

Sistemas de Informação

Bando de Dados 1

Prof. Dr. Ronaldo Castro de Oliveira

ronaldo.co@ufu.br

FACOM - 2022

Álgebra Relacional

Introdução

Relembrando:

- Um modelo de dados inclui um conjunto de OPERAÇÕES para manipular um banco de dados além dos CONCEITOS de modelagem necessários para a estruturação do BD.
- OPERAÇÕES: Linguagem de Consulta
- O que é LINGUAGEM DE CONSULTA?
 - É uma linguagem por meio da qual os usuários obtém informações do banco de dados
 - Linguagens de mais ALTO NÍVEL que as linguagens de programação tradicionais
 - Exemplo SQL Structured Query Language
- O que é LINGUAGEM FORMAL DE CONSULTA ?

Álgebra Relacional

- Modelo de dados inclui
 - Conceitos para a definição das restrições e estrutura do BD
 - Conjunto de operações para manipular o BD
- Álgebra relacional
 - Maneira teórica de se manipular o BD relacional
- Importância
 - Fundamento formal para as operações no modelo relacional
 - Base para implementar e otimizar consultas em SGBDR
 - Introduz conceitos incorporados na SQL

Álgebra Relacional

- Linguagem de consulta procedural
 - usuários especificam os dados necessários e como obtê-los
- Consiste de um conjunto de operações
 - entrada: uma ou mais relações e restrições
 - saída: uma nova relação resultado

Classificação das Operações

- Unárias
 - seleção
 - projeção
 - renomear

operam sobre uma única relação

- Binárias
 - produto cartesiano
 - união
 - diferença de conjuntos
 - intersecção de conjuntos
 - junção natural
 - divisão

operam sobre duas relações

Esquema relacional

```
cliente (nro cli, nome_cli, end_cli,
        saldo, vendedor)
vendedor (cod vend, nome_vend)
pedido (nro ped, data, nro clienté)
pedido_peça (nro_ped, nro_peça)
peça (nro peça, descrição peça)
```

Esquema relacional – IDEF1X

Esquema relacional – Crows Foot

Seleção o sigma

Seleciona tuplas da relação argumento que satisfaçam à condição de seleção

σ_{condição_seleção} (relação argumento)

- pode envolver operadores de comparação (=, <, ≤, >, ≥, ≠)
- pode combinar condições usando-se ∧, ∨, ¬

- relação
- resultado de alguma operação da álgebra relacional

Seleção o sigma

• Produz um subconjunto horizontal de uma relação

Relação Cliente

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Liste toda a informação da relação cliente referente ao cliente de número 4.

$$\sigma_{\text{nro_cli}=4}$$
 (cliente)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Relação resultado

•	nro_cli	nome_cli	end_cli	saldo	cod_vend
	4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Liste toda a informação da relação cliente para clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

Relação resultado

•	nro_cli	nome_cli	end_cli	saldo	cod_vend
	1	Márcia	Rua X	100,00	1
	4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Vale lembrar...

- ◆ As condições booleanas ^(and), v (or) e ¬ (not) têm sua interpretação conforme segue:
 - (cond1 ^ cond 2)
 - é verdadeira se ambas cond1 e cond2 forem verdadeiras
 - caso contrário é falsa
 - (cond1 v cond 2)
 - verdadeira se cond1 ou cond2 forem verdadeiras
 - caso contrário é falsa
 - **■** (¬ cond)
 - verdadeira se cond for <u>falsa</u>
 - caso contrário é falsa

Projeção

Produz uma nova relação contendo um subconjunto vertical da relação argumento, sem duplicações

π _{lista_atributos} (relação argumento)

- lista de atributos
- os atributos são separados por vírgula

- relação
- resultado de alguma operação da álgebra relacional

Projeção

- Extrai atributos (Colunas) específicos de uma relação específica
- Produz um subconjunto **vertical** de uma relação

Projeção

 π pi

Liste o número e o nome de todos os clientes

π nro_cli, nome_cli (cliente)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Relação resultado

grau: número de atributos listados em lista_atributos

nro_cli	nome_cli
1	Márcia
2	Cristina
3	Manoel
4	Rodrigo

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Liste o endereço de todos os clientes

