МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра компьютерных технологий и систем

КСР

Аленникова Бориса Сергеевича студента 3 курса, специальность «Информатика»

Руководитель практики: К.А. Чигвинцев

ПРИНЦИП СЖИМАЮЩИХ ОТОБРАЖЕНИЙ В БАНАХОВЫХ ПРОСТРАНСТВАХ

Пусть в банаховом пространстве E действует отображение f.

Определение 1. Точка $x^* \in E$ называется неподвижной точкой отображения f, если

$$f(x^*) = x^*$$
. (1)

Таким образом, неподвижные точки f — это решения уравнения

$$x = f(x),$$
 (2)

а поскольку к такому виду довольно часто удается преобразовать уравнение F(x) = 0, где F действует из банахова пространства X в банахово пространство Y, то важность определения неподвижных точек не вызывает сомнения.

Отображение f может и не иметь неподвижной точки. Например, отображение $f: \mathbb{R} \to \mathbb{R}, f(x) = x + a$, где $a \neq 0$.

Среди отображений $f: E \to F$ выделим класс отображений специального вида.

Определение 2. Будем говорить, что отображение f является сэксимающим (сэксатием), если существует константа $0 < \alpha < 1$ такая, что

$$||f(x) - f(y)||_E \le \alpha ||x - y||_E, \ \forall x, y \in E.$$
 (3)

Число α в (3) называют коэффициентом сэкатия.

Теорема 1 (принцип сжимающих отображений). Пусть отображение f отображает замкнутое в банаховом пространстве E множество M в себя и является на M сжимающим с коэффициентом сжатия α. Тогда на множестве M отображение f имеет единственную неподвижную точку x*, которая может быть найдена методом последовательных приближений

$$x_n = f(x_{n-1}), n = 1, 2, \dots,$$
 (4)

 $rde(x_n) \subset M$ и $x_n \to x^*$ при $n \to \infty$. Кроме того, справедлива оценка скорости сходимости

$$||x_n - x^*|| \le \frac{\alpha^n}{1 - \alpha} ||x_0 - x_1||.$$
 (5)

Доказательство. Поскольку $f(M) \subset M$, то $(x_n) \subset M$. Покажем, что последовательность x_n фундаментальна. Предварительно оценим для любого $k \in \mathbb{N}$ норму между соседними итерациями:

$$||x_k - x_{k+1}|| = ||f(x_{k-1}) - f(x_k)|| \le \alpha ||x_{k-1} - x_k|| \le \ldots \le \alpha^k ||x_0 - x_1||.$$

Пусть m > n, пользуясь неравенством треугольника и формулой суммы геометрической прогрессии, получим

$$||x_m - x_n|| \le ||x_n - x_{n+1}|| + ||x_{n+1} - x_{n+2}|| + \dots + ||x_{m-1} - x_m||$$

 $\le (\alpha^n + \dots + \alpha^{m-1}) \cdot ||x_0 - x_1|| = \frac{\alpha^n - \alpha^m}{1 - \alpha}.$
(6)

Учитывая, что $0 < \alpha < 1$, получаем, что последовательность (x_m) — фундаментальна. Вследствие полноты E, последовательность в E сходится к некоторому элементу $x^* \in E$. Так как M замкнуто, то $x^* \in M$.

Докажем теперь, что x^* является неподвижной точкой отображения f. Из условия сжатия вытекает непрерывность и равномерная непрерывность отображения f. Перейдем в равенстве (4) к пределу при $n \to \infty$, получим $x^* = f(x^*)$.

Докажем, что x^* – единственная неподвижная точка на M. Пусть y^* – еще одна неподвижная точка на M, тогда $y^* = f(y^*)$. Оценим норму

$$0 \leqslant ||x^* - y^*|| = ||f(x^*) - f(y^*)|| \leqslant \alpha ||x^* - y^*||.$$

Это неравенство возможно лишь при $||x^* - y^*|| = 0$, откуда $x^* = y^*$.

Докажем оценку скорости сходимости. Для этого в неравенстве (6) перейдем к пределу при $m \to \infty$, получим

$$||x_n - x^*|| \le \frac{\alpha^n}{1 - \alpha} ||x_0 - x_1||.$$

Условие сжатия нельзя, вообще говоря, заменить на более слабое, например: $\|f(x) - f(y)\| \le \|x - y\|$ для всех $x, y \in M$.

 \otimes

ПРИМЕНЕНИЕ ПРИНЦИПА СЖИМАЮЩИХ ОТОБРАЖЕНИЙ ДЛЯ РЕШЕНИЯ УРАВНЕНИЙ

Одним из подходов для приближенного решения уравнений можно отнести метод последовательных приближений (последовательных итераций). Остановимся на его рассмотрении.

Пусть задано уравнение

$$x = f(x), (7)$$

где $f:[a,b] \to [a,b]$. Сформулируем для него принцип сжимающих отображений.

Теорема 1. Пусть f удовлетворяет условию Липшица с константой L < 1. Тогда уравнение (7) имеет единственное решение $x^* \in [a,b]$, которо е может быть найдено методом последовательных приближений

$$x_n = f(x_{n-1}), n = 1, 2,$$
 (8)

Теорема 1 вытекает из основной теоремы 1. Здесь в качестве множества A выступает отрезок [a, b].

