

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 1 of 39

FCC TEST REPORT

Client Name : Binatone Electronics International Ltd.

Address Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong

Kong, China

Product Name : Bluetooth Headset

Date : Sept. 05, 2019

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190820008-02

FCC ID: VLJ-SH037

Page 2 of 39

Contents

General Information		ba				
1.1. Client Information			iek Vi	·····		pubor 5
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During T	Anb		yot ^{ek}	Vupo10	P.L.	Day, Yan
1.3. Auxiliary Equipment Used During T	est				Amb	(
1.4. Description of Test Modes		oter.	Ant		9/-	θ
1.5. List of channels	نين					6
1.6. Description Of Test Setup			bol	A.O.		otek -
1.7. Test Equipment List	boter	Amb		otek	Anbo,	8
1.7. Test Equipment List	otek	Anbo		Val	Ropo _{te} ,	
1.9. Description of Test Facility	r.	·	DOLO	Villa.	Dog.	Aup C
2. Summary of Test Results	Ver		- Hootel	Anbo		10
3. Conducted Emission Test	Anb		otok	Pupos		11
3.1. Test Standard and Limit	e _{fr} bi	1001c			Ofer	
3.2. Test Setup		Anhoten.	Amba		- Notek	11
3.3. Test Procedure			<i>y</i>	01		11
3.4. 165t Data						
4. Radiation Spurious Emission and Band E	dge	VU)		botek	Anbo	14
4.1. Test Standard and Limit		·e/r	Wpo,	Pr.	K- 120	14
4.2. Test Setup						14
4.3. Test Procedure	Pil		otel	Anb.		15
4.4. Test Data	otek	Anbo.	/	, relt	opole.	16
5. Maximum Peak Output Power Test	-botek	- pobote			VIPOJEK	24
5.1. Test Standard and Limit5.2. Test Setup			oter A	Upo		24
5.2. Test Setup	Anbo		abotek	-pupor	by.	24
5.2. Test Setup 5.3. Test Procedure	Pupo,			Wipole,	AM	24
6. 6DB Occupy Bandwidth Test		botek	- Aupor		- Yara	27
6.1. Test Standard and Limit		~~~~~	00000	, P.		27
6.2. Test Setup	, bote.	Vur		wotek	Vupo,	27
6.3. Test Procedure	otek	Anbe		vek	Rupoke	27
6 4 Test Data						01.
7. Power Spectral Density Test	A.O.	oreW	- Modiek	Aupo		30
7.1. Test Standard and Limit	Anb			hupo,		30
7.2. Test Setup	,tel ^k	obore	brin.		100ter	30
7.3. Test Procedure7.4. Test Data		Arbotek	Anbe		- abotek	30
7.4. Test Data	Up.		iek pri	00,-	by	30
8 100kHz Bandwidth of Frequency Band Fo	dae Reau	irement				31
8.1. Test Standard and Limit	- Physical	A.C	_10/t	, atotek	0/24	33
8.2. Test Setup		itel ^k	Vupo,	bu.	ak	33
Show Anharal Commission of the automatic	par.				Cada	D DE OF a

Report No.: SZAWW190820008-02	FCC ID: VLJ-SH037	Page 3 of 39	
8.3. Test Procedure		Appoint Principle	33
8.4. Test Data	whole And	k Anbo	33
9. Antenna Requirement	ok Anbo	Par Park	37
9.1. Test Standard and Requirement	Marek Aup	Oles Ville	37
9.2. Antenna Connected Construction	oose Aur	hotek Anby	37
APPENDIX I TEST SETUP PHOTOGRAPI	H	, vipose, t	38
APPENDIX II PHOTOGRAPH			VUP. 30

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 4 of 39

TEST REPORT

Applicant : Binatone Electronics International Ltd.

Manufacturer : Binatone Electronics International Ltd.

