

Zero to pySpark in 50 minutes

Intermountain Big Data Conference 11/21/2015

Marissa Saunders

Thanks to our Sponsors!

Yearly Partners

Gold Sponsors

Agenda

- Intro to Spark
- Practicalities of data science on pySpark
 - Data structures
 - Data profiling and stats
 - Machine learning
- Big data: practicalities and abstractions
 - Whys and whens of big data
 - To cache or not to cache
 - Which library goes where?
- Take away points

What is Spark?

Apache Spark™ is a fast and general engine for large-scale data processing.
- spark.apache.org

What is Spark?

Spark Ecosystem

How does Spark work?

Why is Spark a good choice for machine learning?

- Scalable
- Machine learning is iterative
- pySpark and SparkR = easy to adopt
- Spark is actively developing
 - new algorithms and functionality
 - extended APIs
 - Active user community

Enough background ... show me how this works

OSEMN data science with pySpark

- OSEMN
- How pySpark does OSEM
- Practical example:
 - Bike share data set
- Highlight differences from python

Obtain

Scrub

Explore

Model

iNterpret

Obtain

Define HDFS path

```
THINKBIG

A TERADATA COMPANY
```

```
In [1]: data_path = "hdfs:///user//hadoop//data//bike_sharing.csv"
   header_path = "hdfs:///user//hadoop//data//bike_sharing_headers.csv"
```

RDD = Resiliently Distributed Dataset

- the basic data structure in spark
- each entry is an unstructured record
- any type, any length
- distributed
- resilient
- lazy evaluation

```
In [2]: header_rdd = sc.textFile(header_path).filter(lambda x: x != "")
    plaintext_rdd = sc.textFile(data_path).filter(lambda x: x != "")
    plaintext_rdd = header_rdd.union(plaintext_rdd)
    print plaintext_rdd.take(2)
```

[u'instant,dteday,season,yr,mnth,hr,holiday,weekday,workingday,weathersi
t,temp,atemp,hum,windspeed,casual,registered,cnt', u'1,1/1/11,sprin
g,0,1,0,0,6,0,clear,0.24,0.2879,0.81,0,3,13,16']

Obtain

Dataframe

- part of sparkSQL
- structured
- very similar to dataframes in pandas or R

```
In [1]: import pyspark_csv_mod as pycsv
sc.addPyFile('pyspark_csv_mod.py')
```

Obtain


```
In [10]:
dataframe.dtypes
```

Out[10]: [('instant', 'int'), ('dteday', 'string'), ('season', 'string'), ('yr', 'int'), ('mnth', 'int'), ('hr', 'int'), ('holiday', 'int'), ('weekday', 'int'), ('workingday', 'int'), ('weathersit', 'string'), ('temp', 'double'), ('atemp', 'double'), ('hum', 'double'), ('windspeed', 'double'), ('casual', 'int'), ('registered', 'int'),

('cnt', 'int')]

```
dataframe.describe(dataframe.columns[1:5]).show()
 summary dteday season
          17379 | 17379 |
   count
                                      17379
                                                          17379
                 null
    mean
           null|
                        0.5025605615973301 6.537775476149376
           null
  stddev
                  null | 0.49999344348131836 | 3.438676777528789
     min | 1/1/11 |
                  fall
                                                              1
     max 9/9/12 winter
                                                             12
```

```
dataframe.groupBy('season').count().show()

+----+
|season|count|
+----+
| fall | 4496|
|spring | 4242|
|summer | 4409|
|winter | 4232|
+----+
```

Dataframe functions


```
dataframe.describe(["season", "casual", "registered", "cnt"]).show()
                                            registered
          17379
                                                                                    describe()
           null
                 35.67621842453536 | 153.78686920996606 | 189.46308763450142
   mean
           null 49.303611843417976
 stddev
                                     151.3529312470881
    min
           fall
     max winter
                                367
                                                    886
                                                                        977
(dataframe.filter("season = 'spring'")
          .filter("yr = 1")
          .describe(["season", "casual", "registered", "cnt"])
          .show())
                                                                                    filter()
           2174
                              2174
  count
           null | 18.02989880404784 | 129.78426862925483 | 147.81416743330266
   mean
           null | 33.17212128339912 | 126.00430006459575 | 143.66992177564128
 stddev
    min spring
                               367
     max spring
                                                   681
                                                                       801
```

