

LM4040 Precision Micropower Shunt Voltage Reference

1 Features

- Fixed output voltages of 2.048V, 2.5V, 3V, 4.096V, 5V, 8.192V, and 10V
- Tight output tolerances and low temperature coefficient
 - Maximum 0.1%, 100ppm/°C A Grade
 - Maximum 0.2%, 100ppm/°C B Grade
 - Maximum 0.5%, 100ppm/°C C Grade
 - Maximum 1.0%, 150ppm/°C D Grade
- Low output noise: 35µV_{RMS} typical
- Wide operating current range: 45µA typical to
- Stable with all capacitive loads; no output capacitor required
- Available in extended temperature range: -40°C to 125°C

2 Applications

- **Data-Acquisition Systems**
- **Energy Infrastructure**
- **Analog Input Module**
- **Field Transmitters**
- **Precision Audio**
- **Automotive Electronics**

3 Description

The LM4040 series of shunt voltage references are versatile, easy-to-use references that cater to a vast array of applications. The 2-pin fixed-output device requires no external capacitors for operation and is stable with all capacitive loads. Additionally, the reference offers low dynamic impedance, low noise, and low temperature coefficient to maintain a stable output voltage over a wide range of operating currents and temperatures. The LM4040 uses fuse and Zenerzap reverse breakdown voltage trim during wafer sort to offer four output voltage tolerances, ranging from 0.1% (maximum) for the A grade to 1% (maximum) for the D grade. Thus, a great deal of flexibility is offered to designers in choosing the best cost-to-performance ratio for their applications.

Packaged in space-saving SC-70 and SOT-23-3 packages and requiring a minimum current of 45µA (typical), the LM4040 also is designed for portable applications. The LM4040xI is characterized for operation over an ambient temperature range of -40°C to 85°C. The LM4040xQ is characterized for operation over an ambient temperature range of -40°C to 125°C.

Device Information

PART NUMBER	PACKAGE (PIN) (1)	BODY SIZE (NOM)
LM4040	SOT-23 (3)	2.92mm × 1.30mm
LIVIAUAU	SC70 (6)	2.00mm × 1.25mm

- For all available packages, see the orderable addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Simplified Schematic

Table of Contents

1 Features	
2 Applications	1
3 Description	
4 Device Comparison Table	
5 Pin Configuration and Functions	4
6 Specifications	
6.1 Absolute Maximum Ratings	5
6.2 ESD Ratings	
6.3 Recommended Operating Conditions	
6.4 Thermal Information	5
6.5 LM4040A20I, LM4040B20I Electrical	
Characteristics	6
6.6 LM4040C20I, LM4040D20I Electrical	
Characteristics	7
6.7 LM4040C20Q, LM4040D20Q Electrical	
Characteristics	8
6.8 LM4040A25I, LM4040B25I Electrical	
Characteristics	9
6.9 LM4040C25I, LM4040D25I Electrical	
Characteristics	10
6.10 LM4040C25Q, LM4040D25Q Electrical	
Characteristics	11
6.11 LM4040A30I, LM4040B30I Electrical	
Characteristics	12
6.12 LM4040C30I, LM4040D30I Electrical	40
Characteristics	13
6.13 LM4040C30Q, LM4040D30Q Electrical	
Characteristics	14
6.14 LM4040A41I, LM4040B41I Electrical	45
Characteristics	15
6.15 LM4040C41I, LM4040D41I Electrical	40
Characteristics6.16 LM4040A50I, LM4040B50I Electrical	16
	17
Characteristics	1 /

Information	<mark>3</mark> 1
11 Mechanical, Packaging, and Orderable	
10 Revision History	
9.4 Glossary	
9.3 Electrostatic Discharge Caution	
9.2 Trademarks	
9.1 Related Links	
9 Device and Documentation Support	
8.4 Layout	
8.3 Power Supply Recommendations	
8.2 Typical Applications	
8.1 Application Information	
8 Applications and Implementation	
7.3 Feature Description7.4 Device Functional Modes	
7.2 Functional Block Diagram	
7.1 Overview	
7 Detailed Description	
6.23 Typical Characteristics	
Characteristics	
6.22 LM4040C10I, LM4040D10I Electrical	
Characteristics	22
6.21 LM4040A10I, LM4040B10I Electrical	
Characteristics	21
6.20 LM4040C82I, LM4040D82I Electrical	
Characteristics	20
6.19 LM4040A82I, LM4040B82I Electrical	
Characteristics	19
6.18 LM4040C50Q, LM4040D50Q Electrical	
6.17 LM4040C50I, LM4040D50I Electrical Characteristics	19
6 17 1 MADADC501 1 MADADC61 Flectrical	

4 Device Comparison Table

T _A	DEVICE GRADE	V _{KA}	ORDERABLE (1) PART NUMBER
		2.048V	LM4040A20I
	A grade:	2.5V	LM4040A25I
	0.1% initial accuracy	3V	LM4040A30I
	and	4.096V	LM4040A41I
	100 ppm/°C temperature	5V	LM4040A50I
	coefficient	8.192V	LM4040A82I
-40°C to 85°C		10V	LM4040A10I
_40 C to 65 C		2.048V	LM4040B20I
	B grade:	2.5V	LM4040B25I
	0.2% initial accuracy	3V	LM4040B30I
	and	4.096V	LM4040B41I
	100 ppm/°C temperature	5V	LM4040B50I
	coefficient	8.192V	LM4040B82I
		10V	LM4040B10I
		2.048V	LM4040C20I
	C grade:	2.5V	LM4040C25I
	0.5% initial accuracy and 100 ppm/°C temperature coefficient	3V	LM4040C30I
-40°C to 85°C		4.096V	LM4040C41I
		5V	LM4040C50I
		8.192V	LM4040C82I
		10V	LM4040C10I
		2.048V	LM4040D20I
	D grade:	2.5V	LM4040D25I
	1.0% initial accuracy	3V	LM4040D30I
-40°C to 85°C	and	4.096V	LM4040D41I
	150 ppm/°C temperature	5V	LM4040D50I
	coefficient	8.192V	LM4040D82I
		10V	LM4040D10I
	C grade:	2.048V	LM4040C20Q
	0.5% initial accuracy	2.5V	LM4040C25Q
	and	3V	LM4040C30Q
–40°C to 125°C	100 ppm/°C temperature coefficient	5V	LM4040C50Q
-40 C to 125 C	D grade:	2.048V	LM4040D20Q
	1.0% initial accuracy	2.5V	LM4040D25Q
	and	3V	LM4040D30Q
	150 ppm/°C temperature coefficient	5V	LM4040D50Q

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

5 Pin Configuration and Functions

Figure 5-1. DBZ Package 3-Pin SOT-23 Top View

Figure 5-2. DCK Package 5-Pin SC70 Top View

Figure 5-3. LP Package 3-Pin TO-92 Bottom View

Pin Functions

	P	IN		TYPE	DESCRIPTION
NAME	DBZ	DCK	TO-92	1175	DESCRIPTION
CATHODE	1	3	2	I/O	Shunt Current/Voltage input
ANODE	2	1	3	0	Common pin, normally connected to ground
NC	_	4, 5	_	Ţ	No Internal Connection
*	3	2	1	I	Must float or connect to anode ⁽¹⁾ .

