

SpaceX launch analysis

L. Vidal

22.10.2023

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Statistic Analysis of previous launches to understand patterns and trends influencing the launch success
- Visualisation of data from previous launches
- Model development for predicting launch success

INTRODUCTION

- Launching a space rocket is a risky and expensive initiative, data analysis can help to understand the factors that maximize the launch success
- Data from previous launches is publicly available and can be analysed with Data Science techniques
- Predictions models can be build based on historical data

METHODOLOGY

- Data collection
- Data wrangling
- Exploratory data analysis
- Prediction models: training and evaluation

Exemple of data collected

In [2]: df=pd.read_csv("https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/datase df.head(10)

Out[2]: ar Date BoosterVersion PayloadMass Orbit LaunchSite Outcome Flights GridFins Reused Legs LandingPad Block ReusedCount Serial Longitude

In	[4]:	df.dtypes		
Out	[4]:	FlightNumber Date BoosterVersion PayloadMass Orbit LaunchSite Outcome Flights GridFins Reused Legs LandingPad Block ReusedCount Serial Longitude Latitude dtype: object	int64 object object object object int64 bool bool object float64 int64 object float64 float64	

Out[2]:	er:	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude
	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366
	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366 :
	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366
	4	2013- 09-29	Falcon 9	500.000000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829 ;
	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366
	6	2014- 01-06	Falcon 9	3325.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1005	-80.577366 ;
	7	2014- 04-18	Falcon 9	2296.000000	ISS	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1006	-80.577366
	8	2014- 07-14	Falcon 9	1316.000000	LEO	CCAFS SLC 40	True Ocean	1	False	False	True	NaN	1.0	0	B1007	-80.577366
	9	2014- 08-05	Falcon 9	4535.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1008	-80.577366
	0	2014- 09-07	Falcon 9	4428.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1011	-80.577366

Sources and methodology

SpaceX API: read data from public API

Wikipedia: Webscraping HTML tables

Statistics using SQL

**Sql select Landing_Outcome, count(Landing_Outcome) as count_landing
from SPACEXTABLE
where Date between '2010-06-04' and '2017-03-20'
group by Landing_Outcome
order by count_landing desc

* sqlite:///my_data1.db
Done.

Landing_Outcome count_landing

No attempt 10
Success (ground pad) 5
Success (drone ship) 5
Failure (drone ship) 5
Controlled (ocean) 3
Uncontrolled (ocean) 2
Precluded (drone ship) 1
Failure (grarachute) 1

List of launchsites
Boosters with maximum payload
Statistics for landing outcomes

Launch locations

Locations near the coastline and near facilities as airports, roads, cities, etc. Launch failures can have a tremendous impact on population and infrastructure

Overview of past success launches

Launch success have improved since 2013
All launch sites have a history of succesful and unsuccesful launches

Application for interactive analysis

Launch success per site

Payload range selection for class statistics

Predictive analysis

The tree model is the best fit for training data, but it gives the lowest performance with the test data

Specially costly are the false positives: launch predicted as succesful when it is not

Train 0.846429 0.848214 0.875000 0.848214

Test 0.833333 0.83333 0.666667 0.833333

Conclusions

- Data Science can contribute to the preparation work for rocket launch, analysing pattern behind the data collected from the previous launches
- Predictions models can be built with a high accuracy, nevertheless the cost behind false positives should be integrated in future versions of the models

Special thanks

- Teacher staff for valuable inputs in the discussion forums
- Peers that have shared questions and answers in the forums
- Peers for the promptly and constructive peer review