Рассмотрим применение теоремы 1 к решению уравнения, заданного в общем виде

$$g(x) = 0.$$
 (9)

Предположим, что функция $g(x) \in C^{(1)}[a,b]$, т. е. является непрерывно дифференцируемой. Пусть выполнены на [a,b] следующие ограничения

$$0 < k_1 \le g'(x) \le k_2$$
 или $0 < -k_1 \le g'(x) \le -k_2$. (10)

Перепишем (9) в виде

$$x = x - \lambda g(x)$$
 или $x = f(x)$, (11)

где $f(x) = x - \lambda g(x)$. С помощью (10) выберем параметр λ таким образом, чтобы отображение f переводило отрезок [a, b] в себя и при этом было сжимающим.

Предположим, что выполнено первое соотношение в (10). Тогда

$$1 - \lambda k_2 \leqslant f'(x) = 1 - \lambda g'(x) \leqslant 1 - \lambda k_2.$$

В качестве параметра λ можно взять точку минимума функции

$$h(\lambda) = \max\{|1 - \lambda k_1|, |1 - \lambda k_2|\},\$$

т. е.

$$\lambda^{\star} = \frac{2}{k_1 + k_2}.$$

В этом случае

$$|f'(x)| \le \frac{k_2 - k_1}{k_2 + k_1} < 1.$$
 (12)

Так как уравнение (7) имеет решение, то a < f(a), b > f(b), а это означает, что $f: [a,b] \to [a,b]$. Следовательно, к уравнению (11) применим принцип сжимающих отображений. Для вычисления коэффициента сжатия можно воспользоваться оценкой на производную.

Задание 1.1 (Файл 1_1.py)

Нам задано уравнение 1. $x^7 + 4x^5 + 2x + 1 = 0$;

Приводя его к виду, для которого справедлив принцип сжимающих отображений, найти корни уравнения с точностью $\varepsilon = 10-4$. Составить алгоритм и написать программный код, реализующий метод последовательных приближений, предусматривающий:

- построение графика g(x);
- вычисление априорной оценки количества итераций;
- вывод на печать последней итерации и ее номера.

Построим график функции в Wolfram Mathematica на промежутке [-0.7; 0.5]:

Функция $g(x) \in C$ [-0.7, 0.5], то есть она непрерывно дифференцируема на рассматриваемом отрезке. Следовательно, возьмем производную:

$$g'(x) = 7x^6 + 20x^4 + 2$$

Оценим производную в точках -0.7 и 0.5, получим, g(-0.7)=7.63; g(0.5)=3.35.

Значит мы получили значения k1 = 3.35, k2 = 7.63.

Получим, что $\lambda\cong 0.18215$ и $\,pprox\cong 0.3898$.

Также получаем формулу:

$$x_n = x_{n-1} - 0.18215(x^7 + 4x^5 + 2x + 1)$$

После программы получим:

```
apriori number of iterations: 9
aposteriori number of iterations: 11
solution: -0.4576030035163132
```

?! Ссылки на код

https://github.com/AlenniBoris/BSU-FifthTerm/tree/main/FA/KSR/pythonPr

ПРИМЕНЕНИЕ ПРИНЦИПА СЖИМАЮЩИХ ОТОБРАЖЕНИЙ ДЛЯ РЕШЕНИЯ СЛАУ

Метод сжимающих отображений широко применяется при решении СЛАУ (систем линейных алгебраических уравнений). Наиболее эффективен данный метод при решении систем большой размерности с сильно разреженной матрицей. Проблема решения таких систем возникает при решении прикладных задач, например, поиска безусловного экстремума функций многих переменных с помощью необходимых условий, при применении неявных методов интегрирования обыкновенных дифференциальных уравнений.

Пусть дана система линейных алгебраических уравнений вида

$$a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mm}x_m = b_m,$$

которую мож но записать в матричном виде

$$AX = B. (16)$$

Предположим, что определитель матрицы $A \ det A \neq 0$, тогда существует единственное решение системы (15). Для применения принципа сжимающих отображений перепишем уравнение (16) в виде

$$X = CX + D. (17)$$

Обозначим через F(X)=CX+D, тогда отображение $F:\mathbb{R}^m \to \mathbb{R}^m$ задается системой линейных уравнений

$$y_i = \sum_{j=1}^m c_{ij} x_j + d_i \ (i = 1, 2, \dots, m).$$
 (18)

Если отображение F — сжатие, то мы можем применить метод последовательных приближений к решению уравнения X = F(X).

При каких условиях отображение F будет сжатием? Ответ на этот вопрос зависит от выбора нормы в \mathbb{R}^m .

Рассмот рим в \mathbb{R}^m кубическую норму $\|x\|_k = \max_{1 \leq i \leq m} |x_i|$. Тогда

$$||y^{(1)} - y^{(2)}||_k = \max_{1 \le i \le m} |y_i^{(1)} - y_i^{(2)}| = \max_{1 \le i \le m} \left| \sum_{j=1}^m c_{ij} (x_j^{(1)} - x_j^{(2)}) \right| \le$$

$$\leq \max_{1 \leq i \leq m} \sum_{j=1}^{m} |c_{ij}| \cdot |x_j^{(1)} - x_j^{(2)}| \leq \max_{1 \leq i \leq m} \sum_{j=1}^{m} |c_{ij}| \cdot \max_{1 \leq j \leq m} |x_j^{(1)} - x_j^{(2)}| =$$

$$= \left(\max_{1 \leq i \leq m} \sum_{j=1}^{m} |c_{ij}| \right) \cdot ||x^{(1)} - x^{(2)}||_k = \alpha ||x^{(1)} - x^{(2)}||_k.$$

Отсюда вытекает, что условие сжимаемости имеет вид

$$\alpha = \max_{1 \leq i \leq m} \sum_{j=1}^{m} |c_{ij}| < 1.$$
 (19)