⁽¹⁾ In applications with high electromagnetic interference (for example, when placed near transformers or other electromagnetic sources) or significant high-frequency switching noise, TI recommends connecting this pin to the anode.

6 Specifications

6.1 Absolute Maximum Ratings

over free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
IZ	Continuous cathode current	-10	25	mA
TJ	Operating virtual junction temperature		150	°C
T _{stg}	Storage temperature range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 6.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±500	V

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
IZ	Cathode current		(1)	15	mA
T _A Free-air temperature	Eras air tamparatura	LM4040xxxI	-40	85	°C
	Free-air temperature	LM4040xxxQ	-40	125	C

(1) See parametric tables

6.4 Thermal Information

		LM ²	1040	
	THERMAL METRIC ⁽¹⁾	DBZ	UNIT	
		3 PINS	5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	206	252	°C/W

(1) For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC Package Thermal Metrics</u> application report.

6.5 LM4040A20I, LM4040B20I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040A20	Ol	LM	4040B20)I	LINUT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		2.048			2.048		V
ΔV_Z	Reverse breakdown voltage	I ₇ = 100μA	25°C	-2		2	-4.1		4.1	mV
ΔvZ	tolerance		Full range	-15		15	-17		17	IIIV
	Minimum cathode current		25°C		45	75		45	75	μA
I _{Z,min}	Willimum Cathode Current		Full range			80			80	μА
		I _Z = 10mA	25°C		±20			±20		
_	Average temperature coefficient	I = 1mΛ	25°C		±15			±15		ppm/°C
α_{VZ}	of reverse breakdown voltage ⁽²⁾	$I_Z = 1mA$	Full range			±100			±100	ррпі/ С
		I _Z = 100μA	25°C		±15			±15		
	1 21	1 ~ 1 ~ 1m^	25°C		0.3	0.8		0.3	0.8	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1mA$	Full range			1			1	mV
ΔI_Z	change	1m A < 1 < 15m A	25°C		2.5	6		2.5	6	IIIV
	-	1mA < I _Z < 15mA	Full range			8			8	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.3	0.8		0.3	0.8	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.6 LM4040C20I, LM4040D20I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

DADAMETED		TEST CONDITIONS	_	LM	4040C2	OI	LM	4040D20)I	UNIT	
	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		2.048			2.048		V	
ΔV_Z	Reverse breakdown voltage	L = 100uA	25°C	-10		10	-20		20	mV	
ΔνΖ	tolerance	I _Z = 100μA	Full range	-23		23	-40		40	IIIV	
	Minimum cathode current		25°C		45	75		45	75		
I _{Z,min}	Minimum cathode current		Full range			80			80	μA	
		I _Z = 10mA	25°C		±20			±20			
~	Average temperature coefficient	I - 1mA	25°C		±15			±15		ppm/°C	
α_{VZ}	of reverse breakdown voltage (2)	I _Z = 1mA	Full range			±100			±150	ррпі/ С	
		I _Z = 100μA	25°C		±15			±15			
			1 ~ 1 ~ 1m^	25°C		0.3	0.8		0.3	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1mA$	Full range			1			1.2	mV	
ΔI_Z	change	1mA < 1 < 15mA	25°C		2.5	6		2.5	8	IIIV	
	-	1mA < I _Z < 15mA	Full range			8			10		
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.3	0.9		0.3	1.1	Ω	
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV_{RMS}	
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm	
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_	

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.7 LM4040C20Q, LM4040D20Q Electrical Characteristics

at extended temperature range, full-range $T_A = -40$ °C to 125°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	_	LM4	4040C20	Q	LM	4040D20	Q	UNIT					
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII					
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		2.048			2.048		V					
ΔV_Z	Reverse breakdown voltage	I ₇ = 100μA	25°C	-10		10	-20		20	mV					
Δv _Z	tolerance	1 <u>Z</u>	Full range	-30		30	-50		50	IIIV					
	Minimum cathode current		25°C		45	75		45	75						
I _{Z,min}	Willimum Califode Current		Full range			80			80	μA					
		I _Z = 10mA	25°C		±20			±20							
_	Average temperature coefficient	I _Z = 1mA	25°C		±15			±15		ppm/°C					
α_{VZ}	of reverse breakdown voltage (2)	(2) IZ = IIIIA	Full range			±100			±150	ррпі/ С					
		I _Z = 100μA	25°C		±15			±15							
		I _{Z,min} < I _Z < 1mA	25°C		0.3	8.0		0.3	1						
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1			1.2	mV					
ΔI_Z	change with cathode current	4 0 4 1 4 45 0	1mA < I _Z < 15mA	25°C		2.5	6		2.5	8	1117				
	•	v	•	v	· ·	· ·	IIIIA - IZ - ISIIIA	Full range			8			10	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.3	0.9		0.3	1.1	Ω					
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV _{RMS}					
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm					
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_					

