Q1 1 Point What is the maximum number of eigenvectors for a matrix with dimensions 4×5 ? 04 0 Q2 1 Point What is the maximum rank for a matrix with dimensions 4×5 ? 04 0 Q3 1 Point Which of the following values of a would make the matrix 3 -12 $^{-1}$ 2 2 full rank? (Check all that are correct.) **✓** 5 6

-4

✓ 0

Q4

1 Point

The union of two sets is the set of all points that are in **either** of the two sets. Is the union of two convex sets also a convex set?

- O Yes
- No

Q5

1 Point

Are the vectors $\binom{3}{2}$, $\binom{-1}{0}$, and $\binom{1}{-1}$ a basis?

- O Yes
- No

Q6

1 Point

The vector $inom{3}{2}$ can be decomposed as $-\frac{1}{3} inom{1}{-1} + \frac{5}{3} inom{x}{1}.$

The value of x is 2

Q7

1 Point

Let ${\bf A}$ be an 5×5 matrix with rank 4. How many solutions are there to the <code>homogeneous</code> system of equations

$$Ax = 0$$
?

- 00
- 01
- infinitely many
- O not enough information

Q8 1 Point
Let ${f A}$ be an 5×5 matrix with rank 4. How many solutions are there to the <code>inhomogeneous</code> system of equations ${f Ax}={f b}$?
00
O 1
O infinitely many
o not enough information
Q9 1 Point
The dot product between any two eigenvectors is zero.
O True
⊙ False
Q10 1 Point
The multivariate Newton's method will terminate at a local maximum, minimum, or inflection point.
⊙ True
O False