Part III assignment 1!

Graded

Student

Scott A. Fullenbaum

Total Points

20 / 20 pts

Question 1

17.2 5 / 5 pts

✓ - 0 pts Correct

- 1 pt $\frac{1}{3}$ can be reflected across $\frac{1}{2}$ to get $\frac{2}{3}$, so the orbit of $\frac{1}{3}$ is $(\frac{1}{3} + \mathbb{Z}) \cup (\frac{2}{3} + \mathbb{Z})$. Similarly the orbit of $\frac{1}{2}$ is $\frac{1}{2} + \mathbb{Z}$.
- 1 pt 1 and $\frac{1}{2}$ are both the centers of reflections in D_{∞} so they each have one non-trivial reflection in their stabilizer. $\frac{1}{3}$ is not the center of a reflection so its stabilizer is trivial.

Question 2

17.4 5 / 5 pts

✓ - 0 pts Correct

Question 3

17.9 5 / 5 pts

✓ - 0 pts Correct

- **0 pts** In (b) $t=2\pi$ sends every point back where it started so orbits are circles and there are infinitely many.
- **0 pts** In (c) no value of t except 0 sends any point back to itself and a single orbit is dense in the torus.
- 0 pts Unclear answer

Question 4

example of surjection not inducing a product structure

5 / 5 pts

- ✓ 0 pts Correct
 - 1 pt Major logical issue.
 - 0 pts Minor logical issue.

Questions assigned to the following page: $\underline{1}$ and $\underline{2}$

145 HW P3 as just relate it Stab(1)= Krsr-1, as sends 1 to self, no other unique was 00 (0) , and invadant un der reflection Same idea as above 6 C= > = < (65) > as not midpoint as reflecting puts a vice versa So! Stabell)=Crsr = 7/+2 Stab (2) = (151-1))=(7/43)UC7/42/ Meaning

