1 Definitions

1.1 Vector Space

Assume that v, x, y, z are vectors in V, and a, b, c are scalars in \mathbb{R} . A **vector space** is a set V with the following properties:

Commutativity:

• x + y = y + x

Associativity:

- (x + y) + z = x + (y + z)
- (ab)v = a(bv)

Additive Identity:

• there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Additive Inverse:

• for all $v \in V$, there exists $x \in V$ such that v + x = 0

Multiplicative Identity:

• $1\nu = \nu$

Distributive Properties:

- a(x + y) = ax + ay
- (a+b)v = av + bv

1.2 Linear Combination

A linear combination of a list of vectors v_1, \ldots, v_n is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \ldots a_n \in \mathbb{R}$

1.3 Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_n is called the **span** of v_1, \ldots, v_n , and is defined:

$$\mathrm{span}(\nu_1,\ldots,\nu_n)=\{\alpha_1\nu_1+\cdots+\alpha_n\nu_n\ :\ \alpha_1,\ldots,\alpha_m\in\mathbb{R}\}$$

If the span is equal to some space $\operatorname{span}(\nu_1, \dots, \nu_n) = V$, then you could say that ν_1, \dots, ν_n spans V.

1.4 Linearly Independent

For $v_1, \ldots, v_n \in V$ and $a_1, \ldots, a_n \in \mathbb{R}$ such that:

$$a_1v_1 + \cdots + a_nv_n = 0$$

The list of vectors ν_1, \dots, ν_n is called $\mathbf{linearly}$ independent when

$$a_1 = \cdots = a_n = 0$$

for all possible values of v_1, \ldots, v_n .

1.5 Basis

A basis of V is a list of vectors in V that is both linearly independent and spans V.

The **Standard Basis** of the vector space \mathbb{R}^n is

$$(1,0,\ldots,0),(0,1,\ldots,0),\ldots,(0,0,\ldots,1)$$

which could also be written, using matrix bracket notation, as:

$$\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

1.6 Dimension

The dimension of a vector space is the length of any basis of the vector space. For example,

$$\dim\,\mathbb{R}^n=n$$

1.7 Inner Product

For a pair of vectors $\mathbf{u}, \mathbf{v} \in V$ in the same vector space (they are both in \mathbb{R}^n for example), the Inner Product is defined as:

$$u \cdot v = u_1 v_1 + ... + u_n v_n$$

which is also sometimes written using angular brackets:

$$\langle u, v \rangle$$

Keep in mind that the dimension of $\mathfrak u$ and $\mathfrak v$ must be the same. Using matrix dimension notation:

$$u_{\{n\times 1\}}\cdot \nu_{\{n\times 1\}}$$

The **Inner Product** is also a function $f:(\mathbb{R}^n,\mathbb{R}^n)\to\mathbb{R}$. The input is an ordered pair of vectors, and the output is a number. Inner products have the following properties:

Positivity:

• $\langle v, v \rangle \ge 0$ for all $v \in V$

Definiteness:

• $\langle v, v \rangle = 0$ if and only if v = 0

Additivity in First Slot:

• $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$

Homogeneity in First Slot:

• $\langle au, v \rangle = a \langle u, v \rangle$ for all $a \in \mathbb{R}$ and all $u, v \in V$

In another definition of the Inner Product, the concepts of "additivity" and "homogeneity" are combined into a concept called "linearity". **Bilinearity** is when there is linearity in both the First and Second slots. Additionally, there is a concept called **Symmetry** for all real numbers.

For $x, y, z \in V$ and $a, b \in \mathbb{R}$:

Bilinearity:

- Additivity and Homogeneity in First and Second Slot:
- $\langle ax + by, z \rangle = a\langle x, z \rangle + b\langle y, z \rangle$
- $\langle x, ay + bz \rangle = a \langle x, y \rangle + b \langle x, z \rangle$

Symmetry:

• $\langle x, y \rangle = \langle y, x \rangle$

1.8 Norm

The Norm of a vector \boldsymbol{x} is defined as the square root inner product of \boldsymbol{x} with itself:

$$\|x\| = \sqrt{\langle x, x \rangle}$$

The Euclidean Norm, also called 2-norm, is defined:

$$\|x\|_2 = \sqrt{{x_1}^2 + \ldots + {x_n}^2}$$

which has the following properties:

Positivity:

- ||x|| > 0
- ||x|| = 0 if and only if x = 0

Homogeneity:

• $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{R}$

Triangle Inequality:

• $||x + y|| \le ||x|| + ||y||$

1.9 Orthogonal

Two vectors $u, v \in V$ are called **orthogonal** if the inner product between them is 0,

$$\langle u, v \rangle = 0$$

you could also say " $\mathfrak u$ is orthogonal to $\mathfrak v$ ". Orthogonal is another way of saying "at right angles to each other", or "perpendicular".

1.10 Linear Map

A linear map from vector space V to vector space W is a function $T: V \to W$ with the following properties:

Additivity:

• T(u + v) = Tu + Tv for all vectors $u, w \in V$

Homogeneity:

• $T(\alpha v) = \alpha(Tv)$ for all $\alpha \in \mathbb{R}$ and all $v \in V$

1.11 Linear Maps and Matrices

Suppose M is a linear map $f: \mathbb{R}^a \to \mathbb{R}^b$, then M can be written as b-by-a matrix:

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,\alpha} \\ \vdots & \vdots & \vdots \\ x_{b,1} & \cdots & x_{b,\alpha} \end{bmatrix}$$

2 Proofs

2.1 Cosine Formula for Inner Product

For two non-zero vectors $x, y \in V$,

$$\langle x,y\rangle = \|x\|\|y\|\cos\theta$$

where the angle $\angle xy = \theta$.

Proof:

There are two cases we need to write a proof for.

- Case 1: when x and y are not scalar multiples of each other.
- Case 2: when x and y are scalar multiples.

Case 1

For any triangle with sides a, b, c, The Law of Cosines states,

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

where the angle $\angle ab = \theta$. For vectors $x, y \in V$, we can treat them as sides of the triangle. Let:

$$a = ||x||$$
$$b = ||y||$$
$$c = ||x - y||$$

Which allows us to rewrite the Law of Cosines:

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

Start with the definition of Inner Product, and apply its algebraic properties (notably the Bilinearity property), to show that Law of Cosines for Inner Products is correct.

$$||x - y||^{2}$$

$$= \langle x - y, x - y \rangle$$

$$= \langle x, x - y \rangle - \langle y, x - y \rangle$$

$$= (\langle x, x \rangle - \langle x, y \rangle) - (\langle y, x \rangle - \langle y, y \rangle)$$

$$= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^{2} - 2\langle x, y \rangle + ||y||^{2}$$

Returning to the Law of Cosines,

Case 2:

Since x and y are scalar multiples of each other, we can

$$y = cx$$

for some scalar $c \in \mathbb{R}$ where $c \neq 0$ (since the theorem statement says that x and y are "nonzero vectors"). Now, to find the value of θ , we look at the value of c:

- If c > 0, then $\theta = 0$, and $\cos \theta = 1$
- If c < 0, then $\theta = \pi$, and $\cos \theta = -1$

Define the sign of c, so that we can use it in our proof:

$$sign(c) = cos \theta$$

And here's the proof:

$$\begin{aligned} \langle x, y \rangle &= \langle cx, x \rangle \\ &= c \langle x, x \rangle \\ &= c \|x\|^2 \\ &= c \|x\| \|x\| \\ &= c \sqrt{(x_1^2 + \dots + x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{c^2 (x_1^2 + \dots + x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{(c^2 x_1^2 + \dots + c^2 x_n^2)} \|x\| \\ &= \mathrm{sign}(c) \sqrt{(y_1^2 + \dots + y_n^2)} \|x\| \\ &= \mathrm{sign}(c) \|y\| \|x\| \\ &= \|x\| \|y\| \cos \theta \end{aligned}$$

2.2Triangle Inequality

TODO

2.3 Cauchy-Schwartz Inequality

TODO

3 Matrices

Specific Things involving Matrices

TODO see chapter 8 and 9.

3.1 Algebraic Properties of Matrices

TODO

3.2 Algebraic Properties of Matrix Trans-

- $(A^{T})^{T} = A$
- $(A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$
- $(cA)^T = cA^T$ $(AB)^T = B^TA^T$

Leading Entry 3.3

The Leading Entry of a row in a matrix the is first non-zero element in that row (from left-to-right).

Special Notations 3.4

The $1 - \star - \times - 0$ notation.

- 1: must be a 1
- * : Non-zero values
- × : any number
- 0: must be a 0

3.5 Main Diagonal

For a matrix $a_{i,k}$, the main diagonal would be defined as the set of entries:

$$\{a_{i,k}: i=k\}$$

In the following example, the Main Diagonal would be the 1s:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Non-Diagonal entries are all values that are not in the main diagonal:

$$\{a_{i,k}: i \neq k\}$$

3.6Diagonal Matrix

Diagonal Matrix is a matrix where all non-diagonal entries are 0.

