenciales con singularidades	145
15.1. Puntos singulares	145
15.2. Solución por serie: método de Frobenius	146
15.3. Limitaciones del método. Teorema de Fuchs	149
15.4. Una segunda solución	151
16. Ecuaciones diferenciales del tipo	155
16.1. Soluciones en puntos regulares	155
16.2. Soluciones en la vecindad de puntos singulares	
16.3. Singularidades en infinito	
16.4. Ejemplos	
16.5. Ecuaciones con $n \leq 3$ singularidades Fuchsianas	
17. Funciones hipergeométricas	177
17.1. La ecuación hipergeométrica general	
17.2. Ecuación indicial	
17.3. Ecuación diferencial de Gauss	
17.4. La serie hipergeométrica	
17.5. Ecuación hipergeométrica confluente	
18. Polinomios de Legendre	183
18.1. Función generatriz	
18.2. Relaciones de recurrencia	
18.3. Coeficientes del polinomio $P_n(x)$	
18.4. Fórmula de Rodrigues $\dots \dots \dots$	
18.5. Ecuación diferencial de Legendre	
18.6. Lugares nulos de $P_n(x)$	
18.7. Relación de ortogonalidad	
18.8. Expresiones integrales para $P_n(x)$	
18.9. Serie de Legendre	
18.10Funciones asociadas de Legendre	
18.11Armónicos esféricos	
18.12Segunda solución de la ecuación de Legendre	
18.13Problema de Sturm-Liouville asociado	
19.La ecuación diferencial de Bessel	205
19.1. La ecuación diferencial de Bessel	
19.1. La écuación diferencial de Bessel	
19.3. Funciones de Bessel de índice entero	
19.4. Función generatriz	
19.5. Fórmulas de adición	
19.6. Representaciones integrales	
19.7. Relaciones de recurrencia	
19.8. Relaciones de ortogonalidad	213

20. Diversos tipos de funciones cilíndricas	217
20.1. Segunda solución de la ecuación de Bessel	217
20.2. Funciones de Hankel	219

Capítulo 16

Ecuaciones diferenciales del tipo

$$f'' + p(z)f' + q(z)f = 0$$

versión preliminar 3.3-25 noviembre 2002

En este Capítulo volveremos sobre algunos temas del anterior sobre ecuaciones diferenciales con singularidades (Cap. 15), ahora desde un punto de vista más formal.

16.1. Soluciones en puntos regulares

Consideremos la ecuación diferencial

$$f''(z) + p(z)f'(z) + q(z)f(z) = 0. (16.1)$$

Sea D una región en el plano complejo. Sean p(z) y q(z) holomorfas en D. Sea $z_0 \in D$. En este caso se puede eliminar el término en f' en (16.1). Para ello consideramos

$$f(z) = g(z)e^{-\frac{1}{2}\int_{z_0}^z p(z') dz'} \equiv g(z)E.$$
 (16.2)

Puesto que

$$E' = -\frac{1}{2}pE ,$$

$$E'' = \left(-\frac{p'}{2} + \frac{p^2}{4}\right)E ,$$

(16.1) se puede reescribir:

$$f'' + pf' + qf = E\left(g'' + qg - \frac{p^2g}{4} - \frac{p'g}{2}\right) = 0$$
,

es decir

$$g''(z) + A(z)g(z) = 0, (16.3)$$

con

$$A(z) = q(z) - \frac{p(z)^2}{4} - \frac{p'(z)}{2}.$$
(16.4)

A(z) será analítica y univalente en D si p y q lo son. Supongamos entonces que esto se satisface. Sea el origen $0 \in D$. Entonces, en torno a z = 0:

$$A(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu} , \qquad (16.5)$$

serie que tiene un cierto radio de convergencia r.

Planteamos para g(z) una solución de forma análoga:

$$g(z) = \sum_{k=0}^{\infty} c_k z^k \ . \tag{16.6}$$

Reordenando las series:

$$A(z)g(z) = \sum_{lk}^{\infty} a_l c_k z^{l+k} = \sum_{\nu=0}^{\infty} \sum_{\mu=0}^{\nu} a_{\mu} c_{\nu-\mu} z^{\nu} .$$

(16.3) queda entonces

$$\sum_{\nu=0}^{\infty} \left[c_{\nu+2}(\nu+1)(\nu+2) + \sum_{\mu=0}^{\nu} a_{\mu} c_{\nu-\mu} \right] z^{\nu} = 0 ,$$

hallando la fórmula recursiva:

$$c_{\nu+2} = -\frac{1}{(\nu+1)(\nu+2)} \sum_{\mu=0}^{\nu} a_{\mu} c_{\nu-\mu} . \qquad (16.7)$$

Es claro entonces que podemos elegir arbitraria e independientemente dos coeficientes, c_0 y c_1 .

Sea $0 < \rho < r$. Como $\sum_{\mu=0}^{\infty} |a_{\mu}| \rho^{\mu}$ converge, entonces existe un M > 0 tal que

$$|a_{\mu}| \rho^{\mu} < M$$
 (16.8)

Sea

$$N(k) = \max\{ |c_0|, |c_1|\rho, \dots, |c_k|\rho^k \}, \qquad (16.9)$$

es decir,

$$|c_{\mu}| \le \frac{N(k)}{\rho^{\mu}}, \qquad \mu = 0, 1, \dots, k.$$

Usando la relación de recurrencia (16.7):

$$c_{k+1} = -\frac{1}{k(k+1)} \sum_{\mu=0}^{k-1} c_{\mu} a_{k-1-\mu} ,$$

luego

$$|c_{k+1}| < \frac{1}{k(k+1)} \sum_{\mu=0}^{k-1} \frac{N(k)}{\rho^{\mu}} \frac{M}{\rho^{k-1-\mu}} = \frac{1}{k(k+1)} \frac{N(k)}{\rho^{k-1}} Mk$$
$$< \frac{1}{\rho^{k+1}} \frac{N(k)\rho^2 M}{(k+1)}$$

Luego

$$|c_{k+1}| \rho^{k+1} < \frac{M\rho^2}{(k+1)} N(k) < N(k)$$
 $\forall k \text{ suficient emente grande.}$

Por tanto, desde cierto k_0 en adelante,

$$N(k) = N(k+1) = N(k+2) = \cdots = N$$
,

o sea

$$|c_k| \rho^k \le N , \qquad k \ge k_0 .$$

Con ello,

$$\left| \sum_{k=k_0}^{\infty} c_k z^k \right| \le \sum_{k=k_0}^{\infty} |c_k| |z|^k = \sum_{k=k_0}^{\infty} |c_k| \rho^k \left(\frac{|z|}{\rho} \right)^k \le N \sum_{k=k_0}^{\infty} \left(\frac{|z|}{\rho} \right)^k.$$

La última suma converge si $|z| < \rho < r$, luego $\sum_{k=0}^{\infty} c_k z^k$ converge si |z| < r. Este resultado sugiere el siguiente teorema.

