3/5/1 (Item 1 from file: 351) DIALOG(R) File 351: Derwent WPI (c) 2006 The Thomson Corporation. All rts. reserv.

0004782656

WPI ACC NO: 1989-152897/ XRAM Acc No: C1989-067590

New substd. 20,21-dinoreburnamenine derivs. - with affinity for

alpha 2

adrenergic receptors, and new 14-oxo precursors

Patent Assignee: ROUSSEL-UCLAF (ROUS)
Inventor: AKTOGU N; CLEMENCE F; OBERLANDER C Patent Family (17 patents, 23 countries)

Patent			Ap	plication		
Number	Kind	Date	Nu	mber	Kind	Date
Update						
EP 317427	A	19890524	ΕP	1988402872	Α	19881116
198921 B						
WO 1989004830	A	19890601	WO	1988FR562	Α	19881116
198924 E						
FR 2623501	A	19890526	FR	198715980	Α	19871119
198928 E						
AU 198827295	A	19890614				
198935 E						
PT 89029	A	19890914		:		
198941 E						
ZA 198808663	A	19900131	ZA	19888663	A	19881118
199009 E						
JP 2502187	W	19900719	JР	1988509239	Α	19881116
199035 E						
HU 53103	T	19900928				
199045 E						
US 5093337	Α	19920303	US	1989391511	A	19890718
199212 E						
EP 317427	B1	19940112	EP	1988402872	A	19881116
199403 E						
DE 3887102	G	19940224	DE	3887102	A	19881116
199409 E						
			ΕP	1988402872	Α	19881116
US 5332748	A	19940726	US	1989391511	A	19890718
199429 E						
			US	1991776079	A	19911011
			US	19935662	A	19930119
CA 1332735	С	19941025	CA	583492	A	19881118
199443 E						
ES 2061712	T 3	19941216	EP	1988402872	Α	19881116
199505 E						
RU 2043353	Cl	19950910	WO	1988FR562	Α	19881116
199621 E						
			SU	4614756	A	19890717
JP 2694553	B2	19971224	JP	1988509239	A	19881116
199805 E						
			WO	1988FR562	Α	19881116
KR 199705299	B1	19970415	WO	1988FR562	A	19881116
199939 E						
			KR	1989701374	A	19890719

Priority Applications (no., kind, date): FR 198715980 A 19871119

Patent Details

Number	Kind	Lan	Pg	Dwg	Filing Notes			
EP 317427	A	FR	49	Ō				
Regional Design	nated	States	,Ori	ginal	: AT BE CH DE FR GB IT LI			
WO 1989004830	A	FR						
National Design	nated	States	,Ori	ginal	: AU HU JP KR SU US			
ZA 198808663	Α	EN						
US 5093337	Α	EN	23	2				
EP 317427	B1	FR	76	0				
Regional Design IT LI LU NL SE	nated	States	,Ori	ginal	: AT BE CH DE ES FR GB GR			
DE 3887102	G	DE			Application EP 1988402872 Based on OPI patent EP			
317427					based on off pacent. Br			
US 5332748	A	EN	21	0	Division of application US			
1989391511					P. P			
					Division of application US			
1991776079								
					Plant at an area of the same			
5093337					Division of patent US			
CA 1332735	С	FR						
ES 2061712	Т3	ES			Application EP 1988402872			
					Based on OPI patent EP			
317427					•			
RU 2043353	Cl	RU	20	0	PCT Application WO			
1988FR562								
JP 2694553	В2	JA	28		PCT Application WO			
1988FR562					Depart available depart describe			
JP 02502187					Previously issued patent			
					_			
1989004830					Based on OPI patent WO			
KR 199705299	В1	ко			PCT Application WO			
1988FR562		1.0			rei Application wo			
2300111302								
Alerting Abst	ract	EP A						
Dinoreburname	nine	derivs	. of	form	ıla (I), in all possible			
racemic or								
optically active forms, and their acid addn. salts are new. R1,								
R2 and R3 =								
H, halo, 1-5C alkyl or alkoxy, OH, CF3, NO2, NH2 (opt. substd. by 1 or 2								
1-5C alkyl) or 1-6C aliphatic acylamino, but not all of them								
can be H; A-B								
= -CH(OH)-CH2-, CH=CH or -CH2-CH2 Also new are the								
intermediates of								
	except	those	whe	re R1	R2 and R3 = 10-R, 11-R'			
with R and R'								

and 16 H atoms are trans.
 5 Cpds. e.g. ((+/-)(16alpha)) 11-(chloro,methoxy or methyl)
-20,21-dinoreburnamenine and ((+)(14alpha,16alpha))
14,15-dihydro-10-methoxy- 20,21-dinoreburnamenin-14-ol are specifically claimed.

= OH or OMe. R1, R2 and R3 = H, Me, Et, OMe, OEt, C1, OH, CF3

or NO2; the 3

```
USE/ADVANTAGE - (I) have affinity for the alpha2 adrenergic
have nootropic, antidepressant, neuronal protective, anti-
anoxic and
anti-ischaemic activities, e.g. for treating cerebral
insufficiency. They
are normally administered at daily doses of 10-200mg, orally.
Some (II)
have similar pharmacological properties.
  Equivalent Alerting Abstract US A
  A cpd. from the gp. of formula (II) consisting of a cpd. of
formula (I)
all its' possible racemic or optically active isomer forms and
non-toxic pharmaceutically acceptable acid addn. salts are new.
In (I), R1
is H, alkyl, 1-5C alkoxy, OH, nitro, amino, trifluoromethyl,
alkylamino or
dialkylamino (where the alkyl has 1-5C atoms), acylamino (where
acyl is
residue of 1-6C aliphatic acid); R2-3 are each H.
  USE/ADVANTAGE - (I) can be used to treat cerebral
insufficiencies of
anoxic or isochemic origin in warm blooded mammals. (I) can be
used as
drugs in partic. nootropes, antidepressants, neuronal
protectors,
anti-anoxics, anti-ischemics, etc.
Equivalent Alerting Abstract US A
  20,21-Dinoreburnamerine derivs. of formula (I) in all racemic
optically active isomer forms and their acid addn. salts are
new. In (I),
R1, R2 and R3 are each H, halo, 1-5C alkyl, 1-5C alkoxy, OH,
CF3, NO2,
-NH2, 1-5C mono- or dialkylamino or acyl of 1-6C aliphatic
carboxylic acid,
provided that at least 2 of them are not H.
  2 Cpds. (I) are specifically claimed, e.g.
((+/-)(16-alpha)-14,15-dihydro-10,11-dimethoxy
-20,21-di-noreburnamenin-14-ol.
  USE - Used for treating cerebral insufficiency of anoxic or
ischaemic
origin and disorders of the memory and attention. Cpds. (I) are
also used
as antidepressants. The oral dose is 10-200 mg/day.
Title Terms/Index Terms/Additional Words: NEW; SUBSTITUTE; DI;
NOR;
  EBURNAMENINE; DERIVATIVE; AFFINITY; ALPHA; ADRENERGIC;
RECEPTOR; OXO;
  PRECURSOR
Class Codes
International Classification (Main): A61K-031/44, C07D-461/00
 (Additional/Secondary): A61K-031/43, A61K-031/435, A61K-
US Classification, Issued: 514283000, 546051000, 514283000,
546051000,
```

546052000

File Segment: CPI DWPI Class: B02

Manual Codes (CPI/A-M): B06-D18; B12-C06; B12-E06A; B12-F01B

WASH_1733941.1

(19) RU (11) 2 043 353 (13) C1

(51) MNK⁶ C 07 D 461/00

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

(21), (22) Заявка: 4614756/04, 17.07.1989

- (30) Приоритет: 19.11.1987 FR 8715980
- (46) Дата публикации: 10.09.1995
- (56) Ссылки: Патент Франции N 2590572, кл. С 07D461/00, 1987.Патент Франции N 2381048, кл. С 07D461/00, 1985.Патент Великобритании N 2107317, кл. С 07D461/00, 1983.Патент Франции N 2168853, кл. С 07D461/00, 1983.
- (71) Заявитель: Руссель-Юклаф (FR)
- (72) Изобретатель: Нюргэн Актогю[FR], Франсуа Клеманс[FR], Клод Оберландер[FR]

ပ

40

(73) Патентообладатель: Руссель-Юклаф (FR)

(54) ПРОИЗВОДНЫЕ 20,21-ДИНОРЕБУРНАМЕНИНА, ИЛИ ИХ РАЦЕМАТЫ, ИЛИ ОПТИЧЕСКИЕ ИЗОМЕРЫ, ИЛИ ИХ ДОПОЛНИТЕЛЬНЫЕ СОЛИ С ОРГАНИЧЕСКИМИ КИСЛОТАМИ, ОБЛАДАЮЩИЕ НООТРОПНЫМИ И АНТИДЕПРЕССИВНЫМИ СВОЙСТВАМИ

(57) Реферат:

Использование: в качестве ноотролного и антидепрессивного средства. Сущность изобретения: продукт производные 20,21-диноребурнаменина Φ -лы \mathbb{I} : где R_1 R_2 и R_3 независимо \mathbb{H} , галоген, алкил \mathbb{C}_1 - \mathbb{C}_5 или алкокси \mathbb{C}_1 - \mathbb{C}_5 или \mathbb{NO}_2 , причем \mathbb{R}_1 , \mathbb{R}_2 и \mathbb{R}_3 не могут быть одновременно \mathbb{H} , и где группа Φ -лы \mathbb{H} их рацематы, оптические изомеры или их дополнительные соли с органическими кислотами. Структура

H₂A2

(19) RU (11) 2 043 353 (13) C1

(51) Int. Cl.⁶ C 07 D 461/00

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

- (21), (22) Application: 4614756/04, 17.07.1989
- (30) Priority: 19.11.1987 FR 8715980
- (46) Date of publication: 10.09.1995
- (71) Applicant: Russel'-Juklaf (FR)
- (72) Inventor: Njurgehn Aktogju[FR], Fransua Klemans[FR], Klod Oberlander[FR]
- (73) Proprietor: Russel'-Juldaf (FR)

(54) DERIVATIVES OF 20,21-DINOREBURNAMENINE OR THEIR RACEMATES, OR THEIR ADDITIONAL SALTS WITH ORGANIC ACIDS SHOWING NOOTROPIC AND DEPRESSANT PROPERTIES

(57) Abstract:
FIELD: organic chemistry. SUBSTANCE:
ornduct: derivatives of
frequency formula (I) 20,21-dinoreburnamenine of the formula (I)

R

where R₁,R₂ and

R $_3$ are independently H, halogen, C $_1$ -C $_5$ -alkyl or $C_1\text{--}C_5\text{-alkoxy}$, or NO_2 but R_1 , R_2 and R_3 can not be simultaneously H, and where the group of the formulas (II) \parallel

are their racemates, optical

isomers or their salts with organic acids. Synthesized compounds were used in medicine. EFFECT: improved method of synthesis.

Z

Изобратение относится к области синтеза новых соединений, проявляющих фармакологическую активность.

Изобретение, в частности, относится к новым замещенным производным 20, 21-диноребурнаменина общей формулы !

 R_3 одинаковые или различные, представляют атом водорода, галогена, алкил $C_1\text{-}C_5$, алкокси $C_1\text{-}C_5$, ациламино, амино-диалкиламино или нитрогруппу, причем R_1 , R_2 и R_3 не могут быть одновременно атомами водорода, и где группа

или их рацематы или оптические изомеры или их дополнительные соли с органическими кислотам.

Цель изобретения получение новых производных 20,21-динорабурнаманина, обладающих фармакологическими преимуществами перед их известными структурными аналогами подобного действия. Синтез соединений I ведут

Синтез соединений I ведуз восстановлением соединения общей формулы II

R $_{3}$ имеют указанные значения, для получения соединения формулы $_{\rm I}$,

указанное соединение формулы I при необходимости дегидратируют для получения соединений формулы 1в,

полученные продукты формулы обрабатывают органической кислотой для получения соли.

Ниже приводится экспериментальная

часть соответствующих примеров получения продукта формулы (1.

П р и м е р 1. [(±) (14 альфа, 16 альфа)]11-хлор-14,15-дигидро-20,21-диноребу рнаме- нин-14-ол (транс, dL).

Охлаждают до -10°C раствор 4,6 г [(\pm) (16 альфа)] 11-хлор-20,21-диноребурнаменин-14(15Н)-она в 50 см³ толуола, медленно добавляют 12 CM 3 2,36M раствора дигидрида диэтилалюминий-натрия в толуоле, выдерживая температуру среды около -5°C. Перемешивают при 0°C в течение 30 мин, добавляют воду для разложения избытка восстановителя, затем 100 см ³ воды и перемешивают полученную суспензию в течение 16 ч. Обезвоживают, обильно промывают водой до получения нейтрального рН промывочных вод, высушивают при 100°C при пониженном давлении, растворяют в метиленхлорида-метанол фильтруют и доводят досуха. Сгущают осадок смесью метанол-едкий натр 5N (100 ${\rm cm}^3$ 30 см ³) и нагревают с обратным холодильником в течение 15 ч. Обезвоживают осадок, промывают водой, сгущают несколько раз в метаноле с обратным холодильником, высушивают и получают 2,5 г заданного продукта. Точка плавления -275 °С. ЯМР-спектр (ДМСО 250 МГц. ррт): изомер с осевым ОН 5,90: С

экваториальным ОН (2%) 5,53: CH ОН

П р и м е р 2. [(±)(16 альфа)] 11-хлор-20,21-диноребур-наменин (транс, dL) и его нейтральный фумарат. S

него неи разівовам функцій.

