5

10

15

25

30

REMARKS

This amendment is respectfully submitted to place subject Application in condition for allowance. The Specification has been amended to correct typographical errors, and improve grammar and syntax. In particular, at page 5, line 13, the term "efficient" has been replaced with --efficient--. At page 5, line 30 the term "fractrions" has been replaced with -- fractions--. At page 26, line 22, the term "(37,248A)" has been replaced with --09/779,283--. At page 26, line 23, the term "(37,248B)" has been replaced with --09/779,286--. Claims 1, 9, 14, 15 and 19 have been amended to more distinctly claim the subject matter of the invention.

In particular, Claim 1 has been amended to recite that the mixture comprising the oxidation feedstock has a gravity ranging from about 10° API to about 100° API and is a product of a hydrotreating process for petroleum distillate, i.e., hydrotreated distillate. Support for this amendment is found in the Specification, for example, at page 15, lines 3 to 14.

In Claim 9 the term "high-boiling" has been deleted.

Claim 14 has been amended to recite the step of contacting all or at least a portion of the recovered organic phase with at least one solid sorbent comprising alumina.

Claim 15 has been amended to recite the step of contacting all or at least a portion of the recovered organic phase with at least one immiscible liquid comprising a solvent having a dielectric constant suitable to selectively extract oxidized sulfur-containing and/or nitrogen-containing organic compounds.

Claim 19 has been amended to recite the step of contacting all or at least a portion of the recovered organic phase with at least one immiscible liquid comprising an aqueous solution of a soluble basic chemical compound selected from the group consisting of

5

10

sodium, potassium, barium, calcium and magnesium in the form of hydroxide, carbonate or bicarbonate.

In view of the amendments submitted herein, it is the position of Applicants that the instant Application is in condition for allowance.

Claim Rejections - 35 U.S.C. § 112

In an Office Action mailed July 2, 2002, Claims 9 and 14 to 20 were rejected under 35 U.S.C. § 112, second paragraph. Applicants respectfully traverse these rejections.

In view of the amendments submitted above, it is the position of Applicants that instant Claims 9 and 14 to 20, inclusive, meet all requirements of 35 U.S.C. § 112.

15 Claim Rejections - 35 U.S.C. § 102

In the outstanding Office Action, Claims 1, 2, 4, 9 and 10 were rejected under 35 U.S.C. § 102(e), as being anticipated by U.S. Patent No 6,402,940 in the name of Alkis S. Rappas. Applicants respectfully traverse these rejections.

The Rappas reference of record describes a process for removing low amounts of organic sulfur from hydrocarbon fuels using an oxidizing/extracting solution of formic acid, a small amount of hydrogen peroxide, and no more than about 25 wt % water.

By contrast, instant Claim 1 recites: A process for the production of refinery transportation fuel or blending components for refinery transportation fuel, which process comprises:

5

10

15

25

30

providing an oxidation feedstock comprising a mixture of hydrocarbons, sulfur-containing and nitrogen-containing organic compounds, which mixture has a gravity ranging from about 10° API to about 100° API and is a product of a hydrotreating process for petroleum distillate (emphasis supplied);

contacting the oxidation feedstock with an immiscible phase comprising at least one organic peracid or precursors of organic peracid, in a liquid reaction mixture maintained substantially free of catalytic active metals and/or active metal-containing compounds and under conditions suitable for oxidation of one or more of the sulfur-containing and/or nitrogen-containing organic compounds; and

separating at least a portion of the immiscible peracidcontaining phase from the reaction mixture; and

recovering a product comprising a mixture of organic compounds containing less sulfur and/or less nitrogen than the oxidation feedstock from the reaction mixture (emphasis supplied).

421

It is the position of Applicants that instant Claim 1 and dependent Claims 2, 4, 9 and 10, meet all requirements under 35 U.S.C. § 102(e).

In the outstanding Office Action, Claims 1-3, 9 and 10 were rejected under 35 U.S.C. § 102(b), as being anticipated by U.S. Patent No 1,972,102 in the name of William M. Malisoff. Applicants respectfully traverse these rejections.

The Malisoff reference of record describes a treatment for removal of sulfur from hydrocarbon oil by washing the oil with a treating solution containing acetic acid and hydrogen peroxide in water.

By contrast, instant Claim 1 recites: A process which comprises: providing an oxidation feedstock comprising a mixture of hydrocarbons, sulfur-containing and nitrogen-containing

organic compounds, which mixture has a gravity ranging from about 10° API to about 100° API and is a product of a hydrotreating process for petroleum distillate;...; and

recovering a product comprising a mixture of organic compounds containing less sulfur and/or less nitrogen than the oxidation feedstock from the reaction mixture (emphasis supplied).

It is the position of Applicants that instant Claim 1 and dependent Claims 2, 3, 9 and 10, meet all requirements under 35 U.S.C. § 102(b).

10

15

20

25

5

Claim Rejections - 35 U.S.C. § 103

In the Office Action mailed July 2, 2002, Claim 4 was rejected under 35 U.S.C. § 103(a), as being unpatentable over U.S. Patent No. 1,972,102 in the name of William M. Malisoff, in view of U.S. Patent No 6,402,940 in the name of Alkis S. Rappas. Applicants respectfully traverse these rejections.

Additionally, in the Office Action mailed July 2, 2002, Claim 3 was rejected under 35 U.S.C. § 103(a), as being unpatentable over U.S. Patent No 6,402,940 in the name of Alkis S. Rappas in view of U.S. Patent No. 3,163,593 in the name of Alfred Bentley Webster, Norman James Herbert, and Richard Rigby (Webster et. al.). Applicants respectfully traverse these rejections.