Teorema 16.1 (Sin demostración) Toda solución de f'' + p(z)f' + q(z)f = 0 es analítica por lo menos allí donde los coeficientes p(z) y q(z) lo son.

Definición 16.1 Dos funciones univalentes en D son linealmente dependientes (l.d.) si una es múltiplo de la otra en D, i.e.

$$\psi_1 = \lambda \psi_2 \ .$$

Se dice que son linealmente independientes (l.i.) en D si en D ninguna es múltiplo de la otra.

Teorema 16.2 (Sin demostración) En un dominio D simplemente conexo, donde p(z) y q(z) son holomorfas, las soluciones forman un espacio de dimensión dos.

Definición 16.2 El Wronskiano de dos soluciones de la ecuación (16.1) es

$$W(z) = W[\psi_1(z), \psi_2(z)] = \begin{vmatrix} \psi_1(z) & \psi_2(z) \\ \psi'_1(z) & \psi'_2(z) \end{vmatrix} .$$
 (16.10)

Evaluemos W':

$$W = \psi_1 \psi_2' - \psi_2 \psi_1'$$

$$W' = \psi_1 \psi_2'' - \psi_2 \psi_1'' = \psi_1 (-p\psi_2' - q\psi_2) - \psi_2 (-p\psi_1' - q\psi_1)$$

$$= -p\psi_1 \psi_2' + p\psi_2 \psi_1' = -p(\psi_1 \psi_2' - \psi_2 \psi_1') = -pW,$$

$$\frac{W'}{W} = (\ln W)' = -p , \qquad (16.11)$$

luego

$$W(z) = Ce^{-\int_{z_0}^z p(z') dz'}.$$
 (16.12)

Observemos que si $W(z_0) \neq 0$, $W(z) \neq 0$ $\forall z \in D$. Observemos también que si p(z) = 0, W(z) es constante. Éste es precisamente el caso de la ecuación de Schrödinger:

$$\left[-\frac{\hbar}{2m} \frac{\partial^2}{\partial x^2} + (V(x) + E) \right] \psi = 0.$$

Proposición 16.1 Sean p(z) y q(z) holomorfas en D y univalentes. Entonces

- a) $W(z) = 0 \quad \forall z \in D \iff \psi_1(z), \ \psi_2(z) \text{ son l.d. en } D.$
- b) $\psi_1(z)$, $\psi_2(z)$ son l.i. en $D \iff W(z) \neq 0 \quad \forall z \in D$.

Ejemplo Consideremos la ecuación

$$f'' - \frac{2}{z}f' + \frac{2}{z^2}f = 0 ,$$

en un dominio D que no incluye el cero. En D,

$$p(z) = -\frac{2}{z}$$
, $q(z) = \frac{2}{z^2}$,

son analíticas, holomorfas.

Dos soluciones l.i. son

$$\psi_1(z) = z$$
, $\psi_2(z) = z^2$.

El Wronskiano:

$$W = 2z^2 - z^2 = z^2 \neq 0 \quad \forall z \in D .$$

Conociendo ψ_1 y ψ_2 , soluciones linealmente independientes de (16.1), podemos encontrar p y q. En efecto, de (16.11)

$$p(z) = -\frac{W'(z)}{W(z)} \ . \tag{16.13}$$

Y reemplazando este resultado en (16.1):

$$q(z) = -\frac{\psi_i''(z)}{\psi_i(z)} - p(z)\frac{\psi_i'(z)}{\psi_i(z)} , \quad i = 1, 2 .$$
 (16.14)

16.2. Soluciones en la vecindad de puntos singulares

Consideremos ahora la ecuación (16.1), pero sea ahora z_0 un punto fuera del dominio D. Sean ψ_1 , ψ_2 base del espacio vectorial de soluciones de (16.1). ψ_1 y ψ_2 son analíticas en D, donde p y q lo son. Supongamos que p o q no son holomofas en z_0 . ¿Qué ocurre con nuestras soluciones si las prolongamos analíticamente en torno al punto z_0 y volvemos a D?:

Al recorrer un circuito en torno a un punto singular aparecerá un problema de multivalencia, de modo que en general ψ_1 y ψ_2 no recuperarán sus valores originales al completar el circuito:

$$(\psi_1, \psi_2) \longrightarrow (\psi_1^{\dagger}, \psi_2^{\dagger})$$
.

La transformación es un endomorfismo de V en V. Después del viaje, las funciones base quedan convertidas en ciertas combinaciones lineales de las funciones originales:

$$\psi_1^{\dagger} = a_{11}\psi_1 + a_{12}\psi_2 ,$$

$$\psi_2^{\dagger} = a_{21}\psi_1 + a_{22}\psi_2 ,$$

o bien

$$\begin{pmatrix} \psi_1^{\dagger} \\ \psi_2^{\dagger} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} . \tag{16.15}$$

La matriz de la transformación se denomina matriz de circunvalación asociada a la base $\{\psi_1, \psi_2\}$.

Para que ψ_1^{\dagger} y ψ_2^{\dagger} sean l.i., y por tanto sigan siendo base de V, se debe cumplir que el determinante de la matriz de circunvalación sea no nulo:

$$a_{11}a_{22} - a_{12}a_{21} \neq 0$$
.

