

No of Pages : 37

Nemko Comlab AS

Office address: Gåsevikveien 8, Kjeller Postal address: P.O.Box 96, N-2027 Kjeller Telephone: +47 64 84 57 00

Facsimile: +47 64 84 57 05
E-mail: post@comlab.no
http://www.comlab.no

Enterprise no: NO 984 592 418 MVA

Test report : 52320-10

Item tested : WorldPro 1000

Type of equipment : Frequency Hopping Transmitter

FCC ID : TSF107020

Client : Nera SatCom AS

Tested according to:

FCC part 15, subpart C

Frequency Hopping Transmitters

RSS-210, Issue 6

Low Power Licence-Exempt Radiocommunication Devices

Date of issue: 28 November 2005

Gunn Røym

Laboratory Manager

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 2 of 37

CONTENTS

1	GENERAL INFORMATION 1.1 Testhouse Info 1.2 Client Information 1.3 Manufacturer	3 3
2	Test Information	4
	2.3 Test Period	4
3	TEST REPORT SUMMARY	5 6 6
4	TEST RESULTS	
5	LIST OF TEST EQUIPMENT	35
6	BLOCK DIAGRAM 6.1 Powerline Conducted Emission 6.2 Peak Power Output 6.3 Test Site Radiated Emission	36 37

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 3 of 37

1 **GENERAL INFORMATION**

1.1 **Testhouse Info**

Name: Nemko Comlab AS

Address: Gåsevikveien 8, Box 96

N-2027 Kjeller, NORWAY

Telephone: +47 64 84 57 00 Fax: +47 64 84 57 05 E-mail: post@comlab.no Jon Ivar Tidemann

FCC test firm registration #: 994405 IC OATS registration #: 4443

Client Information 1.2

Managing Director:

Nera SatCom AS Name:

Address: Bergerveien 12, N-1375 Billingstad, Norway

Telephone: +47 67 24 47 00 Fax: +47 67 24 44 45

Contact:

Name: Roy Uggerud

1.3 Manufacturer

Nera SatCom AS Name:

Address: Bergerveien 12, N-1375 Billingstad, Norway

+47 67 24 47 00 Telephone: Fax: +47 67 24 44 45

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 4 of 37

2 Test Information

2.1 Tested Item

Name :	WorldPro 1000 Bluetooth Module
FCC ID:	TSF107020
Industry Canada ID :	6200A-107020
Model/version :	BGAN
Serial number :	0305080036
Hardware identity and/or version:	107020
Software identity and/or version :	/
Frequency Range :	2402 - 2480 MHz
Tunable Bands :	1
Number of Channels :	79
Modulation:	GFSK
Emissions Designator :	1MF1D
User Frequency Adjustment :	None, Software controlled.
Rated Output Power :	1 mW

Theory of Operation

The tested equipment is a Bluetooth device that is integrated into a satellite terminal. The bluetooth device is used to connect a cordless telephone handset to the satellite terminal.

The tested equipment has integral antennas only.

2.2 Test Environment

2.2.1 Normal test condition

Temperature: 20 - 23 °C Relative humidity: 30 - 40 % Normal test voltage: 115 V AC

The values are the limit registered during the test period.

2.3 Test Period

Item received date: 2005-11-02

Test period: from 2005-11-02 to 2005-11-03

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 5 of 37

3 TEST REPORT SUMMARY

3.1	General	
Manufact	urer:	Nera Satcom
Model No	D.:	BGAN
Serial No	ı.:	/
All meas	urements are tra	acable to national standards.
paragrap		d for the purpose of demonstrating compliance with FCC Part 15, Subpart C, equency Hopping Spread Spectrum devices and Industry Canada RSS-210 and Spectrum.
		ducted in accordance with ANSI C63.4-2001. The radiated tests were made in ar at measuring distances of 3 and 10 metres.
⊠ New S	Submission	□ Production Unit
☐ Class	II Permissive C	hange Pre-production Unit
DSS E	quipment Code	☐ Family Listing
	THIS TE	EST REPORT RELATES ONLY TO THE ITEM (S) TESTED.
Devia	ations from, ad	ditions to, or exclusions from the test specifications are described in "Summary of Test Data".
		(N) Nemko

NEMKO COMLAB REF: 52320-10

TESTED BY: Trade Svervage DATE: 16 November 2005

Frode Sveinsen, Test engineer

The results detailed in this test report are valid only for the particular sample(s) tested and with configuration(s) as implemented during testing. This test report can only be reproduced or published in full. Reproduction or publishing of parts of this test report requires the prior written approval of Nemko Comlab.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Comlab AS accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report.

