markdown源文件请见: https://github.com/BeiHai0/Surviving-LZU-Physics/tree/master/小班讲义/数学物理方法1小班讲义

▼ 第1章 ℝ³ 空间的向量分析

- ▼ 向量分析基本知识
 - 爱因斯坦求和约定
 - Kronecher delta 符号 δ_{ij}
 - 三阶单位全反对称张量 (三阶 Levi-Citita 符号) ε_{ijk}
 - 一些简单算例
 - ▼ 梯度、散度、旋度
 - 梯度 (gradient) 的定义
 - 散度 (divergence) 的定义
 - 旋度 (curl) 的定义
 - 直角坐标系下的梯度、散度、旋度
 - ∇ 算子
 - ▼ 梯度与方向导数的关系
 - 方向导数
 - 梯度和方向导数的关系
 - 散度与高斯定理
 - 旋度与斯托克斯定理
- ▼ ℝ3 空间中向量分析常用公式
 - 分析工具
 - ▼ ℝ3 空间中重要微分恒等式
 - 与 \vec{r} 有关的公式
 - 从左往右证的公式
 - 需要注意力的公式
 - 从右往左证的公式
 - ▼ ℝ3 空间中重要积分恒等式
 - 高斯定理
 - 斯托克斯定理
 - 格林第一恒等式
 - 格林第二恒等式
- ▼ 第2章 R³ 空间曲线坐标系中的向量分析
 - ▼ ▽ 算子
 - 直角坐标下的 ▽
 - 球坐标下的 ▽
 - 柱坐标下的 ▽
 - ∇^2 算子
 - 直角坐标下的 ∇^2
 - 球坐标下的 ∇^2
 - 柱坐标下的 ∇^2
- 第3章 线性空间
- ▼ 第4章 复变函数的概念
 - 欧拉公式
 - ▼ 复变函数
 - ▼ 常见复变函数
 - 有理函数
 - 指数函数
 - 对数函数
 - 幂函数
 - 三角函数
 - 双曲函数
- ▼ 第5章 解析函数
 - ▼ 复变函数的导数

- 复变函数的连续性
- 复变函数的导数
- 柯西-黎曼条件
- 命题的证明
- ▼ 复变函数的解析性
 - 复变函数的解析性
 - ▼ 相关定理
 - 定理1
 - 定理2
 - 定理3
 - 定理4
- ▼ 例题
 - ▼ 例1
 - 方法1 (积分法)
 - 例2
 - 例3
- ▼ 第6章 复变函数积分
 - ▼ 复变函数积分
 - 复变函数积分的定义
 - 复变函数积分的性质
 - ▼ 柯西积分定理
 - 单连通区域柯西积分定理
 - 多连通区域的柯西积分定理
 - 柯西积分公式
 - 解析函数高阶导数的积分表达式
- ▼ 第7章 复变函数的级数展开
 - 解析函数的泰勒展开
 - ▼ 解析函数的洛朗展开
 - 复变函数的零点
 - 复变函数的奇点
 - ▼ 奇点的分类
 - 孤立奇点
 - 非孤立奇点
 - 孤立奇点的分类
 - 解析函数的洛朗展开定理
 - ▼ 例题
 - 例1
 - 例2
- ▼ 第8章 留数定理及其在实积分中的应用
 - ▼ 留数定理
 - 留数的定义
 - ▼ 留数的求法
 - 定义法
 - 极限法
 - 特殊情况
 - ▼ 留数定理
 - 例1
 - ▼ 留数定理在实积分中的应用
 - 计算无穷限奇异积分的柯西主值
 - 利用 Jordan 引理计算一类带有三角函数的实积分问题
 - ▼ 计算一类被积函数为有理三角函数式的实积分
 - 例1
 - 例2
- ▼ 第9章 傅里叶变换

- ▼ 傅里叶级数
 - 三角函数基的傅里叶级数
 - e 指数基的傅里叶级数
- ▼ 傅里叶变换(to be continued)
 - 傅里叶分解与傅里叶变换
 - ▼ 傅里叶变换的基本性质
 - 线性定理
 - 延迟定理
 - 位移定理
 - 标度变换定理
 - 微分定理
 - 卷积定理
- ▼ 第10章 拉普拉斯变换
 - 拉普拉斯变换的定义
 - ▼ 拉普拉斯变换的性质 (两种记号)
 - 线性定理
 - 延迟定理
 - 位移定理
 - 标度变换定理
 - 卷积定理
 - 微分定理
 - 积分性质
 - 周期函数变换定理
 - 常用拉普拉斯变换及反演
 - ▼ 拉普拉斯变换的应用
 - ▼ 解常微分方程
 - 例1
- ▼ 第11章 δ 函数
 - δ 函数的定义
 - ■
 δ 函数的性质
 - ▼ 三维 *δ* 函数
 - 三维直角坐标系
 - 三维球坐标系
 - 三维柱坐标系
 - lacksquare 不同形式的 δ 函数
 - 函数的傅里叶展式和傅里叶变换
 - 一维
 - 三维
 - ▼ 例题
 - 例1
- 第12章 小波变换初步
- ▼ 第13章 波动方程、输运方程、泊松方程及其定解问题
 - ▼ 波动方程、输运方程、泊松方程的标准形式
 - 波动方程(双曲方程)
 - 输运方程 (抛物方程)
 - 泊松方程 (椭圆方程)
 - 拉普拉斯方程
 - ▼ 波动方程、输运方程、泊松方程的定解条件
 - ▼ 初始条件
 - 波动方程初始条件
 - 输运方程初始条件
 - 泊松方程初始条件
 - ▼ 边界条件
 - 第一类边界条件

- 第二类边界条件
- 第三类边界条件
- 自然边界条件
- 周期性边界条件
- 衔接条件
- ▼ 波动方程、输运方程、泊松方程的定解条件
 - 波动方程定解条件
 - 输运方程定解条件
 - 泊松方程定解条件
- ▼ 第14章 分离变量法
 - 例1
 - 例2
 - 例3
- ▼ 第15章 曲线坐标系下的分离变量
 - ▼ 球坐标系下方程的分离变量
 - ▼ 拉普拉斯方程在球坐标系下的分量变量
 - 径向方程
 - 球函数方程
 - 方位角满足的方程
 - 连带勒让德方程
 - 勒让德方程
 - ▼ 亥姆霍兹方程在球坐标系下的分离变量
 - 球贝塞尔方程
 - 球函数方程
 - 方位角满足的方程
 - 连带勒让德方程
 - 勒让德方程
 - ▼ 柱坐标系下方程的分离变量
 - ▼ 柱坐标系下亥姆霍兹方程的分离变量
 - $\Phi(\varphi)$ 满足的方程
 - Z(z) 满足的方程
 - R(p) 满足的方程及贝塞尔方程
- ▼ 第16章 球函数
 - ▼ 勒让德多项式
 - 前几个勒让德多项式
 - ▼ 勒让德多项式的性质
 - 罗德里格斯公式(勒让德多项式的微分表达式)
 - 勒让德多项式的生成函数 (母函数)
 - 勒让德多项式的递推公式
 - 勒让德函数的正交归一性
 - ▼ 具有轴对称的拉普拉斯方程的求解
 - 例1
 - 例2
 - 例3
 - 例4
- ▼ 第17章 柱函数
 - ▼ 贝塞尔函数
 - 贝塞尔函数 (第一类贝塞尔函数) 和诺伊曼函数 (第二类贝塞尔函数)
 - ▼ 贝塞尔方程的通解
 - 非整数阶贝塞尔方程的通解
 - 整数阶贝塞尔方程的通解
 - 整数阶贝塞尔函数的简单性质
 - 贝塞尔函数的递推关系
 - 柱函数

▼ 例题

- 例1
- 第18章 格林函数法
- 第19章 其他方程求解
- 第20章 非线性数学物理方程初步
- 第21章 泛函的变分
- 第22章 变分原理

第1章 \mathbb{R}^3 空间的向量分析

向量分析基本知识

爱因斯坦求和约定

在同一代数项中见到两个重复指标 i 就自动进行求和(除非特别指出该重复指标不求和),我们称求和指标 i 为"哑标"。 比如, \mathbb{R}^3 空间中的向量 $\vec{A} \in \mathbb{R}^3$ 在直角坐标下可表示为:

$$ec{A}=A_1ec{\mathrm{e}}_1+A_2ec{\mathrm{e}}_2+A_3ec{\mathrm{e}}_3\equiv\sum_iA_iec{\mathrm{e}}_i$$

其中, $\vec{\mathbf{e}}_1,\vec{\mathbf{e}}_2,\vec{\mathbf{e}}_3$ 分别是 x,y,z 轴正方向上的单位向量。

可利用爱因斯坦求和约定将 $ec{A} \in \mathbb{R}^3$ 简写为:

$$ec{A} = \sum_i A_i ec{\mathrm{e}}_i
ightarrow ec{A} = A_i ec{\mathrm{e}}_i$$

这样就省去了写求和符号的工作。

Kronecher delta 符号 δ_{ij}

$$\delta_{ij} = egin{cases} 1 &, i = j \ 0 &, i
eq j \end{cases}$$

三阶单位全反对称张量(三阶 Levi-Citita 符号) $arepsilon_{ijk}$

 $arepsilon_{ijk} = egin{cases} 1 &, ijk = 123, 231, 312, 即相邻两指标经过偶次对换能还原到123 \\ -1 &, ijk = 132, 213, 321, 即相邻两指标经过奇次对换能还原到123 \\ 0 &, ijk$ 中有相同指标

可以利用 ε_{ijk} 表示任何一个三阶行列式:

$$egin{array}{|c|c|c|c|c|} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \hline \end{array} = arepsilon_{ijk} a_i b_j c_k$$

一些简单算例

$$\vec{\mathbf{e}}_i \cdot \vec{\mathbf{e}}_j = \delta_{ij}$$

$$A_i \delta_{ii} = A_i$$

$$\vec{A} \cdot \vec{B} = A_i B_i$$

$$\vec{A} \cdot \vec{B} = (A_i \vec{e}_i) \cdot (B_j \vec{e}_j) = A_i B_j \vec{e}_i \cdot \vec{e}_j = A_i B_j \delta_{ij} = A_i B_i$$

$$ec{A} imesec{B}=arepsilon_{ijk}ec{\mathrm{e}}_iA_jB_k$$

$$ec{A} imesec{B}=egin{array}{ccc} ec{\mathrm{e}}_1 & ec{\mathrm{e}}_2 & ec{\mathrm{e}}_3 \ A_1 & A_2 & A_3 \ B_1 & B_2 & B_3 \ \end{array} =arepsilon_{ijk}ec{\mathrm{e}}_iA_jB_k$$

梯度、散度、旋度

梯度 (gradient) 的定义

设 $\psi(\vec{r})$ 是标量场, $\psi(\vec{r})$ 其梯度,记为 $\operatorname{grad} \psi(\vec{r})$,由下式定义:

$$\operatorname{grad} \psi(\vec{r}) \cdot d\vec{r} = d\psi(\vec{r})$$

其中, $\mathrm{d}\vec{r}$ 是位矢 \vec{r} 的微小变化, $\mathrm{d}\psi(\vec{r})$ 是标量场 $\psi(\vec{r})$ 因位矢 \vec{r} 变化 $\mathrm{d}\vec{r}$ 而引起的相应的变化。具体来说, $\mathrm{d}\psi(\vec{r})$ 的定义为:

$$\mathrm{d}\psi(ec{r}) \equiv \psi(ec{r} + \mathrm{d}ec{r}) - \psi(ec{r})$$

散度 (divergence) 的定义

向量场 \vec{A} 的散度, 记为 $\text{div } \vec{A}$, 定义为:

$$\mathrm{div}\; ec{A} \equiv \lim_{V o 0^+} rac{1}{V} \oint\limits_{\partial V^+} ec{A} \cdot \mathrm{d}ec{S}$$

旋度 (curl) 的定义

向量场 \vec{A} 的旋度, 记为 $\operatorname{curl} \vec{A}$, 由下式定义:

$$\left(\operatorname{curl} ec{A}
ight) \cdot ec{n} = \lim_{\sigma o 0^+} rac{1}{\sigma} \oint\limits_{\partial \sigma^+} ec{A} \cdot \mathrm{d}ec{l}$$

其中, σ 是与 \vec{n} 垂直的面元。 \vec{n} 与面元 σ 的正绕行方向满足右手定则。

直角坐标系下的梯度、散度、旋度

这里直接给出结论。

$$\mathrm{grad}\ \psi = ec{\mathrm{e}}_i \partial_i \psi$$
 $\mathrm{div}\ ec{A} = \partial_i A_i$ $\mathrm{curl}\ ec{A} = arepsilon_{ijk} ec{\mathrm{e}}_i \partial_j A_k$

▽ 算子

▽ 算子 (nabla 算子, 或 del 算子) 定义为:

$$\nabla \equiv \vec{\mathbf{e}}_i \partial_i$$

其中, ∂_i 的定义为:

$$\partial_i \equiv rac{\partial}{\partial x_i}$$

利用 ▽ 算子, 可将梯度、散度、旋度表示为:

为了书写方便,以后用 $\nabla \psi, \nabla \cdot \vec{A}, \nabla imes \vec{A}$ 分别来指代梯度、散度、旋度。

梯度与方向导数的关系

方向导数

标量场 ψ 在 \vec{r} 点处沿 \vec{v} 方向的方向导数,记为 $\left. \frac{\partial \psi(\vec{r})}{\partial l} \right|_{\vec{s}}$,定义为:

$$\left. rac{\partial \psi(ec{r})}{\partial l}
ight|_{ec{v}} \equiv \lim_{v o 0^+} rac{\psi(ec{r} + ec{v}) - \psi(ec{r})}{v}$$

特别地,标量场 ψ 在曲面 Σ 上的 \vec{r} 点处沿曲面上 \vec{r} 点的外法向的方向导数简记为:

$$\frac{\partial \psi(\vec{r})}{\partial n}$$

梯度和方向导数的关系

标量场的梯度的定义:

$$\nabla \psi \cdot d\vec{r} = d\psi$$

设 $d\vec{r} = \vec{n}dr$, 其中 \vec{n} 是与 $d\vec{r}$ 同向的单位向量,则有:

$$(\nabla \psi) \cdot \vec{n} dr = d\psi$$

即:

$$(
abla\psi)\cdotec{n}=rac{\mathrm{d}\psi}{\mathrm{d}r}=rac{\psi(ec{r}+\mathrm{d}ec{r})-\psi(ec{r})}{\mathrm{d}r}=rac{\partial\psi(ec{r})}{\partial l}igg|_{ec{s}}$$

这就是说,标量场 ψ 的梯度 $\nabla \psi$ 在某一方向 \vec{n} 的投影恰等于标量场沿这一方向 \vec{n} 的方向导数 $\left. \frac{\partial \psi(\vec{r})}{\partial l} \right|_{\vec{n}}$ 。

散度与高斯定理

从散度的定义

$$abla \cdot ec{A} \equiv \lim_{V o 0^+} rac{1}{V} \oint\limits_{\mathrm{a}V^+} ec{A} \cdot \mathrm{d}ec{S}$$

出发,可以导出高斯定理:

$$\oint\limits_{\partial V^+} ec{A} \cdot \mathrm{d}ec{S} = \int\limits_V (
abla \cdot ec{A}) \mathrm{d}V$$

旋度与斯托克斯定理

从旋度的定义

$$\left(
abla imes ec{A}
ight)\cdot ec{n} = \lim_{\sigma o 0^+}rac{1}{\sigma}\oint\limits_{\partial\sigma^+}ec{A}\cdot \mathrm{d}ec{l}$$

出发,可以导出斯托克斯定理:

$$\oint\limits_{\partial \Sigma^+} ec{A} \cdot \mathrm{d}ec{l} = \int\limits_{\Sigma} (
abla imes ec{A}) \cdot \mathrm{d}ec{S}$$

\mathbb{R}^3 空间中向量分析常用公式

分析工具

$$\begin{cases} \vec{e}_i \cdot \vec{e}_j = \delta_{ij} \\ \vec{A} = A_i \vec{e}_i \\ A_i \delta_{ij} = A_j \\ \vec{A} \cdot \vec{B} = A_i B_i \\ \vec{A} \times \vec{B} = \varepsilon_{ijk} \vec{e}_i A_j B_k \\ (\vec{A} \times \vec{B})_l = \varepsilon_{ljk} A_j B_k \\ \nabla \psi = \vec{e}_i \partial_i \\ \nabla \cdot \vec{A} = \partial_i A_i \\ \nabla \times \vec{A} = \varepsilon_{ijk} \vec{e}_i \partial_j A_k \\ \partial_i \psi = (\nabla \psi)_i \\ \nabla^2 \equiv \nabla \cdot \nabla = \partial_i \partial_i \\ \nabla^2 \psi \equiv \nabla \cdot (\nabla \psi) = \partial_i \partial_i \psi \\ \nabla^2 \vec{A} \equiv (\nabla^2 A_i) \vec{e}_i \\ \varepsilon_{ijk} = \varepsilon_{jki} = \varepsilon_{kij} \\ \varepsilon_{ijk} \varepsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl} \\ \partial_i x_j = \delta_{ij} \end{cases}$$

\mathbb{R}^3 空间中重要微分恒等式

与 \vec{r} 有关的公式

$$\nabla \cdot \vec{r} = 3$$

$$abla imes ec{r} = ec{0}$$

$$\nabla \cdot \vec{r} = \partial_i x_i = 3$$

$$abla imes ec{r} = arepsilon_{ijk} ec{\mathrm{e}}_i \partial_j x_k = arepsilon_{ijk} ec{\mathrm{e}}_i \delta_{jk} = ec{0}$$

从左往右证的公式

$$\nabla(\varphi\psi) = \varphi\nabla\psi + \psi\nabla\varphi$$

$$egin{aligned}
abla (arphi\psi) &= ec{\mathrm{e}}_i\partial_i(arphi\psi) \ &= ec{\mathrm{e}}_iarphi\partial_i\psi + ec{\mathrm{e}}_i\psi\partial_iarphi \ &= arphiec{\mathrm{e}}_i\partial_i\psi + \psiec{\mathrm{e}}_i\partial_iarphi \ &= arphi
abla\psi + \psi
ablaarphi arphi \ &= arphi
abla\psi + \psi
ablaarphi arphi \end{aligned}$$

$$\nabla \cdot (\varphi \vec{A}) = \vec{A} \cdot (\nabla \varphi) + \varphi \nabla \cdot \vec{A}$$

$$\begin{split} \nabla \cdot (\varphi \vec{A}) &= \partial_i (\varphi \vec{A})_i \\ &= \partial_i (\varphi A_i) \\ &= \varphi \partial_i A_i + A_i \partial_i \varphi \\ &= \varphi \nabla \cdot \vec{A} + (\vec{A} \cdot \nabla) \varphi \\ &= (\vec{A} \cdot \nabla) \varphi + \varphi \nabla \cdot \vec{A} \end{split}$$

$$ig| \hspace{0.1cm}
abla imes (arphi ec{A}) = (
abla arphi) imes ec{A} + arphi
abla imes ec{A}$$

$$\begin{split} \nabla \times (\varphi \vec{A}) &= \varepsilon_{ijk} \vec{\mathbf{e}}_i \partial_j (\varphi \vec{A})_k \\ &= \varepsilon_{ijk} \vec{\mathbf{e}}_i \partial_j (\varphi A_k) \\ &= \varepsilon_{ijk} \vec{\mathbf{e}}_i (A_k \partial_j \varphi + \varphi \partial_j A_k) \\ &= \varepsilon_{ijk} \vec{\mathbf{e}}_i (\nabla \varphi)_j A_k + \varphi \varepsilon_{ijk} \vec{\mathbf{e}}_i \partial_j A_k \\ &= (\nabla \varphi) \times \vec{A} + \varphi \nabla \times \vec{A} \end{split}$$

$$abla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$

$$\nabla \cdot (\vec{A} \times \vec{B}) = \partial_i (\vec{A} \times \vec{B})_i$$

$$= \partial_i (\varepsilon_{ijk} A_j B_k)$$

$$= \varepsilon_{ijk} \partial_i (A_j B_k)$$

$$= \varepsilon_{ijk} B_k \partial_i A_j + \varepsilon_{ijk} A_j \partial_i B_k$$

$$= B_k \varepsilon_{kij} \partial_i A_j - A_j \varepsilon_{jik} \partial_i B_k$$

$$= B_k (\nabla \times \vec{A})_k - A_j (\nabla \times \vec{B})_j$$

$$= \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B})$$

$$ig| \quad
abla imes (ec{A} imes ec{B}) = (ec{B} \cdot
abla) ec{A} - (ec{A} \cdot
abla) ec{B} + ec{A} (
abla \cdot ec{B}) - ec{B} (
abla \cdot ec{A})$$

$$\begin{split} \nabla \times (\vec{A} \times \vec{B}) &= \varepsilon_{ijk} \vec{e}_i \partial_j (\vec{A} \times \vec{B})_k \\ &= \varepsilon_{ijk} \vec{e}_i \partial_j \varepsilon_{klm} A_l B_m \\ &= \varepsilon_{kij} \varepsilon_{klm} \vec{e}_i \partial_j (A_l B_m) \\ &= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \vec{e}_i (B_m \partial_j A_l + A_l \partial_j B_m) \\ &= \vec{e}_l B_j \partial_j A_l + \vec{e}_l A_l \partial_m B_m - \vec{e}_m B_m \partial_l A_l - \vec{e}_m A_j \partial_j B_m \\ &= B_j \partial_j A_l \vec{e}_l + \vec{e}_l A_l \partial_m B_m - \vec{e}_m B_m \partial_l A_l - A_j \partial_j B_m \vec{e}_m \\ &= (\vec{B} \cdot \nabla) \vec{A} + \vec{A} (\nabla \cdot \vec{B}) - \vec{B} (\nabla \cdot \vec{A}) - (\vec{A} \cdot \nabla) \vec{B} \\ &= (\vec{B} \cdot \nabla) \vec{A} - (\vec{A} \cdot \nabla) \vec{B} + \vec{A} (\nabla \cdot \vec{B}) - \vec{B} (\nabla \cdot \vec{A}) \end{split}$$

$$abla imes (
abla imes ec{A}) =
abla (
abla \cdot ec{A}) -
abla^2 ec{A}$$

$$\begin{split} \nabla \times (\nabla \times \vec{A}) &= \varepsilon_{ijk} \vec{\mathbf{e}}_i \partial_j (\nabla \times \vec{A})_k \\ &= \varepsilon_{ijk} \vec{\mathbf{e}}_i \partial_j \varepsilon_{klm} \partial_l A_m \\ &= \varepsilon_{kij} \varepsilon_{klm} \vec{\mathbf{e}}_i \partial_j \partial_l A_m \\ &= (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) \vec{\mathbf{e}}_i \partial_j \partial_l A_m \\ &= \vec{\mathbf{e}}_l \partial_m \partial_l A_m - \vec{\mathbf{e}}_m \partial_l \partial_l A_m \\ &= \vec{\mathbf{e}}_l \partial_l \partial_m A_m - \partial_l \partial_l A_m \vec{\mathbf{e}}_m \\ &= \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} \end{split}$$

