```
In [374]: #importing Libraries for our purpose
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
#Loading dataset
df=pd.read_csv('aerofit_treadmill.csv')
In [377]: df.head(10)
```

Out[377]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
5	KP281	20	Female	14	Partnered	3	3	32973	66
6	KP281	21	Female	14	Partnered	3	3	35247	75
7	KP281	21	Male	13	Single	3	3	32973	85
8	KP281	21	Male	15	Single	5	4	35247	141
9	KP281	21	Female	15	Partnered	2	3	37521	85

Problem Statement:

- 1. Identifying the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers.
- 2. Most popular treadmill
- 3. Average usage of treadmill per week
- 4. Average number of miles the customer expects to walk/run each week
- 5. Which treadmill is purchased by people with what kind of income range?

```
In [14]: #checking datatypes
          df.dtypes
Out[14]: Product
                           object
                            int64
          Age
          Gender
                           object
          Education
                            int64
          MaritalStatus
                           object
          Usage
                            int64
          Fitness
                            int64
          Income
                            int64
          Miles
                            int64
          dtype: object
In [17]: #Number of unique values in dataset
          for i in df.columns:
              print(i,":",df[i].nunique())
          Product : 3
          Age : 32
          Gender : 2
          Education: 8
          MaritalStatus : 2
          Usage : 6
          Fitness : 5
          Income : 62
          Miles: 37
In [29]: #checking null values in every column of dataset
          df.isnull().sum()
Out[29]: Product
          Age
                           0
          Gender
                           0
          Education
                           0
          MaritalStatus
                           0
          Usage
          Fitness
                           0
          Income
                           0
          Miles
          dtype: int64
In [372]: #Perecntage of null values in every column of our data
          df.isnull().sum()/len(df)*100
Out[372]: Product
                           0.0
          Age
                           0.0
          Gender
                           0.0
          Education
                           0.0
          MaritalStatus
                           0.0
          Usage
                           0.0
          Fitness
                           0.0
          Income
                           0.0
          Miles
                           0.0
          dtype: float64
```

No missing values in data

In [87]: #Brief info about the dataset
df.describe()

Out[87]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

Standard deviation of "Income" and "Miles" columns are high => more outliers

In [41]: df.describe(include=object).T

Out[41]:

	count	unique	top	freq
Product	180	3	KP281	80
Gender	180	2	Male	104
MaritalStatus	180	2	Partnered	107

Univariate Analysis

In [42]: #Gender-wise usage distribution of treadmill
df['Gender'].value_counts()

Out[42]: Male 104 Female 76

Name: Gender, dtype: int64

```
In [45]: sns.set_style(style='whitegrid')
    sns.countplot(data=df,x='Gender')
    plt.show()
```



```
In [362]: #Marginal Probability of Male and Female
df['Gender'].value_counts(normalize=True)*100
```

Insight: Marginal Probability of Male and Female Customers

- 1. Probability of male customers using the product = 0.578
- 2. Probability of female customers using the product = 0.422

```
In [228]: # Percentage of Male and Female using treadmill
    df["Gender"].value_counts().plot.pie(explode=(0.05,0.05),colors=['purple','green'],autopct ="%.2f")
    plt.show()
```



```
In [51]: #Marital status wise usage of treadmill
df['MaritalStatus'].value_counts()

Out[51]: Partnered 107
    Single 73
    Name: MaritalStatus, dtype: int64

In [229]: # Percentage of Single and Partnered using treadmill
df["MaritalStatus"].value_counts().plot.pie(explode=(0.05,0.05),colors=['purple','green'],autopct ="%.2f")
plt.show()
```



```
In [53]: df['MaritalStatus'].value_counts(normalize=True)*100
```

