Условие

Рассмотрим случайное блуждание точки на прямой, пусть точка начинает в точке 0 и каждую секунду переходит равновероятно на 1 влево или вправо. Докажите, что математическое ожидание максимума координаты точки за n шагов есть $O(\sqrt{n})$.

Формализация условия

 $\xi_i:=\pm 1, \mathbb{P}(\xi_i=1)=\mathbb{P}(\xi_i=-1)=0.5$ — один шаг (он происходит раз в секунду). X_n — координата спустя n шагов:

$$X_n := \sum_{i=1}^n \xi_i$$

 M_n — максимум координаты спустя n шагов:

$$M_n := \max_{i \in [1,n]} X_i$$

Доказать: $\mathbb{E}(M_n) = \mathcal{O}(\sqrt{n})$

Решение

Утверждение 1. $\mathbb{P}(M_n \geq a) = \mathbb{P}(X_n \geq a) + \mathbb{P}(X_n > a)$

Доказательство. Заметим, что система событий $\{X_n \geq a, X_n < a\}$ — полная. Тогда по формуле полной вероятности:

$$\mathbb{P}(M_n \ge a) = \mathbb{P}(M_n \ge a | X_n \ge a) \mathbb{P}(X_n \ge a) + \mathbb{P}(M_n \ge a | X_n < a) \mathbb{P}(X_n < a)$$

$$(X_n \ge a \Rightarrow M_n \ge a) \Rightarrow \mathbb{P}(M_n \ge a | X_n \ge a) = 1$$

$$\mathbb{P}(M_n \ge a | X_n < a) \mathbb{P}(X_n < a) \stackrel{def}{=} \frac{\mathbb{P}(M_n \ge a \cap X_n < a)}{\mathbb{P}(X_n < a)} \mathbb{P}(X_n < a) = \mathbb{P}(M_n \ge a \cap X_n < a)$$

Итого:

$$\mathbb{P}(M_n \ge a) = \mathbb{P}(X_n \ge a) + \mathbb{P}(M_n \ge a \cap X_n < a)$$

Обозначим за N первую секунду, такую что $X_N=a$:

$$N := \underset{i \in [1,\infty)}{\arg\min}(x_i = a)$$

N существует с вероятностью 1.

Построим по последовательности шагов $\{\xi_i\}_{i=1}^n$ последовательность $\{\tilde{\xi_i}\}_{i=1}^n$, такую что:

$$\tilde{\xi}_i = \begin{cases} \xi_i, & i \le N \\ -\xi_i, & i > N \end{cases}$$

По построению $\{\tilde{\xi}_i\}$ совпадает с $\{\xi_i\}$ с начала и до точки N, после которой она зеркально отражена относительно оси x.

Сопоставим $\{\tilde{\xi}_i\}$ последовательность префиксных сумм $\{\tilde{X}_i\}$ (аналогично $\{X_i\}$). $\{\tilde{X}_i\}$ совпадает с $\{X_i\}$ с начала и до точки N, после которой она зеркально отражена относительно горизонтальной прямой y=a.

Рис. 1: Пример X и \tilde{X} : $a=50, N\approx 2800$

Утверждение 2.

$$M_n \ge a \cap X_n < a \Leftrightarrow \tilde{X}_n > a$$

Доказательство. 1.

1. Докажем "⇒"

 $M_n \ge a \Rightarrow N \le n$, иначе a еще не было достигнуто.

 $X_n < a \Rightarrow N \neq n$, иначе противоречие с определением N ($X_N = a$)

Итого, $N < n \Rightarrow a - X_n = \tilde{X}_n - a$ (симметрия относительно a).

$$X_n < a \Rightarrow a - X_n > 0 \Rightarrow \tilde{X}_n - a > 0 \Rightarrow \tilde{X}_n > a$$

2. Докажем "⇐"

 $ilde{X}_n > a \Rightarrow N < n$, т.к. a было впервые достигнуто раньше.

 $N < n \Rightarrow M_n \ge a$ по тому же самому утверждению.

Аналогично пункту с " \Rightarrow " доказывается $X_n < a$.

Т.к. $M_n \geq a \cap X_n < a \Leftrightarrow \tilde{X}_n > a$, $\mathbb{P}(M_n \geq a \cap X_n < a) = \mathbb{P}(\tilde{X}_n > a)$. $\mathbb{P}(\tilde{X}_n > a) = \mathbb{P}(X_n > a)$, т.к. ξ_i равновероятно распределены. Итого, $\mathbb{P}(M_n \geq a) = \mathbb{P}(X_n \geq a) + \mathbb{P}(M_n \geq a \cap X_n < a) = \mathbb{P}(X_n \geq a) + \mathbb{P}(X_n > a)$

$$\mathbb{E}(M_n) = \sum_{i=1}^n P(M_n \ge i) = \sum_{i=1}^n \mathbb{P}(X_n \ge i) + \mathbb{P}(X_n > i) = \sum_{i=1}^n 2\mathbb{P}(X_n > i) + \mathbb{P}(X_n = i)$$

Заметим, что

$$\mathbb{P}(|X_n| > i) = \mathbb{P}(X_n > i) + \mathbb{P}(-X_n > i)$$

Михайлов Максим, М3137

По симметрии блуждания точки:

$$\mathbb{P}(X_n > i) = \mathbb{P}(-X_n > i) \Rightarrow$$

$$\Rightarrow \mathbb{P}(|X_n| > i) = 2\mathbb{P}(X_n > i)$$

Аналогичное утверждение верно для равенства:

$$\mathbb{P}(|X_n| = i) = 2\mathbb{P}(X_n = i)$$

Подставим в $\mathbb{E}(M_n)$:

$$\mathbb{E}(M_n) = \sum_{i=1}^n \mathbb{P}(|X_n| > i) + \mathbb{P}(X_n = i) = \mathbb{E}(|X_n|) + \sum_{i=1}^n 0.5 \mathbb{P}(|X_n| = i) \le$$

$$\leq \mathbb{E}(|X_n|) + 0.5 \sum_{i=1}^n i \mathbb{P}(|X_n| = i) = 1.5 \mathbb{E}(|X_n|) = \mathcal{O}(\sqrt{n})$$

Последний переход доказан в предыдущем задании.