2.3 Quicksort

- quicksort
- selection
- duplicate keys

Two classic sorting algorithms

Critical components in the world's computational infrastructure.

- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of 20th century in science and engineering.

Mergesort.

last lecture

- Java sort for objects.
- Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort.

this lecture

- Java sort for primitive types.
- C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

quicksort

- selection
- duplicate keys

Quicksort

Basic plan.

- Shuffle the array.
- Partition so that, for some j
 - element a[j] is in place
 - no larger element to the left of j
 - no smaller element to the right of j
- Sort each piece recursively.

Sir Charles Antony Richard Hoare 1980 Turing Award

Quicksort partitioning

Basic plan.

- Scan i from left for an item that belongs on the right.
- Scan j from right for item that belongs on the left.
- Exchange a[i] and a[j].
- Repeat until pointers cross.

Quicksort: Java code for partitioning

```
private static int partition(Comparable[] a, int lo, int hi)
   int i = lo, j = hi+1;
   while (true)
       while (less(a[++i], a[lo]))
                                                 find item on left to swap
          if (i == hi) break;
       while (less(a[lo], a[--j]))
                                                find item on right to swap
          if (j == lo) break;
       if (i >= j) break;
                                                  check if pointers cross
       exch(a, i, j);
                                                               swap
   exch(a, lo, j);
                                               swap with partitioning item
   return j;
                                return index of item now known to be in place
```


Quicksort: Java implementation

```
public class Quick
   private static int partition(Comparable[] a, int lo, int hi)
   { /* see previous slide */ }
   public static void sort(Comparable[] a)
   {
      StdRandom.shuffle(a);
      sort(a, 0, a.length - 1);
   private static void sort(Comparable[] a, int lo, int hi)
   {
      if (hi <= lo) return;</pre>
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
```

shuffle needed for performance guarantee (stay tuned)

Quicksort trace

Quicksort animation

50 random elements

https://www.cs.purdue.edu/homes/cs251/slides/media/quick-sort.mov

Quicksort animation

50 random elements

https://www.cs.purdue.edu/homes/cs251/slides/media/quick-sort.mov

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier than it might seem.

Staying in bounds. The (j == 10) test is redundant (why?), but the (i == hi) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better to stop on elements equal to the partitioning element.

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10^8 compares/second.
- Supercomputer executes 10¹² compares/second.

	insertion sort (N²)			mergesort (N log N)			quicksort (N log N)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.

```
a[]
                              7 8
                                    9 10 11 12 13 14
                         E G D L
initial values
random shuffle
       10
12
14
             BCDEFGH
```

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim \frac{1}{2} N^2$.

```
a[]
                                         9 10 11 12 13 14
                                  7 8
initial values
random shuffle
                               G
                  C D
       14
       14
14
                        E F G H
```

Quicksort: average-case analysis

Proposition. The average number of compares C_N to quicksort an array of N distinct keys is $\sim 2N \ln N$ (and the number of exchanges is $\sim \frac{1}{3} N \ln N$).

Pf. C_N satisfies the recurrence $C_0 = C_1 = 0$ and for $N \ge 2$:

$$C_N = (N+1) + \frac{C_0 + C_1 + \ldots + C_{N-1}}{N} + \frac{C_{N-1} + C_{N-2} + \ldots + C_0}{N}$$
 partitioning left right partitioning probability

• Multiply both sides by N and collect terms:

$$NC_N = N(N+1) + 2(C_0 + C_1 + \dots + C_{N-1})$$

• Subtract this from the same equation for N-1:

$$NC_N - (N-1)C_{N-1} = 2N + 2C_{N-1}$$

• Rearrange terms and divide by N(N+1):

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

Quicksort: average-case analysis

Repeatedly apply above equation:

$$\begin{array}{ll} \frac{C_N}{N+1} &=& \frac{C_{N-1}}{N} \,+\, \frac{2}{N+1} \\ &=& \frac{C_{N-2}}{N-1} \,+\, \frac{2}{N} \,+\, \frac{2}{N+1} \\ &=& \frac{C_{N-3}}{N-2} \,+\, \frac{2}{N-1} \,+\, \frac{2}{N} \,+\, \frac{2}{N+1} \\ &=& \frac{2}{3} \,+\, \frac{2}{4} \,+\, \frac{2}{5} \,+ \ldots \,+\, \frac{2}{N+1} \end{array}$$

• Approximate sum by an integral:

$$C_N = 2(N+1)\left(\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots + \frac{1}{N+1}\right)$$

 $\sim 2(N+1)\int_3^{N+1} \frac{1}{x} dx$

• Finally, the desired result:

$$C_N \sim 2(N+1) \ln N \approx 1.39N \lg N$$

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

- $N + (N-1) + (N-2) + ... + 1 \sim \frac{1}{2} N^2$.
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is $\sim 1.39 N \lg N$.

