Departamento de Informática Escola de Engenharia Universidade do Minho

Informação própria do símbolo S com probabilidade P_S em fontes sem memória: $I_S = \log_2 P_S^{-1}$ bits A Entropia de fonte sem memória com m símbolos S_i com probabilidades P_i : $H_S = \sum_{i=1}^m P_i I_i$ bits/símb Débito de Informação duma fonte com débito de símbolos r_S : $R_S = r_S H_S$ bits/seg Comprimento médio dum código com m símbolos: $\overline{N} = \sum_{i=1}^m P_i N_i$ bits/símb Comprimento médio dum Código de Comprimento Fixo Mínimo (CCFM) com m símbolos N_f : $N_f = \log_2(m_{int})$ bits/símb, em que m_{int} é a primeira potência de 2 igual ou maior que m Rendimento dum código: $\rho = H_S/\overline{N}$, Compressão dum código: $c = (N_f - \overline{N})/N_f$, $c_{max} = (N_f - H_S)/N_f$ Limites ao comprimento médio dum código (K é número de blocos na codificação): $H_S \leq \overline{N} < H_S + \frac{1}{K}$

Informação própria condicional dum símbolo S em fontes com memória de 1^a ordem e m símbolos: $I_c(S) = \sum_{i=1}^m \left(P_{i|S} \log_2 P_{i|S}^{-1}\right)$ bits/símb, em que $P_{i|S}$ é a probabilidade do símbolo S_i aparecer depois do símbolo S_i . Ou seja, a informação própria condicional dum símbolo S_i tem em consideração as diversas probabilidades associadas ao aparecimento desse símbolo antes dum qualquer outro símbolo do alfabeto da fonte, incluindo ele próprio. Esta informação própria também é designada por Entropia Condicional relativa ao símbolo S_i , ou $H_c(S)$. A Entropia (ou entropia real) em fontes com memória de S_i 0 ordem e S_i 1 ordem e S_i 2 ordem e S_i 3 ordem e S_i 3 ordem e S_i 4 ordem e S_i 5 ordem e S_i 6 dada por: S_i 7 ordem e S_i 8 ordem

Frequência de amostragem na digitalização: $f_a \ge 2 * B \text{ Hz}$

 $K = int[\log_M q]$ símbolos digitais/discretos (se M = 2, então dígitos digitais são bits)

Nota: int(x) é o mínimo número inteiro, maior ou igual a x.

Ritmo de símbolos digitais/discretos gerados na conversão AD: $r_c = K * f_a$ símbolos/seg

Relação entre a potência do sinal (S) e a potência do ruído de quantização (N_q) :

$$\left(\frac{S}{N_q}\right)_{dB} = 10 * \log_{10}\left(\frac{S}{N_q}\right) e N_q = \frac{1}{3*q^2} W$$

Se $S \le 1$ W e base de representação dos símbolos digitais for M = 2 (binário), então:

$$\left(\frac{s}{N_q}\right)_{dB} \le 4.8 + 6 * K$$

Lei de Hartley-Shannon (capacidade do canal): $C = B_T * \log_2(1 + \frac{S}{N})$ bits/seg

Potência do ruído gaussiano: $N = \eta * B_T$ Watt, em que η é a constante de densidade de potência do ruído em Watt/Hz.

Ritmo de Nyquist: $r_S \le 2 * B_T \text{ símb/seg}$

 λ – Ritmo médio de chegadas de DU, em DUs/seg (ou pacotes ou tramas ou mensagens)

 $\lambda_i - \lambda$ para a entrada *i*, em DUs/seg

 r_{be_i} – Ritmo nominal na linha de entrada i, em bits/seg

 α_i – Taxa média de ocupação da entrada i

K – Tamanho dos DUs, em bits

N – Número de entradas do multiplexador

 r_{bs} – Ritmo nominal da linha de saída, em bits/seg

ρ – Utilização/Rendimento da linha de saída

 \bar{S} – Tempo de serviço (tempo de envio dum DU)

