Zadanie: DIN

Dinozaur

Laboratorium z ASD, Zadanie Zaliczeniowe 2. Dostępna pamięć: 256 MB. 30.12.2021, 23:59:59

Zarząd Parku Jurajskiego ma zmartwienie. Wpływy z biletów zaczynają maleć. Badania działu marketingu wykazały, że jest tak dlatego, iż zdaniem klientów dinozaury w parku nie wyglądają dość groźnie. W związku z tym zarząd parku zwrócił się do znanego paleontologa, profesora Makarego, o stworzenie kodu DNA nowego, groźniejszego dinozaura.

Profesor Makary słynie w środowisku naukowym z odkrytej przez siebie metody inżynierii genetycznej zwaną metodą prób i błędów. Postanowił zastosować ją i tym razem. Profesor zaczyna od kodu DNA najgroźniejszego dinozaura w parku, a następnie wielokrotnie modyfikuje kod za pomocą jednej z dwóch operacji: odwrócenia fragmentu kodu oraz przeniesienia fragmentu kodu w inne miejsce. Od czasu do czasu, profesor bada jak groźnie wyglądałby dinozaur odpowiadający aktualnemu kodowi genetycznemu. Odkrył on, że za groźny wygląd odpowiadają spójne ciągi tych samych liter w kodzie. Dlatego profesor chciałby znać najdłuższe takie ciągi w wybranych fragmentach kodu. Pomóż profesorowi i napisz program, który pozwoli mu stworzyć potwora!

Wejście

W pierwszym wierszu standardowego wejścia znajdują się dwie liczby całkowite: $n~(1 \le n \le 1\,000\,000)$ oraz $m~(1 \le m \le 100\,000)$.

Kolejny wiersz zawiera słowo s_0 długości n złożone z liter A, G, C i T.

Każdy z kolejnych m wierszy zawiera jedno z trzech poleceń. Po wykonaniu i-tego polecenia otrzymujemy słowo s_i , zgodnie z następującymi zasadami.

- 0 j k, $(1 \le j \le k \le n)$ oznacza, że słowo s_i powstaje z s_{i-1} poprzez odwrócenie fragmentu zaczynającego się od indeksu j, a kończącego na indeksie k. Przykładowo, jeśli $s_{i-1} = \texttt{AGCG}$, to wynikiem operacji 0 2 3 będzie $s_i = \texttt{ACGG}$.
- P j k l, $(1 \le j \le k \le n, 1 \le l \le n (k j))$ oznacza, że słowo s_i powstaje z s_{i-1} poprzez usunięcie fragmentu zaczynającego się od indeksu j i kończącego na indeksie k otrzymując słowo w, a następnie wstawienie tego fragmentu do słowa w, między znaki o indeksach l-1 oraz l. Przykładowo:

```
– jeśli s_{i-1}={\sf AGCT}, to wynikiem operacji P 1 2 2 będzie s_i={\sf CAGT}, – jeśli s_{i-1}={\sf AGCT}, to wynikiem operacji P 1 2 3 będzie s_i={\sf CTAG}, – jeśli s_{i-1}={\sf AGCT}, to wynikiem operacji P 2 3 1 będzie s_i={\sf GCAT}.
```

• N j k, $(1 \le j \le k \le n)$ nie modyfikuje słowa, tzn. $s_i = s_{i-1}$. Natomiast po każdym takim poleceniu Twój program powinien wypisać na standardowe wyjście maksymalną liczbę kolejnych identycznych liter we fragmencie słowa s_{i-1} zaczynającym się od indeksu j a kończącym na indeksie k. Przykładowo, jeśli $s_{i-1} = \text{ATTT}$, to w wyniku operacji N 1 3 na wyjście wypisany zostanie liczba 2.

Wyjście

Dla każdej operacji postaci N j k na wejściu, wyjście powinno zawierać jeden wiersz zawierający jedną liczbę całkowitą (maksymalną liczbę kolejnych identycznych liter we fragmencie słowa utworzonego przez wcześniejsze operacje, zaczynającym się od indeksu j a kończącym na indeksie k).

Przykład

Dla danych wejściowych:	Poprawnym wynikiem jest:
5 6	2
AGCTA	1
0 2 5	2
N 1 3	bo operacje modyfikacji tworzą kolejno słowa AATCG, ACATG oraz AACTG.
P 2 3 3	
N 1 5	
P 1 2 2	
N 1 5	