- 39% more compares than mergesort.
- But faster than mergesort in practice because of less data movement.

Random shuffle.

- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo + CUTOFF - 1)
   {
      Insertion.sort(a, lo, hi);
      return;
   }
   int j = partition(a, lo, hi);
   sort(a, lo, j-1);
   sort(a, j+1, hi);
}</pre>
```

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

Median of sample.

- Best choice of pivot element = median.
- Estimate true median by taking median of sample.

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;

   int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
   swap(a, lo, m);

   int j = partition(a, lo, hi);
   sort(a, lo, j-1);
   sort(a, j+1, hi);
}</pre>
```

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Can delay insertion sort until end.

Median of sample.

- Best choice of pivot element = median.
- Estimate true median by taking median of sample.

Optimize parameters.

 \sim 12/7 N In N compares (slightly fewer)

~ 12/35 N In N exchanges (slightly more)

- Median-of-3 (random) elements.
- Cutoff to insertion sort for ≈ 10 elements.

Quicksort with median-of-3 and cutoff to insertion sort: visualization

- quicksort
- selection
- duplicate keys

Selection

Goal. Find the k^{th} largest element.

Ex. Min (k = 0), max (k = N - 1), median (k = N/2).

Applications.

- Order statistics.
- Find the "top k."

Use theory as a guide.

- Easy $O(N \log N)$ upper bound. How?
- Easy O(N) upper bound for k = 1, 2, 3. How?
- Easy $\Omega(N)$ lower bound. Why?

Which is true?

- $\Omega(N \log N)$ lower bound? \longleftarrow is selection as hard as sorting?
- O(N) upper bound? \leftarrow is there a linear-time algorithm for all k?

Quick-select

Partition array so that:

- Element a[j] is in place.
- No larger element to the left of j.
- No smaller element to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

```
public static Comparable select(Comparable[] a, int k)
                                                              if a[k] is here
                                                                            if a[k] is here
    StdRandom.shuffle(a);
                                                              set hi to j-1
                                                                             set 10 t0 j+1
    int lo = 0, hi = a.length - 1;
    while (hi > lo)
       int j = partition(a, lo, hi);
                                                                \leq V
                                                                       V
                                                                              \geq V
       if (j < k) lo = j + 1;
       else if (j > k) hi = j - 1;
       else
               return a[k];
    return a[k];
```

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average. Pf sketch.

- Intuitively, each partitioning step splits array approximately in half: $N+N/2+N/4+...+1\sim 2N$ compares.
- Formal analysis similar to quicksort analysis yields:

$$C_N = 2 N + k \ln (N/k) + (N-k) \ln (N/(N-k))$$

Ex. $(2 + 2 \ln 2) N$ compares to find the median.

Remark. Quick-select uses $\sim \frac{1}{2} N^2$ compares in the worst case, but (as with quicksort) the random shuffle provides a probabilistic guarantee.

Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a compare-based selection algorithm whose worst-case running time is linear.

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of n numbers is shown to be at most a linear function of n by analysis of a new selection algorithm -- PICK. Specifically, no more than 5.4305 n comparisons are ever required. This bound is improved for

Remark. But, constants are too high \Rightarrow not used in practice.

Use theory as a guide.

- Still worthwhile to seek practical linear-time (worst-case) algorithm.
- Until one is discovered, use quick-select if you don't need a full sort.

Generic methods

In our select() implementation, client needs a cast.

