My ROC class with all methods accounted for: In []: class ROC(): def __init__(self, Probs, TrueClass): self.Probs = Probs self.TrueClass = TrueClass self.probs_col = Probs.columns[0] self.tc_col = TrueClass.columns[0] def plot_ROC(coordinates, title): plt.plot(coordinates['X'], coordinates['Y'], 'o--', color='r') plt.suptitle(title) plt.xlabel('X') plt.ylabel('Y') plt.show() def compute_AUROC(coordinates): sum = 0prev_x = 0 for i in range(len(coordinates)): Xi = coordinates.iloc[i]['X'] $comp_x = Xi - prev_x$ Yi = coordinates.iloc[i]['Y'] $sum = sum + (comp_x*Yi)$ $prev_x = Xi$ return sum def compute_ROC_coordinates(self): #Taking the two given dataframe objects and combining them into one dataframe df = self.Probs.merge(self.TrueClass, left_index=True, right_index=True) df = df.sort_values(by = [self.probs_col, self.tc_col], axis=0, ascending=False) df = df.reset_index(drop=True) $ROC_coordinates = pd.DataFrame(columns=['X', 'Y']) \# Creating a dataframe to store X and Y coordinates$ FP = 0TP = 0pdf = df[df[self.tc_col].str.contains('pos')] ndf = df[df[self.tc_col].str.contains('neg')] P = len(pdf)N = len(ndf) $\#N = (df[self.tc_col] == 'neg').sum()$ prevProb = -1 #An absurd number for the first iteration. prevClass = '' for i in range(len(df)): currentInstance = df.iloc[i] currentProb = df.iloc[i][self.probs_col] currentClass = df.iloc[i][self.tc_col] if(currentProb != prevProb or ('neg' in currentClass and 'pos' in prevClass)): #Calculating and adding new coordinates to the dataframe. x = FP/Ny = TP/Pcoords = pd.DataFrame([[x,y]], columns=['X','Y']) ROC_coordinates = pd.concat([ROC_coordinates, coords]) prevProb = currentProb prevClass = currentClass if 'pos' in currentClass: TP = TP + 1else: FP = FP + 1 $x_{last} = FP/N$ $y_last = TP/P$ last_coords = pd.DataFrame([[x_last,y_last]], columns=['X','Y']) ROC_coordinates = pd.concat([ROC_coordinates, last_coords]) return ROC_coordinates To handle duplicate probabilities in data, the old approach simply skipped adding duplicate probabilities in the coordinate list whereas I bias towards a positive result by sorting in the order of probability amount and then in the order of class, then only adding a point if the class switches from negative to positive, as this is the point in which the edges of the data lie, by doing this we create a strictly square ROC curve on any binary class dataset (might work on larger class domains) allowing for easy area under curve calculation compared to a sloped graph. Below I have copied my kNN classifier from lab 2 and will be using k = 3 neighbors as we are going to test with the diabetes data and this was the optimal value found in that assignment: In []: # Class of k-Nearest Neighbor Classifier class kNN(): def __init__(self, k = 3, exp = 2): # constructor for kNN classifier # k is the number of neighbor for local class estimation # exp is the exponent for the Minkowski distance self.k = kself.exp = expdef fit(self, X_train, Y_train): # training k-NN method # X_train is the training data given with input attributes. n-th row correponds to n-th instance. # Y_train is the output data (output vector): n-th element of Y_train is the output value for n-th instance in X_train. self.X_train = X_train self.Y_train = Y_train def getDiscreteClassification(self, X_test): # predict-class k-NN method # X_test is the test data given with input attributes. Rows correpond to instances # Method outputs prediction vector Y_pred_test: n-th element of Y_pred_test is the prediction for n-th instance in X_test Y_pred_test = [] #prediction vector Y_pred_test for all the test instances in X_test is initialized to empty list [] for i in range(len(X_test)): #iterate over all instances in X_test test_instance = X_test.iloc[i] #i-th test instance distances = [] #list of distances of the i-th test_instance for all the train_instance s in X_train, initially empty. **for** j **in** range(len(self.X_train)): #iterate over all instances in X_train train_instance = self.X_train.iloc[j] #j-th training instance distance = self.Minkowski_distance(test_instance, train_instance) #distance between i-th test instance and j-th training