Organisms & Ecology Concept List

bioliteracy.net

Cou	rse title:
Insti	itution:
	nester:
Yea	r:
Inst	ructor:
Are	you / where you
	The instructor of the course
	A teaching assistant in the course
	A student taking the course
cov	ile not exhaustive (and we would appreciate it if you would concept statements below if you er them and they are not listed), the list will enable you to make explicit to yourself, your ching assistants and your students, which concepts you intend to cover.
	rill also enable your teaching assistants (and students) to indicate what concepts they ught you covered.
Cor	ncept statements you should add to your list:
1	

We would very much like to get a copy of your list, since this list can be more informative than the typical syllabus. Please mail or email it to us at M.W. Klymkowsky, MCDB, UC Boulder, Boulder, CO 890309-0347

CONCEPT STATEMENT AREA	emphasized	Mentioned	Not covered
Life Cycles – 15 statements			
1. The life cycle of an organism begins with its			
appearance and ends with its death.	_	_	_
2. The simplest of life cycles are asexual and involve			
a process of fission, budding or fragmentation such	_	_	_
that each offspring receives a complete copy of the			
genome plus necessary cytoplasmic organelles,			
such as the chloroplasts and mitochondria of			
eukaryotes.			
3. A version of an asexual life cycle involves the			
formation of alternative vegetative state , such as a			
spore . Spores are passive (non-reproducing) but			
under appropriate conditions can give rise to			
normally dividing organisms.			
4. In an asexual organism , changes to the genome			
can occur only through mutation or horizontal gene			
transfer.			
5. The process of sex involves genetic			
recombination between two (or more) distinct			
organisms. In the most common form, sex involves			
the fusion of gametes from two distinct individuals.			
6. Gametes are haploid cells; typically gametes can			
fuse through the process of syngamy/fertilization			
to form a diploid cell.			
7. In organisms with a haplontic life cycle , the			
diploid (sporophytic) phase is transient and mitosis			
only occurs in the haploid (gametophytic) phase.			
8. In organisms with a haplodiplontic life cycle ,			J
mitosis can during either the haploid or the diploid			
phase of the life cycle.			
9. Most animals are diplontic . Mitosis occurs only			–
in the diploid phase of the life cycle and the haploid			
gametophytic phase is transient ending in fertilization or death.			
10. The germ line of an organism gives rise to germ	⊢ Ч	'	
cells, which in turn produce the gametes and			
supporting cells.			

Life Cycles – continued		
11. In many animals, the germ cells arise in one location and migrate to the male (testes) and female (ovary) sexual organs. Testes produce sperm while ovaries produce eggs, both of which produce haploid pronuclei that fuse to form a diploid nucleus.		
12. Gametes can be similar in size (isogamous organisms) or very different (anisogamous). It is conventional to call the individual that produces the larger gametes (eggs) female and the smaller gametes (sperm) male.		
13. The egg contains the bulk of the cytoplasm present in the new diploid organism formed upon fertilization. In particular, it is common that mitochondria are supplied only by the egg.		
14. Eggs are typically non-motile, sperm motile.		
15. A number of different mechanisms are used to insure that an egg is fertilized by only a single sperm; fertilization of an egg by multiple sperm generally leads to severe developmental abnormalities.		
Ecology Basics - 7 statements		
1. Ecology is the study of the inter-relationships between organisms and their environment. It includes how organisms are impacted by their environment and how they, in turn, impact their environment.		
2. The major source of energy that flows through ecological systems is the sun. This energy is captured primarily through photosynthesis. Additional sources of energy are found in chemicals.		
3. A number of different approaches are used to characterize ecological processes. The trophic-dynamic concept , tracks energy flow through populations, communities, ecosystems and the entire globe.		

