ລະບົບປະຕິບັດການ (Operating System:OS)

ອາຈານສອນ: ບ໊ວສິດ ໄຊຍະຈັກ

ວຸດທິການສຶກສາ: ປະລິຍາໂທວິທະຍາສາດ (ວິທະຍາສາດຄອມພິວເຕີ)

ໂທລະສັບມືຖື: (+856-20) 22245134

ອີເມລ: bouasoth@yahoo.com

ບິດທີ 1

ຄວາມຮູ້ເບື້ອງຕຶ້ນກ່ຽວກັບລະບົບ ປະຕິບັດການ

ເນື່ອໃນຫຍໍ້

- ສະເໜີເບື້ອງຕຶ້ນ
- ນິຍາມຂອງລະບົບປະຕິບັດການ
- ປະຫວັດຄວາມເປັນມາຂອງລະບົບປະຕິບັດການ
- ປະຫວັດຄວາມເປັນມາຂອງ Internet ແລະ WorldWide Web
- ເປົ້າໝາຍ ແລະ ອົງປະກອບຂອງລະບົບປະຕິບັດການ
- ສະຖາປັດຕະຍະກຳຂອງລະບົບປະຕິບັດການ

ສະເໜີເບື້ອງຕົ້ນ

- ຄອມພິວເຕີໄດ້ຂະຫຍາຍຕິວຢ່າງໄວວາໃນໄລຍະຫຼາຍທຶດສະວັດຜ່ານມາ
- ປະສິດທິພາບຂອງຄອມພິວເຕີໄດ້ເພີ່ມຂຶ້ນຢ່າງໄວວາ ໃນຂະນະທີ່ລາຄາຂອງມັນລຸດລົງກະທັນຫັນ
- ໃນປະຈຸບັນເຄື່ອງ PC ໄດ້ມີຄວາມສາມາດເຮັດວຽກໄດ້ຫຼາຍພັນລ້ານຄຳ ສັ່ງໃນໜຶ່ງວິນາທີ
- Super Computer ສາມາດເຮັດວຽກໄດ້ຫຼາຍລ້ານລ້ານຄຳສັ່ງໃນໜຶ່ງ ວິນາທີ
- ໜ່ວຍປະມວນຜົນມີປະສິດທິພາບສຸງຂຶ້ນ ແລະ ລາຄາຖືກລົງ
- ຄອມພິວເຕີໄດ້ເຂົ້າມາມີບົດບາດໃນທຸກສາຂາວຽກງານ ແລະ ໃນຊີວິດປະຈຳວັນຂອງມະນຸດ

ນິຍາມຂອງລະບົບປະຕິບັດການ

- ລະບົບປະຕິບັດການແມ່ນຊຸດຄຳສັ່ງທີ່ໃຊ້ຄວບຄຸມຮາດ ແວຣ໌ຄອມພິວເຕີ ແລະ ການເຮັດວຽກທັງໝົດໃນລະບົບ
- 🔲 ເປັນກຸ່ມຂອງໂປຣແກຣມທີ່ເຮັດໜ້າທີ່ເປັນສື່ກາງ ລະຫວ່າງຜູ້ໃຊ້ກັບເຄື່ອງຄອມພິວເຕີເພື່ອໃຫ້ການໃຊ້ ຄອມພິວເຕີມີຄວາມສະດວກ ແລະ ເຮັດໃຫ້ການໃຊ້ Hardware ມີປະສິດທິພາບສູງສຸດ
- 🔲 ເປັນສືກາງລະຫວ່າງຊອບແວຣ໌ນຳໃຊ້ກັບຮາດແວຣ໌
- ເປັນຜູ້ບໍລິຫານຈັດການຊັບພະຍາກອນທັງໝົດໃນລະບົບ ທັງຮາດແວຣ໌ ແລະ ຊອບແວຣ໌ ພາກວິຊາວິທະຍາສາດຄອມພິວເຕີ, ຄວທ, ມຊ 2013-2014

