CC1004 - Modelos de Computação Teóricas 1 e 2

Ana Paula Tomás

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto

Fevereiro 2021

Linguagens Formais e Computabilidade

Área de TCS. Limites da computação. Computabilidade: existe algoritmo para resolução do problema? Complexidade: Que recursos requer (tempo e espaço)? Como se descreve o problema? Que tipo de máquina usará?

Fonte: http://www.ic.uff.br/~ueverton/files/LF/aula09.pdf

Programa

- Noção de linguagem formal.
- Linguagens regulares.
 - Expressões regulares.
 - Autómatos finitos determinísticos e não determinísticos.
 - Propriedades. Lema da repetição para linguagens regulares.
- Linguagens independentes de contexto (LICs).
 - Gramáticas independentes de contexto.
 - Autómatos de pilha.
 - Propriedades. Lema da repetição para LICs.
- Linguagens recursivamente enumeráveis. Máquinas de Turing e noção de computabilidade.

No fim desta UC deverá ser capaz de especificar linguagens formais simples, usando formas de descrição alternativas, e determinar a sua classificação na hierarquia de poder computacional (*hierarquia de Chomsky*).

Hierarquia de Chomsky

Fonte:https://devopedia.org/chomsky-hierarchy

Autómato Finito?

A figura mostra o **diagrama de transição** de um autómato finito, com conjunto de **estados** $\{q_1,q_2,q_3\}$, **alfabeto** $\Sigma=\{0,1\}$, **estado inicial** q_1 (assinalado por uma seta), e um **estado final** (i.e., de aceitação) q_2 (assinalado por duas circunferências). As **palavras** 0110110000, 111 e 10101 levam o autómato do estado inicial q_1 ao estado final q_2 . Diz-se que são **aceites** pelo autómato. As palavras 0, 00, 0110, 110 e 011000 não seriam aceites. O autómato processa cada palavra da esquerda para a direita, partindo do estado inicial q_1 , seguindo as transições.

A linguagem reconhecida (ou aceite) por um autómato é o conjunto das palavras de alfabeto Σ que levam o autómato do estado inicial a algum estado final.

Este autómato reconhece o conjunto das palavras que têm algum 1 e terminam por 1 ou por um número par de 0's.

Introdução às Linguagens Formais

Alfabeto: qualquer conjunto finito e não vazio. Os elementos de um alfabeto dizem-se símbolos.

Palavra (frase ou sequência) de alfabeto Σ : qualquer sequência finita de símbolos de Σ .

 Σ^* denota o conjunto das palavras de alfabeto Σ .

Palavra vazia: a palavra com zero símbolos. Denota-se por ε .

Linguagem (formal) de alfabeto Σ : é qualquer conjunto de palavras de Σ .

- Linguagem vazia Não tem qualquer palavra. Denota-se por \emptyset ou $\{\}$. Portanto, $L = \{\varepsilon\} \neq \emptyset$.
- Comprimento da palavra α : denota-se por $|\alpha|$ e é o número de símbolos de Σ que constituem a palavra. Para $\Sigma = \{0, 1\}$, tem-se |0100| = 4. Qualquer que seja Σ , tem-se $|\varepsilon|=0$

Exemplos

Para o alfabeto $\Sigma = \{0, 1\}$, teriamos

$$\Sigma^{\star} = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, 0000, \ldots\}$$

Para o alfabeto $\Sigma = \{a, b, c\}$, teriamos

$$\Sigma^{\star} = \{\varepsilon, \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{aa}, \mathsf{ab}, \mathsf{ac}, \mathsf{ba}, \mathsf{bb}, \mathsf{bc}, \mathsf{ca}, \mathsf{cb}, \mathsf{cc}, \mathsf{aaa}, \mathsf{aab}, \mathsf{aac}, \mathsf{aba}, \mathsf{abb}, \mathsf{abc}, \ldots\}$$

Para o alfabeto $\Sigma = \{\clubsuit, \diamondsuit, \spadesuit, \heartsuit\}$, teriamos

$$\Sigma^{\star} = \{\varepsilon, \clubsuit, \diamondsuit, \spadesuit, \heartsuit, \clubsuit \clubsuit, \clubsuit \diamondsuit, \clubsuit \spadesuit, \clubsuit \heartsuit, \diamondsuit \clubsuit, \diamondsuit \diamondsuit, \diamondsuit \spadesuit, \diamondsuit \heartsuit, \ldots\}$$

Exemplos de linguagens de alfabeto $\Sigma = \{0,1\}$

Recordar que uma linguagem de alfabeto Σ é qualquer subconjunto de Σ^* . Por exemplo:

- $L_1 = \Sigma^*$
- $L_2 = \{\}$
- $\bullet \ L_3 = \big\{ x \ \big| \ x \in \{0,1\}^{\star} \ \text{e termina em } 1 \big\} = \{ \text{1,01,11,001,011,101,111,0001}, \ldots \}$
- $L_4 = \{x \mid x \in \{0,1\}^* \text{ e o número de 0's em } x \text{ é par} \}$ $= \{\varepsilon,1,11,00,111,001,010,100,1111,1100,1010,1001,0110,0101,0001,0001,\dots\}$
- $L_5 = \{x \mid x \in \{0,1\}^* \text{ e } |x| = 3\} = \{000,001,010,011,100,101,110,111\}$

 L_2 e L_5 são linguagens finitas, i.e., são conjuntos finitos. L_1 , L_3 e L_4 são linguagens infinitas. Por definição, as palavras são sempre sequências finitas.

◆ロト ◆園 ト ◆恵 ト ◆恵 ト ・ 恵 ・ 釣 久 ○

Exemplos de linguagens de alfabeto $\Sigma = \{a, b, c\}$

- $I_1 = \Sigma^*$
- $L_2 = \{\}$
- $L_3 = \{a^n b^n c^n \mid n \in \mathbb{N}\} = \{\varepsilon, abc, aabbcc, aaabbbccc, \ldots\}$
- $L_4 = \{a^n b^n \mid n \in \mathbb{N}\} = \{\varepsilon, ab, aabb, aaabbb, aaaabbbb, \ldots\}$
- $L_5 = \{a^n \mid n \in \mathbb{N}\} = \{\varepsilon, a, aa, aaa, aaaa, aaaaa, ...\}$
- $L_6 = \{a^n bb \mid n \in \mathbb{N}\} = \{bb, abb, aabb, aaabb, aaaabb, \ldots\}$
- $L_7 = \{a^n b^k \mid n \in \mathbb{N}, k \in \mathbb{N}\} = \{x \mid x \in \{a, b\}^* \text{ e } x \text{ não tem a's depois de b's}\}$
- $L_8 = \{x \mid x \in \{a,b\}^*, x \text{ começa e termina em b e } |x| < 4\} =$ {b, bb, bbb, bab, baab, babb, bbab, bbbb}

Notação:

 b^n denota uma sequência de *n* b's, sendo $b^0 = \varepsilon$.

 $\mathbb{N} = \mathbb{Z}_0^+$, ou seja, \mathbb{N} inclui o zero.

4 D > 4 B > 4 B > 4 B > 9 Q P

Exemplos de linguagens talvez mais interessantes

Seja L a linguagem de alfabeto $\Sigma = \{p, \land, \lor, \tilde{\ }, \Rightarrow, (,)\}$ assim definida indutivamente.

- (i) $p \in L$
- (ii) Quaisquer que sejam $\alpha, \beta \in L$ tem-se $(\alpha \land \beta) \in L$, $(\alpha \lor \beta) \in L$, $(\alpha \Rightarrow \beta) \in L$ e $(\alpha) \in L$.
- (iii) As palavras de L são as que resultam das regras (i) e (ii).

Exemplos de palavras de *L*:

$$(((p \land p) \lor p) \Rightarrow (\tilde{p}))$$

$$((((p \land p) \lor p) \Rightarrow (\tilde{p})) \Rightarrow (\tilde{p}) \lor p))$$

Exemplos de linguagens talvez mais interessantes

Seja L a linguagem de alfabeto $\Sigma = \{(,)\}$ definida indutivamente por:

- $() \in L$
- (ii) Quaisquer que seja $\alpha \in L$, tem-se $(\alpha) \in L$
- (iii) Quaisquer que seja $\alpha, \beta \in L$, tem-se $\alpha\beta \in L$
- (iv) As palavras de L são as que resultam das regras (i)–(iii).