Make season an integer to facilitate modeling

Scrub - transforms


```
In [74]: (dataframe.withColumn('temp1', dataframe.yr * 2 + 2)
                                                                                           A TERADATA COMPANY
                    .select(["yr","temp1"])
                    .show(5)
          +--+---+
          yr temp1
           0
           0
           0
           0
         from pyspark.sql import functions as F
         (dataframe.withColumn('temp2', (F.when(dataframe.season == 'spring',0)
                                        .when(dataframe.season == 'summer',1)
                                        .when(dataframe.season == 'fall',2)
                                        .when(dataframe.season == 'winter',3)
                                        .otherwise(5)))
                                        .groupBy('temp2')
                                        .count()
                                        .show(5))
                                                     dataframe.groupBy('season').count().show()
          temp2 | count |
                                                      season count
              0 4242
                 4409
                                                        fall 4496
                4496
                                                      spring
                                                              4242
                 4232
                                                              4409
                                                      summer
                                                      winter 4232
```

Scrub - mapping

Row(instant=1, dteday=u'1/1/11', season=u'spring', yr=0, mnth=1, hr=0, ho liday=0, weekday=6, workingday=0, weathersit=u'clear', temp=0.24, atem p=0.2879, hum=0.81, windspeed=0.0, casual=3, registered=13, cnt=16)

Index 2 = season

```
transformed_rdd = dataframe.map(transform_season)
print transformed_rdd.first()

[1, u'1/1/11', 0, 0, 1, 0, 0, 6, 0, u'clear', 0.24, 0.2879, 0.81, 0.0, 3, 13, 16]
```

Scrub - adding a schema

RDD vs. dataframe

Be comfortable switching between them

RDD	Dataframe	
unstructured	has a schema	
variation between rows	all rows have same structure	
map operator	withColumn	
scrub	scrub/explore	
records can differ	consistency check	
more flexibility	higher level API	
	faster processing	

Explore

Univariate statistics:

```
In [41]: transformed df['season', 'temp', 'windspeed'].describe().show()
           summary
                                                                        windspeed
                                 17379
                                                       17379
             count
              mean | 1.5016399102364923 | 0.49698716842164814 |
                                                               0.190097606306452
                     1.10688629256209 | 0.19255058126209854 | 0.12233670875036765
            stddev
                                                        0.02
               min
                                                                              0.0
                                                         1.0
                                                                           0.8507
               max
```

Bivariate statistics:

```
In [42]: transformed df.corr('temp', 'cnt')
Out[42]: 0.4047722757786604
In [49]: for hr in range(13,21):
              hr corr = transformed df.filter("hr = " + str(hr)).corr('temp', 'cnt')
              print hr, hr corr
          13 0.396276166065
                                     transformed df.crosstab("season", "weathersit").show()
          14 0.378465467714
          15 0.388162260163
                                      season weathersit
          16 0.551861291267
                                                                                 0. Clear
          17 0.587931522618
                                                                                 1. Cloudy
                                                        2 | 3280 | 947 | 269 | 0 |
          18 0.601333819698
                                                                                 2. Light precip.
                                                        1 | 2859 | 1144 | 406 | 0 |
          19 0.677768466383
                                                        3 | 2609 | 1248 | 375 | 0 |
          20 0.710147294589
                                                                                 3. Heavy precip.
                                                        0 | 2665 | 1205 | 369 | 3
```

Explore - plotting

Plots render on the driver node - must collect data

Model - MLlib - spark.ml vs. spark.mllib

MLlib divides into two packages:

- spark.mllib contains the original API built on top of RDDs.
- spark.ml provides higher-level API built on top of DataFrames for constructing ML pipelines.

spark.mllib	spark.ml	
RDD	DataFrame	
Labeled point	label and features columns	
More algorithms (for now)	Recommended by Apache	
	Pipeline abstraction	

