Syntax-Based Concept Alignment for Domain-Specific Machine Translation

Anonymous ACL submission

Abstract

1 Introduction

Grammar-based translation pipelines such as those based on Grammatical Framework (GF) (?) have been successfully employed in domain-specific Machine Translation (MT). What makes these systems well suited to the task is the fact that, when we constrain ourselves to a specific domain, where precision is most often more important than coverage, they can provide strong guarantees in terms of grammatical correctness.

Nevertheless, lexical exactness is, in this context, just as important as grammaticality. An important part of the design of the Controlled Natural Language (CNL) the grammar in such a system describes becomes, then, the creation of a translation lexicon. In many cases, this is done for the most part manually, resulting in a time consuming task requiring significant linguistic knowledge. When the grammar is designed based on a parallel corpus of example sentences, it is possible to automate part of this process by means of statistical word and phrase alignment techniques (?). None of them is, however, suitable for the common case in which only a limited number of example sentences is available.

In this paper, we propose an alternative approach to the automation of this task. While still being data-driven, our method is grammar-based and, as such, capable of extracting meaningful correspondences even from individual sentence pairs.

A further advantage of performing syntactic analysis is that we do not have to choose *a priori* whether to focus on the word or phrase level. Instead, we can simultaneously operate at different levels of abstraction, thus extracting both single-and multiword, even non-contiguous, correspondences.

For this reason, we refer to the task our system attempts to automate as *Concept Alignment* (CA).

This paper is structured as follows. Section 2 starts by giving an overview of our approach to CA, comparing it to related work, to then focus on our algorithm for extracting correspondences. It is concluded with a description of our method for converting the alignments obtained in this way to a GF translation lexicon. After that, Section 3 presents the results of our first evaluation of the system. Finally, Section 4 consists of a discussion of such results and some ideas for future work.

2 Methodology

The objective of CA is to find semantical correspondences between parts of multilingual parallel texts. We call *concepts* the abstract units of translation, composed of any number of words, identified through this process, and represent them as *alignments*, i.e. tuples of equivalent concrete expressions in different languages.

The basic use case for CA, which we refer to specifically as *Concept Extraction* (CE), is the generation of a translation lexicon from a parallel text. This can be directly compared to the numerous existing word and phrase alignment techniques.

An interesting and less studied variant of CA is *Concept Propagation* (CP), useful for cases where a set of concepts is already known and the goal is to identify the expressions corresponding to each of them in a new language, potentially even working with a different text in the same domain. While our system implements basic CP functionalities, however, in this paper we focus on CE and restrict its application to bilingual corpora.

As stated in the Introduction, most existing extraction solutions are based on statistical approaches and are, as a consequence, unsuitable for small datasets. Grammar-based approaches, making use of parallel treebanks and collectively referred to as *tree-to-tree alignment methods*, have

also been proposed (?), but have historically suffered from the inconsistencies between the various constituency grammar formalisms used to define grammars for the different languages and from the insufficient degree of robustness of existing parses.

This work is a new attempt in the same direction, enabled by two multilinguality-oriented grammar formalisms developed over the course of the last 25 years: Universal Dependencies (UD) (?) and Grammatical Framework (GF) (?).

While both formalisms, the former a dependency and the latter a constituency grammar, independently solve the former issue, UD is especially appealing since dependency trees are an easier target for parsing. As a consequence, several robust dependency parsers, such as (?) and (?) are available.

UD parsing alone would then be sufficient to extract (or propagate) tree-to-tree alignments, but not to automate the generation of a ready-to-use, morphologically-aware translation lexicon. This is where GF comes into play: after correspondences are inferred from a parallel text, our proposed system is able to convert them to GF grammar rules, easy to embed in a domain-specific grammar but also making it possible to immediately evaluate the system by carrying out small-scale translation experiment using pre-existing grammatical constructions implemented in GF's Resource Grammar Library (RGL) (?). This is made possible by gf-ud, a conversion tool described in (?) and (?).

Concretely, the system we propose requires the following elements, whose reciprocal relations are shown in Figure 1:

- a UD parser
- an alignment module based on dependency tree comparison
- a program, based on gf-ud, that converts the alignments into GF grammar rules and uses them to construct a translation lexicon

2.1 Extracting concepts

The core part of the system outlined above is of course the alignment module. In this section, we present our method for extracting alignments from parallel bilingual UD treebanks, which can be obtained from sentence-aligned texts with any UD parser.

The basic extraction algorithm, whose pseudocode is shown in Figure ??, takes as input a

Figure 1: System overview. Parts in grey are currently at the prototype stage and will not be further discussed in this paper.

list of priority-sorted *alignment criteria*, rules to determine whether two dependency trees should be aligned with each other which we will discuss in greater detail in Section 2.1.1, and a pair of UD trees corresponding to the sentences to align. From an implementation point of view, UD trees are, as in gf-ud, rose trees where each node represents a token, obtained from the CoNLL-U files produced by the UD parser.

As a first step, the program checks whether the two full sentence trees can be aligned with each other, i.e. if they match any of the alignment criteria. If this is the case, they are added to a collection of alignments, also represented as a pair of UD trees associated with some metadata, which is what the function will return after aligning all the dependency subtrees.

Depending on which alignment criteria they match, the head of the two trees may or may not also be added to such collection. This is important...

The same procedure is applied recursively to all pairs of immediate subtrees of each sentence, until the leaves are reached or alignment is no longer possible due to lack of matching criteria.

When working on corpora consisting of mul-

tiple sentences, this algorithm can be applied in an iterative fashion, so that knowledge gathered when a sentence pair is aligned can be reused when working on the following ones and to keep track of the number of occurrences of each alignment throughout the entire text.

2.1.1 Alignment criteria

While alignment criteria are customizable, to better understand the extraction algorithm described in the above we dedicate this section to describing the ones that are currently used by default.

Matching UD labels The most obvious, but also most effective idea is to determine alignability based on comparing the dependency labels of the candidate UD tree pair. In particular, according to this idea, two subtrees, in *matching context*, i.e. attached to aligned heads constitute an alignment if their roots share the same dependency label. Intuitively, this means that they are in the same relation with their heads.

Note that, since the root of US trees is always attached to a a fake node with an arc labelled root, this criterion also makes it so that full sentences are always considered to align with each other, something which is desirable since we assume the parallel texts that are fed to our program to be sentencealigned.

Part-Of-Speech equivalence CoNNL-U files provide information not only on the syntactic role of the tokens a sentence is composed of, but also on their grammatical categories, represented as Universal Part-Of-Speech (POS) tags. Intuitively, if the nodes of two trees in matching contexts have the same POS tags, the two trees are more likely to correspond to each other than if not.

This is especially true if focus, for instance, solely on the open class words (in the current implementation, defined as in the UD documentation (?)), thus ignoring prepositions, determiners, auxiliary verbs and all other function words, which tend to behave differently across different languages.

As a consequence, a useful relation to define between dependency trees is that of *POS-equivalence*: two dependency trees t, u are POS-equivalent if $M_1 = M_2 \neq \emptyset$, where M_i is defined as the multiset of POS tags of all the open class word nodes of t.

Applied alone, this criterion can be used to capture correspondences that would be missed by only matching UD labels, thus increasing recall, but a

decrease in precision is also to be expected. However, since alignment criteria are defined as boolean functions, it is easy to combine them so to apply them simultaneously: combining these first two criteria, for instance, is useful in cases where precision is more important than recall.

Known translation divergence Parallel texts often present significant, systematic cross-linguistic grammatical distinctions. When this is the case, it is often straightforward to define alignment criteria based on recognizing the corresponding patterns. If many distinctions of this kind are specific to particular language pairs or even stylistical, some of them occur in independently of what languages are involved and have nothing to do with idiomatic usage or aspectual, discourse, domain or word knowledge. Drawing inspiration from (?) and (?), we refer to them distinctions as *translation divergences* and handle some with the alignment criteria that used by default.

Known alignment Another case in which it is trivially desirable for two subtrees in matching context to be aligned is when an equivalent alignment is already known, for instance due to a previous iteration of the extraction algorithm. When referred to pairs of alignments, the term *equivalent* indicates that the two alignments, linearized, correspond to the same string.

