Daniel Santos

VETTO · C

COMP 4220: Machine Learning, Fall 2018

Exam 1

Date: October 15, 2018

20

- 1. Let X and Y be two random variables, β a constant, and $\epsilon \sim \mathcal{N}(0, \sigma^2)$ be a Gaussian random variable with zero mean and variance σ^2 . We assume that $Y = \beta X + \epsilon$, and that ϵ is independent of X.
 - (a) Show that given X = x, the distribution of Y is $\mathcal{N}(\beta x, \sigma^2)$.
 - (b) Let $\{(X^{(i)}, Y^{(i)}), i = 1, ..., n\}$ be n independent samples from the model above. Show that the maximum likelihood estimation of β has the following:

$$\widehat{\beta} = \underset{\beta}{\operatorname{arg\,min}} \sum_{i=1}^{n} (Y^{(i)} - \beta X^{(i)})^{2}$$

(c) Show that solution of the above problem is:

 $\widehat{\beta} = \frac{\sum_{i=1}^{n} Y^{(i)} X^{(i)}}{\sum_{i=1}^{n} (X^{(i)})^2}$ a) $P(Y|X=x,\beta) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\frac{1}{2}} (Y-Bx)^{2}$ This might be wrong. I forgot the crows ian Cheat Sheet. The above will yield something in the form of P(Y/X=x,B)~N(Bx,o²), I didn't have the Gaussian distribution formula. My closest guess is the following:

B= T = e² (30 - Bx0) 2. log B = 27 log (12110 e 2 (8i) B xii)2. B=argmax-1 5 (y(i) - Bx(i)) is constant. Beargnin 1 2 (gii) Bxci)2

- 2. Let X and Y be two random variables, and $Y = \beta X + \epsilon$, β is a constant, and $\epsilon \sim \mathcal{N}(0, \sigma^2)$. Given n independent sample points $(X^{(1)}, Y^{(1)}), \ldots, (X^{(n)}, Y^{(n)})$, instead of ordinary least squares, here we estimate β with "ridge regression", by solving the following problem:

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta} \frac{1}{2} \left(\sum_{i=1}^{n} \left(Y^{(i)} - \beta X^{(i)} \right)^{2} + \lambda \beta^{2} \right)$$

where $\lambda \geq 0$ is a tuning parameter.

- (a) Give a solution in explicit form for $\widehat{\beta}$.

$$\beta = \left(\sum_{i=1}^{n} (y^{(i)} - \beta x^{(i)})^2 + \lambda \beta^2\right)$$

3. Suppose you are given the following classification task: predict the target $y \in \{0,1\}$ given two real valued features x_1 and x_2 . After some training, you learn the following decision rule:

$$3$$
 5 -15 " $y = 1$ if $w_1x_1 + w_2x_2 + w_0 \ge 0$ and $y = 0$ otherwise"

30

where
$$w_1 = 3, w_2 = 5, w_0 = -15$$
.

- (a) Plot the decision boundary and label the region where we would predict y=1 and y=0.
- (b) Suppose that we learned the above weights using logistic regression. Using this model, what would be our prediction for $p(y=1|x_1,x_2)$?

$$3x_1 + 5x_2 - 15 \ge 0$$

 $3x_1 + 5x_2 \ge 15$
 $x_1 \ge \frac{5}{3}x_2 + 5$
 $x_2 \ge \frac{3}{5}x_1 + 3$

20

5/10

- 4. A set of data points is generated by the following process: $Y = w_0 + w_1 X + w_2 X^2 + w_3 X^3 + w_4 X^4 + \epsilon$, where X is a real-valued random variable and ϵ is a Gaussian noise variable. You use two models to fit the data: E[Ŷ]->

Model 1:
$$Y = a_0 + a_1 X + \epsilon$$

Model 1:
$$Y = a_0 + a_1 X + \epsilon$$

Model 2: $Y = a_0 + a_1 X + \ldots + a_9 X^9 + \epsilon$

- (a) Model 1, when compared to Model 2 using a fixed number of training examples, has a bias which is:
 - ♦ Lower
 - ♦ Higher
 - ♦ The Same
- (b) Model 1, when compared to Model 2 using a fixed number of training examples, has a variance which is:
 - ♦ Lower
 - ♦ Higher
 - ♦ The Same
- (c) Given 12 training examples, which model is more likely to overfit the data?
 - Model 1
 - ♦ Model 2