Statistica - 10^a lezione

13 aprile 2021

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}, \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma)$$

con
$$\mu = \mathbb{E}[X_i]$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}, \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma)$$

con
$$\mu = \mathbb{E}[X_i] = q$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}, \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

con
$$\mu = \mathbb{E}[X_i] = q$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma) = IC_{q}(\gamma)$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n \cdot \overline{x}^2 \right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{x}-z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\;,\;\overline{x}+z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\right)\quad \text{è un }IC_{\mu}(\gamma)=IC_{q}(\gamma)$$

$$con \mu = \mathbb{E}[X_i] = q$$

$$s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n \cdot \overline{x}^2 \right)$$
 perché $0^2 = 0$ e $1^2 = 1$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \underbrace{\frac{1}{n} \sum_{i=1}^{n} x_{i}}_{-\overline{x}} - n \cdot \overline{x}^{2} \right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{x}-z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\;,\;\overline{x}+z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\right)\quad \text{è un }IC_{\mu}(\gamma)=IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \underbrace{\frac{1}{n} \sum_{i=1}^{n} x_{i}}_{\overline{x}} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left(n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{S}{\sqrt{n}}\right)$$
 è un $IC_{\mu}(\gamma) = IC_{q}(\gamma)$

con
$$\mu = \mathbb{E}[X_i] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left(n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x})$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{x} + z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left(n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} \left(1 - \overline{x} \right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

con
$$\mu = \mathbb{E}[X_i] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left(n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \underbrace{\frac{n}{n-1}}_{\text{otherwise}} \overline{x} \left(1 - \overline{x} \right) \simeq \overline{x} \left(1 - \overline{x} \right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{x}-z_{rac{1+\gamma}{2}}\,rac{s}{\sqrt{n}}\;,\;\overline{x}+z_{rac{1+\gamma}{2}}\,rac{s}{\sqrt{n}}
ight) \;\;\; ext{è un } \emph{IC}_{\mu}(\gamma)=\emph{IC}_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left(n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x}) \simeq \overline{x} (1 - \overline{x})$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{x}-z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\;,\;\overline{x}+z_{\frac{1+\gamma}{2}}\,\frac{s}{\sqrt{n}}\right)\quad \text{è un }IC_{\mu}(\gamma)=IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left(n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x}) \simeq \overline{x} (1 - \overline{x}) \implies s \simeq \sqrt{\overline{x} (1 - \overline{x})}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un $IC_q(\gamma)$

$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}} , \ \overline{X} + Z_{\frac{1+\gamma}{2}} \frac{s}{\sqrt{n}}\right) \quad \text{è un } IC_{\mu}(\gamma) = IC_{q}(\gamma)$$

$$\operatorname{con} \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$s^{2} = \frac{1}{n-1} \left(n \cdot \frac{1}{n} \sum_{i=1}^{n} x_{i} - n \cdot \overline{x}^{2} \right) = \frac{1}{n-1} \left(n \cdot \overline{x} - n \cdot \overline{x}^{2} \right)$$
$$= \frac{n}{n-1} \overline{x} (1 - \overline{x}) \simeq \overline{x} (1 - \overline{x}) \quad \Rightarrow \quad s \simeq \sqrt{\overline{x} (1 - \overline{x})}$$

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un $IC_q(\gamma)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$ e n grande

TESI:
$$\left(\overline{X} - Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}, \overline{X} + Z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}\right)$$
 è un $IC_q(\gamma)$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ con

- \overline{X} = frequenza empirica (stimatore di q)

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ con

- \overline{X} = frequenza empirica (stimatore di q)
- $E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}$ errore <u>aleatorio</u>

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ con

- \overline{X} = frequenza empirica (stimatore di q)
- $-E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}}$ errore <u>aleatorio</u>

$$\overline{x} \in [0,1] \quad \Rightarrow \quad \overline{x}(1-\overline{x}) \leq \frac{1}{4}$$

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ con

- \overline{X} = frequenza empirica (stimatore di q)
- $-E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}} \leq z_{\frac{1+\gamma}{2}} \sqrt{\frac{\frac{1}{4}}{n}}$

$$\overline{x} \in [0,1] \quad \Rightarrow \quad \overline{x}(1-\overline{x}) \leq \frac{1}{4}$$

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ con

- \overline{X} = frequenza empirica (stimatore di q)
- $-E = z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{X}(1-\overline{X})}{n}} \leq z_{\frac{1+\gamma}{2}} \sqrt{\frac{\frac{1}{4}}{n}} = z_{\frac{1+\gamma}{2}} \frac{1}{2\sqrt{n}}$

$$\overline{x} \in [0,1] \quad \Rightarrow \quad \overline{x}(1-\overline{x}) \leq \frac{1}{4}$$

TESI:
$$\left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}, \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right)$$
 è un $IC_q(\gamma)$

OSSERVAZIONE:
$$L = \overline{X} - E$$
, $U = \overline{X} + E$ con

- \overline{X} = frequenza empirica (stimatore di q)
- $E \le z_{\frac{1+\gamma}{2}} \frac{1}{2\sqrt{n}}$ riducibile a priori

$$\begin{array}{ll} \textbf{TESI:} & \left(\overline{x} - z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}} \;,\; \overline{x} + z_{\frac{1+\gamma}{2}} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right) \\ & \left(\overline{x} - z_{\gamma} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}} \;,\; 1\right) \\ & \left(0 \;,\; \overline{x} + z_{\gamma} \sqrt{\frac{\overline{x}(1-\overline{x})}{n}}\right) \end{array} \right\} \text{ sono } IC_{q}(\gamma)$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica $\frac{(n-1)S_n^2}{2}$

n	0.0005	0.001	0.005	0.01	 99	0.995	0.999	0.9995
1	3.929E-07	1.570E-06	3.927E-05	1.571E-	 .6349	7.8794	10.8274	12.1153
2	9.997E-04	2.001E-03	0.0100	0.02	 .2104	10.5965	13.8150	15.2014
3	0.0153	0.0243	0.0717	0.11	 .3449	12.8381	16.2660	17.7311
4	0.0639	0.0908	0.2070	0.29	 .2767	14.8602	18.4662	19.9977
5	0.1581	0.2102	0.4118	0.55	 .0863	16.7496	20.5147	22.1057
6	0.2994	0.3810	0.6757	0.87	 .8119	18.5475	22.4575	24.1016
7	0.4849	0.5985	0.9893	1.23	 .4753	20.2777	24.3213	26.0179
8	0.7104	0.8571	1.3444	1.64	 .0902	21.9549	26.1239	27.8674
a	0.0718	1 1510	1 7349	2.08	6660	23 5803	27 8767	20 6660

- supp $\chi^2(k) = [0, +\infty)$
- i quantili $\chi^2_{\gamma}(k)$ sono tabulati

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

- supp $\chi^2(k) = [0, +\infty)$
- i quantili $\chi^2_{\gamma}(k)$ sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$ per $k \to \infty$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

- supp $\chi^2(k) = [0, +\infty)$
- i quantili $\chi^2_{\gamma}(k)$ sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$ per $k \to \infty$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

- supp $\chi^2(k) = [0, +\infty)$
- i quantili $\chi^2_{\gamma}(k)$ sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$ per $k \to \infty$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

- supp $\chi^2(k) = [0, +\infty)$
- i quantili $\chi^2_{\gamma}(k)$ sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$ per $k \to \infty$

Teorema (non dimostrato)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim N(\mu, \sigma^2)$, allora la statistica

$$\frac{(n-1)S_n^2}{\sigma^2}$$

ha densità *chi quadro* con n-1 gradi di libertà $(\chi^2(n-1))$.

