

- *Alg. sortiranja sa umetanjem elemenata
- Alg. sortiranja sa spajanjem podnizova

Algoritam sortiranja sa umetanjem elemenata (1/4)

- Sort za ulazni niz od n brojeva $\langle a_1, a_2, ..., a_n \rangle$ na izlazu daje permutaciju $\langle a_1', a_2', ..., a_n' \rangle$: $a_1' \leq a_2' \leq ... \leq a_n' \quad (a_i \text{ se nazivaju ključevima})$
- Eng. "insertion sort" je efikasan algoritma za sortiranje malog broja elemenata
 - Imitira način na koji čovek sorira karte u levoj ruci
- Karta u desnoj ruci se poredi sa kartama u levoj
 - s desna u levo

Algoritam sortiranja sa umetanjem elemenata (2/4)

- Karte u levoj ruci su sve vreme sortirane!
- Pripada klasi INKREMENTALNIH algoritama
- Procedura Isertion-Sort
 - Ulazni niz brojeva u nizu A[1..n]
 - Broj elemenata *n* je zadat atributom niza *A.length*.
 - Sortira brojeve u istom tom nizu (eng. in place)
 - Na kraju procedure niz A sadrži sortiran niz brojeva

Algoritam sortiranja sa umetanjem elemenata (3/4)

```
Insertion-Sort(A)
```

1.for
$$j = 2$$
 to $A.length$

- 2. key = A[j]
- 3. // Umetni A[j] u sortirani A[1..j-1]
- 4. i = j 1
- 5. while i > 0 and A[i] > key
- 6. A[i+1] = A[i]
- 7. i = i 1
- 8. A[i+1] = key
- Indeks j odgovara tekućoj karti u desnoj ruci
- ♦ Elementi u A[1..j-1] odgovaraju sortiranim kartama u levoj ruci
- ◆ Elementi u A[j+1..n] odgovaraju kartama u špilu na stolu
- \bullet Osobina da je A[1..j+1] uvek sortiran se zove INVARIJANTA PETLJE

Algoritam sortiranja sa umetanjem elemenata (4/4)

- ♦ Koraci (a) do (f) odgovaraju iteracijama for petlje, linije 1-8
- crna kockica = ključ uzet iz A[j], koji se poredi u liniji 5 sa brojevima u osenčenim kockicama s leve strane
- Svetlije strelice pomeranje u liniji 6, Crna strelica prebacuje ključ u liniji 8 (numeracija prema redosledu premeštanja)

Provera koreknosti algoritma

- Invarijanta petlje se koristi za dokaz da je algoritam korektan
- Potrebno pokazati tri osobine invarijante petlje :
 - Inicijalizacija: Istinita je pre prve iteracije petlje
 - Održavanje: Ako je istinita pre iteracije petlje, ostaje istinita posle iteracije
 - Završetak: Kada se petlja završi, invarijanta daje korisnu osobinu za dokazivanje korektnosti
- Velika sličnost sa matematičkom indukcijom
 - Ovde se postupak zaustavlja kada se petlja završi

Provera korektnosti procedure Insertion-Sort

- ♦ Inicijalizacija: Pre prve iteracije j = 2, podniz A[1..j-1] je A[1], koji je sortiran
- Održavanje: Povećanje indeksa j za sledeću iteraciju ne utiče na već sortiran podniz A[1..j-1]
- Završetak: Uslov da je j > A.length = n, izaziva završetak for petlje
 - Tada j mora imati vrednost j = n + 1
 - Zamenom u invarijantu: A[1..j-1] = A[1..(n+1-1)] = A[1..n], a to je ceo niz!
 - Pošto je ceo niz sortiran, algoritam je korektan

Analiza algoritma

- Vreme izvršenja zavisi od veličine ulaza
 - sortiranje 10³ brojeva traje duže od sortiranja 3 broja
- Vremena za dva niza brojeva iste veličine
 - zavisi koliko dobro su oni već sortirani
- Vreme izvršenja = broj operacija, tj. koraka
 - KORAK što je moguće više mašinski nezavistan
 - Npr. za svaku liniju pseudo koda potrebna neka konstantna količina vremena
 - Neka je c_i konstantno vreme potrebno za i-tu liniju

Analiza procedure Insertion-Sort (1/3)

Insertion-Sort(A)	Cena	Broj izvršenja
1.for $j = 2$ to $A.length$	$ c_1 $	n
2. key = A[j]	$ c_2 $	n - 1
3. // Umetni $A[j]$ u $A[1j-1]$	$ c_3 = 0$	n - 1
4. $i = j - 1$	c_4	n - 1
5. while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2n} t_j$
6. $A[i+1] = A[i]$	C_6	$\sum_{j=2n}^{3} (t_j - 1)$
7. $i = i - 1$	C_7	$\sum_{j=2n}^{3} (t_j - 1)$
8.A[i+1] = key	c_8	n-1

- \bullet t_i je broj ispitivanja uslova **while** petlje u liniji 5
- Ispitivanje uslova petlje se izvršava jednom više nego telo petlje
- ♦ Vreme izvršenja 7(n) se dobija sabiranjem proizvoda:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Analiza procedure Insertion-Sort (2/3)

- Vreme izvršenja zavisi od toga kakav ulaz te veličine je zadat
- Najbolji slučaj se dobija kada je ulaz već sortiran
- Tada je $A[i] \le key$, za svako j, u liniji 5, pa je $t_j = 1$, i najbolje (najkraće) vreme izvršenja je:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1) =$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8) = an + b$$

- Ako je ulazni niz sortiran u obratnom redosledu, dobija se najgore (najduže) vreme izvršenja
- Svaki A[j] se mora porediti sa celim podnizom A[1..j-1], pa je $t_j = j$
- Uzimajući u obzir:

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \qquad \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

Analiza procedure Insertion-Sort (3/3)

sledi da je najgore vreme izvršenja:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1) =$$

$$= an^2 + bn - c$$

Najgore vreme izvršenja je dakle kvadratna funkcija veličine ulaza an² + bn − c, gde konstante a, b i c zavise od cena iskaza

Analiza najgoreg slučaja i prosečnog slučaja

- Najčešće je od interesa samo vreme izvršenja algoritma u najgorem slučaju. 3 razloga:
 - To je gornja granica izvršenja za bilo koji ulaz nikada se neće izvršavati duže
 - Najgori slučaj se dešava veoma često, npr. kod DB najgori slučaj je da tražena informacija nije u DB
 - Prosečan slučaj je često loš skoro kao najgori slučaj
- Npr. za slučajno generisan niz brojeva
 - polovina elemenata u A[1..j+1] je manja od A[j], a polovina elemenata je veća, pa je $t_i = j/2$
 - vreme izvršenja takođe kvadratna funkcija n

Asimptotsko ponašanje algoritma

- Niz uprošćenja
 - Prvo su zanemarene cene iskaza, putem konstanti c_i
 - Zatim se prešlo na konstante a, b, c
- Dalje uprošćenje asimptotske notacije
 - Procenjivanje stope rasta, ili VELIČINE RASTA, vremena izvršenja algoritma
 - Ranije je izveden zaključak da asimptotski uska granica za funkciju $f(n) = an^2 + bn c$ iznosi $\Theta(n^2)$
 - Dakle, asimptotski uska granica za vreme izvršenja algoritma sortiranja sa umetanjem elemenat, u najgorem slučaju, je jednaka ⊕(n²)

Algoritam sortiranja sa spajanjem podnizova (1/2)

- Koristi pristup PODELI I ZAVLADAJ
 - Ti algoritmi su rekurzivni
- ♦ Na svakom nivou rekurzije sledeća 3 koraka:
 - Podeli problem na nekoliko podproblema, koji su manje instance istog problema
 - Zavladaj podproblemima rešavajući ih rekurzivno.
 Ako su podproblemi dovoljno mali, reši ih direktno
 - Kombinuj rešenja podproblema u ukupno rešenje originalnog problema

Algoritam sortiranja sa spajanjem podnizova (2/2)

- Ovaj konkretan algoritam radi na sledeći način:
 - Podeli: Podeli niz od n elemenata u dva podniza od po n/2 elemenata
 - Zavladaj: Sortiraj dva podniza rekurzivno korišćenjem istog aloritma
 - Kombinuj: Spoj dva sortirana podniza da bi proizveo sortiran niz
- Rekurzija se spušta do dna, do niza dužine 1, a niz sa jednim elementom već je sortiran

Spajanje dva sortirana podniza

- Spajanje obavlja procedura Merge(A, p, q, r)
 - A je niz, a p, q i r su indeksi niza: $p \le q < r$
 - Pretpostavka: A[p..q] i A[q+1..r] već sortirani
 - Merge ih spaja u jedan sortiran niz A[p..r]
- ♦ Potrebno $\Theta(n)$ vremena, n = r p + 1, to je broj elemenata koje treba spojiti
 - Dve gomile karata na stolu, okrenute licem na gore
 - Već sortirane, najmanja karta je na vrhu gomile
 - Spojiti u jednu sortiranu gomilu na stolu, okrenutu licem na dole

