Конспект по математическому анализу

Голубов Владислав

Сентябрь 2025

Содержание

1	Kor	мплексные числа	3
	1.1	Определение и свойства	3
	1.2	Арифметические операции	3
	1.3	Формула Эйлера	3
	1.4	Геометрическое представление	4
	1.5	Тригонометрическая форма	4
	1.6	Формула Де-Муавра	4
	1.7	Комплексные корни	4
2	Me	тод математической индукции (ММИ)	5
	2.1	Бином Ньютона	Ę
	2.2	Неравенство о средних	6
	2.3	Неравенство треугольника	8
3	§I.	Пределы и числовая система	9
	3.1	Пределы последовательности	S
	3.2	Что-то про доказательство существования иррациональных чисел (про $\sqrt{2}$).1	S
	3.3	Ограниченные и сходящиеся последовательности	10
	3.4	Бесконечно малые последовательности	11
		3.4.1 Ограничение на количество элементов центрального класса	15
		3.4.2 Пример 2-х последовательностей стягивающихся к 0	15
		$3.4.3$ Пример 2-х последовательностей стягивающихся к $\sqrt{2}$	15
	3.5	Действительные числа	15
	3.6	Сравнение действительных чисел и арифметические операции	16
		3.6.1 Определение сравнения рационального и действительного числа	16
		3.6.2 Определение сравнения 2-х действительных числе (запись лекции)	16
	3.7	Арифметические операции	17
4	Вложенные стягивающиеся отрезки с действительными концами		18
	4.1	Определения	18
	4.2	Окрестностное определение предела последовательности	18
5	§3 T	Число е как предел последовательности.	20
6	§ 4 1	Последовательности.	22
	U	! !	

7	§5 Теорема Больцано-Вейерштрасса	22
8		24
	8.1 Фундоментальные последовательности	24
	8.2 Критерий Коши	24
9	§6. Верхний и нижний предел.	25
10	Числовые ряды	26
	10.1 Определения и элементарные факты	26
	10.1.1 Определение	26
	10.1.2 Теорема 1.	
	10.1.3 Теорема 2. Критерий Коши о сходимости ряда	
	10.1.4 Следствие 1. Изменение конечного числа членов ряда не влияет	
	на сходимость	27
	10.2 Следствие 2. Необходимое условие сходимости ряда	27
	10.3 Абсолютно сходящийся ряд	28
	10.3.1 Теорема 1. Если ряд сходится абсолютно, то ряд сходится	
	10.3.2 Определение	28
	10.3.3 Теорема 2	
	10.3.4 Теорема 3. Признак сравнения.	
	10.3.5 Следствие. (Признак сравнения)	
	10.3.6 Теорема 4. Признак Коши	

1 Комплексные числа

1.1 Определение и свойства

Определение. Комплексными числами называются числа вида z=x+iy, где $x,y\in\mathbb{R},$ а i-мнимая единица, обладающая свойством $i^2=-1$.

- x = Re z **действительная часть** числа z.
- $y = \operatorname{Im} z$ мнимая часть числа z.
- Если y = 0, то z = x действительное число.
- Число $\overline{z} = x iy$ называется комплексно-сопряжённым к z.

Свойство: $z \cdot \overline{z} = (x + iy)(x - iy) = x^2 - (iy)^2 = x^2 - i^2y^2 = x^2 + y^2$.

Важное примечание

Нельзя сравнивать комплексные числа операциями $<,>,\leq,\geq!$

1.2 Арифметические операции

Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

- 1. Сложение/Вычитание: $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$
- 2. Умножение:

$$z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

3. Деление:

$$\frac{z_1}{z_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2}$$

1.3 Формула Эйлера

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x \cdot (\cos y + i \cdot \sin y)$$

3

1.4 Геометрическое представление

Рис. 1: Геометрическая интерпретация комплексного числа.

1.5 Тригонометрическая форма

$$z = r(\cos\phi + i \sin\phi), \ r = |z|$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 \cdot (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2))$$
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + i \sin(\phi_1 - \phi_2))$$

1.6 Формула Де-Муавра

$$(\cos\phi + i\,\sin\phi)^k = \cos\,k\phi + i\,\sin\,k\phi$$

1.7 Комплексные корни

$$\begin{split} \sqrt[n]{z} &= \omega \\ \omega^n &= z, z \neq 0 \\ z &= r e^{i\phi}, \omega = \rho e^{i\Psi} \\ \omega^n &= \rho^n e^{in\Psi} = z = r e^{i\phi} = r e^{i(\phi + 2\pi k)} \end{split}$$

$$\rho^n = r \Rightarrow \rho = \sqrt[n]{r}$$

$$n\Psi = \phi + 2\pi k \Rightarrow \Psi = \frac{\phi}{n} + \frac{2\pi}{n}k$$

Корни будут образовывать правильный многоугольник.

2 Метод математической индукции (ММИ)

Алгоритм доказательства по индукции:

- 1. **База индукции:** Проверить утверждение для n = 1.
- 2. **Индукционное предположение:** Предположить, что утверждение верно для n=k.
- 3. **Индукционный переход:** Доказать, что из этого следует верность утверждения для n=k+1.

2.1 Бином Ньютона

Определение. Биномиальный коэффициент: $C_n^k = \frac{n!}{k!(n-k)!}$, где $n,k \in \mathbb{N}_0$, 0! = 1.

Формула бинома Ньютона:

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$

Доказательство по ММИ

База индукции: Для n=1:

$$(a+b)^1 = a+b$$

$$\sum_{k=0}^{1} C_1^k a^{1-k} b^k = C_1^0 a^1 b^0 + C_1^1 a^0 b^1 = 1 \cdot a \cdot 1 + 1 \cdot 1 \cdot b = a + b$$

База индукции доказана.

Индукционное предположение: Предположим, формула верна для n=m:

$$(a+b)^m = \sum_{k=0}^m C_m^k a^{m-k} b^k$$

Индукционный переход: Докажем для n=m+1. Умножим обе части

предположения на (a + b):

$$(a+b)^{m+1} = (a+b) \cdot \sum_{k=0}^{m} C_m^k a^{m-k} b^k$$

Раскроем скобки:

$$= \sum_{k=0}^{m} C_m^k a^{m+1-k} b^k + \sum_{k=0}^{m} C_m^k a^{m-k} b^{k+1}$$

Во второй сумме сделаем замену индекса j = k + 1:

$$= \sum_{k=0}^{m} C_m^k a^{m+1-k} b^k + \sum_{j=1}^{m+1} C_m^{j-1} a^{m+1-j} b^j$$

Теперь объединим суммы, выделяя крайние слагаемые:

$$= C_m^0 a^{m+1} + \sum_{k=1}^m \left[C_m^k + C_m^{k-1} \right] a^{(m+1)-k} b^k + C_m^m b^{m+1}$$

Используем свойство биномиальных коэффициентов:

$$C_m^k + C_m^{k-1} = C_{m+1}^k$$

Учитывая, что $C_m^0=C_{m+1}^0=1$ и $C_m^m=C_{m+1}^{m+1}=1$, получаем:

$$(a+b)^{m+1} = \sum_{k=0}^{m+1} C_{m+1}^k a^{(m+1)-k} b^k$$

Индукционный переход завершён.

2.2 Неравенство о средних

Теорема (Неравенство между средним арифметическим и средним геометрическим): Для любых $a_1, a_2, \ldots, a_n \ge 0$ справедливо:

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_n}$$

Равенство достигается тогда и только тогда, когда $a_1 = a_2 = \cdots = a_n$.

Доказательство по ММИ (метод Коши / метод обратой индукции)

Докажем теорему в три этапа.

1. База индукции для степеней двойки $(n=2^m)$.