Additionally, Claims 5 to 8 and 11 were rejected under 35 U.S.C. § 103(a), as being unpatentable over U.S. Patent No 6,402,940 in the name of Alkis S. Rappas in view U.S. Patent No 6,217,748 in the name of Shigeto Hatanaka, Osamu Sadakane, and Hideshi Iki and assigned to Nippon Mitsubishi Oil Corp. (JP), (Hatanaka et al.). Applicants respectfully traverse these rejections.

Additionally, Claims 12 to 20 were rejected under 35 U.S.C. § 30 103(a), as being unpatentable over U.S. Patent No 6,402,940 in the

5

10

30

name of Alkis S. Rappas in view U.S. Patent No 6,217,748 in the name of Shigeto Hatanaka, Osamu Sadakane, and Hideshi Iki and assigned to Nippon Mitsubishi Oil Corp. (JP), (Hatanaka et al.) as app0plied to claim 11 and further in view of Webster et. al. Applicants respectfully traverse these rejections.

An affidavit under 37 CFR. § 1.131 of prior invention by Dr. William H. Gong on the 19th day of September 2002, identified as Paper No. 5, is hereby presented to further the prosecution of subject Application. In particular, the affidavit of Dr. Gong is a showing of facts which establish that reduction to practice of Applicants' invention, as described and claimed in subject application, was completed in the United States, prior to September 2000.

Applicants respectfully request Primary Examiner Griffin to withdraw all rejections under 35 U.S.C. § 103 (a) which rely upon the Rappas reference of record alone or in combination with the Malisoff, Webster et al., and/or Hatanaka et al. references of record.

of the

An affidavit under 37 CFR § 1.131 of prior invention by Dr. 20 George A. Huff Jr. on the 19th day of September 2002, identified as Paper No. 6, is hereby presented to further the prosecution of subject Application. In particular, the affidavit of Dr. Huff is a showing of facts which establish that reduction to practice of Applicants' invention, as described and claimed in subject application, was completed in the United States, prior to April 2000.

Applicants respectfully request Primary Examiner Griffin to withdraw rejections under 35 U.S.C. § 103 (a) which rely upon the Hatanaka et al. reference alone or in combination with the Rappas, and/or Webster et. al. references of record.

Base on the amendments submitted herein, Paper No. 5 and Paper No. 6, Applicants urge that Claims 1 to 20 inclusive, all claims now presented, are in condition for allowance. Applicant respectfully requests Primary Examiner Griffin to pass subject application for allowance.

Do not hesitate to contact Frederick S. Jerome whose telephone number is (630) 832-7974 (FAX (630) 832-7976) if additional assistance is needed regarding this paper or earlier papers for Applicants.

Applicants and their undersigned Attorney appreciate the attention and further consideration of this matter by Examiner Griffin.

Respectfully submitted,

15

5

Fuduid & Jerone

20

Frederick S. Jerome Attorney For The Applicants Registration Number 28,621 (630) 832-7974 (630) 832-7976 FAX

25 Correspondence Address:
BP America, Inc.
Docket Clerk, Law Dept., Mail Code 2207A
200 East Randolph Drive
Chicago, IL 60601-7125

5

10

15

20

25

30

Version of Amended Specification with Markings to Show Changes Made

At page 5, kindly amend, lines 10 to 20, to read as follows:

Conventional hydrodesulfurization (HDS) catalysts can be used to remove a major portion of the sulfur from petroleum distillates for the blending of refinery transportation fuels, but they are not [efficient] efficient for removing sulfur from compounds where the sulfur atom is sterically hindered as in multi-ring aromatic sulfur compounds. This is especially true where the sulfur heteroatom is doubly hindered (e.g., 4,6-dimethyldibenzothiophene). Using conventional hydrodesulfurization catalysts at high temperatures would cause yield loss, faster catalyst coking, and product quality deterioration (e.g., color). Using high pressure requires a large capital outlay.

7

W

3

At page 5, kindly amend, lines 26 to 35, to read as follows:

The art is replete with processes said to remove sulfur from distillate feedstocks and products. One known method involves the oxidation of petroleum fractions containing at least a major amount of material boiling above a very high-boiling hydrocarbon materials (petroleum [fractrions] fractions containing at least a major amount of material boiling above about 550° F.) followed by treating the oxidized compounds effluent containing the temperatures to form hydrogen sulfide (500° F. to 1350° F.) and/or hydroprocessing to reduce the sulfur content of the hydrocarbon See, for example, U.S. Patent Number 3,847,798 in the name of Jin Sun Yoo and U.S. Patent Number 5,288,390 in the name Such methods have proven to be of only of Vincent A. Durante. limited utility since only a rather low degree of desulfurization is achieved. In addition, substantial loss of valuable products may result due to cracking and/or coke formation during the practice of Therefore, it would be advantageous to develop a these methods.

. . .

process which gives an increased degree of desulfuriztion while decreasing cracking or coke formation.

At page 26, kindly amend, lines 14 to 23, to read as follows:

Beneficially, all or a portion of the low-boiling fraction in substantially liquid form is diverted through conduit 32a and into an optional oxygenation process unit 110 for catalytic oxidation in the liquid phase with a gaseous source of dioxygen, such as air or oxygen enriched air. For the purpose of the present invention, the term "oxygenation" is defined as any means by which one or more atoms of oxygen is added to a hydrocarbon molecule. Particularly suitable catalytic oxygenation processes are disclosed in commonly assigned U.S. Patent Application Serial Number 09/779,283 [(37,248A)] and U.S. Patent Application Serial Number 09/779,286 [(37,248B)].

