Cryptography: asymmetric encryption

Markulf Kohlweiss & Myrto Arapinis School of Informatics University of Edinburgh

January 31, 2021

Introduction

So far: how two users can protect data using a shared secret key

One shared secret key per pair of users that want to communicate

Our goal now: how to establish a shared secret key to begin with?

- ► Trusted Third Party (TTP)
- ▶ Diffie-Hellman (DH) protocol
- ► RSA
- ► ElGamal (EG)

- ightharpoonup Users U_1 , U_2 , U_3 , ..., U_n , ...
- \triangleright Each user U_i has a shared secret key K_i with the TTP
- $ightharpoonup U_i$ and U_i can establish a key $K_{i,j}$ with the help of the TTP
- ► $\{m\}_k$ denotes the symmetric encryption of m under the key k ex: using Paulson's variant of the Yahalom protocol

- ightharpoonup Users U_1 , U_2 , U_3 , ..., U_n , ...
- \triangleright Each user U_i has a shared secret key K_i with the TTP
- $ightharpoonup U_i$ and U_i can establish a key $K_{i,j}$ with the help of the TTP
- ► $\{m\}_k$ denotes the symmetric encryption of m under the key k ex: using Paulson's variant of the Yahalom protocol

- \blacktriangleright Users U_1 , U_2 , U_3 , ..., U_n , ...
- \triangleright Each user U_i has a shared secret key K_i with the TTP
- $ightharpoonup U_i$ and U_i can establish a key $K_{i,j}$ with the help of the TTP
- ► $\{m\}_k$ denotes the symmetric encryption of m under the key k ex: using Paulson's variant of the Yahalom protocol

- \blacktriangleright Users U_1 , U_2 , U_3 , ..., U_n , ...
- \triangleright Each user U_i has a shared secret key K_i with the TTP
- $ightharpoonup U_i$ and U_i can establish a key $K_{i,j}$ with the help of the TTP
- ► $\{m\}_k$ denotes the symmetric encryption of m under the key k ex: using Paulson's variant of the Yahalom protocol

- ightharpoonup Users U_1 , U_2 , U_3 , ..., U_n , ...
- \triangleright Each user U_i has a shared secret key K_i with the TTP
- $ightharpoonup U_i$ and U_i can establish a key $K_{i,j}$ with the help of the TTP
- ► $\{m\}_k$ denotes the symmetric encryption of m under the key k ex: using Paulson's variant of the Yahalom protocol

- ightharpoonup Users U_1 , U_2 , U_3 , ..., U_n , ...
- \blacktriangleright Each user U_i has a shared secret key K_i with the TTP
- $ightharpoonup U_i$ and U_i can establish a key $K_{i,j}$ with the help of the TTP
- $\{m\}_k$ denotes the symmetric encryption of m under the key k ex: using Paulson's variant of the Yahalom protocol

Question: can we establish a shared secret key without a TTP? Answer: Yes! Using public key cryptography.

Public-key encryption - Definition

key generation algorithm: $G: \to \mathcal{K} \times \mathcal{K}$ encryption algorithm $E: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ decryption algorithm $D: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$ st. $\forall (sk, pk) \in G$, and $\forall m \in \mathcal{M}$, D(sk, E(pk, m)) = m

▶ the decryption key sk_{Bob} is secret (only known to Bob). The encryption key pk_{Bob} is known to everyone. And $sk_{Bob} \neq pk_{Bob}$

We need a bit of number theory now

Primes

Definition

 $p \in \mathbb{N}$ is a **prime** if its only divisors are 1 and p

Ex: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Theorem

Every $n \in \mathbb{N}$ has a unique factorization as a product of prime numbers (which are called its factors)

Ex: $23244 = 2 \times 2 \times 3 \times 13 \times 149$

Definition

a and b in \mathbb{Z} are **relative primes** if they have no common factors

Definition

The Euler function $\phi(n)$ is the number of elements that are relative primes with n:

$$\phi(n) = |\{m \mid 0 < m < n \text{ and } \gcd(m, n) = 1\}|$$

Definition

a and b in \mathbb{Z} are **relative primes** if they have no common factors

Definition

The Euler function $\phi(n)$ is the number of elements that are relative primes with n:

$$\phi(n) = |\{m \mid 0 < m < n \text{ and } \gcd(m, n) = 1\}|$$

For p prime: $\phi(p) =$

Definition

a and b in \mathbb{Z} are **relative primes** if they have no common factors

Definition

The Euler function $\phi(n)$ is the number of elements that are relative primes with n:

