PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-091842

(43)Date of publication of application: 22.04.1988

)Int.Cl.

G11B 7/24 G11B 11/10

)Application number: 61-237348

(71)Applicant: MATSUSHITA ELECTRIC IND CO

LTD

!)Date of filing:

06.10.1986

(72)Inventor: OSADA KENICHI

YAMADA NOBORU

1) OPTICAL INFORMATION RECORDING MEDIUM

')Abstract:

RPOSE: To eliminate a difference in recording nsitivity in the diametral direction within an optical k and to improve and stabilize the sensitivity of the k by forming the recording layer of the disk to the it absorption efficiency higher on the outer periphery in on the inner periphery.

INSTITUTION: A reflection layer 2 is formed in order enhance the absorption efficiency of the incident rays the recording layer 4 and to expand the design range an optical information recording medium in association high the refractive indices, attenuation coeffts, and film cknesses of the other layers. The light absorption iciency in the recording layer 4 is higher as the light lectivity in the reflection layer 2 is increased. The lection layer 2 is formed to have the reflectivity her on the outer periphery than on the inner iphery by utilizing such fact. The optical disk which is the deteriorated in the recording sensitivity even on the ter periphery where the line speed is high as inpared to the inner periphery is thereby obtd.

19 日本国特許庁(JP)

⑩ 特許出 顋 公 開

⑫ 公 開 特 許 公 報 (A)

昭63-91842

@Int Cl.4

識別記号

庁内整理番号

49公開 昭和63年(1988)4月22日

G 11 B 7/24 11/10

B-8421-5D A-8421-5D

審査請求 未請求 発明の数 1 (全6頁)

図発明の名称

光学情報記録媒体

20特 頭 昭61-237348

昇

砂出 願 昭61(1986)10月6日

切発 明 者

長 H 鰵

大阪府門真市大字門真1006番地 松下電器產業株式会社内

79発 明 渚 Ш \mathbf{H} 大阪府門真市大字門真1006番地 松下電器產業株式会社内

切出 顋 松下電器産業株式会社 人

大阪府門真市大字門真1006番地

砂代 理 弁理士 中尾 敏男 外1名

> 眲 細 事

1、発明の名称

光学情報記錄媒体

2、特許請求の範囲

(1) 光を吸収し、その結果として物理的又は化学 的変化を生ずる記録層と、光の行路長を調節し、 記録前後の反射光の変化量を大きくするための透 明体層、及び上記記録層への光吸収効率を高める ための光反射層とを円形基板上に備えたディスク 構成において、記録層における入射光の吸収効率 が内周よりも外周で大きいことを特徴とする光学 情報記録媒体。

(2) 反射暦での反射率が内周よりも外周で大きい ことを特徴とする特許請求の範囲第1項記載の光 情報記 绿媒体。

3、発明の詳細な説明

産業上の利用分野

本発明は、レーザ光線を用いた情報記録再生装 健に用いる記録媒体として用いる光学情報記録媒 体、例えば光ディスク、とりわけ母き換え可能な

光ディスクに関し、その書き換え特性を向上させ る構成を提供する。

従来の技術

従来より、レーザ光線を用いて回転しているデ ィスク上に高密度な情報を高速に記録・再生する 技術は、光ディスク装置として既に幾つもの研究 成果例、商品開発例の報告があり、情報システム を構成する上で不可欠なものとなりつつある。

これら光ディスクに用いる記録材料としては、 穴, 泡等の形状変化を生じさせて光の反射率変化, 透過事変化を得るものと、光学的性質(屈折率 n, 消疫係数k)を変えて反射率変化,透過率変化を 得るものとがある。

このうち、後者のタイプのものは原理的に変化 が可逆的で、情報を繰り返し書き換えるととがで きるというメリットを有しており、今後の光ディ スクの主流になると予想される。記録層としては Te をペースとするカルコゲナイト化物合金薄膜 TeとTeO2 を主成分とする酸化物游腹等が知ら れている。さらに記録層にかける光吸収効率を高

める工夫として、例えば特開昭 5 7 - 1 1 1 8 9 号公報に見られるように反射層を設けた構成が知 られている。

発明が解決しようとする問題点

上記記録媒体において、記録層としてカルコグ ン化物合金薄膜,反射層として金属薄膜を適用し、 むき換え型の光ディスクを構成して、一定回転数 で回転させながら記録・消去感度の評価を行りと、 外周になればなる任ど記録感度が低下することが わかった。径方向で生ずる感度差はディスク内ト ラック(案内傳)の線速度が各トラック径に比例 していることによる。すなわち、同じパワー密度 をもつレーザ光を照射しても、線速度の速い外周 部では単位面積あたりの照射時間が短くなり、充 分加熱昇温されなくなるので記録感度が低くなる のである。ディスクの回転数を適宜調整し、記録 ・消去部のトラックの線速度を常に一定にすれば 径方向での記録感度差は生じないが、光ディスク の大きな特徴である高速ランダム・アクセスが実 現困難となり実際的ではない。一方、同じサイズ

を示す。図中 a は、保護層 B 側から光を入射させる例であり、 b は基材 1 側から光を入射させる例である。

基本的にはa,bは全く同じ構成であるが基板 と各層の位置関係及び基板に形成する原番の違い が基板及び各層の材質,製法等に多少の差を生ず る。

基板1としてはPMMA,ポリカーボネイト等の関脂又はガラス等通常光ディスクに用いられる表面の平滑なものを用いるが、ロタイプの場合は基板が透明である必要はなく表面の平滑な金属板、セラミックス板を用いるととができる。光ディスクの場合、通常基材平面ではレーザ光線を導くために、スパイラル又は同心にはのトラックで置われている。反射層2としてはAu、Cr、NiーCr、AuーCr等の金属群膜を用いる。透明体層3、6としてはSiO2、Al2O3、ZnS、ZnSe等の誘電体層4が記録、消去を繰り返した時に破壊されるのな防止することであり、1つには前述した多面

の光ディスクで高記録容量を実現するには、最内 周トラック径を小さくせざるを得ず、その結果、 最外周トラックと最内周トラックの線速腔比が大 きくなってしまり。このように現在の光ディスク は外周になるほど記録感度が悪くなるという本質 的な問題をもっており、光ディスク実用の大きな 障害となっている。

問題点を解決するための手段

記録層における入射光の吸収効率が内間よりも 外周で大きくなるように構成する。

作 用

光ディスクの記録層における光吸収効率を内周よりも外周で大きくすることにより、線速度が速くて光照射時間をかせげない外周部でも効率よく加熱昇温できる。このため、ディスク内で径方向の記録感度差がなくなり、高感度で安定した光学情報記録媒体が得られる。

爽 施 例

以下、図面に基づいて本発明を説明する。 第1図に本発明の光学情報記録媒体の一構成例

干渉効果を利用して記録暦 4への光吸収効率を高めることであり、同時に記録前後の反射光、又は透過光の変化量を大きくして高いS/Nを得るととである。

記録層4の材料としては、審き換え型の場合は、例えばTe, Seをベースとするカルコゲン化物合金等、結晶相とアモルファス相との間で熱的プロセスに基づき可逆的な構造変化をおこす物質,或いは光磁気記録媒体に用いられる希土類元素と遷移金属元素とをベースとする物質等を用いることができる。

保護層をは樹脂をスピンコートしたり、基材と 同様の樹脂板、金属板等を接着剤を用いてはり合 わせることによって形成する。

各層の順厚はマトリックス法により厳密に決定 することができる。ただし場合によっては2つの 透明体間3,5のうち片方、又は両方の無い構成 も考えられる。これは記録暦4の材料系によって も異なるが、この構成を例えばいわゆる追加記録 型の書き換えないタイプの記録媒体に適用する場 合には前述の破壊防止効果はさほど必要でなく、 光学的な効率のみを考えればよい。 この場合、特 に光の入射側の透明体層 5 は必ずしも必要ではな い。 さらには同図 0 に示すように 2 組の記録媒体 を反射層 2 を内側にして接着層 8 により貼り合わ せることにより両面から記録,再生,消去可能を 構造が用いられる。

反射層 2 は記録層における入射光線の吸収効率を高めるとともに、他の層の屈折率 n , 消衰係数 k , 腱厚 d と関連して光学情報配録媒体の設計節 囲を拡大することにある。 反射層での光反射率を大きくするほど記録層での光吸収効率が高く ことが光学的計算及び実験的に確められた。 ことができくすることにより、線速度の速い外周で大きくすることにより、線速度の速い外周で表の周と比べて記録感度の劣らない光ディスクを得ることができた。

次に更に具体的な例をもって本発明を詳述する。 (実施例1)

第2図に示す構成のテストピースを多数用意し

100m5cから1.0 m5cまでかえて照射した。この時、相変化開始に要した照射時間を第3図に示す。反射層の腹厚が600Åまでは膜厚の増加とともに記録感度も高くなったが、それ以上腹厚が増しても感度はかわらない。

た。 基材 として厚さ 1.2 mm の P M M A 街 脂 9 、 第 1及び第2の透明体層として ZnS層10,記録層11 として(Te₆₅Ge₂₀Se₁₅)₇₀Sb₃₀ の組成の 化合物層を用い、反射層 1 2は Au - 1 5 at & Cr 合金薄膜を選んだ。さらにUV樹脂13で、厚さ 1.2mm P M M A 樹脂の保護層 1 4 を貼り合せた。 各層はそれぞれ 1 × 1 O⁻⁵ Torr 以下の真空槽内 で電子ビーム蒸剤法により形成した。 記録層は 4 つのソースから反射層のうち Au-15 at ACr 合 金は2つのソースからそれぞれの成分の蒸着レー トを制御しながら同時蒸着して形成した。各層の 膜厚は、記録,消去に用いるレーザの波長↓(~ B300A)と、各層の屈折率nとを基準に選ん だ。第1の2nS層の膜厚を5ょ/18n ←1060 人)、記録層の膜厚を400人、第2の ZnS層の 膜厚をぶ/2m(~1680A),反射層の膜厚 を200~800~とした。

