MAGNETIC RECORDING MEDIUM, METHOD OF MANUFACTURING THE SAME AND MAGNETIC RECORDING AND REPRODUCING APPARATUS

Publication number: JP2003242622
Publication date: 2003-08-29

Inventor:

SHIMIZU KENJI; SAKAWAKI AKIRA; KOKUBU

MASATO; MOCHIZUKI NORIO; SAKAI HIROSHI

Applicant:

SHOWA DENKO KK

Classification:

- international:

G11B5/65; G11B5/64; G11B5/667; G11B5/738; G11B5/851; H01F10/16; H01F10/28; H01F10/30; H01F41/18; G11B5/62; G11B5/64; G11B5/66;

G11B5/84; H01F10/00; H01F10/12; H01F41/14; (IPC1-7): G11B5/65; G11B5/64; G11B5/667; G11B5/738; G11B5/851; H01F10/16; H01F10/28; H01F10/30;

H01F41/18

- european:

Application number: JP20020040866 20020219 Priority number(s): JP20020040866 20020219

Report a data error here

Abstract of **JP2003242622**

PROBLEM TO BE SOLVED: To provide a magnetic recording medium which improves recording and reproducing characteristics and thermal fluctuation resistance and can record and reproduce high-density information, a method of manufacturing the same and a magnetic recording and reproducing apparatus.

SOLUTION: The magnetic recording medium is provided with at least a soft magnetic ground surface film, orientation control film for controlling the orientability of the film right thereabove, perpendicular magnetic film of the axis of easy magnetization oriented mainly perpendicularly to a nonmagnetic substrate and protective film on the substrate, in which the orientation control film is an alloy expressed by Ni-X1-X2; the content of Ni is 20 to 80 at.%; X1 is any one kind or >=2 kinds selected from Ta, Nb, Hf, Zr, and Ti; and X2 is any one kind or >=2 kinds selected from B, C,

COPYRIGHT: (C)2003,JPO

P, Si, Ge, and Pt.

国際調查報告で

なげられた文献

計 11.

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2003-242622

(P2003-242622A)

(43)公開日 平成15年8月29日(2003.8.29)

(51) Int. Cl. '	識別記号		FΙ					テーマコート	(参考)		
G11B 5/65			G11B	5/65			5D0	006			
5/64				5/64			5D1	12			
5/667				5/66	7		5E0	149			
5/738				5/73	8						
5/851				5/85	1						
	審:	査請求 未	請求	請求	項の数14	OL	(全16頁)	最終頁	に続く		
(21)出願番号	特願2002-40866(P2002-4086	56) (71)出	願人	00000200 昭和電工	_	≵ +				
(22)出願日	平成14年2月19日(2002.2.19)				東京都港区芝大門1丁目13番9号						
		(72) 発	明者		原市八	幡海岸通り: ィー株式会社		昭和		
		(72) 発	明者		原市八	幡海岸通り : ィー株式会		昭和		
	•	(74)代	理人	电工工7 10011874 弁理士	0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	LM			
								最終頁	こ続く 		

(54) 【発明の名称】磁気記録媒体、その製造方法および磁気記録再生装置

(57)【要約】

【課題】記録再生特性、熱ゆらき耐性を向上させ高密度 の情報の記録再生が可能な磁気記録媒体、その製造方 法、および磁気記録再生装置を提供する。

【解決手段】非磁性基板上に、少なくとも、軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜とが設けられ、該配向制御膜がNi-X1-X2で表される合金であって、Niの含有率が $20\sim80$ at%で、X1がTa、Nb、Hf、Zr、Tiから選ばれるいずれか1種または2種以上、X2がB、C、P、Si、Ge、Pt から選ばれるいずれか1種または2種以上であることを特徴とする磁気記録媒体によって解決される。

【特許請求の範囲】

【請求項1】非磁性基板上に、少なくとも、軟磁性下地 膜と、直上の膜の配向性を制御する配向制御膜と、磁化 容易軸が基板に対し主に垂直に配向した垂直磁性膜と、 保護膜とが設けられ、該配向制御膜がNi-X1-X2 で表される合金であって、Niの含有率が20~80a t%で、X1がTa、Nb、Hf、Zr、Tiから選ば れるいずれか1種または2種以上、X2がB、C、P、 Si、Ge、Ptから選ばれるいずれか1種または2種 以上であることを特徴とする磁気記録媒体。

【請求項2】非磁性基板上に、少なくとも、軟磁性下地 膜と、直上の膜の配向性を制御する配向制御膜と、磁化 容易軸が基板に対し主に垂直に配向した垂直磁性膜と、 保護膜とが設けられ、該配向制御膜がNi-X1-X2 で表される合金であって、Niの含有率が20~80a t%で、X1が4A族の元素、5A族の元素から選ばれ るいずれか1種または2種以上、X2が3B族の元素、 4 B族の元素、P t からから選ばれるいずれか1種また は2種以上であることを特徴とする磁気記録媒体。

【請求項3】配向制御膜が、NiTaC合金、NiNb 20 C合金、NiTaP合金、NiTaPt合金から選ばれ るいずれか1種であることを特徴とする請求項1または 2に記載の磁気記録媒体。

【請求項4】配向制御膜が、NiとTaとCを含む材料 からなり、xNi-yTa-zC (20a t% $\leq x \leq 8$ $0 \text{ a t \%}, 15 \text{ a t \%} \le y \le 75 \text{ a t \%}, 0.5 \text{ a t \%}$ ≦ z ≦ 5 0 a t %) で表される組成であることを特徴と する請求項1乃至3のいずれか1項に記載の磁気記録媒 体。

【請求項5】配向制御膜の厚さが、0.5nm~30n 30 mであることを特徴とする請求項1乃至4のいずれか1 項に記載の磁気記録媒体。

【請求項6】垂直磁性膜の△Hc/Hcが0.3以下で あることを特徴とする請求項1乃至5のいずれか1項に 記載の磁気記録媒体。

【請求項7】垂直磁性膜がCrの含有量が14~24a t%、Ptの含有量が14~24at%であるCoCr Ptを主成分とする組成であり、磁気記録媒体の保磁力 (Hc) が3000 (Oe) 以上、逆磁区核形成磁界

(-Hn)が0(Oe)以上2500(Oe)以下、残 40 留磁化(Mr)と飽和磁化(Ms)との比Mr/Msが 0. 9以上であることを特徴とする請求項1乃至6のい ずれか1項に記載の磁気記録媒体。

【請求項8】垂直磁性膜が、その組成が0. 1~5 a t %のBを含有し、垂直磁性膜の△ 0 5 0 が 2 ~ 1 0° の 範囲であることを特徴とする請求項1乃至7のいずれか 1項に記載の磁気記録媒体。

【請求項9】軟磁性下地膜の飽和磁束密度Bs (T)と 膜厚t (nm) との積Bs・t (T・nm) が40 (T ・nm) 以上であることを特徴とする請求項1乃至8の 50 密度化すると記録ビットの1ビットあたりの磁性層の体

いずれか1項に記載の磁気記録媒体。

【請求項10】配向制御膜と垂直磁性膜との間に、 Co Cr合金、CoCrX3合金、CoX3合金(X3:P t, Ta, Zr, Ru, Nb, Cu, Re, Ni, M n、Ge、Si、O、N、Bから選ばれるいずれか1種 または2種以上。)から選ばれるいずれか1種であり、 Coの含有量は30~70at%である中間膜が形成さ れていることを特徴とする請求項1乃至9のいずれか1 項に記載の磁気記録媒体。

10 【請求項11】中間膜の厚さが20nm以下であること を特徴とする請求項10に記載の磁気記録媒体。

【請求項12】非磁性基板と軟磁性下地膜の間に硬磁性 材料からなる永久磁石膜が設けられていることを特徴と する請求項1乃至11のいずれか1項に記載の磁気記録

【請求項13】非磁性基板上に、少なくとも、軟磁性下 地膜と、直上の膜の配向性を制御する配向制御膜と、磁 化容易軸が基板に対し主に垂直に配向した垂直磁性膜 と、保護膜とを順次形成する磁気記録媒体の製造方法に おいて、配向制御膜を、Ni-X1-X2で表される合 金であって、Niの含有率が20~80at%で、X1 がTa、Nb、Hf、Zr、Tiから選ばれるいずれか 1種または2種以上、X2がB、C、P、Si、Ge、 Ptから選ばれるいずれか1種または2種以上であるタ ーゲットを用いてスパッター法にて形成することを特徴 とする磁気記録媒体の製造方法。

【請求項14】磁気記録媒体と、該磁気記録媒体に情報 を記録再生する磁気ヘッドとを備えた磁気記録再生装置 であって、磁気ヘッドが単磁極ヘッドであり、磁気記録 媒体が、請求項1乃至12のいずれか1項に記載の磁気 記録媒体であることを特徴とする磁気記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁気記録媒体、そ の製造方法、およびこの磁気記録媒体を用いた磁気記録 再生装置に関するものである。

[0002]

【従来の技術】磁気記録再生装置の1種であるハードデ ィスク装置(HDD)は、現在その記録密度が年率60 %以上で増えており今後もその傾向は続くと言われてい る。その為に高記録密度に適した磁気記録用ヘッドの開 発、磁気記録媒体の開発が進められている。

【0003】現在、市販されている磁気記録再生装置に 搭載されている磁気記録媒体は、主に、磁性膜内の磁化 容易軸が基板に対して水平に配向した面内磁気記録媒体 である。ここで磁化容易軸とは、磁化の向き易い軸のこ とであり、Co基合金の場合、Coのhcp構造のc軸 のことである。