Model - Prepare data for modeling

A TERADATA COMPANY

```
instant
    dteday
    season
        yr
      mnth
        hr
                                        registered
   holiday
                               15
   weekday
                               16
                                                cnt
workingday
```

Scale numerical variables

```
fields to model = ["temp", "atemp", "hum", "windspeed"]
stats = transformed df.describe(fields to model).collect()
for index, i in enumerate(fields to model):
   col avg = float(stats[1][index + 1])
   col stdev = float(stats[2][index + 1])
   transformed df = transformed df.withColumn(i + ' norm',
                                               (transformed df[i] - col avg)/col stdev)
```

```
(transformed df.describe(["temp", "atemp",
                         "temp norm", "atemp norm"])
               .show())
```

				
atemp_norm	temp_norm	atemp	temp	summary
17379	17379	17379	17379	count
-1.39578575088677	-1.77459141933407	0.4757751021347599	0.49698716842164814	mean
0.999999999971958	1.00000000000002938	0.17184527137252026	0.19255058126209854	stddev
-2.76862492830718	-2.4772045106058256	0.0	0.02	min
3.0505634148474168	2.612367245433343	1.0	1.0	max
		i.		ii

Model - prepare data for modeling


```
instant
                                        weathersit
    dteday
                              11
    season
                                             atemp
                               12
        yr
                               13
      mnth
                                         windspeed
                                            casual
        hr
   holiday
                                        registered
   weekday
workingday
```

Labeled Point = (Label, Features)

```
from pyspark.mllib.regression import LabeledPoint
parsedData_rdd = transformed_df.map(lambda x: LabeledPoint(x[16], x[17:21]))

print transformed_df.first()
print parsedData_rdd.first()
```

Row(instant=1, dteday=u'1/1/11', season=0, yr=0, mnth=1, hr=0, holiday=0, weekday=6, workingd ay=0, weathersit=0, temp=0.24, atemp=0.2879, hum=0.81, windspeed=0.0, casual=3, registered=1 3, cnt=16, temp_norm=-1.3346475857807065, atemp_norm=-1.0932806043129715, hum_norm=0.94737249 99667292, windspeed_norm=-1.5538885118650048)
(16.0,[-1.33464758578,-1.09328060431,0.947372499967,-1.55388851187])

Model - linear regression with spark.mllib


```
from pyspark.mllib.regression import LinearRegressionWithSGD, LinearRegressionModel
nrecords = float(parsedData rdd.count())
errors = []
for num iter in range(1,10):
    #Train Model
    model = LinearRegressionWithSGD.train(parsedData rdd, intercept = True,
                                            iterations = num iter, step = 1)
    #Evaluate Model
    valuesAndPreds = parsedData rdd.map(lambda x:(x.label, model.predict(x.features)))
    testMAE = valuesAndPreds.map(lambda (v, p): abs(v - p)).sum() / nrecords
    errors.append(testMAE)
    print valuesAndPreds.take(1)
                                                   valuesAndPreds local = valuesAndPreds.collect()
                                                   temp = plt.scatter([x[1] for x in valuesAndPreds local],
                                                                     [x[0] for x in valuesAndPreds local])
                                                   plt.xlabel("prediction")
    temp = plt.plot(range(1, 10), errors)
                                                   plt.ylabel("value")
                                                   temp = plt.title("Linear Regression")
```


Model - random forest with mllib


```
# Plot Errors
temp = plt.plot(range(1, 101, 10),errors)
```


Mean Absolute Error ~ 105

Model - random forest with mllib plus categorical


```
0 instant
1 dteday
2 season
3 yr
4 mnth
5 hr
6 holiday
7 weekday
8 workingday
```

transformed df.describe("season", "yr", "hr", "mnth",).show()

```
9 weathersit
10 temp
11 atemp
12 hum
13 windspeed
14 casual
15 registered
16 cnt
```

```
summary
                     season
                                           17379
                                                              17379
   count
                      17379
   mean 1.5016399102364923
                             0.5025605615973301 | 11.546751826917545 | 6.537775476149376
  stddev
           1.10688629256209 0.49999344348131836
                                                  6.914206162513383 3.438676777528789
     min
                                                                 23
                                                                                    12
     max
parsedData rdd2 = (transformed df.withColumn("mnth2", transformed df.mnth - 1)
                                  .select("season", "yr", "mnth2", "hr",
                                         "holiday", "weekday", "workingday", "weathersit",
                                         "temp", "atemp", "hum", "windspeed", "cnt"))
print parsedData rdd2.first()
parsedData rdd2 = (parsedData rdd2.map(lambda x: LabeledPoint(x[12], x[0:12])))
```

