7. The Evolution of Code

박종화 suakii@gmail.com

LECTURE PRESENTATIONS

For CAMPBELL BIOLOGY, NINTH EDITION

Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson

Genetic Algorithms

- 진화의 모방이 아닌 진화의 활용
 - -고전적인 유전 알고리즘
 - 대화형 선택
 - -생태계 모방

History

History

 John Henry Holland (February 2, 1929 – August 9, 2015) was an American scientist and Professor of psychology and Professor of electrical engineering and computer science at the University of Michigan, Ann Arbor. He was a pioneer in what became known as genetic algorithms.

To be or not to be that is the question

66,555,937,033,867,822,607,895,549,241,096,482,953,017,615,834,735,226,163

우주의 나이를 제곱한 만큼의 시간이 필요!

Evolution of Code

pekmeobakdujepwkedainpobochoijeohgln teabeghrfncvtombertfegdisbtfedquehjuon toabeghrfnotutomberthatdisbthedquestion to be or not to be that is the question

Random Typing...

```
void setup(){
 size(800, 600);
 PFont f = createFont( "Arial-Black-24", 24 );
 textFont(f);
 background(255);
 frameRate(10);
void draw(){
 background(255);
 fill(0);
 for (int i = 0; i < width; i+=50) {
   text( "" + char( int( random(33,126) ) ), i, height/2 );
```

Random Typing

Darwinian Natural Selection

Heredity

Variation

Selection

Darwinian Natural Selection

유전

변이

선택

자식에게 자신의 <mark>형질 전달</mark> 다양한 형질 존재

+ 돌연변이 발생

새롭고 다양한 개체 형성

환경에 잘 적응한 객체만이 자식에게 형질 전달 가능

Part I: Creating a Population

랜덤하게 생성된 요소로 집단을 생성한다. hut car box

표현형 유전자형 hut hut car car box box YY YYRR Yy Gametes (YR) X УУ **YyRr** 0,0,0 128,128,128 255,255,255 244,114,208

Part I: Creating a Population

 Create a population of N elements, each with randomly generated DNA.

• 집단의 생성은 변이법칙을 이용

Part II: Selection

• 다윈의 선택의 법칙

- 집단을 선택하고 다음 세대의 부모로 적합한

개체를 결정

현실 집단에 적절해야 교배를 통해 적응도 함수 결과가 좋아야

자신의 형질 전달 가능

알고리즘

살아남아 형질 전달 가능

적응도 평가

DNA	Fitness	
hut	1	
car	2	
box	0	

교배풀 생성

방법 1. 엘리트 방식

적응도함수 점수가 높은 몇몇 개체만 교배 가능

→ 자식 세대의 다양성 문제 발생(변이 법칙 위배)

문제점 1. 계속 반복하면 자식 세대의 다양성이 점점 줆 문제점 2. 점수가 가장 높은 개체와 커트라인에 턱걸이한 개체의 번식률이 같음 → 비합리적!

교배풀 생성

방법 2. 확률론 방식

적응도함수 점수에 비례한 교배 확률

→ 점수의 정규화(벡터의 정규화와 유사)

장점 1. 적응도가 높은 개체가 번식에 더 자주 참여 → 우수한 형질 가진 자식 수 증가 장점 2. 자식 세대 개체의 유전적 다양성 확보 가능

Part III: Reproduction-Crossover

Part III: Reproduction-Crossover

Picking a random midpoint

Part III: Reproduction-Crossover

Coin-flipping approach

Part III: Reproduction-Mutation

Part III: Reproduction

SETUP:

Step 1: *Initialize*. Create a population of N elements, each with randomly generated DNA.

LOOP:

Step 2: **Selection**. Evaluate the fitness of each element of the population and build a mating pool.

Step 3: *Reproduction*. Repeat N times:

- a) Pick two parents with probability according to relative fitness.
- b) Crossover—create a "child" by combining the DNA of these two parents.
- c) Mutation—mutate the child's DNA based on a given probability.
 - d) Add the new child to a new population.

Step 4. Replace the old population with the new population and return to Step 2.