Нагревают с обратным холодильником в течение 15 ч 1,9г [(±) (14 альфа, 16 бета)] 11-хлор-14,15-дигидро-20,21-диноребурнаменин-14-ола, 40 мг паратолуолсульфокислоты в 40 см³ толуола. Фильтруют, промывают нерастворимый компонент метиленхлоридом, а фильтрат компонент метиленхлоридом, а фильтрат компонент метиленхлоридом.

компонент метиленхлоридом, а фильтрат концентрируют досуха. Хроматографируют осадок на двусикси кремния, элюируя смесью этилацетат-метиленхлорид (1-1) и получают 1.2 г заданного продукта. Точка плавления 118°C.

Растворяют 1,16 г этого последнего продукта в 50 см³ безводного этанола, добавляют 472 мг фумаровой кислоты и выдерживают при перемешивании в течение 8 ч. Обезвоживают, рекристиллизируют в этаноле и получают 1,06 г нейтрального фумарата. Точка плавления 215°С.

ЯМР-спектр (CDCl₃, МГц, ppm): (основание)

5,11 (дд. J=2 и 7,5, этиленовый Н в бета индоле), 6,88 (дд. J=3 и 7,5, этиленовый Н в альфа индоле), 7,05 (дд. J=2 и 8,5, Н₅ индол), 7,30 (д. J=2, Н₇ индол), 7,34 (д. J=8,5, Н₄ индол), 1,3-3,2 (другие протоны).

П р и м е р 3. $[(\pm)-(14$ бета)] 10-хлор-14,15-дигидро-20,21-диноребурнамен ин-14- ол (цис, dL).

Охлаждают при 0°C 5.6 г (±) 10-хлор-20,21-диноребурнаменин-14 (15H)-она в 50 см³ толуола и добавляют по каплям 14 см ³ раствора дигидрида диэтил-алюминий-натрия и перемешивают 1 ч

-3-

DOCID: ZRU

204335301 |

при 0°С. В этом случае очень медленно добавляют при 0 °С 50 см 3 воды и продолжают перемешивание полученной суспензии в течение 1 ч. Обезвоживают, обильно промывают водой и по- лучают 4,73 г сырого продукта. Точка плавления 244 °C.

Рекристаллизируют 2,4 г этого последнего продукта в 50 см 3 тетрагидрофурана, охлаждают до -20 $^{\circ}$ С, обезвоживают, высушивают при пониженном давлении и получают 1,7 г продукта. Точка плавления

Извлекают продукт метиленхлорид-метанол, фильтруют, доводят досуха, промывают полученное вещество посредством 50 см³метанола. После высушивания при 70 °С при пониженном давлении получают 1,42 г продукта (экваториальный плавления 252°C.

ЯМР-спектр (ДМСО 250 МГц, ppm):

Сырой продукт смесь, содержащая 10-15% осевого ОН на 85-90% экваториального ОН. СН -осевой), 0,63 (м, 5,54 (дт,

1H), 5,90 (м, СH) -OH -экваториальный),

1,3-3,2 (другие протоны), 4,17 и 4,11

цис-соединение, 6,48 (д, ОН), 7,06 (дд, Н₆ индол), 7,41 (д, Н₄ индол), 7,66 (д, Н 7ИНДОЛ), 7,50 (Д).

Пример 4. [(±) (14 альфа, 16 альфа)] 10-хлор-14,15-дигидро-20,21-диноребурнаменин-14-ол (транс, dL). Растворяют 7,5 н [(±) (16 альфа)]

10-хлор-20,21-диноребурнаменин-14(15Н)-она в 100 см³ толуола и добавляют по каплям при 0°C 19,5 см³ раствора (1,8 М) дигидрида дизтилалюминий-натрия в толуоле, затем при перемешивании выдерживают при 0°C в течение 1 ч. В этом случае очень медленно добавляют воду, не превышая 5 °C, и выдерживают перемешивание в течение 1/4 ч. Обезвоживают осадок, обильно промывают его водой, высушивают при пониженном давлении при 70°C и получают 7.46 г сырого продукта, соответствующего изомеру экваториальным ОН. Переводят в суспензию 3 г этого последнего продукта в 30 см³ IN хлористоводородной кислоты перемешивают в течение 15 ч при температуре окружающей среды. Доводят pH до 10 путем добавления едкого натрия, обезвоживают, промывают водой и получают 2,8 г продукта. После двух рекристаллизаций и тетрагидрофурана получают 760 мг заданного продукта. Маточные растворы концентрируют досуха, осадок обрабатывают хлористоводородной кислотой подщелачивают и рекристаллизируют, как указано выше, и собирают 1,03 г заданного

Z

C

ЯМР-спектр (ДМСО, 250 МГц, ррт): 5.89 экваториальный

(м, / C (н) экваториальный OH), 6,27 (д.

Ј=7, ОН-осевой), 7,05 (дд, Ј=2 и 8,5, Н ₆индол), 7,39 (д, Ј=2, Н₄ индол), 7,44 (д, J= 8,5, H₇ индол), 1,1-3,1 (другие протоны).

Пример 5. Гемифумарат ((±) 16 альфа) 10-хлор-20,21-диноребурнаменина (транс, dL). Получают суспензию с 6 г [(±) (14альфа,

10-хлор-14,15-дигидро-20,21-диноребурнамен ин-14-ола в 100 см³ толуола, добавляют за один раз 300 мг паратолуолсульфокислоты и нагревают с обратным холодильником в течение 10 ч. После охлаждения при температуре окружающей среды обезвоживают нерастворимый компонент, промывают его этилацетатом, а фильтрат доводят досуха. Сгущают осадок в 50 см ³раствора бикарбоната натрия, обезвоживают, обильно промывают водой, высущивают при пониженном давлении, хроматографируют на двуокиси кремния, элюируя метиленхлоридметанол (97-3), и выделяют 3,9 г продукта в форме основания. Точка плавления 151°C.

Растворяют 1,5 г этого последнего продукта в смеси этилацетат-изопропанол (8-2), добавляют 305 мг фумаровой кислоты и выдерживают перемещение в течение 1 ч 30 мин при температуре окружающей среды. Обезвоживают, последовательно промывают посредством 50 см³этилацетата и 25 изопропанола, высушивают при пониженном давлении при 70°С и получают 1,57 г. Точка плавления 241°C.

ЯМР-спектр (CDCl₃, 250 МГц, ppm): 5,10 (дд. J=2 и 75, этиленовые H в бета N), 6,89 (дд, J=3 и 7,5, этиленовые Н в альфа N), 7,09 (дд, J=2 и 8,5, Н₆ индол), 7,2 (д, J= 8,6, H₇ индол), 7,41 (д. J=2, H₄ индол), 1,3-3,2 (другие протоны).

При м е р 6. Гемифумарат (±)

10-хлор-20,21-диноребурнаменина (цис, dL). Растворяют 1,6 г [(±) (14 бета)] 10-хлор-14,15-дигидро-20,21-диноребурнамен ин-14- ола в 20 см³ уксусной кислоты и нагревают с обратным холодильником в течение 2 ч. Концентрируют раствор, добавляют воду и подщелачивают до рН 10 с ым едким натром. осадок экстрагируют концентрированным Полученный метиленхлоридом, органическую фаз промывают водой, высушивают, удаляют растворители, несколько раз стущают осадок в 50 см³ ксилола, затем концентрируют при пониженном давлении при 80°C. Осадок хроматографируют на двуокиси кремния, элюируя смесью метиленхлорид-метанол (95-5), и выделяют 1,01 г продукта в форме основания. Растворяют 1 г этого последнего продукта в смеси этилацетат-изопропанол (20-10), добавляют 204 мг фумаровой кислоты, перемешивают в течение 48 ч при температуре окружающей Обезвоживают, промывают посредством 10 см³изопропанола, затем 20 см³ этилацетата. После высушивания при пониженном давлении при 70°C получают 750 мг заданного продукта. Точка плавления 188°С. ЯМР-спектр (ДМСО, 250 МГц, ppm): 4,53 (м, CH-N цис-соединение), 5.41 (дд. J_ч= 6 и 8, CH=CH-N), 7,31 (д. Jz=8, N-CH=CH), 7,14 (дд. J= 2,5 и 9, Н₆ индол), 7,48 (д. J=2,5, H_4 индол), 7.61 (д. J=9, H_7 индол), 0.6-3,3 (другие протоны), 6,6 (S. этиленовые Hфумаровой кислоты).

Пример 7. [(±) (14 бета, 16 альфа)]

C

40

ЯМР-спектр (ДМСО, 250 МГц, рртп): возможно экваториальный ОН 2,38 (с, СН ₃-О), 5,46 (дт, Ј=9 и 5,5, СН -осевой ОН), 6,37 (д, Ј=9, экваториальный ОН), 6,84 (дд, Ј=8 и 1, Н₅индол), 7,24 (д, Ј= 8, Н₄ индол), 7,48 (широкий с, Н₇ индол), 1.1-3.0 (другие поотоны)

1,1-3,0 (другие протоны). Пример8. [(±) (14 альфа, 16 альфа)] 14,15-дигидро-11-метил-20,21-диноребурнаменин-14-ол (транс, dL).

Переводят в суспензию 3,8 г [(±) (14 бета, 16 альфа)] 14,15-дигидро-11-метил-20,21-динорабурнаме нин-14-ола в 100 см³хлористоводородной кислоты 0,5 N, при перемешивании в инертной атмосфере в течение 24 ч. Добавляют 800 см³ воды при 40°С для растворения хлоргидрата, подщелачивают путем добавления 20% -ного гидрата окиси аммония. После 1/4 ч перемешивания осадок обезвоживают, обильно промывают водой до нейтрального рН промывочных вод, высушивают при пониженном давлении при 70°С и получают 3,3 г заданного продукта. Точка плавления 232°С.

чка плавления 232-с. ЯМР-спектр (ДМСО, 250 МГц, ppm): 2,39 (с, CH3Ф),

5,85, / ^С**н** экваториальный ОН, 6,83,

 ${\rm H}_{5}$ индол, 7,23, ${\rm H}_{4}$ и ${\rm H}_{7}$ индол, 6,08, осевой ОН.

П р и м е р 9. [(±) (14 бета)] 14,15-дигидро-11-метил-20,21-диноребурнаме нин-14-ол (цис, dL).

Действуют как в примере 1; исходя из 9,7

11-метил-20,21-диноребурнаменин-14(15Н)-он а, еще перемешивают 1 ч после введения реагента и очень медленно добавляют воду при 0°C для разложения избытка восстановителя, затем 100 см ³ воды и перемешивают в течение 3 ч при температуре следующей среды. Обезвоживают, обильно промывают осадох до нейтрального рН промывочных вод и получают 8,11 г сырого продукта. Растворяют 3 г этого последнего см³ 8 100 смеси метиленхлорид-метанол (2-1), фильтруют, а фильтрат доводят досуха. Осадок рекристаллизируют в 60 см³ эталацетата, обезвоживают, высушивают при пониженном давлении при 70°C и получают 1,63 г заданного продукта. Точка плавления 200 °C.

ЯМР-спектр (ДМСО, 250 МГц, ppm): экваториальный ОН

4,15 (д, -CH -N, 5,49 (м, -C (н) осевой ОН,

6,29 (д. ОН экваториальный, 6,84 (д. Н $_5$ индол, 7,25 (д. Н $_4$ индол, 7,48, Н $_7$ индол, 2,39 (с, СМе, 1,16-3,14 (другие протоны).

П р и м е р 10. Фумарат [(\pm) (16 альфа)] 11-метил-20,21-динорабурнаменина (транс, dL).

Действуют как в примере 2, исходя из 6,8 ((±) (14 бета, 16 альфа)) (±) 14,15-дигидро-11-метил-20,21-диноребурнаме нин-14-ола, нагревая с обратным холодильником 8 ч и элюируя смесью метиленхлорид-метанол (95-5). Выделяют 4,8 г продукта в форме основания. Точка плавления130 °С. Растворяют 1,2 г этого последнего продукта в смеси изопропанол-этилацетат (50 см³ 50 см³), добавляют 527 мг фумаровой кислоты и перемешивают 16 ч при температуре окружающей среды. Осадок обезвоживают, промывают посредством 40 см³ изопропанола, высушивают при 80°С при пониженном давлении и получают 1,38 г заданного продукта. Точка плавления > 260°С.

ЯМР-спектр (СДСІ₃, 250 МГц, ppm): (основание) возможная структура с транс-конфигурацией 1,41-3,17, CH₂ и CH, 5,05 (дд, J=2 и 7, C

СН, 7,13, H₇ индол, 7,34, H₅ индол.

Пример 11. Нейтральный фумарат (±) 11-метил-20,21-диноребурнаменина (цис, dL). Действуют как в примере 2, исходя из 5,33 г. [(±) (14 бета)]

г ((±) (14 оета)) 14,15-дигидро-11-метил-20,21-диноребурнаме ини-14-ола, элюируя смесью метиленхлорид-метанол (93-7), выделяют 5 г продукта в форме основания. Точка плавления 66 °С. Растворяют 2 г этого последнего продукта в 100 см³ смеси изопропанол-этилацетат (6-4), добавляют 439 мг фумаровой кислоты, перемешивают 16 ч, обезвоживают, промывают посредством 40 см³ этанола и получают 1,89 г заданного

продукта. Точка плавления 250 °C. ЯМР-спектр (СДСІ $_3$, 250 МГц. ppm): (основание) цис-соединение 2,47 (с. СН $_3$ -Ф), 4,53 (м. СН -N цис-соединение), 5,29

(дд. J=6 и 8. (СН) =CH-N), 6,92 (д. J=8, N -

(CH) C), 6,94 (дд, J≃8 и 1, Н₅ индол), 7,14

(с, H₇ индол), 7,35 (д, J=8, H₄ индол), 0,8-3,4 (другие протоны).