Рассмотрим в \mathbb{R}^m октаэдрическую норму $\|x\|_0 = \sum_{i=1}^m |x_i|$, тогда

$$||y^{(1)} - y^{(2)}||_{0} = \sum_{i=1}^{m} |y_{i}^{(1)} - y_{i}^{(2)}| = \sum_{i=1}^{m} \left| \sum_{j=1}^{m} c_{ij} (x_{j}^{(1)} - x_{j}^{(2)}) \right| \leq$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{m} |c_{ij}| \cdot |x_{j}^{(1)} - x_{j}^{(2)}| \leq \max_{1 \leq j \leq m} \sum_{i=1}^{m} |c_{ij}| \cdot \sum_{j=1}^{m} |x_{j}^{(1)} - x_{j}^{(2)}| =$$

$$= \left(\max_{1 \leq j \leq m} \sum_{i=1}^{m} |c_{ij}| \right) \cdot ||x^{(1)} - x^{(2)}||_{0} = \alpha ||x^{(1)} - x^{(2)}||_{0}.$$

Условие сжатия имеет вид

$$\alpha = \max_{1 \leq j \leq m} \sum_{i=1}^{m} |c_{ij}| < 1.$$
 (20)

Таким образом, если выполнено хотя бы одно из условий (19), (20), то выполнены условия теоремы 1 и ее можно сформулировать в эквивалентной формулировке

Теорема 1. Если матрица C системы (17) такова, что $0 \le \alpha < 1$, где величина α определяется формулой (19) или (20), то система уравнений (17) имеет единственное решение. Это решение может быть найдена методом последовательных приближений

$$x_i^{(n+1)} = \sum_{j=1}^m c_{ij} x_j^{(n)} + d_i,$$
 (21)

а в качестве $x^{(0)} = (x_1^{(0)}, \dots, x_m^{(0)})$ можно взять любую точку из \mathbb{R}^m . Скорость сходимости итерационного процесса оценивается неравенством (5).

Отметим, что условие (19) или (20) не являются необходимыми для применения метода последовательных приближений, а лишь достаточными.

Важ но заметить, что если матрица $C = (c_{ij})_{i,j=1}^m$ симметрична, то по сферической норме условие сжатия имеет вид

$$\sum_{j=1}^{m} \sum_{i=1}^{m} |a_{ij}| < 1, \qquad (22)$$

и, фактически означает, что $\|C\| < 1$. Из курса линейной алгебры известно, что $\|C\|$ совпадает с $|\lambda_1|$, где λ_1 — наибольшее по абсолютной величине собственное значение матрицы C. Тогда условие (22) не только достаточно, но и необходимо для сходимости метода последовательных приближений. Действительно, выбирая в (17) собственный вектор, отвечающий λ_1 , и полагая $x_i^{(0)} = 0$, получим $x_i^{(1)} = d_i$, $x_i^{(n+1)} = (1 + \lambda_1 + \ldots + \lambda_1^n)b_i$, откуда следует, что при $n \to \infty$ последовательность $(x_i^{(n)})$ не имеет предела, если $|\lambda_1| \geqslant 1$ $(b_i \neq 0)$.

Таким образом, когда матрица C симметрична, процесс последовательных приближений для решения системы линейных уравнений сходится к решению тогда и только тогда, когда все собственные значения матрицы C меньше единицы по абсолютной величине.

Обратимся к вопросу преобразования системы (16) к виду (17).

Самый простой способ следующий. Из первого уравнения (15) выразим x_1 , из второго x_2 и т. д. Тогда на главной диагонали матрицы Cстоят нули, а ненулевые элементы выражаются по формулам

$$c_{ij} = \frac{a_{ij}}{a_{ii}}, d_i = \frac{b_i}{a_{ii}}, i, j = \overline{1, m}, i \neq j.$$
 (23)

Обратимся ко второму способу. Пусть A^{\top} — транспонированная к A матрица, E — единичная матрица, $\lambda(A^{\top}A)$ — максимальное собственное значение матрицы $A^{\top}A$. Тогда исходное уравнение (16) мож но записать так:

$$X = \left(E - \frac{A^{\top}A}{\lambda(A^{\top}A)}\right)X + \frac{A^{\top}B}{\lambda(A^{\top}A)}, \quad (24)$$

тогда

$$C = E - \frac{A^{\mathsf{T}}A}{\lambda(A^{\mathsf{T}}A)}, D = \frac{A^{\mathsf{T}}B}{\lambda(A^{\mathsf{T}}A)},$$
 (25)

Если матрица *С* получена таким образом, то все ее собственные числа положительны и меньше единицы.

Рассмотрим теперь бесконечную систему линейных алгебраических уравнений с бесконечным числом неизвестных

$$y_i = \sum_{j=1}^{\infty} a_{ij}x_j + b_i \ (i = 1, 2, ...).$$
 (26)

Решением такой системы назовем бесконечную последовательность $(x_1, x_2, \ldots, x_i, \ldots)$, которая обращает (26) тождество. Заметим, что в этом случае автоматически требуется сходимость рядов, входящих в (26). Ограничимся случаем, когда последовательность $(x_1, x_2, \ldots, x_i, \ldots)$ ограничена, т. е. $x \in m$, $\sup_i |x_i| < \infty$. Как и в первом случае приведем систему к виду

$$x_i = \sum_{j=1}^{m} c_{ij}x_j + b_i \ (i = 1, 2, ...),$$
 (27)

где
$$c_{ij} = -a_{ij} + \delta_{ij}$$
, $\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$

Определение 1. Система (27) называется вполне регулярной, если $\exists q: 0 < q < 1$ такое, что

$$\sum_{i,j=1}^{m} c_{ij} \leqslant q \quad \forall i. \tag{28}$$

Определим отображение $F : m \to m$ и потребуем, чтобы вектор правой части $b = (b_1, b_2, \dots, b_i, \dots) \in m$.

