Отчёт по лабораторной работе №1.

дисциплина: операционные системы

Тимофеева Екатерина Николаевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы.	17
5	Ответы на контрольные вопросы.	18
6	Выполнение домашнего задания.	20
Список литературы		24

Список иллюстраций

3.1	Имя машины и тип ОС	7
3.2	Объём основной памяти	8
3.3	Создание жёсткого диска на виртуальной машине	8
3.4	Определение типа подключения виртуального жёсткого диска	9
3.5	Указание формата виртуального жёсткого диска	9
3.6	Определение размера виртуального жёсткого диска и его располо-	
	жения	10
3.7	Настройка виртуальной машины	10
3.8	Выбор образа оптического диска	11
3.9	Выбор образа оптического диска	11
3.10		12
3.11	Установка языка	13
	Установка часового пояса	14
	Выбор места установки	15
	Установка пароля для пользователя	15
	Извлечение образа диска	16
6.1	Написание команды	20
6.2	Вывод команды	20
6.3	Версия ядра Linux (Linux version)	21
6.4	Частота процессора (Detected Mhz processor)	21
6.5	Модель процессора (СРИО)	21
6.6	Объём доступной оперативной памяти (Memory available)	22
6.7	Тип обнаруженного гипервизора (Hypervisor detected)	22
6.8	Тип файловой системы корневого раздела	22
6.9	Последовательность монтирования файловых систем	23

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создать виртуальную машину
- 2. Установить операционную систему
- 3. Установить драйвера для VirtualBox
- 4. Установить программное обеспечение для создания документации
- 5. Выполнить домашнее задание

3 Выполнение лабораторной работы

№1. Запускаем виртуальную машину на персональном компьютере и создаём новую виртуальную машину. Укажем имя виртуальной машины, тип операционной системы – Linux.(рис. 3.1)

Рис. 3.1: Имя машины и тип ОС

Укажем размер основной памяти виртуальной машины, зададим конфигурацию жёсткого диска, а также укажем размер диска.(рис. 3.2), (рис. -3.3), (рис. -3.4), (рис. -3.5), (рис. -3.6), (рис. -3.7), (рис. -3.8), (рис. -3.9)

Рис. 3.2: Объём основной памяти

Рис. 3.3: Создание жёсткого диска на виртуальной машине

Рис. 3.4: Определение типа подключения виртуального жёсткого диска

Рис. 3.5: Указание формата виртуального жёсткого диска

Рис. 3.6: Определение размера виртуального жёсткого диска и его расположения

Рис. 3.7: Настройка виртуальной машины

Рис. 3.8: Выбор образа оптического диска

Рис. 3.9: Выбор образа оптического диска

№2. Запускаем виртуальную машину, выбираем язык интерфейса и переходим к настройкам установки операционной системы. Проверяем часовой пояс, раскладку клавиатуры. Место установки ОС оставляем без изменения. (рис. 3.10) (рис. 3.11) (рис. 3.12), (рис. 3.13), (рис. 3.14), (рис. 3.15)

Рис. 3.10: Запуск и установка на жёсткий диск

Рис. 3.11: Установка языка

Рис. 3.12: Установка часового пояса

Рис. 3.13: Выбор места установки

Рис. 3.14: Установка пароля для пользователя

Рис. 3.15: Извлечение образа диска

4 Выводы.

Мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы.

- 1. Какую информацию содержит учётная запись пользователя? Имя пользователя, зашифрованный пароль пользователя, идентификационный номер пользователя, идентификационный номер группы пользователя, домашний каталог пользователя, командный интерпретатор пользователя.
- 2. Укажите команды терминала и приведите примеры:

для получения справки по команде: man для перемещения по файловой системе: cd для просмотра содержимого каталога: ls для определения объёма каталога: du для создания каталогов: mkdir для создания файлов: touch для удаления каталогов: rm для удаления файлов: rm-r для задания определённых прав на файл/каталог: chmod + x для просмотра истории команд: history

3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система - часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессами.

Примеры файловых систем: Ext2, Ext3, Ext4 или Extended Filesystem - стандартная файловая система для Linux. JFS или Journaled File System была разработана в IBM для AIX UNIX и использовалась в качестве альтернативы для файловых систем ext. Она используется там, где необходима высокая стабильность и минимальное потребление ресурсов. ReiserFS - была разработана намного позже,

но в качестве альтернативы ext3 с улучшенной производительностью и расширенными возможностями. XFS - высокопроизводительная файловая система. Преимущества: высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету и незначительный размер служебной информации.

- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? С помощью команды mount.
- 5. Как удалить зависший процесс? С помощью команды kill.

6 Выполнение домашнего задания.

