



Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

# Ecuaciones Diferenciales I

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Granada, 2024-2025

# Índice general

| 1. | . Relaciones de Problemas |                       |    |
|----|---------------------------|-----------------------|----|
|    | 1.1.                      | Ecuaciones y sistemas | Ę  |
|    | 1.2.                      | Cambios de Varible    | 15 |

La parte de teoría del presente documento (es decir, excluyendo las relaciones de problemas) está hecha en función de los apuntes que se han tomado en clase. No obstante, recomendamos seguir de igual forma los apuntes del profesor de la asignatura, Rafael Ortega, disponibles en su sitio web personal https://www.ugr.es/~rortega/. Estos apuntes no son por tanto una completa sustitución de dichos apuntes, sino tan solo un complemento.

## 1. Relaciones de Problemas

### 1.1. Ecuaciones y sistemas

**Ejercicio 1.1.1.** En Teoría del Aprendizaje, se supone que la velocidad a la que se memoriza una materia es proporcional a la cantidad que queda por memorizar. Suponemos que M es la cantidad total de materia a memorizar y A(t) es la cantidad de materia memorizada a tiempo t. Determine una ecuación diferencial para A(t). Encuentre soluciones de la forma  $A(t) = a + be^{\lambda t}$ .

Tras interpretar el enunciado, deducimos que:

$$A' = c(M - A),$$

donde  $c \in \mathbb{R}$  es la constante de proporcionalidad. Esta es la ecuación diferencial que buscamos, con dominio  $D = \mathbb{R}^2$  y condición inicial A(0) = 0.

Ejercicio 1.1.2. Interprete cada enunciado como una ecuación diferencial:

1. El grafo de y(x) verifica que la pendiente de la recta tangente en un punto es el cuadrado de la distancia del punto al origen.

Sea el punto  $P = (x_0, y(x_0))$ . La pendiente de la recta tangente en dicho punto es  $m_t = y'(x_0)$ . Por otro lado, la distancia del punto al origen, notada por d(P, O) es  $d(P, O) = \sqrt{x_0^2 + y(x_0)^2}$ . Como la condición impuesta en el enunciado es  $m_t = (d(P, O))^2$ , tenemos que:

$$y' = x^2 + y^2$$

Su dominio es  $D = \mathbb{R}^2$ .

2. El grafo de y(x) verifica en cada punto que la distancia del origen al punto de corte de la recta tangente con el eje de ordenadas coincide con la distancia del origen al punto de corte de la recta normal con el eje de abscisas.

La representación gráfica de la situación se encuentra en la Figura 1.1.

Sea el punto  $P = (x_0, y(x_0))$ . Para ambas rectas, usaremos la ecuación puntopendiente. Para la recta tangente, tenemos que:



Figura 1.1: Representación gráfica del enunciado del Ejercicio 1.1.2.2.

Notemos además que, en el caso de  $x_0 = 0$ , también podemos ver que se cumple que  $y_t = y(x_0) - 0 \cdot y'(x_0) = y(x_0)$ . Respecto a la recta normal, tenemos que:

$$\left. \begin{array}{l}
m_n = -\frac{1}{y'(x_0)} \\
P_n = (x_n, 0)
\end{array} \right\} \Longrightarrow -\frac{1}{y'(x_0)} = \frac{0 - y(x_0)}{x_n - x_0} \Longrightarrow x_n = y(x_0) \cdot y'(x_0) + x_0$$

Notemos que, si  $y'(x_0) = 0$ , se cumple también que  $x_n = 0 \cdot y(x_0) + x_0 = x_0$ . Además, si  $x_n = x_0$ , entonces se tiene que  $y'(x_0) = 0$  o  $y(x_0) = 0$ , por lo que también se cumple.

La ecuación diferencial que especifica el enunciado es  $|y_t| = |x_n|$ . Por tanto, tenemos que:

$$|y(x_0) - x_0 \cdot y'(x_0)| = |y(x_0) \cdot y'(x_0) + x_0|$$

Quitando los valores absolutos, llegamos a que:

$$y(x_0) - x_0 \cdot y'(x_0) = y(x_0) \cdot y'(x_0) + x_0 \Longrightarrow y(x_0) - x_0 = y'(x_0) (y(x_0) + x_0)$$
$$y(x_0) - x_0 \cdot y'(x_0) = -y(x_0) \cdot y'(x_0) - x_0 \Longrightarrow y(x_0) + x_0 = y'(x_0) (x_0 - y(x_0))$$

Por tanto, las ecuaciones diferenciales que describen el enunciado son:

$$y - x = y'(y + x)$$
 con dominio  $\Omega_1 = \mathbb{R}^3$   
 $y + x = y'(x - y)$  con dominio  $\Omega_2 = \mathbb{R}^3$ 

Estas ecuaciones diferenciales no están en forma normal. Si quisiésemos dejarlas en forma normal (que no es recomendable, puesto que se dividen los dominios y se pierden soluciones), estas serían:

$$y' = \frac{y-x}{y+x} \quad \text{con dominio} \begin{cases} D_1 = \{(x,y) \in \mathbb{R}^2 \mid y < -x\} \\ \lor \\ D_2 = \{(x,y) \in \mathbb{R}^2 \mid y > -x\}. \end{cases}$$

$$y' = \frac{y+x}{x-y} \quad \text{con dominio} \begin{cases} D_1 = \{(x,y) \in \mathbb{R}^2 \mid y < x\} \\ \lor \\ D_2 = \{(x,y) \in \mathbb{R}^2 \mid y > x\}. \end{cases}$$

Ejercicio 1.1.3. En ciertas reacciones químicas, la velocidad a la que se forma un nuevo compuesto viene dada por la ecuación

$$x' = k(x - \alpha)(\beta - x),$$

donde x(t) es la cantidad de compuesto a tiempo t, k > 0 es una constante de proporcionalidad y  $\beta > \alpha > 0$ . Usando el campo de direcciones, prediga el comportamiento de x(t) cuando  $t \to +\infty$ .

Del contexto, deducimos que  $x \in C^1(\mathbb{R}_0^+)$ . Además, tenemos que su primera derivada solo se anula en  $x = \alpha$  y  $x = \beta$ . Consideramos por tanto los siguientes casos:

- Si  $x \in ]0, \alpha[$ : En este caso,  $x < \alpha < \beta$ , luego  $x \alpha < 0$  y  $\beta x > 0$ . Por tanto, x' < 0, luego es decreciente.
- Si  $x \in ]\alpha, \beta[$ : En este caso,  $\alpha < x < \beta$ , luego  $x \alpha > 0$  y  $\beta x > 0$ . Por tanto, x' > 0, luego es creciente.
- Si  $x \in ]\beta, +\infty[$ : En este caso,  $x > \beta > \alpha$ , luego  $x \alpha > 0$  y  $\beta x < 0$ . Por tanto, x' < 0, luego es decreciente.

Por tanto, para el comportamiento de x(t) cuando  $t \to +\infty$ , tenemos que:

- Si  $x(0) \in ]0, \alpha[$ , entonces x' es decreciente, luego  $x(t) \to 0$ .
- Si  $x(0) \in ]\alpha, \beta[$ , entonces x' es creciente, luego  $x(t) \to \beta$ .
- Si  $x(0) \in ]\beta, +\infty[$ , entonces x' es decreciente, luego  $x(t) \to \beta$ .

**Ejercicio 1.1.4.** Encuentre la familia de trayectorias ortogonales a las familias de curvas siguientes, teniendo en cuenta que para resolver las ecuaciones que aparecen en 2 y 3 habrá que esperar a la siguiente lección:

1. xy = k,

Buscamos en primer lugar la ecuación diferencial que describe la familia de curvas dada. Para ello, derivamos implícitamente la ecuación dada:

$$0 = y + xy' \Longrightarrow y' = -\frac{y}{x}$$

Por tanto, tenemos que la familia de curvas dada son las soluciones de dicha ecuación diferencial. Sabiendo que el producto de las pendientes ortogonales es -1, tenemos que la ecuación diferencial que describe las curvas ortogonales es:

$$y' = \frac{x}{y}$$

2.  $y = kx^4$ 

Buscamos en primer lugar la ecuación diferencial que describe la familia de curvas dada. Para ello, derivamos implícitamente la ecuación dada:

$$0 = 4kx^{3} - y' \Longrightarrow y' = 4kx^{3} = 4 \cdot \frac{y}{x^{4}} \cdot x^{3} = 4 \cdot \frac{y}{x}$$

Por tanto, tenemos que la familia de curvas dada son las soluciones de dicha ecuación diferencial. Sabiendo que el producto de las pendientes ortogonales es -1, tenemos que la ecuación diferencial que describe las curvas ortogonales es:

$$y' = -\frac{x}{4y}$$

3.  $y = e^{kx}$ .

Buscamos en primer lugar la ecuación diferencial que describe la familia de curvas dada. Para ello, derivamos implícitamente la ecuación dada:

$$0 = ke^{kx} - y' \Longrightarrow y' = ke^{kx}$$

Para despejar la k, tenemos que  $k = \frac{\ln y}{x}$ . Por tanto, tenemos que:

$$y' = \frac{\ln y}{x} \cdot e^{\frac{\ln y}{x} \cdot x} = \frac{\ln y}{x} \cdot y$$

Por tanto, tenemos que la familia de curvas dada son las soluciones de dicha ecuación diferencial. Sabiendo que el producto de las pendientes ortogonales es -1, tenemos que la ecuación diferencial que describe las curvas ortogonales es:

$$y' = -\frac{x}{y \ln y}$$

Ejercicio 1.1.5. Haga un dibujo aproximado del campo de direcciones asociado a la ecuación

$$x' = t + x^3.$$

Dibuje la curva donde las soluciones alcanzan un punto crítico. Considerando una solución tal que x(0) = 0, demuestre que tal solución alcanza en 0 un mínimo local estricto y que de hecho es el mínimo global.

Las soluciones alcanzan un punto crítico donde x'(t) = 0, es decir,  $t + x^3 = 0$ . Por tanto, las soluciones alcanzan un punto crítico en la curva  $x(t) = \sqrt[3]{-t}$ . El dibujo, tanto del campo de direcciones como de la curva, se encuentra en la Figura 1.2.



Figura 1.2: Campo de direcciones y curva del Ejercicio 1.1.5.

Supongamos ahora una solución tal que x(0) = 0. Como x es una solución de una ecuación diferencial de primer orden, tenemos que  $x \in C^1(\mathbb{R})$ . Por tanto, x es derivable en 0. Calculamos la derivada de x en 0:

$$x'(0) = 0 + x(0)^3 = 0$$

Por tanto, tenemos que es un punto crítico. Comprobemos que es un mínimo local estricto. Para ello, calculamos la segunda derivada de x en 0:

$$x''(0) = 1 + 3x(0)^2 \cdot x'(0) = 1 + 3 \cdot 0^2 \cdot 0 = 1 > 0$$

Por tanto, es un mínimo local estricto.

Respecto de la demostración de que es un mínimo global, intuitivamente observando el campo de direcciones se tiene directamente.