Relação Resultante - sem repetição

•	nro_cli	nome_cli	end_cli	saldo	cod_vend
	1	Márcia	Rua X	100,00	1
	2	Cristina	Avenida 1	10,00	1
	3	Manoel	Avenida 3	234,00	1
	4	Rodrigo	Rua X	137,00	2

Operações Propriedades dos operadores unários

- A operação de Seleção é comutativa
 - $\sigma_{\text{condição-A}}(\sigma_{\text{condição-B}})$
- ◆ Uma sequência de seleções pode ser executada em qualquer ordem, ou pode ser transformada em uma única seleção com uma condição conjuntiva (termos cujo valor é VERDADEIRO ou FALSO, ligados pelo operador ∧ (AND))
 - $\sigma_{\text{condição-1}}(\sigma_{\text{condição-2}}(\dots(\sigma_{\text{condição-n}}(R))))$
 - $\sigma_{\text{condição-1}} \land \text{condição-2} \land \cdots \text{condição-n}(R)$

Operações Propriedades dos operadores unários

- A operação de Projeção não é comutativa
- Se Se Se Se atribs_B> contém Se atribs_A>, então ambas as expressões seguintes são corretas, e vale a igualdade:
 - \blacksquare π < lista atribs A> $(\pi$ < lista atribs B> R) = π < lista atribs A> R

Liste o número e o nome de todos os clientes que possuam saldo devedor inferior a 200,00 reais e morem na Rua X.

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Passos

- realizar uma operação de <u>seleção</u> para criar uma nova relação que contém somente aqueles clientes com o saldo e o endereço apropriados;
- realizar uma <u>projeção</u> sobre a relação resultante do passo anterior, restringindo o resultado desejado às colunas indicadas.

Primeiro passo

Segundo passo

π nro_cli, nome_cli (primeiro passo)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
4	Rodrigo	Rua X	137,00	2

Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

```
\pi_{\text{nro\_cli, nome\_cli}} (\sigma_{\text{saldo\_dev} < 200,00 ^{\text{ned\_cli}}} = "Rua X" (cliente))
```

Relação Resultado

nro_cli	nome_cli
1	Márcia
4	Rodrigo

Atribuição

- Funcionalidades
 - associa uma relação argumento a uma relação temporária
 - permite o uso da relação temporária em expressões subsequentes

relação temporária ← relação argumento

Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

```
\pi_{\text{nro\_cli, nome\_cli}} ( \sigma_{\text{saldo\_dev} < 200,00 ^{end\_cli}} = \text{"Rua X"} ( cliente ) )
```

- Usando atribuição
 - temp $\leftarrow \sigma_{\text{saldo_dev} < 200,00 ^ end_cli = "Rua X"}$ (cliente)
 - $\blacksquare \pi_{\text{nro_cli, nome_cli}}$ (temp)

Atribuição

- Características adicionais
 - permite renomear os atributos de relações intermediárias e final
 - R(código, nome) $\leftarrow \pi_{\text{nro_cli, nome_cli}}$ (temp)
- Observações
 - não adiciona semântica adicional à álgebra relacional
 - geralmente utilizada para expressar consultas complexas

Renomear $(\rho = r\hat{o})$

- Renomeia
 - nome da relação
 - nomes dos atributos da relação
 - nome da relação e nomes dos atributos

Renomear

Exemplos

- ρ comprador (cliente)
- P(código, nome, rua, saldo, vendedor) (cliente)
- P comprador (código, nome, rua, saldo, vendedor) (cliente)

Observação

 indicada para ser utilizada quando uma relação é usada mais do que uma vez para responder à consulta

Produto Cartesiano

- Combina tuplas de duas relações (quaisquer)
- Tuplas da relação resultante
 - todas as combinações de tuplas possíveis entre as relações participantes

relação argumento 1 x relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Produto Cartesiano

