によってNinに付いている、「ハンドルDNixDm-Aiを滑らせる」とは、のNinの「イソトヒー」によって接着写像中iを変形することである。まず、イソトピーを定義しよう。

定義320(イソトヒー) Kを 最次元 別様体とする。ある 閉区間 Jのなかの 実数 tの 1つ 1つに Kの 機分同相写像 $f_t: K \to K$ が 1つ ずり 対応 L7いるとき、 f_t f_t

- (i) 開区間」は閉区間[0,1]を含み、パラメータが té0のとき ftは tによらず一定で Kの恒等写像である: ft=fo= ide、また t≥1のときも ftは tによらず 一定で fliに等しく、それは Kのある 微分同相写像である: ft=fc=fc.
- (li) H (a,t) = (ft(a),t) に引定義される写像H: K×J→ K×Jは微分同相写像である。この意味でftはパラメタセに滑らかに依存する。

Morse 関数 $f: M \to R$ x それに適合した上向きべかれ場 Xが与えられている状況に戻るう。 (3.79) は f χ χ がら決まるハンドル分解であるとする。

定理 3.21 (ハンドルを滑らせる) 臨界点の番号 iをひとつ 固定する ($0 \le i \le n$).部分 ハンドル体 Nにの境界のNにのイソトピー $\{ f_t \}_{t \in J}$ が与えられると、Nにいに付く ハンドル $D^{\lambda i} \times D^{m-\lambda i}$ の接着写像を \mathcal{P} にから f_0 に変えることができる。ここに f_0 はイソトピー $\{ f_t \}_{t \in J}$ の t = 1 に対応する 微分同相写像 f_0 である。また i 番目のハンドルの接着写像を、このように変えても、ハンドル分解(3.77)の中の名々の部分ハンドル体 N_j ($0 \le j \le n$)の 微分同相類 は変わらない。

図38がハバルを滑らせるというイメーごを表けいる。

図3.8 ハンドルを滑らせる。