1

\mathbf{A}

To get our first success on the xth toss means we have failed in all x-1 times

Since the results of every toss are independent, the probability that we have failed in all x-1 times before is :

$$(1-P)^{x-1}$$

And given that we have failed in all x-1 times before, the probability that we success in the xth toss is P.

So the probability of getting our first success on the xth toss of is given by: $(1-P)^{x-1} \times P = (1-P)^{x-1}P$

\mathbf{B}

If I toss a fair die, the probability that I get a 6 in a single toss is $\frac{1}{6}$.

If X equals the toss on which you first throw a 6, the probability distribution of X is:

$$P(X = n) = (1 - \frac{1}{6})^{n-1} \times \frac{1}{6} = (\frac{5}{6})^{n-1} \times \frac{1}{6}$$

\mathbf{C}

If the die was unfair and had a 25% chance of landing on 6 but only a 15% chance of landing on all the other values, the probability that I get a 6 in a single toss is 0.25.

The probability distribution of X is:

$$P(X = n) = (1 - 0.25)^{n-1} \times 0.25 = 0.75^{n-1} \times 0.25$$

\mathbf{D}

If the die is fair as in (B), the probability of getting the first success on the

$$P(X = 2) = (1 - \frac{1}{6})^{2-1} \times \frac{1}{6} = \frac{5}{36}$$

second trial is : $P(X=2) = (1-\tfrac{1}{6})^{2-1} \times \tfrac{1}{6} = \tfrac{5}{36}$ If the die is unfair as in (C), the probability of getting the first success on the second trial is:

$$P(X=2) = (1-0.25)^{2-1} \times 0.25 = \frac{3}{16}$$

D

Because the probability of getting a 6 in a single toss is different in my answer to (D), so I got different probabilities.

 $\mathbf{2}$

 \mathbf{A}

The joint probability distribution of X and Y: $X \mid X \mid$

Y X		0		1
0	10>	$\frac{2\times1}{\times9\times8}$		0
1	$Z \times \frac{1}{2}$	$\frac{3\times2\times7}{10\times9\times8}$		$\frac{7\times3\times2}{10\times9\times8}$
2	$3 \times$	7×6 ×9×8	2	$\times \frac{7 \times 6 \times 3}{10 \times 9 \times 8}$
3		0		$\frac{7\times6\times5}{10\times9\times8}$
			i e	
X Y	-2	9	13	
	6	9	13	-
Y 0 1	$\frac{\frac{6}{720}}{\frac{84}{720}}$	9 0 $\frac{42}{720}$	13	- - -
	$\frac{6}{720}$	$ \begin{array}{r} 9 \\ 0 \\ \underline{42} \\ 720 \\ \underline{252} \\ 720 \end{array} $	13	- - -

 \mathbf{B}

$$\begin{split} P(X=0) &= \frac{6}{720} + \frac{84}{720} + \frac{126}{720} + 0 = 0.3 \\ P(Y=3) &= \frac{7}{24} \\ P(X=0 \cap Y=3) &= 0 \neq P(X=0) \times P(Y=3) \\ \text{So X and Y are not independent.} \end{split}$$

3

 \mathbf{A}

The joint probably distribution of X and Y:

Y	1		0
1	0.18×0.2		$0.08 \times (1 - 0.2)$
0	$(1-0.18) \times 0.2$		$(1-0.08) \times (1-0.2)$
X Y	1	0	
1	0.036	0.064	
0	0.164	0.736	

0.036 + 0.064 + 0.164 + 0.736 = 1

\mathbf{B}

Given Y=1, the conditional distribution of X is:

X	1		0
Р	$\frac{0.036}{0.036+0.064}$		$\frac{0.064}{0.036+0.064}$
X	1	0	
Р	0.36	0.64	_

\mathbf{C}

The marginal distribution of X is:

X	1	0
Р	0.2	0.8

The marginal distribution of Y is:

\mathbf{D}

The variance of X is $0.2 \times 0.8 = 0.16$

The variance of Y is $0.1 \times 0.9 = 0.09$

The covariance of X,Y is Cov(X,Y) = E(XY) - E(X)E(Y)

$$P(XY = 1) = P(X = 1 \cap Y = 1) = 0.036 \Rightarrow E(XY) = 0.036$$

$$E(X) = 0.2, E(Y) = 0.1$$

$$Var(X) = 0.2 \times 0.8 = 0.16, Var(Y) = 0.1 \times 0.9 = 0.09$$

$$Cov(X, Y) = 0.036 - 0.02 = 0.016$$

The correlation coefficient is:

$$\frac{0.016}{\sqrt{0.16 \times 0.09}} = \frac{2}{15}$$

4

\mathbf{A}

$$\begin{split} Var(2X-3Y) = & E((2X-3Y)^2)) - E^2(2X-3Y) \\ = & E(4X^2-12XY+9Y^2) - (4E^2(X)-12E(X)E(Y)+9E^2(Y)) \\ = & 4(E(X^2)-E^2(X))) + 9(E(Y^2)-E^2(Y))) - 12(E(XY)-E(X)E(Y)) \\ = & 4*Var(X) + 9*Var(Y) - 12*Cov(X,Y) \end{split}$$

