

Art of Problem Solving 1991 Balkan MO

Balkan MO 1991

1	Let ABC be an acute triangle inscribed in a circle centered at O . Let M be a point on the small arc AB of the triangle's circumcircle. The perpendicular dropped from M on the ray OA intersects the sides AB and AC at the points K and L , respectively. Similarly, the perpendicular dropped from M on the ray OB intersects the sides AB and BC at N and P , respectively. Assume that $KL = MN$. Find the size of the angle $\angle MLP$ in terms of the angles of the triangle ABC .
2	Show that there are infinitely many noncongruent triangles which satisfy the following conditions: i) the side lengths are relatively prime integers; ii)the area is an integer number; iii)the altitudes' lengths are not integer numbers.
3	A regular hexagon of area H is inscribed in a convex polygon of area P . Show that $P \leq \frac{3}{2}H$. When does the equality occur?
4	Prove that there is no bijective function $f:\{1,2,3,\ldots\}\to\{0,1,2,3,\ldots\}$ such that $f(mn)=f(m)+f(n)+3f(m)f(n)$.

www.artofproblemsolving.com/community/c4063

Contributors: pohoatza