$$\phi(n) = |\{m \mid 0 < m < n \text{ and } \gcd(m, n) = 1\}|$$

For p prime: $\phi(p) = p-1$

Definition

a and b in \mathbb{Z} are **relative primes** if they have no common factors

Definition

The Euler function $\phi(n)$ is the number of elements that are relative primes with n:

$$\phi(n) = |\{m \mid 0 < m < n \text{ and } \gcd(m, n) = 1\}|$$

- For p prime: $\phi(p) = p-1$
- ▶ For p and q primes: $\phi(p \cdot q) =$

Definition

a and b in \mathbb{Z} are **relative primes** if they have no common factors

Definition

The Euler function $\phi(n)$ is the number of elements that are relative primes with n:

$$\phi(n) = |\{m \mid 0 < m < n \text{ and } \gcd(m, n) = 1\}|$$

- For p prime: $\phi(p) = p-1$
- ▶ For p and q primes: $\phi(p \cdot q) = (p-1)(q-1)$

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

 $\forall a \in \mathbb{Z}, \ \forall b \in \mathbb{Z}_n, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{N}. \ a = b + k \cdot n$

$$\mathbb{Z}_n$$

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

$$\forall a \in \mathbb{Z}, \ \forall b \in \mathbb{Z}_n, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{N}. \ a = b + k \cdot n$$

Modular inversion: the inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $x \cdot y \equiv 1 \pmod{n}$. We denote x^{-1} the inverse of $x \pmod{n}$

$$\mathbb{Z}_n$$

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

$$\forall a \in \mathbb{Z}, \ \forall b \in \mathbb{Z}_n, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{N}. \ a = b + k \cdot n$$

Modular inversion: the inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $x \cdot y \equiv 1 \pmod{n}$. We denote x^{-1} the inverse of $x \mod n$ Ex: 7^{-1} in \mathbb{Z}_{12} :

$$\mathbb{Z}_n$$

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

$$\forall a \in \mathbb{Z}, \ \forall b \in \mathbb{Z}_n, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{N}. \ a = b + k \cdot n$$

Modular inversion: the inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $x \cdot y \equiv 1 \pmod{n}$. We denote x^{-1} the inverse of $x \mod n$ Ex: 7^{-1} in \mathbb{Z}_{12} : 7

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

$$\forall a \in \mathbb{Z}, \ \forall b \in \mathbb{Z}_n, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{N}. \ a = b + k \cdot n$$

Modular inversion: the inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $x \cdot y \equiv 1 \pmod{n}$. We denote x^{-1} the inverse of $x \mod n$ Ex: 7^{-1} in \mathbb{Z}_{12} : 7 4^{-1} in \mathbb{Z}_{12} :

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

$$\forall a \in \mathbb{Z}, \ \forall b \in \mathbb{Z}_n, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{N}. \ a = b + k \cdot n$$

▶ Modular inversion: the inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $x \cdot y \equiv 1 \pmod{n}$. We denote x^{-1} the inverse of $x \mod n$ Ex: 7^{-1} in \mathbb{Z}_{12} : 7 4^{-1} in \mathbb{Z}_{12} : 4 has no inverse in \mathbb{Z}_{12}

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n = \{0, \dots n-1\}$

$$\forall a \in \mathbb{Z}, \ \forall b \in \mathbb{Z}_n, \ a \equiv b \pmod{n} \Leftrightarrow \exists k \in \mathbb{N}. \ a = b + k \cdot n$$

▶ Modular inversion: the inverse of $x \in \mathbb{Z}_n$ is $y \in \mathbb{Z}_n$ s.t. $x \cdot y \equiv 1 \pmod{n}$. We denote x^{-1} the inverse of $x \pmod{n}$ Ex: 7^{-1} in \mathbb{Z}_{12} : 7 4^{-1} in \mathbb{Z}_{12} : 4 has no inverse in \mathbb{Z}_{12}

Theorem

Let $n \in \mathbb{N}$. Let $x \in \mathbb{Z}_n$. x has a inverse in \mathbb{Z}_n iff gcd(x, n) = 1

▶ Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n \mid \gcd(x, n) = 1\}$ Ex: $\mathbb{Z}_{12} = \{1, 5, 7, 11\}$

- Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n \mid \gcd(x, n) = 1\}$ Ex: $\mathbb{Z}_{12} = \{1, 5, 7, 11\}$
- ▶ Note that $|\mathbb{Z}_n^*| = \phi(n)$

- Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n \mid \gcd(x, n) = 1\}$ Ex: $\mathbb{Z}_{12} = \{1, 5, 7, 11\}$
- ▶ Note that $|\mathbb{Z}_n^*| = \phi(n)$

Theorem (Euler)

 $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{Z}_n^*$, if $\gcd(x,n) = 1$ then $x^{\phi(n)} \equiv 1 \pmod n$

- Let $n \in \mathbb{N}$. We define $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n \mid \gcd(x, n) = 1\}$ Ex: $\mathbb{Z}_{12} = \{1, 5, 7, 11\}$
- ▶ Note that $|\mathbb{Z}_n^*| = \phi(n)$

Theorem (Euler)

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{Z}_n^*, \ \text{if } \gcd(x,n) = 1 \ \text{then } x^{\phi(n)} \equiv 1 \ (\text{mod } n)$$

Theorem (Euler)

 $\forall p \text{ prime, } \mathbb{Z}_p^* \text{ is a cyclic group, i.e.}$

$$\exists g \in \mathbb{Z}_p^*, \ \{1, g, g^2, g^3, \dots, g^{p-2}\} = \mathbb{Z}_p^*$$

Intractable problems

Intractable problems

► FACTORING:

input: $n \in \mathbb{N}$

output: p_1, \ldots, p_m primes st. $n = p_1 \cdot \cdots \cdot p_m$

Intractable problems

► FACTORING:

```
input: n \in \mathbb{N} output: p_1, \ldots, p_m primes st. n = p_1 \cdot \cdots \cdot p_m
```

► RSAP

```
input: n st. n = p \cdot q with 2 \le p, q primes e st. \gcd(e, \phi(n)) = 1 m^e \mod n output: m
```

Intractable problems

► FACTORING:

```
input: n \in \mathbb{N} output: p_1, \ldots, p_m primes st. n = p_1 \cdot \cdots \cdot p_m
```

► RSAP

```
input: n st. n = p \cdot q with 2 \le p, q primes e st. \gcd(e, \phi(n)) = 1 m^e \mod n output: m
```

► DISCRETE LOG:

```
input: prime p, generator g of \mathbb{Z}_p^*, y \in \mathbb{Z}_p^* output: x such that y = g^x \pmod{p}
```

Intractable problems

► Factoring:

```
input: n \in \mathbb{N} output: p_1, \ldots, p_m primes st. n = p_1 \cdot \cdots \cdot p_m
```

► RSAP

```
input: n st. n = p \cdot q with 2 \le p, q primes e st. \gcd(e, \phi(n)) = 1 m^e \mod n output: m
```

► DISCRETE LOG:

```
input: prime p, generator g of \mathbb{Z}_p^*, y \in \mathbb{Z}_p^* output: x such that y = g^x \pmod{p}
```

► DHP:

```
input: prime p, generator g of \mathbb{Z}_p^*, g^a \pmod{p}, g^b \pmod{p} output: g^{ab} \pmod{p}
```

We can now go back and see how to establish a key without a TTP

- ▶ Assumption: the DHP is hard in \mathbb{Z}_p^*
- ▶ Fix a very large prime p, and g generator of \mathbb{Z}_p^*

- ▶ Assumption: the DHP is hard in \mathbb{Z}_p^*
- Fix a very large prime p, and g generator of \mathbb{Z}_p^*

- lackbox Assumption: the DHP is hard in \mathbb{Z}_p^*
- Fix a very large prime p, and $g \in \{1, \dots, p-1\}$

- ightharpoonup Assumption: the DHP is hard in \mathbb{Z}_p^*
- ▶ Fix a very large prime p, and $g \in \{1, ..., p-1\}$

- ▶ Assumption: the DHP is hard in \mathbb{Z}_p^*
- ▶ Fix a very large prime p, and $g \in \{1, ..., p-1\}$

a'
$$\stackrel{r}{\leftarrow} \{1, \dots, p-1\}$$

b' $\stackrel{r}{\leftarrow} \{1, \dots, p-1\}$

$$b \leftarrow (1, \dots, p-1)$$

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d) and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d) and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

$$ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$$

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- $RSA(pk, x) = x^e \pmod{N}$

where pk = (N, e)

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- $ightharpoonup RSA(pk,x) = x^e \pmod{N}$
- $RSA^{-1}(sk, x) = x^d \pmod{N}$

where
$$pk = (N, e)$$

where sk = (N, d)

