Page 2

Amendments to the Claims

1. (Currently Amended) A compound represented by the structure of formula 1:

wherein R is a residue of a hydroxamic acid derivative histone deacetylase inhibitor; and R_a is represented by the structure:

wherein R_b is a hydrogen or an unsubstituted or substituted ethyl, isopropyl, butyl, isobutyl, see-butyl, t-butyl, alkynyl, <u>naphthylaryl</u>, cycloalkyl, heterocyclyl, heteroaryl, alkylaryl, alkylcycloalkyl, alkylheterocyclyl, alkylheteroaryl or an amino acid residue; R_c is a hydrogen or an unsubstituted or substituted alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclyl, heteroaryl, alkylaryl, alkylcycloalkyl, alkylheterocyclyl, alkylheteroaryl or an amino acid residue and

R_d is hydrogen or an amino protecting group;

or a pharmaceutically acceptable salt thereof.

 (Currently Amended) The compound according to claim 1, wherein R_b is a hydrogen, ethyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, phenyl, benzyl, alkylphenyl, napththyl or pyridyl;

 R_c is a hydrogen, methyl, ethyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, phenyl, benzyl, alkylphenyl, napththyl or pyridyl.

 (Currently Amended) The compound according to claim 1, wherein R_a is selected from the group consisting of:

Page 3

and wherein m is an integer of 1 to 10.

4. (Previously Presented) A compound represented by the structure:

$$R_2$$
 R_2 R_1 C CH_2 CH_2

wherein each of R₁ and R₂ are independently the same as or different from each other and are a hydrogen atom, a hydroxyl group, a substituted or unsubstituted, branched or unbranched alkyl, alkenyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkylcycloalkyl, alkylaryl, alkylheterocyclyl, alkylheteroaryl, arylalkyloxy, aryloxy, or pyridine group, or R₁ and R₂ are bonded together to form a nitrogen containing heterocyclic ring optionally containing one or more additional heteroatoms, and n is an integer of 4 to 8;

Ra is represented by the structure:

wherein R_b and R_c are independently of each other a hydrogen or an unsubstituted or substituted alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclyl, heteroaryl, alkylaryl, alkylcycloalkyl, alkylheterocyclyl, alkylheteroaryl or an amino acid residue; and R_d is hydrogen or an amino protecting group.

(Currently Amended) The compound according to claim 41, represented by the structure:

Page 4

 R_b and R_e are independently of each other a hydrogen, methyl, ethyl, isopropyl, butyl, isobutyl, seebutyl, t-butyl, phenyl, benzyl, alkylphenyl, napththyl or pyridyl;

wherein n is an integer of 4 to 8.

6. (Previously Presented) The compound according to claim 5, represented by the structure:

Ra is selected from the group consisting of:

and wherein m is an integer of 1 to 10.

- Cancelled.
- Cancelled.
- 9. (Previously Presented) The compound according to claim 1, represented by the structure:

Serial No.: 10/594,483

Merck Case: 21826YP Page 5

wherein R_1 is a substituted or unsubstituted phenyl, piperidino, thiazolyl, 2-pyridinyl, 3-pyridinyl or 4-pyridinyl and n is an integer of 4 to 8.

11. (Previously Presented) The compound according to claim 1, represented by the structure:

$$R_1$$
— HN — C — NH — $(CH_2)n$ — C — N — OR_a

wherein R_1 is a substituted or unsubstituted phenyl, piperidino, thiazolyl, 2-pyridinyl, 3- pyridinyl or 4-pyridinyl and n is an integer of 4 to 8.

12. (Previously Presented) The compound according to claim 1, represented by the structure:

$$R_1 \longrightarrow A \qquad (CH_2)_n \longrightarrow CR_0$$

$$R_2 \longrightarrow A \qquad (13)$$

wherein A is an amide moiety, R₁ and R₂ are each selected from substituted or unsubstituted aryl, arylalkyl, naphthyl, cycloalkyl, cycloalkylamino, pyridineamino, piperidino, 9-purine-6-amino, thiazoleamino, hydroxyl, branched or unbranched alkyl, alkenyl, alkyloxy, aryloxy, arylalkyloxy, pyridyl, quinolinyl or isoquinolinyl; and n is an integer of 3 to 10.

