SÃO PAULO TECH SCHOOL CIÊNCIA DA COMPUTAÇÃO – CCO1A

AMANDA OLIVEIRA DA SILVA – 04251104
ANA LUIZA SANTOS ROBETO – 04251032
EDUARDO NUNES DE LIMA – 0425
LUCAS PEREIRA AMORIM SANTOS – 04251058
NICOLAS BARBOSA PEREIRA – 04251009
SAMUEL ANTUNES SANTOS – 04251054

GRUPO 11

MONITORAMENTO DE LUMINOSIDADE EM ESTUFAS DE MORANGO NO RIO GRANDE DO SUL

SÃO PAULO

2025

SUMÁRIO

1.	Contexto	4
2.	Objetivo	6
3.	Justificativa	7
4.	Escopo	8
4.	1. Premissas	8
4.2	2. Restrições e limitações	8
5.	Entregáveis / Requisitos	9
6.	MACRO CRONOGRAMA	10
7.	POSSÍVEIS RISCOS	10
8.	Diagrama de visão de negócio	11
9.	Referências	14

LISTA DE FIGURAS

Figura 1 - UniAnchieta - Engenho	04
Figura 2 - Demonstração do Arduino	06
Figura 3 - Diagrama de Negócios	11

1. CONTEXTO

O cultivo de morangos está em expansão no Brasil e no mundo. A fruta avançou na produção em termos globais: de 2011 para 2021, o total de hectares cultivados no mundo subiu 20%, enquanto a produção avançou 44%, conforme dados mais recentes da FAO/ONU (Organização das Nações Unidas para Alimentação e Agricultura).

O Brasil é o maior produtor de morango da América Latina, com 165 mil toneladas/ano (EMBRAPA, 2020), cultivadas em 4.500 hectares. Minas Gerais lidera a produção nacional (51%), seguido por Rio Grande do Sul (13%) e Paraná (13%):

Estado	Área (ha)	Produção (ton)	Produtividade (ton/ha)
MG	2.100	84.000	41
PR	650	21.450	30
RS	518	21.763	42
SP	425	13.801	32
ES	247	8.510	33
SC	225	9.900	20
DF	200	7.400	40
BA	100	2.700	30
RJ	35	980	60
Total	4.500	165.440	•

Figura 1: UniAnchieta - Engenho.

O Rio Grande do Sul responde por 13% da produção nacional (2º lugar), destacandose pela qualidade superior da fruta, que movimenta cerca de R\$ 375 milhões/ano no estado. A agricultura familiar é a base do setor: 70% da produção nacional vem de pequenos produtores, para quem o morango representa 80% da renda anual (SEBRAE/RS).

Para mitigar riscos climáticos, o cultivo em estufas se expandiu, elevando a produtividade do RS para 42 toneladas/hectare (acima da média nacional). Porém, a luminosidade inconsistente nessas estruturas tornou-se um problema crítico:

- Excesso de luz (>1.500 luxes): Queima folhas/frutos e aumenta estresse hídrico.
- Falta de luz (<800 luxes): Reduz fotossíntese em 40% (FAO), causando maturação irregular e estiolamento.

Isso resulta em perdas na safra que variam de produtor para produtor além de custos extras com energia e água. As mudanças climáticas e a sensibilidade de variedades modernas de morango agravam o cenário, exigindo soluções urgentes para manter a competitividade e sustentabilidade do setor.

2. OBJETIVO

Desenvolver, em um período de cinco meses, um sistema de monitoramento com sensores de luz, capaz de monitorar em tempo real a luminosidade em estufas de morango no Rio Grande do Sul. O sistema fornecerá dashboards analíticos, permitindo a visualização detalhada dos dados, além de gerar alertas automáticos e possibilitar a comparação de informações históricas para otimizar o cultivo.

Figura 2: Demonstração do Arduino, imagem criada pelos desenvolvedores do projeto Lux Berry

3. JUSTIFICATIVA

O monitoramento preciso da luminosidade pode reduzir perdas em até **50%**, otimizando custos com iluminação e irrigação. Além disso, melhora a qualidade dos frutos, aumentando sua competitividade e podendo elevar seu valor em até **50%**.

- Menos desperdício: Controle eficiente da luz;
- Mais produtividade: Melhor uso dos recursos;
- Sustentabilidade: Economia de energia e água;
- Qualidade superior: Frutos mais valorizados no mercado.

4. ESCOPO

4.1. PREMISSAS

- A estufa possui energia elétrica e tomadas 110v para alimentar o Arduino e os sensores de luminosidade;
- A estufa possui um computador para rodar o sistema de monitoramento;
- A estufa possui conexão com a internet estável e de pelo menos 10 MB que funcione ininterruptamente;
- O ambiente da estufa é adequado para a instalação do Arduino e dos sensores, sem riscos de danos por água;
- Os produtores estão dispostos a utilizar o sistema e seguir as recomendações geradas a partir dos dados coletados.

4.2. RESTRIÇÕES E LIMITAÇÕES

- O projeto será desenvolvido com foco no monitoramento de luminosidade;
- O sistema será projetado para funcionar em estufas fechadas de vidro ou lona de pequeno e médio porte, podendo necessitar de ajustes para ser aplicado em grandes escalas;
- O projeto terá duração de 5 meses, com entregas divididas em 3 sprints, limitando o escopo de desenvolvimento e testes;
- O sistema será desenvolvido para operar em condições climáticas específicas do Rio Grande do Sul;
- O sistema não inclui a automação completa da estufa (como controle de irrigação ou temperatura).

