```
Ordinary Differential Equation (ODE): let n \in \mathbb{N} and let f: \mathbb{R}^{n+1} \to \mathbb{R} then f(x, y(x), y'(x), \dots y^{(n)}(x)) = 0.
```

Solution of an Ordinary Differential Equation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ then a function $y \in C^n(\mathcal{U})$ such that $f(x, y(x), \dots, y^{(n)}(x)) = 0$ for all $x \in \mathcal{U}$.

Notation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ then

$$sols (f(x, y(x), y'(x), \dots y^{(n)}(x)) = 0) = \{y \in C^{n}(\mathcal{U}) \mid f(x, y(x), \dots, y^{(n)}(x)) = 0\}.$$

First Order Ordinary Differential Equation: let $f: \mathbb{R}^3 \to \mathbb{R}$ then f(x, y, y') = 0.

Separable Ordinary Differential Equation: let $f, g : \mathbb{R} \to \mathbb{R}$ then y' = f(y) g(x).

Claim Separation of Variables: let $f,g:\mathbb{R}\to\mathbb{R}$ such that $f(x)\neq 0$ for all $x\in\mathbb{R}$ then

$$\operatorname{sols}(y' = f(y) g(x)) = \operatorname{sols}\left(\int \frac{1}{f(y)} dy = \int g(x) dx\right).$$

Corollary: sols $(y = y') = \{Ce^x \mid C \in \mathbb{R}\}.$

Curves that foliate a domain: Let $\Omega \subseteq \mathbb{R}^2$ and let $I \subseteq \mathbb{R}$ then a set of curves $\{\gamma_\alpha\} \subseteq I \to \mathbb{R}$ such that $\biguplus \gamma_i = \Omega$.

Claim: sols (y = y') foliate the plane.

Remark: let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $g \in \text{sols}(f(x, y, \dots, y^{(n)}))$ such that g is piecewise continuous then each continuous branch of g is a solution of the ODE.

Initial Value Problem (IVP): let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $p \in \mathbb{R}^2$ then $\left\{ egin{array}{l} f(x,y',\dots y^{(n)})=0 \\ y(p_1)=p_2 \end{array} \right.$. Theorem Cauchy-Peano: let $I,J\subseteq \mathbb{R}$ be closed intervals let $f\in C^1\left(I\times J\right)$ and let $p\in \operatorname{int}\left(I\times J\right)$ then there exsits $\varepsilon>0$ such that $\begin{cases} y'=f(x,y) \\ y(p_1)=p_2 \end{cases}$ has a solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$.

Theorem of Existence and Uniqueness: let $I, J \subseteq \mathbb{R}$ be closed intervals let $f \in C^1(I \times J)$ and let $p \in \operatorname{int}(I \times J)$ then there exsits $\varepsilon>0$ such that $\left\{ egin{array}{ll} y'=f(x,y) \\ y(p_1)=p_2 \end{array}
ight.$ has a unique solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$.

Corollary: let $I, J \subseteq \mathbb{R}$ be closed intervals and let $f \in C^1(I \times J)$ then sols (y' = f(x, y)) foliates $I \times J$.

Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C(\Omega, \mathbb{R}^2)$.

Notation: let X be a set and let $\gamma: \mathbb{R} \to X$ then $\dot{\gamma} = \frac{d\gamma}{dt}$.

Integral curve: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then a curve $\gamma:[a,b]\to\Omega$ such that $\dot{\gamma}(t)=\nu(g(t))$.

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field such that $v(x)\neq 0$ for all $x\in\Omega$ and let $\gamma:[a,b]\to\Omega$ be a curve such that $v\left(\gamma\left(t
ight)
ight)\in T_{\gamma\left(t
ight)}\left(\mathrm{Im}\left(\gamma
ight)
ight)$ for all $t\in\left[a,b\right]$ then there exists a curve $\eta:\left[\alpha,\beta\right]
ightarrow\left[a,b\right]$ such that $\gamma\circ\eta$ is an integral curve. C^n Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C^n(\Omega, \mathbb{R}^2)$.

