Úvod do komplexní analýzy

Doc. RNDr. Ondřej Kalenda, PhD., DSc.

Texty k přednáškám – doplněny důkazy

Obsah

1	Úvod	3
	1.1 Množina komplexních čísel	 3
	1.2 Komplexní funkce reálné proměnné	
	1.3 Komplexní funkce komplexní proměnné	
2	Mocninné řady a elementární celé funkce	8
	$2.1 Mocninn\acute{e\ r\'ady-p\'ripomenut\'i}\ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	 8
	$2.2 Element\'{arn\'{i}} \ cel\'{e} \ funkce \ \ldots $	
	$2.3 Logaritmus, argument, obecn\'a mocnina \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	 12
3	Křivkový integrál	14
	3.1 Křivky a křivkový integrál v $\mathbb C$	 14
	3.2 Integrály a křivkové integrály závislé na parametru	
	3.3 Spojité větve logaritmu, index bodu ke křivce	 18
	3.4 Lokální Cauchyova věta a její důsledky	 20
4		31
	4.1 Rozšíření $\mathbb C$ o ∞ , Riemannova sféra	 31
	4.2 Izolované singularity holomorfních funkcí	
	4.3 Laurentovy řady a funkce holomorfní v mezikruží	
	4.4 Limity některých integrálů	
5	Laplaceova transformace	41
	5.1 Definice a základní vlastnosti	 41
	5.2 Inverzní formule	 44

1 Úvod

1.1 Množina komplexních čísel

Definice:

Množinou komplexních čísel rozumíme množinu \mathbb{R}^2 (tj. množinu všech uspořádaných dvojic reálných čísel) s následujícími operacemi:

- sčítání a násobení reálným číslem (definovanými stejně jako v \mathbb{R}^2);
- násobení definované vzorcem

$$(x,y) \cdot (a,b) = (xa - yb, xb + ya), \qquad (x,y), (a,b) \in \mathbb{R}^2.$$

Množinu komplexních čísel značíme C.

Základní vlastnosti C:

- (1) Množina \mathbb{C} s operacemi sčítání a násobení tvoří komutativní těleso, nulovým prvkem je (0,0), jednotkovým prvkem je (1,0). Inverzním prvkem k nenulovému prvku (x,y) je prvek $(\frac{x}{x^2+y^2}, -\frac{y}{x^2+y^2})$.
- (2) Zobrazení množiny $\mathbb R$ do $\mathbb C$ definované předpisem $x\mapsto (x,0)$ je tělesový izomorfismus $\mathbb R$ na $\{(x,y)\in\mathbb C:y=0\}$. Tudíž $\mathbb R$ budeme uvažovat jako podtěleso $\mathbb C$.
- (3) Na C není definováno uspořádání. Na C ani nelze definovat uspořádání tak, aby bylo uspořádaným tělesem.

Proč právě \mathbb{R}^2 ?

- \bullet V $\mathbb R$ není řešitelná rovnice $x^2+1=0,$ v $\mathbb C$ má každý polynom stupně alespoň 1 alespoň jeden kořen. (Dokážeme později.)
- Pro n > 2 lze na \mathbb{R}^n definovat "rozumné" násobení jen pro n = 4 (tzv. kvaterniony, které tvoří nekomutativní těleso) a pro n = 8 (tzv. oktoniony nebo Cayleyho čísla, pro ně už násobení není ani asociativní).

Zápisy komplexního čísla:

- Označme i = (0,1). Pak $i^2 = (-1,0)$ a číslo i nazýváme **imaginární jednotkou**.
- Algebraický zápis komplexního čísla: (x,y) = x + iy. Přitom zkracujeme zápis x + i0 = x a 0 + iy = iy.
- Maticový zápis komplexního čísla:

$$(x,y) = x + iy = \left(egin{array}{cc} x & y \\ -y & x \end{array}
ight).$$

Potom násobení komplexních čísel odpovídá násobení matic.

Definice:

Nechť $z=(x,y)=x+iy=\left(\begin{array}{cc} x & y \\ -y & x \end{array}\right)$, kde $x,y\in\mathbb{R}.$ Pak definujeme:

- Re z = x (**reálná část** komplexního čísla z);
- Im z = y (imaginární část komplexního čísla z);
- $|z| = \sqrt{x^2 + y^2} = \sqrt{\det \begin{pmatrix} x & y \\ -y & x \end{pmatrix}}$ (absolutní hodnota komplexního čísla z);
- $\overline{z} = x iy$ (komplexně sdružené číslo ke komplexnímu číslu z).

Pro každá $z,w\in\mathbb{C}$ platí:

- (1) $\overline{z+w} = \overline{z} + \overline{w}, \ \overline{z\cdot w} = \overline{z} \cdot \overline{w};$
- $(2) |z|^2 = z \cdot \overline{z};$
- (3) $|z \cdot w| = |z| \cdot |w|$;
- (4) $|\operatorname{Re} z| \le |z|, |\operatorname{Im} z| \le |z|;$
- $(5) |\overline{z}| = |z|.$

C jako metrický prostor:

Při ztotožnění \mathbb{C} s \mathbb{R}^2 je |z| rovno eukleidovské normě z. Vzorec d(z,w) = |z-w| definuje tedy **metriku** na \mathbb{C} . Tudíž víme například, co je to **okolí bodu** U(a,r), **otevřená množina**, **uzavřená množina**, **konvergence posloupnosti** v \mathbb{C} , **spojitost a limita zobrazení** z \mathbb{R} do \mathbb{C} , z \mathbb{C} do \mathbb{R} i z \mathbb{C} do \mathbb{C} .

Poznámka:

Funkce $z \mapsto \operatorname{Re} z$, $z \mapsto \operatorname{Im} z$, $z \mapsto \overline{z}$ a $z \mapsto |z|$ jsou spojité na \mathbb{C} .

C jako vektorový prostor:

(1) $\mathbb C$ je vektorový prostor dimenze 2 nad $\mathbb R$. V tomto případě lineární zobrazení $\mathbb C$ do $\mathbb C$ mají tvar

$$(x,y) \mapsto (x,y) \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

kde $a,b,c,d\in\mathbbm{R}$ jsou libovolná.

(2) $\mathbb C$ je vektorový prostor dimenze 1 nad $\mathbb C$. V tomto případě mají lineární zobrazení $\mathbb C$ do $\mathbb C$ tvar

$$z \mapsto z \cdot w$$
,

kde $w \in \mathbb{C}$ je libovolné; při identifikaci \mathbb{C} s \mathbb{R}^2 je to tvar

$$(x,y)\mapsto (x,y)\cdot \left(egin{array}{cc} a & b \\ -b & a \end{array}
ight),$$

kde $a, b \in \mathbb{R}$ jsou libovolná.

1.2 Komplexní funkce reálné proměnné

Definice:

- (1) Komplexní funkcí reálné proměnné rozumíme zobrazení $f: M \to \mathbb{C}$, kde $M \subset \mathbb{R}$.
- (2) Nechť $f:M\to\mathbb{C}$ je zobrazení. Pak definujeme funkce Re $f:M\to\mathbb{R}$ a Im $f:M\to\mathbb{R}$ předpisem

Re
$$f: x \mapsto \text{Re}(f(x)), x \in M$$
,
Im $f: x \mapsto \text{Im}(f(x)), x \in M$.

(3) Nechť f je komplexní funkce reálné proměnné a $x \in \mathbb{R}$. **Derivací funkce** f **v** bodě x rozumíme číslo

$$f'(x) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x},$$

pokud tato limita existuje (v C).

(4) Funkce $F:(a,b)\to\mathbb{C}$ je **primitivní funkce k** f **na** (a,b), jestliže F'(x)=f(x) pro všechna $x\in(a,b)$.

Věta 1:

Nechť $f:M\to\mathbb{C}$ je komplexní funkce reálné proměnné, $a\in\mathbb{R}$ a $z\in\mathbb{C}$. Pak platí

(1) $\lim_{x\to a+} f(x) = z$, právě když

$$\lim_{x \to a+} \operatorname{Re} f(x) = \operatorname{Re} z \text{ a } \lim_{x \to a+} \operatorname{Im} f(x) = \operatorname{Im} z.$$

Podobně pro limity zleva a oboustranné.

- (2) f je spojitá (zleva, zprava) v bodě a, právě když obě funkce Re f a Im f jsou spojité (zleva, zprava) v bodě a.
- (3) f'(x) existuje, právě když existují vlastní derivace (Re f)'(x) a (Im f)'(x). Pak

$$f'(x) = (\operatorname{Re} f)'(x) + i(\operatorname{Im} f)'(x).$$

(4) Funkce $F:(a,b)\to\mathbb{C}$ je primitivní funkce k f na (a,b), právě když Re F je primitivní funkcí k Re f na (a,b) a Im F je primitivní funkcí k Im f na (a,b).

Důkaz: Zřejmé

Definice:

Nechť f je komplexní funkce reálné proměnné. Integrál (Riemannův, Newtonův, Lebesgueův) z funkce f od a do b definujeme jako číslo

$$\int_a^b f = \int_a^b f(x) dx = \int_a^b \operatorname{Re} f + i \int_a^b \operatorname{Im} f,$$

pokud oba integrály na pravé straně konvergují.

Věta 2:

Nechť a < b jsou reálná čísla a $f: [a, b] \to \mathbb{C}$ je spojitá funkce. Pak platí

$$\left| \int_a^b f \right| \le \int_a^b |f| \le (b-a) \max_{x \in [a,b]} |f(x)|.$$

Důkaz:

Pro důkaz první nerovnosti označme

$$w := \int_a^b f$$
.

Pak protože levá strana je reálná, platí:

$$\left| \int_a^b f \right|^2 = w\overline{w} = \int_a^b f\overline{w} = \operatorname{Re} \int_a^b f\overline{w} = \int_a^b \operatorname{Re}(f\overline{w}) \le \int_a^b |f\overline{w}| = |w| \int_a^b |f|.$$

Pokud w=0, pak tvrzení platí. Jinak vydělíme nerovnost |w| a dostáváme tvrzení věty.

1.3 Komplexní funkce komplexní proměnné

Definice:

- (1) Komplexní funkcí komplexní proměnné rozumíme zobrazení $f: M \to \mathbb{C}$, kde $M \subset \mathbb{C}$.
- (2) Nechť f je komplexní funkce komplexní proměnné a $a \in \mathbb{C}$. Derivací funkce f podle komplexní proměnné v bodě a (stručněji derivací funkce f v bodě a) rozumíme (komplexní) číslo

$$f'(a) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a},$$

pokud limita na pravé straně existuje (v C).

Poznámka:

- (1) Pro derivaci podle komplexní proměnné platí věty o derivaci součtu, součinu, podílu a složené funkce ve stejné podobě jako pro derivaci v R.
- (2) Má-li f v bodě $a \in \mathbb{C}$ derivaci podle komplexní proměnné, je v bodě a spojitá.
- (3) Je-li f komplexní funkce komplexní proměnné, g komplexní funkce reálné proměnné a $x \in \mathbb{R}$, pak

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x),$$

pokud obě derivace na pravé straně existují.

Věta 3:

Nechť f je komplexní funkce komplexní proměnné. Označme $\tilde{f} = (\tilde{f}_1, \tilde{f}_2)$ funkci dvou reálných proměnných s hodnotami v \mathbb{R}^2 odpovídající f při ztotožnění \mathbb{C} a \mathbb{R}^2 ; tj. takovou, že

$$f(x+iy) = \tilde{f}_1(x,y) + i\tilde{f}_2(x,y)$$

pro x + iy z definičního oboru f.

(1) (Cauchy-Riemannovy podmínky) Nechť z = a + ib, kde $a, b \in \mathbb{R}$. Pak f má v bodě z derivaci podle komplexní proměnné, právě když \tilde{f} má v bodě (a, b) totální diferenciál a platí

$$\frac{\partial \tilde{f}_1}{\partial x}(a,b) = \frac{\partial \tilde{f}_2}{\partial y}(a,b)$$
 a $\frac{\partial \tilde{f}_1}{\partial y}(a,b) = -\frac{\partial \tilde{f}_2}{\partial x}(a,b).$

(2) Existuje-li f'(z), je Jacobiho determinant \tilde{f} v bodě (a,b) roven $|f'(z)|^2$. Speciálně, Jakobiho matice \tilde{f} v bodě (a,b) je regulární, právě když $f'(z) \neq 0$.

Důkaz:

$$(1) \qquad \qquad f'(z) = u + iv = w \quad \Leftrightarrow \quad \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = w \quad \Leftrightarrow \\ \Leftrightarrow \quad \lim_{h \to 0} \frac{f(z+h) - f(z) - hw}{h} = 0 \quad \Leftrightarrow \quad \lim_{h \to 0} \frac{f(z+h) - f(z) - hw}{|h|} = 0 \quad \Leftrightarrow \\ \Leftrightarrow \quad \lim_{h \to 0} \frac{\tilde{f}(a+h_1, b+h_2) - f(a, b) - (h_1, h_2) \binom{u}{-v} \binom{v}{-v}}{|h|} = (0, 0) \quad \Leftrightarrow \\ \Leftrightarrow \quad \text{zobrazení} \ (h_1, h_2) \mapsto (h_1, h_2) \binom{u}{-v} \binom{v}{-v} \) \text{ je totální diferenciál } \tilde{f} \text{ v bodě } (a, b).$$

$$(2)$$

(2)
$$\det\begin{pmatrix} u & v \\ -v & u \end{pmatrix} = u^2 + v^2 = |f'(z)|^2.$$

Poznámka:

Je-li $G\subset \mathbb{C}$ otevřená konvexní množina a $f:G\to \mathbb{C}$ splňuje f'(z)=0 pro všechna $z\in G$, je f konstantní na G.

Definice:

- Nechť $M \subset \mathbb{C}$. Řekneme, že funkce f je **holomorfní na množině** M, jestliže existuje otevřená množina $G \supset M$ taková, že f má derivaci (podle komplexní proměnné) v každém bodě množiny G.
- \bullet Funkce holomorfní na $\mathbb C$ se nazývá $\mathbf{cel\acute{a}}$ funkce.

2 Mocninné řady a elementární celé funkce

2.1 Mocninné řady - připomenutí

Definice:

Nechť $a \in \mathbb{C}$ a $\{c_n\}_{n=0}^{\infty}$ je posloupnost komplexních čísel. Nekonečnou řadu funkcí tvaru

(M)
$$\sum_{n=0}^{\infty} c_n (z-a)^n$$

nazýváme mocninnou řadou o středu a.

Poloměrem konvergence řady (M) rozumíme $R \in [0, +\infty]$ definované vzorcem

$$R = \sup\{r \in [0, +\infty) \mid \sum_{n=0}^{\infty} |c_n| r^n \text{ konverguje}\}.$$

Množinu

$$U(a,R) = \{ z \in \mathbb{C} \mid z - a \mid < R \},$$

pak nazýváme kruhem konvergence řady (M).

Věta 1:

- (1) Každá mocninná řada konverguje absolutně a lokálně stejnoměrně na svém kruhu konvergence.
- (2) Položme $L = \limsup_{n \to \infty} \sqrt[n]{|c_n|}$. Pak poloměr konvergence řady (M) je

$$R = \left\{ \begin{array}{ll} \frac{1}{L}, & L > 0, \\ +\infty, & L = 0. \end{array} \right.$$

- (3) Existuje-li $\lim_{n\to\infty}\frac{|c_{n+1}|}{|c_n|},$ rovná se číslu Lz předchozího bodu.
- (4) Mocninné řady $\sum_{n=1}^{\infty} nc_n(z-a)^{n-1}$ a $\sum_{n=0}^{\infty} \frac{c_n}{n+1} (z-a)^{n+1}$ mají stejný poloměr konvergence jako řada (M).

Důkaz:

- (1) Weierstrassovo kritérium.
- (2) Cauchyho odmocňovací kritérium.
- (3) d'Alembertovo kritérium.
- (4) Plyne z (2).

Věta 2: Derivace a integrace mocninné řady

Uvažujme řadu (M) a nechť R > 0 její poloměr konvergence. Definujme funkci $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$, $z \in U(a,R)$. Pak platí:

- (1) Funkce f je spojitá na U(a, R).
- (2) Funkce f je holomorfní na U(a,R) a platí

$$f'(z) = \sum_{n=1}^{\infty} nc_n(z-a)^{n-1}, \qquad z \in U(a, R).$$

(3) Funkce $F(z)=\sum_{n=0}^{\infty}\frac{c_n}{n+1}(z-a)^{n+1}$ je holomorfní na U(a,R) a pro každé $z\in U(a,R)$ platí F'(z)=f(z).

Důkaz:

- (1) Mocninná řada (M) je lokálně stejnoměrně konvergentní v U(a,R), tedy spojitá.
- (2) Mocninná řada $\sum_{n=1}^{\infty} nc_n(z-a)^{n-1}$ konverguje lokálně stejnoměrně na U(a,R), tedy lze přehodit derivaci a sumu.
- (3) Bod (2) aplikujeme na F(z).

2.2 Elementární celé funkce

Definice:

Pro $z \in \mathbb{C}$ definujme

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Funkci exp nazýváme **exponenciální funkce**, krátce **exponenciála**. Dále označme $e = \exp(1)$.

Věta 3: Vlastnosti exponenciální funkce

Platí:

- (E1) Funkce exp je definovaná na \mathbb{C} , je na \mathbb{C} holomorfní a platí $\exp'(z) = \exp(z)$ pro $z \in \mathbb{C}$.
- **(E2)** $\exp(0) = 1$.
- **(E3)** $\exp(z+w) = \exp(z) \cdot \exp(w)$ pro $z, w \in \mathbb{C}$.
- **(E4)** $\exp(z) \neq 0$ pro $z \in \mathbb{C}$.
- **(E5)** $\exp(z) = \exp(\overline{z}) \text{ pro } z \in \mathbb{C}.$
- (E6) Funkce exp zobrazuje \mathbb{R} na interval $(0, +\infty)$, je na \mathbb{R} rostoucí a (ryze) konvexní.
- **(E7)** $|\exp(z)| = \exp(\operatorname{Re} z)$ pro $z \in \mathbb{C}$.

Důkaz:

(E1) Poloměr konvergence je $+\infty$ podle V1 (3).

$$\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \frac{1}{n+1} \to 0 \quad \text{pro } n \to \infty \quad \Rightarrow \quad R = +\infty.$$

Tedy platí podle V2.

