Bitcoin

May 7, 2020

```
In [21]: # https://www.statsmodels.org/stable/index.html
         import numpy as np
         import pandas as pd
         import statsmodels.api as sm
         import matplotlib
         import matplotlib.pyplot as plt
         import warnings
         warnings.filterwarnings("ignore")
         #plt.style.use('fivethirtyeight')
         import itertools
In [22]: final_date = pd.read_csv('datasetv1.csv')
         final_date.head()
Out[22]:
                  date bprice goldprice
                                                      forex
                                                               oil
                                                 sp
         0 2014/01/01 770.44
                                      NaN
                                                NaN
                                                        NaN
                                                               NaN
         1 2014/01/02 808.05
                                  1219.75 1831.98 1.3670
                                                            95.14
         2 2014/01/03 830.02
                                  1232.25 1831.37 1.3606
                                                             93.66
         3 2014/01/04 858.98
                                      NaN
                                                NaN
                                                        NaN
                                                               NaN
         4 2014/01/05 940.10
                                      {\tt NaN}
                                                {\tt NaN}
                                                        {\tt NaN}
                                                               {\tt NaN}
In [23]: final_date[['goldprice', 'sp', 'forex', 'oil']]=final_date[['goldprice', 'sp', 'forex',
         final_date = final_date.iloc[1:,:]
         final_date['date']=pd.to_datetime(final_date['date'],format='%Y/%m/%d')
         matplotlib.rcParams['axes.labelsize'] = 14
         matplotlib.rcParams['xtick.labelsize'] = 12
         matplotlib.rcParams['ytick.labelsize'] = 12
         matplotlib.rcParams['text.color'] = 'k'
         final_date.set_index('date',inplace=True)
0.0.1 q4
In [24]: for i in range(0,final_date.shape[1]):
             print('\033[1m ',final_date.columns[i],' \033[0;0m')
             y = final_date.iloc[0:,i].resample('MS').mean()
             y.plot(figsize=(10, 5))
             plt.show()
```

bprice

goldprice

sp

forex

oil

0.0.2 q5

x4

68.9103

4.575

```
In [25]: X = final_date.iloc[:,1:]
    y = final_date.iloc[:,0]
    model = sm.OLS(np.array(y).reshape(-1,1),np.array(X).reshape(-1,4))
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

ULS Regression Results						
Dep. Variable:	У	R-squared:	0.714			
Model:	OLS	Adj. R-squared:	0.713			
Method:	Least Squares	F-statistic:	1071.			
Date:	Wed, 03 Apr 2019	Prob (F-statistic)	: 0.00			
Time:	16:15:39	Log-Likelihood:	-15777.			
No. Observations:	1723	AIC:	3.156e+04			
Df Residuals:	1719	BIC:	3.158e+04			
Df Model:	4					
Covariance Type:	nonrobust					
=======================================	==========	=======================================	=======================================			
coe	f std err	t P> t	[0.025 0.975]			
x1 -10.440	3 0.964 -1	0.835 0.000	-12.330 -8.550			
x2 9.230	4 0.205 4	5.112 0.000	8.829 9.632			
x3 -7913.444	6 1023.946 -	7.728 0.000 -	9921.755 -5905.134			

15.062

0.000

59.937

77.884

```
      Omnibus:
      700.905
      Durbin-Watson:
      0.017

      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      3576.148

      Skew:
      1.870
      Prob(JB):
      0.00

      Kurtosis:
      8.986
      Cond. No.
      4.75e+04
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.75e+04. This might indicate that there are strong multicollinearity or other numerical problems.

The high R² shows us that the other variables are explaining about 70% of variation which is highly improbable because, the time series data are always highly correlated.