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 6 of 37

3.2 Test Summary

Name of test	FCC Part 15 reference	RSS-210 reference	Result
Powerline Conducted Emission	15.207(a)	RSS-GEN, 7.2	Complies
Channel Separation	15.247(a)(1)	Annex 8.1	Complies
Pseudorandom Hopping Algorithm	15.247(a)(1)	Annex 8.1	Complies
Time of Occupancy	15.247(a)(1)(iii)	Annex 8.1	Complies
Occupied Bandwidth	15.247(a)(1)	Annex 8.1	Complies
Peak Power Output	15.247(b)	Annex 8.4	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	Annex 8.5	Complies
Spurious Emissions (Radiated)	15.247(c)	Annex 8.5	Complies

3.3 Description of modification for Modification Filing

Not Applicable.

3.4 Comments

This test report covers only the Bluetooth Module integrated into the Nera Satcom WorldPro 1000.

The channels and antenna to operate on was selected from a computer connected to the satellite telephone. The computer was used only for selection of channel and antenna and was removed during the measurements.

The measurements were done with the EUT powered by 115 V AC. It was checked that power variations between 85% and 115% did not have any influence on the measurements.

All ports were populated during spurious emission measurements.

3.5 Family List Rational

Not Applicable.

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 7 of 37

4 TEST RESULTS

4.1 Powerline Conducted Emissions

Para. No.: 15.207 (a)

Test Performed By: Geir Antonsen Date of Test: 22 November 2005

Measurement procedure: CISPR 22 1997 Clause 5.1 Class B ITE using 50 μ H/50 ohms LISN.

Test Results: Complies.

Measurement Data: See attached graph, (Peak detector).

Highest measured value (L1 and N):

Frequency	Detector	Measured value	Limit	Margin
KHz	QP/AV	dBμV	dBμV	dB
150	QP	53	66	13
	AV	21	56	35
307	QP	49	60	11
	AV	43	50	7
9800	QP	41	60	9
	AV	40	50	10

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 8 of 37

AC Mains, Transmitting at Full Power, L1 and N, Peak Detector

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 10 of 37

4.2 Channel Separation

Para. No.: 15.247 (a)(1)

Test Performed By: Frode Sveinsen Date of Test: 3 November 2005

Test Results: Complies

Measurement Data: Channel Separation: 4.018/4 = 1.005 MHz

20 dB Bandwidth of hopping channel: 1.052 MHz

RF channel (0 to 78) has no influence on 20 dB bandwidth.

See attached graph

Channel Separation nominal value: 1.728 MHz.

Requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the system operates with an output power no greater than 125 mW.

Channel separation

20 dB Bandwidth

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 12 of 37

4.3 Pseudorandom Hopping Algorithm

Para. No.: 15.247 (a)(1)

Test Performed By: Frode Sveinsen Date of Test: 3 November 2005

Test Results: Complies

Measurement Data: /

Requirements:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally by the transmitter.

Base Table Hopping Sequence

All 79 frequencies are used in a random order in each hop sequence. The hop sequence is repeated every 99 seconds. The hopping sequence follows the Bluetooth standard.

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 13 of 37

4.4 Occupancy Time

Para. No.: 15.247 (a)(1)(iii)

Test Performed By: Frode Sveinsen Date of Test: 3 November 2005

Test Results: Complies

Measurement Data:

Number of RF channel: 79

RF burst pr channel: 415µs

Average time between each RF burst on same RF channel: $79 * 1250 \mu s = 98.75 ms$

Average time of occupancy:

(0.42 ms / 98.75 ms) * 0.4s *79 = 134 ms

See attached graph.

Requirements:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

RF burst

Occupancy time pr. channel

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 15 of 37

4.5 Occupied Bandwidth

Para. No.: 15.247 (a)(1)(iii)

Test Performed By: Frode Sveinsen Date of Test: 3 November 2005

Test Results: Complies

Measurement Data: 79 RF channels in use

See attached graph.