記録層11はレーザ照射によりあらかじめ結晶 化し光学定数の高い状態にしておく。これを末配 録状銀又は消去状態と呼ぶ。各層の厚さは消去状

この実験結果を考察するにあたり、各反射層材料の光学的特性について述べる。あらかじめ、各層の屈折率 n 及び消疫係数 k を実験的手法により求めておき、これらの値と各膜厚を与えることにより、前述したサンブル各層における波長 B 3 O O 入のレーザ光の吸収量を算出した。記録層及び反射層以外の層では k = O なので吸収はない。 要1に計算に用いた各層の n , k を、第4,5 図に計算結果を示す。

表 1 各層の光学定数 (実験値)

	п	k
PMMA	1 . 49	0
ZnS	2.4	0
(TeGeSe) ₇₀ Sb ₃₀	6.3	2.2
Au-16at % Cr	1.4	5.3

第 4 図は ZnS 層上に 種々の 膜厚の Au - 1 5 at \$ Cr 層を形成して、 ZnS 層側から A = 8 3 O n m の光を入射した時の反射率を示したものである。 Au-Cr 層の 膜厚がおよそ 7 O O A までは 膜厚の 増加

とともに反射率も高くなるがそれ以上の膜厚では 反射率は飽和して変化しない。

前述のサンブルと同じ構成を計算上再現した時、 反射層の膜厚と記録層における光吸収効率の関係 を第 5 図に示す。第 4 および第 5 図からわかるよ うに、反射層での反射率を高くすると記録層での 吸収が大きくなることがわかる。前述の実験結果 とあわせると、反射層の反射率を高くして記録層 での光吸収効率を高めることが、配録感度の上昇 につながることがわかる。

(実施例2)

第2図に示す構成の130¢の光ディスクを形成し、記録部の線速度と記録感度の関係を調べた。トラックは 660から 6120にわたってきざんである。AuーCr反射層の膜厚はトラック全面にわたって200Å、配録層はあらかじめレーザ照射により結晶化させてある。ディスクの回転数は900rpmで一定、レーザ光を半値で約0.9 μmφに放り込み、 660~ 6120 の範囲のトラックに6 MHz の信号を1回転の間記録し、記録信号

この効果に基づき、例えば画像処理用のコンピューター用ファイル・メモリー等への応用が可能 となった。

4、図面の簡単な説明

第1図は本発明の光学情報記録媒体の基本構成 を示す断面図、第2図は本発明の光学情報記録媒 体の感度測定用テストサンブル及びディスクの断 面図、第3図は前記サンブルの記録層における相 変態を起すに必要な照射時間と反射層の膜厚の関 係を示すグラフ、第4図はZnS基板上に形成した Au-15% Cr 合金薄膜の膜厚と反射率の関係を 示すグラフ、第5図は第2図に示した構成の記録 媒体における反射層の膜厚と記録層における光吸 収効率の関係を示すグラフ、第6図は前記構成の 光ディスクにおいて反射層膜厚が一定の時の記録 部の線速度とC/Nが50 dB になる時のレーザ ・パワーの関係を示すグラフ、第7図は前記構成 の光ディスクにおける反射層の腹厚を内周から外 周にかけて連続的に厚く形成した時の、記録部の 線速度とC/Nが50 dBになる時のレーザ・パ

のC/NをHP社のスペクトル・アナライザーで 測定した。この時、記録トラックの譲速度とC/N が 5 0 dBになるレーザ光のパワーの関係を解 6 図に示す。最内周と最外周では同じ 5 0 dBの C/Nをだすためのレーザ光のパワーに 2.8 mW もの差が生じた。

次に内周から外周にかけて腹厚が連続的に厚く なるように蒸落マスクの形状を工夫して、最内周 トラックで200Å・最外周トラックで800Å の Au - Cr 反射層を形成した光ディスクを構成と た。このディスクにないて、記録部の線速と ちの dBの C / Nが得られるレーザ・パワーのに 係を調べた。結果を第7四に示す。同図に示した ように最内周と最外周トラックにかいてC / N を現するレーザ光のパワー差は O.9 mW との、反射層の膜厚に勾配をもたせることにより若 し、、反射層のとができた。

発明の効果

本発明によれば、従来の光ディスクよりも内外 周の感度差を大巾に小さくすることができる。

ワーの関係を示すグラフである。

1 ……基板、2 … …反射層、3 … … 透明体層、4 ……記録層、5 … … 透明体層、6 … … 保護層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 1 図

第 2 図

第 5 図

那 6 図

第 7 図

