

#### Marco Listanti

#### Esercizi 2

# Ritardi di trasferimento (approfondimenti)





#### Esercizio 1

- Si consideri il percorso di rete in figura. Si assuma che il router intermedio introduca un ritardo di elaborazione d<sub>el</sub>=1 ms.
- Nell'ipotesi che il ritardo di accodamento sia trascurabile, si determini il ritardo di trasferimento D<sub>e2e</sub> necessario per trasferire di N=7 pacchetti ciascuno di lunghezza L=150 byte







### Soluzione Esercizio 1

#### Lunghezza del pacchetto

$$L = 150 \cdot 8 = 1200 \ bit$$

#### Ritardo di trasferimento

$$D = d_{p1} + \frac{L}{R_1} + d_{el} + d_{p2} + N \frac{L}{R_2}$$

da cui

$$D = 6.3 + \frac{1200}{100} + 1 + 15.3 + 7 \cdot \frac{1200}{100}$$

$$D = 118.6 \ ms$$







#### Esercizio 2

- Con riferimento alla figura dell'Esercizio 1
- Si disegnino i diagrammi tempo-spazio nei due casi in cui a) R<sub>1</sub>>R<sub>2</sub> e b) R<sub>1</sub><R<sub>2</sub>.
- In questi due casi scrivere le espressioni del ritardo di trasferimento in funzione dei parametri L, R<sub>1</sub>, R<sub>2</sub>, d<sub>prop1</sub>, d<sub>prop2</sub> e N





## Soluzione Esercizio 2 (1)

- Caso a:  $R_1 > R_2$ 
  - si ha che

$$T_{trasm 1} < T_{trasm 2} \rightarrow \frac{L}{R_1} < \frac{L}{R_2}$$

quindi

$$D = d_{p1} + \frac{L}{R_1} + d_{p2} + N \frac{L}{R_2}$$





# Soluzione Esercizio 2 (2)

## Caso b: R<sub>1</sub> < R<sub>2</sub>

si ha che

$$T_{trasm 1} > T_{trasm 2} \rightarrow \frac{L}{R_1} > \frac{L}{R_2}$$

quindi

$$D = d_{p1} + \frac{L}{R_1} + d_{p2} + (N - 1)\frac{L}{R_1} + \frac{L}{R_2} =$$

$$= d_{p1} + d_{p2} + N\frac{L}{R_1} + \frac{L}{R_2}$$







#### Esercizio 3

- Si consideri un link di capacità R=70 pacch/s sulla quale si desidera multiplare statisticamente un numero N di sorgenti
- Si assuma che
  - il ritmo binario medio di emissione di ciascuna sorgente sia  $R_m = 10$  pacch/s
  - l'espressione del valor medio del ritardo di accodamento d<sub>queue</sub> (average queueing delay) subito dai pacchetti nel router sia

$$d_{\text{queue}} = \frac{0.1}{1 - \rho}$$

- dove ρ è il coefficiente di utilizzazione medio della capacità del link
- Si calcoli il numero massimo N di sorgenti che è possibile multiplare sul link per cui il ritardo medio di trasferimento dei pacchetti nel router sia non superiore a d<sub>0</sub>=0.2 s







## Soluzione Esercizio 3 (1)

Il vincolo sul ritardo di accodamento  $d_{qqeue} \le 0.2$  s permette di determinare il valore massimo di  $\rho$  ( $\rho_{max}$ )

$$d_{\text{queue}} = \frac{0.1}{1 - \rho} \le 0.2$$

quindi

$$\rho_{\max} = \frac{N \cdot R_m}{R} \le 0.5$$

Il numero massimo di sorgenti N<sub>max</sub> sarà quindi

$$N_{\text{max}} = \left\lfloor \frac{0.5 \cdot R}{R_m} \right\rfloor = \left\lfloor \frac{0.5 \cdot 70}{10} \right\rfloor = 3$$



