

10/773,657

REMARKS

Claims 9-24 are rejected, under 35 U.S.C. § 103(a), as being unpatentable over Allen et al. '417 in view of a new reference, Suzuki '638. The Applicant acknowledges and respectfully traverses the raised obviousness rejection in view of the following remarks.

As the Examiner is aware, in order to properly support an obviousness-type rejection in view of a combination of references under 35 U.S.C. § 103, the references must provide some disclosure, teaching or suggestion which would lead one of ordinary skill in the art to combine them in the manner as suggested by the Examiner. The U.S. Patent Office Board of Appeals has consistently upheld this requirement, "We have studied the references and the manner in which the examiner proposes to combine their teachings but we are unable to find in these references any suggestion that they should or could be combined, absent appellant's disclosure in the present application." Ex Parte Lennox, 144 USPQ 224, 225 (U.S. Patent Office Board of Appeals 1964).

Allen et al. '417 discloses a control system for ensuring the appropriate sequential engagement, as well as the rate of engagement, of the transmission torque converter lock-up clutch and input clutch 27, as shown in Fig. 1 of Allen et al. '417. "In addition to regulating the engagement sequence for the various clutches as discussed above, it is also necessary to closely regulate the rate of engagement for the clutches. . ." Column 4, lines 17-20.

10/773,657

More specifically, Allen et al. '417, discloses a clutch control assembly 36 indicated generally at Fig. 4 as shown above, and described at least at column 4, paragraph 31 through column 5, line 42, which discusses the hydraulic actuation and control of the input clutch 27.

As noted by the Examiner, there is no disclosure, teaching or suggestion in the Allen et al. '417 reference relating to a pressure sensor, much less the specific placement or structural arrangement of such a sensor as in the presently claimed invention. Besides the fact that there is no disclosure of a pressure sensor obtaining and utilizing a pressure of the interior of the torque converter, the upper portion 37 of the clutch control assembly 36 which regulates the operation of the input clutch 27 in Allen et al. '417, is actuated according to a pressure in the lock-up clutch 31 as specifically discussed at column 6, lines 34-37: "The rate of pressurization or modulation for the input clutch 27 is regulated by the accumulator means 42 either alone or in combination with the restricted orifice 62." In other words, the modulation of the input clutch 27 in Allen et al. '417 is balanced, or controlled according to the lock-up clutch and the associated slide valves and accumulator in the clutch control assembly.

Allen et al. '417 is a completely different system for providing an appropriate actuation pressure to the input clutch which does not contemplate nor need the pressure sensors as disclosed either in JP '906, Suzuki '638 or in the present invention. Thus, beyond the fact there is no disclosure, teaching or suggestion of such sensors, their structure or relative function, it is the Applicant's position that this reference teaches away from the use of pressure sensors as in Suzuki '638 any of the previously cited references, and the present invention.

Entirely different from the hydraulic pressure balancing and the accumulator 42 between the lock-up clutch and input clutch of Allen et al. '417, Suzuki '638 discloses an apparatus for controlling the initiation of the lock-up clutch 13 operation based on throttle opening TVO and the vehicle speed VSP. Specifically, it is the control unit 3 as seen in see Fig. 1 of Suzuki '638 which controls the lock-up solenoid 24 so as to smoothly engage the lock-up clutch 13. In a second embodiment, described at column 9, lines 14-26, oil pressure sensors are provided in the first and second oil paths 15, 16 to fix the rate of increase of the duty ratio DH when the

10/773,657

pressure PR of the release chamber coincides with the pressure PA of the apply chamber 18. These sensors 15, 16 are beneficial to maintain the clutch 13 in a partially engaged state for only a predetermined period of time, and minimizes the wear caused on the clutch from a prolonged partially engaged state.

While it may be that pressure sensors are known in the art of transmission and hydrodynamic torque converter control, such a statement even if it is true, does not validate the combination of the specific design of the Suzuki '638 reference which merely discloses a pair of pressure sensors for determining the equalizing of pressure, with the specific accumulator design of Allen et al '417. It is important to note that the first and second oil shafts 15, 16 in Suzuki '638 are ". . . disposed in parallel with each other within the turbine shaft 14 in Fig. 1". Column 5, lines 20, 21. Observing Fig. 1 of Allen et al. '417 it is readily apparent that no such similar structure exists. Although a central coolant or lubrication passageway (unnumbered) is provided in the output shaft 18 itself, this passage does not communicate with the converter 11. In Fig. 1 of Allen et al '417, the Examiner has noted a coolant feed line which feeds coolant into the input clutch, however this is not a pressure line through which pressure inside the converter can be measured, but a coolant feed line with relatively constant flow and pressure for supplying coolant to the input clutch, and in which it would not be appropriate or even possible to measure a pressure within the converter housing.

Thus, even if it would be obvious to use sensors such as in Suzuki '638 in the Allen et al. reference, and the Applicant adamantly denies that it is, there is no pressure passage in Allen et al. '417 communicating with the interior of the converter to provide the appropriate placement for such a sensor and thus Allen et al '417 would have to be significantly structurally modified to accommodate such a sensor.