#### Ejercicio 1.1.6. Resuelva los siguientes apartados:

1. Estudie cuántas funciones diferenciables y(x) se pueden extraer de la curva

$$C \equiv x^2 + 2y^2 + 2x + 2y = 1,$$

dando su intervalo maximal de definición.

Buscamos obtener y en función de x. Hay dos opciones:

**Opción 1:** Buscamos completar cuadrados para obtener las funciones y(x):

$$x^{2} + 2y^{2} + 2x + 2y = (x+1)^{2} - 1 + 2(y^{2} + y) = (x+1)^{2} - 1 + 2(y^{2} + y + \frac{1}{4} - \frac{1}{4}) = (x+1)^{2} - 1 + 2(y+\frac{1}{2})^{2} - \frac{1}{2}$$

Por tanto, tenemos que:

$$C \equiv (x+1)^2 + 2(y+1/2)^2 = 5/2 \equiv (y+1/2)^2 = \frac{5/2 - (x+1)^2}{2}$$

Aplicando la raíz cuadrada, tenemos que:

$$y(x) = \pm \sqrt{\frac{5/2 - (x+1)^2}{2}} - \frac{1}{2}$$

**Opción 2:** Despejamos y usando la ecuación de segundo grado, considerando x fijo:

$$y(x) = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 2 \cdot (x^2 + 2x - 1)}}{4} = -\frac{1}{2} \pm \sqrt{\frac{4 - 4 \cdot 2 \cdot (x^2 + 2x - 1)}{16}} =$$

$$= -\frac{1}{2} \pm \sqrt{\frac{4 + 4 \cdot 2 \cdot (2 - 2) - 4 \cdot 2 \cdot (x^2 + 2x - 1)}{16}} =$$

$$= -\frac{1}{2} \pm \sqrt{\frac{4 + 4 \cdot 2 \cdot (2) - 4 \cdot 2 \cdot (x^2 + 2x + 1)}{16}} =$$

$$= -\frac{1}{2} \pm \sqrt{\frac{20 - 4 \cdot 2 \cdot (x + 1)^2}{16}} - \frac{1}{2} \pm \sqrt{\frac{5/2 - (x + 1)^2}{2}}$$

En ambos casos, vemos que obtenemos dos funciones diferenciables, una para cada signo. Como C es una elipse, se trata de la parte superior e inferior de la misma. El intervalo maximal de definición es aquel que mantiene el argumento de la raíz cuadrada positivo:

$$\frac{5/2 - (x+1)^2}{2} \geqslant 0 \Longrightarrow 5/2 \geqslant (x+1)^2 \Longrightarrow -5/2 \leqslant x+1 \leqslant 5/2 \Longrightarrow |x+1| \leqslant \sqrt{5/2} \Longrightarrow -\sqrt{5/2} - 1 \leqslant x \leqslant \sqrt{5/2} - 1$$

Por tanto, el intervalo maximal de definición es  $I = \left[-\sqrt{5/2} - 1, \sqrt{5/2} - 1\right]$ .

2. Usando derivación implícita, encuentre una ecuación diferencial de la forma y' = f(x, y) que admita como soluciones a las funciones del apartado anterior. Derivamos implícitamente la ecuación dada:

$$2x + 2 + (4y + 2)y' = 0 \Longrightarrow y' = -\frac{2x + 2}{4y + 2} = -\frac{x + 1}{2y + 1}$$

Por tanto, la ecuación diferencial que describe las funciones del apartado anterior es y = f(x, y), con:

$$f(x,y) = -\frac{x+1}{2y+1} \quad \text{con dominio} \begin{cases} D_1 = \{(x,y) \in \mathbb{R}^2 \mid 2y+1 > 0\} \\ V \\ D_2 = \{(x,y) \in \mathbb{R}^2 \mid 2y+1 < 0\}. \end{cases}$$

3. La misma cuestión para una ecuación del tipo g(y, y') = 0.

**Ejercicio 1.1.7.** Una persona, partiendo del origen, se mueve en la dirección del eje x positivo tirando de una cuerda de longitud s atada a una piedra. Se supone que la cuerda se mantiene tensa en todo momento, y que la piedra es arrastrada desde el punto de partida (0, s). La trayectoria que describe la piedra es una curva clásica llamada tractriz. Encuentre una ecuación diferencial para la misma.

Observación. Se supone que la cuerda se mantiene tangente a la trayectoria de la piedra en todo momento.

La situación descrita se encuentra en la Figura 1.3.



Figura 1.3: Representación gráfica de la situación del Ejercicio 1.1.7.

Por tanto, la condición impuesta es que la distancia desde un punto de la gráfica al punto de corte de la tangente a la curva por ese punto con el eje de abscisas es constante e igual a s. Es decir, si el punto es (x, y(x)), entonces la condición es:

$$\sqrt{(x-x_t)^2 + y(x)^2} = s$$

Veamos cómo calcular  $x_t$ . Usando la definición de pendiente con los puntos P y  $P_t$ , tenemos:

$$y'(x) = \frac{y(x) - 0}{x - x_t} \Longrightarrow x_t = x - \frac{y(x)}{y'(x)}$$

Notemos que y'(x) = 0 no tiene sentido, puesto que la recta descrita sea horizontal, y por tanto no habría punto de corte con el eje X (es decir, no habría un único  $x_t$ ). Por tanto, la ecuación diferencial que describe la curva es:

$$\sqrt{\left(x - x + \frac{y(x)}{y'(x)}\right)^2 + y(x)^2} = s \Longrightarrow \sqrt{\frac{y(x)^2}{y'(x)^2} + y(x)^2} = s$$

Elevando al cuadrado, tenemos que:

$$\frac{y(x)^2}{y'(x)^2} + y(x)^2 = s^2 \Longrightarrow y'(x)^2 = \frac{y(x)^2}{s^2 - y(x)^2}$$

Notemos que y(x) < s para todo  $x \in \mathbb{R}$ , por lo que el denominador es siempre positivo. Aplicamos ahora la raíz cuadrada, sabiendo que y'(x) < 0 por ser la pendiente de la curva decreciente, y y(x) > 0 para todo  $x \in \mathbb{R}$ :

$$y'(x) = -\frac{y(x)}{\sqrt{s^2 - y(x)^2}}$$

Usando la notación correspondiente, tenemos que la ecuación diferencial que describe la curva es:

$$y' = -\frac{y}{\sqrt{s^2 - y^2}}$$
 con dominio  $D = \{(x, y) \in \mathbb{R}^2 \mid -s < y < s\}$ 

**Ejercicio 1.1.8.** Demuestre que si x(t) es una solución de la ecuación diferencial

$$x'' + x = 0, (1.1)$$

entonces también cumple, para alguna constante  $c \in \mathbb{R}$ ,

$$(x')^2 + x^2 = c. (1.2)$$

Encuentre una solución de  $(x')^2 + x^2 = 1$  que no sea solución de (1.1).

Demostración. Sea  $I \subset \mathbb{R}$  el intervalo de definición de x(t) solución de (1.1). Definimos la función auxiliar

$$f: \quad I \longrightarrow \mathbb{R}$$
$$t \longmapsto (x'(t))^2 + x^2(t).$$

Por ser x una solición de una ecuación diferencial de segundo orden, tenemos que  $x \in C^2(I)$ . Por tanto,  $x, x' \in C^1(I)$  y, por tanto f es derivable. Calculamos su derivada:

$$f'(t) = 2x'(t)x''(t) + 2x(t)x'(t) = 2x'(t) [x''(t) + x(t)] = 2x'(t) \cdot 0 = 0.$$

Por tanto, f'(t) = 0 para todo  $t \in I$ , lo que implica que f es constante en I. Es decir, existe  $c \in \mathbb{R}$  tal que

$$(x'(t))^2 + x^2(t) = c \quad \forall t \in I.$$

Por tanto, queda demostrado lo pedido.

Para la segunda parte, sea la solución x(t) = 1 para todo  $t \in \mathbb{R}$ . Entonces, tenemos que:

$$(x'(t))^2 + x^2(t) = 0^2 + 1^2 = 1,$$
  
 $x''(t) + x(t) = 0 + 1 = 1$ 

**Ejercicio 1.1.9.** Una nadadora intenta atravesar un río pasando de la orilla y = -1 a la orilla opuesta y = 1. La corriente es uniforme, con velocidad  $v_R > 0$  y paralela a la orilla. Por otra parte, la nadadora se mueve a velocidad constante  $v_N > 0$  y apunta siempre hacia una torre situada en el punto T = (2, 1). Las ecuaciones

$$\frac{dx}{dt} = v_R + v_N \cdot \frac{2 - x}{\sqrt{(2 - x)^2 + (1 - y)^2}},$$

$$\frac{dy}{dt} = v_N \cdot \frac{1 - y}{\sqrt{(2 - x)^2 + (1 - y)^2}},$$

describen la posición (x, y) de la nadadora en el instante t; es decir x = x(t), y = y(t).

1. Explique cómo se ha obtenido este sistema.

Representemos la situación en la Figura 1.4.



Figura 1.4: Representación gráfica de la situación del Ejercicio 1.1.9.

Tenemos que x(t) es la componente horizontal de la posición de la nadadora, por lo que x'(t) es la velocidad horizontal de la nadadora:

$$x'(t) = v_R + v_N \cdot \cos(\alpha) \stackrel{(*)}{=} v_R + v_N \cdot \frac{2 - x}{\sqrt{(2 - x)^2 + (1 - y)^2}}$$

donde en (\*) hemos empleado la definición de coseno como cateto contiguo sobre hipotenusa. Por otro lado, y(t) es la componente vertical de la posición de la nadadora, por lo que y'(t) es la velocidad vertical de la nadadora:

$$y'(t) = v_N \cdot \text{sen}(\alpha) \stackrel{(*)}{=} v_N \cdot \frac{1 - y}{\sqrt{(2 - x)^2 + (1 - y)^2}}$$

donde en (\*) hemos empleado la definición de seno como cateto opuesto sobre hipotenusa.

2. Encuentre la ecuación diferencial de la órbita y = y(x).

Tenemos que:

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{v_N \cdot \frac{1-y}{\sqrt{(2-x)^2 + (1-y)^2}}}{v_R + v_N \cdot \frac{2-x}{\sqrt{(2-x)^2 + (1-y)^2}}} = \frac{1-y}{v_N \sqrt{(2-x)^2 + (1-y)^2}}$$

**Ejercicio 1.1.10.** Encuentre una ecuación diferencial de segundo orden que admita como soluciones a las siguientes familias de funciones, donde  $c_1, c_2 \in \mathbb{R}$ :

1. 
$$x = c_1 e^t + c_2 e^{-t}$$
,

Derivamos dos veces:

$$x' = c_1 e^t - c_2 e^{-t},$$
  
$$x'' = c_1 e^t + c_2 e^{-t}.$$

Como conclusión, vemos que la ecuación diferencial x'' = x con dominio  $D = \mathbb{R}^2$  admite como solución a la familia de funciones dada.

