Mein Titel

Tim Jaschik

May 15, 2025

Abstract. – Kurze Beschreibung ...

Contents

Definition A-1-03-01 (Ring mit Eins).

Definition A-1-03-02 (Ring ohne Eins).

Definition A-1-03-03 (Kommutativer Ring). Sei $\Omega \subset \mathbb{R}^N$ ein beschränktes Gebiet, $q \in L^{\infty}(\Omega)$ nichtnegativ und $f \in L^2(\Omega)$. Dann hat das Dirichletproblem

$$-\Delta u + q(x)u = f$$
 in Ω , $u = 0$ auf $\partial \Omega$

eine eindeutig bestimmte schwache Lösung $u \in H_0^1(\Omega)$. Ist ferner $f \in L^{\infty}(\Omega)$, so gilt:

- (i) $u \in C^1(\Omega) \cap L^{\infty}(\Omega)$.
- (ii) Ist $\Omega' \subset\subset \Omega$, so existiert eine nur von $\|q\|_{\infty}$ und Ω' abhängige Konstante $C_1>0$ mit

$$||u||_{C^1(\overline{\Omega'})} \le C_1 \left(||u||_{L^{\infty}(\Omega)} + ||f||_{L^{\infty}(\Omega)}\right)$$

(iii) Erfüllt Ω eine gleichmäßige äußere Sphärenbedingung, so gilt $u \in C_0(\Omega)$, und es existiert eine nur von $||f||_{L^{\infty}(\Omega)}$ abhängige Konstante C_2 mit

$$|u(x)| \le C_2 \operatorname{dist}(x, \partial \Omega)$$
 für $x \in \Omega$.

Erinnerung: $u \in H_0^1(\Omega)$ heißt schwache Lösung von (1.1), falls

$$a_L(u,\varphi) := \int_{\Omega} (\nabla u \nabla \varphi + q(x) u \varphi) dx = \int_{\Omega} f u dx$$
 für alle $\varphi \in H_0^1(\Omega)$.

Wir testen auf Veränderung.

Example A-1-03-04 (Körper sind Ringe).

Example A-1-03-05 $((\mathbb{Z}, +, *)$ kommutaiver Ring).

Example A-1-03-06 (Ring der Funktionen).

Example A-1-03-07 (Matrizenringe über Körper).

Example A-1-03-08 ($(End_k(V), +, \circ)$ Ring).

Example A-1-03-09 (Matrizenring über Ring).

Example A-1-03-10 (Nullring).

Example A-1-03-11 (Produktring).

Example A-1-03-12 (Gruppenring mit Koeffizienten aus Körper).

Remark A-1-03-13 (Eins eines Ringes mit Eins ist eindeutig).

Lemma A-1-03-14 (Rechenregeln für Ringe mit Eins).

Lemma A-1-03-15 (Wenn Ring mit 0 = 1, dann Nullring).

Definition A-1-03-16 (Ringhomomorphismus).

Remark A-1-03-17 (Ringhomomorphismen induzieren Gruppenhomomorphismen zwischen abelschen Gruppen).

Example A-1-03-18 (Pullback-Ringhomomorphismus).

Example A-1-03-19 (Einschränkung als Pullback der Inklusion).

Example A-1-03-20 (Auswertungshomomorphismus für Punkt-Inklusion).

Definition A-1-03-21 (R-Linearkombination in Ringen).

Definition A-1-03-22 (Unterring eines Ringes).

Example A-1-03-23 (Bild von Ringhomomorphismen ist ein Unterring).

Definition A-1-03-24 (Einheiten in Ringen).

Proposition A-1-03-25 (Einheitsgruppe: Menge der Einheiten in Ringen sind Gruppe bzgl. Multiplikation in R).

Example A-1-03-26 (Einheitengruppe von ganzen Zahlen).

Example A-1-03-27 (Einheitengruppe von Gruppenringe).

Example A-1-03-28 (Einheiten von Matrizenringe mit Koeffizienten in Körper).

Proposition A-1-03-29 (Ringhomomorphismen bilden Einheiten auf Einheiten ab und induzieren G-Hom auf Einheitsgruppen).

Definition A-1-03-30 (Schiefkörper als Ring mit Einheitsgruppe = R ohne 0).

Definition A-1-03-31 (Körper als abelscher Schiefkörper).

Example A-1-03-32 (Quaternionen als nichtkommutativer Schiefkörper).

Definition A-1-04-01 (Potenzreihenring mit Koeffizienten in Ring).

Definition A-1-04-02 (Polynomring mit Koeffizienten in Ring als Unterring von Potenzreihenring).

Remark A-1-04-03 (Eindeutige Darstellung in Polynomringen).

Remark A-1-04-04 (Polynomring als Unterring der R-Linearkombinationen).

Remark A-1-04-05 (Eigenschaften der Gradfunktion von Leitkoeffizienten).

Remark A-1-04-06 (Identifikation von R als Unterring von Polynomring mit Koeff in R).

Proposition A-1-04-07 (Universelle Eigenschaft des Polynomringes: Auswertungs-Ringhomomorphismus).

Example A-1-04-08 (Auswertungshomomorphismus für Abbildung von Körper in Matrzenring).

Example A-1-04-09 (Auswertungshomomorphismus für Abbildung von Körper in Abbildungsring der End_V).

Definition A-1-04-10 (Polynomring in n-Variablen mit Koeffizienten aus Ring).

Lemma A-1-04-11 (Eindeutige Darstellung in Polynomringen in n-Variablen).

Remark A-1-04-12 (Multiindex-Schreibweise).

Remark A-1-04-13 (Induzierter Ringautomorphismus auf Polynomring durch Permutation).

Lemma A-1-04-14 (Gruppenhomomorphismus zwischen Symmetrische Gruppe und Gruppe der Ring-Automorphismen des Polynomringes in n-Variablen).

Definition A-1-04-15 (Symmetrisches Polynom).

Example A-1-04-16 (Elementarsymmetrische Polynom in n-Variablen).

Proposition A-1-04-17 (Vieta-Formel).

Proposition A-1-04-18 (Jedes symmetrische Polynom ist ein Polynom in den elementarsymmetrischen Polynomen).

Remark A-1-05-01 (Kern von Ringhomomorphismen nicht i.A. Unterring).

Definition A-1-05-02 (Ideal eines Ringes).

Lemma A-1-05-03 (Charakterisierung von Idealen).

Example A-1-05-04 (Rx sind Ideale von R).

Proposition A-1-05-05 (Kern eines R-Homs ist ein Ideal).

Proposition A-1-05-06 (R-Hom ist injektiv gdw Kern = 0).

Definition A-1-05-07 (Von Teilmengen erzeugte Ideale).

Remark A-1-05-08 (Warum ist die Menge der erzeugten R-Linearkombinationen eine Ideal?).

Lemma A-1-05-09 (Schnitte von Idealen sind Ideale).

Definition A-1-05-10 (Erzeugendensysteme von Ideale).

Example A-1-05-11 $(n\mathbb{Z})$.

Example A-1-05-12 ($\{0\}$ und $\{1\}$ in jedem Ring sind Ideale).

Example A-1-05-13 $((2, X) \text{ im Polynomring } \mathbb{Z}(X)).$

Lemma A-1-05-14 (Vereinigung von aufsteigend inkludierten Idealen sind Ideale).

Proposition A-1-05-15 (Faktorring als Quotientenring bzgl, Ideale).

Corollar A-1-05-16 (Jedes Ideal ist Kern eines geeigneten R-Homs).