- supp $\chi^2(k) = [0, +\infty)$
- i quantili $\chi^2_{\gamma}(k)$ sono tabulati
- $\chi^2_{\gamma}(k) \to \infty$ per $k \to \infty$
- $\chi_{\gamma}^2(k) \simeq \frac{(z_{\gamma} + \sqrt{2k-1})^2}{2}$ se k è grande

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

DIMOSTRAZIONE: Dobbiamo verificare che

$$\mathbb{P}\left(\frac{(n-1)\,S^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)} < \sigma^2 < \frac{(n-1)\,S^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right) = \gamma$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\frac{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)}{(n-1)S^{2}} > \frac{1}{\sigma^{2}} > \frac{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}{(n-1)S^{2}}\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \frac{(n-1)S^{2}}{\sigma^{2}} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

$$= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) \\
= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) = \frac{1+\gamma}{2} - \frac{1-\gamma}{2}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{1+\gamma}(n-1)}, \frac{(n-1)s^2}{\chi^2_{1-\gamma}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) \\
= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) = \frac{1+\gamma}{2} - \frac{1-\gamma}{2}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $C_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) =$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}}_{\sim \chi^{2}(n-1)} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

$$= F_{\chi^{2}(n-1)}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1)\right) - F_{\chi^{2}(n-1)}\left(\chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right) = \frac{1+\gamma}{2} - \frac{1-\gamma}{2}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$

TESI:
$$\left(\frac{(n-1)s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)}\right)$$
 è un $IC_{\sigma^2}(\gamma)$

$$\mathbb{P}\left(\frac{(n-1)S^{2}}{\chi_{\frac{1+\gamma}{2}}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{\frac{1-\gamma}{2}}^{2}(n-1)}\right) = \dots$$

$$= \mathbb{P}\left(\chi_{\frac{1+\gamma}{2}}^{2}(n-1) > \underbrace{\frac{(n-1)S^{2}}{\sigma^{2}}} > \chi_{\frac{1-\gamma}{2}}^{2}(n-1)\right)$$

$$= \dots = \gamma$$
STATISTICA PIVOT

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$

$$\begin{aligned} \text{TESI:} & \left(\frac{(n-1)\,s^2}{\chi^2_{\frac{1+\gamma}{2}}(n-1)} \,,\, \frac{(n-1)\,s^2}{\chi^2_{\frac{1-\gamma}{2}}(n-1)} \right) \\ & \left(\frac{(n-1)\,s^2}{\chi^2_{\gamma}(n-1)} \,,\, +\infty \right) \\ & \left(0 \,,\, \frac{(n-1)\,s^2}{\chi^2_{\gamma}(n-1)} \right) \end{aligned} \right\} \text{ sono } IC_{\sigma^2}(\gamma)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim f_{\theta}$

OBIETTIVO: Decidere tra due affermazioni opposte sul parametro θ

ESEMPIO: Un amico propone di puntare testa con una sua moneta

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

AFFERMAZIONE 0: l'amico è onesto

AFFERMAZIONE 1: l'amico è un baro

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

AFFERMAZIONE 0: l'amico è onesto \Leftrightarrow q = 1/2

AFFERMAZIONE 1: l'amico è un baro \Leftrightarrow q < 1/2

ESEMPIO: Dei fisici misurano la velocità dei neutrini

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

AFFERMAZIONE 0: i neutrini rispettano la relatività

AFFERMAZIONE 1: i neutrini violano la relatività

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

AFFERMAZIONE 0: i neutrini rispettano la relatività

$$\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

AFFERMAZIONE 1: i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim f_\theta$

OBIETTIVO: Decidere tra due affermazioni opposte sul parametro θ

IPOTESI STATISTICHE = affermazioni su θ

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim f_\theta$

OBIETTIVO: Decidere tra due affermazioni opposte sul parametro θ

IPOTESI STATISTICHE = affermazioni su θ

 $H_0 = IPOTESI NULLA$: ipotesi di default, vera fino a prova contraria

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim f_\theta$

OBIETTIVO: Decidere tra due affermazioni opposte sul parametro θ

IPOTESI STATISTICHE = affermazioni su θ

 $H_0 = IPOTESI NULLA$: ipotesi di default, vera fino a prova contraria

 $H_1 = IPOTESI ALTERNATIVA$: vera solo se c'è evidenza a suo favore

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim f_\theta$

OBIETTIVO: Decidere tra due affermazioni opposte sul parametro θ

IPOTESI STATISTICHE = affermazioni su θ

 H_0 = IPOTESI NULLA: ipotesi di default, vera fino a prova contraria

 $H_1 = IPOTESI ALTERNATIVA: vera solo se c'è evidenza a suo favore$

 H_0 e H_1 NON sono intercambiabili!

