Idea de Final

Profesor: Luis Jesús Trucio Cuevas.

Ayudantes: Jesús Angel Cabrera Labastida, Hugo Víctor García Martínez.

Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathscr{S} , a menos que se indique lo contrario.

- **Ej. 1.** Pruebe que $\mathscr S$ es una categoría balanceada; esto es, para cualquier flecha $f:A\to B$ se tiene que f es isomorfismo si y solo si f es monomorfismo y epimorfismo.
- **Ej. 2.** Sean $\mathscr C$ una categoría localamente pequeña y A, B objetos de $\mathscr C$. Utilizando el Lema de Grothendieck Yoneda, demuestre que si $\mathscr C(-,A) \cong \mathscr C(-,B)$, entonces $A \cong B$.
- Ej. 3. Sea $(A \xrightarrow{f} B) \in \mathscr{S}$. Demuestre que f es epimorfismo si y sólo si Ω^f es monomorfismo.

ZFC

Resuelva los siguientes ejercicios utilizando los axiomas de ZFC vistos en clase (Vacío, Extensionalidad, Par, Unión, Esq. de Separación, Potencia, Infinito)

- **Ej. 4.** Demuestra que el enunciado $\varphi \leftrightharpoons \forall x \exists y (x \in y \land \forall z \forall w ((z \in w \land w \in y) \rightarrow z \in y))$ implica el axioma de unión.
- Ej. 5. Sea X un conjunto de números naturales. Determine cuáles de las siguientes implicaciones son verdaderas. Justifique con demostración o contraejemplo.
 - a) Si X es transitivo, entonces X es natural.
 - b) Si X es no vacío, entonces $\bigcap X = \min_{\in} (X)$.
- **Ej. 6.** Demuestre que hay una biyección entre 3^{ω} y ω^{ω} .