基礎電機實驗(一)第六週

班級	電機系電機一
學生	李俊逸
學號	411440521

目錄

基础	礎電機實驗(一)第六週	1
壹	、實驗目的:	3
貢	、實驗原理:	3
	重點目標:	3
參	、作品介紹: (實驗流程、實驗檢討、作品照片)	4
	實驗流程:	4
	程式設計圖:	4
	程式流程:	4
	測試結果:	5
肆	、實驗心得	6

壹、實驗目的:

- 1. 認識聲音感測器。
- 2. 如何使用 EV3 控制器控制聲音感測器?
- 3. 如何使用 EV3-G 介面控制聲音感測器?
- 4. 認識超音波感測器。
- 5. 如何使用 EV3 控制器控制超音波感測器?
- 6. 如何使用 EV3-G 介面控制超音波感測器?
- 7. 做出一有拋球能力,並且利用聲音感測器、超音波感測器製作達到比賽要求的車。

貳、實驗原理:

本實驗主要為研究聲音感測器、超音波感測器以及陀螺儀如何幫助拋球車判斷位置以及姿態調整。

重點目標:

- 1. 學習使用聲音感測器、超音波感測器以及陀螺儀
- 2. 研究拋球車的力臂長短與車輛重心配置

參、作品介紹: (實驗流程、實驗檢討、作品照片)

實驗流程:

- 1. 組裝車體並確保各項零件之穩固性。
- 2. 撰寫程式以及測試各項感測器工作狀態。
- 3. 測試拋球車是否會以拋物線將球擲出。

程式設計圖:

此程式為若偵測到聲音大小大於 5 分貝時開始動作,若超音波 感測器偵測的距離小於 10 公分時投球,否則直行。

程式流程:

- 1. 偵測周遭聲音大小是否大於 5 分貝。
- 2. 若大於五分貝,則判斷是否距離障礙物 10 公分。
- 3. 若車子小於十公分,則投球,否則直行。

第六週成果圖:

圖二(俯視圖)

圖三(前視圖)

測試結果:

實驗結果與假設相同,車輛有針對不同狀態做出反應。不過車子的後退幅度過大,導致車輛投球周期透到嚴重拖累,後來將後退的秒數設短一些以達到更有效率的結果。

肆、實驗心得

- 對此課程我認為有/無其他應用面,或者跟先前學過的機器人課程不同的地方,若無?為什麼?若有為什麼?
 我認為有其他應用面,因為個項感測器在未來無人車上的功能都很大,例如超音波感測器。
- 元件和機構組裝方面,這次聲音感測器、中型馬達、超音波感測器以及陀螺儀,移動機構以馬達驅動前輪。
- 3. 圖控程式方面,學到控制機器人的小細節和技巧,也對程式有更進一步的了解。在此次實驗中我遇到了陀螺儀判斷傾斜度的問題,陀螺儀本身讀出的傾斜角度數值正確,但是程式碼卻未正常響應的狀況,最終問題也無法有好的結果,但我學到,適時放棄一些事情是必要的。
- 4. 問題解決方法 PDCA,是否對你在機器人設計上面有什麼幫助? 我認為 PDCA 在這次實驗中最主要的是 Action 的部分,因為這次做出來的測試品的功能設計導向錯誤,不斷的透過改善優化才成功。