• Для n=2: Докажем $\frac{a_1+a_2}{2} \ge \sqrt{a_1a_2}$.

$$(a_1 - a_2)^2 \ge 0 \Rightarrow a_1^2 - 2a_1a_2 + a_2^2 \ge 0 \Rightarrow a_1^2 + 2a_1a_2 + a_2^2 \ge 4a_1a_2 \Rightarrow$$
$$\Rightarrow (a_1 + a_2)^2 \ge 4a_1a_2 \Rightarrow \frac{a_1 + a_2}{2} \ge \sqrt{a_1a_2}$$

- Предположим, неравенство верно для n = k.
- Докажем для n = 2k:

$$\frac{a_1 + \dots + a_{2k}}{2k} = \frac{\frac{a_1 + \dots + a_k}{k} + \frac{a_{k+1} + \dots + a_{2k}}{k}}{2} \ge$$

$$\ge \frac{\sqrt[k]{a_1 \dots a_k} + \sqrt[k]{a_{k+1} \dots a_{2k}}}{2} \ge \sqrt{\sqrt[k]{a_1 \dots a_k} \cdot \sqrt[k]{a_{k+1} \dots a_{2k}}} = \sqrt[2k]{a_1 \dots a_{2k}}$$

2. Докажем, что если неравенство верно для n, то оно верно и для n-1. Рассмотрим $a_1,a_2,\ldots,a_{n-1}\geq 0$. Пусть

$$a_n = \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}$$

Для набора из n чисел неравенство верно:

$$\frac{a_1 + \dots + a_{n-1} + a_n}{n} \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n}$$

Подставим a_n :

$$\frac{(a_1 + \dots + a_{n-1}) + \frac{a_1 + \dots + a_{n-1}}{n-1}}{n} = \frac{a_1 + \dots + a_{n-1}}{n-1} = a_n$$

Таким образом:

$$a_n \ge \sqrt[n]{a_1 a_2 \dots a_{n-1} a_n}$$

Возведём в степень n:

$$a_n^n \ge a_1 a_2 \dots a_{n-1} a_n \Rightarrow a_n^{n-1} \ge a_1 a_2 \dots a_{n-1}$$

Извлекая корень (n-1)-й степени:

$$a_n \geq \sqrt[n-1]{a_1 a_2 \dots a_{n-1}} \Rightarrow \frac{a_1 + \dots + a_{n-1}}{n-1} \geq \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$$

- 3. Завершение доказательства. Мы доказали, что:
 - 1. Неравенство верно для n=2 (а значит, для $n=4,8,16,\ldots$)
 - 2. Из верности для n следует верность для n-1

Следовательно, неравенство верно для любого натурального n.

2.3 Неравенство треугольника

Рис. 2: Геометрический смысл неравенства треугольника: длина стороны $|\vec{a}+\vec{b}|$ не превосходит суммы длин сторон $|\vec{a}|+|\vec{b}|$.

Теорема (Неравенство треугольника): Для любых комплексных чисел z_1, z_2 справедливо:

$$|z_1 + z_2| \le |z_1| + |z_2|$$

Доказательство

 $|a+b| \le |a| + |b|$

- 1. $a \ge 0$ $(|a| \ge |b|)$ $a+b \ge 0$, to |a+b| = a+b. $a+b \le 0$, to $|a+b| = -(a+b) = -a-b \le |a|+|b|$
- 2. $|a-b| \ge ||a|-|b||$ a=(a-b)+b по н.т.: $|a+0| \le |a-b|+|b| \Rightarrow |a-b| \ge |a|-|b|$ Аналогично $|b| \le |b-a|+|a| \Rightarrow |a-b| \ge |b|-|a|$ Получим, что $\begin{cases} |a-b| \ge |a|-|b| \\ |a-b| \ge |-(|a|-|b|) \end{cases} \Rightarrow |a-b| \ge ||a|-|b||$

Следствие

$$||z_1| - |z_2|| \le |z_1 \pm z_2| \le |z_1| + |z_2|$$

3 §І. Пределы и числовая система

3.1 Пределы последовательности

Определение. Число a называется $npedenom\ nocnedoвательности <math>\{a_n\}$, если

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \ \forall n > N_{\varepsilon} : |a_n - a| < \varepsilon$$

Обозначение: $\lim_{n\to\infty} a_n = a$ или $a_n \to a$ при $n \to \infty$.

Теорема о единственности предела

Теорема: Последовательность не может иметь более одного предела.

Доказательство от противного: Предположим, что последовательность $\{a_n\}$ имеет два различных предела: $a_n \to A$ и $a_n \to B$, где $A \neq B$. Пусть $\varepsilon = \frac{|A-B|}{4} > 0$. Тогда по определению предела:

- $\exists N_1 : \forall n > N_1 : |a_n A| < \varepsilon$
- $\exists N_2 : \forall n > N_2 : |a_n B| < \varepsilon$

Возьмём $n > \max(N_1, N_2)$. Тогда выполняются оба неравенства. Оценим разность |A - B|:

$$|A - B| = |(A - a_n) + (a_n - B)| \le |A - a_n| + |a_n - B| < \varepsilon + \varepsilon = 2\varepsilon = \frac{|A - B|}{2}$$

Получили противоречие: $|A-B|<\frac{|A-B|}{2}$. Следовательно, наше предположение неверно, и предел единственен.

3.2 Что-то про доказательство существования иррациональных чисел (про $\sqrt{2}$).1

9

$$\sqrt{2}=\frac{p}{q},\,p,q\in N$$

$$\frac{p^2}{q^2}=2\Rightarrow p^2=2q^2\ \text{Пусть:}\ p=2k\Rightarrow 4k^2=2q^2\Rightarrow q^2=2k^2$$

3.3 Ограниченные и сходящиеся последовательности

Определение $\{a_n\}$ ограничена, если $\exists M>0: \forall n \ |a_n|< M, \ a_n, M, n\in Q$

Определение $\{a_n\}$ не ограничена, если $\forall M>0:\exists n\;|a_n|\geq M,\;a_n,M,n\in Q$

Теорема 2 Любая сходящаяся последовательность ограничена Если $\{a_n\}$ сходиться $\Rightarrow \{a_n\}$ ограничена

Доказательство Т2

$$arepsilon:=1\ \exists N: \forall n>N\ |a_n-a|<1\Leftrightarrow -1< a_n-a<1\Leftrightarrow a-1< a_n< a+1$$

$$M:=\max\{|a_1|,|a_2|,...,|a_N|,|a-1|,|a+1|\}+1$$
 $\Rightarrow \{a_n\}$ - ограничена (сверху)

Определение $\{a_n\}$ ограничена сверху, если $\exists M: \forall n \ a_n < M$

Определение $\{a_n\}$ ограничена снизу, если $\exists m: \forall n \ a_n < m$

Пример:

- $1. \left| \cos n \right| \left| \cos n \right| \le 1$
- 2. $\{n\}$ ограничена снизу но не сверху (0, 1, ...)

3.4 Бесконечно малые последовательности

Определение Бесконечно малые последовательности

$$\{\alpha_n\}\ (\forall n,\alpha_n\in Q)$$
 бесконечно малая, если $\alpha_n\xrightarrow{n\to\infty}0$

Теорема 3

Если
$$a_n \to a \Leftrightarrow a_n = a + \alpha_n$$
, где $\{\alpha_n\}$ - б.м.

Доказательство Т3

 \Rightarrow :

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ |a_n - a| < \varepsilon$$

Пусть
$$|a_n - a| = \alpha_n \Rightarrow a_n = a + \alpha_n$$

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ |a_n - a| = |\alpha_n - 0| < \epsilon \Leftrightarrow \alpha_n \xrightarrow[n \to \infty]{} 0$$

⇐:

$$\{\alpha_n\}$$
 - б.м., т.е. $\forall \varepsilon > 0 \ \exists n_\varepsilon : \forall n > n_\varepsilon \ \varepsilon > |\alpha_n| = |a_n - a| \Leftrightarrow a_n \xrightarrow[n \to \infty]{} a$

Теорема 4

- 1. $\{\alpha_n\}$ и $\{\beta_n\}$ б.м. $\Rightarrow \{\alpha_n \pm \beta_n\}$ б.м.
- 2. $\{\alpha_n\}$ б.м. и $\{\beta_n\}$ ограничена $\Rightarrow \{\alpha_n \cdot \beta_n\}$ б.м.

