MATH3195/5195M EXERCISE SHEET 2 SOLUTIONS

DUE: FEBRUARY 19, 2020

Problem 1. *Monomial orders:* Show that $<_{lex}$ is a monomial order on $K[x_1, ..., x_n]$ (or equivalently, on \mathbb{N}^n).

Solution. We have to show that $<_{lex}$ is a total order on \mathbb{N}^n (or equivalently on $K[x_1,\ldots,x_n]$ - we will work with \mathbb{N}^n) and conditions (i) and (ii) from the lecture are satisfied. For the first assertion, let $\alpha=(\alpha_1,\ldots,\alpha_n),\beta=(\beta_1,\ldots,\beta_n)\in\mathbb{N}^n$. We use induction on n: if n=1, then $<_{lex}$ is the natural order on \mathbb{N} , which is a total order. Assume that $<_{lex}$ is a total order on \mathbb{N}^{n-1} , then either $(\alpha_1,\ldots,\alpha_{n-1})<_{lex}$ or $>_{lex}$ or $=(\beta_1,\ldots,\beta_{n-1})$. In the first two cases, this implies that $\alpha<_{lex}$ or $>_{lex}$ β , for the last case, if $\alpha_n<$ or > or $=\beta_n$, then $\alpha<_{lex}$ or $>_{lex}$ or $>_{lex}$ or > lex or >

For condition (i), we have to show that if $\alpha <_{lex} \beta$ in \mathbb{N}^n and $\gamma \in \mathbb{N}^n$ is arbitrary, then $\alpha + \gamma <_{lex} \beta + \gamma$. For this assume that $\alpha_i = \beta_i$ and $\alpha_j < \beta_j$ for all i < j and a fixed $1 \le j \le n$. Now $(\alpha + \gamma)_i = \alpha_i + \gamma_i$ and $(\beta + \gamma)_i = \beta_i + \gamma_i$, so $(\alpha + \gamma)_i = (\beta + \gamma)_i$ for any i < j and $(\alpha + \gamma)_j = \alpha_j + \gamma_j < \beta_j + \gamma_j = (\beta + \gamma)_j$ since $\alpha_j < \beta_j$.

Condition (ii) says that $<_{lex}$ is a well-ordering on \mathbb{N}^n . This can be shown by induction and using that the integers are well-ordered: for n=1 this is precisely the claim that \mathbb{N} is well-ordered. Assume now that $A \subseteq \mathbb{N}^n$ is a non-empty subset and define $A_1 = \{\alpha \in A : \alpha_1 \text{ is minimal}\}$. Then $A_1 \neq \emptyset$ (since \mathbb{N} is well-ordered). Now define $A_2 = \{\alpha \in A_1 : \alpha_2 \text{ is minimal}\}$. Again, this set is non-empty. Continue until $A_n = \{\alpha\} = \min_{\le_{lex}} (A)$.

- **Problem 2.** (a) Show that $\mathbb{R}[x,y]/(x^3-y^2)$ is isomorphic to $\mathbb{R}[t^2,t^3]$. [Hint: First homomorphism theorem. First show that $f(x,y)=x^3-y^2$ is in the kernel of the map φ as defined in the lecture. In order to see that (f(x,y)) is the full kernel, you may use the fact, that the kernel of φ is generated by elements of the form $x^ay^b-x^{a'}y^{b'}$, where $a,a',b,b'\in\mathbb{N}$. This fact can be proved using Gröbner bases methods]
- (b) Is $(x^3 y^2)$ a prime ideal in $\mathbb{R}[x, y]$? Explain!
- (a) Define $\varphi: \mathbb{R}[x,y] \to \mathbb{R}[t]$ by $\varphi(x) = t^2$ and $\varphi(y) = t^3$. The image of φ is the subring of $\mathbb{R}[t]$ generated by t^2 and t^3 , that is, the ring $\mathbb{R}[t^2,t^3]$. Then by the first homomorphism theorem, $\operatorname{im}(\varphi) = \mathbb{R}[t^2,t^3] \cong \mathbb{R}[x,y]/\ker \varphi$. It remains to determine $\ker \varphi$. The element $f(x,y) = x^3 y^2$ is in $\ker \varphi$ since $\varphi(f(x,y)) = f(t^2,t^3) = (t^2)^3 (t^3)^2 = 0$. Now use the hint, which says that $\ker \varphi = (x^ay^b x^{a'}y^{b'}, y^b)$ where a,a',b,b' are some integers $\in \mathbb{N}$). Assume that $g(x,y) = x^ay^b x^{a'}y^{b'}$ is in $\ker \varphi$, that means that $t^{2a+3b} t^{2a'+3b'} = 0$. So we are looking for all integer linear combinations such that 2a + 3b = 2a' + 3b', or 2(a-a') = 3(b'-b). We may assume w.l.o.g. that a>a' and hence b'>b (if a=a' we would get b=b' and the binomial would be 0). Since a-a' and b'-b are integers and 2 and 3 are coprime, the above equation implies that 3|(a-a') and 2|(b'-b). Thus a-a'=3k, which implies that b'-b=2k for some $k\in \mathbb{N}_{>0}$. Thus any g(x,y) in $\ker \varphi$ is of the form $x^{a'+3k}y^{b'-2k} x^{a'}y^{b'} = x^{a'}y^{b'-2k}(x^{3k}-y^{2k})$. Since $x^{3k}-y^{2k}=(x^3)^k-(y^2)^k=(x^3-y^2)(\sum_{i=0}^{k-1}x^{3i}y^{2(k-1-i)})$, one sees that f(x,y)|g(x,y), which means that $g(x,y)\in (f(x,y))$. Thus $\ker \varphi=(x^3-y^2)$ and the first isomorphism theorem shows that $\mathbb{R}[t^2,t^3]\cong$

 $\mathbb{R}[x,y]/(x^3-y^2).$

- (b) Since $\mathbb{R}[t^2,t^3]$ is a subring of the integral domain $\mathbb{R}[t]$, it is itself an integral domain (if we had $a(t^2,t^3)b(t^2,t^3)=0$, then since both $a,b\in\mathbb{R}[t]$, this implies that either a or b is 0). By (a) $\mathbb{R}[x,y]/(x^3-y^2)\cong\mathbb{R}[t^2,t^3]$, hence $\mathbb{R}[x,y]/(x^3-y^2)$ is an integral domain. By the theorem from the lecture (x^3-y^2) is a prime ideal in $\mathbb{R}[x,y]$.
- **Problem 3.** (a) Show that the ideal $(x^4 5x^3 + 7x^2 5x + 6, x^4 + 2x^2 + 1, x^4 2x^3 + x^2 2x)$ in $\mathbb{R}[x]$ is maximal.
- (b) Let R be a ring such that every element satisfies $x^n = x$ for some n > 1 (here the integer n depends on x). Show that every prime ideal in R is maximal.
- (a) If (f(x), g(x), h(x)) is an ideal in K[x], where K is a field, then one can see that $(f(x), g(x), h(x)) = (\gcd(f, g, h))$.
- We first calculate the factorizations of the polynomials $f(x) = x^4 5x^3 + 7x^2 5x + 6 = (x-2)(x-3)(x^2+1)$, $g(x) = x^4 + 2x^2 + 1 = (x^2+1)^2$ and $h(x) = x^4 2x^3 + x^2 2x = x(x-2)(x^2+1)$ into irreducible polynomials in $\mathbb{R}[x]$ (use e.g. rational root test). Thus we see that the gcd of f(x), g(x), h(x) is $x^2 + 1$ and $(f(x), g(x), h(x)) = (x^2+1)$. But $x^2 + 1$ is irreducible in $\mathbb{R}[x]$, thus $\mathbb{R}[x]/(x^2+1)$ is a field. This means that (x^2+1) is a maximal ideal in $\mathbb{R}[x]$.
- (b) Let $\mathfrak{p} \subseteq R$ be a prime ideal and let $x \in R \setminus \mathfrak{p}$ with $x^n = x$ for some n > 1. Since \mathfrak{p} is prime, R/\mathfrak{p} is an integral domain and $\bar{x} \neq \bar{0}$ is a nonzero-divisor. Then from the equation $\bar{x}^n \bar{x} = \bar{x}(\bar{x}^{n-1} \bar{1}) = \bar{0}$ we can cancel \bar{x} and obtain $\bar{x}^{n-1} = \bar{1}$. But this means that $\bar{x}\bar{x}^{n-2} = \bar{1}$, that is, \bar{x}^{n-2} is a multiplicative inverse of \bar{x} . Thus any element $\bar{x} \neq \bar{0} \in R/\mathfrak{p}$ is invertible, which implies that R/\mathfrak{p} is a field. But then (as shown in the lecture) \mathfrak{p} is a maximal ideal.
- **Problem 4.** (a) Consider K[x,y,z] and order all monomials of degree less than or equal to 3 with respect to the following monomial orders: (i) $<_{lex}$, (ii) $<_{deglex}$, (iii) $<_{\lambda}$, where λ is a suitable linear form $\lambda : \mathbb{R}^3 \to \mathbb{R}$.
- (b) Determine leading monomial and coefficient of the polynomial $f = x^4 + z^5 + x^3z + yz^4 + x^2y^2$ with respect to the monomial orders from (a).

Solution. (a) All monomials of degree ≤ 2 are: $1, x, y, z, x^2, xy, xz, yz, y^2, z^2$. The orders are:

- (i) $1 <_{lex} z <_{lex} y^2 <_{lex} y <_{lex} y^2 <_{lex} x <_{lex} xz <_{lex} xy <_{lex} x^2$
- (ii) $1 <_{deglex} z <_{deglex} y <_{deglex} x <_{deglex} z^2 <_{deglex} yz <_{deglex} y^2 <_{deglex} xz <_{deglex} xy <_{deglex} x^2$.
- (iii) We have to choose a λ with Q-linearly independent entries. Take e.g. $\lambda=(1,\sqrt{2},\sqrt{5})$. Then $1<_{\lambda}x<_{\lambda}y<_{\lambda}z<_{\lambda}x^2<_{\lambda}xy<_{\lambda}y^2<_{\lambda}xz<_{\lambda}yz<_{\lambda}z^2$.
- (b) (i) $lm_{lex}(f) = x^4$ and $lc_{lex}(f) = 1$, (ii) $lm_{deglex}(f) = yz^4$ and $lc_{lex}(f) = 1$, (ii) with λ from above $lm_{\lambda}(f) = z^5$ and $lc_{\lambda}(f) = 1$.

Problem 5. Let *R* be a ring. Show that *R* is local if and only if the nonunits of *R* form a maximal ideal.

Solution. Let R be local, that is, there is a unique maximal ideal $\mathfrak{m} \subseteq R$. Denote $S = \{$ nonunits of $R \}$. We have to show that S is an ideal. Let $s, t \in S$. Then $\langle s \rangle + \langle t \rangle$ is an ideal and clearly $\langle s \rangle \subseteq \mathfrak{m}$ and $\langle t \rangle \subseteq \mathfrak{m}$. But this implies that $s - t \in \mathfrak{m}$. If $s \in S$ and $r \in R$, then $rs \in \mathfrak{m}$ since $s \in \mathfrak{m}$, thus S is an ideal in R. If $S \subseteq \mathfrak{m}$, then there would exist a unit in \mathfrak{m} (by definition of S). But this would mean that $\mathfrak{m} = R$, contradiction to the fact that \mathfrak{m} is a proper ideal of R.

For the other direction, assume that S is a maximal ideal in R. This means that S is a proper ideal of R. Let M be an arbitrary maximal ideal of R. Then every element of M has to be a non-unit of R (since M is supposed to be proper). This implies that $M \subseteq S$ and by maximality, M = S.

