FR 1,547,989 - SYSTRAN Translation

Glass free from boric acid intended the industrial use and in particular optics. The present invention relates to glass, intended for the industrial use and in particular optics, presenting an index of refraction > 1,75 as well as a good chemical resistance and a great hardness.

Glasses containing lanthanum borate having an index of refraction > 1,75 are known, but have in consequence of their high percentage of 1120, a chemical resistance limited as well as a not very considerable hardness. Some of these glasses contain of BeO or ThO2. Glasses according to the invention do not contain these two components in consequence of their strong toxicity and of their radioactive emission.

One also knows glasses containing silicate of lanthanum and which are free from boron, but they present a high percentage of alkali and/or fluorine. The index of refraction of these glasses lies between Nd = 1,57 - 1,68. These glasses known containing lanthanum silicate contain a lanthanum content to the maximum equal to 5 %0 in weight.

The present invention has as an aim glass free from boron intended for the industrial use and in particular optics, having an index of refraction > 1,75 and having a good resistance to the chemicals as well as a great hardness.

These glasses are characterized by the fact that they have the following composition

%o in weight

BaO	0,5 - 4
La203	5 - 65
Al2O3	4 - 25
SiO2	4 - 25
Nb205	1 - 81,5
Ta205	1 - 81,5,

the Si02 + Al203 lying preferably between 12 and 45 %o in weight.

Glasses according to the invention are characterized by the absence of boric acid. One was unaware of up to now that it was possible to obtain at usual melting points of glasses being able to be well refined, starting from these oxides having a high melting point.

These glasses, which correspond to the system BaO-La2O3-Al2O3-SiO2-Ta2O5-Nb2O5, are appropriate on the one hand in consequence of their optical characteristics and of their particular partial dispersion, to optical uses, also in the infra-red and, on the other hand, in consequence of their high chemical resistance and of their great hardness, they lend themselves to other industrial uses, for example like glasses for containers of storage.

The invention will be included/understood better using the illustrative and nonrestrictive examples being reproduced on the tables hereafter.

(see table I following page.)

It was also discovered that one can improve the fusibility of glasses according to the invention, without unfavourably influencing their high chemical resistance and their great hardness by replacing SiO2 or Al2O3 or well both by a molecular equivalent of GeO2 or Ga2O3 and/or In2O3.

Glasses according to the invention have the following composition advantageously

%o in weight	
BaO	0,5- 4
La2O3	2 -55
Ga2O3 and/or In2C	03 5 -60
GeO2	4 -70
Nb2O5	0,5-65
Ta2O5	0,5-65

[TABLE 1]

Particularly advantageous are glasses having the following composition

% in weight	
BaO	. 0,5- 4
La2O3	5 -50
Ga2O3 and/or In2O3	5 -50
GeO2	4 -45
Nb2O5	0,5-55
Ta2O5	0,5-55

The increase in the content of GeO2, La2O3 and Ga2O3 and/or In2O3 above the proportions indicated does not make any considerable improvement of the chemical and physical properties.

When one replaces in these glasses SiO2 and Al2O3 by équimoléculaires quantities of GeO2 and Ga2O3 and/or In2O3, the melting point is decreased by 100 C approximately.

In addition to their use for optical uses, including the infra-red, in consequence of their optical characteristics and of their particular partial dispersion, new glasses are also appropriate for other uses such as for example for containers of storage, in consequence of their high chemical resistance and of their great hardness. Samples of glass according to the invention a 5 mm thickness present in the infra-red, until a wavelength of 5,3 um, a transmittance of at least 50 %.

n Table II appear of other examples of glasses in conformity with the invention, in which the silicic acid and the aluminum oxide are completely replaced by GeO2 and Ga2O3 or Ga2O3 + In2O3.

Table III shows the increase in the index of refraction Nd when one replaces aluminum oxide by gallium oxide.

