Билет 1. Определение функции, сюръекции, инъекции и биекции.

Определение 1.1. Декартовым произведением $X \times Y$ множеств X и Y называют множество всевозможных пар (x,y), где первый элемент x каждой пары принадлежит X, а второй ее элемент y принадлежит Y.

Определение 1.2. Функцией f, определённой на множестве X и принимающей значения во множестве Y, называется подмножество декартова произведения $X \times Y$, если выполнено следующее условие: $\forall x \in X \exists !$ пара $(x,y) \in f$. При этом пишут y = f(x). Элемент y называют образом x, элемент x – прообразом элемента y, для функции принято обозначение $f: X \to Y$.

Множество f(X) всех элементов $f(x) \in Y$ называется образом множества X. Короче, это записывается так:

$$f(X) = \{ y \in Y | y = f(x), x \in X \},\$$

а само X называется прообразом множества f(X).

Определение 1.3. 1) Функция $f: X \to Y$ называется сюръекцией (накрытием), если для всякого $y \in Y$ существует такое $x \in X$, что y = f(x).

- 2) Функция $f: X \to Y$ называется интекцией (вложением), если из равенства f(x) = f(y) следует, что x = y.
- 3) Функция, являющаяся одновременно сюръекцией и инъекцией, называется биекцией или взаимно-однозначным отображением.

Билет 2. Определение того, что множество A лежит левее множества B, разделяющего элемента u формулировка принципа полноты.

Определение 2.1. Говорят, что множество A лежит левее множества B, если $a \le b$ для всяких $a \in A$ и $b \in B$.

Определение 2.2. Пусть множество A лежит левее B. Тогда говорят, что число c разделяет множества A и B, если $a \le c$ и $c \le b$ для всех $a \in A, b \in B$.

Определение 2.3. Говорят, что для числового множества выполняется принцип полноты, если для любых двух его подмножеств, одно из которых лежит левее другого, найдётся элемент, разделяющий эти множества.

Билет 3. Определение множества вещественных чисел (с помощью 11 свойств) и формулировка принципа полноты для множества вещественных чисел.

Множество действительных чисел, которое мы обозначим \mathbb{R} , должно удовлетворять ряду условий. Во-первых, сумма и произведение любых элементов этого множества снова является элементом этого множества. Кроме того, выполнены следующие свойства.

1) Для всех $a, b, c \in \mathbb{R}$ выполнено условие ассоциативности по сложению:

$$a + (b + c) = (a + b) + c$$
.

2) Для всех $a, b \in \mathbb{R}$ выполнено условие коммутативности по сложению:

$$a + b = b + a$$
.

- 3) Существует нейтральный элемент относительно операции сложения $0 \in \mathbb{R}$, такой, что для всех $a \in \mathbb{R}$ a + 0 = a.
- 4) Для всякого $a \in \mathbb{R}$ найдётся *противоположеный элемент* $b \in \mathbb{R}$, такой, что a + b = 0 (его обычно обозначают через -a).
 - 5) Для всех $a, b, c \in \mathbb{R}$ выполнено условие *accountanue в сети по умножению*:

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
.

6) Для всех $a, b, c \in \mathbb{R}$ выполнено условие коммутативности по умножению:

$$a \cdot b = b \cdot a$$
.

- 7) Существует нейтральный элемент относительно операции умножения $1 \in \mathbb{R}$, такой, что для всех $a \in \mathbb{R}$ $a \cdot 1 = a$.
- 8) Для всякого $a \in \mathbb{R} \setminus \{0\}$ найдётся обратный элемент $b \in \mathbb{R} \setminus \{0\}$, такой, что $a \cdot b = 1$ (его обычно обозначают через a^{-1}).

Отметим, что эти свойства означают, что множество действительных чисел является *абелевой груп*пой по сложению, а множество всех действительных чисел без нуля является *абелевой группой по* умножению.

9) Для всех $a, b, c \in \mathbb{R}$ выполнено условие дистрибутивности:

$$a \cdot (b + c) = a \cdot b + a \cdot c$$
.

Множества, на котором выполнены эти девять свойств, называется nonem. Помимо этих девяти свойств есть ещё два.

- 10) Для всех $a, b \in \mathbb{R}$ либо $a \le b$, либо $b \le a$, то есть любые два элемента \mathbb{R} можно сравнить (множество, где сравнимы любые два элемента, называется *линейно упорядоченным*). При этом выполнены два свойства:
- а) для всех $a, b, c \in \mathbb{R}$, таких, что $a \le b$ выполнено $a + c \le b + c$;
- б) для всех $a,\ b\in\mathbb{R}$ и $c\in\mathbb{R},\ c\geq 0$ таких, что $a\leq b$ выполнено $a\cdot c\leq b\cdot c$.
 - 11) На множестве вещественных чисел выполнен принцип полноты.