Out[53]: Partnered 59.444444 Single 40.555556

Name: MaritalStatus, dtype: float64

Name: Age, dtype: float64

Insight: Marginal Probability of Male and Female Customers

- 1. Probability of male customers using the product = 0.578
- 2. Probability of female customers using the product = 0.422

```
In [90]: #Age-wise analysis of treadmill usage
         df['Age'].describe()
Out[90]: count
                 180.000000
                  28.788889
         mean
         std
                   6.943498
         min
                  18.000000
         25%
                  24.000000
         50%
                   26.000000
         75%
                   33.000000
                   50.000000
```

```
In [230]: sns.histplot(data=df,x='Age',kde=True,color ='darkblue')
          plt.show()
             50
             40
             30
             20
             10
                         25
                               30
                                      35
                   20
                                            40
In [91]: sns.set_style(style='whitegrid')
          sns.boxplot(data=df,x='Age')
          plt.show()
               20
                     25
                           30
                                  35
                                        40
                                                    50
In [260]: # Determining age outliers
          Q1=24
          Q3=33
          IQR = Q3-Q1
          np.array(df[(df['Age']>(Q3+1.5*IQR)) | (df['Age']<(Q1-1.5*IQR))]['Age'])</pre>
Out[260]: array([47, 50, 48, 47, 48], dtype=int64)
In [217]: df['Age'].mode()
Out[217]: 0 25
          dtype: int64
```

- 1. Outliers in the 'Age' Column: array([47, 50, 48, 47, 48], dtype=int64)
- 2. Mean age = 28.78

```
3. Median age = 26
```

- 4. Modal age = 25
- 5. Minimum age = 18
- 6. Maximum age = 50
- 7. Standard deviation = 6.94

std 1.617055 min 12.000000 25% 14.000000 50% 16.000000 75% 16.000000 max 21.000000

Name: Education, dtype: float64

In [233]: #Checking if values in education column are less than age or not to avoid any incorrect data values

df[df['Age']<df['Education']]

#Empty data set => 'Education' column does not have any incorrect values with respect to age

Out[233]:

Product Age Gender Education MaritalStatus Usage Fitness Income Miles

In [226]: sns.histplot(data=df,x='Education',kde=True,color ='darkblue')
plt.show()


```
In [223]: sns.boxplot(data=df,x='Education')
          plt.show()
                                                    .
            12
                     14
                              16
                                               20
                              Education
In [261]: # Determining outliers in "Education"
          Q1_ed=14
          Q3_ed=16
          IQR_ed = Q3_ed-Q1_ed
          np.array(df[(df['Education']>(Q3_ed+1.5*IQR_ed)) | (df['Education']<(Q1_ed-1.5*IQR_ed))]['Education'])
Out[261]: array([20, 21, 21, 21], dtype=int64)
In [240]: df['Education'].mode()
          #Modal education age = 16 years
Out[240]: 0 16
          dtype: int64
In [241]: #Usage Analysis:
          #Usage : The average number of times the customer plans to use the treadmill each week
          df['Usage'].describe()
Out[241]: count
                   180.000000
          mean
                     3.455556
                     1.084797
          std
          min
                     2.000000
          25%
                     3.000000
          50%
                     3.000000
          75%
                     4.000000
                     7.000000
          max
          Name: Usage, dtype: float64
```

```
In [243]: sns.histplot(data=df,x='Usage',kde=True,color ='darkblue')
          plt.show()
             70
             60
             50
             30
             20
             10
                                        5
In [245]: sns.boxplot(data=df,x='Usage')
          plt.show()
            2
                    3
In [262]: # Determining outliers in "Usage"
          Q1_usage=3
          Q3 usage=4
          np.array(df[(df['Usage']>(Q3_usage+1.5*IQR_usage)) | (df['Usage']<(Q1_usage-1.5*IQR_usage))]['Usage'])
Out[262]: array([6, 6, 6, 7, 6, 7, 6, 6, 6], dtype=int64)
In [248]: |df['Usage'].mode()
          #Modal usage per customer = 3 times per week
Out[248]: 0 3
          dtype: int64
```

```
In [249]: #Fitness analysis
          #Fitness: Self-rated fitness on a 1-to-5 scale, where 1 is the poor shape and 5 is the excellent shape
          df['Fitness'].describe()
Out[249]: count
                   180.000000
          mean
                     3.311111
                     0.958869
          std
                     1.000000
          min
          25%
                     3.000000
          50%
                     3.000000
          75%
                     4.000000
          max
                     5.000000
          Name: Fitness, dtype: float64
In [363]: df['Fitness'].unique()
Out[363]: array([4, 3, 2, 1, 5], dtype=int64)
In [256]: sns.histplot(data=df,x='Fitness',kde=True,color ='darkblue')
          plt.show()
```


Fitness

```
In [263]: # Determining outliers in "Fitness"
          Q1_fitness=3
          Q3_fitness=4
          IQR_fitness = 1
          np.array(df[(df['Fitness']>(Q3_fitness+1.5*IQR_fitness)) | (df['Fitness']<(Q1_fitness-1.5*IQR_fitness))]['Fitness'])
Out[263]: array([1, 1], dtype=int64)
In [265]: #Modal fitness rating
          df['Fitness'].mode()
Out[265]: 0 3
          dtype: int64
In [266]: #Income Analysis: Annual Income
          df['Income'].describe()
Out[266]: count
                      180.000000
                    53719.577778
          mean
          std
                    16506.684226
          min
                    29562.000000
          25%
                    44058.750000
          50%
                    50596.500000
          75%
                    58668.000000
                   104581.000000
          max
          Name: Income, dtype: float64
In [267]: sns.histplot(data=df,x='Income',kde=True,color ='darkblue')
          plt.show()
             35
```



```
In [269]: sns.boxplot(data=df,x='Income')
          plt.show()
                                         * * **** * * **
            30000 40000 50000 60000 70000 80000 90000 100000
                               Income
In [280]: # Determining outliers in "Income"
          Q1_income=44058.750000
          Q3_income=58668.000000
          IQR_income = Q3_income-Q1_income
          np.array(df[(df['Income']>(Q3_income+1.5*IQR_income)) | (df['Income']<(Q1_income-1.5*IQR_income))]['Income'])</pre>
Out[280]: array([ 83416, 88396, 90886, 92131, 88396, 85906, 90886, 103336,
                  99601, 89641, 95866, 92131, 92131, 104581, 83416, 89641,
                  90886, 104581, 95508], dtype=int64)
In [281]: #Number of Outliers in Income table
          len(np.array(df[(df['Income']>(Q3_income+1.5*IQR_income)) | (df['Income']<(Q1_income-1.5*IQR_income))]['Income']))</pre>
Out[281]: 19
In [270]: #Modal income = 45480
          df['Income'].mode()
Out[270]: 0 45480
          dtype: int64
In [282]: # Miles analysis
          # Miles: The average number of miles the customer expects to walk/run each week
          df['Miles'].describe()
Out[282]: count
                   180.000000
          mean
                   103.194444
                    51.863605
          std
                    21.000000
          min
          25%
                    66.000000
          50%
                    94.000000
          75%
                   114.750000
                   360.000000
          max
          Name: Miles, dtype: float64
```

```
In [283]: | sns.histplot(data=df,x='Miles',kde=True,color ='darkblue')
          plt.show()
             40
             30
             25
           Š 20
              10
                    50
                          100
                                150
                                      200
                                                  300
                                     Miles
In [284]: | sns.boxplot(data=df,x='Miles')
           plt.show()
                      100
                            150
                                  200
                                        250
                                              300
                                 Miles
In [285]: # Determining outliers in "Miles"
          Q1_miles=66
          Q3_miles=114.75
          IQR_miles = Q3_miles-Q1_miles
          np.array(df[(df['Miles']>(Q3\_miles+1.5*IQR\_miles)) \mid (df['Miles']<(Q1\_miles-1.5*IQR\_miles))]['Miles'])
Out[285]: array([188, 212, 200, 200, 200, 240, 300, 280, 260, 200, 360, 200, 200],
                 dtype=int64)
In [286]: #Number of Outliers in Miles table
          len(np.array(df[(df['Miles'])(Q3_miles+1.5*IQR_miles)) | (df['Miles']<(Q1_miles-1.5*IQR_miles))]['Miles']))</pre>
Out[286]: 13
In [288]: #Modal number of miles customer expects to walk/run each week = 85
           df['Miles'].mode()
Out[288]: 0 85
           dtype: int64
```

```
In [289]: #Types of product analysis
          df['Product'].unique()
          #There are 3 types of products
Out[289]: array(['KP281', 'KP481', 'KP781'], dtype=object)
In [95]: df['Product'].value_counts()
Out[95]: KP281
                   80
          KP481
                   60
          KP781
                   40
          Name: Product, dtype: int64
In [99]: sns.set_style(style='whitegrid')
          sns.countplot(data=df,x='Product')
          plt.show()
             80
             70
             60
             50
             20
             10
                     KP281
                                   Product
In [291]: #Marginal Probability of each type of product
          df["Product"].value counts().plot.pie(explode=(0.05,0.05,0.05),colors=['purple','green','blue'],autopct ="%.2f")
          plt.show()
```