Nuestro propósito a continuación será encontrar bases "canónicas", en el siguiente sentido: deseamos construir una solución Φ de (16.1) tal que

$$\Phi \longleftrightarrow \Phi^{\dagger} = \lambda \Phi , \qquad \lambda = \text{cte.}$$
 (16.16)

Sea entonces $\{\psi_1, \psi_2\}$ una base de soluciones. Entonces

$$\Phi = b_1 \psi_1 + b_2 \psi_2 .$$

Luego del viaje:

$$\lambda \Phi = \Phi^{\dagger} = b_1 \psi_1^{\dagger} + b_2 \psi_2^{\dagger} .$$

Con (16.15):

$$\lambda(b_1\psi_1 + b_2\psi_2) = (b_1a_{11} + b_2a_{21})\psi_1 + (b_1a_{12} + b_2a_{22})\psi_2.$$

Siendo $\{\psi_1, \psi_2\}$ l.i.:

$$(a_{11} - \lambda)b_1 + a_{21}b_2 = 0 ,$$

$$a_{12}b_1 + (a_{22} - \lambda)b_2 = 0 .$$

Existen soluciones no triviales si

$$\begin{vmatrix} a_{11} - \lambda & a_{21} \\ a_{12} & a_{22} - \lambda \end{vmatrix} = 0 , \qquad (16.17)$$

es decir, nuestro problema corresponde a encontrar los autovalores de la matriz de circunvalación. (Algo esperable, por cierto.)

Sean ahora λ_1 y λ_2 las soluciones de esta ecuación. Existen dos posibilidades:

a) Sea $\lambda_1 \neq \lambda_2$. En este caso podemos escoger la base tal que

$$\psi_1^{\dagger} = \lambda_1 \psi_1 ,$$

$$\psi_2^{\dagger} = \lambda_2 \psi_2 .$$

La matriz de circunvalación en la base canónica es diagonal:

$$\begin{pmatrix} \psi_1^{\dagger} \\ \psi_2^{\dagger} \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} .$$
 (16.18)

Es conveniente introducir la siguiente definición:

Definición 16.3

$$\sigma_k = \frac{1}{2\pi i} \ln \lambda_k \ . \tag{16.19}$$

Entonces

$$(z - z_0)^{\sigma_k} \longleftrightarrow [(z - z_0)^{\sigma_k}]^{\dagger} = [e^{\sigma_k \ln(z - z_0)}]^{\dagger}$$
$$= e^{\sigma_k [\ln(z - z_0) + 2\pi i]} = (z - z_0)^{\sigma_k} e^{2\pi i \sigma_k} = \lambda_k (z - z_0)^{\sigma_k}.$$

En resumen:

$$\psi_k^{\dagger} = \lambda_k \psi_k ,$$
$$[(z - z_0)^{\sigma_k}]^{\dagger} = \lambda_k (z - z_0)^{\sigma_k} .$$

O sea el cuociente

$$\left[\frac{\psi_k}{(z-z_0)^{\sigma_k}}\right]^{\dagger} = \frac{\psi_k}{(z-z_0)^{\sigma_k}} ,$$

es decir, queda univalente al dar la vuelta en torno al punto singular z_0 , luego este cuociente admite un desarrollo de Laurent:

$$\frac{\psi_k(z)}{(z-z_0)^{\sigma_k}} = \sum_{\nu=-\infty}^{\infty} c_{k\nu} (z-z_0)^{\nu} .$$

En resumen: Si $\lambda_1 \neq \lambda_2$, existe una base cuyo desarrollo en la vecindad del punto singular z_0 es:

$$\psi_1(z) = (z - z_0)^{\sigma_1} \sum_{\nu = -\infty}^{\infty} c_{1\nu} (z - z_0)^{\nu} , \qquad (16.20)$$

$$\psi_2(z) = (z - z_0)^{\sigma_2} \sum_{\nu = -\infty}^{\infty} c_{2\nu} (z - z_0)^{\nu} . \tag{16.21}$$

b) Si $\lambda_1 = \lambda_2$, estamos en un caso "incómodo". Supongamos que la base transforma del siguiente modo:

$$\psi_1 \longleftrightarrow \psi_1^{\dagger} = \lambda_1 \psi_1 ,$$

$$\psi_2 \longleftrightarrow \psi_2^{\dagger} = a_{21} \psi_1 + a_{22} \psi_2 .$$

Matricialmente:

$$\begin{pmatrix} \psi_1^\dagger \\ \psi_2^\dagger \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \ .$$

La ecuación de autovalores es:

$$(\lambda_1 - \lambda)(a_{22} - \lambda) = 0.$$

para que $\lambda_1 = \lambda_2$ debe tenerse que $\lambda_1 = a_{22}$, es decir

$$\psi_2^{\dagger} = a_{21}\psi_1 + \lambda_1\psi_2 ,$$

de donde

$$\frac{\psi_2^{\dagger}}{\psi_1^{\dagger}} = \frac{a_{21}\psi_1 + \lambda_1\psi_2}{\lambda_1\psi_1} = \frac{\psi_2}{\psi_1} + \frac{a_{21}}{\lambda_1} \ . \tag{16.22}$$

Afirmamos que

$$\chi = \frac{\psi_2}{\psi_1} - \frac{a_{21}}{\lambda_1} \frac{1}{2\pi i} \ln(z - z_0)$$
 (16.23)

es univalente en torno a z_0 . En efecto, usando (16.22):

$$\chi^{\dagger} = \frac{\psi_2^{\dagger}}{\psi_1^{\dagger}} - \frac{a_{21}}{\lambda_1 2\pi i} [\ln(z - z_0) + 2\pi i] = \frac{\psi_2}{\psi_1} - \frac{a_{21}}{\lambda_1} \frac{1}{2\pi i} \ln(z - z_0) = \chi .$$

Podemos entonces desarrollar en una serie de Laurent en torno a z_0 :

$$\chi = \sum_{\mu = -\infty}^{\infty} d_{\mu} (z - z_0)^{\mu} ,$$

o bien

$$\psi_2 = \psi_1 \sum_{\mu = -\infty}^{\infty} d_{\mu} (z - z_0)^{\mu} + \frac{a_{21}}{2\pi i \lambda_1} \psi_1 \ln(z - z_0) .$$

Pero ψ_1 es autovector de la matriz de circunvalación, por tanto tiene un desarrollo de Laurent del tipo (16.20). Reordenando entonces las series, obtenemos:

$$\psi_2 = (z - z_0)^{\sigma_1} \sum_{\nu = -\infty}^{\infty} c_{2\nu} (z - z_0)^{\nu} + \frac{a_{21}}{2\pi i \lambda_1} \psi_1(z) \ln(z - z_0) .$$

Si $a_{21} \neq 0$ podemos dividir ψ_2 por a_{21} , es decir, podemos tomar, sin pérdida de generalidad, $a_{21} = 1$.

