## Diagnosis of infectious diseases

Microscopy

Culture

Immunologic tests

Nucleic acid based tests

## Microscopy in diagnostics



Ebola virus (electron microscopy)



Roatvirus (electron microscopy)



Staphylococcus aureus in gram stain

Sources: npr.org

cmapspublic.ihmc.us

lamedicinasiqueduele.blogspot.com

## Microscopy in diagnostics

**Electron microscopy** 

Light microscopy with stains: Gram stain, acid-fast stain (mycobacterium),
Giemsa stain (parasites, intracellular pathogens)

Fluorescent microscopy: Detection at lower concentrations
Acridine-orange (bacteria-fungi)
auramine O (mycobacterium)
calcoflour white (fungi)

## Diagnosis through cultures



Microbial growth in solid/liquid media

Use of selective inhibitors/nutrients (Blood agar, chocolate-cystine agar, use of antibiotics for fungal specimens)

Prevention of contamination very important

Susceptibility tests for antibiotics Possible, helpful in treatment

Specific issues:
Viruses do not grow well in pure culture *Mycobacteria* grow slowly

## Immunologic tests



Agglutination tests:
Agglutination of latex beads by antigenAntibody interaction
Formation of thick precipitate

ELISA
Based on antigen-antibody binding
Colorimetric detection of binding



Sources: lookfordiagnosis.com

Source: lucidlimos.com

## Nucleic acid based diagnostic tests



PCR-based kit against mycobacterium

Based on amplification of genomic nucleic acid from pathogens

Very specific, highly sensitive

Can identify more than one pathogen

False positives and false negatives both possible

# Diagnosis of common diseases

| Disease            | Organism                         | Common diagnostic tools                                |
|--------------------|----------------------------------|--------------------------------------------------------|
| Dairrhea           | Rotavirus, norovirus, astrovirus | Electron microscopy                                    |
| Hepatitis          | Hepatitis A, B, E                | Nucleic acid based methods                             |
| AIDS               | HIV                              | Nucleic acid based methods, EIA                        |
| Smallpox, vaccinia | poxviruses                       | Nucleic acid based methods, EM                         |
| Typhoid fever      | Salmonella Typhi                 | Culture, detection of antibodies in serum (Widal test) |
| Tuberculosis       | Mycobacterium<br>tuberculosis    | Microscopy, PCR, cultures, Mantoux test                |
| Cholera            | Vibrio cholerae                  | Cultures                                               |

## Prevention and cure of infectious diseases

Prevention: Cure:

Vaccination Antibiotics

**Isolation** Antifungals

**Antivirals** 

## Principles of vaccination

- I. Exposure of immune system to "treated pathogen"
- II. Stimulation of effective immune response
- III. Long lasting immunity saved in "memory"







Heat/chemicals like beta-propiolactone

Salk polio vaccine

## Live attenuated vaccine



Weaken strain by mutations, growth conditions

Tuberculosis vaccine, MMR

## Subunit vaccine





Recombinant production of antigenic proteins

Administration with adjuvant

Tetanus vaccine, HBV vaccine, HPV vaccine

## Example of subunit/protein vaccines



Use of virus-like particles (VLPs)

Vaccine against Human Papilloma Virus (HPV) - Gardasil, Cervarix

Protection against ~ 70% of all cervical cancers

Source: Deschuyteneer, Hum Vaccin, 2010

#### **Chimeric viral vaccine**



Gene from one virus introduced in another, harmless virus, general platform

AstraZeneca Vaccine - based on Chimpanzee Adenovirus Oxford 1 and 2 (ChAdOx1 and ChAdOx-2)

#### **RNA** vaccine

mRNA encapsulated in lipid nanoparticles



50:10:38.5:1.5 (ionizable lipid:DSPC:cholesterol:PEG-lipid)

messenger therapeutics

Spike protein stabilized in pre-fusion conformation, 2 Proline substitutions



#### Vaccine trial pathways

Pre-clinical evaluation

**Production** 

Characterization

**Toxicity** 

**Potency** 

**Immunogenicity** 

Adjuvants/Additives

Phase I trials

20-100 low risk human volunteers

Safety/ Immunogenicity Profile

Non-randomized

Phase II trials

100s of high risk human Volunteers

Compile immunological data

Define optimal dose/route/schedule

Randomized

Evaluate factors like ethnicity, age, gender specific variation Phase III trials

Thousands of subjects

Randomized

Safety and efficacy

Duration of protection

Requirement of booster

Phase IV: Population study, safety/efficacy profile, rare events, lot-to-lot variation

#### Vaccination success stories

Smallpox -

Mortality was 25% of all children born

II. Measles -

130 million cases annually and 3 million deaths before vaccination Recent increase in number of infections

III. Poliovirus -

Oral live vaccines

Virtually abolished polio

# **Herd Immunity**







Source: niaid.nih.gov

## Prevention of disease spread





Isolation
Quarantine
Public safety measures - bioethical considerations

## Prevention of disease spread

Isolation - Separation of people infected with contagious diseases from the general population

Quarantine - Separation of people exposed to contagious diseases for monitoring

**Travel restrictions** 

Intervention activities

#### Treatment of infectious diseases

### **Antifungals:**

- Polyenes: Bind ergosterol in the fungal membrane
   Mammalian cells contain cholesterol, so not affected
   Examples: Natamycin, Amphotericin B
- 2) Azoles: Inhibit lanosterol 14 alpha demethylase (converts lanosterol to ergosterol) Examples: Fluconazole, Abafungin
- 3) Allylamines: Inhibit squalene epoxidase

#### Treatment of infectious diseases

**Antivirals:** 

Viral multiplication is tied too intimately to cellular processes

Therapeutic agents should block attachment, entry, replication, assembly, release of progeny

# **Examples of therapeutics**

| Compound                 | Mode of action                                       | Susceptible viruses                 |
|--------------------------|------------------------------------------------------|-------------------------------------|
| Amantadine               | Blocks the M2 proton channel                         | Type A influenza viruses            |
| Alpha, beta interferrons | Upregulates MHC class I, antiviral state             | Chronic HBV and HCV, papillomavirus |
| Soluble CD4              | Blocks attachment to CD4+ T cells                    | HIV-1                               |
| WIN52084                 | Prevents disassembly                                 | Rhinoviruses                        |
| Oseltamivir              | Prevents new virus release (Neuraminidase inhibitor) | Influenza                           |