Lexical Analysis & Parsing

15-411/15-611 Compiler Design

Seth Copen Goldstein

October 1, 2020

Today

- Lexing
- Parsing

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey
char*
ArgDesc::helpkey(WhichKey keytype, bool includebraks)
{
    static char buffer[128]; /* format buffer */
    char* p = buffer;
    ...
```

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI CHAR STAR ID EQ ID SEMI ...

- Turn stream of characters into a stream of tokens
 - Strips out "unnecessary characters"
 - comments
 - whitespace
 - Classify tokens by type
 - keywords
 - numbers
 - punctuation
 - identifiers
 - Track location
 - Associate with syntactic information

Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc::helpkey(WhichKey keytype, bool includebraks)
{
    static char buffer[128]; /* format buffer */
    char* p = buffer;
    ...
```

```
CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI
CHAR STAR ID EQ ID SEMI ...
```

Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.
     // if key is absent, then use it. Otherwise use longkey
    char*
    ArgDesc::helpkey(WhichKey keytype, bool includebraks)
        static char buffer[128]; /* format buffer */
        char* p = buffer;
                                     Position: 5,40
Position: 4,0
                                     text: "includebraks"
    CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
    RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI
    CHAR STAR ID EQ ID SEMI ...
                                  Position: 6,23
                                  value: 123
```

- Turn stream of characters into a stream of tokens
 - More concise
 - Easier to parse

Lexical Analyzers

- Input: stream of characters
- Output: stream of tokens (with information)
- How to build?
 - By hand is tedious
 - Use Lexical Analyzer Generator, e.g., flex
- Define tokens with regular expressions
- Flex turns REs into Deterministic Finite
 Automata (DFA) which recognizes and returns tokens.

- Define tokens
- Generate scanner code
- Main interface: yylex() which reads from yyin and returns tokens til EOF

11

2. Flex Program Format

A flex program has three sections:

Definitions

응응

RE rules & actions

응응

User code

12

wc As a Flex Program

```
용 {
  int charCount=0, wordCount=0, lineCount=0;
용 }
word [^ \t\n]+
응응
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
       {charCount++;}
응응
int main(void) {
   yylex();
   printf("Chars %d, Words: %d, Lines: %d\n",
      charCount, wordCount, lineCount);
   return 0;
```

A Flex Program

```
용 {
  int charCount=0, wordCount=0, lineCount=0;
응 }
       [^ \t\n]+
word
응응
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
       {charCount++;}
응응
int main(void) {
   yylex();
   printf("Chars %d, Words: %d, Lines: %d\n",
      charCount, wordCount, lineCount);
   return 0;
```

1) Definitions

2) Rules & Actions

3) User Code

15-411/611 © 2019-20 Goldstein 14

Section 1: RE Definitions

Format:

name RE

Examples:

```
digit [0-9]
letter [A-Za-z]
id {letter} ({letter}|{digit})*
word [^ \t\n]+
```

Regular Expressions in Flex

```
match the char x
X
            match the char.
"string" match contents of string of chars
            match any char except \n
            match beginning of a line
$
            match the end of a line
            match one char x, y, or z
[xyz]
            match any char except x, y, and z
[^xyz]
            match one of a to z
[a-z]
```

Regular Expressions in Flex (cont)

```
closure (match 0 or more r's)
r*
             positive closure (match 1 or more r's)
r+
             optional (match 0 or 1 r)
r?
             match r1 then r2 (concatenation)
r1 r2
             match r1 or r2 (union)
r1 | r2
(r)
             grouping
r1 \ r2
             match r1 when followed by r2
             match the RE defined by name
  name }
```

Some number REs

[0-9] A single digit.

[0-9]+ An integer.

 $[0-9]+ (\. [0-9]+)$? An integer or fp number.

[+-]? $[0-9]+ (\.[0-9]+)$? ([eE][+-]?[0-9]+)? Integer, fp, or scientific notation.

Section 2: RE/Action Rule

A rule has the form:

```
name { action }
re { action }
```

- the name must be defined in section 1
- the action is any C code

If the named RE matches* an input character sequence, then the C code is executed.

Rule Matching

• Longest match rule.

```
"int" { return INT; }
"integer" { return INTEGER; }
```

 If rules can match same length input, first rule takes priority.

```
"int" { return INT; }
[a-z]+ { return ID; }
[0-9]+ { return NUM; }
```

Section 3: C Functions

Added to end of the lexical analyzer

Removing Whitespace

```
[ \t\n]
         whitespace
         %%
                                              empty action
name
          {whitespace}
                             ECHO; }
 RE
         %%
                                            ECHO macro
         int main(void)
            yylex();
            return 0;
```

22

Printing Line Numbers

```
%{
                                     the matched text
  int lineno = 1;
%}
%%
^(.*)\n { printf("%4d\t%s", lineno, yytext);
           lineno++;}
%%
int main(int argc, char *argv[])
  // appropriate arg processing & error
  handling, ...
  yyin = fopen(argv[1], "r");
  yylex();
  return 0;
```

23

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Under The Covers

How to go from REs to a working scanner?

Convert to fast scanner

25

Regular Languages

- Finite Alphabet, Σ , of symbols.
- word (or string), a finite sequence of symbols from Σ .
- Language over Σ is a set of words from Σ .
- Regular Expressions describe Regular Languages.
 - easy to write down, but hard to use directly
- The languages accepted by Finite Automata are also Regular.

Regular Expressions defined

Base Cases:

```
    A single character a
```

– The empty string
$$\epsilon$$

Recursive Rules:

If R₁ and R₂ are regular expressions

```
-Concatenation R_1R_2
```

$$-$$
Union $R_1 R_2$

$$-$$
Closure R_1^*

$$-Grouping$$
 (R₁)

REs describe Regular Languages.

RE Examples

• even a's

odd b's

- even a's or odd b's
- even a's followed by odd b's

RE Examples

• even a's

odd b's

- even a's or odd b's
- even a's followed by odd b's

RE Examples

• even a's

$$R^A = b^* (a b^* a b^*)^*$$

odd b's

$$R^{B} = a^{*} b a^{*} (b a^{*} b a^{*})^{*}$$

even a's or odd b's

even a's followed by odd b's

$$R^A R^B$$

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Finite Automata

- finite set of states
- ullet set of edges from states to states labeled by letter from Σ
- initial state
- set of accepting states
- How it works:
 - Start in initial state, on each character transition goto state using edge labeled for that character.
 - If at end of word we are in accepting state, the word is in language
 - Language accepted are strings that cause FA to end in an accepting state

15-411/611

Example REs \rightarrow FA

• even a's

b* (ab* ab*)*

• odd b's

a* b a* (b a* b a*)*

Example REs \rightarrow FA

even a's

b* (ab* ab*)*

odd b's

a* b a* (b a* b a*)*

Deterministic Finite Automata
DFA

Ad Hoc

Example REs \rightarrow FA

• even a's

b* (ab* ab*)*

odd b's

a* b a* (b a* b a*)*

even a's or odd b's
 R^A | R^B

35

even a's followed by odd b's
 R^A R^B

Converting RE to NFA: Base Case

• for $a \in \Sigma$ the NFA $M_a = \{\Sigma, \{s_0, s_f\}, \delta, s_0, \{s_f\}\}$

• for ϵ the NFA $M_{\epsilon} = \{\Sigma, \{s_0, s_f\}, \delta, s_0, \{s_f\}\}$

Recursive Case

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{R|S} = \{\Sigma, s_R \cup s_s \cup \{m_0, m_f\}, \delta_{R|S}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{R|S} = \{\Sigma, s_R \cup s_R \cup \{m_0, m_f\}, \delta_{R|S}, m_0, m_f\}$

39

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{RS} = \{\Sigma, s_R \cup s_R \cup \{m_0, m_f\}, \delta_{RS}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{RS} = \{\Sigma, s_R \cup s_R \cup \{m_0, m_f\}, \delta_{RS}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$

• $M_{R*} = \{\Sigma, s_R \cup \{m_0, m_f\}, \delta_{R*}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$

• $M_{R*} = \{\Sigma, s_R \cup \{m_0, m_f\}, \delta_{R*}, m_0, m_f\}$

Example REs \rightarrow FA

even a's

b* (ab* ab*)*

odd b's

a* b a* (b a* b a*)*

even a's or odd b's
 R^A | R^B

even a's followed by odd b's
 R^A R^B

Let's try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

Let's try a (b | c)*

1. a, b, & c

2. b | c

© 2019-20 Goldstein

3. (b | c)*

We could do a bit better. ©

We could do a bit better. ©

50

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- $RE \rightarrow NFA$
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

$RE \rightarrow NFA \rightarrow DFA$

- Can't directly execute Non-deterministic FA
- Need to convert NFA to DFA
- Essentially, we will build a DFA that simulates the NFA

 Key idea: Keep track of all possible NFA states we could be in at each step: the set of all possible NFA states becomes the DFA state

52

- start in state { s₀ }.
- For each edge create a set of all states that can be reached. Continue until done.
- All sets that contain an NFA accepting state are accepting.

Lets first deal with ε edges

- ε-closure: all states that can be reached only along ε-edges:
- Computing ϵ -closure(s) for $s \in S$:
 - initialize all ϵ -closure(s) = { s }
 - while some ε-closure(s) changedforeach s∈S:

