LOGICAL AND THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

INTERPRETATIONS IN PREDICATE

Logic

Dealing with variables:

 \bigcirc for $\exists x \varphi$ we should only apply true iff we find at least one value for x such that φ is true

Dealing with variables:

- for $\exists x \varphi$ we should only apply true iff we find at least one value for x such that φ is true
- of for $\forall x \varphi$ we should only apply true iff φ is true for all values x may take

Dealing with variables:

- for $\exists x \varphi$ we should only apply true iff we find at least one value for x such that φ is true
- \bigcirc for $\forall x \varphi$ we should only apply true iff φ is true for all values x may take
- for a good definition of a model we need to fix the values a variable may take in before (model depends on this universe)

Dealing with variables:

- \bigcirc for $\exists x \varphi$ we should only apply true iff we find at least one value for x such that φ is true
- \bigcirc for $\forall x \varphi$ we should only apply true iff φ is true for all values x may take
- for a good definition of a model we need to fix the values a variable may take in before (model depends on this universe)
- the model needs to specify the functions and predicates

 $\mathcal F$ set of function symbols, $\mathcal P$ set of predicate symbols

Definition

 \mathcal{M} is model of $(\mathcal{F}, \mathcal{P})$ if \mathcal{M} consists of

 $\mathcal F$ set of function symbols, $\mathcal P$ set of predicate symbols

Definition

 \mathcal{M} is model of $(\mathcal{F}, \mathcal{P})$ if \mathcal{M} consists of

1. non-empty set *A* (Universe of concrete values)

 ${\mathcal F}$ set of function symbols, ${\mathcal P}$ set of predicate symbols

Definition

 \mathcal{M} is model of $(\mathcal{F}, \mathcal{P})$ if \mathcal{M} consists of

- 1. non-empty set *A* (Universe of concrete values)
- **2.** for each nullary symbol $f \in \mathcal{F}$ an element $f^{\mathcal{M}}$ in A

 ${\mathcal F}$ set of function symbols, ${\mathcal P}$ set of predicate symbols

Definition

- \mathcal{M} is model of $(\mathcal{F}, \mathcal{P})$ if \mathcal{M} consists of
- 1. non-empty set *A* (Universe of concrete values)
- 2. for each nullary symbol $f \in \mathcal{F}$ an element $f^{\mathcal{M}}$ in A
- 3. for each $f \in \mathcal{F}$ a function $f^{\mathcal{M}} : A^n \to A$ if f is n-ary

 ${\mathcal F}$ set of function symbols, ${\mathcal P}$ set of predicate symbols

Definition

- \mathcal{M} is model of $(\mathcal{F}, \mathcal{P})$ if \mathcal{M} consists of
- 1. non-empty set *A* (Universe of concrete values)
- 2. for each nullary symbol $f \in \mathcal{F}$ an element $f^{\mathcal{M}}$ in A
- 3. for each $f \in \mathcal{F}$ a function $f^{\mathcal{M}} : A^n \to A$ if f is n-ary
- 4. for each $P \in \mathcal{P}$ a subset $P^{\mathcal{M}} \subseteq A^n$ if P is n-ary

 $\bigcirc\;$ the elements of \mathcal{F} , \mathcal{P} are mere symbols

- \bigcirc the elements of \mathcal{F} , \mathcal{P} are mere symbols
- \bigcirc the elements of $\mathcal{F}^{\mathcal{M}}$, $\mathcal{P}^{\mathcal{M}}$ are concrete functions resp. relations

- \bigcirc the elements of \mathcal{F} , \mathcal{P} are mere symbols
- \bigcirc the elements of $\mathcal{F}^{\mathcal{M}}$, $\mathcal{P}^{\mathcal{M}}$ are concrete functions resp. relations
- we usually associate something with a symbol
 (+,=,owner) but this is already the application of M in our heads

- \bigcirc the elements of \mathcal{F} , \mathcal{P} are mere symbols
- \bigcirc the elements of $\mathcal{F}^{\mathcal{M}}$, $\mathcal{P}^{\mathcal{M}}$ are concrete functions resp. relations
- \bigcirc we usually associate something with a symbol (+, =, owner) **but** this is already the application of \mathcal{M} in our heads
- $\bigcirc =^{\mathcal{M}}: \mathbb{N}^2 \to \mathbb{N}; (n_1, n_2) \mapsto n_1 +_{\mathbb{N}} n_2 \text{ is possible}$