⁽¹⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.8 LM4040A25I, LM4040B25I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040A2	5I	LM	4040B2	5I	UNIT
	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		2.5			2.5		V
ΔV_Z	Reverse breakdown voltage	L = 100uA	25°C	-2.5		2.5	– 5		5	mV
ΔνΖ	tolerance	I _Z = 100μA	Full range	-19		19	-21		21	IIIV
	Minimum cathode current		25°C		45	75		45	75	
I _{Z,min}	Minimum cathode current		Full range			80			80	μA
		I _Z = 10mA	25°C		±20			±20		
~	Average temperature coefficient	I _Z = 1mA	25°C		±15			±15		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±100	ррпі/ С
		I _Z = 100μA	25°C		±15			±15		
		1 ~ 1 ~ 1m^	25°C		0.3	0.8		0.3	0.8	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1mA$	Full range			1			1	mV
ΔI_Z	change	1mA < I _Z < 15mA	25°C		2.5	6		2.5	6	IIIV
	-		Full range			8			8	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.3	0.8		0.3	0.8	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.9 LM4040C25I, LM4040D25I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040C2	5I	LM	4040D2	5I	LINUT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		2.5			2.5		V
ΔV_Z	Reverse breakdown voltage	I _Z = 100μA	25°C	-12		12	-25		25	mV
ΔνΖ	tolerance	1 _Z = 100μΑ	Full range	-29		29	-49		49	IIIV
	Minimum cathode current		25°C		45	75		45	75	
I _{Z,min}	Willimum Cathode Current		Full range			80			80	μA
		I _Z = 10mA	25°C		±20			±20		
a	Average temperature coefficient	I _Z = 1mA	25°C		±15			±15		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррпі/ С
		I _Z = 100μA	25°C		±15			±15		
		I _{Z,min} < I _Z < 1mA	25°C		0.3	0.8		0.3	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1			1.2	mV
ΔI_Z	change with cathode current	1mA < I ₇ < 15mA	25°C		2.5	6		2.5	8	1117
		111114 × 12 × 131114	Full range			8			10	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.3	0.9		0.3	1.1	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V_{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.10 LM4040C25Q, LM4040D25Q Electrical Characteristics

at extended temperature range, full-range $T_A = -40^{\circ}C$ to $125^{\circ}C$ (unless otherwise noted)

	DADAMETED	TEST SOMBITIONS	_	LM4	040C25	Q	LM4	040D25	Q	
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		2.5			2.5		V
ΔV_Z	Reverse breakdown voltage	I _Z = 100μA	25°C	-12		12	-25		25	mV
ΔvZ	tolerance	1 <u>7</u> - 100μΑ	Full range	-38		38	-63		63	IIIV
	Minimum cathode current		25°C		45	75		45	75	μA
I _{Z,min}	Willimani Catriode Current		Full range			80			80	μΛ
		I _Z = 10mA	25°C		±20			±20		
a	Average temperature coefficient	I _Z = 1mA	25°C		±15			±15		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррии С
		I _Z = 100μA	25°C		±15			±15		
		 I _{Z,min} < I _Z < 1mA	25°C		0.3	8.0		0.3	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1			1.2	mV
ΔI_Z	change	1mA < I _Z < 15mA	25°C		2.5	6		2.5	8	IIIV
		11114 - 12 - 131114	Full range			8			10	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.3	0.9		0.3	1.1	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.11 LM4040A30I, LM4040B30I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	т	LM	4040A3	Ol	LM	4040B3	DI	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		3			3		V
ΔV_Z	Reverse breakdown voltage	I _Z = 100μA	25°C	-3		3	-6		6	mV
ΔVZ	tolerance		Full range	-22		22	-26		26	IIIV
I	Minimum cathode current		25°C		47	77		47	77	μA
I _{Z,min}	Willimum Cathode Current		Full range			82			82	μΑ
		I _Z = 10mA	25°C		±20			±20		
a	Average temperature coefficient	I _Z = 1mA	25°C		±15			±15		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±100	ррии С
		I _Z = 100μA	25°C		±15			±15		
		 I _{Z,min} < I _Z < 1mA	25°C		0.6	8.0		0.6	0.8	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1.1			1.1	mV
ΔI_Z	change with cathode current	1mA < I _Z < 15mA	25°C		2.7	6		2.7	6	IIIV
		11114 < 12 < 131114	Full range			9			9	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.4	0.9		0.4	0.9	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature 125°C.

The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max\Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where $\max \Delta T = 65^{\circ} \text{C}$ is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.75%

 $= \pm 19$ mV.

6.12 LM4040C30I, LM4040D30I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040C3	OI	LM	4040D3	DI	UNIT
	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		3			3		V
ΔV_Z	Reverse breakdown voltage	L = 100uA	25°C	-15		15	-30		30	mV
ΔνΖ	tolerance	I _Z = 100μA	Full range	-34		34	-59		59	IIIV
	Minimum cathode current		25°C		45	77		45	77	
I _{Z,min}	Willimum Cathode Current		Full range			82			82	μA
		I _Z = 10mA	25°C		±20			±20		
~	Average temperature coefficient	I _Z = 1mA	25°C		±15			±15		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррпі/ С
		I _Z = 100μA	25°C		±15			±15		
		1 ~ 1 ~ 1m^	25°C		0.4	0.8		1.4	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1mA$	Full range			1.1			1.3	mV
ΔI_Z	change	1mA < I _Z < 15mA	25°C		2.7	6		2.7	8	IIIV
	-		Full range			9			11	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.4	0.9		0.4	1.2	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.13 LM4040C30Q, LM4040D30Q Electrical Characteristics