 Utilizado quando se necessita obter dados presentes em duas ou mais relações

Relações Cliente e Vendedor

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

vendedor (cod vend, nome_vend)

cod_vend	nome_vend	
1	Adriana	
2	Roberto	

Cliente x Vendedor

nro_cli	nome_cli	end_cli	saldo	cliente. cod_vend	vendedor.c od_vend	nome_vend
1	Márcia	Rua X	100,00	1	1	Adriana
1	Márcia	Rua X	100,00	1	2	Roberto
2	Cristina	Avenida 1	10,00	1	1	Adriana
2	Cristina	Avenida 1	10,00	1	2	Roberto
3	Manoel	Avenida 3	234,00	1	1	Adriana
3	Manoel	Avenida 3	234,00	1	2	Roberto
4	Rodrigo	Rua X	137,00	2	1	Adriana
4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor número de tuplas: número de tuplas de cliente * número de tuplas de vendedor

- Considere as seguintes relações
 - usuário (<u>cliente nome</u>, gerente_nome)
 - cliente (<u>cliente nome</u>, rua, cidade)

cliente_nome	gerente_nome
Márcia	Manoel
Rodrigo	Maria
Bruno	Manoel

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Bruno	Rua Z	Uberlândia

Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

- Primeiro passo
 - determinar quem são os usuários atendidos pelo gerente Manoel

$$temp_1 \leftarrow \pi_{cliente_nome} (\sigma_{gerente_nome = "Manoel"} (usuário))$$

relação resultado temp₁

cliente_nome
Márcia
Bruno

- Segundo passo
 - realizar o produto cartesiano das relações temp₂ ← temp₁ x cliente
 - relação resultado temp₂

$temp_2 \leftarrow temp_1 \times cliente$

temp ₁ . cliente_nome	cliente. cliente_nome	rua	cidade
Márcia	Márcia	Márcia Rua X	
Márcia	Rodrigo	Rua X	Maringá
Márcia	Bruno	Rua Z	Uberlândia
Bruno	Márcia	Rua X	Itambé
Bruno	Rodrigo	Rua X	Maringá
Bruno	Bruno	Rua Z	Uberlândia

Terceiro passo

eliminar informações inconsistentes
 temp₃ ← σ temp1.cliente_nome = cliente.cliente_nome (temp₂)

■ relação resultado temp₃

temp ₁ .	cliente.	rua	cidade
cliente_nome	cliente_nome		
Márcia	Márcia	Rua X	Itambé
Bruno	Bruno	Rua Z	Uberlândia

- Quarto passo
 - exibir as informações solicitadas

 π temp1.cliente_nome, cidade (temp3)

relação resultado

temp ₁ . cliente_nome	cidade
Márcia	Itambé
Bruno	Uberlândia

- Considere a seguinte relação
 - cliente (<u>cliente nome</u>, rua, cidade)

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Cristina	Rua XTZ	Maringá
Sofia	Rua X	Maringá
Ricardo	Rua AAA	Itambé

Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo (exceto o próprio Rodrigo)

- Primeiro passo
 - determinar o nome da rua e o nome da cidade na qual Rodrigo mora

temp₁
$$\leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente_nome} = "Rodrigo"} (\text{cliente}))$$

■ relação resultado temp₁

rua	cidade
Rua X	Maringá

- Segundo passo
 - realizar o produto cartesiano das relações temp₂ ← temp₁ x cliente
 - relação resultado temp₂

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Rodrigo	Rua X	Maringá
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- Terceiro passo
 - eliminar informações indesejadas

$$temp_3 \leftarrow \sigma_{cliente_nome <> "Rodrigo"} (temp_2)$$

relação resultado temp₃

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- Quarto passo
 - exibir as informações solicitadas

```
\pi cliente_nome (\sigma temp<sub>1</sub>.rua = cliente.rua ^ temp<sub>1</sub>.cidade = cliente.cidade (temp<sub>3</sub>))
```

relação resultado

cliente_nome

Sofia

Discussão

Solução proposta

```
\begin{split} \text{temp}_1 \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = \text{``Rodrigo''}}(\text{cliente})) \\ \text{temp}_2 \leftarrow \text{temp}_1 \text{ x cliente} \\ \text{temp}_3 \leftarrow \sigma_{\text{cliente\_nome} \,! = \text{``Rodrigo''}}(\text{temp}_2) \\ \pi_{\text{cliente\_nome}} (\sigma_{\text{temp}_1.\text{rua} = \text{cliente.rua} \, \text{`temp}_1.\text{cidade} = \text{cliente.cidade}}(\text{temp}_3)) \end{split}
```