Consider
$$\mathcal{F} = \{+\}, \mathcal{P} = \{=\}$$

$$\bigcirc A_1 = \mathbb{N}$$

Consider
$$\mathcal{F} = \{+\}, \mathcal{P} = \{=\}$$

- $\bigcirc A_1 = \mathbb{N}$
- \bigcirc $A_2 = \mathfrak{M}$ (set of all matrices)

Consider
$$\mathcal{F} = \{+\}, \mathcal{P} = \{=\}$$

- $\bigcirc A_1 = \mathbb{N}$
- \bigcirc $A_2 = \mathfrak{M}$ (set of all matrices)
- \bigcirc think about the differences of $+^{\mathcal{M}_1}$, $+^{\mathcal{M}_2}$, $=^{\mathcal{M}_1}$, $=^{\mathcal{M}_2}$

Consider
$$\mathcal{F} = \{+\}, \mathcal{P} = \{=\}$$

- $\bigcirc A_1 = \mathbb{N}$
- \bigcirc $A_2 = \mathfrak{M}$ (set of all matrices)
- \bigcirc think about the differences of $+^{\mathcal{M}_1}$, $+^{\mathcal{M}_2}$, $=^{\mathcal{M}_1}$, $=^{\mathcal{M}_2}$

Formulae are always interpreted relative to an environment.

Look-up Tables, Environments

Definition

A function $\ell: \mathcal{V} \to A$ for set of variables \mathcal{V} and universe A is called an assignement (look-up table, environment).

Look-up Tables, Environments

Definition

A function $\ell: \mathcal{V} \to A$ for set of variables \mathcal{V} and universe A is called an assignement (look-up table, environment).

Notation: $\ell[x \mapsto a]$ for $\ell(x) = a$

Look-up Tables, Environments

Definition

A function $\ell: \mathcal{V} \to A$ for set of variables \mathcal{V} and universe A is called an assignement (look-up table, environment).

Notation: $\ell[x \mapsto a]$ for $\ell(x) = a$

Definition

For a term t and an environment ℓ let $\ell(t)$ denote the element of the universe obtained by replacing every variable v in t by $\ell(v)$

Definition

Definition

$$\bigcirc M \models_{\ell} P(t_1,\ldots,t_n) \text{ iff } (\ell(t_1),\ldots,\ell(t_n)) \in P^{\mathcal{M}}$$

Definition

- $\bigcirc M \models_{\ell} P(t_1,\ldots,t_n) \text{ iff } (\ell(t_1),\ldots,\ell(t_n)) \in P^{\mathcal{M}}$
- $\bigcirc \ \mathcal{M} \models_{\ell} \forall x \psi \text{ iff } \forall a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$

Definition

- $\bigcirc M \models_{\ell} P(t_1,\ldots,t_n) \text{ iff } (\ell(t_1),\ldots,\ell(t_n)) \in P^{\mathcal{M}}$
- $\bigcirc \mathcal{M} \models_{\ell} \forall x \psi \text{ iff } \forall a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \ \mathcal{M} \models_{\ell} \exists x \psi \text{ iff } \exists a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$

Definition

- $\bigcirc M \models_{\ell} P(t_1,\ldots,t_n) \text{ iff } (\ell(t_1),\ldots,\ell(t_n)) \in P^{\mathcal{M}}$
- $\bigcirc \mathcal{M} \models_{\ell} \forall x \psi \text{ iff } \forall a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \ \mathcal{M} \models_{\ell} \exists x \psi \text{ iff } \exists a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \neg \psi \text{ iff not } \mathcal{M} \models_{\ell} \psi$

Definition

- $\bigcirc M \models_{\ell} P(t_1,\ldots,t_n) \text{ iff } (\ell(t_1),\ldots,\ell(t_n)) \in P^{\mathcal{M}}$
- $\bigcirc \ \mathcal{M} \models_{\ell} \forall x \psi \text{ iff } \forall a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \exists x \psi \text{ iff } \exists a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \neg \psi \text{ iff not } \mathcal{M} \models_{\ell} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \psi_1 \lor \psi_2 \text{ iff } \mathcal{M} \models_{\ell} \psi_1 \text{ or } \mathcal{M} \models_{\ell} \psi_2$

