WENO 算法、实现与讨论

吴越*

2021年7月9日

目录

第	一部	分 Weighted Essentially Non-oscillatory Scheme	2
1	Spa	ce descretization	2
	1.1	由点值插值点值	2
	1.2	由单元均值重构点值	3
	1.3	由点值插值数值通量	4
	1.4	WENO 插值系数	4
		1.4.1 固定模板的插值系数	4
		1.4.2 WENO 插值线性权	5
	1.5	WENO 重构系数	6
		1.5.1 固定模板的重构系数	6
		1.5.2 WENO 重构线性权	7
2	Ten	nporal discretization	8
第	二部	分 Hyperbolic Conservation Law	8
3	One	e dimensional WENO procedure	8
	3.1	3 阶 WENO 重构过程	Ĝ
	3.2	5 阶 WENO 重构过程	Ć
	3.3	空间离散—Lax Friedrichs 通量分裂	10
	3.4	时间离散	11
	3.5	Algorithm for the WENO procedure in 1D	11
4	Mu	lti dimensional WNEO procedure	13
	4.1	Spatial discretization	13
	*学号:		

5	5.1 Spatial discretization	14 14				
第	三部分 Hamilton-Jacobi Equations	15				
6	Spatial Discretization 15					
第	四部分 Numerical Examples	16				
7	Examples for General Hyperbolic Conservation Law	16				
	7.1 Example 1—A Simple 1D Linear Case	16				
	7.2 Example 2—1D Burgers Equation with a Source	20				
	7.3 Example 3—1D Burgers Equation without Source	23				
	7.4 Example 4–A Simple 2D Linear Case	31				
	7.5 Example 5—2D Burgers Equation	32				
8	Examples for Euler System	37				
	8.1 Derivation for 1D Euler System	37				
	8.2 Derivation for 2D Euler System	38				
	8.3 Example 1—1D Euler System—A Simple Case	40				
	8.4 Example 2—1D Euler System—Shock Tube Problem	42				
	8.5 Example 3—2D Euler Syetem—Vortex Evolution	43				
9	Examples for Hamilton Jacobi Equation	48				
	9.1 Example 1—A Simple 1D Linear Case	48				
	9.2 Example 2—1D Burgers Equation	49				
	9.3 Example 3—1D Riemann Problem with a non-convex Hamiltonian	52				
	第一部分 Weighted Essentially Non-oscillatory Scheme					
	1 Space descretization					
	定义:					
	• $MA: a = x_{\frac{1}{2}} < a_{\frac{3}{2}} < \dots < x_{N+\frac{1}{2}} = b.$					
	• 单元: $I_i = \begin{bmatrix} x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}} \end{bmatrix}$, 单元中点: $x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}$, 单元大小: $\Delta x_i = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$					
	• 网格大小: $\Delta x = \min_{1 \le i \le N} \Delta x_i$.	•				
	$\Delta x = \lim_{1 \leq i \leq N} \Delta x_i$. 我们先考虑标量情形,且不考虑时间离散和边界问题。					
	我们尤考尼你里间形,且个考尼时间离散和边外问题。					

1.1 由点值插值点值

给定插值误差阶 k 以及点值 $u_j=u\left(x_j\right),\,1\leqslant j\leqslant N$,使用多项式对 $u(x),\,x\in I_i$ 进行插值。

为了减少判断次数以及充分利用 2k-1 个候选点构成的全部 k 个候选模板,我们使用上面 k 个模板提供的近似 $u_x^{(r)}, 0 \le r \le k-1$ 的**凸组合**来近似,目标是达到尽可能高的精度。

当采用等距节点时,若 $u \in C^{2k-1}[x_{i-r}, x_{i-r+k-1}]$,一定存在凸组合系数 $d_r \geqslant 0$, $\sum_{r=0}^{k-1} d_r = 1$ 使得:

$$u(x) = \sum_{r=0}^{k-1} d_r u^r(x) + \mathcal{O}\left(\Delta x^{2k-1}\right)$$
(1)

而当非等距节点时,如果使用 Taylor 展开以及待定系数法,可能存在负系数 $d_r < 0$,这时不能保持格式的的单调性,会发生震荡,需要特殊处理. 但是,如果任意取凸组合系数 d_r ,总可以使得逼近具有 $\mathcal{O}(\Delta x^k)$ 的误差阶,因此我们总可以试着达到更高的误差阶。

假设我们已经有凸组合系数 $d_r \ge 0$ 使得具有 2k-1 阶收敛阶。由 Godunov 定理,单调 (线性) 格式至多具有 1 阶局部截断误差,因此我们需要选取非线性系数 ω_r 使得 $\omega_r \ge 0$, $\sum_{r=0}^{k-1} \omega_r = 1$,且当 u 足够光滑时, $\omega_r = d_r + \mathcal{O}\left(\Delta x^{k-1}\right)$. 这是由于考虑到需要 u 足够光滑(2k-1 阶连续可微)时局部截断误差为 $\mathcal{O}\left(\Delta x^{2k-1}\right)$.

我们取 $\omega_r = \frac{\alpha_r}{\sum\limits_{i=0}^{k-1} \alpha_i}$,其中 $\alpha_r = \frac{d_r}{(\epsilon + \beta_r)^2}$,其中 $\epsilon = 10^{-6}$ (为了防止分母为 0), β_r 为光滑因子:

当 u 光滑时, $\omega_r \approx d_r$; 当 u 不光滑时, $\omega_r \approx 0$. 注意到 $\deg p_{i,r} \leqslant k-1$,我们可以选取:

$$\beta_r = \sum_{l=1}^{k-1} \Delta x_i^{2l-1} \int_{I_i} \left(\frac{\mathrm{d}^l}{\mathrm{d}x^l} p_{i,r}(x) \right)^2 \mathrm{d}x \tag{2}$$

最后构造:

$$p_i(x) = \sum_{r=0}^{k-1} \omega_r p_{i,r}(x)$$
 (3)

为最终的插值多项式。

注记: 当 u 全局光滑时,该格式是收敛的,且若使用等距节点,格式 TVB 且拥有 2k-1 阶局部截断误差。

1.2 由单元均值重构点值

定义单元均值:

$$\overline{u}_i = \frac{1}{\Delta x_i} \int_{I_i} u(x) dx \tag{4}$$

并且此时的模板按照区间而非结点来写。

我们的目标:利用单元均值来重构点值。

设 U(x) 为 u(x) 的原函数,也即:

$$U(x) = \int_{-\infty}^{x} u(t)dt \tag{5}$$

设 $P_{i,r}(x)$ 是对 U(x) 在对应于 k 个区间的模板

$$S_i^{(r)} = \{I_{i-r}, \cdots, I_{i-r+k-1}\}$$

的 k+1 点模板

$$\widehat{S}_{i}^{(r)} = \left\{ x_{i-r-\frac{1}{2}}, \cdots, x_{i-r+k-\frac{1}{2}} \right\}$$

上的至多 k 次插值多项式,那么:

- $p_{i,r}(x) = \frac{d}{dx} P_{i,r}(x)$ 和 u(x) 在 I_j , $i-1 \le j \le i-r+k-1$ 上的单元均值相等。
- $U(x) = P_{i,r}(x) + \mathcal{O}(\Delta x^{k+1})$, $\stackrel{\text{def}}{=} u \in C^k$.
- $u(x) = p_{i,r}(x) + \mathcal{O}\left(\Delta x^k\right)$,若 $u \in C^k$ 且 x 是区间端点 $x_{i\pm\frac{1}{2}}$ (由多项式插值误差定理). 同时,注意到:

$$U\left[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right] = \overline{u}_j \tag{6}$$

且 U 的常数项可以不妨设为 0,所以我们可以利用与上文类似的方式,用 ENO/WENO 自适应地计算插值多项式,利用符号求导,即可得到边界点值 $u_{i-\frac{1}{2}}^+$ 与 $u_{i+\frac{1}{2}}^-$.

1.3 由点值插值数值通量

目的: 给定 u 在单元中点 x_j 上的取值 u_j ,求数值通量 $\widehat{u}_{i+\frac{1}{2}}=\widehat{u}\,(u_{i-r},\cdots,u_{i-r+k-1})$,使得:

$$\frac{1}{\Delta x_i} \left(\widehat{u}_{i+\frac{1}{2}} - \widehat{u}_{i-\frac{1}{2}} \right) = u'(x_i) + \mathcal{O}\left(\Delta x^k \right)$$
 (7)

注记:由下文可见,在用点值逼近数值通量时,我们必须使用均匀网格 (或光滑网格)。注意到:如果存在函数 h(x) 使得

$$u(x) = \frac{1}{\Delta x} \int_{I_i} h(\xi) d\xi = \overline{h}_i$$
 (8)

那么:

$$u'(x) = \frac{1}{\Delta x} \left(h \left(x + \frac{\Delta x}{2} \right) - h \left(x - \frac{\Delta x}{2} \right) \right) \tag{9}$$

于是只需要

$$u'(x_i) = \frac{1}{\Delta x} \left(h_{i+\frac{1}{2}} - h_{i-\frac{1}{2}} \right) + \mathcal{O}\left(\Delta x^k\right)$$

$$\tag{10}$$

$$\widehat{u}_{i+\frac{1}{2}} = h_{i+\frac{1}{2}} + \mathcal{O}\left(\Delta x^k\right) \tag{11}$$

即可,这是因为误差部分经常是光滑的。

此时代入 $\overline{h}_j=u_j$,用上文的 ENO/WENO 格式在 I_i 上选取模板,重构 $h_{i-\frac{1}{2}}^+$ 和 $h_{i+\frac{1}{2}}^-$ 即可。

1.4 WENO 插值系数

1.4.1 固定模板的插值系数

给定误差阶 $k\in\mathbb{N}_+$,设每一个模板 $S_i^{(r)}=\{x_{i-r},\cdots,x_{i-r+k-1}\}$ 在 $x\in I_i$ 处的插值结果为:

$$u_{i,r}(x) = \sum_{j=0}^{k-1} c_{i,r,j}(x) u_{i-r+j} + \mathcal{O}\left(\Delta x^{k}\right)$$
 (12)

其中 $0 \le r \le k-1$, $c_{i,r,j}(x) \in \mathbb{R}_k[x]$. 由 Lagrange 多项式插值公式得:

$$c_{i,r,j}(x) = \prod_{\substack{m=0\\m\neq j}}^{k-1} \frac{x - x_{i-r+m}}{x_{i-r+j} - x_{i-r+m}}$$
(13)

1.4.2 WENO 插值线性权

对于 u(x) 在上文中的 k 个模板的重构结果 $u_{i,r}(x)$, $0 \le r \le k-1$, 由插值多项式的唯一性 知,存在唯一的系数 (仅与网格有关) $d_{i,r}(x)$ 使得:

$$u_i(x) = \sum_{r=0}^{k-1} d_{i,r}(x)u_{i,r}(x) = \sum_{r=0}^{k-1} \sum_{i=0}^{k-1} d_{i,r}(x)c_{i,r,j}(x)u_{i-r+j}$$
(14)

在 $\bigcup_{r=0}^{k-1} S_i^{(r)}$ 上插值 u(x).

注意到: 上式相当于使用大模板 $\hat{S}_i = \{x_{i-k+1}, \cdots, x_{i+k-1}\}$ 进行 2k-1 阶插值的结果。因 此,设该大模板插值系数为 $\hat{c}_{i,j}(x)\in\mathbb{R}_{2k-1}[x],\,0\leqslant j\leqslant 2k-2$ (相当于使用 2k-1 阶,左移量 为 k-1 模板的系数),那么对于 $0 \le j \le 2k-2$,有:

$$\sum_{\max\{0,k-j-1\}\leqslant r\leqslant \min\{2k-2-j,k-1\}} c_{i,r,r+j-k+1}(x)d_{i,r}(x) = \widehat{c}_{i,j}(x)$$
(15)

也即,对于 $0 \le j \le 2k-2$:

$$\sum_{\substack{\max\{0,k-j-1\}\leqslant r\leqslant \min\{2k-2-j,k-1\}\\ m=k-r-1\\ m\neq j}} \frac{1}{x-x_{i-k+m+1}} \frac{x-x_{i-k+m+1}}{x_{i-k+j+1}-x_{i-k+m+1}} d_{i,r}(x)$$

$$= \prod_{\substack{m=0\\ m\neq j}}^{2k-2} \frac{x-x_{i-k+m+1}}{x_{i-k+j+1}-x_{i-k+m+1}}$$
(16)

由 Neville 算法知,因为 $u_{i,r}(x)$ 在模板 $S_i^{(r)}$ 上插值 u(x),且 $\bigcup_{r=0}^{k-1} S_i^{(r)} = \widehat{S}_i$,所以一定存 在多项式 $\widetilde{d}_{i,r}(x)$ 使得 $\sum_{r=0}^{k-1} \widetilde{d}_{i,r} u_{i,r}(x)$ 在 \widehat{S}_i 上插值 u(x). 由唯一性, $d_{i,r}(x) \in \mathbb{R}_k[x]$. 具体地,我 们下面给出 $d_{i,r}(x)$ 和 $u_i(x)$ 的构造过程。

设 $p_{i,m}^d(x) \in \mathbb{R}_{k+d}[x]$ 为在 $\bigcup_{r=m}^{m+d} S_i^{(r)}$ 上插值 u(x) 的多项式, $0 \leqslant m \leqslant m+d \leqslant k-1$,我 们有以下递推式:

$$p_{i,m}^0(x) = u_{i,m}(x), \quad 0 \leqslant m \leqslant k - 1$$
 (17)

$$p_{i,m}^{0}(x) = u_{i,m}(x), \quad 0 \leqslant m \leqslant k - 1$$

$$p_{i,m}^{d+1}(x) = \frac{x - x_{i-m-d-1}}{x_{i-m+k-1} - x_{i-m-d-1}} p_{i,m}^{d}(x) + \frac{x_{i-m+k-1} - x}{x_{i-m+k-1} - x_{i-m-d-1}} p_{i,m+1}^{d}(x)$$
(18)

易见,取 $u_i(x) = p_{i,0}^{k-1}(x)$ 即可。此时我们还可以给出 $d_{i,r}(x)$ 的一般表达式: 记因子:

$$\lambda_{i,m,t}(x) = \begin{cases} 1, & t = 1\\ \frac{x - x_{i+m}}{x_{i+m+t} - x_{i+m}}, & m < 0, t \neq 1\\ \frac{x_{i+m} - x}{x_{i+m} - x_{i+m-t}}, & m > 0, t \neq 1 \end{cases}$$
(19)

那么:

$$d_{i,r}(x) = \begin{cases} \sum_{\pi_r} \prod_{j=1}^{k-1} \lambda_{i,m_j,k+j-1}(x), & k \geqslant 2\\ 1, & k = 1 \end{cases}$$
 (20)

其中 $\pi_r = \{m_1, \cdots, m_{k-1}\}$ 取遍 $\{k-1, \cdots, k-1-r; -k+1, \cdots, -r\}$ 满足相同符号的数按绝 对值递增的排列,共 $\binom{k-1}{r}$ 个。例如: $\{-2,4,-3,-4\}$, $\{-3,-4,3,4\}$, $\{2,3,-3\}$.

,	٠,	AD III. Let 1, 1, 1, 1
k	order	线性权 $d_{i,r}(x)$
1	1	$d_{i,0}(x) = 1$
2	3	$d_{i,0}(x) = \frac{x - x_{i-1}}{x_{i+1} - x_{i-1}}$
		$d_{i,1}(x) = \frac{x_{i+1} - x}{x_{i+1} - x_{i-1}}$
		$d_{i,0}(x) = \frac{x - x_{i-2}}{x_{i+2} - x_{i-2}} \frac{x - x_{i-1}}{x_{i+2} - x_{i-1}}$
3	5	$d_{i,1}(x) = \frac{x - x_{i-2}}{x_{i+2} - x_{i-2}} \frac{x_{i+2} - x}{x_{i+2} - x_{i-1}} + \frac{x_{i+2} - x}{x_{i+2} - x_{i-2}} \frac{x - x_{i-2}}{x_{i+1} - x_{i-2}}$
		$d_{i,2}(x) = \frac{x_{i+2} - x}{x_{i+2} - x_{i-2}} \frac{x_{i+1} - x}{x_{i+1} - x_{i-2}}$
		$d_{i,0}(x) = \frac{x - x_{i-3}}{x_{i+3} - x_{i-3}} \frac{x - x_{i-2}}{x_{i+3} - x_{i-2}} \frac{x - x_{i-1}}{x_{i+3} - x_{i-1}}$
4	7	$d_{i,1}(x) = \frac{x - x_{i-3}}{x_{i+3} - x_{i-3}} \frac{x - x_{i-2}}{x_{i+3} - x_{i-2}} \frac{x_{i+3} - x}{x_{i+3} - x_{i-1}} + \frac{x - x_{i-3}}{x_{i+3} - x_{i-3}} \frac{x_{i+3} - x}{x_{i+3} - x_{i-2}} \frac{x - x_{i-2}}{x_{i+2} - x_{i-2}} + \frac{x_{i+3} - x}{x_{i+3} - x_{i-3}} \frac{x - x_{i-3}}{x_{i+2} - x_{i-3}} \frac{x - x_{i-2}}{x_{i+2} - x_{i-2}}$
	'	$d_{i,2}(x) = \frac{x - x_{i-3}}{x_{i+3} - x_{i-3}} \frac{x_{i+3} - x}{x_{i+3} - x_{i-2}} \frac{x_{i+2} - x}{x_{i+2} - x_{i-2}} + \frac{x_{i+3} - x}{x_{i+3} - x_{i-3}} \frac{x - x_{i-3}}{x_{i+2} - x_{i-3}} \frac{x_{i+2} - x}{x_{i+2} - x_{i-2}} + \frac{x_{i+3} - x}{x_{i+3} - x_{i-3}} \frac{x_{i+2} - x}{x_{i+2} - x_{i-3}} \frac{x_{i+2} - x}{x_{i+3} - x_{i-3}} \frac{x_{i+3} - x}{x_{i+3} - x} \frac{x_{i+3} - x}{x_{i+3} $
		$d_{i,3}(x) = \frac{x_{i+3} - x}{x_{i+3} - x_{i-3}} \frac{x_{i+2} - x}{x_{i+2} - x_{i-3}} \frac{x_{i+1} - x}{x_{i+1} - x_{i-3}}$
		± 4 1 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10

表 1: $k = 1, \dots, 4$ 时的线性权 $d_{i,r}(x)$

同时, $d_{i,r}(x)$ 满足 $(2k-1) \times k$ 的超定方程组:

$$\mathbf{A}_{i}(x)\mathbf{d}_{i}(x) = \hat{\mathbf{c}}_{i}(x) \tag{21}$$

其中 $d_i(x) = (d_{i,0}, \dots, d_{i,k-1})^T(x)$, $\widehat{c}_i(x) = (\widehat{c}_{i,0}, \dots, \widehat{c}_{i,2k-2})^T(x)$,

$$\mathbf{A}_{i}(x) = (d_{i,0}, \cdots, d_{i,k-1})^{T}(x), \quad \widehat{\mathbf{c}}_{i}(x) = (\widehat{\mathbf{c}}_{i,0}, \cdots, \widehat{\mathbf{c}}_{i,2k-2})^{T}(x),$$

$$\begin{pmatrix} c_{i,k-1,0}(x) \\ \vdots \\ c_{i,k-2,0}(x) & c_{i,k-1,1}(x) \\ \vdots \\ c_{i,0,0}(x) & \vdots \\ c_{i,0,0}(x) & c_{i,1,1}(x) & \vdots \\ c_{i,0,0}(x) & c_{i,1,1}(x) & \vdots \\ c_{i,0,k-2}(x) & \vdots \\ \vdots & \vdots & \vdots \\ c_{i,0,k-2}(x) & c_{i,1,k-1}(x) \end{pmatrix} \in \mathbb{R}_{k-1}[x]^{(2k-1)\times k} \quad (22$$