需要注意力的公式

$$abla imes (
abla arphi) = ec{0}$$

$$egin{aligned}
abla imes (
abla arphi) &= arepsilon_{ijk} ec{\mathrm{e}}_i \partial_j (
abla arphi)_k \ &= ec{\mathrm{e}}_i arepsilon_{ijk} \partial_i \partial_k arphi \end{aligned}$$

由于我们只考虑性质比较好的函数,于是 $\partial_i\partial_k\varphi=\partial_k\partial_j\varphi$,再结合 $\varepsilon_{ijk}=-\varepsilon_{ikj}$,有:

$$egin{aligned} ec{\mathrm{e}}_i arepsilon_{ijk} \partial_j \partial_k arphi &= -ec{\mathrm{e}}_i arepsilon_{ikj} \partial_k \partial_j arphi \ &= -ec{\mathrm{e}}_i arepsilon_{ijk} \partial_j \partial_k arphi \end{aligned}$$

最后一步是因为j,k都是用于求和的哑标,因此可以交换。

上式说明:

$$\vec{\mathrm{e}}_{i} \varepsilon_{ijk} \partial_{i} \partial_{k} \varphi = \vec{0}$$

于是:

$$abla imes (
abla arphi) = ec{\mathrm{e}}_i arepsilon_{ijk} \partial_j \partial_k arphi = ec{0}$$

$$\nabla \cdot (\nabla \times \vec{A}) = 0$$

$$egin{aligned}
abla \cdot (
abla imes ec{A}) &= \partial_i (
abla imes ec{A})_i \ &= \partial_i arepsilon_{ijk} \partial_j A_k \ &= arepsilon_{ijk} \partial_i \partial_j A_k \end{aligned}$$

注意到:

$$arepsilon_{ijk}\partial_i\partial_jA_k = -arepsilon_{jik}\partial_j\partial_iA_k \ = -arepsilon_{ijk}\partial_i\partial_jA_k$$

于是:

$$\varepsilon_{ijk}\partial_i\partial_jA_k=0$$

这就是说:

$$abla \cdot (
abla imes ec{A}) = arepsilon_{ijk} \partial_i \partial_j A_k = 0$$

从右往左证的公式

$$\begin{array}{l} \left\| \begin{array}{l} \nabla(\vec{A} \cdot \vec{B}) = (\vec{B} \cdot \nabla) \vec{A} + (\vec{A} \cdot \nabla) \vec{B} + \vec{B} \times (\nabla \times \vec{A}) + \vec{A} \times (\nabla \times \vec{B}) \\ \\ (\vec{B} \cdot \nabla) \vec{A} + (\vec{A} \cdot \nabla) \vec{B} + \vec{B} \times (\nabla \times \vec{A}) + \vec{A} \times (\nabla \times \vec{B}) \\ \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \varepsilon_{ijk} \vec{e}_i B_j (\nabla \times \vec{A})_k + \varepsilon_{ijk} \vec{e}_i A_j (\nabla \times \vec{B})_k \\ \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \varepsilon_{ijk} \vec{e}_i B_j \varepsilon_{klm} \partial_l A_m + \varepsilon_{ijk} \vec{e}_i A_j \varepsilon_{klm} \partial_l B_m \\ \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \varepsilon_{kij} \varepsilon_{klm} \vec{e}_i B_j \partial_l A_m + \varepsilon_{kij} \varepsilon_{klm} \vec{e}_i A_j \partial_l B_m \\ \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + \varepsilon_{il} B_m \partial_l A_m - \vec{e}_m B_l \partial_l A_m + \vec{e}_l A_m \partial_l B_m - \vec{e}_m A_l \partial_l B_m \\ \\ = B_i \partial_i A_j \vec{e}_j + A_i \partial_i B_j \vec{e}_j + B_m \vec{e}_l \partial_l A_m - B_l \partial_l A_m \vec{e}_m + A_m \vec{e}_l \partial_l B_m - A_l \partial_l B_m \vec{e}_m \\ \\ = B_m \vec{e}_l \partial_l A_m + A_m \vec{e}_l \partial_l B_m \\ \\ = B_m \nabla A_m + A_m \nabla B_m \\ \\ = \nabla (A_m B_m) \\ \\ = \nabla (\vec{A} \cdot \vec{B}) \end{array}$$

\mathbb{R}^3 空间中重要积分恒等式

高斯定理

$$igg| \oint\limits_{\partial V^+} ec{A} \cdot \mathrm{d}ec{S} = \int\limits_V (
abla \cdot ec{A}) \mathrm{d}V$$

斯托克斯定理

$$\oint\limits_{\partial \Sigma^+} ec{A} \cdot \mathrm{d}ec{l} = \int\limits_{\Sigma} (
abla imes ec{A}) \cdot \mathrm{d}ec{S}$$

格林第一恒等式

$$\oint\limits_{\partial\Omega^+} \psi \nabla \phi \cdot \mathrm{d}\vec{S} = \int\limits_{\Omega} \left(\psi \nabla^2 \phi + \nabla \phi \cdot \nabla \psi \right) \mathrm{d}V$$

注意到:

$$\nabla \cdot (\psi \nabla \phi) = \partial_i (\psi \nabla \phi)_i$$

$$= \partial_i (\psi \partial_i \phi)$$

$$= (\partial_i \phi)(\partial_i \psi) + \psi \partial_i \partial_i \phi$$

$$= (\nabla \phi)_i (\nabla \psi)_i + \psi \nabla^2 \phi$$

$$= (\nabla \phi) \cdot (\nabla \psi) + \psi \nabla^2 \phi$$

于是由高斯定理,有:

$$\begin{split} \oint\limits_{\partial\Omega^+} \psi \nabla \phi \cdot \mathrm{d}\vec{S} &= \int\limits_{\Omega} \nabla \cdot (\psi \nabla \phi) \mathrm{d}V \\ &= \int\limits_{\Omega} \left[(\nabla \phi) \cdot (\nabla \psi) + \psi \nabla^2 \phi \right] \mathrm{d}V \\ &= \int\limits_{\Omega} \left[\psi \nabla^2 \phi + (\nabla \phi) \cdot (\nabla \psi) \right] \mathrm{d}V \end{split}$$

格林第二恒等式

$$\int\limits_{\partial\Omega^+} (\psi\nabla\phi - \phi\nabla\psi)\cdot\mathrm{d}\vec{S} = \int\limits_{\Omega} (\psi\nabla^2\phi - \phi\nabla^2\psi)\mathrm{d}V$$

利用 $\nabla \cdot (\varphi \vec{A}) = \vec{A} \cdot (\nabla \varphi) + \varphi \nabla \cdot \vec{A}$ 可得:

$$\begin{aligned} \nabla \cdot (\psi \nabla \phi - \phi \nabla \psi) &= \nabla \phi \cdot \nabla \psi + \psi \nabla \cdot (\nabla \phi) - (\nabla \psi \cdot \nabla \phi + \phi \nabla \cdot (\nabla \psi)) \\ &= \psi \nabla^2 \phi - \phi \nabla^2 \psi \end{aligned}$$

于是由高斯定理可得:

$$egin{aligned} \oint\limits_{\partial\Omega^+} \left(\psi
abla\phi-\phi
abla\psi
ight)\cdot\mathrm{d}ec{S} &= \int\limits_{\Omega}
abla\cdot\left(\psi
abla\phi-\phi
abla\psi
ight)\mathrm{d}V \ &= \int\limits_{\Omega}\left(\psi
abla^2\phi-\phi
abla^2\psi
ight)\mathrm{d}V \end{aligned}$$

第2章 \mathbb{R}^3 空间曲线坐标系中的向量分析

▽ 算子

直角坐标下的 ∇

$$abla = ec{e}_x rac{\partial}{\partial x} + ec{e}_y rac{\partial}{\partial y} + ec{e}_z rac{\partial}{\partial z}$$

球坐标下的 abla

$$abla = ec{e}_r rac{\partial}{\partial r} + ec{e}_ heta rac{1}{r} rac{\partial}{\partial heta} + ec{e}_arphi rac{1}{r \sin heta} rac{\partial}{\partial arphi}$$

柱坐标下的 ▽

$$abla = ec{e}_
ho rac{\partial}{\partial
ho} + ec{e}_arphi rac{1}{
ho} rac{\partial}{\partial arphi} + ec{e}_z rac{\partial}{\partial z}$$

∇^2 算子

直角坐标下的 $abla^2$

$$abla^2 = rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2} + rac{\partial^2}{\partial z^2}$$

球坐标下的 $abla^2$

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

柱坐标下的 $abla^2$

$$abla^2 = rac{1}{
ho}rac{\partial}{\partial
ho}\left(
horac{\partial}{\partial
ho}
ight) + rac{1}{
ho^2}rac{\partial^2}{\partialarphi^2} + rac{\partial^2}{\partial z^2}$$

第3章 线性空间

第4章 复变函数的概念

欧拉公式

$$e^{i\theta} = \cos\theta + i\sin\theta, \ \ \theta \in \mathbb{C}$$

复变函数

复变函数是黎曼面到复平面的映射,即:

$$f(z):\mathbb{C}^{\mathrm{R}}
ightarrow\mathbb{C}$$

常见复变函数

有理函数

$$f(z)=rac{a_0+a_1z+\cdots+a_nz^n}{b_0+b_1z+\cdots+b_nz^n}, \ \ a_i,b_i\in\mathbb{C}, \ \ m,n\in\mathbb{Z}$$

指数函数

$$f(z) = e^z$$

对数函数

$$f(z) = \ln z$$

幂函数

$$f(z)=z^a,\ a\in\mathbb{C}$$

三角函数

$$\cos z \equiv \frac{\mathrm{e}^{\mathrm{i}z} + \mathrm{e}^{-\mathrm{i}z}}{2}$$

$$\sin z \equiv rac{\mathrm{e}^{\mathrm{i}z} - \mathrm{e}^{-\mathrm{i}z}}{2\mathrm{i}}$$

性质:

$$\cos(-z) = \cos(z), \ \cos(z + 2\pi) = \cos(z)$$

 $\sin(-z) = -\sin(z), \ \sin(z + 2\pi) = \sin(z)$
 $\sin^2 z + \cos^2 z = 1$

 $|\cos z|$, $|\sin z|$ 可以大于 1, 这与实三角函数不同。

双曲函数

$$\cosh z \equiv rac{\mathrm{e}^z + \mathrm{e}^{-z}}{2}$$
 $\sinh z \equiv rac{\mathrm{e}^z - \mathrm{e}^{-z}}{2}$ $anh z \equiv rac{\sinh z}{\cosh z} = rac{\mathrm{e}^z - \mathrm{e}^{-z}}{\mathrm{e}^z + \mathrm{e}^{-z}}$

双曲函数与三角函数的关系:

$$\sinh z = -i\sin(iz)$$
$$\cosh z = \cos(iz)$$

双曲函数的性质:

$$\sinh(z + i2\pi) = \sinh z$$

$$\cosh(z + i2\pi) = \cosh z$$

$$\cosh(-z) = \cosh z$$

$$\sinh(-z) = -\sinh z$$

$$\cosh^2 z - \sinh^2 z = 1$$

第5章 解析函数

复变函数的导数

复变函数的连续性

复变函数 f(z) 在 z_0 点及其邻域内有定义。当自变量 z 以任何路径趋于 z_0 时,都有:

$$\lim_{z o z_0}f(z)=f(z_0)$$

则称 f(z) 在 z_0 点连续。

若 f(z) 在区域 Ω 内的所有点都连续,则称 f(z) 在 Ω 内连续。

复变函数的导数

当 z 以任何路径趋于 z_0 时,即 $\Delta z=z-z_0$ 以任何方式趋于 0 时,若极限:

$$\lim_{\Delta z o 0} rac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

柯西-黎曼条件

设复变函数 f(z) = u(x,y) + iv(x,y), 若 f(z) 在 z 点可导,则必定有:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

上面两条等式就是柯西-黎曼条件(C-R条件)。

命题的证明

设 z = x + iy, f(z) = u(x, y) + iv(x, y), 则:

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta x + \mathrm{i} \Delta y}$$

由于 f(z) 在 z 点可导, 故极限

$$\lim_{\Delta z o 0} rac{f(z+\Delta z)-f(z)}{\Delta z}$$

存在且与 Δz 趋于 0 的方式无关。

特别地,

(1) 令:

$$\mathrm{i}\Delta y=0, \Delta x \to 0$$

此时,

$$\lim_{\Delta z \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta x + \mathrm{i} \Delta y} = \lim_{\Delta x \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta x} = \frac{\partial u}{\partial x} + \mathrm{i} \frac{\partial v}{\partial x}$$

(2) 令:

$$\Delta x=0, \mathrm{i}\Delta y o 0$$

此时,

$$\lim_{\Delta z \to 0} \frac{\Delta u + \mathrm{i} \Delta v}{\Delta x + \mathrm{i} \Delta y} = -\mathrm{i} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

由于 f(z) 在 z_0 点可导,则这两个导数值应该相等,于是:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

C-R 条件是 f(z) 在 z 点可导的必要条件,但不是充分条件。也就是说,可导必定满足 C-R 条件,但满足 C-R 条件不一定可导。

复变函数的解析性

复变函数的解析性

若复变函数 f(z) 在 z_0 的邻域内每一点都可导,则称 f(z) 在 z_0 点是解析的。

若复变函数 f(z) 在 Ω 内每一点都可导,则 f(z) 在 Ω 内是解析的,或称为全纯的。

相关定理

定理1

复变函数 $f(z)=u(x,y)+\mathrm{i} v(x,y)$ 在区域 Ω 为解析函数 \Longleftrightarrow 在与复平面 Ω 相应的实平面区域内 u(x,y),v(x,y) 可微,且 u(x,y),v(x,y) 满足 C-R 条件。

特别地,若 f(z) 为 Ω 上的连续函数,则 f(z) 是 Ω 上的解析函数 \iff f(z) 满足 C-R 条件。

定理2

若 f(z) 为区域 Ω 上的解析函数, 且 f(z) 为实函数, 即 $f(z) = f^*(z)$, 则 f(z) 为常数。

定理3

若 f(z) 为区域 Ω 上的解析函数,则在 Ω 上有 $\dfrac{\partial f(z,z^*)}{\partial z}=0$,即 $f(z,z^*)$ 不依赖于 z^*

定理4

在复平面区域 Ω 内解析的函数 $f(z)=u(x,y)+\mathrm{i} v(x,y)$,其实部 u(x,y) 和虚部 v(x,y) 都是平面区域 Ω 内的调和函数(即满足二维拉普拉斯方程 $\nabla^2 u(x,y)=0$, $\nabla^2 v(x,y)=0$ 的函数)。

例题

例1

已知解析函数的实部 $u = x^3 - 3xy^2$, 求该解析函数。

方法1 (积分法)

$$f(z) = u(x, y) + iv(x, y)$$

解析函数应满足柯西-黎曼条件:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 3x^2 - 3y^2, \quad \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = 6xy$$

$$dv(x,y) = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy = 6xydx + (3x^2 - 3y^2)dy$$
(1)

选择积分路径为: $\underbrace{(0,0) \to (x,0)}_{C_1}, \underbrace{(x,0) \to (x,y)}_{C_2}$, 两边积分:

$$egin{aligned} v(x,y) - v(0,0) &= \int\limits_{C_1} 6xy \mathrm{d}x + (3x^2 - 3y^2) \mathrm{d}y + \int\limits_{C_2} 6xy \mathrm{d}x + (3x^2 - 3y^2) \mathrm{d}y \ &= 0 + \int_{y=0}^{y=y} (3x^2 - 3y^2) \mathrm{d}y \ &= 3x^2y - y^3 \end{aligned}$$

 $\Rightarrow v(0,0) = C$, 则:

$$v(x,y) = 3x^2y - y^3 + v(0,0) = 3x^2y - y^3 + C$$

于是:

$$f(z) = u(x, y) + iv(x, y)$$

= $x^3 - 3xy^2 + i(3x^2y - y^3 + C)$

请证明:柱坐标系下的解析函数 $f(z)=u(
ho,arphi)+\mathrm{i} v(
ho,arphi)$ 满足的 C-R 方程:

$$\begin{cases} \frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi} \\ \frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho} \end{cases}$$

直角坐标下的 C-R 条件:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \Longrightarrow \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \tan \varphi = \frac{y}{x} \end{cases}$$

注意到:

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\partial x} \\ &= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial u}{\partial \varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}\tan\varphi} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial u}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial u}{\partial \rho} \frac{x}{\sqrt{x^2 + y^2}} + \frac{\partial u}{\partial \varphi} \left(\frac{1}{\cos^2\varphi} \right)^{-1} \left(-\frac{y}{x^2} \right) \\ &= \frac{\partial u}{\partial \rho} \cos\varphi + \frac{\partial u}{\partial \varphi} \left(-\frac{\sin\varphi}{\rho} \right) \\ &= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \frac{\partial \varphi}{\mathrm{d}\tan\varphi} \frac{\partial \tan\varphi}{\partial y} \\ &= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}\tan\varphi} \frac{\partial \tan\varphi}{\partial y} \\ &= \frac{\partial u}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial u}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial y} \\ &= \frac{\partial u}{\partial \rho} \frac{y}{\sqrt{x^2 + y^2}} + \frac{\partial u}{\partial \varphi} \left(\frac{1}{\cos^2\varphi} \right)^{-1} \left(\frac{1}{x} \right) \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \frac{\partial \varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}\tan\varphi} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial x} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial x} \\ &= \frac{\partial v}{\partial \rho} \cos\varphi + \frac{\partial v}{\partial \varphi} \left(-\frac{\sin\varphi}{\rho} \right)$$

$$\begin{split} \frac{\partial v}{\partial y} &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial v}{\partial \varphi} \frac{\partial \varphi}{\partial y} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial v}{\partial \varphi} \frac{\mathrm{d}\varphi}{\mathrm{d}\tan\varphi} \frac{\partial \tan\varphi}{\partial y} \\ &= \frac{\partial v}{\partial \rho} \frac{\partial \rho}{\partial y} + \frac{\partial v}{\partial \varphi} \left(\frac{\mathrm{d}\tan\varphi}{\mathrm{d}\varphi} \right)^{-1} \frac{\partial \tan\varphi}{\partial y} \\ &= \frac{\partial v}{\partial \rho} \frac{y}{\sqrt{x^2 + y^2}} + \frac{\partial v}{\partial \varphi} \left(\frac{1}{\cos^2\varphi} \right)^{-1} \left(\frac{1}{x} \right) \\ &= \frac{\partial v}{\partial \rho} \sin\varphi + \frac{\partial v}{\partial \varphi} \left(\frac{\cos\varphi}{\rho} \right) \end{split}$$

全部代入直角坐标下的 C-R 方程:

$$\frac{\partial u}{\partial \rho} \cos \varphi + \frac{\partial u}{\partial \varphi} \left(-\frac{\sin \varphi}{\rho} \right) = \frac{\partial v}{\partial \rho} \sin \varphi + \frac{\partial v}{\partial \varphi} \left(\frac{\cos \varphi}{\rho} \right) \tag{1}$$

$$\frac{\partial u}{\partial \rho} \sin \varphi + \frac{\partial u}{\partial \varphi} \left(\frac{\cos \varphi}{\rho} \right) = -\left[\frac{\partial v}{\partial \rho} \cos \varphi + \frac{\partial v}{\partial \varphi} \left(-\frac{\sin \varphi}{\rho} \right) \right] \tag{2}$$

 $(1) \times \cos \varphi + (2) \times \sin \varphi$ 得到:

$$\frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi}$$

 $(2) \times \cos \varphi - (1) \times \sin \varphi$ 得到:

$$\frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho}$$

例3

已知解析函数的虚部 $v=rac{y}{x^2+y^2}$,求该解析函数。

$$\frac{\partial v}{\partial x} = \frac{-2xy}{\left(x^2 + y^2\right)^2}, \frac{\partial v}{\partial y} = \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2}$$

函数解析, 故满足 C-R 条件, 即满足:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = \frac{2xy}{(x^2 + y^2)^2}$$

于是:

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$
$$= \frac{x^2 - y^2}{(x^2 + y^2)^2} dx + \frac{2xy}{(x^2 + y^2)^2} dy$$

极坐标变换:

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases} \Longrightarrow \begin{cases} \mathrm{d}x = \frac{\partial x}{\partial \rho} \mathrm{d}\rho + \frac{\partial x}{\partial \varphi} \mathrm{d}\varphi = \cos \varphi \mathrm{d}\rho - \rho \sin \varphi \mathrm{d}\varphi \\ \mathrm{d}y = \frac{\partial y}{\partial \rho} \mathrm{d}\rho + \frac{\partial y}{\partial \varphi} \mathrm{d}\varphi = \sin \varphi \mathrm{d}\rho + \rho \cos \varphi \mathrm{d}\varphi \end{cases}$$

