The group G is isomorphic to the group labelled by [72, 43] in the Small Groups library. Ordinary character table of $G \cong (C3 \times A4) : C2$:

	1a	3a	2a	6a	3b	3c	3d	2b	4a
χ_1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	1	-1	-1
χ_3	2	2	2	2	-1	-1	-1	0	0
χ_4	2	-1	2	-1	2	-1	-1	0	0
χ_5	2	-1	2	-1	-1	2	-1	0	0
χ_6	2	-1	2	-1	-1	-1	2	0	0
χ_7	3	3	-1	-1	0	0	0	1	-1
χ_8	3	3	-1	-1	0	0	0	-1	1
χ_9	6	-3	-2	1	0	0	0	0	0

Trivial source character table of $G \cong (C3 \times A4)$: C2 at p = 2:

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(4,6)(5,7)]) \cong C2$ $P_3 = Group([(2,3)(5,6)]) \cong C2$

 $P_4 = Group([(4,5)(6,7),(4,6)(5,7)]) \cong C2 \times C2$ $P_5 = Group([(2,3)(5,6),(4,7)(5,6)]) \cong C2 \times C2$ $P_6 = Group([(2,3)(4,6,7,5),(4,7)(5,6)]) \cong C4$

This is source character table of $G = (G \times H^4)$. $G = (G \times H^4)$.																
Normalisers N_i			N_1			N_2 N_3		N_3	N_4					N_5	N_6	N_7
p-subgroups of G up to conjugacy in G			P_1			P_2 P_3		P_3	P_4					P_5	P_6	P_7
Representatives $n_j \in N_i$		3b	3a	3c	3d	1a	3a	1a	1a	3a	3b	3c	3d	1a	1a	1a
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	8	-1	8	-1	-1	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	8	2	8	2	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	8	-1	-4	2	-1	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	8	-1	-4	-1	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	8	2	-4	-1	-1	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 2 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	12	0	12	0	0	4	4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9$	12	0	-6	0	0	4	-2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	1	4	1	1	0	0	2	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	2	2	2	2	2	0	2	2	2	2	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	-1	2	-1	-1	2	2	0	2	2	-1	-1	-1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	-1	-1	-1	2	2	-1	0	2	-1	-1	-1	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	-1	-1	2	-1	2	-1	0	2	-1	-1	2	-1	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	2	2	-1	-1	-1	2	-1	0	2	-1	2	-1	-1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	6	0	0	2	2	2	0	0	0	0	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9$	6	0	6	0	0	2	2	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_{7} = Group([(4,5)(6,7),(4,6)(5,7),(2,3)(5,6)]) \cong D8
N_{1} = Group([(2,3)(5,6),(5,6,7),(1,2,3),(4,5)(6,7),(4,6)(5,7)]) \cong (C3 \times A4) : C2
N_{2} = Group([(4,6)(5,7),(4,5)(6,7),(4,7)(5,6),(1,3,2),(1,2)(4,6)]) \cong (C6 \times C2) : C2
N_{3} = Group([(2,3)(5,6),(4,7)(5,6)]) \cong C2 \times C2
N_{4} = Group([(2,3)(5,6),(5,6,7),(1,2,3),(4,5)(6,7),(4,6)(5,7)]) \cong (C3 \times A4) : C2
N_{5} = Group([(4,7)(5,6),(2,3)(5,6),(4,6)(5,7)]) \cong D8
N_{6} = Group([(2,3)(4,6,7,5),(4,7)(5,6),(2,3)(5,6)]) \cong D8
N_{7} = Group([(2,3)(5,6),(4,6)(5,7),(4,5)(6,7)]) \cong D8
```