Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

1	Pac	пределение простых чисел	2
2	Пер	овообразный Корень	4
3	Гра	афы	4
	3.1	Алгоритм dfs (поиск в глубину)	5
		3.1.1 Дигоритм Косарайю	7

«««< HEAD

1 Распределение простых чисел

Определение 1.1. $\pi(x) = |\{p \leqslant x | p - \text{простое}\}|$

Определение 1.2. $\theta(x) = \sum_{p \leqslant x} \ln p$

Определение 1.3.
$$\psi(x) = \sum_{(p,\alpha),p^{\alpha} \leqslant x} \ln p = \sum_{p \leqslant x} \ln p [\log_p x] = \sum_{p \leqslant x} \left[\frac{\ln x}{\ln p} \right] \leqslant \sum_{p \leqslant x} \ln p$$

Также введем:

$$\lambda_1 = \overline{\lim}_{x \to \infty} \frac{\theta(x)}{x}, \lambda_2 = \overline{\lim}_{x \to \infty} \frac{\psi(x)}{x}, \lambda_3 = \overline{\lim}_{x \to \infty} \frac{\pi(x)}{x/\ln x}$$

$$\mu_1 = \underline{\lim}_{x \to \infty} \frac{\theta(x)}{x}, \mu_2 = \underline{\lim}_{x \to \infty} \frac{\psi(x)}{x}, \mu_3 = \underline{\lim}_{x \to \infty} \frac{\pi(x)}{x/\ln x}$$

Лемма 1.1. $\lambda_1 = \lambda_2 = \lambda_3, \mu_1 = \mu_2 = \mu_3$

Доказательство.

$$\frac{\theta(x)}{x} = \frac{\sum_{p \leqslant x} \ln p}{x} \leqslant \frac{\psi(x)}{x} \leqslant \frac{\sum_{p \leqslant x} \ln x}{x} = \frac{\ln x}{x} \sum_{p \leqslant x} 1 = \frac{\ln x}{x} \pi(x) = \frac{\pi(x)}{x / \ln x}$$

$$\lambda_1 \leqslant \lambda_2 \leqslant \lambda_3$$

При $\beta \in [0,1)$:

$$\theta(x) = \sum_{p \leqslant x} \ln p \geqslant \sum_{x^{\beta}$$

Заметим, что $x > \pi(x)$:

$$\beta \ln x \left(\pi(x) - \pi \left(x^{\beta} \right) \right) \geqslant \beta \ln x \left(\pi(x) - x^{\beta} \right)$$

$$\frac{\theta(x)}{x} \geqslant \frac{\beta \pi(x)}{x/\ln x} - \frac{\beta x^{\beta} \ln x}{x}$$

$$\overline{\lim}_{x \to \infty} \frac{\theta(x)}{x} \geqslant \overline{\lim}_{x \to \infty} \left(\frac{\beta \pi(x)}{x/\ln x} - \frac{\beta x^{\beta} \ln x}{x} \right) = \overline{\lim}_{x \to \infty} \frac{\beta \pi(x)}{x/\ln x} \quad \forall \beta \in [0, 1)$$

Теперь, если взять супремум по β , получится

$$\overline{\lim}_{x \to \infty} \frac{\theta(x)}{x} \geqslant \overline{\lim}_{x \to \infty} \frac{\pi(x)}{x/\ln x} \Rightarrow \lambda_1 \geqslant \lambda_3$$

Итого, $\lambda_1 \leqslant \lambda_2 \leqslant \lambda_3 \leqslant \lambda_1 \Rightarrow$ они все равны

Теорема 1.1.

$$\pi(x) \sim \frac{x}{\ln x}$$

Теорема 1.2 (Чебышев). $\forall \varepsilon > 0 \exists x_0 \forall x > x_0$:

$$(1 - \varepsilon) \frac{x}{\ln x} \cdot \ln 2 \leqslant \pi(x) \leqslant (1 + \varepsilon) \frac{x}{\ln x} \cdot 4 \ln 2$$

Доказательство. Рассмотрим C_{2n}^n . Заметим, что $C_{2n}^n < 2^{2n}$. $\ln C_{2n}^n < 2n \ln 2$

$$C_{2n}^n = \frac{(2n)!}{n!n!} \geqslant \prod_{n$$

Рассмотрим $n = 1, 2, ... 2^k$.

$$2n \ln 2 > \ln C_{2n}^{n} \geqslant \theta(2n) - \theta(n)$$
$$2n \ln 2 > \theta(2n) - \theta(n)$$
$$2(1 + 2 + \dots + 2^{k}) \ln 2 > \theta(2^{k+1})$$
$$2^{k+1} \ln 2 > \theta(2^{k+1})$$

