

Visual Semantic Complex Network for Web Images

Shi Qiu¹, Xiaogang Wang², and XiaoouTang¹

¹Department of Information Engineering, ²Department of Electronic Engineering, The Chinese University of Hong Kong

1. Main Idea

How to model the relevance of web images?

- ➤ Textual information + keyword index
- ➤ Visual information + ANN algorithms
- ➤Only effective for images within a small local

Proposed Idea: Structuring the Web Images

Build a Visual Semantic Complex Network:

1) Semantic concepts: compact image clusters (elementary units)

region in textual/visual feature space

2. VSCN Construction

Semantic Concepts Discovery

INPUT: 2k top keywords from Image SE OUTPUT: 33,240 semantic concepts + 10M exemplar images

Inter-concept Correlations

GoogleExp("apple ipad"

Textual dscp. → Semantic correlation Visual dscp. → Visual correlation K-nearest-neighbor network

Semantic Concepts Discovery

➤ Query expansion with visually coherent keywords >Less ambiguity, more consistency & coverage

Semantic Correlation

- ➤ Google Kernel [1]
- ➤ Determine correlations from the rich web context

Visual Correlation

➤ Measured by the visual similarity between the exemplar image sets

[1] M. Sahami and T. D. Heilman. A web-based kernel function for measuring the similarity of short text snippets. In Proc. WWW. ACM, 2006. [2] G. Manku, A. Jain, and A. Das Sarma. Detecting near-duplicates for web crawling. In Proc. WWW. ACM, 2007.

Google

Apple iPad tablet: reviews, news, photos, and videos - CNET.cor

heck out CNET's Apple iPad tablet coverage, including up-to-the-minute news about

4. CBIR with the VSCN

Idea: relevant images are connected through VSCN

Methods

- (b) Initial ranking list $\{(I_k, d_k)\}_{k=1}^{N_I}$
- (c) Community Estimation $s(T_i) = \sum_{k=1}^{N_I} exp(\frac{-d_k}{\sigma}) \cdot \chi[c(I_k), T_i]$
- (d) Concept Estimation via RW $s(c_i') = \sum_{k=1}^{N_I} exp(\frac{-d_k}{\sigma}) \cdot \mathbf{1}[c(I_k) = c_i']$

Query Image:

Experimental Results

- >ITQ-hashing [3] as the baseline
- >10K query images collected from Google
- ➤Two subsets with *Difficult* & *Easy* queries
- > Retrieval results labeled by annotators

[3] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In CVPR, 2011.

5. Image Browsing with the VSCN

Idea: image browsing guided by the VSCN

A novel browsing scheme that bridges different local spaces

apple

In-degree Distribution

Zero in-degrees → uncommon / outlier concepts

Implication: most nodes are reachable within a few hops.

out-degree = 4 in-degree = 5 In-degree reflects the density around a node (20, 0.74)

3. Exploring VSCN Structures

Implication: Concept communities aggregate relevant images, which is

Concept Community

beneficial for image retrieval.

More details, demos, and data can be found at http://mmlab.ie.cuhk.edu.hk/project_VSCN.html

Interface

phone pair ped case: Casettle phone phone automa casettle case unsur phone Michelevy stars. In phone: Sansaug cili ped black nicorphone the

- ➤ Interactive navigational image search (finding target image in mind)
- ➤ Results

Large in-degrees → popular / representative concepts