注记:虽然方程组过定,但是根据 $c_{i,r,j}(x)$ 的定义,知该方程组一定存在唯一解,因此只需 要求解一个 $k \times k$ 的反三角子方程组即可。

WENO 重构系数

1.5.1 固定模板的重构系数

给定误差阶 $k\in\mathbb{N}_+$,设每一个模板 $S_i^{(r)}=\{x_{i-r},\cdots,x_{i-r+k-1}\}$ 在 $x\in I_i$ 处的重构结果为:

$$u_{i,r}(x) = \sum_{j=0}^{k-1} c_{i,r,j}(x)\overline{u}_{i-r+j} + \mathcal{O}\left(\Delta x^k\right)$$
(23)

其中 $0 \le r \le k-1$, $c_{i,r,j}(x) \in \mathbb{R}_{k-1}[x]$. 直接计算得:

$$c_{i,r,j}(x) = \sum_{m=j+1}^{k} \frac{\sum_{\substack{l=0\\l\neq m}}^{k} \prod_{\substack{q=0\\q\neq m,l}}^{k} \left(x - x_{i-r+q-\frac{1}{2}}\right)}{\prod_{\substack{l=0\\l\neq m}}^{k} \left(x_{i-r+m-\frac{1}{2}} - x_{i-r+l-\frac{1}{2}}\right)} \Delta x_{i-r+j}$$
(24)

1.5.2 WENO 重构线性权

对于 u(x) 在上文中的 k 个模板的重构结果 $u_{i,r}(x)$, $0 \le r \le k-1$, 由插值多项式的唯一性知,存在唯一的系数 (仅与网格有关,为有理函数) $d_{i,r}(x)$ 使得:

$$u(x) = \sum_{r=0}^{k-1} d_{i,r}(x)u_{i,r}(x) = \sum_{r=0}^{k-1} \sum_{j=0}^{k-1} d_{i,r}(x)c_{i,r,j}(x)\overline{u}_{i-r+j}$$
(25)

注意到: 上式相当于使用大模板 $\hat{S}_i = \{x_{i-k+1}, \cdots, x_{i+k-1}\}$ 进行 2k-1 阶重构的结果。因此,设该大模板重构系数为 $\hat{c}_{i,j}(x)$, $0 \le j \le 2k-2$ (相当于使用 2k-1 阶,左移量为 k-1 模板的系数),那么:

$$\sum_{j=0}^{2k-2} \widehat{c}_{i,j}(x)\overline{u}_{i-k+j+1} = \sum_{r=0}^{k-1} \sum_{j=0}^{k-1} d_{i,r}(x)c_{i,r,j}(x)\overline{u}_{i-r+j}
= \sum_{j=0}^{2k-2} \sum_{\max\{0,k-j-1\} \leqslant r \leqslant \min\{2k-2-j,k-1\}} d_{i,r}(x)c_{i,r,r+j-k+1}(x)\overline{u}_{i-k+j+1}$$
(26)

$$\implies \sum_{\max\{0, k-j-1\} \leqslant r \leqslant \min\{2k-2-j, k-1\}} c_{i,r,r+j-k+1}(x) d_{i,r}(x) = \widehat{c}_{i,j}(x), \quad 0 \leqslant j \leqslant 2k-2 \quad (27)$$

因此 $d_{i,r}(x)$ 满足 $(2k-1) \times k$ 的超定方程组:

$$\mathbf{A}_{i}(x)\mathbf{d}_{i}(x) = \hat{\mathbf{c}}_{i}(x) \tag{28}$$

其中 $\mathbf{d}_i(x) = (d_{i,0}, \dots, d_{i,k-1})^T(x)$, $\widehat{\mathbf{c}}_i(x) = (\widehat{c}_{i,0}, \dots, \widehat{c}_{i,2k-2})^T(x)$,

$$\mathbf{A}_{i}(x) = \begin{pmatrix} c_{i,k-1,0}(x) & c_{i,k-2,0}(x) & c_{i,k-1,1}(x) \\ c_{i,1,0}(x) & \vdots & \vdots & \vdots \\ c_{i,1,0}(x) & \vdots & \vdots & \vdots \\ c_{i,0,0}(x) & c_{i,1,1}(x) & \vdots & c_{i,k-2,k-2}(x) & c_{i,k-1,k-2}(x) \\ c_{i,0,1}(x) & \vdots & \vdots & \vdots & \vdots \\ c_{i,0,k-2}(x) & c_{i,1,k-1}(x) & \vdots & \vdots & \vdots \\ c_{i,0,k-1}(x) & \vdots & \vdots & \vdots & \vdots \\ c_{i,0,k-1}(x) & & & & & \\ c_{i,0,k-1}(x) & & & \\ c_{i,0,k-1}(x) & & & & \\ c_{i,0,k-1}(x) & & & & \\ c_{i,0,k-1}(x) & & & \\ c_{i,0,k-1}(x) & & & & \\ c_{i,0,k-1}(x) & & & & \\ c_{i,0,k-1}(x) & & & \\$$

注记: 虽然方程组过定,但是根据 $c_{i,r,j}(x)$ 的定义,知该方程组一定存在唯一解,因此只需要求解一个 $k \times k$ 的反三角子方程组即可。

2 Temporal discretization

使用 TVD/TVB Runge-Kutta 进行时间离散,设半离散为算子形式: $u_t = L(u) = \mathcal{L}(u) + \mathcal{O}(\Delta x^k)$ (误差当 u 光滑时成立).

目标:找到 k 阶的 Runge-Kutta TVD 时间离散。

设单步 Euler 向前格式在条件 $\Delta t \leq \Delta t_1$ 时是 TVD 的 ($\|\cdot\|_{TV}$ 算子范数不超过 1)。在 $\Delta t \leq c\Delta t_1$ 的条件下 (c 为 CFL 数),考虑对时间的高阶 Runge-Kutta 格式。

一般地:

$$u^{(i)} = \sum_{k=0}^{i-1} \left(\alpha_{ik} u^{(k)} + \Delta t \beta_{ik} L\left(u^{(k)}\right) \right), \quad 1 \leqslant i \leqslant m$$
(30)

$$u^{(0)} = u^n, \quad u^{(m)} = u^{n+1}$$
 (31)

如果系数 $\alpha_{ik}, \beta_{ik} \ge 0$,那么就是 Euler 单步向前的凸组合。由相容性知, $\sum_{k=0}^{i-1} \alpha_{ik} = 1$.

因为计算 $u^{(i)}$ 时的 Δt 等价于被 $\frac{\beta_{ik}}{\alpha_{ik}}\Delta t$ 取代,所以由 CFL 条件知,当 $c \leqslant \min_{i,k} \frac{\alpha_{i,k}}{|\beta_{i,k}|}$ 才能稳定,我们可以取 $c = \min_{i,k} \frac{\alpha_{i,k}}{|\beta_{i,k}|}$.

若 $\beta_{i,k} < 0$,那么需要使用 L 的伴随算子 \widetilde{L} (向后 Euler 且 TVD),其对应向后方程: $u_t = f(u)_x$. 易见,计算 L 和 \widetilde{L} 时只有迎风方向正好相反,且两者给出的都是对 $f(u)_x$ 的近似。

• TVD Runge-Kutta 2, c = 1:

$$u^{(1)} = u^n + \Delta t L \left(u^n \right) \tag{32}$$

$$u^{n+1} = \frac{1}{2}u^n + \frac{1}{2}u^{(1)} + \frac{1}{2}\Delta tL\left(u^{(1)}\right)$$
(33)

• TVD Runge-Kutta 3, c = 1:

$$u^{(1)} = u^n + \Delta t L(u^n) \tag{34}$$

$$u^{(2)} = \frac{3}{4}u^n + \frac{1}{4}u^{(1)} + \frac{1}{4}\Delta tL\left(u^{(1)}\right)$$
(35)

$$u^{n+1} = \frac{1}{3}u^n + \frac{2}{3}u^{(2)} + \frac{2}{3}\Delta tL\left(u^{(2)}\right)$$
(36)

• TVD Runge-Kutta 4, c = 0.936.

第二部分 Hyperbolic Conservation Law

考虑双曲守恒律问题:

$$\frac{\partial}{\partial t}u + \nabla_{x} \cdot \boldsymbol{F}(u) = 0 \tag{37}$$

3 One dimensional WENO procedure

将区间 [a,b] 等距划分成 N 个区间:

$$a = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{N + \frac{1}{2}} = b \tag{38}$$

$$x_i = \frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}, \quad I_i = \left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right], \quad \Delta x_i = \Delta x, \quad i = 1, \dots, N$$
 (39)

3.1 3 阶 WENO 重构过程

问题: 已知 u(x) 在 x_i 上的取值 u_i , 对数值通量 $\hat{u}_{i+\frac{1}{3}}$ 重构, 使得当 u 足够光滑时:

$$\frac{\widehat{u}_{i+\frac{1}{2}} - \widehat{u}_{i-\frac{1}{2}}}{\Delta x} = u'(x_i) + \mathcal{O}\left(\Delta x^3\right)$$
(40)

算法: 利用 3 阶 WENO 分别从左右侧在 $x_{i+\frac{1}{2}}$ 近似数值通量 $\hat{u}_{i+\frac{1}{2}}^{\pm}$.

- 1. 输入点值 $u_{i-1}, u_i, u_{i+1}, u_{i+2}$.
- 2. 在 $x_{i+\frac{1}{2}}$ 处计算 4 个固定 2 点模板近似:

$$\widehat{u}_{i+\frac{1}{2}}^{-,(0)} = \frac{1}{2}u_i + \frac{1}{2}u_{i+1}, \quad \widehat{u}_{i+\frac{1}{2}}^{-,(1)} = -\frac{1}{2}u_{i-1} + \frac{3}{2}u_i$$

$$\widehat{u}_{i+\frac{1}{2}}^{+,(0)} = \frac{1}{2}u_{i+1} + \frac{1}{2}u_i, \quad \widehat{u}_{i+\frac{1}{2}}^{+,(1)} = -\frac{1}{2}u_{i+2} + \frac{3}{2}u_{i+1}$$

3. 计算光滑因子, 合成非线性权:

$$\beta_{0} = (u_{i} - u_{i+1})^{2}, \quad \beta_{1} = (u_{i-1} - u_{i})^{2}; \qquad \widetilde{\beta}_{0} = (u_{i+1} - u_{i})^{2}, \quad \widetilde{\beta}_{1} = (u_{i+2} - u_{i+1})^{2}$$

$$\alpha_{0} = \frac{\frac{2}{3}}{(\epsilon + \beta_{0})^{2}}, \quad \alpha_{1} = \frac{\frac{1}{3}}{(\epsilon + \beta_{1})^{2}}; \qquad \widetilde{\alpha}_{0} = \frac{\frac{2}{3}}{(\epsilon + \widetilde{\beta}_{0})^{2}}, \quad \widehat{\alpha}_{1} = \frac{\frac{1}{3}}{(\epsilon + \widetilde{\beta}_{1})^{2}}$$

$$\omega_{0} = \frac{\alpha_{0}}{\alpha_{0} + \alpha_{1}}, \quad \omega_{1} = \frac{\alpha_{1}}{\alpha_{0} + \alpha_{1}}; \qquad \widehat{\omega}_{0} = \frac{\widetilde{\alpha}_{0}}{\widetilde{\alpha}_{0} + \widetilde{\alpha}_{1}}, \quad \widetilde{\omega}_{1} = \frac{\widetilde{\alpha}_{1}}{\widetilde{\alpha}_{0} + \widetilde{\alpha}_{1}}$$

4. 合成对数值通量的 3 阶 WENO 近似:

$$\widehat{u}_{i+\frac{1}{2}}^{-} = \omega_0 \widehat{u}_{i+\frac{1}{2}}^{-,(0)} + \omega_1 \widehat{u}_{i+\frac{1}{2}}^{-,(1)}; \qquad \widehat{u}_{i+\frac{1}{2}}^{+} = \widetilde{\omega}_0 \widehat{u}_{i+\frac{1}{2}}^{+,(0)} + \widetilde{\omega}_1 \widehat{u}_{i+\frac{1}{2}}^{+,(1)}$$

注记 1 :

- 3 阶 WENO 格式存在收敛阶不稳定 (递增) 的现象。
- 3 阶 WENO 格式的收敛阶与非线性权中 ϵ 的取值方式有一定关系 (如 $\epsilon = \Delta x^2$ 在 $f(u) \equiv u$ 时表现较好).

3.2 5 阶 WENO 重构过程

与 3 阶 WENO 类似,我们下面直接写出 5 阶 WENO 格式重构过程。其中,每一个 \hat{u}_i 的 计算利用到了 3 个 3 点模板。

固定模板近似结果:

$$\widehat{u}_{i+\frac{1}{2}}^{-,(0)} = \frac{1}{3}u_i + \frac{5}{6}u_{i+1} - \frac{1}{6}u_{i+2}, \quad \widehat{u}_{i+\frac{1}{2}}^{+,(0)} = \frac{1}{3}u_{i+1} + \frac{5}{6}u_i - \frac{1}{6}u_{i-1}$$

$$(41)$$

$$\widehat{u}_{i+\frac{1}{2}}^{-,(1)} = -\frac{1}{6}u_{i-1} + \frac{5}{6}u_i + \frac{1}{3}u_{i+1}, \quad \widehat{u}_{i+\frac{1}{2}}^{+,(1)} = -\frac{1}{6}u_{i+2} + \frac{5}{6}u_{i+1} + \frac{1}{3}u_i \tag{42}$$

$$\widehat{u}_{i+\frac{1}{2}}^{-,(2)} = \frac{1}{3}u_{i-2} - \frac{7}{6}u_{i-1} + \frac{11}{6}u_i, \quad \widehat{u}_{i+\frac{1}{2}}^{+,(2)} = \frac{1}{3}u_{i+3} - \frac{7}{6}u_{i+2} + \frac{11}{6}u_{i+1}$$
(43)

线性权构造:

$$\beta_0 = \frac{13}{12} \left(u_i - 2u_{i+1} + u_{i+2} \right)^2 + \frac{1}{4} \left(3u_i - 4u_{i+1} + u_{i+2} \right)^2 \tag{44}$$

 $^{^{1}2021.6.22}$

$$\beta_1 = \frac{13}{12} \left(u_{i-1} - 2u_i + u_{i+1} \right)^2 + \frac{1}{4} \left(u_{i-1} - u_{i+1} \right)^2 \tag{45}$$

$$\beta_3 = \frac{13}{12} \left(u_{i-2} - 2u_{i-1} + u_i \right)^2 + \frac{1}{4} \left(u_{i-2} - 4u_{i-1} + 3u_i \right)^2 \tag{46}$$

$$\alpha_0 = \frac{0.3}{(\epsilon + \beta_0)^2}, \quad \alpha_1 = \frac{0.6}{(\epsilon + \beta_1)^2}, \quad \alpha_2 = \frac{0.1}{(\epsilon + \beta_2)^2}$$
 (47)

$$\omega_r = \frac{\alpha_r}{\sum_{j=0}^2 \alpha_j}, \quad r = 0, 1, 2$$
(48)

$$\widetilde{\beta}_0 = \frac{13}{12} \left(u_{i+1} - 2u_i + u_{i-1} \right)^2 + \frac{1}{4} \left(3u_{i+1} - 4u_i + u_{i-1} \right)^2 \tag{49}$$

$$\widetilde{\beta}_1 = \frac{13}{12} \left(u_{i+2} - 2u_{i+1} + u_i \right)^2 + \frac{1}{4} \left(u_{i+2} - u_i \right)^2$$
(50)

$$\widetilde{\beta}_3 = \frac{13}{12} \left(u_{i+3} - 2u_{i+2} + u_{i+1} \right)^2 + \frac{1}{4} \left(u_{i+3} - 4u_{i+2} + 3u_{i+1} \right)^2 \tag{51}$$

$$\widetilde{\alpha}_0 = \frac{0.3}{(\epsilon + \widehat{\beta}_0)^2}, \quad \widetilde{\alpha}_1 = \frac{0.6}{(\epsilon + \widetilde{\beta}_1)^2}, \quad \widetilde{\alpha}_2 = \frac{0.1}{(\epsilon + \widetilde{\beta}_2)^2}$$
(52)

$$\widetilde{\omega}_r = \frac{\widetilde{\alpha}_r}{\sum_{j=0}^2 \widetilde{\alpha}_j}, \quad r = 0, 1, 2$$
(53)

合成 5 阶 WENO 近似:

$$u_{i+\frac{1}{2}}^{-} = \sum_{r=0}^{2} \omega_r u_{i+\frac{1}{2}}^{-,(r)}, \quad u_{i+\frac{1}{2}}^{+} = \sum_{r=0}^{2} \widetilde{\omega}_r u_{i+\frac{1}{2}}^{+,(r)}$$
(54)

3.3 空间离散—Lax Friedrichs 通量分裂

对于固定的 t,考虑逼近 $\frac{\partial}{\partial x} f(u(x,t))$.

