Drawing pedigree diagrams with R and graphviz

by Jing Hua Zhao

Human genetic studies often involve data collected from families and graphical display of them are necessary. The wide interest it has drawn over years led to many software packages, both commercial and noncommercial. A recent account of these packages is available ((Dudbridge et al., 2004)), and a very flexible package Madeline (http://eyegene.ophthy.med.umich.edu/madeline/index.html) is now released under the GNU General Public License. A comprehensive list of many packages, including the package LINKAGE for human parametric linkage analysis and GAS for some other analyses, can be seen at the linkage server at Rockefeller University (http://linkage.rockefeller.edu).

Here I describe two functions in R that are able to draw pedigree diagrams; the first being plot.pedigree in kinship developed S-PLUS by Terry Therneau and Beth Atkinson and ported to R by the author, and the second pedtodot in gap based on David Duffy's gawk script (http://www2.qimr.edu.au/davidD/Course/pedtodot) that requires graphviz (http://www.graphviz.org). Both are easy to use and can draw many pedigree diagrams quickly to a single file, therefore can serve as alternatives to some programs that only offer interactive use.

Representation of pedigrees

The key elements to store pedigrees using a database is via the so-called family trios each containing individual's, father's and mother's IDs. Founders, namely individuals whose parents are not in the pedigree, are sent to be zero or missing. Individual's gender (e.g. 1=male, 2=female) is included as auxiliary information, together with pedigree ID in order to maintain multiple pedigrees in a single database, each record of which indicating a node in the pedigree graph.

For instance, information for pedigree numbered 10081 in genetic analysis workshop 14 (GAW14, http://www.gaworkshop.org) is shown as follows.

```
pid id father mother sex affected 10081 1 2 3 2 1 10081 2 0 0 1 2 110081 3 0 0 2 1 10081 4 2 3 2 1 10081 5 2 3 2 2 10081 6 2 3 1 2 10081 7 2 3 2 2 10081 8 0 0 1 2
```

```
    10081
    9
    8
    4
    1
    2

    10081
    10
    0
    0
    2
    2

    10081
    11
    2
    10
    2
    2

    10081
    12
    2
    10
    2
    1

    10081
    13
    0
    0
    1
    2

    10081
    14
    13
    11
    1
    2

    10081
    15
    0
    0
    1
    2

    10081
    16
    15
    12
    2
    2
```

Here all IDs are integers with obvious meanings just described, and the variable affected indicates if an individual is alcoholic (1=nonalcoholic, 2=alcoholic) according to DSMIIIR and Feighner definition ALDX1 in the dataset.

In human genetic linkage studies, this is also called pre-makeped format since these IDs can also be string variables, e.g. individuals' names, and a utility program makeped in LINKAGE can be used to generate the serial integer IDs and perform simple checks on errors in family structure(s).

Suppose this is kept in a text file called 10081.pre, we use

```
pre <- read.table("10081.pre",header=T)
to read it into object ped.</pre>
```

The pedigree-drawing algorithm

Typically, in a pedigree diagram males and females are shown in squares and circles, respectively. Spouses can form marriage nodes from which nodes for children are derived. It is also customary to draw pedigree diagrams top down, so that children at a given generation could have children of their own in the next generation. This implies that the conceptually simple algorithm for pedigree drawing would involve sorting members of a pedigree by generation and align members of the same generation horizontally and those at different generations vertically. In other words, the family is drawn as a directed graph with members as nodes and ordered by their generation numbers. The algorithm could be more involved if there are marriage loops in the family, i.e. overlapping generations, or if the pedigree is too large to fit in a single page. More details on the algorithmic aspects of pedigree-drawing (Tores and Barillot (2001)) can be found for interested readers.

Fortunately, there are software publicly available that implements this algorithm. Among these the most notable is graphviz (http://www.graphviz.org). In the following section two approaches which implements the algorithm and which directly uses that in graphviz will be described.

