Simulation - Lecture 2 - Inversion and transformation methods

Lecture version: Monday 27th January, 2020, 23:25

Robert Davies

Part A Simulation and Statistical Programming

Hilary Term 2020

Recap from previous lecture

- Examples of distributions from different fields we might be interested in studying
- Monte Carlo
 - Suppose $X \sim dist$, and we have a method to simulate iid random variables $X_i \sim dist$
 - ► Then $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n \phi(X_i)$ is an unbiased estimator of $\mathbb{E}(\phi(X))$
 - We can form a confidence interval for θ using the sample variable $S^2_{\phi(X)}$ using the central limit theorem
- Rest of simulation lectures
 - lacktriangle How do we generate $X \sim dist$ in the real world for increasingly complicated distributions
 - ► Today: Inversion, the simplest case, when the CDF is well behaved
 - Also today: Transformation, when you can build your distribution from distributions that are well behaved

A quick note about pseudo-random numbers

- We seek to be able to generate complicated random variables and stochastic models.
- ▶ Henceforth, we will assume that we have access to a sequence of independent random variables $(U_i, i \ge 1)$ that are uniformly distributed on (0, 1); i.e. $U_i \sim \mathcal{U}[0, 1]$.
- In R, the command u←runif(100) return 100 realizations of uniform r.v. in (0,1).
- Strictly speaking, we only have access to pseudo-random (deterministic) numbers.
- ► The behaviour of modern random number generators (constructed on number theory) resembles mathematical random numbers in many respects: standard statistical tests for uniformity, independence, etc. do not show significant deviations.

Outline

Inversion Method

Transformation Methods

Recap of CDF definition

- lacksquare A function $F:\mathbb{R} o [0,1]$ is a cumulative distribution function (cdf) if
 - ▶ F is increasing; i.e. if $x \le y$ then $F(x) \le F(y)$
 - ▶ F is right continuous; i.e. $F(x+\epsilon) \to F(x)$ as $\epsilon \to 0$ ($\epsilon > 0$)
 - ightharpoonup F(x) o 0 as $x o -\infty$ and F(x) o 1 as $x o +\infty$.
- A random variable $X \in \mathbb{R}$ has cdf F if $\mathbb{P}(X \le x) = F(x)$ for all $x \in \mathbb{R}$.
- ▶ If F is differentiable on \mathbb{R} , with derivative f, then X is continuously distributed with probability density function (pdf) f.

The CDF of a random variable has a uniform distribution

- ▶ **Proposition**. Let F be a continuous and strictly increasing cdf on \mathbb{R} , with inverse $F^{-1}:[0,1]\to\mathbb{R}$. Then the random variable F(X) has a uniform distribution on [0,1].
- ▶ Proof. Let $y \in [0, 1]$. Then

$$P(F(X) \le y) = P(X \le F^{-1}(y)) = F(F^{-1}(y)) = y$$

and so $F(X) \sim \mathcal{U}[0,1]$

The inverse of the CDF applied to uniforms generates random variables from the CDF

- ▶ **Proposition**. Let F be a continuous and strictly increasing cdf on \mathbb{R} , with inverse $F^{-1}:[0,1]\to\mathbb{R}$. Let $U\sim\mathcal{U}[0,1]$ then $X=F^{-1}(U)$ has cdf F.
- ▶ Proof. Let $x \in \mathbb{R}$. Then we have

$$\mathbb{P}(X \le x) = \mathbb{P}(F^{-1}(U) \le x)$$
$$= \mathbb{P}(U \le F(x))$$
$$= F(x).$$

Inversion method

Algorithm 1 Inversion method

- \blacktriangleright Given CDF F, calculate F^{-1}
- ▶ Simulate independent $U_i \sim \mathcal{U}[0,1]$
- ▶ Return $X_i = F^{-1}(U_i) \sim F$

Illustrative example of inversion method using Gaussian distribution

Top: pdf of a Gaussian r.v., bottom: associated cdf.

Exponential distribution example

Exponential distribution. Let $\lambda > 0$. Then the exponential CDF is given by

$$F(x) = 1 - e^{-\lambda x}$$

We calculate

$$u = F(x)$$

$$u = 1 - e^{-\lambda x}$$

$$\implies \log(1 - u) = -\lambda x$$

$$\implies x = -\frac{\log(1 - u)}{\lambda}$$

Exponential rvs using the inversion method

```
set.seed(9119)
lambda <- 0.25
n <- 100000
u <- runif(n)
x_inversion <- -log(1 - u) / lambda
x_rexp <- rexp(n = n, rate = lambda)
wilcox.test(x_inversion, x_rexp)$p.value # 0.46</pre>
```