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- ► $RSA(pk, x) = x^e \pmod{N}$ where pk = (N, e)
- ► $RSA^{-1}(sk, x) = x^d \pmod{N}$ where sk = (N, d)
- ► Consistency: $\forall (pk, sk) = G_{RSA}(), \forall x, RSA^{-1}(sk, RSA(pk, x)) = x$

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- ► $RSA(pk, x) = x^e \pmod{N}$ where pk = (N, e)
- ► $RSA^{-1}(sk, x) = x^d \pmod{N}$ where sk = (N, d)
- ▶ Consistency: $\forall (pk, sk) = G_{RSA}(), \forall x, RSA^{-1}(sk, RSA(pk, x)) = x$ <u>Proof:</u> Let pk = (N, e), sk = (N, d). and $x \in \mathbb{Z}_N$. Easy case where x and N are relatively prime

$$ightharpoonup G_{RSA}() = (pk, sk)$$

where pk = (N, e) and sk = (N, d)and $N = p \cdot q$ with p, q random primes and $e, d \in \mathbb{Z}$ st. $e \cdot d \equiv 1 \pmod{\phi(N)}$

- $ightharpoonup \mathcal{M} = \mathcal{C} = \mathbb{Z}_N$
- ► $RSA(pk,x) = x^e \pmod{N}$ where pk = (N,e)
- ► $RSA^{-1}(sk, x) = x^d \pmod{N}$ where sk = (N, d)
- Consistency: $\forall (pk, sk) = G_{RSA}(), \ \forall x, \ RSA^{-1}(sk, RSA(pk, x)) = x$ Proof: Let $pk = (N, e), \ sk = (N, d)$. and $x \in \mathbb{Z}_N$. Easy case where x and N are relatively prime

$$RSA^{-1}(sk, RSA(pk, x)) = (x^e)^d \pmod{N}$$

$$= x^{e \cdot d} \pmod{N}$$

$$= x^{1+k\phi(N)} \pmod{N}$$

$$= x \cdot x^{k\phi(N)} \pmod{N}$$

$$= x \cdot (x^{\phi(N)})^k \pmod{N}$$

$$\stackrel{\text{Euler}}{=} x \pmod{N}$$

How **NOT** to use *RSA*

 (G_{RSA}, RSA, RSA^{-1}) is called raw RSA. Do not use raw RSA directly as an asymmetric cipher!

RSA is deterministic ⇒ not secure against chosen plaintext attacks

ISO standard

Goal: build a CPA secure asymmetric cipher using (G_{RSA}, RSA, RSA^{-1})

Let (E_s, D_s) be a symmetric encryption scheme over $(\mathcal{M}, \mathcal{C}, \mathcal{K})$ Let $H: \mathbb{Z}_N^* \to \mathcal{K}$

Build $(G_{RSA}, E_{RSA}, D_{RSA})$ as follows

- ► G_{RSA}() as described above
- \triangleright $E_{RSA}(pk, m)$:
 - ▶ pick random $x \in \mathbb{Z}_N^*$
 - \triangleright $y \leftarrow RSA(pk, x) (= x^e \mod N)$
 - \triangleright $k \leftarrow H(x)$
 - $ightharpoonup E_{RSA}(pk,m) = y||E_s(k,m)|$
- $D_{RSA}(sk,y||c) = D_s(H(RSA^{-1}(sk,y)),c)$

PKCS1 v2.0: RSA-OAEP

Goal: build a CCA secure asymmetric cipher using (G_{RSA}, RSA, RSA^{-1})

lackbox Fix prime p, and generator $g\in\mathbb{Z}_p^*$

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\} \text{ and } \mathcal{C} = \mathcal{M} \times \mathcal{M}$

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\} \text{ and } \mathcal{C} = \mathcal{M} \times \mathcal{M}$

$$\mathsf{G}_{\mathsf{EG}}() = (pk, sk) \qquad \text{where } pk = g^d \; (\mathsf{mod} \; p) \; \mathsf{and} \; sk = d \\ \mathsf{and} \; d \xleftarrow{r} \{1, \dots, p\text{-}2\}$$

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\} \text{ and } \mathcal{C} = \mathcal{M} \times \mathcal{M}$
- $ightharpoonup G_{EG}()=(pk,sk)$ where $pk=g^d\ ({
 m mod}\ p)$ and sk=d and $d\stackrel{r}{\leftarrow}\{1,\ldots,p\text{-}2\}$
- $E_{EG}(pk,x) = (g^r \pmod{p}, \ m \cdot (g^d)^r \pmod{p})$ where $pk = g^d \pmod{p}$ and $r \stackrel{r}{\leftarrow} \mathbb{Z}$

