

LOG1810 STRUCTURES DISCRÈTES

TD 12: MODÉLISATION COMPUTATIONNELLE

H2025

SOLUTIONNAIRE

Exercice 1:

Partie A

Pour chacune des grammaires ci-dessous, déterminez leur type en justifiant vos réponses, en commençant par les grammaires de type 3 et en progressant vers celles moins restrictives.

a) Considérez la grammaire $G_1 = (V_1, T_1, S, P_1)$ où $V_1 = \{a, b, S, A, B\}$ et $T_1 = \{a, b\}$. L'axiome est S, et l'ensemble des règles de production P_1 est le suivant :

$$S \rightarrow aA$$

$$A \rightarrow bB \mid b$$

$$B \rightarrow bA \mid \epsilon$$

Solution

- Type 3 : Elle n'est pas de type 3 à cause de la présence de la règle de production $B \to \epsilon$. Dans une grammaire de Type 3, seule l'axiome est autorisé à produire une chaîne vide.
- Type 2 : Elle est de type 2, car tous les symboles à gauche dans les productions sont des symboles uniques non terminaux.

Conclusion : G_1 est de type 2.

b) Considérez la grammaire $G_2 = (V_2, T_2, S, P_2)$ où $V_2 = \{a, b, S, A, B\}$ et $T_2 = \{a, b\}$. L'axiome est S, et l'ensemble des règles de production P_2 est le suivant :

$$S \rightarrow aA \mid \epsilon$$

$$A \rightarrow bB$$

$$B \rightarrow bA \mid a \mid b$$

Solution

- Type 3 : Elle est de type 3 car toutes les règles de production sont de la forme $w_1 \rightarrow a \mid aA \ ou \ S \rightarrow \epsilon$.

Conclusion : G_2 est de type 3.

c) Considérez la grammaire $G_3 = (V_3, T_3, S, P_3)$ où $V_3 = \{a, b, S, A, B\}$ et $T_3 = \{a, b\}$. L'axiome est S, et l'ensemble des règles de production P_3 est le suivant :

$$S \rightarrow AB$$

$$AB \rightarrow BA$$

$$A \rightarrow b$$

$$B \rightarrow a$$

Solution

- Type 3 : Elle n'est pas de type 3 car certaines des règles de production ne sont pas de la forme $w_1 \to a \mid aA \ ou \ S \to \epsilon \ (S \to AB \ et \ AB \to BA)$.
- Type 2 : Elle n'est pas de type 2, à cause de la présence de la règle de production $AB \to BA$, où la partie gauche n'est pas un symbole unique non terminal.
- Type 1 : Elle n'est pas de type 1, à cause de la présence de la règle de production $AB \to BA$, la règle de production ne respecte pas $\alpha A\beta \to \alpha \gamma \beta$.
- Type 0 : Comme la grammaire n'est pas de type 1,2 ou 3, alors elle est de type 0.

Conclusion : G_3 est de type 0.

Partie B

Déterminez si la chaine $w_1 = abbba$ peut être générés par les grammaires G_1 , G_2 et G_3 .

Solution

La grammaire G_1 ne génère pas le mot w_1 . Pour montrer cela, nous analyserons les contraintes imposées par la grammaire.

La grammaire G_1 impose de commencer avec un a ($S \to aA$). Ensuite, il n'est plus possible d'avoir un autre a. Les autres règles ne permettent que d'ajouter que des b à la séquence, il ne sera donc pas possible de terminer la séquence par un a.

La grammaire G_2 peut générer le mot w_1 . Il est possible de procéder par la chaîne de dérivation ou l'arbre de dérivation pour le montrer.

Chaine de dérivation

$S \rightarrow aA$	
$S \rightarrow abB$	$(A \rightarrow bB)$
$S \rightarrow abbA$	$(B \rightarrow bA)$
$S \rightarrow abbbB$	$(A \rightarrow bB)$
$S \rightarrow abbba$	$(B \rightarrow a)$

Arbre de dérivation

La grammaire G_3 ne génère pas le mot w_1 . Pour montrer cela, nous analyserons les contraintes imposées par la grammaire.

La grammaire G_3 permet de générer uniquement 2 mots : ab et ba. Effectivement, nous avons d'abord $S \to AB$. Il y a ensuite deux possibilités. La première est d'utiliser directement les règles $A \to b$ et $B \to a$, ce qui engendre le mot ba. Il y a ensuite la deuxième possibilité qui est d'utiliser la règle $AB \to BA$ puis $A \to b$ et $B \to a$ ce qui donnent le mot ab. Ainsi, il n'est pas possible de générer le mot $w_1 = abbba$ à partir de la grammaire G_3 .

Exercice 2

Pour chacun des langages suivants, construisez un automate fini déterministe le reconnaissant. Considérez l'ensemble des symboles terminaux $I = \{a, b\}$. Donnez ensuite l'expression régulière représentant ce langage. Justifiez vos réponses.

a) Le langage des mots qui contient un nombre de $a \equiv 1 \mod(4)$.

Solution

Considérons 4 états possibles. L'état correspondant à un nombre de a divisible par 4 (nombre de a congru à 0 modulo 4) : s_0 . L'état correspondant à un nombre de a congru à 1 modulo 4 : s_1 .L'état correspondant à un nombre de a congru à 2 modulo 4 : s_2 . Et finalement l'état s_4 qui correspond à un nombre de a congru à 3 modulo 4. Le seul état terminal est l'état s_1 car le seul état ayant nombre de $a \equiv 1 \mod (4)$.

