Package 'SCOR'

June 19, 2023

Type Package
Title Spherically Constrained Optimization Routine
Version 1.1.2
Depends R (>= $3.5.0$)
Imports doParallel, foreach, iterators, parallel
Collate 'imports.R' 'biomarker.R' 'SHUM.R' 'EHUM.R' 'ULBA.R' 'SCOR.R' 'SCOR-package.R' 'optimized_HUM.R' 'youden_points.R' 'YoudenBoxPlot.R'
Maintainer Debsurya De <debsurya001@gmail.com></debsurya001@gmail.com>
Description A non convex optimization package that optimizes any function under the criterion, combination of variables are on the surface of a unit sphere, as described in the paper: Das et al. (2019) <arxiv:1909.04024>.</arxiv:1909.04024>
License GPL-3
<pre>URL https://github.com/synx21/SCOR</pre>
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
NeedsCompilation no
Author Debsurya De [cre, aut], Priyam Das [aut]
Repository CRAN
Date/Publication 2023-06-19 07:50:02 UTC
R topics documented:
AL

AL	Alzheimer's disease neuropsychometric marker dataset	
Index		11
	SCOptim	Ģ

Description

The dataset is a subset of the longitudinal cohort of Washington University (WU) Alzheimer's Disease Research Center (ADRC). In the AL dataset, measurements of 12 neuropsychological markers were collected on 108 independent individuals of age 75. The individuals were classified into 3 groups based on published clinical demential rating (CDR).

Usage

data(AL)

Format

A data frame with 108 observations on the following 12 variables.

Details

- ktemp. a numeric vector, measurements on the neuropsychometric test for "temporal factor".
- kpar. a numeric vector, measurements on the neuropsychometric test for "parietal factor".
- kfront. a numeric vector, measurements on the neuropsychometric test for "frontal factor".
- zpsy005. a numeric vector, measurements on the neuropsychometric test for "digital span forward".
- zpsy006. a numeric vector, measurements on the neuropsychometric test for "digital span backward".
- zinfo. a numeric vector, measurements on the neuropsychometric test for "information".
- zbentc. a numeric vector, measurements on the neuropsychometric test for "visual retention (10s)".
- zbentd. a numeric vector, measurements on the neuropsychometric test for "visual retention (copy)".
- zboston. a numeric vector, a numeric vector, measurements on the neuropsychometric test for "boston naming".
- zmentcon. a numeric vector, measurements on the neuropsychometric test for "mental control".
- zworflu. a numeric vector, measurements on the neuropsychometric test for "word fluency".
- zassc. a numeric vector, measurements on the neuropsychometric test for "associate learning".

estimate_EHUM 3

estimate_	FHIIM	
cottiliate		

Empirical Hyper Volume Under Manifolds

Description

An estimator of Hyper Volume Under Manifolds

Usage

```
estimate_EHUM(beta, labels, x_mat)
```

Arguments

The parameter we measure EHUM based on.

The labels of the Columns of the data matrix.

x_mat The Data Matrix

Value

Empirical Hyper-volume Under Maniforlds Estimate

Examples

```
estimate_EHUM(rep(1, 12), colnames(AL), AL)

estimate_EHUM(1:10 , sample(c( rep("lab1", 10), rep("lab2", 10), rep("lab3", 10))),
matrix(rnorm(300), nrow = 10))
```

estimate_SHUM

Smooth Approximations Of Empirical Hyper Volume Under Manifolds

Description

'SHUM' is a class of smoothed estimates of EHUM.

Usage

```
estimate_SHUM(beta, labels, x_mat, p = 0)
```

4 estimate_ULBA

Arguments

beta	The parameter we measure SHUM based on.
labels	The labels of the Columns of the data matrix.
x_mat	The Data Matrix
p	p decides whether to use $s_n(x)$ or $\phi_n(x)$. p = 1 stands for $\phi_n(x)$ and p = 0 stands for $s_n(x)$

Value

Smooth approximation of the empirical Hyper-volume Under Manifolds Estimate

References

 Maiti, Raju and Li, Jialiang and Das, Priyam and Feng, Lei and Hausenloy, Derek and Chakraborty, Bibhas

"A distribution-free smoothed combination method of biomarkers to improve diagnostic accuracy in multi-category classification"

```
(available at 'arXiv https://arxiv.org/abs/1904.10046).
```

