

EP04/14596 553292 2004

PA 1222871

REC'D 04 FEB 2005	
WIPO	PCT

THE UNITED STATES OF AMERICA

TO ALL TO WHOM THESE PRESENTS SHALL COME:

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office

September 10, 2004

**THIS IS TO CERTIFY THAT ANNEXED HERETO IS A TRUE COPY FROM
THE RECORDS OF THE UNITED STATES PATENT AND TRADEMARK
OFFICE OF THOSE PAPERS OF THE BELOW IDENTIFIED PATENT
APPLICATION THAT MET THE REQUIREMENTS TO BE GRANTED A
FILING DATE UNDER 35 USC 111.**

APPLICATION NUMBER: 60/531,613

FILING DATE: December 23, 2003

**PRIORITY
DOCUMENT**

**SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)**

**By Authority of the
COMMISSIONER OF PATENTS AND TRADEMARKS**

M. Sias

**M. SIAS
Certifying Officer**

PROVISIONAL APPLICATION COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION under 35 USC 111(b).

1. INVENTOR(s)		APPLICANT(s)	
Last Name	First Name	Middle Initial	Residence
GEBHARDT	Joachim		Pegauer Str. 51, 67157 Wachenheim, Germany

2. TITLE OF THE INVENTION:

PROCESS FOR THE PREPARATION OF PYRIDINE DERIVATIVES

3. CORRESPONDENCE ADDRESS:

Keil & Weinkauf
1350 Connecticut Ave., N.W.
Washington, D.C. 20036
(202) 659-0100; (202) 659-0105-fax

4. ENCLOSED APPLICATION PARTS:

[x] Specification 6 pages
[] Drawings sheets
[x] Claims 8 claims

5. METHOD OF PAYMENT

[X] A check in the amount of \$ 160.00 is attached to cover the required Provisional filing fee.
[X] The commissioner is hereby authorized to charge any deficiency in fees to Deposit Account 11.0345.

6. The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government.

[X] No
[] Yes, the name of the U.S. Government agency and the Government contract number are: _____.

Respectfully submitted,
KEIL & WEINKAUF

Herbert B. Keil
Reg. No. 18,967

1350 Connecticut Ave., N.W.
Washington, D.C. 20036
(202)659-0100
HBK/lc

Process for the preparation of triazolopyrimidines

Description

5 Triazolopyrimidine derivates are valuable building blocks in pharmaceutical or agrochemical synthesis, e.g. fungicide, insecticide or herbicide synthesis.

WO 02/36595 A2 (Dow Agrosciences LLC) describes a synthesis route to 2-amino-5,7-dimethoxy[1,2,4]-triazolo[1,5-a]pyrimidine via reaction of 2-amino-4,6-dimethoxy 10 pyrimidine plus ethoxycarbonylisothiocyanate.

The latter reaction is carried out at room temperature in tetrahydrofuran (THF) and the intermediate was isolated. This intermediate was than reacted with hydroxylaminehydrochloride and diisopropylamine in ethanol at room temperature 15 yielding the 2-amino-5,7-dimethoxy[1,2,4]-triazolo[1,5-a]pyrimidine.

Yields of this two step process are not satisfying and the synthesis is not simple enough e.g. to be scaled up for commercial purposes.

20 The object of the present invention is to provide a simple process which leads to 2-amino-triazolopyrimidines in high yields, which in turn can be used as building blocks e.g. in agrochemical synthesis, such as fungicide, insecticide or herbicide synthesis.

25 Therefore the process as defined in the claims as well as the use of such process in the preparation of 2-amino[1,2,4]-triazole[1,5-a]pyrimidine structure containing agrochemicals or pharmaceuticals has been found.

30 Stage A of the process of the instant invention is the combination of a substituted or unsubstituted 2-amino-pyrimidin and alkoxy carbonyl isothiocyanate or aryloxy carbonyl isothiocyanate.

Preferred unsubstituted or substituted 2-amino-pyrimidines are such of formula I

35

In which the variables have the following meaning.