【0004】このような面内磁気記録媒体では、高記録

積が小さくなりすぎ、熱揺らぎ効果により記録再生特性 が悪化する可能性がある。また、髙記録密度化した際 に、記録ビット間の境界領域で発生する反磁界の影響に より媒体ノイズが増加する傾向がある。

【0005】これに対し、磁性膜内の磁化容易軸が主に 垂直に配向した、いわゆる垂直磁気記録媒体は、高記録 密度化した際にも、記録ビット間の境界領域における反 磁界の影響が小さく、鮮明なビット境界が形成されるた め、ノイズの増加が抑えられる。しかも、高記録密度化 に伴う記録ビット体積の減少が少なくてすむため、熱揺 10 らぎ効果にも強い。そこで、近年大きな注目を集めてお り、垂直磁気記録に適した媒体の構造が提案されてい る。

[0006]

【発明が解決しようとする課題】近年では、磁気記録媒 体の更なる高記録密度化が要望に対して、垂直磁性膜に 対する書きこみ能力に優れている単磁極ヘッドを用いる ことが検討されている。そのようなヘッドに対応するた めに、記録層である垂直磁性膜と基板との間に、裏打ち 層と称される軟磁性材料からなる層を設けることによ り、単磁極ヘッドと磁気記録媒体との間の磁束の出入り の効率を向上させた磁気記録媒体が提案されている。

【0007】しかしながら、上記のように単に裏打ち層 を設けた磁気記録媒体を用いた場合では、記録再生時の 記録再生特性や、熱揺らぎ耐性、記録分解能において満 足できるものではなく、これら特性に優れる磁気記録媒 体が要望されていた。

【0008】一般に垂直磁気記録媒体は、基板上に裏打 ち層(軟磁性下地膜)を設け、磁性層の磁化容易軸を基 板面に対して垂直に配向させる配向制御膜、Со合金か 30 らなる垂直磁性膜および保護膜の順で構成されている。 この中で、磁気記録媒体の記録再生特性を改善するに は、垂直磁性膜に対して、ノイズの低い磁性材料を使う のは勿論であるが、層構造についても幾つかの改善手法 が提案されている。

【0009】特許第2669529号公報には、非磁性 基板と六方晶系の磁性合金膜との間にTi下地膜を設 け、Ti下地膜に他の元素を含有させることにより、T i 合金下地膜と六方晶系の磁性合金膜との間の格子の整 合性を高め、六方晶系の磁性合金膜の c 軸配向性を向上 40 させる方法が提案されている。しかしながら、Ti合金 下地を用いると、合金磁性膜中の磁気クラスター径が大 きくなり、その結果、媒体ノイズが大きくなり、更なる 高記録密度化は困難である。

【0010】特開平8-180360号公報には、Co とRuからなる下地膜を非磁性基板とCo合金垂直磁性 膜との間に用いることにより、Co合金垂直磁性膜のc 軸配向性を向上させる方法が提案されている。しかしな がら、CoとRuからなる下地膜は結晶粒径が大きくな り、その結果Co合金磁性膜中の磁性粒子径が大きくな 50 する1) 乃至4) のいずれか1項に記載の磁気記録媒体

り、媒体ノイズが大きくなり、更なる高密度化は困難で ある。

【0011】特開昭63-211117号公報には、炭 素含有下地膜を基板とCo合金垂直磁性膜との間に用い ることが、提案されている。しかしながら、炭素含有下 地膜を用いると、炭素含有下地膜はアモルファス構造下 地膜であるために、垂直磁性膜の c 軸配向性が悪化する ため、その結果、熱揺らぎ耐性が悪化し、更なる高記録 密度化は困難である。

【0012】本発明は、上記事情に鑑みてなされたもの で、記録再生特性、熱揺らぎ耐性を向上させ、高密度の 情報の記録再生が可能な磁気記録媒体、その製造方法、 および磁気記録再生装置を提供することを目的とする。

【課題を解決するための手段】上記の目的を達成するた めに、本発明は以下の構成を採用した。

1) 上記課題を解決するための第1の発明は、非磁性基 板上に、少なくとも、軟磁性下地膜と、直上の膜の配向 性を制御する配向制御膜と、磁化容易軸が基板に対し主 20 に垂直に配向した垂直磁性膜と、保護膜とが設けられ、 該配向制御膜がNi-X1-X2で表される合金であっ て、Niの含有率が20~80at%で、X1がTa、 Nb、Hf、Zr、Tiから選ばれるいずれか1種また は2種以上、X2がB、C、P、Si、Ge、Ptから 選ばれるいずれか1種または2種以上であることを特徴 とする磁気記録媒体である。

2) 上記課題を解決するための第2の発明は、非磁性基 板上に、少なくとも、軟磁性下地膜と、直上の膜の配向 性を制御する配向制御膜と、磁化容易軸が基板に対し主 に垂直に配向した垂直磁性膜と、保護膜とが設けられ、 該配向制御膜がNi-X1-X2で表される合金であっ て、Niの含有率が20~80at%で、X1が4A族 の元素、5A族の元素から選ばれるいずれか1種または 2種以上、X2が3B族の元素、4B族の元素、Ptか らから選ばれるいずれか1種または2種以上であること を特徴とする磁気記録媒体である。

3) 上記課題を解決するための第3の発明は、配向制御 膜が、NiTaC合金、NiNbC合金、NiTaP合 金、NiTaPt合金から選ばれるいずれか1種である ことを特徴とする1)または2)に記載の磁気記録媒体

4) 上記課題を解決するための第4の発明は、配向制御 膜が、NiとTaとCを含む材料からなり、xNi-y Ta-zC (20 a t% $\leq x \leq 80$ a t%, 15 a t% $\leq y \leq 7.5 \text{ a t \%}, 0.5 \text{ a t \%} \leq z \leq 5.0 \text{ a t \%}) \text{ }$ 表される組成であることを特徴とする1)乃至3)のい ずれか1項に記載の磁気記録媒体である。

5) 上記課題を解決するための第5の発明は、配向制御 膜の厚さが、0.5nm~30nmであることを特徴と

である。

6) 上記課題を解決するための第6の発明は、垂直磁性 膜の△Hc/Hcが0. 3以下であることを特徴とする 1) 乃至5) のいずれか1項に記載の磁気記録媒体であ る。

7) 上記課題を解決するための第7の発明は、垂直磁性 膜がCrの含有量が14~24at%、Ptの含有量が 14~24at%であるCoCrPtを主成分とする組 成であり、磁気記録媒体の保磁力(Hc)が3000 (Oe) 以上、逆磁区核形成磁界 (-Hn) が 0 (O e)以上2500 (Oe)以下、残留磁化 (Mr)と飽 和磁化 (Ms) との比Mr/Msが0.9以上であるこ とを特徴とする1)乃至6)のいずれか1項に記載の磁 気記録媒体である。

- 8) 上記課題を解決するための第8の発明は、垂直磁性 膜が、その組成が O. 1~5 a t %のBを含有し、垂直 磁性膜の△ θ 5 0 が 2 ~ 1 0°の範囲であることを特徴 とする1)乃至7)のいずれか1項に記載の磁気記録媒 体である。
- 9) 上記課題を解決するための第9の発明は、軟磁性下 20 地膜の飽和磁束密度Bs (T)と膜厚t (nm)との積 Bs·t (T·nm) が40 (T·nm) 以上であるこ とを特徴とする1) 乃至8) のいずれか1項に記載の磁 気記録媒体である。
- 10) 上記課題を解決するための第10の発明は、配向 制御膜と垂直磁性膜との間に、CoCr合金、CoCr X3合金、CoX3合金(X3:Pt、Ta、Zr、R u, Nb, Cu, Re, Ni, Mn, Ge, Si, O, N、Bから選ばれるいずれか1種または2種以上。)か ら選ばれるいずれか1種であり、Coの含有量は30~30 70at%である中間膜が形成されていることを特徴と する1) 乃至9) のいずれか1項に記載の磁気記録媒体 である。
- 11) 上記課題を解決するための第11の発明は、中間 膜の厚さが20nm以下であることを特徴とする10) に記載の磁気記録媒体である。
- 12) 上記課題を解決するための第12の発明は、非磁 性基板と軟磁性下地膜の間に硬磁性材料からなる永久磁 石膜が設けられていることを特徴とする1) 乃至11) のいずれか1項に記載の磁気記録媒体である。
- 13) 上記課題を解決するための第13の発明は、非磁 性基板上に、少なくとも、軟磁性下地膜と、直上の膜の 配向性を制御する配向制御膜と、磁化容易軸が基板に対 し主に垂直に配向した垂直磁性膜と、保護膜とを順次形 成する磁気記録媒体の製造方法において、配向制御膜 を、Ni-X1-X2で表される合金であって、Niの 含有率が20~80at%で、X1がTa、Nb、H f、Zr、Tiから選ばれるいずれか1種または2種以 上、X2がB、C、P、Si、Ge、Ptから選ばれる いずれか1種または2種以上であるターゲットを用いて 50 としては、汎用の酸化アルミニウム、窒化アルミニウ

スパッター法にて形成することを特徴とする磁気記録媒 体の製造方法である。

14) 上記課題を解決するための第14の発明は、磁気 記録媒体と、該磁気記録媒体に情報を記録再生する磁気 ヘッドとを備えた磁気記録再生装置であって、磁気ヘッ ドが単磁極ヘッドであり、磁気記録媒体が、1) 乃至1 2) のいずれか1項に記載の磁気記録媒体であることを 特徴とする磁気記録再生装置である。である。

【0014】以下、逆磁区核形成磁界について説明す 10 る。逆磁区核形成磁界 (- Hn) は、図2に示すよう に、VSMなどにより求めたMH曲線において、磁化が 飽和した状態から外部磁界を減少させる過程で外部磁界 がOとなる点a、MH曲線の磁化がOである点BでのM H曲線の接線を延長した線と飽和磁化との交点を点cと すると、Y軸から点cまでの距離 [Oe] で表すことが できる。

