Wprowadzenie do uczenia maszynowego

Igor Wojnicki

February 23, 2022

Plan prezentacji

Czym jest Uczenie Maszynowe?

Jak działa Uczenie Maszynowe

- ► OCR
- ► spam filter
- czołgi?

¹Terminator 2: Judgment Day

Referencje

- Książki
 - Aurelien Geron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly
- Narzędzia https://www.python.org/ https://scikit-learn.org https://keras.io/ https://www.tensorflow.org/

Co to?

- ► ML is the science and art of programming computers so they learn from data.
- ...a filed of study that gives computers the ability to learn without being explicitelly programmed.
 - Arthur Samuel, 1959
- ▶ A computer program is said to learn from experience E with respect to some task T and some pperformance measure P, if its performance on T, as measured by P, improves with experience E.
 - Tom Mitchell, 1997

2

Dlaczego – Uczenie Maszynowe

Zaleta – dostosowanie do zmieniających się warunków

Zaleta – odkrywanie wiedzy

Przykłady

- klasyfikacja produktów na taśmie produkcyjnej, sieci neuronowe CNN,
- wykrywanie schorzeń, sieci neuronowe CNN,
- klasyfikacja tekstów, sieci neuronowe CNN, RNN,
- streszczenia tekstów, sieci neuronowe CNN, RNN,
- dialog (asystent głosowy) i rozpoznawanie mowy,
- przewidywanie np. przychodu w firmie, regresja,
- wykrywanie oszustw finansowych,
- segmentacja klientów, klasteryzacja,
- reprezentacja danych wielowymiarowych w zrozumiały sposób, redukcja wymiarów,
- rekomendacje produktów, filmów itp.

Rodzaje – ze względu na nadzór

- ► nadzorowane trzeba etykietować zbiór uczący,
- nienadzorowane nie trzeba etykietować zbioru uczącego (uczenie bez nauczyciela),
- częściowo nadzorowane,
- uczenie przez wzmacnianie (reinforcement).

Nadzorowane – klasyfikacja

Czy wiadomość jest spamem czy nie?

Nadzorowane – regresja

Jaka jest cena samochodu biorąc pod uwagę jego przebieg?

Nienadzorowane – klasteryzacja, przed

Nienadzorowane – klasteryzacja, po

Nienadzorowane – detekcja anomalii

Częściowo nadzorowane

Zwykle połączenie metod nienadzorowanych i nadzorowanych.

Uczenie przez wzmacnianie

Obserwator jest karany lub nagradzany.

Rodzaje ze względu na dostęp do danych

- batch,
 - uczenie na podstawie kompletnego zbioru danych,
- online (mini-batches),
 - uczenie przyrostowe,
 - umożliwia out-of-core learning uczenie gdy dane treningowe nie mieszczą się w pamięci.

Rodzaje ze względu na sposób uogólnienia

oparte o:

- ▶ instancje,
- ► model.

Sposób uogólnienia – instancja

Sposób uogólnienia – model

Wyzwania Uczenia Mszynowego

- 1. wybrać odpowiedni uczący,
 - overfitting (nadmierne dopasowanie / przeuczenie),
 - underfitting (niedouczenie: nieodpowiedni model dla danych, np. zastosowanie modelu liniowego do nieliniowych danych),
- 2. wybrać odpowiednie dane do uczenia,
 - za mało danych,
 - niereprezentatywne dane,
 - dane niskiej jakości,
 - nieistotne cechy/dane,

Testowanie

- Dane uczące (training set),
- Dane testujące (test set).
- Dane uczące -> oszacowanie błędu uczenia.
- Dane testujące -> otrzymamy oszacowanie błędu generalizacji (generalization/out-of-sample error).

Błąd uczenia niski, błąd generalizacji wysoki -> overfitting. Częste proporcje zbiór uczący – zbiór testujący: 80%–20%

Overfitting

- Model działa dobrze na danych uczących, ale niezbyt dobrze generalizuje (marnie działa na danych testujących).
- Model zbyt złożony w kontekście danych uczących i ewentualnego szumu.
- Rozwiązania:
 - uprościć model (wybierz taki, który mam mniej parametrów np. liniowy zamiast wielomianowy),
 - zmniejszenie liczby atrybutów,
 - ograniczenie modelu (o ile algorytm na to pozwala, zwykle jest to tzw. hiperparametr tzn. parametr algorytmu a nie modelu),
 - zebrać więcej danych,
 - zmniejszyć szum w danych uczących (naprawić błędy, usunąć outliers).

Który z dwóch modeli/algorytmów jest lepszy?

- ► Trzeba nauczyć oba.
- Porównać wyniki.

No Free Lunch Theorem

- David Wolpert, 1996.
 - Nie znając założeń odnośnie danych, nie można powiedzieć, który model/algorytm będzie działał najlepiej.
 - Więc trzeba sprawdzić jak działa każdy z nich.
 - W praktyce należy poczynić założenia odnośnie danych i na tej podstawie wybrać zbiór modeli/algorytmów do sprawdzenia.

Plan prezentacji

Czym jest Uczenie Maszynowe?

Jak działa Uczenie Maszynowe

Etapy projektu ML

- 1. Zastanów się co masz zrobić.
- 2. Zdobądź dane.
- 3. Oglądnij dane; wizualizacja.
- 4. Przygotuj dane.
- 5. Wybierz model i go wytrenuj.
- 6. Popraw parametry modelu (fine tune).
- 7. Wdrożenie, monitoring, utrzymanie.

bash

```
zcat data/housing.csv.gz | head -4
```

```
longitude, latitude, housing_median_age, total_rooms, total_bed:
-122.23,37.88,41.0,880.0,129.0,322.0,126.0,8.3252,452600.0,1
-122.22,37.86,21.0,7099.0,1106.0,2401.0,1138.0,8.3014,358500
-122.24,37.85,52.0,1467.0,190.0,496.0,177.0,7.2574,352100.0
```

Kolumny:

longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, ocean_proximity

import csv

```
import pandas as pd
2
3
  df = pd.read_csv('data/housing.csv.gz')
  print(df.head())
     longitude latitude
                           housing_median_age total_rooms
  0
        -122.23
                    37.88
                                         41.0
                                                     880.0
        -122.22
                    37.86
                                         21.0
                                                    7099.0
  2
        -122.24
                                         52.0
                                                     1467.0
                    37.85
  3
        -122.25
                 37.85
                                         52.0
                                                    1274.0
  4
        -122.25
                    37.85
                                         52.0
                                                     1627.0
```

print(df.info())

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype		
0	longitude	20640 non-null	float64		
1	latitude	20640 non-null	float64		
2	housing_median_age	20640 non-null	float64		
3	total_rooms	20640 non-null	float64		
4	total_bedrooms	20433 non-null	float64		
5	population	20640 non-null	float64		
6	households	20640 non-null	float64		
7	median_income	20640 non-null	float64		
8	median_house_value	20640 non-null	float64		
9	ocean_proximity	20640 non-null	object		
dtypes: float64(9), object(1)					
memory usage: 1.6+ MB					

```
print(df["ocean_proximity"])
        NEAR BAY
0
        NEAR BAY
        NEAR BAY
3
        NEAR BAY
4
        NEAR BAY
20635
      INLAND
20636
      INLAND
20637
         TNI.AND
20638
         TNI.AND
20639
          TNI.AND
Name: ocean_proximity, Length: 20640, dtype: object
```

```
print(df["ocean_proximity"].value_counts())
<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64</pre>
```

print(df.describe())

	longitude	latitude	housing_median_age	tota
count	20640.000000	20640.000000	20640.000000	2064
mean	-119.569704	35.631861	28.639486	263
std	2.003532	2.135952	12.585558	218:
min	-124.350000	32.540000	1.000000	4
25%	-121.800000	33.930000	18.000000	144
50%	-118.490000	34.260000	29.000000	212
75%	-118.010000	37.710000	37.000000	3148
max	-114.310000	41.950000	52.000000	39320

```
import matplotlib.pyplot as plt
df.hist(bins=50, figsize=(20,15))
f = "housing_hist.png"
plt.tight_layout()
plt.savefig(f)
print(f)
```


Dane, histogram

median_income - jednostka?, housing_median_age, median housing_value - odcięte od góry, ogólnie - nie są dzwonowe

Dane, położenie geograficzne

Dane, ceny

Dane, macierz korelacji

```
Uwaga: pokazuje jedynie zależności liniowe!
print(df.corr()["median_house_value"].
      sort values(ascending=False))
median house value
                       1.000000
median income
                       0.688075
total rooms
                       0.134153
housing_median_age
                       0.105623
households
                       0.065843
total bedrooms
                       0.049686
population
                      -0.024650
longitude
                      -0.045967
latitude
                      -0.144160
Name: median_house_value, dtype: float64
```

Zbiór uczący i testujący

```
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(df,

test_size=0.2,

random_state=42)
print(len(train_set),len(test_set))

16512 4128
```