Agui, $\alpha\beta$ é a palavra que se obtém por concatenação de α com β , ou seia, junção de β no fim de α .

Exemplo de palavra que pertence a L:

Exemplo de palavra que não pertence a *L*:

Para pensar ... Dado $x \in \Sigma^*$, é mais fácil justificar que $x \in L$ do que $x \notin L$? Como justificar que L é constituída pelas sequências de parentesis bem "emparelhados"?

União, Interseção, Complementar e Diferença

As linguagens são subconjuntos de Σ^* . As operações união, interseção, complementar, e diferença são definidas para linguagens como para conjuntos.

União:
$$L \cup M = \{x \mid x \in L \text{ ou } x \in M\}$$

Interseção:
$$L \cap M = \{x \mid x \in L \text{ e } x \in M\}$$

Complementar:
$$\overline{L} = \{x \mid x \notin L\} = \Sigma^* \setminus L$$

Diferença:
$$L \setminus M = \{x \mid x \in L \text{ e } x \notin M\}$$

$$\begin{split} & \text{Exemplo: } \Sigma = \{0,1\}, \ L = \{0^n \mid n \in \mathbb{N}\}, \ \text{e} \ M = \{1^n \mid n \in \mathbb{N}\}. \\ & L \cup M = \{x \mid x \text{ não tem 0's ou } x \text{ não tem 1's}\}. \qquad \underbrace{L \cap M} = \{\varepsilon\} \\ & L \setminus M = L \setminus \{\varepsilon\} = \{0^n \mid n \geq 1\} \qquad \qquad \underbrace{\overline{L}} = \{x \mid x \text{ tem algum 1}\} \end{split}$$

Concatenação

Duas operações específicas para linguagens: concatenação e fecho de Kleene.

Concatenação de duas palavras: sendo α e β palavras, à palavra $\alpha\beta$, obtida por justaposição de α com β , chamamos *concatenação* de α com β .

Concatenação de duas linguagens: sendo L e M linguagens, LM é a linguagem de todas as palavras obtidas por concatenação de uma qualquer palavra de L com uma qualquer palavra de M, ou seja

$$LM = \{xy \mid x \in L \text{ e } y \in M\}$$

Exemplos:

Se $\alpha=$ 000 e $\beta=$ 11, $\alpha\beta=$ 00011 e $\beta\alpha=$ 11000. A concatenação não é comutativa.

Se $L = \{0^n \mid n \in \mathbb{N}\}$ e $M = \{1^n \mid n \in \mathbb{N}\}$ então $LM = \{0^n 1^k \mid n \in \mathbb{N}, k \in \mathbb{N}\}.$

Cuidado! Notar que $LM \neq \{0^n 1^n \mid n \in \mathbb{N}\}$.

Propriedades da concatenação

A concatenação de palavras é uma operação binária em Σ^{\star} que goza das propriedades:

- associativa, pois x(yz) = (xy)z, quaisquer que sejam $x, y, z \in \Sigma^*$;
- existência de elemento neutro, pois $x\varepsilon = \varepsilon x = x$, para todo $x \in \Sigma^*$;

Por ser associativa, podemos escrever xyz, para abreviar x(yz) e (xy)z.

Associatividade da concatenação de linguagens

(LM)K = L(MK), quaisquer que sejam as linguagens $L, M, K \subseteq \Sigma^*$.

Por ser associativa, podemos escrever LMK, para abreviar L(MK) e (LM)K.

◆ロト ◆卸ト ◆恵ト ◆恵ト ・恵 ・ 釣りで

A linguagem das palavras obtidas por concatenação de n palavras de L, com $n \ge 2$, denota-se por L^n . Podemos estender a definição a $n \ge 0$ assim:

$$L^{0} = \{\varepsilon\}$$

$$L^{n+1} = LL^{n} = L^{n}L, \text{ com } n \in \mathbb{N}.$$

Observação:

• $L^1 = L$, qualquer que seja a linguagem L, pois

$$L^{1} = L^{0}L = \{\varepsilon\}L = \{\varepsilon x \mid x \in L\} = \{x \mid x \in L\} = L$$

ullet $L^pL^q=L^{p+q}$, quaisquer que sejam $p,q\in\mathbb{N}$ (pode-se mostrar por indução matemática)

A linguagem das palavras obtidas por justaposição de um número finito de palavras de L, possivelmente zero ou um, chama-se **fecho de Kleene da linguagem** L, e denota-se por L^* .

$$L^* = \bigcup_{n \in \mathbb{N}} L^n = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \cdots$$

A linguagem das palavras obtidas por concatenação de n palavras de L, com $n \ge 2$, denota-se por L^n . Podemos estender a definição a $n \ge 0$ assim:

$$L^{0} = \{\varepsilon\}$$

$$L^{n+1} = LL^{n} = L^{n}L, \text{ com } n \in \mathbb{N}.$$

Observação:

• $L^1 = L$, qualquer que seja a linguagem L, pois

$$L^{1} = L^{0}L = \{\varepsilon\}L = \{\varepsilon x \mid x \in L\} = \{x \mid x \in L\} = L$$

ullet $L^pL^q=L^{p+q}$, quaisquer que sejam $p,q\in\mathbb{N}$ (pode-se mostrar por indução matemática)

$$L^* = \bigcup_{n \in \mathbb{N}} L^n = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \cdots$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

A linguagem das palavras obtidas por concatenação de n palavras de L, com $n \ge 2$, denota-se por L^n . Podemos estender a definição a $n \ge 0$ assim:

$$L^{0} = \{\varepsilon\}$$

$$L^{n+1} = LL^{n} = L^{n}L, \text{ com } n \in \mathbb{N}.$$

Observação:

• $L^1 = L$, qualquer que seja a linguagem L, pois

$$L^{1} = L^{0}L = \{\varepsilon\}L = \{\varepsilon x \mid x \in L\} = \{x \mid x \in L\} = L$$

ullet $L^pL^q=L^{p+q}$, quaisquer que sejam $p,q\in\mathbb{N}$ (pode-se mostrar por indução matemática)

A linguagem das palavras obtidas por justaposição de um número finito de palavras de L, possivelmente zero ou um, chama-se fecho de Kleene da **linguagem** L, e denota-se por L^* .

$$L^* = \bigcup_{n \in \mathbb{N}} L^n = L^0 \cup L^1 \cup L^2 \cup L^3 \cup \cdots$$

Exemplo: Seja
$$L = \{1,00\}$$
.
 $L^2 = L^1L = LL = \{11,100,001,0000\}$
 $L^3 = L^2L = \{111,1100,1001,10000,00001,000000,0011,001000\}$
 $L^4 = L^3L = \{1111,11100,11001,110000,...,001001,0010000\}$

$$L^* = \bigcup_{n \in \mathbb{N}} L^n = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots$$

maximal de 0's consecutivos na palavra tem número par de 0's.

Maximal, no sentido de não ser seguida nem precedida imediatamente por 0.

As palavras de L^{\star} são as sequências finitas de 1's e/ou 00's. Poi

Exemplo: Seja $L = \{1,00\}$. $L^2 = L^1L = LL = \{11,100,001,0000\}$ $L^3 = L^2L = \{111,1100,1001,10000,00001,000000,0011,00100\}$ $L^4 = L^3L = \{1111,11100,11001,110000,...,001001,0010000\}$

$$L^* = \bigcup_{n \in \mathbb{N}} L^n = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots$$

 L^* é o conjunto das palavras de alfabeto $\{0,1\}$ tais que qualquer subsequência maximal de 0's consecutivos na palavra tem número par de 0's. Maximal, no sentido de não ser seguida nem precedida imediatamente por 0.