П р и м е р 12. Нейтральный фумарат [(±) (16 альфа)]
14.15-дигидор-11-метил-20 21-диноребуруаме

14,15-дигидро-11-метил-20,21-диноребурнаме нин (транс dL).

Гидрируют 2,9 [(±) (16 альфа)] 11-метил-20,21-диноребурнаменина в 90 см ³ этанола в присутствии окиси платины в течение 2 ч. Фильтруют, фильтрат доводят досуха и по- лучают продукт в форме основания. Точка плавления 143 °C. Действуют как в примере 2, исходя из 2,87 г этого последнего продукта для получения 2,83 г

-5

SDOCID: <BU

Z

заданного фумарата. Точка плавления $235\,^{\circ}$ С. ЯМР-спектр (СДС $_{3}$, 250 МГц, ppm): (основание) 2,46, CH $_{3}$, 3,65 (J=11,11 и 5, CH $_{2}$ на N индола), 4,18 (J=11-5,1, CH $_{2}$ на N индола), 6,91, 1H ароматические, 7,03, 1H ароматические, 7,34, 1H ароматические, 7,03, 1H ароматические, 7,04, 1G бета, 16 альфа)] 14,15-дигидро-10-метил-20,21-диноребурнаменин-14-ол (транс, dL). Действуют как в примере 3, исходя из 2,6 (16) альфа)] 10-метил-20,21-диноребурнаменин-14(15H)-он а, и получают 2,7 г сырого продукта.

деиствуют как в примере 3, исходи из 2, о г (±) (16 альфа) 10-метил-20,21-диноребурнаменин-14(15H)-он а, и получают 2,7 г сырого продукта. Обрабатывают его смесью метиленхлорид-метанол (2-1), фильтруют, фильтруют досуха, осадок промывают метанолом и получают 2 г заданного продукта. Точха плавления выше 260°C.

ЯМР-спектр (ДМСО, 250 МГц, рргл): транс-соединение с экваториальным ОН 2,36 (с, СН₃), 5,45 (дт. J=5,5-9,9, СН)

ОН), 6,4 (д. J=9, экваториальный ОН), 7,15 (с. Н₄ индол), 6,88 (д. Н₆ индол), 7,52 (д. J=8, Н₇ индол), 1,1-3,0 (другие протоны).

П р и м е р 14. [(±) (14 бета)] 14,15-дигидро-10-метил-20,21-диноребурнаме нин-14-ол (цис dL).

Действуют как в примере 3, исходя из 7,9

10-метил-20,21-диноребурнаменин-14(15H)-он а и получают 6,73 г сырого продукта. Растворяют 3 г этого последнего продукта в метиленхлориде, фильтруют, фильтрат доводят досуха, а осадок рекристаллизируют в 65 см³этилацетата. Получают 2,13 г заданного продукта. Точка плавления 187°С.

Заданного продукта. Точке изотального продукта. (ДМСО, 250 МГц, рртп); цис-соединение, экваториальный ОН 2,36, СН 3, 4,15, СН-N 5,47, -С

П р и м е р 15. $[(\pm)$ (14 альфа, 16 альфа)] 14,15-дигидро-10-метил-20,21-диноребурнаменин-14-ол (транс, dL).

70

Действуют как в примере 8, исходя из 2,2 г ((±) (14 бета, 16 альфа)) 14,15-дигидро-10-метил-20,21-диноребурнаме нин-14-ола, получают 2 г сырого продукта, который рекристаллизируют в 150 см 3 тетрагидрофурана для выделения 850 мг продукта с осевым ОН. После повторной обработки маточных растворов получают еще 455 мг продукта.

455 мг продукта. ЯМР-спектр (ДМСО, 250 МГц, рргп): 2,36 (с, СН₃-Ф), 5,86 (м. С

ОН), 6,10 (д, J= 6,5, осевой ОН), 6,88 (д, $\rm H_6$ индол), 7,13 (д, $\rm H_4$ индол), 7,31 (д, $\rm J=8$, $\rm H_7$ индол), 1,1-3,05 (другие протоны).

П р и м е р 16. Гемифумарат ((±) (16 альфа)) 10-метил-20,21-диноребурнаменин (транс, dL).

Действиот как в примере 2, исходя из 4,4 г (±) (14 бета, 16 альфа)] 14,15-дигидро-10-метил-20,21-диноребурнаме нин-14-ола, осадок хроматографируют на двуокиси кремния, элюируя смесью метиленхлорид-метанол (97-3), и получают 3 г продукта в форме основания. Точка плавления154 °C. Растворяют 1,4 г этого

продукта в 80 см³ смеси изопропанол-этилацетат(1-1), добавляют 307 мг фумаровой кислоты и перемешивают в течение 4 ч при температуре окружающей среды. Обезвоживают, промывают этилацетатом, затем изопропанолом, высушивают при пониженном давлении при 80°С и получают 1,3 г заданного продукта. Точка плавления 210°С.

ЯМР-спектр (СДСІ $_3$, 250 МГ $_4$, ppm): (транс-соединение) 1,42-3,18, CH $_2$ и CH, 2,44, C-Me, 5,08 (дд. $_3$ =2 и 7, CH=CH-N), 6,94 и 6,98 (ароматические и другой OH), 7,19-7,26 (ароматические и другой OH). П р и м е р 17. Фумарат ($_4$)

Пример 17. Фумарат (±)
10-метил-20,21-диноребурнаменин (цис, dL).
Действуют как в примере 16, исходя из 4,1
г ((±) (14 альфа))
14,15-дигидро-10-метил-20,21-диноребурнаме

нин-14-ола, и получают 3,6 г маслянистого продукта. Растворяют 1,508 г этого последнего продукта в 50 см³ изопропанола, добавляют 331 мг фумаровой кислоты и перемешивают 5 ч при температуре окружающей среды. Обезаюживают изопропанолом, затем изопропиловым эфиром. Получают 1,16 г

заданного продукта. Точка плавления 180°. ЯМР-спектр (СДСІ₃, 250 МГц, рртп): основание 2,44 (с, СН₃-Ф), 4,53 (м, СС

цис-соединение), 5.28 (дд, J=6,5

7,5, - СН =CH-N), 6,91 (д, J=

7,5, N- (CH), 7,0 (д. J=8, H₆ индол), 7,21

 $(д, J=8, H_7 индол)$, 7.26 (с. H_4 индол), 0,9 (м, 1H), 1,44-3,4 (другие протоны)

1H), 1,44-3,4 (другие протоны)
П р и м е р 18 Гемифумарат [(±) (16 альфа)]

альфал 14,15-дигидро-10-метил-20 21-диноребурнаме нин (транс, dL).

Действуют как в примере 12 исходя из 1,6 г ((±) (16 альфа)]

10-метил-20,21-диноребурнаменина. и получают 1,4 г заданного продукта в форме основания. Точка плавления 146 °С Исходя из 1,369 г этого продукта в 298 мг фумаровой кислоты, получают после рекристаллизации в этаноле 0,84 г заданного фумара. Точка плавления254°С

ЯМР-спектр (СДСІ₃ 250 МГц, рртп): транс-соединение 2.43 С (н₃) -Ф. 3.65 (дт, С

6,95 (дд. Н₆ индол), 7,13 (д. Н₇ индол), 7,25, 55 Н₄ индол, 1,22 (м. 1Н) 15-32 13Н другие протоны.

П р и м е р 19 Гемифумарат (±) 14,15-дигидро-10-метил-20,21-диноребурнаме нин (цис, dL)

Действуют как в примере 12. исходя из 2 г (\pm) 10-метил-20.21-диноребурнаменина, и получают 1,8 г продукта в форме основания. Точка плавления 138 °C Превращают в соль 1,8 г этого последнего продукта в 100 см 3 этиляцетата и 50 см 3 изопропанола с 697 мг фунаровой кислоты для получения, после кристаллизации в изопропаноле, 1,55 г

-6-

30

```
r(±)
```

ᅏ

S

C

```
заданного продукта. Точка плавления 210°C.
                                                                      6,5, осевой ОН), 6,64 (дд. J=2 и 8,5, Н<sub>5</sub>индол),
  заданного продукта. 10-икв плавления. 250 МГц, ppm): 
ЯМР-спектр (СДСІ<sub>3</sub>, 250 МГц, ppm): 
цис-функция 2,46 (с. С на -Ф), 3,73 (дт,
                                                                      7,01 (д. J=2, H<sub>7</sub> индол), 7,21 (д. J=8,5,
                                                                      Н ₄ индол), 1,05-3,05 (другие протоны).
                                                                          Пример 23. Гемифумарат (±)
  J=5,11, 5-12, CH<sub>2</sub>-N-индол), 4,08
                                                                       11-метокси-20,21-диноребурнаменин (цис, dL).
 Действуют как в примере 2, исходя из 1,15
                                                                                   [(±)
                                                                                                  (14
                                                                                                                     бета)]
                                                                      14,15-дигидро-11-метокси-20,21-диноребурна
  цис-соединение), 7,0 (д. H<sub>6</sub> индол), 7,17 (д.
                                                                      менин-14-ола. Раствор доводят досуха,
осадок поглощают метиленхлоридом
 H<sub>7</sub> индол), 7,28 (с, H<sub>4</sub> индол).
     Пример 20. [(±) (14 бета)]
                                                                      промывают едким натром 0,1 N, затем водой,
  14,15-дигидро-11-метокси-20,21-диноребурна
                                                                      высушивают, затем органическую фазу сущат
 менин-14- ол (цис, dL).
                                                                      досуха После хроматографии осадка на
     Действуют как в примере 3, исходя из 3,5
                                                                      двуокиси кремния, элюируя смесью этилацетат-триэтиламин (95-5), получают 750
  11-метокси-20,21-диноребурнаменин-14(15Н)-
                                                                      мг продукта в форме основания. Растворяют
 она, и получают 8 г изомера
                                                                      1,208 г основания в 40 cm <sup>3</sup> смеси
 экваториальным ОН, точка плавления 230 °C.
                                                                      изопропанол-этилацетат (1-1), добавляют 250
 Рекристаллизируют 3,5 г сырого продукта в смеси этилацетат-изопропанол (1-1) и
                                                                      мг фумаровой кислоты, перемешивают 16 ч
при температуре окружающей среды,
 получают 2 г заданного продукта. Точка
                                                                      обезвоживают, промывают изопропанолом и
 плавления 230°C.
                                                                     этилацетатом и получают 1,107 г заданного
     ямР-спектр (ДМСО, 250 МГц, ppm):
экваториальный ОН 3,76 (с, ОСН<sub>3</sub>),
                                                                     продукта. Точка плавления 225°C.
ЯМР-спектр (СДСІ<sub>3</sub>, 250 МГц, ppm).
                                                                      цис-соединение 3,85 (с. ОСН<sub>3</sub>), 4,51 (м. СН-N
 цис-функция), 5,29 (дд. J=6 и 7,5, этиленовые), 6,89 (д. J=75, этиленовые), 6,76 (дд. J=2 и 8,5, H_5 индол), 6,84 (д. J=2.
 J=5,9 и 9, /С н -осевой ОН), 6,67 (дд. J=2
 и 8,5, H<sub>5</sub> индол), 7,25 (м. H<sub>5</sub> индол), 0,63,
                                                                     H_7 индол), 7,34 (д. J=8,5, H_4 индол), 0,90
                                                                     (м. 1H0, 1,45-3,40 (другие протоны).
Пример 24. Гемифумарат [(±) (16
 1Н, 1,2-3,2 (другие протоны).
    Пример 21. [(±) (14 бета, 16 альфа)]
 14,15-дигидро-11-метокси-20,21-диноребурна
                                                                     альфа)] 11-метокси-20,21-диноребурнаменин
 менин-14-ол (транс, dL).
                                                                     (транс, dL).
    Действуют как в примере 3, исходя из 8 г
(16 альф
                                                                         Действуют как в примере 23, исходя из 2,2
) (14 бета, 16 альфа)]
                                                                                                                  альфа)]
11-метокси-20,21-диноребурнаменин-14(15H)-
она, и получают 7,91 г сырого продукта.
Точка плавления 250°C. Сгущают 1,5 г этого
                                                                      14,15-дигидро-11-метокси-20,21-диноребурна
                                                                     менин-14-ола,
                                                                                                получают
                                                                     жроматографии на двускиси кремния (элюент: метиленхлорид-этилацетат 1-1) 1,27 г продукта в форме основания. Точка
продукта в 15 см<sup>3</sup>едкого натра 15N и 15
см <sup>3</sup> метанола, нагревают с обратным холодильником в течение 3 ч. После охлаждения осадок обезвоживают,
                                                                     плавления 123°C. Получают фумарат, исходя
                                                                     из 1,27 г основания, и 1,23 г заданного
                                                                    продукта. Точка плавления 193 °C.
ЯМР-спектр (ДМСО, 250 МГц, ppm): 3,78
 промывают метанолом, затем обильно водой
Получают 11 г заданного продукта.
ЯМР-спектр (ДМСО, 250 МГц, ррт):
экваториальный ОН 3075 (с. ОСН<sub>3</sub>), 5,46
                                                                     (с. ОСН<sub>3</sub>), 5,09 (дд, Ј=2 и 8, этиленовый Н в
                                                                    бета N), 6.68 (дд, J=2 и 8, этиленовый Н и
альфа N), 7.19 (д. J= 2, Н<sub>7</sub> индол),
(дт. J= 5,5 и 9, C н -осевой OH), 6,47 (д.
                                                                    7,25-7,35, H<sub>5</sub> и H<sub>4</sub> индол), 6,61, этиленовый
J=9, экваториальный ОН), 6,66 (дд, J=2 и
                                                                    Н фумаровой кислоты, 1,2-3,15 (другие
8,5, H<sub>5</sub> индол), 7,21 (д. J=2, Н<sub>7</sub>индол), 7,23
                                                                    протоны).
                                                                        Пример 25. Нейтральный фумарат ((±)
(д. J=8,5, H<sub>4</sub> индол), 1,05-3,02 (другие
                                                                     (16 альфа)]
протоны).
                                                                     14,15-дигидро-11-метокси-20,21-диноребуран
    Пример 22. [(±)(14 альфа, 16 альфа)]
                                                                    аменин (транс. dL).
14,15-дигидро-11-метокси-20,21-диноребурна
                                                                        Действуют как в примере 12, исходя из
3 г [(±) (16 альфа)]
менин-14-ол (транс, dL).
                                                                                                               альфа)]
    Перемешивают в течение 72 ч 5 г ((±) (14
                                                                    11-метокси-20,21-диноребурнаменина и 220
бета.
                       16
14,15-дигидро-11-метокси-20,21-диноребурна
                                                                    мг палладия на угле при 10% и получают 2,2 г
                                                                    маслянистого продукта. Сгущают изопропиловым эфиром, обезвоживают,
менин-14ола и 100 см<sup>3</sup>хлористоводородной
кислоты N, доводят рН суспензии до 7 путем
                                                                    высушивают при пониженном давлении при
добавления едкого натра 2 N. Осадок
                                                                    50°C и получают 1,17 г продукта в форме
обезвоживают, обильно промывают водой, высушивают при пониженном давлении при
                                                                    основания. Точка плавления 126 °С. Из
маточных растворов получают 740 мг
70°С и получают 2.15 г заданного продукта.
                                                                    продукта. Получают нейтральный фумарат,
Точка плавления 245°C.
                                                                    исходя из 1,17 г основания, растворенного в 20 см<sup>3</sup> изопропанола и 30 см<sup>3</sup>этилацетата.
    ЯМР-спектр (ДМСО, 250 МГц, ppm):
    осевой
              OH 3,77 (c, OCH<sub>3</sub>),
                                                                    Получают 1 г заданного продукта. Точка
                                                                    плавления 216°C.
```

