Analízis I.

1. Mintavizsga

- **1.** Melyik állítás **igaz** minden $h \in (-\infty; 1]$ és $n \in \mathbb{N}^+$ esetén?
- (A) $(1-h)^n + nh \ge 1$.
- (B) $(1+h)^n \ge 1 + nh$.
- (C) $(1+n)^h < 1+nh$.
- (D) $\left(\frac{2022}{2021}\right)^{10105} < 5 + |h|$.
- 2. Melyik halmaznak van maximuma, de nincsen szuprémuma?
- (A) $\left\{1 + \frac{2}{n} \mid n = 1, 2, 3, \dots\right\}$
- **(B)** $\left\{ 2 \frac{3}{x} \mid x \in [1, +\infty) \right\}$
- (C) $\left\{ \frac{4}{x} \mid x \in [1,4] \right\}$
- (D) Ilyen halmaz nem létezik.
- **3.** Legyen $\emptyset \neq A \subset \mathbb{R}$ felülről korlátos, $c = \sup A$. Az alábbi állítások közül melyik **hamis**?

1

- (A) $\forall a \in A : a < c+1$
- (B) $\exists a \in A : a > c 1$
- (C) $\forall a \in A : a > c 1$
- (D) $\exists a \in A : a < c+1$
- **4.** Legyen $(x_n): \mathbb{N} \to \mathbb{R}$ egy sorozat. Válassza ki a **hamis** állítást!
- (A) Ha (x_n) konvergens, akkor korlátos.
- (B) Ha (x_n) monoton és korlátos, akkor konvergens.
- (C) Ha (x_n) határértéke $+\infty$, akkor divergens.
- (**D**) Ha (x_n) divergens, akkor nincs határértéke.

- **5.** Legyen $(x_n): \mathbb{N} \to \mathbb{R}$ egy sorozat. Az alábbi állítások közül melyikből **nem** következik az, hogy (x_n) divergens?
- (A) $\forall B \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : \ |x_n B| \ge \varepsilon$
- **(B)** $\forall K > 0 \ \exists N \in \mathbb{N} \ \forall n > N : \ x_n > K$
- (C) (x_n) szigorúan monoton nő.
- (D) (x_n) alulról nem korlátos.
- **6.** Az alábbi sorozatok közül melyiknek a határértéke $\sqrt[3]{2}$?

(A)
$$a_0 = 1, a_{n+1} = \frac{1}{2} \left(\frac{3}{a_n} + a_n \right) (n \in \mathbb{N})$$

(B)
$$a_0 = 1, \ a_{n+1} = \frac{1}{3} \left(\frac{2}{a_n^3} + 3a_n \right) \ (n \in \mathbb{N})$$

(C)
$$a_0 = 1, a_{n+1} = \frac{1}{3} \left(\frac{3}{a_n^2} + 2a_n \right) (n \in \mathbb{N})$$

(D)
$$a_0 = 1, a_{n+1} = \frac{1}{3} \left(\frac{2}{a_n^2} + 2a_n \right) (n \in \mathbb{N})$$

7. Legyenek (x_n) , (y_n) és (z_n) valós sorozatok úgy, hogy $x_n \leq y_n \leq z_n$ $(n \in \mathbb{N})$. Válassza ki az **igaz** állítást!

2

- (A) $\lim(y_n) \leq \lim(z_n)$
- (B) $\lim(x_n) < \lim(y_n)$
- (C) $\lim(y_n) = \lim(x_n) = \lim(z_n)$
- (D) $\lim(x_n) < \lim(z_n)$
- 8. Adjon meg egy olyan sorozatot, amely konvergens, de nem monoton!

(A)
$$a_n = \frac{n+1}{n+2} \quad (n \in \mathbb{N})$$

(B)
$$b_n = 3n + (-1)^n \quad (n \in \mathbb{N})$$

(C)
$$c_n = \frac{(-1)^n}{n} \quad (n \in \mathbb{N})$$

(D) Ilyen sorozat nem létezik.

