Signals and Circuits

ERGN 35500

Logic gates

Web: https://www.tutorialspoint.com/computer_logical_organization/logic_gates.htm

Gates

- The most basic digital devices are called gates.
- ➤ Gates got their name from their function of allowing or blocking (gating) the flow of digital information.
- A gate has one or more inputs and produces an output depending on the input(s).
- > A gate is called a combinational circuit.
- > Three most important gates are: AND, OR, NOT.
- ➤ Other logic gates that are derived from these basic gates are the NAND gate, the NOR gate, the EXCLUSIVEOR gate and the EXCLUSIVE-NOR gate.

Two-input logic system

Signal processing with digital gate

Examples of logic gates for calculation

https://www.quora.com/How-do-I-make-a-calculator-using-logic-gates

OR gate

$$Y = A + B$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

Two-input OR gate

Physical example

$$Y=A+B+C$$

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Three-input OR gate

AND gate

Two-input AND gate

Α	В	С	D	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Physical example

Four-input AND gate

Think

Do the following logic gates have the same true table (Y3 as the final output)?

Α	В	С	D	Y3
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1.
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

NOT gate

Practice

Given the input digital signal and the logic gates, draw the output signal

EXLUSIVE-OR Gate

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0
(b)		

As can be seen from the truth table, the output of an EX-OR gate is a logic '1' when the inputs are unlike and a logic '0' when the inputs are like

EX-Or (XOR/EOR) gate

It is equivalent to a combination of AND, OR, and NOT gates

$$Y = A \oplus B = \overline{A}B + A\overline{B}$$

NAND gate

NAND stands for NOT AND

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0
(c)		

The output of a NAND gate is a logic '0' when all its inputs are a logic '1'.

NOR gate

NOR stands for NOT OR

The output of a NOR gate is a logic '1' when all its inputs are logic '0'

	Α	В	Υ
	0	0	1
١	0	1	0
١	1	0	0
	1	1	0
		(c)	

EXCLUSIVE-NOR gate

EX-NOR stands for NOT of EX-OR

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

$$Y = (\overline{A \oplus B}) = (A.B + \overline{A}.\overline{B})$$

The output of a two-input EX-NOR gate is a logic '1' when the inputs are like and a logic '0' when they are unlike. In general, the output of a multiple-input EX-NOR logic function is a logic '0' when the number of 1s in the input sequence is odd and a logic '1' when the number of 1s in the input sequence is even including zero. That is, an all 0s input sequence also produces a logic '1' at the output

NOTE:

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

$A \longrightarrow Y = \overline{A + B}$

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Practice

(c)

