1. $\varphi: p_0 \rightarrow p_1$ $\psi: (p_0 \leftrightarrow p_1) \vee (\neg p_0 \wedge p_1)$

(a)

Po	Pı	700	Po ←> þ1	700 A P1	9: po=p,	4: (po 00 pr) V (7po 1p1)	y coy
1	(0	1	0	1	1	1
1	0	0	0	0	0	O	1
0	1	1	0	1	1	1	1
0	0	1	1	0	1	1	1

Como o valor lógico de $\varphi \leftrightarrow \psi$ i 1 independentemente dos valores lógicos dos variavois proposicionais po e p1, $\varphi \leftrightarrow \psi$ i umo tentológia, don de φ e ψ são logicamente equivalentes. A afirmação i verdedeira.

(b) Atendendo à tabele de verdade apresentada ma alinea anterier, subc mos que se os valores lógicos de po e pr sas iguais a 0, entas o velos lógico de Y i 1. Portanto, a afirmação i falsa.

2.

$$\begin{array}{lll} p: & \forall y \in A & \exists x \in A & y = x^2 \\ q: & \exists y \in A & \forall x \in A & y = x^2 \end{array}$$

(a) Consideranos $A = \{1, -1\}$.

Tensos que y = 1 é tel que , para todo $x \in A$, $y = x^2$. De facto, $1^2 = 1$ e $(-1)^2 = 1$. \log_0 , q é verdadeira.

Jai a afromação p sua falsa : para y = -1, más existe \log_0 a de falsa : \log_0 constant \log_0 constant

(l) TP => => => => => == == y + x2

(a) Satemos que paq é falsa se esó se pelo menos uma dos proposições paq é falsa.

Mostrando que se privarda deira entar q é falsa estamos a considerar o casa em que pre sendadeira e, se entar q é falsa, garantimos o casa em que pre sendadeira e, se entar q é falsa, garantimos

que prq é falsa.

O casa em que p é falsa é trivial: prq será também falsa.

Anim, a rfir maeció é rende diss.

(b) m, m ∈ IN

mxm inger - (m imper ou n imper)

A prova segue pelo prova da contravoreciproca:

7 (m imper V n imper) -> 7 (m×n imper)

ou seja

(m par n m par) -> m × m par.

Admitamos, entos, que m en são pares. Entos, existem p, $K \in IN$ tais que m = 2p e m = 2K.

Logo,

mxm = 2 p x 2 k = 2 (2 pk).

Como 9 = 2 fr K E/N 1 m×m = 292, temos que m×m i também par, o que conclui a piera. 0

(a)
$$A = \{2m \mid n \in \mathbb{N} \land m^3 \leq 40\}$$

$$m=1 \rightarrow M^{3}=1$$

$$m=2 \rightarrow M^{3}=8$$

$$M=3 \rightarrow M^{3}=27$$

$$M=4 \rightarrow M^{3}=64$$

$$M=9 \longrightarrow M$$
 $M \ge 4 \longrightarrow M^3 \ge 64$
 $Logo, A = \{2m \mid m=1 \lor m=2 \lor m=3\}$
 $= \{2, 4, 6\}.$
 $2 \times 1 = 2$
 $2 \times 2 = 4$
 $2 \times 3 = 6$

$$\chi^{2}-3 \in \mathbb{B} \iff \chi^{2}-3=1$$
 (oss: a equation $\chi^{3}-3=\{2,4\}$ must be $\chi^{2}=4$ $\iff \chi=2 \ \forall \ \chi=-2$

$$Anim$$
, $D = \{-2, 2\}$.

- (b) $(1, \{2,4\}, 4) \in C_{\times}(B \setminus C) \times C$ $m \ge \infty$ $m = 1 \in C$ $\{2,4\} \in B \setminus C$ $e \in C$, $e \in C$ $e \in C$
 - Dizer que $B \cap P(C) \neq \emptyset$ é equivalents a dizer que existe plo menos um elemento X en $B \cap P(C)$.

Tomando X = {2,4}, temos que XEB e que X E C. logo, BOP(c) #9

Syam A= {1,2,3}, B= {2}, C= {3}. (a)

Temos que AI(Bnc) = AIØ = A.

Por outro lado, AIB = {1,3}, AIC = {1,2} e

(A\B) \((A\C) = \{1\}.

A (BOC) + (AIB) N (AIC)

e a afinmação í folso

- (b) Salernos que B S AUB & que AUB = A logo, BEA a afic mæent i vindadeirs.
- (c) P(0) = {0} Logo, P(p) × P(p) = {(p,p)}, pelo que (p, {p}) & P(p) × P(p) A afirmosal et folso.
 - (d) Se A e um conjunto com 2 elementos, entar A² = Ax A tem 2x2 = 4 elementos, P(A) tien 22=4 elementos 1, por consequint, A2 x P(A) tem 4x4=16 elementos.

A afin mases i verdadurs.

6. Dodo x , temos

x ∈ (AUB) \ (ADB) ⇒ x ∈ AUB n n ¢ (ADB) E> (NE AVXEB) N (N ¢AVX ¢B) (> (nEANNEA) V (NEBNNEA) V (NEANNEB) V V (XEB NZEB)

<=> (xeAnneB) V (neBnneA)

XEAIB V XEBIA

() NE (AIB) U (BIA). Logo, (AIB) U (BIA) =

= (AUB) \ (AOB).