Dokumentacja do zadania 2.5

Marcin Horoszko, Radosław Głombiowski, Jacek Dermont 16 listopada 2012

1 Zadanie 2.5

Dla równania f(x) = 0, gdzie $f(x) = \ln x + x - 5$, wczytać a,b $\in R$ takie, by 0 < a < b oraz $f(a) \cdot f(b) < 0$. Następnie, dopóki "użytkownik się nie znudzi", wczytywać wartość $0 < \epsilon < 1$ i metodą połowienia na [a,b] przybliżyć z dokładnością ϵ rozwiązanie tego równania. Rozwiązanie to przybliżyć również metodą Newtona z $x_0 = a$, przy czym x_k będzie dobrym przybliżeniem, gdy $|x_k - x_{k-1}| \le \epsilon$. Porównać ilość kroków wykonanych metodą połowienia i metodą Newtona.

2 Podstawowe pojęcia

2.1 (Metoda połowienia (równego podziału, bisekcji)). Jedna z metod rozwiązywania równań nieliniowych. Opiera się ona na twierdzeniu Bolzano-Cauchy'ego: Jeżeli funkcja ciągła f(x) ma na końcach przedziału domkniętego wartości różnych znaków, to wewnątrz tego przedziału, istnieje co najmniej jeden pierwiastek równania f(x) = 0.. Przebieg metody:

Wybieramy przybliżenie ϵ (np. $\epsilon = 0.001$).

- 1. Sprawdzamy czy dla $c=\frac{a+b}{2}$ f(c)=0. Jeśli tak, to kończymy, a c jest pierwiastkiem funkcji.
- 2. Jeżeli nie, dzielimy przedział na połowy [a, c][c, b]. Jeżeli $f(a) \cdot f(c) < 0$ to b = c, w przeciwnym przypadku a = c.
- 3. Powtarzamy proces, dopóki odległość między a i b nie będzie mniejsza lub równa przybliżeniu ϵ . Zarówno a i b będą pierwiastkami spełniającymi zadane przybliżenie.
- **2.2** (Metoda Newtona). Iteracyjny algorytm wyznaczania przybliżonej wartości pierwiastka funkcji. Można ją zastosować, gdy w przedziale [a,b] funkcja jest ciągła, $f(a) \cdot f(b) < 0$ oraz pierwsza i druga pochodna funkcji mają stały znak na tym przedziale. Przebieg metody:

Wybieramy przybliżenie ϵ (np. $\epsilon = 0.001$) oraz wyliczamy pochodną f'(x).

- 1. $x_0 = a$
- 2. Kolejny k-ty x wyliczamy ze wzoru: $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$.
- 3. Powtarzamy 2. punkt dopóki $|x_{k+1}-x_k| \le \epsilon$. x_{k+1} jest szukanym pierwiastkiem spełniającym zadane przybliżenie.

Przy spełnionych założeniach błąd przybliżenia maleje kwadratowo. Jednakże, jeśli punkt startowy jest daleko od pierwiastka, metoda Newtona może być rozbieżna i w konsekwencji działać w "nieskończoność". W tym wypadku należy się zabepieczyć, np. poprzez ustalenie maksymalnej ilości iteracji.

3 Metoda numeryczna

Posiadając a, b (0<a

t i $f(a)\cdot f(b)$ <0) oraz ϵ (0< ϵ <1) możemy przybliżyć wartość pierwiastka f(x)=lnx+x-5 powyższymi metodami.
 Dla metody połowienia*:

- i = 0 (ilość kroków)
- tworzymy pętlę while, której warunkiem działania jest $|a-b| > \epsilon$:

$$-i++$$
 $-c = \frac{a+b}{2}$
 $-$ jeśli $f(a) \cdot f(c) < 0$, to b = c
 $-$ w przeciwnym przypadku a = c

- \bullet zmienna c to zadane przybliżenie
- ullet zmienna i to ilość wykonanych kroków

Dla metody Newtona:

- definiujemy pochodną $f'(x) = \frac{1}{x} + 1$
- j = 0 (ilość kroków)
- $x_0 = a$
- tworzymy nie kończącą się pętlę while:

$$-j++$$
 $-x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$
 $-$ jeśli $|x_0 - x_1| \le \epsilon$, to przerywamy **pętlę**
 $-$ jeśli $j == 100$, to przerywamy **pętlę**
 $-x_0 = x_1$

- jeśli j < 100, zmienna x_1 jest naszym szukanym przybliżeniem
- \bullet jeśli j == 100, metoda Newtona jest w tym przypadku rozbieżna; nie otrzymaliśmy założonego przybliżenia
- zmienna j to ilość wykonanych kroków

^{*} ponieważ dla równania w zadaniu x jest niewymierne, omijamy sprawdzanie f(c) == 0