Mecánica Analítica Computacional

Coordenadas generalizadas | Ligaduras | Energías cinética y potencial

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. **Péndulo con punto de suspensión libre** [Landau §5 ej. 2]

La partícula de masa m_2 pende de una barra rígida de longitud ℓ de masa despreciable. En su otro extremo hay un dispositivo de masa m_1 enhebrado en una barra rígida horizontal y que se mueve libremente a lo largo de su eje \hat{x} . El dispositivo permite que la barra que pende de él forme con la vertical cualquier ángulo φ .

- X m₁
- a) Escriba la energía cinética, T y potencial, V, en función de las coordenadas generalizadas sugeridas por las figura.
- b) Verifique que al fijar la masa m_1 recupera las expresiones de T y V de un péndulo ideal.

2. **Péndulo doble** [Landau §5 ej. 1]

Una barra rígida de longitud ℓ_1 tiene una masa despreciable respecto a la de la partícula de masa m_1 fija a su extremo. A su vez de esta última pende otra barra rígida, de longitud ℓ_2 que en su extremo tiene otra partícula de masa m_2 , también mucho mayor que aquella de la barra.

- a) Escriba la energía cinética, T y potencial, V, en función de las coordenadas generalizadas sugeridas por las figura.
- b) Verifique que recupera T y V de un péndulo simple si establece $m_1=0,$ $\varphi_1=\varphi_2=\varphi$ y $\ell_1=\ell_2=\frac{\ell}{2}.$

3. (*) Péndulo con punto de suspensión en rotación [Marion (e) ex. 7.5] [Landau §5 ej. 3]

Una partícula de masa m pende de una barra rígida de longitud b. El punto de suspensión engarzado en un aro de radio a dispuesto verticalmente rota respecta a su centro con una frecuencia ω constante. Se asume que todas las posiciones se encuentran en un único plano bidimensional y que la masa de la barra rígida tiene masa despreciable frente a m.

Calcule la energía cinética, T y potencial, V de la partícula con masa m.

4. (*) Pesas acopladas rotando en torno a eje [Landau §5 ej. 4]

La partícula con m_2 se desplaza sobre un eje vertical, y todo el sistema gira con una velocidad angular constante Ω en torno a ese eje. Dicha partícula está unida por barras de longitud a y masa despecible a otras dos de masa m_1 que a su vez pendend de sendas barras idénticas del punto fijo A que describen un ángulo de apertura respecto al eje θ que es variable.

Calcule la energía cinética para cada una de las tres masas y exprese en la forma más compacta posible la del sistema en su conjunto. Haga lo propio con la energía potencial.

Mecánica Analítica Computacional

La idea de este ejercicio es que tienen un eje vertical imaginario, en rosa en las siguientes figuras.

La pelota de arriba es un lugar donde tenemos agarrado al sistema. Y todo gira en torno al eje rosa con velocidad angular CONSTANTE Ω . Por lo tanto las dos masas de los laterales, que tienen masa m_1 rotan entrando y saliendo del plano de la pantalla (imagen de abajo). Esto es equivalente a pensar que el plano celeste de la imagen rota completo sobre el eje rosa.

La masa m_2 es un dispositivo pasante (un buje) que puede ir para arriba y abajo sin rozamiento sobre el eje vertical (rosa). Si la masa de abajo sube, todos los ángulos cambian lo mismo, porque las longitudes de las barras naranjas son todas iguales.

