3.012 Quiz 1 10.12.05 100 points total (50 in thermo + 50 in bonding)	3.012 Fall 2005
Give as much written explanation as possible of your	reasoning, and write clearly and legibly
Time yourself carefully – do not spend most of your time on a single question. Remember, you had close to two hours (from 1.05pm to 2.55pm). You can start with thermo, or start with bonding.	
Write your name here:	

Physical Constants: Gas constant: R = 8.3144 J/mole-K = 0.082057 L-atm/mole-K

Thermodynamics. (2 problems, 50 points total).

1. Analyzing an isothermal process. Consider the process described schematically below. One mole of an ideal gas is confined in a rigid cylinder in a volume of 1 L by a movable frictionless piston on top; the piston is free to move in response to changes in the system. The system is placed inside a confined heat reservoir, and the combination of the system + the heat reservoir can be considered isolated. The heat reservoir is capable of transferring heat without changing it's temperature significantly (think of it as a very large water bath). A quantity of 10 kJ of heat transfers from the heat reservoir into the system. During this process, the temperature of the system and heat reservoir are constant at 300K. Answer the questions below about this process.

- a. What is the internal energy change in the gas?
- b. What happens to the piston once the heat is absorbed by the gas? Calculate the work done on the piston, and state whether this is work done **on** the gas or work done **by** the gas.
- c. What is the final state (pressure and volume) of the gas?
- d. Using the second law, show that this process is reversible.

3.012 Quiz 1 2 of 13 8/25/06

WORKSPACE FOR PROBLEM 1:

2. The Thermodynamics of nanoparticle-based cancer therapy. Recently, a novel anticancer therapy has been developed at Rice University, based on the design of nanomaterials that become rapidly superheated in response to illumination with laser light. The therapy is illustrated below: Amorphous silica nanoparticles with diameters of ~100 nm are coated with a very thin (~10 nm thick) shell of gold. When irradiated by an infrared laser (λ ~ 800 nm), which passes through normal tissues with almost no absorption, the particles absorb the light and efficiently convert it to heat, and thus are rapidly heated to very high temperatures. This heating response is being exploited to kill tumor cells, by injecting the nanoparticles into a tumor (see the figure), and illuminating for a few minutes with an infrared laser. Normal tissues and tumors are at 37°C, but if tumor cells are heated to ~45°C, they are killed.

Let's carry out a simplified thermodynamic analysis of the requirements for this process. Suppose we can approximate a local 1 cm³ region of tumor and healthy tissue to be isolated from the surrounding tissue and environment outside the body. We inject 100 mg of nanoshells into the tissue and irradiate for 60 seconds with the infrared laser. As a first-order approximation, let's assume the tissue, which is >70% water, is comprised of pure water. All of these processes occur at a constant pressure of 1 atm. Use the physical data for the system given below to answer the following questions:

Figure by MIT OCW.

Data for SiO₂ (amorphous solid):

Molecular weight = 60.1 g/mole
$$\rho = 2.4 \frac{g}{cm^3}$$

$$\overline{C}_{p,SiO_2} = 44.5 \frac{J}{mole \cdot K}$$

$$\alpha_{SiO_2} = 1.2 \times 10^{-6} K^{-1}$$

Data for H₂O (liquid):

Molecular weight = 18 g/mole
$$\rho = 1.0 \frac{g}{cm^3}$$

$$\overline{C}_{p,H_2O} = 75.31 \frac{J}{mole \cdot K}$$

3.012 Quiz 1 4 of 13 8/25/06

	What is the implication of assuming that the tissue volume + nanoparticles are an isolated system? Explain in 1-2 sentences.
b	Suppose that the nanoshells are heated quickly enough that no heat transfer between the particles and tissue occurs until after the laser is turned off, i.e., the nanoshells start at some temperature (clearly, greater than 37°C!) induced by the laser, and then exchange heat with the local tissue to reach thermal equilibrium. In order to heat the 1 cm3 region of tissue from its starting temperature of 37°C to 45°C, to what temperature would the nanoshells need to be initially heated by the laser? Neglect
	the presence of the gold shell for this calculation— consider that the nanoparticles are composed of pure silica.
C.	Calculate the entropy change in the silica particles during the process of cooling them into thermal equilibrium with the tissue after laser heating.
d.	Is your result from part (c) in conflict with the second law? Explain why or why not.
e.	The nanoshells start at 37°C before laser irradiation, and are then heated to the temperature you determined in part (b) by the laser. Will the volume change in the nanoparticles induced by this heating process be more than 1%? Explain your answer with a calculation. (You may neglect the effect of the gold shell and the surrounding tissue for this estimate- consider the nanoparticles are pure silica and can freely expand against the surrounding tissue).

