Qornain Aji 21/481767/TK/53170

Problem 1

Prove the following properties of column operation:

(A) Column Exchanges:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = - \begin{vmatrix} b & a \\ d & c \end{vmatrix}$$

Away to prove the problem is using the double transpose method!

do the remaining
$$-\left(\begin{vmatrix} b & d \\ a & c \end{vmatrix}\right)^{\frac{1}{2}} = -\left|\begin{vmatrix} b & q \\ d & c \end{vmatrix}\right| = \left|\begin{vmatrix} a & b \\ c & d \end{vmatrix}\right|$$

it is proved that column exchange is the same result as row exchange.

(B) Linearity:

Prove:

$$\begin{vmatrix} a+a' \\ c+c' \end{vmatrix} = ad+a'd - cb - c'b$$

$$= ad-cb + a'd - c'b = (ad-cb) + (a'd-c'b)$$

Both of the problems are proved to be valid-

(c) Subtracting a multiple of one column from another column:

| a b - xa = | a b |
| c d - xc | c d |

First we know that a b = 0 because the matrix does not have basing at $R^{m\times m}$ dimension so it has no determinant.

Prove:

$$\begin{vmatrix} a & b - \alpha a \\ c & d - \alpha c \end{vmatrix} = (ad - \alpha ac) - (cb - \alpha ca)$$

$$= ad - \alpha ac - cb + \alpha ca$$

$$= ad - cb + \alpha ca - \alpha ac$$

$$= ad - cb + \alpha ca - \alpha ac$$

$$= |a| |b| + |a| |a| |c|$$

With property number 3 of determinant, we can simplify as $\begin{vmatrix} a & b & | & t \times | & q & C \\ & & d & | & a & C \end{vmatrix}$

As we know, a c has same row properties, then

a b + x (0) = | a b | It is proved that

c d | the equation is valid.

O_{A1} A_{A} O_{A} O_{A} O_{A} O_{A} O_{A} O_{A} O_{A}
Problem # 2: Calculating Deferminant of Matrices
10-0-112-000
<u> </u>
$00 x_i 00 = x_i$
i : , ×n-1 1 0
00 - xn 01
1 0 0 2 2 1
By advating H magazines of both rough and column averation
By adopting the properties of both row and column operation
prove it! Using Lower and Upper triangular method!
7 P. 1 11 1
To find Upper transgular matrices, we can do
Rn = Rn - Xn R; R = row rector
χ_i
Do this until R n-1 except Ri and we will get:
() = 100x100 We know that the determinant of
the triangular matrices is the multiple
We know that the determinant of in the triangular matrices is the multiple of its diagonal value so
10000 <u>0</u> 1
and the lower triangle is $ U = \begin{vmatrix} \sqrt{1} & \sqrt{1} & 0 & 0 \\ 0 & 0 & \sqrt{1} & 1 \end{vmatrix} = \times i$
L 1 0 0
1 1 1 1 1 1 1 1 1 1
$\begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 \\ 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \ddots & \ddots & \ddots & 1 \end{bmatrix}$

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \qquad \begin{bmatrix} \beta \\ b_{21} \\ b_{21} \end{bmatrix}$$

$$C = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ 0 & 0 & b_{11} & b_{21} \\ 0 & 0 & b_{12} & b_{22} \end{bmatrix}$$

$$= + \alpha_{11} \begin{vmatrix} a 2^{2} & 0 & 0 \\ 0 & b_{11} & b_{12} \\ 0 & b_{21} & b_{22} \end{vmatrix} - \alpha_{12} \begin{vmatrix} \alpha_{21} & 0 & 0 \\ 0 & b_{11} & b_{12} \\ 0 & b_{21} & b_{22} \end{vmatrix} + (0) - (0)$$

$$x = +azz \begin{vmatrix} b11 & b12 \\ b21 & b22 \end{vmatrix} - (0)+(0)$$

$$y = +az1 \begin{vmatrix} b11 & b12 \\ b21 & b22 \end{vmatrix} - (0)+(6)$$

Subtitute the x and y!

$$|C| = |B| |A|$$
, So, the relationship between $|A|, |B|$, and $|C|$ is that $|C| = |B| |A|$