Problem 6. Let *I* be an ideal of *R* and *A* be a multiplicatively-closed subset of *R*. Show that:

- (a) $A^{-1}I$ is an ideal of $A^{-1}R$;
- (b) $\frac{x}{a} \in A^{-1}I$ if and only if there is some $b \in A$ with $xb \in I$;
- (c) $A^{-1}I = A^{-1}R$ if and only if $I \cap A \neq \emptyset$;
- (d) localization commutes with quotients, that is

$$A^{-1}R/A^{-1}I \cong \overline{A}^{-1}(R/I)$$
, where $\overline{A} = \{a + I : a \in A\}$.

Solution. (a) Firstly, since $0 \in I$ and $1 \in A$ we have $\frac{0}{1} \in A^{-1}I$. Now suppose that $\frac{r}{a}$, $sb \in A^{-1}I$, then $\frac{r}{a} - \frac{s}{b} = \frac{rb - sa}{ab}$. Since $r, s \in I \subseteq R$ we have $rb - sa \in I$, and since A is multiplicatively closed we have $ab \in A$. Thus $\frac{r}{a} - \frac{s}{b} \in A^{-1}I$. Finally if $\frac{t}{c} \in A^{-1}R$ then $\frac{t}{c} \cdot \frac{r}{a} = \frac{tr}{ac}$, and again since $tr \in I$ and $ac \in A$ we have $\frac{t}{c}\frac{r}{a} \in A^{-1}I$, so $A^{-1}I \subseteq A^{-1}R$.

- (b) If $\frac{x}{a} \in A^{-1}I$ then setting b = 1 gives the result. Conversely if $xb \in I$ then $\frac{xb}{ab} \in A^{-1}I$, but $\frac{xb}{ab} = \frac{x}{a}$. (c) Suppose $A^{-1}I = A^{-1}R$, then $1_{A^{-1}R} = \frac{1}{1} \in A^{-1}I$. By (b), this implies that there is some $b \in A$ with $1 \cdot b \in I$, i.e. $I \cap A \neq \emptyset$. Conversely if $I \cap A \neq \emptyset$ then choose $a \in I \cap A$. Now $\frac{a}{a} \in A^{-1}I$, but $\frac{a}{a} = \frac{1}{1} = 1_{A^{-1}R}$, so $A^{-1}I = A^{-1}R$.
- (d) Define $\phi: A^{-1}R \to \bar{A}^{-1}(R/I)$ by $\phi(\frac{r}{q}) = \frac{r+I}{q+I}$. It is easy to check that ϕ is well-defined. This map is a homomorphism as given $\frac{r}{a}$, $\frac{s}{b} \in A^{-1}R$ we have

$$\phi\left(\frac{r}{a} + \frac{s}{b}\right) = \phi\left(\frac{rb + sa}{ab}\right)$$

$$= \frac{(rb + sa) + I}{ab + I}$$

$$= \frac{(r + I)(b + I) + (s + I)(a + I)}{(a + I)(b + I)}$$

$$= \frac{r + I}{a + I} + \frac{s + I}{b + I}$$

$$= \phi\left(\frac{r}{a}\right) + \phi\left(\frac{s}{b}\right),$$

$$\phi\left(\frac{rs}{ab}\right) = \phi\left(\frac{rs}{ab}\right)$$

$$= \frac{rs + I}{ab + I}$$

$$= \frac{(r + I)(s + I)}{(a + I)(b + I)}$$

$$= \frac{r + I}{a + I} \frac{s + I}{b + I}$$

$$= \phi\left(\frac{r}{a}\right)\phi\left(\frac{s}{b}\right), \text{ and}$$

$$\phi(1_{A^{-1}R}) = \phi\left(\frac{1}{1}\right)$$

$$= \frac{1 + I}{1 + I}$$

$$= 1_{\bar{A}^{-1}(R/I)}.$$

Also ϕ is clearly surjective, and $\phi(\frac{r}{a}) = \frac{r+I}{a+I} = \frac{I}{1+I}$ iff there is some $c+I \in \bar{A}$ such that (r+I)(1+I)(c+I) = I(a+I)(c+I), that is iff there is some $c \in A$ such that $rc \in I$. By part (b) this is iff $\frac{r}{a} \in A^{-1}I$, so $\ker \phi = A^{-1}I$. By the first isomorphism theorem the result follows.