General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

OPTICAL TRANSFER FUNCTION

OF

NTS-1 RETROREFLECTOR ARRAY

(NASA-CR-140667) OPTICAL TRANSPER FUNCTION OF NTS-1 RETROREFLECTOR ARRAY (Swithsonian Astrophysical Observatory) 56 p HC \$4.25 CSCL 20F N75-10773

Unclas 63/74 51099

Technical Report RTOP 161-05-02

Grant NGR 09-015-002 Supplement No. 57

Author: David Arnold

October 1974

Prepared for

National Aeronautics and Space Administration Washington, D. C. 20546

Smithsonian Institution Astrophysical Observatory Cambridge, Messachusetts 02138

The Smithsonian Astrophysical Observatory and the Haivard College Observatory are members of the Center for Astrophysics

OPTICAL TRANSFER FUNCTION

OF

NTS-1 RETROREFLECTOR ARRAY

Technical Report RTOP 161-05-02

Grant NGR 09-015-002 Supplement No. 57

Author: David Arnold

October 1974

Prepared for
National Aeronautics and Space Administration
Washington, D. C. 20546

Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138

The Smithsonian Astrophysical Observatory and the Harvard College Observatory are members of the Center for Astrophysics

TABLE OF CONTENTS

Section		Page
	ABSTRACT	v
1	INTRODUCTION	1
2	CUBE-CORNER SPECIFICATIONS	3
3	GEOMETRY OF ARRAY	5
4	SIGNAL-STRENGTH COMPUTATION	13
5	METHOD OF COMPUTING TRANSFER FUNCTION	15
6	GAIN FUNCTION	17
7	ACTIVE REFLECTING AREA	35
8	RANGE CORRECTION	37
9	PULSE SPREADING	39
10	VARIATIONS IN PULSE SHAPE DUE TO OPTICAL COHERENCE	41
11	VARIATIONS IN PULSE CENTROID DUE TO OPTICAL COHERENCE.	53
12	ACCURACY OF RANGE CORRECTION	57
13	ACKNOWLEDGMENTS	59

PRECEDING PAGE BLANK NOT FILMED

ILLUSTRATIONS

Figure		Page
i	Array coordinate system	• 6
2	Coordinate system of incident beam	. 18
3	Coherent pulse shapes	• 42
	TABLES	
Table		Page
1	Retroreflector positions	. 7
2	Gain-function matrices for various incidence angles and two wave- lengths	. 19
3	Active reflecting area as a function of angle of incidence	. 36
4	Range correction	• 37
5	Pulse spread	• 40
6	Pulse strength and centroid	• 41
7 a	Coherent range variations, with equal weighting	. 54
7b	Coherent range variations, weighted by signal strength	. 55

ABSTRACT

This report covers work done under the Office of Applications supplement to NASA Grant NGR 09-015-002. An optical transfer function has been computed for the retroreflector array carried by the NTS-1 satellite (1974 56A), formerly called Timation III. Range corrections are presented for extrapolating laser range reasurements to the center of mass of the satellite. The gain function of the array has been computed for use in estimating laser-echo signal strengths.

OPTICAL TRANSFER FUNCTION OF NTS-1 RETROREFLECTOR ARRAY

RTOP Special Report 161-05-02

1. INTRODUCTION

The calculations presented here were done by using computer programs developed under two previous NASA grants. * The final report for Grant NGR 09-015-164 presents analyses done for the Lageos satellite, while Grant NGR 09-015-196 gives results calculated for the BE-B, BE-C, Geos 1, Geos 2, D1C, D1D, and Pecle satellites. A complete description of the equations used in these computer programs is to be published as a Smithsonian Astrophysical Observatory Special Report.

Data on the NTS-1 retroreflector array were obtained from Goddard Space Flight Center (GSFC), the Naval Research Laboratory, and Fairchild Space and Electronics Company.

This report contains technical data on the array and the optical transfer function of the array.

Grant NGR 09-015-164, Use of a Passive Stable Satellite for Earth Physics Applications, and Grant NGR 09-015-196, Calculation of Retroreflector Array Transfer Functions.

2. CUBE-CORNER SPECIFICATIONS

The cube corners have hexagonal entrance faces with a width of 15 mm across flats and a length from vertex to face of $15/\sqrt{2} = 10.61$ mm. The size is chosen to maximize the strength of the return signal at an angle from the retroreflection direction equal to the velocity aberration of the satellite. The material is fused silica with silvered back reflecting faces. Testing done on the cube corners at GSFC indicates that they are all very close to diffraction-limited.

PRECEDING PAGE BLANK NOT FILMED

[&]quot;'Design of Retrodirector Arrays for Laser Ranging of Satellites, "by Peter O. Minott, Goddard Space Flight Center X-723-74-122, 1974.

3. GEOMETRY OF ARRAY

The array consists of 420 cube corners, all with the same orientation in a single plane facing the earth. The satellite is gravity stabilized. The distance from the center of mass of the spacecraft to the front face of the retroreflectors is 13.6 ± 0.03 inches (0.3454 m). Table 1 lists the X and Y coordinates in meters of the center of the front face of each cube corner, and the orientation of the X and Y axes is shown in Figure 1. The first two columns in the table are the indices giving the row number and the position within the row, respectively. The rows are numbered from top to bottom, and the position within the row, from left to right.

PRECEDING PAGE BLANK NOT FILMED

Table 1. Retroreflector positions (in meters).

ROW	UNI	г х	Y	ROW	UNIT	. х	Y
1	1	.01595	.20262	6	8	00798	.13355
1	2	.03190	20262	6	9	.00798	.13355
2	1	07178	.1A88Q	6	10	.02393	.13355
2	7	.02493	€ ## 88 0	6	11	.03988	.13355
2	8	.03988	.18880	6	12	.05583	.13355
2 3	9	.05583	.18880	6	13	.07178	.13355
3	1 2	07976	.17499	6	14	.08773	.13355
3	7	06380 .01595	.17499	6	15	.10368	.13355
3	8	.03190	.17499 .17499	6	16	.11963	.13355
3	9	.04785	17499	6 7	17	.13559	.13355
3	10	06380	17499	7	1 2	12761	.11973
3	11	.07976	17499	7	3	11166 09571	.11973
3	12	.09571	17499	7	4	07976	•11973 •11973
4	1	11963	.16117	ż	5	06480	.11973
4	2	10368	.16117	7	6	04785	.11973
4	3	08773	.16117	7	7	03190	11973
4	4	07178	.16117	7	8	01595	11973
4	10	.02393	.16117	7	9	0.00000	.11973
4	11	.03988	.16117	7	10	.01595	11973
4	12	.05583	•16117	7	11	.03190	.11973
4	13	•07178	•16117	7	12	.04785	.11973
4	14	.08773	.16117	7	13	.06380	.11973
4	15 16	.10368	•16117	7	14	•07976	.11973
5	1	•11963 -•12761	.16117	7	15	.09571	.11973
5	Ž	11166	•14736 •14736	7 7	16	•11166	.11973
5	3	09571	.14736	7	17	.12761	.11973
5	4	07976	.14736	7	18 19	.14356	.11973
5	5	06380	14736	Ś	1	.15951 13559	.11973
5	6	04785	.14736	8	ž	11963	.10592 .10592
5	7	03190	.14736	8	3	10368	.10592
5	8	01595	.14736	8	4	08773	.10592
5	9	0.00000	•14736	8	5	07178	10592
5	10	.01595	·14736	8	6	05>83	.10592
5	11	.03190	•14736	8	7	03988	.10592
5	12	.04785	•14736	8	8	02393	.10592
5 5	13 14	.06380	•14736	8	9	00798	.10592
5	15	•07976 •09571	•14736	8	10	•00798	.10592
5	16	•11166	•14736 •14736	8	11	.02393	.10592
5	17	.12/61	•14736	8 8	12 13	.03988	.10592
5	18	.14356	•14736	8	14	.05583	.10592
6	ī	11963	.13355	8	15	.07178 .08/73	.10592
6	2	10368	.13355	8	16	•08//3 •10368	.10592
6	3	08773	.13355	8	17	.11963	.10592 .10592
6	4	07178	.13355	8	18	13559	.10592
6	5	05>83	.13355	8	19	.15154	10592
6	6	03988	.13355	9		14356	.09210
6	7	02393	.13355	9		12/61	.09210

Table 1 (Cont.)

ROW	UNI.	т х	Y	ROW	UNIT	т ж	Y
9	3	11166	.09210	1.2			
ý	4	09571	09210	12	1	19939	.05766
9	5	07976	.09210	12 12	2	18344	.05066
9	6	06380	.09210	12	3 4	16749	.05066
9	7	04785	.09210	12	5	15154	.05066
9	8	03190	.09210	12	5 6	- 13559	.05066
9	9	01595	.09210	12	7	11963 10368	.05066
9	10	0.00000	09210	12	8	08773	.05066
9	11	.01595	.09210	12	9	07178	.05066
9	12	.03190	.09210	12	18	.07178	.05066
9	13	•04785	.09210	12	19	.08773	.05066
9	14	.06380	.09210	12	20	10368	.05066
9	15	•07976	.09210	12	21	.11963	.05066
9	16	•09571	.09210	12	22	.13559	.05066
9	17	.11166	.09210	12	23	.15154	.05066
9	18	.12761	.09210	12	24	.16749	.05066
9	19	.14356	.09210	13	1	19141	.03685
10	1	18344	.07829	13	ž	17546	.03685
10	2	16749	.07829	13	3	15951	.03685
10	3	1515	.07829	13	4	14356	.03685
10	4	13>59	.07829	13	5	12761	.03685
10	5	11963	.07829	13	6	11166	.03685
10	6	10368	.07829	13	7	09571	.03685
10	7	08773	.07829	13	8	07976	.03685
10	8	07178	.07829	13	18	.07976	.03685
10 10	9	05583	.07829	13	19	.09571	.03685
10	10	03988	.07829	13	20	.11166	.03685
10	15	.03988	.07829	13	21	.12761	.03685
10	16 17	.05583	.07829	13	22	.14356	.03685
10		.07178	.07829	13	23	.15951	.03685
io	18 19	.08/73	.07829	13	24	.17546	.03685
io	20	.1036g	.07829	13	25	.19141	.03685
10	21	•11963 •13559	.07829	14	1	19939	.02303
10	22	.15154	.07829	14	2	18344	.02303
11	1	17546	.07829	14	3	16749	.02303
11	Ž	15951	.06447	14	4	15154	.02303
11	3	14356	•06447 •06447	14	5	13559	.02303
îĭ	4	12761	•06447	14	6	11963	.02303
11	5	11166	.06447	14	7	10368	.02303
11	6	09571	.06447	14	. 8	08/73	.02303
11	7	07976	.06447	14	19	.08773	.02303
11	8	06380	.06447	14	20	.10368	.02303
11	16	.06380	.06447	14 14	21	.11963	.02303
11	17	.07976	.06447	14	22	.13559	.02303
11	18	.09571	.06447	14	23 24	.15154	.02303
11	19	.11166	06447	14	25	-16749	.02303
11	20	.12761	.06447	14	26	18344	.02303
11	21	.14356	.06447	15		.19939 19141	.02303
11	22	.15951	.06447	15		17546	.00922
			= - •		-	-471740	.00922

Table 1 (Cont.)

ROW	UNI	X	Y	ROW	UNI	т х	Y
15	3	15951	•00922	1 m			
15	Ä	14356	.00922	18	20	.11963	03222
15	5	12761	00922	18	21	.13559	03222
15	6	11166	.00922	18 18	22	15154	03222
15	7	09571	00922	18	24 25	.18344	03222
15	19	.09571	00922	19	25	.19939	03222
15	20	.11166	.00922	19	1 2	19141	04604
15	21	.12/61	.00922	19	3	17546	04604
15	22	.14356	.00922	19	4	15951	04604
15	23	.15951	.00922	19	5	14356 12761	04604
15	24	.17546	.00922	19	6	11166	04604
15	25	.19141	.00922	19	7	09571	-,04604
16	1	19939	00460	19	ė	07976	04604
16	2	18344	00460	19	18	•07976	04604
16	3	16749	00460	19	19	.09571	04604 04604
16	4	5154	00460	19	20	11166	04604
16	5	13559	00460	19	21	.12761	04604
16	6	11963	00460	19	22	14356	04604
16	7	10368	00460	20	ī	-,18344	05985
16	8	08/73	00460	20	2	16/49	05985
16	19	•08/73	00460	20	3	15154	05985
16	20	89F01.	00460	20	4	13559	05985
16	21	•11963	00460	20	5	11963	05985
16	22	.13559	00460	20	6	10368	05985
16	23	.15154	00460	20	7	08/73	05985
16	24	•16/49	00460	20	8	07178	05985
16	25	.18344	00460	20	17	.07178	05985
17 17	1	19141	01841	20	18	.U8/73	05985
17	2	17546	01841	20	19	.10368	05985
17	3 4	15951	-,01841	20	20	.11963	05985
17	5	14356	01841	20	21	.13559	05985
17	6	~-12761	01841	21	1	19141	07367
17	7	11166 09571	01841	21	2	17546	07367
17	19	.09571	01841	21	3	15951	07367
17	20	11166	01841	21	5	-+12/61	07367
17	21	.12761	01841 01841	21	6	11166	07367
17	22	14356	01841	21	7	09571	07367
17	23	.15951	01841	21	8	07976	07367
17	24	.17546	01841	21	9	-•06380	07367
17	25	.19141	01841	21	10	04785	07367
18	1	18344	03222	21	16	•04785	07367
18		16749	03222	21	17	086380	07367
18		15154	03222	21 21	18	•07976	07367
18		13559	03222	21	19	•09571	07367
18		11963	03222	21	20 21	•11166	07367
18	6	10368	03222	22	_	•12/61 - 18344	07367
18	7	08773	03222	22		18344 - 11943	08748
18	18	.08773	03222	22		11963 10368	08748
18	19	.10368	03222	22		-•10368 -•08773	08748
			· · · -		•	vo : / 3	08748