En resumen: Si $\lambda_1 = \lambda_2$ existe una base canónica cuyo desarrollo en la vecindad del punto singular z_0 es:

$$\psi_1(z) = (z - z_0)^{\sigma_1} \sum_{\nu = -\infty}^{\infty} c_{1\nu} (z - z_0)^{\nu} , \qquad (16.24)$$

$$\psi_2(z) = (z - z_0)^{\sigma_1} \sum_{\nu = -\infty}^{\infty} c_{2\nu} (z - z_0)^{\nu} + \frac{1}{2\pi i \lambda_1} \psi_1(z) \ln(z - z_0) . \tag{16.25}$$

Resumimos los resultados anteriores en el siguiente teorema.

Teorema 16.3 Si los coeficientes p(z) y q(z) son singulares en z_0 , entonces existen dos soluciones l.i. que en la vecindad de z_0 tienen la forma:

a) Si $\lambda_1 \neq \lambda_2$ (caso cómodo):

$$\psi_1(z) = (z - z_0)^{\sigma_1} \sum_{\nu = -\infty}^{\infty} c_{1\nu} (z - z_0)^{\nu} , \qquad (16.26)$$

$$\psi_2(z) = (z - z_0)^{\sigma_2} \sum_{\nu = -\infty}^{\infty} c_{2\nu} (z - z_0)^{\nu} . \tag{16.27}$$

b) Si $\lambda_1 = \lambda_2$ (caso incómodo):

$$\psi_1(z) = (z - z_0)^{\sigma_1} \sum_{\nu = -\infty}^{\infty} c_{1\nu} (z - z_0)^{\nu} , \qquad (16.28)$$

$$\psi_2(z) = (z - z_0)^{\sigma_1} \sum_{\nu = -\infty}^{\infty} c_{2\nu} (z - z_0)^{\nu} + \frac{1}{2\pi i \lambda_1} \psi_1(z) \ln(z - z_0) . \tag{16.29}$$

En estas expresiones,

$$\sigma_k = \frac{\ln \lambda_k}{2\pi i} \ . \tag{16.30}$$

Definición 16.4 z_0 es un punto de holomorfía de la ecuación (16.1) si en z_0 todas las soluciones de esta ecuación son holomorfas.

Teorema 16.4 z_0 es punto de holomorfía si y sólo si p(z) y q(z) son holomorfas en z_0 .

Demostración

- I) Si p(z) y q(z) son holomorfas en z_0 , entonces z_0 es punto de holomorfía. Ya demostrado.
- II) Si z_0 es punto de holomorfía, entonces p(z) y q(z) son holomorfas en z_0 . De (16.11) se tiene de inmediato que

$$p(z) = -\frac{W'}{W}$$

es holomorfa. Y de (16.14), q(z) también debe ser holomorfa. El único problema podría ocurrir si $\psi_j(z)=0$ para algún z. Pero la otra función l.i. no puede ser nula en el mismo punto (si lo fuese, el Wronskiano sería nulo en ese punto, lo que contradice la independencia lineal), y basta considerar entonces aquella función que no es nula en ese punto.

q.e.d.

Definición 16.5 Un punto es una singularidad Fuchsiana de (16.1) si en ese punto p(z) y q(z) no son ambas holomorfas y si el desarrollo de Laurent de las soluciones (base canónica) tiene una cantidad finita de términos de potencias negativas. Es decir, los cuocientes univalentes son meromorfos.

Definición 16.6 Una función se dice meromorfa si es analítica en todo el plano finito excepto en un número finito de polos. Por ejemplo: $z/[(z+1)(z-3)^3]$.

Teorema 16.5 (Fuchs) Para que z_0 sea una singularidad Fuchsiana de (16.1) es necesario y suficiente que p(z) tenga en z_0 a lo sumo un polo simple y q(z) tenga en z_0 a lo sumo un polo doble, sin ser ambas holomorfas.

Demostración

I) Demostración de necesidad.

Sea $z_0 = 0$ singularidad Fuchsiana de (16.1). Consideremos la base canónica:

$$\psi_1(z) = z^{\sigma_1} \sum_{\nu=-n}^{\infty} c_{1\nu} z^{\nu}$$
 $c_{1,-n} \neq 0$,

$$\psi_2(z) = z^{\sigma_2} \sum_{\nu=-m}^{\infty} c_{2\mu} z^{\mu} + \eta \ln(z) \psi_1(z) \qquad c_{2,-m} \neq 0 ,$$

donde

$$\eta = \begin{cases}
0 & \text{caso cómodo} \\
\frac{1}{2\pi i \lambda_1} & \text{caso incómodo}
\end{cases}$$

Con las definiciones

$$\overline{\sigma}_1 = \sigma_1 - n ,$$

$$\overline{\sigma}_2 = \sigma_2 - m ,$$

podemos reescribir las series anteriores de modo que ambas comiencen en el índice cero:

$$\psi_1(z) = z^{\overline{\sigma}_1} \sum_{\mu=0}^{\infty} \overline{c}_{1\mu} z^{\mu} \qquad \overline{c}_{10} \neq 0 ,$$

$$\psi_2(z) = z^{\overline{\sigma}_2} \sum_{\mu=0}^{\infty} \overline{c}_{2\nu} z^{\nu} + \eta \ln(z) \psi_1(z) \qquad \overline{c}_{20} \neq 0 .$$

p(z) viene dado por (16.11). Observemos que

$$W = \psi_1 \psi_2' - \psi_2 \psi_1' = \left(\frac{\psi_2}{\psi_1}\right)' \psi_1^2 .$$