The compiler complains.

```
% javac Quick.java
Note: Quick.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
```

Q. How to fix?

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

```
generic type variable
public class QuickPedantic
                             (value inferred from argument a [])
    public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
    {    /* as before */ }
                                                        return type matches array type
    public static <Key extends Comparable<Key>> void sort(Key[] a)
    { /* as before */ }
    private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
    { /* as before */ }
    private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
    {    /* as before */ }
    private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
    { Key swap = a[i]; a[i] = a[j]; a[j] = swap; }
              can declare variables of generic type
```

http://www.cs.princeton.edu/algs4/23quicksort/QuickPedantic.java.html

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

- quicksort
- selection
- duplicate keys

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.

- Sort population by age.
- Find collinear points. ← see Assignment 2
- Remove duplicates from mailing list.
- Sort job applicants by college attended.

Typical characteristics of such applications.

- Huge array.
- Small number of key values.

Duplicate keys

Mergesort with duplicate keys. Always between $\frac{1}{2}N \lg N$ and $N \lg N$ compares.

Quicksort with duplicate keys.

- Algorithm goes quadratic unless partitioning stops on equal keys!
- 1990s C user found this defect in qsort().

several textbook and system implementation also have this defect

Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side. Consequence. $\sim \frac{1}{2} N^2$ compares when all keys equal.

B A A B A B B B C C C

AAAAAAAAAA

Recommended. Stop scans on keys equal to the partitioning element. Consequence. $\sim N \lg N$ compares when all keys equal.

B A A B A B C C B C B

AAAAAAAAA

Desirable. Put all keys equal to the partitioning element in place.

AAABBBBBCCC

AAAAAAAAA

3-way partitioning

Goal. Partition array into 3 parts so that:

- Elements between 1t and gt equal to partition element v.
- No larger elements to left of 1t.
- No smaller elements to right of gt.

Dutch national flag problem. [Edsger Dijkstra]

- Conventional wisdom until mid 1990s: not worth doing.
- New approach discovered when fixing mistake in C library qsort().
- Now incorporated into qsort() and Java system sort.

Dijkstra 3-way partitioning algorithm

3-way partitioning.

- Let v be partitioning element a [10].
- Scan i from left to right.
 - a[i] less than v: exchange a[1t] with a[i] and increment both 1t and i
 - a[i] greater than v: exchange a[gt] with a[i] and decrement gt
 - a[i] equal to v: increment i

All the right properties.

- In-place.
- Not much code.
- Small overhead if no equal keys.

3-way partitioning: trace

3-way quicksort: Java implementation

```
private static void sort(Comparable[] a, int lo, int hi)
{
   if (hi <= lo) return;</pre>
   int lt = lo, gt = hi;
   Comparable v = a[lo];
   int i = lo;
   while (i <= gt)</pre>
      int cmp = a[i].compareTo(v);
               (cmp < 0) exch(a, lt++, i++);
      if
      else if (cmp > 0) exch(a, i, gt--);
      else
                          i++;
                                             before
   sort(a, lo, lt - 1);
   sort(a, gt + 1, hi);
                                                    <V
                                             during
                                                          =V
                                                                        >V
                                                         1t
                                                                     gt
                                              after
                                                     <V
                                                               =V
                                                                        >V
                                                  10
                                                         1t
                                                                   gt
                                                                            hi
```

3-way quicksort: visual trace

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i^{th} one occurs x_i times, any compare-based sorting algorithm must use at least

$$\lg\left(\frac{N!}{x_1!\;x_2!\;\cdots\;x_n!}\right)\;\sim\;-\sum_{i=1}^n x_i\lg\frac{x_i}{N}\;\;\longleftarrow\;\;\frac{N\lg N\,\text{when all distinct;}}{\text{linear when only a constant number of distinct keys}}$$
 compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997]

proportional to lower bound

Quicksort with 3-way partitioning is entropy-optimal.

Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running time from linearithmic to linear in broad class of applications.

Sorting summary

	inplace?	stable?	worst	average	best	remarks
selection	x		N ² / 2	N 2 / 2	N ² / 2	N exchanges
insertion	x	X	N ² / 2	N 2 / 4	N	use for small N or partially ordered
shell	x		?	?	N	tight code, subquadratic
merge		X	N lg N	N lg N	N lg N	N log N guarantee, stable
quick	x		N ² / 2	2 N In N	N lg N	N log N probabilistic guarantee fastest in practice
3-way quick	x		N ² / 2	2 N In N	N	improves quicksort in presence of duplicate keys
???	X	X	N lg N	N lg N	N lg N	holy sorting grail