Table 1 (Cont.)

ROW	UNIT	X	Y	ROW	UNIT	х	Y
22	•	07178	08748	25	3	06380	12892
22	9	05583	08748	25	4	04785	12893
22	10	03988	08748	25	5	03190	12401
22	11	02393	08748	25	6	01>95	12892
22	12	00798	08748	25	7	0.00000	-,12892
22	13	.00798	08748	25	8	.01595	12892
22	14	.02393	08748	25	9	.03190	12892
22	15	.03988	08748	25	10	.04785	12892
22	16	.05583	08748	25	11	.06380	12892
22	17	.07178	08748	25	12	.07976	-,12892
22	18	.08773	08748	25	13	.09571	12892
22 22	19	.10368	08748	25	14	.11166	12892
	20	.11963	08748	25	15	.12/61	12892
23	1	11166	10130	25	16	.14356	12892
23 23	2	09571	10130	25	17	.15951	12892
23	3	07976	10130	26	1	11963	14274
23	4	-,06380	10130	26	2	10368	14274
23	5	04785	10130	26	3	08773	14274
23	6	03190	10130	26	4	07178	14274
23	7 8	01595	10130	26	5	05583	14274
		0.00000	10130	26	6	03988	14274
4. 4 2. 3	9 10	.01595 .03190	10130	26	7	02393	14274
23	11		10130	26	8	00798	14274
23	12	.04785 .06380	10130 - 10130	26	9	.00798	14274
23	13		10130	26	10	.02393	14274
23	14	•07976 •09571	10130	26	11	.03988	14274
23	15	.11166	10130 10130	26	12	.05583	14274
23	16	.12761	10130	26	13	.07178	14274
23	17	14356	10130	26 26	14	.08773	14274
24	i	10368	11511	26	15 16	.10368	14274
24	Ž	08773	11511	26	17	.11963	-,14274
24	3	07178	11511	27	1	+13559 12741	14274
24	4	05583	11511	27	2	12/61 11166	15655
24	5	03988	11511	27	3	09571	15655
24	6	02393	11511	27	4	07976	15655 15655
24	7	00798	11511	27	5	06380	15655
24	8	.00798	11511	27	6	04785	15655
24	9	.02393	11511	27	7	03190	15655
24	10	.03988	11511	27	8	01>95	15655
24	11	.05583	-,11511	27	9	0.00000	15655
24	12	.07178	11511	27	10	.01595	15655
24	13	.06773	11511	27	ii	.03190	15655
24	14	.10368	11511	27	12	.04785	15655
24	15	.11963	11511	27	13	.06380	15655
24	16	.13559	11511	27	14	.07976	15655
24	17	.15154	11511	27	15	•09: 1	15655
24	18	.16749	11511	27	16	.11166	15655
25	1	09571	12892	28	1	08773	17037
25	2	07976	12892	28	2	07178	17037

Table 1 (Cont.)

ROW	UNIT	X	Y
28	3	05583	17037
28	4	03988	17037
28	5	02393	17037
28	6	00798	17037
28	7	00/95	17037
28	8	.02393	17037
28	9	.03988	17037
28	10	.05583	17037
28	11	.07178	
28	12	.08773	17037
28	13		17037
29	1	.10368	17037
29		07976	18418
29	2	06380	18418
	7	.01595	18418
29	8	.03190	18418
29	9	.04785	~.18418
29	10	.06380	18418
29	11	.07976	18418
30	1	.02393	19799
30	3	.05583	-19799

4. SIGNAL-STRENGTH COMPUTATION

The data contained in the tables presented later can be used to estimate signal strengths for laser ranging. The signal strength can be calculated from the equation:

$$N = \frac{E}{h\nu} G_T A_8 G_8 A_R \frac{T^2}{R^4} \eta ,$$

where

N = number of photoelectrons,

E = transmitted energy,

h = Planck's constant,

ν = frequency of laser light

 $G_T = gain of transmitter,$

 A_{S} = active reflecting area of satellite,

 $G_{S} = gain of satellite array,$

 A_{R} = area of receiving telescope,

T = atmospheric transmission factor,

R = range from station to satellite,

 η = a constant that includes the quantum efficiency of the photomultiplier and the optical transmission factors of the transmitter, the satellite, and the receiver.

If the transmitted beam is a uniform spot of solid angle Ω_T , the gain function of the transmitter is

$$G_{T} = \frac{1}{\Omega_{T}} \quad .$$

The active reflecting area A_S is given in Table 3 (see Section 7) as a function of the angle of incidence of the laser beam with respect to the normal to the front face of the cube corners. The gain G_S of the satellite retroreflector array is proportional to the intensity of the diffraction pattern at each point in the far field. The position of the receiver in the diffraction pattern depends on the magnitude and direction of the velocity aberration. Table 2 (Section 6) gives gain-function matrices of the array for various incidence angles and two different wavelengths.

5. METHOD OF COMPUTING TRANSFER FUNCTION

In computing gain-function matrices for the NTS-1 retroreflector array, the cube corners have been modeled as isothermal, geometrically perfect reflectors with perfect metal reflecting coatings on the back faces. The primary effect of real metal faces is a decrease in the intensity of the return signal because of the triple metallic reflection. This loss should be added to the constant η of the previous section, along with reflection losses at the front face on entering and leaving the cube corners.

The computation of the range correction includes a correction for the optical path length of the ray within the cube corner. The range correction is the difference between the centroid of the actual return signal and the centroid of the return signal that would be received from a point reflector at the center of mass of the satellite. The correction listed is the one-way correction.