Bivariate Analysis

```
In [393]: #Correlation between gender and different products
          pd.crosstab(index=df["Gender"],columns=df["Product"],margins=True)
Out[393]:
           Product KP281 KP481 KP781 All
            Gender
                                    7 76
            Female
                      40
                            29
              Male
                            31
                                   33 104
               ΑII
                      80
                             60
                                   40 180
In [396]: #P(KP281 or KP481 or KP781 | Male or female)
           pd.crosstab(index=df["Gender"],columns=df["Product"],margins=True,normalize='index')
Out[396]:
           Product
                     KP281
                             KP481
                                     KP781
           Gender
            Female 0.526316 0.381579 0.092105
              Male 0.384615 0.298077 0.317308
               All 0.444444 0.333333 0.222222
In [397]: #P(Male or female | KP281 or KP481 or KP781 )
           pd.crosstab(index=df["Gender"],columns=df["Product"],margins=True,normalize='columns')
Out[397]:
           Product KP281
                           KP481 KP781
                                             ΑII
            Gender
            Female
                      0.5 0.483333 0.175 0.422222
                     0.5 0.516667 0.825 0.577778
              Male
```

```
In [147]: #Heatmap for correlation between gender and different types of treadmills
    plt.figure(figsize=(9,7))
    sns.heatmap(pd.crosstab(df["Product"],df["Gender"]),cmap='crest',annot=True)
    plt.show()
```


In [298]: plt.figure(figsize=(10,6))
 sns.countplot(data=df, x='Product', hue='Gender')
 plt.show()

- 1. The probability of female customers using 'KP781' is very low as compared to male customers
- 2. 52.6% of the female customers use KP281

```
In [379]: #Correlation between marital status and different products
           pd.crosstab(columns=df["Product"],index=df["MaritalStatus"],margins=True)
Out[379]:
               Product KP281 KP481 KP781 All
           MaritalStatus
                                       23 107
              Partnered
                                 36
                 Single
                          32
                                        17 73
                          80
                                 60
                                       40 180
In [384]: #Conditional Probability: P(KP281 or KP481 or KP781 | Partnered or Single)
           pd.crosstab(columns=df["Product"],index=df["MaritalStatus"],margins=True,normalize='index')
Out[384]:
               Product
                         KP281
                                 KP481
                                          KP781
           MaritalStatus
              Partnered 0.448598 0.336449 0.214953
                 Single 0.438356 0.328767 0.232877
                    All 0.444444 0.333333 0.222222
In [398]: #Conditional Probability: P(Partnered or Single|KP281 or KP481 or KP781)
           pd.crosstab(columns=df["Product"],index=df["MaritalStatus"],margins=True,normalize='columns')
Out[398]:
               Product KP281 KP481 KP781
                                                ΑII
           MaritalStatus
                                     0.575 0.594444
              Partnered
                                0.6
                          0.4
                                0.4 0.425 0.405556
                 Single
```

```
In [149]: #Heatmap for correlation between marital status and different types of treadmills
    plt.figure(figsize=(9,7))
    sns.heatmap(pd.crosstab(df["Product"],df["MaritalStatus"]),cmap='crest',annot=True)
    plt.show()
```



```
In [306]: plt.figure(figsize=(10,6))
    sns.countplot(data=df, x='Product', hue='MaritalStatus')
    plt.show()
```


