

An Intuitionistic Fuzzy Meet Semi L- Filter

R. Arimalar, Dr. B. Anandh

Department of Mathematics , Sudharsan College of Arts & College, Perumanadu, Pudukkottai – 4. Tamil Nadu.
maharishibalaanandh@gmail.com

Abstract: In this Paper, Intuitionistic fuzzy meet semi L-filter and Intuitionistic fuzzy level meet semi L-filter are defined. Also some theorems are derived. Some examples are provided.

Key words: Fuzzy meet semi L-ideals, fuzzy meet semi L-filter, intuitionistic fuzzy meet semi L-filter, fuzzy level meet semi L-filter, intuitionistic fuzzy level meet semi L- filter.

I INTRODUCTION

The concept of fuzzy sets was introduced in 1965 by L. A. Zadeh[3]. In that, the fuzzy group was introduced by Rosenfield[4]. M. Mullai applied the concepts of fuzzy L-filters in Lattice theory. The idea of Intuitionistic L-fuzzy semi filler was introduced by M. Maheswari and M. Palanivelrajan[1]. In paper [6], the definition of fuzzy meet semi L-filter, fuzzy level meet semi L-filter, theorems, propositions and examples are given. In this present paper intuitionistic fuzzy meet semi L-filter, intuitionistic fuzzy level meet semi L-filter are introduced. Some characterization theorem are derived. Some more results related to this topic are also established.

Definition 1.1

Let A be a fuzzy meet semilattice. A fuzzy meet subsemilattice $\mu : A \rightarrow [0,1]$ is called a fuzzy meet semi L-ideal of A if for all $x, y \in A$,
 $\mu(x \wedge y) \geq \max \{ \mu(x), \mu(y) \}$.

Example 1.2

Let $A = \{ 0, a, b, 1 \}$. Let $\mu : A \rightarrow [0, 1]$ is a fuzzy meet subsemilattice in A defined by $\mu(0) = 0.8$, $\mu(a) = 0.5$, $\mu(b) = 0.6$, $\mu(c) = 0.7$, $\mu(1) = 0.4$

Then μ is a fuzzy meet semi L-ideal of A .

Definition 1.3 Let A be a fuzzy meet semilattice. A fuzzy meet subsemilattice $\mu : A \rightarrow [0, 1]$ is called a fuzzy meet semi L-filter of A if for all $x, y \in A$, $\mu(x \wedge y) \leq \min \{ \mu(x), \mu(y) \}$.

Example 1.4

Let $A = \{ 0, a, b, 1 \}$. Let $\mu : A \rightarrow [0, 1]$ is a fuzzy meet subsemilattice in A defined by $\mu(0) = 0.4$, $\mu(a) = 0.5$, $\mu(b) = 0.6$, $\mu(c) = 0.7$, $\mu(1) = 0.8$.

Then μ is fuzzy meet semi L-filter of A .

Definition 1.5

Let X be a non-empty set. An intuitionistic fuzzy set A in X is an object having the form $A = \{ < x, \mu_A(x), v_A(x) > / x \in X \}$ where the function $\mu_A : X \rightarrow [0, 1]$ and $v_A : X \rightarrow [0, 1]$ denote the membership and non-membership function of A respectively and $0 \leq \mu_A(x) + v_A(x) \leq 1$, for each element $x \in X$. The intuitionistic can also be written in the form $A = < x, \mu_A(x), v_A(x) >$ or Simply $A = < \mu_A, v_A >$.

Example 1.6

Let $X = \{ 4.5, 5, 5.5, 6, 6.5, 7, 7.5 \}$. Define $A = \{ < 4.5, 0.1 >, < 5, 0, 1 >, < 5.5, 0.5, 0.5 >, < 6, 1, 0 >, < 6.5, 0.5, 0.5 >, < 7, 0, 1 > \}$. Clearly $\{ (x, \mu_A(x)) / x \in X \}$ is a fuzzy set, since $0 \leq \mu_A(x) \leq 1$ for each $x \in X$. Also $\{ < x, \mu_A(x), v_A(x) > / x \in X \}$ is an intuitionistic fuzzy set, since $0 \leq \mu_A(x) + v_A(x) \leq 1$ for each $x \in X$.