Requirements:

Frequency hopping systems in the 2400 - 2483.5 MHz band shall use at least 15 non-overlapping channels. No requirements for bandwidth for this frequency band.

Channel Centre Frequencies

The 79 channels are centred at each full MHz from 2402 to 2480 MHz.

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 16 of 37

RF channel in use

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 17 of 37

4.6 Peak Power Output

Para. No.: 15.247 (b)

Test Performed By: Frode Sveinsen	Date of Test: 2-3 November 2005
-----------------------------------	---------------------------------

Test Results: Complies

Measurement Data:

Maximum Conducted Peak Output Power, Watts

RF channel	0	38	78
Measured value	0.000966	0.000804	0.000604

Maximum EIRP, Watts

RF channel	0	38	78
Measured EIRP	0.000106	0.000109	0.000079
Antenna gain dBi	-9.6	-8.7	-8.8

Antenna gain = 10*log(EIRP/Conducted power) dBi

The EIRP is calculated from measured field strength by the formula: $P = (E*d)^2/30$ (the formula in DA00-705 with antenna gain 0 dBi)

See attached graph.

Detachable antenna?	Yes	⊠ No
If detachable, is the antenna connector non-standard?	Yes	No

Requirements:

The maximum peak output power for frequency hopping systems shall not exceed the following limits:

For systems employing at least 75 hopping channels: 1 watt

For all other frequency hopping systems in the 2400 - 2483.5 MHz band: 0.125 watts

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced below the stated value above by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 18 of 37

RF conducted channel 0

RF radiated channel 0

Project no.: 52320-10 FCC ID: TSF107020 page 19 of 37

RF conducted channel 38

RF radiated channel 38

RF conducted channel 78

RF radiated channel 78

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 21 of 37

4.7 Spurious Emissions (Radiated)

Para. No.: 15.247 (c)

Test Performed By: Frode Sveinsen Date of Test: 2 November 2005

Test Results: Complies

Measurement Data:

Band-edge radiated power

Measured on ch 0 and 78

Frequency GHz	Power below nearest channel dBµV/m		Limit dBµV/m		Margin dB	
	Peak	Average	Peak	Average	Peak	Average
2.39	51	31	74	54	23	23
2.4835	59	39	74	54	15	15

The average value is calculated from the Peak value by using the Duty-Cycle correction factor.

See attached plots.

Duty Cycle Calculation:

See also Para 4.4 Occupancy Time.

RF duty cycle: Calculation according to RF burst Para 15.35 (c)

20*log(0.42 ms / 98.75 ms) = -47.4 dB

Maximum Duty-Cycle Correction factor according to Para 15.35 (b): -20 dB

This value is used when measuring average field strength above 1 GHz with Peak Detector function employed on spectrum analyzer.

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 22 of 37

RF conducted power to 25 GHz

Maximum RF level outside operating band:

RF ch 0: <-50 dB/C, margin >30 dB

RF ch 23: <-50 dB/C, margin >30 dB

RF ch 46: <-50 dB/C, margin >30 dB

See attatched plots.

Radiated Emissions, 1-25 GHz

1-18 GHz measured at a distance of 3m, 18-25 GHz measured at 1m.

No spurious emissions were detected in any of the restricted bands.

See attached graphs.

Antenna factor, amplifier gain and cable loss are included in spectrum analyzer "Transducer factor".

Band-edge radiated power ch 0, lower end.

Band-edge radiated power ch 78, upper end.

RF conducted emissions, ch 0

Rf conducted emissions, ch 38

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 25 of 37

RF conducted emissions ch 78

RF radiated emissions 1-2.4 GHz channel 0

RF radiated emissions 2.69-8.5 GHz channel 78

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 27 of 37

RF radiated emissions 8.5-12 GHz channel 0

RF radiated emissions 12-18 GHz channel 0

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 28 of 37

RF radiated emissions 18-25 GHz channel 0

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 29 of 37

Radiated emission 30 - 1000 MHz.

Detector: Quasi-Peak

Measuring distance 10 m according to CISPR 22.

Tested in speech mode with active connection.

Frequenc y	Operational condition	Field strength	Measuring distance	Limit FCC15.209	Margin
MHz		dBμV/m	metres	dBμV/m	dB
46.794	TX on	26.0	3	40	14.0
149.29	TX on	22.4	3	40	17.6
388.11	TX on	32.5	3	40	7.5

See attached graphs.

