Curso de estatística básica

Aula 09 Modelos mistos e seleção de modelos

Pavel Dodonov pdodonov@gmail.com anotherecoblog.wordpress.com

Normalidade

Homogeneidade de variâncias

Variável explanatória fixa (sem erro)

Relações lineares

Normalidade GLM (distribuições nãonormais) Transformar os dados

Homogeneidade de variâncias

Variável explanatória fixa (sem erro)

Relações lineares

Normalidade

GLM (distribuições nãonormais) Transformar os dados

Variável explanatória fixa (sem erro)

Homogeneidade de variâncias Modelar a variância (GLS) Transformar os dados

Relações lineares

Normalidade

GLM (distribuições nãonormais) Transformar os dados

Variável explanatória fixa (sem erro) Bootstrap Homogeneidade de variâncias Modelar a variância (GLS) Transformar os dados

Relações lineares

Normalidade

GLM (distribuições nãonormais) Transformar os dados

Variável explanatória fixa (sem erro) Bootstrap

Homogeneidade de variâncias

Modelar a variância (GLS)

Transformar os dados

Independência

Relações lineares Modelos aditivos, modelos não-lineares

Normalidade

GLM (distribuições nãonormais) Transformar os dados

Variável explanatória fixa (sem erro) Bootstrap

IndependênciaModelos mistos

Homogeneidade de variâncias Modelar a variância (GLS) Transformar os dados

Relações lineares Modelos aditivos, modelos não-lineares

Normalidade

GLM (distribuições nãonormais) Transformar os dados

Variável explanatória fixa (sem erro) Bootstrap Homogeneidade de variâncias

Modelar a variância (GLS)

Transformar os dados

Independência Modelos mistos Relações lineares Modelos aditivos, modelos não-lineares

Dados hierárquicos ou em múltiplos níveis – existe algum tipo de pseudoreplicação

Dados hierárquicos ou em múltiplos níveis – existe algum tipo de pseudoreplicação

Dados hierárquicos ou em múltiplos níveis – existe algum tipo de pseudoreplicação

Biodiversidade ~ Tamanho do fragmento + Luminosidade na parcela

ij: j-ésima parcela do i-ésimo fragmento

i: i-ésimo fragmento

Biodiversidade ~ Tamanho do fragmento + Luminosidade na parcela

- 1) Aplicar uma regressão linear dentro de cada fragmento
 - Vai resultar em um coeficiente β_1 para cada fragmento γ_{ij}

- 1) Aplicar uma regressão linear entre Y e luz dentro de cada fragmento
 - Vai resultar em um coeficiente β_1 para cada fragmento
- 2) Aplicar uma regressão linear entre estes coeficientes e o tamanho do fragmento

- Desvantagens
 - Resume os pontos do mesmo fragmento com um único valor

Desvantagens

- Resume os pontos do mesmo fragmento com um único valor
- No segundo passo, trabalha com parâmetros de regressão, não com os dados observados

Desvantagens

- Resume os pontos do mesmo fragmento com um único valor
- No segundo passo, trabalha com parâmetros de regressão, não com os dados observados
- O tamanho amostral dentro de cada fragmento não é usado na segunda etapa

Desvantagens

- Resume os pontos do mesmo fragmento com um único valor
- No segundo passo, trabalha com parâmetros de regressão, não com os dados observados
- O tamanho amostral dentro de cada fragmento não é usado na segunda etapa
 - (Mas N maior ainda fornece melhores estimativas do parâmetro --> menor erro amostrar --> é legal.)

Junta os dois passos em um só

Misto por ter um componente fixo e um aleatório (que varia entre os fragmentos, etc)

Modelo do intercepto aleatório

 O intercepto varia aleatoriamente entre os fragmentos (segue uma distribuição normal)

Modelo do intercepto aleatório

Modelo do intercepto e inclinação aleatórias

 O intercepto e a inclinação variam aleatoriamente entre os fragmentos (seguem distribuições normais)

Modelo do intercepto e inclinação aleatórias

Comparando modelos

Parcimônia...

Rapaz, tive um ajuste perfeito!

Oxe, você usou parâmetros suficientes pra ajustar um elefante!

Ajustando um elefante.

Burnham & Anderson 2002

Complexidade do modelo

Model structure	Number of parameters $(K)^a$
$E(y) = ax^b$	3
$E(y) = a + b\log(x)$	3
E(y) = a(x/(b+x))	3
$E(y) = a(1 - e^{-bx})$	3
$E(y) = a - bc^x$	4
E(y) = (a + bx)/(1 + cx)	4
$E(y) = a(1 - e^{-bx})^c$	4
$E(y) = a \left(1 - [1 + (x/c)^d]^{-b} \right)$	5
$E(y) = a[1 - e^{-(b(x-c))^d}]$	5

Verossimilhança (likelihood)

Plots of the binomial likelihood (a) and log-likelihood (b) function, given n 11 penny flips and the observation that y 7 of these were heads. - Burnham and Anderson 2002

Parcimônia

Parcimônia

$$AIC = -2\log(L(\hat{\theta}|y)) + 2K$$

$$\Delta AIC = AIC_j - AIC_{min}$$

$$AIC = -2\log(L(\hat{\theta}|y)) + 2K$$

$$AIC = -2\log(L(\hat{\theta}|y)) + 2K$$

$$\Delta AIC = AIC_j - AIC_{min}$$

Δ_j	Evidence ratio _	Quão mais
2	2.7	provável é o
4	7.4	melhor modelo
8	54.6	em relação ao
10	148.4	pior modelo
15	1,808.0	
20	22,026.5	Burnham and

$$AIC = -2\log(L(\hat{\theta}|y)) + 2K$$

$$\Delta AIC = AIC_j - AIC_{min}$$

Δ_i	Level of Empirical Support of Model i
0-2	Substantial
4-7	Considerably less
> 10	Essentially none.

$AIC_i - AIC_j$	Relative likelihood (<i>j:i</i>)	Interpretation
Reference 1		
>1-2	>1.6-2.7	significant difference between models i and j
Reference 2		
4.2 6.9	8 32	strong enough difference to be of general scientific interest "quite strong" evidence in favor of model <i>j</i>
Reference 3		
0-4.6 4.6-9.2 9.2-13.8 >13.8	1-10 $10-100$ $100-1000$ >1000	limited support for model <i>j</i> moderate support strong support very strong support
Reference 4		
0-2 $4-7$ >10	1–2.7 7.4–33.1 >148	substantial support of model <i>i</i> considerably less support essentially no support
Reference 5		
0 to 4-7 7-14 >14	1 to 7.4–33.1 33.1–1097 >1097	model i is plausible value judgments for hypotheses in this region are equivocal model i is implausible

Fig. 3. Interpretation of ΔAIC , from Burnham et al. (2011). "Plausible hypotheses are identified by a narrow region in the continuum where Δ < perhaps four to seven (black and dark gray). The evidence in the light grey area is inconclusive and value judgments for hypotheses in this region are equivocal. Implausible models are shown in white, Δ > about 14." (The authors define Δ , or ΔAIC_c , as the difference between the value of AIC_c for a focal model and the minimum value of AIC_c in a group of models, where AIC_c is a modification of AIC that includes a correction for small sample size.)

Modelos aninhados

Um modelo é uma simplificação do outro

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

$$Y_i = \beta_0 e^{(\beta_1 X_i)} + \epsilon_i$$

Modelo nulo

- Ou modelo contendo apenas o intercepto (intercept-only model)
- Está aninhado nos outros modelos.

$$Y_i = \beta_0 + \epsilon_i$$