0.1 Mozgások leírására szolgáló mennyiségek definíciói

0.1.1 Hely, elmozdulás, sebesség és sebességvektor

Vegyük fel mindenekelőtt egy egydimenziós koordinátarendszert, jelöljük ki az origót és a pozitív x tengelyt. Tegyük fel, hogy a P részecske a t_2 időpillanatban az x_1 helyen van. Ha a részecske mozog, akkor a t_2 időpillanatban új, x_2 helyre kerül; azt mondjuk, hogy a részecske elmozdulása $x_2 - x_1$. Ezt gyakran a görög Δ jellel fejezzük ki, ami általában egy mennyiség megváltozására utal. Így az

Elmozdulás:

$$\Delta x = (x_2 - x_1) \tag{1-1}$$

A Δx kifejezés mindig az adott x mennyiség $v\acute{e}gs\~{o}$ és kezdeti értékének különbségét jelentik. A pozitív Δx érték pozitív x irányú, a negatív -x irányú elmozdulást jelöl.

Az **átlagsebességet** a pálya mentén megtett teljes út és a megtételéhez szükséges összes idő hányadosa adja.

Átlagsebesség:

$$\text{Átlagsebesség} = \frac{\ddot{\text{O}}\text{sszes út}}{\ddot{\text{O}}\text{sszes idő}}
 \tag{1-2}$$

A következőkben az egyenesvonalú mozgás irányának figyelembevételére definiáljuk a $v_{\rm \acute{a}tl}$ átlagsebesség-vektort.

Átlagsebesség Vektor:

$$V_{\text{átl}} = \frac{\text{Elmozdulás}}{\ddot{\text{O}}\text{sszes idő}}$$

$$V_{\text{átl}} = \frac{\Delta x}{\Delta t} = \frac{(x_2 - x_1)}{t_2 - t_1}$$
(1-3)

Itt $v_{\text{átl}}$ az elmozdulás előjelétől függően pozitív és negatív is lehet. A pozitív érték azt jelenti, hogy a sebesség a pozitív x irányba mutat, a negatív pedig azt, hogy a sebesség -x irányú.

0.1.1.1 A pillanatnyi sebesség. A mozgás finomabb részleteire figyelve definiálható a pillanatnyi sebesség, ami a mozgást egy adott időpillanatban jellemzi.

A (1-3) egyenlet szerint a t_1, t_2 időintervallumra az átlagsebesség $v_{\text{átl}} = \Delta x/\Delta t$. Ez az arány a t_1 időpillanathoz tartozó P_1 pontból a t_2 időpillanathoz tartozó P_2 végpontig tartó egyenes meredeksége.

A $\Delta x/\Delta t$ arány (melyet különbségi hányadosnak is nevezünk), egy jól meghatározott értékhez, a t_1 időpillanathoz tartozó érintő iránytangenséhez tart. Ezt az értéket nevezzük a t_1 -hez tartozó v pillanatnyi sebességnek.

Pillanatnyi sebesség, v (a t időpontban):

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} \tag{1-4}$$

A t_1 időpillanatban a görbe meredeksége pozitív, így a pillanatnyi sebesség is pozitív irányba mutat. A t_2 meredekség 0, ami azt jelzi, hogy (ekkor fordul meg a test) a sebesség zérus. A t_3 időpontban a meredekség negatív, s ez azt mutatja, hogy a sebesség negatív irányú.

A pillanatnyi sebesség nagysága megegyezik a pillanatnyi sebesség abszolút értékével.

A későbbiekben gyakran használjuk majd az előző feladatban kapott általános szabályt, ha x másodfokú függvény (azaz $x=Ct^2$, ahol C állandó), akkor a v=dx/dt derivált v=C't lineáris függvény, ahol C' a C-től különböző állandó. Általában fennáll

Ha
$$x = Ct^n$$
, akkor $\frac{dx}{dt} = nCt^{n-1}$ (1)

A v=v(t) függvényábra minden pontban az x=x(t) függvényábra megfelelő pontbeli érintőjének meredekségét adja meg. Negatív t értékek esetén a meredekség is negatív és abszolút értékben annál nagyobb, minél meredekebb a görbe. A t=0 pontban az érintő iránytangense zérus. Pozitív t-értékekre pedig pozitívvá válik.

0.2 A gyorsulás

Mindenki, aki már vezetett autót, és rálépett a gázra, tudja, hogy mindennapi értelemben a gyorsulás a gépkocsi sebességének növekedését jelenti. A fizikában azonban ez a kifejezés általánosabb értelmet nyer és a lassulást is magában foglalja. Ha a $\Delta t = t_2 - t_1$ időtartam alatt egy test pillanatnyi sebessége $\Delta v = v_2 - v_1$ -értékkel változik, akkor átlagos gyorsulása definíció szerint

Átlagos gyorsulás:

$$a_{\text{átl}} = \frac{\Delta v}{\Delta t} \tag{2}$$

A definíció tartalmazza mind a gyorsulást ($a_{\text{átl}}$ pozitív), mind pedig a lassulást ($a_{\text{átl}}$ negatív). A gyorsulás tehát az időegységre eső sebességváltozás. Az SI rendszerben ez m/s osztva másodperccel, azaz m/s^2

A pillanatnyi gyorsulást a pillanatnyi sebesség definíciójához hasonlóan határértékként értelmezhetjük, azaza a pillanatnyi gyorsulás a $\Delta v/\Delta t$ különbségi hányados határértéke, mindőn Δt zérushoz tart¹.

Pillanatnyi gyorsulás:

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} \tag{1-6}$$

Szavakban: "a gyorsulás egyenlő a $\Delta v/\Delta t$ különbségi hányados határértékével, midőn Δt zérushoz tart. Ezt a határértéket a sebesség idő szerinti deriváltjának nevezzük és dv/dt-vel jelüljük. A v=v(t) grafikonon a t pillanatbeli a gyorsulást a sebességgrafikon t időpillanathoz tartozó ponthában meghúzott érintő iránytangense adja meg. A gyorsulás szó az esetek többségében pillanatnyi gyorsulást jelent, ha kifejezetten $a_{\rm \acute{a}tl}$ -ról kivánunk beszélni, akkor az átlagos gyorsulás kifejezést használjuk.

0.3 Az egyenesvonalú egyenletesen gyorsuló mozgás kinematikai egyenletei

Azért, hogy a megoldás a legáltalánosabb kezdeti feltételeket kielégítse, feltesszük, hogy t_0 kezdeti időpontban adott az x_0 kezdeti elmozdulás és v_0 kezdeti sebesség. Állandó gyorsulású mozgások esetén az a pillanatnyi gyorsulás megegyezik az $a_{\text{átl}}$ átlagos gyorsulással:

$$a = \frac{DeltaV}{\Delta t} = \frac{v - v_0}{t - 0} = \frac{v - v_0}{t}$$

amiből átrendezéssel a

$$v = v_0 + at$$
 (állandó a esetén) (1-7)

¹A pillanatnyi gyorsulás második deriváltként is kifejezhető. Mivel $a = \frac{dv}{dt}$; $a = \frac{d}{dt}(\frac{dx}{dt}) = \frac{d^2x}{dt^2}$

összefüggéshez jutottunk. Ez a kinematikai feladatok megoldásában rendkívül hasznos un. első kinematikai egyenlet. Legyen a t_0 időpontban a kezdősebesség v_0 . Egy későbbi t időpontban a sebességet a $v = v_0 + at$ egyenes adja, amelynek meredeksége éppen $a = \Delta v/\Delta t$. Az ábrán az egyenes alatti satírozott terület két részre bontható. Az alső, sötétebb téglalap területe v_0t , a felső, enyhébben árnyékolt háromszög területe pedig $1/2(v-v_0)t$. Összeadva ezeket a területeket, azt kapjuk, hogy

[Az egyenes alatti jeles terület] =
$$v_0 t + \frac{1}{2}(v - v_0)t = \left(v_0 = \frac{v}{2} - \frac{v_0}{2}\right)t$$

Terület =
$$\left(\frac{v_0 + V}{2}t\right)$$

Az utóbbi formulában a tázójelben éppen a kezdeti és a végsebesség átlaga szerepel, ami a gyorsulás állandósága miatt a $a_{\text{átl}} = \frac{\Delta x}{\Delta t}$ átlagsebességvektorral egyenlő. Felhasználva, hogy $t_0 = 0$ következtében fennáll a $\Delta t = t$ -összefüggés, a $\Delta x = x - x_0$, valamint a $\Delta x = a_{\text{átl}}t$ formulák egybevetéséből azt kapjuk, hogy

$$x - x_0 = \left[\frac{v_0 + v}{2} table of contents\right]$$
 (állandó a esetén) (1-8)

Összehasonlítva a két utolsó egyenletet, látható, hogy az $x-x_0$ eredő elmozdulás megegyezik a v = v(t) grafikon alatti területtel.

Behelyettesítve a (1-7) egyenletbe a $v=v_0+at$ összefüggést, majd az eredményt átrendezve megkapjuk a második kinematikai egyenletnek nevezett formulát:

$$x = x_0 = v_0 t + \frac{1}{2} a t^2$$
 (állandó gyorsulás esetén) (1-9)

A harmadik szintén nagyon hasznos kinematikai egyenlethez úgy juthatunk el, ha a (1-7) és (1-9) egyenletekből elimináljuk az időt. Eredményül a

$$v^2 = v_0^2 + 2a(x - x_0)$$
 (állandó a esetén) (1-10)

formulát kapjuk.

Ez utóbbi összefüggés olyan feladatok lehet hasznos, amelyekben az időt nem ismerjük.

A kinematikai egyenletek tovább egyszerüsíthetők, ha a koordinátarendszer kezdőpontját ott vesszük fel, ahol a részecske a $t_0 = 0$ időpontban tartózkodik. Ekkor $x_0 = 0$ és így két kinematikai egyenlet is egyszerűbbé válik. Természetesen az origó nem mindig választható meg így, amennyiben azonban ez lehetséges, akkor már kezdettől fogva eggyel kevesebb paraméterrel kell dolgoznunk.

Az egyenesvonalú egyenletesen gyorsuló mozgás kinematikai egyenletei

$$v = v_0 + at \tag{1-11}$$

$$v = v_0 + at$$

$$v = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v_2 = v_0^2 + 2a(x - x_0)$$
(1-11)
(1-12)
(1-13)

$$v_2 = v_0^2 + 2a(x - x_0)$$
 (1-13)