0.0.3 q6

```
In [26]: from statsmodels.tsa.stattools import kpss
         def rep_kpss(series,alpha=0.05,diff_max=6):
             diff = 0
             for i in range(0,diff_max):
                 pval = kpss(series,regression='c')[1]
                 if(pval>=alpha):
                     return(diff,0,pval,'level stationary')
                 pval = kpss(series,regression='ct')[1]
                 if(pval>=alpha):
                     return(diff,1,pval,'trend stationary')
                 diff +=1
                 series=series.diff().dropna()
                 #return(0)
         for i in final_date.columns:
             print(i)
             print(rep_kpss(final_date[i]))
bprice
(1, 0, 0.1, 'level stationary')
goldprice
(1, 0, 0.1, 'level stationary')
(1, 0, 0.1, 'level stationary')
(1, 0, 0.07134131156173776, 'level stationary')
(1, 1, 0.1, 'trend stationary')
In [27]: kpss(final_date.iloc[:,4],regression='ct')
```

```
Out[27]: (1.38849613143664,
          0.01,
          25,
          \{'10\%': 0.119, '5\%': 0.146, '2.5\%': 0.176, '1\%': 0.216\}
0.0.4 q7
In [58]: y
Out[58]: date
         2014-01-03
                         830.02
         2014-01-04
                         858.98
         2014-01-05
                         940.10
         2014-01-06
                        951.39
         2014-01-07
                        810.58
         2014-01-08
                        859.95
         2014-01-09
                        860.89
         2014-01-10
                        884.67
         2014-01-11
                         930.90
         2014-01-12
                        873.26
         2014-01-13
                        857.96
         2014-01-14
                        851.83
         2014-01-15
                        874.71
         2014-01-16
                        847.37
         2014-01-17
                        828.22
         2014-01-18
                         843.76
         2014-01-19
                         878.68
         2014-01-20
                        871.05
         2014-01-21
                         874.29
         2014-01-22
                         863.95
         2014-01-23
                        854.35
         2014-01-24
                        825.12
         2014-01-25
                         861.85
         2014-01-26
                        880.15
         2014-01-27
                        814.53
         2014-01-28
                        833.94
         2014-01-29
                         837.51
         2014-01-30
                        845.85
         2014-01-31
                         848.29
         2014-02-01
                         853.02
                         . . .
         2018-08-22
                        6357.59
         2018-08-23
                        6525.61
         2018-08-24
                        6692.62
         2018-08-25
                        6732.50
         2018-08-26
                        6707.63
         2018-08-27
                        6907.66
         2018-08-28
                       7076.74
```

```
2018-08-30
                    6982.40
        2018-08-31
                    7013.97
        2018-09-01 7192.30
        2018-09-02
                    7295.13
        2018-09-03
                    7261.49
       2018-09-04
                   7358.50
        2018-09-05
                    6687.01
        2018-09-06
                    6498.62
        2018-09-07
                    6396.27
        2018-09-08
                    6183.38
        2018-09-09
                    6238.54
        2018-09-10
                    6305.57
        2018-09-11
                    6282.92
        2018-09-12
                    6328.93
        2018-09-13
                    6486.62
        2018-09-14
                    6492.37
        2018-09-15 6515.90
       2018-09-16
                    6497.37
        2018-09-17
                  6251.16
       2018-09-18 6334.20
        2018-09-19 6388.98
       2018-09-20
                    6491.64
       Name: bprice, Length: 1722, dtype: float64
In [28]: X = final_date.iloc[:,1:].diff().dropna()
       y = final_date.iloc[1:,0]
       model_diff = sm.OLS(np.array(y).reshape(-1,1),np.array(X).reshape(-1,4))
       results_diff = model_diff.fit()
       print(results_diff.summary())
                        OLS Regression Results
______
                               y R-squared:
Dep. Variable:
                                                                 0.003
Model:
                              OLS Adj. R-squared:
                                                               0.001
Method:
                    Least Squares F-statistic:
                                                                1.376
                Wed, 03 Apr 2019 Prob (F-statistic):
Date:
                                                               0.240
                         16:15:40 Log-Likelihood:
Time:
                                                              -16842.
No. Observations:
                             1722
                                  AIC:
                                                             3.369e+04
Df Residuals:
                             1718
                                  BIC:
                                                             3.371e+04
Df Model:
Covariance Type:
                       nonrobust
______
              coef std err
                                   t P>|t|
                                                     [0.025 0.975]
______

    1.0284
    14.541
    0.071
    0.944
    -27.491
    29.548

    16.8869
    8.238
    2.050
    0.041
    0.730
    33.044

    9640.7971
    2.23e+04
    0.433
    0.665
    -3.41e+04
    5.33e+04

x1
x2
x3
```