```
foreach q \in \epsilon-closure(s):
 \epsilon-closure(s) = \epsilon-closure(s) \cup \delta(q, \epsilon)
```

• Terminates?

• NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$

```
s_0 \leftarrow \varepsilon-closure(q_0)
while \exists unmarked s \in S:
     mark s
     foreach a \in \Sigma
          t \leftarrow \epsilon-closure(Move(s, a))
          if t \notin S:
             add t to S
              \Delta (s,a) \leftarrow t
```

• NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$

```
s_0 \leftarrow \varepsilon-closure(q_0)
while \exists unmarked s \in S:
     mark s
     foreach a \in \Sigma
          t \leftarrow \epsilon-closure(Move(s, a))
          if t \notin S:
             add t to S
              \Delta (s,a) \leftarrow t
```

Move(s, a)
the set of states
reachable from s by a

• NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$

```
s_0 \leftarrow \varepsilon-closure(q_0)
while \exists unmarked s \in S:
                                                 Why does this terminate?
     mark s
     foreach a \in \Sigma
          t \leftarrow \epsilon-closure(Move(s, a))
         if t \notin S:
             add t to S
              \Delta (s,a) \leftarrow t
```

- NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$
- Example of a fixed point computation
 - S is finite, at most ?
 - Always add to S, i.e., while loop is monotone
 - no duplicates in S
 - stop when S stops changing
- Other fixed point computations:
 - Constructing LR(1) items
 - Many Dataflow analysis (e.g., liveness)

DFA States	NFA States	а	b	С
s ₀	0			

59

15-411/611 © 2019-20 Goldstein

DFA States	NFA States	а	b	С
s ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁				

60

DFA States	NFA States	а	b	С
s ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-		
		© 2019-20 Goldstein		

DFA States	NFA States	а	b	С
s ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-	5	
		© 2019-20 Goldstein		

DFA States	NFA States	a	b	С
S ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-	5, 3, 4, 6, 8, 9	
		© 2019-20 Goldstein		

© 2019-20 Goldstein

© 2019-20 Goldstein

© 2019-20 Goldstein

a(b|c)*:

72

DFA States	NFA States	a	b	С
S ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-	5, 3, 4, 6, 8, 9	7, 3, 4, 6, 8, 9
S ₂	5, 3, 4, 6, 8, 9	-	S ₂	s ₃
S ₃	7, 3, 4, 6, 8, 9	-	S ₂	s ₃

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

DFA Minimization

- Partition states into equivalent sets
- Two states are equivalent iff:
 - paths entering them are the same
 - \forall a ∈Σ, transitions lead to equivalent states
- transition on a to different sets \Rightarrow different states.

DFA Minimization

• Plan:

- start with maximal sets: { Q } and { Q F }
- partition sets for each a $\in \Sigma$ until no change
- paritions become new states of minimized DFA
- Partitioning a set on " α "
 - -Assume q_a , & $q_b \in s$, and $\delta(q_a, \alpha) = q_x \& \delta(q_b, \alpha) = q_y$
 - If q_x & q_y are not in the same set, then s must be split (q_a has transition on α , q_b does not $\Rightarrow \alpha$ splits s)
- ullet One state in the final DFA cannot have two transitions on lpha

DFA Minimization

```
P \leftarrow \{ F, \{Q-F\} \}
while (P is still changing)
   T \leftarrow \{ \}
   for each set S \in P
       for each \alpha \in \Sigma
          partition S by \alpha into S_1, S_2, ..., S_k
         T \leftarrow T \cup S_1 \cup S_2 \cup ... \cup S_k
   if T \neq P then
       P \leftarrow T
```

DFA Minimization

```
\begin{split} \text{P} &\leftarrow \{\,\text{F}, \{\text{Q-F}\}\} \\ \text{while (P is still changing)} \\ &\quad T \leftarrow \{\,\} \\ &\quad \text{for each set S} \in \text{P} \\ &\quad \text{for each } \alpha \in \Sigma \\ &\quad \text{partition S by } \alpha \text{ into S}_1, \, \text{S}_2, \, ..., \, \text{S}_k \\ &\quad T \leftarrow T \cup \text{S}_1 \cup \text{S}_2 \cup ... \cup \text{S}_k \\ &\quad \text{if T} \neq \text{P then} \\ &\quad \text{P} \leftarrow \text{T} \end{split}
```

Another Fixed Point Alg Terminates:

- maximum of 2^{|Q|} sets
- Always adding to P
- Never combining sets in P

Initial partition ensures that final states remain final.

Hopcroft's worklist algorithm is efficient.

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Regular Languages

- Regular Expressions are great
 - concise notation
 - automatic scanner generation
 - lots of useful languages
- But, ...
 - Not all languages are regular
 - Context Free Languages
 - Context Sensitive Languages
 - Even simple things like balanced parenthesis,
 e.g., L = { A^kB^k } (or nested comments!)
 - RL can't count

Not all Scanning is easy

- Language design should start with lexemes
 - My favorite example from PL/I
 if then then then = else; else else = then
- blanks not important in Fortran
- nested comments in C
- limited identifier lengths in Fortran

Today – part 2

- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers

Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- lexing: characters → tokens
- parsing: tokens → "sentences"

Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- lexing: characters → tokens
- parsing: tokens → parse trees

Grammers and Languages

- A grammer, G, recognizes a language, L(G)
 - $-\Sigma$ set of terminal symbols
 - A set of non-terminals
 - S the start symbol, a non-terminal
 - P a set of productions
- Usually,
 - $-\alpha$, β , γ , ... strings of terminals and/or non-terminals
 - A, B, C, ... are non-terminals
 - a, b, c, ... are terminals
- General form of a production is: $\alpha \rightarrow \beta$

Derivation

 A sequence of applying productions starting with S and ending with w

$$S \rightarrow \gamma_1 \rightarrow \gamma_2 \dots \rightarrow \gamma_{n-1} \rightarrow W$$

 $S \rightarrow^* W$

L(G) are all the w that can be derived from S

- Regular expressions and NFAs can be described by a regular grammar
- E.G., $S \rightarrow aA$ $A \rightarrow Sb$ $S \rightarrow \epsilon$
- An example derivation of aab:

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$
 $A \rightarrow cA$

$$S \rightarrow aS$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$
 $A \rightarrow cA$

$$S \rightarrow aS \rightarrow aaS$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$

 $A \rightarrow cA$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA \rightarrow aabc$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

- Above is a right-regular grammar
- All rules are of form:

$$A \rightarrow a$$

$$A \rightarrow aB$$

$$A \rightarrow \epsilon$$

 Regular expressions and NFAs can be described by a regular grammar

• right regular grammar: $A \rightarrow a$

 $A \rightarrow aB$

 $A \rightarrow \epsilon$

• left regular grammar: $A \rightarrow a$

 $A \rightarrow Ba$

 $A \rightarrow \epsilon$

 Regular grammars are either right-regular or left-regular.

Expressiveness

- Restrictions on production rules limit expressiveness of grammars.
- No restrictions allow a grammar to recognize all recursively enumerable languages
- A bit too expressive for our uses ©
- Regular grammars cannot recognize aⁿbⁿ
- We need something more expressive

Chomsky Hierarchy

Class	Language	Automaton	Form	"word" problem	Example
0	Recursively Enumerable	Turing Machine	any	undecidable	Post's Corresp. problem
1	Context Sensitive	Linear- Bounded TM	αΑβ→αγβ	PSPACE- complete	a ⁿ b ⁿ c ⁿ
2	Context Free	Pushdown Automata	А→α	cubic	a ⁿ b ⁿ
3	Regular	NFA	A→a A→aB	linear	a*b*

Today – part 2

- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers

Context-Free Grammar

- A context-free grammar, G, is described by:
 - Σ , a set of terminals (which are just the set of possible tokens from the lexer) e.g., if, then, while, id, int, string, ...
 - A, a set of non-terminals.
 Non-terminals are syntactic variables which define sets of strings in the language e.g., stmt, expr, term, factor, vardecl, ...
 - **–** S
 - P

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals.
 - S, S ∈ A, the start symbol
 The set of strings derived from S are the valid string in the language.
 - P, set of productions that specify how terminals and non-terminals combine to form strings in the language a production, p, has the form: $A \rightarrow \alpha$

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals.
 - $-S, S \in A$, the start symbol
 - P, set of productions ... a production, p, has the form: : $A \rightarrow \alpha$
- E.g.,: S := E S := print E E := E + TT := F terminals

What makes a grammar CF?

- Only one NT on left-hand side → context-free
- What makes a grammar context-sensitive?
- $\alpha A\beta \rightarrow \alpha \gamma \beta$ where
 - $-\alpha$ or β may be empty,
 - but γ is not-empty
- Are context-sensitive grammars useful for compiler writers?

Simple Grammar of Expressions

```
S := Exp
```

Exp := Exp + Exp

Exp := Exp - Exp

Exp := Exp * Exp

Exp := Exp / Exp

Exp := id

Exp := int

Describes a language of expressions. e.g.: 2+3*x

Derivations

 A sequence of steps in which a non-terminal is replaced by its right-hand side.