at extended temperature range, full-range T_A = -40°C to 125°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM4	040C30	Q	LM4	040D30	Q	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		3			3		V
ΔV_Z	Reverse breakdown voltage	I ₇ = 100μA	25°C	-15		15	-30		30	mV
Δv _Z	tolerance	1 <u>Z</u>	Full range	-45		45	-75		75	IIIV
ı	Minimum cathode current		25°C		47	77		47	77	
I _{Z,min}	Willimum Califode Current		Full range			82			82	μA
		I _Z = 10mA	25°C		±20			±20		
, a	Average temperature coefficient	I _Z = 1mA	25°C		±15			±15		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррпі/ С
		I _Z = 100μA	25°C		±15			±15		
		I _{Z,min} < I _Z < 1mA	25°C		0.4	8.0		0.4	1.1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1.1			1.3	mV
ΔI_Z	change with cathode current	1mA < I _Z < 15mA	25°C		2.7	6		2.7	8	1117
		IIIIA - IZ - ISIIIA	Full range			9			11	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.4	0.9		0.4	1.2	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		35			35		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.14 LM4040A41I, LM4040B41I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040A4	11	LM	4040B4	11	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		4.096			4.096		V
ΔV_Z	Reverse breakdown voltage	I _Z = 100μA	25°C	-4.1		4.1	-8.2		8.2	mV
ΔvZ	tolerance		Full range	-31		31	-35		35	IIIV
	Minimum cathode current		25°C		50	83		50	83	
I _{Z,min}	Willimum Cathode Current		Full range			88			88	μA
		I _Z = 10mA	25°C		±30			±30		
, a	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)		Full range			±100			±100	ррпі/ С
		I _Z = 100μA	25°C		±20			±20		
		I _{Z,min} < I _Z < 1mA	25°C		0.5	0.9		0.5	0.9	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1.2			1.2	mV
ΔI_Z	change with cathode current	1mA < I _Z < 15mA	25°C		3	7		3	7	IIIV
			Full range			10			10	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.5	1		0.5	1	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		80			80		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.15 LM4040C41I, LM4040D41I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	_	LM	4040C4	11	LM	4040D4	11	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		4.096			4.096		V
ΔV_Z	Reverse breakdown voltage	I _Z = 100μA	25°C	-20		20	-41		41	mV
ΔVZ	tolerance		Full range	-47		47	-81		81	IIIV
L .	Minimum cathode current		25°C		50	83		50	83	μA
I _{Z,min}	Willimum Cathode Current		Full range			88			88	μΑ
		I _Z = 10mA	25°C		±30			±30		
a	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррііі/ С
		I _Z = 100μA	25°C		±20			±20		
		 I _{Z,min} < I _Z < 1mA	25°C		0.5	0.9		0.5	1.2	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1.2			1.5	mV
ΔI_Z	change with cathode current	1mA < I ₇ < 15mA	25°C		3	7		3	9	IIIV
		11114 < 12 < 131114	Full range			10			13	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.5	1		0.5	1.3	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		80			80		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V_{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.16 LM4040A50I, LM4040B50I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040A5	OI	LM	4040B5	DI	UNIT
	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		5			5		V
ΔV_Z	Reverse breakdown voltage	L = 100uA	25°C	- 5		5	-10		10	mV
ΔνΖ	tolerance	I _Z = 100μA	Full range	-38		38	-43		43	IIIV
	Minimum cathode current		25°C		65	89		65	89	
I _{Z,min}	Willimum Cathode Current		Full range			95			95	μA
		I _Z = 10mA	25°C		±30			±30		
~	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±100	ррпі/ С
		I _Z = 100μA	25°C		±20			±20		
		I _{Z,min} < I _Z < 1mA	25°C		0.5	1		0.5	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1.4			1.4	mV
ΔI_Z	change	1mA < I _Z < 15mA	25°C		3.5	8		3.5	8	IIIV
	-		Full range			12			12	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.5	1.1		0.5	1.1	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		80			80		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.17 LM4040C50I, LM4040D50I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040C5	Ol	LM	4040D5	DI	UNIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		5			5		V
ΔV_Z	Reverse breakdown voltage	I _Z = 100μA	25°C	-25		25	-50		50	mV
ΔVZ	tolerance	1 <u>7</u> - 100μΑ	Full range	-58		58	-99		99	IIIV
I	Minimum cathode current		25°C		65	89		65	89	μA
I _{Z,min}	Willimum Cathode Current		Full range			95			95	μΑ
		I _Z = 10mA	25°C		±30			±30		
a	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррии С
		I _Z = 100μA	25°C		±20			±20		
		 I _{Z,min} < I _Z < 1mA	25°C		0.5	1		0.5	1.3	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			1.4			1.8	mV
ΔI_Z	change with cathode current	1mA < I _Z < 15mA	25°C		3.5	8		3.5	10	IIIV
		111114 × 12 × 131114	Full range			12			15	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.5	1.1		0.5	1.5	Ω
e _N	Wideband noise	I _Z = 100μA, 10Hz ≤ f ≤ 10kHz	25°C		80			80		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.18 LM4040C50Q, LM4040D50Q Electrical Characteristics

at extended temperature range, full-range $T_A = -40^{\circ}C$ to $125^{\circ}C$ (unless otherwise noted)

	DADAMETED	TEGT CONDITIONS	_	LM4	040C50	Q	LM4	1040D50	Q	
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vz	Reverse breakdown voltage	I _Z = 100μA	25°C		5			5		V
ΔV_Z	Reverse breakdown voltage	I _Z = 100μA	25°C	-25		25	-50		50	mV
ΔVZ	tolerance		Full range	– 75		75	-125		125	IIIV
L .	Minimum cathode current		25°C		65	89		65	89	μA
I _{Z,min}	Willimum Cathode Current		Full range			95			95	μΑ
		I _Z = 10mA	25°C		±30			±30		
a	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррпі/ С
		I _Z = 100μA	25°C		±20			±20		
		 I _{Z,min} < I _Z < 1mA	25°C		0.5	1		0.5	1	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	1Z,min	Full range			1.4			1.8	mV
ΔI_Z	change	1mA < I _Z < 15mA	25°C		3.5	8		3.5	8	1110
		11114 < 12 < 131114	Full range			12			12	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.5	1.1		0.5	1.1	Ω
e _N	Wideband noise	I _Z = 100µA, 10Hz ≤ f ≤ 10kHz	25°C		80			80		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 100µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.19 LM4040A82I, LM4040B82I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040A8	21	LM	4040B8	21	LINIT
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vz	Reverse breakdown voltage	I _Z = 150μA	25°C		8.192			8.192		V
ΔV_Z	Reverse breakdown voltage	I _Z = 150μA	25°C	-8.2		8.2	-16		16	mV
Δv _Z	tolerance	1 <u>Z</u> = 150μΑ	Full range	-61		61	-70		70	IIIV
	Minimum cathode current		25°C		67	106		67	106	
I _{Z,min}	Willimum Cathode Current		Full range			110			110	μA
		I _Z = 10mA	25°C		±40			±40		
, a	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)		Full range			±100			±100	ррпі/ С
		I _Z = 150μA	25°C		±20			±20		
		I _{Z,min} < I _Z < 1mA	25°C		0.6	1.3		0.6	1.6	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			2.5			2.5	mV
ΔI_Z	change with cathode current	1mA < I ₇ < 15mA	25°C		7	10		7	10	IIIV
			Full range			18			18	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.6	1.5		0.6	1.5	Ω
e _N	Wideband noise	I _Z = 150μA, 10Hz ≤ f ≤ 10kHz	25°C		130			130		μV _{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150µA			120			120		ppm
V_{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