Product Name : Bluetooth Headset

Model No. : SH037

Trade Mark : Motorola

Case Input: DC 5V, 260mA(with DC 3.7V, 260 mAh Battery inside)

Rating(s)

Single Earphone Input: DC 5V, 260mA(with DC 3.7V, 55 mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of receipt
Date of Test

Aug. 20, 2019

Aug. 20~30, 2019

Prepared By

(Engineer / Dolly Mo)

Showy Meng

(Supervisor / Snowy Meng)

Approved & Authorized Signer

(Manager / Sally Zhang)

Email: service@anbotek.com

Shenzhen Anbotek Compliance Laboratory Limited

Tel:(86) 755-26066440 Fax: (86) 755-26014772

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 5 of 39

1. General Information

1.1. Client Information

NO. D.	and the potential of th	10
Applicant	Binatone Electronics International Ltd.	Potek
Address	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong, China	Anbore
Manufacturer	Binatone Electronics International Ltd.	Ant
Address	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong, China	
Factory	Binatone Electronics International Ltd.	lek n
Address	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong, China	boter

1.2. Description of Device (EUT)

Product Name	:	Bluetooth Headset	tek Anbotek Anbotek Anbotek
Model No.	:	SH037	thotek Anborek Anborek Anborek
Trade Mark	:	Motorola	Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V, 60Hz for adapter/ D	C 3.7V Battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
	:	Operation Frequency:	2402MHz~2480MHz
		Transfer Rate:	BT 5.0 EDR: 1/2/3 Mbits/s BT 5.0 BLE: 1 Mbits/s
Product		Number of Channel:	BT 5.0 EDR: 79 Channels BT 5.0 BLE: 40 Channels
Description		Modulation Type:	BT 5.0 EDR: GFSK, π/4-DQPSK, 8-DPSK BT 5.0 BLE: GFSK
		Antenna Type:	PIFA Antenna
		Antenna Gain(Peak):	0 dBi

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2) This report is for BT 5.0 BLE module.

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 6 of 39

1.3. Auxiliary Equipment Used During Test

Adapter	:	Manufacturer: ZTE
		M/N: STC-A2050I1000USBA-C
		S/N: 201202102100876
*		Input: 100-240V~ 50/60Hz, 0.3A
T.		Output: DC 5V, 1000mA

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

	Pretest Mode	Descr	iption
otek.	Mode 1	CH00	ek anbotek Anbo. Ar
hotek	Mode 2	CH19	TX+ Charging Mode/TX Only
yun Potek	Mode 3	CH39	

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels
- (2)The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	09	2420	18	2438	27	2456	36	2474
01	2404	10	2422	19	2440	28	2458	37	2476
02	2406	11 _{hb} ote	2424	20	2442	29	2460	38	2478
03	2408	12 and	2426	21	2444	30	2462	39	2480
04	2410	ote* 13	2428	22	2446	31	2464		
05	2412	14	2430	23	2448	32	2466		
06	2414	15	2432	24	2450	33	2468		
07	2416	16	2434	25	2452	34	2470		
08	2418	17 and	2436	26	2454	35	2472		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 7 of 39

1.6. Description Of Test Setup

CE

RE

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190820008-02 Page 8 of 39

1.7. Test Equipment List

Item	Equipment	Equipment Manufacturer		Serial No.	Last Cal.	Cal.	
1.	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 26, 2018	1 Year	
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year	
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year	
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year	
5.	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year	
6.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 05, 2018	1 Year	
ni 7 .tek	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year	
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year	
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year	
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year	
11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year	
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A	
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year	
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year	
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year	
16.	MXA Spectrum Analysis	(A Spectrum Agilent		MY51170037	Nov. 05, 2018	1 Year	
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year	
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year	
19.	DC Power Supply	LW	TPR-6420D	374470	Oct. 31, 2018	1 Year	
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80 B	N/A	Nov. 01, 2018	1 Year	

400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 9 of 39

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	Anbore	Ar. abolek Ar	poter
		Ur = 3.8 dB (Vertical)	Anbo.	an abotek	Anbore.
		ok botek Anbotel	Aupo	k upotek	Anboro
Conduction Uncertainty	:	Uc = 3.4 dB	ster Anbo	otek Anbotek	Aupo,

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, September 30, 2018.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A, March 07, 2019.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 10 of 39

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Conducted Peak Output Power	PASS
15.247(a)(2)	6dB Occupied Bandwidth	PASS
15.247(e)	Power Spectral Density	PASS
15.247(d)	Band Edge	PASS