```
1 5 -- Fyn
       There are possibly many derivations
           determined by the NT chosen to
                                                    Kp
                         expand.
4 Exp:= Exp * Exp
                                   by 2 \Rightarrow \text{Exp} + \text{Exp} * \text{id}_{x}
5 Exp:= Exp / Exp
                                   by 7 \Rightarrow int_2 + Exp * id_x
6 Exp:= id
                                   by 7 \Rightarrow int_2 + int_3 * id_x
7 Exp:=int
```

Leftmost Derivations

Leftmost derivation: leftmost NT always chosen

```
1 S := Exp
2 Exp:= Exp + Exp
3 Exp:= Exp - Exp
4 Exp:= Exp * Exp
5 Exp:= Exp / Exp
6 Exp:=id
7 Exp:=int
```

by $1 \Rightarrow \mathsf{Exp}$ by $4 \Rightarrow Exp * Exp$ by $2 \Rightarrow Exp + Exp * Exp$ by $7 \Rightarrow int_2 + Exp * Exp$ by $7 \Rightarrow int_2 + int_3 * Exp$ by $6 \Rightarrow int_2 + int_3 * id_x$

Rightmost Derivations

Rightmost derivation: rightmost NT always chosen

```
1 S := Exp
                                          by 1 \Rightarrow \mathsf{Exp}
2 Exp:= Exp + Exp
                                          by 4 \Rightarrow Exp * Exp
3 Exp:= Exp - Exp
                                          by 6 \Rightarrow \text{Exp * id}_{x}
4 Exp:= Exp * Exp
                                          by 2 \Rightarrow \text{Exp} + \text{Exp} * \text{id}_{x}
5 Exp:= Exp / Exp
                                          by 7 \Rightarrow \text{Exp} + \text{int}_3 * \text{id}_x
6 Exp:=id
                                          by 7 \Rightarrow int_2 + int_3 * id_x
7 Exp:= int
```

Parse Trees

symbols in rhs are children of NT being

rewritten by $1 \Rightarrow \mathsf{Exp}$ by $4 \Rightarrow Exp * Exp$ by $2 \Rightarrow Exp + Exp * Exp$ by $7 \Rightarrow int_2 + Exp * Exp$ by $7 \Rightarrow int_2 + int_3 * Exp$ by $6 \Rightarrow int_2 + int_3 * id_x$

Parse Trees

parse tree for rightmost derivation

What about different parse trees for same sentence?

Ambiguous Grammars

• A gra What does ambiguity point out? a sentence with >1 parse trees. or,

If grammer has >1 leftmost (rightmost)

derivations it is ambiguous

Converting Expression Grammar

- Adding precedence with more nonterminals
- One for each level of precedence:
 - -(+, -) exp
 - (*, /) term
 - (id, int) factor
 - Make sure parse derives sentences that respect the precedence
 - Make sure that extra levels of precedence can be bypassed, i.e., "x" is still legal

A Better Exp Grammar

```
1 S := Exp
```

$$2 Exp := Exp + Term$$

$$3 Exp := Exp - Term$$

S

by
$$1 \Rightarrow \mathsf{Exp}$$

by
$$2 \Rightarrow Exp + Term$$

by
$$4 \Rightarrow \text{Term} + \text{Term}$$

by
$$7 \Rightarrow Factor + Term$$

by
$$9 \Rightarrow int_2 + Term$$

by
$$5 \Rightarrow int_2 + Term * Factor$$

by
$$7 \Rightarrow int_2 + Factor * Factor$$

by
$$9 \Rightarrow int_2 + int_3 * Factor$$

by
$$8 \Rightarrow int_2 + int_3 * id_x$$

What is the parse tree?

Another Ambiguous Grammer

- What is the parse tree for:if E then if E then S else S?
- What is the language designers intention?
- Is there a context-free solution?

Dangling Else Grammar

- Is this clearer?
- What is parse tree for: if E then if E then Selse S?

Parser generators provide a better way

A primitive robot

```
Swing := Back Swing Forward
|
Back := back-1-inch
Forward := forward-2-inchs
```

What is L(Swing)?

A primitive robot

```
S := B S F

|
B := b
F := f
```

- What is L(Swing)?
- What is the parse tree for "bbff"

Parsing a CFG

Top-Down

- start at root of parse-tree
- pick a production and expand to match input
- may require backtracking
- if no backtracking required, predictive

Bottom-up

- start at leaves of tree
- recognize valid prefixes of productions
- consume input and change state to match
- use stack to track state

Top-down Parsers

- Starts at root of parse tree and recursively expands children that match the input
- In general case, may require backtracking
- Such a parser uses recursive descent.
- When a grammar does not require backtracking a predictive parser can be built.

A Predictive Parser

```
S := BSF
                 Idea is for parser to do something
                  besides recognize legal sentences.
                 if match('b') -> B(); S(); F(); action();
                 else return:
                mustMatch('b'); action(); return;}
                mustMatch('f'); action(); return;}
```

Top-Down parsing

- Start with root of tree, i.e., S
- Repeat until entire input matched:
 - pick a non-terminal, A, and pick a production $A \rightarrow \gamma$ that can match input, and expand tree
 - if no such rule applies, backtrack
- Key is obviously selecting the right production

S

by
$$1 \Rightarrow E$$

|int₂ - int₃ * id_x

1	S := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id

S	$int_2 - int_3 * id_x$
by $1 \Rightarrow E$	$int_2 - int_3 * id_x$
by 2 \Rightarrow E + T	$int_2 - int_3 * id_x$
by 4 \Rightarrow T + T	$int_2 - int_3 * id_x$
by $7 \Rightarrow F + T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ + T	int_2 - int_3 * id_x

Must backtrack here!

1	S := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id
9	F := int

5	$lint_2 - int_3 * id_x$
by $1 \Rightarrow E$	$lint_2 - int_3 * id_x$
by $2 \Rightarrow E + T$	int ₂ - int ₃ * id _x
by $4 \Rightarrow T + T$	$lint_2 - int_3 * id_x$
by $7 \Rightarrow F + T$	<pre>int₂ - int₃ * id_x</pre>
by 9 \Rightarrow int ₂ + \top	int_2 - int_3 * id_x
by 3 \Rightarrow E - T	int ₂ - int ₃ * id _x
by 4 \Rightarrow T - T	$lint_2 - int_3 * id_x$
by $7 \Rightarrow F - T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ - T	int ₂ - int ₃ * id _x
by $5 \Rightarrow int_2 - T * F$	$int_2 - int_3 * id_x$

1	S := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id
9	F := int

5	$int_2 - int_3 * id_x$
by $1 \Rightarrow E$	$int_2 - int_3 * id_x$
by $2 \Rightarrow E + T$	int ₂ - int ₃ * id _x
by 4 \Rightarrow T + T	$int_2 - int_3 * id_x$
by $7 \Rightarrow F + T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ + T	int ₂ - int ₃ * id _x
by 3 ⇒ E - T	int ₂ - int ₃ * id _x
by 4 \Rightarrow T - T	$int_2 - int_3 * id_x$
by $7 \Rightarrow F - T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int $_2$ - T	int_2 - int_3 * id_x

What kind of derivation is this parsing? nt2 - int3 * idx

$$\begin{array}{c} \text{S} \\ \text{by 1} \Rightarrow \text{ E} \\ \text{by 2} \Rightarrow \text{ E} + \text{ T} \\ \text{by 2} \Rightarrow \text{ E} + \text{ E} + \text{ T} \\ \text{by 2} \Rightarrow \text{ E} + \text{ E} + \text{ E} + \text{ T} \end{array}$$

Will not terminate! Why?

grammar is left-recursive

What should we do about it?

Eliminate left-recursion

Does this work?

```
1 S := E

2 E := E + T

3 E := E - T

4 E := T

5 T := T * F

6 T := T / F

7 T := F

8 F := id

9 F := int

1 S := E

2 E := T + E

3 E := T - E

4 E := T

5 T := F * T

6 T := F / T

7 T := F

8 F := id

9 F := int
```

It is right recursive, but also right associative!

Eliminating Left-Recursion

Given 2 productions:

A:= A
$$\alpha$$
 | β
Where neither α nor β start with A (e.g., For example, E:= E+T | T)

• Make it right-recursive:

$$A := \beta R$$

$$R := \alpha R$$

$$R \text{ is right recursive}$$

Extends to general case.

Rewriting Exp Grammar

```
1 S := E
```

$$2 E := E + T$$

$$5 T := T * F$$

$$6 T := T/F$$

128

Try again

$$2 E := TE'$$

by
$$1 \Rightarrow E$$

by
$$2 \Rightarrow TE'$$

by
$$5 \Rightarrow F T' E'$$

by
$$9 \Rightarrow 2 \text{ T' E'}$$

by
$$7' \Rightarrow 2 E'$$

by
$$3' \Rightarrow 2 - TE'$$

by
$$5 \Rightarrow 2 - F T' E'$$

by
$$9 \Rightarrow 2 - 3 T' E'$$

by
$$5' \Rightarrow 2 - 3 * F T' E'$$

$$int_2 - int_3 \bullet^* id_x$$

Unlike previous time we tried this, it appears that only one production applies at a time. I.e., no backtracking needed. Why?

Lookahead

- How to pick right production?
- Lookahead in input stream for guidance
- General case: arbitrary lookahead required
- Luckily, many context-free grammers can be parsed with limited lookahead
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e.,
 - $a \in FIRST(\alpha)$ iff $\alpha \rightarrow^* a\gamma$ for some γ

Lookahead

- How to pick right production?
- If we have A $\rightarrow \alpha \mid \beta$, then we want to correctly choose either A $\rightarrow \alpha$ or A $\rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e., $a \in FIRST(\alpha)$ iff $\alpha \to^* a\gamma$ for some γ
- If $A \rightarrow \alpha \mid \beta$ we want: FIRST(α) \cap FIRST(β) = \emptyset
- If that is always true, we can build a predictive parser.

FIRST sets

- We use next k characters in input stream to guide the selection of the proper production.
- Given: A := $\alpha \mid \beta$ we want next input character to decide between α and β .
- FIRST(α) = set of terminals that can begin any string derived from α .
- IOW: $\mathbf{a} \in \mathsf{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \mathbf{a} \gamma$ for some γ

• FIRST(α) \cap FIRST(β) = \emptyset \rightarrow no backtracking needed

Computing FIRST(α)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

Computing FIRST(α)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

```
A := a
|
B := b
| A
C := c
```

- FIRST(X) must also include FIRST(C)
- IOW:
 - Must keep track of NTs that are nullable
 - For nullable NTs, determine FOLLOWS(NT)

nullable(A)

- nullable(A) is true if A can derive the empty string
- For example:

In this case, nullable(X) = nullable(Y) = true nullable(B) = false

FOLLOW(A)

- FOLLOW(A) is the set of terminals that can immediately follow A in a sentential form.
- I.e., $a \in FOLLOW(A)$ iff $S \Rightarrow^* \alpha Aa\beta$ for some α and β

Building a Predictive Parser

- We want to know for each non-terminal which production to choose based on the next input character.
- Build a table with rows labeled by non-terminals, A, and columns labeled by terminals, a. We will put the production, $A := \alpha$, in (A, a) iff
 - FIRST(α) contains a or
 - nullable(α) and FOLLOW(A) contains a

The table for the robot

$$S := B S F$$

B := b

F := f

	FIRST	FOLLOW	nullable
S	Ь	\$	yes
В	b	b,f	no
F	f	f,\$	no

138

	b	f	\$
5			
В			
F			

The table for the robot

	b	f	\$
S	S:=BSF		S:=
В	B:=b		
F		F:=f	

nullable(ε)=true and FOLLOW(S) = \$

Table 1

_		
\boldsymbol{C}	• —	
J	. —	
	S	

	FIRST	FOLLOW	nullable
5	id, int	\$	
E	id, int	\$	
Ë	+, -	\$	yes
T	id, int	+,-,\$	
Ť	/,*	+,-,\$	yes
۴	id, int	/,*,\$	

	+	-	*	/	id	int	\$
5							
E							
E'							
Т							
T'							
F							

Table 1

4	_		
7	C	• —	ᆫ
T	<u> </u>	. —	L

	FIRST	FOLLOW	nullable
S	id, int	\$	
Е	id, int	\$	
E'	+, -	\$	yes
T	id, int	+,-,\$	
Ť	/,*	+,-,\$	yes
۴	id, int	/,*,\$	

	+	_	*	/	id	int	\$
5					:=E	:=E	
Ε					:=TE'	:=TE'	
E'	:=+TE'	:=-TE'					:-
T					:=FT'	:=FT'	
T'	:=	:=	:=*FT'	:=/FT			:=
F					:=id	:=int	

141

Using the Table

- Each row in the table becomes a function
- For each input token with an entry:
 Create a series of invocations that implement the production, where
 - a non-terminal is eaten
 - a terminal becomes a recursive call
- For the blank cells implement errors

Example function

```
$
                    id
                        int
                    :=E
                        :=E
                    |:=+TE' |:=-TE'
               How to handle errors?
                   |=id |=int
   Eprime() {
      switch (token) {
      case PLUS: eat(PLUS); T(); Eprime(); break;
                   eat(MINUS); T(); Eprime(); break;
      case MINUS:
                   T(); Eprime();
      case ID:
                   T(); Eprime();
      case INT:
      default: error();
   }
```

Left-Factoring

- Predictive parsers need to make a choice based on the next terminal.
- Consider:

```
S:=if E then S else S
| if E then S
```

- When looking at if, can't decide
- so left-factor the grammar

```
S := if E then S X
X := else S
```

Top-Down Parsing

- Can be constructed by hand
- LL(k) grammars can be parsed
 - Left-to-right
 - Leftmost-derivation
 - with k symbols lookahead
- Often requires
 - left-factoring
 - Elimination of left-recursion

Bottom-up parsers

 What is the inherent restriction of topdown parsing, e.g., with LL(k) grammars?

Bottom-up parsers

- What is the inherent restriction of topdown parsing, e.g., with LL(k) grammars?
- Bottom-up parsers use the entire righthand side of the production
- LR(k):
 - Left-to-right parse,
 - Rightmost derivation (in reverse),
 - k look ahead tokens

Top-down vs. Bottom-up

LL(k), recursive descent

LR(k), shift-reduce

Top-down

Bottom-up

Example - Top-down

Is this grammar LL(k)?

How can we make it LL(k)?

What about a bottom up parse?

Example - Bottom-up

right-most derivation:

LR parser gets to look at an entire right hand side.

Left-to-Right, Rightmost in reverse

baa

Xaa

Xa

X

S

Top-down vs. Bottom-up

LL(k), recursive descent

LR(k), shift-reduce

Top-down

Bottom-up

A Rightmost Derivation

```
    1 S := Exp
    2 Exp := Exp + Term
    3 Exp := Exp - Term
    4 Exp := Term
    5 Term := Term * Factor
```

:= Term / Factor

7 Term := Factor

8 Factor := id

6 Term

9 Factor := int

S

by
$$1 \Rightarrow Exp$$

by
$$2 \Rightarrow Exp + Term$$

by
$$5 \Rightarrow Exp + Term * Factor$$

by 8
$$\Rightarrow$$
 Exp + Term * id_x

by
$$7 \Rightarrow \text{Exp} + \text{Factor} * id_x$$

by
$$9 \Rightarrow \text{Exp} + \text{int}_3 * \text{id}_x$$

by
$$4 \Rightarrow \text{Term} + \text{int}_3 * \text{id}_x$$

by
$$7 \Rightarrow Factor + int_3 * id_x$$

by
$$9 \Rightarrow int_2 + int_3 * id_x$$

