# Восстановление человеком исходной позы после толчка Reversion of initial posture by a person after a push

### Романов Андрей Владимирович

МГУ им. М.В. Ломоносова Механико-математический факультет Кафедра прикладной механики и управления Научный руководитель: к.ф.-м.н. Кручинин П.А.

1 июня 2023 г.



### Описание задачи



Рис.: Схематическое изображение толкателя и положения испытуемого на стабилоплатформе



Рис.: Координаты центра давления при различных по силе толчках (данные предоставлены сотрудниками ИМБП РАН)

### Задача быстродействия



Рис.: Характерный вид сагиттальной стабилограммы при выполнении теста с толчком в спину

В работе рассматриваются возможные алгоритмы управления изменением позы человека, основанные на решении задачи оптимального быстродействия, которые можно было бы использовать для возвращения человека в исходную вертикальную позу. В качестве математической модели используется модель «перевернутого маятника». Это решение предлагается использовать для доценки эффективности управления человеком при возвращении в вертикальную позу, путем сравнения времени реального процесса с полученным эталонным решением оптимальной задачи.

### Список литературы с опорными исследованиями

### Разбор аналогичной задачи

П.А. Кручинин Анализ результатов стабилометрических тестов со ступенчатым воздействием с точки зрения механики управляемых систем // Биофизика. – 2019. – Т. 64, №5. – С. 1–11.

### Исследования в которых был такой же тест

- Д. Г. Саенко, А. А. Артамонов, И. Б. Козловская Характеристики позных коррекционных ответов до и после длительных космических полетов // Физиология человека. – 2011. – Т. 37, №5. – С. 91–99.
- А.А. Мельников, В.В. Филева Методика определения устойчивости вертикальной позы под влиянием внешнего толкающего воздействия // Вестник северного (арктического) федерального университета. 2015. №1. С. 31–37.
- А.А. Мельников, В.В. Филева, М.В. Малахов Эффективность восстановления вертикальной позы после толчка у спортсменов разных специализаций // Физиоилогия человека. 2017. Т. 43, №4. С. 78–85.

### Математическая модель

Рассматривается задача возвращения в исходную позу после завершения толчка



Рис.: Модель тела человека

$$J\ddot{\varphi} = m_T g J \varphi + M$$

$$\varphi(0) = \varphi_0, \ \dot{\varphi}(0) = \omega_0$$

$$\varphi(t) = \varphi_k, \ \dot{\varphi}(t_k) = 0$$

$$M(0) = M(t_k) = -m_T g J_1 \varphi_k$$

$$U^- \leqslant \dot{M} \leqslant U^+$$

$$M^- \leqslant M \leqslant M^+.$$

### Обезразмеривание

 $\theta$  — угол отклонения от вертикали

 $\omega$  — угловая скорость тела

m — момент, возникающий в голеностопном суставе

$$\begin{cases} \theta' = \omega, \\ \omega' = \theta + m, \\ m' = u. \end{cases} \qquad u = \begin{cases} -u_{max} \\ +u_{max} \end{cases}$$
 
$$\tau = \frac{t}{t_*}, \ t_* = \sqrt{\frac{J}{m_T g I}}, \ \varphi_* = \varphi_0 - \varphi_k$$
 
$$\theta(0) = 1; \ \theta'(0) = \frac{t_*}{\varphi_*} \omega_0 = \Omega_0; \ m(0) = 0$$
 
$$\theta(\tau_f) = 0; \ \theta'(\tau_f) = 0; \ m(\tau_f) = 0$$

Восстановление человеком исходной позы после толчка Reversic

Запишем функцию Понтрягина

$$H(\psi(t), y(t), u(t)) = \psi_1 \cdot \omega + \psi_2 \cdot (\theta + m) + \psi_3 \cdot u$$

$$\begin{cases} \psi_{1}^{'} = -\frac{\partial H}{\partial \theta} = -\psi_{2} \\ \psi_{2}^{'} = -\frac{\partial H}{\partial \omega} = -\psi_{1} \\ \psi_{3}^{'} = -\frac{\partial H}{\partial m} = -\psi_{2} \end{cases}$$
 (2)

При  $\psi_3 \equiv 0$  следует, что  $\psi_2 \equiv 0$  и  $\psi_1 \equiv 0$  следовательно особого управления нет.

Тогда для условия максимизации функции Понтрягина

$$u = egin{cases} -u_{max}, & ext{при } \psi_3 < 0 \ +u_{max}, & ext{при } \psi_3 \geqslant 0 \end{cases}$$

$$|u^{-}| = |\frac{t_{*}U^{-}}{m_{T}gl\varphi_{*}}| = |u^{+}| = |\frac{t_{*}U^{+}}{m_{T}gl\varphi_{*}}| = |u_{*}| = u_{max}$$

Решая систему (2), получим

$$\begin{cases} \psi_1 = -C_1 e^{\tau} + C_2 e^{-\tau} + C_3, \\ \psi_2 = C_1 e^{\tau} + C_2 e^{-\tau}, \\ \psi_3 = -C_1 e^{\tau} + C_2 e^{-\tau} + C_3. \end{cases}$$

Анализируя корни уравнения  $\psi_3( au) = 0$ , для различной комбинации коэффициентов  $C_1$ ,  $C_2$ ,  $C_3$ , получим, что число корней не может быть больше двух. В системе может быть не более двух переключений u. Пусть первое переключение управления происходит в момент времени  $\tau = \tau_1$ , а второе в момент времени  $\tau = \tau_2$ . Рассмотрим систему (1) на трех этапах, при переходе между которыми меняется управление.

Этап 1.  $u = -u_*$  начальные условия

$$m(0) = 0$$
;  $\theta(0) = 1$ ;  $\omega(0) = \Omega_0$ ;

$$\begin{cases} 0 = -\tau u_* + c_1, \\ 1 = \frac{1}{2}e^{-\tau} \left( C_1 (e^{\tau} - 1)^2 + C_2 (e^{2\tau} + 1) + C_3 e^{2\tau} - C_3 + 2e^{\tau} \tau u_* \right), \\ \Omega_0 = \frac{1}{2}e^{-\tau} \left( C_1 (e^{2\tau} - 1) + C_2 (e^{2\tau} - 1) + C_3 e^{2\tau} + C_3 + 2e^{\tau} u_* \right). \end{cases}$$

$$\begin{cases} m_1(\tau) = -\tau u_*, \\ \theta_1(\tau) = \frac{e^{\tau} + e^{-\tau}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau} - e^{-\tau}) + \tau u_*, \\ \omega_1(\tau) = \frac{e^{\tau} - e^{-\tau}}{2} + \frac{\Omega_0 - u_*}{2} (e^{\tau} + e^{-\tau}) + u_*. \end{cases}$$

Аналогично для 2 и 3 этапов



Условие сопряжения этих интервалов

$$\begin{cases} m_2(\tau_2) = m_3(\tau_2), \\ \theta_2(\tau_2) = \theta_3(\tau_2), \\ \omega_2(\tau_2) = \omega_3(\tau_2). \end{cases}$$

Замена переменных

$$x = e^{\tau_1}, \ y = e^{\tau_2}, \ z = e^{\frac{\tau_f}{2}}$$



Рис.: Интервалы переключения управления



Требуется отобрать наименьший корень уравнений больший 1. При различных по знаку  $u_*$ .

$$x = \left(\frac{1}{2z} - \frac{u_*z}{2} - (\Omega_0 - u_*)\frac{1}{2z}\right) \frac{z}{u_*(1-z)}$$

$$y = zx,$$
(3)

$$\begin{bmatrix} u_* z^2 + \Omega_0 - 1 - u_* = 0, \\ (-u_* \Omega_0 + u_*^2 - u_*) z^4 - 4u_*^2 z^3 + (2u_* \Omega_0 + 6u_*^2 - \Omega_0^2 + 1) z^2 - \\ -4u_*^2 z + -u_* \Omega_0 + u_*^2 + u_* = 0 \end{bmatrix}$$

$$\tau_f = 2 \ln(z)$$
(4)

# Определение начальных условий для задачи быстродействия

Для решения задачи быстродействия необходимо определить начальные условия после толчка.

Для этого необходимо построить оценку  $\tilde{\eta}$  траектории центра масс системы, зная траекторию центра давления, и взять значение  $\tilde{\eta_0}$  и  $\tilde{\dot{\eta_0}}$  в момент времени завершения толчка

### Связь центра масс и центра давления



Рис.: Силы действующие на модель стержня, имитирующего тело человека



Рис.: Силы действующие на на систему «стопы ног – платформа стабилоанализатора»

### Связь центра масс и центра давления

$$\begin{cases} mI\ddot{\theta} = -R_{y} - F, \\ 0 = R_{z} - mg, \\ J\ddot{\theta} = mIg\theta - FI_{1} + M_{x}. \end{cases}$$
(5) 
$$\begin{cases} M_{x} = Ny + F_{y}h, \\ F_{y} = R_{y}, \\ N \approx mg. \end{cases}$$
(6) 
$$M_{x} = mgy - h\left(F + mI\ddot{\theta}\right)$$
$$(J + mIh)\ddot{\theta} = mgI\theta + mgy - FI_{1} - Fh$$

$$\frac{(J+mlh)l\theta}{mgl} = l\theta + y - \frac{F}{mg}(l_1 + h); \quad \text{Замена: } \eta = -l\theta; \quad T^2 = \frac{J+mlh}{mgl};$$

$$T^2\ddot{\eta} = \eta - y + \frac{F}{mg}(l_1 + h) \tag{7}$$

### Связь центра масс и центра давления

Соотношение (7) используем для определения начальных условий движения сразу после толчка

Далее необходимо построить оценку  $\tilde{\eta}$  движения центра масс различными способами, описанными в работах, выполненых под руководством П.А. Кручинина

# Алгоритм фильтрации (композиция двух фильтров)

Передаточная функция системы (7) имеет вид

$$G(s) = -\frac{1}{T^2s^2 - 1}$$

Ее можно представить в виде композиции двух фильтров

$$G(s) = G_1(s) \cdot G_2(s)$$

$$G_1(s) = \frac{1}{Ts-1}, G_2(s) = \frac{1}{Ts+1}$$

Оценка координаты центра масс может быть найдена, путем последовательного применения двух фильтров

$$T\dot{x} + x = -y$$
 в прямом времени

$$T\dot{\eta} - \eta = x$$
 в обратном времени



### Оценка траектории центра масс



Рис.: Восстановление с использованием двойной фильтрации

### Определение начальных условий



Рис.: К определению начальных условий

### Поведение системы при оптимальном управлении

При  $u_*=1.46$ , полученном из данных эксперимента, действительных корней уравнения (4) больших 1 нет, при обоих комбинациях знаков  $u_*$ .



Рис.: Оптимальная траектории в безразмерном виде  $u_* = 3.2$ 

### Анализ оптимальных траекторий при различных $u_{st}$



Рис.: Сравнение характерных оптимальных (пунктирные) и реальных (сплошные) траектории на возвратном движении человека



## Анализ траекторий на выборке толчков

Для различных толчков, с примерно одинаковой силой отношение  $\dfrac{T_{real}}{T_{opt}}$  остается постоянным.

| Номер толчка                | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $F_{max}(\mathbf{H})$       | 6.01  | 6.87  | 8.21  | 8.56  | 9.73  | 4.74  | 5.49  | 1.97  | 3.3   |
| Время толчка(сек)           | 0.26  | 0.26  | 0.26  | 0.26  | 0.26  | 0.26  | 0.26  | 0.26  | 0.26  |
| $arphi_0$ рад               | 0.026 | 0.028 | 0.033 | 0.033 | 0.035 | 0.022 | 0.018 | 0.008 | 0.007 |
| $\omega_0$ рад/с            | 0.15  | 0.18  | 0.17  | 0.20  | 0.21  | 0.10  | 0.15  | 0.05  | 0.08  |
| Момент(Н⋅м)                 | 14.88 | 19.21 | 17.95 | 19.28 | 19.95 | 9.97  | 14.16 | 6.38  | 7.95  |
| real/opt $u_* = 3.2$        | 2.8   | 2.7   | 2.8   | 2.8   | 2.9   | 2.7   | 1.8   | 1.8   | 2.0   |
| <b>real/opt</b> $u_* = 3.6$ | 3.1   | 3.0   | 3.1   | 3.1   | 3.2   | 2.9   | 2.0   | 2.0   | 2.3   |

Таблица: Анализ различных толчков

### В ходе работы:

- Показано, что решение оптимальной задачи быстродействия при ограниченной скорости изменения момента в голеностопном суставе может иметь решение, которое качественно совпадает с картиной, наблюдаемой в стабилометрических исследованиях;
- Представлено аналитическое решение задачи быстродействия;
- Найдены начальные условия в момент завершения толчка, с помощью метода двойной фильтрации;
- Время необходимое для восстановления исходной позы получилось соизмеримым с реальным времени возвращения после толчка;
- Проведен анализ допущений, которые могут скорректировать соответствие математической модели и реального процесса.

# Спасибо за внимание!