

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
C07K 14/00
A2
(11) International Publication Number:
WO 99/33869
(43) International Publication Date:
8 July 1999 (08.07.99)

(21) International Applicati n Number: PCT/US98/27416

(22) International Filing Date: 22 December 1998 (22.12.98)

(30) Priority Data:

08/998,253

08/998,255

08/998,255

24 December 1997 (24.12.97)

US

24 December 1997 (24.12.97)

US

17 July 1998 (17.07.98)

US

09/118,554

17 July 1998 (17.07.98)

US

(71) Applicant: CORIXA CORPORATION [US/US]; Suite 200, 1124 Columbia Street, Seattle, WA 98104 (US).

(72) Inventors: REED, Steven, G.; 2843 - 122nd Place Northeast, Bellevue, WA 98005 (US). XU, Jiangchun; 15805 Southeast 43rd Place, Bellevue, WA 98006 (US).

(74) Agents: MAKI, David, J. et al.; Seed and Berry LLP, 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS OF BREAST CANCER AND METHODS FOR THEIR USE

(57) Abstract

Compounds methods for the treatment and diagnosis of breast cancer are provided. The inventive compounds include polypeptides containing at least a portion of a breast tumor protein. Vaccines and pharmaceutical compositions immunotherapy for breast cancer comprising such polypeptides, molecules polynucleotide encoding such polypeptides, are also provided, together polynucleotide molecules for preparing the inventive polypeptides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Amenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	. ML	Mali	. TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	iL	Israel	MR	Mauritania	UG	Uganda
BK BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
		IT	Italy	MX	Mexico	UZ	Uzbekistan
CA	Canada	JP	Japan	NE	Niger	VN	Viet Nam
CF	Central African Republic	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CG	Congo	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
СН	Switzerland	KP	Democratic People's	NZ	New Zealand		
CI	Côte d'Ivoire	KP	Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China		Kazakstan	RO	Romania		
CU	Cuba	KZ		RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	u	Liechtenstein	SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia	30	Singapore		
}							

COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS OF BREAST CANCER AND METHODS FOR THEIR USE

TECHNICAL FIELD

The present invention relates generally to compositions and methods for the treatment and diagnosis of breast cancer. The invention is more particularly related to polypeptides comprising at least a portion of a protein that is preferentially expressed in breast tumor tissue and to polynucleotide molecules encoding such polypeptides. Such polypeptides may be used in vaccines and pharmaceutical compositions for treatment of breast cancer. Additionally such polypeptides and polynucleotides may be used in the immunodiagnosis of breast cancer.

BACKGROUND OF THE INVENTION

Breast cancer is a significant health problem for women in the United States and throughout the world. Although advances have been made in detection and treatment of the disease, breast cancer remains the second leading cause of cancer-related deaths in women, affecting more than 180,000 women in the United States each year. For women in North America, the life-time odds of getting breast cancer are now one in eight.

No vaccine or other universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of a variety of treatments such as surgery, radiotherapy, chemotherapy and hormone therapy. The course of treatment for a particular breast cancer is often selected based on a variety of prognostic parameters, including an analysis of specific tumor markers. See, e.g., Porter-Jordan and Lippman, Breast Cancer 8:73-100 (1994). However, the use of established markers often leads to a result that is difficult to interpret, and the high mortality observed in breast cancer patients indicates that improvements are needed in the treatment, diagnosis and prevention of the disease.

Accordingly, there is a need in the art for improved methods for therapy and diagnosis of breast cancer. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

The present invention provides compounds and methods for immunotherapy of breast cancer. In one aspect, isolated polypeptides are provided comprising at least an immunogenic portion of a breast tumor protein or a variant of said protein that differs only in conservative substitutions and/or modifications, wherein the breast tumor protein comprises an amino acid sequence encoded by a polynucleotide molecule having a partial sequence selected from the group consisting of (a) nucleotide sequences recited in SEQ ID NOS: 3, 10, 17, 24, 45-52 and 55-67, 72, 73, and 89-94, (b) complements of said nucleotide sequences and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

In related aspects, isolated polynucleotide molecules encoding the above polypeptides are provided. In specific embodiments, such polynucleotide molecules have partial sequences provided in SEQ ID NOS: 3, 10, 17, 24, 45-52 and 55-67, 72, 73, and 89-94. The present invention further provides expression vectors comprising the above polynucleotide molecules and host cells transformed or transfected with such expression vectors. In preferred embodiments, the host cells are selected from the group consisting of *E. coli*, yeast and mammalian cells.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known breast antigen.

The present invention also provides pharmaceutical compositions comprising at least one of the above polypeptides, or a polynucleotide molecule encoding such a polypeptide, and a physiologically acceptable carrier, together with vaccines comprising at least one or more such polypeptide or polynucleotide molecule in combination with a non-specific immune response enhancer. Pharmaceutical compositions and vaccines comprising one or more of the above fusion proteins are also provided.

In related aspects, pharmaceutical compositions for the treatment of breast cancer comprising at least one polypeptides and a physiologically acceptable carrier are provided, wherein the polypeptide comprises an immunogenic portion of a breast tumor protein or a variant thereof, the breast tumor protein being encoded by a polynucleotide molecule having a partial sequence selected from the group consisting of: (a) nucleotide sequences recited in SEQ ID NOS: 1, 2, 4-9, 11-16, 18-23, 25-44, 53, 54, 68-71, and 74-88, (b) complements of said nucleotide sequences, and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions. The invention also provides vaccines for the treatment of breast cancer comprising such polypeptides in combination with a non-specific immune response enhancer, together with pharmaceutical compositions and vaccines comprising at least one polynucleotide molecule having a partial sequence provided in SEQ ID NOS: 1, 2, 4-9, 11-16, 18-23, 25-44, 53, 54, 68-71, and 74-88.

In yet another aspect, methods are provided for inhibiting the development of breast cancer in a patient, comprising administering an effective amount of at least one of the above pharmaceutical compositions and/or vaccines.

The present invention also provides methods for immunodiagnosis of breast cancer, together with kits for use in such methods. In one specific aspect of the present invention, methods are provided for detecting breast cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the inventive polypeptides; and (b) detecting in the sample a protein or polypeptide that binds to the binding agent. In preferred embodiments, the binding agent is an antibody, most preferably a monoclonal antibody.

In related aspects, methods are provided for monitoring the progression of breast cancer in a patient, comprising: (a) contacting a biological sample obtained from a patient with a binding agent that is capable of binding to one of the above polypeptides; (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent; (c) repeating steps (a) and (b); and comparing the amounts of polypeptide detected in steps (b) and (c).

Within related aspects, the present invention provides antibodies, preferably monoclonal antibodies, that bind to the inventive polypeptides, as well as diagnostic kits

4

comprising such antibodies, and methods of using such antibodies to inhibit the development of breast cancer.

The present invention further provides methods for detecting breast cancer comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a DNA molecule that encodes one of the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers. In a preferred embodiment, at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a DNA molecule having a partial sequence selected from the group consisting of SEQ ID NOS: 1-94.

In a further aspect, the present invention provides a method for detecting breast cancer in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide molecule that encodes one of the above polypeptides; and (c) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe. Preferably, the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a DNA molecule having a partial sequence selected from the group consisting of SEQ ID NOS: 1-94.

In related aspects, diagnostic kits comprising the above oligonucleotide probes or primers are provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A and B show the specific lytic activity of a first and a second B511S-specific CTL clone, respectively, measured on autologous LCL transduced with B511s (filled squares) or HLA-A3 (open squares).

DETAILED DESCRIPTION OF THE INVENTION

As noted above, the present invention is generally directed to compositions and methods for the immunotherapy and diagnosis of breast cancer. The inventive compositions are generally isolated polypeptides that comprise at least a portion of a breast tumor protein. Also included within the present invention are molecules (such as an antibody or fragment thereof) that bind to the inventive polypeptides. Such molecules are referred to herein as "binding agents."

In particular, the subject invention discloses polypeptides comprising at least a portion of a human breast tumor protein, or a variant thereof, wherein the breast tumor protein includes an amino acid sequence encoded by a polynucleotide molecule including a sequence selected from the group consisting of: nucleotide sequences recited in SEQ ID NOS: 1-94, the complements of said nucleotide sequences, and variants thereof. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins, wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising a portion of one of the above breast proteins may consist entirely of the portion, or the portion may be present within a larger polypeptide that contains additional sequences. The additional sequences may be derived from the native protein or may be heterologous, and such sequences may be immunoreactive and/or antigenic.

As used herein, an "immunogenic portion" of a human breast tumor protein is a portion that is capable of eliciting an immune response in a patient inflicted with breast cancer and as such binds to antibodies present within sera from a breast cancer patient. Such immunogenic portions generally comprise at least about 5 amino acid residues, more preferably at least about 10, and most preferably at least about 20 amino acid residues. Immunogenic portions of the proteins described herein may be identified in antibody binding assays. Such assays may generally be performed using any of a variety of means known to those of ordinary skill in the art, as described, for example, in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988. For example, a polypeptide may be immobilized on a solid support (as described below) and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A. Alternatively, a polypeptide may be used to generate

6

monoclonal and polyclonal antibodies for use in detection of the polypeptide in blood or other fluids of breast cancer patients. Methods for preparing and identifying immunogenic portions of antigens of known sequence are well known in the art and include those summarized in Paul, *Fundamental Immunology*, 3rd ed., Raven Press, 1993, pp. 243-247.

The term "polynucleotide(s)," as used herein, means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and mRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides. An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner. An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised. A polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all such operable anti-sense fragments.

The compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotides. A polypeptide "variant," as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the therapeutic, antigenic and/or immunogenic properties of the polypeptide are retained. In a preferred embodiment, variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein. Polypeptide variants preferably exhibit at least about 70%, more preferably at least about 90% and most preferably at least about 95% identity (determined as described below) to the identified polypeptides.

As used herein, a "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids

represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

A nucleotide "variant" is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions. Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983). Nucleotide variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant nucleotide sequences preferably exhibit at least about 70%, more preferably at least about 80% and most preferably at least about 90% identity (determined as described below) to the recited sequence.

The antigens provided by the present invention include variants that are encoded by DNA sequences which are substantially homologous to one or more of the DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

Two nucleotide or polypeptide sequences are said to be "identical" if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, more preferably 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins - Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Resarch Foundaiton, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) Fast and sensitive multiple sequence alignments on a microcomputer CABIOS 5:151-153; Myers, E.W. and Muller W. (1988) Optimal alignments in linear space CABIOS 4:11-17; Robinson, E.D. (1971) Comb. Theor 11:105; Santou, N. Nes, M. (1987) The neighbor joining method. A new method for reconstructing phylogenetic trees Mol. Biol. Evol. 4:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy - the Principles and Practice of Numerical Taxonomy, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) Rapid similarity searches of nucleic acid and protein data banks Proc. Natl. Acad., Sci. USA 80:726-730.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e. gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by

determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Also included in the scope of the present invention are alleles of the genes encoding the nucleotide sequences recited herein. As used herein, an "allele" or "allellic sequence" is an alternative form of the gene which may result from at least one mutation in the nucleic acid sequence. Alleles may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone or in combination with the others, one or more times in a given sequence.

For breast tumor polypeptides with immunoreactive properties, variants may, alternatively, be identified by modifying the amino acid sequence of one of the above polypeptides, and evaluating the immunoreactivity of the modified polypeptide. For breast tumor polypeptides useful for the generation of diagnostic binding agents, a variant may be identified by evaluating a modified polypeptide for the ability to generate antibodies that detect the presence or absence of breast cancer. Such modified sequences may be prepared and tested using, for example, the representative procedures described herein.

The breast tumor proteins of the present invention, and polynucleotide molecules encoding such proteins, may be isolated from breast tumor tissue using any of a variety of methods well known in the art. Polynucleotide sequences corresponding to a gene (or a portion thereof) encoding one of the inventive breast tumor proteins may be isolated from a breast tumor cDNA library using a subtraction technique as described in detail below. Examples of such DNA sequences are provided in SEQ ID NOS: 1- 94. Partial polynucleotide sequences thus obtained may be used to design oligonucleotide primers for the amplification of full-length polynucleotide sequences in a polymerase chain reaction (PCR), using techniques well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY,

1989). Once a polynucleotide sequence encoding a polypeptide is obtained, any of the above modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. (DNA, 2:183, 1983).

The breast tumor polypeptides disclosed herein may also be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain (see, for example, Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963). Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

Alternatively, any of the above polypeptides may be produced recombinantly by inserting a polynucleotide sequence that encodes the polypeptide into an expression vector and expressing the protein in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides of this invention. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as CHO cells. The polynucleotide sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in an isolated, substantially pure form (i.e., the polypeptides are homogenous as determined by amino acid composition and primary sequence analysis). Preferably, the polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. In certain preferred embodiments,

described in more detail below, the substantially pure polypeptides are incorporated into pharmaceutical compositions or vaccines for use in one or more of the methods disclosed herein.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known breast tumor antigen, together with variants of such fusion proteins.

A polynucleotide sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate polynucleotide sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a polynucleotide sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5' end of a polynucleotide sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated polynucleotide sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements responsible for expression of polynucleotides are located only 5' to the polynucleotide sequence encoding the first polypeptides. Similarly, stop codons require to end translation and transcription termination signals are only present 3' to the polynucleotide sequence encoding the second polypeptide.

Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein. Preferably the immunogenic protein is capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91 (1997)).

Polypeptides of the present invention that comprise an immunogenic portion of a breast tumor protein may generally be used for immunotherapy of breast cancer, wherein the polypeptide stimulates the patient's own immune response to breast tumor cells. In further aspects, the present invention provides methods for using one or more of the immunoreactive polypeptides encoded by a polynucleotide molecule having a sequence provided in SEQ ID NOS: 1- 94 (or fusion proteins comprising one or more such polypeptides and/or polynucleotides encoding such polypeptides) for immunotherapy of breast cancer in a patient. As used herein, a "patient" refers to any warm-blooded animal, preferably a human. A patient may be afflicted with a disease, or may be free of detectable disease. Accordingly, the above immunoreactive polypeptides (or fusion proteins or polynucleotide molecules encoding such polypeptides) may be used to treat breast cancer or to inhibit the development of breast cancer. The polypeptides may be administered either prior to or following surgical removal of primary tumors and/or treatment by administration of radiotherapy and conventional chemotherapeutic drugs.

In these aspects, the polypeptide or fusion protein is generally present within a pharmaceutical composition and/or a vaccine. Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier. The vaccines may comprise one or more of such polypeptides and a non-specific immune response enhancer, wherein the non-

specific immune response enhancer is capable of eliciting or enhancing an immune response to an exogenous antigen. Examples of non-specific-immune response enhancers include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the polypeptide is incorporated). Pharmaceutical compositions and vaccines may also contain other epitopes of breast tumor antigens, either incorporated into a combination polypeptide (i.e., a single polypeptide that contains multiple epitopes) or present within a separate polypeptide.

Alternatively, a pharmaceutical composition or vaccine may contain polynucleotides encoding one or more of the above polypeptides, such that the polypeptide is generated in situ. In such pharmaceutical compositions and vaccines, the polynucleotide may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Appropriate nucleic acid expression systems contain the necessary polynucleotide sequences for expression in the patient (such as a suitable promoter). Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an epitope of a breast tumor cell antigen on its cell surface. In a preferred embodiment, the polynucleotide molecules may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective), replication competent virus. Suitable systems are disclosed, for example, in Fisher-Hoch et al., PNAS 86:317-321, 1989; Flexner et al., Ann. N.Y. Acad. Sci. 569:86-103, 1989; Flexner et al., Vaccine 8:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, Biotechniques 6:616-627, 1988; Rosenfeld et al., Science 252:431-434, 1991; Kolls et al., PNAS 91:215-219, 1994; Kass-Eisler et al., PNAS 90:11498-11502, 1993; Guzman et al., Circulation 88:2838-2848, 1993; and Guzman et al., Cir. Res. 73:1202-1207, 1993. Techniques for incorporating polynucleotides into such expression systems are well known to those of ordinary skill in the art. The polynucleotides may also be "naked," as described, for example, in published PCT application WO 90/11092, and Ulmer et al., Science 259:1745-1749, 1993, reviewed by Cohen, Science 259:1691-1692, 1993. The uptake of naked polynucleotides may be increased by coating the polynucleotides onto biodegradable beads, which are efficiently transported into the cells.

Routes and frequency of administration, as well as dosage, will vary from individual to individual and may parallel those currently being used in immunotherapy of other diseases. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 10 doses may be administered over a 3-24 week period. Preferably, 4 doses are administered, at an interval of 3 months, and booster administrations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of polypeptide or polynucleotide molecule that is effective to raise an immune response (cellular and/or humoral) against breast tumor cells in a treated patient. A suitable immune response is at least 10-50% above the basal (i.e., untreated) level. In general, the amount of polypeptide present in a dose (or produced in situ by the polynucleotide in a dose) ranges from about 1 pg to about 1 mg, and preferably from about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 µg. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.01 mL to about 5 mL.

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration. For parenteral administration, such as subcutaneous injection, the carrier preferably comprises water, saline, alcohol, a lipid, a wax and/or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and/or magnesium carbonate, may be employed. Biodegradable microspheres (e.g., polylactic glycolide) may also be employed as carriers for the pharmaceutical compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268 and 5,075,109.

Any of a variety of non-specific immune response enhancers may be employed in the vaccines of this invention. For example, an adjuvant may be included. Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum

hydroxide or mineral oil, and a nonspecific stimulator of immune response, such as lipid A, Bordella pertussis or Mycobacterium tuberculosis. Such adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI) and Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ).

Polypeptides disclosed herein may also be employed in adoptive immunotherapy for the treatment of cancer. Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy. In active immunotherapy, treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (for example, tumor vaccines, bacterial adjuvants, and/or cytokines).

In passive immunotherapy, treatment involves the delivery of biologic reagents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T lymphocytes (for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper, tumor-infiltrating lymphocytes), killer cells (such as Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens. The polypeptides disclosed herein may also be used to generate antibodies or anti-idiotypic antibodies (as in U.S. Patent No. 4,918,164), for passive immunotherapy.

The predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells in vitro. Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition in vivo are well known in the art. These in vitro culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells. As noted above, the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage or B-cells, may be pulsed with immunoreactive polypeptides or transfected with a polynucleotide sequence(s), using standard techniques well known in the art. For example, antigen presenting cells may be transfected with a

polynucleotide sequence, wherein said sequence contains a promoter region appropriate for increasing expression, and can be expressed as part of a recombinant virus or other expression system. For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term *in vivo*. Studies have demonstrated that cultured T-cells can be induced to grow *in vivo* and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever, M., et al, "Therapy With Cultured T Cells: Principles Revisited," *Immunological Reviews*, 157:177, 1997).

The polypeptides disclosed herein may also be employed to generate and/or isolate tumor-reactive T-cells, which can then be administered to the patient. In one technique, antigen-specific T-cell lines may be generated by *in vivo* immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides. The resulting antigen specific CD8+ CTL clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.

Alternatively, peptides corresponding to immunogenic portions of the polypeptides may be employed to generate tumor reactive T cell subsets by selective *in vitro* stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang et al. (Crit. Rev. Oncol. Hematol., 22(3), 213, 1996). Cells of the immune system, such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as CellPro Incorporated's (Bothell, WA) CEPRATE™ system (see U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). The separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigenspecific T cells. The population of tumor antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.

In another embodiment, T-cell and/or antibody receptors specific for the polypeptides can be cloned, expanded, and transferred into other vectors or effector cells for use in adoptive immunotherapy.

In a further embodiment, syngeneic or autologous dendritic cells may be

pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide disclosed herein. The resulting antigen-specific dendritic cells may either be transferred into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient. The use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells to eradicate tumors in a murine model has been demonstrated by Cheever et al, *Immunological Reviews*, 157:177, 1997).

Additionally, vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated *in vitro* for autologous transplant back into the same patient.

Polypeptides of the present invention may also, or alternatively, be used to generate binding agents, such as antibodies or fragments thereof, that are capable of detecting metastatic human breast tumors. Binding agents of the present invention may generally be prepared using methods known to those of ordinary skill in the art, including the representative procedures described herein. Binding agents are capable of differentiating between patients with and without breast cancer, using the representative assays described herein. In other words, antibodies or other binding agents raised against a breast tumor protein, or a suitable portion thereof, will generate a signal indicating the presence of primary or metastatic breast cancer in at least about 20% of patients afflicted with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without primary or metastatic breast cancer. Suitable portions of such breast tumor proteins are portions that are able to generate a binding agent that indicates the presence of primary or metastatic breast cancer in substantially all (i.e., at least about 80%, and preferably at least about 90%) of the patients for which breast cancer would be indicated using the full length protein, and that indicate the absence of breast cancer in substantially all of those samples that would be negative when tested with full length protein. representative assays described below, such as the two-antibody sandwich assay, may generally be employed for evaluating the ability of a binding agent to detect metastatic human breast tumors.

The ability of a polypeptide prepared as described herein to generate antibodies capable of detecting primary or metastatic human breast tumors may generally be evaluated by raising one or more antibodies against the polypeptide (using, for example, a representative method described herein) and determining the ability of such antibodies to detect such tumors in patients. This determination may be made by assaying biological samples from patients with and without primary or metastatic breast cancer for the presence of a polypeptide that binds to the generated antibodies. Such test assays may be performed, for example, using a representative procedure described below. Polypeptides that generate antibodies capable of detecting at least 20% of primary or metastatic breast tumors by such procedures are considered to be useful in assays for detecting primary or metastatic human breast tumors. Polypeptide specific antibodies may be used alone or in combination to improve sensitivity.

Polypeptides capable of detecting primary or metastatic human breast tumors may be used as markers for diagnosing breast cancer or for monitoring disease progression in patients. In one embodiment, breast cancer in a patient may be diagnosed by evaluating a biological sample obtained from the patient for the level of one or more of the above polypeptides, relative to a predetermined cut-off value. As used herein, suitable "biological samples" include blood, sera and urine.

The level of one or more of the above polypeptides may be evaluated using any binding agent specific for the polypeptide(s). A "binding agent," in the context of this invention, is any agent (such as a compound or a cell) that binds to a polypeptide as described above. As used herein, "binding" refers to a noncovalent association between two separate molecules (each of which may be free (i.e., in solution) or present on the surface of a cell or a solid support), such that a "complex" is formed. Such a complex may be free or immobilized (either covalently or noncovalently) on a support material. The ability to bind may generally be evaluated by determining a binding constant for the formation of the complex. The binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations. In general, two compounds are said to "bind" in the context of the present invention when the binding constant for complex formation

exceeds about 10³ L/mol. The binding constant may be determined using methods well known to those of ordinary skill in the art.

Any agent that satisfies the above requirements may be a binding agent. For example, a binding agent may be a ribosome with or without a peptide component, an RNA molecule or a peptide. In a preferred embodiment, the binding partner is an antibody, or a fragment thereof. Such antibodies may be polyclonal, or monoclonal. In addition, the antibodies may be single chain, chimeric, CDR-grafted or humanized. Antibodies may be prepared by the methods described herein and by other methods well known to those of skill in the art.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding partner to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In a preferred embodiment, the assay involves the use of binding partner immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a second binding partner that contains a reporter group. Suitable second binding partners include antibodies that bind to the binding partner/polypeptide complex. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding partner after incubation of the binding partner with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding partner is indicative of the reactivity of the sample with the immobilized binding partner.

The solid support may be any material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as

adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 µg, and preferably about 100 ng to about 1 µg, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a second antibody (containing a reporter group) capable of binding to a different site on the polypeptide is added. The amount of second antibody that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior

to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is that period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with breast cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of antibody to reporter group may be achieved using standard methods known to those of ordinary skill in the art.

The second antibody is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound second antibody is then removed and bound second antibody is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of breast cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the

cut-off value is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without breast cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for breast cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for breast cancer.

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the antibody is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized antibody as the sample passes through the membrane. A second, labeled antibody then binds to the antibody-polypeptide complex as a solution containing the second antibody flows through the membrane. The detection of bound second antibody may then be performed as described above. In the strip test format, one end of the membrane to which antibody is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second antibody and to the area of immobilized antibody. Concentration of second antibody at the area of immobilized antibody indicates the presence of breast cancer. Typically, the concentration of second antibody at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of antibody immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody

sandwich assay, in the format discussed above. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1 µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the antigens or antibodies of the present invention. The above descriptions are intended to be exemplary only.

In another embodiment, the above polypeptides may be used as markers for the progression of breast cancer. In this embodiment, assays as described above for the diagnosis of breast cancer may be performed over time, and the change in the level of reactive polypeptide(s) evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, breast cancer is progressing in those patients in whom the level of polypeptide detected by the binding agent increases over time. In contrast, breast cancer is not progressing when the level of reactive polypeptide either remains constant or decreases with time.

Antibodies for use in the above methods may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol.

6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Monoclonal antibodies of the present invention may also be used as therapeutic reagents, to diminish or eliminate breast tumors. The antibodies may be used on their own (for instance, to inhibit metastases) or coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, e.g., U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,671,958, to Rodwell et al.), and acid-catalyzed hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

A variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in the bed of a resected tumor. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density on the tumor, and the rate of clearance of the antibody.

Diagnostic reagents of the present invention may also comprise polynucleotide sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify breast tumor-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a breast tumor protein of the present invention. The presence of the amplified

cDNA is then detected using techniques well known in the art, such as gel electrophoresis. Similarly, oligonucleotide probes specific for a DNA molecule encoding a breast tumor protein of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.

As used herein, the term "oligonucleotide primer/probe specific for a DNA molecule" means an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule having a partial sequence selected from SEQ ID NOS: 1-94. Preferably, oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule having a partial sequence provided in SEQ ID NOS: 1-94. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis *et al. Ibid*; Ehrlich, *Ibid*). Primers or probes may thus be used to detect breast tumor-specific sequences in biological samples, including blood, urine and/or breast tumor tissue.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

Example 1

ISOLATION AND CHARACTERIZATION OF BREAST TUMOR POLYPEPTIDES

This Example describes the isolation of breast tumor polypeptides from a breast tumor cDNA library.

