The group G is isomorphic to the group labelled by [50, 3] in the Small Groups library. Ordinary character table of $G \cong C5 \times D10$:

1	a $2a$	5a	5b	10a	5c	5d	5e	10b	5f	5g	5h	10c	5i	5j	5k	10 <i>d</i>	5l	5m	5n
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$ \chi_2 $	-1	1	1	-1	1	1	1	-1	1	1	1	-1	1	1	1	-1	1	1	1
χ_3	-1	$E(5)^{4}$	1	$-E(5)^4$	$E(5)^{3}$	$E(5)^4$	1	$-E(5)^{3}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$	$-E(5)^2$	E(5)	$E(5)^{2}$	$E(5)^{3}$	-E(5)	E(5)	$E(5)^{2}$	E(5)
χ_4	-1	$E(5)^{3}$	1	$-E(5)^{3}$	E(5)	$E(5)^{3}$	1	-E(5)	$E(5)^{4}$	E(5)	$E(5)^{3}$	$-E(5)^4$	$E(5)^{2}$	$E(5)^4$	E(5)	$-E(5)^2$	$E(5)^{2}$	$E(5)^4$	$E(5)^2$
χ_5	-1	$E(5)^{2}$	1	$-E(5)^2$	$E(5)^{4}$	$E(5)^{2}$	1	$-E(5)^4$	E(5)	$E(5)^4$	$E(5)^{2}$	-E(5)	$E(5)^{3}$	E(5)	$E(5)^4$	$-E(5)^{3}$	$E(5)^{3}$	E(5)	$E(5)^3$
χ_6	-1	E(5)	1	-E(5)	$E(5)^{2}$	E(5)	1	$-E(5)^2$	$E(5)^{3}$	$E(5)^{2}$	E(5)	$-E(5)^{3}$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	$-E(5)^4$	$E(5)^4$	$E(5)^{3}$	$E(5)^4$
χ_7	1	$E(5)^{4}$	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^4$	1	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$	$E(5)^{2}$	E(5)	$E(5)^{2}$	$E(5)^{3}$	E(5)	E(5)	$E(5)^{2}$	E(5)
χ_8	1	$E(5)^{3}$	1	$E(5)^{3}$	E(5)	$E(5)^{3}$	1	E(5)	$E(5)^{4}$	E(5)	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{2}$	$E(5)^4$	E(5)	$E(5)^{2}$	$E(5)^{2}$	$E(5)^4$	$E(5)^2$
χ_9	1	$E(5)^{2}$	1	$E(5)^{2}$	$E(5)^{4}$	$E(5)^{2}$	1	$E(5)^{4}$	E(5)	$E(5)^4$	$E(5)^{2}$	E(5)	$E(5)^{3}$	E(5)	$E(5)^4$	$E(5)^{3}$	$E(5)^{3}$	E(5)	$E(5)^3$
χ_{10}	1	E(5)	1	E(5)	$E(5)^{2}$	E(5)	1	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{2}$	E(5)	$E(5)^{3}$	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	$E(5)^{4}$	$E(5)^4$	$E(5)^{3}$	$E(5)^4$
$ \chi_{11} $	2 0	2	$E(5)^2 + E(5)^3$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$
χ_{12}	2 0	2	$E(5) + E(5)^4$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$
χ_{13}		$2*E(5)^4$	()	0	$2 * E(5)^3$	$E(5) + E(5)^2$	$E(5) + E(5)^4$	0	$2*E(5)^2$	$-E(5)^2 - E(5)^3 - E(5)^4$	$-E(5) - E(5)^2 - E(5)^4$	0	2 * E(5)	$-E(5) - E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^4$	0	$E(5)^3 + E(5)^4$	$E(5) + E(5)^3$	$-E(5) - E(5)^3 - E(5)^4$
$ \chi_{14} $	2 0	2 * E(5)	$E(5)^2 + E(5)^3$	0	$2 * E(5)^2$	$E(5)^3 + E(5)^4$	$E(5) + E(5)^4$	0	$2*E(5)^3$	$-E(5) - E(5)^2 - E(5)^3$	$-E(5) - E(5)^3 - E(5)^4$	0	$2 * E(5)^4$	$-E(5)^2 - E(5)^3 - E(5)^4$	$E(5) + E(5)^3$	0	$E(5) + E(5)^2$	$E(5)^2 + E(5)^4$	$-E(5) - E(5)^2 - E(5)^4$
$ \chi_{15} $		$2*E(5)^3$	(/	0	2 * E(5)	$E(5)^2 + E(5)^4$	$E(5)^2 + E(5)^3$	0	$2*E(5)^4$		$-E(5)^2 - E(5)^3 - E(5)^4$	0	$2 * E(5)^2$	$-E(5) - E(5)^2 - E(5)^4$	$E(5)^3 + E(5)^4$	0	$E(5) + E(5)^3$	$E(5) + E(5)^2$	$-E(5) - E(5)^2 - E(5)^3$
χ_{16}		$2*E(5)^2$		0	$2 * E(5)^4$	$E(5) + E(5)^3$	$E(5)^2 + E(5)^3$	0	2 * E(5)	$-E(5) - E(5)^2 - E(5)^4$	$-E(5) - E(5)^2 - E(5)^3$	0	$2 * E(5)^3$	$-E(5) - E(5)^3 - E(5)^4$	$E(5) + E(5)^2$	0	$E(5)^2 + E(5)^4$	$E(5)^3 + E(5)^4$	$-E(5)^2 - E(5)^3 - E(5)^4$
χ_{17}		$2*E(5)^3$	()	0	2 * E(5)	$-E(5)^2 - E(5)^3 - E(5)^4$	$E(5) + E(5)^4$	0	$2*E(5)^4$	$E(5)^3 + E(5)^4$	$E(5)^2 + E(5)^4$	0	$2 * E(5)^2$	$E(5) + E(5)^2$	$-E(5) - E(5)^3 - E(5)^4$	0	$-E(5) - E(5)^2 - E(5)^3$	$-E(5) - E(5)^2 - E(5)^4$	$E(5) + E(5)^3$
$ \chi_{18} $		$2*E(5)^2$	()	0	$2 * E(5)^4$	$-E(5) - E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	0	2 * E(5)	$E(5) + E(5)^2$	$E(5) + E(5)^3$	0	$2 * E(5)^3$	$E(5)^3 + E(5)^4$	$-E(5) - E(5)^2 - E(5)^4$	0	$-E(5)^2 - E(5)^3 - E(5)^4$	$-E(5) - E(5)^3 - E(5)^4$	$E(5)^2 + E(5)^4$
χ_{19}		$2*E(5)^4$		0	$2 * E(5)^3$	$-E(5) - E(5)^2 - E(5)^4$		0	$2*E(5)^2$	$E(5)^2 + E(5)^4$	$E(5) + E(5)^2$	0	2 * E(5)	$E(5) + E(5)^3$	$-E(5)^2 - E(5)^3 - E(5)^4$	0	$-E(5) - E(5)^3 - E(5)^4$	$-E(5) - E(5)^2 - E(5)^3$	$E(5)^3 + E(5)^4$
$ \chi_{20} $	2 0	2 * E(5)	$E(5) + E(5)^4$	0	$2*E(5)^2$	$-E(5) - E(5)^3 - E(5)^4$	$E(5)^2 + E(5)^3$	0	$2*E(5)^3$	$E(5) + E(5)^3$	$E(5)^3 + E(5)^4$	0	$2*E(5)^4$	$E(5)^2 + E(5)^4$	$-E(5) - E(5)^2 - E(5)^3$	0	$-E(5) - E(5)^2 - E(5)^4$	$-E(5)^2 - E(5)^3 - E(5)^4$	$E(5) + E(5)^2$

Trivial source character table of $C \simeq C5 \times D10$ at n =

Trivial source character table of $G \cong C5 \times D10$ at $p = 5$:								
Normalisers N_i	N_1	1	N_2	l N	V_3	N_4	N_5	N_6
p-subgroups of G up to conjugacy in G	P_1	1	P_2	P	3	P_4	P_5	P_6
Representatives $n_j \in N_i$	1 <i>a</i>	2a	1a $2a$	1 <i>a</i>	2a	1a	1a	1a $2a$
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 $	25	-5	0 0	0	0	0	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20}$	25	5	0 0	0	0	0	0	0 0
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{10} + 0 $	5	-1	5 -1	0	0	0	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	5	1	5 1	0	0	0	0	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$		5	0 0	5	5	0	0	0 0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5	-5	0 0	5	-5	0	0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	10	0	0 0	0	0	5	0	0 0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20}$	10	0	0 0	0	0	0	5	0 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	1	1	1 1	1	1	1	1	1 1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	1	-1	1 -1	1	-1	1	1	1 -1

 $P_1 - Group([()]) \simeq$

 $P_2 = Group([(1, 3, 7, 13, 21)(2, 5, 10, 17, 26)(4, 8, 14, 22, 31)(6, 11, 18, 27, 35)(9, 15, 23, 32, 39)(12, 19, 28, 36, 42)(16, 24, 33, 40, 45)(20, 29, 37, 43, 47)(25, 34, 41, 46, 49)(30, 38, 44, 48, 50)]) \cong C5$

 $P_{3} = Group([(1, 16, 4, 25, 9)(2, 20, 6, 30, 12)(3, 24, 8, 34, 15)(5, 29, 11, 38, 19)(7, 33, 14, 41, 23)(10, 37, 18, 44, 28)(13, 40, 22, 46, 32)(17, 43, 27, 48, 36)(21, 45, 31, 49, 39)(26, 47, 35, 50, 42)]) \cong C5$

 $P_4 = Group([(1,24,14,46,39)(2,29,18,48,42)(3,33,22,49,9)(4,34,23,13,45)(5,37,27,50,12)(6,38,28,17,47)(7,40,31,25,15)(8,41,32,21,16)(10,43,35,30,19)(11,44,36,26,20)]) \cong C5$

 $P_5 = Group([(1, 8, 23, 40, 49)(2, 11, 28, 43, 50)(3, 14, 32, 45, 25)(4, 15, 33, 46, 21)(5, 18, 36, 47, 30)(6, 19, 37, 48, 26)(7, 22, 39, 16, 34)(9, 24, 41, 13, 31)(10, 27, 42, 20, 38)(12, 29, 44, 17, 35)]) \cong C5$

 $P_6 = Group([(1,3,7,13,21)(2,5,10,17,26)(4,8,14,22,31)(6,11,18,27,35)(9,15,23,32,39)(12,19,28,36,42)(16,24,33,40,45)(20,29,37,43,47)(25,34,41,46,49)(30,38,44,48,50),(1,16,4,25,9)(2,20,6,30,12)(3,24,8,34,15)(5,29,11,38,19)(7,33,14,41,23)(10,37,18,44,28)(13,40,22,46,32)(17,43,27,48,36)(21,45,31,49,39)(26,47,35,50,42)]) \cong C5 \times C5$

 $N_1 = Group([(1,2)(3,5)(4,30)(6,25)(7,10)(8,38)(9,20)(11,34)(12,16)(13,17)(14,44)(15,29)(18,41)(19,24)(21,26)(22,48)(23,37)(27,46)(28,33)(31,50)(32,43)(35,49)(36,40)(39,47)(42,45),(1,3,7,13,21)(2,5,10,17,26)(4,8,14,22,31)(6,11,18,27,35)(9,15,23,32,39)(12,19,28,36,42)(16,24,33,40,45)(20,29,37,43,47)(25,34,41,46,49)(30,38,44,48,50),(1,4,9,16,25)(2,6,12,20,30)(3,8,15,24,34)(5,11,19,29,38)(7,14,23,34,41)(10,18,28,37,44)(13,22,32,40,46)(17,27,36,43,48)(21,31,39,45,49)(26,35,42,47,50)] \\ = Group([(1,3,7,13,21)(2,5,10,17,26)(4,8,14,22,31)(6,11,18,27,35)(9,15,23,32,39)(12,19,28,36,42)(16,24,33,40,45)(20,29,37,43,47)(25,34,41,46,49)(30,38,44,48,50),(1,4,9,16,25)(2,6,12,20,30)(3,8,15,24,34)(5,11,19,29,38)(7,14,23,34,41)(10,18,28,37,44)(13,22,32,40,46)(17,27,36,43,48)(21,31,39,45,49)(26,35,42,47,50)]) \\ = Group([(1,16,4,25,9)(2,20,6,30,12)(3,24,33,44)(10,18,28,37,44)(13,22,32,40,46)(17,27,36,43,48)(21,31,39,45,49)(26,35,42,47,50)]) \\ = Group([(1,16,4,25,9)(2,20,6,30,12)(3,24,33,44)(10,18,28,37,44)(13,22,32,40,46)(17,27,36,43,48)(21,31,39,45,49)(26,35,42,47,50)]) \\ = Group([(1,16,4,25,9)(2,20,6,30,12)(3,24,33,44)(10,18,28,37,44)(13,22,31,44,48,49)(3,34,48,48)(13,34,48,48)(13,34,48,48)(13,34,48,48)(13,34,48,48)(13,49,23,44,48,48)(13,49,23,48)(14,48,48)(13,49,23,48,48)(14,49,39)(26,47,35,50,42),(14,49,49,39)(26,47,35,50,42),(14,49,49,49)(30,38,44,48,50)]) \\ = Group([(1,24,14,46,39)(2,29,18,48,42)(3,33,22,49,9)(4,34,23,13,45)(5,37,27,50,12)(6,38,28,17,47)(7,40,31,25,15)(6,11,18,27,35)(9,15,23,32,39)(12,19,28,36,42)(16,24,33,40,45)(29,29,37,43,47)(25,34,41,46,49)(30,38,44,48,50)]) \\ = Group([(1,24,14,46,39)(2,29,18,48,42)(3,33,22,49,9)(4,34,23,13,45)(5,37,27,50,12)(6,38,28,17,47)(7,40,31,25,15)(6,11,18,27,35)(9,15,23,32,39)(12,19,28,36,42)(16,24,33,40,45)(29,29,37,43,47)(25,34,41,46,49)(30,38,44,48,50)]) \\ = Group([(1,24,14,46,39)(2,29,14,44,46,39)(2,29,14,44,46,39)(2,29,37,43,47)(25,34,44,46,49)(30,38,44,48,50)]) \\ = Group([(1,24,14,46,39)(2,29,14,44,46,39)(2,29,37,44,46,49)(2,33,40,45)(2,29,37,44,46,49)(2,33,40,45)(2,29,37$

 $N_6 = Group([(1,16,4,25,9)(2,20,6,30,12)(3,24,8,34,15)(5,29,11,38,19)(7,33,14,41,23)(10,37,18,44,28)(13,40,22,46,32)(17,43,27,48,36)(21,45,31,49,39)(26,47,35,50,42), (1,3,7,13,21)(2,5,10,17,26)(4,8,14,22,31)(6,11,18,27,35)(9,15,23,32,39)(12,19,28,36,42)(16,24,33,40,45)(20,29,37,43,47)(25,34,41,46,49)(30,38,44,48,50), (1,2)(3,5)(4,30)(6,25)(7,10)(8,38)(9,20)(11,34)(12,16)(13,17)(14,44)(15,29)(18,41)(19,24)(21,26)(22,48)(23,37)(27,46)(28,33)(31,50)(32,43)(35,49)(36,40)(39,47)(42,45)]) \\ \cong C5 \times D10$