

ATK-OV5640 摄像头模块 用户手册

高性能 500W 高清摄像头模块

用户手册

ALIENTEK 广州市星翼电子科技有限公司

修订历史

版本 日期		原因	
V1.00	2016/6/1	第一次发布	

目录

1. 特性参数	2
2. 使用说明	
2. 1 模块引脚说明	
2.2 串行摄像头控制总线(SCCB)简介	
2.3 DVP 接口说明	5
2.4 窗口设置说明	5
2.5 输出时序说明	6
2.6 自动对焦(Auto Focus)说明	7
3. 结构尺寸	9
4. 其他	10

1. 特性参数

ATK-OV5640-V11 (V11 是版本号,下面均以 ATK-OV5640 表示该产品)是 ALIENTEK 推出的一款高性能 500W 像素高清摄像头模块。该模块采用 OmniVision 公司生产的一颗 1/4 英寸 CMOS QSXGA (2592*1944)图像传感器: OV5640。ATK-OV5640模块采用该 OV5640传感器作为核心部件,集成有源晶振和 LDO,并且集成了自动对焦(AF)功能,带 2 个 1W的高亮 LED 闪光灯,具有非常高的性价比。

ATK-OV5640 模块的特点如下:

- 采用 1.4 μ m*1.4 μ m 像素大小,并且使用 OmniBSI 技术以达到更高性能(高灵敏度、低串扰和低噪声)
- 自动图像控制功能:自动曝光(AEC)、自动白平衡(AWB)、自动消除灯光条纹、自动黑电平校准(ABLC)和自动带通滤波器(ABF)等。
- 支持图像质量控制: 色饱和度调节、色调调节、gamma 校准、锐度和镜头校准等
- 标准的 SCCB 接口,兼容 IIC 接口
- 支持 RawRGB、RGB(RGB565/RGB555/RGB444)、CCIR656、YUV(422/420)、YCbCr (422) 和压缩图像(JPEG)输出格式
- 支持 QSXGA(500W)图像尺寸输出,以及按比例缩小到其他任何尺寸
- 支持闪光灯
- 支持图像缩放、平移和窗口设置
- 支持图像压缩,即可输出 JPEG 图像数据
- 支持数字视频接口(DVP)和 MIPI 接口
- 支持自动对焦
- 自带嵌入式微处理器
- 集成有源晶振,无需外部提供时钟
- 集成 LDO,仅需提供 3.3V 电源即可正常工作

ATK-OV5640 模块各项参数如表 1.1、表 1.2 和表 1.3 所示。

项目	说明			
接口类型	数据接口: 8 位数据 控制接口: SCCB (类 IIC 协议)			
输出格式	RawRGB、RGB(RGB565/RGB555/RGB444)、CCIR656、YUV(422/420)、			
	YCbCr(422)和 JPEG 数据			
输出位宽	8位			
输出像素	QSXGA(2592*1944)及以下 40*30 的任意尺寸			
最大帧率	QSXGA (2592*1944): 15fps			
	1080P (1920*1080): 30fps			
	720P (1280*720): 60fps			
传感器尺寸	1/4 英寸			
灵敏度	600mV/Lux-sec			
信噪比	36dB			
动态范围	68dB F2.8 70°			
镜头光圈				
镜头视角				

	镜头焦距	3.34mm
	工作温度	-30°C~70°C
Ī	模块尺寸	24mm*32mm

表 1.1 ATK-OV5640 摄像头模块基本特性

ATK-SIM900A 模块的功能特性如表 1.2 所示:

功能	说明
自动对焦	支持单次自动对焦和持续自动对焦
闪光灯控制	支持闪光灯(2 个 1W 的 LED),可程序控制
输出窗口设置	支持输出窗口设置,可以匹配任意分辨率的液晶
缩放控制	支持缩放控制

表 1.2 ATK-OV5640 功能特性

项目	说明
电源电压	3.3V
IO 口电平 ¹	2.8V LVTTL,可兼容 3.3V
功耗	56mA

表 1.3 ATK-OV5640 摄像头模块电气特性

注 1: 模块 IO 电压是 2.8V,不过对于 3.3V 系统,是可以直接兼容的。所以 3.3V 的 MCU 无需任何处理,直接连接模块即可。不过如果是 5V 的 MCU,建议在信号线上串接 1K 左右电阻,做限流处理。

2. 使用说明

2.1 模块引脚说明

ATK-OV5640 摄像头模块通过 2*9 排针(2.54 间距)同外部连接,模块可以与 ALIENTEK 阿波罗开发板 (STM32F429/STM32F7)、探索者 STM32F407 等开发板直接对接,并提供有相应的例程,用户可以直接在这些开发板上,对模块进行测试。

ATK-OV5640 摄像头模块外观如图 2.1.1 所示

图 2.1.1 ATK-OV5640 摄像头模块实物图

ATK-OV5640 摄像头模块原理图如图 2.1.2 所示:

图 2.1.2ATK-OV5640 摄像头模块原理图

从图中可以看出,模快自带有源晶振,用于产生 24M 时钟作为 OV5640 的 XCLK 输入,模块的闪光灯(LED1&LED2)由 OV5640 的 STROBE 脚控制(可编程控制)。同时自带了稳压芯片,用于提供 OV5640 稳定的 2.8V 和 1.5V 工作电压,模块通过一个 2*9 的双排排针(P1)与外部通信,与外部的通信信号如表 2.1.1 所示:

信号	作用描述	信号	作用描述
VCC3. 3	模块供电脚,接 3.3V 电源	OV_PCLK	像素时钟输出

GND	模块地线	OV_PWDN	掉电使能(高有效)
OV_SCL	SCCB 通信时钟信号	OV_VSYNC	帧同步信号输出
OV_SDA	SCCB 通信数据信号	OV_HREF	行同步信号输出
OV_D[7:0]	8 位数据输出	OV_RESET	复位信号(低有效)

表 2.1.1 OV5640 模块信号及其作用描述

2.2 串行摄像头控制总线 (SCCB) 简介

ATK-OV5640 摄像头模块的所有配置,都是通过 SCCB 总线来实现的,SCCB 全称是: Seril Camera Control Bus 即串行摄像头控制总线,它由两条数据线组成: 一个是用于传输时钟信号的 SIO_C (即 OV_SCL),另一个适用于传输数据信号的 SIO_D (即 OV_SDA)。SCCB 的传输协议与 IIC 协议极其相似,只不过 IIC 在每传输完一个字节后,接收数据的一方要发送一位的确认数据,而 SCCB 一次要传输 9 位数据,前 8 位为有用数据,而第 9 位数据在写周期中是 don't care 位(即不必关心位),在读周期中是 NA 位。 SCCB 定义数据传输的基本单元为相(phase),即一个相传输一个字节数据。

SCCB 只包括三种传输周期,即 3 相写传输周期(三个相依次为设备从地址,内存地址,所写数据), 2 相写传输周期(两个相依次为设备从地址,内存地址)和 2 相读传输周期(两个相依次为设备从地址,所读数据)。当需要写操作时,应用 3 相写传输周期,当需要读操作时,依次应用 2 相写传输周期和 2 相读传输周期。

关于 SCCB 的详细介绍,请大家参考 ATK-OV5640 摄像头模块资料: 4, OV5640 参考资资料\《 OmniVision Technologies Seril Camera Control Bus(SCCB) Specification.pdf》这个文档。

OV5640 的初始化,需要配置大量的寄存器,这里我们就不给大家多做介绍了,请大家参考

2.3 DVP 接口说明

OV5640 支持数字视频接口 (DVP) 和 MIPI 接口,因为我们的 STM32F407/STM32F429 使用的 DCMI 接口,仅支持 DVP 接口,所以,OV5640 必须使用 DVP 输出接口,才可以连接我们的探索者/阿波罗 STM32 开发板。

OV5640 提供一个 10 位 DVP 接口(支持 8 位接法), 其 MSB 和 LSB 可以程序设置先后顺序, ALIENTEK OV5640 模块采用默认的 8 位连接方式,如图 2.3.1 所示:

图 2.3.1 OV5640 默认 8 位连接方式

2.4 窗口设置说明

接下来,我们介绍一下 OV5640 的: ISP (Image Signal Processor) 输入窗口设置、预缩

放窗口设置和输出大小窗口设置,这几个设置与我们的正常使用密切相关,有必要了解一下。 他们的设置关系,如图 2.4.1 所示:

图 2.4.1 OV5640 各窗口设置关系

ISP 输入窗口设置(ISP input size)

该设置允许用户设置整个传感器区域 (physical pixel size , 2632*1951) 的感兴趣部分,也就是在传感器里面开窗(X_ADDR_ST、Y_ADDR_ST、X_ADDR_END 和 Y_ADDR_END),开窗范围从 0*0~2632*1951 都可以设置,该窗口所设置的范围,将输入 ISP 进行处理。

ISP 输入窗口,通过: 0X3800~0X3807 等 8 个寄存器进行设置,这些寄存器的定义请看: OV5640_CSP3_DS_2.01_Ruisipusheng.pdf 这个文档(下同)。

预缩放窗口设置(pre-scaling size)

该设置允许用户在 ISP 输入窗口的基础上,再次设置将要用于缩放的窗口大小。该设置仅在 ISP 输入窗口内进行 x/y 方向的偏移 (X_OFFSET/Y_OFFSET)。通过: 0X3810~0X3813 等 4 个寄存器进行设置。

输出大小窗口设置(data output size)

该窗口是以预缩放窗口为原始大小,经过内部 DSP 进行缩放处理后,输出给外部的图像窗口大小。它控制最终的图像输出尺寸(X_OUTPUT_SIZE/Y_OUTPUT_SIZE)。通过: 0X3808~0X380B 等 4 个寄存器进行设置。注意: 当输出大小窗口与预缩放窗口比例不一致时,图像将进行缩放处理(会变形),仅当两者比例一致时,输出比例才是 1:1 (正常)。

图 2.4.1 中,右侧 data output size 区域,才是 OV5640 输出给外部的图像尺寸,也就是显示在 LCD 上面的图像大小。输出大小窗口与预缩放窗口比例不一致时,会进行缩放处理,在 LCD 上面看到的图像将会变形。

2.5 输出时序说明

接下来,我们介绍一下 OV5640 的图像数据输出时序。首先我们简单介绍一些定义: QSXGA, 这里指: 分辨率为 2592*1944 的输出格式,类似的还有: QXGA(2048*1536)、UXGA(1600*1200) 、 SXGA(1280*1024) 、 WXGA+(1440*900) 、 WXGA(1280*800) 、XGA(1024*768)、SVGA(800*600)、VGA(640*480)、QVGA(320*240)和 QQVGA(160*120)等。

PCLK, 即像素时钟, 一个 PCLK 时钟, 输出一个像素(或半个像素)。

VSYNC, 即帧同步信号。

HREF/HSYNC,即行同步信号。

OV5640 的图像数据输出 (通过 Y[9:0]) 就是在 PCLK,VSYNC 和 HREF/ HSYNC 的控制下进行的。首先看看行输出时序,如图 2.5.1 所示:

图 2.5.1 OV5640 行输出时序

从上图可以看出,图像数据在 HREF 为高的时候输出,当 HREF 变高后,每一个 PCLK 时钟,输出一个 8 位/10 位数据。我们采用 8 位接口,所以每个 PCLK 输出 1 个字节,且在 RGB/YUV 输出格式下,每个 tp=2 个 Tpclk,如果是 Raw 格式,则一个 tp=1 个 Tpclk。比如 我们采用 QSXGA 时序,RGB565 格式输出,每 2 个字节组成一个像素的颜色(低字节在前,高字节在后),这样每行输出总共有 2592*2 个 PCLK 周期,输出 2592*2 个字节。

再来看看帧时序(QSXGA模式),如图 2.5.2 所示:

图 2.5.2 OV5640 帧时序

上图清楚的表示了 OV5640 在 QSXGA 模式下的数据输出。我们按照这个时序去读取 OV5640 的数据,就可以得到图像数据。

2.6 自动对焦 (Auto Focus) 说明

用户手册

OV5640 由内置微型控制器完成自动对焦,并且 VCM (Voice Coil Motor,即音圈马达)驱动器也已集成在传感器内部。微型控制器的控制固件(firmware)从主机下载。当固件运

www.alientek.com

行后,内置微型控制器从 OV5640 传感器读得自动对焦所需的信息,计算并驱动 VCM 马达带动镜头到达正确的对焦位置。主机可以通过 IIC 命令控制微型控制器的各种功能。

OV5640 的自动对焦命令(通过 SCCB 总线发送), 如表 2.6.1 所示:

地址	寄存器名	描述	值	
	CMD_MAIN	AF 主命令寄存器	0X03: 触发单次自动对焦过程	
			0X04: 启动持续自动对焦过程	
0X3022			0X06: 暂停自动对焦过程	
0.0022			0X08:释放马达回到初始状态	
			0X12:设置对焦区域	
			0X00: 命令完成	
0X3023	CMD ACK	命令确认	0X00: 命令完成	
0.0023	CMD_ACK	可令明八	0X01: 命令执行中	
	FW_STATUS	对焦状态	0X7F: 固件下载完成,但未执行,可	
			能是: 固件有问题/微控制器关闭	
0X3029			0X7E: 固件初始化中	
0.0029			0X70:释放马达,回到初始状态	
			0X00:正在自动对焦	
			0X10: 自动对焦完成	

表 2.6.1 OV5640 自动对焦命令

OV5640 内部的微控制器收到自动对焦命令后会自动将 CMD_MAIN (0X3022) 寄存器数据清零, 当命令完成后会将 CMD ACK (0X3023) 寄存器数据清零。

自动对焦(AF)过程

- ① 在第一次进入图像预览的时候(图像可以正常输出时),下载固件(firmware)
- ② 拍照前,自动对焦,对焦完成后,拍照
- ③ 拍照完毕,释放马达到初始状态

接下来,我们分别说明。

① 下载固件

OV5640 初始化完成后,就可以下载 AF 自动对焦固件了,其操作和下载初始化参数类似,AF 固件下载地址为: 0X8000,初始化数组由厂家提供(本例程该数组保存在 ov5640af.h 里面),下载固件完成后,通过检查 0X3029 寄存器的值,来判断固件状态(等于 0X70,说明正常)。

② 自动对焦

OV5640 支持单次自动对焦和持续自动对焦,通过 0X3022 寄存器控制。单次自动对焦过程如下:

- 1,将 0X3022 寄存器写为 0X03,开始单点对焦过程。
- 2, 读取寄存器 0X3029, 如果返回值为 0X10, 代表对焦己完成。
- 3, 写寄存器 0X3022 为 0X06, 暂停对焦过程, 使镜头将保持在此对焦位置。

其中,前两步是必须的,第三步,可以不要,因为单次自动对焦完成以后,就不会继续自动对焦了,镜头也就不会动了。

持续自动对焦过程如下:

- 1, 将 0X22 寄存器写为 0X08, 释放马达到初始位置 (对焦无穷远)。
- 2, 将 0X3022 寄存器写为 0X04, 启动持续自动对焦过程。
- 3, 读取寄存器 0X3023, 等待命令完成。
- 4, 当 OV5640 每次检测到失焦时,就会自动进行对焦(一直检测)。

③ 释放马达,结束自动对焦

最后,在拍照完成,或者需要结束自动对焦的时候,我们对在寄存器 0X3022 写入 0X08,即可释放马达,结束自动对焦。

最后说一下 OV5640 的图像数据格式,我们一般用 2 种输出方式: RGB565 和 JPEG。 当输出 RGB565 格式数据的时候,时序完全就是上面两幅图介绍的关系。以满足不同需要。而当输出数据是 JPEG 数据的时候,同样也是这种方式输出(所以数据读取方法一模一样),不过 PCLK 数目大大减少了,且不连续,输出的数据是压缩后的 JPEG 数据,输出的 JPEG 数据以: 0XFF,0XD8 开头,以 0XFF,0XD9 结尾,且在 0XFF,0XD8 之前,或者 0XFF,0XD9 之后,会有不定数量的其他数据存在(一般是 0),这些数据我们直接忽略即可,将得到的 0XFF,0XD8~0XFF,0XD9 之间的数据,保存为.jpg/.jpeg 文件,就可以直接在电脑上打开看到 图像了。

OV5640 自带的 JPEG 输出功能,大大减少了图像的数据量,使得其在网络摄像头、无线视频传输等方面具有很大的优势。OV5640 我们就介绍到这,关于 OV5640 更详细的介绍,请大家参考: **4, OV5640 参考资料→** OV5640 CSP3 DS 2.01 Ruisipusheng.pdf。

3. 结构尺寸

ATK-0V5640 模块的尺寸结构如图 3.1 所示:

图 3.1 ATK-0V5640 尺寸机构图

4. 其他

1、购买地址:

官方店铺 1: https://eboard.taobao.com/ 官方店铺 2: https://eboard.taobao.com/

2、资料下载

ATK-0V5640 摄像头模块资料下载地址: http://www.openedv.com/thread-77924-1-1.html

3、技术支持

公司网址: <u>www.alientek.com</u> 技术论坛: <u>www.openedv.com</u>

电话: 020-38271790 传真: 020-36773971

