01240162aa

-3-

BUR9-1999-0300US1 Amendment dated 05/10/2004

indication of the status of each:

09/691,353 Reply to office action mailed 02/09/2004

The following is a complete listing of all claims in the application, with an

Listing of claims:

1	1. (currently amended) A method of forming a field effect transistor (FET),
2	comprising:
3	providing a substrate;
4	forming a layer on the substrate, the layer having exposed vertical side
5	surfaces on opposite sides of the layer;
6	forming an epitaxial channel on the each of the exposed vertical side
7	surfaces of the layer, the channel having an exposed first vertical sidewall
8	opposite the vertical side surface of the layer;
9	removing a channel on a first vertical side surface of the layer and then
10	removing the layer, thereby exposing a second vertical sidewall of the channel
11	formed on the second vertical side of the layer;
12	forming a second channel in place of said removed channel; and
13	forming a gate adjacent to at least one of the sidewalls of the channel
14	and the second channel, there being a gate dielectric between each channel and
15	the gate.
1	2. (withdrawn) A field effect transistor (FET) comprising:
2	a substrate;
3	a source region and a drain region in the substrate, each of said source
4	region and said drain region having a top, bottom and at least two side
5	diffusion surfaces, the source and drain regions separated by an epitaxially

BUR9-1999-0300US1 Amendment dated 05/10/2004 09/691,353

,353 01240162aa Reply to office action mailed 02/09/2004

6	grown channel region having a top, bottom and side channel surfaces	
7	substantially coplanar with corresponding ones of the diffusion surfaces;	
8	a gate adjacent the top and the side channel surfaces and electrically	
9	insulated from the top and side channel surfaces; and	
10	the gate comprising a planar top surface, the planar top surface having	
11	a contact for receiving a gate control voltage for controlling the FET.	
1	3. (withdrawn) The FET as recited in claim 2, wherein the source and drain	
2	have a contact for receiving a control voltage for controlling the FET.	
1	4. (withdrawn) The FET as recited in claim 2, wherein the gate is	
2	substantially centered between and substantially parallel to said source region	
3	and said drain region.	
1	5. (withdrawn) The FET as recited in claim 2, further comprising a silicide	
2	layer that contacts a top surface of said gate.	
1	6. (withdrawn) The FET as recited in claim 2, further comprising a dielectric	
2	layer that contacts a first side end and a second side end of said gate.	
1	7. (withdrawn) The FET as recited in claim 2, further comprising a dielectric	
2	that contacts side surfaces of the channels.	
1	8. (withdrawn) The FET as recited in claims 2, where the gate is comprised	
2	of polysilicon.	
1	9. (withdrawn) The FET as recited in claim 2, wherein the channel is	
2	approximately one fourth of a length of the FET.	

12

BUR9-1999-0300US1 Amendment dated 05/10/2004 09/691,353

01240162аа

Reply to office action mailed 02/09/2004

1	10. (withdrawn) The FET as recited in claim 2, further comprising a
2	dielectric material in the gate for electrically separating the gate into two
3	electrically isolated portions, each having a substantially coplanar top surface
4	and a contact pad on each respective substantially coplanar top surface.
	11. (withdrawn) The FET as recited in claim 2, wherein said epitaxial
1	
2	channel is formed of a combination of Group IV elements.
1	12. (withdrawn) The FET as recited in claim 2, wherein said epitaxial
2	channel is formed of an alloy of silicon and a Group IV element.
1	13. (withdrawn) The FET as recited in claim 2, wherein said epitaxial
2	channel is formed of an alloy of silicon and at least one of germanium and
3	carbon.
_	
1	14. (currently amended) A method for forming a double gated field effect
2	transistor (FET), comprising the steps of:
3	forming on a substrate a first and a second epitaxially grown channels
4	said channels having vertical side surfaces extending up from the substrate,
5	wherein said second channel is grown following removal of a central
6	semiconductor region centered between said channels upon which one of
7	whose opposite vertical sides said first channel was grown;
8	etching areas within a silicon layer to form a source and a drain,
9	wherein a side surface of the source and the drain contact opposing end
10	surfaces of the first and second epitaxially grown channels; and
11	forming a gate that contacts a top surface and two side surfaces of the

first and second epitaxially grown channels and a top surface of the substrate.

