Instituto Tecnológico y de Estudios Superiores de Monterrey

Diseño de sistemas embebidos avanzados

TE2004B.501

Profesores:

Alfonso Avila Ortega

Raúl Peña Ortega

Frumencio Olivas Alvarez

César Vargas Rosales

Reporte de requerimientos y diseño

Estudiantes

Armando Ángel Martínez Villarreal	A00830032
Yosel Eduardo Delgado Salas	A00830161
Alexia Elizabeth Naredo Betancourt	A00830440
Luis Marcelo Ruiz Hernández	A01197644

Equipo

Motomamis

Fecha de entrega: 1 de diciembre del 2022

1. Descripción del producto

Para maximizar la vida útil de las llantas de los tractores, se tiene como propósito desarrollar un sistema de control de presión de las mismas, capaz de adaptarse dependiendo del terreno en que se utilizan. Esto beneficiará en gran medida a los clientes de John Deere, gracias a tener un producto de calidad capaz de atender las necesidades de su trabajo, lo cual a su vez mejorará la reputación de la empresa.

Para hacer esto, se construyó un sistema de control a través de la integración de diversos periféricos como sensores y actuadores que permite al usuario seleccionar el nivel de presión deseado para sus llantas y ajustarlo de forma eficiente y precisa. De igual forma, el usuario puede verificar el funcionamiento de este dispositivo a través de un tablero digital que realiza un monitoreo del mismo y del cual se envía el nivel de presión deseado por el usuario. Este diseño amigable con el usuario lo coloca por encima de la maquinaria convencional, pues permite de forma eficiente obtener un valor preciso de presión, así como ajustarlo en cualquier momento.

2. Metodología de trabajo

Incluir versiones actualizadas de lo siguiente:

• Backlog list (ordenado por prioridad)

• Listado de "Epics" con sus "stories" correspondientes

• Sprints realizados para concluir el reto indicando la story asociada, el responsable, duración y su fecha de término. Mostrar el número de sprints requerido para completar una "story".

• Reflexión sobre la forma y aspectos considerados (como talento) en la distribución del trabajo entre los miembros del equipo.

La distribución de las tareas se basó en aprovechar las fortalezas de cada integrante del equipo, por ejemplo en talento lógico para la programación o armado del circuito, también de redacción u observación para las pruebas y reportes, sin embargo esto no significó que no existiera la colaboración entre varios miembros del equipo para las tareas, más bien que el área de fortaleza de un integrante sirviera para la reafirmación de aprendizaje del resto del equipo y pudiera haber aportaciones diferentes desde cada perspectiva.

• Reflexión sobre mejoras que propone el equipo en la forma que se designa el trabajo a los miembros del equipo. La reflexión debe abordar acciones para lograr una colaboración efectiva considerando imprevistos de índole personal o asociados al reto.

En futuras ocasiones donde el proyecto cuente con más tiempo para su realización, resultaría de provecho para el crecimiento personal que miembros del equipo realicen tareas que no sean necesariamente de su área de fortaleza; esto también ayudaría a eliminar la dependencia que llega a existir en los equipos de trabajo y haría que afectarán significativamente menos si algún miembro llegase a faltar por temas personales, además gracias a que los miembros se sentirían más seguros en las áreas permitiría más ambición para lograr mejores resultados en el reto.

3. Diagrama UML de contexto

4. Actualizar la Tabla de requerimientos

Requirements form	
name	Sistema MTM: Multiple Terrain Manager System
purpose	Control the pressure of a tire depending on the

	type of terrain.
inputs	Pressure sensor, type of terrain, pump sound (noice)
outputs	Dashboard, tire pressure, setpoint values of terrain, malfunction alert at dashboard
functions	Receive type of terrain Establish ideal pressure Control pressure valve and air pump Send pressure value to dashboard Generate an alert at dashboard if pump is not operating correctly Show pressure value at dashboard
power	3 Battery power (1 at 24V, 2 at 12V)

5. Diagrama de despliegue

6. Diagrama UML de actividad

a) Diagrama de ajuste de presión dado un nuevo tipo de terreno

b) Diagrama de despliegue de la presión en Dashboard

Display pressure at dashboard

7. Selección de dispositivos periféricos.

Componente	Utilidad
Barómetro digital	Sensor de presión que permitirá hacer las pruebas, así como comprobar el nivel de presión del tanque
CAN Transceiver	Traduce los mensajes de nivel lógico del microcontrolador STM32, al protocolo CAN en sus pines CANH y CANL.