A human breast tumor cDNA expression library was constructed from a pool of breast tumor poly A+ RNA from three patients using a Superscript Plasmid System for

cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD 20897) following the manufacturer's protocol. Specifically, breast tumor tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A⁺ RNA was then purified using a Qiagen oligotex spin column mRNA purification kit (Qiagen, Santa Clarita, CA 91355) according to the manufacturer's protocol. First-strand cDNA was synthesized using the Notl/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with EcoRI/BstX I adaptors (Invitrogen, Carlsbad, CA) and digested with Notl. Following size fractionation with Chroma Spin-1000 columns (Clontech, Palo Alto, CA 94303), the cDNA was ligated into the EcoRI/Notl site of pCDNA3.1 (Invitrogen, Carlsbad, CA) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human breast cDNA expression library was prepared from a pool of four normal breast tissue specimens. The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The breast tumor library contained 1.14 x 10⁷ independent colonies, with more than 90% of clones having a visible insert and the average insert size being 936 base pairs. The normal breast cDNA library contained 6 x 10⁶ independent colonies, with 83% of clones having inserts and the average insert size being 1015 base pairs. Sequencing analysis showed both libraries to contain good complex cDNA clones that were synthesized from mRNA, with minimal rRNA and mitochondrial DNA contamination sequencing.

cDNA library subtraction was performed using the above breast tumor and normal breast cDNA libraries, as described by Hara et al. (Blood, 84:189-199, 1994) with some modifications. Specifically, a breast tumor-specific subtracted cDNA library was generated as follows. Normal breast cDNA library (70 µg) was digested with EcoRI, NotI, and SfuI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 100 µl of H₂O, heat-denatured and mixed with 100 µl (100 µg) of Photoprobe biotin (Vector Laboratories, Burlingame, CA), the resulting mixture was irradiated with a 270 W sunlamp

on ice for 20 minutes. Additional Photoprobe biotin (50 μ l) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 μ l H_2O to form the driver DNA.

To form the tracer DNA, 10 μg breast tumor cDNA library was digested with BamHI and XhoI, phenol chloroform extracted and passed through Chroma spin-400 columns (Clontech). Following ethanol precipitation, the tracer DNA was dissolved in 5 μl H₂O. Tracer DNA was mixed with 15 μl driver DNA and 20 μl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 μl H₂O, mixed with 8 μl driver DNA and 20 μl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into BamHI/XhoI site of chloramphenicol resistant pBCSK⁺ (Stratagene, La Jolla, CA 92037) and transformed into ElectroMax *E. coli* DH10B cells by electroporation to generate a breast tumor specific subtracted cDNA library.

To analyze the subtracted cDNA library, plasmid DNA was prepared from 100 independent clones, randomly picked from the subtracted breast tumor specific library and characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A (Foster City, CA). Thirty-eight distinct cDNA clones were found in the subtracted breast tumor-specific cDNA library. The determined 3' cDNA sequences for 14 of these clones are provided in SEQ ID NO: 1-14, with the corresponding 5' cDNA sequences being provided in SEQ ID NO: 15-28, respectively. The determined one strand (5' or 3') cDNA sequences for the remaining clones are provided in SEQ ID NO: 29-52. Comparison of these cDNA sequences with known sequences in the gene bank using the EMBL and GenBank databases (Release 97) revealed no significant homologies to the sequences provided in SEQ ID NO: 3, 10, 17, 24 and 45-52. The sequences provided in SEQ ID NO: 1, 2, 4-9, 11-16, 18-23, 25-41, 43 and 44 were found to show at least some degree of

homology to known human genes. The sequence of SEQ ID NO: 42 was found to show some homology to a known yeast gene.

Data was analyzed using Synteni provided GEMTOOLS Software. Twenty one distinct cDNA clones were found to be over-expressed in breast tumor and expressed at low levels in all normal tissues tested. The determined partial cDNA sequences for these clones are provided in SEQ ID NO: 53-73. Comparison of the sequences of SEQ ID NO: 53, 54, and 68-71 with those in the gene bank as described above, revealed some homology to previously identified human genes. No significant homologies were found to the sequences of SEQ ID NO: 55-67, 72 (referred to as JJ 9434,7117), and 73 (referred to as B535S).

In a further experiment, cDNA fragments analyzed by DNA microarray were obtained from two subtraction libraries derived by conventional subtraction, as described above. In one instance the tester was derived from primary breast tumors. In the second instance, a metastatic breast tumor was employed as the tester. Drivers consisted of normal breast.

cDNA fragments from these two libraries were submitted as templates for DNA microarray analysis. DNA chips were analyzed by hybridizing with fluorescent probes derived from mRNA from both tumor and normal tissues. Analysis of the data was accomplished by creating three groups from the sets of probes. The composition of these probe groups, referred to as Breast Tumor/mets, Normal non-breast tissues, and Metastatic breast tumors. Two comparisons were performed using the modified Gemtools analysis. The first comparison was to identify templates with elevated expression in breast tumors. The second was to identify templates not recovered in the first comparison that yielded elevated expression in metastatic breast tumors. An arbitrary level of increased expression (mean of tumor expression versus the mean of normal tissue expression) was set at approximately 2.2.

In the first round of comparison to identify overexpression in breast tumors, two novel gene sequences were identified, hereinafter referred to as B534S and B538S (SEQ ID NO: 89 and 90), and six sequences that showed some degree of homology to previously identified genes (SEQ ID NO: 74-79). Additionally, in a second comparison to identify elevated expression in metastatic breast tumors, five novel sequences were identified, hereinafter referred to as B535S (overexpressed in this analysis as well as what was described

above), B542S, B543S, P501S, and B541S (SEQ ID NO: 73, and 91-94), as well as nine gene sequences that showed some homology to known genes (SEQ ID NO: 80-88). Clone B534S and B538S (SEQ ID NO: 89 and 90) were shown to be overexpressed in both breast tumors and metastatic breast tumors.

Example 2

GENERATION OF HUMAN CD8+ CYTOTOXIC T-CELLS THAT RECOGNIZE ANTIGEN PRESENTING CELLS EXPRESSING BREAST TUMOR ANTIGENS

This Example illustrates the generation of T cells that recognize target cells expressing the antigen B511S, also known as 1016-F8 (SEQ ID NO: 56). Human CD8+ T cells were primed in-vitro to the B511S gene product using dendritic cells infected with a recombinant vaccinia virus engineered to express B511S as follows (also see Yee et al., Journal of Immunology (1996) 157 (9):4079-86). Dendritic cells (DC) were generated from peripheral blood derived monocytes by differentiation for 5 days in the presence of 50 µg/ml GMCSF and 30 µg/ml IL-4. DC were harvested, plated in wells of a 24-well plate at a density of 2 x 10⁵ cells/well and infected for 12 hours with B511S expressing vaccinia at a multiplicity of infection of 5. DC were then matured overnight by the addition of 3 µg/ml CD40-Ligand and UV irradiated at 100µW for 10 minutes. CD8+ T cells were isolated using magnetic beads, and priming cultures were initiated in individual wells (typically in 24 wells of a 24-well plate) using 7 x 105 CD8+ T cells and 1 x 106 irradiated CD8-depleted PBMC; IL-7 at 10 ng/ml was added to cultures at day 1. Cultures were re-stimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with B511S and the costimulatory molecule B7.1. Cultures were supplemented at day 1 with 15 I.U. of IL-2. Following 4 such stimulation cycles, CD8+ cultures were tested for their ability to specifically recognize autologous fibroblasts transduced with B511S using an interferon-γ Elispot assay (see Lalvani et al J. Experimental Medicine (1997) 186:859-965). Briefly, T cells from individual microcultures were added to 96-well Elispot plates that contained autologous fibroblasts transduced to express either B511S or as a negative control antigen EGFP, and incubated overnight at 37° C; wells also contained IL-12 at 10 ng/ml. Cultures were identified that specifically produced interferon-y only in response to B511S transduced fibroblasts; such lines were further expanded and also cloned by limiting dilution on autologous B-LCL retrovirally transduced with B511S. Lines and clones were identified that could specifically recognize autologous B-LCL transduced with B511S but not autologous B-LCL transduced with the control antigens EGFP or HLA-A3. An example demonstrating the ability of human CTL cell lines derived from such experiments to specifically recognize and lyse B511S expressing targets is presented in Figure 1.

Example 3 SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on an Perkin Elmer/Applied Biosystems Division 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides may be characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

CLAIMS

- 1. An isolated polypeptide comprising an immunogenic portion of a breast protein or a variant of said protein that differs only in conservative substitutions and/or modifications, wherein said protein comprises an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of: (a) nucleotide sequences recited in SEQ ID NOS: 3, 10, 17, 24, 45-52, 55-67, 72, 73, and 89-94; (b) complements of said nucleotide sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.
- 2. An isolated polynucleotide molecule comprising a nucleotide sequence encoding the polypeptide of claim 1.
- 3. An isolated polynucleotide molecule comprising a sequence provided in SEQ ID NOS: 3, 10, 17, 24, 45-52, 55-67, 72, 73, and 89-94.
- 4. An expression vector comprising a polynucleotide molecule according to any one of claims 2 and 3.
 - 5. A host cell transformed with the expression vector of claim 4.
- 6. The host cell of claim 5 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cell lines.
- 7. A pharmaceutical composition comprising the polypeptide of claim 1 and a physiologically acceptable carrier.
- 8. A vaccine comprising the polypeptide of claim 1 and a non-specific immune response enhancer.

- 9. The vaccine of claim 8 wherein the non-specific immune response enhancer is an adjuvant.
- 10. A vaccine comprising a polynucleotide molecule of any one of claims 2 and 3 and a non-specific immune response enhancer.
- 11. The vaccine of claim 10 wherein the non-specific immune response enhancer is an adjuvant.
- 12. A pharmaceutical composition for the treatment of breast cancer comprising a polypeptide and a physiologically acceptable carrier, the polypeptide comprising an immunogenic portion of a breast protein, wherein said protein comprises an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of: (a) nucleotide sequences recited in SEQ ID NOS: 1, 2, 4-9, 11-16, 18-23, 25-44, 53, 54, 68-71, and 74-88; (b) complements of said nucleotide sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.
- and a non-specific immune response enhancer, said polypeptide comprising an immunogenic portion of a breast protein, wherein said protein comprises an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of:

 (a) nucleotide sequences recited in SEQ ID NOS: 1, 2, 4-9, 11-16, 18-23, 25-44, 53, 54, 68-71, and 74-88; (b) complements of said nucleotide sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.
- 14. The vaccine of claim 13 wherein the non-specific immune response enhancer is an adjuvant.
- 15. A vaccine for the treatment of breast cancer comprising a polynucleotide molecule and a non-specific immune response enhancer, the polynucleotide

molecule comprising a sequence selected from the group consisting of: (a) nucleotide sequences recited in SEQ ID NOS: 1, 2, 4-9, 11-16, 18-23, 25-44, 53, 54, 68-71, and 74-88; (b) complements of said nucleotide sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.

- 16. The vaccine of claim 15, wherein the non-specific immune response enhancer is an adjuvant.
- 17. A pharmaceutical composition according to claims 7 or 12, for use in the manufacture of a medicament for inhibiting the development of breast cancer in a patient.
- 18. A vaccine according to any one of claims 8, 10, 13 or 15, for use in the manufacture of a medicament for inhibiting the development of breast cancer in a patient.
- 19. A fusion protein comprising at least one polypeptide according to claim 1.
- 20. A pharmaceutical composition comprising a fusion protein according to claim 19 and a physiologically acceptable carrier.
 - 21. A vaccine comprising a fusion protein according to claim 19 and a non-specific immune response enhancer.
 - 22. The vaccine of claim 21 wherein the non-specific immune response enhancer is an adjuvant.
 - 23. A pharmaceutical composition according to claim 20, for use in manufacture of a medicament for inhibiting the development of breast cancer in a patient.
 - 24. A vaccine according to claim 21, for use in the manufacture of a medicament for inhibiting the development of breast cancer in a patient.

- 25. A method for detecting breast cancer in a patient, comprising:
- (a) contacting a biological sample from a patient with a binding agent which is capable of binding to a polypeptide, the polypeptide comprising an immunogenic portion of a breast protein, wherein said protein comprises an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NOS: 1-94, complements of said nucleotide sequences and sequences that hybridize to a sequence provided in SEQ ID NO: 1-94 under moderately stringent conditions; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting breast cancer in the patient.
- 26. The method of claim 25 wherein the binding agent is a monoclonal antibody.
- 27. The method of claim 26 wherein the binding agent is a polyclonal antibody.
- 28. A method for monitoring the progression of breast cancer in a patient, comprising:
- (a) contacting a biological sample from a patient with a binding agent that is capable of binding to a polypeptide, said polypeptide comprising an immunogenic portion of a breast protein, wherein said protein comprises an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NOS: 1-94, complements of said nucleotide sequences and sequences that hybridize to a sequence provided in SEQ ID NO: 1-94 under moderately stringent conditions;
- (b) determining in the sample an amount of a protein or polypeptide that binds to the binding agent;
 - (c) repeating steps (a) and (b); and
- (d) comparing the amount of polypeptide detected in steps (b) and (c) to monitor the progression of breast cancer in the patient.

- 29. A monoclonal antibody that binds to a polypeptide comprising an immunogenic portion of a breast protein or a variant of said protein that differs only in conservative substitutions and/or modifications, wherein said protein comprises an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of: (a) nucleotide sequences recited in SEQ ID NOS: 3, 10, 17, 24, 45-52, 55-67, 72, 73, and 89-94: (b) complements of said nucleotide sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderately stringent conditions.
- 30. A monoclonal antibody according to claim 29, for use in the manufacture of a medicament for inhibiting the development of breast cancer in a patient.
 - 31. The monoclonal antibody of claim 30 wherein the monoclonal antibody is conjugated to a therapeutic agent.
 - 32. A method for detecting breast cancer in a patient comprising:
 - (a) contacting a biological sample from a patient with at least two oligonucleotide primers in a polymerase chain reaction, wherein at least one of the oligonucleotides is specific for a polynucleotide molecule encoding a polypeptide comprising an immunogenic portion of a breast protein, said protein comprising an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NO: 1-94, complements of said nucleotide sequences and sequences that hybridize to a sequence of SEQ ID NO: 1-94 under moderately stringent conditions; and
 - (b) detecting in the sample a polynucleotide sequence that amplifies in the presence of the oligonucleotide primers, thereby detecting breast cancer.
 - 33. The method of claim 32, wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a polynucleotide molecule comprising a sequence selected from SEQ ID NOS: 1-94.

- 34. A diagnostic kit comprising:
- (a) one or more monoclonal antibodies of claim 29; and
- (b) a detection reagent.
- 35. A diagnostic kit comprising:
- (a) one or more monoclonal antibodies that bind to a polypeptide encoded by a polynucleotide molecule comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1, 2, 4-9, 11-16, 18-23, 25-44, 53, 54, 68-71, and 74-88, complements of said sequences and sequences that hybridize to a sequence of SEQ ID NO: 1, 2, 4-9, 11-16, 18-23, 25-44, 53, 54, 68-71, or 74-88 under moderately stringent conditions; and
 - (b) a detection reagent.
- 36. The kit of claims 34 or 35 wherein the monoclonal antibodies are immobilized on a solid support.
- 37. The kit of claim 36 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 38. The kit of claims 34 or 35 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
- 39. The kit of claim 38 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 40. The kit of claim 38 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.
- 41. A diagnostic kit comprising at least two oligonucleotide primers, at least one of the oligonucleotide primers being specific for a polynucleotide molecule encoding a polypeptide comprising an immunogenic portion of a breast protein, said protein

comprising an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NOS: 1-94, complements of said nucleotide sequences and sequences that hybridize to a sequence of SEQ ID NO: 1-94 under moderately stringent conditions.

- 42. A diagnostic kit of claim 41 wherein at least one of the oligonucleotide primers comprises at least about 10 contiguous nucleotides of a polynucleotide molecule comprising a sequence selected from SEQ ID NOS: 1-94.
 - 43. A method for detecting breast cancer in a patient, comprising:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with an oligonucleotide probe specific for a polynucleotide molecule encoding a polypeptide comprising an immunogenic portion of a breast protein, said protein comprising an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NOS: 1-94, complements of said nucleotide sequences and sequences that hybridize to a sequence of SEQ ID NO: 1-94 under moderately stringent conditions; and
- (c) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe, thereby detecting breast cancer in the patient.
- 44. The method of claim 43 wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide molecule comprising a sequence selected from the group consisting of SEQ ID NOS: 1-94.
- 45. A diagnostic kit comprising an oligonucleotide probe specific for a polynucleotide molecule encoding a polypeptide comprising an immunogenic portion of a breast protein, said protein comprising an amino acid sequence encoded by a polynucleotide molecule comprising a sequence selected from the group consisting of nucleotide sequences recited in SEQ ID NOS: 1-94, complements of said nucleotide sequences, and sequences that hybridize to a sequence of SEQ ID NO: 1-94 under moderately stringent conditions.

- 46. The diagnostic kit of claim 45, wherein the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide molecule comprising a sequence selected from the group consisting of SEQ ID NOS: 1-94.
- 47. Peripheral blood cells from a patient incubated in the presence of at least one polypeptide of claim 1, such that T cells proliferate, for use in the manufacture of a medicament for treating breast cancer in a patient.
- 48. The blood cells of claim 47 wherein the T cells is repeated one or more times.
- 49. A composition for the treatment of breast cancer in a patient, comprising T cells proliferated in the presence of a polypeptide of claim 1, in combination with a pharmaceutically acceptable carrier.
- 50. An antigen presenting cells incubated in the presence of at least one polypeptide of claim 1, for use in the manufacture of a medicament for treating breast cancer in a patient.
- 51. The cells of claim 50 wherein the antigen presenting cells are selected from the group consisting of dendritic and macrophage cells.
- 52. A composition for the treatment of breast cancer in a patient, comprising antigen presenting cells incubated in the presence of a polypeptide of claim 1, in combination with a pharmaceutically acceptable carrier.

Fig. 1A

Fig. 1B

1

SEQUENCE LISTING

```
<110> Corixa Corporation
<120> COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS OF BREAST CANCER AND
     METHODS FOR THEIR USE
<130> 210121.446PC
<140> PCT
<141> 1998-12-22
<160> 94
<170> PatentIn Ver. 2.0
<210> 1
<211> 402
<212> DNA
<213> Homo sapiens
<400> 1
ttttttttt tttttaggag aactgaatca aacagatttt attcaacttt ttagatgagg 60
aaaacaaatn atacgaaatn ngtcataaga aatgctttct tataccacta tctcaaacca 120
ctttcaatat tttacaaaat gctcacgcag caaatatgaa aagctncaac acttcccttt 180
gttaacttgc tgcaatnaat gcaactttaa canacataca aatttcttct gtatcttaaa 240
agttnaatta ctaattttaa tgatnttnct caagatnttt attcatatac ttttaatgac 300
tenttgeena tacataenta ttttetttae ttttttta enatnggeea acagetttea 360
ngcagnconc aaaaatotta coggttaatt acacggggtt gt
<210> 2
<211> 424
<212> DNA
<213> Homo sapiens
<400> 2
ttttttttt ttttttaaag gtacacattt ctttttcatt ctgtttnatg cagcaaataa 60
ttcqttqqca tcttctctqt qatgggcagc ttgctaaaat tanactcagg ccccttagct 120
ncatttccaa ctnaqcccac gctttcaacc nngccnaaca aagaaaatca gttngggtta 180
aattetttge tgganacaaa gaactacatt eetttgtaaa tnatgetttg tttgetetgt 240
gcaaacncag attgaaggga anaagganac ttntggggac ggaaacaact ngnagaagca 300
ggancegece agggneattt ceteaceatg ettaatettg eneteacttg engggeacea 360
ttaaacttgg tgcaaaaggc gcaattggtg nanggaaccc cacaccttcc ttaaaaagca 420
gggc
<210> 3
<211> 421
 <212> DNA
 <213> Homo sapiens
 <400> 3
ttttttttt tttttcccaa tttaaaaaag cctttttcat acttcaatta caccanactt 60
 aatnatttca tgagtaaatc ngacattatt atttnaaaat ttgcatattt aaaatttgna 120
 tcanttactt ccagactgtt tgcanaatga agggaggatc actcaagngc tgatctcnca 180
 ctntctgcag tctnctgtcc tgtgcccggn ctaatggatc gacactanat ggacagntcn 240
```

```
cagatettee gttettntce ettecceaat ttencacene teceettett neceggaten 300
tttggggaca tgntaatttt gcnatcctta aaccctgccc gccangggtc ccnanctcag 360
gggtggttaa tgttcgncng gcttnttgac cncctgcgcc ctttnantcc naaccccaag 420
<210> 4
<211> 423
<212> DNA
<213> Homo sapiens
<400> 4
tttttttatt ttttttcta tttntnntat ttnntgnggt tcctgtgtgt aattagnang 60
tgtgtatgcg tangtacnta tgtntgcata tttaacctgt tncctttcca tttttaaaat 120
aaaatctcaa natngtantt ggttnatggg agtaaanaga gactatngat naattttaac 180
atggacacng tgaaatgtag ccgctnatca ntttaaaact tcattttgaa ggccttttnc 240
cctccnaata aaaatnccng gccctactgg gttaagcaac attgcatntc taaagaaacc 300
acatgcanac nagttaaacc tgtgnactgg tcangcaaac cnanntggaa nanaagggnn 360
ttcnccccan ggacantcng aatttttta acaaattacn atncccccc ngggggagcc 420
<210> 5
<211> 355
<212> DNA
<213> Homo sapiens
<400> 5
acgaccacct natttcgtat ctttcaactc ttttcgaccg gacctcttat tcggaagcgt 60
tccaggaaga caggtctcaa cttagggatc agatcacgtt atcaacgctc tgggatcgct 120
gcaacctggc acttcaagga agtgcaccga tnacgtctag accggccaac acagatctag 180
aggtggccaa ctgatcactg taggagctga ctggcaanan tcaaccgggc cccaaccnag 240
agtgaccaan acnaccattn aggatcaccc acaggcactc ctcgtcctag ggccaaccna 300
ccaaacggct ggccaatggg ggggtttaat atttggttna aaaattgatt ttaaa
<210> 6
<211> 423
 <212> DNA
<213> Homo sapiens
<400> 6
ttttttttt tttttggaca ggaagtaaaa tttattggtn antattaana ggggggcagc 60
 acattggaag ccctcatgan tgcagggccc gccacttgtc cagagggcca cnattgggga 120
 tgtacttaac cccacagcon tctgggatna gccgcttttc agccaccatn tcttcaaatt 180
 catcagcatt aaacttggta aanccccact totttaagat ntgnatotto tggcggccag 240
 naaacttgaa cttggccctg cgcagggcct caatcacatg ctccttgttc tgcagcttgg 300
 tgcgnaagga cntaatnact tggccnatgt gaaccctggc cacantgccc tggggctttc 360
 caaaggcacc tegeaageet ntttgganee tgneegeeee ngeacaggga caacatettg 420%
                                                                    423
 ttt
 <210> 7
 <211> 410
 <212> DNA
 <213> Homo sapiens
 <400> 7
 ttcgcactgg ctaaaacaaa ccgccttgca aagttngaaa aatttatcaa tggaccaaat 60
```

```
aatgctcata tccnacaagt tggtgaccgt tnttatnata aaaaaatgta tnatgctcct 120
nanttgttgt acaataatgt tccaatttng gacnttcggc atctaccctg gttcacctgg 180
gtaaatatca ggcagctttt gatggggcta ggaaagctaa cagtactcga acatgggaaa 240
gaggtctgct tcgccngtgt anatgggaaa naattccgtc ttgctcngat ttgtggactt 300
catattgttg tacatgcaga tgaatnngaa gaacttgtca actactatca ggatcgtggc 360
tttttnnaaa agctnatcac catgttggaa gcggcactng gacttgagcg
<210> 8
<211> 274
<212> DNA
<213> Homo sapiens
<400> 8
tttttttttttttttttaggtc atacatattt tttattataa canatatntg tatatacata 60
taatatatgt gtatatatcc acgtgtgtgt gtgtgtatca aaaacaacan aantttagtg 120
atctatatct ntnqctcaca tatqcatqqq agataccagt aaaaaataag tnaatctcca 180
taatatgttt taaaactcan anaaatcnga gagactnaaa gaaaacgttn atcannatga 240
ttgtngataa tcttgaanaa tnacnaaaac atat
<210> 9
<211> 322
<212> DNA
<213> Homo sapiens
<400> 9
ttttttttt ttttgtgcct tattgcaccg gcnanaactt ctagcactat attaaactca 60
ataaqagtga taagtgtgaa aatccttgcc ttctctttaa tcttaatgna naggcatctg 120
gtttttcacc attaantgta ataatggctn tatgtatttt tatnnatggt cttnatggag 180
ttaaaaaagt tttcctctnt ccctngttat ctaanagttt tnatcaaaaa tgggtataat 240
atttngttca gtacttttnc ctgcacctat agatatgatn ctgttatttt ttcttcttng 300
cctnnanata tgatggatna ca
                  <210> 10
<211> 425
<212> DNA
<213> Homo sapiens
 <400> 10
 tttttttttt tttttattct gcagccatta aatgctgaac actagatnct tatttgtgga 60
 ggtcacaaaa taagtacaga atatnacaca cgccctgccc ataaaaagca cagctcccag 120
 cttctcaggc agcagcgcct tctggcaacc ataagaacca acntgnggac taggtcggtg 240
 ggccaaggat caggaaacag aanaatggaa gnagcccccn tgacnctatt aanctntnaa 300
 actatctnaa ctgctagttt tcaggcttta aatcatgtaa natacgtgtc cttnttgctg 360
 caaccggaag catcctagat ggtacactct ctccaggtgc caggaaaaga tcccaaatng 420
 caggn
 <210> 11
 <211> 424
 <212> DNA
 <213> Homo sapiens
 <400> 11
 ttttnttant ttttttancc nctnntccnn tntgttgnag ggggtaccaa atttctttat 60
 ttaaaggaat ggtacaaatc aaaaaactta atttaatttt tnggtacaac ttatagaaaa 120
```

```
ggttaaggaa accccaacat gcatgcactg ccttggtaac cagggnattc ccccncggct 180
ntggggaaat tagcccaang ctnagctttc attatcactn tcccccaggg tntgcttttc 240
aaaaaaattt nccgccnagc cnaatccggg cnctcccatc tggcgcaant tggtcacttg 300
gtcccccnat tctttaangg cttncacctn ctcattcggg tnatgtgtct caattaaatc 360
ccacngatgg gggtcatttt tntcnnttag ccagtttgtg nagttccgtt attganaaaa 420
<210> 12
<211> 426
<212> DNA
<213> Homo sapiens
<400> 12
ttttttttt ttttncttaa aagettttat eteetgetta eattaceeat etgttettge 60
atgttgtctg ctttttccac tagagccctt aacaacttaa tcatggttat tttaagggct 120
ctaataattc cnaaactggt atcataaata agtctcgttc tnatgcttgt tttctctcta 180
tcacactqtq ttnqttqctt tttnacatgc tttgtaattt ttggctgaaa gctgaaaaat 240
nacatacctg gttntacaac ctgaggtaan cagccttnta gtgtgaggtt ttatatntta 300
ctggctaaga gctnggcnct gttnantant tgttgtanct ntatatgcca naggctttna 360
tttccnctng tgtccttgct tnagtacccc attnttttag gggttcccta naaactctat 420
ctnaat
<210> 13
<211> 419
<212> DNA
<213> Homo sapiens
<400> 13
ttttttttt tttttnagat agactctcac tctttcgccc aggctggagt gcagtggcgc 60
aatcaaggct cactgcaacc tctgccttat aaagcatttn ctaaaggtac aagctaaatt 120
ttaaaaatat ctctncacaa ctaatgtata acaaaaatta gttctacctc ataaacncnt 180
ggctcagccc tcgnaacaca tttccctgtt ctcaactgat gaacactcca naaacagaac 240
anathtaagc ttttccaggc ccagaaaagc tcgcgagggg atttgctntg tgtgtgacac 300
acttgccacc ctgtggcagc acagetecac acntgetttg ggccgcattt gcaagttete 360
tgtaancccc ctgnaagacc cggatcagct gggtngaaat tgcangcnct cttttggca 419
<210> 14
<211> 400
 <212> DNA
 <213> Homo sapiens
 <400> 14
 aanccattgc caagggtatc cggaggattg tggctgtcac aggtnccgag gcccanaagg 60
 ccctcaggaa agcaaagagc ttgaaaaatg tctctctgtc atggaagccn aagtgaaggc 120
 tcanactgct ccaacaagga tntgcanagg gagatcgcta accttggaga ggccctggcc 180
 actgcagtcn tcccccantg gcagaaggat gaattgcggg agactctcan atcccttang 240
 gaaggtcgtg gatnacttgg accgagcctc nnaagccaat ntccagaaca agtgttggag 300
 aagacaaagc anttcatcga cgccaacccc naccggcctc tnttctcctg ganattgana 360
 gcggcgcccc cgcccagggc cttaataanc cntgaagctn
                                                                   400
 <210> 15
 <211> 395
 <212> DNA
 <213> Homo sapiens
```

```
<400> 15
tgctttgctg cgtccaggaa gattagatng aanaatacat attgatttgc caaatgaaca 60
agcgagatta gacntactga anatccatgc aggtcccatt acaaagcatg gtgaaataga 120
tgatgaagca attgtgaagc tatcggatgg ctttnatgga gcagatctga gaaatgtttg 180
tactgaagca ggtatgttcg caattcgtgc tgatcatgat tttgtagtac aggaagactt 240
catgaaagcn gtcagaanag tggctnattc tnaaagctgg agtctaaatt ggacnacnac 300
ctntgtattt actgttggan ttttgatgct gcatgacaga ttttgcttan tgtaaaaatn 360
aagttcaaga aaattatgtt agttttggcc attat
<210> 16
<211> 404
<212> DNA
<213> Homo sapiens
<400> 16
ccaccactaa aatcctggct gagccctacn agtacctgtg cccctccccc aggacgagat 60
nagggcacac cctttaagtn aggtgacagg tcacctttaa gtgaggacag tcagctnaat 120
ttcacctctt gggcttgagt acctggttct cgtgccctga ggcgacnctn agccctgcag 180
ctnccatgta cgtgctgcca atngtcttga tcttctccac gccnctnaac ttgggcttca 240
gtaggagetg caggenagaa ngaageggtt aacagegeea etecatagee geageengge 300
tgcccctgct tctcaaggag gggtgtgggg ttcctccacc atcgccgccc ttgcaaacac 360
ntctcanggc ttccctnccg gctnancgca ngacttaagc atgg
<210> 17
<211> 360
<212> DNA
<213> Homo sapiens
<400> 17
ggccagaagc tttccacaaa ccagtgaagg tggcagcaaa gaaagcctct tagacnagga 60
gctggcagca gctgctatct ngatngacng cagaaaccaa ccactaattc agcaaacaca 120
accteatace thacegette cettthaatg geetteggtg tgtgegeaca tgggcaegtg 180 ....
cggggagaac catacttatt cccctnttcc cggcctacca cctctnctcc cccttctctt 240
ctctncaatt actntctccn ctgctttntt ctnancacta ctgctngtnt cnanagccng 300
cccgcaatta cctggcaaaa ctcgcgaccc ttcgggcagc gctaaanaat gcacatttac 360
<210> 18
<211> 316
<212> DNA
<213> Homo sapiens
<400> 18
atacatatac acatatatga ttttagatag agccatatac ctngaagtag tanatttgtt 60
tgtgtgtata tgtatgtgtc tactcatttt aaataaactt gtgatagaga tgtaattntg 120
agccagtttt tcatttgctt aaatnactca ccaagtaact aattaagttn tctttactct 180
taatgttnag tagtgagatt ctgttgaagg tgatattaaa aaccattcta tattaattaa 240
cattcatgtt gttttttaaa agcttatttg aaatcnaatt atgattattt ttcataccag 300
 tcqatnttat gtangt
                                                                   316
 <210> 19
 <211> 350
 <212> DNA
 <213> Homo sapiens
 <400> 19
```