At a first glance, this might seem a criterion with no practical applications. However, it is particularly useful when, instead of starting with an empty set of correspondences, we initialize the program with some alignments that are either inserted manually or, most interestingly, obtained with some other alignment technique. For instance, in this way it is possible to combine the system proposed in this paper in combination with a statistical tool and give more credit to the correspondences identified by both systems.

2.1.2 Pattern matching

So far, we described how CE can be used in a setting where the objective is to generate a comprehensive translation lexicon based on set of example sentence pairs. We pointed out that the program can be configured so to prioritize precision or coverage, but never restricted our search to a particular type of alignments. Nonetheless, there can be cases in which only certain syntactic structures are of interest: for instance, for whatever reason we might be looking for adverbs or noun phrases exclusively.

To handle these situations, the CE module can filter the results based on a gf-ud pattern. Pattern matching in gf-ud

Combining pattern matching with pattern replacement, for instance by pruning the UD trees extracted by the alignment module, allows us even to extract correspondences that, given the structure of UD trees, cannot be identified by CE alone. To give an example that turned out to be useful in practice, a possibility is to extract verb phrases only, by looking for full clauses and pruning the subtree corresponding to the subject. More advanced replacements are also possible: instead of simply pruning clauses to extract the verb phrases they contain, we can perform some actual replacement to obtain *predication patterns*, such as

 $\langle XtellsYZ, XdiceZaY \rangle$

•

2.2 Generating grammar rules

The CE module described so far outputs pairs of UD trees. While converting them to GF Abstract Syntax Trees (ASTs) is the gf-ud's core functionality, to build a compilable GF translation lexicon it is necessary to turn such trees into grammar rules.

In order to do that, our grammar generation module requires a morphological dictionary of the languages at hand and an *extraction grammar*. What we refer to as an extraction grammar is of course a GF grammar, whose objective is to define the set of basic categories and syntactic rules the entries of the automatically generated lexicon is going to use.

3 Evaluation

3.1 Data

Because we want part of our evaluation to be independent from the quality of UD parsing, some of the experiments are carried out using manually annotated data. To this purpose, we use a 100-sentences subset of the Parallel UD (PUD) corpus, a set of handcrafted¹ multilingual treebanks in CoNLL-U format created for the CoNLL 2017 shared task on Multilingual Parsing from Raw Text to Universal Dependencies (?). PUD treebanks are available in over 20 languages, of which we selected English, Italian and Swedish. Using this

data limits the amount of alignment errors that are due annotation issues to a minimum, even though a small number of inconsistencies and imprecisions is present even in this corpus. When it comes to testing the program on raw text, we use two bilingual sentence-aligned corpora consisting of course plans from the Department of Mathematics and Computer Science of the University of Perugia (for English-Italian) and from the Department of Computer Science and Engineering (CSE) shared between the University of Gothenburg and the Chalmers University of Technology (for English-Swedish). For brevity, we will refer to these two datasets as to the DMI and the CSE corpora. This data, available in the project repository, was collected and sentence-aligned specifically for this work and a related Bachelor's thesis project (?). When using raw text, our parser of choice is UD-Pipe (?). In particular, we use the ParTUT English and Italian models for the DMI corpus and models trained on the bilingual LinES English-Swedish treebank for the CSE corpus (?).

3.2 Evaluating CE

While in this work we focus mostly on the MT applications of CA, automatic translation, and much less GF-based domain-specific tranlation, is not the only context in which our system can be put to use. For instance, it is easy to imagine using it to improve the UI of online translation memories or to facilitate reading parallel texts in the context of language learning. For this reason, a first set of experiments is aimed at evaluating the alignments obtained with our CA module independently from the subsequent stages of our proposed lexicon generation pipeline.

We assess the correctness of the alignments the CE module is able to extract first from manually annotated data, then from the DMI and CSE corpus, comparing our results with those obtained with a standard statistical tool, fast_align(?). Doing so requires manually labelling the correspondences as either correct or incorrect.

For measuring the performance of our system, while precision and recall are two well-known metrics that would be very well suited to the task, the lack of a gold standard for CE imposes us to approximate them with respectively:

• the number of correct alignments the program is able to extract

¹Annotation is sometimes semi-automatic, but all treebanks are at least manually checked.

