- 1. Binary Operation A binary operation * on set X is a function *: $X \times X \to X$. It is denoted by a * b.
- 2. Commutative Binary Operation A binary operation * on set X is said to be commutative, if a * b = b * a, $\forall a, b \in X$.
- 3. Associative Binary Operation A binary operation * on set X is said to be associative, if a*(b*c)=(a*b)*c, $\forall a,b,c \in X$.

NOTE For a binary operation, we can neglect the bracket in associative property. But in absence of associative property, we cannot neglect the bracket.

4. **Identity Element** An element $e \in X$ is said to be the identity element of a binary operation * on set X, if a * e = e * a = a, $\forall a \in X$. Identity element is unique.

NOTE Zero is an identity for the addition operation on R and one is an identity for the multiplication operation on R.

5. Invertible Element or Inverse Let $*: X \times X \to X$ be a binary operation and let $e \in X$ be its identity element. An element $a \in X$ is said to be invertible with respect to the operation *, if there exists an element $b \in X$ such that a*b=b*a=e, $\forall b \in X$. Element b is called inverse of element a and is denoted by a^{-1} .

NOTE Inverse of an element, if it exists, is unique.

6. Operation Table When number of elements in a set is small, then we can express a binary operation on the set through a table, called the operation table.