The gain functions, active reflecting areas, and range corrections presented in the tables are for the incoherent case; that is, the intensities of the reflections are added without taking into account coherent interference among the reflected signals from the individual cube corners.

The variation of the range correction due to optical coherence has been derived by statistical analysis of a set of coherent returns constructed by assigning random phases to the reflection from each cube corner using a pseudo random-number generator. Since the computer time required to compute a coherent return increases as the square of the number of cube corners, the calculations were done with a reduced array obtained by replacing sets of neighboring reflectors by a single reflector at the mean position of the set. Because the coherent variations are computed from a limited number of cases, the results should be considered as only an indication of the magnitude of the effect. The incoherent range correction is the mean value of the coherent range corrections.

6. GAIN FUNCTION

Table 2 gives the gain function $G_S(\theta_1,\theta_2)$ for various angles of incidence on the array and for two wavelengths. The angles θ_1 and θ_2 are measured from the center of the return beam perpendicular and parallel, respectively, to the plane of incidence. For the particular incidence angles chosen, the gain function has the properties

$$G_{\mathbf{S}}(\boldsymbol{\theta}_1,\boldsymbol{\theta}_2) = G_{\mathbf{S}}(-\boldsymbol{\theta}_1,\boldsymbol{\theta}_2) = G_{\mathbf{S}}(\boldsymbol{\theta}_1,-\boldsymbol{\theta}_2) = G_{\mathbf{S}}(-\boldsymbol{\theta}_1,-\boldsymbol{\theta}_2) \quad .$$

Therefore, the table lists only positive values of θ_1 and θ_2 . For a collocated receiver and transmitter, the angles θ_1 and θ_2 are given by

$$\theta_1 = 2 \frac{v_1}{c} \quad , \quad \theta_2 = 2 \frac{v_2}{c} \quad ,$$

where \mathbf{v}_1 and \mathbf{v}_2 are the components of the transverse velocity of the satellite relative to the station perpendicular and parallel, respectively, to the plane of incidence.

For each table, the average gain function is plotted as a function of the angle from the center of the pattern, with the radius ρ given by

$$\rho = \sqrt{\theta_1^2 + \theta_2^2} .$$

The direction of the illuminating laser beam is given with respect to the X, Y, Z coordinate system of the array by the two angles θ and ϕ shown in Figure 2. The angles θ_1 , θ_2 , and ρ are given in microradians in Table 2.

Figure 2. Coordinate system of incident beam.

Table 2. Gain-function matrices for various incidence angles and two wavelengths.

9 20 447900 42. *6* 8 • 75 5 40 000 000 000 20 1009 2088 4.16 5.30 6.08 35 AVERAGE GAIN FUNCTION (1.E+7) 0 WAVELENGTH 6943 3,56 0.00 *** 1,90 9.46 10,70 5,57 7.65 30 GAIN FUNCTION (1.E+7) 60.9 9.08 12.10 14,70 16.47 1,65 3,54 2,83 5,53 90.6 13,08 17,10 20.53 22.85 23,66 1.08 00.00 .21 1.77 7.62 112.08 17.09 22.05 26.27 .02 .48 30°09 4.12 11 29,10 PHI 1**4.69** 20.53 5.29 .08 .76 31,12 34,37 2,41 26,26 35,52 01 0 THEIA = 29,10 2.88 10,72 16.47 22,85 34.37 37,90 39,15 • 15 • 98 6.11 Ś 6.43 1,10 17,03 3.09 35.21 23.52 11,17 40.42 38.81 29.86 6.40 3.U4 11,16 17,10 23,67 30,09 35,52 39,15 1.06 40.45 04040404040 04040404040

		0	
	000000000000000000000000000000000000000	8	
	24,400011	*	*
	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9	*
13	\$27.200011210 \$27.200011210	35	Ę
STH 694	10.02 = 6.03 = 1.00 = 6	90	¥
WAVELENGTH 6943	11111 0 7 5 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0	52	AVERAGE GAIN FUNCTION(1.E+7)
N 01	100.52 100.52 100.52 100.52 100.52 100.53	02	N +
= IHd	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	51	VERAGE
0	10000000000000000000000000000000000000	01	*
THETA =	1.69 5.64 5.94 117.91 17.01 21.09 27.79 29.65	10	*
F	11.3 94.7 1.3 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	0	31.17 30.20 28.01 24.66 20.55 10.12 11.81 1.93 1.93
6 %	244 W W W W H H H O W O W O W O W O W O W O		# 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0 # 0

Table 2 (Cont.)

		0 <u>0</u>	
		ě,	* *
	8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	*
43		8	*
GTH 69		30	ON (1 • E
WAVELENGTH 6943	2.24 3.24 5.83 5.83 10.93 111.56	52	AVERAGE GAIN FUNCTION (1.E+7) * * *
30 W	1100 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20	Z ₩ \$
PHI =	3.05 7.06 10.05 112.05 114.02 115.03 117.53 17.53	15	VERAGE *
0	6.50 10.20 110.20 114.32 116.34 119.08 119.08 119.08	01	*
THETA =	4.93 111.05 113.93 114.55 11.5	w	
-	5.08 6.96 113.94 113.96 15.90 17.96 17.96 18.90 21.03	0	222 2010-2010-2010-2010-2010-2010-2010-2
θ ₂	844 W W W W M M O W O W O W O W O W O W O W		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2 (Cont.)

GAIN FUNCTION (1.E+7)

		6	
		8	
		\$	* *
	11.39 22.59 30.09 30.09 30.09 30.09	9	*
6 3	00000000000000000000000000000000000000	35	£ *
GTH 69	WW444000444 W0000W4040W W040W440W	30	₩ **
WAVELENGTH 694	6 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25	FUNCTION (1.E+7
30	55 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	20	* * * * * * * * * * * * * * * * * * *
PHI =	6.01 7.69 7.69 8.49 9.24 9.91 10.96 11.31	5	AVERAGE *
0	6.73 8.56 8.58 9.46 111.03 111.66 112.18 112.79	01	<
THETA =	7.20 9.18 10.09 10.09 11.74 112.96 13.96 13.61	iv.	
=	4.36 10.36 11.	9	11111111111111111111111111111111111111
9 9	N4 4 W W W M M M M M M M M M M M M M M M		4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0

Table 2 (Cont.)

	.52 .64	. 26 64		.06 .22	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00	0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 17 0.00 1.13 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 17 00 1 1 1 1 1 2 4 1 7 5 6 1 1 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6943											0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WAVELENGTH 6943											100 4 60 4 4 10 4 4 10 4 4 4 10 4 6 5 6 5
											53 1.655 06 6.09 06 6.09 08 9.08 10 12.10 53 14.70
0											12 2.83 62 5.53 08 9.06 09 13.08 05 17.10 27 20.53 10 22.85
1Hd 06											59 12.08 69 12.08 53 17.09 26 22.05 12 26.27 37 29.10
14											72 946 47 14.69 85 20.53 10 26.26 37 31.12 90 34.37
THETA											11.16 10.72 17.10 16.47 23.67 22.85 39.09 29.10 35.52 34.37
ф	50	45	0	35	,	30	30	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 120 120 120 120 120 120 120 120 12	20 20 20 10 10	505000

AVERAGE GAIN FUNCTION (1.E+7)

9

0 40.42 5 38.81 10 35.21 15 29.86 20 23.52 25 17.03 30 11.17 35 6.43 40 3.09 *

Table 2 (Cont.)

5 22.00 22.00 20.00 20.00 20.00 20.00 20.00 20.00 9 35 WAVELENGTH 6943 30 25 2 1.32 2.69 4.65 7.19 13,45 16,72 19,71 22,10 15 H 8.81 16.06 23,21 25,93 27.69 28.29 3.49 5.83 19.61 90 10 13.72 17.81 21.88 2.15 4.04 6.64 25.55 28.49 30.38 31,03 9.91 THETA 5 4.23 6.93 10.31 14,22 18.43 22.61 26.38 29.38 31.32 0

04040404040

 θ_1

20

		AVERAGE	GAIN	AVERAGE GAIN *UNCTION(1.E+7)	
31.99					·
30.96		•			*
28.63				•	
25.10				*	
20.78				*	
16.15				*	
11.71			*		
7.80		*			
4.69	*				
2.46	*				
1.06 *					

Table 2 (Cont.)

*	9	35	30	25	20	51	10	Ŋ	0
	2.88	5.01	7.79	-	ι,	17.81	.	22,35	22,98
1.	2.82	4.92	7.66	10.89	14,32	17.58	20,29	22.08	22,71
-	7.04	4.66	7,30	ċ	~	16.91	œ.	21,28	21.89
-	2,36	4.24	6.72	•	•	15.84	•	20.01	20.59
•	2.00	3,71	2.98	8.70	٩.	14.44	ځ	18,34	18.88
•	1.61	3.10	5.12	7.57	7	12.80	•	16,37	16.87
•	1.20	2.46	4.21	6.36	~	11,01	ď	14.21	14.66
•	• 83	1.84	3,31	5.14	٦.	9.17	•	11.98	12,37
-		1,28	2.46	3.97	•	7.37	8.81	9.18	10,12
•	• 26	. 8.1	1.1	2,92	M	5,70	16.9	7.72	8.00
0	60.	44.	1.09	2,01	٦,	4.22	5.20	5,86	60.9
		43	WAVELENGTH 6943	AVELEN	20	H IH	90	THETA =	_

044888111

Table 2 (Cont.)

GAIN FUNCTION (1.E+7)

					•	.72		•	9	0		20												
	14.	19.		•	7	1,36	S	•	~			45		*	*	*								
	86.	7.	₹,	~	0	2,28	'n	•	•	•	6	0					*							
£3	•	9	4	3	7	3,50	~	਼-	~	· •	.	35	•7)					*	*					
GTH 6943	9	∹	9	7		4.97	~	•	•	•	0	30	ON (1.E							*				
WAVELENGTH	~•	m.	•		·•	9.60	0	*	9	•		52	FUNCTION (1.E+7)								*			
30	•	•	~	0	9	~	~	~	,	•	~	20	SAIN									*		
PHI #	•	3	•	*	~	08.6	6.0		1,2	1.4	1 . 4	15	AVERAGE GAIN										*	*
06		`•	•	5	0	11,05	1.6	2,1	2.5	2.7	2,8	10	<											
THETA =	•	•	60	0.2	1,1	11,86	2.5	3.0	3.4	3.6	3.7	S.												
-	7.66	•	•	ċ	-	12,14	2	m	6		*	0			8	3	•	-	•	8.46		5.74		3.52
о ⁷	20	45	4 0	35	30	25	20	15	01	ın	0		o.	0	ŝ	01	15	20	25	30	35	9	45	20

Table 2 (Cont.)

11.052 35 AVERAGE GAIN FUNCTION (1.E+7) WAVELENGTH 5300 1.45 1.44 1.05 30 11. 3.62 7.02 10.59 13.31 1.48 69. 25 3.57 8.28 14.37 20.49 25.06 .32 .01 .86 20 0 0.08 2.24 6.95 14,33 23,45 38,99 5 PHI 91 0 0 00 3 46 10 55 20 67 32 60 43 95 52,38 01 .77 .27 .02 1.24 5.35 13.33 25.06 38.98 52.38 62,09 65,65 THETA in 6.05 1.58 1.15 33 88 64.69 54.69 40.95 14.45 26.63 12 23 04 1 44 5 88 14 37 26,76 41.41 55.46 65,65 0 544888844 54580808080

GAIN FUNCTION (1.E+7)

9	_	THETA :	0	# IHd	10	WAVELENGTH	GTH 5300	00			
50	00.0	10.	40	613	•29	.50	20.	18.	.78	09	
n c	000	•	4 ()) (619	3.0	200		۰ و	•
1	00.7	•	٠ •	•	7	3 :	96	97.	n (9	•
32	Λ	7:	•	•	•	**	•03	90.	90	• 52	·
30	-	0.6	7	₹	9		14.	10.	.13	.42	•
52	0	8.0	5,1	1.1	0		1.27	. 18	0	T NO	
50	80	6.8	2.8	7.2	1.2		2.51	S	0000	N	•
51	~	5.9	0.7	3.5	5.7	•	3.96		0	7	
01	45.94		37,65	0	19.77		5,30	•	-	0	
'n	_	9.0	2.3	2.8	2.5	•	6.26	٠,	N	Q	
0	m	6.0	6. 0	4.2	3.5	.	6.61		~	0	
	0	ın	01	i.	20	25	30	35	0	4 55	20
				,				í			
Q.			•	VEKAGE	NIA2	AVERAGE GAIN FUNCTION LABEAT	ON LIPE	:			
0	•	6								•	_
īV	50.66	•								*	
01	44.49	•							*		
15	35.64						•	*			
20	25.7	~				*					
25	16.45	53		-	_						
30	9.01	_	*								
35	3.9	∓	•								
9	1.21	*									
45	•20	*									
20	•21	*									

Table 2 (Cont.)