Билет 4. Аксиома Архимеда и следствие из аксиомы Архимеда (Лемма 1, Лекция 1).

Аксиома 4.1. (Аксиома Архимеда). Для любого положительного вещественного числа a существует такое натуральное число n, что $na \ge 1$ (c помощью кванторов: $\forall \ a \in \mathbb{R} \ \land \ a > 0 \exists \ n \in \mathbb{N} : \ na \ge 1$).

Из аксиомы Архимеда вытекает полезное следствие.

Лемма 4.1. 1)
$$\forall x, y \in \mathbb{R}$$
 : $x < y \exists m/n \in \mathbb{Q}$: $x < \frac{m}{n} < y$; 2) $\forall x, y \in \mathbb{R}$: $x < y \exists c \in \mathbb{I}$: $x < c < y$.

Более просто свойство 1) формулируется так: между любыми двумя различными действительными числами лежит рациональное число. В свойстве 2) речь идёт об иррациональном числе.

Билет 5. Система и последовательность вложенных и стягивающихся отрезков и лемма о вложенных отрезках.

Определение 5.1. 1) Системой вложенных отрезков называется множество M, состоящее из отрезков, в котором для любых I_1 , $I_2 \in M$ выполнено либо условие $I_1 \subset I_2$, либо условие $I_2 \subset I_1$.

2) Если при этом в M все отрезки занумерованы, и любой отрезок с большим номером содержится в любом отрезке с меньшим номером, то множество M называют последовательностью вложенных отрезков.

Определение 5.2. Последовательность вложенных отрезков называется стягивающейся, если для любого числа $\varepsilon > 0$ в этой последовательности найдётся отрезок, длина которого меньше ε .

Теорема 5.1. (Лемма о вложенных отрезках) 1) Пусть дана система M вложенных отрезков. Тогда существует такое число $c \in \mathbb{R}$, что для любого отрезка $I \in M$ имеем $c \in I$, то есть все отрезки множества M имеют общий элемент c.

2) Если множество M является последовательностью стягивающихся отрезков, то элемент c единственен.

Билет 6. Определение числовой последовательности и определение предела последовательности (оба варианта, то есть определения 1 и 2, Лекция 3).

Определение 6.1. Функция, $f: \mathbb{N} \to \mathbb{R}$, определённая на множестве натуральных чисел и принимающая значения во множестве действительных чисел, называется числовой последовательностью. Значения f(n) функции f обозначают a_n . Последовательность также часто обозначают $\{a\}_{n=1}^{\infty}$, отождествляя её с множеством её значений.

Определение 6.2. Число A называется пределом последовательности $\{a_n\}_{n=1}^{\infty}$, если для любой окрестности точки A существует такое натуральное число N, что при всех натуральных n > N числа a_n лежат в этой окрестности. На языке кванторов это определение запишется так:

$$\lim_{n\to\infty}a_n=A \Leftrightarrow \forall U(A)\exists N\in\mathbb{N}: \forall n>N\ a_n\in U(A).$$

Определение 6.3. Число A называется пределом последовательности $\{a_n\}_{n=1}^{\infty}$, если для любого положительного числа ε существует такое натуральное число N, что при всех n > N выполнено неравенство $|a_n - A| < \varepsilon$. На языке кванторов это определение запишется так:

$$\lim_{n\to\infty}a_n=A \Leftrightarrow \forall \varepsilon>0 \ \exists N\in\mathbb{N}: \forall n>N \ |a_n-A|<\varepsilon.$$

Билет 7. Единственность предела последовательности, определение ограниченной последовательности, ограниченность сходящейся последовательности и лемма об отделимости.

Лемма 7.1. Пусть у последовательности $\{a_n\}_{n=1}^{\infty}$ существует предел. Тогда этот предел единственен.

Определение 7.1. Последовательность $\{a_n\}_{n=1}^{+\infty}$ называется ограниченной, если существуют такие числа $c, C \in \mathbb{R}$, что $c \leq a_n \leq C$ при всех $n \in \mathbb{N}$. Равносильным определением будет следующее: последовательность $\{a_n\}_{n=1}^{+\infty}$ называется ограниченной, если существует такое число M > 0, что $|a_n| \leq M$ при всех $n \in \mathbb{N}$.

Лемма 7.2. Сходящаяся последовательность ограничена.

