

Neural Networks with Tensorflow 2.0

What is Machine Learning

Traditional Vs ML

Types of Learning

- Supervised
- Unsupervised

Supervised Learning Tasks

Linear Regression

Supervised Learning Tasks

Classification

Training Data

Input Features and Output
Labels For regression

no. of example = m

Input Features

Area	Bedrooms	Bathroom	Study room
800	2	1	0
1300	3	3	1
400	1	1	0
2100	4	4	1
2700	4	4	1

Output Labels

Price
22.87 Lacs
51.56 Lacs
17.56 Lacs
80.8 Lacs
100.12 Lacs

no. of features = n

Training Data

Input Features and Output
Labels For Classification

Input Features

Area	Bedrooms	Bathroom	Study room
800	2	1	0
1300	3	3	1
400	1	1	0
2100	4	4	1
2700	4	4	1

Ε

no. of example

Output Labels

Cheap	Affordable	expensive
1	0	0
0	1	0
1	0	0
0	0	1
0	0	1

no. of features = n

Representing Data

Representing a House as Vector

Row Vector of dimension 1 by 4

Representing Data

Representing a Houses as

Matrix

no. of features = n

Element-Wise operation

$$\begin{bmatrix} 2 & 3 & 7 \\ 4 & 8 & 2 \end{bmatrix} + \begin{bmatrix} 5 & 1 & 2 \\ 3 & 9 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 4 & 9 \\ 7 & 17 & 4 \end{bmatrix} \quad \text{Sum}$$

$$\begin{bmatrix} 2 & 3 & 7 \\ 4 & 8 & 2 \end{bmatrix} \odot \begin{bmatrix} 5 & 1 & 2 \\ 3 & 9 & 2 \end{bmatrix} = \begin{bmatrix} 10 & 3 & 14 \\ 12 & 72 & 4 \end{bmatrix}$$
 Multiplication

$$\begin{bmatrix} 2 & 3 & 7 \\ 4 & 8 & 2 \end{bmatrix} - \begin{bmatrix} 5 & 1 & 2 \\ 3 & 9 & 2 \end{bmatrix} = \begin{bmatrix} -3 & -2 & 5 \\ 1 & -1 & 0 \end{bmatrix}$$
 Subtraction

Shape of matrices must be same

Matrix

Applying Functions

$$f(\begin{bmatrix} 2 & 3 & 7 \\ 4 & 8 & 2 \end{bmatrix}) = \begin{bmatrix} f(2) & f(3) & f(7) \\ f(4) & f(8) & (2) \end{bmatrix} = \begin{bmatrix} 0.88079708 & 0.95257413 & 0.99908895 \\ 0.98201379 & 0.99966465 & 0.88079708 \end{bmatrix}$$

where
$$f(x) = \frac{1}{1+e^{-x}}$$

20

Dot Product of two vector:

$$\begin{bmatrix} 0 & 2 & 4 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 7 \\ 13 \\ 10 \end{bmatrix} = 0 * 1 + 2 * 7 + 4 * 13 + 6 * 19 = 180$$

Two matrix can only be multiplied when: number of columns in first matrix = number of rows in the second matrix

$$\begin{bmatrix} \# & \# \\ \# & \# \end{bmatrix}_{2*2} \cdot \begin{bmatrix} \# & \# \\ \# & \# \end{bmatrix}_{\underline{3}*2}$$
 Cannot be multiplied

$$\begin{bmatrix} # & # \\ # & # \end{bmatrix}_{2*\underline{2}} \cdot \begin{bmatrix} # & # & # \\ # & # & # \end{bmatrix}_{\underline{2}*3} = \begin{bmatrix} # & # & # \\ # & # & # \end{bmatrix}_{2*3}$$

Shape of resultant matrix number of row in first matrix -by- number of columns in the second matrix

Matrix

Matrix Multiplication

Thumb Rule: Dot product of rows of first matrix with columns of second matrix

$$\begin{bmatrix}
0 & 2 & 4 & 6 \\
8 & 10 & 12 & 14
\end{bmatrix} \cdot
\begin{bmatrix}
1 & 3 & 5 \\
7 & 9 & 11 \\
13 & 15 & 17 \\
19 & 21 & 23
\end{bmatrix} =
\begin{bmatrix}
180 & 204 & 228 \\
500 & 588 & 676
\end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 4 & 6 \\ 8 & 10 & 12 & 14 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 5 \\ 7 & 9 & 11 \\ 13 & 15 & 17 \\ 19 & 21 & 23 \end{bmatrix} = \begin{bmatrix} 180 & 204 & 228 \\ 500 & 588 & 676 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 4 & 6 \\
8 & 10 & 12 & 14
\end{bmatrix} \cdot
\begin{bmatrix}
1 & 3 & 5 \\
7 & 9 & 11 \\
13 & 15 & 17 \\
19 & 21 & 23
\end{bmatrix} =
\begin{bmatrix}
180 & 204 & 228 \\
500 & 588 & 676
\end{bmatrix}$$

Matrix

Matrix Multiplication

Matrix

Question

Part II

Neural Networks

The Brain

How does it work?

