

Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

Academic year 2022-2023 (OddSem)

DEPARTMENT OF

ELECTRONICS & COMMUNICATION ENGINEERING

_			3.6 .1	60
	Date	Feb 2023	Maximum Marks	120 Min
	Course Code	18EC55	Duration	120 14111
	Sem	V Semester	Test-III	TNIC
	DIGITA	L SIGNAL PROCESSING	AND MACHINE LEARN	ING

Note: Butterworth & Chebyshev tables are permitted CO BT M **Questions (PART-A)** S. No 2 2 Let pass band frequency is 4KHz, stop band frequency is 5 kHz and sampling 1 frequency = 80 kHz. Obtain the order of the FIR filter using hamming window. 3/21 2 The Bartlett window coefficient w(3) of Type 1(Symmetric Odd) FIR filter whose 2 slope is 3 given by 2 4 Find the order of a Chebyshev-1 filter having following specification. 3 Pass band gain of -2dB at 1rad/sec and stopband attenuation of 20dB at 1.3rad/sec. 1 For a 3rd order low pass Chebysev-1 filter with pass band of 1.5kHz and attenuation 4 constant ε =0.65. The attenuation of this filter at freq 2kHz is -11.438 1 What is the value of Chebyshev-1 polynomial of degree 0? 5 2 2 Obtain the digital filter using Bilinear transformation of 6 $H_a(s) = \frac{1}{s^2 + 5s + 6}$ Ha(s) is the transfer function of the analog filter. Assume T=1sec. If the impulse response of the asymmetric linear phase FIR filter of length 7 is 2 $h(n)=\{2,-3,4,x,y,z,p\}, \text{then } x=0,y=1\}$ In type-I chebyshev filter, the magnitude response is _____ 1 1 3 8 __in the stopband. passband and What is the minimum number of multiplication and additions are required to 1 1 3 implement a linear phase FIR filter with h(n)=0 for n<0 and n>63 **Questions (PART-B)** M BT CO S.No It, is required to design an FIR band pass filter having a duration N=7. H_d(w) 10 3 represents the ideal characteristics of the non-causal band pass filter with cut off frequency wc1 =1rad and wc2 =2 rad. Determine h_d(n) corresponding to H_d(w). Determine filter coefficients using Hamming window. Design a 7 tap linear phase FIR filter using Frequency sampling technique with a 10 4 2 cut off frequency of $\pi/2$. Also draw the magnitude and phase response. Determine the impulse response of a FIR filter with refection co-efficient k1=0.6, 10 2 k2=0.3, k3=0.5, k4= 0.9. Also the direct form-1 structure. Calculate the number of

ay(3) = 1.33 au(1)=1.88

0 = 4

RV Educational Institutions * RV College of Engineering *

Go, change the world

Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagayi

Approved by AICTE, New Delhi

Academic year 2022-2023 (OddSem)

	hard wares used.		1	T
a	Design & realize a digital low-pass butter worth filter using the bilinear transformation method to satisfy the following characteristics	7	4	3
	 a. monotonic stop band & pass band b3.01 dB at cutoff frequency of 0.5π radians. c. magnitude down at least 15dB at 0.0075π radians. And realize the filter using Direct form-II structure. 		-	
9	Mention the differences between IIR and FIR filters	-		
a	Design a digital high pass filter using Charalter to the	3	2	1
*	specifications: Maximum pass band attenuation =2dB Minimum stopband attenuation =20dB Passand edge frequency=190rad/s Stopband edge frequency=100rad/s Sampling rate is 1KHz Use bilinear transformation. BT-Blooms Taxonomy, CO-Course Outcome No.	10	3	4

O-Course Outcomes, M-Marks Particulars CO1 CO₂ CO₃ Marks CO₄ LI L2 L4 L5 Test Distribution · Max 15 18 30 7 Marks

rp= 2 tal (u/e)

Λs.