- (E2) Z definice.
- **(E3)** Volme $w \in \mathbb{C}$ pevné, definujme funkci $f(z) = \exp(z+w) \exp(-z)$. Pak $f(0) = \exp(w)$ a f je konstantní, protože

$$f'(z) = \exp(z+w)\exp(-z) + (-1)\exp(z+w)\exp(-z) = 0.$$

Tedy $f(z) = \exp(z+w) \exp(-z) = \exp(w)$ pro každé $z \in \mathbb{C}$. Volme w = x+y, z = -y, pak

$$\exp(x)\exp(y) = \exp(x+y).$$

- **(E4)** Pro každé $z \in \mathbb{C}$ platí $1 = \exp(0) = \exp(z) \exp(-z)$.
- **(E5)** Plyne z vlastností funkce $z \mapsto \overline{z}$ a toho, že $\frac{1}{n!}$ je z \mathbb{R} .
- (E6) Podle (E5) zobrazuje exp \mathbb{R} do \mathbb{R} . $\exp(0) = 1$ a $\exp(z) \neq 0$ pro každé $z \in \mathbb{C}$, ze spojitosti tedy $\exp(z) > 0$ pro každé $z \in \mathbb{C}$ (také $\exp'(z) > 0$ a $\exp''(z) > 0$ pro každé $z \in \mathbb{C}$). Dále platí:

$$\exp(n) = \exp(1)^n = e^n \to +\infty$$
 pro $n \to +\infty$,

$$\exp(-n) = \exp(-1)^n \to 0 \text{ pro } n \to +\infty.$$

(E7) Platí:

$$|\exp(z)|^2 = \exp(z)\overline{\exp(z)} = \exp(z)\exp(\overline{z}) = \exp(z+\overline{z}) = \exp(2\operatorname{Re} z) = \exp(\operatorname{Re} z)^2.$$

Výraz lze odmocnit, protože $\exp(\text{Re }z) > 0$ dle **(E6)**.

Definice:

Pro $z\in\mathbb{C}$ položme

- $\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2}$ (funkce **kosinus**);
- $\sin(z) = \frac{\exp(iz) \exp(-iz)}{2i}$ (funkce **sinus**);
- $\cosh(z) = \frac{\exp(z) + \exp(-z)}{2}$ (funkce **hyperbolický kosinus**);
- $\sinh(z) = \frac{\exp(z) \exp(-z)}{2}$ (funkce **hyperbolický sinus**);

Věta 4: Vlastnosti goniometrických a hyperbolických funkcí

- (1) Funkce cos, sin, cosh, sinh jsou definovány na C, přičemž funkce cos a cosh jsou sudé a funkce sin a sinh jsou liché.
- (2) $\cos(0) = \cosh(0) = 1$, $\sin(0) = \sinh(0) = 0$.
- (3) Funkce cos, sin, cosh, sinh jsou holomorfní na $\mathbb C$ a pro každé $z\in\mathbb C$ platí:

$$\cos'(z) = -\sin(z)$$
 $\cosh'(z) = \sinh(z)$
 $\sin'(z) = \cos(z)$ $\sinh'(z) = \cosh(z)$

(4) Pro každé $z \in \mathbb{C}$ platí

$$\cosh(iz) = \cos(z), \quad \sinh(iz) = i\sin(z), \quad \exp(iz) = \cos(z) + i\sin(z).$$

(5) Pro každé $z \in \mathbb{C}$ platí:

$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} \qquad \cosh(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$
$$\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} \qquad \sinh(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

- (6) Funkce cos, sin, cosh a sinh nabývají na $\mathbb R$ reálných hodnot.
- (7) Pro každá $z, w \in \mathbb{C}$ platí

$$\cos(z+w) = \cos(z)\cos(w) - \sin(z)\sin(w) \qquad \cosh(z+w) = \cosh(z)\cosh(w) + \sinh(z)\sinh(w) \\ \sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w) \qquad \sinh(z+w) = \sinh(z)\cosh(w) + \cosh(z)\sinh(w)$$

(8) Pro každé $z \in \mathbb{C}$ platí

$$\cos^2(z) + \sin^2(z) = 1, \qquad \cosh^2(z) - \sinh^2(z) = 1.$$

(9) $\cos(2) < 0$, a tedy můžeme definovat

$$\pi = 2 \cdot \min\{x > 0 : \cos(x) = 0\}.$$

Pak platí $\pi < 4$.

- (10) Na intervalu $[0, \frac{\pi}{2}]$ je funkce sin rostoucí a konkávní, funkce cos klesající a konkávní; $\sin(\frac{\pi}{2}) = 1$.
- (11) $\cos(\pi) = -1$, $\sin(\pi) = 0$.
- (12) Pro každé $z \in \mathbb{C}$ platí $\cos(z+\pi) = -\cos(z)$, $\sin(z+\pi) = -\sin(z)$.
- (13) Funkce sin a cos jsou periodické s periodou 2π ; funkce cosh, sinh a exp jsou periodické s periodou $2\pi i$
- (14) Nechť $z, w \in \mathbb{C}$. Pak $\exp(z) = \exp(w)$, právě když z w je celočíselný násobek $2\pi i$.
- (15) Nechť $z \in \mathbb{C}$. Pak $\sin(z) = 0$, právě když z je celočíselný násobek π .
- (16) Funkce exp zobrazuje \mathbb{C} na $\mathbb{C} \setminus \{0\}$.

Důkaz:

- (1) Z definice.
- (2) Z definice.
- (3) Protože funkce exp je holomorfní. Derivace získáme zderivováním vzorců.
- (4) Z definice.
- (5) Z definice.
- (6) Protože koeficienty mocninných řad jsou z R.
- (7) Ověříme výpočtem.
- (8) Podle (7).

$$1 = \cos(0) = \cos(z + (-z)) = \cos(z)\cos(-z) - \sin(z)\sin(-z) = \cos^2(z) + \sin^2(z).$$

$$1 = \cosh(0) = \cosh(z + (-z)) = \cosh(z)\cosh(z)\cosh(-z) + \sinh(z)\sinh(-z) = \cosh^{2}(z) - \sinh^{2}(z).$$

(9)
$$\cos 2 = \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{(2n)!} = \underbrace{1 - \frac{4}{2!} + \frac{16}{4!}}_{<0} + \sum_{n=2}^{\infty} \underbrace{\left(-\frac{2^{4n-2}}{(4n-2)!} + \frac{2^{4n}}{(4n)!} \right)}_{\frac{2^{4n-2}}{(4n)!} \underbrace{\left(4 - 4n(4n-1) \right)}}_{} < 0.$$

- (10) Nechť $z \in [0, \frac{\pi}{2}]$. Podle (iii) $\sin'(z) = \cos(z) \ge 0$, tedy funkce sin je rostoucí. $\sin(0) = 0$, tedy $\sin(z) \ge 0$. Z toho pak plyne, že cos je klesající. Konkávnost podobně určíme z druhých derivací. $\cos\left(\frac{\pi}{2}\right) = 0$ a $\sin\left(\frac{\pi}{2}\right) \ge 0$. Pak z (7) plyne, že $\sin\left(\frac{\pi}{2}\right) = 1$.
- (11) Plyne ze součtových vzorců.
- (12) Plyne ze součtových vzorců.
- (13) Plyne z (4) a (12).
- (14) Nechť $\exp(z) = \exp(w)$, pak $\exp(z-w) = 1$. Označme z-w = x+iy, kde $x,y \in \mathbb{R}$. Pak $\exp(x+iy) = 1$, tedy také $|\exp(x+iy)| = \exp(x) = 1$. Z toho plyne x=0, protože funkce exp je prostá na \mathbb{R} . Tedy $\exp(iy) = 1 = \cos(y) + i\sin(y)$, proto musí platit $\cos(y) = 1$ a $\sin(y) = 0$, což je ekvivalentní s podmínkou, že y je celočíselný násobek 2π .

(15)
$$0 = \sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \quad \Leftrightarrow \quad e^{iz} = e^{-iz} \quad \stackrel{(14)}{\Leftrightarrow} \quad iz - (-iz) = 2iz = 2k\pi i, \ k \in \mathbb{Z}, \quad \Leftrightarrow \quad z = k\pi, \ k \in \mathbb{Z}.$$

(16) Z V3 (**E4**) víme, že funkce exp zobrazuje \mathbb{C} do $\mathbb{C} \setminus \{0\}$.

Nechť $w \in \mathbb{C} \setminus \{0\}$ libovolné, hledáme z = x + iy, aby $\exp(z) = w$. Číslo w lze napsat ve tvaru w = |w|(u + iv), kde $u, v \in \mathbb{R}, u^2 + v^2 = 1$. Platí

$$|w| = |\exp(z)| = \exp(\operatorname{Re} z) = \exp x.$$

Víme, že |w|>0 a exp zobrazuje $\mathbb R$ na $(0,\infty)$ (V3 **(E6)**), tedy existuje $x\in\mathbb R$, že $|w|=\exp(x)$. Dále chceme najít $y\in\mathbb R$ tak, aby $\exp(iy)=\cos(y)+i\sin(y)=u+iv$. Protože $u^2+v^2=1$, $u,v\in[-1,1]$. Víme, že cos je spojitý, $\cos(0)=1$ a $\cos(\pi)=-1$, existuje tedy $y\in[0,\pi]$ takové, že $\cos(y)=\cos(-y)=u$. Pak protože $\cos^2(y)+\sin^2(y)=1$ je $|\sin(y)|=v$, tedy buď $\sin(y)=v$, nebo $\sin(-y)=v$.

Máme tedy z = x + iy takové, že platí

$$\exp(z) = \exp(x)(\cos(y) + i\sin(y)) = |w|(u+iv) = w.$$

2.3 Logaritmus, argument, obecná mocnina

Definice:

- \bullet Reálný logaritmus, tj. inverzní funkci k $\left.\exp\right|_{\mathbb{R}}$ budeme značit ln.
- Pro $z \in \mathbb{C} \setminus \{0\}$ označme

$$Log(z) = \{ w \in \mathbb{C} : \exp(w) = z \}.$$

- Nechť $z \in \mathbb{C} \setminus \{0\}$. Hlavní hodnotou logaritmu čísla z nazýváme takové $w \in \text{Log}(z)$, pro které $\text{Im } w \in (-\pi, \pi]$. Hlavní hodnotu logaritmu čísla z značíme $\log(z)$.
- Pro $z \in \mathbb{C} \setminus \{0\}$ definujme

$$Arg(z) = \{ Im w : w \in Log(z) \}$$

a

$$arg(z) = Im log(z).$$

Číslo arg(z) nazýváme **hlavní hodnota argumentu** čísla z.

Věta 5:

- (1) Pro každé $z \in \mathbb{C} \setminus \{0\}$ je $\text{Log}(z) \neq \emptyset$ a platí $\text{Log}(z) = \{\log(z) + 2k\pi i : k \in \mathbb{Z}\}.$
- (2) Funkce log je inverzní funkcí k funkci $\exp|_{\{z\in\mathbb{C}: \mathrm{Im}\, z\in(-\pi,\pi]\}}.$
- (3) Pro $z \in \mathbb{C} \setminus \{0\}$ platí $\log(z) = \ln|z| + i \arg(z)$.
- (4) Pro $z \in \mathbb{C} \setminus \{0\}$ platí $z = |z|(\cos \arg(z) + i \sin \arg(z))$ (goniometrický zápis komplexního čísla z).
- (5) Nechť $z=x+iy\in\mathbb{C}\setminus(-\infty,0]$. Pak platí

$$\arg(z) = \left\{ \begin{array}{ll} \arcsin\frac{\operatorname{Im}z}{|z|} = \arcsin\frac{y}{\sqrt{x^2+y^2}}, & \text{ je-li } \operatorname{Re}z > 0, \\ \arccos\frac{\operatorname{Re}z}{|z|} = \arccos\frac{x}{\sqrt{x^2+y^2}}, & \text{ je-li } \operatorname{Im}z > 0, \\ -\arccos\frac{\operatorname{Re}z}{|z|} = -\arccos\frac{x}{\sqrt{x^2+y^2}}, & \text{ je-li } \operatorname{Im}z < 0. \end{array} \right.$$

- (6) Funkce arg je spojitá na $\mathbb{C} \setminus (-\infty, 0]$.
- (7) Funkce log je spojitá na $\mathbb{C} \setminus (-\infty, 0]$.
- (8) Funkce log je holomorfní na $\mathbb{C} \setminus (-\infty, 0]$ a na této množině platí $\log'(z) = \frac{1}{z}$.

Důkaz:

- (1) Plyne z V4 (14) a (16).
- (2) Z definice.
- (3) Im $\log(z) = \arg(z)$ z definice. Z V3 (E7) víme $\exp(\operatorname{Re}\log(z)) = |\exp(\log(z))| = |z|$, tedy $\operatorname{Re}\log(z) = \ln|z|$.
- (4) $z = \exp(\log(z)) = \exp(\ln|z| + i\arg(z)) = |z|(\cos(\arg(z)) + i\sin(\arg(z))).$
- (5) Vyjádříme si z následovně:

$$z = x + iy = \sqrt{(x^2 + y^2)} \left(\frac{x}{x^2 + y^2} + i \frac{y}{x^2 + y^2} \right).$$

Pak $arg(z) = \alpha \in (-\pi, \pi)$, pro které

$$\cos(\alpha) = \frac{x}{x^2 + y^2} \qquad \sin(\alpha) = \frac{y}{x^2 + y^2}.$$

$$x > 0 \quad \Leftrightarrow \quad \alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad \Leftrightarrow \quad \alpha = \arcsin\frac{y}{\sqrt{x^2 + y^2}},$$

$$y > 0 \quad \Leftrightarrow \quad \alpha \in (0, \pi) \qquad \Leftrightarrow \quad \alpha = \arccos\frac{x}{\sqrt{x^2 + y^2}},$$

$$y < 0 \quad \Leftrightarrow \quad \alpha \in (-\pi, 0) \qquad \Leftrightarrow \quad \alpha = -\arccos\frac{x}{\sqrt{x^2 + y^2}}.$$

- (6) Každý bod z $\mathbb{C} \setminus (-\infty, 0]$ patří alespoň do jedné z polorovin (x > 0, y > 0 nebo y < 0), kde je dán spojitým vzorcem. Tedy funkce je spojitá v každém bodě.
- (7) Reálná část je spojitá (víme z reálné analýzy). Imaginární část je spojitá podle bodu (6).
- (8) Nechť $z_0 \in \mathbb{C} \setminus (-\infty, 0]$:

$$\log'(z_0) = \lim_{z \to z_0} \frac{\log(z) - \log(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\log(z) - \log(z_0)}{\exp(\log(z)) - \exp(\log(z_0))} \stackrel{\text{VOLSF}}{=}$$

$$\lim_{y \to \log(z_0)} \frac{y - \log(z_0)}{\exp(y) - \exp(\log(z_0))} = \frac{1}{\exp'(\log(z_0))} = \frac{1}{z_0}.$$

Předpoklady věty o limitě složené funkce jsou splněny, protože funkce log je spojitá a prostá.

Definice:

Nechť $z,a\in\mathbb{C}$, přičemž $z\neq0$. Pak definujeme

- $M_a(z) = \{\exp(aw) : w \in \text{Log}(z)\}$ (a-tá mocnina komplexního čísla z)
- $m_a(z) = \exp(a \log(z))$ (hlavní hodnota a-té mocniny komplexního čísla z)
- Je-li z > 0, značíme $z^a = m_a(z) = \exp(a \ln(z))$.

Věta 6:

Nechť $z \in \mathbb{C} \setminus \{0\}$.

(1) Je-li $n \in \mathbb{Z}$, obsahuje množina $M_n(z)$ právě jeden prvek, a to prvek z^n , kde

$$z^0 = 1;$$
 $z^n = \underbrace{z \cdot \dots \cdot z}_{n \cdot \text{krát}} \text{ pro } n > 0;$ $z^n = \frac{1}{z^{-n}} \text{ pro } n < 0.$

(2) Je-li $n \in \mathbb{N},$ obsahuje množina $M_{1/n}(z)$ právě n prvků.

Důkaz:

(1) Když je $w \in \text{Log}(z)$, znamená to, že $w = \log(z) + 2k\pi i$, kde $k \in \mathbb{Z}$. Dále pak

$$\exp(nw) = \exp(n\log(z) + 2nk\pi i) = \exp(n\log(z)) = \begin{cases} (\exp(\log(z)))^n = z^n, & n > 0, \\ 1, & n = 0, \\ \frac{1}{(\exp(-n\log(z)))} = \frac{1}{z^{-n}}, & n < 0. \end{cases}$$

(2) Platí

$$\exp\left(\frac{1}{n}w\right) = \exp\left(\frac{1}{n}\ln|z| + \frac{i}{n}\arg(z) + \frac{2k\pi i}{n}\right).$$

Pro k_1 , k_2 vyjde totéž právě tehdy, když k_1-k_2 je násobek n.

3 Křivkový integrál

3.1 Křivky a křivkový integrál v $\mathbb C$

Definice:

Křivkou v $\mathbb C$ rozumíme spojité zobrazení uzavřeného intervalu do $\mathbb C$, tj. spojitou funkci $\varphi:[a,b]\to\mathbb C$, kde a< b jsou reálná čísla. Je-li $\varphi:[a,b]\to\mathbb C$ křivka, pak

 \bullet obrazem křivky φ rozumíme její obor hodnot, tj. množinu

$$\langle \varphi \rangle = \varphi([a, b]) = \{ \varphi(t) : t \in [a, b] \};$$

- počátečním bodem křivky φ rozumíme bod $\varphi(a)$, koncovým bodem bod $\varphi(b)$;
- křivku φ nazýváme **uzavřenou**, pokud $\varphi(a) = \varphi(b)$;
- opačnou křivkou k φ rozumíme křivku $\dot{-}\varphi:[-b,-a]\to\mathbb{C}$ definovanou vzorcem $\dot{-}\varphi(t)=\varphi(-t);$
- je-li navíc $\psi:[c,d]\to\mathbb{C}$ křivka, pro kterou $\psi(c)=\varphi(b)$, pak jejich **spojením** $\varphi\dotplus\psi$ rozumíme křivku definovanou na intervalu [a,b+d-c] vzorcem

$$(\varphi \dotplus \psi)(t) = \left\{ \begin{array}{ll} \varphi(t), & t \in [a, b], \\ \psi(t - b + c), & t \in [b, b + d - c]; \end{array} \right.$$

• délkou křivky φ rozumíme

$$V(\varphi) = \sup \left\{ \sum_{j=1}^{n} |\varphi(t_j) - \varphi(t_{j-1})| : n \in \mathbb{N}, a = t_0 < t_1 < \dots < t_n = b \right\}.$$

Křivku $\varphi(t)=a+re^{it},\ t\in[0,2\pi],$ kde $a\in\mathbb{C}$ a r>0, nazýváme kladně orientovaná kružnice o středu a a poloměru r. Opačnou křivku nazýváme záporně orientovaná kružnice.

