

We find general formulas for the transit time and age distributions in well-mixed compartmental systems. As an example we consider a simple three-pool global carbon model with nonlinearities in two different scenarios:

steady state pre-industrial system before 1765

perturbed adding fossil fuels to the atmosphere,

considering land use change,

1765 - 2500

transit time that a particle needs to travel through

the system

exit time — entry time

system age for particles in the system

current time — entry time

compartment system age of particles in a compartment

age

$$\Phi(t, t_0) = \exp \left[(t - t_0) A(t) \right]$$

$$\frac{d}{dt} \Phi(t, t_0) = A(t) \Phi(t, t_0)$$

one-dimensional $\Phi(t, t_0) = \exp[(t - t_0) A(t)]$ exponential function multi-dimensional, matrix exponential autonomous only numerical ii multi-dimensional, solution nonautonomous

Well-mixed compartmental systems can be descibed by a system of generally **nonlinear** ordinary differential equations of the form

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}(\mathbf{x}(t), t)\mathbf{x}(t) + \mathbf{u}(t), \quad t > t_0,$$
(1)

with a given initial value $\mathbf{x_0}$.

We assume to know (at least numerically) the unique solution of (1) and denote it by \mathbf{x} . We then plug it into $A(\mathbf{x}(t), t)$ and obtain the **linear** system of ordinary differential equations

$$\frac{d}{dt}\mathbf{x}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{u}(t), \quad t > t_0.$$

This equation has the general solution formula

$$\mathbf{x}(t) = \underbrace{\Phi(t, t_0) \mathbf{x_0}}_{\text{age}(t) = t - t_0 + \text{initial age}} + \int_{t_0}^{t} \underbrace{\Phi(t, \tau) \mathbf{u}(\tau)}_{\text{age}(t) = t - \tau} d\tau,$$

where Φ is the so-called state transition matrix. This leads immediately to the vector of age densities

$$\mathbf{p}(a,t) = \begin{cases} \Phi(t,t_0) \, \mathbf{p_0}(a - (t - t_0)), & a \ge t - t_0, \\ \Phi(t,t-a) \, \mathbf{u}(t-a), & a < t - t_0, \end{cases}$$

where $\mathbf{p_0}$ is the initial age distribution.

If we define the (backward) transit time of a particle as the age of the particle at the time when it exits the system, we can easily derive explicit formulas for its distribution from the age
distribution. The simple approach stock/flux for the transit time is valid only for a system in steady state. Out of steady state, $stock(t)/flux(t)$ cannot be interpreted as a transit time.
İ

 $x_T^* = 3000 \text{ PgC}$

 $x_A^* = 700 \text{ PgC}$

$$u_S = 45, \quad u_A(t) = \text{fossil-fuels}(t)$$
 $F_{AT} = 60 (x_A/700)^{0.2}$
 $F_{TA}(t) = 60 x_T/3000$
 $+ \text{land-use-change}(t)$
 $F_{AS} = 100 x_A/700$
 $F_{SA} = 100 (x_S/1000)^{10}$

 $F_{SD} = 45 \, x_S / 1000$

$$p_A(a) = \sum_j \left(e^{a \, \mathbf{A}} \, \mathbf{u} \right)_j$$

$$p_j(a) = \left(e^{a \, \mathbf{A}} \, \mathbf{u}\right)_j$$

	י ו		

					1800	2000	
--	--	--	--	--	------	------	--

Year	Author	System	Quantity	Geometric structure	Example
1983	Anderson	steady state	mean	point	
2009	Manzoni et al.	steady state (simple structure)	density	curve over age	
2016	Rasmussen et al.	linear time dependent	mean	curve over time	
2016	Metzler & Sierra	steady state (all structures)	density	curve over age	
2017	Metzler et al.	linear/nonlinear time dependent	density	surface over age and time	

 $\mathbf{x}(t)$ vector of compartment content (e.g. C) at time tA compartmental matrix, describes fluxes between compartments $\mathbf{z}(t)$ external outflux vector at time t $\mathbf{u}(t)$ external input vector at time t

$\mathrm{A}(\mathbf{x}(t),t)$	nonlinear,
$A(\mathbf{x}(t)), \mathbf{u}(t)$	nonautonomous
$A(\mathbf{x}(t)), \mathbf{u}$	nonlinear,
	autonomous
$A(t), \mathbf{u}$	linear,
$A, \mathbf{u}(t)$	nonautonomous
$A(t), \mathbf{u}(t)$	
A, \mathbf{u}	linear,
	autonomous