Теорема 2. Вполне регулярная система (27) имеет единственное решение $x \in m$ при любом $b = (b_1, b_2, ..., b_i, ...) \in m$. Если $||b||_m \leq B$, то

$$|x_i| \leqslant \frac{B}{1-q}, \quad i = 1, 2, \dots$$

Задание 2.1 (Файл 2 1.py)

Нам дана система уравнений:

1.1.
$$\begin{cases} 3,2x_1 - 11,5x_2 + 3,8x_3 = 2,8, \\ 0,8x_1 + 1,3x_2 - 6,4x_3 = -6,5, \\ 2,4x_1 + 7,2x_2 - 1,2x_3 = 4,5. \end{cases}$$

Приведем эту систему в вид АХ=В, где

$$A =$$

Матрица А является невырожденной, а это значит, что у системы есть

$$X = \underbrace{CX + D}_{F(X)}.$$

единственное решение. Перепишем уравнение в виде

$$C = E - \frac{A^{\top}A}{\lambda(A^{\top}A)}, D = \frac{A^{\top}B}{\lambda(A^{\top}A)}$$

где .

Просчитав все, получим:

```
C =
[ 0.92137127  0.08732326 -0.01965718]
[0.08732326  0.12213664  0.28663576]
[-0.01965718  0.28663576  0.73141483]
D =
[ 0.06880014]
[ -0.0389836]
[ 0.22133233]
```

Все по модулю меньше единицы, а значит процесс приблизительных приближений для решения сходится.

Для поиска приближенного решения воспользуемся формулой:

$$X_n = F(X_{n-1}) = CX_{n-1} + D.$$

Для начального приближения возьмем $X_0 = (0,0,0)^{6}$.

Условия остановки процесса и вычисления априорного числа будут схожи, но только вместо векторов х будут матрицы Х. Коэффициент сжатия будет

$$\alpha = \|C\|_2$$
.

оценивать таким образом:

Результат работы программы:

```
compression coefficient: 0.9320612209218749
apriori number of iterations:149
aposteriori number of iterations: 134
solution:
[[1.08601208]
  [0.47078736]
  [1.24700911]]
```

ПРИМЕНЕНИЕ ПРИНЦИПА СЖИМАЮЩИХ ОТОБРАЖЕНИЙ ДЛЯ РЕШЕНИЯ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

Интегральными уравнениями называют уравнения относительно неизвестной функции, входящей в уравнение под знаком интеграла.

Ограничимся рассмотрением уравнений вида

$$a(t)x(t) - \int_{a}^{b} \mathcal{K}(t, s; x(s))ds = y(t), t \in [a, b],$$
 (29)

здесь a(t), y(t) — заданные функции; $\mathcal{K}(t,s;x(s))$ — заданная функция, называемая sdpom интегрального уравнения; x(t) — неизвестная функции. Решение x(t) разыскивается в различных пространствах функций в зависимости от свойств функции $\mathcal{K}(t,s;z)$ и y. Пространства выбираются так, чтобы интеграл в (29) существовал. Уравнение (29) называется уравнением Фредгольма. Если $a(t) \equiv 0$, то уравнение (29) называется уравнением Фредгольма первого рода, соответственно, при $a(t) \equiv 1$ — второго рода и уравнением третьего рода при $a(t) \neq 0$. Исследование уравнений второго и третьего рода не отличаются, поэтом у мы ограничимся рассмотрением случая a(t) = 1.

Интегральное уравнение (29) называется линейным, если функция $\mathcal{K}(t,s,z)$ линейна по z. Если y(t)=0, то уравнение (29) называется однородным, в противном случае неоднородным.

Peшением уравнения (29) называется функция x(t), при подстановке которой в уравнение выполняется равенство для всех $t \in [a,b]$ или почти всех. Линейное однородное уравнение всегда имеет решение $x(t) \equiv 0$.

Выделим класс уравнений с переменным верхним пределом вида

$$a(t)x(t) - \int_{a}^{t} \mathcal{K}(t, s; x(s)) ds = y(t),$$
 (30)

называемые интегральными уравнениями Вольтерра.

Уравнение Вольтерра является частным случаем уравнения Фредгольма, если переопределить ядро $\mathcal{K}(t,s;x(s))$.

Идея применения принципа сжимающих отображений и интегральным уравнениям (29) либо (30) заключается в следующем. Пусть имеется интегральное уравнение

$$x(t) = \int_{T} \mathcal{K}(t, s; x(s)) ds + y(t), \qquad (31)$$

где T=[a,b] либо T=[a,t]. Соответствие $x \to \int_T \mathcal{K}(t,s;x(s)) \mathrm{d}s + y(t)$ определяет отображение множества функций, заданных на T, на себя. Тогда уравнение (31) записывается в виде x=F(x), а это означает, что искомое решение является неподвижной точкой отображения F. Для того, чтобы применить принцип сжимающих отображений, нужно:

- выбрать бана хово пространство функций;
- проверить, что (31) определяет сжимающее отображение.