15

10

5

10

15

20

Version of Amended Claims with Markings to Show Changes Made

1. (Once Amended) A process for the production of refinery transportation fuel or blending components for refinery transportation fuel, which process comprises:

providing an oxidation feedstock comprising a mixture of hydrocarbons, sulfur-containing and nitrogen-containing organic compounds, which mixture has a gravity ranging from about 10° API to about 100° API and is a product of a hydrotreating process for petroleum distillate [the mixture having];

contacting the oxidation feedstock with an immiscible phase comprising at least one organic peracid or precursors of organic peracid, in a liquid reaction mixture maintained substantially free of catalytic active metals and/or active metal-containing compounds and under conditions suitable for oxidation of one or more of the sulfur-containing and/or nitrogen-containing organic compounds; and

separating at least a portion of the immiscible peracid-containing phase from the reaction mixture; and

recovering a product comprising a mixture of organic compounds containing less sulfur and/or less nitrogen than the oxidation feedstock from the reaction mixture.

- 9. (Once Amended) The process according to claim 1 wherein the [high-boiling] oxidation feedstock consists essentially of material boiling between about 200° C. and about 425° C.
- 25 14. (Once Amended) The process according to claim 12 wherein the treating of recovered organic phase includes contacting all or at least a portion of the recovered organic phase with [use of] at least one solid sorbent comprising alumina.
- 15. (Once Amended) The process according to claim 12 wherein the treating of recovered organic phase includes contacting all or at least a portion of the recovered organic phase with [use of] at

least one immiscible liquid comprising a solvent having a dielectric constant suitable to selectively extract oxidized sulfur-containing and/or nitrogen-containing organic compounds.

19. (Once Amended) The process according to claim 12 wherein the treating of recovered organic phase includes contacting all or at least a portion of the recovered organic phase with [use of] at least one immiscible liquid comprising an aqueous solution of a soluble basic chemical compound selected from the group consisting of sodium, potassium, barium, calcium and magnesium in the form of hydroxide, carbonate or bicarbonate.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Appl	ication of:) Paper No. 6
APPLICANTS:	WILLIAM A. GONG, MONICA R. REGALBUTO & GEORGE A. HUFF JR.))))
SERIAL NO:	09/779,285)) Group Art Unit:) 1764
FILED:	February 8, 2001) Examiner:) Walter D. Griffin)
REFINI	RATION OF COMPONENTS FOR ERY BLENDING OF SPORTATION FUELS) Attorney Docket) No.: 37,248

AFFIDAVIT UNDER 37 CFR § 1.131 of Dr. GEORGE A. HUFF Jr.

Assistant Commissioner for Patents Washington, DC 20231

CERTIFICATE OF MAILING				
I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner of Patents and Trademarks, Washington, D.C. 20231 on Ostober 2 2002. By Casal M. Netter				
(Date)	(Signature)			
	CAROL M. NETH (Typed or Printed Name of Person Signing Certificate)			

10

- 1. I, GEORGEA. HUFF Jr., being duly sworn, depose and say:
- 2. That I reside at 823 Morven Court, Naperville, Illinois 5 60563.
 - 3. In May 1984 I received a Bachelor of Science degree in Chemical Engineering from the University of Utah, Salt Lake, Utah, USA. I received a Doctor of Philosophy Chemical Engineering in 1982 from the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
 - 4. 1982 to 1984, I held the position of Assistant Professor of Chemical Engineering at M.I.T.
- 5. 1984 to 1986, I was a Research Engineer working in the Hydrotreating Group of the Catalysis Department for Shell
 15 Development at Westhollow Technical Center, Houston, Texas, USA.
 - 6. From 1986 to the present, I have been employed by Amoco Chemical Company, now BP Amoco Chemical Company, a corporation of the State of Delaware, and have the position of Senior Research Associate. Among the professional honors which have been conferred on me are memberships in the North American Catalysis Society and the American Chemical Society.
 - 7. I am one inventor of the claimed subject matter of the above identified patent application.
- 8. I have read U.S. Patent No 6,217,748 in the name of Hatanaka et al., and entitled PROCESS FOR HYDRODESULFURIZATION OF DIESEL GAS OIL.
 - 9. Prior to April of 2000, our invention as described and claimed in the subject application was completed in the United States, as evidenced by the following Exhibits:

5

10

- a Pages 1 and 2 of memorandum titled PRODUCTION OF LOW SULFUR DIESEL (25 PPM AND 150 PPM) by S. G. McDaniel and M. A. Jandick for Amoco Petroleum Products, Naperville, Illinois, identified as EXHIBIT A, illustrates the key points of our selective hydrogenation of high-boiling hydrogenation feedstock whereby the incorporation of hydrogen into hydrocarbon compounds, sulfur-containing organic compounds, and/or nitrogen-containing organic compounds assists by hydrogenation removal of sulfur and/or nitrogen from components for refinery blending of transportation fuels.
 - b Table 1: Properties of Feed, identified as EXHIBIT B.
 - c Table 2: Properties of Catalyst, identified as EXHIBIT C.
- d Table 4: Properties for < 30 ppm Composite Sulfur Product, identified as EXHIBIT D.
- As EXHIBIT A, illustrates, a hydrotreated desulfurized 15 10. diesel having 375 ppm sulfur was used as the feed to the hydrotreating pilot plant to make products having reduced sulfur levels of about 150 ppm sulfur and less than 30 ppm sulfur. feed was designated as LS-98. As stated on page 2, "The hydrotreated feed was difficult to desulfurize since 80 percent of 20 the sulfur compounds boiled above 600° F. The majority of these dibenzothiophenes and sulfur compounds are substituted dibenzothiophenes. We had to run the unit with fresh catalyst at 680° F to achieve the 25 ppm product sulfur level."
- 25 11. Properties of the feed are summarized in Table 1, identified as EXHIBIT B.
 - 12. The fresh catalyst used is one of the more active CoMo catalysts on the market for desulfurization of petroleum distillates. Selected properties of the catalyst are summarized in Table 2, identified as EXHIBIT C.
 - 13. During the run, the majority of the sulfur samples were tested using analytical methods SPPM1640 and GCSBP2360. The

