0.1 Линейные пространства, нормированные пространства, пространства Банаха

Множество элементов называется **линейным множеством**, если для его элементов определены действия сложения и умножения на число (вещественное или комплексное), не выводящие из множества X:

- если $x, y \in X$, то $x + y \in X$
- если $x \in X$, то $\lambda x \in X$

Эти действия должны удовлетворять обычным условиям (аксиомам). Если λ вещественные числа, то X — вещественное линейное множество, если λ комплексные, то X — комплексное линейное множество. Для вещественного линейного множества можно построить комплексное линейное множество Z: достаточно ввести элементы $z=x+iy, \quad x,y\in X$ и определить сумму элементов:

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$$

и ввести умножение на комплексное число λ :

$$\lambda z = (\alpha + i\beta)(x + iy) = (\alpha x - \beta y) + i(\alpha y + \beta x)$$

(комплексификация линейного множества X).

Для комплексного линейного множества Z каждый элемент z=x+iy, где x и y — элементы вещественного множества. Рассмотрим вещественное пространство X пар (x,y), в котором определим сумму: $(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$ и умножение на вещественное число λ : $\lambda(x,y)=(\lambda x,\lambda y)$. Множество пар (x,y) образует вещественное линейное множество X (декомплексификация комплексного линейного множества Z). Из аксиом линейного множества отметим некоторые следствия:

- 1. Существования нулевого элемента: $\Theta = x x = (1 1)x = 0x$.
- 2. Из равенства $\lambda x = 0$ при $\lambda \neq 0$ следует $x = \ominus$.
- 3. Определение линейной независимости элементов $\{x_1, x_2, \dots, x_n\}$.
- 4. Определение размерности линейного множества X как наибольшего числа линейно независимых элементов множества X.
- 5. Линейное множество бесконечномерно, если для любого натурального n существует n линейно независимых элементов.

Примеры линейных множеств:

- 1. Вещественное пространство V_n *n*-мерных векторов.
- 2. Множество прямоугольных матриц размерности $(n \times m)$.
- 3. Множество $C[t_0,t_1]$ непрерывных на $[t_0,t_1]$ функций x. Функции $x_k(t)=t^k,\ k=1,2,3,\ldots$ линейно независимы, а пространство $C[t_0,t_k]$ бесконечномерно.
- 4. Множество решений $x \in C^n[t_0, t_1]$ уравнения

$$\frac{d^n x(t)}{dt^n} + a_1 \frac{d^{n-1} x(t)}{dt^{n-1}} + \dots + a_{n-1} \frac{dx(t)}{dt} + a_n = 0$$
, где $a_k \in C[t_0,t_1]$

Снабжая линейное пространство метрикой, мы получаем более богатую теорию. Связь метрики с алгебраическими действиями реализуется введением норм элементов x: норма $\|x\|$ элемента $x \in X$, согласно определению есть число, которое должно удовлетворять трем условиям:

- 1. $||x|| \ge 0$; если ||x|| = 0, то $x = \ominus$.
- 2. $\|\lambda x\| = |\lambda| \|x\|$.
- 3. ||x + y|| < ||x|| + ||y||.

Норма $\|x\|$ является непрерывной функцией: $|\|x+\triangle x\|-\|x\||\to 0$ при $\|\triangle x\|\to 0$. Верно неравенство $\|x-y\|\geq |\|x\|-\|y\||$.

Определим метрику в линейном пространстве X: $\rho(x,y) = \|x-y\|$. Ясно, что введенная таким образом метрика удовлетворяет всем аксиомам метрического пространства. Линейное множество с метрикой, определяемой нормой элементов, называется **нормированным пространством**. Если нормированное пространство полное, то оно называется **пространством Банаха** (Стефан Банах, 1892-1945, польский математик), банаховым пространством, В-пространством.

Подпространством нормированного пространства X называется любое линейное замкнутое множество $X_0 \in X$.

Примеры.

- 1. Банаховы пространства n-мерных векторов получаем введением различных норм векторов $\bar{x}(x_1, x_2, \dots, x_n)$:
 - $\bullet \|\bar{x}\|_{\infty} = \max_{i} |x_i|,$
 - $\bullet \|\bar{x}\|_1 = \sum_i |x_i|,$
 - $\|\bar{x}\|_2 = (\sum_i |x_i|^2)^{\frac{1}{2}}$
- 2. Бесконечномерное банахово пространство $C[t_0,t_1]$ функций x(t) непрерывных на $[t_0,t_1]$. Норма:

$$||x|| = \max_{i} |x|,$$

функции $x_k(t) = t^k, k = 1, 2, 3, \dots$ линейно независимы.

3. Бесконечномерное пространство банахово пространство $C_n[t_0, t_1]$. Норма:

$$||x|| = \sum_{k=0}^{n} \max_{i} |\frac{d^{k}x(t)}{dt^{k}}|$$

4. Пространство Банаха $L_p(a,b)$ измеримых и суммируемых со степенью $p,\ p\geq 1,$ функций. Норма:

$$||x||^p = (\int_a^b |x(t)|^p dt)^{\frac{1}{p}}$$

Множество полиномов с комплексными коэффициентами плотно в этих пространствах.

5. Пример неполного нормированного пространства.

В линейном множестве C[0,1] непрерывных функций введем норму (и метрику):

$$||x|| = (\int_{a}^{b} |x(t)|^{p} dt)^{\frac{1}{p}}, \quad \rho(x,y) = (\int_{0}^{1} |x(t) - y(t)|^{p} dt)^{\frac{1}{p}}$$

Получаемое пространство не является полным. Действительно, последовательность функций $x_k(t)=t^k$ является фундаментальной последовательностью:

$$\|x_{n+m}-x_n\|^p=\int\limits_0^1(t^n-t^{n+m})^pdt=\int\limits_0^1t^{np}(1-t^m)^pdt<\int\limits_0^1t^{np}dt=rac{1}{np+1} o 0,$$
 при $n o \infty$

Предел же $\lim x_n(t)$ при $n \to \infty$ в пространстве C[0,1] не существует.