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 11 of 39

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	7 otek Anbotek Anbo					
Test Limit	Fraguenay	Maximum RF Line Voltage (dBuV)					
	Frequency	Quasi-peak Level	Average Level				
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
	500kHz~5MHz	56	46				
	5MHz~30MHz	60	50 anbotek				

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted **Emission Measurement.**

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

During the test, pre-scan all the modes, and found Low channel(TX+Charging Mode) which is the worst case, only the worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 12 of 39

Conducted Emission Test Data

Test Site: 1# Shielded Room

Operating Condition: Mode 1

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 23.3℃ Hum.: 52%

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037

Conducted Emission Test Data

Test Site: 1# Shielded Room

Mode 1 **Operating Condition:**

Test Specification: AC 120V, 60Hz for adapter

Comment: **Neutral Line**

Tem.: 23.3℃ Hum.: 52%

Freq.	Reading	Factor	Result	Limit	Over Limit	Detector	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	dBu∀	(dB)		
0.3180	21.52	19.90	41.42	59.76	-18.34	QP	
0.3180	6.84	19.90	26.74	49.76	-23.02	AVG	
0.4420	17.85	19.95	37.80	57.02	-19.22	QP	
0.4420	3.61	19.95	23.56	47.02	-23.46	AVG	
0.8100	3.61	20.07	23.68	46.00	-22.32	AVG	
0.9180	18.87	20.10	38.97	56.00	-17.03	QP	
1.4500	17.46	20.13	37.59	56.00	-18.41	QP	
1.4500	2.87	20.13	23.00	46.00	-23.00	AVG	
1.9700	16.62	20.14	36.76	56.00	-19.24	QP	
1.9860	2.20	20.14	22.34	46.00	-23.66	AVG	
2.6140	1.24	20.15	21.39	46.00	-24.61	AVG	
3.1540	15.69	20.16	35.85	56.00	-20.15	QP	
	(MHz) 0.3180 0.4420 0.4420 0.8100 0.9180 1.4500 1.9700 1.9860 2.6140	(MHz) (dBuV) 0.3180 21.52 0.3180 6.84 0.4420 17.85 0.4420 3.61 0.8100 3.61 0.9180 18.87 1.4500 17.46 1.4500 2.87 1.9700 16.62 1.9860 2.20 2.6140 1.24	(MHz) (dBuV) (dB) 0.3180 21.52 19.90 0.3180 6.84 19.90 0.4420 17.85 19.95 0.4420 3.61 19.95 0.8100 3.61 20.07 0.9180 18.87 20.10 1.4500 17.46 20.13 1.9700 16.62 20.14 1.9860 2.20 20.14 2.6140 1.24 20.15	(MHz) (dBuV) (dB) (dBuV) 0.3180 21.52 19.90 41.42 0.3180 6.84 19.90 26.74 0.4420 17.85 19.95 37.80 0.4420 3.61 19.95 23.56 0.8100 3.61 20.07 23.68 0.9180 18.87 20.10 38.97 1.4500 17.46 20.13 37.59 1.4500 2.87 20.13 23.00 1.9700 16.62 20.14 36.76 1.9860 2.20 20.14 22.34 2.6140 1.24 20.15 21.39	(MHz) (dBuV) (dB) (dBuV) dBuV 0.3180 21.52 19.90 41.42 59.76 0.3180 6.84 19.90 26.74 49.76 0.4420 17.85 19.95 37.80 57.02 0.4420 3.61 19.95 23.56 47.02 0.8100 3.61 20.07 23.68 46.00 0.9180 18.87 20.10 38.97 56.00 1.4500 17.46 20.13 37.59 56.00 1.4500 2.87 20.13 23.00 46.00 1.9700 16.62 20.14 36.76 56.00 1.9860 2.20 20.14 22.34 46.00 2.6140 1.24 20.15 21.39 46.00	(MHz) (dBuV) (dB) (dBuV) dBuV (dB) 0.3180 21.52 19.90 41.42 59.76 -18.34 0.3180 6.84 19.90 26.74 49.76 -23.02 0.4420 17.85 19.95 37.80 57.02 -19.22 0.4420 3.61 19.95 23.56 47.02 -23.46 0.8100 3.61 20.07 23.68 46.00 -22.32 0.9180 18.87 20.10 38.97 56.00 -17.03 1.4500 17.46 20.13 37.59 56.00 -18.41 1.4500 2.87 20.13 23.00 46.00 -23.00 1.9700 16.62 20.14 36.76 56.00 -19.24 1.9860 2.20 20.14 22.34 46.00 -23.66 2.6140 1.24 20.15 21.39 46.00 -24.61	(MHz) (dBuV) (dB) (dBuV) dBuV (dB) Detector 0.3180 21.52 19.90 41.42 59.76 -18.34 QP 0.3180 6.84 19.90 26.74 49.76 -23.02 AVG 0.4420 17.85 19.95 37.80 57.02 -19.22 QP 0.4420 3.61 19.95 23.56 47.02 -23.46 AVG 0.8100 3.61 20.07 23.68 46.00 -22.32 AVG 0.9180 18.87 20.10 38.97 56.00 -17.03 QP 1.4500 17.46 20.13 37.59 56.00 -18.41 QP 1.4500 2.87 20.13 23.00 46.00 -23.00 AVG 1.9700 16.62 20.14 36.76 56.00 -19.24 QP 1.9860 2.20 20.14 22.34 46.00 -23.66 AVG 2.6140 1.24 20.15