Křivku $\varphi(t) = a + t(b-a), t \in [0,1], \text{ kde } a,b \in \mathbb{C}, \text{ nazýváme } \mathbf{orientovaná úsečka } [a,b].$

Cestou neboli po částech hladkou křivkou v \mathbb{C} rozumíme křivku $\varphi : [a,b] \to \mathbb{C}$, pro kterou existuje takové dělení $a = s_0 < s_1 < \dots < s_n = b$, že pro každé $j = 1, \dots, n$ je funkce φ třídy C^1 na $[s_{j-1}, s_j]$ (tj. derivace φ' je spojitá na (s_{j-1}, s_j) a má v krajních bodech s_{j-1} a s_j vlastní jednostranné limity).

Je-li navíc $f:\langle\varphi\rangle\to\mathbb{C}$ spojitá funkce, definujeme integrál funkce f podél cesty φ vzorcem

$$\int_{\Omega} f = \int_{\Omega} f(z) dz = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt,$$

kde integrál na pravé straně je zobecněný Riemannův, tj. roven

$$\sum_{j=1}^{n} \int_{s_{j-1}}^{s_j} f(\varphi(t)) \varphi'(t) dt.$$

Poznámka:

Je-li $\varphi : [a, b] \to \mathbb{C}$ cesta, pak $V(\varphi) = \int_a^b |\varphi'(t)| dt$.

Věta 1:

Nechť $\varphi:[a,b]\to\mathbb{C}$ je cesta.

(1) Nechť h je rostoucí zobrazení intervalu [c,d] na interval [a,b], které je třídy C^1 . Pak

$$\int_{\varphi \circ h} f = \int_{\varphi} f \text{ pro každou spojitou } f : \langle \varphi \rangle \to \mathbb{C}.$$

(2)
$$\int_{\dot{-}\varphi} f = -\int_{\varphi} f$$
 pro každou spojitou $f: \langle \varphi \rangle \to \mathbb{C}$.

(3) Je-li $\psi:[c,d]\to\mathbb{C}$ cesta splňující $\psi(c)=\varphi(b),$ pak

$$\int_{\varphi \dot{+}\psi} f = \int_{\varphi} f + \int_{\psi} f \text{ pro každou spojitou } f : \langle \varphi \rangle \cup \langle \psi \rangle \to \mathbb{C}.$$

(4)
$$\left| \int_{\varphi} f \right| \leq V(\varphi) \cdot \max_{z \in \langle \varphi \rangle} |f(z)|$$
 pro každou spojitou $f : \langle \varphi \rangle \to \mathbb{C}$.

Důkaz:

- (1) Plyne z věty o substituci.
- (2) Plyne z věty o substituci.
- (3) Plyne z věty o substituci a aditivity zobecněného Riemannova integrálu.
- (4) Protože funk
nce f je spojitá a $\langle \varphi \rangle$ je kompaktní množina, nabýv
á f na $\langle \varphi \rangle$ maxima. Pak platí

$$\left| \int_{\varphi} f \right| = \left| \int_{a}^{b} f(\varphi(t)) \varphi'(t) \right| \leq \int_{a}^{b} \underbrace{|f(\varphi(t))|}_{\leq \max_{z \in \langle \varphi \rangle} |f(z)|} |\varphi'(t)| \leq \max_{z \in \langle \varphi \rangle} |f(z)| \int_{a}^{b} |\varphi'(t)| = \max_{z \in \langle \varphi \rangle} |f(z)| V(\varphi).$$

Věta 2:

Nechť f je komplexní funkce komplexní proměnné spojitá na okolí bodu $a \in \mathbb{C}$. Pak

$$f(a) = \lim_{h \to 0} \frac{1}{h} \int_{[a,a+h]} f.$$

Důkaz:

Pro každou konstantu $c \in \mathbb{C}$ platí

$$\int_{[a,a+h]} c = \int_0^1 ch \, \mathrm{d}t = ch.$$

S využitím tohoto vztahu dostáváme

$$\left|\frac{1}{h}\int_{[a,a+h]}f(z)-f(a)\right|=\left|\frac{1}{h}\left(\int_{[a,a+h]}(f(z)-f(a))\right)\right|\overset{\mathrm{V1}(4)}{\leq}\frac{1}{|h|}|h|\underbrace{\max_{z\in[a,a+h]}|f(z)-f(a)|}_{=0}.$$

Definice:

Nechť $G \subset \mathbb{C}$ je otevřená a $f: G \to \mathbb{C}$ je funkce. Funkci $F: G \to \mathbb{C}$ nazýváme **primitivní funkcí** k f na G, pokud F'(z) = f(z) pro každé $z \in G$.

Věta 3:

Nechť $G \subset \mathbb{C}$ je otevřená, $f: G \to \mathbb{C}$ je spojitá funkce a F je primitivní funkce k f na G. Pak pro každou cestu $\varphi: [a,b] \to G$ platí $\int_{\varphi} f = F(\varphi(b)) - F(\varphi(a))$.

Speciálně, je-li φ uzavřená cesta v G, pak $\int_{\varphi} f = 0$.

Důkaz:

$$\int_{\varphi} f = \int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \sum_{j=1}^{n} \int_{s_{j-1}}^{s_{j}} F'(\varphi(t))\varphi'(t) dt = \sum_{j=1}^{n} \int_{s_{j-1}}^{s_{j}} (F \circ \varphi)'(t) dt = \sum_{j=1}^{n} (F(\varphi(s_{j})) - F(\varphi(s_{j-1}))) = F(\varphi(b)) - F(\varphi(a)).$$

Věta 4: Charakterizace oblasti

Nechť $\Omega \subset \mathbb{C}$ je otevřená. Pak následující podmínky jsou ekvivalentní.

- (1) Ω je **souvislá** (tj. pro každou neprázdnou $G \subset \Omega$ takovou, že G i $\Omega \setminus G$ jsou otevřené množiny, platí $G = \Omega$).
- (2) Ω je **křivkově souvislá** (tj. pro každé dva body $z, w \in \Omega$ existuje spojité zobrazení $\varphi : [0, 1] \to \Omega$, pro které $\varphi(0) = z$ a $\varphi(1) = w$).
- (3) Každé dva body v Ω lze spojit lomenou čárou v Ω (tj. pro každé dva body $z, w \in \Omega$ existuje konečná posloupnost bodů $z = u_0, u_1, \ldots, u_n = w$ taková, že pro každé $j = 1, \ldots, n$ úsečka spojující u_{j-1} a u_j leží celá v Ω).

Důkaz:

- $(3) \Rightarrow (2)$ Lomená čára je křivka.
- (2) \Rightarrow (1) Předpokládejme, že Ω je nesouvislá, pak $\Omega = U \cup V$, kde U, V jsou otevřené, neprázdné a disjunktní množiny. Nechť $u \in U$ a $v \in V$, pak z křivkové souvislosti plyne, že existuje spojité zobrazení $\varphi : [0,1] \to \Omega$ takové, že $\varphi(0) = u$ a $\varphi(1) = v$. Množiny $\varphi^{-1}(U)$, $\varphi^{-1}(V)$ jsou disjunktní, otevřené v intervalu [0,1] a neprázdné $(0 \in \varphi^{-1}(U), 1 \in \varphi^{-1}(V))$ a platí $\varphi^{-1}(U) \cup \varphi^{-1}(V) = [0,1]$. Ale interval [0,1] je souvislá množina, tedy docházíme ke sporu.
- $(1) \Rightarrow (3)$ Zvolme $a \in \Omega$ a definujme množinu $M := \{z \in \Omega : a \text{ lze spojit se } z \text{ lomenou čarou v } \Omega\}.$
 - $M \neq \emptyset$ (obsahuje a).
 - M je otevřená. Nechť $z \in M$, pak existuje r > 0 takové, že $\mathcal{U}(z,r) \subset \Omega$, protože Ω je otevřená. Pro libovolné $w \in \mathcal{U}(z,r)$ pak úsečka zw leží v Ω . Vezmeme-li lomenou čáru z a do z a prodloužíme ji o zw, dostaneme lomenou čáru z a do w, tedy $\mathcal{U}(z,r) \subset M$.
 - $\Omega \setminus M$ je otevřená. Nechť $z \in \Omega \setminus M$, pak existuje r > 0 takové, že $\mathcal{U}(z,r) \subset \Omega$, protože Ω je otevřená. Platí, že $\mathcal{U}(z,r) \subset \Omega \setminus M$, protože kdyby $w \in \mathcal{U}(z,r) \cap M$, pak vezmu lomenou čáru z a do w a prodloužím ji o úsečku wz, odtud pak $z \in M$.

Tedy $M = \Omega$, protože Ω je souvislá.

Definice:

Otevřenou souvislou podmnožinu C nazýváme oblast.

Věta 5: primitivní funkce a křivkový integrál

Nechť $\Omega \subset \mathbb{C}$ je oblast a $f: \Omega \to \mathbb{C}$ je spojitá funkce. Pak následující podmínky jsou ekvivalentní.

- (1) f má v Ω primitivní funkci.
- (2) Křivkový integrál v Ω nezávisí na cestě, tj. kdykoli $\varphi : [a, b] \to \Omega$ a $\psi : [c, d] \to \Omega$ jsou dvě cesty splňující $\varphi(a) = \psi(c)$ a $\varphi(b) = \psi(d)$, pak $\int_{C} f = \int_{\mathbb{R}^d} f$.
- (3) Pro každou uzavřenou cestu $\varphi:[a,b]\to\Omega$ je $\int_{\mathbb{R}^2}f=0.$

Důkaz:

- $(1) \Rightarrow (3)$ Plyne z Věty 3.
- $(3) \Rightarrow (2)$ Pro φ a ψ ze znění věty platí

$$\int_{\varphi} f - \int_{\psi} f = \int_{\varphi} f + \int_{\dot{-}\psi} f = \int_{\varphi \dot{+}(\dot{-}\psi)} f = 0,$$

protože křivka $\varphi \dotplus (\dot{-} \psi)$ je uzavřená křivka.

(2) \Rightarrow (1) Zvolme $a \in \Omega$ libovolné. Pro každé $z \in \Omega$ zvolme cestu φ_z z a do z v Ω (např. lomenou čáru). Definujme $F(z) := \int_{\varphi_z} f$. Dokážeme, že F je primitivní funkce k f na Ω . Mějme $z \in \Omega$ libovolné, r > 0 tak, aby $\mathcal{U}(z, r) \subset \Omega$, $h \in C$, 0 < |h| < r, pak platí

$$\frac{F(z+h)-F(z)}{h} = \frac{1}{h} \left(\int_{\varphi_{z+h}} f - \int_{\varphi_z} f \right) = \frac{1}{h} \int_{(\dot{-}\varphi_z) \dot{+}\varphi_{z+h}} f = \frac{1}{h} \int_{[z,z+h]} f \overset{h \to 0}{\to} f(z).$$

Tedy F'(z) = f(z).

3.2 Integrály a křivkové integrály závislé na parametru

Věta 6: O derivaci integrálu podle komplexní proměnné

Nechť $I \subset \mathbb{R}$ je interval a $\Omega \subset \mathbb{C}$ je oblast. Nechť funkce $F: I \times \Omega \to \mathbb{C}$ splňuje následující podmínky:

- (1) Pro každé $z \in \Omega$ je funkce $t \mapsto F(t, z)$ měřitelná na intervalu I.
- (2) Pro skoro všechna $t \in I$ má funkce $z \mapsto F(t, z)$ spojitou derivaci podle komplexní proměnné na Ω .
- (3) Existuje $z_0 \in \Omega$, pro které je funkce $t \mapsto F(t, z_0)$ integrovatelná na I.
- (4) Pro každé $z \in \Omega$ existuje U okolí z a integrovatelná funkce h na I, pro kterou platí $\left|\frac{\partial F}{\partial z}(t,w)\right| \leq h(t)$ pro všechna $w \in \Omega$ pro skoro všechna $t \in I$.

Potom funkce

$$g(z) = \int_{I} F(t, z) dt, \qquad z \in \Omega$$

je holomorfní na Ω a pro $z \in \Omega$ platí

$$g'(z) = \int_{I} \frac{\partial F}{\partial z}(t, z) dt.$$

Důkaz: Někdy jindy

Věta 7: O záměně křivkového integrálu a ...

Nechť $\varphi:[a,b]\to\mathbb{C}$ je cesta.

- (1) Nechť pro každé $n \in \mathbb{N}$ je $f_n : \langle \varphi \rangle \to \mathbb{C}$ spojitá funkce a tyto funkce nechť na $\langle \varphi \rangle$ konvergují stejnoměrně k funkci f. Pak $\int_{\varphi} f_n \to \int_{\varphi} f$.
- (2) Nechť pro každé $n \in \mathbb{N}$ je $f_n : \langle \varphi \rangle \to \mathbb{C}$ spojitá funkce a tyto funkce nechť na $\langle \varphi \rangle$ konvergují bodově ke spojité funkci f. Je-li posloupnost funkce (f_n) stejně omezená na $\langle \varphi \rangle$, pak $\int_{\varphi} f_n \to \int_{\varphi} f$.
- (3) Nechť $G \subset \mathbb{C}$ je neprázdná otevřená množina a $F : \langle \varphi \rangle \times G \to \mathbb{C}$ je spojitá funkce. Pak funkce

$$g(w) = \int_{\omega} F(z, w) dz, \qquad w \in G$$

je spojitá na G.

(4) Nechť $G \subset \mathbb{C}$ je otevřená množina, $F : \langle \varphi \rangle \times G \to \mathbb{C}$ je spojitá funkce a parciální derivace funkce F podle druhé proměnné (tj. derivace funkce $w \mapsto F(z, w)$ podle komplexní proměnné) je spojitá na $\langle \varphi \rangle \times G$. Potom funkce

$$g(w) = \int_{\varphi} F(z, w) dz, \qquad w \in G$$

je holomorfní na G a pro $w \in G$ platí

$$g'(w) = \int_{\varphi} \frac{\partial F}{\partial w}(z, w) dz.$$

Důkaz:

(1) Protože φ je po částech hladká a φ' je omezená, pak $f_n(\varphi(t))\varphi'(t) \Rightarrow f(\varphi(t))\varphi'(t)$ na [a,b] vyjma dělících bodů. Pak plyne z věty z reálné analýzy.

(2) $f_n(\varphi(t))\varphi'(t) \to f(\varphi(t))\varphi'(t)$ bodově na [a,b] vyjma dělících bodů. Posloupnost $\{f_n(\varphi(t))\varphi'(t)\}$ je stejně omezená. Pak plyne z Lebesgueovy věty.

(3)

$$g(w) = \int_{a}^{b} F(\varphi(t), w) \varphi'(t) dt.$$

Funkce $F(\varphi(t), w)$ je spojitá v proměnné w až na konečně mnoho bodů a měřitelná v proměnné t. Zvolme $w_0 \in G$ libovolné a najděme $\varepsilon > 0$ takové, že $\overline{\mathcal{U}(w_0, \varepsilon)} \subset G$. Protože F je spojitá, je také omezená na $\langle \varphi \rangle \times \overline{\mathcal{U}(w_0, \varepsilon)}$ a na tomto kompaktu platí $|F| \leq M$. Platí

$$|F(\varphi(t), w)\varphi'(t)| \le M \sup \varphi' \quad \forall t \in [a, b], \ w \in \overline{\mathcal{U}(w_0, \varepsilon)},$$

tedy existuje integrovatelná majoranta. Pak podle věty o spojitosti podle parametru je g spojitá v bodě w_0 . Bod w_0 jsme zvolili libovolně, proto g je spojitá.

(4)

$$g(w) = \int_a^b F(\varphi(t), w) \varphi'(t) dt.$$

Ověříme předpoklady Věty 6, pak to z ní plyne.

3.3 Spojité větve logaritmu, index bodu ke křivce

Věta 8:

Nechť $\varphi:[a,b]\to\mathbb{C}$ je křivka a $f:\langle\varphi\rangle\to\mathbb{C}$ je spojitá funkce, která na $\langle\varphi\rangle$ nenabývá hodnoty 0. Pak existuje spojitá funkce $L:[a,b]\to\mathbb{C}$ taková, že $f(\varphi(t))=e^{L(t)}$ pro $t\in[a,b]$. Jsou-li L_1 a L_2 dvě takové funkce, pak existuje $k\in\mathbb{Z}$, že $L_1(t)-L_2(t)=2k\pi i$ pro $t\in[a,b]$.

Je-li navíc φ cesta, f je holomorfní na $\langle \varphi \rangle$ a f' spojitá na $\langle \varphi \rangle$, lze volit

$$L(t) = \log(f(\varphi(a))) + \int_a^t \frac{f'(\varphi(s))}{f(\varphi(s))} \varphi'(s) ds.$$

Důkaz:

Existence obecně – nedělal.

Jednoznačnost: Jestliže $e^{L_1(t)} = e^{L_2(t)}$ pak $e^{L_1(t)-L_2(t)} = 1$. Tedy $\frac{L_1-L_2}{2\pi i}$ je spojitá funkce na [a,b], která nabývá jen celočíselných hodnot, což je konstanta.