Examples

► Cauchy distribution. It has pdf and cdf

$$f(x) = \frac{1}{\pi (1+x^2)}, F(x) = \frac{1}{2} + \frac{arc \tan x}{\pi}$$

We have

$$u = F(x) \Leftrightarrow u = \frac{1}{2} + \frac{arc \tan x}{\pi}$$

 $\Leftrightarrow x = \tan\left(\pi\left(u - \frac{1}{2}\right)\right)$

Logistic distribution. It has pdf and cdf

$$f(x) = \frac{\exp(-x)}{(1 + \exp(-x))^2}, F(x) = \frac{1}{1 + \exp(-x)}$$

$$\Leftrightarrow x = \log\left(\frac{u}{1 - u}\right).$$

Practice: Derive an algorithm to simulate from an Weibull random variable with rates $\alpha, \lambda > 0$

Definition of the discrete CDF inverse

▶ **Proposition**. Let F be a cdf on $\mathbb R$ and define its generalized inverse $F^{-1}:[0,1]\to\mathbb R$,

$$F^{-1}(u) = \inf \left\{ x \in \mathbb{R}; F(x) \ge u \right\}.$$

Let $U \sim \mathcal{U}[0,1]$ then $X = F^{-1}(U)$ has cdf F.

Discrete N−r.v. CDF

▶ If X is a discrete $\mathbb{N}-\text{r.v.}$ with $\mathbb{P}\left(X=n\right)=p(n)$, we get $F(x)=\sum_{j=0}^{\lfloor x\rfloor}p(j)$ and $F^{-1}(u)$ is $x\in\mathbb{N}$ such that

$$\sum_{j=0}^{x-1} p(j) < u \le \sum_{j=0}^{x} p(j)$$

with the LHS= 0 if x = 0.

- Note: the mapping at the values F(n) are irrelevant (0 probability of getting a single point)
- Note: the same method is applicable to any discrete valued r.v. X, $\mathbb{P}(X=x_n)=p(n)$.

Example code for simple discrete rv

```
p \leftarrow c(0.5, 0.3, 0.2) \# pmf
p_norm < -c(0, cumsum(p)) ## 0.0 0.5 0.8 1.0
m <- length(p)
n < -100000
u <- runif(n)
x <- array(NA, n)
for(i in 1:n) {
    for(j in 1:m) {
         if ((p_norm[j] < u[i]) & (u[i] <= p_norm[j + 1])) {</pre>
             x[i] \leftarrow i
sum(is.na(x)) ## 0
table(x)
##
## 50227 30105 19668
```

Example: Geometric Distribution

▶ If 0 and <math>q = 1 - p and we want to simulate $X \sim \operatorname{Geom}(p)$ then

$$p(x) = pq^{x-1}, F(x) = 1 - q^x$$
 $x = 1, 2, 3...$

lacktriangledown The smallest $x\in\mathbb{N}$ giving $F(x)\geq u$ is the smallest $x\geq 1$ satisfying

$$x \ge \log(1 - u) / \log(q)$$

and this is given by

$$x = F^{-1}(u) = \left\lceil \frac{\log(1-u)}{\log(q)} \right\rceil$$

where $\lceil x \rceil$ rounds up and we could replace 1 - u with u.

Illustration of the Inversion Method: Discrete case

Outline

Inversion Method

Transformation Methods

Transformation Methods

- Suppose we
 - ▶ Have a random variable $Y \sim Q$, $Y \in \Omega_Q$, which we **can** simulate (e.g., by inversion)
 - ▶ Have a random variable $X \sim P$, $X \in \Omega_P$, which we **wish** to simulate
 - ▶ Can find a function $\varphi: \Omega_Q \to \Omega_P$ with the property that if $Y \sim Q$ then $X = \varphi(Y) \sim P$.
- ▶ Then we can simulate from X by first simulating $Y \sim Q$, and then set $X = \varphi(Y)$.
- Inversion is a special case of this idea.
- We may generalize this idea to take functions of collections of variables with different distributions.

Transformation method

Algorithm 2 Transformation method

- Find $Y \sim Q$ that you can simulate from, and a function φ such that $X = \varphi(Y) \sim P$
- lacksquare Simulate independent $Y_i \sim Q$

Exponential to gamma example

Example: Let Y_i , $i=1,2,...,\alpha$, be iid variables with $Y_i \sim \operatorname{Exp}(1)$ and $X=\beta^{-1}\sum_{i=1}^{\alpha}Y_i$ then $X\sim\operatorname{Gamma}(\alpha,\beta)$.

Proof: The MGF of the random variable X is

$$\mathbb{E}\left(e^{tX}\right) = \prod_{i=1}^{\alpha} \mathbb{E}\left(e^{\beta^{-1}tY_i}\right) = (1 - t/\beta)^{-\alpha}$$

which is the MGF of a $\operatorname{Gamma}(\alpha,\beta)$ variable. Incidentally, the $\operatorname{Gamma}(\alpha,\beta)$ density is $f_X(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$ for x>0.

