Rechnerarchitektur-2022

- Wie viele Zustandskombinationen gibt es?
- abhängig von der Grundmenge n
- bei n gegebenen Zuständen: 2^n
- n = 3 dann 2^3 = 8 Bitmuster

• **Hexadezimale** Schreibweise:

0000 = 0	0101 = 5	1010 = A	$zB.: 0000\ 0011 = 03$
0001 = 1	0110 = 6	1011 = B	$0010\ 1011 = 2B$
0010 = 2	0111 = 7	1100 = C	
0011 = 3	1000 = 8	1101 = D	
0100 = 4	1001 = 9	1110 = E	
		1111 = F	

• Umrechen:

• von Binärsystem ins Dezimalsystem: 101110 = 46

Stellenwert	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Ziffer	1	0	1	1	1	0

- von Dezimalsystem ins Binärsystem: 59 = 111011
- 1 Teile die Zahl mit Rest durch 2 und notiere den Rest.
- Teile das Ergebnis wieder durch 2 und notiere den Rest.
- Fahre fort bis dein Ergebnis 0 ist.
- Die gesuchte Binärzahl sind die Ziffern der Reste, wobei man mit dem letzten Rest beginnt.

• Speichergrößen:

:1024 :1024 :1024 :1024 :1024 Bit Byte Kilobyte Megabyte Gigabyte Terabyte Petabyte *1024 *8 *1024 *1024 *1024 *1024

• Gatter:

Bezeichnung: 1 oder f₁₄ oder Shefferscher Strich

• Logik / Boolsche Algebra

(1') $a \lor b = b \lor a$ Kommutativgesetze (1) $a \wedge b = b \wedge a$ Assoziativgesetze (2) $(a \wedge b) \wedge c = a \wedge (b \wedge c)$ (2') $(a \lor b) \lor c = a \lor (b \lor c)$ Idempotenzgesetze (3) $a \wedge a = a$ (3') $a \lor a = a$ $(4) \quad a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \ (4') \quad a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ Distributivgesetze Neutralitätsgesetze (5) $a \wedge 1 = a$ (5') $a \lor 0 = a$ Extremalgesetze (6) $a \wedge 0 = 0$ (6') $a \lor 1 = 1$ Doppelnegationsgesetz (7) $\neg(\neg a) = a$ (Involution) De Morgansche $(8) \ \neg (a \wedge b) = \neg a \vee \neg b$ $(8') \ \neg(a \lor b) = \neg a \land \neg b$ Gesetze Komplementärgesetze (9) $a \wedge \neg a = 0$ (9') $a \lor \neg a = 1$ (10) $\neg 0 = 1$ (10') $\neg 1 = 0$ $(11) \ a \lor (a \land b) = a$ $(11')\ a \wedge (a \vee b) = a$ Absorptionsgesetze

• Encoder

Immer nur eine Eingangsleitung darf an sein! Hat 2^n Eingänge und produziert einen n-Bit Output.

• Encoder & Decoder

Decoder hat n Eingänge und 2^n Ausgänge

Minterme

$$m_i(x_1, ..., x_n) = x_1^{i_1} * x_2^{i_2} * ... * x_n^{i_n}$$

i	x ₁	x_2	x_3	
0	0	0	0	T
1	0	0	1	
2	0	1	0	
3	0	1	1	(
4	1	0	0	$m_5(x_1, x_2, x_3) = x_1 * \overline{x_2} * x_3$
5	1	0	1	
6	1	1	0	
7	1	1	1	

Maxterme

$$M_i(x_1,\dots,x_n) = x_1^{i_1} + x_2^{i_2} + \dots + x_n^{i_n}$$

Der i-te Maxterm ergibt sich aus der Negation des i-ten Minterms

Minterm:

 $m_5(x_1, x_2, x_3) = x_1 * \overline{x_2} * x_3$ b

Maxterm:

 $M_5 = \overline{m_5} = \overline{x_1 * \overline{x_2} * x_3} = \overline{x_1} + x_2 + \overline{x_3}$

• Einschlägiger Index

i ist einschlägiger Index, wenn $f(x_1, ..., x_n) = 1$ gilt

Jede boolesche Funktion $f: B^n \to B$ ist eindeutig darstellbar als

- Summe der Minterme ihrer einschlägigen Indizes oder
- · Produkt der Maxterme ihrer nicht einschlägigen Indizes

i	x ₁	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	-1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	- 1	1	1	1

DNF & KNF

Die Disjunktive Normalform (DNF) erhält man durch die ODER-Verknüpfung aller Minterme der einschlägigen Indizes

Konjunktive Normalform (KNF) erhält man durch die UND-Verknüpfung aller Maxterme der <u>nicht</u> einschlägigen Indizes

Wenn in der Funktionstabelle:

Anzahl einschlägige Indizes ≤ Anzahl <u>nicht</u> einschlägige Indizes → <u>DNF</u> Anzahl einschlägige Indizes → <u>KNF</u>