- 1. Both partnered and single customers prefer KP281 over other treadmills
- 2. The probability of using KP281,KP481 & KP781 respectively is almost same among partnered and single customers

```
In [312]: #Conditional Probability of male and female customers using treadmill under "Partnered" status
df[df["MaritalStatus"]=="Partnered"]["Gender"].value_counts().plot.pie(explode=(0.05,0.05),colors=['purple','green'],autopct ="%.2f")
plt.show()
```


Effect of remaining parameters on product purchased

```
In [402]: #Conditional Probability: P(KP281 or KP481 or KP481 or KP481 /Age)
pd.crosstab(columns=df["Product"],index=df["Age"],margins=True,normalize='index')
```

Out[402]:

Product	KP281	KP481	KP781
Age			
18	1.000000	0.000000	0.000000
19	0.750000	0.250000	0.000000
20	0.400000	0.600000	0.000000
21	0.571429	0.428571	0.000000
22	0.571429	0.000000	0.428571
23	0.44444	0.388889	0.166667
24	0.416667	0.250000	0.333333
25	0.280000	0.440000	0.280000
26	0.583333	0.250000	0.166667
27	0.428571	0.142857	0.428571
28	0.666667	0.000000	0.333333
29	0.500000	0.166667	0.333333
30	0.285714	0.285714	0.428571
31	0.333333	0.500000	0.166667
32	0.500000	0.500000	0.000000
33	0.250000	0.625000	0.125000
34	0.333333	0.500000	0.166667
35	0.375000	0.500000	0.125000
36	1.000000	0.000000	0.000000
37	0.500000	0.500000	0.000000
38	0.571429	0.285714	0.142857
39	1.000000	0.000000	0.000000
40	0.200000	0.600000	0.200000
41	1.000000	0.000000	0.000000
42	0.000000	0.000000	1.000000
43	1.000000	0.000000	0.000000
44	1.000000	0.000000	0.000000
45	0.000000	0.500000	0.500000
46	1.000000	0.000000	0.000000
47	0.500000	0.000000	0.500000
48	0.000000	0.500000	0.500000
50	1.000000	0.000000	0.000000
All	0.444444	0.333333	0.222222

```
In [400]: #Conditional Probability: P(Age | KP281 or KP481 or KP781 )
pd.crosstab(columns=df["Product"],index=df["Age"],margins=True,normalize='columns')
Out[400]:
```