Расмотрим $2^k \leqslant x \leqslant 2^{k+1}$

$$\theta(x) \le \theta(2^{k+1}) < 2^{k+2} \ln 2 < 4x \ln 2 \Rightarrow \frac{\theta(x)}{x} < 4 \ln 2$$

Получили правое неравенство. Теперь получим левое:

$$C_{2n}^{0} + C_{2n}^{1} + \dots + C_{2n}^{2n} = 2^{2n} \Rightarrow C_{2n}^{n} > \frac{2^{2n}}{2n+1}$$

$$\ln C_{2n}^{n} > 2n \ln 2 - \ln(2n+1)$$

$$C_{2n}^{n} = \frac{(2n)!}{n!n!} = \frac{\prod_{p \leqslant 2n} p^{\left[\frac{2n}{p}\right] + \left[\frac{2n}{p^{2}}\right] + \dots}}{\left(\prod_{p \leqslant 2n} p^{\left[\frac{n}{p}\right] + \left[\frac{n}{p^{2}}\right] + \dots}\right)^{2}} =$$

$$= \prod_{p \leqslant 2n} p^{\left(\left[\frac{2n}{p}\right] - \left[\frac{n}{p}\right]\right) + \left(\left[\frac{2n}{p^{2}}\right] - \left[\frac{n}{p^{2}}\right]\right) + \dots} \leqslant \prod_{p \leqslant 2n} P^{\left[\log_{p}(2n)\right]} = e^{\psi(2n)} \Rightarrow \ln C_{2n} \leqslant \psi(2n)$$

$$\psi(2n) \geqslant 2n \ln 2 - \ln(2n+1) > (x-2) - \ln(x+1)$$

Если $x \in [2n, 2n+2)$, то $\psi(x) \geqslant \psi(2n) \geqslant (x-2) \ln 2 - \ln(x+1)$. Итого:

$$\frac{\psi(x)}{x} \geqslant \frac{x-2}{x} \ln 2 - \frac{\ln(x+1)}{x} \Rightarrow \mu_2 \geqslant \ln 2, \mu_3 \geqslant \ln 2$$

И тогда:

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} \geqslant \ln 2$$

Но тогда, с какого-то момента:

$$(1 - \varepsilon x) \frac{x}{\ln x} \ln 2 \leqslant \pi(x)$$

Анекдот: Райгор учился на кафедре мехмата в девяностые годы и интересовался теорией чисел. Один раз он сидел со своим руководителем на кафедре, и вдруг туда заходит калоритный иностранец с сильным акцентом. Зашел и говорит: "А не расскажите лы вы мнэ, сколко нулэй на концэ числа 100!". Они с научруком ему объяснини, что надо посчитать степень вхождения 5 и 2, в общем он понял и ушел. Приходит через неделю и говорит: "Я понял, как пощитать колычество нулэй на концэ числа 100!, а тэпэрь скажытэ мнэ, как пащитать калычество нулэй на концэ числа 1000!"

Утверждение 1.1 (Постулат Бертрана). $\forall x \geqslant 2 \exists p \in [x, 2x] = [x, x + x]$

Но это сложно, мы займемся другим вопросом: При каких f(x) можно рассчитывать на существование $p \in [x, x + f(x)]$ хотя бы при $x \geqslant x_0$.

Утверждение 1.2 (Асимптотический Закон Распределения Простых Чисел). f(x) = o(x)

Утверждение 1.3 (Гипотеза). $f(x) = O(\ln^2 x)$

2 Первообразный Корень

Определение 2.1. Пусть (a,m)=1. Показатель числа $a \mod m$ — это минимальное δ , такое, что $a^{\delta} \equiv_m 1$.

Утверждение 2.1. $\delta | \varphi(m)$

Определение 2.2. Пусть (a, m) = 1. Если показатель $a \mod m = \varphi(m)$, то a называется первообразным корнем и обозначается q.

Замечание. Если по m m m первообразный корень, то $1, g, g^2 \dots g^{\varphi(m)-1}$ — все взаимно простые с m остатки.

Определение 2.3. $ind_g a$ — такое число, что $g^{ind_g a} = a$

3 Графы

======

Определение 3.1. Ориентированный граф G = (V, E), где V - конечное множество. $E \subset V \times V$

Определение 3.2. Неориентированный граф G=(V,E), где V - конечное множество. $E\subset C^2_v$

3.1 Алгоритм dfs (поиск в глубину)

Псевдокод:

```
vector<vector<int>> g;
vector<int> parent;
vector<int> tin, tout; // время входа и выхода из вершины
vector<string> color; // для покраски вершин
```

Изначально все вершины покрашены в белый цвет - сигнал, что в вершину еще не заходили, цвет серый - вершина в обработке, цвет черный - вершина полностью обработана, больше нас не интересует

```
void dfs(int v) {
  color[v] = "GRAY"; tin[v] = timer; ++timer;
  for (int to: g[v]) {
    if (color[to] == "WHITE"): parent[to] = v; dfs(to);
  }
  tout[v] = timer; ++timer;
  color[v] = "BLACK";
}
```

Лемма 3.1 (О белых путях). За время $c \ tin[v]$ до tout[v] dfs посетит все те вершины, которые были достижимы из v по белым путям и перекрасит их в черный цвет.