OS 1-5

- 🔷 ໃນຊ່ວງປີ 1940s ແລະ 1950s
 - ລະບົບປະຕິບັດການໄດ້ຖືກພັດທະນເປັນຫຼາຍຂັ້ນຕອນ
 - ໃນຊ່ວງປີ 1940, ຄອມພິວເຕີບໍ່ທັນມີລະບົບປະຕິບັດການ
 - ໃນຊ່ວງປີ 1950, ລະບົບປະຕິບັດການສາມາດ
 - ເປີດໄດ້ເທື່ອລະໂປຣແກຣມ
 - ມີລະບົບສິ່ງຕໍ່ການຄວບຄຸມຈາກວຽກໜຶ່ງໄປຫາວຽກໜຶ່ງ
 - ເປັນລະບົບທ້ອນໂຮມວຽກເຂົ້າປະມວນຜົນເປັນກຸ່ມ
 - ໂປຣແກຣມແລະຂໍ້ມູນຖືກເກັບໄວ້ເປັນລຳດັບໃນເທບ

- 🔷 ໃນຊ່ວງປີ 1960s
 - ຍັງເປັນລະບົບທ້ອນໂຮມວຽກເຂົ້າປະມວນຜືນເປັນກຸ່ມ
 - ແຕ່ສາມາດເປີດໄດ້ເທື່ອລະຫຼາຍໂປຣແກຣມ
 - ໃນປີ 1964, ບໍລິສັດ IBM ໄດ້ສະເຄື່ອງຄອມພິວເຕີລຸ້ນໃໝ່ ທີ່ຊື່ວ່າ System/360
 - ລະບົບ Time Sharing ໄດ້ຖືກພັດທະນາຂຶ້ນມາໃຫ້ ສາມາດໃຫ້ບໍລິການແກ່ຫຼາຍຜູ້ໃຊ້ໃນເວລາດຽວກັນ
 - ເວລາໂດຍລວມໃນການເຮັດວຽກລຸດລົງ
 - ລະບົບ Real Time ໄດ້ຖືກພັດທະນາຂຶ້ນມາເພື່ອໃຫ້ເຮັດ
 ວຽກທັນທີທີ່ສັ່ງການ

- ໃນຊ່ວງປີ 1970s
 - ເປັນລະບົບ multimode timesharing ທີ່ສະໜັບສະ ໜູນທັງໂປຣແກຣມໃນແບບ batch processing, timesharing ແລະ real-time
 - ເລີ່ມຕົ້ນມີລະບົບຄອມພິວເຕີຕັ້ງໂຕະ(Desktop)
 - ກະຊວງການຕ່າງປະເທດສະຫະລັດໄດ້ພັດທະນາ TCP/IP ຂຶ້ນມາໃຫ້ເປັນມາດຕະຖານການສື່ສານລະຫວ່າງຄອມພິວເຕີ

- ໃນຊ່ວງປີ 1980s
 - ເປັນທຶດສະຫວັດແຫ່ງ personal computers ແລະ workstations
 - ວິທະຍາການຄອມພິວເຕີໄດ້ຖືກນຳໃຊ້ໃນໂຂງເຂດຕ່າງໆທີ່ຕ້ອງການ
 - PC ສາມາດຮຽນຮູ້ ແລະ ໃຊ້ງານງ່າຍເພາະວ່າເປັນ GUI
 - ການເອົາຂໍ້ມູນຈາກເຄື່ອງໜຶ່ງໄປຫາອີກເຄື່ອງໜຶ່ງແມ່ນໃຊ້ລະບົບເຄືອ ຂ່າຍຊຶ່ງເຮັດໃຫ້ປະຢັດຄ່າໃຊ້ຈ່າຍ
 - ລະບົບຄອມພິວເຕີແບບ Client/server ກຳລັງໄດ້ຮັບຄວາມນິຍົມ ຢ່າງກ້ວາງຂວາງ
 - ວິສະວະກຳຊອບແວຣ໌ສືບຕໍ່ພັດທະນາຕາມລຳດັບ

- 🔷 ໃນຊ່ວງປີ 1990s
 - ປະສິດທິພາບຂອງຮາດແວຣ໌ໄດ້ເພີ່ມຂຶ້ນຢ່າງກະທັນຫັນ
 - ໜ່ວຍປະມວນຜົນມີປະສິດທິພາບສຸງຂຶ້ນ ແລະ ໜ່ວຍຄວາມຈຳ
 ໃຫຍ່ຂຶ້ນ ແຕ່ລາຄາຖືກລົງຫຼາຍ
 - ໜ່ວຍປະມວຜົນສາມາດປະຜົນໂປຣແກຣມທີ່ໃຫຍ່ ແລະ ສະຫຼັບຊັບຊ້ອນເທິງເຄື່ອງ PC
 - ເຄື່ອງຄອມພິວເຕີລາຄາຖືກລົງ, ສາມາດບັນຈຸຖານຂໍ້ມູນຂະໜາດ
 ໃຫຍ່ຂື້ນ ແລະ ປະມວນຜິນວຽກໄດ້ຫຼາຍຂື້ນ
 - Mainframes ຖືກໃຊ້ໜ້ອຍລົງ
 - ຄອມພິວເຕີໄດ້ກ້າວເຂົ້າຫາຍຸກຂອງລະບົບແບບກະຈາຍ

