

MAPA – Material de Avaliação Prática da Aprendizagem

Acadêmico: André Luis de Souza Lima R.A.: 21150930-5

Curso: Engenharia de Software

Disciplina: ATIVIDADE MAPA- ESOFT - LÓGICA PARA COMPUTAÇÃO - 51/2023

Valor da atividade: 3,00 **Prazo:** 27/02/2023 08:00 a 28/04/2023

23:59

RESPOSTAS

1. Seja a função que define a parábola da trajetória do passarinho como $y=-0.5x^2+5.5x$, suponha que o porco está a 11 m da origem e na altura do solo e responda:

a) Qual será a distância máxima atingida pelo passarinho?

R: A distância percorrida pelo passarinho é definida para a ordenada igual a zero, ou seja, y = 0. Para esse valor, extraem-se as raízes da função e tem-se:

$$y = -0.5x^{2} + 5.5x$$

$$0 = -0.5x^{2} + 5.5x \quad x(-10)$$

$$5x^{2} - 55x = 0 \text{ (fator comum)}$$

$$x.(5x-55) = 0$$

$$x' = 0 \text{ ou } 5x-55 = 0$$

$$x'' = 55/5 \Rightarrow x'' = 11/4$$

 \therefore Como x' = 0 (raiz 1 – valor que "zera" a equação) é o valor inicial durante o lançamento, esse valor é descartado. Desse modo, x" = 11 (raiz 2) é o alcance do passarinho em metros.

b) Qual será a altura máxima atingida pelo passarinho?

R: Uma vez que a concavidade da parábola é voltada para baixo, devido ao coeficiente negativo (a = -0,5 ou a = - $\frac{1}{2}$), deve-se calcular a altura máxima da parábola, ou a sua ordenada do Vértice, pela fórmula do Vy = - Δ / 4a:

$$\circ \quad \mathsf{V}\mathsf{y} = -\,\Delta\,/\,4^\mathsf{a}$$

$$Vy = -[b^2 - (4.a.c)] / 4.(-0.5)$$

$$Vy = -[(5.5)^2 - (4. (-0.5).0)] / - 2 (-/- \Rightarrow +)$$

$$Vy = [30.25 - 0] / 2$$

$$Vy = 30.25 / 2$$

$$Vy = 15.125 /$$

- ∴ Desse modo, a altura máxima que o passarinho atinge é de 15,125 metros.
- c) Ele atingiu ou não atingiu o porco?
- **R:** Sim, pois o porco estava a 11 metros de distância da origem no momento do lançamento, e após calculado o alcance do passarinho a tocar o solo, com o valor de y igual a zero, verifica-se que é a mesma distância que o porco estava.
- 2. Imagine, agora, que o estilingue que arremessa o passarinho foi deslocado 1 m da origem e que o alcance máximo do passarinho poderá ser de, exatamente, 20 m e responda:
 - a) Qual é a equação que define a trajetória do passarinho?

R: Considerando:

∘ Ponto de origem do lançamento O(1, 0).

•
$$x' = 1$$

 $x - 1 = 0$

- Raízes da função para y = 0:
 - x" = 21 (alcance máximo de 20 m).
 x 21 = 0
- A função do 2º grau é definida pelo produto das duas equações do 1º grau.

$$(x-1).(x-21) = 0$$

$$x^2 - 21x - x + 21 = 0$$

$$x^2 - 22x + 21 = 0 \quad x(-1)$$

$$-x^2 + 22x - 21 = 0$$

- b) Qual é o gráfico da parábola da trajetória realizada pelo passarinho?
- **R:** Considerando o contexto do jogo, no qual o pássaro será arremessado, o gráfico da parábola da trajetória deve possuir a concavidade voltada para baixo $(-x^2 + 22x 21 = 0)$ para que se possa medir a distância percorrida após o lançamento.
 - Onde a parábola corta o eixo y. Para x = 0:

$$-x^{2} + 22x - 21 = y$$

$$0 + 0 - 21 = y$$

$$y = -21$$

Altura máxima da parábola. Vy:

■
$$Vy = -\Delta / 4^a$$

 $Vy = -[b^2 - (4.a.c)] / 4.(-1)$
 $Vy = -[(22)^2 - (4.(-1).(-21)] / -4(-/- ⇒ +)$
 $Vy = [484 - 84] / 4$
 $Vy = 100$

o Vx:

•
$$Vx = -b/2a$$

 $Vx = -22/2. (-1)$
 $Vx = 11/4$

<u>Imagem 1</u> – Função $-x^2 + 22x - 21 = 0$ (Elaborado pelo autor).

