THEORY OF COMPUTATION CSC-251 UNIT 2

DWIT

Sailesh.bajracharya@gmail.com

9841594548

Outline

- Context –Free Grammar(CFG), Parse Trees, Derivation and Ambiguity, Normal Forms (CNF and GNF) of context -Free Grammar, Regular Grammars, Closure Properties of context-Free Languages, Proving a Language to be Non –Context – Free.
- Push Down Automata (PDA), Languages of PDA, Deterministic and Non- deterministic PDA, Equivalences of PDA's and CFG's.

Grammars

- Grammars express languages
- Example: the English language grammar

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$$

$$\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

$$\langle predicate \rangle \rightarrow \langle verb \rangle$$

Grammar

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \longrightarrow cat$$

 $\langle noun \rangle \longrightarrow dog$

$$\langle verb \rangle \longrightarrow runs$$

 $\langle verb \rangle \longrightarrow sleeps$

Derivation of string "the dog sleeps":

$$\langle sentence \rangle \Rightarrow \langle noun_phrase \rangle \langle predicate \rangle$$

$$\Rightarrow \langle noun_phrase \rangle \langle verb \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow the \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow the dog \langle verb \rangle$$

$$\Rightarrow the dog sleeps$$

Context Free Grammar(CFG)

- more powerful method for describing languages
- Consists of a finite set of grammar rules
- Grammar rules :
 - non-terminals (variables)
 - terminals
- A rule is of the form A → α, where A is a single nonterminal, and the right-hand side α is a string of terminal and/or nonterminal symbols
- Unlike automata, grammars are used to generate strings, rather than recognize strings.

What 'context free' means

All the use of the term context-free really means is that the non-terminal on the left-hand side of the rule is sitting over there all by itself.

$$A \rightarrow B C$$

In other words, I can rewrite A as BC, regardless of the context in which I find the A.

Context Free Grammar: Quadruple

Each Production rules consists of:

- Head
 - -variable defined by the production
- Production symbol →
- Body
 - -string of zero or more terminals & variables

CFG for Palindromes

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

where A represents the production rules:

$$egin{array}{ll} P &
ightarrow \epsilon \ P &
ightarrow 0 \ P &
ightarrow 1 \ P &
ightarrow 0 P 0 \ \end{array}$$

 $P \longrightarrow 1P1$

We can also write: $P \rightarrow \epsilon \mid 0 \mid 1 \mid 0P0 \mid 1P1$

Examples: CFG for expressions in a typical programming language

- Operators: +(addition) and *(multiplication)
- Identifiers: must begin with a or b, which may be followed by any string in {a,b,0,1}*
- We need two variables in this grammar:
 - E: represents expressions .It is the start symbol.
 - I: represents the identifiers.
 - Its language is regular and is the language of the regular expression:

$$(a+b)(a+b+0+1)*$$

Example: The Grammar

Grammar $G_1 = (\{E, I\}, T, P, E)$ where: $T = \{+, *, (,), a, b, 0, 1\}$ and P is the set of productions:

1	E	\rightarrow	I
2	E	\longrightarrow	E + E
3	E	\rightarrow	E * E
4	E	\rightarrow	(E)
5	I	\rightarrow	a
6	I	\rightarrow	b
7	I	\rightarrow	Ia
8	I	\rightarrow	Ib
9	I	\rightarrow	I0
10	I	\rightarrow	I1

Compact Notation for Productions

- We often refers to the production whose head is A as "productions for A" or "A-productions"
- Moreover, the productions

$$A \to \alpha_1, A \to \alpha_2 \dots A \to \alpha_n$$

can be replaced by the notation

$$A \to \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$$

Derivations Using a Grammar

- We apply the productions of a CFG to infer that certain strings are in the language of a certain variable
- Two inference approaches:
 - Recursive inference (using productions from body to head)
 - Derivations (using productions from head to body)

Recursive Inference - Example

We consider some inferences we can make using G_1

Recall
$$G_1$$
:
$$E \rightarrow I \mid E + E \mid E * E \mid (E)$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

	String Inferred	For lang- uage of	Production used	String(s) used
(i)	a	I	5	_
(ii)	b	I	6	-
(iii)	<i>b</i> 0	I	9	(ii)
(iv)	<i>b</i> 00	I	9	(iii)
(v)	a	E	1	(i)
(vi)	<i>b</i> 00	E	1	(iv)
(vii)	a + b00	E	2	(v), (vi)
(viii)	(a + b00)	E	4	(vii)
(ix)	a * (a + b00)	E	3	(v), (viii)