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i - ext{esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

AFFERMAZIONE 0: l'amico è onesto \Leftrightarrow q=1/2 ipotesi statistiche

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i - ext{esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

AFFERMAZIONE 0: l'amico è onesto \Leftrightarrow q = 1/2 **DEFAULT**

AFFERMAZIONE 1: l'amico è un baro \Leftrightarrow q < 1/2

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto \Leftrightarrow q = 1/2 DEFAULT

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'i-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

AFFERMAZIONE 0: i neutrini rispettano la relatività

 $\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$

AFFERMAZIONE 1: i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

ipotesi statistiche

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

AFFERMAZIONE 0: i neutrini rispettano la relatività DEFAULT

 $\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$

AFFERMAZIONE 1: i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività

 $\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$

 H_1 : i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

DEFAULT

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim f_\theta$

OBIETTIVO: Decidere tra due affermazioni opposte sul parametro θ

IPOTESI STATISTICHE = affermazioni su θ

 $H_0 = IPOTESI NULLA$: ipotesi di default, vera fino a prova contraria

 $H_1 = IPOTESI ALTERNATIVA$: vera solo se c'è evidenza a suo favore

TEST D'IPOTESI = regola per scegliere tra H_0 e H_1

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y \,:=\, X_1 + X_2 + \ldots + X_{10} \,\,\leq\, 1$$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'i-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività

$$\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

 H_1 : i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

Test d'ipotesi

Per costruire un test:

• si sceglie una *statistica test* $T_0 = t(X_1, \dots, X_n)$

Test d'ipotesi

Per costruire un test:

- si sceglie una statistica test $T_0 = t(X_1, \dots, X_n)$
- si fissa una *regione di rifiuto* (o *critica*) $RC \subset \mathbb{R}$ (tipicamente: $(-\infty, c)$ o $(c, +\infty)$ o $(-\infty, a) \cup (b, +\infty)$)

Test d'ipotesi

Per costruire un test:

- si sceglie una statistica test $T_0 = t(X_1, \dots, X_n)$
- si fissa una *regione di rifiuto* (o *critica*) $RC \subset \mathbb{R}$ (tipicamente: $(-\infty,c)$ o $(c,+\infty)$ o $(-\infty,a) \cup (b,+\infty)$)
- si stabilisce la regola del test:

"rifiuto H_0 se trovo $T_0 \in RC$ "

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$\underbrace{Y:=X_1+X_2+\ldots+X_{10}}_{}\leq 1$$

statistica test

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} i\text{-esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$\underbrace{Y := X_1 + X_2 + \ldots + X_{10}}_{\text{statistica test}} \underbrace{\leq 1}_{\substack{\text{regione} \\ \text{critica}}}$$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività

$$\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

 H_1 : i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \, \text{m/s}$$
statistica test

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività

$$\Leftrightarrow \quad \mu = 3 \cdot 10^8 \,\mathrm{m/s}$$

 H_1 : i neutrini violano la relatività

$$\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \, \text{m/s}$$
statistica test
regione critica

	H ₀ vera	H_0 falsa
accetto H ₀		
rifiuto H ₀		

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀		

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀		OK!

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀	errore di I tipo	OK!

 ${\sf ERRORE\ DI\ I\ TIPO\ =\ errore\ molto\ più\ grave}$

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

⇒ voglio fissare a priori la probabilità di commetterlo

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

 \Rightarrow voglio fissare <u>a priori</u> la probabilità di commetterlo

SIGNIFICATIVITÀ = probabilità di errore di I tipo

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

⇒ voglio fissare <u>a priori</u> la probabilità di commetterlo

SIGNIFICATIVITÀ = probabilità di errore di I tipo = $\mathbb{P}_{H_0 \text{ vera}}$ "rifiuterò H_0 ") \mathbb{P} calcolata coi parametri

che soddisfano Ho

	H ₀ vera	H_0 falsa
accetto H ₀	OK!	
rifiuto H ₀	errore di I tipo	OK!

