MA571 Homework 10

Carlos Salinas

November 8, 2015

Problem 10.1 (Munkres §52, Ex. 2)

Let α be a path in X from x_0 to x_1 ; let β be a path in X from x_1 to x_2 . Show that if $\gamma = \alpha * \beta$, then $\hat{\gamma} = \hat{\beta} \circ \hat{\alpha}$.

Proof. By Theorem 52.1, the paths α and β induce a group homomorphism $\hat{\alpha} \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$ and $\hat{\beta} \colon \pi_1(X, x_1) \to \pi_1(X, x_2)$, respectively. We want to show therefore that the induced homomorphism $\hat{\gamma} = \widehat{\alpha} * \widehat{\beta}$ is in fact equivalent to the composition $\hat{\beta} \circ \hat{\alpha}$. Let [f] be a loop based at x_0 then

$$\widehat{\gamma}([f]) = \widehat{\alpha * \beta}([f])$$

$$= \left[\overline{\alpha * \beta}\right] * [f] * [\alpha * \beta]$$

$$= \left[\overline{\beta} * \overline{\alpha}\right] * [f] * [\alpha] * [\beta]$$

by the well-definedness of the path product operation, we have

$$= [\bar{\beta}] * [\bar{\alpha}] * [f] * [\alpha] * [\beta]$$

by associativity of the path product,

$$\begin{split} &= [\bar{\beta}] * ([\bar{\alpha}] * [f] * [\alpha]) * [\beta] \\ &= [\bar{\beta}] * \hat{\alpha}([f]) * [\beta] \end{split}$$

where $\alpha([f])$ is a loop based at x_1 so

$$= \hat{\beta}(\hat{\alpha}([f]))$$

= $(\hat{\beta} \circ \hat{\alpha})([f]).$

Thus, the following diagram commutes

PROBLEM 10.2 (MUNKRES §52, Ex. 3)

Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X, x_0)$ is Abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.

Proof. \Longrightarrow Suppose that $\pi_1(X, x_0)$ is Abelian. Then for any class of loops about x_0 , say [f] and [g], the product [f] * [g] = [g] * [f]. Let α and β be paths from x_0 to x_1 . Then the induced map on fundamental groups $\hat{\alpha}$ and $\hat{\beta}$ yield isomorphism by Theorem 52.1 so that the map $\hat{\beta} \circ \hat{\alpha}$ is an automorphism of $\pi_1(X, x_0)$. Moreover, we have

$$\hat{\beta} \circ \hat{\alpha}([f]) = \hat{\beta}(\hat{\alpha}([f]))$$

$$= \hat{\beta}([\bar{\alpha}] * [f] * [\alpha])$$

$$= [\beta] * ([\bar{\alpha}] * [f] * [\alpha]) * [\bar{\beta}]$$

by associativity of the path product, we may rewrite the above expression as

$$= ([\beta] * [\bar{\alpha}]) * [f] * ([\alpha] * [\bar{\beta}])$$

noting that $[\beta] * [\bar{\alpha}]$ and $[\alpha] * [\bar{\beta}]$ are loops based at x_0 , since $\pi_1(X, x_0)$ is Abelian, we have

$$= ([\beta] * [\bar{\alpha}]) * ([\alpha] * [\bar{\beta}]) * [f]$$

= $[e_{x_0}] * [f]$
= $[f]$.

Thus, $\hat{\beta} \circ \hat{\alpha} = \mathrm{id}_{\pi_1(X,x_0)}$, i.e., $\hat{\alpha} = \hat{\beta}$.

 \Leftarrow Let f and g be loops about x_0 . Then, since X is path connected, we claim that f and g are homotopic to the path product $\alpha_1 * \bar{\beta}_1$ and $\alpha_2 * \bar{\beta}_2$ where α_i, β_i are paths from x_0 to x_1 . More precisely, split f into the paths $f_1 = f(t/2)$ and $f_2 = f((t+1)/2)$; it is clear that $f = f_1 * f_2$. Let $x_2 := f_1(1)$ then there exists a path α from x_2 to x_1 since X is path connected. Now we claim that the following

$$H(x,t) := f_1(x) * \alpha(tx) * \bar{\alpha}((1-t)x) * f_2(x)$$

is a homotopy from $f = f_1 * f_2$ to the extended loop $\tilde{f} = f_1 * \alpha * \bar{\alpha} * f_2$.