Доказательство Т4: Предел суммы/разности б.м. последовательностей

Доказательство:

- I Требуется доказать, что $\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N} : \forall n > n_{\varepsilon} \ |\alpha_n \pm \beta_n| < \varepsilon$.
 - 1. Зафиксируем произвольное $\varepsilon > 0$.
 - 2. Так как $\{\alpha_n\}$ б.м., то для числа $\frac{\varepsilon}{2}>0$ найдётся номер n_ε' такой, что: $\forall n>n_\varepsilon'$ $|\alpha_n|<\frac{\varepsilon}{2}$
 - 3. Аналогично $\forall n>n_{arepsilon}'' \quad |eta_n|<rac{arepsilon}{2}$
 - 4. Выберем номер $n_{\varepsilon} = \max\{n'_{\varepsilon}, n''_{\varepsilon}\}$. Тогда для всех $n > n_{\varepsilon}$ будут выполняться **оба** неравенства из пунктов (2) и (3).
 - 5. Оценим модуль суммы (или разности) для всех $n > n_{\varepsilon}$, используя неравенство треугольника:

$$|\alpha_n \pm \beta_n| \le |\alpha_n| + |\beta_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Так как $\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ |\alpha_n \pm \beta_n| < \varepsilon$, то по определению последовательность $\{\alpha_n \pm \beta_n\}$ является бесконечно малой.

II
$$\beta_n$$
 - ограничена $\Rightarrow \exists M > 0$: $\forall n |b_n| < M \ \forall \varepsilon > 0 \ \exists n_\varepsilon : \forall n > n_\varepsilon \ |\alpha_n| < \frac{\varepsilon}{2}$

$$|\alpha_n \cdot \beta_n| = |\alpha_n| \cdot |\beta_n| \le \frac{\varepsilon}{M} \cdot M = \varepsilon$$

Теорема 5

$$a_n \xrightarrow[n\to\infty]{} a, \ b_n \xrightarrow[n\to\infty]{} b$$

1.
$$a_n + b_n \xrightarrow[n \to \infty]{} a + b$$

2.
$$a_n \cdot b_n \xrightarrow[n \to \infty]{} a \cdot b$$

3. Если
$$b_n \neq 0 \ \forall n \ nb \neq 0$$
, то $\frac{a_n}{b_n} \xrightarrow[n \to \infty]{} \frac{a}{b}$

Доказательство Т5: Арифметические свойства предела

Из Т4 про арифметические свойства б.м. последовательностей

1.
$$a_n + b_n = (a + \alpha_n) + (b + \beta_n) = (a + b) + (\alpha_n + \beta_n)$$
 $(\alpha_n + \beta_n)$ - Сумма б.м., $(a + b) + (\alpha_n + \beta_n) =$ по Т3 = $a_n + b_n \rightarrow a + b$

2.
$$a_n b_n = (a + \alpha_n) + (b + \beta_n) = ab + (\alpha_n b + \beta_n a + \alpha_n \beta_n) \xrightarrow{T3} ab$$

3. Докажем, что
$$\frac{a_n}{b_n} - \frac{a}{b}$$
 - б.м. $a_n - a - a_n b - ab_n - (a + \alpha_n)b - b$

$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a_n b - ab_n}{b_n b} = \frac{(a + \alpha_n)b - a(b + \beta_n)}{bb_n} = \frac{\alpha_n b - a\beta_n}{bb_n}$$

$$\alpha_n b - a\beta_n - \text{бесконечно малая}$$

Проверим ограниченность $\frac{1}{bb_m}$

$$\varepsilon = \frac{|b|}{2} : \exists n_{\varepsilon} \ \forall n > n_{\varepsilon} \ |b_n - b| < \frac{\varepsilon}{2}$$

$$\varepsilon = \frac{|b|}{2}$$
: $\exists n_{\varepsilon} \ \forall n > n_{\varepsilon} \ |b_n - b| < \frac{\varepsilon}{2}$ $|b_n| = |b - (b - b_n)| \ge \text{(неравенство треугольника)} \ge ||b| - |b - b_n|| \ge \frac{|b|}{2}$

$$|b|-|b-b_n|>rac{|b|}{2}$$
 $\Rightarrow rac{1}{|b_n|}<rac{2}{|b|}$ $\Rightarrow \{rac{1}{b_n}\}$ - ограничена

Значит, что
$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{\alpha_n b - a \beta_n}{b b_n}$$
 - бесконечно малая.

§2 Дедекиндовы сечения по видеозаписи

Неполнота рациональных чисел.

$$r = \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}$$

Дробь можно сделать несократимой.

Пусть
$$(\frac{p}{q})^2=2$$
 - несократимая дробь $\Rightarrow p^2=2q^2\Rightarrow p=2k$ (р - чётное число) $k^2=2q^2\Rightarrow q^2=2k^2\Rightarrow$ q - чётное число

т.к. дробь несократимая, а числитель и знаменатель чётные, то она на самом деле сократимая. Противоречие!

Значит это число нельзя представить рациональной дробью.

Если на оси отметить все рациональные числа точками, то $\sqrt{2}$ - будет выколотой точкой.

Отрезки

$$I_n = [a_n, b_n] = \{r \in \mathbb{Q} \mid a_n \le r \le b_n\}$$
, где $a_n, b_n \in \mathbb{Q}$

Будем считать, что $\forall n[a_{n+1},b_{n+1}]\subset [a_n,b_n]$ - вложенные отрезки. Это значит, что $a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$ и следующий отрезок меньше предыдущего.

$$b_n - a_n \xrightarrow{n \to \infty} 0$$
 - стягивающиеся отрезки.

Дальше будем подразумеваться, что все последовательности $\{I_n\}$ - вложенные и стягивающиеся в точку.

Что нам дают такие отрезки: $\forall r$

$$\exists n : r < a_n \Rightarrow \forall m > n : \ r < a_m \tag{1}$$

$$\exists n : r > b_n \Rightarrow \forall m > n : r > b_m \tag{2}$$

$$\forall n : a_n \le r \le b_n \tag{3}$$

- 1. левый класс для $\{I_n\}$ (всегда не пуст)
- 2. правый класс для $\{I_n\}$ (всегда не пуст)

3. центральный класс для $\{I_n\}$ (может быть пустым учитывая $r \in \mathbb{Q}$ \$). Не может содержать более 1 Q числа.

Слово "класс"подразумевает множество.

Дедекиндово сечение - множество рациональных чисел (Q) порождённое последовательностью $\{I_n\}$.

Тогда каждому действительному числу будет соответствовать своё дедекиндово сечение.

Определение

 $\{I_n\}$ и $\{I_n``\}$ - эквиваленты, если они порождают одинаковые разбиения на классы

Теорема 1

 $\{I_n\} \sim$ эквивалентна $\{I_n'\} \Leftrightarrow$

- 1. $\forall n \ a_n a_n, \xrightarrow{n \to \infty} 0$ ИЛИ
- 2. $\forall na_n \leq b_n', \ a_n' \leq b_n$

Доказательство Т1

Только п.1.

$$\Rightarrow$$
: $\{I_n\} \sim \{I_n'\} \Rightarrow a_n - a_n' \to 0$

от противного: тогда
$$a_n - a_n' \nrightarrow 0 \Leftrightarrow$$

$$\exists \varepsilon > 0 : \forall N \ \exists n > N \ |a_n - a_n'| \ge \varepsilon$$

$$\Rightarrow$$
 для бесконечно многих номеров либо $a_n - a_n$, $> \varepsilon$, либо a_n , $-a_n > \varepsilon$

Пусть для бесконечно многих номеров $a_n - a_n$ $> \varepsilon$

$$\exists n_{arepsilon}$$
 длина $[a_n`,b_n`]<rac{arepsilon}{2}$

$$b_n' - a_n' \to 0 \ \exists n_{\varepsilon} : \ \forall n > n_{\varepsilon} \ |b_n' - a_n'| < \frac{\varepsilon}{2}$$

Т.к. $\exists r \in [b_n, a_n]$, то она принадлежит правому классу $\{I_n\}$ и левому классу $\{I_n\}$. Последовательности не эквивалентны.

$$\Leftarrow: a_n - a_n' \xrightarrow{n \to \infty} 0 \Rightarrow \{I_n\} \sim \{I_n'\}$$

От противного: пусть $\{I_n\} \nsim \{I_n'\}$, то есть $\exists r \in Q \ r$ из левого класса для одной и центрального или правого класса другой.