```
int_2 + int_3 * id_x
Factor + int<sub>3</sub> * id<sub>x</sub>
        Lets keep track of where we are in the input.
Exp +
Exp + Factor * id,
Exp + Term * id,
Exp + Term * Factor
Exp + Term
Exp
```

$$int_2 + int_3 * id_x $$$

 int_2 + $int_3 * id_x $$

Factor $+ int_3 * id_x $$

Term $+ int_3 * id_x$ \$

Exp $+ int_3 * id_x$ \$

Exp + $int_3 * id_x $$

 $Exp + int_3 * id_x $$

Exp + Term * id_x \$

Exp + Term * $id_x $$

Exp + Term * id_x \$

Exp + Term * Factor \$

Exp + Term

Exp

\$

156

$$int_2 + int_3 * id_x$$
\$

int,

 $+ int_3 * id_x $$

Factor

+ int₃ * id_x \$

Term

 $+ int_3 * id_x $$

Exp

+ int₃ * id_x \$

Exp +

int₃ * id_x \$

Exp + int₃

* id_x \$

Exp + Factor

* $id_x $$

Exp + Term

* $id_x $$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

LR-Parser either:

- 1. shifts a terminal or
- 2. reduces by a production.

 $int_2 + int_3 * id_x$ \$ shift 2

 int_2 + $int_3 * id_x $$

Factor $+ int_3 * id_x$ \$

Term $+ int_3 * id_x $$

Exp $+ int_3 * id_x $$

Exp + $int_3 * id_x $$

\$

 $Exp + int_3 * id_x $$

Exp + Factor * id_x \$

Exp + Term * id_x \$

Exp + Term * $id_x $$

Exp + Term * id_x \$

Exp + Term * Factor

Exp + Term

Exp

$$int_2 + int_3 * id_x$$
\$ shift 2

+
$$int_3 * id_x $$$

reduce by
$$F \rightarrow int$$

Factor

Term

Exp

Exp +

Exp + int₃

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

When we reduce by a production: $A \rightarrow \beta$, β is on right side of sentential form.

E.g., here β is 'int' and production is $F \rightarrow int$

* id_x \$

* id, \$

* $id_x $$

 id_x \$

\$

15-411/611

159

 $int_2 + int_3 * id_x$ \$

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

shift 2

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Factor

int,

+ $int_3 * id_x $$ Term

+ int, * id, \$ Exp

Exp +

int₃ * id_x \$ * id_x \$

Exp + int₃

* id, \$ Exp + Factor

Exp + Term

Exp + Term * id_x \$

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

15-411/611

\$

\$

* $id_x $$

 $int_2 + int_3 * id_x$ \$

* id_x \$ shift 2

int₂ + i

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+int₃ * id_x \$

+ int, * id, \$

reduce by $T \rightarrow E$

Exp

Exp + int₃

 int_3*id_x \$

Exp + int₃

* $id_x $$

Exp + Factor

 $*id_x$ \$

Exp + Term

* $id_x $$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

 $int_2 + int_3 * id_x$ \$

shift 2

int,

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ $int_3 * id_x $$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

int₃ * id_x \$

shift +

Exp +

 $Exp + int_3$

* id_x \$

Exp + Factor

* id, \$

Exp + Term

* $id_x $$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

Exp + Term

\$

Exp

 $int_2 + int_3 * id_x$ \$

shift 2

int,

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ $int_3 * id_x $$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

 int_3*id_x \$

shift 3

 $Exp + int_3$

* id_x \$

* id, \$

Exp + Factor

* $id_x $$

Exp + Term

 id_x \$

Exp + Term *

\$

Exp + Term * id_x

Exp + Term * Factor

\$

Exp + Term

Exp

 $int_2 + int_3 * id_x$ \$

shift 2

int,

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ $int_3 * id_x $$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

int₃ * id_x \$

shift 3

 $Exp + int_3$

* id_x \$

reduce by $F \rightarrow int$

Exp + Factor

Exp + Term

* $id_x $$

* id, \$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

Exp + Term

\$

Exp

 $int_2 + int_3 * id_x $$

shift 2

int₂

+ $int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ int₃ * id_x \$

reduce by $T \rightarrow E$

Exp

+ $int_3 * id_x $$

shift +

Exp +

 int_3*id_x \$

shift 3

 $Exp + int_3$

* $id_x $$

reduce by $F \rightarrow int$

Exp + Factor

 $*id_x$ \$

reduce by $F \rightarrow T$

Exp + Term

* **id**_x \$

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

 $int_2 + int_3 * id_x$ \$

shift 2

int₂

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ int₃ * id_x \$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

 int_3*id_x \$

shift 3

 $Exp + int_3$

* $id_x $$

reduce by $F \rightarrow int$

Exp + Factor

* $id_x $$

reduce by $F \rightarrow T$

Exp + Term

 $*id_x$ \$

shift *

Exp + Term *

 $id_x $$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

 $int_2 + int_3 * id_x$ \$

shift 2

int,

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

 $+ int_3 * id_x$ \$

reduce by $T \rightarrow F$

Term

+ $int_3 * id_x $$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

int₃ * id_x \$

shift 3

 $Exp + int_3$

* id_x \$

reduce by $F \rightarrow int$

Exp + Factor

* id, \$

reduce by $F \rightarrow T$

Exp + Term

* id, \$

shift *

Exp + Term *

 id_x \$

shift x

Exp + Term * id_x

\$

Exp + Term * Factor

Exp + Term

\$

Exp

int,

Factor

Term

Exp

Exp +

Exp + int₃

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

 $int_2 + int_3 * id_x$ \$

 $+ int_3 * id_x $$

 $+ int_3 * id_x$ \$

+ $int_3 * id_x $$

+ int₃ * id_x \$ int₃ * id_x \$

* id_x \$

* id, \$

* $id_x $$

 id_x \$

\$

\$

\$

shift 2

reduce by $F \rightarrow int$

reduce by $T \rightarrow F$

reduce by $T \rightarrow E$

shift +

shift 3

reduce by $F \rightarrow int$

reduce by $F \rightarrow T$

shift *

shift x

reduce by $F \rightarrow id$

15-411/611

int₂

Factor

Term

Exp

Exp +

 $Exp + int_3$

Exp + Factor

Exp + Term

Exp + Term *

Exp + Term * id_x

Exp + Term * Factor

Exp + Term

Exp

 $int_2 + int_3 * id_x$ \$

+ $int_3 * id_x $$

+ int₃ * id_x \$

+ $int_3 * id_x $$

+ $int_3 * id_x $$

 int_3*id_x \$

* $id_x $$

* $id_x $$

 $*id_x$ \$

 $id_x $$

\$

\$

\$

\$

shift 2

reduce by $F \rightarrow int$

reduce by $T \rightarrow F$

reduce by $T \rightarrow E$

shift +

shift 3

reduce by $F \rightarrow int$

reduce by $F \rightarrow T$

shift *

shift x

reduce by $F \rightarrow id$

reduce by $T \rightarrow T * F$

15-411/611

	$int_2 + int_3 * id_x $$	shift 2
int ₂	+ int $_3$ * id $_x$ \$	reduce by F $ ightarrow$ int
Factor	$+int_3*id_x$ \$	reduce by $T \rightarrow F$
Term	$+int_3*id_x$ \$	reduce by $T \rightarrow E$
Exp	+ int $_3$ * id $_x$ \$	shift +
Exp +	int_3*id_x \$	shift 3
$Exp + int_3$	* id _x \$	reduce by $F \rightarrow int$
Exp + Factor	$*id_x$ \$	reduce by $F \rightarrow T$
Exp + Term	$*id_x$ \$	shift *
Exp + Term *	id _x \$	shift x
Exp + Term * id _x	\$	reduce by $F \rightarrow id$
Exp + Term * Factor	\$	reduce by $T \rightarrow T * F$
Exp + Term	\$	reduce by $E \rightarrow E + T$

Exp

	$int_2 + int_3 * id_x $$	shift 2	
int ₂	+ $int_3 * id_x $$	reduce by $F \rightarrow int$	
Factor	$+int_3*id_x$ \$	reduce by $T \rightarrow F$	
Term	$+int_3*id_x$ \$	reduce by $T \rightarrow E$	
Exp	$+int_3*id_x$ \$	shift +	
Exp +	int_3*id_x \$	shift 3	
$Exp + int_3$	$*id_x$ \$	reduce by $F \rightarrow int$	
Exp + Factor	$*id_x$ \$	reduce by $F \rightarrow T$	
Exp + Term	$*id_x$ \$	shift *	
Exp + Term *	id _x \$	shift x	
Exp + Term * id _x	\$	reduce by F $ ightarrow$ id	
Exp + Term * Factor	\$	reduce by T \rightarrow T * F	
Exp + Term	\$	reduce by $E \rightarrow E + T$	
Exp	\$	reduce by $S \rightarrow E$	

	$int_2 + int_3 * id_x $ \$	shift 2
int ₂	+int ₃ * id _x \$	reduce by $F \rightarrow int$
Factor	+int ₃ * id _x \$	reduce by $T \rightarrow F$
Term	+ $int_3 * id_x $$	reduce by $T \rightarrow E$
Ехр	+ $int_3 * id_x $$	shift +
Exp +	int_3*id_x \$	shift 3
Exp + int ₃	$*id_x$ \$	reduce by $F \rightarrow int$
Exp + Factor	$*id_x$ \$	reduce by $F \rightarrow T$
Exp + Term	$*id_x$ \$	shift *
Exp + Term *	id _x \$	shift x
Exp + Term * id _x	\$	reduce by $F \rightarrow id$
Exp + Term * Factor	\$	reduce by T \rightarrow T * F
Exp + Term	\$	reduce by $E \rightarrow E + T$
Exp	\$	reduce by $S \rightarrow E$

accept!

 $int_2 + int_3 * id_x$ \$ shift 2

 int_2 + $int_3 * id_x $$

Factor $+ int_3 * id_x$ \$

Term $+ int_3 * id_x$ \$

Exp $+ int_3 * id_x$ \$

Exp + $int_3 * id_x $$

 $Exp + int_3 * id_x $$

Exp + Factor * id_x \$

Exp + Term * id_x \$

Exp + Term * id_x \$

Exp + Term * id_x \$

Exp + Term * Factor \$

Exp + Term \$

Exp

LXP + IEIIII

15-411/611 **S S S**

 $int_2 + int_3 * id_x$ \$

shift 2

 int_2

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Factor

+ $int_3 * id_x $$

Term

 $+ int_3 * id_x$ \$

Exp

 $+ int_3 * id_x$ \$

Exp +

 int_3*id_x \$

 $Exp + int_3$

* $id_x $$

Exp + Factor

* id_x \$

Exp + Term

* $id_x $$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

174

15-411/611 **S Ş**

 $int_2 + int_3 * id_x$ \$

shift 2

int,

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ $int_3 * id_x$ \$

reduce by $T \rightarrow E$

Exp

+ int, * id, \$

Exp +

int₃ * id_x \$

Exp + int₃

* id_x \$

Exp + Factor

* id, \$

Exp + Term

* $id_x $$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

Exp + Term

\$

Exp

15-411/611

 $int_2 + int_3 * id_x $$

shift 2

 int_2

+ $int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ int₃ * id_x \$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

int₃ * id_x \$

shift +

Exp +

Exp + int₃

* id_x \$

Exp + Factor

* $id_x $$

Exp + Term

* $id_x $$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

5

15-411/611

S

 $int_2 + int_3 * id_x$ \$

shift 2

int,

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ int₃ * id_x \$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

 int_3*id_x \$

shift 3

Exp + int₃

* id_x \$

Exp + Factor

* id, \$

Exp + Term

* $id_x $$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

Exp + Term

\$

Exp

 $int_2 + int_3 * id_x$ \$

int,

 $+ int_3 * id_x $$

shift 2

Factor

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Term

+ int₃ * id_x \$

reduce by $T \rightarrow F$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

int₃ * id_x \$

shift 3

Exp + int₃

* $id_x $$

reduce by $F \rightarrow int$

Exp + Factor

* id, \$

* $id_x $$

Exp + Term

 $id_x $$

Exp + Term *

Exp + Term * id_x

\$

Exp + Term * Factor

Exp + Term

\$

Exp

Handles

- LR parsing is handle pruning
- LR parsing finds a rightmost derivation (in reverse)
- A handle in γ , a right-hand sentential form, is
 - a position in γ matching β
 - a production A $\rightarrow \beta$

$$S \to^* \alpha Aw \to \alpha \beta w$$

• if a grammar is unambiguous, then every γ has exactly 1 handle

 $int_2 + int_3 * id_x$ \$

int,

+ $int_3 * id_x $$

shift 2

Factor

+ int₃ * id_x \$

reduce by $F \rightarrow int$

Term

+ int₃ * id_x \$

reduce by $T \rightarrow F$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

int₃ * id_x \$

shift 3

 $Exp + int_3$

* id_x \$

reduce by $F \rightarrow int$

Exp + Factor

* $id_x $$

Exp + Term

* id_x \$

Exp + Term *

 id_x \$

Exp + Term * id_x

\$

Exp + Term * Factor

\$

Exp + Term

\$

Exp

\$

F 2

F

180

15-411/611

S

Where is next handle?

 $int_2 + int_3 * id_x$ \$

shift 2

int,

 $+ int_3 * id_x $$

reduce by $F \rightarrow int$

Factor

+ int₃ * id_x \$

reduce by $T \rightarrow F$

Term

+ $int_3 * id_x $$

reduce by $T \rightarrow E$

Exp

+ int₃ * id_x \$

shift +

Exp +

int₃ * id_x \$

shift 3

Exp + int₃

* id_x \$

reduce by $F \rightarrow int$

Exp + Factor

* id, \$

* $id_x $$

Exp + Term

 id_x \$

Exp + Term *

\$

Exp + Term * id_x

Exp + Term * Factor

\$

Exp + Term

Exp

15-411/611

Where is next handle?

$$int_2 + int_3 * id_x$$
\$

$$Exp + int_3$$

*
$$id_x$$
\$

$$id_x$$
\$

Exp + Term *
$$id_x$$

Where is next handle? $E+F^*x$ and $T \rightarrow F$, \$

Factor
$$+ int_3 * id_x $$$

Term
$$+ int_3 * id_x $$$

Exp
$$+ int_3 * id_x $$$

Exp +
$$int_3 * id_x $$$

Exp +
$$int_3$$
 * id_x \$

Exp + Factor *
$$id_x$$
\$

Exp + Term *
$$id_x$$
\$

Exp + Term *
$$id_x$$
 \$

15-411/611

183

Handle Pruning

- LR parsing consists of
 - shifting til there is a handle on the top of the stack
 - reducing handle
- Key is handle is always on top of stack, i.e.,
 if β is a handle with A → β, then β can be
 found on top of stack.

int ₂ +	int	*	id	\$
	- 3		- Х	•

 $+ int_3 * id_x$ \$

+ int₃ * id_x \$

 $+ int_3 * id_x$ \$

+ int₃ * id_x \$

 int_3*id_x \$

* id_x \$

* $id_x $$

* $id_x $$

Exp + Term *

Exp + Term * id_x \$

Exp + Term * Factor

Exp + Term

Exp

int,

Factor

Term

Exp

Exp +

 $Exp + int_3$

Exp + Factor

Exp + Term

id_x\$

±**G**_X .

\$

\$

\$

top of stack does not have a handle, so must shift.

A Rightmost Derivation In Reverse

 $int_2 + int_3 * id_x$ \$

 $+ int_3 * id_x $$

 $+ int_3 * id_x$ \$

Term $+ int_3 * id_x $$

+ int₃ * id_x \$

Exp + $int_3 * id_x $$

\$

Exp + int_3 * id_x \$

Exp + Factor $* id_x $$

Exp + Term * id_x \$

Exp + Term * id_x \$

Exp + Term * id_x \$

Exp + Term * Factor

 int_2

Factor

Exp + Term \$

Exp \$

Now, x is a handle.

A Shift-Reduce Parser

- Stack holds the viable prefixes.
- input stream holds remaining source
- Four actions:
 - shift: push token from input stream onto stack
 - reduce: right-end of a handle (β of A $\rightarrow \beta$) is at top of stack, pop handle (β), push A
 - accept: success
 - error: syntax error discovered

Key is recognizing handles efficiently

Table-driven LR(k) parsers

Push down automata: FSM with stack

Parser Loop

Driver

- Same code regardless of grammar
 - only tables change
- (Very) General Algorithm:
 - Based on table contents, top of stack, and current input character either
 - shift: pushes onto stack, reads next token
 - reduce: manipulate stack to simplify representation of already scanned input
 - accept: successfully scanned entire input
 - error: input not in language

Stack

Stack

- Represents the scanned input
- Contents?
- Reduced nonterminals not enough
- Must store previously seen states
 - the context of the current position
- In fact, nonterminals unnecessary
 - include for readability

Parser Tables

Action table & GOTO table

Action table

 given state s and terminal a tells parser loop what action (shift, reduce, accept, reject) to perform

Goto table

 used when performing reduction; given a state s and nonterminal X says what state to transition to

Parser Tables

Action table & GOTO table

sN push state N onto stack

rR reduce by rule R

gN goto state N

a accept

error

		action		go	to
state	ident	+	\$	Е	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Parser Loop Revisited

Driver

