

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3220	К работе допущен
Студент Касьяненко В.М., Кремпольская Е.К.	Работа выполнена
Преподаватель Иванов В.Ю.	Отчет принят_

Рабочий протокол и отчет по лабораторной работе №1.04

Равноускоренное вращательное движение. Маятник Обербека

1. Цель работы:

Изучить равноускоренное вращательное движение.

2. Задачи, решаемые при выполнении работы:

- 1. Получить данные измерений (построить экспериментальную выборку);
- 2. Проверить зависимость момента инерции от положения масс относительно оси вращения;
- 3. Экспериментально проверить основной закон динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.

3. Объект исследования:

Маятник Обербека: крестовина с перемещаемыми по спицам грузами-утяжелителями и груз, создающий натяжение нити и раскручивающий крестовину.

4. Метод экспериментального исследования:

Условные прямые измерения времени падения груза, раскручивающего крестовину.

5. Рабочие формулы и исходные данные:

- 1) Основной закон динамики вращения: $I\varepsilon = M M_{_{\rm Tp}}$, где I момент инерции крестовины, ε угловое ускорение крестовины, ε моменты сил натяжения нити и трения на крестовине
- 2) Зависимость пройденного пути от времени при равноускоренном движении:

$$h = \frac{at^2}{2} \Rightarrow a = \frac{2h}{t^2}$$

- 3) Связь между угловым ускорением и линейным ускорением груза: $\varepsilon = \frac{2a}{d} = \frac{4h}{t^2 d},$ d диаметр ступицы
- 4) Момент силы натяжения нити: $M = \frac{md}{2} (g \frac{2h}{t^2})$
- 5) Момент инерции крестовины по т.Штейнера: $I = I_0 + 4m_{\rm yr} R^2$
- 6) Момент инерции крестовины с утяжелителями по МНК: $I = \frac{\sum\limits_{i=1}^{N} (\varepsilon_i \overline{\varepsilon})(M_i \overline{M})}{\sum\limits_{i=1}^{N} (\varepsilon_i \overline{\varepsilon})^2}$

- 7) Расстояние от оси крестовины до грузов-утяжелителей: $R = l_1 + (n-1)l_0 + \frac{b}{2}$
- 8) Абсолютная погрешность с учетом погрешности приборов: $\Delta x = \sqrt{(\overline{\Delta x})^2 + \left(\frac{2}{3}\Delta_{ux}\right)^2}$
- 9) Погрешность косвенного значения: $\Delta z = \sqrt{\left(\frac{\partial z}{\partial x 1} \Delta x 1\right)^2 + \left(\frac{\partial z}{\partial x 2} \Delta x 2\right)^2}$; z = f(x1, x2) Δ_{xx} погрешность прибора, $\overline{\Delta x}$ случайная погрешность (доверительный интервал)
- 10) Относительная погрешность: $\varepsilon_x = \frac{\Delta x}{x} \cdot 100\%$
- 11) Момент инерции крестовины по т.Штейнера: $I_0 = \overline{I} 4m_{yT}^{-2}\overline{R}^2$, $m_{yT} = \frac{\sum\limits_{i=1}^{N} (R_i \overline{R})(I_i \overline{I})}{4\sum\limits_{i=1}^{N} (R_i \overline{R})^2}$

$$12) \Delta m_{yT} = \frac{2 \cdot \sqrt{\frac{\sum\limits_{i=1}^{N} (I_i - (I_0 + 4m_{yt}R_i^2))^2}{(N-2)\sum\limits_{i=1}^{N} (R_i^2 - \overline{R}^2)^2}}}{4}; \quad \Delta I_0 = 2 \cdot \sqrt{\left(\frac{1}{N} + \frac{\overline{R}^2}{\sum\limits_{i=1}^{N} (R_i^2 - \overline{R}^2)^2}\right) \cdot \frac{\sum\limits_{i=1}^{N} (I_i - (I_0 + 4m_{yT}R_i^2))^2}{N-2}}$$

6. Измерительные приборы:

N₂	Наименование	Измерение	Используемый диапазон	$\Delta_{\scriptscriptstyle m H}$
1	Секундомер	промежутка времени	[0, 11] c	0.005 c
$\lceil 2 \rceil$	Линейка	начальной высоты тела, длин	[0, 0.7] м	0.0005 м
	линсика	спиц и диаметра ступицы	[0, 0.7] M	0.0003 M

7. Схема установки:

Груз подвешен на нерастяжимой невесомой нити, которая перекинута через неподвижный блок и намотана на ступицу крестовины. В ступице закреплены четыре спицы, на каждой из которых размещен груз-утяжелитель (грузы идентичны и находятся на одинаковом расстоянии от оси вращения крестовины). Момент инерции системы крестовина-утяжелители искусственно изменяется при выставлении расстояния от грузов до ступицы.

