Lesson 1.6.2: Finding the Equation of a Line Given the Slope and a Point or Two Points

The equation of a line can be determined using the following

1. Point-Slope Form: $y - y_1 = m(x - x_1)$

2. Two-Point Form: $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$

Practice Exercises 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = 2$$
; (0, 4)

4.
$$m = \frac{2}{3}$$
; (0, 8)

2.
$$m = -5$$
; $(-3, 9)$

3.
$$m = -1$$
; $(7, 2)$

5.
$$m = -\frac{7}{4}$$
; (-2, 8)

4. $\left(\frac{7}{2},1\right)$ and $\left(-\frac{1}{2},2\right)$

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

1.
$$(3, 4)$$
 and $(4, 7)$

5.
$$\left(-\frac{1}{2}, \frac{1}{3}\right)$$
 and $(2,3)$

Activity 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = -2$$
; (3, 0)

4.
$$m=\frac{3}{2}$$
; (1, 7)

2.
$$m = 4$$
; $(-2, 7)$

3.
$$m = 3$$
; (6, 4)

5.
$$m = -\frac{3}{4}$$
; (-1, 6)

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

4.
$$\left(\frac{1}{2},2\right)$$
 and $\left(-\frac{3}{2},1\right)$

5.
$$\left(-\frac{1}{3}, \frac{3}{2}\right)$$
 and $(1,2)$

Lesson 1.6.2: Finding the Equation of a Line Given the Slope and a Point or Two Points

The equation of a line can be determined using the following

1. Point-Slope Form: $y - y_1 = m(x - x_1)$

2. Two-Point Form:
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Practice Exercises 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = 2$$
; (0, 4)

4.
$$m = \frac{2}{3}$$
; (0, 8)

2.
$$m = -5$$
; (-3, 9)

3.
$$m = -1$$
; (7, 2)

5.
$$m=-\frac{7}{4}$$
; (-2, 8)

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

4.
$$\left(\frac{7}{2},1\right)$$
 and $\left(-\frac{1}{2},2\right)$

4.
$$\left(\frac{1}{2},1\right)$$
 and $\left(-\frac{1}{2},2\right)$

5.
$$\left(-\frac{1}{2}, \frac{1}{3}\right)$$
 and $(2,3)$

Activity 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = -2$$
; (3, 0)

4.
$$m=\frac{3}{2}$$
; (1, 7)

2.
$$m = 4$$
; (-2, 7)

$$m = 3. (6.4)$$

5.
$$m=-\frac{3}{4}$$
; (-1, 6)

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

4.
$$\left(\frac{1}{2},2\right)$$
 and $\left(-\frac{3}{2},1\right)$

5.
$$\left(-\frac{1}{3}, \frac{3}{2}\right)$$
 and $(1,2)$

Lesson 1.6.2: Finding the Equation of a Line Given the Slope and a Point or Two Points

The equation of a line can be determined using the following

1. Point-Slope Form: $y - y_1 = m(x - x_1)$

2. Two-Point Form:
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Practice Exercises 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = 2$$
; (0, 4)

4.
$$m=\frac{2}{3}$$
; (o, 8)

2.
$$m = -5$$
; $(-3, 9)$

2.
$$m = -5$$
; (-3, 9)
3. $m = -1$; (7, 2)

5.
$$m=-\frac{7}{4}$$
; (-2, 8)

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

4.
$$\left(\frac{7}{2},1\right)$$
 and $\left(-\frac{1}{2},2\right)$

4.
$$\left(\frac{1}{2},1\right)$$
 and $\left(-\frac{1}{2},2\right)$

5.
$$\left(-\frac{1}{2}, \frac{1}{3}\right)$$
 and $(2,3)$

Activity 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = -2$$
; (3, 0)

4.
$$m=\frac{3}{2}$$
; (1, 7)

2.
$$m = 4$$
; (-2, 7)
3. $m = 3$; (6, 4)

5.
$$m=-\frac{3}{4}$$
; (-1, 6)

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

4.
$$\left(\frac{1}{2},2\right)$$
 and $\left(-\frac{3}{2},1\right)$

5.
$$\left(-\frac{1}{3}, \frac{3}{2}\right)$$
 and $(1,2)$

Lesson 1.6.2: Finding the Equation of a Line Given the Slope and a Point or Two Points

The equation of a line can be determined using the following

1. Point-Slope Form: $y - y_1 = m(x - x_1)$

2. Two-Point Form:
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Practice Exercises 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = 2$$
; (0, 4)

4.
$$m=\frac{2}{3}$$
; (o, 8)

2.
$$m = -5$$
; (-3, 9)

m = -1; (7, 2)

5.
$$m = -\frac{7}{4}$$
; (-2, 8)

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

4.
$$\left(\frac{7}{2},1\right)$$
 and $\left(-\frac{1}{2},2\right)$

5.
$$\left(-\frac{1}{2}, \frac{1}{3}\right)$$
 and $(2,3)$

Activity 1.6.2

A. Find the equation of the line of the form y = mx + b given the slope and a point.

1.
$$m = -2$$
; (3, 0)

4.
$$m=\frac{3}{2}$$
; (1, 7)

2.
$$m = 4$$
; (-2, 7)
3. $m = 3$; (6, 4)

5.
$$m = -\frac{3}{4}$$
; (-1, 6)

B. Find the equation of the line of the form y = mx + b that passes through the following pairs of points.

4.
$$\left(\frac{1}{2},2\right)$$
 and $\left(-\frac{3}{2},1\right)$

5.
$$\left(-\frac{1}{3}, \frac{3}{2}\right)$$
 and $(1,2)$