采用 Lax-Friedrichs 通量分裂计算数值通量:

$$f(u) = f^{+}(u) + f^{-}(u), \quad \frac{\mathrm{d}}{\mathrm{d}u} f^{+}(u) \geqslant 0, \ \frac{\mathrm{d}}{\mathrm{d}u} f^{-}(u) \leqslant 0$$
 (55)

$$f^{\pm}(u) = \frac{1}{2} \left(f(u) \pm \alpha u \right) \tag{56}$$

$$\alpha = \max_{u} \left| f'(u) \right| = \max_{x \in [a,b]} \left| f'(u(x,t_n)) \right| \approx \max_{1 \leqslant i \leqslant N} \left| f'(u_i^n) \right| \tag{57}$$

其中, f^+ 利用偏左的模板, f^- 利用偏右的模板。

算法: Lax-Friedrichs 通量分裂计算数值通量:

- 1. 估计通量分裂参数 $\alpha = \max_{1 \le i \le N} |f'(u_i^n)|$, 或 $\alpha = 1.01 \max_{1 \le i \le N} |f'(u_i^n)|$.
- 2. 输入 $f^+(u_j)$, j = i 1, i, i + 1,使用 k 阶 WENO 左侧近似 $\hat{f}_{i+\frac{1}{2}}^{+,-}$.
- 3. 输入 $f^{-}(u_j)$, j = i, i + 1, i + 2,使用 k 阶 WENO 右侧近似 $\hat{f}_{i+\frac{1}{2}}^{-,\frac{7}{4}}$.
- 4. 相加,合成数值通量 $\hat{f}_{i+\frac{1}{2}} = \hat{f}_{i+\frac{1}{2}}^{+,-} + \hat{f}_{i+\frac{1}{2}}^{-,+}$ 然后,导数近似即为:

$$\frac{\partial}{\partial x} f(u(x_i, t)) = \frac{1}{\Delta x} \left(\widehat{f}_{i + \frac{1}{2}} - \widehat{f}_{i - \frac{1}{2}} \right) + \mathcal{O}\left(\Delta x^k \right)$$
 (58)

此时,定义空间离散算子 \mathcal{L} 为:

$$\mathcal{L}(u) = -\frac{1}{\Delta x} \left(\widehat{f}_{i+\frac{1}{2}} - \widehat{f}_{i-\frac{1}{2}} \right) \tag{59}$$

则单步向前 Euler 格式为:

$$u^{n+1} = u^n + \Delta t \mathcal{L}(u^n) + \Delta t g^n \tag{60}$$

3.4 时间离散

最后进行时间离散,将时间 [0,T] 等距划分为 $0=t_0<\cdots< t_M=T$,网格大小 $\Delta t=\frac{T}{m}$. 采用以下 TVD Runge Kutta 算法:

• 2 阶 TVD Runge Kutta 算法, c = 1:

$$u^{(1)} = u^n + \Delta t \mathcal{L}(u^n) + \Delta t g^n \tag{61}$$

$$u^{n+1} = \frac{1}{2}u^{(1)} + \frac{1}{2}u^{(1)} + \frac{1}{2}\Delta t \mathcal{L}\left(u^{(1)}\right) + \frac{1}{2}\Delta t g^{n+1}$$
(62)

• 3 阶 TVD Runge Kutta 算法, c = 1:

$$u^{(1)} = u^n + \Delta t \mathcal{L}(u^n) + \Delta t g^n \tag{63}$$

$$u^{(2)} = \frac{3}{4}u^n + \frac{1}{4}u^{(1)} + \frac{1}{4}\Delta t \mathcal{L}\left(u^{(1)}\right) + \frac{1}{4}\Delta t g^{n+1}$$
(64)

$$u^{n+1} = \frac{1}{3}u^n + \frac{2}{3}u^{(2)} + \frac{2}{3}\Delta t \mathcal{L}\left(u^{(2)}\right) + \frac{2}{3}\Delta t g^{n+\frac{1}{2}}$$
(65)

根据 Courant-Friedrichs-Levy 条件, 我们需要取:

$$\frac{\Delta t}{\Delta x} \max_{(x,t) \in [a,b] \times [0,T]} \left| f'(u(x,t)) \right| \leqslant c \tag{66}$$

注记:

• 当使用精确边界条件时,一些理论推导显示,Runge Kutta 算法的应用会引起一些收敛阶降低的现象 (同时也在本文程序结果中有体现),这是因为在计算中间值 $u^{(1)}, u^{(2)}$ 等时,其应用了边界条件,但是误差项并不符合边界项的误差。

3.5 Algorithm for the WENO procedure in 1D

Algorithm 1 1-dimensional WENO-3 for $u_t + f(u)_x = 0$ on uniform grids

Input: f(u), $u_0(x)$, g(x,t), boundary conditions(BC), [a,b], stopping time T, N, M

Output: u_i^n , $1 \le i \le N$, $0 \le n \le M$

- 1: $\Delta x \leftarrow \frac{b-a}{N}$, $\Delta t \leftarrow \frac{T}{M}$, $x_i \leftarrow a + (i \frac{1}{2}) \Delta x$, $t_n \leftarrow n\Delta t$;
- 2: $u(1:N,0) \leftarrow u_0(x(1:N));$
- 3: **for** j = 0 : M 1 **do**
- 4: $u(1:N,j+1) \leftarrow \mathbf{TVDRK}(u(1:N,j),\mathcal{L},g(x,t),x(1:N),t,\Delta t);$
- 5: end for
- 6: **return** u(1:N,0:M);

Algorithm 2 Time-forward-with-TVDRK3 (TVDRK3)

Input: u(1:N), \mathcal{L} , g(x,t), x(1:N), t, Δt //L is the spatial discretization operator for approximating u_t

Output: v(1:N)

- 1: $u^{(1)}(1:N) \leftarrow u(1:N) + \Delta t \mathcal{L}(u(1:N)) + \Delta t g(x(1:N),t);$
- 2: $u^{(2)}(1:N) \leftarrow \frac{3}{4}u^n(1:N) + \frac{1}{4}\left(u^{(1)}(1:N) + \Delta t\left(\mathcal{L}\left(u^{(1)}(1:N)\right) + g(x(1:N), t + \Delta t)\right)\right)$;
- 3: $v(1:N) \leftarrow \frac{1}{3}u(1:N) + \frac{2}{3}\left(u^{(2)}(1:N) + \Delta t\left(\mathcal{L}\left(u^{(2)}(1:N)\right) + g(x(1:N), t + \frac{1}{2}\Delta t)\right)\right);$
- 4: **return** v(1:N);

Algorithm 3 Time-forward-with-TVDRK2 (TVDRK2)

Input: u(1:N), \mathcal{L} , g(x,t), x(1:N), t, Δt //L is the spatial discretization operator for approximating u_t

Output: v(1:N)

- 1: $u^{(1)}(1:N) \leftarrow u(1:N) + \Delta t \mathcal{L}(u(1:N)) + \Delta t g(x(1:N),t);$
- 2: $v(1:N) \leftarrow \frac{1}{2}u(1:N) + \frac{1}{2}\left(u^{(1)}(1:N) + \Delta t\left(\mathcal{L}\left(u^{(1)}(1:N)\right) + g(x(1:N), t + \Delta t)\right)\right);$
- 3: **return** v(1:N);

Algorithm 4 Spatial discretization operator \mathcal{L} (\mathcal{L})

Input: u(1:N), boundary conditions(BC), Δx

Output: v(1:N)

- 1: $(b_{-1}, b_0, b_{N+1}, b_{N+2}) \leftarrow \mathbf{Handle\text{-}Boundary}(BC)(u(1:N));$
- 2: $w(-1:N+2) \leftarrow (b_{-1},b_0,u(1:N),b_{N+1},b_{N+2})$
- 3: farr = f(w(-1:N+2))
- 4: $\alpha \leftarrow \max_{w} |f'(w)|$;
- 5: $v_{\pm}(-1:N+2) = \frac{1}{2} (farr(-1:N+2) \pm \alpha(b_{-1},b_0,u(1:N),b_{N+1},b_{N+2}));$ //Lax-Friedrichs flux splitting

- 8: $v(1:N) \leftarrow \frac{1}{\Delta x} \left(flux_{+}^{-}(0:N-1) flux_{+}^{-}(1:N) + flux_{-}^{+}(0:N-1) flux_{+}^{+}(1:N) \right);$
- 9: **return** v(1:N);

Algorithm 5 WENO3 Reconstruction v on the cell boundaries (Reconstruction)

```
Input: u(-1:N+2), direction
Output: v(0:N)
  1: if direction == left then
          for i = 0: N do
             approx(1) = \frac{u(i) + u(i+1)}{2}, \ approx(2) = \frac{-u(i-1) + 3u(i)}{2}
             \beta(1) = (u(i+1) - u(i))^2, \ \beta(2) = (u(i) - u(i-1))^2
             weight(1) = \frac{2/3}{(\epsilon + \beta(1))^2}, weight(2) = \frac{1/3}{(\epsilon + \beta(2))^2}
v(i) = \frac{\text{sum}(weight*approx})}{\text{sum}(weight)}
         end for
  7:
 8: else
         for i = 0 : N \operatorname{do}
 9:
             approx(1) = \frac{u(i) + u(i+1)}{2}, \ approx(2) = \frac{-u(i+2) + 3u(i+1)}{2}
10:
             \beta(1) = (u(i+1) - u(i))^2, \ \beta(2) = (u(i+1) - u(i+2))^2
11:
             weight(1) = \frac{2/3}{(\epsilon + \beta(1))^2}, weight(2) = \frac{1/3}{(\epsilon + \beta(2))^2}v(i) = \frac{\text{sum}(weight*approx}){\text{sum}(weight*approx})}
12:
13:
14:
         end for
15: end if
16: return v(0:N);
```

4 Multi dimensional WNEO procedure

考虑 $D \subset \mathbb{R}^2$ 具有 $D = [a,b] \times [c,d]$ 的形式,将其划分为 $N_x \times N_y$ 的等距笛卡尔网格:

$$a = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \dots < x_{N_x + \frac{1}{2}} = b, \quad c = y_{\frac{1}{2}} < y_{\frac{3}{2}} < \dots < y_{N_y + \frac{1}{2}} = d$$
 (67)

$$(x_i, y_j) = \left(\frac{x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}}}{2}, \frac{y_{i-\frac{1}{2}} + y_{i+\frac{1}{2}}}{2}\right) = \frac{1}{4} \sum_{2^2} \left(x_{i\pm\frac{1}{2}}, y_{j\pm\frac{1}{2}}\right)$$
(68)

$$\Delta x = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}, \quad \Delta y = y_{j+\frac{1}{2}} - y_{j-\frac{1}{2}}, \quad \Delta = \max \left\{ \Delta x, \Delta y \right\}$$
 (69)

4.1 Spatial discretization

我们将上述方程离散为:

$$\frac{\mathrm{d}}{\mathrm{d}t}u_{i,j} = -\frac{\widehat{f}_{i+\frac{1}{2},j} - \widehat{f}_{i-\frac{1}{2},j}}{\Delta x} - \frac{\widehat{g}_{i,j+\frac{1}{2}} - \widehat{g}_{i,j-\frac{1}{2}}}{\Delta y}$$
(70)

其中 \hat{f} , \hat{g} 是数值通量,使得上面对于 $\frac{\partial}{\partial x} f(u(x,y,t))$, $\frac{\partial}{\partial y} f(u(x,y,t))$ 的近似具有 k 阶误差阶。由上式的形式,我们只需要在每一个 (x_i,y_j) 处如同一维情形,分别重构 \hat{f} , \hat{g} 即可。算法如下:

- 1. 处理边界,加入虚拟点。
- 2. 对于每一对 (i,j),重构 $\widehat{f}_{i\pm\frac{1}{2},j}$, $\widehat{g}_{i,j\pm\frac{1}{2}}$ (需要使用通量分裂,具体过程和一维情形完全相同).
- 3. 计算 x, y 方向的偏导数,取相反数相加,合成空间离散算子 \mathcal{L}

5 Characteristic-wise WENO procedure for systems

考虑双曲守恒律问题:

$$\boldsymbol{u}_t + \boldsymbol{f}(\boldsymbol{u})_x = \boldsymbol{0} \tag{71}$$

其中 $\boldsymbol{u} \in \mathbb{R}^m$, $\boldsymbol{f} : \mathbb{R}^m \mapsto \mathbb{R}^m$.

因为上述是一个双曲系统,所以 f 的 Jacobi 矩阵 $f' \in \mathbb{R}^{m \times m}$ 是可以实数对角化,我们设 其右特征方阵为方阵 $\mathbf{R}(u) \in \mathrm{GL}_m(\mathbb{R})$,对应的特征值对角方阵为 $\mathbf{\Lambda}(u)$,也即:

$$\mathbf{R}^{-1}(\mathbf{u})\mathbf{f}'(\mathbf{u})\mathbf{R}(\mathbf{u}) = \mathbf{\Lambda}(\mathbf{u}) = \operatorname{diag}(\lambda_1(\mathbf{u}), \cdots, \lambda_m(\mathbf{u}))$$
(72)

我们记 $\mathbf{R}(u)$ 的各列,也即 Jacobi 阵 \mathbf{f}' 的右特征向量为:

$$\mathbf{R}(\mathbf{u}) = \begin{pmatrix} \mathbf{r}_1(u) & \mathbf{r}_2(u) & \cdots & \mathbf{r}_m(u) \end{pmatrix}$$
 (73)

同时记 $\mathbf{R}^{-1}(u)$ 的各行, 也即 Jacobi 阵 \mathbf{f}' 的左特征向量为:

$$\mathbf{R}^{-1}(\mathbf{u}) = \begin{pmatrix} \mathbf{l}_1(\mathbf{u}) \\ \mathbf{l}_2(\mathbf{u}) \\ \vdots \\ \mathbf{l}_m(\mathbf{u}) \end{pmatrix}$$
(74)

5.1 Spatial discretization

对于每一个给定的 $i,i=0,\cdots,N$,我们用如下方式计算数值通量 $\widehat{f}_{i+\frac{1}{2}}$ 的重构。 首先计算 f' 在 $x_{i+\frac{1}{2}}$ 处的 (近似) 取值,我们可以使用:

- 均值: $f'(u_{i+\frac{1}{2}}) \approx f'(\frac{u_{i}+u_{i+1}}{2})$.(矩阵有显式表达式时,较为方便)
- Roe 均值: $f(u_{i+1}) f(u_i) = f'(u_{i+\frac{1}{2}})(u_{i+1} u_i)$. 然后计算 $f'(u_{i+\frac{1}{2}})$ 的特征分解:

$$\mathbf{R}_{i+\frac{1}{2}}^{-1} \mathbf{f}'_{i+\frac{1}{2}} \mathbf{R}_{i+\frac{1}{2}} = \mathbf{\Lambda}_{i+\frac{1}{2}} = \operatorname{diag}\left(\lambda_{i+\frac{1}{2}}^{(1)}, \cdots, \lambda_{i+\frac{1}{2}}^{(m)}\right)$$
(75)

在 $x_{i+\frac{1}{2}}$ 附近将方程写成非守恒形式:

$$u_t + f'(u)u_x = 0 \iff u_t + R_{i+\frac{1}{2}} \left(R_{i+\frac{1}{2}}^{-1} f'(u) R_{i+\frac{1}{2}} \right) R_{i+\frac{1}{2}}^{-1} u_x = 0$$
 (76)

代换 $g(v) = R_{i+\frac{1}{2}}^{-1} f(R_{i+\frac{1}{2}}v), v = R_{i+\frac{1}{2}}^{-1} u$,那么方程等价为:

$$R_{i+\frac{1}{2}}v_t + R_{i+\frac{1}{2}}g'(v)v_x = 0 \iff v_t + g(v)_x = 0$$
 (77)

其中 $g'(v) = R_{i+\frac{1}{2}}^{-1} f'(R_{i+\frac{1}{2}}v) R_{i+\frac{1}{2}} \approx \Lambda_{i+\frac{1}{2}}$. 那么方程近似为:

$$\mathbf{v}_t + \mathbf{\Lambda}_{i+\frac{1}{2}} \mathbf{v}_x = \mathbf{0} \iff \mathbf{v}_t^{(l)} + \mathbf{g}_x^{(l)} = 0, \quad 1 \leqslant l \leqslant m$$
 (78)

使用 Lax-Friedrichs 通量分裂,第 l 个分量的系数 $\alpha_l = \max_{\boldsymbol{u}} |\lambda^{(l)}(\boldsymbol{u})|$.

数值计算时,记 $g_j = R_{i+\frac{1}{2}}^{-1} f(u_j), v_j = R_{i+\frac{1}{2}}^{-1} u_j$,取 $\alpha_l = \max_{1 \leq j \leq N} \left| \lambda_{j+\frac{1}{2}}^{(l)} \right|$,然后逐分量重构 $\widehat{g}_{i+\frac{1}{2}}$,于是 $\widehat{f}_{i+\frac{1}{2}} = R_{i+\frac{1}{2}} \widehat{g}_{i+\frac{1}{2}}$.

第三部分 Hamilton-Jacobi Equations

本部分,我们考虑应用 WENO 方法求解 Hamilton-Jacobi 方程:

$$\begin{cases} \frac{\partial}{\partial t}\varphi + H\left(\nabla_{x}\varphi\right) = 0\\ \varphi(x,0) = \varphi_{0}(x) \end{cases}$$
(79)

其中 $H(\cdot)$ 是 Lipshitz 连续的函数。

注记: Hamilton-Jacobi 方程不能使用 FVM; 而且,使用 WENO 求解时是对待求解函数的导数进行 FDM 逼近,且只需要正交网格,不一定需要光滑网格。

6 Spatial Discretization

我们采用 monotone Hamiltonian 进行计算。其中,monotone Hamiltonian 为 $\hat{H}(\cdot,\cdot)$ 满足:

- 单调性: $\hat{H}(\cdot,\cdot) = \hat{H}(\uparrow,\downarrow)$, 其中单调性是对每个分量而言的。
- 相容性: $\widehat{H}\left(u,u\right)=H\left(u\right)$.
- Lipshitz 连续性:对每个变量都 Lipschitz 连续。

例如,可以选取 Godunov monotone Hamiltonian:

$$\widehat{H}\left(u^{-}, u^{+}\right) = \operatorname{ext}_{u \in I(u^{-}, u^{+})} H(u) \tag{80}$$

$$\operatorname{ext}_{u \in I(a,b)} = \begin{cases} \min_{u \in (a,b)}, & a < b \\ \max_{u \in (b,a)}, & a \geqslant b \end{cases}$$
(81)

也可以使用 Lax-Friedrichs 分裂:

$$\widehat{H}(u^{-}, u^{+}) = H\left(\frac{u^{-} + u^{+}}{2}\right) - \frac{\alpha}{2}(u^{+} - u^{-})$$
(82)

$$\alpha = \max_{u \in I[u^-, u^+]} \left| H'(u) \right| \tag{83}$$

那么,我们需要对每一个分量,在 $(x_{1i},x_{2i},\cdots,x_{mi})$ 处重构 $\frac{\partial}{\partial x_k}\varphi$. 我们下面以一维 WENO5 为例,给出具体的实现方法。

由于 H 是关于 $\nabla_x \varphi$ 的函数,所以我们需要在 x_i 处重构 u_i^{\pm} ,其中 $u = \frac{\partial}{\partial x} \varphi$. 我们记:

$$\Delta^{-}\varphi_{i} = \frac{\varphi_{i} - \varphi_{i-1}}{\Delta x} \tag{84}$$

$$\Delta^{+}\varphi_{+} = \frac{\varphi_{i+1} - \varphi_{i}}{\Delta x} \tag{85}$$

于是:

$$\frac{1}{\Delta x} \int_{x_{i-1}}^{x_i} u(\xi) d\xi = \Delta^- \varphi_i$$
 (86)

$$\frac{1}{\Delta x} \int_{x_i}^{x_{i+1}} u(\xi) d\xi = \Delta^+ \varphi_i$$
 (87)

那么,重构 u_i^\pm 只需要利用 $\Delta^\pm \varphi_j$ 即。具体地,对于 WENO5,我们只需用 $\Delta^- \varphi_j$ 替代 u_j 输入,其中 $j=i-2,\cdots,i+2$,即可得到 u_i^- . 对称地,重构 u_i^+ 时,需要 $\Delta^- \varphi_j$, $j=i-1,\cdots,i+3$. 因此,大模板包含 3 个小模版,总共涉及 6 个点。

第四部分 Numerical Examples

7 Examples for General Hyperbolic Conservation Law

7.1 Example 1—A Simple 1D Linear Case

考虑问题:

$$\begin{cases} u_t + u_x = 0, & t \in [0, 1], x \in [0, 1] \\ u(x, 0) = \sin(2\pi x), & x \in [0, 1] \\ u(0, t) = u(1, t), & t \in [0, 1] \end{cases}$$
(88)

