JFTT - Lista 2 Zadanie 2

Jakub Jaśków

November 26, 2023

Treść zadania

Znaleźć DFA o minimalnej liczbie stanów równoważny automatowi

$$\mathbf{M} = (\{a, b, c, d, e, f, g, h\}, \{0, 1\}, \delta, a, \{d\})$$

gdzie δ ma następującą postać

δ	0	1
a	b	a
b	a	c
c	d	b
d	d	a
е	d	f
f	g	e
g	f	g
h	g	d

Rysunek automatu

Jak widzimy M to DFA. Naszym zdaniem będzie jego minimalizacja.

Minimalizacja DFA

Algorytm minimalizacji DFA dzieli się na trzy etapy:

- 1 Usuń z automatu wszystkie stany, które nie są osiągalne ze stanu początkowego.
- 2 Utwórz tabelę par stanów automatu X_i, X_j , gdzie $Xi \neq Xj$.
 - 1 Zaznacz wszystkie pary stanów, gdzie $X_i \in F$ (F zbiór stanów akceptujących), a $X_j \notin F$.
 - 2 Dla każdej nie zaznaczonej jeszcze pary stanów oraz dla każdego elementu ainA (A skończony alfabet wejściowy) sprawdź, czy para $\{\delta(X_i,a),\delta(X_j,a)\}$ jest zaznaczona. Jeśli tak, zaznacz również $\{X_i,X_j\}$.
 - 3 Powtarzaj krok2.2tak długo, dopóki żadna zmiana w tabeli nie będzie już możliwa.
 - $4~{\rm Ka\dot{z}da}$ para, która pozostała niezaznaczona, zostaje stopiona do jednego stanu.

Rozwiązanie

Już na pierwszy rzut oka widać, że wierzchołek **h** reprezentuje stan nieosiągalny (nie prowadzą do niego żadne strzałki). Usuwamy go.

Stanami nie osiągalnymi są też stany ${\bf e}$, ${\bf f}$ oraz ${\bf g}$. Nie da się do nich dostać startując ze stanu początkowego ${\bf a}$. Usuwamy je.

Następnym krokiem jest znalezienie stanów równoważnych. Tworzymy tabele.

	a	b	c	d
a				
b				
С				
d	X	X	X	

Tylko **d** jest stanem końcowym, więc zaznaczamy cały ostatni rząd. Przechodzimy do kroku 2.2. $\delta(b,0)=a,\ \delta(a,0)=b.$ Para [a,b] nie występuje na naszej tabeli. $\delta(b,1)=c,\ \delta(a,1)=a.$ Ta para nie jest zaznaczona. $\delta(c,0)=d,\ \delta(a,0)=b.$ Para [d,b] jest zaznaczona, więc zaznaczamy parę [c,a].

	a	b	c	d
a				
b				
С	X			
d	X	X	X	

 $\delta(c,0)=d,\,\delta(b,0)=a.$ Zaznaczamy [c,b]. (Pomijam sprawdzanie kolejnych a, ponieważ osiągnęliśmy już stan akceptujący.

	a	b	c	\mathbf{d}
a				
b				
С	X			
d	X	X	X	

Wróćmy teraz do stanu [b,a]. Zaznaczyliśmy [c,a], więc musimy także zaznaczyć [b,a], ponieważ $\delta(b,1)=c$ $\delta(a,1)=a$, to nasz stan akceptujący.

	a	b	c	d
a				
b	X			
С	X	X		
d	X	X	X	

Jak wynika z opisu algorytmu oraz powyższej tabeli w naszym automacie nie ma par stanów, które można by było scalić. Znaczy to, że automat otrzymany przez nas jest automatem minimalnym.