Лемма 7.3. (**Лемма об отделимости**). Пусть $\lim_{n\to\infty} a_n = A$ и $A\neq 0$. Тогда существует такое натуральное число N, что для всех n>N выполнено неравенство $|a_n|>\frac{|A|}{2}$.

Билет 8. Арифметика пределов, переход к пределу в неравенстве и лемма о зажатом пределе.

Теорема 8.1. (Арифметика пределов). Пусть $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$. Тогда:

1) $\forall \alpha, \beta \in \mathbb{R}$ $\lim_{n\to\infty} (\alpha a_n + \beta b_n) = \alpha \lim_{n\to\infty} a_n + \beta \lim_{n\to\infty} b_n = \alpha A + \beta B$;

2) $\lim_{n\to\infty} (a_n \cdot b_n) = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n = A \cdot B$;

- 3) если $B \neq 0$, $b_n \neq 0$ при всех натуральных n, то $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{A}{B}$.

Лемма 8.1. (Переход κ пределу в неравенстве). Пусть

$$\lim_{n\to\infty} a_n = A \ u \lim_{n\to\infty} b_n = B,$$

а также существует такое натуральное n_0 , что $a_n \leq b_n$ при всех $n > n_0$. Тогда $A \leq B$.

Теорема 8.2. (Лемма о зажатом пределе). Пусть $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=A$ u $a_n\leq c_n\leq b_n$, начиная c некоторого натурального n. Тогда $\lim_{n \to \infty} c_n = A$.

Билет 9. Определение бесконечно малой последовательности, свойство произведения бесконечно малой последовательности на ограниченную и определение предела в терминах бесконечно малых последовательностей.

Определение 9.1. Последовательность $\{a\}_{n=1}^{\infty}$ бесконечно малая, если $\lim_{n\to\infty}a_n=0.$

Лемма 9.1. Если последовательность $\{a_n\}_{n=1}^{\infty}$ бесконечно малая, а последовательность $\{b_n\}_{n=1}^{\infty}$ ограниченная, то последовательность $\{a_n \cdot b_n\}_{n=1}^{\infty}$ бесконечно малая.

Определение 9.2. Число A называется пределом последовательности $\{a_n\}_{n=1}^{\infty}$, если существует такая бесконечно малая последовательность $\{\alpha_n\}_{n=1}^{\infty}$, что $\forall n \in \mathbb{N}$ $a_n = A + \alpha_n$.

Билет 10. Определение верхних и нижних граней, а также два определения точной верхних и нижних граней (Определения 1 и 2, Лекция 4). Существование точной верхней и нижней граней ограниченного множества.

Определение 10.1. Пусть дано непустое подмножество A множества действительных чисел. Число C называется верхней гранью множества A, если $a \le C$ при всех $a \in A$. Если множество A имеет хотя бы одну верхнюю грань, то оно называется ограниченным сверху. Наименьшая из верхних граней множества A (если она существует) называется его точной верхней гранью и обозначается $\sup A$ (читается: супремум.)

Число с называется нижней гранью множества A, если $a \ge c$ при всех $a \in A$. Если множество A имеет хотя бы одну нижнюю грань, то оно называется ограниченным снизу. Наибольшая из нижних граней множества A (если существует) называется его точной нижней гранью и обозначается inf A (читается: инфимум.)

Множество, ограниченное сверху и снизу, называется ограниченным.

Определение 10.2. Число С называется точной верхней гранью множества А, если:

- 1) $a \leq C$ для всех $a \in A$;
- 2) $\forall \varepsilon > 0 \ \exists a \in A : a > C \varepsilon$.

Теорема 10.1. Пусть множество А непусто и ограничено сверху. Тогда существует sup A.

Билет 11. Определение монотонной последовательности. Теорема Вейерштрасса для последовательностей. Определение числа е.

Определение 11.1. Последовательность $\{a_n\}_{n=1}^{+\infty}$ называется неубывающей, если $a_n \leq a_{n+1}$ при всех $n \in \mathbb{N}$ и невозрастающей, если $a_n \geq a_{n+1}$ при всех $n \in \mathbb{N}$. Невозрастающая или неубывающая последовательность называется монотонной.

Последовательность $\{a_n\}_{n=1}^{+\infty}$ называется возрастающей, если $a_n < a_{n+1}$ при всех $n \in \mathbb{N}$ и убывающей, если $a_n > a_{n+1}$ при всех $n \in \mathbb{N}$. Возрастающая или убывающая последовательность называется строго монотонной.

Теорема 11.1. (Вейерштрасс). Монотонная и ограниченная последовательность имеет предел.

Теорема 11.2. Последовательность $a_n = \left(1 + \frac{1}{n}\right)^n$ имеет предел.