Radiated emission 10 kHz-30 MHz.

Measuring distance 10 m, measured with Peak detector.

No component detected, see attached graph.

Limit is converted to 10 m using 40 dB/decade according to 15.31 (f) (2).

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 30 of 37

NEMKO COMLAB AS

02. Nov 05 13:19

Peak

Operator:

Comment: Nera Satcom AS

WorldPro 1000 FCC 15209 VP 1m Distance 3 m

Scan Settings (1 Range)

|------ Frequencies -------| Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
30M 200M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 20 30M 200M HK116

30-200 MHz vertical polarized, measuring distance 3 m

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 31 of 37

NEMKO COMLAB AS

02. Nov 05 13:27

Peak

Operator: EH

Comment: Nera Satcom AS

WorldPro 1000 FCC 15209 HP 2m Distance 3 m

Scan Settings (1 Range)

|------ Frequencies -------| Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
30M 200M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 20 30M 200M HK116

30-200 MHz, horizontal polarization, measuring distance 3 m

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 32 of 37

NEMKO COMLAB AS

02. Nov 05 13:50

Peak

Operator: EH

Comment: Nera Satcom AS WorldPro 1000

WorldPro 1000 FCC 15209 VP 1m Distance 3 m

Scan Settings (1 Range)

|------ Frequencies -------| Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
200M 1000M 50k 120k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 21 200M 1000M HL223

200-1000 MHz, vertical polarization, measuring distance 3 m

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 33 of 37

NEMKO COMLAB AS

02. Nov 05 14:06

Peak

Operator: EH

Comment: Nera Satcom AS

WorldPro 1000 FCC 15209 HP 2m Distance 3 m

Scan Settings (1 Range)

> Transducer No. Start Stop Name 21 200M 1000M HL223

200-1000 MHz, horizontal polarization, measuring distance 3 m

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 34 of 37

02. Nov 05 15:13

NEMKO COMLAB AS

Peak

Operator: EH

Comment: Nera Satcom AS

WorldPro 1000 FCC 15209 Loop antenna Distance 10 m

Scan Settings (1 Range)

|------- Frequencies -------|| Receiver Settings -------|
Start Stop Step IF BW Detector M-Time Atten Preamp OpRge
10k 30M 5k 9k PK 50ms AUTO LN ON 60dB

Transducer No. Start Stop Name 13 10k 30M HFH2Z2

Radiated 150 kHz-30 MHz, measuring distance 10 m

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 35 of 37

5 LIST OF TEST EQUIPMENT

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment and ancillaries are identified (numbered) by the Test Laboratory.

No.	Instrument/ancillary	Type of instrument/ancillary	Manufacturer	Ref. no.
1	FSEK	Spectrum Analyzer	Rohde & Schwarz	LR 1337
2	ESAI	Spectrum Analyzer	Rohde & Schwarz	LR 1090
3	3115	Antenna horn	EMCO	LR 1330
4	643	Antenna horn	Narda	LR 093
5	642	Antenna horn	Narda	LR 220
6	PM7320X	Antenna horn	Siverts lab	LR 103
7	DBF-520-20	Antenna horn	Systron Donner	LR 101
8	638	Antenna horn	Narda	LR 098
9	5VF1000/2000	BP filter	Trilithic	LR 1174
10	5VF2000/4000	BP filter	Texscan	LR 42
11	ESH3-Z3	LISN	Rohde & Schwarz	LR 1076
12	8449B	Amplifier	Hewlett Packard	LR 1322
13	959C	Printer	Hewlett Packard	LR 1414
14	HFH2-Z2	Antenna loop	Rohde and Schwarz	LR 285
15	10855A	Amplifier	Hewlett Packard	LR 1445
16	HL223	Antenna log.per	Rohde & Schwarz	LR 1261
17	HK116	Antenna biconic	Rohde & Schwarz	LR 1260
18	ESVS 30	Test Receiver	Rohde & Schwarz	LR 1101

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 36 of 37

6 BLOCK DIAGRAM

6.1 Powerline Conducted Emission

FCC part 15, subpart C Project no.: 52320-10 FCC ID: TSF107020 page 37 of 37

6.2 Peak Power Output

6.3 Test Site Radiated Emission

