

CRISPR screening analysis

Dr Jamie Billington Principal Bioinformatician Adams Faculty 10/10/24

CRISPR screening

- Deliver guides into a population of cells expressing Cas9 or a dCas9fusion.
- Conduct some sort of phenotypic screen.
- Sample from the population at different timepoints.
- Isolate guide RNAs and compare their abundance at different timepoints using NGS.

Application of CRISPR screens

Hypothesis generation -> identify candidate genes

Adapted from Wei, Jin et al. "Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection." *Cell* vol. 184,1 (2021): 76-91.e13.

Drug development -> cancer tractability

BRAF Log Fold changes in > 800 cancer cell lines - reflecting sensitivity to knockout

Adapted from the Project Score Cancer Dependency Map

High throughput sequencing

Next Generation Sequencing-Advances, Applications and Challenges, Lu et al 2015

Anatomy of an NGS read

Read ID Sequence

@ML-P2-14:9:000H003HG:1:11102:17290:1073 1:N:0:TCCTGAGC+GCGATCTA
TTTGGTAACAGCATGAATTATTCTAGCCACTAAAACTCTATGAACATCTTGTGAAGGTTTCAGATAGAGCCTGAA

Quality scores

Typically, millions of reads per sample

Each base has a quality score Typically, a decline in base quality moving along the read from 5' -> 3'

Position along read

From reads to counts

Tallying

Repeat for all reads to get counts per "feature"

Variant	Counts
А	100
В	120
С	145
D	30
Е	150

Analysing high throughput counts

Start from a counts matrix: a mathematical object with:

Rows as features (genes, guides, proteins, species of bacteria ...)
Columns as samples (replicates, experimental conditions)
High dimensional (1000's -> 100,000's of features)

General set of numerical methods for the analysis of different kinds of datasets

Dataset transformation

Normalise to account for technical variability in:

- Sequencing depth between samples (1 million in Sample A vs. 2 million reads in Sample B)
- Sample composition (highly abundant feature can distort measurements of other features when they change)
- Feature characteristics (e.g., gene length in RNA seq)

Associations testing

Features whose counts are "associated" with a condition

Normalised counts

	Rep	licate	1	Rep	licate	2	Repl	icate	3
	Day 4	Day 7	Day 15	Day 4	Day 7	Day 15	Day 4	Day 7	Day 15
Variant A	100	90	60	102	88	29	102	88	29
Variant B	120	111	112	114	150	100	114	150	100
Variant C	145	40	100	145	42	42	145	42	42

Guides associated with Day 18 timepoint Proteins associated with drug response

Going to perform statistical tests to compare between timepoints of Day 0 vs Day 18

With appropriate modifications for i) counts data ii) large numbers of comparisons

This practical

Understanding the process of analyzing CRISPR screening data from counts matrix -> gene hits

	Day 0	Day 7	Day 15	Day 0	Day 7	Day 15	Day 0	Day 7	Day 15
Guide A	100	90	60	102	88	29	102	88	29
Guide B	120	111	112	114	150	100	114	150	100
Guide C	145	40	100	145	42	42	145	42	42

Finding essential genes in the HAP1 cell line