Operação de atribuição

```
temp_{1}(rua\_rodrigo, cidade\_rodrigo) \leftarrow \\ \pi_{rua,cidade}(\sigma_{cliente\_nome = "Rodrigo"}(cliente)) \\ temp_{2} \leftarrow temp_{1} \times cliente \\ temp_{3} \leftarrow \sigma_{cliente\_nome != "Rodrigo"}(temp_{2}) \\ \pi_{cliente\_nome}(\sigma_{rua\_rodrigo = rua \land cidade\_rodrigo = cidade}(temp_{3}))
```

Discussão

Operação renomear (1)

```
\begin{split} \text{temp}_1 &\leftarrow \pi_{\text{rua,cidade}} \left( \sigma_{\text{cliente\_nome} = \text{``Rodrigo''}} \left( \text{cliente} \right) \right) \\ \text{temp}_2 &\leftarrow \rho_{\text{(rua\_rodrigo, cidade\_rodrigo)}} \left( \text{temp1} \right) \text{ x cliente} \\ \text{temp}_3 &\leftarrow \sigma_{\text{cliente\_nome}} <> \text{``Rodrigo''} \left( \text{temp2} \right) \\ \pi_{\text{cliente\_nome}} \left( \sigma_{\text{rua\_rodrigo} = \text{rua}} \wedge \text{cidade\_rodrigo} = \text{cidade} \left( \text{temp3} \right) \right) \end{split}
```

Operação renomear (2)

```
\begin{split} \text{temp}_1 &\leftarrow \pi_{\text{rua,cidade}} \left( \sigma_{\text{cliente\_nome} = \text{``Rodrigo''}} \left( \text{cliente} \right) \right) \\ \text{temp}_2 &\leftarrow \rho_{\text{dados\_rodrigo(rua\_rodrigo,cidade\_rodrigo)}} \left( \text{temp1} \right) \text{ x cliente} \\ \text{temp}_3 &\leftarrow \sigma_{\text{cliente\_nome}} <> \text{``Rodrigo''} \left( \text{temp2} \right) \\ \pi_{\text{cliente\_nome}} \left( \sigma_{\text{rua\_rodrigo} = \text{rua}} \land \text{cidade\_rodrigo} = \text{cidade} \left( \text{temp3} \right) \right) \end{split}
```

- Concatena tuplas relacionadas de duas relações em tuplas únicas
- Simplifica consultas que requerem produto cartesiano
 - forma um <u>produto cartesiano</u> dos argumentos

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	RuaX	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	RuaX	137,00	2

vendedor (<u>cod_vend</u>, nome_vend)

cod_vend	nome_vend
1	Adriana
2	Roberto

cliente.cod_vend = vendedor.cod_vend

Vendedor

•	nro_cli	nome_cli	end_cli	saldo	cod_ven d	cod_ven d	nome_ve nd
	1	Márcia	Rua X	100,00	1	1	Adriana
	2	Cristina	Avenida 1	10,00	1	1	Adriana
	3	Manoel	Avenida 3	234,00	1	1	Adriana
	4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor

número de tuplas: entre zero e o (número de tuplas de cliente * número de tuplas de vendedor)

- Condição de junção
 - <condição> ^ <condição> ^ ... ^ <condição>
- \bullet $A_i \theta B_j$
 - A_i: atributo da relação argumento 1
 - B_i: atributo da relação argumento 2
 - A_i e B_i tem o mesmo domínio
 - θ (theta) é um operador de comparação $\{=, <, \le, >, \ge, \ne\}$
 - existem diversas variações sobre a operação de junção

Junção theta

na qual pode ser usada qualquer operador θ
 válido no domínio dos atributos comparados

- os atributos envolvidos na comparação <u>aparecem</u> <u>ambos na relação resultado</u> (gerando pares de atributos), mas tuplas com valores nulos nos atributos envolvidos na junção <u>não aparecem</u> no resultado
- variação mais genérica

♦ Junção theta

cliente (nro_cli, nome_cli, end_cli, saldo, vendedor)

vendedor (cod_vend, nome_vend)

cliente ⋈ vendedor ≠ cod vend vendedor

grau da relação resultante é igual a 7

Equi-Junção

- uso mais comum de junção
- o operador θ é a igualdade
 - **•** {=}
- os atributos envolvidos na comparação <u>aparecem</u> <u>ambos na relação resultado</u> (gerando pares de atributos com valores idênticos), mas tuplas com valores nulos nos atributos envolvidos na comparação <u>não aparecem</u> no resultado