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a C^1 vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\wedge(\gamma\text{ is an integral curve of }\nu)\}$ foliates Ω .

Theorem Peano: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\land (\gamma \text{ is an integral curve of }\nu)\}$ covers Ω .

Lemma: let $\Omega \subseteq \mathbb{R}^2$ be a domain and let $f \in C^1(\Omega)$ then $\binom{1}{f}$ is a vector field.

Theorem of Existence and Uniqueness: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f \in C^1(\Omega)$ and let $g \in C^1(\mathbb{R})$ then

 $(g' = f(x,g)) \iff (\binom{x}{g})$ is an integral curve of $\binom{1}{f}$.

Autonomous Ordinary Differential Equations: let $f : \mathbb{R} \to \mathbb{R}$ then y' = f(y).

Logistic Equation: let L > 0 then $\dot{P}(t) = P(t)(L - P(t))$.

Equilibrium Solution: let $f: \mathbb{R} \to \mathbb{R}$ then a function $g \in \operatorname{sols}(y' = f(y))$ such that f(g(x)) = 0 for all $x \in \mathbb{R}$.

Corollary: let $f \in C(\mathbb{R})$ and let $g : \mathbb{R} \to \mathbb{R}$ be an equalibriem solution then g is constant.

Corollary: let L > 0 then $\{0, L\}$ are the equilibrium solutions of the logistic equation.

Logistic Equation With Harvesting: let L, k > 0 then $\dot{P}(t) = P(t)(L - P(t)) - k$.

Stable Equilibrium Solution: let $f:\mathbb{R}\to\mathbb{R}$ then an equilibrium solution $g:\mathbb{R}\to\mathbb{R}$ such that for all $y\in\operatorname{sols}(y'=f(y))$ and

 $\text{for all }\varepsilon>0\text{ if there exists }\delta>0\text{ and }p\in\mathbb{R}\text{ for which }|y\left(p\right)-g\left(p\right)|<\delta\text{ then }|y\left(t\right)-g\left(t\right)|<\varepsilon\text{ for all }t>p.$

Claim: let $\alpha > 0$ and let $\binom{x}{y} \in C^1(\mathbb{R}^2)$ be a solution to the lotka-volterra equation then

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\left(y\left(t\right)-1-\log\left(y\left(t\right)\right)\right)+\alpha\left(x\left(t\right)-1-\log\left(x\left(t\right)\right)\right)\right)=0.$$

Corollary: let $\alpha > 0$ let $p \in \mathbb{R}^2$ and let $\begin{pmatrix} x \\ y \end{pmatrix} \in C^1 \left(\mathbb{R}^2 \right)$ be a solution to $\begin{cases} \dot{x}(t) = x(t) \cdot (1 - y(t)) \\ \dot{y}(t) = \alpha \cdot y(t) \cdot (x(t) - 1) \\ \begin{pmatrix} x \\ y \end{pmatrix} \text{ is periodic.} \end{cases}$

 $\text{Lemma: let } \alpha>0 \text{ let } p\in\mathbb{R}^2 \text{ and let } \begin{pmatrix} x\\y \end{pmatrix}\in C^1\left(\mathbb{R}^2\right) \text{ be a solution to } \begin{cases} \frac{\dot{x}(t)=x(t)\cdot(1-y(t))}{\dot{y}(t)=\alpha\cdot y(t)\cdot(x(t)-1)} & \text{with priod } T \text{ then } \frac{1}{T}\int_0^T x\mathrm{d}t=1\\ \begin{pmatrix} x\\y \end{pmatrix}(0)=p & \text{and } \frac{1}{T}\int_0^T y\mathrm{d}t=1. \end{cases}$

Claim Linear Substitution: let $a,b,c\in\mathbb{R}$ let $f:\mathbb{R}\to\mathbb{R}$ and let $y\in\operatorname{sols}(y'=f(ax+by+c))$ then the function $z:\mathbb{R}\to\mathbb{R}$ which defined by z(x)=ax+by+c satisfies z'=a+bf(z).