13. (Previously Presented) The compound according to claim 12, represented by the structure:

$$R_1$$
 NH
 R_2
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8

Page 6

15. (Previously Presented) The compound according to claim 1, represented by the structure:

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5

wherein A is an amide moiety, R₁ and R₂ are each selected from substituted or unsubstituted aryl, arylalkyl, naphthyl, cycloalkyl, cycloalkylamino, pyridineamino, piperidino, 9-purine-6-amino, thiazoleamino, hydroxyl, branched or unbranched alkyl, alkenyl, alkyloxy, aryloxy, arylalkyloxy, pyridyl, quinolinyl or isoquinolinyl; R₃ is hydrogen, a halogen, a phenyl or a cycloalkyl moiety and n is an integer of 3 to 10.

16. (Previously Presented) The compound according to claim 15, represented by the structure:

Page 7

$$R^1$$
 R^1
 R^2
 R^3
 R^3

wherein n is an integer from about 3 to 10.

18. (Previously Presented) The compound according to claim 1, represented by the structure:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_6
 R_6

-wherein L is a linker selected from the group consisting of an amide moiety, O-, -S-,
-NH-, NR, -CH₂-, -(CH₂)_p-, -(CH=CH)-, phenylene, cycloalkylene, or any combination
thereof wherein R is a substituted or unsubstituted C₁-C₃ alkyl; and wherein each of R₁ and
R₂ are independently a substituted or unsubstituted aryl, arylalkyl, naphthyl, cycloalkyl,
cycloalkylamino, pyridineamino, piperidino, 9-purine-6-amino, thiazoleamino, hydroxyl,
branched or unbranched alkyl, alkenyl, alkyloxy, aryloxy, arylalkyloxy, pyridyl, quinolinyl
or isoquinolinyl; p is an integer of 0 to 10.

- 19. Cancelled.
- 20. (Previously Presented) The compound according to claim 18, represented by the structure:

$$R_1$$
 R_2
 NH
 R_3
 NH
 R_4
 R_5
 NH
 NH
 NH
 NH

Page 8

$$R_2$$
—(HN-CO)_{p2} $\xrightarrow{CH_2}$ \xrightarrow{N} $(CO)_q$ $(CH_2)_n$ \xrightarrow{C} CH_2 $NHOR_a$ $(CO-NH)_{p1}$ R_1

wherein

n is 2, 3, 4, 5, 6, 7 or 8;

q is 0 or 1;

p₁ and p₂ are independently of each other 0 or 1;

 R_1 and R_2 are independently of each other an unsubstituted or substituted aryl, heteroaryl, cycloalkyl, heterocyclyl, alkylaryl, alkylheteroaryl, alkylcycloalkyl or alkylheterocyclyl; or when p_1 and p_2 are both 0, R_1 and R_2 together with the $-\text{CH}_2\text{-N-CH}_2\text{-}$ group to which they are attached can also represent a nitrogen-containing heterocyclic ring; or when at least one of p_1 or p_2 is not 0, R_1 or R_2 or both can also represent hydrogen or alkyl.

22. (Previously Presented) The compound according to claim 1, represented by the structure:

wherein

n is 2, 3, 4, 5, 6, 7 or 8;

 R_1 and R_2 are independently of each other a hydrogen or an unsubstituted or substituted alkyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, alkylaryl, alkylheteroaryl, alkylcycloalkyl or alkylheterocyclyl.

Serial No.: 10/594,483

Merck Case: 21826YP Page 9

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

wherein

n is 2, 3, 4, 5, 6, 7 or 8;

 R_1 and R_2 are independently of each other a hydrogen or an unsubstituted or substituted alkyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, alkylaryl, alkylheteroaryl, alkylcycloalkyl or alkylheterocyclyl.

24. (Previously Presented) The compound according to claim 1, represented by the structure:

$$R_1$$
 R_2
 R_2
 R_2
 R_2

wherein

n is 2, 3, 4, 5, 6, 7 or 8;

 R_1 and R_2 are independently of each other an unsubstituted or substituted aryl, heteroaryl, cycloalkyl, heterocyclyl, alkylaryl, alkylheteroaryl, alkylcycloalkyl or alkylheterocyclyl; or R_1 and R_2 together with the $-CH_2$ -N- CH_2 - group to which they are attached can also represent a nitrogen-containing heterocyclic ring.

25. (Previously Presented) The compound according to claim 1, represented by the structure:

$$R_1$$
 N
 R_2
 R_2
 R_3
 R_4

wherein

n is 2, 3, 4, 5, 6, 7 or 8;

R₁ and R₂ are independently of each other an unsubstituted or substituted aryl, heteroaryl, cycloalkyl, heterocyclyl, alkylaryl, alkylheteroaryl, alkylcycloalkyl or

Page 10

alkylheterocyclyl; or R_1 and R_2 together with the $-CH_2$ -N- CH_2 - group to which they are attached can also represent a nitrogen-containing heterocyclic ring.