- Step 1: 집단의 초기화
 - 집단에 속한 개체의 유전 정보를 저장하는 객체 DNA

```
class DNA {
     }
```

The population will then be an array of DNA objects.

```
class DNA {
    char[] genes = new char[18];
}
```

```
class DNA {
 char[] genes = new char[18];
 DNA() {
   for (int i = 0; i < genes.length; <math>i++) {
     genes[i] = (char) random(32,128);
```

- Step 2: 선택
 - 집단의 각 요소마다 적응도를 평가하고 교배 풀을 생성하는 단계

Fitness = Total # Characters
 Correct/Total # Characters

lacktriangle

```
class DNA {
void fitness () {
   int score = 0;
   for (int i = 0; i < genes.length; i++) {
       if (genes[i] == target.charAt(i)) {
              score++;
   fitness = float(score)/target.length();
```


Parent			
Α			
В			
С			
D			
Е			

Probability				
30%				
40%				
5%				
10%				
15%				

평가된 DNA의 적합도에 비례하여 교배 풀에 객체를 넣는다

```
ArrayList<DNA> matingPool = new
ArrayList<DNA>();

for (int i = 0; i < population.length; i++) {
   int n = int(population[i].fitness * 100);</pre>
```

```
for (int j = 0; j < n; j++) {
    matingPool.add(population[i]);
}</pre>
```

- Step 3: Reproduction
- int a = int(random(matingPool.size()));
- int b = int(random(matingPool.size()));
- DNA parentA = matingPool.get(a);
- DNA parentB = matingPool.get(b);
- DNA child = parentA.crossover(parentB);
- child.mutate();

```
DNA crossover(DNA partner) {
DNA child = new DNA();
int midpoint = int(random(genes.length));
   for (int i = 0; i < genes.length; i++) {
if (i > midpoint) child.genes[i] = genes[i];
    else child.genes[i] = partner.genes[i];
return child;
```

```
void mutate() {
for (int i = 0; i < genes.length; i++) {
     if (random(1) < mutationRate) {</pre>
genes[i] = (char) random(32,128);
```

Genetic Algorithms: 적용

• 첫 번째 변경: 변수 변경

Total Population	Mutation Rate	Number of Generations until Phrase Solved	Total Time (in seconds) until Phrase Solved
150	1%	1089	18.8
300	1%	448	8.2
1,000	1%	71	1.8
50,000	1%	27	4.3

Genetic Algorithms: 적용

Total Population	Mutation Rate	Number of Generations until Phrase Solved	Total Time (in seconds) until Phrase Solved
1,000	0%	37 or never ?	1.2 or neve r?
1,000	1%	71	1.8
1,000	2%	60	1.6
1,000	10%	never?	never?

Genetic Algorithms: 적용

• 적응도 함수

지수함수적인 평가함수는 더 좋은 개체를 많이 선택하게 해 준다

Genetic Algorithms: 적용

```
• 유전자형과 표현형
class Vehicle {
DNA dna;
 float maxspeed;
 float maxforce;
                                 DNA를 일반화하고,
 float size;
                               표 현 형 에 서 형 질 을
 float separationWeight;
                                       발 혀 한 다
 Vehicle() {
  DNA = new DNA(4);
maxspeed = dna.genes[0];
  maxforce = dna.genes[1];
  size = dna.genes[2];
  separationWeight = dna.genes[3];
```


http://blog.blprnt.com/blog/blprnt/project-smart-rockets 2009

Evolved antenna

타겟을 향하는 로켓을 만들자

이런 움직이는 객체에는 만능 클래스 Mover를 사용한다

```
class Rocket {
 PVector location;
 PVector velocity;
 PVector acceleration;
 void applyForce(PVector f) {
   acceleration.add(f);
 void update() {
   velocity.add(acceleration);
   location.add(velocity);
   acceleration.mult(0);
```

Rocket Class의 원형

- 집단의 요소 수와 돌연변이율
- -로켓 100기
- -돌연변이율 1%

$$fitness \propto \frac{1}{distance}$$

적합도는 타겟과의 거리에 반비례한다

```
void fitness() {
  float d = PVector.dist(location,target);
  fitness = 1/d;
}
```

• 유전자를 만들자.

 로켓에는 프레임마다 크기와 방향을 자유 롭게 변형할 수 있는 추진 엔진이 존재

• DNA는 로켓의 변위 벡터가 된다.

PVector v = new PVector(random(-1,1),random(-1,1));

유전자의 편향이 일어난다

PVector v = PVector.random2D();

유전자의 편향을 없애기 위해서는 원 모양의 랜덤 벡터를 생성한다

```
class DNA {
 PVector[] genes;
 float maxforce = 0.1;
 DNA() {
   genes = new PVector[lifetime];
   for (int i = 0; i < genes.length; i++) {
    genes[i] = PVector.random2D();
    genes[i].mult(random(0, maxforce));
```

```
class Rocket {
 DNA dna;
 float fitness;
 PVector location;
 PVector velocity;
 PVector acceleration;
 int geneCounter = 0;
 void run() {
   applyForce(dna.genes[geneCounter]);
   geneCounter++;
   update();
```

```
class Population {
float mutationRate;
 Rocket[] population;
 ArrayList < Rocket > matingPool;
 int generations;
void fitness() {}
 void selection() {}
 void reproduction() {}
```