Рис. 2. Стенд лаборатории механики (общий вид): 1 — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

8. Результаты прямых измерений и их обработки:

Таблица 1. Время падения для различных значений расстояний, масс раскручивающего груза

	Положение утяжелителей отн. оси вращения (риски), м							
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
груза	Время $t_{_{\mathrm{падения}}}$, с							
	4,87	5,80	6,51	7,81	9,69	10,88		
$m_{_1}$ 0.267 кг	4,71	5,84	6,95	7,93	9,88	10,52		
(1 шайба)	4,90	5,90	6,83	7,88	9,93	10,90		
шайоа)	4,83 <u>+</u> 0,25	5,85	6,76	7,87	9,83	10,77		
	3,54	4,25	4,85	6,10	7,16	7,54		
$m_{_2}$ 0.487 кг	3,58	4,22	4,82	6,37	7,08	7,77		
(2 шайбы)	3,64	4,26	4,82	6,13	6,90	7,86		
шаиоы)	3,59	4,24	4,83	6,20	7,05	7,72		
	2,95	3,40	4,05	4,90	5,44	6,30		
$m_{_{ m 3}}$ 0.707 кг	3,00	3,33	4,64	4,82	5,18	6,30		
(3 шайбы)	2,97	3,58	4,20	5,07	5,65	6,44		
шайоы)	2,97	3,44	4,29	4,93	5,42	6,35		
	2,53	2,90	3,89	4,31	4,76	5,33		
$m_{_{4}}$ 0.927 кг	2,61	2,88	3,99	4,21	4,85	5,48		
(4 шайбы)	2,66	3,00	4,12	4,30	4,65	5,52		
шаиоы)	2,60	2,93	4,00	4,27	4,75	5,44		

9. Результаты косвенных измерений:

Таблица 2. Ускорение раскручивающего груза при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м							
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)		
груза	Ускорение a , $\frac{M}{c}$							
$m_{1}^{}$	0,0600 ±0,0062	0,0409	0,0306	0,0226	0,0145	0,0121		
$m_{_2}$	0,1086	0,0779	0,0600	0,0364	0,0282	0,0235		
m_3	0,1587	0,1183	0,0761	0,0578	0,0477	0,0347		
$m_{_4}$	0,2071	0,1631	0,0875	0,0768	0,0620	0,0473		

Таблица 3. Угловое ускорение крестовины при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м						
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)	
груза	Угловое ускорение ϵ , рад \cdot c^{-1}						
$m_{_1}$	2,6092 ±0,2716	1,7786	1,3320	0,9828	0,6299	0,5248	
$m_2^{}$	4,7229	3,3859	2,6092	1,5835	1,2247	1,0213	
$m_3^{}$	6,9006	5,1438	3,3074	2,5044	2,0721	1,5096	
$m_{_4}$	9,0444	7,0903	3,8043	3,3384	2,6978	2,0568	

Таблица 4. Момент силы натяжения нити при разных условиях

	Положение утяжелителей отн. оси вращения (риски), м						
Macca	0.057(1)	0.082(2)	0.107(3)	0.132(4)	0.157(5)	0.182(6)	
груза							
m_{1}	0,0599 ± 0,0007 0,0599 0,0601 0,0601 0,0		0,0601	0,0602			
$m_{2}^{}$	0,1087	0,1090	0,1092	0,1095	0,1096	0,1096	
$m_3^{}$	0,1569	0,1576	0,1583	0,1586	0,1587	0,1589	
$m_{_4}$	0,2047	0,2057	0,2073	0,2075	0,2078	0,2082	

Таблица 5. Момент инерции крестовины при разных условиях

Положение утяжелителей отн. оси вращения (риски), м								
0.057(1) 0.082(2) 0.107(3)			0.132(4)	0.157(5)	0.182(6)			
	Момент инерции крестовины I , кг \cdot м 2							
0,0225	0,0225 0,0274 0,0577 0,0611 0,0695 0,0969							
	Момент силы трения $M_{_{ m TP}}=M-I$ ε, $H\cdot {}_{ m M}$							
0,0018	0,0018 0,0138 -0,0257 0,0055 0,019 0,0103							
Расстояние от оси до утяжелителя в квадрате R^2 , ${ m M}^2$								
0,0059	0,0104	0,0161	0,0231	0,0313	0,0408			

Расчет по МНК значений $m_{_{\mathrm{VT}}}$ и $I_{_{0}}$:

$$m_{
m yT} = rac{\sum\limits_{i=1}^{N} (R_i - \overline{R}\)(I_i - \overline{I})}{4\sum\limits_{i=1}^{N} (R_i - \overline{R}\)} = 0$$
, 4946 кг; тогда сумма моментов инерции стержней крестовины, момента