instance distances.append(distance) #add the distance to the list of distances of the i-th test_instance # Store distances in a dataframe. The dataframe has the index of Y_train in order to keep the correspondence with the classes of the training instances df_dists = pd.DataFrame(data=distances, columns=['dist'], index = self.Y_train.index) # Sort distances, and only consider the k closest points in the new dataframe df_knn df_nn = df_dists.sort_values(by=['dist'], axis=0) df_knn = df_nn[:self.k] # Note that the index df_knn.index of df_knn contains indices in Y_train of the k-closed training instances to # the i-th test instance. Thus, the dataframe self.Y_train[df_knn.index] contains the classes of those k-closed # training instances. Method value_counts() computes the counts (number of occurencies) for each class in # self.Y_train[df_knn.index] in dataframe predictions. predictions = self.Y_train[df_knn.index].value_counts() # the first element of the index predictions.index contains the class with the highest count; i.e. the prediction y_pred_test. y_pred_test = predictions.index[0] # add the prediction y_pred_test to the prediction vector Y_pred_test for all the test instances in X_test Y_pred_test.append(y_pred_test) return Y_pred_test def getPrediction(self, X_test): #This method reuses the code from getDiscreteClassification and instead of predicting a classification, returns a dataframe containing the regression values for each instance of X_test #instance in the X_test data's corresponding output from the Y/Class output list Y_regression = pd.DataFrame(columns=['regression_values']) #prediction vector Y_pred_test for all the test instances in X_test is initialized to empty list [] for i in range(len(X_test)): #iterate over all instances in X_test test_instance = X_test.iloc[i] #i-th test instance distances = [] #list of distances of the i-th test_instance for all the train_instance s in X_train, initially empty. for j in range(len(self.X_train)): train_instance = self.X_train.iloc[j] #j-th training instance distance = self.Minkowski_distance(test_instance, train_instance) distances.append(distance) df_dists = pd.DataFrame(data=distances, columns=['dist'], index = self.Y_train.index) df_nn = df_dists.sort_values(by=['dist'], axis=0) $df_{knn} = df_{nn}[:self.k]$ predicted_values = self.Y_train[df_knn.index] #var = {'regression_values' : predicted_values.sum()/self.k} #Y_regression = Y_regression.append(var, ignore_index=True) Y_regression = Y_regression.append({'regression_values' : predicted_values.sum()/self.k}, ignore_index=True) return Y_regression def getClassProbs(self, X_test): #This method reuses the code from getDiscreteClassification and instead of predicting a classification, returns a dataframe containing the posterior probabilities of each #instance in the X_test data's corresponding output from the Y/Class output list Y_pred_test = pd.DataFrame(columns = self.Y_train.unique()) #prediction vector Y_pred_test for all the test instances in X_test is initialized to empty list [] for i in range(len(X_test)): #iterate over all instances in X_test test_instance = X_test.iloc[i] #i-th test instance distances = [] #list of distances of the i-th test_instance for all the train_instance s in X_train, initially empty. **for** j in range(len(self.X_train)): #iterate over all instances in X_train train_instance = self.X_train.iloc[j] #j-th training instance distance = self.Minkowski_distance(test_instance, train_instance) #distance between i-th test instance and j-th training instance distances.append(distance) #add the distance to the list of distances of the i-th test_instance # Store distances in a dataframe. The dataframe has the index of Y_train in order to keep the correspondence with the classes of the training instances df_dists = pd.DataFrame(data=distances, columns=['dist'], index = self.Y_train.index) # Sort distances, and only consider the k closest points in the new dataframe df_knn df_nn = df_dists.sort_values(by=['dist'], axis=0) $df_knn = df_nn[:self.k]$ # Note that the index df_knn.index of df_knn contains indices in Y_train of the k-closed training