results were confirmed periodically by analyzing the same sample by method SXRF12740. Properties for <30 ppm Composite Sulfur Product are summarized in Table 4, identified as EXHIBIT D. These results demonstrate the effectiveness of our procedure in reducing the sulfur and nitrogen content of LS-98-150-A600, which originally contained 350 ? or 375 ppmw sulfur and 89 ppmw nitrogen.

15. Copies of the above referenced memorandum pages are attached as Exhibits. The Exhibits are a true copy, except that the dates thereof and unrelated subject matter have been blanked-out, but all the dates are prior to August 1999.

AND FURTHER AFFIANT SAYETH NOT.

GEORGE A. HUFF Jr.

15 STATE OF ILLINOIS

SS.

COUNTY OF DUPAGE

Sworn to and subscribed before me, a Notary Public, by said GEORGE A. HUFF Jr., on this $\frac{19}{100}$ day of September 2002.

20

5

(SEAL)

Notary Public

"OFFICIAL SEAL"

JANE L. COOPER

Notary Public, State of Illinois

My Commission Expires 06/01/04

EXHIBIT A GEORGE A. HUFF Jr. AFFIDAVIT UNDER RULE 1.131

MEMORANDUM

Amoco Petroleum Products Naperville, Illinois 60566

S. G. McDaniel M. A. Jandick

PRODUCTION OF LOW SULFUR DIESEL (25 PPM AND 150 PPM)

INTRODUCTION

testing. A desulfurized diesel from Whiting (LS-98) was used as the feed to the pilot plant to make seven barrels of 150 ppm sulfur diesel and seven barrels with less than 30 ppm sulfur. This memorandum documents feed and product analyses along with associated pilot plant processing conditions.

OPERATION

Feed

Hydrotreated HMD (LS-98 diesel) from the Whiting DDU was used as the feed to AU-125. Since the feed is already hydrotreated, the remaining 350 ppm sulfur is heavy: approximately 80% of the sulfur boils above 600°F. The properties for the feed as analyzed by the Amoco Research Center are listed in Table I.

Catalyst

We loaded 664 grams (950 cc) of fresh catalyst and 150 cc silicon carbide into the reactor. This catalyst is currently used in the distillate desulfurization unit at the Amoco Yorktown refinery and is one of the more active CoMo catalysts on the market for desulfurization. The catalyst properties as tested at the Amoco Research Center are listed in Table II.

Conditions

EOR 740 F). The conditions for the pilot plant were as follows: pressure 500 to 550 psig, pure $H_{\rm c}$, temperature $600^{\circ}F-680^{\circ}F$. Sulfur samples were taken every day or two to monitor the quality of the product and detect upsets in the unit.

Property of Amoco Oil Company
Proprietary--To Be Maintained in Confidence

EXHIBIT A GEORGE A. HUFF Jr. AFFIDAVIT UNDER RULE 1.131

PRODUCTS/RESULTS

Two product composites were produced for this project, a 150 ppm sulfur diesel and a maximum 30 ppm sulfur diesel. The actual sulfur levels were Composite #1--151 ppm and Composite #2--25 ppm, respectively. The product properties for both sulfur levels as analyzed at the Amoco Research Center in Naperville are listed in Tables III and IV, respectively. Barrels 2, 3, 4, 5, 7, 3, and 9 were blended to make Composite #1. Barrels 10, 11, 12, 13, 14, 16, 17, 18, and 19 were plended to make Composite #2. The other barrels were used to flush the blending tank before each operation.

The main parameter tracked during the run was product sulfur concentration in ppm. The majority of the sulfur samples were tested using analytical method SPPM1640. The results were confirmed periodically by sending the same sample in for SXRF1240. A plot of sulfur concentration per period is shown in Figure 1.

SUMMARY

The AU-125 pilot run was executed efficiently, and the composites produced were on target. The hydrotreated feed was difficult to desulfurize since 803 of the sulfur compounds boiled above 600°F. The majority of these compounds are dibenzothiophenes and substituted dibenzothiophenes. We had to run the unit with fresh catalyst at 680°F to achieve the 25 ppm product sulfur level. Most of the Amoco distillate desulfurization units (DDUs)

Stang W. MDanie (

Stacey G. McDaniel Mail Station H-6 Phone SOCON 231-3678 Naperville

Mike (Ganduk Mike A. Jandick Mail Station H-6 Phone SOCON 231-5985

Naperville

SGM/MAJ/jmm/mkl/9872w

Attachments

Keywords: Hydrotreating, Diesel, Low Sulfur, Pilot Plant, DC-130

Property of Amoco Oil Company Proprietary -- To Be Maintained in Confidence

EXHIBIT B GEORGE A. HUFF Jr. AFFIDAVIT UNDER RULE 1.131

PROPERTIES OF FRED (LS-98 DIESEL FROM WHITING)

