النهايات

الدرس الأول	الدورة الثانية	القدرات المنتظرة
	10 ساعة	. حساب نحايات الدوال الحدودية والدوال الجذرية والدوال اللاجذرية؛
		. حساب غايات الدوال المثلثية البسيطة باستعمال النهايات الاعتيادية

1- النهاية لا منتهية عند ∞+ أو عند ∞-

 $f(x) = x^3$ نعتبر الدالة $f(x) = x^3$

1- أرسم C

2- أتمم الجدول التالي

х	-10 ^{10¹⁰⁰}	-10 ^{10¹²}	-10 ¹⁰ 9	-10 ¹⁰⁰	-10	10	10 ¹⁰⁰	10 ¹⁰⁹	101012	1010100
f(x)			. ,		67 AS		e e		e 28	.00

من خلال الشكل و الجدول

 $+\infty$ ماذًا تستنتج لـ f(x) عندما يأخذ x قيما أكبر فأكبر و موجبة أي عندما يؤوك f(x)

 $-\infty$ ماذا تستنتج لـ f(x) عندما يأخذ x قيما أصغر فأصغر و سالبة أي عندما يؤول x إلى

نلاحظ من خلال الجدول و المنحنى عندما يأخذ x قيما أكبر فأكبر و موجبة فان f(x) تأخذ قيما أكبر فأكبر و موجبة وتؤول الى x عندما يؤول x إلى x الى x ا

نلاحظ من خلال الجدول و المنحنى عندما يأخذ x قيما أصغر فأصغر و سالبة فان f(x) تأخذ قيما أصغر فأصغر و سالبة وتؤول الى $-\infty$ عندما يؤول x

 $-\infty$ نقول إن نهاية f(x) هي $-\infty$ عندما يؤول f(x) الى $\lim_{x\to\infty} f(x) = -\infty$ نكتب

كتابات و نهايات اعتيادية

 $[a; +\infty]$ دالة عددية معرفة على مجال f

 $\lim_{x\to +\infty} f(x) = +\infty$ أو $\lim_{x\to +\infty} f(x) = +\infty$ أو $\lim_{x\to +\infty} f(x) = +\infty$ أو $\lim_{x\to +\infty} f(x)$ أو $\lim_{x\to +\infty} f(x) = +\infty$ أذا كان

 $+\infty$ و تقرأ نهایة f(x) هي x عندما یؤول f(x)

 $\lim_{x\to +\infty} f(x) = -\infty$ اِذا كان $f(x) = -\infty$ يؤول إلى $f(x) = -\infty$ عندما يؤول f(x) إذا كان $f(x) = -\infty$ يؤول إلى $f(x) = -\infty$ عندما يؤول f(x) إلى $f(x) = -\infty$ و تقرأ نهاية f(x) هي f(x) عندما يؤول f(x) إلى f(x)

 $\left[-\infty; a \right]$ لتكن f دالة عددية معرفة على مجال

 $\lim_{x\to\infty} f(x) = +\infty$ او $\lim_{x\to\infty} f(x) = +\infty$ اذا کان $\lim_{x\to\infty} f(x) = +\infty$ اندا کان $\lim_{x\to\infty} f(x) = +\infty$ اندا کان اندازی به عندما یؤول $\lim_{x\to\infty} f(x) = +\infty$ ازدا کان اندازی به عندما یؤول الدی به اندازی به اندازی به اینان نموند.

 $-\infty$ و تقرأ نهاية f(x) هي $+\infty$ هي f(x)

 $\lim_{x\to -\infty} f(x) = -\infty$ إذا كان $f(x) = -\infty$ يؤول إلى $f(x) = -\infty$ عندما يؤول f(x) إذا كان أو $f(x) = -\infty$ عندما يؤول إلى أو الى أو الى

 $-\infty$ و تقرأ نهاية f(x) هي $-\infty$ عندما يؤول

نهايات اعتبادية

ليكن n عدداً صحيحاً طبيعياً غير منعدم

$$\lim_{n \to +\infty} x^n = +\infty$$

$$\lim_{x\to -\infty} x^n = +\infty$$
 إذا كان $\lim_{x\to -\infty} x^n = +\infty$

اذا کان
$$n$$
 فردي $\lim_{x\to -\infty} x^n = -\infty$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\lim_{x \to \infty} x^2 = +\infty$$

$$\lim_{x \to \infty} x^2 = +\infty$$

$$\lim x = -\infty$$

$$\lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to \infty} x^3 = -\infty$$

$$\lim_{x \to +\infty} x^3 = +\infty$$

 $-\infty$ النهاية منتهية عند $+\infty$ أو عند -2

نشاط

أمثلة

$$f(x) = \frac{1}{x^2}$$
 نعتبر الدالة $f(x)$ حيث

 C_f باستعمال احد البرامج المعلوماتية أرسم -1

2- أتمم الحدول التالي

										J
x	$-10^{10^{100}}$	-10 ^{10¹²}	-10 ¹⁰⁹	-10 ¹⁰⁰	-10	10	10^{100}	10^{10^9}	$10^{10^{12}}$	$10^{10^{100}}$
f(x)										

