CS2102 AY21/22 SEM 1

github/jovyntls

01. DBMS: DATABASE MANAGEMENT SYSTEMS

- · set of universal and powerful functionalities for data management
- database system: DBMS (functionality) supporting several databases
 DBS = DMBS + n*DB
- · data model: framework to specify the structure of a DB
- schema: describes the DB structure using concepts provided by the data model
- schema instance: content of a DB at a particular time

Transactions

- transaction, T: a finite sequence of database operations
 - · smallest logical unit of work from an application perspective
- · guarantees the ACID properties

ACID properties

- 1. **Atomicity** \rightarrow either all effects of T are reflected in the database, or none
- 2. Consistency \rightarrow the execution of T guarantees to yield a *correct state* of the DB
- 3. **Isolation** \rightarrow execution of T is *isolated* from the effects of concurrent transactions
- 4. **Durability** \rightarrow after the commit of T, its effects are *permanent* in case of failures

Serial vs Concurrent Execution

Serial Execution

- ✓ correct final result
- × less (unoptimised) resource utilisation; low throughput

Serializability

- Requirement for Concurrent Execution: serializable transaction execution
 - (concurrent execution of a set of transactions is) **serializable** \rightarrow execution is equivalent to some serial execution of the same set of transactions
 - ullet equivalent o they have the same *effect* on the data

Core tasks of DBMS

- Support concurrent executions of transactions to optimise performance
- \bullet enforce serializability of concurrent executions to ensure integrity of data

01-1. RELATIONAL MODEL

- relation schema → defines a relation
 - specifies the attributes (columns) and data constraints
 - data constraints → limits the kind of data you can put into the database
- relational database schema → set of relation schemas + data constraints
 - TableName(col 1, col 2, col 3) with dom(col 1) = {x, y, z}, ...
- relational database → collection of tables
- domain → a set of atomic values
 - domain of attribute A_i , $dom(A_i) =$ set of possible values for A_i
 - for each value v of attribute $A_i, v \in dom(A_i)$ or v = null

- ullet null: special value indicating that v is not known or specified
- e.g. dom(course) = {cs2102, cs2030, cs2040}
- relation → a set of tuples
 - $R(A_1,A_2,\ldots,A_n)$: relation schema with name R and n attributes A_1,A_2,\ldots,A_n
 - each instance of schema R is a relation which is a subset of $\{(a_1,a_2,\ldots,a_n)\mid a_i\in dom(A_i)\cup \{null\}\}$

01-2. ENSURING DATA INTEGRITY

- integrity constraint → condition that restricts what constitutes valid data
 - . DBMS will check that tables only ever contain valid data
- structural → (integrity) inherent to the data model
- 3 main strucutral integrity constraints of the Relation Model
 - 1. Domain constraints
 - 2. Key constraints
 - 3. Foreign key constraints

Key Constraints

- superkey

 → subset of attributes that uniquely identifies a tuple in a relation
- key → superkey that is also minimal
 - · no proper subset of the key is a superkey
 - e.a. {id}
- candidate keys
 → set of all keys for a relation
- primary key → selected candidate key for a relation
 - cannot be null ⇒ entity integrity constraint

Foreign Key Constraints

- foreign key \to subset of attributes of relation A if it refers to the *primary key* in a relation B
- each foreign key in a relation must:
 - 1. appear as a primary key in the referenced relation, OR:
 - 2. be a null value

01-3. SUMMARY

02. RELATIONAL ALGEBRA

- algebra → mathematical system of operands and operators
 - operands: variables or values from which new values can be constructed
 - operators: symbols denoting procedures that construct new values from given values
- relation algebra → procedural query language
 - operands: relations or variables representing relations
 - operators: transform one or more input relations into one output relation

Closure Property

- closure → relations are closed under relational algebra
 - · all input operands and outputs of all operators are relations
 - the output of one operator can serve as input for subsequent operators
- allows for nesting of relational operators ⇒ relational algebra expressions

02-1. BASIC OPERATORS

UNARY OPERATORS

Selection, σ_c

- $\sigma_c(R) \to \text{ selects all tuples from a relation } R$ (i.e. rows from a table) that satisfy condition c
 - for each tuple $t \in R, t \in \sigma_c(R) \iff c$ evaluates to true on t
 - input and output relation have the same schema
- selection condition →
- a boolean expression of one of the following forms:
 - · constant selection attribute op constant
 - attribute selection attribute₁ op attribute₂
 - $expr_1 \land expr_2$; $expr_1 \lor expr_2$; item $\neg expr$; (expr)
- with $op \in \{=, <>, <, \le, \ge, >\}$
 - operator precedence: (), op, ¬, ∧, ∨
- · handling null values
 - comparison operation with null ⇒ unknown
 - arithmetic operation with null ⇒ null

Projection, π_{ℓ}

- $\pi_{\ell}(R) \to \text{ projects all attributes of a given$ **relation** $specified in list <math>\ell$
 - relation = set of tuples ⇒ duplicates removed from output relation!
 - · order of attributes matters!
 - ullet i.e. projects all columns of a table specified in list ℓ

Renaming, ρ_{ℓ}

- $\rho_{\ell}(R) \to \text{renames the attributes of a relation } R$ R is a relation with schema $R(A_1, A_2, \dots, A_n)$
- 2 possible formats for ℓ
 - ℓ is the new *schema* in terms of the new attribute names
 - $\ell = (B_1, B_2, \dots, B_n)$; $B_i = A_i$ if attribute A_i does not get renamed
 - ℓ is a list of attribute renamings of the form: $B_i \leftarrow A_i, \ldots, B_k \leftarrow A_k$
 - each renaming $B_i \leftarrow A_i$ renames attribute A_i to attribute B_i
 - · order of renaming doesn't matter

SET OPERATORS

- union $\to R \cup S$ returns a relation with all tuples that are in both R or S
- intersection $\rightarrow R \cap S$... all tuples that are in both R and S
- set difference $\rightarrow R-S$... all the tuples that are in R but not in S
- ! requirement for all set operators: R and S must be **union-compatible**

Union Compatibility

- two relations R and S are union-compatible \rightarrow if
 - ullet R and S have the same number of attributes and
 - the corresponding attributes have the same or compatible domains
 - BUT *B* and *S* do not have to use the same attribute names.

CROSS PRODUCT

- ${\bf cross\ product} o$ combines two relations R and S by forming all pairs of tuples from the two relations
 - given two relations R(A,B,C) and $S(X,Y),R\times S$ returns a relation with schema (A,B,C,X,Y) defined as $R\times S=\{(a,b,c,x,y)\mid (a,b,c)\in R,(x,y)\in S\}$
- size of cross product = |R| * |S|

02-2. JOIN OPERATORS

Inner Joins θ -join

- eliminate all tuples that do not satisfy a matching criteria (i.e. attribute selection) θ -ioin
- the θ -join $R\bowtie_{\theta} S$ of two relations R and S is defined as

$$R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$$

Equi Join 🖂

- special case of θ -join defined over the **equality** operator (=) only Natural Join M
- the natural join \to (of two relations R and S) is defined as $R\bowtie S=\pi_\ell(R\bowtie_c \rho_{b_i\leftarrow a_i,...,b_k\leftarrow a_k}(S))$

• $A = \{a_i, \dots, a_k\}$ is the set of attributes that R and S have in common

- $c = ((a_i = b_i) \land \cdots \land (a_k = b_k))$
- $\ell = \text{list of all attributes of } R + \text{list of all attributes in } S \text{ that are not in } A$
- ullet performed over all attributes that R and S have in common
 - · no explicit matching criteria has to be specified
- \bullet output relation contains the common attributes of R and S only *once*

Outer Joins

- dangling tuples \rightarrow tuples in R or S that do not match with tuples in the other relation
 - $\operatorname{dangle}(R \bowtie_{\theta} S) \to \operatorname{set}$ of dangling tuples in R wrt to $R \bowtie_{\theta} S$ • $\operatorname{dangle}(R \bowtie_{\theta} S) \subseteq R$
 - · always removed by inner joins, kept by outer joins
 - missing attribute values are padded with null

• $\mathit{null}(R) o n$ -component tuple of null values where n is the number of attributes of R

Definitions

- left outer join $\rightarrow R \bowtie_{\theta} S = R \bowtie_{\theta} S \cup (dangle(R \bowtie_{\theta} S) \times \{null(S)\})$
- right outer join $\to R \bowtie_{\theta} S = R \bowtie_{\theta} S \cup (\{null(R)\} \times dangle(S \bowtie_{\theta} R))$
- full outer join $\rightarrow R \bowtie_{\theta} S$
- $=R\bowtie_{\theta}S\cup (\mathit{dangle}(R\bowtie_{\theta}S)\times \{\mathit{null}(S)\})\cup (\{\mathit{null}(R)\}\times \mathit{dangle}(S\bowtie_{\theta}R))$

Natural Outer Joins

- only equality operator is used for the join condition
- join is performed over all attributes that R and S have in common
- output relation contains the common attributes of R and S only once

SUMMARY: RELATIONAL MODEL

attribute column of a table domain set of possible values for an attribute attribute value element of a domain relation schema set of attributes (with their data types + relation name) relation set of tuples tuple roles of a table database schema set of relation schemas	domain attribute value	s for an attribute
attribute value element of a domain relation schema set of attributes (with their data types + relation name) relation set of tuples tuple roles of a table	attribute value	s for an attribute
relation schema set of attributes (with their data types + relation name) relation set of tuples tuple roles of a table		
relation set of tuples tuple roles of a table		
tuple roles of a table	relation schema	their data types + relation name)
10100 01 01 0100	relation	
database schema set of relation schemas	tuple	
addadad continua continuación continuación	database schema	nas
database set of relations / tables	database	es
key minimal set of attributes uniquely identifying a tuple in a relati	key	ites uniquely identifying a tuple in a relation
primary key selected key (in case of multiple candidate keys)	primary key	e of multiple candidate keys)
foreign key set of attributes that is a key in referenced relation	foreign key	is a key in referenced relation
prime attribute attribute of a key	prime attribute	