易知其真解为:

$$u(x,t) = \sin(2\pi(x-t)) \tag{89}$$

注记: 我们实验时, u 在 [0,1] 外的点取值按照周期条件处理。

使用 TVDRK2/3 做时间离散, 3 阶 WENO 做空间离散, 选取网格加密方式:

$$N_k = 2^{k+3}, \quad M_k = \frac{5}{4}N_k, \quad k = 1, \cdots$$

此时, $\frac{\Delta t}{\Delta x} = 0.8.^2$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.27299579947968716	0.00000000000000000	0.37640745041025647	0.00000000000000000
32	0.10812570032129067	1.3361692759193367	0.16638756084179451	1.1777476028729192
64	4.2210480337538353E-002	1.3570363252317466	7.5292054706546929E-002	1.1439780456761424
128	1.2399754218359477E-002	1.7672897221266535	2.8520650494934463E-002	1.4004907436909098
256	1.2045653158317584E-003	3.3637269956404285	4.3484429600030294E-003	2.7134360719016253
512	1.2381656356660268E-004	3.2822363946011026	5.1789593046169813E-004	3.0697647827525820
1024	1.8521292371395900E-005	2.7409476490335010	2.5266216744132541E-005	4.3573806595150106
2048	4.4661156907154966E-006	2.0520922414367888	6.3100409728560070E-006	2.0014883792607709
4096	1.1151898445393380E-006	2.0017312948669801	1.5771293141106368E-006	2.0003484166866228
8192	2.7878774065376595E-007	2.0000503015137028	3.9426639855092045E-007	2.0000582896088890
16384	6.9696894383645579E-008	2.0000008441235813	9.8566304496268929E-008	2.0000043199193382
32768	1.7424224382136717E-008	1.9999999349019288	2.4641574914531289E-008	2.0000000708149326

表 2: results for WENO3 with TVDRK2, periodic boundary, $\epsilon=10^{-6}, \frac{\Delta t}{\Delta x}=0.8$

 $^{^{2}2021.6.19}$

$\overline{}$	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.16850281978711509	0.00000000s0000000000	0.27705174830915191	0.0000000000000000000000000000000000000
32	6.6580589627490833E-002	1.3395991822562039	0.11620244546363667	1.2535150406922588
64	2.1770054004877026E-002	1.6127566604029884	4.7864368893342002E-002	1.2796164381785553
128	5.6322557287645653E-003	1.9505602412495748	1.6451007440321352E-002	1.5407761514678695
256	1.0530542076939210E-003	2.4191331366850197	4.0890284478339867E-003	2.0083459306064544
512	9.9066833097257524E-005	3.4100337593974541	5.1452664171858231E-004	2.9904404142972654
1024	4.9443906977129113E-006	4.3245374814724604	2.3988046342404701E-005	4.4228582103139944
2048	2.2232650934861665E-007	4.4750408620810092	7.7781798235587729E-007	4.9467392660393275
4096	9.9522708726051073E-009	4.4815104176709903	2.6092995653037576E-008	4.8976980988296468
8192	4.6917344982718719E-010	4.4068324723116241	1.0385429183301653E-009	4.6510298421930489
16384	3.3124400611704863E-011	3.8241551204019899	6.1454508148983678E-011	4.0788981803384958
32768	5.1738982689928316E-012	2.6785707564969790	7.6941786275597224E-012	2.9976796183271825

表 3: results for WENO3 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.8$

我们发现,上述 4 个结果都具有收敛阶先增加后减少的趋势,而且都先升高至高于理论值的收敛阶。这似乎与 WENO 权重的取值有关。作为验证,我们下面进行了几个实验: 3

首先,我们将 WENO 权重变为固定值,计算了 2 个例子,发现收敛阶很理想,这验证了 Runge Kutta 格式应用的正确性。

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	6.7501127616801410E-002	0.00000000000000000	9.5265396299910765E-002	0.0000000000000000000000000000000000000
32	1.7921263000490080E-002	1.9132392879395150	2.5314922775265258E-002	1.9119641891248549
64	4.5459503583751074E-003	1.9790184796964418	6.4264461522436436E-003	1.9778950355707907
128	1.1405635232760326E-003	1.9948351307903591	1.6128233839522062E-003	1.9944326811378001
256	2.8539431630927067E-004	1.9987182906475325	4.0359680006750789E-004	1.9986018202628586
512	7.1364370292039425E-005	1.9996807310428053	1.0092370815940541E-004	1.9996496158322121
1024	1.7842077889972947E-005	1.9999203259195710	2.5232460896484205E-005	1.9999122973130095
2048	4.4605810018531292E-006	1.9999800992932111	6.3082111526661065E-006	1.9999780608661981
4096	1.1151490942874272E-006	1.9999950271442468	1.5770587860398401E-006	1.9999945131287327
8192	2.7878751364415638E-007	1.9999987576514435	3.9426507173736993E-007	1.9999986269669321
16384	6.9696893381854736E-008	1.9999996901106671	9.8566291450091293E-008	1.9999996558046595

 ${\rm \clip{2}}{\,{\rm \clip{2}}}{\,{\rm \c$

 $^{^32021.6.22}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
	L ciroi	L order	L circi	<i>E</i> order
16	2.6979274172364297E-002	0.00000000000000000	3.7880957754901856E-002	0.0000000000000000
32	3.4902816189739750E-003	2.9504361833490007	4.9268787014965509E-003	2.9427269489174983
64	4.3921396755229418E-004	2.9903476076081241	6.2085219661356383E-004	2.9883521945459672
128	5.4979439427140397E-005	2.9979598323209995	7.7743561376686365E-005	2.9974547505161375
256	6.8746311612402449E-006	2.9995379801224935	9.7219116960145513E-006	2.9994112626939775
512	8.5939410364296119E-007	2.9998905280696513	1.2153578876628046E-006	2.9998588219502555
1024	1.0742629451337337E-007	2.9999727166762691	1.5192344027248339E-007	2.9999648226666320
2048	1.3428450570051288E-008	2.9999824066645133	1.8990680028529994E-008	2.9999810081495295
4096	1.6787637048160515E-009	2.9998217678200993	2.3741137944455204E-009	2.9998305751655958
8192	2.1025684558128428E-010	2.9971744994483429	2.9733948636589957E-010	2.9972061174978637
16384	2.7104062470397434E-011	2.9555717627036455	3.8217429221276689E-011	2.9598084236634428

 ${\ensuremath{\overline{\approx}}}$ 5: results for WENO3 with TVDRK3, periodic boundary, fixed weights, $\frac{\Delta t}{\Delta x}=0.8$

然后,考虑到数值格式应保持某种"self similar" 的性质,我们取 WENO 权重中 $\epsilon = \Delta x^2$. 虽然同样具有收敛阶由低增长到高于理论值,然后再逼近理论值的过程,但是明显比之前的结果理想。实验结果如下:

$\overline{}$	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.24775289683007723	0.00000000000000000	0.34173553359795550	0.00000000000000000
32	8.2160222502007482E-002	1.5923899322966741	0.13586984280444261	1.3306549906451548
64	1.3244220049231798E-002	2.6330772026472409	2.6956529156051623E-002	2.3335186196956319
128	2.4693169106270287E-003	2.4231789779674839	6.4325421371810299E-003	2.0671738436194338
256	4.2254394946487862E-004	2.5469386916589491	1.2030438052114123E-003	2.4186998276877096
512	8.2217515976654241E-005	2.3615837164120554	1.8317584861082814E-004	2.7153879703848123
1024	1.8569639373387799E-005	2.1464999865886583	2.5266290975767269E-005	2.8579434982129910
2048	4.5068145928289202E-006	2.0427657931490755	6.3103233131876768E-006	2.0014280664785327
4096	1.1180501881222337E-006	2.0111231490882422	1.5771907742358204E-006	2.0003567478939153
8192	2.7896900898594176E-007	2.0028081854472757	3.9427332113387004E-007	2.0000891789735120
16384	6.9708239769104604E-008	2.0007037570496808	9.8566807228781667E-008	2.0000222923571114

表 6: results for WENO3 with TVDRK2, periodic boundary, $\epsilon = \Delta x^2, \, \frac{\Delta t}{\Delta x} = 0.8$

N	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.14928021869205679	0.00000000000000000	0.25285113298228912	0.00000000000000000
32	4.7740936623399108E-002	1.6447242289570529	8.6008967179207585E-002	1.5557292567342431
64	1.0956621730502670E-002	2.1234238319347845	2.5537371411478604E-002	1.7518770465368643
128	1.9993480655217319E-003	2.4542014816840791	6.1598585707001163E-003	2.0516409021818993
256	3.0164560392692509E-004	2.7286031896987928	1.1884635179563174E-003	2.3737996094503182
512	4.0316099028994177E-005	2.9034266011472285	1.8575700291356689E-004	2.6776091122880517
1024	5.1202362824750091E-006	2.9770737583251159	2.5107389183931517E-005	2.8872326789310088
2048	6.4174565151826604E-007	2.9961368672931963	3.1927075370141722E-006	2.9752597081262371
4096	8.0250392126348834E-008	2.9994212683174983	4.0014564706147837E-007	2.9961832829036847
8192	1.0031958955419817E-008	2.9999050910248246	5.0036801813035936E-008	2.9994637298537064
16384	1.2540620226078776E-009	2.9999227437298774	6.2560220337459782E-009	2.9996720812055235

表 7: results for WENO3 with TVDRK3, periodic boundary, $\epsilon = \Delta x^2$, $\frac{\Delta t}{\Delta x} = 0.8$

使用 TVDRK3 做时间离散, 5 阶 WENO 做空间离散, 选取网格加密方式: 4

$$N_k = 2^{k+3}, M = \left[N^{\frac{5}{3}}\right], k = 1, \cdots$$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	7.1854924773114698E-004	0.00000000000000000	1.0146106418015277E-003	0.00000000000000000
32	2.2851343038901571E-005	4.9747361748992267	3.2304431964669256E-005	4.9730502800511207
64	7.1704669971750305E-007	4.9940680672423676	1.0139658426222553E-006	4.9936511488416890
128	2.2433576817888649E-008	4.9983355139146317	3.1725161830920001E-008	4.9982377196820922
256	7.0164218097393896E-010	4.9987803707668164	9.9223429472772295E-010	4.9988028909312465
512	2.3310830746615501E-011	4.9116631566429563	3.2763902702015457E-011	4.9205017018987265

表 8: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6},\,\Delta t\approx\Delta x^{\frac{5}{3}}$

易见,收敛阶于理论值相接近,则空间离散误差正确。

同时,我们选取 $\frac{\Delta t}{\Delta x}=0.8$,以验证时间离散正确性 5 。易见,收敛阶符合时间离散的收敛阶 3 阶,也即时间离散误差不可忽略:

 $^{^42021.6.19}$

 $^{^{5}2021.6.22}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	9.5935247352502331E-003	0.00000000000000000	1.4314040113959647E-002	0.00000000000000000
32	8.5721663101213496E-004	3.4843292245852338	1.2011262302610293E-003	3.5749712461745919
64	9.4281710296676240E-005	3.1846100054378574	1.3211808541602199E-004	3.1844879032814846
128	1.1356971641738082E-005	3.0533997409932252	1.6007439115672817E-005	3.0450135403368650
256	1.4059262623393730E-006	3.0139853533178678	1.9859665044696939E-006	3.0108293271499806
512	1.7530988845043313E-007	3.0035416507840789	2.4778085350174450E-007	3.0027046733118952
1024	2.1900309459529767E-008	3.0008842134964127	3.0966498920648178E-008	3.0002845260745903
2048	2.7372233472664928E-009	3.0001661926092251	3.8708662941644434E-009	2.9999799001677445
4096	3.4234593539952146E-010	2.9991863692339078	4.8413151265691567E-010	2.9991855665380029
8192	4.3203999589472891E-011	2.9862181032374049	6.1072258361605236E-011	2.9868099038701268

表 9: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6},\,\frac{\Delta t}{\Delta x}=0.8$

7.2 Example 2—1D Burgers Equation with a Source

考虑问题:

$$\begin{cases} u_t + \left(\frac{u}{2}\right)_x^2 = e^t \sin(2\pi x) \left(1 + 2\pi e^t \cos(2\pi x)\right), & t \in [0, 1], x \in [0, 1] \\ u(x, 0) = \sin(2\pi x), & x \in [0, 1] \\ u(0, t) = u(1, t) = 0, & t \in [0, 1] \end{cases}$$
(90)

易知其真解为:

$$u(x,t) = e^t \sin(2\pi x) \tag{91}$$

注记: 我们实验时,u 在 [0,1] 外的点取值直接取真解的值 (Dirichlet boundary condition)。 易知 $\max_u |f'(u)| = e$. 选取 M = 4N,选取网格加密方式:

$$N_k = 2^{k+3}, \quad M_k = 4N_k, \quad k = 1, \cdots$$

此时, $\frac{\Delta t}{\Delta x}\max_{[0,1]\times[0,1]}|f'(u)|=\frac{\mathrm{e}}{4}\approx 0.6769$. 选取每次的 α 估计: $\alpha=1.01\max_{1\leqslant i\leqslant N}|f'(u_i^n)|.^6$

 $^{^{6}2021.6.19}$

N	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.45629139792942897	0.00000000000000000	1.0568776629105909	0.00000000000000000
32	8.3151195636607472E-002	2.4561465427641895	0.26896931158442472	1.9742949086044039
64	7.5463977006710896E-003	3.4618769699235958	2.8113268982845330E-002	3.2581184522158209
128	1.0991662572945641E-003	2.7793785117937788	4.5664153282210240E-003	2.6221172308269125
256	1.7542817668818832E-004	2.6474572290718585	8.4179111814972063E-004	2.4395278898671844
512	2.5812494398727933E-005	2.7647390186736129	1.6716125380492053E-004	2.3322218028409041
1024	3.4539201517360886E-006	2.9017629275531038	3.3197984186543461E-005	2.3320729373336406
2048	5.0384742108517013E-007	2.7771759137324743	6.6165084633904026E-006	2.3269536307413490
4096	6.9131827440187148E-008	2.8655649442986988	1.1658542402870342E-006	2.5046826781835265
8192	8.1269717468163148E-009	3.0885602786526980	1.7238426493204617E-007	2.7576874306169001
16384	9.3135627149365421E-010	3.1253128265124088	2.6226628865172463E-008	2.7165238100423035

表 10: results for WENO3 with TVDRK2, Dirichlet Boundary, $\epsilon=10^{-6},\,\frac{\Delta t}{\Delta x}=0.25$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.45620138071299876	0.00000000000000000	1.0568125744481485	0.00000000000000000
32	8.3117412333242852E-002	2.4564481679259544	0.26883443255638706	1.9749297009121625
64	7.5448694395700445E-003	3.4615828990773414	2.8097812843004666E-002	3.2581881922781752
128	1.0989524507167068E-003	2.7793669704466488	4.5626824604192984E-003	2.6225036761163563
256	1.7533931870048175E-004	2.6479075129024463	8.4044149190193318E-004	2.4406629594685643
512	2.5775934241895210E-005	2.7660529235921203	1.6657794964984596E-004	2.3349499483293319
1024	3.4373837919909139E-006	2.9066418725268801	3.2960635144102524E-005	2.3373814917878590
2048	4.9765167420290880E-007	2.7881027388322828	6.5130779911895531E-006	2.3393326356845634
4096	6.6979850513868241E-008	2.8933372357121616	1.1216142363039416E-006	2.5377629361430372
8192	7.4035074007029941E-009	3.1774463437815981	1.5333654038510169E-007	2.8708031262479916
16384	6.9805666938167083E-010	3.4067928406924843	1.8320851708983343E-008	3.0651430560601085

表 11: results for WENO3 with TVDRK3, Dirichlet boundary, $\epsilon=10^{-6},\,\frac{\Delta t}{\Delta x}=0.25$

由结果可见,实验结果并不好,可能是因为边界条件使用了真解,也可能是因为具有源项。 于是,我们再使用周期边界条件进行一系列实验。⁷

首先,只更改边界条件,我们有如下 4 个结果。我们发现,时间离散误差影响相对很小,而且 L^{∞} 范数误差都很不理想。通过对结果的分析,发现最大模误差都出现在 x=0.5 附近.

 $^{^{7}2021.6.22}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.45538313034960831	0.00000000000000000	1.0547657958482810	0.00000000000000000
32	8.2193485000551500E-002	2.4699848983751331	0.26548157323807431	1.9902390592154111
64	7.4583980014460158E-003	3.4620863537834601	2.7685472332128369E-002	3.2614106882436387
128	1.0910060492145570E-003	2.7732066846185033	4.5112596738058619E-003	2.6175268984829745
256	1.7439397309063613E-004	2.6452370131212217	8.3427480437520130E-004	2.4349357509195193
512	2.5695584833892893E-005	2.7627577891441448	1.6554288767421654E-004	2.3333176471348755
1024	3.4343016181991536E-006	2.9034318334036402	3.2921161779747576E-005	2.3301178745037756
2048	5.0079188727152831E-007	2.7777336536721564	6.5628634745781844E-006	2.3266179224704691
4096	6.8859289356093853E-008	2.8624879939401366	1.1602744878908000E-006	2.4998592751514814

表 12: results for WENO3 with TVDRK2, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.25$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.45538313034960831	0.00000000000000000	1.0547657958482810	0.0000000000000000000000000000000000000
32	8.2193485000551500E-002	2.4699848983751331	0.26548157323807431	1.9902390592154111
64	7.4583980014460158E-003	3.4620863537834601	2.7685472332128369E-002	3.2614106882436387
128	1.0910060492145570E-003	2.7732066846185033	4.5112596738058619E-003	2.6175268984829745
256	1.7439397309063613E-004	2.6452370131212217	8.3427480437520130E-004	2.4349357509195193
512	2.5695584833892893E-005	2.7627577891441448	1.6554288767421654E-004	2.3333176471348755
1024	3.4343016181991536E-006	2.9034318334036402	3.2921161779747576E-005	2.3301178745037756
2048	5.0079188727152831E-007	2.7777336536721564	6.5628634745781844E-006	2.3266179224704691
4096	6.8859289356093853E-008	2.8624879939401366	1.1602744878908000E-006	2.4998592751514814

表 13: results for WENO3 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.25$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	2.1864705580037547E-002	0.00000000000000000	3.3982359898049763E-002	0.0000000000000000000000000000000000000
32	8.3797801121912683E-004	4.7055477239698709	1.8572247668089403E-003	4.1935657135106004
64	3.0391451134319521E-005	4.7851749201164644	7.7785737725988291E-005	4.5774989582956405
128	2.2017563852444002E-006	3.7869388075429695	7.7425439004019658E-006	3.3286260933698357
256	5.0218227274969329E-007	2.1323718429440053	2.2065680064520254E-006	1.8110034461598827
512	1.3626600710158642E-007	1.8817853892234389	9.0373523233683306E-007	1.2878321391501364
1024	3.9110902303084939E-008	1.8007829874497034	3.8548652309469689E-007	1.2292197443206951
2048	1.1825265383752613E-008	1.7256982589367849	1.8331300492835378E-007	1.0723712834602377
4096	3.7698803184993442E-009	1.6492819325953707	8.6478787906726917E-008	1.0838909324301844

表 14: results for WENO5 with TVDRK2, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.25$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	2.1840702958432122E-002	0.00000000000000000	3.3850804835517279E-002	0.00000000000000000
32	8.2936250264489125E-004	4.7188726597258022	1.8183481783911049E-003	4.2184897564724801
64	2.8142986739968962E-005	4.8811554700303885	6.9434103864063346E-005	4.7108402202170332
128	9.0513422116117054E-007	4.9584998924368779	3.3488613309096138E-006	4.3739019001271036
256	3.0400073874967552E-008	4.8959850087393963	1.7222604621613957E-007	4.2812953913410947
512	9.5896903726510609E-010	4.9864467843831086	8.9762806215754054E-009	4.2620417527249659
1024	4.5809648855887604E-011	4.3877608256068044	5.2049280163668499E-010	4.1081676625548953
2048	6.0259840589405413E-012	2.9263827426630971	7.5765893559065489E-011	2.7802577489409579
4096	5.1375441848347263E-012	0.23011795987687592	1.2622771924930554E-010	-0.73640829445834921

表 15: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \frac{\Delta t}{\Delta x}=0.25$

7.3 Example 3—1D Burgers Equation without Source

考虑 $[0,2\pi]$ 区间上周期边界的 Burgers 方程: 8

$$\begin{cases} u_t + \left(\frac{u^2}{2}\right)_x = 0, & t \geqslant 0, \ x \in [0, 2\pi] \\ u(x, 0) = u_0(x), & x \in [0, 2\pi] \\ u(0, t) = u(2\pi, t), & t \geqslant 0 \end{cases}$$
(92)

因为 x_0 点处的初值对应特征线为 $x = x_0 + tu_0(x_0)$, 因此当特征线不相交时有:

$$u(x_0 + tu_0(x_0), t) = u_0(x_0)$$
(93)

对于给定的 (x,t),则 u=u(x,t)满足的两个方程为:

$$u(x,t) = u_0(x - u(x,t)t)$$
(94)

$$x = x_0 + tu_0(x_0) (95)$$

我们首先考虑 $u_0(x) = \sin x$ 的情形。易见其具有对称性,且间断只会出现在 $x = \pi$ 上。考虑到真解以 2π 为周期且在 $[0,2\pi]$ 上关于 $x = \pi$ 反对称,所以我们只需求出 $x \in (0,\pi)$ 上的解即可。边界: $u(0,t) = u(\pi,t) = 0$, $u(2\pi - x,t) = -u(x,t)$.