من خلال الشكل و الجدول

 $+\infty$ ماذا تستنتج لـ f(x) عندما يأخذ x قيما أكبر فأكبر و موجبة أي عندما يؤول x إلى $-\infty$ ماذا تستنتج لـ f(x) عندما يأخذ x قيما أصغر فأصغر و سالبة أي عندما يؤول x إلى

 $\lim_{x\to -\infty} f(x) = 0$ و $\lim_{x\to +\infty} f(x) = 0$ نلاحظ في كلتا الحالتين f(x) يؤول إلى 0 نكتب

$$f(x) = \frac{2x}{x-1}$$
 نعتبر الدالة f حيث

 C_f أرسم -1

2- خد قيما أكبر فأكبر وموجبة و أملئ بها الجدول

			 · 7.	J J -:	 	
x						
f(x)						

من خلال الشكل و الجدول

 $+\infty$ الى يؤول x إلى x الى عندما يأخذ x قيما أكبر فأكبر و موجبة أي عندما يؤول

			الجدول	ئ بھا	بة وأمل	صغر وسال	با أصغر فأُد	خد قیم
х								
f(x)								

 $-\infty$ ماذا تستنتج لـ f(x) عندما يأخذ x قيما أصغر فأصغر و سالبة أي عندما يؤول

 $\lim_{x\to -\infty} f(x) = 2$ و $\lim_{x\to +\infty} f(x) = 2$ نلاحظ في كلتا الحالتين f(x) يؤول إلى 2 نكتب 2 نلاحظ في

$-\infty$ النهاية منتهية عند

 $\overline{\left]a;+\infty\right[}$ لتكن f يحتوي حيز تعريفها على مجال من نوع

 $\lim_{x \to \infty} f(x) = l$ اذا كان f(x) = l تؤول إلى f(x) = l عندما يؤول f(x) إلى f(x) = l فإننا نكتب

$-\infty$ النهاية منتهية عند

 $]{-\infty;a[}$ لتكن f يحتوي حيز تعريفها على مجال من نوع

 $\lim_{x\to -\infty} f(x) = l$ اذا كان f(x) = l تؤول إلى f(x) = l عندما يؤول x إلى عندما يؤول x إلى عندما يؤول إلى الم

ملاحظات

$$\lim_{x \to -\infty} f(x) = l *$$

 $-\infty$ منحنى الدالة يقترب أكثر و أكثر من المستقيم ذا المعادلة y=l عندما يؤول

$$\lim_{x \to +\infty} f(x) = l *$$

 $+\infty$ الى يؤول x إلى y=l عندما يؤول x إلى

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$$
 زوجیة فان $f(x)$ زوجیة زوجیة

$$\lim_{x \to -\infty} f(x) = -\lim_{x \to +\infty} f(x)$$
 فردية فان $f(x) = -\lim_{x \to +\infty} f(x)$ إذا كانت

نهايات اعتبادية

$$\forall (k; n) \in \mathbb{R} \times \mathbb{N}^* \qquad \lim_{x \to -\infty} \frac{1}{x^n} = 0 \qquad \lim_{x \to +\infty} \frac{1}{x^n} = 0 \quad ; \quad \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

خاصية

لتكن f دالة عددية و l عددا حقيقيا

اذا كانت
$$f$$
 تقبل نهاية l في ∞ أو $(-\infty)$ فان هذه النهاية وحيدة •

$$\lim_{x \to +\infty} f(x) = l \Leftrightarrow \lim_{x \to +\infty} (f(x) - l) = 0$$

$$\lim_{x \to -\infty} f(x) = l \Leftrightarrow \lim_{x \to -\infty} (f(x) - l) = 0 \quad \bullet$$

تمرين

$$f(x) = \frac{-3x^2 + 1}{x^2}$$
 نعتبر
$$\lim_{x \to -\infty} f(x) = -3$$
 بين أن

الحواب

$$\lim_{x \to -\infty} f(x) - (-3) = \lim_{x \to -\infty} \frac{-3x^2 + 1}{x^2} + 3 = \lim_{x \to -\infty} \frac{1}{x^2} = 0$$

$$\lim_{x \to -\infty} f(x) = 3$$
اذن

تمرين : قراءة نهايات مبيانيا

 $\operatorname{\mathbb{R}}^*$ دالة عددية معرفة على fمن خلال الشكل

$$\lim_{x\to -\infty} f(x)$$
 و

$$\lim_{x\to +\infty} f(x)$$

$$\lim_{x \to +\infty} f(x)$$

من خلال الشكل

$$\lim_{x\to +\infty} f(x) = 2$$
 إذن $+\infty$ إلى $+\infty$ إلى $+\infty$ إذن $(D): y = 2$ المنحنى يقترب من المستقيم

 $\lim_{x \to -\infty} f(x) = 0$ المنحنى يقترب من محور الأفاصيل عندما يؤول x إلى محور الأفاصيل

3- نهاية منتهية و لا منتهية لدالة في نقطة

نشاط

$$g(x) = \frac{1}{x^2}$$
 نعتبر الدالة $f(x) = x^2$ حيث $f(x) = x^2$

 C_f أرسم -1

ب/ أتمم الُحدول التالم

							وں اسانی	ושמ ושב	_ / '
X	-0,2	-0,1	-0,001	-10^{-30}	10^{-30}	0,001	0,1	0,2	
f(x)									

 $\lim_{x \to \infty} f(x)$ من خلال الشكل و الجدول ماذا تلاحظ استنتج

2- أتمم الحدول التالي

x	-0,2	-0,1	-0,001	-10^{-30}	10^{-30}	0,001	0,1	0,2
g(x)								

 $\lim_{x \to \infty} g(x)$ من خلال الجدول ماذا تلاحظ تضنن

1/ من خلال الشكل و الجدول

0 نلاحظ أن f(x) تؤول إلى f(x) نلاحظ أن

0 نقول إن نهاية f(x) هي g(x)

$$\lim_{x \to 0} f(x) = 0$$
 نکتب

2/ من خلال الجدول

نلاحظ أنf(x) تأخذ قيما أكبر فأكبر وموجبة أي تؤول إلى $\infty+$ عندما

0 يؤول x إلى

$$0$$
 نقول إن نهاية $f(x)$ هي $+\infty$ عند

$$\lim_{x \to 0} f(x) = +\infty$$
 نکتب

نهاية منتهية لدالة في نقطة

 $a-\alpha;a+\alpha[$ لیکن a و عددین حقیقین و a دالة عددیة یحتوی حیز تعریفها علی مجال من نوع a دالة عددیة یحتوی a=a دیث a=a حیث a=a مجموعة من نوع a=a حیث a=a حیث a=a حیث عددین حقیقین و a=a

خاصىة

$$\lim_{x \to 0} x^n = 0$$
 ليكن a و a عددين حقيقين

إذا كان f(x) تفبل l في a عان النهاية وحيدة

هایات اعتیادیة

ليكن
$$n$$
 عددا صحيحا طبيعيا غير منعدم

$$\lim_{x \to 0} x^n = 0$$

$$\lim_{x \to 0} x^3 = 0 \qquad \lim_{x \to 0} x^2 = 0$$

$$\lim_{x\to 0} x = 0$$
 أمثلة

نهاية لامنتهية لدالة في نقطة

 $a-\alpha;a+lpha[$ لیکن a و a عددین حقیقین و a دالة عددیة یحتوی حیز تعریفها علی مجال من نوع $a-\alpha;a+lpha[$ حیث a=a حجموعة من نوع $a-\alpha;a+lpha[-\{a\}$

 $\lim_{a} f = +\infty$ او $\lim_{x \to a} f(x) = +\infty$ آو الى $\lim_{x \to a} f(x)$ اؤدا كان اله $\lim_{x \to a} f(x)$ عندما يؤول $\lim_{x \to a} f(x)$ أو اله اله عندما يؤول اله يؤول اله عندما يؤول ا

 $\lim_{a} f = -\infty$ وأ $\lim_{x \to a} f(x) = -\infty$ أو الى $\lim_{x \to a} f(x)$ عندما يؤول $\lim_{x \to a} f(x)$ أو الى $\lim_{x \to a} f(x)$

$$f(x) = \frac{|x-1|(x+2)}{x-1}$$
 نعتبر الدالة f المعرفة بـ

 D_f حدد

 C_f أنشئ

من خلال التمثيل المبياني حدد إلى ماذا يؤول f(x) عندما يقترب x من 1 على اليمين من خلال التمثيل المبياني حدد إلى ماذا يؤول f(x) عندما يقترب x من x من خلال التمثيل المبياني حدد إلى ماذا يؤول x

$$D_f = \mathbb{R} - \{1\}$$

نلاحظ أن كلما اقتربنا من 1 على اليمين إلا و f(x) تقترب من 3 نقول إن نهاية f(x) عندما يؤول x إلى 1 على اليمين هي 3 نكتب $\lim_{\substack{x \to 1 \\ x \to 1}} f(x) = 3$

نلاحظ أن كلما اقتربنا من 1 على اليسار إلا و f(x) تقترب من 3- نقول إن نهاية f(x) عندما يؤول x إلى 1 على اليسار هي 3- نكتب $\lim_{\substack{x \to 1 \\ t \to 1}} f(x) = -3$

