Patent claims

1. Compounds of the general formula (I)

5

$$R^{6}$$
 R^{7}
 R^{5}
 R^{4}
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4

in which

10

represents O, S, SO, SO₂, CH₂, CHF, CF₂ or represents NR⁸ in which X R^8 represents hydrogen or (C₁-C₄)-alkyl,

15

 R^1 and R^2 are identical or different and represent hydrogen or (C_1-C_4) -alkyl,

R³ and R⁴ are identical or different and represent hydrogen, halogen, cyano, (C1-C6)-alkyl, CF3, CHF2, CH2F, vinyl or (C3-C7)-cycloalkyl, where at least one of the two substituents is not hydrogen,

 R^5

represents hydrogen, (C1-C4)-alkyl or halogen,

20

represents a group of the formula $-S-R^9$, $-S(O)_n-R^{10}$, $-NR^{11}-C(O)-R^{12}$, R^6 -CH₂-R¹³ or -M-R¹⁴, in which

25

 R^9 represents (C₁-C₁₀)-alkyl, (C₃-C₈)-cycloalkyl, (C₂-C₆)-alkenyl, (C₆-C₁₀)-aryl, (C₆-C₁₀)-arylmethyl or represents a saturated, partially unsaturated or aromatic 5- to 10-membered heterocycle having up to four identical or different heteroatoms R^{10}

n represents the number 1 or 2,

represents OR¹⁵, NR¹⁶R¹⁷, (C₁-C₁₀)-alkyl, (C₃-C₈)-cycloalkyl, (C_6-C_{10}) -aryl, (C_2-C_6) -alkenyl, (C_6-C_{10}) -arylmethyl represents a saturated, partially unsaturated or aromatic 5- to 10-membered heterocycle having up to four identical or different heteroatoms from the group consisting of N, O and S, where the abovementioned radicals are optionally substituted by one, two or three identical or different substituents selected from the group consisting of halogen, hydroxyl, oxo, cyano, amino, NR¹⁸R¹⁹, trifluoromethyl, (C₁-C₆)-alkyl, optionally R^{20} -substituted (C₁-C₆)-alkoxy, (C₃-C₈)-cycloalkyl, (C₆-C₁₀)-aryl, which for its part is optionally substituted by halogen, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, trifluoromethyl, nitro or cyano, -O-C(O)-R²¹, -C(O)-OR²², -C(O)-NR²³R²⁴, -SO₂-NR²⁵R²⁶, -NH-C(O)-R²⁷ and -NH-C(O)-OR²⁸, where

R¹⁵, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, R²⁶, R²⁷ and R²⁸ are identical or different and each represents hydrogen, phenyl, benzyl, (C₁-C₆)-alkyl or (C₃-C₈)-cycloalkyl which for their part are optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, amino, carboxyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkoxycarbonyl, (C₁-

10

5

15

20

25

 C_4)-alkoxycarbonylamino, (C_1 - C_5)-alkanoyloxy, a heterocycle or by phenyl which for its part is optionally substituted by halogen or hydroxyl,

and

5

10

15

20

25

 R^{16} and R^{17} are identical or different and independently of one another represent hydrogen, straight-chain or branched $(C_1\text{-}C_6)$ -alkyl which may be mono- or polysubstituted by identical or different substituents from the group consisting of mono- $(C_1\text{-}C_6)$ -alkylamino, di- $(C_1\text{-}C_6)$ -alkylamino, $(C_1\text{-}C_4)$ -alkoxy, $(C_1\text{-}C_6)$ -alkoxycarbonyl, carboxyl, pyridyl or $(C_6\text{-}C_{10})$ -aryl, where the latter for its part is optionally substituted by halogen, trifluoromethyl, $(C_1\text{-}C_6)$ -alkyl or $(C_1\text{-}C_6)$ -alkoxy,

represent (C_3-C_8) -cycloalkyl or represent a 5- to 7-membered heterocycle which contains one or two nitrogen atoms, where cycloalkyl and heterocycle are optionally substituted by (C_1-C_4) -alkyl,

or

 R^{16} and R^{17} together with the nitrogen atom to which they are attached form a 5- to 7-membered saturated, optionally benzo-fused heterocycle which may contain up to two further heteroatoms from the group consisting of N, O and S and which may be substituted by amino, (C_1-C_6) -alkyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkoxycarbonylamino or phenyl,

