Theorem Let $(M_n)_{n\geqslant 0}$ be a mtgle wrt a filtration $(\mathcal{F}_n)_{n\geqslant 0}$. Let $(H_n)_{n\geqslant 1}$ be a predictable sequence of real RVs ("Predictable" means for each $n\geqslant 1$, H_n is \mathcal{F}_{n-1} -mble). Suppose for each $n\geqslant 1$, $H_n:(M_n-M_{n-1})$ is

Proof Remember

$$\left(H \circ M \right)_{n} = \begin{cases} 0 & \text{if } n = 0, \\ \sum_{k=1}^{n} H_{k} \left(M_{k} - M_{k-1} \right) & \text{if } n \geq 1. \end{cases}$$

integrable. Then H.M is a mtgle.

Since $H_{\kappa}(M_{\kappa}-M_{\kappa-1}) \in L'$ for each $\kappa \geqslant 1$, $(H\cdot M)_{n} \in L'$ for each $n \geqslant 0$.

For each $N \ge 0$, for each $A \in \mathcal{T}_n$, $\int_A ((H \cdot M)_{n+1} - (H \cdot M)_n) dP$ $= \int_A H_{n+1} (M_{n+1} - M_n) dP$ $= \int_A H_{n+1} (M_{n+1} - M_n) dP$

= 0

because $1_A H_{n+1}$ is T_n -mble and $1_A H_{n+1} (M_{n+1} - M_n) \in L'$ This is justified by the following terms:

Lemma Let (X, a, u) be a measura space.

Let $f \in L'(n)$, let B be a sub-o-field of α , and Suppose for each $B \in B$, $\int_{B} f \, d\mu = 0$.

Let $g \in L^{\circ}(\mu|_{B})$ s.t. $fg \in L^{\circ}(\mu)$. Then $\int fg d\mu = 0$.

If Case 0: if $J = 1_B$ where $B \in B$, we assumed that $J \neq J \neq J = 0$.

Case 1: Suppose g in simple and B. Then $g = \sum_{k=1}^{n} b_{k} 1_{B_{k}}$ for some $n \in \mathbb{N}$, some $b_{1},..., b_{n} \in \mathbb{R}$ or C, $B_{1},..., B_{n} \in B$ Then $fg = \sum_{k=1}^{n} b_{k} \int 1_{B_{k}} \in L'(\mu)$, and $\int \int \int d\mu = \sum_{k=1}^{n} b_{k} \int \int 1_{B_{k}} d\mu = 0$

(ase 2: (The general case)

There is a sequence (gn) of

B-simple IR- or C-valued fns such

that for even x, $g_n(x) \longrightarrow g(x)$ as $n \longrightarrow \infty$, and for each n, $|g_n(x)| \leq |g(x)|$.

(for each of (Reg) =, (Img) =, take increasing sequences of simple tho & compose/add them).

Then $fg_n \longrightarrow fg$ pointwise as $n \longrightarrow \infty$ and $|fg_n| \le |fg|$.

By assumption, $\int |fg| du < \infty$. hence $\int fg_n d\mu \longrightarrow \int fg d\mu$ by DCT. but $\int fg_n d\mu = 0$ In by case 1,

The Optional Stopping Theorem

Let (M_n) be a mtyle wet a filtration (T_n) .

Let T be a stopping time. Let $M_n^T = M_{tan}$ for each n. (M^T) is "M stopped at T"). Then M^T is a integle.

 $\text{H} \quad M_{\tau \Lambda n} - M_0 = \left(\text{H·M} \right)_n \quad \text{where} \quad H_{\kappa} = \mathbf{1}_{\left\{ \kappa \leq \tau \right\}} \; .$

(Hx) às prédictable because {K≤T} = {T≤K-1}° ∈ FK-1

and $0 \le H_k \le 1$ so $H_k(M_k - M_{k-1}) \in L'$.

Analysis of Asymmetric Simple RW on Z

Let 5, 52, 53... be independent {-1,1}-valued RVs.

Let $\frac{1}{2} < P < 1$ and suppose that $\forall \kappa$, $P(\xi_{\kappa} = 1) = P$,

and $P(\xi_{\kappa}=-1)=q$, where q=1-p. Let $S_n=\sum_{\kappa\in n}\xi_{\kappa}$ $(S_o=0)$.

(Sn) is called an asymetric simple RW on Z.

define Ψ on \mathbb{Z} by $\Psi(x) = \left(\frac{q}{p}\right)^{x}$.

