Microwave Engineering

26/8/13

|--|

Exercise 1

Consider a Teflon filled copper rectangular waveguide, having dimensions a=1.07 cm and b=0.43 cm.

- a) Find the cutoff frequency of the first three propagating modes.
- b) For f=15 GHz, determine the attenuation due to dielectric and conductor losses.

NOTE: for Teflon assume $\epsilon_r\!\!=\!\!2.08$ and tan $\!\delta\!\!=\!\!0.0004;$ for copper assume $\sigma\!\!=\!\!5.8\cdot 10^7$ S/m.

Microwave Engineering

26/8/13

Cognome:	Nome:	Matricola:
----------	-------	------------

Exercise 2

- a) Define the scattering matrix of an N-port network.
- b) A two port network is defined by the following scattering elements:

$$S_{11} = 0.1$$
 $S_{12} = 0.7$ $S_{21} = 0.7$ $S_{22} = 0.1$

Determine if the network is reciprocal and lossless.

If port 2 is terminated in a matched load, what is the return loss at port 1?

If port 2 is terminated in a short circuit, what is the return loss at port 1?

Microwave Engineering

26/8/13

Cognome:	Nome:	Matricola:

Exercise 3

A perfectly monochromatic plane wave (f_1 =0.9 MHz, $|E_{0i}|$ =3 V/m), impinges normally on the discontinuity schematically described in the figure; assume μ = μ_0 everywhere, ϵ_1 = ϵ_0 , ϵ_2 = 10 ϵ_0 , σ_1 =0.

In medium 2 we have: σ_2 = 6 10 7 Ω^{-1} /m

- a) Compute the reflected specific power
- b) Compute the skin depth in medium 2

