DMA Hand-in, week 5

Magnus, Mathilde og Mikkel

30. september 2020

Part 1 Euclids algorithm

1. By using the formula $m = q \cdot n + r$ or $a = q \cdot b + r$ for $0 \le r < n$ we calculate the GCD of the following:

2. If t_n is the max (worst-case) amount of steps to calculate GCD(a,b) for n >= a >= b > 0 then for n = 1..15 we use figure 1 to see the following:

$$-t_1 = 1 \text{ by GCD}(1,1)$$

$$-t_2 = 1 \text{ by GCD}(2,1)$$

$$-t_3 = 2 \text{ by GCD}(3,2)$$

$$-t_4 = 2 \text{ by GCD}(3,2)$$

$$-t_5 = 3 \text{ by GCD}(5,3)$$

$$-t_6 = 3 \text{ by GCD}(5,3)$$

$$-t_7 = 3 \text{ by GCD}(5,3)$$

$$-t_8 = 4 \text{ by GCD}(8,5)$$

$$-t_9 = 4 \text{ by GCD}(8,5)$$

$$-t_{10} = 4 \text{ by GCD}(8,5)$$

$$-t_{11} = 4 \text{ by GCD}(8,5)$$

$$-t_{12} = 4 \text{ by GCD}(8,5)$$

$$-t_{13} = 4 \text{ by GCD}(8,5)$$

$$-t_{14} = 4$$
 by GCD(8,5)
 $-t_{15} = 4$ by GCD(8,5)

3. for K = 2, 3, 4, 5, 6, we have found pair (a_k, b_k) such that $GCD(a_k, b_k)$ has k divisions and $max(a_k, b_k)$ becomes as small as possible. Using figure 1, we find the pairs

- for
$$k = 2$$
: $(3,2)$
- for $k = 3$: $(5,3)$
- for $k = 4$: $(8,5)$
- for $k = 5$: $(13,8)$

- 4. We recognize that the pattern of increasing number of steps follows the fibonacci sequence. With this knowledge we can easily determine (a_7, b_7) and (a_8, b_8) as the next numbers in the sequence by using $(a_6, b_6) = (21, 13)$. $(a_7, b_7) = ((21+(21+13)), (21+13)) = (55,34)$ and $(a_8, b_8) = ((55+(55+34), (55+34)) = (144,89)$
- 5. The number of steps grows in relation to n and there can never be more steps than n. Therefore t_n must be upper bounded by n, O(n)
- 6. As we saw in part 1.2, for any increasing set of following fibonacci numbers t_n increases by one. As there are infinite fibonacci numbers, t_n cannot have a constant amount of steps and cannot be O(1)

Part 2 1. We determine P(n) based on the description of the assignment:

$$P(n): 4 \mid 3^n + 6n - 1 \text{ for } n > 0$$

2. We test P(n) for 1-4:

$$P(1): 4 \mid 3^{1} + 6 \cdot 1 - 1 = 4 \mid 8 : TRUE$$

 $P(2): 4 \mid 3^{2} + 6 \cdot 2 - 1 = 4 \mid 20 : TRUE$
 $P(3): 4 \mid 3^{3} + 6 \cdot 3 - 1 = 4 \mid 44 : TRUE$
 $P(4): 4 \mid 3^{4} + 6 \cdot 4 - 1 = 4 \mid 104 : TRUE$

3.

$$b_n = 3^n + 6 \cdot n - 1$$

First we insert n+1 instead of n:

$$b_{n+1} = 3^{n+1} + 6(n+1) - 1$$
$$= 3 \cdot 3^n + 6n + 5$$

Remember that $3^n = b_n - 6n + 1$

$$b_{n+1} = 3 \cdot (b_n - 6n + 1) + 6n + 5$$

$$= 3b_n - 18n + 3 + 6n + 5$$

$$= 3b_n - 12n + 8$$

$$= 3b_n + 4 \cdot (2 - 3n)$$

4. Assuming that P(n) holds, the expression from 3. is then used to prove that P(n+1) holds as well. Remember that: $b_{n+1} = 3b_n + 4 \cdot (2 - 3n)$.

In KBR. p.21 theorem 2, we see that if: $4 \mid b_n$ and $4 \mid 4$ then $4 \mid b_n + 4$.

We already made the assumption that $4 \mid b_n$ and $4 \mid 4$ needs no further explanation, so we can conclude that $4 \mid b_n + 4$.

Since we are working with integer values, we can multiply by whatever we like and still be divisible by 4, so the final conclusion is that:

$$4 \mid 3b_n + 4 \cdot (2 - 3n)$$
 is $TRUE$

Thus P(n+1) holds.

5. By invoking the principle of mathematical induction we conclude that P(n): $4 \mid 3^n + 6n - 1$ holds for all $n \in \mathbb{Z}^+$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2		1	2	1	2	1	2	1	2	1	2	1	2	1	2
3			1	2	3	1	2	3	1	2	3	1	2	3	1
4				1	2	2	3	1	2	2	3	1	2	2	3
5					1	2	3	4	3	1	2	3	4	3	1
6						1	2	2	2	3	3	1	2	2	2
7							1	2	3	3	4	4	3	1	2
8								1	2	2	4	2	5	3	3
9									1	2	3	2	3	4	3
10										1	2	2	3	3	2
11											1	2	3	4	4
12												1	2	2	2
13													1	2	3
14														1	2
15															1

Figur 1: The number of steps in the calculation of $\mathrm{GCD}(a,b)$

Figur 2: Graph for t_n