As palavras de L^* são as sequências finitas de 1's e/ou 00's. Po

```
Exemplo: Seja L = \{1,00\}.

L^2 = L^1L = LL = \{11,100,001,0000\}

L^3 = L^2L = \{111,1100,1001,10000,00001,0000000,0011,001000\}

L^4 = L^3L = \{1111,11100,11001,110000,...,001001,0010000\}
```

$$L^* = \bigcup_{n \in \mathbb{N}} L^n = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots$$

 L^* é o conjunto das palavras de alfabeto $\{0,1\}$ tais que qualquer subsequência maximal de 0's consecutivos na palavra tem número par de 0's. Maximal, no sentido de não ser seguida nem precedida imediatamente por 0.

As palavras de L^* são as sequências finitas de 1's e/ou 00's. Por

0000111100111000011 111111 0000000000

Exemplo: Seja $\Sigma = \{0, 1\}$. Podemos considerar Σ como uma linguagem de alfabeto Σ e definir:

$$\begin{array}{lll} \Sigma^0 & = & \{\varepsilon\} \\ \Sigma^1 & = & \{0,1\} \\ \Sigma^2 & = & \{11,00,01,10\} \\ \Sigma^4 & = & \{1111,1110,1101,1100,1011,1010,1001,1000, \\ & & 0111,0110,0101,0100,0011,0010,0001,0000\} \\ \Sigma^n & = & \{x \mid x \text{ \'e sequência de 0's ou 1's de comprimento } n\} \\ \end{array}$$

Exemplo: Seja $\Sigma = \{0, 1\}$. Podemos considerar Σ como uma linguagem de alfabeto Σ e definir:

$$\begin{array}{lll} \Sigma^0 &=& \{\varepsilon\} \\ \Sigma^1 &=& \{0,1\} \\ \Sigma^2 &=& \{11,00,01,10\} \\ \Sigma^4 &=& \{1111,1110,1101,1100,1011,1010,1001,1000,\\ && 0111,0110,0101,0100,0011,0010,0001,0000\} \\ \Sigma^n &=& \{x \mid x \text{ \'e sequência de 0's ou 1's de comprimento } n\} \\ \Sigma^\star &=& \bigcup_{n\in\mathbb{N}} \Sigma^n = \{x \mid x \text{ \'e sequência finita de 0's ou 1's} \} \end{array}$$

Exemplo: Seja
$$L = \{000,00000\} = \{0^3,0^5\}$$
, de alfabeto $\Sigma = \{0,1\}$.
$$L^2 = \{0^6,0^8,0^{10}\}$$

$$L^3 = \{0^9,0^{11},0^{13},0^{15}\}$$

$$L^4 = \{0^{12},0^{14},0^{16},0^{18},0^{20}\}$$

$$L^* = \bigcup L^k = \{0^n \mid n \in \mathbb{N} \setminus \{1,2,4,7\}\} = \{\varepsilon,0^3,0^5,0^6\} \cup \{0^n \mid n \geq 8\}$$

Por **indução matemática**, podemos provar que para todo número inteiro $n \ge 8$, existem $p, q \in \mathbb{N}$ tais que n = 3p + 5q. Logo, $0^n \in L^*$, para todo $n \ge 8$, pois $0^n = 0^{3p}0^{5q} \in L^pL^q = L^{p+q}$, uma vez que $0^{3p} \in L^p$ e $0^{5q} \in L^q$.

Exemplo: Seja
$$L = \{000,00000\} = \{0^3,0^5\}$$
, de alfabeto $\Sigma = \{0,1\}$.
$$L^2 = \{0^6,0^8,0^{10}\}$$

$$L^3 = \{0^9,0^{11},0^{13},0^{15}\}$$

$$L^4 = \{0^{12},0^{14},0^{16},0^{18},0^{20}\}$$

$$L^* = \bigcup L^k = \{0^n \mid n \in \mathbb{N} \setminus \{1,2,4,7\}\} = \{\varepsilon,0^3,0^5,0^6\} \cup \{0^n \mid n \geq 8\}$$

Por **indução matemática**, podemos provar que para todo número inteiro $n \ge 8$, existem $p, q \in \mathbb{N}$ tais que n = 3p + 5q. Logo, $0^n \in L^*$, para todo $n \ge 8$, pois $0^n = 0^{3p}0^{5q} \in L^pL^q = L^{p+q}$, uma vez que $0^{3p} \in L^p$ e $0^{5q} \in L^q$.

Exemplo: Seja
$$L = \{000,00000\} = \{0^3,0^5\}$$
, de alfabeto $\Sigma = \{0,1\}$.
$$L^2 = \{0^6,0^8,0^{10}\}$$

$$L^3 = \{0^9,0^{11},0^{13},0^{15}\}$$

$$L^4 = \{0^{12},0^{14},0^{16},0^{18},0^{20}\}$$

$$L^* = \bigcup L^k = \{0^n \mid n \in \mathbb{N} \setminus \{1,2,4,7\}\} = \{\varepsilon,0^3,0^5,0^6\} \cup \{0^n \mid n \geq 8\}$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Exemplo: Seja
$$L = \{000,00000\} = \{0^3,0^5\}$$
, de alfabeto $\Sigma = \{0,1\}$.
$$L^2 = \{0^6,0^8,0^{10}\}$$

$$L^3 = \{0^9,0^{11},0^{13},0^{15}\}$$

$$L^4 = \{0^{12},0^{14},0^{16},0^{18},0^{20}\}$$

$$L^* = \{\int L^k = \{0^n \mid n \in \mathbb{N} \setminus \{1,2,4,7\}\} = \{\varepsilon,0^3,0^5,0^6\} \cup \{0^n \mid n \geq 8\}$$

◆ロト ◆団ト ◆意ト ◆意ト ・意 ・ 夕久で

Exemplo: Seja $L = \{000, 00000\} = \{0^3, 0^5\}$, de alfabeto $\Sigma = \{0, 1\}$.

Fecho de Kleene

$$L^{2} = \{0^{6}, 0^{8}, 0^{10}\}$$

$$L^{3} = \{0^{9}, 0^{11}, 0^{13}, 0^{15}\}$$

$$L^4 \ = \ \{\, 0^{12}, 0^{14}, 0^{16}, 0^{18}, 0^{20} \,\}$$

$$L^* = \bigcup_{k \in \mathbb{N}} L^k = \{0^n \mid n \in \mathbb{N} \setminus \{1, 2, 4, 7\}\} = \{\varepsilon, 0^3, 0^5, 0^6\} \cup \{0^n \mid n \ge 8\}$$

Por indução matemática, podemos provar que para todo número inteiro $n \geq 8$, existem $p, q \in \mathbb{N}$ tais que n = 3p + 5q. Logo, $0^n \in L^*$, para todo $n \ge 8$, pois $0^{n} = 0^{3p}0^{5q} \in L^{p}L^{q} = L^{p+q}$, uma vez que $0^{3p} \in L^{p}$ e $0^{5q} \in L^{q}$.

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $\varepsilon \in L$ então $M \subseteq LM$.

Se $\varepsilon \in M$ então $L \subseteq LM$.

Prova

Se $\varepsilon \in L$ então $\varepsilon y \in LM$, para todo $y \in M$, por definição de LM.

Como $\varepsilon y=y$, tal significa que $y\in LM$, para todo $y\in M$, ou seja $M\subseteq LM$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $\varepsilon \in L$ então $M \subseteq LM$.

Se $\varepsilon \in M$ então $L \subseteq LM$.

Prova:

Se $\varepsilon \in L$ então $\varepsilon y \in LM$, para todo $y \in M$, por definição de LM.

Como $\varepsilon y = y$, tal significa que $y \in LM$, para todo $y \in M$, ou seja $M \subseteq LM$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $\varepsilon \in L$ então $M \subseteq LM$.

Se $\varepsilon \in M$ então $L \subseteq LM$.

Prova:

Se $\varepsilon \in L$ então $\varepsilon y \in LM$, para todo $y \in M$, por definição de LM.

Como $\varepsilon y = y$, tal significa que $y \in LM$, para todo $y \in M$, ou seja $M \subseteq LM$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $\varepsilon \in L$ então $M \subseteq LM$.

Se $\varepsilon \in M$ então $L \subseteq LM$.

Prova:

Se $\varepsilon \in L$ então $\varepsilon y \in LM$, para todo $y \in M$, por definição de LM.