ЯМР-спектр

(СДСІ₃, 90 МГц, ppm),

основание: 3,88, ОСН₃, 6,72-6,83, Н₅ и

(м, , ^С(н) -экваториальный ОН), 6,18 (д.J=

70

G

C

```
H<sub>7</sub> индол, 7,31-7,42, H<sub>4</sub> индол, 1,24-4,28
```

(другие протоны). П р и м е р 26. [(±) 14 бета] 14,15-дигидро-10-метокси-20,21-диноребурна менин-14-ол (цис, dL).

Действуют как в примере 3, исходя из 8,7

10-метокси-20.21-диноребурнаменин-14(15H)она, и получают 5,73 г сырого продукта. Его рекристаллизируют в тетрагидрофуране и выделяют 3.64 г заданного продукта. Точка плавления 225°C.

ЯМР-спектр: экваториальный ОН 3,75 (с, OCH₃), 4,15 (м. С -N цис-соединение),

5,47 (дт, Ј=9-5,5-5,5, С осевой ОН), 6,32

(д. J=9, экваториальный OH), 6,88 (дд. J=2,5 и 9, H₆ индол), 6,88 (д. J=2,5, H₄ индол), 7,54 (д, Ј=9, Н₇ индол).

Пример 27. [(±) (14 бета, 16 альфа)] 15,15-дигидро-10-метокси-20,21-диноребурнаменин-14-ол (транс, dL).

Действуют как в примере 3, исходя из 3,67 [(±) (16 альфа)] 10-метокси-20,21-диноребурнаменин-14(15H)она, и получают 3,7 г сырого продукта. Его поглощают смесью хлороформ-метанол (2-1), фильтруют, затем концентрируют. Получают продукта раствор тетрагидрофурана, медленно добавляют 50 см³ изопропилового эфира. Обезвоживают 2,41 г заданного продукта. ЯМР-спектр (ДМСО, 250 МГц, ppm):

3,74 (c, OCH₃), 5,43 (дт, J=5,5 и

9, C OCEBOŇ OH), 6,68 (дд, J=2 и 9,

Н 6 индол), 6.87 (д. J=2, Н₄ индол), 7.53 (д. J=9, H₇ индол), 1,1-3,05 (другие протоны).

Пример 28. [(±) (14 альфа, 16 альфа)]14,15-дигидро-10-метокси-20,21-диноребурнаменин-14-ол (транс, dL).

Переводят в суспензию 4,8 г [(±) (14 16 бета альфа)) 14,15-дигидро-10-метокси-20,21-диноребурна менин-14-ола в 50 см³ едкого натра 5N и 50 см³ метанола и нагревают с обратным холодильником в течение 2 ч 30 мин. При температуре окружающей обезвоживают, обильно промывают водой до нейтрального pH промывочных вод, затем посредством 100 см³ метанола. Получают 4,12 г сырого продукта, который нагревают с обратным холодильником в течение 15 ч при указанных условиях. По- лученный продукт извлекают смесью хлороформ-метанол (2-1), фильтруют, концентрируют, высушивают и получают 3,85 г заданного продукта.

ЯМР-спектр (ДМСО, 250 МГц, ppm): осевой ОН 3,74 (с, ОСН₃), 6,11 (д, J=7, ОН), 5,83, _С

экваториальный ОН, 7,31 (д. J=8,5,

⊕ H₇ индол), 6,84 (д. J= 2,5, H₄ индол), 6,68 (дд, J=2,5 и 8,5, H₆ индол), 1,05-3,05 (другие

протоны). Пример 29. Гемифумарат ((±) (16 альфа)]10-метокси-20,21-диноребурнамени-

на (транс, dL). Действуют как в примере 2, исходя из 1 г ±) (14 бета, 16 альфа)] альфа)] 14,15-дигидро-10-метокси-20,21-диноребурна менин-14-ола. Полученный фильтруют, доводят досуха при пониженном давлении, сгущают осадок с раствором бикарбоната едкого натра, обезвоживают, обильно промывают водой до нейтрального рН промывочных вод, высушивают при пониженном давлении при 70°С и извлекают осадок посредством 20 см³петролейного эфира (40-70°C). Получают 820 мг продукта в форме основания. Точка плавления145 °C. Исходя из 1,7 г основания, растворенного в 50 см³ этилацетата, получают фумарат. Получают 1,55 г заданного продукта. Точка плавления 212°C

ЯМР-спектр (СДСI₃, 250 МГц, ppm): 3,85 (c, OCH₃), 5,04 (дд, J=2 и 7,5, этиловый H в бета N), 6,90 (дд. J=3 и 7,5, этиленовый Н в альфа N), 6,81 (дд, J= 2,5 и 8,5, Н₆ индол), 6,94 (д, J=2,5, Н4 индол), 7,21 (д, J=8,5, Н 7 индол), 1,3-3,2 (другие протоны).

Пример 30. Гемифумарат (±)10-метокси-20,21-диноребурнаменина (цис, dL).

Действуют как в примере 6, исходя из 2,02 г $[(\pm)$ (14 бета 14,15-дигидро-10-метокси-20,21-диноребурна менин-14-ола, и по- лучают 1,4 г продукта в форме основания. Точка плавления134 °C. Получают фумарат, исходя из 1,32 г этого последнего продукта, и выделяют 1,14 г заданного продукта. Точка плавления 190°C.

ЯМР-спектр (СДСІ₃, 250 МГц, ppm): 3,86 (с, OCH₃), 4,54 (м, С

цис-соединение), 6,89 (д, J=9, N-C

0

5,27 (дд, J=6 и 8, -C \bigoplus -CH), 6,83 (дд, J=

2,5 и 8,5, H₆ индол), 6,95 (д, J=2,5, H₄ индол), 7,21 (д. J=8,5, H₇ индол), 0,90 (м. 1H), 1,45-3,40 (другие протоны).

С использование вышеописанных способов были получены следующие

Пример 31. [(±) (14 альфа, 16 альфа)] 9.11-дихлор-14.15-дигидро-20.21-диноребурнаменин-14-ол (транс, dL).

Точка плавления 260 °C Pf 0,5 на гидроокиси алюминия, метиленхлорид-ацетон (8-2).

Пример 32. <u>{(±)</u> (14 бета, 16 альфа)]10,11-метокси-14,15-дигидро-20,21-диноребурнаменин-14-ол (транс, dL).

Точка плавления 252°C.

Пример 33. [(±) (14 дета, 16 альфа)] 9.10.11-триметокси-14.15-дигидро-20.21диноребурнаменин-14-ол (транс, dL).

Точка плавления240°C.

Пример 34. [(±) (14 дета, 16 альфа)]9-метокси-14,15-дигидро-20,21-диноре бурна- менин-14-ол (транс, dL).

Точка плавления233°C.

Осуществляя вышеописанную дегидратацию спиртов, полученных в примерах 32, 33 и 34, получают следующие продукты в форме солей.

Пример 35. Кислый малеат [(±) (16 альфа)] 10,11-диметокси-20,21-диноребурнаменина (транс, dL).

S

ന

~

```
плавления 208°С (основание).
     Пример 36. Нейтральный фумарат [(±)
  (16
 альфа)]9,10,11-триметокси-20,21-диноребурн
 аменина (транс, dL).
     Точка плавления 211 °C (соль). Точка
 плавления 130°C (основание).
     Пример 37. Кислый малеат [(±) (16
  альфа)] 9-метокси-20,21-диноребурнаменина
 (Tpanc, dL).
     Точка плавления205 °C (соль). Точка
 плавления 146°C (основание).
     Пример 38. [(±) (16 альфа)]
 11-нитро-14,15-дигидро-20,21-диноребурнаме
     Добавляют небольшими фракциями 2 г
 гидробромида натрия в растворе, содержащем 2 г [(\pm) (16 альфа)]
 11-нитро-20,21-диноребурнаменин-14(15H)-он
 а и 100 см<sup>3</sup> метанола. Нагревают с обратным
 холодильником в течение 50 мин, добавляют
 200 см<sup>3</sup>ледяной воды, осадок обезвоживают,
 промывают его водой, высушивают его при
 75 °C при пониженном давлении и получают
 1.75 r
               заданного
                                продукта.
 плавления260°С.
плавления260°С.
ЯМР-спектр (ДМСО, 300 МГц, ррт):
5,70 (м. 1/5 Н осевой Н), 6,05 (д. 4/5 Н
экваториальный Н, N-СН -ОН), 6,65 (д.
 экваториальный, СН-
                                       ), 6,93 (д,
 осевой, СН-(он), 7,53 (д. Н<sub>4</sub> индол), 7,93
 (дд. H<sub>5</sub> индол), 8,46 (д. H<sub>7</sub> индол), 1,10-3,10
(другие протоны).
    Пример 39. Кислый малеат [(±) (16
альфа)] 1-нитро-20,21-диноребурнаменина.
Добавляют 60 мг
 трифторметансульфоната меди в суспензию,
содержащую 1,25 г продукта, полученного по
примеру 38, в 125 см<sup>3</sup> ксилена. Нагревают 15
ч с обратным холодильником, фильтруют и 
удаляют растворитель при пониженном 
давлении. Осадок хроматографируют на
двускиси кремния (элюант: этилацетат) и получают 990 мг продукта в форме основания. Точка плавления172 °С, Растворяют 1,24 г вышелолученного
основания в 200 см<sup>3</sup>смеси этанол-этилацетат
(1-1), добавляют 487 мг малеиновой кислоты,
растворенной в горячем состоянии в 50 см <sup>3</sup> этанола, перемешивают в течение 2 ч при температуре окружающей среды, осадок
обезвоживают, промывают его этанолом и
высушивают его при 70°C при пониженном
давлении Собирают 1,44 г
продукта. Точка плавления >260°C.
   ЯМР-спектр (СДСІ<sub>3</sub>, 250 МГц, ppm):
5,27 (дд, J=2 и 8),
        СН Дельтах
7,0 (дд. J= 3 и 8), 7,47 (д. J=8,5,
Н<sub>4</sub> индол), 8,00 (дд. J=2 и 8,5, Н<sub>4</sub> индол),
8,26 (дд, J=8, H<sub>7</sub> индол), 1,35-3,25, СН и СН<sub>2</sub>.
   Пример 40. [(±) (16 альфа)]
9-нитро-14,15-дигидро-20,21-диноребурнамен
```