对于 x_0 发出的特征线 $x = x_0 + t \sin x_0$,我们有以下几个观察:

- $x_0 \in (0, \frac{\pi}{2})$ 发出的特征线覆盖了缺角区域 $\{\min\{0, t \frac{\pi}{2}\} < x < \pi, t > 0\}$,且在这个区域里两两不交。
- $x_0 = \frac{\pi}{2}$ 发出的特征线为 $x = \frac{\pi}{2} + t$.
- $x_0 \in (\frac{\pi}{2}, \pi)$ 发出的特征线覆盖了三角区域 $\{0 < t < x \frac{\pi}{2} < \frac{\pi}{2}\}$,且在这个区域里两两不交。
- $x_0 \in (0,\pi)$ 发出的特征线与 $x = \pi$ 相交于 $\varphi(x_0) = \frac{\pi x_0}{\sin x_0}$. φ 在 $(0,\pi)$ 严格递减,取遍 $(1,+\infty)$. 这也说明了 t = 1 是第一次出现激波的时刻。

同时,当 $(x,t) \in (0,\pi) \times (0,+\infty)$ 时,我们给出一些估计:

 $^{^{8}2021.6.23}$

- $\stackrel{\text{\tiny \pm}}{=} x < t + \frac{\pi}{2} \text{ ft}, \ x_0 \in \left(\max\left\{0, x t\right\}, \min\left\{\frac{\pi}{2}, x\right\}\right).$
- $\stackrel{\mbox{\tiny \perp}}{=} x > t + \frac{\pi}{2} \ \mbox{\perp} \ t \leqslant 1 \ \mbox{\forall} \ \ x_0 \in (x-t,x).$
- 当 $x > t + \frac{\pi}{2}$ 且 t > 1 时, $x_0 \in (x t, \min\{x, \arccos\frac{-1}{t}\})$. 接下来,我们给出一个求 u(x,t) 的算法 $(u_0(x) = \sin x)$,其中 $(x,t) \in (0,\pi) \times (0,+\infty)$.

Algorithm 6 Solution of Burgers equation on $(0, 2\pi)$ with initial value $u_0(x) = \sin x$ and periodic boundary

```
Input: (x,t) (t \ge 0)
Output: u(x,t)
 1: if t = 0 then
        return u = \sin x
 3: else if x \notin [0, 2\pi] then
 4: x \leftarrow x - \left\lfloor \frac{x}{2\pi} \right\rfloor \times 2\pi
 5: end if
 6: if x = 0, \pi, 2\pi then
        return u=0
 8: else if x > \pi then
        x \leftarrow 2\pi - x
        coef \leftarrow -1
10:
11: else
12:
        \operatorname{coef} \leftarrow 1
13: end if
14: if x < t + \frac{\pi}{2} then
      low \leftarrow \max\{0, x - t\}, high \leftarrow \min\left\{\frac{\pi}{2}, x\right\}
16: else if x = t + \frac{\pi}{2} then
        return u=1
18: else if t \leqslant 1 then
        low \leftarrow x - t, high \leftarrow x
19:
20: else
        low \leftarrow x - t, high \leftarrow \min \left\{ x, \arccos \frac{-1}{t} \right\}
22: end if
23: for i = 1:BisecNum do
        x_0 \leftarrow \frac{\text{high+low}}{2}
        if x_0 + t \sin x_0 > x then
25:
          high \leftarrow x_0
26:
        else
27:
28:
            low \leftarrow x_0
        end if
29:
30: end for
31: x_0 \leftarrow \frac{\text{high+low}}{2}
32: u \leftarrow \mathbf{IterativeSolver}(x_0)
33: return coef \times u
```

Algorithm 7 Iterative Solver

Input: x_0

Output: u

1: $u \leftarrow \sin x_0$

2: **while** $|u - \sin(x - tu)| \ge \epsilon = 10^{-16} \text{ do}$

3: $u \leftarrow \frac{tu\cos(x-tu)+\sin(x-tu)}{1+t\cos(x-tu)}$

4: end while

5: return u

我们再考虑初值 $u_0(x) = a + \sin(x)$ 的情形. 使用待定系数法,令 $u(x,t) = a + v(\alpha x + \beta t, t)$,于是:

$$0 = u_t + uu_x = \beta v_x + v_t + (a+v)\alpha v_x = v_t + \alpha vv_x + (a\alpha + \beta)v_x$$

因此我们令 $\alpha=1,\beta=-a$,u(x,t)=a+v(x-at,t),v(x,t)=u(x+at,t)-a,就有:

$$0 = (u_t + uu_x) \big|_{(x,t)} = (v_t + vv_x) \big|_{(x-at,t)}$$

那么转化为:

$$\begin{cases} u(x,t) = v(x - at, t) + a \\ v_t + \left(\frac{v^2}{2}\right)_x = 0, & t \ge 0, \ x \in [0, 2\pi] \\ v(x,0) = \sin(x), & x \in [0, 2\pi] \end{cases}$$
(96)

我们选取初值 $u_0(x) = \sin x$,此时 $|u| \le 1$. 我们在 $[0,2\pi] \times [0,T]$ 上求解,选取 $\frac{\Delta t}{\Delta x} = 0.8$. 由前文分析得,间断在 T=1 开始形成。我们分别取 T=0.8 和 T=1.0,使用若干种方法进行求解,结果如下:

N	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.15974285145033132	0.00000000000000000	0.17592741487409058	0.00000000000000000
32	5.2015122562181618E-002	1.6187483417156032	7.9461331340509256E-002	1.1466554458803440
64	1.2581050499842220E-002	2.0476787344371541	2.4376553897068193E-002	1.7047587781686333
128	2.6097663891206176E-003	2.2692598140880347	5.8678548532367647E-003	2.0545890970138863
256	4.7422010914903001E-004	2.4602919247899919	1.2482941012242899E-003	2.2328753082485400
512	9.1297010653480787E-005	2.3769173133321821	2.2452153009064335E-004	2.4750321754473612
1024	1.9237912711742131E-005	2.2466153456025730	4.2170883510245227E-005	2.4125346437193507
2048	4.4410123583139787E-006	2.1149917859711542	8.8170216363536724E-006	2.2578839423291774
4096	1.0690799294669375E-006	2.0545188662096785	1.9960926686546365E-006	2.1431127006022055
8192	2.6246673985654176E-007	2.0261632005991324	4.7326735094777028E-007	2.0764513952269215
16384	6.5038782133149458E-008	2.0127624661103969	1.1511813827191908E-007	2.0395402334008477

表 16: results for WENO3 with TVDRK2, periodic boundary, $\epsilon=10^{-6}, \ \frac{\Delta t}{\Delta x}=0.8, \ T=0.8$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.26570807071216773	0.00000000000000000	0.28213499908315220	0.00000000000000000
32	0.15498516517502242	0.77771191878663637	0.23229139965224299	0.28044990370383310
64	9.1685248175135736E-002	0.75736859745335339	0.19841593608460767	0.22740783817528681
128	5.4174130193497698E-002	0.75908554312917875	0.16789509326384761	0.24096783456422877
256	3.2082755771217983E-002	0.75580601651227619	0.14190434070535740	0.24264134750508831
512	1.9023638476299710E-002	0.75400486484025586	0.11959507912374823	0.24676069118526461
1024	1.1297929983690620E-002	0.75173473855121042	0.10064933747175805	0.24882035372710054
2048	6.7175600304299017E-003	0.75004925121620281	8.4571664459872020E-002	0.25109139790640406
4096	3.9968724226807310E-003	0.74906578502003718	7.0916510044807535E-002	0.25405283284125219
8192	2.3786926133672194E-003	0.74870267220294540	5.9315033140626666E-002	0.25772374385095642
16384	1.4155939688644255E-003	0.74876133120357047	4.9468961652362295E-002	0.26187417816558528

表 17: results for WENO3 with TVDRK2, periodic boundary, $\epsilon=10^{-6}, \; \frac{\Delta t}{\Delta x}=0.8, \; T=1.0$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.16719174202558823	0.00000000000000000	0.18698882547777157	0.0000000000000000000000000000000000000
32	5.1707472993787279E-002	1.6930588858208457	8.1817092866280305E-002	1.1924778754387417
64	1.1442354992099002E-002	2.1759887913930815	2.3342352938517219E-002	1.8094522822928618
128	2.0242341141293789E-003	2.4989359482748510	4.8929447627231171E-003	2.2541750927004500
256	2.8796373280847522E-004	2.8134171255245857	8.7646523548035038E-004	2.4809342225221895
512	3.5901652708653118E-005	3.0037649606953112	1.1225350971363901E-004	2.9649363154852622
1024	4.3707191994441775E-006	3.0381076600326522	1.3788077267123944E-005	3.0252673592315107
2048	5.3618136582476202E-007	3.0270777073237305	1.6912821085568464E-006	3.0272320598019369
4096	6.6319578549512603E-008	3.0152143376245508	2.0884409401844550E-007	3.0176190729884405
8192	8.2442590830609300E-009	3.0079730901055957	2.5939302816802012E-008	3.0092147363455042
16384	1.0276586187695877E-009	3.0040287529458327	3.2317297726791594E-009	3.0047612295818102

表 18: results for WENO3 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.8, \, T=0.8$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.28031241593459938	0.00000000000000000	0.30637728143895870	0.00000000000000000
32	0.16047714164707869	0.80466783276904452	0.24828533819056164	0.30331025253051502
64	9.3434674509239368E-002	0.78033786213243650	0.20530091204979384	0.27425903299580023
128	5.4760071970925119E-002	0.77083370463021539	0.17102072375221150	0.26356887969537524
256	3.2262813560270158E-002	0.76325208487450680	0.14313261050296366	0.25681875216529798
512	1.9081675373417289E-002	0.75768441214591042	0.12009604559699871	0.25316375657636203
1024	1.1317030120877159E-002	0.75369243806752695	0.10085810025264350	0.25186169191359559
2048	6.7239357634658846E-003	0.75111756054569412	8.4660918417061928E-002	0.25255891181387979
4096	3.9989865437943381E-003	0.74967151535266641	7.0954887310437378E-002	0.25479408008176341
8192	2.3793933697436207E-003	0.74904062368838709	5.9331663973944959E-002	0.25809981510651686
16384	1.4158257216867810E-003	0.74895011232756703	4.9476173525635721E-002	0.26206831720116286

表 19: results for WENO3 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \; \frac{\Delta t}{\Delta x}=0.8, \; T=1.0$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.12815240774464690	0.00000000000000000	0.14372581281147856	0.00000000000000000
32	3.5750166943639791E-002	1.8418387004160786	5.6843083046285603E-002	1.3382624791522320
64	6.4758712431684257E-003	2.4648037723211029	1.4578129741743884E-002	1.9631791601501958
128	6.5041480362793447E-004	3.3156423024166517	1.8094439089894054E-003	3.0101873538557942
256	3.9811070129697292E-005	4.0301185369400390	1.4073157714908358E-004	3.6845284064033437
512	1.8166609085771003E-006	4.4538085903667000	6.5618062752292872E-006	4.4227092628364995
1024	1.1755940051091584E-007	3.9498273441362950	3.5303804205022438E-007	4.2161974453039317
2048	1.2026105009536282E-008	3.2891485410216865	2.9240537630093044E-008	3.5937819085514695
4096	1.4350515223227547E-009	3.0669950213356034	3.2130330895885351E-009	3.1859620939262232

表 20: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \ \frac{\Delta t}{\Delta x}=0.8, \ T=0.8$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.21528892222142743	0.00000000000000000	0.24129314635919363	0.00000000000000000
32	0.12094964753324047	0.83186752187991864	0.19244219955716502	0.32636174392027967
64	7.1860041192165047E-002	0.75114489763248704	0.16210208114570812	0.24752258120461557
128	4.2283603849091717E-002	0.76509141887548637	0.13490587704266493	0.26494941374362074
256	2.5023216251818615E-002	0.75683111141424886	0.11289523713742866	0.25696857676759488
512	1.4908429386972184E-002	0.74713895530593644	9.5106487804637430E-002	0.24736895773612139
1024	8.9081766982084202E-003	0.74292619662648163	8.0345170645870823E-002	0.24333245004565984
2048	5.3218608623717420E-003	0.74319938274979802	6.7845335972304716E-002	0.24396166861162633
4096	3.1721944764011327E-003	0.74644957179329663	5.7138043262949814E-002	0.24779801008237134

表 21: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.8, \, T=1.0$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.12152966989232257	0.00000000000000000	0.13596486851414147	0.00000000000000000
32	3.5322657128876292E-002	1.7826427939307270	5.6309627177645094E-002	1.2717804226668790
64	6.4688163310694978E-003	2.4490202170233677	1.4592403939062359E-002	1.9481640278574193
128	6.3557479862668168E-004	3.3473679247465280	1.7824303240394218E-003	3.0332999837543513
256	3.6417608291686946E-005	4.1253538388131279	1.3078940133071093E-004	3.7685281419713008
512	1.2815011803347387E-006	4.8287294646004710	5.0183707788198362E-006	4.7038827576980724
1024	3.8818432210603595E-008	5.0449491451963349	1.5827559526893076E-007	4.9867083405911128
2048	1.1607790957187668E-009	5.0635765034074423	4.7874687408855365E-009	5.0470319440806586
4096	3.5242537764762142E-011	5.0416318188601998	1.4409248794144958E-010	5.0541960374753625

表 22: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6},\,\Delta t=\Delta x^{\frac{5}{3}},\,T=0.8$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.21245733122424101	0.00000000000000000	0.23858756065865994	0.00000000000000000
32	0.12042810688943770	0.81900098323868953	0.19189123719155832	0.31422999493416903
64	7.1071868850530712E-002	0.76082160317527248	0.16031034358646118	0.25942131720620215
128	4.1971324476852527E-002	0.75987464513461400	0.13389680357361655	0.25974599384134917
256	2.4921123761706011E-002	0.75203486575075873	0.11242642743477049	0.25214031914302054
512	1.4871700635288559E-002	0.74479949043275284	9.4866716206994384E-002	0.24500728693002485
1024	8.8956181407038176E-003	0.74140287006138805	8.0228459268325003E-002	0.24178791784976589
2048	5.3179117336512940E-003	0.74223502765448524	6.7792936999726938E-002	0.24297911741623848
4096	3.1710592941754639E-003	0.74589497765377377	5.7116448792277799E-002	0.24722869137403855

表 23: results for WENO5 with TVDRK3, periodic boundary, $\epsilon = 10^{-6}$, $\Delta t = \Delta x^{\frac{5}{3}}$, T = 1.0

为了验证 WENO 格式的消除震荡的特性,我们将求解结果用 matlab 绘制成图像,并与由上文方法给出的真解的图像作对比⁹。不难发现,WENO 格式有效地消除了震荡。

以下是使用 TVDRK3 做时间离散,WENO3 做空间离散,CFL 数选取 0.8,分别在时刻 T=0.8,1.0,1.5,5.0,空间区间划分数量 N=32,64 所求得的数值解,以及根据上述算法得到的 真解的图像。

图 1: WENO3 with TVDRK3, $N=32,64,\,c=$ 图 2: WENO3 with TVDRK3, $N=32,64,\,c=0.8,\,T=0.8$

^{92021.6.24}

图 3: WENO3 with TVDRK3, $N=32,64,\,c=$ 图 4: WENO3 with TVDRK3, $N=32,64,\,c=0.8,\,T=1.5$

以下是使用 TVDRK3 做时间离散,WENO5 做空间离散,CFL 数选取 0.8,分别在时刻 T=0.8,1.0,1.5,5.0,空间区间划分数量 N=32,64 所求得的数值解,以及根据上述算法得到的 真解的图像。

图 5: WENO5 with TVDRK3, $N=32,64,\,c=$ 图 6: WENO5 with TVDRK3, $N=32,64,\,c=0.8,\,T=0.8$

图 7: WENO5 with TVDRK3, N=32,64, c=图 8: WENO5 with TVDRK3, N=32,64, c=0.8, T=1.5

7.4 Example 4–A Simple 2D Linear Case

我们先用一个线性方程验证数值方法的正确性10。考虑:

$$\begin{cases}
 u_t + u_x + u_y = 0, & t \geqslant 0, (x, y) \in [0, 2\pi]^2 \\
 u_0(x, y) = u_0(x, y), & (x, y) \in [0, 2\pi]^2 \\
 u(0, y, t) = u(2\pi, y, t), u(x, 0, t) = u(x, 2\pi, t), & t \geqslant 0
\end{cases}$$
(97)

易见该方程的解为 $u(x,y,t)=u_0(x-t,y-t)$,CFL 条件为 $\frac{\Delta t}{\Delta x}+\frac{\Delta t}{\Delta y}\leqslant 1$. 我们取初值 $u_0(x,y)=\sin x\cos y$,终止时刻 $t=\pi$. 网格 $\Delta x:\Delta y:\Delta t=1:1:0.4$,此时 c=0.8.

