STA513 – Analisis Statistika untuk Bisnis, Ekonomi, dan Indu<mark>stri</mark>

Semester Ganjil 2020/2021

Pengujian Perbandingan Rata-Rata Dua Populasi

disusun oleh:

Bagus Sartono
bagusco@gmail.com
0852-1523-1823

Prodi Statistika dan Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

2020

Apakah ibu-ibu cenderung menonton televisi lebih lama dibandingkan bapak-bapak?

Apakah rata-rata lama menonton televisi per hari pada ibu-ibu lebih besar dibandingkan pada bapak-bapak?

> H_0 : $\mu_{ibu-ibu} \le \mu_{bapak-bapak}$ H_1 : $\mu_{ibu-ibu} > \mu_{bapak-bapak}$

Populasi Rumah Tangga Contoh Rumah Tangga n = 40Rumah Tangga 1 Rumah Tangga 2 Rumah Tangga 40

Apakah ibu-ibu cenderung menonton televisi lebih lama dibandingkan bapak-bapak?

Apakah rata-rata lama menonton televisi per hari pada ibu-ibu lebih besar dibandingkan pada bapak-bapak?

 $\begin{aligned} & H_0 \colon \mu_{\text{ibu-ibu}} \leq \mu_{\text{bapak-bapak}} \\ & H_1 \colon \mu_{\text{ibu-ibu}} > \mu_{\text{bapak-bapak}} \end{aligned}$

Rumah Tangga 40

Contoh
Berpasangan
(paired samples)

Apakah kredit usaha untuk UMKM mampu meningkatkan nilai penjualan harian?

Apakah UMKM yang memperoleh kredit usaha memiliki rata-rata penjualan harian lebih besar daripada UMM yang tidak memperoleh kredit usaha?

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$

Contoh Saling Bebas (independent samples)

Apakah kredit usaha untuk UMKM mampu meningkatkan nilai penjualan harian?

Apakah UMKM yang memperoleh kredit usaha memiliki rata-rata penjualan harian lebih besar daripada UMM yang tidak memperoleh kredit usaha?

 H_0 : $\mu_{sesudah} \le \mu_{sebelum}$ H_1 : $\mu_{sesudah} > \mu_{sebelum}$

Contoh Berpasangan (paired samples)

Pembandingan Rata-Rata untuk Contoh Berpasangan

Contoh Berpasangan

- Data berasal dari contoh yang diambil dengan mekanisme tertentu sehingga antar dari kedua kelompok dapat dipasang-pasangkan
 - Berasal dari satuan penarikan contoh yang sama
 - Sebelum vs Sesudah
- Pada setiap pasangan dapat dihitung selisih nilai data-nya
- Pengujian kesamaan rata-rata dua populasi didasarkan pada nilai selisih tersebut
- > identik dengan uji-t satu populasi, dengan mengasumsikan sebaran dari kedua populasi adalah normal

Uji t untuk Contoh Berpasangan

- Andaikan pasangan data adalah x_i dan y_i , untuk i = 1, 2, ..., n
- Statistik Uji

- Selisih dari keduanya adalah: $d_i = x_i y_i$
- Dari nilai d_i dapat dihitung rata-rata dan simpangan bakunya yaitu masing-masing adalah

 \overline{d} dan S_d

 \overline{d} : rata-rata nilai selisih

 S_d : simpangan baku nilai selisih

n: ukuran contoh

$$H_0: \mu_x - \mu_y \ge D_0$$

 $H_1: \mu_x - \mu_y < D_0$

Upper-tail test:

 H_0 : $\mu_x - \mu_y \le D_0$ $H_1: \mu_x - \mu_y > D_0$

 H_0 : $\mu_x - \mu_y = D_0$ $H_1: \mu_x - \mu_y \neq D_0$ $\alpha/2$

Two-tail test:

Tolak
$$H_0$$
 jika t < -t_{n-1, α}

Tolak H_0 jika $t > t_{n-1, \alpha}$

 $-t_{\alpha/2}$ Tolak H_0 jika $|t| > t_{n-1, \alpha/2}$

Ilustrasi

• Andaikan sebuah perusahaan mengirimkan karyawannya ke suatu pelatihan "layanan prima untuk pelanggan". Apakah pelatihan ini berdampak pada perubahan jumlah keluhan pelanggan? Data yang diperoleh dari contoh 5 (lima) karyawan adalah sebagai berikut:

Karyawan	banyaknya Sebelum		Selisih, d _i
C.B. T.F. M.H. R.K. M.O.	6 20 3 0 4	4 6 2 0 0	- 2 -14 - 1 0 <u>- 4</u> -21

$$\overline{d} = \frac{\sum_{i=1}^{d_i} d_i}{n}$$

$$= -4.2$$

$$S_d = \sqrt{\frac{\sum_{i=1}^{d_i} (d_i - \overline{d})^2}{n-1}}$$

$$= 5.67$$

Ilustrasi

• Apakah pelatihan berdapak pada perubahan jumlah keluhan (gunakan α = 0.01)?