Действуют как в примере 38, используя 2 г

Точка плавления 215 °C (соль). Точка

```
(16
  (±)
                                                    альфа)]
  9-нитро-20,21-диноребурнаменин-14(15Н)-она
   и получают 1,9 г заданного продукта. Точка
  плавления > 260°C.
      ЯМР-спектр (ДМСО, 250 МГц, ppm):
      5,71 (м. осевой Н),
N-СН -CH<sub>2</sub>
          ÓН
 6,03 (д. экваториальный H), 6,49 (д. осевой OH), 6.75 (д. экваториальный OH), 7.24 (т. H_6 индол), 7,89 (д. H_7 индол), 8,10
 (Д, H<sub>5</sub>индол), 1,15-3,20 CH и CH<sub>2</sub>.
     Пример 41. Кислый малеат ((±) (16
 альфа)] 9-нитро-20,21-диноребурнаменина
     Действуют как в примере 39, исходя из 1,9
 г продукта, полученного по примеру 40, 100
 мг трифторметансульфоната меди в 200 см ^3 ксилола. Получают 1,65 г продукта в
 форме основания. Точка плавления 198 °С, 
Используют 1,57 г основания и 615 мг
малеиновой кислоты и получают 1,42 г
 заданного кислого малеата. Точка плавления
 228°C
     ЯМР-спектр (СДСІ<sub>3</sub>, 250 МГц, ррт):
 1,36-3,41 (м. 12H), 5,28 (дд. J=12 и 8,
CH=CH), 6,99 (дд. H=3 и 8, CH=CH), 7,19 (т.
J=8, Н<sub>6</sub> индол), 7,59 (дд. J=8 и 1, Н<sub>7</sub> индол),
 7,97 (дд. J=8 и 1, Н<sub>8</sub> индол).
     Пример 42. [( ±) (16 альфа)]
 14,15-дигидро-11-диметиламино-20,21-диноре
бур- наменин-14-ол.
     Добавляют небольшими фракциями 1 г
гидроборида натрия в суспензию, содержащую 1,94 г [(16 альфа)
( ±)]11-диметил-амино-20,21-диноребурнамен
ин-14(15H)-она и 200 см<sup>3</sup>метанола. Нагревают
с обратным холодильником в течение 2 ч
охлаждают до температуры окружающей среды, снова добавляют 1 г гидроборида натрия и перемешивают 2 ч с обратным
холодильником. Добавляют 500 см<sup>3</sup> ледяной
воды, осадок обезвоживают, промывают его
водой, высушивают его при 80°C при
пониженном давлении и получают 1,64 г
заданного продукта. Точка плавления260°C. ЯМР-спектр (ДМСО, 300 МГц, ppm):
    5,41 (м. дд. H=6 и 9, осевой ОН), 5,84 с. экваториальный ОН), 6,37 (д. ОН),
6.09 (д. ОН), 6.62 (тд. H_5 индол), 6.79 (дд. H_7 индол), 7.03 (д. H_7 индол), 7.17 (д.
H<sub>4</sub> индол), 2,87 (с. CH<sub>3</sub>), 1,1-3,1 (другие
протоны).
   Пример 43. Малеат [(±) (16
альфа)]N,N-диметил-20,21-диноребурнаменин
-11-ами- на.
    Добавляют 20 мг паратолуолсульфоновой
```

Добавляют 20 мг паратолуолсульфоновой кислоты в суспензию, содержащую 400 мг продукта, полученного по примеру 42, в 40 см 3 толуола. Нагревают 15 ч с обратным колодильником, концентрируют досуха, хроматографируют осадок на двуокиси кремния (элюант:этилацетат) и получают 290 мг продукта в форме основания. Точка плавления 132 °С. Растворяют 900 мг вышеполученного основания в 50 см 3 этилацетата и 10 см 3 этанола, добавляют 712 мг малеиновой кислоты, растворенной в 10 см 3килящего этанола. Выдерживают 3 ч с перемешиванием при температуре окружающей среды, осадок

DOCID: <BH

Z

ယ

C

обезвоживают, промывают его этанолом и высушивают при пониженном давлении при 70°C. Получают 1 г заданного малеата. Точка плавления 228°C.

ЯМР-спектр (СДСI₃, 250 МГц, ppm): 2,95

CH3

5,01 (дд, J=2 и 7,5, N-CH=C(H)), 6,94

(дд, J=2 и 7.5, N-C \bigoplus =CH), 6.68 (с.

 H_7 индол), 6,70 (дд, J=7,5 и 2, H_5 индол), 7,29 (д, J=7,5, H₄ индол).

П р и м е р 44. I(±) (16 альфа)]14,15-дигидро-14-гидрокси-20,21-дино ребурнаме- нин-15-ил ацетамид.

Добавляют небольшими фракциями 1,75 г гидроборида натрия в суспензию, содержащую 1,75 г ((±) 1,75 альфа)]N-(14,15-дигидро-14-оксо-20,21-динор ебурнаменин-11- ил) ацетамида, полученного согласно "получению 5" в 100 см³ метанола. Нагревают 3 ч с обратным холодильником охлаждают до температуры окружающей среды, добавляют 200 см 3 ледяной воды, осадок обезвоживают, промывают его водой, сгущают в 50 см³ метанола, высушивают его при $80\,^{\circ}$ С при пониженном давлении и получают 1,3 г заданного продукта. Точка плавления > 260°C.

ЯМР-спектр (ДМСО, 300 МГц, ppm): 2,03, Ac. 5,98 (т, осевой Н N-CH-OH), 5,75, экваториальный H, 6,00, подвижный H, 7,09-7,25, H_4 и H_5 индол, 7,80, H_7 индол, 9,81, подвижный H, 1,15-2,98 (другие CH₂ и

СН). Пример45. Кислый малеат ((±) (16 N-(20,21-диноребурнаменин-11-ил(ацеттамид

a. Добавляют 60 мг паратолуолсульфоновой кислоты в суспензию, содержащую 1,2 продукта, полученного по примеру 44, в 150 см³ толуола и нагревают 16 ч с обратным холодильником, охлаждают, фильтруют, удаляют растворитель при пониженном давлении, осадок хроматографируют на ДВУОКИСИ кремния (элюент: метиленхлорид-метанол 95-5) и получают 1 г продукта в форме основания. плавления 208 °C. Переводят в раствор 1,2 г продукта, полученного как указано выше, в 100 см³ этилацетата и добавляют 453 мг малеиновой кислоты, предварительно растворенной в 50 см 3 этилацетата и 10 см ³ этанола. Перемешивают 4 ч при температуре окружающей среды, обезвоживают, высушивают при 50°C при пониженном давлении и получают 1,22 г заданного кислого малеата. Точка плавления

ЯМР-спектр (СДСІ₃, 300 МГц, ppm): 2,19 (c), CH₃-C

cn

6,97 (дд, J=7,5 и 3, N- C \bigoplus =CH), 5,08 (дд. H=7,5 и 2, N-CH=C), 7,24, NH, 67,96 (д. J=2, H₇ индол), 7,34 (д. J=8, H₄ индол), 6,88 (дд. J=2 и 8, Н₅индол), 1,4-3,2 (другие протоны).

Пример 46. Кислый малеат ((±) (16

альфа)] 20,21-диноребурнаменин-11-амина. Добавляют 3 см ³ 50%-ного водного раствора гидроокиси калия в 1,5 г основания полученного по примеру 45, в растворе в 100 см3 этанола. Нагревают 24 ч с обратным холодильником, добавляют 200 см ³ воды, осадок обезвоживают и обрабатывают его этилацетатом. Промывают водой до нейтральности этой органической фазы, высущивают ее, удаляют растворитель, осадок хроматографируют на двуокиси кремния (элюент: этилацетат-триэтиламин 9-1) и получают после высушивают при 65°C 1 г продукта в форме основания. плавления 252 °C. Растворяют 850 мг этого основания в смеси 100 см³ этилацетата и 20 см³ этанола, добавляют 743 мг малеиновой кислоты, предварительно растворенной в 10см³ этанола, перемешивают в течение 3 ч при температуре окружающей среды, осадок обезвоживают, промывают его этанолом, высушивают при 50°C при пониженном давлении. Собирают 1 г заданного продукта, точка плавления 250 °C, который очищают путем сгущения в смеси этилацетат-этанол

1). ЯМР-спектр (СДСІ₃, 300 МГц, ppm): 5.01 (дд. J=7,5 и 2, N-CH=C), 6,84

(дд. J=7.5 и 2, N-C (н) =CH), 6,52 (дд. J=8,5

и 2. H₅ индол), 6.64 (д. J=2, H₇ индол), 7,22 (д. Ј=8,5, Н₄ индол), 3,50 (ср. подвижные

2H), 1,30-3,18 (другие протоны). Пример 47. [(±) (16 альфа)] 11-бром-14,15-дигидро-20,21-диноребурнамен ин-14- ол.

Добавляют небольшими фракциями 412 мг гидроборида натрия в суспензию, содержащую 750 мг $[(\pm)$ (16 альфа)] 11-бром-20,21-диноребурнаменин-14(15H)-он а и 20 см³ метанола. Добавляют 184 мг хлорида лития, перемешивают в течение 2 ч при температуре окружающей среды, затем 30 мин при 40°C. Выливают реакционную среду на 100 см³ ледяной воды, осадок обезвоживают, промывают его водой, высушивают при пониженном давлении при 80°С и получают 711 мг заданного продукта. Точка плавления 245°C.

ЯМР-спектр (ДМСО, 400 МГц, рртт): 5,52 (м, дд, после обмена, осевой СН-ОН), 5,88 (д. J=6,5, экваториальный СН-ОН), 6,61 (д. J=8.5, OH), 7.13 (дд. расщепленный, H_{5} индол), 7.31 (д. расщепленный, H_{4} индол), 7.83 (д. J=1.5, H_{7} индол).

Пример 48. Кислый малеат [(±) (16 альфа)] 11-бром-20,21-диноребурнаменина. Добавляют

паратолуолсульфокислоты в суспензию, содержащую 1,5 г продукта, полученного по примеру 47, в 100 см³ толуола, и нагревают 15 ч с обратным холодильником. Фильтруют, доводят досуха, осадок хроматографируют на двуокиси кремния (элюент: этилацетат) и получают после высушивания при 50 °C при пониженном давлении 1,14 г продукта в форме основания. Точка плавления 133 °C.

-10-

```
Растворяют 1,08 г основания в 100 см ^3 этилацетата и 20 см ^3 этанола, перемешивают 3 ч при температуре
окружающей среды, осадок обезвоживают,
промывают его этилацетатом, высушивают
при 70°C при пониженном давлении и получают 1,33 г заданного кислого малеата.
Точка плавления 247°C.
```

точка плавления 247°С.
ЯМР-спектр (СДСІ₃, 400 МГц, ppm): 5,12 (дд, J=7,5 и 2, СН), 6,88 (дд, J=7,5 и 3, С н. -N), 7,18 (дд, J=8,5 и 2, Н₅ индол),

7,30 (дд, J=8.5, H_4 индол), 7,45 (д, J=2, Н 7 индол),

Н 7 индол), другие протоны: 1,42 (м, 1H), 1,87 (м, 2H), 1,98 (м, 1H), 2,29-2,41 (м, 2H), 2,61 (м, 1H), 2,70 (м, 1H), 2,89 (dL, 1H), 2,97-3,08 (м, 2H), 3,14 (мм, J=11 и 5,5 1H). Пример р 49. [(±) (16 альфа)]

14,16-дигидро-12-этил-20,21-диноребурнамен

Добавляют небольшими фракциями 840 мг гидроборида натрия, затем 370 мг хлорида лития в суспензию, содержащую 1,3 г [(±)

11-этил-20,21-диноребурнаменин-14(15H)-она , полученного согласно "получению 6", и 100 см3 метанола. Нагревают 6 ч с обратным холодильником, добавляют 300 см 3 ледяной воды, образовавшийся осадок обезвоживают, промывают его водой, затем высушивают при 100°C при пониженном давлении. Сырой продукт очищают путем сгущения в метаноле и получают 980 мг заданного продукта.

Точка плавления 247°C. ЯМР-спектр (ДМСО, 300 МГц, ppm): 5,47 (м, осевой, N-С (н) -ОН),

(экваториальный) N-C (н) -OH, 6,40 (д, ОН),

7,50 (д. Н₇ индол), 7.25 (м. Н₄ и Н₇ индол), 6,88 (м, H₅ индол), 1,22 (м, CH₃-CH₂), 1,0-3,1 (м, другие протоны). Пример 50. Кислый малеат [(±) (16

70

альфа)] 11-этил-20,21-диноребурнаменина. Добавляют 50 мг

паратолуолсульфокислоты в 940 мг продукта, полученного по примеру 49, в суспензии в 100 см³ толуола, затем нагревают 1 ч с обратным холодильником. Раствор концентры досуха, осадок хроматографируют концентрируют кремния, метиленхлорид-метанол (96-3). Получают 870 мг заданного продукта в форме основания. Точка плавления131 °C. Растворяют 770 мг этого основания в 50 см³ этилацетата и 20 см 3 этанола, добавляют 320 мг малеиновой кислоты, предварительно растворенной в 10 см³ этанола. Перемешивают 2 ч при окружающей обезвоживают и высушивают при пониженном давлении при 60°C. Собирают 910 мг

заданного малеата. Точка плавления 176 °C. ЯМР-спектр (СДСІ₃, 300 МГц, ppm): 1,28 (т, $\frac{CH_3}{CH_3}$ - CH_2), 2,75 (кв, CH_3 - CH_2),

5.05 (дд. J=7,5 и 2. N-CH= $^{\circ}$), 6.95 (м,

H₅ и другой этиленовый), 7,15 (с. H₇), 7,36

(д. J=8, H₄), 1,41 (м, другие протоны), 1,80-3,18 (другие протоны).

П р и м е р 51. [(±) (16 альфа)] 14,15-дигидро-11-этокси-20,21-диноребурнам

Добавляют небольшими фракциями 160 мг боргидрида лития в суспензию, содержащую 464 мг $[(\pm)$ (16 альфа)] альфа)] 11-этокси-20,21-диноребурнаменин-14(15H)-о на, полученного согласно "получению 7", и 20 см³ метанола. Перемешивают 1 температуре окружающей среды, добавляют 100 см³ воды, осадок обезвоживают, промывают водой, высушивают при 70°С при пониженном давлении и получают 385 мг заданного продукта. Точка плавления 218°C.

