Regressão Logística

Prof. Danilo Silva

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais: Introdução ao Aprendizado de Máquina

EEL / CTC / UFSC

Classificação

- Problema de classificação com K classes:
 - $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbb{R}^n$ é o vetor de atributos
 - $y \in \mathcal{Y} = \{1, 2, \dots, K\}$ é o rótulo que indica a classe a qual \mathbf{x} pertence
 - ▶ Um classificador é uma função $g: \mathbb{R}^n \to \mathcal{Y} = \{1, 2, \dots, K\}$
 - \blacktriangleright O desempenho de um classificador depende do custo L(k,y) de se classificar $g(\mathbf{x})=k$ quando a classe correta é y
- Dado um conjunto de treinamento, desejamos encontrar um classificador que obtenha bom desempenho em novos dados

 X_1

Codificação de Rótulos

lacktriangle De maneira geral, definimos eventos correspondentes às K classes:

$$C_k = \{ \mathbf{x} \text{ pertence à classe } k \}, \quad k = 1, \dots, K$$

- ▶ No entanto, o mapeamento específico em uma v.a. y é arbitrário
- Classificação binária (K = 2):
 - $\mathcal{C}_1 = \{y = 1\}, \mathcal{C}_2 = \{y = 2\}$
 - $C_0 = \{y = 0\}$ (classe negativa), $C_1 = \{y = 1\}$ (classe positiva)
 - $C_0 = \{y = -1\}$ (classe negativa), $C_1 = \{y = +1\}$ (classe positiva)
- Classificação multi-classe (K > 2):
 - $\mathcal{C}_k = \{y = k\}, k = 1, \dots, K$
 - ▶ Codificação 1-de-K / função indicadora / "One Hot Encoder":

$$C_1 = \{ y = (1, 0, 0, 0, \dots, 0) \}$$

$$C_2 = \{ y = (0, 1, 0, 0, \dots, 0) \}$$

$$C_3 = \{ y = (0, 0, 1, 0, \dots, 0) \}$$

Funções Discriminantes

Muitos métodos de classificação (exceto classificadores hierárquicos) são baseados em funções discriminantes (também chamados de preditores ou scores de confiança):

$$f_k(\mathbf{x}) \in \mathbb{R}$$

▶ Decide-se pela classe C_k que maximiza o discriminante:

$$g(\mathbf{x}) = k \iff f_k(\mathbf{x}) = \max_{k' \in \{1,\dots,K\}} f_{k'}(\mathbf{x})$$

- \blacktriangleright Assim, o problema de classificação é transformado em K problemas de regressão
- ▶ Discriminante linear: $f_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x}$
 - Nesse caso, o classificador é dito ser um classificador linear

Classificação Binária

▶ Se K = 2 (classes C_0 e C_1), é suficiente usar um único discriminante:

$$g(\mathbf{x}) = 1$$
 (decide-se por C_1) $\iff f(\mathbf{x}) = f_1(\mathbf{x}) - f_0(\mathbf{x}) \ge 0$

(Consequentemente decide-se por C_0 se $f(\mathbf{x}) < 0$)

No caso de um classificador linear, temos

$$g(\mathbf{x}) = 1 \iff \mathbf{w}^T \mathbf{x} \ge 0$$

- Geometricamente, o vetor w define a direção de um hiperplano (perpendicular a w) que passa pela origem
- ▶ Uma amostra x é classificada como positiva (classe \mathcal{C}_1) se estiver no semi-espaço do lado positivo do hiperplano (no sentido da projeção em w)

Example of a linear decision boundary for binary classification.

Classificação Binária via Regressão Linear

Uma forma simples de determinar w é usando regressão linear.
 Desejamos ajustar um modelo

$$\hat{y} = \mathbf{w}^T \mathbf{x}$$

a partir de exemplos de treinamento rotulados como $y \in \{-1,+1\}$

Solução via mínimos quadrados:

$$J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (\mathbf{w}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2} = \frac{1}{2m} ||\mathbf{X} \mathbf{w} - \mathbf{y}||^{2}$$

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

A classificação em si é dada por $g(\mathbf{x}) = \operatorname{sgn}(\hat{y}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x})$

Problema: Sensibilidade a Outliers

Um problema desta solução é que o uso do erro quadrático

$$L(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$$

como função perda penaliza predições que estão "certas demais"

- Por exemplo, assumindo a classe correta y=1, um score de $\hat{y}=100$ (alta confiança) tem um custo $L(\hat{y},y)=4900.05$ muito mais elevado que $\hat{y}=0$ (baixa confiança), cujo custo é $L(\hat{y},y)=0.5$
- ► Consequentemente, valores altos de $\hat{y} = \mathbf{w}^T \mathbf{x}$ influenciam excessivamente o modelo

Regressão Logística

Uma solução para esse problema é o modelo de regressão logística

$$\hat{y} = \sigma(\mathbf{w}^T \mathbf{x})$$

com rótulos codificados como $y \in \{0, 1\}$, onde

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

é a função sigmóide logística padrão

Note que

$$\lim_{z \to -\infty} \sigma(z) = 0, \qquad \sigma(0) = \frac{1}{2}, \qquad \lim_{z \to \infty} \sigma(z) = 1$$

▶ Decide-se por $C_1 \iff \hat{y} = \sigma(\mathbf{w}^T \mathbf{x}) > 1/2 \iff \mathbf{w}^T \mathbf{x} > 0$

Função Logística

Propriedades:

$$\sigma(-x) = 1 - \sigma(x)$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Função Custo

- Mesmo com o modelo de regressão logística, o uso do erro quadrático ainda é problemático:
 - Penaliza pouco um score de confiança $z=\mathbf{w}^T\mathbf{x}$ muito errado $(L(\hat{y},y)<1/2)$
 - lacktriangle Resulta em uma função custo $J(\mathbf{w})$ não-convexa
- É usual adotar como função perda a entropia cruzada:

$$L(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

- ▶ Note que $L(0,1) = L(1,0) = \infty$, enquanto L(0,0) = L(1,1) = 0
- lacktriangle Resulta em uma função custo $J(\mathbf{w})$ convexa

$$J(\mathbf{w}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Função Custo: Exemplo

Figure B.1: Logarithmic transformation of the sigmoid function.

