CS5222 Project 2 Custom Acceleration with FPGAs

Shen Jiamin A0209166A shen_jiamin@u.nus.edu

March 5, 2022

Abstract

In this project, I'm going to port the lab to **PYNQ 2.7** and **Vivado/Vitis 2020.2**. The experiment is done on ASUS RS500-E8-PS4 V2, with operating system Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-100-generic x86_64).

1 Matrix Multiplication Pipeline Optimization in HLS

1.1 Understanding the baseline matrix multiply (background)

For Vitis 2020.2, the command used should be

```
$ vitis_hls -f hls.tcl
```

The report generated by HLS (as in Figure 1) shows that some pipelining has already been done automatically by Vitis HLS. In order to prepare baseline for the next part, I disabled the pipelining.

```
--- hls.tcl 2022-03-03 21:17:24.651417872 +0800
+++ hls_nopipe.tcl 2022-03-03 21:33:53.435003340 +0800
@@ -7,6 +7,7 @@
open_solution "solution0" -flow_target vivado
set_part {xc7z020clg484-1}
create_clock -period 10 -name default
+config_compile -pipeline_loops 0
csim_design -clean
csynth_design
close_project
```

The new report is as Figure 2. It turns out that the overall performance is a little bit worse than documented. This is because every iteration in L3 loop takes 11 cycles and thus 2816 cycles in total to perform a single inner product.

1.2 Pipelining in HLS (8 marks)

The work is done with auto pipelining disabled.

1.2.1 Pipelining the L3 (innermost) loop

The code is modified as Figure 3.

Pipelining the intermost loop do not trigger loop unrolling, and thus the structure of 3-layer loops is not modified. The loop body of L3 is pipelined, which reduces its latency from 2816 cycles to 1031 cycles. The initiation interval achieved of L3 is 4 cycles.

This design utilizes slightly more resources but no more floating point adders or multipliers.

* Summary:

i	Latency (c	max	min	max	min	max	Type
1	•	85160	1.236 ms	1.236 ms	85161	85161	none

+ Detail:

* Instance:

N/A

* Loop:

+	+- +-	Latency min	(cycles) max	Iteration Latency			Trip Count	
- LOAD_OFF_1	İ	5	5	1	1	1	5	yes
- LOAD_W_1_LOAD_W_2		1280	1280	2	1	1	1280	yes
- LOAD_I_1_LOAD_I_2		1024	1024	2	1	1	1024	yes
- L1_L2		82800	82800	1035	-	-1	80	no
+ L3		1031	1031	12	4	1	256	yes
- STORE_O_1_STORE_O_2	l	42	42	4	1	1	40	yes

Figure 1: Performance estimates in default condition

Table 1: HLS Report for mmult_float

Profile		Latency (cycles)	Latency (ms) Interval (cycles)		cycles)	Pipeline	
		min	max	min	max	min	max	Type
1.1	Baseline (AutoPipe)	85160	85160	1.236	1.236	85161	85161	none
1.1	Baseline (NoPipe)	228022	228022	2.280	2.280	228023	228023	none
1.2.1	L3 Pipelining	85286	85286	1.238	1.238	85287	85287	none
1.2.2	L1 Pipelining	6193	6193	0.062	0.062	6194	6194	none
1.2.3	L2 Pipelining	7341	7341	0.073	0.073	7342	7342	none

	Profile		Instance					
	Trome	BRAM_18K	DSP	FF	LUT	URAM	fadd	fmul
1.1	Baseline (AutoPipe)	13	5	1151	2058	0	1	1
1.1	Baseline (NoPipe)	14	5	817	1635	0	1	1
1.2.1	L3 Pipelining	14	5	921	1713	0	1	1
1.2.2	L1 Pipelining	70	800	415044	243128	0	160	160
1.2.3	L2 Pipelining	182	80	38357	34359	0	16	16

(a) Performance Estimates

* Summary:

 	Latency min	(cycles) max	Latency min	+ (absolute) max +	Inte	erval max	Pipeline Type
İ				2.280 ms			

+ Detail:

* Instance:

N/A

* Loop:

+	+	+	+	+	+	+	+
 Loop Name	Latency min	(cycles) max	Iteration Latency			Trip Count	 Pipelined
- LOAD_OFF_1	5		 1	 -	 -	 5	no
- LOAD_W_1	1300	1300	130	-	-	10	no
+ LOAD_W_2	128	128	1	-	-	128	no
- LOAD_I_1	1040	1040	130	-	-	8	no
+ LOAD_I_2	128	128	1	-	-	128	no
- L1	225536	225536	28192	-	-	8	no
+ L2	28190	28190	2819	-	-	10	no
++ L3	2816	2816	11	-	-	256	no
- STORE_0_1	136	136	17	-	-	8	no
+ STORE_0_2	15	15	3	-	-	5	no
+	+			+		+	