Ecology Basics - continued			
4. The biogeochemical cycle concept , tracks			
materials and elements through populations,	_	_	_
communities, ecosystems and the entire globe.			
5. Ecological interactions can occur at the level of			
individuals, populations and communities. Such	_	_	_
interactions include symbiosis, competition,			
predation, succession, and stability.			
6. Population dynamics are a complex function of			
environmental factors, organismic behavior and			
fecundity, predation, pathogenesis, and cooperation			
(interorganismic and intrapopulation interactions).			
7. Much of what is meant by the term natural			
selection can be best understood in terms of	_		_
ecological interactions and principles.			
Symbionts and Pathogens- 7 statements			
1. There is a multidimensional continuum between			
organisms. It varies from organisms that live in	_	_	_
close proximity but have discernable effect on one			
another, to organisms that benefit or suffer as a			
result of their interactions.			
2. Some interactions between organisms are			
transient, for example predator/prey or	_	_	_
host/pathogen. Other relationships are permanent			
or prolonged; these are known as symbiotic			
relationships.			
3. Symbiotic relationships can be characterized in			
terms of benefit and cost to each of the organisms	_	_	_
involved. Mutualism indicates that both organisms			
benefit; Commensalism involves benefit to one but			
no serious harm to the other; Amensalism involves			
harm to one but no significant benefit to the other			
while Parasitism involves benefit to one and			
significant harm to the other.			
4. We can think of the pathogen/host relationship			
as an extreme form of parasitism, cut short by the			
death of the host or the elimination of the pathogen			
by the host's immune system.			
5.There are many modern examples of			
endosymbiosis, in which one organism lives within			
the confines of the cells of another.			

Symbionts and Pathogens– 7 statements			
6. The function of the immune system is to			
recognize foreign organisms and viruses and to	_	_	_
eliminate them from the host's body.			
7. The immune system does not always function			
perfectly, or it may over-react to a benign organism	_	_	_
or situation this can lead to autoimmune disease .			
Carbon Cycles - 14 statements			
1. Carbon moves through and between ecosystems	П		
as CO2 (low energy) and reduced (high energy)	_	_	—
organic (carbon-containing) molecules.			
2. One class of organisms, known as primary			
producers or autotrophs, transforms CO2 into	_	_	_
reduced organic molecules; this process requires			
energy.			
3. Energy enters ecosystems primarily as sunlight			
(electromagnetic energy). The process by which	_	_	_
autotrophs use light is used to generate reduced			
CO2 is known as photosynthesis.			
4. The most common form of photosynthesis, the			
form used by most photosynthetic bacteria and	_	_	
plants, involves the light-driven extraction of			
electrons from water; these electrons are used to			
generate reduced CO2. A by-product of this			
reaction is O2.			
5. Organisms that cannot use energy to generate			
reduced CO2 are known as heterotrophs.			
Heterotrophs require a source of reduced CO2 to			
survive and grow. They obtain this reduced CO2			
by eating other organisms or the by-products of			
other organisms.			
6. During aerobic respiration energy is extracted			
from reduced CO2 by the removal of elections;			
these electrons are delivered to O2 to form H2O.			
7. Aerobic heterotrophs (animals, fungi, non-			
photosynthetic, non-autotrophic bacteria and			
archaea) take in organic molecules and O2 and			
release CO2.			
8. Methanogenic heterotrophs (archaea) take in			
organic molecules and release CH4;			
Methanotrophic heterotrophs oxidize CH4 to form			
CO2.			

Carbon Cycles - continued			
9. Aerobic autotrophs perform both photosynthesis			
in the light and respiration (all the time).			
10. Reduced organic molecules. ATP and related			
molecules carry energy around within the cell.			
11. Carbon moves between organisms and between			
the cells within an organism (via the circulatory	_	_	_
system if an organism has one) as CO2 or organic			
molecules (food and to a lesser extent, waste).			
12. The total amount of reduced organic molecules			
present within organisms is know as biomass.	_	_	_
13. Autotrophs move carbon in and out of the			
biomass (with generally a net increase), while	_	_	_
heterotrophs move it out (with a net decrease).			
14. The atmosphere and oceans contain pools of			
CO2, pools of reduced carbon are found in buried	_	_	_
sediments, in rocks, dissolved in the ocean, and as			
methane hydrates.			