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.81441116635196920	0.0000000000000000000000000000000000000	0.31610998654806954	0.00000000000000000
32	0.33214475516045727	1.2939452090186194	0.15826784970601726	0.99805839526289208
64	0.11575410362713050	1.5207487935242641	7.4094825335711212E-002	1.0949235226835969
128	3.1977031849459950E-002	1.8559554024511389	3.1261826138186954E-002	1.2449707356883368
256	3.6674357372155583E-003	3.1241924406110591	5.3283444128100488E-003	2.5526428115789801
512	3.5435885136474626E-004	3.3714886954334284	5.8354371107716130E-004	3.1907747061680158

表 24: results for WENO3 with TVDRK2, periodic boundary, $\epsilon=10^{-6},\,\Delta x:\Delta y:\Delta t=1:1:0.4$

 $^{^{10}2021.6.24}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.71217694185689584	0.00000000000000000	0.31592458142252156	0.000000000000000000
32	0.24580907982894998	1.5346975185937224	0.14344234351306173	1.1391092307166453
64	7.5736238132649125E-002	1.6984825392159040	5.9680066015041278E-002	1.2651499272385671
128	2.0229922371765015E-002	1.9044929795608316	2.1448862174337058E-002	1.4763480141934104
256	3.4898789795744707E-003	2.5352418705595769	5.2689675273772663E-003	2.0253089237077031
512	2.7266325460696564E-004	3.6779848141431026	5.8172661792443847E-004	3.1791070645782979

表 25: results for WENO3 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \Delta x: \Delta y: \Delta t=1:1:0.4$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	3.3234679399866400E-002	0.00000000000000000	9.2640411967080949E-003	0.00000000000000000
32	2.7329927403828207E-003	3.6041359041623293	7.3331528498377097E-004	3.6591361530633857
64	2.9656680044568159E-004	3.2040526200711668	7.1191955237748239E-005	3.3646474812250431
128	3.5681752617535296E-005	3.0550987180129905	8.1787621690754264E-006	3.1217598071484427
256	4.4168388086629430E-006	3.0141003916562181	9.9851318957622226E-007	3.0340291223783336
512	5.5074895061499185E-007	3.0035474364118500	1.2408318639245408E-007	3.0084738450357627

表 26: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6},\,\Delta x:\Delta y:\Delta t=1:1:0.4$

7.5 Example 5—2D Burgers Equation

考虑二维的无粘 Burgers 方程算例

$$\begin{cases} u_{t} + \frac{\partial}{\partial x} \frac{u^{2}}{2} + \frac{\partial}{\partial y} \frac{u^{2}}{2} = 0, & t \geqslant 0, (x, y) \in [0, 2\pi]^{2} \\ u(x, y, 0) = \sin(x + y), & (x, y) \in [0, 2\pi]^{2} \\ u(0, y, t) = u(2\pi, y, t), u(x, 0, t) = u(x, 2\pi, t), & t \geqslant 0, 0 \leqslant x, y \leqslant 2\pi \end{cases}$$
(98)

作变量代换: $x = \xi + \eta, y = \xi - \eta$, 令 $v(\xi, \eta, t) = u(x, y, t)$, 那么 v 满足方程:

$$\begin{cases} v_t + vv_{\xi} = 0\\ v(\xi, \eta, 0) = \sin(2\xi) \end{cases}$$
(99)

易见, $v(\xi,\eta,t)=\widetilde{v}(\xi,t)$, 这是因为 $\frac{\mathrm{d}}{\mathrm{d}\eta}v=0$. 此时 \widetilde{v} 满足方程:

$$\begin{cases} \widetilde{v}_t + \widetilde{v}\widetilde{v}_{\xi} = 0\\ \widetilde{v}(\xi, 0) = \sin(2\xi) \end{cases}$$
 (100)

易见, $\widetilde{v}(\xi,t) = \varphi(2\xi,2t)$, 其中 $\varphi(x,t)$ 是一维 Burgers 方程算例的解。

因此,我们给出上述算例的真解: $u(x,y,t)=\varphi(x+y,2t).^{11}$ 由前文知,激波在 t=0.5 出现。

 $^{^{11}2021.6.25}$

由于 $\max |u| = 1$,所以我们令网格为: $\Delta x : \Delta y : \Delta t = 1 : 1 : 0.4$,此时 CFL 数为 0.8. 我们的结果如下表。¹²

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.35512678267822373	0.000000000000000000	0.13319033747308895	0.00000000000000000
32	0.10159287731203549	1.8055349103802141	3.8738209217418329E-002	1.7816602553975731
64	2.7705417599939421E-002	1.8745592402838851	1.2072512974959482E-002	1.6820312487991531
128	8.3494147101068911E-003	1.7304211387227186	4.6155676174813864E-003	1.3871460290912139
256	1.3665589134539582E-003	2.6111274119680017	1.0442594169602915E-003	2.1440279263003519
512	1.1993157538721376E-004	3.5102642127022454	8.9239407670804738E-005	3.5486554056385127
1024	1.2230113101014943E-005	3.2937018884094811	9.2998814510969474E-006	3.2623967067803310

表 27: results for WENO3 with TVDRK3, periodic boundary, $\Delta x:\Delta y:\Delta t=1:1:0.4,$ T=0.4

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.40373168262404646	0.00000000000000000	0.16831407631434947	0.00000000000000000
32	0.22454122549174893	0.84641645965588286	0.12805729375849173	0.39436640923562377
64	0.10115566831167173	1.1504031819679057	8.4918098751379123E-002	0.59264545092395149
128	6.6828448011525377E-002	0.59804288904180658	8.3074048811568879E-002	3.1674201494177628E-002
256	4.1208812474914806E-002	0.69750948049216710	7.2062208999832900E-002	0.20515499240338966
512	2.6281042323827247E-002	0.64893039464730506	6.4719355461059502E-002	0.15504563684949235
1024	1.6823189783645665E-002	0.64357121937817618	5.8186941126854019E-002	0.15350183410436058

表 28: results for WENO3 with TVDRK3, periodic boundary, $\Delta x:\Delta y:\Delta t=1:1:0.4,$ T=0.5

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.25788457946531057	0.00000000000000000	8.8720519966651534E-002	0.00000000000000000
32	0.13607049361231197	0.92237125030515210	7.7705812111285799E-002	0.19124530976956305
64	8.1778221520025465E-002	0.73456566446119087	7.3450611746939343E-002	8.1248004412281125E-002
128	6.2652785761929564E-002	0.38433802981271148	7.9768110669347303E-002	-0.11903760109146910
256	4.4707527728836245E-002	0.48686088941014549	8.0499134537271311E-002	-1.3161164925687144E-002
512	3.1778753336152370E-002	0.49245523920349638	8.0920734328919108E-002	-7.5361393363315753E-003
1024	2.2525874084236865E-002	0.49647944078884126	8.1118325453300666E-002	-3.5184587832554999E-003

表 29: results for WENO3 with TVDRK3, periodic boundary, $\Delta x:\Delta y:\Delta t=1:1:0.4,$ T=1.0

 $^{^{12}2021.6.25}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	2.7418767571895868E-002	0.000000000000000000	9.5691269841821081E-003	0.000000000000000000
32	1.8035280123701303E-003	3.9262699894964141	5.7460820297439152E-004	4.0577368162610004
64	2.2645555606386393E-004	2.9935219899074226	7.5518898541404589E-005	2.9276689606363213
128	2.6651449203599877E-005	3.0869420477436180	9.6256997050847559E-006	2.9718744017843992
256	3.2351842229304959E-006	3.0422942114693305	1.2006291577604244E-006	3.0031008060233164
512	3.7355465582799149E-007	3.1144566184358666	1.3914458407704444E-007	3.1091339490569103
1024	4.8443715369476386E-008	2.9469379219598184	1.8086605102496378E-008	2.9435912144650227
2048	5.9464985509643570E-009	3.0261971879998533	2.2237324204255060E-009	3.0238665306663886

表 30: results for WENO5 with TVDRK3, periodic boundary, $\Delta x:\Delta y:\Delta t=1:1:0.4,$ T=0.2

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	2.7418767571895864E-002	0.00000000000000000	9.5691269841821081E-003	0.0000000000000000000000000000000000000
32	1.8035280123701038E-003	3.9262699894964346	5.7460820297428050E-004	4.0577368162612801
64	5.7184337761406253E-005	4.9790579601431872	2.6719006418818303E-005	4.4266403231783285
128	2.5499204455264037E-006	4.4870959183128090	1.4354700729191094E-006	4.2182712020461768
256	8.0410499670083490E-008	4.9869245323492866	6.1790786487492255E-008	4.5379877064087282
512	1.6718713136524156E-009	5.5878481843630725	1.0174312503608007E-009	5.9243885190878407
1024	3.3044243102198129E-011	5.6609210447869263	1.3449685809518996E-011	6.2412150308947858

表 31: results for WENO5 with TVDRK3, periodic boundary, $\Delta x:\Delta y=1:1,\ \Delta t=\Delta x^{\frac{5}{3}},$ T=0.2

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	8.1727716661836994E-002	0.000000000000000000	3.3407756340095074E-002	0.00000000000000000
32	2.5293274321738595E-002	1.6920716164585292	1.5591539267802879E-002	1.0994197302485789
64	1.0139927284663047E-002	1.3187065055492844	8.8213038066532468E-003	0.82169955457725319
128	1.5964539455229046E-003	2.6671044667610722	2.0000068418890016E-003	2.1409869694340879
256	9.9790442264198671E-005	3.9998254808051850	1.4688114083229176E-004	3.7672838608747710
512	4.5536981951756353E-006	4.4537910611787934	6.7883358375320224E-006	4.4354474184446193
1024	2.9467773955523215E-007	3.9498286912270548	3.5328532972667137E-007	4.264152193448846

表 32: results for WENO5 with TVDRK3, periodic boundary, $\Delta x:\Delta y:\Delta t=1:1:0.4,$ T=0.4

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	9.4447571607005940E-002	0.00000000000000000	3.9219699332574187E-002	0.0000000000000000
32	6.6103385128811601E-002	0.51478954969161250	4.1840723155687320E-002	-9.3329311140019744E-002
64	3.2108556509662919E-002	1.0417663455689852	2.8872563480840774E-002	0.53520858222005652
128	2.0885126851814446E-002	0.62048190176147255	2.6554105432394670E-002	0.12076427641551486
256	1.4299714474137932E-002	0.54648956549989636	2.5698703966353265E-002	4.7239324590053200E-002
512	9.7934467271169924E-003	0.54609774108256259	2.4886409662950193E-002	4.6337494265036576E-002
1024	6.6248024709784688E-003	0.56393925549734758	2.3808303820921084E-002	$6.3893267084102839 \hbox{E-}002$

表 33: results for WENO5 with TVDRK3, periodic boundary, $\Delta x:\Delta y:\Delta t=1:1:0.4,$ T=0.5

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	7.4380808939146531E-002	0.00000000000000000	2.9562404272792553E-002	0.0000000000000000
32	5.0129936853420626E-002	0.56925802145292548	3.0462548712070880E-002	-4.3273046125224410E-002
64	3.9121600899045539E-002	0.35770700864901650	3.5036007885972165E-002	-0.20180174611196830
128	2.9238170978085943E-002	0.42011234323311836	3.7226962286777909E-002	-8.7509498296274274E-002
256	2.0960715449613219E-002	0.48016510388239020	3.7742473518044273E-002	-1.9841078198088009E-002
512	1.4905753100796582E-002	0.49181869291508734	3.7957087082188923E-002	-8.1803051903962219E-003
1024	1.0568639843595330E-002	0.49607955056399672	3.8060365395257922E-002	-3.9201314149798520E-003

表 34: results for WENO5 with TVDRK3, periodic boundary, $\Delta x:\Delta y:\Delta t=1:1:0.4,$ T=1.0

我们取 T = 0.4, 0.5, 1.0 绘制数值解与真解的图像。

图 11: WENO3 with TVDRK3, N=32, c=图 12: WENO3 with TVDRK3, N=32, c=0.8, T=0.5 0.8, T=0.5 截面误差

图 15: WENO3 with TVDRK3, $N=32,\,c=$ 图 16: WENO3 with TVDRK3, $N=32,\,c=0.8,\,T=0.4$ 0.8, T=0.4 截面误差

图 17: WENO3 with TVDRK3, N=32, c=图 18: WENO3 with TVDRK3, N=32, c=0.8, T=0.5 0.8, T=0.5 截面误差

8 Examples for Euler System

8.1 Derivation for 1D Euler System

考虑 Euler 方程组 (守恒形式): 13

$$\xi = (\rho, \rho u, E)^T, \quad f(\xi) = (\rho u, \rho u^2 + p, u(E+p))^T$$
 (101)

$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho u^2, \quad \text{with } \gamma = 1.4 \text{ for air}$$
 (102)

$$\xi_t + f(\xi)_x = 0 \tag{103}$$

 $^{^{13}2021.6.28}$

其中,声速 $c=\sqrt{\frac{\gamma p}{\rho}}$,我们记 $\xi=(\rho,\rho u,E)^T=(\xi_1,\xi_2,\xi_3)^T$,有换算关系:

$$\begin{cases} \rho = \xi_1 \\ u = \frac{\xi_2}{\xi_1} \\ p = (\gamma - 1) \left(\xi_3 - \frac{\xi_2^2}{2\xi_1} \right) \end{cases} \begin{cases} \xi_1 = \rho \\ \xi_2 = \rho u \\ \xi_3 = E = \frac{p}{\gamma - 1} + \frac{\rho u^2}{2} \end{cases}$$
 (104)

Jacobi 矩阵:

$$f'(\xi) = \frac{\partial (f_1, f_2, f_3)}{\partial (\xi_1, \xi_2, \xi_3)} = \begin{pmatrix} 0 & 1 & 0 \\ \frac{(\gamma - 3)\xi_2^2}{2\xi_1^2} & \frac{(3 - \gamma)\xi_2}{\xi_1} & \gamma - 1 \\ \frac{(\gamma - 1)\xi_2^3}{\xi_1^3} - \frac{\gamma\xi_2\xi_3}{\xi_1^2} & \frac{\gamma\xi_3}{\xi_1} - \frac{3(\gamma - 1)\xi_2^2}{2\xi_1^2} & \frac{\gamma\xi_2}{\xi_1} \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 \\ \frac{(\gamma - 3)u^2}{2} & (3 - \gamma)u & \gamma - 1 \\ \frac{\gamma - 2}{2}u^3 - \frac{c^2u}{\gamma - 1} & \frac{c^2}{\gamma - 1} + \frac{3 - 2\gamma}{2}u^2 & \gamma u \end{pmatrix}$$

$$(105)$$

因为 $f'(\xi)$ 的特征多项式为:

$$|\lambda - f'(\xi)| = \begin{vmatrix} \lambda & -1 & 0 \\ -\frac{(\gamma - 3)u^2}{2} & \lambda - (3 - \gamma)u & -\gamma + 1 \\ -\frac{\gamma - 2}{2}u^3 + \frac{c^2u}{\gamma - 1} & -\frac{c^2}{\gamma - 1} - \frac{3 - 2\gamma}{2}u^2 & \lambda - \gamma u \end{vmatrix}$$

$$= (\lambda - u)(\lambda - (u + c))(\lambda - (u - c))$$
(106)

所以在 $p \neq 0$ 时,可以显式地实对角化 $\mathbf{R}^{-1}(\xi)f'(\xi)\mathbf{R}(\xi) = \mathbf{\Lambda}(\xi)$:

$$\mathbf{\Lambda}(\xi) = \operatorname{diag}(u+c, u, u-c) \tag{107}$$

$$\mathbf{R}(\xi) = \begin{pmatrix} 1 & 1 & 1 \\ u+c & u & u-c \\ \frac{c^2}{\gamma-1} + \frac{1}{2}u^2 + uc & \frac{1}{2}u^2 & \frac{c^2}{\gamma-1} + \frac{1}{2}u^2 - uc \end{pmatrix}, \quad \det \mathbf{R}(\xi) = \frac{2\gamma pc}{\rho(1-\gamma)}$$
(108)

$$\mathbf{R}^{-1}(\xi) = \frac{1}{4\gamma pc} \begin{pmatrix} u(\rho u c(\gamma - 1) - 2\gamma p) & 2(\gamma p + \rho u c(1 - \gamma)) & 2c\rho(\gamma - 1) \\ 2c(2\gamma p + \rho u^2(1 - \gamma)) & 4\rho u c(\gamma - 1) & 4c\rho(1 - \gamma) \\ u(2\gamma p + \rho u c(\gamma - 1)) & 2(\rho u c(1 - \gamma) - \gamma p) & 2c\rho(\gamma - 1) \end{pmatrix}$$
(109)

8.2 Derivation for 2D Euler System

二维无黏 Euler 方程为¹⁴:

$$\xi_t + f(\xi)_x + g(\xi)_y = 0 \tag{110}$$

$$\xi = (\rho, \rho u, \rho v, E)^T \tag{111}$$

$$f(\xi) = (\rho u, \rho u^2 + p, \rho uv, u(E+p))^T$$
(112)

$$g(\xi) = (\rho v, \rho u v, \rho v^2 + p, v(E+p))^T$$
(113)

 $^{^{14}2021.6.29}$

其中 ρ 为密度,(u,v) 为流速向量, $E=\frac{p}{\gamma-1}+\frac{\rho(u^2+v^2)}{2}$ 为能量密度,p 为压强, $c=\sqrt{\frac{\gamma p}{\rho}}$ 为音 速,对于空气来说, $\gamma = 1.4$.