```
while (true)
  s = state on top of stack
  a = current input token
  if(action[s][a] == sN)
                                     shift
     push N
     read next input token
  else if(action[s][a] == rR)
                                  reduce
     pop rhs of rule R from stack
     X = lhs of rule R
     N = state on top of stack
     push goto[N][X]
  else if(action[s][a] == a)
                                     accept
     return success
  else
                                     error
```

return failure

© 2019-20 Goldstein

		action		go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = X State on top of the stack = 0

$$x + y$$
\$

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

(0,S)

Stack

		action		go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

¹ E \rightarrow T + E ² E \rightarrow T ³ T \rightarrow identifier

 $^{\circ}$ S \rightarrow E\$

Current input token = +
State on top of the stack = 3

$$-\mathbf{v}\mathbf{S}$$

(3,x) (0,S)

		action		go	to
state	ident	+	\$	Е	Т
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

0
 S \rightarrow E\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = +
State on top of the stack = 3

$$x + y$$
\$

(3,x) (0,S)

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = +
State on top of the stack = 3

$$x + y$$
\$

(3,x)

(0,S)

		action		go	to
state	ident	+	\$	E	T
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = +
State on top of the stack = 0

$$x + y$$
\$

(3,x)

(0,S)

		action		go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

0
 S \rightarrow E\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = +
State on top of the stack = 2

$$x + y$$
\$

(2,T) (0,S)

		action		go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = +
State on top of the stack = 2

$$x + y$$
\$

(2,T) (0,S)

		action		go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

$$x + y$$
\$

$$(4,+)$$

		action		go	to
state	ident	+	\$	Е	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$$^{\circ}$$
 S \rightarrow E\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

$$^{3} T \rightarrow identifier$$

Current input token = **Y**

State on top of the stack = 4

$$x + y$$
\$

$$(4,+)$$

		action		go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			a		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = \$
State on top of the stack = 3

$$x + y$$
\$

$$(4,+)$$

		action		go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = \$
State on top of the stack = 3

$$x + y$$
\$

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

(?,T)

$$(4,+)$$

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

0
 S \rightarrow E\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

$$x + y$$
\$

$$(4,+)$$

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = \$
State on top of the stack = 2

$$x + y$$
\$

(2,T) (4,+)

(2,T)

(0,S)

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

0
 S \rightarrow E\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

$$^{3} T \rightarrow identifier$$

Current input token = \$
State on top of the stack = 2

$$x + y$$
\$

(?,E)

$$(4,+)$$

	action			go	to
state	ident	+	\$	E	T
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

Current input token = \$
State on top of the stack = 5

$$x + y$$
\$

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

(5,E)

(4,+)

(2,T)

(0,S)

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$$

¹
$$E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

Current input token = \$
State on top of the stack = 5

$$x + y$$
\$

$$(4,+)$$

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$$

¹
$$E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

3
 T \rightarrow identifier

$$x + y$$
\$

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

$$^{3} T \rightarrow identifier$$

Current input token = \$

State on top of the stack = 1

$$x + y$$
\$

(1,E)

(0,S)

	action			gc	oto
state	ident	+	\$	Е	Т
0	s3			g1	g2
1			а		
2		s4	r2	AC	ept.
3		r3	r3		
4	s3			g5	g2
5			r1		

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

$$^{2}E \rightarrow T$$

 3 T \rightarrow identifier

Current input token = \$
State on top of the stack = 1

$$x + y$$
\$

(1,E)

(0,S)

Table-driven LR(k) parsers

The parser generator

Parser Generator

- Finds handles
- Creates the action and GOTO tables.
- Creates the states
 - Each state indicates how much of a handle we have seen
 - each state is a set of items

Items

- Items are used to identify handles.
- LR(k) items have the form:
 [production-with-dot, lookahead]
- For example, $A \rightarrow a X b has 4 LR(0)$ items
 - $[A \rightarrow \bullet a X b]$
 - $[A \rightarrow a \bullet X b]$
 - $[A \rightarrow a X \bullet b]$
 - $[A \rightarrow a X b \bullet]$

The • indicates how much of the handle we have recognized.

What LR(0) Items Mean

- $[X \rightarrow \bullet \alpha \beta \gamma]$ input is consistent with $X \rightarrow \alpha \beta \gamma$
- $[X \to \alpha \bullet \beta \gamma]$ input is consistent with $X \to \alpha \beta \gamma$ and we have already recognized α
- $[X \rightarrow \alpha \beta \bullet \gamma]$ input is consistent with $X \rightarrow \alpha \beta \gamma$ and we have already recognized $\alpha \beta$
- $[X \to \alpha \beta \gamma \bullet]$ input is consistent with $X \to \alpha \beta \gamma$ and we can reduce to X

Generating the States

- Start with start production.
- In this case, "S \rightarrow E\$"

 Each state is consistent with what we have already shifted from the input and what is possible to reduce. So, what other items should be in this state?

Completing a state

 For each item in a state, add in all other consistent items.

 $^{\circ}$ S → E\$ 1 E → T + E 2 E → T 3 T → identifier

 This is called, taking the closure of the state.

Closure*