2018-08-29

7035.81

x4	63.6283	115.804	0.549	0.583	-163.503	290.759
Omnibus:	=======	639.279	====== Durbi:	======= n-Watson:	=======	0.009
Prob(Omnibus	s):	0.000	Jarque	e-Bera (JB)	:	1909.172
Skew:		1.942	Prob(.	JB):		0.00
Kurtosis:		6.395	Cond.	No.		2.81e+03
=========		=========	=======	=======	========	========

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.81e+03. This might indicate that there are strong multicollinearity or other numerical problems.

0.0.5 The R² suggests that there is no relationship between the series

```
In [29]: for i in range(0,final_date.shape[1]):
             print('\033[1m',final_date.columns[i],'\033[0;0m')
             y1 = final_date.iloc[0:,i].resample('MS').mean()
             decomposition = sm.tsa.seasonal_decompose(y1, model='additive')
             print(' \033[1m Trend Plot \033[0;0m')
             decomposition.trend.plot()
             plt.show()
             print(' \033[1m seasonal Plot \033[0;0m')
             decomposition.seasonal.plot()
             plt.show()
             print(' \033[1m resid Plot \033[0;0m')
             decomposition.resid.plot()
             plt.show()
             print(' \033[1m observed Plot \033[0;0m')
             decomposition.observed.plot()
             plt.show()
 bprice
```

ppiioo

Trend Plot

seasonal Plot

resid Plot

observed Plot

goldprice Trend Plot

seasonal Plot

resid Plot

observed Plot

sp Trend Plot

seasonal Plot

resid Plot

observed Plot

forex
Trend Plot

seasonal Plot

resid Plot

observed Plot

oil Trend Plot

seasonal Plot

resid Plot

observed Plot

Out[31]:

In [32]: plot_acf(bprice_1d,lags=20)

Out[32]:

In [33]: from statsmodels.graphics.tsaplots import plot_pacf plot_pacf(bprice_1d,lags=20) # q=2

Out[33]:

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x1bf4efdda90>


```
In [35]: bprice = final_date_2017['bprice']
```

0.0.8 q10

good model for ARIMA. from acf and pacf, p is around 6-10 and q is 2.

Out[36]: 9285.09521462024

```
In [37]: from statsmodels.tsa.arima_model import ARIMA
       maxa = 10
       outp = np.zeros(((maxa+1)**2,3))
       count = 0
       for i in range(6,maxa+1):
           print((round(i*(maxa+1)/(maxa+1)**2*100,2)),'%...')
           for j in range(1,4):
              try:
                 mod = ARIMA(bprice, order=(i,1,j))
                  results = mod.fit()
                  outp[count,:] = np.array([[i],[j],[results.aic]]).T
                  count+=1
              except:
                  continue
       outp = pd.DataFrame(outp)
       outp.columns = ['p','q','AIC']
       outp = outp.loc[(outp!=0).any(axis=1)].sort_values('AIC')
       print("best p and q are:",outp.iloc[0,:])
54.55 %...
63.64 %...
72.73 %...
81.82 %...
90.91 %...
best p and q are: p 9.000000
        2.000000
q
     9256.501919
AIC
Name: 10, dtype: float64
0.0.9 best model
In [38]: mod = ARIMA(bprice, order=(9,1,2))
       results = mod.fit()
       print(results.summary())
                        ARIMA Model Results
______
Dep. Variable:
                        D.bprice No. Observations:
                                                                627
Model:
                   ARIMA(9, 1, 2) Log Likelihood
                                                         -4615.251
Method:
                        css-mle S.D. of innovations
                                                            379.979
                 Wed, 03 Apr 2019 AIC
Date:
                                                           9256.502
Time:
                        16:18:07 BIC
                                                           9314.234
Sample:
                      01-02-2017 HQIC
                                                           9278.931
                     - 09-20-2018
______
                                            P>|z| [0.025
                 coef std err
                                     Z
```