- 🔷 ໃນຊ່ວງປີ 1990s
 - ຄອມພິວເຕີທັງໝິດສະໜັບສະໜູນການເຮັກຜ່ານເຄືອຂ່າຍ
 - ບໍລິສັດໄມໂຄຣຊອບໄດ້ຄອບຄອງຕະຫຼາຍເປັນສ່ວນໃຫຍ່
 - ລະບົບປະຕິບັດການວິນໂດມີຄຸນລັກສະນະທຸກຢ່າງທີ່ມີໃນລະບົບ
 Macintosh ແຕ່ກ່ອນ
 - ຜູ້ໃຊ້ສາມາດໃຊ້ຫຼາຍໂປຣແກຣມໃນເວລາດຽວກັນ
 - Object technology ເປັນທີ່ນິຍົມຫຼາຍຂຶ້ນ
 - ຫຼາຍໂປຣແກຣມທີ່ຂຽນຈາກພາໂປຣແກຣມແບບ Object
 - Object-oriented operating systems (OOOS) ໄດ້ຖືກ
 ພັດທະນາຂຶ້ນມາ

- 🔷 ໃນຊ່ວງປີ 1990s
 - ຊອບແວຣ໌ທີ່ມີລາຍເຊັນເກືອບທັງໝຶດຂ່າຍເປັນ object code
 - ບໍ່ລວມຊອດໂຄດ
 - ຜູ້ຜະລິດຈະເຊື່ອງຊ້ອນລາຍລະອຽດ ແລະ ເທັກນິກ
 - ຟຣີແລະໂອເພີນຊອດກຳລັງໄດ້ຮັບການພັດທະນາຫຼາຍຂຶ້ນ
 - ມີຊອດໂຄດໃຫ້ພ້ອມ
 - Richard Stallman ເປີດໂຄງການ GNU
 - ສ້າງ ແລະ ຂະຫຍາຍເຄື່ອງມືຂອງລະບົບ UNIX ຄືນໃໝ່

- 🔷 ໃນຊ່ວງປີ 1990s
 - Open Source ກໍາລັງເລີ່ມຕົ້ນພັດທະນາ
 - ເຫັນວ່າຈະໄດ້ຮັບປະໂຫຍດໃນອະນາຄິດ
 - ເປັນການອຳນວຍຄວາມສະດວກໃຫ້ແກ່ການພັດທະນາຊອບແວຣ໌ ເພາະວ່າທຸກຄືນຈະເປັນຜູ້ທິດສອບ, ແກ້ໄຂຂໍ້ມິດພາດ, ຂະຫຍາຍ
 - ຂໍ້ບົກພ່ອງຂອງລະບົບທຸກຢ່າງຈະກວດພົບ ແລະ ຖືກແກ້ໄຂ
 - ທຸກອົງກອນສາມາດປັບປຸງແກ້ໄຂຊອດໂຄດໃຫ້ດີຂຶ້ນ
 - ລະບົບປະຕິບັດການມີຄວາມເປັນມິດຕໍ່ໃຊ້ຫຼາຍຂຶ້ນ
 - ເປັນລະບົບ GUI ແລະ "Plug-and-play"

- ໃນຊ່ວງປີ 2000 ແລະ ໃນອານາຄິດ
 - ມີຊອບແວຣ໌ທີ່ເປັນຕົວກາງໃນການປະສານງານລະຫວ່າງ ລະບົບຕ່າງໆທີ່ແຕກຕ່າງກັນໃຫ້ເຮັດວຽກຮ່ວມກັນໄດ້ຜ່ານ ລະບົບເຄືອຂ່າຍຊຶ່ງເອີ້ນວ່າ Middleware
 - ຈະຖືກໃຊ້ໂຫຍດໃນລະບົບ Web services
 - ລະບົບ Web services ໄດ້ພັດທະນາ
 - ເປັນການລວມເອົາບັນດາມາດຕະຖານຕ່າງໆເຂົ້າກັນ
 - ເປັນຊອບແວຣ໌ທີ່ກຽມພ້ອມໃຊ້ງານຜ່ານລະບົບ Internet ໄດ້
 - ເຮັດໃຫ້ບັນດາໂປຣແກຣມສາມາດສື່ສານ ແລະ ແລກປ່ຽນຂໍ້ມູນກັນ ໄດ້

ປະຫວັດຄວາມເປັນມາຂອງ Internet ແລະ World Wide Web

- Advanced Research Projects Agency (ARPA)
 ໄດ້ສ້າງ ARPAnet ຂຶ້ນມາໃນຊ່ວຍທ້າຍຊຸມປີ 1960s
- ARPAnet ໄດ້ກາຍເປັນປູ່ຂອງລະບົບ Internet ໃນປະຈຸບັນ
- ARPA ໄດ້ພັດທະນາ TCP/IP ເພື່ອເປັນມາດຕະຖານໃນການ ສື່ສານລະຫວ່າງຄອມພິວເຕີໃນ ARPAnet
- TCP/IP ຈະບໍລິຫານຈັດການການສື່ສານລະຫວ່າງໂປຣແກຣມ
 ຕ່າງໆ ໂດຍຮັບປະກັນວ່າຂໍ້ມູນຈະຖືກສິ່ງຈາກຕຶ້ນທາງຫາ
 ປາຍທາງຢ່າງຖືກຕ້ອງ
- ໃນຕອນຫຼັງມາ TCP/IP ໄດ້ຖືເອົາມານຳໃຊ້ໃນວຽກງານ ຄ້າຂາຍ

ປະຫວັດຄວາມເປັນມາຂອງ Internet ແລະ World Wide Web

- World Wide Web (WWW) ໄດ້ຖືກພັດທະນາຂຶ້ນມາໃນຊ່ວງທ້າຍປີ 1989 ທີ່ CERN ໂດຍ Tim Berners-Lee
- ໃຊ້ເພື່ອບອກທີ່ຕັ້ງ ແລະ ເປີດເບິ່ງເອກະສານທີ່ປະກອບດ້ວຍລະບົບ multimedia-based ໃນທຸກກໍລະນີ
- ເປັນເທັກໂນໂລຍີ່ໃນການໃຊ້ຂໍ້ມູນຂ່າວສານຮ່ວມກັນໂດຍຜ່ານເອກະສານ
 hyperlinked ທີ່ສ້າງຈາກ HyperText Markup Language ໂດຍ
 ຜ່ານ Hypertext Transfer Protocol (HTTP)

- ລະບົບຄອມພິວເຕີໄດ້ຖືກພັດທະນາຈາກທີ່ບໍ່ມີລະບົບປະຕິບັດ ການ ຈືກາຍເປັນລະບົບ multiprogramming ແລະ timesharing, ມີ PC ແລະ ຕອນທ້າຍລະບົບກະຈາຍໄດ້ຖືກ ພັດທະນາຂຶ້ນມາ
- ຜູ້ໃຊ້ສາມາດຕິດຕໍ່ປະສານງານກັບລະບົບປະຕິບັດການ ໂດຍໃຊ້ໂປຣແກຣມພິເສດທີ່ຊື່ວ່າ shell
- ຈ ໃນລະບົບປະຕິບັດການຈະມີກຸ່ມໂປຣແກຣມທີ່ຊື່ວ່າ Kernel ທີ່ ເປັນຊອບແວຣ໌ທີ່ບັນຈຸບັນດາອີງປະກອບຫຼັກຂອງລະບົບປະຕິບັດ ການ

- ໂດຍປົກກະຕິອົງປະກອບຂອງລະບົບປະຕິບັດການ ປະກອບດ້ວຍ
 - Processor scheduler
 - Memory manager
 - I/O manager
 - Interprocess communication (IPC) manager
 - File system manager