我们记 $\xi = (\xi_1, \xi_2, \xi_3, \xi_4)^T$,有换算关系:

$$U = \begin{pmatrix} \rho \\ u \\ v \\ p \end{pmatrix} = \begin{pmatrix} \xi_1 \\ \frac{\xi_2}{\xi_1} \\ \frac{\xi_3}{\xi_1} \\ (\gamma - 1) \left(\xi_4 - \frac{\xi_2^2 + \xi_3^2}{2\xi_1} \right) \end{pmatrix}, \quad \xi = \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{pmatrix} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \frac{p}{\gamma - 1} + \frac{\rho(u^2 + v^2)}{2} \end{pmatrix}$$
(114)

Jacobi 矩阵分别为:

$$f'(\xi) = \begin{pmatrix} 0 & 1 & 0 & 0\\ \frac{\gamma - 3}{2}u^2 + \frac{\gamma - 1}{2}v^2 & (3 - \gamma)u & (1 - \gamma)v & \gamma - 1\\ -uv & v & u & 0\\ \frac{\gamma - 2}{2}(u^3 + uv^2) - \frac{c^2u}{\gamma - 1} & \frac{3 - 2\gamma}{2}u^2 + \frac{1}{2}v^2 + \frac{c^2}{\gamma - 1} & (1 - \gamma)uv & \gamma u \end{pmatrix}$$
(115)

$$g'(\xi) = \begin{pmatrix} 0 & 0 & 1 & 0 \\ -uv & v & u & 0 \\ \frac{\gamma-1}{2}u^2 + \frac{\gamma-3}{2}v^2 & (1-\gamma)u & (3-\gamma)v & \gamma-1 \\ \frac{\gamma-2}{2}(v^3 + u^2v) - \frac{c^2v}{\gamma-1} & (1-\gamma)uv & \frac{3-2\gamma}{2}v^2 + \frac{1}{2}u^2 + \frac{c^2}{\gamma-1} & \gamma v \end{pmatrix}$$
(116)

特征分解 $f' = \mathbf{R}_1 \mathbf{\Lambda}_1 \mathbf{R}_1^{-1}, g' = \mathbf{R}_2 \mathbf{\Lambda}_2 \mathbf{R}_2^{-1}$ (利用 matlab 符号计算验证):

$$\mathbf{\Lambda}_1 = \operatorname{diag}(u, u, u + c, u - c) \tag{117}$$

$$\mathbf{\Lambda}_2 = \operatorname{diag}(v, v, v + c, v - c) \tag{118}$$

$$\mathbf{R}_{1} = \begin{pmatrix} 1 & 0 & \frac{\rho}{\sqrt{2}c} & \frac{\rho}{\sqrt{2}c} \\ u & 0 & \frac{\rho}{\sqrt{2}c}(u+c) & \frac{\rho}{\sqrt{2}c}(u-c) \\ v & -\rho & \frac{\rho v}{\sqrt{2}c} & \frac{\rho v}{\sqrt{2}c} \\ \frac{u^{2}+v^{2}}{2} & -\rho v & \frac{\rho}{2\sqrt{2}c}(u^{2}+v^{2}) + \frac{\rho c}{\sqrt{2}(\gamma-1)} + \frac{\rho u}{\sqrt{2}} & \frac{\rho}{2\sqrt{2}c}(u^{2}+v^{2}) + \frac{\rho c}{\sqrt{2}(\gamma-1)} - \frac{\rho u}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{R}_{2}^{-1} = \begin{pmatrix} 1 & 0 & \frac{\rho}{\sqrt{2}c}(u^{2} + v^{2}) + \frac{\rho c}{\sqrt{2}(\gamma - 1)} + \frac{\rho u}{\sqrt{2}} & \frac{\rho}{2\sqrt{2}c}(u^{2} + v^{2}) + \frac{\rho c}{\sqrt{2}(\gamma - 1)} - \frac{\rho u}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{R}_{2} = \begin{pmatrix} 1 & 0 & \frac{\rho}{\sqrt{2}c} & \frac{\rho u}{\sqrt{2}c} \\ u & -\rho & \frac{\rho u}{\sqrt{2}c} & \frac{\rho u}{\sqrt{2}c} \\ v & 0 & \frac{\rho}{\sqrt{2}c}(v + c) & \frac{\rho}{\sqrt{2}c}(v - c) \\ \frac{u^{2} + v^{2}}{2} & -\rho u & \frac{\rho}{2\sqrt{2}c}(u^{2} + v^{2}) + \frac{\rho c}{\sqrt{2}(\gamma - 1)} + \frac{\rho v}{\sqrt{2}} & \frac{\rho}{2\sqrt{2}c}(u^{2} + v^{2}) + \frac{\rho c}{\sqrt{2}(\gamma - 1)} - \frac{\rho v}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{R}_{1}^{-1} = \begin{pmatrix} 1 - (\gamma - 1)\frac{u^{2} + v^{2}}{2c^{2}} & \frac{(\gamma - 1)u}{c^{2}} & \frac{(\gamma - 1)u}{c^{2}} & \frac{1 - \gamma}{c^{2}} \\ \frac{v}{\rho} & 0 & -\frac{1}{\rho} & 0 \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} - \frac{u}{\sqrt{2}\rho} & \frac{1}{\sqrt{2}\rho} - \frac{(\gamma - 1)u}{\sqrt{2}\rho c} & -\frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} + \frac{u}{\sqrt{2}\rho} & -\frac{1}{\sqrt{2}\rho} - \frac{(\gamma - 1)u}{\sqrt{2}\rho c} & -\frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \\ \frac{u}{(\gamma - 1)\frac{u^{2} + v^{2}}{2c^{2}}} & \frac{(\gamma - 1)u}{c^{2}} & \frac{(\gamma - 1)v}{c^{2}} & \frac{1 - \gamma}{c^{2}} \\ \frac{u}{(\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c}} - \frac{v}{\sqrt{2}\rho} & -\frac{(\gamma - 1)u}{\sqrt{2}\rho c} & \frac{1 - \gamma}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} - \frac{v}{\sqrt{2}\rho} & -\frac{(\gamma - 1)u}{\sqrt{2}\rho c} & \frac{1 - \gamma}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} + \frac{v}{\sqrt{2}\rho} & -\frac{(\gamma - 1)u}{\sqrt{2}\rho c} & -\frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} + \frac{v}{\sqrt{2}\rho} & -\frac{(\gamma - 1)u}{\sqrt{2}\rho c} & -\frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \end{pmatrix}$$

$$(122)$$

$$\boldsymbol{R}_{1}^{-1} = \begin{pmatrix} 1 - (\gamma - 1)\frac{u^{2} + v^{2}}{2c^{2}} & \frac{(\gamma - 1)u}{c^{2}} & \frac{(\gamma - 1)v}{c^{2}} & \frac{1 - \gamma}{c^{2}} \\ \frac{v}{\rho} & 0 & -\frac{1}{\rho} & 0 \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} - \frac{u}{\sqrt{2}\rho} & \frac{1}{\sqrt{2}\rho} - \frac{(\gamma - 1)u}{\sqrt{2}\rho c} & -\frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} + \frac{u}{\sqrt{2}\rho} & -\frac{1}{\sqrt{2}\rho} - \frac{(\gamma - 1)u}{\sqrt{2}\rho c} & -\frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \end{pmatrix}$$

$$(121)$$

$$\mathbf{R}_{2}^{-1} = \begin{pmatrix} 1 - (\gamma - 1)\frac{u^{2} + v^{2}}{2c^{2}} & \frac{(\gamma - 1)u}{c^{2}} & \frac{(\gamma - 1)v}{c^{2}} & \frac{1 - \gamma}{c^{2}} \\ \frac{u}{\rho} & -\frac{1}{\rho} & 0 & 0 \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} - \frac{v}{\sqrt{2}\rho} & -\frac{(\gamma - 1)u}{\sqrt{2}\rho c} & \frac{1}{\sqrt{2}\rho} - \frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \\ (\gamma - 1)\frac{u^{2} + v^{2}}{2\sqrt{2}\rho c} + \frac{v}{\sqrt{2}\rho} & -\frac{(\gamma - 1)u}{\sqrt{2}\rho c} & -\frac{1}{\sqrt{2}\rho} - \frac{(\gamma - 1)v}{\sqrt{2}\rho c} & \frac{\gamma - 1}{\sqrt{2}\rho c} \end{pmatrix}$$

$$(122)$$

8.3 Example 1—1D Euler System—A Simple Case

在初始条件

$$\rho(x,0) = 1 + 0.2\sin(\pi x) \tag{123}$$

$$u(x,0) = 0.7 (124)$$

$$p(x,0) = 1 \tag{125}$$

以及以2为周期的周期边界条件下,精确解为:

$$\rho(x,0) = 1 + 0.2\sin(\pi(x - 0.7t)) \tag{126}$$

$$u(x,t) = 0.7 \tag{127}$$

$$p(x,t) = 1 \tag{128}$$

我们使用改进的 Component-wise WENO 进行数值计算。由于 f' 的谱半径

$$\sigma(\mathbf{R}(\xi)) = u + c = u + \sqrt{\frac{\gamma p}{\rho}} \le 0.7 + \sqrt{\frac{0.56}{0.8}} \approx 1.537$$

所以选取 $\frac{\Delta t}{\Delta x}=0.5$,则 CFL 数 $c\approx 0.768$. 选取终止时刻 $T=2.0.^{15}$

	~ 0	-2 -		
N	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	5.0660345118482497E-002	0.00000000000000000	6.1871147997490272E-002	0.00000000000000000
32	1.9574886204968774E-002	1.3718529846019230	2.4913276440476917E-002	1.3123520344904511
64	5.1675692420877122E-003	1.9214462006222512	8.1723251458374335E-003	1.6080962587185608
128	8.0592887425400645E-004	2.6807613878309313	1.7175218720655305E-003	2.2504181331813644
256	5.5713103200938579E-005	3.8545639410484434	1.4660767989749246E-004	3.5502958866896308
512	2.5800537497301737E-006	4.4325436494127359	5.5074437887991934E-006	4.7344340040990520
1024	1.1478304773880239E-007	4.4904196295106846	1.9397921824371167E-007	4.8274088610595935
2048	5.9027159882423924E-009	4.2813868489291886	8.7169873541625975E-009	4.4759286722415297
4096	4.9643872852137539E-010	3.5716913540590771	6.0501670340329383E-010	3.8487827384146915
8192	5.6934086732338834E-011	3.1242511030821389	6.1519234151319324E-011	3.2978655245916944

表 35: results for WENO3 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.5$

 $^{^{15}2021.6.28}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	1.5578616867487536E-003	0.00000000000000000	1.6068514874638673E-003	0.00000000000000000
32	6.2476324797766214E-005	4.6401137518773057	6.9677972123871612E-005	4.5273901474949616
64	3.0261346854828969E-006	4.3677614839440979	3.2743306346283418E-006	4.4114307225865890
128	2.3228035925735695E-007	3.7035371240169250	2.3415085559364002E-007	3.8056897944993300
256	2.4569299926046264E-008	3.2409385150432226	2.4104608753461321E-008	3.2800573913175279
512	2.9388187633079282E-009	3.0635484543790552	2.9108402355149110E-009	3.0498014503308650
1024	3.6377659465865760E-010	3.0141117625909444	3.6337666209362851E-010	3.0018979874089360
2048	4.5424742962963312E-011	3.0015024670845585	4.5669468207165664E-011	2.9921638696672015
4096	5.8045648304706071E-012	2.9682185338704490	6.2436722458869554E-012	2.8707632786546688
8192	1.9796914630936108E-012	1.5519123096230953	1.8496315590255108E-012	1.7551568878501609

表 36: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.5$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	1.4972494808437786E-003	0.00000000000000000	1.5761556864133386E-003	0.00000000000000000
32	5.2233990649708546E-005	4.8411818927797938	5.9977602469896141E-005	4.7158423818887112
64	1.5965662275567531E-006	5.0319446250212270	1.8754576491808450E-006	4.9991092632890597
128	4.8125429742644471E-008	5.0520291652159317	5.4906128199583293E-008	5.0941316940537735
256	1.4081616161131108E-009	5.0949145953570749	1.4946457405073943E-009	5.1990916968719629
512	3.8120202941944543E-011	5.2071133130036058	4.0837999648601908E-011	5.1937475675353220
1024	7.3839986874154819E-012	2.3680815981557179	6.1419758168312910E-012	2.7331374639642552
2048	2.3512030213435834E-011	-1.6709249163535536	1.8153922809460710E-011	-1.5635065911515977

表 37: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6},~\Delta t=\Delta x^{\frac{5}{3}}$ 设置的条件均与上文相同,我们使用 Characteristic-wise 方法进行计算。 16

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	3.4949753987837472E-002	0.00000000000000000000	4.5611830095545258E-002	0.00000000000000000
32	1.3906239874844231E-002	1.3295499199330270	1.8640165118796848E-002	1.2909934172247559
64	3.5265832819909660E-003	1.9793893653613672	5.8886167334790684E-003	1.6624139573265531
128	4.6325530720411396E-004	2.9283917006187052	1.0416437116589350E-003	2.4990668810179701
256	2.6623263227378512E-005	4.1210481852422527	6.6075145906507871E-005	3.9786103804693904
512	1.1978105745433867E-006	4.4742157349411622	2.3011020597873966E-006	4.8437108282910879
1024	5.3307991460941397E-008	4.4899041384659100	8.5114673753494685E-008	4.7567732882840028
2048	3.0698497393380233E-009	4.1181118787324236	4.2976957548290784E-009	4.3077726143809061
4096	2.9324020457756868E-010	3.3880132191327936	3.3955416256503668E-010	3.6618497307928761

 ${\bar {\rm ξ}}$ 38: results for WENO3 with TVDRK3, periodic boundary, $\epsilon=10^{-6},\,\frac{\Delta t}{\Delta x}=0.5$

 $^{^{16}2021.6.28}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	1.0653843818268693E-003	0.00000000000000000	1.1485927940686480E-003	0.00000000000000000
32	4.2961309552663393E-005	4.6321922560960527	4.8265778356926248E-005	4.5727229609135200
64	2.4231328507688917E-006	4.1480925611056625	2.6196101821085449E-006	4.2035765958168465
128	2.1438006962915967E-007	3.4986308107608379	2.1586721388189289E-007	3.6011360965408792
256	2.4058527208992739E-008	3.1555505554757532	2.3578761831899442E-008	3.1945842754937086
512	2.9247388507947543E-009	3.0401686100683278	2.9083728758649841E-009	3.0192038106202532
1024	3.6344039969316993E-010	3.0085171103419910	3.6329717012506535E-010	3.0009902126126575
2048	4.5418516645739365E-011	3.0003663031432328	4.5667691850326264E-011	2.9919043484747858
4096	5.8038816281647714E-012	2.9681905882175261	6.2414517998377050E-012	2.8712203215296661

表 39: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6}, \, \frac{\Delta t}{\Delta x}=0.5$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	1.0086059842819147E-003	0.00000000000000000	1.0840991496685604E-003	0.00000000000000000
32	3.2784133521311984E-005	4.9432211148378835	3.8576107362686685E-005	4.8126453273945824
64	9.8629250774625108E-007	5.0548383804874684	1.2203149775125155E-006	4.9823820939161223
128	2.9850412974776936E-008	5.0461927783336202	3.3817302069749644E-008	5.1733481952957190
256	8.8161925357376112E-010	5.0814513497223794	9.3582119831125965E-010	5.1753848473707649
512	2.3267288731004910E-011	5.2437807184683400	2.5209612175558505E-011	5.2141870800617820
1024	7.3245711853302483E-012	1.6674869025089807	5.8919535916857058E-012	2.0971559518999876

表 40: results for WENO5 with TVDRK3, periodic boundary, $\epsilon=10^{-6},\,\Delta t=\Delta x^{\frac{5}{3}}$

由实验结果可见,解的收敛阶与一维标量情形相类似。同时,Characteristic-wise 的计算开销明显大于 Component-wise 的计算开销。

8.4 Example 2—1D Euler System—Shock Tube Problem

考虑一维激波管问题17, 在 ℝ 上初值为:

$$(\rho, u, p) = \begin{cases} (0.445, 0.698, 3.528), & x < 0\\ (0.5, 0, 0.571), & x > 0 \end{cases}$$
(129)

对于给定终止时刻 T=1.3,由于波速有限,我们在 [-5,5] 上求解,在 -5,5 之外的点上均始终取初值。选取 $\frac{\Delta t}{\Delta x}=0.2$,估算得 CFL 数 $c\leqslant 0.806$.

我们使用 WENO3 做空间离散,TVDRK3 做时间离散,方法采用 Characteristic-wise,使用 Lax-Friedrichs 通量分裂,计算获得以下结果。

 $^{^{17}2021.6.29}$

图 22: Velocity, T = 1.3

图 23: Pressure, T = 1.3

8.5 Example 3—2D Euler System—Vortex Evolution

考虑 $[0,10]^2$ 上的二维 Euler 系统,在均匀流 $(u,v)=1, p=\rho=1$ 上,我们施加一个等熵 涡流¹⁸:

$$(\delta u, \delta v) = \frac{\epsilon}{2\pi} e^{\frac{1-r^2}{2}} (-\bar{y}, \bar{x})$$
(130)

$$\delta T = \delta \frac{p}{\rho} = -\frac{(\gamma - 1)\epsilon^2}{8\gamma \pi^2} e^{1 - r^2}$$
(131)

$$\delta S = \delta \frac{p}{\rho^{\gamma}} = 0 \tag{132}$$

其中 $(\bar{x},\bar{y})=(x-5,y-5),\,r=\sqrt{\bar{x}^2+\bar{y}^2}$,涡流强度 $\epsilon=5$. 取周期边界条件。

易见,均匀流流过一个周期的时间为 T=10. 由于有估计: $\sigma(f')\leqslant 2+\frac{5}{2\pi}=2.796$, $\sigma(g')\leqslant 2.796$,所以根据 CFL 条件,取 $\frac{\Delta t}{\Delta x}=0.12$,那么 $c\leqslant 0.671$.

