2072U Computational Science I Winter 2022

Week	Topic
1	Introduction
1–2	Solving nonlinear equations in one variable
3–4	Solving systems of (non)linear equations
5–6	Computational complexity
6–8	Interpolation and least squares
8–10	Integration & differentiation
10-12	Additional Topics

1. Root finding: introduction

2. Iterative methods

3. First method: bisection

2072U, Winter 2022 1/19

Example 1: hitting a target with a cannon.

To what elevation should the cannon be raised to hit the target?

Parameters:

- ▶ $g = \text{gravitational acceleration } (\text{ms}^{-2})$: known;
- ▶ V_0 = initial speed (ms⁻¹): known;
- ► R = distance to target (m): known;
- θ^* = required elevation (radians): unknown.

Determine elevation θ^* needed to hit target using known values of parameters V_0 , R, and q.

- ► Coordinates of cannonball at time t are (x(t), y(t)).
- Motion of cannonball determined by Newton's 2nd law:

$$\begin{cases} x''(t) = 0, & x(0) = 0, x'(0) = V_0 \cos \theta^* \\ y''(t) = -g, & y(0) = 0, y'(0) = V_0 \sin \theta^* \end{cases}$$

The solution to these differential equations is

$$x(t) = (V_0 \cos \theta^*) t$$

$$y(t) = (V_0 \sin \theta^*) t - \frac{1}{2}gt^2$$

- ▶ Want to find θ^* such that x(T) = R and y(T) = 0, where T is time of flight
- ► Can eliminate T using y(T) = 0 (i.e. object is on the ground)
- If y(T) = 0, then T = 0 or $T = \frac{2V_0 \sin \theta^*}{g}$
- ▶ Reject T = 0, so to have x(T) = R, we must have

$$x(T) = (V_0 \cos \theta^*) \left(\frac{2V_0 \sin \theta^*}{g} \right) = R$$

- ▶ Want to find θ^* such that x(T) = R and y(T) = 0, where T is time of flight
- ► Can eliminate T using y(T) = 0 (i.e. object is on the ground)
- If y(T) = 0, then T = 0 or $T = \frac{2V_0 \sin \theta^*}{g}$
- ▶ Reject T = 0, so to have x(T) = R, we must have

$$x(T) = (V_0 \cos \theta^*) \left(\frac{2V_0 \sin \theta^*}{g} \right) = R$$

 \Rightarrow Zero-finding problem: find elevation θ^* such that $f(\theta^*) = 0$, where

$$f(\theta) := 2\sin\theta\cos\theta - \frac{Rg}{V_0^2}$$

4□ > 4□ > 4 = > 4 = > = 900

$$f(\theta^*) = 2\sin\theta^*\cos\theta^* - \frac{Rg}{V_0^2}$$
$$= 0$$

We can solve this problem analytically:

There is a unique solution $0 < \theta^* < \pi/2$ if

$$\frac{Rg}{V_0^2} < 1$$

▶ Analytic formula for θ^* :

$$\theta^* = \frac{1}{2}\arcsin\left(\frac{Rg}{V_0^2}\right)$$

(uses
$$2 \sin \theta \cos \theta = \sin(2\theta)$$
)

In reality, there is air friction, and the equations of motion are:

$$\begin{cases} x''(t) = -c(x')^2, & x(0) = 0, x'(0) = V_0 \cos \theta^* \\ y''(t) = -g - cy'|y'|, & y(0) = 0, y'(0) = V_0 \sin \theta^* \end{cases}$$

$$x(t) = \frac{1}{c} \ln \left(c V_0 t \cos \theta^* + 1 \right)$$

$$y(t) = \begin{cases} \frac{1}{c} \ln \left(\cos(\sqrt{cg}t) + \sin(\sqrt{cg}t) \sqrt{\frac{c}{g}} V_0 \sin \theta^* \right) & \text{for } t \leq t' \\ -\frac{1}{c} \ln \left(\cosh(\sqrt{cg}[t - t']) \right) & -\frac{1}{c} \ln \left(\cos(\arctan(\sqrt{\frac{c}{g}}V_0 \sin \theta^*)) \right) & \text{for } t > t' \end{cases}$$

where

$$t' = \frac{1}{\sqrt{cg}} \arctan\left(\sqrt{\frac{c}{g}} V_0 \sin \theta^*\right)$$

is the time at which the ball is at its highest point (y'(t') = 0).

4 L P 4 DP P 4 E P 4 E P 9 C P

- 1. Solve for t^* from $y(t^*) = 0$.
- 2. Find the distance of impact as $x(t^*)$:

$$x(t^*) = \frac{1}{c} \ln \left[\sqrt{\frac{c}{g}} V_0 \cos \theta^* \left(\arctan \left[\sqrt{\frac{c}{g}} V_0 \sin \theta^* \right] \right. \right.$$
$$\left. + \operatorname{arccosh} \left[\sqrt{\frac{g + c V_0^2 \sin^2 \theta^*}{g}} \right] \right) + 1 \right]$$

3. Solve for θ^* from $x(t^*) = R...$

2072U, Winter 2022 8/19

We cannot find an analytic solution anymore. Instead, we must look for a numerical approximation like

$$\theta^* = 0.19 \, \pm \, 10^{-2}$$

where $\Delta \theta^* = 10^{-2}$ is the absolute error.

This error needs to be small enough for the application.

Example 2: pension payments

Suppose you pay an amount of money to a bank every year and they promise to pay you a lump sum when you retire. Over one year, you would pay an amount

$$\nu P = \frac{1}{1+i}P$$
 (*i* is the percentage interest rate)

for this service to compensate fo the loss of interest. Over n years you will pay

$$\nu P + \nu^2 P + \ldots + \nu^n P = \nu P \frac{1 - \nu^n}{1 - \nu} = T$$

for a lump sum payment of nP.

Now suppose we *know* the total value and *want to know* the interest rate. We then have to solve the following equation:

$$\nu \frac{1 - \nu^n}{1 - \nu} = \frac{1}{i} - \frac{1}{i} \left(\frac{1}{1 + i} \right)^n = T/P$$

For example, let n = 12, T/P = 10.

In order to find the interest rate *i** we must solve a nonlinear equation

$$f(i) = \frac{1}{i} - \frac{1}{i} \left(\frac{1}{1+i} \right)^n - T/P = 0$$

to find an answer like

$$i^* = 0.0292285 \pm 2 \times 10^{-7}$$

For this end, we can use iterative methods.

The two methods we will study here are

- 1. bisection
- 2. Newton's method (and an adaptation called the secant method).

Iterative methods

- ▶ Algorithms for solving $f(x^*) = 0$ are usually iterative.
- ▶ Starting from $x^{(0)}$, make sequence of iterates

$$x^{(1)} = \phi\left(x^{(0)}\right),$$

$$x^{(2)} = \phi\left(x^{(1)}\right),$$

$$\vdots$$

$$x^{(k+1)} = \phi\left(x^{(k)}\right),$$

$$\vdots$$

 ϕ function/rule generating successive iterates

▶ Rule $x^{(k+1)} = \phi(x^{(k)})$ for k > 0 is recurrence relation.

401491471717 7 000

$$x^{(0)} := 1$$
 and $\phi : \mathbb{R} \to \mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R}) \qquad \phi(t) = 2t$$

$$x^{(0)} := 1$$
 and $\phi : \mathbb{R} \to \mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R}) \qquad \phi(t) = 2t$$

$$x^{(0)} = 1$$

$$x^{(0)} := 1$$
 and $\phi : \mathbb{R} \to \mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R})$$
 $\phi(t) = 2t$

$$x^{(0)} = 1$$

$$x^{(1)} = 2 \cdot x^{(0)} = 2 \cdot 1 = 2$$

 $x^{(0)}:=1$ and $\phi:\mathbb{R}\to\mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R})$$
 $\phi(t) = 2t$

$$x^{(0)} = 1$$

$$x^{(1)} = 2 \cdot x^{(0)} = 2 \cdot 1 = 2$$

$$x^{(2)} = 2 \cdot x^{(1)} = 2 \cdot 2 = 4$$

 $x^{(0)} := 1$ and $\phi : \mathbb{R} \to \mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R})$$
 $\phi(t) = 2t$

$$x^{(0)} = 1$$

$$x^{(1)} = 2 \cdot x^{(0)} = 2 \cdot 1 = 2$$

$$x^{(2)} = 2 \cdot x^{(1)} = 2 \cdot 2 = 4$$

$$x^{(3)} = 2 \cdot x^{(2)} = 2 \cdot 4 = 8$$

 $x^{(0)} := 1$ and $\phi : \mathbb{R} \to \mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R}) \qquad \phi(t) = 2t$$

$$x^{(0)} = 1$$

$$x^{(1)} = 2 \cdot x^{(0)} = 2 \cdot 1 = 2$$

$$x^{(2)} = 2 \cdot x^{(1)} = 2 \cdot 2 = 4$$

$$x^{(3)} = 2 \cdot x^{(2)} = 2 \cdot 4 = 8$$

$$x^{(4)} = 2 \cdot x^{(3)} = 2 \cdot 8 = 16$$

 $x^{(0)} := 1$ and $\phi : \mathbb{R} \to \mathbb{R}$ is the function given by

$$(\forall t \in \mathbb{R}) \qquad \phi(t) = 2t$$

$$x^{(0)} = 1$$

$$x^{(1)} = 2 \cdot x^{(0)} = 2 \cdot 1 = 2$$

$$x^{(2)} = 2 \cdot x^{(1)} = 2 \cdot 2 = 4$$

$$x^{(3)} = 2 \cdot x^{(2)} = 2 \cdot 4 = 8$$

$$x^{(4)} = 2 \cdot x^{(3)} = 2 \cdot 8 = 16$$

$$\vdots$$

$$x^{(k)} = 2^{k}$$

k	$X^{(k)}$
0	1
1	2
2	4
3	8
4	16
:	:
k	2^k

• Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi\left(x^{(k)}\right) = \frac{1}{2}\left(x^{(k)} + \frac{a}{x^{(k)}}\right) \qquad (k = 0, 1, \ldots)$$

k	$X^{(k)}$
0	3.00000000000000
1	
2	
3	
4	
5	

• Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi\left(x^{(k)}\right) = \frac{1}{2}\left(x^{(k)} + \frac{a}{x^{(k)}}\right) \qquad (k = 0, 1, \ldots)$$