Proof of claim. It is clear that H is continuous since it is a path products and multiplication on the unit interval I is continuous so tx is continuous. Lastly, $H(x,0) = f_1(x) * \alpha(0) * \bar{\alpha}(0) * f_2(x)$ and $H(x,1) = f_1(x) * \alpha(x) * \bar{\alpha}(x) * f_2(x)$.

Now, let $f \simeq_p \alpha_1 * \bar{\beta}_1$ and $g \simeq_p \alpha_2 * \bar{\beta}_2$ where α_i, β_i are paths from x_0 to x_1 . Then we have

$$\begin{split} [f] * [g] * [\bar{f}] * [\bar{g}] &= [\alpha_1 * \bar{\beta}_1] * [\alpha_2 * \bar{\beta}_2] * [\overline{\alpha_1 * \bar{\beta}_1}] * [\overline{\alpha_2 * \bar{\beta}_2}] \\ &= [\alpha_1 * \bar{\beta}_1] * [\alpha_2 * \bar{\beta}_2] * [\beta_1 * \bar{\alpha}_1] * [\beta_2 * \bar{\alpha}_2] \\ &= [\alpha_1] * [\bar{\beta}_1] * [\alpha_2] * [\bar{\beta}_2] * [\beta_1] * [\bar{\alpha}_1] * [\beta_2] * [\bar{\alpha}_2] \\ &= \hat{\bar{\alpha}}_1 ([\bar{\beta}_1] * [\alpha_2] * [\bar{\beta}_2] * [\beta_1]) * [\beta_2] * [\alpha_2] \\ &= \hat{\bar{\alpha}}_1 (\hat{\beta}_2 ([\alpha_2] * [\bar{\beta}_2])) * [\beta_2] * [\bar{\alpha}_2] \\ &= [\alpha_2] * [\bar{\beta}_2] * [\bar{\alpha}_2] \end{split}$$

3

$$= [\alpha_2] * [e_{x_0}] * [\bar{\alpha}_2]$$

= $[\alpha_2] * [\bar{\alpha}_2]$
= $[e_{x_0}]$.

Thus, $\pi_1(X, x_0)$ is Abelian.

PROBLEM 10.3 (MUNKRES §52, Ex. 4)

Let $A \subset X$; suppose $r: X \to A$ is continuous map such that r(a) = a for each $a \in A$. (The map r is called a *retraction* of X onto A.) If $a_0 \in A$, show that

$$r_* : \pi_1(X, x_0) \longrightarrow \pi_1(A, a_0)$$

is surjective.

Proof. Suppose f is a loop in A based at a. Then, extending the codomain of f to X, f is a loop in X based at a. Then, since r(a) = a for all a and $f(I) \subset A$, $r_*([f]) = [p(f)] = [f]$ so r_* is surjective.

PROBLEM 10.4 (MUNKRES §53, Ex. 6)

Show that if X is path connected, the homomorphism induced by a continuous map is independent of the base point, up to isomorphisms of the groups involved. More precisely, let $h: X \to Y$ be continuous, with $h(x_0) = y_0$ and $h(x_1) = y_1$. Let α be a path in X from x_0 to x_1 , and let $\beta = h \circ \alpha$. Show that

$$\hat{\beta} \circ (h_{x_0})_* = (h_{x_1})_* \circ \hat{\alpha}.$$

This equation expresses the fact that the following diagram of maps "commutes"

$$\begin{array}{ccc}
\pi_1(X, x_0) & \xrightarrow{(h_{x_0})_*} & \pi_1(Y, y_0) \\
& \hat{\alpha} \downarrow & & \downarrow \hat{\beta} \\
\pi_1(X, x_1) & \xrightarrow{(h_{x_1})_*} & \pi_1(Y, y_1).
\end{array}$$

Proof. Unpacking the expression on the left, we have the following sequence of equalities: Let f be a loop in X based at x_0 then

$$(\hat{\beta} \circ (h_{x_0})_*)([f]) = \hat{\beta}((h_{x_0})_*([f]))$$

$$= \hat{\beta}([h(f)])$$

$$= [\bar{\beta}] * [h(f)] * [\beta]$$

$$= [\bar{h} \circ \alpha] * [h(f)] * [h \circ \alpha]$$

$$= [h \circ \bar{\alpha}] * [h(f)] * [h \circ \alpha]$$

but since $(h_{x_1})_*$ is a homomorphism

$$= (h_{x_0})_* (\bar{\alpha} * f * \alpha)$$

= $(h_{x_1})_* (\hat{\alpha}([f]))$
= $((h_{x_1})_* \circ \hat{\alpha})([f]).$

PROBLEM 10.5 (MUNKRES §55, Ex. 1)

Show that if A is a retract of B^2 , then every continuous map $f: A \to A$ has a fixed point.