نشاط

$$f(x) = rac{1}{x}$$
 نعتبر الدالة f المعرفة ب D_f حدد C_f أنشئ

من خلال التمثيل المبياني حدد إلى ماذا يؤول f(x) عندما يقترب x من 0 على اليسار من خلال التمثيل المبياني حدد إلى ماذا يؤول f(x) عندما يقترب x منx على اليسار

$$D_f = \mathbb{R}^*$$

نلاحظ أن كلما اقتربنا من 0 على اليمين فانf(x) تؤول x نقول إن على نهاية f(x) عندما يؤول x إلى x على اليمين هي x o 0 نكتب x o 0

$$\lim_{\substack{x \to 0 \\ x \succ 0}} f(x) = +\infty \qquad \text{if}$$

نلاحظ أن كلما اقتربنا من 0 على اليسار فان f(x) تؤول ∞ نقول إن اليسار فان f(x) عندما يؤول x إلى 0 على اليسار هي $-\infty$ نكتب $-\infty$ اليسار هي

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty \quad \text{if}$$

لیکن a و l عددین حقیقیین

$$\lim_{\substack{x \to a \\ x \prec a}} f(x) = l$$
 أو $\lim_{\substack{x \to a^- \\ x \prec a}} f(x) = l$ قؤول إلى $\lim_{x \to a} f(x)$ على اليسار فإننا نكتب $\lim_{x \to a^-} f(x) = l$ تؤول إلى $\lim_{x \to a} f(x) = l$

$$\lim_{\substack{x \to a \\ x \succ a}} f(x) = +\infty$$
 أو $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x)$ على اليمين فإننا نكتب $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$ أو الى $\lim_{\substack{x \to a^+ \\ x \succ a}} f(x) = +\infty$

$$\lim_{\substack{x\to a\\x\to a}} f(x) = +\infty$$
 إذا كان $f(x) = +\infty$ تؤول إلى $+\infty$ عندما يؤول x إلى x على اليسار فإننا نكتب $x\to a$ عندما يؤول $x\to a$

$$\lim_{\substack{x \to a \\ x \succ a}} f(x) = -\infty$$
 أو $\int_{\substack{x \to a^+ \\ x \succ a}} f(x) = -\infty$ إذا كان $\int_{\substack{x \to a^+ \\ x \succ a}} f(x) = -\infty$ عندما يؤول $\int_{\substack{x \to a^+ \\ x \succ a}} f(x) = -\infty$ أو

نهابات اعتبادية

ليكن n عددا صحيحا طبيعيا غير منعدم

$$\lim_{x \to 0^+} \frac{1}{x^n} = +\infty$$

$$\lim_{x \to 0^-} \frac{1}{x^n} = +\infty$$
 إذا كان n زوجيا
$$\lim_{x \to 0^-} \frac{1}{x^n} = -\infty$$

$$\lim_{x \to 0^+} \frac{1}{\sqrt{x}} = +\infty$$

$$\lim_{x \to 0^+} \sqrt{x} = 0$$

$$\lim_{x \to 0^{-}} \frac{1}{x^{4}} = +\infty \qquad \lim_{x \to 0^{-}} \frac{1}{x^{3}} = -\infty \qquad \qquad \lim_{x \to 0^{+}} \frac{1}{x^{3}} = +\infty \qquad \qquad \lim_{x \to 0^{+}} \frac{1}{x^{2}} = +\infty$$

f دالة عددية

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = l$$
تکافئ
$$\lim_{x \to a} f(x) = l$$

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = +\infty$$
 تكافئ
$$\lim_{x \to a} f(x) = +\infty$$

$$\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x) = -\infty$$
 تكافئ
$$\lim_{x \to a} f(x) = -\infty$$

لتكن f دالة عددية حيث

$$\begin{cases} f(x) = \sqrt{x} & x > 0 \\ f(x) = x^3 & x \le 0 \end{cases}$$

$$\lim_{x \to 0} f(x)$$
 استنتج $\lim_{x \to 0^-} f(x)$ و $\lim_{x \to 0^+} f(x)$

$$\lim_{x\to 0^+} f\left(x\right) = \lim_{x\to 0^-} f\left(x\right) = 0 \quad \text{ease} \quad \lim_{x\to 0^-} f\left(x\right) = \lim_{x\to 0^-} x^3 = 0 \quad \text{es} \quad \lim_{x\to 0^+} f\left(x\right) = \lim_{x\to 0^+} \sqrt{x} = 0$$

$$\lim_{x\to 0} f(x)$$
 إذن

$$f(x) = \frac{x^2 - 4}{|x + 2|}$$
 لتكن f دالة عددية حيث

$$\lim_{x \to -2} -x + 2 = 4$$
 و $\lim_{x \to -2} x - 2 = -4$ -1

$$\lim_{x \to -2^+} f(x)$$
 و $\lim_{x \to -2^-} f(x)$ -2

$$-2$$
 هل الدالة f تقبل نهاية في -3

$$\lim_{x\to -2} x-2=-4 \ \ \text{iii}$$
 نبين أن $x-2=-4$

$$X-2=x$$
 نضع $X=x+2$

$$0$$
 عندما يؤول x أي 2- فان X تؤول إلى

$$\lim_{x \to -2} x - 2 = \lim_{X \to 0} X - 4$$

$$\lim_{X \to -2} x - 2 = -4$$
 و حيث أن $\lim_{X \to 0} X - 4 = -4$ فان $\lim_{X \to 0} \left[(X - 4) - (-4) \right] = \lim_{X \to 0} X = 0$ و حيث أن

