

Algoritmos baseados em filtragem colaborativa

Prof. Dr. Marcelo G. Manzato

Filtragem Colaborativa (FC)

Abordagem mais conhecida para se gerar recomendações

- Usada pela maioria dos sistemas comerciais
- Bem entendida, vários algoritmos e versões
- Aplicável em praticamente qualquer domínio (livros, filmes, jogos, ...)

Usar a "sabedoria da multidão" para recomendar itens.

Suposições

- Usuários fornecem avaliações para itens visitados
- Indivíduos que tinham gostos similares no passado continuarão tendo gostos similares no futuro
- Preferências permanecem estáveis e consistentes ao longo do tempo

Tipos de entradas e saídas (Abordagens tradicionais)

Tipos de Filtragem Colaborativa

A FC pode ser dividida em:

- Baseada em memória
- Baseada em modelo

Abordagens <u>baseadas em memória</u>, podem ser subdivididas em:

Vizinhança de usuários

Vizinhança de itens

FC baseada em vizinhança de usuários

Algoritmo

Dado um usuário **u** e um item **i** ainda não visto por **u**:

- 1. Encontre um conjunto de usuários que tenham preferências parecidas com <u>u</u> e que tenham avaliado <u>i</u>;
- 1. Use (por exemplo) a média de suas avaliações para predizer o nível de satisfação de *u* por *i*;
- 1. Faça isso para todos os itens que **u** ainda não conhece, e recomende os melhores avaliados.

Exemplo

Exemplo

	Item 1	Item 2	Item 3	Item 4	Item 5
Alice	4		3	4	?
Bob	1	2	5		3
Carlos	1		5	5	
Débora		3	4	5	3
Érica	2		5	4	5

Algumas questões iniciais

- Como saber quais usuários são similares?
- Como calcular a similaridade?
- Quantos vizinhos devemos considerar?
- Como calcular uma predição ou ranking com base nas avaliações dos vizinhos?

Na prática

Similaridades:

Pearson, Cosseno, Jaccard, etc.

$$\begin{split} & r_{\text{Alice}} = (4+3+4)/3 = 3.66 \\ & r_{\text{Bob}} = (1+2+5+3)/4 = 2.75 \\ & r_{\text{Carlos}} = (1+5)/2 = 3 \\ & r_{\text{Débora}} = (3+4+5+3)/4 = 3.75 \\ & r_{\text{Érica}} = (2+5+4+5)/4 = 4 \end{split}$$

		Item 1	Item 2	Item 3	Item 4	Item 5
	Alice	4		3	4	?
	Bob	1	2	5		3
5	Carlos	1			5	
	Débora		3	4	5	3
	Érica	2		5	4	5

sim(Alice, Bob) = -0.98

sim(Alice, Carlos) = 0

sim(Alice, Débora) = 0.27

sim(Alice, Érica) = -0.73

$$sim(u,v) = \frac{\sum_{i \in I_{uv}} (r_{ui} - \overline{r}_{u})(r_{vi} - \overline{r}_{v})}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \overline{r}_{u})^{2}} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \overline{r}_{v})^{2}}}$$

Uu: conj. de usuários mais similares a u que avaliaram item i

$$pred(u,i) = \overline{r}_{u} + \frac{\sum_{v \in U_{u}}^{\circ} sim(u,v)(r_{vi} - \overline{r}_{v})}{\sum_{v \in U_{u}} sim(u,v)}$$

Predição (k = 2):

pred(Alice, Item 5) = 3.66 + 0.27*(3-3.75)/0.27 = 2.91

Score (k = 2):

score(Alice, Item 5) = 0.27

Cuidados

Número de itens co-avaliados

 Em especial para bases muito esparsas, esse número pode ser insuficiente

Escolha do no. de vizinhos mais próximos (k)

 Valores muito baixos ou muito altos podem reduzir a acurácia do sistema

Escalabilidade

 Normalmente sistemas têm milhares de usuários e milhares de produtos

FC baseada em vizinhança de itens

Algoritmo

Dado um usuário **u** e um item **i** ainda não visto por **u**:

- 1. Encontre um conjunto de itens que tenham avaliações parecidas com *i* e que tenham sido avaliados por *u*;
- 1. Use (por exemplo) a média de avaliações de **u** desses itens para predizer o nível de satisfação de **u** por **i**;
- 1. Faça isso para todos os itens que **u** ainda não conhece, e recomenda os melhores avaliados

Pearson, Cosseno, Jaccard, etc.

