Stats744: HW4

Illustrating Statistical Inference

Data:

As part of my thesis I have information about substitutions and their variation across four bacterial genomes: *E. coli*, *B. subtilis*, *Streptomyces*, and *S. meliloti*. The bacteria *S. meliloti* is a multi-repliconic bacteria and therefore each of it's replicons is analyzed separatly. The data is binary, stating at each site in the genome if there is a substitution, or there is not. This was also broken down into protein coding and non-protein coding sections of the genome. I previously fit a logistic regression to the data and obtained a table with the following results:

Bacteria and Replicon	Coefficent Estimate	Standard Error	z-value	P(> z)
E. coli Chromosome	-4.308×10^{-8}	2.584×10^{-9}	-16.67	$<2\times10^{-16}$
B. subtilis Chromosome	-4.971×10^{-8}	4.268×10^{-9}	-11.65	$<2 \times 10^{-16}$
Streptomyces Chromosome	1.989×10^{-8}	8.696×10^{-10}	57.37	$<2 \times 10^{-16}$
S. meliloti Chromosome	-1.903×10^{-7}	2.13×10^{-8}	-8.934	$<2\times10^{-16}$
S. meliloti pSymA	-6.642×10^{-7}	2.801×10^{-8}	-23.71	$<2\times10^{-16}$
S. meliloti pSymB	1.769×10^{-7}	2.33×10^{-8}	7.593	3.11×10^{-14}

Bacteria and Replicon	Coefficent Estimate	Standard Error	z-value	Р
E. coli Chromosome B. subtilis Chromosome Streptomyces Chromosome S. meliloti Chromosome S. meliloti pSymA S. meliloti pSymB	9.896×10^{-9} -1.055×10^{-7} 1.635×10^{-7} -2.900×10^{-7} -1.263×10^{-6} 4.771×10^{-7}	7.159×10^{-9} 1.25×10^{-8} 2.893×10^{-9} 3.852×10^{-8} 5.595×10^{-8} 5.314×10^{-8}	1.382 -8.436 56.5 -7.527 -22.57 8.978	0.167 $<2\times10^{-16}$ $<2\times10^{-16}$ 5.18×10^{-14} $<2\times10^{-16}$ $<2\times10^{-16}$

Read in the data and format: (I have over 160 million lines of data so it was just not feisable to run the logistic regressions. So I manually added the output from the logistic regression results)

```
logit schrom 0 pos -0.0000002900 0.00000003852 -7.527 0.0000000000000518
logit pa 1 pos -0.0000006642 0.00000002801 -23.71 0.000000000000002
logit pa 0 pos -0.000001263 0.00000005595 -22.57 0.0000000000000002
logit pb 1 pos 0.0000001769 0.0000000233 7.593 0.000000000000111
logit pb 0 pos 0.0000004771 0.00000005314 8.978 0.000000000000002
")
#separated this into coding
subs dat cod <- read.table(header=TRUE, check.names=FALSE, text="</pre>
term estimate std.err statistic p.value
ecoli -0.00000004308 0.000000002584 -16.67 0.0000000000000002
bass -0.00000004971 0.000000004268 -11.65 0.0000000000000000
strep 0.0000001989 0.0000000008696 57.37 0.000000000000002
schrom -0.0000001903 0.0000000213 -8.934 0.0000000000000002
pa -0.0000006642 0.00000002801 -23.71 0.0000000000000002
pb 0.0000001769 0.0000000233 7.593 0.000000000000311
")
#separated this into non coding
subs dat noncod <- read.table(header=TRUE, check.names=FALSE, text="</pre>
term estimate std.err statistic p.value
ecoli 0.000000009896 0.000000007159 1.382 0.167
bass -0.0000001055 0.0000000125 -8.436 0.0000000000000002
strep 0.0000001635 0.000000002893 56.5 0.000000000000002
schrom -0.0000002900 0.00000003852 -7.527 0.000000000000518
pa -0.000001263  0.00000005595 -22.57  0.0000000000000000
pb 0.0000004771 0.00000005314 8.978 0.0000000000000002
")
```

Graphs

```
#why does this have NA on the x-axis??? is it because things are too small??
dotwisk <- dwplot(subs_dat_noncod)
print(dotwisk)</pre>
```


#my other failed attempt
#plot_model(subs_dat_noncod)