 $2. \ x = c_1 \cosh t + c_2 \sinh t.$ 

Derivamos dos veces:

$$x' = c_1 \operatorname{senh} t + c_2 \operatorname{cosh} t,$$
  
$$x'' = c_1 \operatorname{cosh} t + c_2 \operatorname{senh} t.$$

Como conclusión, vemos que la ecuación diferencial x'' = x con dominio  $D = \mathbb{R}^2$  admite de nuevo como solución a la familia de funciones dada.

Ejercicio 1.1.11. Dada la ecuación de Clairaut:

$$x = tx' + \varphi(x')$$

1. Encuentre una familia uniparamétrica de soluciones rectilíneas.

La ecuación de la recta es:

$$x(t) = at + b$$
 con  $a, b \in \mathbb{R}$ 

Veamos qué condición hemos de imponer para que cumpla la ecuación de Clairaut:

$$at + b = at + \varphi(a) \Longrightarrow b = \varphi(a)$$

Por tanto, tenemos que una familia uniparamétrica de soluciones rectilíneas es:

$$x(t) = at + \varphi(a)$$
  $a \in \mathbb{R}$ 

2. Suponiendo que  $\varphi(x)=x^2$ , demuestre que  $x(t)=-\frac{t^2}{4}$  también es solución.

Para esto, vemos:

$$tx' + \varphi(x') = t \cdot \left(\frac{-2t}{4}\right) + \left(\frac{-2t}{4}\right)^2 = -\frac{t^2}{2} + \frac{t^2}{4} = -\frac{t^2}{4} = x$$

Por tanto,  $x(t) = -\frac{t^2}{4}$  es solución.

3. ¿Qué relación hay entre esta solución y las que se han encontrado antes?

**Ejercicio 1.1.12.** Resuelva los problemas 6 y 7 de la página 33 (sección 2.6) del libro de Ahmad-Ambrosetti.

1. **Problema 6:** Transformar la ecuación  $e^{x'} = x$  en una ecuación en forma normal y prueba que tiene una única solución tal que  $x(t_0) = a$  para todo  $t_0$  y todo  $a \in \mathbb{R}^+$ .

Aplicando el logaritmo neperiano, tenemos que la ecuación diferencial en forma normal es:

$$x' = \ln x$$
 con dominio  $D = \mathbb{R} \times \mathbb{R}^+$ 

2. Problema 7: Encuentra la ecuación cuya solución es la catenaria:

$$x(t) = \cosh(t) = \frac{e^t + e^{-t}}{2}$$

Calculamos su derivada:

$$x'(t) = \frac{e^t - e^{-t}}{2} = \operatorname{senh}(t)$$

Por tanto, la ecuación diferencial que describe la catenaria es:

$$x' = \operatorname{senh}(t)$$
 con dominio  $D = \mathbb{R}^2$ 

#### 1.2. Cambios de Varible

Ejercicio 1.2.1. Estudie las soluciones de la ecuación

$$x' = \frac{t - 5}{x^2}$$

dando en cada caso su intervalo maximal de definición.

Tenemos que se trata de una ecuación de variables separadas de la forma dada por x' = p(t)q(x), con:

$$\begin{array}{cccc} p: & I & \longrightarrow & \mathbb{R} \\ & t & \longmapsto & t-5 \end{array}$$

$$q: & J & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{1}{x^2} \end{array}$$

donde consideramos  $I=\mathbb{R}$  y, para que el dominio sea conexo, podemos considerar  $J=\mathbb{R}^+$  o  $J=\mathbb{R}^-.$ 

Usamos por tanto el método de variables separadas. En primer lugar, comprobamos que q no tiene raíces en J:

$$q(x) = 0 \Longleftrightarrow \frac{1}{x^2} = 0 \Longleftrightarrow 1 = 0$$

Una vez comprobado esto, procedemos a resolver la ecuación usando el método de variables separadas:

$$\frac{dx}{dt} = \frac{t-5}{x^2} \Longrightarrow x^2 dx = (t-5)dt \Longrightarrow \int x^2 dx = \int (t-5)dt \Longrightarrow$$
$$\Longrightarrow \frac{x^3}{3} = \frac{t^2}{2} - 5t + C' \qquad C' \in \mathbb{R}$$

Despejando x obtenemos la solución de la ecuación diferencial:

$$x(t) = \sqrt[3]{\frac{3}{2}t^2 - 15t + C} \qquad C \in \mathbb{R}$$

Busquemos ahora su intervalo maximal de definición (llamémoslo  $\widehat{I} \subset I$ ). Necesitamos que  $x(t) \in J$  para todo  $t \in \widehat{I}$  y que x sea derivable en  $\widehat{I}$ . Distinguimos casos:

■  $\underline{J} = \mathbb{R}^+$ : En este caso, necesitamos que x(t) > 0 para todo  $t \in \widehat{I}$ . Para ello, basta con que el radicando sea positivo:

$$\frac{3}{2}t^2 - 15t + C > 0$$

Veamos en qué puntos se anula el radicando:

$$\frac{3}{2}t^2 - 15t + C = 0 \Longrightarrow t = \frac{15 \pm \sqrt{225 - 6C}}{3} = 5 \pm \sqrt{25 - \frac{2C}{3}}$$

Distinguimos en función de C:

$$25 - \frac{2C}{3} = 0 \Longrightarrow C = \frac{75}{2}$$

- $C > \frac{75}{2}$ : En este caso, el último radicando es negativo, luego no se anula el radicando de x, y este es siempre positivo. Por tanto, x(t) > 0 para todo  $t \in I$ ; es decir,  $x(t) \in J$  para todo  $t \in I$ . Además, x es derivable en I, luego el intervalo maximal de definición es I,  $\widehat{I} = I$ .
- $C = \frac{75}{2}$ : En este caso, el último radicando se anula en t = 5. Por tanto,  $\overline{x(t)} > 0$  para  $t \in I \setminus \{5\}$ . Por tanto, como el intervalo de definición de la solución debe ser conexo, consideramos las dos siguientes opciones:

$$I_1 = ]-\infty, 5[$$
  $I_2 = ]5, +\infty[$ 

En ambos casos, como  $x(t) \in J$  para todo  $t \in I_1$  y todo  $t \in I_2$ , y x es derivable en  $I_1$  y  $I_2$ , el intervalo maximal de definición es  $\widehat{I} = I_1$  o  $\widehat{I} = I_2$ .

•  $C < \frac{75}{2}$ : En este caso, el último radicando es positivo, luego se anula en dos puntos,  $t_1$  y  $t_2$  dados por:

$$t_1 = 5 - \sqrt{25 - \frac{2C}{3}}$$
  $t_2 = 5 + \sqrt{25 - \frac{2C}{3}}$ 

Por tanto, x(t) > 0 para  $t \in I \setminus [t_1, t_2]$ . Por tanto, como el intervalo de definición de la solución debe ser conexo, consideramos las dos siguientes opciones:

$$I_1 = ]-\infty, t_1[$$
  $I_2 = ]t_2, +\infty[$ 

En todos los casos, como  $x(t) \in J$  para todo  $t \in I_1$  y todo  $t \in I_2$ , y x es derivable en  $I_1$  y  $I_2$ , el intervalo maximal de definición es  $\widehat{I} = I_1$  o  $\widehat{I} = I_2$ .

■  $\underline{J} = \mathbb{R}^-$ : En este caso, necesitamos que x(t) < 0 para todo  $t \in \widehat{I}$ . Para ello, basta con que el radicando sea negativo:

$$\frac{3}{2}t^2 - 15t + C < 0$$

Distinguimos en función de C:

- $C > \frac{75}{2}$ : En este caso, el último radicando es negativo, luego no se anula el radicando de x. Además, x(t) > 0 para todo  $t \in I$ , por lo que no hay solución en este caso.
- $C = \frac{75}{2}$ : En este caso, el último radicando se anula en t = 5. Por tanto,  $\overline{x(t)} > 0$  para  $t \in I \setminus \{5\}$ . Además, como el intervalo de definición de la solución debe ser abierto y conexo, no hay solución en este caso.
- $C < \frac{75}{2}$ : En este caso, el último radicando es positivo, luego se anula en dos puntos,  $t_1$  y  $t_2$  dados por:

$$t_1 = 5 - \sqrt{25 - \frac{2C}{3}}$$
  $t_2 = 5 + \sqrt{25 - \frac{2C}{3}}$ 

Por tanto, x(t) < 0 para  $t \in [t_1, t_2]$ . Como en el abierto es derivable, el intervalo maximal de definición es  $\widehat{I} = ]t_1, t_2[$ .

**Ejercicio 1.2.2.** En Dinámica de Poblaciones, dos modelos muy conocidos son la ecuación de Verhulst o logística

$$P' = P(\alpha - \beta P)$$

y la ecuación de Gompertz

$$P' = P(\alpha - \beta \ln P)$$

siendo P(t) la población a tiempo t de una determinada especie y  $\alpha, \beta$  parámetros positivos. Calcule en cada caso la solución con condición inicial P(0) = 100.

Resolvamos en primer lugar la ecuación de Verhulst. Se trata de una ecuación de variables separadas de la forma P' = p(t)q(P), con:

$$p: I \longrightarrow \mathbb{R}$$

$$t \longmapsto 1$$

$$q: J \longrightarrow \mathbb{R}$$

$$P \longmapsto P(\alpha - \beta P)$$

donde consideramos  $I = J = \mathbb{R}$ . Comprobamos las raíces de q en J:

$$q(P) = 0 \iff P(\alpha - \beta P) = 0 \iff P = 0, \frac{\alpha}{\beta}$$

Por tanto, dos soluciones de la ecuación son, para todo  $t \in I$ :

$$P(t) = 0$$
  $P(t) = \frac{\alpha}{\beta}$ 

Procedemos ahora a resolver la ecuación de variables separadas. Para ello, trabajaremos con  $J_1 = \mathbb{R}^-$ ,  $J_2 = ]0, \alpha/\beta[$  y  $J_3 = ]\alpha/\beta, +\infty[$ , ya que necesitamos que  $q(P) \neq 0$  para todo P en el la segunda componente del dominio.

■  $J_1 = \mathbb{R}^-$ :

Como en este caso no cumple que  $P(0) = 100 \in J_1$ , no nos interesa este dominio.

•  $J_2 = ]0, \alpha/\beta[:$ 

Veamos qué hemos de de imponer para considerar este dominio; es decir, para que  $P(0) = 100 \in J_2$ :

$$100 \in J_2 \iff 100 < \frac{\alpha}{\beta} \iff 100\beta < \alpha$$

En este caso, resolvemos la ecuación de variables separadas con dominio  $I \times J_2$ :

$$P' = P(\alpha - \beta P) \Longrightarrow \frac{dP}{dt} = P(\alpha - \beta P) \Longrightarrow \frac{dP}{P(\alpha - \beta P)} = dt \Longrightarrow$$
$$\Longrightarrow \int \frac{dP}{P(\alpha - \beta P)} = \int dt$$

Para resolver la primera integral, aplicamos el método de descomposición en fracciones simples:

$$\frac{1}{P(\alpha - \beta P)} = \frac{A}{P} + \frac{B}{\alpha - \beta P} = \frac{A(\alpha - \beta P) + BP}{P(\alpha - \beta P)}$$

- Para P = 0:  $1 = A \cdot \alpha \Longrightarrow A = 1/\alpha$ .
- Para  $P = \alpha/\beta$ :  $1 = B \cdot \alpha/\beta \Longrightarrow B = \beta/\alpha$ .

Por tanto, tenemos que:

$$\implies \int \frac{dP}{P(\alpha - \beta P)} = \int dt \implies \frac{1}{\alpha} \int \frac{dP}{P} + \frac{\beta}{\alpha} \int \frac{dP}{\alpha - \beta P} = \int dt \implies$$
$$\implies \frac{1}{\alpha} \ln(P) - \frac{1}{\alpha} \ln(\alpha - \beta P) = t + C \qquad C \in \mathbb{R}$$

donde en la última implicación hemos usado que  $P \in J_2$ .

Operando con la solución obtenida, llegamos a:

$$\ln\left(\frac{P}{\alpha - \beta P}\right) = \alpha(t + C) \Longrightarrow \frac{P}{\alpha - \beta P} = e^{\alpha(t + C)} \Longrightarrow$$
$$\Longrightarrow P(1 + \beta e^{\alpha(t + C)}) = \alpha e^{\alpha(t + C)} \Longrightarrow P = \frac{\alpha e^{\alpha(t + C)}}{1 + \beta e^{\alpha(t + C)}}$$

Por tanto, para  $P \in J_2$ , la familia de soluciones es:

$$P(t) = \frac{\alpha e^{\alpha(t+C)}}{1 + \beta e^{\alpha(t+C)}} \qquad C \in \mathbb{R}$$

Estableciendo la condición inicial P(0) = 100, obtenemos:

$$P(0) = 100 = \frac{\alpha e^{\alpha C}}{1 + \beta e^{\alpha C}} \Longrightarrow 100(1 + \beta e^{\alpha C}) = \alpha e^{\alpha C} \Longrightarrow$$

$$\Longrightarrow 100 + 100\beta e^{\alpha C} = \alpha e^{\alpha C} \Longrightarrow$$

$$\Longrightarrow 100 = \alpha e^{\alpha C} - 100\beta e^{\alpha C} \Longrightarrow$$

$$\Longrightarrow 100 = e^{\alpha C}(\alpha - 100\beta) \Longrightarrow$$

$$\Longrightarrow e^{\alpha C} = \frac{100}{\alpha - 100\beta} \Longrightarrow$$

$$\Longrightarrow C = \frac{1}{\alpha} \ln\left(\frac{100}{\alpha - 100\beta}\right)$$

Por tanto, la solución con condición inicial P(0) = 100 es:

$$P(t) = \frac{\alpha e^{\alpha(t+C)}}{1 + \beta e^{\alpha(t+C)}}, \quad t \in I, \qquad C = \frac{1}{\alpha} \ln \left( \frac{100}{\alpha - 100\beta} \right)$$

 $J_3 = ]\alpha/\beta, +\infty[:$ 

Veamos qué hemos de de imponer para considerar este dominio; es decir, para que  $P(0) = 100 \in J_3$ :

$$100 \in J_3 \iff 100 > \frac{\alpha}{\beta} \iff 100\beta > \alpha$$

En este caso, resolvemos la ecuación de variables separadas con dominio  $I \times J_3$ . Por los cáculos realizados en el caso anterior, tenemos que:

$$\frac{1}{\alpha}\ln(P) - \frac{1}{\alpha}\ln(\beta P - \alpha) = t + C \qquad C \in \mathbb{R}$$

Operando con la solución obtenida, llegamos a que la familia de soluciones para  $P \in J_3$  es:

$$P(t) = \frac{-\alpha e^{\alpha(t+C)}}{1 - \beta e^{\alpha(t+C)}} = \frac{\alpha e^{\alpha(t+C)}}{-1 + \beta e^{\alpha(t+C)}} \qquad C \in \mathbb{R}$$

Estableciendo la condición inicial P(0) = 100, obtenemos:

$$P(0) = 100 = \frac{\alpha e^{\alpha C}}{-1 + \beta e^{\alpha C}} \Longrightarrow 100(-1 + \beta e^{\alpha C}) = \alpha e^{\alpha C} \Longrightarrow$$

$$\Longrightarrow -100 + 100\beta e^{\alpha C} = \alpha e^{\alpha C} \Longrightarrow$$

$$\Longrightarrow -100 = \alpha e^{\alpha C} - 100\beta e^{\alpha C} \Longrightarrow$$

$$\Longrightarrow -100 = e^{\alpha C}(\alpha - 100\beta) \Longrightarrow$$

$$\Longrightarrow e^{\alpha C} = \frac{-100}{\alpha - 100\beta} \Longrightarrow$$

$$\Longrightarrow C = \frac{1}{\alpha} \ln\left(\frac{100}{100\beta - \alpha}\right)$$

Por tanto, la solución con condición inicial P(0) = 100 es:

$$P(t) = \frac{\alpha e^{\alpha(t+C)}}{-1 + \beta e^{\alpha(t+C)}}, \quad t \in I, \qquad C = \frac{1}{\alpha} \ln \left( \frac{100}{100\beta - \alpha} \right)$$

Por tanto, y a modo de resumen, las soluciones de la ecuación de Verhulst con condición inicial P(0) = 100 son, en función de los parámetros  $\alpha, \beta$ :

■  $100 = \alpha/\beta$ : En este caso, se trata de la solución constante, luego:

$$P(t) = 100 = \frac{\alpha}{\beta} \qquad t \in I$$

 $\bullet$  100 <  $\alpha/\beta$ : En este caso, la solución está en  $J_2,$  luego:

$$P(t) = \frac{\alpha e^{\alpha(t+C)}}{1 + \beta e^{\alpha(t+C)}}, \quad t \in I, \qquad C = \frac{1}{\alpha} \ln \left( \frac{100}{\alpha - 100\beta} \right)$$

•  $100 > \alpha/\beta$ : En este caso, la solución está en  $J_3$ , luego:

$$P(t) = \frac{\alpha e^{\alpha(t+C)}}{-1 + \beta e^{\alpha(t+C)}}, \quad t \in I, \qquad C = \frac{1}{\alpha} \ln \left( \frac{100}{100\beta - \alpha} \right)$$

Resolvamos ahora la ecuación de Gompertz. Se trata de una ecuación de variables separadas de la forma P' = p(t)q(P), con:

$$p: I \longrightarrow \mathbb{R}$$

$$t \longmapsto 1$$

$$q: J \longrightarrow \mathbb{R}$$

$$P \longmapsto P(\alpha - \beta \ln P)$$

donde consideramos  $I = \mathbb{R}$ ,  $J = \mathbb{R}^+$ . Comprobamos las raíces de q en J:

$$q(P) = 0 \iff P(\alpha - \beta \ln P) = 0 \iff P = 0, e^{\alpha/\beta}$$

La solución P = 0 no es válida, puesto que no pertenece al dominio J. Por tanto, la única solución constante es:

$$P(t) = e^{\alpha/\beta} \qquad t \in I$$

Procedemos ahora a resolver la ecuación de variables separadas. Para ello, trabajaremos con  $J_1 = \left]0, e^{\alpha/\beta}\right[$  y  $J_2 = \left]e^{\alpha/\beta}, +\infty\right[$ , ya que necesitamos que  $q(P) \neq 0$  para todo P en el la segunda componente del dominio.

 $J_1 = ]0, e^{\alpha/\beta}[:$ 

Veamos qué hemos de de imponer para considerar este dominio; es decir, para que  $P(0) = 100 \in J_1$ :

$$100 \in J_1 \Longleftrightarrow 100 < e^{\alpha/\beta} \Longleftrightarrow \ln 100 < \frac{\alpha}{\beta}$$

En este caso, resolvemos la ecuación de variables separadas con dominio  $I \times J_1$ :

$$P' = P(\alpha - \beta \ln P) \Longrightarrow \frac{dP}{dt} = P(\alpha - \beta \ln P) \Longrightarrow \frac{dP}{P(\alpha - \beta \ln P)} = dt \Longrightarrow$$
$$\Longrightarrow \int \frac{dP}{P(\alpha - \beta \ln P)} = \int dt$$

Para resolver la integral del logaritmo, aplicamos el cambio de variable  $P = e^u$ , luego  $dP = e^u du$ :

$$\int \frac{dP}{P(\alpha - \beta \ln P)} = \int \frac{e^u du}{e^u (\alpha - \beta u)} = \int \frac{du}{\alpha - \beta u} = -\frac{1}{\beta} \ln(\alpha - \beta u) + C' =$$
$$= -\frac{1}{\beta} \ln(\alpha - \beta \ln P) + C' \qquad C' \in \mathbb{R}$$

donde hemos hecho uso de que:

$$\alpha - \beta u > 0 \Longleftrightarrow u < \frac{\alpha}{\beta} \Longleftrightarrow \ln P < \frac{\alpha}{\beta} \Longleftrightarrow 0 < P < e^{\alpha/\beta} \Longleftrightarrow P \in J_1$$

Operando, llegamos a que:

$$-\frac{1}{\beta}\ln(\alpha - \beta\ln P) = t + C \Longrightarrow \alpha - \beta\ln P = e^{-\beta(t+C)} \Longrightarrow \ln P = \frac{\alpha - e^{-\beta(t+C)}}{\beta}$$

Por tanto, la solución uniparamétrica de la ecuación de Gompertz en  $J_1$  es:

$$P(t) = \exp\left(\frac{\alpha - e^{-\beta(t+C)}}{\beta}\right) \qquad C \in \mathbb{R}$$

Estableciendo la condición inicial P(0) = 100, obtenemos:

$$P(0) = 100 = \exp\left(\frac{\alpha - e^{-\beta C}}{\beta}\right) \Longrightarrow \ln(100) = \frac{\alpha - e^{-\beta C}}{\beta} \Longrightarrow$$
$$\Longrightarrow e^{-\beta C} = \alpha - \beta \ln(100) \Longrightarrow C = -\frac{1}{\beta} \ln(\alpha - \beta \ln(100))$$

Por tanto, la solución con condición inicial P(0) = 100 es:

$$P(t) = \exp\left(\frac{\alpha - e^{-\beta(t+C)}}{\beta}\right)$$
  $t \in I$ ,  $C = -\frac{1}{\beta}\ln(\alpha - \beta\ln(100))$ 

$$J_2 = ]e^{\alpha/\beta}, +\infty[$$

•  $J_2 = ]e^{\alpha/\beta}, +\infty[$ : Veamos qué hemos de de imponer para considerar este dominio; es decir, para que  $P(0) = 100 \in J_2$ :

$$100 \in J_2 \iff 100 > e^{\alpha/\beta} \iff \ln 100 > \frac{\alpha}{\beta}$$

En este caso, resolvemos la ecuación de variables separadas con dominio  $I \times J_2$ . Por los cáculos realizados en el caso anterior, tenemos que:

$$-\frac{1}{\beta}\ln(\beta\ln P - \alpha) = t + C \qquad C \in \mathbb{R}$$

donde hemos hecho uso de que:

$$\alpha - \beta u < 0 \Longleftrightarrow u > \frac{\alpha}{\beta} \Longleftrightarrow \ln P > \frac{\alpha}{\beta} \Longleftrightarrow P > e^{\alpha/\beta} \Longleftrightarrow P \in J_2$$

