HW7

APPLY DECISION TREE TO PREDICT IMDB_SCORE (LOW OR HIGH) ON IMDB

Dhanabordee Mekintharanggur 6238077121

Step 1 - Loading the Data

The data is downloaded as a .csv file format and is placed in the same directory as the .ipynb file

The csv is read using pd.read_csv to read the data in the dataframe format for further exploration and preprocessing

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0 76
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0 30
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0 2
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0 44
4	Doug Walker	NaN	NaN	131.0	NaN	Rob Walker	131.0
5038	Scott Smith	1.0	87.0	2.0	318.0	Daphne Zuniga	637.0
5039	NaN	43.0	43.0	NaN	319.0	Valorie Curry	841.0
5040	Benjamin Roberds	13.0	76.0	0.0	0.0	Maxwell Moody	0.0
5041	Daniel Hsia	14.0	100.0	0.0	489.0	Daniel Henney	946.0
5042	Jon Gunn	43.0	90.0	16.0	16.0	Brian Herzlinger	86.0

Notice that there are NaN values present in multiple columns. This has to be dealt with in the next step.

Data columns (total 27 columns): # Column					
director_name 4939 non-null object num_critic_for_reviews 4993 non-null float64 duration 5028 non-null float64 director_facebook_likes 4939 non-null float64 dactor_3_facebook_likes 5020 non-null float64 cactor_2_name 5030 non-null object dactor_1_facebook_likes 5036 non-null float64 genres 5043 non-null float64 genres 5043 non-null object movie_title 5043 non-null object num_voted_users 5043 non-null int64 cast_total_facebook_likes 5043 non-null int64 cast_total_facebook_likes 5043 non-null int64 dactor_3_name 5020 non-null object facenumber_in_poster 5030 non-null object					
1 num_critic_for_reviews 4993 non-null float64 2 duration 5028 non-null float64 3 director_facebook_likes 4939 non-null float64 4 actor_3_facebook_likes 5020 non-null float64 5 actor_2_name 5030 non-null object 6 actor_1_facebook_likes 5036 non-null float64 7 gross 4159 non-null float64 8 genres 5043 non-null object 9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
1 num_critic_for_reviews 4993 non-null float64 2 duration 5028 non-null float64 3 director_facebook_likes 4939 non-null float64 4 actor_3_facebook_likes 5020 non-null float64 5 actor_2_name 5030 non-null object 6 actor_1_facebook_likes 5036 non-null float64 7 gross 4159 non-null float64 8 genres 5043 non-null object 9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
duration 5028 non-null float64 director_facebook_likes 4939 non-null float64 actor_3_facebook_likes 5020 non-null float64 actor_2_name 5030 non-null object actor_1_facebook_likes 5036 non-null float64 gross 4159 non-null float64 genres 5043 non-null object actor_1_name 5036 non-null object movie_title 5043 non-null object num_voted_users 5043 non-null int64 cast_total_facebook_likes 5043 non-null int64 cast_total_facebook_likes 5043 non-null int64 actor_3_name 5020 non-null object facenumber_in_poster 5030 non-null float64 plot_keywords 4890 non-null object					
director_facebook_likes 4939 non-null float64 actor_3_facebook_likes 5020 non-null float64 actor_2_name 5030 non-null object actor_1_facebook_likes 5036 non-null float64 gross 4159 non-null float64 genres 5043 non-null object actor_1_name 5036 non-null object movie_title 5043 non-null object num_voted_users 5043 non-null int64 cast_total_facebook_likes 5043 non-null int64 cast_total_facebook_likes 5043 non-null int64 actor_3_name 5020 non-null object facenumber_in_poster 5030 non-null float64 plot_keywords 4890 non-null object					
4 actor_3_facebook_likes 5020 non-null float64 5 actor_2_name 5030 non-null object 6 actor_1_facebook_likes 5036 non-null float64 7 gross 4159 non-null float64 8 genres 5043 non-null object 9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
5 actor_2_name 5030 non-null object 6 actor_1_facebook_likes 5036 non-null float64 7 gross 4159 non-null object 9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
6 actor_1_facebook_likes 5036 non-null float64 7 gross 4159 non-null float64 8 genres 5043 non-null object 9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
7 gross 4159 non-null float64 8 genres 5043 non-null object 9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
8 genres 5043 non-null object 9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
9 actor_1_name 5036 non-null object 10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
10 movie_title 5043 non-null object 11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
11 num_voted_users 5043 non-null int64 12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
12 cast_total_facebook_likes 5043 non-null int64 13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
13 actor_3_name 5020 non-null object 14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
14 facenumber_in_poster 5030 non-null float64 15 plot_keywords 4890 non-null object					
15 plot_keywords 4890 non-null object					
16 movie_imdb_link 5043 non-null object					
<pre>17 num_user_for_reviews 5022 non-null float64</pre>					
18 language 5031 non-null object					
19 country 5038 non-null object					
•••					
25 aspect_ratio 4714 non-null float64					
26 movie_facebook_likes 5043 non-null int64					
dtypes: float64(13), int64(3), object(11)					
memory usage: 1.0+ MB					

