HOMEWORK SOLUTION
MER 312: 404. Dyn & Rinematics

PROBS-E PG 1 OF S
NONTEW 5TH CRBB)

PROBLEM SE DESIGN A LINKAGE TO CARRY THE BODY SHOWN BELCON THROUGH THE TWO POSITIONS P4 AND P2 AT THE ANGLES SHOWN IN THE FIGURE. USE ANALYZIZONG SINTHESIS WITHOUT RECHAND TO FOR THE FIXED ADDRESS SHOWN.

GIVEN:

1. M P. 1 Pz IN ORSENTATION SHOWN BELOW

Assemptions:

1. PLANER MOTION

FINU:

1. Synthesize THE MECHANISM THAT WILL CROSTE THE MOTION BELLW

Prop 5-8 PGZcF5
Nonzon 574 (RBB)

Saitten:

Two Position synthetis has two approaches. The Information given in this problem statement corresponds to Approach A In which Psz, dz, and dz are given. These Parameters are Illustrated in @. The values are calculated as follows.

$$P_{12} = \sqrt{(-1.236 \text{m})^2 + (2.138 \text{m}^2)} = 2.4696 \text{m}$$

$$\delta_z = T_{AN}^{-1} \frac{2.138_{IN}}{-1.236_{IN}} = 120.0^{\circ}$$

$$\alpha_2 = 327.5^{\circ} - 30^{\circ} = 297.5^{\circ}$$

THE BOOK SUGGESTS THE FELLOWENG FREE CHOICES

2 1 \$ DEFINE ONE SIDE OF THE COUPLER LIMIT AND SIY DEFINE THE OTHER. BY AND YZ DEFINE THE TRAVER OF LIMIS 2 AND 3.

THE SOLUTION TO THIS SYNTHESIS USING ANALYTICAL METHODS
IS FOUND ON THE NEXT PAGE, THE PAGE THAT FOUCUS THAT
IN THE CALCULATION OF THE DRIDE DYND FOR THIS MECHANISM,
AND THE LAST PAGE SHOWS THE SYNTHESIZED MECHANISM.

Summary:

THE USE OF AN ANALYSTICAL SOLITION ROLFES ON CONNECTLY CALCULATING THE INPOT PARAMETERS. FIGURES ARE OFTEN NECESSARY TO PROPEDLY DOESN'THE INPOT PARAMETERS. EVEN AFTER THE CONTENT PARAMETERS ARE STILL MORE HARDABLES THAN EQUATIONS. THE PREE CHOICES IN THIS PROBLEM ARE STHEN IN THE PROBLEM STATEMENT. THESE CHOICES SPECTLY THE GEOMETRY OF THE COUPLER LINK AND THE AWALE THE CTHEN TWO LINKS TO AVEL THROUGH

APPROACH B	3	FIRST DYAD						APPROA	ACH B	SECOND DYAD					
GIVEN: P12 δ2 α2	CHOSEN: 2.4696 z 120 φ 297.5 β2	FIND: 1.075 w 204.4 θ -27 W1x W1y	3.669 -113.516 -1.464 -3.364		O2 A1 A2 P1 P2	x-coord 2.443 0.979 -0.389 0.000	y-coord 3.808 0.444 1.475 0.000	GIVEN: P12 82 α2	CHOSEN 2.4696 s 120 ψ 297.5 γ2	: FIND: 1.24 u 74 o -40 U1x U1y	5.461 -125.640 -3.182 -4.438		O4 B1 B2 P1 P2	x-coord y 2.840 -0.342 -2.450 0.000	3.246 -1.192 1.892 0.000
		W1 W2 Z1 Z2	x-coord -1.464 -2.832 -0.979 -0.846		PZ	-1.235	2.139			U1 U2 S1 S2	-3.1818 -5.2900 0.3418 1.2151	-4.4377 -1.3543 1.1920 0.2472	P2	-1.235	2.139
	-0.108993476	\begin{cases} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	} =		1.36783 \ .031336 \	inver -0.5 - 2.08264989	se -2.082649885 -0.5		-0.23396		=	-2.10 3.083		-0.5 -1.373739	-1.37374 -0.5
$\begin{bmatrix} \cos(\beta_2) - 1 \\ \sin(\beta_2) \end{bmatrix}$		$(\delta_2) - z \cdot \left[\cos(\phi + \alpha_2)\right]$ $(\delta_2) - z \cdot \left[\sin(\phi + \alpha_2)\right]$						$\begin{bmatrix} \cos(\gamma_2) \\ \sin(\gamma_2) \end{bmatrix}$		$= \begin{cases} p_{21} \cdot \cos(\delta_2) - s \cdot [\cos(\delta_2) - s \cdot] \\ p_{21} \cdot \sin(\delta_2) - s \cdot [\sin(\delta_2) - s \cdot] \end{cases}$		->			
$\begin{bmatrix} \cos(\beta_2) - 1 \\ \sin(\beta_2) \end{bmatrix}$	$-\sin(\beta_2)$ $ W_{1x} $ $p_{21} \cdot \cos(\delta_2)$		$\alpha_2 - \sin \phi \cdot \mathbf{s}$	$\sin \alpha_2 - \cos(q$	6)]] ()]]			$\begin{bmatrix} \cos(\gamma_2) \\ \sin(\gamma_2) \end{bmatrix}$	$ \begin{vmatrix} -1 & -\sin(\gamma_2) \\ 0 & \cos(\gamma_2) - 1 \end{vmatrix} \begin{bmatrix} U_{1x} \\ U_{1y} \end{bmatrix} = $	$= \begin{cases} p_{21} \cdot \cos(\delta_2) - s \cdot [\cos(\delta_2) - s \cdot] \\ p_{21} \cdot \sin(\delta_2) - s \cdot [\sin(\delta_2) - s \cdot] \end{cases}$	$\psi \cdot \cos \alpha_2 - \sin \psi \cdot \cos \alpha_2 + \cos \alpha_2$	$\psi \cdot \sin \alpha_2 - \cos \psi]$ $\psi \cdot \sin \alpha_2 - \sin \psi]$	}		