```
closure(state)
  repeat
   foreach item A → a•Xb in state
    foreach production X → w
        state.add(X → •w)
  until state does not change
  return state
```

Intuitively:

Given a set of items, add all production rules that could produce the nonterminal(s) at the current position in each item

*: for LR(0) items

What about the other states?

- How do we decide what the other states are?
- How do we decide what the transitions between states are?
- $\begin{array}{c}
 0 \text{ S} \rightarrow \text{E} \\
 1 \text{ E} \rightarrow \text{T} + \text{E} \\
 2 \text{ E} \rightarrow \text{T}
 \end{array}$
- 3 T \rightarrow identifier

Next(state, sym)

- Next function determines what state to goto based on current state and symbol being recognized.
- For Non-terminal, this is used to determine the GOTO table.
- For terminal, this is used to determine the shift action.

Constructing states

```
initial state = closure({start production})
state set.add(initial state)
state queue.push(initial state)
                                      A state is a set of
while(!state queue.empty())
                                        LR(0) items
   s = state queue.pop()
   foreach item A \rightarrow a \cdot Xb in s
     n = closure(next(s, X))
     if(!state set.contains(n))
                                      get "next" state
         state set.add(n)
         state queue.push(n)
```

$$closure(\{S \rightarrow \bullet E\$\}) =$$

$$S \rightarrow \bullet E$$
\$

$${}^{0}S \rightarrow E$$
\$

$$^{1}E \rightarrow T + E$$

2
 E \rightarrow T

3
 T \rightarrow identifier

*: for LR(0) items

closure(
$$\{S \rightarrow \bullet E\$\}$$
) =

$$S \rightarrow \bullet E$$
\$

$$E \rightarrow \bullet T + E$$

$$E \rightarrow \bullet T$$

$$T \rightarrow \bullet identifier$$

$${}^{0}S \rightarrow E$$

$$^{1}E \rightarrow T + E$$

2
 E \rightarrow T

3
 T \rightarrow identifier

*: for LR(0) items

Next