♦ Equi-Junção

cliente (nro_cli, nome_cli, end_cli, saldo, vendedor)

vendedor (cod_vend, nome_vend)

cliente ⋈ _{vendedor = cod vend} vendedor

grau da relação resultante é igual a 7

◆ Junção Natural – R * S

- semelhante à operação de Equi-Junção
- porém, dos atributos da junção, <u>apenas os</u> originários de uma das relações operadas aparecem na relação resultado
 - requer que os atributos comparados tenham nomes iguais nas duas relações
- tuplas com valores nulos nos atributos envolvidos na comparação também <u>não aparecem</u> no resultado

◆Junção Natural

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

vendedor (cod_vend, nome_vend)

vendedor * cliente

grau da relação resultante é igual a 6

◆Junção Natural

```
cliente (nro_cli, nome_cli, end_cli, saldo, vendedor)
```

vendedor (cod_vend, nome_vend)

vendedor * $\rho_{\text{(nro_cli, nome_cli, end_cli, saldo, cod_vend)}}$ cliente

grau da relação resultante é igual a 6

R

 A
 B
 C

 1
 a
 x

 2
 b
 y

 3
 a
 y

 4
 c
 y

S

А	D
1	d
2	d
5	е
<u>J</u>	6

 $R\bowtie S$

А	В	С	Α	D
1	a	X	1	d
2	b	У	2	d

- Interna (inner join)
 - somente as tuplas de R que têm tuplas correspondentes em S, e vice-versa, aparecem no resultado

R

Α	В	С
1	a	X
2	b	у
3	a	у
4	С	у

S

А	D
1	d
2	d
5	е

 $R \supset S$

Α	В	С	Α	D
1	a	X	1	d
2	b	у	2	d
3	а	у	Null	Null
4	С	у	Null	Null

- Externa à esquerda (left outer join)
 - mantém cada tupla de R em R ⊃ S
 - preenche com valores nulos os atributos de S que não correspondem às tuplas em R

R

Α	В	С
1	a	X
2	b	у
3	a	у
4	С	у

S

А	D
1	d
2	d
5	е

 $R \bowtie S$

Α	В	С	Α	D
1	a	X	1	d
2	b	у	2	d
Null	Null	Null	5	е

- Externa à direita (right outer join)
 - mantém cada tupla de S em R ⋈ S
 - preenche com valores nulos os atributos de R que não correspondem às tuplas em S

S

 $R \supset \subset S$

Α	В	С
1	a	X
2	b	у
3	a	у
4	С	у

Α	D
1	d
2	d
5	е

Α	В	С	А	D
1	a	X	1	d
2	b	у	2	d
3	a	у	Null	Null
4	С	у	Null	Null
Null	Null	Null	5	е

- Externa completa (full outer join)
 - mantém as tuplas de R e S em R ⊃
 - preenche com valores nulos os atributos que não correspondem à coluna de junção

Exercicio 1

- Considere as seguintes relações
 - usuário (<u>cliente nome</u>, gerente_nome)
 - cliente (<u>cliente nome</u>, rua, cidade)

usuário

cliente_nome	gerente_nome
Márcia	Manoel
Rodrigo	Maria

cliente

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá

Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

- Considere as seguintes relações
 - usuário (<u>cliente nome</u>, gerente_nome)
 - cliente (<u>cliente nome</u>, rua, cidade)
- Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

```
temp<sub>1</sub> \leftarrow \pi <sub>cliente_nome</sub> (\sigma_{gerente_nome} = "Manoel" (usuário))
temp<sub>2</sub> \leftarrow temp<sub>1</sub> x cliente
temp<sub>3</sub> \leftarrow \sigma_{temp1.cliente_nome} = cliente.cliente_nome (temp<sub>2</sub>)
\pi_{temp1.cliente_nome}, cidade (temp<sub>3</sub>)
```

