Homework 7

Math 112

Due December 1st at 11:59 PM

Textbook Exercises

4.1: 4.1.4B, 4.1.5B, 4.1.6B, 4.1.7B

4.2: 4.2.1B, 4.2.2B, 4.2.3B, 4.2.5B, 4.2.7B, 4.2.11B

4.3: 4.3.1B, 4.3.3B, 4.3.5B, 4.3.8B, 4.3.10B, 4.3.12B, 4.3.15B

Whenever the book uses the word perpendicular, treat it as through they'd used orthogonal.

Exercise 1: Let \vec{v} be the vector from (-1,-1) to (1,5) and \vec{w} the vector from (0,0) to (-3,0).

- a) Find a unit vector decomposition for \vec{v} and \vec{w} .
- b) Find $\vec{v} + \vec{w}$ and draw all three vectors.
- c) Find $||\vec{v}||$, $||\vec{w}||$, and $||\vec{v} + \vec{w}||$.
- d) Find $\vec{v} \bullet \vec{w}$.
- e) What is the angle between \vec{v} and \vec{w} ?

Exercise 2: We can talk about vectors in higher dimensions — let's have a brief look at 3-dimensional ones.

- a) Let \vec{k} be the unit vector that points in the positive z-direction (so if you draw an xy-plane, it points straight up out of the origin). Let \vec{v} be the vector from (1,2,3) to (4,4,4). Find the unit vector decomposition of \vec{v} in terms of \vec{i} , \vec{j} , and \vec{k} .
- b) There's a 3-dimensional form of the formula to find magnitude: $||a\vec{i} + b\vec{j} + c\vec{k}|| = a^2 + b^2 + c^2$. Use it to find $||\vec{v}||$.
- c) Let $\vec{w} = \vec{i} + \vec{j} + \vec{k}$ It's not quite as clear what we mean when we say the angle between \vec{v} and \vec{w} as it is for 2-dimensional vectors, but we can still use the dot product formula. Find that angle.