E = independently the same or different are O, S, N, P;

R = independently the same or different are C₁₋₁₀-alkyl, C₆₋₂₀-aryl, C₇₋₂₀-arylalkyl, C₇₋₂₀-

2

alkylaryl which each of those may be substituted with one or more of the following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₆₋₂₀-aryloxy, non substituted or preferably substituted amino; F, Cl, Br, I;

n = 0 or 1

5 m = 1 for E = O, S

m = 2 for E = N, P

p = 0, 1, 2 or 3

10 Preferred groups R are linear or branched C₁₋₆-alkyl such as methyl, ethyl, n-propyl, i-propyl, n-butyl, sec-butyl, i-butyl, t-butyl, neo-pentyl, n-pentyl, n-hexyl or C₇₋₂₀-arylalkyl such as benzyl or diphenylmethyl.

Preferred groups E are oxygen (O) or nitrogen (N).

15 Preferably E is 0, p is 1 or 2 and the ER-groups are positioned meta to each other.

Most preferably R is C₁₋₆-alkyl, E is 0, p is 2 and the ER-groups are positioned meta to each other.

20 Suitable compounds of formula I are 2-amino-pyrimidine; 2-amino-4,6-dimethoxy-pyrimidine; 2-amino-4,6-diethoxy-pyrimidine; 2-amino-4,6-di-n-propoxy pyrimidine; 2-amino-4,6-di-n-butoxy pyrimidine.

25 The alkoxy carbonyl or aryloxy carbonyl isothiocyanate of the present invention have preferably the following formula II:

In which R has the same meaning - including the preferable meanings - as for compounds of formula I.

30

Suitable compounds of formula II are methoxycarbonylisothiocyanate, ethoxycarbonylisothiocyanate.

35 Compounds of formula II are known in the literature and can be prepared by known methods e.g. by reaction of the respective organochloroformates with alkali metal (K, Na, Rb, Cs) or alkaline earth metal (e.g. Ca, Ba, Sr) thiocyanates in an organic solvent (see for example J. Heterocycl. Chem. 5, 837 (1968); J. Org. Chem. 55 (18), 5230-5231 (1990); US 4160037; US 4778921; US 5194673). The organic solvent is preferably the one in which the reactions of the instant invention are conducted.

The foregoing combination yields a N-pyrimidin-2-yl-N'-carboalkoxy (or aryloxy)thiourea of the formula III

5

In which the variables have the same meaning - including the preferable meaning - as in formula I above.

10 Suitable compounds III are the ones with E = O, R = C₁₋₆-alkyl, m = 1, p = 1, 2 or 3, preferably are compounds III in which E = O, R = C₁₋₆-alkyl, m = 1, p = 2 in which the ER groups are positioned meta to each other. Very suitable compounds III are the following: N-(4,6-dimethoxypyrimidin-2yl)-N'-carboethoxythiourea, N-(4,6-diethoxypyrimidin-2yl)-N'-carboethoxythiourea.

15

Stage B of the instant invention is the combination of the compound III with a hydroxylammonium salt such as hydroxyl ammonium sulfate, hydroxyl ammonium chloride, hydroxyl ammonium nitrate, hydroxyl ammonium phosphate, preferably hydroxyl ammonium sulfate, in the presence of a base.

20

Preferable bases are alkali metal hydroxides (e.g. KOH, NaOH, RbOH, CsOH), earth alkali metal hydroxides (e.g. Mg(OH)₂, Ca(OH)₂, Ba(OH)₂, Sr(OH)₂) and organic bases like amines -preferably tertiary amines - pyridines and other heterocyclic organic bases, preferably cyclic amine bases. Most preferable bases are alkali hydroxides, in particular caustic soda (NaOH).

25

Preferably the base, e.g. caustic soda, is initially slowly added to establish a pH value of the reaction mixture of from 1 to 7,5 which is then maintained at pH 5 to 7,5, in particular pH 6,5 to 7,0 until the reaction is completed.

30

The above reaction sequence yields finally the respective 2-amino-[1,2,4]triazolopyrimidine IV

35

In which the variables, including their preferable meaning, have the same meaning as under formula I.

Suitable compounds IV are the ones in which E = O, R = C₁₋₆-alkyl, m = 1, p = 1, 2 or 3

Preferable are compounds IV in which E = O, R = C₁₋₆-alkyl, m = 1, p = 2 in which the ER-groups are positioned meta to each other or in other words which occupy the 5- and 7-position (according to Chemical Abstract Nomenclature) of the triazolo

5 pyrimidine ring system in formula (IV).