Osnovi korak procedure Merge

- Osnovni korak se sastoji od:
 - izbor manje karte sa vrhova dve polazne gomile,
 - Uklanjanje te karte sa vrha gomile (karta ispod nje postaje vidljiva)
 - Smeštanje karte dole na izlaznu gomilu
- Osnovni korak se ponavlja sve dok se jedna ulazna gomila ne isprazni; onda
 - 2-gu gomilu stavimo, licem na dole, na izlaznu gomilu
- \bullet Korak uzima $\Theta(1)$, pošto se samo porede 2 karte
 - n koraka ukupno uzima $\Theta(n)$ vremena

Specijalna karta

- Da li je neka od polaznih gomila ispražnjena?
 - Zamena: Da li se došlo do specijalne karte?
- ◆ U pseudo kodu ta specijalna vrednost je ∞
 - ona ne može biti manja ili jednaka (≤) karta
 - osim ako se došlo do dna obe gomile
 - kad se to desi, sve karte pre specijalne karte su već prebačene na izlaznu gomilu
- ◆ Ukupno ima r-p+1 običnih karata
 - Procedura ponavlja osnovni korak toliko puta

Pseudo kod procedure Merge

```
Merge(A, p, q, r)
1.n_1 = q - p + 1
2.n_2 = r - q
3.dodeli L[1...n_1+1] i R[1...n_2+1]
4.for i = 1 to n_1
5. L[i] = A[p+i-1]
6.for j = 1 to n_2
7. R[j] = A[q+j]
8.L[n_1+1] = \infty
9.R[n_2+1] = \infty
10.i = 1
11.j = 1
12.for k = p to r
13. if L[i] \le R[j]
    A[k] = L[i]
14.
15. i = i + 1
16. else A[k] = R[j]
17. j = j + 1
```

- 1: računa dužinu n_1 podniza A[p..q]
- 2: računa dužinu n_2 podniza A[q+1..r]
- ♦ 3: pravi nizove L i R (levi i desni), dužine n_1+1 i n_2+1
- 4-5: kopira niz A[p..q] u niz $L[1..n_1]$
- 6-7: kopira niz A[q+1...r] u niz $R[1...n_2]$
- ♦ 8-9: smeštaju specijalnu vrednost∞ na kraj nizova L i R
- ◆ 10-17: ponavljaju osnovni korakr − p+1 puta

Ilustracija rada procedure Merge

poziv Merge(A, 9, 12, 16), niz A[9..16] sadrži brojeve <2,4,5,7,1,2,3,6>

- Nakon kopiranja i umetanja specijalne vrednosti, niz ∠ sadrži <2, 4, 5, 7, ∞>, niz R sadrži <1, 2, 3, 6, ∞>
- Neosenčene pozicije u A su njihove konačne vrednosti
- Osenčene pozicije u L i R su kopirane u A
- Indeks k pozicija u izl. nizu A
- ♦ Indeks i pozicija u ul. nizu L
- ♦ Indeks j pozicija u ul. nizu R
- ♦ Slika (b): ∠[1]=2 i R[1]=1,
 R[1] sadrži manju vrednost
 (1), koja se kopira u A[9]
- ♦ O korak se ponavlja još 6 puta

Invarijanta petlje

- Na početku svake iteracije **for** petlje, lin. 12-17, A[p..k-1] sadrži k-p najmanjih elemenata iz $L[1..n_1+1]$ i $R[1..n_2+1]$, u sortiranom redosledu
 - Pored toga, L[i] i R[j] sadrže najmanje elemente njihovih nizova koji još nisu kopirani nazad u niz A
- Da se podsetimo: Provera korektnosti?
 - Odgovor: inicijalizacija, održavanje, završetak

Provera korektnosti algoritma

- Provera tri svojstva:
 - Inicijalizacija: Pre I iteracije petlje, k = p, pa je niz A[p..k-1] prazan. Prazan niz sadrži k p = 0 min elem iz L i R; kako je i = j = 1, L[1] i R[1] su min elementi
 - Održavanje: I deo: pp da je $L[i] \le R[j]$, L[i] je min elem. A[p..k-1] sadrži k-p min elem, a nakom kopiranja L[i] u A[k], A[p..k] će sadržati k-p+1 min elem. II deo: Ako je L[i] > R[j], onda lin. 16-17 održavaju inv.
 - **Završetak**: Na kraju je k = r + 1. A[p..k-1], postaje A[p..r], i sadrži k p = r p + 1 min elem. L i R zajedno sadrže $n_1 + n_2 + 2 = r p + 3$ elem, i svi oni su kopirani nazad u niz A, osim 2 spec. elem. ∞