CAN Controller	Procesa toda la información de los mensajes en el CAN Bus para que el nodeMCU pueda comunicarse con la STM32.
Node MCU	Se conecta a la placa STM32 para recibir y enviar información del sistema, esta información es enviada a través de Wi-Fi a un dashboard.
Puente H	Controla el flujo de la corriente para poder manejar la bomba según lo requiera el sistema.
Bomba	Manipula la presión del sistema controlando la entrada de aire.
Relevador	Controla el flujo de la corriente para poder manejar la válvula según lo requiera el sistema.
Válvula solenoide	Manipula la presión del sistema controlando la salida de aire.

8. Implementación del sistema y pruebas unitarias Sistema completo

- Mostrar una imagen del sistema completo donde aparecen todos los componentes del diagrama de despliegue
- "Bill of materials" del sistema completo

Componente	Cantidad	Precio por pieza	Utilidad	Link de compra
Tubo de PVC de 1 ½ "	1	\$88	Tanque principal	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/hidraul ica/tubo-pvc-hid-c 40-1-1-2-x-1-m-3 74181
Unión T de PVC 1 ½ "	2	\$33.20	Facilitar la conexión de válvulas de entrada, salida, salida rápida y el sensor de presión.	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/conexi ones/te-liso-rosca -interior-pvc-cedul a-40-338462
Bushing	3	\$19	Adaptador de entrada a	https://www.home

galvanizado ½ " a ¼ "			válvula	depot.com.mx/plo meria/tuberias-y-c onexiones/conexi ones/reduccion-b ushing-galvaniza da-1-2-x-1-4-345 962
Bushing 1 ½" a 1"	3	\$18	Adaptador entre conexiones	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/conexi ones/reduccion-b ushing-pvc-38x25 -mm-1-1-2x1-349 858
Bushing 1" a ½"	3	\$18	Adaptador entre conexiones	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/conexi ones/reduccion-b ushing-3-4-x-1-2- 107343
Tapa de PVC 1 ½	1	\$17.70	Evitar fugas y servir como punto de colocación para válvula de entrada.	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/conexi ones/tapon-cachu cha-pvc-cedula-4 0-1-2-13mm-3335 37
Niple galvanizado de ¼ "	3	\$21	Conexión a solenoide, válvula esfera y sensor de presión	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/conexi ones/niple-acero- galvanizado-cedu la-40-con-costura -1-4-x-2-528172
Barómetro digital	1	\$12,177	Sensor de presión que permitirá hacer las pruebas, así como comprobar el nivel de presión del tanque	https://www.balluff .com/es-mx/produ cts/BSP00YJ?gcli d=Cj0KCQjwy5m aBhDdARIsAMxr kw0FpjNS3ZMU5 Vyxw4p2ce5TExb

				hQTyO1CfZ8yQT r3-H6fhyPxDMaF QaAsHKEALw_w cB
Válvula solenoide 1/4"	1	\$269	Salida controlada de aire a presión	https://www.amaz on.com.mx/Electr oválvulas-Solenoi de-Eléctrica-Bidir eccional-Normal mente/dp/B07VJ HF12X/ref=asc_d f_B07VJHF12X/?t ag=gledskshopm x-20&linkCode=df 0&hvadid=36060 6045821&hvpos= &hvnetw=g&hvra nd=72463711915 68134051&hvpon e=&hvptwo=&hvq mt=&hvdev=c&hv dvcmdl=&hvlocint =&hvlocphy=1010 163&hvtargid=pla -941852889487& psc=1
Válvula esfera ¼"	1	\$85	Funge como válvula de salida rápida para evitar accidentes	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/valvula s-y-llaves/valvula- esfera-roscable-1 1-4-108547
Tapón macho galvanizado de ½"	1	\$10.50	Conexión a entrada de aire (bomba)	https://www.home depot.com.mx/plo meria/tuberias-y-c onexiones/conexi ones/tapon-mach o-galvanizado-1-2 -121560
Node MCU	1	\$397.46	Permite la conexión a red WiFi por parte del sistema y hacer llamadas al servidor de Arduino IOT	https://www.amazo n.com.mx/HiLetgo-I nternet-Developme nt-Micropython-Uni dades/dp/B01001G 1ES?th=1

