## **Contents**

| 1 | Quadripolos |                           |                                    | 2 |
|---|-------------|---------------------------|------------------------------------|---|
|   | 1.1         | Baixa frequência          |                                    |   |
|   |             | 1.1.1                     | Matriz Impedâncias                 | 2 |
|   |             | 1.1.2                     | Matriz Admitãncias                 | 3 |
|   |             | 1.1.3                     | Matriz Parâmetros Híbridos         | 3 |
|   |             | 1.1.4                     | Matriz Parâmetros ABCD/Transmissão | 3 |
|   | 1.2         | Parãm                     | neros S                            | 4 |
|   | 1.3         | Associação de guadripolos |                                    | 4 |

# 1 Quadripolos

Aquilo que um network analyzer faz é medir quadripolos

• Se os portos forem recíprocos:

$$X_{ij} = X_{ji}$$

• Se os portos não tiveram perdas:

$$Re\{Z_{mn}\} = 0$$

## 1.1 Baixa frequência



**Figure 1:** Rede de dois portos a baixa frequência. A determinação dos parâmetos é feita colocando os portos em curto-cirxcuito ou em circuito aberto.

### 1.1.1 Matriz Impedâncias

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

$$\implies \begin{cases} v_1 = z_{11}i_1 + z_{12}i_2 \\ v_2 = z_{21}i_1 + z_{22}i_2 \end{cases}$$

Com o circuito aberto nos outros portos

$$Z_{ij} = \frac{V_i}{I_j}|_{I_{k=0 fork \neq j}}$$

**TODO** Inserir exemplo de uma T port network

### 1.1.2 Matriz Admitancias

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$\implies \begin{cases} i_1 = y_{11}v_1 + y_{12}v_2 \\ i_2 = y_{21}v_1 + y_{22}v_2 \end{cases}$$

Com curto-circuito nos outros portos

$$Y_{ij} = \frac{I_i}{V_j}|_{V_{k=0fork \neq j}}$$

$$[Y]=[Z]^{-1}$$

#### 1.1.3 Matriz Parâmetros Híbridos

$$\begin{bmatrix} v_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ v_2 \end{bmatrix}$$

$$\implies \begin{cases} v_1 = h_{11}i_1 + h_{12}v_2 \\ i_2 = h_{21}i_1 + h_{22}v_2 \end{cases}$$

### 1.1.4 Matriz Parâmetros ABCD/Transmissão

$$\begin{bmatrix} v_1 \\ i_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} v_2 \\ -i_2 \end{bmatrix}$$

$$\implies \begin{cases} v_1 = A \cdot v_1 - b \cdot i_2 \\ i_1 = C \cdot v_2 - D \cdot i_2 \end{cases}$$

**TODO** Inserir casos típicos

#### 1.2 Parameros S

- Em vez de abrir/curto-icrcuito as saídas, vou adaptá-las
  - É difícil obter curtos-circuitos ou circuitos abertos a alta-frequências:
    - \* Num comprimento de  $\frac{\lambda}{4}$  posso ter um curto circuito e um circuito aberto
  - Não posso curto cicuitar a sáida porque:
  - Não tenho exatidão para saber onde está o circuito aberto
  - Mesmo que soubesse, nada me garante que conseguia medir os parâmetros nesse ponto
- Baseados em parâmetros de onda e não exlcusivamente em tensões e correntes
  - Assumo que existe uma onda incidente e uma onda refletida.
  - Ao adaptar o porto, não tenho reflexões e posso calcular os parâmetros
  - Parâmetros S←\$ Scattering Parameters
- A tensão em cada ponto da linha é  $V = V^+(x) + V^-(x)$ 
  - $V^+(x) = Ae^{-\gamma x}$
  - $V^-(x) = Be^{\gamma x}$
- A corrente:  $I=I^+(x)+I^-(x)=\frac{V^+(x)}{Z_0}+\frac{V^-(x)}{Z_0}$
- \$

As ondas em a e b **não são ondas de tensão** porque estão normalizadas para  $\sqrt{Z_0}$ . O a e b representam uma **pseudo onda de potência** 

 $a^2 \Longrightarrow {\sf uma} \ {\sf unidade} \ {\sf de} \ {\sf potência}. \ {\sf \acute{E}} \ {\sf um} \ {\sf artefacto} \ {\sf matem\'atico}.$ 

Posso calcular as perdas por readação. Return loss

$$P = VI^* = aa^* - bb^*$$

 $S_1 1$  Coeficiente de reflexão do porto 1.

### 1.3 Associação de quadripolos

- Série: Somam-se os parâmetros das matrizes Impedância
- Paralelo: Somam-se os parâmetros das matrizes Admitância
- Cascata: Multiplicam-se os parâmetos das matrizes Transmissão