Доказательство. Понятно, что перекрасить можем только описанные вершины. Заметим, что GRAY вершины - это в точности стек рекурсии. Значит, в момент tout[v] новых серых не появилось.

```
G G G W
```

Остается доказать, что белые вершины достижимы по белым путям и не могут остаться белыми. Рассотрим вершину u - самую высокую оставшуюся из белых. Тогда ее родитель не мог почернеть без захода в эту вершину.

Следствие. Пусть изначально все вершины - белые. Тогда после внешнего запуска dfs(s) посетятся все достижимые из s вершины.

Следствие. В графе \exists цикл, достижимый из $s \leftrightarrow df s(s)$ в какой-то момент ведет ребро в серую вершину.

Замечание. Мы не пытаемся обойтись 2 цветами - черным и белым, чтобы иметь возможность понять, есть ли цикл в графе

Замечание. Асимптотика алгоритма равно O(n+m), где n=|V|, m=|E|.

Определение 3.3. DAG(directed acyclic graph) - ориентированный граф без циклов.

Определение 3.4. Топологическая сортировка графа: перестановка вершин графа, чтобы все ребра вели "слева направо".

Утверждение 3.1. Топологическая сортировка сущесутвует тогда и только тогда, когда граф - DAG

Доказательство.

- → Очев
- ← Алгоритмом: все вершины красим в белый цвет.

Топологическая сортировка - перестановка вершин в порядке убывания *tout*

Проверим корректность: Достаточно показать, что не может быть ребра из u в v: tout[u] < tout[v]. Предположим противное и разберем 2 случая:

- (a) tin[u] < tin[v] По лемме о белых путях, к моменту времени выхода из u вершина v уже полностью обработается $\to tout[v] < tout[u]$. Противоречие.
- (b) tin[v] < tin[u] Тогда $\not\equiv$ пути из v в u. Значит, пол лемме, к моменту tout[v] мы даже не увидим u. А следовательно, tout[v] < tout[u]. Противоречие.

Определение 3.5. Пусть G - ориентированный граф, $u,v \in V(G)$. Тогда говорим, что u,v сильно связны, если \exists пусть из u в v и из v в u.

Задача. Сильная связанность - отношение эквивалентности.

Определение 3.6. Класс эквивалентности по этому отношению - компонента сильной связности (КСС)

3.1.1 Алгоритм Косарайю

Алгоритм выделения КСС за O(n+m)

- 1. dfs от всех вершин, сортируя все вершины в порядке убывания tout
- 2. В этом порядке запускаем dfs по обратным ребрам (dfs Reversed). Все, что посетим за один такой запуск очередная КСС.

Корректность?

Доказательство. Ясно, что каждый запуск dfs Reversed обойдет одну или несколько КСС целиком. Но вдруг мы возьмем 2 КСС вместо одной...

Утверждение 3.2.

Пусть C_1, C_2 - две КСС, причем есть ребро из C_1 в C_2 . Тогда $\max_{x \in C_1}(tout(x)) > \max_{y \in C_2}(tout(y))$

Доказательство.

1. $min_{a \in C_1} tin(a) < min_{b \in C_2} tin(b)$

В этом случае к моменту времени входа в a все вершины в C_1 и C_2 - еще белые. По лемме о белых путях к моменту tout[a] все вершины из C_1 и C_2 покрасятся в черный $\Longrightarrow tout(a) > max_{u \in C_2}(tout(y))$.

2. $min_{a \in C_1} tin(a) > min_{b \in C_2} tin(b)$

Тогда к моменту входа в b все вершины из C_1 и C_2 еще белые. Отметим, что не существует пути из b в C_1 (иначе C_1 и C_2 - одна КСС). Значит, к моменту выхода из b вся C_1 еще белая $\Longrightarrow \max_{x \in C_1}(tout(x)) > \max_{y \in C_2}(tout(y))$

Теперь воспользуемя утверждением и получим искомое.

Замечание. Пусть алгоритм Косарайю нумерует все КСС в порядке их обнаружения. id[v] - номер КСС, содержащий v. Значит, если есть ребро из a в b, $id[a] \leq id[b]$

a,b сильно связаны $\Longrightarrow id[a]=id[b]$