DEFINIÇÃO DOS MÉTODOS DE CÁLCULO NUMÉRICO TRABALHO 2

Gauss Jordan Newton não linear Spline

1. Gauss-Jordan

Método de escalonamento complementar ao de Gauss, onde todos os elementos fora da diagonal principal são nulos. Este método pode ser utilizado para reduzir qualquer matriz á forma escalonada reduzida por linhas, realizando operações na matriz aumentada do sistema. A vantagem de utilizar Gauss-Jordan é que em um sistema onde a matriz aumentada esta na forma escalonada reduzida a solução é imediata, quando utilizamos um sistema onde a matriz está apenas na forma escalonada é necessário que se faça uma série de substituições para chegar ao resultado final. Este método requer 2^n² operações por iteração.

2. Método de Newton para Sistemas não-lineares

Este método determina, a cada iteração, a solução da aproximação linear da função. A cada iteração o método de Newton requer a avaliação da matriz Jacobiana e a resolução de um sistema linear. A vantagem de utilizá-lo é que, sob certar condições temos que a aproximação inicial $(\mathbf{x0})$, a função \mathbf{F} e a matriz jacobiana \mathbf{J} , a sequência produzida pelo método converge para $\mathbf{F}(\mathbf{x}) = 0$, com uma taxa quadrática,o problema é este método é computacionalmente caro.

3. Spline not-a-Knot

Splines podem ser definidas como funções resultantes da junção de várias partes de polinômios. Na spline not-a-knot, S(x) não muda para cúbica nos dois primeiros nós internos de cada extremo do intervalo \mathbf{x}_1 e \mathbf{x}_{n-1} , como ocorre nos outros tipos onde a mudança ocorre em cada nó interno, para isso os polinômios dos dois primeiros intervalos ($[\mathbf{x}_0, \mathbf{x}_1]$ e $[\mathbf{x}_1, \mathbf{x}_2]$) precisam ser os mesmos. A sua aplicação é feita da seguinte forma: impõe-se a continuidade da derivada terceira da spline em \mathbf{x}_2 e em \mathbf{x}_{n-1} e descarta-se os extremos, efetivamente fazendo com que a spline se comporte como se esses pontos não fossem mais nós.