Drawing pedigree diagrams with R and graphviz

via plot.pedigree in kinship

Package kinship was developed for linear mixed and mixed-effects Cox models of family data, but it has function plot.pedigree function for drawing pedigree diagrams. As an S3 function for class 'pedigree', it can be used as plot if supplied with argument with class 'pedigree'.

- > library(kinship)
- > attach(pre)
- > ped <- pedigree(id,father,mother,sex,
- + affected)
- > plot(ped)

This gives Figure 1. We can use R devices such as postscript to keep the diagram as an outside file, e.g., postscript("10081.ps"); plot(ped); postscript(). The postscript format is preferable since it can hold more than one pedigree diagrams.

Figure 1: Pedigree 10081 by kinship

via pedtodot in gap

The diagram produced by plot.pedigree in kinship is a still image so that nodes in the pedigree graph can not be pulled and dragged. This might not be trivial to implement. However, we can use graphviz to achieve this. A nice feature of the package its ability to interpret dot language, which is in ASCII format that allows for text-editing. Keeping this in mind, we can simply generate a dot file for given pedigree(s) using dot syntax.

- > library(gap)
- > pedtodot(ped)
- > dir()

By default, this generates 10081.dot which can be used by dot (Figure 2).

Figure 2: Pedigree 10081 by dot

When dir=forward is specified in the dot file, besides dot it also makes sense to use to neato leading to a more liberal graph (Figure 3). Its unusual looking makes it appealing for exposing the peeling algorithm in the likelihood calculation of pedigrees.

Figure 3: Pedigree 10081 by neato

A single file containing all pedigree diagrams can be generated through the use of R sink command and screen output using sink=F option in pedtodot. For example, a complete list of pedigree diagrams using pedigrees from GAW14 are available from the web sites http://www.ucl.ac.uk/~rmjdjhz/r-progs.htm and http://www.hgmp.mrc.ac.uk/~jzhao/r-progs.htm.

BIBLIOGRAPHY BIBLIOGRAPHY

Summary and further remarks

Further information about the two functions is available from the packages themselves. Note that plot.pedigree in kinship does not require pedigree ID be specified, while pedtodot in gap does. Unlike plot.pedigree, pedtodot requires graphviz to visualize graphics, but can be edited with dotty, and be printed out in multiple pages when a pedigree diagram is too big to fit in a single page. Both can produce a set of pedigree diagrams in a single file.

Although makeped is a utility program in LINK-AGE, this function is also available in package gap. If the pedigree file is in post-makeped format, then the option makeped=T can be used. However, pedtodot can also use string IDs, or file in the so-called GAS format in which gender can take values 'm', 'f', etc.

Most pedigrees in current studies have moderate sizes, therefore simple two-dimensional arrays will be sufficient to keep track of marriages and children from them, efficiency can be gained through use of abstract data structures such as linked-list or trees and it will not be difficult to achieve. At this point, gawk script may be more efficient since it can use strings to index arrays. In addition, other features will be benefited from further experiences of its use.

Finally, it is notable that path.diagram in the R

package sem is designed to generate dot file to be used by graphviz, while a more elaborate implementation can be found in the Bioconductor (http://www.bioconductor.org) package Rgraphviz. As graphviz is open source, it should be possible to introduce more native dotty-like features in R. Although as yet human genetic linkage and genomewide association analysis is not widely conducted with R, this might change in the near future, as has been demonstrated by the great success of the Bioconductor project. I believe the two R functions described in this note will be very useful to researchers in their genetic data analysis.

Jing Hua Zhao University College London j.zhao@ucl.ac.uk

Bibliography

- F. Dudbridge, T. Carver, and G. Williams. Pelican: pedigree editor for linkage computer analysis. *Bioinformatics*, 20(14):2327–2328, 2004.
- F. Tores and E. Barillot. The art of pedigree drawing: algorithmic aspects. *Bioinformatics*, 17(2):174–179, 2001.