3NF and BCNF from CANONICAL COVER and CLOSURE

Swarup Kr Ghosh

3NF Using Canonical Cover

Ex.3.5: R (A, B, C, D, E)

 $FDs = \{A \rightarrow B, AB \rightarrow D, B \rightarrow BDE, C \rightarrow D, D \rightarrow D\}$

CANONICAL COVER:

Step1	Step 2	Step 3	Step 4	Step 5
ALL LHS	Copy FDs	Remove	Remove	Canonical
		Reflexivity	Extraneous att	Cover
A	A → B	$A \rightarrow B$	$A \rightarrow B$	$A \rightarrow B$
В	B→ BDE	B→ BDE	B→ DE	B→ DE
AB	AB→ D	AB→ D	AB→ D	C → D
C	C → D	C → D	C → D	
D	D→ D	D → D		

 $AB \rightarrow D == A \rightarrow B \& B \rightarrow D$

 $B \rightarrow DE == B \rightarrow D \& B \rightarrow E$

Step6: Check or find Superkey ABC+ = $\{A,B,C,D,E\}$ Which ensure that ABC is a super key.

Result is: R1 (A,B), R2(B,D,E), R3 (CD) are in 3NF.

Ex.3.6: R (A, B, C)

 $FDs = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$

Step1	Step 2	Step 3	Step 4	Step 5
ALL LHS	Copy FDs	Remove	Remove	Canonical
		Reflexivity	Extraneous att	Cover
A	A→ BC	A→ BC	A→ BC	A → B
В	B → C	B→ C	B→ C	B→ C
AB	AB→ C	AB→ C	AB→ C	

 $AB \rightarrow C == A \rightarrow C \& B \rightarrow C$

 $A \rightarrow BC == A \rightarrow B \& A \rightarrow C$ if you consider $A \rightarrow B \& B \rightarrow C == A \rightarrow C$

Step6: Super key: AB+=(A,B,C)

R1(A,B) and R2(B,C) are in 3NF.

BCNF Using Canonical Cover/F+

- 1. For all dependencies $A \rightarrow B$ in F+, check if A is a superkey
 - By using attribute closure
- 2. If not, then
 - Choose a dependency in F+ that breaks the BCNF rules, say A → B
 - Create R1 = A B
 - Create R2 = A (R (B A))
 - Note that: R1 ∩ R2 = A and A → AB (= R1), so this is lossless decomposition
- 3. Repeat for R1, and R2
 - By defining F1+ to be all dependencies in F that contain only attributes in R1
 - Similarly F2+

$$R = (A, B, C)$$

$$FD = \{A \to B \}$$

$$B \to C\}$$

- \triangleright Key = $\{A\}$
- ightharpoonup R is not in BCNF ($B \rightarrow C$ but B is not super key)
- > Decomposition

$$R_1 = (B, C)$$

$$R_2 = (A,B)$$

Ex.4.5: R (A, B, C, D, E)

$$FDs = \{A \rightarrow B, AB \rightarrow D, B \rightarrow BDE, C \rightarrow D, D \rightarrow D\}$$

Find F+

Step1	Step 2	Step 3	Step 4	Step 5
Attr & LHS	FDs	Reflexivity	Transivity	\mathbf{F} +
A	$A \rightarrow B$	$A \rightarrow AB$	A→ ABDE	$A \rightarrow ABDE (SK?)$
В	B→ B DE	B→ B DE	B→ B DE	$B \rightarrow B DE (SK?)$
AB	AB→ D	$AB \rightarrow ABD$	AB→ ABDE	AB→ ABDE
C	C→ D	$C \rightarrow CD$	$C \rightarrow CD$	C→ C D (SK?)
D	D→ D	$D \rightarrow D$	$D \rightarrow D$	$D \rightarrow D (TR)$
E	E	E→E	E→E	$E \rightarrow E (TR)$

If you calculate $A+ \rightarrow A$ is not super key (SK) \rightarrow Violets the BCNF and hence break here

$$A+ = \{ABCDE\}-\{A\}\}$$
 [all- (RHS – alpha)]
= $\{AC\}$ \rightarrow TR

You can not say about A is SK or not?

We are considering $B \rightarrow BDE$ (SK?)

$$B+ = \{ABDE\}-(\{BDE\}-\{B\}) [Original-(RHS - alpha)]$$

= $\{AB\} \rightarrow TR$

R1 (B, D, E) \leftarrow B \rightarrow BDE], R2 (A, B), R3 (A, C) are in BCNF.

Case study:
$$R = (A, B, C)$$

 $FD = \{A \rightarrow B, B \rightarrow C\}$

Supposed R is decomposed in two different ways:

Case-1: R1 (A, B), R2 (B, C)

- Does this satisfy lossless-join decomposition?
- ✓ Yes: $R1 \cap R2 = \{B\}$ and $B \rightarrow BC$ (B is super key of R2)
 - Does this satisfy dependency preserving?
- ✓ Yes: dependencies can be checked without joining tables

Case-2. R1(A, B), R2(A, C)

- Does this satisfy lossless-join decomposition?
- ✓ Yes: $R1 \cap R2 = \{A\}$ and $A \rightarrow AB$ (A is super key of R1)
- Does this satisfy dependency preserving?
- ✓ No: cannot check B \rightarrow C without joining R1 and R2

Exercise1: Find the canonical cover of the following relation R as

$$R = (A, B, C)$$

 $F = \{A \rightarrow BC, B \rightarrow C, A \rightarrow B, AB \rightarrow C\}$

Exercise2: Find the 3NF and BCNF of the following relation R as

$$R = (A, B, C)$$

 $F = \{A \rightarrow C, C \rightarrow DE, D \rightarrow B, A \rightarrow D\}$