SYNTHESIZED LINKAGE KINEMATICS

	DL 004-1 => 002-1	10.000 1/s
≒≥	DL $\omega 4-2 \Rightarrow \omega 2-2$	10.000 1/s^2
Angular Velocity	ω3-1	391.019 1/s
	ω3-2	31.050 1/s
	ω4-1	166.912 1/s
	ω4-2	17.451 1/s
_		
_	DL $\alpha 4-1 \Rightarrow \alpha 2-1$	0.000
r ioi	DL $\alpha 4-1 \Rightarrow \alpha 2-1$ DL $\alpha 4-2 \Rightarrow \alpha 2-2$	0.000 0.000
gular eration		
Angular celeration	DL α4-2 => α2-2	0.000
Angular Acceleration	DL $\alpha 4-2 \Rightarrow \alpha 2-2$ $\alpha 3-1$	0.000 1409201.880 1/s^2

Kinemat	inematics					Norm	al(r)	Perpendicular (θ)	
		x comp	y comp	mag	angle		j	-	j
	G = r1	0.397	-0.563	0.689	-54.8	0.5766	-0.8170	0.8170	0.5766
	U1 = r4-1	-3.182	-4.438	5.461	-125.6	-0.5827	-0.8127	0.8127	-0.5827
Displacements	U2 = r4-2	-5.290	-1.354	5.461	-165.6	-0.9688	-0.2480	0.2480	-0.9688
	W1 = r2-1	-1.464	-3.364	3.669	-113.5	-0.3990	-0.9169	0.9169	-0.3990
	W2 = r2-2	-2.832	-2.333	3.669	-140.5	-0.7718	-0.6359	0.6359	-0.7718
9	V1 = r3-1	-1.321	-1.636	2.103	-128.9	-0.6281	-0.7781	0.7781	-0.628
p la	V2 = r3-2	-2.061	0.416	2.103	168.6	-0.9802	0.1979	-0.1979	-0.980
ĕ	Z1	-0.979	-0.444	1.075	-155.6	-0.9107	-0.4131	0.4131	-0.910
	Z2	-0.846	0.663	1.075	141.9	-0.7869	0.6170	-0.6170	-0.786
	S1	0.342	1.192	1.240	74.0	0.2756	0.9613	-0.9613	0.2756
	S2	1.215	0.247	1.240	11.5	0.9799	0.1994	-0.1994	0.9799
	vA-1	3.3644E+01	4.5294E+02	4.5418E+02	85.8	0.0741	0.9973	-0.9973	0.0741
>	vA-2	2.3330E+01	1.0845E+03	1.0848E+03	88.8	0.0215	0.9998	-0.9998	0.021
Ξ	vB-1	7.4071E+02	-5.3109E+02	9.1143E+02	-35.6	0.8127	-0.5827	0.5827	0.812
Velocity	vB-2	2.3633E+01	-9.2314E+01	9.5291E+01	-75.6	0.2480	-0.9688	0.9688	0.2480
	vP-1	2.0729E+02	-3.9744E+02	4.4825E+02	-62.5	0.4624	-0.8866	0.8866	0.4624
	vP-2	2.7345E+00	-5.4585E+01	5.4654E+01	-87.1	0.0500	-0.9987	0.9987	0.0500
=	aA-1	1.4640E+02	3.3644E+02	3.6691E+02	66.5	0.3990	0.9169	-0.9169	0.3990
뜵	aA-2	2.8318E+02	2.3330E+02	3.6691E+02	39.5	0.7718	0.6359	-0.6359	0.7718
<u> </u>	aB-1 aB-2	2.5076E+06 2.0451E+03	-1.6108E+06 -1.2833E+03	2.9804E+06 2.4144E+03	-32.7 -32.1	0.8414 0.8470	-0.5405 -0.5315	0.5405 0.5315	0.8414
Acceleration	aB-P	7.7564E+05	-1.2633E+03	1.5236E+06	-52.1	0.5091	-0.8607	0.8607	0.509
¥	aB-P	7.7304E+03	-8.6402E+02	1.1375E+03	-49.4	0.6504	-0.7596	0.7596	0.6504

NON-QUICK-RETURN (From Two-Position Approach B Results)

	X-pos	Y-pos	mag	angle	i	j				
2P-O2 => O4	2.44	3.81	4.52	57.3	0.5399	0.8417				
2P-A1	0.98	0.44	1.08	24.4	0.9107	0.4131				
2P-A2	-0.39	1.48	1.53	104.8	-0.2548	0.9670				
Factors	Factors									
P	0.5	% dist up l	Link 4							
K	2.5	Length of	Link 3+Link	2 wrt B1E	32					
Link 1	2.47									
Link 2	0.43									
Link 3	1.71				155					
Link 4	1.83	Grashof	(b) Finished links	age	Lin	k3 —				

					Normal (r)		Perpendicular (θ)	
	x comp	y comp	mag	angle	i	j	i	j
rO4	2.44	3.81	4.52	57.3	0.5399	0.8417	-0.8417	0.5399
rP2O2-A1	-1.46	-3.36	3.67	-113.5	-0.3990	-0.9169	0.9169	-0.3990
rP2O2-A2	-2.83	-2.33	3.67	-140.5	-0.7718	-0.6359	0.6359	-0.7718
rB1	1.71	2.13	2.73	51.2	0.6269	0.7791	-0.7791	0.6269
rO4B1	-0.73	-1.68	1.83	-113.5	-0.3990	-0.9169	0.9169	-0.3990
rB2	1.03	2.64	2.83	68.8	0.3623	0.9320	-0.9320	0.3623
rO4B2	-1.42	-1.17	1.83	-140.5	-0.7718	-0.6359	0.6359	-0.7718
rB1B2	-0.68	0.52	0.86	143.0	-0.7985	0.6020	-0.6020	-0.7985
rO2	0.00	3.42	3.42	90.0	0.0004	1.0000	-1.0000	0.0004
rB102	-1.71	1.29	2.14	143.0	-0.7985	0.6020	-0.6020	-0.7985
rA1	0.34	3.16	3.18	83.8	0.1080	0.9941	-0.9941	0.1080
rO2A1	0.34	-0.26	0.43	-37.0	0.7985	-0.6020	0.6020	0.7985
rA2	-0.34	3.67	3.69	95.3	-0.0924	0.9957	-0.9957	-0.0924
rO2A2	-0.34	0.26	0.43	143.0	-0.7985	0.6020	-0.6020	-0.7985
rB1A1	-1.37	1.03	1.71	143.0	-0.7985	0.6020	-0.6020	-0.7985
rB2A2	-1.37	1.03	1.71	143.0	-0.7985	0.6020	-0.6020	-0.7985
rO4O2	-2.44	-0.39	2.47	-170.9	-0.9873	-0.1589	0.1589	-0.9873

Kinematics	1			Norm	al (r)	Perpendicular (θ)		
	x comp	y comp	mag	angle	i	j	i	j
r1	2.44	0.39	2.47	9.1	0.9873	0.1589	-0.1589	0.9873
r4-1	-0.73	-1.68	1.83	-113.5	-0.3990	-0.9169	0.9169	-0.3990
r4-2	-1.42	-1.17	1.83	-140.5	-0.7718	-0.6359	0.6359	-0.7718
r2-1	0.34	-0.26	0.43	-37.0	0.7985	-0.6020	0.6020	0.7985
r2-2	-0.34	0.26	0.43	143.0	-0.7985	0.6020	-0.6020	-0.7985
r3-1	1.37	-1.03	1.71	-37.0	0.7985	-0.6020	0.6020	0.7985
r3-2	1.37	-1.03	1.71	-37.0	0.7985	-0.6020	0.6020	0.7985
vA-1	2.58	3.42	4.28	53.0	0.6020	0.7985	-0.7985	0.6020
vA-2	-2.58	-3.42	4.28	-127.0	-0.6020	-0.7985	0.7985	-0.6020
vB-1	0.00	0.00	0.00	undefined	undefind	undefind	undefind	undefind
vB-2	0.00	0.00	0.00	undefined	undefind	undefind	undefind	undefind
aA-1	-34.20	25.78	42.83	143.0	-0.7985	0.6020	-0.6020	-0.7985
aA-2	34.20	-25.78	42.83	-37.0	0.7985	-0.6020	0.6020	0.7985
aB-1	-50.48	21.97	55.05	156.5	-0.9169	0.3990	-0.3990	-0.9169
aB-2	21.00	-25.49	33.03	-50.5	0.6359	-0.7718	0.7718	0.6359

