Московский государственный университет имени М.В.Ломоносова Биологический факультет Программа "Геномика и здоровье человека"

Солоколизация посттрансляционных модификаций гистонов человека: анализ аннотации геномов и моделирование влияния множественных модификаций на структуру нуклеосом

Выпускная квалификационная работа магистра Шаряфетдиновой Александры Сергеевны

Лаборатория интегративной биологии кафедры биоинженерии биологического факультета МГУ

Научные руководители: канд. физ.-мат. наук, вед. научн. сотр. кафедры биоинженерии Армеев Григорий Алексеевич, асп. четвертого г.о. кафедры биоинженерии Федулова Анастасия Сергеевна

Москва 2025

Эпигенетическая регуляция хроматина

Хроматин = нуклеиновые кислоты + белки Нуклеосома = гистоновый октамер (H3,H4,H2A,H2B)

+ ~146 п.о. ДНК

Гистон = коровая часть и неупорядоченная (гистоновый хвост)

Посттрансляционные модификации (ПТМ)

Основные функции гистоновых ПТМ:

- регуляция экспрессии генов
- "химические маркеры", привлекающие белки хроматина
- "откручивание" ДНК от гистонового ядра (стабильность нуклеосомы)

Комбинации ПТМ, аннотация хроматина, ChromHMM

Комбинации ПТМ -> эпигенетические состояния хроматина (аннотация хроматина)

- Основан на Марковских моделях
- Было аннотировано 18 состояний хроматина на основе комбинаций из 6 ПТМ (НЗК4me1, НЗК4me3, НЗК27me3, НЗК27me3, НЗК26me3, and НЗК9me3)
- Культура IMR90 (фибробласты)
- Широко применяется для аннотации генома человека

Цель работы – исследовать эпигенетические состояния хроматина на основе анализа солоколизации посттрансляционных модификаций и оценить применимость подхода для решения задач биоинженерии. При помощи анализа ковстречаемости ПТМ и молекулярного моделирования выявить влияние множественных модификаций на структуру нуклеосом.

Задачи:

- 1. Используя функциональную разметку генома человека (ChromHMM), определить геномные локусы, подходящие для задач инженерной биологии (активации/репрессии генов с помощью системы CRISPR-Cas)
- 2. На основе анализа ковстречаемости ПТМ выделить комбинации модификаций, совместно встречающихся в геномных локусах
- 3. Провести сравнительный анализ структуры и динамики нуклеосом, содержащих комбинации различных ПТМ, методами молекулярного моделирования

Методы

1 часть Набор данных NCBI (белоккодирующие гены) разметка генома на промоторные области и тела генов классификация генов исходя набор данных из разметки ChromHMM экспрессий генов Гены с сильной Гены со слабой экспрессией экспрессией Гены для задачи Гены для задачи репрессии активации

2 часть

Набор данных ChIP-seq с ПТМ из базы данных ENCODE (культура H1)

Реализации ChromHMM на культуре H1

Анализ костречаемости, построение тепловых карт

Выделение комбинаций ПТМ

Проведение моделирования (МД)

B поле AMBER19SB + OL21, 150 mM NaCl, OPC

Сравнение характеристик из МД

RMSF хвостов и гистонового ядра (альфа-спиралей и петель);

среднее количество контактов ДНКхвост;

пластичность нуклеосомы

1. Анализ разметки генома человека ChromHMM

Вывод: ChromHMM на культуре H1

1. Анализ разметки генома человека ChromHMM

2. Выделение комбинаций модификаций гистонов

Проведение МД

N _{rare ac}	1 мкс, 2 повторности
N _{H3} grouped ac	1 мкс, 2 повторности
N _{H3-H4} grouped	1 мкс, 2 повторности
ac	
N _{H2B} grouped ac	1 мкс, 2 повторности
N _{all ac}	1 мкс, 2 повторности
N _{ac met}	0.7 мкс, 2 повторности

Вебсайт: http://intbio.org/2025 PTM colocalization.io/

2. Анализ структуры и динамики нуклеосом

Ацетилирование хвостов Диссоциация хвостов ДНК открывается для посадки факторов

2. Анализ структуры и динамики нуклеосом

Среднее RMSF гистоновых хвостов

2. Анализ структуры и динамики нуклеосом

Изменяется динамика глобулярной части нуклеосомы => изменение стабильности нуклеосомы на больших временах моделирования

Выводы

- 1. С помощью функциональной разметки генома человека (ChromHMM), были определены 2 группы генов, подходящие для задачи активации/репрессии генов с помощью системы CRISPR-Cas (46 генов для задачи репрессии, 776 для задачи активации).
- 2. На основе анализа ковстречаемости ПТМ были выделены 6 комбинаций модификаций, совместно встречающихся в геномных локусах
- 3. Множественные ПТМ гистонов H2B и H3 приводят к уменьшению количества контактов между ДНК и гистоновыми хвостами и увеличению подвижности хвостов
- 4. Множественные ПТМ хвостов влияют на динамику глобулярной части нуклеосомы

Список литературы

- -Grigoriy A Armeev, Anna K Gribkova, Iunona Pospelova, Galina A Komarova, Alexey K Shaytan, Linking chromatin composition and structural dynamics at the nucleosome level, Current Opinion in Structural Biology, Volume 56, 2019, Pages 46-55, ISSN 0959-440X, https://doi.org/10.1016/j.sbi.2018.11.006.
- -Peng, Y., Li, S., Onufriev, A. *et al.* Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. *Nat Commun* 12, 5280 (2021). https://doi.org/10.1038/s41467-021-25568-6
- -Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev. 2015 Mar 25;115(6):2274-95. doi: 10.1021/cr500350x. Epub 2014 Nov 26. PMID: 25424540; PMCID: PMC4375056.
- -Yunhui Peng, Shuxiang Li, David Landsman, Anna R Panchenko, Histone tails as signaling antennas of chromatin, Current Opinion in Structural Biology, Volume 67, 2021, Pages 153-160, ISSN 0959-440X, https://doi.org/10.1016/j.sbi.2020.10.018.
- -Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol. 2015 Sep 1;7(9):a025064. doi: 10.1101/cshperspect.a025064. PMID: 26330523; PMCID: PMC4563710.
- -Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA Sevastyan O. Rabdano, Matthew D. Shannon, Sergei A. Izmailov, Nicole Gonzalez Salguero, Mohamad Zandian, Rudra N. Purusottam, Michael G. Poirier, Nikolai R. Skrynnikov, Christopher P. Jaroniec https://doi.org/10.1002/anie.202012046

Благодарности

Хочу выразить благодарность следующим людям: Грибкова А.К., Шайтан А.К.,

за обучение, помощь в выполнении дипломной работы и обсуждение молекулярной динамики гистоновых хвостов.

Центр коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В.Ломоносова

Работа поддержана грантом РНФ № 23-74-10012 https://rscf.ru/en/project/23-74-10012/

