SUITES DÉFINIES PAR ITÉRATION, POINTS FIXES

 $(E, \|.\|)$ désigne un espace vectoriel normé, Q une partie compacte dans E et $f: Q \to Q$ une application.

Partie I

Soit $b_0 \in Q$ et $(b_n)_n$ la suite définie par : $b_{n+1} = f(b_n)$. On note \mathcal{T} l'ensemble des valeurs d'adhérence de la suite $(b_n)_n$. On suppose dans cette partie seulement que f est continue .

- 1. (a) Montrer que $f(\mathcal{T}) \subset \mathcal{T}$
 - (b) En utilisant la compacité de Q, montrer que $f(\mathcal{T}) = \mathcal{T}$
- 2. Montrer que toute partie fermée d'une partie compacte est aussi compacte
- 3. On suppose que $(b_n)_n$ est convergente de limite ℓ , soit $K = \{b_n \mid n \in \mathbb{N}\} \cup \{\ell\}$ Soit $x \in E \setminus K$ et ρ un réel tel que $0 < \rho < \|x \ell\|$
 - (a) Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que : $\forall n > n_0$, $b_n \notin B\left(x, \rho\right)$
 - (b) Soit $r_0 = \min \left(\rho, \|x b_0\|, ..., \|x b_{n_0}\| \right)$, justifier que $r_0 > 0$ et que $B\left(x, r_0 \right) \subset C_E^K$
 - (c) Montrer que K est compacte .

Partie II

On suppose dans cette partie que : $\forall x\neq y \ , \ \left\| f\left(x\right) -f\left(y\right) \right\| <\left\| x-y\right\|$

- 4. Soit $h: Q \to \mathbb{R}$, $x \mapsto ||f(x) x||$.
 - (a) Justifier que h admet un minimum atteint en un x^* ,
 - (b) Montrer que x^* est l'unique point fixe de f
- 5. Soit $x_0 \in E$ et $(x_n)_n$ la suite définie par : $x_{n+1} = f(x_n)$. Montrer que la suite $(\|x_n - x^*\|)_n$ est monotone puis qu'elle converge . On pose $L = \lim_{n \to +\infty} \|x_n - x^*\|$.
- 6. On veut montrer, par absurde, que L=0. On suppose que L>0
 - (a) Etablir l'existence d'une suite $(x_{\varphi(n)})_n$ qui converge vers un élément de $a \in Q$ puis que $L = ||a x^*||$
 - (b) En considérant la suite $\left(f\left(x_{\varphi(n)}\right)\right)_n$, montrer que $L=\|f\left(a\right)-x^*\|$. Aboutir à une contradiction, puis conclure

Partie III

On suppose dans cette partie que : $\forall (x,y) \in Q^2$, $||f(x) - f(y)|| \ge ||x - y||$ Soit $(a,b) \in Q^2$ et $(a_n)_n$ et $(b_n)_n$ les suites définies par : $a_0 = a$ et $a_{n+1} = f(a_n)$; $b_0 = b$ et $b_{n+1} = f(b_n)$

- 7. (a) Montrer que $\forall (p,n) \in \mathbb{N}^2$, $||a_p a|| \le ||a_{n+p} a_n||$
 - (b) Justifier l'existence d'une $(a_{\varphi(n)})_n$ extraite convergente et en déduire que :

$$\forall \varepsilon > 0$$
 , il existe $p \geqslant 1$ tel que $\, \|a_p - a\| < \varepsilon \,$

(c) En déduire que f(Q) est dense dans Q

SUITES DÉFINIES PAR ITÉRATION, POINTS FIXES

- 8. Soit $\varepsilon > 0$
 - (a) Montrer l'existence d'un entier $p\in\mathbb{N}$ tel que : $\|a_p-a\|<\frac{\varepsilon}{2}$ et $\|b_p-b\|<\frac{\varepsilon}{2}$
 - (b) En déduire que : $\left\Vert f\left(a\right) -f\left(b\right) \right\Vert \leqslant \left\Vert a-b\right\Vert +\varepsilon$
 - (c) Montrer alors que : $\|f(a) f(b)\| = \|a b\|$
- 9. Montrer que f est injective , continue et que $f\left(Q\right)$ est fermé
- 10. En déduire que f est bijective .

Problème de révision Corrigé

SUITES DÉFINIES PAR ITÉRATION, POINTS FIXES

Partie I

- 1. (a) Soit $y \in f(\mathcal{T})$, il existe $x \in \mathcal{T}$ tel que y = f(x) $x \in \mathcal{T} \text{ donc il existe une suite extraite } \left(b_{\varphi(n)}\right)_n \text{ qui converge vers } x \text{ .}$ $f \text{ étant continue de } b_{\varphi(n)+1} = f\left(b_{\varphi(n)}\right) \xrightarrow[n \to +\infty]{} f(x) = y \text{ donc } y \in \mathcal{T}$
 - (b) Soit $y \in \mathcal{T}$, alors il existe une suite extraite $(b_{\varphi(n)})_n$ qui converge vers y. Pour $n \geqslant 1$, on a $\varphi(n) \geqslant n \geqslant 1$ et $b_{\varphi(n)} = f(b_{\varphi(n)-1})$ D'autre part Q est compacte, donc on peut extraire de $(b_{\varphi(n)-1})_n$ une suite $(b_{\varphi(\psi(n))-1})$ convergente de limite $L \in \mathcal{T}$, par suite $b_{\varphi(\psi(n))} = f(b_{\varphi(\psi(n))-1}) \xrightarrow[n \to +\infty]{} f(L) \in f(\mathcal{T})$
- 2. Soit K est une partie compacte et F une partie fermée telle que $F \subset K$. Soit $(a_n)_n \in F^{\mathbb{N}} \subset K^{\mathbb{N}}$. Or K est compacte, donc on peut extraire une suite $(a_{\varphi(n)})_n$ convergente vers un élément $\ell \in K$. Or F est fermée et $(a_{\varphi(n)})$ une suite de F convergente $a_{\varphi(n)} \to \ell$ donc $\ell \in F$
- 3. (a) Posons $\varepsilon = ||x \ell|| \rho$, on a $\varepsilon > 0$ et $b_n \to \ell$ donc il existe $n_0 \in \mathbb{N}$ tel que :

$$\forall n > n_0, ||b_n - \ell|| < ||x - \ell|| - \rho$$

Pour $n > n_0$, on a $||b_n - x|| \ge ||x - \ell|| - ||b_n - \ell|| > \rho$. Donc $b_n \notin B(x, \rho)$

- (b) L'inégalité $r_0 \le \rho$ donne l'inclusion $B(x, r_0) \subset B(x, \rho)$. Soit $n \in \mathbb{N}$
 - Si $n > n_0$, alors $b_n \notin B(x, \rho)$ par suite $b_n \notin B(x, r_0)$
 - • Si $n\leqslant n_{0}$, on a $r_{0}\leqslant \left\Vert x-b_{k}\right\Vert$ donc $b_{k}\notin B\left(x,r_{0}\right)$

Par suite $K \cap B(x, r_0) = \emptyset$ donc $B(x, r_0) \subset C_E^K$

(c) Soit $x \in C_E^K$, alors il existe $r_0 > 0$ tel que $B(x, r_0) \subset C_E^K$. Donc C_E^K est une partie ouverte par suite K est fermée. K est donc une partie fermée contenue dans Q qui est compacte, d'où K est compacte

Partie II

- 4. (a) On a pour tout $(x,y) \in Q^2$, $||f(x) f(y)|| \le ||x y||$ donc f est continue, par suite h l'est aussi. En outre Q est compact, donc h est bornée et atteint ses bornes. En particulier, il existe $x^* \in Q$ tel que : $h(x^*) = \inf_{x \in Q} h(x)$
 - (b) Montrons que x^* est l'unique point fixe
 - Supposons que $f(x^*) \neq x^*$, posons $a = f(x^*)$, on a $a \neq x^*$ donc:

$$h(a) = ||f(a) - a|| = ||f(a) - f(x^*)|| < ||a - x^*|| = ||f(x^*) - x^*|| = h(x^*)$$

Ce qui est absurde , donc $a=x^*$ c'est-à-dire que : $f\left(x^*\right)=x^*$

- Unicité: Soit u est un point fixe de f, supposons que $u \neq x^*$, alors $||f(u) f(x^*)|| < ||u x^*||$. Par suite $||u x^*|| < ||u x^*||$ ce qui est absurde
- 5. Pour tout $n \in \mathbb{N}$, on a $0 \le ||x_{n+1} x^*|| = ||f(x_n) f(x^*)|| \le ||x_n x^*||$

Donc la suite $(\|x_n - x^*\|)_n$ est décroissante positive par suite elle converge

6. (a) $(x_n)_n$ est une suite d'éléments de Q qui est compacte, donc il existe une suite extraite $(x_{\varphi(n)})_n$ qui converge vers un élément de $a \in Q$. La suite $(\|x_{\varphi(n)} - x^*\|)_n$ est extraite de la suite $(\|x_n - x^*\|)_n$ qui converge vers L, donc elle est aussi convergente vers L.

En outre $||x_{\varphi(n)} - x^*|| \to ||a - x^*||$, par unicité de la limite, on a $L = ||a - x^*||$

Problème de révision Corrigé

SUITES DÉFINIES PAR ITÉRATION, POINTS FIXES

(b) f est continue et $x_{\varphi(n)} \xrightarrow[n \to +\infty]{} a$ donc $(f(x_{\varphi(n)}))_n$ est convergente vers f(a).

Donc
$$||x_{\varphi(n)+1} - x^*|| = ||f(x_{\varphi(n)}) - x^*|| \xrightarrow[n \to +\infty]{} ||f(a) - x^*||.$$

D'une autre part $(\|x_{\varphi(n)+1} - x^*\|)_n$ est extraite de $(\|x_n - x^*\|)_n$ donc $\|x_{\varphi(n)+1} - x^*\| \to L$. Par unicité de la limite, $L = \|f(a) - x^*\|$.

On a alors l'égalité $||f(a) - x^*|| = ||a - x^*||$ qu'on peut écrire

$$L = ||f(a) - f(x^*)|| = ||a - x^*||$$

Or L>0 donc $a\neq x^*$, par suite $\|f\left(a\right)-f\left(x^*\right)\|<\|a-x^*\|$ c'est-à-dire $\|f\left(a\right)-x^*\|<\|a-x^*\|$. Ce qui est absurde, donc L=0 et $a=x^*$

Partie III

7. (a) Par récurrence sur n, pour n=0 c'est évident Supposons que $||a_p - a|| \le ||a_{n+p} - a_n||$, alors

$$||a_{n+p+1} - a_{n+1}|| = ||f(a_{n+p}) - f(a_n)|| \ge ||a_{n+p} - a_n|| \ge ||a_p - a||$$

(b) La suite $(a_n)_n$ est d'éléments d'un compact, donc elle admet une suite extraite convergente $(a_{\varphi(n)})_n$ et, par suite, elle est de Cauchy, ainsi il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N , \forall k \in \mathbb{N} , \|a_{\varphi(n+k)} - a_{\varphi(n)}\| < \varepsilon$$

En particulier $||a_{\varphi(N+1)} - a_{\varphi(N)}|| < \varepsilon$.

Posons $p = \varphi(N+1) - \varphi(N)$, on a p > 0 donc $p \ge 1$, (car $p \in \mathbb{N}$).

$$||a_p - a|| \le ||a_{\varphi(N)+p} - a_{\varphi(N)}|| = ||a_{\varphi(N+1)} - a_{\varphi(N)}|| < \varepsilon$$

- (c) Soit $a \in Q$ et $\varepsilon > 0$. Soit (a_n) la suite définie par: $a_0 = a$ et $a_{n+1} = f(a_n)$ et p désignant l'entier défini ci-dessus. On a $a_p = f(a_{p-1}) \in f(Q)$ et $a_p \in B(a, \varepsilon)$, donc l'intersection $f(Q) \cap B(a, \varepsilon) \neq \emptyset$. Ainsi f(Q)est dense dans Q
- 8. Soit $\varepsilon > 0$
 - (a) Q^2 est compact comme produit de deux compacts et $(z_n)_n = ((a_n, b_n))_n$ est une suite d'éléments de Q^2 donc on peut extraire une suite $(z_{\varphi(n)})$. La suite considérée est donc est de Cauchy, par suite il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N , \forall k \in \mathbb{N} , \left\| z_{\varphi(n+k)} - z_{\varphi(n)} \right\| < \frac{\varepsilon}{2}$$

C'est-à-dire $\forall n \geqslant N$, $\forall k \in \mathbb{N}$, $\max\left(\left\|a_{\varphi(n+k)} - a_{\varphi(n)}\right\|, \left\|b_{\varphi(n+k)} - b_{\varphi(n)}\right\|\right) < \frac{\varepsilon}{2}$

Comme dans une question précédente, en posant $p = \varphi(N+1) - \varphi(N)$, on a $p \geqslant 1$, car φ est strictement croissante et:

$$||a_p - a|| < \frac{\varepsilon}{2}$$
 et $||b_p - a|| < \frac{\varepsilon}{2}$

(b) Par récurrence , on a $\forall m \geqslant 0$, $\forall (x,y) \in Q^2$, $||x-y|| \leqslant ||f^m(x) - f^m(y)||$

On a $p \ge 1$ donc $||f(a) - f(b)|| \le ||f^p(a) - f^p(b)|| = ||a_p - b_p||$

Puis à l'aide de l'inégalité triangulaire, on a :

$$||f(a) - f(b)|| \le ||a_p - b_p|| \le ||b_p - b|| + ||b - a|| + ||a_p - a|| \le ||a - b|| + \varepsilon$$

SUITES DÉFINIES PAR ITÉRATION, POINTS FIXES

(c) D'après la question précedente , on a pour tout $\varepsilon>0$:

$$||f(a) - f(b)|| \le ||a - b|| + \varepsilon$$

En passant à la limite lorsque $\varepsilon \to 0$, on a $\|f(a) - f(b)\| \le \|a - b\|$

Par suite
$$\|f(a) - f(b)\| = \|a - b\|$$
 pour tout $(a, b) \in Q^2$

9. Si
$$f(x) = f(y)$$
 alors $||x - y|| = ||f(x) - f(y)|| = 0$ par suite $x = y$

f est continue car lisp chitzienne. En conséquence $f\left(Q\right)$ est l'image d'un compact par une fonction continue, donc il s'agit d'un compact, en particulier c'est une partie fermée

10. On a bien
$$\overline{f(Q)} = Q$$
 et puisque $f(Q)$ est fermée, donc $f(Q) = Q$

Par suite f est surjective puis bijective (car elle est déja injective)