Perceptron Model

Weighted Sum of Inputs

$$h = w_1 x_1 + w_2 x_2 + b = \sum_{i=1}^{2} w_i x_i + b$$
$$y = f(h)$$

$$x_i = i^{th} Input$$

= weight for ith Input

Activation Function

Step Function

Perceptron Model

AND & OR

Perceptrons

AND Gate

Perceptron Model

So, by changing weight same model behaves differently

We'll see that weights are what neural networks learn, to make prediction

Neural Network

Perceptrons are now called neuron or unit

And we will now talk in terms of layers

Neural Network

FeedForward = Calculating Y

$$H^1 = X \cdot W^1$$
 Dot Product

$$A^1 = \sigma(H^1)$$
 Element-wise

$$H^2 = X \cdot W^2$$
 Dot Product

$$A^2 = \sigma(H^2)$$
 Element Wise

$$\hat{y} = A^2 \cdot W^3$$

Splitting Data

matrix = m by n

Coding Neural Nets

import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers Fully Connected Dense Fully Connected Dense Layer **Fully Connected** Dense model = keras.Sequential() model.add(layers.Dense(64, activation=tf.nn.relu, input_shape=num_features)) model.add(layers.Dense(64, activation=tf.nn.relu))

model.add(layers.Dense(L))

Coding Neural Nets

Hands-On

http://bit.ly/cop-reg

Calculating Error

Error == Loss == Cost

We Have:

- $[x_1, x_2, x_3, \ldots, x_n]$ = Input features
- y = Actual Label

We know how to calculate:

• y' = Predicted Value

We Define error as

$$J(W, X) = ((y - y')^{2})/2$$

Our goal is to minimize ${\it J}(W)$

Minimizing or Optimizing

Gradient Descent

- It is an optimization algorithm
- that reaches minima, by updating parameters/weights,
- moving in a direction opposite to gradient
- iteratively

Coding Neural Nets

```
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mean squared error',
                optimizer=optimizer,
                metrics=['mean absolute error',
                'mean_squared_error'])
EPOCHS = 1000
history = model.fit(
 normed train data, train labels,
  epochs=EPOCHS, validation_split = 0.2, verbose=0,
  callbacks=[PrintDot()])
```

Gradients

Take it to white Board

Gradients Descent

Gradient Descent

$$\implies W_{ij} = W_{ij} - \alpha \frac{d(J)}{d(W_{ij})}$$

Coding Neural Nets

Notebook

http://bit.ly/cop-reg

Gradients Descent

What is actually Happening?

Parameters vs Hyperparameters

Parameters	Hyperparameters
Weight	Learning Rate
Biases	Optimizer
	Number of Layers
	Number of neuron in those layers
	Activation Function
	Kernel initializer
	Dropout*
	L2 Regularization*

Treat your model as a lab rat

What does COP offer?

- Study Group based learning & discussion
- More sessions on building interesting models
- You can request for more sessions on Neural Network or Tensorflow/Pytorch
- Or you can discuss your ideas about cop with Puneet and Mahesh

<u>Udacity Tensorflow Course</u>

- Google's Machine Learning Crash Course
- Introduction to Deep Learning With Pytorch ++
- Coursera Machine Learning Course by Andrew Ng ++
- Deep Learning by Andrew Ng (4 Courses)

ML/DL Resources

- Learn and develop in groups
- Start with just enough maths and then dive a little deeper as required
- Start with a project, gain more knowledge and apply

For Maths, start with <u>3Blue1Brown</u> for Linear Algebra and Calculus

Numpy

Pandas

Matplotlib

Questions!

Thank you!

"Technology is a powerful force in our society. Data, software, and communication can be used for bad: to entrench unfair power structures, to undermine human rights, and to protect vested interests. But they can also be used for good: to make underrepresented people's voices heard, to create opportunities for everyone, and to avert disasters. This book is dedicated to everyone working toward the good."

-Martin Kleppmann

Designing Data Intensive Applications