const	8.5911	17.508	0.491	0.624	-25.724	42.906
ar.L1.D.bprice	1.7481	0.042	41.257	0.000	1.665	1.831
ar.L2.D.bprice	-1.0639	0.082	-12.992	0.000	-1.224	-0.903
ar.L3.D.bprice	0.1155	0.090	1.279	0.201	-0.062	0.293
ar.L4.D.bprice	-0.1088	0.089	-1.223	0.222	-0.283	0.066
ar.L5.D.bprice	0.2816	0.088	3.191	0.001	0.109	0.455
ar.L6.D.bprice	-0.3886	0.089	-4.374	0.000	-0.563	-0.215
ar.L7.D.bprice	0.2349	0.090	2.608	0.009	0.058	0.411
ar.L8.D.bprice	0.0646	0.081	0.800	0.424	-0.094	0.223
ar.L9.D.bprice	-0.1009	0.040	-2.491	0.013	-0.180	-0.021
ma.L1.D.bprice	-1.7181	0.017	-102.766	0.000	-1.751	-1.685
ma.L2.D.bprice	0.9690	0.017	58.322	0.000	0.936	1.002
Roots						

10000

	Real	Imaginary	Modulus	Frequency
AR.1	0.8770	-0.5827j	1.0529	-0.0933
AR.2	0.8770	+0.5827j	1.0529	0.0933
AR.3	1.1967	-0.4046j	1.2632	-0.0519
AR.4	1.1967	+0.4046j	1.2632	0.0519
AR.5	0.2474	-1.2482j	1.2725	-0.2189
AR.6	0.2474	+1.2482j	1.2725	0.2189
AR.7	-0.9674	-0.8594j	1.2940	-0.3844
AR.8	-0.9674	+0.8594j	1.2940	0.3844
AR.9	-2.0668	-0.0000j	2.0668	-0.5000
MA.1	0.8865	-0.4961j	1.0158	-0.0812
MA.2	0.8865	+0.4961j	1.0158	0.0812

residual plot

```
In [39]: resid = pd.DataFrame(results.resid)
    resid.plot()
    plt.show()
    resid.plot(kind='kde')
    plt.show()
```


it is really close to normal distribution

```
In [40]: resid.describe()
```

```
Out[40]:
                  627.000000
         count
                   -0.032713
         mean
         std
                  380.295937
         \min
                -1761.413007
         25%
                 -110.755254
         50%
                    4.738762
                  107.503017
         75%
         max
                 2981.417723
```

In [41]: sm.ProbPlot(resid).qqplot(line='s')

Out[41]:

0.0.10 the mean of residuals is really close to zero. This model with p,d,q = 9,1,2 best describes the above process

0.0.11 q11

0.0.12 prediction - one step ahead forecast validation

0.0.13 forecast

```
In [43]: from datetime import datetime
    from datetime import timedelta
        start_date = pd.to_datetime('2018-09-20')
    end_date = start_date+timedelta(days=int(input('Forecast Days: ')))
    fcast = results.predict(start=start_date,end = end_date, dynamic=False,typ='levels')
    fcast_ci = fcast
    ax = y['2018-08':].plot(label='observed')
    results.plot_predict(start_date,end_date)
    fig = results.plot_predict(start_date, end_date, dynamic=False, ax=ax)
    ax.set_xlabel('Date')
    ax.set_ylabel('Bitcoin Value')
    plt.legend()
    plt.show()
```


0.0.14 RMSE

0.0.15 q12 - Periodogram

In [46]: # https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.periodogram.html from statsmodels.tsa.stattools import periodogram

```
plt.plot(periodogram(bprice))
plt.show()
plt.plot(periodogram(bprice_1d))
```


Out[46]: [<matplotlib.lines.Line2D at 0x1bf4fbb0518>]

0.0.16 There is no seasonality

L1.oil

Q13

```
In [47]: final_1d = final_date_2017.diff().dropna()
     final 1d
     from statsmodels.tsa.vector_ar import var_model
     var= var_model.VAR(final_1d)
     np.argmin(var.select_order().ics['aic'])
     var_results = var.fit(maxlags=1)
     var_results.summary()
Out[47]: Summary of Regression Results
     Model:
                        VAR.
     Method:
                        OLS
     Date:
              Wed, 03, Apr, 2019
     Time:
                   16:20:21
     No. of Equations: 5.00000 BIC:
                                           9.06014
     Nobs:
                    626.000 HQIC:
                                          8.93006
     Log likelihood:
                  -7180.51 FPE:
                                           6956.27
                    8.84740 Det(Omega_mle): 6632.28
     AIC:
     _____
     Results for equation bprice
     ______
                coefficient std. error
                                        t-stat
     ______
                          16.158048
                 8.905596
                                        0.551
                                                  0.582
     const
     L1.bprice
                 0.069110
                           0.040040
                                        1.726
                                                  0.084
                1.336761
                           2.854434
     L1.goldprice
                                        0.468
                                                  0.640
                                        0.335
     L1.sp
                 0.422667
                            1.263261
                                                  0.738
              -1546.995382 4334.377682
-40.307750 21.758846
     L1.forex
                                       -0.357
                                                  0.721
     L1.oil
                                        -1.852
                                                   0.064
     ______
     Results for equation goldprice
     ______
                coefficient std. error t-stat
     ______
                 -0.002602
                           0.228070
                                        -0.011
     const
                                                  0.991
     L1.bprice
                 -0.001013
                           0.000565
                                       -1.792
                                                  0.073
                 0.063268
     L1.goldprice
                           0.040290
                                        1.570
                                                  0.116
     L1.sp
                 -0.009138
                           0.017831
                                       -0.512
                                                  0.608
     L1.forex 382.948062 61.179613
                                        6.259
                                                  0.000
```

0.307125

3.474

0.001

1.066983

Results for equation sp

============	=======================================	===========	=======================================	=======
	coefficient	std. error	t-stat	prob
const	0.969575	0.520856	1.862	0.063
L1.bprice	0.001679	0.001291	1.301	0.193
L1.goldprice	0.174788	0.092013	1.900	0.057
L1.sp	0.071246	0.040721	1.750	0.080
L1.forex	159.523161	139.718964	1.142	0.254
L1.oil	-0.798069	0.701398	-1.138	0.255

Results for equation forex

===========	===========	===========	===========	========
	coefficient	std. error	t-stat	prob
const	0.000155	0.000157	0.984	0.325
L1.bprice	-0.000000	0.00000	-0.367	0.714
L1.goldprice	-0.000002	0.000028	-0.077	0.939
L1.sp	0.000016	0.000012	1.266	0.206
L1.forex	0.090106	0.042178	2.136	0.033
L1.oil	0.000241	0.000212	1.137	0.255

Results for equation oil

===========	============			
	coefficient	std. error	t-stat	prob
const	0.021184	0.030376	0.697	0.486
L1.bprice	0.000006	0.000075	0.081	0.935
L1.goldprice	0.005188	0.005366	0.967	0.334
L1.sp	0.002826	0.002375	1.190	0.234
L1.forex	1.270291	8.148196	0.156	0.876
L1.oil	0.037341	0.040904	0.913	0.361