• the ratio between such number and the total number of alignments extracted.

However, since some alignments are only correct in the specific context of the sentence pair in which they occur, we make a further distinction between correct alignments that are relevant for a translation lexicon, marked as + in Section 3.2.1's tables, and alignments that are useful for comparing the sentences but should not be used for MT, marked as = instead. Incorrect correspondences are marked as -.

3.2.1 Results on manually annotated treebanks

In table 1, we compare the results obtained with our grammar-based module to those obtained statistically on the PUD treebanks.

Of course, fast_align does not make use of the information present in the CoNLL-U files excepts with regards to tokenization. On the other hand, the relatively large size of the PUD treebanks makes it possible to also train the statistical tool on the full dataset instead of just using the chosen 100-sentences subset, allowing for a fairer comparison.

In both cases, fast_align is run with 10 iterations in EM training, symmetrizing the alignments found by running the program in both directions.

While fast_align is designed to align every word in the text (or explicitly state that a word has no counterpart in its translation) and, consequently, extracts around twice as many correspondences as our CE module, the percentage of correct correspondences is definitely in favor of our system, even though fast_align gets significantly more precise when trained on the full, 1000-sentence dataset.

3.2.2 Results on raw text

The course plan corpora are significantly harder to work with, both for our CE module and fast_align. In the former case, the additional challenge is relying on the quality of automatic parsing, while fast_align suffers from the small size of the datasets, which are fed in their entirety to both systems.

The results of this comparison are summarized in table 2.

3.3 MT experiments

The second set of experiments has the objective of assessing the quality of the final output of the system we propose: GF translation lexica. Because we are focussing on using CA in the context of domain-specific MT, in this case we do not make use of the PUD treebanks, where sentences come from a variety of different sources, but rather of the two course plans corpora. For a this evaluation, we do not construct a grammar specific to the course plans domain: it is sufficient to extend the extraction grammar itself, designed for the grammar generation step to produce grammar rules corresponding to simple concepts such as basic categories, noun phrases, verb phrases etc., with preexisting syntax rules defined in the RGL, so to allow for more variation.

The basic idea behind the experiments whose results are presented in the following section is to automatically translate a set of English sentences to Italian and Swedish, ask native speakers of the target languages to produce a set of reference translations, and compare them to the original machinegenerated ones by computing the BLEU score.

Due to the small size of the datasets and, as a consequence, the low coverage of the extracted lexicon, we generate the sentences to translate directly in the GF shell, making use of its random AST generation functionality but at the same time filtering out semantically implausible sentences to facilitate the task of the human translators. The results of this process are two small testing corpora, each consisting of 50 sentences in English, generated using the abstract syntax and the English concrete syntax of the DMI and the CSE grammar respectively.

The reference translations were obtained by asking two native speakers of Italian and Swedish to compare the original English sentences to their automatically translated counterparts and correct the latter. In order to obtain more meaningful BLEU scores, participants were instructed to only make the minimal changes necessary to obtain, starting from the automatic translations generated by our system, a set of grammatically and semantically correct translations.

3.3.1 Experimental results

4 Conclusions

4.1 Future work

	CE	${ t fast_align}\ 100$	fast_align 1000
tot. alignments	716	1440	1435
+ and =	536 (75%)	410 (28%)	656 (46%)
+	491 (69%)	371 (26%)	590 (41%)

Table 1: Comparison between our grammar-based CE module and fast_align on PUD data. The middle column shows the results obtained by training fast_align on the 100-sentence subset fed to the extraction module. On the right, the results obtained by training fast_align on the full PUD treebanks dataset, discarding the alignments obtained for sentences 101-1000 for the final comparison. Row 1 reports the total number of distinct alignments obtain. Rows 2 and 3 give the percentages of correct alignments, with and without considering sentence pair-specific correspondences as correct.

Table 2: Comparison between our grammar-based CE module and fast_align on raw data, using the DMI and CSE corpora. Row 1 reports the total number of distinct alignments obtain. Rows 2 and 3 give the percentages of correct alignments, with and without considering sentence pair-specific correspondences as correct.