Pro cestu: Definujme L(t) vzorcem ze zadání. Chceme ukázat, že $e^{L(t)} = f(\varphi(t)), \ t \in [a,b]$. Definujme $g(t) = e^{L(t)}$. Pak pro všechna $t \in [a,b]$ až na konečně mnoho platí

$$g'(t) = e^{L(t)} \frac{f'(\varphi(t))}{f(\varphi(t))} \varphi'(t),$$

$$\begin{split} g'(t) - g(t) \frac{f'(\varphi(t))}{f(\varphi(t))} \varphi'(t) &= 0, \\ \frac{g'(t) f(\varphi(t)) - g(t) f'(\varphi(t)) \varphi'(t)}{f(\varphi(t))} &= 0, \\ \frac{g'(t) (f \circ \varphi)(t) - g(t) (f \circ \varphi)'(t)}{((f \circ \varphi)(t))^2} &= 0, \\ \left(\frac{g}{f \circ \varphi}\right)' &= 0. \end{split}$$

Funkce $g/f \circ \varphi$ je spojitá na [a,b] a až na konečně mnoho bodů t má derivaci rovnou nule, tedy je to konstanta na [a,b]. V bodě a má hodnotu 1, tedy $g/f \circ \varphi = 1$ na [a,b], z čehož dostáváme: $f \circ \varphi = g = e^L$.

Definice:

Nechť φ , f a L jsou jako ve Větě 8. Pak **přírůstkem logaritmu funkce** f **podél křivky** φ rozumíme číslo

$$\Delta_{\varphi} \log(f) = L(b) - L(a).$$

Věta 9:

Je-li φ cesta, f holomorfní na $\langle \varphi \rangle$ a f' spojitá na $\langle \varphi \rangle$, pak

$$\Delta_{\varphi} \log(f) = \int_{\varphi} \frac{f'(z)}{f(z)} dz.$$

Důkaz:

Plyne z Věty 8 a toho, že

$$\int_{\mathcal{O}} \frac{f'(z)}{f(z)} = \int_{a}^{b} \frac{f'(\varphi(t))}{f(\varphi(t))} \varphi'(t) dt.$$

Poznámka:

Později dokážeme, že je-li fholomorfní, je f^\prime automaticky spojitá.

Definice:

Nechť φ je uzavřená cesta a $a \in \mathbb{C} \setminus \langle \varphi \rangle$. Pak index bodu a vzhledem ke křivce φ je definován vzorcem

$$\operatorname{ind}_{\varphi} a = \frac{1}{2\pi i} \int_{\varphi} \frac{1}{z - a} \, \mathrm{d}z.$$

Poznámka:

Je-li φ uzavřená cesta a $a \in \mathbb{C} \setminus \langle \varphi \rangle$, pak $\operatorname{ind}_{\varphi} a = \frac{1}{2\pi i} \Delta_{\varphi} \log(z - a)$.

Definice:

Nechť $M\subset\mathbb{C}$ je množina. Množinu $A\subset M$ nazveme **komponentou množiny** M, je-li maximální souvislou podmnožinou M (tj. je-li A souvislá a přitom každá množina B splňující $A\subsetneq B\subset M$ je nesouvislá).

Věta 10:

Nechť $\Omega \subset \mathbb{C}$ je otevřená. Pak každá její komponenta je otevřená množina.

Důkaz:

Bud' A komponenta Ω a $a \in A$, pak

$$A = \bigcup \{B \subset \Omega \text{ souvisl\'a}, \ a \in B\},\$$

což je souvislá množina. Protože Ω je otevřená, pak existuje r>0 takové, že $\mathcal{U}(a,r)\subset\Omega$, ale $\mathcal{U}(a,r)$ je souvislá, tedy $\mathcal{U}(a,r)\subset A$.

Věta 11: Vlastnosti funkce $\operatorname{ind}_{\varphi} a$

Nechť φ je uzavřená cesta. Pro $a \in \mathbb{C} \setminus \langle \varphi \rangle$ položme $\iota(a) = \operatorname{ind}_{\varphi} a$.

- (1) Funkce ι nabývá jen celočíselných hodnot.
- (2) Funkce ι je konstantní na každé komponentě množiny $\mathbb{C} \setminus \langle \varphi \rangle$.
- (3) Funkce ι je rovna nule na neomezené komponentě množiny $\mathbb{C} \setminus \langle \varphi \rangle$.

Důkaz:

(1) Plyne z toho, že φ je uzavřená a

$$\iota(a) = \frac{1}{2\pi i} \Delta_{\varphi} \log(z - a).$$

- (2) Z Věty 7 bod (3) plyne, že ι je spojitá na $\mathbb{C} \setminus \langle \varphi \rangle$
- (3) Existuje r > 0 takové, že $\langle \varphi \rangle \subset \mathcal{U}(0,r)$. Pro |a| > r platí

$$|\iota(a)| = \left| \frac{1}{2\pi i} \int_{\varphi} \frac{1}{z - a} \, \mathrm{d}z \right| \le \frac{1}{2\pi} V(\varphi) \frac{1}{|a| - r} \stackrel{|a| \to \infty}{\to} 0.$$

Poznámka:

(1) Je-li φ kladně orientovaná kružnice o středu a a poloměru r, pak

$$\operatorname{ind}_{\varphi} z = \begin{cases} 1 & \text{pro } z \in U(a, r), \\ 0, & \text{je-li } |z - a| > r. \end{cases}$$

- (2) Platí **Jordanova věta**: Je-li $\varphi:[a,b]\to\mathbb{C}$ uzavřená cesta taková, že φ je prostá na [a,b), pak množina $\mathbb{C}\setminus\langle\varphi\rangle$ má právě dvě komponenty jednu neomezenou (na ní je index roven nule) a jednu omezenou (na ní je index roven buď 1 nebo -1).
- (3) Platí následující **propichovací věta**: Nechť φ je uzavřená cesta, $a,b \in \mathbb{C}$ taková, že b-a>0, úsečka spojující body a,b protíná $\langle \varphi \rangle$ v jediném bodě z_0 , ten je různý od a,b, existuje jediné t_0 , pro které $\varphi(t_0)=z_0$, a $\operatorname{Im} \varphi'(t_0)\neq 0$. Pak

$$\operatorname{ind}_{\varphi} a - \operatorname{ind}_{\varphi} b = \operatorname{sgn} \operatorname{Im} \varphi'(t_0).$$

3.4 Lokální Cauchyova věta a její důsledky

Definice:

Nechť $a,b,c \in \mathbb{C}$. Trojúhelníkem $\triangle abc$ rozumíme konvexní obal množiny $\{a,b,c\}$, tj. nejmenší konvexní množinu obsahující body a,b,c. Obvodem trojúhelníka $\triangle abc$ rozumíme křivku

$$\partial \triangle abc = [a, b] \dotplus [b, c] \dotplus [c, a].$$

Věta 12: Cauchy-Goursatova věta pro trojúhelník

Nechť $\Omega \subset \mathbb{C}$ je otevřená množina a f je holomorfní funkce na $\Omega.$ Pak

$$\int_{\partial \triangle abc} f = 0 \text{ pro každý trojúhelník } \triangle abc \text{ obsažený v } \Omega.$$

Důkaz:

Pokud a, b, c leží na přímce, pak věta platí i pro f, která je pouze spojitá.

Důkaz provedeme sporem. Předpokládejme, že

$$\int_{\partial \triangle abc} f = I \neq 0.$$

Tento integrál se dá napsat jako součet integrálů přes čtyři menší trojúhelníky

$$\int_{\partial\triangle abc}f=\int_{\partial\triangle ab'c'}f+\int_{\partial\triangle c'ba'}f+\int_{\partial\triangle a'cb'}f+\int_{\partial\triangle a'b'c'}f.$$

Vytvoříme následující posloupnost trojúhelníků

$$\begin{array}{rcl} \triangle_1 &:=& \triangle abc,\\ & \triangle_2 &:=& \text{jeden ze čtyř menších, pro který platí} \ \left|\int_{\partial\triangle_2}f\right|\geq \frac{|I|}{4},\\ & \vdots \end{array}$$

pokračujeme indukcí. Dostáváme $\{\Delta_n\}$ klesající posloupnost uzavřených množin, jejichž diametr jde k nule. Podle Cantorovy věty platí

$$\bigcap_{n=1}^{\infty} \triangle_n = \{z_0\}.$$

Protože f je holomorfní, existuje $f'(z_0)$, tj.

$$\lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right) = 0.$$

Nechť $\varepsilon>0$ libovolné. Pak existuje $\delta>0$ tak, že pro každé $z\in\mathbb{C},\,|z-z_0|<\delta$:

$$|f(z) - f(z_0) - f'(z)(z - z_0)| \le \varepsilon |z - z_0|.$$

Jelikož průměr trojúhelníků \triangle_n se blíží k nule, existuje n_0 takové, že pro každé $n \ge n_0$: $\triangle_n \subset \mathcal{U}(z_0, \delta)$. Pak pro $n \ge n_0$ dostáváme

$$\frac{|I|}{4^{n-1}} \leq \left| \int_{\partial \triangle_n} f(z) \, \mathrm{d}z \right| =$$

$$= \left| \int_{\partial \triangle_n} (f(z) - f(z_0) - f'(z_0)(z - z_0)) \, \mathrm{d}z + \int_{\partial \triangle_n} \underbrace{(f(z_0) + f'(z_0)(z - z_0))}_{\text{polynom, tedy m\'{a} PF na C}} \, \mathrm{d}z \right| =$$

$$= 0 \text{ podle V3}$$

$$= \left| \int_{\partial \triangle_n} (f(z) - f(z_0) - f'(z_0)(z - z_0)) \, \mathrm{d}z \right| \leq$$

$$\stackrel{V1(4)}{\leq} \underbrace{V(\partial \triangle_n)}_{z \in \partial \triangle_n} \sup_{z \in \partial \triangle_n} \underbrace{|f(z) - f(z_0) - f'(z)(z - z_0)|}_{\leq \varepsilon |z - z_0| \leq \varepsilon \operatorname{diam} \triangle_n \leq \varepsilon V(\partial \triangle_n)} \leq \varepsilon (V(\partial \triangle_1))^2 \frac{1}{4^{n-1}}.$$

Tedy $|I| \leq \varepsilon (V(\partial \Delta_1))^2$. Protože ε bylo libovolné, je |I| = 0, což je spor. Proto platí

$$\int_{\partial \triangle abc} f = 0.$$

Důsledek:

Nechť $\Omega \subset \mathbb{C}$ je otevřená množina, $p \in \Omega$, $f : \Omega \to \mathbb{C}$ je funkce spojitá na Ω a holomorfní na $\Omega \setminus \{p\}$. Pak

$$\int_{\partial \triangle abc} f = 0$$
pro každý trojúhelník $\triangle abc$ obsažený v $\Omega.$

Důkaz:

- (1) Bod $p \notin \triangle abc$, pak plyne tvrzení z V12.
- (2) Bod p je jeden z vrcholů $\triangle abc$. BÚNO p=a. Nechť $\varepsilon>0$ libovolné, označ $b'=a+\varepsilon(b-a),\ c'=a+\varepsilon(c-a)$.

$$\int_{\partial \triangle abc} f = \int_{\partial \triangle ab'c'} f + \underbrace{\int_{\partial \triangle b'bc} f + \int_{\partial \triangle cc'b'} f}_{= 0 \text{ podle V12}} = \int_{\partial \triangle ab'c'} f$$

$$\left| \int_{\partial \triangle abc} f \right| = \left| \int_{\partial \triangle ab'c'} f \right| \le V(\partial \triangle ab'c') \max_{z \in \triangle abc} |f(z)| = \varepsilon V(\triangle abc) \max_{z \in \triangle abc} |f(z)|.$$

Protože ε bylo libovolné

$$\int_{\partial \triangle abc} f = 0.$$

(3) Bod p leží na straně $\triangle abc$.

$$\int_{\partial \triangle abc} f = \int_{\partial \triangle apc} f + \int_{\partial \triangle pbc} = 0$$

podle (2).

(4) Bod p leží uvnitř $\triangle abc$.

$$\int_{\partial \triangle abc} f = \int_{\partial \triangle ac'c} f + \int_{\partial \triangle c'bc} = 0$$

podle (3).

Definice:

Množina $M \subset \mathbb{C}$ se nazývá **hvězdovitá**, pokud existuje takové $a \in M$, že pro každé $b \in M$ je úsečka spojující body a, b celá obsažena v M.

Věta 13: Cauchyova věta pro hvězdovitou množinu

Nechť $\Omega \subset \mathbb{C}$ je otevřená hvězdovitá množina, $p \in \Omega$ a $f : \Omega \to \mathbb{C}$ je spojitá funkce, která je holomorfní na $\Omega \setminus \{p\}$. Pak f má na Ω primitivní funkci, a tedy $\int_{\varphi} f = 0$ pro každou uzavřenou křivku φ v Ω .

Důkaz:

Nechť a je ten "bod hvězdovitosti". Definujme

$$F(z) := \int_{[a,z]} f, \quad z \in \Omega.$$

Dokážeme, že F'(z) = f(z) pro každé $z \in \Omega$. Zvolme $z \in \Omega$, nechť r > 0 tak, aby $\mathcal{U}(z,r) \subset \Omega$, $h \in \mathbb{C}$, 0 < |h| < r, pak $z + h \in \mathcal{U}(z,r)$ a $\triangle a, z, z + h \subset \Omega$.

$$\begin{split} F'(z) &= \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = \lim_{h \to 0} \frac{1}{h} \left(\int_{[a,z+h]} f - \int_{[a,z]} f \right) = \\ &= \lim_{h \to 0} \frac{1}{h} \left(\underbrace{\int_{\partial \triangle a,z+h,z}}_{\partial \triangle a,z+h,z} f + \int_{[z,z+h]} f \right) = \lim_{h \to 0} \frac{1}{h} \int_{[z,z+h]} f \overset{\mathrm{V2}}{=} f(z). \end{split}$$

Jak vypadají hvězdovité množiny?

- Konvexní množina je hvězdovitá,
- C\polopřímka je hvězdovitá,
- C\bod není hvězdovitá.

Poznámka: O nalepování

Nechť Ω_1 a Ω_2 jsou otevřené podmnožiny \mathbb{C} , pro které $\Omega_1 \cap \Omega_2$ je souvislá množina. Nechť funkce f má primitivní funkci v Ω_1 i v Ω_2 . Pak f má primitivní funkci v $\Omega_1 \cup \Omega_2$.

Důkaz:

Nechť F_1 je primitivní funkce na Ω_1 , F_2 je primitivní funkce na Ω_2 . Na $\Omega_1 \cap \Omega_2$ máme dvě primitivní funkce. $(F_1 - F_2)' = 0$, tedy $F_1 = F_2 + C$ na $\Omega_1 \cap \Omega_2$, protože $\Omega_1 \cap \Omega_2$ je souvislá. Pak funkce F(z) definovaná

$$F(z) = \begin{cases} F_1(z), & z \in \Omega_1 \\ F_2(z) + C, & z \in \Omega_2 \end{cases}$$

je primitivní funkcí k funkci f na $\Omega_1 \cup \Omega_2$.

Věta 14: Cauchyův vzorec pro kruh

Nechť f je holomorfní na uzavřeném kruhu o středu $a \in \mathbb{C}$ a poloměru r > 0 (tj. na $\overline{U(a,r)}$) a φ je kladně orientovaná kružnice o středu a a poloměru r. Pak pro každé $z \in U(a,r)$ platí

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{w - z} dw.$$

Důkaz:

Z definice holomorfní funkce na množině existuje $G \subset \mathbb{C}$ otevřená taková, že $\overline{\mathcal{U}(a,r)} \subset G$ a f je holomorfní na G. Pro $z \in \varphi$ existuje $r_z > 0$ tak, že $\mathcal{U}(z,r_z) \subset G$. Označme

$$\Omega = \mathcal{U}(a,r) \bigcup_{z \in \varphi} \mathcal{U}(z,r_z),$$

pak Ω je hvězdovitá, f je holomorfní na Ω a $\overline{\mathcal{U}(a,r)} \subset \Omega \subset G$. Pro $z \in \Omega$ libovolné definujme pomocnou funkci

$$g(w) = \begin{cases} \frac{f(z) - f(w)}{z - w}, & w \neq z \\ f'(z), & w = z \end{cases}$$

Tato fukce je holomorfní na $\Omega \setminus \{z\}$ a spojitá na Ω , tedy podle V13

$$0 = \int_{\varphi} g(w) \, \mathrm{d}w = \int_{\varphi} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w$$

$$\Rightarrow \int_{\varphi} \frac{f(w)}{w - z} \, \mathrm{d}w = \int_{\varphi} \frac{f(z)}{w - z} \, \mathrm{d}w = f(z) \int_{\varphi} \frac{\mathrm{d}w}{w - z} = f(z) 2\pi i \operatorname{ind}_{\varphi} a = f(z) 2\pi i$$

$$\Rightarrow f(z) = \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{w - z} \, \mathrm{d}w.$$

Důsledek: Vlastnost průměru pro holomorfní funkce

Nechť f je holomorfní na $\overline{U(a,r)}$, kde $a\in\mathbb{C}$ a r>0. Pak platí

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) dt.$$

Důkaz:

Aplikace Cauchyova vzorce pro z = a.

$$f(a) = \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{w - a} \, \mathrm{d}w = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(a + re^{it})}{re^{it}} re^{it} i \, \mathrm{d}t = \frac{1}{2\pi} \int_{0}^{2\pi} f(a + re^{it}) \, \mathrm{d}t.$$

Věta 15: Cauchyův vzorec pro vyšší derivace

Nechť f je holomorfní na $\overline{U(a,r)}$ (kde $a\in\mathbb{C}$ a r>0). Pak f má na U(a,r) derivace všech řádů a pro každé $n\in\mathbb{N}$ a $z\in U(a,r)$ platí

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\omega} \frac{f(w)}{(w-z)^{n+1}} dw,$$

kde φ je kladně orientovaná kružnice o středu a a poloměru r.

Důkaz:

Podle V14

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} \underbrace{\frac{f(w)}{w - z}}_{=:F(z,w)} dw.$$

Funkce F(w,z) je spojitá na $\mathcal{U}(a,r) \times \langle \varphi \rangle$ a její derivace všech řádů podle z jsou spojité:

$$\frac{\partial F}{\partial z} = \frac{f(w)}{(w-z)^2},$$

$$\frac{\partial^n F}{\partial z^n} = n! \frac{f(w)}{(w-z)^{n+1}}.$$

Tedy z V7(4) dostáváme indukcí

$$f^{(n)}(z) = \frac{1}{2\pi i} \int_{\varphi} \frac{\partial^n F}{\partial z^n}(z, w) \, \mathrm{d}w = \frac{n!}{2\pi i} \int_{\varphi} \frac{f(w)}{(w - z)^{n+1}} \, \mathrm{d}w.$$

Důsledek:

Je-li f holomorfní na množině $M \subset \mathbb{C}$, je i f' holomorfní na M.

Důkaz:

BÚNO M je otevřená. Buď $a \in M$ libovolné, pak existuje r > 0 tak, že $\overline{\mathcal{U}(a,r)} \subset M$. Podle V15 je funkce f' holomorfní na $\mathcal{U}(a,r)$. Bod a byl libovolný, tedy f' je holomorfní na M.

Důsledek:

Nechť $\Omega \subset \mathbb{C}$ je otevřená množina, $p \in \Omega$, $f : \Omega \to \mathbb{C}$ je funkce spojitá na Ω a holomorfní na $\Omega \setminus \{p\}$. Pak f je holomorfní na Ω .

Důkaz:

Nechť $a \in \Omega$, pak existuje r > 0 tak, že $\mathcal{U}(a,r) \subset \Omega$. Podle V13 má f primitivní funkci na $\mathcal{U}(a,r)$. Z předchozího důsledku dostáváme, že f je holomorfní na $\mathcal{U}(a,r)$, tedy na Ω , jelikož a bylo libovolné.

Věta 16: Vyjádření mocninnou řadou

Nechť f je funkce holomorfní na U(a,r), kde $a \in \mathbb{C}$ a r > 0. Pak je f na U(a,r) součtem mocninné řady

$$\sum_{n=0}^{\infty} c_n (z-a)^n$$

o středu a, která na U(a,r) konverguje. Koeficienty této řady jsou určeny jednoznačně a platí pro ně

$$c_n = \frac{f^{(n)}(a)}{n!} \text{ pro } n \in \mathbb{N} \cup \{0\}$$

(symbolem $f^{(0)}$ rozumíme f).

Důkaz:

Jednoznačnost. Nechť

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, \quad z \in \mathcal{U}(a,r).$$

Pak $c_0 = f(a)$ a dále

$$f'(z) = \sum_{n=1}^{\infty} nc_n(z-a)^{n-1} \Rightarrow f'(a) = c_1,$$

:

$$f^{(k)}(z) = \sum_{k=1}^{\infty} n(n-1)\cdots(n-k+1)c_n(z-a)^{n-k} \Rightarrow f^{(k)}(a) = k!c_k.$$

Existence. Vezměme $\rho \in (0, r)$, nechť $\varphi(t) = a + \rho e^{it}$, $t \in [0, 2\pi]$. Dle Cauchyho vzorce pro kruh

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{w - z} dw \quad \forall z \in \mathcal{U}(a, \rho).$$

Buď $z \in \mathcal{U}(a, \rho)$ pevné, pak pro $w \in \langle \varphi \rangle$ platí

$$\frac{1}{w-z} = \frac{1}{(w-a) - (z-a)} = \frac{1}{w-a} \cdot \frac{1}{1 - \frac{z-a}{w-a}} = \frac{1}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a}\right)^n$$

a tato řada je stejnoměrně konvergentní z Weierstrassova kritéria. Tedy

$$f(z) = \frac{1}{2\pi i} \int_{\varphi} f(w) \sum_{n=0}^{\infty} \frac{(z-a)^n}{(w-a)^{n+1}} dw = \frac{1}{2\pi i} \int_{\varphi} \sum_{n=0}^{\infty} \frac{f(w)(z-a)^n}{(w-a)^{n+1}} dw = \frac{1}{2\pi i} \int_{\varphi} \int_{0}^{\infty} \frac{f(w)(z-a)^n}{(w-a)^{n+1}} dw = \frac{1}{2\pi i} \int_{0}^{\infty} \frac{f(w)(z-a)^n}{(w-a)^{n+1$$

Platí následující odhad

$$\left| \frac{f(w)(z-a)^n}{(w-a)^{n+1}} \right| \le \max_{w \in \langle \varphi \rangle} |f(w)| \frac{1}{\rho} \cdot \underbrace{\left| \frac{z-a}{\rho} \right|^n}_{\le 1}.$$

Řada je tedy podle Weierstrassova kritéria stejnoměrně konvergentní, proto lze zaměnit sumu a integrál.

$$\stackrel{*}{=} \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\varphi} \frac{f(w)(z-a)^n}{(w-a)^{n+1}} \, \mathrm{d}w = \sum_{n=0}^{\infty} \left[\underbrace{\left(\frac{1}{2\pi i} \int_{\varphi} \frac{f(w)}{(w-a)^{n+1}} \, \mathrm{d}w\right)}_{=c} (z-a)^n \right] = \sum_{n=0}^{\infty} c_n (z-a)^n \quad \text{na } \mathcal{U}(a,\rho).$$

Protože ρ je libovolné z (0,r) a víme, že platí jednoznačnost, platí to na $\mathcal{U}(a,r)$.

Věta 17: Cauchyovy odhady

Nechť $f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n$ na U(a,R). Pro $r \in (0,R)$ označme

$$M_r = \max\{|f(z)| : |z - a| = r\}.$$

Pak pro $n \in \mathbb{N} \cup \{0\}$ platí $|c_n| \leq \frac{M_r}{r^n}$.

Důkaz:

Nechť $\varphi_r = a + re^{it}$, $t \in (0, 2\pi]$. Pak platí

$$|c_n| = \left| \frac{1}{2\pi i} \int_{\varphi_r} \frac{f(w)}{(w-a)^{n+1}} \, \mathrm{d}w \right| \le \frac{1}{2\pi} 2\pi r \frac{M_r}{r^{n+1}} = \frac{M_r}{r^n}.$$

Věta 18: Liouvilleova věta

Každá omezená celá funkce je konstantní.

Důkaz:

Funkce f je celá, tj.

$$f(z) = \sum_{n=0}^{\infty} c_n z^n, \quad z \in \mathbb{C}.$$

Funkce f je omezená, tj. existuje M>0 tak, že pro každé $z\in\mathbb{C}$ $|f(z)|\leq M$. Tedy pro každé $r\in(0,\infty)$ je $M_r\leq M$. Pak podle V17 platí pro $n\in\mathbb{N}$ a pro $r\in(0,\infty)$

$$|c_n| \le \frac{M_r}{r^n} \le \frac{M}{r^n} \to 0 \quad \text{pro } r \to \infty.$$

Proto $c_n = 0$ pro $n \ge 1$, tedy $f(z) = c_0$, $z \in \mathbb{C}$, tj. f je konstanta.

Poznámka:

Platí obecněji: Nechť f je celá funkce a $n \in \mathbb{N}$ takové, že $\lim_{z \to \infty} \frac{f(z)}{z^n} = 0$. Pak f je polynom stupně menšího než n.

 $(\lim_{z\to\infty}g(z)=w$ znamená: Pro každé $\varepsilon>0$ existuje takové R>0,že pro každé |z|>R platí $|g(z)-w|<\varepsilon.)$

Důkaz:

$$\lim_{z \to \infty} \frac{f(z)}{z^n} \quad \Rightarrow \quad \lim_{r \to \infty} \frac{M_r}{r^n} = 0.$$

Pro $k \ge n$ platí

$$|c_k| \le \frac{M_r}{r^k} = \underbrace{\frac{M_r}{r^n}}_{\to 0} \underbrace{\frac{1}{r^{k-n}}}_{<1} \to 0 \quad \text{pro } r \to \infty.$$

Tedy $c_k = 0$ pro $k \ge n$.

Věta 19: Základní věta algebry

Každý polynom stupně alespoň 1 s komplexními koeficienty má aspoň jeden kořen v C.

Důkaz:

Sporem. Nechť polynom $P(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$, $a_n \neq 0$, $n \geq 1$, nemá kořeny v \mathbb{C} . Pak funkce $f = \frac{1}{P(z)}$ je celá. Pak

$$f(z) = \frac{1}{a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0} \stackrel{z \neq 0}{=} \underbrace{\frac{1}{z^n}}_{\to 0} \underbrace{\frac{1}{a_n + \frac{a_{n-1}}{z} + \ldots + \frac{a_0}{z^n}}}_{\to \frac{1}{a_n}} \to 0 \quad \text{pro } z \to \infty.$$

Tedy f je omezená. Podle V18 je f konstantní, f = 0, což je spor.

Důsledek: Rozklad na kořenové činitele

Nechť

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

je polynom s komplexními koeficienty, přičemž $n \ge 1$ a $a_n \ne 0$. Pak existují komplexní čísla w_1, \ldots, w_n taková, že pro každé $z \in \mathbb{C}$ platí

$$P(z) = a_n(z - w_1)(z - w_2) \cdots (z - w_n).$$

Čísla w_1, \ldots, w_n jsou určena jednoznačně až na pořadí.

Důkaz:

Věta o dělení polynomů: P, Q polynomy, $\deg Q < \deg P \Rightarrow \exists !\ R$, S polynomy, $\deg S < \deg Q$: $P(z) = R(z)Q(z) + S(z), z \in \mathbb{C}$.

Podle V19 existuje w_1 kořen P. Podle věty o dělění polynomů pak $P(z) = (z-w_1)\tilde{P}(z)$, kde deg $\tilde{P} = n-1$. Pokračujeme indukcí.

Věta 20: O kořenech holomorfní funkce

Nechť f je funkce holomorfní na U(a,r), kde $a\in\mathbb{C}$ a r>0. Předpokládejme, že f(a)=0 a f není konstantní nulová funkce na U(a,r). Pak existuje právě jedno $p\in\mathbb{N}$ a funkce g holomorfní na U(a,r) taková, že $g(a)\neq 0$ a

$$f(z) = (z-a)^p g(z)$$
 pro $z \in U(a,r)$.

Důkaz:

Funkci f lze napsat jako součet mocninné řady

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n, \quad z \in \mathcal{U}(a,r).$$

Protože $f(a)=0,\,c_0=0.$ Označp nejmenší takové číslo, že $c_p\neq 0,$ pak $p\geq 1.$

$$f(z) = \sum_{n=p}^{\infty} c_n (z-a)^n = (z-a)^p \underbrace{\sum_{n=p}^{\infty} c_n (z-a)^{n-p}}_{=:g(z)}.$$

Pak $g(a) = c_p \neq 0$.

Jednoznačnost. Předpokládejme, že $(z-a)^p g_1(z)=(z-a)_2^g(z)$. BÚNO $q\geq p$, pak pro $z\neq a$ platí $g_1(z)=(z-a)^{q-p}g_2(z)$.

- q > p: $g_1(z) = 0$, což je spor,
- q = p: $q_1(z) = q_2(z)$.

Definice:

Je-li f, a a p jako ve Větě 20, říkáme, že bod a je p-násobný kořen funkce f.

Definice:

Nechť $M \subset \mathbb{C}$ je množina a $z_0 \in \mathbb{C}$. Říkáme, že bod z_0 je **hromadným bodem množiny** M, jestliže každé okolí bodu z_0 obsahuje nějaký bod množiny M různý od z_0 . Je-li navíc $\Omega \subset \mathbb{C}$ množina obsahující M, říkáme, že M je **izolovaná v** Ω , jestliže nemá v Ω žádný hromadný bod.

Věta 21: O jednoznačnosti

Nechť $\Omega \subset \mathbb{C}$ je oblast a f, g jsou funkce holomorfní na Ω . Jestliže množina

$$\{z\in\Omega:f(z)=g(z)\}$$

má hromadný bod v Ω (tj. není izolovaná v $\Omega),$ pak f=g na $\Omega.$

Důkaz:

Označme h := f - g, h je holomorfní na Ω . $A := \{z \in \Omega : f(z) = g(z)\} = \{z \in \Omega : h(z) = 0\}$, $M := \{z \in \Omega : \forall n \in \mathbb{N} \cup \{0\} : h^{(n)}(z) = 0\}$.

• M je relativně uzavřená v Ω .

$$M = \bigcap_{n=0}^{\infty} \{ z \in \Omega : h^{(n)}(z) = 0 \}$$

a $h^{(n)}$ je spojitá na Ω .

• M je relativně otevřená v Ω .

Nechť $a \in M$, pak existuje r > 0 tak, že $\mathcal{U}(a,r) \subset \Omega$, h je holomorfní na $\mathcal{U}(a,r)$, tedy lze rozvinout v mocninnou řadu

$$h(z) = \sum_{n=0}^{\infty} c_n (z - a)^n, \quad z \in \mathcal{U}(a, r),$$
$$c_n = \frac{h^{(n)}(a)}{n!} = 0 \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Tedy $h \equiv 0$ na $\mathcal{U}(a,r)$ a proto $\mathcal{U}(a,r) \subset M$.

- $M \neq \emptyset$: a je hromadný bod $A \Rightarrow a \in M$. Nechť $a \in \Omega$ je hromadný bod A, pak $a \in \overline{A} = A$, tedy h(a) = 0. Existuje r > 0 tak, že $\mathcal{U}(a, r) \subset \Omega$. Pak platí jedna z možností
 - $-h \equiv 0 \text{ na } \mathcal{U}(a,r) \Rightarrow \mathcal{U}(a,r) \subset M,$
 - $-h \not\equiv 0$ na $\mathcal{U}(a,r) \Rightarrow$ existují $p \in \mathbb{N}$ a u holomorfní na $\mathcal{U}(a,r)$, $u(a) \neq 0$ $h(z) = (z-a)^p u(z)$, $z \in \mathcal{U}(a,r)$. Protože $u(a) \neq 0$, existuje $\rho \in (0,r)$, $h \not\equiv 0$ na $\mathcal{U}(a,\rho)$. Pak $\mathcal{U}(a,\rho) \cap A = a$, tedy a není hromadný bod, což je spor. Proto platí první možnost.

Dohromady dostáváme, že $M = \Omega$, tedy $h \equiv 0$ na Ω .

Důsledek:

Jsou-li f, g dvě celé funkce, které se shodují na \mathbb{R} , pak f = g na \mathbb{C} .

Věta 22: Princip maxima modulu

Nechť $\Omega \subset \mathbb{C}$ je oblast a f je nekonstantní holomorfní funkce na Ω . Pak |f| nenabývá nikde v Ω lokálního maxima.

Důkaz:

Sporem. Nechť |f| nabývá v bodě $a \in \Omega$ svého maxima na $\mathcal{U}(a,r) \subset \Omega$ (BÚNO r < 1). Označ c := |f(a)|, potom $|f(z)| \le c$ na $\mathcal{U}(a,r)$. Zvolme libovolné $\rho \in (0,r)$ a označme $\varphi = a + \rho e^{it}$, $t \in [0,2\pi]$. Pak

$$c = |f(a)| = \left| \frac{1}{2\pi i} \int_{\Omega} \frac{f(w)}{w - a} \, \mathrm{d}w \right| \le \frac{1}{2\pi} \int_{0}^{2\pi} |f(a + \rho e^{it})| \, \mathrm{d}t \le \frac{1}{2\pi} \int_{0}^{2\pi} c \, \mathrm{d}t = c,$$

proto platí rovnosti a tedy $|f(a + \rho e^{it})| = c$ na $[0, 2\pi]$. Protože ρ bylo libovolné z (0, r), tak |f| = c na $\mathcal{U}(a, r)$.

- (1) Bud' c = 0 a pak f = 0 na $\mathcal{U}(a, r)$,
- (2) nebo $c \neq 0$. Potom $\overline{f} = \frac{|f|^2}{f} = \frac{c^2}{f}$ je holomorfní na $\mathcal{U}(a,r)$. Z C-R podmínek je f konstantní na $\mathcal{U}(a,r)$.

Podle V21 je f konstantní na Ω , což je spor.

Důsledek:

Nechť Ω je omezená oblast a f je funkce spojitá na $\overline{\Omega}$, která je holomorfní na Ω . Pak |f| nabývá svého maxima na $\overline{\Omega}$ na hranici. Speciálním případem je $\Omega = U(a, r)$.

Důkaz:

Funkce f zřejmě nabývá svého maxima. Kdyby nabývala maxima uvnitř, tak je f konstantní podle V22.

Věta 23: Weierstrassova věta

Nechť $\Omega \subset \mathbb{C}$ je otevřená, funkce f_n jsou holomorfní v Ω a konvergují k funkci f lokálně stejnoměrně v Ω . Pak f je holomorfní v Ω a pro každé $p \in \mathbb{N}$ funkce $f_n^{(p)}$ konvergují k $f^{(p)}$ lokálně stejnoměrně v Ω .

Důkaz:

(1) Nejprve dokážeme, že f je holomorfní na Ω . Buď $a \in \Omega$ libovolné, r > 0 tak, aby $\overline{\mathcal{U}(a,r)} \subset \Omega$. Nechť $\varphi(t) = a + re^{it}$, $t \in [0, 2\pi)$, pak

$$f_n(z) = \frac{1}{2\pi i} \int_{\omega} \frac{f_n(w)}{w - z} dw, \quad z \in \mathcal{U}(a, r).$$

Nechť $a \in \mathcal{U}(a,r)$ pevné. Chceme dokázat, že $\frac{f(w)}{w-z} \rightrightarrows \frac{f(w)}{w-a}$ na $\langle \varphi \rangle$.

$$\sup_{w \in \langle \varphi \rangle} \left| \frac{f_n(w) - f(w)}{w - a} \right| \le \frac{\max_{w \in \langle \varphi \rangle} |f_n(w) - f(w)|}{r - |z - a|} \to 0 \quad \text{pro } n \to \infty,$$

protože $f_n \rightrightarrows f$ na $\langle \varphi \rangle$. Podle V7(1) lze přehodit limitu a integrál, tedy

$$f(z) = \frac{1}{2\pi i} \int_{\omega} \frac{f(w)}{w - z} dw.$$

Proto podle V7(4) je f holomorfní na $\mathcal{U}(a,r)$. Bod a byl libovolný, tedy f je holomorfní na Ω . Navíc dle V15

$$f^{(p)}(z) = \frac{p!}{2\pi i} \int_{\omega} \frac{f(w)}{(w-z)^{p+1}} dw, \quad z \in \mathcal{U}(a,r).$$

(2) Nechť $a \in \Omega$ libovolné, r > 0 tak, aby $\overline{\mathcal{U}(a,r)} \subset \Omega$. Chceme dokázat, že $f_n^{(p)} \rightrightarrows f^{(p)}$ na $\mathcal{U}(a,\frac{r}{2})$. Označme $\varphi = a + re^{it}$, $t \in [0,2\pi)$, buď $z \in \mathcal{U}(a,\frac{r}{2})$, $p \in \mathbb{N}$.

$$\left| f_n^{(p)}(z) - f^{(p)}(z) \right| = \left| \frac{p!}{2\pi i} \int_{\varphi} \frac{f_n(w) - f(w)}{(w - z)^{p+1}} \, \mathrm{d}w \right| \le \frac{p!}{2\pi} 2\pi r \frac{\max_{w \in \langle \varphi \rangle} |f_n(w) - f(w)|}{\left(\frac{r}{2}\right)^{p+1}}$$

$$\Rightarrow \sup_{z \in \mathcal{U}(a,\frac{r}{2})} \left| f_n^{(p)}(z) - f^{(p)}(z) \right| \leq \frac{p! 2^{p+1}}{r^p} \max_{w \in \langle \varphi \rangle} |f_n(w) - f(w)| \to 0 \quad \text{pro } n \to \infty,$$

protože $f_n \rightrightarrows f$ na $\langle \varphi \rangle$. Tedy $f_n^{(p)} \rightrightarrows f^{(p)}$ na $\mathcal{U}(a, \frac{r}{2})$. Bod a byl libovolný, proto $f_n^{(p)} \to f^{(p)}$ lokálně stejnoměrně na Ω .

Věta 24: Morerova věta

Nechť $\Omega \subset \mathbb{C}$ je otevřená a $f:\Omega \to \mathbb{C}$ je spojitá funkce taková, že

$$\int_{\partial\triangle abc}f=0$$
pro každý trojúhelník $\triangle abc$ obsažený v $\Omega.$

Pak f je holomorfní na Ω .

Důkaz:

Buď $a \in \Omega$ libovolné, r > 0 tak, aby $\mathcal{U}(a,r) \subset \Omega$. Definujme funkci F předpisem

$$F(z) = \int_{[a,z]} f(w) \, \mathrm{d}w, \quad z \in \mathcal{U}(a,r).$$

Tato definice je korektní, protože f je spojitá funkce. Pak pro $z \in \mathcal{U}(a,r)$ platí

$$F'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = \lim_{h \to 0} \frac{1}{h} \left[\int_{[a,z+h]} f - \int_{[a,z]} f \right] \stackrel{(*)}{=} \lim_{h \to 0} \frac{1}{h} \int_{[z,z+h]} f \stackrel{\text{V2}}{=} f(z),$$

kde v rovnosti (*) využijeme předpoklad, že integrál z funkce f přes každý trojúhelník je nulový. Dostáváme, že F je holomorfní na $\mathcal{U}(a,r)$ (má derivaci), tedy i f = F' je holomorfní na $\mathcal{U}(a,r)$. Bod a byl libovolný, proto f je holomorfní na Ω .

Poznámka:

Věta 24 platí i v případě, že místo trojúhelníků uvažujeme obdélníky, jejichž strany jsou rovnoběžné s osami.

4

4.1 Rozšíření $\mathbb C$ o ∞ , Riemannova sféra

Definice:

Označme $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Pro $\varepsilon > 0$ položme

$$U(\infty, \varepsilon) = \{\infty\} \cup \{z \in \mathbb{C}, |z| > \frac{1}{\varepsilon}\}.$$

Nechť f je funkce definovaná na podmnožině $\overline{\mathbb{C}}$ s hodnotami v $\overline{\mathbb{C}}$. Řekneme, že f **má v bodě** $z_0 \in \overline{\mathbb{C}}$ limitu $w \in \overline{\mathbb{C}}$, pokud pro každé $\varepsilon > 0$ existuje takové $\delta > 0$, že pro každé $z \in U(z_0, \delta) \setminus \{z_0\}$ platí $f(z) \in U(w, \varepsilon)$. Má-li f v bodě z_0 limitu $f(z_0)$, říkáme, že f je **spojitá v** z_0 . Na $\overline{\mathbb{C}}$ dále rozšíříme operace následovně:

$$\begin{split} z+\infty &= \infty + z = \infty - z = z - \infty = \infty & \text{pro } z \in \mathbb{C}, \\ z\cdot \infty &= \infty \cdot z = \frac{z}{0} = \infty & \text{pro } z \in \overline{\mathbb{C}} \setminus \{0\}, \\ \frac{\infty}{z} &= \infty & \text{a} & \frac{z}{\infty} = 0 & \text{pro } z \in \mathbb{C}. \end{split}$$

Nedefinované jsou následující výrazy:

$$\infty + \infty, \quad \infty - \infty, \quad 0 \cdot \infty, \quad \infty \cdot 0, \quad \frac{\infty}{\infty}, \quad \frac{0}{0}.$$

Poznámka:

Operace jsou rozšířeny tak, aby platila věta o aritmetice limit s dodatkem "má-li pravá strana smysl".

Věta 1:

Označme \mathbb{S}_2 jednotkovou sféru v \mathbb{R}^3 , tj.

$$\mathbb{S}_2 = \{ (\xi, \eta, \zeta) \in \mathbb{R}^3 : \xi^2 + \eta^2 + \zeta^2 = 1 \}.$$

Dále definujme zobrazení $\chi: \mathbb{S}_2 \to \mathbb{C}$ předpisem

$$\chi(\xi,\eta,\zeta) = \left\{ \begin{array}{ll} \infty, & (\xi,\eta,\zeta) = (0,0,1), \\ \frac{\xi+i\eta}{1-\zeta}, & \text{jinak}. \end{array} \right.$$

Pak χ je prosté zobrazení \mathbb{S}_2 na $\overline{\mathbb{C}}$ a $\chi|_{\mathbb{S}_2\setminus\{(0,0,1)\}}$ je homeomorfismus $\mathbb{S}_2\setminus\{(0,0,1)\}$ na \mathbb{C} .

Definujme dále metriku ρ^* na $\overline{\mathbb{C}}$ předpisem

$$\rho^*(z,w) = \rho_e(\chi^{-1}(z),\chi^{-1}(w)), \qquad z,w \in \overline{\mathbb{C}},$$

kde ρ_e je eukleidovská metrika na \mathbb{R}^3 . Pak limita a spojitost funkcí z $\overline{\mathbb{C}}$ do $\overline{\mathbb{C}}$ definovaná výše se shoduje s limitou a spojitostí v metrice ρ^* .

4.2 Izolované singularity holomorfních funkcí

Definice:

Nechť $a \in \overline{\mathbb{C}}$ a r > 0. **Prstencovým okolím bodu** a **o poloměru** r rozumíme množinu $P(a,r) = U(a,r) \setminus \{a\}$.

Věta 2: Casorati-Weierstrassova

Nechť $a\in\mathbb{C},\ r>0$ a funkce f je holomorfní na P(a,r). Pak nastává právě jedna z následujících možností:

- (1) Existuje takové $\rho \in (0, r)$, že f je omezená na $P(a, \rho)$. Pak existuje vlastní $\lim_{z \to a} f(z)$. Dodefinujemeli funkci f v bodě a hodnotou této limity, dostaneme funkci holomorfní na U(a, r). (Pak říkáme, že f má v bodě a odstranitelnou singularitu.)
- (2) $\lim_{z\to a} f(z) = \infty$. Pak existuje právě jedno $p\in\mathbb{N}$, pro které existuje vlastní nenulová $\lim_{z\to a} (z-a)^p f(z)$. Navíc existují jednoznačně určená čísla $a_{-p}, a_{-(p-1)}, \ldots, a_{-1} \in \mathbb{C}, a_{-p} \neq 0$, že funkce

 $f - \frac{a_{-1}}{z - a} - \frac{a_{-2}}{(z - a)^2} - \dots - \frac{a_{-p}}{(z - a)^p}$ (*)

má v bodě a odstranitelnou singularitu. (Pak říkáme, že f má v bodě a **pól násobnosti** p.)

(3) $\lim_{z\to a} f(z)$ neexistuje. Pak pro každé $\rho\in(0,r)$ je $f(P(a,\rho))$ hustá v \mathbb{C} . (Říkáme, že f má v bodě a podstatnou singularitu.)

Důkaz:

(1) Nechť f je omezená na $\mathcal{P}(a,\rho)$. Pak buď $f\equiv 0$ a je to jasné, nebo $f\not\equiv 0$. V tom případě definujeme funkci g(z)=(z-a)f(z). Funkce g je holomorfní na $\mathcal{P}(a,\rho)$ a $\lim_{z\to a}g(z)=0$. Po dodefinování je g holomorfní na $\mathcal{U}(a,\rho)$ a g(a)=0. Podle věty o kořenech holomorfní funkce

$$g(z) = (z - a)^p h(z),$$

kde h je holomorfní na $\mathcal{U}(a,\rho)$ a $h(a) \neq 0$. Pak $f(z) = (z-a)^{p-1}h(z)$, limita f v bodě a existuje a lze funkci f dodefinovat její hodnotou. Po dodefinování je f holomorfní na $\mathcal{U}(a,\rho)$, tedy i na $\mathcal{U}(a,r)$.

(2) Nechť $\lim_{z\to a} f(z) = \infty$, pak

$$\lim_{z \to a} \frac{1}{f(z)} = 0.$$

Definujme funkci g předpisem

$$g = \left\{ \begin{array}{ll} \frac{1}{f(z)}, & z \neq a, \\ 0, & z = a \end{array} \right.$$

Funkce g je holomorfní na $\mathcal{U}(a,r)$ a g(a)=0. Podle věty o kořenech holomorfní funkce existují $p\in\mathbb{N}$ a h holomorfní na $\mathcal{U}(a,r)$, $h(a)\neq 0$ tak, že

$$g(z) = (z - a)^p h(z).$$

Funkci f pak lze napsat ve tvaru

$$f(z) = \frac{1}{(z-a)^p} \cdot \frac{1}{h(z)}$$

a platí

$$\lim_{z \to a} (z - a)^p f(z) = \frac{1}{h(z)} \in \mathbb{C} \setminus \{0\}.$$

Na okolí $\mathcal{U}(a,r)$ je $\frac{1}{h}$ holomorfní, lze ji tedy rozvinout v mocninnou řadu

$$\frac{1}{h(z)} = \sum_{n=0}^{\infty} c_n (z-a)^n, \quad z \in \mathcal{U}(a,r)$$

$$\Rightarrow f(z) = \sum_{n=0}^{\infty} c_n (z-a)^{n-p}, \quad z \in \mathcal{P}(a,r)$$

$$= \sum_{n=0}^{p-1} c_n (z-a)^{n-p} + \sum_{n=p}^{\infty} c_n (z-a)^{n-p}$$
holomorfní na $\mathcal{U}(a,r)$

a platí $a_{-p} = c_0 = \frac{1}{h(a)} \neq 0.$

Jednoznačnost. Sporem. Nechť (a_{-i}) a (b_{-i}) jsou čísla splňující (*), pak funkce

$$\sum_{j=1}^{p} \frac{a_{-j} - b_{-j}}{(z-a)^j} = f - \sum_{j=1}^{p} \frac{b_{-j}}{(z-a)^j} - \left(f - \sum_{j=1}^{p} \frac{a_{-j}}{(z-a)^j} \right)$$

má v bodě a odstranitelnou singularitu, protože je to rozdíl dvou funkcí, které mají odstranitelnou singularitu v a. Pokud je nějaký ze sčítanců nenulový, pak

$$\lim_{z \to a} \sum_{j=1}^{p} \frac{a_{-j} - b_{-j}}{(z - a)^{j}} = \infty,$$

což je spor.

(3) Sporem. Nechť existuje $\rho \in (0, r)$, existuje $b \in \mathbb{C}$ a existuje $\delta > 0$ tak, že $f(\mathcal{P}(a, \rho)) \cap \mathcal{U}(b, \delta) = \emptyset$, tj. pro každé $z \in \mathcal{P}(a, \rho) : |f(z) - b| \ge \delta$, tedy

$$\left| \frac{1}{f(z) - b} \right| \le \frac{1}{\delta}.$$

Pak funkce $g = (f(z) - b)^{-1}$ je omezená a holomorfní na $\mathcal{P}(a, \rho)$ a podle bodu (1) existuje

$$\lim_{z \to a} g(z) = c \in \mathbb{C},$$

ale pak

$$\lim_{z \to a} f(z) = \lim_{z \to a} \left(\frac{1}{g(z)} + b \right) = \frac{1}{c} + b,$$

tedy existuje, což je spor.

Poznámka:

Platí dokonce **Velká Picardova věta**: Má-li f v bodě z_0 podstatnou singularitu, pak v každém prstencovém okolí z_0 nabývá f všech hodnot z $\mathbb C$ s výjimkou nejvýše jedné.

Definice:

Nechť f je funkce definovaná na $U(\infty,r)$ pro nějaké r>0. Řekneme, že

- (1) f je holomorfní v bodě ∞ ,
- (2) f má v bodě ∞ kořen násobnosti p,

pokud příslušnou vlastnost má funkce $g(z) = f(\frac{1}{z})$ v bodě 0. Je-li f holomorfní na $P(\infty, r)$ pro nějaké r > 0, pak říkáme, že f má v bodě ∞ odstranitelnou singularitu (pól násobnosti p, podstatnou singularitu), jestliže příslušný typ singularity má funkce $g(z) = f(\frac{1}{z})$ v bodě 0.

4.3 Laurentovy řady a funkce holomorfní v mezikruží

Poznámka:

Jméno Laurent se čte francouzsky, tj. přibližně Lorán.

Definice:

Laurentovou řadou o středu $a \in \mathbb{C}$ rozumíme symbol

$$(*) \quad \sum_{n=-\infty}^{\infty} a_n (z-a)^n,$$

kde $a_n \in \mathbb{C}$ pro každé $n \in \mathbb{Z}$. Regulární částí řady (*) rozumíme mocninnou řadu

$$\sum_{n=0}^{\infty} a_n (z-a)^n,$$

hlavní částí řady (*) rozumíme symbol

$$(**)$$
 $\sum_{n=-\infty}^{-1} a_n (z-a)^n$.

Říkáme, že hlavní část řady (*) konverguje (v bodě z, absolutně, stejnoměrně na množině M, lokálně stejnoměrně na množině M, atp.), pokud příslušnou vlastnost má řada

$$\sum_{n=1}^{\infty} a_{-n} (z-a)^{-n}.$$

Součet této řady nazveme součtem hlavní části řady (*) a značíme jej rovněž (**).

Říkáme, že řada (*) konverguje (v bodě z, absolutně, stejnoměrně na množině M, lokálně stejnoměrně na množině M, atp.), pokud příslušnou vlastnost má regulární i hlavní část. Součtem řady (*) rozumíme součet součtu regulární části a součtu hlavní části, tj.

$$\sum_{n=-\infty}^{\infty} a_n (z-a)^n = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=-\infty}^{-1} a_n (z-a)^n.$$

Definice:

Nechť $0 \le r < R \le +\infty$ a $a \in \mathbb{C}$. Pak označme

$$P(a, r, R) = \{ z \in \mathbb{C} : r < |z - a| < R \}.$$

Tuto množinu nazveme mezikružím o středu a, vnitřním poloměru r a vnějším poloměru R.

Věta 3:

Mějme Laurentovu řadu (*). Pak existují $r, R \in [0, +\infty]$, pro která platí:

- Regulární část řady (*) konverguje absolutně a lokálně stejnoměrně na $\{z \in \mathbb{C} : |z-a| < R\}$ a diverguje pro |z-a| > R.
- Hlavní část řady (*) konverguje absolutně a lokálně stejnoměrně na $\{z \in \mathbb{C} : |z-a| > r\}$ a diverguje pro |z-a| < r.

Je-li r < R, pak řada (*) konverguje absolutně a lokálně stejnoměrně na mezikruží P(a, r, R) a její součet je na tomto mezikruží holomorfní. Toto mezikruží pak nazýváme **mezikružím konvergence řady** (*).

Důkaz:

(1) Buď R poloměr konvergence regulární části

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

(2) Na hlavní část použijeme Cauchyho kritérium

$$\limsup_{n \to \infty} \sqrt[n]{|a_{-n}(z-a)^{-n}|} = \frac{\limsup_{n \to \infty} \sqrt[n]{|a_{-n}|}}{|z-a|} \left\{ \begin{array}{ccc} < 1 & \dots & \text{konverguje absolutn}\check{e}, \\ > 1 & \dots & \text{diverguje.} \end{array} \right.$$

Označme $r = \limsup_{n \to \infty} \sqrt[n]{|a_{-n}|}$, pak pro |z - a| > r řada konverguje absolutně a pro |z - a| < r řada diverguje.

Nechť $\rho > r$, pak hlavní část řady konverguje stejnoměrně na $\{z: |z-a| \geq \rho\}$, protože $|a_{-n}(z-a)^{-n}| \leq |a_{-n}|\rho^{-n}$ a řada $\sum a_{-n}\rho^n$ konverguje absolutně dle Cauchyho kritéria.

(3) Nechť r < R, pak řada (*) na $\mathcal{P}(a, r, R)$ konverguje z definice absolutně a lokálně stejnoměrně. Podle Weierstrassovy věty je tedy součet holomorfní funkce.

Věta 4:

Nechť $a \in \mathbb{C}$, $0 \le r < R \le +\infty$ a $\theta \in [0, 2\pi)$. Nechť

$$G = P(a, r, R) \setminus \{a + te^{i\theta} : t \in (0, +\infty)\}.$$

Pak pro množinu G platí Cauchyova věta, tj., pro každou f holomorfní na G a každou uzavřenou křivku φ v G platí $\int_{\varphi} f = 0$.

Důkaz:

Ukážeme, že každá f holomorfní má na G primitivní funkci.

- **1. krok:** Chceme: $\exists c > 0 \ \forall \alpha \in \mathbb{R}$ je množina $\{a + se^{it} : s \in (r, R), t \in (\alpha, \alpha + c)\}$ hvězdovitá. Nechť $u \in (r, R)$, stačí zvolit $c = 2 \arccos \frac{r}{u}$, pak platí.
- 2. krok: Nalepuji.

Na každé výseči existuje primitivní funkce, protože je to hvězdovitá množina. Jejich průnik je souvislá množina, tedy na sjednocení také existuje primitivní funkce.