 $\alpha = .01$

$$\overline{d} = -4.2$$

Statistik Uji

$$t = \frac{\overline{d} - D_0}{s_d / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

Keputusan hasil uji: TIDAK TOLAK H_0 (|t| tidak lebih besar dari titik kritis)

Kesimpulan: tidak ada perubahan yang signifikan pada rata-rata jumlah keluhan.

Pembandingan Rata-Rata untuk Contoh Saling Bebas

Overview

Ingin diuji perbedaan antara μ_{1} dan μ_{2}

Terdapat 3 (tiga) situasi

1. σ_1^2 dan σ_2^2 diketahui

→ Uji Z

2. σ_1^2 dan σ_2^2 tidak diketahui, dan diasumsikan bernilai sama

→ Uji t

3. σ_1^2 dan σ_2^2 tidak diketahui, dan diasumsikan bernilai berbeda

→ Uji t

Uji t Contoh Saling Bebas

Statistik Uji

$$t_{h} = \frac{(\bar{x}_{1} - \bar{x}_{2}) - \delta_{0}}{S_{(\bar{x}_{1} - \bar{x}_{2})}}$$

Galat Baku

Asumsi Ragam Sama

Galat Baku (standard error)

$$s_{(\bar{x}_1 - \bar{x}_2)} = s_g \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
 dengan $s_g = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$

Derajat bebas = $n_1 + n_2 - 2$

Asumsi Ragam Berbeda

Galat Baku (standard error)

$$s_{(\bar{x}_1 - \bar{x}_2)} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Derajat Bebas

$$db = \frac{\left(s_1^2 / n_1 + s_2^2 / n_2\right)^2}{\frac{\left(s_1^2 / n_1\right)^2}{\left(n_1 - 1\right)} + \frac{\left(s_2^2 / n_2\right)^2}{\left(n_2 - 1\right)}}$$

(buang nilai desimalnya)

Uji t Contoh Saling Bebas

Lower-tail test:

$$H_0: \mu_1 - \mu_2 \ge \delta_0$$

 $H_1: \mu_1 - \mu_2 < \delta_0$

Upper-tail test:

$$H_0: \mu_1 - \mu_2 \le \delta_0$$

 $H_1: \mu_1 - \mu_2 > \delta_0$

Two-tail test:

$$H_0: \mu_1 - \mu_2 = \delta_0$$

 $H_1: \mu_1 - \mu_2 \neq \delta_0$

Nilai db (derajat bebas) sesuai dengan formula pada slide sebelumnya

Ilustrasi

Andaikan Anda adalah seorang analis keuangan di suatu perusahaan sekuritas, dan ingin menguji apakah ada perbedaan besaran dividen dari emiten di NYSE dan NASDAQ. Ringkasan datanya adalah sebagai berikut

n	
Rata-rata contoh	
Simpangan baku contoh	

NYSE	NASDAQ
21	25
3.27	2.53
1.30	1.16

Lakuan pengujian apakah ada perbedaan ratarata antara keduanya pada α = 0.05, dengan mengasumsikan ragam keduanya sama

Menghitung Statistik Uji

$$t = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \delta_{0}}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021\left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040$$

$$S_p^2 = \frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{\left(n_1 - 1\right) + \left(n_2 - 1\right)} = \frac{\left(21 - 1\right)1.30^2 + \left(25 - 1\right)1.16^2}{\left(21 - 1\right) + \left(25 - 1\right)} = 1.5021$$

Kesimpulan

$$H_0$$
: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1: \mu_1 - \mu_2 \neq 0$$
 i.e. $(\mu_1 \neq \mu_2)$

$$\alpha$$
 = 0.05

$$db = 21 + 25 - 2 = 44$$

Titik kritis: t = **2.0154**

Statistik Uji

$$t = \frac{3.27 - 2.53}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

Keputusan:

2.040

Tolak H_0 pada $\alpha = 0.05$

Kesimpulan:

data mendukung adanya perbedaan ratarata dividen antara emiten di NYSE dan NASDAQ

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Terima Kasih

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World