于是:

$$du = \frac{x^2 - y^2}{(x^2 + y^2)^2} dx + \frac{2xy}{(x^2 + y^2)^2} dy$$
$$= \frac{\cos \varphi}{\rho^2} d\rho + \frac{\sin \varphi}{\rho} d\varphi$$
$$= d\left(\frac{-\cos \varphi}{\rho}\right)$$

于是:

$$u = \frac{-\cos\varphi}{\rho} + C = -\frac{x}{x^2 + y^2} + C$$

综上,

$$egin{split} f(z) &= u + \mathrm{i} v \ &= \left(-rac{x}{x^2 + y^2} + C
ight) + \mathrm{i} \left(rac{y}{x^2 + y^2}
ight) \end{split}$$

第6章 复变函数积分

复变函数积分

复变函数积分的定义

复变函数的积分是指复变函数 f(z) 在其有定义的区域 Ω 中,沿某一曲线 C 的**有向**的**线积分**,记为 $\int\limits_C f(z)\mathrm{d}z$,其定义为:

$$\int\limits_C f(z)\mathrm{d}z = \lim_{\substack{n o \infty \ |z_j-z_{j-1}| o 0}} \sum_{j=1}^n f(\xi_j)(z_j-z_{j-1})$$

把 C 分成 n 段, ξ_j 是 C 上 z_{j-1} 点到 z_j 点的中的某一点。

复变函数积分的性质

$$\left|\int\limits_{C}f(z)\mathrm{d}z
ight|\leqslant\int\limits_{C}\left|f(z)
ight|\left|\mathrm{d}z
ight|$$

柯西积分定理

单连通区域柯西积分定理

设 f(z) 在单连通区域 Ω 上解析,当积分路径为 Ω 内的任一闭合曲线 C 时,有:

$$\oint\limits_{C^+} f(z) \mathrm{d}z = 0$$

多连通区域的柯西积分定理

设 f(z) 在具有 k 个内边界 C_1,C_2,\cdots,C_k 的回路 C 内的复连通区域内解析,规定 $C;C_1,C_2,\cdots,C_k$ 的正方向为逆时针,则:

$$\oint\limits_{C^+} f(z) \mathrm{d}z = \oint\limits_{C^+_+} f(z) \mathrm{d}z + \oint\limits_{C^+_+} f(z) \mathrm{d}z + \cdots + \oint\limits_{C^+_+} f(z) \mathrm{d}z$$

柯西积分公式

若 f(z) 在闭合回路 C 所包围的区域上解析, z_0 是此区域中的一点, 则:

$$\oint\limits_{C^+}rac{f(z)}{z-z_0}\mathrm{d}z=2\pi\mathrm{i}f(z_0)$$

解析函数高阶导数的积分表达式

设 f(z) 在区域 Ω 内解析, C 为 Ω 内的任一闭合回路, 对于 C 所包围的区域内的任一点 z, 有:

$$f^{(n)}(z) \equiv rac{\mathrm{d}^n}{\mathrm{d}z^n} f(z) = rac{n!}{2\pi \mathrm{i}} \oint\limits_{C^+} rac{f(\zeta)}{(\zeta-z)^{n+1}} \mathrm{d}\zeta$$

第7章 复变函数的级数展开

解析函数的泰勒展开

设 z_0 为函数 f(z) 解析区域 Ω 内的一点,以 z_0 为圆心的圆周 C 在 Ω 内,则 f(z) 可以在 C 内展成泰勒级数:

$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$

其中,展开系数为:

$$a_n = rac{f^{(n)}(z_0)}{n!} = rac{1}{2\pi \mathrm{i}} \oint\limits_{C^+} rac{f(z)}{(z-z_0)^{n+1}} \mathrm{d}z$$

解析函数的洛朗展开

复变函数的零点

若复变函数 f(z) 在 z_0 点的函数值 $f(z_0) = 0$,则称 z_0 为 复变函数 f(z) 的零点。

复变函数的奇点

若复变函数 f(z) 在 z_0 点**不解析**,即 f(z) 在 z_0 点的导数不存在或不唯一,则称 z_0 为复变函数 f(z) 的奇点。

奇点的分类

孤立奇点

若 z_0 为函数 f(z) 的奇点,而在 z_0 点任意小的邻域内,函数 f(z) 解析,则称 z_0 为 f(z) 的孤立奇点。

非孤立奇点

若 z_0 为函数 f(z) 的奇点,而在 z_0 点任意小的邻域内,除 z_0 点外存在 f(z) 的其他奇点,则称 z_0 为 f(z) 的非孤立奇点。

孤立奇点的分类

极点:设 z_0 是 f(z)的孤立奇点,若存在一个正整数 k,使得 $(z-z_0)^k f(z)$ 为非零的解析函数,则称 z_0 为 f(z)的 k阶极点。

本性奇点:设 z_0 是 f(z)的孤立奇点,若**不存在**一个正整数 k,使得 $(z-z_0)^k f(z)$ 为非零的解析函数,则称 z_0 为 f(z) 的本性奇点。

可去奇点:设 z_0 为函数 f(z) 的孤立奇点,f(z) 在 z_0 点没有定义,但在 z_0 的去心邻域内解析,此时可定义 $f(z_0) \equiv \lim_{z \to z_0} f(z)$ 使 f(z) 在 z_0 点解析,则称 z_0 为 f(z) 的可去奇点。

解析函数的洛朗展开定理

若函数 f(z) 在以 z_0 为圆心,半径为 R_1,R_2 的两个圆周 C_1,C_2 所包围的环形区域 $R_2<|z-z_0|< R_1$ 上解析,则在此区域内 f(z) 可展成 Laurent 级数:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

其中,

$$a_n = rac{1}{2\pi \mathrm{i}} \oint\limits_{C_+} rac{f(\zeta)}{(\zeta-z_0)^{n+1}} \mathrm{d}\zeta$$

C 是任一条在环形区域内把 C_2 包围在内的闭曲线。

例题

例1

 $ilde{x}\,f(z)=rac{1}{z(z-1)}$ 在环形区域 0<|z|<1 和 |z|>1 内,在 $z_0=0$ 处的展开式。

0 < |z| < 1 区域在 $z_0 = 0$ 处展开 f(z):

由于 |z| < 1,于是有几何级数:

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$$

于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= -\frac{1}{1-z} - \frac{1}{z}$$

$$= -\sum_{n=0}^{\infty} z^n - z^{-1}$$

$$= -\sum_{n=-1}^{\infty} z^n$$

|z| > 1 区域在 $z_0 = 0$ 处展开 f(z):

注意到 |z| > 1,则 |1/z| < 1,于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= \frac{1}{z(1-\frac{1}{z})} - z^{-1}$$

$$= \frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} - z^{-1}$$

$$= \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n - z^{-1}$$

$$= \sum_{n=0}^{\infty} z^{-n-1} - z^{-1}$$

$$= \sum_{n=0}^{\infty} z^{-n-1}$$

例2

$$ilde{x}\,f(z)=rac{1}{z(z-1)}$$
 在 $z_1=0$ 和 $z_2=1$ 附近的展开式。

f(z) 在 $z_1=0$ 附近的展开式:

由于 0 < |z - 0| < 1, 于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= -\frac{1}{1-z} - z^{-1}$$

$$= -\sum_{n=0}^{\infty} z^n - z^{-1}$$

$$= \sum_{n=-1}^{\infty} -z^n$$

f(z) 在 $z_2=1$ 附近的展开式:

由于 0 < |z-1| < 1, 于是:

$$\frac{1}{z(z-1)} = \frac{1}{z-1} - \frac{1}{z}$$

$$= (z-1)^{-1} - \frac{1}{1-(1-z)}$$

$$= (z-1)^{-1} - \sum_{n=0}^{\infty} (1-z)^n$$

$$= (z-1)^{-1} - \sum_{n=0}^{\infty} (-1)^n (z-1)^n$$

$$= (z-1)^{-1} + \sum_{n=0}^{\infty} (-1)^{n+1} (z-1)^n$$

$$= \sum_{n=-1}^{\infty} (-1)^{n+1} (z-1)^n$$

第8章 留数定理及其在实积分中的应用

留数定理

留数的定义

设 z_0 是函数 f(z) 的孤立奇点,设 f(z) 在其孤立奇点 z_0 附近的环形区域中的洛朗展开式为:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$$

f(z) 在 z_0 点的留数,记为 $\operatorname{Res} f(z_0)$,定义为:

$$\operatorname{Res} f(z_0) \equiv a_{-1}$$

其中, a_{-1} 是 f(z) 在 z_0 点的洛朗展开式中 $(z-z_0)^{-1}$ 项的系数

留数的求法

定义法

直接把 f(z) 在其孤立奇点 z_0 点作洛朗展开,找到 $(z-z_0)^{-1}$ 前的系数 a_{-1} ,由留数的定义可知:

$$\mathrm{Res} f(z_0) \equiv a_{-1}$$

极限法

当 z_0 为 f(z) 的 m 阶极点时,f(z) 可在其孤立奇点 z_0 点作如下的洛朗展开:

$$f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n, \ a_{-m} \neq 0$$

则:

$$\mathrm{Res} f(z_0) = rac{1}{(m-1)!} \lim_{z o z_0} rac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} [(z-z_0)^m f(z)]$$

特殊情况

若 $f(z)=rac{h(z)}{g(z)},z_0$ 为 g(z) 的一阶极点,即 $g(z_0)=0$,且 h(z) 和 g(z) 在 z_0 点及其邻域内解析,则:

$$\mathrm{Res} f(z_0) = rac{h(z_0)}{g'(z_0)}$$

留数定理

若 f(z) 在回路 C 所包围的区域内除有限个孤立奇点 z_1,z_2,\cdots,z_k 外解析,则 f(z) 沿 C^+ 的回路积分值等于 f(z) 在 z_1,z_2,\cdots,z_k 的留数之 和乘 $2\pi i$,即:

$$\oint\limits_{C_{i}}f(z)\mathrm{d}z=2\pi\mathrm{i}\sum_{j=1}^{k}\mathrm{Res}f(z_{j})$$

例1

计算回路积分
$$I=\oint\limits_{l^+}rac{\mathrm{d}z}{(z^2+1)(z-1)^2}$$
 ,其中回路 l 的方程为 $x^2+y^2-2x-2y=0$

$$\Leftrightarrow f(z) = \frac{1}{(z^2+1)(z-1)^2} = \frac{1}{(z+\mathrm{i})(z-\mathrm{i})(z-1)^2}$$

在回路 $l:(x-1)^2+(y-1)^2=\sqrt{2}$ 内的孤立奇点有: $z_1={\rm i},z_2=1$, z_1 为一阶极点, z_2 为二阶极点。 计算 f(z) 在回路内孤立奇点处的留数:

$$\begin{aligned} \operatorname{Res} f(z_1) &= \frac{1}{0!} \lim_{z \to i} \frac{\mathrm{d}^0}{\mathrm{d}z^0} (z - \mathrm{i}) \cdot \frac{1}{(z + \mathrm{i})(z - \mathrm{i})(z - 1)^2} \\ &= \lim_{z \to i} \frac{1}{(z + \mathrm{i})(z - 1)^2} \\ &= \frac{1}{2\mathrm{i}(\mathrm{i} - 1)^2} \\ &= \frac{1}{4} \end{aligned}$$

$$\operatorname{Res} f(z_2) = \frac{1}{1!} \lim_{z \to 1} \frac{\mathrm{d}^1}{\mathrm{d}z^1} (z - 1)^2 \cdot \frac{1}{(z + \mathrm{i})(z - \mathrm{i})(z - 1)^2}$$

$$= \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{z^2 + 1}\right)$$

$$= \lim_{z \to 1} \frac{-2z}{(z^2 + 1)^2}$$

$$= -\frac{1}{2}$$

于是:

$$I = \oint_{l} \frac{\mathrm{d}z}{(z^2 + 1)(z - 1)^2}$$

$$= 2\pi \mathrm{i} \left[\mathrm{Res}f(z_1) + \mathrm{Res}f(z_2) \right]$$

$$= 2\pi \mathrm{i} \left(\frac{1}{4} - \frac{1}{2} \right)$$

$$= -\frac{\pi \mathrm{i}}{2}$$

留数定理在实积分中的应用

计算无穷限奇异积分的柯西主值

利用 Jordan 引理计算一类带有三角函数的实积分问题

计算一类被积函数为有理三角函数式的实积分

考虑如下形式的积分:

$$I = \int_0^{2\pi} f(\cos heta,\sin heta) \mathrm{d} heta$$

其中, $f(\cos\theta,\sin\theta)$ 为不包含有孤立奇点 $\cos\theta$ 和 $\sin\theta$ 的有理函数。

$$z = \cos \theta + i \sin \theta$$
, $z^{-1} = e^{-i\theta} = \cos \theta - i \sin \theta$

于是:

$$\cos \theta = rac{z+z^{-1}}{2}, \ \sin \theta = rac{z-z^{-1}}{2\mathrm{i}}$$
 $\mathrm{d}z = \mathrm{i}\mathrm{e}^{\mathrm{i} heta}\mathrm{d}\theta = \mathrm{i}z\mathrm{d} heta$

$$d\theta = \frac{dz}{iz}$$

于是:

$$I = \int_0^{2\pi} f(\cos heta, \sin heta) \mathrm{d} heta \ = \oint\limits_{C^+} f\left(rac{z+z^{-1}}{2}, rac{z-z^{-1}}{2\mathrm{i}}
ight) rac{1}{\mathrm{i}z} \mathrm{d}z$$

其中,C 是以复平面原点为圆心的单位圆周,即 C:|z|=1

例1

计算定积分
$$I=\int_0^{2\pi} rac{\mathrm{d} heta}{1+arepsilon \cos heta}$$
,其中 0

令:

$$z=\mathrm{e}^{\mathrm{i} heta},\ z^{-1}=\mathrm{e}^{-\mathrm{i} heta},\ \mathrm{d}z=\mathrm{i}\mathrm{e}^{\mathrm{i} heta}\mathrm{d} heta\Longrightarrow\mathrm{d} heta=rac{\mathrm{d}z}{\mathrm{i}\mathrm{e}^{\mathrm{i} heta}}=rac{\mathrm{d}z}{\mathrm{i}z},\ \cos heta=rac{1}{2}\left(z+z^{-1}
ight)$$

于是:

$$I = \int_0^{2\pi} rac{\mathrm{d} heta}{1 + arepsilon \cos heta} \ = rac{2}{\mathrm{i}} \oint\limits_{C^+} rac{1}{arepsilon z^2 + 2z + arepsilon} \mathrm{d}z$$

其中,C 是复平面上以原点为圆心的单位圆。

令 $f(z)=rac{1}{arepsilon z^2+2z+arepsilon}$,被积函数的两个一阶极点为:

$$z_1=rac{-1+\sqrt{1-arepsilon^2}}{arepsilon},\;\; z_2=rac{-1-\sqrt{1-arepsilon^2}}{arepsilon}$$

被积函数 f(z) 可写为:

$$f(z) = rac{1}{arepsilon(z-z_1)(z-z_2)}$$

只有 z_1 在积分回路内。

计算 f(z) 在回路内孤立奇点 z_1 处的留数:

$$egin{aligned} \operatorname{Res} &f(z_1) = rac{1}{0!} \lim_{z o z_1} rac{\operatorname{d}^0}{\operatorname{d} z^0} (z - z_1) f(z) \ &= \lim_{z o z_1} rac{1}{arepsilon (z - z_2)} \ &= rac{1}{arepsilon (z_1 - z_2)} \ &= rac{1}{2\sqrt{1 - arepsilon^2}} \end{aligned}$$

由留数定理,有:

$$\begin{split} \oint\limits_{C^+} \frac{1}{\varepsilon z^2 + 2z + \varepsilon} \mathrm{d}z &= 2\pi \mathrm{i} \mathrm{Res} f(z_1) \\ &= 2\pi \mathrm{i} \cdot \frac{1}{2\sqrt{1 - \varepsilon^2}} \\ &= \frac{\pi \mathrm{i}}{\sqrt{1 - \varepsilon^2}} \end{split}$$

于是积分为:

$$I = rac{2}{\mathrm{i}} \oint\limits_{C^+} rac{1}{arepsilon z^2 + 2z + arepsilon} \mathrm{d}z$$
 $= rac{2}{\mathrm{i}} \cdot rac{\pi \mathrm{i}}{\sqrt{1 - arepsilon^2}}$
 $= rac{2\pi}{\sqrt{1 - arepsilon^2}}$

例2

計算定积分:
$$I = \int_0^{2\pi} \frac{1}{3 - 2\cos\theta + \sin\theta} d\theta$$

$$z = e^{i\theta}, \ z^{-1} = e^{-i\theta}, \ dz = ie^{i\theta} d\theta \Longrightarrow d\theta = \frac{dz}{ie^{i\theta}} = \frac{dz}{iz}, \ \cos\theta = \frac{1}{2} \left(z + z^{-1}\right), \ \sin\theta = \frac{1}{2i} \left(z - z^{-1}\right)$$

设C是复平面上的单位圆,

$$I = \int_0^{2\pi} rac{1}{3-2\cos heta+\sin heta} \mathrm{d} heta
onumber \ = 2 \oint\limits_{C^+} rac{\mathrm{d}z}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}}$$

令 $f(z)=rac{1}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}}$,f(z) 有两个一阶极点 $z_1=2-\mathrm{i}, z_2=rac{2}{5}-rac{1}{5}\mathrm{i}$,只有 z_2 在单位圆 C 内。

由于 z_1, z_2 是 $(1-2i)z^2+6iz-1-2i=0$ 的两根,于是 f(z) 可表达为:

$$f(z) = rac{1}{(1-2\mathrm{i})(z-z_1)(z-z_2)}$$

f(z) 在 z_2 处的留数:

$$egin{aligned} ext{Res} f(z_2) &= rac{1}{0!} \lim_{z o z_2} rac{ ext{d}^0}{ ext{d}z^0} (z-z_2) f(z) \ &= \lim_{z o z_2} rac{1}{(1-2 ext{i})(z-z_1)} \ &= rac{1}{(1-2 ext{i})(z_2-z_1)} \ &= rac{1}{4 ext{i}} \end{aligned}$$

于是由留数定理,有:

$$\oint\limits_{C^+}rac{\mathrm{d}z}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}}=2\pi\mathrm{i}\mathrm{Res}f(z_2) \ =rac{\pi}{2}$$

于是:

$$I=2\oint\limits_{C^+}rac{\mathrm{d}z}{(1-2\mathrm{i})z^2+6\mathrm{i}z-1-2\mathrm{i}}
onumber \ =2\cdotrac{\pi}{2}
onumber \ =\pi$$

第9章 傅里叶变换

傅里叶级数

设 $\mathcal H$ 是一个希尔伯特空间,其元素是周期为 2l 的单变量函数, $\forall f_1,f_2\in\mathcal H$, $\mathcal H$ 上两个元素的内积,记为 $\langle f_1,f_2
angle$,定义为:

$$\langle f_1,f_2
angle \equiv \int_{x=-l}^{x=l} f_1^*(x)f_2(x)\mathrm{d}x, \ \ x\in\mathbb{R}$$

其中,x 是参数,而内积与参数无关。有时为了指明参数,也将内积写为:

$$\langle f_1(x),f_2(x)
angle \equiv \int_{x=-l}^{x=l} f_1^*(x)f_2(x)\mathrm{d}x$$

若 f(x) 是实函数,则内积可简化为:

$$\langle f_1,f_2
angle \equiv \int_{x=-l}^{x=l} f_1(x)f_2(x)\mathrm{d}x, \ \ x\in\mathbb{R}$$

三角函数基的傅里叶级数

容易验证如下结论:

$$\begin{cases} \int_{x=-l}^{x=l} \frac{1}{\sqrt{2l}} \cdot \frac{1}{\sqrt{2l}} dx = 1 \\ \int_{x=-l}^{x=l} \frac{1}{\sqrt{2l}} \cdot \frac{1}{\sqrt{l}} \sin \frac{n\pi}{l} x dx = 0 \\ \int_{x=-l}^{x=l} \frac{1}{\sqrt{2l}} \cdot \frac{1}{\sqrt{l}} \cos \frac{m\pi}{l} x dx = 0 \\ \int_{x=-l}^{x=l} \frac{1}{\sqrt{l}} \sin \frac{n\pi}{l} x \cdot \frac{1}{\sqrt{l}} \sin \frac{m\pi}{l} x dx = \delta_{n,m}, \quad n = 1, 2, \dots, m = 0, 1, 2, \dots \\ \int_{x=-l}^{x=l} \frac{1}{\sqrt{l}} \sin \frac{n\pi}{l} x \cdot \frac{1}{\sqrt{l}} \cos \frac{m\pi}{l} x dx = 0, \quad n = 1, 2, \dots, m = 0, 1, 2, \dots \\ \int_{x=-l}^{x=l} \frac{1}{\sqrt{l}} \cos \frac{n\pi}{l} x \cdot \frac{1}{\sqrt{l}} \cos \frac{m\pi}{l} x dx = \delta_{n,m}, \quad n, m = 0, 1, 2, \dots \end{cases}$$

函数系 $\left\{ \frac{1}{\sqrt{2l}}, \ \frac{1}{\sqrt{l}} \sin \frac{n\pi}{l} x, \ \frac{1}{\sqrt{l}} \cos \frac{m\pi}{l} x; \ n,m=1,2,\cdots \right\}$ 是一个完备的正交归一函数族,它们可作为基矢张成 \mathcal{H} 。

这个函数系具体写出来是:

$$\left\{\frac{1}{\sqrt{2l}}, \frac{1}{\sqrt{l}}\sin\frac{\pi}{l}x, \frac{1}{\sqrt{l}}\cos\frac{\pi}{l}x, \frac{1}{\sqrt{l}}\sin\frac{2\pi}{l}x, \frac{1}{\sqrt{l}}\cos\frac{2\pi}{l}x, \cdots\right\}$$

任意一个周期为 2l 的,满足狄利克雷条件的函数 f(x) 可写成这些基函数的线性组合,即 f(x) 可展成傅里叶级数:

$$f(x) = a_0 \cdot rac{1}{\sqrt{2l}} + \sum_{k=1}^{\infty} \left(a_k \cdot rac{1}{\sqrt{l}} \cos rac{k\pi}{l} x + b_k \cdot rac{1}{\sqrt{l}} \sin rac{k\pi}{l} x
ight)$$

