

Fyzika

Čast': Laboratórne cvičenie

Laboratórna úloha č. 2:

MERANIE KOEFICIENTU VNÚTORNÉHO TRENIA KVAPALÍN STOKESOVOU METÓDOU

Akademický rok: 2023/2024

Laboratórna úloha č. 2:

MERANIE KOEFICIENTU VNÚTORNÉHO TRENIA KVAPALÍN STOKESOVOU METÓDOU

Naštudujte si uvedenú tému zo skrípt:

Kubliha, M. a kol. *Metodológia technického experimentu*. STU v Bratislave, MTF so sídlom v Trnave, 2007, ISBN 978-80-8096-00, **str. 57 – 62**.

K uvedenej problematike si môžete pozrieť aj video "Viscosity - Meit Y Olabs" dostupné na:

https://www.youtube.com/watch?v=mQwlmXtRu5k alebo video "TO MEASURE VISCOSITY OF GIVEN VISCOUS LIQUID", dostupné na

https://www.youtube.com/watch?v=A6CzFfkfvFo.

OBSAH

- 1. Teoretický úvod k meraniu
- 2. Postup práce
- 3. Experimentálna časť
- 4. Záver

Ciel'

Určiť hodnotu koeficientu vnútorného trenia rastlinného oleja Stokesovou metódou a stanoviť veľkosť neistoty merania.

Kvapaliny a plyny (tekutiny):

- molekuly nie sú viazané na nepremenné rovnovážne polohy (môžu sa navzájom voľne posúvať),
- nemajú tvarovú stálosť.

Kvapaliny:

 a) ideálna – nestlačiteľná, bez vnútorného trenia (aproximácia),

a) reálna - stlačiteľná, medzimolekulové sily sa v nej prejavujú vnútorným trením – viskozitou.

Kvapaliny:

Pohyb molekúl kvapaliny môže byť štatisticky neusporiadaný (tepelný pohyb), alebo usporiadaný (prúdenie).

Obr. 1 Prúdenie ideálnej kvapaliny

Kvapaliny:

Pri prúdení reálnej kvapaliny sa objavujú v kvapaline sily brzdiace jej pohyb, ktoré majú pôvod vo vzájomnom silovom pôsobení častíc kvapaliny.

Obr. 2 Prúdenie reálnej kvapaliny

Tieto sily sa nazývajú sily vnútorného trenia.

Vnútorné trenie – viskozita kvapalín.

Kvapaliny:

Pri meraní rýchlosti častíc prúdiacej reálnej kvapaliny v jednotlivých bodoch prierezu trubice zistíme, že tieto rýchlosti nie sú rovnaké.

Kvapaliny:

Valcové plochy (obr. 3) sa pohybujú vzhľadom na seba rýchlosťou $d\vec{v}$, vzniká medzi nimi trenie, ktoré vyvoláva silové účinky medzi týmito dvomi plochami.

Tieto silové účinky môžeme charakterizovať vektorom tangenciálneho napätia $\vec{\tau}$, ktorého smer je totožný so smerom vektora rýchlosti prúdenia kvapaliny a pre jeho veľkosť platí vzťah:

kde η je koeficient dynamickej viskozity.

Gradient rýchlosti v smere osi y.

 $[\eta]$ = Pa.s

Kvapaliny:

Prúdenie reálnej kvapaliny charakterizuje aj kinematická viskozita v, definovaná podielom dynamickej viskozity η a hustoty kvapaliny ρ :

 $v = \frac{\eta}{\rho}$

Jednotka kinematickej viskozity je m²·s⁻¹

Riešime pád guľôčky v kvapaline.

Riešime pád guľôčky v kvapaline.

Odporová sila je v tomto prípade spôsobená len viskozitou kvapaliny.

Pre teleso tvaru gule Stokes odvodil vzťah na určenie veľkosti sily odporu F_o v tvare:

$$F_{\rm o} = 6\pi \eta r v , \qquad (1)$$

kde v je rýchlosť pohybu gule s polomerom r v kvapaline s koeficientom vnútorného trenia (dynamickou viskozitou) η . Stokes na základe predchádzajúceho vzťahu odvodil aj metódu stanovenia veľkosti koeficientu vnútorného trenia kvapalín z ustáleného padania gúľ v kvapalinách.

Výsledná sila pôsobiaca na guľôčku:

$$\vec{F} = \sum_{i=1}^{3} \vec{F}_{i}$$

$$\vec{F} = -\vec{F}_{g} + \vec{F}_{vz} + \vec{F}_{o}$$

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} = m\frac{d\vec{v}}{dt}$$

Ak je rýchlosť padania guľôčky konštantná:

$$\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \vec{0}$$

Obr. 4 Zobrazenie meracieho valca na meranie koeficientu vnútorného trenia kvapalín

Potom môžeme písať:

$$0 = -F_{\rm g} + F_{\rm vz} + F_{\rm o}$$

$$F_{\rm g} = F_{\rm vz} + F_{\rm o}$$

$$mg = V\rho_{\rm kv}g + 6\pi\eta rv$$

$$\eta = \frac{g}{6\pi rv} (m - \rho_{kv}V)$$

$$\eta = \frac{gt}{6\pi rh} \left(m - \rho_{kv} \frac{4}{3} \pi r^3 \right) \left(\frac{1}{1 + m^2} \right)$$

platí iba, ak guľôčka padá v neohraničenom prostredí

Veľkosť koeficientu vnútorného trenia kvapaliny vypočítame zo vzťahu:

$$\eta = \frac{\left(m - \rho_{kv} \frac{4}{3} \pi r^3\right) g}{6\pi r \left(1 + 2, 4\frac{r}{R}\right)} \cdot \frac{t}{h}$$
korekčný člen

EXPERIMENTÁLNA ČASŤ

Prístroje a pomôcky:

vysoký sklený valec s kvapalinou, hustomer, mikrometer, stopky, váhy, guľky, oceľové meradlo.

1. Pomocou mikrometra odmerajte polomery 10-tich guľôčok, tieto hodnoty zapíšte do tabuľky 1 a stanovte priemernú hodnotu ich polomeru \bar{r} . Vypočítajte δr (neistotu merania **typu A**):

$$\delta r = \pm \sqrt{\frac{\sum_{i=1}^{n} (\Delta r_i)^2}{n(n-1)}} = \pm \sqrt{\frac{\sum_{i=1}^{n} (r_i - r_i)^2}{n(n-1)}}$$

a relatívnu neistotu merania $\delta r_{\rm rel}$:

$$\delta r_{\rm rel} = \frac{\delta r}{\overline{r}}.100\%,$$

Výsledok merania zapíšte v tvare: $r = \overline{r} \pm \delta r$ a $\delta r_{\rm rel}$.

- 2. Určte priemernú hmotnosť meraných guľôčok (pomocou váh zistite hmotnosť všetkých guľôčok naraz a nameranú hodnotu podeľte ich počtom).
- 3. Súčasne určte aj veľkosť neistoty merania hmotnosti δm (neistota merania **typu B zodpovedá najmenšiemu dieliku meradla**) a relatívnu neistotu merania hmotnosti guľôčky $\delta m_{\rm rel}$:

$$\delta m_{\rm rel} = \frac{\delta m}{m}.100\%$$

Výsledok merania zapíšte v tvare: $m = m \pm \delta m$ a $\delta m_{\rm rel}$.

4. Päťkrát odmerajte vnútorný polomer nádoby tvaru valca R použitej pri meraní, hodnoty zapíšte do tabuľky 2. Stanovte priemernú hodnotu \overline{R} jej polomeru a vypočítajte δR (neistotu merania **typu A**):

$$\delta R = \pm \sqrt{\frac{\sum_{i=1}^{n} (\Delta R_i)^2}{n(n-1)}} = \pm \sqrt{\frac{\sum_{i=1}^{n} (R_i - \overline{R})^2}{n(n-1)}}$$

a relatívnu neistotu merania $\delta R_{\rm rel}$:

$$\delta R_{\rm rel} = \frac{\delta R}{\overline{R}}.100\%.$$

Výsledok merania zapíšte v tvare: $R = \overline{R} \pm \delta R$ a $\delta R_{\rm rel}$.

5. Pomocou hustomera určte hustotu meranej kvapaliny ρ .

Určte veľkosť jej neistoty $\delta\rho$ (neistota merania **typu B – zodpovedá najmenšiemu dieliku meradla**) a relatívnu neistotu merania hustoty kvapaliny $\delta\rho_{\rm rel}$:

$$\delta \rho_{\rm rel} = \frac{\delta \rho}{\rho}.100\%.$$

Výsledok merania zapíšte v tvare: $\rho = \rho \pm \delta \rho$ a $\delta \rho_{rel}$.

6. Zo stupnice na valci odčítajte vzdialenosť *h* značiek AB (pozri obr. 4), ktorá vymedzuje oblasť ustáleného padania guľôčky v kvapaline.

Určte δh (neistotu merania **typu B – zodpovedá najmenšiemu dieliku meradla**)

a relatívnu neistotu merania $\delta h_{\rm rel}$: $\delta h_{\rm rel} = \frac{\delta h}{h}.100\%$.

Výsledok merania zapíšte v tvare: $h = h \pm \delta h$ a $\delta h_{\rm rel}$.

7. Jednotlivo púšťajte guľôčky do valca a pomocou stopiek merajte dobu t, za ktorú guľka prejde úsek dĺžky h vyznačený značkami AB. Tieto hodnoty zapíšte do tabuľky 3 a stanovte priemernú hodnotu merania času pádu guľôčky \overline{t} . Stanovte δt (neistotu merania **typu A**):

$$\delta t = \pm \sqrt{\frac{\sum_{i=1}^{n} (\Delta t_i)^2}{n(n-1)}} = \pm \sqrt{\frac{\sum_{i=1}^{n} (t_i - \bar{t})^2}{n(n-1)}}$$

a relatívnu neistotu merania $\delta t_{\rm rel}$: $\delta t_{\rm rel} = \frac{\delta t}{\overline{t}}.100\%$.

Výsledok merania zapíšte v tvare: $t = \overline{t} \pm \delta t$ a $\delta t_{\rm rel}$.

8. Koeficient vnútorného trenia kvapaliny η vypočítajte pomocou vzťahu:

$$\eta = \frac{\left(m - \rho_{kv} \frac{4}{3} \pi r^3\right) g}{6\pi r \left(1 + 2, 4\frac{r}{R}\right)} \cdot \frac{t}{h}$$

Pozor!!!

Do uvedeného vzťahu treba dosadzovať hodnoty jednotlivých fyzikálnych veličín v základných jednotkách sústavy SI.

- 9. Neistotu koeficientu vnútorného trenia $\delta\eta$ meranej kvapaliny určte pomocou znalosti neistôt čiastkových veličín (δr , δR , δm , $\delta \rho$, δh , δt) a tiež vypočítajte $\delta \eta_{\rm rel}$.
- 10. Veľkosť neistoty koeficientu vnútorného trenia kvapaliny $\delta \eta$ určte metódou linearizácie pre viacrozmerný prípad:

$$\delta \eta = \pm \sqrt{\left(\frac{\partial \eta}{\partial m} \delta m\right)^2 + \left(\frac{\partial \eta}{\partial \rho} \delta \rho\right)^2 + \left(\frac{\partial \eta}{\partial t} \delta t\right)^2 + \left(\frac{\partial \eta}{\partial h} \delta h\right)^2 + \left(\frac{\partial \eta}{\partial R} \delta R\right)^2 + \left(\frac{\partial \eta}{\partial r} \delta r\right)^2},$$

kde

$$\frac{\partial \eta}{\partial m} = \frac{g}{6\pi r \left(1 + 2, 4 \cdot \frac{r}{R}\right)} \cdot \frac{t}{h},$$

$$\frac{\partial \eta}{\partial \rho} = \frac{-V \cdot g}{6\pi r \left(1 + 2, 4 \cdot \frac{r}{R}\right)} \cdot \frac{t}{h},$$

$$\frac{\partial \eta}{\partial t} = \frac{\left(m - \rho V\right)g}{6\pi r \left(1 + 2, 4 \cdot \frac{r}{R}\right) \cdot h},$$

$$\frac{\partial \eta}{\partial h} = -\frac{\left(m - \rho V\right)g}{6\pi r \left(1 + 2, 4 \cdot \frac{r}{R}\right)} \cdot \frac{t}{h^2},$$

$$\frac{\partial \eta}{\partial R} = \frac{2,4(m-\rho V)g}{6\pi \left(1+2,4\cdot\frac{r}{R}\right)^2 \cdot R^2} \cdot \frac{t}{h},$$

$$\frac{\partial \eta}{\partial r} = -\frac{g \cdot t}{6\pi h} \left[\frac{4\pi \rho r^2 \left(r + 2, 4 \cdot \frac{r^2}{R}\right) + \left(m - \rho \frac{4}{3}\pi r^3\right) \cdot \left(1 + 4, 8 \cdot \frac{r}{R}\right)}{\left(r + 2, 4 \cdot \frac{r^2}{R}\right)^2} \right].$$

- 11. Výslednú hodnotu koeficientu vnútorného trenia kvapaliny η zapíšte v tvare: $\eta = \overline{\eta} \pm \delta \eta$ a $\delta \eta_{\rm rel}$.
- 12. Diskutujte o výsledkoch merania a formulujte záver.
- 13. Z merania vypracujte laboratórny protokol.
- 14. Vypracovaný lab. protokol odovzdajte svojmu vyučujúcemu na nasledujúcej hodine.

Literatúra

- 1. Kubliha, M. a kol. (2007) *Metodológia technického experimentu*. STU v Bratislave, MTF so sídlom v Trnave, ISBN 978-80-8096-00, str. 57 62.
- 2. Vajda, D., Trpišová, B. *Určenie koeficientu dynamickej viskozity telieskovými viskozimetrami,* [online] dostupné na: http://tarjanyiova.fyzika.uniza.sk/viskozita.pdf>(citované dňa 08.02.2024).
- 3. Video "Viscosity MeitY Olabs", [online] dostupné na: https://www.youtube.com/watch?v=mQwlmXtRu5k>(citov ané dňa 08.02.2024).

Literatúra

4. Video "TO MEASURE VISCOSITY OF GIVEN VISCOUS LIQUID", [online] dostupné na: https://www.youtube.com/watch?v=A6CzFfkfvFo (citované dňa 08.02.2024).

Ďakujem za pozornosť!