Definition A-1-05-17 (Quotienten für Ideale in Ringen mit Quotientenabbildung).

Proposition A-1-05-18 (Faktorringe für Ideale mit kanonischer Projektion sind Quotienten).

Remark A-1-05-19 (Quotientenabbildung ist surjektiv).

Proposition A-1-05-20 (Urbild von Idealen längs R-Homs ist Ideal).

Proposition A-1-05-21 (Bilder von Idealen längs surjektiven R-Homs sind Ideale).

Proposition A-1-05-22 (Homomorphisatz).

Remark A-1-05-23 (Struktur von Faktorring bestimmen durch raten eines Isomorphismus zw S und $R \setminus I$ und I = ker(f)).

Example A-1-05-24 (Komplexen Zahlen isomorph zu Faktorring des Polynomringes in reellen Zahlen $\text{Mod } (X^2 + 1)$).

Proposition A-1-05-25 (Erster Isomorphiesatz).

Proposition A-1-05-26 (Zweiter Isomorphiesatz).

Definition A-1-07-01 (Modul zu einem Ring).

Definition A-1-07-02 (R-Modulhomomorphismus).

Definition A-1-07-03 (Untermodul eines Moduls).

Definition A-1-07-04 (Durch Teilmengen eines R-Moduls erzeugte Untermoduln).

Definition A-1-07-05 (Kern und Bild eines R-Modulhomomorphismus).

Definition A-1-07-06 (Innere Direkte Summe von Untermoduln).

Definition A-1-07-07 (Direkte Summe von Moduln).

Definition A-1-07-08 (Direkte Produkt von Moduln).

Definition A-1-07-09 (Annulatorideal von R-Moduln).

Definition A-1-07-10 (Zyklischer R-Modul).

Example A-1-07-11 (K-Vektorräume sind K-Moduln).

Example A-1-07-12 (Abelsche Gruppen sind \mathbb{Z} -Moduln).

Example A-1-07-13 (Moduln bzgl Polynomringe in Körpern sind ein K-Vektorraum mit einem K-linearen Endo).

Example A-1-07-14 (Menge der Spaltentupel mit Elementen aus einem Ring ist mit komp. Add und diagonale R-Multip ein R-Moduln).

Example A-1-07-15 (Für Körper sind K-Modulnhomomorphismen K-lineare Abbildungen).

Example A-1-07-16 (Für Z sind Z-Modulnhomomorphismen Gruppenhomomorphismen).

Example A-1-07-17 (Für Polynomringe in Körpern sind Modulnhomomorphismen K-lineare Abbildungen, die mit X* Polynom kommutieren).

Example A-1-07-18 (Freie Moduln vom Rang n als isomorphe R-Moduln zu \mathbb{R}^n).

Example A-1-07-19 (Für Körper sind Untermoduln Untervektorräume).

Example A-1-07-20 (Für \mathbb{Z} sind Untermoduln Untergruppen).

Example A-1-07-21 (Für Polynomringe in Körpern sind Untermoduln Endo-Stabile Untervektorräume).

Example A-1-07-22 (Untermoduln eines Ringes sind Ideale).

Example A-1-07-23 (R-Modulhomomorphismus von Koeffizienten aus \mathbb{R}^n in M für fixiertes Elemente-Tupel in R-Moduln: Surjektiv gdw Endlich erzeugt).

Concept CM-1-01-01 (2-Körper Problem mit konservativen Zentralkräften).

Concept CM-1-01-02 (Effektive Einkörper Problem).

Concept CM-1-02-01 (Aufbau Streuexperiment).

Definition CM-1-02-02 (Beschreibung vor Streuung: -Geschwindigkeit und Energie der Teilchen - Homo Teilchenstromdichte des Teilchenstrahls - Stoßparameter).

Definition CM-1-02-03 (Beschreibung nach Streuung: - Raumwinkel u Zählrate (Detektor) - Zählrate als Teilchenstrom - Differenzieller Wirkungsquerschnitt - Totaler Wirkungsquerschnitt).

Concept CM-1-02-04 (Differenzieller und totaler Wirkungsquerschnitt).

Concept CM-1-02-06 (Totale WQS als effektive Querschnittfläche, die das Potential der Projektile bietet).

Example CM-1-02-07 (Streunung an harter Kugel).

Remark CM-1-02-08 (Definitionen unabhängig von Klassische / QM).

Remark CM-1-03-01 (Berechnung des WQS unter Annahmen: 1) Streuung im Rahmen der CM beschreibbar 2) Elastische Streuung (kein Ener.Austausch zw. Projektil u Target 3) Streuung am Zentralpotential (Zw. Proj und Targ wirkende Potential hängt nur von Betrag Abstand ab).

Example CM-1-03-02 (Trajektorie des Projektils für repulsives Potential).

Concept CM-1-03-03 (Zusammenhang zwischen Streuwinkel und Restwinkel $/phi_inf$).

Concept CM-1-03-04 (Streuwinkel und differentieller WQS hängen für ein Zentralpotential nur von von Streuparameter und Energie ab).

Proposition CM-1-03-05 (Darstellung des Streuparameters als Funktion von Streuwinkel und Energie).

Proposition CM-1-03-06 (Darstellung des Drehimpulses durch Streuparameter und Energie (Erhaltungssätze)).

Concept CM-1-03-07 (Bilanzgleichung für Streuung).

Proposition CM-1-03-08 (Darstellung von differentielle WQS durch Streuparameter und Energie).

Example CM-1-03-09 (Rutherfordscher Wirkungsquerschnitt).

Remark CM-1-03-10 (Anmerkungen).

Concept CM-1-04-02 (Zusammenhang zwischen Streuwinkel in effektivem 1KP und Streuwinkel des Projektils im 2KP).

Concept CM-1-04-03 (Messung des Wirkungsquerschnitts vom Laborsystem aus: Experimentelle Größe ist Streuwinkel des Projektils).

Concept CM-1-04-04 (Streuprozess im CM-System).

Proposition CM-1-04-05 (Herleitung des Zusammenhangs zwischen Streuwinkel des Projektils im Laborsystem und Streuwinkel im effektiven 1KP).

Concept CM-1-04-06 (Formel für Beziehung zwischen Streuwinkel des Projektils in Laborsystem und Streuwinkel in eff. 1KP).

Concept CM-1-04-07 (Grenzfälle der Beziehung zwischen Streuwinkel).

Proposition CM-1-04-08 (Umrechnung von differentiellem Wirkungsquerschnitt im CMS in Laborsystem).

Concept CM-1-04-09 (Formel für Beziehung zwsichen diff. WQS im CMS und Laborsystem).

Concept CM-1-04-10 (Grenzfälle der Beziehung zwischen diff. WQS).

Concept CM-1-05-01 (2-Körper Problem mit konservativen Zentralkräften).

Concept CM-1-05-02 (Reduktion of effektives 1-Körper Problem).

Definition CM-1-05-03 (Gesamtenergie in reduzierte 1-Körper Problem).

Definition CM-1-05-04 (Explizite Formel für Bahnkurve on Polarkoordianten).

Concept CM-1-05-05 (Qualitative Beschreibung der Bewegung durch Graph des effektiven Potentials).

Concept CM-1-05-06 (Streuung als ungebundene Bewegung im 2KP).

Remark CM-1-07-01 (Atwood-Pendel).

Remark CM-1-07-02 (Totale Wirkungsquerschnitt für feste Kugel).

Remark CM-1-07-03 (Relation $L = \frac{s}{2\mu E}$ in 2-Körper Systemen).

