4/10/2020 Vectors_Guide

The Physics II Student's Guide to Vectors

...and possibly the galaxy.

In three dimensions, a **vector** is a set of three numbers: <x, y, z>

This is different than a **scalar**, which is a single number that represents a quantity.

Position and Velocity can both be vector quantities.

Vector Operations

There are legal and illegal ways of using vectors. Follow the legal operations to travel farther in this course!

Legal Operations

With vectors, you CAN:

- 1. Multiply and Divide by a scaler
- 2. Take the magnitude
- 3. Have a unit vector give direction
- 4. Add and subtract other vectors
- 5. Differentiate
- 6. Take the dot product and cross product

Illegal Operations

Vectors **CANNOT**:

- 1. Be equal to a scalar
- 2. Be added to or subtracted from a scalar
- 3. Be in the denominator of an expression (In this case, take the magnitude [see below], which is a scalar!)
- 4. Be added to or subtracted from other vectors with conflicting units

Position Vectors

- A **position vector** describes a position in 3D space.
- Points from the origin to the location.
- · Can use the right-hand rule:
 - Thumb = +x
 - Pointer = +y
 - Middle = +z
- Each number in the vector (x, y, z) is a **component** of the vector.
 - Components can't be vectors by themselves (as they are only 1 number)
- () is a legal vector.
 - This is the position of an object at the origin or the velocity of an object at rest.

Unit Vectors

- A unit vector is a vector that has a magnitude of 1 in some direction.
 - If a unit vector = 1, every component in that vector must be *less* than 1.
- There are 3 unit vectors in the Cartesian system that are along the three axes:
 - i-hat (\hat{i}) = <1, 0, 0>
 - j-hat (\hat{j}) = <0, 1, 0>
 - k-hat (\hat{k}) = <0, 0, 1>
- Example: $0.05\hat{i} + (-1.2)\hat{j} + 20\hat{k}$
- · Not all unit vectors point along the axis.
- · How to find a unit vector:

$$\hat{r} = rac{ec{r}}{|ec{r}|} = rac{< x,y,z>}{\sqrt{x^2 + y^2 + z^2}}$$

- A vector = another vector if all the components are equal.
- A vector may be factored into the product of a unit vector, multiplied by a scalar equal to the magnitude.
 - Example: <0, 5, 0> = 5 <0, 1, 0>

Drawing Vectors

- For position vectors, the tail is always at the origin of a coordinate system.
- The x component of a vector is the difference between the x-coordinate of the tail and the x-coordinate of the tip.
- Length of arrow = distance from origin.
- Direction of arrow = direction of the path from the *initial* position to the *final* position...displacement!

Fun Things to do with Vectors

1. Addition and Subtraction

- The magnitude of a vector ≠ the sum of the magnitudes of the two original vectors.
- · Vector addition is commutative.
 - $ec{A} + ec{B} = ec{B} + ec{A}$
- Vector subtraction is *not* commutative.
 - $oldsymbol{\vec{A}} ec{B}
 eq ec{B} ec{A}$
- Vector addition and subtraction are associative.
 - ullet $(ec{A}+ec{B})-ec{C}=ec{A}+(ec{B}-ec{C})$
- Application of vector subtraction:
 - Δ = change in quantity = final initial
 - ullet $\Deltaec{r}=ec{r}_f=ec{r}_i$
- · Graphical addition of vectors:
 - A. Draw the first vector.
 - B. Add the second vector (without rotating) so the tail is at the tip of the first vector.
 - C. Draw a new vector from the tail of the first vector to the tip of the second vector.
- · Graphical subtraction of vectors:
 - A. Draw the first vector.
 - B. Add the second vector (without rotating) so the tail is at the tail of the first vector.
 - C. Draw a new vector from the tip of the first vector to the tip of the second vector.

4/10/2020 Vectors_Guide

Equations:

$$ec{A} + ec{B} = <(A_x + B_x), (A_y + B_y), (A_z + B_z) >
onumber \ ec{A} - ec{B} = <(A_x - B_x), (A_y - B_y), (A_z - B_z) >
onumber \ ec{A} - ec{B} = <(A_x - B_x), (A_y - B_y), (A_z - B_z) >
onumber \ ec{A} - ec{B} = <(A_x - B_x), (A_y - B_y), (A_z - B_z) >
onumber \ ec{A} - ec{B} = <(A_x - B_x), (A_y - B_y), (A_z - B_z) >
onumber \ ec{A} - ec{B} - ec{A} - ec{B} - ec{A} - ec{B} - ec{A} - e$$

1. Multiplying a Vector by a Scalar

- If a vector is multiplied by a scalar, *each* of the components of the vector is multiplied by the scalar.
 - This scales the vector.
 - Keeps the directions the same, but makes the magnitude larger or smaller.
- Multiplying by a *negative* scalar reverses the direction of the vector.

1. Magnitude

- The magnitude of a vector = a scalar.
- Note that the magnitude is always a positive number (remember the absolute value!).
- · How to find the magnitude:

$$|ec{r}|=\sqrt{r_x^2+r_y^2+r_z^2}$$

Scalars

- Scalars:
 - Do not have a direction.
 - Examples: Mass of an object, temperature
 - Cannot be equal to a vector.
 - Cannot be added to a vector.
 - Can be positive, negative, or zero.

References

Chabay, R., & Sherwood, B. A. (2015). Matter and Interactions (4th ed.). John Wiley & Sons.