 R^{11}

The last twent that the last twent twent the last twent twent the last twent twent the last twent the last twent the last twent twent the last twent the last twent twent twent the last twent twent twent the last twent t

20

25

represents hydrogen, straight-chain or branched (C_1 - C_6)-alkyl which may be mono- or polysubstituted by identical or different substituents from the group consisting of mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, (C_1 - C_4)-alkoxy, (C_1 - C_6)-alkoxycarbonyl, carboxyl, pyridyl and (C_6 - C_{10})-aryl, where the latter for its part is optionally substituted by halogen, trifluoromethyl, (C_1 - C_6)-alkyl or (C_1 - C_6)-alkoxy, represents (C_3 - C_8)-cycloalkyl or represents a 5- to 7-membered heterocycle which contains one or two nitrogen atoms, where cycloalkyl and heterocycle are optionally substituted by (C_1 - C_4)-alkyl,

 R^{12} represents straight-chain or branched (C₁-C₁₅)-alkyl which may be substituted by (C₃-C₈)-cycloalkyl, (C₁-C₄)-alkoxy, phenyl, phenoxy or benzyloxy, where the aromatic radicals mentioned for their part may each be substituted up to three times by identical or different substituents from the group consisting of halogen, (C₁-C₆)-alkyl and (C₁-C₄)-alkoxy,

represents (C_3-C_8) -cycloalkyl which may be substituted by (C_1-C_4) -alkoxy or phenyl,

represents (C_6-C_{10}) -aryl which may be substituted up to three times by identical or different substituents from the group consisting of (C_1-C_6) -alkyl, (C_1-C_6) -alkoxy, halogen, cyano, amino, trifluoromethyl and phenyl,

or

represents a group of the formula -OR29 or -NR30R31,

in which

10

R²⁹ represents straight-chain or branched (C₁-C₆)-alkyl,

and

15

 R^{30} and R^{31} are identical or different and independently of one another

20

aminocarbonyl, a group of the formula -NR³²R³³, 5- or 6-membered heteroaryl which contains up to 3 heteroatoms selected from the group consisting of N, O and S,

may

straight-chain

be

branched

or

substituted

25

or by phenyl, where phenyl is optionally substituted up to two times by identical or different substituents from

the group consisting of halogen, (C₁-C₄)-alkyl, tri-

fluoromethyl and (C₁-C₄)-alkoxy,

hydrogen,

which

represent

 (C_1-C_{12}) -alkyl

represent (C_3-C_8) -cycloalkyl which may be substituted by (C_1-C_4) -alkyl,

represent (C_6-C_{10}) -aryl which may be substituted up to three times by identical or different substituents from the group consisting of halogen, (C_1-C_4) -alkyl, trifluoromethyl, (C_1-C_4) -alkoxy, amino, phenyl and phenoxy,

or

represent a 5- to 7-membered saturated or unsaturated heterocycle which contains one or two nitrogen atoms and is optionally substituted by (C_1-C_4) -alkyl or an oxo group,

where

 R^{32} and R^{33} are identical or different and independently of one another represent hydrogen, (C₁-C₆)-alkyl, phenyl or (C₆-C₁₀)-arylsulphonyl,

or

together with the nitrogen atom to which they are attached form a 3- to 7-membered saturated heterocycle which optionally contains up to two further heteroatoms from the group consisting of N, O and S,

or

R³⁰ and R³¹ together with the nitrogen atom to which they are attached form a 4- to 7-membered saturated heterocycle which may contain up to two further heteroatoms from

5

10

The state of the s

He had been been been been been been

15

20

25

R¹³ represents a saturated, partially unsaturated or aromatic 5- to 10-membered heterocycle having up to three identical or different heteroatoms from the group consisting of N, O and S, which is optionally substituted by one, two or three identical or different substituents selected from the group consisting of (C₁-C₄)-alkyl, hydroxyl, oxo, (C₁-C₄)-alkoxy, halogen, cyano, carboxyl and (C₁-C₄)-alkoxycarbonyl, with the proviso that X in this case does not represent SO or SO₂,

10

or

15

 R^{13} represents the group -NR³⁴R³⁵ in which

20

 R^{34} and R^{35} are identical or different and represent hydrogen, $(C_1\text{-}C_8)$ -alkyl which may be substituted by $(C_6\text{-}C_{10})$ -aryl, represent $(C_3\text{-}C_8)$ -cycloalkyl, $(C_6\text{-}C_{10})$ -aryl or represent 5- or 6-membered heteroaryl having up to three identical or different heteroatoms from the group consisting of N, O and S where aryl and heteroaryl for their part are in each case optionally mono- or disubstituted by identical or different substituents from the group consisting of hydroxyl, amino, cyano, halogen, trifluoromethyl, $(C_1\text{-}C_4)$ -alkyl, $(C_1\text{-}C_4)$ -alkoxy,

carboxyl, (C₁-C₄)-alkoxycarbonyl and mono- and di-

(C₁-C₄)-alkylaminocarbonyl,

25

R¹⁴ has the meaning of R¹⁰ given above,

 R^7 represents hydrogen, (C_1-C_4) -alkyl or (C_1-C_4) -alkanoyl,

10

and

Z represents a group of the formula

$$A_a D R^{36}$$

in which

15

A represents O or S,

a represents the number 0 or 1,

20

D represents a straight-chain (C₁-C₄)-alkylene group which may be mono- or polysubstituted by identical or different substituents from the group consisting of (C₁-C₃)-alkyl, hydroxyl and fluorine,

25

and

 R^{36} represents OR^{37} or $NR^{38}R^{39}$, in which

10

15

20

R³⁷, R³⁸ and R³⁹ are identical or different and each represents hydrogen, phenyl, benzyl, (C₁-C₆)-alkyl or (C₃-C₈)-cycloalkyl which for their part are optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, amino, carboxyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkoxycarbonyl, (C₁-C₄)-alkoxycarbonylamino, (C₁-C₅)-alkanoyloxy, a heterocycle or by phenyl which for its part is optionally substituted by halogen or hydroxyl,

and their pharmaceutically acceptable salts, solvates, hydrates and hydrates of the salts.

2. Compounds of the general formula (I) according to Claim 1

X represents O, S, CH₂ or CF₂,

in which

 \boldsymbol{R}^{1} and \boldsymbol{R}^{2} are identical or different and represent hydrogen or methyl,

 R^3 and R^4 are identical or different and represent hydrogen, halogen, (C_1-C_4) -alkyl, CF_3 , CHF_2 , CH_2F , vinyl or (C_3-C_5) -cycloalkyl, where at least one of the two substituents is not hydrogen,

R⁵ represents hydrogen, (C₁-C₃)-alkyl, fluorine, chlorine or bromine,

 R^6 represents a group of the formula -S(O)2-R 10 , -NR 11 -C(O)-R 12 , -CH2- R^{13} or -M-R 14 , in which

 R^{10}

5

10

15

20

represents NR¹⁶R¹⁷, (C₁-C₈)-alkyl, (C₅-C₇)-cycloalkyl, phenyl, benzyl or represents a saturated, partially unsaturated or aromatic 5- to 10-membered heterocycle having up to three identical or different heteroatoms from the group consisting of N, O and S, where the abovementioned radicals are optionally substituted by one, two or three identical or different substituents selected from the group consisting of halogen, hydroxyl, oxo, cyano, nitro, amino, dimethylamino, trifluoromethyl, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, (C₃-C₆)-cycloalkyl, phenyl, which for its parts is optionally substituted by halogen, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, trifluoromethyl, nitro or cvano, -C(O)-OR²², -C(O)-NR²³R²⁴, -SO₂-NR²⁵R²⁶, -NH-C(O)-R²⁷ and -NH-C(O)-OR²⁸, where

 R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} and R^{28} are identical or different and each represents hydrogen, phenyl, benzyl, (C1-C4)alkyl or (C₅-C₇)-cycloalkyl which for their part are optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, amino, carboxyl, (C₁-C₄)-alkoxy, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkoxycarbonylamino or (C_1-C_5) -alkanoyloxy,

and

25

R¹⁶ and R¹⁷ are identical or different and independently of one another represent hydrogen, straight-chain or branched (C₁-C₆)-alkyl which may be mono- or polysubstituted by identical or different substituents from the group consisting of (C_1-C_4) -alkoxy, (C_1-C_4) -alkoxycarbonyl,

or

represent (C_5-C_7) -cycloalkyl or represent a 5- to 7-membered heterocycle which contains one or two nitrogen atoms, where cycloalkyl and heterocycle are optionally substituted by (C_1-C_4) -alkyl,

 R^{16} and R^{17} together with the nitrogen atom to which they are

attached form a 5- to 7-membered saturated heterocycle which may contain up to two further heteroatoms from the group consisting of N, O and S and which may be substituted by amino, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkoxycarbonylamino or phenyl,

 R^{11} represents hydrogen, straight-chain or branched (C_1 - C_4)-alkyl, benzyl, (C_3 - C_7)-cycloalkyl or represents a 5- to 7-membered heterocycle which contains one or two nitrogen atoms, where cycloalkyl and heterocycle are optionally substituted by (C_1 - C_4)-alkyl,

R¹² represents straight-chain or branched (C₁-C₈)-alkyl which may be substituted by (C₃-C₇)-cycloalkyl, (C₁-C₄)-alkoxy, phenyl, phenoxy or benzyloxy, where the aromatic radicals mentioned for their part may each be substituted up to three times by

5

10

15

20

or

5

represents phenyl which may be substituted up to three times by identical or different substituents from the group consisting of (C1-C4)-alkyl, (C1-C4)-alkoxy, halogen, cyano, amino and trifluoromethyl,

or

10

represents a group of the formula $-OR^{29}$ or $-NR^{30}R^{31}$,

in which

15

represents straight-chain or branched (C1-C4)-alkyl, R²⁹

and

20

R³⁰ and R³¹ are identical or different and independently of one another

25

represent hydrogen, straight-chain or branched (C1-C8)alkyl which may be substituted by phenyl, which for its part is optionally substituted up to two times by identical or different substituents from the group consisting of halogen, (C1-C4)-alkyl, trifluoromethyl and (C_1-C_4) -alkoxy,

or

represent phenyl which may be substituted up to three times by identical or different substituents from the group consisting of halogen, (C_1-C_4) -alkyl, trifluoromethyl, (C_1-C_4) -alkoxy and amino,

or

 R^{30} and R^{31} together with the nitrogen atom to which they are attached form a 5- to 7-membered saturated heterocycle which may contain up to two further heteroatoms from the group consisting of N, O and S and which may be substituted by amino, (C_1-C_4) -alkyl, (C_1-C_4) -alkanoyl, aminocarbonyl, (C_1-C_4) -alkoxycarbonyl, (C_1-C_4) -alkoxycarbonyl, alkoxycarbonylamino or phenyl,

