Nonlinear Systems II

APM1137 - Numerical Analysis

Department of Mathematics, Institute of Arts and Sciences Far Eastern University, Sampaloc, Manila

Order of Convergence

Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p with $p_n \neq p$ for all n. If positive constants λ and α exists with

$$\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}}=\lambda,$$

then $\{p_n\}_{n=0}^{\infty}$ converges to p of order α with asymptotic error constant λ .

- An iterative technique of the form $p_n = g(p_{n-1})$ is said to be of order α if the sequence $\{p_n\}_{n=0}^{\infty}$ converges to the solution p = g(p) of order α .
- In general, a sequence with a high order of convergence converges more rapidly than a sequence with a lower order.
- The asymptotic constant affects the speed of convergence but not to the extent of the order.
 - If $\alpha = 1$ (and $\lambda < 1$), the sequence is **linearly convergent.**
 - If $\alpha = 2$, the sequence is quadratically convergent.

For large n,

linearly convergent

$$|p_n - p| \approx \lambda |p_{n-1} - p| \approx \lambda^2 |p_{n-2} - p| \approx \cdots \approx \lambda^n |p_0 - p|$$

quadratically convergent

$$|p_n - p| \approx \lambda |p_{n-1} - p|^2 \approx \lambda \left[\lambda |p_{n-2} - p|^2 \right]^2 = \lambda^3 |p_{n-1} - p|^4 \approx \cdots \approx \lambda^{2n-1} |p_0 - p|^{2n}.$$

Theorem

Let $g \in C[a,b]$ be such that $g(x) \in [a,b]$, for all $x \in [a,b]$. Suppose in addition, that g' is continuous on (a,b) and a positive constant k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$.

If $g'(p) \neq 0$, then for any number $p_0 \neq p$ in [a, b], the sequence

$$p_n = g(p_{n-1}), \text{ for } n \ge 1,$$

converges only linearly to the unique fixed point $p \in [a, b]$.

Theorem

Let p be a solution of the equation x = g(x). Suppose that g'(p) = 0 and g'' is continuous with |g''(x)| < M on an open interval I containing p. Then there exists a $\delta > 0$ such that, for $p_0 \in [p - \delta, p + \delta]$, the sequence defined by $p_n = g(p_{n-1})$, when $n \ge 1$, converges at least quadratically to p. Moreover, for sufficiently large values of n,

$$|p_{n+1}-p| \leq \frac{M}{2}|p_n-p|^2.$$

Multiple Roots

A solution p of f(x) = 0 is a zero of multiplicity m of f if for $x \neq p$, we can write

$$f(x) = (x - p)^m q(x)$$
, where $\lim_{x \to p} q(x) \neq 0$.

Theorem

The function $f \in C^1[a, b]$ has a simple zero at p in (a, b) if and only if f(p) = 0, but $f'(p) \neq 0$.

Theorem

The function $f \in C^m[a,b]$ has a zero of multiplicity m at p in (a,b) if and only if

$$0 = f(p) = f'(p) = f''(p) = \dots = f(m-1)(p)$$
, but $f^m(p) \neq 0$.

Example

Let $f(x) = e^x - x - 1$. (a) Show that f has a zero of multiplicity 2 at x = 0. (b) Show that Newton's method with $p_0 = 1$ converges to this zero but not quadratically.

Solution (a):

$$f(x) = e^x - x - 1$$
, $f'(x) = e^x - 1$ and $f'' = e^x$

So

$$f(0) = e^0 - 0 - 1 = 0$$
, $f'(0) = e^0 - 1 = 0$ and $f''(0) = e^0 = 1$.

Example

Let $f(x) = e^x - x - 1$. (a) Show that f has a zero of multiplicity 2 at x = 0. (b) Show that Newton's method with $p_0 = 1$ converges to this zero but not quadratically.

Solution (b):

n pn	n pn
0 1.0	$92.7750 \times 10-3$
1 0.58198	$101.3881 \times 10-3$
2 0.31906	$116.9411 \times 10-4$
3 0.16800	$123.4703 \times 10-4$
4 0.08635	$13\ 1.7416 \times 10-4$
5 0.04380	$14.8.8041 \times 10-5$
6 0.02206	$15 \ 4.2610 \times 10-5$
7 0.01107	$16\ 1.9142 \times 10-6$
8 0.005545	

Aitken's Δ^2 Method

Suppose $\{p_n\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit p. This method constructs a sequence $\{\hat{p}_n\}_{n=0}^{\infty}$ that converges more rapidly to p than does $\{p_n\}_{n=0}^{\infty}$.

