Beamer sur le raisonnement par récurrence

Classes de TMaths3/TMaths6

Yann Mobian

Lycée Maurice Ravel

29 août 2020

Au fil du temps

1858-1932

Giuseppe Peano (1858-1932), analyste et logicien italien, donna la formulation actuelle du raisonnement par récurrence lors de la construction axiomatique de l'ensemble \mathbb{N} . Ce raisonnement utilise son cinquième axiome, appelé aussi principe de récurrence : « si un ensemble d'entiers naturels contient 0 et contient le successeur de chacun de ses éléments, alors cet ensemble est égal à \mathbb{N} ».

Soit la suite (u_n) définie par $u_0=1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

On souhaite démontrer que pour tout entier naturel n on a

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

On souhaite démontrer que pour tout entier naturel n on a

$$u_n = (n+1)^2.$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

On souhaite démontrer que pour tout entier naturel n on a

$$u_n = (n+1)^2.$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

On souhaite démontrer que pour tout entier naturel n on a

$$u_n = (n+1)^2.$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

On souhaite démontrer que pour tout entier naturel n on a

$$u_n = (n+1)^2.$$

Soit la suite (u_n) définie par $u_0 = 1$ et tout entier naturel n par

$$u_{n+1} = u_n + 2n + 3.$$

On souhaite démontrer que pour tout entier naturel n on a

$$u_n = (n+1)^2.$$

Le principe

Le raisonnement par récurrence peut se comparer à la théorie des dominos : on considère une suite de dominos rangés de telle sorte que si un domino tombe alors le suivant tombera. Si on fait tomber le premier domino alors le second tombera, puis le troisième, ...etc.. Conclusion: si le premier domino tombe alors tous tomberont. Tout repose en fait sur le principe de propagation "si l'un tombe alors le suivant aussi"

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Hérédité: et si la véracité de la proposition P_k avec $k \ge n_0$ implique que la proposition P_{k+1} soit vraie

alors pour tout entire antino $n \geq n_0$ is proposition E_n evenie.

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Hérédité: et si la véracité de la proposition P_k avec $k \ge n_0$ implique que la proposition P_{k+1} soit vraie

alors pour tout entier naturel $n \ge n_0$ la proposition P_n est vraie.

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Hérédité: et si la véracité de la proposition P_k avec $k \ge n_0$ implique que la proposition P_{k+1} soit vraie

alors pour tout entier naturel $n \ge n_0$ la proposition P_n est vraie.

Soit P_n une proposition relative à l'entier n et n_0 un entier.

Initialisation: si la proposition P_{n_0} est vraie,

Hérédité : et si la véracité de la proposition P_k avec $k \ge n_0$ implique que la proposition P_{k+1} soit vraie

alors pour tout entier naturel $n \ge n_0$ la proposition P_n est vraie.

- 1 Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- 2 Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.

 La propriété ne peut donc pas être vraie pour tout $n \ge n_0$
- suivout aiors tous les domines ne toutient pas et la propriété ne peut être vraie pour tout $n \ge n_0$.
- L'initialisation et l'hérédité sont donc indispensables pour prouver une proposition pour TOUT $n \ge n_0$.

- 1 Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- 2 Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 - La propriété ne peut donc pas être vraie pour tout $n \ge n_0$
- 3 De même si l'un domino tombe mais ne fait pas tomber le suivant alors tous les dominos ne tombent pas et la propriété ne peut être vraie pour tout $n \ge n_0$.
- L'initialisation et l'hérédité sont donc indispensables pour prouver une proposition pour TOUT $n \ge n_0$.

- 1 Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- 2 Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 - La propriété ne peut donc pas être vraie pour tout $n \geqslant n_0$.
- 3 De même si l'un domino tombe mais ne fait pas tomber le suivant alors tous les dominos ne tombent pas et la propriété ne peut être vraie pour tout $n \ge n_0$.
- **4** L'initialisation et l'hérédité sont donc indispensables pour prouver une proposition pour TOUT $n \ge n_0$.

- 1 Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- 2 Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 - La propriété ne peut donc pas être vraie pour tout $n \geqslant n_0$.
- 3 De même si l'un domino tombe mais ne fait pas tomber le suivant alors tous les dominos ne tombent pas et la propriété ne peut être vraie pour tout $n \ge n_0$.
- 4 L'initialisation et l'hérédité sont donc indispensables pour prouver une proposition pour TOUT $n \ge n_0$.

- 1 Dans les exercices, on pourra toujours modéliser le raisonnement par récurrence par l'illustration des dominos qui tombent.
- 2 Si le premier domino ne tombe pas, il ne peut donc pas faire tomber les autres.
 - La propriété ne peut donc pas être vraie pour tout $n \geqslant n_0$.
- 3 De même si l'un domino tombe mais ne fait pas tomber le suivant alors tous les dominos ne tombent pas et la propriété ne peut être vraie pour tout $n \ge n_0$.
- 4 L'initialisation et l'hérédité sont donc indispensables pour prouver une proposition pour TOUT $n \ge n_0$.

Reprenons l'exemple initial.

On pose
$$P_n : u_n = (n+1)^2$$
.

Initialisation : si n=0 on a d'una part $u_0=1$ d'après l'énoncé et $(0+1)^2=1$ donc P_0 est vraie.

Reprenons l'exemple initial. On pose P_n : $u_n = (n+1)^2$.

Initialisation : si n = 0 on a d'une part et $(0+1)^2 = 1$ donc P_0 est vraie.

Reprenons l'exemple initial. On pose P_n : $u_n = (n+1)^2$.

Initialisation : si n = 0 on a d'une part $u_0 = 1$ d'après l'énoncé et l'apprès l'énoncé et l'apprès l'apprès l'apprès l'énoncé et l'apprès l'ap

Reprenons l'exemple initial. On pose P_n : $u_n = (n+1)^2$.

Initialisation : si n = 0 on a d'une part $u_0 = 1$ d'après l'énoncé et $(0+1)^2 = 1$ donc P_0 est vraie.

Reprenons l'exemple initial. On pose P_n : $u_n = (n+1)^2$.

Initialisation: si n=0 on a d'une part $u_0=1$ d'après l'énoncé et $(0+1)^2=1$ donc P_0 est vraie.

Reprenons l'exemple initial. On pose P_n : $u_n = (n+1)^2$.

Initialisation: si n=0 on a d'une part $u_0=1$ d'après l'énoncé et $(0+1)^2=1$ donc P_0 est vraie.

Hérédité: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire : $u_k = (k+1)^2$.

Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
= $(k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
= $k^2 + 4k + 4$ en développant.

 $= (k+2)^{-}$ identite remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n = 0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Hérédité : on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire :

Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence
 $= k^2 + 4k + 4$ en développant.

Un en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n = 0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Hérédité: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire : $u_k = (k+1)^2$.

Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence
 $= k^2 + 4k + 4$ en développant.

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n = 0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Hérédité on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire : $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit

 $u_{k+1} = u_k + 2k + 3$ d'après l'énoncé. $(k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence $-k^2 + 4k + 4$ en développant.

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n = 0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Headlite on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire : $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$egin{array}{lll} u_{k+1} &=& u_k + 2k + 3 & ext{d'après l'hypothèse de réce} \ &=& (k-1)^2 + 2k + 3 & ext{d'après l'hypothèse de réce} \ &=& k^2 + 4k + 4 & ext{en développant}. \end{array}$$

On en déduit donc que P_{k+1} est vraic

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n = 0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Hérédité : on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire : $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ montre somme pande

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Menditie: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire: $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
= $(k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence
= $k^2 + 4k + 4$ en développant.

 $= (k+2)^2$ identité remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Weredine: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire: $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ identité remarquable

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2$$

Herállië: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire: $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ identité remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2.$$

Herállië: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire: $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ identité remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2.$$

We will be a suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire : $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ identité remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2.$$

Herállië: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire: $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ identité remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0.

Herédité: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire : $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ identité remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0.

Weredine: on suppose P_k vraie pour un entier naturel k quelconque c'est-à-dire: $u_k = (k+1)^2$. Montrons que P_{k+1} est vraie soit $u_{k+1} = (k+2)^2$.

$$u_{k+1} = u_k + 2k + 3$$
 d'après l'énoncé.
 $= (k+1)^2 + 2k + 3$ d'après l'hypothèse de récurrence.
 $= k^2 + 4k + 4$ en développant.
 $= (k+2)^2$ identité remarquable

On en déduit donc que P_{k+1} est vraie.

Conclusion : P_0 est vraie et P_n est héréditaire à partir du rang n=0.

$$\forall n \in \mathbb{N}, \quad u_n = (n+1)^2.$$

