Evolution et équilibres chimiques

Agrégation 2020

Synthèse du dioxyde d'azote

Hypothèses sur le système chimique étudié

- Equilibre thermodynamique
- système fermé siège d'une réaction chimique
- Transformations isothermes et isobares. (P=Pext et T=Text)
- Pas de travail autres que celui des forces de pression

Condition d'équilibre

L'équilibre 2 $NO_{2(g)} = N_2O_{4(g)}$

	2 NO _{2 (g} =	$N_2O_{4(g)}$
Etat initial	n ₁	n2
Etat d'équilibre	n ₁ -2ξ	n ₂ +ξ

Critère d'évolution et d'équilibre

Extrait de Chimie Tout-en-un, Tristan RIBEYRE. Chimie PC. de boeck, 2014.

Détermination de la constante de dissociation de l'acide éthanoïque dans l'eau

	CH ₃ COOH _(aq) +	H ₂ O _(I) =	CH ₃ COO- _(aq) +	H ₃ O ⁺ _(aq)
Etat initial	C _o	Excès	0	0
Etat final	C ₀ .(1-α)	Excès	C ₀ .α	C ₀ .α

Influence de la température

$$PbI_2(s) = Pb^{2+}_{(aq)} + 2I^{-}_{(aq)}$$
 [Pb²⁺] et [I-] tel que Ks=[Pb²⁺].[I-]² =s.(2s)²=4.s³

Loi de Kohlrausch:

Influence de la pression sur l'équilibre 2 $NO_{2(g)} = N_2O_{4(g)}$

$$K^{\circ} = \frac{x^g_{N_2O_4}p^{\circ}}{(x^g_{N_{O2}})^2 p} \qquad Qr = \frac{x^g_{N_2O_4} \cdot p^{\circ}}{(x^g_{N_{O2}})^2 \cdot p'} < K^{\circ}$$

$$Compression \qquad \text{Équilibre}$$