Module 4: Metric Spaces and Sequences II Operational math bootcamp

Emma Kroell

University of Toronto

July 15, 2022

Outline

- Sequences
 - Cauchy sequences
 - subsequences
- Continuous functions
 - Contractions
- Equivalence of metrics

Sequences

Definition (Sequence)

Let (X, d) be a metric space. A sequence is an ordered list of points x_n , $n \in \mathbb{N}$, in X, denoted $(x_n)_{n\in\mathbb{N}}$. We say that a sequence $(x_n)_{n\in\mathbb{N}}$ converges to a point $x\in X$ if

 $\overline{A} := \{x \in X : \forall \in X : \forall \in X \cap A \neq \emptyset \}$

Proposition

Let (X, d) be a metric space, and let $A \subseteq X$. Then \overline{A} is equal to the set of points in X which are limits of a sequence in A.

Proof.

Et xeA. Then by definition, for every \$>0,
BE(X) nA & Ø. In particular, this is three for
E=1/n, neW.
For any neW, we can choose xnEA s.t.
xnEUSyn(X), which means d(X, xn) ~1/n.
Since In 10 monotonically, xn > x.

Proof continued

E Let NEX be the limit of a sequence CKN/NEW in A.
For every EDD, Ince M s.t d(xn,x) LE Uning

For every EDD, IxnEA s.t xnEBE(X).

: HE>O, ANBE(X) + Q. We conclude

XEA.

Corollary

A set $F \subseteq X$, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

ACX is closed (=) A=Ā

Cluster points of a set

Definition

Let (X,d) be a metric space and $A\subseteq X$. A point $x\in X$ is a *cluster point* of A (also called accumulation point) if for every $\epsilon>0$, $B_{\epsilon}(x)$ contains in A.

Proposition

 $x \in X$ is a cluster point of $A \subseteq X$ where (X, d) is a metric space if and only if there exists a sequence of points $x_n \in A$, $n \in \mathbb{N}$, such that $x_n \to x$.

Proof.

Suppose 3 sequence (xn)new in A s.t. xn-x.

Then 450, BE(x) contains infinitely many
elements of the sequence xn. Since each

XnEA, x is a cluster point of A.

3) Suppose N is a cluster point of A. Then for any eso, treBA s.t. ket BE(x).

ke e=1/n. Franch s.t. rateryalx)

Combining the previous result with the limit characterization of closure gives the following:

Corollary

For $A \subseteq X$, (X, d) a metric space, we have

$$\overline{A} = A \cup \{x \in X : x \text{ is a cluster point of } A\}.$$

Cauchy sequences

Definition (Cauchy sequence)

Let (X,d) be a metric space. A sequence denoted $(x_n)_{n\in\mathbb{N}}\in X$ is called a *Cauchy sequence* if

Proposition

Let (X, d) be a metric space, and let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

Proof.

Let ESO Let (xn) new be a convergent sequence in X. Nother thore exists neeln sit. d(x, xn) LE/2 thene. Let n, m≥ne, by triangle inequality, d(xn,xm) & d(xn,x) + d(x,xm) < 8/2+8/ ·· (xn) new is Cauchy

Definition

A metric space where every Cauchy sequence converges (to a point in the space) is called complete.

IR, IR' with usual metrics, are complete

Let (X, d) be a metric space, and let $Y \subset X$.

- (i) If X is complete and if Y is closed in X, then Y is complete.
- (ii) If Y is complete, then it is closed in X.

Proof. (i) Let X be a complete metric space. Let YCX be dosed. Let (xn)new be a Cauchy sequence in 4. Since YEX, CKNINEIN is a Cauchy sequence in X .: (Kn) non converges to xxX sind & is complete Since Y is closed, we must have XEY. : Y is complete (ii) (x,d) metric space, TEX is complete. Let cyn) new be a sequence in & that converges to y of X. Cyn) new is Cauchy in X (and also in 40. Since y is complete, Cynnam converges to y'ty Since sequences in metric spaces in a spaces in converge to unique point, y=y'. -- Yi

Subsequences

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space (X,d). Let $(n_k)_{k\in\mathbb{N}}$ be a sequence of natural numbers with $n_1 < n_2 < \cdots$. The sequence $(x_{n_k})_{k \in \mathbb{N}}$ is called a *subsequence* of $(x_n)_{n\in\mathbb{N}}$. If $(x_{n_k})_{k\in\mathbb{N}}$ converges to $x\in X$, we call x a subsequential limit.

 $((-1)^n)_{n\in\mathbb{N}} = \{-1, 1, -1, 1, -2\}$ This sequence diverges. The subsequences (C-1)2m)new (C-1)2n-1)new converge to 1 and -1, respectively.

Proposition

A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (X,d) converges to $x\in X$ if and only if every subsequence of $(x_n)_{n\in\mathbb{N}}$ also converges to x.

Proof.

E) Suppose every subsequence of (xn)ncm converges to x \in X \in 8 ince (\times n) n \in x \in x \in x \times \text{ubsequence} of itself, it must converge to x.

Proof continued

(=) Suppose (xn)new converges to X+X. Let (Xnx) ken be an arbitrary subsequence of CYN) new. Let E>O be arbitrary. In & EN s.t $d(x_n, x) \in \forall n \geq n_{\varepsilon}$. Choose k_{ε} such that $n_{k_{\varepsilon}} \geq n_{\varepsilon}$ (this must exist since (nx) kein is strictly increasing). Then $\forall k \geq k_{\xi}$, $d(x \cap x) \in \mathcal{E}$ $d \cap k$

Continuity

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. f is continuous at x_0 if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.

We say that f is continuous if it is continuous at every point in X.

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x,x_0)<\delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $\mathcal{P}d_X(x,x_0)<\delta$

Proof.

(i) \Rightarrow (ii) We prove the contrapositive.

I E => 0 s.t. \$ 8 > 0 \ \(\text{2x_8} \in \text{2} \) with $d_{x}(x_{8},x_{8}) \cdot 8$ but $d_{y}(f(x_{8}), f(x_{8})) \geq E_{0}$ We need to find a sequence in x that converges to xo but the images do not converge.

Let S= t, nEIN. We can pick a requence xn using which converges to xo. For each nEIN,

x d, f(x0)) ≥ EO-

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

Proof continued

(ii) ⇒ (iii) Using the definition of pre-image & open ball

(iii) \Rightarrow (i) Let (xn)nGIN be a sequence in % that converges to %0. Let &0. By (iii), \ne 8>0 s.t.

B₈(x₀) = f⁻¹(B_E (f(x₀))). D If NEB₈(x₀), then x is such that

Since (xn)nein converges, 7 NEIN s.t.

$$: \lim_{N\to\infty} f(x^N) = f(x^D).$$

Corollary

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous
- (ii) if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open
- (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed

We need the following results about sets and functions:

Let X and Y be sets and $f: X \to Y$. Let $A, B \subseteq Y$. Then

■ A ⊆ B => f-1(A) ⊆ f-1(B) (corrected after becture)

2 $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$

Proof.

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

(i) ⇒ (ii): Suppose f is continuous (at every point in X) and let UEY, Let XEf-1 (U). Then f(X) ∈ U.

Since U is open, 3 Eo>O S.t. Be (f(x)) = U.
By the pr. thm (iii), 3500 s.t. Bs.(x) ef-1 (Be (f(x))

Since Beo(f(x)) = W, f-1 (BEO(f(x))) = f-1 (W) Thus for each x ef- ((4), 7 80>0 s.t distical Sciences
Inversity of Toronto

Big (x) C f-1 (B.)

:. f-'(u) is open. Proof continued (ii) ⇒ (i) Let's use the dot of continuing from pr. +tm (xii). i.e for xEX, for ESO 38>0 s.+0 Bg(x) =f-1(Bg(Let XXX and let 800 be arbitrary

Since $B_{\varepsilon}(f(x))$ is open, by (ii), $A^{-1}(B_{\varepsilon}(f(x)))$ is also open. Since $x \in f^{-1}(B_{\varepsilon}(f(x)))$, by define open set, f(x) = f(x).

We are done. (ii) =>(iii) Let FEY be closed. or YIF is open Since f-1 (Y/F) = X/f-1(F), f-1(F) is closurob. July 15, 2022

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

- f is uniformly continuous if for all $\epsilon > 0$, there exists $\delta > 0$ such that for every $x_1, x_2 \in X$ with $d_X(x_1, x_2) < \delta$, we have $d_Y(f(x_1), f(x_2)) < \epsilon$
- f is Lipschitz continuous if there exists a K > 0 such that for every $x_1, x_2 \in X$ we have $d_Y(f(x_1), f(x_2))) < Kd_X(x_1, x_2)$

Proposition

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

f is Lipschitz continuous \Rightarrow f is uniformly continuous \Rightarrow f is continuous

Proof is one of your exercises.

Contraction Mapping Theorem

Definition

Let (X, d) be a metric space and let $f: X \to X$. We say that $x^* \in X$ is a *fixed point* of f if $f(x^*) = x^*$.

Definition

Let (X, d) be a metric space and let $f: X \to X$. f is a contraction if there exists a constant $k \in [0, 1)$ such that for all $x, y \in X$, $d(f(x), f(y)) \le kd(x, y)$.

Observe that a function is a contraction if and only if it is Lipschitz continuous with constant K < 1.

Theorem (Contraction Mapping Theorem)

Suppose that $f: X \to X$ is a contraction and the metric space X is complete. Then f has a unique fixed point x^* .

Example

Let $f: \left[-\frac{1}{3}, \frac{1}{3}\right] \to \left[-\frac{1}{3}, \frac{1}{3}\right]$ be defined by the mapping $x \mapsto x^2$. Assume we use the standard Euclidean metric, d(x,y) = |x-y|. f has a unique fixed point because

- · [-13, 13] is a complete metric space
- · let $x,y \in [-\frac{1}{3},\frac{1}{3}]$, then $|x^2-y^2| = |x+y||x-y| \leq \frac{2}{3}|x-y|$ $\therefore f \text{ is a contraction with}$

Equivalent metrics

Definition (Equivalent metrics)

Two metrics d_1 and d_2 on a set X are *equivalent* if the identity maps from (X, d_1) to (X, d_2) and from (X, d_2) to (X, d_1) are continuous.

Proposition

Two metrics d_1 , d_2 on a set X are equivalent if and only if they have the same open sets or the same closed sets.

Definition

Two metrics d_1 and d_2 on a set X are strongly equivalent if for every $x, y \in X$, there exists constants $\alpha > 0$ and $\beta > 0$ such

$$\alpha d_1(x,y) \leq d_2(x,y) \leq \beta d_1(x,y).$$

If two metrics are strongly equivalent then they are equivalent. The proof of this is one of the exercises.

Example

We show that the Euclidean distance (induced by 2-norm) and the metric induced by the ∞ -norm are equivalent on \mathbb{R}^n .

References

Charles C. Pugh (2015). Real Mathematical Analysis. Undergraduate Texts in Mathematics. https://link-springercom.myaccess.library.utoronto.ca/book/10.1007/978-3-319-17771-7

Runde , Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/piotr/docs/RealAnalysisNotes.pdf