Physical	Result	Test Code	Volume	IBP	Sulfur by
Properties	1		Percent	Distillation	Boiling Pt.
				(FILD86DI T)	(GCSBP 2360)
Sulfur (ppm)	375	S PPM 1640	IBP 0.5%	270	
Nitrogen (ppm)	89	N PPM 1560			
Aromatic			1.0 %	292	45:
carbon (wt%)	16.5	NMRC 6831	5.0 %	355	522
API Gravity	34.66	FLAPIG 9710	10.0 %	384	554
Sp. gravity	0.8516	FLAPIG 9710	20.0 %	429	
Cetane Index (4 point)	46.946	FILCETIND4/	30.0 %	457	633
Carbon (wt%)	86.96	CHHIGH 1450	40.0 %	490	663
Hydrogen (wt%)	13.11	CHHIGH 1450	50.0 %	523	667
	-		60.0 %	549	676
			70.0 %	575	693
	•		80.0 %	605	705
			90.0 %	636	727
			95.0 %	663	746
			99.0 %	714	825
			FBP 99.5 %	733	855

EXHIBIT C GEORGE A. HUFF Jr. AFFIDAVIT UNDER RULE 1.131

TABLE II
PROPERTIES OF CATALYST

- 5

			Meta	ıls Analysi	s for CHD-	1682
Physical Properties	Result	Test Code	Test Code	: ICP 1340	Test Code	: XRF 1040
BET Surface Area m2/g	236	5170 SA	Na ppm		Na Wt%	-
Cum. Desorption cc/g	0.48	5170 SA	Mg ppm		Mg Wt%	-
Avg. Pore volume A	29	5170 SA	Al ppm	3 E	Al Wt%	_
Crush Strength #/mm		-	Si ppm		Si Wt%	_
CBD g/cc	0.71	-	P ppm		P Wt%	_
			K ppm		K Wt%	_
			Ca ppm		Ca Wt%	
			Ti ppm		Ti Wt%	-
			V ppm		V WE %	-
			Cr ppm		Mn Wt%	_
			Mn ppm		Fe Wt%	_
			Fe ppm		Co Wt%	_
			Co ppm		Ni Wt%	-
			Ni ppm		Zn Wt%	_
			Zn ppm	_ +	Mo Wt%	-
			Mo ppm	 +	Sn Wt%	-
			Pb ppm	 : +	Sb Wt%	_
				 +	Ba Wt%	_
					La Wt%	-
					Ce Wt%	_
				-	Nd Wt%	-

Property of Amoco Oil Company Proprietary--To Be Maintained in Confidence

TABLE III
PROPERTIES OF 150 PPM COMPOSITE SULFUR PRODUCT

Physical	Result	Test Code	Volume	IBP	Sulfur by
Properties			Percent	Distillation (FILD86DIST)	Boiling Pt. (GCSBP 2360)
Sulfur (ppm)	151	S PPM 1640	IBP 0.5 %	333	35
Nitrogen (ppm)	33	N PPM 1560	1.0 %	-	135
Aromatic carbon (wt%)	15.6	NMRC 6831	5.0 %	394	522
API Gravity	35	FLAPIG 9710	10.0 %	421	572
Sp. gravity	0.8498	FLAPIG 9710	20.0 %	448	645
Cetane Index (4 point)	46.836	FILCETIND4/1	30.0 %	473	663
Carbon (wt%)	86.45	CHHIGH 1450	40.0 %	494	668
Hydrogen (wt%)	13.07	CHHIGH 1450	50.0 %	512	676
			60.0 %	532	687
			70.0 %	552	695
			80.0 %	574	708
			90.0 %	603	733
1			95.0 %	630	757
			99.0 %	-	851
1			FBP 99.5 %	643	893

TABLE IV PROPERTIES FOR < 30 PPM COMPOSITE SULFUR PRODUCT

		FUR < 30 PPM	Volume	IBP	C. 1 5 5
Physical	Result	Test Code		1	Sulfur by
Properties	1		Percent	Distillation	Boiling Point
	1	l		(FILD86DIST)	(GCSBP 2360)
Sulfur (ppm)	25	S PPM 1640	IBP 0.5 %	349	20
Nitrogen (ppm)	17	N PPM 1560	1.0 %	-	46
Aromatic carbon (wt%)	14.8	NMRC 6831	5.0 %	408	238
	35.3	FLAPIG 9710	10.0 %	428	640
API Gravity	1		1		
Sp. gravity	0.8485	FLAPIG 9710	20.0 %	453	661
Cetane Index	47.813	FILCETIND4/1	30.0 %	474	668
(4 point)		į			
Carbon (wt%)	86.72	CHHIGH 1450	40.0 %	495	673
Hydrogen (wt%)	13.12	CHHIGH 1450	50.0 %	514	688
	•		60.0 %	532	695
			70.0 %	552	706
			80.0 %	573	719
			90.0 %	600	741
			95.0 %	625	767
			99.0 %	-	857
			FBP 99.5 %	647	910

Property of Amoco Oil Company Proprietary--To Be Maintained in Confidence

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of:) Paper No. 5
APPLICANTS:	WILLIAM A. GONG, MONICA R. REGALBUTO & GEORGE A. HUFF JR.))))
SERIAL NO:	09/779,285)) Group Art Unit:) 1764
FILED:	February 8, 2001) Examiner:) Walter D. Griffin)
REFINI	RATION OF COMPONENTS FOR ERY BLENDING OF SPORTATION FUELS) Attorney Docket) No.: 37,248

AFFIDAVIT UNDER 37 CFR § 1.131 of Dr. WILLIAM H. GONG

Assistant Commissioner for Patents
5 Washington, DC 20231

CERTIFICATE OF MAILING				
Service with sufficie Commissioner	orrespondence is being deposited with the United States Postal ent postage as first class mail in an envelope addressed to: of Patents and Trademarks, Washington, D.C. 20231 By			
(Date)	(Signature)			
CAROL M. NETH				
(Typed or Printed Name f Person Signing Certificate)				

- 1. I, WILLIAM H. GONG, being duly sworn, depose and say:
- 2. That I reside at 900 Fairfield Avenue, Elmhurst, Illinois 5 60126.
 - 3. In May 1984 I received a Bachelor of Science degree in Chemistry from Illinois State University at Normal, Illinois, USA. I received a Doctor of Philosophy degree in Organic Chemistry in 1990 from the Iowa State University at Ames, Iowa, USA
- 4. From June 11, 1990 to the present, I have been employed by Amoco Chemical Company, now BP Amoco Chemical Company, a corporation of the State of Delaware, and have the position of Research Associate.
- 5. I have worked in the development of new catalytic oxidation process for distillate fuel streams as well as alkylaromatic feedstocks.
 - 6. I am one inventor of the claimed subject matter of the above identified patent application.
- 7. I have read U.S. Patent No 6,402,940 in the name of 20 Alkis S. Rappas, and entitled PROCESS FOR REMOVING LOW AMOUNTS OF ORGANIC SULFUR FROM HYDROCARBONFUELS.
 - 8. Prior to September 2000, our invention as described and claimed in the subject application was completed in the United States, as evidenced by the following Exhibits:
- a Laboratory Notebook 20164, pages 37 and 38, identified as EXHIBIT A, illustrates the key points of my oxidation and simultaneous extraction of a high boiling fraction of diesel fuel.
 - b Laboratory Notebook 20453, pages 44 to 47, identified as EXHIBIT B, illustrates the key points of my liquid-liquid

5

10

15

20

25

extraction of an oxidized high boiling fraction of diesel fuel to remove residual sulfur.

- 9. Under my supervision, Mrs. Christine Peaches, a BP Amoco Research Technician, conducted an oxidation-simultaneous extraction experiment described in an Amoco Research Notebook 20164, pages 37 to 38. In this experiment, Mrs. Peaches created a biphasic mixture comprising of 100 g of a high boiling fraction of diesel fuel (a.k.a. LS-98-25-A600 but also labeled as "LS-98-150-A600" which fraction boiled above 600° F (316° C) and contained 580 ppmw sulfur), 34 milliliter of 30 percent by weight hydrogen peroxide, 50 milliliter of glacial acetic acid (HOAc), and 50 milliliter of distilled and deionized water (D&D water). This mixture was created in a 3-neck, round bottom flask equipped with an overhead agitator, a water-cooled reflux condenser, a nitrogen inlet and outlet, and a heating mantel.
- The mixture was heated to boiling (approximately 210° F) with an agitation rate fixed at 200 rpm, and was sustained at this temperature for 120 minutes (2 hours). After this heating period had elapsed, the heating mantel was switched off and the agitation was temporarily ceased to permit a disengagement of the diesel layer from the aqueous acetic acid layer. The top layer, the oxidized and extracted diesel immiscible layer, was sampled for sulfur analysis. After the sampling, the agitation was resumed until the mixture was cooled. Approximately 0.1 grams of manganese dioxide was added to the mixture to decompose any unused peroxide in the aqueous acetic acid layer. The entire reactor content was transferred to a storage container. The bottom, aqueous acetic acid layer, was sampled for sulfur analysis.
- 11. The oxidized and extracted diesel layer was determined to contain 355 ppmw sulfur (LIMS sample number 152051) while the bottom, aqueous acetic acid layer was determined to contain 41 ppmw sulfur (LIMS sample number 152084). These results demonstrate a desulfurization of the diesel layer due to oxidation

٥

5

10

15

20

and simultaneous extraction of sulfur into the aqueous acetic acid layer.

12. As EXHIBIT B, illustrates, Mr. Donald J. Maciejewski, a Technician, conducted BP Amoco Research a liquid-liquid extraction of a hydrogen peroxide, acetic acid-based oxidation of a diesel fuel which boiled above 600 OF (316° C) and contained 580 ppmw sulfur and 147 ppmw nitrogen. The experiment required the preparation of a large volume (approximately one liter) of an "oxidized and simultaneously extracted oxidized diesel fuel" (from this point on known as the "oxidized diesel") to test the concept of the liquid-liquid extraction. This oxidized diesel fuel was prepared according to the instructions documented in Research Notebook number 20453, pages 44 to 46. The oxidized diesel fuel product obtained from this procedure was significantly desulfurized and denitrogenated as the product fuel contained 143 ppmw sulfur and 4 ppmw nitrogen (LIMS sample manager number 155378). aqueous acetic acid layer separated after the oxidation-extraction procedure was found to have a sulfur concentration of 252 ppmw or 0.0252 percent by weight (LIMS sample manager number 155377), thus demonstrating that during the oxidation, effective extraction of the oxidized diesel impurities occurred. After the oxidized diesel fuel was dehydrated by treatment with molecular sieves, the oxidized product is then identified as the "dried" diesel product.

, . , .

- 13. The "dried" diesel product was then submitted for solubility testing in four different liquid-liquid solvent candidates. This work by Mr. Donald J. Maciejewski, is described in Research Notebook number 20453 on page 47. The test was to result in the selection of a feasible solvent which must be immiscible with 30 the diesel product and that after mixing, the diesel product must separate quickly from the solvent layer.
 - 14. Mr. Maciejewski found that methanol met the two criteria and his observations are recorded in Amoco Research

5

Notebook number 20453 on page 47. Subsequent work by Mr. Maciejewski demonstrated that after one extraction with methanol, the "dried" oxidized, methanol extracted product contain only 35 ppmw sulfur and 3 ppmw nitrogen (LIMS sample manager number 157666). These results demonstrate the effectiveness of my procedure in reducing the sulfur and nitrogen content of LS-98-150-A600, which originally contained 580 ppmw sulfur and 147 ppmw nitrogen.

15. Copies of the above referenced Laboratory Notebook pages are attached as Exhibits. The Exhibits are a true copy, except that the dates thereof and unrelated subject matter have been blanked-out, but all the dates are prior to September 2000.

AND FURTHER AFFIANT SAYETH NOT.

15 WILLIAM H. GONG

STATE OF ILLINOIS

) SS.

COUNTY OF DUPAGE

Sworn to and subscribed before me, a Notary Public, by said WILLIAM H. GONG, on this 19th day of September 2002.

(SEAL)

Notary Public

"OFFICIAL SEAL"

JANE L. COOPER

Notary Public, State of Illinois

My Commission Expires 06/01/04

EXHIBIT A

WILLIAM H. GONG, AFFIDAVIT UNDER RULE 1.131

20164

37

Project No. Proposite -4:01 Date of Work Continued From Page	
Title or Purpose: Hydrogen Peroxide Oxidation of High Boiling Fraction	ر ر
KEYWORDS: Diesel Fuel (LS-98-25-A600)	
Run#20164-037-1	
_	

Flash Charged; LS-98-150-ALDO _____ 100g. 3090HzOz (ML) ____ 341 Glaciar HORC(ML) ____ 50 DHD WATER (ML) ____ 50

Entro a 20 ml, three-neck round bottom flash equipped with a reflux condenser, mechanical agitator, a nirogen inlet and autlet set at 1.00 are Changed the above, and heated at 100 for This stirred as are up, from the top layer the end of the she are up, from the top layer is sampled with 15 ml and stored into a plastic 4-dram vial with the cap lossely fixed in case there are residual peroxides decomposing. Sample are transferred to T.J. Barnes for bubmit to Sample manager. The sample stirred and cooled to som temperature. Once at room temperature used oils of mangement dioxide is added to decompose of the excess hydrogen peroxide and than stirred for 10 mintites more. Entire sample is then poured into a bottle with a vented cap.

(OVER)

	·	
Work By Chris Jeaches	Continued on Page _	38
Recorded By Chris Cearly	Date	*

EXHIBIT A

WILLIAM H. GONG, AFFIDAVIT UNDER RULE 1.131

^	\sim
٠,	u
- 5	$\boldsymbol{\tau}$
	u
•	•

Project No. Phana - 4:01	_ Date of Work	 _ Continued From Page_	
Title or Purpose:			

KEYWORDS:

Clean uf Equiment:
The (Flask, Ag : Inter, thermometer, lindenser) Are then
rinsed with acetone and disposed According to SAFety
froedure. After the organice residue has been removed,
the equipment is than rinsed with distilled water
and allowed to air dry.

Sample # 20164-039-1 WGIGHT FOR 15ML Sample 11.939g. 12.447g. FINAL LARGE BOHLE SAMPLE UT: 210.024g.

Work By Chis Feaches

_ Continued on Page

Date

AFFIDAVIT UNDER RULE 1.131 WILLIAM H. GONG,

Project No	_ Date of Work_	Continued From Page	
Title or Purpose: Okion 71 J E	DESULFURIZA 7112	OF LS.98.150-A600	1600 TO FBP
KEYWORDS:			

Oxidative Desulfurization of LS-98-150-A600 (600 to FBP)

Note:

This procedure is for a one-liter scale and can be scaled proportionally to

equipment of different sizes.

Procedure

Into a three (3) or four (4) liter, three neck, round bottom flask equipped with a waterjacketed reflux condenser, a mechanical stirrer, a nitrogen inlet and outlet, a temperature controller (eurotherm and thermocouple) and a heating mantel, are charged with:

- one (1) kg of LS-98-150-A600
- one (1) liter of glacial acetic acid
- 170 mL of 30% hydrogen peroxide (H₂O₂).

A slight flow of nitrogen is initiated and this gas then slowly sweeps over the surface of the reactor content. The agitator is started to provide efficient mixing and the contents are heated. Once the temperature reaches 200 °F, the contents are heated for 120 minutes at this temperature.

After the reaction time has elapsed, the contents are continuing to be stirred with the heating mantel turned off and removed. At approximately 170 °F, the agitator is stopped momentarily while approximately 1 g of manganese dioxide (MnO2) is added through one of the necks of the round bottom flask to the biphasic mixture to decompose any unreacted hydrogen peroxide. Mixing of the contents with the agitator is then resumed until the temperature of the mixture has cooled to approximately 120 °F. The agitation is ceased to allow both organic (top) and aqueous (bottom) layers to separate (should occur immediately).

The bottom layer is removed and isolated either by vacuum with the aid of a dip tube or some other equivalent procedure. Note: It isn't necessary to remove every last bit of the bottom layer; leaving behind a bit of this is not detrimental to the following procedure. The bottom layer is to be saved for further analysis. It is necessary that the aqueous acetic acid layer is stored in a lightly capped bottom to permit the evolution of oxygen.

Into the reactor is charged with 500 mL of saturated aqueous sodium bicarbonaté to neutralize the organic layer (CAUTION: WHEN ADDING THIS SOLUTION, BE CERTAIN THAT THE AGITATOR IS STIRRING SLOWLY AND ADD THIS SOLUTION SLOWLY AS GAS (CO2) EVOLUTION WILL OCCUR INITIALLY). After the bicarbonate solution has been added, allow the mixture to stir rapidly for five to ten minutes to neutralize any remaining acetic acid. Remove the bottom, aqueous layer, and isolate the top layer. Dry the organic material over anhydrous 3 angstrom

Work By D Manyala	Continued on Page 45
Recorded By	
Read and Understood By	

WILLIAM H. GONG, AFFIDAVIT UNDER RULE 1.131

20453

45

Project No	Date of Work	Continued From Page	= 44
Title or Purpose: <u>Oxioa7iv e</u>	DESULFUNIZATION	OF LS-98-150 A600	1600 TO FBP)
KEYWORDS:			
molecu	lar sieve. After the material has be	en dehydrated by the molecular signs	

molecular sieve. After the material has been dehydrated by the molecular sieve, remove the sieve by filtration and isolate the filtrate.

Analytical Chemistry

- Submit a sample of the first aqueous acetic acid layer for OELECOSHT.
- 2. Submit a sample of the organic layer for the following:OELECOSHT, OENPPMWOIL, CCTAN

Sooium Bichabennar Aqueous SATUR 90.01g	ATES SOLUTION
LS-98-150 FRACTION 5 POT 1160 ml = 1000,9 g 1L GLACIAL ACETIC ACID 11	70 ml 30% Hyonoger Porov.
4.50 Kencrun = 204 F 1.0F	F AT 11:50An)
12:15 PRODUCY AT 175° ADDED , TURN MIXER ON AND LET SOL	1.00 49 & MANCANESE (IV) OXIDE
14:40 Reactor A7 115° F USED DIP LAYON 20453 - 45-1 (AC	TUBE TO REMOVE BOTTOM
ADDED 500 ml OF SATURATED SOOIUM	BICAGONATE SOLUTION SLOWLY
WHILE MIXIVAE WAS TUNNING 17	
AFTER ALL THE SOOIUM BICARBINATE O	
WAS INCREASED TO 200 RPM FOR	
MAJURO WAS POUNES 1270 A 2000 MC	Separatory FUNNEL
TO ACLOW THE LAYERS TO SEPARA	
20453-45-2 AQUEUUS SODIUM BI 26453-45-3 ORLANK LAYER	LANBONA") (
Work By	Continued on Page
Recorded By Mueryah	Date
Read and Understood Bv	Data

WILLIAM H. GONG, AFFIDAVIT UNDER RULE 1.131

A	
/[h
4	u

Project No	Date of Work	Continued From Page	45
Title or Purpose: KEYWORDS:			
	NIC LAYER BY AC NO LET SIT OVERN		- Sieve to
FILTEARD THE C 20453-046	Inchric LAYIN THA	OUGH MILLIPING LC	10.0 mm FIL
1712 840 87	2.9 2.3 5 2.6 8 844.0	3 - 5	
OELECOS JUB 10 NAP	20453-045-1 HT (SULFUR, LECO, 2000203M06-07227 Diesel Fuel From B. Go 20453-045-1) 10 ml
10 Numeric	H7 SULFUR, LECO	HIGH 70-1 , 04239	10 ml 29 26 g
Work By		Continued	on Page
-)
Read and Understood By		· ·	•

WILLIAM H. GONG, AFFIDAVIT UNDER RULE 1.131

20453

47

Project No. <u>R/~00</u>	00/2-4:0/ Date of Work Continued From Page
Title or Purpose:	METHANOL EXTRACTIONS
KEYWORDS:	SOLUBILTY, EMULSIUN, Dieser Fuer
PULPOSE:	TO TEST SOLUBILITY OF PAIRO DIESEL FACT PERIXIDE OXIOATION WITH METHANOL
TEST /	1.1 VOL RATIO OF THE ONIES DIESEL FROM THE PEROXISE OXIGATION AND METHANOL EMULSION BREAKS FAIRLY QUICK & 3 MINUTES
	MAKE UP A SOLUTION OF 70% METHANO 30% WATE (BY VOLUME) MAKE UP 1:1 VOL RATIO OF DRIFT DIESEL FROM PERCYLOR OXIDATELY WITH ABOUT 70% MECH 30% WATE SLOW TO SPEARATE (& 20 MINNER)
N07Æ:	SATURATE 70% METHANOL 30% WATER WITH Na CO MAKE UP 1:1 VOL RATIO OF DAIED DIESEL FROM PEROXID OXIDATION WITH ABOVE No CO SOLUTION FILTER SATURATED Na CO SOLUTION THROUGH A MILLIPORE, LC, 10mm PORE SIZE, BOFORE MIXING WITH THE DIESEL FUEL TO EMULSION BRENIC, QUICU
Tes7 4	1:1 VOL RAJIO DAIPO DIESEL FACT PEROXIDI OXIONJII. WIZH WAZES

Work By _____ Continued on Page _____

Date _

Date

Recorded By _____

Read and Understood By _____