【0015】なお、逆磁区核形成磁界(-Hn)は、点 cが外部磁界が負である領域にある場合に正の値をとり (図2に示した状態。)、逆に、点cが外部磁界が正で ある領域にある場合に負の値をとる(図3に示した状 熊。)。

【0016】図4をもとに、△Hc/Hcについて説明 する。△Hcは、MH曲線において、負の最大残留磁化 (-Ms) 状態からのメジャー曲線のMs/2における 磁界強度と負の保磁力(-Hc)状態からのマイナー曲 線のMs/2における磁界強度との差である。△Hc/ Hcは、上記△HcとHcの比の値である。

【0017】また、各膜の膜厚は、例えばTEM(透過 型電子顕微鏡)で観察することにより求めることができ

【0018】本明細書中で主成分とは、その成分の含有 率が50at%を越えるものを意味する。

[0019]

40

【発明の実施の形態】図1は、本発明の磁気記録媒体の 第1の実施形態の一例を示すものである。ここに示され ている磁気記録媒体は、非磁性基板1上に、軟磁性下地 膜2と、配向制御膜3と、中間膜4と、垂直磁性膜5 と、保護膜6と、潤滑膜7とが順次形成された構成とな っている。

【0020】非磁性基板1としては、アルミニウム、ア ルミニウム合金等の金属材料からなる金属基板またはガ ラス、セラミック、シリコン、シリコンカーバイド、カ ーボンなどの非金属材料からなる非金属基板を挙げるこ とができる。

【0021】ガラス基板としては、アモルファスガラ ス、結晶化ガラスがあり、アモルファスガラスとしては 汎用のソーダライムガラス、アルミノシリケートガラス を使用できる。また、結晶化ガラスとしては、リチウム 系結晶化ガラスを用いることができる。セラミック**基板** ム、窒化珪素などを主成分とする焼結体や、これらの繊 維強化物などが使用可能である。

【0022】非磁性基板1としては、上記金属基板、非 金属基板の表面にメッキ法やスパッタ法を用いてNiP 膜、NiP合金膜が形成されたものを用いることもでき る。

【0023】非磁性基板は、平均表面粗さRaが2nm (20Å)以下、好ましくは1nm以下であるとことがヘッドを低浮上させた高記録密度記録に適している点から望ましい。

【0024】また、表面の微小うねり(Wa)が0.3 nm以下(より好ましくは0.25[nm]以下。)であるものが、ヘッドを低浮上させた高記録密度の用途に適している点から好ましい。非磁性基板のチャンファー部の面取り部、側面部の少なくとも一方のいずれの表面平均粗さRaが10nm以下(より好ましくは9.5nm以下。)のものを用いることが磁気ヘッドの飛行安定性にとって好ましい。微少うねり(Wa)は、例えば、表面粗さ測定装置P-12(KLA-Tencor社 製)を用い、測定範囲 80μ mでの表面平均粗さとして 20 測定することができる。

【0025】軟磁性下地膜2は、磁気ヘッドから発生する磁束の基板に対する垂直方向成分を大きくするためと、情報が記録される垂直磁性膜5の磁化の方向をより強固に基板1と垂直な方向に固定するために設けられているものである。この作用は特に記録再生用の磁気ヘッドとして垂直記録用の単磁極ヘッドを用いる場合に、より顕著なものとなる。

【0026】上記軟磁性下地膜2は、軟磁性材料からなるもので、この材料としては、Fe、Ni、Coを含む 30 材料を用いることができる。この材料としては、FeCo系合金(FeCo、FeCoVなど)、FeNi系合金(FeNi、FeNiMo、FeNiCr、FeNiSiなど)、FeAl系合金(FeAl、FeAlSi、FeAlSiCr、FeAlSiTiRu、FeAlOなど)、FeCr系合金(FeCr、FeCrTi、FeCrCuなど)、FeTa系合金(FeTa、FeTaC、FeTaNなど)、FeMg系合金(FeMgOなど)、FeZr系合金(FeZrNなど)、FeC系合金、FeN系合金、FeSi系合金、FeP系 40合金、FeNb系合金、FeHf系合金、FeB系合金などを挙げることができる。

【0027】またFeを60at%以上含有するFeA 10、FeMgO、FeTaN、FeZrN等の微結晶 構造、あるいは微細な結晶粒子がマトリクス中に分散さ れたグラニュラー構造を有する材料を用いてもよい。

【0028】軟磁性下地膜2の材料としては、上記のほか、Coを80at%以上含有し、Zr、Nb、Ta、Cr、Mo等のうち少なくとも1種を含有し、アモルファス構造を有するCo合金を用いることができる。

8

【0029】この材料としては、CoZr系合金、CoZrNb系合金、CoZrTa系合金、CoZrCr系合金、CoZrMo系合金などを好適なものとして挙げることができる。

【0030】軟磁性下地膜2の保磁力Hcは100(Oe)以下(より好ましくは20(Oe)以下)とするのが好ましい。

【0031】この保磁力Hcが上記範囲を超えると、軟磁気特性が不十分となり、記録再生時の再生信号波形が10 いわゆる矩形波から歪みをもった波形になるため好ましくない。

【0032】軟磁性下地膜2の飽和磁束密度Bsは、0.6 T以上(より好ましくは1 T以上)とするのが好ましい。このBsが上記範囲未満であると、再生信号波形がいわゆる矩形波から歪みをもった波形になるため好ましくない。

【0033】また、軟磁性下地膜2の飽和磁束密度Bs(T)と軟磁性下地膜2の膜厚 t(nm)との積Bs・t(T・nm)が40(T・nm)以上(より好ましくは60(T・nm)以上)であること好ましい。この範囲であるとエラーレートがより良好になる。この範囲であると熱揺らぎ耐性がより良好になる。このBs・tが上記範囲未満であると、再生信号波形が歪みをもつようになったり、OW特性(オーバーライト特性)が悪化するため好ましくない。

【0034】軟磁性下地膜2の表面(配向制御膜3側の面)は、軟磁性下地膜2を構成する材料が部分的、あるいは完全に酸化されていることが好ましい。例えば、軟磁性下地膜2の表面(配向制御膜3側の面)およびその近傍に、軟磁性下地膜2を構成する材料が部分的に酸化されるか、もしくは前記材料の酸化物を形成して配されていることが好ましいこれにより、軟磁性下地膜2の表面の磁気的な揺らぎを抑えることができるので、この磁気的な揺らぎに起因するノイズを低減して、磁気記録媒体の記録再生特性を改善することができる。

【0035】また、これにより、軟磁性下地膜2上に形成される配向制御膜3の結晶粒を微細化して、記録再生特性を改善することができる。

【0036】この軟磁性下地膜2の表面の酸化された部分は、例えば軟磁性下地膜2を形成した後、酸素を含む雰囲気に曝す方法や、軟磁性下地膜2の表面に近い部分を成膜する際のプロセス中に酸素を導入する方法により形成することができる。具体的には、軟磁性下地膜2の表面を酸素に曝す場合には、酸素ガス単体、あるいは酸素ガスをアルゴンや窒素などのガスで希釈したガス雰囲気中に0.3~20秒程度保持しておけばよい。また、大気中に曝すこともできる。特に酸素ガスをアルゴンや窒素などのガスで希釈したガスを用いる場合には、軟磁性下地膜2表面の酸化の度合いの調節が容易になるので、安定した製造を行うことができる。また、軟磁性下

地膜2の成膜用のガスに酸素を導入する場合には、例えば成膜法としてスパッタ法を用いるならば、成膜時間の1部のみに酸素ガスを導入したプロセスガスを用いてスパッタを行えばよい。このプロセスガスとしては、例えばアルゴンガスに酸素ガスを体積率で0.05%~50%(好ましくは0.1~20%)程度混合したガスが好適に用いられる。

【0037】配向制御膜3は、直上の膜の結晶特性や結晶粒径を制御することにより、直上に設けられた中間膜のはおよび/または垂直磁性膜5の配向性を制御するものはいい。である。

【0038】配向制御膜3に用いられる材料は、Ni-X1-X2で表されNiの含有量が20~80at%である合金である。Niの含有量が80at%を超えて含まれると、配向制御膜3が磁性を持つようになり、その結果、媒体ノイズが増加するため好ましくない。Niの含有量が20at%未満となると、エラーレート改善の効果がなくなるため好ましくない。

【0039】ここで、X1は周期律表における4A族、5A族のいずれかの元素である。例えば、X1としては 20 Ta、Nb、Hf、ZrまたはTiのうちから選ばれる1種または2種以上を挙げることができる。これらを添加することにより、配向制御膜3は垂直磁性膜の配向性が向上するので、その結果、磁気記録媒体の記録再生特性の改善および/または熱揺らぎ耐性の向上が可能となるので好ましい。

【0040】ここで、X2は3B族、4B族のいずれかの元素、およびPtである。例えば、X2としてはB、C、P、Si、Ge、Ptのうちから選ばれる1種または2種以上の元素を挙げることができる。これらを添加 30 することにより、配向制御膜3は垂直磁性膜内の結晶粒子が微細化するので、磁気記録媒体の記録再生特性が改善するので好ましい。

【0041】特に、配向制御膜がNiTaC合金、NiNbC合金、NiTaP合金、NiTaPt合金のいずれかであると磁性粒子(磁性結晶粒子ともいう。)がより微細化されるので、NiTa合金、NiNb合金を用いる場合より改善効果は大きいので好ましい。