$$\lim_{x \to -2} -x \to 0$$
نبین أن $2 = 4$

$$\lim_{x \to -2} - x + 2 = \lim_{X \to 0} - X + 4$$

$$\lim_{x \to -2} - x - 2 = 4 \text{ id} \quad \lim_{X \to 0} - X + 4 = 44 \lim_{X \to 0} \left[(-X + 4) - 4 \right] = \lim_{X \to 0} - X = 0 \text{ id} \quad \text{id} \quad \text$$

-2 الدينا f لدينا $\lim_{x \to -2^-} f(x) \neq \lim_{x \to -2^+} f(x)$ الدينا /3

4- العمليات على النهايات

نقبل جميع العمليات الاتية

g نعتبر دالتين f و

عند x_0 أو عند x_0 على اليمين أو عند x_0 على اليسار أو عند ∞ + أو عند ∞ تكون لدينا النتائج التالية:

أ- نهاية م<u>حموع</u>

نهایة f +g	نهاية g	نهایة ƒ
<i>l</i> + <i>l</i> '	l'	l
+∞	+∞	l
-∞	-∞	l
+∞	+∞	+∞
∞	-∞	$-\infty$
شکل غیر محدد	∞	+∞

<u>ں- نھاںۃ</u> جداء

		<u>حداء</u>
زهایة f ×g	نهای ة g	نهایة <i>f</i>
$l \times l'$	l'	l
l مع وضع إشارة ∞	+∞	$l \neq 0$ l
l مع وضع عكس إشارة ∞	-∞	$l \neq 0$ l
شکل غیر محدد	+∞	0
شکل غیر محدد	-∞	0
+∞	+∞	+∞
+∞	-∞	-∞
-∞	-∞	+∞

لحساب نهایة λf حیث $\lambda \in \mathbb{R}$ یمکن اعتبار λf کجداء الدالة

ج- نهاية خارج

$rac{f}{g}$ نهایه	زهایة g	f نهایه
g		
<u>l</u>	ا و 0 ≠ 'ا	l
Ī'		
0	+∞	l
0	-∞	l
+∞	0+	$+\infty$ أو $l \succ 0$
∞	0+	$-\infty$ أو $l \prec 0$
-∞	0-	$+\infty$ أو $l \succ 0$
+∞	0-	$-\infty$ أو $l \prec 0$
شکل غیر محدد	0	0
شکل غیر محدد	+∞	+∞
شکل غیر محدد	-∞	$-\infty$
شکل غیر محدد	∞	+∞
l مع وضع إشارة ∞	$l \neq 0$ حيث l	+∞
l مع وضع عكس إشارة ∞	$l \neq 0$ حيث l	-∞

د- نهایة دالة حدودیة – دالة جدریة P(x) لتکن P(x) و Q(x) حدودیتین

$$Q(a) \neq 0$$
 في حالة $\lim_{x \to a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)}$ $\lim_{x \to a} P(x) = P(a)$

إذا كانت ax^n و bx^m و bx^m و الأكبر درجة فان

$$\lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^n \qquad \text{e} \qquad \lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^n$$

$$\lim_{x \to -\infty} P(x) = \lim_{x \to -\infty} ax^n \quad \text{g} \quad \lim_{x \to +\infty} P(x) = \lim_{x \to +\infty} ax^n$$

$$\lim_{x \to -\infty} \frac{P(x)}{Q(x)} = \lim_{x \to -\infty} \frac{ax^n}{bx^m} \quad \text{g} \quad \lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \lim_{x \to +\infty} \frac{ax^n}{bx^m} \quad \text{g}$$

أمثلة

$$\lim_{x \to 2} x^{3} - x^{2} + 3x - 1 = 2^{3} - 2^{2} + 6 - 1 = 9$$

$$\lim_{x \to -1} \frac{-3x^{2} - x + 1}{3x^{3} + 2x^{2} - 3} = \frac{-3(-1)^{2} - (-1) + 1}{3(-1)^{3} + 2(-1)^{2} - 3} = \frac{-1}{-4} = \frac{1}{4}$$

$$\lim_{x \to +\infty} -4x^{5} + 3x^{2} - 5x + 1 = \lim_{x \to +\infty} -4x^{5} = -\infty$$

$$\lim_{x \to -\infty} -3x^{7} + 7x^{3} - x + 31 = \lim_{x \to -\infty} -3x^{7} = +\infty$$