Table IV indicates the change of the partial dispersion, vd, when one replaces Al2O3 by a équimoléculaire quantity of Ga2O3.

```
(see tables II, III, IV, following p..)
```

Example of fusion: One places in a platinum crucible at a temperature of 1400 C a mixture containing 26 g BaCO3, 150 g La2O3, 100 g Ga2O3, 105 g Ta2O5, 26 g Nb2O5 and 2.5 g Sb2O3. After the loading, one raises the temperature for refining at 1500 C and after the end of refining one lets cool the mass in fusion, under constant agitation, until casting carried out at 1360 C. One obtains glass presenting of good optical qualities and whose characteristics appear in column III of Table II.

SUMMARY (CLAIMS)

The present invention has as an aim the new industrial product which constitutes glass free from boron intended for the industrial use and in particular optics, having an index of refraction > 1,75, glass which can show the following characteristics taken separately or in combination

1. Glass presents the following composition in % in weight:

```
BaO 0,5 - 4
La2O3 5 - 65
Al2O3 4 - 25
SiO2 4 - 25
Nb2O5 1 - 81,5
Ta2O5 1 - 81,5.
```

- 2. The sum of SiO2 + Al2O3 is included/understood at least between 12 and to the maximum between 45 in weight;
- 3. The contents of Si02 and/or Al2O3 are replaced partly or entirely by équimoléculaires quantities of GeO2 and/or In2O3;
- 4. The composition of glass is the following one in % in weight:

```
BaO 0,5 - 4
La2O3 2 - 55
Ga2O3 and/or In2O3 5 - 60
GeO2 4 - 70
```

Nb2O5 0,5- 65 Ta2O5 0,5 - 65.

Ta2O5 0,5 - 65.

The composition of glass is preferably the following one, in % in weight:

BaO 0,5 - 4

1 - 2O3 5 - 50 GeO2 4 -45 Nb2O5 0,5 - 55 Ta2O5 0,5 - 55

BREVET D'INVENTION

MINISTÈRE DE L'INDUSTRIE

P. V. nº 132.347

Nº 1.547.989

SERVICE

de la PROPRIÉTÉ INDUSTRIELLE

Classification internationale:

C 03 c 3/00

Verre exempt d'acide borique destiné à l'utilisation industrielle et en particulier optique.

FIRMA JENAER GLASWERK SCHOTT & GEN résidant en République Fédérale d'Allemagne.

Demandé le 14 décembre 1967, à 16^h 49^m, à Paris.

Délivré par arrêté du 21 octobre 1968.

(Bulletin officiel de la Propriété industrielle, n° 48 du 29 novembre 1968.)

(2 demandes déposées en République Fédérale d'Allemagne au nom de la demanderesse : brevet le 17 décembre 1966, sous le n° J 32.537 ; brevet additionnel le 29 avril 1967, sous le n° J 33.576.)

La présente invention concerne un verre, destiné à l'utilisation industrielle et en particulier optique, présentant un indice de réfraction > 1,75 ainsi qu'une bonne résistance chimique et une grande dureté.

Les verres à base de borate de lanthane ayant un indice de réfraction > 1,75 sont connus, mais possèdent par suite de leur teneur élevée en B₂O₃ une résistance chimique limitée ainsi qu'une dureté peu considérable. Certains de ces verres renferment du BeO ou du ThO₂. Les verres selon l'invention ne contiennent pas ces deux constituants par suite de leur forte toxicité et de leur émission radio-active.

On connaît également des verres à base de silicate de lanthane et qui sont exempts de bore, mais ils présentent une teneur élevée en alcali et/ou fluor. L'indice de réfraction de ces verres est compris entre n_d = 1,57 — 1,68. Ces verres connus à base de silicate de lanthane renferment une teneur en lanthane au maximum égale à 5 % en poids.

La présente invention a pour objet un verre exempt de bore destiné à l'utilisation industrielle et en particulier optique, ayant un indice de réfraction > 1,75 et présentant une bonne résistance aux produits chimiques ainsi qu'une grande dureté.