Определение 11.2. Числом е называют предел последовательности $a_n = \left(1 + \frac{1}{n}\right)^n$, то есть по определению полагают $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

Билет 12. Определение того, что $\lim_{n\to +\infty} a_n = +\infty$. Теорема о сходимости κ е последовательностей более общего вида (Предложение 1, Лекция 5).

Определение 12.1. Говорят, что $\lim_{n\to\infty}a_n=+\infty,\ ecnu$

$$\forall M \; \exists N : \; \forall n > N \; a_n > M.$$

Теорема 12.1. Пусть заданы последовательности $\{p_n\}_{n=1}^{+\infty}$ и $\{q_n\}_{n=1}^{+\infty}$, причём

$$\lim_{n\to\infty}p_n=+\infty\ u\ \lim_{n\to\infty}q_n=-\infty.$$

Tог ∂a

$$\lim_{n\to\infty} \left(1+\frac{1}{p_n}\right)^{p_n} = e\ u\ \lim_{n\to\infty} \left(1+\frac{1}{q_n}\right)^{q_n} = e.$$

Билет 13. Определение подпоследовательности и частичного предела. Частичные пределы последовательности, имеющей предел (Предложение 2, Лекция 5). Теорема Больцано – Вейеритрасса.

Определение 13.1. Пусть задана последовательность $\{a_n\}_{n=1}^{\infty}$ и возрастающая последовательность натуральных чисел $n_1 < n_2 < n_3 < ... < n_m < ...$ Возьмём элементы последовательности $\{a_n\}_{n=1}^{\infty}$ с номерами $n_1 < n_2 < n_3 < ... < n_m < ...$ Мы снова получим последовательность $b_k = a_{n_k}$, которая называется подпоследовательностью последовательности $\{a_n\}_{n=1}^{\infty}$.

Число $a \in \mathbb{R}$ называется **частичным пределом** последовательности $\{a_n\}_{n=1}^{\infty}$, если найдётся подпоследовательность $\{a_{n_k}\}_{k=1}^{\infty}$ последовательности $\{a_n\}_{n=1}^{\infty}$, для которой число a является пределом, то есть $\lim_{k\to\infty} a_{n_k} = a$.

Лемма 13.1. Если последовательность имеет предел, то любая её подпоследовательность сходится κ тому же пределу.

Теорема 13.1. (Больцано – Вейерштрасс.) Из всякой ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

Билет 14. Определение верхнего и нижнего предела последовательности. Структура множества частичных пределов (Теорема 3, Лекция 5). Критерий существования предела в терминах частичных пределов (Теорема 4, Лекция 5).

Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена. Рассмотрим последовательность

$$M_n = \sup_{k > n} a_k.$$

С увеличением n точная верхняя грань не может увеличиться, так как супремум множества $\{a_{n+1}, a_{n+2}, \ldots\}$, равный M_n нее меньше, чем супремум множества $\{a_{n+2}, a_{n+3}, \ldots\}$, который равен M_{n+1} . Таким образом, последовательность $\{M_n\}_{n=1}^{\infty}$ не возрастает. Кроме того, $M_n \geq a_k$ при всех натуральных k > n, что в силу ограниченности последовательности $\{a_n\}_{n=1}^{\infty}$ означает, что последовательность $\{M_n\}_{n=1}^{\infty}$ ограничена снизу. Следовательно по теореме Вейерштрасса последовательность $\{M_n\}_{n=1}^{\infty}$ имеет предел. Аналогично доказывается, что последовательность $m_n = \inf_{k > n} a_k$ имеет предел. Пусть $\lim_{n \to \infty} M_n = M$, а $\lim_{n \to \infty} m_n = m$.

Определение 14.1. Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена. Тогда число M называют верхним пределом последовательности $\{a_n\}_{n=1}^{\infty}$, а число m – нижним пределом этой последовательности. Соответствующие обозначения: $M:=\varlimsup_{n\to\infty}a_n,\ m:=\varliminf_{n\to\infty}a_n.$

Теорема 14.1. Если последовательность $\{a_n\}_{n=1}^{\infty}$ ограничена, то $\overline{\lim_{n\to\infty}} a_n$ и $\underline{\lim_{n\to\infty}} a_n$ являются частичными пределами этой последовательности и все частичные пределы последовательности $\{a_n\}_{n=1}^{\infty}$ принадлежат отрезку $[\underline{\lim_{n\to\infty}} a_n, \overline{\lim_{n\to\infty}} a_n]$.

Теорема 14.2. Ограниченная последовательность имеет предел тогда и только тогда, когда у неё только один частичный предел.