【0042】 さらに、配向制御膜がNiとTaとCを含む材料からなり、xNi-yTa-zC($20at\% \le 40x \le 80at\%$ 、 $15at\% \le y \le 75at\%$ 、 $0.5at\% \le z \le 50at\%$)で表される組成であると磁性粒子がさらに微細化されるので、NiTa合金を用いる場合より改善効果は特に大きいので好ましい。

【0043】Cの含有量がこの範囲であると、その上に設けられた垂直磁性膜の磁化の垂直方向への配向性がより良好になるとともに、磁性粒子が微細化されるので、その結果、熱揺らぎ耐性および記録再生特性がより良好になるので好ましい。Cの含有量が0.5 a t %以上であるのが、記録再生特性の改善への効果が十分となり好 50

ましい。

【0044】 Taの含有量がこの範囲であると、NiTaC上に設けられた中間膜の結晶性を悪化させることなく結晶粒が微細化されるので、その結果、記録再生特性がより良好になるので好ましい。 Taの含有量が15at%以上であるのが、NiTaC合金下地膜が微細化した結晶構造となり好ましい。

【0045】NiNbC合金においても、Cの含有量は 0.5 a t %以上50 a t %以下であることが好まし い。

【0046】NiTaP合金においては、Pの含有量は0.5at%以上40at%以下であることが好ましい。Pの含有量が40at%以下であると、その上に設けられた垂直磁性膜の結晶粒が微細化されるので、その結果、記録再生特性がより良好になるので好ましい。Pの含有量が0.5at%以上であるのが、記録再生特性の改善への効果が十分となり好ましい。

【0047】NiTaPt合金においては、Ptの含有量は0.5at%以上30at%以下であることが好ましい。Ptの含有量が30at%であると、その上に設けられた垂直磁性膜の配向性が向上し、熱揺らぎ耐性が良好になるので好ましい。Ptの含有量が0.5at%以上であるのが、熱揺らぎ耐性の改善への効果が十分となり好ましい。

【0048】本実施形態の磁気記録媒体では、配向制御膜3の厚さを0.5~30nm(より好ましくは1~10nm。)とするのが好ましい。配向制御膜3の厚さが上記の範囲であるとき、垂直磁性膜5の磁化の垂直方向への配向性が特に良好になり、かつ記録時における磁気へッドと軟磁性下地膜2との距離を小さくすることができるので、その結果、再生信号の分解能を低下させることがないので記録再生特性を高めることができるからである。

【0049】この厚さが上記範囲未満であると、垂直磁性膜5における磁化の垂直方向への配向性が低下し、記録再生特性および熱揺らぎ耐性が劣化しやすくなる。

【0050】また、この厚さが上記範囲を超えると、垂直磁性膜5の垂直配向性が低下し、記録再生特性および熱揺らぎ耐性が劣化する。また記録時における磁気ヘッドと軟磁性下地膜2との距離が大きくなるため、その結果、再生信号の分解能や再生出力の低下が起こるため好ましくない。

【0051】配向制御膜3の表面形状は、その上に形成される垂直磁性膜5、保護膜6の表面形状に影響を与える。そのため、磁気記録媒体の表面凹凸を小さくして記録再生時における磁気ヘッド浮上高さを低くすることが求められている高記録密度に好適に用いるためには、配向制御膜3の表面平均粗さRaを2nm以下とするのが好ましい。

【0052】この表面平均粗さRaを2ヵm以下とする

ことによって、磁気記録媒体の表面凹凸が小さくなるので、記録再生時における磁気ヘッド浮上高さを十分に低くすることが可能になり、記録密度を高めることができる。

【0053】配向制御膜3は、その上に設けられる垂直磁性膜を微細化する目的で、成膜用のガスとして酸素や窒素含んだプロセスガスを用いて成膜したものが好ましい。例えば、スパッタ法を用いて形成されたものである場合は、プロセスガスとして、アルゴンに酸素を体積率で0.05~50%(好ましくは0.1~20%。)程 10度混合したガス、アルゴンに窒素を体積率で0.01~20%(好ましくは0.02~10%。)程度混合したガスを用いて形成したものが好ましい。

【0054】配向制御膜3と垂直磁性膜5との間に、中間膜4を設けることができる。中間膜4にはhcp構造を有する材料を用いるのが好ましい。中間膜4には、CoCr合金やCoCrX3合金やCoX3合金(X3:Pt、Ta、Zr、Ru,Nb、Cu、Re、Ni、Mn、Ge、Si、O、N、Bから選ばれるいずれか1種または2種以上。)を用いるのが好適である。

【0055】中間膜4のCoの含有量は30~70at%であることが好ましい。

【0056】中間膜4の厚さは、垂直磁性膜5における磁性粒子の粗大化による記録再生特性の悪化や、磁気ヘッドと軟磁性下地膜2との距離が大きくなることによる記録分解能の低下を起こさないようにするために、20nm以下(より好ましくは10nm以下。)とするのが好ましい。

【0057】中間膜4を設けることによって、垂直磁性膜5の配向性を高めることができるので、垂直磁性膜5の保磁力を高め、記録再生特性および熱揺らぎ耐性をさらに向上させることができる。

【0058】垂直磁性膜5は、その磁化容易軸が基板に対して主に垂直方向に向いたものであり、少なくとも1層以上が、少なくともCo、Cr、Pt を含んだ材料からなり、Cr の含有量が $14\sim24$ at% (より好ましくは $16\sim22$ at%。)、Pt の含有量が $14\sim24$ at% (より好ましくは $15\sim20$ at%。) であることが好ましい。磁化容易軸が基板に対して主に垂直方向に向いたものとは垂直方向の保磁力Hc (P) と面内方 40 向の保磁力Hc (P) とが、Pt (P) >Pt (P) の関係を有している垂直磁性膜のことである。

【0059】さらに、Bを0.1以上5at%以下添加することが好ましい。これにより、磁性粒子間の交換結合を低減することができ、記録再生特性を改善することが可能となる。

【0060】Crの含有量が14at%未満であると、 磁性粒子間の交換結合が大きくなり、その結果磁気クラ スター径が大きくなり、ノイズが増大するため好ましく ない。また、Crの含有量が24at%を超えると、保 50 磁力および残留磁化(Ms)と飽和磁化(Mr)の比Mr/Msの値が小さくなるため好ましくない。

【0061】Ptの含有量が14at%未満であると、記録再生特性の改善効果が不十分であるとともに、残留磁化(Ms)と飽和磁化(Mr)の比Mr/Msの値が小さくなり、その結果熱揺らぎ耐性が悪化するため好ましくない。また、Ptの含有量が24at%を超えると、ノイズが増大するため好ましくない。

【0062】CoCrPt系合金においては、B以外にも任意の元素を添加することも可能である。特に限定されるものではないが、Ta、Mo、Nb、Hf、Ir、Cu、Ru、Nd、Zr、W、Ndなどを挙げることができる。

【0063】垂直磁性膜5に使われる磁性材料としては、CoCrPtB系合金、CoCrPtTa系合金、CoCrPtBCu系合金、CoCrPtBCu系合金、CoCrPtTaNd系合金、CoCrPtBNd系合金、CoCrPtBW系合金、CoCrPtBMo系合金、CoCrPtBRu系合金、CoCrPtTaW系合金、CoCrPtTaMo系合金、CoCrPtTaRu系合金、CoCrPtNd系合金、CoCrPtW系合金、CoCrPtRu系合金、CoCrPtRu系合金、CoCrPtRu系合金、CoCrPtRu系合金、CoCrPtCu系合金から選ばれるのが特に好ましい。

【0064】垂直磁性膜5に使われる磁性材料として B、Ta、Cuから選ばれる1種類以上の元素を含む材料を使う場合、それらの合計含有量が0.5~8at% であることが好ましい。これら元素は、Cr偏析を促進し、磁性粒子の磁気的な孤立化を促す作用を有しているが、0.5at%未満では添加したことによる効果が得られず、8at%を超えて過剰に添加した場合、磁性粒子内に残留し、磁性粒子の結晶配向性を乱してしまう。そのため、保磁力および逆磁区核形成磁界を減少させてしまうため好ましくない。

【0065】垂直磁性膜5に使われる磁性材料としてNd、W、Mo、Ruから選ばれる1種類以上の元素を含む材料を使う場合、それらの合計含有量が $0.5\sim15$ at%であることが好ましい。これら元素は、保磁力および逆磁区核形成磁界を大きくする作用を有するが、

0. 5 a t %未満では添加したことによる効果が得られず、15 a t %を超えて過剰に添加した場合、磁性粒子内に残留し、磁気異方性定数 (Ku)の低下を生じさせたり、磁性粒子の結晶配向性を乱してしまう。そのため、反対に保磁力および逆磁区核形成磁界を減少させてしまうため好ましくない。

【0066】また、このほかにも、垂直磁性膜には、Zr、Nb、Re、V、Ni、Mn、Ge、Si、O、Nなどから選ばれる少なくとも1種類以上の元素を添加した合金を用いることもできる。

【0067】垂直磁性膜5は、CoCrPt系材料から

なる1層構造とすることもできるし、組成の異なる材料 からなる2層以上の構造とすることもできる。

【0068】また、Co系合金(CoCr、CoB、Co-SiO2等)とPd系合金(PdB、Pd-SiO2等)とを用いた多層構造やCoTbやCoNd等のアモルファス材料とCoCrPt系材料とを用いた多層構造とすることもできる。

【0069】例えば、CoCrPt系材料を第1垂直磁性膜として設け、その上に組成の異なるCoCrPt系材料を第2垂直磁性膜とすることができる。

【0070】また、CoCrPt系材料を第1垂直磁性膜として設け、その上にCoNdを第2垂直磁性膜として設けることができる。

【0071】垂直磁性膜の $\Delta\theta50$ が $2\sim10^\circ$ の範囲であることが好ましい。この $\Delta\theta50$ は、 2° 未満であると、磁性粒子間の交換結合が大きくなり、記録再生特性が劣化するため好ましくない。 $\Delta\theta50$ が 10° を超えると、残留磁化(Ms)と飽和磁化(Mr)の比Mr/Msが悪化し、熱揺らぎ耐性が悪化するため好ましくない。