(b) Utilization Estimates

* Summary:

Name	BRAM_18K	DSP	FF	LUT	URAM
DSP Expression FIFO Instance	- - - 0	+ - - -	 0 - 384	-i	+ - - -
Memory Multiplexer Register	14 - -	- - -	64 - 369	376	- - -
Total	14	5 		1635 	0
Available	280	220			0
Utilization (%)	,	2 +	~0 	3	0

+ Detail:

* Instance:

Instance	Module	++ BRAM_18K ++	DSP	FF	LUT	URAM
CONTROL_BUS_s_axi_U fadd_32ns_32ns_32_5_full_dsp_1_U1 fmul_32ns_32ns_32_4_max_dsp_1_U2	CONTROL_BUS_s_axi fadd_32ns_32ns_32_5_full_dsp_1 fmul_32ns_32ns_32_4_max_dsp_1	0 0	0 2 3	36 205 143	40 390 321	0 0 0
Total	+ 	+ 0 +	5	384	751	0

Figure 2: HLS Report with pipelining explicitly disabled

```
2022-03-04 16:59:04.734375380 +0800
--- mmult_float.cpp.orig
+++ mmult_float.cpp.L3
                              2022-03-04 16:58:59.566207094 +0800
@@ -78,6 +78,7 @@
            T tmp = offset_buf[j];
        L3:
            for (int k = 0; k < FEAT; k++) {
+#pragma HLS PIPELINE II = 1
                 tmp += in_buf[i][k] * weight_buf[j][k];
            out_buf[i][j] = tmp;
                                      Figure 3: Inserting HLS directive for L3.
                               2022-03-04 16:59:04.734375380 +0800
--- mmult_float.cpp.orig
+++ mmult_float.cpp.L1
                             2022-03-04 16:58:38.673526756 +0800
@@ -72,6 +72,7 @@
L1:
    for (int i = 0; i < BATCH; i++) {
    // Iterate over output classes
+#pragma HLS PIPELINE II = 1
```

Figure 4: Inserting HLS directive for L1.

1.2.2 Pipelining the L1 (outermost) loop

for (int j = 0; j < CLASSES; j++) { // Perform the dot product

The code is modified as Figure 4. 160 adders and 160 multipliers. 299.1 seconds

L2:

1.2.3 Pipelining the L2 loop

The code is modified as Figure 5.

Figure 5: Inserting HLS directive for L2.

16 adders and 16 multipliers. 62.45 seconds Report

- 1. the design latency in cycles,
- 2. the overall device utilization (as Total per Resource),
- 3. the number of floating point adders and multipliers (you can find this information under the Instance section of the synthesis report) and
- 4. the Initiation Interval of the loops you pipelined.

1.3 C. Increasing Pipeline Parallelism by Repartitioning Memories (8 marks)

Report

- 1. the design latency in cycles,
- 2. the overall device utilization (as Total per Resource),
- 3. the number of floating point adders and multipliers (you can find this information under the Instance section of the synthesis report) and
- 4. the Initiation Interval of the loops you pipelined.

1.4 D. Amortizing Iteration Latency with Batching (8 marks)

Report

- 1. the design latency in cycles, and
- 2. the overall device utilization (as Total per Resource).

1.5 E. Extending Batch Size with Tiling (8 marks)

Report

- 1. the design latency in cycles, and
- 2. the overall device utilization (as Total per Resource).

1.6 F. Hardware compilation and FPGA testing on the PYNQ (8 marks)

Report

- 1. the measured speedup and
- 2. measured classification accuracy.

2 Part 2: Fixed-Point Optimizations (30 marks)

- 1. the fixed-point validation accuracy reported by mnist.py after you've tweaked the SCALE factor.
- 2. the design latency in cycles
- 3. the overall device utilization (as Total per Resource).
- 4. your measured system speedup over the fixed-point CPU implementation
- 5. your measured classification accuracy on the 8k MNIST test sample
- 6. how many multipliers are instantiated in your desing?
- 7. report the initiation interval of the matrix multiplication loop that you pipelined
- 8. given the number of multipliers in your design and input throughput via the AXI port, is the design bandwidth- or compute-limited?

3 Part 3: Open-ended design optimization (30 marks)

Vitis High-Level Synthesis User Guide