инерции ступицы и собственных центральных моментов инерции утяжелителей будет равна:

$$I_0 = \overline{I} - 4m_{\text{yt}}\overline{R}^2 = 0,01427 \text{ kg} \cdot \text{m}^2$$
 $\Delta I_0 = 0,00076 \text{ kg} \cdot \text{m}^2$

10. Расчет погрешностей измерений:

Расчет погрешности для прямых измерений времени к таблице 1:

$$\Delta t_{\rm cp} = \sqrt{\frac{t_{\alpha,n}^2}{N \cdot (N-1)} \sum_{i=1}^{N} (t_i - \overline{t})^2 + (\frac{2}{3} \Delta_{ux})^2} \quad (t_{\alpha,n} = 4.30265, \ \alpha = 0.95); \ \Delta t_1 = 0.25396 \ c$$

Расчет погрешности косвенного значения ускорения груза к таблице 2:

$$\Delta a = \sqrt{\left(\frac{\partial a}{\partial h}\Delta h\right)^2 + \left(\frac{\partial a}{\partial t}\Delta t\right)^2} = \sqrt{\left(\frac{2}{t^2}\Delta h\right)^2 + \left(\frac{4h}{t^3}\Delta t\right)^2}; \ a = \frac{2h}{t^2}; \ \Delta a_1 = 0,0062\frac{M}{c^2}$$

Расчет погрешности косвенного значения углового ускорения крестовины к таблице 3.

$$\Delta \varepsilon = \sqrt{\left(\frac{\partial \varepsilon}{\partial h} \Delta h\right)^2 + \left(\frac{\partial a}{\partial t} \Delta t\right)^2 + \left(\frac{\partial a}{\partial d} \Delta d\right)^2} = \sqrt{\left(\frac{4}{t^2 d} \Delta h\right)^2 + \left(\frac{8h}{t^3 d} \Delta t\right)^2 + \left(\frac{4h}{t^2 d^2} \Delta d\right)^2}; \ \varepsilon = \frac{4h}{t^2 d}; \ \Delta \varepsilon_1 = \ 0,2716 \frac{\text{рад}}{c^2}$$

Расчет погрешности косвенного значения момента силы натяжения нити к таблице 4.

$$\Delta M = \sqrt{\left(\frac{md}{t^2}\Delta h\right)^2 + \left(\frac{2mdh}{t^3}\Delta t\right)^2 + \left(\frac{m(gt^2-2h)}{2t^2}\Delta d\right)^2 + \left(\frac{d(gt^2-2h)}{2t^2}\Delta m\right)^2} \; ; \; \Delta M_1 = \; 0,00066 \; H \; \cdot \; \text{м}$$

$$\Delta m_{_{\mathrm{VT}}} = \; 0,0045 \; \mathrm{Kg}$$

11. Графики:

График 1. Зависимость М(ε). Аппроксимирующие прямые для каждой риски.

◆1 риска □2 риска △3 риска ×4 риска ×5 риска ○6 риска

График 2. Зависимость $I(R^2)$. Аппроксимирующая прямая и аналитически полученная зависимость.

12. Окончательные результаты:

Доверительные интервалы первых значений к ускорению груза:

$$a = (0.0600 \pm 0.0062) \frac{M}{c^2}$$
 $\varepsilon_a = 10.3\%$ $\alpha = 0.95$

к угловому ускорению:

$$\epsilon = (2.6092 \pm 0.2716) \frac{pag}{c^2}$$
 $\epsilon_{\epsilon} = 10.4\%$ $\alpha = 0.95$

и к моменту силы натяжения нити:

$$M = (0.0599 \pm 0.0007) H \cdot M \quad \epsilon_{M} = 1,1\% \qquad \alpha = 0.95$$

Значения $m_{\rm yr}$ и I_0 с погрешностями:

$$m_{\text{yT}} = (0,4946 \pm 0,0045) \text{ Kf} \quad \epsilon_{m_{\text{yT}}} = 0,9\% \qquad \alpha = 0.95$$
 $I_{0} = (0,0143 \pm 0,0008) \text{ Kf} \cdot \text{M}^{2} \quad \epsilon_{I_{0}} = 5,6\% \qquad \alpha = 0.95$

13. Выводы и анализ результатов работы:

После построения экспериментальной выборки были рассчитаны необходимые параметры и значения для проверки зависимости момента инерции от масс грузов-утяжелителей на спицах вращающейся крестовины. Также экспериментально подтверждена теория динамики вращения - был проверен основной закон, связывающий угловое ускорение с моментами сил трения и натяжения нити. Были получены доверительные интервалы для некоторых характеристик динамики вращения, построены соответствующие графики.