Pero

$$\begin{split} \frac{\psi_2}{\psi_1} &= \eta \ln z + z^{\overline{\sigma}_2 - \overline{\sigma}_1} \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu} ,\\ \left(\frac{\psi_2}{\psi_1}\right)' &= \frac{\eta}{z} + \sum_{\nu=0}^{\infty} (\overline{\sigma}_2 - \overline{\sigma}_1 + \nu) a_{\nu} z^{\nu + \overline{\sigma}_2 - \overline{\sigma}_1 - 1} , \end{split}$$

luego

$$W = \left(\frac{\eta}{z} + \sum_{\nu=0}^{\infty} (\overline{\sigma}_2 - \overline{\sigma}_1 + \nu) a_{\nu} z^{\nu + \overline{\sigma}_2 - \overline{\sigma}_1 - 1}\right) \left(z^{\overline{\sigma}_1} \sum_{\nu=0}^{\infty} \overline{c}_{1\nu} z^{\nu}\right)^2,$$

lo que se puede reescribir siempre en la forma

$$W = z^{\tau} \sum_{\nu=0}^{\infty} b_{\nu} z^{\nu} , \qquad b_0 \neq 0 .$$

De aquí,

$$W' = \sum_{\nu=0}^{\infty} (\tau + \nu) b_{\nu} z^{\nu-1+\tau} = \frac{1}{z} z^{\tau} \sum_{\nu=0}^{\infty} (\tau + \nu) b_{\nu} z^{\nu} .$$

p(z) tiene entonces la forma:

$$p(z) = -\frac{W'}{W} = \frac{-1}{z} \frac{\tau b_0 + (\tau + 1)b_1 z + \cdots}{b_0 + b_1 z + \cdots}.$$

Si $\tau = 0$, entonces p(z) es regular en z = 0. Si $\tau \neq 0$, entonces $p(z) = -\tau/z + \cdots$, luego tiene un polo simple en z = 0.

De modo análogo podemos estudiar q(z), dado por (16.14). Basta observar que

$$\frac{\psi_1'}{\psi_1} = \frac{\sum_{\nu=0}^{\infty} (\overline{\sigma}_1 + \nu) \overline{c}_{1\nu} z^{\overline{\sigma}_1 + \nu - 1}}{\sum_{\nu=0}^{\infty} \overline{c}_{1\nu} z^{\overline{\sigma}_1 + \nu}} = \frac{1}{z} \frac{\overline{\sigma}_1 \overline{c}_{10} + (\overline{\sigma}_1 + 1) z + \cdots}{\overline{c}_{10} + \overline{c}_{11} z + \cdots}$$

tiene a lo sumo un polo simple en z=0.

Análogamente, ψ_1''/ψ_1' tiene a lo sumo un polo simple en z=0. Luego q(z) tiene a lo sumo un polo doble en z=0.

II) Demostración de suficiencia.

Supongamos que p(z) y q(z) tienen a lo sumo un polo simple y doble, respectivamente, en z = 0. Reescribamos (16.1):

$$f'' + \frac{P(z)}{z}f' + \frac{Q(z)}{z^2}f = 0 , \qquad (16.31)$$

con P(z) y Q(z) analíticas:

$$P(z) = \sum_{\nu=0}^{\infty} p_{\nu} z^{\nu} , \qquad (16.32)$$

$$Q(z) = \sum_{\nu=0}^{\infty} q_{\nu} z^{\nu} . {16.33}$$

Planteamos una solución de la forma

$$f = z^{\sigma} \sum_{\nu=0}^{\infty} c_{\nu} z^{\nu} = \sum_{\nu=0}^{\infty} c_{\nu} z^{\nu+\sigma} , \qquad c_0 \neq 0 .$$
 (16.34)

Entonces

$$f' = \frac{z^{\sigma}}{z} \sum_{\nu=0}^{\infty} c_{\nu}(\nu + \sigma) z^{\nu} ,$$

$$f'' = \frac{z^{\sigma}}{z^{2}} \sum_{\nu=0}^{\infty} c_{\nu}(\nu + \sigma) (\nu + \sigma - 1) z^{\nu} .$$

La ecuación diferencial nos queda:

$$\sum_{\nu=0}^{\infty} c_{\nu}(\sigma + \nu)(\sigma + \nu - 1)z^{\nu} + \left(\sum_{\mu=0}^{\infty} p_{\mu}z^{\mu}\right) \left(\sum_{\nu=0}^{\infty} c_{\nu}(\sigma + \nu)z^{\nu}\right) + \left(\sum_{\mu=0}^{\infty} q_{\mu}z^{\mu}\right) \left(\sum_{\nu=0}^{\infty} c_{\nu}z^{\nu}\right) = 0. \quad (16.35)$$

Comparando coeficientes para z = 0:

$$c_0 \sigma(\sigma - 1) + p_0 c_0 \sigma + q_0 c_0 = 0 ,$$

es decir, se obtiene la llamada ecuación indicial:

$$\sigma(\sigma - 1) + p_0 \sigma + q_0 = 0 \tag{16.36}$$

Sean las raíces de la ecuación indicial σ_1 y σ_2

Definamos

$$\Phi(\sigma) = \sigma(\sigma - 1) + p_0 \sigma + q_0 ,$$

de modo que

$$\Phi(\sigma_1) = \Phi(\sigma_2) = 0 .$$

Igualando los coeficientes de z^1 en (16.35):

$$c_1(\sigma+1)\sigma + p_0c_1(\sigma+1) + p_1c_0\sigma + q_0c_1 + q_1c_0 = 0 ,$$

$$c_1[(\sigma+1)\sigma + p_0(\sigma+1) + q_0] = -c_0(\sigma p_1 + q_1) ,$$

$$c_1\Phi(\sigma+1) = -c_0(\sigma p_1 + q_1) .$$

Análogamente, para z^n , se obtienen ecuaciones de la forma:

$$c_n\Phi(\sigma+n)=\cdots$$

De este modo, si $\Phi(\sigma+n) \neq 0$ para $n=1, 2, 3, \ldots$, podemos dividir por Φ cada ecuación y obtener los coeficientes de la serie.

El procedimiento para resolver (16.31) es entonces, primero, resolver la ecuación

$$\Phi(\sigma) = 0$$
,

para obtener σ_1 y σ_2 .

Se pueden presentar dos casos:

I)
$$\sigma_1 - \sigma_2 \notin \mathbb{Z} . \tag{16.37}$$

En este caso,

$$\sigma_1 + n \neq \sigma_2 \qquad \forall n \in \mathbb{Z} ,$$

y por tanto

$$\Phi(\sigma_i + n) \neq 0 \quad \forall n \in \mathbb{Z} , \quad i = 1, 2 .$$

Es posible entonces obtener todos los coeficientes de la expansión en serie de la solución. Pero además, (16.37) asegura que

$$\sigma_1 \neq \sigma_2$$
,

de modo que los coeficientes obtenidos por el método descrito son distintos en general, y las dos soluciones resultantes son linealmente independientes.