Sample CFG

1. E→I // Expression is an identifier 2. $E \rightarrow E + E$ //Add two expressions 3. $E \rightarrow E^*E$ //Multiply two expressions 4. $E \rightarrow (E)$ //Add parenthesis 5. $I \rightarrow L$ // Identifier is a Letter 6. I→ ID //Identifier + Digit 7. $I \rightarrow IL$ //Identifier + Letter 8. $D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$ // Digits

Note Identifiers are regular; could describe as (letter)(letter + digit)*

9. $L \rightarrow a | b | c | \dots A | B | \dots Z$

// Letters

Recursive Inference - Example

- Process of coming up with strings that satisfy individual productions and then concatenating them together according to more general rules is called recursive inference.
- Bottom-up approach
- For example, parsing the identifier "r5"
 - Rule 8 tells us that D → 5
 - Rule 9 tells us that L → r
 - Rule 5 tells us that I→L so I→r
 - Apply recursive inference using rule 6 for I→ID and get
 - $I \rightarrow rD$.
 - Use D \rightarrow 5 to get I \rightarrow r5.
 - Finally, we know from rule 1 that E→I, so r5 is also an expression.

Recursive Inference - Exercise

- Show the recursive inference for arriving at (x+y1)*y is an expression
 - 1. E→I
 - 2. E→E+E
 - 3. E→E*E
 - 4. E→(E)
 - 5. I→ L
 - 6. $I \rightarrow ID$
 - 7. I→ IL
 - 8. D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 - 9. L \rightarrow a | b | c | ... A | B | ... Z

Derivations- top to down approach

- Applying productions from head to body requires the definition of a new relational symbol: ⇒
- Let:
 - -G=(V,T,P,S) be a CFG
 - $-A \in V$
 - $-\alpha,\beta\subset (V\cup T)^*$ and
 - $-A \rightarrow y \in P$

Then we write

$$\alpha A \beta \Rightarrow_G \alpha \gamma \beta$$

or, if G is understood

And say that $\alpha A\beta$ derives $\alpha \gamma \beta$.

Derivation: Definition

- 1 We say that string u *yields* string v, denoted $u \Rightarrow v$, if u turns to v after one application of a derivation rule. example: $0 \text{ A } 1 \Rightarrow 0 \text{ 0 A } 1 \text{ 1}$
- 2 If u turns to v after many rule applications then we say that $u \Rightarrow^* v$. example: $0 \text{ A } 1 \Rightarrow^* 0 \ 0 \ 0 \ 0 \ 0 \ A \ 1 \ 1 \ 1 \ 1 \ 1$
- The sequence $u \Rightarrow v_1 \Rightarrow v_2 \Rightarrow ... \Rightarrow v_k \Rightarrow v$ is called a derivation of v from u.

Examples of derivation

Derivation of a * (a + b000) by G_1

$$E \Rightarrow E * E \Rightarrow I * E \Rightarrow a * E \Rightarrow a * (E) \Rightarrow$$

$$a * (E + E) \Rightarrow a * (I + E) \Rightarrow a * (a + E) \Rightarrow a * (a + I) \Rightarrow$$

$$a * (a + I0) \Rightarrow a * (a + I00) \Rightarrow a * (a + b00)$$

Note 1: At each step we might have several rules to choose from, e.g.

$$I*E \Rightarrow a*E \Rightarrow a*(E)$$
, versus

$$I * E \Rightarrow I * (E) \Rightarrow a * (E).$$

Note 2: Not all choices lead to successful derivations of a particular string, for instance

$$E \Rightarrow E + E$$
 (at the first step)

won't lead to a derivation of a * (a + b000).

Important: Recursive inference and derivation are equivalent. A string of terminals w is infered to be in the language of some variable A iff $A \stackrel{*}{\Rightarrow} w$

Leftmost and Rightmost derivation

- In other to restrict the number of choices we have in deriving a string, it is often useful to require that at each step we replace the leftmost (or rightmost) variable by one of its production rules
- Leftmost derivation \Rightarrow_{lm} : Always replace the left-most variable by one of its rule-bodies
- Rightmost derivation \Rightarrow_{rm} : Always replace the rightmost variable by one of its rule-bodies.

EXAMPLES

- 1- Leftmost derivation: previous example
- 2- Rightmost derivation:

$$E \Rightarrow_{rm} E * E \Rightarrow_{rm} E * (E) \Rightarrow_{rm} E * (E + E) \Rightarrow_{rm} E * (E + E) \Rightarrow_{rm} E * (E + I) \Rightarrow_{rm} E * (E + I0) \Rightarrow_{rm} E * (E + I00) \Rightarrow_{rm} E * (E + I00) \Rightarrow_{rm} E * (I + b00) \Rightarrow_{rm} E * (a + b00) \Rightarrow_{rm} I * (a + b00) \Rightarrow_{rm} a * (a + b00)$$

We can conclude that $E \Rightarrow_{rm}^* a*(a+b00)$

Left or Right?

- Does it matter which method you use?
- Answer: No
- Any derivation has an equivalent leftmost and rightmost derivation. That is, $A \Rightarrow^* \alpha$. iff $A \Rightarrow^*_{lm} \alpha$ and $A \Rightarrow^*_{rm} \alpha$.

Leftmost and rightmost Derivation example

Generate: aaabba

Leftmost and rightmost Derivation example

Leftmost Derivation:
$$S \to XBaB \to aYBaB \to aaYBaB \to aaaYBaB \to aaaBaB \to aaabBaB \to aaabbBaB \to aaabbBaB \to aaabbaB \to aaabbaB$$

Rightmost Derivation: $S \to XBaB \to XBa \to XbBa \to XbbBa \to Xbba \to aYbba \to aaYbba \to aaaYbba \to aaaYbba \to aaabba$

The Language of the Grammar

If G(V, T, P, S) is a CFG, then the language of G is

$$L(G) = \{ w \ in \ T^* \mid S \Rightarrow_G^* w \}$$

i.e., the set of strings over T derivable from the start symbol.

If G is a CFG, we call L(G) a context-free language.

Example: $L(G_{pal})$ is a context-free language.

Give a CFG for the CFL 0ⁿ1ⁿ, where n>=1

```
A \rightarrow 0A1
 A \rightarrow B
 B \rightarrow \epsilon
Start: A; \Sigma = \{0, 1\}
Here is an example of using it to produce (or derive) a string:
 A \rightarrow 0A1
     \rightarrow 00A11
     \rightarrow 000A111
     \rightarrow 0^{n}A1^{n}
     \rightarrow 0^{n}B1^{n}
```

 $\rightarrow 0^{n}1^{n}$

CFG example

1. Consider the grammar that generates "ababcbcbb"

$$S \rightarrow abScB \mid \lambda$$

$$B \rightarrow bB \mid b$$

2. {w | w starts and ends with the same symbol}

CFG example

1. {w | w starts and ends with the same symbol}

$$S \rightarrow 0A0 \mid 1A1$$

$$A \rightarrow 0A \mid 1A \mid \lambda$$

Parse Trees (Derivation Trees)

- Top-Down Tree Representation for derivation
- Good way to visualize the derivation process
- How the symbols of a terminal string are grouped into substrings
- A picture of the structure that a grammar places on the strings of its language

Parse Trees

- For CFG G = (V;; R; S), a parse tree (or derivation tree) of G is a tree satisfying the following conditions:
 - Each interior node is labeled by a variable in V
 - Each leaf is labeled by either a variable, a terminal or ϵ ; a leaf labeled by ϵ must be the only child of its parent.
 - If an interior node labeled by A with children labeled by X1,X2,...Xk (from the left), then $A \rightarrow X1X2...Xk$ must be a rule.

Yield of a parse tree is the concatenation of leaf labels (left-right)

011110

Parse Trees a*(b+c)

Parse Tree for: a*(a+b00)

Multiple Parse Trees

The parse trees for expression a + b * a in the grammar G_{exp} is

Ambiguity: Grammar

A grammar $G = (V, \Sigma, R, S)$ is said to be ambiguous if there is $w \in \Sigma^*$ for which there are two different parse trees.

Removing Ambiguity

- Ambiguity maybe removed either by
 - -Using the semantics to change the rules.
 - For example, if we knew who had the bat (the girl or the boy) from the context, we would know which is the right interpretation.
 - Adding precedence to operators.
 - For example, * binds more tightly than +, or "else" binds with the innermost "if".

Inherently Ambiguous Languages

A context-free language L is said to be inherently ambiguous if every grammar G for L is ambiguous.

Inherently Ambiguous Languages: Example

Consider

$$L = \{a^i b^j c^k \mid i = j \text{ or } j = k\}$$

One can show that any CFG G for L will have two parse trees on $a^nb^nc^n$, for all but finitely many values of n

- One that checks that number of a's = number of b's
- Another that checks that number of b's = number of c's