Model - random forest with mllib plus categorical

Model - linear regression with spark.ml


```
In [218]: # Put data into right format
    from pyspark.mllib.linalg import Vectors
    temp = transformed_df.map(lambda x: (float(x[16]), Vectors.dense(x[10:13]))
    parsedData_df = sqlContext.createDataFrame(temp, ["label", "features"])
    parsedData_df.first()
Out[218]: Row(label=16.0, features=DenseVector([0.24, 0.2879, 0.81]))
```

Pipeline concept

Model - linear regression with spark.ml


```
In [211]: from pyspark.ml.regression import LinearRegression
          errors = []
          for num iter in range(1,10):
              # Define model
              lr = LinearRegression(maxIter=num iter, regParam=0.0)
              # Fit model
              lrModel = lr.fit(parsedData df)
              # Predict model
              predictions = lrModel.transform(parsedData df.select("features"))
              # Evaluate model
              valuesAndPreds = parsedData df.select("label").rdd.zip(predictions.rdd)
              testMAPE = valuesAndPreds.map(lambda (v, p): abs(v.label - p.prediction)
                                             /v.label).sum() / nrecords
              errors.append(testMAPE)
          # Plot Errors
          temp = plt.plot(range(1,10),errors)
```


Deciding between ml and mllib

Pick one and stick with it

spark.mllib	spark.ml	
RDD	DataFrame	
Labeled point	label and features columns	
SVMs	neural networks	
	Pipeline abstraction -cross validation -oneHotEncoding	
	probabilities for classifications	

So that covers how, what about why?

When is big data a challenge?

Big data = when the amount of data that you have to look at exceeds your capability to look at it

- Accessing data
 - data is too big to fit on one computer
 - reading data from one disk is too slow
- Computing with data
 - Single transformations e.g. word count problem
 - Iterations numerical solutions work around the analytical solution
 - e.g.gradient descent is a way to get an optimum set of parameters when solving the normal equation is too hard/ the matrix is too big.
- Visualizing data
 - Local machine must render each data point
 - Viewer must see each data point

Solutions:

- Distributed computing
- Pre-aggregate or sample

Distributed practicalities: which library goes where


```
In [1]:
        import pyspark csv mod as pycsv
        sc.addPyFile('pyspark csv mod.py')
                                                                import
                                          Executor
                      send PyFiles
     Driver
                       send PyFiles
                                          Executor
                                                                import
      import
rdd.map(function)
                                          Executor
                                                                import
```

Computing practicalities: caching RDDs

To cache or not to cache:

- Spark's big advantage: in-memory
 - requires memory management
- Several options for storing RDDs
 - cache
 - Store data and lineage in-memory
 - persist
 - Store data and lineage, specify where
 - memory, disk, serialized, off-heap
 - checkpoint
 - store data on an external storage system
 - slower, but can survive worker failure

Take away points

- 1. Spark APIs make moving to distributed computing easier ... but they are not magic.
- 2. RDDs and Dataframes:
 - a. the basic distributed data structures in Spark.
 - b. Dataframes have schemas; RDDs don't.
 - c. Be comfortable switching between these
- 3. mllib and ml
 - a. two machine learning libraries in Spark
 - b. hard to interconvert
 - c. suggest ml for new developers

Questions?

Full Jupyter notebook available at:

https://github.com/QuantumPlatypus/Big-Mountain-Data-Talk

How does Spark work?

Debugging/optimizing practicalities in pySpark

lazy evaluation

timing

- communication vs. computation cost
 - quantiles example