-OH), 5,83

после

экваториальный C (H) -OH), 6,44 (д. J=8,5,

CH-O $_{
m H}$), 7.21 (м, H₄ и H₇ индол), 1,10-3,00

20

(м. другие протоны). Пример 52. Кислый малеат [(±) (16 альфа)] 11-этокси-20,21-диноребурнаменина. Добавляют 20 мг

паратолуолсульфокислоты в суспензию. содержащую 350 мг продукта, полученного по примеру 51, и 20 см³ толуола. Нагревают 15 ч с обратным холодильником, фильтруют, концентрируют досуха при пониженном давлении и хроматографируют осадок на двуокиси кремния (элюант: этилацетат). Получают 286 мг продукта в форме основания. Точка плавления 105 °C. Растворяют 260 мг основания в 50 см 3 этилацетата, добавляют 103 мг малеиновой кислоты, растворенной в 10 см ³ этилацетата, перемешивают 3 ч при температуре окружающей обезвоживают и высушивают при 70°С при пониженном давлении. Собирают 315 мг заданного продукта. Точка плавления 211 °C.

ЯМР-спектр (СДСІ3, 400 МГц, ррт): 1,43 (т. OEt), 4,07 (кв. OEt), 5,05 (дд. J=7,5 и 2)

(N (1)

6,89 (дд. Ј=7,5 и 3) 6.74 (дд. J=8 и 2, H₅ индол), 6.84 (д. J=2,

H₇ индол), 1,3-3,15 (другие протоны). Пример 53. [(±) (16 альфа)]

14,15-дигидро-11-гидрокси-20,21-диноребурна ме- нин-14-ол. Действуют как в примере 51, используя
0 мг [(±) (16 альфа)

11-гидрокси-20,21-диноребурнаменин-14(15H) -она в 90 см³ толуола и 5,3 см³ гидрида диизобутилалюминия вместо гидроборида натрия. Получают 360 мг заданного продукта натрия. Получают эоо мі заделяюю пробос. (смесь эпимеров). Точка плавления 240°С. ЯМР-спектр (ДМСО, 300 МГц, ррт): 5,34 (дт, Ј=6 и 9, С

-11-

```
5,74 (д, C — экваториальный ОН, 80%), 6,02
(д. J=7. CH-O (н) ), 6,26 (д. J=9, CH-O (н) ).
6,52 (дд. H<sub>5</sub> индол), 6,79 (д. H<sub>7</sub> индол), 7,07
(д. H_7 индол), 7,10 (д. H_4 индол), 7,11 (д.
H<sub>4</sub> индол), 8,83 (с. подвижный, ОН фенол),
1,05-3,05 (м, другие протоны).
Пример 54 ((±) (16 альфа)]
11-гидрокси-20,21-диноребурнаменин.
    Действуют как в примере 52, исходя из 360
мг продукта, полученного по примеру 53,
                    несколько
используя
                                          MF
трифторметансульфоната меди в 20 см ^3 толуола. Получают 250 мг заданного
продукта. Точка плавления > 260°C.
    ЯМР-спектр (ДМСО, 300 МГц, ppm):
    5,05 (д, широкий J=7, N-CH=C (н) ), 6,56
(дд, J=7 и 2. N-C (H) =CH), 6,88 (с. широкий,
H<sub>7</sub> индол), 7,17 (м. H<sub>5</sub> и H<sub>4</sub> индол), 9,06 (с.
OH), 1,2-3,1 (м, другие протоны).
    Пример 55. Малеат (3 альфа)
11-метил-20,21-диноребурнаменина.
Этап А: (3 альф
                                    альфа)
11-метил-20,21-диноребурнаменин-14(15H)-он
    Растворяют в горячем состоянии 3,6 г
                           (16
              ±)
11-метил-20,21-диноребурнаменини-14(15H)-о
на (транс, dL) в 50 см<sup>3</sup>-танола. Добавляют
2,04 г (-) ди-О, О-пивалоил L-винной
кислоты в растворе в 22 см<sup>3</sup> этанола,
перемешивают 2 мин, выдерживают 16 ч при
температуре
                       окружающей
кристаллизованный продукт обезвоживают,
промывают его этанолом, высушивают его
при 60°C при пониженном давлении и
получают 4,67 г сырого продукта, который
рекристаллизуют в метаноле. Собирают 2,17 г
промежуточной соли. Точка плавления 260 °C, [\alpha_D]-137,5 \pm 3,5^\circ (c=0,5%)
                                           (c=0.5%
диметилформамида), который переводят в суспензию в 50 см^3 воды и 50 см^3 этилацетата. Добавляют 5 см^3 гидрата
окиси аммония и перемешивают 30 мин.
Разделяют фазы, органическую фазу
промывают водой, высушивают ее и удаляют
растворитель при пониженном давлении.
Получают 1,38 г заданного энантиомера 3
альфа. Точка плавления 198°C.
    [\alpha_D]-162.5 ± 3.5° (c=0.5% хлороформ).
    Этап
                   B:
11-метил-20,21-диноребурнаменин.
```

Добавляют за 5 мин 1,24 г гидроборида

натрия в 1,53 г продукта, полученного как указывается на этапе A, в суспензии в 30 см 3 метанола с 10% воды. Нагревают 7 ч с

обратным холодильником, добавляют 30 см 3 воды и 1 см 3 уксусной кислоты. Перемешивают 15 мин при температуре

перемешивают 15 мин. Осадок обезвоживают, промывают его водой до нейтральности и

высушивают его при пониженном давлении

при 60°C. Получают 1,41 г продукта (смесь

осевого и экваториального ОН), который переводят в суспензию в 28 см ³ толуола.

Добавляют 70 мг паратолуолсульфокислоты и

окружающей среды, добавляют 2 см ³ гидрата окиси аммония, затем снова

Z

0

w

Ġ

C

```
нагревают 16 ч при 100°С. Получают раствор,
      который концентрируют при пониженном давлении. Осадок хроматографируют на
                        кремния.
      ДВУОКИСИ
                                            элюант:
      метиленхлорид-ацетон (9-1) и получают 1,20 г
      заданного продукта. Точка плавления 134 °C.
          [ \alpha_D]-433 \pm 6°C (c=0.5% хлороформ).
          Этап С: Малеат
                                           (3
                                                    альфа)
      11-метил-20,21-диноребурнаменина.
          Растворяют 1,6 г продукта, полученного
      как на этапе В, в 60 см<sup>3</sup>этилацетата,
      добавляют 0,702 г малеиновой кислоты в
      растворе в 15 см<sup>3</sup>этилацетата и перемешивают 1 ч при температуре окружающей среды. Осадок обезвоживают,
      высушивают его при пониженном давлении
            температуре окружающей
      Получают 2.120 г заданного малеата. Точка
      плавления 195°С.
Найдено, С 69,6; Н 6,5; N 7,3.
          C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>, C<sub>4</sub>H<sub>4</sub>O<sub>4</sub> (380, 448).
20
          Вычислено, С 69,46; Н 6,36; N 7,36
      П р и м е р 56. Малеат (16 альфа)
11-метил-20,21-диноребурнаменина.
Этап А: [(±) (16 альфа)]
      11-метил-20,21-диноребурнаменин-14(15Н)-он
          Извлекают этаноловые и метаноловые
      маточные растворы, полученные по примеру
      55 (этап A), в ходе кристаллизации 
энантиомера 3 альфа и концентрируют их
     досуха. Остаток поглощают посредством 250
     {\sf cm}^3этилацетата и 150 {\sf cm}^3 воды, добавляют
      10 см<sup>3</sup> гидрата окиси аммония и перемешивают 30 мин. Разделяют фазы,
      органическую фазу промывают водой и концентрируют при пониженном давлении. Получают 2,3 г [(±) (16 альфа)]
     11-метил-20,21-диноребурнаменин-14(15H)-он а, обогащенного энантиомером (16 альфа).
      Продолжают синтез, действуя как на этапе А
      примера 55, используя 2,3 г вышеполученного продукта, 1,3 г (+)
     ди-О,О'-пивалоил-L-винной кислоты
     Получают 1,93 г промежуточной соли (Т. пл.
     260°C, [α<sub>D</sub>]+109,5 ± 3°
     диметилформамид)] затем 1,22 г заданного
      продукта (энантиомер 16 альфа). Точка
     плавления 198°C.
         [\alpha_D]+163,5 \pm 3,5° (c=0,5% хлороформ).
                                     (16
          Этап
                         B:
     11-метил-20,21-диноребурнамемин.
          Действуют как на этапе В примера 55,
     исходя из 1,53 г продукта, полученного как
     на этапе А. Получают 1,17 г восстановленного
     продукта (смесь осевого и экваториального
                затем
                             1.05
     дегидратированного
                                   продукта.
     плавления 134°C.
         [\alpha_D]+435,5 ± 6° (c=0,5% хлороформа).
                   C.
                           Малеат (16
          Этап
                                                    альфа)
      11-метил-20,21-диноребурнаменина.
     Действуют как на этапе С примера 55, исходя из 1,52 г продукта, полученного на этапе В. Получают 2 г заданного малеата.
     Точка плавления 195°С.
          Найдено, С 69,3; Н 6,4; N 7,3.
          C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>, C<sub>4</sub>H<sub>4</sub>O<sub>4</sub> (380, 448).
          Вычислено, С 69,46; Н 6,36; N 7,36.
     П р и м е р 57. (3 альфа)
11-метил-20,21-диноребурнаменин.
         Действуют как на этапе А примера 55,
```

используя вначале 3,2 г [(±) (16 альфа)] 11-метил-20,21-диноребурнаменина, полученного по примеру этилацетата 1,93 ди-О,О'-пивалоил-L-винной киспоты растворе в 19 см³ ацетона. Получают 1,15 г промежуточной соли (т.пл. 215°C). [α_D]-340,5 ± 5,5° (c=0,5% диметилформамид), затем 0,7 г заданного энантиомера 3 альфа. Toura плавления 134 °C. $[\alpha_D]$ 406,5 ± 6° (с=0,5 хлороформ).

Пример 58. (16 альфа) 11-метил-20,21-диноребурнаменин.

Действуют как на этапе А примера 56. исходя из маточных растворов, полученных в ходе синтеза энантиомера 3 альфа по примеру 57. Получают 2,45 г [(±) (16 альфа)] 11-метил-20,21-диноребурнаменин-14(15Н)она, обогащенного знантиомером 16 альфа затем продолжают синтез, используя 1,48 г (+) ди-О, О'-пивалоил-D-винной кислоты. Получают 1,33 г промежуточной соли (т.пл. 215°C), $[\alpha_D]$ 305,5 ± 5° (c=0.5% диметилформамид), затем 0,810 г заданного энантиомера 16 альфа. Точка плавления

 $[\alpha_D]$ +447,5 \pm 6 (c=0,5% хлороформ).

П р и м е р 59. (3 альфа) 11-хлор-20,21-диноребурнаменин.

Действуют как на этапе А примера 55, используя вначале 4,6 11-хлор-20,21-диноребурнаменина, полученного как в примере 2, и 2,57 г (-) ди-О, О'-пивалоил-L-винной кислоты в растворе в 50 см³ этилацетата. Получают 1,70 г промежуточной соли (т.пл. 215°C), $[\alpha_{\rm D}]$ -321 ± 5°c (c=0,5% диметилформамид), затем 1,05г заданного знантиомера 3 альфа. Точка плавления145°C. [ар]-441 ± 5°C (с=1% хлороформ).

Используя щавелевую кислоту, получают

Z

0

Ġ

C

оксалат. Точка плавления 135°С. Найдено, С 60,7; Н 5,2; N 7,2; СI 9,4. Рассчитано, С 60, 88; Н 5,11; N 7,47; СI

П р и м е р 60. (16 альфа) 11-хлор-20,21-диноребурнаменин. Действуют как на этапе А примера 56, исходя из маточных растворов, полученных в ходе синтеза энантиомеров 3 альфа по примеру 59. Получают 3,5 г (\pm) 11-хлор-20,21-диноребурнаменина,

обогащенного энантиомером 16 альфа, затем продолжают синтез, используя 1,95 г (+) ди-О,О'-пивалоил-О-винной кислоты.

Получают 1,82 г промежуточной соли, точка плавления 215 °C, [α_D]+323 \pm 6° (c= 0,5% диметилформамид), затем 1,15 г заданного энантиомера 16 альфа. Точка плавления 145 °C.

[aD]+449 ± 5° (c=1% CHCl3).

Этап А:

Используя щавелевую кислоту, получают оксалат. Точка плавления 195°C.

Найдено, С 60,7: H 5,1; N 7,4; Cl 9,5. Вычислено, С 60,88; Н 5,11; N 7,47; СI 9,46. Получение I: [(±) (16 альфа)] альфа)] 11-хлор-20,21-диноребурнамин-14(15H)-он (транс dL), использованный как исходное примера 1

1-[2/6-хлор/1Н-индол-3-ил/-этил)-2-пиперидин

Нагревают с обратным холодильником 22,37 г 6-хлортриатамина, 9,21 г карбоната калия в 200 см³ этоксиэтанола и вводят за 3 ч 30 мин 21 см³бромвалерата этила в 42 см ³ этоксиэтанола и нагревают обратным холодильником еще 1 ч. После охлаждения осадок обезвоживают, промывают метанолом, а фильтрат концентрируют досуха. Осадок сгущают в 50 см 3 хлористоводородной кислоты 2N, затем в 150 см 3 воды. Полученный твердый продукт обильно промывают водой до нейтрального pH промывочных вод. Его поглощают метиленхлоридом, высушивают органический раствор, осадок доводят досуха и сгущают в 200 см³ изопропилового эфира. Получают 25,5 г заданного продукта, точка плавления

Этап В: 2,3,4,6,7,12-гексагидро-10-хлор-индол/2,3-а/х инолизин.

Доводят до 60 °C 2 г вышеполученного доводят до 60 °C 2 г вышеполученного продукта в 10 см³ диоксана и медленно добавляют 2 см ³ дефосфорированного оксихлорида, затем в этих условиях выдерживают, перемешивания, еще в течение 1 ч. Медленно выливают суспензию в раствор при 0°C, состоящий от 4 см ³концентрированной хлорной кислоты в 50 воды, И выдерживают перемешивании при 0°С еще 1 ч. Растворяют полученный еще влажный перхлорат в 10 см ³ ацетона при 40°C в инертной атмосфере и без доступа света. Вводят за 10 мин при 40 °C 20 см³ концентрированного гидрата окиси аммония, затем перемешивают течение 15 мин при 40°C. Добавляют 10 см ³воды, охлаждают до 0°C в течение 30 мин, осадок обезвоживают, обильно промывают его водой, высушивают при пониженном давлении при 50°С и по- лучают 1,54 г заданного продукта. Точка плавления

C: Этап [(±) 11-хлор-20,21-диноребурнаменин-14(15H)-он (транс dL), использованный как исходное примера 1.

Растворяют 2,3.4,6,7,12-гексагидро-10-хлориндол (2,3-а) 2,3,4,0,7,12-геста идро-го-хаториндот (2,3-а), хинолизина в 50 см³ диметилформамида, добавляют 0,8 см³ йодацетата этила и перемешивают 6 ч при температуре окружающей среды. Осторожно добавляют 5 ${\sf cm}^3$ йодистого водорода в 5 ${\sf cm}^3$ воды и нагревают с обратным холодильником в течение 10 ч. После охлаждения до температуры окружающей среды добавляют в полученную суспензию 20 см³ воды и льда и перемешивают 1 ч при 0°C. Обезвоживают, промывают водой, помещают продукт в 25 см ³смеси тетрагидрофуран-метанол (6-4), охлаждают до 0°C и добавляют небольшими фракциями боргидрид натрия, перемешивая при 0°C еще 1 ч. Медленно добавляют 1,5 см 3 уксусной кислоты, перемешивают 10 мин, подщелачивают путем добавления 3 см ³ концентрированного гидрата окиси ³ воды и аммония, добавляют 50 см экстрагируют метиленхлоридом.

```
Органическую фазу промывают
высушивают, концентрируют досуха, а осадок
хроматографируют на двускиси кремния, элюант: метиленхлорид-метанол (95-5
Выдерживают 500 мг заданного продукта.
Точка плавления 205°C.
Используя тот же самый способ, из соответствующих замещенных триптаминов
получают следующие продукты:

[(±) (16
11-метил-20,21-диноребурнаменин-14(15H)-он
(транс, dL), использованный в примере 7;

[(±) (16 али
                                          альфа)і
 10-метил-20,21-диноребурнаменин-14(15Н)-он
```

, (транс, dL), использованный в примере 13; ((±) (16 альф 11-метокси-20,21-диноребурнаменин-14(15H)он (транс, dL), использованный в примере 21; (16

10-метокси-20,21-диноребурнаменин-14(15Н)он (транс, dL), использованный в начале примера 27;

(16 10-хлор-20,21-диноребурнаменин-14(15H)-он (транс, dL), использованный в примере 4. Получение 2: 10-хлор-20,21-диноребурнеаменин-14(15H)-он

(цис, dL), использованный в примере 3. Этап А: 1-[2-/5-хлорд-1Н-индол-3-ил/-этил]-2-пипериди

Действуют как на этале А получения 1 из 57,6 г 5-хлор-трилтамина и получают 31,5 г заданного продукта. Точка плавления 152°C.

9-хлор-2,3,4,6,7,12-гексагидро-индол (2,3a) хинолизин.

Растворяют 26,7 г вышеполученного продукта в 30 см³ диметиланилина и 150 см 3 диоксана и действуют как на этапе В получения 1. Получают 22,2 г заданного продукта, быстро использующегося на

продукта, оситро положения 150°С. Этап С: 9-хлор-1,2,3,4,6,7,12,12 октагидро-индол (2,3-а)

хинолизин-2-этилацетат (цис, dL).

O

C

В инертной атмосфере и без доступа света нагревают до 60°C 100 см ³диметилформамида, добавляют 15,64 г. йодида натрия медленно температуру доводят до 55°C, 11,6 см³ бромэтилацетата и выдерживают при перемешивании при 60°C в течение 1 ч 30 мин и медленно доводят до температуры окружающей среды. Добавляют гидрохинон, затем 18 г продукта, полученного на стадии В, и оставляют при перемешивании в течение 72 г. Выливают в 55 см3 хлорной кислоты 1 л ледяной воды, перемешивают 1 ч при 0°С, обезвоживают, промывают ледяной водой, высушивают при пониженном давлении и растворяют полученный высушивают в 300 см³ тетрагидрофуран-метанол (1-1), ниже 20°C, добавляют небольшими фракциями 4 г гидроборида натрия, затем перемешивают 2 ч. Добавляют 20 см 3 уксусной кислоты, перемешивают 1/4 ч, вводят 40 см 3 гидрата окиси аммония, затем 500 см ³ воды. Экстрагируют эту суспензию этилацетатом, органическую фазу высушивают, досуха, хроматографируют на двуокиси кремния,

элюант: этилацетат-метиленхлорид (1-1). Собирают 9,95 г заданного продукта. Точка плавления 165°С. Этап

10-хлор-20,21-диноребурнаменин-14(15H)-он (цис, dL), использованный в примере 3.

В раствор 7,65 г продукта, полученного в С, в 50 см³ метанола, добавляют небольшими фракциями 1,8 г метилата натрия и нагревают с обратным холодильником 45 мин. При температуре окружающей среды выливают полученную суспензию в 50 см³ воды. Осадок обезвоживают, промывают водой до рН 7 промывочных вод, высушивают при вод, высушивают пониженном давлении при 100°С и получают 5,87 г заданного продукта. Точка плавления 214°C.

Действуя аналогичным способом, из соответствующих замещенных триптаминов получают следующие продукты: (+)

11-метил-20,21-диноребурнаменин-14(15H)-он а (цис,dL), использованный в примере 9;

10-метил-20,21-диноребурнаменин-14(15Н)-он (цис, dL), использованный в примере 14; (±)

11-метил-20,21-диноребурнаменин-14(15H)-он (цис, dL), использованный в примере 20; (+)

10-метокси-20,21-диноребурнаменин-14(15H)он (цис,dL), использованный в примере 26.

Получение 3: [(±) (16 11-нитро-20,21-диноребурнаменин-14(15H)-он и [(±) (16 альф. 9-нитро-20,21-диноребурнаменин-14(15H)-он, использованные в примерах 38 и 40.

Добавляют раствор 20 г [± (3 бета, 16 альфа)] 20,21-диноребурнаменин-14(15H)-она в $100~{\rm cm}^3$ уксусной кислоты к смеси, содержащей $30~{\rm cm}^3$ взотной кислоты и 30уксусной кислоты, выдерживая температуру 30-35°C с перемешиванием в течение 1 ч. Таким образом получают 3 партии продукта реакции, их объединяют и выливают в 2 л ледяной Подщелачивают путем добав добавления концентрированного гидрата окиси аммония, образовавшийся осадок обезвоживают промывают его водой, высушивают его при 60 ℃ при пониженном давлении хроматографируют его на двуокиси кремния (элюант: этилацетат). Получают 41,8 г изомера 11-нитро (точка плавления 196°C) и 15,7 изомера 9-нитро (точка плавления 174 °C).

Изомер-11-нитро

ЯМР-спектр (СДСІз, 250 МГц, ppm): 1,29 (м, 1H); 1,76-2,14 (м, 4H); 2,32-3,24 (м, 9H); 7,45 (д, J=8,5, H₄ индол); 8,14 (дд, J=8,5 и 2, Н₅индол); 9,13 (д. J=2, Н₇ индол).

Изомер 9-нитро. ЯМР-спектр (СДСI₃, 250 МГц, ppm): 1,29 (M, 1H); 1,83-3,29 (M, =13H); 7,35 (T, J=8, Н ₆ индол); 8,03 (дд, J=8 и 1, Н₇ индол); 8,75 (дд. J=8 и 1, H₅ индол).

Получение 4. (±) (16 11-диметиламино-20,21-диноребурнаменин-1 4(15Н)-он, использованный в примере 42. Этап (16 альфа)] A: [(±) 11-амино-20,21-диноребурнаменин-14(15Н)-он

Гидрогенизируют в течение 15 ч под давлением 500 г 22,1 г [(±) (16 альфа)] 11-нитро-20,21-диноребурнаменин-14(15H)-он а, полученного как указано в получении 3, в смеси, содержащей 750 см³ этилацетата и 750 см³этанола в присутствии 900 мг окиси платины, фильтруют, концентрируют досуха органическую фазу, сгущают осадок изопропиловом эфире, высушивают при 50°C при пониженном давлении и получают 18,2 г заданного продукта. Точка плавления 172°C,

ЯМР-спектр (СДСІ₃, 250 МГц, ppm): 1,21 (м. 1H); 1,75-2,03 (м. 4H); 2,25-3,15 (м. 9H); 3,73 (м. NH₂); 6,65 (дд. J=8 и 2, H₅ индол); 7,16 (д. J= 8, H₄ индол); 7,75 (д. J=2, H₇ индол).

(16 Этап B. [(±) альфа)] 11-диметиламино-20,21-диноребурна**ме**нин-1 4(15H)-on.

Перемешивают в течение 10 мин в инертной атмосфере 2 г вышеполученного инертной атмосфере 2 г вышеть у элимого продукта, растворенного в смеси, содержащей 50 см³ацетонитрила и формальдегида. Добавляют 1,33 г цианоборгидрида натрия, перемешивают 30 мин при температуре окружающей среды, добавляют по каплям 0,7 см ³ уксусной кислоты и продолжают перемешивание в течение 15 ч. Добавляют 100 см ³ воды, подщелачивают путем добавления концентрированного гидрата окиси аммония, экстрагируют этилацетатом, промывают водой, высушивают и концентрируют досуха при пониженном давлении. После хроматографии на двуокиси кремния (элюант: этилацетат) получают 1,94 г чистого продукта. Точка плавления 164 °C.

ЯМР-спектр (ДМСО, 250 МГц, ppm): 2,99 (с. N-CH₃); 6,76 (дд, H₅индол); 7,24 (д, Н 4 индол); 7,82 (д. Н7 индол); 1,24 (м. 1Н);

1,7-3,2 (м, другие протоны). Получение 5: [(±) (16 N-/14,15-дигидрол-14-оксо-20,21-диноребурна менин-11-ил/ацетамид использованный в примере 44.

Добавляют 1,5 см ³ триэтиламина к 1,5 г (16 11-амино-20,21-диноребурнаменин-14(15Н)-он а, полученного как указывается на этапе А получения 4, в растворе в 30 см ³ тетрагидрофурана. Добавляют по каплям 0.4 см³ ацетилхлорида, перемешивают 30 мин при температуре окружающей среды, добавляют 100 см ³ воды, осадок воды, осадок т его волой обезвоживают, промывают его высушивают при 100°С при пониженном давлении. Получают 1,76 г заданного

продукта. Точка плавления ≥ 260°C. ЯМР-спектр (СДСІ₃, 250 МГц, ppm): 2,18); 1,25 (M, 1H), 1,8-3,2 (M,

Ġ

C

другие протоны); 7,29 (д. J₂=8,5, Н₄индол); 7,72 (дд. J=8,5 и 2, H₅ индол); 8,12 (д. J=2, Н 7 индол); 7,64 (с, NH- -C /).

Получение 6: [(±) (16 11-этил-20,21-диноребурнаменин-14(15H)-он. Этап А: [(±) (16 альфа)] 11-этенил-20,21-диноребурнаменин-14(15Н)-о

Добавляют 2,9 см ³ винилтрибутилолова, ем 100 мг тетракис/трифенилфосфоин/палладия раствор содержащий 3 г [(±) (16 альфа)] 11-бром-20,21-диноребурнаменин-14(15H)-он а, и нагревают 24 ч с обратным холодильником. Фильтруют, фильтрат концентрируют при пониженном давлении, осадок разбавляют этилацетатом. Фильтруют и удаляют растворитель при пониженном давлении. После хроматографии на двускиси кремния (элюант: этилацетат) по- лучают 2,1 г заданного продукта. Точка плавления 164°C. ЯМР-спектр (СДСІ₃, 300 МГц, ppm):

5,23 (д. J=11)H C=C H

15

5.81 (д, J=17.5) 6.82 (дд, J= 11 и 17.5), 7.34 (м, H_4 и H₅ индол); 8,40 (мс, Н₇индол); 1,25 (м, 1H), другие протоны); 1,80-2,1 (м, 4H, другие

протоны); 2,30-3,2 (м, 9H, другие протоны). Этап В: [(±) (16 алы 11-этил-20,21-диноребурнаменин-14(15)-он. Добавляют 100 мг гидроокиси платины к 2 г продукта, полученного на этапе А, в растворе в 100 см³ этанола и гидрогенизируют при давлении 500 г в течение 6 ч. Фильтруют, добавляют 0,6 см ³ хлористоводородной кислоты (концентрированной) в этаноловый раствор. Перемешивают в течение 30 мин, хлоргидрат теремешивают в темпе зо мил, этом достовов обезвоживают, разбавляют его в 200 см 3 воды, подщелачиваниют путем добавления концентрированного гидрата окиси аммония, осадок обезвоживают, промывают его водой, высушивают и получают 1,35 г заданного продукта. Точка

ЯМР-спектр (СДСЬ, 300 МГц, ppm): 1,28 (т. С (Н₃) -CH₂), 2,76 (к, CH₃-C (Н₂)). 7,12

плавления= 130°C.

(дд. H_5 индол). 7,32 (дд. H_4 индол), 8,21 (д. H₇ индол), 1,2 (м, 1H), 1,8-3,15 (м, другие протоны). Получение 7: [(±) (16 альфа)] 11%

этокси-20,21-диноребурнаменин-14(15H)-он. Этап А: [(±) (16 альфа)] 11-гидрокси-20,21-диноребурнаменин-14(15H)

Действуют по методу, описанному в Рu в Bull.Soc. Chem.Belg. 88, N 1-2 (1979), р. 93, используя в качестве исходного 560 мг (16 11-амино-20,21-диноребурнаменин-14(15H)-он а, 180 мг нитрита натрия в 2 см ³ воды в присутствии 4 см³ серной кислоты с концентрацией 35% затем 7,5 г тригидратированного нитрата меди и 290 мг окиси меди. Получают 220 мг заданного продукта.

(16 B: [(±) этап В: ((±) (10 альфа))
11-этокси-20,21-диноребурнаменин-14(15H)-о
н. Добавляют 136 мг гидрида натрия в
раствор, содержащий 800 мг продукта,
полученного как на этапе А, и 10
км³ диметилформамида в инертной
атмосфере, и перемешивают в течение 30
мин. Добавляют 0,25 см³ этилиодида, оставляют в контакте 1 ч. Добавляют 200 см ³ воды, экстрагируют этипацататом воды, экстрагируют этилацетатом.

-15

Органическую фазу промывают высушивают ее и концентрируют досуха. Осадок хроматографиют на двускиси кремния (элюант: этилацетат) и получают 464 мг заданного продукта. Точка плавления 148 °C. ЯМР-спектр (СДСІ₃, 250 МГц, ppm):

1,43 (T. OCH₂-CH₃), 4,10 (K, OCH₂-CH₃), 6,88 (дд, J=8,5 и 2, H_5 индол), 7,27 (д. J=8.5, Н₄ индол), 7,94 (д. J=2, Н₇ индол), 1,26 (м. 1H), 1,8-3,2 (м, другие протоны).

Получение 8: [(±) (16 альфа)] 11-хлор-20,21-диноребурнаменин-14(15H)-он.

Охлаждают до -5°C 6,9 г [(±) (16 альфа)] 11-амино-20,21-диноребурнаменин-14(15H)-он а в растворе в 100 см³хлористоводородной кислоты 6N, затем добавляют по каплям раствор нитрита натрия в 3 см 3 воды. Перемешивают 20 мин при -5°С, выливают в хлорида меди раствор хлористоводородной кислоты Перемешивают 30 мин при 90°С, добавляют $500 \,$ см 3 ледяной воды, подщелачивают с помощью концентрированного гидрата окиси аммония, осадок обезвоживают, промывают его водой, высушивают его при 70°C, хроматографируют его на двуокиси кремния, элюант: метиленхлорид-метанол (96-4) и получают 6,2 г заданного продукта. Точка плавления 205°C.

Пример 61. Фармацевтическая композиция.

Получают таблетки, отвечающие следующей формуле: Продукт по примеру 2 300 мг Эксципиент в количестве, достаточном для одной таб- летки 350 мг

(деталь эксципиента: тальк, стеарат магния, аэросил).

Пример 62. Фармацевтическая композиция,

таблетки, отвечающие следующей формуле: Продукт по примеру 10 300 мг Эксципиент в количестве, достаточном для одной таб- летки 350 мг

(деталь эксципиента: тальк, магния, аэросил).

То же самое с продуктом по примеру 10. Фармакологическое исследование.

Сродство адренергическим рецепторам альфа 2.

Гомогенизируют в 90 мл сахарозы 0,32 М 10 кор головного мозга, взятых у самцов крыс, весящих в среднем 150 г. После центрифугирования со скоростью гомогенизированной смеси в течение 10 мин при 0°C верхний слой центрифугируют в течение 10 мин при 0-4°C. Осадок суспензируют в 240 мл буферного раствора. Трис HCI 50 мМ, рН 7,7 и центрифугируют со скоростью 30000g в течение 15 мин при Новый полученный суспензиуют в 480 мл буферного раствора NaKPO₄, pH 7,4, 50 мМ. Затем инкубируют в течение 45 мин при 25°C в 2 мл суспензии в присутствии 3Н раувольсина с концентрацией

0.25 HM:

а) в отдельном виде;б) с увеличивающимися концентрациями тестируемого продукта или

в) для определения неспецифической фиксации с нерадиоактивным пентоламином с концентрацией 10⁻⁵ M.

Инкубированные суспензии фильтруют на

Ватмане GF/C, а фильтры промывают три раза посредством 5 мл буферного раствора NaКРО₄, рН 7,4 при 0°С. Радиоактивность фильтров измеряется методом жидкой сцинтилляции.

адренертическим рецепторам альфа приводится отчестительного приводится относительно пентоламина в качестве контрольного продукта.

СД концентрация задерживающая 50% пентоламина специфической фиксации ³Н раувольсина.

СХ концентрация исследуемого продукта, задерживающая 50% специфической специфической фиксации ³Н раувольсина.

Относительное сродство определяется по

OC 100 CD CX

Получены следующие результаты: Продукты примеров ОС 4 35 5 55 10 160 12 39 16 136

2. Асфиксическая аноксия.

Испытание проводят на самцах крыс Sprague Dawley (Charles River) с анестезией этиловым эфиром с иммобилизацией тубекурарином 1 мг/кг внутривенно и с искусственным дыханием. Регистрируют электрокортикограмму мозга артериальное давление. Ректальную температуру поддерживают около 36°C. Продукты вводят в вену при дозировке 10 мг/кт за 3 мин перед асфиксией, полученной в результате остановки дыхания. Измеряют латентный период исчезновения ECoG.

6

Получены следующие результаты: Продукт примера изменения

40 латентного пе-

риода исчезновения ECoG после асфикции

25

5 +26

8 +37 10 +47

12 +18

16 +22

21 +30

24 +35

25 +20

29 +25

3. Тест гипобарной аноксии на мышах.

Он заключается в измерении в течение максимум 3 мин времени выживания мышей, помещенных в камеру объемом 2 л, в которой осуществляют разрежение в 600 мм рт. ст. Используют мышей через 6 ч после кормления. Продукты вводят внутрибрюшинно в дозировке 10 мг/кг в объеме 0,2 мл/10 г за 60 мин перед испытанием. Отмечается увеличение времени выживания, выраженное в процентах, обработанных животных по сравнению с контрольными животными, при тех же

-16-

условиях:

Получены следующие Продукт примера увеличения

результаты:

времени выживания

40 22

41 13 3. Противоамнезический эффект.

Крыс индивидуально помещают освещенное отделение коробки с двумя отсеками, при этом второй отсек является темным. Они непроизвольно скрываются в темном отсеке, на входе в который крысы получают удар электрическим током (1 мА/5 с) через сетчатый пол. Затем животных разделяют на 3 группы: 1-я группа (контрольная) не подвергается дальнейшей обработке, 2-й группе после удара электрическим током сразу наносят амнезический электрошок (60 мА, 0,6 мс, 0,6 с), (контрольная электрошоковая группа), 3-я группа идентична 2-й группе, но после электрошоком им сразу вводят исследуемое соединение (обработанная группа). По истечении двадцати четырех часов животных помещают в освещенный отсек коробки и измеряют латентный период захода в темный отсек (до 30 с макс.). У контрольных животных это время близко к 300 с. Электрошоковые контрольные животные, наоборот, намного быстрее проникают в темный отсек (амнезический эффект). Продукты с антиамнезическим эффектом увеличивают латентный период захода и доводят его до значения, который можно сравнивать с контрольными животными, не получившими электрошок. В этом тесте, соединение по примеру 10 компенсирует противоамнезический эффект электрошока при дозе 2 мг/кг, введенной оральным путем.

4. Тест на спонтанное чередование после

холинергического септального повреждения. Поведение спонтанного чередования является существенным признаком комплекса поведения крысы, которая поставленная в ситуацию выбора между привычны привычным стимулом и новым стимулом, выберет этот последний стимул. Так, например, в случае лабиринта, У-образного животное. выбирает предпочтительно, изученный рукав вместо рукава, в котором оно уже побывало (спонтанное чередование). Эта способность выбора между "привычным и "новым" требует включения определенного типа памяти: короткосрочной памяти или памяти. Следовательно, характеристики спонтанного чередования позволяют оценить объем этого типа памяти.

Использованный метод заключается в создании мнезического дефицита у крысы повреждения холинергической септохипокампической системы определении того, может ли исследуемый продукт восполнить этот дефицит. настоящем случае этот дефицит оценивается по поведению спонтанного чередования; животное с нарушениями обладает характеристиками чередования близкими к 50% так как оно делает выбор случайно. В каждом эксперименте участвует контрольная группа, группа с нарушениями и одна или две группы с нарушениями, получившие исследуемый продукт. В течение четырех дней каждая крыса подвергается одному

сеансу в день. включающему испытания, разделенные на две принудительный выбор и свободный выбор Продукт вводится интераперитональным

путем (и.п.) за 30 мин перед каждым сеансом. Продукт по примеру 10 восполняет дефицит, вызванный холигергических холигергическим септальным повреждением в диапазоне доз от 1 до 10 мг/кг и.п.

Тест на антидепрессивную активность. Испытания проводят на партиях из 5 крыс роды Sprague Dawley. Неопытные породы Sprague животные помещаются в течение 15 мин в вертикальный цилиндр из органического стекла (диаметр 18 см. высота 40 см.), содержащий воду с температурой 25°C на высоте 15 см (начальное испытание плавлением). Затем их высушивают в течение 15 мин в камере, нагретой до 32°C, по истечении 24 ч их снова помещают в заполненный водой цилиндр и измеряют общую продолжительность неподвижности в течение 5 мин

Соединение вводят интераперитональным путем последовательно 24,5 и 1/2 ч перед тестом. Первое введение имеет место сазу после начального испытания плавлением непосредственно перед помещением животных в коробку. Средние значения для оработанных групп сравниван контрольной группой по тесту Дуннета. Получены сравической получены полученых сравнивают

Продукт примера ДА₅₀, мг/кг

10 13

Соединения, полученные в примерах настоящей заявки, относятся к нетоксичным соединениям. Летальные дозы DL_o соединений примеров 2, 8, 39, 54 настоящей заявки получены после введения этих соединений мышам через рот, при этом DL_о максимальная доза не приводящая к летальному исходу через 7 дней Результаты выражены в мг соединения на килограмм веса животного. Соединение примера DI_o, мг/кг

2 200 8 200 39 200

40

54 400

Приведенные результаты показывают отсутствие токсичности соединений настоящей заявке

2

Формула изобретения:

Производные 20,21-диноребурнаменина общей формулы

где R₁ R₃, одинаковые или различные, галоген, C₁ С₅-алкил водород. С 1 С5-алкокси, или нитрогруппа причем R₁ R₃ He могут быть одновременно водородом;

-17-

55

или н-

или их рацематы, или оптические изомеры, или их дололнительные соли с органическими кислотами, обладающие ноотропными и антидепрессивными свойствами.

S C

 \supset

New substd. 20,21-di:nor:eburnamenine derivs. - with affinity for alpha 2 adrenergic receptors, and new 414-oxo precursors

ROUSSEL-UCLAF 87.11.19 87FR-015980 (95.09.10) *EP 317427-A CO7D 461/00

88.11.16 88WO-FR00562 89.07.17 89SU-4614756 Dinoreburnamenine derivs. of formula (I), in all possible racemic or optically active forms, and their acid addn. salts are new. R1, R2 and R3 = H, halo, 1-5C alkyl or alkoxy, OH, CF3, NO2, NH2 (opt. substd. by 1 or 2 1-5C alkyl) or 1-6C aliphatic acylamino, but not all of them can be H; A=B = -CH(OH)-CH2-, CH=CH or -CH2-CH2-. Also new are the intermediates of formula (II), except those where R1, R2 and R3 = 10-R, 11-R' with R and R' = OH or OMe. R1, R2 and R3 = H, Me, Et, OMe, OEt, Cl, OH, CF3 or NO2; the 3 and 16 H atoms are trans.

5 Cpds. e.g. ((+/-)(16alpha)) 11-(chloro,methoxy or methyl) -20,21-dinoreburnamenine and ((+)(14alpha,16alpha)) 14,15-dihydro-10-methoxy- 20,21-dinoreburnamenin-14-ol are specifically claimed.

USE/ADVANTAGE - (I) have affinity for the alpha2 adrenergic receptors so have nootropic, antidepressant, neuronal protective, anti-anoxic and anti-ischaemic activities, e.g. for treating cerebral insufficiency. They are normally administered at daily doses of 10-200mg, orally. Some (II) have similar pharmacological properties. (20pp Dwg.No.0/0)