

Systeme II

2. Die physikalische Schicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 26.04.2017

Physikalische Medien

- Leitungsgebundene Übertragungsmedien
 - Kupferdraht Twisted Pair
 - Kupferdraht Koaxialkabel
 - Glasfaser
- Drahtlose Übertragung
 - Funkübertragung
 - Mikrowellenübertragung
 - Infrarot
 - Lichtwellen

Twisted Pair

(b)

- (a) Category 3 UTP.
- (b) Category 5 UTP.

Koaxialkabel

Glasfaser

Gesetz von Snellius:
$$\frac{\sin \alpha}{\sin \beta} = \frac{c_{\rm Glas}}{c_{\rm Luft}}$$

- (a) Beugung und Reflektion an der Luft/Silizium-Grenze bei unterschiedlichen Winkeln
- (b) Licht gefangen durch die Reflektion

Übertragung von Licht durch Glasfaser

Dämpfung von Infrarotlicht in Glasfaser

Glasfaser

- (a) Seitenansicht einer einfachen Faser
- (b) Schnittansicht eines Dreier-Glasfaserbündels

Fallbeispiel: Ethernet

- Beispiel aus der Praxis mit Mediumzugriff:
 Ethernet
 - IEEE Standard 802.3
- Punkte im Standard
 - Verkabelung
 - Bitübertragungsschicht
 - Sicherungsschicht mit Mediumzugriff

Bitübertragungsschicht Ethernet

- Mediumabhängig
- Typisch: Manchester encoding
 - mit +/- 0.85 V
- Code-Verletzung zeigt Frame-Grenzen auf

Ethernet cabling

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

Ethernet MAC-Schicht

- Im wesentlichen: CSMA/CD mit binary exponential backoff
- Frame-Format

10101010

von 64 Byte erreicht wird

Switch versus Hub

Hub

- verknüpft Ethernet-Leitungen nabenförmig
- jede Verbindung hört alles
- Durch CSMA/CD wird die Übertragungsrate reduziert

Switch

- unterteilt die eingehenden Verbindungen in kleinere Kollisionsteilmengen
- die Prüfsumme eines eingehenden Pakets wird überprüft
- Kollisionen werden nicht weiter gegeben
- interpretiert die Zieladresse und leitet das Paket nur in diese Richtung weiter

Fast Ethernet

- Ursprünglich erreichte Ethernet 10 MBit/s
- 1992: Fast Ethernet
 - Ziele: Rückwärtskompatibilität
 - Resultat: 802.3u
- Fast Ethernet
 - Frame-Format ist gleichgeblieben
 - Bit-Zeit wurde von 100 ns auf 10 ns reduziert
 - Dadurch verkürzt sich die maximale Kabellänge (und die minimale Paket-Größe steigt).
 - Unvermeidbare Kollisionen CSMA

Fast Ethernet – Verkabelung

- Standard Cat-3 twisted pair unterstützt nicht 200 MBaud über 100 m
 - Lösung: Verwendung von 2 Kabelpaaren bei reduzierter Baudrate
- Wechseln von Manchester auf 4B/5B-Kodierung auf Cat-5-Kabeln

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Gigabit Ethernet

- Gigabit-Ethernet: 1995
 - Ziel: Weitgehende Übernahme des Ethernet-Standards
- Ziel wurde erreicht durch Einschränkung auf Punkt-zu-Punkt-Verbindungen
 - In Gigabit-Ethernet sind an jedem Kabel genau zwei Maschinen
 - oder zumindestens ein Switch oder Hub

Gigabit Ethernet

Mit Switch

- Keine Kollisionen! CSMA/CD unnötig
- Erlaubt full-duplex für jeden Link

Mit Hub

- Kollisionen, nur Halb-Duplex (d.h. abwechselnd Simplex), CSMA/CD
- Kabellängen auf 25 m reduziert

Gigabit Ethernet – Cabling

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Verbinden von LANs

Application layer

Application gateway

Transport layer

Transport gateway

Network layer

Router

Data link layer

Bridge, switch

Physical layer

Repeater, hub

Repeater

- Signalregenerator
 - Empfängt Signal und bereitet es auf
 - Nur das elektrische und optische Singal wird aufbereitet
 - Information bleibt unbeeinflusst
- Bitübertragungsschicht
- Repeater teilen das Netz in physische Segmente
 - logische Topologien bleiben erhalten

Hub

- Verbindet sternförmig Netzsegemente
 - im Prinzip wie ein Repeater
 - Signale werden auf alle angebundenen Leitungen verteilt
- Bitübertragungsschicht
 - Information und Logik der Daten bleibt unberücksichtigt
 - Insbesondere für Kollisionen

Switch

- Verbindet sternförmig Netzsegmente
 - Leitet die Daten nur in die betreffende Verbindung weiter
 - Gibt keine Kollisionen weiter
- Sicherungsschicht
 - Signale werden neu erzeugt
 - Kollisionen abgeschirmt und reduziert
 - Frames aber nicht verwendet
 - Rudimentäre Routingtabelle durch Beobachtung, wo Nachrichten herkommen

Bridge

Verbindet zwei lokale Netzwerke

- im Gegensatz zum Switch (dort nur Terminals)
- trennt Kollisionen

Sicherungsschicht

- Weitergabe an die andere Seite, falls die Ziel-Adresse aus dem anderen Netzwerk bekannt ist oder auf beiden Seiten noch nicht gehört wurde
- Nur korrekte Frames werden weitergereicht
- Übergang zwischen Bridge und Switch ist fließend

Beispiel: Internet über Telefon

Analog

- typisch 3-4 kBit/s
- maximal bis 56 kBit/s
- ISDN (Integrated Services Digital Network)
 - 128 kBit/s (Nutzdaten)
 - Hin/Rückrichtung jeweils 64 kBit/s
 - Pulse-Code Modulation (Amplitudenmodulation)

DSL

- maximal
 - bis 25 Mbit/s Downstream
 - bis 3,5 Mbit/s Upstream
- typisch (DSL 6000)
 - 6 Mbit/s Downstream
 - 0,5 Mbit/s Upstream

Abb. aus http://de.wikipedia.org/wiki/Puls-Code-Modulation

Beispiel DSL

- Asymmetric Digital Subscriber Line (ADSL)
 - momentan der Standard zur Anbindung von Endverbrauchern zu ISP (Internet Service Providers)
 - verwendet herkömmliche Kupferkabel

- Carrierless Amplitude/Phase Modulation CAP (wie QAM)
 - Eine Modulation für Upstream/Downstream
- Discrete Multitone Modulation (DMT)
 - 256 Kanäle mit je 4 kHz Bandbreite

DMT: 3 Kanälstränge:

- POTS/ISDN (public switched telephone network/ Integrated Services Digital Network)
 - bleibt im Frequenzbereich 1-20 kHz von ADSL unberührt
- Upstream
 - 32 Trägerkanäle für Verbindung zum ISP
- Downstream
 - 190 Trägerkanäle für Verbindung vom ISP

Das elektromagnetische Spektrum

Frequenzbereiche

- LF Low Frequency =- LW Langwelle
- MF Medium Frequency =
 - MW Mittelwelle
- HF High Frequency =
 - KW Kurzwelle

- VHF Very High Frequency =
 - UKW Ultrakurzwelle
- UHF Ultra High Frequency
- SHF Super High Frequency
- EHF Extra High Frequency
- UV Ultraviolettes Licht
- X-ray Röntgenstrahlung

Dämpfung in verschiedenen Frequenzbereichen

 Frequenzabhängige Dämpfung elektromagnetischer Wellen in der Atmosphäre

Frequenzbänder für Funknetzwerke

- VHF/UHF für Mobilfunk
 - Antennenlänge
- SHF für Richtfunkstrecken, Satellitenkommunikation
- Drahtloses (Wireless) LAN: UHF bis SHF
 - Geplant: EHF
- Sichtbares Licht
 - Kommunikation durch Laser
- Infrarot
 - Fernsteuerungen
 - Lokales LAN in geschlossenen Räumen

Ausbreitungsverhalten (I)

- Geradlinige Ausbreitung im Vakuum
- Empfangsleistung nimmt mit 1/d² ab
 - Theoretisch, praktisch mit höheren Exponenten bis zu 4 oder 5
- Einschränkung durch
 - Dämpfung in der Luft (insbesondere HV, VHF)
 - Abschattung
 - Reflektion
 - Streuung an kleinen Hindernissen
 - Beugung an scharfen Kanten

Ausbreitungsverhalten (II)

- VLF, LF, MF-Wellen
 - folgen der Erdkrümmung (bis zu 1000 km in VLF)
 - Durchdringen Gebäude
- HF, VHF-Wellen
 - Werden am Boden absorbiert
 - Werden von der lonosphäre in 100-500 km Höhe reflektiert

- Ab 100 MHz
 - Wellenausbreitung geradlinig
 - Kaum Gebäudedurchdringung
 - Gute Fokussierung
- Ab 8 GHz Absorption durch Regen

Ausbreitungsverhalten (III)

- Mehrwegeausbreitung (Multiple Path Fading)
 - Signal kommt aufgrund von Reflektion, Streuung und Beugung auf mehreren Wegen beim Empfänger an
 - Zeitliche Streuung führt zu Interferenzen
 - Fehlerhafter Dekodierung
 - Abschwächung
- Probleme durch Mobilität
 - Kurzzeitige Einbrüche (schnelles Fading)
 - Andere Übertragungswege
 - Unterschiedliche Phasenlage
 - Langsame Veränderung der Empfangsleistung (langsames Fading)
 - Durch Verkürzen, Verlängern der Entfernung Sender-Empfänger

Spezielle Probleme in drahtlosen Netzwerken

Probleme im W-LAN

Interferenzen

- Hidden Terminal Problem
- Exposed Terminal Problem
- Asymmetrie (var. Reichweite)

Multiple Access with Collision Avoidance

- (a) A sendet Request to Send (RTS) an B.
- (b) B antwortet mit Clear to Send (CTS) an A.