Even if it were possible to combine the references as alleged by the Examiner, and again the Applicant adamantly disagrees with this assumption, such a combination would merely use the pressure passages as disclosed in Suzuki '638. This combination, if even possible, would still fail to disclose, teach or suggest all the features of the presently claimed

10/773,657

invention as now set forth in amended claim 9 which includes the subject matter of previous claim 11 including the feature, "wherein the converter housing (1) has a pressure line (16) through which the converter's internal pressure is transmitted via a rotary connection (15) to a positionally fixed component (13) in which the pressure sensor is arranged."

Contrary to the Applicant's claimed structure, any combination of the cited references would place Suzuki's sensors in the rotating turbine shaft, i.e. the output shaft, as expressly set forth in Suzuki '638 where the oil shafts 15, 16 and hence the sensors, are disposed in parallel with one another within the rotating turbine shaft 14. As noted in col. 6 lines, 20-22, "While the first and second oil paths 15, 16 are disposed in parallel with each other within the turbine shaft 14 in Fig. 1" and further that, "[i]n the second embodiment, therefore, oil pressure sensors are provided in the first and second oil paths 15, 16." Column 9, lines 19-21.

This is specifically different from the presently claimed invention where placing the sensors in a positionally fixed structural arrangement is an important aspect of the present invention. As noted in the Applicant's disclosure at paragraph 011,

Preferably, the pressure is determined by a pressure sensor arranged in a component whose position is fixed. Preferably, this positionally fixed component is connected to the inside space of the converter by a rotary connection and a pressure line.

This is an important feature of the present invention as the positionally fixed component permits the sensor signal to be sent directly to the control unit via an electric circuit without interruption or interference from, for instance, the use of an electrical collector ring. Via the pressure line, the sensors detect exactly the actual pressure inside the torque converter near the piston, and knowing the exact pressure, it is of course significantly easier to control and apply the appropriate slip condition of the clutch.

As noted above, independent claim 9 now includes the feature wherein the pressure line communicates the pressure to a sensor in a positionally fixed component of the converter

10/773,657

which is completely different from the rotating turbine output shaft where the sensors are positioned in Suzuki '638. As such a specifically recited feature is not disclosed taught or suggested by any of the applied references, either alone or in combination, the Applicant respectfully requests withdrawal of the obviousness rejections.

Claim 16 has been amended to include the subject matter of previous claim 17 so as to currently recite the features "...a pressure line (16) through which the converter's internal pressure is transmitted from the rotatable converter housing (1) via a rotary connection (15) to a relatively fixed component (13) in which the pressure sensor is arranged". The additional feature of the rotary pressure connection is not disclosed, taught or suggested in any manner by the cited references either alone or in combination. In fact, because the sensors 15, 16 in Suzuki '638 are located within the rotating turbine shaft 14 rotating together with the turbine of the converter there is a direct pressure connection between the inside of the converter housing and the sensors 15, 16, thus no such rotary pressure connection is conceivable.

Claim 18 is similarly amended to include the subject matter of claim 22 and the feature "wherein the pressure sensor (12) is arranged in a positionally fixed component (13)". As the above amendments are merely an incorporation of the previous dependent claims 13, 17 and 22 into their relative base claims, no further search or consideration is believed necessary in order for the Examiner to consider the related remarks and allow the presently pending claims. If any further amendment to this application is believed necessary to advance prosecution and place this case in allowable form, the Examiner is courteously solicited to contact the undersigned representative of the Applicant to discuss the same.

In view of the above amendments and remarks, it is respectfully submitted that all of the raised obviousness rejection should be withdrawn at this time. If the Examiner disagrees with the Applicant's view concerning the withdrawal of the outstanding rejection(s) or applicability of the Allen et al. '417 and Suzuki '638 references, the Applicant respectfully requests the Examiner to indicate the specific passage or passages, or the drawing or drawings, which contain the necessary teaching, suggestion and/or disclosure required by case law. As such

10/773,657

teaching, suggestion and/or disclosure is not present in the applied references, the raised rejection should be withdrawn at this time. Alternatively, if the Examiner is relying on his/her expertise in this field, the Applicant respectfully requests the Examiner to enter an affidavit substantiating the Examiner's position so that suitable contradictory evidence can be entered in this case by the Applicant.

In view of the foregoing, it is respectfully submitted that the raised rejection(s) should be withdrawn and this application is now placed in a condition for allowance. Action to that end, in the form of an early Notice of Allowance, is courteously solicited by the Applicant at this time.

The Applicant respectfully requests that any outstanding objection(s) or requirement(s), as to the form of this application, be held in abeyance until allowable subject matter is indicated for this case.

In the event that there are any fee deficiencies or additional fees are payable, please charge the same or credit any overpayment to our Deposit Account (Account No. 04-0213).

Respectfully submitted,

Scott A. Daniels, Reg. No. 42,462
Customer No. 020210
Davis & Bujold, P.L.L.C.
Fourth Floor
500 North Commercial Street
Manchester NH 03101-1151
Telephone 603-624-9220
Facsimile 603-624-9229
E-mail: patent@davisandbujold.com