

General information

Designation

Polylactide / Polylactic acid (30% natural fiber filled)

Tradenames

Fibrolon (FKuR Kunststoff GmbH); Kareline (Kareline Oy Ltd.); Transmare Bio (Transmare Compounding

Typical uses

PLA reinforced with natural fibers is used for extruded profiles, diapers, pens, electronic cases, homeware, personal care products, medical devices and automotive parts. The current record is based on PLA filled with

Composition overview

Compositional summary

(CH(CH3)CO2)n + bamboo fiber. The lactic acid is produced from sugar (dextrose) with plant starch origins e.g. corn, wheat, sugar beets and sugar cane.

Material family	Plastic (thermoplastic, semi-crystalline)				
Base material	PLA (Polylactic acid / polylactide)				
% filler (by weight)	30	%			
Filler/reinforcement	Cellulose				
Filler/reinforcement form	Short fiber				
Additive	Impact				
Renewable content	100	%			
Polymer code	PLA-I-NX3(

Composition detail (polymers and natural materials)

Polymer	60	-	70	%
Impact modifier	0	-	10	%
Woodflour / cellulose	30			%

Price

Price	* 2.54	-	3.24	USD/kg
Price per unit volume	* 3.28e3	-	4.24e3	USD/m^3

Physical properties

Density	1.29e3	-	1.31e3	kg/m^3		
---------	--------	---	--------	--------	--	--

Mechanical properties

Young's modulus	5.19	-	5.32	GPa
Yield strength (elastic limit)	* 72.2	-	75.9	MPa
Tensile strength	55.6	-	58.4	MPa
Elongation	1.45	-	1.56	% strain
Elongation at yield	* 0.737	-	0.794	% strain

Compressive modulus	* 5.19	-	5.32	GPa
Compressive strength	86.7	-	91.1	MPa
Flexural modulus	4.69	-	4.81	GPa
Flexural strength (modulus of rupture)	56.6	-	59.5	MPa
Shear modulus	* 1.88	-	1.9	GPa
Poisson's ratio	* 0.38	-	0.4	
Shape factor	6.5			
Hardness - Vickers	* 18	-	19	HV
Hardness - Rockwell M	* 53	-	54	
Hardness - Rockwell R	* 35	-	36	
Hardness - Shore D	77	-	84	
Fatigue strength at 10^7 cycles	* 24.2	-	24.9	MPa
Mechanical loss coefficient (tan delta)	* 0.102	-	0.104	

Impact & fracture properties

Fracture toughness	* 4.01	-	4.26	MPa.m^0.5
Impact strength, notched 23 ℃	1.9	-	2.1	kJ/m^2
Impact strength, unnotched 23 ℃	8.1	-	8.93	kJ/m^2

Thermal properties

Melting point	145	-	175	$\mathcal C$
Glass temperature	52	-	54	$\mathcal C$
Heat deflection temperature 0.45MPa	51	-	53	$\mathcal C$
Heat deflection temperature 1.8MPa	53	-	55	$\mathcal C$
Vicat softening point	62	-	67	$\mathcal C$
Maximum service temperature	* 45	-	55	$\mathcal C$
Minimum service temperature	-20	-	-12	$\mathcal C$
Thermal conductivity	* 0.146	-	0.153	W/m.℃
Specific heat capacity	* 1.26e3	-	1.33e3	J/kg.℃
Thermal expansion coefficient	* 106	-	112	µstrain/℃

Electrical properties

Electrical resistivity	* 2.5e17	-	4.8e17	μohm.cm
Dielectric constant (relative permittivity)	* 4.38	-	4.56	
Dissipation factor (dielectric loss tangent)	* 0.0963	-	0.117	
Dielectric strength (dielectric breakdown)	* 13.2	-	13.7	MV/m

Magnetic properties

Magnetic type	Non-magnetic
---------------	--------------

Optical properties

PLA (30% natural fiber)

Refractive index	* 1.44 - 1.46
Transparency	Opaque
Critical materials risk	
Contains >5wt% critical elements?	No
Contains >5wt% chitcal elements?	INO
Absorption & permeability	
Water absorption @ 24 hrs	0.7 - 1.1 %
Water absorption @ sat	* 1 - 1.8 %
Humidity absorption @ sat	* 0.3 - 0.55 %
Water vapor trans mission	7.1 - 9.1 g.mm/m².day
Permeability (O2)	11 - 53 cm³.mm/m².day.
Processing properties	
Polymer injection molding	Acceptable
Polymer extrusion	Limited use
Polymer thermoforming	Limited use
Linear mold shrinkage	0.16 - 0.4 %
Melt temperature	150 - 210 ℃
Mold temperature	5 - 35 ℃
Molding pressure range	55 - 100 MPa
Durability	
Water (fresh)	Acceptable
Water (salt)	Acceptable
Weak acids	Acceptable
Strong acids	Unacceptable
Weak alkalis	Acceptable
Strong alkalis	Unacceptable
Organic solvents	Limited use
UV radiation (sunlight)	Good
Flammability	Highly flammable
•	5 .
Primary production energy, CO2 and wa	
Embodied energy, primary production	* 44.4 - 48.9 MJ/kg
CO2 footprint, primary production	* 2.36 - 2.6 kg/kg
Water usage	* 1.35e3 - 2.12e3 l/kg
Processing energy, CO2 footprint & wat	er
Polymer extrusion energy	* 5.81 - 6.11 MJ/kg
Polymer extrusion CO2	* 0.436 - 0.458 kg/kg
Polymer extrusion water	555 555 Ng/Ng

	* 4.76	-	7.14	l/kg
Polymer molding energy	* 14.5	-	15.2	MJ/kg
Polymer molding CO2	* 1.09	-	1.14	kg/kg
Polymer molding water	* 10.7	-	16	l/kg
Coarse machining energy (per unit wt removed)	0.531	-	0.557	MJ/kg
Coarse machining CO2 (per unit wt removed)	0.0398	-	0.0418	kg/kg
Fine machining energy (per unit wt removed)	0.916	-	0.96	MJ/kg
Fine machining CO2 (per unit wt removed)	0.0686	-	0.0721	kg/kg
Grinding energy (per unit wt removed)	1.34	-	1.41	MJ/kg
Grinding CO2 (per unit wt removed)	0.101	-	0.106	kg/kg

Recycling and end of life

Recycle	✓				
Embodied energy, recycling	* 15.1	-	16.6	MJ/kg	
CO2 footprint, recycling	* 0.8	-	0.884	kg/kg	
Recycle fraction in current supply	0.1	-	1.1	%	
Downcycle	√				
Combust for energy recovery	√				
Heat of combustion (net)	* 15.1	-	17.5	MJ/kg	
Combustion CO2	* 1.37	-	1.44	kg/kg	
Landfill	√				
Biodegrade	✓				

Notes

Other notes

PLA is a renewable thermoplastic polyester manufactured from plants such as sugarcane, corn and tapioca. PLA can be amorphous or semi-crystalline. Various blends of D and L enantiomers are available, making available a broader range of properties. PLA products are considered environmentally friendly as their production uses approximately 50% less energy and produces 60% less CO2 than petroleum based products e.g. PET, PC, PS and nylon. Natural fibers that can be used as a filler include coir, cotton, flax, hemp, jute, kenaf, ramie, silk, sisal, bamboo, abaca and wool.

Links

ProcessUniverse	
Producers	
Reference	
Shape	