\mathbf{B}

$$Cov(X + 3Y, Z) = E((X + 3Y) * Z) - E(X + 3Y)E(Z)$$

$$= E(XZ + 3YZ) - (E(X)E(Z) + 3E(Y)E(Z))$$

$$= E(XZ) + 3E(YZ) - E(X)E(Z) - 3E(Y)E(Z)$$

$$= Cov(X, Z) + 3Cov(Y, Z)$$

 \mathbf{C}

W=a+bX+cY

$$E(W) = E(a + bX + cY)$$

$$= E(a) + E(bX) + E(cY)$$

$$= a + bE(X) + cE(Y)$$

$$= a + b\mu_X + c\mu_Y$$

$$\begin{split} Var(W) &= Var(a+bX+cY) \\ &= Var(a) + Var(bX) + Var(cY) + 2Cov(a,bX) + 2Cov(a,cY) + 2Cov(bX,cY) \\ &= 0 + b^2Var(X) + c^2Var(Y) + 0 + 0 + 2bcCov(X,Y) \\ &= b^2\sigma_X^2 + c^2\sigma_Y^2 + 2bcCov(X,Y) \end{split}$$

5

 \mathbf{A}

Joint distribution:

X Y	-2	9	13
3	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$
5	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{6}$

Marginal distribution:

X	-2	9	13
Р	$\begin{bmatrix} \frac{1}{4} \\ 3 \end{bmatrix}$	$\frac{1}{4}$	$\frac{1}{2}$
Y	3	5	
Р	$\frac{2}{3}$	$\frac{1}{3}$	

 \mathbf{B}

We can exam that for all given value a and b, $P(X = a \cap Y = b) = P(X = a) \times P(Y = b)$.

So X and Y are independent.

 \mathbf{C}

To get the conditional probability of X given Y, we can find in the answer to (A) that:

$$P(X = -2|Y = 3) = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{6} + \frac{1}{3}} = \frac{1}{4}$$

$$P(X = 9|Y = 3) = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{6} + \frac{1}{3}} = \frac{1}{4}$$

$$P(X = 13|Y = 3) = \frac{\frac{1}{3}}{\frac{1}{6} + \frac{1}{6} + \frac{1}{3}} = \frac{1}{2}$$

$$\mathbf{D}$$

$$\begin{split} E(X) &= P(X = -2) \times (-2) + P(X = 9) \times 9 + P(X = 13) \times 13 = 8.25 \\ P(X = -2|Y = 5) &= \frac{\frac{1}{12}}{\frac{1}{12} + \frac{1}{12} + \frac{1}{6}} = \frac{1}{4} \\ P(X = 9|Y = 5) &= \frac{\frac{1}{12}}{\frac{1}{12} + \frac{1}{12} + \frac{1}{6}} = \frac{1}{4} \\ P(X = 13|Y = 5) &= \frac{\frac{1}{6}}{\frac{1}{12} + \frac{1}{12} + \frac{1}{6}} = \frac{1}{2} \\ E(X|Y = 5) &= P(X = -2|Y = 5) \times (-2) + P(X = 9|Y = 5) \times 9 + P(X = 13|Y = 5) \times 13 = 8.25 \end{split}$$

\mathbf{E}

$$\begin{split} E(Y) &= 3 \times \frac{2}{3} + 5 \times \frac{1}{3} = \frac{11}{3} \\ P(XY = -6) &= \frac{1}{6} \\ P(XY = -10) &= \frac{1}{12} \\ P(XY = 27) &= \frac{1}{6} \\ P(XY = 39) &= \frac{1}{3} \\ P(XY = 39) &= \frac{1}{3} \\ P(XY = 45) &= \frac{1}{12} \\ P(XY = 65) &= \frac{1}{6} \\ E(XY) &= \frac{1}{6} \times (-6) + \frac{1}{12} \times (-10) + \frac{1}{6} \times 27 + \frac{1}{3} \times 39 + \frac{1}{12} \times 45 + \frac{1}{6} \times 65 = \frac{121}{4} \\ E(X) \times E(Y) &= \frac{33}{4} \times \frac{11}{3} = \frac{121}{4} = E(XY) \\ Cov(X, Y) &= 0 \end{split}$$

