4.5 元素的周期律

 1869年提出元素周期表——元素按原子序 数排列元素的物理、化学性质随着原子序 数的变化呈现出周期性的规律

光谱、电离电势、原子半径

宏观性质,如力学性质等

第一电离电势随原子序数的周期性

原子半径随着原子序数的周期性

力学性质的周期性变化

表5.6.1 <u>元素周期表[1]</u>

	I A							锰←	元素符号 中文名称	ĸ								V∭A
1	1H 氢 1.00797 79	II A				原子 <u>i</u>	_ē → 54.	93805 124 ←	——原子半征	준/fm			IIIA	IVA	VA	VIA	VIIA	2He 氦 4.002602 128
2	3Li 锂 6.941 152	4Be 铍 9.012182 113.3											5B 硼 10.811 1.17	6C 碳 12.011 0.91	7N 氦 14.00674 0.75	8O 氧 15.9994 0.65	9F 氟 18.9984 0.57	10Ne 氛 ^{20.1797} 0.51
3	11Na 纳 22.989768 144.4	12Mg 镁 24.3050 160	IIIB	IVB	VВ	VIB	VIIB		VIIIB		ΙΒ	IIΒ	13Al 铝 26.981539 1.82	14Si 硅 28.0855 1.46	15P 磷 30.973762 1.23	16S 硫 32.066 1.09	17Cl 氯 35.4527 0.97	18Ar 氩 39.948 0.88
4	19K 钾 39.0983 227	20Ca 钙 40.078 197.3	21Sc 钪 ^{44.955910} 160.6	22Ti 钛 ^{47.867} ^{144.8}	23V 钒 50.9415 132.1	24Cr 铬 51.9961 124.9	25Mn 锰 54.93805 124	26Fe 铁 55.845 124.1	27Co 钴 58.93320 124.3	28Ni 镍 ^{58.6934} 124.6	29Cu 铜 63.546 127.8	30Zn 锌 65.39 133.2	31Ga 镓 69.723 122.1	32Ge 锗 72.61 122.5	33As 碑 74.92159 125	34Se 硒 ^{78.96} 117	35Br 溴 79.904 115	36Kr 氪 83.80 189
5	37Rb 铷 85.4678 247.5	38Sr 锶 87.62 215.1	39Y 亿 88.90585 181	40Zr 锆 91.224 160	41Nb 铌 92.90638 142.9	42Mo 钼 95.94 136.2	43 Tc 锝 98.9063 135.8	44Ru 钌 101.07 134	45 Rh 铑 102.90550 134.5	46Pd 钯 106.42 138	47Ag 银 107.8682 144	48Cd 镉 112.411 148.9	49In 铟 114.818 162.6	50Sn 锡 118.710 140.5	51Sb 锑 112.760 142	52Te 碲 127.60 143.2	53I 碘 126.90447 133.3	54Xe 氙 131.29 218
6	55Cs 铯 132.90543 265.4	56Ba 钡 137.327 217.3	57~71 镧系	72Hf 铪 178.49 156.4	73Ta 钽 ^{180.9479} ¹⁴³	74W 钨 183.5 137.0	75Re 铼 ^{186.207} 137.0	76Os 锇 190.2 135	77 Ir 铱 192.22 135.7	78Pt 铂 ^{195.09} ¹³⁸	79Au 金 196.9665 144	80Hg 汞 ^{200.59} 160	81Tl 铊 ^{204.37} ^{170.4}	82Pb 铅 207.2 175.0	83Bi 铋 ^{208.9804} 155	84Po \$ト 209 167	85At 砹 ²¹⁰	86Rn 氡 222
7	87Fr 钫 223 270	88Ra 镭 226.0254 223	89~103 锕系	104Rf 鑪 ²⁶¹	105 Db ₂₆₂	106 Sg ²⁶³	107 Bh ²⁶²	108 Hs ²⁶⁵	109 Mt ²⁶⁵	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo

镧系	57La	58Ce	59Pr	60Nd	61Pm	62Sm	63Eu	64Gd	65Tb	66Dy	67Ho	68Er	69Tm	70Yb	71Lu
	镧	铈	镨	钕	恒	钐	铕	長	铽	镝	钬	铒	铥	镱	镥
	140.12	140.115	140.90765	144.24	144.9127	150.36	151.965	157.25	158.9253	162.50	164.93032	167.26	168.93421	173.04	174.967
	182.5	182.5	182.8	182.1	181.0	180.2	204.2	180.2	178.2	177.3	176.6	175.7	174.6	194	173.4
锕系	89Ac 锕 (227) 187.8	90Th 住 232.0381 179.8	91Pa 华 231.0359 160.6	92U 铀 238.029 138.5	93Np 镎 237.0482 131	94Pu 钚 (244) 131	95Am 镅 (243) 184	96Cm 锔 (247) 170	97Bk 锫 (247)	98Cf 锎 (251) ~186	99Es 锿 (254) ~186	100Fm 镄 (257)	101Md 钔] (258)	102No 辖 ⁽²⁵⁹⁾	103Lr 铹 (260)

- 周期性是原子结构规律的表现
- 1925年提出不相容原理,才对元素周期表有了物理上得深刻认识!
- 周期性主要源于原子中电子组态(即价电子)的周期性,与电子在核外的排列密切相关!
- 是Pauli原理最直接最有力的证明

一、原子的壳层结构

电子运动状态的描述(量子数)

- 1. 主量子数n: 电子距核远近, 轨道大小
- 2. 轨道角动量量子数1: 轨道形状
- 3. **轨道取向量子数(磁量子数)m_i**: 轨道的空间取向
- 4.自旋角动量取向量子数m。: 电子自旋取向

1. 电子径向几率有一定的分布

核外电子离原子核的平均距离及几率最大位置

$$\overline{r} = \int \psi_{nlm}^* r \psi_{nlm} d^3 r = \int_0^\infty |r R_{nl}|^2 r dr$$

$$= \frac{n^2 a_0}{Z} \left\{ 1 + \frac{1}{2} \left[1 - \frac{l(l+1)}{n^2} \right] \right\} = \frac{a_0}{2Z} \left[3n^2 - l(l+1) \right]$$

$$\frac{d}{dr} |rR_{nl}|^2, \Rightarrow r_{\text{max}} = r(n, l)$$

2. 电子的壳层结构

(n,l)不同,径向几率最大值的位置不同! 可用主壳层(n)和支壳层(l)结构形象地表示电子的分布情况

主壳层: 主量子数n相同的电子构成主壳层 同一主壳层的电子,到核的距离相差不大 次壳层(支壳层): 角量子数l相同的电子,构成次壳层。

主壳层 n= 1, 2, 3, 4, 5 ...

K, L, M, N, O ...

支壳层 l=0, 1, 2, 3, 4, ..., n-1

s, p, d, f, g, ...

3. 各壳层可容纳的最大电子数

对于给定的主壳层n和支壳层l

- 每一个次壳层l中,可以有2l+1种轨道(空间取向)。 即2l+1个 m_i
- 每一个轨道上,可以有两个自旋方向相反的电子。 即2s+1=2个 m_s
- 支壳层l中最多可以容纳的电子数为 $N_l = 2(2l+1)$
- 主壳层n中最多可以容纳的电子数为

$$\sum_{l=0}^{n-1} 2(2l+1) = 2 \times \frac{(1+2n-1)n}{2} = 2n^2$$

 $n = 1, 2, 3, 4, \dots$ $l = 0, 1, 2, 3, 4, \dots$

 $N_n = 2, 8, 18, 32, \dots N_i = 2, 6, 10, 14, 18 \dots$

各个主壳层及其次壳层的电子数

主売层, <i>n</i>	1	2	2		3		4				5					6					
最多电 子数 2 <i>n</i> ²	2	8	3		18			~	32				50					•	72		
次壳层, <i>l</i>	0	0	1	0	1	2	0	1	2	3	0	1	2	3	4	0	1	2	3	4	5
符号	1s	2s	2p	3s	3р	3d	4s	4p	4d	4f	5s	5p	5d	5f	5g	6s	6р	6d	6f	6g	6h
最多电 子数 2(2 <i>l</i> +1)	2	2	6	2	6	10	2	6	10	14	2	6	10	14	18	2	6	10	14	18	22

