Prediction, Estimation, and Attribution

Statistical Learning CLAMSES - University of Milano-Bicocca

Aldo Solari

Bradley Efron working in his classic office, circa 1996.

References

- International Prize in Statistics 2019
- Efron, B. (2020). Prediction, Estimation, and Attribution.
 Journal of the American Statistical Association, 115(530),
 636-655. With Discussion and Rejoinder.
- Slides
- Recorded presentation for the 62nd ISI World Statistics Congress in Kuala Lumpur [46 mins]

Outline

- 1. Introduction
- 2. Surface Plus Noise Models
- 3. The Pure Prediction Algorithms
- 4. A Microarray Prediction Problem
- 5. Advantages and Disadvantages of Prediction
- 6. The Training/Test Set Paradigm
- 7. Smoothness
- 8. A Comparison Checklist
- 9. TraditionalMethods in the Wide Data Era
- 10. Two Hopeful Trends

Regression Gauss (1809), Galton (1877)

What are the three important statistical tasks in regression?

- Prediction: the prediction of new cases
 e.g. random forests, boosting, support vector machines, neural
- nets, deep learning

 Estimation: the estimation of regression surfaces
 - e.g. OLS, logistic regression, GLM: MLE

e.g. ANOVA, lasso, Neyman Pearson

Attribution: the assignment of significance to individual predictors

How do the pure prediction algorithms relate to traditional regression methods?
That is the central question pursued in what follows.

We will assume that the data \mathbf{d} available to the statistician has this structure:

$$\mathbf{d} = \{(x_i, y_i), i = 1, \ldots, n\}$$

- x_i is a p-dimensional vector of predictors taking its value in a known space \mathcal{X} contained in \mathbb{R}^p ;
- y_i is a real valued response;
- the *n* pairs are assumed to be independent of each other.

More concisely we can write

$$\mathbf{d} = \{\mathbf{x}, \mathbf{y}\}$$

where **x** is the $n \times p$ matrix having x_i^t as the *i*th row, and $\mathbf{y} = (y_1, \dots, y_n)^t$.

- The regression model is

$$y_i = s(x_i, \beta) + \epsilon_i \quad i = 1, \dots, n$$
 (1)

 $\epsilon_i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$ where $s(x, \beta)$ is some functional form that, for any fixed value of the parameter vector β , gives expectation $\mu = s(x, \beta)$ as a function of $x \in \mathcal{X}$;

- The regression surface is

$$S_{\beta} = \{ \mu = s(x, \beta), x \in \mathcal{X} \}$$

Most traditional regression methods depend on some sort of surface plus noise formulation;

- The surface describes the scientific truths we wish to learn, but we can only observe points on the surface obscured by noise;
- The statistician's traditional estimation task is to learn as much as possible about the surface from the data d.

The left panel of the Figure shows the surface representation of a scientific icon, Newton's second law of motion,

acceleration = force / mass

It is pleasing to imagine the second law falling full-born out of Newton's head, but he was a master of experimentation. The right panel shows a (fanciful) picture of what experimental data might have looked like.

Figure 2. On left, a surface depicting Newton's second law of motion, acceleration = force/mass; on right, a noisy version.

Cholesterol data

- Cholestyramine, a proposed cholesterol lowering drug, was administered to 164 men for an average of seven years each.
- The response variable is a man's decrease in cholesterol level over the course of the experiment.
- The single predictor is compliance, the fraction of intended dose actually taken (standardized)
- https://hastie.su.domains/CASI_files/DATA/cholesterol.html

https://github.com/aldosolari/SL/blob/master/docs/RCODE/EfronPEA.R

- The figure shows a small example, taken from a larger dataset in Efron and Feldman (1991): n = 164 male doctors volunteered
- to take the cholesterol-lowering drug cholostyramine. - Two numbers were recorded for each doctor, x_i = normalized
- compliance and y_i = observed cholesterol decrease. - Compliance, the proportion of the intended dose actually taken,

ranged from 0% to 100%, -2.25 to 1.97 on the normalized scale, and of course it was hoped to see larger cholesterol decreases

for the better compliers.

- A normal regression model was fit, with

$$s(x_i, \beta) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3$$

in other words, a cubic regression model.

- The black curve is the estimated surface

$$\hat{\mathcal{S}} = \{s(x, \hat{\beta}), x \in \mathcal{X}\}$$

fit by maximum likelihood or, equivalently, by ordinary least squares (OLS).

- The vertical bars indicate one standard error for the estimated values $s(x, \hat{\beta})$, at 11 choices of x, showing how inaccurate \hat{S} might be as an estimate of the true S. That is the estimation side of the story.
- As far as attribution is concerned, only $\hat{\beta}_0$ and $\hat{\beta}_1$ were significantly nonzero. The adjusted R^2 was 0.482, a traditional measure of the model's predictive power.

birthwt data

- R package MASS
- The birthwt data frame has 189 rows and 10 columns.
- The data were collected at Baystate Medical Center, Springfield, Mass during 1986.

- Another mainstay of traditional methodology is logistic regression.
- The dataset concerns the Risk Factors Associated with Low
- than 2.5 kg and 130 with more than 2.5 kg. - Eight covariates were measured at entry: mother's age in years, mother's weight in pounds at last menstrual period, body

Infant Birth Weight: n = 189 babies, 59 with birth weight less

weight, etc., so x_i was 8-dimensional, while y_i equaled o or 1 - This is a surface plus noise model, with a linear logistic surface and Bernoulli noise.

	term	estimate	std.error	p.value	
1	(Intercept)	1.07	1.27	0.40	
2	age	-0.04	0.04	0.31	
3	lwt	-0.02	0.01	0.02	*
4	raceblack	1.12	0.54	0.04	*
5	raceother	0.67	0.47	0.16	
6	smoke	0.75	0.43	0.08	
7	ptl	-1.66	0.90	0.07	
8	ht	1.93	0.73	0.01	**
9	ui	0.80	0.48	0.09	
10	ftv1	-0.52	0.49	0.29	
11	ftv2+	0.10	0.46	0.83	
12	ptd	3.41	1.22	0.01	**

- Random Forests, Boosting, Deep Learning, etc.
- Data

$$\mathbf{d} = \{(x_i, y_i), i = 1, \dots, n\}$$

- Strategy: Go directly for high predictive accuracy; forget

- Prediction rule $f(x, \mathbf{d})$
- New (x,?) gives $\hat{y} = f(x,\mathbf{d})$

(mostly) about surface + noise

CART

Random forest

Apparent error rate (training error)

$$\widehat{\text{err}} = \#\{f(x_i, \mathbf{d}) \neq y_i\}/n$$

	model	error rate
1	rand_forest	0.222
2	logistic_reg	0.243
3	decision_tree	0.228

True error rate

$$E(f(X, \mathbf{d}) \neq Y)$$

where (X, Y) is a random draw from whatever probability distribution gave the (x_i, y_i) pairs in **d**;

Estimated by 10-fold cross-validated error rate

	model	mean	n	std_err
1	rand_forest	0.312	10	0.04
2	logistic_reg	0.313	10	0.03
3	decision_tree	0.365	10	0.04

4. A Microarray Prediction Problem

The Prostate Cancer Microarray Study

- https://hastie.su.domains/CASI_files/DATA/prostate.html
- n = 100 men: 50 prostate cancer, 50 normal controls
- For each man measure activity of p = 6033 genes
- Data set **d** is 100×6033 matrix ("wide")
- Wanted: Prediction rule $f(x, \mathbf{d})$ that inputs new 6033-vector x and outputs \hat{y} correctly predicting cancer/normal

Random forest

- Randomly divide the 102 subjects into:
 - training set of 51 subjects (25 + 25)
 - test set of 51 subjects (25 + 25)
- Run R program randomForest on the training set
- Use its rule $f(x_i, \mathbf{d})$ on the test set and see how many errors it makes

Boosting

5. Advantages and Disadvantages of Prediction