【0072】ここでいう $\Delta\theta50$ とは、当該膜の結晶面の傾き分布を示すものであり、具体的には、膜表面における特定の配向面に関するロッキング曲線のピークの半値幅をいう。 $\Delta\theta50$ は、数値が小さいほど当該膜の結晶配向性が高いということができる。以下、 $\Delta\theta50$ を測定する方法の一例を説明する。

【0073】(1)ピーク位置決定

図5に示すように、表面側に垂直磁性膜5が形成されたディスクDに、入射X線21を照射し、回折X線22を回折X線検出器23によって検出する。

【0074】検出器23の位置は、この検出器23によって検出される回折X線22の入射X線21に対する角度(入射X線21の延長線24に対する回折X線22の角度)が、入射X線21のディスクD表面に対する入射角の2倍、すなわち20となるように設定する。入射X線21を照射する際には、ディスクDの向きを変化させることにより入射X線21の入射角のを変化させるとともに、これに連動させて、検出器23の位置を、回折X線22の入射X線21に対する角度が2 θ (すなわち入射X線21の入射角の2倍の角度)を維持するよう40に変化させつつ、回折X線22の強度を検出器23により測定する θ -2 θ スキャン法を行う。

【0075】これによって、 θ と回折X線22の強度との関係を調べ、回折X線22の強度が最大となるような検出器23の位置を決定する。この検出器位置における回折X線22の入射X線21に対する角度2 θ を、2 θ pという。得られた角度2 θ pより、膜表面において支配的な結晶面を知ることができる。

【0076】(2) ロッキング曲線の決定 径のばらつきが小さくなるので、垂直磁性膜の垂直方向 図6に示すように、検出器23を、回折X線22の角度 50 保磁力の面内での分布がより均一となるので、記録再生

 2θ が 2θ p となった位置に固定した状態で、ディスク Dの向きを変化させることにより入射 X線 2 1の入射角 θ を変化させ、入射角 θ と、検出器 2 3によって検出された回折 X線 2 2の強度との関係を示すロッキング 曲線を作成する。検出器 2 3の位置を、回折 X線 2 2の角度 2θ が 2θ p となった位置に固定するため、ロッキング 曲線は、膜表面の結晶面のディスク D面に対する傾きの分布を表すものとなる。図 7 は、ロッキング曲線の例を示すものである。 $\Delta \theta$ 5 0 とは、このロッキング曲線に 10 おいて当該配向面を示すピークの半値幅をいう。

【0077】垂直磁性膜5の厚さは、7~60nm(より好ましくは10~40nm。)とするのが好ましい。 垂直磁性膜5の厚さが7nm以上であると、十分な磁束が得らるので、再生時における出力が低くなることがなく、出力波形がノイズ成分にうずもれてしまうことがないので、より高記録密度に適した磁気記録再生装置として動作するので好ましい。また、垂直磁性膜5の厚さが60nm以下であると、垂直磁性膜5内の磁性粒子の粗大化を抑えることができ、ノイズの増大といった記録再20生特性の劣化が生じるおそれがないため好ましい。

【0078】垂直磁性膜5の保磁力は、3000(Oe)以上とすることが好ましい。保磁力が3000(Oe)未満であると、記録再生特性の一つである分解能において高記録密度に求められている充分な特性が得られず、あるいは熱揺らぎ耐性が劣るため好ましくない。

【0079】垂直磁性膜5の残留磁化(Ms)と飽和磁化(Mr)の比Mr/Msが0.9以上であることが好ましい。Mr/Msが0.9未満の磁気記録媒体は、熱揺らぎ耐性が劣るため好ましくない。

【0080】垂直磁性膜5の逆磁区核形成磁界(一Hn)は、0以上2500(Oe)以下(より好ましくは1000(Oe)以下。)であることが好ましい。逆磁区核形成磁界(一Hn)が、0未満の磁気記録媒体は、熱揺らぎ耐性に劣るため好ましくない。また、逆磁区核形成磁界(一Hn)の上限は、2500(Oe)とされている。それ以上の逆磁区核形成磁界(一Hn)を得ようとすると、磁性粒子の磁気的な分離が不充分となり、活性化磁気モーメント(vIsb)が増大し、結果として記録再生時におけるノイズが増加するといったことがことおきやすくなるため好ましくない。

【0081】垂直磁性膜5は、結晶粒子の平均粒径が5~15nmであることが好ましい。この平均粒径は、例えば垂直磁性膜5の結晶粒子をTEM(透過型電子顕微鏡)で観察し、観察像を画像処理することにより求めることができる。

【0082】垂直磁性膜5の△Hc/Hcは0.3以下 (より好ましくは0.25以下。)であることが好ましい。△Hc/Hcが0.3以下であると、磁性粒子の粒径のばらつきが小さくなるので、垂直磁性膜の垂直方向 保磁力の面内での分布がより均一となるので、記録再生 特性および熱揺らぎ耐性が悪化することを抑えることが できるので好ましい。

【0083】保護膜6は垂直磁性膜5の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐためのもので、従来公知の材料を使用できる。例えばC、SiO2、ZrO2を含むものが使用可能である。

【0084】保護層6の厚さは、 $1\sim10$ n mとするのがヘッドと媒体の距離を小さくできるので高記録密度の点から望ましい。

【0085】潤滑膜7には従来公知の材料、例えばパーフルオロポリエーテル、フッ素化アルコール、フッ素化カルボン酸などを用いるのが好ましい。

【0086】本形態の磁気記録媒体にあっては、配向制御膜がNi-X1-X2で表され、Niの含有率が20~80at%で、X1がTa、Nb、Hf、Zr、Tiから選ばれるいずれか1種または2種以上、X2がB、C、P、Si、Ge、Ptから選ばれるいずれか1種または2種以上である合金からなる磁気記録媒体であるので、より高記録密度で使用した時の記録再生特性が向上20(例えば、ノイズの低減)しおよび/または熱揺らぎ耐性が向上しているので、高密度の情報の記録再生が可能な磁気記録媒体となる。

【0087】熱揺らぎ耐性とは、熱揺らぎが起こりにくい特性のことを意味する。熱揺らぎとは、記録ビットが不安定となり記録したデータの熱消失が起こる現象をいい、磁気記録媒体装置においては、記録したデータの再生出力の経時的な減衰として現れる。

【0088】図8は、本発明の磁気記録媒体の第2の実施形態の一例を示すものである。非磁性基板1と軟磁性 30下地膜2との間に、磁化容易軸が主に面内方向を向いた永久磁石膜8を設けた例である。

【0089】永久磁石膜8にはCoSm合金や、CoCrPtX4合金(X4:Pt、Ta、Zr、Nb、Cu、Re、Ni、Mn、Ge、Si、O、N、Bから選ばれるいずれか1種または2種以上。)を用いるのが好適である。

【0090】永久磁石膜8は、保磁力Hcが500 (Oe) 以上(好ましくは1000 (Oe) 以上) であることが好ましい。

【0091】永久磁石膜8の厚さは、150nm以下 (好ましくは70nm以下)であることが好ましい。永 久磁石膜8の厚さが150nmを超えると、配向制御膜 3の表面平均粗さRaが大きくなるため好ましくない。 【0092】永久磁石膜8は、軟磁性下地膜2と交換結 合しており、磁化方向が基板半径方向に向けられた構成

【0093】永久磁石膜8を設けることにより、より効果的に軟磁性下地膜2に時壁で囲まれた巨大な磁区が形成されることを抑えることができるので、磁壁に起因す 50

とするのが好ましい。

るスパイクノイズの発生を防止して、記録再生時のエラ ーレートをより良好にすることができる。

【0094】永久磁石膜8の配向を制御するために、非磁性基板1と永久磁石膜8との間にCr合金材料やB2構造材料からなる膜を設けてもよい。

【0095】上記の実施形態の磁気記録媒体の製造方法の一例を説明する。以上の構成の磁気記録媒体を製造するには、非磁性基板1上にスパッタ法などにより、軟磁性下地膜2を形成し、その後必要に応じてこの軟磁性下地膜2の表面を酸化処理を施し、次いで配向制御膜3、中間膜4、垂直磁性膜5をスパッタ法などにより形成し、次いで保護膜6をCVD法、イオンビーム法、スパッタ法などにより形成する。次いで、ディッピング法、スピンコート法などにより潤滑膜7を形成する。

【0096】なお、上記磁気記録媒体の製造方法において、好ましくは基板1と軟磁性下地膜2との間に永久磁石膜8を形成する工程を含ませることもできる。

【0097】以下工程ごとに説明する。必要に応じて非磁性基板を洗浄して、基板を成膜装置のチャンパ内に設置する。必要に応じて基板は、例えばヒータより100~400℃に加熱される。非磁性基板1上に、軟磁性度5 を各膜の材料と同じ組成の材料を原料とするスパッタターゲットを用いてDC或いはRFマグネトロンスパッタク法により形成する。膜を形成するためのスパッタの条件は例えば次のようにする。形成に用いるチャンバ内は真空度が10°~10′Paとなるまで排気する。チャンパ内に基板を収容して、スパッタガスとして、たとえばArガスを導入して放電させてスパッタ成膜をおこなっ。このとき、供給するパワーは0.2~5kWとし、放電時間と供給するパワーを調節することによって、所望の膜厚を得ることができる。

【0098】軟磁性下地膜2を放電時間と供給するパワーを調節することによって $50\sim400$ nmの膜厚で形成するのが好ましい。

【0099】軟磁性下地膜2を形成する際には、軟磁性 材料からなるスパッタターゲットを用いるのが軟磁性下 地膜を容易に形成できるので好ましい。軟磁性材料とし ては、FeCo系合金(FeCo、FeCoVなど)、 40 FeNi系合金(FeNi、FeNiMo、FeNiC r、FeNiSiなど)、FeAl系合金(FeAl、 FeAlSi、FeAlSiCr、FeAlSiTiR u、FeAlOなど)、FeCr系合金(FeCr、FeCrTi、FeCrCuなど)、FeTa系合金(FeZrNなど)、FeTa系合金、FeMgOなど)、FeZr系合金(FeZrNなど)、FeC系合金、FeN系合金、FeSi系合金、FeP系合金、FeN系合金、FeHf系合金、Fe B系合金、Feを60at%以上含有するFeAlO、 FeMgO、FeTaN、FeZrNを挙げることがで

できる。

きる。さらに、Coを80at%以上含有し、Zr、N B、Ta、Cr、Mo等のうち少なくとも1種を含有 し、アモルファス構造を有している、CoZr系合金、 CoZrNB系合金、CoZrTa系合金、CoZrC r系合金、CoZrMo系合金を好適なものとして挙げ ることができる。

【0100】上記のターゲットは溶製法による合金ター ゲットまたは焼結合金ターゲットである。

【0101】軟磁性下地膜2を形成した後に、その表面 を酸化する工程を含ませるのが好ましい。例えば軟磁性 10 下地膜2を形成した後、酸素を含む雰囲気に曝す方法 や、軟磁性下地膜2の表面に近い部分を成膜する際のプ ロセス中に酸素を導入する方法を挙げることができる。

【0102】軟磁性下地膜2を形成後、配向制御膜を、 放電時間と供給するパワーを調節することによって0. 5~30nm (より好ましくは1~10nm) の膜厚で 形成する。

【0103】配向制御膜を形成する際には、配向制御膜 の材料からなるスパッタターゲットを用いるのが配向制 御膜を容易に形成できるので好ましい。配向制御膜の形 20 成に用いるスパッタ用ターゲットの材料は、Ni-X1 -X2で表される合金であって、Niの含有率が20~ 80at%で、X1がTa、Nb、Hf、Zr、Tiか ら選ばれるいずれか1種または2種以上、X2がB、 C、P、Si、Ge、Ptから選ばれるいずれか1種ま たは2種以上である合金である。

【0104】配向制御膜の形成に用いるスパッタ用ター ゲットの材料は、NiTaC合金、NiNbC合金、N i Ta P合金、Ni Ta P t 合金から選ばれるいずれか 1種であることが好ましい。

【0105】配向制御膜の形成に用いるスパッタ用ター ゲットの材料は、NiとTaとCを含む材料からなり、 x N i - y T a - z C (20 a t % $\leq x \leq$ 80 a t %, 15 a t% \leq y \leq 75 a t%, 0.5 a t% \leq z \leq 50 a t%) で表される組成であることが好ましい。

【0106】配向制御膜3の成膜用のガスに、その上に 設けられる垂直磁性膜を微細化する目的で、酸素や窒素 を導入してもよい。例えば、成膜法としてスパッタ法を 用いるならば、プロセスガスとしては、アルゴンに酸素 を体積率で0.05~50%(好ましくは0.1~20 40 %)程度混合したガス、アルゴンに窒素を体積率で0. 01~20% (好ましくは0.02~10%) 程度混合 したガスが好適に用いられる。

【0107】配向制御膜を形成した後、垂直磁性膜5を 成膜する。垂直磁性膜を形成する際には、垂直磁性膜の 材料からなるスパッタターゲットを用いるのが垂直磁性 膜を容易に形成できるので好ましい。

【0108】スパッタターゲットの材料は、Crの含有 量が14~24 a t%、P tの含有量が14~24 a t

【0109】例えば、Co20Cr16Pt4B (Cr 含有率20at%、Pt含有率16at%、B含有率4 at%) やCo18Cr20Pt4Cu (Cr含有率1 8 a t %、 P t 含有率 2 O a t %、 C u 含有率 4 a t %)、Co19Cr12Pt6Ta2Mo(Cr含有率 19 a t %、P t 含有率12 a t %、T a 含有率6 a t %、Mo含有率2at%)、Col8Cr20Pt2C u2Ru (Cr含有率18at%、Pt含有率20at %、Cu含有率2at%、Ru含有率2at%)の他、 CoCrPtB系合金、CoCrPtTa系合金、Co CrPtTaCu系合金、CoCrPtBCu系合金、 CoCrPtTaNd系合金、CoCrPtBNd系合 金、CoCrPtBW系合金、CoCrPtBMo系合 金、CoCrPtBRu系合金材料を挙げることができ る。

【0110】軟磁性下地膜の配向制御膜と垂直磁性層と の間に中間膜を設ける場合は、CoCr合金(Crの含 有量は25~45at%)を原料としたスパッタターゲ ットを用いるのが好ましい。CoCr合金としては、C oCr合金やCoCrX5合金やCoX5合金(X5: Pt、Ta、Zr、Ru, NB、Cu、Re、Ni、M n、Ge、Si、O、N、Bから選ばれるいずれ1種ま たは2種以上。)を挙げることができる。このとき、垂 直磁性層にBを含む場合には、軟磁性下地膜と垂直磁性 層との境界付近において、B濃度が1 a t %以上の領域 におけるCr濃度が40at%以下となるようなスパッ タ条件で成膜するのが好ましい。

【0111】垂直磁性層を形成した後、公知の方法、例 えばスパッタ法、プラズマCVD法またはそれらの組み 合わせを用いて保護膜、たとえばカーボンを主成分とす る保護膜を形成する。

【0112】さらに、保護膜上には必要に応じパーフル オロポリエーテルのフッ素系潤滑剤をディップ法、スピ ンコート法などを用いて塗布し潤滑膜を形成する。

【0113】本発明に従って製造した磁気記録媒体は、 配向制御膜がNi-X1-X2で表される合金であっ て、Niの含有率が20~80at%で、X1がTa、 Nb、Hf、Zr、Tiから選ばれるいずれか1種また は2種以上、X2がB、C、P、Si、Ge、Ptから 選ばれるいずれか1種または2種以上である磁気記録媒 体であるので、より高記録密度で使用した時の記録再生 特性が向上(例えば、ノイズの低減)しおよび/または 熱減磁耐性が向上しているので、髙密度の情報の記録再 生が可能な磁気記録媒体となる。

【0114】図9は、上記磁気記録媒体を用いた磁気記 録再生装置の例を示すものである。ここに示す磁気記録 再生装置は、磁気記録媒体10と、磁気記録媒体10を 回転駆動させる媒体駆動部11と、磁気記録媒体10に %であるCoCrPtを主成分とする組成とすることが 50 情報を記録再生する磁気へッド12と、へッド駆動部 1

3と、記録再生信号処理系14とを備えている。記録再生信号処理系14は、入力されたデータを処理して記録信号を磁気ヘッド12に送ったり、磁気ヘッド12からの再生信号を処理してデータを出力することができるようになっている。

【0115】磁気ヘッド12としては、垂直記録用の単 としてアルゴンを用い、圧力0. 9 磁極ヘッドを例示することができる。図9(b)に示す ように、この単磁極ヘッドとしては、種磁極12aと、 補助磁極12bと、これら連結部12cに設けられたコ イル12dとを有する構成のものを好適に用いることが 10 体を得た。この内容を表1に示す。できる。 【0120】(比較例1~5) 配成 できる。

【0116】上記磁気記録再生装置によれば、上記磁気記録媒体9を用いるので、熱揺らぎ耐性および/または記録再生特性を高めることができる。従って、本発明の磁気記録再生装置によれば、熱揺らぎによるデータ消失などのトラブルを未然に防ぐとともに、高記録密度化を図ることができる。

[0117]

【実施例】以下、実施例を示して本発明の作用効果を明確にする。ただし、本発明は以下の実施例に限定される 20ものではない。

(実施例1)洗浄済みのガラス基板(オハラ社製、外直径2.5インチ)をDCマグネトロンスパッタ装置(アネルバ社製C-3010)の成膜チャンバ内に収容して、到達真空度1×10 °Paとなるまで成膜チャンバ内を排気した後、このガラス基板上に89Co-42r-7Nb(Co含有量89at%、Zr含有量4at%、Nb含有量7at%)のターゲットを用いて100℃以下の基板温度で200nmの軟磁性下地膜2をスパッタ法により成膜した。この膜の飽和磁束密度Bs

(T)と膜厚t (nm)の積Bs・t (T・nm)が240 (T・nm)であることを振動式磁気特性測定装置 (VSM)で確認した。

【0118】次いで、基板を240℃に加熱して、上記 軟磁性下地膜上に、60Ni-35Ta-5Cターゲットを用いて10nmの配向制御膜3を形成し、65Co-30Cr-5B(Co含有量65at%、Cr含有量30at%、B含有量5at%) ターゲットを用いて5 nmの中間膜4、64Co-17Cr-17Pt-2B (Co含有量64at%、Cr含有量17at%、Pt含有量17at%、Pt含有量17at%、Pt含有量17at%、Pt含有量17at%、Pt含有量17at%、Pt含有量17at%、Pt容有量17at%、Pt容有量17at%、Pt容有量17at%、Pt容有量17at%、Pt容易有量2at)ターゲットを用いて20nmの垂直磁性膜5を順次形成した。なお、上記スパッタリング工程においては、成膜用のプロセスガスとしてアルゴンを用い、圧力0.5Paにて成膜した。【0119】次いで、CVD法により5nmの保護膜6を形成した。次いで、ディッピング法によりパーフルオロポリエーテルからなる潤滑膜7を形成し、磁気記録媒