		20	
	000000000000000000000000000000000000000	4	*
	480000444844	0	*
00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35	* .
GTH 53	66 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30	ON *
WAVELENGTH 5300	12.04 4.05 7.05 7.05 7.05 11.0	52	AVERAGE GAIN FUNCTION(1.E+7) *
20	10.004 10.004 10.004 10.004 10.004 10.004	20	GAIN
# IHd	10 4 4 9 4 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9	15	VERAGE *
•	224 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	01	*
THETA =	1.89 9.96 110.882 115.38 25.23 25.23 35.66	ئ	* •
=	22 1 1 1 1 2 1 2 2 1 1 1 1 2 2 2 1 1 1 1 1 2	0	386 336 336 22 22 22 22 36 36 36 44 36 44 36 44 36 44 36 44
9 7	844 W W S Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		G 0 W D W O W O W O W O

Table 2 (Cont.)

GAIN FUNCTION (1.E+7)

												9														
	90	Э (0			0	0		0	0	0	50														
	0000	Э.		0	0		~	-	-	-4		45				*	*	*								
	.13	V				<u></u>			Õ	Õ	0	9							*							
00	10 c	*	٠ <u>.</u>	•	-	•	7	2,50	9	-	*	35		-1						*						
GTH 5300	1,32		ď.	•	ď	•	٠,	5	~	٠ <u>.</u>	N.	30		FUNCTION (1.E+7	!					•	*					
WAVELENGTH	2.43	7	٦.	٩,	٥.		5	7	~	0	-	25		FUNCT												
30	3.78	5	٦.	*	-	6	1.0	φ,	2.6	3.0	3.2	20		GAIN								*	*			
PHI :	5.17	•	4	٠,	1.5	3,1	.5	~	6.5	7.1	7.3	15		AVERAGE GAIN										*		
0	04.0	, 20:		2.0	0.4	5.8	7.5	•	6.6	0.5	8.0	10		<											*	*
THETA =	7.24	9.5	1.3	3.5	5.7	7.7	9.5	0	2.2	2.9	3.1	ĸ														
—	7.53	•	1.8	0.4	6.2	8.3	0.2	8	3.0	3.7	3.9	0				3.9	3.3	1.7	4.6	Š	3.4	4.0	7.07	4	3.77	3
θ ³	50	40	04	S S	30	25	50	15	01	'n	0				œ.	0	ĸ	01	15	20	25	30	35	40	45	20

Table 2 (Cont.)

GAIN FUNCTION (1.E+7)

	60.	.21	11	S	~		9	0	0	7	1,11	20		•										
	040	.61	52.	88	6	.81	69	56	46	39	.37	45			*									
	.82	1.05	1,13	1,02	.77	40	.20	50	000	0	•05	04				*								
00	1,22	1.37	1,23	85	39	90.	03	30	77	1.18	1,35	35	12.											
GTH 53	•	•	1.05	244	*0	.13	.93	•		5,30	5.80	30	ON (1.E				*							
WAVELENGTH 5300	1.48		69.	• 11	11.	1,21	3,62	7.02	0	13,31	14,33	52	AVERAGE GAIN FUNCTION(1.E+7)											
0	1.34	497	• 32			3,57	8.28	*	0	S	26.74	20	GAIN					*						
" IHd	1,12	. 65	80.	N	7	6.95	4.3	*	2.4	9	1.4	15	VERAGE						*					
06 :	6.	.41	0000	• 76		10,55	•		m	7	5	01								*				
THETA =	•77	•27	• 05	N	3	13,33	5.0	9	2.3	2.0	5.6	ĸ			_	_					*	*	*	*
-	.72	• 23	*0*	1.44		14,37	•	-	Š	3	6	5		69.37	64.69	54.69	40.92	26.63	14.45	6.05	1.58	•15	• 33	88
₂	20	4 N	04	35	30	52	5 0	15	01	'n	၁		Q.										45	20

Table 2 (Cont.)

GAIN FUNCTION (1.E+7)

	96	23	Ç	9	27	9	2	58	45	93	30	9
	•		7.	1.	1.	1.05	•	•	•	•	•	20
	1,18	1,41	1.46	1,32	1,05	• 73	**	•23	11.	.05	03	1
	1.25	1,33	1,20	06•	.54	•23	10	0000	•04	• 15	•19	0
00	1.11	1.00	.71	.34	• 01	10.	.22	• 65	1.16	1.56	1,72	35
GTH 5300	.83	• 555	•25	10.	619	.71	1.74	3,05	4.34	5,29	5.64	30
MAVELENGTH	64.	.17	000	. 25	1.16	2.84	5,17	7,80	10,24	11,97	12,60	52
01	•21	0.00	• 23	1.24	3,32	6.49	10,51	14.83	18,71	21.41	22,38	20
PHI H	•05	60	88	2.86	6.30	11,17	17,06	23,21	28,63	32,36	33,69	15
06	0000	.34	1,73	4.66	0.40	15,86	23,47	31,28	38.09	42,75	44.40	10
FHETA =						19,33						ĸ
_	•03	10	2,72	6.61	12.63	20,62	29.88	39,28	47.41	52.94	54.90	0
θ 2	20	45	9	35	30	25	5 0	15	2	'n	0	

AVERAGE GAIN FUNCTION (1.E+7) 54.90 45.90 45.90 16.25 8.75 1.14

Table 2 (Cont.)

		_
	00000000000000000000000000000000000000	20
	10.26 17.77 10.00 10.00 10.00 10.00 10.00	45
	48.000000000000000000000000000000000000	0
00	20 20 20 20 20 20 20 20 20 20 20 20 20 2	35
GTH 53	000 000 000 000 000 000 000 000 000 00	30
WAVELENGTH 5300	10.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04	52
20 M	17.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20
HIH	1.24 2.60 4.58 10.31 113.76 117.26 20.47 25.32	15
06	2.21 10.15 10.15 10.15 10.15 12.66 13.66 1	01
THETA =	200 112 112 112 113 114 115 116 116 116 116 116 116 116 116 116	'n
-	3.28 9.03 113.10 123.00 135.00 135.00 136.00 136.00 136.00 136.00 136.00	0

9

39°44 37°76 34°05 28°61 22°33 16°09 10.64 6.37 3.43 1.65 040404040404040

AVERAGE GAIN FUNCTION (1.E+7)

Table 2 (Cont.)