为求出线性组合的系数,只需要利用"这组基是正交归一完备的"这一性质,比如:

$$\left\langle \frac{1}{\sqrt{l}} \cos \frac{k'\pi}{l} x, f(x) \right\rangle = \left\langle \frac{1}{\sqrt{l}} \cos \frac{k'\pi}{l} x, a_0 \cdot \frac{1}{\sqrt{2l}} + \sum_{k=1}^{\infty} \left(a_k \cdot \frac{1}{\sqrt{l}} \cos \frac{k\pi}{l} x + b_k \cdot \frac{1}{\sqrt{l}} \sin \frac{k\pi}{l} x \right) \right\rangle$$

$$= \sum_{k=1}^{\infty} a_k \left\langle \frac{1}{\sqrt{l}} \cos \frac{k'\pi}{l} x, \frac{1}{\sqrt{l}} \cos \frac{k\pi}{l} x \right\rangle$$

$$= \sum_{k=1}^{\infty} a_k \delta_{k',k}$$

$$= a_{k'}$$

总之:

$$a_0 = \left\langle \frac{1}{\sqrt{2l}}, f(x) \right\rangle = \int_{-l}^{l} \frac{1}{\sqrt{2l}} \cdot f(x) dx = \frac{1}{\sqrt{2l}} \int_{-l}^{l} f(x) dx$$

$$a_k = \left\langle \frac{1}{\sqrt{l}} \cos \frac{k\pi}{l} x, f(x) \right\rangle = \int_{x=-l}^{x=l} \frac{1}{\sqrt{l}} \cos \frac{k\pi}{l} x \cdot f(x) dx = \frac{1}{\sqrt{l}} \int_{x=-l}^{x=l} f(x) \cos \frac{k\pi}{l} x dx$$

$$b_k = \left\langle \frac{1}{\sqrt{l}} \sin \frac{k\pi}{l} x, f(x) \right\rangle = \int_{x=-l}^{x=l} \frac{1}{\sqrt{l}} \sin \frac{k\pi}{l} x \cdot f(x) dx = \frac{1}{\sqrt{l}} \int_{x=-l}^{x=l} f(x) \sin \frac{k\pi}{l} x dx$$

e 指数基的傅里叶级数

注意到:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}(m-n)x} \mathrm{d}x = \delta_{m,n}$$

函数系 $\left\{\frac{1}{\sqrt{2\pi}}\mathrm{e}^{\mathrm{i}mx}, m\in\mathbb{Z}\right\}$ 可作为以 2π 为周期的函数为元素的希尔伯特空间 $\mathcal H$ 中的一组正交完备归一基矢,以 2π 为周期的函数 f 在这组基矢上的展开式为:

$$f(x) = \sum_{m=-\infty}^{\infty} C_m \cdot \frac{1}{\sqrt{2\pi}} e^{\mathrm{i}mx}$$

利用正交归一条件:

$$\left\langle \frac{1}{\sqrt{2\pi}} e^{inx}, \frac{1}{\sqrt{2\pi}} e^{imx} \right\rangle \equiv \int_{-\infty}^{+\infty} \left(\frac{1}{\sqrt{2\pi}} e^{inx} \right)^* \cdot \left(\frac{1}{\sqrt{2\pi}} e^{imx} \right) dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(m-n)x} dx$$
$$= \delta_{m,n}$$

内积可得系数:

$$\left\langle \frac{1}{\sqrt{2\pi}} e^{inx}, f(x) \right\rangle = \left\langle \frac{1}{\sqrt{2\pi}} e^{inx}, \sum_{m=-\infty}^{\infty} C_m \cdot \frac{1}{\sqrt{2\pi}} e^{imx} \right\rangle$$

$$= \sum_{m=-\infty}^{\infty} C_m \left\langle \frac{1}{\sqrt{2\pi}} e^{inx}, \frac{1}{\sqrt{2\pi}} e^{imx} \right\rangle$$

$$= \sum_{m=-\infty}^{\infty} C_m \delta_{m,n}$$

$$= C_n$$

即系数 C_m 可通过内积求得:

$$C_m = \left\langle rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i} m x}, f(x)
ight
angle = \int_{-\pi}^{\pi} \left(rac{1}{\sqrt{2\pi}} \mathrm{e}^{\mathrm{i} m x}
ight)^* \cdot f(x) \mathrm{d} x = rac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} m x} \mathrm{d} x$$

傅里叶变换(to be continued)

傅里叶分解与傅里叶变换

若 f(x) 是定义在 $\mathbb R$ 上的实函数,它在任何有限的区间上满足 Dirichlet 条件,且积分 $\int_{-\infty}^{+\infty} |f(x)| \mathrm{d}x$ 收敛,则 f(x) 可进行**傅里叶分解**(将 f(x)分解为无穷多不同频率 k 的基函数 $\mathrm{e}^{\mathrm{i}kx}$ 的线性叠加):

$$f(x) = rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k$$

其中,系数 C(k) 称为 f(x) 的傅里叶变换(或频谱)。

为求出系数 C(k) 的表达式,令 $\mathrm{e}^{\mathrm{i}k'x}$ 与上式两端内积,等式仍成立:

$$\left\langle \mathrm{e}^{\mathrm{i}k'x}, f(x)
ight
angle = \left\langle \mathrm{e}^{\mathrm{i}k'x}, rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k
ight
angle$$

根据内积的定义,分别计算内积:

$$\left\langle \mathrm{e}^{\mathrm{i}k'x}, f(x) \right\rangle \equiv \int_{x=-\infty}^{x=+\infty} \left(\mathrm{e}^{\mathrm{i}k'x} \right)^* f(x) \mathrm{d}x$$

$$\equiv \int_{x=-\infty}^{x=+\infty} f(x) \mathrm{e}^{-\mathrm{i}k'x} \mathrm{d}x$$

$$\left\langle \mathrm{e}^{\mathrm{i}k'x}, \frac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k \right\rangle \equiv \int_{x=-\infty}^{x=+\infty} \left(\mathrm{e}^{\mathrm{i}k'x} \right)^* \left(\frac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k \right) \mathrm{d}x$$

$$= \frac{1}{2\pi} \int_{x=-\infty}^{x=+\infty} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}(k-k')x} \mathrm{d}k \mathrm{d}x$$

$$= \frac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} \int_{x=-\infty}^{x=+\infty} C(k) \left(\frac{1}{2\pi} \int_{x=-\infty}^{x=+\infty} \mathrm{e}^{\mathrm{i}(k-k')x} \mathrm{d}x \right) \mathrm{d}k$$

$$= \int_{k=-\infty}^{k=+\infty} C(k) \delta(k-k') \mathrm{d}k$$

$$= C(k')$$

$$C(k') = \int_{x=-\infty}^{x=+\infty} f(x) \mathrm{e}^{-\mathrm{i}k'x} \mathrm{d}x$$

将 k' 替换成 k, 即:

$$C(k) = \int_{x=-\infty}^{x=+\infty} f(x) \mathrm{e}^{-\mathrm{i}kx} \mathrm{d}x$$

这就得到了 f(x) 的傅里叶分解 $f(x)=rac{1}{2\pi}\int_{k=-\infty}^{k=+\infty}C(k)\mathrm{e}^{\mathrm{i}kx}\mathrm{d}k$ 中系数 C(k) 的表达式。

$$f(x)=rac{1}{2\pi}\int_{k=-\infty}^{k=+\infty}C(k)\mathrm{e}^{\mathrm{i}kx}\mathrm{d}k,\ \ C(k)=\int_{x=-\infty}^{x=+\infty}f(x)\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x$$

其中, 系数 C(k) 称为 f(x) 的傅里叶变换(或频谱), 也记为:

$$C(k) \equiv \mathscr{F}\{f(x)\}(k)$$

也就是说,函数 f(x) 的傅里叶变换 $\mathscr{F}\{f(x)\}(k)$ 是一个关于 k 的函数,其表达式为:

$$\mathscr{F}\{f(x)\}(k)=\int_{x=-\infty}^{x=+\infty}f(x)\mathrm{e}^{-\mathrm{i}kx}\mathrm{d}x$$

傅里叶变换的基本性质

线性定理

$$\mathscr{F}\{\alpha_1f_1+\alpha_2f_2\}=\alpha_1\mathscr{F}\{f_1\}+\alpha_2\mathscr{F}\{f_2\}$$

延迟定理

$$\mathscr{F}\{f(x-x_0)\}(k)=\mathrm{e}^{-\mathrm{i}kx_0}\mathscr{F}\{f(x)\}(k)$$

位移定理

设 $\mathscr{F}{f(x)}(k) = C(k)$, 则:

$$\mathscr{F}\{f(x)\mathrm{e}^{\mathrm{i}k_0x}\}(k) = C(k-k_0)$$

标度变换定理

设 $\mathscr{F}{f(x)}(k) = C(k)$, 则:

$$\mathscr{F}\{f(ax)\}(k) = \frac{1}{|a|}C\left(\frac{k}{a}\right)$$

微分定理

设当 $|x| o \infty$ 时, f(x) o 0, 则有:

$$\mathcal{F}\{f'(x)\}(k) = ik\mathcal{F}\{f(x)\}(k)$$

$$\mathcal{F}\{f^{(n)}(x)\}(k) = (ik)^n \mathcal{F}\{f(x)\}(k)$$

卷积定理

第10章 拉普拉斯变换

拉普拉斯变换的定义

对于定义在实变数 $t\in[0,+\infty)$ 上的实函数或复函数 f(t),定义 f(t) 的拉普拉斯变换为:

$$\mathcal{L}\{f(t)\}(p)\equiv F(p)\equiv \int_{t=0}^{t=+\infty}f(t)\mathrm{e}^{-pt}\mathrm{d}t$$

其中, $p=s+\mathrm{i}\sigma,s\in\mathbb{R},\sigma\in\mathbb{R}$, e^{-pt} 称为拉普拉斯变换核,F(p) 称为像函数,也记为:

$$F(p) = f(t), f(t) = F(p)$$

拉普拉斯变换的性质 (两种记号)

线性定理

若 $\alpha_1, \alpha_2 \in \mathbb{C}$, 则:

$$\mathcal{L}\{lpha_1f_1(t)+lpha_2f_2(t)\}(p)=lpha_1\mathcal{L}\{f_1(t)\}(p)+lpha_2\mathcal{L}\{f_2(t)\}(p)$$

设 $f_1(t) = F_1(p), f_2(t) = F_2(p)$, 则:

$$lpha_1 f_1(t) + lpha_2 f_2(t) \coloneqq lpha_1 F_1(p) + lpha_2 F_2(p)$$

延迟定理

设 $\tau > 0$,则:

$$\mathcal{L}{f(t-\tau)H(t-\tau)}(p) = e^{-\tau p}\mathcal{L}{f(t)}(p)$$

设 $f(t) = F(p), \tau > 0$,则:

$$f(t-\tau)H(t-\tau) = e^{-p\tau}F(p)$$

其中,定义了阶跃函数 H:

$$H(t) \equiv egin{cases} 1 & ,t > 0 \ 0 & ,t \leqslant 0 \end{cases}$$

位移定理

设 $\lambda \in \mathbb{C}$,则:

$$\mathcal{L}\left\{\mathrm{e}^{-\lambda t}f(t)
ight\}(p)=\mathcal{L}\left\{f(t)
ight\}(p+\lambda)$$

设 $f(t) = F(p), \lambda \in \mathbb{C}$, 则:

$$\mathrm{e}^{-\lambda t} f(t) \coloneqq F(p+\lambda)$$

标度变换定理

设a > 0,则:

$$\mathcal{L}{f(at)}(p) = \frac{1}{a}\mathcal{L}{f(t)}\left(\frac{p}{a}\right)$$

设f(t) = F(p),则:

$$f(at) = \frac{1}{a}F\left(\frac{p}{a}\right), a > 0$$

卷积定理

$$\mathcal{L}\{f_1(t)*f_2(t)\}(p) = \mathcal{L}\{f_1(t)\}(p)\cdot \mathcal{L}\{f_2(t)\}(p)$$

其中, 卷积的定义为:

$$f_1(t)*f_2(t) \equiv \int_{ au=0}^{ au=t} f_1(au) f_2(t- au) \mathrm{d} au$$

设 $f_1(t) = F_1(p), f_2(t) = F_2(p)$, 则:

$$f_1(t) * f_2(t) = F_1(p)F_2(p)$$

微分定理

$$\mathcal{L}\left\{f^{(n)}(t)\right\}(p) = p^{n}\mathcal{L}\{f(t)\}(p) - p^{n-1}f^{(0)}(0) - p^{n-2}f^{(1)}(0) - \dots - p^{1}f^{(n-2)}(0) - p^{0} \cdot f^{(n-1)}(0)$$

设 f(t) = F(p), 则:

$$f^{(n)}(t) = p^n F(p) - p^{n-1} f^{(0)}(0) - p^{n-2} f^{(1)}(0) - \dots - p^1 f^{(n-2)}(0) - p^0 f^{(n-1)}(0)$$

特别地:

$$f^{(1)}(t) \coloneqq p^1 F(p) - p^0 f^{(0)}(0)$$

 $f^{(2)}(t) \coloneqq p^2 F(p) - p^1 f^{(0)}(0) - p^0 f^{(1)}(0)$

积分性质

$$\mathcal{L}\left\{\underbrace{\int_0^t \mathrm{d}t \int_0^t \mathrm{d}t \cdots \int_0^t \mathrm{d}t}_{n \triangleq \mathcal{H} \circlearrowleft} f(t)\right\}(p) = \frac{1}{p^n} \mathcal{L}\left\{f(t)\right\}(p)$$

$$\underbrace{\int_0^t \mathrm{d}t \int_0^t \mathrm{d}t \cdots \int_0^t \mathrm{d}t}_{n \in \mathcal{H} \, \hat{\Omega}} f(t) \coloneqq \frac{1}{p^n} \mathcal{L}\{f(t)\}(p)$$

周期函数变换定理

若 f(t) = f(t+T), 则:

$$\mathcal{L}\{f(t)\}(p) = rac{\int_0^T f(au) \mathrm{e}^{-p au} \mathrm{d} au}{1 - \mathrm{e}^{-pT}}$$

若 f(t) = f(t+T), 则:

$$f(t) \coloneqq rac{\int_0^T f(au) \mathrm{e}^{-p au} \mathrm{d} au}{1 - \mathrm{e}^{-pT}}$$

常用拉普拉斯变换及反演

$$\mathcal{L}\{1\}(p) = \frac{1}{p}, \ \operatorname{Re} p > 0$$
 $\mathcal{L}\{e^{at}\}(p) = \frac{1}{p-a}, \ \operatorname{Re} p > a$
 $\mathcal{L}\{t^n\}(p) = \frac{\Gamma(n+1)}{p^{n+1}}$
 $\mathcal{L}\{t^ne^{at}\}(p) = \frac{\Gamma(n+1)}{(p-a)^{n+1}}$
 $\mathcal{L}\{\sin at\}(p) = \frac{a}{p^2+a^2}$
 $\mathcal{L}\{\cos at\}(p) = \frac{p}{p^2+a^2}$

$$\mathcal{L}\{\sinh at\}(p) = \frac{a}{p^2 - a^2}$$

$$\mathcal{L}\{\cosh at\}(p) = \frac{p}{p^2 - a^2}$$

$$\mathcal{L}\{t\sin at\}(p) = \frac{2ap}{(p^2 + a^2)^2}$$

$$\mathcal{L}\{t\cos at\}(p) = \frac{p^2 - a^2}{(p^2 + a^2)^2}$$

$$\begin{split} \frac{1}{p} & = 1, \quad \frac{1}{p^2} = t, \quad \frac{n!}{p^{n+1}} = t^n \\ \frac{1}{p - \alpha} & = e^{\alpha t}, \quad \frac{n!}{(p - n)^{n+1}} = t^n e^{\alpha t} \\ \frac{\alpha}{p^2 + \alpha^2} & = \sin \alpha t, \quad \frac{p}{p^2 + \alpha^2} = \cos \alpha t \\ \frac{\alpha}{p^2 - \alpha^2} & = \sinh \alpha t, \quad \frac{p}{p^2 - \alpha^2} = \cosh \alpha t \end{split}$$

拉普拉斯变换的应用

解常微分方程

例1

用拉普拉斯变换解下列 RL 串联电路方程,其中 L,R,E 为常数:

$$\begin{cases} L\frac{\mathrm{d}i(t)}{\mathrm{d}t} + Ri(t) = E\\ i(0) = 0 \end{cases}$$

设i(t) = F(p)

微分定理给出:

$$\frac{\mathrm{d}i(t)}{\mathrm{d}t} = p^1 F(p) - p^0 i^{(0)}(0) = pF(p) - i(0) = pF(p)$$

常用拉普拉斯变换:

$$\mathcal{L}\{1\}(p) = \frac{1}{p}$$
, Re $p > 0$, or $1 = \frac{1}{p}$

对方程 $Lrac{\mathrm{d}i(t)}{\mathrm{d}t}=+Ri(t)=E$ 两边同时作拉普拉斯变换,得:

$$LpF(p) + RF(p) = \frac{E}{n}$$

解出 F(p):

$$F(p) = rac{E}{Lp^2 + Rp}$$

$$= rac{E}{R} \left(rac{1}{p} - rac{p}{p + R/L}
ight)$$

常用拉普拉斯变换的反演:

$$\frac{1}{p-\alpha} = e^{\alpha t}$$

于是:

$$\frac{1}{p} \stackrel{.}{=} 1, \;\; \frac{1}{p+R/L} \stackrel{.}{=} \mathrm{e}^{-\frac{R}{L}t}$$

对方程 $F(p)=rac{E}{R}\left(rac{1}{p}-rac{p}{p+R/L}
ight)$ 两边同时作拉普拉斯逆变换,得:

$$i(t) = rac{E}{R} \left(1 - \mathrm{e}^{-rac{R}{L}t}
ight)$$

第11章 δ 函数

δ 函数的定义

 δ 函数是一个定义在 $\mathbb R$ 上的广义函数, 其满足:

$$\delta(x-x_0) = egin{cases} 0 &, x
eq x_0 \ +\infty &, x = x_0 \end{cases}, oxtless \int_a^b \delta(x-x_0) \mathrm{d}x = egin{cases} 1 &, x_0 \in (a,b) \ 0 &, x_0
otin (a,b) \end{cases}$$

δ 函数的性质

(1) 设 f(x) 为连续函数,则:

$$\int_{-\infty}^{+\infty} f(x) \delta(x-x_0) \mathrm{d}x = f(x_0)$$

(2) $\delta(x)$ 是偶函数:

$$\delta(-x) = \delta(x)$$

(3):

$$f(x)\delta(x-x_0) = f(x_0)\delta(x-x_0)$$

(4):

$$x\delta(x) = 0$$

(5):

$$\int_{-\infty}^{+\infty} \delta(x-x_2) \delta(x-x_1) \mathrm{d}x = \delta(x_1-x_2)$$

(6) : 设 $\{x_i\}$ 为 $\varphi(x)$ 的单根,即 $\varphi(x_i)=0$ 且 $\varphi'(x_i)\neq 0$,则:

$$\delta(arphi(x)) = \sum_i rac{1}{|arphi'(x_i)|} \delta(x-x_i)$$

简单例子:

$$\delta(ax)=rac{1}{|a|}\delta(x)$$
 $\delta(x^2-a^2)=rac{1}{2|a|}\left[\delta(x+a)+\delta(x-a)
ight]$

三维 δ 函数

$$\delta(ec{r}-ec{r}_0) = egin{cases} 0 &, ec{r}
eq ec{r}_0 \ +\infty &, ec{r} = ec{r}_0 \end{cases}, oxtlus \int\limits_V \delta(ec{r}-ec{r}_0) \mathrm{d}^3 ec{r} = 1, ec{r}_0 \in V$$

三维直角坐标系

$$\mathrm{d}^3 \vec{r} = \mathrm{d}x \mathrm{d}y \mathrm{d}z$$
 $\delta(\vec{r} - \vec{r}_0) \equiv \delta(x - x_0) \delta(y - y_0) \delta(z - z_0)$

三维球坐标系

$$\mathrm{d}^3 ec{r} = r^2 \sin heta \mathrm{d} r \mathrm{d} heta \mathrm{d} arphi$$
 $\delta(ec{r} - ec{r}_0) = rac{1}{r^2 \sin heta} \delta(r - r_0) \delta(heta - heta_0) \delta(arphi - arphi_0)$

三维柱坐标系

$$\mathrm{d}^3 \vec{r} =
ho \mathrm{d}
ho \mathrm{d} arphi \mathrm{d} z$$
 $\delta(\vec{r} - \vec{r}_0) = rac{1}{
ho} \delta(
ho -
ho_0) \delta(arphi - arphi_0) \delta(z - z_0)$

不同形式的 δ 函数

$$\delta(x) = \lim_{n o\infty} \sqrt{rac{n}{\pi}} \mathrm{e}^{-nx^2} \ \delta(ec{r}) = -rac{1}{4\pi}
abla^2 rac{1}{r}$$

δ 函数的傅里叶展式和傅里叶变换

—维

设 $\delta(x-x_0)$ 可展为:

$$\delta(x-x_0)=rac{1}{2\pi}\int_{k=-\infty}^{k=+\infty}C(k)\mathrm{e}^{\mathrm{i}kx}\mathrm{d}k$$

其中,系数 C(k) 就是 $\delta(x-x_0)$ 的傅里叶变换 $\mathscr{F}\{\delta(x-x_0)\}(k)$,即:

$$egin{aligned} C(k) &= \mathscr{F}\{\delta(x-x_0)\}(k) \ &= \int_{k=-\infty}^{k=+\infty} \delta(x-x_0) \mathrm{e}^{-\mathrm{i}kx} \mathrm{d}x \ &= \mathrm{e}^{-\mathrm{i}kx_0} \end{aligned}$$

代回 $\delta(x-x_0)$ 的傅里叶展式,可得:

$$egin{aligned} \delta(x-x_0) &= rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} C(k) \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k \ &= rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} \mathrm{e}^{-\mathrm{i}kx_0} \mathrm{e}^{\mathrm{i}kx} \mathrm{d}k \ &= rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} \mathrm{e}^{\mathrm{i}k(x-x_0)} \mathrm{d}k \end{aligned}$$

$$\delta(x-x_0) = rac{1}{2\pi} \int_{k=-\infty}^{k=+\infty} \mathrm{e}^{\mathrm{i}(x-x_0)k} \mathrm{d}k$$

三维

$$\begin{split} \delta(\vec{r} - \vec{r}_0) &= \delta(x - x_0) \delta(y - y_0) \delta(z - z_0) \\ &= \left(\frac{1}{2\pi} \int_{k_x = -\infty}^{k_x = +\infty} \mathrm{e}^{\mathrm{i}(x - x_0)k_x} \mathrm{d}k_x\right) \left(\frac{1}{2\pi} \int_{k_y = -\infty}^{k_y = +\infty} \mathrm{e}^{\mathrm{i}(y - y_0)k_y} \mathrm{d}k_y\right) \left(\frac{1}{2\pi} \int_{k_z = -\infty}^{k_z = +\infty} \mathrm{e}^{\mathrm{i}(z - z_0)k_z} \mathrm{d}k_z\right) \\ &= \frac{1}{(2\pi)^3} \int_{k_x = -\infty}^{k_x = +\infty} \int_{k_y = -\infty}^{k_y = +\infty} \int_{k_z = -\infty}^{k_z = +\infty} \mathrm{e}^{\mathrm{i}(x - x_0)k_x} \mathrm{e}^{\mathrm{i}(y - y_0)k_y} \mathrm{e}^{\mathrm{i}(z - z_0)k_z} \mathrm{d}k_x \mathrm{d}k_y \mathrm{d}k_z \\ &= \frac{1}{(2\pi)^3} \int_{\vec{k} \in \mathbb{R}^3} \mathrm{e}^{\mathrm{i}(\vec{r} - \vec{r}_0) \cdot \vec{k}} \mathrm{d}^3 \vec{k} \end{split}$$

$$\delta(ec{r}-ec{r}_0) = rac{1}{\left(2\pi
ight)^3}\int\limits_{ec{k}\in\mathbb{R}^3} \mathrm{e}^{\mathrm{i}(ec{r}-ec{r}_0)\cdotec{k}} \mathrm{d}^3ec{k}$$

例题

例1

证明:
$$\delta(\vec{r}) = -\frac{1}{4\pi} \nabla^2 \frac{1}{r}$$

当 $\vec{r} \neq \vec{0}$,有:

$$\begin{split} \nabla \frac{1}{r} &= -\frac{1}{r^2} \nabla r = -\frac{1}{r^2} \frac{\vec{r}}{r} = -\frac{\vec{r}}{r^3} \\ \nabla^2 \frac{1}{r} &= \nabla \cdot \left(\nabla \frac{1}{r} \right) \\ &= \nabla \cdot \left(-\frac{\vec{r}}{r^3} \right) \\ &= -\left(\vec{r} \cdot \nabla \frac{1}{r^3} + \frac{1}{r^3} \nabla \cdot \vec{r} \right) \\ &= -\left(\vec{r} \cdot \left(-3r^{-4} \frac{\vec{r}}{r} \right) + \frac{1}{r^3} \cdot 3 \right) \\ &= 0 \end{split}$$

 $abla^2rac{1}{r}$ 在 $ec{r}=ec{0}$ 处无定义,但可人为定义其在 $ec{0}$ 处的函数值为 $+\infty$

取以坐标原点为球心,半径为 R 的一个球体 V,

$$\begin{split} \int\limits_{\vec{r}\in V} -\frac{1}{4\pi} \nabla^2 \frac{1}{r} \mathrm{d}^3 \vec{r} &= -\frac{1}{4\pi} \int\limits_{\vec{r}\in V} \nabla \cdot \left(\nabla \frac{1}{r} \right) \mathrm{d}^3 \vec{r} \\ &= -\frac{1}{4\pi} \oint\limits_{\partial V^+} \nabla \frac{1}{r} \cdot \mathrm{d} \vec{S} \\ &= -\frac{1}{4\pi} \oint\limits_{\partial V^+} -\frac{\vec{r}}{r^3} \cdot \mathrm{d} \vec{S} \\ &= \frac{1}{4\pi} \cdot \frac{1}{R^2} \oint\limits_{\partial V^+} \mathrm{d} S \\ &= \frac{1}{4\pi R^2} \cdot 4\pi R^2 \\ &= 1 \end{split}$$

第12章 小波变换初步

第13章 波动方程、输运方程、泊松方程及其定解问题

波动方程、输运方程、泊松方程的标准形式

波动方程 (双曲方程)

$$u_{tt} - a^2 \nabla^2 u(\vec{r}, t) = f(\vec{r}, t)$$

输运方程 (抛物方程)

$$u_t - a^2
abla^2 u(\vec{r}, t) = f(\vec{r}, t)$$

泊松方程 (椭圆方程)

$$abla^2 u(ec{r}) = f(ec{r})$$

拉普拉斯方程

$$abla^2 u(\vec{r}) = 0$$

波动方程、输运方程、泊松方程的定解条件

定解条件包括初始条件和边界条件。

初始条件

波动方程初始条件

场量 $u(\vec{r},t)$ 在 t=0 时刻的空间分布**和**场量对时间的一阶导 $u_t(\vec{r},t)$ 在 t=0 时刻的空间分布:

$$\left\{ \left. \begin{array}{l} u(\vec{r},t) \right|_{t=0} = \varphi(\vec{r}) \\ \left. \begin{array}{l} u_t(\vec{r},t) \right|_{t=0} = \nu(\vec{r}) \end{array} \right.$$

输运方程初始条件

场量 $u(\vec{r},t)$ 在 t=0 时刻的空间分布**或**场量对时间的一阶导 $u_t(\vec{r},t)$ 在 t=0 时刻的空间分布:

$$u(\vec{r},t)igg|_{t=0}=arphi(\vec{r})$$

或:

$$\left. u_t(ec{r},t) \right|_{t=0} =
u(ec{r})$$

泊松方程初始条件

泊松方程没有初始条件 (稳定场,场量不随时间改变)

边界条件

第一类边界条件

场量 $u(\vec{r},t)$ 在边界 $\partial\Omega$ 处的取值所要满足的条件

$$\left. u(ec{r},t)
ight|_{ec{r} \in \partial \Omega} = g(ec{r},t)$$

若 $g(\vec{r},t)=0$,则得到第一类齐次边界条件:

$$u(\vec{r},t)igg|_{ec{r}\in\partial\Omega}=0$$

第二类边界条件

场量沿边界的外法线的梯度对时间的依赖关系

$$\left. rac{\partial u(ec{r},t)}{\partial n}
ight|_{ec{r} \in \partial \Omega} = g(ec{r},t)$$

若 $g(\vec{r},t)=0$,则得到第二类齐次边界条件:

$$\left. \frac{\partial u(\vec{r},t)}{\partial n} \right|_{\vec{r} \in \partial \Omega} = 0$$

第三类边界条件

$$\left.\left(lpha u(ec{r},t)+etarac{\partial u(ec{r},t)}{\partial n}
ight)
ight|_{ec{r}\in\Omega}=g(ec{r},t)$$

若 $g(\vec{r},t)=0$,则得到第三类齐次边界条件:

$$\left(\alpha u(\vec{r},t) + \beta \frac{\partial u(\vec{r},t)}{\partial n} \right) \Big|_{\vec{r} \in \Omega} = 0$$

自然边界条件

所要求解的场量 u 在考虑的区域 Ω 及其边界 $\partial\Omega$ 上,都是有界的,不发散的,即:

$$|u| < +\infty$$

周期性边界条件

场函数 $u(\vec{r},t)$ 具有空间周期性。

衔接条件

若研究的区域 Ω 可分成几个性质不同的子区域,则在相邻子区域的边界上要求用特殊的衔接条件。

波动方程、输运方程、泊松方程的定解条件

波动方程定解条件

$$\begin{cases} u_{tt}(\vec{r},t) - a^2 \nabla^2 u = f(\vec{r},t) \\ u(\vec{r},t) \Big|_{t=0} = \varphi(\vec{r}) \\ u_{t}(\vec{r},t) \Big|_{t=0} = \nu(\vec{r}) \\ \left[\alpha u(\vec{r},t) + \beta \frac{\partial u(\vec{r},t)}{\partial n} \right]_{\vec{r} \in \partial \Omega} = g(\vec{r},t) \Big|_{\vec{r} \in \partial \Omega} \end{cases}$$

输运方程定解条件

$$\begin{cases} u_t(\vec{r},t) - a^2 \nabla^2 u = f(\vec{r},t) \\ u(\vec{r},t) \Big|_{t=0} = \varphi(\vec{r}) \text{ or } u_t(\vec{r},t) \Big|_{t=0} = \nu(\vec{r}) \\ \left[\alpha u(\vec{r},t) + \beta \frac{\partial u(\vec{r},t)}{\partial n} \right]_{\vec{r} \in \partial \Omega} = g(\vec{r},t) \Big|_{\vec{r} \in \partial \Omega} \end{cases}$$

泊松方程定解条件

$$egin{cases}
abla^2 u(ec{r}) &= f(ec{r}) \ \left[lpha u(ec{r}) + eta rac{\partial u(ec{r})}{\partial n}
ight]_{ec{r} \in \partial \Omega} = g(ec{r}s) igg|_{ec{r} \in \partial \Omega} \end{aligned}$$

第14章 分离变量法

例1

求解四边固定,x,y 方向上边长分别为 l,d 的矩形薄膜的本征振动(即求本征振动频率和本征振动函数)

矩形薄膜的振动满足二维波动方程。这里采用直角坐标,结合"四周固定"这一边界条件,可得:

$$\begin{cases} \frac{\partial^2 u(x,y,t)}{\partial t^2} - a^2 \left(\frac{\partial^2 u(x,y,t)}{\partial x^2} + \frac{\partial^2 u(x,y,t)}{\partial y^2} \right) = 0 \\ u\big|_{x=0} = u\big|_{x=l} = 0 \\ u\big|_{y=0} = u\big|_{y=d} = 0 \end{cases}$$

设 u(x,y,t) 可分离变量:

$$u(x, y, t) = U(x, y)T(t) = X(x)Y(y)T(t)$$

代入波动方程可得:

$$X(x)Y(y)T''(t) - a^{2}[Y(y)T(t)X''(x) + X(x)T(t)Y''(y)] = 0$$

上式两边同时除以 X(x)Y(y)T(t) 得:

$$\frac{T''(t)}{T(t)} - a^2 \left[\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} \right] = 0$$

观察可知,必定有:

$$rac{T''(t)}{T(t)} = -\omega^2, \quad rac{X''(x)}{X(x)} = -k_x^2, \quad rac{Y''(y)}{Y(y)} = -k_y^2$$

将上式代入上上式,可知 ω, k_x, k_y 满足:

$$\omega^2 = a^2 \left(k_x^2 + k_y^2
ight)
onumber \ rac{X''(x)}{X(x)} = -k_x^2 \Longrightarrow X(x) = A\cos(k_x x) + B\sin(k_x x)$$

结合边界条件 $u\big|_{x=0} = u\big|_{x=l} = 0$ 可得:

$$A=0, \;\; k_x^{(n)}=rac{n\pi}{l}, \;\; n=1,2,\cdots$$

因此, X(x) 的本征函数为:

$$X^{(n)} = B^{(n)} \sin\left(rac{n\pi}{l}x
ight)
onumber \ rac{Y''(y)}{Y(y)} = -k_y^2 \Longrightarrow Y(y) = C\cos(k_y y) + D\sin(k_y y)$$

结合边界条件 $u\big|_{y=0}=u\big|_{y=d}=0$ 可得:

$$C = 0, \ k_y^{(m)} = \frac{m\pi}{d}, \ m = 1, 2, \cdots$$

因此, Y(y) 的本征函数为:

$$Y^{(m)} = D^{(m)} \sin\left(\frac{m\pi}{d}y\right)$$

由 U(x,y) = X(x)Y(y) 可知,本征振动函数为:

$$\begin{split} U^{(nm)}(x,y) &= X^{(n)}(x)Y^{(m)}(y) \\ &= B^{(n)}D^{(m)}\sin\left(\frac{n\pi}{l}x\right)\sin\left(\frac{m\pi}{d}y\right) \\ &\equiv E^{(nm)}\sin\left(\frac{n\pi}{l}x\right)\sin\left(\frac{m\pi}{d}y\right), \ E^{(nm)} &\equiv B^{(n)}D^{(m)}, \ n,m = 1,2,\cdots \end{split}$$

由 $\omega^2=a^2\left(k_x^2+k_y^2\right)$ 可知,本征振动频率为:

$$egin{align} \omega^{(nm)} &= a\sqrt{\left(k_x^{(n)}
ight)^2 + \left(k_y^{(m)}
ight)^2} \ &= a\sqrt{\left(rac{n\pi}{l}
ight)^2 + \left(rac{m\pi}{d}
ight)^2}, \;\; n,m=1,2,\cdots \end{split}$$

例2

求定解问题:

$$\begin{cases} u_{tt} - a^2 u_{xx} = 0 \\ u_x \Big|_{x=0} = 0 \\ u_x \Big|_{x=0} = 0 \\ u \Big|_{t=0} = \cos\left(\frac{\pi x}{l}\right) + 0.3\cos\left(\frac{3\pi x}{l}\right) \\ u_t \Big|_{t=0} = 0 \end{cases}$$

$$u(x,t) = U(x)T(t)$$

代入一维波动方程 $u_{tt} - a^2 u_{xx} = 0$ 可得:

$$\frac{T''(t)}{T(t)} = a^2 \frac{U''(x)}{U(x)} = -\omega^2$$

$$T''(t) + \omega^2 T(t) = 0 \Longrightarrow T(t) = A \cos \omega t + B \sin \omega t$$

$$T'(t) = -\omega A \sin \omega t + \omega B \cos \omega t$$

$$u_t \Big|_{t=0} = 0 \Longrightarrow T'(t) \Big|_{t=0} = 0 \Longrightarrow B = 0$$

因此:

$$T(t) = A\cos\omega t$$

令:

$$k\equiv rac{\omega}{a},~~k^2=rac{\omega^2}{a^2}$$
 $U''(x)+k^2U(x)=0\Longrightarrow U(x)=C\cos kx+D\sin kx$ $U'(x)=-kC\sin kx+kD\cos kx$

$$u_x \Big|_{x=0} = 0 \Longrightarrow U'(x) \Big|_{x=0} = 0 \Longrightarrow D = 0$$

因此:

$$U(x) = C\cos kx, \;\; U'(x) = -kC\sin kx$$
 $u_xigg|_{x=l} = 0 \Longrightarrow -kC\sin kl = 0$

因此, k 的本征值 k_n 为:

$$k_n=rac{n\pi}{l}, \;\; n=,1,2,\cdots$$

n=0 是平庸解,不考虑。

相应的本征函数 $U_n(x)$ 为:

$$U_n(x) = \cos k_n x = \cos \left(\frac{n\pi}{l}x\right), \quad n = 1, 2, \cdots$$

由 $k \equiv \omega/a$, 得 ω 的本征值 ω_n 为:

$$\omega_n=ak_n=rac{n\pi a}{l}, \ \ n=1,2,\cdots$$

相应的本征函数 $T_n(x)$ 为:

$$T_n(t) = \cos \omega_n t = \cos \left(rac{n\pi a}{l} t
ight), \;\; n = 1, 2, \cdots$$

本征解 $u_n(x,t)$ 为:

$$u_n(x,t) = U_n(t)T_n(t) = \cos\left(\frac{n\pi}{l}x\right)\cos\left(\frac{n\pi a}{l}t\right), \quad n = 1, 2, \cdots$$

定解问题的通解 u(x,t) 为:

$$u(x,t) = \sum_{n=1}^{\infty} E_n u_n(x,t) = \sum_{n=1}^{\infty} E_n \cos\left(rac{n\pi}{l}x
ight) \cos\left(rac{n\pi a}{l}t
ight)$$

最后结合初始条件

$$u\Big|_{t=0} = \cos\left(\frac{\pi x}{l}\right) + 0.3\cos\left(\frac{3\pi x}{l}\right)$$

得到:

$$E_1 = 1, E_2 = 0, E_3 = 0.3, E_4 = E_5 = \cdots = 0$$

最终得到定解问题的解为:

$$u(x,t) = \cos\left(rac{\pi}{l}x
ight)\cos\left(rac{\pi a}{l}t
ight) + 0.3\cos\left(rac{3\pi}{l}x
ight)\cos\left(rac{3\pi a}{l}t
ight)$$

例3

求定解问题:

$$\begin{cases} u_t - a^2 \nabla^2 u = 0 \\ u \Big|_{x=0} = 0, u \Big|_{x=l_1} = 0 \\ u \Big|_{y=0} = 0, u \Big|_{y=l_2} = 0 \\ u \Big|_{z=0} = 0, u \Big|_{z=l_3} = 0 \\ u \Big|_{t=0} = T_0 \end{cases}$$

设 u(x, y, z, t) 可分离变量:

$$u(x, y, z, t) = U(x, y, z)T(t)$$

代入输运方程可得:

$$U(x, y, z)T'(t) - a^{2}T(t)\nabla^{2}U(x, y, z) = 0$$

两边同时处以 $a^2U(x,y,z)T(t)$ 得:

$$rac{T'(t)}{a^2T(t)} = rac{
abla^2 U(x,y,z)}{U(x,y,z)}$$

显然,有:

$$\frac{T'(t)}{a^2T(t)}=\frac{\nabla^2 U(x,y,z)}{U(x,y,z)}=-k^2,\quad k>0$$

T(t) 满足方程:

$$T'(t) + a^2k^2T(t) = 0$$

U(x,y,z) 满足方程:

$$abla^2 U(x,y,z) + k^2 U(x,y,z) = 0$$

设U(x,y,z)可分离变量:

$$U(x, y, z) = X(x)Y(y)Z(z)$$

代入 U(x,y,z) 满足的方程,得:

$$Y(y)Z(z)X''(x) + X(x)Z(z)Y''(y) + X(x)Y(y)Z''(z) + k^2X(x)Y(y)Z(z) = 0$$

等号两边同时除以 X(x)Y(y)Z(z) 得:

$$\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} + \frac{Z''(z)}{Z(z)} + k^2 = 0$$

注意到, $\frac{X''(x)}{X(x)}$, $\frac{Y''(y)}{Y(y)}$, $\frac{Z''(z)}{Z(z)}$ 分别只与 x,y,z 有关。上式成立,则有:

$$\frac{X''(x)}{X(x)} = -k_x^2, \quad k_x > 0$$

$$rac{Y''(y)}{Y(y)}=-k_y^2,\quad k_y>0$$

$$rac{Z''(z)}{Z(z)}=-k_z^2,\quad k_z>0$$

$$k_x^2 + k_y^2 + k_z^2 = k^2$$

即:

$$X''(x) + k_x^2 X(x) = 0$$

$$Y''(y) + k_y^2 Y(y) = 0$$

$$Z''(z) + k_z^2 Z(z) = 0$$

$$k_x^2 + k_y^2 + k_z^2 = k^2$$

方程 $X''(x) + k_x^2 X(x) = 0$ 的通解为:

$$X(x) = A_x \cos(k_x x) + B_x \sin(k_x x)$$

边界条件:

$$\left. u \right|_{x=0} = 0, u \left|_{x=l_1} = 0 \Longrightarrow X(x) \right|_{x=0} = 0, X(x) \left|_{x=l_1} = 0 \right|_{x=l_1}$$

由 $X(x)\bigg|_{x=0}=0$ 可知:

$$A_r = 0$$

因此:

$$X(x) = B_x \sin(k_x x)$$

再由 $X(x)igg|_{x=l_1}=0$ 可得 k_x 的本征值 $k_x^{(n_x)}$ 为 :

$$k_x^{(n_x)}=rac{n_x\pi}{l_1},\quad n_x=1,2,\cdots$$

相应的本征函数 $X_{n_x}(x)$ 为:

$$X_{n_x}(x)=\sin\left(rac{n_x\pi x}{l_1}
ight),\quad n_x=1,2,\cdots$$

类似的, k_y 的本征值 $k_y^{(n_y)}$ 为:

$$k_y^{(n_y)}=rac{n_y\pi}{l_2},\quad n_y=1,2,\cdots$$

相应的本征函数 $Y_{n_y}(y)$ 为:

$$Y_{n_y}(y) = \sin\left(rac{n_y\pi y}{l_2}
ight), \quad n_y = 1, 2, \cdots$$

 k_z 的本征值 $k_z^{(n_z)}$ 为:

$$k_z^{(n_z)}=rac{n_z\pi}{l_3},\quad n_z=1,2,\cdots$$

相应的本征函数 $Z_{n_z}(z)$ 为:

$$Z_{n_z}(z) = \sin\left(rac{n_z\pi z}{l_3}
ight), \quad n_z = 1, 2, \cdots$$

由 $k^2=k_x^2+k_y^2+k_z^2$ 可知,k 的本征值 $k_{n_xn_yn_z}$ 为:

$$egin{aligned} k_{n_xn_yn_z} &= \sqrt{\left(k_x^{(n_x)}
ight)^2 + \left(k_y^{(n_y)}
ight)^2 + \left(k_z^{(n_z)}
ight)^2} \ &= \sqrt{\left(rac{n_x\pi}{l_1}
ight)^2 + \left(rac{n_y\pi}{l_2}
ight)^2 + \left(rac{n_z\pi}{l_3}
ight)^2} \end{aligned}$$

由 U(x,y,z)=X(x)Y(y)Z(z) 可知,相应于本征值 $k_{n_xn_yn_z}$ 的本征函数 $U_{n_xn_yn_z}$ 为:

$$U_{n_xn_yn_z}(x,y,z) = X_{n_x}(x)Y_{n_y}(y)Z_{n_z}(z) = \sin\left(rac{n_x\pi x}{l_1}
ight)\sin\left(rac{n_y\pi y}{l_2}
ight)\sin\left(rac{n_z\pi z}{l_3}
ight)$$

由 $T'(t)+a^2k^2T(t)=0$ 可知,T(t) 的本征函数 $T_{n_xn_yn_z}(t)$ 为:

$$T_{n_x n_y n_z}(t) = \mathrm{e}^{-k_{n_x n_y n_z}^2 a^2 t}$$

由 u(x,y,z,t)=U(x,y,z)T(t) 可知,u(x,y,z,t) 的本征函数 $u_{n_xn_yn_z}(x,y,z,t)$ 为:

$$egin{align*} u_{n_xn_yn_z}(x,y,z,t) &= U_{n_xn_yn_z}(x,y,z)T_{n_xn_yn_z}(t) \ &= \mathrm{e}^{-k_{n_xn_yn_z}^2a^2t}\sin\left(rac{n_x\pi x}{l_1}
ight)\sin\left(rac{n_y\pi y}{l_2}
ight)\sin\left(rac{n_z\pi z}{l_3}
ight) \end{split}$$

因此,定解问题的形式解 u(x,y,z,t) 为:

$$\begin{split} u(x,y,z,t) &= \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} C_{n_x n_y n_z} u_{n_x n_y n_z}(x,y,z,t) \\ &= \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} C_{n_x n_y n_z} \mathrm{e}^{-k_{n_x n_y n_z}^2 a^2 t} \sin\left(\frac{n_x \pi x}{l_1}\right) \sin\left(\frac{n_y \pi y}{l_2}\right) \sin\left(\frac{n_z \pi z}{l_3}\right) \\ &= \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} C_{n_x n_y n_z} \exp\left\{-a^2 \left[\left(\frac{n_x \pi}{l_1}\right)^2 + \left(\frac{n_y \pi}{l_2}\right)^2 + \left(\frac{n_z \pi}{l_3}\right)^2\right] t\right\} \sin\left(\frac{n_x \pi x}{l_1}\right) \sin\left(\frac{n_y \pi y}{l_2}\right) \sin\left(\frac{n_z \pi z}{l_3}\right) \end{split}$$

结合初始条件 $u(x,y,z,t)\bigg|_{t=0}=T_0$,得:

$$\sum_{n_x=1}^{\infty}\sum_{n_y=1}^{\infty}\sum_{n_z=1}^{\infty}C_{n_xn_yn_z}\sin\left(\frac{n_x\pi x}{l_1}\right)\sin\left(\frac{n_y\pi y}{l_2}\right)\sin\left(\frac{n_z\pi z}{l_3}\right)=T_0$$

等号两边同乘 $\sin\left(\frac{n_x'\pi x}{l_1}\right)\sin\left(\frac{n_y'\pi y}{l_2}\right)\sin\left(\frac{n_z'\pi z}{l_2}\right)$ 并积分 $(n_x',n_y',n_z'\in\{1,2,\cdots\})$:

$$\begin{split} &\sum_{n_x=1}^{\infty}\sum_{n_y=1}^{\infty}\sum_{n_z=1}^{\infty}C_{n_xn_yn_z}\int_{x=0}^{x=l_1}\sin\left(\frac{n_x\pi x}{l_1}\right)\sin\left(\frac{n'_x\pi x}{l_1}\right)\mathrm{d}x\int_{y=0}^{y=l_2}\sin\left(\frac{n_y\pi y}{l_2}\right)\sin\left(\frac{n'_y\pi y}{l_2}\right)\mathrm{d}y\int_{z=0}^{z=l_3}\sin\left(\frac{n_z\pi z}{l_3}\right)\sin\left(\frac{n'_z\pi z}{l_3}\right)\mathrm{d}z\\ =&T_0\int_{x=0}^{x=l_1}\sin\left(\frac{n'_x\pi x}{l_1}\right)\mathrm{d}x\int_{y=0}^{y=l_2}\sin\left(\frac{n'_y\pi y}{l_2}\right)\mathrm{d}y\int_{z=0}^{z=l_3}\sin\left(\frac{n'_x\pi z}{l_3}\right)\mathrm{d}z \end{split}$$

注意到:

$$\begin{split} \int_{x=0}^{x=l_1} \sin\left(\frac{n_x'\pi x}{l_1}\right) \mathrm{d}x &= \frac{l_1}{n_x'\pi} \int_{x=0}^{x=l_1} \sin\left(\frac{n_x'\pi x}{l_1}\right) \mathrm{d}\left(\frac{n_x'\pi x}{l_1}\right) \\ &= \frac{-l_1}{n_x'\pi} \int_{x=0}^{x=l_1} \mathrm{d}\left[\cos\left(\frac{n_x'\pi x}{l_1}\right)\right] \\ &= \frac{-l_1}{n_x'\pi} \cdot \cos\left(\frac{n_x'\pi x}{l_1}\right) \bigg|_{x=0}^{x=l_1} \\ &= \frac{-l_1}{n_x'\pi} \cdot \left[\cos\left(n_x'\pi\right) - 1\right] \\ &= \frac{l_1}{n_x'\pi} \left[1 - (-1)^{n_x'}\right] \end{split}$$

利用积化和差公式 $\sin \alpha \sin \beta = \frac{1}{2} \left[\cos(\alpha - \beta) - \cos(\alpha + \beta) \right]$, 有:

$$\int_{x=0}^{x=l_1} \sin\left(\frac{n_x\pi x}{l_1}\right) \sin\left(\frac{n_x'\pi x}{l_1}\right) \mathrm{d}x = \frac{1}{2} \int_{x=0}^{x=l_1} \cos\left(\frac{\left(n_x - n_x'\right)\pi x}{l_1}\right) \mathrm{d}x - \frac{1}{2} \int_{x=0}^{x=l_1} \cos\left(\frac{\left(n_x + n_x'\right)\pi x}{l_1}\right) \mathrm{d}x$$

注意到:

$$\begin{split} \int_{x=0}^{x=l_1} \cos\left(\frac{\left(n_x + n_x'\right)\pi x}{l_1}\right) \mathrm{d}x &= \frac{l_1}{\left(n_x + n_x'\right)\pi} \int_{x=0}^{x=l_1} \mathrm{d}\left[\sin\left(\frac{\left(n_x + n_x'\right)\pi x}{l_1}\right)\right] \\ &= \frac{l_1}{\left(n_x + n_x'\right)\pi} \cdot \sin\left(\frac{\left(n_x + n_x'\right)\pi x}{l_1}\right) \Big|_{x=0}^{x=l_1} \\ &= 0 \end{split}$$

再注意到,当 $n_x = n'_x$ 时,

$$\int_{x=0}^{x=l_1} \cos \left(\frac{\left(n_x - n_x' \right) \pi x}{l_1} \right) \mathrm{d}x = l_1$$

当 $n_x
eq n_x'$ 时,

$$\begin{split} \int_{x=0}^{x=l_1} \cos\left(\frac{\left(n_x - n_x'\right)\pi x}{l_1}\right) \mathrm{d}x &= \frac{l_1}{\left(n_x - n_x'\right)\pi} \int_{x=0}^{x=l_1} \mathrm{d}\left[\sin\left(\frac{\left(n_x - n_x'\right)\pi x}{l_1}\right)\right] \\ &= \frac{l_1}{\left(n_x - n_x'\right)\pi} \cdot \sin\left(\frac{\left(n_x - n_x'\right)\pi x}{l_1}\right) \Big|_{x=0}^{x=l_1} \\ &= 0 \end{split}$$

因此:

$$\int_{x=0}^{x=l_1}\cos\left(rac{\left(n_x-n_x'
ight)\pi x}{l_1}
ight)\mathrm{d}x=l_1\delta_{n_x,n_x'}$$

终于,我们可以计算:

$$\begin{split} \int_{x=0}^{x=l_1} \sin\left(\frac{n_x\pi x}{l_1}\right) \sin\left(\frac{n_x'\pi x}{l_1}\right) \mathrm{d}x &= \frac{1}{2} \int_{x=0}^{x=l_1} \cos\left(\frac{\left(n_x - n_x'\right)\pi x}{l_1}\right) \mathrm{d}x - \frac{1}{2} \int_{x=0}^{x=l_1} \cos\left(\frac{\left(n_x + n_x'\right)\pi x}{l_1}\right) \mathrm{d}x \\ &= \frac{1}{2} l_1 \delta_{n_x,n_x'} - \frac{1}{2} \cdot 0 \\ &= \frac{l_1}{2} \delta_{n_x,n_x'} \end{split}$$

于是,下面这个复杂的方程

$$\begin{split} &\sum_{n_x=1}^{\infty}\sum_{n_y=1}^{\infty}\sum_{n_z=1}^{\infty}C_{n_xn_yn_z}\int_{x=0}^{x=l_1}\sin\left(\frac{n_x\pi x}{l_1}\right)\sin\left(\frac{n_x'\pi x}{l_1}\right)\mathrm{d}x\int_{y=0}^{y=l_2}\sin\left(\frac{n_y\pi y}{l_2}\right)\sin\left(\frac{n_y'\pi y}{l_2}\right)\mathrm{d}y\int_{z=0}^{z=l_3}\sin\left(\frac{n_z\pi z}{l_3}\right)\sin\left(\frac{n_z'\pi z}{l_3}\right)\mathrm{d}z\\ =&T_0\int_{x=0}^{x=l_1}\sin\left(\frac{n_x'\pi x}{l_1}\right)\mathrm{d}x\int_{y=0}^{y=l_2}\sin\left(\frac{n_y'\pi y}{l_2}\right)\mathrm{d}y\int_{z=0}^{z=l_3}\sin\left(\frac{n_z'\pi z}{l_3}\right)\mathrm{d}z \end{split}$$

可简化为:

$$\sum_{n_{x}=1}^{\infty}\sum_{n_{y}=1}^{\infty}\sum_{n_{z}=1}^{\infty}C_{n_{x}n_{y}n_{z}}\frac{l_{1}l_{2}l_{3}}{8}\delta_{n_{x},n'_{x}}\delta_{n_{y},n'_{y}}\delta_{n_{z},n'_{z}}=T_{0}\frac{l_{1}l_{2}l_{3}}{n'_{x}n'_{y}n'_{z}\pi^{3}}\left[1-\left(-1\right)^{n'_{x}}\right]\left[1-\left(-1\right)^{n'_{y}}\right]\left[1-\left(-1\right)^{n'_{z}}\right]$$

继续化简:

$$C_{n_x'n_y'n_z'} \cdot rac{1}{8} = T_0 rac{1}{n_x'n_y'n_z'\pi^3} \left[1 - (-1)^{n_x'}
ight] \left[1 - (-1)^{n_y'}
ight] \left[1 - (-1)^{n_z'}
ight]$$

解得系数:

$$C_{n_x'n_y'n_z'} = rac{8}{n_x'n_y'n_z'\pi^3}T_0\left[1-(-1)^{n_x'}
ight]\left[1-(-1)^{n_y'}
ight]\left[1-(-1)^{n_z'}
ight]$$

把下标 n'_x, n_y, n'_z 替换为 n_x, n_y, n_z :

$$C_{n_{x}n_{y}n_{z}}=rac{8}{n_{x}n_{y}n_{z}\pi^{3}}T_{0}\left[1-\left(-1
ight)^{n_{x}}
ight]\left[1-\left(-1
ight)^{n_{y}}
ight]\left[1-\left(-1
ight)^{n_{z}}
ight]$$

综上, 定解问题的解 u(x,y,z,t) 为:

$$\begin{split} u(x,y,z,t) &= \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} C_{n_x n_y n_z} \exp\left\{-a^2 \left[\left(\frac{n_x \pi}{l_1}\right)^2 + \left(\frac{n_y \pi}{l_2}\right)^2 + \left(\frac{n_z \pi}{l_3}\right)^2 \right] t \right\} \sin\left(\frac{n_x \pi x}{l_1}\right) \sin\left(\frac{n_y \pi y}{l_2}\right) \sin\left(\frac{n_z \pi z}{l_3}\right) \\ &= \sum_{n_x=1}^{\infty} \sum_{n_y=1}^{\infty} \sum_{n_z=1}^{\infty} \frac{8}{n_x n_y n_z \pi^3} T_0 \left[1 - (-1)^{n_x}\right] \left[1 - (-1)^{n_y}\right] \left[1 - (-1)^{n_z}\right] \exp\left\{-a^2 \left[\left(\frac{n_x \pi}{l_1}\right)^2 + \left(\frac{n_y \pi}{l_2}\right)^2 + \left(\frac{n_z \pi}{l_3}\right)^2 \right] t \right\} \times \\ &\sin\left(\frac{n_x \pi x}{l_1}\right) \sin\left(\frac{n_y \pi y}{l_2}\right) \sin\left(\frac{n_z \pi z}{l_3}\right) \end{split}$$

第15章 曲线坐标系下的分离变量

球坐标系下方程的分离变量

拉普拉斯方程在球坐标系下的分量变量

在球坐标系下, 拉普拉斯方程为:

$$abla^2 u(r, \theta, arphi) = 0$$

其中, 拉普拉斯算子在球坐标系下的表达式为:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

设 $u(r, \theta, \varphi)$ 可分离变量:

$$u(r, \theta, \varphi) = R(r)Y(\theta, \varphi) = R(r)\Theta(\theta)\Phi(\varphi)$$

经过运算,可以得到:

径向方程

径向部分 R(r) 满足**径向方程**:

$$r^2rac{\mathrm{d}^2R(r)}{\mathrm{d}r^2}+2rrac{\mathrm{d}R(r)}{\mathrm{d}r}-l(l+1)R(r)=0$$

球函数方程

角度部分 $Y(\theta,\varphi)$ 满足**球函数方程**:

$$\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y(\theta,\varphi)}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y(\theta,\varphi)}{\partial\varphi^2} + l(l+1)Y(\theta,\varphi) = 0$$

方位角满足的方程

方位角部分 $\Phi(\varphi)$ 满足:

$$\Phi''(\varphi) + \lambda \Phi(\varphi) = 0$$

结合周期性边界条件 $\Phi(\varphi + 2\pi) = \Phi(\varphi)$ 可得:

$$\lambda = m^2, \ m = 0, \pm 1, \pm 2, \cdots$$

因此方位角部分满足的方程可写为:

$$\Phi''(\varphi) + m^2 \Phi(\varphi) = 0$$

连带勒让德方程

极角部分 $\Theta(\theta)$ 满足:

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta(\theta)}{\mathrm{d}\theta} \right) + \left[l(l+1) - \frac{m^2}{\sin^2 \theta} \right] \Theta(\theta) = 0$$

 $\Leftrightarrow x=\cos heta, \Theta(heta)=y(x), heta\in[0,\pi], |x|\leqslant 1, \sin heta=\sqrt{1-x^2}$,

$$\frac{\mathrm{d}\Theta}{\mathrm{d}\theta} = \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta \frac{\mathrm{d}y}{\mathrm{d}x}$$

则方程可化为**连带勒让德方程**:

$$(1-x^2)rac{\mathrm{d}^2y}{\mathrm{d}x^2}-2xrac{\mathrm{d}y}{\mathrm{d}x}+\left[l(l+1)-rac{m^2}{1-x^2}
ight]y=0$$

勒让德方程

若考虑的问题具有极轴对称性,即场量与方位角 φ 无关:

$$u = u(r, \theta)$$

这对应 m=0,则连带勒让德方程退化为**勒让德方程**:

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + l(l+1)y = 0$$

亥姆霍兹方程在球坐标系下的分离变量

在球坐标系下, 亥姆霍兹方程为:

$$abla^2 u(r, heta,arphi) + k^2 u(r, heta,arphi) = 0$$

其中, 拉普拉斯算子在球坐标系下的表达式为:

$$abla^2 = rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial}{\partial r}
ight) + rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial}{\partial heta}
ight) + rac{1}{r^2\sin^2 heta}rac{\partial^2}{\partial arphi^2}$$

设 $u(r, \theta, \varphi)$ 可分离变量:

$$u(r, \theta, \varphi) = R(r)Y(\theta, \varphi) = R(r)\Theta(\theta)\Phi(\varphi)$$

经过运算,可以得到:

球贝塞尔方程

径向部分 R(r) 满足球贝塞尔方程:

$$\frac{\mathrm{d}^2 R}{\mathrm{d}r^2} + \frac{2}{r} \frac{\mathrm{d}R}{\mathrm{d}r} + \left[k^2 - \frac{l(l+1)}{r^2}\right]R = 0$$

球函数方程

角度部分 $Y(\theta,\varphi)$ 满足**球函数方程**:

$$\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y(\theta,\varphi)}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y(\theta,\varphi)}{\partial\varphi^2} + l(l+1)Y(\theta,\varphi) = 0$$

可见,亥姆霍兹方程解的角度部分满足的方程与拉普拉斯一致。

方位角满足的方程

因此方位角部分满足的方程可写为:

$$\Phi''(\varphi) + m^2 \Phi(\varphi) = 0, \ m = 0, \pm 1, \pm 2, \cdots$$

连带勒让德方程

极角部分 $\Theta(\theta)$ 满足:

$$rac{1}{\sin heta}rac{\mathrm{d}}{\mathrm{d} heta}\left(\sin hetarac{\mathrm{d}\Theta(heta)}{\mathrm{d} heta}
ight)+\left[l(l+1)-rac{m^2}{\sin^2 heta}
ight]\Theta(heta)=0$$

 $\Rightarrow x = \cos \theta, \Theta(\theta) = y(x), \theta \in [0, \pi], |x| \leqslant 1, \sin \theta = \sqrt{1 - x^2},$

$$\frac{\mathrm{d}\Theta}{\mathrm{d}\theta} = \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta \frac{\mathrm{d}y}{\mathrm{d}x}$$

则方程可化为**连带勒让德方程**:

$$(1-x^2)rac{\mathrm{d}^2y}{\mathrm{d}x^2}-2xrac{\mathrm{d}y}{\mathrm{d}x}+\left\lceil l(l+1)-rac{m^2}{1-x^2}
ight
ceil y=0$$

勒让德方程

若考虑的问题具有极轴对称性,即场量与方位角 φ 无关:

$$u = u(r, \theta)$$

对应 m=0,则连带勒让德方程退化为**勒让德方程**:

$$(1-x^2)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2x\frac{\mathrm{d}y}{\mathrm{d}x} + l(l+1)y = 0$$

柱坐标系下方程的分离变量

柱坐标系下亥姆霍兹方程的分离变量

在柱坐标系下, 亥姆霍兹方程为:

$$abla^2 u(
ho,arphi,z) + k^2 u(
ho,arphi,z) = 0$$

其中, 拉普拉斯算子在柱坐标系下的表达式为:

$$\nabla^2 = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}$$

设 $u(\rho, \varphi, z)$ 可分离变量:

$$u(\rho, \varphi, z) = R(\rho)\Phi(\varphi)Z(z)$$

经过运算,可以得到:

$\Phi(\varphi)$ 满足的方程

 $\Phi(\varphi)$ 满足:

$$\Phi''(\varphi) + \nu^2 \Phi(\varphi) = 0, \quad \nu \geqslant 0$$

若不限制 φ 的取值范围,而采用周期性边界条件 $\Phi(\varphi+2\pi)=\Phi(\varphi)$ 可得:

$$\nu = m, \ m = 0, 1, 2, \cdots$$

ps: 这里为了让 ν 和 ν^2 ——对应,约定 ν 取非负实数。

Z(z) 满足的方程

$$Z''(z) - \lambda Z(z) = 0$$

$R(\rho)$ 满足的方程及贝塞尔方程

 $R(\rho)$ 满足:

$$rac{1}{
ho}rac{\mathrm{d}}{\mathrm{d}
ho}\left(
horac{\mathrm{d}R(
ho)}{\mathrm{d}
ho}
ight)+\left(k^2+\lambda-rac{
u^2}{
ho^2}
ight)R(
ho)=0$$

$$\Leftrightarrow x=\sqrt{k^2+\lambda}
ho,
ho=x/\sqrt{k^2+\lambda}, (k^2+\lambda
eq 0), R(
ho)igg|_{
ho=x/\sqrt{k^2+\lambda}}\equiv y(x), \ \ y(x)igg|_{x=\sqrt{k^2+\lambda}
ho}=R(
ho)$$
,则上面方程可化为贝塞尔方程:

$$rac{\mathrm{d}^2 y(x)}{\mathrm{d}x^2} + rac{1}{x}rac{\mathrm{d}y(x)}{\mathrm{d}x} + \left(1-rac{
u^2}{x^2}
ight)y(x) = 0, \ \
u\geqslant 0$$

或称为 ν 阶贝塞尔方程。

第16章 球函数

勒让德多项式

在球坐标系下,拉普拉斯方程为:

$$abla^2 u(r, \theta, \varphi) = 0$$

设 $u(r,\theta,\varphi)$ 可分离变量:

$$u(r, \theta, \varphi) = R(r)\Theta(\theta)\Phi(\varphi)$$

代入拉普拉斯方程,可得极角部分 $\Theta(\theta)$ 满足:

$$\frac{1}{\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta(\theta)}{\mathrm{d}\theta}\right) + \left[l(l+1) - \frac{m^2}{\sin^2\theta}\right]\Theta(\theta) = 0$$

 $\Rightarrow x = \cos \theta, \Theta(\theta) = y(x), \theta \in [0, \pi], |x| \leqslant 1, \sin \theta = \sqrt{1 - x^2}$,

$$\frac{\mathrm{d}\Theta}{\mathrm{d}\theta} = \frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta\frac{\mathrm{d}y}{\mathrm{d}x}$$

则方程可化为连带勒让德方程:

$$(1-x^2)rac{\mathrm{d}^2y}{\mathrm{d}x^2}-2xrac{\mathrm{d}y}{\mathrm{d}x}+\left[l(l+1)-rac{m^2}{1-x^2}
ight]y=0$$