__ - - - - -

_ _ - - - - -

BNSDOCID: <WO 9933869A2 1 >

```
aagggatgca nataatgctg tgtatgagct tgatggaaaa gaactctgta gtgaaagggt 60
 tactattgaa catgctnggg ctcggtcacg aggtggaaga ggtagaggac gatactctga 120
 ccqttttagt agtcgcagac ctcgaaatga tagacgaaat gctccacctg taagaacaga 180
 anatcgtctt atagttgaga atttatcctc aagagtcagc tggcaggttt gttganatac 240
 agttttgagt tnttttgatg tggcttttta aaaaagttat gggttactna tgttatattg 300
 ttttattaaa agtagtttin aattaatgga tnigatggaa tigtigtitt
 <210> 20
 <211> 367
 <212> DNA
 <213> Homo sapiens
 <400> 20
 qutunnenca agatectnet ntececengg gengeecene encengtnat naceggtttn 60
 ntaanatenn geegeneeeg aagtetenet nntgeegaga tgneeettat nenennatgn 120,
 ncaattntga cctnnggcga anaatggcng nngtgtatca gtntccnctc tgnggnctct 180
 tagnatetga ecaetangae cenetateet etcaaaceet gtannengee etaatttgtg 240
 ccaattagtg catgntanag cntcctggcc cagatggcnt ccatatcctg gtncggcttc 300
 egecectace angueateen catetactag agettateeg etnentgngg egeaceggnt 360
                                                                    367
 ccccnct
 <210> 21
 <211> 366
 <212> DNA
 <213> Homo sapiens
 <400> 21
 cccaacacaa tggtctaagt anaactgtat tgctctgtag tatagttcca cattggcaac 60
 ctacaatggg aaaatccata cataagtcag ttacttcctn atgagctttc tccttctgaa 120
 tcctttatct tctgaagaaa gtacacacct tggtnatgat atctttgaat tgcccttctt 180
tccaggcatc agttggatga ttcatcatgg taattatggc attatcatat tcttcatact 240
Estgtcatacga aaacaccagt totgoodnna gatgagottg ttotgcagot ottagcacct 300 --
 tgggaatatt cactctagac cagaaacagc tcccggtgct ccctcatttt ctgaggctta 360
                                                                    366
  aatttn
  <210> 22
  <211> 315
  <212> DNA
  <213> Homo sapiens
  <400> 22
  acttaatgca atctctggag gataatttgg atcaagaaat aaagaanaaa tgaattagga 60
  gaagaaatna ctgggtnata tttcaatatt ttagaacttt aanaatgttg actatgattt 120
  caatatattt gtnaaaactg agatacangt ttgacctata tctgcatttt gataattaaa 180
  cnaatnnatt ctatttnaat gttgtttcag agtcacagca cagactgaaa ctttttttga 240
  atacctnaat atcacacttn tncttnnaat gatgttgaag acaatgatga catgccttna 300
                                                                     315
  gcatataatg tcgac
  <210> 23
  <211> 202
  <212> DNA
  <213> Homo sapiens
  <400> 23
  actaatccag tgtggtgnaa ttccattgtg ttgggcaact caggatatta aatttatnat 60
```

7

```
ttaaaaattc ccaagagaaa naaactccag gccctgattg tttcactggg gaattttacc 120
aaatgttnca nnaaganatg acgctgattc tgtnaaatct ttttcagaag atagaggaga 180
acacccaccg nttcatttta tg
<210> 24
<211> 365
<212> DNA
<213> Homo sapiens
<400> 24
ggatttcttg cccttttctc cctttttaag tatcaatgta tgaaatccac ctgtaccacc 60
ctttctgcca tacaaccgct accacatctg gctcctagaa cctgttttgc tttcatagat 120
ggatctcgga accnagtgtt nacttcattt ttaaacccca ttttagcaga tngtttgctn 180
tggtctgtct gtattcacca tggggcctgt acacaccacg tgtggttata gtcaaacaca 240
gtgccctcca ttgtggccac atgggagacc catnacccna tactgcatcc tgggctgatn 300
acggcactgc atctnacccg acntgggatt gaacccgggg tgggcagcng aattgaacag 360
gatca
<210> 25
<211> 359
<212> DNA
<213> Homo sapiens
<400> 25
gtttcctgct tcaacagtgc ttggacggaa cccggcgctc gttccccacc ccggccggcc 60
geccatagec agecetecgt cacetettea eegeaceete ggaetgeece aaggeeeeeg 120
cegeenetee ngegeenege agecacegee geeneeneea ceteteettn gteeegeent 180
nacaacgcgt ccacctcgca ngttcgccng aactaccacc nggactcata ngccgccctc 240
aaccgcccga tcaacctgga gctctncccc ccgacnttaa cctttccntg tcttacttac 300
nttaaccgcc gnttattttg cttnaaaaga acttttcccc aatactttct ttcaccnnt 359
<210> 26
                                                       فالمأمأ أؤفا والأمام للجواء الكميرا أبالم يوجيانا
 <211> 400
 <212> DNA
 <213> Homo sapiens
 <400> 26
 agtgaaacag tatatgtgaa aaggagtttg tgannagcta cataaaaata ttagatatct 60
 ttataatttc caataggata ctcatcagtt ttgaataana gacatattct agagaaacca 120
 ggtttctggt ttcagatttg aactctcaag agcttggaag ttatcactcc catcctcacg 180
 acnacnaana aatetnaacn aacngaanac caatgacttt tettagatet gteaaagaac 240
 ttcagccacg aggaaaacta tcnccctnaa tactggggac tggaaagaga gggtacagag 300
 aatcacagtg aatcatagcc caagatcagc ttgcccggag ctnaagctng tacgatnatt 360
 acttacaggg accacttcac agtnngtnga tnaantgccn
 <210> 27
 <211> 366
 <212> DNA
 <213> Homo sapiens
 <400> 27
 gaatttetta gaaactgaag tttactetgt tecaagatat atetteaetg tettaateaa 60
 agggcgctng aatcatagca aatattctca tctttcaact aactttaagt agttntcctg 120
 gaattttaca ttttccagaa aacactcctt tctgtatctg tgaaagaaag tgtgcctcag 180
 gctgtagact gggctgcact ggacacctgc gggggactct ggctnagtgn ggacatggtc 240
```

```
agtattgatt ttcctcanac tcagcctgtg tagctntgaa agcatggaac agattacact 300
gcagttnacg tcatcccaca catcttggac tccnagaccc ggggaggtca catagtccgt 360
                                                                   366
tatgna
<210> 28
<211> 402
<212> DNA
<213> Homo sapiens
<400> 28
agtgggagcc tcctccttcc ccactcagtt ctttacatcc ccgaggcgca gctgggcnaa 60
ggaagtggcc agctgcagcg cctcctgcag gcagccaacg ttcttgcctg tggcctgtgc 120
agacacatcc ttgccaccac ctttaccgtc catcangcct gacacctgct gcacccactc 180
gctngctttt aagccccgat nggctgcatt ctgggggact tgacacaggc ncgtgatctt 240
gccagcctca ttgtccaccg tgaagagcat ggcaaaaaagt ctgaggggag tgcatcttga 300
anagetteaa ggetteatte agggeettng etnaggegee neteteeate teenggaata 360
acnagagget ggtnngggtn actntcaata aactgetteg te
                                                                   402
<210> 29
<211> 175
<212> DNA
<213> Homo sapiens
<400> 29
cggacgggca tgaccggtcc ggtcagctgg gtggccagtt tcagttcttc agcagaactg 60
tctcccttct tgggggccga gggcttcctg gggaagagga tgagtttgga gcggtactcc 120
ttcagccgct gcacgttggt ctgcagggac tccgtggact tgttccgcct cctcg
<210> 30
<211> 360
<212> DNA
<213> Homo sapiens
<400> 30
ttgtatttct tatgatctct gatgggttct tctcgaaaat gccaagtgga agactttgtg 60
gcatgctcca gatttaaatc cagctgaggc tccctttgtt ttcagttcca tgtaacaatc 120
tggaaggaaa cttcacggac aggaagactg ctggagaaga gaagcgtgtt agcccatttg 180
aggtctgggg aatcatgtaa agggtaccca gacctcactt ttagttattt acatcaatga 240
gttctttcag ggaaccaaac ccagaattcg gtgcaaaagc caaacatctt ggtgggattt 300
gataaatgcc ttgggacctg gagtgctggg cttgtgcaca ggaagagcac cagccgctga 360
 <210> 31
 <211> 380
 <212> DNA
 <213> Homo sapiens
 <400> 31
 acgctctaag cctgtccacg agctcaatag ggaagcctgt gatgactaca gactttgcga 60
 acgctacgcc atggtttatg gatacaatgc tgcctataan cgctacttca ggaagcgccg 120
 agggaccnaa tgagactgag ggaagaaaaa aaatctcttt ttttctggag gctggcacct 180
 gattttgtat ccccctgtnn cagcattncn gaaatacata ggcttatata caatgcttct 240
 ttcctgtata ttctcttgtc tggctgcacc ccttnttccc gcccccagat tgataagtaa 300
 tgaaagtgca ctgcagtnag ggtcaangga gactcancat atgtgattgt tccntnataa 360
 acttctggtg tgatactttc
```

```
<210> 32
<211> 440
<212> DNA
<213> Homo sapiens
<400> 32
gtgtatggga gcccctgact cctcacgtgc ctgatctgtg cccttggtcc caggtcaggc 60.
ccacccctg cacctccacc tgccccagcc cctgcctctg ccccaagtgg ggccagctgc 120
cctcacttct ggggtggatg atgtgacctt cctnggggga ctgcggaagg gacaagggtt 180
ccctgaagtc ttacggtcca acatcaggac caagtcccat ggacatgctg acagggtccc 240
caggggagac cgtntcanta gggatgtgtg cctggctgtg tacgtgggtg tgcagtgcac 300
gtganaagca cgtggcggct tctgggggcc atgtttgggg aaggaagtgt gcccnccacc 360
cttggagaac ctcagtcccn gtagccccct gccctggcac agengcatnc acttcaaggg 420
caccetttgg gggttggggt
<210> 33
<211> 345
<212> DNA
<213> Homo sapiens
<400> 33
tattttaaca atgtttatta ttcatttatc cctctataga accaccaccc acaccgagga 60
gattatttgg agtgggtccc aacctagggc ctggactctg aaatctaact ccccacttcc 120
ctcattttgt gacttaggtg ggggcatggt tcagtcagaa ctggtgtctc ctattggatc 180
gtgcagaagg aggacctagg cacacacata tggtggccac acccaggagg gttgattggc 240
aggotggaag acaaaagtot occaataaag gcacttttac otcaaagang gggtgggagt 300
tggtctgctg ggaatgttgt tgttggggtg gggaagantt atttc
<210> 34
<211> 440
<212> DNA
<213> Homo sapiens
<400> 34
tgtaattttt ttattggaaa acaaatatac aacttggaat ggattttgag gcaaattgtg 60
ccataagcag attttaagtg gctaaacaaa gtttaaaaaag caagtaacaa taaaagaaaa 120
tgtttctggt acaggaccag cagtacaaaa aaatagtgta cgagtacctg gataatacac 180
 ccgttttgca atagtgcaac ttttaagtac atattgttga ctgtccatag tccacgcaga 240
 gttacaactc cacacttcaa caacaacatg ctgacagttc ctaaagaaaa ctactttaaa 300
 aaaggcataa cccagatgtt ccctcatttg accaactcca tctnagttta gatgtgcaga 360
 agggettana tttteecaga gtaageenea tgeaacatgt taettgatea attttetaaa 420
 ataaggtttt aggacaatga
 <210> 35
 <211> 540
 <212> DNA
 <213> Homo sapiens
 <400> 35
 atagatggaa tttattaagc ttttcacatg tgatagcaca tagttttaat tgcatccaaa 60
 gtactaacaa aaactctagc aatcaagaat ggcagcatgt tattttataa caatcaacac 120
 ctgtggcttt taaaatttgg ttttcataag ataatttata ctgaagtaaa tctagccatg 180
 cttttaaaaa atgctttagg tcactccaag cttggcagtt aacatttggc ataaacaata 240
 ataaaacaat cacaatttaa taaataacaa atacaacatt gtaggccata atcatataca 300
 gtataaggga aaaggtggta gtgttganta agcagttatt agaatagaat accttggcct 360
```

```
ctatgcaaat atgtctagac actttgattc actcagccct gacattcagt tttcaaagtt 420
aggaaacagg ttctacagta tcattttaca gtttccaaca cattgaaaac aagtagaaaa 480
tgatganttg atttttatta atgcattaca tcctcaagan ttatcaccaa cccctcaggt 540
<210> 36
<211> 555
<212> DNA
<213> Homo sapiens
<400> 36
cttcgtgtgc ttgaaaattg gagcctgccc ctcggcccat aagcccttgt tgggaactga 60
gaagtgtata tggggcccaa nctactggtg ccagaacaca gagacagcag cccantgcaa 120
tgctgtcgag cattgcaaac gccatgtgtg gaactaggag gaggaatatt ccatcttggc 180
agaaaccaca gcattggttt ttttctactt gtgtgtctgg gggaatgaac gcacagatct 240
gtttgacttt gttataaaaa tagggctccc ccacctcccc cntttctgtg tnctttattg 300
tagcantgct gtctgcaagg gagcccctan cccctggcag acananctgc ttcagtgccc 360
ctttcctctc tgctaaatgg atgttgatgc actggaggtc ttttancctg cccttgcatg 420
geneetgetg gaggaagana aaactetget ggeatgacce acagtttett gactggange 480
cntcaaccct cttggttgaa gccttgttct gaccctgaca tntgcttggg cnctgggtng 540
gnctgggctt ctnaa
<210> 37
<211> 280
<212> DNA
<213> Homo sapiens
<400> 37
ccaccgacta taagaactat gccctcgtgt attcctgtac ctgcatcatc caactttttc 60
acgtggattt tgcttggatc ttggcaagaa accctaatct ccctccagaa acagtggact 120
ctctaaaaaa tatcctgact tctaataaca ttgatntcaa gaaaatgacg gtcacagacc 180
aggtgaactg ccccnagctc tcgtaaccag gttctacagg gaggctgcac ccactccatg 240
ttncttctgc ttcgctttcc cctaccccac cccccgccat
<210> 38
<211> 303
<212> DNA
<213> Homo sapiens
<400> 38
catcgagctg gttgtcttct tgcctgccct gtgtcgtaaa atgggggtcc cttactgcat 60
tatcaaggga aaggcaagac tgggacgtct agtccacagg aagacctgca ccactgtcgc 120
cttcacacag gtgaactcgg aagacaaagg cgctttggct nagctggtgn aagctatcag 180
gaccaattac aatgacngat acgatnagat ccgccntcac tggggtagca atgtcctggg 240
 tectaagtet gtggetegta tegeenaget egaanaggen aangetaaag aaettgeeae 300
                                                                   303
 <210> 39
 <211> 300
 <212> DNA
 <213> Homo sapiens
 <400> 39
 gactcagegg ctggtgctct tcctgtgcac aagcccagca ctccaggtcc caaggcattt 60
 atcaaatccc accaagatnt ttggcttttg caccgaattc tgggtttggt tccctnaaag 120
 aactcattga tgtaaatnac tnaaagtgag gtctgggtac cctttacatg attccccaga 180
```

```
cctcanatgg gctaacacgc ttctcttctc cagcagtctt cctntccgtg aagttacctt 240
ccagattgtt acatggaact gaanacaaag ggagcctcag ctngatttaa atctggagca 300
<210> 40
<211> 318
<212> DNA
<213> Homo sapiens
<400> 40
cccaacacaa tggctgagga caaatcagtt ctctgtgacc agacatgaga aggttgccaa 60
tgggctgttg ggcgaccaag gccttcccgg agtcttcgtc ctctatgagc tctcgcccat 120
gatggtgaag ctgacggaga agcacaggte etteacecae tteetgacag gtgtgtgege 180
catcattggg ggcatgttca cagtggctgg actcatcgat tcgctcatct accactcagc 240
acqagccatc cagaaaaaaa ttgatctngg gaagacnacg tagtcaccct cggtncttcc 300
tctqtctcct ctttctcc
<210> 41
<211> 302
<212> DNA
<213> Homo sapiens
<400> 41
acttagatgg ggtccgttca ggggatacca gcgttcacat ttttcctttt aagaaagggt 60
cttggcctga atgttcccca tccggacaca ggctgcatgt ctctgtnagt gtcaaagctg 120
ccatnaccat ctcggtaacc tactcttact ccacaatgtc tatnttcact gcagggctct 180
ataatnagtc cataatgtaa atgcctggcc caagacntat ggcctgagtt tatccnaggc 240
ccaaacnatt accagacatt cctcttanat tgaaaacgga tntctttccc ttggcaaaga 300
                                                                    302
<210> 42
<211> 299
<212> DNA
                                                         a make a same of the party
<213> Homo sapiens
<400> 42
cttaataagt ttaaggccaa ggcccgttcc attcttctag caactgacgt tgccagccga 60
ggtttggaca tacctcatgt aaatgtggtt gtcaactttg acattcctac ccattccaag 120
gattacatcc atcgagtagg tcgaacagct agagctgggc gctccggaaa ggctattact 180
tttgtcacac agtatgatgt ggaactcttc cagcgcatag aacacttnat tgggaagaaa 240
ctaccaggtt ttccaacaca ggatgatgag gttatgatgc tnacggaacg cgtcgctna 299
 <210> 43
 <211> 305
 <212> DNA
 <213> Homo sapiens
 <400> 43
 ccaacaatgt caagacagcc gtctgtgaca tcccacctcg tggcctcaan atggcagtca 60
 ccttcattgg caatagcaca gccntccggg agctcttcaa gcgcatctcg gagcagttca 120
 ctgccatgtt ccgccggaag gccttcctcc actggtacac aggcgagggc atggacaaga 180
 tggagttcac cgaggctgag agcaacatga acgacctcgt ctctnagtat cagcagtacc 240
 gggatgccac cgcagaaana ggaggaggat ttcggtnagg aggccgaaga aggaggcctg 300
 aggca
 <210> 44
```

```
<211> 399
<212> DNA
<213> Homo sapiens
<400> 44
tttctgtggg ggaaacctga tctcgacnaa attagagaat tttgtcagcg gtatttcggc 60
tggaacagaa cgaaaacnga tnaatctctg tttcctgtat taaagcaact cgatncccag 120
cagacacage tecnaattga tteettett ngattageae aacagggaga aagaanatge 180
ttaacgtatt aagagccnga gactaaacag agctttgaca tgtatgctta ggaaagagaa 240
agaagcagen geeegegnaa tingaageng titetgitge entgganaaa gaattigage 300
ttctttatta ggccaacgaa aaaccccgaa ananaggcnt tacnatacct tngaaaantc 360
                                                                   399
tccngccnna aaaagaaaga agctttcnga ttcttaacc
<210> 45
<211> 440
<212> DNA
<213> Homo sapiens
<400> 45
gcgggagcag aagctaaagc caaagcccaa gagagtggca gtgccagcac tggtgccagt 60
accagtacca ataacagtgc cagtgccagt gccagcacca gtggtggctt cagtgctggt 120
gccagcctga ccgccactct cacatttggg ctcttcgctg gccttggtgg agctggtgcc 180
agcaccagtg gcagctctgg tgcctgtggt ttctcctaca agtgagattt taggtatctg 240
cettggtttc agtggggaca tetggggett anggggengg gataaggage tggatgattc 300
taggaaggcc cangttggag aangatgtgn anagtgtgcc aagacactgc ttttggcatt 360
ttattccttt ctgtttgctg gangtcaatt gacccttnna ntttctctta cttgtgtttt 420
canatatngt taatcctgcc
<210> 46
<211> 472
<212> DNA
<213> Homo sapiens
<400> 46
gctctgtaat ttcacatttt aaaccttccc ttgacctcac attcctcttc ggccacctct 60
gtttctctgt tcctcttcac agcaaaaact gttcaaaaga gttgttgatt actttcattt 120
ccactttctc acccccattc tcccctcaat taactctcct tcatccccat gatgccatta 180
 tgtggctntt attanagtca ccaaccttat tctccaaaac anaagcaaca aggactttga 240
 cttctcagca gcactcagct ctggtncttg aaacaccccc gttacttgct attcctccta 300
 ceteataaca ateteettee cageetetae tgetgeette tetgagttet teecagggte 360
 ctaggetcag atgtagtgta getcaaceet getacacaaa gnaateteet gaaageetgt 420
 aaaaatgtcc atncntgtcc tgtgagtgat ctnccangna naataacaaa tt
 <210> 47
 <211> 550
 <212> DNA
 <213> Homo sapiens
 <400> 47
 cettectecg cetggccate eccageatge teatgetgtg catggagtgg tgggcctatg 60
 aggtcgggag cttcctcagt ggtctgtatg aggatggatg acggggactg gtgggaacct 120
 gggggccctg tctgggtgca aggcgacagc tgtctttctt caccaggcat cctcggcatg 180
 gtggagctgg gcgctcagtc catcgtgtat gaactggcca tcattgtgta catggtccct 240
 gcaggcttca gtgtggctgc cagtgtccgg gtangaaacg ctctgggtgc tggagacatg 300
 gaagcaggca cggaagtcct ctaccgtttc cctgctgatt acagtgctct ttgctgtanc 360
```

```
cttcagtgtc ctgctgttaa gctgtaagga tcacntgggg tacattttta ctaccgaccg 420
agaacatcat taatctggtg gctcaggtgg ttccaattta tgctgtttcc cacctctttg 480
aagctcttgc tgctcaggta cacgccaatt ttgaaaaagta aacaacgtgc ctcggagtgg 540
qaattctqct
<210> 48
<211> 214
<212> DNA
<213> Homo sapiens
<400> 48
agaaggacat aaacaagctg aacctgccca agacgtgtga tatcagcttc tcagatccag 60
acaacctcct caacttcaag ctggtcatct gtcctgatna gggcttctac nagagtggga 120
agtttgtgtt cagttttaag gtgggccagg gttacccgca tgatcccccc aaggtgaagt 180
gtgagacnat ggtctatcac cccnacattg acct
<210> 49
<211> 267
<212> DNA
<213> Homo sapiens
<400> 49
atctgcctaa aatttattca aataatgaaa atnaatctgt tttaagaaat tcagtctttt 60
agtttttagg acaactatgc acaaatgtac gatggagaat tctttttgga tnaactctag 120
gtngaggaac ttaatccaac cggagctntt gtgaaggtca gaanacagga gagggaatct 180
tggcaaggaa tggagacnga gtttgcaaat tgcagctaga gtnaatngtt ntaaatggga 240
ctqctnttqt gtctcccang gaaagtt
<210> 50
<211> 300
<212> DNA
<213> Homo sapiens
<400> 50
gactgggtca aagctgcatg aaaccaggcc ctggcagcaa cctgggaatg gctggaggtg 60
ggagagaacc tgacttctct ttccctctcc ctcctccaac attactggaa ctctgtcctg 120
ttgggatctt ctgagcttgt ttccctgctg ggtgggacag aggacaaagg agaagggagg 180
gtctagaaga ggcagccctt ctttgtcctc tggggtnaat gagcttgacc tanagtagat 240
ggagagacca anagcctctg atttttaatt tccataanat gttcnaagta tatntntacc 300
 <210> 51
 <211> 300
 <212> DNA
 <213> Homo sapiens
 <400> 51
 gggtaaaatc ctgcagcacc cactctggaa aatactgctc ttaattttcc tgaaggtggc 60
 cccctatttc tagttggtcc aggattaggg atgtggggta tagggcattt aaatcctctc 120
 aagcgctctc caagcacccc cggcctgggg gtnagtttct catcccgcta ctgctgctgg 180
 gatcaggttn aataaatgga actetteetg tetggeetee aaagcageet aaaaactgag 240
 gggctctgtt agaggggacc tccaccctnn ggaagtccga ggggctnggg aagggtttct 300
 <210> 52
 <211> 267
 <212> DNA
```

```
<213> Homo sapiens
<400> 52
aaaatcaact tentgeatta atanacanat tetanancag gaagtgaana taattttetg 60
cacctatcaa ggaacnnact tgattgcctc tattnaacan atatatcgag ttnctatact 120
tacctgaata concegcata actoteaace nanathente necatgacae tenttettha 180
atgctantcc cgaattcttc attatatcng tgatgttcgn cctgntnata tatcagcaag 240
gtatgtnccn taactgccga nncaang
<210> 53
<211> 401
<212> DNA
<213> Homo sapiens
<400> 53
agsctttagc atcatgtaga agcaaactgc acctatggct gagataggtg caatgaccta 60
caagattttg tgttttctag ctgtccagga aaagccatct tcagtcttgc tgacagtcaa 120
agagcaagtg aaaccatttc cagcctaaac tacataaaag cagccgaacc aatgattaaa 180
gacctctaag gctccataat catcattaaa tatgcccaaa ctcattgtga ctttttattt 240
tatatacagg attaaaatca acattaaatc atcttattta catggccatc ggtgctgaaa 300
ttgagcattt taaatagtac agtaggctgg tatacattag gaaatggact gcactggagg 360
caaatagaaa actaaagaaa ttagataggc tggaaatgct t
                                                                   401
<210> 54
<211> 401
<212> DNA
<213> Homo sapiens
<400> 54
cccaacacaa tggataaaaa cacttatagt aaatggggac attcactata atgatctaag 60
aagctacaga ttgtcatagt tgttttcctg ctttacaaaa ttgctccaga tctggaatgc 120
cagtttgacc tttgtcttct ataatatttc ctttttttcc cctctttgaa tctctgtata 180
tttgattctt aactaaaatt gttctcttaa atattctgaa tcctggtaat taaaagtttg 240
ggtgtatttt ctttacctcc aaggaaagaa ctactagcta caaaaaatat tttggaataa 300
gcattgtttt ggtataaggt acatattttg gttgaagaca ccagactgaa gtaaacagct 360
                                                                   401
gtgcatccaa tttattatag ttttgtaagt aacaatatgt a
<210> 55
 <211> 933
 <212> DNA
 <213> Homo sapiens
 <400> 55
 tttactgctt ggcaaagtac cctgagcatc agcagagatg ccgagatgaa atcagggaac 60
 tcctagggga tgggtcttct attacctggg aacacctgag ccagatgcct tacaccacga 120
 tgtgcatcaa ggaatgcctc cgcctctacg caccggtagt aaactatccc ggttactcga 180
 caaacccatc acctttccag atggacgctc cttacctgca ggaataactg tgtttatcaa 240
 tatttgggct cttcaccaca acccctattt ctgggaagac cctcaggtct ttaacccctt 300
 gagattetee agggaaaatt etgaaaaaat acateeetat geetteatae eatteteage 360
 tggattaagg aactgcattg ggcagcattt tgccataatt gagtgtaaag tggcagtggc 420
 attaactctg ctccgcttca agctggctcc agaccactca aggccaccca gctgtcgtca 480
 agttgcctca agtccaagaa tggaatccat gtgtttgcaa aaaaagtttg ctaattttaa 540
 gtccttttcg tataagaatt aakgagacaa ttttcctacc aaaggaagaa caaaaggata 600
 aatataatac aaaatatatg tatatggttg tttgacaaat tatataactt aggatacttc 660
 tgactggttt tgacatccat taacagtaat tttaatttct ttgctgtatc tggtgaaacc 720
```

WO 99/33869

```
cacaaaaaaa cctgaaaaaa ctcaagctga gttccaatgc gaagggaaat gattggtttg 780
ggtaactagt ggtagagtgg ctttcaagca tagtttgatc aaaactccac tcagtatctg 840
cattactttt atctctgcaa atatctgcat gatagcttta ttctcagtta tctttcccca 900
                                                               933
taataaaaaa tatctgccaa aaaaaaaaaa aaa
<210> 56
<211> 480
<212> DNA
<213> Homo sapiens
<400> 56
ggctttgaag catttttgtc tgtgctccct gatcttcagg tcaccaccat gaagttctta 60
gcagtcctgg tactcttggg agtttccatc tttctggtct ctgcccagaa tccgacaaca 120
gctgctccag ctgacacgta tccagctact ggtcctgctg atgatgaagc ccctgatgct 180
qaaaccactg ctgctgcaac cactgcgacc actgctgctc ctaccactgc aaccaccgct 240
gettetacea etgetegtaa agacatteea gttttaceca aatgggttgg ggateteeeg 300
aatggtagag tgtgtccctg agatggaatc agcttgagtc ttctgcaatt ggtcacaact 360
atteatgett cetgtgattt catecaacta ettacettge etacgatate ceetttatet 420
<210> 57
<211> 798
<212> DNA
<213> Homo sapiens
<400> 57
agectacetg gaaagecaae cagteeteat aatggacaag atecaceage teeteetgtg 60
gactaacttt gtgatatggg aagtgaaaat agttaacacc ttgcacgacc aaacgaacga 120
agatgaccag agtactetta acceettaga actgttttte ettttgtate tgcaatatgg 180
gatggtattg ttttcatgag cttctagaaa tttcacttgc aagtttattt ttgcttcctg 240
tgttactgcc attcctattt acagtatatt tgagtgaatg attatatttt taaaaagtta 300
catggggctt ttttggttgt cctaaactta caaacattcc actcattctg tttgtaactg 360
tgattataat ttttgtgata atttctggcc tgattgaagg aaatttgaga ggtctgcatt 420
tatatatttt aaatagattt gataggtttt taaattgctt tttttcataa ggtatttata 480
aagttatttg gggttgtctg ggattgtgtg aaagaaaatt agaaccccgc tgtatttaca 540
tttaccttgg tagtttattt gtggatggca gttttctgta gttttgggga ctgtggtagc 600
tcttggattg ttttgcaaat tacagctgaa atctgtgtca tggattaaac tggcttatgt 660
ggctagaata ggaagagaga aaaaatgaaa tggttgttta ctaattttat actcccatta 720
aaaattttta atgttaagaa aaccttaaat aaacatgatt gatcaatatg gaaaaaaaaa 780
aaaaaaaaa aaaaaaaa
<210> 58
<211> 280
 <212> DNA
 <213> Homo sapiens
 <400> 58
 ggggcagete etgaceetee acagecacet ggteagecae cagetgggge aacgagggtg 60
 gaggtcccac tgagcctctc gcctgccccc gccactcgtc tggtgcttgt tgatccaagt 120
 cccctgcctg gtcccccaca aggactccca tccaggcccc ctctgccctg ccccttgtca 180
 tggaccatgg tcgtgaggaa gggctcatgc cccttattta tgggaaccat ttcattctaa 240
 280
 <210> 59
 <211> 382
```

```
<212> DNA
<213> Homo sapiens
<400> 59
aggcgggagc agaagctaaa gccaaagccc aagagagtgg cagtgccagc actggtgcca 60
gtaccagtac caataacagt gccagtgcca gtgccagcac cagtggtggc ttcagtgctg 120
gtgccagcct gaccgccact ctcacatttg ggctcttcgc tggccttggt ggagctggtg 180
ccagcaccag tggcagctct ggtgcctgtg gtttctccta caagtgagat tttagatatt 240
gttaatcctg ccagtctttc tcttcaagcc agggtgcatc ctcagaaacc tactcaacac 300
agcactctag gcagccacta tcaatcaatt gaagttgaca ctctgcatta aatctatttg 360
ccattaaaaa aaaaaaaaaa aa
<210> 60
<211> 602
<212> DNA
<213> Homo sapiens
<400> 60
tgaagagccg cgcggtggag ctgctgcccg atgggactgc caaccttgcc aagctgcagc 60
ttgtggtgga gaatagtgcc cagcgggtca tccacttggc gggtcagtgg gagaagcacc 120
gggtcccatc ctcgtgagta ccgccactcc gaaagctgca ggattgcaga gagctggaat 180
cttctcgacg gctggcagag atccaagaac tgcaccagag tgtccgggcg gctgctgaag 240
aggcccgcag gaaggaggag gtctataagc agctgatgtc agagctggag actctgccca 300
gagatgtgtc ccggctggcc tacacccagc gcatcctgga gatcgtgggc aacatccgga 360
agcagaagga agagatcacc aagatcttgt ctgatacgaa ggagcttcag aaggaaatca 420
actccctatc tgggaagctg gaccggacgt ttgcggtgac tgatgagctt gtgttcaagg 480
atgccaagaa ggacgatgct gttcggaagg cctataagta tctagctgct ctgcacgaga 540
actgcagcca gctcatccag accatcgagg acacaggcac catcatgcgg gaggttcgag 600
ac
<210> 61
<211> 1368
<212> DNA
<213> Homo sapiens
<400> 61
ccagtgagcg cgcgtaatac gactcactat agggcgaatt gggtaccggg ccccccctcg 60
ageggeegee etttttttt ttttttatt gateagaatt eaggetttat tattgageaa 120
tgaaaacagc taaaacttaa ttccaagcat gtgtagttaa agtttgcaaa gtgggatatt 180
gttcacaaaa cacattcaat gtttaaacac tatttatttg aagaacaaaa tatatttaaa 240
 attgtttgct tctaaaaagc ccatttccct ccaagtctaa actttgtaat ttgatattaa 300
 gcaatgaagt tattttgtac aatctagtta aacaagcaga atagcactag gcagaataaa 360
 aaattgcaca gacgtatgca attttccaag atagcattct ttaaattcag ttttcagctt 420
 ccaaagattg gttgcccata atagacttaa acatataatg atggctaaaa aaaataagta 480
 tacgaaaatg taaaaaagga aatgtaagtc cactctcaat ctcataaaag gtgagagtaa 540
 ggatgctaaa gcaaaataaa tgtaggttct ttttttctgt ttccgtttat catgcaatct 600
 gcttctttga tatgccttag ggttacccat ttaagttaga ggttgtaatg caatggtggg 660
 ccaaaaaaag ggtaggcatg aagaaaaaaa aaatcmaatc agaacctctt caggggtttg 780
 kgktctgata tggcagacar gatacaagtc ccaccaggag atggagcaat tcaaaataag 840
 ggtaatgggc tgacaaggta ttattgccag catgggacag aatgagcaac aggctgaaaa 900
 gtttttggat tatatagcac ctagagtctc tgatgtaggg aatttttgtt agtcaaacat 960
 acgctaaact tccaagggaa aatctttcag gtagcctaag cttgcttttc tagagtgatg 1020
 agttgcattg ctactgtgat tttttgaaaa caaactgggt ttgtacaagt gagaaagact 1080
 agagagaaag attttagtct gtttagcaga agccatttta tctgcgtgca catggatcaa 1140
```

```
tatttctgat cccctatacc ccaggaaggg caaaatccca aagaaatgtg ttagcaaaat 1200
tggctgatgc tatcatattg ctatggacat tgatcttgcc caacacaatg gaattccacc 1260
acactggact agtggatcca ctagttctag agcggccggc caccgcggtg gagctccagc 1320
ttttgttccc tttaqtqaqq qttaattgcg cgcttggcgt aatcatnn
<210> 62
<211> 924
<212> DNA
<213> Homo sapiens
<400> 62
caaaggnaca ggaacagctt gnaaagtact gncatncctn cctgcaggga ccagcccttt 60
gcctccaaaa gcaataggaa atttaaaaga tttncactga gaaggggncc acgtttnart 120
tntnaatgtn tcargnanar tnccttncaa atgncrnctn cactnactnr gnatttgggt 180
tnccgnrtnc mgnactatnt caggtttgaa aaactggatc tgccacttat cagttatgtg 240
accttaaaga actccgttaa tttctcagag cctcagtttc cttgtctata agttgggagt 300
aatattaata ctatcatttt tccaaqqatt qatqtqaaca ttaatqaqqt qaaatqacaq 360
atqtqtatca tqqttcctaa taaacatcca aaatataqta cttactattq tcattattat 420
tacttgtttg aagctaaaga cctcacaata gaatcccatc cagcccacca gacagagytc 480
tgagttttct agtttggaag agctattaaa taacaacktc tagtgtcaat tctatacttg 540
ttatggtcaa gtaactgggc tcagcatttt acattcattg tctctttaag ttctagcaat 600
gtgaagcagg aactatgatt atattgacta cataaatgaa gaaattgagg ctcagataca 660
ttaagtaatt ctcccagggt cacacagcta gaactggcaa agcctgggat tgatccatga 720
tcttccagca ttgaagaatc ataaatgtaa ataactgcaa ggccttttcc tcagaagagc 780
tcctggtgct tgcaccaacc cactagcact tgttctctac aggggaacat ctgtgggcct 840
gggaatcact gcacgtcqca agagatgttg cttctgatga attattgttc ctgtcagtgg 900
tgtgaaggca aaaaaaaaaa aaaa
<210> 63
<211> 1079
<212> DNA
<213> Homo sapiens
<400> 63
agtcccaaga actcaataat ctcttatgtt ttcttttgaa gacttatttt aaatattaac 60
tatttcggtg cctgaatgga aaaatataaa cattagctca gagacaatgg ggtacctgtt 120.
tggaatccag ctggcagcta taagcaccgt tgaaaactct gacaggcttt gtgccctttt 180
tattaaatgg cctcacatcc tgaatgcagg aatgtgttcg tttaaataaa cattaatctt 240-
taatgttgaa ttctgaaaac acaaccataa atcatagttg gtttttctgt gacaatgatc 300
tagtacatta tttcctccac agcaaaccta cctttccaga aggtggaaat tgtatttgca 360
acaatcaggg caaaacccac acttgaaaag cattttacaa tattatatct aagttgcaca 420
gaagacccca gtgatcacta ggaaatctac cacagtccag tttttctaat ccaagaaggt 480
caaacttegg ggaataatgt gteetette tgetgetget etgaaaaata ttegateaaa 540
acgaagttta caagcaqcaq ttattccaag attagagttc atttgtgtat cccatgtata 600
ctggcaatgt ttaggtttgc ccaaaaactc ccagacatcc acaatgttgt tgggtaaacc 660
accacatotg gtaacctotc gatccottag atttgtatot cotgoaaata taactgtago 720
tgactctgga gcctcttgca ttttctttaa aaccattttt aactgattca ttcgttccgc 780
agcatgccct ctggtgctct ccaaatggga tgtcataagg caaagctcat ttcctgacac 840
attcacatgc acacataaaa ggtttctcat cattttggta cttggaaaag gaataatctc 900
ttggcttttt aatttcactc ttgatttctt caacattata gctgtgaaat atccttcttc 960
atgacctgta ataatctcat aattacttga tctcttcttt aggtagctat aatatggggg 1020
aataacttcc tgtagaaata tcacatctgg gctgtacaaa gctaagtagg aacacaccc 1079
 <210> 64
```

<211> 1001

```
<212> DNA
<213> Homo sapiens
<400> 64
gaatgtgcaa cgatcaagtc agggtatctg tggtatccac cactttgagc atttatcgat 60
tctatatgtc aggaacattt caagttatct gttctagcaa ggaaatataa aatacttata 120
gttaactatg gcctatctac agtgcaacta aaaactagat tttattcctt tccacctgtg 180
ggtttgtatt catttaccac cctcttttca ttccctttct cacccacaca ctgtgccggg 240
cctcaggcat atactattct actgtctgtc tctgtaagga ttatcatttt agcttccaca 300
tatgagagaa tgcatgcaaa gtttttcttt ccatgtctgg cttatttcac ttaacataat 360
gacctccgct tccatccatg ttatttatat tacccaatag tgttcataaa tatataca 420
cacatatata ccacattgca tttgtccaat tattcattga cggaaactgg ttaatgttat 480
atcgttgcta ttgtggatag tgctgcaata aacacgcaag tggggatata atttgaagag 540
tttttttgtt gatgttcctc caaattttaa gattgttttg tctatgtttg tgaaaatggc 600
gttagtattt tcatagagat tgcattgaat ctgtagattg ctttgggtaa gtatggttat 660
tctacatttt ctttcatcaa agttttgttg tatttttgaa gtagatgtat ttcaccttat 780
agatcaagtg tattccctaa atattttatt tttgtagcta ttgtagatga aattgccttc 840
ttgatttctt tttcacttaa ttcattatta gtgtatggaa atgttatgga tttttatttg 900
ttggttttta atcaaaaact gtattaaact tagagttttt tgtggagttt ttaagttttt 960
<210> 65
<211> 575
<212> DNA
<213> Homo sapiens
<400> 65
acttgatata aaaaggatat ccataatgaa tattttatac tgcatccttt acattagcca 60
ctaaatacgt tattgcttga tgaagacctt tcacagaatc ctatggattg cagcatttca 120
cttggctact tcatacccat gccttaaaga ggggcagttt ctcaaaagca gaaacatgcc 180
gccagttctc aagttttcct cctaactcca tttgaatgta agggcagctg gcccccaatg 240 %
tggggaggtc cgaacatttt ctgaattccc attttcttgt tcgcggctaa atgacagttt 300
ctgtcattac ttagattccc gatctttccc aaaggtgttg atttacaaag aggccagcta 360
atagccagaa atcatgaccc tgaaagagag atgaaatttc aagctgtgag ccaggcagga 420
gctccagtat ggcaaaggtt cttgagaatc agccatttgg tacaaaaaag atttttaaag 480
cttttatgtt ataccatgga gccatagaaa ggctatggat tgtttaagaa ctattttaaa 540
gtgttccaga cccaaaaagg aaaaaaaaaa aaaaa
 <210> 66
 <211> 831
 <212> DNA
 <213> Homo sapiens
 <400> 66
 attgggctcc ttctgctaaa cagccacatt gaaatggttt aaaagcaagt cagatcaggt 60
 gatttgtaaa attgtattta tctgtacatg tatgggcttt taattcccac caagaaagag 120
 agaaattatc tttttagtta aaaccaaatt tcacttttca aaatatcttc caacttattt 180
 attggttgtc actcaattgc ctatatatat atatatat gtgtgtgtgt gtgtgtgcgc 240
 gtgagcgcac gtgtgtgtat gcgtgcgcat gtgtgtgtat gtgtattatc agacataggt 300
 ttctaacttt tagatagaag aggagcaaca tctatgccaa atactgtgca ttctacaatg 360
 tctatgtgcc tgtatttccc ttttgagtgc tgcacaacat gttaacatat tagtgtaaaa 480
 gcagatgaaa caaccacgtg ttctaaagtc tagggattgt gctataatcc ctatttagtt 540
 caaaattaac cagaattctt ccatgtgaaa tggaccaaac tcatattatt gttatgtaaa 600
```

WO 99/33869

```
tacagagttt taatgcagta tgacatccca caggggaaaa gaatgtctgt agtgggtgac 660
tgttatcaaa tattttatag aatacaatga acggtgaaca gactggtaac ttgtttgagt 720
tcccatgaca gatttgagac ttgtcaatag caaatcattt ttgtatttaa atttttgtac 780
<210> 67
<211> 590
<212> DNA
<213> Homo sapiens
<400> 67
gtgctctgtg tattttttta ctgcattaga cattgaatag taatttgcgt taagatacgc 60
ttaaaggctc tttgtgacca tgtttccctt tgtagcaata aaatgttttt tacgaaaact 120
taaaaatttg ccttaatgta tcagttcagc tcacaagtat tttaagatga ttgagaagac 240
ttgaattaaa gaaaaaaaa ttctcaatca tattttaaa atataagact aaaattgttt 300
ttaaaacaca tttcaaatag aagtgagttt gaactgacct tatttatact ctttttaagt 360
ttgttccttt tccctgtgcc tgtgtcaaat cttcaagtct tgctgaaaat acatttgata 420
caaagttttc tgtagttgtg ttagttcttt tgtcatgtct gtttttggct gaagaaccaa 480
gaagcagact tttcttttaa aagaattatt tctctttcaa atatttctat cctttttaaa 540
aaattoottt ttatggotta tatacotaca tatttaaaaa aaaaaaaaaaa
<210> 68
       <211> 301
       <212> DNA
       <213> Homo sapiens
       <400> 68
 ttgtgttggg gttccctttt ccggtcggcg tggtcttgcg agtggagtgt ccgctgtgcc
                                                                    60
 cgggcctgca ccatgagcgt cccggccttc atcgacatca gtgaagaaga tcaggctgct
                                                                   120
 gagettegtg ettatetgaa atetaaagga getgagattt cagaagagaa eteggaaggt
                                                                   180
 ggacttcatg ttgatttagc tcaaattatt gaagcctgtg atgtgtgtct gaaggaggat
                                                                   240
 gataaagatg ttgaaagtgt gatgaacagt ggggnatcct actcttgatc cggaanccna
                                                                   300
                                                                   301
       <210> 69
       <211> 301
       <212> DNA
       <213> Homo sapiens
       <400> 69
 tctatgagca tgccaaggct ctgtgggagg atgaaggagt gcgtgcctgc tacgaacgct
                                                                    60
 ccaacgagta ccagctgatt gactgtgccc agtacttcct ggacaagatc gacgtgatca
                                                                    120
  agcaggetga ctatgtgccg agcgatcagg acctgetteg etgeegtgte etgaettetg
                                                                    180
  gaatetttga gaccaagtte caggtggaen aagteaaett eeacatgntt gacgtgggtg
                                                                    240
  gccagcgcga tgaacgccgc aagtggatcc agtgcttcaa cgatgtgact gccatcatct
                                                                    300
                                                                    301
        <210> 70
        <211> 201
        <212> DNA
        <213> Homo sapiens
        <400> 70
  geggetette etegggeage ggaageggeg eggeggtegg agaagtggee taaaaetteg
                                                                     60
```

gcgttgggtg aaagaaaatg gcccgaacca agcagactge tcgtaagtce accggtggga aagccccccg caaacagctg gccacgaaag ccgccaggaa aagcgctccc tctaccggcg gggtgaagaa gcctcatcgc t	120 180 201
<210> 71 <211> 301 <212> DNA <213> Homo sapiens	
<400> 71 gccggggtag tcgccgncgc cgccgccgct gcagccactg caggcaccgc tgccgccgcc tgagtagtgg gcttaggaag gaagaggtca tctcgctcgg agcttcgctc ggaagggtct ttgttccctg cagccctccc acgggaatga caatggataa aagtgagctg gtacanaaag ccaaactcgc tgagcaggct gagcgatatg atgatatggc tgcagccatg aaggcagtca cagaacaggg gcatgaactc ttcaacgaag agagaaatct gctctctggt gcctacaaga a	60 120 180 240 300 301
<210> 72 <211> 251 <212> DNA <213> Homo sapiens	
<pre><400> 72 cttggggggt gttgggggag agactgtggg cctggaaata aaacttgtct cctctaccac caccctgtac cctagcctgc acctgtccac atctctgcaa agttcagctt ccttccccag gtctctgtgc acctgtctt ggatgctctg gggaggtcat gggtggagga gtctccacca gagggaggct caggggactg gttgggccag ggatgaatat ttgagggata aaaattgtgt aagagccaan g</pre>	60 120 180 240 251
<210> 73 <211> 913 <212> DNA <213> Homo sapiens	
tttttttt tttttccag gcctcttt tattacagt gataccaaac catccacttg caaattctt ggtctccat cagctggaat taagtaggta ctgtgtatct ttgagatcat gtatttgtct ccactttggt ggataccaaga aaggaaggca cgaacagctg aaaaagaagg gtatcacacc gctccagctg gaatccagca ggaacctctg agcatgcac agctgaacac ttaaaagagg aaagaaggac agctgctct catttattt gaaagcaaat tcatttgaaa gtgcataaat ggtcatcata agtcaaacgt atcaattaga ccttcaacct aggaaacaaa attttttt tctatttaat aatacaccac actgaaatta tttgccaatg aatcccaaag atttggtaca aatagtacaa ttcgtatttg ctttcctctt tccttttct agaacaacac caaataaaat gcaggtgaaa gagatgaacc acgactagag gctgacttag aaatttatgc tgactcgatc taaaaaaaat tatgttggtt aatgttaatc tatctaaaat agagcatttt gggaatgctt ttcaaagaag gtcaagtaac agtcatacag ctagaaaagt ccctgaaaaa aagaattgtt aagaagtata ataaccttt caaaaccaca aatgcagctt agattttcctt tattatttg tggtcatgaa gactatccc atttctcat aaaatcctc ctccatactg ctgcattatg gcacaaaaga ctctaagtgc caccagacag aaggaccaga gttttcgatt aagaacacaa atgctggta atgtttaaat gagaacattg gatatggatg gtcagcccaa	60 120 180 240 300 360 420 480 540 660 720 780 840 900 913
	aggececece caacagetg gecaegaaag cegecaggaa aagegeteee tetaceggeg gggggaagaa gecteatege t

```
<210> 74
      <211> 351
      <212> DNA
      <213> Homo sapiens
      <400> 74
tgtgcncagg ggatgggtgg gcngtggaga ngatgacaga aaggctggaa ggaanggggg
                                                                        60
tgggtttgaa ggccanggcc aaggggncct caggtccgnt tctgnnaagg gacagccttg
                                                                       120
aggaaggagn catggcaagc catagctagg ccaccaatca gattaagaaa nnctgagaaa
                                                                       180
nctagctgac catcactgtt ggtgnccagt ttcccaacac aatggaatnc caccacactg
                                                                       240
gactagngga nccactagtt ctagagcggc cgccaccgcg gtggaacccc aacttttgcc
                                                                       300
                                                                       351
cctttagnga gggttaattg cgcgcttggc ntaatcatgg tcataagctg t
      <210> 75
      <211> 251
      <212> DNA
      <213> Homo sapiens
      <400> 75
tacttgacct tctttgaaaa gcattcccaa aatgctctat tttagataga ttaacattaa
                                                                        60
ccaacataat tttttttaga tcgagtcagc ataaatttct aagtcagcct ctagtcgtgg
                                                                       120
ttcatctctt tcacctgcat tttatttggt gtttgtctga agaaaggaaa gaggaaagca
                                                                       180
aatacgaatt gtactatttg taccaaatct ttgggattca ttggcaaata atttcagtgt
                                                                       240
                                                                       251
ggtgtattat t
      <210> 76
      <211> 251
      <212> DNA
      <213> Homo sapiens
      <400> 76
tatttaataa tacaccacac tgaaattatt tgccaatgaa tcccaaagat ttggtacaaa
                                                                        60
tagtacaatt cgtatttgct ttcctctttc ctttcttcag acaaacacca aataaaatgc
                                                                       120
aggtgaaaga gatgaaccac gactagaggc tgacttagaa atttatgctg actcgatcta
                                                                       180
aaaaaaatta tgttggttaa tgttaatcta tctaaaatag agcattttgg gaatgctttt
                                                                       240
caaagaaggt c
       <210> 77
       <211> 351
       <212> DNA
       <213> Homo sapiens
       <400> 77
 actcaccgtg ctgtgtgctg tgtgcctgct gcctggcagc ctggccctgc cgctgctcag
                                                                         60 "
gaggcgggag gcatgagtga gctacagtgg gaacaggctc aggactatct caagagannn
                                                                        120
 tatctctatg actcagaaac aaaaaatgcc aacagtttag aagccaaact caaggagatg
                                                                        180
 caaaaattct ttggcctacc tataactgga atgttaaact cccgcgtcat agaaataatg
                                                                        240
 cagaagccca gatgtggagt gccagatgtt gcagaatact cactatttcc aaatagccca
                                                                        300
 aaatggactt ccaaagtggt cacctacagg atcgtatcat atactcgaga c
                                                                        351
       <210> 78
       <211> 1592
       <212> DNA
```

<213> Homo sapiens

```
<400> 78
gaattecatt gtgttgggge cetgggggeg gaggggaggg geecaceaeg geettattte
                                                                         60
cgcgagcgcc ggcactgccc gctccgagcc cgtgtctgtc gggtgccgag ccaactttcc
                                                                        120
tgcgtccatg cagccccgcc ggcaacggct gcccgctccc tggtccgggc ccaggggccc
                                                                        180
gegececace geocegetge tegegetget getgttgete geceeggtgg eggegeeege
                                                                        240
ggggtccggg gaccccgacg accctgggca gcctcaggat gctggggtcc cgcgcaggct
                                                                        300
cctgcagcag gcggcgcgcg cggcgcttca cttcttcaac ttccggtccg gctcgcccag
                                                                        360
cgcgctgcga gtgctggccg aggtgcagga gggccgcgcg tggattaatc caaaagaggg
                                                                        420
atgtaaagtt cacgtggtct tcagcacaga gcgctacaac ccagagtctt tacttcagga
                                                                        480
aggtgaggga cgtttgggga aatgttctgc tcgagtgttt ttcaagaatc agaaacccag
                                                                        540
accaactatc aatgtaactt gtacacggct catcgagaaa aagaaaagac aacaagagga
                                                                        600
ttacctgctt tacaagcaaa tgaagcaact gaaaaacccc ttggaaatag tcagcatacc
                                                                        660
tgataatcat ggacatattg atccctctct gagactcatc tgggatttgg ctttccttgg
                                                                        720
aagctcttac gtgatgtggg aaatgacaac acaggtgtca cactactact tggcacagct
                                                                        780
cactagtgtg aggcagtgga aaactaatga tgatacaatt gattttgatt atactgttct
                                                                        840
acttcatgaa ttatcaacac aggaaataat tccctgtcgc attcacttgg tctggtaccc
                                                                        900
tggcaaacct cttaaagtga agtaccactg tcaagagcta cagacaccag aagaagcctc
                                                                        960
cggaactgaa gaaggatcag ctgtagtacc aacagagctt agtaatttct aaaaagaaaa
                                                                       1020
aatgatettt tteegaette taaacaagtg actatactag cataaateat tettetagta
                                                                       1080
aaacagctaa ggtatagaca ttctaataat ttgggaaaac ctatgattac aagtaaaaac
                                                                       1140
tcagaaatgc aaagatgttg gttttttgtt tctcagtctg ctttagcttt taactctgga
                                                                       1200
agegeatgea caetgaacte tgeteagtge taaacagtea ceageaggtt ceteagggtt
                                                                       1260
tcagccctaa aatgtaaaac ctggataatc agtgtatgtt gcaccagaat cagcattttt
                                                                       1320
tttttaactg caaaaaatga tggtctcatc tctgaattta tatttctcat tcttttgaac
                                                                       1380
atactatage taatatattt tatgttgeta aattgettet atetageatg ttaaacaaag
                                                                       1440
ataatatact ttcgatgaaa gtaaattata ggaaaaaaat taactgtttt aaaaagaact
                                                                       1500
tgattatgtt ttatgatttc aggcaagtat tcatttttaa cttgctacct acttttaaat
                                                                       1560
                                                                       1592
aaatgtttac atttctaaaa aaaaaaaaaa aa
      <210> 79
      <211> 401
      <212> DNA
                                       الأرابية والأرابية المهارات المالية المراجع والمستأثر المسارات
      <213> Homo sapiens
      <400> 79
catactgtga attgttcttg actccttttc ttgacattca gttttcanaa tttccatctt
                                                                         60
tettetggaa etaatgtget gttetettga etgeetgetg ggeeageate egattgeeag
                                                                        120
ccagaaacgt cacactgccc aagatggcca ggtacttcaa ggtctggaac atgttgagct
                                                                        180
gagtccagta gacatacatg agtcccagca tagcagcatg tcccaggtga aatataatcg
                                                                        240
 tgctaggagc aaaagtgaag ttggagacat tggcaccaat ccggatccac tagttctaga
                                                                        300
 geggeegeea eegeggtgga geteeagett ttgtteeett tagtgagggt taattgegeg
                                                                        360
 cttggcgtaa tcatggncat agctgtttcc tgtgtgaaat t
                                                                        401
       <210> 80
       <211> 301
       <212> DNA
       <213> Homo sapiens
       <400> 80
 aaaaatgaaa catctatttt agcagcaaga ggctgtgagg gatggggtag aaaaggcatc
                                                                         60
 ctgagagagt tctagaccga cccaggtcct gtggcacact atacgggtca ggaggggtgg
                                                                         120
 aagacaggcc taagctctag gacggtgaat ctcgggggcta tttgtggatt tgttagaaac
                                                                         180
                                                                         240
 agacattett ttggeetttt cetggeactg gtgttgeegg caggtgggea gaagtgagee
 accagtcact gttcagtcat tgccaccaca gatcttcagc agaatcttcc ggtaatcccc
                                                                         300
                                                                         301
 t
```

```
<210> 81
      <211> 301
      <212> DNA
      <213> Homo sapiens
      <400> 81
                                                                        60
tagccaggtt gctcaagcta attttattct ttcccaacag gatccatttg gaaaatatca
                                                                       120
aqcctttaga atgtggcagc aagagaaagc ggactacgca ggaacgggga gtttgggaga
agctctcctg gtgttgactt agggatgaag gctccaggct gctgccagaa atggagtcac
                                                                       180
cagcagaaga actgntttct ctgataagga tgtcccacca ttttcaagct gttcgttaaa
                                                                       240
gttacacagg tccttcttgc agcagtaagt accgttagct cattttccct caagcgggtt
                                                                       300
                                                                       301
      <210> 82
      <211> 201
      <212> DNA
      <213> Homo sapiens
      <400> 82
tcaacagaca aaaaaagttt attgaataca aaactcaaag gcatcaacag tcctgggccc
                                                                        60
aagagatcca tggcaggaag tcaagagttc tgcttcaggg tcggtctggg cagccctgga
                                                                       120
agaagtcatt gcacatgaca gtgatgagtg ccaggaaaac agcatactcc tggaaagtcc
                                                                       180
                                                                       201
acctgctggn cactgnttca t
      <210> 83
      <211> 251
      <212> DNA
      <213> Homo sapiens
      <400> 83
gtaaggagca tactgtgccc atttattata gaatgcagtt aaaaaaaata ttttgaggtt
                                                                        60
agcctctcca gtttaaaagc acttaacaag aaacacttgg acagcgatgc aatggtctct
                                                                       120
cccaaaccgg ctccctctta ccaagtaccg taaacagggt ttgagaacgt tcaatcaatt
                                                                       180
tcttgatatg aacaatcaaa gcatttaatg caaacatatt tgcttctcaa anaataaaac
                                                                       240
                                                                       251
cattttccaa a
       <210> 84
       <211> 301
       <212> DNA
       <213> Homo sapiens
       <400> 84
 agtttataat gttttactat gatttagggc ttttttttca aagaacaaaa attataagca
                                                                        60
 taaaaactca ggtatcagaa agactcaaaa ggctgttttt cactttgttc agattttgtt
                                                                       120
tccaggcatt aagtgtgtca tacagttgtt gccactgctg ttttccaaat gtccgatgtg
                                                                       180
 tgctatgact gacaactact tttctctggg tctgatcaat tttgcagtan accattttag
                                                                       240
 ttcttacggc gtcnataaca aatgcttcaa catcatcagc tccaatctga agtcttgctg
                                                                       300
                                                                       301
       <210> 85
       <211> 201
       <212> DNA
       <213> Homo sapiens
```

<400> 85				
tatttgtgta tgtaacattt attgacatct acccactgca agtatagatg aataagacac	60			
agtcacacca taaaggagtt tatccttaaa aggagtgaaa gacattcaaa aaccaactgc	120			
aataaaaaag ggtgacataa ttgctaaatg gagtggagga acagtgctta tcaattcttg	180			
attgggcac aatgatatac c	201			
accygycode adogaeacae e				
<210> 86				
<211> 301				
<211> 301 <212> DNA				
<213> Homo sapiens				
<400> 86				
tttataaaat attttattta cagtagagct ttacaaaaat agtcttaaat taatacaaat	60			
cccttttgca atataactta tatgactatc ttctcaaaaa cgtgacattc gattataaca	120			
cataaactac atttatagtt gttaagtcac cttgtagtat aaatatgttt tcatcttttt	180			
tttgtaataa ggtacatacc aataacaatg aacaatggac aacaaatctt attttgntat	240			
tcttccaatg taaaattcat ctctggccaa aacaaaatta accaaagaaa agtaaaacaa	300			
t	301			
<210> 87	•			
<211> 351				
<212> DNA				
<213> Homo sapiens				
<400> 87				
aaaaaagatt taagatcata aataggtcat tgttgtcaca acacatttca gaatcttaaa	60			
aaaacaaaca ttttggcttt ctaagaaaaa gacttttaaa aaaaatcaat tccctcatca	120			
ctgaaaggac ttgtacattt ttaaacttcc agtctcctaa ggcacagtat ttaatcagaa	180			
tgccaatatt accaccctgc tgtagcanga ataaagaagc aagggattaa cacttaaaaa	240			
aacngccaaa ttcctgaacc aaatcattgg cattttaaaa aagggataaa aaaacnggnt	300			
aagggggga gcattttaag taaagaangg ccaagggtgg tatgccngga c	351			
The same of the sa				
<210> 88				
<211> 301				
<212> DNA				
<213> Homo sapiens				
400. 00				
<400> 88 gttttaggtc tttaccaatt tgattggttt atcaacaggg catgaggttt aaatatatct	60			
ttgaggaaag gtaaagtcaa atttgacttc ataggtcatc ggcgtcctca ctcctgtgca	120			
ttttctggtg gaagcacaca gttaattaac tcaagtgtgg cgntagcgat gctttttcat	180			
ggngtcattt atccacttgg tgaacttgca cacttgaatg naaactcctg ggtcattggg	240			
ntggccgcaa gggaaaggtc cccaagacac caaaccttgc agggtacctn tgcacaccaa	300			
	301			
C				
<210> 89				
<211> 591				
<212> DNA				
<213> Homo sapiens				
serve many paleages				
<400> 89				
ttttttttt ttttttatt aatcaaatga ttcaaaacaa ccatcattct gtcaatgccc	60			
aagcaccag ctggtcctct ccccacatgt cacactctcc tcagcctctc ccccaaccct	120			
gctctccctc ctcccctgcc ctagcccagg gacagagtct aggaggagcc tggggcagag	180			
ctggaggcag gaagagagca ctggacagac agctatggtt tggattgggg aagagattag	240			

```
gaagtaggtt cttaaagacc cttttttagt accagatatc cagccatatt cccagctcca
                                                                     300
ttattcaaat catttcccat agcccagctc ctctctgttc tccccctact accaattctt
                                                                     360
                                                                     420
tggctcttac acaattttta tccctcaaat attcatccct ggcccaacca gtcccctgag
                                                                     480
cctccctctg gtggagactc ctccacccat gagctcccca gagcatccaa gacagagtgc
acagagacct ggggaaggaa gctgaacttt gcagagatgt ggacaggtgc aggctagggt
                                                                     540
acagggtggt ggtagaggag acaagtttta tttccaggcc cacagtctct c
                                                                     591
      <210> 90
      <211> 1996
      <212> DNA
      <213> Homo sapiens
      <400> 90
                                                                      60
tttcttttca tcatggagtt accagatttt aaaaccaacc aacactttct catttttaca
                                                                     120
qctaaqacat qttaaattct taaatqccat aatttttgtt caactgcttt gtcattcaac
                                                                     180
tcacaagtct agaatgtgat taagctacaa atctaagtat tcacagatgt gtcttaggct
                                                                     240
tggtttgtaa caatctagaa gcaatctgtt tacaaaagtg ccaccaaagc attttaaaga
                                                                     300
aaccaattta atgccaccaa acataagcct gctatacctg ggaaacaaaa aatctcacac
                                                                     360
ctaaattcta gcagagtaaa cgattccaac tagaatgtac tgtatatcca tatggcacat
                                                                     420
ttatgacttt gtaatatgta attcataata caggtttagg tgtgtggtat ggagctagga
                                                                     480
aaaccaaagt agtaggatat tatagaaaag atctgatgtt aagtataaag tcatatgcct
                                                                     540
gatttcctca aaccttttgt ttttcctcat gtcttctgtc tttatatttt tatcacaaac
                                                                     600
caagatctaa cagggttctt tctagaggat tattagataa gtaacacttg atcattaagc
                                                                     660
acggatcatg ccactcattc atggttgttc tatgttccat gaactctaat agcccaactt
                                                                     720
                                                                      780
atacatggca ctccaagggg atgcttcagc cagaaagtaa agggctgaaa aagtagaaca
atacaaaagc cctcgtgtgg tgggaactgt ggcctcactc ttacttgtcc ttccattcaa
                                                                     840
aacagtttgg cacctttcca tgacgaggat ctctacaggt aggttaaaat acttttctgt
                                                                     900
gctattcagc cagaaatagt ttttgtgctg gatatgattt taaaacagat tttgtctgtc
                                                                     960
accagtgcaa aaacattaca gatgtctggg ctaatacaaa aacacataag aatctacaac
                                                                     1020
tttatattta atactctatt caaatttaac tcaaagtaat gcaaaataat tagaagtaaa
                                                                     1080
aacttaattc ttctgagagc tctatttgga aaagcttcac atatccacac acaaatatgg
                                                                    1140
gtatattcat gcacagggca aacaactgta ttctgaagca taaataaact caaagtaaga
                                                                     1200
catcagtagc tagataccag ttccagtatt ggttaatggt ctctggggat cccattttaa
                                                                     1260
gcactctcag atgaggatct tgctcagttg ttagactatc attagtttga ttaagcaact
                                                                     1320
gaagtttact tcataaatta ctttttccta tatccaggac tctgcctgag aaattttata
                                                                     1380
cattcctcca aaggtaagta ttctccaaag gtaagtattt gactattaac acaaaggcaa
                                                                     1440
tgtgattatt gcataatgac actaaatatt atgtggcttt tctgttaggt ttataagttt
                                                                     1500
tcaatqatca qttcaaqaaa atgcagatca tatataacta aggttttaca ccagtggttg
                                                                     1560
                                                                     1620
acaaactatq qcccacaqqc taaacccagc ctccccttgt ttttataaat aagttttatt
agacataacc acactcattc atttctgtat tgtgtatagc tgctttcacg ctatactagc
                                                                     1680
 agaactgaat agttgtgaca gagactgtat ggaccgtgaa gcataaatat ttaccatctg
                                                                     1740
 qcccattcta aaaaaaqtgt gccaattcct ggtttacact aaaatataga gtttagtggg
                                                                     1800
 aagoctattt gaaatgtgtt ttttttaggg gotgtaatta coaattaaaa ttaaggttoa
                                                                    1860
 ggtgactcag caaccaaaca aaagggatac taatttttta tgaacaatat atttgtattt
                                                                     1920
 tatggacata aaaggaaact ttcagaaaga aaaggaggaa aataaagggg gaaagggacc
                                                                     1980
                                                                     1996
 caacacaatg gaattc
       <210> 91
       <211> 911
       <212> DNA
       <213> Homo sapiens
       <400> 91
 gccctttttt ttttttttt cttgtttaaa aaaattgttt tcattttaat gatctgagtt
                                                                       60
```

```
agtaacaaac aaatgtacaa aattgtcttt cacatttcca tacattgtgt tatggaccaa
                                                                       120
atqaaaacgc tggactacaa atgcaggttt ctttatatcc ttaacttcaa ttattgtcac
                                                                       180
ttataaataa aggtgatttg ctaacacatg catttgtgaa cacagatgcc aaaaattata
                                                                       240
catgtaagtt aatgcacaac caagagtata cactgttcat ttgtgcagtt atgcgtcaaa
                                                                       300
tgcgactgac acagaagcag ttatcctggg atatttcact ctatatgaaa agcatcttgg
                                                                       360
agaaatagat tgaaatacag tttaaaaacaa aaattgtatt ctacaaatac aataaaattt
                                                                       420
gcaacttgca catctgaagc aacatttgag aaagctgctt caataaccct gctgttatat
                                                                       480
tggttttata ggtatatctc caaagtcatg ggttgggata tagctgcttt aaagaaaata
                                                                       540
aatatgtata ttaaaaggaa aatcacactt taaaaatgtg aggaaagctt tgaaaacagt
                                                                       600
cttaatgcat gagtccatct acatattttc aagttttgga aacagaaaga agtttagaat
                                                                       660
tttcaaagta atctgaaaac tttctaagcc attttaaaat aagatttttt tccccatctt
                                                                       720
                                                                       780
tccaatgttt cctatttgat agtgtaatac agaaatgggc agtttctagt gtcaacttaa
ctgtgctaat tcataagtca ttatacattt atgacttaag agttcaaata agtggaaatt
                                                                       840
gggttataat gaaaatgaca agggggcccc ttcagcagcc actcatctga actagtaatc
                                                                       900
                                                                       911
ccaacacaat g
```

<210> 92 <211> 1710 <212> DNA

<213> Homo sapiens

<400> 92

	tttttttt	tttttaactt	ttagcagtgt	ttatttttgt	taaaagaaac	caattgaatt	60
	gaaggtcaag	acaccttctg	attgcacaga	ttaaacaaga	aagtattact	tatttcaact	120
•	ttacaaagca	tcttattgat	ttaaaaagat	ccatactatt	gataaagttc	accatgaaca	180
	tatatgtaat	aaggagacta	aaatattcat	tttacatatc	tacaacatgt	atttcatatt	240
	tctaatcaac	cacaaatcat	ataggaaaat	atttaggtcc	atgaaaaagt	ttcaaaacat	300
	taaaaaatta	aagttttgaa	acaaatcaca	tgtgaaagct	cattaaataa	taacattgac	360
	aaataaatag	ttaatcagct	ttacttatta	gctgctgcca	tgcatttctg	gcattccatt	420
	ccaagcgagg	gtcagcatgc	agggtataat	ttcatactat	gcgaccgtaa	agagctacag	480
	ggcttatttt	tgaagtgaaa	tgtcacaggg	tctttcattc	tctttcaaag	gaagatcact	540
. ,	catggctgct	aaactgttcc	catgaagagt	accaaaaaag	cacctttctg	aaatgttact	
	gtgaagattc	atgacaacat	attttttta	acctgttttg	aaggagtttt	gtttaggaga	660
	ggggatgggc	cagtagatgg	agggtatctg	agaagccctt	ttctgtttta	aaatataatg	720
				tttaagaaca			780
				catggatata			840
	aaaaggaaaa	actattccca	aagaaggtcc	tgatacttaa	gacagcttgc	tgggtttgat	900
	caaagcagaa	agcatatact	ttcaagtgag	aaaacagcag	tggcaggctt	gagtcttcca	960
	agcaatcaaa	tctgtaaagc	agatggttac	tagtaagtct	agttatggga	gtctgagttc	1020
	taactcatgc	tgtgcttgct	ggatttgctg	gctcttttcc	gctctctgtg	atgctggact	1080
	ggcttgtcag	gtgacatgct	ctcaaagttg	tgactggact	cgttgtgctg	ccgggtgtac	1140
	ctcttgcact	tgcaggcagt	gactactgtg	attttgtagg	tgcgtgtgct	gccatcttgg	1200
	cactgcagct	ggattctctg	ggtacgggtt	ttgtcattga	cacaccgcca	ctcctgggag	1260
	ctcctcctgc	tccagtactt	tgttccatag	cctcctccaa	tccagttagg	gagcactggc	1320
	aggggcaagc	actcgccagc	acacaccagc	tccttcagag	ggctgatgct	ggtgcactgg	1380
	ccatcagaga	tgtatttggt	ggaacgcagt	tcccggcaac	ccacttgaac	ccgagtgttc	1440
	cgatccagtc	cagtgttact	gaaatgcctg	cctccatttc	tggcttgatt	caacgtgctg	1500
	ttgctgctgg	ggtgtgctgg	aacaggttta	accacatgtg	aataaaggat	ttctgtggca	1560
	tcatttttaa	aagccaaaca	gcttttcatt	aggatgcatg	caaggggaag	gagatagaaa	1620
	tgaatggcag	gaggaagcat	ggtgagtaga	ggatttgctt	gactgaagag	ctggttaatt	1680
	cttttgcctc	tgcccaacac	aatggaattc		*		1710

<210> 93

<211> 251 <212> DNA

<213> Homo sapiens

<400> 93	
cccaccctac ccaaatatta gacaccaaca cagaaaagct agcaatggat tcccttctac	60
tttgttaaat aaataagtta aatatttaaa tgcctgtgtc tctgtgatgg caacagaagg	120
accaacaggc cacatcctga taaaaggtaa gaggggggtg gatcagcaaa aagacagtgc	180
tgtgggctga ggggacctgg ttcttgtgtg ttgcccctca agactcttcc cctacaaata	. 240
actttcatat g	251
<210> 94	
<211> 738	
<212> DNA	
<213> Homo sapiens	
<400> 94	
ccctttttt tttttttcc acttctcagt ttatttctgg gactaaattt gggtcagagc	60
tgcagagaag ggatgggccc tgagcttgag gatgaaagtg ccccagggag attgagacgc	120
aacccccgcc ctggacagtt ttggaaattg ttcccagggt tcaactagag agacacggtc	180
agcccaatgt gggggaagca gaccctgagt ccaggagaca tggggtcagg ggctggagag	240
atgaacattc tcaacatctc tgggaaggaa tgagggtctg aaaggagtgt cagggctgtc	300
cctgcagcag gtggggatgc cggtgtgctg agtcctggga tgactcagga gttggcctgg	360
atggtttcct ggatccactt ggtgaacttg cagaggttcg tgtagacacc cggtctgttg	420
ggccgggcac aagggtaatc tccccaggac acgagtccct gcagggagcc attgcagacc	480
acaggccccc cagaatcacc ctggcaggag tctctacctg ctttgtcacc ggcgcagaac	540
atggtgtcat ctatctgtct cgggtaagca tcctcgcacc ttttctgact tagcacgctg	600
atattcaagc actggaggac cttagggaag tgcacttggg ggctcttggt tgtcccccag	660
ccagacacca agcactttgt cccagcagag ggacaatgag aggagacgtt gatgggtctg	720
acatetttag tgggaega	738

Fig. 1A

Fig. 1B

l

SEQUENCE LISTING

```
<110> Corixa Corporation
<120> COMPOUNDS FOR IMMUNOTHERAPY AND DIAGNOSIS OF BREAST CANCER AND
      METHODS FOR THEIR USE
<130> 210121.446PC
<140> PCT
<141> 1998-12-22
<160> 94
<170> Patentin Ver. 2.0
<210> 1
<211 × 402
<212> DNA
<213> Homo sapiens
<400> 1
ttttttttt ttttteggeg aectgaatca aacagatttt attcaacttt ttagatgagg 60
assaceastn stargeestn ngtcataags satgetttet tataccacta totcasacca 120
ctttematat tibaçasasi geteargesg emaatatgaa asgetnesse actteeetti 180
gttmacttgc tgcaatnaat gomacttlas canacataca amittettet gtmicttmas 240
agrinaatta etaattitaa igaintinei eaagaintii atteatatae iittaatgae 300
trottgerna tacatacenta tittettiac tittitita enatoggeca acagettica 360
                                                                   402
ngcagneene assastetta eeggttaatt acaeggggtt gt
<210> 2
<211> 424
<212> DNA
<213> Homo sapiens
<400× 2
ttttttttt tttttaaag gtacacattt cttttcatt ctgtttnatg cagcaaataa 60
ttegteggea tettetetgt gatgggeage ttgetaaaat tanacteagg eccettaget 120
ncatticcas cinagecese ectiteasee ungechases asgassates gitinggetta 180
esticitigo igganacasa gazotecett cottigiasa inaigotitg tiigotoigi 240
qcaaacndaq attqaaqqqa anaagganac ttntggggad ggaaacaact ngnagaagca 300
ggancogccc agggneattt ceteaceatg cttaatettg eneteacttg engggeacea 360
ttazactigg igcazzagge gcaatiggig nanggazece cauacettee tiaaasagea 420
gggc
<210> 3
 <211> 421
 <212> DNA
 <213> Homo sapiens
 <400>3
 tttttttt ttttcccaa tttaaaaaag ccttttcat acttcaatta caccanactt 60
 astnatttca tgagtaaatc ngacattatt atttnaaaat ttgcetettt aasatttgna 120
 tcanttactt ccagactgit tgcanaatga agggaggate actcaagnge tgatetenca 180
 ctntctgcag tctnctgtcc tgtgcccggn ctaatggetc gacactanat ggacegntcn 240
```

```
cagatottoe ottottotco ottoccoaat tteneacene teerettett necessaten 300
tttggggaca tgmtaatttt genateettä aaceetgeee gecangggte cenaneteag 360
gggtggttem tittognong gottnitigae encetgegee ettinantee naaceeeaag 420
<210> 4
<211> 423
<212> DNA
<213> Homo sapiens
<400> 4
ttttttatt ttttttota tttntnntat ttnntgnggt tcctgtgtgt aattagnang 60
tgtgtatgcg tangtachta tgthtgeata tttaacctgt thcctttcca tttttaaaat 120
aaaatcteaa natngtantt ggttdatggg agtaaanaga gastatngat naattttaas 180
atgqacacng tgaaatgtag cogrtnatea ntttaaaact teattttgaa ggeettttno 240 ...
cotocnaata aaaatnoong goodtactgg gttaagcaac attgcatnic taaagaaacc 300
acatgeanac nagitaaacc tgtgnactgg teangeaaac enanntggaa nanaagggon 360
ttenececan ggacanteng aattititia acaaattaen atnececce ngggggagee 420
                                                                   423
<210> 5
<211> 355
<212> DNA
<213> Komo sapiens
<400> 5
acquecacct natttegtal etticasete tittegaccy gudetettat teggaagest 60
tecaggaaga caggteteaa ettagggate agateaegtt ateaaegete tgggateget 120
gcaacctqgc acttcaagga agtgcaccga tnacqtctag accqqccaac acagatctag 180
aggtggecaa ctgatcactg tmggmgctga ctggeaanan tcaaccggge cecaaecnag 240
agtgaccaan achaccatth aggatcacco acaggdacto cicqtoctag ggccaaccna 300
ceasargget ggecsatggg ggggttbast atttggttna aaaattgatt ttaaa
<210> €
<211> 423
<212> DWA
<213 > Homo sapiens
<400> 6
tttttttttt tttttggaca ggzagtassa tttattggtn antattaana ggggggcagc 60
acattggazg crotoatgan tgcagggccc greacttgtc cagagggcca cnattgggga 120
tgtacttaac cccacagorn tetgggatna geogetttte agecaccatn tetteaaatt 180
catcageatt asacttqqta aanccccact tetttaagat ntgnatette tggcqgccag 240
namacttgae ettegecetg egezgggeet caatcacatg etcettgtte tgeagettgg 300
tgegnaagga entaatmact tggccnstgt gaaccetgge carantgere tggggettte 360
canagecace tequagect ntttggance tgneegeedd ngdadagga caadatottg 420
                                                                   423
ttt
 <210> 7
 <211> 410
 <212> DNA
 <213> Homo sapiens
 <400× 7
 ttoquactgg ctammacaaa orgeettgra magttagaam matttatcam tggaccamat 60
```

```
aatgeteata teenacaagt tegtgacegt tottatnata aaaaaatgta toatgeteet 120
nantigitigh acadeatgt iccounting gachticggc atclacectg ghicacetgg 180
gtaaatatoa ggoagottti gatqqqqota qqaaaqotaa caqtaotoqa acatqqqaaa 240
gagytotgot togoongtgt anatgggaza næattoogto tigotongat tigitggacit 300
catattgttg tacatgcaga tgaatnngaa gaacttgtca actactatca ggatcgtggc 360
ttttmnaaa agctmatcac catgttggaa geggemetny gaettgagen
<210> 8
<211> 274
<212> DNA
<213> Homo sapiens
<400> 8
ttttttttt tttttaggte atocatotit ittattataa canatainig tatatacata 60
testatatet etatatec acetetete etetetatea assacascan santitagte 120
atotatatot otogotoaca tatgostogo agataccagt aaamaataag toaatotoca 180
tastatgett taxaactom aneastonga gagactosaa gasaacgeto atcannatga 240
ttgtngataa tottgaanaa tnacmammac atat
<210> 9
<211> 322
<212> 9NA
<213> Homo sapiens
<400> 9
ttttttttt ttttgtgcct tattgcaccg gcmensectt ctagcactat attaaactca 60
ataayagtga taagtgtgaa aatcettgee ttetetttaa tettaatgna naggestetg 120
gtttttcarc attaantgta ataatggcto tetgtatttt tatonatggt cttnatggag 180
ttmanaget tttcctctnt ccctngttat ctagnagttt tnatcaasas tgggtataat 240
attingtica gractitine etgeacctat agatatgain etgitatiti ticiteting 300
cotnomiata tgatggatna ca
   و النور التوليد ويتشرون الناب التاب المستحدودين بالشاك المستحديثات التابية محاصد
<210> 10
<211> 425
<212> DNA
<213> Nomo Bapiens
<400> 10
ttttttttt ttttattdt geageestta aatgetgaac aetagatnet tatttgtgga 60
ggtcaceaaa teegtecaga atatnacece ogcoctgoor ataaeaagca cagotoocag 120
trotatattt acastatoto tggsattoca cottocotto taatttgact aatattotg 180
cttctcaggc agcagcgcct tctggczacc ataagaacca acntgnggac taggtcggtg 240
ggcraaggat caggaaacag aanaatggaa gnagceeeen tgarnetatt aanëtmtmaa 300
 actatethaa etgetagett teaggettta aateatgtaa nataegtgte ettottgetg 360
 caaceggaag cateetagat ggtacaetet etecaggtge caggaasaga teceanatng 420
                                                                    425
 caggn
 <210> 11
 <211> 424
 <212> DNA
 <213> Ното варівля
 <400> 11
 ttttnttant ttttttapcc netnnteenn tntgttgnag ggggtaccaa atttetttat 60
 ttwanggent ggtacanato aseaaactta atttaatttt tnggtacaac ttatagassa 120
```

```
ggttaaggaa acceeaacat quatgcactg cettggtaac cagggnatte ceecnogget 180
ntggggesat tagercaang etnagettte attateactn teccceaggg thigetithe 240
aasasaattt neegeenage enaateeggg enetreeate tggegeaant tggteaettg 300
quedeconst tetttsangg ettnearetm etcatteggg thatgigtet castlassic 360
ccaengateg gogteattit intennitas crastitute nasticegii attganamaa 420
ccan
<210> 12
<211> 425
<212> DNA
<213> Homo Bapiens
<400> 12
tttttttt ttttnettaa aagetttab eteetgetta cattacecat etgitettge 60
atgrigting cirtitions tagageeett aacaacitaa teatgyttat titaaggget 120 👚
ctaataatte enaaactggt ateatazata agtotegtte thatgettgt titeteteta 180
transcripty trightyour tithecatgo titigizatit tiggotyana gotyanadat 240
nacetacche etintaceae etgaggiaan cagcottnia gigigaggit tiataintia 300.
etqqetaaqa getngqenet gtinantant tgttgtanet ntatatgeea naggettina 360
ttteenetng tgreetiget toagraceed atthttttag gggtteedta nasactetat 420
ctnaat
<210> 13
<211> 419
<212> DNA
<213> Komo sapiens
<400> 13
ttttttttt tttttnagat agenteteae tetttögodd aggetggagt grægtggege 60
aatcaagget eactgraace tetgeettat saagratttn ctaaaggtac aagetaamtt 120
ttaaanatat etetneacaa etaatgtata acaanaatta gttetseete ataasenent 180
ggctcagece tegnaacara titecetgit cicaacigat gaarneires naaacagaac 240
anathtaago tittecaggo coagaasago togogagaga attigothig tgigigadac 300 -
acttgccace etgtggcage acagetecae acntgetttg ggccgcattt gcaagttete 360
tgtmancccc ctgnaaqacc cggatcagct gggtngmaat tgcangcnct cttttggca 419
<210> 14
<211> 400
<212> DNA
<213> Homo gapiens
<400> 14
aanceattge caagggtate eggaggattg tggetgtear aggtneegag geddanaagg 60 .
coctcaggaa agcaaagago ttgaaaaatg totototgto atggaagcon aagtgaaggo 120
temmactget ecaacaagga intgeanagg gagategeta acettggaga ggeeetggee 180
actgragten tececeante geagaaggat gaattgrage agaetetean atccettang 240
 gaaggttgtg gatnacttgg accgagcoto nnaagccaat ntecagaaca agtgttggag 300
 aagacaaago anticatoga egecaacece naceggeste totteteetg ganatigana 360
                                                                   ADO
 geggegeece egeceaggge ettaataane entgaagetn
 <210> 15
 <211> 395
 <212> DNA
 <213> Komo sapiens
```

```
<400> 15
tgctttgctg cgtccaggax gattegatng aanaatacat attgatttgc caaatgaaca 60
agcgagatta gachtactga anatocatgo aggloccatt acaaagcatg glgaaataga 120
tgatgaagca attgtgaagc tatcagatgg ctttnatgga gcagatctga gaaatgtttg 180
tactgaagca ggtatgttcg caattegtge tyateatgat tttgtagtac aggaagaett 240
catgaaagen gteagaamag tggetnätte tnaaagetgg agtetaaatt ggaenaemae 300
contgratte activitigan tittgatiget geatqueaga tittigettan tittaaaaatn 360
aagtteaaga aaattatgtt agttttygcc AttAt
<210> 16
<211> 404
<212> DNA
<213> Homo aapiens
<400× 15
ccaccactas astectaget gagecetaem agtacetyty coccteccec aggacyagat 60
nagogoacac cotttaagtm aggtgacagg toacotttaa gtgaggacag tcagotmaat 120
ttracetett gygettgagt acctggttet egtgeeetga ggegaenetn agecetgeag 180
ctnccetgta egtgetgera atogtettga tettetecae grenetnaae ttgggettea 240.
gtaggagetg caggenagaa ngaageggtt aacagegeea etecatagee geageengge 300
tgoccotgot totoaaggag gggtgtggggg ttootocace ategeogece ttgcaaacae 360
ntetcanggo ttocotnece gotnanegra ngaottaago atég
<210> 17
<211> 360
<212> DNA
<213> Homo sapiens
<400× 17
ggccagango titocacasa ccagigaagg iggcagcasa gaaagcotot tagacnagga 60
grtggragea getgetatet ngatngseng cagazaceaa ceactaatte ageaaacaca 120
acctentace thacegette cettinaatg goottoggtg tgtgcgcaca tgggcacgtg 180 ...
cggggagaar catacttatt cccctottcc.cggcctacca cctctotcc cccttctctt 240
ctotocaatt actatotoca otgotttatt otmandacta otgotogtat chanageong 300
cocgosatta cotggosasa etegegacco tingggosgn getasansat gescattise 360
<210> 18
 <211> 316
 <212> DNA
 <213> Homo sapiens
 atacatatac acatatatga tittagatag agccatatac cingaagtag tanatitgit 60
 tgigtgtata igtatgigte tactcattit aaataaacti gigatagaga igtaattnig 120
 agocagette toatetgott abathactea coaagtaact aattaagten totttactet 180
 taatgttneg tagtgagatt ctgttgaagg tgatattaaa aaccatteta tattaattaa 240
 cattcatgtt gttttttaaa agcttatttg aaatcmaatt atgattatit ticataccag 300
 togathttat gtangt
 <210> 19
 <211> 350
 <212> DNA
 <213> Homo sapiens
 <400> 19
```

5----

```
angggatgca natestgcty tgtatgagct tgatggaasa ganctotgte gugsasgggt 60
tactattgaa catgetnggg cteggteacq aggtggaaga ggtagaggae gatactetga 120
cogtittagt agtogoagac otogaaatga tagangaaat gotocacotg taagaacaga 180
anatogeett atagtegaga atttatooto magagtoago tggcaggttt gttganatac 240
agtitigagt intitigaty togotitita assaughtat gogitacina tyttatatty 300
ttrattaaa aqtagttttn aattaatgga tntgatggaa ttgttgtttt
<210> 20
<211> 367
<212> DNA
<213> Nomo sapiens
<400> 20
gntonnenea agatectnot otcoccongg geogeceene encengtoat naceggitto 60
ntaanatonn geogeneeeg aagtetenet omtgeegaga tgoeeettah nenemnatgo 120
neaattniga eeinnggega anaatggeng mmgigiatea ginteenete ignggnetet 180
tagnatotga coactangac conctatort etexauccet gtannongco coaattigtg 240
ceaattagtg catgotanag cotoctagcc cagatggent ceatateetg gineggette 300
egecctace angucateen estetaetag agettateeg etnentgingg egeaceggit 360
                                                                   367
cecenet
c210> 21
<211> 366
<212> DNA
<213> Homo sapiens
<400> 21
eccaacacaa tygtetaagt amaactytat tyetetytay tataytteea cattyyeaac 50
ctacaatggg assatccata cataagtoag ttacttoctn atgagettte teettetgaa 120
teetttatet tetgaagaza gtacacacet tggtnatgat atetttgaat tgecettett 180
tocaggrate agtiggatga ticatexigg taattatgge attateatat tetteatact 240
tgtcatacga aaacaccagt totgcccnna gatgagettg ttotgcagot ottagcacct 300 ....
tgggaatatt cactotagac cagaaacago toooggtgot cooteattit otgaggotta 360
aatttn
<210> 22
<211> 315
<212> DNA
<213> Homo sapiens
 acttastges atctctggag gataxtttgg atcsagaaat aaagaanaaa tgaattagga 60
gaagaaatna etgggtnata ettesatatt tragaaettt aanaatgtig actatgatti 120
 ceatatattt ginaaaactg agatacangi tigacciata icigcattii gataattaaa 180
 cnaatnoatt etatttnaat gitgitteag agtearagea cagaetgaaa etittitega 240
 atacctmast atcacacttn thettmosat gatgitgasg acastgatgs catgeetina 300
                                                                    315
 gcatataatg tegac
 <210> 23
 <211> 202
 <212> DNA
 <213> Homo sapiens
 4400> 23
 actaatocag tgtggtgnaa ttocattgtg ttgggcaact caggatatta aatttatnat 60
```

```
ttaaaaatto ocaagagaaa maaactooag goootgattg titomotggg gaattitaco 120
aaatgttoca mnaayanaig acgetgatto tgtoaaalct tittcagaag atagaggaga 180
acadececeg nttratttta tg
<210> 24
<211> 365
<212> DNA
<213> Homo appieda
<400> 24
ggatttettg coutttett cottittaag tatoaatgta tgaaatceac eigiaceace 60
ctttotgoca tacaaccgct accadettg gotortagaa cotgttttgc tttdatagat 120
ggatetegga accnagtett nactteattt ttaameecca tittageaga tngtttgetn 180
togtotgtot: gtattcacca tggggddtgt acadaccacg tgtggttata gtoaaacaca 240
gtgcctcca ttgtggccac atgggagace catnaccoma tactqcatcc tgggctgatn 300
acggezotyc atchnacccg acmtgggatt gascocgggg tgggcageng azttgazeag 360
                                                                    365
gatca
<210> 25
<211> 359
c212> DNA
<213> Homo sapiens
<400> 25
gtttcctgct tcaacagtgc ttggacggaa cccggcgctc attccccacc ccggccggcc 60
goddatagod agonotongt carotottok odgokoorto ggantgerde aaggeoddog 120
cogeanates ngageonego agocasages geoneoneca cototostin giacageant 180
nacadogogi coaccieges ngitegoong asciseesee aggaetemia ngoogecote 240
pacegeega teaacetgga getetneese cegaenttaa cettteentg tettaettae 300
nttaacegee gnttatttig ettnäääägä actitteeee aataettee tieacennt 359
<210> 26
                                                       The war of water and the contract of the second
<211> 400
 <212> DNA
<213> Homo sapiens
<400> 26
agtgaaacag tatatgtgaa aaggagtttg tgannageta cataaaaata ttagatatet 60
ttataattte caataggata eteateagtt tigaataana gacatattet agagasacca 120
ggtttetggt ttcagatttg aactoteaag agettggaag ttateaetee cateeteacg 180
 acnacheana satethasen aschgashae esstgaettt tettagatet gtessagsae 240
 tteageeacg aggaaaacta tenecetnaa taetggggae tggaaagaga gggtacagag 300
 automosty autoatagee camputcage tigeceggag cinamgeing tacquinatt 160
 acttacaggg accepticed agtingings theantgoon
 c210> 27
 <211> 366
 <212> DWA
 <213> Komo sapiens
 <400> 27
 gaztttotta gaaactgaag tttzototgt toczagatat atottcactg tottaatcaa 60
 agggcgctng aatcatagea astattetea tettteaact aactttasgt agttnteetg 120
 gaattttaca ttttccagaa aacactcctt trtgtatrtg tgaaagaaaa tgtgcctcag 180
 gotgtagaet gggetgeaet ggacacetge gggggaetet ggetnagtgn ggacatggte 240
```

```
agtatigatt tterteanse teageotgig (agetnigas agesiggase agattacart 300
geagttmacg teateceaca catettggae techägaete ggggaggtea catagteegt 360
                                                                   366
tatona
<210> 28
c211> 402
<212> DNA
<213> Nome mapies
<400> 28
agiggagee testecties coacidagti cittacated doyaggegea geigygenaa 60
ggmagtggcc agetgeageg ceteetgeag geagecaaeg tiettgeetg tggeetgige 120 -
agacacated tigodaddad Cittacogid datcangedi gadaddigoi goadddadic 180
getnyettit aageeegat nggetgemit etgggggaet tgacacagge negtgatett 240 -
godagodtea tigiccaccy tydagagosi ggcasassgi digaggggag igcalditga 300-
anagettema ggotteatte agggeettng etnaggegee netetreate teenggaata 360
achagagget gginngggin actnicasta aacigetieg te
c210> 29
<211> 175
<212> DNA
<213> Homo sapiens
<400> 29
cggacgggea tgaccggtce gqtcsgctgg gtggccagtt teagttctte ageagaactg 60
tetreettet tgggggcega gggetteetg gggaagagga tgagtttgga geggtactee 120
ttcegceget gesegttygt otgesøggae teegtggaet tylteegeet cotog
<210> 30
<211> 360
<212> DNA
<213> Homo sapiens
<400> 30
ttgtatttet tatgatetet gatgggttet tetegaaaat gedaagtgga agaetttgtg 60
gentgeteca gatttagate cagetgagge teeetttgtt tteagtteen tgtaneante 120
tggaaggaaa cttcacggac aggaagactg ctggagaaga gaagcgtqtt agcccatttg 180
agytotgogo aatoatgtaa agogtacooa gadotoactt ttagttattt acatoaatga 240
gttctttcag ggaaccaaac ccaqaattcg gtgcaaaagc caaacatett ggtgggattt 300
gataaatgod ttgggaddig gagtgotggg ottgtgdada ggaagagdad cagddgeiga 360
 <210> 31
 <211> 380
 <212> DNA
 <213> Homo sapiens
 <400> 31
 acettotase cotetocace agetosatae egasectet esteschaca escetteesa 60
 acgetacger atggtttatg gatacaatge tgcctataan cgctacttca ggaagegeeg 120
 agggaccnaa tgegactgag ggazgazaza aastctcttt tittetggzg getggczeet 180
 gattttgtst coccetgtno cagcattnen gasataesta ggettatata caatgettet 240
 tteetgtata ttetettgte tggetgeace cettntteer gecorragat tgataagtaa 300
 tgaaagtgca ctgcagtnag ggtcaangga gactcancat atgtgattgt tccntnataa 360
                                                                   380
 acttctggtg tgatacttt
```

```
<210> 32
c211> 440
<212> DNA
<213> Homo sapiens
<400> 32
gtgtatggga gedectgact coteacgtgc ctgatetgtg coettggtee caggteagge 60
ecaccocty cacctocace typeccages setyectoty coccaaging ggodagetyr 120
cotcacttet ggggtggatg atgtgacett cotnggggga etgeggaagg gacaagggtt 180
ccetgangto ttacqqteca acatcaggae caaqteceat ygacatgoug acaqqqtece 240
caggggagar eginteanta gggatgigtg colggeigtg taegigggig igeagigeae 300 .
gtganaagea egtggegget tetggggger atgtttgggg aaggaagtgt gecenceace 360
dttggegest ctcagtcccn gtageecest gemetggear agengeatne aetteaaggg 420
caccettegg gggttggggt
c210> 33
<211> 345
<212> DNA
<213> Homo sapiens
<4D0> 33
tettttaaca atgittatta tioathiato octotataga accaccacco acaccgagga 60
gattattigg agigggtccc aacctaggge orggaciclg assictaact coccactice 120
ctrattitgt garttaggtg ggggdatggt tragtragaa riggtgioto diaitggaid 180
gtgcagaagg aggacctagg cacacacata tggtggccac acccaggagg gttgattggc 240
aggetggaag araaaagtet eecaatasag geactittae eteaaagang gggtgggagt 300
togtotgotg ggaatgttgt tgttggggtg gggaagantt atttc
<210> 34
<211> 440
<212> DNA
<213> Homo sapiens
                                   ب به بین معروف در دنی که هم خوری و بروری در در در در و را و را
<400> 34
tgtaattttt ttattggaaa scaaatatad aacttggaat ggattttgag gcaaattgtg 60
ceataagcag attttaagtg getaaaceaa gtttaaaaag caagtaacaa taaaagaaaa 120
tgtttctggt acaggaccag cagtacaana aaatagtgta cgagtacctg gataatacac 180
ecgttttgra atagtgraac ttetaagtac atattgttga etgteeatag teeacgeaga 240
gtraceacte cacacttess essented ergaesette etsesgesse etaetttass 300
maaggeataa eecagatgtt coeteatttg accaacteem tetnagttta gatgtgcaga 360
agggettana titteecaga giasgeenes igenacatgi isetigatea attitetasa 420
 ateaggitt aggscaatga
 <210> 35
 <211> 540
 <212> DNA
 <213> Homo papiens
 <400>35
 atagatggaa titattaago tiltoacetg tgatagoxox tägitttäät tgcatocase 60
 gtactoacoa aaoctotogo patcaagoat ggcogcatgt tattttataa caatcaacac 120
 ctgtggcttt taaaatttgg ttetcataag ataatttata ctgaagtaaa tctagccatg 180
 ctittadaaa atgotttagg toactocaag ottggcagtt sacatttggc atsaacaata 240
 ateaascaat cacaatttaa tasateacas stacaacatt gtaggccata atcatataca 300
 gtataaggga aaaggtggta gtgttganta agcagttatt agaatagaat accttggcct 360
```

```
ctatgeaaat atgtetagae settigatte aeteageest gaeatteagt tittenaagti 420
aggaaacagg tirtacagta toxitttaca giltercaara ratigaaaac aagtagaaaa 480
tgatganttg attittatta atgesttaca tectomagan timtemedaa eecetemggt 540
<210> 36
<211 > 555
<212> ONA
<213> Homo sapiens
<400> 36
ottogtgtgc tigsaasitg gagootgood otoggoodst sagoodtigt tgggaaciga 60
gaagtgtata tggggcccaa nctactggtg ceagaacaca gagacagcag cccantgCaa 120
tgctgtcgeg cattgcaaac gccatgtgtg geecteggeg gaggaatett ccatcttggc 180
agasaccaca grattggttt tittctartt gigigicigg gggaatgaac gcacagatet 240
gtttgactit gttataaaaa tagggeteec ccaceteece entitetgig incittatig 300
tageantget gtotgemagg gagedeetan eecetggemag memmanetge ttemgtgeve 360
etttectete tgetaaatgg atgttgatge metggaggte ttttancetg coettgeatg 420
genectgetg gaggaagana aaactetget ggeatgacer aeagtttett gaetggange 480
enteaaccct cttggttgaa geettgttet gadddtgada intgdtiggg cndiggging 540
gnetgggett etnaa
c210> 37
<211> 280
<212> DNA
<213 > Homo sapiens
<400> 37
ceacegacta taagaactat goodtegtgt attectgtac etgeateate caactttttc 60
acgiggathi igcitggate iiggomagam acccimmict contocagae acagiggaci 120
ctctamman totoctgact totaminars tigaintoma gammatgacg gioacegaco 180
aggtgaactg coccnagete tegtmaccag gitetacagg gaggetgear coactecatg 240
timettetge ttegetttee ectaceeese ereergeest
                                                     <210> 38
 <211> 303
<212> DNA
<213> Homo sapiens
<400> 38.
categagetg gttgtettet tgcctgccct gtgtcgtaaa atgggggtee cttactgcat 60
tatcaaggga aaggcaagac tyggacgtot agtocacagg aagacctgca ccactgtege 120
cttcacacag gtgaartegg aagacaaagg rgctttgget nagctggtgn aagctateag 180
 gaccaattae aatgacagat acgatnagat cogcenteae tagaggtagea atgteetagg 240
 tocteagtot giggorogia togocmagot ogaanaggom sangetaaag aactigeeze 300
 taa
 <210× 39
 <211> 300
 <212× DNA
 <213> Homo sapiene
 <400> 39
 gactdagegg ctggtgctct tentgtgcad augddeagea ctneaggted naaggeattt 60
 atcaaatere arcaagaint tiggettiig cacegaatic iggettiggt teecinaaag 120
 aactcattga tgtaaatnac tnaaagtgag gtctgggtac cctttacatg attccccaga 180
```

```
cottonateg gotaacacgo ttetottoto cagcagtett cotnicests aastiaccit 240
ccagattgtt acatggaact gaanacaaag ggagcotcag ctngalitaa atciggagna 300
<210> 40
<211> 31B
<21.2> DNA
<213> Homo sapiens
<400> 40
cocazcacaa tggctgagga caaztezgtt ctctgtgacc agacatgaga zggttgccaa 60
tgggctgttg ggcgaccaag gccttcccgg agtettcgtc Ctctatgagc tctcgcccat 120
gatggtgaag ctgacggaga agcacaggtc cttcacccac ttcctgacag gtgtgtgcgc 180
catcattggg ggeatgttea cagtggctgg actcatcgat tegeteatet accaetcage 240
acgagreate cagassess tigateingy gasgachang tagteacect egginetice 300
totatetet ettetee
                                                                 318
<210> 41
<211> 302
<212> DNA
<213> Homo sapieny
<400> 41
actragatog ogtoegttea ogggatacca oegtteacat titteetitt aagaaagggt 60
ettggeetga atgtteecca teeggaeaca ggetgeatgh etetgtnagt gteaaagetg 120
coatnaccat eteggradee tacteltact ceacaatgte tatniteact gcagggetet 180
ataminação cataatglas etgectgges caagachtat ggeetgagtt tateenagge 240
ccaaacnatt accagaratt ectottenat tgaaazegga thtoottocc boggcaaaga 300
                                                                   302
<210> 42
<211> 299
<212> DNA
                                                           and the second of the second
<213> Homo sapiens
<400>42
cttaatmagt ttaaggccae ggcccgttcc attcttctag caactgargt tgccagccga 60
ggtttggeca tacetcatgt aaatgtggtt gteaactttg acattcctac ccattccaag 120
gattacatec atogagtagg togazozgot agagotgggc gotcoggzaa ggotattact 180
tttgtcacac agtatgatgt ggaactette cagegestag aacacttnat tgggsagsaa 240
ctaccaggit itccaacaca ggatgatgag gitatgatgc inacggaacg cgtcgcina 299
 ≺210≠ 43
 <211> 305
 <212> ONA
 <213> Homo sapiens
 <400> 43
 coascastgt casgaragee gtetgtgaca toresceteg tggcotosan atggcagtca 60
 cottoattgg caatageaca geenteeggg agetetteaa gegeateteg gageagttea 120
 etgecatgit ccgccggaag geettectcd actggtacae aggegaggge atggacaaga 180
 tggagttcac cgaggetgag ageascatga segacetegt etetnageat cageagtace 240
 gggatgccae cgcagaaana ggaggaggat ttcggtnagg aggccgaaga aggaggcctg 300
                                                                   305
 aggca
 <210× 44
```

```
<211> 399
<212> DNA
<213> Homo sapiens
<400> 44
tttetgtgyg gyanacetga tetegaenaa attagagaat tttgteageg gtatttegge 60
tggaacagea cgaseacnga tnaatctcug tetectgtet taaagcaact cgatncccag 120
çagaracago tüünümttiga küçettetit ngattageac aacagggaga aagaanatge 180
ttmacqtatt aagageenga gaetamaeag agetttgaea tgtatgetta ggaaagagaa 240
aqaaqeaqen qooogoqnaa tingaageng titetgiige enigganasa gaattigage 300
ttotttättä ggocasogaa aaareeegaa änanaggent taenataert togaaaanto 360
teengeenna aaaagaaaga ayettienga tiettaace
<210> 45
<211> 440
<212> DNA
<213> Homo sapiens
<400° 45
gogggaggag aagctaaage caaagcccaa gagagtggca gtgccagcac tggtgccagt 60
accagtacea atmacagtyd cagtgecagt gecaguadda gtggtggdtt cagtgetggt 120
govagoutga cogceactet eacattiggg otettogetg geetigging agotgging 180
agcaccagtg goageteteg tgcctgtggt ttotcotaca agtgagattt taggtatetg 240
cottegettto agtggggaca totggggott anggggongg gataaggago tggatgatto 300
taggaaggee cangitggag sangatgign anagigigee sagacacige iittiggeati 360
ttattectit etgitigetg gangteaatt gareetinna nittetetta ettgegittit 420
canataingt taateciges
<210> 46
<211> 472
<212> DNA
<213≻ Жото варіеля
<400> 46
getotgtaat treacatttt aaacettees ttgacstcas attestette ggesacetst 60
gtttctctgt tcctcttcac agcaaaaact gttcamaaga gttgttgatt actttcattt 120
ceaetttete acceccatte tecerteaat taacteteet teateceeat gatgeeatta 180
tgtggctntt attanagtca ccaaccttat tctccaaaac amaagcaaca aggactttga 240
etteteagea geacteaget etggtnetty aaacaccccc gttsettget attretteta 300
cotcataaca atotoettee eagoetotac tgetgeette totgagttot toccagggte 360
ctaggeteag atgtagteta geteaacest getacacaaa gnaateteet gaaageetgt 420
assautatec atmentiatee tetrastias concession mastanessa tt
<210> 47
<211> 550
<212> DNA
<213> Homo sapiens
<400> 47
cottecting cottegerate ecoagratge tratecting extegeating temperated 60
appropriate chrockeast ostetotate asparageats accompacts of suggested 120
gggggcctg tctgggtgca aggcgacage tgtetttett caccaggcat cctcggcatg 180
 gtggagetgg gegetdagte categtgtat gaadtggeda teattgtgta catggteest 240
 gcaggottca gtgtggetge cagtgtccgg gtangaaaeg ctctgggtge tggagacatg 300
 gaagcaggoa oggaagteet chacegitte cotgotgatt acagtgotet tigotgiane 360
```

```
ettemptate etgetgttaa getgtaagga teaentgggg taeattttta etaeegmeeg 420
egeacatrat teatorgoty gotragging trocestita igoigition caccontity 480
aagetettge tgeteaggta caegecaalt tigaaaagta aacaaegtge eteggagtgg 540
gaattetget
<210> 48
c2112 214
<212> DWA
<213> Komo sapiens
<400> 48
agaaggacat asscasgetg sametycode sgangtgtga tatmagette tragatodag 60
acadectert casetterag etggtcatet gteetgatna gggettetae nagagtggga 120
agtitgigti cagiittaag gigggcoxqq gilacqigca igaleccecc aaggigaagi 180
gtgagachat ggtctatcac cccnacattg acct
                                                                   214
<210> 49
<211> 267
<212> DNA
<213> Homo sapiens
<4D0> 49
atotgootaa aatttattoa aataatgaaa atmaatotgt tttaagaaat toagtotttt 60
agttittagg acadetatge scaaatgtae gatggagaat tettittgga tmaactetag 120
gingaggaac tizateczae eggageinti gigaaggiew gaanacagga gagggaatei 180
tggcaaggaa tggagacnga gtttgcaaat tgcagctaga gtnaatngtt ntaaatggga 240
ctycinitgt gteteceang gaaagtt
<210> 50
<211> 300
<212> DMA
<213> Homo aapiens 💎
<400> 50
qactqqqtca aaqctqcatq aaaccaggce ctggcagcaa cctgggaatg grtqgaggtg 60
ggagagaace tgaettetet ttecetetee etteteesae attactggaa etetgteetg 120
ttgggstott etgagettgt ttooctgetg ggtgggacag aggacaaagg agaagggagg 180
gtetaganga ggcagcoutt etttgtooto tggggtnaat gagettgare tennagtägat 240
ggagagacca anagectetg attitteatt tecataanat gitenaagta tainintace 300
<210> 51
 <211> 300
 <212> DNA -
 <213> Ното варіела
 <400> 51
gggtaaaatc ctgcagcacc cactctggaa &&tactgctc ttBattttcc tgaaggtggc 60
 coortattic tagttggtrc aggattaggg atgtggggta taggggdattt aaatcetctc 120
 aagogototo caagoaccoo oggootgggg ginagittot catocogota otgoiggi 180
 gatcaggttm aataamtggs actitititt tottggittee aaageageet aaaaactgag 240
 gggetetgtt agaggggace tecaceetum ggaagteega ggggetnggg aagggtttet 300
 <210> 52
 <211> 267
 <212> DWA
```

Acres years

```
<213> Homo sepiens
<400> 52
assatcaset tentgeatta atanacanat tetananesy gasgigasna taattitety 60
cacctatesa ggasennact tgattgeete tattmaacam atatategag ttmctatact 120
taccigadia conorgenta actoicaseo nanainente necaigadae ienticiina 180
atgetantre egaattette attatateng tgätgttegn retgntmata tateageaag 240
gratgineen teactgeega meaang
<210> 53
<211> 401
<212> DNA
<213> Homo sapiena
<400> 53
agactttage atcatgtaga agcasactgo acctatgget gagataggtg cantgaccta 60
cangattttg tgttttctag ctgtccagga asagccatct tcaqtcttgc tgacagtcaa 120
agageaagtg aaaccattte cageetaaac tacataaaag cageegaacc aatgattaaa 180
gacetetmag getecatmat cateattama tatgeecaan eteattgtga ettittatti 240
tatataragg attammatem acattament atcitatita raiggreate ggigoigmam 300
ttgagdattk teaatagtac agtzgąctgg tatacattag gawatggect gcactggagg 360
caaatagaaa actaaagama btagataggo tggaastgot t
<210> 54
<211> 401
<212> DNA
<213> Homo sapiene
<400> 54
cccaacaraa tyyataaaaa carttatayt aaatyyyyac attemetata atyatetaay 60
aagctacaga tigicatagi igitticcig ciltacaaaa tigciccaga teiggaatgc 120
cagtitgaco titgiotici ataatatito cittitico ecictitgaa icicigiata 180 ...
ttegattott aactaasatt gttotottas atattotgaa tootggtaat taasagttty 240
ggtgtatttt etttaeetee aaggaaagaa etaetageta raaaaaatat ettggaataa 300-
geattgittt ggtataaggt acatalittig gitgaagada ccagacigsa giaaacaget 360-
 gtgcatrcan titattatag tittgtmagt aacastatgt m
 <210> 55
 <211> 933
 <212> DNA
 <213> Homo sapiens
 <400> 55
 tttactgctt ggcaaagtac cotgagcatc agcagagatg cogagatgaa atcagagaac 60
 tectagggga tgggtettet attacetggg aacacetgag ceagatgeet tacaceacga 120
 tgtgcatcas ggastgcrte egectetacg caceggtagt assetstere ggttactrga 180
 casacceate acetttecag atggaegete ettacetgea ggaataactg tgtttateaa 240
 tatttggget etreaceaca acceetattt etgggaagae eeteaggtet ttaacecett 300
 gagattotoc agggaasatt otgaassaat acatooctat goottoatar cattotoago 360
 tggattaagg azetgeattg ggeageattt tgecataatt gagtgtaaag tggeagtgge 420
 attaactotg otoogottoa agotggotoo agaceactoa aggocaccoa getgtogtom 480
 egttgcctca agtccaagea tggaatccet gtgtttgcaa aaaaagtttg cteettttaa 540
 groctitog tataagastt aakgagacaa tittootaco aaaggaagaa raaaaggata 600
 satstaatac amaatatatg telatggttg titgscamat talataactt aggmatacttc 660
 tyactygttt tgacatccat tascagtaat tttaatttct ttgctgtate tygtgaaacc 720
```

WO 99/33869

```
cacaaaaaa cetqaaaaaa etcaaqetga gttucaatgo gaaqggaaal galuggiilig 780
ggtaartagt qgtagagtgg cittceagca tagtitgatc aaaacterac teagtateig 840
cattactitt atctctgcaa atatctgcat gatagottta tictcagila totttcccca 900
                                                                 933
taataaaaaa tatotgocaa aaddaaadaaa aaa
<210> 56
<211> 480
<2125 DNA
<213> Homo sapiens
<400> 56
ggotttgaag catttttgto tgtgotocot gatottoagg toaccaccat gaagttotta 60
qqaqteriqq tectotiqqq aqtitocaro tilotigqiet cigeocagaa tocqacaaca 120
quiquiccas digacaceta tecasetaci estectecte ateateaase conteates 180
geaaccactg etgetgeac cactgogado actgotgoto ctarcactgo aaccacegot 240
gettetacca ctgctcgtaa agacatteca gttttaccca aatgggttgg ggateteccg 300
aatggtagag tgtgtccctg agatggaate agettgagte ttetgemmatt ggtemeent 360
atteatgett cetgtgattt catecaacta ettacettge etacgatate ceetttatet 420
cteatragtt tattitctit raamiamaan etaactaige gcesceesse seessesses 480
c210> 57
<211> 798
<212> DNA
<213> Homo sapiens
<400> 57
agentancing gasagenase engiourest satingants attended tectoning 60
gactaactit gigetaiggg engigasaat agitaacacc tigcacqacc aaacgaecge 120
agatgaccag agtactetta accountaga actgttttte ettttgtate tgeaatatgg 180
gatggtatig tittcatgag citciagaaa titcactigd aagittatit tigdticchg 240
tgttactgcc attcctattt acogtotatt tgagtgaatg attatattt taaaaagtta 300
categogott tittegitet cotaasetta caaseattoo actouttoig titegiasote 360
tgattataat tettgegata ættetggee tgattgaagg aaatttgaga ggtetgeatt 420
tatarattte aaatagattt gataggettt taaattgett etteedaa ggtatttata 480
eaqttattiq qqqttqtctq qqattqtgtg eaegeaatt agaaccccgc tgtatttaca 540
tttaccttgg tagtttattt gtggatggca gttttctgtå gttttgggga crgtggtagc 600
tetiggatig tittgeaaat tacagetgaa atetgigica iggattaaac iggettaigi 660-
ggotagaata ggaagagaga aaaaatgaaa tggttgttta ctaattttat accccatte 720
aaaattttta atqttaaqaa azcottaaat aaacatgatt gatcaatatg gaaaaasaaa 780
ававрадран авадавав
<210× 58
<211> 280
 <212> DNA
 <213> Homo sapiens
 <400> 58
 ggggcagete etgaceetee acageeaeet ggteagedae cagetgggge aacgagggtg $0
 gaggtreeac tgagretetr geetgeeec geeketegte tggtgettgt tgateeaagt 120
 eccetgeets stacceaca aggacteeca teeaggeecc ctetgeects eccettstea 180
 tggaccetgg tcgtgaggaa gggctcatgo cocttattta tgggaaccat ttcattctaa 240
 2B0
 <210> 59
 <211> 382
```

```
<212> DNA
<213> Homo sapiens
<400> 59
aggugggagn agaagntaaa gecasageen amyagagtgg cagtgreagn actgqtgeca 60
gtaccagtac castaacagt gccagtgcca gtgccagcac cagtggtggc ttcagtgctg 120
gtgccagcct gaccgccact ctracattig ggctcttcgc tggccttggt ggayctggtg 180
ccagcaccag tygoagetet ggtgcotqtg gtttctccta casgtgagat tttagatatt 240
gttaateetg edagtettte tettmaagne agggtgeate eteagaanee taeteaacae 300
agractotag gragoracta traatroatt gaagtigada ricigoalia aatetatiig 360
ccattaman aanaanaan ak
<210> 60
<211> 602
<212> DWA
<213> Homo sapiens
<400> 60
tgaagagerg egeggtggag etgetgeeeg atgggaetge easeettgee aagetgeage 60
ttgtggtgga gaatagtqcc cagcgggtca tecaettgge ggqteagtgg gagaagcace 120
gggtçççate etegtgagta eegevavtöö gamagetgea ggattgeaga gagetggaat 100
etteregney getggeagag atersagsae tgeaccagag tytocgygog getgetgaag 240
aggcccgcag gaaggaggag gtetataagc agctgatgte agagctggag actrtgccca 300
gagatgtete coggetgeco tacacccage gratectega gategtegec aacateegga 360
agcagaagga agagatcace aagatetegt etgatacgaa ggagetteag aaggaaatca 420
actocotato teggaaectg ganogsacgt ttgoggtgao tgatgaectt gtettoaagg 480
atgacaagaa ggacgatget gttcqqaagg cctataagta tetagetget etgcaegaga 540
actgoageca geteatecag accategagg acadaggead cateatgogg gaggitegag 600
ВC
<210> 61
<211> 1360
 <212> DNA
 <213> Homo sapiens
 <400> 61
 ccagtgageg egegtaatae gaeteaetat agggegaatt gggtaeeggg eeceeeteg 60
 ageggeegee ettettett tettettatt garcagaatt caggetteat tattgageaa 120
 tgasascago taaaacttaa ttocaagoat gtgtagttaa agtttgcaaa gtgggatatt 180
 gttcacazza cacattcaat gtttaaacar tatttatttg aagaacaaaa tatatttaaa 240
 attytttyct totaassego coatttooot ocsagtotaa actitytaat tigatattaa 300
 gcaatgaagt tattttgtac aatctagtta aacaagcaga atagcactag gcagaataaa 360
 aaattgcaca gacgtatgca attttccaag atagcattct ttaaattcag ttttcagctt 420 -
 ccasagattg gttgcccatz atagacttas acatatzatg atggctasza sezatzágta 480°
 tacquamate taaaaaagga aatgtmagto cactotcast otomtaaaag gtgagmgtma 540
 ggatgetaaa geaaaataaa tgtaggttet ttttttetgt tteegtttat eatgeaatet 600
 gettetttga tatgeettag ggttaeceat ttaagttaga ggttgtaatg caatggtggg 660
 aatgaaaatt gatcaaatet acarcttgto atttoattto aaattgoggg rtggaeactt 720.
 ссвававаад ggtaggcatg вадававава аватствате адавестетт саддудтту 780
 kyktotyata tyycagacar gatacazyto ocaccayyaq atyyaycast tosasstasy 840
 ggtaatgggc tgacaeggta ttattgcoag catgggaceg aetgagczae aggctgaeea 900
 gtttttggat tatatagcae ctegagtete tgatgtaggg aatrittgtt egicaaacat 960
 acyctaaact tocaagggaa aatettteag gtageetaag ettgetttte tagagtgatg 1020
 agttgeatty ctactgtgst tttttgaaaa caaactgggt ttgtacaagt gagaaagact 1080
 agagagaaag ettttagtot gittagoaga agocatitta toigogigoa catggatoaa 1140
```

```
tatttotgat cooctatace edaggaaggg caasateces asgassigtg ttageassat 1200
tggctgatgd talcalattg clatggadet tgatclugdd deadeceatg gealticdadd 1260
acaptggmet mytygmteem etagttetag ageggeegge eneegeggtg gageteemage 1320
ttttgttccc tttagtgagg gttaattgcg cgcttggcgt aatcatna
<210> 62
<211> 924
<212> DNA
<213> Homo Bapiens
<400> 62
caaaggnaca ggaacagett gnaaagtact gncatneetn eetgeaggga eeageeettt 60
gestecsses gesetagges stituazaga tituezetas gasaggance acattinari 120
ththaatgto teargoanar theettheas atgrerocth cactnactor gnattigggt 180
throughthro mgmactatht caggittgas assetgmate tydesettat cagitatgty 240
accttaaaga acteegttaa ttteteägäg ceteagttte ettgtetata agttgggagt 300
aatattaata etakeatiit teeaaggatt gaigtgaaca ttaatgaggt gaaatgacag 360
atgigiatea iggiteriaa tazarateea aaatalagta citactatig teattattan 420
tactigitiq magciaxaga octoscasta geatocoato cagocoacoa gacagagyto 480
tgagttttet agtttggaag agetattmaa taacaackte tagtgtcaat tetatacttg 540
thatggtess grascrigge tespestitt scattestig terettiss tictagesst 600
gtgaagcagg aactatgatt atattgacta Calasatgaa gaaattgagg ctcagataca 660
ttaagtaatt ctcccagggt cacacagcta gaactggcaa agcctgggat tgatccatga 720
tettecagea tigaagaate atamatgina atametgeam ggeettitee teagaagage 780
testagetget tesaccaacc cactageact tettetetae agaggaasat etetegeset 840
gggsatcset geacgtegea agagatgetg cutchgatga attactgtte etgteagtgg 900
                                                                                                                  924
tgtgaaggca aaaaaaaaaa aasa
 <210> 63
 <211> 1079
 <212> DNA
 <213> Romo Bapiera Company Com
 <400> 63
 agtoccaaga actoaataat otottatgtt tootttyaa gaottatttt aaatattaac 50
 tattteggtg ertgaatgga aaaatataaa cattagetea gagacaatgg ggtacetgtt 120
 tggaatocag ctggcagcta taagcaccgt tgaaaactet gacaggettt gtgccctttt 180
 tattaeatqq cotcacatco tquatgongg netgtgttog tittaaataaa cattaatott 240
 taatgttgaa ttotgaaaac aceaccataa atcatagttg gtttttotgt gacaatgatc 300
 tagtacatta tttcctccac ageaaaccta cctttccaga aggtggaaat tgtatttgca 360
 acaatcaggg caaaacccac acttgaseag cattttacaa tattatatct aagttgcaca 420
 gaegacccca gtgatcacta ggazatctac cacagtccag tttttctaat ccaagaaggt 480
 camacitogg ggaataatgi giccctcttc tgctgetget eigamaamia tiogatcama 540
 acquagttta caagcagcag ttattccaag attagagttc atttgtgtat cccatgtata 600
 ctggcaatgt ttaggtttgc ccaaaaactc ccagacatec acaatgttgt tgggtaaacc 660 .
 accadatety gradectore gatecettag attigiatet detgeaaata taactgtage 720
 tgactctgga gcctcttgca tittcittaa aaccattilt aactgattca ttcgttccgc 780
  agostgecet etggtgetet ceasstgggs tgtestaagg easagetest tteetgaese 840
  attracatgo acacatanaa ggtttotoat catottggta ottggaaaag gaataatoto 900
  riggetithi aatticacte itgathicth caacattata geigigaaat atcetteite 960
  atgacetçte atzatetest asttectiga tetettetti aggiagetat astatggggg 1020
  estaectico tytegasata tosostotys yotyterasa yotasytegy ascaracco 1079
  <210> 64
```

<211> 1001

```
<212> DNA
<213> Homo sapiens
<40U> 64
quatgigcas cgatcaagte agggtatetg tegtatecae cactitgage attiategat 60
totatatgto aggaacattt caequtetot gttotagoaa ggaaatataa satacttata 120
gttmactatg gcctatctac agtgcaacta amanctagat tttattcctt tccmcctgtg 180
ggbthgtatt catttaccac cotottttca btccctttct cacccacaca ctgtgccggg 240
ceteaggest stactation actification telephanges thateatith agettecach 300
tatgagagaa tgcatgcaaa gittitoitt coatgictgg cttatitcac llascataat 360
gaceteeget tecatecaty ttatttatat tacecastag tytteataaa tatatatara 420
cacatatata ccacattgca titgicczat tattgattga cggaaactgg tgaatgttat 480
ategttgeta tigiggalag igetgeasta aacargeaag iggggatata attigaagag 540
tttttttgtt gatgttcctc casattttaa gattgttttg tctatgtttg tgaaaatggc 500
gttagtattt tcatagagat tgoattgast ctgtagattg ctttgggtaa gtatggttat 660
trigatygta ttaattitit cattecatga agatgagatg tottlocatt gittgigtoc 720
totacatett cittcatcaa agtettette tattittesa gtagatetat ticaccetat 780
agatomagig tattocciam atetitiati titgingeta tigingatga maitgeotic 840
ttgatttctt tttcacttaa ttcattatta gtgtatggaa atgttatgga tttttatttg 900
ttqqttttta atcaeaaact gtetteaact tagagttttt tgtggagttt tteagttttt 960
Ctagatataa gatcatgaca totaccaaaa aaaaaaaaaa a
<210> 65
<211> 575
<212> DNA
<213> Homo sapiens
<400> 65
actigatata aaaaggatat odataatgea tattttatac tgcatcettt acattageca 60
ctanatacgt tattgcttga tgaagacett teacagaate ctatggattg cagcatttca 120
cttggctact teatacreat geettaaaga ggggragttt rteaaaagea gaaacatgee 180
goomyttoto angittitoot octaactoom titgamigia agggongolg goodcoaatg 240 ....
tggggaggte egaaeatttt etgaatteee attttettgt tegeggetaa atgaeagttt 300
ctgtdattac ttagattocc gatetttocc amaggtgttg atttacasag aggccageta 360
atagroagaa atcatgacco tqaaaqagag atgaaattto aagotgtgag coaggoagga 420
getecagtat ggcaaaggtt cttgagaate agceatttgg tacaaaaaag atttttaaag 480
cttttatgtt ataccatgga gccatagees ggctetggat tgttteagea ctattttama 540
gtgttccaga cccasasagg assassas assas
<210> 66
 <211> 831
 <212> DNA
 <213> Homo sepiens
 <400> 66
attgggctcr ttrtgctaaa cagocacatt gaaatggttt aaaagcaagt cagatcaggt 60
gatttgteam ettgtattta totgtacatg tatgggottt taattoocec ceegaagag 120
 agamattato tittiagita amaccament toactitica amatatotic cameitatii 180
 attggttgtc actcaattgc ctatatetet atetatatat gtgtgtgtgt gtgtgtgcgc 240
 gtgagogoac gtgtgtgtat gogtgogoat gtgtgtgtat gtgtattato agacataggt 300
 ttotaacttt tagatagaag aggagcaaca totatgocaa atactgtgca ttotacaatg 360
 gigetaatet cagacetasa igataricea titaatitaa aasagagiit taastaatta 420
 totatgtgcc tgtatttccc ttttgagtgc tgcscaacat gttaacatat tagtgtaaaa 480
 gragatgana cancoacete tertamager tagggattet getatamere charttaget 540
 cassettaac cagaattett eentgtgasa tggaccaaac teatattatt gttatgtaam 600
```

```
tacagagitt taatgoxqia igacatroca caggggaaaa gxatgicigi agigggigac 660
tgttetceae tettteateg eetaceatgm dcggtgeece gectggtaec ttgtttgegt 720
teccatgaca gattigagae tigicaatag caaateatit tigiattiaa attitigiae 780
tgarttgasa sacatcatta aatstotttm maagtaaaaa aaaaaaaaa a
<210> 67
<211> 590
<212> DNA
<213> Homo Bapiens
<400> 67
gtgctctgtg tattttttta ctgcattaga cattgastag taatttgcgt taagatacge 60
ttaaaggete titgtgacea tgttteeett tgtageaata aaatgtiitt tacgaaaact 120
ttctccctgg attagcagtt tamatgaaac agagttcatc aatgaaatga gtatttasaa 180
taaaaattty oottaatgta boagttoago toacaagtat tilaagatga tigagaagac 240
ttgaattama gaamaamaa ttotomatom tattttimea atataagact maamitgitt 300
ttaaancaca tttcaantag asgtgagttt gaactgacct tatttatact ctttttaagt 360
ttgttccttt teectgtgee tgtgtcaaat Cttcaagtet tgetgaaaat acatttgata 420
cazagtttto tgtagttgtg ttagttettt tgteatgtot ytttttggot gaagaacoaa 480
gaagcagact titcittaa aagamitatt tototticaa atmittetat ootittiaaa 540
azatteetti tiatggettä tataeetaea tattiaaaaa asaasaaaaa
<210> 6B
       <211> 301
       <212> DNA
       <213> Homo sapiens
       <400> 68
                                                                         60
 tigigitegg gitcoctitt coggregog tegictique agiquatist cogciqiusc
 egggeetgea ceatgagegt edeggeette ategacatea gtgaagaaga teaggetget
                                                                        120
 gagottogty obtatotgas atotazagga gotgagaktt cagaagagas otoggaaggt
                                                                        100
 ggacticatg itgatitage toaaattatt gaageetgig aigigigiet gaaggaggat
                                                                        240
                                                                        300
 qatmaaqatq tigaaagigt gatgaacagi ggggnatcot actotigato cggaancona
                                                                        301
        <210> 69
        <211> 301
        <212> DWA
        <213> Homo sapiens
        <400> 69
                                                                         ВO
 totalgagoa tgocaaggot olgtsggagg atgaaggagt gogtgoolgo taegaacgol
                                                                        120
  ccaacgagta ccagcigatt gactgigcce agiacitect ggacaagaic gacgigatca
  ageaggetga chatgtgeeg agegateagg acctgetteg etgeegtgte etgaettetg
                                                                        180
  geatottiga gaccaagito caggiggeon augicaacit cracaignii geogigggig
                                                                        240
  geragrega tgaacgeege aagtggater agtgetteaa cgatgtgact gecatcatet
                                                                        300
                                                                        301
        <210> 70
        <211> 201
        <212> DNA
        <213> Ното варіеля
        <400> 70
  geggetette etegggeage ggaageggeg eggeggtegg agaagtggee taaaaetteg
                                                                         60
```

gegttgagaa geeteatege t gggtgaagaa geeteatege t	cacgamag cogcompana cacgamag cogcompana	trgtaagtee aagegeteee	aceggtggga totaceggeg	120 180 201
<210> 71 <211> 301 <212> DWA <213> Homo sapiens				
<400> 71				
geoggottag tegeegnede eg tgagtagtag gettaggaag ga ttgtteeett eageeteee se ecaaactege tgageagget ga eagaacaggg geatgaacte tt a	agaggtek tetegetegg gggaatga caatggataa gegatatg atgatatgge	agcttcgctc aagtgagctg tgcagccatg	gtacanaaag gtacanaaag ggaagggtcs	6D 12D 18D 240 30D 30D
<210> 72				,
<211> 251 <212> DNA	•			
<213> Homo mapiens	;			
<400> 72				
cttgggggt gttgggggag ag	petgiggy cotggeants	asacttgtct	cctctaccac	6Đ
caccetgtac ectagectgc ac	ctgterae atetetgeaa	agttcagctt	ccttcccang	120
gtetetgtge actetgtett gg	saracterd addederes	gggrggagga	grereneen	18D 240
gagggagget caggggaetg gt aagageraan g	tagacesa agacearuc	rearaaaaca	naracegone	251
en e		en filosofie de la company de la company	The source of the first source was expected from the	-
<210> 73	·		•	
<211> 913				
<212> DNA				
<213> Homo gapiene	1			
<000> 73		ant 1001110		6 D
tttttttttt tttttcccag 90 camattcttt ggtctcccat ca	cotoctic taccacage	ctatatet	ttaeastaet	120
gtattigtot coactitiggt ge	ratacaana aaggaaggoo	coaacaccto	2232302300	180
gtateacace getecagetg ga	ateragea ggaacccctg	agcatgccac	agctgaacsc	240
ttaaaagagg aaagaaggar ag	retgetett catttatttt	gaaagcaaat	tratttgaaa	300
gtgcatasat ggtgatcata ag	tcaaacgt atcaattaga	contraacct	аддавасваа	360
atttttttt tctatttaat a	atacaccac actgaestta	tttgccaatg	aatcccaaag	420
attiggtaca aatagtacaa t	togtatitg cittodicti	teettette	agacaaacac	460
casatasaat gca qqtgas a g	agatganco acgaetagag	gctgacttag	asatttetgc	540
tgactcgatc taaasaaaat t	atgttggtt aatgttaatc	Jeeeeeat	agageatttt	660 660
gggaatgoft ttoaaagaag g aagaattgtt aagaagtata a	teaagesae agceataeag	eragaamagt aataceactt	actttteett	72D
tatttatitg tggteatgaa g	Laggetti tamaavuud Actateeen attieteest	aaaatootoo	ctccatacto	780
ctgcattatg cggtcatgat g	totanotoe eaccagacao	aaqqaccada	gtttctaatt	840
ataacaatg atgetgggta a	tgtttaaat gagaacattg	gatatggatg	gtcagcona	900
Cacaatggaa ttC		-		913

```
<210> 74
     <211> 351
      4XC <212>
      <213> Homo sapiens
      c400> 74
tgtgcncagg ggatgggtgg gcngtggaga ngatgadaga aaggdtggaa ggaanggggg
                                                                       សប
tggatttgaa ggccanggcc anggggnoot caggtccgnt totgnnaagg gacagcottg
                                                                      120
                                                                      180
aqqaaqqaqn catqqcaaqc catagetagg ceaccaatca gattaagaaa nnctgagaaa
notagetgac cateactgit ggignecagt ticceaseac asiggaatne caccacactg
                                                                      240
gactagnaga neractagit otagagrage eqecareges gingaacece aactitiges
                                                                      300
cettagnaa gagttaatta egegettage ntaateataa teataageta t
                                                                      351
      <210> 75
      <211> 251
                              an gr
      <212> DNA
      <213> Momo sapiens
      <400> 75
tacttgacet tetttgaaaa gentteecaa aatgetetat titagataga ttaacattaa
                                                                       60
                                                                      120
coaccateat tittttage togagtcago eteatitot eagtcagoot clagtcgtgg
ttcatctott toacotgoat tttattiggt gittgtotga ägadaggaaa gäggääägga
                                                                       180
                                                                      240
astacquatt gractatitg taccasatet tigggattes tiggcasats atticagigt
                                                                      251
ggtgtattat t
      <210> 76
      <211 > 251
      <212> DNA
      <213> Homo Bapisos
      <400> 76
                                                                       60
tatttaataa tacaccacac tgaaattatt tgccaatgaa tcccaaagat ttggtacaaa
tagtacaatt egtattiget tiectettie ettletteag acaaseacea aataasatge
                                                                       120
aggtgaaaga gatgaaccac gactagaggo tgacttagaa atttatgctg actcgatcta
                                                                       180
aggaggatta tgttggttaa tgttggtcta tctaaaatag agrattttgg gaatgctett
                                                                       240
caaagaaggt C
      <210> 77
      c211> 351
      <212> DNA
      <213> Homo sapiens
      <400> 77
 actcacegty etytytety tytycetyet geetygeago otygoddigd cydlycloag
                                                                       60
 gaggegggag gcatgagtga getacagtgg gaacaggete aggactatet caagagannn
                                                                       120
 tatototatg actoagaman ammanatgoo ascagtitag amgermamet campgagatg
                                                                       18 D
 ceasaattet ttggcctacc tstaactgga atgttaaact cccgcgtcat agaasteatg
                                                                       240
 cagaageeea gatgtggagt gecagatgtt geagaataet eactatttee aaatageeea
                                                                       300
 aastggactt ccaaagtggt cacctacagg ategtateat atactegaga C
                                                                       351
       <210> 78
       <211> 1592
       <212> DMA
```

<213> Homo sapiens

```
<400> 78
gaatteeatt gtgttgggge corgggggeg gaggggaggg geceaceaeg geettattte
                                                                        60
caccasactive capacity of detectance calculations and the capacities
                                                                       120
tgegteratg eagereeger ggdaacggot geregetree tggtoeggge eeaggggoto
                                                                       180
gegeeccace geocegetge trgegetget getattacte geocegataa easegecear
                                                                       240
ggggtreggg garreegarg arcetggq¢k gretcaggat grtggggter egrgeagget
                                                                       300
cotgoagoaq goggogogogottoa ettottoaac ttooggboog gotogocoag
                                                                       360
cgcgctgrga gtgctggccg aggtgcag6& gggccgcgcg tggattaatc caaaagaggg
                                                                       420
atgranagtt cacgtggtot toagcacaga gegetacaac coagagtott tacttoagga
                                                                       400
aggtgaggga cgtttgggga aatgttotgo t0qAgtgttt ttcaagaatc agaaacceag
                                                                       5 $ D
acceactate aatgteactt gtacacgget categagaaa aagaaaagae aacaagagge
                                                                       600
ttadobgott tacaagcaaa tgaagcaact gaadaaccoc ttggaaatag tcagcatacc
                                                                       660
tgataateat ggacatattg atdocktot gagacteate tgggatttgg citteettgg
                                                                       720
aagetettae gigalyiggg aaalgacaae acayyigtea cactactaet iggeacaget
                                                                       780
cactagtgtg aggeagtgga anactmatga tgatacaatt gattitgatt atactgttct
                                                                       840
acticatgea tiatomeced aggementati todotgiogo eticacitog totggtadoc
                                                                       900
tggcaaacct cttaaagtga agtaccactg tcaagageta cagacaccag aagaageete
                                                                       95Q
cggaactgaa gaaggatcag ctgtagtacc aacagagett ägtäätttet aaääagääää
                                                                      1020
aatgetottt ttoogactio taamoametg actatactag cataaatcat tottotagta
                                                                      1080
aaacagotaa gytatagaca tiotaalaat tigggaaaac otatgattac aagtaaaaac
                                                                      1140
tcagaaatgo aaagatgitg gittittätt totoagioig etitageitt taactoigga
                                                                      1200
agegeatges esetgamete tgeteagtge tamaemgtes eemgemagtt cetempgett
                                                                      1260
tcagccctaa aatgtaaaac etggataatc agtgtafgtt geaccagaat cagcattttt
                                                                      1320
tittiaacig caasaatga iggicicate toigaatita iaittoidat toittigasc
                                                                      1380
atactatage tratatattt tætgitgeta aatigettet atetageatg itaaacaaag
                                                                      1440
ataatatatt ttegatgada gtaaattata ggaaxddadt tdactgbttb aaadagaact
                                                                      1500
tgattatgit tiatgatite aggedagtat teatilitiaa eitgetaeet aetiitaaat
                                                                      1560
                                                                      1592
amatgittad attictaaaa asamaamaa ma
      <210> 79
      <211> 401
      <212> DNA
      <213> Homo sapiens
      <400> 79
catactgtga attgttcttg actccttttc ttgacattca gttttcanaa tttccatctt
                                                                        ₽Ū
tettetggam etamtgtget gttetettgm etgeetgetg ggeemgemte egmttgeemg
                                                                        120
conganacyt chonotycec aspatygech gytacttess gytetygase atyttyaget
                                                                        180
gagtccagta gacatacatg agtcccagca tagcagcatg tercaggtga antotaatcg
                                                                        240
tgctaggage mamagtgamy ttggmmacat tggcaccamt ccggatccmc tmgttctaga
                                                                        300
goggoogoca cogoggtgga getecagett ttgttccctt tagtgagggt taattgogog
                                                                        360
                                                                        401
cttggcgtaa tcatggmoat agctgtttcc tgtgtgaaat t
       <210× 80
       <211> 301
       c212> DNA
       <213> Homo sapiens
       <400> 80
 aaaaatgaaa catotatttt agcagcaaga ggotgtgagg gatggggtag aaaaggcato
                                                                         60
 ctgagagagt totagacoga cocaggoott gtggcacaet atacgggtca ggaggggtgg
                                                                        730
 aagacaggcc taagetetag gacggtgaat etegggggeta tetgtggatt tgttagaaac
                                                                        180
 agacattett ttgecettit cotgecattg gigilgeegg caggigggea gaagigagee
                                                                        24 D
 accagicaci giteagicat igocaccaca galotticago agaatelico ggiaatecco
                                                                        300
                                                                        40E
```

```
<210> 81
      <211> 301
      <212> DNA
      <213> Homo sapiens
      <400> B1
                                                                        60
tagocaggit geteaageta attitatiot ticceaacag gateeattig gamamimica
egcetttaga atgtggeage eagageaage ggaetaegea ggeacgggge gtttgggaga
                                                                       120
ageteteetg gtgttgactt agggatgaag geteeagget getgeeagaa atggagteae
                                                                       180
cagcagaaga actgotttet etyataagga tgteecacea tttteaaget gttegttaaa
                                                                       240
gttacacagg toottottgc ageagtaagt acceptaget cattitecet caagegggtt
                                                                       300
                                                                       301
      <210> 82
      <211> 201
      <212> DNA
      <213> Homo sapitas
      <400> 82
tonacagace seesagitt attgaztace asactossag geatcaacag tootgagdoo
                                                                        60
angagatera tggcaggaag tcaagagtte tgetteaggg teggtetggg cageertgga
                                                                       120
agaagteatt geacatgaca gtgatgagtg ceaggasaac ageataetee tggamagtee
                                                                       180
                                                                       201
acctgetggn cactgnttca t
      <210> 83
      <211> 251
      <212> DWA
      <213> Nomo sapiens
       <400> 83
gtaaggages tactgtgccc stttattata gostgcagtt ssaassata ttttgaggtt
                                                                        60
agestetes gtttaaaags asttaasaag eaacasttgg asagsgatgs aatggtstet
                                                                       120
recaeacegg etcectetta ccaagtaceg taaacagggt tigageaegt teaatcaatt
                                                                       180
tottgatatg sacsatcasa gosttbaatg csaccatatt tgottotosa snastassac
                                                                       240
                                                                       251
cattttccaa a
       <210> 84
       <211> 301
       <212> DNA
       <213> Homo sapiens
       <400> B4
 agtitataat gitttactat gattiagggc tittittica aagaacaaaa attataagca
                                                                        6 D
 taaaaactra ggtetcagaa agactcaaaa ggctgttttt cactttgtte agattttgtt
                                                                        120
 tocaggeatt aagtgtgtea tacagttgtt gccactgetg ttttecaaat gtccgatgtg
                                                                        180
 tgctatgact gacaactact tttctctggg tctgatcaat tttgcagtan accattttag
                                                                        240
 trettaegge gtenatages satgettesa cateateage tecastetgs agtettgetg
                                                                        300
                                                                        301
       <210> 85
       <211> 201
       <212> DNA
```

<213> Homo sapiens

	<400> 85	
	tattigigta iglaacatit attgacatot accosciges agtatagatg satsagacac	6 D
	agtcacecca taaaggagtt tatcctteea aggagtgaza gacattcaaa aaccaactgc	120
	aataaaaaag ggtgacataa ttgctaaatg gagtggagga acagtgctta tcaattcttg	180
	attgggccac aatgatatac c	2D1
	<210> 86	
	<211 > 301	•
	<2125 DNA	
	<213> Homo Bapiens	
	<400> B6	
	tttatasaut attitattia cagtagaget tiacamanat agrettanat tantacanat	6 D
	ecetttiqes stateactta tatgaetate tteteaaaaa egtgaeatte gattataaca	120
	Cataaactac attrataget gebaagteac cetgeageat mantaegett tomtottett	180
	titgteates ggtecetacc astauceaty esceetages ascesitett attitightat	240
	tottocaatg taaaattoat ototggoosa ascanaatta accaaagaaa agtamaacaa	300
	t	301
	<210> 87	
	<211> 351	
	<212> DNA	
	<213> Homo mapiens	
	<400> 87	
	anonangett teagetcets antaggicat tgttgtcaca acacattica gastcttasa	60
	apaccaaca titiggetit ctaagaasaa gactittaux aaaaatcaat teecteates	120
	etgaaaggac tigtacattt tiamactice agtotoctaa ggcacagtat tiamicagam	1B0
	tgccaatatt accarcotge tgtagranga atazagaage aagggattaa cacttaaaaa	240
	anchyccasa ttootgasoc aaatomttgg cettttaasa aagggataaa aamacnggnt	300
	anggggggga genttttang takagaangg ceangggtag tatgconggn c	351
	The control of the co	
	<210> 88	
	<211> 301	
	<212> DNA	
	<213> Homo sapiens	
,	<400> BB	
	gttttaggte tttaccaatt tgattggttt atcaacaggg catgaggttt aaatatatet	60
	ttgaggaaag gtaaagtcaa atttgactto ataggtcato ggrgtcotca ctcctgtgca	120
	ttttctggtg gaagcacaca gttaattmac tcaagtgtgg cgntagcgat gctttttcat	300
	ggngtcattt atcomettgg tgaacttgca caettgeatg masaeteetg ggteattggg	240
	ntggccgcsa gggssaggtc cccaagacac casacettgc agggtacetn tgcacaceaa	300
	C	301
,		
	<210> 89	
	<211> 591	
	<212> DNA	
	<213> Homo sapiens	
	ራሳሳበ _ን ፀዕ	
	<400> 89 ttttttttt ttttttatt aatcammigm ttcammacam ccatcattct gtcamigeco	60
	asgesceas etgsteetet ecceacatst escattetec teagectete coccaacect	120
	getetedete eteccetgee etageceagg gacagagtet aggaggagee tggggcagag	180
	ctggaggeag gaagagagea ctggacagac agetatggtt tggattgggg aagagattag	240

60

```
gazgtaggtt ctbasagacc cttttttagt accagatate cagccatatt cccagctccs
                                                                     300
ttattcaaat cattteecat ageocagete etetetete treecetaet accaattett
                                                                     360
tggotottac acaattitta teceteaaat atteateest ggoccaassa gteesetgag
                                                                     420
cotroctoty gtggagaete etecacocat gagotrocca gagratecaa garagagtge
                                                                     480
acagagacot ygggaaggaa gotgaacttt geagagatgt ggacaggtgc aygotagggt
                                                                     540
acagggtggt ggtagaggag acaagtttta titccaggcc cacagtctct c
                                                                     591
      <210> 90
      <211> 1996
      <212> DNA
      <213> Homo papiens
      <400> 90
60
thicktics testggsgit accagaint seasacceace secectific califities
                                                                     120
getaagarat gitaaattet taaatgecat aattitigit eaarigeitt giratteaac
                                                                     180
tcacaagtet egaatgtgat taagetacaa atetaagtat teacagetgt gtettagget
                                                                     240
tggtttgtaa caatctagaa gcaatctgtt tacaaaagtg ccaccaaagc attttaaaga
                                                                     300
matcaattta atgodaccaa acateagodt gotatacctg ggasacsaas aatctcacac
                                                                     360
ctasatteta gragagtasa egatteesse tagaatgtae tgtatateea tatggesest
                                                                     42U
ttatgactit gtaatatgta attcataata caggittagg tgtgtggtat ggagctagga
                                                                     480
aaaccaaagt agtaggatat tatägasseg etctgatgtt aagtataaag tcatatgcct
                                                                     540
gatttoctca saccettege terrectore georgeto tetatatett tatcacasae
                                                                     600
caagatetaa cagggttett tetagaggat tattagataa gtaacaettg atcattaage
                                                                     660
acqqatcatq ccactcattc atqqttqttc tatqttccat qaactctaat agcccaactt
                                                                     720
atacatggea etrcaagggg atgekteage cagaaagtaa agggetgmam mmgtagmadda
                                                                      780
atacaeeago cotogtytyy tyygaactyt yydotoecto ttacttytco ttocattoaa
                                                                      84 D
                                                                     900
aacagtttgg cacctttoca tgacgaggat ctctacaggt aggttaaaaxt acttttctgt
gctattcagc cagaaatagt ttttgtgctg gatatgattt taaaacagat tttgtctgtc
                                                                     960
accagigoza zazezitada gaigiotiggo otaziadaza aadadataag aaidiadad
                                                                     1020
tttatattta etactotatt caaatttauo toaaagtaat goaaaataat tagaagtaaa
                                                                     1080
aacttaatto tootgagago tootatttgga aaagettoac atatecacac acaaatatgg
                                                                     1140
gtatatteat geacaggges aacaactgta ttetgasges tagatsaact casagtaaga
                                                                     1200
 catcagtago tagataccag ttocagtatt ggttaatggt ctotggggat cocattitaa
                                                                     1260
gcactctcag atgaggatet tgctcagttg ttagactate attagtttga ttaagcaact
                                                                     1320
 gaagtttact toatamatta outtitoota tatoomgan totgoolgan maattitata
                                                                     1390
 cattoctoca aaggtaagta ttotocaaag gtaagtattt gactattaac acasaggesa
                                                                     1440
 tgtgattatt gcataatgac actasatatt atgtggcttt tctgttaggt ttataagttt
                                                                     150D
 tcaatgatca gttcaagaas stgcagatca tatataacta aggttttaca ccagtggttg
                                                                     1560
 acaaactatg geccaeagge taaacccagc cteceettgt tittataaat aagittiatt
                                                                     1620
 agacaraacc acactcatto atttctgtat tgtgtatago tgctttcacg ctatactago
                                                                     1680
                                                                     1740
 ageactgaat agttgtgaca gagactgtat ggaccgtgaa gcataaatat ttaccatetg
 geomatecta ammanagtgt gecamttert ggtttmemet ammatatags gtttmgtggg
                                                                     1800
 aagootattt geaatgigti tittitagge goigtaatta cosaltases tieaggitos
                                                                     1860
 ggtgactdag caaccaaaca aaagggatac taatttttta tgaacaatat atttgtattt
                                                                     1920
 tatggacata aaaggaaact ttcagaanga anaggaggaa aataaagggg gaaagggacc
                                                                     1980
                                                                     1996
 caecaceatg gaattc
       <210> 91
       <211> 911
       <212> DNA
       <213> Homo sapiens
       <400> 91
```

gccctttttt tttttttt cttgtttaaa aaaattgttt tcattttaat gatctgagtt

```
agtaadaaac aaatgtadaa aaltgtotti cacatticca tacattgtgt tatggacema
                                                                       120
stgaaaarge tggartacaa atgozggttt Ctttataucc tuaacttcaa ttattgtcec
                                                                       180
ttatamatam aggigatitg claacacatg cattigigaa cacagaigec aasaattata
                                                                       240
catgtaagtt aatgcacaac caagagtata dadtgttCat ttgtgCagtt atgcgtCaaa
                                                                       300
tgcgactgac acagaagcag ttatcctggg atatttcact etatatgasa agcatcttgg
                                                                       360
agaaatagat tgaaatacag titaasacaa amattgtatt otacmaatac amtamaattt
                                                                       420
geazettgez catetgaage azextttg&g &&&gctgctt caataaccct gctgttatat
                                                                       480
tggttttata ggtatetete caaagteatg ggttgggata tagetgettt aaagaaaata
                                                                       54 O
eatatgiata ttaaaaggaa aatcacactt taaaaatgtg aggaaagcut tgaaaacagt
                                                                       500
cttaatgcat gagtocatot acatatitic sagittigga sacagasaga agittagaat
                                                                       660
tttcaaagta atctgaaaac tttctaagco attttaaaat aagatttttt tocccatctt
                                                                       720
tecamigitt cotatitgat agigtadiar agamatggge agittetagi girmacitam
                                                                       7 U D
ctytycteet toeteegtoe thatacetth abgeothady dythuadath agbygnaath
                                                                       84 D
gggttatant gazaatgara agggggcccc ttcagcagec arteatetga actagtaate
                                                                       900
conacacaat g
                                                                       911
```

<210> 92 <211> 1710 <212> DNA

<213> Homo Bapiess

<400> 92

ttttttttt tttttaactt ttagcagtgt ttatttttgt taaaagaaac caattgaatt 60 gaaggteaag acacettetg mttgcmdgm ttbbmcaaga aagtattact tattteaact 120 ttacaaagca tottattget ttaaaaagat coatactatt gataaagtto accatgaacu 100 Estatgisat aaggagacia asatätteät ittaeatain taeaacaigi aliteatait 240 totaatcaac cacaaatcat ataggaaaat atttaggtoo atgammaagt ttomaaacat 300 taasaaatta aagittigaa acaaatcaca tgigaaaget estisaatsa tascatigac 360 aaataaatag ttaatcagon tiacitatia golgolgood tgoattootg goatbookt **42**D ccaagcgagg gteageatgc agggtataat tteatactat gcgaccgtaa agagctacag 4B0 ggottattit tgaagtgaaa tgicaraggg totttoatto totttoaaaq gaagatoact 540 catggetget amactgited entgangagt accommang catchitetg amatgitact 600 stgaagatto atgacaacat attititta accistitty aasgastitt stttaggaga 660 ggggatggge cagtagatgg agggtatotg agaageeett thetgtitta aaatataatg 720 attcactgat gtttatagta tcaacagtot titaagaaca atgaggaatt aaaactacag 780 gatacgtgga atttaaatgo maattgcatt catggatata cctaratett gaaaaacttg 84O aaaaggaaaa actatteeca aagaaggtee tgataettaa gacagettge tgggtttgat 900 960 agcaatcaaa tobgtaaagc agatggttac tagtaagtot agttatggga gtotgagtto 1020 teactcatge tgtgcttgct ggatttgctg gctcttttcc gctctctgtg atgetggact 1080 ggdttqtdag gtq&catqdt dtcaaagttg tgactggact cgttgtgctg ccgqqtqt&d 1140 ctettgeact tgeaggeagt gactactgtg attttgtagg tgegtgtget gecatettgg 1200 eactgraget ggattetety sgtacgggtt tigtratiga caracegora etectgggag 1260 ctectectge tecagtactt tgttecatag cetectedaa tecagttagg gageactgge 1320 aggggcaage actegecage &cacaccage tectteagag ggctgatget ggtgcactgg 1360 cdatcagaga tetatttegt egaacecagt teccegoraac coactteaac coaagtetto 1440 egatecapte cagigitari gazatgeetg colecatite tigetigati caacgigetg 1500 ttgctgctgg ggtgtgdtgg @ac@ggttta accacatgtg aataaaggat ttctgtggca 1560 tcattittaa aagccaaaca gritticati aggatgcatg caaggggaag gagatagaaa 1620 tgaatggcag gaggaagcat ggtgægtagæ ggætttgctt gactgaagag ctggttaatt 1680 Cttttgcctc tgcccaacac aatggaattc 1710

421D> 93

c211> 251

<212> DNA

<213> Homo sapiens

<400> 93				
cecacectar craaatatta gacaccaaca	cagaaaagct	agcaat.ggat.	tecettetae	€Q
tttgttaaat aaataagtta aatatttaaa				120
arcamonge cacateetga taaangetaa				180
totaggetse gggsacetgg ttettgtgtg				240
actttcatat g				251
<u>.</u> .				
<210> 94				
<211> 738				
<212> DNA			-	
<213> Homo sapiens				
<400> 94				
contlitte tettette actions	ttatttctgg	gactaaattt	gggtcagagc	60
tgcagagzag ygztgggddd tgagdttgag				120
aaccccccc etggaragtt ttggaaatt@				180
ageceaatgt gggggaagea gaccetgagt				240
atquacatte teaacatete tggganggaa				300
cetgeageag gtggggatge eggtgtgetg				360
ategtttect ggatecaett ggtgaacttg				420
ggccgggcae wagggtaato tooccaggae	acgagteeet	aca a a a a a a a a a a a a a a a a a a	attgcagacc	480
acaggococo cagaatosoo otggoaggag				540
atggtgtcat ctatctgtct cgggtaagca	tectegeacc	ttttotgact	tagcacgclg	600
atattcaagc actggaggac cttagggaag	tgcacttggg	ggctettggt	tgtccccag	660
ccagacacca agcactttgt cccagcagag				720
acatotttag tgggacga				73B
•				