Array Fold Logic Proof

October 20, 2020

Overview

- Overview of the proof.
- Proof of Complexity.
- Decision Procedure.

Definitions

Definition (SMC)

A symolic k-counter machine is a tuple $\mathcal{M} = (\eta, X, Q, \delta, q^{init})$, where $\delta \subseteq Q \times \mathrm{CC}_k(X) \times \mathrm{IC}(X) \times Q \times \mathbb{Z}^k$.

Definition (Translation)

We define a translation of a functional constant f of FSort^m as an SCM $\mathcal{M}(f) = (\eta, X, Q, \delta, q^{init})$. Let $G = \langle S, E, \gamma \rangle$ be the edge-labeled graph of f, then the translation...

Definitions

Definition 3. The parallel composition (product) of two SCMs \mathcal{M}_1 and \mathcal{M}_2 , where $\mathcal{M}_i = (\eta_i, X_i, Q_i, \delta_i, q_i^{\text{init}})$, is an SCM $\mathcal{M} = (\eta, X, Q, \delta, q^{\text{init}})$ such that:

- $\eta = \eta_1 \eta_2$,
- $-X=X_1\cup X_2,$
- $Q = Q_1 \times Q_2,$
- for each pair of transitions $(q_i, \alpha_i, \beta_i, p_i, \mathbf{w}_i) \in \delta_i$, where i = 1..2, there is the transition $((q_1, q_2), \alpha_1 \wedge \alpha_2, \beta_1 \wedge \beta_2, (p_1, p_2), \mathbf{w}_1 \mathbf{w}_2) \in \delta$, which are the only transitions in δ .
- $q^{\text{init}} = (q_1^{\text{init}}, q_2^{\text{init}}).$

Small model property

Lemma

There exists a constant $c \in \mathbb{N}$, such that an AFL formula Φ is satisfiable iff there exists a model σ it maps each variable in X to integer that $\leq 2^{|\Phi|^c}$ and array to sequence of $\leq 2^{|\phi|^c}$ where each integer of the array also lies in the bound.

Complexity

Theorem

The satisfiability problem of AFL is **PSPACE**-complete.

- Membership: If the small model property holds, an NTM can
 - nondeterministically guess variable use space of $|\Phi|^c$ bits.
 - guess one-by-one the value of $2^{|\Phi|^c}$ array cells and use $|\Phi|^c$ bits to count the current index.
 - due to the bound of the variable and the bound of length, the counter value of fold is also bounded in poly.

Then a NTM can simulate the SAT problen in PSPACE.

Hardness: Reduce the emptiness problem of intersection of DFAs to this problem.

$$\bigcap_{i=1}^{n} \mathcal{L}(A_i) \neq \emptyset$$

 A_i can be simulated by $fold_a^i$ with a single counter: What is the alphabet? What is accept? Why this work? Intersection of folds.

Proof of Small Model Lemma