

BIOM1010 Engineering in Medicine & Biology Semester 2, 2018

Week 9

Biomaterials & Tissue Engineering

Dr Jelena Rnjak-Kovacina

Organ Transplantation

- In 2010, 8% of the world's population (524 million people) was **aged 65+** and this number is expected to triple to about 1.5 billion people by 2050
- In 2013, 117,733 solid organs were transplanted worldwide, representing less than 10% of global needs
- Over half a million Americans undergo tissue transplantation each year
- >100,000 Americans and ~1,500 Australians are on the donor organ waiting list at any
 one time, many of whom will die before a suitable organ can be found

Tissue transplants

Imagine...

"Imagine a world where transplant patients do not wait for a donor or a world where burn victims leave the hospital without disfiguring scars. Imagine implant materials that can 'grow', reshape themselves, or change their function as the body requires"

-Prof M.V. Sefton

Is this tissue engineering?

Tissue engineering

An interdisciplinary field that applies principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ (Langer & Vacanti, 1993, Science 260: 920-6)

Tissue engineering is the <u>creation of new tissue for the therapeutic</u> <u>reconstruction of the human body</u>, by the deliberate and controlled stimulation of selected target cells through a systematic combination of molecular and mechanical signals (Williams D.F. To engineer is to create, Trends in Biotechnology, 2006, 24, 4-8)

Tissue engineering: an overview

Tissue engineering: an overview

Biomaterials

Biomaterials

Biomaterials

A few examples of different material formats

Cells

• "An autonomous self-replicating unit that may exist as functional independent unit of life (as in the case of unicellular organism), or as sub-unit in a multicellular organism (such as in plants and animals) that is specialised into carrying out particular functions

towards the cause of the organism as a whole"

Cell culture

- Cells from various tissues of plants and animals can be grown and cultured in artificial media outside the body→ Cell culture
- Involves the harvesting of individual cells from a specific tissue and maintaining the cells in an incubator at body temperature (37° C) in a plastic or glass flask, covered with a rich medium that mimics that of the internal environment of the human body

Cell culture

Cells

Where do we source cells for tissue engineering applications?

- Source
 - Own- autologous
 - Donor- allogeneic

- Differentiated
- Stem cells

Signals

- Biochemical- eg. growth factors
- Mechanical- eg. strain bioreactor
- Electrical- eg. electrical stimulation

Challenges

- Source of cells
- Material selection & material source
- Appropriate signals
- Cost
- Ethical issues
- Vascularisation

Bodies Exhibit: Circulatory System

What else can tissue engineering do?

- Replacement and regeneration of damaged, diseased or missing tissues/organs
- In vitro tissue models→ imagine a world with no animal testing

Disease modeling Drug screening Chemicals Toxicology & Aerosol Immune therapy soluble Food Alleray biomarkers: Functional food Food Chemokines Stimuli Cellular phenotyping Cell damage &

What else can tissue engineering do?

- Replacement and regeneration of damaged, diseased or missing tissues/organs
- In vitro tissue models → imagine a world with no animal testing
- Artificial meat

What else can tissue engineering do?

- Replacement and regeneration of damaged, diseased or missing tissues/organs
- In vitro tissue models → imagine a world with no animal testing
- Artificial meat
- Robotics

Questions

j.rnjak-kovacina@unsw.edu.au

Thank you