Билет 15. Определение фундаментальной последовательности. Формулировка критерия Коши.

Определение 15.1. Последовательность $\{a_n\}_{n=1}^{\infty}$ называется фундаментальной (или последовательностью Коши), если для всякого числа $\varepsilon > 0$ найдётся такое число $N \in \mathbb{N}$, что при всех n, m > N выполняется неравенство $|a_n - a_m| < \varepsilon$. Более коротко:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n, \ m > N \ |a_n - a_m| < \varepsilon.$$

Теорема 15.1. (Критерий Коши.) Последовательность $\{a_n\}_{n=1}^{\infty}$ имеет предел тогда и только тогда, когда она фундаментальна.

Билет 16. Определение числового ряда, частичной суммы, последовательности частичных сумм и суммы ряда. Критерий Коши сходимости ряда. Необходимый признак сходимости ряда.

Определение 16.1. Если задана числовая последовательность $\{a_n\}_{n=1}^{\infty}$, то сумма

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

называется числовым рядом. Сумма $S_n := a_1 + a_2 + ... + a_n$ называется n-ой частичной суммой ряда. Последовательность $\{S_n\}_{n=1}^{\infty}$ называется последовательностью частичных сумм ряда.

Определение 16.2. Если последовательность частичных сумм имеет предел, то есть существует такое действительное число S, что $\lim_{n\to\infty} S_n = S$, то говорят, что ряд сходится, а число S называют **суммой ряда**. Если последовательность частичных сумм не имеет предела или имеет бесконечный предел, то говорят, что ряд расходится.

Теорема 16.1. (Критерий Коши сходимости ряда.) Ряд $\sum_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда для любого числа $\varepsilon > 0$ существует такое натуральное число N, что при любом n > N и любом $p \in \mathbb{N}$ выполнено неравенство $|a_{n+1} + ... + a_{n+p}| < \varepsilon$.

Лемма 16.1. (Необходимый признак сходимости ряда). Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится. Тогда $\lim_{n\to\infty} a_n = 0$.

Билет 17. Абсолютная и условная сходимость ряда. Критерий сходимости рядов с неотрицательными членами.

Определение 17.1. Pяд $\sum\limits_{n=1}^{\infty}a_n$ называется **абсолютно сходящимся**, если сходится ряд $\sum\limits_{n=1}^{\infty}|a_n|$. Если ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, а ряд $\sum\limits_{n=1}^{\infty}|a_n|$ расходится, то ряд $\sum\limits_{n=1}^{\infty}a_n$ называется **условно сходящимся**.

Лемма 17.1. Если $a_n \ge 0 \ \forall n \in \mathbb{N}$, то ряд $\sum\limits_{n=1}^{\infty} a_n$ сходится тогда и только тогда, когда ограничена последовательность его частичных сумм.

Билет 18. Признак сравнения. Признак сравнения в предельной форме. Мажорантный признак Вейеритрасса. Признак разрежения Коши.

Теорема 18.1. (Признак сравнения). Пусть при всех натуральных n, начиная c некоторого номера, выполнены неравенства $0 \le a_n \le b_n$. Тогда из сходимости ряда $\sum\limits_{n=1}^{\infty} b_n$ следует сходимость ряда $\sum\limits_{n=1}^{\infty} a_n$, а из расходимости ряда $\sum\limits_{n=1}^{\infty} a_n$ следует расходимость ряда $\sum\limits_{n=1}^{\infty} b_n$.

Теорема 18.2. (Признак сравнения в предельной форме). Пусть при всех натуральных n, начиная c некоторого числа $N \in \mathbb{N}$, выполнены неравенства $a_n \geq 0$, $b_n > 0$, а также $\lim_{n \to +\infty} \frac{a_n}{b_n} = A$, причём $A \in (0, +\infty)$. Тогда ряды $\sum_{n=1}^{\infty} b_n$ и $\sum_{n=1}^{\infty} a_n$ или оба сходятся, или оба расходятся.

Пемма 18.1. (Мажорантный признак Вейерштрасса). Пусть при всех натуральных n, начиная с некоторого числа $N \in \mathbb{N}$, выполнены неравенства $b_n \ge |a_n|$ и ряд $\sum_{n=1}^{\infty} b_n$ сходится. Тогда ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Теорема 18.3. (Признак разрежения Коши). Если последовательность $\{a_n\}_{n=1}^{\infty}$ не возрастает $u \ a_n \geq 0$ при любом натуральном n, то ряд $\sum_{n=1}^{+\infty} a_n$ сходится тогда u только тогда, когда сходится ряд $\sum_{n=1}^{\infty} 2^n a_{2^n}$.