II)
$$\sigma_1 - \sigma_2 \in \mathbb{Z} . \tag{16.38}$$

Supongamos, sin pérdida de generalidad, que

$$\operatorname{Re} \sigma_1 \geq \operatorname{Re} \sigma_2$$
.

Entonces de (16.38) se sigue que

$$\Phi(\sigma_1 + n) \neq 0 \quad \forall n \in \mathbb{N} .$$

Por tanto, el procedimiento anterior de dividir por $\Phi(\sigma_1+n)$ es válido, obteniéndose la solución asociada a σ_1 .

Para σ_2 , por su parte, puede haber problemas, pues $\Phi(\sigma_2 + n) = 0$ cuando $n = \sigma_1 - \sigma_2$ y no se pueden obtener los coeficientes de la solución. Esto significa que la solución no es de la forma (16.34), y se necesita la expresión más general, con un término logarítmico. De todos modos z = 0 será singularidad Fuchsiana.

q.e.d.

16.3. Singularidades en infinito

Consideremos el cambio de variable

$$s = \frac{1}{z} \tag{16.39}$$

en la ecuación (16.1), y definamos

$$\overline{f}(s) = f(z) = f\left(\frac{1}{s}\right) . \tag{16.40}$$

Se tiene

$$\begin{split} \frac{ds}{dz} &= -\frac{1}{z^2} = -s^2 \;, \\ \frac{d\overline{f}}{dz} &= \frac{d\overline{f}}{ds} \frac{ds}{dz} = -s^2 \frac{d\overline{f}}{ds} \;, \\ \frac{d^2\overline{f}}{dz^2} &= s^4 \frac{d^2\overline{f}}{ds^2} + 2s^3 \frac{d\overline{f}}{ds} \;, \end{split}$$

de modo que \overline{f} satisface:

$$\frac{d^2\overline{f}}{ds^2} + \frac{2s - p(1/s)}{s^2} \frac{d\overline{f}}{ds} + \frac{q(1/s)}{s^4} \overline{f} = 0.$$
 (16.41)

Este resultado nos conduce a la siguiente definición:

Definición 16.7 Infinito es punto de holomorfía de (16.1) si cero lo es de (16.41).

Proposición 16.2 Infinito es punto de holomorfía de (16.1) si:

- a) 2s p(1/s) tiene en cero un lugar nulo de multiplicidad doble o mayor (es decir, $2s p(1/s) \sim s^n$, con $n \ge 2$, cuando $s \to 0$).
- b) q(1/s) tiene en cero un lugar nulo de multiplicidad cuádruple o mayor.

Demostración Es inmediata del teorema 16.4 y de la forma de (16.41).

Análogamente definimos la singularidad Fuchsiana en infinito:

Definición 16.8 Infinito es singularidad Fuchsiana de (16.1) si cero lo es de (16.41).

Proposición 16.3 Infinito es singularidad Fuchsiana de (16.1) si no es punto de holomorfía y al menos

- a) q(1/s) tiene un lugar nulo doble en s=0.
- b) p(1/s) tiene un lugar nulo simple en s=0.

Demostración Inmediata del teorema de Fuchs 16.5 y de la forma de (16.41).

16.4. Ejemplos

1) Ecuación diferencial de Laguerre:

$$zf'' + (1-z)f' + nf = 0, (16.42)$$

o, equivalentemente,

$$f'' + \frac{1-z}{z}f' + \frac{nz}{z^2}f = 0. ag{16.43}$$

Claramente z=0 es singularidad Fuchsiana. En cuanto a $z=\infty$, observemos que p(1/s) es holomorfo en s=0:

$$p\left(\frac{1}{s}\right) = \frac{1 - (1/s)}{(1/s)} = s - 1$$
,

de modo que $z = \infty$ no es singularidad Fuchsiana.

Siguiendo las definiciones (16.31), (16.32) y (16.33) para la ecuación de Laguerre

$$P(z) = 1 - z , \qquad Q(z) = nz ,$$

luego

$$p_0 = 1$$
, $q_0 = 0$.

16.4. EJEMPLOS 169

La ecuación indicial es entonces

$$\sigma(\sigma - 1) + \sigma = 0$$
$$\sigma^{2} = 0$$
$$\sigma_{1} = \sigma_{2} = 0$$

Estamos pues en el caso incómodo.

En el Cap. 13, Polinomios de Laguerre, ya habíamos encontrado la primera solución, de la forma

$$\Psi_1(z) = z^{\sigma_1} \sum_{\nu=0}^{\infty} d_{\nu} z^{\nu} . \tag{16.44}$$

Corresponde a los polinomios de Laguerre L_n . Falta encontrar la segunda solución, linealmente independiente con L_n :

$$\Psi_2(x) = \sum_{\nu=0}^{\infty} f_{\nu} z^{\nu} + \Psi_1(z) \ln(z) . \qquad (16.45)$$

El primer polinomio de Laguerre es $L_{n=0} = 1$, de modo que:

$$\Psi_2(z) = \ln(z) + \sum_{\nu=0}^{\infty} f_{\nu} z^{\nu} , \quad n = 0 .$$
 (16.46)

Reemplazando en (16.42):

$$0 = z \left(-\frac{1}{z^2} + \sum_{\nu=2}^{\infty} f_{\nu} \nu(\nu - 1) z^{\nu-2} \right) + (1 - z) \left(\frac{1}{z} + \sum_{\nu=1}^{\infty} f_{\nu} \nu z^{\nu-1} \right)$$
$$0 = -1 + \sum_{\nu=2}^{\infty} f_{\nu} \nu(\nu - 1) z^{\nu-1} + \sum_{\nu=1}^{\infty} f_{\nu} \nu z^{\nu-1} - \sum_{\nu=1}^{\infty} f_{\nu} \nu z^{\nu}$$

Se sigue la relación de recurrencia:

$$f_{\nu+1}(\nu^2 + 2\nu + 1) = f_{\nu}\nu$$
, $\nu \ge 1$,
 $f_{\nu+1} = \frac{f_{\nu}\nu}{(\nu+1)^2}$.

Escogiendo

$$f_1 = 1$$
,

se obtiene

$$f_n = \frac{(n-1)!}{(n!)^2} = \frac{1}{n \cdot n!}$$
.