Operando, llegamos a que la solución uniparamétrica de la ecuación de Gompertz en  $J_2$  es:

$$P(t) = \exp\left(\frac{-\alpha + e^{-\beta(t+C)}}{\beta}\right) \qquad C \in \mathbb{R}$$

Estableciendo la condición inicial P(0) = 100, y repitiendo los cálculos del apartado anterior, llegamos a:

$$P(0) = 100 \Longrightarrow C = -\frac{1}{\beta} \ln(\beta \ln(100) - \alpha)$$

Por tanto, la solución con condición inicial P(0) = 100 es:

$$P(t) = \exp\left(\frac{-\alpha + e^{-\beta(t+C)}}{\beta}\right)$$
  $t \in I$ ,  $C = -\frac{1}{\beta}\ln(\beta\ln(100) - \alpha)$ 

Por tanto, y a modo de resumen, las soluciones de la ecuación de Gompertz con condición inicial P(0) = 100 son, en función de los parámetros  $\alpha, \beta$ :

•  $100 = e^{\alpha/\beta}$ : En este caso, se trata de la solución constante, luego:

$$P(t) = 100 = e^{\alpha/\beta} \qquad t \in I$$

•  $100 < e^{\alpha/\beta}$ : En este caso, la solución está en  $J_1$ , luego:

$$P(t) = \exp\left(\frac{\alpha - e^{-\beta(t+C)}}{\beta}\right)$$
  $t \in I$ ,  $C = -\frac{1}{\beta}\ln(\alpha - \beta\ln(100))$ 

•  $\underline{100} > e^{\alpha/\beta}$ : En este caso, la solución está en  $J_2$ , luego:

$$P(t) = \exp\left(\frac{-\alpha + e^{-\beta(t+C)}}{\beta}\right) \qquad t \in I, \qquad C = -\frac{1}{\beta}\ln(\beta\ln(100) - \alpha)$$

Ejercicio 1.2.3. Nos planteamos resolver la ecuación

$$x' = \cos(t - x)$$

Compruebe que el cambio y = t - x nos lleva a una ecuación de variables separadas. Resuelva e invierta el cambio para llegar a una expresión explícita de x(t). Repase el procedimiento por si se ha perdido alguna solución por el camino.

Al no indicarnos nada sobre la primera variable, suponemos que esta no varía, luego el cambio de variable a aplicar es:

$$\begin{cases} s = t, \\ y = t - x. \end{cases}$$

Al no especificar dominio de la ecuación, suponemos que está definida en  $\mathbb{R}^2$ . Consideramos entonces las siguientes funciones:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(t, x) \longmapsto (s, y) = (t, t - x)$$

$$\psi = (\psi_1, \psi_2) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(s, y) \longmapsto (t, x) = (s, s - y)$$

Para emplear el cambio de variable, en primer lugar hemos de comprobar que  $\varphi$  es un difeomorfismo. Para ello, hemos demostrar que  $\varphi$  es biyectiva y que  $\varphi, \varphi^{-1} \in C^1(\mathbb{R}^2)$ . Demostraremos en primer lugar que  $\varphi \circ \psi = Id_{\mathbb{R}^2} = \psi \circ \varphi$ :

$$\varphi \circ \psi(s,y) = \varphi(s,s-y) = (s,s-(s-y)) = (s,y) = Id_{\mathbb{R}^2}(s,y) \qquad \forall (s,y) \in \mathbb{R}^2$$
  
$$\psi \circ \varphi(t,x) = \psi(t,t-x) = (t,t-(t-x)) = (t,x) = Id_{\mathbb{R}^2}(t,x) \qquad \forall (t,x) \in \mathbb{R}^2$$

Por tanto, hemos demostrado que  $\varphi$  es biyectiva y que  $\varphi^{-1} = \psi$ . Además, como ambas componentes de  $\varphi, \psi$  son de clase 1, tenemos que  $\varphi, \varphi^{-1} \in C^1(\mathbb{R}^2)$ , luego  $\varphi$  es un difeomorfismo.

A continuación, hemos de comprobar que el cambio es admisible. Aunque lo sabemos puesto que no varía la primera variable, lo demostramos:

$$\frac{\partial \varphi_1}{\partial t} + \frac{\partial \varphi_1}{\partial x} f(t, x) = 1 + 0 \cdot \cos(t - x) = 1 \neq 0$$

Por tanto, tenemos que el cambio de variable es admisible. Procedemos a aplicarlo a la ecuación dada:

$$\frac{dy}{ds} = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{dy}{dt} = 1 - \cos(t - x) = 1 - \cos y$$

Usando la notación usual, la nueva ecuación diferencial, con dominio  $\mathbb{R}^2$ , es:

$$y' = 1 - \cos y$$

Esta es de la forma y' = p(s)q(y), con:

$$\begin{array}{cccc} p: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & s & \longmapsto & 1 \end{array}$$

$$q: \ \mathbb{R} \longrightarrow \ \mathbb{R}$$
$$y \longmapsto 1 - \cos y$$

Buscamos en primer lugar los valores en los que se anula q:

$$q(y) = 0 \iff 1 - \cos y = 0 \iff \cos y = 1 \iff y = 2\pi k, \quad k \in \mathbb{Z}$$

Fijado ahora  $k \in \mathbb{Z}$ , restringimos ahora el dominio de q a  $J = ]2\pi k, 2\pi (k+1)[$ . En J tenemos que q no se anula, luego procedemos a resolver la ecuación de variables separadas:

$$\frac{dy}{ds} = 1 - \cos y \Longrightarrow \frac{dy}{1 - \cos y} = ds \Longrightarrow \int \frac{dy}{1 - \cos y} = \int ds$$

**Ejercicio 1.2.4.** Experimentalmente, se sabe que la resistencia al aire de un cuerpo en caída libre es proporcional al cuadrado de la velocidad del mismo. Por tanto, si v(t) es la velocidad a tiempo t, la ecuación de Newton nos dice que

$$v' + \frac{k}{m}v^2 = g,$$

donde m es la masa del cuerpo, g es la constante de gravitación universal y k > 0 depende de la geometría (aerodinámica) del cuerpo. Si se supone que v(0) = 0, calcule la solución explícita y describa el comportamiento a largo plazo.

Se trata de una ecuación de variables separadas de la forma v' = p(t)q(v), con:

$$\begin{array}{cccc} p: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & t & \longmapsto & 1 \end{array}$$

$$q: \mathbb{R} \longrightarrow \mathbb{R}$$

$$v \longmapsto -\frac{k}{m}v^2 + g$$

Comprobamos las raíces de q en  $\mathbb{R}$ :

$$q(v) = 0 \Longleftrightarrow -\frac{k}{m}v^2 + g = 0 \Longleftrightarrow v^2 = \frac{gm}{k} \Longleftrightarrow \begin{cases} v_1 = -\sqrt{\frac{gm}{k}}, \\ v_2 = \sqrt{\frac{gm}{k}}. \end{cases}$$

Como buscamos la solución que cumple v(0) = 0, consideramos el dominio dado por  $J = ]v_1, v_2[$ . En este dominio, q no se anula, luego procedemos a resolver la ecuación de variables separadas:

$$\frac{dv}{dt} = -\frac{k}{m}v^2 + g \Longrightarrow \frac{dv}{-\frac{k}{m}v^2 + g} = dt \Longrightarrow \int \frac{dv}{-\frac{k}{m}v^2 + g} = \int dt \Longrightarrow$$

$$\Longrightarrow m \int \frac{dv}{-kv^2 + gm} = t + C \qquad C \in \mathbb{R}$$

Para resolver la integral, descomponemos en fracciones simples:

$$\frac{1}{-kv^2 + gm} = \frac{A}{v - v_1} + \frac{B}{v - v_2} = \frac{A(v - v_2) + B(v - v_1)}{(v - v_1)(v - v_2)}$$

• Para 
$$v = v_1$$
:  $1 = A(v_1 - v_2) \Longrightarrow A = \frac{1}{v_1 - v_2} = -\frac{1}{2} \sqrt{\frac{k}{mq}}$ .

• Para 
$$v = v_2$$
:  $1 = B(v_2 - v_1) \Longrightarrow B = \frac{1}{v_2 - v_1} = \frac{1}{2} \sqrt{\frac{k}{mg}}$ .

Por tanto, tenemos que:

$$m \int \frac{dv}{-kv^2 + gm} = m \int \left(\frac{A}{v - v_1} + \frac{B}{v - v_2}\right) dv =$$

$$= m \left(A \ln(v - v_1) + B \ln(v_2 - v)\right) + C' =$$

$$= \frac{m}{2} \sqrt{\frac{k}{mg}} \left(\ln(v_2 - v) - \ln(v - v_1)\right) + C' =$$

$$= \frac{m}{2} \sqrt{\frac{k}{mg}} \ln\left(\frac{v_2 - v}{v - v_1}\right) + C' = \frac{m}{2} \sqrt{\frac{k}{mg}} \ln\left(\frac{\sqrt{\frac{gm}{k}} - v}{\sqrt{\frac{gm}{k}} + v}\right) + C'$$

Por tanto, la familia de soluciones en J es:

$$\frac{m}{2}\sqrt{\frac{k}{mg}}\ln\left(\frac{\sqrt{\frac{gm}{k}}-v}{\sqrt{\frac{gm}{k}}+v}\right) = t+C \qquad C \in \mathbb{R}$$

Operando, llegamos a:

$$\begin{split} \frac{\sqrt{\frac{gm}{k}} - v}{\sqrt{\frac{gm}{k}} + v} &= \exp\left((t + C) \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right) \\ - v \left[1 + \exp\left((t + C) \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right)\right] &= \sqrt{\frac{gm}{k}} \exp\left((t + C) \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right) - \sqrt{\frac{gm}{k}} \\ v &= -\frac{\sqrt{\frac{gm}{k}} \exp\left((t + C) \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right) - \sqrt{\frac{gm}{k}}}{1 + \exp\left((t + C) \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right)} \\ v &= \frac{\sqrt{\frac{gm}{k}} \left[1 - \exp\left((t + C) \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right)\right]}{1 + \exp\left((t + C) \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right)} \end{split}$$

Por tanto, la solución con condición inicial v(0) = 0 es:

$$v(0) = 0 = \frac{\sqrt{\frac{gm}{k}} \left[ 1 - \exp\left(C \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right) \right]}{1 + \exp\left(C \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right)} \Longrightarrow 1 = \exp\left(C \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right) \Longrightarrow$$
$$\Longrightarrow C \cdot \frac{2}{m} \sqrt{\frac{mg}{k}} = 0 \Longrightarrow C = 0$$

Por tanto, la solución con condición inicial v(0) = 0 es:

$$v(t) = \frac{\sqrt{\frac{gm}{k}} \left[ 1 - \exp\left(t \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right) \right]}{1 + \exp\left(t \cdot \frac{2}{m} \sqrt{\frac{mg}{k}}\right)} \qquad t \in \mathbb{R}$$

Estudiemos ahora el comportamiento a largo plazo de la solución. Para ello, consideramos el límite cuando  $t \to +\infty$ :

$$\lim_{t \to +\infty} v(t) = -\sqrt{\frac{gm}{k}}$$

Ejercicio 1.2.5. Calcule la solución de la ecuación

$$y' = \frac{x + y - 3}{x - y - 1}$$

que verifica y(0) = 1.