Code: AB-RF-05-a

www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15	5.209 and 15.205			
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	Anv	Anbotek	300
	0.490MHz-1.705MHz	24000/F(kHz)	Y Hotek	Anhotek	30
	1.705MHz-30MHz	30	ek abotel	Anbotek	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3
	216MHz~960MHz	200	46.0	Quasi-peak	Anbor 3
	960MHz~1000MHz	500	54.0	Quasi-peak	Ambou 3
	nbotek Anbo	500	54.0	Average	And 3
	Above 1000MHz	Anbotek Anbo	74.0	Peak	3

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

400-003-0500 www.anbotek.com

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 16 of 39

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan all the modes, and found the Middle channel(TX Only) which is the worst case, only the worst case is recorded in the report.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 17 of 39

Test Results (30~1000MHz)

Test Mode: Mode 2

Power Source: DC 3.7V Battery inside

Polarization: Vertical

Temp.(°C)/Hum.(%RH): 23.1°C/50%RH

Report No.: SZAWW190820008-02 Page 18 of 39 FCC ID: VLJ-SH037

Test Results (30~1000MHz)

Test Mode: Mode 2

Power Source: DC 3.7V Battery inside

Polarization: Horizontal

Temp.(°C)/Hum.(%RH): 23.1°C/50%RH

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 19 of 39

Test Results (1GHz-25GHz)

Test Mode:	CH00			Test	channel: Lov	vest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4804.00	38.26	34.04	6.58	34.09	44.79	74.00	-29.21	V
7206.00	32.46	37.11	7.73	34.50	42.80	74.00	-31.20	V
9608.00	32.03	39.31	9.23	34.79	45.78	74.00	-28.22	V
12010.00	Anb*tek	Anbo.	k vapot	JK Anb	Die Pile	74.00	potek p	V
14412.00	Ahborek.	Anbo	otek out	otek b	Upope b	74.00	Anbotek	V
4804.00	42.74	34.04	6.58	34.09	49.27	74.00	-24.73	H
7206.00	34.30	37.11	7.73	34.50	44.64	74.00	-29.36	Н
9608.00	31.54	39.31	9.23	34.79	45.29	74.00	-28.71	H
12010.00	Anbo*ek	Aupore	k abote	k Pupo	Ise Pupp	74.00	OASK DI	H
14412.00	Anbotek Anbotek	Aupo.	rek vap	otek M	Poter VI	74.00	unpotek	Aupo
	'		Av	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4804.00	26.89	34.04	6.58	34.09	33.42	54.00	-20.58	ootek V
7206.00	21.04	37.11	7.73	34.50	31.38	54.00	-22.62	AnbV
9608.00	20.06	39.31	9.23	34.79	33.81	54.00	-20.19	V
12010.00	tek *	stek p	Opolon b	hotek	Anbotek	54.00	anbotek.	V
14412.00	nek *	hotek	Aupote	Are botek	Anbotek	54.00	, popor	V
4804.00	31.22	34.04	6.58	34.09	37.75	54.00	-16.25	otek H
7206.00	23.28	37.11	7.73	34.50	33.62	54.00	-20.38	Anbotte
9608.00	19.87	39.31	9.23	34.79	33.62	54.00	-20.38	A/H
12010.00	ek *	iek Ar	poter N	Po.	Anbotek	54.00	Andabotek	Н
14412.00	*	botek	Anboten	And	Anbotek	54.00	Pr.	Ж

