Elementary Linear Algebra - MATH 2250 - Day 6

Name:

1.	Mark each of the followings as True or False (Explain why when True, or give an example when False).
	T F The set of all vectors that lie on a line through origin form a vector space.
	T F The set of all vectors that lie on a plane through origin form a vector space.
	T F The union of any two vector spaces is a vector space.
	T F The union of any two vector spaces is a vector space.
	T F The intersection of any two vector spaces is a vector space.
	T F The set of all vectors that lie on the union of two distinct lines through origin form a vector space.
	T F The set of all vectors that lie on a line through origin form a subspace of a plane that contains that line.
	T F The set of all vectors that lie on the union of two distinct parallel lines form a vector space.
	T F Let V be a subspace of W and W be a subspace of U . Then V is a subspace of U .

 \fbox{T} \fbox{F} (optional) There are sets S and T, NOT vector spaces, such that $S \cup T$ is a vector space.

2. Let
$$A = \begin{bmatrix} 2 & 0 & 2 \\ 2 & 2 & 0 \\ 4 & 4 & 0 \\ 4 & 6 & -2 \end{bmatrix}$$
.

- (a) Fill in the blank: The column space of A (that is, C(A)) is a subspace of _____.
- (b) Is the columns space of A the whole space specified in part (a)? Why?

- (c) Does the equation Ax = b have a solution for any right hand side b? Explain.
- (d) Does the equation Ax = 0 have a solution? Explain.
- (e) Does the equation $Ax = \begin{bmatrix} 2 \\ 2 \\ 4 \\ 4 \end{bmatrix}$ have a solution? Explain.
- (f) Does the equation $Ax = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$ have a solution? Explain.

(g) Does the equation $Ax =$	$\begin{bmatrix} 0 \\ 2 \\ 4 \\ 6 \end{bmatrix}$	
------------------------------	--	--

- (h) Does the equation $Ax = \begin{bmatrix} 4 \\ 2 \\ 4 \\ 2 \end{bmatrix}$ have a solution? Explain.
- (i) Does the equation Ax = b have a solution for any b in the columns space of A? Explain.
- (j) What are all the right hand sides b such that Ax = b has a solution?

(k) Does the equation Ax = 0 have a nonzero solution? Explain.

(1) What are all the solutions to the equation Ax = 0?

(m) What is the null space of A?