• e.g., with a = 5 and $x^{(0)} = 3$, we get

k	$x^{(k)}$
0	3.00000000000000
1	
2	
3	
4	
5	

▶ Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi\left(x^{(k)}\right) = \frac{1}{2}\left(x^{(k)} + \frac{a}{x^{(k)}}\right) \qquad (k = 0, 1, \ldots)$$

• e.g., with a = 5 and $x^{(0)} = 3$, we get

k	$X^{(k)}$
0	3.00000000000000
1	2 .33333333333333
2	
3	
4	
5	

• Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi\left(x^{(k)}\right) = \frac{1}{2}\left(x^{(k)} + \frac{a}{x^{(k)}}\right) \qquad (k = 0, 1, \ldots)$$

• e.g., with a = 5 and $x^{(0)} = 3$, we get

k	$X^{(k)}$
0	3.00000000000000
1	2 .3333333333333
2	2.23 809523809524
3	
4	
5	

▶ Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi\left(x^{(k)}\right) = \frac{1}{2}\left(x^{(k)} + \frac{a}{x^{(k)}}\right) \qquad (k = 0, 1, \ldots)$$

• e.g., with a = 5 and $x^{(0)} = 3$, we get

k	$X^{(k)}$
0	3.000000000000000
1	2 .3333333333333
2	2.23 809523809524
3	2.23606 889564336
4	
5	

• Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi\left(x^{(k)}\right) = \frac{1}{2}\left(x^{(k)} + \frac{a}{x^{(k)}}\right) \qquad (k = 0, 1, \ldots)$$

• e.g., with a = 5 and $x^{(0)} = 3$, we get

k	$X^{(k)}$
0	3.000000000000000
1	2 .33333333333333
2	2.23 809523809524
3	2.23606 889564336
4	2.23606797749998
5	

▶ Given a > 0 and $x^{(0)} > 0$, consider sequence

$$x^{(k+1)} = \phi\left(x^{(k)}\right) = \frac{1}{2}\left(x^{(k)} + \frac{a}{x^{(k)}}\right) \qquad (k = 0, 1, \ldots)$$

• e.g., with a = 5 and $x^{(0)} = 3$, we get

k	$X^{(k)}$
0	3.000000000000000
1	2 .33333333333333
2	2.23 809523809524
3	2.23606 889564336
4	2.23606797749998
5	2.23606797749979

- Circa 1800-1600 BCE
- Numbers on diagonal

1; 24; 51; 10 = 1 +
$$\frac{24}{60^1}$$
 + $\frac{51}{60^2}$ + $\frac{10}{60^3}$ $\simeq \sqrt{2}$ to 9 decimal places!

 Tablet suggests Babylonians knew Pythagoras's theorem

$$a^2 + b^2 = c^2$$

relating sides of right-angled triangle

Convergence of iterations

• Any iteration $x^{(k+1)} = \phi(x^{(k)})$ generates a sequence

$$\left\{x^{(k)}\right\}_{k=0}^{\infty} = \left\{x^{(0)}, x^{(1)}, x^{(2)}, \dots, x^{(k-1)}, x^{(k)}, x^{(k+1)}, \dots\right\}$$

▶ Recall: limit of sequence $\{x^{(k)}\}_{k=0}^{\infty}$ is $x^* \in \mathbb{R}$ iff

$$(\forall \epsilon > 0)(\exists K \in \mathbb{N}) \ \left[(k \ge K) \Rightarrow \left| x^{(k)} - x^* \right| < \epsilon \right]$$

▶ In words, the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ converges to $x^* \in \mathbb{R}$ or

$$\lim_{k\to\infty} x^{(k)} = x^*$$

Bisection

Suppose we have a continuous function f on some domain [a, b], and that there is a unique solution

$$f(x^*) = 0, x^* \in [a, b]$$

then f(a)f(b) < 0. Example:

Or, in *pseudo-code*:

Input: f, a, b, k_{max} , ϵ_{x} , ϵ_{f} .

- 1. Set $a_0 = a$, $b_0 = b$.
- **2**. Do for $k = 1, ..., k_{max}$
 - ► Let $c_k = (a_{k-1} + b_{k-1})/2$ and $f_k = f(c_k)$.
 - If $f_k f(a_{k-1}) > 0$ then let $a_k = c_k$ and $b_k = b_{k-1}$ else let $a_k = a_{k-1}$ and $b_k = c_k$.
 - If $|b_k a_k| < \epsilon_x$ or $|f(c_k)| < \epsilon_f$ break.
- 3. Return $x^* = c_k$ and $|b_k a_k|$.