Zad. 1.

Dany jest punkt o współrzędnych p(1, 2, 3). Znajdź współrzędne cylindryczne i sferyczne tego punktu.

Zad. 2.

Znormalizuj wektor $\mathbf{v} = [4, -2, 3]$.

Zad. 3.

Znajdź kąt pomiędzy wektorami **a**=[3, 2], **b**=[-2, 7].

Zad. 4.

Dane są następujące wektory: $\mathbf{a}=[-2, 3, 2], \mathbf{b}=[1, 1, 3].$ Oblicz: $\mathbf{a}+\mathbf{b}, \mathbf{a}\cdot\mathbf{b}$ i $\mathbf{a}\times\mathbf{b}$.

Zad. 5.

Dane są macierze:

$$\mathbf{M}_1 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \ \mathbf{M}_2 = \begin{bmatrix} 8 & 7 \\ 6 & 5 \\ 4 & 3 \end{bmatrix}$$

Wykonaj działania: $M_1 \cdot M_2$ i $M_2 \cdot M_1$.

Zad. 6.

Dany jest wektor V oraz macierz M.

$$V = [-3 \quad 1 \quad 2], \ M = \begin{bmatrix} 7 & -2 & 3 \\ 4 & 1 & -5 \\ -6 & 8 & 9 \end{bmatrix}$$

Wykonaj działania: $\mathbf{V} \cdot \mathbf{M}, \mathbf{M}^T \cdot \mathbf{V}, \mathbf{M} \cdot \mathbf{V}^T \mathbf{i} \mathbf{M}^T \cdot \mathbf{V}^T$.

Zad. 7.

Jakie współrzędne będzie miał punkt p(-2,4) po translacji o wektor $\mathbf{t}=[4,8]$ i obrocie o kąt $\alpha=60^{0}$ względem środka układu współrzędnych.

Zad. 8

Jakie współrzędne będzie miał punkt p(3,2) po obrocie o kąt α =45° względem punktu p(2,1).

Zad. 9

Dokonaj skalowania sześcianu o długości boku 10 przy wykorzystaniu macierzy skalowania **S**. Podaj wymiary figury wyjściowej.

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Zad. 10.

Znajdź wektor normalny do następującego wielokąta:

Zad. 11.

Siatka geometryczna obiektu 3D zawiera punkty $p_1(0,0,0)$, $p_2(5,-5,5)$, $p_3(3,4,5)$, $p_4(-4,-2,-1)$. Oblicz pozycję punktów p'_1 , p'_2 , p'_3 , p'_4 , które powstaną po zastosowaniu do nich transformacji skalowania macierzą **M**. Punktem centralnym, według którego przeprowadzone jest skalowanie, jest punkt o współrzędnych p(3,4,1).

$$\mathbf{M} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Zad. 12.

W trójwymiarowej przestrzeni euklidesowej znajduje się obiekt, którego środek znajduje się w punkcie p(107.183, 934.013, 12.781). Obiekt ten rozpoczyna swój ruch według wektora prędkości \mathbf{V} =[1, -2, -2] i kontynuuje go przez okres czasu dt=1. Po tym okresie wektor prędkości wykonuje operację rotacji o kąt α =90 0 względem osi Z. Po wykonaniu obrotu zwiększana jest długość wektora \mathbf{V} o wartość 1.5 i kontynuowany jest ruch obiektu przez okres czasu dt=2. Wyznacz końcową pozycję punktu p' będącą środkiem poruszanego obiektu.