Sesión 21

Análisis Convexos - CM3E2

Jonathan Munguia¹

¹Facultad de Ciencias Universidad Nacional de Ingeniería

Outline

- Derivada direccional
 - Derivada direccional

Munguia (FC-UNI)

Definición 1 (Derivada direccional)

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ y $x \in \text{dom}(f)$. La derivada direccional de f en x en la dirección $d \in \mathbb{R}^n$, denotada por f'(x, d), es el límite, si existe,

$$f'(x,d) = \lim_{\alpha \to 0+} \frac{f(x + \alpha d) - f(x)}{\alpha}.$$

Munguia (FC-UNI) Sesión 21 24 de enero de 2021 3 / 15

Lema 1

Si $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ es convexa, $x \in \mathsf{dom}(f)$ y $d \in \mathbb{R}^n$, se tiene que la función

$$\alpha \to \frac{f(x + \alpha d) - f(x)}{\alpha}$$

es creciente en $(0, +\infty)$. Luego

$$f'(x, d) = \inf_{\alpha > 0} \frac{f(x + \alpha d) - f(x)}{\alpha}.$$

Así, f'(x, d) es o un número real o $\pm \infty$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

4 / 15

$$K>0: \begin{cases} |a_1 \times d| = \lim_{t \to 0^+} \left(\frac{f(a+|t|x)d}{t} - \frac{f(a)}{t} \right) \times \\ = k \lim_{t \to 0^+} \left(\frac{f(a+|t|x)d}{t} \right) = k$$

= k f'(a, d)

Teorema 1

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa propia $y \ a \in dom(f)$. Entonces $f'(a, \cdot)$ es convexa positivamente homogénea.

Munguia (FC-UNI)

Sesión 21

$$(d_{1}, \theta_{1}), (d_{2}, \theta_{2}), t \in (0,1) \hat{d}$$

$$+ (d_{1}, \theta_{1}) + (1+t) (d_{2}, \theta_{2}) = [t d_{1} + (1+t) d_{2}, t \theta_{1} + (1+t) \theta_{2})$$

$$+ (d_{1}, \theta_{1}) + (1+t) (d_{2}, \theta_{2}) = [t d_{1} + (1+t) d_{2}, t \theta_{1} + (1+t) \theta_{2}]$$

$$+ (\theta_{1} + (1+t) \theta_{2})$$

$$+ (\theta_{1} + (1+t) \theta_$$

$$=$$
 $\chi^4 \in \mathcal{A}_1$

$$x^4 \in \mathcal{A}(a) \Rightarrow \{(a+td) > f(a) + (x^4 + d + td - g) + t>0$$

$$\inf_{t>0} \frac{f(\alpha+td)-f(\alpha)}{t} \geq \langle x, d \rangle$$

Proposición 1

Sea
$$f: \mathbb{R}^n \to \overline{\mathbb{R}}$$
 convexa propia y $a \in dom(f)$. Entonces

 $x^* \in \partial f(a)$ si y solo si $f'(a,d) \ge \langle x^*, d \rangle$ para todo $d \in \mathbb{R}^n$. Es decir

$$\partial f(a) = \{x^* \in \mathbb{R}^n : \langle x^*, d \rangle \le f'(a, d) \quad \forall d \in \mathbb{R}^n \}.$$

$$(= d=x-a, t=1)$$

 $\frac{1}{1}$
 $\frac{1}$
 $\frac{1}{1}$
 $\frac{1}{$

Munguia (FC-UNI) 24 de enero de 2021 6 / 15

Proposición 2

Sea $f: \mathbb{R}^n \to \mathbb{R}$ convexa $y \overline{x} \in int(dom(f))$. Entonces $f'(\overline{x}, d)$ es un número real para todo $d \in \mathbb{R}^n$.

Observación 1

Usando las mismas ideas de la prueba, se tiene que $f'(\overline{x}, d)$ es un número real para todo $x \in ri(dom(f))$ y para todo d en el subespacio que es paralelo al aff(dom(f)).

$$t > purple}$$
 $1 f(\tilde{x} + td) - f(\tilde{x}) (\leq l + |ld|)$

$$1 f'(\tilde{x}, d) | \leq l + |ld||$$

7 / 15

Proposición 3

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa. Entonces f^* es propia si y solo si f es propia.

