第十三周习题课 题目 广义积分

判断(讨论)下列广义积分的敛散性。

(1)
$$\int_{1}^{+\infty} \frac{x \ln x}{\sqrt{x^5 + 1}} dx$$
;

$$(2) \quad \int_0^\pi \frac{1}{\sqrt{\sin x}} dx \,;$$

(3)
$$\int_0^{+\infty} \frac{\arctan x}{x^p} dx;$$

(4)
$$\int_0^{+\infty} \left[\ln \left(1 + \frac{1}{x} \right) - \frac{1}{1+x} \right] dx;$$
 (5) $\int_0^{\frac{\pi}{2}} \frac{dx}{\sin^p x \cos^q x};$ (6) $\int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx;$

$$\int_0^{\pi/2} \frac{dx}{\sin^p x \cos^q x}$$

(6)
$$\int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx$$

(7)
$$\int_0^1 \frac{\ln x}{\sqrt{x(1-x)^2}} dx;$$

(8)
$$\int_0^{+\infty} \frac{\sin x^2}{x^p} dx$$
, 并指出当收敛时是绝对收敛还是条件收敛;

(9)
$$\int_0^{+\infty} \frac{x^{\alpha}}{1+x^{\beta}} dx$$
, $\sharp + \beta > 0$; (10) $\int_0^{+\infty} \frac{\sin^2 x}{x^{\beta}} dx$;

$$(10) \int_0^{+\infty} \frac{\sin^2 x}{x^p} dx$$

(11)
$$\int_{1}^{+\infty} x \cos(x^3) dx$$
,指出是条件收敛还是绝对收敛; (12)
$$\int_{0}^{+\infty} \frac{x^p \arctan x}{2 + x^q} dx$$
;

$$(12) \int_0^{+\infty} \frac{x^p \arctan x}{2 + x^q} dx$$

(13)
$$\int_0^{\frac{\pi}{2}} (\ln \sin x + \frac{1}{\ln \sin x}) dx;$$

(14)
$$\int_0^{+\infty} \frac{1}{\sqrt[3]{x(x-2)^2(x-4)}} \, \mathrm{d}x \; ;$$

(15)
$$\int_{-\infty}^{+\infty} \frac{1}{|x-a_1|^{p_1} \cdots |x-a_n|^{p_n}} dx ;$$
 (16)
$$\int_{1}^{+\infty} (1-\cos\frac{1}{\sqrt{x}}-\sin\frac{1}{2x}) dx ;$$

(16)
$$\int_{1}^{+\infty} (1-\cos\frac{1}{\sqrt{x}}-\sin\frac{1}{2x}) dx$$
;

2. 计算下列广义积分的值。

(1)
$$\int_0^{+\infty} \frac{1}{(1+5x^2)\sqrt{1+x^2}} dx$$
, (2) $\int_1^{+\infty} \frac{\arctan x}{x^2} dx$, (3) $\int_0^{+\infty} \frac{xe^{-x}}{(1+e^{-x})^2} dx$

(4)
$$\int_{1}^{+\infty} \frac{dx}{\sqrt{e^{2x} - 1}}$$
, (5) $\dot{x} I = \int_{a}^{b} \frac{dx}{\sqrt{(x - a)(b - x)}}$, $\ddot{x} = \int_{0}^{+\infty} \frac{dx}{1 + x^{3}}$

(7)
$$I = \int_{0}^{+\infty} \frac{dx}{(1+x^2)(1+x^a)}, \quad \sharp \div a > 0.$$
 (8) $\int_{0}^{+\infty} \frac{1+x^2}{1+x^4} dx$

(9) 已知
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}, \quad$$
求
$$\int_0^{+\infty} \frac{\sin x \cos x}{x} dx$$
 及
$$\int_0^{+\infty} \frac{\sin^2 x}{x^2} dx.$$

3. 解答下列各题:

- (1) 举例说明: $\int_a^{+\infty} f(x) dx$ 收敛未必有 $\lim_{x \to +\infty} f(x) = 0$. 即使非负函数也是如此.
- (2) 设 $\int_a^{+\infty} f(x) dx$ 收敛,且 $\lim_{x \to +\infty} f(x)$ 存在,证明: $\lim_{x \to +\infty} f(x) = 0$.
- (3) 设 $\int_a^{+\infty} f(x) dx$ 收敛,且f(x) 在[a,+ ∞]上单调,证明: $\lim_{x \to +\infty} f(x) = 0$.
- (4) 设 $\int_a^{+\infty} f(x) dx$ 收敛,且 f(x) 在 $[a, +\infty)$ 上单调,证明: $\lim_{x \to +\infty} x f(x) = 0$.
- (5) 设 f(x) 在 $[a,+\infty)$ 上连续可微,且 $\int_a^{+\infty} f(x) dx$ 及 $\int_a^{+\infty} f'(x) dx$ 均收敛,证明: $\lim_{x\to+\infty} f(x)=0$.
- (6) 设f(x)在 $[a,+\infty)$ 上可微,单调,且 $\int_a^{+\infty} f(x) dx$ 收敛,证明: $\int_a^{+\infty} x f'(x) dx$ 收敛.
- (7) 设 $\int_a^{+\infty} f(x)dx$ 绝对收敛,且 $\lim_{x\to+\infty} f(x) = 0$,证明: $\int_a^{+\infty} f^2(x)dx$ 收敛。
- (8) 设f(x)在 $[a,+\infty)$ 上一致连续,且 $\int_a^{+\infty} f(x)dx$ 收敛,证明: $\lim_{x\to+\infty} f(x)=0$.
- (9) 设函数 f(x) 在 (0,1] 上单调,且 $\lim_{x\to 0^+} f(x) = +\infty$. 若 $\int_0^1 f(x) dx$ 收敛,则 $\lim_{x\to 0^+} x f(x) = 0$.

以下供学有余力的同学选做。

- 1. 设 f(x) 单调下降,且 $\lim_{x\to +\infty} f(x) = 0$,证明:若 f'(x) 在 $[0,+\infty)$ 上连续,则广义积分 $\int_0^{+\infty} f'(x) \sin^2 x \, dx$ 收敛。
- 2. 判断下列广义积分的敛散性。

(1)
$$\int_{0}^{+\infty} \sin x \sin \frac{1}{x} dx; \qquad (2) \quad \int_{0}^{+\infty} (-1)^{[x^{2}]} dx; \qquad (3) \quad \int_{1}^{+\infty} \frac{\cos(\ln x)}{1+x} dx$$

3. 计算下列广义积分的值。

(1)
$$\int_0^{+\infty} \frac{x \ln x}{(1+x^2)^2} dx$$
; (2) $\int_0^{\frac{\pi}{2}} \ln \sin x dx$. (Euler 积分)