Very suitable compounds IV are: 2-amino-5,7-dimethoxy[1,2,4]triazolopyrimidine, 2-amino-5,7-diethoxy[1,2,4]triazolopyrimidine, 2-amino-5,7-di n or di iso

10 propoxy[1,2,4]triazolopyrimidine, 2-amino-5,7-di n- or di tert. or di iso butoxy[1,2,4]triazolopyrimidine, in particular 2-amino-5,7-dimethoxy[1,2,4]triazolopyrimidine.

Usually stages A and B are conducted in polar aprotic solvents such as nitriles

15 (e.g. aceto nitrile), ethers (e.g. thf, dimethoxyethane, dimethoxymethane, diethoxymethane, diisopropylether, 1,4-dioxan, methyltertbutylether (MTBE)), ketons (e.g. acetone, diethylketone, methylisobutylketone) or preferably in carboxylic acid esters, such as C₁₋₂₀-carboxylic-acid - C₁₋₁₀-alkylesters or the respective C₇₋₂₀-alkylarylesters or C₇₋₂₀-arylalkylesters.

20

Preferably C₁₋₂₀ carboxylic acid C₁₋₁₀-alkylesters are used as solvents.

Mixtures of the above-mentioned solvents are also suitable.

25 Most preferably the solvent in stage A is the same as the solvent in stage B.

Very most preferably the solvent in stage A and/or in stage B is a carboxylic acid ester, such as C₁₋₂₀-carboxylic-acid C₁₋₁₀-alkylester, preferably C₁₋₆-carboxylic-acid C₁₋₆-alkylester in which the carboxylic acid is a straight chain aliphatic carboxylic acid or a

30 benzoic acid and the alcohol alkyl moiety is a straight chain alkyl; suitable examples for the carboxylic acid esters are methylacetate, ethylacetate, n-propylacetate, i-propylacetate, n-butylacetate, in particular ethylacetate.

35 Preferably reactions in stage A and/or stage B are conducted at temperatures of from 40 to 150 °C, preferably 60 to 100 °C, most preferably 70 to 90 °C.

Very most preferably reactions of stage A as well as stage B are conducted under reflux of the respective solvent e.g. from 60 to 100°C, preferably 70 to 90°C.

40 Sometimes it might be necessary to conduct the reaction under pressure in order to achieve the abovementioned reaction temperatures.

Preferably no intermediates are isolated in the process of the instant invention ("one pot procedure"), although this isolation is easily possible by generally known methods.

5 The overall reaction time of stages A and B is usually of from 2 to 14 hours, preferably 5 to 6 hours.

The reaction products IV are in general worked up and isolated with the usual organic techniques.

10

The process of the instant invention can be used in the synthesis of agrochemicals or pharmaceuticals e.g. agrochemicals as described in WO 02/36595 A2 (DOW Agrosciences LLC) or US 5,571,775 (DOW Elanco) which are expressly incorporated by reference herein.

15

For example compounds IV, obtained by the process of the instant invention can be reacted with aryl- or heteroaryl sulfonyl halogenides Ar-SO₂-Hal or (Hetaryl)-SO₂-Hal yielding respective N([1,2,4]triazolo[1,5-a]pyrimidin-2-yl) aryl or heteroaryl sulfonamide compounds V, as described in WO 02/36595 A2 (DOW Agrosciences LLC)

20

in which the variables have the same meaning as in formula I and R' independently the same or different is H or R and E¹ is CR' or N, preferably N.

25

Suitable compounds V are for example:

3-Pyridinesulfonamide, N-(5,7-dimethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy-4-(trifluoromethyl), as disclosed in Research Disclosure July 2002, 1230-1231;

30

3-Pyridinesulfonamide, N-(5,7-diethoxy[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)-2-methoxy(trifluoromethyl).

35 The process of the instant invention leads in a simple, usually one pot procedure, to the valuable compounds IV in high yield, usually overall yield above 85 %, in particular over 90%.

