Hybrid dynamical modeling and control of public transport systems

Işık İlber Sırmatel, Nikolas Geroliminis

Urban Transport Systems Laboratory, EPFL

hEART2016, 15.09.2016

Motivation

Problem: Inefficiency

Solution: Control

Literature review - Control of bus systems¹

- Station control (only at some stops)
 - Holding
 - ▶ Eberlein, Wilson, and Bernstein 2001
 - ► Daganzo 2009
 - Stop-skipping
 - ► Fu, Liu, and Calamai 2003
 - ► Cortés et al. 2010
- ▶ Inter-station control (while buses are moving)
 - Traffic signal priority
 - ► Liu, Skabardonis, and Zhang 2003
 - ► Van Oort, Boterman, and Van Nes 2012
 - Bus speed control (focus of the talk)
 - ► Daganzo and Pilachowski 2011
 - ► Ampountolas and Kring 2015

¹OJ Ibarra-Rojas et al. (2015). *Transportation Research Part B: Methodological* 77, pp. 38–75.

Hybrid modeling - States

Continuous states

- ▶ Distance of bus 1 from stop 1 at time t: $x_1(t) \in \mathbb{R}$
- ▶ No. of pax on bus 1 at time t: $n_1(t) \in \mathbb{R}$
- ▶ No. of pax at stop 1 at time t: $m_1(t) \in \mathbb{R}$

Binary states

▶ Is bus 1 holding at stop 2 at time *t*?

$$\delta_{1,2}(t) = egin{cases} 0 & o & ext{no} \ 1 & o & ext{yes} \end{cases}$$

▶ Is bus 1 cruising to stop 2 at time *t*?

$$\gamma_{1,2}(t) = egin{cases} 0 & o & ext{no} \ 1 & o & ext{yes} \end{cases}$$

Hybrid modeling - Continuous dynamics

▶ Bus position

$$x_1(t+1) = \overbrace{(\gamma_{1,1}(t) + \gamma_{1,2}(t))(x_1(t) + T_s v_1(t))}^{\text{cruising}} + \dots$$

$$\overbrace{\delta_{1,2}(t)x_1(t)}^{\text{holding}} + \overbrace{\delta_{1,1}(t)0}^{\text{reset}}$$

► Bus accumulation

$$n_1(t+1) = n_1(t) + \overbrace{\delta_{1,1}(t)q_{1,2}^{\mathsf{in}}(t)}^{\mathsf{boarding}} - \overbrace{\delta_{1,2}(t)q_{1,2}^{\mathsf{out}}(t)}^{\mathsf{alighting}}$$

Stop accumulation

$$m_1(t+1) = m_1(t) + \overbrace{T_s\beta_{1,2}(t)}^{\text{accumulating}} - \overbrace{\delta_{1,1}(t)q_{1,2}^{\text{in}}(t)}^{\text{alighting}}$$

Hybrid modeling - Events

► "Bus nonempty" event

$$e_1^n(t) = \begin{cases} 0 & \text{if } n_1(t) = 0 \\ 1 & \text{otherwise} \end{cases}$$

► "Stop reached" event

$$e_{1,2}^x(t) = \begin{cases} 0 & \text{if } x_1(t) < D_2\\ 1 & \text{otherwise} \end{cases}$$

Hybrid modeling - Binary dynamics

► Holding state

$$\delta_{1,2}(t+1) = \overbrace{\left(\gamma_{1,2}(t) \wedge e^x_{1,2}(t)\right)}^{\text{start holding}} \vee \overbrace{\left(\delta_{1,2}(t) \wedge e^n_1(t)\right)}^{\text{keep holding}}$$

► Cruising state

$$\gamma_{1,1}(t+1) = \overbrace{\left(\delta_{1,2}(t) \land \neg e_1^n(t)\right)}^{\text{start cruising}} \lor \overbrace{\left(\gamma_{1,1}(t) \land \neg e_{1,1}^x(t)\right)}^{\text{keep cruising}}$$

Hybrid modeling - Simulation

Control - Bus speed control

Control - Double control

$$x_i^{\mathrm{ideal}}(t) = \frac{x_i^{\mathrm{ahead}}(t) + x_i^{\mathrm{behind}}(t)}{2}$$

$$v_i(t+1) = v_i(t) + K_{DC} \cdot \underbrace{\left(x_i^{\mathsf{ideal}}(t) - x_i(t)\right)}_{\text{error}}$$

Control - Intro to model predictive control

Control - Linear MPC for bus speed control

Case study - Setup

Bus system description

- Bus line 2 of Fribourg (Switzerland) bus network
- 9 buses, 44 stops, 15 km loop
- Demands estimated from bus data of 2 months
- Bus speed bounds extracted from same data

Compared schemes

- No control, holding inactive (NC-HI)
- No control, holding active (NC-HA)
- Double control (DC)
- Linear model predictive control (LMPC)

Case study - Demand estimation

Case study - Time-space diagrams

Case study - Headway distributions

Case study - Performance evaluation

control scheme	mean commercial speed (km/h)	mean travel time per pax (min)	mean of headways (min)	std. dev. of headways (min)
NC-HI	17.4	12.7	6.4	5
NC-HA	14.8	11.9	7.4	2.3
DC	8.2	22.1	13.2	2.4
LMPC	14.2	13.1	7.8	0.61

Conclusion

Contributions

- Hybrid dynamical bus system model
- ► LMPC scheme for bus speed control

Result

► Possible to regularize headways via LMPC

Ongoing/future work

- ► Develop hybrid MPC scheme
- ► Extend to larger (multi-loop) bus systems