Definition 1.7

An intuitionistic fuzzy semilattice $A = < \mu_A, v_A >$ is called an intuitionistic fuzzy meet semi L-filter if for all $x, y \in A$,

- (i) $\mu(x \wedge y) \leq \min \{ \mu(x), \mu(y) \}$
- (ii) $v(x \wedge y) \geq \max \{ v(x), v(y) \}$.

Example 1.8

Let $A = \{ 0, a, b, 1 \}$. Let $\mu : A \rightarrow [0, 1]$ and $v : A \rightarrow [0, 1]$ be a fuzzy meet subsemilattices in A defined by $\mu(0) = 0.4$, $v(0) = 0.6$; $\mu(a) = 0.5$, $v(a) = 0.5$; $\mu(b) = 0.6$, $v(b) = 0.4$; $\mu(c) = 0.7$, $v(c) = 0.3$; $\mu(1) = 0.8$, $v(1) = 0.2$.

Then A is an intuitionistic fuzzy meet semi L-filter.

Definition 1.9

Let A and B be any two an intuitionistic fuzzy meet semi L-filter of X. We define the following relations and operations:

(i) A is subset of B iff $\mu_A(x) \leq \mu_B(x)$ and $v_A(x) \geq v_B(x)$, for all $x \in X$.

(ii) A = B iff $\mu_A(x) = \mu_B(x)$ and $v_A(x) = v_B(x)$, for all $x \in X$

(iii) $\bar{A} = \{ < x, v_A(x), \mu_A(x) > / x \in X \}$

(iv) $A \cap B = \{ < x, \min\{\mu_A(x), \mu_B(x)\}, \max\{v_A(x), v_B(x)\} > / x \in X \}$

(v) $A \cup B = \{ < x, \max\{\mu_A(x), \mu_B(x)\}, \min\{v_A(x), v_B(x)\} > / x \in X \}$

(vi) $\square A = \{ < x, \mu_A(x), 1 - \mu_A(x) > / x \in X \}$

(vii) $\Diamond A = \{ < x, v_A(x), 1 - v_A(x) > / x \in X \}$

Theorem: 1.10

The union of two intuitionistic fuzzy meet semi L-filter is an intuitionistic fuzzy meet semi L-filter.

Proof

Let A and B be two intuitionistic fuzzy meet semi L-filters.

(ie) $\mu_A(x \wedge y) \leq \min\{\mu_A(x), \mu_A(y)\}$, $v_A(x \wedge y) \geq \max\{v_A(x), v_A(y)\}$

$\mu_B(x \wedge y) \leq \min\{\mu_B(x), \mu_B(y)\}$, $v_B(x \wedge y) \geq \max\{v_B(x), v_B(y)\}$

To prove that $A \cup B$ is an intuitionistic fuzzy meet semi L-filter

Let C = $A \cup B$

(ie) $C = \{ < x, \mu_C(x), v_C(x) > / x \in L \}$ is an intuitionistic fuzzy meet semi L-filter.

If $\mu_C(x) = \max\{\mu_A(x), \mu_B(x)\}$

$v_C(x) = \max\{v_A(x), v_B(x)\}$

$\mu_C(x \wedge y) = \max\{\mu_A(x \wedge y), \mu_B(x \wedge y)\}$
 $\leq \max\{\min\{\mu_A(x), \mu_A(y)\}, \min\{\mu_B(x), \mu_B(y)\}\}$

$\} = \min\{\max\{\mu_A(x), \mu_B(x)\}, \max\{\mu_A(y), \mu_B(y)\}\}$

$= \min\{\mu_C(x), \mu_C(y)\}$

$\mu_C(x \wedge y) \leq \min\{\mu_C(x), \mu_C(y)\}$

$v_C(x \wedge y) = \max\{v_A(x \wedge y), v_B(x \wedge y)\}$
 $\geq \max\{\max\{v_A(x), v_A(y)\}, \max\{v_B(x), v_B(y)\}\}$

$\} = \max\{\max\{v_A(x), v_B(x)\}, \max\{v_A(y), v_B(y)\}\}$

$= \max\{v_C(x), v_C(y)\}$

$v_C(x \wedge y) \geq \max\{v_C(x), v_C(y)\}$

Hence the union of two intuitionistic fuzzy meet semi L-filter is an intuitionistic fuzzy meet semi L-filter.

Theorem 1.11

Intersection of two intuitionistic fuzzy meet semi L-filter is an intuitionistic fuzzy meet semi L-filter.