Product	KP281	KP481	KP781	All
Age				
18	0.0125	0.000000	0.000	0.005556
19	0.0375	0.016667	0.000	0.022222
20	0.0250	0.050000	0.000	0.027778
21	0.0500	0.050000	0.000	0.038889
22	0.0500	0.000000	0.075	0.038889
23	0.1000	0.116667	0.075	0.100000
24	0.0625	0.050000	0.100	0.066667
25	0.0875	0.183333	0.175	0.138889
26	0.0875	0.050000	0.050	0.066667
27	0.0375	0.016667	0.075	0.038889
28	0.0750	0.000000	0.075	0.050000
29	0.0375	0.016667	0.050	0.033333
30	0.0250	0.033333	0.075	0.038889
31	0.0250	0.050000	0.025	0.033333
32	0.0250	0.033333	0.000	0.022222
33	0.0250	0.083333	0.025	0.044444
34	0.0250	0.050000	0.025	0.033333
35	0.0375	0.066667	0.025	0.044444
36	0.0125	0.000000	0.000	0.005556
37	0.0125	0.016667	0.000	0.011111
38	0.0500	0.033333	0.025	0.038889
39	0.0125	0.000000	0.000	0.005556
40	0.0125	0.050000	0.025	0.027778
41	0.0125	0.000000	0.000	0.005556
42	0.0000	0.000000	0.025	0.005556
43	0.0125	0.000000	0.000	0.005556
44	0.0125	0.000000	0.000	0.005556
45	0.0000	0.016667	0.025	0.011111
46	0.0125	0.000000	0.000	0.005556
47	0.0125	0.000000	0.025	0.011111
48	0.0000	0.016667	0.025	0.011111
50	0.0125	0.000000	0.000	0.005556

```
In [351]: #Correlation between Age and Product
plt.figure(figsize=(10,6))
sns.boxplot(data=df, x='Product', y='Age')
plt.show()
```


- 1. Median age of customers purchasing KP281 and KP481 is almost same
- 2. Customers of age range 25-30 prefer KP781

```
In [320]: #Correlation between Education and Product
plt.figure(figsize=(8,6))
sns.boxplot(data=df, x='Product', y='Education')
plt.show()
```


- 1. Median education of customers purchasing KP281 and KP481 is exactly same: 14-16 years
- 2. Customers with education > 16 years prefer KP781

```
In [405]: #Correlation between Usage and Product
#Conditional Probability: P(KP281 or KP481 or KP781 |Usage)
pd.crosstab(columns=df["Product"],index=df["Usage"],margins=True,normalize='index')
```

Out[405]:

Product	KP281	KP481	KP781
Usage			
2	0.575758	0.424242	0.000000
3	0.536232	0.449275	0.014493
4	0.423077	0.230769	0.346154
5	0.117647	0.176471	0.705882
6	0.000000	0.000000	1.000000
7	0.000000	0.000000	1.000000
All	0.444444	0.333333	0.222222

```
In [404]: #Conditional Probability: P(Usage | KP281 or KP481 or KP781)
          pd.crosstab(columns=df["Product"],index=df["Usage"],margins=True,normalize='columns')
Out[404]:
           Product KP281
                           KP481 KP781
                                             All
            Usage
                 2 0.2375 0.233333
                                  0.000 0.183333
                3 0.4625 0.516667
                                  0.025 0.383333
                 4 0.2750 0.200000
                                  0.450 0.288889
                                  0.300 0.094444
                 5 0.0250 0.050000
                 6 0.0000 0.000000
                                  0.175 0.038889
                7 0.0000 0.000000 0.050 0.011111
In [322]: plt.figure(figsize=(6,4))
           sns.boxplot(data=df, x='Product', y='Usage')
          plt.show()
```


- 1. Customers using KP781 plan to use the treadmill for higher number of times(>4) as compared to KP281 & KP481
- 2. Customers using KP481 plan to use generally 3 times per week