若考虑的问题具有极轴对称性,即场量与方位角 φ 无关:

$$u = u(r, \theta)$$
 or $\Phi(\varphi) = \text{const}$

对应 m=0,则连带勒让德方程退化为**勒让德方程**:

$$(1-x^2)rac{{
m d}^2y}{{
m d}x^2}-2xrac{{
m d}y}{{
m d}x}+l(l+1)y=0,\;\;l=0,1,2,\cdots$$

利用级数法可以求得,勒让德方程在自变量 $|x|\leqslant 1$ 范围内,在自然边界条件 $|y(x)|<+\infty$ 下,对应于本征值 $l(l+1),\ l=0,1,2,\cdots$ 的本征解为勒让德多项式 $P_l(x)$:

$$P_l(x) \equiv \sum_{n=0}^N rac{(-1)^n (2l-2n)!}{2^l n! (l-n)! (l-2n)!} x^{l-2n}, \quad N = egin{cases} rac{l}{2} & , l$$
为偶数 $rac{l-1}{2} & , l$ 为奇数

即:

$$\left\{egin{aligned} |x| \leqslant 1 \ (1-x^2)rac{\mathrm{d}^2y_l(x)}{\mathrm{d}x^2} - 2xrac{\mathrm{d}y_l(x)}{\mathrm{d}x} + l(l+1)y_l(x) = 0, \;\; l = 0, 1, 2, \cdots \ |y_l(x)| < 1 \end{aligned}
ight.$$

$$\implies y_l(x) = P_l(x), \ \ P_l(x) \equiv \sum_{n=0}^{N} \frac{(-1)^n (2l-2n)!}{2^l n! (l-n)! (l-2n)!} x^{l-2n}, \ \ N = \begin{cases} \frac{l}{2} & ,l$$
 伪偶数
$$\frac{l}{2} & ,l$$

前几个勒让德多项式

$$egin{aligned} ext{P}_0(x) &= 1 \ ext{P}_1(x) &= x \ ext{P}_2(x) &= rac{1}{2} \left(3x^2 - 1
ight) \ ext{P}_3(x) &= rac{1}{2} \left(5x^3 - 3x
ight) \ ext{P}_4(x) &= rac{1}{8} \left(35x^4 - 30x^2 + 3
ight) \ ext{P}_5(x) &= rac{1}{8} \left(63x^5 - 70x^3 + 15x
ight) \end{aligned}$$

勒让德多项式的性质

$$P_l(x) \equiv \sum_{n=0}^N rac{(-1)^n (2l-2n)!}{2^l n! (l-n)! (l-2n)!} x^{l-2n}, \ \ N = egin{cases} rac{l}{2} & , l$$
为偶数 $rac{l}{2} & , l$ 为奇数 $P_l(1) = 1$ $P_l(-x) = (-1)^l P(x)$

罗德里格斯公式 (勒让德多项式的微分表达式)

$$\mathrm{P}_l(x) = rac{1}{2^l l!} rac{\mathrm{d}^l}{\mathrm{d}x^l} \left(x^2 - 1
ight)^l$$

勒让德多项式的生成函数 (母函数)

定义勒让德多项式的生成函数 f(r) 为:

$$f(r) \equiv rac{1}{\sqrt{1+r^2-2r\cos heta}} = rac{1}{\sqrt{1+r^2-2rx}}$$

其中, $x = \cos \theta, |x| \leqslant 1$

当 r < 1, 可将 f(r) 在 r = 0 处进行泰勒展开, 可得:

$$f(r)\equivrac{1}{\sqrt{1+r^2-2rx}}=\sum_{l=0}^{\infty}\mathrm{P}_l(x)r^l, \ \ r<1$$

或者:

$$f(r) \equiv rac{1}{\sqrt{1+r^2-2r\cos heta}} = \sum_{l=0}^{\infty} \mathrm{P}_l(\cos heta)r^l, \;\; r < 1$$

当 $r > 1, \frac{1}{r} < 1$, 有:

$$f(r) = rac{1}{\sqrt{1 + r^2 - 2rx}} \ = rac{1}{r\sqrt{1 + (1/r)^2 - 2(1/r)x}} \ = rac{1}{r} \sum_{l=0}^{\infty} \mathrm{P}_l(x) \left(rac{1}{r}
ight)^l \ = \sum_{l=0}^{\infty} \mathrm{P}_l(x) r^{-(l+1)}, \ \ r > 1$$

或者:

$$f(r)=rac{1}{\sqrt{1+r^2-2r\cos heta}}=\sum_{l=0}^{\infty}\mathrm{P}_l(\cos heta)r^{-(l+1)}, \ \ r>1$$

勒让德多项式的递推公式

$$\begin{split} x(1+2l)\mathrm{P}_{l}(x) - (l+1)\mathrm{P}_{l+1}(x) - l\mathrm{P}_{l-1}(x) &= 0 \\ \mathrm{P}_{l}(x) = \mathrm{P}'_{l+1}(x) + \mathrm{P}'_{l-1}(x) - 2x\mathrm{P}'_{l}(x) \\ (2l+1)\mathrm{P}_{l}(x) &= \mathrm{P}'_{l+1}(x) - \mathrm{P}'_{l-1}(x) \\ (l+1)\mathrm{P}_{l}(x) &= \mathrm{P}'_{l+1}(x) - x\mathrm{P}'_{l}(x) \\ l\mathrm{P}_{l}(x) &= x\mathrm{P}'_{l}(x) - \mathrm{P}'_{l-1}(x) \\ (x^{2}-1)\,\mathrm{P}'_{l}(x) &= lx\mathrm{P}_{l}(x) - l\mathrm{P}_{l-1}(x) \end{split}$$

勒让德函数的正交归一性

$$\left\{\sqrt{rac{2l+1}{2}}\mathrm{P}_l(x),\;\;l=0,1,2,\cdots
ight\}$$
 构成 $[-1,1]$ 上的正交归一函数系,基函数的正交归一性可表达为:
$$\int_{-1}^1\sqrt{rac{2k+1}{2}}\mathrm{P}_k(x)\cdot\sqrt{rac{2l+1}{2}}\mathrm{P}_l(x)\mathrm{d}x=\delta_{kl},\;\;k,l=0,1,2,c\dots$$

具有轴对称的拉普拉斯方程的求解

拉普拉斯方程:

$$abla^2 u(r, heta,arphi)=0$$

若求解的问题具有极轴对称性,即场分布与方位角 φ 无关:

$$u = u(r, \theta)$$

则拉普拉斯方程简化为:

$$abla^2 u(r,\theta) = 0$$

可以证明,在自然边界条件的要求下,方程的通解为:

$$u(r, heta) = \sum_{l=0}^{\infty} \left(C_l r^l + D_l r^{-(l+1)}
ight) \mathrm{P}_l(\cos heta)$$

例1

在单位球的北极点上放置一电荷量为 $4\pi\varepsilon_0$ 的点电荷,求单位球内任一点 \vec{r} 的电势,并用勒让德多项式表示。

由余弦定理知,单位球内 \vec{r} 点离单位球上北极点的距离为:

$$r'=\sqrt{1+r^2-2r\cos heta}, \ \ r<1$$

单位球内 \vec{r} 点的电势为:

$$egin{aligned} u(ec{r}) &= rac{1}{4\piarepsilon_0} rac{q}{r'} \ &= rac{1}{4\piarepsilon_0} rac{4\piarepsilon_0}{\sqrt{1+r^2-2r\cos heta}} \ &= rac{1}{\sqrt{1+r^2-2r\cos heta}}, \ \ r < 1 \end{aligned}$$

这恰好是勒让德多项式的生成函数,其可在r=0点展开为:

$$u(ec{r}) = \sum_{l=0}^{\infty} \mathrm{P}_l(\cos heta) r^l, \;\; r < 1$$

例2

在半径
$$r=r_0$$
 的球内求解 $abla^2 u=0$,使满足边界条件 $uigg|_{r=r_0}=\sin^2 heta$

边界条件与方位角 φ 无关, 因此所求应也与 φ 无关:

$$\nabla^2 u(r,\theta) = 0$$

套用结论, 轴对称问题的拉普拉斯方程在自然边界条件约束下的形式解为:

$$u(r, heta) = \sum_{l=0}^{\infty} \left(A_l r^l + B_l r^{-(l+1)}
ight) \mathrm{P}_l(\cos heta)$$

由自然边界条件, 球心 r=0 处场量不应发散:

$$|u(r, heta)| \left|_{r=0} < +\infty \right|$$

因此 $-r^{(l+1)}$ 项必须舍弃,即、:

$$B_l = 0, \ l = 0, 1, 2, \cdots$$

于是:

$$u(r, heta) = \sum_{l=0}^{\infty} A_l r^l \mathrm{P}_l(\cos heta)$$

考虑边界条件 $u \bigg|_{r=r_0} = \sin^2 \theta = 1 - \cos^2 \theta$,注意到:

$$\begin{cases} P_0(\cos\theta) = 1 \\ P_1(\cos\theta) = \cos\theta \\ P_2(\cos\theta) = \frac{1}{2} \left(3\cos^2\theta - 1\right) \end{cases} \Longrightarrow 1 - \cos^2\theta = \frac{2}{3} \left[P_0(\cos\theta) - P_2(\cos\theta) \right]$$

因此:

$$\sum_{l=0}^{\infty}A_{l}r_{0}^{l}\mathrm{P}_{l}(\cos heta)=rac{2}{3}\left[\mathrm{P}_{0}(\cos heta)-\mathrm{P}_{2}(\cos heta)
ight]$$

把边界条件整理成各阶勒让德多项式的线性叠加的形式:

$$\left(A_0 - rac{2}{3}
ight) ext{P}_0(\cos heta) + A_1 r_0 ext{P}_1(\cos heta) + \left(A_2 r_0^2 + rac{2}{3}
ight) ext{P}_2(\cos heta) + \sum_{l=3}^{\infty} A_l r_0^l ext{P}_l(\cos heta) = 0$$

由各阶勒让德多项式的正交性,它们的线性叠加为零,当且仅当所有线性叠加系数为零,即:

$$A_0 - rac{2}{3} = 0, A_1 = 0, A_2 r_0^2 + rac{2}{3} = 0, A_3 = A_4 = \dots = 0$$

即:

$$A_0=rac{2}{3}, A_1=0, A_2=-rac{2}{3r_o^2}, A_3=A_4=\cdots=0$$

于是:

$$egin{aligned} u(r, heta) &= \sum_{l=0}^{\infty} A_l r^l \mathrm{P}_l(\cos heta) \ &= rac{2}{3} - rac{2}{3 r_0^2} r^2 \mathrm{P}_2(\cos heta) \ &= rac{2}{3} - rac{r^2}{3 r_0^2} \left(3 \cos^2 heta - 1
ight) \end{aligned}$$

例3

在均匀电场 \vec{E}_0 中放一半径为 a 的接地导体球,求球外电势、电场、导体球表面面电荷密度分布。

以球心 O 为坐标原点,选取 \vec{E}_0 方向为 z 轴正方向,则电势 u 关于 z 轴轴对称。

球外无自由电荷,于是球外电势分布 $u(\vec{r})$ 满足拉普拉斯方程:

$$\nabla^2 u(\vec{r}) = 0, \quad r > a$$

特别地,这里电势 u 关于 z 轴对称,u 与 φ 无关,拉普拉斯方程可简化为:

$$\nabla^2 u(r,\theta) = 0, \ r > a$$

导体球接地,得到一个边界条件:

$$u(r, heta) \bigg|_{r=0} = 0$$

由电势的叠加原理,实际电势 $u(r,\theta)$ 是导体球面上的感应电荷产生的电势和匀强电场 \vec{E}_0 导致的电势的代数和。把感应电荷在无穷远处产生的电势设为零,则当 $r \to +\infty$,电势只由匀强电场贡献。设匀强电场单独存在时在坐标原点产生的电势为 u_0 ,则:

$$u_0 - u(r, \theta) = E_0 r \cos \theta, \quad r \to +\infty$$

定解问题为:

$$egin{cases}
abla^2 u(r, heta) = 0 \ u(r, heta)igg|_{r=a} = 0 \ u(r, heta) = u_0 - E_0 r\cos heta, \ r
ightarrow +\infty \end{cases}$$

套用结论, 轴对称问题的拉普拉斯方程在自然边界条件约束下的形式解为:

$$u(r, heta) = \sum_{l=0}^{\infty} \left(A_l r^l + B_l r^{-(l+1)}
ight) \mathrm{P}_l(\cos heta)$$

考虑边界条件 $u(r, heta) \bigg|_{r o +\infty} = u_0 - E_0 r \cos heta$,当 $r o +\infty$,有 $r^{-(l+1)} o 0$,于是:

$$egin{aligned} u_0 - E_0 r \cos heta &= \sum_{l=0}^\infty A_l r^l \mathrm{P}_l (\cos heta) \ &= A_0 + A_1 r \cos heta + \cdots \end{aligned}$$

左右两边都看作关于r的多项式,对比系数得:

$$A_0 = u_0, \ A_1 = -E_0, \ A_2 = A_3 = \cdots = 0$$

于是形式解可写为:

$$egin{aligned} u(r, heta) &= \sum_{l=0}^{\infty} \left(A_l r^l + B_l r^{-(l+1)}
ight) \mathrm{P}_l(\cos heta) \ &= u_0 - E_0 r\cos heta + \sum_{l=0}^{\infty} B_l r^{-(l+1)} \mathrm{P}_l(\cos heta) \end{aligned}$$

再考虑边界条件 $u(r,\theta)igg|_{r=a}=0$,将形式解代入边界条件,得:

$$u_0-E_0a\cos heta+\sum_{l=0}^\infty B_la^{-(l+1)}\mathrm{P}_l(\cos heta)=0$$

即:

$$u_0\mathrm{P}_0(\cos heta)-E_0a\mathrm{P}_1(\cos heta)+\sum_{l=0}^\infty B_la^{-(l+1)}\mathrm{P}_l(\cos heta)=0$$

整理成各阶勒让德多项式的线性叠加的形式:

$$\left(u_0 + B_0 a^{-1}
ight) \mathrm{P}_0(\cos heta) + \left(-E_0 a + B_1 a^{-2}
ight) \mathrm{P}_1(\cos heta) + \sum_{l=2}^{\infty} B_l a^{-(l+1)} \mathrm{P}_l(\cos heta) = 0$$

由各阶勒让德多项式的正交性,它们的线性叠加为零,当且仅当所有线性叠加系数为零,即:

$$B_0 = -au_0, \ B_1 = a^3 E_0, \ B_2 = B_3 = \dots = 0$$

综上,导体球外电势分布为:

$$u(r,\theta) = u_0 - E_0 r \cos \theta + \sum_{l=0}^{\infty} B_l r^{-(l+1)} P_l(\cos \theta)$$

= $u_0 - E_0 r \cos \theta - \frac{u_0 a}{r} + E_0 a^3 \frac{\cos \theta}{r^2}, \ r \geqslant a$

其中, u_0 为匀强电场单独存在时在坐标原点产生的电势。

取 $u_0 = 0$,则导体球外电势分布为:

$$u(r, heta) = -E_0 r\cos heta + E_0 a^3 rac{\cos heta}{r^2}, \;\; r\geqslant a$$

球外电场与电势的关系为:

$$\begin{split} \vec{E}(\vec{r}) &= -\nabla u(\vec{r}) \\ &= -\left[\frac{\partial u}{\partial r}\vec{\mathrm{e}}_r + \frac{1}{r}\frac{\partial u}{\partial \theta}\vec{\mathrm{e}}_\theta + \frac{1}{r\sin\theta}\frac{\partial u}{\partial \varphi}\vec{\mathrm{e}}_\varphi\right] \\ &= E_0\cos\theta\left(1 + \frac{2a^3}{r^3}\right)\vec{\mathrm{e}}_r + E_0\sin\theta\left(\frac{a^3}{r^3} - 1\right)\vec{\mathrm{e}}_\theta, \ \ r \geqslant a \end{split}$$

导体表面电场为:

$$\left.ec{E}(ec{r})
ight|_{r=a}=3E_{0}\cos{ heta}ec{\mathrm{e}}_{r}$$

利用高斯定理,导体球表面面电荷密度分布为:

$$\left. \sigma(ec{r})
ight|_{r=a} = arepsilon_0 ec{E}(ec{r})
ight|_{r=a} \cdot ec{\mathrm{e}}_r = 3 arepsilon_0 E_0 \cos heta$$

例4

半径为 a 的导体球接地,在距球心为 b 的地方放置一点电荷,b>a,电荷量为 q,求导体球外的电势分布。

选取 z 轴使得点电荷的位矢为 $b\vec{e}_z$,则球外电势 u 具有 z 轴对称性,即 $u=u(r,\theta)$

点电荷会在接地导体球表面激发出感应电荷。根据电势叠加原理,导体球外的电势 u 是感应电荷单独存在时产生的电势 u_r 与 点电荷单独存在时的电势 u_q 之和:

$$u = u_r + u_q$$

考虑点电荷单独存在时在球外产生的电势 u_q ,由余弦定理,场点 \vec{r} 到点电荷 q 的距离 r' 满足:

$$r' = \sqrt{b^2 + r^2 - 2br\cos{ heta}}$$

点电荷 q 在 \vec{r} 处产生的电势 u_q 满足:

$$egin{align} u_q &= rac{1}{4\piarepsilon_0}rac{q}{r'} \ &= rac{1}{4\piarepsilon_0}rac{q}{\sqrt{b^2+r^2-2br\cos heta}} \ &= rac{1}{4\piarepsilon_0b}rac{q}{\sqrt{1+\left(r/b
ight)^2-2\left(r/b
ight)\cos heta}}, \ \ r>a \ \end{aligned}$$

根据勒让德多项式的母函数的相关知识,

$$rac{1}{\sqrt{1+\left(r/b
ight)^2-2\left(r/b
ight)\cos heta}} = egin{cases} \sum_{l=0}^{\infty} \mathrm{P}_l(\cos heta) \left(rac{r}{b}
ight)^l &, \ r/b < 1, \ r < b \ \sum_{l=0}^{\infty} \mathrm{P}_l(\cos heta) \left(rac{r}{b}
ight)^{-(l+1)} &, \ r/b > 1, \ r > b \end{cases}$$

因此点电荷产生的电势分布 u_q 可展为:

$$\begin{split} u_{q} &= \frac{1}{4\pi\varepsilon_{0}} \frac{q}{\sqrt{b^{2} + r^{2} - 2br\cos{\theta}}} \\ &= \frac{q}{4\pi\varepsilon_{0}b} \frac{1}{\sqrt{1 + (r/b)^{2} - 2(r/b)\cos{\theta}}} \\ &= \begin{cases} \frac{q}{4\pi\varepsilon_{0}b} \sum_{l=0}^{\infty} \mathrm{P}_{l}(\cos{\theta}) \left(\frac{r}{b}\right)^{l} &, \ a < r < b \\ \frac{q}{4\pi\varepsilon_{0}b} \sum_{l=0}^{\infty} \mathrm{P}_{l}(\cos{\theta}) \left(\frac{r}{b}\right)^{-(l+1)} &, \ r > b \end{cases} \end{split}$$

再考虑感应电荷单独存在时在球外产生的电势 u_r ,此时球外没有电荷,因此球外的电势分布 u_r 满足拉普拉斯方程:

$$abla^2 u_r(r,\theta) = 0, \quad r > a$$

套用结论, 轴对称问题的拉普拉斯方程在自然边界条件约束下的形式解为:

$$u_r(r, heta) = \sum_{l=0}^{\infty} \left(A_l r^l + B_l r^{-(l+1)}
ight) \mathrm{P}_l(\cos heta)$$

在无穷远处, 电势 u_r 应趋于零:

$$\left. u_r \right|_{r o +\infty} = 0$$

可得:

$$A_l = 0, \ l = 0, 1, 2, \cdots$$

因此:

$$u_r(r, heta) = \sum_{l=0}^\infty B_l r^{-(l+1)} \mathrm{P}_l(\cos heta)$$

考虑点电荷和感应电荷产生的总电势 $u(r,\theta)$,形式上可写为:

$$egin{aligned} u(r, heta) &= u_q(r, heta) + u_r(r, heta) \ &= egin{cases} rac{q}{4\piarepsilon_0 b} \sum_{l=0}^\infty \mathrm{P}_l(\cos heta) \left(rac{r}{b}
ight)^l + \sum_{l=0}^\infty B_l r^{-(l+1)} \mathrm{P}_l(\cos heta) &, & a < r < b \ &rac{q}{4\piarepsilon_0 b} \sum_{l=0}^\infty \mathrm{P}_l(\cos heta) \left(rac{r}{b}
ight)^{-(l+1)} + \sum_{l=0}^\infty B_l r^{-(l+1)} \mathrm{P}_l(\cos heta) &, & r > b \end{cases}$$

导体球接地给出边界条件:

$$u(r,\theta)\bigg|_{r=a}=0$$

即:

$$rac{q}{4\piarepsilon_0 b} \sum_{l=0}^{\infty} \mathrm{P}_l(\cos heta) \left(rac{a}{b}
ight)^l + \sum_{l=0}^{\infty} B_l a^{-(l+1)} \mathrm{P}_l(\cos heta) = 0$$

整理成以 $\cos\theta$ 为自变量的各阶勒让德多项式 $P_l(\cos\theta)$ 的线性叠加的形式:

$$\sum_{l=0}^{\infty} \left(rac{qa^l}{4\piarepsilon_0 b^{l+1}} + B_l a^{-(l+1)}
ight) \mathrm{P}_l(\cos heta) = 0$$

由各阶勒让德多项式的正交性,可得:

$$rac{qa^{l}}{4\piarepsilon_{0}b^{l+1}}+B_{l}a^{-(l+1)}=0,\;\;l=0,1,2,\cdots$$

解得:

$$B_l = -rac{q a^{2l+1}}{4\pi arepsilon_0 b^{l+1}}, \;\; l = 0, 1, 2, \cdots$$

因此:

$$egin{aligned} u_r(r, heta) &= \sum_{l=0}^\infty B_l r^{-(l+1)} \mathrm{P}_l(\cos heta) \ &= -rac{q}{4\piarepsilon_0} \sum_{l=0}^\infty rac{a^{2l+1}}{b^{l+1}} r^{-(l+1)} \mathrm{P}_l(\cos heta) \ &= -rac{q}{4\piarepsilon_0 a} \sum_{l=0}^\infty \left(rac{br}{a^2}
ight)^{-(l+1)} \mathrm{P}_l(\cos heta) \end{aligned}$$

注意到, r > a, b > a, 于是有:

$$rac{br}{a^2}>1, \quad rac{1}{\sqrt{1+\left(br/a^2
ight)^2-2\left(br/a^2
ight)\cos heta}}=\sum_{l=0}^{\infty}\mathrm{P}_l(\cos heta)\left(rac{br}{a^2}
ight)^{-(l+1)}, \quad rac{br}{a^2}>1$$

ps:注意不到也没事,只不过最终答案可能看起来复杂点。

因此,感应电荷在导体球外产生的电势 $u_r(r,\theta)$ 实际上可写为:

$$egin{aligned} u_r(r, heta) &= -rac{q}{4\piarepsilon_0 a} \sum_{l=0}^{\infty} \left(rac{br}{a^2}
ight)^{-(l+1)} \mathrm{P}_l(\cos heta) \ &= -rac{q}{4\piarepsilon_0 a} rac{1}{\sqrt{1+\left(br/a^2
ight)^2-2\left(br/a^2
ight)\cos heta}}, \quad r>a \end{aligned}$$

最终得到导体球外的电势分布 $u(r,\theta)$:

$$egin{aligned} u(r, heta) &= u_q(r, heta) + u_r(r, heta) \ &= rac{1}{4\piarepsilon_0} rac{q}{\sqrt{b^2 + r^2 - 2br\cos heta}} - rac{q}{4\piarepsilon_0 a} rac{1}{\sqrt{1 + (br/a^2)^2 - 2(br/a^2)\cos heta}} \ &= rac{1}{4\piarepsilon_0} rac{q}{\sqrt{b^2 + r^2 - 2br\cos heta}} + rac{1}{4\piarepsilon_0} rac{-aq/b}{\sqrt{\left(a^2/b
ight)^2 + r^2 - 2\left(a^2/b
ight)r\cos heta}} \end{aligned}$$

可以看到,感应电荷在导体球外产生的电势与一个处于 z 轴正半轴距球心 $b'=a^2/b$ 处电荷量为 Q'=-aq/b 的点电荷相同。

第17章 柱函数

贝塞尔函数

在柱坐标系下, 亥姆霍兹方程为:

$$abla^2 u(
ho,arphi,z) + k^2 u(
ho,arphi,z) = 0$$

其中, 拉普拉斯算子在柱坐标系下的表达式为:

$$\nabla^2 = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}$$

设 $u(\rho, \varphi, z)$ 可分离变量:

$$u(\rho, \varphi, z) = R(\rho)\Phi(\varphi)Z(z)$$

经过运算,可以得到:

 $\Phi(\varphi)$ 满足:

$$\Phi''(\varphi) + \nu^2 \Phi(\varphi) = 0, \ \nu \geqslant 0$$

ps: 这里 $\nu \geq 0$ 是约定好的。

若不限制 φ 的取值范围,而采用周期性边界条件 $\Phi(\varphi+2\pi)=\Phi(\varphi)$ 可得:

$$\nu = m, \ m = 0, 1, 2, \cdots$$

Z(z) 满足:

$$Z''(z) - \lambda Z(z) = 0$$

 $R(\rho)$ 满足:

$$\frac{1}{\rho}\frac{\mathrm{d}}{\mathrm{d}\rho}\left(\rho\frac{\mathrm{d}R(\rho)}{\mathrm{d}\rho}\right) + \left(k^2 + \lambda - \frac{\nu^2}{\rho^2}\right)R(\rho) = 0$$

令 $x=\sqrt{k^2+\lambda}
ho, (k^2+\lambda
eq 0), R(
ho)=y(x)$,则上面方程化为贝塞尔方程:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}x} + \left(1 - \frac{\nu^2}{x^2}\right) y = 0$$

或称为 ν 阶贝塞尔方程。

贝塞尔函数 (第一类贝塞尔函数) 和诺伊曼函数 (第二类贝塞尔函数)

u 阶贝塞尔函数,记为 $J_{\nu}(x)$,定义为:

$$\mathrm{J}_{
u}(x) \equiv \sum_{k=0}^{\infty} rac{\left(-1
ight)^k}{k!\Gamma\left(k+
u+1
ight)} \left(rac{x}{2}
ight)^{2k+
u}$$

ps: 这里的 $\nu \geqslant 0$

将 ν 替换为 $-\nu$, 就得到 $-\nu$ 阶贝塞尔函数:

$$\mathrm{J}_{-
u}(x) \equiv \sum_{k=0}^{\infty} rac{\left(-1
ight)^k}{k!\Gamma\left(k-
u+1
ight)} \left(rac{x}{2}
ight)^{2k-
u}$$

对 $J_{\nu}(x)$ 和 $J_{-\nu}(x)$ 进行如下的线性组合就得到诺伊曼函数 $N_{\nu}(x)$:

$$\mathrm{N}_{
u}(x) = rac{\cos\left(
u\pi
ight)\mathrm{J}_{
u}(x) - \mathrm{J}_{-
u}(x)}{\sin(
u\pi)}$$

可以看到,若 ν 为整数m,诺伊曼函数是0/0型的函数,此时其定义由洛必达法则给出:

$$\begin{split} \mathbf{N}_{m}(x) &\equiv \lim_{\nu \to m} \mathbf{N}_{\nu}(x) \\ &= \lim_{\nu \to m} \frac{\frac{\partial \mathbf{J}_{\nu}(x)}{\partial \nu} \cos(\nu \pi) - \pi \sin(\nu \pi) \mathbf{J}_{\nu}(x) - \frac{\partial \mathbf{J}_{-\nu}(x)}{\partial \nu}}{\pi \cos \nu \pi} \\ &= \frac{1}{\pi} \left[\frac{\partial \mathbf{J}_{\nu}(x)}{\partial \nu} \bigg|_{\nu=m} - (-1)^{m} \frac{\partial \mathbf{J}_{-\nu}(x)}{\partial \nu} \bigg|_{\nu=m} \right] \\ &= \text{太复杂了不写了} \end{split}$$

其中 $m = 0, 1, 2, \cdots$

 $J_{\nu}(x)$ 也称第一类贝塞尔函数, $N_{\nu}(x)$ 也称第二类贝塞尔函数。

贝塞尔方程的通解

非整数阶贝塞尔方程的通解

(非整数) ル 阶贝塞尔方程

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}x} + \left(1 - \frac{\nu^2}{x^2}\right) y = 0, \ \nu > 0, \ \nu$$
非整数

的通解为:

$$y(x) = C_1 J_{
u}(x) + C_2 J_{-
u}(x)$$

其中, C_1, C_2 是非零实数, $J_{\nu}(x)$ 和 $J_{-\nu}(x)$ 分别是 (非整数) ν 阶贝塞尔函数:

$$\mathbf{J}_{-\nu}(x) \equiv \sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{k! \Gamma\left(k-\nu+1\right)} \left(\frac{x}{2}\right)^{2k-\nu}$$

$$\mathrm{J}_{
u}(x) \equiv \sum_{k=0}^{\infty} rac{\left(-1
ight)^k}{k!\Gamma\left(k+
u+1
ight)} \left(rac{x}{2}
ight)^{2k+
u}$$

整数阶贝塞尔方程的通解

若不限制 φ 的取值范围,而采用周期性边界条件 $\Phi(\varphi+2\pi)=\Phi(\varphi)$,可得:

$$\nu = m, \ m = 0, 1, 2, \cdots$$

此时贝塞尔方程是(正整数) m 阶贝塞尔方程:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}x} + \left(1 - \frac{m^2}{x^2}\right)y = 0, \ \ m = 0, 1, 2, \cdots$$

此时, m 阶贝塞尔方程的通解为:

$$y(x) = C_1 J_m(x) + C_2 N_m(x)$$

其中, C_1,C_2 是任意非零常数, $J_m(x)$ 称为(正整数)m 阶贝塞尔函数,其定义为:

$$\mathrm{J}_m(x) \equiv \sum_{k=0}^{\infty} rac{\left(-1
ight)^k}{k!\Gamma\left(k+
u+1
ight)} \left(rac{x}{2}
ight)^{2k+
u} = \sum_{k=0}^{\infty} rac{\left(-1
ight)^k}{k!(m+k)!} \left(rac{x}{2}
ight)^{2k+
u}$$

 $N_m(x)$ 是 (正整数) m 阶诺伊曼函数, 其表达式就不写了。

整数阶贝塞尔函数的简单性质

$$J_m(-x) = (-1)^m J_m(x)$$

$$J_0(0) = 1$$

$$J_m(0) = 0, \ m = 1, 2, \cdots$$

$$N_{-m}(x) = \left(-1\right)^m N_m(x)$$

贝塞尔函数的递推关系

$$\mathrm{J}_{
u-1}(x)+\mathrm{J}_{
u+1}(x)=rac{2
u}{x}\mathrm{J}_{
u}(x)$$

$$\mathrm{J}_{
u-1}(x)-\mathrm{J}_{
u+1}(x)=2\mathrm{J}_{
u}'(x)$$

$$N_{\nu-1}(x) + N_{\nu+1}(x) = \frac{2\nu}{x} N_{\nu}(x)$$

$$\mathrm{N}_{
u-1}(x) - \mathrm{N}_{
u+1}(x) = 2\mathrm{N}_{
u}'(x)$$
 $\mathrm{J}_0'(x) = -\mathrm{J}_1(x)$

柱函数

若函数 $y_{\nu}(x)$ 满足:

$$\begin{cases} y_{\nu-1}(x) + y_{\nu+1}(x) = \frac{2\nu}{x} y_{\nu}(x) \\ y_{\nu-1}(x) - y_{\nu+1}(x) = 2y'_{\nu}(x) \end{cases}$$

或满足与上两式等价的关系:

$$egin{cases} rac{\mathrm{d}}{\mathrm{d}x}\left[x^{
u}y_{
u}(x)
ight] = x^{
u}y_{
u-1}(x) \ rac{\mathrm{d}}{\mathrm{d}x}\left[x^{-
u}y_{
u+1}(x)
ight] = x^{-
u}y_{
u+1}(x) \end{cases}$$

则这类函数统称为柱函数。

• 柱函数必定满足贝塞尔方程。

例题

例1

求边缘固定半径为 b 的圆形膜的本征振动频率及本征振动模式。

以圆形膜的圆心为原点建立极坐标,设 u(
ho, arphi, t) 是 t 时刻 ho, arphi 处质点偏离平衡位置的位移,则 u(
ho, arphi, t) 满足二维波动方程:

$$u_{tt}(
ho,arphi,t)-a^2
abla_{(2)}^2u(
ho,arphi,t)=0$$

其中, $\nabla^2_{(2)}$ 是二维拉普拉斯算子:

$$abla_{(2)}^2 \equiv rac{1}{
ho}rac{\partial}{\partial
ho}\left(
horac{\partial}{\partial
ho}
ight) + rac{1}{
ho^2}rac{\partial^2}{\partialarphi^2}$$

设 $u(\rho, \varphi, t)$ 可分离变量为:

$$u(\rho, \varphi, t) = U(\rho, \varphi)T(t)$$

代入二维波动方程可得:

$$U(
ho,arphi)T''(t)-a^2T(t)\left[rac{1}{
ho}rac{\partial}{\partial
ho}\left(
horac{\partial}{\partial
ho}
ight)+rac{1}{
ho^2}rac{\partial^2}{\partialarphi^2}
ight]U(
ho,arphi)=0$$

上式两边同时除以 $U(\rho,\varphi)T(t)$, 再移项, 得:

$$rac{T''(t)}{T(t)} = rac{a^2}{U(
ho,arphi)} \left[rac{1}{
ho}rac{\partial}{\partial
ho}\left(
horac{\partial}{\partial
ho}
ight) + rac{1}{
ho^2}rac{\partial^2}{\partialarphi^2}
ight] U(
ho,arphi)$$

注意到, $\frac{T''(t)}{T(t)}$ 只与 t 有关,而 $\frac{a^2}{U(\rho,\varphi)}\left[\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial}{\partial\rho}\right)+\frac{1}{\rho^2}\frac{\partial^2}{\partial\varphi^2}\right]U(\rho,\varphi)$ 只与 ρ,φ 有关,二者相等,因此二者均等于同一常数 $-\omega^2$:

$$\frac{T''(t)}{T(t)} = -\omega^2, \ \, \frac{a^2}{U(\rho,\varphi)} \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} \right] U(\rho,\varphi) = -\omega^2$$

由于要求本征振动频率和本征振动模式,因此只需要关注空间部分 U(
ho, arphi) 满足的方程和边界条件。

对上式空间部分 $U(\rho,\varphi)$ 满足的方程等号两边同乘 $\dfrac{U(\rho,\varphi)}{a^2}$ 并移项,得:

$$rac{1}{
ho}rac{\partial}{\partial
ho}\left(
horac{\partial U(
ho,arphi)}{\partial
ho}
ight)+rac{1}{
ho^2}rac{\partial^2 U(
ho,arphi)}{\partialarphi^2}+rac{\omega^2}{a^2}U(
ho,arphi)=0$$

令:

$$k\equiv rac{\omega}{a},~~k^2=rac{\omega^2}{a^2}$$

则 $U(\rho,\varphi)$ 满足的方程为:

$$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial U(\rho,\varphi)}{\partial\rho}\right)+\frac{1}{\rho^2}\frac{\partial^2 U(\rho,\varphi)}{\partial\varphi^2}+k^2U(\rho,\varphi)=0$$

由于圆形膜边界固定,因此得到一个边界条件:

$$U(
ho,arphi)igg|_{
ho=b}=0$$

且圆心处质点偏离平衡位置的位移应有限,因此得到一个自然边界条件:

$$|U(
ho,arphi)| igg|_{
ho=0} < +\infty$$

再结合 φ 作为角度这一物理量应使得 $U(\rho,\varphi)$ 满足周期性边界条件:

$$U(
ho, arphi + 2\pi) = U(
ho, arphi)$$

综上,空间部分 $U(\rho,\varphi)$ 要满足的所有条件为:

$$\begin{cases} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial U(\rho, \varphi)}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 U(\rho, \varphi)}{\partial \varphi^2} + k^2 U(\rho, \varphi) = 0 \\ \left. U(\rho, \varphi) \right|_{\rho = b} = 0 \\ \left. |U(\rho, \varphi)| \right|_{\rho = 0} < + \infty \\ U(\rho, \varphi + 2\pi) = U(\rho, \varphi) \end{cases}$$

设 $U(\rho,\varphi)$ 可分离变量为:

$$U(\rho, \varphi) = R(\rho)\Phi(\varphi)$$

代入空间部分 $U(\rho,\varphi)$ 要满足的方程,得:

$$rac{\Phi(arphi)}{
ho}rac{\mathrm{d}}{\mathrm{d}
ho}\left(
horac{\mathrm{d}R(
ho)}{\mathrm{d}
ho}
ight)+rac{R(
ho)}{
ho^2}rac{\mathrm{d}^2\Phi(arphi)}{\mathrm{d}arphi^2}+k^2R(
ho)\Phi(arphi)=0$$

上式等号两边同乘 $\dfrac{
ho^2}{R(
ho)\Phi(arphi)}$, 整理得:

$$\frac{1}{\Phi(\varphi)}\frac{\mathrm{d}^2\Phi(\varphi)}{\mathrm{d}\varphi^2} = -\left[\frac{\rho}{R(\rho)}\frac{\mathrm{d}}{\mathrm{d}\rho}\left(\rho\frac{\mathrm{d}R(\rho)}{\mathrm{d}\rho}\right) + k^2\rho^2\right]$$

上式等号左边只与 arphi 有关,等号右边只与 ho 有关,因此二者均等于一个常数 $-m^2$:

$$\frac{1}{\Phi(\varphi)}\frac{\mathrm{d}^2\Phi(\varphi)}{\mathrm{d}\varphi^2} = -\left[\frac{\rho}{R(\rho)}\frac{\mathrm{d}}{\mathrm{d}\rho}\left(\rho\frac{\mathrm{d}R(\rho)}{\mathrm{d}\rho}\right) + k^2\rho^2\right] = -m^2$$

因此,角度部分满足方程:

$$\Phi''(\varphi) + m^2 \Phi(\varphi) = 0$$

周期性边界条件:

$$\begin{split} U(\rho,\varphi+2\pi) &= U(\rho,\varphi) \Longrightarrow R(\rho)\Phi(\varphi+2\pi) = R(\rho)\Phi(\varphi) \Longrightarrow \Phi(\varphi+2\pi) = \Phi(\varphi) \\ \begin{cases} \Phi''(\varphi) + m^2\Phi(\varphi) = 0 \\ \Phi(\varphi+2\pi) = \Phi(\varphi) \end{cases} \end{split}$$

从

$$\Phi''(\varphi) + m^2 \Phi(\varphi) = 0$$

可以解得:

$$\Phi(\varphi) = A\cos(m\varphi) + B\sin(m\varphi)$$

结合周期性边界条件

$$\Phi(\varphi + 2\pi) = \Phi(\varphi)$$

可得:

$$m=0,1,2,\cdots$$

径向部分 $R(\rho)$ 满足:

$$-\left[rac{
ho}{R(
ho)}rac{\mathrm{d}}{\mathrm{d}
ho}\left(
horac{\mathrm{d}R(
ho)}{\mathrm{d}
ho}
ight)+k^2
ho^2
ight]=-m^2$$

可以整理成:

$$\frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} \left(\rho \frac{\mathrm{d}R(\rho)}{\mathrm{d}\rho} \right) + \left(k^2 - \frac{m^2}{\rho^2} \right) R(\rho) = 0$$

令 x=k
ho,
ho=x/k,R(
ho) $=R(x/k)\equiv y(x)$,则上面可方程化为 m 阶贝塞尔方程:

$$\begin{split} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}x} + \left(1 - \frac{m^2}{x^2}\right) y &= 0 \\ U(\rho, \varphi) \bigg|_{\rho = b} = 0 \Longrightarrow R(\rho) \Phi(\varphi) \bigg|_{\rho = b} = 0 \Longrightarrow R(\rho) \bigg|_{\rho = b} = 0 \\ |U(\rho, \varphi)| \bigg|_{\rho = 0} < + \infty \Longrightarrow |R(\rho) \Phi(\varphi)| \bigg|_{\rho = 0} < + \infty \Longrightarrow |R(\rho)| \bigg|_{\rho = 0} < + \infty \\ \left\{ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}x} + \left(1 - \frac{m^2}{x^2}\right) y &= 0 \\ y(x) &\equiv R(\rho) \bigg|_{\rho = x/k} = R(x/k), \ R(\rho) &= y(x) \bigg|_{x = k\rho} = y(k\rho) \\ R(\rho) \bigg|_{\rho = b} &= 0 \\ |R(\rho)| \bigg|_{\rho = b} < + \infty \end{split}$$

对于 m 阶贝塞尔方程

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}x} + \left(1 - \frac{m^2}{x^2}\right) y = 0$$

其通解为:

$$y^{(m)}(x) = C_m \mathrm{J}_m(x) + D_m \mathrm{N}_m(x)$$

考虑自然边界条件 $|R(
ho)| \left|_{
ho=0} < +\infty$,可得:

$$D_m = 0$$

因此:

$$y^{(m)}(x) = C_m \mathrm{J}_m(x)$$

对上面等式两边同取附加条件:

$$\left. y^{(m)}(x)
ight|_{x=k
ho} = C_m \mathrm{J}_m(x)
ight|_{x=k
ho}$$

结合 $x=k
ho, R(
ho)=y(x)igg|_{x=k
ho}=y(k
ho)$ 可得:

$$R^{(m)}(\rho) = C_m \mathbf{J}_m(k\rho)$$

设 m 阶贝塞尔函数 $J_m(x)$ 的第 n 个正零点为 $x_n^{(m)}$, 即:

$${
m J}_m\left(x_n^{(m)}
ight)=0, \;\; m=0,1,2,\cdots; \;\; n=,1,2,\cdots$$

结合边界条件 $R(
ho)igg|_{
ho=b}=0$,即:

$$C_m J_m(kb) = 0$$

因此 k 的本征值 $k_n^{(m)}$ 为:

$$k_n^{(m)} = \frac{x_n^{(m)}}{h}, \ m = 0, 1, 2, \cdots; \ n = 1, 2, \cdots$$

相应的本征振动模式 $R_n^{(m)}(\rho)$ 为:

$$R_n^{(m)}(
ho)=\mathrm{J}_m\left(k_n^{(m)}
ho
ight)=\mathrm{J}_m\left(rac{x_n^{(m)}}{b}
ho
ight), \ \ m=0,1,2,\cdots; \ \ n=1,2,\cdots$$

再根据 $k \equiv \omega/a$,得到 ω 的本征值,即圆形膜的本征频率 $\omega_n^{(m)}$ 为:

$$\omega_n^{(m)} = a k_n^{(m)} = rac{x_n^{(m)}}{h} \cdot a, \;\; m = 0, 1, 2, \cdots; \;\; n = 1, 2, \cdots$$

综上所述,边缘固定半径为 b 的圆形膜的本征振动频率 $\omega_n^{(m)}$ 及本征振动模式 $R_n^{(m)}(\rho)$ 为:

$$\omega_n^{(m)} = rac{x_n^{(m)}}{b} \cdot a, \ m = 0, 1, 2, \cdots; \ n = 1, 2, \cdots$$

$$oxed{R_n^{(m)}(
ho)=\mathrm{J}_m\left(rac{x_n^{(m)}}{b}
ho
ight)}, \ \ m=0,1,2,\cdots; \ \ n=1,2,\cdots$$

其中, $x_n^{(m)}$ 是 m 阶贝塞尔函数 $\mathbf{J}_m(x)$ 的第 n 个正零点。

第18章 格林函数法

第19章 其他方程求解

第20章 非线性数学物理方程初步

第21章 泛函的变分

第22章 变分原理