# The physics of thin sheets: membranes and wrinkling

Daniel Matoz Fernandez

## Lab: membranes and wrinkling

$$E_s = \frac{1}{2}k(l - l_0)^2$$

$$E_B = k_B(1 + cos\theta)$$



## Simulation Methods

Monte Carlo methods are the simplest. A Monte Carlo step consists of an attempt to update the position of each vertex by a random displacement interval  $[-s, s]^d$ , being d the dimension of the space. Updates are accepted with a probability equal to  $min[1,exp(-\Delta E/k_BT)]$ , where

$$\Delta E = E_{new} - E_{old}$$

s is chosen so that approximately 50% of the attempts are accepted.

$$E_s = \frac{1}{2}k(l - l_0)^2$$

$$E_B = k_B(1 + cos\theta)$$

#### Monte Carlo single vertex step

vertex move 
$$\longrightarrow \Delta x = [-s, s], \Delta y = [-s, s]$$
  $\Delta E = E_{new} - E_{old}$ 

IF

 $random[0,1) < min[1,exp(-\Delta E/k_BT)]$ 

Accept

ELSE

Reject and move back

- 1. Loop over all the vertices
- 2. Perform a single vertex step (see above)

#### For MAXIMUM STEPS

- 1. Loop over all the vertices
- 2. Perform a single step (see above)

#### Buckling

Investigate the behavior of the chain with the strain (compressive)  $\epsilon = \frac{L-L_0}{L_0}$ , and

$$L_0 = N l_0$$

#### How many modes can you see?

$$k = 10^3$$
  $l_0 = 1.0$   $k_b = 10^2$   $N = 10^2 - 10^4$   $k_b T = 10^{-3} - 10^0$ 

Provide snapshots of each mode

# Task 2: Wrinkling and growth

Imagine that each spring has a probability  $p_{growth}$  of "growth", i.e, an increase  $l_0$  by a factor  $\delta l_0$ . Starting with an equilibrium configuration  $L=L_0=N\,l_0$  investigate what happens when  $p_{growth}$  is varied. Use  $\delta l_0=10^{-3}-10^{-1}$