Билет 19. Признак Даламбера. Признак Коши.

Теорема 19.1. (Признак Даламбера). Пусть дан ряд $\sum\limits_{n=1}^{\infty}a_n$ $u\lim_{n\to +\infty}\left|\frac{a_{n+1}}{a_n}\right|=q$. Тогда:

- 1) если $q<1,\ mo\ pяд\ \sum\limits_{n=1}^{\infty}a_n\ абсолютно\ сходится;$
- 2) если q>1, то ряд $\sum\limits_{n=1}^{\infty}a_{n}$ расходится;
- 3) если q=1, то ряд $\sum\limits_{n=1}^{\infty}a_{n}$ может как абсолютно сходиться, так и расходиться (в том смысле, что он не сходится даже условно).

Теорема 19.2. (Радикальный признак Коши). Пусть дан ряд $\sum_{n=1}^{\infty} a_n$ и $\overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} = q$. Тогда:

- 1) если q < 1, то ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится; 2) если q > 1, то ряд $\sum_{n=1}^{\infty} a_n$ расходится; 3) если q = 1, то ряд $\sum_{n=1}^{\infty} a_n$ может как абсолютно сходиться, так и расходиться.

Билет 20. Определение покрытия. Принцип Бореля – Лебега. Предельная точка множества (оба определения). Принцип Больцано – Вейерштрасса.

Определение 20.1. Система множеств $S = \{X\}$ называется покрытием множества Y, если $Y \subseteq \bigcup_{X \in S} X$.

Теорема 20.1. (Принцип Бореля – Лебега.) Пусть система интервалов $S = \{J\}$ является покрытием отрезка I = [a,b]. Тогда из системы S можно выбрать конечную подсистему, также являющуюся покрытием I.

Определение 20.2. Точка а называется предельной точкой множества X, если в любой окрестности точки а содержится бесконечно много элементов множества X.

Определение 20.3. Точка а называется предельной точкой множества X, если в любой проколотой окрестности точки а содержится хотя бы один элемент множества X.

Теорема 20.2. (Принцип Больцано – Вейерштрасса.) Пусть множество X бесконечно и ограничено. Тогда оно имеет хотя бы одну предельную точку.

Билет 21. Внутренняя, граничная и изолированная точка. Открытое и замкнутое множество. Критерий замкнутости множества (Предложение 2, лекция 9).

Определение 21.1. Пусть X – непустое множество. Точка а множества X называется внутренней точкой X, если существует такая её окрестность U(a), что U(a) содержится во множестве X.

Точка b называется **граничной точкой множества** X, если в любой её окрестности U(b) содержатся как точки, принадлежащие множеству X, так и точки, не принадлежащие этому множеству.

Точка c множества X называется **изолированной точкой** X, если найдётся такая её окрестности U(c), что в ней нет других точек из X, кроме c.

Определение 21.2. *Множество* X в \mathbb{R} *называется* **открытым**, если оно состоит только из внутренних точек.

Множество $Y \in \mathbb{R}$ называется **замкнутым**, если дополнение κ нему до \mathbb{R} открыто.

Пемма 21.1. Множество Y является замкнутым тогда и только тогда, когда оно содержит все свои предельные точки.

Пемма 21.2. Пусть A – множество всех частичных пределов последовательности $\{a_n\}_{n=1}^{+\infty}$. Тогда A – замкнутое множество.

Билет 22. Определение предела по Коши (в том числе через окрестности). Определение предела при $x \to +\infty$. Определение предела по Гейне. Эквивалентность определений по Коши и Гейне.

Определение 22.1. (Определение предела по Коши). Пусть функция f определена на множестве $E \subset \mathbb{R}$ и пусть a – предельная точка множества E. Число A называется пределом функции f в точке a по множеству E, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любого такого $x \in E$, что $0 < |x - a| < \delta$ выполняется неравенство $|f(x) - A| < \varepsilon$. Запись c помощью кванторов:

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in E \land \ 0 < |x - a| < \delta \ |f(x) - A| < \varepsilon.$$

Определение 22.2. Пусть функция f определена на множестве $E \subset \mathbb{R}$. Число A называется пределом функции f при $x \to +\infty$ по множеству E, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любого такого $x \in E$, что $x > \delta$ выполняется неравенство $|f(x) - A| < \varepsilon$. Запись c помощью кванторов:

$$\lim_{x \to +\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in E \land \; x > \delta \; |f(x) - A| < \varepsilon.$$