Remark CM-1-07-04 (Allgemeine Herleitung des tot. WQS in reduzierten 1-Körper Systemen).

Definition EFT1-1-02-01 (Lokale triviale Faserung mit typischen Fasern auf Mfk).

Definition EFT1-1-02-02 (Vektorraumbündel).

Example EFT1-1-02-03 (Projektion von Kreuzprodukt ist eine lokal triviale Faserung).

Example EFT1-1-02-04 (Tangentialbündel mit differenzierbarer Struktur ist Vektorraumbündel).

Example EFT1-1-02-05 (Vektorraumbündel zu S^1).

Example EFT1-1-02-06 (Lokale triviale Faserung über S^1).

Definition EFT1-1-02-07 (Lokale triviale Faserung als Tripel von Totalraum, Basisraum, Bündelprojektion mit typischen Fasern).

Definition EFT1-1-02-08 (Reale Fasern in lokal trivialen Faserungen).

Definition EFT1-1-02-09 (Bündelkarten für offene Teilmengen der Basis).

Definition EFT1-1-02-10 (Bündelatlas für lokale triviale Faserungen).

Definition EFT1-1-02-11 (Faserkarte am Punkt x im Basisraum).

Definition EFT1-1-02-12 (Bündelkartenwechsel zwischen Bündelkarten).

Definition EFT1-1-02-13 (G-Faserbündel mit Liegruppen als Strukturgruppen).

Definition EFT1-1-02-14 (Prinzipalbüdel / Hauptfaserbündel).

Remark EFT1-1-02-15 (Beziehung zwischen Vektorraumbündeln und GL-Faserbündeln).

Definition EFT1-1-02-16 ((Differenzierbare) (Lokale) Schnitte in lokal trivialen Faserungen).

Definition EFT1-1-02-17 (Raum der differenzierbaren lokalen Schnitte).

Example EFT1-1-02-18 (Raum der diff. lokalen Schnitte in Kreuzprodukten).

Example EFT1-1-02-19 (Raum der diff. Lokalen Schnitte im Tangentialbündel).

Example EFT1-1-02-20 (Jedes Vektorraumbündel hat einen lokalen Schnitt x auf O_x in E_x).

Example EFT1-1-02-21 (Im Tangentialbündel existiert kein diff. Schnitt, der nirgends verschwindet).

Example EFT1-1-02-22 (S^1 auf S^1 , z auf z^2 gibt es keinen Schnitt).

Remark EFT1-1-02-23 (Raum der diff Schnitte in Vektorraumbündeln ist der Vektorraum von glatten Abbildungen auf M).

Remark EFT1-1-02-24 (Für Bündelkarten in Vektorraumbündeln existieren k lokale Schnitte, die an jeder Stelle eine Basis der realen Faser bilden).

Remark EFT1-1-02-25 (k lokale Schnitte, die bei Punkt eine Basis der Faser bilden, induzieren eine Bündelkarte).

Remark EFT1-1-02-26 (Bündelkarten in G-Prinzipalbündeln induzieren lokale Schnitte).

Remark EFT1-1-02-27 (Präbündel mit Strukturgruppe G zu Liegruppe G, Mfk, (disj) Vereinigung von punktweise Mfk und Projektion).

Proposition EFT1-1-02-28 (Für Präbündel (E, π, M) existiert auf E genau einem Topologie und differenzierbare Struktur, sodass (E, π, M) ein Faserbündel mit Strukturgruppe G wird und Präbündelkarten Bündelkarten werden).

Example EFT1-1-02-29 (Bündelstruktur von Tangentialbündel als Ergebnis der Konstruktion von Präbündeln).

Example EFT1-1-02-30 (Präbündel zum GL-Prinzipalbündel).

Example EFT1-1-02-31 (Präbündel zum O(n)-Prinzipalbündel für Riemannische Mfk).

Corollar EFT1-1-02-32 (Direkte Summe von Vektorraumbündeln ergeben Prävektorraumbündel).

Example EFT1-1-02-33 (Hom-Raum für Homomorphismen zwischen Vektorraumbündeln sind Vektorraumbündel).

Example EFT1-1-02-34 (Mult).

Example EFT1-1-02-35 (Sym).

Example EFT1-1-02-36 (Alt).

Definition EFT1-1-02-37 (Bündelmetrik auf Totalraum ist ein Schnitt in $Sym^2(E)$, sodass g pw. positiv definit).

Example EFT1-1-02-38 (Riemannische Metrik als Bündelmetrik im Tangentialbündel).

Example EFT1-1-02-39 $(\Gamma(Alt^k(TM)))$.

Definition EFT1-1-02-40 (Vektorraumbündel vom endlichen Typ).

Example EFT1-1-02-41 (Tangentialbündel von S^n ist von endlichem Typ).

Definition EFT1-1-02-43 (Bündelisomorphismus).

Definition EFT1-1-02-44 (Trivialisierung von Totalraum).

Definition EFT1-1-02-45 (Vektorraumbündelabbildung über diff. Abbildungen zwischen Vektorraumbündeln).

Definition EFT1-1-02-46 (Vektorraumbündelisomorphismus).

Example EFT1-1-02-47 (Differential von glatten Abbildungen zw. Tangentialbündel von Mfk ist eine Vektorraumbündelabbildung über glatte Abbildung f).

Definition EFT1-1-02-48 (Induzierte Bündel durch Abbildungen).

Proposition EFT1-1-02-49 (Schnitte in induzierten Bündeln längs f).

Example EFT1-1-02-50 (Menge der Vektorfelder längs Kurven).

Example EFT1-1-02-51 (Vektorraumbündel bzgl Grassmann-Mfk).

Remark EFT1-1-02-52 (Bündelabbildungen bzgl induzierte Bündel).

Corollar EFT1-1-02-53 (Homotope Abbildungen in Faserbündel induzieren isomorphe Bündel).

Definition EFT1-1-02-54 (Induzierte Bündel bei Einbettungen von UnterMfk).

Definition EFT1-1-02-55 (Untervektorraumbündel).

Remark EFT1-1-02-56 (Untervektorraumbündel sind Vektorraumbündel).

Remark EFT1-1-02-57 (Quotienten-Räume bzgl Untervektorraumbündel sind Vektorraumbündel).

Remark EFT1-1-02-58 (Untervektorraumbündel bzgl Bündelmetrik).

Remark EFT1-1-02-59 (Tangentialbündel von UnterMfk sind Untervektorraumbündel).

Remark EFT1-1-02-60 (Normalenbündel von UnterMfk).

Proposition EFT1-1-02-61 (Rang-Satz für Vektorraumhomomorphismen: Konstanter Rang impliziert ker und im sind Untervektorraumbündel).

Corollar EFT1-1-02-62 (Charakterisierung von Vektorraumbündeln von endlichem Typ).

Definition EFT1-1-02-63 (Reduktionen von Faserbündeln mit Strukturgruppe bzgl abgeschlossener Untergruppe).

Example EFT1-1-02-64 (Charakterisierung von orientierten Mfk).

Proposition EFT1-1-02-65 (Ehresmannscher Faserungssatz: Totalräume mit eigentlich regulären Abbildungen in zusammenhängenden Basisraum implizieren eine lokale triviale Faserung).

Definition EFT1-1-02-66 (TEST 4).

Definition EFT1-1-02-67 (TEST 5).

Definition EFT1-1-02-68 (TEST 6).

Definition GPDE-1-02-01 (Allgemeine Differential operator).

Definition GPDE-1-02-02 (Affin linear in k-ter Komponente).

Definition GPDE-1-02-03 (Lineare Operator k-ter Ordnung).

Definition GPDE-1-02-04 (Semilineare Operator k-ter Ordnung).

Definition GPDE-1-02-05 (Quasilineare Operator k-ter Ordnung).

Definition GPDE-1-02-06 (Voll nichtlineare Operator k-ter Ordnung).

Definition GPDE-1-02-07 (Lineare Operator 2-ter Ordnung).

Definition GPDE-1-02-08 (Elliptischer linearer Operator 3-ter Ordnung).

Definition GPDE-1-02-09 (Parabolischer lineaer Operator 2-ter Ordnung).

Definition GPDE-1-02-10 (Strikt linearer Operator 2-ter Ordnung).

Definition GPDE-1-02-11 (Uniform linearer Operator 2-ter Ordnung).

Definition GPDE-1-02-12 (Partieller Differential operator 2. Ordung).

Definition GPDE-1-02-13 (Elliptischer partieller Differentialoperator 2. Ordnung).

Definition GPDE-1-02-14 (Strikt elliptischer Differentialoperator 2. Ordnung).

Definition GPDE-1-02-15 (Uniform elliptischer Differentialoperator 2. Ordnung).

Example GPDE-1-02-16 (Lineare elliptische Differentialoperatoren).

Example GPDE-1-02-17 (Korrsp. Operator der Monge-Ampère Gleichung ist elliptisch für strikt konvexe Funktionen).

Example GPDE-1-02-18 (Korrespondierender Operator zur Mittlere Krümmungs Gleichung ist uniform elliptisch).

Definition GPDE-1-02-19 (Parabolischer partieller Differentialoperator 2. Ordnung).

Definition GPDE-1-02-20 (Strikt parabolischer Differentialoperator 2. Ordnung).

Definition GPDE-1-02-21 (Uniform parabolischer Differentialoperator 2. Ordnung).

Example GPDE-1-02-22 (Korresp. Operator zur Mittleren Krümmungsfluss Gleichung ist uniform parabolisch).

Concept GPDE-1-02-23 (Linearisierung von Differentialoperatoren).

Concept GPDE-1-02-24 (Definition des allg. Partiellen Differentialoperators 2. Ordnung).

Definition GPDE-1-03-01 (Lp-Raum).

Definition GPDE-1-03-02 (Lokal Hölder Stetig mit Exponent).

Definition GPDE-1-03-03 (Hölder Stetig mit Exponent).

Definition GPDE-1-03-04 (Lipschitz Stetig).

Definition GPDE-1-03-05 (Ck Differenzierbar mit (lokal) Hölder Stetigen k-ten Ableitungen).

Remark GPDE-1-06-01 (Was ist ein schw. MP?).

Definition GPDE-1-06-02 (Parabolischer Rand).

Theorem GPDE-1-06-03 (Parabolisches schwaches Maximum Prinzip).

Corollar GPDE-1-06-04 (Eindeutigkeit von Lösungen von parabolischen Differentialoperatoren).

Theorem GPDE-1-06-05 (Elliptisches schwaches Maximumsprinzip).

Corollar GPDE-1-06-06 (Eindeutigkeit von Lösungen von elliptischen Differentialoperatoren).

Remark GPDE-1-07-01 (Motivation Starke Maximum Prinzipien).

Lemma GPDE-1-07-02 (Propagation von Positivität).

Theorem GPDE-1-07-03 (Parabolisches starkes Maximum Prinzip).

Theorem GPDE-1-07-04 (Elliptisches starkes Maximum Prinzip).

Lemma GPDE-1-08-01 (Parabolisches Hopf-Lemma für Rand-Punkte).

Lemma GPDE-1-08-02 (Elliptisches Hopf-Lemma für Rand-Punkte).

Definition GPDE-1-08-03 (Interior Ball Kondition an offene Mengen).

Corollar GPDE-1-08-04 (Eindeutigkeit für Neumann Probleme für elliptische Operatoren auf Mengen mit Interior Ball Kondition).

Theorem GPDE-1-09-01 (Elliptisches Vergleichsprinzip).

Theorem GPDE-1-09-02 (Parabolisches Vergleichsprinzip).

Definition HA-1-01-01 (Kategorie).

Example HA-1-01-02 (Exa Kategorien).

Definition HA-1-01-03 (Unterkategorie).

Definition HA-1-01-04 (Volle Unterkategorie).

Example HA-1-01-05 (Exa Volle Unterkategorie).

Definition HA-1-01-06 (Funktor).

Example HA-1-01-07 (Hom-Funktor).

Definition HA-1-01-08 (Sequenz in Kategorie).

Definition HA-1-01-09 (Diagramm in Katagorie).

Definition HA-1-01-10 (Weg in Kategorie).

Definition HA-1-01-11 (Gelabelter Weg).

Definition HA-1-01-12 (Einfacher Weg).

Definition HA-1-01-13 (Kommutatives Diagramm).

Definition HA-1-01-14 (Kontravariante Funktoren).

Definition HA-1-01-15 (Isopmorphie in Kategorie).

Definition HA-1-01-16 (Natürliche Transformation).

Definition HA-1-01-17 (Natürlicher Isomorphismus).

Definition HA-1-01-18 (Komposition von Natürlichen Transformationen).

Definition HA-1-01-19 ((Kleine) Funktorenkategorie).

Example HA-1-01-20 (Exa Kleine Funktorenkategorie: Diag / Seq).

Definition HA-1-01-21 (Komplex und Ketten-Abbildung).

Study HA-1-01-22 (3 Grundbegriffe: Kat, Funk, naat Trafo).

Study HA-1-01-23 (Von (kleinen) Funktorkategorien zur Kategorie der Komplexe in der Kategroei der Abelschen Gruppen).

Definition HA-1-02-01 (Links/Rechts Moduln).

Definition HA-1-02-02 (Abelsche Gruppe).

Definition HA-1-02-04 (Kern / Im / CoKern für R-Hom).

Theorem HA-1-02-05 (ISO-Sätze).

Definition HA-1-02-06 (Freie R-Moduln).

Definition HA-1-02-07 (Freie Abelsche Gruppe).

Definition HA-1-04-01 (Additive Kategorie).

Definition HA-1-04-02 (Additiver Funktor von additiven Kategorien).

Definition HA-1-04-03 (Direkte Summe in additiven Kategorien).

Definition HA-1-04-04 (Monomorphismen in Kategorien).

Definition HA-1-04-05 (Epimorphismen in Kategorien).

Definition HA-1-04-06 (Monics / Epics in additiven Kategorien).

Definition HA-1-04-07 (Ker / Coker in additiven Kategorien).

Proposition HA-1-04-08 (Beziehung Monic / Epic und ker / cokern in additiven Kategorien).

Definition HA-1-04-09 (Subgadget von Objekten in additiven Katgeorien).

Definition HA-1-04-10 (Quotienten-Objekt in additiven Kategorien).

Definition HA-1-04-11 (Abelsche Kategorie).

Example HA-1-04-12 (Exa abelsche Kategorie: (Volle Unterkategorien von) Abelsche Gruppen).

Definition HA-1-04-13 (Exakte Kategorie).

Example HA-1-04-14 (Exa Exakte Kategorie).

Remark HA-1-04-15 (Exaktheit in abelschen Kategorien durch Subobjekt in Gadgete).

Definition HA-1-04-16 (Abelsche Unterkategorie).

Proposition HA-1-04-17 (Funktorkategorie zu abelschen Kategorie ist abelsch).

Definition HA-1-04-18 (Projektive Objekte in abelschen Kategorien).

Definition HA-1-04-19 (Injektive Objekte in abelschen Kategorien).

Study HA-1-04-20 (Herleitung abelscher Kategorien und additiver Funktoren als allg. Rahmen für Komplexe in abelschen Kategorien).

Remark HA-1-05-01 (Exakte Sequenzen sind Komplexe).

Remark HA-1-05-02 (Kurze Exakte Sequenzen zu Komplexen erweitern).

Definition HA-1-05-03 (Sequenzen von Objekte).

Definition HA-1-05-04 (Positive / Negative Komplexe).

Definition HA-1-05-05 (Ketten / Zyklen / Ränder in Komplexen).

Definition HA-1-05-06 (n-te Homologie in Komplexen).

Remark HA-1-05-07 (Homologie als Abweichung von Exaktheit eines Komplexes).

Example HA-1-05-08 (Fundamentale Exakte Sequenzen für Komplexe: Zyklen Ränder und Homologie).

Proposition HA-1-05-09 (n-te Homologie ist additiver Funktor).

Remark HA-1-05-10 (PROOF: n-te Homologie ist additiver Funktor).

Theorem HA-1-05-11 (Zu kurzen exakte Sequenz (K, KAbb) in abel. Kategorie der Komplexe existiert ein Zusammenhangs-Homomorphismus).

Remark HA-1-05-12 (PROOF: Zu kurzen exakte Sequenz (K, KAbb) in abel. Kategorie der Komplexe existiert ein Zusammenhangs-Homomorphismus).

Theorem HA-1-05-13 (Kurze Exakte Sequenz in Kategorie der Komplexe induziert lange exakte Homologie-Sequenz).

Remark HA-1-05-14 (PROOF: Kurze Exakte Sequenz in Kategorie der Komplexe induziert lange exakte Homologie-Sequenz).

Theorem HA-1-05-15 (Zusammenhangs-Homomorphismus zu kurzen exakten Sequenzen in Kategorie der Komplexe ist natürlich).

Remark HA-1-05-16 (PROOF: Zusammenhangs-Homomorphismus zu kurzen exakten Sequenzen in Kategorie der Komplexe ist natürlich).

Definition HA-1-05-17 (Arrow Kategorie).

Remark HA-1-05-18 (Interpretation des Zusammenhangs-Homomorphismus).

Definition HA-1-05-19 (Grad einer Abbildung zwischen Komplexen).

Example HA-1-05-20 (Exa Grad einer Abbildung zwischen Komplexen).

Definition HA-1-05-21 (Homotope Ketten Abbildungen (Null-Homotopie)).

Proposition HA-1-05-22 (Homotope Ketten Abbildungen induzieren gleiche Homologie Abbildungen).

Remark HA-1-05-23 (PROOF: Homotope Ketten Abbildungen induzieren gleiche Homologie Abbildungen).

Definition HA-1-05-24 (Kontrahierbare Komplexe).

Proposition HA-1-05-25 (Kontrahierbare Komplexe sind azyklisch).

Study HA-1-05-26 (Einführung der Homologie-Funktoren).

Study HA-1-05-27 ((Natürlicher) Zusammenhangs-Homomorphismus).

Study HA-1-05-28 (Interpretation des Zusammenhangs-Isomorphismus via Arrow Kategorie).

Study HA-1-05-29 (Was ist die Singuläre Homologie Theorie).

Definition HA-1-06-01 (Komplex in abelschen Kategorien).

Definition HA-1-06-02 (Ketten Abbildung zwischen Komplexen in abelschen Kategorien).

Definition HA-1-06-03 (Kategorie der Komplexe in abelschen Kategorien).

Definition HA-1-06-04 (Unterkomplex in abelschen Kategorien).

Proposition HA-1-06-05 (Kategorie der Komplexe abelsch, falls Kategorie abelsch).

Remark HA-1-06-06 (PROOF: Kategorie der Komplexe abelsch, falls Kategorie abelsch).

Definition HA-1-06-07 (Isomorphie in Kategorie der Komplexe).

Definition HA-1-06-08 (Direkte Summe von Komplexen).

Definition HA-1-06-09 (Exaktheit von Sequenze von Komplexen und Ketten Abbildungen).

Definition HA-1-06-10 (Kurze Exakte Sequenzen von Komplexen und Ketten Abbildungen).

Definition HA-1-06-11 (Quotienten Komplex).

Proposition HA-1-06-12 (Kettenabbildung in Quotienten Komplex durch natürliche Abbildung).

Study HA-1-06-13 (Basics der allg. Komplexe in abelschen Kategorien und die Kategorie der Komplexe).

Lemma HA-1-07-01 (Basics für Exaktheit von Sequenzen).

Lemma HA-1-07-02 (Kurze Exakte Sequenzen Basics).

Lemma HA-1-07-03 (Links/Rechts Vervollständigung von 03 – 03 Komm Exa).

Lemma HA-1-07-04 (5-Lemma).

Lemma HA-1-07-05 (030–030 vert. ISO: oben exa \Leftrightarrow unten exa).

Lemma HA-1-07-06 (3×3 Lemma).

Lemma HA-1-07-07 (Schlagstock Lemma).

Lemma HA-1-07-08 (Schlangen Lemma).

Definition HA-1-10-01 (Splitting Basics).

Lemma HA-1-10-02 (Splitting Cases).

Definition HA-1-12-01 (Eilenberg-Stennrod Axiom).

Concept QM-1-02-01 (Plancksche Wirkungsquantum für Energie-Kreisfrequenz und Impuls-Wellenvektor).

Definition QM-1-03-01 (Ebene (kompl) Welle).

Definition QM-1-03-02 (Wellenpaket).

Example QM-1-03-03 (Überlagerung zweier Wellen).

Definition QM-1-03-04 (Gruppengeschwindigkeit).

Concept QM-1-03-05 (Gruppengeschwindigkeit = Mechanische Geschwindigkeit der zugeordneten Teilchen).

Definition QM-1-03-06 (Phasengeschwindigkeit einer Welle).

Definition QM-1-03-07 (Allgemeine Wellenpaket).

Example QM-1-03-08 (Gaußsche Wellenpaket in 1D).

Definition QM-1-03-09 (Breite des Wellenpakets im Ort-Raum).

Definition QM-1-03-10 (Breite des Gauß'schen Wellenpakets im k-Raum).

Concept QM-1-03-11 (Unschärfe-Relation für 1D Gaußsche Wellenpaket zw. Impuls und Ort).

Concept QM-1-03-12 (Born-Interpretation).

Definition QM-1-05-01 (Ebene Wellen mit Plankschem Wirkungsquantum).

Definition QM-1-05-02 (Ebene Wellen mit Plankschem Wirkungsquantum zu nicht-relativistischem Teilchen).

Concept QM-1-05-03 (Schrödinger Gleichung für nicht-relativistisches Teilchen).

Definition QM-1-05-04 (Schrödinger Gleichung).

Remark QM-1-05-05 (Linearität und Superposition der Schrödinger Gleichung).

Concept QM-1-05-06 (Herleitung der freien Schrödinger Gleichung durch Korrspondenzprinzip).

Concept QM-1-06-01 (Energie eines klassischen Teilchen in Potential).

Concept QM-1-06-02 (Verallgemeinerte Schrödinger-Gleichung mit Potential).

Remark QM-1-06-03 (Plausibilitätsbetrachtung für allg. Version der Schrödingergleichung).

Definition QM-1-07-01 (Matrix-Operator).

Example QM-1-07-02 (EXA Matrix-Operatoren).

Definition QM-1-07-03 (Linearer Operator).

Remark QM-1-07-04 (Komplexe Konjugation ist antilinear).

Definition QM-1-07-05 (Kommutator).

Definition QM-1-07-06 (Skalarprodukt).

Definition QM-1-08-01 (Ortsoperator als lin. Multiplikationsoperator).

Definition QM-1-08-02 (Impulsoperator als lin. Differentialoperator).

Definition QM-1-08-03 (Schrödinger Operator).

Remark QM-1-08-04 (Linearität des Schrödinger Operator).

Remark QM-1-08-05 (Darstellung des Schrödinger Operators durch Orts und Impulsoperator).

Remark QM-1-08-06 (Vertauschungsrelation zwischen Orts und Impulsoperator).

Remark QM-1-08-07 (Schrödinger Operator als Hamilton Operator).

Concept QM-1-08-08 (Korrespondenzprinzip zw. Klassischer Mechanik und Quantenmechanik bzgl Ort und Impuls).

Definition QM-1-08-09 (Poisson Klammer).

Definition QM-1-10-01 (Wahrscheinlichkeitsdichte für die Anwesenheit eines Teilchens in einem Gebiet zu einer Wellenfunktion).

Remark QM-1-10-02 (Normierung der Wahrscheinlichkeitsdichte).

Example QM-1-10-03 (Normierung von Gauß-Wellenpaket in 3D zu t = 0).

Remark QM-1-11-01 (Normierung invariant unter zeitlicher Entwicklung).

Definition QM-1-11-02 (W-keits-Stromdichte zu einer Wellenfunktion).

Concept QM-1-11-03 (Kontinuitätsgleichung für W-keits-Stromdichte).

Remark QM-1-11-04 (Reelle Wellenfunktionen können keinen Strom transportieren).

Concept QM-1-11-05 (Kontinuitätsgleichung impliziert Normierungs-Erhaltung).

Example QM-1-11-06 (Gaußsche Wellenpaket in 3D: W-keitsdichte wird mit Gruppengeschwindigkeit transportiert).

Remark QM-1-11-07 (Reelle Faktoren tragen nicht zur Stromdichte bei Stromdichte = Geschwindigkeit * Teilchendichte gilt allg).

Example QM-1-12-01 (W-keitsdichte und Stromdichte für ebene Welle: Erfüllt Kontinuitätsgleichung, aber nicht normierbar).

Definition QM-1-12-02 (Fourier-Integral: Fouriertrafo und Inverse Fouriertrafo von Lösungen der (allg) Schrödingergleichung in Ortsvariable).

Remark QM-1-12-03 (Fourier-Trafo von Lösung der Schrödinger Gleichung in Normierungsbedingung).

Concept QM-1-12-04 (Interpre: Betrag der Inversen Fourier-Trafo als W-keitsdichte im Impulsraum).

Definition QM-1-13-01 (Erwartungswert eine Größe).

Concept QM-1-13-02 (Erwartungswert der Ortskoordinate).

Concept QM-1-13-03 (Erwartungswert des Impulsoperators im Impulsraum).

Concept QM-1-13-04 (Erwartungswert des Impulsoperators im Ortsraum).

Remark QM-1-13-05 (Basisdarstellungen im Funktionenraum).

Definition QM-1-13-06 (Mittlere Schwankungsquadrat / Varianz einer Größe).

Concept QM-1-13-07 (Heisenberg'sche Unschärfe-Relation).

Concept QM-1-14-01 (Doppelspaltexperiment).

Concept QM-1-14-02 (Wellen-Bild und Abstände der Inferenz-Maxima).

Concept QM-1-14-03 (Ein-Teilchen Inferenz).

Definition QM-1-16-01 (Hermitisch konjugierter Operator).

Proposition QM-1-16-02 $((A * psi)^* = psi^*A^{HK}).$

Concept QM-1-16-03 (Anwendung von Hermitische Konjugation auf Schrödinger Gleichung).

Definition QM-1-16-04 (Selbst-adjungierte Operatoren).

Concept QM-1-16-05 (Hermitische Konjugierte Schrödinger Gleichung).

Concept QM-1-17-01 (Zeitliche Entwicklung des Erwartungswertes).

Concept QM-1-17-02 (Ehrenfest-Theorem, falls Operator A zusätzlich von Zeit abhängt).

Concept QM-1-18-01 (Anwendung von Ehrenfest-Theorem auf Impuls- und Orts-Operator für Teilchen in Zeit-unabhängigem Potential).

Concept QM-1-18-02 (Erwartungswert von Operatoren gehorcht den klassischen Bewegungsgleichungen (Verträglich mit Korrespondenzprinzip)).

Concept QM-1-22-01 (Seperation der Variablen für Schrödinger Gleichung mit zeitunabhängigem Potential).

Concept QM-1-22-02 (Stationäre Schrödinger Gleichung als Eigenwertgleichung).

Definition QM-1-22-03 (Eigenwerte und Eigenfunktionen).

Concept QM-1-22-04 (Lineare Superposition von Lösungen der Schrödinger Gleichung mit zeitunabh. Potential).

Definition QM-1-22-05 (Eigenwert-Spektrum).

Concept QM-1-22-06 (Überlagerungen von orthonormierten Eigenfunktionen sind Lösungen).

Example QM-1-22-07 (Eigenfunktionen des Impulsoperators).

Concept QM-1-23-01 (Eindimensionale, zeitunabhängige Potential (Heaviside) und zugehörige zeitunabhäängige Schrödinger Gleichung).

Remark QM-1-23-02 (Einfluss von Diskontinuitäten auf Wellenfunktion).

Remark QM-1-23-03 (Randbedingungen).

Remark QM-1-24-01 (Für konstante Potentiale wird die stationäre Schrödingergleichung durch ebene Wellen gelöst).

Concept QM-1-24-02 (Case: E > V: Eigenenergie des Zustandes > Potential).

Concept QM-1-24-03 (Superposition von einlaufende und reflektierte Welle für $x \leq 0$).

Concept QM-1-24-04 (Teilchenfluss (W-keits-Stromdichte) der Superposition).

Concept QM-1-24-05 (Transmitierte Welle für $x \ge 0$).

Concept QM-1-24-06 (Stetigkeitsbedingungen an Lösung).

Concept QM-1-24-07 (Teilchenstromerhaltung: W-keits-Teilchenstromdichte ist stetig bei x = 0).

Concept QM-1-24-08 (Unterschied zur CM: Bei E > V wird an der Potentialstufe ein Bruchteil des Elektrons reflektiert).

Remark QM-1-25-01 (Case: E < V: Eigenenergie des Zustandes < Potential).

Concept QM-1-25-02 (Allg. Lösung für $x \leq 0$).

Concept QM-1-25-03 (Allg. Lösung für $x \ge 0$).

Concept QM-1-25-04 (Normierbarkeit von u:: u bei 0 beschränkt:: $B_2 = 0$).

Concept QM-1-25-05 (Stetigkeitsbedingungen an Lösung für E < V bei x = 0).

Concept QM-1-25-06 (W-keits-Stromdichte konstant 0:: Stehende Wellen transportieren keine Teilchen).

Concept QM-1-25-07 (Unterschied zur CM: Bei E < V dringt ein Bruchteil des Teilchens auch in das verbotene Gebiet x > 0, klassisch exponentieller Abfall mit Eindingstiefe).

Remark QM-1-31-01 (Deltadistributionen).

Remark QM-1-31-02 (Gaus-Approximation der Deltadistribution).

Remark QM-1-31-03 (Lorentz-Approximation der Deltadistribution).

Remark QM-1-31-04 (Fouriertransformation der Lorentz-Funktion).

Remark QM-1-31-05 (Quantenmechanischer Drehimpuls - Komponenten durch Korrespondenz - Kommutator Relationen zwischen Komponenten - Relationen für Kommutator - L^2, L_i kommutieren Maximale Menge von kommutierenden (Drehimpuls) Operatoren).

Remark QM-1-31-06 (Hamiltonian mit komplexem Potential - Kontinuitätsgleichung für komplexe Potential - Evolution-Gleichung für totale Wahrscheinlichkeit - Darstellung von totaler W-keit für W=w reell - Totale W-keit für W=0 - Totale W-keit für $W=w\neq 0$; Interpretation).

Concept QMS-1-02-01 (Bezeihugn zw. Ket-Zustands in Hilbertraum und Wellenfunktion).

Definition QMS-1-02-02 (Raum Translation).

Definition QMS-1-02-03 (Symmetrie Transformation).

Definition QMS-1-02-04 (Darstellung der Raum Translationen durch Raum Translation Operator).

Concept QMS-1-02-05 (Raum Translation symmetrisch, dann Wahrscheinlichkeit konstant).

Proposition QMS-1-02-06 (Gleichheit der Norm von Wellenfunktion und räumlich transformierter Wellenfunktion, lässt vermuten, dass RT-Operator unitär).

Proposition QMS-1-02-07 (Exponential Darstellung des RT-Operator durch Taylor-Entwicklung von räumlich translierter Wellenfunktion).

Proposition QMS-1-02-08 (RT-Operator (Exp-Darstellung) ist unitär).

Concept QMS-1-02-09 (Hamilton-Operator invariant unter räumlicher Translation).

Concept QMS-1-02-10 (Lösung von Schrödinger Gleichung invariant unter räumlicher Translation).

Concept QMS-1-02-11 (RT-Operator und Hamilton-Operator kommutieren impliziert Symmetrie von RT-Operator).

Definition RG-1-02-01 (n-dimensionale Untermannigfaltigkeit des euklidischen Raumes).

Example RG-1-02-02 (n-Sphäre).

Example RG-1-02-03 (Hyperboloid).

Example RG-1-02-04 (n-Torus).

Example RG-1-02-05 (SO(n)).

Proposition RG-1-02-06 (Charakterisierungen von Untermannigfaltigkeiten im euklidischen Raum).

Remark RG-1-02-07 (Anmerkungen).

Definition RG-1-03-01 (Atlas auf topologischen Hausdorff-Räumen).

Definition RG-1-03-02 (Äquivalente Atlanten).

Remark RG-1-03-03 (Beispiel für nicht äquivalente Atlanten).

Definition RG-1-03-04 (Glatte Mannigfaltigkeit).

Definition RG-1-03-05 (Orientierte Mannigfaltigkeiten).

 $\textbf{Definition} \ \textbf{RG-1-03-06} \ (\textbf{Untermannigfaltigkeit einer Mannigfaltigkeit}).$

Example RG-1-03-07 (n-Torus als Mfk).

Example RG-1-03-08 (n-Sphäre als Mfk).

Example RG-1-03-09 (Hyperboloid als Mfk).

Example RG-1-03-10 (Reelle projektiver Raum als Mfk).

Example RG-1-03-11 (Komplexe projektive Raum als Mfk).

 ${\bf Example} \ {\bf RG\text{-}1\text{-}03\text{-}12} \ ({\bf M\"obiusband} \ {\bf als} \ {\bf Mfk}).$

Remark RG-1-03-13 (Quotienten-Räume als Mfk als Motivation für verallg. Mfk-Begriff).

Definition RG-1-03-14 (TEST).

Definition RG-1-03-15 (TEST 2).

Definition RG-1-03-16 (TEST 3).

Definition RG-1-04-01 (Glatte Abbildung zwischen Mfk).

Definition RG-1-04-02 (Immersion / Submersion von Mfk).

Definition RG-1-04-03 (Einbettung von Mfk).

Definition RG-1-04-04 (Diffeomorphismus von Mfk).

Definition RG-1-04-05 (Tangentialvektor: Äquivalenzklassen von Kurven).

Definition RG-1-04-06 (Tangentenvektoren: Keime).

Definition RG-1-04-07 (Tangentenvektoren: Paare von Koordinatensysteme um p und Vektor).

Remark RG-1-04-08 (Konstruktion des Tangentialraums).

 $\textbf{Definition} \ \textbf{RG-1-04-09} \ (\textbf{Tangentialb\"{u}} \textbf{ndel}).$

Proposition RG-1-04-10 (Tangentialbündel ist 2n-dimensional Mfk).

Definition RG-1-04-11 (Vektorfeld als glatter Schnitt in Tangentialbündel).

Remark RG-1-04-12 (Darstellung von Vektorfeldern durch partielle Abbleitungen (Tangentenvektoren)).

Definition RG-1-04-13 (Vektorfeld als Abbildung von glatten Funktionen auf Mfk).

Definition RG-1-04-14 (Lieklammer von Vektorfeldern (ergibt Vektorfelder)).

Remark RG-1-04-15 (Lieklammer: Jacobi-Identität Schiefsymmetrisch Nicht linear über R).

Definition RG-1-04-16 (Differential von glatten Abbildungen).

Definition RG-1-05-01 (Finsler-Metrik auf Mfk).

Definition RG-1-05-02 (Länge von Kurven auf Mfk).

Definition RG-1-05-03 (Riemannische Metrik auf Mfk).

 ${\bf Remark} \ {\bf RG\text{-}1\text{-}05\text{-}04} \ ({\bf Pseudo\text{-}Riemannische} \ {\bf Metrik} \ {\bf auf} \ {\bf Mfk}).$

Remark RG-1-05-05 (Lokale Beschreibung von Riemannischer Metrik).

Definition RG-1-05-06 (Abzählbare Mfk im Unendlichen).

Remark RG-1-05-07 (Relevanz der Abzählbarkeit im Unendlichen 1) Existenz von Verfeinerungen (lokal endlich) für offene Überdeckungen 2) Zerlegung der Eins).

Proposition RG-1-05-08 (Jede Mfk besitzt eine Riemannische Metrik).

Example RG-1-05-09 (\mathbb{R}^2 in Polarkoordinaten).

Definition RG-1-05-10 ((Lokale) Isometrie von RMfk).

Definition RG-1-05-11 (Isometrische Einbettung von RMfk).

Example RG-1-05-12 (Untermannigfaltigkeit mit induzierter Metrik).

Remark RG-1-05-13 (Kompakte Mfk lassen sich in Euklidischen Raum einbetten).

Remark RG-1-05-14 (Unterscheidung zw. Innerer und äußerer Geometrie: Eigenschaften der Mfk vs der Einbettung).

Example RG-1-05-15 (Rotationsfläche).

Example RG-1-05-16 (Hyperbolischer Raum).

Example RG-1-05-17 (Poincaremodell des hyperbolischen Raumes).

Definition RG-1-05-18 (Riemannisches Produkt).

Example RG-1-05-19 (RxSn).

Example RG-1-05-20 (Flacher Torus).

Proposition RG-1-05-21 (Charakterisierung der Isometrien von flachen Tori).

Example RG-1-05-22 (Kleinsche Flasche).

Remark RG-1-07-01 (Ableitung von Vektorfeldern längs Vektorfeldern).

Definition RG-1-07-02 (Zusammenhang auf Mfk).

Theorem RG-1-07-03 (Fundamentaltheorem der Riemannischen Geometrie).

Definition RG-1-07-04 (Koszulgleichung für Zusammenhänge).

Definition RG-1-07-05 (Chirstoffelsymbole als Korrekturterme in lokalen Koordinaten).

Remark RG-1-07-06 (Levi-Civita Zusammenhang $D_X Y_p$ hängt nur von X_p ab).

Lemma RG-1-07-07 (Formel für Christoffelsymbole aus Koszulgleichung).

Example RG-1-07-08 (Christoffelsymbole für Rn für euklidische Metrik).

Example RG-1-07-09 (Christoffelsymbole für $\mathbb{R}^2 \setminus 0$ und lokale Darstellung der Metrik zur Polarko-ordianten).

Proposition RG-1-07-10 (Induzierter LC-Zusammenhang auf Untermannigfaltigkeiten von RMfk).

Definition RG-1-08-01 (Vektorfelder längs Kurven).

Proposition RG-1-08-02 (Kovariante Ableitungs-Operator längs Kurven induziert durch LC-Zusammenhang der RMfk (EE)).

Proposition RG-1-08-03 (Kovariante Ableitung der Riemannischen Metrik längs Kurven).

Definition RG-1-09-01 (Parallele Vektorfelder längs Kurven).

Proposition RG-1-09-02 (Eind. Existenz von parallelen Vektorfelder für Anfangswert (Punkt, Tangentialvektor)).

Definition RG-1-09-03 (Parallelverschiebung von Tangentialvektoren bzgl parallelen Vektorfeldern längs Kurven).

Remark RG-1-09-04 (Abhängigkeit der Parallelverschiebung von Kurve).

Proposition RG-1-09-05 (Parallelverschiebung ist Isometrie zwischen Tangentialräumen).

Example RG-1-09-06 (Parallelverschiebung im euklidischen Raum).

Example RG-1-09-07 (Parallelverschiebung auf S^n).

Remark RG-1-16-01 (n-Torus ist glatte Mfk).

Example RG-1-16-02 (R mit zwei 0 ist nicht Hausdorff).

Example RG-1-16-03 (Lie-Klammer berechnen von Vektorfeldern).

Remark RG-1-17-01 (Tangentialbündel ist glatte Mfk).

Remark RG-1-17-02 (Differential und Untermannigfaltigkeit von regulären Werten).

Remark RG-1-17-03 (Lorentz-Skalarprodukt ist eine Metrik).

Remark RG-1-17-04 (Pullback-Metrik von Hyperbolischem Raum mit Lorentz-Metrik).

Definition TOP1-1-02-01 (Standard-p-Simpelx).

Definition TOP1-1-02-02 (Singulärer-p-Simplex).

Definition TOP1-1-02-03 (Singuläre-p-Kettengruppe).

Definition TOP1-1-02-04 (Rand-Operator auf Singulären-p-Kettengruppen).

Definition TOP1-1-02-05 (Definition der Singulären Homologie Abbildung und Singuläre Komplexe).

Remark TOP1-1-02-06 (Inklusion' der Singulären Komplexe).

Remark TOP1-1-02-07 (Problem: Ist die definierte Singuläre Homologie Abbildung eine Instanz einer Homologie Theorie?).

Definition TOP1-1-04-01 (Affiner Singulärer Simplex).

Definition TOP1-1-04-02 (Unterkategorie von Singulärer Komplex der Standard Simplex erzeugt durch affine singuläre Simplize).

Definition TOP1-1-04-03 (Kegel Operator auf affine singuläre Simplize).

Lemma TOP1-1-04-04 (Rand von Kegel eines affinen singulären Simplex).

Definition TOP1-1-04-05 (Barycenter-Operator (Subdivison Operator) auf Unterkomplex der affinen singulären Simplize).

Proposition TOP1-1-04-06 (Barycenter-Operator ist Kettenabbildung zwischen Subkomplexen der affinen singulären Simplize).

Definition TOP1-1-04-07 (Homotopie-Operator von Subkomp p nach Subkomp p + 1).

Proposition TOP1-1-04-08 (Barycenter-Operator ist homotop zu Identität-K-Abb bzgl Homotopie-Operator).

Definition TOP1-1-04-09 (Barycenter-Operator auf singulären Komplexe).

Definition TOP1-1-04-10 (Homotopie-Operator auf singulären Komplexen).

Theorem TOP1-1-04-11 (a) Operatoren sind Natürlich b) BC-Operator ist Ketten-Abbildung und homotop zu Identität bzgl H-Operator c) Verträglich mit Def auf Subkompelx der affinen sing. Simplize d) Abbildungen von sing Simplex im Bild des sing Simplex).

Proposition TOP1-1-04-12 (Iterative Anwendung von BC-Operator ist kettenhomotop zur Identität bzgl Abbildung abhängig von H-Operator).

Lemma TOP1-1-04-13 (Durchmesser Abschätzung für Simplize in Ketten der Barycenter Unterteilung von affinen Simplize).

Corollar TOP1-1-04-14 (Durchmesser Abschätzung für affine Simplize in k-fach BC-unterteilten Identitäten von Standard-Simplizes).

Proposition TOP1-1-04-15 (k-fach BC-unterteilter singulärer Simplex ist U-klein).

Definition TOP1-1-04-16 (Singulärer Subkomplexe erzeugt durch U-kleine singuläre Simplize und Homologiegruppen über offener Überdeckung).

Proposition TOP1-1-04-17 (Homologie-Äquivalenz von normalen Homologiegruppen und Homologiegruppen über offenen Überdeckungen).

Definition TOP1-1-04-18 (Singulärer Quotientenkomplex über offener Überdeckung).

Theorem TOP1-1-04-19 (Ausschneidungssatz: Zu $B \subset A \subset X$ induziert die Inklusion (X-B, A-B) in (X, A) eine Isomorphismus zw relativen Homologiegruppen (X, A) über $\{A, X - B\}$ und relative Homologiegruppe (X, A)).

Theorem TOP1-1-04-20 (Ausschneidungsaxiom).

Study TOP1-1-04-21 (Eigenschaften des Barycenter / Homotopie Operators).

 $\textbf{Definition TOP1-1-09-01} \ (\text{Relative Homologie} \ (\text{QuotientenKomplexe})).$

Theorem TOP1-1-09-02 (Existenz von exakter sing. Homologie-Sequenz für (X, A)).

Theorem TOP1-1-09-03 (Kurze Exakte Sequenz von relative Singulären Komplexen induziert lange exakte relative Homologie-Sequenz).

Corollar TOP1-1-09-04 (Splitting der Singulären Komplexe von (X, A) nach (X)).

Definition TOP1-1-09-05 (Relative Homologie (Relative Zyklen u Ränder)).

Definition TOP1-1-09-06 (Relative Zyklen und Ränder).

Proposition TOP1-1-09-07 (Definition der relativen Homologie sind isomorph).

Definition TOP1-1-09-08 (Aumentierter singulärer Komplex).

Definition TOP1-1-09-09 (Reduzierte Homologiegruppe).

Proposition TOP1-1-09-10 (Reduzierte Homologiegruppen sind ISO zu punktierte Homologiegruppe für $n \ge 0$).