Definition

- $\bigcirc M \models_{\ell} P(t_1,\ldots,t_n) \text{ iff } (\ell(t_1),\ldots,\ell(t_n)) \in P^{\mathcal{M}}$
- $\bigcirc \ \mathcal{M} \models_{\ell} \forall x \psi \text{ iff } \forall a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \exists x \psi \text{ iff } \exists a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \neg \psi \text{ iff not } \mathcal{M} \models_{\ell} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \psi_1 \lor \psi_2 \text{ iff } \mathcal{M} \models_{\ell} \psi_1 \text{ or } \mathcal{M} \models_{\ell} \psi_2$
- $\bigcirc \mathcal{M} \models_{\ell} \psi_1 \land \psi_2 \text{ iff } \mathcal{M} \models_{\ell} \psi_1 \text{ and } \mathcal{M} \models_{\ell} \psi_2$

Definition

- $\bigcirc M \models_{\ell} P(t_1,\ldots,t_n) \text{ iff } (\ell(t_1),\ldots,\ell(t_n)) \in P^{\mathcal{M}}$
- $\bigcirc \ \mathcal{M} \models_{\ell} \forall x \psi \text{ iff } \forall a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \exists x \psi \text{ iff } \exists a \in A : \mathcal{M} \models_{\ell[x \mapsto a]} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \neg \psi \text{ iff not } \mathcal{M} \models_{\ell} \psi$
- $\bigcirc \mathcal{M} \models_{\ell} \psi_1 \lor \psi_2 \text{ iff } \mathcal{M} \models_{\ell} \psi_1 \text{ or } \mathcal{M} \models_{\ell} \psi_2$
- \bigcirc $\mathcal{M} \models_{\ell} \psi_1 \land \psi_2 \text{ iff } \mathcal{M} \models_{\ell} \psi_1 \text{ and } \mathcal{M} \models_{\ell} \psi_2$
- $\bigcirc \ \mathcal{M} \models_{\ell} \psi_1 \rightarrow \psi_2 \text{ iff } \mathcal{M} \models_{\ell} \psi_1 \text{ implies } \mathcal{M} \models_{\ell} \psi_2$

Sentences

Definition

A closed formulae are also called a sentence.

Sentences¹

Definition

A closed formulae are also called a sentence.

Theorem

Given two environment ℓ , ℓ' being identical on the free variable of ϕ implies

$$\mathcal{M} \models_{\ell} \varphi \text{ iff } \mathcal{M} \models_{\ell'} \varphi$$

Sentences

Definition

A closed formulae are also called a sentence.

Theorem

Given two environment ℓ , ℓ' being identical on the free variable of ϕ implies

$$\mathcal{M} \models_{\ell} \varphi \text{ iff } \mathcal{M} \models_{\ell'} \varphi$$

 sentences are either true or false independent of the environment

Sentences

Definition

A closed formulae are also called a sentence.

Theorem

Given two environment ℓ , ℓ' being identical on the free variable of ϕ implies

$$\mathcal{M}\models_{\ell} \varphi \text{ iff } \mathcal{M}\models_{\ell'} \varphi$$

- sentences are either true or false independent of the environment
- \bigcirc write for sentences $\mathcal{M} \models \varphi$

Quantifiers and Models

Theorem

Let φ be a predicate logic formula with exactly the free variables $x_1, \ldots, x_n \in \mathcal{V}$. Let \mathcal{M} be a model and ℓ an environment. Then

- $\bigcirc \mathcal{M} \models_{\ell} \varphi \text{ iff } \mathcal{M} \models \exists x_1 \dots \exists x_n \varphi$
- $\bigcirc \mathcal{M} \models \varphi \text{ iff } \mathcal{M} \models \forall x_1 \dots \exists x_n \varphi$

The enemy of my enemy is not my enemy.

The enemy of my enemy is not my enemy.

or formalised

 $\forall x \forall y (\text{enemyOf}(x, I) \land \text{enemyOf}(y, x) \rightarrow \neg \text{enemyOf}(y, I))$

$$\forall x \forall y (\text{enemyOf}(x, I) \land \text{enemyOf}(y, x) \rightarrow \neg \text{enemyOf}(y, I))$$

$$\forall x \forall y (\text{enemyOf}(x, I) \land \text{enemyOf}(y, x) \rightarrow \neg \text{enemyOf}(y, I))$$

