PROGRAMMES	CAPACITES ATTENDUES	COMMENTAIRES
- somme des termes consécutifs d'une suite		n
géométrique ; - limite	Connaître et utiliser la formule donnant $1+q++q^n$, où q est un réel différent de 1 Connaître et utiliser $\lim_{n\to +\infty}q^n$ pour q positif.	On étudie quelques exemples de comportement (q^n) avec q négatif.

I. SUITES GEOMETRIQUES

a. Définition

On appelle suite géométrique toute suite numérique dont chaque terme s'obtient en multipliant par un nombre q constant appelé **raison** de la suite.

Elle est donc définie par récurrence par $\begin{cases} u_0 \\ u_{n+1} = q.u_n \end{cases}$

Exemple :
$$\begin{cases} u_0 = 3 \\ u_{n+1} = 2.u_n \end{cases}$$

$$u_1 = 6$$

$$u_2 = 12$$

$$u_3 = 24$$

$$u_4 = 48 (...)$$

b. Propriété

Soit (u_n) une suite géométrique de 1^{er} terme u_0 et de raison q.

Alors pour tout n, on a : $\mathbf{u}_n = \mathbf{u_0} \cdot \mathbf{q}^n$

Exemple : (u_n) est une suite géométrique de 1^{er} terme $u_0 = 3$ et de raison r = 2

$$u_1 = 3 \times 2^1 = 6$$

$$u_2 = 3 \times 2^2 = 12$$

$$u_3 = 3 \times 2^3 = 24$$

$$u_4 = 3 \times 2^4 = 48 \, (...)$$

c. Somme des premiers termes d'une suite arithmétique

La somme des n+1 premières puissances (de q^0 à q^n) d'un nombre q (avec $q \ne 1$) est donnée par la formule:

$$\mathbf{1} + q + q^2 + \dots + q^n = \frac{\mathbf{1} - q^{n+1}}{\mathbf{1} - q}$$

Démonstration:

$$S = 1 + q + q^{2} + ... + q^{n}$$

$$\underline{qS} = q + q^{2} + ... + q^{n} + q^{n+l}$$

$$S - qS = 1 - q^{n+l}$$

$$(1-a)S = 1 - a^{n+1}$$

$$\Leftrightarrow (1-q)S = 1 - q^{n+1}$$

$$\Leftrightarrow S = \frac{1-q^{n+1}}{1-q} \text{ (CQFD)}$$

Propriété:

La somme des n + 1 premiers termes (de u_0 à u_n) d'une suite géométrique est :

$$\mathbf{S} = \mathbf{u}_{\theta} + \mathbf{u}_{I} + \dots + \mathbf{u}_{n} = \mathbf{u}_{\theta} \cdot \frac{\mathbf{1} - q^{n+I}}{\mathbf{1} - q}$$

$$S = premier terme \times \frac{1 - raison^{n+1}}{1 - raison}$$

Démonstration:

On sait que:

$$S = u_0 + u_1 + u_2 + ... + u_n$$

$$S = u_0 + u_0 \cdot q + u_0 \cdot q^2 + ... + u_0 \cdot q^n$$

$$\Leftrightarrow S = u_0 \cdot (1 + q + q^2 + ... + q^n)$$

$$\Leftrightarrow S = u_0 \cdot \frac{1 - q^{n+1}}{1 - q} \quad (CQFD)$$

II. LIMITE D'UNE SUITE GEOMETRIQUE

Propriété:

Soit q un nombre réel positif.

- Si $0 \le q < 1$, alors $\lim q^n = 0$
- Si q > 1, alors $\lim_{n \to +\infty} q^n = +\infty$ Si q = 1, alors $\lim_{n \to +\infty} q^n = \lim_{n \to +\infty} 1 = 1$

Conséquence:

Soit (u_n) une suite géométrique de 1^{er} terme u_0 et de raison q.

- Si $0 \le q < 1$, alors $\lim u_n = 0$
- Si q > 1, alors $\lim_{n \to +\infty} u_n = +\infty$ si $u_0 > 0$ et $\lim_{n \to +\infty} u_n = -\infty$ si $u_0 < 0$
- Si q = 1, alors $\lim_{n \to +\infty} u_n = u_0$