Demostración

Ver la Proposición 1.6.1 parte (b) de [4].

$$S = f^* = \mathcal{N} \delta(y) = \sup_{\substack{d \in \mathbb{R}^n \\ y > 0}} \left[x \langle dy \rangle - y f(a) \right]$$

$$= \delta(y) \quad y > 0$$

Proposición 4

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ propia y postivamente homogénea. Entonces, existe C convexo cerrado no vacío tal que $f^* = \delta_C$. Además $C = S_0(f^*)$.

Demostración

Sigue las mismas ideas del Teorema 3.5 de [2].

Munguia (FC-UNI)

Proposición 5 (Función soporte de la subdiferencial)

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa propia $y \in dom(f)$. Si $\theta(\cdot) = f'(x, \cdot)$ es propia entonces $\partial f(x) \neq \emptyset$. Además, $\overline{\theta}$ es la función soporte de $\partial f(x)$, es decir $\overline{\theta} = \sigma_{\partial f(x)}$.

Observación 2

Si existe d tal que $f'(x, d) = -\infty$, entonces $\partial f(a) = \emptyset$.

$$= \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac$$

$$(f'(x, \cdot)) = (f(x, \cdot))^{\frac{1}{2}} = \delta_{2+(x)} \Rightarrow f'(x, \cdot) = \sigma_{2+(x)}$$

$$(govern Sai yrqu'n)$$

Proposición 6 $\theta(d) = \inf_{t>0} \frac{1}{t} \frac{1}{t}$

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa propia $y \ a \in dom(f)$. Entonces $\partial f(a)$ es compacto no vacío si y solo si $a \in int(dom(f))$. En tal caso

$$f'(a,\cdot) = \sigma_{\partial f(a)}(\cdot).$$

convex 1 had de so

$$0 = \Theta(0) = \Theta\left(\frac{1}{2}d + \frac{1}{2}(-d)\right) \leq \frac{1}{2}\Theta(d) + \frac{1}{2}\Theta(-d)$$

Q1d) >-00 = dom 0 = 12h

Descontinua euR > DosciouR

Munguia (FC-UNI)

Sesión 21

24 de enero de 2021

11/15

Corolario 1

Sea f convexa propia y $a \in ri(dom(f))$. Entonces $\partial f(a) \neq \emptyset$ y $f'(a,\cdot) = \sigma_{\partial f(a)}(\cdot)$.

Demostración

- Como $a \in \text{ri}(\text{dom}(f))$ entonces $S = \text{dom}(f'(a, \cdot))$ es un conjunto afín paralelo a aff(dom(f)). Luego como $f'(a, \cdot)$ es convexa, entonces $f'(a, \cdot)$ es cerrada (sci).
- Como $f'(a, \cdot)$ es finita en S, se tiene que $f'(a, \cdot)$ es propia.
- Por último de concluye de la Proposición 6.

(ロ) (型) (重) (重) (Q)

f(ath)-f(a) + (xo, h)+raj

Definición 2

Una función $f: \mathbb{R}^n \to \mathbb{R}$ finita en $a \in \mathbb{R}^n$, se dice Fréchet-diferenciable en a, si existe $x^* \in \mathbb{R}^n$ tal que

$$\frac{f(\mathsf{a}+\mathsf{h})-f(\mathsf{a})-\left\langle \mathsf{h},\mathsf{x}^*\right\rangle}{\|\mathsf{h}\|}\to \mathsf{0},\quad \mathsf{cuando}\quad \mathsf{h}\to \mathsf{0}.$$

Observación 3

- La definición no depende de la norma.
- x^* es único y se denota por $\nabla f(a)$.
- Si $\nabla f(a)$ existe, entonces

$$\langle \nabla f(a), h \rangle = f'(a, h) \quad \forall h \in \mathbb{R}^n.$$

Teorema 2

Sea f convexa propia y $a \in dom(f)$. Entonces f es Fréchet-diferenciable en a si y solo si $\partial f(a)$ es un conjunto unitario. En este caso, $a \in int(dom(f)) \neq \{\nabla f(a)\}.$

Munguia (FC-UNI)

Sesión 21

Referencias bibliográficas

- 1. Jean-Baptiste Hiriart-Urruty and Claude Lemarechal. Fundamentals of Convex Analysis, Springer, 1st ed. 2001.
- 2. Jean-Pierre Crouzeix and Eladio Ocaña. Análisis convexo. Fondo Editorial EDUNI, 2018.
- 3. Boris S. Mordukhovich and Nguyen Mau Nam. An Easy Path to Convex Analysis and Applications. Morgan & Claypool Publishers series, 2014.
- 4. Dimitri P. Bertsekas. Convex Analysis and Optimization. Athena Scientific, 2003.