Na prática

Iu: conj. de itens mais similares a i que foram avaliados por u

Item 2 Item 3 Item 1 Item 4 Item 5 3 ? 4 4 Alice 2 5 3 Bob 1 1 5 Carlos 3 Débora 3 4 5 Érica 2 5 5 4

 $r_{\text{Item 1}} = (4+1+1+2)/4 = 2$

 $r_{\text{Item 2}} = (2+3)/2 = 2.5$

 $r_{\text{Item 3}} = (3+5+4+5)/4 = 4.25$

 $r_{\text{Item 4}} = (4+5+5+4)/4 = 4.5$

 $r_{\text{Item 5}} = (3+3+5)/3 = 3.66$

Similaridade entre itens:

$$sim(i,j) = \frac{\sum_{u \in U_{ij}} (r_{ui} - \overline{r_{i}})(r_{uj} - \overline{r_{j}})}{\sqrt{\sum_{u \in U_{ij}} (r_{ui} - \overline{r_{i}})^{2}} \sqrt{\sum_{u \in U_{ij}} (r_{uj} - \overline{r_{j}})^{2}}}$$

$$pred(u,i) = \frac{\sum_{j \in I_u} sim(i,j) r_{uj}}{\sum_{j \in I_u} sim(i,j)}$$

sim(Item 5, Item 1) = 0.44

sim(Item 5, Item 2) = 0

sim(Item 5, Item 3) = 0.37

sim(Item 5, Item 4) = -0.94

Predição (k = 2):

pred(Alice, Item 5) = (0.44*4+0.37*3)/(0.44+0.37) = 3.54

Score (k = 2):

score(Alice, Item 5) = 0.44+0.37 = 0.81

Abordagens de FC baseadas em modelo

Algoritmos mais conhecidos

- Fatoração de matrizes via:
 - Singular Value Decomposition
 - Gradiente Descendente
- FunkSVD
- SVD++
- Factorization Machines
- Etc.

Singular Value Decomposition

Técnica algébrica que decompõe uma matriz M em um produto de três matrizes:

Usando apenas os k primeiros valores singulares (fatores mais importantes), é possível aproximar M.

Singular Value Decomposition

U _k	Dim1	Dim2	
Alice	0.47	-0.30	
Bob	-0.44	0.23	
Mary	0.70	-0.06	
Sue	0.31	0.93	

	aror	ar	3	16	lang
V_k^T				6	13
Dim1	-0.44	-0.57	0.06	0.38	0.57
Dim2	0.58	-0.66	0.26	0.18	-0.36

•	Prediction:	$\hat{r}_{ui} = \bar{r}_u + U_k(Alice) \times \Sigma_k \times V_k^T(EPL)$
		= 3 + 0.84 = <mark>3.84</mark>

	Σ_k	Dim1	Dim2
)	Dim1	5.63	0
	Dim2	0	3.23

Singular Value Decomposition

Fatoração de matrizes

Problemas

- Lentidão na decomposição
- Valores desconhecidos (ratings) s\u00e3o interpretados como "zero"

Solução:

- Usar apenas valores conhecidos da matriz de interações
- Treinar as matrizes U e V com gradiente descendente, minimizando o erro entre a nota real e a predita

Fatoração de Matrizes

Filtragem Colaborativa

Baseada em memória

• Boa para detectar relacionamentos fortes entre itens próximos entre si (visão local)

Baseada em modelo

 Boa para capturar relações não aparentes na base de dados (visão global)

Filtragem colaborativa

Vantagens

- Técnica bem estudada e entendida
- Funciona bem em vários domínios
- Não precisa de conhecimento especializado

Desvantagens

- Requer colaboração da comunidade
- Esparsidade dos dados
- Sem integração com outras fontes de conhecimento
- Na baseada em modelos, é difícil explicar as recomendações