⁽¹⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.20 LM4040C82I, LM4040D82I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040C82	21	LM	4040D82	21	UNIT
	PARAMETER	TEST CONDITIONS	TA	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Vz	Reverse breakdown voltage	I _Z = 150μA	25°C		8.192			8.192		V
ΔV_Z	Reverse breakdown voltage	L = 150uA	25°C	-41		41	-82		82	mV
ΔνΖ	tolerance	I _Z = 150μΑ	Full range	-94		94	-162		162	IIIV
	Minimum cathode current		25°C		67	106		67	111	
I _{Z,min}	Minimum cathode current		Full range			110			115	μA
		I _Z = 10mA	25°C		±40			±40		
_	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		ppm/°C
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±150	ррпі/ С
		I _Z = 150μA	25°C		±20			±20		
		1 ~ 1 ~ 1mA	25°C		0.6	1.3		0.6	1.7	
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1mA$	Full range			2.5			3	mV
ΔI_Z	change with cathode current	1mA < I _Z < 15mA	25°C		7	10		7	15	IIIV
	-		Full range			18			24	
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.6	1.5		0.6	1.9	Ω
e _N	Wideband noise	I _Z = 150μA, 10Hz ≤ f ≤ 10kHz	25°C		130			130		μV_{RMS}
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150µA			120			120		ppm
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.21 LM4040A10I, LM4040B10I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	_	LM	4040A1	Ol	LM	4040B1	DI	UNIT	
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
Vz	Reverse breakdown voltage	I _Z = 150μA	25°C		10			10		V	
ΔV_Z	Reverse breakdown voltage	I _Z = 150μA	25°C	-10		10	-20		20	mV	
ΔνΖ	tolerance	1 <u>Z</u> = 150μΑ	Full range	-75		75	-85		85	mv	
	Minimum cathode current		25°C		75	120		75	120		
I _{Z,min}	Willimum Cathode Current		Full range			125			125	μA	
		I _Z = 10mA	25°C		±40			±40			
a .	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		nnm/°C	
α_{VZ}	of reverse breakdown voltage (2)	IZ - IIIIA	Full range			±100			±100	ppm/°C	
		I _Z = 150μA	25°C		±20			±20			
		I _{Z,min} < I _Z < 1mA	25°C		0.8	1.5		0.8	1.5		
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	IZ,min > IZ > IIIIA	Full range			3.8			3.8	mV	
ΔI_Z	change with cathode current	1mA < I ₇ < 15mA	25°C		8	14		8	14	mv	
	-		Full range			24			24		
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.7	1.7		0.7	1.7	Ω	
e _N	Wideband noise	I _Z = 150μA, 10Hz ≤ f ≤ 10kHz	25°C		180			180		μV _{RMS}	
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150µA			120			120		ppm	
V_{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_	

⁽¹⁾ Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.

(2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.22 LM4040C10I, LM4040D10I Electrical Characteristics

at industrial temperature range, full-range $T_A = -40$ °C to 85°C (unless otherwise noted)

	DADAMETED	TEST CONDITIONS	-	LM	4040C1)I	LM4	4040D10)I	UNIT	
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	UNII	
Vz	Reverse breakdown voltage	I _Z = 150μA	25°C		10			10		V	
ΔV_Z	Reverse breakdown voltage	I _Z = 150μA	25°C	-50		50	-100		100	mV	
ΔvZ	tolerance		Full range	-115		115	-198		198	IIIV	
ı	Minimum cathode current		25°C		75	120		75	130	μA	
I _{Z,min}	Willimum Cathode Current		Full range			125			135	μА	
		I _Z = 10mA	25°C		±40			±40			
, a	Average temperature coefficient	I _Z = 1mA	25°C		±20			±20		nnm/°C	
α_{VZ}	of reverse breakdown voltage (2)		Full range			±100			±150	ppm/°C	
		I _Z = 150μA	25°C		±20			±20			
		1 ~ 1 ~ 1m^	25°C		0.8	1.5		0.8	2		
$\frac{\Delta V_Z}{\Delta I_Z}$	Reverse breakdown voltage change with cathode current	$I_{Z,min} < I_Z < 1mA$	Full range			3.8			4	mV	
ΔI_Z	change	1mA < 1 < 15mA	25°C		8	14		8	18		
	-	1mA < I _Z < 15mA	Full range			24			29		
Z _Z	Reverse dynamic impedance	I _Z = 1mA, f = 120Hz, I _{AC} = 0.1 I _Z	25°C		0.7	1.7		0.7	2.3	Ω	
e _N	Wideband noise	I _Z = 150μA, 10Hz ≤ f ≤ 10kHz	25°C		180			180		μV _{RMS}	
	Long-term stability of reverse breakdown voltage	t = 1000 h, T _A = 25°C ± 0.1°C, I _Z = 150µA			120			120		ppm	
V _{HYST}	Thermal hysteresis ⁽¹⁾	$\Delta T_A = -40$ °C to 125°C			0.08%			0.08%		_	

- (1) Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C.
- (2) The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV_R/ΔT)(maxΔT)(V_R)]. Where, ΔV_R/ΔT is the V_R temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T _{MIN} or T_{MAX}, and V_R is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below:

A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100$ ppm/°C × 65°C

B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100$ ppm/°C × 65°C

C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100$ ppm/°C × 65°C

D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150$ ppm/°C × 65°C

The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:

C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100$ ppm/°C × 100°C

D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150$ ppm/°C × 100°C

Therefore, as an example, the A-grade 2.5V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of $\pm 2.5 \text{V} \times 0.75\%$

6.23 Typical Characteristics

Figure 6-1. Temperature Drift for Different Average Temperature Coefficients

Figure 6-2. Output Impedance vs Frequency

Figure 6-3. Output Impedance vs Frequency

Figure 6-4. Cathode Current vs. Reverse Voltage

7 Detailed Description

7.1 Overview

The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4040 remains stable.

LM4040 offers several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V, 4.096V, 5.000V, 6.000, 8.192V, and 10.000V. The minimum operating current increases from $60\mu A$ for the LM4040-N-2.048 and LM4040-N-2.5 to $100\mu A$ for the 10.0V LM4040. All versions have a maximum operating current of 15mA.

Each reverse voltage options can be purchased with initial tolerances (at 25°C) of 0.1%, 0.2%, 0.5% and 1.0%. These reference options are denoted by A (0.1%), B (0.2%), C (0.5%) and D for (1.0%).

The LM4040xxxl devices are characterized for operation from –40°C to 85°C, and the LM4040xxxQ devices are characterized for operation from –40°C to 125°C.

7.2 Functional Block Diagram

7.3 Feature Description

A temperature compensated band gap voltage reference controls high gain amplifier and shunt pass element to maintain a nearly constant voltage between cathode and anode. Regulation occurs after a minimum current is provided to power the voltage divider and amplifier. Internal frequency compensation provides a stable loop for all capacitor loads. Floating shunt design is useful for both positive and negative regulation applications.

7.4 Device Functional Modes

7.4.1 Shunt Reference

LM4040 does not operate in one mode, which is as a fixed voltage reference that cannot be adjusted. LM4040 does offer various Reverse Voltage options that have unique electrical characteristics detailed in *Section 6*.

For a proper Reverse Voltage to be developed, current must be sourced into the cathode of LM4040. The minimum current needed for proper regulation is denoted in *Section 6* as I_{2 min}.

8 Applications and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

LM4040 is a well known industry standard device used in several applications and end equipment where a reference is required. Below describes this device being used in a data acquisition system. Analog to Digital conversion systems are the most common applications to use LM4040 due to the devices low reference tolerance which allows high precision in these systems.