En este caso, se trata de una ecuación reducible a homogénea. Estudiemos qué cambio de variable hemos de emplear:

$$\left| \begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right| = -1 - 1 = -2 \neq 0$$

Por tanto, hemos de emplear una traslación según el vector  $(x_*, y_*) \in \mathbb{R}^2$ . En primer lugar, el dominio de la ecuación diferencial ha de ser una de las componentes conexas de:

$$\{(x,y) \in \mathbb{R}^2 \mid x - y - 1 \neq 0\}$$

Para que el punto (0, y(0)) = (0, 1) esté en el dominio, el dominio será:

$$D = \{(x, y) \in \mathbb{R}^2 \mid x - y - 1 < 0\}$$

Consideramos entonces el cambio de variable:

$$\varphi = (\varphi_1, \varphi_2): D \longrightarrow D_1$$
  
 $(x, y) \longmapsto (u, v) = (x - x_*, y - y_*)$ 

donde el codominio,  $D_1$ , es:

$$D_1 = \varphi(D) = \{ \varphi(x, y) \in \mathbb{R}^2 \mid x - y - 1 < 0 \} = \{ (u, v) \in \mathbb{R}^2 \mid (u + x_*, v + y_*) \in D \} = \{ (u, v) \in \mathbb{R}^2 \mid u + x_* - v - y_* - 1 < 0 \}$$

La inversa de  $\varphi$ , puesto que podemos despejar cada una de las componentes de forma única, es:

$$\varphi^{-1}: D_1 \longrightarrow D$$
  
 $(u,v) \longmapsto (x,y) = (u+x_*,v+y_*)$ 

Por tanto,  $\varphi, \varphi^{-1}$  son biyectivas. Como además son continuas por ser ambas componentes polinómicas, tenemos que  $\varphi$  es un difeomorfismo. Además, es admisible, ya que:

$$\frac{\partial \varphi_1}{\partial x} + \frac{\partial \varphi_1}{\partial y}y' = 1 + 0 \cdot y' = 1 \neq 0$$

Por tanto, procedemos a aplicar el cambio de variable a la ecuación dada:

$$\frac{dv}{du} = \frac{dv}{dx} \cdot \frac{dx}{du} = \frac{dy}{dx} = \frac{x+y-3}{x-y-1} = \frac{u+x_*+v+y_*-3}{u+x_*-v-y_*-1}$$

Buscamos ahora resolver el siguiente sistema:

$$\begin{cases} x_* + y_* = 3, \\ x_* - y_* = 1. \end{cases} \Longrightarrow \begin{cases} x_* = 2, \\ y_* = 1. \end{cases}$$

Por tanto, tras haber aplicado el cambio de variable según la traslación de (2, 1), la ecuación diferencial se convierte en:

$$v' = \frac{u+v}{u-v}$$

Como buscamos que y(0) = 1, tenemos que v(-2) = 0. Esta es una ecuación homogénea, con dominio:

$$D_1' = \{(u, v) \in D_1 \mid u < 0\} =$$
  
= \{(u, v) \in \mathbb{R}^2 \cong u < 0, \ u - v < 0\}

El cambio de variable a aplicar es:

$$\varphi' = (\varphi'_1, \varphi'_2): D'_1 \longrightarrow D_2$$
  
 $(u, v) \longmapsto (t, s) = (u, v/u)$ 

donde el codominio,  $D_2$ , es:

$$D_2 = \varphi'(D_1') = \{ \varphi'(u, v) \in \mathbb{R}^2 \mid (u, v) \in D_1' \} = \{ (t, s) \in \mathbb{R}^2 \mid (t, s \cdot t) \in D_1' \} = \{ (t, s) \in \mathbb{R}^2 \mid t < 0, \ t - s \cdot t < 0 \}$$

La inversa de  $\varphi'$ , puesto que podemos despejar cada una de las componentes de forma única, es:

$$(\varphi')^{-1}: D_2 \longrightarrow D'_1$$
  
 $(t,s) \longmapsto (u,v) = (t,s \cdot t)$ 

Por tanto,  $\varphi'$ ,  $(\varphi')^{-1}$  son biyectivas. Como además son continuas por ser ambas componentes polinómicas, tenemos que  $\varphi'$  es un difeomorfismo. Además, es admisible, ya que la primera componente no varía. La demostración de que es admisible es:

$$\frac{\partial \varphi_1'}{\partial u} + \frac{\partial \varphi_1'}{\partial v}v' = 1 + 0 \cdot v' = 1 \neq 0$$

Por tanto, procedemos a aplicar el cambio de variable a la ecuación dada:

$$\frac{ds}{dt} = \frac{ds}{du} \cdot \frac{dy'}{dt} = -\frac{v}{u^2} + \frac{v'}{u} = -\frac{1}{u} \cdot \frac{v}{u} + \frac{1}{u} \cdot \frac{1 + v/u}{1 - v/u} = -\frac{s}{t} + \frac{1}{t} \cdot \frac{1 + s}{1 - s}$$

Por tanto, la ecuación homogénea se convierte en:

$$s' = \frac{1}{t} \left( \frac{1+s}{1-s} - s \right)$$
 con dominio  $D_2 = \mathbb{R}^- \times ]-\infty, 1[$ 

Esta es una ecuación de variables separadas, luego procedemos a resolverla. Buscamos las raíces de la función con variable s:

$$\frac{1+s}{1-s} - s = 0 \iff 1+s = s(1-s) = s - s^2 \iff s^2 + 1 = 0$$

Vemos que no tiene soluciones constantes, luego aplicamos el método de resolución:

$$\frac{ds}{\frac{1+s}{1-s}-s} = \frac{dt}{t} \Longrightarrow \int \frac{1-s}{1+s^2} ds = \int \frac{dt}{t} \Longrightarrow \int \frac{1}{1+s^2} ds - \int \frac{s}{1+s^2} ds = \ln(-t) + C' \Longrightarrow$$

$$\Longrightarrow \arctan(s) - \frac{1}{2}\ln(1+s^2) = \ln(-t) + C$$

Por la teoría vista de resolución de ecuaciones en variables separadas, tenemos que esto define una función implícita s(t) en  $\mathbb{R}^-$ . Deshacemos el segundo cambio de variable:

$$\arctan\left(\frac{v}{u}\right) - \frac{1}{2}\ln\left(1 + \left(\frac{v}{u}\right)^2\right) = \ln(-u) + C$$

Esto define una función implícita v(u) en  $\mathbb{R}^-$ . Por último, deshacemos el primer cambio de variable:

$$\arctan\left(\frac{y-1}{x-2}\right) - \frac{1}{2}\ln\left(1 + \left(\frac{y-1}{x-2}\right)^2\right) = \ln(-x+2) + C$$

Esta ecuación define una función implícita y(x) en el dominio  $]-\infty, 1[$ . Estableciendo la condición inicial y(0) = 1, obtenemos:

$$\arctan\left(\frac{1-1}{0-2}\right) - \frac{1}{2}\ln\left(1 + \left(\frac{1-1}{0-2}\right)^2\right) = \ln(-0+2) + C \Longrightarrow$$

$$\Longrightarrow \arctan\left(0\right) - \frac{1}{2}\ln\left(1+0\right) = \ln(2) + C \Longrightarrow$$

$$\Longrightarrow C = -\ln(2)$$

Por tanto, la solución de la ecuación dada que verifica y(0) = 1 es la función implícita y(x) definida por la ecuación siguiente en el dominio  $]-\infty,1[$ :

$$\arctan\left(\frac{y-1}{x-2}\right) - \frac{1}{2}\ln\left(1 + \left(\frac{y-1}{x-2}\right)^2\right) = \ln(-x+2) - \ln(2)$$

Ejercicio 1.2.6. Resuelva los siguientes problemas lineales:

1. 
$$x' + 3x = e^{-3t}$$
.  $x(1) = 5$ 

En este caso, se trata de una ecuación lineal completa con dominio  $\mathbb{R}^2$ . Buscamos transformarla en una ecuación que podamos resolver mediante cálculo de primitivas. Para ello, sea una función  $l: \mathbb{R} \to \mathbb{R}$  con  $l(t) \neq 0$  para todo  $t \in \mathbb{R}$  y  $l \in C^1(\mathbb{R})$ , y buscaremos cuál ha de ser su valor para convertir la ecuación diferencial en un cálculo de primitivas. Aplicamos el cambio de variable siguiente:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
  
 $(t, x) \longmapsto (s, y) = (t, l(t)x)$ 

Tenemos que su inversa, por poder despejar de forma única cada componente, es:

$$\varphi^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
  
 $(s,y) \longmapsto (t,x) = (s,y/l(s))$ 

En primer lugar, tenemos que  $\varphi, \varphi^{-1}$  son biyectivas, y al ser ambas componentes de clase 1 (la segunda es producto o cociente de funciones de clase 1), tenemos que  $\varphi$  es un difeomorfismo. Además, es admisible por no variar la primera variable<sup>1</sup>. Aplicando el cambio de variable a la ecuación dada, obtenemos:

$$\frac{dy}{ds} = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{dy}{dt} = xl' + lx' = l' \cdot \frac{y}{l} + l(-3x + e^{-3t}) = \left(\frac{l'}{l} - 3\right)y + le^{-3t}$$

<sup>&</sup>lt;sup>1</sup>De aquí en adelante, no lo demostraremos en cada ejercicio.