Proof

Let A and B be two intuitionistic fuzzy meet semi L-filters.

(ie) $\mu_A(x \wedge y) \leq \min\{\mu_A(x), \mu_A(y)\}$, $v_A(x \wedge y) \geq \max\{v_A(x), v_A(y)\}$

$\mu_B(x \wedge y) \leq \min\{\mu_B(x), \mu_B(y)\}$, $v_B(x \wedge y) \geq \max\{v_B(x), v_B(y)\}$

To prove that $A \cap B$ is an intuitionistic fuzzy meet semi L-filter

Let $C = A \cap B$

(ie) $C = \{ < x, \mu_C(x), v_C(x) > / x \in X \}$ is an intuitionistic fuzzy meet semi L-filter.

If $\mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}$

$v_C(x) = \min\{v_A(x), v_B(x)\}$

$\mu_C(x \wedge y) = \min\{\mu_A(x \wedge y), \mu_B(x \wedge y)\}$

$\mu_C(x \wedge y) = \min\{\mu_A(x \wedge y), \mu_B(x \wedge y)\}$

$\leq \min\{\min\{\mu_A(x), \mu_A(y)\}, \min\{\mu_B(x), \mu_B(y)\}\}$

$\leq \min\{\min\{\mu_A(x), \mu_B(x)\}, \min\{\mu_A(y), \mu_B(y)\}\}$

$\}$
 $= \min\{\mu_C(x), \mu_C(y)\}$

$\mu_C(x \wedge y) \leq \min\{\mu_C(x), \mu_C(y)\}$

$v_C(x \wedge y) = \min\{v_A(x \wedge y), v_B(x \wedge y)\}$

$\geq \min\{\max\{v_A(x), v_A(y)\}, \max\{v_B(x), v_B(y)\}\}$

$\}$
 $= \max\{\min\{v_A(x), v_B(x)\}, \min\{v_A(y), v_B(y)\}\}$

$\}$
 $= \max\{v_C(x), v_C(y)\}$

$v_C(x \wedge y) \geq \max\{v_C(x), v_C(y)\}$

Hence the intersection of two intuitionistic fuzzy meet semi L-filter is an intuitionistic fuzzy meet semi L-filter.

Theorem 1.12

The complement of intuitionistic fuzzy meet semi L-filter is an intuitionistic fuzzy meet semi L-ideal.

Proof

Let $A = \{ < x, \mu_A(x), v_A(x) > / x \in X \}$ be an intuitionistic fuzzy meet semi L-filter.

(ie) if (i) $\mu_A(x \wedge y) \leq \min\{\mu_A(x), \mu_A(y)\}$

(ii) $v_A(x \wedge y) \geq \max\{v_A(x), v_A(y)\}$

To prove that compliment of A is an intuitionistic fuzzy meet semi L-ideal.

(ie) (I) $\mu_{\bar{A}}(x \wedge y) \geq \max\{\mu_{\bar{A}}(x), \mu_{\bar{A}}(y)\}$

(II) $v_{\bar{A}}(x \wedge y) \leq \min\{v_{\bar{A}}(x), v_{\bar{A}}(y)\}$

Now the compliment of A is defined by $\bar{A} = \{ < x, v_{\bar{A}}(x), \mu_{\bar{A}}(x) > / x \in X \}$

Here $\mu_{\bar{A}}(x) = v_A(x)$, $v_{\bar{A}}(x) = \mu_A(x)$

For (I)

$\mu_{\bar{A}}(x \wedge y) = v_A(x \wedge y) \geq \max\{v_A(x), v_A(y)\}$
 $= \max\{\mu_{\bar{A}}(x), \mu_{\bar{A}}(y)\}$

$\mu_{\bar{A}}(x \wedge y) \geq \max\{\mu_{\bar{A}}(x), \mu_{\bar{A}}(y)\}$

For (II)

$v_{\bar{A}}(x \wedge y) = \mu_A(x \wedge y) \leq \min\{\mu_A(x), \mu_A(y)\}$
 $= \min\{v_{\bar{A}}(x), v_{\bar{A}}(y)\}$

$v_A(x \wedge y) \leq \min \{ v_A(x), v_A(y) \}$
Hence A is an intuitionistic fuzzy meet semi L-ideal.

Definition 1.13

For every intuitionistic fuzzy set A we define $C(A) = \{ < x, K, L > / x \in X \}$ where $K = \min \mu_A(x)$, $L = \max v_A(x)$ and $I(A) = \{ < x, k, l > / x \in X \}$ where $k = \max v_A(x)$, $l = \min \mu_A(x)$.

Theorem 1.14

If A is an intuitionistic fuzzy meet semi L-filter then $C(A)$ and $I(A)$ are also intuitionistic fuzzy meet semi L-filters.

Proof

Let A be an intuitionistic fuzzy meet semi L-filter
Consider $C(A) = \{ < x, K, L > / x \in X \}$ where $K = \min \mu_A(x)$, $L = \max v_A(x)$ and $I(A) = \{ < x, k, l > / x \in X \}$ where $k = \max v_A(x)$, $l = \min \mu_A(x)$.

Let $x, y \in C(A)$. Then $x \wedge y \in C(A)$.

Form the definition of $C(A)$, all the members of $C(A)$ have the same membership degree K.

Thus $\mu_A(x) = \mu_A(y) = K$.

Similarly $v_A(x) = v_A(y) = L$

Here we have the case of equality.

Hence $C(A)$ is an intuitionistic fuzzy meet semi L-filter.

Similarly we can prove that $I(A)$ is also an intuitionistic fuzzy meet semi L-filter.

Theorem 1.15

If $A = < \mu_A, v_A >$ is an intuitionistic fuzzy meet semi L-filter. Then the $\square A = < \mu_A, 1 - \mu_A >$ is an intuitionistic fuzzy meet semi L-filter of A.

Proof

Let A be intuitionistic fuzzy meet semi L-filter

Let $B = \square A$

Then $\mu_B = \mu_A$, $v_B = 1 - \mu_A$

To prove that B is intuitionistic fuzzy meet semi L-filter.

$$(i) \mu_B(x \wedge y) = \mu_A(x \wedge y) \leq \min \{ \mu_A(x), \mu_A(y) \} = \min \{ \mu_B(x), \mu_B(y) \}$$

$$\mu_B(x \wedge y) \leq \min \{ \mu_B(x), \mu_B(y) \}$$

$$(ii) v_B(x \wedge y) = 1 - \mu_A(x \wedge y) \geq 1 - \min \{ \mu_A(x), \mu_A(y) \} = \max \{ 1 - \mu_A(x), 1 - \mu_A(y) \} = \max \{ v_A(x), v_A(y) \}$$

$$v_B(x \wedge y) \geq \max \{ v_A(x), v_A(y) \}$$

Hence B is an intuitionistic fuzzy meet semi L-filter

Theorem 1.16

If $A = < \mu_A, v_A >$ is an intuitionistic fuzzy meet semi L-filter. Then $\diamond A = < 1 - v_A, v_A >$ is also an intuitionistic fuzzy meet semi L-filter.

Proof

Let A be an intuitionistic fuzzy meet semi L-filter.

Then (i) $\mu_A(x \wedge y) \leq \min \{ \mu_A(x), \mu_A(y) \}$

$$(ii) v_A(x \wedge y) \geq \max \{ v_A(x), v_A(y) \}$$

To prove that $\diamond A = < 1 - v_A, v_A >$ is an intuitionistic fuzzy meet semi L-filter.

$$\begin{aligned} \text{Let } B = \diamond A . (\text{ie}) \mu_B &= 1 - v_A, v_B = v_A \\ (i) \mu_B(x \wedge y) &= 1 - v_A(x \wedge y) \\ &\leq 1 - \max \{ v_A(x), v_A(y) \} \\ &= \min \{ 1 - v_A(x), 1 - v_A(y) \} \\ &= \min \{ \mu_B(x), \mu_B(y) \} \\ \mu_B(x \wedge y) &\leq \min \{ \mu_B(x), \mu_B(y) \} \\ (ii) v_B(x \wedge y) &= v_A(x \wedge y) \\ &\geq \max \{ v_A(x), v_A(y) \} \\ &= \max \{ v_B(x), v_B(y) \} \\ v_B(x \wedge y) &\geq \max \{ v_B(x), v_B(y) \} \end{aligned}$$

Hence B is an intuitionistic fuzzy meet semi L-filter.