- **9.** Legyen $x_n > 0$ $(n \in \mathbb{N})$, és tekintsük a $\sum x_n$ végtelen sort. Az alábbiak közül melyikből **nem** következik a sor konvergenciája?
- (A) $\lim \left(\sqrt[n]{x_n} \right) = \frac{1}{2}$
- (B) $\lim(x_n) = 0$
- (C) $x_{n+1} = \frac{x_n}{2} \ (n \in \mathbb{N})$
- (D) $x_n < \frac{1}{2^n} \ (n \in \mathbb{N})$
- 10. Az alábbiak közül melyik lehet egy $\sum_{n=0}^{\infty} \alpha_n x^n$ hatványsor konvergenciahalmaza?
- (A) KH $\left(\sum_{n=0}^{\infty} \alpha_n x^n\right) = \{0\}$
- **(B)** KH $\left(\sum_{n=0}^{\infty} \alpha_n x^n\right) = \mathbb{R} \setminus \{0\}$
- (C) KH $\left(\sum_{n=0}^{\infty} \alpha_n x^n\right) = [0,1)$
- **(D)** KH $\left(\sum_{n=0}^{\infty} \alpha_n x^n\right) = [0, +\infty)$
- 11. Tegyük fel, hogy $\sum_{n=0}^{+\infty} |x_n| =: A < +\infty$ és $\sum_{n=0}^{+\infty} |y_n| =: B < +\infty$. Melyik állítás igaz az alábbiak közül?
- (A) $\sum_{n=0}^{+\infty} |x_n| \cdot |y_n| = A \cdot B$
- **(B)** A $\sum (x_n + (-1)^n \cdot y_n)$ sor divergens.
- (C) $\sum_{n=0}^{+\infty} \sum_{k=0}^{n} x_n \cdot y_{n-k} = \left(\sum_{n=0}^{+\infty} x_n\right) \cdot \left(\sum_{n=0}^{+\infty} y_n\right)$
- (D) $\sum_{n=0}^{+\infty} \sum_{k=0}^{n} x_n \cdot y_{n-k} = A \cdot B$

- 12. Legyen $H:=(-\infty,0]\cup\{1,2\}\cup(2,3)$. Ekkor a H' halmaz a következő:
- (A) $[-\infty, 0] \cup [2, 3]$
- **(B)** $(-\infty, 0] \cup [2, 3)$
- (C) $[-\infty, 0] \cup \{1, 2\} \cup (2, 3)$
- (D) $\{0, 1, 2, 3\}$
- 13. Legyen $g \in \mathbb{R} \to \mathbb{R}, x \in \mathcal{D}_g', a \in \mathbb{R}$. Melyik állítás jelenti azt, hogy $\lim_x g = a$?
- (A) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathcal{D}_q, \ 0 < |x y| < \delta : |g(x) a| < \varepsilon$
- **(B)** $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathcal{D}_g, \ 0 < |y a| < \delta : |g(y) x| < \varepsilon$
- (C) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathcal{D}_g \setminus \{a\}, \ |x a| < \delta : |g(x) y| < \varepsilon$
- **(D)** $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathcal{D}_g \setminus \{x\}, \ |x y| < \delta : |g(y) a| < \varepsilon$
- 14. Mit tud mondani az alábbi függvény folytonosságáról az 1 pontban?

$$f(x) := \begin{cases} x & \text{ha } x \in (-\infty, 1) \\ 1 & \text{ha } x = 1 \\ x - 1 & \text{ha } x \in (1, +\infty) \end{cases}$$

- (A) Folytonos.
- (B) Megszüntethető szakadása van.
- (C) Elsőfajú szakadása (ugrása) van.
- (D) Másodfajú szakadása van.
- **15.** Igaz-e minden $f:(a,b)\to\mathbb{R}$ $(a,b\in\mathbb{R},\,a< b)$ folytonos függvényre, hogy van az értékkészletének minimuma, illetve maximuma?
- (A) Igen, a Bolzano–Darboux-tétel miatt.
- (B) Igen, a Weierstrass-tétel miatt.
- (C) Csak akkor, ha a $\lim_{a\to 0} f$ és $\lim_{b\to 0} f$ határértékek végesek.
- (**D**) Nem.