- ໃນສະພາບແວດລ້ອມຂອງລະບົບ Multiprogramm ຈະມີມີ ລັກສນະດັ່ງນີ້
 - Kernel ຈະເປັນຜູ້ບໍລິຫານຈັດການການເຮັດວຽກຂອງໂປຣແກຣມ ຕ່າງໆ
 - ໂປຣແກຣມອາດຈະປະກອບດ້ວຍພາກສ່ວນຕ່າງໆເຮັດວຽກເປັນອິດ ສະລະຕໍ່ກັນ, ແຕ່ໃຊ້ໜ່ວຍຄວາມຈຳຮ່ວມກັນເພື່ອໃຊ້ຂໍ້ມູນຮ່ວມກັນ ຊຶ່ງເອີ້ນວ່າ threads
 - ເພື່ອໃຊ້ງານບັນດາອຸປະກອນ I/O, ໂປຣແກຣມຕ່າງໆຈະຕ້ອງເອິ້ນໃຊ້
 System call ຊຶ່ງຈັດການໂດຍ driver ອຸປະກອນຕ່າງໆທີ່ບັນຈຸຄຳ ສັ່ງສະເພາະແຕ່ລະອຸປະກອນເພື່ອເຂົ້າໄປໃຊ້ຮາດແວຣ໌ໂດຍກົງ

- ເປົ້າໝາຍຂອງລະບົບປະຕິບັດການ
 - Efficiency ເຮັດວຽກໄດ້ຫຼາຍທີ່ສຸດ ແລະ ໃຊ້ເວລາໜ້ອຍ
 - Robustness ປ້ອງກັນຄວາມຜິດພາດ ແລະ ມີຄວາມໜ້າເຊື່ອຖື
 - Scalability ສາມາດເພີ່ມຊັບພະຍາກອນຕ່າງໆຕາມຕ້ອງການ
 - Extensibility ສາມາດເຮັດວຽກກັບເທັກໂນໂລຍີ່ໄດ້
 - Portability ສາມາດເຮັດວຽກກັບຮາດແວຣ໌ຕ່າງໆໄດ້
 - Security ປ້ອງກັນຜູ້ໃຊ້ ແລະ ຊອບແວຣ໌ເຂົ້າໃຊ້ອຸປະກອນ ແລະ ຊັບພະຍາກອນໂດຍບໍ່ໄດ້ຮັບອະນຸຍາດ
 - Protection ເທັກນິກທີ່ໃຊ້ນະໂຍບາຍຄວາມປອດໄພ
 - Interactivity ເຮັດໃຫ້ໂປຣແກຣມຕອບສະໜອງຕໍ່ຜູ້ໃຊ້ໄດ້ໄວ
 - Usability ໃຫ້ເປັນປະໂຫຍດຕໍ່ຜູ້ໃຊ້

- ລະບົບປະຕິບັດການໃນປະຈຸບັນມີແນວໂນ້ມສະລັບຊັບຊ້ອນຂຶ້ນເລື້ອຍໆ
 - ໃຫ້ບໍລິການໄດ້ຫຼາຍອັນ
 - ສະໜັບສະໜູນຮາດແວຣ໌ ແລະ ຊອບແວຣ໌ທີ່ແຕກຕ່າງກັນ
 - ໂຄງສ້າງຂອງລະບົບປະຕິບັດການຈະຊ່ວຍຈັດການຄວາມຊັບຊ້ອນ ດັ່ງກ່າວ
 - ຈັດສັນອົງປະກອບຂອງລະບົບປະຕິບັດການໃຫ້ເປັນລະບຽບ
 - ກຳໜົດສິດທິພິເສດໃຫ້ແກ່ແຕ່ລະພາກສ່ວນໃນການເຮັດວຽກ

- ສະຖາປັດຕະຍະກຳແບບ Monolithic
 - ທຸກອົງປະກອບຂອງລະບົບປະຕິບັດການຈະຖືກບັນຈຸໄວ້ໃນ kernelແລະ ແຕ່ລະສ່ວນສາມາດສື່ສານກັນໄດ້ໂດຍກົງ
 - ການເຮັດວຽກມີປະສິດທິພາບສຸງ
 - ເມື່ອເກີດມີຂໍ້ຜິດພາດເລັກໜ້ອຍຈະກວດໄດ້ຍາກ

