2020 年考研数学二

一、选择题, $1 \sim 8$ 题, 每题 4 分, 共 32 分.

1. $x \to 0^+$ 时, 下列无穷小量中最高阶是

A.
$$\int_0^x \left(e^{t^2} - 1\right) dt$$

$$C. \int_0^{\sin x} \sin t^2 dt$$

B. $\int_0^x \ln\left(1 + \sqrt{t^3}\right) dt$ D. $\int_0^{1 - \cos x} \sqrt{\sin^3 t} dt$

$$D. \int_{0}^{1-\cos x} \sqrt{\sin^3 t} \, dt$$

2. 函数 $f(x) = \frac{e^{\frac{1}{x-1}} \ln|1+x|}{(e^x-1)(x-2)}$ 的第二类间断点的个数为

)

3. $\int_0^1 \frac{\arcsin\sqrt{x}}{\sqrt{x(1-x)}} dx =$ A. $\frac{\pi^2}{4}$ B. $\frac{\pi^2}{8}$)

A.
$$\frac{\pi^2}{4}$$

4. 已知函数 $f(x) = x^2 \ln(1-x)$, 则当 $n \ge 3$ 时, $f^{(n)}(0) = A$. $-\frac{n!}{n-2}$ B. $\frac{n!}{n-2}$ C. $-\frac{(n-2)!}{n}$

A.
$$-\frac{n!}{n-2}$$

D. $\frac{(n-2)!}{n}$

5. 关于函数 $f(x,y) = \begin{cases} xy, & xy \neq 0 \\ x, & y = 0 \end{cases}$,给出下列结论:

$$(1) \left. \frac{\partial f}{\partial x} \right|_{(0,0)} = 1;$$

(2)
$$\left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(0,0)} = 1;$$

(3)
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0;$$

(4)
$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0.$$

其中正确的个数为

)

)

A. 4

B. 3

C. 2

D. 1

6. 设函数 f(x) 在区间 [-2,2] 上可导,且 f'(x) > f(x) > 0,则 A. $\frac{f(-2)}{f(-1)} > 1$ B. $\frac{f(0)}{f(-1)} > e$ C. $\frac{f(1)}{f(-1)} < e^2$ D. $\frac{f(2)}{f(-1)} < e^3$

A.
$$\frac{f(-2)}{f(-1)} > 1$$

7. 设四阶矩阵 $A = (a_{ij})$ 不可逆, a_{12} 的代数余子式 $A_{12} \neq 0$, $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 为矩阵 A的列向量组, A^* 为 A 的伴随矩阵, 则 $A^*x = 0$ 的通解为)

$$A. x = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3$$

$$B. x = k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_4$$

C.
$$x = k_1 \alpha_1 + k_2 \alpha_3 + k_3 \alpha_4$$

$$D. x = k_1 \alpha_2 + k_2 \alpha_3 + k_3 \alpha_4$$

8. 设 A 为三阶矩阵, α_1 , α_2 为 A 的属于特征值 1 的线性无关的特征向量, α_3 为 A 的

属于特征值
$$-1$$
 的特征向量,则满足 $P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 的可逆矩阵 P 为 ()

A.
$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2, -\boldsymbol{\alpha}_3)$$

B.
$$(\alpha_1 + \alpha_2, \alpha_2, -\alpha_3)$$

C.
$$(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_3, -\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_2)$$

D.
$$(\alpha_1 + \alpha_2, -\alpha_3, \alpha_2)$$

二、填空题, $9 \sim 14$ 题, 每题 4 分, 共 24 分.

9. 设
$$\begin{cases} x = \sqrt{t^2 + 1} \\ y = \ln(t + \sqrt{t^2 + 1}) \end{cases}, 则 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \Big|_{t=1} = \underline{\qquad}.$$

$$10. \int_0^1 \mathrm{d}y \int_{\sqrt{y}}^1 \sqrt{x^3 + 1} \, \mathrm{d}x = \underline{\qquad}$$

- 11.设 $z = \arctan[xy + \sin(x + y)]$, 则 $dz|_{(0,\pi)} =$ _____.
- 12.斜边长为 2a 的等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,记重力加速度为 g,水的密度为 ρ ,则三角形平板的一侧受到的水压力为_____.

13.设
$$y = y(x)$$
 满足 $y'' + 2y' + y = 0$, 且 $y(0) = 0$, $y'(0) = 1$, 则 $\int_0^{+\infty} y(x) dx =$ ______.

$$\begin{vmatrix}
a & 0 & -1 & 1 \\
0 & a & 1 & -1 \\
-1 & 1 & a & 0 \\
1 & -1 & 0 & a
\end{vmatrix} = \underline{\qquad}.$$

三、解答题, 15~23题, 共94分.

15.(本题满分 10 分)
求曲线
$$y = \frac{x^{1+x}}{(1+x)^x} (x > 0)$$
 的斜渐近线.

16.(本题满分 10 分)

已知函数
$$f(x)$$
 连续且 $\lim_{x\to 0} \frac{f(x)}{x} = 1$, $g(x) = \int_0^1 f(xt) dt$, 求 $g'(x)$ 且证明 $g'(x)$ 在 $x = 0$ 处连续.

17.(本题满分 10 分)

求函数
$$f(x, y) = x^3 + 8y^3 - xy$$
 的极值.

18.(本题满分 10 分)

设函数 f(x) 的定义域为 $(0, +\infty)$, 且满足 $2f(x) + x^2 f\left(\frac{1}{x}\right) = \frac{x^2 + 2x}{\sqrt{1 + x^2}}$. 求 f(x), 并求曲线 $y = f(x), y = \frac{1}{2}, y = \frac{\sqrt{3}}{2}$ 及 y 轴所围成的图形绕 x 轴旋转所成旋转体 的体积.

19.(本题满分 10 分)

计算二重积分 $\iint_{D} \frac{\sqrt{x^2+y^2}}{x} d\sigma$, 其中区域 D 由 x=1, x=2, y=x 及 x 轴围成.

20.(本题满分 11 分)

设函数
$$f(x) = \int_{1}^{x} e^{t^2} dt$$
, 证明

- (1) 存在 $\xi \in (1,2)$, 使得 $f(\xi) = (2 \xi)e^{\xi^2}$;
- (2) 存在 $\eta \in (1,2)$, 使得 $f(2) = \ln 2 \cdot \eta \cdot e^{\eta^2}$.

21.(本题满分 11 分)

已知函数 f(x) 可导,且 f'(x) > 0(x > 0). 曲线 y = f(x) 过原点,点 M 为曲线 y = f(x) 上任意一点, 过点 M 的切线与 x 轴相交于点 T, 过点 M 作 MP 垂直 x 轴 于点 P, 且曲线 y = f(x) 与直线 MP 以及 x 轴所围成图形的面积与三角形 MTP的面积比恒为3:2,求曲线满足的方程.

22.(本题满分 11 分)

设二次型
$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 2ax_1x_2 + 2ax_1x_3 + 2ax_2x_3$$
 经可逆线性变换 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = P \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$ 化为 $g(y_1, y_2, y_3) = y_1^2 + y_2^2 + 4y_3^2 + 2y_1y_2$.

- (1) 求 a 的值;
- (2) 求可逆矩阵 P.

23.(本题满分 11 分)

设 A 为二阶矩阵, $P = (\alpha, A\alpha)$, 其中 α 是非零向量, 且不是 A 的特征向量.

- (1) 证明: **P** 是可逆矩阵;
- (2) 若 $A^2\alpha + A\alpha 6\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵.