 \bar{t}_w – Atraso médio dos DUs no *buffer*/fila de espera

 \bar{t}_q – Atraso médio dos DUs no multiplexador

 \bar{n}_w – Número médio de DUs no *buffer*/fila de espera

 \bar{n}_a – Número médio de DUs no multiplexador

Comprimento do buffer (unidades de dados)

$$\lambda = \frac{1}{K} * \sum_{i=1}^{N} (\alpha_{i} * r_{be_{i}}) \qquad \alpha_{i} * r_{be_{i}} = \lambda_{i} * K$$

$$\bar{S} = \frac{K}{r_{bs}} \qquad \rho = \lambda * \bar{S} = \frac{1}{r_{bs}} * \sum_{i=1}^{N} (\alpha_{i} * r_{be_{i}})$$

$$\bar{t}_{q} = \bar{S} + \bar{t}_{w} \qquad \bar{t}_{w} = \frac{\rho * \bar{S}}{2 * (1 - \rho)}$$

$$\bar{n}_{q} = \rho + \bar{n}_{w} \qquad \bar{n}_{w} = \frac{\rho^{2}}{2 * (1 - \rho)} = \frac{\rho}{\bar{S}} * \bar{t}_{w}$$

Sinal periódico representado como uma série de sinusoides:

$$x(t) = C_0 + \sum_{n=1}^{+\infty} [C_n * \cos(2\pi n f_0 t + \phi)]$$

Teorema da potência de Parceval (espectro bilateral):

$$S = \langle |v(t)|^2 \rangle = \frac{1}{T_0} \int_{T_0} |v(t)|^2 dt \Leftrightarrow S = \sum_{n=-\infty}^{+\infty} |C_n|^2 = C_0^2 + 2 * \sum_{n=1}^{+\infty} |C_n|^2$$

Modulação em frequência:

$$v(t) * \cos(2\pi f_p t) \leftrightarrow \frac{1}{2} [V(f - f_p) + V(f + f_p)]$$

$$g_{dB} = 10 * \log_{10}(g) \leftrightarrow g = 10^{g_{dB}*10^{-1}}$$

Atenuação tendo em conta o coeficiente de atenuação α multiplicador a cada Km: $L=\alpha^d$ Atenuação tendo em conta o coeficiente de atenuação α_{dB} linear a cada Km: $L_{db} = \alpha * d$ Para sistemas de transmissão com *n* troços, com um amplificador no final de cada troço:

$$P_s = P_e * \prod_{i=1}^{n} (g_i * L_i) \leftrightarrow P_{s_{dBm}} = P_{e_{dBm}} + \sum_{i=1}^{n} (g_{db_i} + L_{dB_i})$$

Sistema de transmissão/Filtro *Butterworth* de ordem *n*:

$$H(f) = \frac{K}{1 + j * \left(\frac{f - f_{\phi}}{f_s - f_{\phi}}\right)^n}$$

$$|H(\mathbf{f})|^2 = \frac{K^2}{1 + \left(\frac{\mathbf{f} - f_{\phi}}{f_s - f_{\phi}}\right)^{2n}}$$

$$|H(\mathbf{f})|^2 = \frac{K^2}{1 + \left(\frac{\mathbf{f} - f_{\phi}}{f_s - f_{\phi}}\right)^{2n}} \qquad |f_i = f_{\phi} - (f_s - f_{\phi}) = 2 * f_{\phi} - f_s$$

$$|H(f_s)|^2 = \frac{K^2}{2} \qquad B_T = [f_i, f_s]_+$$

Largura de banda de transmissão, banda passante ou a meia potência: $B_T = [f_i, f_s]_+$ Bandas de Rejeição: $B_{RI} = [-\infty, f_{ri}]_+ | [f_{rs}, +\infty]_+$

Bandas de Transição: $B_{TR} = [f_{ri}, f_i]_+ | [f_s, f_{rs}]_+$

¹ miliwatt (mW) = 10^{-3} watts, 1 microwatt (μ W) = 10^{-6} watts, 1 nanowatt (μ W) = 10^{-9} watts 1 picowatt (pW) = 10^{-12} watts, 1 femtowatt (fW) = 10^{-21} watts