Examples

```
estimate_SHUM(rep(1, 12), colnames(AL), AL)
estimate_SHUM(rep(1, 12), colnames(AL), AL, p = 1)

estimate_SHUM(1:10 , sample(c( rep("lab1", 10), rep("lab2", 10), rep("lab3", 10))),
matrix(rnorm(300), nrow = 10))
```

estimate_ULBA

Upper And Lower Bound Approach

Description

'ULBA' is an another approach to Hyper Volume Under Manifold Problem

Usage

```
estimate_ULBA(beta, labels, x_mat)
```

Arguments

beta The parameter we measure ULBA based on.

labels The labels of the Columns of the data matrix.

x_mat The Data Matrix

optimized_HUM 5

Value

Upper and Lower Bound Approach on empirical Hyper-volume Under Manifolds Estimate

Examples

```
estimate_ULBA(rep(1, 12), colnames(AL), AL)

estimate_ULBA(1:10 , sample(c( rep("lab1", 10), rep("lab2", 10), rep("lab3", 10))),
matrix(rnorm(300), nrow = 10))
```

optimized_HUM

Optimizing Different Estimators Of Hyper Volume Under Manifold

Description

As we know 'SCOptim' is efficient in estimating maximizing Hyper Volume Under Manifolds Estimators, we made some pre-functions that optimizes specific Problems of EHUM, SHUM and ULBA.

Usage

```
optimized_EHUM(
 beta_start,
  labels,
 x_mat,
  rho = 2,
 phi = 0.001,
 max_iter = 50000,
  s_{init} = 2,
  tol_fun = 1e-06,
  tol_fun_2 = 1e-06,
 minimize = FALSE,
  time = 36000,
  print = FALSE,
 lambda = 0.001,
  parallel = TRUE
)
optimized_SHUM(
 beta_start,
 labels,
 x_mat,
  p = 0,
  rho = 2,
```

6 optimized_HUM

```
phi = 0.001,
 max_iter = 50000,
  s_{init} = 2,
  tol_fun = 1e-06,
  tol_fun_2 = 1e-06,
 minimize = FALSE,
  time = 36000,
  print = FALSE,
  lambda = 0.001,
  parallel = TRUE
)
optimized_ULBA(
  beta_start,
  labels,
  x_mat,
  rho = 2,
  phi = 0.001,
 max_iter = 50000,
  s_{init} = 2,
  tol_fun = 1e-06,
  tol_fun_2 = 1e-06,
 minimize = FALSE,
  time = 36000,
  print = FALSE,
 lambda = 0.001,
  parallel = TRUE
)
```

Arguments

beta_start	The initial guess for optimum β by user
labels	Sample Sizes vector of that has number of elements in each category. It works like the labels of data matrix.
x_mat	The Data Matrix
rho	Step Decay Rate with default value 2
phi	Lower Bound Of Global Step Size. Default value is 10^{-6}
max_iter	Max Number Of Iterations In each Run. Default Value is 50,000.
s_init	Initial Global Step Size. Default Value is 2.
tol_fun	Termination Tolerance on the function value. Default Value is 10^{-6}
tol_fun_2	Termination Tolerance on the difference of solutions in two consecutive runs. Default Value is 10^{-6}
minimize	Binary Command to set SCOptim on minimization or maximization. FALSE is for minimization which is set default.
time	Time Allotted for execution of SCOptim

	7

print	Binary Command to print optimized value of objective function after each iteration. FALSE is set fault
lambda	Sparsity Threshold. Default value is 10^{-3}
parallel	Binary Command to ask SCOptim to perform parallel computing. Default is set at TRUE.
p	This parameter exists for the case of optimized_SHUM only.p decides whether to use $s_n(x)$ or $\phi_n(x)$. p = 1 stands for $\phi_n(x)$ and p = 0 stands for $s_n(x)$

Details

Optimization of EHUM, SHUM and ULBA using SCOptim.