【0120】 (比較例1~5) 配向制御膜3の成膜において、65Ni-35Taターゲット (比較例1)、60Ru-40Coターゲット (比較例2)、Cターゲット (比較例3)、10Ni-70Ta-20Cターゲット (比較例4)、85Ni-10Ta-5Cターゲット (比較例5)を用いた以外は、実施例1に準じて磁気記録媒体を作製した。この内容を表1に示す。

【0121】(実施例2~17)表1に示したように配向制御膜3の組成と厚さを変えた以外は、実施例1に準じて磁気記録媒体を作製した。これら実施例および比較例の磁気記録媒体について、記録再生特性を評価した。記録再生特性の評価は、米国GUZIK社製リードライトアナライザRWA1632、およびスピンスタンドS1701MPを用いて測定した。記録再生特性の評価には、書き込みをシングルポール磁極、再生部にGMR素子を用いたヘッドを用いて、記録周波数条件を記録密度520kFCIとして測定した。

【0122】熱揺らぎ特性(熱揺らぎ耐性、熱減磁)の評価は、70℃の条件下で記録密度50kFCIにて書30 き込みをおこなった後、書き込み後1秒後の再生出力に対する出力の減衰率を(So-S)×100/(So×3)に基づいて算出した。この式において、Soは磁気記録媒体に書き込み後1秒経過時の再生出力を示し、Sは1000秒後の再生出力を示す。これらの評価結果を表1に示す。

[0123]

【表1】

	軟磁性下地膜		T3-5445-15	4 00	_	经应磁性院 配合其生									
			配向針如膜	.	中間		整厚磁	19.53	配録再生特性	職権らぎ特性		89 E	故気特性		
ł	合金種		相成	厚さ	組成	直さ	組成	厚さ	エラーレート		He	Mr/Ma	-Hn	⊿Hc/Hc	⊿ 850
		(T·nm)	(mt%)	(nm)	(at%)	(nm)	(at%)	(nm)	(10x)	(%/decade)	(O+)	ļ	(00)		(*)
突旋例1	CoZrNb	240	60Ni-35Ta-5C	8	(+1)	5	(+2)	20	5. 7	-0. 7	4255	1	500	0. 24	5. 1
実施例2	CoZrNb	240	50NI-23Ta-27C	8	(+1)	6	(+2)	20	-5. 3	-0. 8	4090	0. 99	300	0. 29	8. 2
実施例3	C ₀ Z _r N _b	240	60Ni-39, 3Ta-0, 7C	8	(+1)	8	(* 2)	20	-5. 4	-0. 7	4306	1	500	0. 22	
突遊例4	CoZrNb	240	25NI-65Ta-10C	8	(+1)	5	(+2)	20	-6. 5	-0.8	4190	7	400	0. 25	
实施例5	CoZrNb	240	78Ni-20Ta-2C	8	(+1)	6	(+2)	20	-6. 7	-0. 7	4310	1	500	0. 25	
突旋例B	CoZANb	240	70NI-17Ta-13C	8	(+1)	5	(+2)	20	-5. 3	-0. 9	4110	1	250	0. 27	
实监例7	CoZrNb	240	22Ni-73Ta-5C	8	(+1)	5	(+2)	20	-5. 2	-D. 7	4175	1	400	0. 24	
実施例8	CoZrNb	240	60NI-35Nb-5C	8	(+1)	5	(+2)	20	-5. 6	-0. 7	4390	1	450	0. 22	
実拡例9	СоZль	240	60Ni-30Ta-10P	8	(+1)	6	(#2)	20	-5. 7	-0.9	4085	1	400	0. 25	6. 7
実施例10	CoZrNb	240	66Ni-35Ta-10Si	8	(+1)	5	(* 2)	.20	-6. 2	-0.8	3790	0. 98	250	0. 28	6. 1
突施例11	CoZrNb	240	55Ni-35Ta-10Ge	8	(*1)	5	(* 2)	20	-в. з	-0.8	3980	0. 98	300	0. 22	5. 9
実施例12	CoZrNb	240	60Ni-35Te-5Pt	В	(+1)	6	(+2)	20	-5. 4	-O. 6	4290	1	400	0. 24	5. 2
実施例13	C ₀ ZrNb	240	60N1-35Zr-5C	8	(+1)	6	(+ 2)	20	-5. 3	-0. 9	4175	1	450	0. 26	
実施例14	CoZrNb	240	60Ni-35Ta-5C	1	(+1)	5	(+ 2)	20	-5. 4	-0. 9	3990	0. 98	400	0. 29	
実施例15	CoZrNb	240	60Ni-35Ta-5C	18	(+1)	6	(+2)	20	-5, 6	· -0. 8	4225	1	400	0. 25	
突施例16	CoZrNb	240	60Ni-35Ta-5C	28	(+1)	5	(* 2)	20	-5. 3	O. 9	4190	1	350	0. 27	
実施例17	CoZrNb	240	60Ni-35Ta-5C	50	(+1)	- 5	(+2)	20	-6. 1	-0. 9	3880	0. 97	250	0. 27	
比较例1	CoZMb	240	65NI-35Ta	8	(+1)	5	(+2)	20	-4. B	-0.9	4250	1	400	0. 23	5. 3
比較例2	CoZrNb	240	60Ru-40Co	10	(+1)	5	(+2)	20	-3. 2	-1.7	3955	0. 91	マイナス値	0.44	13. 1
比較例3	СоZгNЪ	240	С	10	(+1)	6	(+2)	20	-2.1	-2.7	3590		マイナス値		12. 4
比較例4	CoZrNb	240	10Ni-70Ta-20C	8	(+1)	5	(*2)	20	-4. 4	-1. 1	3760	0. 91	100	0. 35	
比較例5	CoZrNb	240	85N6-10Ta-5C	8	(+1)	5	(= 2)	20	-3. 9	-1. 1	3300	0.81	マイナス値		

- (*1) 中間膜の組成は、65Co-30Cr-5B とした。
- (*2) 垂直磁性膜の組成は、64Co-17Cr-17Pt-28 とした。

【0124】表1より、配向制御膜3がxNi-X1- $X \ 2 \ (2 \ 0 \ a \ t \% \le x \le 8 \ 0 \ a \ t \%, \ X \ 1 = T \ a \ N$ b、Hf、Zr、Tiから選ばれたいずれか1種または 2種以上。X2=B、C、P、Si、Ge、Ptから選 ばれたいずれか1種または2種以上。) からなる合金で ある実施例は優れた記録再生特性を示した。

【0125】表1より、配向制御膜3がxNi-X1-X2 (20at%≦x≦80at%。X1=4A族の元 30 素、5A族の元素から選ばれたいずれか1種または2種 以上。X2=3B族の元素、4B族の元素、Ptから選 ばれたいずれか1種または2種以上。) からなる合金で ある実施例は優れた記録再生特性を示した。

【0126】配向制御膜3がNiTaC合金、NiNb C合金、NiTaP合金、NiTaPt合金から選ばれ

たいずれかの合金である実施例はより優れた記録再生特 性を示した。

【0127】配向制御膜3がxNi-yTa-zC (2 $0 \text{ a t } \% \le x \le 80 \text{ a t } \%, 15 \text{ a t } \% \le y \le 75 \text{ a t}$ %、0. 5 a t % ≤ z ≤ 3 0 a t %。) からなる合金で ある実施例はより優れた記録再生特性を示した。

【0128】(実施例18~23)垂直磁性膜5を表2 に示すとおりとした以外は、実施例1に準じて磁気記録 媒体を作製した。これらの実施例および比較例の磁気記 録媒体について、記録再生特性を評価した。評価結果を 表2に示す。

[0129]

【表2】

	軟磁性	下地膜	配向制	部膜	中間	臒	垂直磁性膜		記録再生特性	熟据らぎ特性	静磁気特性			
	合会種	Bs×t	組成	厚さ	組成	厚さ	組成	厚さ	エラーレート	·	Нс	Mr/Ma	-Hn	
		(T•nm)	(at%)	(nm)	(at%)	(nm)	(at%)	(nm)	(10x)	(%/decade)	(Oa)		(Oe)	
実施例1	CoZrNb	240	(* 3)	8	(+4)	5	64Co-17Cr-17Pt-2B	20	-5. 7	-0.7	4255	1	500	
実施例18	CoZrNb	240	(* 3)	8	(+4)	5	66Ca-15Cr-17Pt-2B	20	-5	-0.4	4165	1	700	
実施例19	CoZrNb	240	(+3)	8	(+4)	5	59Co-24Cr-17Pt	20	-5. 4	-0.9	3995	0. 99	100	
実施例20	CoZrNb	240	(* 3)	8	(*4)	5	67Co-19Cr-14Pt	20	~5. 1	-0.9	4050	0. 96	50	
実施例21	CoZrNb	240	(+3)	8	(+4)	5	58Co-19Cr-23Pt	20	-5	-0.8	3900	1	450	
実施例22	CoZrNb	240	(+3)	8	(+4)	5	65Co-17Cr-17Pt-1!r	20	-5. 2	-0.7	4100	1	500	
実施例23	CoZrNb	240	(* 3)	8	(*4)	5	64Co-17Cr-17Pt-2W	20	-5, 6	-0.5	4510	1	750	

- (*3) 配向制御膜の組成は、60NI-35Ta-5C とした。
- (*4) 中間膜の組成は、65Co-30Cr-5B とした。
- 【0130】表2より、Crの含有量が14~26a t %、Ptの含有量が14~24at%である磁気記録媒 体は、優れた磁気特性を示すことが分かる。保磁力(H50(Mr)と飽和磁化(Ms)との比Mr/Msが0.8
 - c) が3000 (Oe) 以上、逆磁区核形成磁界 (-H n) が0 (Oe) 以上2500 (Oe) 以下、残留磁化

