Assignments

Assignment	Date of demo/submission.	marks
1. Matlab exercise.	16-02-2012	7.5
Take a real image, ex. 256X256 image, and do the	10 02 2012	7.5
following		
a) Read it to memory from the file and		
display it		
b) Read a portion of it to memory and display		
it		
c) Display the whole image		
i) Add a constant to the third quarter		
of the image(Take care of the		
overflow).		
ii) Multiply the first, second and fourth		
quarter each with different		
constants having value in the range		
0.5 to 2.0 (Take care of the		
overflow).		
2. Display the 3-d plot of 2-d functions using perspective		
projections:		
1 0		
$\cos(ux+vy)$, $\sin(ux+vy)$, $\sin(x,y)$, $\exp(-(ux+vy))$, $\exp(-(ux+vy))$		
ux+vy , $exp(- ux+0y)$, for all x,y and different values of		
u & v.		
3. On sample artificial, 8X8 / 16X16 images, take the		
DFT, DCT, WT, & HT. Print the image & transform		
matrix side by side		
b) Repeat the above on real images of size 256X256, and		
display the transform coefficients as 8-bit intensity images		
along with the original images.		
1. Image Enhancement	10-04-2012	7.5
i) Histogram of a gray scale image		
Write a program that compute the histogram of a Gray		
scale image. Also plot the histogram of the three		
components of a color image when represented in		
RGB.		
ii) Contrast Enhancement		
a) Thresholding		
1		
b) Histogram Equalization		

iii) Filtering Operations on images

Enhance the image by the following filtering operations

- a) Median Filtering
- b) Sobel operator
- c) Laplacian operator
- d) Robert's operator.

Display the image and the result of the operation in each of the case.

2. Compression

Compress an image file (256x 256X8 image) using DFT, DCT Walsh transforms and Huffman coding. Display the resulting image after decompression along with the originals, for 8 different compression ratios.

3. Image reconstruction from projections:

- a) get the projection of a 256x256x8 bit image for angles from 0 to 180 with increments 5 degrees.
- b) Reconstruct the above image from 1, 2, 4, 8, 16, 32, 64, and 128 projections using filtered backp-rojections algorithms. Display the reconstructed image along with the original for different cases