8.2 Typical Applications

Figure 8-1. Data-Acquisition Circuit With LM4040x-41

8.2.1 Design Requirements

For this design example, use the parameters listed in Table 8-1 as the input parameters.

Table 8-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
ADC FSR (Full Scale Range)	4.096
ADC Resolution	12 Bits
Supply Voltage	5V
Cathode Current (lk)	100μΑ

8.2.2 Detailed Design Procedure

When using LM4040 as a comparator with reference, determine the following:

- Input voltage range
- Reference voltage accuracy
- · Output logic input high and low level thresholds
- · Current source resistance

8.2.2.1 LM4040 Voltage and Accuracy Choice

When using LM4040 as a reference for an ADC, the ADC's FSR (Full Scale Range), Resolution and LSB must be determined. LSB can be determined by:

LSB=FSR/(2N-1)

With N being the resolution or Number of Bits. FSR and Resolution can be determined by the ADC's data sheet.

Vref can be determined by:

Vref=FSR+LSB

Though modern data converters use calibration techniques to compensate for any error introduced by a Vref's inaccuracy, use the highest accuracy available. This is due to errors in the calibration method that can allow some non-linearity introduced by the Vref's initial accuracy.

A good example is the LM4040x-41 that is designed to be a cost-effective voltage reference as required in 12-bit data-acquisition systems. For 12-bit systems operating from 5V supplies (see Figure 8-1), the LM4040A-41 (4.096V, 0.01%) only introduces 4 LSBs (4mV) of possible error in a system that consists of 4096 LSBs.

8.2.2.2 Cathode and Load Currents

In a typical shunt-regulator configuration (see Figure 8-2), an external resistor, R_S , is connected between the supply and the cathode of the LM4040. R_S must be set properly, as R_S sets the total current available to supply the load (I_L) and bias the LM4040 (I_Z). In all cases, I_Z must stay within a specified range for proper operation of the reference. Taking into consideration one extreme in the variation of the load and supply voltage (maximum I_L and minimum I_S), I_S must be small enough to supply the minimum I_Z required for operation of the regulator, as given by data-sheet parameters. At the other extreme, maximum I_S and minimum I_L , I_S must be large enough to limit I_Z to less than the maximum-rated value of 15mA.

R_S is calculated according to Equation 1:

$$R_{S} = \frac{\left(V_{S} - V_{Z}\right)}{\left(I_{L} + I_{Z}\right)} \tag{1}$$

$$R_{S} \downarrow \qquad \qquad \downarrow I_{Z} + I_{L}$$

$$V_{Z} \downarrow \qquad \qquad \downarrow I_{Z}$$

$$LM4040 \downarrow \qquad \qquad \downarrow I_{Z}$$

Figure 8-2. Shunt Regulator

8.2.2.3 Output Capacitor

The LM4040 does not require an output capacitor across cathode and anode for stability. However, if an output bypass capacitor is desired, the LM4040 is designed to be stable with all capacitive loads.

8.2.2.4 SOT-23 Connections

There is a parasitic Schottky diode connected between pins 2 and 3 of the SOT-23 packaged device. Thus, pin 3 of the SOT-23 package must be left floating or connected to pin 2.

8.2.2.5 Start-Up Characteristics

In any data conversion system, start-up characteristics are important, as to determine when to safely begin conversion based upon a steady and settled reference value. As shown in Figure 8-4 allow >20µs from supply start-up to begin conversion.

Figure 8-3. Test Circuit

8.2.3 Application Curve

8.3 Power Supply Recommendations

To not exceed the maximum cathode current, be sure that the supply voltage is current limited.

For applications shunting high currents (15mA max), pay attention to the cathode and anode trace lengths, adjusting the width of the traces to have the proper current density.

8.4 Layout

8.4.1 Layout Guidelines

Figure 8-5 shows an example of a PCB layout of LM4040XXXDBZ. Some key V_{ref} noise considerations are:

- Connect a low ESR, 0.1µF (C_L) ceramic bypass capacitor on the cathode pin node.
- Decouple other active devices in the system per the device specifications.
- Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.

- Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible and only make perpendicular crossings when absolutely necessary.

8.4.2 Layout Example

Figure 8-5. DBZ Layout example

9 Device and Documentation Support

9.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now.

Table 9-1. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM4040A	Click here	Click here	Click here	Click here	Click here
LM4040B	Click here	Click here	Click here	Click here	Click here
LM4040C	Click here	Click here	Click here	Click here	Click here
LM4040D	Click here	Click here	Click here	Click here	Click here

9.2 Trademarks

All trademarks are the property of their respective owners.

9.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.4 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision O (June 2024) to Revision P (March 2025)	Page
Updated pinout diagrams	4
Updated CDM ESD ratings	5
Updated reverse breakdown voltage change with cathode current change	
Updated reverse breakdown voltage change with cathode current change	23
Changes from Revision N (October 2017) to Revision O (June 2024)	Page
Changes from Revision N (October 2017) to Revision O (June 2024) • Updated the numbering format for tables, figures and cross-references throughout	
Updated the numbering format for tables, figures and cross-references throughout	ut the document1
 Updated the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the number of tables. 	ut the document1
Changes from Revision N (October 2017) to Revision O (June 2024) Updated the numbering format for tables, figures and cross-references throughout the numbering format for tables, figures and cross-references throughout the number of tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format format for tables, figures and cross-references throughout the number format for tables, figures and cross-references throughout the number format format format format format format format for tables, figures and cross-references throughout the number format for	Page 1

Changes from Revision L (January 2009) to Revision M (January 2015)

Page

 Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power

- T	ŢEXAS
	INSTRUMENTS
www.ti	.com

	Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section	1
•	Deleted Ordering Information table	1