ERRORE DI I TIPO = errore molto più grave

⇒ voglio fissare <u>a priori</u> la probabilità di commetterlo

SIGNIFICATIVITÀ = probabilità di errore di I tipo = $\mathbb{P}_{H_0 \text{ vera}}$ ("rifiuterò H_0 ")

TIPICAMENTE: significatività = 5% o 2.5% o 1%

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i - ext{esimo lancio} \\ 0 & ext{ altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \leq 1$$

SIGNIFICATIVITÀ =
$$\mathbb{P}_{q=\frac{1}{2}}(Y \leq 1)$$

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y \,:=\, X_1 + X_2 + \ldots + X_{10} \,\,\leq\, 1$$

SIGNIFICATIVITÀ =
$$\mathbb{P}_{q=\frac{1}{2}}(Y \le 1) = \sum_{k=0}^{1} \binom{10}{k} \left(\frac{1}{2}\right)^k \left(1 - \frac{1}{2}\right)^{10-k}$$

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = egin{cases} 1 & ext{ se esce testa all'} i ext{-esimo lancio} \ 0 & ext{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y \,:=\, X_1 + X_2 + \ldots + X_{10} \,\,\leq\, 1$$

SIGNIFICATIVITÀ =
$$\mathbb{P}_{q=\frac{1}{2}}(Y \le 1) = \sum_{k=0}^{1} {10 \choose k} (\frac{1}{2})^k (1 - \frac{1}{2})^{10-k} \simeq 1\%$$

ESEMPIO: Un amico propone di puntare testa con una sua moneta

$$X_i = \begin{cases} 1 & \text{se esce testa all'} \textit{i-}esimo lancio} \\ 0 & \text{altrimenti} \end{cases}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim B(1, q)$

 H_0 : l'amico è onesto $\Leftrightarrow q = 1/2$

 H_1 : l'amico è un baro $\Leftrightarrow q < 1/2$

REGOLA: rifiuto H_0 (\Leftrightarrow accuso l'amico) se trovo

$$Y := X_1 + X_2 + \ldots + X_{10} \le 1$$

SIGNIFICATIVITÀ =
$$\mathbb{P}_{q=\frac{1}{2}}(Y \le 1)$$
 Va bene! $\left(\frac{1}{2}\right)^k \left(1-\frac{1}{2}\right)^{10-k} \simeq 1\%$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'i-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow u = 3 \cdot 10^8 \text{ m/s}$

 H_1 : i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

SIGN. =
$$\mathbb{P}_{\mu=3}(\overline{X} \geq 3.2)$$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow u = 3 \cdot 10^8 \text{ m/s}$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \, \mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

$$\text{SIGN.} = \mathbb{P}_{\mu=3}\big(\overline{X} \geq 3.2\big) = \mathbb{P}_{\mu=3}\Big(\tfrac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \geq \tfrac{3.2-3}{\frac{0.4}{\sqrt{5}}}\Big)$$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow u = 3 \cdot 10^8 \text{ m/s}$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

$$\mathsf{SIGN.} = \mathbb{P}_{\mu=3}\big(\overline{X} \geq 3.2\big) = \mathbb{P}_{\mu=3}\Big(\tfrac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \geq \tfrac{3.2-3}{\tfrac{0.4}{\sqrt{5}}}\Big) = 1 - \Phi(1.12)$$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relatività $\Leftrightarrow \mu = 3 \cdot 10^8 \,\mathrm{m/s}$

 H_1 : i neutrini violano la relatività $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

SIGN. =
$$\mathbb{P}_{\mu=3}(\overline{X} \ge 3.2) = \mathbb{P}_{\mu=3}(\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{h}}} \ge \frac{3.2-3}{\frac{0.4}{\sqrt{5}}}) = 1 - \Phi(1.12) \simeq 13\%$$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'i-esimo neutrino

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ nota

 H_0 : i neutrini rispettano la relativit $\Leftrightarrow u = 3 \cdot 10^8 \,\text{m/s}$

