

## C언어 (CSE2035) (Chap11. Derived types-enumerated, structure, and union) (1-2)

### Ji-Hwan Kim, Ph.D.

Dept. of Computer Science and Engineering Sogang University Seoul, Korea

Tel: +82-2-705-8924

Email: kimjihwan@sogang.ac.kr





- 1. 각 문제에 대한 소스 코드를 압축하여 사이버캠퍼스에 업로드
  - 압축 파일명: "[실습#]학번\_이름.zip" (#은 실습번호)
  - 각 소스코드 파일명: "cp실습번호\_학번\_p문제번호.c"
- 2. COPY 등의 문제 발생 시 실습 0점 및 각종 불이익을 줄 것



# Practice 1.

다음과 같은 구조를 가지는 구조체를 Vector로 정의한다.

```
typdef struct{
    floatcomps;
    int vec_size;
} vector;
```

- 첫번째로 사용자로부터 벡터의 크기를 입력받는다.
- 두번째로 사용자로부터 벡터의 값을 입력받아 벡터를 완성한다.
- 하단의 예제의 경우는  $\vec{v} = (10, 5)$ 이다.



```
intn,m;
vector *v1, *v2;

v1 = (vector*)malloc(sizeof(vector)*n);
v2 = (vector*)malloc(sizeof(vector)*m);
v1[0].comps = 10; v1[1].comps = 5;
...
```



# Practice 1.

벡터를 입력 받고, 다음과 같은 함수들을 작성한다.

#### 1. Distance DistVector (Vector \*v1, Vector \*v2);

두 벡터 v1, v2 사이의 거리 값을 구해주는 함수이다.

[참고 - 두점 사이의 거리 공식]

두 개의 벡터  $v1 = \langle x1, y1, z1 \rangle$  과  $v2 = \langle x2, y2, z2 \rangle$ 의 거리는 다음과 같다.

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2 + (z^2 - z^1)^2}$$

### 2. Scalar innerProduct(Vector \*v1, Vector \*v2);

두 벡터의 innerProduct를 구해주는 함수이다.

[참고 – 두 벡터의 innerProduct]

두개의 벡터  $v1 = \langle X1, X2, ..., Xn \rangle$ ,  $v2 = \langle Y1, Y2, ...., Yn \rangle$ 의 inner product는 다음과 같다.

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$





3. Size vectorSize(Vector \*v); 벡터의 크기를 구해주는 함수이다.

[참고 – 벡터의 크기]

벡터  $u = \langle Ux, Uy, Uz \rangle$ 가 주어졌을 때의 크기는 다음과 같다.

$$\|\mathbf{u}\| = \sqrt{u_x^2 + u_y^2 + u_z^2}$$

함수의 원형은 다음과 같다.

함수를 구현하기 위해선 Root를 사용해야 하기 때문에 <math.h>를 이용한다. 컴파일 시 –lm 옵션을 사용해야 한다.

Ex) gcc 14.c -lm



### **Practice 1.**

입력: 벡터의 크기 및 원소들 입력(v1,v2)각각(벡터의 원소개수 10개이하)

출력: 벡터의 크기, 벡터의 거리, 벡터의 내적

단, 두개의 벡터의 크기가 같을 경우에만 벡터의 거리,내적을 계산한다.





# Practice 2.

다항식의 계수와 차수를 입력 받아서 다항식의 덧셈을 출력하는 프로그램을 작성한다.

다음과 같은 구조를 가지는 구조체를 정의한다.

```
typedef struct {
    float coef;
    int expon;
} poly;
```

구현해야 하는 함수 : poly \*poly\_sum(int n, int m, poly \*a, poly \*b) 크기가 n,m인 다항식 a와 b의 덧셈 결과를 반환하는 함수.

poly a 2 3 x poly b 3.00 4.00 5

1.00

| 3.00 | 4.00 | 5.00 |
|------|------|------|
| 2    | 3    | 7    |

2.00

| $+2x^3$ | resuit | 2            | 3       |
|---------|--------|--------------|---------|
| 0       |        | $4x^{2} + 6$ | 1 × 3 + |

4.00

6.00

5.00

 $3x^2 + 4x^3 + 5x^7$ 

거강대학교



## Practice 2.

입력:다항식 a와 b의 크기 N, M

이후 N개의 줄에 다항식 a의 계수와 차수, M개의 줄에 다항식 b의 계수와 차수가 입력된다. (여기서 계수는 실수가 들어올 수 있다)

출력: 다항식 a와 b의 합 (출력을 할 때는 아래 예제처럼 낮은 차수부터 출력이 되도록 한다. 또한 상수항이라면 x는 생략하고 출력하도록 한다.)

단, 두 개의 다항식은 항상 오름차순으로 들어온다고 가정.

### <주의 사항>

- 1. 전역변수 사용 불가능.
- 2. 동적할당을 사용할 것.

```
hinata56@dbpro:~/cprog/prac/14$ ./a.out
2 3
1 3
2 4
3 5
4 6
5 7
1.00x^3+2.00x^4+3.00x^5+4.00x^6+5.00x^7
hinata56@dbpro:~/cprog/prac/14$ ./a.out
2 3
1 2
2 3
3 2
4 3
5 7
4.00x^2+6.00x^3+5.00x^7
```





다항식의 계수와 차수를 입력 받아서 다항식의 미분 및 적분 결과를 출력하는 프로그램을 작성한다.

다음과 같은 구조를 가지는 구조체를 정의한다.

```
typedef struct {
    float coef;
    int expon;
} poly;
```

구현해야 하는 함수 : poly \*poly\_integral(int n, poly \*a)
크기가 n인 다항식 a의 적분 결과를 반환하는 함수.
poly \*poly\_derivative(int n, poly \*a)
크기가 n인 다항식 a의 미분 결과를 반환하는 함수.



## Practice 3.

입력:다항식 a의 크기 N

이후 N개의 줄에 다항식 a의 계수와 차수가 입력된다. (여기서 계수는 실수가 들어올 수 있다)

출력: 첫 번째 줄에는 다항식 a의 적분 결과 두 번째 줄에는 다항식 a의 미분 결과 (출력을 할 때는 아래 예제처럼 낮은 차수부터 출력이 되도록 한다. 또한 상수항이라면 x는 생략하고 출력하도록 한다.)

단, 두 개의 다항식은 항상 오름차순으로 들어온다고 가정.

<주의 사항>

- 1. 전역변수 사용 불가능.
- 2. 동적할당을 사용할 것.
- 3. 적분 했을 때의 적분 상수는 1로 고정한다. (예제 그림을 참고할 것)

```
3
1 0
-2 1
1 2
Integral:1.00+1.00x^1-1.00x^2+0.33x^3
Derivative:-2.00+2.00x^1
3
4 2
-6 3
5 7
Integral:1.00+1.33x^3-1.50x^4+0.62x^8
Derivative:8.00x^1-18.00x^2+35.00x^6
```