基于统计分析的自适应 Android系统性能异常 检测

何钦尧

导师: 陈渝

Background

Android

- Most popular smart phone operating system (compete with iOS)
- · Open source, which cause fragmentation.
- Third-party modifications, devices with different hardware, different version exist in market.
- Performance degradation upon use with time lapse.
- · Performance anomaly occurs frequently which need analysis.
- · To solve performance issue, first find and understand anomaly.

Performance anomaly

- Anomaly —— different from normal
 - High latency
 - UI unresponsiveness
 - Disk IO
 - Memory swapness
 - Context switch

- Anomaly may not be too obvious to easy detected by human.
- May only exist in subtle statistics.

Related work

Related work

- Detecting large-scale system problems by mining console logs
 - Finding problem from log in large scale datacenter which is hard for manually inspection.
- Fingerprinting the Datacenter: Automated Classification of Performance Crises
 - Matching runtime statistics fingerprint with existing database, detecting similar problem and match possible solutions.
- AppInsight: Mobile App Performance Monitoring in the Wild
 - Inspecting calling relationship and execution path by injecting code to existing app.
- Measuring the Performance of Interactive Applications with Listener Latency Profiling
 - Injecting to callback listener record logs for Java GUI application

Methodology

Statistics from Linux kernel

- Android is based on Linux kernel
- /proc filesystem
- cpuinfo
- meminfo
- process
- io
- network

• We can have enormous runtime statistics either for the whole system or for a single process, and no need for modification on application.

Proc filesystem

\$ ls								
1 87	3700	config.gz	execdomains	irq	kpageflags	mtrr	slabinfo	timer_list
22576 87	3726	consoles	fb	kallsyms	loadavg	net	softirqs	timer_stats
22602 87	3727	cpuinfo	filesystems	kcore	locks	pagetypeinfo	stat	tty
22603 ac	ісрі	crypto	fs	keys	mdstat	partitions	swaps	uptime
22817 bu	ouddyinfo	devices	interrupts	key-users	meminfo	sched_debug	sys	version
2663 bu	ous	diskstats	iomem	kmsg	misc	schedstat	sysrq-trigger	vmallocinfo
69 cg	groups	dma	ioports	kpagecgroup	modules	scsi	sysvipc	vmstat
783 cm	mdline	driver	ipmi	kpagecount	mounts	self	thread-self	zoneinfo

\$ ls		- FIE						
attr	cmdline	environ	limits	mounts	oom_adj	root	stat	wchan
autogroup	comm	exe	map_files	mountstats	oom_score	sched	statm	
auxv	coredump_filter	fd	maps	net	oom_score_adj	schedstat	status	
cgroup	cpuset	fdinfo	mem	ns	pagemap	smaps	syscall	
clear_refs	cwd	io	mountinfo	numa_maps	personality	stack	task	

Performance anomaly detection

- When does a computer system run into an anomaly state.
- Large amount of statistics makes it hard for human observation.
- What is anomaly? High load? High latency? Hardware exception?
- Anomaly is rare in real system, difficult for direct prediction.
- Unsupervised learning from normal data —— anomaly detection.
- Find pattern adaptively from real time usage data without human intervention.

Anomaly(outlier) detection

- · Gather normal feature pattern to form cluster.
- · Outlier is predicted to be those far from any cluster.

UI latency prediction

- Find when a Android app encounter high UI latency with high-speed photography.
- Runtime statistics from Android OS kernel and framework, both by Linux kernel and code injection to framework and application.
- Can get labeled data about when we encounter UI latency and the runtime state.
- Enable further analysis of its reason.
- Maybe build a supervised machine learning model to predict latency directly from statistics.

Schedules

Schedules

- 2017.1 2017.3 build a tool which can gather and store runtime statistics from Linux kernel in proper format.
- 2017.3 2017.4 gather runtime statistics (both normal and anomaly) in experiment settings.
- 2017.4 2017.5 train unsupervised model for anomaly detection and online testing.
- 2017.5 2017.6 synthesize and thesis writing.

Thanks