Como $\varepsilon y = y$, tal significa que $y \in LM$, para todo $y \in M$, ou seja $M \subseteq LM$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$.

Se $L \subseteq M$ então $L^* \subseteq M^*$.

Justificação (intuitiva):

 L* é o conjunto de todas as palavras que se podem obter por justaposição de um número finito de palavras de L, possivelmente zero ou um.

Se $L \subseteq M$ então qualquer palavra de L pertence a M. Assim, qualquer palavra x de L^* pode ser vista como uma justaposição de um número finito de palavras de M, possivelmente zero ou um. Logo, $x \in M^*$.

• Analogamente, se pode concluir que $L^n \subseteq M^n$, pois L^n denota a linguagem das palavras que se podem obter por justaposição de n palavras de L. Portanto, se $x \in L^n$ e $L \subseteq M$ então $x \in M^n$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$.

Se $L \subseteq M$ então $L^* \subseteq M^*$.

Justificação (intuitiva):

• L* é o conjunto de todas as palavras que se podem obter por justaposição de um número finito de palavras de L, possivelmente zero ou um.

Se $L \subseteq M$ então qualquer palavra de L pertence a M. Assim, qualquer palavra x de L^* pode ser vista como uma justaposição de um número finito de palavras de M, possivelmente zero ou um. Logo, $x \in M^*$.

• Analogamente, se pode concluir que $L^n \subseteq M^n$, pois L^n denota a linguagem das palavras que se podem obter por justaposição de n palavras de L. Portanto, se $x \in L^n$ e $L \subseteq M$ então $x \in M^n$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$.

Se $L \subseteq M$ então $L^* \subseteq M^*$.

Justificação (intuitiva):

• L* é o conjunto de todas as palavras que se podem obter por justaposição de um número finito de palavras de L, possivelmente zero ou um.

Se $L \subseteq M$ então qualquer palavra de L pertence a M. Assim, qualquer palavra x de L^* pode ser vista como uma justaposição de um número finito de palavras de M, possivelmente zero ou um. Logo, $x \in M^*$.

• Analogamente, se pode concluir que $L^n \subseteq M^n$, pois L^n denota a linguagem das palavras que se podem obter por justaposição de n palavras de L. Portanto, se $x \in L^n$ e $L \subseteq M$ então $x \in M^n$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$.

Se $L \subseteq M$ então $L^* \subseteq M^*$.

Justificação (intuitiva):

- L* é o conjunto de todas as palavras que se podem obter por justaposição de um número finito de palavras de L, possivelmente zero ou um.
 - Se $L\subseteq M$ então qualquer palavra de L pertence a M. Assim, qualquer palavra x de L^* pode ser vista como uma justaposição de um número finito de palavras de M, possivelmente zero ou um. Logo, $x\in M^*$.
- Analogamente, se pode concluir que $L^n \subseteq M^n$, pois L^n denota a linguagem das palavras que se podem obter por justaposição de n palavras de L. Portanto, se $x \in L^n$ e $L \subseteq M$ então $x \in M^n$.

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$.

Se $L \subseteq M$ então $L^* \subseteq M^*$.

Justificação (intuitiva):

- L* é o conjunto de todas as palavras que se podem obter por justaposição de um número finito de palavras de L, possivelmente zero ou um.
 - Se $L\subseteq M$ então qualquer palavra de L pertence a M. Assim, qualquer palavra x de L^* pode ser vista como uma justaposição de um número finito de palavras de M, possivelmente zero ou um. Logo, $x\in M^*$.
- Analogamente, se pode concluir que $L^n \subseteq M^n$, pois L^n denota a linguagem das palavras que se podem obter por justaposição de n palavras de L.

Portanto, se $x \in L^n$ e $L \subseteq M$ então $x \in M^r$

Proposição:

Sejam L e M linguagens de alfabeto Σ .

Se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$.

Se $L \subseteq M$ então $L^* \subseteq M^*$.

Justificação (intuitiva):

- L* é o conjunto de todas as palavras que se podem obter por justaposição de um número finito de palavras de L, possivelmente zero ou um.
 - Se $L\subseteq M$ então qualquer palavra de L pertence a M. Assim, qualquer palavra x de L^* pode ser vista como uma justaposição de um número finito de palavras de M, possivelmente zero ou um. Logo, $x\in M^*$.
- Analogamente, se pode concluir que $L^n \subseteq M^n$, pois L^n denota a linguagem das palavras que se podem obter por justaposição de n palavras de L. Portanto, se $x \in L^n$ e $L \subseteq M$ então $x \in M^n$.

- Se $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$, então $\bigcup_{n \in \mathbb{N}} L^n \subseteq \bigcup_{n \in \mathbb{N}} M^n$. Portanto, $L^* \subseteq M^*$.
- Resta mostrar que se L ⊆ M então Lⁿ ⊆ Mⁿ, para todo n ∈ N.
 Supondo L ⊆ M, tal segue pelo princípio de indução matemática se provarmos (i) e (ii):
 - (i) Caso de base: $L^0 \subseteq M^0$. Justificação: $L^0 \subseteq M^0$ pois $L^0 = \{\varepsilon\} = M^0$.
 - (ii) Hereditariedade: Se $L^k \subseteq M^k$ então $L^{k+1} \subseteq M^{k+1}$, para $k \in \mathbb{N}$. Justificação: Como $L^{k+1} = LL^k$, dado $x \in L^{k+1}$ existe $y \in L$ e $z \in L^k$ tais que x = yz. Então, $x \in MM^k$ pois $y \in M$ e $z \in M^k$ porque $L \subseteq M$ e, pela hipótese de indução, $L^k \subseteq M^k$. Portanto, se $x \in L^{k+1}$ então $x \in M^{k+1}$, i.e., $L^{k+1} \subset M^{k+1}$.

Prova formal a partir das definições das operações:

- Se $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$, então $\bigcup_{n \in \mathbb{N}} L^n \subseteq \bigcup_{n \in \mathbb{N}} M^n$. Portanto, $L^* \subseteq M^*$.
- Resta mostrar que se L ⊆ M então Lⁿ ⊆ Mⁿ, para todo n ∈ N.
 Supondo L ⊆ M, tal segue pelo princípio de indução matemática se provarmos (i) e (ii):
 - (i) Caso de base: $L^0 \subseteq M^0$. Justificação: $L^0 \subseteq M^0$ pois $L^0 = \{\varepsilon\} = M^0$.
 - (ii) Hereditariedade: Se $L^k \subseteq M^k$ então $L^{k+1} \subseteq M^{k+1}$, para $k \in \mathbb{N}$. Justificação: Como $L^{k+1} = LL^k$, dado $x \in L^{k+1}$ existe $y \in L$ e $z \in L^k$ tais que x = yz. Então, $x \in MM^k$ pois $y \in M$ e $z \in M^k$ porque $L \subseteq M$ e, pela hipótese de indução, $L^k \subseteq M^k$. Portanto, se $x \in L^{k+1}$ então $x \in M^{k+1}$, i.e., $L^{k+1} \subset M^{k+1}$.

←□ → ←□ → ← □ → ← □ → へへの

- Se $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$, então $\bigcup_{n \in \mathbb{N}} L^n \subseteq \bigcup_{n \in \mathbb{N}} M^n$. Portanto, $L^* \subseteq M^*$.
- Resta mostrar que se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$. Supondo $L \subseteq M$, tal segue pelo **princípio de indução matemática** se provarmos (i) e (ii):
 - (i) Caso de base: $L^0 \subseteq M^0$. Justificação: $L^0 \subseteq M^0$ pois $L^0 = \{\varepsilon\} = M^0$
 - (ii) Hereditariedade: Se $L^k \subseteq M^k$ então $L^{k+1} \subseteq M^{k+1}$, para $k \in \mathbb{N}$. Justificação: Como $L^{k+1} = LL^k$, dado $x \in L^{k+1}$ existe $y \in L$ e $z \in L^k$ tais que x = yz. Então, $x \in MM^k$ pois $y \in M$ e $z \in M^k$ porque $L \subseteq M$ e, pela hipótese de indução, $L^k \subseteq M^k$. Portanto, se $x \in L^{k+1}$ então $x \in M^{k+1}$, i.e., $L^{k+1} \subset M^{k+1}$.

