Lecture 15

Generate different clock from given clock

- 2 approaches
 - Using a gated D latch, $D = \overline{Q}$, which halves the frequency
 - Using a counter (attached to the clock) as D

Finite State Machines

- Named because a circuit with k registers can have at most 2^k states

Example

- Motor outputs status w
- If status is okay, output of FSM z = 0
- if a sequence of w is 1, 0, 1, an error has occurred, outputs z = 1
- z is fed back into the circuit
- Design Step 1: State Diagram
 - State A (z = 0): a bunch of zeros
 - State B (z = 0): a bunch of zeros then a 1
 - State C (z = 0): a bunch of zeros then 1, 0
 - State D (z = 1): a bunch of zeros then 1, 0, 1
 - We can write a table

Present State	w = 0	w = 1	\mathbf{z}
A	A	В	0
В	\mathbf{C}	В	0
\mathbf{C}	A	D	0
D	\mathbf{C}	В	1

We need 2 flip flops (2 bits) with state codes $A=00,\,B=01,\,C=10,\,D=11.$ Substituting into the table with the convention y= previous output, Y= next output,

y_2y_1	$Y_2Y_1 \ (\mathbf{w} = 0)$	$Y_2Y_1 \text{ (w = 1)}$	z
00	00	01	0
01	10	01	0
10	00	11	0
11	10	01	1

By inspection, $Y_1 = w$, $z = y_2y_1$. Using a k-map, $Y_2 = \overline{w}y + wy_2\overline{y_1}$.