г из левого класса $\{I_n\}\exists n: r < a_n$

- і. г из правого класса $\{I_n'\} \Rightarrow \exists n' : \forall n > n' \ a_n' \leq b_n' < r < a_n \leq a_m$
- іі. r из центрального класса $\{I_n'\}$ $\exists n : r < a_n \text{ Пусть } \varepsilon = a_n - r(>0)$ $\exists n_{\varepsilon}: \forall m>n_{\varepsilon}|b_m`-a_m`|<rac{\varepsilon}{2}\Rightarrow [a_m`,b_m`]$ на расстоянии не меньше $rac{\varepsilon}{2}$ от

2 вариант доказательства в обратную сторону. $\Leftarrow: a_n - a_n, \xrightarrow{n \to \infty} 0 \Rightarrow \{I_n\} \sim \{I_n, \}$

совпадение левых классов левый $\{I_n\}$

 $\exists n: r < a_n$ $\exists n: r < a_n$ $\exists n_\varepsilon: \forall n > n_\varepsilon \ |a_n - a_n`| < \frac{\varepsilon}{2} \Rightarrow r < a_n` \Rightarrow r \in \text{левый класс для } \{I_n`\}$

3.4.1Ограничение на количество элементов центрального класса.

Если г из центрального класса, то $\forall n: a_n \leq r \leq b_n$

А если $\exists r', r \in$ центральный класс r < r', то $a_n \le r < r' \le b_n$. Тогда длина отрезка не может быть меньше длины отрезка [r, r'] значит она не стремится к 0.

В центральном классе может быть либо ё число либо 0.

Пример 2-х последовательностей стягивающихся к 0

$$\{I_n\}=[rac{1}{2n},rac{1}{2n}]\ \{I_n`\}=[rac{1}{2n+1},rac{1}{2n+1}]\ \{I_n``\}=[0,rac{1}{2n+1}]$$
 Они определяют 1 и то же число.

Пример 2-х последовательностей стягивающихся к $\sqrt{2}$

$$\left[\sqrt{2} - \frac{1}{n}, \sqrt{2} + \frac{1}{n}\right]$$

Действительные числа 3.5

Действительные числа - это вложенные стягивающиеся отрезки с рациональными концами. Числа равны, если последовательность $\{I_n\} \sim \{I_n'\}$ Действительные число - отождествляется с дедекиндовым сечением, порожедённым $\{[a_n,b_n]\}$. Числа равны, если последовательность $\{[a_n,b_n]\}$ \sim $\{[a_n`,b_n`]\}$

3.6 Сравнение действительных чисел и арифметические операции

 $r, p, q \in \mathbb{Q}$ $x, y, z \in \mathbb{R}$

3.6.1 Определение сравнения рационального и действительного числа.

- 1. r < x, если г из левого класса $\{[a_n, b_n]\}$
- 2. $r \equiv x$, если r из центрального класса $\{[a_n, b_n]\}$
- 3. r > x, если г из правого класса $\{[a_n, b_n]\}$

Нет зависимости от конкретного выбора $\{[a_n,b_n]\}$

3.6.2 Определение сравнения 2-х действительных числе (запись лекции)

 $x, y \in \mathbb{R}$

- 1. $x \neq y \Leftrightarrow \exists r_1 \in$ левый класс для х
 - $r_1 \in$ правый класс для у.

Либо

 $\exists r_2 \in \Pi$ равый класс для $\mathbf{x}, r_2 \in \Pi$ евый класс для $\mathbf{y}.$

$$c_n < d_n < d_k < r_1 < a_m \le a_n < b_n, \ \forall n > k + m$$

- 2. x < y, если $\exists r \in \mathbb{Q}$ x < r < y
- 3. x > y, если $\exists r \in \mathbb{Q}$ x > r > y
- 4. Транзитивность $x < y, \ y < z \Rightarrow x < z$: $\exists r_1 \in \mathbb{Q}, \ \exists r_2 \in \mathbb{Q} : x < r_1 < y < r_2 < z$

 $\forall x,y \in \mathbb{R}$ если левые и правые классы совпадают $\Rightarrow x=y$ для х и у.

Если не совпадают, то либо $\exists r \in \mathbb{Q}, r \in \text{левому}$ классу для у и правому классу для х.

$$x \leq r \leq y \Rightarrow x < y$$

либо $\exists r \in Q : r \in$ правому классу для у и правому классу для х.

 $x < r < x \Rightarrow y < x$

Условия:

- 1. Если $r < x \Leftrightarrow r < a_n$ для достаточно больших номеров(n)
- 2. Если $r = x \Leftrightarrow \forall n \ a_n \leq r \leq b_n$
- 3. Если $r < x \Leftrightarrow r > b_n$ для достаточно больших номеров(n)

Доказательство 2.

- 1. Если $r < x \Leftrightarrow r$ из левого класса для $\{[a_n,b_n]\} \Leftrightarrow \exists n \ r < a_n$
- 2. аналогично
- 3. не 1. и не 2.

 $x,y \in R \; x < y$, если $\exists r \in Q : x < r < y$

3.7 Арифметические операции

 $x, y \in \mathbb{R}$ $x \sim \{[a_n, b_n]\}$

Действительное число - класс эквивалентности стягивающихся отрезков с иррациональными концами.

По простому у каждого такого класса есть рациональное число - центральный класс.

$$x + y :\sim \{[a_n + c_n, b_n + d_n]\}$$

Определим операцию сложения

- 1. $\{[a_n+c_n,b_n+d_n]\}$ вложенные стягивающиеся отрезки. $\forall n \ a_n \leq a_{n+1} < b_{n+1} \leq b_n$ $\forall n \ c_n \leq c_{n+1} < d_{n+1} \leq d_n$ $a_n+c_n \leq a_{n+1}+c_{n+1} < b_{n+1}+d_{n+1} \leq b_n+d_n$ $[a_{n+1}+c_{n+1},b_{n+1}+d_{n+1}] \subset [a_n+c_n,b_n+d_n]$ вложенность. $(d_n+d_n)-(a_n+c_n)=(b_n-a_n)+(d_n-c_n)\to 0$ стягиваемость.
- 2. Если $\{[a_n,b_n]\} \sim \{[a_n`,b_n`]\}$ и $\{[c_n,d_n]\} \sim \{[c_n`,d_n`]\} \Rightarrow \{[a_n+c_n,b_n+d_n]\} \sim \{[a_n`+c_n`,b_n`+d_n`]\}$ $a_n-a_n`\to 0$ $c_n-c_n`\to 0$ Достаточно проверить, что $(a_n+c_n)-(a_n`+c_n`)\to 0$
- 3. Если $x,y\in\mathbb{Q}$ Пусть $x\sim\{[x-\frac{1}{n},x+\frac{1}{n}]\},\,y\sim\{[y-\frac{1}{n},y+\frac{1}{n}]\}$ $x+y\sim\{x+y-\frac{2}{n};x+y+\frac{2}{n}\}$

х+у принадлежит центральному классу. Зачит корректно.

Свойства:

- 1. x + y = y + x из определения.
- 2. (x+y) + z = x + (y+z) из определения.
- 3. х у :~ $\{[a_n c_n, b_n d_n]\}$ это неправильно!
- 3. $x y : \sim \{[a_n d_n, b_n c_n]\}$
- 4. $x \cdot y$, x > 0, y > 0

 $x \cdot y \sim \{[a_n c_n; b_n d_n]\}$, а концы могут быть какими угодно. Проблемы со знаком. Тогда пусть $a_1 > 0$, $c_1 > 0$. Доказывать всё не будем. Надо понять, что оно доказывается просто перебором всех случаев.

4 Вложенные стягивающиеся отрезки с действительными концами

4.1 Определения.

```
x,y\in R,\; x< y для ограниченного отрезка отрезок [x,y]=\{z\in Z; x\leq z\leq y\} - полуинтервал [x,y)=\{z\in Z; x\leq z< y\} полуинтервал (x,y)=\{z\in Z; x< z\leq y\} интервал (x,y)=\{z\in Z; x< z\leq y\} Определение Если z\in (x,y), то U_z (x,y) - окрестность точки (числа) z Определение Диаметр U_z=y-x \forall \varepsilon>0: (x-\varepsilon,x+\varepsilon) - U_{x,\varepsilon} - \varepsilon-окрестность числа x.
```

4.2 Окрестностное определение предела последовательности.

Окрестностное определение предела $\{x_n\}$. $x_n \xrightarrow[n \to \infty]{} x$, $(\forall x_n, x \in \mathbb{R})$, если $\forall U_x \; \exists n_{U_x} : \forall n > n_{U_x} \; x_n \in U_x$ Определение предела $\{x_n\}$. $x_n \xrightarrow[n \to \infty]{} x$, если $\forall \varepsilon > 0 \; \exists n_\varepsilon : \forall n > n_\varepsilon \; |x_n - x| < \varepsilon$

Определение $\{[a,b]\}$ - вложенные стягивающиеся отрезки с R концами

Последовательность стягивающихся вложенные отрезков с действительными концами

$$\{[x_n, y_n]\}, \forall n \ x_n, y_n \in \mathbb{R}$$

1. $\forall n[x_{n+1}, y_{n+1}] \subset [x_n, y_n]$

$$2. \ y_n - x_n \to 0$$

Утверждение Центральный класс всегда не пуст в R

Вариант с записи:

 $\exists! z \in \mathbb{R} : \forall n \ z \in [x_n, y_n]$

Доказательство.

$$\{[a_n,b_n]\} \to \{[\alpha_n,\beta_n]\}$$
, где $a_n,b_n \in R$ $\alpha_n\beta_n \in Q$ $|\beta_n-\alpha_n|=|(\beta_n-b_n)+(b)n-a_n)+(a_n-\alpha_n)|\leq$ - неравенство треугольника $|\beta_n-b_n|'<1/n'+|b_n-a_n|'\to 0'+|a_n-\alpha_n|'<1/n'\to 0$ α_1 ,

С записи:

1. Множество $\mathbb Q$ всюду плотно, то есть $\forall (x,y) \ \exists r \in \mathbb Q, r \in (x,y). \ x < y$ по определению $\exists r \in Q$

(a) $\beta \in \mathbb{Q}$

Здесь могла бы быть ваша картинка.

(b) $x_2 - \frac{1}{2^2}$

$$\alpha_{2} \in (\alpha_{1}; x_{2}) \ \alpha_{2} \in (x_{2} - \frac{1}{2^{2}}; x_{2})$$
$$\beta_{1} \in (y_{2}, \beta_{1}) \cap (y_{2}; y_{2} + \frac{1}{2^{2}})$$
$$[\alpha_{1}, \beta_{1}] \supset [x_{1}, y_{1}]$$
$$[\alpha_{1}, \beta_{1}] \supset [\alpha_{2}, \beta_{2}] \supset [x_{2}, y_{2}]$$

Вложенные отрезки с рациональными концами.

$$\{ [\alpha_n, \beta_n] \}$$

Эта последовательнеость стягивается. $\forall n \ [x_n, y_n] \subset [\alpha_n, \beta_n]$

$$\beta_n - \alpha_n = (\beta_n - y_n) + (y_n - x_n) + (x_n - \alpha_n)$$

 $\exists ! r \in \mathbb{R}$ - общая точка всех $[\alpha_n, \beta_n]$

Пусть $\exists n \ z < x_n$

В ведь здесь тоже мог бы быть ваш рисунок.

Принцип полноты множества по Вейерштрассу Принцип полноты множества по Вейерштрассу означает, что любое ограниченное сверху множество имеет точную верхнюю грань

Определение $\{a_n\}$ монотонна, если возрастает/ строго возрастает/убывает/строго убывает.

Теорема по Вейерштрассу

- 1. $\{a_n\} \uparrow \Rightarrow a_n \to \sup\{a_n\}$
- 2. $\{a_n\} \downarrow \Rightarrow a_n \to \inf\{a_n\}$

Определение $sup\{a_n\}$ - это sup множества членов последовательности.

Доказательство полноты $\mathbb R$ по Вейерштрассу

Доказательство

- 1. Ограничено сверху $\exists M: \forall na_n \leq M \Rightarrow \exists sup\{a_n\} = M \in \mathbb{R}$ По определению предела $\forall \varepsilon > 0 \exists n_\varepsilon: \forall n > n_\varepsilon | a_n M | < \varepsilon$ $\Leftrightarrow M \varepsilon < a_n < M + \varepsilon$ т.к. $M = sup\{a_n\}$, то $a_n \leq M$ надо проверить $M \varepsilon < a_n \leq M$
 - М наименьшая верхняя грань $\Rightarrow \exists n_{\varepsilon}: \forall n>n_{\varepsilon} \quad M-\varepsilon \leq a_{n_{\varepsilon}} \leq a_{n} \leq M$ т.е. по определению

$$M = \lim_{n \to \infty} a_n$$

Следствие $\{a_n\}$ - монотонна $\{a_n\}$ - сходится $\Leftrightarrow \{a_n\}$ - ограничена.

5 §3 Число е как предел последовательности.

Вспомним неравенство среднего геометрического и среднего арифметического.

$$\forall k : a_k > 0 \quad \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n} \le \frac{a_1 + a_2 + \dots + a_3}{n}$$

Пусть
$$a_1 = a > 0, \ a_2 = a_3 = \dots = a_{n+1} = d > 0$$

$$\sqrt[n+1]{a \cdot b^n} \le \frac{a+nb}{n+1}$$

$$(1+\frac{1}{n})^k$$
 - сходится

Доказательства монотонности

$$1. \ (1+\frac{1}{n})^k \uparrow$$

Пусть
$$a = 1$$
, $b = 1 + \frac{1}{n}$

$$\sqrt[n+1]{a \cdot (1 + \frac{1}{n})^n} < \frac{1 + n(1 + \frac{1}{n})}{n+1} = \frac{n+1}{n+1} = 1 + \frac{1}{n+1} \uparrow n + 1$$

$$(1+\frac{1}{n})^n < (1+\frac{1}{n+1})^{n+1}$$

2.
$$(1-\frac{1}{n})^k \uparrow$$

Пусть $a = 1, b = 1 - \frac{1}{n}$

$$\sqrt[n+1]{a \cdot (1 - \frac{1}{n})^n} < \frac{1 + n(1 - \frac{1}{n})}{n+1} = \frac{n+1-1}{n+1} = 1 - \frac{1}{n+1} \uparrow n+1$$

$$(1 - \frac{1}{n})^n < (1 - \frac{1}{n+1})^{n+1}$$

3.
$$(1+\frac{1}{n})^{n+1} = (\frac{1}{\frac{n}{n+1}})^{n+1} = \frac{1}{(1-\frac{1}{n+1})^{n+1}} \downarrow$$

 $\forall k, m \quad n = max\{k, m\}$

$$(1 + \frac{1}{k})^k \le (1 + \frac{1}{n})^n < (1 + \frac{1}{n})^{n+1} \le (1 + \frac{1}{m})^{m+1} \Rightarrow$$

 $(1+\frac{1}{n})^n$ - ограничена сверху \Rightarrow сходится.

Определение

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Доказать/подумать

1.

$$e = \lim_{n \to \infty} (1 + \frac{1}{1!} + \frac{1}{2!} + \dots + + \frac{1}{n!})$$

2.
$$(1+\frac{1}{n})^{n+2}$$

3. Сколько слагаемых нужно взять, чтобы получить е с точностью 10^{-3}

4. Какое нужно взять n, чтобы получить е с точностью 10^{-3}

6 §4 Последовательности.