- Se $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$, então $\bigcup_{n \in \mathbb{N}} L^n \subseteq \bigcup_{n \in \mathbb{N}} M^n$. Portanto, $L^* \subseteq M^*$.
- Resta mostrar que se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$. Supondo $L \subseteq M$, tal segue pelo **princípio de indução matemática** se provarmos (i) e (ii):
 - (i) Caso de base: $L^0 \subseteq M^0$. Justificação: $L^0 \subseteq M^0$ pois $L^0 = \{\varepsilon\} = M^0$.
 - (ii) Hereditariedade: Se $L^k \subseteq M^k$ então $L^{k+1} \subseteq M^{k+1}$, para $k \in \mathbb{N}$. Justificação: Como $L^{k+1} = LL^k$, dado $x \in L^{k+1}$ existe $y \in L$ e $z \in L^k$ tais que x = yz. Então, $x \in MM^k$ pois $y \in M$ e $z \in M^k$ porque $L \subseteq M$ e, pela hipótese de indução, $L^k \subseteq M^k$. Portanto, se $x \in L^{k+1}$ então $x \in M^{k+1}$, i.e., $L^{k+1} \subseteq M^{k+1}$.

- Se $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$, então $\bigcup_{n \in \mathbb{N}} L^n \subseteq \bigcup_{n \in \mathbb{N}} M^n$. Portanto, $L^* \subseteq M^*$.
- Resta mostrar que se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$. Supondo $L \subseteq M$, tal segue pelo **princípio de indução matemática** se provarmos (i) e (ii):
 - (i) Caso de base: $L^0 \subseteq M^0$. Justificação: $L^0 \subseteq M^0$ pois $L^0 = \{\varepsilon\} = M^0$.
 - (ii) Hereditariedade: Se $L^k \subseteq M^k$ então $L^{k+1} \subseteq M^{k+1}$, para $k \in \mathbb{N}$. Justificação: Como $L^{k+1} = LL^k$, dado $x \in L^{k+1}$ existe $y \in L$ e $z \in L^k$ tais que x = yz. Então, $x \in MM^k$ pois $y \in M$ e $z \in M^k$ porque $L \subseteq M$ e, pela hipótese de indução, $L^k \subseteq M^k$. Portanto, se $x \in L^{k+1}$ então $x \in M^{k+1}$, i.e., $L^{k+1} \subseteq M^{k+1}$.

- Se $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$, então $\bigcup_{n \in \mathbb{N}} L^n \subseteq \bigcup_{n \in \mathbb{N}} M^n$. Portanto, $L^* \subseteq M^*$.
- Resta mostrar que se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$. Supondo $L \subseteq M$, tal segue pelo **princípio de indução matemática** se provarmos (i) e (ii):
 - (i) Caso de base: $L^0 \subseteq M^0$. Justificação: $L^0 \subseteq M^0$ pois $L^0 = \{\varepsilon\} = M^0$.
 - (ii) Hereditariedade: Se $L^k \subseteq M^k$ então $L^{k+1} \subseteq M^{k+1}$, para $k \in \mathbb{N}$. Justificação: Como $L^{k+1} = LL^k$, dado $x \in L^{k+1}$ existe $y \in L$ e $z \in L^k$ tais que x = yz. Então, $x \in MM^k$ pois $y \in M$ e $z \in M^k$ porque $L \subseteq M$ e, pela hipótese de indução, $L^k \subseteq M^k$. Portanto, se $x \in L^{k+1}$ então $x \in M^{k+1}$, i.e., $L^{k+1} \subseteq M^{k+1}$.

- Se $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$, então $\bigcup_{n \in \mathbb{N}} L^n \subseteq \bigcup_{n \in \mathbb{N}} M^n$. Portanto, $L^* \subseteq M^*$.
- Resta mostrar que se $L \subseteq M$ então $L^n \subseteq M^n$, para todo $n \in \mathbb{N}$. Supondo $L \subseteq M$, tal segue pelo **princípio de indução matemática** se provarmos (i) e (ii):
 - (i) Caso de base: $L^0 \subseteq M^0$. Justificação: $L^0 \subseteq M^0$ pois $L^0 = \{\varepsilon\} = M^0$.
 - (ii) Hereditariedade: Se $L^k \subseteq M^k$ então $L^{k+1} \subseteq M^{k+1}$, para $k \in \mathbb{N}$. Justificação: Como $L^{k+1} = LL^k$, dado $x \in L^{k+1}$ existe $y \in L$ e $z \in L^k$ tais que x = yz. Então, $x \in MM^k$ pois $y \in M$ e $z \in M^k$ porque $L \subseteq M$ e, pela hipótese de indução, $L^k \subseteq M^k$. Portanto, se $x \in L^{k+1}$ então $x \in M^{k+1}$, i.e., $L^{k+1} \subset M^{k+1}$.

Proposição:

Quaisquer que sejam as linguagens R, S e T de alfabeto Σ tem-se:

$$R \cup S = S \cup R$$

$$R \cap S = S \cap R$$

$$R(ST) = (RS)T$$

$$(R \cup S)T = RT \cup ST$$

$$(R \cup S)T = RT \cup ST$$

$$(R^*)^* = R^*$$

$$(R^*S^*)^* = (R \cup S)^*$$

$$\emptyset R = \emptyset = R\emptyset$$

$$(R \cup S) \cup T = R \cup (S \cup T)$$

$$R(S \cup T) = RS \cup RT$$

$$\emptyset^* = \{\varepsilon\}$$

$$(\{\varepsilon\} \cup R)^* = R^*$$

$$\{\varepsilon\}R = R = R\{\varepsilon\}$$

Sendo A e B conjuntos, **para provar** A=B, **podemos provar que** $A\subseteq B$ **e** $A\supseteq B$, ou seja, que se $x\in A$ então $x\in B$ e que se $x\in B$ então $x\in A$, para todo x.

Proposição:

Quaisquer que sejam as linguagens R, S e T de alfabeto Σ tem-se:

$$R \cup S = S \cup R$$

$$R \cap S = S \cap R$$

$$R(ST) = (RS)T$$

$$(R \cup S)T = RT \cup ST$$

$$(R \cup S)T = RT \cup ST$$

$$(R^*)^* = R^*$$

$$(R^*S^*)^* = (R \cup S)^*$$

$$\emptyset R = \emptyset = R\emptyset$$

$$(R \cup S) \cup T = R \cup (S \cup T)$$

$$R(S \cup T) = RS \cup RT$$

$$\emptyset^* = \{\varepsilon\}$$

$$(\{\varepsilon\} \cup R)^* = R^*$$

$$\{\varepsilon\}R = R = R\{\varepsilon\}$$

Sendo A e B conjuntos, para provar A = B, podemos provar que $A \subseteq B$ e $A \supset B$, ou seja, que se $x \in A$ então $x \in B$ e que se $x \in B$ então $x \in A$, para todo x.

4 D > 4 P > 4 P > 4 P > B

Prova de que $(R^*)^* = R^*$

- $R^* \subseteq (R^*)^*$, pela definição de fecho de Kleene de R^* .
- $R^* \supseteq (R^*)^*$, porque se $x \in (R^*)^*$ então $x \in R^*$.

De facto, por definição de fecho de Kleene de uma linguagem L, qualquer palavra de L^* é ε ou uma sequência finita de palavras de $L \setminus \{\varepsilon\}$.

Assim, se $x \in (R^*)^*$ então $x = \varepsilon$ ou $x = x_1 \dots x_k$, para algum $k \ge 1$, com $x_i \in R^* \setminus \{\varepsilon\}$, para $1 \le i \le k$.

Mas, por sua vez, se $x_i \in R^* \setminus \{\varepsilon\}$ então x_i é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$, para todo i.

Logo, $x = \varepsilon$ ou x é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$. Portanto, $x \in R^*$.