26. (Previously Presented) The compound according to claim 1, represented by the structure:

wherein A is alkyl, aryl or a group selected from

wherein R_1 - R_{16} are independently of each other a hydrogen or an unsubstituted or substituted alkyl, aryl, cycloalkyl, heterocyclyl, alkylaryl, alkylcycloalkyl or alkylheterocyclyl; or one or more of R_1 and R_2 , R_6 and R_7 , and R_{11} and R_{12} , together with the nitrogen atom to which they are attached, form a nitrogen-containing heterocyclic ring; and

 $l,\,p$ and q are independently of each other $0,\,1$ or 2.

Page 11

(36)

wherein

A is alkyl, aryl or a group selected from:

wherein R_1 - R_{16} are independently of each other a hydrogen or an unsubstituted or substituted alkyl, aryl, cycloalkyl, heterocyclyl, alkylaryl, alkylcycloalkyl or alkylheterocyclyl; or one or more of R_1 and R_2 , R_6 and R_7 , and R_{11} and R_{12} , together with the nitrogen atom to which they are attached, form a nitrogen-containing heterocyclic ring;

B is

n is 0 or 1; and

l, p and q are independently of each other 0, 1 or 2.

 (Previously Presented) A pharmaceutical composition comprising the compound of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.

Page 12

 (Previously Presented) A method for the treatment of cancer comprising the step of administering to a mammal a therapeutically effective amount of the compound of claim 1.

- Cancelled.
- 31 Cancelled
- 32 Cancelled
- 33. (Previously Presented) The compound of claim 4 selected from the group consisting of:

Octanedioic acid phenylamide (7-phenylcarbamoyl-heptanoyloxy)-amide;

Octanedioic acid acetoxy-amide phenylamide;

Octanedioic acid (biphenyl-4-carbonyloxy)-amide phenylamide;

Octanedioic acid benzoyloxy-amide phenylamide;

Octanedioic acid (naphthalene-2-carbonyloxy)-amide phenylamide;

Octanedioic acid (naphthalene-1-carbonyloxy)-amide phenylamide;

Octanedioic acid (3-methoxy-benzoyloxy)-amide phenylamide;

Octanedioic acid (4-methoxy-benzoyloxy)-amide phenylamide;

Octanedioic acid (2-methoxy-benzovloxy)-amide phenylamide;

Octanedioic acid (4-methyl-benzoyloxy)-amide phenylamide;

Octanedioic acid (4-chloro-benzovloxy)-amide phenylamide;

Octanedioic acid (3-phenyl-acryloyloxy)-amide phenylamide;

Octanedioic acid phenylamide (pyridine-3-carbonyloxy)-amide;

Octanedioic acid (4-butyl-benzoyloxy)-amide phenylamide;

Octanedioic acid phenylamide (3-phenyl-propionyloxy)-amide;

Octanedioic acid phenylamide (4-phenyl-butyryloxy)-amide;

[1-Benzyl-2-oxo-2-(7-phenylcarbamoyl-heptanoylaminooxy)-ethyl]-carbamic acid benzyl ester; and

 $[1-Benzyl-2-oxo-2-(7-phenylcarbamoyl-heptanoylaminooxy)-ethyl]-carbamic\ acid\ tert-butyl\ ester;$

Or a stereoisomer thereof;

Or a pharmaceutically acceptable salt thereof:

Or a pharmaceutically acceptable salt of the stereoisomer thereof.

Serial No.: 10/594,483

Merck Case: 21826YP Page 13

34. (Previously Presented) The compound of claim 4 that is

35. (Previously Presented) The compound of claim 4 that is

- (Previously Presented) A pharmaceutical composition comprising the compound of claim 33 and a pharmaceutically acceptable carrier.
- (Previously Presented) A method for the treatment of cancer comprising the step of administering to a mammal a therapeutically effective amount of the compound of claim 33.
- 38. (New) The compound according to claim 5, wherein R_b is a hydrogen, methyl, ethyl, isopropyl, butyl, isobutyl, see-butyl, t-butyl, phenyl, benzyl, alkylphenyl, napthyl or pyridyl; R_c is a hydrogen, methyl, ethyl, isopropyl, butyl, isobutyl, see-butyl, t-butyl, phenyl, benzyl, alkylphenyl, napthyl or pyridyl.