Value

Optimum Values Of HUM Estimates

Examples

```
R <- optimized_SHUM(rep(1, 12), colnames(AL), AL, parallel = FALSE)
estimate_SHUM(R, colnames(AL), AL)
# This run will take about 10 mins on average based on computational capacity of the system
# Optimum value of HUM estimate noticed for this case : 0.8440681

R <- optimized_EHUM(rep(1, 12), colnames(AL), AL, parallel = FALSE)
estimate_EHUM(R, colnames(AL), AL)
# Optimum value of HUM estimate noticed for this case : 0.8403805

R <- optimized_ULBA(rep(1, 12), colnames(AL), AL, parallel = FALSE)
estimate_ULBA(R, colnames(AL), AL)
# Optimum value of HUM estimate noticed for this case : 0.9201903</pre>
```

SCOptim

Spherically Constrained Optimization

Description

SCOptim runs our optimization algorithm, efficient in estimating maximizing Hyper Volume Under Manifolds Estimators.

8 SCOptim

Usage

```
SCOptim(
    x0,
    func,
    rho = 2,
    phi = 0.001,
    max_iter = 50000,
    s_init = 2,
    tol_fun = 1e-06,
    tol_fun_2 = 1e-06,
    minimize = TRUE,
    time = 36000,
    print = FALSE,
    lambda = 0.001,
    parallel = FALSE
)
```

Arguments

x0	The initial guess by user
func	The function to be optimized
rho	Step Decay Rate with default value 2
phi	Lower Bound Of Global Step Size. Default value is 10^{-6}
max_iter	Max Number Of Iterations In each Run. Default Value is 50,000.
s_init	Initial Global Step Size. Default Value is 2.
tol_fun	Termination Tolerance on the function value. Default Value is 10^{-6}
tol_fun_2	Termination Tolerance on the difference of solutions in two consecutive runs. Default Value is 10^{-6}
minimize	Binary Command to set SCOptim on minimization or maximization. TRUE is for minimization which is set default.
time	Time Allotted for execution of SCOptim
print	Binary Command to print optimized value of objective function after each iteration. FALSE is set fault
lambda	Sparsity Threshold. Default value is 10^{-3}
parallel	Binary Command to ask SCOptim to perform parallel computing. Default is set at FALSE.

Details

SCOptim is the modified version of RMPS, Recursive Modified Pattern Search. This is a blackbox algorithm efficient in optimizing non-differentiable functions. It works great in the shown cases of SHUM, EHUM and ULBA.

Value

The point where the value Of the Function is maximized under a sphere.

youden_points 9

References

Das, Priyam and De, Debsurya and Maiti, Raju and Chakraborty, Bibhas and Peterson, Christine B

"Estimating the Optimal Linear Combination of Biomarkers using Spherically Constrained Optimization"

```
(available at 'arXiv https://arxiv.org/abs/1909.04024).
```

Examples

```
f <- function(x)
return(x[2]^2 + x[3]^3 +x[4]^4)

SCOptim(rep(1,10), f)

SCOptim(c(2,4,6,2,1), f, minimize = FALSE, print = TRUE)
#Will Print the List and Find the Maximum

SCOptim(c(1,2,3,4), f, time = 10, lambda = 1e-2)
#Will perform no iterations after 10 secs, Sparsity Threshold is 0.01</pre>
```

youden_points

Finding Youden Indices

Description

A function to find Youden Indices and Cutpoints for number of categories less than equal to 3.

Usage

```
youden_points(beta, labels, x_mat, grid_size = 100)
```

Arguments

beta The parameter we do HUM based on

labels The labels of the Columns of the data matrix.

x_mat The Data Matrix

grid_size The size of increment in the grid we check cutpoints against. Default value is

100.

Value

Youden Indices and Cut Points

10 YoupointsBoxPlot

Examples

YoupointsBoxPlot

Visualization Based On Youden Indices.

Description

A Box Plot Visualization Based On Youden Indices for less than equal to 3 categories.

Usage

```
YoupointsBoxPlot(beta, labels, x_mat, cat_names = NULL, grid_size = 100)
```

Arguments

beta The parameter we do HUM based on

labels The labels of the Columns of the data matrix

x_mat The Data Matrix

cat_names The vector of strings containing category names.

grid_size The size of increment in the grid we check cutpoints against. Default value is

100.

Value

Box Plot Visualization Based On Youden Indices

Examples

Index

```
* datasets
AL, 2

AL, 2

estimate_EHUM, 3
estimate_SHUM, 3
estimate_ULBA, 4

optimized_EHUM (optimized_HUM), 5
optimized_HUM, 5
optimized_SHUM (optimized_HUM), 5
optimized_ULBA (optimized_HUM), 5

SCOptim, 7

youden_points, 9
YoupointsBoxPlot, 10
```