 R^{13} represents a saturated, partially unsaturated or aromatic 5- or 6-membered heterocycle having up to three identical or different heteroatoms from the group consisting of N, O and S, which is optionally substituted by one, two or three identical or different substituents selected from the group consisting of (C_1-C_4) -alkyl, hydroxyl, oxo, (C_1-C_4) -alkoxy, halogen, cyano, carboxyl and (C_1-C_4) -alkoxycarbonyl,

or

5

10

the the transfer of the same and

The first fact that the first fact

15

20

)

R³⁴ and R³⁵ are identical or different and represent hydrogen, (C₁-C₆)-alkyl, which may be substituted by phenyl, represent (C₅-C₇)-cycloalkyl, phenyl or represent 5- or 6-membered heteroaryl having up to three identical or different heteroatoms from the group consisting of N, O and S, where phenyl and heteroaryl for their part are each optionally mono- or disubstituted by identical or different substituents from the group consisting of hydroxyl, amino, cyano, halogen, (C₁-C₄)-alkyl, trifluoromethyl, (C₁-C₄)-alkoxy, carboxyl or (C₁-C₄)-alkoxycarbonyl,

M represents C=0, CH(OH) or CF_2 ,

and

R¹⁴ has the meaning of R¹⁰ given above,

R⁷ represents hydrogen, methyl or acetyl,

and

Z represents a group of the formula

$$A_a$$
 D R^{36}

in which

15

- A represents O or S,
- a represents the number 0 or 1,
- D represents a straight-chain (C₁-C₃)-alkylene group which may be mono- or polysubstituted by identical or different substituents from the group consisting of methyl, hydroxyl and fluorine,

and

D 36

R³⁶ represents OR³⁷ or NR³⁸R³⁹, in which

 R^{37} represents hydrogen, phenyl, benzyl, $(C_1\text{-}C_6)$ -alkyl or $(C_3\text{-}C_7)$ -cycloalkyl which for their part are optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, amino, carboxyl, $(C_1\text{-}C_4)$ -alkoxy, $(C_1\text{-}C_4)$ -alkoxycarbonyl, $(C_1\text{-}C_4)$ -alkoxycarbonylamino, $(C_1\text{-}C_5)$ -alkanoyloxy and a heterocycle,

20 and

R³⁸ and R³⁹ are identical or different and each represents hydrogen, (C₁-C₆)-alkyl or (C₃-C₇)-cycloalkyl, which for their part are optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, amino, carboxyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkoxycarbonyl, (C₁-C₄)-alkoxycarbonylamino, (C₁-C₅)-alkanoyloxy, a heterocycle and phenyl which for its part is optionally substituted by halogen or hydroxyl,

and their pharmaceutically acceptable salts, solvates, hydrates and hydrates of the salts.

3. Compounds of the general formula (I) according to Claim 1

in which

5

15

20

25

X represents O, S or CH₂,

10 R¹ and R² represent hydrogen,

- R³ and R⁴ are identical or different and represent methyl, ethyl, propyl, isopropyl, cyclopropyl, trifluoromethyl, chlorine or bromine,
- R⁵ represents hydrogen,
 - R^6 represents a group of the formula $-S(O)_2-R^{10}$, $-NH-C(O)-R^{12}$, $-CH_2-R^{13}$, $-C(O)-R^{14}$ or $-CH(OH)-R^{40}$, in which
 - R¹⁰ represents phenyl or represents 5- or 6-membered heteroaryl having up to three identical or different heteroatoms from the group consisting of N, O and S, which radicals are optionally mono- or disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, hydroxyl, cyano, trifluoromethyl, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, carboxyl and (C₁-C₄)-alkoxycarbonyl,

or

represents the group -NR16R17, in which

	10
	10
Di.	
Harris Turning,	
95	
ATTICLE OF THE PERSON NAMED IN	
T.j	15

 R^{16} and R^{17} together with the nitrogen atom to which they are attached form a 5- or 6-membered saturated heterocycle which may contain a further heteroatom from the group consisting of N, O and S and which may be substituted by (C_1-C_4) -alkyl,