Por tanto, la ecuación se convierte en:

$$y' = \left(\frac{l'}{l} - 3\right)y + le^{-3t}$$
 con dominio  $\mathbb{R}^2$ 

Para convertirlo en un cálculo de primitivas, buscamos l tal que  $\frac{l'}{l} - 3 = 0$ , es decir, l' = 3l. Como dominio, como l no puede anularse, consideramos  $\mathbb{R} \times \mathbb{R}^+$  (también podríamos haber elegido  $\mathbb{R} \times \mathbb{R}^-$ ). Esta ecuación es de variables separadas, luego procedemos a resolverla:

$$l' = 3l \Longrightarrow \frac{dl}{l} = 3dt \Longrightarrow \int \frac{dl}{l} = \int 3dt \Longrightarrow \ln(l) = 3t + C \Longrightarrow$$
  
 $\Longrightarrow l = e^{3t+C} = ke^{3t} \qquad k \in \mathbb{R}^+$ 

Como no tenemos ninguna condición más sobre l, sea (considerando k = 1):

$$l(t) = e^{3t} \qquad t \in \mathbb{R}$$

Por tanto, usando dicha función l, la ecuación tras aplicar el cambio de variable es:

$$y' = le^{-3t} = e^{3t}e^{-3t} = 1 \Longrightarrow y(s) = s + C, \quad \forall s \in \mathbb{R}, \qquad C \in \mathbb{R}$$

Deshaciendo el cambio de variable, obtenemos la solución uniparamétrica de la ecuación dada:

$$x(t) = \frac{y(t)}{l(t)} = \frac{t+C}{e^{3t}} = e^{-3t}(t+C) \qquad t \in \mathbb{R}, \qquad C \in \mathbb{R}$$

Usando la condición inicial x(1) = 5, obtenemos:

$$x(1) = e^{-3}(1+C) = 5 \Longrightarrow C = 5e^{3} - 1$$

Por tanto, la solución de la ecuación dada que verifica x(1) = 5 es:

$$x(t) = e^{-3t}(t + 5e^3 - 1)$$
  $t \in \mathbb{R}$ 

2. 
$$x' - \frac{x}{t} = \frac{1}{1+t^2}$$
,  $x(2) = 0$ 

En este caso, se trata de una ecuación lineal completa con dominio  $\mathbb{R}^+ \times \mathbb{R}$ . Buscamos transformarla en una ecuación que podamos resolver mediante cálculo de primitivas. Para ello, sea una función  $l: \mathbb{R}^+ \to \mathbb{R}$  con  $l(t) \neq 0$  para todo  $t \in \mathbb{R}^+$  y  $l \in C^1(\mathbb{R}^+)$ , y buscaremos cuál ha de ser su valor para convertir la ecuación diferencial en un cálculo de primitivas. Aplicamos el cambio de variable siguiente:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^+ \times \mathbb{R} \longrightarrow \mathbb{R}^+ \times \mathbb{R}$$
  
 $(t, x) \longmapsto (s, y) = (t, l(t)x)$ 

Tenemos que su inversa, por poder despejar de forma única cada componente, es:

$$\varphi^{-1}: \mathbb{R}^+ \times \mathbb{R} \longrightarrow \mathbb{R}^+ \times \mathbb{R}$$

$$(s, y) \longmapsto (t, x) = (s, y/l(s))$$

En primer lugar, tenemos que  $\varphi, \varphi^{-1}$  son biyectivas, y al ser ambas componentes de clase 1 (la segunda es producto o cociente de funciones de clase 1), tenemos que  $\varphi$  es un difeomorfismo. Además, es admisible por no variar la primera variable. Aplicando el cambio de variable a la ecuación dada, obtenemos:

$$\frac{dy}{ds} = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{dy}{dt} = xl' + lx' = l' \cdot \frac{y}{l} + l\left(\frac{1}{1+t^2} + \frac{y}{tl(t)}\right) = \left(\frac{l'}{l} + \frac{1}{t}\right)y + \frac{l}{1+t^2}$$

Por tanto, la ecuación se convierte en:

$$y' = \left(\frac{l'}{l} + \frac{1}{t}\right)y + \frac{l}{1+t^2}$$
 con dominio  $\mathbb{R}^+ \times \mathbb{R}$ 

Para convertirlo en un cálculo de primitivas, buscamos l tal que  $\frac{l'}{l} + \frac{1}{t} = 0$ , es decir,  $l' = -\frac{l}{t}$ . Como dominio, como l no puede anularse, consideramos el conjunto  $\mathbb{R}^+ \times \mathbb{R}^+$ . Esta ecuación es de variables separadas, luego procedemos a resolverla:

$$\frac{dl}{l} = -\frac{dt}{t} \Longrightarrow \int \frac{dl}{l} = -\int \frac{dt}{t} \Longrightarrow \ln(l) = -\ln(t) + C \Longrightarrow$$

$$\Longrightarrow l = ke^{-\ln(t)} = \frac{k}{t} \qquad k \in \mathbb{R}^+$$

Como no tenemos ninguna condición más sobre l, sea (considerando k = 1):

$$l(t) = \frac{1}{t} \qquad t \in \mathbb{R}^+$$

Por tanto, usando dicha función l, la ecuación tras aplicar el cambio de variable es:

$$y' = \frac{l}{1+t^2} = \frac{1}{t+t^3}$$
 con dominio  $\mathbb{R}^+ \times \mathbb{R}$ 

Esta ecuación se resuelve mediante cálculo de primitivas:

$$y' = \frac{1}{t+t^3} = \frac{1}{t(1+t^2)}$$

Aplicamos el método de descomposición en fracciones simples:

$$\frac{1}{t(1+t^2)} = \frac{A}{t} + \frac{Bt+C}{1+t^2} = \frac{A(1+t^2) + (Bt+C)t}{t(1+t^2)}$$

• Para t = 0:  $1 = A \cdot 1 \Longrightarrow A = 1$ .

■ Para t = 1:  $1 = 2A + B + C \Longrightarrow B + C = -1$ .

• Para 
$$t = -1$$
:  $1 = 2A + B - C \Longrightarrow B - C = -1 \Longrightarrow B = -1$ ,  $C = 0$ .

Por tanto, la solución de la ecuación dada es:

$$y(t) = \int \frac{1}{t(1+t^2)} dt = \int \left(\frac{1}{t} - \frac{t}{1+t^2}\right) dt = \ln(t) - \frac{1}{2} \ln(1+t^2) + C = \ln\left(\frac{t}{\sqrt{1+t^2}}\right) + C$$

Deshaciendo el cambio de variable, obtenemos la solución uniparamétrica de la ecuación dada:

$$x(t) = \frac{y(t)}{l(t)} = \frac{\ln\left(\frac{t}{\sqrt{1+t^2}}\right) + C}{\frac{1}{t}} = t\ln\left(\frac{t}{\sqrt{1+t^2}}\right) + Ct \qquad t \in \mathbb{R}^+, \qquad C \in \mathbb{R}$$

Usando la condición inicial x(2) = 0, obtenemos:

$$x(2) = 2 \ln \left( \frac{2}{\sqrt{1+4}} \right) + 2C = 0 \Longrightarrow -\ln \left( \frac{2}{\sqrt{5}} \right) = C$$

Por tanto, la solución de la ecuación dada que verifica x(2) = 0 es:

$$x(t) = t \ln \left( \frac{t}{\sqrt{1+t^2}} \right) - t \ln \left( \frac{2}{\sqrt{5}} \right) \qquad t \in \mathbb{R}^+$$

3. 
$$x' = \cosh t \cdot x + \sinh t$$
,  $x(0) = 1$ 

En este caso, se trata de una ecuación lineal completa con dominio  $\mathbb{R}^2$ . Buscamos transformarla en una ecuación que podamos resolver mediante cálculo de primitivas. Para ello, sea una función  $l: \mathbb{R} \to \mathbb{R}$  con  $l(t) \neq 0$  para todo  $t \in \mathbb{R}$  y  $l \in C^1(\mathbb{R})$ , y buscaremos cuál ha de ser su valor para convertir la ecuación diferencial en un cálculo de primitivas. Aplicamos el cambio de variable siguiente:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(t, x) \longmapsto (s, y) = (t, l(t)x)$$

Tenemos que su inversa, por poder despejar de forma única cada componente, es:

$$\varphi^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(s,y) \longmapsto (t,x) = (s, \frac{y}{l(s)})$$

En primer lugar, tenemos que  $\varphi, \varphi^{-1}$  son biyectivas, y al ser ambas componentes de clase 1 (la segunda es producto o cociente de funciones de clase 1), tenemos que  $\varphi$  es un difeomorfismo. Además, es admisible por no variar la primera variable. Aplicando el cambio de variable a la ecuación dada, obtenemos:

$$\frac{dy}{ds} = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{dy}{dt} = xl' + lx' = l' \cdot \frac{y}{l} + l(\cosh t \cdot \frac{y}{l} + \sinh t) = \left(\frac{l'}{l} + \cosh t\right)y + l \sinh t$$

Por tanto, la ecuación se convierte en:

$$y' = \left(\frac{l'}{l} + \cosh t\right) y + l \operatorname{senh} t$$
 con dominio  $\mathbb{R}^2$ 

Para convertirlo en un cálculo de primitivas, buscamos l tal que  $\frac{l'}{l} + \cosh t = 0$ , es decir,  $l' = -l \cosh t$ . Como dominio, como l no puede anularse, consideramos  $\mathbb{R} \times \mathbb{R}^+$ . Esta ecuación es de variables separadas, luego procedemos a resolverla:

$$l' = -l\cosh t \Longrightarrow \frac{dl}{l} = -\cosh t dt \Longrightarrow \int \frac{dl}{l} = -\int \cosh t dt \Longrightarrow \ln(l) = -\sinh t + C \Longrightarrow$$
$$\Longrightarrow l = ke^{-\sinh t} \qquad k \in \mathbb{R}^+$$

Como no tenemos ninguna condición más sobre l, sea (considerando k=1):

$$l(t) = e^{-\sinh t} \qquad t \in \mathbb{R}$$

Por tanto, usando dicha función l, la ecuación tras aplicar el cambio de variable es:

$$y' = e^{-\sinh t} \operatorname{senh} t = \operatorname{senh} t \cosh t$$

Empleando el método de cálculo de primitivas, obtenemos:

$$y(t) = \int_0^t e^{-\sinh u} \sinh u \ du + C \qquad t \in \mathbb{R}, \qquad C \in \mathbb{R}$$

donde dicha integral no hemos podido resolverla, puesto que no conocemos una primitiva suya.

Deshaciendo el cambio de variable, obtenemos la solución uniparamétrica de la ecuación dada:

$$x(t) = \frac{y(t)}{l(t)} = e^{\operatorname{senh} t} \left( \int_0^t e^{-\operatorname{senh} u} \operatorname{senh} u \ du + C \right) \qquad t \in \mathbb{R}, \qquad C \in \mathbb{R}$$

Usando la condición inicial x(0) = 1, obtenemos:

$$x(0) = e^{\operatorname{senh} 0} \left( \int_0^0 e^{-\operatorname{senh} u} \operatorname{senh} u \ du + C \right) = 1 \cdot C = 1 \Longrightarrow C = 1$$

Por tanto, la solución de la ecuación dada que verifica x(0) = 1 es:

$$x(t) = e^{\operatorname{senh} t} \left( \int_0^t e^{-\operatorname{senh} u} \operatorname{senh} u \ du + 1 \right) \qquad t \in \mathbb{R}$$

Es cierto que la solución depende de una integral de la cual no conocemos una primitiva, pero hemos obtenido la solución en términos de dicha integral.

**Ejercicio 1.2.7.** Fijado  $c \in \mathbb{R}$ , sean  $a, b : \mathbb{R} \to \mathbb{R}$  funciones continuas tal que  $a(t) \geqslant c > 0$  para todo  $t \in \mathbb{R}$  y

$$\lim_{t \to +\infty} b(t) = 0.$$

Demuestre que todas las soluciones de la ecuación x' = -a(t)x + b(t) tienden a cero cuando  $t \to +\infty$ . (Indicación: regla de L'Hôpital en la fórmula de variación de constantes).

En primer lugar, buscamos las soluciones de la ecuación lineal dada, con dominio  $\mathbb{R}^2$ . Buscamos transformarla en una ecuación que podamos resolver mediante cálculo de primitivas. Para ello, sea una función  $l: \mathbb{R} \to \mathbb{R}$  con  $l(t) \neq 0$  para todo  $t \in \mathbb{R}$  y  $l \in C^1(\mathbb{R})$ , y buscaremos cuál ha de ser su valor para convertir la ecuación diferencial en un cálculo de primitivas. Aplicamos el cambio de variable siguiente:

$$\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
  
 $(t, x) \longmapsto (s, y) = (t, l(t)x)$ 

Tenemos que su inversa, por poder despejar de forma única cada componente, es:

$$\varphi^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
  
 $(s,y) \longmapsto (t,x) = (s, \frac{y}{l(s)})$ 

En primer lugar, tenemos que  $\varphi$ ,  $\varphi^{-1}$  son biyectivas, y al ser ambas componentes de clase 1 (la segunda es producto o cociente de funciones de clase 1), tenemos que  $\varphi$  es un difeomorfismo. Además, es admisible por no variar la primera variable. Aplicando el cambio de variable a la ecuación dada, obtenemos:

$$\frac{dy}{ds} = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{dy}{dt} = xl' + lx' = l' \cdot \frac{y}{l} + l\left(-a(t) \cdot \frac{y}{l} + b(t)\right) = \left(\frac{l'}{l} - a(t)\right)y + lb(t)$$

Por tanto, la ecuación se convierte en:

$$y' = \left(\frac{l'}{l} - a(t)\right)y + lb(t)$$
 con dominio  $\mathbb{R}^2$ 

Para convertirlo en un cálculo de primitivas, buscamos l tal que  $\frac{l'}{l} - a(t) = 0$ , es decir, l' = a(t)l. Como dominio, como l no puede anularse, consideramos  $\mathbb{R} \times \mathbb{R}^+$ . Esta ecuación es de variables separadas, luego procedemos a resolverla:

$$l' = a(t)l \Longrightarrow \frac{dl}{l} = a(t)dt \Longrightarrow \int \frac{dl}{l} = \int a(t)dt \Longrightarrow \ln(l) = \int a(t)dt + C \Longrightarrow$$

$$\Longrightarrow l = \exp\left(\int_0^t a(u) \ du + C\right) \qquad t \in \mathbb{R}$$

Como no tenemos ninguna condición más sobre l, sea (considerando C=0):

$$l(t) = \exp\left(\int_0^t a(u) \ du\right) \qquad t \in \mathbb{R}$$

Por tanto, usando dicha función l, la ecuación tras aplicar el cambio de variable es:

$$y' = lb(t) = \exp\left(\int_0^t a(u) \ du\right) b(t)$$
 con dominio  $\mathbb{R}^2$ 

Esta ecuación se resuelve mediante cálculo de primitivas:

$$y(t) = \int_0^t \exp\left(\int_0^u a(v) \ dv\right) b(u) \ du + C \qquad t \in \mathbb{R}, \qquad C \in \mathbb{R}$$

Deshaciendo el cambio de variable, obtenemos la solución uniparamétrica de la ecuación dada:

$$x(t) = \frac{y(t)}{l(t)} = \frac{\int_0^t \exp\left(\int_0^u a(v) \ dv\right) b(u) \ du + C}{\exp\left(\int_0^t a(u) \ du\right)} \qquad t \in \mathbb{R}, \qquad C \in \mathbb{R}$$

Estudiemos en primer lugar la convergencia del numerador y del denominador de la fracción:

• Para el denominador, tenemos que:

$$\int_0^t a(u) \ du \geqslant \int_0^t c \ du = ct$$

Por tanto, el denominador de la fracción tiende a infinito cuando  $t \to +\infty$ .

• Para el numerador, tenemos que:

Ejercicio 1.2.8. La ecuación de Bernoulli tiene la forma

$$x' = a(t)x + b(t)x^n,$$

donde  $a, b: I \to \mathbb{R}$  son funciones continuas y  $n \in \mathbb{R}$ . Compruebe que el cambio de variable  $y = x^{\alpha}$  lleva la ecuación de Bernoulli a una ecuación del mismo tipo, y ajuste el valor de  $\alpha$  para que la ecuación obtenida sea lineal (n = 0). Usando el cambio anterior, resuelva los problemas de valores iniciales

$$x' = x + t\sqrt{x}, \quad x(0) = 1.$$

El dominio de la ecuación de Bernoulli es  $D = I \times \mathbb{R}$ , con  $I \subseteq \mathbb{R}$  intervalo abierto. Fijado  $\alpha \in \mathbb{R}_0^+$ , aplicamos el cambio de variable siguiente:

$$\varphi = (\varphi_1, \varphi_2): I \times \mathbb{R} \longrightarrow D_1$$
  
 $(t, x) \longmapsto (s, y) = (t, x^{\alpha})$ 

Veamos cuál es el codominio de  $\varphi$ :

$$D_1 = \varphi(D) = \{(s, y) \in \mathbb{R}^2 \mid (s, \sqrt[\alpha]{y}) \in D\} = I \times \mathbb{R}$$

Tenemos que su inversa, por poder despejar de forma única cada componente, es:

$$\varphi^{-1}: D_1 \longrightarrow I \times \mathbb{R}$$
  
 $(s,y) \longmapsto (t,x) = (s, \sqrt[\alpha]{y})$ 

En primer lugar, tenemos que  $\varphi, \varphi^{-1}$  son biyectivas, y al ser ambas componentes de clase 1 (la segunda es producto o cociente de funciones de clase 1), tenemos que  $\varphi$  es un difeomorfismo. Además, es admisible por no variar la primera variable. Aplicando el cambio de variable a la ecuación dada, obtenemos:

$$\frac{dy}{ds} = \frac{dy}{dt} \cdot \frac{dt}{ds} = \frac{dy}{dt} = \alpha x^{\alpha - 1} x' = \alpha x^{\alpha - 1} (a(t)x + b(t)x^n) =$$

$$= \alpha x^{\alpha - 1} a(t)x + \alpha x^{\alpha - 1} b(t)x^n = \alpha x^{\alpha} a(t) + \alpha x^{\alpha - 1 + n} b(t) =$$

$$= \alpha x^{\alpha} a(t) + \alpha (x^{\alpha})^{\frac{\alpha - 1 + n}{\alpha}} b(t) = \alpha a(t)y + \alpha b(t)y^{\frac{\alpha - 1 + n}{\alpha}}$$

Por tanto, la ecuación se convierte en:

$$y' = \alpha a(t)y + \alpha b(t)y^{\frac{\alpha - 1 + n}{\alpha}}$$
 con dominio  $I \times \mathbb{R}$ 

Como tenemos que  $\frac{\alpha - 1 + n}{\alpha} \in \mathbb{R}$ , la ecuación obtenida es de Bernoulli. Para que la ecuación obtenida sea lineal, necesitamos que:

$$\frac{\alpha - 1 + n}{\alpha} = 0 \Longleftrightarrow \alpha - 1 + n = 0 \Longleftrightarrow \alpha = 1 - n$$

Para valor de  $\alpha$  obtenido, la ecuación de Bernoulli se convierte en una ecuación lineal:

$$y' = \alpha a(t)y + \alpha b(t)y^{\frac{\alpha - 1 + n}{\alpha}} = (1 - n)a(t)y + (1 - n)b(t)$$

Resolvemos ahora la ecuación dada:

$$x' = x + t\sqrt{x}, \quad x(0) = 1$$

Su dominio es  $D = \mathbb{R} \times \mathbb{R}^+$ . Por lo visto, hemos visto que el valor  $\alpha = 1 - 1/2 = 1/2$  hace que la ecuación de Bernoulli se convierta en una ecuación lineal:

$$y' = \frac{1}{2}y + \frac{1}{2}t$$
 con dominio  $\mathbb{R} \times \mathbb{R}^+$ 

Empleando la fórmula obtenida en Teoría para resolver ecuaciones lineales, obtenemos:

$$y(t) = e^{t/2} \left( \int e^{-u/2} \cdot \frac{u}{2} \ du + C \right) \qquad t \in \mathbb{R}, \qquad C \in \mathbb{R}$$

Para resolver la integral, empleamos el método de integración por partes:

$$\begin{bmatrix} a = u/2 & a' = 1/2 \\ b' = e^{-u/2} & b = -2e^{-u/2} \end{bmatrix}$$

Por tanto:

$$\int e^{-u/2} \cdot \frac{u}{2} \ du = -2e^{-u/2} \cdot \frac{u}{2} - \int -2e^{-u/2} \cdot \frac{1}{2} \ du = -ue^{-u/2} + \int e^{-u/2} \ du =$$

$$= -ue^{-u/2} - 2e^{-u/2} + C = -e^{-u/2}(u+2) + C$$

Por tanto, la solución de la ecuación dada es:

$$y(t) = e^{t/2} \left( C - e^{-t/2} (t+2) \right) = C e^{t/2} - (t+2)$$
  $t \in \mathbb{R}$ ,  $C \in \mathbb{R}$ 

Deshaciendo el cambio de variable, obtenemos la solución uniparamétrica de la ecuación dada:

$$x(t) = (y(t))^2 = (Ce^{t/2} - (t+2))^2$$
  $t \in \mathbb{R}$ ,  $C \in \mathbb{R}$ 

Usando la condición inicial x(0) = 1, obtenemos:

$$x(0) = (C-2)^2 = 1 \Longrightarrow C - 2 \stackrel{(*)}{=} 1 \Longrightarrow C = 3$$

donde en (\*) hemos usado la condición de que  $y \in \mathbb{R}^+$ . Por tanto, la solución de la ecuación dada que verifica x(0) = 1 es:

$$x(t) = (3e^{t/2} - (t+2))^2$$
  $t \in \mathbb{R}$ 

Ejercicio 1.2.9. Se considera la ecuación de Ricatti

$$y' = -\frac{1}{x^2} - \frac{y}{x} + y^2.$$

Encuentre una solución particular de la forma  $y(x) = x^{\alpha}$  con  $\alpha \in \mathbb{R}$ . Usando esta solución particular, calcule la solución que cumple y(1) = 2 y estudie su intervalo maximal de definición.

**Ejercicio 1.2.10.** Encuentre una curva y = y(x) que pase por el punto (1,2) y cumpla la siguiente propiedad: la distancia de cada punto de la curva al origen coincide con la segunda coordenada del punto de corte de la recta tangente y el eje de ordenadas. (C. Sturm, Cours d'Analyse 1859, Vol 2, pag 41).

**Ejercicio 1.2.11.** Identifique la clase de ecuaciones invariantes por el grupo de transformaciones  $s = \lambda t$ ,  $y = \lambda^2 x$ , con  $\lambda > 0$ .

**Ejercicio 1.2.12.** Resuelva los problemas 42 y 45 (pag. 79) del libro de Nagle-Saff-Sneider.