	•28	• 16	80	0	0	0000	•03	90.	0	-	•11	20												
	.11	03	0000	10.	90.	•14	•23	.32	0,	45	94.	45		•	*									
	0000	• 05	01.	• 24	14.	.61	.82	•		1.26	•	0				*	*							
00	~	LL)	. 58	O	4	1.67	0	4	•	*	•	35	(1.4					*						
GTH 53	.67	~	9	7	9	3.48	9	Š	0	7	~	30	ON (1 .E											
WAVELENGTH 5300	1.73	2.46	3,30	4.22	5.16	60.9	6.95	7.68	8.24	8.59	8,71	25	FUNCTION (1.E+7)						*	4.				
30	•			•	•	9.31	•	-	2	2.	•	20								*				
# IHd	9	4	•	S	1.1	12,74	4.1	5.0	6.2	6.7	6.9	15	AVERAGE GAIN								*	*		
06	9	ď	0.2	2,1	0.4	15,81	7.4	8.8	9.6	4.0	9.0	10											*	*
THETA =	2	-	1.7	3.6	5.9	17.94	9.7	1.2	2.3	3.0	3.2	'n								_			_	
-	8	ំ	7	•	•	18,71	Ö	7	m	, E	•	0		24.18	23.44	21.79	19,31	16.32	13.16	10.15	7.48	5.31	3.63	2.42
θ ₂	20	4 N	0	35	30	52	20	15	10	ĸ	0		Q.	C	, ru	01	15	20	25	30	35	9	45	20

7. ACTIVE REFLECTING AREA

The active reflecting area is a function of the two incidence angles θ and ϕ giving the direction of the incident beam, as drawn in Figure 2. We note there is only a slight variation with the angle θ . Table 3 shows the active reflecting area as a function of ϕ for two azimuths, representing the maximum and minimum area. The effective reflecting area in the table is in units of the equivalent number of cube corners at normal incidence. The implied axes of the computer graph are such that the incidence angle increases down the page and the active reflecting area increases to the right.

Table 3. Active reflecting area as a function of angle of incidence.

a) THETA # 0

PHI (DEG)	EFFECTIVE	REFLECTING	AREA	
0.0	420.0000			*
2.0	400.9155			*
4.0	381.7007			*
6.0	362.4139			*
8.0	343.1123			*
10.0	323.8524			*
12.0	304.6894			
14.0	285.6778		•	
16.0	266.8711		•	
18.0	248.3218		*	
20.0	230.0814		•	
22.0	212,2001			
24.0	194.7269		*	
26.0	177.7098		*	
28.0	161,1948		•	
30.0	145.2265			
-	· · - ·		*-	

ONE REFLECTOR AT NORMAL INCIDENCE HAS A REFLECTING AREA OF UNITY

b) THETA = 90

PHI (DEG)	EFFECTIVE	REFLECTING	AREA
0.0	420.0000		*
2.0	403.2985		*
4.0	386.1375		*
6.0	368.5696		#
8.0	350.6484		*
10.0	332.4283		*
12.0	313.9644		*
14.0	295.3126		*
16.0	276.5300		*
18.0	257.6745		*
20.0	238.8050		*
22.0	219.9814		*
24.0	201.2647		*
26.0	182.7169		*
28.0	164.4010		*
30.0	146.3809		*

ONE REFLECTOR AT NORMAL INCIDENCE HAS A REFLECTING AREA OF UNITY

8. RANGE CORRECTION

The range correction that must be added to a laser range measurement to obtain the range to the center of mass of the satellite is given in Table 4. The values are for the incoherent case, which is the mean of the coherent cases. The correction is listed as a function of the angle between the incident beam and the symmetry axis (Z axis) of the satellite. In the computer graph, the range correction is plotted to the right at 1 cm per print position, and the incidence angle is down the page. The range correction that includes the effect of optical path length in the cube corner is given by

Range correction =
$$Z \cos \phi - L \sqrt{n^2 - \sin^2 \phi}$$
,

where

Z = distance from the center of mass to the front face of the retroreflectors (0.34544 m),

 ϕ = the angle between the incident beam and the Z axis of the satellite,

L = the length of the cube corner from vertex to face $(0.015/\sqrt{2} = 0.0106 \text{ m})$,

n =the index of refraction of fused silica (1.455).

Table 4. Range correction.

PHI (DEG)	HANGE CORRECTION (METER	5)
0.0	•3300	*
2.0	•3298	*
4.0	•3292	*
6.0	.3282	*
8.0	.3267	#
10.0	.3249	#
12.0	• 3226	#
14.0	.3200	#
16.0	.3169	*
18.0	.3135	*
20.0	.3096	*
22.0	.3054	#
24.0	.3008	#
26.0	•2958	#
28.0	.2904	#
30.0	.2847	#

9. PULSE SPREADING

Except at normal incidence, the reflected pulse from the array will be wider, on the average, than the transmitted pulse because the cube corners are not all at the same distance from the observer. The effect is negligible except for very short pulses, such as those from mode-locked lasers. One measure of the effect is the distance of the half-power point on the leading edge from the pulse centroid. Table 5 lists the increase of this quantity for the incoherent case for three different incident-pulse lengths. The values shown are the one-way range error that would result in a half-maximum detection system. Tests made with large numbers of coherent returns do not indicate that the incoherent-pulse spreading at the half-power point is the mean of the spreading for the coherent pulses. The use of Table 5 to correct range data for pulse spreading would, therefore, be questionable.

Table 5. Pulse spread.

20 NANO	SECOND PULSE THETA * 90	5 NANO	SECOND PULSE THETA = 90
PHI (DEG)	PULSE SPREADING (METERS)	PHI (DEG)	PULSE SPREADING (METERS)
0.0	0.0000 #	0.0	0.0000 #
2.0	0.0000 #	2.0	0.0000 #
4.0	0.0000 *	4.0	.0001 *
6.0	•0001 *	6.0	.0002 *
8.0	•0001 #		=
10.0	•0001 #	8.0	•0004 *
12.0	•0002 *	10.0	•0006 #
14.0	*-	12.0	.0009 #
	•0003 *	14.0	.0012 #
16.0	•0004 #	16.0	.0016 #
18.0	.0005 *	18.0	.0020 *
20.0	•0006 *	20.0	.0025 *
22.0	•0007 *	22.0	.0030 #
24.0	•0009 *	24.0	.0035 *
26.0	•0010 *	-	·
28.0	*0012 *	26.0	.0041 #
30.0		28.0	.0U47 *
30 0	.0013 #	30.0	•0053 *

+2 NANOSECOND PULSE THETA = 90

PHI (DEG)	PULSE S	PREADING (METERS)
0+0	-0.0000	*
2.0	.0007	*
4.0	.0027	*
6.0	.0065	#
8.0	.0116	*
10.0	.0173	*
12.0	.0230	#
14.0	.0286	*
16.0	.0341	#
18.0	.0396	#
20.0	.0451	*
22.0	.0504	*
24.0	.0558	*
26.0	•0610	*
28.0	.0662	#
30.0	.0713	*

