Amendments to the Claims:

Please amend the claims to read as follows:

1	1.	(currently amended) A method, comprising:
2		restricting access, by a locking element, to a restricted-access
3		space defined within an enclosure;
4		counting a number of trigger events during one or more successive
5		time intervals, each time interval having a predetermined duration,
6		wherein the number of trigger events counted during a given time
7		interval can be greater than one; and
8		associating the number of trigger events counted in each time
9		interval with one digit of a digit sequence representing a code being
10		submitted to actuate the locking element and gain access to the
11		restricted-access space, wherein each digit of the digit sequence
12		corresponds to the number of trigger events counted during one of the
13		successive time intervals and can have a value greater than one; and
14		determining whether the code represented by the digit sequence
15		actuates the locking element to gain access to the restricted-access
16		space.
1	2.	(previously presented) The method of claim 1, further comprising:
2		detecting the trigger events during each time interval based on a
3		sequence of signal interruptions caused by the trigger events;
4		representing at least part of the sequence of signal interruptions as
5		a sequence of digital logic levels;
6		comparing the sequence of digital logic levels with a previously-
7		entered code to ascertain an equivalence there between; and

3

container, and a cabinet.

8		based on ascertaining the equivalence, actuating the locking
9		element to gain access to the restricted-access space.
1	3.	(Original) The method of claim 2, further comprising:
2	0.	based on ascertaining the equivalence, identifying a user
3		authorized to access the restricted-access space.
J		authorized to access the restricted-access space.
1	4.	(previously presented) The method of claim 1, further comprising:
2		generating an audible signal indicative of at least part of the digit
3		sequence.
1	5.	(previously presented) The method of claim 1, further comprising:
2		identifying an operating mode based at least partly on a portion of
3		the digit sequence, the operating mode corresponding to at least one of a
4		code change request and an access request.
•		· · · · · · · · · · · · · · · · · · ·
1	6.	(Original) The method of claim 5, further comprising:
2		generating an audible signal indicative of the identified operating
3		mode.
1	7.	(previously presented) The method of claim 1, wherein the trigger
2	, .	events correspond to manipulations of a door handle.
_		events correspond to manipulations of a door mandie.
1	8.	(previously presented) The method of claim 2, wherein the sequence of
2		signal interruptions correspond to interruptions in an optical signal.
1	9.	(original) The method of claim 1, wherein the leaking element
1	9.	(original) The method of claim 1, wherein the locking element
2		corresponds to a solenoid in a lock.
1	10.	(original) The method of claim 1, wherein the enclosure corresponds to
2		at least one of an automobile, a boat, an airplane, a building, a

4

1 11. (currently amended) A method, comprising: 2 counting a number of trigger events associated with a user 3 interface during one or more successive time intervals, each time interval 4 having a predetermined duration, wherein the number of trigger events 5 counted during a given time interval can be greater than one, the user 6 interface affecting at least one operation of a vehicle; 7 associating the number of trigger events counted in each time 8 interval with one digit of a digit sequence representing a code being 9 submitted to actuate the locking element and gain access to the 10 restricted-access space, wherein each digit of the digit sequence corresponds to the number of trigger events counted during one of the 11 12 successive time intervals and can have a value greater than one; 13 comparing at least a portion of the digit sequence with a 14 previously-stored code; and 15 based on the comparison, performing the at least one operation of 16 the vehicle. 1 12. (previously presented) The method of claim 11, further comprising: 2 generating a human-perceptible signal indicative of the digit 3 sequence. (previously presented) 1 13. The method of claim 11, wherein the user 2 interface corresponds to a door handle of the vehicle and the trigger 3 events correspond to manipulations of the door handle. 1 14. (Original) The method of claim 13, wherein the at least one operation of the vehicle corresponds to at least one of a manipulation of a locking 2 3 element restricting access to at least part of the vehicle, a manipulation

of a window of the vehicle, and an ignition of the vehicle.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

- 1 15. (previously presented) The method of claim 11, wherein the sequence of 2 digits corresponds to interruptions in an optical signal and the compared 3 indicia correspond to a sequence of digital logic levels.
- 1 16. (Original) The method of claim 11, wherein the at least one operation 2 of the vehicle corresponds to at least one of a manipulation of a locking 3 element restricting access to at least a part of the vehicle, a manipulation 4 of a window of the vehicle, and an ignition of the vehicle.
 - 17. (currently amended) A system, comprising:

a locking element restricting access to a restricted-access space defined within an enclosure;

a trigger-detection element detecting a number of trigger events during one or more successive time intervals, each time interval having a predetermined duration, wherein the number of trigger events detected during a given time interval can be greater than one; and

a control element receiving indicia associated with the trigger events detected by the trigger-detection element, associating the number of trigger events detected in each time interval with one digit of a digit sequence representing a code, wherein each digit of the digit sequence corresponds to the number of trigger events counted during one of the successive time intervals and can have a value greater than one, and actuating the locking element to provide access to the restricted-access space in response to the code.

- 18. (previously presented) The system of claim 17, further comprising:
- 2 a feedback element generating a human-perceptible signal 3 indicative of at least part of the digit sequence.

- 1 19. (Original) The system of claim 17, wherein the locking element
- 2 corresponds to a solenoid in a lock.
- 1 20. (Original) The system of claim 17, wherein the enclosure corresponds
- 2 to at least one of an automobile, a boat, an airplane, a building, a
- 3 container, and a cabinet.
- 1 21. (previously presented) The system of claim 17, wherein the trigger-
- detection element includes a signal emitter and a signal detector, the
- 3 signal detector detecting a sequence of signal interruptions in an optical
- 4 signal transmitted by the signal emitter.
- 1 22. (Original) The system of claim 21, wherein the optical signal exhibits
- 2 an infrared wavelength.
- 1 23. (Original) The system of claim 21, wherein the signal detector
- transmits the indicia associated with the sequence of signal interruptions
- 3 to the control element.
- 1 24. (Original) The system of claim 23, wherein the indicia associated with
- 2 the sequence of signal interruptions corresponds to a sequence of digital
- 3 logic levels.
- 1 25. (currently amended) The system of claim 17, wherein the control
- 2 element compares the the digit sequence with a predetermined code to
- determine whether to actuate the locking element.
- 1 26. (previously presented) The system of claim 17, wherein the control
- 2 element identifies an operating mode based at least partly on a portion of
- the digit sequence, the operating mode corresponding to at least one of a
- 4 code change request and an access request.