

Description

The VSM50N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =50A

 $R_{DS(ON)}$ < 11m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 16m Ω @ V_{GS} =5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking And Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM50N03-T1	VSM50N03	TO-251	-	-	-

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	30	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	50	А	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	35	Α	
Pulsed Drain Current	I _{DM}	140	Α	
Maximum Power Dissipation	P _D	60	W	
Derating factor		0.4	W/℃	

Shenzhen VSEEI Semiconductor Co., Ltd

Single pulse avalanche energy (Note 5)	E _{AS}	70	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}\mathbb{C}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	2.5	°C/W
---	------------------	-----	------

Electrical Characteristics (T_A=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	30	33	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1	1.6	3	V
Prain Course On State Resistance	В	V _{GS} =10V, I _D =25A	-	8	11	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =5V, I _D =20A	-	10	16	
Forward Transconductance	g Fs	V _{DS} =5V,I _D =20A	15	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	V _{DS} =15V,V _{GS} =0V,	-	2000	-	PF
Output Capacitance	C _{oss}		-	280	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	160	-	PF
Switching Characteristics (Note 4)	·		•			
Turn-on Delay Time	t _{d(on)}		-	10	-	nS
Turn-on Rise Time	t _r	V_{DD} =15V, I_{D} =20A V_{GS} =10V, R_{GEN} =1.8 Ω	-	8	-	nS
Turn-Off Delay Time	t _{d(off)}		-	30	-	nS
Turn-Off Fall Time	t _f		-	5	-	nS
Total Gate Charge	Qg	\/ -40\/1 -25A	-	23	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =10V,I _D =25A,	-	7	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} =10V	-	4.5	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =25A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	50	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =50A	-	22	35	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	11	18	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LE				y LS+LD)

Notes:

- **1.** Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=15V,VG=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Rdson On-Resistance Normalized

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

BVDSS

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

T_J-Junction Temperature(℃)

Figure 10 $V_{\text{GS(th)}}$ vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance