Fangda Li

☑ li1208@purdue.edu • ⑤ lifangda01.github.io

At Purdue University, I am a Ph.D. Candidate in the Robot Vision Lab (RVL) under the supervision of Prof. Avinash Kak. My research interest is in deep learning and computer vision, especially for medical imaging.

Education

Doctor of Philosophy

Electrical and Computer Engineering, GPA: 4.00/4.0

Master of Science

Electrical and Computer Engineering, GPA: 3.53/4.0

Bachelor of Science

Electrical and Computer Engineering, GPA: 3.81/4.0

Purdue University

2017 - Fall 2023

Purdue University

2015 - 2017

Purdue University

2012 - 2015

Technical Expertise

Machine Learning: PyTorch, TensorFlow, sklearn Computer Vision: OpenCV, skimage, OpenGL

Research Experience

Robot Vision Lab, Purdue University

PhD Candidate

West Lafayette, IN

August 2015 - Current

- Designed a generative **image-to-image translation** framework that translates H&E-stained images into various IHC stains while accurately predicting the diagnosis-critical molecular representations. [pdf]
- By using a novel adaptive contrastive learning based objective, the training of the virtual IHC-restaining network is robust to the inevitable and often severe inconsistencies in groundtruth H&E-IHC image pairs.
- Designed a **generative stain augmentation network** for augmenting H&E-stained cell images with synthesized yet realistic stains that can help desensitize downstream application-specific models to stain variations. [pdf]
- By disentangling representations for cell morphology and stain while using a Laplacian Pyramid based architecture, the model can achieve transformation to arbitrary stains with high efficiency.
- Designed an end-to-end automated, real-time, machine learning-based **semantic segmentation** framework for **automatic explosive recognition** in 3D dual-energy X-ray CT images of airport passenger checked baggage.
- By using an ensemble of **deep learning and boosting** algorithms, the framework achieved state-of-the-art detection rates while maintaining low false alarm over a large-scale dataset (5k+ real-world baggage scans).
- Developed a GPU-accelerated **model-based CT image reconstruction** algorithm for dual-energy X-ray CT that outperformed state-of-the-art approaches in both signal-to-noise ratio and convergence speed. [pdf]
- Contributed to installing and maintaining an OpenStack cloud computing framework for all research at RVL.
- Developed a novel **motion planning** algorithm that leverages recursion and gradient descent to find efficient yet smooth trajectories for robot navigation in congested and narrow spaces. [pdf]
- Developed **computer graphics** software in OpenGL for 3D interactive apple tree pruning simulation. [pdf]

10x Genomics, Inc.

Pleasanton, CA

Image Analyst Intern

May 2021 – August 2021

- Developed a framework for performant nuclear instance segmentation in H&E-stained histological images.
- Designed and implemented **generative adversarial networks** for normalizing the wide range of variations among the H&E stain appearances.

Vipshop US, Inc.

San Jose, CA

Augmented Reality Intern

May 2017 - August 2017

- Developed a **true scale estimation** module for monocular ORB-SLAM by integrating IMU inputs using Extended Kalman Filter on mobile devices.
- Conducted literature review on and implemented various algorithms for the Multi-Armed Bandit problem.

TNT, Leibniz University

Research Intern

Hanover, Germany

June 2014 - August 2014

- Improved the Random Forest algorithm for unbalanced datasets by integrating class importance and leaf weights. [pdf]
- Proposed algorithm outperformed the state-of-the-art on real-world face detection and traffic sign recognition datasets.

Selected Publications

- Fangda Li, Zhiqiang Hu, Wen Chen, and Avinash Kak. "Adaptive Supervised PatchNCE Loss for Learning H&E-to-IHC Stain Translation with Inconsistent Groundtruth Image Pairs." arXiv preprint (2023).
 Submitted to MICCAI2023.
- Fangda Li, Zhiqiang Hu, Wen Chen, and Avinash Kak. "A Laplacian Pyramid Based Generative H&E Stain Augmentation Network." Preprint (2023). Submitted to TMI.
- Fangda Li, Ankit Manerikarm, and Avinash Kak. "A Two-Pathway Framework for Automatic Explosive Detection in Dual-Energy X-Ray CT Baggage Security Imagery." Internal Technical Report (2021).
- o Ankit Manerikar, **Fangda Li**, and Avinash C. Kak. "DEBISim: DEBISim: A Simulation Pipeline For Dual Energy CT-based Baggage Inspection Systems." Journal of X-Ray Science and Technology (2021).
- Fangda Li, Ankit Manerikar, Tanmay Prakash, and Avinash Kak. "A Splitting-Based Iterative Algorithm For GPU-accelerated Statistical Dual-Energy X-Ray CT Reconstruction." IS&T Electronic Imaging: Computational Imaging VIII (2020).
- Fangda Li, Ankit Manerikar, and Avinash Kak. "RMPD A Recursive Mid-Point Displacement Algorithm for Path Planning." In Proceedings of the International Conference on Automated Planning and Scheduling (2018).

Teaching Experience

Deep Learning, ECE60146

Graduate level class on CNN, RNN, Transformer, GAN, etc.

Purdue University
Spring 2023

Computer Vision, ECE664

Graduate level class on Geometric Computer Vision, e.g. Stereo Reconstruction.

Purdue University

Fall 2022

Digital Systems Senior Design, ECE477

Senior undergrad level class on Embedded System design and programming.

Purdue University

2019, 2021, 2022

Relevant Coursework

Computer Vision

Computational Models

Digital Image Processing

Deep Learning Convex Optimization Operating Systems

Data Mining Sparse Modeling Multiple-View Geometry

Selected Course Projects

O Python implementation of various CV algorithms from scratch:

Homography estimation for image mosaicking Levenberg–Marquardt algorithm Stereo-based scene reconstruction

Iterative Closest Point for point cloud alignment Zhang's algorithm for camera calibration PCA, LDA and cascaded AdaBoost for face detection

• Python implementation of various ML algorithms from scratch:

Support Vector Machine Boosted Decision Trees Random Forest

K-Means Hierarchical Clustering Expectation Maximization

 Implemented a ResNet-based framework using torch to automatically detect metastasized breast cancer on gigabyte-sized whole-slide microscopic images.