Type System + Security =?

枫聆

2022年7月12日

目录

1	Intr	roduction	2
	1.1	Type System	2
	1.2	Information Flow	(
	1.3	Noninterference	f

Introduction

Type System

Definition 1.1. A type system is a tractable syntactic method for proving the absence of certain program behaviors by classlying phrases according to the kinds of value they compute [1].

Annotation 1.2. 个人的题外话: type system 就是一种非常巧妙工具能帮你抓住那些你可以尽可能抓住的东西,这些东西就是指那些用 types 所刻画的我们感兴趣的 properties. 我觉得这是一种艺术,一种难以言于笔下的艺术,凝聚了一代又一代计算理论先驱们的一种智慧"我们还可以做到更好,我们还可以往前再走一点…",这些东西需要你慢慢地在他们的字里行间去感受.

Annotation 1.3. 在 computation 里面有两个东西很重要: (1) 怎么做 encoding? i.e., 给定一些输入我们如何将其转换成我们当且 system 中可以接受的东西 (2) 怎么做 computing? i.e., 我们如何将输入转换成其对应的结果. 我们先用简单的 untyped lambda calculus 来慢慢说明.

Definition 1.4. Let Λ be the set of terms in lambda calculus, it is defined by the follow inductive process:

- If x is a variable, then $x \in \Lambda$.
- If x is a variable and $M \in \Lambda$, then $\lambda x. M \in \Lambda$.
- If $M, N \in \Lambda$, then $(MN) \in \Lambda$.

Annotation 1.5. 上述关于 lambda calculus 的定义实际上就是一个 encoding, 其中 $\lambda x. M$ 称其为 abstraction. 如果我们从 Λ 任意地取一个 term t 出来如何对其对 computing 呢? 我们将赋予其两个重要的 reductions β 和 η , 其实分别对应我们常见的 application (函数调用) 和 extensionality (函数等价).

Definition 1.6. if a variable x is in such term $\lambda x. M$, then we call x is bound, otherwise x is free.

Definition 1.7. A term of the form $(\lambda x. M)$ N is called redex (reducible expression), and the operation of rewriting a redex according to the above rule is called β -reduction, written as

$$(\lambda x. M) N \rightarrow [x \mapsto N]M$$

where $[x \mapsto N]$ is substitution means "replacing all free occurrences of x in M by N".

Definition 1.8. Given a term $\lambda x. M$ in Λ , if x is not free in M, then we have a η -reduction as follow:

$$\lambda x. M \to M$$

Annotation 1.9. 那么现在拿到一个 term 之后就可以尝试按照上面的规则来做 reduction,实际上这个里面还 缺一个 α -conversion,它是用来处理 variables 重名冲突的. 最后我们可以也许另外一个新的 term,但是这个里面 忽略了一个重要细节,就是当一个 term 里面存在多个地方可以应用上述规则的时候,我们应当如何选择应用顺序呢? 这里就可以引出两个经典的 reduction strategies: *call by name* 和 *call by value*.

Definition 1.10. In *call by name* reduction strategy, the leftmost redex is always reduced first, and allows no reducations inside abstraction.

Definition 1.11. In *call by value* reduction strategy, a redex is reduced only when its right hand side has reduced to a *value* (varible and abstraction), and allows no reducation inside abstraction.

Annotation 1.12. 注意这两个 reducation strategies 都是不允许在 abstraction 里面做 reduction 的,其实差异就是在做 application 的时候, call by name 是 agruments 接把值替换到 abstraction 里面,而 call by value 是先对 arguments 做 reduction. 当我们选择了一个 reducation strategy, 然后对一个 finite term 不断地做 reduction,最终我们会得到一个已经无法再继续做 reduction 的 term,这个 term 就称其为 normal form.

Definition 1.13. A term N is in *normal form* is no reduction rule applies to it.

Annotation 1.14. 我们并不打算在先前的 lambda calculus 上建立一个完整的 language, 例如引入 bool, natural number 和 test 的定义等. lambda caculus 的引入只是为了进一步说明 evaluation 过程中所需要的 *operational sementics*, 即 small step $t_1 \to t'_1$. 下面我们将 *call by value* 以 inference rules 巧妙地融入 lambda calculus.

Definition 1.15. The untyped lambda calculus is defined as follow:

$$t := x \mid \lambda x. t \mid t t$$

$$v := \lambda x. t$$

$$\frac{t_1 \to t'_1}{t_1 \ t_2 \to t'_1 \ t_2} \text{ E-App1}$$

$$\frac{t_2 \to t'_2}{v_1 \ t'_2 \to v_1 \ t'_2} \text{ E-App2}$$

$$\overline{(\lambda x. t_1)} \ v_1 \to [x \mapsto v_1]t_1 \text{ E-AppAbs}$$

Annotation 1.16. 关于对 inference rule 的理解,对初次接触它的人并不太好理解. 对于一个 inference rule 中间横线之上我们称为 premises,横线之下我们称其为 conclusion,通常 premises 可以有多个,而 conclusion 只有一个. 例如对于 E-APP1 我们可以读作: t_1 t_2 \to t_1' t_2 if t_1 \to t_1 , 因此我们通常是从 conclusion 来考虑 premises,简单地说就是从下往上读,这一点尤为重要,它是我们用 inference rules 做 derivation 的基础.