Considerando a situação dada, responda:

- 3. Qual é o conjunto relação do grafo em questão? Denomine-o de R a.
- **R**: R_a = {(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}.
- 4. Qual é a matriz relação do grafo em questão?

5. É possível criar um Diagrama Hasse a partir do grafo dado? Justifique a sua resposta.

R: Não!

- Em primeira análise, não se poderia aplicar o de Diagrama de Hasse para o cenário, uma vez que nele a relação se dá entre dois conjuntos A e B distintos (domínios diferentes), ou seja, Passarinho e Porcos.
- Todavia, caso o cenário fosse avaliado como um ÚNICO CONJUNTO DE ELEMENTOS e verificadas as propriedades da relação, também não se poderia criar o Diagrama de Hasse, pois o conjunto solução da relação do grafo não cumpre pré-requisitos de uma ordenação parcial, conforme a seguir:
 - 1 A relação <u>não é Reflexiva</u>, pois o elemento de partida o passarinho do estilingue não se relaciona com si mesmo no jogo.
 - 2 A relação <u>é Antissimétrica</u>, porque o elemento de partida o passarinho do estilingue pode se relacionar com os elementos 2, 3, 4 e 5 os porcos 2, 3, 4 e 5 -, mas os porcos 2, 3, 4 e 5 não podem se relacionar com o elemento de partida o passarinho do estilingue (porcos não partem do estilingue).
 - 3 A relação <u>é Transitiva</u>.
 - O elemento de partida o passarinho do estilingue poderia se relacionar (atingir) com os elementos 4 ou 5 – os porcos 4 ou 5 – ao atingir os elementos 2 ou 3, os porcos 2 ou 3.

Portanto, além de não atender a propriedade de relação binária (Reflexiva) de um conjunto parcialmente ordenado, a relação é tomada a partir de conjuntos distintos, ao passo que o correto seria representar a relação sobre um único conjunto A, em uma relação de AxA e com uma condição de existência para extrair o conjunto solução.

Levando em consideração que o passarinho não acerta o alvo todas as vezes, podemos dizer que o seu arremesso é um evento probabilístico, em que, às vezes, acerta o porco e, às vezes, ele erra. Considerando esse fato, suponha que os eventos de acerto e erro sejam traduzidos pela seguinte expressão lógica:

- $\circ (p \rightarrow q) \land (p \land q \land r) \lor \neg (p \leftrightarrow r)$
- 6. Qual é a tabela verdade para o evento acerto e erro dos lançamentos?

Linha	р	q	r	(р	\rightarrow	q)	٨	(р	٨	q	٨	r)	V	7	(p	\leftrightarrow	r)
0	V	٧	٧	V	٧	V	٧	٧	٧	٧	٧	٧	V	F	٧	٧	٧
1	V	٧	F	V	٧	V	F	٧	٧	٧	F	F	V	٧	٧	F	F
2	V	F	٧	V	F	F	F	٧	F	F	F	٧	F	F	٧	٧	٧
3	V	F	F	V	F	F	F	٧	F	F	F	F	V	٧	٧	F	F
4	F	٧	٧	F	٧	V	F	F	F	٧	F	٧	V	٧	F	F	٧
5	F	٧	F	F	٧	V	F	F	F	٧	F	F	F	F	F	٧	F
6	F	F	٧	F	٧	F	F	F	F	F	F	٧	V	٧	F	F	٧
7	F	F	F	F	٧	F	F	F	F	F	F	F	F	F	F	٧	F
Prioridade	1	1	1	1	2	1	5	1	3	1	4	1	8	7	1	6	1

Tabela 1. Fonte (Elaborado pelo Autor).

- **7.** Considerando a tabela verdade da expressão dada, é possível dizer que o passarinho acerta o porco todas as vezes? Justifique a sua resposta dizendo se é uma tautologia, contingência ou contradição.
- **R:** Não, o passarinho não acerta todas as vezes, pois fica demonstrado e provado que, por meio da tabela verdade, o argumento é uma **contingência**. Notase isso a partir do resultado obtido na resolução da prioridade 8 da tabela, em que hora o passarinho acerta e hora não. Desse modo, como não é Tautologia (sempre acerta) nem Contradição (sempre erra), só pode ser Contingência.