5. ENTREGÁVEIS / REQUISITOS

Para a realização do projeto, será garantido que os seguintes resultados sejam entregues:

- Site institucional que possui:
 - > Tela de login;
 - > Tela de cadastro;
 - Uma calculadora pertinente ao contexto do trabalho;
 - > Tela para análise dos dados coletados(dashboard);
- Arduino montado e programado para obter os dados necessários;
- Banco de dados preparado para receber os dados obtidos pelo Arduino;
- Modelagem do banco de dados.

Partindo para os requisitos de desenvolvimento, o projeto precisa contar com estudantes de programação da faculdade SPTECH, todos possuindo conhecimento em:

- Front-end;
- Back-end;
- Banco de dados;
- Virtualização e Sistema Operacional;
- Arduino e sensor de luminosidade;
- Documentação (Metodologia Scrum).

6. MACRO CRONOGRAMA

- Sprint 1: Iniciar a documentação do projeto, realizar a tela de simulador financeiro, começar a usar uma ferramenta de gestão de projeto, criação de tabelas do banco de dados do projeto, apresentar o Arduino com o sensor funcionando, realizar os protótipos das telas no site e mostrar uma máquina virtual (VM) de forma local.
- Sprint 2: Realização das telas projetadas (sem mais informações).
- Sprint 3: Apresentar o projeto completo (sem mais informações).

7. POSSÍVEIS RISCOS

- A saída de um (ou mais) integrante(s) do projeto.
- A falta de internet e/ou hardwares que são necessários para a realização do projeto (por parte de um ou mais integrantes).

8. DIAGRAMA DE VISÃO DE NEGÓCIO

Figura 3: Demonstração do diagrama de negócios, imagem criada pelos desenvolvedores do projeto Lux Berry.

9. DIAGRAMA DE SOLUÇÃO

Figura 4. Diagrama de Solução do Projeto, imagem criada pelos desenvolvedores do projeto Lux Berry.

10. PLANILHA DE RISCO

ID	Descrição do projeto	Probabilidade (P) 1 - Baixa 2 - Média 3 - Alta	Impacto (I) 1 - Baixo 2 - Médio 3 - Alto	Fator de Risco (P) x (I)	Ação - Evitar - Mitigar	Como?
1	Falta em reuniões.	1	1	1	Mitigar	Reuniões serão realizadas após as aulas e as informações são documentadas na ata.
2	Um integrante sair do grupo;	1	3	3	Mitigar	Todos sabem de todos os conteúdos
3	Dificuldade na comunicação entre o grupo, em reuniões e conversas;	3	3	9	Evitar	Todos devem dar sua opinião sobre os assuntos tratados e protótipos definidos
4	Todos não saberem o projeto, desde o início e o fim;	2	3	6	Evitar	Toda a documentação estará nas ferramentas de gestão.
5	Individualismo	2	3	6	Evitar	Tentar realizar tarefas em duplas/trios.
6	Falta de organização no projeto, no GitHub, no Trello e entre outras ferramentas	1	2	2	Mitigar	Todo progresso com relação aos entregaveis deve ser atualizado nas ferramentas de gestão assim como o upload da ata.
7	Problemas no Arduino.	2	3	6	Mitigar	Testar a conexão do Arduino sempre que for utilizá-lo e caso dê algum defeito, pedir um emprestado para um colega/professor.
8	Falha na apresentação.	2	3	6	Mitigar	Todos devem ensaiar todas as partes da apresentação para que caso, aconteça possamos ajudar e dar continuidade no que está sendo apresentado.
9	Falhas externas e falhas nas máquinas.	1	3	3	Evitar	Ter mais de um backup para caso tudo der errado.
10	Falta de comprometimento em seguir as regras, estabelecidas dentro do grupo.	2	2	4	Mitigar	Lembrar os colegas de grupo das regras caso algum esteja sendo descumprimda ou não utlizada

Impacto(I)				
Alto (3)	3	6	9	
Médio (2)	2	4	6	
Baixo (1)	1	2	3	
	Pouco Provável (1)	Provável (2)	Muito Provável (3)	
Probabilidade				

Componentes	
Amanda Oliveira	
Ana Luiza	
Eduardo Nunes	
Lucas Amorim	
Nicolas Pereira	
Samuel Antunes	

11. REFERÊNCIAS

EMBRAPA. ALICE: IDENTIFICADOR INVÁLIDO. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1067902 Acesso em: 22 fev. 2025.

FOLHA DO MATE. VENÂNCIO AIRES PRODUZ 45 TONELADAS DE MORANGO POR ANO. Disponível em: https://www.agrolink.com.br/noticias/boa-luminosidade-favorece-o-desenvolvimento-de-morango/493441.html Acesso em: 22 fev. 2025.

HORTIFRUTI/CEPEA: MORANGO EM NÚMEROS - HF BRASIL. Disponível em: https://www.hfbrasil.org.br/br/hortifruti-cepea-morango-em-numeros.aspx Acesso em: 22 fev. 2025.

PRODUÇÃO DE MORANGO REGISTRA VARIAÇÃO NOS PREÇOS. Disponível em: https://www.agrolink.com.br/noticias/producao-de-morango-registra-variacao-nos-precos 494913.html Acesso em: 22 fev. 2025.