Ces verres sont caractérisés par le fait qu'ils ont la composition suivante :

	% en poids
BaO	0,5 — 4
La ₂ O ₃	5 65
Al_2O_3	4 — 25
SiO_2	4 — 25
$\mathrm{Nb_2O_5}$	1 — 81,5

Les verres selon l'invention sont caractérisés par l'absence d'acide borique. On ignorait jusqu'ici qu'il était possible d'obtenir à des températures de fusion usuelles des verres pouvant être bien affinés, à partir de ces oxydes ayant un point de fusion élevé.

Ces verres, qui correspondent au système BaO-La-2O₃-Al-2-O₃-Sio-2-Ta-2 O₅-Nb₂ O₅, conviennent d'une part par suite de leurs caractéristiques optiques et de leur dispersion partielle particulière, à des utilisations optiques, également dans l'infrarouge et, d'autre part, par suite de leur résistance chimique élevée et de leur grande dureté, ils se prêtent à d'autres utilisations industrielles, par exemple comme verres pour récipients de stockage.

L'invention sera mieux comprise à l'aide des exemples illustratifs et non limitatifs figurant sur les tableaux ci-après.

(Voir tableau I page suivante.)

On a également découvert que l'on peut améliorer la fusibilité des verres selon l'invention, sans influencer défavorablement leur résistance chimique élevée et leur grande dureté en remplaçant SiO₂ ou Al₂O₃ ou bien les deux par un équivalent moléculaire de GeO₂ ou de Ga₂O₃ et/ou In₂O₃.

Les verres selon l'invention ont avantageusement la composition suivante :

	9	o en	pola	8
BaO		0,5		4
La_2O_2		2	5	5

8 210824 7

	1	п	ш	ıv	v
BaO AlsOs LasOs SiOs NbsOs TasOs ns Dureté Knoop kg/mm². Classe suivant la résistance aux effets des changements de climat.	4 15 56 15 2 8 1,8028 42,73 617	4 14 26 14 10,5 31,5 1,8372 34,91 676	4 10 16 10 12 46 1,8862 32,92 679	4 11 56 11 3,6 14,4 1,8000 42,29 643	7,5 16 7,5 13 52 1,9850 671

Ga_2O_3 et/ou In_2O_3 5 -60
GeO ₂ 4 — 70
Nb_2O_5 $0,5-65$
Ta_2O_5 $0,5-65$
Particulièrement avantageux sont les verres
vant la composition spivante :

%	en poids
BaO	0.5 - 4
La_2O_3	
Ga ₂ O ₃ et/ou In ₂ O ₃	5 — 50
GeO ₂	4 45
Nb_2O_5	0,5 - 55
Ta_2O_5	0,5 - 55
I'anamantatian Ja 1 am C.O	` T A

L'augmentation de la teneur en GeO₂, La₂O₃ et Ga₂O₃ et/ou In₂O₃ au-dessus des proportions indiquées n'apporte aucune amélioration considérable des propriétés chimiques et physiques.

Quand on remplace dans ces verres SiO₂ et Al₂O₃ par des quantités équimoléculaires de GeO₂ et de Ga₂O₃ et/ou In₂O₃, la température de fusion est diminuée de 100 °C environ.

Outre leur utilisation pour des usages optiques, y compris l'infrarouge, par suite de leurs caractéristiques optiques et de leur dispersion partielle particulière, les nouveaux verres conviennent également pour d'autres utilisations telles que par exemple pour récipients de stockage, par suite de leur résistance chimique élevée et de leur grande dureté. Des échantillons de verre selon l'invention d'une épaisseur de 5 mm présentent dans l'infrarouge, jusqu'à une longueur d'onde de 5,3 μ , une transmittance d'au moins 50 %.

Sur le Tableau II figurent d'autres exemples de verres conformes à l'invention, dans lesquels l'acide silicique et l'oxyde d'aluminium sont complètement remplacés par GeO₂ et Ga₂O₃ ou par Ga₂O₃ + In₂O₃.