Transformation Methods: Box-Muller Algorithm

▶ **Proposition**. If $R^2 \sim \operatorname{Exp}(\frac{1}{2})$ and $\Theta \sim \mathcal{U}[0, 2\pi]$ are independent then $X = R\cos\Theta$, $Y = R\sin\Theta$ are independent with $X \sim \mathcal{N}(0, 1)$, $Y \sim \mathcal{N}(0, 1)$.

Proof: We have $f_{R^2,\Theta}(r^2\theta)=\frac{1}{2}\exp\left(-r^2/2\right)\frac{1}{2\pi}$ and therefore we are interested in

$$f_{X,Y}(x,y) = f_{R^2,\Theta}(r^2(x,y),\theta(x,y)) \left| \det \frac{\partial(r^2,\theta)}{\partial(x,y)} \right|$$

where

$$\left| \det \frac{\partial (r^2, \theta)}{\partial (x, y)} \right| = \left| \begin{array}{cc} \frac{\partial r^2}{\partial x} & \frac{\partial r^2}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{array} \right| = 2$$

$$\implies f_{X,Y}(x,y) = \frac{1}{2}e^{-\frac{1}{2}(x^2+y^2)}\frac{1}{2\pi}2 = \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}\right)\left(\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}\right)$$

Transformation Methods: Box-Muller Algorithm, applied

▶ Let $U_1 \sim \mathcal{U}[0,1]$ and $U_2 \sim \mathcal{U}[0,1]$ then

$$R^2 = -2\log(U_1) \sim \operatorname{Exp}\left(\frac{1}{2}\right)$$

 $\Theta = 2\pi U_2 \sim \mathcal{U}[0, 2\pi]$

and

$$X = R\cos\Theta \sim \mathcal{N}(0,1)$$

 $Y = R\sin\Theta \sim \mathcal{N}(0,1),$

Note this still requires evaluating \log, \cos and \sin .

Box Muller applied

```
set.seed(913)
n < -100000
u1 <- runif(n)
u2 \leftarrow runif(n)
lambda \leftarrow 1 / 2
r2 < -\log(1 - u1) / lambda ## are now Exp(1/2)
theta \leftarrow 2 * pi * u2 ## U[0, 2*pi]
r \leftarrow sqrt(r2)
x \leftarrow r * cos(theta)
v \leftarrow r * sin(theta)
round(c(mean(x), var(x)), 3) ## -0.001 0.998
round(c(mean(y), var(y)), 3) ## -0.003 1.000
cor(x, y) ## -0.0006317268
```

Simulating Multivariate Normal

Let consider $X \in \mathbb{R}^d$, $X \sim N(\mu, \Sigma)$ where μ is the mean and Σ is the (positive definite) covariance matrix.

$$f_X(x) = (2\pi)^{-d/2} |\det \Sigma|^{-1/2} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right).$$

Proposition. Let $Z=(Z_1,...,Z_d)$ be a collection of d independent standard normal random variables. Let L be a real $d \times d$ matrix satisfying

$$LL^T = \Sigma,$$

and

$$X = LZ + \mu$$
.

Then

$$X \sim \mathcal{N}(\mu, \Sigma).$$

Simulating Multivariate Normal proof

▶ Proof. We have $f_Z(z) = (2\pi)^{d/2} \exp\left(-\frac{1}{2}z^Tz\right)$. The joint density of the new variables is

$$f_X(x) = f_Z(z) \left| \det \frac{\partial z}{\partial x} \right|$$

where $\frac{\partial z}{\partial x} = L^{-1}$ and $\det(L) = \det(L^T)$ so $\det(L^2) = \det(\Sigma)$, and $\det(L^{-1}) = 1/\det(L)$ so $\det(L^{-1}) = \det(\Sigma)^{-1/2}$. Also

$$z^{T}z = (x - \mu)^{T} (L^{-1})^{T} L^{-1} (x - \mu)$$
$$= (x - \mu)^{T} \Sigma^{-1} (x - \mu).$$

- ▶ If $\Sigma = VDV^T$ is the eigendecomposition of Σ , we can pick $L = VD^{1/2}$.
- ▶ Cholesky factorization $\Sigma = LL^T$ where L is a lower triangular matrix.

Recap

- ▶ Monte Carlo is useful but requires simulated random variables
- Assume we can always drawn uniform random variables
- ▶ Inversion method For continuous strictly increasing CDFs we can draw X_i as $F^{-1}(U_i)$
- We can do the same thing for discrete distributions
- ▶ Transformation method If we can find φ for some distribution Y_i such that $X_i = \varphi(Y_i)$, then we can simulate X_i in that way