

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral II — Avaliação PS Prof. Adriano Barbosa

ferencial e Integral II — Avaliação PS		
Prof. Adriano Barbosa	4	
27/02/2018	5	

1	
2	
3	
4	
5	
Nota	

Aluno(a):.....

Todas as respostas devem ser justificadas.

Eng. Civil

Avaliação P1:

1. Encontre o valor da integral definida $\int_0^1 \sqrt[3]{1+7x} \ dx$.

2. Resolva a integral indefinida $\int e^x \operatorname{sen}(x) dx$.

3. Calcule a área da região delimitada pelo gráfico da função $y=\operatorname{tg}(x)$, as retas x=0 e $x=\frac{\pi}{4}$ e pelo eixo x.

4. Encontre uma primitiva para a função $f(x) = \frac{x^2 + 8x - 3}{x^3 + 3x^2}$.

5. Calcule a integral imprópria $\int_0^1 \frac{1}{\sqrt{x}} dx$.

Avaliação P2:

1. Determine se as funções abaixo são solução da equação diferencial $y'' + y = \cos(x)$:

(a)
$$y = \frac{1}{2}x \operatorname{sen}(x)$$

(b)
$$y = \frac{1}{4}\cos(x)$$

2. Classifique em separável e/ou linear e resolva a equação diferencial $y' = xe^{-\text{sen}(x)} - y\cos(x)$.

3. Classifique em separável e/ou linear e resolva a equação diferencial $2ye^{y^2}y'=2x+3\sqrt{x}$.

- 4. Resolva a equação diferencial $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 20y = 0$.
- 5. Use a mudança de variáveis $z=\frac{dy}{dx}$ e resolva a equação diferencial não-linear de segunda ordem

$$\frac{d^2y}{dx^2} = k\sqrt{1 + \frac{dy}{dx}},$$

onde k é uma constante.

Avaliação P3:

1. Determine se as sequências abaixo são convergentes ou divergentes:

(a)
$$x_n = \frac{n^{2018} + 1}{1 + n^{2017}}$$

(b)
$$x_n = \frac{n \cos(n)}{n^2 + 1}$$

2. Identifique e determine se as séries abaixo são convergentes ou divergentes e, quando possível, calcule sua soma:

(a)
$$3+1,26+0,5292+0,222264+\cdots$$

(b)
$$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \cdots$$

- 3. Determine se a série $\sum_{n=1}^{\infty} \frac{n^{2n}}{(1+2n^2)^n}$ é convergente ou divergente.
- 4. Calcule os valores de x para os quais a série $\sum_{n=1}^{\infty} \frac{2^n (x-2)^n}{(n-2)!}$ é convergente.
- 5. Encontre a série de Maclaurin para $f(x) = \ln(4-x)$.

Boa Prova!