 R^{12} represents straight-chain or branched (C_1 - C_6)-alkyl which is optionally substituted by phenoxy or benzyloxy,

R¹³ represents 5- or 6-membered heteroaryl having up to three identical or different heteroatoms from the group consisting of N, O and S, which is optionally substituted by one or two identical or different substituents selected from the group consisting of (C₁-C₄)-alkyl, hydroxyl, (C₁-C₄)-alkoxy, fluorine, chlorine, bromine, cyano, carboxyl and (C₁-C₄)-alkoxycarbonyl, or represents the group -NR³⁴R³⁵, in which R³⁴ represents (C₁-C₆)-alkyl or (C₅-C₇)-cycloalkyl,

and

 R^{35} represents benzyl which is optionally substituted in the phenyl ring by hydroxyl, (C₁-C₄)-alkoxy, (C₁-C₄)-alkyl, trifluoromethyl, fluorine, chlorine or cyano,

R¹⁴ represents a group of the formula -NR⁴¹R⁴², in which

R⁴¹ represents hydrogen, (C₁-C₆)-alkyl or (C₃-C₇)-cycloalkyl,

20

 R^{42}

or

may be substituted by phenyl,

represents hydrogen or represents (C1-C4)-alkyl which

attached form a 5- or 6-membered saturated heterocycle

which may contain a further heteroatom from the group consisting of N, O and S and which may be substituted

5

10

R⁴¹ and R⁴² together with the nitrogen atom to which they are

by (C_1-C_4) -alkyl,

and

15

represents phenyl or naphthyl, which are optionally mono- or R^{40} disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, (C1-C4)-alkyl, (C_1-C_4) trifluoromethyl (C_1-C_4) -alkoxy, cyano, alkoxycarbonyl,

20

 R^7 represents hydrogen,

and

Z

represents a group of the formula

in which R^{36} represents hydroxyl or the radical -C(O)- R^{36} has the meanings of R^{36} given above for a group which, in the sense of a prodrug, can be degraded to the carboxylic acid -C(O)-OH or a salt thereof,

and their pharmaceutically acceptable salts, solvates, hydrates and hydrates of the salts.

10 4. Compounds of the general formula (I) according to Claim 1

in which

X represents CH₂ or, in particular, oxygen,

R¹ and R² represent hydrogen,

R³ and R⁴ are identical or different and represent methyl, ethyl, propyl, isopropyl, cyclopropyl, trifluoromethyl, chlorine or bromine,

R⁵ represents hydrogen,

15

5

 R^{10}

5

Total Marie Marie

The first that the first that the

10

15

20

represents a group of the formula $-S(O)_2-R^{10}$, $-CH_2-R^{13}$ or $-C(O)-R^{14}$, R^6 in which

> represents phenyl, pyridyl, pyrimidinyl or pyridazinyl which are optionally mono- or disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, bromine, hydroxyl, cyano, trifluoromethyl, (C1-C4)-alkyl, (C1- C_4)-alkoxy, carboxyl and (C_1-C_4) -alkoxycarbonyl,

or

represents a group of the formula

$$-N$$
, $-N$,

represents pyridyl, pyrimidinyl or pyridazinyl which are R^{13} optionally substituted by one or two identical or different substituents selected from the group consisting of (C1-C4)alkyl, hydroxyl, (C1-C4)-alkoxy, fluorine, chlorine, bromine, cyano, carboxyl and (C1-C4)-alkoxycarbonyl, or represents the group -NR³⁴R³⁵, in which

> $R^{34} \\$ represents (C₁-C₄)-alkyl or (C₅-C₇)-cycloalkyl,

and

10

15

20

and

represents a group of the formula -NR⁴¹R⁴², in which R^{14}

> R^{41} hydrogen, (C₁-C₄)-alkyl or represents (C_5-C_7) cycloalkyl,

and

 R^{42} represents hydrogen or represents (C1-C4)-alkyl which may be substituted by phenyl,

 R^7 represents hydrogen,

and

Z represents a group of the formula

Le A 35 206-Foreign Countries

in which R^{37} represents hydrogen, (C₁-C₄)-alkyl or (C₄-C₆)-cycloalkyl,

and their pharmaceutically acceptable salts, solvates, hydrates and hydrates of the salts.