Открываем терминал, в окне терминала проанализируем последовательность загрузки системы, выполнив команду dmesg. Можно просто просмотреть вывод этой команды. (рис. 6.1), (рис. 6.2)

Рис. 6.1: Написание команды

```
\blacksquare
                         entimofeeva@fedora:~ - less
                                                              Q
    0.000000] Linux version 5.17.5-300.fc36.x86_64 (mockbuild@bkernel01.iad2.fe
doraproject.org) (gcc (GCC) 12.0.1 20220413 (Red Hat 12.0.1-0), GNU ld version 2
.37-24.fc36) #1 SMP PREEMPT Thu Apr 28 15:51:30 UTC 2022
[ 0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.17.5-300.fc36.x86
64 root=UUID=9e85fc8c-7d62-4165-9881-ff94cebbd51d ro rootflags=subvol=root rhgb
   0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point regi
    0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
   0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers' 0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
   0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes,
ising 'standard' format.
    0.000000] signal: max sigframe size: 1776
    0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
    0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x00000000dfffffff] ACPI data
    0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
    0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
    0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000ffffffff] reserved
```

Рис. 6.2: Вывод команды

Получаем следующую информацию с помощью команды grep: (рис. 6.3), (рис.

6.4), (рис. 6.5), (рис. 6.6), (рис. 6.7)

```
entimofeeva@fedora:~ Q = x

[entimofeeva@fedora ~]$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 5.17.5-300.fc36.x86_64 (mockbuild@bkernel01.iad2.fe doraproject.org) (gcc (GCC) 12.0.1 20220413 (Red Hat 12.0.1-0), GNU ld version 2 .37-24.fc36) #1 SMP PREEMPT Thu Apr 28 15:51:30 UTC 2022
[entimofeeva@fedora ~]$
```

Рис. 6.3: Версия ядра Linux (Linux version)

```
[entimofeeva@fedora ~]$ dmesg | grep -i "processor"
[ 0.000007] tsc: Detected 2419.202 MHz processor
[ 0.369800] smpboot: Total of 1 processor activated (4838.40 BogoMIPS)
[ 0.374375] ACPI: Added _OSI(Processor Device)
[ 0.374376] ACPI: Added _OSI(Processor Aggregator Device)
[entimofeeva@fedora ~]$
```

Рис. 6.4: Частота процессора (Detected Mhz processor)

```
[entimofeeva@fedora ~]$ dmesg | grep -i "CPU0"

[ 0.369772] smpboot: CPU0: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz (family: 0x6, model: 0x8c, stepping: 0x1)

[entimofeeva@fedora ~]$
```

Рис. 6.5: Модель процессора (СРИО)

```
Q ≡
 (F)
                                       entimofeeva@fedora:~
      0.122762] PM: hibernation: Registered nosave memory: [mem 0xfee00000-0xfee0
      0.122763] PM: hibernation: Registered nosave memo
                                                                     ry: [mem 0xfee01000-0xfffb
      0.122763] PM: hibernation: Registered nosave memory: [mem 0xfffc0000-0xffff
                         y: 3986156K/4193848K available (16393K kernel code, 3660K rw
     0.231281]
data, 11176K rodata, 2708K init, 6180K bss, 207432K reserved, 0K cma-reserved)
     0.267061] Freeing SMP alternatives
0.370000] x86/mm: Memory block size
                                                          v: 44K
                                  ry block size: 128MB
     0.796663] Freeing initrd memory: 19112K
0.803758] Non-volatile memory driver v1.3 [
     1.151510] Freeing unused decrypted memory: 2036K
1.15197] Freeing unused kernel image (initmem) memory: 2708K
1.152640] Freeing unused kernel image (text/rodata gap) memory: 2036K
1.152848] Freeing unused kernel image (rodata/data gap) memory: 1112K
      1.908283] vmwgfx 0000:00:02.0: [drm] Legacy
                                                                       limits: VRAM = 131072 kB
  FIFO = 2048 kB, surface = 393216 kB
     1.908290] vmwgfx 0000:00:02.0: [drm] Maximum display
      3.761290] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-
       (00M) Killer Socket.
entimofeeva@fedora ~]$
```

Рис. 6.6: Объём доступной оперативной памяти (Memory available)

```
entimofeeva@fedora:~ Q = ×

[entimofeeva@fedora ~]$ dmesg | grep -i "hypervisor"
[ 0.000000] Nypervisor detected: KVM
[entimofeeva@fedora ~]$
```

Рис. 6.7: Тип обнаруженного гипервизора (Hypervisor detected)

Заходим в приложение диски, видим, что на корневой том смонтирован тип файловой системы btrfs, ищем в командной строке информацию о btrfs. (рис. 6.8), (рис. 6.9)

Рис. 6.8: Тип файловой системы корневого раздела.

```
[entimofeeva@fedora ~]$ dmesg | grep -i "Mounted"
[      3.875838] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
[      3.877383] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File System.
[      3.878358] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[      3.878466] systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File System.
[      5.483225] EXT4-fs (sda1): mounted filesystem with ordered data mode. Quota mode: none.
[entimofeeva@fedora ~]$
```

Рис. 6.9: Последовательность монтирования файловых систем.

Список литературы

Колисниченко Д.Н. Самоучитель системного администратора Linux.