3.012 Quiz 1 5 of 13 8/25/06

at Rice University.]

[This problem is based on the gold nanoshell phototherapy research of J.L. West and Naomi Halas

WORKSPACE FOR PROBLEM 2:

WORKSPACE FOR PROBLEM 2:

Bonding. (2 problems, 50 points total).

- 1) Lithium ions [8 questions, a) to h)]: Lithium is the third element of the periodic table (following hydrogen and helium) and it has 3 protons in the nucleus. We'll discuss in this problem Li++ (i.e. the doubly-ionized lithium ion, with only one electron around the nucleus), Li+ (the singly-ionized lithium, with two electrons around the nucleus), and Li (the neutral ion, with three electrons around the nucleus).
 - a. What is the stationary Schroedinger equation for the single electron in Li++?

b. What is the ground-state energy for that electron (specify your units)?

c. Determine the wavelength of a photon that is able to excite that electron from the ground state to the first excited state (you can use the International System for the units of measure, given below, or atomic units – in atomic units the speed of light c is 137.036, Planck's constant h=1, Bohr radius is 1, and the mass of the electron is 1).

Planck's constant	$h = \frac{h}{2\pi}$	$6.62618 \times 10^{-34} \text{ J s}$ $1.05459 \times 10^{-34} \text{ J s}$
Velocity of light in vacuum	c	$2.99792 \times 10^8 \text{ m s}^{-1}$
Elementary charge (absolute value of electron charge)	e	$1.60219 \times 10^{-19} \mathrm{C}$
Atomic mass unit	a.m.u. = $\frac{1}{12} M_{12_C}$	$1.66057 \times 10^{-27} \text{ kg}$
Electron mass	m or m_e	$9.10953 \times 10^{-31} \text{ kg}$ = $5.48580 \times 10^{-4} \text{ a.m.u.}$
Proton mass	$M_{ m p}$	$1.67265 \times 10^{-27} \text{ kg}$ = 1.007276 a.m.u.

d.	Now let's consider Li+. The Li+ ion has two electrons, exactly as neutral Helium. Which will be the largest atom, Li+ or He? Explain why.
e.	The two electrons in Li+ will screen and repel each other. How can we write two one-particle Schroedinger equations (also called the Hartree equations) that take into account self-consistently this mutual screening? Can you explain what are the differences with the single equation you wrote in point a.?

3.012 Quiz 1 9 of 13 8/25/06

f.	Finally, let's suppose we add an electron to Li+. What will be the potential that this electron feels when it is very far away from the ion?
0	Once this third electron reaches the lowest energy level available to him, where will in
9.	be ? Specify the quantum numbers n,l,m . Why doesn't it go into a 1s level ?
h.	The ionization potential of hydrogen is 0.5 Hartree = 1 Rydberg = 13.6 eV; this is the energy needed to strip away an electron from hydrogen. Will the ionization potential of Li (i.e. the energy needed to remove the third electron, in order to obtain Li+) be greater, smaller, or equal to the case of hydrogen? Explain why.

2) The scanning tunneling microscope [5 questions, a) to e)]: A fairly accurate picture of the potential at the surface of a metal is given below – an electron with an energy between 0 and V_0 would be classically confined to the left side.

Figure by MIT OCW.

a. Write out the Schroedinger equation for this one-dimensional case, both for x<0 and for x>0.

b. What are the eigenfunctions of the Schroedinger equation on the left side, for eigenvalues E that are between 0 and V_0 ? What are the eigenfunctions of the Schroedinger equation on the right side, for eigenvalues E that are between 0 and V_0 ? Discuss this analytically, not graphically.

c. Draw in the graph below an eigenfunction corresponding to an eigenvalu taken E somewhere between 0 and V_0 (draw it so that it covers all the interval - ∞ <x< ∞ , and is continuous at x=0)

3.012 Quiz 1 11 of 13 8/25/06

Figure by MIT OCW.

d. Explain how the scanning tunneling microscope works, and how it relates to the picture above.

e. What would happen if V_0 were to become larger and larger?

EXTRA WORKSPACE, IN CASE YOU RAN OUT OF SPACE: