

Modeling the Effects of Spacecraft Venting on Instrument Measurements of the Martian Atmosphere for an Elliptical Orbit

Elaine Petro (NASA/GSFC)

David Hughes (NASA/GSFC)

Contamination, Coatings & Materials Workshop July 12-14, 2011

Background

- Analysis performed for MAVEN mission
 - Will study the Martian atmosphere, ionosphere, and interactions with sun and solar wind
 - Emphasis on the loss of volatile compounds ($C0_2$, $N0_2$, H_20) from the atmosphere to space

Background

- Elliptical science orbits:
 - Nominal: 150 km x 6220 km altitude with 4.5 hour period
 - 'Deep Dip': Periapsis altitude lowered to 125 km to measure higher density regions
- Large pressure range (10¹² Pa at apoapsis, 10⁶ Pa at nominal periapsis, 10⁵ Pa at Deep Dip periapsis)

Background

- With large pressure variations in orbit, need to understand how internal pressures change
- Internal pressures may track but also lag atmospheric pressure
- Flux of gas from vents could potentially bias instrument measurements

Goal: Predict the effect that atmospheric gases trapped and vented from spacecraft volumes could have on instrument measurements.

Approach

- Ambient Atmosphere
 - Determine properties throughout orbit
 - Analyze pressures on surfaces accounting for s/c orientation and velocity
- Flow Across Vents
 - Calculate molecular flow vent properties of all major volumes (instruments, spacecraft)
 - Perform transient flow across vents to predict pressures inside volumes
- Free Molecule
 - Predict redistribution of gases from vents with molecular transport analysis

Ambient Atmosphere Orbit Prediction Mars Atmosphere **Effective Pressures** Fluxes of **Vent Flow** ambient gases **Vent Conductance** 2. Mass Conservation ODF FM Source Fluxes Flow across vents **Free Molecule Transport Direct Flux** Fluxes of Reflected Flux vented gases

Ambient Steps 1 & 2

- Orbit position prediction
 - Calculated using Keplerian orbital elements
 - a = 6578 km
 - e = 0.462
 - i = 75°
 - No perturbations
- Mars atmosphere
 - Mars Global Reference Atmospheric Model 2005 (Mars-GRAM)
 - Maintained by Marshall Space Flight Center
 - Used to calculate density and composition of ambient species

Ambient Step 3

- Effective pressures calculated for each element
 - Function of:
 - ambient density (ρ)
 - spacecraft velocity (v)
 - average molecule velocity (u)
 - element surface to flow angle (θ)
 - Incorporated new 'ram impingement' mass flux model ¹:
 - Velocity scale factor (s)
 - Mass flux calculated using scale factor

$$s = -\frac{v}{u}\cos\theta$$

$$\dot{m} = \rho u \sqrt{\frac{1}{4\pi}} \left(e^{-s^2} + \sqrt{\pi} \left[1 + erf(s) \right] \right)$$

¹J. Borde, P. Renard, G. Sabbathier, G. Drolshagen, "Improved Analysis Tool for the Computation of Spacecraft Surface Erosion Due to Atomic Oxygen," *Proceedings of the Sixth International Symposium on Materials in a Space Environment*, **271**, ESTEC, Noordwijk, The Netherlands, 19-23 September 1994.

Effective Pressure Calculations

- 'Effective pressures' calculated for 13 discrete points in orbit
 - Atmospheric density and spacecraft orientation vary
 - Sum of direct flux of impinging atmospheric molecules and reflected flux off spacecraft surfaces

Orbit Segment	Possible Orientations		
Below 500 km	"Fly – Z"		
(Deep Dips)			
Below 500 km	"Fly – Y"		
(nominal)	Sun Velocity		
500 km - 5200 km	Sun Nadir		
(sides)	Sun Inertial		
Above 5200 km	Sun Inertial		
(apoapse region)	Suit illertial		

Effective Pressure Results

- Ratio of effective pressure to ambient pressure shown below for periapsis of nominal orbit (left) and Deep Dip (right)
 - Max effective pressures about 70x ambient (150 km) and 80x ambient (125 km)

Effective Pressure / Ambient Pressure (150 km)

Effective Pressure / Ambient Pressure (125 km)

Flow Calculations (Step 1)

- Depressurization time constant (τ) used to compare efficiency of different vents:
 - Time for ΔP to drop by factor of e
 - Function of inner volume (V) and vent conductance (C)
- Conductance (C) is a measure of the ease at which gases flow through a duct
 - Analytical solutions available for simple vents
 - Complex geometries require numerical solution

Time constant:

$$\tau[s] = \frac{V[m^3]}{C[m^3/s]}$$

Circular tube of constant cross section:

$$C = \frac{2\pi R^3 v}{3L} \cdot K''$$

Multiple vents in parallel:

$$C_{eq} = C_1 + C_2 + ... + C_N$$

Sample Vent Geometries

Various instrument

4 identical baffles (tapered rectangular tubes in parallel)

3 aperture holes (short circular tubes in parallel)

Labyrinth vent (GBVF analysis)

Sample Vent Geometries

Various instrument vents:

4 identical baffles (tapered rectangular tubes in parallel)

3 aperture holes (short circular tubes in parallel)

 Labyrinth vent required gray body viewfactor (GBVF) analysis

- Set the entrance and exit sticking coefficient to 1, all others to zero
- GBVF solved using Gebhart's method (matrix inversion)
- GBVF from entrance to exit is the <u>transmission probability</u> (k)
- Conductance of a tube is aperture conductance times transmission probability:

Labyrinth vent (GBVF analysis)

$$C = \left(\frac{1}{4}vA\right)(k)$$

Vent Comparison

- Time constants (volume/conductance) compared for 11 instrument vents and spacecraft bus vents
 - Spacecraft bus venting found to be limiting case
 - S/C provider using 2x2" x-cuts in MLI to vent bus interior (24 cuts assumed)
 - Assumed cut width of 1/16", MLI thickness of 1/4"

Component	Open Volume (m³)	Conductance (m³/s)	Time Constant (s)						
Spacecraft Bus Vents									
Spacecraft Bus ¹	4.46	0.15	29						
Instrument Vents									
IUVS	8.35e-2	0.023	0.4						
NGIMS	4.36e-3	0.003	3.0						
RSDPU	5.41e-3	0.00076	2.0						
SWIA/SWEA/STATIC	1.34e-4	1.8e-5	7.4						
Aperture									
SWIA/SWEA/STATIC	1.9e-3	0.0012	1.6						
Electronics									
SEP ³	4.16e-4	0.042	0.01						
MAG	3.69e-4	0.0017	0.21						
EUV	7.67e-4	0.73	0.01						
LPW (Pre-amps)	1.74e-5	0.0004	0.04						
LPW (Stacers)	1.74e-4	0.11	0.002						

FEM and Vent Placement

- 24 vents were divided evenly between 4 lateral faces (+X, -X, +Y, -Y)
- Elements selected to represent vent locations (spread out across face)

+X and +Y vent locations

-X vent locations

-Y vent locations

Flow Calculations (Step 2)

- Solved for pressure inside spacecraft bus at each time step
 - Transient ambient pressures on the vent FEM elements used as boundary conditions to solve gas flow differential equation:

$$V\frac{dP}{dt} = C(\Delta P)$$

- Solved separately for each species
 - Travel independently of one another in molecular flow regime
- Solved in log scale of pressure to avoid negative numbers (pressure boundary condition had dynamic range of 1e-5 to 1e-70)

$$\frac{d(\ln P)}{dt} = \frac{1}{P} \frac{dP}{dt}$$

Step 2 Results

 Tracking each species independently gave composition of gas interior and exterior to bus

Time since Apoapsis (sec)	Altitude (km)	Internal Bus Pressure (Pa)	Atmospheric Pressure (Pa)	Bus/Amb % Comp Ratio CO ₂	Bus/Amb % Comp Ratio He	Bus/Amb % Comp Ratio H
60	6220	1.5e-11	1.7e-12	1.00	1.00	1.00
1350	6025	9.2e-12	1.4e-12	0.94	1.00	1.00
1575	5950	1.0e-11	1.6e-12	0.97	0.998	1.00
4050	4425	3.1e-11	4.4e-12	0.96	0.91	1.00
6750	1250	7.1e-10	4.0e-11	0.59	0.98	1.00
7425	475	2.2e-09	1.9e-10	0.99	1.00	1.00
8100	150	2.1e-05	9.8e-07	1.00	0.96	0.96
8775	475	5.8e-09	2.3e-10	1.06	1.00	0.999
9450	1250	3.1e-09	1.9e-10	0.58	0.90	1.02
11925	4215	3.5e-11	4.4e-12	1.00	0.97	1.00
14625	5950	1.4e-11	2.1e-12	0.98	0.999	1.00
14850	6025	8.1e-12	1.7e-12	0.96	1.00	1.00
16200	6220	1.0e-11	1.3e-12	1.00	1.00	1.00

Flow Calculations (Step 3)

- Determine Free Molecule source terms
 - Used pressure inside spacecraft to determine flux through the vents to the outside
 - Did not use external pressure: inward flow is independent of outward flow in the free molecule regime
 - Converted to mass flux and treat as effusion source (Lambertian distribution, thermal velocity)

Effusion source

Free Molecule Calculations

Direct Flux

- Use solution of Boltzman equation to calculate gas flux to surfaces with a line of sight to the vents
- M. Woronowicz, Rarefied Gas Dynamics: 22nd International Symposium, AIP, **585**, Melville, NY, 2001, pp. 798-805

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} = Q_1;$$

$$Q_1 = \frac{2\beta^4}{A_1 \pi} \delta(\mathbf{x}) \dot{m}(t) (\mathbf{v} \cdot \hat{\mathbf{n}}) \exp(-\beta^2 (\mathbf{v} - \mathbf{u}_e)^2);$$

$$A_1 = e^{-s^2 \cos^2 \phi_e} + \sqrt{\pi} s \cos \phi_e (1 + \operatorname{erf} (s \cos \phi_e)).$$

Reflected Flux

- Assume that all of the flux reaching a surface is reflected
- Treat as a new effusion source
- Add contributions to FEM elements to approximate the molecular transport solution

Limitation of method

- Does not account collisions between reflected and incoming molecules
 - Possible reduction in what reaches the surface
- Did not repeat iteration to extend "view" to surfaces requiring more than one bounce to reach

Free Molecule Results

- Direct Flux
 - Max value is 10⁻¹⁰

CO₂ @ 125 km - Direct

- Reflected Flux
 - Max value is 10⁻²⁵

CO₂ @ 125 km – One Reflection

Analysis of Results – Deep Dip Orbit

- Spacecraft colored by percent of impinging flux originating from vented gas
 - Project interested in amount relative to atmospheric flux

$$\% = \frac{\Phi_{\text{vent,in}}}{\Phi_{\text{vent,in}} + \Phi_{\text{amb,in}}} \times 100\%$$

500 km (traveling out)

Analysis of Results – Nominal Orbit

Conclusions

- Analysis required unique implementation of direct/reflect flux and pressure calculation methods
 - Able to prove that vented gas does not pose a serious threat to instrument measurements for MAVEN
- For similar analysis in future:
 - Would implement spacecraft slew in Nx calculations (more automated)
 - Would incorporate shadowing from other surfaces in ram pressure calculations

Thank you!