Some Review Problems

- 1. On Halloween, children dressed in costumes arrive at your door and ask for candy. Suppose their arrivals are a Poisson arrival process with rate $\lambda = 20$ per hour, beginning at 5:00pm.
 - (i) What is the expected number of children that arrive between 6:40 and 7:00?
 - (ii) Suppose you start with 15 pieces of candy, and you give each child one piece. What is the probability that your candy lasts until at least 9:00pm? (i.e. the 16th child doesn't arrive before 9pm.)
 - (iii) Strangely, it is already 5:30 and no children have arrived. Given this information, what is the probability that the first child arrives before 5:45?
 - (iv) State the central limit theorem (including important assumptions). Then use the central limit theorem to answer the following: How many pieces of candy should you start with so that the probability of running out of candy before 10:00pm is less than 1% (approximately)? If n is the amount of candy you start with, then you should choose n to satisfy a certain equation you don't have to solve that equation.
- 2. Suppose $X \sim \text{Exp}(2)$.
 - (i) What is the **density** for the random variable $Z = 3X^2 2$?
 - (ii) For what function $g: \mathbb{R} \to \mathbb{R}$ does the random variable Y = g(X) have the Unif(0,1) distribution?
 - (iii) What is $\mathbb{P}(1 < X < 3)$?
- 3. Let $X_1, X_2, X_3, ...$ be a sequence of independent random variables, each begin distibuted uniformly on the discrete set $\{0, 1, 2, 4, 5\}$. Let N be a Geometric(p) random variable, independent of the X's. Let Y be the product

$$Y = X_1 \cdot X_2 \cdots X_N$$

Compute $\mathbb{E}[Y]$, in terms of the parameter p.

- 4. Fix $p \in (0,1)$ and an integer N > 1. Let $Y \sim \text{Unif}(\{0,1,2,\ldots,N\})$. Given Y = y, toss a p-coin y times, and let X be the number of heads tossed (i.e. heads occurs with probability p).
 - (i) What is the joint distribution of (X, Y)?
 - (ii) What is Var(X), in terms of N and p? Simplify your answer as much as possible. Hint: think about computing $\mathbb{E}[X^2]$ by conditioning.
 - (iii) Suppose N = 5. What is $\mathbb{E}[Y \mid X = 2]$?
- 5. Let (X,Y) be a point chosen uniformly at random from the disc D of radius 1 centered at the origin in \mathbb{R}^2 .
 - (i) Compute the marginal density of X.
 - (ii) Compute $f_Y(y \mid X = 1/2)$, the conditional density of Y given X = 1/2.
 - (iii) Let $Z = \sqrt{X^2 + Y^2}$ be the radial coordinate of the point (X, Y). Compute $\mathbb{E}[Z]$.
 - (iv) Suppose that random variables (θ, R) are independent with $\theta \sim \text{Unif}([0, 2\pi])$ and $R \sim \text{Unif}([0, 1])$. Then define $(U, V) = (R\cos(\theta), R\sin(\theta))$. This also defines a random point in the disc D, with θ being the angular coordinate and R being the radial coordinate. What is the joint density of (U, V)? In particular, is (U, V) distributed uniformly on D?
- 6. Use Chebychev's inequality to obtain an upper bound on the probability that more than 400 heads occur out of 600 tosses of a fair coin.
- 7. Can you describe a joint density for a pair (X,Y) such that the following are all true (simultaneously):
 - (i) the marginal distributions of X and Y are both uniform on [0,1],
 - (ii) X and Y are uncorrelated, meaning that Cov(X, Y) = 0.
 - (iii) X and Y are **not** independent.