◆ロト ◆昼 ト ◆ 豊 ト ◆ 豊 ・ りへの

Prova de que $(R^*)^* = R^*$

- $R^* \subseteq (R^*)^*$, pela definição de fecho de Kleene de R^* .
- $R^* \supseteq (R^*)^*$, porque se $x \in (R^*)^*$ então $x \in R^*$.

De facto, por definição de fecho de Kleene de uma linguagem L, qualquer palavra de L^* é ε ou uma sequência finita de palavras de $L \setminus \{\varepsilon\}$.

Assim, se $x \in (R^*)^*$ então $x = \varepsilon$ ou $x = x_1 \dots x_k$, para algum $k \ge 1$, com $x_i \in R^* \setminus \{\varepsilon\}$, para $1 \le i \le k$.

Mas, por sua vez, se $x_i \in R^* \setminus \{\varepsilon\}$ então x_i é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$, para todo i.

Logo, $x = \varepsilon$ ou x é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$. Portanto $x \in R^*$.

Prova de que $(R^*)^* = R^*$

- $R^* \subseteq (R^*)^*$, pela definição de fecho de Kleene de R^* .
- $R^* \supseteq (R^*)^*$, porque se $x \in (R^*)^*$ então $x \in R^*$.

De facto, por definição de fecho de Kleene de uma linguagem L, qualquer palavra de L^* é ε ou uma sequência finita de palavras de $L \setminus \{\varepsilon\}$.

Assim, se $x \in (R^*)^*$ então $x = \varepsilon$ ou $x = x_1 \dots x_k$, para algum $k \ge 1$, com $x_i \in R^* \setminus \{\varepsilon\}$, para $1 \le i \le k$.

Mas, por sua vez, se $x_i \in R^* \setminus \{\varepsilon\}$ então x_i é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$, para todo i.

Logo, $x = \varepsilon$ ou x é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$. Portanto $x \in R^*$.

Prova de que $(R^*)^* = R^*$

- $R^* \subseteq (R^*)^*$, pela definição de fecho de Kleene de R^* .
- $R^* \supseteq (R^*)^*$, porque se $x \in (R^*)^*$ então $x \in R^*$.

De facto, por definição de fecho de Kleene de uma linguagem L, qualquer palavra de L^* é ε ou uma sequência finita de palavras de $L \setminus \{\varepsilon\}$.

Assim, se $x \in (R^*)^*$ então $x = \varepsilon$ ou $x = x_1 \dots x_k$, para algum $k \ge 1$, com $x_i \in R^* \setminus \{\varepsilon\}$, para $1 \le i \le k$.

Mas, por sua vez, se $x_i \in R^* \setminus \{\varepsilon\}$ então x_i é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$, para todo i.

Logo, $x = \varepsilon$ ou x é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$. Portanto $x \in R^*$.

Prova de que $(R^*)^* = R^*$

- $R^* \subseteq (R^*)^*$, pela definição de fecho de Kleene de R^* .
- $R^* \supseteq (R^*)^*$, porque se $x \in (R^*)^*$ então $x \in R^*$.

De facto, por definição de fecho de Kleene de uma linguagem L, qualquer palavra de L^* é ε ou uma sequência finita de palavras de $L \setminus \{\varepsilon\}$.

Assim, se $x \in (R^*)^*$ então $x = \varepsilon$ ou $x = x_1 \dots x_k$, para algum $k \ge 1$, com $x_i \in R^* \setminus \{\varepsilon\}$, para $1 \le i \le k$.

Mas, por sua vez, se $x_i \in R^* \setminus \{\varepsilon\}$ então x_i é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$, para todo i.

Logo, $x = \varepsilon$ ou x é uma sequência finita de palavras de $R \setminus \{\varepsilon\}$. Portanto, $x \in R^*$.

4□ > 4個 > 4 種 > 4 種 > ■ 9 への

Prova de que $\emptyset^{\star} = \{\varepsilon\}$

- $\emptyset^* \subseteq \{\varepsilon\}$ Por definição, $\emptyset^0 = \{\varepsilon\}$. Portanto, $\varepsilon \in \emptyset^*$. Logo, $\{\varepsilon\} \subseteq \emptyset^*$.
- $\bullet \ \emptyset^{\star} \supseteq \{\varepsilon\}$

Como o conjunto vazio é subconjunto de qualquer conjunto, tem-se $\emptyset \subseteq \{\varepsilon\}$. Logo, $\emptyset^* \subseteq \{\varepsilon\}^*$, pois mostrámos anteriormente que $L \subseteq M$ implica $L^* \subseteq M^*$. Como $\{\varepsilon\}^* = \{\varepsilon\}$, segue $\emptyset^* \subseteq \{\varepsilon\}$

Prova de que $\emptyset R = \emptyset = R\emptyset$

Segue trivialmente da definição de concatenação de linguagens, porque $x \in LM$ se e só se existem $y \in L$ e $z \in M$ tais que x = yz. Mas, se $L = \emptyset$, não existe $y \in L$ para satisfizer a condição. Se $M = \emptyset$, não existe $z \in M$. Logo, $\emptyset R = \emptyset = R\emptyset$. \square

24 / 33

Prefixo, sufixo, subpalavra

Seja $x \in \Sigma^*$ e sejam $y, z, w \in \Sigma^*$ tais que x = yzw.

- y, z e w dizem-se subpalavras ou subsequências de x
- v diz-se prefixo de x
- w diz-se sufixo de x

Qualquer subpalavra de x diferente de x, diz-se subpalavra própria de x. Do mesmo modo, prefixos (sufixos) próprios são prefixos (sufixos) distintos de x.

- os prefixos são ε , 0, 01, 011, 0110, e 01101;
- os sufixos são ε , 1, 01, 101, 1101, e 01101;
- as subpalavras são ε , 0, 1, 01, 11, 10, 011, 110, 101, 0110, 1101 e 01101.

Prefixo, sufixo, subpalavra

Seja $x \in \Sigma^*$ e sejam $y, z, w \in \Sigma^*$ tais que x = yzw.

- y, z e w dizem-se subpalavras ou subsequências de x
- v diz-se prefixo de x
- w diz-se sufixo de x

Qualquer subpalavra de x diferente de x, diz-se subpalavra própria de x. Do mesmo modo, prefixos (sufixos) próprios são prefixos (sufixos) distintos de x.

Exemplo:

Para $x = 01101 \text{ e } \Sigma = \{0, 1\}$:

- os prefixos são ε , 0, 01, 011, 0110, e 01101;
- os sufixos são ε , 1, 01, 101, 1101, e 01101;
- as subpalavras são ε , 0, 1, 01, 11, 10, 011, 110, 101, 0110, 1101 e 01101.

Exemplos de aplicação

 A linguagem das palavras de {a,b}* que têm aa como prefixo e bbb como sufixo é

$$\{aa\}\{a,b\}^{\star}\{bbb\}$$

pois as suas palavras são da forma aawbbb, com $w \in \Sigma^{\star}$.

• A linguagem das palavras de $\{0,1\}^*$ que **têm** 00 **como subpalavra** é

$${0,1}^*{00}{0,1}^*$$

pois as suas palavras são da forma y00w, com $y, w \in \Sigma^*$

• A linguagem das palavras em {0,1}* que **têm comprimento par** é

ou, equivalentemente,
$$(\{0,1\}\{0,1\})^*$$

Ideia: se x tem comprimento par, $x=\varepsilon$ ou x é uma sequência finita de palavras de comprimento 2, sem restrição

4 D > 4 A > 4 E > 4 E > A A A

Exemplos de aplicação

 A linguagem das palavras de {a,b}* que têm aa como prefixo e bbb como sufixo é

$$\{aa\}\{a,b\}^{\star}\{bbb\}$$

pois as suas palavras são da forma aawbbb, com $w \in \Sigma^*$.

• A linguagem das palavras de {0,1}* que **têm** 00 **como subpalavra** é

$$\{0,1\}^{\star}\{00\}\{0,1\}^{\star}$$

pois as suas palavras são da forma y00w, com $y, w \in \Sigma^*$.

• A linguagem das palavras em {0,1}* que **têm comprimento par** é

$$\{01, 10, 00, 11\}$$

ou, equivalentemente, $(\{0,1\}\{0,1\})^*$

Ideia: se x tem comprimento par, x=arepsilon ou x é uma sequência finita de palavras de comprimento 2, sem restrição

4D > 4A > 4B > 4B > B 900

Exemplos de aplicação

 A linguagem das palavras de {a,b}* que têm aa como prefixo e bbb como sufixo é

$$\{aa\}\{a,b\}^{\star}\{bbb\}$$

pois as suas palavras são da forma aawbbb, com $w \in \Sigma^*$.

• A linguagem das palavras de {0,1}* que **têm** 00 **como subpalavra** é

$$\{0,1\}^*\{00\}\{0,1\}^*$$

pois as suas palavras são da forma y00w, com y, $w \in \Sigma^*$.

• A linguagem das palavras em $\{0,1\}^*$ que **têm comprimento par** é

$$\{01, 10, 00, 11\}^*$$

ou, equivalentemente, $(\{0,1\}\{0,1\})^*$.

Ideia: se x tem comprimento par, $x=\varepsilon$ ou x é uma sequência finita de palavras de comprimento 2, sem restrição.

4 D > 4 D > 4 D > 4 D > 4 D > 9 Q Q

Autómatos Finitos Determinísticos (AFDs)

Um autómato finito determinístico A é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que

- 5 é o conjunto de estados e é <u>finito</u>;
- Σ é o **alfabeto** de símbolos de entrada:
- δ é uma função de $S \times \Sigma$ em S, designada por função de transição;
- 50 é o estado inicial;
- F ⊆ S é o conjunto de estados finais (estados de aceitação)

A **linguagem reconhecida pelo autómato** é o conjunto das palavras de Σ^* que o levam do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

Imaginamos que a máquina tem uma fita, onde se coloca a palavra x de Σ^* para analisar, e tem uma cabeça de leitura, inicialmente posicionada no símbolo de x mais à esquerda. Irá processar x, símbolo a símbolo, a partir do estado inicial s_0 , de acordo com a função δ . Se estiver num estado s e ler a, passa ao estado $\delta(s,a)$ e move a cabeça de leitura para a direita. Dizemos que aceita ou reconhece x se, quando acaba de processar x, está num estado de final (i.e., num estado de F). Caso

Autómatos Finitos Determinísticos (AFDs)

Um autómato finito determinístico A é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que

- 5 é o conjunto de estados e é <u>finito</u>;
- Σ é o **alfabeto** de símbolos de entrada;
- δ é uma função de $S \times \Sigma$ em S, designada por função de transição;
- 50 é o estado inicial;
- F ⊆ S é o conjunto de estados finais (estados de aceitação)

A linguagem reconhecida pelo autómato é o conjunto das palavras de Σ^* que o levam do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

Imaginamos que a máquina tem uma fita, onde se coloca a palavra x de Σ^* para analisar, e tem uma cabeça de leitura, inicialmente posicionada no símbolo de x mais à esquerda. Irá processar x, símbolo a símbolo, a partir do estado inicial s_0 , de acordo com a função δ . Se estiver num estado s e ler a, passa ao estado $\delta(s,a)$ e move a cabeça de leitura para a direita. Dizemos que aceita ou reconhece x se, quando acaba de processar x, está num estado de final (i.e., num estado de F). Caso

Autómatos Finitos Determinísticos (AFDs)

Um autómato finito determinístico A é um modelo abstrato de uma máquina, sendo definido por $A = (S, \Sigma, \delta, s_0, F)$, em que

- 5 é o conjunto de estados e é <u>finito</u>;
- Σ é o **alfabeto** de símbolos de entrada;
- δ é uma função de $S \times \Sigma$ em S, designada por função de transição;
- s₀ é o estado inicial;
- F ⊆ S é o conjunto de estados finais (estados de aceitação)

A linguagem reconhecida pelo autómato é o conjunto das palavras de Σ^* que o levam do estado s_0 a algum estado $s \in F$, sendo completamente processadas.

Imaginamos que a máquina tem uma fita, onde se coloca a palavra x de Σ^* para analisar, e tem uma cabeça de leitura, inicialmente posicionada no símbolo de x mais à esquerda. Irá processar x, símbolo a símbolo, a partir do estado inicial s_0 , de acordo com a função δ . Se estiver num estado s e ler a, passa ao estado $\delta(s,a)$ e move a cabeça de leitura para a direita. Dizemos que aceita ou reconhece x se, quando acaba de processar x, está num estado de final (i.e., num estado de F). Caso contrário, rejeita x. Note que, um AFD aceita ε se e só se $s_0 \in F$.

Diagrama de transição de um AFD

Um autómato finito pode ser representado esquematicamente por um multigrafo dirigido com símbolos associados aos ramos. Esse multigrafo designa-se por **diagrama de transição** do autómato. Os **nós** correspondem aos estados do autómato. Um **ramo** de s para s' etiquetado por a indica que $\delta(s,a)=s'$.

Convenção: no diagrama, **os estados finais** são representados por duas circunferências e o **estado inicial** é apontado por uma seta.

Exemplo:

Este AFD reconhece a linguagem das palavras de $\{0,1\}^*$ que terminam em 1.

Diagrama de transição de um AFD

Um autómato finito pode ser representado esquematicamente por um multigrafo dirigido com símbolos associados aos ramos. Esse multigrafo designa-se por **diagrama de transição** do autómato. Os **nós** correspondem aos estados do autómato. Um **ramo** de s para s' etiquetado por a indica que $\delta(s,a)=s'$.

Convenção: no diagrama, **os estados finais** são representados por duas circunferências e o **estado inicial** é apontado por uma seta.

Exemplo:

Este AFD reconhece a linguagem das palavras de $\{0,1\}^*$ que terminam em 1.

• AFD que reconhece a linguagem das palavras de $\{0,1\}^*$ que não têm 1's.

Ideia: A palavra é aceite exceto se tiver algum 1. Portanto, se lê 1, vai para s₁ (não aceitação) e aí permanecerá.

Convenção: um ramo de s para s' com **vários símbolos separados por vírgulas** representa várias transições. No exemplo, $\delta(s_1,0) = s_1$ e $\delta(s_1,1) = s_1$.

 AFD que reconhece a linguagem das palavras de {a, b}* que têm aa como subpalavra

Ideia: com a muda de so para si, pois pode ser o início de aa. Se em si encontra b, volta a so, à espera de poder

• AFD que reconhece a linguagem das palavras de $\{0,1\}^*$ que não têm 1's.

Ideia: A palavra é aceite exceto se tiver algum 1. Portanto, se lê 1, vai para s₁ (não aceitação) e aí permanecerá.

Convenção: um ramo de s para s' com **vários símbolos separados por vírgulas** representa várias transições. No exemplo, $\delta(s_1,0) = s_1$ e $\delta(s_1,1) = s_1$.

 AFD que reconhece a linguagem das palavras de {a, b}* que têm aa como subpalavra

Ideia: com a muda de s₀ para s₁, pois pode ser o início de aa. Se em s₁ encontra b, volta a s₀, à espera de poder

• AFD que reconhece a linguagem das palavras de $\{0,1\}^*$ que não têm 1's.

Ideia: A palavra é aceite exceto se tiver algum 1. Portanto, se lê 1, vai para s_1 (não aceitação) e aí permanecerá.

Convenção: um ramo de s para s' com **vários símbolos separados por vírgulas** representa várias transições. No exemplo, $\delta(s_1,0) = s_1$ e $\delta(s_1,1) = s_1$.

 AFD que reconhece a linguagem das palavras de {a,b}* que têm aa como subpalavra

Ideia: com a muda de s_0 para s_1 , pois pode ser o início de aa. Se em s_1 encontra b, volta a s_0 , à espera de poder voltar a ver a. Mas, se em s_1 lê a, então passa a s_2 (aceitação) pois formou aa e aí permanece.

AFD que reconhece {x | x ∈ {a,b}*{a} e n\u00e3o tem a's consecutivos}, ou seja, o conjunto das palavras de alfabeto {a,b} que terminam em a e n\u00e3o t\u00e8m aa como subpalavra.

Os estados memorizam informação sobre o prefixo da palavra consumido desde o estado inicial.

O que memoriza cada estado neste exemplo?

s₀ : não tem aa como subpalavra e não termina em a

 s_1 : não tem aa como subpalavra e termina em a

s2: tem aa como subpalavra

AFD que reconhece {x | x ∈ {a,b}*{a} e n\u00e3o tem a's consecutivos}, ou seja, o conjunto das palavras de alfabeto {a,b} que terminam em a e n\u00e3o t\u00e8m aa como subpalavra.

Os estados memorizam informação sobre o prefixo da palavra consumido desde o estado inicial.

O que memoriza cada estado neste exemplo?

so : não tem aa como subpalavra e não termina em a

 s_1 : não tem aa como subpalavra e termina em a

s2: tem aa como subpalavra

AFD que reconhece {x | x ∈ {a,b}*{a} e não tem a's consecutivos}, ou seja, o conjunto das palavras de alfabeto {a,b} que terminam em a e não têm aa como subpalavra.

Os estados memorizam informação sobre o prefixo da palavra consumido desde o estado inicial.

O que memoriza cada estado neste exemplo?

so : não tem aa como subpalavra e não termina em a

s1: não tem aa como subpalavra e termina em a

 s_2 : tem aa como subpalavra

• O menor AFD que reconhece $\{0^3, 0^5\}^*$ de alfabeto $\{0\}$ é:

O que memoriza cada estado?

 s_k , para k < 7: o prefixo consumido é 0^k .

 s_8 : o prefixo consumido é 0ⁿ, com $n \ge 8$.

• O menor AFD que reconhece $\{0^3, 0^5\}^*$ de alfabeto $\{0\}$ é:

O que memoriza cada estado?

 s_k , para $k \le 7$: o prefixo consumido é 0^k .

 s_8 : o prefixo consumido é 0ⁿ, com $n \ge 8$.

• A linguagem $\{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$, de alfabeto $\{0,1\}$, é a linguagem reconhecida, por exemplo, pelo AFD

Qual é o conjunto das palavras que levam o AFD de s_0 a cada estado?

```
De s_0 a s_0: \{\varepsilon\}
```

De s_0 a s_1 : $\{1^{2n+1} \mid n \in \mathbb{N}\} = \{x \mid x \text{ s\'o tem 1's e tem comprimento impar}\}$

De s_0 a s_2 : $\{1^{2n} \mid n \ge 1\} = \{x \mid x \text{ só tem 1's e } |x| \text{ é par e positivo} \}$

De s_0 a s_3 : $\{1^{2n}0 \mid n \ge 1\}$

De s_0 a s_4 : $\{x \mid x \text{ tem algum 0 e não é da forma } 1^{2n}0, \text{ para} \underline{n} \geq 1\}$

• A linguagem $\{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$, de alfabeto $\{0,1\}$, é a linguagem reconhecida, por exemplo, pelo AFD

Qual é o conjunto das palavras que levam o AFD de s_0 a cada estado?

De s_0 a s_0 : $\{\varepsilon\}$

De s_0 a s_1 : $\{1^{2n+1} \mid n \in \mathbb{N}\} = \{x \mid x \text{ s\'o tem 1's e tem comprimento impar}\}$

De s_0 a s_2 : $\{1^{2n} \mid n \ge 1\} = \{x \mid x \text{ só tem 1's e } |x| \text{ é par e positivo} \}$

De s_0 a s_3 : $\{1^{2n}0 \mid n \ge 1\}$

De s_0 a s_4 : $\{x \mid x \text{ tem algum 0 e não é da forma } 1^{2n}0$, para $n \ge 1$

• A linguagem $\{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$, de alfabeto $\{0,1\}$, é a linguagem reconhecida, por exemplo, pelo AFD

Qual é o conjunto das palavras que levam o AFD de s_0 a cada estado?

De s_0 a s_0 : $\{\varepsilon\}$

De s_0 a s_1 : $\{1^{2n+1} \mid n \in \mathbb{N}\} = \{x \mid x \text{ s\'o tem 1's e tem comprimento impar}\}$

De s_0 a s_2 : $\{1^{2n} \mid n \ge 1\} = \{x \mid x \text{ só tem 1's e } |x| \text{ é par e positivo} \}$

De s_0 a s_3 : $\{1^{2n}0 \mid n \ge 1\}$

De s_0 a s_4 : $\{x \mid x \text{ tem algum 0 e não é da forma } 1^{2n}0, \text{ para } \underline{n} \geq \underline{1}\}$

• A linguagem $\{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$, de alfabeto $\{0,1\}$, é a linguagem reconhecida, por exemplo, pelo AFD

Qual é o conjunto das palavras que levam o AFD de s_0 a cada estado?

De s_0 a s_0 : $\{\varepsilon\}$

De s_0 a s_1 : $\{1^{2n+1} \mid n \in \mathbb{N}\} = \{x \mid x \text{ s\'o tem 1's e tem comprimento impar}\}$

De s_0 a s_2 : $\{1^{2n} \mid n \ge 1\} = \{x \mid x \text{ s\'o tem 1's e } |x| \text{ \'e par e positivo} \}$

De s_0 a s_3 : $\{1^{2n}0 \mid n \geq 1\}$

De s_0 a s_4 : $\{x \mid x \text{ tem algum 0 e não é da forma } 1^{2n}0, \text{ para } n \ge 1\}$

• A linguagem $\{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$, de alfabeto $\{0,1\}$, é a linguagem reconhecida, por exemplo, pelo AFD

Qual é o conjunto das palavras que levam o AFD de s_0 a cada estado?

De s_0 a s_0 : $\{\varepsilon\}$

De s_0 a s_1 : $\{1^{2n+1} \mid n \in \mathbb{N}\} = \{x \mid x \text{ s\'o tem 1's e tem comprimento impar}\}$

De s_0 a s_2 : $\{1^{2n} \mid n \ge 1\} = \{x \mid x \text{ s\'o tem 1's e } |x| \text{ \'e par e positivo} \}$

De s_0 a s_3 : $\{1^{2n}0 \mid n \ge 1\}$

De s_0 a s_4 : $\{x \mid x \text{ tem algum 0 e não é da forma } 1^{2n}0, \text{ para } \underline{n} \geq \underline{1}\}$

• A linguagem $\{1^{2n} \mid n \ge 0\} \cup \{1^{2n}0 \mid n \ge 1\}$, de alfabeto $\{0,1\}$, é a linguagem reconhecida, por exemplo, pelo AFD

Qual é o conjunto das palavras que levam o AFD de s_0 a cada estado?

De s_0 a s_0 : $\{\varepsilon\}$

De s_0 a s_1 : $\{1^{2n+1} \mid n \in \mathbb{N}\} = \{x \mid x \text{ s\'o tem 1's e tem comprimento impar}\}$

De s_0 a s_2 : $\{1^{2n} \mid n \ge 1\} = \{x \mid x \text{ s\'o tem 1's e } |x| \text{ \'e par e positivo} \}$

De s_0 a s_3 : $\{1^{2n}0 \mid n \ge 1\}$

De s_0 a s_4 : $\{x \mid x \text{ tem algum 0 e não \'e da forma } 1^{2n}0, \text{ para } n \ge 1\}$

Problema de Programação Imperativa

Simulador de AFDs

Escrever um programa em C que, dada a descrição de um AFD com alfabeto $\Sigma = \{0,1\}$ e dadas palavras de Σ^* , indica se o AFD aceita ou rejeita cada uma das palavras. Admita que, se o AFD tiver n estados, os estados são identificados por inteiros de 1 a n. Pode admitir que $n \leq 20$ e que as palavras têm no máximo comprimento 50.

Input

Na primeira linha, tem o número n de estados do AFD e o identificador do estado inicial. Segue-se uma linha com o número de estados finais (que pode ser 0) e os seus identificadores. A seguir tem $2n^2$ linhas que descrevem as transições: cada uma tem três inteiros s a s', e indica que $\delta(s,a)=s'$.

Depois tem o número de palavras a analisar e, nas linhas seguintes, essas palavras.

Output

Uma linha por cada palavra, com a indicação aceite ou rejeitada.