5. Compounds of the formula (Ia)

$$R^6$$
 X
 R^3
 Z
(Ia),

in which

X represents CH₂ or O,

R³ and R⁴ are identical or different and represent bromine, trifluoromethyl, ethyl, cyclopropyl and, in particular, methyl or chlorine,

Z represents a group of the formula -CH₂-C(O)-OH, -CH₂-CH₂-C(O)-OH, -O-CH₂-C(O)-OH or -S-CH₂-C(O)-OH,

And the train the train the train the train that the train the tra

5

15

HINDER THE THE TAXABLE TAXABLE

R¹⁰ represents phenyl or represents pyridyl which are optionally mono- or disubstituted by identical or different substituents from the group consisting of fluorine, chlorine, cyano, trifluoromethyl, methyl, hydroxyl and methoxy.

10

6. Compounds of the formula (Ia)

$$R^{6}$$
 X
 R^{3}
 Z
(Ia),

15

in which

X

represents CH₂ or O,

R³ and R⁴ are identical or different and represent bromine, trifluoromethyl, ethyl, cyclopropyl and, in particular, methyl or chlorine,

20

Z represents a group of the formula -CH₂-C(O)-OH, -CH₂-CH₂-C(O)-OH, -O-CH₂-C(O)-OH, -O-C[(CH₃)₂]-C(O)-OH or -S-CH₂-C(O)-OH,

25

and

R⁶ represents a group of the formula -S(O)₂-R¹⁰, in which

 R^{10}

represents phenyl or represents pyridyl which are optionally mono- or disubstituted by identical or different substituents from the group

consisting of fluorine, chlorine, cyano, trifluoromethyl, methyl,

5

10

15

20

25

30

7. Compounds as defined in Claims 1 to 6 for preventing and treating diseases.

hydroxyl and methoxy.

- 8. Medicaments, comprising at least one compound of the general formula (I) as defined in Claims 1 to 6.
- 9. Process for preparing medicaments, characterized in that at least one compound of the general formula (I) as defined in Claims 1 to 6 is converted, using excipients and/or carriers, into a suitable administration form.
- 10. Use of compounds of the general formula (I) as defined in Claims 1 to 6 for preparing medicaments.
- 11. Use according to Claim 8 for preparing medicaments for the treatment and/or prophylaxis of arteriosclerosis, obesity and/or hypercholesterolaemia.
- 12. Use according to Claim 8 for preparing medicaments for the prophylaxis and/or treatment of disease forms which can be treated with natural thyroid hormone.
- 13. Method for the treatment and/or prophylaxis of disorders, characterized in that compounds as defined in Claims 1 to 6 are used.
- 14. Process for preparing compounds of the formula (I) as defined in Claim 1, characterized in that reactive phenol derivatives of the general formula (II)

 R^5 and R^6 are as defined in Claim 1 and

PG

represents a protective group and

10

V represents a binding or leaving group,

are reacted, if appropriate with isolation of the intermediates, or directly, with reactive phenyl derivatives of the general formula (III)

15

in which

R¹, R², R³ and R⁴ are as defined in Claim 1 and

W represents a binding or leaving group and

20

Z' has the meaning given for Z or represents OH, O-PG, SH, S-PG, or represents an aldehyde, cyano, carboxyl or (C_1-C_4) -alkoxycarbonyl group,

F. (C. 100) (1)