These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Code-breaking algorithms have also existed for centuries. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Also, specific user environment and usage history can make it difficult to reproduce the problem. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Use of a static code analysis tool can help detect some possible problems. Unreadable code often leads to bugs, inefficiencies, and duplicated code. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. It is usually easier to code in "high-level" languages than in "low-level" ones. Programs were mostly entered using punched cards or paper tape. It is usually easier to code in "high-level" languages than in "low-level" ones. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Scripting and breakpointing is also part of this process. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. It is usually easier to code in "high-level" languages than in "low-level" ones. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills.