

งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

การประเมินการติดตั้งอุปกรณ์ป้องกันและตัดตอนที่เหมาะสม เพื่อปรับปรุงค่าความเชื่อถือได้ กรณีศึกษาวงจรระบบจำหน่ายไฟฟ้าพื้นที่การไฟฟ้าส่วนภูมิภาครังสิต

ปัณณธร รอดกำเนิด¹, วัชระ พบพร², คมสันต์ หงษ์สมบัต³, ดุลย์พิเชษฐ์ ฤกษ์ปรีดาพงศ์⁴

¹กองบริการลูกค้า การไฟฟ้าส่วนภูมิภาค เขต 1 (ภาคกลาง) pannathon.r@outlook.com

²กองก่อสร้างและบริหารโครงการ การไฟฟ้าส่วนภูมิภาค เขต 1 (ภาคกลาง) watcharapob@gmail.com

³ภาควิศวกรรมไฟฟ้า มหาวิทยาลัยเกษตรศาสตร์ fengksh@ku.ac.th

⁴ภาควิศวกรรมไฟฟ้า มหาวิทยาลัยเกษตรศาสตร์ fengkdul@ku.ac.th

บทคัดย่อ

การประเมินจุดเพื่อติดตั้งอุปกรณ์ป้องกันและ ตัดตอนในระบบจำหน่ายไฟฟ้าเป็นสิ่งที่ช่วยให้การตัดสินใจใน การเลือกลงทุนเพื่อปรับปรุงค่าความเชื่อถือได้ให้แก่ระบบ จำหน่ายไฟฟ้า โดยบางครั้งรูปแบบการจัดสรรงบลงทุนอาจ ได้รับจัดสรรมาอย่างจำกัด แต่มีความจำเป็นต้องประเมิน สภาพระบบจำหน่ายให้มีความน่าเชื่อถือสูงขึ้น โดยพิจารณา คัดเลือกจากวงจรที่ต้องการปรับปรุงข้อมูลสถิติไฟฟ้าขัดข้อง ย้อนหลัง เพื่อปรับปรุงค่าดัชนีค่าความเชื่อถือได้

การวิเคราะห์ค่าดัชนีความเชื่อถือได้ในทางทฤษฎี หากในระบบจำหน่ายไฟฟ้ามีอุปกรณ์ป้องกันและตัดตอน จำนวนมากจะช่วยลดเหตุการณ์ไฟฟ้าขัดข้องเป็นวงกว้างได้ แต่หากวงจรจำหน่ายไฟฟ้ามีระยะทางยาว และมีวงจรแยก มากจะส่งผลให้เงินลงทุนในการติดตั้งอุปกรณ์ป้องกันและตัด ตอนสูงขึ้น นั้นอาจหมายถึงการได้ค่าดัชนีความเชื่อถือได้ที่ไม่ เหมาะสมกับเงินที่ลงทุนไป

บทความนี้นำเสนอการพิจารณาจุดเพื่อประเมินการ ติดตั้งอุปกรณ์ป้องกันและตัดตอนที่เหมาะสม และคุ้มค่ากับ เงินลงทุนที่ได้รับจัดสรร เพื่อให้ได้ค่าดัชนีความเชื่อถือได้ที่ เหมาะสมที่สุด โดยผลการศึกษาพบว่าจากวิธีการดังกล่าว สามารถช่วยลดเงินลงทุนลงได้ประมาณ 137,509 บาท โดย พิจารณาจากค่าของ CENS ที่เปลี่ยนแปลงในแต่ละรูปแบบ การลงทุน

คำสำคัญ: การปรับปรุงดัชนีความเชื่อถือได้, การประเมินจุด ติดตั้งอุปกรณ์ป้องกันและตัดตอน, SAIFI, SAIDI, ENS, CENS

1. บทน้ำ

การไฟฟ้าส่วนภูมิภาค (กฟภ.) รับผิดชอบหน้าที่ในการ ให้บริการจำหน่ายไฟฟ้าให้กับพื้นที่ต่างๆของประเทศไทยนอก เขตกรุงเทพฯ และปริมณฑลโดยมีระดับแรงดันไฟฟ้า 3 ระดับ ได้แก่

1.แรงดันระดับสูง 115 เควี เป็นระดับแรงดันใช้งานส่ง ระหว่างสถานีไฟฟ้ากับสถานีไฟฟ้า และจ่ายให้กับผู้ใช้ไฟฟ้า รายใหญ่บางราย

2.แรงดันระดับกลาง 22-33 เควี เป็นระดับแรงดันใช้งาน จ่ายไปตามสายจำหน่ายและจ่ายให้กับภาคอุตสาหกรรมหรือ ผู้ใช้ไฟฟ้าเฉพาะราย

3.แรงดันระดับต่ำ 0.240/0.416 เควี เป็นระดับแรงดัน ใช้งานภาคครัวเรือนและอุตสาหกรรมขนาดเล็ก

ระบบจำหน่ายส่วนใหญ่ของ กฟภ. เป็นระบบจำหน่าย ระบบเรเดียลเหนือดิน (Radial Overhead Line) ซึ่งระบบ ดังกล่าวมีความน่าเชื่อถือได้ของระบบไม่สูงมาก เพราะมีปัจจัย เสี่ยงหลายด้านที่ส่งผลกระทบกับระบบทำให้เกิดไฟฟ้าขัดข้อง ได้ จึงมีความจำเป็นต้องมีเกณฑ์ในการชี้วัดประสิทธิภาพ [1] และคุณภาพความน่าเชื่อถือได้ของระบบไฟฟ้า เพื่อสร้างความ เชื่อมั่นให้กับผู้ใช้บริการ ตามมาตรฐานสากลนิยมดัชนีตัวชี้วัดที่ ใช้ในการประเมินมีหลายดัชนี ได้แก่ 1) SAIFI, 2) SAIDI, 3) CAIDI, 4) ASAI, 5) ASUI และ 6) AENS [2] แต่ที่นิยมใช้ งานเพื่อวัดค่าความเชื่อถือได้ของระบบไฟฟ้า ได้แก่ 1. SAIFI และ 2. SAIDI ซึ่งทางหน่วยงานที่กำกับดูแล กฟภ. เป็นผู้ กำหนดเป้าหมายตัวดัชนีมาเพื่อประเมินประสิทธิภาพ กฟภ.

บทความนี้นำเสนอกรณีศึกษาการประเมินจุดติดตั้ง อุปกรณ์ป้องกันและตัดตอนที่เหมาะสม เพื่อใช้ประกอบการ พิจารณาในการเลือกปรับปรุงระบบจำหน่ายไฟฟ้า ให้เกิด ประโยชน์สูงสุดด้านความเชื่อถือได้เทียบกับงบประมาณที่ต้อง ลงทุนของ กฟภ. และงบประมาณที่ได้รับการจัดสรรตาม เงื่อนไข

การประเมินความเชื่อถือได้ของระบบจำหน่ายไฟฟ้า การประเมินความเชื่อถือได้ในอดีต

การประเมินความเชื่อถือได้ของระบบไฟฟ้าในอดีตใช้ เพียงค่าดัชนี SAIFI และ SAIDI เพื่อวิเคราะห์และประเมิน สาเหตุในการแก้ไขปัญหาวงจรที่เกิดเหตุการณ์ไฟฟ้าขัดข้อง พร้อมทั้งวางแผนการปรับปรุงระบบจำหน่ายให้มีประสิทธิภาพ มากขึ้น ตลอดจนเป็นการสร้างความเชื่อมั่นให้กับผู้ใช้ไฟฟ้า ส่งผลให้ในบางครั้งมีการลงทุนปรับปรุงระบบจำหน่ายไฟฟ้าที่ ไม่คุ้มค่ากับเงินลงทุนที่เสียไป เพราะพิจารณาค่าของ SAIFI และ SAIDI อย่างเดียว โดยสมการคิดค่าดัชนีแสดงดังสมการที่ 1 และ สมการที่ 2 ตามลำดับ

เมื่อ SAIFI คือ ค่าเฉลี่ยจำนวนครั้งไฟดับต่อผู้ใช้ไฟฟ้าทั้ง ระบบ มีหน่วยเป็น ครั้งต่อรายต่อปี

SAIDI คือ ค่าเฉลี่ยระยะเวลาไฟดับทั้งหมดใน ระยะเวลาที่พิจารณาต่อผู้ใช้ไฟทั้งระบบ มีหน่วยเป็น นาทีต่อ รายต่อปี

2.2 การประเมินความเชื่อถือได้ในอนาคต

การประเมินความเชื่อถือได้ของระบบในอนาคต จะ พิจารณาข้อมูลในอดีตที่ผ่านมาคำนวณหาค่าอัตราการชำรุด (Failure Rate) และระยะเวลาในการซ่อมของอุปกรณ์ใน ระบบ เพื่อคาดการณ์ หรือพยากรณ์สมรรถนะของระบบไฟฟ้า ในปัจจุบันที่เกิดขึ้นเทียบกับค่าที่ปรับปรุงได้ในอนาคต และ นำมาวางแผนปรับปรุงระบบไฟฟ้า โดยการพิจารณาความ เชื่อถือได้ในอนาคตจะใช้ค่าดัชนีที่วัดสมรรถนะของระบบไฟฟ้า ประกอบด้วย SAIFI, SAIDI, ENS และ CENS แสดงในสมการ ที่ 3, 4, 5 และ 6 ตามลำดับ [3]

$$SAIFI = \frac{\sum \lambda_i N_i}{N_T}$$
 (3)

เมื่อ λ_i คือ อัตราการขัดข้อง (ครั้งต่อปี) N_i คือ จำนวนผู้ใช้ไฟในจุดโหลดที่ i

 N_T คือ จำนวนผู้ใช้ไฟทั้งหมด

$$SAIDI = \frac{\sum U_i N_i}{N_T} \tag{4}$$

เมื่อ U_i คือ ช่วงเวลาที่เกิดไฟดับตลอดทั้งปีของผู้ใช้ไฟจุด โหลดที่ i

$$ENS = \sum L_C d$$
 (5)

เมื่อ \mathbf{L}_{C} คือ ค่าโหลดเฉลี่ยที่สูญเสียไปเนื่องจากไฟดับ d คือ ช่วงระยะเวลาของการเกิดไฟดับ (ชั่วโมง)

CENS =
$$(E cost) x ENS$$
 (6)

เมื่อ E-cost คือ ค่าพลังงานไฟฟ้าต่อหน่วย (บาท/kWh)

3. ระบบจำหน่ายของการไฟฟ้าส่วนภูมิภาค

ระบบจำหน่ายแรงสูงของ กฟภ. แบ่งออกเป็น 2 ระบบ ได้แก่ 1.ระบบเรเดียล (Radial) และ 2.ระบบวงรอบเปิด (Open Loop) โดยระบบจำหน่ายส่วนใหญ่ใช้การติดตั้งแบบ เหนือดิน โดยมีรูปแบบของระบบจำหน่ายไฟฟ้าเรเดียลแสดง ดังรูปที่ 1

รูปที่ 1 รูปแบบของระบบจำหน่ายไฟฟ้าเรเดียล

การประสานความสัมพันธ์ (Coordination) ของอุปกรณ์ ป้องกันในระบบจำหน่ายไฟฟ้ามีความสำคัญมาก เพื่อป้องกัน การชำรุดเสียหายของอุปกรณ์และสามารถจ่ายไฟฟ้าได้อย่าง ต่อเนื่อง รวดเร็ว ลดผลกระทบที่จะเกิดไฟฟ้าดับเป็นวงกว้าง ทั้งแบบชั่วคราวและถาวร ส่งผลกระทบต่อผู้ใช้ไฟฟ้าให้น้อย ที่สุด รูปที่ 2 ลักษณะของโครงสร้างการควบคุมระบบป้องกัน ไฟฟ้า

กฟภ. จึงให้ความสำคัญในการประสานความสัมพันธ์ของ อุปกรณ์ป้องกันในระบบจำหน่ายไฟฟ้า ตัวอย่างเช่น เซอร์กิต เบรกเกอร์ที่สถานีไฟฟ้ากับรีโคลสเซอร์ในระบบจำหน่าย, เซอร์ กิตเบรกเกอร์กับฟิวส์แรงสูง เป็นต้น [4] เพื่อให้การป้องกัน ระบบจำหน่ายไฟฟ้าสมบูรณ์และลดอัตราการเกิดไฟฟ้าขัดข้อง เป็นบริเวณกว้าง

รูปที่ 2 ลักษณะของโครงสร้างการควบคุมระบบป้องกันไฟฟ้า

4. การพิจารณาติดตั้งอุปกรณ์ป้องกันและตัดตอนในสาย ป้อนระบบจำหน่ายไฟฟ้า

การติดตั้งอุปกรณ์ป้องกันและตัดตอนในระบบจำหน่าย ไฟฟ้าค่าความเชื่อถือได้จะเพิ่มมากขึ้นตามจำนวนอุปกรณ์ที่ ติดตั้ง เนื่องจากทำให้สามารถตัดจ่ายโหลดเพื่อลดเหตุการณ์ ไฟฟ้าดับให้วงแคบลง ดังนั้นในการพิจารณาเลือกวงจร จำหน่ายเพื่อปรับปรุงค่าดัชนีความเชื่อถือได้ จึงควรคัดเลือก วงจรที่มีเหตุการณ์เกิดไฟฟ้าขัดข้องบ่อยครั้ง และมีระยะเวลา ในการดับนาน พื้นที่การไฟฟ้าส่วนภูมิภาครังสิตมีวงจร จำหน่ายไฟฟ้าหลากหลายรูปแบบ เนื่องจากเป็นพื้นที่ติดกับ เขตกรุงเทพฯ และปริมณฑล เมื่อพิจารณาข้อมูลไฟฟ้าขัดข้อง สูงสุด 3 อันดับย้อนหลัง 4 ปี พบว่ามีสถิติไฟฟ้าขัดข้องเกิดขึ้น สูงสุดจำนวน 1 วงจร คือ สายป้อนธรรมศาสตร์วงจรที่ 14 แสดงดังตารางที่ 1

ตางรางที่ 1 สถิติไฟฟ้าขัดข้องสูงสุด 3 อันดับ ย้อนหลัง 4 ปี

ที่	ปี	วงจร	จำนวนไฟดับ (ครั้ง)
1	2560	RSA04	21
2	2560	TMS12	21
3	2560	TMS14	20
4	2561	TMS11	15
5	2561	TMS14	16
6	2562	TMS12	12
7	2562	TMS11	12
8	2562	TMS14	16
9	2563	TMS14	17
10	2563	TMS11	15
11	2563	BKU01	14

5. กรณีศึกษาสายป้อนระบบจำหน่ายไฟฟ้าพื้นที่การไฟฟ้า ส่วนภูมิภาครั้งสิต

ข้อมูลในการพิจารณาเพื่อวิเคราะห์การติดตั้งอุปกรณ์ ป้องกันและตัดตอนบนระบบจำหน่ายไฟฟ้าของสายป้อน ธรรมศาสตร์ที่ 14 มีรายละเอียด แสดงดังตารางที่ 2 และ ลักษณะการจ่ายไฟฟ้าของสายป้อนธรรมศาสตร์วงจรที่ 14 แสดงดังรูปที่ 3

รูปที่ 3 ลักษณะการจ่ายไฟจริงของสายป้อนวงจรที่ 14 สถานีไฟฟ้าธรรมศาสตร์

ตางรางที่ 2 รายละเอียดของสายป้อนธรรมศาสตร์วงจรที่ 14

ที่	รายการ	จำนวน
1	ความยาวสายป้อนหลัก	25.05 วงจร/กม.
2	ความยาวสายป้อนแยก	9 วงจร/กม.
3	โหลดผู้ใช้ไฟรวม	23.55 MW
4	ผู้ใช้ไฟทั้งหมด	5,146 ราย
5	สวิตช์ตัดตอน	3 จุด
6	ดรอปเอาท์ฟิวส์สายป้อนแยก	5 จุด
7	รีโคลสเซอร์	0 จุด

5.1 การวิเคราะห์ความคุ้มทุน

การวิเคราะห์ความคุ้มทุนในการปรับปรุงระบบจำหน่าย ไฟฟ้าให้มีความเชื่อถือได้สูงขึ้นนั้น ต้องมีการลงทุนในการ ติดตั้งอุปกรณ์ป้องกันและอุปกรณ์ตัดตอน ตลอดจน เปลี่ยนแปลงชนิดของสายตัวนำให้เป็นแบบหุ้มฉนวนไม่เต็ม พิกัด (SAC) เพื่อลดโอกาสที่จะเกิดสาเหตุไฟฟ้าขัดข้องได้ เมื่อใดที่เกิดเหตุการณ์ไฟฟ้าขัดข้องจะเกิดสภาวะต้นทุน ค่าใช้จ่ายในการจัดหาแหล่งจ่ายไฟฟ้า (Cost of Supply) ส่งผลให้ค่าอัตราต่อหน่วยเพิ่มขึ้น แต่ในขณะเดียวกันหากการ ลงทุนสูงแต่ได้ค่าความเชื่อถือได้กลับมาไม่มากจากค่าฐานก็ อาจไม่คุ้มค่าในการลงทุน จึงเป็นความสำคัญในการประเมิน ความคุ้มค่าของการลงทุนในการติดตั้งอุปกรณ์ป้องกันและตัด ตอน เทียบกับค่า CENS ที่ลดลงจากกรณีฐานของระบบที่ได้รับ การปรับปรุง [5]-[7]

5.2 ข้อมูลสำหรับการวิเคราะห์ค่าดัชนีความเชื่อถือได้

การวิเคราะห์ค่าดัชนีความเชื่อถือได้ของสายป้อน ธรรมศาสตร์วงจรที่ 14 จำลองลักษณะการจ่ายไฟด้วยวงจร เส้นเดียว (Single Line Diagram) เพื่อให้สามารถวิเคราะห์ ง่ายขึ้นโดยกำหนดจุดสายป้อนหลักและสายป้อนแยก ดังแสดง รปที่ 4

ข้อมูลการเชื่อมต่อของโหลดแต่ละจุดบ่งบอกถึงจำนวนผู้ใช้ ไฟฟ้าที่อยู่แต่ละวงจนแยก และปริมาณการใช้งานของโหลดแต่ ละจุด โดยอ้างอิงข้อมูลจากระบบ GIS ของ กฟภ. ในการดึง ออกมาวิเคราะห์

รูปที่ 4 วงจรเส้นเดียวของสายป้อนธรรมศาสตร์วงจรที่ 14

การคำนวณกรณีฐานของสายป้อนธรรมศาสตร์วงจรที่ 14 โดยพิจารณาค่าดัชนี SAIFI, SAIDI และ CENS ตัวแปรที่ต้อง นำมาคำนวณเพิ่มเติมได้แก่ อัตราการขัดข้อง (λ) โดยอัตราการ ขัดข้องของสายป้อนหลักสามารถหาได้จากสมการที่ 7

$$\lambda_{M}=rac{{}^{\circ}$$
านวนการเกิดเหตุขัดข้อง (7) ${}^{\circ}$ ชำนวนปี x ความยาวสายป้อนหลัก

เมื่อคำนวณอัตราการขัดข้องของสายป้อนหลักแต่ละช่วง ทำให้ ได้ค่าอัตราการขัดข้องแสดงในตารางที่ 3

ตางรางที่ 3 อัตราการขัดข้องของสายป้อนหลักแต่ละช่วง

ช่วง	ความยาว (km)	λ
Α	1.2	0.191616766
В	1.2	0.191616766
C	2.2	0.351297405
D	1.57	0.250698603
Е	0.8	0.127744511
F	1	0.159680639
G	4.3	0.686626747
Н	5.65	0.902195609
1	7.58	1.210379242

การคำนวณอัตราการขัดข้องของสายป้อนแยกในแต่ละ ช่วงสามารถหาได้จากสมการที่ 8

$$\lambda_L = rac{\hat{ ext{ จำนวนการเกิดเหตุขัดข้อง}}{\hat{ ext{ จำนวนปี }} x \text{ ความยาวสายป้อนแยก}}$$
 (8)

อัตราการขัดข้องของสายป้อนแยกในแต่ละช่วงแสดงค่า ในตารางที่ 4

ตางรางที่ 4 อัตราการขัดข้องของสายป้อนแยกแต่ละช่วง

ช่วง	ความยาว (km)	λ
а	0.755	0.671111111
b	1.479	1.314666667
С	0.15	0.133333333
d	0.53	0.471111111
е	1.34	1.191111111
f	0.816	0.725333333
g	0.39	0.346666667
h	1.28	1.137777778
i	2.26	2.008888889

6. ผลของกรณีศึกษาวงจรระบบจำหน่ายไฟฟ้าพื้นที่การ ไฟฟ้าส่วนภูมิภาครั้งสิต

ผลการศึกษากรณีฐานของวงจรจำหน่ายไฟฟ้าสถานี ไฟฟ้าธรรมศาสตร์ สายป้อนที่ 14 โดยอ้างอิงจากค่าเสียโอกาส ของการจำหน่ายไฟฟ้าที่ราคา 3.5 บาท/kWh ทำให้ทราบค่า ดัชนีความเชื่อถือได้ของวงจรจำหน่ายไฟฟ้า ซึ่งมีค่าต่าง ๆ แสดงในตางรางที่ 5

ตางรางที่ 5 ค่าดัชนีความเชื่อถือได้ กรณีฐาน

		63	
ดัชนี	ค่า	หน่วย	
SAIFI	7.751579913	ครั้ง/ราย/ปี	
SAIDI	11.236772	ชั่วโมง/ราย/ปี	
ENS	269,816.4018	kWh∕ปี	
*E-cost	3.5	บาท/kWh	
CENS	944,357.41	บาท/ปี	

โดยขั้นตอนในการประเมินเริ่มจากคำนวณค่าดัชนีใน กรณีฐาน หลังจากนั้นพิจารณาติดตั้งอุปกรณ์ป้องกันและตัด ตอนในแต่ละช่วงของสายป้อนหลักและสายป้อนแยก เปรียบเทียบค่าดัชนีความเชื่อถือได้ที่ได้ก่อนและหลังการ ปรับปรุง หลังจากนั้นพิจารณาเงินลงทุนเพื่อเทียบกับค่าดัชนี ความเชื่อถือได้ที่ลดลง หรือค่าเป้าหมายที่คาดหวัง และ งบประมาณที่ได้รับการจัดสรรประจำปี ซึ่งจากการศึกษาได้ พิจารณาเลือกติดตั้งอุปกรณ์ป้องกันและตัดตอนจำนวน 3 กรณีเทียบกับค่ากรณีฐานได้ผลการศึกษาสรุปดังตารางที่ 6

ตางรางที่ 6 ค่าดัชนีความเชื่อถือได้ ทุกกรณี

กรณีที่	ดัชนีความเชื่อถือได้			
	SAIFI	SAIDI	ENS	CENS
กรณีฐาน	7.7516	11.2368	269,816	944,357
1	2.5542	4.7002	230,528	806,848
2	2.9053	4.9308	240,244	840,854
3	2.9053	3.8560	184,714	646,498

6. สรุป

การปรับปรุงค่าดัชนีความเชื่อถือได้ของระบบจำหน่าย ไฟฟ้าหากพิจารณาเพียงค่าดัชนีความเชื่อถือได้อาจจะส่งผล กระทบต่อเงินลงทุนที่สูงเกินความจำเป็นในการได้มาซึ่งค่า ดัชนีความเชื่อถือได้ที่ลดลงไม่มากเมื่อเทียบกับค่าดัชนีความ เชื่อถือได้เดิมก่อนที่มีการปรับปรุงค่าดัชนี

โดยบทความนี้ได้นำเสนอการพิจารณาค่า CENS ในการ ช่วยเหลือและประเมินความคุ้มค่าในการเลือกลงทุนเพื่อ ปรับปรุงค่าดัชนีความเชื่อถือได้ ทำให้สามารถพิจารณาเลือก รูปแบบในการลงทุนที่เหมาะสมกับค่าดัชนีความเชื่อถือได้ที่ดี ขึ้น

การพิจารณาค่า CENS ทำให้สะท้อนเห็นถึงอัตราของ รายได้ และการสูญเสียโอกาสในการขายไฟฟ้า เมื่อเกิดเหตุ ไฟฟ้าขัดข้องเทียบกับค่าดัชนีความเชื่อถือได้ที่ได้กลับคืนมากับ เงินลงทุนที่เสียไปนั้น จะทำให้พิจารณาเลือกค่าดัชนีที่ เหมาะสมกับการลงทุนได้มากกว่าที่จะเลือกจากค่าดัชนีที่ดี ที่สุด

กิตติกรรมประกาศ

บทความฉบับนี้เขียนเสร็จลุล่วงด้วยดีได้รับความกรุณา และคำแนะนำจาก ผศ.ดร.ดุลย์พิเชษฐ์ ฤกษ์ปรีดาพงศ์ และ ผศ.ดร.คมสันต์ หงษ์สมบัติ

ขอขอบพระคุณ ชมรมวิศวกร การไฟฟ้าส่วนภูมิภาค เขต 1 (ภาคกลาง) และคุณอนุรักษ์ เชยชุ่ม ที่สนับสนุนและ แนะนำ ให้คำปรึกษาเกี่ยวกับวิธีการเขียนบทความจนเสร็จ สมบูรณ์ ผู้เขียนหวังเป็นอย่างยิ่งว่าบทความฉบับนี้จะเป็น ประโยชน์ต่อ กฟภ. และผู้ที่สนใจ หรือกำลังศึกษาต่อไป

เอกสารอ้างอิง

[1] รศ.ดร.ชำนาญ ห่อเกียรติ. 2553. "ความน่าเชื่อถือได้ และการบำรุงรักษาระบบจำหน่ายไฟฟ้า" พิมพ์ครั้งที่ 2. โครงการวิจัยและพัฒนาความชำนาญด้านไฟฟ้ากำลัง. ภาควิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.

- [2] รศ.ตร.นัฐโชติ รักไทยเจริญชีพ 2559. "การติดตั้งแหล่ง ผลิตไฟฟ้าแบบกระจายตัวเพื่อเพิ่มความเชื่อถือได้ใน ระบบจำหน่ายไฟฟ้า" วารสารวิชาการและวิจัย มหาวิทยาลัยเทคโนโลยีราชมงคลพระนคร, ฉบับที่ 2, ปีที่ 10, กันยายน, กรุงเทพฯ.
- [3] ผศ.ดร.ดุลย์พิเชษฐ์ ฤกษ์ปรีดาพงศ์. 2561. "เอกสาร ประกอบการสอนรายวิชาความเชื่อถือได้ของระบบ จำหน่ายกำลัง" ภาควิชาวิศวกรรมไฟฟ้า คณะ วิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
- [4] รศ.ดร.ธนบูรณ์ ศศิภานุเดช. 2538. "การป้องกันระบบ ไฟฟ้ากำลัง" ภาควิชาวิศวกรรมไฟฟ้า คณะ วิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคล ธัญบุรี, ปทุมธานี.
- [5] เพ็ญจันทร์ สิงห์โอ และ อ.ดร.พิสุทธิ์ รพีศักดิ์ 2554. "วิธีการตั้งค่าเป้าหมายความเชื่อถือได้ของระบบ จำหน่ายไฟฟ้ากำลังโดยใช้เทคนิคการวิเคราะห์เส้น ห่อหุ้ม" วารสารมหาวิทยาลัยเกษตรศาสตร์, ฉบับที่ 78, ปีที่ 24, ตุลาคม-ธันวาคม, กรุงเทพฯ.
- [6] A.A.Chowdhury "Distribution System Risk Assessment Based-On Historical Reliability Performance" 2005. IEEE International Conference on Electro Information Technology, Lincoln, NE, pp.7.
- [7] Hong-shan Zhao, Hong-yang Liu, Song Chen, Ying-ying Wang and Hang-yu Zhao "Reliability assessment of distribution network considering preventive maintenance" 2016. IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, pp.1-5.