Insight: Self rating of Fitness is high among customers using KP781(>=4 generally) which indicates that people using KP781 have higher fitness levels

```
In [408]:
          #Correlation between Income and Product
           #Binning income into three categories for analysis
           bins=[-1.0,60000.0,90000.0,200000.0]
           labels = ["lower","middle","higher"]
           df["Income_category"]=pd.cut(df['Income'],labels=labels,bins=bins)
           df.head()
Out[408]:
              Product Age Gender Education MaritalStatus Usage Fitness Income Miles Income_category
               KP281
                                                                       29562
                       18
                             Male
                                        14
                                                                               112
                                                  Single
                                                                                             lower
               KP281
                       19
                             Male
                                        15
                                                            2
                                                                       31836
                                                                                75
                                                  Single
                                                                                             lower
               KP281
                        19
                                               Partnered
                                                            4
                                                                       30699
                                                                                66
                                                                                             lower
               KP281
                        19
                             Male
                                        12
                                                  Single
                                                            3
                                                                      32973
                                                                                85
                                                                                             lower
                                                                                47
               KP281
                       20
                             Male
                                        13
                                               Partnered
                                                                      35247
                                                                                             lower
In [410]: #Conditional Probability: P(KP281 or KP481 or KP781 |Income category)
           pd.crosstab(columns=df["Product"],index=df["Income_category"],margins=True,normalize='index')
Out[410]:
                            KP281
                                     KP481
                                              KP781
                   Product
            Income_category
                     lower 0.536232 0.384058 0.079710
                           0.200000 0.233333 0.566667
                    middle
                    higher 0.000000 0.000000 1.000000
                       All 0.444444 0.333333 0.222222
In [411]: #Conditional Probability: P(Income_category | KP281 or KP481 or KP781 )
           pd.crosstab(columns=df["Product"],index=df["Income_category"],margins=True,normalize='columns')
Out[411]:
                                   KP481 KP781
                   Product KP281
                                                      All
            Income_category
                           0.925  0.883333  0.275  0.766667
                     lower
                    middle
                           0.075 0.116667 0.425 0.166667
                    higher 0.000 0.000000 0.300 0.066667
```

```
In [331]: plt.figure(figsize=(6,4)) sns.boxplot(data=df, x='Product', y='Income') plt.show()
```

People with Income_category = high prefer 'KP781'

```
In [334]: #Correlation between Miles and Product
plt.figure(figsize=(6,6))
sns.boxplot(data=df, x='Product', y='Miles')
plt.show()
```


Customers using KP781 plan to run more than 120 miles which is higher as compared to other products

```
In [422]: #Correlation between income and gender
plt.figure(figsize=(8,6))
sns.boxplot(data=df, x='Gender', y='Income')
plt.show()
```


Male have higher median income than female

In [416]: #Pairplots
 sns.pairplot(df)
 plt.show()


```
In [412]: #Making all columns numerical for correlation computation
           # Creating a copy of the dataframe
           df copy = df.drop(["Income category"], axis = 1).copy()
          df_copy['Gender'].replace(['Male', 'Female'], [1, 0], inplace=True)
           df_copy['MaritalStatus'].replace(['Single', 'Partnered'], [0, 1], inplace=True)
           df_copy['Product'].replace(['KP281', 'KP481', 'KP781'], [0, 1, 2], inplace=True)
           df_copy.corr()
Out[412]:
                        Product
                                          Gender Education MaritalStatus
                                                                          Usage
                                                                                  Fitness
                                                                                          Income
                                                                                                    Miles
                                    Age
               Product 1.000000 0.032225
                                         0.230653
                                                  0.495018
                                                              -0.017602 0.537447
                                                                                0.594883 0.624168 0.571596
                       0.032225 1.000000
                                         0.027544
                                                  0.280496
                                                              0.192152 0.015064
                                                                                0.061105 0.513414 0.036618
                   Age
                Gender 0.230653 0.027544
                                         1.000000
                                                  0.094089
                                                              Education 0.495018 0.280496
                                         0.094089
                                                   1.000000
                                                              0.068569
                                                                       MaritalStatus -0.017602 0.192152 -0.018836
                                                  0.068569
                                                              1.000000 -0.007786 -0.050751 0.150293 0.025639
                       0.537447 0.015064 0.214424
                                                  0.395155
                                                              -0.007786 1.000000
                                                                                0.668606 0.519537 0.759130
                 Usage
                Fitness 0.594883 0.061105 0.254609
                                                  0.410581
                                                              -0.050751
                                                                       0.668606
                                                                                1.000000 0.535005 0.785702
                       0.624168 0.513414
                                        0.202053
                                                  0.625827
                                                              0.150293 0.519537
                                                                                0.535005 1.000000 0.543473
                Income
                 Miles 0.571596 0.036618 0.217869
                                                  0.307284
                                                              In [414]: # Correlation Plot above as a Heatmap -
           plt.figure(figsize=(10,5))
           sns.heatmap(df_copy.corr(), cmap="YlGnBu", annot=True)
           plt.show()
                                    0.23
                             0.032
                                                 -0.018
                                    0.028
                                           0.28
                                                  0.19
                                                        0.015
                                                              0.061
                                                                            0.037
                 Age
                                                                                        - 0.8
                                                 -0.019
                       0.23
                             0.028
                                                        0.21
                                                               0.25
                                                                      0.2
                                                                            0.22
                             0.28
                                    0.094
                                                         0.4
                                                               0.41
                                                                            0.31
              Education
                             0.19
                                   -0.019
                                                        -0.0078
                                                              -0.051
                                                                      0.15
                                                                            0.026
            MaritalStatus
                Usage
                             0.015
                                    0.21
                                           0.4
                                                 -0.0078
                             0.061
                                    0.25
                                           0.41
                                                 -0.051
                                                                                        0.2
                                    0.2
                                                  0.15
                             0.037
                                    0.22
                                           0.31
                                                 0.026
                 Miles
```