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 20 of 39

Test Results (1GHz-25GHz)

Test Mode:	CH19			Test	channel: Mid	dle		
			- I	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4880.00	36.90	34.38	6.69	34.09	43.88	74.00	-30.12	V
7320.00	31.56	37.22	7.78	34.53	42.03	74.00	-31.97	V
9760.00	31.23	39.46	9.35	34.80	45.24	74.00	-28.76	V
12200.00	Anb *tek	Vupo.	k whole	sk Aup.	No. Vinn	74.00	Dojek b	V
14640.00	Anborek Anborek	Anbox	otek on	potek b	Upons P	74.00	Anbotek	V
4880.00	41.10	34.38	6.69	34.09	48.08	74.00	-25.92	H
7320.00	33.28	37.22	7.78	34.53	43.75	74.00	-30.25	" Н
9760.00	30.61	39.46	9.35	34.80	44.62	74.00	-29.38	H
12200.00	anboxek	Aupore	r Par	k Aupo	ler Vupo	74.00	over A	H
14640.00	*notek	Anbo.	rick vup	otek Ar	poies Ar	74.00	Aupotek	Vupo.
			A۱	verage Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4880.00	25.80	34.38	6.69	34.09	32.78	54.00	-21.22	botek V
7320.00	20.30	37.22	7.78	34.53	30.77	54.00	-23.23	Anb
9760.00	19.40	39.46	9.35	34.80	33.41	54.00	-20.59	V
12200.00	rek *	yek p	Upolon b	notek	Anbotek	54.00	anbotek.	V
14640.00	nek *	obotek	Aupote	An borek	Anbotek	54.00	r nbot	V
4880.00	29.99	34.38	6.69	34.09	36.97	54.00	-17.03	otek H
7320.00	22.45	37.22	7.78	34.53	32.92	54.00	-21.08	Anbote
9760.00	19.10	39.46	9.35	34.80	33.11	54.00	-20.89	_{Pi} H
12200.00	* * * * * * * * * * * * * * * * * * *	tek bi	poter A	Potek	anbotek	54.00	Annapotek	Н
14640.00	*	hotek	Anbores	Ann	anbotek	54.00	Posts	Ж

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 21 of 39

Test Results (1GHz-25GHz)

Test Mode:	CH39			Test	channel: High	hest		
			F	 Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4960.00	36.52	34.72	6.79	34.09	43.94	74.00	-30.06	V
7440.00	31.31	37.34	7.82	34.57	41.90	74.00	-32.10	V
9920.00	31.00	39.62	9.46	34.81	45.27	74.00	-28.73	V
12400.00	Anb *tek	Vupo,	k supot	ek Aup	No. VIII	74.00	potek p	V
14880.00	Ahborek	Anbe	otek an	otek p	Upore V	74.00	Anbotek	V
4960.00	40.64	34.72	6.79	34.09	48.06	74.00	-25.94	H
7440.00	32.99	37.34	7.82	34.57	43.58	74.00	-30.42	Н
9920.00	30.35	39.62	9.46	34.81	44.62	74.00	-29.38	H
12400.00	anboxek	Anbore	r spoke	k Pupo	ler Yupo	74.00	otek M	H
14880.00	Anotek Anotek	Anbox	sek out	otek A	poter AI	74.00	Anbotek	Anbo.
			A۱	verage Valu	е	27	V	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4960.00	25.54	34.72	6.79	34.09	32.96	54.00	-21.04	potek V
7440.00	20.13	37.34	7.82	34.57	30.72	54.00	-23.28	AnbVie
9920.00	19.25	39.62	9.46	34.81	33.52	54.00	-20.48	V
12400.00	rek *	yek A	upole. b	notek	Aupotek	54.00	anbotek	V
14880.00	otek *	hotek	Anbore	Am	Anbotek	54.00	4 Anboir	V
4960.00	29.69	34.72	6.79	34.09	37.11	54.00	-16.89	otek H
7440.00	22.25	37.34	7.82	34.57	32.84	54.00	-21.16	Anbotte
9920.00	18.92	39.62	9.46	34.81	33.19	54.00	-20.81	P/H
12400.00	* * * * * * * * * * * * * * * * * * *	iek M	poter A	Potek	Anboyek	54.00	An abotek	Н
14880.00	*	botek	Anboten	And	Anbotek	54.00	Pri Opole	Н