Correlation matrix of residuals

	bprice	goldprice	sp	forex	oil
bprice	1.000000	0.037788	0.051801	-0.015241	0.019423
goldprice	0.037788	1.000000	-0.042486	0.311933	0.053672
sp	0.051801	-0.042486	1.000000	-0.018298	0.189110
forex	-0.015241	0.311933	-0.018298	1.000000	0.033503
oil	0.019423	0.053672	0.189110	0.033503	1.000000

```
In [48]: resid.columns
    resid = pd.DataFrame(var_results.resid)
    for i in resid.columns:
        print(i)
        resid[i].plot()
        plt.show()
        resid[i].plot(kind='kde')
        plt.show()
```

bprice

goldprice

sp

forex

oil


```
In [49]: resid.describe()
```

```
Out [49]:
                                                                                                           bprice
                                                                                                                                                                goldprice
                                                                                                                                                                                                                                                                                                                            forex
                                                                                                                                                                                                                                                                                                                                                                                                          oil
                                                                                                                                                                                                                                                                       sp
                                                                         6.260000e+02 6.260000e+02 6.260000e+02 6.260000e+02
                                                                     -5.743365e-15 -1.059013e-15 -8.910161e-16 -3.288112e-19
                                           mean
                                                                             4.007564e+02 5.656664e+00 1.291841e+01 3.899774e-03
                                                                                                                                                                                                                                                                                                                                                             7.533819e-01
                                           std
                                           min
                                                                         -2.247581e+03 -1.946989e+01 -9.730499e+01 -1.643226e-02 -3.983851e+00
                                                                         -1.065176 \\ e+02 \\ -2.996391 \\ e+00 \\ -4.000892 \\ e+00 \\ -1.943141 \\ e-03 \\ -2.641911 \\ e-01 \\ -01 \\ e-01 \\ e-01 \\ e-02 \\ e-03 \\ e-03 \\ e-03 \\ e-04.000892 \\ e-04.000892 \\ e-04.000892 \\ e-04.000892 \\ e-05 \\ e-05
                                           25%
                                            50%
                                                                             1.922872e+00 -1.533415e-02 -3.771619e-02 -1.191374e-04 -9.623573e-04
                                                                             1.160385e+02 3.125817e+00 4.639900e+00 1.628155e-03
                                           75%
                                                                                                                                                                                                                                                                                                                                                           2.995310e-01
                                                                             2.930638e+03 2.303008e+01 5.031274e+01
                                                                                                                                                                                                                                                                                     1.654610e-02 5.319883e+00
                                           max
```

All the residuals are very close to zero, this suggests that the VAR model of lag 1 fits the above data very good.

0.0.17 q14

```
In [50]: final_1d.tail()
```

```
2018-09-18
              83.04
                      2.600000
                                 15.510000
                                                0.0
                                                     0.00
2018-09-19
              54.78
                      3.600000
                                  3.640000
                                                0.0
                                                     0.00
2018-09-20
             102.66
                      0.000000
                                 22.800000
                                                0.0
                                                     0.00
```

In [51]: # https://www.statsmodels.org/stable/tsa.html#vector-autogressive-processes-var # $https://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.VARI # <math>https://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.VARI # <math>https://www.statsmodels.org/stable/generated/statsmodels.tsa.vector_ar.var_model.v$

var_results.plot_forecast(steps=30,alpha=0.05)

Out[51]:

np.sqrt((bitcoin_future['Closing']-bitcoin_forcast_var)**2).sum()

Out [53]: 4589.177796876813

In [55]: bitcoin_forcast_var

rmse is around 4600

```
6585.37371769, 6594.1106727, 6602.84762968, 6611.58458706, 6620.32154454, 6629.05850203, 6637.79545952, 6646.53241702, 6655.26937451, 6664.00633201, 6672.7432895, 6681.480247, 6690.21720449, 6698.95416199, 6707.69111948, 6716.42807698, 6725.16503447, 6733.90199197, 6742.63894946, 6751.37590696, 6760.11286445, 6768.84982195])
```