Milestone 1: Infrastruktur-Spezifikation

Hammerschmidt, Rentenberger, Schodl, Weidinger 28. November 2024

Inhaltsverzeichnis

1	Netzwerktopologie	2
2	Geplante Security Groups und Regeln	2
3	Dienste-Zuordnung zu Server-Instanzen	3
4	Spezifikationen der eingesetzten Systeme	3
5	Tests	3
6	Rollen und Verantwortlichkeiten im Team	5
7	FQDN und interne Domain	5

1 Netzwerktopologie

Graphik hier einfügen

Dienst	Subnetztyp	IP-Adresse	FQDN
Primärer DNS	Privates Subnetz	10.0.1.10	m dns 1. semester. at
Sekundärer DNS	Privates Subnetz	10.0.1.11	${ m dns} 2. { m semester.at}$
GitLab Server	Öffentliches Subnetz	10.0.0.10	gitlab.semester.at
LDAP Server	Privates Subnetz	10.0.2.10	server-ldap.semester.at

Tabelle 1: Netzwerkdienste und IP-Zuordnung

2 Geplante Security Groups und Regeln

Die Security Groups definieren, welche Dienste und Ports erreichbar sind:

Dienst	Eingehend (Ingress)	Ausgehend (Egress)
DNS	Port 53 (UDP/TCP) von privatem Subnetz	Alle Ports ins VPC-Netz
GitLab	Port 80/443 (HTTP/HTTPS) von bestimmten IPs	Alle Ports ins VPC-Netz
GitLab Runner	Port 8093 von GitLab-Server	Alle Ports ins VPC-Netz
LDAP	Port 389 (LDAP) nur aus privatem Subnetz	Alle Ports ins VPC-Netz

Tabelle 2: Geplante Security Groups und Regeln

Inbound SGRs	DNS	Bastion	LDAP/GitLab-R	GitLab-Server
HTTP	Nein	Nein	Nein	Ja (0.0.0.0/0)
HTTPS	Nein	Nein	Ja (10.0.0.0/24)	Ja (0.0.0.0/0)
SSH	Ja (10.0.0.0/24)	Ja (0.0.0.0/0)	Ja (0.0.0.0/0)	Ja (0.0.0.0/0)
DNS (UDP)	Ja (10.0.0.0/24)	Nein	Nein	Nein
DNS (TCP)	Ja (10.0.0.0/24)	Nein	Nein	Nein
LDAP	Nein	Nein	Ja (0.0.0.0/0)	Ja (0.0.0.0/0)
ALL ICMP	Ja (0.0.0.0/0)	Nein	Nein	Ja (10.0.0.0/24)

Tabelle 3: Eingehende Sicherheitsgruppenregeln (SGRs) für verschiedene Dienste

Outbound SGRs	DNS	Bastion	LDAP/GitLab-R	GitLab-Server
HTTP	Nein	Nein	${ m Ja}~(0.0.0.0/0)$	Nein
HTTPS	Nein	Nein	Ja (0.0.0.0/0)	Nein
SSH	Nein	Nein	Ja~(0.0.0.0/0)	Nein
DNS (UDP)	Nein	Nein	${ m Ja}~(0.0.0.0/0)$	Nein
DNS (TCP)	Nein	Nein	Ja~(0.0.0.0/0)	Nein
LDAP	Nein	Nein	Ja~(0.0.0.0/0)	Ja (0.0.0.0/0)
ALL ICMP	Nein	Nein	Ja (0.0.0.0/0)	Nein
ALL Traffic	Ja (0.0.0.0/0)	Ja~(0.0.0.0/0)	Nein	Ja~(0.0.0.0/0)

Tabelle 4: Ausgehende Sicherheitsgruppenregeln (SGRs) für verschiedene Dienste

3 Dienste-Zuordnung zu Server-Instanzen

Serverinstanz	Betriebssystem	Dienste
DNS-Server 1	Ubuntu 22.04 LTS	BIND (Primärer DNS)
DNS-Server 2	Ubuntu 22.04 LTS	BIND (Sekundärer DNS)
GitLab Server	Ubuntu 22.04 LTS	GitLab CE
GitLab Runner	Ubuntu 22.04 LTS	GitLab Runner
LDAP Server	Ubuntu 22.04 LTS	OpenLDAP