Определения: предела, последовательности, сходящейся последовательности, ограниченной последовательности.

Теоремы

- 1. Единственность предела
- 2. Ограниченность сходящейся последовательности
- 3. $\{a_n\} \to a \Leftrightarrow a_n = a + \alpha_n, \ \alpha_n$ б.м.
- 4. Арифметические свойства

Теорема 1. Если $\exists N : \forall n > N \ a_n = a \Rightarrow a_n \rightarrow a$

Доказательство

$$\forall \varepsilon > 0 \ \forall n > N \ |a_n - a| = 0 < \varepsilon \Rightarrow a_n \to a$$

по определению

Теорема 2. Если $a_n \to a$, $b_n \to b$ $\forall n > N$ $a_n \le b_n \Rightarrow a \le b$

Доказательство

От противного:

Пусть a < b

НАДО ПОСМОТРЕТЬ ПРЕДЫДУЩИЕ ЛЕКЦИИ. ЭТО ОТТУДА.

7 §5 Теорема Больцано-Вейерштрасса

 n_k - строго возрастает последовательность натуральных чисел $\Rightarrow n_k \geq k$.

Определение $\forall \{a_n\} \ \{a_n\}$ - подпоследовательность $\{a_n\}$

 $\{a_n\}=2^n$, тогда 2, 16, 64, 128 - подпоследовательность $\begin{cases}2,3,4,16,...\\16,2,32,...\end{cases}$ - не подпоследовательности

Теорема Больцано-Вейерштрасса

 \forall ограниченой $\{a_n\}$ \exists сходящаяся подпоследовательность $\{a_n\}$

Рђ РÇ-РЎ.png

Доказательство

Прицип вложенных отрезков.

 $\exists [c,d] : \forall n \ a_n \in [c,d]$

- 1. $[c_1, d_2] = [c, d] \ \forall a_{n_1} \in [c_2, d_1]$
- 2. $b_1=\frac{c_1+d_1}{2}$ $[c_2,d_2]$ тот из $[c_1,b_1]$ и $[b_1,d_1]$ на котором содержится бесконечно много членов последовательности $\{a_n\}$ $a_{n_2}:a_{n_2}\in[c_2,d_2],n_2>n_1$

3.
$$b_2=\frac{c_2+d_2}{2}$$
 $[c_3,d_3]$ тот из $[c_2,b_2]$ и $[b_2,d_2]...$ $a_{n_3}:a_{n_3}\in[c_3,d_3],n_3>n_3$ $\{a_n\}$ $a_{n_k}\in[c_k,d_k],n_k>n_{k-1}$ $[c_1,d_1]\supset[c_2,d_2]\supset...\supset[c_k,d_k]\supset...$ длина $[c_k,d_k]=\frac{1}{2^{k-1}}$ длина $[c_1,d_1]\to 0\Leftrightarrow \exists a'=U[c_k,d_k]$ $\forall k\ |a_n-a'|\leq \frac{1}{2^{k-1}}$ - длина $[c_1,d_1]\to 0$ $a_{n_k},a'\in[c_k,d_k]\Rightarrow a_{n_k}\to 0$

Определение Частичный предел $\{a_n\}$ - предел \forall сходящейся подпоследовательности $\{a_n\}$

Следствие из теоремы

 $\forall \{a_n\} \exists$ подпоследовательность $\{a_{n_k}\}$ которая имеет либо конечное либо бесконечное число пределов.

Доказательство

Если в $\{a_n\}\exists \{a_{n_k}\}a_{n_k} \to a' \in \mathbb{R}$

Если такого нет, то по Теореме Б-В $\{a_n\}$ - не ограничена сверху или снизу.

Если $\{a_n\}$ - не ограничена сверху:

- 1. 1 не верхняя грань $\{a_n\}:a_{n_1}:a_{n_1}>1$
- 2. 2 не верхняя грань $\Rightarrow \exists n_2: a_{n_2} > 2, n_2 > n_1$

...

k. $\exists n_k : a_{n_k} > \max\{k, a_1, a_2, ..., a_{n_{k-1}}\}, n_k > n_{k-1}$

8 §5. Критерий Коши сходящейся последовательности.

8.1 Фундоментальные последовательности.

Последовательность $\{a_n\}$ фундаментальна - если

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n, m > n_{\varepsilon} \ |a_n - a_m| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon}, \forall p \ |a_{n+p} - a_n| < \varepsilon$$

8.2 Критерий Коши.

 $\{a_n\}$ - сходится $\Leftrightarrow \{a_n\}$ - фундаментальна.

Доказательство

Взять с записи

9 §6. Верхний и нижний предел.

Утверждение 1. \forall последовательность имеет хотя-бы 1 частичный предел (конечный или бесконечный).

Доказательство

1. Пусть $\{a_n\}$ - не ограничена сверху.

Напоминание: $\{a_n\}$ - не ограничена сверху, если $\forall M \ \exists a_n > M \Leftrightarrow \exists$ бесконечно много таких членов.

$$a_n > 1, a_{n_2} > 2, n_2 > n_1$$

 $a_{n_k} > k, n_k > n_{k-1}$
 $\{a_{n_k}\} \to +\infty$

- 2. Если $\{a_n\}$ не ограничена снизу, то $\exists a_{n_k} \to -\infty$ (аналогично)
- 3. Если $\{a_n\}$ огрничена, то Б-В.

Утверждение 2. критерий частичного предела.

а - частичный предел $\{a_n\} \Leftrightarrow \forall U_a$ принадлежит б.м. членов последовательности.

$$\forall U_a \exists a_{n_k} \in U_a^{\circ} = U_a / \{a\}$$

- ЭТО ХУЙНЯ. НАДО НАЙТИ ОШИБКУ

На экзамене: что-то может быть.

$$\forall U_a \; \exists k_{U_a} : \forall k > k_{U_a} \; a_{n_k} \in U_a \\ \Rightarrow \mathrm{B} \; U_a \; \mathrm{бесконечно} \; \mathrm{много} \; \mathrm{членов} \; \mathrm{последовательности}. \\ \Leftarrow \mathrm{B} \; \forall U_a \; \mathrm{бесконечно} \; \mathrm{много} \; \mathrm{членов} \; \{a_n\}. \\ \varepsilon_1 = \frac{1}{2} \; U_a = (a-\varepsilon;a+\varepsilon) \; \text{-- отсюда} \; \mathrm{любой} \; \mathrm{член} \; \{a_n\} \\ \varepsilon_2 = \frac{1}{2^2} \; \exists a_{n_2} \in (a-\varepsilon_2;a+\varepsilon_2), n_2 > n_1 \\ \ldots \\ \varepsilon_k = \frac{1}{2^k} \; \exists a_{n_k} \in (a-\varepsilon_k;a+\varepsilon_k), n_k > n_{k-1} \\ \{a_{n_k}\}a_{n_k} \to a, \; \mathrm{при} \; k \to \infty \\ \forall k \; \; a-\frac{1}{2^n} \to a = a-\varepsilon_k < a_{n_k} < a_\varepsilon = a+\frac{1}{2^k} \to a \\ \mathrm{По} \; \mathrm{теореме} \; \mathrm{o} \; \mathrm{зажатой} \; \mathrm{последовательности} \; a_{n_k} \to \infty$$

Определене.

Наибольший из часичных пределов. $\{a_n\}$ - верхний прдел a_n Наименьший из часичных пределов. $\{a_n\}$ - нижний прдел a_n

Теорема $\forall \{a_n\} \; \exists \; \text{верхний и нижний предел.}$

1. $\exists \underline{\lim} a_n$ - нижний предел a_n

Пусть $\{a_n\}$ - не ограничена те $\forall M \exists a_n < M$. Таких a_n - бесконечно много.

$$a_{n_1} < -1, a_{n_2} < \min\{-2, a_1, ..., a_{n_1}\} - 1 \ n_2 > n_1$$

$$a_{n_k} < min\{-k, a_1, ..., a_{n_{k-1}}\} - 1$$

$$a_{n_k} - k, n_k > n_{k-1}$$

 $\{a_{n_k}\}$ - подпоследовательность.

$$a_{n_k} < -k \Rightarrow a_{n_k} \to -\infty$$

- 2. Пусть $\{a_n\}$ ограничена снизу.
- а) $\{a_n\}$ имеет конечные частичные пределы.