Определение 22.3. (Определение предела по Гейне). Пусть функция f определена на множестве $E \subset \mathbb{R}$ и пусть a – предельная точка множества E. Число A называется пределом функции f в точке a по множеству E, если для любой последовательности $\{a_n\}_{n=1}^{\infty}$, такой, что $a_n \in E$, $a_n \neq a$ $\forall n \in \mathbb{N}$, $a_n \to a$ при $n \to \infty$, выполняется равенство $\lim_{n \to \infty} f(a_n) = A$. Запись c помощью кванторов:

$$\lim_{x\to a} f(x) = A \iff \forall \{a_n\}_{n=1}^\infty: \ a_n \in E \setminus \{a\} \ \forall n \in \mathbb{N} \land \lim_{n\to\infty} a_n = a \ \lim_{n\to\infty} f(a_n) = A.$$

Теорема 22.1. $\lim_{x\to a} f(x) = A$ в смысле Коши $\Leftrightarrow \lim_{x\to a} f(x) = A$ в смысле Гейне.

Билет 23. Свойства предела (Теорема 2, Лекция 10).

Теорема 23.1. Пусть функции f, g u h определены на некотором множестве $E \subset \mathbb{R}$, a – предельная точка множества E. Пусть $\lim_{x\to a} f(x) = A$, a $\lim_{x\to a} g(x) = B$. Тогда:

- 1) A единственный предел функции f (единственность предела);
- 2) $\lim (f(x) \pm g(x)) = A \pm B;$
- 3) $\lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B;$
- 4) $\lim_{x\to a} (f(x)/g(x)) = A/B \ (g(x) \neq 0 \ \forall x \in E, B \neq 0) \ (apufmemuka npedena);$
- 5) если $f(x) \le g(x)$ в пересечении некоторой проколотой окрестности точки а и множества E, то $A \le B$ (предельный переход в неравенствах);
- 6) если существует такая $\overset{\circ}{U}_{\delta}$ (a), что $f(x) \leq h(x) \leq g(x) \ \forall x \in E \cap \overset{\circ}{U}_{\delta}$ (a) $u \ A = B$, то $\lim_{x \to a} h(x) = A$ (лемма о зажатом пределе);
- 7) существуют такие $\delta > 0$ и $C \ge 0$, что $|f(x)| \le C \ \forall x \in E \cap \overset{\circ}{U}_{\delta}$ (а) (ограниченность функции, имеющей предел);
- 8) если $A \neq 0$, то существует такая $\overset{\circ}{U}_{\delta}(a)$, что $|f(x)| \geq \frac{|A|}{2} \ \forall x \in E \cap \overset{\circ}{U}_{\delta}(a)$ (лемма об отделимости).

Билет 24. Теорема о пределе композиции. Эквивалентные функции.

Теорема 24.1. (Теорема о пределе композиции). Пусть функция g определена на множестве D, b – предельная точка множества D u

$$\lim_{y \to b} g(y) = A \ (y \in D).$$

Пусть функция $f: E \to D$, a – предельная точка множества E $u\lim_{x\to a} f(x) = b$ $(x\in E)$. Пусть, наконец, для некоторого $\delta>0$ при всех x из множества $E\cap \overset{\circ}{U}_{\delta}$ (a) выполнено $f(x)\neq b$. Тогда сложная функция $g\circ f$ определена на множестве E $u\lim_{x\to a} g(f(x))=A$.

Определение 24.1. Пусть функция g определена u не равна нулю на множестве E, f определена на множестве E, a – предельная точка множества E. Говорят, что функции f u g эквивалентны при $x \to a$, если $\lim_{x\to 0} \frac{f(x)}{g(x)} = 1$. Обозначение: $f \sim g$, $x \to a$.

Билет 25. Критерий Коши существования предела функции.

Теорема 25.1. (Критерий Коши.) Пусть функция f определена на множестве E, a – предельная точка множества E. Функция f имеет предел e точке e точке e тогда e только тогда, когда для любого числа e > e0 существует такое число e0, что для любых чисел e1, у e2, удовлетворяющих неравенствам e3 (e4, e6, e6, e6, e8, e9, e9,

$$\exists \lim_{x \to a} f(x) \iff \forall \varepsilon > 0 \; \exists \delta > 0: \; \forall \, x,y \in \overset{\circ}{U}_{\delta} \; (a) \cap E \; |f(x) - f(y)| < \varepsilon.$$

Билет 26. Определение односторонних пределов. Определение монотонной функции. Определение ограниченной функции. Теорема Вейерштрасса для монотонной функции.