 \mathcal{M} given by

$$A = \{i, e_1, e_2\}, \mathcal{F} = \{I\} \text{ with } I^{\mathcal{M}} = i$$

$$\bigcirc$$
 $P = \{\text{enemyOf}\}\ \text{with enemyOf}^{\mathcal{M}} = \{(i, i), (e_1, i), (e_2, i)\}$

$$\forall x \forall y (\text{enemyOf}(x, I) \land \text{enemyOf}(y, x) \rightarrow \neg \text{enemyOf}(y, I))$$

 \mathcal{M} given by

$$A = \{i, e_1, e_2\}, \mathcal{F} = \{I\} \text{ with } I^{\mathcal{M}} = i$$

$$\bigcirc$$
 $P = \{\text{enemyOf}\}\ \text{with enemyOf}^{\mathcal{M}} = \{(i, i), (e_1, i), (e_2, i)\}$

the formula is **not** true since for $\ell(x) = i$ and $\ell(y) = e_1$ we get

enemyOf
$$(i, I) \land$$
 enemyOf $(e_1, i) \rightarrow \neg$ enemyOf (e_1, I)

$$\forall x \forall y (\text{enemyOf}(x, I) \land \text{enemyOf}(y, x) \rightarrow \neg \text{enemyOf}(y, I))$$

$$\forall x \forall y (\text{enemyOf}(x, I) \land \text{enemyOf}(y, x) \rightarrow \neg \text{enemyOf}(y, I))$$

 \mathcal{M} given by

$$\bigcirc A = \{i, e_1, e_2\}, \mathcal{F} = \{I\} \text{ with } I^{\mathcal{M}} = i$$

$$\bigcirc$$
 $P = \{\text{enemyOf}\}\ \text{with enemyOf}^{\mathcal{M}} = \{(e_1, i), (e_2, e_1)\}\$

$$\forall x \forall y (\text{enemyOf}(x, I) \land \text{enemyOf}(y, x) \rightarrow \neg \text{enemyOf}(y, I))$$

 \mathcal{M} given by

$$A = \{i, e_1, e_2\}, \mathcal{F} = \{I\} \text{ with } I^{\mathcal{M}} = i$$

$$\bigcirc$$
 $P = \{\text{enemyOf}\}\ \text{with enemyOf}^{\mathcal{M}} = \{(e_1, i), (e_2, e_1)\}\$

the formula is true since

Proof

```
\mathcal{M} \models \forall x \forall y (eO(x, I) \land eO(y, x) \rightarrow \neg eO(y, I)
iff for all a \in A(\mathcal{M} \models_{\ell[x \mapsto a]} \forall y (eO(x, I) \land eO(y, x) \rightarrow \neg eO(y, I)))
iff for all a \in A for all b \in A(\mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]}
         (eO(x, I) \land eO(y, x) \rightarrow \neg eO(y, I)))
iff for all a \in A for all b \in A(\mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]}
          (eO(x, I) \land eO(y, x)) implies \mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} \neg eO(y, I))
iff for all a \in A for all b \in A
         ((\mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} eO(x, I)) \text{ and } \mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} eO(y, x))
               implies not \mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} eO(y, I)
```

LaTFoCS

Proof Cont

$$\mathcal{M} \models \forall x \forall y (eO(x, I) \land eO(y, x) \rightarrow \neg eO(y, I)$$
...

iff for all $a \in A$ for all $b \in A(\mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} (eO(x, I) \land eO(y, x))$ implies $\mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} \neg eO(y, I))$

iff for all $a \in A$ for all $b \in A$

$$(((a, i) \in eO^{\mathcal{M}} \text{ and } (b, a) \in eO^{\mathcal{M}}) \text{ implies } (b, i) \notin eO^{\mathcal{M}})$$

Proof Cont

$$\mathcal{M} \models \forall x \forall y (eO(x, I) \land eO(y, x) \rightarrow \neg eO(y, I)$$
...

iff for all $a \in A$ for all $b \in A(\mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} (eO(x, I) \land eO(y, x))$ implies $\mathcal{M} \models_{\ell[x \mapsto a, y \mapsto b]} \neg eO(y, I))$

iff for all $a \in A$ for all $b \in A$

$$(((a, i) \in eO^{\mathcal{M}} \text{ and } (b, a) \in eO^{\mathcal{M}}) \text{ implies } (b, i) \notin eO^{\mathcal{M}})$$

the premise is only true for $a = e_1$ and $b = e_2$ but (e_2, i) is

LaTFoCS

indeed not in $eO^{\mathcal{M}}$