🕨 ສະຖາປັດຕະຍະກຳແບບ Monolithic

- ສະຖາປັດຕະຍະກຳແບບ Layer
 - ອອກແບບມາເພື່ອປັບປຸງຜິນເສຍຂອງ Monolithic ໂດຍການຈັດກຸ່ມບັນດາອິງປະກອບທີ່ເຮັດວຽກຄ້າຍຄືກັນໄວ້ໃນຊັ້ນດຽວກັນ
 - ແຕ່ລະຊັ້ນສາມາດສື່ສານໄດ້ໂດຍກົງກັບຊັ້ນທີ່ຢູ່ລຸ່ມແລະເທິງທີ່ຕິດກັບ
 ມັນເທົ່ານັ້ນ
 - ການເອິ້ນໃຊ້ຂະບວນການຈະຕ້ອງຜ່ານຫຼາຍຊັ້ນກ່ອນສຳເລັດ
 - ຜິນການປະມວນຜິນໄດ້ໜ້ອຍກ່ວາ Monolithic, ສະນັ້ນ ຈຶ່ງຕ້ອງໄດ້ມີ
 ວິທີການໃໝ່ໃນການສິ່ງຂໍ້ມູນ ແລະ ຄຳສັ່ງຄວບຄຸມ

ສະຖາປັດຕະຍະກຳແບບ Layer

- ສະຖາປັດຕະຍະກຳແບບ Microkernel
 - ສາມາດໃຫ້ບໍລິການໄດ້ຈຳນວນໜຶ່ງເທົ່ານັ້ນ ຊຶ່ງເປັນການເຮັດໃຫ້ kernel
 ນ້ອຍທີ່ສຸດ ແລະ ເພີ່ມຊັບພະຍາກອນໄດ້ຕາມຕ້ອງການ
 - ມີລະດັບຄວາມເປັນໂມດູນສຸງ (High degree of modularity)
 - ເປັນບິບທີ່ Extensible, portable ແລະ scalable
 - ເຮັດໃຫ້ມີການສື່ສານລະຫວ່າງໂມດູນຫຼາຍຂຶ້ນ, ສະນັ້ນ ອາດຈະເຮັດໃຫ້ ປະສິດທິພາບຂອງລະບົບລຸດລົງ

- ລະບົບປະຕິບັດການແບບເຄືອຂ່າຍ ແລະ ກະຈ່າຍວຽກ
 - ລະບົບປະຕິບັດການເຄືອຂ່າຍ
 - ເຮັດວຽກຢູ່ໃນຄອມພິວເຕີເຄື່ອງໜຶ່ງ, ແຕ່ອະນຸຍາດໃຫ້ຂະບວນ(ໂປຣແກຣມ)ຂອງມັນສາມາເຂົ້າໄປໃຊ້ຊັບພະຍາກອນໃນຄອມພິວເຕີເຄື່ອງອື່ນໄດ້
 - ລະບົບປະຕິບັດການກະຈາຍວຽກ
 - ເປັນລະບົບປະຕິບັດການອັນໜຶ່ງທີ່ສາມາດບໍລິຫານຈັດການຊັບພະຍາກອນຂອງ ຫຼາຍເຄື່ອງຄອມພິວເຕີໄດ້
 - ຈຸດປະສິງ
 - Transparent performance
 - Scalability
 - Fault tolerance
 - Consistency

ໜ້າທີ່ຂອງລະບົບປະຕິບັດການ `

- ຄອມພິວເຕີແບບຕັ້ງໂຕະ ແລະ mainframe ຈະມີໜ້າທີ່ແຕກ ຕ່າງກັນ
- ໂດຍທົ່ວໄປລະບົບປະຕິບັດການມີໜ້າທີ່ດັ່ງນີ້
 - ດຳເນີນການແລະ ຄວບຄຸມການເຮັດວຽກຂອງ Application ແລະ ອຸປະກອນຕ່າງໆ
 - ການຈັດສັນຊັບພະຍາກອນທີ່ໃຊ້ຮ່ວມກັນເຊັ່ນ: CPU, RAM, Disk,
 I/O...

ໜ້າທີຂອງລະບົບປະຕິບັດການ `

- ລະບົບປະຕິບັດການຂອງຄອມພິວເຕີຂະໝາດໃຫຍ່ມີໜ້າທີ່ດັ່ງນີ້:
 - ບໍ່ຫານຈັດການຂະບວນການ(Process Management)
 - ບໍລິຫານຈັດການໜ່ວຍຄວາມຈຳຫຼັກ (Main Memory Management)
 - ບໍລິຫານຈັດການ File (File Management)
 - ບໍລິຫານຈັດການ I/O (I/O Management)
 - ບໍລິຫານຈັດການ Disk (Disk Management)
 - ບໍລິຫານຈັດການເຄືອຂ່າຍ (Network Management)
 - ປ້ອງກັນລະບົບ (System Protection)
 - ແປບັນດາຄຳສັ່ງຕ່າງໆ (Command Interpreter)