

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS 2024/2025 ACADEMIC YEAR

FOURTH YEAR SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF:

BACHELOR OF SCIENCE(P102 P103, P106),
BACHELOR OF EDUCATION (E101)

COURSE CODE: MAT 412

COURSE TITLE: MEASURE THEORY

DATE: th DEC., 2024 TIME:

Instructions: See Inside

SECTION A

Question ONE is Compulsory

QUESTION ONE (30 marks)

(a)	List three limitations associated with Riemann integration.	[3	marks]
(b)	What is a sigma algebra?	[4	marks]
(c)	List all sigma algebras on $X = \{a, b, c\}.$	[5	marks]
(d)	Let (X, \mathcal{A}) be a measurable space. When is a function $f: X \to \mathbb{R}$ said measurable?		be $\mathcal{A}-$
(e)	Show that the function $f(x) = c$, where c is a scalar, is Borel measurab $marks$	le.	[5
(f)	Define a measure.	[4	marks]
(g)	Let A be a measurable set. When do we say that a measurable function		
	$\psi:A\to\mathbb{R}$ is simple?	[2	marks]
(h)	When is a set $E \subseteq X$ said to be m^* – measurable?	[2	marks]
(i)	Show that the sets \emptyset and $\mathbb R$ are Lebesgue measurable.	[3	marks]
	m^* the Lebesgue measure.	[3	marks]

MAT 412 Page 2 of 5

SECTION B

Answer any Two questions from this section

QUESTION TWO (20 marks)

- (a) Show that the intersection of any two sigma algebras is a sigma algebra. [6 marks]
- (b) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 3x + 2 & \text{if } x \in [0, 4] \\ 2x - 4 & \text{if } x \in (5, 10) \\ 0 & \text{if otherwise} \end{cases}$$

show that $38 \le \int f \ dm \le 136$ where m is the Lebesque measure. [8 marks]

(c) Let $(\mathbf{X}, \mathcal{A}, \mu)$ be a measure space, and $\{E_n\}$ be a monotone sequence in \mathcal{A} .

If $\{E_n\}$ is increasing, show that $\lim_{n\to\infty} \mu\{E_n\} = \mu\left(\lim_{n\to\infty} E_n\right)$ [6 marks]

QUESTION THREE (20 marks)

- (a) Show that a measurable function f is integrable if and only if |f| is integrable. [4 marks]
- (b) Consider the function $f(x) = x^2 + 1$ defined on the interval [0, 4].
 - i) Find the upper and lower Riemann sums when the interval is partitioned into 4 equal intervals. [4 marks]
 - ii) Find the exact Riemann integral. [5 marks]
 - iii) Compute $\int_0^4 (x^2 + 1) dx$. [3 marks]
- (c) Let X be a set, \mathcal{A} a sigma-algebra on X, and $A \in \mathcal{A}$. The characteristic (indicator) function of A, denoted by χ_A , is defined as:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

MAT 412 Page 3 of 5

Show that χ_A is a measurable function with respect to the sigma-algebra \mathcal{A} .

[4 marks]

QUESTION FOUR (20 marks)

(a) Let $M^+(X, \mathcal{A})$ denote the collection of all positive measurable functions on X.

Let $f, g \in M^+(X, \mathcal{A})$. If $f(x) \leq g(x)$ for all $x \in X$, show that

$$\int_{X} f \, d\mu \le \int_{X} g \, d\mu. \tag{4 marks}$$

(b) Let $M^+(X, \mathcal{A})$ denote the collection of all positive measurable functions on X.

Let $f \in M^+(X, \mathcal{A})$, and let $B, C \in \mathcal{A}$ with $B \subset C$.

Show that: $\int_B f d\mu \leq \int_C f d\mu$.

[4 marks]

(c) Let $X = \{1, 2, 3, 4\}, A = \{\emptyset, X, \{1\}, \{2, 3, 4\}\}, Y = \{a, b, c\}$ and

 $\mathcal{B} = \{\emptyset, Y, \{b\}, \{a, c\}\}.$

Define $f: X \to Y$ by $1 \to a, 2 \to a, 3 \to b, 4 \to c$ and

 $q: X \to Y$ by $1 \to b$, $2 \to a$, $3 \to c$, $4 \to c$.

Determine whether each of these functions is measurable or not.

[6 marks]

(d) Show that the Lebesque outer measure is translation invariant. That is:

$$m^*(A+b) = m^*(A)$$

[6 marks]

MAT 412 Page 4 of 5

QUESTION FIVE (20 marks)

(a) The function $\psi : \mathbb{R} \to \mathbb{R}$ is defined as:

$$\psi(x) = \begin{cases} 5 & \text{if } x \in [0, 6] \\ 2 & \text{if } x \in \{7, 8, 9\} \\ 4 & \text{if } x \in (9, 12) \\ 0 & \text{if otherwise} \end{cases}$$

Let m be the Lebesque outer measure. Evaluate

i)
$$\int \psi \ \delta m$$
 [5 marks]

ii)
$$\int_E \psi \ \delta m$$
 where $E=(4,11).$ [5 marks]

(b) Let
$$\phi$$
 and ψ be simple functions on (X, \mathcal{A}, μ) , show that

$$\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$$
 [10 marks]

MAT 412 Page 5 of 5