Вопросы на понимание

Перед тем как приступить к решению домашних задач, попробуйте ответить на следующие вопросы. Это простые вопросы на понимание. Ответы на них включать в домашнюю работу не нужно.

- 1. Что такое функция правдоподобия? Что она означает в дискретном и непрерывном случаях?
- 2. Что такое функция распределения случайной величины?
- 3. Как по функции распределения F(x) случайной величины X найти ее плотность?
- 4. Как по функции распределения F(x) случайной величины X найти вероятность $\mathbb{P}(X>3)$?
- 5. Как по неравенству Чебышёва оценить вероятность $\mathbb{P}(|X \mathbb{E}X| \leq t)$, если t > 0 и $\mathrm{Var}X$ существует? Будет ли это оценка сверху или снизу?
- 6. Куда сходится среднее арифметическое независимых и одинаково распределённых случайных величин с конечной дисперсией?
- 7. Чему равно математическое ожидание и дисперсия величины $\frac{S_n \mathbb{E}S_n}{\sqrt{\mathrm{Var}S_n}}$?
- 8. К какому распределению в условиях ЦПТ приближается распределение величины $\frac{S_n \mathbb{E}S_n}{\sqrt{\operatorname{Var}S_n}}$?

МЕТОД МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ

Упражнение 1 (12 баллов). Пусть дана реализация выборки x_1, \ldots, x_n из равномерного распределения на отрезке $[\theta; \theta+1]$. Найдите оценку для неизвестного параметра θ методом максимального правдоподобия. (Тут нужно найти оценку теоретически, ничего реализовывать в Python не нужно.)

Упражнение 2 (20 баллов). Пусть дана реализация выборки x_1, \ldots, x_n их нормального распределения $\mathcal{N}(\theta_1, \theta_2^2)$. Найдите оценки для неизвестных параметров θ_1 и θ_2^2 методом максимального правдоподобия. Реализуйте эту задачу в Python:

- (1) сгенерируйте θ_1 из равномерного распределения на [-5,5], а θ_2^2 из равномерного распределения на [0.5,10];
- (2) сгенерируйте выборку из нормального распределения $\mathcal{N}(\theta_1, \theta_2^2)$ размера $n=10, 100, 1\,000, 10\,000;$
- (3) найдите значения полученных оценок (и посчитав значения оценок максимального правдоподобия, и численно с помощью метода fit() из SciPy);
- (4) выведите отклонения полученных оценок от параметров θ_1 и θ_2^2 . Что происходит с ростом n?

ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

Упражнение 3 (12 баллов). Случайная величина X равномерно распределена на отрезке [0,1]. Докажите, что случайная величина

$$Y = -\frac{1}{\lambda}\ln(1 - X)$$

имеет экспоненциальное распределение с параметром $\lambda > 0$. Этот факт может использоваться для генерации выборки экспоненциального распределения с помощью равномерного: чтобы сгенерировать экспоненциальную случайную величину можно сгенерировать равномерно распределенную на [0,1] случайную величину и применить к ней вышеприведенное преобразование.

Упражнение 4 (12 баллов). Пусть X имеет стандартное нормальное распределение $\mathcal{N}(0,1)$. Найдите плотность распределения случайной величины X^2 . В статистике оно известно под именем «распределения хи-квадрат» с одной степенью свободы.

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ И КОНЦЕНТРАЦИЯ

Упражнение 5 (12 баллов). Допустим, Вы являетесь владельцем небольшого магазина свадебных платьев. Ваши покупатели ведут себя случайным образом:

- с вероятностью 0.8 им ничего не нравится, и они покидают ваш магазин;
- с вероятностью 0.18 они примеряют хотя бы одно платье, но ничего не покупают;
- с оставшейся вероятностью они покупают платье, которое примеряли.

Что можно сказать о вероятности продать от 38 до 62 свадебных платьев за месяц, если Ваш магазин посетит $2\,500$ (стохастически независимых) женщин? Предполагается, что более одного платья никто не покупает. Решите задачу всеми изученными методами (неравенство Чебышева, ЦПТ). Сравните полученные результаты.

Упражнение 6 (12 баллов). Последнее время автобус, на котором я добираюсь до университета, ходит не так регулярно, как раньше. И теперь я в среднем 1 раз из 3-х вынужден садиться в маршрутку и платить 25 руб. С какой вероятностью тогда мне хватит на месяц 250 руб., если проездной на автобус мне покупают родители, а ездить приходится 25 раз? Решите задачу с помощью ЦПТ.

Упражнение 7 (20 баллов). В городе за год рождается 20 000 детей и считается, что вероятность рождения мальчика p=0.51. В этом случае существует такое число d, что среди рожденных за год детей разница числа мальчиков и числа девочек будет не больше d с вероятностью 0.99. Найдите примерное значение d с помощью ЦПТ.