Multivariate Analysis

Insight: Male and Female Customers with higher income range prefer KP781

Customer Profiling

```
In [417]: #Case 1:
          c1 = df.MaritalStatus == "Partnered"
          c2 = df.Gender == "Female"
          c3 = df.Education > 10
          c4 = df.Fitness == 5
          df[c1 & c2 & c3 & c4]
Out[417]:
               Product Age Gender Education MaritalStatus Usage Fitness Income Miles Income_category
                KP281
                       24 Female
                                                                     44343
            23
                                               Partnered
                                        16
                                                                  5
                                                                                           lower
           152
                KP781 25 Female
                                        18
                                               Partnered
                                                                  5 61006
                                                                             200
                                                                                          middle
                                                           5
                KP781
                       28 Female
                                               Partnered
                                                                  5 92131
                                                                             180
                                                                                          higher
           167
                KP781
                       30 Female
                                        16
                                                                             280
                                                                                          higher
                                               Partnered
                                                                  5 90886
           171
                KP781 33 Female
                                        18
                                               Partnered
                                                                  5 95866
                                                                             200
                                                                                          higher
In [419]: df[c1 & c2 & c3 & c4]["Product"].value_counts(normalize = True)
Out[419]: KP781
                   0.8
          KP281
                   0.2
          Name: Product, dtype: float64
In [420]: #Case 2:
          c1 = df.MaritalStatus == "Partnered"
          c2 = df.Gender == "Female"
          df[c1 & c2]["Product"].value counts(normalize = True)
Out[420]: KP281
                   0.586957
          KP481
                   0.326087
          KP781
                   0.086957
          Name: Product, dtype: float64
```

Recommendations:

- 1. Increase the features of KP481 and increase the price little bit
- 2. Make KP481 as "decoy"
- 3. Give discounts for female customers on KP781(visible in multivariate analysis) because the probability of female customers using 'KP781' is very low as compared to male customers
- 4. People with higher income prefer KP781
- 5. Self rating of Fitness is high among customers using KP781(>=4 generally) which indicates that people using KP781 have higher fitness levels
- 6. Female customers under Partnered status with education>10 and Fitness=5, prefer KP781(80%)
- 7. Married females generally prefer KP281(58%)
- 8. Females planning to use treadmill 3-4 times a week, are more likely to buy KP481 product