TEMA 2 SERIE DE EJERCICIOS – PARTE 3

TOTAL DE PUNTOS:	[DΕ	60

Nota: Los ejercicios se entregan de forma individual en cualquier formato.

1.1. EJERCICIO 1.

Considere la siguiente tabla en la que se almacenan los datos de los internos de un reclusorio. Existen 2 sistemas los cuales se encargan de administrar los datos de los internos dependiendo de su tipo: A = Alta peligrosidad, O = Ordinario. Por otro lado, se cuentan con 3 sistemas biométricos que procesan las fotos y las huellas de los internos. SB1 es el sistema biométrico que se encarga de procesar las huellas de la mano izquierda (huella 1 a huella 5), SB2 es el sistema biométrico que se encarga de procesar las huellas de la mano derecha (huella 6 a huella 10), y SB3 encargado de procesar las fotos.

Los 5 sistemas se encuentran distribuidos y tienen las mismas restricciones en cuanto a costos de red, almacenamiento y procesamiento. Para el caso de los 3 sistemas biométricos, el acceso para cada huella y foto es uniforme, es decir, se acceden por igual a cada una de las imágenes del interno. Considerando los puntos anteriores:

A. Realizar el proceso de fragmentación y obtener las expresiones que definan a cada uno de los fragmentos F_j

INTERNO ¶ INTERNO ID NUMERIC(10.0) NOT NULL **♦ NOMBRE** VARCHAR(40) NOT NULL AP PATERNO VARCHAR(40) NOT NULL AP MATERNO VARCHAR(40) NOT NULL TIPO CHAR(1) NOT NULL HUELLA_1 BINARY(40) NULL HUELLA_2 BINARY(40) NULL HUELLA_3 BINARY(40) NULL HUELLA 4 BINARY(40) NULL HUELLA 5 BINARY(40) NULL HUELLA 6 BINARY(40) NULL HUELLA_7 BINARY(40) NULL ♦ HUELLA_8 BINARY(40) NULL HUELLA 9 BINARY(40) NULL HUELLA_10 BINARY(40) NULL FOTO BINARY(40) NOT NULL

10P

B. Considerando la siguiente tabla de datos asignar cada valor a su correspondiente fragmento.

INTERNO_ID	NOMBRE	AP_PAT	AP_MAT	TIPO	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8	H_9	H_10	F
1	JUAN	LUNA	GIL	0	B1	B2	В3	B4	B5	В6	В7	B8	В9	BA	BF
2	MARIO	PEREZ	PAEZ	Α	B1	B2	В3	В4	B5	В6	В7	В8	В9	ВА	BF

B* = Datos binarios.

10P

C. Generar las expresiones requeridas para garantizar la reconstrucción de la tabla original a partir de nos N fragmentos obtenidos.

10P

1.2. EJERCICIO 2.

Considere el modelo relacional de la siguiente figura que almacena las mediciones de radiación solar que realizan 2 telescopios, así como la lista de servidores encargados del procesamiento de cada medición.

Reglas de fragmentación (Respetar el siguiente orden):

- 1. La tabla SERVIDOR será fragmentada con base al valor de su IP. Servidores en el segmento 20 (192.168.20.X) se asignarán a un fragmento, y servidores en el segmento 21 al otro. Solo se cuenta con servidores en los segmentos 20 y 21. (Recomendación: emplear las funciones INSTR y SUBSTR en Oracle para extraer el valor del segmento).
- 2. Para la tabla MEDICIÓN se tienen las siguientes reglas:
 - A. Las mediciones se deberán agrupar con base al nombre del telescopio que las generó. Se tienen 2 telescopios: morelos 1 y morelos 2.
 - B. Posterior a este requisito, se debe considerar el servidor que procesa cada registro dependiendo la IP (segmento 20 o segmento 21).
 - C. Observar las columnas LOW y HIGH. Para cada medición se registran 2 valores: un valor alto y un valor bajo. Adicional a los fragmentos generados hasta el momento, se debe considerar un criterio más: Medidas LOW deberán ubicarse en un fragmento y medidas HIGH en otro. El nombre del telescopio que realizó la medida y el servidor que la procesó deben incluirse en ambos fragmentos.
- A. Realizar el esquema de fragmentación en términos de álgebra relacional. Los predicados deben ser expresiones SQL válidas.

<u>Ejercicios. Tema 2</u>
Bases de datos distribuidas.

- Para SERVIDOR
- Para MEDICION

B. Generar la expresión de reconstrucción para la tabla MEDICION.

10P

10P