rcoRATTRAPAGE « Groupes »

Ni documents, ni machines, ni téléphones

(étudiants chinois: dictionnaires autorisés)

Tout résultat doit être justifié par un théorème du cours (qui sera énoncé), un raisonnement ${\rm et/ou}$ un calcul

Exercice 1. 2 pts environ

Déterminer le plus petit entier positif x tel que $7x\equiv 1[41]$

Solution. algorithme d'euclide étendu

donc -1.41+(6)7=1

et l'ensemble des couples (u,v) est $\{(-1-7t,6+41t)t\in\mathbb{Z}\}$ donc 6 est la plus petite solution positive.

Bien sûr on peut trouver 6 par calcul mental, et c'est le plus petit si on vérfie que 1,2,3,4,5 ne convienne pas

Exercice 2. On considère le groupe $(R_{21},.)$ 6 pts environ

- 1. Déterminer le nombre d'éléments de R_{21} .
- 2. On considère l'application $f: R_{21} \longrightarrow R_{21}$ définie comme suit: $\forall x \in R_{21}, f(x) = x^5$.
- a. Déterminez l'application f^{-1}
- b. Résoudre l'équation $f(x)=\bar{4}$.

Solution.

- 1. $\varphi(21) = \varphi(3)\varphi(7) = 26 = 12$.
- 2. a. méthode r
sa on cherche u tel que $5u\equiv 1[12]$; soit par l'algo d'euclide soit par calcul
 $5.5\equiv 1[12]$, donc $\forall x\in R_{21}$, $f^{-1}(x)=x^5$
- b. $f(x) = \bar{4} \iff x = f^{-1}(\bar{4}) = \bar{4}^5$.

$$\bar{4}^2 = \overline{16}, \bar{4}^3 = \overline{64} = \overline{1}, \bar{4}^4 = \overline{4}, \bar{4}^5 = \overline{16}$$

Exercice 3. On considère l'anneau de polynômes $F_2[X]$ 12 pts environ

- 1. Montrer que le polynôme $X^3 + X + 1$ est irréductible dans $F_2[X]$
- 2. On définit comme dans le cours $K=F_2[X]/X^3+X+1$

Déterminer le nombre de ses éléments

- 3. On désigne par θ la classe de X
- a. Déterminer le plus petit entier k>0 tel que $\theta^k=1$
- b. Calculer $\theta(\theta^2 + 1)$.
- 4. Déterminer le polynôme unitaire B(X) de plus bas degré tel que $XB(X)\equiv 1[X^3+X+1]$

Solution

1. supposons qu'il n'est pas irréductible alors $X^3 + X + 1 = (X+a)(X^2 + bX + c)$ (a,b,c dans F_2)

alors
$$\left\{ \begin{array}{l} a+b=0 \\ {\rm ab}+c=1 \\ {\rm ac}=1 \end{array} \right.$$
donc a=c=1 et b=1 d'où 1+=1, absurde.

- 2. ce corps représente les restes possibles dans la division par un polynôme de degré 3, donc tous les polynômes de degré inférieur ou égal à 2:2*2*2=8
- 3. d'après le cours θ est un générateur du groupe $F_2[X]/X^3 + X + 1\setminus\{0\}$, donc il est d'ordre 7
- b. $\theta(\theta^2+1)=\theta^3+\theta=+1$ donc (θ^2+1) est l'inverse de θ
- 4. Dire que $XB(X)\equiv 1[X^3+X+1]$ signifie que $B(\theta)$ est l'inverse de θ donc $B(\theta)=\theta^2+1$ d'où $B(X)=X^2+1$