Покажем, каким образом такая схема реализуется в пространстве C[a,b] непрерывных функций на отрезке [a,b] для линейного неоднородного уравнения Фредгольма

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t, s)x(s) ds = y(t).$$
 (32)

Теорема 1. Пусть K(t,s) – непрерывная функция на множестве $[a,b] \times [a,b] = \Omega$ и $M = \max_{(t,s) \in \Omega} |K(t,s)|$, тогда для любого λ такого, что $|\lambda| < \frac{1}{M(b-a)}$ интегральное уравнение Фредголь ма второго рода имеет единственное решение для любой правой части $y(t) \in C[a,b]$. Доказательство. Зафиксируем пространство C[a,b]. Формула

$$F(x)(t) = \lambda \int_{a}^{b} K(t, s)x(s) ds + y(t)$$

за дает отображение банахова пространство C[a,b] на C[a,b]. Проверим, что отображение F сжимающее. Оценим норму

$$||F(x_1) - F(x_2)||_{C[a,b]} = \max_{a \le t \le b} |\lambda| \left| \int_a^b K(t,s)(x_1(s) - x_2(s)) ds \right| \le$$

$$\leq |\lambda| \max_{a \leq t \leq b} \int_{a}^{b} |\mathcal{K}(t,s)| |x_{1}(s) - x_{2}(s)| \, \mathrm{d}s \leq |\lambda| \max_{t,s} |\mathcal{K}(t,s)| (b-a) \times$$

$$\times \max_{a \leq s \leq b} |x_{1}(s) - x_{2}(s)| = |\lambda| M(b-a) ||x_{1} - x_{2}|| = \alpha ||x_{1} - x_{2}||_{C[a,b]}.$$

Тогда $\alpha = |\lambda| M(b-a) < 1$, так как $|\lambda| < \frac{1}{M(b-a)}$. Следовательно, отображение F — сжимающее. Значит, по принципу сжимающих отображений уравнение (32) имеет единственное решение, которое может быть найдено методом последовательных приближений. Процесс последовательных приближений строится по формуле

$$x_n(t) = \lambda \int_a^b \mathcal{K}(t, s) x_{n-1}(s) \, \mathrm{d}s + y(t). \tag{33}$$

 \otimes

На практике при численной реализации метода последовательных приближений необходимо приближенно вычислять интегралы по методу квадратур, что вносит дополнительную погрешность и довольно большую при большом числе итераций. С этой целью интегрирование нужно выполнять с большей точностью, чем погрешность метода последовательных приближений.

Так, для приближенного вычисления интеграла от гладкой функции хорошо подходит метод Симпсона или метод парабол.

$$\int_{a}^{b} f(t) dt \approx \frac{b-a}{m} \Big[f_0 + f_m + 2(f_2 + f_4 + \ldots + f_{m-2}) + 4(f_1 + f_3 + \ldots + f_{m-1}) \Big],$$

где $f_m = f(t_m)$, $t_m = t_0 + \frac{b-a}{m}$.

Обозначим через $t_i, i = 0,1,\ldots,m$ узлы сетки, расположенной на отрезке a,b. Тогда соотношение (33) перепишется в виде

$$x_n(t_i) = \lambda \int_a^b \mathcal{K}(t_i, s) x_{n-1}(s_i) \, \mathrm{d}s + y(t_i).$$

Если воспользоваться квадратурной формулой трапеций на равномерной сетке с шагом $h=\frac{b-a}{m}$, то расчетные формулы метода последо-

вательных приближений примут вид

$$x_n(t_i) = \lambda \frac{h}{2} \Big[k_{i,0} x_{n-1,0} + 2 \big(k_{i,1} x_{n-1,1} + \dots k_{i,m-1} x_{n-1,m-1} \big) + k_{i,m} x_{n-1,m} \Big] + y(t_i), i = 0, 1, \dots, m.$$

Здесь $k_{i,j} = K(t_i, s_j), x_{n,j} = x_n(s_j).$

Отметим, что при решении линейных интегральных уравнений сходимость метода последовательных приближений не зависит от вида правой части и начального приближения, которые влияют на скорость сходимости итерационного процесса.

Перейдем к рассмотрению нелинейного уравнения

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t, s; x(s)) ds = y(t).$$
 (34)

Выясним, мож но ли применить метод последовательных приближений к построению решения уравнения (34)

Теорема 2. Пусть K(t, s; z) – непрерывная функция переменных t, s, z, удовлетворяющая условию Липшица по переменной z с константой L > 0. Если выполнено условие $L(b-a)|\lambda| < 1$, то интегральное уравнение (34) имеет единственное непрерывное решение для любой правой части $y(t) \in C[a,b]$.

Доказательство. Рассмотрим отображение

$$F(x)(t) = \lambda \int_{a}^{b} \mathcal{K}(t, s; x(s)) ds + y(t)$$

и покажем, что $F\colon C[a,b]\to C[a,b]$. Поскольку $y(t)\in C[a,b]$, то достаточно показать, что $z(t)=\int\limits_a^b\mathcal{K}(t,s,x(s))\mathrm{d}s$ непрерывна. Действительно, при фиксированной непрерывной функции x подынтегральная функция $\mathcal{K}(t,s,x(s))$ есть непрерывная функция переменных t и s и по теореме об непрерывности интеграла, зависящего от параметра, непрерывна.

Покажем, что отображение F сжимающее. Используя условие Липшица, имеем

$$|F(x_1) - F(x_2)| \leq |\lambda| \int_a^b |\mathcal{K}(t, s; x_1(s)) - \mathcal{K}(t, s; x_2(s))| ds \leq$$

$$\leq |\lambda| L \int_{a}^{b} |x_1(s) - x_2(s)| ds \leq |\lambda| L(b-a) ||x_1 - x_2|| = \alpha ||x_1 - x_2||_{C[a,b]},$$

где
$$\alpha = |\lambda|L(b-a) < 1$$
.

Таким образом, разрешимость уравнений Фредгольма зависит от условий на ядро. Покажем, что для уравнения Вольтерра условие разрешимости проще.

Рассмотрим линейное неоднородное уравнение Вольтерра

$$x(t) - \lambda \int_{a}^{t} \mathcal{K}(t, s)x(s) ds = y(t).$$
 (35)

 \otimes

Выясним, когда можно применить метод последовательных приближений для его решения.

Теорема 3. Пусть K(t,s) – непрерывная функция по переменным t и s. Тогда для любой $y(t) \in C[a,b]$ и любого λ из поля P интегральное уравнение Вольтерра второго рода имеет единственное решение.

Доказательство. Зафиксируем пространство C[a,b] и рассмотрим отображение

$$F(x) = \lambda \int_{a}^{t} \mathcal{K}(t, s)x(s) ds + y(t).$$

Покажем, что некоторая степень отображения F является сжатием. Для этого рассмотрим ряд последовательных оценок.

$$|F(x_1) - F(x_2)| \le |\lambda| \int_a^t |\mathcal{K}(t,s)| |x_1(s) - x_2(s)| \, \mathrm{d}s \le |\lambda| M(t-a) ||x_1 - x_2||,$$

где $M = \max_{t,s} |\mathcal{K}(t,s)|$.

$$|F^{2}(x_{1}) - F^{2}(x_{2})| \leq |\lambda|^{2} \int_{a}^{t} \int_{a}^{s} |\mathcal{K}(t,s)| |\mathcal{K}(s,\tau)| |x_{1}(\tau) - x_{2}(\tau)| d\tau ds \leq$$

$$\leq |\lambda|^2 M^2 \frac{(t-a)^2}{2!} ||x_1 - x_2|| \leq |\lambda|^2 M^2 \frac{(b-a)^2}{2!} ||x_1 - x_2||,$$

ит. д. Следовательно,

$$||F^{N}(x_{1}) - F^{N}(x_{2})|| \le |\lambda|^{N} M^{N} \frac{(b-a)^{N}}{N!} ||x_{1} - x_{2}||.$$

Из последнего соот ношения следует, что найдется такое натуральное N, что $|\lambda|^N M^N \frac{(b-a)^N}{N!} < 1$, тогда F^N является сжатием и, следовательно, F имеет единственную неподвижную точку. Это означает, что интегральное уравнение Вольтерра имеет единственное решение.

Существует класс интегральных уравнений, которые сводятся к линейным системам алгебраических уравнений. Это линейные интегральные уравнения с вырожденным ядром.

Ядро K(t,s) называется вырожеденным, если оно имеет вид

$$K(t,s) = \sum_{i=1}^{m} a_i(t)b_i(s), \qquad (36)$$

где $a_i(t)$, $b_i(s)$ — равномерно непрерывные, линейно независимые функции, хотя независимость функций не существенна. Предположим, что уравнение (32) является уравнением с вырожденным ядром.

Пусть x(t) — решение уравнения (32), тогда

$$x(t) = \lambda \int_{a}^{b} \sum_{k=1}^{m} a_i(t)b_i(s)x(s) ds + y(t),$$

ил и

$$x(t) = \lambda \sum_{k=1}^{m} a_i(t) \int_a^b b_i(s)x(s) ds + y(t).$$

Положим $c_i = \int\limits_a^b b_i(s)x(s)\,\mathrm{d}s$, тогда

$$x(t) = \lambda \sum_{i=1}^{m} a_i(t)c_i + y(t).$$
 (37)

Таким образом, если решение уравнения (32) существует, то оно имеет вид (36). Подставим (36) в уравнение, введем обозначения

$$a_{ij} = \lambda \int_a^b b_i(s)a_j(s) ds, \quad y_i = \int_a^b b_i(s)y(s ds,$$

получим

$$c_i = \sum_{j=1}^{m} a_{ij}c_j + y_i.$$
 (38)

Итак, всякое решение интегрального уравнения (32) с ядром (35) однозначно определяется набором (c_1, \ldots, c_m) . Этот набор единственнен в силу линейной независимости $a_i(t)$. Таким образом, задача свелась к исследованию СЛАУ.

Задание 3.1 (Файл 3_1.ру)

Нам дано уравнение Фредгольма:

1.1.
$$a = 0$$
, $b = 1$, $x(t) - \lambda \int_{0}^{1} (1+t)s^{2}x(s) ds = t^{2}$;

Вот условие задания:

Задание 1. Выяснить, при каких значениях параметра $\lambda \neq 0$ к интегральному уравнению Фредгольма второго рода применим принцип сжимающих отображений в пространстве C[a,b] и в пространстве

33

 $L_2[a,b]$. При $\lambda=\lambda_0$ найти приближенное решение уравнения с точностью $\varepsilon=10^{-3}$ и сравнить его с точным решением. Составить алгоритм и написать программный код, реализующий метод последовательных приближений, предусматривающий:

- приведение интегрального уравнения к специальному виду для при менения метода последовательных приближений;
- вычисление коэффициента сжатия;
- вычисление априорной оценки количества итераций;
- выбор начального приближения;
- составление итерационного процесса в каждой фиксированной точке t_i , $i=1,\ldots,n$ по правилу

$$x_n(t_i) = \lambda_0 \int_a^b \mathcal{K}(t_i, s) x_{n-1}(s) \, \mathrm{d}s + y(t_i)$$

с приближенным вычислением интеграла по формуле Симсона с шагом 0,05;

 вывода на печать номера последней итерации, апостериорной погрешности, графика точного и приближенного решения.

