

Chapitre 3

Analyse et prototypage

Démarrer un projet de développement logiciel

La décision initiale de développer un système logiciel

- Identification d'un besoin dans le marché
- Identification d'un besoin dans une organisation
- Liée à l'analyse des processus d'affaire
 - Généralement prise par des gestionnaires
 - Importance des aspects systémiques et d'intégration
 - Les aspects techniques ne sont souvent pas prépondérants

Avoir une idée, ça ne coûte pas cher!

Décrire l'idée de départ → document de vision

Processus de développement: définitions

- Qu'est-ce que l'analyse ?
 - Processus consistant à se familiariser avec le domaine (contexte, utilisateurs, contraintes, coûts, performance, etc.) dans lequel le système sera intégré, permettant ainsi la conception adéquate de celui-ci.
- Qu'est-ce que la conception ?
 - Processus par lequel diverses techniques et principes sont appliqués dans le but de définir un système avec un niveau de détail suffisant pour permettre sa réalisation physique.

Objectifs de l'analyse

- Faire le pont entre l'ingénierie de système et la conception de logiciels,
- Fournir une définition précise du problème à résoudre,
- Modéliser le système réel de façon à le rendre plus compréhensible.

Objectifs de l'analyse: exemple

Cinq principes d'analyse

- Définir le domaine des informations pertinentes au problème,
- Définir les fonctions que le logiciel doit accomplir,
- Définir le comportement du logiciel face à des évènements externes,
- Structurer les modèles de l'information, de la fonctionnalité et du comportement en couches présentant différents niveaux de détail,
- Procéder du niveau global vers les niveaux plus détaillés.

Qu'est-ce qu'une exigence?

- Une exigence est une entité qui provoque un choix de conception.
- Il peut s'agir:
 - d'une exigence fonctionnelle;
 - d'une exigence quant à la qualité et à la performance; ou
 - d'une contrainte
- Les exigences doivent être:
 - claires,
 - cohérentes, et
 - non-ambigües.

Adapté de: IEEE Computer Society, « Requirements Applications 1 / Requirements Engineering Activities », cours Software Engineering Requirements.

Le cycle (parallèle) de l'ingénierie des exigences

Obtention des exigences de la part des parties prenantes

Évaluation, négociation et examen de l'exactitude des exigences, notamment à l'aide du *prototypage*

Création du SRS

Assurance de la qualité des exigences

Maintien de l'intégrité et de l'exactitude des exigences

Adapté de: IEEE Computer Society, « Requirements Applications 1 / Requirements Engineering Activities », cours Software Engineering Requirements.

Extraction des exigences

- Nécessite une bonne communication entre les différents intervenants:
 - usager, développeur, gestionnaire, analyste et expert.

- Observation
- Discussion
- ➤ Écoute

Extraction des exigences : techniques

Version adaptée d'une figure préparée par M. Éric Demers

Référence: RIVARD, S. et TALBOT, J. (1998). Le développement de systèmes d'information: une méthodologie intégrée à la transformation des processus. Presses de l'Université du Québec, Presses HEC, 540 pages.

Analyse et prototypage

Extraction des exigences : Entrevue

- Usage intensif.
- Sert à recueillir :
 - Faits,
 - Opinions,
 - Besoins.
- Doit être planifiée et préparée avec soin.

Extraction des exigences : Entrevue

- Pourquoi l'entrevue ?
 - Les documents ne sont pas toujours fiables.
 - Politique et objectifs,
 - Jeux de pouvoir, tensions, résistance,
 - Problèmes, objectifs et besoins des <u>UTILISATEURS</u>.
 - Qui interviewer ?
 - Gestionnaires,
 - Utilisateurs,
 - Techniciens (administrateurs de système),
 - L'échantillon doit être le plus varié possible.

Extraction des exigences : Questionnaire

- Pourquoi un questionnaire ?
 - Nécessité de recueillir des données précises auprès d'un grand nombre de personnes.
 - Questionnaire préparé de façon très <u>rigoureuse</u>.
 - Un pré-test est nécessaire
- Désavantages
 - Faible taux de participation.
 - Faible importance aux yeux des répondants (en comparaison avec l'entrevue).

Extraction des exigences : Observation

- Pourquoi l'observation ?
 - Permet à l'analyste de vivre les activités des employés.
 - Ethnologie: culture d'entreprise, savoir-faire, ...
- Difficultés et risque de l'observation
 - Déterminer la durée de l'observation (période représentative).
 - Effet Hawthorne

Extraction des exigences : Documentation

- Pourquoi consulter la documentation ?
 - Demande peu de temps comparativement aux autres méthodes,
 - Permet d'identifier rapidement les processus, stratégies, objectifs et autres de l'entreprise.
- Quelle documentation doit-on consulter?
 - Rapports annuels,
 - Documents de planification,
 - Énoncés de missions et de politiques,
 - Revue et magazines,
 - Organigramme,
 - Règlements de travail, conventions collectives,
 - etc.

Définition d'un modèle

- Modéliser le domaine d'information
 - Définir et représenter les données et leurs relations (concepts et classes).
- Modéliser le domaine de la fonctionnalité
 - Identifier les fonctions qui transforment les données (usecases).
- Modéliser le comportement
 - Identifier les états du systèmes (activités et états).
 - Identifier les évènements qui engendrent des changements d'état (séquences et collaboration).
- Partitionner le modèle
 - Raffiner chacun des modèles (plusieurs niveaux de détails différents).

Analyse et prototypage

Élaboration d'un prototype

Deux types de prototype

- 1. Prototype évolutif
- 2. Prototype jetable

Option a): Prototype évolutif

- Première étape dans le processus de conception
- Cohérent avec un processus en spirale

Option b): Prototype jetable

Prototype jetable

- Démonstration initiale des requis,
- > Permet un changement de paradigme pour le développement du système final.

Analyse et prototypage

Validation du prototype

- Vérification du domaine d'information
 - Les bonnes données sont traitées.
 - Les bons résultats sont produits.
- Vérification de la fonctionnalité
- Vérification du comportement
 - Interface usager
 - Messages
 - Erreurs

Avantages du prototype

- Permet de vérifier rapidement les aspects importants du système à développer.
- Permet d'avoir rapidement une rétroaction du client.

Désavantages du prototype

- Difficile de prototyper de grands projets complexes.
- Facilite un peu trop le changement.
- Peut être identifié au produit.
- Non de qualité opérationnelle.
- Tendance à le conserver.
- ➤ Le prototype peut, à la limite, remplacer les spécifications du système, mais JAMAIS la CONCEPTION.

Spécification des exigences

- Description précise et détaillée des exigences,
- Prend souvent la forme d'un document structuré et formalisé → Spécification des exigences du système (SRS),
- Agit comme contrat entre les développeurs et le client,
- Généralement établi parallèlement à une première phase de conception de haut niveau.