Remark:

- 1. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 22 of 39

Radiated Band Edge:

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 23 of 39

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 24 of 39

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (b)(3)	Anboro	Andotek	Anborek
Test Limit	30dBm Andorek	Aupore	k abotek	Anbote

5.2. Test Setup

5.3. Test Procedure

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- 1. Set the RBW ≥DTS bandwidth.
- 2. Set the VBW≥3*RBW.
- 3. Set the span≥ 3*RBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use peak marker function to determine the peak amplitude level.

5.4. Test Data

Test Item : Max. peak output power Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 23.2° C

Test Result : PASS Humidity : 49 %

Cha	nnel Frequency	Peak Power output	Limit	Descrite
	(MHz)	(dBm)	(dBm)	Results
nbo.	2402	-2.651	30	PASS
Aupo	2440	-3.332	30	PASS
Pupp	2480	-2.681	30	PASS

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 25 of 39

CH: Low

CH: Middle

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 26 of 39

CH: High

www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 27 of 39

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(2)	Anboil	Amborek	Anborek
Test Limit	>500kHz	Anbore	Amabotek	Anbore

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, VBW≥3*RBW =300kHz,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low ~ CH High
Test Voltage : DC 3.7V Battery inside Temperature : 23.2° C

Test Result : PASS Humidity : 49 %

Channel	Frequency(MHz)	Bandwidth (kHz)	Limit (kHz)	Results
Low	2402	759.7	Anboten Anbo	PASS
Middle	2440	749.1	>500	PASS
High	2480	757.9	Anboten	PASS

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 28 of 39

CH: Low

CH: Middle

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 29 of 39

CH: High

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 30 of 39

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Sect	tion 15.247 (e)	nnbotek	Anbore	Am	Anborek
Test Limit	8dBm	Anbo	Anbotek	Anbore	Air	Anbot

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 23.2° C

Test Result : PASS Humidity : 49 %

Channel	Frequency	PSD	Limit	Doculto	
Channel	(MHz)	(dBm/3KHz)	(dBm/3KHz)	Results	
Low	2402	-17.897	8.00	PASS	
Middle	2440	-18.417	8.00	PASS	
High	2480	-18.103	8.00	PASS	

Shenzhen Anbotek Compliance Laboratory Limited Code: AB-RF-05-a

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 31 of 39

CH: Low

CH: Middle

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 32 of 39

CH: High

FCC ID: VLJ-SH037 Report No.: SZAWW190820008-02 Page 33 of 39

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the
	desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item Band edge Test Mode CH Low ~ CH High

23.2° C Test Voltage DC 3.7V Battery inside Temperature

Test Result **PASS** Humidity 49 %

Frequency Band (MHz)	Band Delta Peak to Band Emission (dBc)		Results
2400	35.552	An Age, Van	
2483.5	43.744	>20	PASS

Shenzhen Anbotek Compliance Laboratory Limited

400-003-0500

Code: AB-RF-05-a

www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 34 of 39

CH: Low

CH: High

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190820008-02 Conducted Emission Method FCC ID: VLJ-SH037

Page 35 of 39

CH: Low

CH: Middle

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 36 of 39

CH: High

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 37 of 39

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
Requirement	1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 2) 15.247(c) (1)(i) requirement: Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna

9.2. Antenna Connected Construction

The antenna is a PIFA Antenna which permanently attached, and the best case gain of the antenna is 0 dBi. It complies with the standard requirement.

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 38 of 39

APPENDIX I -- TEST SETUP PHOTOGRAPH

Reference to the test report SZAWW190820008-01.

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190820008-02 FCC ID: VLJ-SH037 Page 39 of 39

APPENDIX II -- PHOTOGRAPH

Reference to the test report SZAWW190820008-01.

----- End of Report -----