

Universidade Eduardo Mondlane

Faculdade de Ciências

Departamento de Física

FÍSICA PARA CURSO DE LICENCIATURA EM ENGENHARIA INFORMÁTICA

Regente: Félix Tomo

Assistentes: Bartolomeu Ubisse; Belarmino Matsinhe; Esménio Macassa; Fernando Mucomole;

Graça Massimbe & Valdemiro Sultane

2022-AP # 07- Campo Magnético

- Compare as interacções eléctricas e magnéticas, sintetizando as principais semelhanças e diferenças.
- 2. Um protão, um deuterão (deutério) e uma partícula α , acelerados pela mesma diferença de potencial, atravessam um campo magnético uniforme \vec{B} , perpendicular às velocidades. (a) Compare o valor das suas energias cinéticas. (b) Se o raio de trajectória circular do protão for igual a 10 cm, quais serão os raios das trajectórias correspondentes para o deuterão e para partícula α ?.
- 3. Um electrão passou de uma diferença de potencial $\Delta \phi$ e entrou numa região com um campo magnético uniforme caracterizado por H = 2×10^5 A/m (B = μ_0 H). O ângulo de entrada (ângulo formado entre \vec{B} e \vec{v}) é igual a 60° , e o passo da hélice é p= 10 cm. Determine $\Delta \phi$.
- 4. Um electrão passou de diferença de potencial de 100 V e entrou na região com campo magnético uniforme B = 2T. A componente longitudinal da velocidade é duas vezes maior do que a transversal. Determine o passo e o raio da trajectória helicoidal do electrão.
- 5. Um electrão sofre a acção simultânea dos campos uniformes eléctrico e magnéctio. O campo eléctrico é dado por $\vec{E} = 2\vec{i} \vec{j}$ (SI), enquanto que o campo magnético é dado por $\vec{B} = 0.04\vec{i} 0.01\vec{j}$ (SI). Sabendo que a velocidade de entrada do electrão é $\vec{v} = 300\vec{i} + 400\vec{j} 100\vec{k}$ (SI), calcule o módulo da força que actua sobre o electrão.
- 6. Partículas carregadas são lançadas para uma região de campos magnéticoe eléctrico cruzados. A velocidade da partícula incidente é normal ao plano dos dois campos, e os campos são normais entre sí. O módulo do campo magnético é de 0.1T. O campo eléctrico é gerado

por um par de placas paralelas carregadas com cargas iguais, mas de sinais opostos e separados de 2 cm. Sabendo que quando a diferença de potencial aplicada entre as placas for de 300 V, nao há deflexão das partículas, determine a velocidade das partículas.

7. Um fio de 13.0 g de massa e 62.0 cm de comprimento, está suspenso por um par de contactos flexíveis na presença de um campo magnético uniforme B = 0.44 T. Determine (a) O valor absoluto e (b) O sentido da corrente (para a direita ou para a esquerda) da corrente necessária para remover a tensão dos contactos da Fig.1.

Figura 1:

- 8. Determine o campo magnético criado no ponto P que dista 50 cm, perpendicularmente a um segmento rectilíneo de corrente i = 0.5 A.
- 9. Três condutores longos e paralelos, passam pelos vértices de um quadrado de lado ℓ . Calcule o campo magnético \vec{B} no vértice vazio, sabendo que todas as correntes entram no plano do papel.
- 10. Determine o campo magnético \vec{B} ao longo do eixo de uma corrente circular.
- 11. Uma esfera condutora de raio R e carregada uniformemente com a densidade superficial de carga σ , gira em torno do seu eixo com velocidade angular ω . Determine o campo magnético \vec{B} no centro da esfera.
- 12. No circuito apresentado na Fig.2, uma corrente i=562 mA circula em uma espira formada por dois segmentos radiais e duas semicircunferências de raios a=5.72 cm e b=9.36 cm, com um centro comum P. Determine (a) O módulo e o sentido (entra ou sai da página) do campo magnético no centro e, (b) O módulo e sentido do momento magnético dipolar $\vec{\mu}$ do circuito.

Figura 2:

13. Na Fig.3, dois arcos de circunfência têm raios a = 13.5 cm e b = 10.7 cm, formam um ângulo θ = 74^o , conduzem uma corrente i = 0.411 A e tem o mesmo centro de curvatura P. Determine o módulo e o sentido do campo magnético no ponto P.

Figura 3:

14. Um fio rectilíneo longo AB, representado na Fig.4, conduz corrente de $i_1 = 14.0$ A. A espira rectangular cuja aresta mais longa é paralela ao fio, conduz corrente $i_2 = 5.0$ A. Determine o módulo, a direcção e sentido da força magnética resultante produzida pelo campo do fio e exercida sobre a espira.

Figura 4: