Orthogonal matrices and Gram-Schmidt

In this lecture we finish introducing orthogonality. Using an orthonormal basis or a matrix with orthonormal columns makes calculations much easier. The Gram-Schmidt process starts with any basis and produces an orthonormal basis that spans the same space as the original basis.

Orthonormal vectors

The vectors \mathbf{q}_1 , \mathbf{q}_2 , ... \mathbf{q}_n are *orthonormal* if:

$$\mathbf{q}_i^T \mathbf{q}_j = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j. \end{cases}$$

In other words, they all have (normal) length 1 and are perpendicular (ortho) to each other. Orthonormal vectors are always independent.

Orthonormal matrix

If the columns of $Q = [\mathbf{q}_1 \ \dots \ \mathbf{q}_n]$ are orthonormal, then $Q^TQ = I$ is the identity.

Matrices with orthonormal columns are a new class of important matrices to add to those on our list: triangular, diagonal, permutation, symmetric, reduced row echelon, and projection matrices. We'll call them "orthonormal matrices".

A square orthonormal matrix Q is called an orthogonal matrix. If Q is square, then $Q^{T}Q = I$ tells us that $Q^{T} = Q^{-1}$.

For example, if $Q = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ then $Q^T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. Both Q and Q^T

are orthogonal matrices, and their product is the identity.

The matrix
$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is orthogonal. The matrix $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ is

not, but we can adjust that matrix to get the orthogonal matrix $Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

We can use the same tactic to find some larger orthogonal matrices called Hadamard matrices:

An example of a rectangular matrix with orthonormal columns is:

$$Q = \frac{1}{3} \left[\begin{array}{cc} 1 & -2 \\ 2 & -1 \\ 2 & 2 \end{array} \right].$$

We can extend this to a (square) orthogonal matrix:

$$\frac{1}{3} \left[\begin{array}{ccc} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{array} \right].$$

These examples are particularly nice because they don't include complicated square roots.

Orthonormal columns are good

Suppose Q has orthonormal columns. The matrix that projects onto the column space of Q is:

$$P = Q^T (Q^T Q)^{-1} Q^T.$$

If the columns of Q are orthonormal, then $Q^TQ = I$ and $P = QQ^T$. If Q is square, then P = I because the columns of Q span the entire space.

Many equations become trivial when using a matrix with orthonormal columns. If our basis is orthonormal, the projection component \hat{x}_i is just $\mathbf{q}_i^T \mathbf{b}$ because $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ becomes $\hat{\mathbf{x}} = Q^T \mathbf{b}$.

Gram-Schmidt

With elimination, our goal was "make the matrix triangular". Now our goal is "make the matrix orthonormal".

We start with two independent vectors ${\boldsymbol a}$ and ${\boldsymbol b}$ and want to find orthonormal vectors ${\boldsymbol q}_1$ and ${\boldsymbol q}_2$ that span the same plane. We start by finding orthogonal vectors ${\boldsymbol A}$ and ${\boldsymbol B}$ that span the same space as ${\boldsymbol a}$ and ${\boldsymbol b}$. Then the unit vectors ${\boldsymbol q}_1 = \frac{{\boldsymbol A}}{||{\boldsymbol A}||}$ and ${\boldsymbol q}_2 = \frac{{\boldsymbol B}}{||{\boldsymbol B}||}$ form the desired orthonormal basis.

Let A = a. We get a vector orthogonal to A in the space spanned by a and b by projecting b onto a and letting B = b - p. (B is what we previously called e.)

$$\mathbf{B} = \mathbf{b} - \frac{\mathbf{A}^T \mathbf{b}}{\mathbf{A}^T \mathbf{A}} \mathbf{A}.$$

If we multiply both sides of this equation by \mathbf{A}^T , we see that $\mathbf{A}^T\mathbf{B} = 0$.

What if we had started with three independent vectors, a, b and c? Then we'd find a vector C orthogonal to both A and B by subtracting from c its components in the A and B directions:

$$C = c - \frac{A^T c}{A^T A} A - \frac{B^T c}{B^T B} B.$$

For example, suppose
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$. Then $\mathbf{A} = \mathbf{a}$ and:

$$\mathbf{B} = \begin{bmatrix} 1\\0\\2 \end{bmatrix} - \frac{\mathbf{A}^T \mathbf{b}}{\mathbf{A}^T \mathbf{A}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} 1\\0\\2 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
$$= \begin{bmatrix} 0\\-1\\1 \end{bmatrix}.$$

Normalizing, we get:

$$Q = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & 0\\ 1/\sqrt{3} & -1/\sqrt{2}\\ 1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix}.$$

The column space of Q is the plane spanned by \mathbf{a} and \mathbf{b} .

When we studied elimination, we wrote the process in terms of matrices and found A = LU. A similar equation A = QR relates our starting matrix A to the result Q of the Gram-Schmidt process. Where L was lower triangular, R is upper triangular.

Suppose $A = [\mathbf{a}_1 \ \mathbf{a}_2]$. Then:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{a}_1^T \mathbf{q}_1 & \mathbf{a}_2^T \mathbf{q}_1 \\ \mathbf{a}_1^T \mathbf{q}_2 & \mathbf{a}_2^T \mathbf{q}_2 \end{bmatrix} .$$

If *R* is upper triangular, then it should be true that $\mathbf{a}_1^T \mathbf{q}_2 = 0$. This must be true because we chose \mathbf{q}_1 to be a unit vector in the direction of \mathbf{a}_1 . All the later \mathbf{q}_i were chosen to be perpendicular to the earlier ones. Notice that $R = Q^T A$. This makes sense; $Q^T Q = I$.

Exercises on orthogonal matrices and Gram-Schmidt

Problem 17.1: (4.4 #10.b *Introduction to Linear Algebra:* Strang)

Orthonormal vectors are automatically linearly independent.

Matrix Proof: Show that $Q\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$. Since Q may be rectangular, you can use Q^T but not Q^{-1} .

Problem 17.2: (4.4 #18) Given the vectors **a**, **b** and **c** listed below, use the Gram-Schmidt process to find orthogonal vectors **A**, **B**, and **C** that span the same space.

$$\mathbf{a} = (1, -1, 0, 0), \mathbf{b} = (0, 1, -1, 0), \mathbf{c} = (0, 0, 1, -1).$$

Show that $\{A, B, C\}$ and $\{a, b, c\}$ are bases for the space of vectors perpendicular to $\mathbf{d} = (1, 1, 1, 1)$.

Exercises on orthogonal matrices and Gram-Schmidt

Problem 17.1: (4.4 #10.b Introduction to Linear Algebra: Strang)

Orthonormal vectors are automatically linearly independent.

Matrix Proof: Show that $Q\mathbf{x} = \mathbf{0}$ implies $\mathbf{x} = \mathbf{0}$. Since Q may be rectangular, you can use Q^T but not Q^{-1} .

Solution: By definition, Q is a matrix whose columns are orthonormal, and so we know that $Q^TQ = I$ (where Q may be rectangular). Then:

$$Q\mathbf{x} = \mathbf{0} \Longrightarrow Q^T Q\mathbf{x} = Q^T \mathbf{0} \Longrightarrow I\mathbf{x} = \mathbf{0} \Longrightarrow \mathbf{x} = \mathbf{0}.$$

Thus the nullspace of Q is the zero vector, and so the columns of Q are linearly independent. There are no non-zero linear combinations of the columns that equal the zero vector. Thus, orthonormal vectors are automatically linearly independent.

Problem 17.2: (4.4 #18) Given the vectors **a**, **b** and **c** listed below, use the Gram-Schmidt process to find orthogonal vectors **A**, **B**, and **C** that span the same space.

$$\mathbf{a} = (1, -1, 0, 0), \mathbf{b} = (0, 1, -1, 0), \mathbf{c} = (0, 0, 1, -1).$$

Show that $\{A, B, C\}$ and $\{a, b, c\}$ are bases for the space of vectors perpendicular to $\mathbf{d} = (1, 1, 1, 1)$.

Solution: We apply Gram-Schmidt to **a**, **b**, **c**. First, we set

$$A = a = (1, -1, 0, 0).$$

Next we find **B**:

$$\mathbf{B} = \mathbf{b} - \frac{\mathbf{A}^{\mathsf{T}} \mathbf{b}}{\mathbf{A}^{\mathsf{T}} \mathbf{A}} \mathbf{A} = (0, 1, -1, 0) + \frac{1}{2} (1, -1, 0, 0) = \left(\frac{1}{2}, \frac{1}{2}, -1, 0\right).$$

And then we find **C**:

$$\mathbf{C} = \mathbf{c} - \frac{\mathbf{A}^{\mathsf{T}} \mathbf{c}}{\mathbf{A}^{\mathsf{T}} \mathbf{A}} \mathbf{A} - \frac{\mathbf{B}^{\mathsf{T}} \mathbf{c}}{\mathbf{B}^{\mathsf{T}} \mathbf{B}} \mathbf{B} = (0, 0, 1, -1) + \frac{2}{3} \left(\frac{1}{2}, \frac{1}{2}, -1, 0 \right) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -1 \right).$$

We know from the first problem that the elements of the set $\{A, B, C\}$ are linearly independent, and each vector is orthogonal to (1,1,1,1). The space of vectors perpendicular to \mathbf{d} is three dimensional (since the row space of (1,1,1,1) is one-dimensional, and the number of dimensions of the row space added to the number of dimensions of the nullspace add to 4). Therefore $\{A, B, C\}$ forms a basis for the space of vectors perpendicular to \mathbf{d} .

Similarly, $\{a, b, c\}$ is a basis for the space of vectors perpendicular to **d** because the vectors are linearly independent, orthogonal to (1,1,1,1), and because there are three of them.