- Considere as seguintes relações
 - usuário (<u>cliente nome</u>, gerente_nome)
 - cliente (<u>cliente nome</u>, rua, cidade)
- Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

```
temp<sub>1</sub> \leftarrow \pi <sub>cliente_nome</sub> (\sigma<sub>gerente_nome = "Manoel"</sub> (usuário))
temp<sub>2</sub> \leftarrow temp<sub>1</sub> * cliente
\pi <sub>temp1.cliente_nome, cidade</sub> (temp2)
```

- Considere a seguinte relação
 - cliente (<u>cliente nome</u>, rua, cidade)

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Cristina	Rua XTZ	Maringá
Sofia	Rua X	Maringá
Ricardo	Rua AAA	Itambé

Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

Exemplo 2

- Considere a seguinte relação
 - cliente (<u>cliente nome</u>, rua, cidade)
- Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

```
temp<sub>1</sub> \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = "Rodrigo"} (\text{cliente}))
temp_2 \leftarrow temp_1 \times cliente
```

```
temp_3 \leftarrow \sigma_{cliente\ nome\ <> "Rodrigo"}(temp_2)
```

$$\pi$$
 cliente_nome (σ temp₁.rua = cliente.rua ^ temp₁.cidade = cliente.cidade (temp₃))

Exemplo 2

- Considere a seguinte relação
 - cliente (<u>cliente nome</u>, rua, cidade)
- Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

```
temp_{1} \leftarrow \pi_{rua,cidade} (\sigma_{cliente\_nome = "Rodrigo"} (cliente))
temp_{2} \leftarrow temp_{1} * cliente
temp_{3} \leftarrow \sigma_{cliente\_nome <> "Rodrigo"} (temp_{2})
\pi_{cliente\_nome} (temp_{3})
```

Operações sobre Conjuntos

- Operações
 - união
 - intersecção
 - diferença
- Características

- Duas relações são compatíveis quando:
- possuem o mesmo grau
- seus atributos possuem os mesmos domínios (os domínios dos i-ésimos atributos de cada relação são os mesmos)
- atuam sobre relações compatíveis
- eliminam tuplas duplicadas da relação resultado

União de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R, a S, ou a ambas R e S

relação argumento 1 U relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

União de Conjuntos

 relações cujos domínios dos atributos são iguais, na mesma ordem de definição das colunas

Intersecção de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes tanto a R quanto a S

relação argumento 1 \cap relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Intersecção de Conjuntos

Notação: <relação1> ∩ <relação2>

Diferença de Conjuntos

Une duas relações R e S compatíveis em uma relação que contém todas as tuplas pertencentes a R que não pertencem a S

relação argumento 1 – relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Diferença de Conjuntos

Notação: <relação1> - <relação2>

Exemplo: Listar os <u>vendedores</u> que não atendem nenhum cliente, ou seja, que estão na tabela Vendedor mas que não estão na tabela de "Clientes"

Relações Cliente e Pedido

cliente (nro_cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

pedido (nro ped, data, nro_cliente)

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

Consultas 5, 6 e 7

- Liste os números dos clientes que
 - ou têm pedido, ou foram atendidos pelo vendedor 2, ou ambos
 - têm pedido, e que foram atendidos pelo vendedor 2
 - 7. têm pedido, mas que não foram atendidos pelo vendedor 2

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend) pedido (nro ped, data, nro cliente)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

pedido (<u>nro_ped</u>, data, <u>nro_cliente</u>)

nro_ped	data	nro_cliente
1	10/12/2004	1
2	11/12/2004	4

Consultas 5, 6 e 7

Liste os números dos clientes que têm pedido.

Temp₁
$$\leftarrow \pi_{\text{nro_cliente}}$$
 (pedido)

Liste os números dos clientes que foram atendidos pelo vendedor 2.

temp₂
$$\leftarrow \pi_{\text{nro cli}} (\sigma_{\text{cod vend} = 2} \text{ (cliente)})$$

Consulta 5

Liste os números dos clientes que ou têm pedido, ou foram atendidos pelo vendedor 2, ou ambos.

temp ₁	temp ₂
nro_cliente	nro_cli
1	4
4	

Consulta 6

Liste os números dos clientes que têm pedido, e que foram atendidos pelo vendedor 2.

Consulta 7

Liste os números dos clientes que têm pedido, mas que não foram atendidos pelo vendedor 2.