Initialement, nous avons zéro a, ce qui est un nombre de a divisible par 4. L'état de départ est donc s_0 . On reste à s_0 tant qu'on n'ajoute pas un a. Ensuite, quand on ajoute un a, on passe à l'état s_1 , qui est terminal, et on reste à cet état tant que l'on n'ajoute pas un autre a.

Si on ajoute un autre a, on passe à l'état s_2 et comme précédemment, on reste à s_2 tant que l'on n'ajoute pas un nouveau a. On passe à s_3 si l'on ajoute de nouveau un a. Finalement, on passe à l'état s_0 à l'ajout d'un autre a et ainsi de suite.

L'automate fini est donc simplement :

Le langage reconnu est donc :

 $L = b^*ab^*\{b^*ab^*ab^*ab^*ab^*\}^*$

b) Le langage des mots qui commence par a suivi d'une chaine de caractère contenant un nombre pair de b.

Solution

Nous aurons besoins de 4 états.

- Un état de départ s_0 .
- Un état « poubelle » s_3 qui boucle sur lui-même dans le cas où le premier caractère de la séquence est un b.
- Un état s_1 correspondant à un nombre de b pair (état terminal).
- Un état s_2 correspondant à un nombre de b impair.

L'automate fini est donc simplement :

Le langage reconnu est donc :

$$L = a^+ \{ba^*ba^*\}^*$$

Exercice 3:

Pour les langages suivants, proposez une grammaire G = (V, T, S, P) qui engendre le langage. Précisez V, T, S et P.

a) Soit le langage construit sur l'alphabet $I = \{a, b\}$ qui ne contient qu'un seul a. Proposez une grammaire de type 3.

Solution *

```
G = (V, T, S, P)

V = \{a, b, A, S\}

T = \{a, b\}

S \text{ est l'axiome}

P \text{ est constitué des productions suivantes}:

S \rightarrow bS \mid aA \mid a \mid \epsilon

A \rightarrow bA \mid b
```

b) Soit le langage $L_2 = \{a^n b^m \mid n \neq m\}$ construit sur l'alphabet $I = \{a, b\}$.

Solution *

```
G = (V, T, S, P)

V = \{a, b, A, B, S\}

T = \{a, b\}

S \text{ est l'axiome}

P \text{ est constitué des productions suivantes}:

S \rightarrow A \mid B

A \rightarrow aAb \mid aA \mid a

B \rightarrow aBb \mid bB \mid b
```

Explications:

- A gère les mots où n>m. La règle $A\to aAb$ permet d'ajouter le nombre m de b en s'assurant d'ajouter le même nombre de a. Les autres règles de A permettent d'ajouter un nombre de a supplémentaire afin d'avoir n>m.
- B gère les mots où n < m. La règle $B \to aBb$ permet d'ajouter le nombre n de a en s'assurant d'ajouter le même nombre de b. Les autres règles de B permettent d'ajouter un nombre de b supplémentaire afin d'avoir n < m.

^{*}plusieurs solutions sont possibles.

^{*}plusieurs solutions sont possibles.

c) Soit le langage $L_3 = \{a^n b^m c^k \mid n = m \text{ ou } m = k\}$ construit sur l'alphabet $I = \{a, b, c\}$.

Solution *

$$G = (V, T, S, P)$$

 $V = \{a, b, c, A, B, C, D, S\}$
 $T = \{a, b, c\}$
 $S \text{ est l'axiome}$

P est constitué des productions suivantes :

$$S \rightarrow AB \mid CD$$

$$A \rightarrow aAb \mid \epsilon$$

$$B \rightarrow cB \mid \epsilon$$

$$C \rightarrow aC \mid \epsilon$$

$$D \rightarrow bDc \mid \epsilon$$

Explications:

Le langage L_3 contient toutes les chaînes de la forme $a^nb^mc^k$ telles que le nombre de a est égal au nombre de b, ou le nombre de b est égal au nombre de c.

Ce langage peut être vu comme l'union de deux sous-langages :

- $L_{3,1} = \{a^n b^n c^k \mid n, k \in \mathbb{N}\}$ - $L_{3,2} = \{a^n b^k c^k \mid n, k \in \mathbb{N}\}$

La branche $S \to AB$ traite le premier cas. A permet d'ajouter le même nombre de a et b. B permet ensuite d'ajouter un nombre quelconque de c.

La branche $S \to CD$ traite le deuxième cas. C permet d'ajouter un nombre quelconque de a. D permet ensuite d'ajouter le même nombre de b et c.

Exercice 4:

Transformez en automate déterministe l'automate suivant.

Solution

Table d'états-transition de l'automate initial :

États	Entrées	
	0	1
$ ightarrow S_0$	$\{S_4\}$	{S ₁ }
S_1	$\{S_6\}$	$\{S_2\}$
S_2	$\{S_3, S_7\}$	Ø
S_3	Ø	$\{S_3, S_7\}$
S_4	$\{S_1, S_5\}$	{S ₀ }
\mathcal{S}_5	{S ₆ }	$\{S_2\}$
S_6	$\{S_3, S_7\}$	Ø
← S ₇	Ø	$\{S_3, S_7\}$

Table d'états-transition de l'automate déterministe :

États	Entrées	
	a	b
$ ightarrow \{S_0\}$	$\{S_4\}$	$\{S_1\}$
{ S ₄ }	$\{S_1, S_5\}$	$\{S_0\}$
{ S ₁ }	$\{S_6\}$	$\{S_2\}$
$\{S_1, S_5\}$	$\{S_6\}$	$\{S_2\}$
{ S ₆ }	$\{S_3, S_7\}$	Ø
$\{S_2\}$	$\{S_3, S_7\}$	Ø
$\leftarrow \{S_3, S_7\}$	Ø	$\{S_3, S_7\}$

L'automate est :