6

Examples

One pot procedure for the synthesis of 2-amino-5,7-dimethoxy [1,2,4]triazolopyrimidine (ADTP) from 2-amino-4,6-dimethoxypyrimidine (ADP)

5

11.9 g (0.075 mol) ADP was dissolved in 68 g ethyl acetate. 11 g (0.0825 mol) ethoxycarbonyl isothiocyanate was added within 20 min. at 78°C (no exotherm). The mixture was stirred over 5 h at reflux (78-79°C). 49.2 g (0.075 mol) hydroxylammonium sulfate (25 % solution in water) were added and the mixture heated to 71°C (reflux

10 aceotrope). 50 g (0.1 mol) diluted caustic soda (2 mol/l) was added within 1 h to establish the pH from 1.3 to 6.5 and hold at 6.5-7.0 (offgas CO₂ and H₂S, slightly exotherm). The mixture was stirred over 6 h under reflux (71°C) for reaction completion. The mixture was cooled down over night to 20°C. The product (ADTP) was filtrated and washed 3 times with each 25 g water to remove the salt (Na content after 15 first wash 0.42 %, after second 0.20 %, after third 0.025 %). Finally the solid ADTP was dried. Yield: 91.1 % in respect to ADP, purity 95.3 % (quantitative HPLC assay).

Claims

1. Process for the preparation of unsubstituted or substituted 2-amino-[1,2,4]triazolopyrimidines which comprises combining A) 2-Amino-pyrimidine or its derivatives with alkyloxycarbonyl isothiocyanate or aryloxycarbonyl isothiocyanate with B) hydroxyl ammonium salt and a base wherein the reaction is carried out in a polar aprotic organic solvent in the temperature range of from 40 to 150 °C.
- 10 2. The process according to claim 1 wherein the pH value in step B) is increased over time and finally maintained in the range of from 5.5 to 7.5.
- 15 3. The process as in claims 1 to 2, wherein the hydroxylammonium salt is hydroxylammonium sulfate.
4. The process as in claims 1 to 3, wherein the polar aprotic solvent is selected from the group consisting of carboxylic acid esters.
- 20 5. The process as claimed in claims 1 to 4 wherein the 2-amino-pyrimidine or its derivatives is described by formula I

and the 2-amino-[1,2,4]triazolopyrimidine is described by formula IV

25

30 wherein the variables have the following meaning:

E = independently the same or different are O, S, N, P;

R = independently the same or different are C₁₋₁₀-alkyl; C₆₋₂₀-aryl; C₇₋₂₀-arylalkyl;

C₇₋₂₀-alkylaryl which each of those may be substituted with one or more of the

following groups: F, Cl, Br, I, C₁₋₂₀-alkoxy, C₆₋₂₀-aryloxy, non substituted or

preferably substituted amino; F, Cl, Br, I;

n = 0 or 1

m = 1 for E = O, S

m = 2 for E = N, P

5 p = 0, 1, 2 or 3.

6. Process as claimed in claims 1 to 5, wherein the process is conducted without isolation of intermediates.
- 10 7. Process for the preparation of N-([1,2,4]triazolo[1,5-a]pyrimidin-yl)aryl sulfonamides or N-([1,2,4]triazolo[1,5-a]pyrimidin-yl)heteroaryl sulfonamides which comprises combining A) 2-amino-pyrimidine or its derivatives with alkyloxycarbonyl isothiocyanate or aryloxycarbonyl isothiocyanate with B) hydroxyl ammonium salt and a base wherein the reaction is carried out in a polar aprotic organic solvent in 15 the temperature range of from 40 to 150 ° C and subsequently reacting the yielded unsubstituted or substituted 2-amino-[1,2,4]triazolopyrimidines with an arylsulfonylhalogenide Ar-SO₂-Hal or an heteroarylsulfonylhalogenide Hetar-SO₂-Hal.
- 20 8. Use of a process as claimed in claims 1 to 6 in the synthesis of N-([1,2,4]triazolo[1,5-a]pyrimidin-yl) structure containing agrochemicals or pharmaceuticals.

9

Process for the preparation of triazolopyrimidines

Abstract

5 Process for the preparation of unsubstituted or substituted 2-amino-[1,2,4]triazolopyrimidines which comprises combining A) 2-amino-pyrimidine or its derivatives with alkyloxycarbonyl isothiocyanate or aryloxycarbonyl isothiocyanate with B) hydroxyl ammonium salt and a base wherein the reaction is carried out in a polar aprotic organic solvent in the temperature range of from 40 to 150 °C.

10