Exercício

- Considere a seguinte relação
 - conta (nro conta, saldo)

nro_conta	saldo
01-010101-01	100,00
01-020202-02	200,00
01-030303-03	300,00
01-040404-04	400,00

Liste o maior saldo

- Primeiro passo
 - realizar o produto cartesiano da relação conta com ela mesma

temp₁ \leftarrow conta x ρ_{conta2} (conta)

relação resultado temp₁

conta.nro_conta	conta.saldo	conta2.nro_conta	conta2.saldo
01-010101-01	100,00	01-010101-01	100,00
01-010101-01	100,00	01-020202-02	200,00
01-010101-01	100,00	01-030303-03	300,00
01-010101-01	100,00	01-040404-04	400,00
01-020202-02	200,00	01-010101-01	100,00
01-020202-02	200,00	01-020202-02	200,00
01-020202-02	200,00	01-030303-03	300,00
01-020202-02	200,00	01-040404-04	400,00
01-030303-03	300,00	01-010101-01	100,00
01-030303-03	300,00	01-020202-02	200,00
01-030303-03	300,00	01-030303-03	300,00
01-030303-03	300,00	01-040404-04	400,00
01-040404-04	400,00	01-010101-01	100,00
01-040404-04	400,00	01-020202-02	200,00
01-040404-04	400,00	01-030303-03	300,00
01-040404-04	400,00	01-040404-04	400,00

- Segundo passo
 - listar os saldos que não são os mais altos

temp₂
$$\leftarrow \pi_{\text{conta.saldo}} (\sigma_{\text{conta.saldo}} < \sigma_{\text{conta2.saldo}} (\text{temp}_1))$$

■ relação resultado temp₂

conta.saldo
100,00
200,00
300,00

- Terceiro passo
 - listar todos os saldos da relação conta

$$temp_3 \leftarrow \pi_{saldo}$$
 (conta)

relação resultado temp₃

saldo	
100,00	
200,00	
300,00	
400,00	

- Quarto passo
 - fazer a diferença entre "todos os saldos da relação conta" e "os saldos que não são os mais altos"

$$temp_3 - temp_2$$

relação resultado

saldo	
400,00	

Exercício

- Considere as seguintes relações
 - Aluno = (Nome, Idade, Curso)
 - Professor = (<u>Nome</u>, Idade, Depto)
 - Matricula = (<u>NomeA</u>, <u>Disciplina</u>, Nota)
 - Aulas = (<u>NomeProf</u>, <u>Disciplina</u>)
- Listar a idade e o nome dos alunos e professores do banco de dados
- 2. Listar as disciplinas em que os alunos de Computação se matricularam
- 3. Listar o departamento dos professores que não ministram a disciplina de Banco de Dados

Exercício

1) Listar a idade e o nome dos alunos e professores do banco de dados

```
Aux1 \leftarrow \pi_{\{Nome, Idade\}}(Aluno)
Aux2 \leftarrow \pi_{\{Nome, Idade\}}(Professor)
Pessoas \leftarrow Aux1 \cup Aux2
```

2) Listar as disciplinas em que os alunos de computação se matricularam

```
\pi_{\{Disciplina\}}(\sigma_{(curso = "computação")}(Aluno * \rho_{(Nome, Disciplina, Nota)} Matricula))
```

3) Listar o departamento dos professores que não ministram a disciplina de Banco de Dados

```
\begin{array}{l} \mathsf{Aux1} \leftarrow \pi_{\mathsf{Nome}}(\sigma_{\mathsf{disciplina} \,=\, ``\mathsf{Banco} \,\,\mathsf{de} \,\,\mathsf{Dados''}}(\mathsf{Professor} \,\,*\,\, \rho_{(\mathsf{Nome}, \,\,\mathsf{Disciplina})} \,\,\mathsf{Aulas})) \\ \mathsf{Aux2} \leftarrow \pi_{\mathsf{Nome}}(\mathsf{Professor}) \\ \mathsf{Departamento} \leftarrow \pi_{\mathsf{Depto}} \,\,(\mathsf{Aux2} - \mathsf{Aux1}) \,\,*\,\,\mathsf{Professor} \end{array}
```

Atividades complementares

- Leitura para casa
 - Capítulo 6, "Álgebra e cálculo relacional" do livro: Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados, 6ª. edição (2011).