24

5以上である実施例は優れた磁気特性を示すことが分かる。

【0131】(実施例24~30) 軟磁性下地膜2の組成を表3に示すとおりとした以外は、実施例1に準じて磁気記録媒体を作製した。これらの実施例の磁気記録媒

体について、記録再生特性を評価した。評価結果を表3 に示す。

[0132]

【表3】

	軟磁性下地膜		配向制御膜		中間膜		垂直磁性膜		記錄再生特性	熱揺らざ特性	静磁気特性		
	合金種	Be×t	組成	厚さ	組成	厚さ	組成	厚さ	エラーレート		Hc.	Mr/Ms	-Hn
		(T·nm)	(at%)	(nm)	(at%)	(nm)	(at%)	(nm)	(10x)	(%/decade)	(Oe)		(Oe)
実施例1	CoZrNb	240	(* 5)	8	(+6)	5	(*7)	20	-6. 7	-0.7	4255	1.	500
実施例24	CoTaZr	240	(* 5)	8	(* 6)	5	(*7)	20	-5. 5	-0.7	4300	1	450
実施例25	FeAISI	240	(* 5)	8	(* 6)	5	(*7)	20	-4. 6	-0.6	4275	1	500
実施例26	FeTaC	240	(* 5)	8	(+ 6)	5	(*7)	20	-6. 3	-0.7	4190	1	400
実施例27	FeAIO	240	(* 5)	8	(* 6)	5	(+'7)	20	-5. 7	-0.7	4390	1	450
実施例28	CoZrNb	5	(* 5)	8	(*6)	5	(*7)	20	-4. 2	-0.8	4285	1	400
実施例29	CoZrNb	50	(* 5)	8	(+6)	5	(*7)	20	-4. 5	-0.7	4195	1	400
実施例30	CoZrNb	400	(* 5)	8	(.+6)	5	(+7)	20	· -5. 7	-0.6	4345	1	500

- (*5) 配向制御膜の組成は、60Ni-35Ta-5C とした。
- (*6) 中間膜の組成は、65Co-30Cr-5B とした。
- (*7) 垂直磁性膜の組成は、64Co-17Cr-17Pt-2B とした。

【0133】表3より、軟磁性下地膜2を設けることにより、優れた記録再生特性を得ることができたことが分かる。

【0134】 (実施例31~37) 中間膜4の材料およびその厚さを表4に示すとおりとした以外は、実施例1

に準じて磁気記録媒体を作製した。これらの実施例の磁 気記録媒体について、記録再生特性を評価した。評価結 果を表 4 に示す。

[0135]

【表4】

	軟磁性	下地膜	配向制	御膜	中間膜		垂直磁	生膜	記録再生特性 熱播らぎ特性		Ŕ	争磁気特性	Ė
•	合金種	Bs×t	組成	厚さ	組成	厚さ	組成	厚さ	エラーレート	•	Hc	Mr/Ms	-Hn
•		(T·nm)	(at%)	(nm)	(at%)	(nm)	(at%)	(nm)	(10x)	(%/decade)	(Oe)		(Oa)
実施例1	CoZrNb	240	(*8)	8.	65Co-30Cr-5B	5	(*9)	20	-5. 7	-0.7	4255	1	500
実施例31	C ₀ Z _r N _b	240	(*8)	8	65Co-30Cr-5Pt	5	(+9)	20	-5.5	 0. 6	4220	1	450
実施例32	CoZrNb	240	(*8)	8	54Co-28Cr-10Pt-8B	5	(*9)	20	-5, 7	-o. e	4355	1	450
実施例33	CoZrNb	240	(*8)	8	60Co-40Ru	5	(*9)	20	-5. 4	-о. в	4145	1	200
実施例34	CoZrNb	240	(*8)	8	55Co-45B	5	(+9)	20	-5. 8	-0. 9	4490	1	250
実施例35	CoZrNb	240	(* 8)	8	_	-	(*9)	20	-5. 2	-0. 9	3996	0. 96	150
実施例36	CoZrNb	240	(+8)	8	65Co-30Cr-5B	15	(+9)	20	-5. 6	- 0. 5	4420	0. 99	350
実施例37	CoZrNb	240	(*8)	8	65Co-30Cr-5B	40	(*9)	20	-5	-0. в	4135	0. 95	100

- (*8) 配向制御膜の組成は、60Ni-35Ta-5C とした。
- · (*9) 垂直磁性膜の組成は、64Co-17Cr-17Pt-2B とした。

【0136】表4より、優れた記録再生特性が得られたことが分かる。

【0137】(実施例38~40)非磁性基板1と軟磁性下地膜2との間に永久磁石膜8を表5に示すとおり設けた以外は、実施例1に準じて磁気記録媒体を作製し

た。これらの実施例の磁気記録媒体について、記録再生 40 特性を評価した。評価結果を表5に示す。

[0138]

【表5】

	永久磁石膜		軟磁性下地膜		配向制御鹽		中間額		遊直磁性膜		紀錄再生特性	機器らぎ特性	静磁気特性			スパイクノイス	
	組成	厚さ	合金種	Be×t	組成	厚さ	組成	厚さ	組成	輝さ	エラーレート		Но	Mr/Ms	-Hn	免生状况	
	(bt%)	(nm)		(T•nm)	(at%)	(nm)	(at%)	(nm)	(at%)	(nm)	(10x)	(%/decado)	(O ₀)		(Oe)		
実施例1	-	_	CoZrNb	240	(* 10)	8	(*11)	6	(*12)	20	-5. 7	-0. 7	4255	1	500	外周少し有り	
実施例38	84Co-20Cr-14Pt-2E	50	CoZrNb	240	(+10)	8	(+11)	6	(+12)	20	-5. 6	-0. 7	4255	1	450	無し	
実施例39	84Co-20Cr-14Pt-28	150	CoZrNb	240	(+10)	8	(*11)	6	(*12)	20	−5. 6.	-0. 7	4265	1	500	無し	
突施例40	84Co-166m	50	CoZrNb	240	(* 10)	8	(+11)	5	(+ 12)	20	-6. 7	-0. в	4176	1	500	無し	

- (*10) 配向制御膜の組成は、60Ni-35Ta-5C とした。
- (*11) 中間膜の組成は、65Co-30Cr-5B とした。
- (*12) 垂直磁性膜の組成は、84Co-17Cr-17Pt-2B とした。

【0139】表5より、永久磁石膜8を設けたものは、 記録再生特性を悪化させることなく、軟磁性下地膜2の 磁壁起因のスパイク状ノイズの発生を抑えることができ た。

[0140]

【発明の効果】以上説明したように、本発明の磁気記録媒体にあっては、非磁性基板上に、少なくとも軟磁性下地膜と直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護膜が設けられ、前記配向制御膜がNi-X1-X2で表される合金であって、Niの含有率が20~80at%で、X1がTa、Nb、Hf、Zr、Tiから選ばれるいずれか1種または2種以上、X2がB、C、P、Si、Ge、Ptから選ばれるいずれか1種または2種以上であるので、記録再生特性が向上しおよび/または熱揺らぎ耐性が向上するので、高記録密度に適した磁気記録媒体となる。

【図面の簡単な説明】

【図1】本発明の磁気記録媒体の第1の実施形態の一例 30 補助磁極、12c:連結部、12d:コイル、13:へを示す1部断面図である。 ッド駆動部、14:記録再生信号処理系

【図1】

【図5】

【図2】逆磁区核形成磁界 (-Hn) の一例を示すグラフである。

【図3】逆磁区核形成磁界 (-Hn) の他の例を示すグラフである。

【図4】 Δ H c \angle H c の一例を示すグラフである。

【図5】△050の測定方法を説明する説明図である。

【図6】△050の測定方法を説明する説明図である。

【図7】ロッキング曲線の一例を示すグラフである。

【図8】本発明の磁気記録媒体の第2の実施形態の一例 を示す1部断面図である。

【図9】本発明の磁気記録再生装置の1例を示す概略図であり、(a)は全体構成を示し、(b)は磁気ヘッドを示す。

【符号の説明】

1:非磁性基板、2:軟磁性下地膜、3:配向制御膜、4:中間膜、5:垂直磁性膜、6:保護膜、7:潤滑膜、8:永久磁石膜、10:磁気記録媒体、11:媒体駆動部、12:磁気ヘッド、12a:主磁極、12b:補助磁極、12c:連結部、12d:コイル、13:ヘッド駆動部、14:記録再生信号処理系

【図2】

フロントページの続き

(51) Int. Cl.	"		FΙ	テーマコート'(谷	考)
H 0 1 F	10/16		H 0 1 F	10/16	
	10/28			10/28	
	10/30			10/30	
	41/18			41/18	
(72)発明者	國分 誠人		(72)発明者	酒井 浩志	
	千葉県市原市八幡海岸通り5番の1	昭和		千葉県市原市八幡海岸通り5番の1	昭和
	電工エイチ・ディー株式会社内			電工エイチ・ディー株式会社内	
(72)発明者	望月 寛夫		Fターム(参	考) 5D006 BB01 BB06 BB07 CA01 CA03	
	千葉県市原市八幡海岸通り5番の1	昭和		CA05 CA06 DA03 DA08 FA09)
	電工エイチ・ディー株式会社内			5D112 AAO3 AAO4 AAO5 AA24 BBO1	
				BB06 BD03 FA04	
				5E049 AA01 AA04 AA09 AC05 BA08	:
				CB01 DB02 DB12 GC01	