我们来简单地解释一下上面定义的 untyped lambda calculus 的 operational sementics: 首先给出了 terms 和 values(只有 abstractions) 的准确定义, 这里只引入了 β -reduction 即 E-AppABs rule, 并且将 *call by value* 也融

入了进去,这体现在 E-APP1 rule 规定要先对 leftmost 做 reduction, 直到 leftmost 变成了才能 value, 我们才可以继续使用 E-APP1 rule 往右做 reduction. 后面我们就就将用 evaluation 来代替 reduction 在如今 untyped lambda calculus 中的使用.

Definition 1.17. A *derivation* in up is either an the instance of E-APPABS or an application of a evalution rule to derivations concluding its premises.

Example 1.18. 我们来举一个关于 $(\lambda x. x \lambda y. y) z \rightarrow (\lambda y. y) z$ 例子:

$$\frac{\lambda x. x \ \lambda y. y \rightarrow \lambda y. y}{(\lambda x. x \ \lambda y. y) \ z \rightarrow (\lambda y. y) \ z} \text{ E-APP1}$$

再想想我们是否能得到关于 $(\lambda x. x \lambda y. y)z \rightarrow z$ 的 derivation 呢?

$$\frac{?}{(\lambda x. x \ \lambda y. y) \ z \to z} ?$$

显然这里没有合适的 evaluation rule 可以 apply, 这就是前面定义 untyped calculus lambda 的精髓, 我们只能做 small step.

Annotation 1.19. 我们现在来思考另外一个问题: 如果给定一个 $\lambda x. x\lambda y. y. z$, 其中 x, y, z 均为 variables. 我们对其做 evaluation 会得到:

$$\lambda x. x \ \lambda y. yz \rightarrow z \ \lambda y. y$$

最后的结果奇怪,这并不是我们想要的东西,因为我们通常希望 evaluation 的结果是一个 value. 这就是涉及到我们是否可以在一开始就 refuse 掉可能会产生一个我们不期望的看到的结果呢? 而不是在 evaluation 进行到一半的时候,才恍然大悟. 这时候 type system 将会作为一个最有利的工具来帮助我们完成这个工作. 为了更清晰说明问题,我们还是先给出一个常见的 pure simply typed lambda calculus,这就是我们常说的 STLC 的简化版. 我们会直接给出定义,不会在像前面推出 untyped lambda calculus 那样,因为整个过程是相似的,清晰的.

Definition 1.20. The pure simply typed lambda-caculus is defined as follow:

$$t ::= x \mid \lambda x : \tau.t \mid t \ t$$

$$v ::= \lambda x : \tau.t$$

$$\tau ::= \tau \to \tau$$

$$\Gamma ::= \emptyset \mid \Gamma, x : \tau$$

$$\frac{t_1 \to t_1'}{t_1 \ t_2 \to t_1' \ t_2} \text{ E-App1}$$

$$\frac{t_2 \to t_2'}{v_1 \ t_2' \to v_1 \ t_2'} \text{ E-App2}$$

$$\overline{(\lambda x : t.t_1)} \ v_1 \to [x \mapsto v_1]t_1 \text{ E-AppAbs}$$

$$\frac{x : \tau \in \Gamma}{\Gamma \vdash x : \tau} \text{ T-VAR}$$

$$\frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x : \tau_1.t : \tau_1 \to \tau_2} \text{ T-Abs}$$

$$\frac{\Gamma \vdash t_1 : \tau_1 \to \tau_2 \quad \Gamma \vdash t_2 : \tau_1}{\Gamma \vdash t_1 \ t_2 : \tau_2} \text{ T-App}$$

Annotation 1.21. 相比于 untyped lambda calculus 多了关于 type τ , 所有 terms 在 Λ 都可以看做一个 abstraction, 它对应的 type 就是 $\tau \to \tau$. 其中 Γ 表示 contexts, i.e., 我们需要某个 term 里面所有 free variables 的 types 才能进一步推导 term 它具有什么 type, 它是可以为 empty set 的, 题外话 Γ 实际上也是可以看做 multi-set 的, 即 Γ_1, Γ_2 . 这里 judgement(也可以叫 sequent) $\Gamma \vdash t : \tau$ 表示 term t 在 contexts Γ 下具有 type τ , 中间这个 \vdash 叫 turnstile. 如果我们要验证这个 judgement 是 valid,就需要一个关于它的 derivation(这里 derivation 的定义和前面类似),这里 derivation 就需要按照我们这里最下面的三个 typing rules. 这里我给的解释是比较简单,但是对于初次接触的人来说并没有那么容易,我将配合几个例子帮助你理解.

Example 1.22. 我们可以尝试推一下关于 $c: \tau_2 \vdash \lambda x: \tau_1.c: \tau_2$, 其中 c 表示一个 type 为 τ_2 的 constant:

$$\frac{\overline{c:\tau_2,x:\tau_1\vdash c:\tau_2}}{c:\tau_2\vdash \lambda x:\tau_1.c:\tau_2} \, \operatorname{T-Var} \\ \operatorname{T-Abs}$$

这里其实隐藏关于 context permutation 的 structural rule 在里面,虽然它看起来还是很自然的,但是我们必须提醒一下未来需要小心的注意这些 structural rule,有可能很显然的 structural rule,你直接引入或者消去你将会得到可能与原来并不等价的 system.

Annotation 1.23. 那么我们将如何把 typing rules 和 evaluation rules 联系起来呢? 我将通过两个非常非常重要的 theorems: *perservation theorem* and *progess theorem* 来说明它们的联系

Information Flow

Noninterference

参考文献

[1] Benjamin C. Pierce. Types and Programming Languages.