Así, las dos soluciones linealmente independientes de la ecuación de Laguerre para n=0 son:

$$\Psi_1(z) = L_0(z) = 1$$
,
 $\Psi_2(z) = \ln(z) + \sum_{i=1}^{\infty} \frac{z^{\nu}}{\nu \cdot \nu!}$.

2) La ecuación

$$z^{2}f'' + z\left(z - \frac{1}{2}\right)f' + \frac{1}{2}f = 0$$

tiene una singularidad Fuchsiana en z = 0. La ecuación indicial es:

$$\sigma(\sigma - 1) - \frac{1}{2}\sigma + \frac{1}{2} = 0$$
,

luego

$$\sigma_1 = \frac{1}{2}$$
, $\sigma_2 = 1$ y $\sigma_1 \neq \sigma_2$.

I) Obtengamos la primera solución l.i., con $\sigma = 1/2$. En este caso

$$f = \sqrt{z} \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu} = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu+1/2}$$
.

Sustituyendo en la ecuación y comparando potencias de z obtenemos la relación de recurrencia

$$a_{\nu} = -\frac{a_{\nu} - 1}{\nu} \; , \quad \nu \ge 1 \; .$$

Tomando $a_0 = 1$:

$$a_1 = -1$$
, $a_2 = \frac{1}{2}$, $a_3 = -\frac{1}{2 \cdot 3} = -\frac{1}{3!}$, ..., $a_{\nu} = (-1)^{\nu} \frac{1}{\nu!}$.

Luego

$$f(z) = \sqrt{z} \sum_{\nu=0}^{\infty} \frac{(-1)^{\nu} z^{\nu}}{\nu!} = e^{-z} \sqrt{z}.$$

II) La segunda solución corresponde a $\sigma = 1$:

$$f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu+1}$$
.

Obtenemos la relación de recurrencia

$$a_{\nu} = -\frac{a_{\nu+1}}{\nu + 1/2} \; , \quad \nu \ge 1 \; .$$

Tomando $a_0 = 1$, resulta

$$a_{\nu} = (-1)^{\nu} \frac{2^{\nu}}{(2\nu + 1)!!} ,$$

$$f(z) = z \sum_{\nu=0}^{\infty} \frac{(-2z)^{\nu}}{(2\nu+1)!!}$$
.

16.5. Ecuaciones con $n \leq 3$ singularidades Fuchsianas

Nuestro objetivo ahora será encontrar el tipo de ecuación (16.1) más general tal que sea holomorfa en todo el plano "completo" (es decir, incluyendo infinito), salvo en 0, 1, 2 ó 3 singularidades Fuchsianas, una de las cuales podría estar en infinito. Esto es, p(z), q(z), p(1/s) y q(1/s) deben ser meromorfas.

Proposición 16.4 Para que la ecuación (16.1) tenga sólo singularidades Fuchsianas es necesario y suficiente que se cumplan las siguientes condiciones:

$$p(z) = \sum_{k=1}^{n} \frac{A_k}{z - \alpha_k} , \qquad (16.47a)$$

$$q(z) = \sum_{k=1}^{n} \left[\frac{B_k}{(z - \alpha_k)^2} + \frac{C_k}{(z - \alpha_k)} \right] , \qquad (16.47b)$$

$$\sum_{k=1}^{n} C_k = 0 . ag{16.47c}$$

Demostración Para que $\alpha_1, \alpha_2, \ldots, \alpha_n$ sean singularidades Fuchsianas, se debe tener que p(z) a lo sumo tenga un polo de primer orden y q(z) a lo sumo uno de segundo orden:

$$p(z) = \frac{P(z)}{(z - \alpha_1) \cdots (z - \alpha_n)}$$
, (16.48a)

$$q(z) = \frac{Q(z)}{(z - \alpha_1)^2 \cdots (z - \alpha_n)^2} , \qquad (16.48b)$$

donde P(z) y Q(z) son funciones regulares.

Para que $z = \infty$ sea a lo sumo singularidad Fuchsiana, se debe tener que

$$p\left(\frac{1}{s}\right) = a_1 s + a_2 s^2 + \cdots$$
$$q\left(\frac{1}{s}\right) = a_0 s^2 + a_3 s^3 + \cdots$$

Pero, de (16.48),

$$p\left(\frac{1}{s}\right) = s^n \frac{P(1/s)}{(1 - s\alpha_1)\cdots(1 - s\alpha_n)} \sim s^n P\left(\frac{1}{s}\right) , \text{ si } s \to 0 ,$$

de modo que la mayor potencia de 1/s en P(1/s) debe ser $1/s^{n-1}$. Es decir, P(z) debe ser un polinomio al menos un grado inferior al grado del denominador de p(z). Un análisis similar conduce a que el grado de Q(z) es al menos dos grados inferior al grado del denominador de q(z).

Descomponiendo ahora p(z) y q(z) en fracciones parciales:

$$p(z) = \sum_{k=1}^{n} \frac{A_k}{z - \alpha_k} ,$$

$$q(z) = \sum_{k=1}^{n} \left[\frac{B_k}{(z - \alpha_k)^2} + \frac{C_k}{(z - \alpha_k)} \right] ,$$

$$\sum_{k=1}^{n} C_k = 0 .$$

La última condición viene de exigir que el grado de Q(z) sea al menos dos grados inferior al del denominador de q(z). En efecto, al sumar las fracciones parciales, los términos que contienen C_k son de la forma $C_k(z-\alpha_k)\prod_{j\neq k}^n(z-\alpha_j)^2$, que tiene grado $1+2\cdot(n-1)=2n-1$, que es sólo un grado inferior al grado del denominador. La mayor potencia de z aparece en un término de la forma $z^{2n-1}\sum_{k=1}^n C_k$. Por otro lado, los términos que contienen B_k son de la forma $B_k\prod_{j\neq k}^n(z-\alpha_j)^2$, de grado $2\cdot(n-1)=2n-2$ a lo sumo. Por tanto, el numerador es de grado 2n-2 o inferior si $\sum_{k=1}^n C_k=0$.

q.e.d.

Ahora revisemos cada uno de los casos que nos interesan.