4.电子壳层的能级次序

核外电子排列的原则:

- (1) Pauli原理
- (2) 能量最小原理

经验规律: 1) $n \to$ 大, $E \to$ 大 $\begin{cases} n 较小时,E增大的快 \\ n 较大时,E增大的慢 \end{cases}$

- 2) n相同时,E随l的增大而增大
- 3) 电子排布次序会交差——能级交错 (由光谱测量定出)

1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s5f6d···

元素周期及电子在各个壳层的排布

- 1.第一周期 H: 1s¹, He: 1s²
- 2.第二周期 Li, 1s²2s¹ ,Be: 1s²2s²
- B~Ne的6种元素 1s²2s²2p^{1~6}
- 3.第三周期 Na, Mg: 1s²2s²2p⁶3s^{1~2}
- Al~Ar的6种元素 1s²2s²2p⁶3s² 3p^{1~6}
- 4.第四周期 ₁₉K, ₂₀Ca: [Ar]4s^{1~2}
- ${}_{21}$ Sc ${}_{30}$ Zn: [Ar]4s 23 d ${}^{1{}^{\sim}10}$. Cu3d 10 4s, Zn3d 10 4s 2 3d 10 4s: [Ar]4s 23 d 10 4p ${}^{1{}^{\sim}6}$

核外电子排布次序

北大的徐光宪院士总结出一个经验规律:

电子的能量随它的量子数 (n+0.7l) 的值增大而增加,因此,<u>电子填入壳层的填充原则是 (n+0.7l) 小的先填</u>,具体次序为:

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^2 5f^{14}$

二、基态原子的电子组态

- 1. 电子组态决定原子的状态,即能态
- 2.能量最低时核外电子的排布称基态原子的电子组态。 相同的电子组态可以得到不同的原子态

$$Z=1,H:1s^{1}$$

$$Z=2,H_e:1s^2$$

$$Z=6,C:1s^22s^22p^2,(He)2s^22p^2$$

$$Z=18$$
, Ar: $1s^2 2s^2 2p^6 3s^2 3p^6$, (Ne) $3s^2 3p^6$

$$Z=27,C_o:1s^22s^22p^63s^23p^63d^74s^2,(Ar)3d^74s^2$$

三、基态原子态

原子基态就是原子处于能量最低的状态

按Hund定则

- 1. 在次壳层内,S大能级低
- 各个电子的自旋平行时,该状态能量低
- 2. L大能级低,
- 各个电子尽量 \mathbf{n} 大的 m_L 状态能量低
- 3. J值与能量的关系

 $(nl)^{\upsilon}$ 和 $(nl)^{N-\upsilon}$ 有相同原子态

υ:价电子数

N = 2(2l+1)

满壳层电子数

- 次壳层的电子数**小于半满**(2*l*+1)时, *J*最小的能量最低。**正常次序**
- 次壳层的电子数大于半满时,J最大的能量最低。倒转次序

◆ 满(闭合)支壳层的基态原子态

1)
$$_{2}$$
He:1s² 同科电子1s² $_{S=0}^{L=0}$ 基态原子态 $_{S_{0}}^{1}$ $_{S=0}^{I}$ 基态原子态 $_{S_{0}}^{1}$

2)
$$_{10}$$
 Ne:1s²2s²2p⁶ 同科电子2p⁶ (1⁺,1⁻,0⁺,0⁻,-1⁺,-1⁻)

$$m_l = 1 \quad 0 \quad -1$$

$$M_L = \sum_i m_i = 0 \qquad L = 0$$

$$S = 0 \qquad \text{基态原子态} \quad ^1S_0$$

$$M_S = \sum_i m_{s_i} = 0 \qquad J = 0$$

闭合支壳层的角动量为零

轨道和自旋角动量分量都正负抵消。

闭合主壳层的角动量为零

闭合壳层原子的基态原子态为 150

电子组态形成原子态只要考虑价电子耦合!

◆一个价电子原子的基态原子态

闭合壳层的角动量为零

3) $_{19}\text{K}:1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^64\text{s}^1$ \Rightarrow 等同于一个4 s^1 $_{19}\text{K}:价电子4\text{s}^1$ \Rightarrow $^2\text{S}_{1/2}$

4) $_{23}$ V:外壳层4s²3d³ $m_l = 2 1 0 -1 -2$

自旋平行: $M_S = 3/2$

接Pauli原理: $M_L = 2 + 1 + 0 = 3$ $L = 3, S = 3/2 \implies {}^4F_{9/2,7/2,5/2,3/2}$

按Hund定则:小于半满,正常次序,J取最小值

 $^{4}F_{3/2}$

例:给出氧原子基态谱项(原子态)

四、电子组态的周期性与其原子性质的周期性

1. 化学性质

碱金属原子

₃Li:1s²2s¹

 $_{11}$ Na:1s²2s²2p⁶3s¹

 $_{19}K:1s^22s^22p^63s^23p^64s^1$

化学性质活泼

惰性气体原子

 $_{2}$ He:1s 2 2s 2

 $_{10}$ Ne:1s² 2s² 2p⁶

 $_{18}$ Ar: $1s^2 2s^2 2p^6 3s^2 3p^6$

化学性质稳定

2. 单质化合物

 $_{6}C:2s^{2}2p^{2}$ $_{14}Si:3s^{2}3p^{2}$

 $_{32}$ Ge:4s²4p²

具有相似的结构和性质

五、复杂原子的能级和光谱

实验观察到的一般规律

- 1、光谱和能级的位移律
- 电中性Z原子与Z+1原子的正一价离子光谱和能级相似
- 原因: 有相同的电子数及电子组态, 所以 有相同的原子态
- 2、多重性的交替律
- 按元素周期表的次序交替出现奇偶多重态

₁₉ K	₂₀ Ca	₂₁ Sc	₂₂ Ti	
二重	一重	二重四重	一重	
			五重	

4.6 X射线的发现及测量

一、X射线的发现

- 1895年11月8日,德国 W.K.Röntgen 在阴极射线管的放电实验中首次发现了X射线。
- 用黑纸包裹的射线管使得铂氰酸钡 BaPt(CN)6发出荧光。
- 1901年获得第一届诺贝尔物理学奖

伦琴, W.K.

第一张X射线照片

• 1895年12月22日,伦琴为他的夫人拍摄了历史上第一张X射线照片。

二、X射线的产生

K: 灯丝, 阴极, 发射电子

A: 阳极, 靶, 受加速电子轰击发出X射线

高速电子轰击靶,产生X射线

三、X射线的性质

- 起初,W.L.Bragg认为X射线是粒子束流
- 1905年,Barkla(英)发现了X射线的偏振,认为X 射线具有波动性,是横波
- · 巴克拉X射线双散射实验
- •1912年,M.T.F. von Laue (德) 提出X射线是波长很短的电磁波,可在晶体中的衍射。W.Fredrich和Knipping证实X射线是电磁波,并首次测出其波长。

X射线在晶体中的衍射

- 测量晶体的晶格常数,确定晶体的结构
- 标定X射线的波长

X射线的特性

具有显著的波粒二象性

- 波动性: 干涉、衍射、散射、反射、折射......
- 粒子性: 光电效应、Compton效应、单光子记录......