Tabelle 5: Dienste-Zuordnung zu Server-Instanzen

4 Spezifikationen der eingesetzten Systeme

Server	OS	Packages	Version
Preferred DNS Server	Ubuntu Server	bind9, bind9utils	BIND 9.18.19 / Ubuntu 22.04.3 LTS
Alternative DNS Server	Ubuntu Server	bind9, bind9utils	BIND 9.18.19 / Ubuntu 22.04.3 LTS
LDAP Server	Ubuntu Server	slapd, ldap-utils	OpenLDAP 2.6.6
GitLab Runner	Ubuntu Server	-	Ubuntu 22.04.3 LTS
GitLab Server	Ubuntu Server	GitLab CE	GitLab CE / Ubuntu 22.04.3 LTS

Tabelle 6: Server-Spezifikationen: Betriebssystem, Pakete und Instanztypen

• Betriebssystem: Ubuntu 22.04 LTS (64-bit)

• DNS-Server: BIND 9.18

• GitLab: GitLab CE 15.x

• GitLab Runner: Version kompatibel mit GitLab CE 15.x

• LDAP: OpenLDAP 2.5.x

• Optionale Überwachung: AWS CloudWatch zur Protokollierung und Überwachung.

5 Tests

DNS Resolution Testing

- Objective: Ensure the BIND server correctly resolves domain names.
- Method: Use the dig command to query the DNS server for known domains. Check A, AAAA, MX, and NS records:

dig @<DNS-server> example.com [A, AAAA, MX, NS]

• Expected Outcome: Each query returns the correct IP addresses and record details.

Forward and Reverse DNS Lookup

- Objective: Verify that forward and reverse lookups are functional.
- Method:
 - Use dig for forward lookup (domain to IP):

```
dig @<DNS-server> example.com A
```

- Use dig -x for reverse lookup (IP to domain):

```
dig @<DNS-server> -x [192.0.2.1]
```

• Expected Outcome: Accurate mapping between domain names and IP addresses.

Zone Transfer Test

- **Objective:** Ensure zone transfers between primary and secondary DNS servers are working.
- Method: Initiate a zone transfer using dig AXFR and check logs for the transfer:

```
dig @<primary-DNS-server> example.com AXFR
```

• Expected Outcome: Zone data is accurately replicated between primary and secondary servers.

DNS Failover Testing

- Objective: Assess the resilience and reliability of the DNS service under failure conditions.
- Method:
 - Simulate a failure of the primary DNS server.
 - Monitor the response from the secondary DNS server:

```
dig @<secondary-DNS-server> example.com A
```

- Record any downtime experienced during the transition.
- Expected Outcome: The secondary DNS server seamlessly takes over with little to no disruption in DNS resolution.

Stress Testing

- Objective: Test the performance of the server under high load.
- Method: Use tools such as dnsperf to simulate a high number of DNS queries:

```
dnsperf -s  primary-DNS-IP> -d queries.txt -l 30
```

• Expected Outcome: The server maintains accuracy and performs well under the load.

6 Rollen und Verantwortlichkeiten im Team

Rolle	Verantwortlichkeiten
Netzwerk-Architekt	Planung und Einrichtung der VPC und Subnetze
DevOps-Ingenieur	Bereitstellung von GitLab und CI/CD
Systemadministrator	Konfiguration von DNS- und LDAP-Servern
QA-Ingenieur	Testen der Dienste und Sicherheitskonfiguration

Tabelle 7: Rollen und Verantwortlichkeiten

7 FQDN und interne Domain

Die interne Domain wird als intern.local festgelegt. Beispiele:

- DNS-Server: dns1.intern.local, dns2.intern.local.
- GitLab: gitlab.intern.local.

Optional: Monitoring

AWS CloudWatch wird zur Protokollierung und Überwachung genutzt:

- Überwachung der CPU-, Speicher- und Netzwerknutzung.
- Automatische Alarme bei Ausfällen.