16.5.1. n = 0 singularidades Fuchsianas

Para que p(z) y q(z) no tengan singularidades deben ser de la forma:

$$p(z) = p_0 + p_1 z + p_2 z^2 + \cdots$$

 $q(z) = q_0 + q_1 z + q_2 z^2 + \cdots$

De este modo

$$p\left(\frac{1}{s}\right) = p_0 + p_1 \frac{1}{s} + p_2 \frac{1}{s^2} + \cdots$$
$$q\left(\frac{1}{s}\right) = q_0 + q_1 \frac{1}{s} + q_2 \frac{1}{s^2} + \cdots$$

Pero entonces 2s - p(1/s) tiene un cero en s = 0 sólo si p(1/s) = 0, y q(1/s) tiene un cero en s = 0 sólo si q(1/s) = 0. Luego, por la Proposición 16.2, $z = \infty$ puede ser punto de holomorfía sólo si

$$p(z) = q(z) = 0.$$

Sin embargo, esta condición implica a su vez que infinito es singularidad Fuchsiana (Proposición 16.3). Esto es una contradicción, luego no existen ecuaciones de la forma (16.1) sin singularidades Fuchsianas.

16.5.2. n=1 singularidades Fuchsianas, en $z=\infty$

De lo dicho en la Subsección 16.5.1, si la ecuación (16.1) tiene una única singularidad Fuchsiana, y localizada en $z=\infty$, entonces

$$p(z) = q(z) = 0 ,$$

de donde, en (16.47)

$$A_k = B_k = C_k = 0 .$$

La ecuación con una singularidad Fuchsiana en $z = \infty$ es pues

$$f'' = 0 (16.49)$$

y su solución es

$$f(z) = c_1 + c_2 z (16.50)$$

16.5.3. n=1 singularidades Fuchsianas, en z=0

En este caso n = 1 en (16.47), y por tanto, de (16.47c),

$$C_1 = 0$$
.

Luego, escribiendo $A_1 = A$ y $B_1 = B$,

$$p(z) = \frac{A}{z}$$
, $q(z) = \frac{B}{z^2}$,

y la ecuación es de la forma:

$$f'' + \frac{A}{z}f' + \frac{B}{z^2}f = 0 .$$

Pero $z = \infty$ es punto de holomorfía, de modo que (Proposición 16.2)

a)

$$2s - p\left(\frac{1}{s}\right) = 2s - As$$

debe tener al menos un lugar nulo doble en s=0, vale decir,

$$A=2$$
.

b)

$$q\left(\frac{1}{s}\right) = Bs^2$$

debe tener al menos un lugar nulo cuádruple en s=0, luego

$$B=0$$
.

La ecuación con una singularidad Fuchsiana en z = 0 es entonces

$$f'' + \frac{2}{z}f' = 0. (16.51)$$

Sus soluciones:

$$f_1 = c_1 ,$$

 $f_2 = \frac{c_2}{z} .$ (16.52)

16.5.4. n=2 singularidades Fuchsianas, en z=0 y $z=\infty$

En este caso n = 1 en (16.47), de modo que $C_1 = 0$. Escribamos $A_1 = A$ y $B_1 = B$. Para que infinito sea singularidad Fuchsiana, de la Proposición 16.3 se sigue que 2s - p(1/s) = 2s - As debe tener un lugar nulo simple en s = 0 y $q(1/s) = Bs^2$ debe tener un lugar nulo doble en s = 0. Ambas condiciones se cumplen, de modo que no hay nuevas restricciones sobre A y B. La ecuación más general con dos singularidades Fuchsianas, una de ellas en infinito, es la ecuación diferencial de Euler:

$$f'' + \frac{A}{z}f' + \frac{B}{z^2}f = 0$$
 (16.53)

Determinemos sus soluciones. La ecuación indicial es

$$\sigma(\sigma - 1) + A\sigma + B = 0.$$

Sean σ_1 y σ_2 las dos soluciones de ella:

$$\sigma_1 = \frac{1}{2} \left(1 - A + \sqrt{(1 - A)^2 - B^2} \right) ,$$

$$\sigma_2 = \frac{1}{2} \left(1 - A - \sqrt{(1 - A)^2 - B^2} \right) .$$

1) Caso $\sigma_1 \neq \sigma_2$ (caso cómodo).

En cualquier dominio de conexión simple que no contiene al cero z^{σ_1} y z^{σ_2} son dos soluciones l.i. La solución general es

$$f = c_1 z^{\sigma_1} + c_2 z^{\sigma_2} . ag{16.54}$$

2) Caso $\sigma_1 = \sigma_2$ (caso incómodo).

Una solución no trivial es:

$$f_1 = z^{\sigma_1} .$$

La otra viene dada por:

$$f_2 = z^{\sigma_1} \ln z .$$

como es fácil comprobar reemplazando en (16.53).

La solución general en este caso es entonces

$$f = c_1 z^{\sigma_1} (1 + c_2 \ln z) . {16.55}$$

16.5.5. n = 2 singularidades Fuchsianas, en z = a y z = b, holomorfa en infinito

La ecuación y sus soluciones se obtienen del caso anterior por medio de la transformación:

$$z \longrightarrow \frac{z-a}{z-b} \ . \tag{16.56}$$

En efecto, bajo esta transformación:

$$0 \longrightarrow a ,$$

$$\infty \longrightarrow b .$$

La ecuación diferencial queda de la forma:

$$f'' + \frac{2z - 2aA(a-b)}{(z-a)(z-b)}f' + \frac{B(a-b)^2}{(z-a)^2(z-b)^2}f = 0,$$

lo que se puede reescribir, con las definiciones adecuadas,

$$f'' + \frac{2z + \overline{A}}{(z - a)(z - b)}f' + \frac{\overline{B}}{(z - a)^2(z - b)^2}f = 0.$$
 (16.57)

Las soluciones se obtienen simplemente aplicando la transformación (16.56) a la solución hallada en la Subsección 16.5.4:

1) Caso cómodo:

$$f = c_1 \left(\frac{z-a}{z-b}\right)^{\sigma_1} + c_2 \left(\frac{z-a}{z-b}\right)^{\sigma_2}$$
 (16.58)

2) Caso incómodo:

$$f = c_1 \left(\frac{z-a}{z-b}\right)^{\sigma_1} \left[1 + c_2 \ln\left(\frac{z-a}{z-b}\right)\right] . \tag{16.59}$$