四、X射线的光谱

- 由带状的**连续谱**和细锐的 **线状谱**(特征谱、标识谱) 组成
- 1. **连续谱**:波长连续变化,谱的强度也随之变化。存在一个由管压决定的短波限,随管压的升高而变短,与阳极靶的材料无关,谱的形状相似。

X-ray spectrum of molybdenum as a function of applied voltage

• 产生的机制是**轫致辐射**(刹车辐射):由于高速电子与原子(原子核)碰撞,突然减速而将其动能全部或部分转化为辐射(X射线)。韧致辐射的强度反比于入射带电粒子的质量平方。

铑靶所发的射线。图中显示 K 系标识谱和连续谱

连续谱 (轫致辐射谱)

T为入射电子的动能 T'为碰撞后的动能

$$T-T' = hv_0$$

若 $T'=0$
 $eV = hv_0$

短波限

$$\lambda_0 = \frac{c}{v_0} = \frac{hc}{hv_0} = \frac{hc}{eV} = \frac{12.4}{V(\text{kv})} \text{Å}$$

由于减速是一个过程,所以同时产生较长波长的连续谱。

X射线光子波长不同于电子的de Broglie波长

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_e E_k}} = \frac{h}{\sqrt{2m_e eV}} = \frac{12.25}{\sqrt{V}} \text{ A}$$

2. 标识谱

- 在管压达到一定值时产生,与阳极靶材料有关。
- 可以分为几个谱线系,按辐射硬度(波长的长短) 记为K,L,M,N,.....
- 莫塞莱(Moseley, 英)定律(1913年发现, 26岁)

$$K_{\alpha}$$
 $\tilde{v} = R(Z-1)^{2} \left(\frac{1}{1^{2}} - \frac{1}{2^{2}}\right)$

$$L_{\beta 1}$$
 $\tilde{v} = R(Z-7.4)^{2} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right)$

各元素的K系或L系都有相似的结构 谱线的频率随原子序数的增加而缓慢增加

- 从Al到Au, X射线标识谱的规律
- 不同元素的相应谱线位置依次变化,没有周期性——非价电子跃迁辐射;
- 谱线系的结构与元素所处的化学环境无关——因为 内壳层电子受到外层电子的屏蔽
- 可以推断由内壳层电子跃迁产生

H.G.J.Moseley

标识谱的发射机理: 电子在内壳层间的跃迁

- K线系: n=1壳层的一个电子被电离,而产生一个空位,同时原子被激发到电离态的高能级; 然后一个外壳层电子跃迁填补此空位,多余的能量以X射线光子辐射。
- n=1共有2个电子,产生一个空位时,对于外壳 层电子的有效核电荷数为Z-1

$$K_{\alpha}$$
 $\tilde{v} = R(Z-1)^2(\frac{1}{1^2} - \frac{1}{2^2})$

• L线系: n=2壳层一个电子被电离。对于Lβ1系, 有效电荷数为Z-7.4

$$L_{\beta 1}$$
 $\tilde{v} = R(Z - 7.4)^2 (\frac{1}{2^2} - \frac{1}{3^2})$

• 内层电子跃迁的选择定则,相当于单电子跃迁:

$$\begin{cases} \Delta L = \pm 1 \\ \Delta J = 0, \pm 1 \end{cases}$$

4. Auger(俄歇)效应

- 电子跃迁补空时,不发射出X射线光子,而 是使内壳层的另一个电子被电离。
- 被电离出的电子称为Auger电子。
- 由于只有表面处的Auger电子才能从材料中射出,所以该效应被用作材料表面成分的研究。

Auger电子。从材料中逸出的电子

本章小结

- 一、氦原子的能级与光谱特征
- 二、微观粒子的全同性、波函数的交换对称性 Pauli原理、交换效应
 - 三、电子组态、原子态
 - 四、角动量耦合的一般规则、LS耦合、jj耦合、 同科电子组态
- 五、Lauder间隔定则、 Hund定则、跃迁选择定则

六、原子的壳层结构(主壳层n、支壳层*l*)基态原子的电子组态、基态原子态

七、X射线谱的产生

谱线特征:连续谱和标识谱 机理