Dipartimento di Ingegneria

Corso di laurea in Ingegneria

Informatica

Creazione di infrastrutture in Cloud attraverso il codice

Relatore Prof. Luca Cabibbo Laureando Andrea Di Paola Matr. 548039

OBIETTIVI

- Acquisire conoscenze sul Cloud Computing
- Apprendere i motivi e gli approcci della Migrazione verso il Cloud
- Creare infrastrutture in Cloud
- Sperimentare automazione nel processo di provisioning di risorse

CLOUD COMPUTING

I modelli di Servizio:

- Infrastructure as a Service (laaS)
- Platform as a Service (PaaS)
- Software as a Service (SaaS)

CLOUD MIGRATION

I vantaggi di spostare dati e applicazioni su Cloud:

- Modalità di pagamento pay-per-use
- Alta scalabilità
- Sistemi di sicurezza offerti dal Provider
- Opportunità di modernizzare gli applicativi

CLOUD MIGRATION

TYPES OF CLOUD MIGRATION STRATEGIES

Le sei strategie di migrazione:

- Rehosting
- Replatforming
- Refactoring
- Repurchasing
- Retiring
- Retaining

INFRASTRUCTURE AS CODE

IaC è un metodo che permette di modellare infrastrutture attraverso il codice

- Riduce i tempi per i rilasci
- Riduce gli errori
- Favorisce il riuso del codice

STRUMENTI DI LAVORO

AMAZON WEB SERVICES

- Modello Cloud IaaS
- Offre 150+ di servizi gestiti
- Alta affidabilità e sicurezza
- Infrastruttura dinamica

STRUMENTI DI LAVORO

TERRAFORM

- È uno strumento che consente di applicare Infrastructure as code.
- È un linguaggio di programmazione dichiarativo.
- Consente di lavorare con un'ampia scelta di providers cloud.
- Tiene traccia del provisioning delle risorse.

MIGRAZIONE WEB APP

Come sperimentazione, si può sfruttare Terraform per il provisioning delle risorse e il deployment automatizzato di una web app Spring Boot scritta in java

PROCEDURA

1. Inizializzazione

Definizione del Cloud provider, del data center e delle variabili a supporto delle risorse (es. credenziali AWS).

```
™ init.tf > ...
      terraform {
        required providers {
            source = "hashicorp/aws"
            version = "=3.75.2"
                                            🔭 variables.tf > ...
                                                  variable "aws_region" {
                                                    type = string
                                                    default = "eu-central-1"
        required version = ">= 0.14.9"
                                                  variable "aws_az" {
                                                    type = string
      provider "aws" {
                                                    default = "eu-central-1a"
               = var.aws_region
        access_key = var.aws_access_key
        secret_key = var.aws_secret_key
                                                  variable "aws_access key" {
                                                    type = string
                                                  variable "aws_secret_key" {
                                                    type = string
                                                                       w aws.tf
                                                                       redentials.auto.tfvars
                                                                       HelloWorld.jar
                                                                      🔭 init.tf
                                                                      yariables.tf
```

PROCEDURA

2. Le risorse

Risorsa AWS	Codice Terraform
Virtual Private Cloud (VPC)	aws_vpc
Subnet	aws_subnet
Internet Gateway	aws_internet_getaway
Gruppo di sicurezza	aws_security_group
Route table	aws_route_table
Ricerca dell'AMI (Immagine della Macchina Virtuale)	aws_ami
Istanza Amazon EC2	aws_instance

PROCEDURA

3. Creazione App Server

Definizione dell'immagine e il tipo di macchina virtuale

```
Copia del file jar attraverso connessione SSH
```

```
# Runs as root
user_data = <<SCRIPT
#!/bin/bash
apt update -y
apt upgrade -y
apt install -y openjdk-11-jre-headless
java -jar /home/ubuntu/HelloWorld.jar
SCRIPT</pre>
```

Script per installare java ed eseguire l'applicativo

DIMOSTRAZIONE

Il comando *terraform apply* costruisce l'infrastruttura

Accedendo alla console AWS si possono monitorare le risorse

DIMOSTRAZIONE

Richiesta HTTP su porta 8080

CONCLUSIONI

Nel contesto di un progetto di Migrazione verso il cloud:

- Sono stati studiati gli approcci di migrazione
- Sono state effettuate delle sperimentazioni di automazione dell'infrastruttura

<u>Sviluppi futuri</u> prevedono la creazione di infrastrutture complesse che permettono di eseguire applicazioni a micro servizi eseguiti su cluster di VMs o Containers

GRAZIE PER L'ATTENZIONE!