Procedura Merge-Sort

Merge-Sort(A, p, r)

1.if p < r

- 2. $q = \lfloor (p+r)/2 \rfloor$
- 3. Merge-Sort(A, p, q)
- 4. Merge-Sort(A, q+1, r)
- 5. Merge(A, p, q, r)
- \bullet Procedura Merge-Sort(A, p, r) sortira podniz A[p..r].
- ◆ Ako je p≥r, taj podniz ima najviše jedan element, pa je on već sortiran.
- lack U suprotnom slučaju, korak **podeli** jednostavno računa indeks q, koji deli A[p..r] na dva podniza: A[p..q] i A[q+1..r]
 - Prvi podniz sadrži \[\ln/2 \rfloor a drugi \[\ln/2 \rfloor elemenata \]
- Inicijalni poziv: Merge-Sort(A, 1, A.length)

Rad procedure Merge-Sort

- Ulazni niz (na dnu):
 <5,2,4,7,1,3,2,6>
- algoritam započinje spajanjem nizova sa po 1 elem u sortirane nizove dužine 2, itd.
- sve do spajanja
 dva niza dužine n/2
 u konačnan niz
 dužine n

Analiza rekurzivnih algoritama (1/2)

- Kada algoritam sadrži rekurzivne pozive, vreme izvršenja se opisuje rekurentnom jednačinom, ili kratko rekurencijom
- Npr. podeli i zavladaj
 - Direktno rešenje za $n \le c$ uzima $\Theta(1)$ vreme
 - Podela problema na a podproblema, veličina 1/b
 - Podproblem uzima $\Theta(n|b)$ vremena
 - a podproblema uzima $a \Theta(n|b)$ vremena
 - Podela problema na podprob. uzima D(n) vremena
 - Kombinovanje rešenja uzima C(n) vremena

Analiza rekurzivnih algoritama (2/2)

Opšta rekurentna jednačina za 7(n) algoritma zasnovanog na pristupu podeli i zavladaj:

$$T(n) = \begin{cases} \Theta(1), & n \le c \\ aT\left(\frac{n}{b}\right) + D(n) + C(n), & inače \end{cases}$$

Analiza procedure Merge-Sort

- Vremena po koracima
 - Podeli: računa sredinu podniza, pa je $D(n) = \Theta(1)$
 - Zavladaj: dva podproblema, svaki veličine n/2, što daje doprinos ukupnom vremenu izvršenja od 27(n/2)
 - **Kombinuj**: Merge nad nizom od n elemenata uzima $\Theta(n)$ vremena, pa je $C(n) = \Theta(n)$
- ♦ Pošto je C(n)+D(n)=Θ(n), rekurentna jednačina za T(n) za proceduru Merge-Sort glasi:

$$T(n) = \begin{cases} \Theta(1), & n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n), & n > 1 \end{cases}$$

Rešenje (1/3)

- ♦ Primenom master metode, slučaj 2, dobija se rešenje $7(n) = \Theta(n \lg n)$
- ♦ Intuitivno razumevanje rešenja $7(n) = \Theta(n \lg n)$ bez master teoreme
 - Napišimo gornju jednačinu ovako:

$$T(n) = \begin{cases} c, & n = 1\\ 2T\left(\frac{n}{2}\right) + cn, & n > 1 \end{cases}$$

- c je vreme za problem veličine 1, kao i vreme po elementu niza za korake podeli i kombinuj
- Sledi grafičko rešenje poslednje jednačine
 - Pretpostavka: n je neki stepen za osnovu 2

- Rekurzivno stablo za T(n) = 2T(n/2) + cn
- (a): T(n), koji se na (b) proširuje u stablo prema rekurenciji
- cn je cena na najvišem nivou, a dva podstabla su rekurencije T(n/2)
- ♦ (c): rezultat proširenja T(n/2)
- (d): celorekurzivno stablo

Rešenje (3/3)

- Dalje se sabiraju cene za svaki nivo stabla
 - najviši nivo: cena cn
 - sledeći novo: cena c(n/2) + c(n/2) = cn
 - sledeći novo: c(n/4)+c(n/4)+c(n/4)+c(n/4)=cn, itd.
 - najniži nivo: n čvorova x cena c = cn. Uvek cn.
- \bullet Ukupno nivoa u stablu: lg n + 1, n broj listova
- Ukupna cena rekurencije:
 - Br nivoa x Cena nivoa = $(\lg n + 1) cn = cn \lg n + cn$
 - Zanemarujući niži član cn, kao i konstantu c, dobijamo:

$$T(n) = \Theta(n \lg n)$$