instances to # the i-th test instance. Thus, the dataframe self.Y_train[df_knn.index] contains the classes of those k-closed # training instances. Method value_counts() computes the counts (number of occurencies) for each class in # self.Y_train[df_knn.index] in dataframe predictions. class_counts= self.Y_train[df_knn.index].value_counts() class_values = self.Y_train.unique() posterior_probabilities = {}#Here we create a dictionary to append all of our probabilities to this instance as that was the most convenient way i could find to do it. for class_n in class_values: if class_n in class_counts.index: posterior_probabilities[class_n] = class_counts[class_n]/class_counts.sum() posterior_probabilities[class_n] = 0 Y_pred_test = Y_pred_test.append(posterior_probabilities, ignore_index=True) return Y_pred_test def Minkowski_distance(self, x1, x2): # computes the Minkowski distance of x1 and x2 for two labeled instances (x1,y1) and (x2,y2)# Set initial distance to 0 distance = 0# Calculate Minkowski distance using the exponent exp for i in range(len(x1)): distance = distance + abs(x1[i] - x2[i])**self.exp distance = distance**(1/self.exp) return distance def normalize(self, X_test): #My normalize method normalizes the training set and then uses the same min and max from the training set to normalize the test set, as that after days is #of searching I have found is the most correct method (TA approved). min = self.X_train.min() $max = self.X_train.max()$ self.X_train = (self.X_train-min)/(max-min) $X_{\text{test}} = (X_{\text{test-min}})/(\max_{\text{max-min}})$ return self.X_train, X_test Here is a block testing the ROC class and showing that all methods work correctly on a simple example. I used data from the lecture on ROC curves to create this example: In []: import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn import tree from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from numpy.random import random from sklearn.metrics import accuracy_score data = pd.read_csv('/content/drive/MyDrive/ML Lab Files/Lab2/diabetes.csv') Probs = $pd.DataFrame(\{'Probs' : [0.99, .98, .7, .6, .43]\})$ TrueClass = pd.DataFrame({'TrueClass' : ['pos', 'pos', 'neg', 'pos', 'neg']}) roc = ROC(Probs, TrueClass) coordinates = roc.compute_ROC_coordinates() ROC.plot_ROC(coordinates, 'Lecture Example Data ROC"') print("Coordinates of ROC points from X,Y dataframe: ") print(coordinates) print("Area under ROC curve: " + str(ROC.compute_AUROC(coordinates))) Lecture Example Data ROC" •-----1.0 0.8 •-----0.6 0.2 0.0 Coordinates of ROC points from X,Y dataframe: X 0 0.0 0.000000 0 0.0 0.333333 0 0.0 0.666667 0 0.5 0.666667 0 0.5 1.000000 0 1.0 1.000000 Below I will implement the ROC Class on the diabetes data using the kNN classifier: In []: data_diabetes = pd.read_csv('/content/drive/MyDrive/ML Lab Files/Lab2/diabetes.csv') Y = data_diabetes['class'] X = data_diabetes.drop(['class'],axis=1) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.34, random_state=10) k = 3 clf = kNN(k)clf.fit(X_train, Y_train) class_probs_diabetes = clf.getClassProbs(X_test) In []: TrueClass_d = pd.DataFrame({'TrueClass' : Y_test}) Probs_d = class_probs_diabetes.drop(['tested_negative'], axis=1) pd.set_option('display.max_rows', 1000) diabetes_roc = ROC(Probs_d, TrueClass_d) coordinatesdiabetes = diabetes_roc.compute_ROC_coordinates() print(coordinatesdiabetes) Χ 0 0.000000 0.000000 0 0.000000 0.054054 0.054545 0.054054 0 0.054545 0.216216 0 0.290909 0.216216 0 0.290909 0.378378 0 0.581818 0.378378 0 0.581818 1.000000 0 1.000000 1.000000 In []: print(coordinatesdiabetes) ROC.plot_ROC(coordinatesdiabetes, 'ROC Curve for Diabetes Dataset') print("Area under curve " + str(ROC.compute_AUROC(coordinatesdiabetes))) Χ 0 0.000000 0.000000 0 0.000000 0.054054 0 0.054545 0.054054 0 0.054545 0.216216 0 0.290909 0.216216 0 0.290909 0.378378 0 0.581818 0.378378 0 0.581818 1.000000 0 1.000000 1.000000 ROC Curve for Diabetes Dataset 1.0 0.8 0.6 0.0 Area under curve 0.5823095823095823

Here we've plotted the diabetes dataset with the alternative handling of duplicate probabilities, and displayed the calculated area under the curve.