director_name	104
num_critic_for_reviews	50
duration	15
director_facebook_likes	104
actor_3_facebook_likes	23
actor_2_name	13
actor_1_facebook_likes	7
gross	884
genres	0
actor_1_name	7
movie_title	0
num_voted_users	0
cast_total_facebook_likes	0
actor_3_name	23
facenumber_in_poster	13
plot_keywords	153
movie_imdb_link	0
num_user_for_reviews	21
language	12
country	5
content_rating	303
budget	492
title_year	108
actor_2_facebook_likes	13
imdb_score	0
aspect_ratio	329
movie_facebook_likes	0
dtype: int64	

- There are originally 5043 rows of data
- Multiple columns contain null values
- Fortunately, the "imdb_score" column that I will be predicting has no empty rows.
- Since the non-numeric values can be categorized and then binary encoding them. Thus, I will not only select the numeric columns, but keeping all the columns instead.

	imdb_score
count	5043.000
mean	6.442
std	1.125
min	1.600
25%	5.800
50%	6.600
75%	7.200
max	9.500

Visualizing the histogram of "imdb_score", it can be seen that the values appear to be somewhat **normally distributed**

The mean imdb_score is at 6.442 points

Next, the imdb_score is categorized as a "high" or a "low".

Since there is practically no middle point to separate the high and low scores and in order to remove the ambiguity between films with close IMDb scores, the middle 10% percent of the data are removed.

The data between the 45-percentile and 55-percentile are dropped from the data frame, leaving 2 distinct sections to be categorized as a "high_score" represented by value of 1 in the high_imdb_score column, and a value of 0 in the same column for "low_score"

The new column is then added to the dataframe

the "movie_score_target" is a data frame as shown

high_imdb_score = 1

gross	17.529248
budget	9.756098
aspect_ratio	6.523895
title_year	2.141582
director_facebook_likes	2.062265
num_critic_for_reviews	0.991473
actor_3_facebook_likes	0.456078
num_user_for_reviews	0.416419
duration	0.297442
<pre>facenumber_in_poster</pre>	0.257783
actor_2_facebook_likes	0.257783
actor_1_facebook_likes	0.138806
cast_total_facebook_likes	0.000000
num_voted_users	0.000000
<pre>movie_facebook_likes</pre>	0.000000
imdb_score	0.000000
dtype: float64	

All the rows containing missing values are dropped as they make up only a small percentage of the whole data (and less then 30%)

Data	columns (total 28 columns)	:	
#	Column	Non-Null Count	Dtype
		244411	
0	director_name	3441 non-null	,
1	num_critic_for_reviews		
2	duration	3441 non-null	
3	director_facebook_likes		
4	actor_3_facebook_likes	3441 non-null	
5	actor_2_name	3441 non-null	
6	actor_1_facebook_likes		
7	gross	3441 non-null	
8	genres	3441 non-null	object
9	actor_1_name	3441 non-null	object
10	movie_title	3441 non-null	object
11	num_voted_users	3441 non-null	int64
12	cast_total_facebook_likes	3441 non-null	int64
13	actor_3_name	3441 non-null	object
14	facenumber_in_poster	3441 non-null	float64
15	plot_keywords	3441 non-null	object
16	movie_imdb_link	3441 non-null	object
17	num_user_for_reviews	3441 non-null	float64
18	language	3441 non-null	object
19	country	3441 non-null	object
26	movie_facebook_likes	3441 non-null	int64
27	high_imdb_score	3441 non-null	int64
	es: float64(13), int64(4),	object(11)	

After dropping, there are a total of 3441 non-null numerical and string columns remaining

Onehot encode categorical features

Since the dataset contains many columns that are not numerical, I explored the possibility of converting them into numerical values for further interpretation. To do so, start by visualizing the interesting columns' histogram to help identify the values that can be used as new columns

The cut-off can be set for the top 4 directors who made the most movie in this list. Other directors will be included to the director:others column

The USA dominates other countries in this list, so there can be 2 columns created, country:USA and country:others.

Onehot encode categorical features

Since the dataset contains many columns that are not numerical, I explored the possibility of converting them into numerical values for further interpretation. To do so, start by visualizing the interesting columns' histogram to help identify the values that can be used as new columns

The English-speaking films dominate other languages in this list, so there can be 2 columns created, language:English and language:others.

The top 3 most common content ratings can be used as the new categories and the other can be included to the content_rating:others column

Onehot encode categorical features

To separate the most frequent values of the previously-mentioned columns into new columns, the OneHotEncoder from sklearn can be utilized and the new numeric columns generated are as follow:

director_name	country	genres
director_name:Steven Spielberg director_name:Woody Allen director_name:others	country:USA country:others	genres:Comedy genres:Comedy Drama genres:Comedy Drama Romance genres:Drama genres:others
language	content_rating	
language:English language:others	content_rating:PG content_rating:PG-13 content_rating:R content_rating:others	

Histogram of the features

The histograms of the selected features are as shown.

Since the data have been OneHot encoded, many histograms show the bar that is either 0 or 1. Some numerical values like title_year, num_critic_for_reviews, duration are more skewed, and imdb_score appears to be somewhat normally distributed.

Split train-test

```
X_train, X_test, y_train, y_test = train_test_split(df_dropped, movie_score_target, test_size=0.2,shuffle=True,stratify=movie_score_target,random_state=30)

v 0.0s
```

20% of the data will be randomly split to be used for evaluating the performance of the model, and the remaining 80% will be used for training the model

Since this is not a time-series data, the dataset can be shuffled.

DecisionTreeClassifier (without GridSearchCV)

Since the model can become very complex due to the number of features available here, it is important to prevent the model from becoming too complex, leading to overfitting.

This is done by setting the minimum training inputs on each leaf, by setting the min_samples_split to 300 to limit the number of leaves

By default, the max_depth is set to None and the model will be as complex as necessary to fit the data provided. However, this can quickly result in overfitting the training data. By setting the **max_depth is set to 5**, I limit the depth of the decision tree to 5 levels and combat overfitting my train data.

Evaluate classification result of test dataset

Classification Report:						
	precision	recall	f1-score	support		
high_imdb_score	0.73	0.85	0.79	341		
low_imdb_score	0.83	0.69	0.75	348		
accuracy			0.77	689		
macro avg	0.78	0.77	0.77	689		
weighted avg	0.78	0.77	0.77	689		
Accuracy on train	n: 0.778					
Accuracy on test:	0.771					

Precision

- Of all the movies that the model predicted to have a high IMDB score, 73% actually have a high IMDB score
- Of all the movies that the model predicted to have a low IMDB score, 83% actually have a low IMDB score

Recall

- Of all the movies that actually have a high IMDB score, 85% are correctly identified
- Of all the movies that actually have a low IMDB score, 69% are correctly identified

Accuracy: model correctly classified 77.1% of the instances (test data)

Note: the test data accuracy is very close to the train data accuracy, suggesting that the model does not overfit or underfit.

Evaluate classification result of test dataset

The decision tree has a depth of 5, as dictated by the max_depth parameter earlier.

Note that only the nodes with over 200 samples as dictated by min_samples_split = 200.

In doing so, the model didn't becomes maximally complex, which is a good sign for preventing overfitting.

Interpret the feature importance

	features	impact
0	num_critic_for_reviews	0.000000
1	duration	0.166531
2	director_facebook_likes	0.000000
3	gross	0.013643
4	num_voted_users	0.533789
5	cast_total_facebook_likes	0.023190
6	facenumber_in_poster	0.000000
7	num_user_for_reviews	0.000000
8	budget	0.239100
9	title_year	0.000000
10	aspect_ratio	0.000000
11	movie_facebook_likes	0.023748
12	director_name:Steven Spielberg	0.000000
13	director_name:others	0.000000
14	country:others	0.000000
15	language:others	0.000000
16	content_rating:PG	0.000000
17	content_rating:PG-13	0.000000
18	content_rating:R	0.000000
19	content_rating:others	0.000000
20	genres:Comedy	0.000000
21	genres:Comedy Drama	0.000000
22	genres:Comedy Drama Romance	0.000000
23	genres:Drama	0.000000
24	genres:others	0.000000

Of all the features used, only a few of them are considered impactful, including

- duration
- budget
- num_voted_users

Some features do impact the model, but to a much smaller degree

- movie_facebook_likes
- cast_total_facebook_likes
- gross

Interpret the classification model performance

ROC: 0.83190077 AUC: 0.83190077

The F1-score for the "high_imdb_score" class is 0.79, and the F1-score for the "low_imdb_score" class is 0.75.

The ROC and AUC are at 0.83190077, which is considered decent.

Considering both metrics, I would consider that this model provides acceptable performance for predicting a social science problem.

DecisionTreeClassifier + gridsearchcv

```
DT3=DecisionTreeClassifier()
cv = StratifiedKFold(8)
param_val = [{'criterion':['entropy','gini'],'max_depth':[1,6],'min_samples_split':np.arange(2,10)}]
#grid search configuration
grid = GridSearchCV(DT3, param_val, cv = cv,scoring='roc_auc_ovr')
#fitting into our data
grid.fit(X_train, y_train)

#Predict the response for test dataset

y_pred_2=grid.predict(X_test)
y_pred_2_prob=grid.predict_proba(X_test)
```

GridSearchCV allows you to find the best hyperparameters for the decision tree by performing an exhaustive search over the specified parameter grid.

Thus, the prediction of the model with the use of gridsearchev should technically improve the model performance

Since the model can become very complex due to the number of features available here, it is important to prevent the model from becoming too complex, leading to overfitting.

This is done by setting the minimum training inputs on each leaf, by setting the min_samples_split [2, 4, 6, 8, 10] to limit the number of leaves

By default, the max_depth is set to None and the model will be as complex as necessary to fit the data provided. However, this can quickly result in overfitting the training data. By setting the **max_depth is set to 6**, I limit the depth of the decision tree to 6 levels and combat overfitting my train data.

Note: the max_depth of 6 is the best depth that results the highest ROC AUC scores. This will be shown later in the slides.

Evaluate classification result of test dataset

Classification Re	port:			
	precision	recall	f1-score	support
high_imdb_score	0.76	0.87	0.82	341
low_imdb_score	0.86	0.74	0.79	348
accuracy			0.80	689
macro avg	0.81	0.80	0.80	689
weighted avg	0.81	0.80	0.80	689
Accuracy on train	: 0.826			
Accuracy on test:	0.804			

Precision

- Of all the movies that the model predicted to have a high IMDB score, 76% actually have a high IMDB score
- Of all the movies that the model predicted to have a low IMDB score, 86% actually have a low IMDB score

Recall

- Of all the movies that actually have a high IMDB score, 87% are correctly identified
- Of all the movies that actually have a low IMDB score, 74% are correctly identified

Accuracy: model correctly classified 80.4% of the instances

Note: the test data accuracy is relatively close to the train data accuracy, suggesting that the model does not overfit or underfit.

Evaluate classification result of test dataset

```
num_voted_users <= 142409.50
                 ast_total_facebook_likes <= 474.50
                    _total_facebook_likes > 474.50
                    num_user_for_reviews > 49.50
                    num_user_for_reviews > 874.00
```

The decision tree has a depth of 6, as dictated by the max_depth parameter earlier.

In doing so, the model didn't becomes maximally complex, which is a good sign for preventing overfitting.

Interpret the feature importance

	features	impact
0	num_critic_for_reviews	0.000000
1	duration	0.166531
2	director_facebook_likes	0.000000
3	gross	0.013643
4	num_voted_users	0.533789
5	cast_total_facebook_likes	0.023190
6	facenumber_in_poster	0.000000
7	num_user_for_reviews	0.000000
8	budget	0.239100
9	title_year	0.000000
10	aspect_ratio	0.000000
11	movie_facebook_likes	0.023748
12	director_name:Steven Spielberg	0.000000
13	director_name:others	0.000000
14	country:others	0.000000
15	language:others	0.000000
16	content_rating:PG	0.000000
17	content_rating:PG-13	0.000000
18	content_rating:R	0.000000
19	content_rating:others	0.000000
20	genres:Comedy	0.000000
21	genres:Comedy Drama	0.000000
22	genres:Comedy Drama Romance	0.000000
23	genres:Drama	0.000000
24	genres:others	0.000000

Of all the features used, only a few of them are considered impactful, including

- duration
- budget
- num_voted_users

Some features do impact the model, but to a much smaller degree

- movie_facebook_likes
- cast_total_facebook_likes
- gross

All the same features are still considered impactful, although their weights are changed

Interpret the classification model performance

The F1-score for the "high_imdb_score" class is 0.82, and the F1-score for the "low_imdb_score" class is 0.79.

The ROC and AUC are at 0.8564524555903867, which is considered decent.

Considering both metrics, I would consider that this model provides acceptable performance for predicting a social science problem.

The ValidationCurve plots the ROC AUC score of the training data in blur and the ROC AUC score of the testing data in orange.

It can be observed that the score reaches its maximum at max_depth = 6. Thus, the model has been modified to use 6 as the max depth as shown in the previous slides.

Model Improvement

To further improve this model, there are some actions that can be taken

1. Tune the hyperparameters

a.max_depth, min_samples_split, min_samples_leaf, and max_features can be tuned to find the most suitable values that yield the best result for the high_imdb_score prediction

2. Feature selection

- a. Since there are many features, the features can be narrowed down after the most important features have been identified.
- b. Unfortunately, there weren't many important features present, so I did not exclude any features in this exercise

3. Use larger dataset

a. with more data to train the model, the model's performance can be improved and I can reduce the risk of overfitting the model