ARMing the IFS: Experiments and experiences from porting the ECMWF model to Fugaku

Sam Hatfield with help from Seiya Nishizawa, Hirofumi Tomita, Ioan Hadade, Balthasar Reuter, Peter Dueben, Olivier Marsden, Willem Deconinck and Michael Lange

samuel.hatfield@ecmwf.int

Exascale NWP at ECMWF

ECMWF Newsletter, April 2022

Wedi et al., 2020

Current HPC activities at ECMWF

Machine	Use	Peak perf. (PFLOP/s)	Hardware	Toolchain
CCA/CCB (Cray XC40)	Operations (old)	8	CPU (Intel)	Cray
AA/AB/AC/AD (Atos BullSequana XH2000)	Operations (new)	30	CPU (AMD) + GPU (Nvidia)	Intel + NVHPC
JUWELS Booster	nextGEMS	70	GPU (Nvidia)	NVHPC
Summit	INCITE	200	GPU (Nvidia)	NVHPC
LUMI-G (test nodes)	Benchmarking	550	GPU (AMD)	CCE/ROCm
Frontier	INCITE (provisional)	1500	GPU (AMD)	TBC
Fugaku	Benchmarking	500	CPU (ARM)	Fujitsu

Towards a fully single-precision Earth-system model

https://www.ecmwf.int/en/about/media-centre/news/2021/forecast-upgrade-innovates-single-precision-and-ensemble-resolution

A zoo of number formats

A zoo of number formats

Half-precision spectral transforms

Skill of forecasts using half-precision

Legendre transforms compared with double

precision

Hatfield et al. 2019, https://doi.org/10.1145/3324989.3325711

- Legendre transforms of the IFS a good target for half precision
 - Bottleneck at high resolution
 - Compact code
 - Algorithmically simple → series of GEMMs
- Preliminary software emulation studies (Hatfield et al. 2019):
 - Half precision can be used in Legendre transforms even up to TCO1279 (9 km globally) resolution
 - Necessary to rescale inputs/outputs, as before

The first half-precision CPU: Fujitsu A64FX

- AArch64 (ARM) instruction set
- 48 cores split among 4 "CMGs" (core memory groups)
- 32 GB High Bandwidth Memory
- No DDR RAM/L3 cache
- Native support for FP16

ECMWF/R-CCS collaboration

- Initiated between R-CCS and ECMWF in January 2021
- R-CCS: Hirofumi Tomita, Seiya Nishizawa, Tsuyoshi Yamaura
- **ECMWF:** Sam Hatfield, Peter Dueben
- Modest budget: ~20,000 node-hours/year

Key questions:

- How easy is it to port existing weather and climate codes to ARM? (focusing on Fugaku)
- How can FP16 limitations (low range, large rounding errors) be accommodated by algorithmic changes?
- What FP16 speed-up can be realised in real world applications?

Porting the IFS to Fugaku

*except TCO2559/4 km → timestep 4 min

Half-precision Legendre transforms

Half-precision Legendre transforms in the IFS

- Baroclinic wave test case
- 500 hPa vorticity after 10 days, TCO399L137 resolution (~25 km)

Half-precision Legendre transforms in the IFS

- Baroclinic wave test case
- 500 hPa vorticity after 10 days, TCO399L137 resolution (~25 km)

Future work

Scaling up

- Continue scaling: TCO3999 (2.5 km), TCO7999 (1.25 km)
- Direct comparison with Summit
- (Budget permitting) High-resolution coupled forecast

Half precision

• Keep debugging 😜