Определение 26.1. Пусть a – предельная точка множества E_a^+ . Число A называется **пределом справа** функции f в точке a, если

$$\lim_{E_a^+\ni x\to a}f(x)=a,$$

то есть для любого $\varepsilon > 0$ существует такое $\delta > 0$, что при всех $x \in E_a^+ \cap \overset{\circ}{U}_\delta$ (a) $|f(x) - A| < \varepsilon$. Обозначение: $\lim_{x \to a+0} f(x) = A$ или $\lim_{x \to a+} f(x) = A$. Аналогично определяется **предел слева** функции f в точке a, обозначаемый $\lim_{x \to a-0} f(x)$ или $\lim_{x \to a-} f(x) = A$ только множество E_a^+ в определении заменяется на E_a^- . Пределы справа и слева называются также односторонними пределами.

Определение 26.2. Если для любых таких $x_1, x_2 \in E$, что $x_1 < x_2$, выполнено неравенство $f(x_1) \le f(x_2)$, то функция f называется **неубывающей** на множестве E. Если выполнено неравенство $f(x_1) < f(x_2)$, то функция называется возрастающей на множестве E. Если выполнены противоположные неравенства, то функция называется соответственно **невозрастающей** и **убывающей**на множестве E. Функция любого из четырёх указанных видов называется монотонной на множестве E функцией.

Определение 26.3. Функция f называется ограниченной на множестве M, если она определена на этом множестве u существует такая константа C > 0, что $|f(x)| \le C$ при всех $x \in E$.

Теорема 26.1. (Теорема Вейеритрасса). 1) Пусть функция f определена на множестве E и a – предельная точка множества E_a^- . Пусть f не убывает и ограничена сверху на множестве E_a^- . Тогда существует предел слева функции f в точке a и имеет место равенство $\lim_{x \to a-0} f(x) = \sup_{x \in E_a^-} f(x)$.

2) Пусть функция f не убывает и ограничена на множестве E. Пусть a – предельная точка множества E_a^+ . Тогда существует предел справа функции f в точке a и имеет место равенство $\lim_{x \to a+0} f(x) = \inf_{x \in E_a^+} f(x)$.

Билет 27. Определение бесконечно малой функции.

Определение 27.1. Функция $f: E \to \mathbb{R}$ называется бесконечно малой при $x \to a$, где a является предельной точкой множества E, если $\lim_{x \to a} f(x) = 0$. Если $\lim_{x \to a} f(x) = \infty$ (или $-\infty$, или $+\infty$), то функция f(x) называется бесконечно большой при $x \to a$. Везде $x \in E$.

Билет 28. Определение о-малого (Определение 5, Лекция 12). о-малое в терминах пределов (Предложение 1, Лекция 12).

Лемма 28.1. Запись f = o(g), $x \to a$ равносильна также тому, что $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ (при этом считаем, что $g(x) \neq 0$ в некоторой проколотой окрестности точки a).

Билет 29. Асимптотические равенства 1 - 8 (Лекция 12). Асимптотические равенства 9 - 13.

$$\sin x = x + o(x), \ x \to 0. \tag{1}$$

$$\cos x = 1 - \frac{x^2}{2} + o(x^2), \ x \to 0, \tag{2}$$

$$\operatorname{tg} x = x + o(x), \ x \to 0, \tag{3}$$

$$\arcsin x = x + o(x), \ x \to 0,\tag{4}$$

$$arctg x = x + o(x), x \to 0,$$
 (5)

$$e^x = 1 + x + o(x), x \to 0,$$
 (6)

$$\ln(1+x) = x + o(x), \ x \to 0,$$
 (7)

$$(1+x)^{\alpha} = 1 + \alpha x + o(x), \ x \to 0, \ \alpha \in \mathbb{R}.$$
 (8)

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + o(x^{n}) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n}), \ x \to 0;$$
 (9)

$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + o(x^{2n+1}) = \sum_{k=0}^n \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n+2}), \ x \to 0; \tag{10}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n}{(2n)!} x^{2n} + o(x^{2n}) = \sum_{k=0}^n \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n+1}), \ x \to 0; \tag{11}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}}{n} x^n + o(x^n) = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} x^k + o(x^n), \ x \to 0; \tag{12}$$

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots +$$

$$+\frac{\alpha(\alpha-1)(\alpha-2)\cdot\ldots\cdot(\alpha-n+1)}{n!}x^n+o(x^n)=$$

$$= \sum_{k=0}^{n} \frac{\alpha(\alpha-1)(\alpha-2) \cdot \dots \cdot (\alpha-k+1)}{k!} x^{k} + o(x^{n}), \ x \to 0 \ (\alpha \in \mathbb{R}).$$
 (13)