Assume the signs of $p_n - p$, $p_{n+1} - p$ and $p_{n+2} - p$ agree and n sufficiently large that

$$\frac{p_{n+1}-p}{p_n-p}\approx\frac{p_{n+2}-p}{p_{n+1}-p}.$$

This leads to the definition of the sequence $\{\hat{p}_n\}_{n=0}^{\infty}$, where

$$\hat{p}_n = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

Example

The sequence $\{p_n\}_{n=0}^{\infty}$, where $p_n = \cos(1/n)$ converges linearly to p = 1.

n	p_n	\hat{p}_n		
1	0.54030	0.96178		
2	0.87758	0.98213		
3	0.94496	0.98979		
4	0.96891	0.99342		
5	0.98007	0.99541		
6	0.98614			
7	0.98981			

Definition

For a given sequence $\{p_n\}_{n=0}^{\infty}$, the **forward difference** Δp_n is defined by

$$\Delta p_n = p_{n+1} - p_n$$
, for $n \ge 0$.

Higher powers of the operator Δ are defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n)$$
, for $k \ge 2$.

This implies that

$$\Delta^2 p_n = \Delta(p_{n+1} - p_n) = \Delta p_{n+1} - \Delta p_n = (p_{n+2} - p_{n+1}) - (p_{n+1} - p_n)$$

Thus we can also write \hat{p}_n as

$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$$
, for $n \ge 0$.

Fundamental Theorem of Algebra)

If P(x) is a polynomial of degree $n \ge 1$ with real or complex coefficients, then P(x) = 0 has at least one (possibly complex) root.

Corollary

If P(x) is a polynomial of degree $n \ge 1$ with real or complex coefficients, then there exist unique constants x_1, x_2, \ldots, x_k , possibly complex, and unique positive integers m_1, m_2, \ldots, m_k , such that $\sum_{i=1}^k m_i = n$ and

$$P(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}.$$

Corollary

Let P(x) and Q(x) be polynomials of degree at most n. If x_1, x_2, \ldots, x_k , with k > n, are distinct numbers with $P(x_i) = Q(x_i)$ for $i = 1, 2, \ldots, k$, then P(x) = Q(x) for all values of x.

Horner's Method

Let

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Define $b_n = a_n$ and

$$b_k = a_k + b_{k+1}x_0$$
 for $k = n - 1, n - 2, \dots, 1, 0$.

Then $b_0 = P(x_0)$. Moreover, if

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1,$$

then

$$P(x) = (x - x_0)O(x) + b_0$$

Horner's method is actually synthetic division.

Use Horner's method to evaluate $P(x) = 2x^4 - 3x^2 + 3x - 4$ at $x_0 = -2$.

$$x_0 = -2 \begin{tabular}{c|cccc} Coefficient & Coeffici$$

So,

$$P(x) = (x+2)(2x^3 - 4x^2 + 5x - 7) + 10.$$

Thus $P(-2) = b_0 = 10$.

Horner's method gives a faster way of computing P and P' in Newton's method since

$$P(x) = (x - x_0)Q(x) + b_0,$$

where

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1,$$

differentiating with respect to x gives

$$P'(x) = Q(x) + (x - x_0)Q'(x)$$
 and $P'(x_0) = Q(x_0)$.

Example

Find an approximate to a zero of $P(x) = 2x^4 - 3x^2 + 3x - 4$ using Newton's method with $p_0 = -2$ and synthetic division to evaluate $P(p_n)$ and $P'(p_n)$

Solution:

-1.796	2	0	-3	3	-4	
		-3.592	6.451	-6.197	5.742	
	2	-3.592	3.451	-3.197	1.742	$= P(x_1)$
		-3.592	12.902	-29.368		
	2	-7.184	16.353	-32.565	$= Q(x_1)$	$= P'(x_1).$

Then use this to solve for p_2 .

Horner's Method Algorithm

To evaluate the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ at its derivative at x_0 :

INPUT degree n; coefficients $a_0, a_1, \ldots, a_n; x_0$

OUTPUT
$$y = P(x_0); z = P'(x_0).$$

Horner's Method Algorithm

```
Step 1 Set y = a_n; (Compute b_n for P)
z = a_n (Compute b_{n-1} for Q).

Step 2 For j = n - 1, n - 2, ..., 1,
set \ y = x_0 y + a_j; (Compute b_j for P)
z = x_0 z + y; (Compute b_{j-1} for Q)

Step 3 Set y = x_0 y + a_0. (Compute b_0 for P.)

Step 4 OUTPUT (y, z);
STOP.
```

Complex Zero: Müller's Method

Approximate a complex root begining with a complex initial approximation.