 H_1 : i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

REGULA: Illiuto n_0 (\Leftrightarrow figetto la teoria della relatività) se tro

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \,\mathrm{m/s}$$

SIGN.
$$= \mathbb{P}_{\mu=3}(\overline{X} \geq 3.2) = \mathbb{F}$$
 Troppo grande! $= 1 - \Phi(1.12) \simeq 13\%$

ESEMPIO: Dei fisici misurano la velocità dei neutrini

 X_i = velocità misurata per l'*i*-esimo neutrino

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\sigma = 0.4 \cdot 10^8 \, \text{m/s}$ notal

 H_0 : i neutrini rispettano la relatività

 H_1 : i neutrini violano la relatività

 $\Leftrightarrow \mu > 3 \cdot 10^8 \,\mathrm{m/s}$

REGOLA: rifiuto H_0 (\Leftrightarrow rigetto la teoria della relatività) se trovo

$$\overline{X} := \frac{X_1 + X_2 + \ldots + X_5}{5} \ge 3.2 \cdot 10^8 \, \text{m/s}$$

ERRORE DI I TIPO

Però è una buona idea...

SIGN. = $\mathbb{P}_{\mu=3}(\overline{X} \ge 3.2) = \mathbb{P}_{\mu=3}(\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}} \ge \frac{3.2-3}{\frac{0.4}{\sqrt{5}}}) = 1 - \Phi(1.12) \simeq 13\%$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu > \mu_0$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu=\mu_0$$
 vs. $H_1: \mu>\mu_0$

DIMOSTRAZIONE: Dobbiamo verificare che

$$\mathbb{P}_{H_0 \text{ vera}}(\text{"rifluter\'o } H_0\text{"}) = \alpha$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu=\mu_0$$
 vs. $H_1: \mu>\mu_0$

$$\mathbb{P}_{H_0 \text{ vera}}(\text{``rifiuter\'o } H_0\text{''}) =$$

$$= \mathbb{P}_{\mu=\mu_0}\left(\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$

$$\begin{split} \mathbb{P}_{H_0 \text{ vera}}\big(\text{``rifiuter\'o } H_0\text{''}\big) &= \\ &= \mathbb{P}_{\mu = \mu_0}\left(\overline{X} > \mu_0 + z_{1-\alpha}\frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}_{\mu = \mu_0}\left(\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha}\right) \end{split}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trov $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotèsi statistiche

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu > \mu_0$

$$\begin{split} \mathbb{P}_{H_0 \text{ vera}}\big(\text{``rifiuter\'o } H_0\text{''}\big) &= \\ &= \mathbb{P}_{\mu=\mu_0}\left(\overline{X} > \mu_0 + z_{1-\alpha}\frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}_{\mu=\mu_0}\left(\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha}\right) \end{split}$$

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad {
m Vs.} \qquad H_1: \mu>\mu_0$$

$$\begin{split} \mathbb{P}_{H_0 \text{ vera}} \big(\text{``rifiuter\'o } H_0 \text{'`} \big) = \\ &= \mathbb{P}_{\mu = \mu_0} \left(\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right) \\ &= \mathbb{P}_{\underline{\mu} = \underline{\mu_0}} \left(\frac{\overline{X} - \underline{\mu_0}}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha} \right) \end{split}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{p}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad {
m vs.} \qquad H_1: \mu>\mu_0$$

$$\mathbb{P}_{H_0 \text{ vera}}(\text{"rifiuter\'o } H_0\text{"}) =$$

$$= \mathbb{P}_{\mu=\mu_0} \left(\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right)$$

$$= \mathbb{P}_{\mu=\mu_0} \left(\underbrace{\overline{X} - \mu_0}_{\sim N(0,1)} > z_{1-\alpha} \right) = 1 - \Phi(z_{1-\alpha})$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$

$$egin{aligned} \mathbb{P}_{\mathcal{H}_0 ext{ vera}}ig(ext{"rifiuter\'o} \; \mathcal{H}_0 \; ext{"}ig) &= \\ &= \mathbb{P}_{\mu=\mu_0}\left(\overline{X} > \mu_0 + z_{1-lpha}rac{\sigma}{\sqrt{n}}
ight) \\ &= \mathbb{P}_{\mu=\mu_0}igg(rac{\overline{X} - \mu_0}{rac{\sigma}{\sqrt{n}}} > z_{1-lpha}igg) = 1 - \Phi(z_{1-lpha}) = 1 - (1-lpha) \end{aligned}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{p}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu > \mu_0$