Theorem 1.17

If $A = < \mu_A, v_A >$ is an intuitionistic fuzzy meet semi L-filter of X, then μ_A and $1 - v_A$ are fuzzy meet semi L-filters.

Proof

Let A is an intuitionistic fuzzy meet semi L-filter of X.

(i) Let $B = < x, \mu_A >$ be a fuzzy set.

Then $\mu_B = \mu_A$

$$\begin{aligned} \mu_B(x \wedge y) &= \mu_A(x \wedge y) \leq \min \{ \mu_A(x), \mu_A(y) \} = \min \{ \mu_B(x), \mu_B(y) \} \\ \mu_B(x \wedge y) &\leq \min \{ \mu_B(x), \mu_B(y) \} \end{aligned}$$

Hence $\mu_B = \mu_A$ is an fuzzy meet semi L-filter.

(ii) Let $C = < x, 1 - v_A >$ be a fuzzy set.

Then $\mu_C = 1 - v_A$

$$\begin{aligned} \mu_C(x \wedge y) &= 1 - v_A(x \wedge y) \leq 1 - \max \{ v_A(x), v_A(y) \} \\ &= \min \{ 1 - v_A(x), 1 - v_A(y) \} \\ &= \min \{ v_C(x), v_C(y) \} \\ \mu_C(x \wedge y) &\leq \min \{ v_C(x), v_C(y) \} \end{aligned}$$

Hence $\mu_C = 1 - v_A$ is an fuzzy meet semi L-filter.

2 LEVEL SET

Definition 2.1

Let μ be any fuzzy meet semi L-filter of a fuzzy meet semilattice A and let $t \in [0, 1]$. Then $\mu_t = \{ x \in A / \mu(x) \leq t \}$ is called fuzzy level meet semi L-filter of μ .

Example 2.2

Let $A = \{ 0, a, b, 1 \}$. Let $\mu : A \rightarrow [0, 1]$ is a fuzzy meet set in A defined by $\mu(0) = 0.4$, $\mu(a) = 0.5$, $\mu(b) = 0.6$, $\mu(1) = 0.7$

Then μ is a fuzzy meet semi L-filter of A.

In this Example $t = 0.5$, then $\mu_t = \mu_{0.5} = \{0, a\}$.

Definition 2.3

Let $A = < \mu_A, v_A >$ be an intuitionistic fuzzy meet semi L-filter and $t \in [0, 1]$. Then $\mu_t = \{ x \in A / \mu(x) \leq t \}$

$\{x \in t / v(x) \geq t\}$ is called intuitionistic fuzzy level meet semi L-filter of A.

Example 2.4

Let $A = \{0, a, b, 1\}$. Let $\mu : A \rightarrow [0, 1]$ and $v : A \rightarrow [0, 1]$ be a fuzzy meet subsemilattices in A defined by $\langle \mu(0), v(0) \rangle = \langle 0.8, 0.2 \rangle$; $\langle \mu(a), v(a) \rangle = \langle 0.5, 0.5 \rangle$; $\langle \mu(b), v(b) \rangle = \langle 0.6, 0.4 \rangle$; $\langle \mu(c), v(c) \rangle = \langle 0.7, 0.3 \rangle$; $\langle \mu(1), v(1) \rangle = \langle 0.4, 0.6 \rangle$.

Then A is an intuitionistic fuzzy meet semi L-filter.

In this case $t = 0.6$, $\mu_t = \{a, b, 1\}$, $v_t = \{1\}$.

Theorem 2.5

Let A be fuzzy meet semilattice. If $\mu : A \rightarrow [0, 1]$, $v : A \rightarrow [0, 1]$ is a intuitionistic fuzzy meet semi L-filter, then the level subsets μ_t , v_t and $t \in [0, 1]$ is a intuitionistic fuzzy level meet semi L-filter of A.

Proof

Let $x, y \in \mu_t$. Then $\mu(x) \leq t$, $\mu(y) \leq t$.

$$\mu(x \wedge y) \leq \min\{\mu(x), \mu(y)\} \leq t$$

Therefore $x \wedge y \in \mu_t$.

Let $x, y \in v_t$. Then $v(x) \geq t$, $v(y) \geq t$.

$$v(x \wedge y) \geq \max\{v(x), v(y)\} \geq t$$

Therefore $x \wedge y \in v_t$.

Hence μ_t , v_t are intuitionistic fuzzy meet semi L-filter of A

Theorem 2.6

If A is a fuzzy meet semilattice. Then $A = \langle \mu_A, v_A \rangle$ is a intuitionistic fuzzy meet semi L-filter iff the level subsets μ_t , v_t and $t \in [0, 1]$ is a intuitionistic fuzzy level meet semi L-filter of A.

Proof

Let A be a fuzzy meet semilattice.

Assume that A is a intuitionistic fuzzy meet semi L-filter.

Then μ_t , v_t are intuitionistic fuzzy level meet semi l-filter of A. (by above theorem)

Conversely, assume that μ_t , v_t are intuitionistic fuzzy level meet semi L-filter of A.

To prove that A is a intuitionistic fuzzy meet semi L-filter.

Let $x, y \in \mu_t$. Then $\mu(x) \leq t$, $\mu(y) \leq t$.

$$\min\{\mu(x), \mu(y)\} \leq t$$

Therefore $x \wedge y \in \mu_t$.

$$(ie) \mu(x \wedge y) \leq t$$

$$\mu(x \wedge y) \leq \min\{\mu(x), \mu(y)\}$$

Let $x, y \in v_t$. Then $v(x) \geq t$, $v(y) \geq t$

$$\max\{v(x), v(y)\} \geq t$$

Therefore $x \wedge y \in v_t$.

$$(ie) v(x \wedge y) \geq t$$

$$v(x \wedge y) \geq \max\{v(x), v(y)\}$$

Hence A is an intuitionistic fuzzy meet semi L-filter.

Theorem 2.7

If $A = \langle \mu_A, v_A \rangle$ is an intuitionistic fuzzy meet semi L-filter of X, then $B = \langle \mu_A, 0 \rangle$ and $C = \langle 0, 1 - \mu_A \rangle$ are intuitionistic fuzzy meet semi L-filter of X.

Proof

Given A is an intuitionistic fuzzy meet semi L-filter of X. To prove that B and C are intuitionistic fuzzy meet semi L-filter.

$$If B = \langle \mu_A, 0 \rangle then \mu_B = \mu_A, v_B = 0$$

Let $x, y \in X$.

$$Then \mu_B(x \wedge y) = \mu_A(x \wedge y) \leq \min\{\mu_A(x), \mu_A(y)\} = \min\{\mu_B(x), \mu_B(y)\}$$

$$\mu_B(x \wedge y) \leq \min\{\mu_B(x), \mu_B(y)\}$$

$$v_B(x \wedge y) = 0 \geq \max\{v_B(x), v_B(y)\}$$

Hence B is an intuitionistic fuzzy meet semi L-filter.

$$Let C = \langle 0, 1 - \mu_A \rangle. Then \mu_C = 0, v_C = 1 - \mu_A$$

$$\mu_C(x \wedge y) = 0 \leq \min\{\mu_C(x), \mu_C(y)\}$$

$$v_C(x \wedge y) = 1 - \mu_A(x \wedge y) \geq \max\{1 - \mu_A(x), 1 - \mu_A(y)\}$$

$$v_C(x \wedge y) \geq \max\{\mu_C(x), \mu_C(y)\}.$$

Hence C is an intuitionistic fuzzy meet semi L-filter.

REFERENCES

- i. A. Maheswari and M. Palanivelrajan, *Introduction to Intuitionistic L-fuzzy semi filter of lattices*, International journal of Machine Learning and computing, Vol.2, No.6, December 2012.
- ii. K.T. Atanassov, "Intuitionistic Fuzzy Sets", *Fuzzy sets and systems* Vol.20, No.1 , pp 87 - 96, 1986.
- iii. L.A.Zadeh, "Fuzzy sets", *Inform.control.Vol.8*, pps 338 – 353, 1965.
- iv. Rosenfield, Fuzzy Groups, Math. Anal. Appl.35(1971) 512- 517.
- v. M. Mullai , "fuzzy L-filters", *IOSR Journal of mathematics*, ISSN:2278-5728 Volume I, issue 3(July – Aug 2012), pp 21 -24.
- vi. A. Kavitha and B. Chellappa, *Fuzzy meet semi L-filter Vol.5, No.2, The Global Journal of Applied Mathematics & Mathematical Sciences,(July- December 2012): pp.115-119 ©Serials Publications Issn: 0973 – 5518.*