10. VARIATIONS IN PULSE SHAPE DUE TO OPTICAL COHERENCE

Since the transmitted laser pulse is coherent, the reflections from individual cube corners will interfere with each other. For long pulses, the effect is primarily on the amplitude and centroid of the return pulse, with the shape remaining nearly the same as that of the incident pulse. When the pulse length is on the order of the spread in range to the individual cube corners, both the shape and the size of the reflected pulse vary. Figure 3 shows examples of coherent returns from the array at a 15° incidence angle. The incoherent return at this engle has a strength equivalent to 285.9 cube corners, and the centroid of the pulse is at 0.6370 m. The strength and centroid for the pulses shown is given in Table 6. The position (in meters) and the intensity (in normalized units) are listed beside each curve of Figure 3. The intensity is in units such that the area under the curve is equal to the signal strength in equivalent number of cube corners. Position is measured toward the observer, with the origin at the center of the pulse that would be received from a point reflector at the satellite center of mass.

Table 6. Pulse strength and centroid.

$$\theta = 90^{\circ}$$
, $\dot{\phi} = 15^{\circ}$

Pulse width (nsec)	Type of return	Centroid (m)	Signal strength	Figure
20	Incoherent	0.6370	285.9341	3a
20	Coherent	0.7249	238.1188	3 b
5	Incoherent	0.6370	285.9341	3c
5	Coherent	0.6693	647.5280	3d
0.2	Incoherent	0.6370	285.9341	3e
0.2	Coherent	0.6376	223.7706	3 f
0.2	Coherent	0.6462	119.0431	3g
0.2	Coherent	0.6987	376.0539	3h
0.2	Coherent	0.6447	158.3388	3i
0.2	Coherent	0.6087	206.7810	3j

Figure 3a. Coherent pulse shapes.

Figure 3b.

Figure 3c.

Figure 3d.

Figure 3e.

Figure 3g.

Figure 3h.

Figure 3i.

Figure 3j.

11. VARIATIONS IN PULSE CENTROID DUE TO OPTICAL COHERENCE

The interference between the reflections from different cube corners causes the measured range to the array to fluctuate from pulse to pulse. In order to estimate the magnitude of this variation, sets of coherent returns have been calculated for various pulse lengths and incidence angles on the array, and the results are shown in Table 7. Each root-mean-square (rms) deviation was computed from a sample of 100 coherent returns. In Table 7a, all pulses are weighted equally, leading to results that are somewhat erratic owing to the fact that very weak reflected pulses tend to have much larger variations in centroid than stronger pulses do. Each pulse in Table 7b has been weighted by the ratio of the strength of the pulse to the strength of an average (or incoherent) pulse. This procedure gives lower and more consistent rms deviations.

Table 7a. Coherent range variations, with equal weighting.

20 NANOSECOND PULSE

PH1	R.M.S. DEVIATION OF
(DEG)	RANGE CORRECTION (METERS)
0.0	0.0000 #
5.0	•0111 *
10.0	.0330 *
15.0	.0873 *
20.0	.0480 *
25.0	.1437 *
30.0	•0627 *

5 NANOSECOND PULSE

PHI	R.M.S. DEVIATION OF
(DEG)	RANGE CORRECTION (METERS)
0.0	0.0000 *
5.0	.0130 *
10.0	•0268 *
15.0	.0348 #
20.0	.0623 *
25.0	•0696 *
30.0	•0524 *

.2 NANOSECOND PULSE

PHI	R.M.S. DEVIATION U	F
(DEG)	RANGE CORRECTION (ME	TERS)
0.0	0.0000 *	
5.0	.0058 *	
10.0	.0092 *	
15.0	•0120 *	
20.0	.0160 #	
25.0	.0181 *	
30.0	.0202 *	

Table 7b. Coherent range variations, weighted by signal strength.

20 NANOSECOND PULSE

R.M.S.	DEVIATIO	N OF
0.0000	*	
.0053	*	
.0119	*	
.0188	#	
.0267	#	
.0350	#	
.0339	*	
	RANGE CO 0.0000 .0053 .0119 .0188 .0267 .0350	.0119 # .0188 # .0267 # .0350 #

5 NANOSECOND PULSE

PHI	R.M.S.	DEVIATIO	N OF
(DEG)		ORMECTION	
0.0	0.0000	*	
5.0	.0062	*	
10.0	.0129	*	
15.0	.0188	#	
20.0	.0265	*	
25.0	.0335	*	
30.0	.0309	#	

.2 NANOSECOND PULSE

PHI	R.M.S.	DEVIATION OF
(DEG)		DRECTION (METERS)
0.0	0.0000	*
5.0	.0048	*
10.0	.0082	*
15.0	.0110	*
20.0	.0151	*
25.0	.0182	#
30.0	.0208	*

12. ACCURACY OF RANGE CORRECTION

At normal incidence, the distance to each cube corner is the same, since the array consists of a single plane of retroreflectors. Therefore, the range error introduced by the satellite is only that caused by mechanical uncertainties. Since the distance from the satellite center of mass to the front face is 13.6 ± 0.03 inches, the range uncertainty at normal incidence is 0.03 inch (0.8 mm). At other incidence angles, the cube corners have a spread in range that increases with incidence angle. Since all cube corners have the same orientation, the strength of the reflection from each cube corner should be the same at any viewing angle, and if this is true, the range error at any angle is simply the mechanical uncertainty. The only circumstance under which the range uncertainties could be greater is when the diffraction patterns of individual cube corners vary as a result of different manufacturing procedures or thermal conditions. Testing of the cube corners at GSFC indicates that all the cube corners are very close to diffraction-limited. No information is available on the thermal behavior of the retroreflectors.

The spread in range to individual cube corners forms an upper bound to the possible systematic error introduced by the satellite. The radius of the array is about 20 cm, and the maximum angle of incidence on the array is about 18° if there are no large oscillations of the satellite. Therefore, the maximum spread in range of the cube corners from the center of the array is $20 \times \sin 18^{\circ} = 6$ cm.

The random-range variations due to coherent interference are about 2 cm at an incidence angle of 18°, according to Table 7b. Since coherent interference is equivalent to very large variations in the reflectivity of individual cube corners, we expect the range uncertainties from other causes to be even smaller than the coherent variations. Therefore, the systematic range error introduced by the array is probably on the order of 1 cm or less.

13. ACKNOWLEDGMENTS

We wish to express our appreciation to P. O. Minott, of Goddard Space Flight Center; R. Eastern of the Naval Research Laboratory; and H. DeWall of Fairchild Space and Electronics Company for providing information used in this report.