$$\begin{split} \mathbb{P}_{H_0 \text{ vera}}\big(\text{``rifiuter\'o } H_0\text{'`}\big) &= \\ &= \mathbb{P}_{\mu = \mu_0}\left(\overline{X} > \mu_0 + z_{1-\alpha}\frac{\sigma}{\sqrt{n}}\right) \\ &= \mathbb{P}_{\mu = \mu_0}\left(\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha}\right) = 1 - \Phi(z_{1-\alpha}) = 1 - (1 - \alpha) \\ &= \alpha \end{split}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu=\mu_0 \qquad ext{vs.} \qquad H_1: \mu>\mu_0$$

DIMOSTRAZIONE:

$$\begin{split} \mathbb{P}_{\mathcal{H}_0 \text{ vera}} \big(\text{``rifiuter\'o } \mathcal{H}_0 \text{'`} \big) &= \\ &= \mathbb{P}_{\mu = \mu_0} \left(\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}} \right) \\ &= \mathbb{P}_{\mu = \mu_0} \left(\frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{1-\alpha} \right) = 1 - \Phi(z_{1-\alpha}) = 1 - (1 - \alpha) \\ &= \alpha \end{split}$$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

$$H_0: \mu = \mu_0$$
 vs. $H_1: \mu > \mu_0$

IPOTESI:
$$X_1, \ldots, X_n$$
 i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: La regola

"rifiuto
$$H_0$$
 se trovo $\overline{X} > \mu_0 + z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ "

è un test di significatività α per le ipotesi statistiche

più comodo
$$\longrightarrow \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} > z_{1-\alpha}$$

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

H ₀	H ₁	rifiuto <i>H</i> ₀ se
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$\sum_{Z_{1-\alpha}}$

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

TESI: Posto $Z_0 := \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, questi sono test di significatività α :

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$\sum_{Z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < Z_{\alpha}$	Z_{α}

= o

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < z_{\alpha}$	Z_{α}
$\mu = \mu_0$	$\mu \neq \mu_0$	$Z_0 < z_{rac{lpha}{2}}$ oppure $Z_0 > z_{1-rac{lpha}{2}}$	$\begin{array}{c c} & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -Z_{1-\alpha}$	$-z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$Z_0 < z_{rac{lpha}{2}}$ oppure $Z_0 > z_{1-rac{lpha}{2}}$	$\begin{array}{c c} & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$\left Z_{0}\right >Z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline -z_{1-\frac{\alpha}{2}} & & z_{1-\frac{\alpha}{2}} \end{array}$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$

IPOTESI: X_1, \ldots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

 H_1 fissa la forma di RC_{α} ...

TESI: Posto $Z_0 := \frac{\sqrt{n}}{\sigma} \sqrt{n}$, questr sono test ar significatività α :

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > Z_{1-\alpha}$	$z_{1-\alpha}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > Z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} \uparrow & \\ \hline -z_{1-\frac{\alpha}{2}} & z_{1-\frac{\alpha}{2}} \end{array}$

IPOTESI: X_1, \dots, X_n i.i.d. con $X_i \sim N(\mu, \sigma^2)$, $\mu_0 \in \mathbb{R}$ fissato

 \dots mentre α fissa la sua ampiezza

TESI: Posto Z_0 — \sqrt{n} , questi sono test ur significatività α:

H ₀	H ₁	rifiuto H_0 se	se H_0 è vera, $Z_0 \sim \dots$
$\mu = \mu_0$	$\mu > \mu_0$	$Z_0 > z_{1-\alpha}$	$\sum_{z_{1-\alpha}}$
$\mu = \mu_0$	$\mu < \mu_0$	$Z_0 < -z_{1-\alpha}$	$-Z_{1-\alpha}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ Z_0 > z_{1-\frac{\alpha}{2}}$	$\begin{array}{c c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$