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

27-Mar-2025

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040A10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NQ3, 4NQU)	Samples
LM4040A10IDBZR1G4	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NQ3, 4NQU)	Samples
LM4040A10IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NQ3, 4NQU)	Samples
LM4040A10IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PHU	Samples
LM4040A20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(4MC3, 4MCU)	Samples
LM4040A20IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MC3, 4MCU)	Samples
LM4040A20IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	MSU	Samples
LM4040A25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(4NG3, 4NGU)	Samples
LM4040A25IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NG3, 4NGU)	Samples
LM4040A25IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	P2U	Samples
LM4040A30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(4M63, 4M6U)	Samples
LM4040A30IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M63, 4M6U)	Samples
LM4040A30IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	P9U	Samples
LM4040A41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(4M23, 4M2U)	Samples
LM4040A41IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M23, 4M2U)	Samples
LM4040A41IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	P4U	Samples
LM4040A50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(4NA3, 4NAU)	Samples
LM4040A50IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NA3, 4NAU)	Samples
LM4040A50IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	N5U	Samples
LM4040A82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NL3, 4NLU)	Samples

www.ti.com

27-Mar-2025

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040A82IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NL3, 4NLU)	Samples
LM4040A82IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PDU	Samples
LM4040B10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NR3, 4NRU)	Samples
LM4040B10IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NR3, 4NRU)	Samples
LM4040B10IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PJU	Samples
LM4040B20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MD3, 4MDU)	Samples
LM4040B20IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MD3, 4MDU)	Samples
LM4040B20IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	(MTS, MTU)	Samples
LM4040B25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NH3, 4NHU)	Samples
LM4040B25IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NH3, 4NHU)	Samples
LM4040B25IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	P3U	Samples
LM4040B30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M73, 4M7U)	Samples
LM4040B30IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M73, 4M7U)	Samples
LM4040B30IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PAU	Samples
LM4040B30IDCKRG4	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PAU	Samples
LM4040B41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M33, 4M3U)	Samples
LM4040B41IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M33, 4M3U)	Samples
LM4040B41IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	P5U	Samples
LM4040B50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NB3, 4NBU)	Samples
LM4040B50IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NB3, 4NBU)	Samples
LM4040B50IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MXU	Samples

27-Mar-2025 www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040B82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NM3, 4NMU)	Samples
LM4040C10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NS3, 4NSU)	Samples
LM4040C10IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NS3, 4NSU)	Samples
LM4040C10IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PKU	Samples
LM4040C10ILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 85	NFC10I	
LM4040C10ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC10I	Samples
LM4040C20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MQ3, 4MQU)	Samples
LM4040C20IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MQ3, 4MQU)	Samples
LM4040C20IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	MVU	Samples
LM4040C20ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC20I	Samples
LM4040C20ILPE3	ACTIVE	TO-92	LP	3	1000	TBD	Call TI	Call TI	-40 to 85		Samples
LM4040C20ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC20I	Samples
LM4040C20QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MW3, 4MWU)	Samples
LM4040C20QDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MW3, 4MWU)	Samples
LM4040C25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MU3, 4MUU)	Samples
LM4040C25IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MU3, 4MUU)	Samples
LM4040C25IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MUU	Samples
LM4040C25IDCKT	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	MUU	Samples
LM4040C25ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC25I	Samples
LM4040C25ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC25I	Samples
LM4040C25QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MA3, 4MAU)	Samples

27-Mar-2025 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040C25QDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MA3, 4MAU)	Samples
LM4040C30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M83, 4M8U)	Samples
LM4040C30IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M83, 4M8U)	Samples
LM4040C30IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	PBU	Samples
LM4040C30ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC30I	Samples
LM4040C30ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC30I	Samples
LM4040C30QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NJ3, 4NJU)	Samples
LM4040C30QDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NJ3, 4NJU)	Samples
LM4040C41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M43, 4M4U)	Samples
LM4040C41IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M43, 4M4U)	Samples
LM4040C41IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	P6U	Samples
LM4040C41ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC41I	Samples
LM4040C41ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC41I	Samples
LM4040C50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NC3, 4NCU)	Samples
LM4040C50IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NC3, 4NCU)	Samples
LM4040C50IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MZU	Samples
LM4040C50ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC50I	Samples
LM4040C50ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC50I	Samples
LM4040C50QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NE3, 4NEU)	Samples
LM4040C50QDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NE3, 4NEU)	Samples
LM4040C82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NN3, 4NNU)	Samples

27-Mar-2025 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040C82IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFU	Samples
LM4040C82IDCKRG4	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFU	Samples
LM4040C82ILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 85	NFC82I	
LM4040C82ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFC82I	Samples
LM4040D10IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NT3, 4NTU)	Samples
LM4040D10IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NT3, 4NTU)	Samples
LM4040D10IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PLU	Samples
LM4040D10IDCKRG4	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PLU	Samples
LM4040D10ILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 85	NFD10I	
LM4040D20IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MV3, 4MVU)	Samples
LM4040D20IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4MV3, 4MVU)	Samples
LM4040D20IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	MWU	Samples
LM4040D20ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD20I	Samples
LM4040D20ILPRE3	ACTIVE	TO-92	LP	3	2000	TBD	Call TI	Call TI	-40 to 85		Samples
LM4040D20QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MY3, 4MYU)	Samples
LM4040D20QDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MY3, 4MYU)	Samples
LM4040D25IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ME3, 4MEU)	Samples
LM4040D25IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ME3, 4MEU)	Samples
LM4040D25IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	MEU	Samples
LM4040D25IDCKT	ACTIVE	SC70	DCK	5	250	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	MEU	Samples
LM4040D25ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD25I	Samples
LM4040D25ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD25I	Samples

27-Mar-2025 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM4040D25QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MB3, 4MBU)	Samples
LM4040D25QDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4MB3, 4MBU)	Samples
LM4040D30IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M93, 4M9U)	Samples
LM4040D30IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M93, 4M9U)	Samples
LM4040D30IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCU	Samples
LM4040D30IDCKRG4	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCU	Samples
LM4040D30ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD30I	Samples
LM4040D30ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD30I	Samples
LM4040D30ILPRE3	ACTIVE	TO-92	LP	3	2000	TBD	Call TI	Call TI	-40 to 85		Samples
LM4040D30QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NK3, 4NKU)	Samples
LM4040D41IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M53, 4M5U)	Samples
LM4040D41IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4M53, 4M5U)	Samples
LM4040D41IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 85	P7U	Samples
LM4040D41ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD41I	Samples
LM4040D41ILPE3	ACTIVE	TO-92	LP	3	1000	TBD	Call TI	Call TI	-40 to 85		Samples
LM4040D41ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD41I	Samples
LM4040D50IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ND3, 4NDU)	Samples
LM4040D50IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4ND3, 4NDU)	Samples
LM4040D50IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M4U	Samples
LM4040D50ILP	ACTIVE	TO-92	LP	3	1000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD50I	Samples
LM4040D50ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD50I	Samples