```
next(state, X)
         ret = empty
                                                                   ^{\circ} S \rightarrow E$
         foreach item A \rightarrow a \cdot Xb in state
                                                                   ^{1}E \rightarrow T + E
              ret.add (A \rightarrow aX•b)
         return ret
                                                                   ^{2} E \rightarrow T
                                                                   ^{3} T \rightarrow identifier
initial:
                                       next(initial, E)
```

 $S \rightarrow \bullet E$ \$ $E \rightarrow \bullet T + E$ next(initial, T) $T \rightarrow \bullet identifier$ next(initial, identifier)

0				1
S —	• E \$		c /	$S \rightarrow E \bullet \$$
E —	→ •T + E			2
E —	→ •T			$E \rightarrow T \bullet + E$
T —	•identifie	r	>	$E \rightarrow T \bullet$
3	ident	ifier		1 T T +
T	→ identifie	er•	Г	4 T +
Ŀ				$E \rightarrow T + \bullet E$
go	oto	dentifie		$E \rightarrow \bullet T + E$
	Т			$E \rightarrow \bullet T$
	'			$T \rightarrow \bullet identifier$
			_	5 ↓ E
				$E \rightarrow T + E \bullet$
		0	S –	→ E\$
		1	E -	→ T + E
			_ E _	
		_		→ I

3
 T \rightarrow identifier

shift

transition on terminal

goto

transition on nonterminal

0		
S-	→ •E\$	$S \rightarrow E \bullet $$
E -	→ •T + E	2
	→ •T	$T \to T \bullet + E$
T –	• identifie	
3	deni	
I	→ identifie	\longrightarrow \ E \rightarrow T + \bullet E
gc	oto	E $\rightarrow \bullet T + E$
	Т	$E \rightarrow \bullet T$
		$T \rightarrow \bullet identifier$
<u> </u>	g2	
		$E \rightarrow T + E \bullet$
		0 S \rightarrow E\$
		•
5	g2	$\begin{array}{c} {}^{1}E \rightarrow T + E \\ {}^{2}F \rightarrow T \end{array}$
	I	ı

3
 T \rightarrow identifier

231

$$3 T \rightarrow identifier$$

reduce item has dot at end

 $A \rightarrow w^{\bullet}$

	action			goto	
state	ident	+	\$	E	Т
0	s3			g1	g 2
1			а		
2		s4			
3					
4	s3			g5	g2
5					

LR(0)

No lookahead reduce state for *all* nonterminals

 3 T \rightarrow identifier

LR(0)

shift/reduce conflict
need to be pickier about
when we reduce

	action			go	oto
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2	r2	r2/s4	r2		
3	r3	r3	r3		
4	s3			g5	g2
5	r1	r1	r1		

235

SLR - Simple LR

Only reduce in position (s,a) by rule R:A $\rightarrow w$ if **a** is in the follow set of A

236

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g 2
1			а		
2		s4			
3					
4	s3			g5	g 2
5					

Reminder: Follow sets

follow(X)

set of terminals that can appear immediately after the nonterminal X in some sentential form

$${}^{0}S \rightarrow E$$

$$^{1}E \rightarrow T + E$$

2
 E \rightarrow T

3
 T \rightarrow identifier

I.e., $t \in FOLLOW(X)$ iff $S \Rightarrow^* \alpha Xt\beta$ for some α and β

$$follow(E) = \{\$\}$$

$$follow(T) = \{+, \$\}$$

SLR - Reduce using follow sets

 $follow(T) = \{+, \$\}$

	action			go	to
state	ident	+	\$	E	Т
0	s3			g1	g2
1			а		
2		s 4	r2		
3		r3	r3		
4	s3			g5	g2
5			r1		

E E	$ \rightarrow \bullet E $ $ $ \rightarrow \bullet T + E $ $ \rightarrow \bullet T $ $ \rightarrow \bullet identif$	fier T	$ \begin{array}{c} 1 \\ S \rightarrow E \bullet \$ \\ \hline E \rightarrow T \bullet + E \\ \hline E \rightarrow T \bullet \end{array} $
3 go	de T → identi	ntifier	$ \begin{array}{c cccc} E \to T & & & \\ 4 & T & & + \\ E \to T + & E & & \\ E \to T + & E & \\ E \to T + & E & \\$
	Т		$T \rightarrow \bullet identifier$
	g2		5 ↓ E
		-	$E \rightarrow T + E \bullet$
		0 C	νΕ¢

0
 S \rightarrow E\$

$$^{1}E \rightarrow T + E$$

2
 E \rightarrow T

3
 T \rightarrow identifier

SLR Limitations

- SLR uses LR(0) item sets
- Can remove some (but not all) shift/reduce conflicts using follow set

240

Consider

$${}^{0}S \rightarrow ES$$

¹
$$E \rightarrow L = R$$

$$^{2} E \rightarrow R$$

$$^{3}L \rightarrow id$$

$$^{4}L \rightarrow *R$$

$$^{5} R \rightarrow L$$

Problem with SLR

Reduce on ALL terminals in FOLLOW set

$$\begin{array}{c|c}
S \to L \bullet = R \\
R \to L \bullet
\end{array}$$

- FOLLOW(R) = FOLLOW(L)
- But, we should never reduce R → L on '='
 I.e., R=... is not a viable prefix for a right sentential form
- Thus, there should be no reduction in state 2
- How can we solve this?

LR(1) Items

- An LR(1) item is an LR(0) item combined with a single terminal (the lookahead)
- $[X \rightarrow \alpha \quad \bullet \quad \beta, a]$ Means
 - $-\alpha$ is at top of stack
 - Input string is derivable from βa
- In other words, when we reduce $X \to \alpha \beta$, a had better be the look ahead symbol.
- Or, Only put 'reduce by $X \to \alpha \beta'$ in action [s,a]
- Can construct states as before, but have to modify closure

What LR(1) Items Mean

- $[X \rightarrow \bullet \alpha \beta \gamma, a]$ input is consistent with $X \rightarrow \alpha \beta \gamma$
- $[X \rightarrow \alpha \bullet \beta \gamma, a]$ input is consistent with $X \rightarrow \alpha \beta \gamma$ and we have already recognized α
- $[X \rightarrow \alpha \ \beta \ \bullet \ \gamma, a]$ input is consistent with $X \rightarrow \alpha \ \beta \ \gamma$ and we have already recognized $\alpha \ \beta$
- $[X \to \alpha \beta \gamma \bullet, a]$ input is consistent with $X \to \alpha \beta \gamma$ and if lookahead symbol is a, then we can reduce to X

LR(1) Closure

```
closure(state)
  repeat
    foreach item A → a•Xb, t in state
       foreach production X → w
         and each terminal t' in FIRST(bt)
         state.add(X → •w, t')
  until state does not change
  return state
```

closure(
$$\{S \rightarrow \bullet E\$, ?\}$$
) =

$$S \rightarrow \bullet E \$,$$

$${}^{\circ}$$
 S \rightarrow E\$

$$^{1}E \rightarrow L = R$$

$$^{2}E \rightarrow R$$

$$^{3}L \rightarrow id$$

$$^{4}L \rightarrow *R$$

5
 R \rightarrow L

closure(
$$\{S \rightarrow \bullet E\$, ?\}$$
) =

$$S \rightarrow \bullet E\$$$
, ?
 $E \rightarrow \bullet L = R$, \$
 $E \rightarrow \bullet R$, \$

$${}^{0}S \rightarrow E$$$

$$^{1}E \rightarrow L = R$$

$$^{2}E \rightarrow R$$

$$^{3}L \rightarrow id$$

$$^{4}L \rightarrow *R$$

5
 R \rightarrow L

closure(
$$\{S \rightarrow \bullet E\$, ?\}$$
) =

$$S \rightarrow \bullet E\$,$$
 ?
 $E \rightarrow \bullet L = R,$ \$
 $E \rightarrow \bullet R,$ \$
 $L \rightarrow \bullet id,$ =
 $L \rightarrow \bullet *R,$ =

$${}^{0}S \rightarrow E$$$

$$^{1}E \rightarrow L = R$$

$$^{2} E \rightarrow R$$

$$^{3}L \rightarrow id$$

$$^{4}L \rightarrow *R$$

5
 R \rightarrow L

closure(
$$\{S \rightarrow \bullet E\$, ?\}$$
) =

$$S \rightarrow \bullet E\$,$$

$$E \rightarrow \bullet L = R,$$
 \$

$$E \rightarrow \bullet R$$
, \$

$$L \rightarrow \bullet id$$
, =

$$L \rightarrow \bullet *R$$
, =

$$R \rightarrow \bullet L$$
,

$${}^{0}S \rightarrow E$$$

$$^{1}E \rightarrow L = R$$

$$^{2}E \rightarrow R$$

$$^{3}L \rightarrow id$$

$$^{4}L \rightarrow *R$$

5
 R \rightarrow L

closure(
$$\{S \rightarrow \bullet E\$, ?\}$$
) =

$$S \rightarrow \bullet E \$,$$
 ?

$$E \rightarrow \bullet L = R,$$
 \$

$$E \rightarrow \bullet R$$
, \$

$$L \rightarrow \bullet id$$

$$L \rightarrow \bullet *R,$$
 =

$$R \rightarrow \bullet L$$
,

$$L \rightarrow \bullet id$$
,

$$L \rightarrow \bullet *R,$$

$${}^{0}S \rightarrow E$$$

$$^{1}E \rightarrow L = R$$

$$^{2}E \rightarrow R$$

$$^{3}L \rightarrow id$$

$$^{4}L \rightarrow *R$$

5
 R \rightarrow L

LR(1) Example

LR(1) Example

Parsing Table

- 14 states versus 10 LR(0) states
- In general, the number of states (and therefore size of the parsing table) is much larger with LR(1) items

LALR: Lookahead LR

- More powerful than SLR
- Given LR(1) states, merge states that are identical except for lookaheads
- End up with same size table as SLR
- Can this introduce conflicts?

260

LALR

- Can generate parse table without constructing LR(1) item sets
 - construct LR(0) item sets
 - compute lookahead sets
 - more precise than follow sets
- LALR is used by most parser generators (e.g., bison)

Recap

- LR(0) not very useful
- SLR uses follow sets to reduce
- LALR uses lookahead sets
- LR(1) uses full lookahead context

Power of shift-reduce parsers

- There are unambiguous grammars which which cannot be parsed with shift-reduce parsers.
- Such grammars can have
 - shift/reduce conflicts
 - reduce/reduce conflicts
- There grammars are not LR(k)
- But, we can often choose shift or reduce to recognize what want.

Expression Grammars & Precedence

Expression Grammars & Precedence

Handling Ambiguity

E:= E*E | E+E | **id**

What to do on + or *?

- shift
- reduce by $E \rightarrow E+E$?

Bison

- Precedence and Associativity declarations
- Precedence derived from order of directivies: from lowest to highest
- Associativity from %left, %right, %nonassoc
- Can be attached to rules as well (This can solve the dangling if-else problem

Dangling Else

```
S := if E then S

| if E then S else | We will see a clean way to deal with this in a shift-reduce parser.

| other
```

We can be in the following state:

```
...if E then S else ... $
```

- What do we do?
 - shift the else (hoping to reduce by second rule)
 - reduce by first rule

Next Time

- From words to sentences.
- From regular languages to context free languages.
- Parsing