Compresor de Aire para automóvil	1	\$299	Genera la presión necesaria para el llenado del tanque	https://www.amazo n.com.mx/Mikels-N CA-2-Compresor-Ai re-Volts/dp/B00UKJ NGUM/ref=sr_1_14 ?keywords=bomba +de+aire+para+carr o&qid=1669818360 &qu=eyJxc2MiOilz LjgwliwicXNhljoiMi4 5NylsInFzcCl6ljluN zMifQ%3D%3D&sr =8-14
Monster Moto Shield	1	\$297.88	Permite el control del compresor de manera paramétrica con modulación de ancho de pulso	https://articulo.merc adolibre.com.mx/M LM-775703293-mo nster-moto-shield-v nh2sp30-puente-h- doble-30a-motor-ro bot- JM#position=1 &search_layout=gri d&type=item&tracki ng_id=1b7197cc-4c ad-4dbe-a337-87c6 101dee15
Relevador	1	\$43.50	Permite la apertura o cierre de la válvula solenoide	https://articulo.merc adolibre.com.mx/M LM-605821334-mo dulo-relevadores-re lay-1-canal-5v- JM #position=2&search layout=grid&type=i tem&tracking_id=e 379aa67-0257-4f24 -8f3a-90445c07bbb f
Modulo CAN Bus	1	\$119	Permite la comunicación vía CAN	https://articulo.merc adolibre.com.mx/M LM-754033498-mo dulo-can-bus-spi-m cp2515-tja1050-51- mcu-armJM#posit ion=1&search_layo ut=grid&type=item& tracking_id=cec7a2 a1-0322-483f-8455- 020e25fa921a
Transceiver CAN	1	\$8 USD	Traduce la comunicación CAN	https://www.amazo n.com/SN65HVD23 0-Transceiver-Com munication-Module-

	Arduino/dp/B01L47 TLVQ
--	---------------------------

Subsistemas

Sensor ADC:

	Sensor ADC/29-Nov-2022				
Team	Motomamis				
Responsible	Marcelo Ruíz				
Description		of ADC and Serial port. Meas rill be displayed at the compute		ressure sensor, the	
Function	Monitor pressure ((use case – functionality)			
Components	Uart driver, ADC d	Iriver, measure control (main).			
Hardware	ADC pressure ser	nsor, serial port, computer with	serial interface, 24 V pov	ver source	
Procedure		Expected behavior	Actual behavior	Result	
	Initial conditions	Pressure sensor shows 0 PSI.	Pressure sensor shows approximately 0 PSI (-0.4 PSI).	OK	
	Step1: Turn on the pump The pressure displayed on the sensor should be equal to the pressure displayed on the serial terminal (or close to it) The pressure displayed on the sensor is close to the pressure displayed on the serial terminal (± 0.7 PSI).				
	Step2: Turn off the pump	The pressure level displayed on both the sensor and the serial terminal should remain constant.	The pressure level displayed on both the sensor and the serial terminal changes slightly due to noise (± 0.7 PSI).	ОК	
Comments			,		

Subsistema en diagrama:

Subsistema implementado:

Resultado:

https://drive.google.com/file/d/1n47cmFUES0llzkZFoizJc9s2VV1Fvu02/view?usp=sharing

Código: https://drive.google.com/drive/folders/1s9NcVNJ0Wgin_ifWrhqcpz2c6g1Sm4iC?usp=share_link

Solenoid Valve:

	Solenoid Valve GF	PIO/29-Nov-2022				
Team	Motomamis					
Responsible	Alexia Naredo					
Description	measured by the	Testing integration of GPIO and the Solenoid Valve using the relay. When the pressure measured by the sensor surpasses the setpoint established, activates the solenoid valve to release pressure under the desired level.				
Function	Release pressure					
Components	Uart driver, ADC of	lriver, measure control (main), G	PIO driver.			
Hardware	ADC pressure sensor, serial port, 5V relay, Solenoid valve, computer with serial interface, 24 V power source					
Procedure		Expected behavior	Actual behavior	Result		
	Initial conditions	Pressure sensor shows 0 PSI.	Pressure sensor shows approximately 0 PSI (-0.4 PSI).	OK		
	Step1: Increase pressure over 12 psi	The relay should activate the solenoid and release the excess of pressure each time it surpasses 12 psi.	The relay activates the solenoid and releases the excess of pressure each time it surpasses 12 psi.	ОК		

	Step2: set pressure level to 12 psi.	The valve remains closed.	The valve remains closed.	ОК
Comments	The pressure level is adjust manually using the pump without a control			

Subsistema en diagrama:

Subsistema implementado:

Resultado: https://drive.google.com/file/d/1V7E6WsfVIIe09_ySvXoJNzKVoH0qVvZ4/view?usp=drivesdk

Código:

https://drive.google.com/drive/folders/1s-bpO-aix80Ev7CPY6OuBmCJywoBOFmV?usp=share_link

H-Bridge and pump (PWM):

	PWM/29-Nov-2022			
Team	Motomamis			
Responsible	Armando Martínez	7		
Description		of PWM and H-Bridge connected or ease the pressure at different		es the intensity of the
Function	Control pump (use	e case – functionality)		
Components	PWM driver, ADC	driver, measure control (main).		
Hardware	H-Bridge, air pum	p, 12 V power source		
Procedure		Expected behavior	Actual behavior	Result
	Initial conditions	Duty Cycle at 100% (pump at maximum performance)	Duty Cycle at 100% (pump at maximum performance)	ОК
	Step1: Reduce gradually the duty cycle	The performance of the pump is reduced at a constant rate until it turns off.	The performance of the pump is reduced gradually until it turns off.	OK
	Step2: increase gradually the duty cycle	The performance of the pump is increased at a constant rate until it reaches its maximum.	The performance of the pump is increased gradually until it reaches its maximum.	OK
Comments	Since the pump requires a minimum current to start working, the full range of the PWM was tested with an LED.			

Subsistema en diagrama:

Subsistema implementado:

 $\textbf{Resultado:}\ \underline{\text{https://drive.google.com/file/d/1V-I7FNbrqYGtEITe69Y4ZsbrnYpoMWED/view?usp=drivesdk}$

Código:

https://drive.google.com/drive/folders/1TKvNQvO3EXRV4sJvQGlAz5yX6ffO5Acf?usp=share_link

CAN and Dashboard:

	Sending/Receiving CAN Packets using WiFi/29-Nov-2022					
Team	Motomamis	-				
Responsible	Yosel Delgado					
Description	Send a pressure v	Testing integration of CAN transceiver and controller, Node MCU and Arduino IoT Dashboard. Send a pressure value in a CAN packet to display in the dashboard, receive a setpoint value from the dashboard and display it on the serial terminal.				
Function	Communicates sy	stem to the Dashboard (use cas	e – functionality)			
Components	Arduino IoT Dashboard, CAN driver, SPI driver, packet sender and receiver (main), UART driver.					
Hardware	Device to show the dashboard, Node MCU, CAN transceiver and controller, computer with a serial terminal					
Procedure	Expected behavior					
	Initial conditions	0 psi displayed at dashboard, setpoint number set to 1	0 psi displayed on the dashboard.	OK		

	Step1: Change the setpoint value to	The new value is sent to Node MCU through CAN packet, Node MCU unpacks it and sends new pressure value to Dashboard. The value displayed at the dashboard is updated to 10 psi.	STM locally changes pressure value to 10 PSI. The dashboard displays10 PSI.	OK
	Step2: Change setpoint to 1	The Node MCU updates setpoint value to 1, sends it to STM32 through CAN. The value is unpacked and the setpoint value is displayed at the serial terminal.	STM changes setpoint to 6 PSI, received through CAN. Serial terminal displays 6 PSI.	ОК
	Step3: Change setpoint to 2	The Node MCU updates setpoint value to 1, sends it to STM32 through CAN. The value is unpacked and the setpoint value is displayed at the serial terminal.	STM changes setpoint to 12 PSI, received through CAN. Serial terminal displays 12 PSI.	ОК
Comments				

Subsistema en diagrama:

Subsistema implementado:

Resultado:

Código:

https://drive.google.com/drive/folders/1TKvNQvO3EXRV4sJvQGlAz5yX6ffO5Acf?usp=share_link

	Testing pressure range function/29-Nov-2022			
Team	Motomamis			
Responsible	Alexia Naredo			
Description	Test that the values re range of the dashboar	ceived in the CAN packet a	are correctly translated	to PSI and are in
Function	Monitor pressure, dete	ect fails or abnormalities		
Components	Measure control, seria	ll interface.		
Hardware	Node MCU, computer	with serial interface, exten	sion cable	
Procedure		Expected behavior	Actual behavior	Result
	Initial conditions	Load Matrix with PSI values of 10, 30 and 120 psi	The matrix is loaded correctly	
	Step1: Call the function using the 10 psi value	The program should display the value of 10 psi in the serial interface and indicate that it is between the range of the dashboard.	The serial terminal shows the value of 10 psi and indicates that it is within the range of the dashboard	OK
	Step2: Call the function using the 30 psi value	The program should display the value of 30 psi in the serial interface and indicate that it is between the range of the dashboard.	The serial terminal shows the value of 30 psi and indicates that it is within the range of the dashboard	OK
	Step3: Call the function using the 120 psi value	The program should display the value of 120 psi in the serial interface and indicate that it is not on the	The serial terminal shows the value of 120 psi and indicates that it is not within the	OK

		range of the dashboard.	range of the dashboard	
Comments	The arduino serial in	terface is used to simpl	ify display	

Resultado:

The value of the pressure is within the range of the dashboard

The value of the pressure is within the range of the dashboard

The value is not within the range of the dashboard

120

9. Pruebas del sistema

- Documentar las 2 pruebas de sistema tomando como referencia los diagramas de actividad previamente documentados.
 - Usar las tablas indicadas en el siguiente documento (<u>link</u>)
 - o Incluir imágenes que muestran el resultado de cada prueba

	Changing pressure setpoint with a PI controller system/29-Nov-2018			
Team	Motomamis			
Responsible	Armando Martínez			
Description		int of the pressure from the cup or the valve (or both)	lashboard and adjust the	system pressure to it,
Function	Change pressure	value to a new setpoint chos	en by user (use case – fu	nctionality)
Components		connection, measure control M driver, GPIO driver	(main), CAN driver, SPI	driver, ADC driver,
Hardware		board, Pressure Sensor, Not ter or device to display the d voltage source.		
Procedure		Expected behavior	Actual behavior	Result
	Initial conditions	System with base pressure, dashboard shows 6 PSI.	Dashboard shows 6 PSI.	ОК
	Step1: Change setpoint to 18 psi	The pump turns on. The value displayed by the pressure sensor and the dashboard grows simultaneously and stabilizes at 18 psi. The control system reduces PWM signal to help stabilize the system.	The pump turns on. The value displayed by the pressure sensor and the dashboard grows approximately at the same time (due to lag on the WiFi connection) and stabilizes at 18 psi. The control system reduces PWM signal to help stabilize the system.	OK
	Step2: change setpoint to 12 psi	The valve turns on until pressure is below the setpoint. The pump turns on. The value displayed by the pressure sensor and the dashboard grows simultaneously and	The valve turns on until pressure is below the setpoint. If the pressure is lower than the setpoint, the pump turns on. The value displayed by the	OK

	stabilizes at 12 psi. The control system reduces PWM signal to help stabilize the system. pressure sensor and the dashboard grows approximately at the same time (due to lag on the WiFi connection) and stabilizes at 12 psi. The control system reduces PWM signal to help stabilize the system.	
Comments		

