TIPOS DE DADOS, PSEUDOCÓDIGO E VARIÁVEIS

Introdução à Lógica de Programação Prof. Lucas Amparo Barbosa Semestre letivo 2020.2

Tipos de dados

Tipos de dados

Graças a essa padronização que os dados podem ser processados!!!

Tipos de dados - Primitivos

Lógico

Dados Numéricos

Inteiros

Positos e Negativos, sem casas decimais Conjunto numérico Z

Reais

Positos e Negativos, com casas decimais Conjunto numérico Q

Elementos do conjunto I são representados de forma aproximada

Podem assumir precisão simples ou dupla "Ponto flutuante"

Dados Literais

Caracteres

Simplesmente uma letra.

Pode ser representado como um número inteiro (ACSII)

Cadeias de Caracteres

Conjuntos de Letras. Análogo a Palavra Comumente chamada de *string*.

Parágrafos

Conjuntos de strings.

Utilizados em linguagens com ênfase em otimização

Dados Lógicos

Booleanos

Verdadeiro ou Falso 1 ou 0 Ativado ou Desativado Vazio ou Preenchido [...] Classifique os dados com base em seu tipo, usando I para inteiro, R para real, L para literal e B para lógico.

0.21	1	V	"0."	"José"
0,35	F	-0.001	T	+3257
"+3257"	"F"	"Maria"	С	Π

Tipos de Dados e Memória

Tipos de Dados e Memória

Tipo	Tamanho	Intervalo
Char	8 bits	-127 a 128
Unsigned char	8 bits	0 a 255
signed char	8 bits	-127 a 128
short int	16 bits	-32768 a 32767
unsigned shor int	16 bits	0 a 65535
signed short int	16 bits	-32768 a 32767
int	32 bits	-2.147.483.648 a 2.147.483.647
signed int	32 bits	-2.147.483.648 a 2.147.483.647
unsigned int	32 bits	0 a 4.294.967.295
long int	32 bits	-2.147.483.648 a 2.147.483.647
signed long int	32 bits	-2.147.483.648 a 2.147.483.647
unsigned long int	32 bits	0 a 4.294.967.295
float	32 bits	3,4x10-38 a 3,4x10+38
Double	64 bits	1,7 x10-308 a 1,7 x10+308
Long Double	80 bits	3,4 x104932 a 1,1 x104932

Variáveis e Constantes

Armazenam Dados

Dados utilizados durante o processamento; Se esses valores puderem ser mudados, são **variáveis**. Se esses valores não mudarem nunca, são **constantes**.

Como nomear?

Utilizar uma palavra (ou conjunto de palavras) que **descreva** o objetivo da mesma;

Se for mais de uma palavra, separar com underline (_)

Não começar com números (algumas linguagens nem aceitam);

Ter mais de 4 caracteres, quando possível;

Evitar enumerações sem contexto;

Constantes sempre com letras maiúsculas.

Variáveis e Constantes

Bons nomes

controle_de_acesso nome_de_usuario contador

Péssimos nomes

q2

aa

teste

O que há de errado com os seguintes nomes de variáveis?

valor

a1b2c3

3x4

nota*do*aluno

n!

"nota"

3d

Alocação de Memória

A memória principal do computador (RAM) funciona como uma "tela"

Quando se declara uma variável, uma parte dessa tela é ocupada. Quanto? Depende da variável. Onde? Depende do que já tem lá.

Memória RAM

Alocação de Memória

A memória principal do computador (RAM) funciona como uma "tela"

Quando se declara uma variável, uma parte dessa tela é ocupada. Quanto? Depende da variável. Onde? Depende do que já tem lá.

Memória RAM

Alocar memória desordenadamente pode causar travamento do equipamento. CUIDADO!

Alocação de Memória

Quando aloca-se a variável, já existe algo na memória. Isso é chamado **lixo de memória**.

Para lidar com isso, basta inicializar a variável com um valor padrão.

Ex.: Se é um número inteiro, começar com 0

Falhas de memória podem ser utilizadas por Hackers!!

Acho que com o conteúdo de hoje já dá para entender o que acontece nesse vídeo hehe

AMAZİNG

Para saber mais...

Nomear Variáveis (em inglês)

Precisão Simples e Dupla (em inglês)

Tipos de Dados (Artigo)