Função Custo: Exemplo

Otimização

Função custo:

$$J(\mathbf{w}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$
$$= -\frac{1}{m} \left(\mathbf{y}^{T} \log \hat{\mathbf{y}} + (1 - \mathbf{y})^{T} \log(1 - \hat{\mathbf{y}}) \right)$$

onde
$$\hat{y}^{(i)} = \sigma(\mathbf{w}^T \mathbf{x}^{(i)})$$
 e $\hat{\mathbf{y}} = \sigma(\mathbf{X}\mathbf{w})$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{1}{m} \mathbf{X}^T (\hat{\mathbf{y}} - \mathbf{y}) = \frac{1}{m} \mathbf{X}^T (\sigma(\mathbf{X}\mathbf{w}) - \mathbf{y})$$

Extensão com Funções de Base

- Assim como no caso de regressão linear, o modelo básico de regressão logística pode ser estendido com funções de base, isto é, utilizando como atributos $x_j = \varphi_j(\mathbf{u}), j = 1, \ldots, n$, funções não-lineares dos atributos originais $\mathbf{u} = (u_1, \ldots, u_N)^T$
- O treinamento é idêntico a partir da matriz de projeto X, entretanto a visualização a partir dos atributos originais (u) será diferente
 - ► Em particular, permite uma separação não-linear entre as classes

Notação (Bishop): Atributos originais: x_1, x_2 ; Atributos transformados: ϕ_1, ϕ_2

Regularização

- Com o aumento no número de atributos, aumenta também a tendência a overfitting no conjunto de treinamento, tornando-se importante usar regularização para garantir uma boa generalização
- ▶ Regularização ℓ_2 : $\Omega(\mathbf{w}) = \frac{1}{2m} \sum_{j=1}^n w_j^2 = \frac{1}{2m} \mathbf{w}^T \mathbf{L} \mathbf{w}$
- Função custo:

$$J(\mathbf{w}) = J_{\text{train}}(\mathbf{w}) + \lambda \frac{1}{2m} \mathbf{w}^T \mathbf{L} \mathbf{w}$$
$$= -\frac{1}{m} \mathbf{y}^T \log \hat{\mathbf{y}} + (1 - \mathbf{y})^T \log(1 - \hat{\mathbf{y}}) + \lambda \frac{1}{2m} \mathbf{w}^T \mathbf{L} \mathbf{w}$$

Gradiente:

$$\nabla J(\mathbf{w}) = \frac{1}{m} \mathbf{X}^{T} (\sigma(\mathbf{X}\mathbf{w}) - \mathbf{y}) + \lambda \frac{1}{m} \mathbf{L}\mathbf{w}$$

 $ightharpoonup \lambda$ é um hiperparâmetro a ser determinado na etapa de validação

Classificação Multi-Classe

- A regressão logística é, na verdade, um método de encontrar uma função discriminante $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$ (classificador linear)
- ▶ A extensão para um problema multi-classe pode ser feita treinando-se, para cada classe k, um classificador "um contra todos" (one-vs-rest):

$$f_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x}$$

onde o rótulo $y_k \in \{0,1\}$ indica se \mathbf{x} pertence à classe \mathcal{C}_k

- ▶ Codificação 1-de-K (*One Hot Encoding*): $y = (y_1, ..., y_K)$
- ▶ Decide-se por $C_k \iff f_k(\mathbf{x}) = \max_{k'} f_{k'}(\mathbf{x})$
 - ▶ Equivalentemente, decide-se por $C_k \iff \hat{y}_k = \max_{k'} \hat{y}_{k'}$, onde $\hat{y}_k = \sigma(\mathbf{w}_k^T\mathbf{x})$

Avaliação do modelo

- A função custo usada no treinamento (mesmo sem regularização) não necessariamente é representativa do verdadeiro custo do modelo em uma aplicação real
 - ► Ex: acurácia = 1 taxa de erro
- De maneira geral, um classificador é avaliado em termos de sua matriz de confusão

$$p(\hat{k}, k) = P[g(\mathbf{x}) = \hat{k}, y = k]$$

Para um classificador binário:

$$TPR = \frac{TP}{TP + FN} \quad \text{true positive rate}$$

$$FPR = \frac{FP}{FP + TN} \quad \text{false positive rate}$$

Matriz de confusão

Curva ROC (Receiver Operating Characteristic)

Métrica de Avaliação

- Na teoria da decisão são estipulados custos $L(\hat{k},k)$ para cada entrada da matriz de confusão, e a decisão ótima minimiza o custo médio
- Na prática é difícil estipular ou estimar $L(\hat{k},k)$, mas para facilitar a comparação entre diferentes modelos, é altamente recomendável definir uma métrica única de avaliação (single-real-number metric)
- Exemplos:
 - Acurácia
 - ► AUC (Area Under [ROC] Curve)
 - F1 score
 - Matthews Correlation Coefficient