Let $X_k = \varphi(\xi_k)$. Then X_1, X_2, X_3, \dots are independent

and $E[X_k] = P(\frac{1}{p})^1 + 2(\frac{1}{p})^{-1} = P + q = 1.$

Let $M_n = \prod_{k \leq n} \chi_k = \varphi(S_n)$ $(M_0 = 1)$.

Then (Mn) is a mtyle.

For each $x \in \mathbb{Z}$, let $T_x = \inf \{ n : S_n = x \}$.

 $\frac{\text{Propn}}{\text{Qs n} \longrightarrow \infty}, S_n \longrightarrow \infty \text{ a.s.}$

this case was

Corollary Let 1= b ∈ Z. Then To < ∞ a.s.

If Let
$$G = \{\omega \in \Omega : S_n(\omega) \to \infty \text{ so } n \to \infty\}$$
. Then $P(G) = 1$ by the proposition. $S_o(\omega) = 0$ and $S_n(\omega) - S_{n-1}(\omega) = \pm 1$ for each $n \neq 1$. Since $S_n(\omega) \to \infty$, $S_n(\omega) = b$ for some $n \in \mathbb{N}$ and $T_b(\omega) \leq n < \infty$.

Propri Let a, b ∈ Z with a < 0 < b.

Then
$$P(T_a < T_b) = \frac{\varphi(b) - \varphi(o)}{\varphi(b) - \varphi(a)}$$

pf let N=TanTb. Then N< 00 a.s.

Let $Y_n = \mathcal{V}(S_{Nnn}) = M_{Nnn} \cdot (Y_n)$ is a mtyle since N is a stopping time. and (M_n) is a mtyle (use the optional Stopping Theorem). For each $\omega \in \{N < \infty\}$, $Y_n(\omega) \longrightarrow \mathcal{V}(S_n(\omega))$.

Since $N < \infty$ a.s., $Y_n \longrightarrow P(S_N)$ a.s. $E(Y_o) = E(M_o) = 1$. Since Y_n is a netyte, $E(Y_n) = E(Y_o) = 1$.

$$a \leq S_{Nnn} \leq b$$
, so $\varphi(a) \geqslant \gamma_{Nnn} \geqslant \varphi(b)$ $(\varphi(x) = (\frac{q}{p})^x)_{nn}$ decreasing in x since $o < q < p$.

Hence by DCT,
$$E(Y_n) \rightarrow E(Y(S_N))$$
, so $E(Y(S_N)) = 1$ since each $E(Y_n) = 1$.

$$O_{N}\left\{T_{a}< T_{b}\right\}, S_{N}=a.$$

$$O_N$$
 { $T_b < T_a$ }, $S_N = b$.

The only way To and To can be equal is if both are infinite.

So
$$P(T_a=T_b) \in P(T_b=\infty) = 0$$
.

Thus
$$1 = E(\varphi(S_N)) = \varphi(\alpha) P(T_\alpha < T_b) + \varphi(b) P(T_b < T_a)$$

 $1 = P(T_a < T_b) + P(T_b < T_a)$.

So
$$1 = \varphi(a) P(T_a < T_b) + \varphi(b) (1 - P(T_a < T_b))$$

So
$$1-\varphi(b) = (\varphi(a)-\varphi(b)) P(T_a < T_b)$$

So
$$P(T_a < T_b) = \frac{\varphi(b) - \varphi(o)}{}$$

Page 6

So
$$P(T_a < T_b) = \frac{\varphi(b) - \varphi(o)}{\varphi(a) - \varphi(o)}$$

$$\frac{P_{\text{copn}}}{\text{Let}} \quad 0 > \alpha \in \mathbb{Z}. \quad P(T_{\alpha} < \infty) = \left(\frac{\ell}{p}\right)^{-\alpha} = \varphi(-\alpha)$$

$$\text{ If } \text{ $\omega \in \{T_{\alpha} < \infty\}$. Then } \text{ $\sup_{n} S_{T_{\alpha} \wedge n}(\omega) = \max\{S_{\alpha}(\omega), ..., S_{T_{\alpha}}(\omega)\} < \infty$. }$$

So
$$\exists b \in \mathbb{Z}$$
, $b > 0$, such that $T_b(\omega) > T_a(\omega)$.

Thus
$$\{T_a < \infty\} = 10 \{T_a < T_b\}$$
, and so as $b \rightarrow \infty$,

$$P(T_a < T_b) \longrightarrow P(T_a < \infty)$$

$$\frac{\varphi(b) - \varphi(0)}{\varphi(b) - \varphi(a)} \xrightarrow{\qquad \qquad } \frac{\varphi(0)}{\varphi(a)} = \frac{1}{\varphi(a)} = \left(\frac{7}{P}\right)^{-a}.$$