А - множество конечных частных пределов. $A \neq \emptyset$ и ограничена снизу. $\exists inf\ A=a.$ Покажем, что $a=\varliminf_{n\to\infty}a_n$

$$\forall \varepsilon > 0 \exists a' \in A$$

 $a < a' < a + \varepsilon$

б) $\{a_n\}$ нет конечных частичных пределов.

$$a_n \to +\infty$$

Если
$$a_n \not\to +\infty \ \exists M: \forall N \ \exists n>N \ a_n \leq M$$

 \exists бесконечно много $\{a_n\} < M$ по Б-В \exists конечный частичный предел. !!! Каждое действитеьное число является её частиыным пределом.

10 Числовые ряды

10.1 Определения и элементарные факты.

 $\{a_k\}$ - ЧП

$$\{a_k\} \to S_n = \sum_{k=1}^n a_k$$

10.1.1 Определение

Определяем бесконечную сумму.

$$\sum_{k=1}^{\infty} a_k$$
 - ряд

 a_k - элемент ряда (общий член).

 S_n - n-ая частичная сумма ряда.

Если S_n - сходится, то ряд $(\sum_1^\infty a_k)$ называется **сходящимся**, $S:=\lim_{n\to\infty} s_n$ - **суммой ряда**: $\sum_1^\infty = S$.

Если $\{S_n\}$ расходится, то $\sum_{1}^{\infty} a_k$ - расходится.

10.1.2 Теорема 1.

$$\sum_{1}^{\infty} a_k \pm \sum_{1}^{\infty} b_k = \sum_{1}^{\infty} (a_k \pm b_k)$$

10.1.3 Теорема 2. Критерий Коши о сходимости ряда.

 $\sum_{1}^{\infty} a_k$ - сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n \varepsilon \forall p \ |S_{n+p} - S_n| < \varepsilon$

$$|\sum_{1}^{n+p} a_k - \sum_{1}^{n} a_k| = |\sum_{n+1}^{n+p} a_k| < \varepsilon$$

10.1.4 Следствие 1. Изменение конечного числа членов ряда не влияет на сходимость.

Сумма конечно может измениться, но на сходимость это не влияет.

10.2 Следствие 2. Необходимое условие сходимости ряда.

Можно считать определением: Если $\sum_{1}^{\infty} a_k$ сходится $\Rightarrow a_k \xrightarrow[k \to \infty]{} 0$

Доказательство

 $\sum_{1}^{\infty}a_{k}$ - сходится $\forall \varepsilon>0$ $\exists n_{\varepsilon}: \ \forall n>n_{\varepsilon} \ \forall p \ |\sum_{n+1}^{n+p}a_{k}|<arepsilon\Leftrightarrow |a_{n+1}|<arepsilon$ При $\mathrm{p}=1$, то есть $\{a_{n}\}$ - б.м. по определению.

Пример 1.

 ${
m E}$ сли $|{
m q}|<1$

$$\sum_{1}^{\infty} q^{k}, S_{n} = 1 + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q} \xrightarrow[n \to \infty]{} \frac{q}{1 - q}$$

Пример 2.

$$\sum_{1}^{\infty} \frac{1}{n}$$

а, b, c положительные. c - среднее гармоническое а и b, если $\frac{2}{c} = \frac{1}{a} + \frac{1}{b}$

$$a = \frac{1}{n-1}, b = \frac{1}{n+1}$$

$$\frac{2}{n} = (n-1) + (n+1) = 2n$$

с Каждый элемент является средним гармоническим 2-х соседий. По критерию Коши ряд расходящийся.

$$|\sum_{n+1}^{n+p} \frac{1}{k}| = \frac{2}{n+1} + \ldots + \frac{1}{n+p} \ge \frac{p}{n+p}$$

27

Пусть p = n.
$$\frac{p}{n+p} = \frac{1}{2}$$
.

Пример 3.

$$1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\dots$$

$$S_{2n} = 0$$

$$S_{2n+1} = \frac{1}{n+1} \to 0$$

$$n+1$$
 А теперь давайте мухлевать. Переставим сумму ряда. Шоу ИМПРОВИЗАЦИЯ!!!
$$(1+\frac{1}{2})-1+(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{11})-\frac{1}{2}$$

Берём много положительных слагаемых и вычитаем меньшее по модулю число. Из-за этого ряд расходится.

Пример 4.

$$\sum_{0}^{\infty} (-1)^k = (1-1) + (1-1) + \dots$$

$$\sum_{k=0}^{\infty} (-1)^k = 1 - (1-1) - (1-1) - \dots$$

10.3Абсолютно сходящийся ряд.

Определение. Если $\sum_1^\infty |a_k|$ сходится, то $\sum_1^\infty a_k$ сходится абсолютно.

10.3.1Теорема 1. Если ряд сходится абсолютно, то ряд сходится.

Доказательство (Критерий Коши)

По критерию Коши, т.к. $\sum_{1}^{\infty} |a_k|$ сходится, то $\forall \varepsilon > 0 \ \exists n_{\varepsilon} : \forall n > n_{\varepsilon} \ \forall p \ |\sum_{n+1}^{n+p} a_k| \le |\sum_{n+1}^{n+p} |a_k|| < \varepsilon \Rightarrow$ по критерию Коши $\sum a_k$ сходится.

28

Пример 1.

 $1-1+\frac{1}{2}-\frac{1}{2}+\dots$ - сходится, но не абсолютно.

10.3.2 Определение.

Если $\sum_{1}^{\infty} a_k$ сходится, а $\sum_{1}^{\infty} |a_k|$ расходится, то $\sum a_k$ сходится условно.

10.3.3 Теорема 2.

 $\sum_{1}^{\infty} a_k, \forall k \ a_k \geq 0$ $\sum_{1}^{\infty} a_k$ сходится $\Leftrightarrow \{S_N\}$ ограничена.

Доказательство

$$\forall n \ S_{n+1} = \sum_{1}^{n+1} a_k \ge \sum_{1}^{n} a_k = S_n$$

 $S_n\uparrow$ возрастающая $\{S_n\}$ сходится \Leftrightarrow ограничена.

10.3.4 Теорема 3. Признак сравнения.

Для комплов не годится.

$$\sum_{1}^{\infty} a_k, \quad \sum_{1}^{\infty} b_k, \quad \forall k \quad a_k \geq \underline{b_k} \geq \underline{0}$$
 Тогда:

- 1. Если $\sum_{1}^{\infty} a_k$ сходится $\Rightarrow \sum_{1}^{\infty} b_k$ сходится.
- 2. Если $\sum_{1}^{\infty} a_k$ расходится $\Rightarrow \sum_{1}^{\infty} b_k$ расходится.

Доказательство

Следствие критерия сходимости ряда с неотрицательными членами.

1.
$$A_n = \sum_{1}^{n} a_k$$
, $B_n = \sum_{1}^{n} b_k$ $A_n \uparrow$, $B_n \uparrow$ и $A_n \geq B_n$ (A_n можарирует B_n)
 Если $\sum a_k$ сходится $\Rightarrow \{A_n\}$ ограничена сверху $\Rightarrow \{B_n\}$ ограничена сверху $\Rightarrow \sum b_k$ сходится.

10.3.5 Следствие. (Признак сравнения).

 $\sum a_k$, $\sum b_k \ \forall k \ a_k \ge |b_k| > 0$. Не отрицательность a_k . Сходимость $\sum a_k \Rightarrow$ сходимость $\sum b_k$ (абсолютная).