Proof. Suppose that A is a retract of B^2 . Let $r\colon B^2\to A$ one such retraction. If $f\colon A\to A$ is a continuous map, then $f\circ r$ is a continuous map, by Theorem 18.2(c), from B^2 to A. Expanding the codomain of f to B^2 , i.e., composing with the canonical injection $\iota\colon A\hookrightarrow B^2$, we have a continuous mapping $\tilde{f}\colon B^2\to B^2$ that coincides with f in A. Then, by Theorem 55.6, \tilde{f} has a fixed point, i.e., $\tilde{f}(x)=x$ for some $x\in B^2$. By the Brouwer fixed-point theorem for the disc, there exists a point $x\in B^2$ such that $\tilde{f}(x)=x$, but im $\tilde{f}=\operatorname{im} f\subset A$ so $x\in A$. It follows that f has a fixed point. \blacksquare

PROBLEM 10.6 (MUNKRES §55, Ex. 2)

Show that if $h \colon S^1 \to S^1$ is nulhomotopic, then h has a fixed point and h maps some point x to its antipode -x.

Proof.

 $CARLOS\ SALINAS$ PROBLEM 10.7((A))

PROBLEM 10.7 ((A))

Prove that every m-manifold is locally path-connected.

Proof. Suppose M is an m-manifold. Let $x \in M$ and U' be an arbitrary neighborhood of x. Then, since M is a manifold, there exists an open neighborhood U of x that is homeomorphic to an open subset, say V, of \mathbf{R}^m . Let $h \colon U \to V$ be a homeomorphism. Then $h(U \cap U')$ is open in U so by Theorem 16.2, $h(U \cap U')$ is open in \mathbf{R}^m . Therefore, for sufficiently small values of $\delta > 0$, we have the inclusion $B(h(x), \delta) \subset h(U \cap U')$. We claim that $W := h^{-1}(B(h(x), \delta))$ is a path-connected neighborhood of x contained in U'.

Containment is clear for h is a bijection and we have that $W \subset U \cap U' \subset U'$. By Example 3 in Munkres §24 we know that open balls in \mathbf{R}^m are path-connected therefore given $y_0 = h(x_0), y_1 = h(x_1) \in h(W)$, there exists a path $p \colon I \to h(W)$ with $p(0) = y_0$ and $p(1) = y_1$. Then $q \coloneqq \left((h^{-1})\big|_{h(W)} \circ p\right) \colon I \to W$ is a path in W from x_0 to x_1 . It is clear that q is continuous by Theorem 18.2(c) since it is a composition of continuous functions (where $(h^{-1})\big|_{h(W)}$ is continuous by Theorem 18.2(d) since it is the restriction of a continuous function). Lastly, $q(0) = x_0$ and $q(1) = x_1$. Since x_0 and x_1 were arbitrary, it follows that W is path-connected. Therefore, M is locally path-connected.

 $CARLOS\ SALINAS$ PROBLEM 10.8((B))

PROBLEM 10.8 ((B))

Prove that every m-manifold is regular.

Proof. Let $x \in M$ and U' be an arbitrary neighborhood of x. Then, since M is a manifold, there exists an open neighborhood U of x that is homeomorphic to an open subset, say V, of \mathbf{R}^m . Let $h \colon U \to V$ be a homeomorphism. Then $h(U \cap U')$ is open in U so by Theorem 16.2, $h(U \cap U')$ is open in \mathbf{R}^m . Since \mathbf{R}^m is regular, by Lemma 31.1(a), there exist an neighborhood W of h(x) such that $\overline{W} \subset h(U \cap U')$. We claim that $h^{-1}(W) \subset U'$ is a neighborhood of x such that $h^{-1}(W) \subset U'$. That $h^{-1}(W)$ is contained in U' is clear since h is a homeomorphism and W is contained in the image of $U \cap U'$. It is also easy to see that $h^{-1}(\overline{W}) \subset U'$ since, again h is a homeomorphism and $\overline{W} \subset U \cap U'$. Now, since h is a homeomorphism it is a closed map so $h^{-1}(\overline{W})$ is a closed subset of U containing $h^{-1}(W)$. Therefore, by Lemma B, $\overline{h^{-1}(W)} \subset h^{-1}(\overline{W}) \subset U'$. Thus, by Lemma 31.1, M is regular.