Theorem

If z = a + bi is a complex zero of multiplicity m of the polynomial P(x) with real coefficients, then z = a - bi is also a zero of multiplicity m of the polynomial P(x), and $(x^2 - 2ax + a^2 + b^2)^m$ is a factor of P(x).

Müller's method uses three initial approximations, p_0 , p_1 , and p_2 , and determines the next approximation p_3 by considering the intersection of the x-axis with the parabola through

$$(p_0, f(p_0)), (p_1, f(p_1)), and (p_2, f(p_2)).$$

Consider

$$P(x) = a(x - p_2)^2 + b(x - p_2) + c$$

that passes through $(p_0, f(p_0)), (p_1, f(p_1)), and(p_2, f(p_2))$. The constants a, b, c are determined from

$$P(p_0) = a(p_0 - p_2)^2 + b(p_0 - p_2) + c$$

$$P(p_1) = a(p_1 - p_2)^2 + b(p_1 - p_2) + c$$

$$P(p_2) = a(p_2 - p_2)^2 + b(p_2 - p_2) + c$$

To determine p_3 , a zero of P, we apply the quadratic formula to P(x) = 0. However, because of round-off error problems caused by the subtraction of nearly equal numbers, we apply the rationalized form of the fomula

$$p_3 - p_2 = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$

The sign is chosen to agree with the sign of b.

$$p_3 = p_2 - \frac{2c}{b + sgn(b)\sqrt{b^2 - 4ac}}$$

Once p_3 is determined, the procedure is reinitialized using p_1, p_2 , and p_3 in place of p_0, p_1 , and p_2 to determine the next approximation, p_4 .

The method gives approximate complex roots when $b^2 - 4ac < 0$.

Müller's Algorithm

To find a solution to f(x) = 0 given three approximations, p_0, p_1 , and p_2 :

INPUT p_0, p_1, p_2 ; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

$$\begin{array}{ll} \textit{Step 1} & \textit{Set } h_1 = p_1 - p_0; \\ & h_2 = p_2 - p_1; \\ & \delta_1 = (f(p_1) - f(p_0))/h_1; \\ & \delta_2 = (f(p_2) - f(p_1))/h_2; \\ & d = (\delta_2 - \delta_1)/(h_2 + h_1); \\ & i = 3. \end{array}$$

Step 2 While $i \le N_0$ do Steps 3–7.

Step 3
$$b = \delta_2 + h_2 d;$$

 $D = (b^2 - 4f(p_2)d)^{1/2}.$ (Note: May require complex arithmetic.)

Step 4 If
$$|b-D| < |b+D|$$
 then set $E = b+D$
else set $E = b-D$

Step 5 Set
$$h = -2f(p_2)/E$$
;
 $p = p_2 + h$.

Müller's Algorithm

```
Step 6 If |h| < TOL then
             OUTPUT (p); (The procedure was successful.)
             STOP.
Step 7 Set p_0 = p_1; (Prepare for next iteration.)
              p_1 = p_2;
              p_2 = p;
              h_1 = p_1 - p_0;
              h_2 = p_2 - p_1;
              \delta_1 = (f(p_1) - f(p_0))/h_1;
              \delta_2 = (f(p_2) - f(p_1))/h_2;
              d = (\delta_2 - \delta_1)/(h_2 + h_1);
              i = i + 1.
```

Step 8 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

find the complex roots of the polynomial

The initial approximations are chosen such that the parabola passing through these points do not intersect the *x*-axis and thus have complex roots.

$p_0 = 0.5, p_1 = -0.5, p_2 = 0$					
i	p_i	$f(p_i)$			
3	-0.100000 + 0.888819i	-0.01120000 + 3.014875548i			
4	-0.492146 + 0.447031i	-0.1691201 - 0.7367331502i			
5	-0.352226 + 0.484132i	-0.1786004 + 0.0181872213i			
6	-0.340229 + 0.443036i	0.01197670 - 0.0105562185i			
7	-0.339095 + 0.446656i	-0.0010550 + 0.000387261i			
8	-0.339093 + 0.446630i	0.000000 + 0.000000i			
9	-0.339093 + 0.446630i	0.000000 + 0.000000i			