$$\lim_{x \to +\infty} \frac{-4x^5 + 3x^2 - 5x + 1}{3x^2 - x + 1} = \lim_{x \to +\infty} \frac{-4x^5}{3x^2} = \lim_{x \to +\infty} \frac{-4}{3}x^3 = -\infty$$

$$\lim_{x \to -\infty} \frac{-3x^7 + 7x^3 - x + 31}{x^9 + 3x^2 - 4} = \lim_{x \to -\infty} \frac{-3x^7}{x^9} = \lim_{x \to -\infty} \frac{-3}{x^2} = 0$$

$$\lim_{x \to +\infty} \frac{7x^5 + 3x^2 - 5x + 1}{3x^5 - x^4 + 1} = \lim_{x \to +\infty} \frac{7x^5}{3x^5} = \frac{7}{3}$$

<u>تمرين</u> حدد النهايات

$$\lim_{x \to -\infty} (1-x)^5 \left(-2x^2 + 5\right) \qquad \lim_{x \to +\infty} 7x^5 + 3 + \frac{1}{\sqrt{x}} \qquad \lim_{x \to 3} \frac{x^2 - x}{x^2 + x - 6}$$

$$\lim_{x \to +\infty} x - \sqrt{x} \qquad \lim_{x \to 0^+} \frac{3}{-x^2 + x} \qquad \lim_{x \to 1^+} \frac{2x - 5}{x - 1} \qquad \lim_{x \to 2^-} \frac{1}{x - 2}$$

$$\lim_{x \to 1^-} \frac{x^2 + x - 2}{2x^2 + x - 3} \qquad \vdots \qquad \lim_{x \to -1} \frac{x + 1}{x^2 - 2x - 3}$$

$$\lim_{x \to 1^-} \frac{3x - 2}{x^2 - 3x + 2} \qquad \lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{x^3}\right)$$

$$\lim_{x \to 3} \frac{x^2 - x}{x^2 + x - 6} = \frac{6}{6} = 1$$
 ومنه $\lim_{x \to 3} x^2 + x - 6 = 9 + 3 - 6 = 6$ ومنه $\lim_{x \to 3} x^2 - x = 9 - 3 = 6$

$$\lim_{x \to +\infty} 7x^5 + 3 + \frac{1}{\sqrt{x}} = +\infty \text{ gain } \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0 \text{ gain } 7x^5 + 3 = \lim_{x \to +\infty} 7x^5 = +\infty *$$

$$\lim_{x \to -\infty} (1-x)^5 \left(-2x^2 + 5\right) = -\infty \lim_{x \to -\infty} (1-x)^5 = \lim_{x \to -\infty} -x^5 = +\infty \quad \lim_{x \to -\infty} -2x^2 + 5 = \lim_{x \to -\infty} -2x^2 = -\infty$$

$$\lim_{x \to 2^{-}} \frac{1}{x-2} = -\infty$$
 اذن $x \to 2$ ومنه $x \to 2 = 0^{-}$ ومنه $x \to 2 \to 0$ فان $x \to 2$

$$\lim_{x \to 1^+} \frac{2x-5}{x-1}$$
نحدد

$$\lim_{x \to 1^+} \frac{2x-5}{x-1} = -\infty$$
 ومنه $\lim_{x \to 1^+} 2x-5 = -3$ و لدينا $\lim_{x \to 1^+} 2x-5 = -3$

$$\lim_{x \to +\infty} x - \sqrt{x} \text{ نحدد } *$$

 $(-\infty - \infty + \infty + \infty)$ نحصل على الشكل الغير المحدد

$$\lim_{x\to +\infty} x - \sqrt{x} = \infty \quad \text{iii} \quad \lim_{x\to +\infty} \sqrt{x} - 1 = +\infty \quad \text{e} \quad \lim_{x\to +\infty} \sqrt{x} = +\infty \quad \text{e} \quad \lim_{x\to +\infty} x - \sqrt{x} = \lim_{x\to +\infty} \sqrt{x} \left(\sqrt{x} - 1\right)$$

$$\frac{0}{0}$$
 نحدد $\lim_{x\to -1}\frac{x+1}{x^2-2x-3}$ بتعويض $\lim_{x\to -1}\frac{x+1}{x^2-2x-3}$

$$\forall x \in \mathbb{R} - \{-1, 3\}$$
 $\frac{x+1}{x^2 - 2x - 3} = \frac{x+1}{(x+1)(x-3)} = \frac{1}{x-3}$

$$\lim_{x \to -1} \frac{x+1}{x^2 - 2x - 3} = \lim_{x \to -1} \frac{1}{x - 3} = -\frac{1}{4}$$
 ease

$$\frac{0}{0}$$
 نحدد $\lim_{x\to 1} \frac{x^2+x-2}{2x^2+x-3}$ نحدد $\lim_{x\to 1} \frac{x^2+x-2}{2x^2+x-3}$

$$x-1$$
 ومنه الحدوديتان x^2+x-2 و x^2+x-2 تقبلان القسمة على

$$\lim_{x \to 1} \frac{x^2 + x - 2}{2x^2 + x - 3} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{(x - 1)(2x + 3)} = \lim_{x \to 1} \frac{x + 2}{2x + 3} = \frac{3}{5}$$

$$\lim_{x\to 0^+} \left(\frac{1}{x^2} - \frac{1}{x^3}\right)$$
 نحدد *

$$\left(+\infty-\infty\right)$$
 لدينا $\lim_{x\to 0^+}\frac{1}{r^2}=+\infty$; $\lim_{x\to 0^+}\frac{1}{r^3}=+\infty$; $\lim_{x\to 0^+}\frac{1}{r^3}=+\infty$

$$\lim_{x \to 0^+} \frac{1}{x^2} = +\infty \qquad ; \qquad \lim_{x \to 0^+} \left(1 - \frac{1}{x}\right) = -\infty \quad \text{design} \quad \lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{x^3}\right) = \lim_{x \to 0^+} \frac{1}{x^2} \left(1 - \frac{1}{x}\right)$$

$$\lim_{x \to 0^+} \left(\frac{1}{x^2} - \frac{1}{x^3} \right) = -\infty$$
 فان

$$\lim_{x\to 1^{-}} \frac{3x-2}{x^2-3x+2}$$

$$\lim_{x \to 1} 3x - 2 = 1 \qquad \lim_{x \to 1} x^2 - 3x + 2 = 0$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = \lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = \lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^{2} - 3x + 2} = -\infty$$

$$\lim_{x \to 1^{-}} \frac{3x - 2}{x^2 - 3x + 2} = -\infty$$
 jei

$$\lim_{x \to 1^{-}} x^2 - 3x + 2 = 0$$

6 – نهايات الدوال اللاجدرية

خاصیة لتکن
$$f$$
 دالة عددیة معرفة علی مجال من شکل $[a;+\infty[$

$$\lim_{x \to a} \sqrt{f(x)} = \sqrt{l}$$
 و $0 \ge 0$ فان $\lim_{x \to a} f(x) = l$ إذا كانت

$$\lim_{x \to a} \sqrt{f(x)} = +\infty$$
 و $0 \ge 0$ و $\lim_{x \to a} f(x) = +\infty$ إذا كانت

الخاصية تبقى صحيحة اذا كان x يؤول الى ∞ أو الى ∞ أو الى a على اليمين أو a على اليسار

$$\lim_{x\to 2} \sqrt{1-4x}$$
 لنحسب

$$\lim_{x \to -2} \sqrt{1 - 4x}$$
 لنحسب $\sqrt{1 - 4x} = \sqrt{9} = 3$ ومنه $\lim_{x \to -2} 1 - 4x = 9$ لدينا

$$\lim_{x \to -\infty} \sqrt{3x^2 - 5x + 4}$$
 Lime $\sqrt{3x^2 - 5x + 4}$

$$\lim_{x \to -\infty} \sqrt{3x^2 - 5x + 4} = \infty$$
 ومنه $\lim_{x \to -\infty} 3x^2 - 5x + 4 = \lim_{x \to -\infty} 3x^2 = +\infty$ لدينا

$$\lim_{x\to 0^-} \sqrt{1-\frac{1}{x}} \quad \text{uice}$$

$$\lim_{x \to 0^{-}} \sqrt{1 - \frac{1}{x}} = +\infty$$
 و منه $\lim_{x \to 0^{-}} 1 - \frac{1}{x} = +\infty$ لدينا

7- النهايات والترتيب

و
$$g$$
 و h دوال عددية و $I=ig|x_0-lpha;x_0+lphaig[-\{x_0\}]$ ضمن حيز تعريف هذه الدوال f

$$\lim_{x \to x_0} f\left(x\right) = l$$
 فان $\lim_{x \to x_0} u\left(x\right) = 0$ و کان $\left|f\left(x\right) - l\right| \le u\left(x\right)$, I إذا کان لکل x

$$\lim_{x \to x_0} h(x) = l$$
 علی I فان $I = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = l$ إذا كان $I = \lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = l$

$$\lim_{x \to x_0} f(x) = +\infty$$
 فان $\lim_{x \to x_0} u(x) = +\infty$ و کان $\lim_{x \to x_0} u(x) = +\infty$ فان $\lim_{x \to x_0} f(x) \ge u(x)$, I

$$\lim_{x \to x_0} f\left(x\right) = -\infty$$
 فان $\lim_{x \to x_0} u\left(x\right) = -\infty$ و کان $\int \left(x\right) \le u\left(x\right)$, I فان x

ملاحظة

الخاصيات السابقة تبقى صالحة عند $\infty+$ أو عند ∞ أو عند x_0 على اليمين أو عند x_0 على اليسار

مع تعويض I بالمجموعة المناسبة

أمثلة

$$\lim_{x \to +\infty} x + \sin x$$
 ''sin $x \to +\infty$

لا تقبل نهاية
$$x \to \sin^2 x$$
 لا تقبل نهاية

$$x-1 \le x+\sin x \le x+1$$
 ونعلم أن $0 \le x \in \mathbb{R}$ ونعلم أن $0 \le x+1 \le x+1$

$$\lim_{x \to +\infty} x + \sin x = +\infty$$
 فان $x + \sin x = +\infty$ و حيث $x + \sin x = +\infty$

$$\lim_{x \to +\infty} \frac{2x^2 + \sin x}{x^2 + 1} = 2$$
 نبین أن *

$$\left| \frac{2x^2 + \sin x}{x^2 + 1} - 2 \right| = \left| \frac{\sin x - 2}{x^2 + 1} \right|$$
 Legi-

$$\left|\sin - 2\right| \le 3$$
 فان $\left|\sin x\right| \le 1$ وحيث أن $\left|\sin x\right| = \left|\sin x\right| = \left|\sin x\right|$

$$\left| \frac{2x^2 + \sin x}{x^2 + 1} - 2 \right| \le \frac{3}{x^2 + 1}$$
 ومنه $\left| \frac{\sin x - 2}{x^2 + 1} \right| \le \frac{3}{x^2 + 1}$ ومنه

$$\lim_{x \to +\infty} \frac{2x^2 + \sin x}{x^2 + 1} = 2$$
 فان
$$\lim_{x \to +\infty} \frac{3}{x^2 + 1} = 0$$
 و حيث

8- <u>نهايات مثلثية</u>

ً/ خاصة

$$a$$
 لكل عدد حقيقي

$$\lim_{x \to a} \cos x = \cos a \qquad \text{emath } \lim_{x \to a} \sin x = \sin a$$

$$k \in \mathbb{Z}$$
 و $a \neq \frac{\pi}{2} + k\pi$ و كل عدد حقيقي $a \neq a$

$$\lim_{x \to a} \tan x = \tan a$$

مثلة

$$\lim_{x \to 0} \cos x = \cos 0 = 1 \qquad \lim_{x \to -\frac{\pi}{4}} \sin x = \sin \left(-\frac{\pi}{4} \right) = -\frac{\sqrt{2}}{2}$$

$$\lim_{x \to \infty} \tan x = \tan \pi = 0$$

$$\forall x \in \left| \frac{-\pi}{2}; \frac{\pi}{2} \right| \left| \sin x \right| \le |x| \le |\tan x|$$
ب/ نقبل

$$\lim_{x\to 0}\frac{\sin x}{x}$$

$$x \neq 0$$
 حيث $\frac{1}{|\tan x|} \leq \frac{1}{|x|} \leq \frac{1}{|\sin x|}$ ومنه $\forall x \in \left] \frac{-\pi}{2}; \frac{\pi}{2} \right[|\sin x| \leq |x| \leq |\tan x|$ حيث $|\cos x| \leq \left| \frac{\sin x}{x} \right| \leq 1$ أي أن $\frac{|\sin x|}{|\tan x|} \leq \frac{|\sin x|}{|x|} \leq \frac{|\sin x|}{|\sin x|}$ وبالتالي

 $\lim_{x\to 0} \frac{\sin x}{x} = 1$ و حيث أن $\lim_{x\to 0} \cos x = 1$ و $\lim_{x\to 0} \cos x = 1$ و حيث أن

$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
 لنحدد *

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{1}{2} \times \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^2$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{1}{2} \times \left(\frac{\sin X}{X}\right)^2 = \frac{1}{2}$$
 ومنه $X = \frac{x}{2}$ ونضع $X = \frac{x}{2}$

$$\lim_{x\to 0} \frac{\tan x}{x}$$
 لنحدد *

$$\lim_{x\to 0} \frac{\tan x}{x} = \lim_{x\to 0} \frac{\sin x}{x} \times \frac{1}{\cos x} = 1 \times \frac{1}{1} = 1$$
 لدينا

خاصية

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$
 equation 2

$$\lim_{x\to 0}\frac{\tan x}{x}=1$$
 e

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

نتىحة

$$\lim_{x \to 0} \frac{\tan ax}{ax} = 1$$

$$\lim_{x \to 0} \frac{\sin ax}{ax} = 1$$

تمرين

$$\lim_{x \to 0} \frac{\sin x}{\sin 3x} \quad \lim_{x \to 0} \frac{\sin^2 x}{3x^2} \qquad \lim_{x \to 0} \frac{\sin 3x}{4x} \quad \lim_{x \to 0} \frac{\sin 3x}{3x} \quad \lim_{x \to \frac{\pi}{2}} \frac{\cos 2x}{1 + \sin x}$$

$$\lim_{x \to 0} \frac{1 - \cos 2x}{x} \qquad \qquad \lim_{x \to 0} \frac{\tan 3x}{\sin 2x}$$