6

\mathbf{A}

$$P_1 = P(0 \ ace \cap 0 \ ten) = \frac{C_{44}^{13}}{C_{52}^{13}} = 0.08175499$$

$$P_2 = P(1 \ ace \cap 1 \ ten) = \frac{C_4^1 \times C_4^1 \times C_{44}^{11}}{C_5^{12}} = 0.1932391$$

$$P_3 = P(2 \ ace \cap 2 \ ten) = \frac{C_4^2 \times C_4^1 \times C_{44}^{10}}{C_{52}^{13}} = 0.04019048$$

$$P_4 = P(3 \ ace \cap 3 \ ten) = \frac{C_4^3 \times C_4^3 \times C_{44}^{10}}{C_{52}^{13}} = 0.000965537$$

$$P_5 = P(4 \ ace \cap 4 \ ten) = \frac{C_4^4 \times C_4^4 \times C_{44}^5}{C_{52}^{13}} = 1.710212 \times 10^{-6}$$
The probability Lyon get averty the same number of a

The probability I you get exactly the same number of aces and tens in the cards that I pick:

$$P_1 + P_2 + P_3 + P_4 + P_5 = 0.3161518$$

\mathbf{B}

Assume $\alpha =$ the amount of ace I will pick, $\alpha =$ the amount of ten I will pick. $P(\alpha = \beta) = 0.3161518$

Since
$$P(\alpha > \beta) = P(\alpha < \beta), P(\alpha > \beta) + P(\alpha < \beta) + P(\alpha = \beta) = 1$$

 $P(\alpha > \beta) = \frac{1 - P(\alpha = \beta)}{2} = 0.3419241$

7

 \mathbf{A}

$$X \sim N(68, 2^2)$$

 $P(X > 71.5) \Rightarrow P(\frac{X - 68}{2} > 1.75) = 1 - \Phi(1.75) = 0.04005916$

 \mathbf{B}

The probability that two randomly selected people will have a height that exceeds 71.5 inches:

$$P^2(X > 71.5) = 0.001604736$$

 \mathbf{C}

$$\frac{X-68}{2} = 2.4 \Rightarrow X = 72.8$$

D

$$\Phi(0.8416212) = 0.8 \Rightarrow \frac{X - 68}{2} = 0.8416212 \Rightarrow X = 69.68324$$

 \mathbf{E}

10th percentile:
$$\Phi(-1.281552) = 0.1$$

60th percentile: $\Phi(0.2533471) = 0.6$
 $P(\frac{X-68}{2} > 0.2533471 | \frac{X-68}{2} > -1.281552) = \frac{\frac{X-68}{2} > 0.2533471}{\frac{X-68}{2} > -1.281552} = \frac{1-0.6}{1-0.1} = \frac{4}{9}$

8

$$\begin{array}{c|c|c|c|c} X & 1 & 0 \\ \hline P & 0.5 & 0.5 \\ \hline Y & 1 & 0 \\ \hline P & 0.5 & 0.5 \\ \hline Z & 1 & 0 \\ \hline P & 0.5 & 0.5 \\ \hline Z & 1 & 0 \\ \hline P & 0.5 & 0.5 \\ \hline Y+Z & -2 & 0 & 2 \\ \hline P & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \hline X & 1 & -1 \\ \hline 1 & \frac{1}{4} & \frac{1}{4} \\ \hline X & 1 & -1 \\ \hline X & 1 & -1 \\ \hline 1 & \frac{1}{4} & \frac{1}{4} \\ \hline X & 1 & -1 \\ \hline 1 & \frac{1}{4} & \frac{1}{4} \\ \hline -1 & \frac{1}{4} & \frac{1}{4} \\ \hline -1 & \frac{1}{4} & \frac{1}{4} \\ \hline -1 & \frac{1}{4} & \frac{1}{4} \\ \hline \end{array}$$

```
\begin{array}{c|c|c} Y+Z & -2 & 0 & 2 \\ \hline X & \hline 1 & \frac{1}{4} & 0 & \frac{1}{4} \\ \hline -1 & 0 & \frac{1}{2} & 0 \\ \hline For all \ Y=\alpha, Z=\beta, X=\gamma : \\ P(X=\gamma\cap Y=\alpha)=P(X=\gamma)\times P(Y=\alpha) \\ P(X=\gamma\cap Z=\beta)=P(X=\gamma)\times P(Z=\beta) \\ So \ X \ \text{is independent of both Y and Z.} \\ P(X=1\cap Y+Z=0)=0\neq P(X=1)\times P(Y+Z=0) \\ So \ X \ \text{is not independent of Y+Z.} \end{array}
```