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\} \text{ and } \mathcal{C} = \mathcal{M} \times \mathcal{M}$
- $\mathsf{G}_{EG}() = (pk, sk) \qquad \qquad \mathsf{where} \ pk = g^d \ (\mathsf{mod} \ p) \ \mathsf{and} \ sk = d \\ \mathsf{and} \ d \xleftarrow{r} \{1, \dots, p\text{-}2\}$
- $E_{EG}(pk,x) = (g^r \pmod{p}, \ m \cdot (g^d)^r \pmod{p})$ where $pk = g^d \pmod{p}$ and $r \stackrel{r}{\leftarrow} \mathbb{Z}$
- $D_{EG}(sk, x) = e^{-d} \cdot c \pmod{p}$ where x = (e, c)

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\}$ and $\mathcal{C} = \mathcal{M} imes \mathcal{M}$
- $ightharpoonup G_{EG}()=(pk,sk)$ where $pk=g^d \pmod p$ and sk=d and $d \stackrel{r}{\leftarrow} \{1,\ldots,p\text{-}2\}$
- $E_{EG}(pk,x) = (g^r \pmod{p}, \ m \cdot (g^d)^r \pmod{p})$ where $pk = g^d \pmod{p}$ and $r \stackrel{r}{\leftarrow} \mathbb{Z}$
- ▶ Consistency: $\forall (pk, sk) = G_{EG}(), \forall x, D_{EG}(sk, E_{EG}(pk, x)) = x$

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\} \text{ and } \mathcal{C} = \mathcal{M} \times \mathcal{M}$
- $\mathsf{G}_{\mathsf{EG}}() = (pk, sk) \qquad \qquad \mathsf{where} \ pk = g^d \ (\mathsf{mod} \ p) \ \mathsf{and} \ sk = d \\ \mathsf{and} \ d \xleftarrow{r} \{1, \dots, p\text{-}2\}$
- $E_{EG}(pk,x) = (g^r \pmod{p}, \ m \cdot (g^d)^r \pmod{p})$ where $pk = g^d \pmod{p}$ and $r \stackrel{r}{\leftarrow} \mathbb{Z}$
- Consistency: $\forall (pk, sk) = G_{EG}(), \forall x, D_{EG}(sk, E_{EG}(pk, x)) = x$ Proof: Let $pk = g^d \pmod{p}$ and sk = d

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\} \text{ and } \mathcal{C} = \mathcal{M} \times \mathcal{M}$
- $G_{EG}() = (pk, sk)$ where $pk = g^d \pmod{p}$ and sk = d and $d \leftarrow \{1, \dots, p-2\}$
- ► $E_{EG}(pk,x) = (g^r \pmod{p}, m \cdot (g^d)^r \pmod{p})$ where $pk = g^d \pmod{p}$ and $r \stackrel{r}{\leftarrow} \mathbb{Z}$
- Consistency: $\forall (pk, sk) = G_{EG}(), \forall x, D_{EG}(sk, E_{EG}(pk, x)) = x$ Proof: Let $pk = g^d \pmod{p}$ and sk = d

$$D_{EG}(sk, E_{EG}(pk, x)) = (g^r)^{-d} \cdot m \cdot (g^d)^r \pmod{p}$$

- ▶ Fix prime p, and generator $g \in \mathbb{Z}_p^*$
- $ightharpoonup \mathcal{M} = \{0, \dots, p\text{-}1\} \text{ and } \mathcal{C} = \mathcal{M} \times \mathcal{M}$
- $\mathsf{G}_{\mathsf{EG}}() = (pk, sk) \qquad \qquad \mathsf{where} \ pk = g^d \ (\mathsf{mod} \ p) \ \mathsf{and} \ sk = d \\ \mathsf{and} \ d \xleftarrow{r} \{1, \dots, p\text{-}2\}$
- $E_{EG}(pk,x) = (g^r \pmod{p}, \ m \cdot (g^d)^r \pmod{p})$ where $pk = g^d \pmod{p}$ and $r \stackrel{r}{\leftarrow} \mathbb{Z}$
- Consistency: $\forall (pk, sk) = G_{EG}(), \forall x, D_{EG}(sk, E_{EG}(pk, x)) = x$ Proof: Let $pk = g^d \pmod{p}$ and sk = d

$$D_{EG}(sk, E_{EG}(pk, x)) = (g^r)^{-d} \cdot m \cdot (g^d)^r \pmod{p}$$

= $m \pmod{p}$