Věta 5:

Nechť f je holomorfní funkce v mezikruží P(a,r,R), kde $a \in \mathbb{C}$ a r < R. Pro $\rho \in (r,R)$ označme φ_{ρ} kladně orientovanou kružnici o středu a a poloměru ρ . Pak platí:

- (1) $\int_{\varphi_0} f$ nezávisí na ρ , tj. nabývá stejné hodnoty pro každé $\rho \in (r, R)$.
- (2) (Cauchyův vzorec pro mezikruží) Nechť $z \in P(a,r,R)$ a $r < \rho_1 < |z-a| < \rho_2 < R$. Pak

$$f(z) = \frac{1}{2\pi i} \left(\int_{\varphi_{\rho_2}} \frac{f(w)}{w - z} dw - \int_{\varphi_{\rho_1}} \frac{f(w)}{w - z} dw \right).$$

Důkaz:

(1) Podle V4 platí

$$\begin{split} \int_{\mu_1} f &= \int_{\mu_2} f = 0 \\ \Rightarrow \quad 0 &= \int_{\mu_1} f + \int_{\mu_2} f = \int_{\varphi_{\rho_1}} f - \int_{\varphi_{\rho_2}} f. \end{split}$$

(2) Definujme pomocnou funkci g

$$g(w) = \begin{cases} \frac{f(w) - f(z)}{w - z}, & w \neq z, \\ f'(a), & w = a. \end{cases}$$

Potom g je holomorfní na $\mathcal{P}(a, r, R)$ kromě bodu z. V bodě z je spojitá, tedy g je holomorfní na $\mathcal{P}(a, r, R)$.

$$\int_{\varphi_{\rho_1}} g = \int_{\varphi_{\rho_1}} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w = \int_{\varphi_{\rho_1}} \frac{f(w)}{w - z} \, \mathrm{d}w + f(z) \underbrace{\int_{\varphi_{\rho_1}} \frac{1}{w - z} \, \mathrm{d}w}_{=2\pi i \underbrace{\mathrm{iind}_{\varphi_{\rho_1}} z}}_{=2\pi i \underbrace{\mathrm{iind}_{\varphi_{\rho_1}} z}} = \int_{\varphi_{\rho_1}} \frac{f(w)}{w - z} \, \mathrm{d}w + f(z) 2\pi i,$$

$$\int_{\varphi_{\rho_2}} g = \int_{\varphi_{\rho_2}} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w = \int_{\varphi_{\rho_2}} \frac{f(w)}{w - z} \, \mathrm{d}w + f(z) \underbrace{\int_{\varphi_{\rho_2}} \frac{1}{w - z} \, \mathrm{d}w}_{=2\pi i \underbrace{\mathrm{iind}_{\varphi_{\rho_2}} z}}_{=2\pi i \underbrace{\mathrm{iind}_{\varphi_{\rho_2}} z}} = \int_{\varphi_{\rho_1}} \frac{f(w)}{w - z} \, \mathrm{d}w.$$

Podle bodu (1) se tyto dva integrály rovnají, dostáváme tedy

$$f(z) = \frac{1}{2\pi i} \left(\int_{\varphi_{\rho_2}} \frac{f(w)}{w - z} dw - \int_{\varphi_{\rho_1}} \frac{f(w)}{w - z} dw \right).$$

Věta 6:

Nechť f je holomorfní funkce v mezikruží P(a, r, R), kde $a \in \mathbb{C}$ a r < R. Pak f je v P(a, r, R) součtem Laurentovy řady

$$\sum_{n=-\infty}^{\infty} a_n (z-a)^n$$

o středu a, která na P(a, r, R) konverguje. Její koeficienty jsou určeny jednoznačně a platí pro ně

$$a_n = \frac{1}{2\pi i} \int_{\Omega_n} \frac{f(z)}{(z-a)^{n+1}} \, \mathrm{d}z, \qquad n \in \mathbb{Z},$$

kde $\rho \in (r, R)$ je libovolné a φ_{ρ} je jako ve Větě 4.

Důkaz:

Jednoznačnost. Nechť $\rho \in (r, R)$,

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n, \quad z \in \mathcal{P}(a, r, R).$$

$$\int_{\varphi_\rho} \frac{f(z)}{(z - a)^{m+1}} dz = \int_{\varphi_\rho} \sum_{n = -\infty}^{\infty} a_n (z - a)^{n-m-1} dz \stackrel{(*)}{=} \sum_{n = -\infty}^{\infty} a_n \underbrace{\int_{\varphi_\rho} (z - a)^{n-m-1} dz}_{= 0, \quad n \neq m} = 2\pi i, \quad n = m$$

kde (*) platí, protože řada je stejnoměrně konvergentní na $\langle \varphi_{\rho} \rangle$.

Existence. Nechť $z \in \mathcal{P}(a, r, R), r < \rho_1 < |z - a| < \rho_2 < R$. Podle V5

$$f(z) = \frac{1}{2\pi i} \left(\int_{\varphi_{\rho_2}} \frac{f(w)}{w - z} dw - \int_{\varphi_{\rho_1}} \frac{f(w)}{w - z} dw \right).$$

Nechť $w \in \langle \varphi_{\rho_2} \rangle$

$$\frac{1}{w-z} = \frac{1}{(w-a)-(z-a)} = \frac{1}{w-a} \cdot \frac{1}{1-\frac{z-a}{w-a}} = \frac{1}{w-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{w-a}\right)^n = \sum_{n=0}^{\infty} \frac{(z-a)^n}{(w-a)^{n+1}}.$$

Nechť $w \in \langle \varphi_{\rho_1} \rangle$

$$\frac{1}{w-z} = \frac{1}{(w-a)-(z-a)} = \frac{1}{z-a} \cdot \frac{1}{\frac{w-a}{z-a}-1} = -\frac{1}{z-a} \sum_{n=0}^{\infty} \left(\frac{w-a}{z-a}\right)^n = -\sum_{n=0}^{\infty} \frac{(w-a)^n}{(z-a)^{n+1}}.$$

Tyto řady jsou stejnoměrně konvergentní na $\langle \varphi_{\rho_2} \rangle$, resp. $\langle \varphi_{\rho_1} \rangle$. Pak

$$\begin{split} f(z) &= \frac{1}{2\pi i} \left(\int_{\varphi_{\rho_2}} f(w) \sum_{n=0}^{\infty} \frac{(z-a)^n}{(w-a)^{n+1}} \,\mathrm{d}w + \int_{\varphi_{\rho_1}} f(w) \sum_{n=0}^{\infty} \frac{(w-a)^n}{(z-a)^{n+1}} \,\mathrm{d}w \right) = \\ &= \underbrace{\sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\varphi_{\rho_2}} \frac{f(w)}{(w-a)^{n+1}} \,\mathrm{d}w \right) (z-a)^n}_{\text{regulární část}} + \underbrace{\sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\varphi_{\rho_1}} f(w) (w-a)^n \,\mathrm{d}w \right) (z-a)^{-n-1}}_{\text{hlavní část}}. \end{split}$$

Věta 7:

Nechť f je holomorfní funkce v P(a,R) = P(a,0,R), kde $a \in \mathbb{C}$ a R > 0. Nechť $\sum_{n=-\infty}^{\infty} a_n(z-a)^n$ je Laurentova řada funkce f v P(a,R). Pak platí:

- (1) f má v bodě a odstranitelnou singularitu, právě když $a_n = 0$ pro každé n < 0.
- (2) fmá v bodě apól násobnosti p, právě když $a_{-p} \neq 0$ a $a_n = 0$ pro každé n < -p.
- (3) f má v bodě a podstatnou singularitu, právě když $a_n \neq 0$ pro nekonečně mnoho n < 0.

Důkaz:

- (1) \leftarrow V tomto případě je Laurentova řada vlastně mocninná řada a ta je holomorfní na $\mathcal{U}(a,R)$.
 - \Rightarrow Funkce f má v bodě a odstranitelnou singularitu, proto po dodefinování je f holomorfní na $\mathcal{U}(a,R)$ a lze tedy rozvinout v mocninnou řadu na $\mathcal{U}(a,R)$. Tato mocninná řada je zároveň Laurentova řada v $\mathcal{P}(a,R)$. Z jednoznačnosti rozvoje plyne $a_n=0$ pro n<0.
- (2) $\Leftarrow \lim_{z \to a} (z a)^p f(z) = a_{-p} \in \mathbb{C} \setminus \{0\} \dots$ pól násobnosti p.
 - \Rightarrow Funkce $(z-a)^p f(z)$ má v bodě aodstranitelnou singularitu

$$(z-a)^p f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n \quad \Rightarrow \quad f(z) = \sum_{n=0}^{\infty} c_n (z-a)^{n-p}$$

a to je ta Laurentova řada. (Navíc $c_0 \neq 0$.)

(3) To jsou ty zbývající možnosti.

Definice:

Nechť f je holomorfní funkce v P(a,R), kde $a \in \mathbb{C}$ a R > 0. Nechť

$$\sum_{n=-\infty}^{\infty} a_n (z-a)^n$$

je Laurentova řada funkce f v P(a,R). Pak **reziduem funkce** f **v bodě** a rozumíme číslo

$$\operatorname{res}_a f = a_{-1} = \frac{1}{2\pi i} \int_{\varphi_a} f,$$

kde $\rho \in (0,R)$ a φ_ρ je jako ve Větě 4.

Věta 8: Reziduová věta

Nechť $\Omega\subset\mathbb{C}$ je otevřená množina, $M\subset\Omega$ konečná množina a $\varphi:[a,b]\to\Omega\setminus M$ uzavřená cesta. Předpokládejme, že pro Ω a φ platí Cauchyova věta, tj. $\int_{\varphi}g=0$ pro každou funkci g holomorfní na Ω . Pak pro každou funkci f holomorfní na $\Omega\setminus M$ platí

$$\int_{\varphi} f = 2\pi i \sum_{a \in M} \operatorname{res}_{a} f \cdot \operatorname{ind}_{\varphi} a.$$

Důkaz:

Pro $a \in M$ existuje r > 0 tak, že $\mathcal{P}(a,r) \subset \Omega \setminus M$, tedy f je holomorfní na $\mathcal{P}(a,r)$ a lze ji na $\mathcal{P}(a,r)$ rozvinout v Laurentovu řadu. Nechť H_a označuje hlavní část Laurentovy řady funkce f v $\mathcal{P}(a,r)$. Pak H_a konverguje lokálně stejnoměrně na $\mathbb{C} \setminus \{a\}$, což plyne z V3 (r=0). Tedy součet této řady je holomorfní na $\mathbb{C} \setminus \{a\}$. Vezměmě funkci

$$g(z) = f(z) - \sum_{a \in M} H_a(z),$$

která je holomorfní na $\Omega \setminus M$ a v každém bodě M má odstranitelnou singularitu: Nechť $b \in M$, pak

$$g(z) = \underbrace{(z) - H_b(z)}_{(+)} - \sum_{a \in M \setminus \{b\}} H_a(z)$$

a (+) je v $\mathcal{P}(b,r)$ regulární část Laurentovy řady, tedy g lze v bodě b dodefinovat a pak je holomorfní. Proto

$$0 = \int_{\varphi} g = \int_{\varphi} \left(f - \sum_{a \in M} H_a \right)$$

$$\Rightarrow \int_{\varphi} f = \int_{\varphi} \sum_{a \in M} H_a(z) dz = \sum_{a \in M} \int_{\varphi} H_a(z) dz = \sum_{a \in M} \int_{\varphi} \sum_{n=1}^{\infty} \frac{c_{-n}^a}{(z-a)^n} dz \stackrel{(*)}{=}$$

$$\stackrel{(*)}{=} \sum_{a \in M} \sum_{n=1}^{\infty} c_{-n}^a \qquad \underbrace{\int_{\varphi} \frac{1}{(z-a)^n} dz}_{=0, \qquad n \geq 2} = \sum_{a \in M} c_{-1}^a \operatorname{ind}_{\varphi} a 2\pi i = 2\pi i \sum_{a \in M} \operatorname{res}_a f \cdot \operatorname{ind}_{\varphi} a.$$

$$= 0, \qquad n \geq 2$$

$$= 2\pi i \operatorname{ind}_{\varphi} a, \qquad n = 1$$

Věta 9: Některé metody výpočtu reziduí

Nechť f a g jsou holomorfní funkce v nějakém prstencovém okolí bodu $a \in \mathbb{C}$.

(1) Má-li funkce f v bodě a pól násobnosti p, pak

$$\operatorname{res}_{a} f = \frac{1}{(p-1)!} \lim_{z \to a} (f(z)(z-a)^{p})^{(p-1)}.$$

- (2) Jsou-li f, g holomorfní v bodě a a g má v bodě a kořen násobnosti 1 (tj. g(a) = 0 a $g'(a) \neq 0$), pak res_a $\frac{f}{g} = \frac{f(a)}{g'(a)}$.
- (3) Je-li f holomorfní v a a g má v a pól násobnosti 1, pak $\operatorname{res}_a(fg) = f(a) \cdot \operatorname{res}_a g$.
- (4) Je-li f holomorfní v bodě a a g má v bodě a pól násobnosti p, pak

$$res_a(fg) = \sum_{k=1}^p \frac{f^{(k-1)}(a)}{(k-1)!} b_{-k},$$

kde b_n je koeficient u $(z-a)^n$ v Laurentově řadě funkce g v prstencovém okolí bodu a.

Důkaz: Bez důkazu.

4.4 Limity některých integrálů

Lemma 10: Jordanovo

Nechť $\xi \in \mathbb{R}$ a f je funkce spojitá na $\{z \in \mathbb{C} : \operatorname{Re} z \leq \xi, |z| > R\}$ pro nějaké R > 0, pro kterou platí

$$\lim_{\substack{z \to \infty \\ \text{Re } z < \xi}} f(z) = 0.$$

Pro $r > |\xi|$ nechť φ_r je křivka definovaná vztahem $\varphi_r(t) = re^{it}$, $t \in [\alpha_r, 2\pi - \alpha_r]$, kde $\alpha_r \in (0, \pi)$ je takové, že $\text{Re}(re^{i\alpha_r}) = \xi$. Pak pro každé x > 0 platí

$$\lim_{r \to \infty} \int_{\varphi_r} f(z)e^{xz} \, \mathrm{d}z = 0.$$

Pokud navíc

$$\lim_{\substack{z \to \infty \\ \text{Re } z \le \varepsilon}} z f(z) = 0,$$

pak tvrzení platí i pro x = 0.

Důkaz:

Nechť $\alpha_r = \arccos \frac{\xi}{r}$. Označme $M_r = \max_{z \in \langle \varphi_r \rangle} |f(z)|$, podle předpokladu $M_r \to 0$ pro $r \to \infty$. Pak

$$\left| \int_{\varphi_r} f(z) e^{xz} \, \mathrm{d}z \right| = \left| \int_{\alpha_r}^{2\pi - \alpha_r} f(re^{it}) e^{xre^{it}} re^{it} i \, \mathrm{d}t \right| \leq \int_{\alpha_r}^{2\pi - \alpha_r} M_r e^{xr\cos t} r \, \mathrm{d}t = 2M_r \int_{\alpha_r}^{\pi} e^{xr\cos t} r \, \mathrm{d}t = (*).$$

Pokud $\xi>0,$ pokračujeme následovně

$$(*) = 2M_r \left(\underbrace{\int_{\alpha_r}^{\frac{\pi}{2}} e^{xr \cos t} r \, \mathrm{d}t}_{(1)} + \underbrace{\int_{\frac{\pi}{2}}^{\pi} e^{xr \cos t} r \, \mathrm{d}t}_{(2)} \right) \to 0, \quad r \to \infty,$$

protože $M_r \to 0$ pro $r \to \infty$ a (1), (2) jsou omezené:

$$(1) \leq \int_{\alpha_r}^{\frac{\pi}{2}} e^{xr\cos\alpha_r} r \, \mathrm{d}t = e^{xr\cos\alpha_r} r \left(\frac{\pi}{2} - \alpha_r\right) = e^{\xi x} \xi \underbrace{\frac{r}{\xi} \arcsin\frac{\xi}{r}}_{\to 1} \to e^{\xi x} \xi, \quad r \to \infty,$$

$$(2) \leq \int_{\frac{\pi}{2}}^{\pi} e^{xr\left(1-\frac{2}{\pi}t\right)} r \, \mathrm{d}t = \left[\frac{e^{xr\left(1-\frac{2}{\pi}t\right)}}{-x\frac{2}{\pi}}\right]_{\frac{\pi}{2}}^{\pi} = \frac{e^{-xr}-1}{-\frac{2}{\pi}x} = \frac{1-e^{-xr}}{\frac{2}{\pi}x} \leq \frac{\pi}{2x}.$$

Pokud $\xi \leq 0$, pak

$$(*) \le 2M_r \underbrace{\int_{\frac{\pi}{2}}^{\pi} e^{xr \cos t} r \, \mathrm{d}t}_{(2)} \to 0, \quad r \to \infty.$$

Lemma 11: Jordanovo - jiná varianta

Nechť $0 \le \alpha < \beta \le \pi$ a f je funkce spojitá na $\{z \in \mathbb{C} : \arg z \in [\alpha, \beta], |z| > R\}$ pro nějaké R > 0, pro kterou platí

$$\lim_{\substack{z \to \infty \\ \arg z \in [\alpha, \beta]}} f(z) = 0.$$

Pro r>0 nechť φ_r je křivka definovaná vztahem $\varphi_r(t)=re^{it},\,t\in[\alpha,\beta]$. Pak pro každé x>0

$$\lim_{r \to \infty} \int_{\varphi_r} f(z)e^{ixz} \, \mathrm{d}z = 0.$$

Důkaz:

$$\int_{\alpha_{-}} f(z)e^{ixz} dz = \int_{\alpha}^{\beta} f(re^{it})e^{ixre^{it}}re^{it}i dt.$$

Nechť g(z) = f(-iz), pak pro případ $\alpha = 0$, $\beta = \pi$ to odpovídá L10 pro g a $\xi = 0$. Buď ψ_r křivka z L10. Pokud je výseč menší, platí všechny odhady z důkazu L10 a dokáže se to stejně, protože

$$\int_{\psi_r} g(z)e^{xz} dz = i \int_{\psi_r} f(z)e^{ixz} dz.$$

Lemma 12:

Nechť $a \in \mathbb{C}$ a f je holomorfní v nějakém prstencovém okolí bodu a. Dále nechť $\alpha < \beta$ a $\varphi_r(t) = a + re^{it}$, $t \in [\alpha, \beta]$. Pak platí:

- (1) Pokud f je holomorfní v bodě a, pak $\lim_{r\to 0_+} \int_{\varphi_r} f = 0$.
- (2) Pokud f má v bodě a pól násobnosti 1, pak

$$\lim_{r \to 0_+} \int_{\varphi_r} f = i(\beta - \alpha) \operatorname{res}_a f.$$

Důkaz:

Nechť f má v bodě a pól násobnosti 1, pak

$$f(z) = \frac{c_{-1}}{z - a} + f_0(z), \quad z \in \mathcal{P}(a, r),$$

kde f_0 je holomorfní na $\mathcal{U}(a,r)$.

$$\int_{\varphi_r} f = \int_{\varphi_r} \frac{c_{-1}}{z - a} \, \mathrm{d}z + \int_{\varphi_r} f,$$

$$\int_{\varphi_r} \frac{c_{-1}}{z - a} \, \mathrm{d}z = \int_{\alpha}^{\beta} \frac{c_{-1}}{re^{it}} re^{it} i \, \mathrm{d}t = i(\beta - \alpha)c_{-1} = i(\beta - \alpha) \operatorname{res}_a f,$$

$$\left| \int_{\varphi_r} f_0 \right| \le V(\varphi_r) \max_{z \in \langle \varphi_r \rangle} |f_0(z)| = |\beta - \alpha| r \max_{z \in \langle \varphi_r \rangle} |f_0(z)| \to 0, \quad r \to 0_+.$$

Tedy

$$\lim_{r \to 0_+} \int_{\varphi_r} f = i(\beta - \alpha) \operatorname{res}_a f.$$

Poznámka:

V případě, že f má v bodě a pól vyšší násobnosti, pak uvedená limita je rovna ∞ s výjimkou "speciálních případů f, α , β ". Přesněji: Nechť f má v bodě a pól násobnosti p a c_k , $k \in \mathbb{Z}$ jsou koeficienty Laurentova rozvoje f v prstencovém okolí bodu a. Pokud pro každé $k \in \{2, \ldots, p\}$ platí $c_{-k}(e^{i(k-1)\alpha} - e^{i(k-1)\beta}) = 0$, pak limita je stejná, jako pro pól násobnosti 1; jinak je ∞ . V případě, že koeficienty c_k jsou reálné a počítáme jen limitu reálné či imaginární části integrálu, je speciálních případů více (místo $e^{i\cdot(\dots)}$ je v podmínce $\cos(\dots)$ resp. $\sin(\dots)$).