Пример 1.

$$\sum_{1}^{\infty} \frac{\sin n}{n^{2}}$$

$$\left|\frac{\sin n}{n^{2}}\right| \le \frac{1}{n^{2}} < \frac{1}{(n-1)n}, n \ne 1$$

$$\frac{1}{(n-1)n} = \frac{1}{n-1} - \frac{1}{n}$$

$$\sum_{1}^{\infty} \frac{1}{(n-1)n} = \sum_{1}^{\infty} (\frac{1}{-1} - \frac{1}{n})$$

$$S_n = \sum_{k=0}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right) = \left(\frac{1}{2-1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots$$

10.3.6 Теорема 4. Признак Коши.

$$\sum_{1} a_{k}$$

$$q = \overline{\lim} \sqrt[k]{|a_{k}|}$$

Тогда:

1. $q < 1 \Rightarrow$ абсолютно сходится.

2. q > 1 расходится

3. q = 1?

Доказательство

Сравнение с геометрической прогрессией.

Конечное число членов

1.
$$0 \le q$$

$$\exists n_p : \forall n > n_p$$

$$\sqrt[k]{a_k}$$

 $\sqrt[k]{a_k}$ $<math>\sum_{n=1}^{\infty} p^k$ геометрическая прогрессия с положительным знаком $|\mathbf{x}|$. $\Rightarrow \sum_{1}^{\infty} a_k$ сходится абсолютно (по признаку сравнения)

2.
$$q = \overline{\lim} \sqrt[k]{a_k} > 1$$

$$1 > p > \dot{1}$$

 \forall окрестности q бесконечно много членов $\sqrt[k]{|a_k|}$

Замечание. Признак Коши бесполезно использовать, если ряд не похож на геометрическую прогрессию.

Запомните. Признак коши достаточное условие абсолютной сходимости.

Следствие Если $\sqrt[n]{|a_n|} \le q < 1 \Rightarrow \exists q, N \ \forall n > N : \sum a_n$ сходится абсолютно Пример. $\sum_{n=1}^{\infty} (2 + (-1)^n)^n \cdot z^n$

$$\sqrt[n]{((2+(-1)^n)^n z^n} = (2+(-1)^n)|z|n = 2k : \sqrt[n]{|a_n|} = 3|z| = \overline{\lim} \sqrt[n]{|a_n|} = 2k+1 : \sqrt[n]{|a_n|} = |z|$$

Если: 3|z| < 1 сходится $|z| < \frac{1}{2}$

$$|3|z| > 1$$
 расходится $|z| > \frac{1}{3}$

$$3|z| = 1|z| = \frac{1}{3}$$

Теорема 5. Признак д-Аламбера

!Он всегда слабее признака Коши.

$$\sum_{n=1}^{\infty} : \left| \frac{a_{n+1}}{a_n} \right| \to q$$

- 1. $q < 1 \Rightarrow$ абсолютно сходится
- 2. $q < 1 \Rightarrow$ расходится
- $3. \ q=1 \Rightarrow$ Ничего не даёт

Доказательство.

1. Сравнение с геометрической прогрессией.

$$\exists n_p : \forall n > n_p \ |\frac{a_{n+1}}{a_n}| Пусть для $\forall n$
$$a_{n+1} = \frac{a_{n+1}}{a_n} \cdot \frac{a_n}{a_{n-1}} \cdot \ldots \cdot \frac{a_2}{a_1} |a_{n+1}| = |\frac{a_{n+1}}{a_n}| \cdot |\frac{a_n}{a_{n-1}}| \cdot \ldots \cdot |\frac{a_2}{a_1}| \cdot |a_1| < p^n |a_1|$$
 $\sum p^n |a_1|$ сходится (геометрическая прогрессия)$$

2.
$$\exists N: |\frac{a_n+1}{a_n}| > 1 \ \forall n > N$$

Пусть $\forall N \ |\frac{a_{n+1}}{a_n}| > 1$
 $|a_{n+1}| > |a_n| > |a_{n-1}| > ... |a_1| > 0 \Rightarrow a_n \not\to 0$

3.
$$\sum_{1}^{\infty} \frac{1}{n} \left| \frac{a_{n+1}}{n} \right| = \frac{n}{n+1} \to 1$$
$$\sum_{1}^{\infty} \frac{1}{n^2} \left| \frac{a_{n+1}}{n} \right| = \frac{n^2}{(n+1)^2} \to 1$$

Следствие. $\forall n>N: \ |\frac{a_{n+1}}{a_n}|\leq q<1\Rightarrow \sum a_n$ сходится абсолютно.

Доказательство следствия

Пусть
$$\forall n \ |\frac{a_{n+1}}{a_n}| \leq q < 1$$

$$|a_{n+1}| = |\frac{a_{n+1}}{a_n} \cdot |\frac{a_n}{a_{n-1}} \cdot \ldots \cdot |\frac{a_2}{a_1} \cdot |a_1| \leq q^n |a_1| \text{ Т.к. } |q| < 1, \text{ то } \sum q^n |a_1| \text{ сходящаяся геометрическая прогрессия.}$$

Вопрос на 5: Если можно исследовать по Деламберу то можно и по Коши.

$$\begin{aligned} & \mathbf{Пример} \sum_{1}^{\infty} \frac{1}{(3+)-1)^n} \\ & \sqrt[n]{|a_n|} = \frac{1}{3+(-1)^n} = \frac{1}{4}, n = 2k \\ & \sqrt[n]{|a_n|} = \frac{1}{3+(-1)^n} = \frac{1}{2}, n = 2k+1 \\ & \sqrt[n]{|a_n|} \leq \frac{1}{2} < 1 \\ & | \frac{a_{n+1}}{a_n} = \frac{2}{2^{2k+1}} \frac{1}{4^{2k}} \\ & = \dots \end{aligned}$$

$$& \mathbf{Пример} \sum_{1}^{\infty} \frac{1}{(3+)-1)^n} \\ & \sqrt[n]{|a_n|} = \frac{1}{3+(-1)^n} = \frac{1}{4}, n = 2k \\ & \sqrt[n]{|a_n|} = \frac{1}{3+(-1)^n} = \frac{1}{2}, n = 2k+1 \end{aligned}$$

$$& sqrt[n]|a_n| \leq \frac{1}{2} < 1$$

$$& | \frac{a_{n+1}}{a_n} = \frac{1}{2^{2k+1}} = \frac{4^{2k}}{2^{2n+1}} = \frac{1}{2}2^{2k}n = 2k$$

$$& | \frac{a_{n+1}}{a_n}| = \frac{1}{2^{2k+1}} = \frac{4^{2k}}{2^{2n+1}} = \frac{1}{2^{2k+1}} = \frac{$$

Замечание. $|\frac{a_{n+1}}{a_n}| \le 1 < 1,$ а не $|\frac{a_{n+1}}{a_n}| < 1$ Пример.

$$\sum_{0}^{\infty} \frac{z^{n}}{n!}$$

$$\left|\frac{a_{n+1}}{a_{n}}\right| = \frac{\frac{z^{n+1}}{(n+1)!}}{\frac{z^{n}}{n!}} = \frac{|z|}{n+1} \to 0$$

Теорема 6. Теорема Коши о сходимости монотонных рядов.

$$\sum_{1}^{\infty} a_n, \ a_n \downarrow, \ \forall n \ a_n \ge 0$$

 $\sum_1^\infty a_n$ сходится $\Leftrightarrow \sum_1^\infty 2^n \cdot a_{2n}$ сходится

Если
$$\sum a_k$$
: $\forall k \ a_k \geq 0$, то $\sum a_k$ сходится $\Leftrightarrow S_n = \sum_1^n a_k$ ограничена $a_2 \leq a_2 \leq a_1$ $2a_4 < a_3 + a_4 \leq 2a_2$ $\frac{1}{2} 2^3 a_{2^3} = 2^2 a_{2^3} = 2^2 a_8 \leq a_5 + a_6 + a_7 + a_8 \leq 4a_4 = 2^2 a_{2^2}$ $\frac{1}{2} 2^{k+1} a_{2^{2k+1}} = 2^k a_{2^{k+1}} \leq a_{2^{k+1}} + \dots + a_{2^{k+1}} \leq 2^k a_{2^k} \sum_{n=2}^{2^{k+1}} a_n \leq \sum_{n=0}^{2^k} 2^n a_{2^n}$

Теорема 1.