K-means Clustering

Dataset preparation:

Use dataset g data. Code for loading dataset into 2D python list: here

Train:

```
1. K = 4
2. Load dataset into 2D list "Data"
3. Randomly select K different data points from "Data" and store them into 2D list "Centers"
4. Initialize a 2D list named "Clusters" which contains K 1D lists for the K centers
5. for each sample / data point "S" in "Data":
6.
            identify the center "C_i" that is the closest to "S"
7.
            Append "S" in "i"th list of "Clusters"
8. itr = 1, "Shift" = 0
9. while True:
10.
            for each 1D list "L" in "Clusters":
11.
                    Determine the average of the data points. This is the new center of this list.
12.
                    Update the center of this list in "Centers"
13.
            if itr > 1 and "Shift" < 50: break (convergence)</pre>
            "Shift" = 0
14.
15.
            Initialize a 2D list named "Temp_Clusters" which contains K 1D lists for the K centers
            for each sample / data point "S" in "Data":
16.
17.
                    identify the center "C_i" that is the closest to "S"
18.
                    Append "S" in "i"th list of "Temp_Clusters"
19.
                    if S belongs to different clusters in "Clusters" and "Temp_Clusters" then
20.
                            "Shift" = "Shift" + 1
21.
            Now "Temp_Clusters" 2D list contains K 1D lists
22.
            Assign "Temp_Clusters" to "Clusters"
23.
            itr = itr + 1
24. "Clusters" will contain your desired clusters and "Centers" will contain your desired centers
    at the end of loop
25. Plot them with appropriate color
26. "inertia" = 0
27. for each 1D list "L" in "Clusters":
            "inertia" = "inertia" + sum of distances-square of data points of "L" from the center
28.
```

Report:

 \square Plot the data for K = 2, 4, 6, 7 and note down inertia.

Instruction

- Submit a .ipynb file and a report (<u>report template</u>) .pdf file.
- You must follow the given algorithm
- DO NOT USE LIBRARIES SUCH AS: "Sklearn", "Scikit learning" or "pandas" for this assignment
- Use your student id as seed
- Copying will result in -100% penalty
- Your marks will fully depend on your viva and understanding.
 - o Full Algorithm: 16
 - o Plotting: 4

Resources

k-means clustering

- 1. Select K random data points as the centers of K clusters
- 2. Assign each datapoint to the closest clusters (by calculating the distance from centers).
- 3. While True:
- 4. Recalculate the center of the clusters (which is the mean of the data points)
- 5. Reassign each datapoint to the closest cluster
- 6. **If** no datapoint changes cluster **then**
- 7. **break**

Limitations:

- Need to know K in advance
- Depended on initial assignment of the centers

How to choose the K?

 Inertia measures how well a dataset was clustered by K-Means. It is calculated by measuring the distance between each data point and its centroid, squaring this distance, and summing these squares across one cluster. A good model is one with low inertia AND a low number of clusters (K).

_

		7/5				
	6.	Use !	K-Mear	s clusteri ee (3) ite	ng on the	following dataset where K=2 and the initial centers are [1, 1] and [5, 5]. Show top iterating as soon as the clusters converge completely. [5]
		×	V	Label		
	1	3	4	No		covers = [(1,1), (5,5)]
	-	5	6	Yes		clusters: [0,0,0,0,0]
	W	5	-1	Yes		clusteres L
	-	6	4	Yes		$nuin-dust = 0$ $\sqrt{62+2^4} = \sqrt{15}$
	-	6	6	No	0	nun-dist
W	-					$\frac{1}{\text{dist}} = (3,4) - 2(1,1) = \sqrt{2^7 + 3^4} = \sqrt{15}$
Similary	1	11-				min-dist = VI
clush	en L	(6,				· p (with 10)
duster	n [2]=	0			62 102 - MA 55
	1	2 3	1			dist = (3,4) -1 (5,5) = 122+12 = 10 15
duster centern =	1	47=	1		-17	: min-dist = \$
destel	n c	10	-11	. 15	.513	clusters (0) - 1
wen =	((51)	-		
Cour						
) no	ap.	de	is fen	, .(0)= 1	
		-le	sten	(1)	: (unchanged in 2nd
		cu		5	0	iveration.
		chi	iten	(2)		
		du	Hen	(3)	= 1	; dustering complete.
2	/	clu	, ten	[4]	= 1	
/					11	-1), (5,5)]