5 Laplaceova transformace

5.1 Definice a základní vlastnosti

Značení:

Symbolem L_1^+ budeme značit množinu všech funkcí f s následujícími vlastnostmi:

- (1) f je definována skoro všude na intervalu $[0, +\infty)$ a její hodnoty jsou komplexní čísla.
- (2) Pro každé $T \in (0, +\infty)$ je f lebesgueovsky integrovatelná na [0, T].
- (3) Existuje $c \in \mathbb{R}$ takové, že funkce $t \mapsto f(t)e^{-ct}$ patří do $L^1(0,+\infty)$.

Poznámka:

Nechť $f \in L_1^+$ a $c \in \mathbb{R}$ splňuje podmínku z třetího bodu. Pak tuto podmínku splňuje i každé c' > c. Označme c_f infimum všech c splňujících podmínku z třetího bodu. Pak $c_f \in [-\infty, +\infty)$ a infimum se může a nemusí nabývat.

Věta 1: Vlastnosti L_1^+

- L_1^+ je komplexní vektorový prostor.
- Je-li $f \in L_1^+$ a k > 0, pak i funkce $g: t \mapsto t^k f(t)$ patří do L_1^+ , přičemž $c_g = c_f$.
- Je-li $f \in L_1^+$ a $\gamma \in \mathbb{C}$, pak i funkce $g: t \mapsto e^{\gamma t} f(t)$ patří do L_1^+ , přičemž $c_g = c_f + \operatorname{Re} \gamma$.

Definice:

Laplaceovou transformací funkce $f \in L_1^+$ rozumíme funkci $\mathcal{L}f$ definovanou předpisem

$$\mathcal{L}f(p) = \int_0^{+\infty} f(t)e^{-pt} dt, \qquad p \in \mathbb{C}, \operatorname{Re} p > c_f.$$

Pokud se infimum v definici c_f nabývá, definujeme $\mathcal{L}f$ týmž vzorcem pro $p \in \mathbb{C}$, Re $p \geq c_f$.

Věta 2: Základní vlastnosti Laplaceovy transformace

Nechť $f \in L_1^+$. Pak platí:

- (1) Pro každé $c > c_f$ je $\mathcal{L}f$ omezená v polorovině $\{p \in \mathbb{C} : \operatorname{Re} p \geq c\}$.
- (2) Pro každé $c>c_f$ je $\lim_{\substack{p\to +\infty\\\mathrm{Re}\; p\geq c}}\mathcal{L}f(p)=0.$
- (3) $\mathcal{L}f$ je holomorfní v polorovině $\{p\in\mathbbm{C}:\operatorname{Re}p>c_f\}$ a

$$(\mathcal{L}f)'(p) = \mathcal{L}(-tf(t))(p)$$
 pro $p \in \mathbb{C}$, Re $p > c_f$.

Pokud se infimum v definici c_f nabývá, platí (1) a (2) i pro $c = c_f$ a navíc je $\mathcal{L}f$ spojitá na svém definičním oboru.

Důkaz:

(1) Označme p = x + iy, $x, y \in \mathbb{R}$, $x \ge c$. Pak

$$|\mathcal{L}f(p)| = \left| \int_0^\infty f(t)e^{-(x+iy)t} \, \mathrm{d}t \right| \le \int_0^\infty |f(t)|e^{-xt} \, \mathrm{d}t \le \int_0^\infty |f(t)|e^{-ct} \, \mathrm{d}t \in \mathbb{R}.$$

- (2) Stačí dokázat pro $f \in L^1(0,\infty)$, pak se to jen posune.
 - (i) Dokážeme, že to platí pro $f = \chi_{(a,b)}, 0 \le a < b < \infty$.

$$\mathcal{L}f(p) = \int_0^\infty \chi_{(a,b)} e^{-pt} \, dt = \int_a^b e^{-pt} \, dt = \left[-\frac{e^{-pt}}{p} \right]_a^b = -\frac{1}{p} \left(e^{-pb} - e^{-pa} \right),$$
$$|\mathcal{L}f(p)| \le \frac{1}{|p|} \left(e^{-b\operatorname{Re}p} + e^{-a\operatorname{Re}p} \right) \le \frac{2}{|p|}.$$

- (ii) Platí pro lineární kombinace charakteristických funkcí.
- (iii) Nechť $f \in L^1(0,\infty)$ libovolná. Pro $\varepsilon > 0$ existuje g po částech konstantní tak, že $||f g|| \le \frac{\varepsilon}{2}$. Podle bodu (ii) existuje r > 0 tak, že pro |p| > r a Re $p \ge 0$ je $|\mathcal{L}g(p)| \le \frac{\varepsilon}{2}$.

$$|\mathcal{L}(f-g)(p)| \le \int_0^\infty |f(t) - g(t)| \underbrace{e^{-\operatorname{Re} pt}}_{\le 1} dt \le \int_0^\infty |f - g| \le \frac{\varepsilon}{2}$$

Tedy pro $|p| \ge r$, Re p > 0 dostáváme

$$|\mathcal{L}f(p)| \leq |\mathcal{L}g(p)| + |\mathcal{L}(f-g)(p)| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(3) Funkce $f(t)e^{-pt}$ je měřitelná v t a spojitá v p. Derivace podle p existuje pro všechna $t \in (0, \infty)$:

$$\frac{\partial}{\partial p}(f(t)e^{-pt}) = -tf(t)e^{-pt},$$

$$|\frac{\partial}{\partial p}(f(t)e^{-pt})| \leq t|f(t)|e^{-ct},$$

kde pravá strana je integrovatelná na $(0, \infty)$ podle V1 a tedy je to integrovatelná majoranta. Předpoklady věty o derivaci podle parametru jsou splněny a tvrzení proto platí.

Poznámka:

- (1) Při počítání Laplaceovy transformace obvykle nepotřebujeme znát přesnou hodnotu c_f . Jelikož $\mathcal{L}f$ je holomorfní, je určena svými hodnotami na libovolné polorovině tvaru $\{p \in \mathbb{C} : \Re p > c\}$.
- (2) Uvažme množinu funkcí holomorfních na nějaké polorovině uvedého tvaru, přičemž dvě takové funkce ztotožníme, pokud se rovnají na nějaké polorovině téhož tvaru. Na této množině lze přirozeným způsobem definovat operace, s nimiž tvoří vektorový prostor. (Jde o tzv. **germy** funkcí.)

Věta 3: Laplaceova transformace některých funkcí

- (1) $\mathcal{L}(1)(p) = \frac{1}{p}$, Re p > 0;
- (2) $\mathcal{L}(e^{\alpha t})(p) = \frac{1}{p-\alpha}$, $\operatorname{Re} p > \operatorname{Re} \alpha$, $\alpha \in \mathbb{C}$;
- (3) $\mathcal{L}(t^n)(p) = \frac{n!}{p^{n+1}}$, Re p > 0, $n \in \mathbb{N}$;
- (4) $\mathcal{L}(t^{\nu})(p) = \frac{\Gamma(\nu+1)}{m_{\nu+1}(p)}, \operatorname{Re} p > 0, \nu \in (-1, +\infty);$
- (5) $\mathcal{L}(t^n e^{\alpha t})(p) = \frac{n!}{(p-\alpha)^{n+1}}, \operatorname{Re} p > \operatorname{Re} \alpha, \alpha \in \mathbb{C}, n \in \mathbb{N}.$

Důkaz:

- (1) Sami.
- (2) Sami.
- (3) Per partes + indukce.

(4) Nechť $\nu \in (-1, \infty)$. Pro Re s > 0 definujeme

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} \, \mathrm{d}x.$$

Funkce t^{ν} je z L^1_+ , $c_{t^{\nu}} \leq 0$, a proto $\mathcal{L}(t^{\nu})$ je holomorfní na $\{p : \operatorname{Re} p > 0\}$.

$$\mathcal{L}(t^{\nu})(p) = \int_0^{\infty} t^{\nu} e^{-pt} dt \stackrel{t = \frac{\tau}{p}}{=} \int_0^{\infty} \frac{t^{\nu}}{p^{\nu}} e^{-\tau} \frac{1}{p} d\tau = \frac{\Gamma(\nu + 1)}{p^{\nu + 1}}.$$

Tedy tento vzorec platí pro $p \in \mathbb{R}$, p > 0. Z věty o jednoznačnosti pak platí i pro $p \in \mathbb{C}$, $\operatorname{Re} p > 0$.

Věta 4: Laplaceova transformace a operace

- (1) \mathcal{L} je lineární zobrazení.
- (2) $\mathcal{L}(f(\alpha t))(p) = \frac{1}{\alpha} \mathcal{L}f(\frac{p}{\alpha}), f \in L_1^+, \alpha > 0.$
- (3) Nechť $f \in L_1^+$ a $\tau > 0$. Definujme funkci f_{τ} předpisem

$$f_{\tau}(t) = \begin{cases} 0 & t < \tau, \\ f(t - \tau) & t \ge \tau. \end{cases}$$

Pak $\mathcal{L}f_{\tau}(p) = e^{-p\tau}\mathcal{L}f(p)$.

- (4) $\mathcal{L}(e^{\sigma t}f(t))(p) = \mathcal{L}f(p-\sigma), f \in L_1^+, \sigma \in \mathbb{C}.$
- (5) Nechť $f \in L_1^+$. Definujme funkci F předpisem $F(t) = \int_0^t f$. Pak $F \in L_1^+$ a $\mathcal{L}(F)(p) = \frac{1}{p}\mathcal{L}(f)(p)$.
- (6) Nechť f má spojitou derivaci na $[0, +\infty)$, přičemž v bodě 0 uvažujeme derivaci zprava. Pokud $f' \in L_1^+$, pak $\mathcal{L}(f')(p) = p\mathcal{L}f(p) f(0)$.
- (7) Nechť funkce $\frac{f(t)}{t}$ patří do L_1^+ . Pak i $f \in L_1^+$ a

$$\mathcal{L}\left(\frac{f(t)}{t}\right)(p) = \lim_{r \to +\infty} \int_{[p,p+r]} \mathcal{L}f.$$

(8) Nechť $f_1, f_2 \in L_1^+$. Pak jejich konvoluce definovaná vzorcem

$$(f_1 * f_2)(t) = \int_0^t f_1(t - \tau) f_2(\tau) d\tau, \qquad t \in [0, +\infty),$$

patří do L_1^+ a platí $\mathcal{L}(f_1 * f_2) = \mathcal{L}(f_1)\mathcal{L}(f_2)$.

Důkaz:

- (1) Z definice.
- (2) Z definice.
- (3) Z definice.
- (4) Z definice.
- (5) Formálně provedeme výpočet:

$$\mathcal{L}F(p) = \int_0^\infty \left(\int_0^t f(u) \, \mathrm{d}u \right) e^{-pt} \, \mathrm{d}t \stackrel{\mathrm{FV}}{=} \int_{\{(u,t),0 \le u \le t\}} f(u) e^{-pt} \, \mathrm{d}u \, \mathrm{d}t \stackrel{\mathrm{FV}}{=}$$

$$\stackrel{\mathrm{FV}}{=} \int_0^\infty \left(\int_u^\infty f(u) e^{-pt} \, \mathrm{d}t \right) \, \mathrm{d}u = \int_0^\infty f(u) \left[-\frac{e^{-pt}}{p} \right]_u^\infty \, \mathrm{d}u = \int_0^\infty f(u) e^{-pu} \frac{1}{p} \, \mathrm{d}u = \frac{1}{p} \mathcal{L}f(p)$$

Funkce f je z \mathcal{L}^1_+ a Re $f > c_f$, Re f > 0:

$$\int_{(u,t),0 \le u \le t} |f(u)e^{-pt}| \, \mathrm{d}u \, \mathrm{d}t = \int_0^\infty |f(u)| \frac{e^{-u \operatorname{Re} p}}{\operatorname{Re} p} \, \mathrm{d}u < \infty.$$

V předchozím výpočtu jsme tedy mohli použít Fubiniho větu a výpočet je v pořádku.

- (6) Bez důkazu.
- (7) Bez důkazu.

5.2 Inverzní formule

Věta 5: Prostota Laplaceovy transformace

Nechť $f \in L_1^+$. Existuje-li takové $c > c_f$, že $\mathcal{L}f$ je nulová na polorovině $\{p \in \mathbb{C} : \operatorname{Re} p > c\}$, pak f = 0 skoro všude na $[0, +\infty)$.

Nechť $c \in \mathbb{R}$ a F je funkce holomorfní na polorovině $\{p \in \mathbb{C} : \operatorname{Re} p > c\}$, pro kterou platí $\lim_{\substack{p \to +\infty \\ \operatorname{Re} p \geq c}} F(p) = 0$. Zvolme

libovolně $\xi > c$ a pro $t \in \mathbb{R}$ položme

$$\mathcal{L}_{-1}(F)(t) = \lim_{y \to +\infty} \frac{1}{2\pi i} \int_{[\mathcal{E} - iy, \mathcal{E} + iy]} F(p)e^{ipt} dp,$$

pokud tato limita existuje (v \mathbb{C}).

Věta 6:

Nechť c a F je jako výše.

- (1) Nechť $t \in \mathbb{R}$ je libovolné. Pak existence a hodnota $\mathcal{L}_{-1}(F)(t)$ nezávisí na volbě $\xi \in (c, +\infty)$.
- (2) Nechť pro nějaké $\xi > c$ je funkce $u \mapsto F(\xi + iu)$ integrovatelná na \mathbb{R} . Pak platí:
 - (i) Funkce $f(t) = \mathcal{L}_{-1}(F)(t)$ je definována na \mathbb{R} .
 - (ii) $f|_{[0,+\infty)}$ patří do L_1^+ a $c_{f|_{[0,+\infty)}} \leq \xi$.
 - (iii) $\mathcal{L}(f|_{[0,+\infty)}) = F$.

Věta 7:

Nechť $c\in\mathbb{R}$ a F je funkce holomorfní na polorovině $\{p\in\mathbb{C}:\operatorname{Re}p>c\}$. Dále nechť existují taková A,B>0, že

$$|F(p)| \le \frac{A}{|p|^2}$$
 pro $p \in \mathbb{C}, |p| \ge B, \operatorname{Re} p > c.$

Definujme funkci f předpisem $f(t) = \mathcal{L}_{-1}(F)(t)$ pro $t \in \mathbb{R}$. Pak platí:

- (1) f je spojitá na \mathbb{R} a f(t) = 0 pro $t \leq 0$.
- (2) Existují taková $\alpha, \beta \geq 0$, že $|f(t)| \leq \alpha e^{\beta t}$ pro $t \geq 0$.
- (3) $\mathcal{L}(f|_{[0,+\infty)}) = F$.

Věta 8:

Nechť M označuje množinu všech komplexních lineárních kombinací funkcí tvaru $t^n e^{\alpha t}$, $n \in \mathbb{N} \cup \{0\}$, $\alpha \in \mathbb{C}$, zúžených na interval $[0, +\infty)$ a N nechť označuje množinu všech racionálních funkcí, které mají v ∞ limitu nula (tedy stupeň jmenovatele je větší než stupeň čitatele). Pak platí:

- (1) \mathcal{L} zobrazuje M prostě na N.
- (2) Pro každé $f \in M$ je $f = \mathcal{L}_{-1}(\mathcal{L}(f))$.
- (3) Nechť $F \in N$ a nechť kořeny jmenovatele jsou p_1, \ldots, p_k . Pak

$$\mathcal{L}_{-1}(F)(t) = \begin{cases} \sum_{j=1}^{k} \operatorname{res}_{p_j}(F(p)e^{pt}) & \text{pro } t > 0, \\ 0 & \text{pro } t < 0. \end{cases}$$

(4) Nechť $F \in N$. Pak $\lim_{t\to 0+} \mathcal{L}_{-1}(F)(t) = 0$, právě když stupeň jmenovatele je alespoň o dva větší než stupeň čitatele.