PROBLEM 10.9 ((C))

Prove that there is no 1-1 continuous function $\iota \colon S^1 \to \mathbf{R}$. You may assume any fact about trigonometric functions. (Note: this shows in particular that there is no $\iota \colon S^1 \to \mathbf{R}$ with $p \circ \iota$ equal to the identity map, where p is the map in the note on the Fundamental Group of the Circle.)

Proof. Seeking a contradiction, suppose that $\iota \colon S^1 \to \mathbf{R}$ is a continuous injection. Then ι cannot be a surjection since Theorem 26.6 would imply $S^1 \approx \mathbf{R}$, but S^1 is compact whereas \mathbf{R} is not, contradicting Theorem 26.5. Therefore, by homework Problem 2.8 (Munkres §18, Ex. 4) ι is an imbedding of S^1 into \mathbf{R} and im $\iota = [a,b]$ for some $a,b \in \mathbf{R}$ with a < b, since S^1 is compact and connected. Define $\tilde{\iota} = \iota|_{[a,b]}$ then $\tilde{\iota}$ is a homeomorphism (it is continuous by Theorem 18.2(e), and bijective since [a,b] is the image of S^1 under ι so is a homeomorphism by Theorem 26.6 since S^1 is compact and [a,b] is Hausdorff). Now, take the point x := (a+b)/2 in the interval [a,b]. By Lemma $A, S^1 \setminus \tilde{\iota}^{-1}(x)$ and $[a,b] \setminus x$ are homeomorphic. But $[a,b] \setminus x$ is disconnected, in particular [a,x), (x,b] are open and closed and $[a,x) \cup (x,b] = [a,b] \setminus x$ hence, form a disconnection, but $S^1 \setminus \tilde{\iota}(x)$ is (path) connected: Let $(x_0,y_0) \in S^1$. We rotate the circle S^1 so that (x_0,y_0) gets moved to the point (1,0) clockwise via the the map from $\mathbf{R}^2 \to \mathbf{R}^2$

$$R_{\theta}(x,y) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 where $\theta = \arctan(y_0/x_0)$.

Note that

$$R_{\theta}(x_0, y_0) = (\cos \theta x_0 + \sin \theta y_0, -\sin \theta x_0 + \cos \theta y_0)$$

$$= \left(\frac{x_0^2}{\sqrt{x_0^2 + y_0^2}} + \frac{y_0^2}{\sqrt{x_0^2 + y_0^2}}, -\frac{x_0 y_0}{\sqrt{x_0^2 + y_0^2}} + \frac{x_0 y_0}{\sqrt{x_0^2 + y_0^2}}\right)$$

$$= (1, 0)$$

The map is continuous since multiplication is continuous by Theorem 21.5 and since R_{θ} is bijective (in particular, the matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ has determinant equal to 1 so is invertible), R_{θ} is a homeomorphism by Theorem 26.6 so by Lemma A, its restriction to S^1 is a homeomorphism onto its image $R_{\theta}(S^1)$. Without loss of generality, we may assume that $\iota^{-1}(x) = (1,0)$. Take any $(x_1,y_1),(x_2,y_2) \in S^1 \setminus (0,1)$. Let $\phi_1 = \arctan(y_1/x_1)/2\pi$ and $\phi_2 = \arctan(y_2/x_2)/2\pi$. Then the map $p(t) = (\cos 2\pi q(t), \sin 2\pi q(t))$ where $q(t) = (1-t)\phi_1 + t\phi_2$ (counterclockwise, avoiding (0,1)) is a path from (x_1,y_1) to (x_2,y_2) . Thus $S^1 \setminus (0,1)$ is path connected so is connected (as demonstrated by Munkres in p. 155 although he does not actually assign the result to a corollary as he should).

To recap, if ι is an injection of S^1 into **R** Theorem 26.6 tells us that $S^1 \approx \iota(S^1)$. But we have just shown that the circle S^1 minus a point is (path) connected whereas the closed interval [a,b] minus a point is not contradicting Lemma A. Therefore, no such imbedding may exists for supposing so has led to a contradiction.

PROBLEM 10.10 ((D))

Prove Proposition C from the note on the Fundamental Group of the Circle.

Proof. The statement of Proposition C is as follows:

Proposition C. Let A be a connected space and let $a \in A$. If two continuous functions $\alpha, \beta \colon A \to \mathbf{R}$ have the property that $\alpha(a) = \beta(a)$ and $p \circ \alpha = p \circ \beta$ (where $p(u) = (\cos 2\pi u, \sin 2\pi u)$) then $\alpha = \beta$.

We shall proceed by contradiction. Keeping α and β as above, suppose that $\alpha \neq \beta$.