9

\mathbf{A}

$$\begin{split} P(X=1|pick\ fair) &= 0.5\\ P(X=1|pick\ unfair) &= 0.6\\ P(X=1\cap pick\ fair) &= 0.5\times 0.5 = 0.25\\ P(X=1\cap pick\ unfair) &= 0.6\times 0.5 = 0.3\\ P(X=1) &= P(X=1\cap pick\ unfair) + P(X=1\cap pick\ fair) = 0.55\\ P(X=0) &= 1 - P(X=1) = 0.45\\ \hline X & 1 & 0\\ \hline P & 0.55 & 0.45 \end{split}$$

\mathbf{B}

$$P(X = 1 \cap Y = 2|pick \ fair \ 2 \ times) = 0.5 \times 0.5 = 0.25$$

$$P(X = 1 \cap Y = 2|pick \ unfair \ 2 \ times) = 0.6 \times 0.6 = 0.36$$

$$P(X = 1 \cap Y = 2|pick \ fair \ then \ pick \ unfair) = 0.5 \times 0.6 = 0.3$$

$$P(X = 1 \cap Y = 2|pick \ unfair \ then \ pick \ fair) = 0.6 \times 0.5 = 0.3$$

$$P(X = 1 \cap Y = 2) = (P(X = 1 \cap Y = 2 \cap pick \ fair \ 2 \ times) + P(X = 1 \cap Y = 2 \cap pick \ unfair \ 2 \ times) + P(X = 1 \cap Y = 2|pick \ unfair \ 2 \ times) + P(X = 1 \cap Y = 2|pick \ unfair \ then \ pick \ fair \ then \ pick \ unfair) + P(X = 1 \cap Y = 2|pick \ unfair \ then \ pick \ fair \ then \ pick \ unfair) + P(X = 1 \cap Y = 2) - P(X = 1 \cap Y = 2) = 0.2475$$

$$P(X = 0 \cap Y = 0|pick \ fair \ 2 \ times) = 0.5 \times 0.5 = 0.25$$

$$P(X = 0 \cap Y = 0|pick \ fair \ then \ pick \ unfair) = 0.5 \times 0.4 = 0.2$$

$$P(X = 0 \cap Y = 0|pick \ fair \ then \ pick \ unfair) = 0.4 \times 0.4 = 0.2$$

$$P(X = 0 \cap Y = 0|pick \ fair \ then \ pick \ unfair) = 0.4 \times 0.5 = 0.2$$

$$P(X = 0 \cap Y = 0) = 0.5 \times 0.5 \times (0.25 + 0.16 + 0.2 + 0.2) = 0.2025$$

$$P(X = 0 \cap Y = 1) = P(X = 0) - P(X = 0 \cap Y = 0) - P(X = 0 \cap Y = 2) = 0.2475$$

$$Y = 0$$

\mathbf{C}

```
P(X=1) = 0.55, P(Y=0) = 0.2025

P(X=1 \cap Y=0) = 0 \neq P(X=1) \times P(Y=0)

So X and Y are not independent.
```

D

```
\begin{array}{l} P(7\ heads|pick\ fair) = C_8^7 \times 0.5^7 \times 0.5^1 = 0.03125 \\ P(7\ heads|pick\ unfair) = C_8^7 \times 0.6^7 \times 0.4^1 = 0.08957952 \\ P(7\ heads) = P(7\ heads\cap pick\ fair) + P(7\ heads\cap pick\ unfair) = \frac{0.03125 + 0.08957952}{2} = 0.06041475 \end{array}
```

10

A=a student enrolls in postsecondary education within three months of finishing high school

```
\alpha =the student did not have a parent who attended college \beta =the student had a parent who attended some college \gamma =the student have at least one parent who completed college P(A|\alpha)=0.58 P(A|\beta)=0.63 P(A|\gamma)=0.78 P(\alpha)=0.35 P(\beta)=0.3 P(\gamma)=0.35 P(\gamma)=0.35 P(A)=P(A|\alpha)\times P(\alpha)+P(A|\beta)\times P(\beta)+P(A|\gamma)\times P(\gamma)=0.35\times 0.58+0.3\times 0.63+0.35\times 0.78=0.665
```