Double Responses in Drift Diffusion Models

Stien Mommen, David Matischek, Jeroen Timmerman, Lexi Li, & Emma Akrong March 29th, 2025

Evans et al. (2020)

Cognitive Psychology 121 (2020) 101292

Contents lists available at ScienceDirect

Cognitive Psychology

journal homepage: www.elsevier.com/locate/cogpsych

Double responding: A new constraint for models of speeded decision making

Nathan J. Evans^{a,*}, Gilles Dutilh^b, Eric-Jan Wagenmakers^a, Han L.J. van der Maas^a

^a Department of Psychology, University of Amsterdam, the Netherlands

^b Department of Clinical Research, University of Basel Hospital, Switzerland

Racing Diffusion Model (RDM)

- Process of choosing between N alternatives → N racing evidence accumulators
- Assumptions:
 - One threshold level of evidence
 - Random uniform distribution of starting evidence
 - Drift rate for each alternative
 - Non-decision time

What is a double response (DR)?

Experimental Paradigm (Dutilh et al. (2009))

- Lexical decision task → word vs. non-word
- Participants: 4
- Trials: 10,000
- Conditions: Speed vs.Accuracy (between subjects design)
- DR implementation:
 - 250 ms to give second response
 - Participants were not instructed to give DRs (implicit)

Why include DR in model?

- Additional information beyond response choice and RT
- Better understanding of the decision-making process as a whole

BayesFlow

Aim

- Determine if including DR will make the model learn more
 - RQ: Does including DR improve posterior contraction

Why BayesFlow?

- MCMC more computationally costly
- BayesFlow: training is costly, but inference is fast

Observation Models

RDM (base model for all)

$$dx_i = [v_i]dt + [\sigma_i \epsilon] \sqrt{dt}$$

 dx_i = change in evidence

 v_i = drift rate of choice i

dt = difference in time

 σ_i = scale of within-trial noise for choice i

 ϵ = random variable

Observation Models

Feed-forward inhibition (FFI)

 Future evidence accumulation is reduced based on the accumulation rate of the competing alternative

$$dx_i = [v_i - \beta \sum_{j \neq i}^n v_j]dt + [\sigma_i \epsilon - \beta \sum_{j \neq i}^n \sigma_j \epsilon] \sqrt{dt}$$

$$\beta$$
 = amount of inhibition

 dx_i = change in evidence

 v_i = drift rate of choice i

dt = difference in time

 $\sigma_i = \text{scale}$ of within-trial noise for choice $i, \epsilon = \text{random variable}$

Observation Models

Leaky-competing accumulator (LCA)

- Lateral inhibition with leakage + evidence cannot be negative
- Leakage: rate at which the alternative's accumulated evidence is reduced

$$dx_i = [v_i - \lambda x_i - \beta \sum_{j \neq i}^N x_j]dt + [\sigma_i \epsilon] \sqrt{dt}$$

where
$$x > 0$$

 λ = leakage rate

 β = amount of inhibition

 dx_i = change in evidence, v_i = drift rate of choice i, dt = difference in time, σ_i = scale of within-trial noise for choice i, ϵ = random variable

Priors

Priors

Decision threshold

Starting point

Non-decision time

Priors

Implementation in python (RDM)

```
@nb.jit(nopython=True. cache=True)
def trial(drift, starting point, boundary, ndt, max t, max drt=0.25, s=1, dt=None):
    drift = np.asarray(drift, dtype=np.float64) # Convert before passing to JIT
    response = -1
    rt = -1
    if dt is None:
        dt = max t / 10 000.0 # Ensure float division
    t = 0
    start = float(starting point) # Ensure float type
    evidence = np.random.uniform(0, start, size=len(drift))
    boundary += start # Adjust boundary based on start
    dr = False # Initialize double response
    # Initial evidence accumulation
    while np.all(evidence < boundary) and t < max t:</pre>
        for resp in range(len(drift)): # Normal loop (prange if parallel)
            evidence[resp] += dt * drift[resp] + np.random.normal(0, np.sqrt(s**2 * dt))
        t += dt
                                                                                   16/37
```

Diagnostics (RDM)

Diagnostics (LCA)

Key Findings

Adding double response did kind of lead to the model to learn more

RDM

FFI

LCA

Key Findings

It also kind of improved the posterior contraction

RDM

FFI

LCA

Limitations of our model

- Priors can be more grounded in theory
- More participants, more double response

Accuracy Participant 2

	Initial Response	First RT	Double Response	Double Response RT
6661	FALSE	0.4852	TRUE	0.0458
7372	FALSE	0.4194	TRUE	0.0540
9323	FALSE	0.4851	TRUE	0.0700

Directions for Future Research

- Study design → explicit double responses
- Alternative definition of double response → loser drift over takes winner drift

Thanks for listening <3