For example, the following is a Diagonal Matrix:

$$\begin{bmatrix} \star & 0 & 0 \\ 0 & \star & 0 \\ 0 & 0 & \star \end{bmatrix}$$

3.7**Identity Matrix**

An Identity Matrix is a matrix where all diagonal entries are Upper-Triangular Entries are defined as: 1, and all non-diagonal entries are 0. For example,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The Identity matrix is a function $I: \mathbb{R}^n \to \mathbb{R}^n$ that maps to the same vector space it started from. It satisfies the existence of an identity for linear maps. For all $v \in \mathbb{R}^n$,

$$I\nu = \nu$$

Thus, the Identity Matrix needs to be a Square Matrix in $\mathbb{R}^{n \times n}$.

3.8 Lower-Triangular Entries

Lower-Triangular Entries of a matrix are either on the diagonal are below the diagonal. Defined as:

$$\{L_{i,k}: i \geq k\}$$

Strictly Lower-Triangular Entries of a matrix are only the values below the diagonal:

$$\{L_{i,k}: i>k\}$$

3.9 Lower-Triangular Matrix

A Lower-Triangular Matrix, $L \in \mathbb{R}^{n \times n}$, is a square matrix such that

$$L_{i,k} = 0$$
 for all $i < k$

For example, in this Lower-Triangular Matrix, $L \in \mathbb{R}^{3\times 3}$,

the lower-triangular entries can be anything, and the rest must be 0.

3.10 Unit Lower-Triangular Matrix

The Unit Lower-Triangular Matrix, $L \in \mathbb{R}^{n \times n}$ is both:

$$\begin{split} L_{i,k} &= 1 \qquad \text{for all } i = k \\ L_{i,k} &= 0 \qquad \text{for all } i < k \end{split}$$

An example of a Unit Lower-Triangular Matrix, $L \in \mathbb{R}^{3\times 3}$,

$$\begin{bmatrix} 1 & 0 & 0 \\ \star & 1 & 0 \\ \star & \star & 1 \end{bmatrix}$$

3.11 Upper-Triangular Matrix

$$\{U_{i,k}: i \leq k\}$$

Strictly-Upper-Triangular Entries are defined as:

$$\{U_{i,k} : i < k\}$$

Upper-Triangular Matrix example:

$$\begin{bmatrix} \star & \star & \star \\ 0 & \star & \star \\ 0 & 0 & \star \end{bmatrix}$$

Unit Upper-Triangular Matrix example:

$$\begin{bmatrix} 1 & \star & \star \\ 0 & 1 & \star \\ 0 & 0 & 1 \end{bmatrix}$$

Quite similar to the Lower-Triangular Matrix definitions and examples.

Bands of a Matrix 3.12

TODO

Row Partition 3.13

TODO

3.14 Column Partition

TODO

3.15 Outer Product of Vectors

TODO

Rank-one Updates 3.16

TODO

3.17Shear

TODO

3.18Dilation

TODO

3.19 Transposition 5 TIPS AND TRICKS

3.19 Transposition

TODO

3.20 Givens Rotation

TODO

3.21 Gauss Transform

TODO

5.1 Dimensions of Nine Different Products

Scalar , Scalar : $\mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$

Scalar , Column Vector : $\mathbb{R} \times \mathbb{R}^n \qquad \rightarrow \mathbb{R}^n$

Scalar , Row Vector : $\mathbb{R} \times \mathbb{R}^{1 \times n} \longrightarrow \mathbb{R}^{1 \times n}$

Inner Product on \mathbb{R}^n : $\mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$ Inner Product on $\mathbb{R}^{1 \times n}$: $\mathbb{R}^{1 \times n} \times \mathbb{R}^{1 \times n} \longrightarrow \mathbb{R}$

Outer Product: $\mathbb{R}^{m \times 1} \times \mathbb{R}^{n \times 1} \longrightarrow \mathbb{R}^{m \times n}$

Scalar, Matrix : $\mathbb{R} \times \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{m \times n}$

 $\mathrm{Matrix},\, \mathrm{Column}\,\, \mathrm{Vector}: \ \ \, \mathbb{R}^{m\times n}\times \mathbb{R}^{n\times 1} \qquad \rightarrow \mathbb{R}^{m\times 1}$

Row Vector, Matrix : $\mathbb{R}^{1 \times m} \times \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{1 \times n}$

5.2 Matrix Operations

TODO

4 Applications

Examples of applying Linear Algebra to other things. Includes models made with Vectors and Matrices.

4.1 Incidence Matrix of a Graph

TODO

4.2 3D Wireframe

TODO

4.3 3D Polygons

TODO

4.4 Spring-Mass Problem

TODO

5 Tips and Tricks

Extra things that are useful as a reference.