PACKAGE OPTION ADDENDUM

www.ti.com 27-Mar-2025

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(.,		J			(=)	(6)	(0)		("5)	
LM4040D50ILPRE3	ACTIVE	TO-92	LP	3	2000	TBD	Call TI	Call TI	-40 to 85		Samples
LM4040D50QDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NF3, 4NFU)	Samples
LM4040D50QDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	(4NF3, 4NFU)	Samples
LM4040D82IDBZR	ACTIVE	SOT-23	DBZ	3	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NP3, 4NPU)	Samples
LM4040D82IDBZT	ACTIVE	SOT-23	DBZ	3	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(4NP3, 4NPU)	Samples
LM4040D82IDCKR	ACTIVE	SC70	DCK	5	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	PGU	Samples
LM4040D82ILP	OBSOLETE	TO-92	LP	3		TBD	Call TI	Call TI	-40 to 85	NFD82I	
LM4040D82ILPR	ACTIVE	TO-92	LP	3	2000	RoHS & Green	SN	N / A for Pkg Type	-40 to 85	NFD82I	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

www.ti.com 27-Mar-2025

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 11-Mar-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040A10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A10IDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040A10IDBZR1G4	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040A10IDBZR1G4	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A10IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A10IDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040A10IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A20IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A20IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A25IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A25IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A25IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040A30IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040A30IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040A41IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A41IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A41IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040A50IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A50IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040A50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040A82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A82IDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040A82IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040A82IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B10IDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040B10IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040B10IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B20IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B20IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B25IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B25IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B25IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040B25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B30IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B30IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B30IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040B30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B30IDCKRG4	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B41IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B41IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B41IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040B50IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B50IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040B50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040B82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C10IDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040C10IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C10IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C20IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040C20IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C20QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C20QDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C25IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C25IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C25IDCKT	SC70	DCK	5	250	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C25IDCKT	SC70	DCK	5	250	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040C25QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C25QDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C30IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C30IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C30IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040C30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C30QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C30QDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C41IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C41IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C41IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040C41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C50IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C50IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C50QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C50QDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040C82IDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040C82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040C82IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040C82IDCKRG4	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D10IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D10IDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040D10IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D10IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D10IDCKRG4	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D20IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D20IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D20IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D20QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D20QDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D25IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4040D25IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D25IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D25IDCKT	SC70	DCK	5	250	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D25QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D25QDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D30IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D30IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D30IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D30IDCKRG4	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D30QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D41IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D41IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D41IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D41IDCKR	SC70	DCK	5	3000	180.0	8.4	2.3	2.5	1.2	4.0	8.0	Q3
LM4040D50IDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D50IDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D50IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LM4040D50QDBZR	SOT-23	DBZ	3	3000	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D50QDBZT	SOT-23	DBZ	3	250	180.0	8.4	2.9	3.35	1.35	4.0	8.0	Q3
LM4040D82IDBZR	SOT-23	DBZ	3	3000	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040D82IDBZR	SOT-23	DBZ	3	3000	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D82IDBZT	SOT-23	DBZ	3	250	179.0	8.4	3.15	2.95	1.22	4.0	8.0	Q3
LM4040D82IDBZT	SOT-23	DBZ	3	250	178.0	9.2	3.15	2.77	1.22	4.0	8.0	Q3
LM4040D82IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040A10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A10IDBZR	SOT-23	DBZ	3	3000	200.0	183.0	25.0
LM4040A10IDBZR1G4	SOT-23	DBZ	3	3000	200.0	183.0	25.0
LM4040A10IDBZR1G4	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A10IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A10IDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
LM4040A10IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040A20IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040A20IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040A20IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040A25IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040A25IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040A25IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040A25IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040A30IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040A30IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040A30IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040A41IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040A41IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040A41IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040A41IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040A50IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040A50IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040A50IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040A82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040A82IDBZT	SOT-23	DBZ	3	250	200.0	183.0	25.0
LM4040A82IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040A82IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040B10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040B10IDBZR	SOT-23	DBZ	3	3000	200.0	183.0	25.0
LM4040B10IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040B10IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040B20IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040B20IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040B20IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040B25IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040B25IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040B25IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040B25IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040B30IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040B30IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040B30IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040B30IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040B30IDCKRG4	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040B41IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040B41IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040B41IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040B41IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040B50IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040B50IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040B50IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040B82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C10IDBZR	SOT-23	DBZ	3	3000	200.0	183.0	25.0
LM4040C10IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040C10IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C20IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C20IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C20IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040C20QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C20QDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040C25IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C25IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C25IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040C25IDCKT	SC70	DCK	5	250	200.0	183.0	25.0
LM4040C25IDCKT	SC70	DCK	5	250	210.0	185.0	35.0
LM4040C25QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C25QDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C30IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C30IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C30IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040C30IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040C30QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C30QDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C41IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C41IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C41IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040C41IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040C50IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C50IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C50IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040C50QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040C50QDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040C82IDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
LM4040C82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040C82IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040C82IDCKRG4	SC70	DCK	5	3000	203.0	203.0	35.0
LM4040D10IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D10IDBZR	SOT-23	DBZ	3	3000	200.0	183.0	25.0
LM4040D10IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D10IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D10IDCKRG4	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D20IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D20IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D20IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D20QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D20QDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D25IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D25IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D25IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D25IDCKT	SC70	DCK	5	250	200.0	183.0	25.0
LM4040D25QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D25QDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D30IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4040D30IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D30IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D30IDCKRG4	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D30QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D41IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D41IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D41IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D41IDCKR	SC70	DCK	5	3000	210.0	185.0	35.0
LM4040D50IDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D50IDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D50IDCKR	SC70	DCK	5	3000	200.0	183.0	25.0
LM4040D50QDBZR	SOT-23	DBZ	3	3000	210.0	185.0	35.0
LM4040D50QDBZT	SOT-23	DBZ	3	250	210.0	185.0	35.0
LM4040D82IDBZR	SOT-23	DBZ	3	3000	203.0	203.0	35.0
LM4040D82IDBZR	SOT-23	DBZ	3	3000	180.0	180.0	18.0
LM4040D82IDBZT	SOT-23	DBZ	3	250	203.0	203.0	35.0
LM4040D82IDBZT	SOT-23	DBZ	3	250	180.0	180.0	18.0
LM4040D82IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

NOTES: (continued)

7. Publication IPC-7351 may have alternate designs.8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 10. Board assembly site may have different recommendations for stencil design.

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040001-2/F

TO-92 - 5.34 mm max height

TO-92

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. Lead dimensions are not controlled within this area.4. Reference JEDEC TO-226, variation AA.
- 5. Shipping method:

 - a. Straight lead option available in bulk pack only.
 b. Formed lead option available in tape and reel or ammo pack.
 - c. Specific products can be offered in limited combinations of shipping medium and lead options.
 - d. Consult product folder for more information on available options.

TO-92

TO-92

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration TO-236, except minimum foot length.

- 4. Support pin may differ or may not be present.
- 5. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated