Kombinacije

23.10.2024.

1 Kombinacije

U prethodnoj lekciji smo definisali permutacije elemenata skupa kao odabir k elemenata iz kolekcije od n elemenata, pri čemu je redosled odabira bitan. Kombinacije, s druge strane, su odabiri u kojima redosled nije bitan

1.1 Kombinacije bez ponavljanja

Definicija k-kombinacija bez ponavljanja predstavlja sve načine na koji možemo iz skupa od n različitih elemenata odabrati k elemenata, pri čemu redosled izbora elemenata nije bitan. Broj kombinacija bez ponavljanja se označava sa C(n,k).

Teorema

$$C(n,k) = \frac{n!}{k! \cdot (n-k)!}$$

Dokaz Podsetimo se da je broj permutacija bez ponavljanja P(n,k) bio jednak $\frac{n!}{(n-k)!}$. Tih k odabranih elemenata je moguće odabrati u P(k,k)=k! različitih redosleda. Kako sve te rasporede tretiramo kao iste prilikom brojanja kombinacija, broj C(n,k) je k! puta manji od P(n,k). Dakle, ukupno imamo $\frac{n!}{k!\cdot(n-k)!}$ kombinacija

Primetimo da svaka jedinstvena kombinacija k elemenata iz skupa od n elemenata predstavlja jedan podskup početnog skupa sa tačno k elemenata. Skup svih podskupova skupa A koji imaju k elemenata označavamo sa $\binom{A}{k}$

Npr. za
$$A = \{1,2,3,4\}$$
imamo da je $\binom{A}{2} = \{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$

Analogno uvodimo oznaku za broj elemenata ovog skupa kao $\binom{n}{k}$, gde je |A|=n i k broj elemenata u svakom podskupu. Dakle, imamo da je $|\binom{A}{k}|=\binom{|A|}{k}=\binom{n}{k}$. Pošto smo konstantovali da je broj k-kombinacija skupa jednak broj podskupova sa k elemenata, sledi da je $C(n,k)=\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!}$

Izraz $\binom{n}{k}$ se još naziva i **binomni koeficijent** n **nad** k

Teorema Skup A, takav da je |A| = n, ima ukupno 2^n različitih podskupova

Dokaz Svaki element skupa A može da pripada ili ne pripada jednom podskupu. Za svaki element možemo birati da li će pripadati ili ne jednom traženom podskupu. Kako za n elemenata pravimo izbor između dve opcije, po principu proizvoda imamo ukupno 2^n različitih ishoda - što čini ukupan broj svih podskupova

```
[]: #Funkcija za generisanje kombinacija proizvoljne dužine od zadatog skupa
     def generate_combinations(arr, length, current, lastindex):
         if lastindex > len(arr):
             pass
         elif len(current) == min(len(arr), length):
             print(current)
         else:
             for i in range(lastindex, len(arr)):
                 newcurrent = current.copy()
                 newcurrent.append(arr[i])
                 generate combinations(arr, length, newcurrent, i + 1)
     def combine(arr, k):
         generate_combinations(arr, k, [], 0)
     arr = [eval(i) for i in input("Unesite elemente skupa sa razmacima: ").split()]
     k = int(input("Unesite broj elemenata kombinacije: "))
     combine(arr, k)
```

[1, 2]

[1, 3]

[1, 4]

[1, 5]

[2, 3]

[2, 4]

[2, 5]

[3, 4]

[3, 5]

[4, 5]

1.1.1 Jedna osobina binomnih koeficijenata i njeni različiti dokazi

Sada ćemo prikazati jednu osobinu binomnih koeficijenata i na njoj demonstrirati različite tehnike dokazivanja, jednu koja nam je dosad poznata i drugu s kojom se dosad nismo sretali.

Teorema

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Predstavićemo nacrt dokaza putem matematičke indukcije

Dokaz 1 (matematičkom indukcijom)

1. Bazni slučaj n=1

$$\binom{1}{0} + \binom{1}{1} = \frac{1!}{0! \cdot 1!} + \frac{1!}{1! \cdot 0!} = 1 + 1 = 2 = 2^1$$

2. Induktivna hipoteza n = m

$$\sum_{k=0}^{m} \binom{m}{k} = 2^m$$

3. Induktivni korak n=m+1 Za ovaj dokaz koristimo tvrđenje $\binom{n+1}{k}=\binom{n}{k}+\binom{n-1}{k}$

$$\sum_{k=0}^{m} \binom{m+1}{k} = \sum_{k=0}^{m} (\binom{m}{k} + \binom{m-1}{k}) = \sum_{k=0}^{m} \binom{m}{k} + \sum_{k=0}^{m} \binom{m-1}{k} = \dots$$

Sada ćemo predstaviti drugi dokaz izveden od znanja iz kombinatorike, tzv. kombinatorni dokaz

Dokaz 2 (kombinatorni dokaz)

Primetimo da svaki binomni koeficijent u razvoju izraza $\sum_{k=0}^{n} {n \choose k}$ predstavlja broj podskupova sa k elemenata, gde k uzima sve vrednosti od 0 do n, odnosno, izraz s leve strane je broj svih mogućih podskupova skupa sa n elemenata - što smo već dokazali da ih za skup od n elemenata ukupno ima 2^n

1.2 Kombinacije sa ponavljanjem

Definicija k-kombinacija sa ponavljanjem predstavlja sve načine na koji možemo iz skupa od n različitih elemenata odabrati k elemenata, pri čemu redosled izbora elemenata nije bitan i jedan element možemo birati više puta.

Kombinacije s ponavljanjem dobijamo tako što iz skupa biramo jedan element, zapisujemo ga u niz i vraćamo ga nazad u skup. Taj postupak ponavljamo više puta i posle željenog broja iteracija dobijeni niz elemenata sortiramo po nekom kriterijumu (npr. leksikografski poredak). Neki primeri kombinacija s ponavljanjem 6 elemenata iz skupa $A = \{a, b, c, d\}$ su aaabcd, abbccd, aaaaab, bcccdd...

Teorema Broj k-kombinacija sa ponavljanjem je jednak sa $C(n+k-1,k)=\binom{n+k-1}{k}$

Dokaz Neka je

$$\begin{pmatrix} M \\ m \end{pmatrix} = \{M_1: |M_1| = m \wedge M_1 \subseteq M\}$$

$$A = \{(a_1, \dots, a_{m+l-1}) \in \{0,1\}^{m+l-1}: \{a_1, \dots, a_{m+l-1}\} = [0,1]_{l-1,m}\}$$

Znači, $\binom{M}{m}$ je skup svih m-tačlanih podmultiskupova od M, a A je skup svih uređenih torki dužine m+l-1 koje imaju tačno m komponenti jednakih 1 i preostalih l-1 komponenti jednakih 0.

Definišimo preslikavanje

$$\varphi_{(b_1,\dots,b_l)}:\binom{M}{m}\to A$$

na sledeći način

$$\varphi_{(b_1,\dots,b_l)}(M_1) = (c_1,\dots,c_{m+l-1}),$$

gde je $M_1 = [b_1, \dots, b_l]_{m_1, \dots, m_l}$ i za svako $i \in \{1, \dots, l-1\}$

$$c_{(i-1)+(m_i+1)} = 0, \quad c_{(i-1)+j} = 1, \quad 0 < j \leq m_i.$$

Kako je $\varphi_{(b_1,\ldots,b_l)}$ bijektivno preslikavanje,

$$\overline{C}(l;m) = \left| \binom{M}{m} \right| = |A|.$$

Broj načina da od m+l-1 mesta izaberemo m za 1 i preostalih l-1 za 0 jednak je

$$\overline{P}(m,l-1) = \frac{(m+l-1)!}{m!(l-1)!}.$$

```
[]: #Funkcija za generisanje kombinacija proizvoljne dužine od zadatog multiskupa
     def generate_combinations(arr, length, current, lastindex, repeated):
         if lastindex > len(arr) or current in repeated:
         elif len(current) == min(len(arr), length):
             print(current)
             repeated.append(current)
         else:
             for i in range(lastindex, len(arr)):
                 newcurrent = current.copy()
                 newcurrent.append(arr[i])
                 generate_combinations(arr, length, newcurrent, i + 1, repeated)
     def combine(arr, k):
         generate_combinations(arr, k, [], 0, [])
     arr = [str(i) for i in input("Unesite elemente skupa sa razmacima: ").split()]
     arr.sort()
     k = int(input("Unesite broj elemenata kombinacije: "))
     combine(arr, k)
```

```
Unesite elemente skupa sa razmacima: a a a b b b c c c
Unesite broj elemenata kombinacije: 3
['a', 'a', 'a']
['a', 'a', 'b']
['a', 'b', 'b']
['a', 'b', 'c']
['a', 'c', 'c']
['b', 'b', 'b']
['b', 'b', 'c']
['b', 'c', 'c']
['b', 'c', 'c']
```

1.2.1 Jedna interpretacija kombinacija sa ponavljanjem - crtice i zvezdice

Primetimo da nam je svaka kombinacija sa ponavljanjem precizno određena brojem puta koliko je svaki od datih n elemenata izabran. Neka je i-ti element izabran x_i puta, $1 \le i \le k$. Kako biramo ukupno n elemenata, znamo da je zbir svih tih izbora jednak n, tj.

$$\sum_{i=1}^n x_i = x_1+x_2+\ldots+x_k = n$$

Neka je, bez gubljenja opštosti n=6 i k=4. Imamo

$$x_1 + x_2 + x_3 + x_4 = 6$$

Posmatrajmo niz koji se sastoji od 6 zvezdica i 3 crtice

Svaka permutacija ovih elemenata nam kodira jedno rešenje jednačine $x_1 + x_2 + x_3 + x_4 = 6$, npr.

$$**|***||* \equiv 2+3+0+1=6$$

Ovih permutacija imamo, po formuli za permutacije s ponavljanjem, ukupno $\frac{9!}{6!3!} = 63$

U opštem slučaju, imaćemo n zvezdica i k-1 crtica, gde će nam ukupan broj permutacija biti

$$\frac{(n+k-1)!}{n!(k-1)!} = \binom{k+n-1}{n}$$

što je jednako broju kombinacija sa ponavljanjem n elemenata iz skupa od k elemenata.

1.2.2 Rešavanje linearnih jednačina pomoću kombinacija multiskupa

Problem: Koliko rešenja ima jednačina

$$x_1 + x_2 + \dots + x_k = n,$$

gde su x_1, x_2, \dots, x_k nenegativni celi brojevi?

Rešenje: Posmatrajmo skup $X=\{1,2,\ldots,k\}$. Ako pretpostavimo da, za $1\leq i\leq k$, broj x_i označava koliko je puta izabran element i iz skupa X, tada svako rešenje (x_1,x_2,\ldots,x_k) gornje jednačine odgovara tačno jednom neuređenom izboru n elemenata sa ponavljanjem iz skupa sa k elemenata.

Takođe važi i obratno: svaki neuređeni izbor n elemenata sa ponavljanjem iz skupa sa k elemenata određuje tačno jedno rešenje (x_1, x_2, \dots, x_k) gornje jednačine.

Stoga, broj rešenja jednačine je jednak broju ovakvih neuređenih izbora, a to je:

$$\binom{k+n-1}{n}$$
.

Napomena: Na osnovu jedne od osobina binomnih koeficijenata (osobina simetričnosti), broj rešenja prethodne jednačine može se predstaviti i na sledeći način: $\binom{k+n-1}{k-1}$.

1.2.3 Određivanje broja monotono neopadajućih konačnih nizova brojeva

Teorema Broj monotono neopadajućih nizova dužine n sa vrednostima iz skupa $\{1, 2, ..., k\}$ je dat formulom:

$$\binom{k+n-1}{n}$$

Dokaz Monotono neopadajući nizovi su nizovi $x_1 \leq x_2 \leq \cdots \leq x_n$, gde su elementi iz skupa $\{1, 2, \ldots, k\}$. Ovaj problem možemo posmatrati kao sortiranje permutacija, gde se sve permutacije sa istim elementima sortiraju u jedan fiksni redosled ili ga možemo preformulisati kao raspodelu n objekata u k kutija, što odgovara rešenju jednačine:

$$x_1 + x_2 + \dots + x_k = n, \quad x_i \ge 0$$

Broj takvih raspodela je jednak broju načina da postavimo k-1 razdvajajućih linija između n objekata tj. broju kombinacija sa ponavljanjem, što je binomni koeficijent:

$$\binom{k+n-1}{n}$$

Ovo je broj monotono neopadajućih nizova, što završava dokaz.