Le Tableau III montre l'augmentation de

l'indice de réfraction n_d quand on remplace l'oxyde d'aluminium par l'oxyde de gallium.

Le Tableau IV indique le changement de la dispersion partielle v_d quand on remplace Al_2O_3 par une quantité équimoléculaire de Ga_2O_3 .

(Voir tableaux II, III, IV, p. suivante.)

Exemple de fusion:

On place dans un creuset en platine à une température de 1 400 °C un mélange contenant 26 g BaCo₃, 150 g La₂O₃, 100 g Ga₂O₃, 105 g Ta₂O₅, 26 g Nb₂O₅ et 2,5 g Sb₂O₃. Après le chargement, on élève la température en vue de l'affinage à 1 500 °C et après la fin de l'affinage on laisse refroidir la masse en fusion, sous agitation constante, jusqu'à la coulée effectuée à 1 360 °C. On obtient un verre présentant de bonnes qualités optiques et dont les caractéristiques figurent à la colonne III du Tableau II.

RÉSUMÉ

La présente invention a pour objet le produit industriel nouveau que constitue un verre exempt de bore destiné à l'utilisation industrielle et en particulier optique, ayant un indice de réfraction > 1,75, verre pouvant présenter les caractéristiques suivantes prises isolément ou en combinaison:

1º Le verre présente la composition suivante en % en poids :

BaÔ	0,5 — 4
La_2O_8	5 65
Al_2O_8	4 — 25
SiO ₂	4 — 25
Nb_2O_5	1 — 81,5
Ta_2O_5	1 — 81,5

2° La somme SiO₂ Al₂O₃ est comprise au minimum entre 12 et au maximum entre 45 % en poids :

3° Les teneurs en SiO2 et/ou Al2O3 sont rem-

	_	
ŀ	4	
1	Þ	
Ì	ដ	
	ם	
r	₹	

ز

м	4 40 25 25 4,8 1,2 1,9015 34,82 ————————————————————————————————————		их	3,44 30,94 30,94 30,82 ————————————————————————————————————
Λ	4 110 115 115 105 20,8 20,8 5,2 1,9153 10,73			
· A	4 10 35 35 12,8 1,851 589 1 0		ПX	4,01 36,0 ————————————————————————————————————
AI √	4 20 30. 30. 12,8 3,2 1,899 598		IX	3,44 30,94 30,82 — 14,43 16,76 — — —
ш	4 30 20 20 20,8 5,2 1,9389 32,72 601	UX III et IV	×	3,55 31,94 24,76 ————————————————————————————————————
п	4 10 115 115 11,2 1,973 622 1 0.1	TABLEAUX III	XI	3,87 34,75 7,66 116,20 4,06 11,769
I	4 45 21 21 21 21 31,8 1,9145 35,52 585 1 0-1		ша	4,01 36,0 ————————————————————————————————————
	BaO LasO, GaOb Inco GaOb Inco GeO TacOb NboO Nabob Inco Inco Inco Inco Inco Inco Inco Inco			BaO La_0. Ga_0. Ga_0. In_0. GeO_2. GeO_2. GeO_3. Geo_3.

· Volr W. Gestcken, OPTICA ACTA 12 (1965) 175.

placées en partie ou en totalité par des quantités équimoléculaires de GeO₂ et/ou de In₂O₃;

4º La composition du verre est la suivante en % en poids :

BaO	0,5 — 4
La_2O_3	2 — 55
Ga ₂ O ₃ et/ou In ₂ O ₃	5 — 60
GeO₂	4 — 70
Nb_2O_5	0,5 65
Ta_2O_5	0,5 - 65.

5° La composition du verre est de préférence la suivante, en % en poids :

BaO	0,5 — 4
La_2O_8	5 — 50
Ga ₂ O ₃ et/ou In ₂ O ₃	5 — 50
GeO ₂	4 45
Nb_2O_5	0,555
Ta ₂ O ₅	0.5 55

FIRMA JENAER GLASWERK SCHOTT & GEN
Par procuration:
Alain Casalonga