BUR9-1999-0300US1 Am nument dated 05/10/2004 09/691,353

01240162aa

Reply to office action mailed 02/09/2004

1	15. (previously presented) The memory as formed in commit 13, wherein the
2	forming step comprises the steps of:
3	forming first and second semiconductor lines, each end of the silicon
4	lines contacting an end of the source and the drain;
5	forming an etch stop layer on an exposed side surface of each of the
6	first and second semiconductor lines;
7	epitaxially growing first and second semiconductor layers on each etch
8	stop layer;
9	etching away the first and second semiconductor lines and the etch
10	stop layers;
11 -	filling areas surrounding the first and second epitaxially grown
12	semiconductor layers and between the source and the drain with an oxide fill;
13	and
14	etching a portion of the oxide fill to form an area that defines a gate,
15	wherein the area that defines the gate is substantially centered between and
16	substantially parallel to the source and the drain.
1	16. (original) The method as recited in claim 15, further comprising the steps
2	of:
3 .	etching the oxide fill between the gate the source to expose the first
4	and second epitaxially grown silicon layers; and
5	etching the oxide fill between the gate and the drain to expose the first
6	and second epitaxially grown silicon layers.
1	17. (original) The method as recited in claim 16, further comprising the step
2	of forming an oxide on the first and second enitoxially group cilion layers

BUR9-1999-0300US1 Amendment dated 05/10/2004

09/691,353	01240162aa
Reply to office action	mailed 02/09/2004

1	18. (original) The method as recited in claim 17, wherein the oxide is silicon
2	dioxide.
1	19. (previously presented) The method as recited in claim 14, further
2	comprising the steps of:
3	implanting a portion of the epitaxially grown silicon layers between
4	the gate and the source; and
5	implanting a portion of the epitaxially grown silicon layers between
6.	the gate and the drain.
1	20. (previously presented) The method as recited in claim 19, wherein the
2	implanting step is in the range of 10 to 45 degrees relative to a vector
3	perpendicular to a top surface of the epitaxially grown silicon layers.
1	21. (previously presented) The method as recited in claim 20, wherein the
2	implants are done in a series at approximately 90 degrees relative to each
3	other.
1	22. (original) The method as recited in claim 14, further comprising the step
2	of forming a contact on each of the gate, the source and the drain.
1	23. (original) The method as recited in claim 14, wherein the gate material is
2	polysilicon.
1	24. (previously presented) A method of forming an FET, comprising:
2	forming on a substrate a first semiconductor layer having first and
3	second ends and a central region that is thinner than said first and second ends

BUR9-1999-0300US1 Amendment dated 05/10/2004

09/691,353

01240162aa

Reply to office action mailed 02/09/2004

4	said central region having first and second side surfaces extending upward
5	from said substrate;
6	epitaxially growing a semiconductor channel region on at least one of
7	said first and second side surfaces of said central region of said first
8	semiconductor layer, a first side of said channel being exposed;
9	removing said central region of said first semiconductor layer, thereby
10	exposing a second side of said channel;
11	forming a dielectric layer on exposed surfaces of said semiconductor
12	channel region; and
13	forming a gate electrode on said dielectric layer.
1	25. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of a combination of Group IV
3	elements.
1	26. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of an alloy of silicon and a Group IV
3	element.
1	27. (previously presented) The method of claim 24, wherein said
2	semiconductor channel region is formed of a material selected from the group
3	consisting of silicon, silicon-germanium, and silicon-germanium-carbon.
1	28. (previously presented) The method of claim 27, wherein said step of
2	removing said first semiconductor layer does not appreciably remove said
3	semiconductor channel region

-9-

BUR9-1999-0300US1 Amendment dated 05/10/2004 09/691,353

01240162aa

Reply to office action mailed 02/09/2004

- 1 29. (previously presented) The method of claim 28, wherein an etch stop is
- 2 epitaxially grown between said first semiconductor layer and said
- 3 semiconductor channel region.
- 1 30 (previously presented) The method of claim 24, wherein said gate
- 2 electrode is formed of a material selected from the group consisting of
- polysilicon, silicon-germanium, refractory metals, Ir, Al, Ru, Pt, and titanium
- 4 nitride.