Наши пространства C[0,1] , $L_2[0,1]$.

Найдем точное решение нашего уравнения:

11)
$$x(t) = \lambda_{0}^{\frac{1}{2}} (1+t) s^{2} x(s) ds = t^{2}$$
.
 $x(t) = t^{2} + \lambda(1+t) \int_{0}^{1} s^{2} x(s) ds$.
 $C = \int_{0}^{2} c^{2} x(s) ds = x(t) = t^{2} + \lambda(1+t) \cdot C$.
 $C = \int_{0}^{2} c^{2} (s^{2} + \lambda(1+s)C) ds$
 $C = \int_{0}^{2} c \cdot \lambda(1+s)C ds$
 $C = \int_{0}^{2} c \cdot \lambda(1+s)C ds$
 $C = \int_{0}^{2} c \cdot \lambda(1+s)C ds$
To the pensence: $x(t) = t^{2} + \frac{\lambda(1+t) \cdot 12}{60 - 35 \lambda}, \lambda \neq \frac{12}{7}$

Теперь приведем исходное уравнение к виду, пригодному для использования принципа сжимающих отображений и рассмотрим наше уравнения в обоих пространствах.

$$X = F(x) = t^2 + \lambda \int_{0}^{1} (1+t) s^2 x(s) ds$$

Пространство С[0,1]:

Найдем оценку числа лямбда, альфа, априорное число итераций.

 $L = \frac{2}{3}|\lambda| + 2 => |\lambda| + \frac{2}{2} = \frac{1}{5}$ $Namp = \left[\log_{\lambda} \frac{2(1-\lambda)}{\|x_0 - x_0\|}\right] + 1$

 $d = \frac{3}{3}|\lambda|$. Nyers $\lambda = 0.5 = 2d = 0.33333$ $X_0(t) = 0 = 2 \times 1(t) = F(x_0) = t^2 = 2$ $||x_0 - x_1|| = 1 = 2$

Namp # 7 86 / 1000 00

Coerabury viepouz, mongece e mondrum-vien bornnen-lu mur-na no go-ne Cumenoma c maran

 $\frac{6-9}{m} = 0.05 = m = \frac{1-0}{0.05} = 20$

Далее мы реализуем итерационный процесс, выходя из него, исходя из апостериорной оценкой точности.

Вот график, полученный после работы программы:

Пространство $L_2[0,1]$:

$$||f_{NN}-f_{NN}||_{L_{2}[0,3]} \leq L \cdot ||x-y||_{L_{2}[0,3]}$$

$$\left(\frac{1}{5}||\lambda(s+t)|\frac{1}{5}||s^{2}|(x(s)-y(s))|ds||^{2}dt\right)^{\frac{1}{2}} \leq \left(\frac{1}{5}||\lambda^{2}(s+t)|^{2}|(\frac{1}{5}||s^{2}|||x-y||ds)^{2}dt\right)^{\frac{1}{2}} \leq \left(\frac{1}{5}||\lambda^{2}(s+t)|^{2}|(\frac{1}{5}||x-y||^{2}ds)|dt\right)^{\frac{1}{2}} \leq \left(\frac{1}{5}||\lambda^{2}(s+t)|^{2}|(\frac{1}{5}||x-y||^{2}ds)|dt\right)^{\frac{1}{2}} \leq \left(\frac{1}{5}||\lambda^{2}(s+t)|^{2}|(\frac{1}{5}||x-y||^{2}ds)|dt\right)^{\frac{1}{2}} \leq \frac{1}{5}||\lambda^{2}(s+t)|^{2} + \frac{1}{5}||\lambda^{2}(s+t)$$

Получаем, что априорное число итераций почти не отличается, реальное число итераций также, а это значит, что можно перенести результаты с первого пространства на это.

ПРИМЕНЕНИЕ ПРИНЦИПА СЖИМАЮЩИХ ОТОБРАЖЕНИЙ ДЛЯ РЕШЕНИЯ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

Интегральными уравнения ми называют уравнения относительно неизвестной функции, входящей в уравнение под знаком интеграла.

Ограничимся рассмотрением уравнений вида

$$a(t)x(t) - \int_{a}^{b} \mathcal{K}(t, s; x(s))ds = y(t), t \in [a, b],$$
 (29)

здесь a(t), y(t) — заданные функции; $\mathcal{K}(t,s;x(s))$ — заданная функция, называемая sdpom имтегрального уравмения; x(t) — неизвестная функции. Решение x(t) разыскивается в различных пространствах функций в зависимости от свойств функции $\mathcal{K}(t,s;z)$ и y. Пространства выбираются так, чтобы интеграл в (29) существовал. Уравнение (29) называется уравнением Фредгольма. Если $a(t) \equiv 0$, то уравнение (29) называется уравнением Фредгольма первого рода, соответственно, при $a(t) \equiv 1$ — второго рода и уравнением третьего рода при $a(t) \neq 0$. Исследование уравнений второго и третьего рода не отличаются, поэтому мы ограничимся рассмотрением случая a(t) = 1.

Интегральное уравнение (29) называется лимеймым, если функция $\mathcal{K}(t,s,z)$ линейна по z. Если y(t)=0, то уравнение (29) называется однородным, в противном случае неоднородным.

Peшение M уравнения (29) называется функция x(t), при подстановке которой в уравнение выполняется равенство для всех $t\in [a,b]$ или почти всех. Линейное однородное уравнение всегда имеет решение $x(t)\equiv 0$.

Выделим класс уравнений с переменным верхним пределом вида

$$a(t)x(t) - \int_{s}^{t} K(t, s; x(s)) ds = y(t),$$
 (30)

называемые интегральными уравнениями Вольтерра.

Уравнение Вольтерра является частным случаем уравнения Фредгольма, если переопределить ядро $\mathcal{K}(t,s;x(s))$.

Идея применения принципа сжимающих отображений и интегральным уравнениям (29) либо (30) заключается в следующем. Пусть имеется интегральное уравнение

$$x(t) = \int_{T} \mathcal{K}(t, s; x(s)) ds + y(t), \qquad (31)$$

г де T=[a,b] либо T=[a,t] . Соответствие $x \to \int_T \mathcal{K} \big(t,s;x(s)\big) \mathrm{d}s + y(t)$ определяет отображение множества функций, заданных на T, на себя. Тогда уравнение (31) записывается в виде x=F(x), а это означает, что искомое решение является неподвижной точкой отображения F. Для того, чтобы применить принцип сжимающих отображений, нужно:

- выбрать банахово пространство функций;
- проверить, что (31) определяет сжимающее отображение.

Покажем, каким образом такая схема реализуется в пространстве C[a,b] непрерывных функций на отрезке [a,b] для линейного неоднородного уравнения Фредгольма

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t, s)x(s) ds = y(t).$$
 (32)

Теорема 1. Пусть $\mathcal{K}(t,s)$ – непрерывная функция на множестве $[a,b] \times [a,b] = \Omega$ и $M = \max_{(t,s) \in \Omega} |\mathcal{K}(t,s)|$, тогда для любого λ такого, что $|\lambda| < \frac{1}{M(b-a)}$ интегральное уравнение Фредгольма второго рода и меет единственное решение для любой правой части $y(t) \in C[a,b]$.

Теорема 2. Пусть $\mathcal{K}(t,s;z)$ — непрерывная функция переменных t,s,z, удовлетворяющая условию Липшица по переменной z с константой L>0. Если выполнено условие $L(b-a)|\lambda|<1$, то интегральное уравнение (34) имеет единственное непрерывное решение для любой правой части $y(t)\in C[a,b]$.

Теорема 3. Пусть K(t,s) — непрерывная функция по переменным t и s. Тогда для любой $y(t) \in C[a,b]$ и любого λ из поля P интегральное уравнение Вольтерра второго рода имеет единственное решение.

ин острасилос ураничние мозитерра писть единстисинос решение. 🔞

Существует класс витегральных уравнений, которые сподятся к линейным системым алтебранческих уравнений. Это линейные интегральные уравнения с вырожденным ядром.

 $\Pi_{\rm дро} \, \mathcal{K}(t,s)$ и в на настем в вреджения выс, если опо име ет ви д

$$K(t, s) = \sum_{i=1}^{m} a_i(t)b_i(s), \quad |36|$$

 $r_{AB} = a_d(t), b_0(s)$ — равномерно непрерынные , линейно негависимые функции, кота негависимость функций не существения. Предположим, что ураниение |32| является ураниением с нырожденным ядром.

 $\Pi_{V^{c} \to c} x(t)$ — решение уравнения |32| , тогда

$$x(t) = \lambda \int_{a}^{b} \sum_{k=1}^{m} a_i(t)b_i(s)x(s) ds + y(t),$$

8.3.8

$$x(t) = \lambda \sum_{k=1}^{m} a_i(t) \int_{s}^{b} b_i(s)x(s) ds + y(t).$$

2.8

Положим $c_i = \int_a^b b_i(s)x(s) ds$, тогда

$$x(t) = \lambda \sum_{i=1}^{m} a_i(t)c_i + y(t). \qquad |37|$$

Таким образом, если решение ураннения |32| существует, то оно имеет иид |36|. Подстания |36| и ураннение, инсдем обозначения

$$a_{ij} = \lambda \int_{a_i(s)}^b b_i(s)a_j(s) ds$$
, $y_i = \int_{a_i(s)}^b b_i(s)y(s ds)$,

получим

$$c_i = \sum_{j=1}^{m} a_{ij}c_j + y_i.$$
 (38)

Итак, всякое решение интегрального ураниения |32| с эдром |35| одногначно определяется набором (c_1, \ldots, c_m) . Этот набор единственен и силу линейной независимости $a_i(t)$. Таким образом, задача сислемось к исследованию С ЛАУ.

Задание 4.1

Дано уравнение Фредгольма. Нужно решить методом приближенных вычислений.

A CE-3;
$$5 \supset 5$$
 $5 \ge 10$: $5 \supset 5$ $5 \ge 10$: $5 \supset 5$ $5 \supset 5$

$$x_4(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \frac{t^7}{7!}$$

 $x_5(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \frac{t^7}{7!} + \frac{t^9}{9!}$

Nonymum, 400: $x_n(t) = t + \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + \frac{t^{2n+1}}{(2n+1)!}$ $x_n(t) = \frac{t^3}{10!} + \frac{t^3}{10!} + \dots + \frac{t^{2n+1}}{(2n+1)!}$

lim xn(t) = sinh(t)

Te. 200 ecro penienne ucx-ro ypabnemie corn-no nerogy produm-x borner-ti.