Question	Scheme	Marks
3(a)	$675 = \frac{\theta r^2}{2} \Rightarrow \theta = \frac{675 \times 2}{r^2} = \frac{1350}{r^2}$	M1
	$\theta/3 = \frac{1}{2} \Rightarrow \theta = \frac{1}{r^2} = \frac{1}{r^2}$	
	$P = 2r + r\theta \Rightarrow P = 2r + r\left(\frac{1350}{r^2}\right) \Rightarrow P = 2r + \frac{1350}{r}$	M1A1 cso
		[3]
(b)	$\frac{\mathrm{d}P}{\mathrm{d}r} = 2 - \frac{1350}{r^2}$	M1
	$2 - \frac{1350}{r^2} = 0 \Rightarrow r = 15\sqrt{3}$ or $\sqrt{675}$	M1A1
	$P = 2 \times 15\sqrt{3} + \frac{1350}{15\sqrt{3}} = 60\sqrt{3}$	M1A1 [5]
(c)	$d^2P = 2700$ $d^2P =$	L 3
	$\frac{d^2 P}{dr^2} = \frac{2700}{r^3} r > 0 \Rightarrow \frac{d^2 P}{dr^2} > 0 \Rightarrow minimum$	M1A1ft
		[2]
Total 10 marks		

Part	Mark	Notes		
(a)	Note: A	Accept any variable for <i>P</i> in this part of the question for the first two M		
	marks only , even no variable as long as it is clear it is the perimeter.			
	M1	Applies the correct formula for the area of a sector with 675 cm ² and		
		attempts to rearrange to find an expression for θ , r or $r\theta$		
		Minimally acceptable expression: $\theta = \frac{k}{r^2}$, $r = \frac{k}{\theta r}$ or $\theta r = \frac{k}{r}$		
	M1 Applies the correct formula for the perimeter of a sector and sub			
		their expression for θ provided it is as a minimum of the form $\theta = \frac{k}{r^2}$		
		Minimally acceptable expression: $P = 2r + \frac{k}{r}$ where k is an integer		
	A1	For a fully correct expression for <i>P</i> with no errors seen.		
		You must see $P = \dots$		
	ALT –	uses the formula $A = \frac{1}{2} rS$ where S is the arc length. S is very popular!		
	M1	Applies the correct formula for the area of a sector and rearranges to		
		find an expression for <i>S</i> .		
		$675 = \frac{rS}{2} \Rightarrow S = \frac{1350}{r}$ minimally acceptable $S = \frac{k}{r}$		
	M1	Applies the correct formula for the perimeter of a sector.		
		$P = 2r + S \Rightarrow P = 2r + \frac{1350}{r}$ minimally acceptable $P = 2r + \frac{k}{r}$		
	A1	For a fully correct expression for <i>P</i> with no errors seen.		
		You must see $P = \dots$		

	ALT 2	– works in degrees		
	M1	Applies a correct formula for the area of a sector in degrees and		
		attempts to find an expression for θ		
		$675 = \frac{\theta}{360} \times \pi r^2 \Rightarrow \theta = \frac{675 \times 360}{\pi r^2} = \frac{243000}{\pi r^2}$ Min: $\theta = \frac{K}{\pi r^2}$ Applies a correct formula for the perimeter of a sector and substitutes		
	M1	Applies a correct formula for the perimeter of a sector and substitutes		
		their expression for θ		
		$P = 2r + \frac{\theta}{360} \times 2\pi r \left(\frac{243000}{\pi r^2}\right) \Rightarrow P = 2r + \frac{1350}{r} \text{Min: } P = 2r + \frac{K}{r}$		
		Do not accept solution with a mix of degrees and radians.		
	A1	For a fully correct expression for <i>P</i> with no errors seen.		
		You must see $P = \dots$		
(b)	M1	NB: Allow poor notation here, even $\frac{dy}{dx}$ or nothing at all.		
		For attempting to differentiate the given expression for <i>P</i>		
		The minimally acceptable expression for the derivate is		
		$\frac{dP}{dr} = 2 - \frac{Q}{r^2}$ where Q is a positive integer.		
	M1	For setting their differentiated expression = 0 finding a value		
		for r		
		This is a simple equation to solve. Go through their working checking		
	A1	that it is correct. Do not award this mark for incorrect processing.		
		For $r = 15\sqrt{3}$ oe [An approximate value is $r = 25.98$]		
		ward the next 2 marks if they appear in part (b) only		
	M1	For substituting their value for r into the given expression for P		
		Only allow this mark if: • They use the correct <i>r</i> and obtain the correct perimeter.		
		 They use an incorrect r provided it is a positive value and show 		
		explicit substitution		
	A1	For the correct final answer in exact form.		
		There is no follow through here.		
(c)	NB: Av	ward the next two marks if they appear in part (c) only.		
	M1	Finds the second derivative.		
		The minimally acceptable expression for the second derivative is		
		$\frac{d^2 P}{dr^2} = \frac{X}{r^3} \text{ where } x \text{ is an integer.} \qquad \text{(The value for } \frac{d^2 P}{dr^2} \text{ is awrt 0.15)}$		
		If they test $\frac{dP}{dr}$ around the minimum point – send to Review.		
		If they test <i>P</i> either side – score M0A0		
	A1ft	For a correct conclusion.		
		FT their 2nd derivative provided it is of the form $\frac{d^2 P}{dr^2} = \frac{X}{r^3}$		
		r must be positive and if they find a value for $\frac{d^2P}{dr^2}$ then substitution		
		must be seen unless they use $15\sqrt{3}$ and obtain awrt 0.15		