Identificación de la función del sistema

Se consideró al sistema de nuestra planta como un sistema de primer orden. Por esto, se realizó una identificación de su función de transferencia utilizando el método analítico para obtener los valores de K, tao y theta que conforman su función de transferencia y que se utilizarán para el diseño de un controlador tipo PI.

$$\Delta Y = 5 - 15 = 0$$

$$\Delta U = 60$$

Método analítico

$$t_2 = 27.2$$

$$t_1 = 9.4$$

Valores obtenidos

K = 0.1666

 $\tau = 26.7$

 $\theta = 0.5$

Resultado S1: https://drive.google.com/file/d/1UrJ0XZ_yJK5HPTOr5iw_rTqy1fewUs4s/view?usp=sharing

Resultado S2:

https://drive.google.com/file/d/1Uw-39CEWhFJCWMHMs8S6vzCd8vELWHdG/view?usp=share_link

	Measuring pressure and display on dashboard/29-Nov-2022			
Team	Motomamis			
Responsible	Yosel Delgado			
Description	Measure the press	sure of the tire, pack it on a CAN n	nessage and send it	by WiFi to dashboard
Function	Display Pressure i	in Dashboard,		
Components	Arduino IOT WiFi UART Driver	connection, measure control (mair	n), CAN driver, SPI	driver, ADC driver,
Hardware		board, Pressure Sensor, Node MC ter or device to display the dashbo		nd transceiver, ADC,
Procedure		Expected behavior	Actual behavior	Result
	Initial conditions	System with null pressure, dashboard shows 0 PSI		
	Step1: Turn on the pump	Pressure measured by sensor starts increasing, which should be reflected on dashboard	The	
	Step2: Rise pressure to 30	There must be a close match between sensor and dashboard displayed value. The valve opens when the pressure surpasses 20 psi and this is reflected on the dashboard.	The pressure indicated in the dashboard is below 20 psi most of the time, sometimes it gets to it or even a little higher corresponding to the value of the sensor	OK
	Step3: Lower pressure to 10 psi	The valve opens and the pressure level lowers. After it is below 10 psi		
Comments				

Resultados: https://drive.google.com/file/d/1wJhh4rWqD8y6uWWANi4onF4QhkjjttoG/view?usp=sharing

Análisis de audio

En la anterior figura se puede observar el gráfico de la respuesta en espectro armónico en función del tono de una grabación de audio. Esta información es representativa y se puede obtener de cualquier grabación de audio. Como implementación pudo haber sido de gran valor aplicar este

tipo de análisis al ruido producido por el sistema completo, y, de esta manera, hacer posible la detección de eventos tales como fallas en compresor, corriente baja, fugas, etc. Más aún, esta información se pudo haber utilizado para entrenar una red neuronal, que, al compilarla con frameworks como TensorFlow, es posible implementar en microcontroladores como el utilizado en el presente proyecto.

10. Conclusión

La empresa Johh Deere se presentó con un interesante reto que consistía en lograr diseñar un sistema inteligente de inflado que se ajustara las condiciones de uso de sus mundialmente conocidos tractores, esto para mejorar la calidad de sus productos al alargar la vida útil de sus llantas mediante el ajuste de la presión de inflado según cuatro tipos de terrenos: arenoso, pavimentado, zona urbana y terracería, con los requerimientos de que este sistema fuera parte los subsistemas de tractores y pudiera desplegar en un dashboard el nivel de presión e indicadores relevantes para el control de esta.

A lo largo de 10 semanas se logró aprender todos los conocimientos necesarios para poder llevar a cabo este proyecto, desde metodologías para desarrollo, diagramas del funcionamiento, protocolos de comunicación serial y creación de dashboards para IoT, entre otros, y gracias a esto se presentó un sistema que utilizando el microcontrolador STM32H7 para el procesamiento, un node MCU ESP8622 para conexiones Wi-Fi, periféricos de comunicación CAN transceiver y CAN controller, sensores como el barómetro digital y actuadores como la válvula salida, además de un controlador PI para asegurar calidad y eficiencia en el producto, este se ajusta de manera satisfactoria la presión de aire según el tipo de terreno en el que se encuentre el usuario, así como informarle a éste la presión en tiempo real, mejorando significativamente la experiencia como cliente de Jonh Deere.