 $^{^{18}2021.6.30}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	9.6839462557988518E-002	0.00000000000000000	8.740648426038288E-002	0.00000000000000000
32	3.7884920882064771E-002	1.3539713376494680	3.8815009502376041E-002	1.1711256694521881
64	1.3147454405488665E-002	1.5268402413501605	1.9865106149724088E-002	0.96637813822017204
128	3.8788603202437036E-003	1.7610787639288299	6.8416702505611493E-003	1.5378160255122264
256	9.7761584009366091E-004	1.9882932584858934	1.5752465092767620E-003	2.1187709592359449
512	1.7020314529247346E-004	2.5220099632633164	3.6875566463301368E-004	2.0948404960885147

表 41: results for WENO3 with TVDRK3, density, $\frac{\Delta t}{\Delta x} = 0.12$, T = 0.2

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	7.5069808607432301E-002	0.00000000000000000	8.5544923834087516E-002	0.000000000000000000
32	2.3029009380169139E-002	1.7047804515630693	2.6144590440927096E-002	1.7101697785894154
64	6.8577279003709628E-003	1.7476497857061717	1.0551973473627685E-002	1.3089996273721594
128	1.9436679217450100E-003	1.8189489088015456	3.7679279791085207E-003	1.4856695485678728
256	5.0280512937015244E-004	1.9507104810169780	1.0906292609882406E-003	1.7886106214568749
512	8.5681658082857923E-005	2.5529410634733596	1.8369001144913355E-004	2.5698156838508468

表 42: results for WENO3 with TVDRK3, pressure, $\frac{\Delta t}{\Delta x}=0.12,\,T=0.2$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.56975650508442199	0.00000000000000000	0.37360733408748825	0.00000000000000000
32	0.40837761703585967	0.48044169625541877	0.30855382223689121	0.27600060990394365
64	0.15217593232264859	1.4241635903468426	0.10213816989357893	1.5950000519432646
128	3.0741871398138908E-002	2.3074633084214211	2.4608156440213858E-002	2.0533136291318934
256	5.5651626072267153E-003	2.4657092440635626	6.4182854618750063E-003	1.9388767180543320
512	7.4986838553269192E-004	2.8917145361776084	1.2284616910303026E-003	2.3853350881773778

表 43: results for WENO3 with TVDRK3, density, $\frac{\Delta t}{\Delta x}=0.12,\,T=10.0$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.22329903080112620	0.0000000000000000	0.18467626201425136	0.0000000000000000
32	0.21026282449885528	8.6783192313661453E-002	0.19683605464630183	-9.1996068129495581E-002
64	9.8598961345882849E-002	1.0925494427788991	9.4171347775413139E-002	1.0636344220199567
128	2.4181606136890847E-002	2.0276623778958736	1.9968579935044084E-002	2.2375564383492770
256	5.4520822003984578E-003	2.1490308524903612	6.7449467044284894E-003	1.5658527904196577
512	8.4595275276804752E-004	2.6881583187740974	1.2199914184101157E-003	2.4669360439778671

表 44: results for WENO3 with TVDRK3, pressure, $\frac{\Delta t}{\Delta x}=0.12,\,T=10.0$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	2.9327074469659598E-002	0.00000000000000000	2.1286873573712284E-002	0.000000000000000000
32	4.4148547657897495E-003	2.7317952779916750	5.3522936521597231E-003	1.9917348988172445
64	4.1994981180243682E-004	3.3940771518927337	5.3992307549333152E-004	3.3093314894130530
128	1.3363139273298232E-005	4.9738860505662021	2.5822808631503769E-005	4.3860360469180106
256	3.0234718506528227E-007	5.4659090086522841	4.0132990819508052E-007	6.0077134407686277
512	1.2019251109016646E-008	4.6527872341064889	9.8047749919061289E-009	5.3551603408157415

表 45: results for WENO5 with TVDRK3, density, $\frac{\Delta t}{\Delta x}=0.12,\,T=0.2$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	1.9292008398209097E-002	0.000000000000000000	1.7045868262931863E-002	0.0000000000000000000000000000000000000
32	3.5119960202536060E-003	2.4576402281031600	4.5435198152036227E-003	1.9075398118346099
64	3.0088927205189760E-004	3.5449866353811852	3.8150116351887142E-004	3.5740510085780128
128	9.8249727729820185E-006	4.9366354499401499	1.5899927632734290E-005	4.5845953527361152
256	2.6026765650901059E-007	5.2383854652541144	4.2198689631511854E-007	5.2356781884303132
512	8.8926374580786016E-009	4.8712408588404195	1.0152834795107424E-008	5.3772436937636297

 ${\ensuremath{\overline{\chi}}}$ 46: results for WENO5 with TVDRK3, pressure, $\frac{\Delta t}{\Delta x}=0.12,\,T=0.2$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.41542187419334298	0.00000000000000000	0.29204438290691137	0.00000000000000000
32	6.5238229033875439E-002	2.6707876597348954	4.4540951391746186E-002	2.7129833572501894
64	5.1103212649644568E-003	3.6742317235252306	6.9736192635767580E-003	2.6751528692991573
128	1.8025098011099249E-004	4.8253349811167219	1.5245083898474121E-004	5.5154916048276599
256	6.8184399991760081E-006	4.7244215931845766	5.2967511569024239E-006	4.8470925478035198
512	2.7069445243044367E-007	4.6547044740990593	2.0382665766316421E-007	4.6996930787453275

表 47: results for WENO5 with TVDRK3, density, $\frac{\Delta t}{\Delta x} = 0.12, T = 10.0$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	0.23017497661043451	0.00000000000000000	0.21732406149993799	0.00000000000000000
32	4.7743166870950308E-002	2.2693648292403696	4.5900768193108843E-002	2.2432577106099476
64	9.5483201525132389E-003	2.3219754200650939	2.1030859250579015E-002	1.1260105037491772
128	3.2144202610899920E-004	4.8926164724924011	3.1209959835420964E-004	6.0743574841115784
256	1.0410138455688517E-005	4.9484974009492229	1.0528715769453356E-005	4.8896051198421766
512	3.6758382234956733E-007	4.8237721726098286	3.8628859355682721E-007	4.7685065875762929

表 48: results for WENO5 with TVDRK3, pressure, $\frac{\Delta t}{\Delta x}=0.12,\,T=10.0$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	NaN	0.00000000000000000	NaN	0.00000000000000000
32	1.4390355440002429E-002	NaN	1.9244800176361765E-002	NaN
64	4.3590317466142721E-004	5.0449507058750420	5.0085975203018052E-004	5.2639181966271993
128	1.3598784010673556E-005	5.0024581527634071	2.6267400189738943E-005	4.2530613622858198
256	3.0079835992807211E-007	5.4985371418144391	3.9899243886587499E-007	6.0407682000686505
512	9.8571607829214519E-009	4.9314807323246104	9.1268870239247235E-009	5.4500947233404347

表 49: results for WENO5 with TVDRK3, density, $\Delta t = \Delta x^{\frac{5}{3}},\, T = 0.2$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	NaN	0.00000000000000000	NaN	0.00000000000000000
32	6.0172201543673837E-003	NaN	6.2766722965437172E-003	NaN
64	2.9606585409491250E-004	4.3451071260436489	3.8648747830927199E-004	4.0215063095675418
128	9.8494905704526449E-006	4.9097251925189704	1.5929002091130684E-005	4.6006938796005734
256	2.5940450654290618E-007	5.2467736599243020	4.2109062237116746E-007	5.2413813312797659
512	7.3991272154864463E-009	5.1317046293194117	8.8398397490863090E-009	5.5739667207212751

表 50: results for WENO5 with TVDRK3, pressure, $\Delta t = \Delta x^{\frac{5}{3}},\, T = 0.2$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	NaN	0.00000000000000000	NaN	0.00000000000000000
32	NaN	NaN	NaN	NaN
64	5.2925341701750605E-003	NaN	6.4248789992296662E-003	NaN
128	1.8876214586898441E-004	4.8093172962210060	1.5387350938511624E-004	5.3838524979491345
256	6.7561150391739793E-006	4.8042317734568822	5.2565502988155544E-006	4.8714847540488853
512	2.1857375867436478E-007	4.9500017829399949	1.6833015092920789E-007	4.9647507994077165

表 51: results for WENO5 with TVDRK3, density, $\Delta t = \Delta x^{\frac{5}{3}}$, T = 10.0

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	NaN	0.00000000000000000	NaN	0.00000000000000000
32	NaN	NaN	NaN	NaN
64	9.2561466617298756E-003	NaN	1.9876930136921822E-002	NaN
128	3.2598557436920101E-004	4.8275316955090313	3.0963727373378713E-004	6.0043719972815586
256	1.0345679555954003E-005	4.9777078063637790	1.0475609578453060E-005	4.8854730494152694
512	3.0893127819101348E-007	5.0655986554155579	3.3029929014105619E-007	4.9871165178674284

表 52: results for WENO5 with TVDRK3, pressure, $\Delta t = \Delta x^{\frac{5}{3}},\, T = 10.0$

注记¹⁹:

 $^{^{19}2021.7.4}$

- 最后一个算例规模很大,耗时很久,使用 Intel i7-9750H 超频 $3.35 \mathrm{GHz}$,OpenMP 12 线程并行,计算约 3.7 小时才完成。
- 由于该算例中,周期边界条件实际上是不精确的,所以会存在一定的固有误差。 使用 WENO5 做空间离散,TVDRK3 做时间离散, $\frac{\Delta t}{\Delta x}=0.12$,N=256,求解并绘制 T=0.2 和 T=10.0 时密度和压强的图像 20 。

图 24: density, T = 0.2, N = 256

图 25: pressure, T = 0.2, N = 256

图 26: velocity, T = 0.2, N = 256

图 27: comparison, T = 0.2, N = 256

 $^{^{20}2021.7.1}$

图 28: density, T = 10.0, N = 256

图 29: pressure, T = 10.0, N = 256

图 30: velocity, T = 10.0, N = 256

图 31: comparison, T = 10.0, N = 256

9 Examples for Hamilton Jacobi Equation

注记:下文数值实验中,若不加特殊说明,空间离散均采用标准 WENO5,时间离散均采用 TVDRK3。

9.1 Example 1—A Simple 1D Linear Case

为了验证程序的正确性,我们首先计算一个简单的方程21:

$$\begin{cases} \varphi_t + \varphi_x = 0, & x \in [-\pi, \pi] \\ \varphi(x, 0) = \sin x \\ \varphi(-\pi, t) = \varphi(\pi, t) \end{cases}$$
(133)

取终止时刻 T=20. 取 Lax-Friedrichs 分裂为迎风 Hamiltonian。易见,数值实验结果符合预期。

 $^{^{21}2021.7.8}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	4.8061593686687588E-002	0.00000000000000000	2.8245278043260269E-002	0.000000000000000000
32	3.5100744469225829E-003	3.7753109531482321	2.0328473344334297E-003	3.7964359236009204
64	3.3735545105803333E-004	3.3791602511962950	1.9081122728303868E-004	3.4132839069983465
128	3.8748878888142008E-005	3.1220429984255471	2.1860049072119914E-005	3.1257775169093787
256	4.7445289664872518E-006	3.0298178001318887	2.6768668269783191E-006	3.0296793672274989
512	5.9027324975165167E-007	3.0068099968762390	3.3302802937562603E-007	3.0068298550228025
1024	7.3717697314358198E-008	3.0013000506268659	4.1590884736208977E-008	3.0013043271953017
2048	9.2150097932313977E-009	2.9999534026837824	5.1990112215349882E-009	2.9999582005915513
4096	1.1539634870520956E-009	2.9973881231725947	6.5099614587893484E-010	2.9975163618545317

表 53:
$$\frac{\Delta t}{\Delta x}=0.6,\,T=20$$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	4.2967044151212865E-002	0.00000000000000000	2.5596690765722463E-002	0.00000000000000000
32	1.5515950437017254E-003	4.7914065549718199	9.2754014712292943E-004	4.7864037672566457
64	5.0360672810441602E-005	4.9453107049697005	2.8853942379170050E-005	5.0065693717551936
128	1.5915743517808822E-006	4.9837710969429496	9.0227834881329017E-007	4.9990520737099438
256	4.9834193294149403E-008	4.9971747704909300	2.8174638955213993E-008	5.0011035389095468
512	1.5531261874606382E-009	5.0038890197690336	8.7944462823230651E-010	5.0016605675258150
1024	5.7891375002200797E-011	4.7456828164537335	3.2684521755754758E-011	4.7499132525670467
2048	3.4750646272095997E-011	0.73630861454544394	1.8896439968330014E-011	0.79049312692510587

表 54:
$$\Delta t = \Delta x^{\frac{5}{3}}, T = 20$$

9.2 Example 2—1D Burgers Equation

考虑凸 Hamiltonian²²:

$$\begin{cases}
\varphi_t + \frac{1}{2}(\varphi_x + 1)^2 = 0, & x \in [-1, 1] \\
\varphi(x, 0) = -\cos(\pi x) \\
\varphi(-1, t) = \varphi(1, t)
\end{cases} \tag{134}$$

我们先来推导精确解。令 $v = \varphi_x + 1$, 那么 v 满足 Burgers 方程:

$$\begin{cases} v_t + \frac{\partial}{\partial x} \frac{v^2}{2} = 0, & x \in [-1, 1] \\ v(x, 0) = 1 + \pi \sin(\pi x) \\ v(-1, t) = v(1, t) \end{cases}$$
 (135)

若记 $[0,2\pi]$ 上以 $\sin x$ 为初值的标准 Burgers 方程的解为 $\Psi(x,t)$ (前文已给出 Newton 迭代法求解的算法)。利用待定系数法可以解得,[0,2L] 上以 $a+b\sin(\frac{\pi}{L}x)$ 为初值的 Burgers 方程的解为:

$$\phi(x,t) = a + b\Psi\left(\frac{\pi}{L}(x - at), \frac{b\pi}{L}t\right)$$
(136)

 $^{^{22}2021.7.8}$

在本问题中,代入 $L=1, a=1, b=\pi$ 得:

$$\varphi_x(x,t) = \pi \Psi \left(\pi(x-t), \pi^2 t \right) \tag{137}$$

我们在 (x,t) 处计算一次 $\varphi_x = v-1$ 的值,记 $x_0 = x-vt$,由 v 的特征线和原方程知:

$$\varphi_x(x_0 + \tau v, \tau) = \varphi_x \tag{138}$$

$$\varphi_t(x_0 + \tau v, \tau) = -\frac{1}{2} (\varphi_x + 1)^2$$
 (139)

于是:

$$\varphi(x,t) = \varphi(x_0,0) + \int_0^t (v,1) \cdot (\varphi_x, \varphi_t) (x_0 + \tau v, \tau) d\tau$$

$$= -\cos(\pi x_0) + t \left(v(v-1) - \frac{1}{2}v^2 \right)$$

$$= -\cos(\pi (x - vt)) + tv \left(\frac{1}{2}v - 1 \right)$$
(140)

同时,易见 φ_x 的间断在 $t = \frac{1}{\pi^2}$ 时刻出现。

数值计算时,因为 $H(u) = \frac{1}{2}(u+1)^2$,所以取 Lax-Friedrichs 分裂:

$$\widehat{H}\left(u^{-}, u^{+}\right) = \frac{1}{2} \left(\frac{u^{-} + u^{+}}{2} + 1\right)^{2} - \frac{1}{2} \max\left\{\left|u^{-} + 1\right|, \left|u^{+} + 1\right|\right\} \left(u^{+} - u^{-}\right)$$
(141)

易见, $\varphi_x \in [-\pi, \pi]$, $\max_{[-\pi, \pi]} |H'(u)| = \pi + 1$,所以取 $\frac{\Delta t}{\Delta x} = \frac{0.6}{1+\pi}$,那么 CFL c = 0.6. 首先,取 $T = \frac{0.5}{\pi^2}$,此时 φ_x 的间断尚未出现。

$\overline{}$	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	7.4082457243365111E-004	0.00000000000000000	1.3948438374029593E-003	0.000000000000000000
32	5.2328798682562507E-005	3.8234549078373345	1.0229914343229396E-004	3.7692376408975168
64	4.6702487108214175E-006	3.4860338524326782	9.4379328251514849E-006	3.4381793519094597
128	6.1195606845803509E-007	2.9319993891742002	1.3107522873756494E-006	2.8480758395904808
256	7.5448113133203079E-008	3.0198713611635251	1.6481679432356344E-007	2.9914599021796491
512	9.7080950549131696E-009	2.9582246815938462	2.1283992346354808E-008	2.9530225612328773
1024	1.2320529579649236E-009	2.9781239649570712	2.7029491977970110E-009	2.9771624882046290
2048	1.5520170596555861E-010	2.9888479487463795	3.4050673392016506E-010	2.9887791619093260
4096	1.9482178182618616E-011	2.9939175251911196	4.2742698269648827E-011	2.9939334387788148
8192	2.4487530072442662E-012	2.9920358159650231	5.3754778406300829E-012	2.9912130750717871
16384	3.5220586841151375E-013	2.7975564117348743	7.4051875742497941E-013	2.8597848207103800
32768	2.5018004260459752E-013	0.49345224014489064	3.2851499298658382E-013	1.1725770648780258

表 55:
$$\frac{\Delta t}{\Delta x} = \frac{0.6}{1+\pi}$$
, $T = \frac{0.5}{\pi^2}$

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	1.2380258048616359E-003	0.00000000000000000	2.4826336486772904E-003	0.00000000000000000
32	5.2328798682562507E-005	4.5642924362976496	1.0229914343229396E-004	4.6010054147409436
64	2.2072774983221130E-006	4.5672652178817419	4.1202907185011739E-006	4.6339041206471219
128	8.2797689321884850E-008	4.7365336997728944	1.7657022485795260E-007	4.5444321482501602
256	2.9487821950310753E-009	4.8113993361277432	8.9981431472541118E-009	4.2944709524876368
512	9.3285481491980511E-011	4.9823228904176542	2.8727853429444394E-010	4.9691052156967679
1024	2.5916565563988341E-012	5.1697061127910242	5.4072024635587468E-012	5.7314240105169132
2048	2.5221118048897846E-013	3.3611704097789432	3.5849101465146305E-013	3.9148735124467695
4096	6.9232489903977521E-013	-1.4568170031606198	9.6078700551061047E-013	-1.4222796798079105

表 56:
$$\Delta t = \Delta x^{\frac{5}{3}}$$
, $T = \frac{0.5}{\pi^2}$

我们再选取 $T=\frac{3.5}{\pi^2}$,此时有间断,我们绘制解的图像如下,其中标准 Burgers 解的迭代精度取为 10^{-16} . 可见,解没有出现振荡现象。

\overline{N}	L^2 error	L^2 order	L^{∞} error	L^{∞} order
16	4.0200835307197032E-003	0.00000000000000000	9.7442936939031999E-003	0.0000000000000000
32	3.7005450805889834E-003	0.11948768695308019	1.4772886081637168E-002	-0.60032218151108430
64	7.2198708365587292E-004	2.3576928589399335	4.0735145739364681E-003	1.8586057285975941
128	4.4353652745874759E-004	0.70292010494337531	3.5477366996421178E-003	0.19937512783924100
256	1.4325269056545930E-004	1.6304906867265565	1.6197538899183628E-003	1.1311243194215983
512	3.9460339973251616E-005	1.8600869450034687	6.3128918180933857E-004	1.3594016890676390
1024	3.1862097691803981E-005	0.30856213364331131	7.2093101631452716E-004	-0.19156019065895546
2048	1.5605200303019990E-006	4.3517424716799784	3.5384052261819288E-005	4.3486900356847427
4096	8.1114171112866638E-007	0.94400098660908538	3.5668369741462258E-005	-1.1545999296847865E-002
8192	1.5419984772807879E-006	-0.92677545188873578	9.8682816040140953E-005	-1.4681536078794539
16384	7.3090782666830585E-008	4.3989680481235247	5.7783951892820262E-006	4.0940581058599950
32768	2.5049873068999382E-008	1.5448861891339718	2.5481947934918869E-006	1.1811933076107157

表 57:
$$\frac{\Delta t}{\Delta x} = \frac{0.6}{1+\pi}$$
, $T = \frac{3.5}{\pi^2}$

图 32: solution at $T = \frac{3.5}{\pi^2}$, c = 0.6

9.3 Example 3—1D Riemann Problem with a non-convex Hamiltonian

考虑非凸 Hamiltonian, Dirichlet 边界条件²³:

$$\begin{cases} \varphi_t + \frac{1}{4} (\varphi_x^2 - 1) (\varphi_x^2 - 4) = 0, & x \in [-1, 1] \\ \varphi(x, 0) = -2 |x| \\ \varphi(-1, t) = \varphi(1, t) = -2 \end{cases}$$
(142)

由于 $H(u)=\frac{1}{4}\left(u^2-1\right)\left(u^2-4\right)$, $H'(u)=u^3-\frac{5}{2}u$, 那么选用 Lax-Friedrichs 分裂:

$$\widehat{H}\left(u^{-}, u^{+}\right) = H\left(\frac{u^{-} + u^{+}}{2}\right) - \frac{1}{2} \max_{I(u^{-}, u^{+})} \left|u^{3} - \frac{5}{2}u\right| \left(u^{+} - u^{-}\right)$$
(143)

注意到: $u^3 - \frac{5}{2}u$ 为奇函数,令 $\lambda = \sqrt{\frac{5}{6}}$,那么准确计算 $\alpha = \max_{I(u^-, u^+)} |u^3 - \frac{5}{2}u|$ 如下:

- 1. $\[\mathcal{C} \] a = \min \{u^-, u^+\}, b = \max \{u^-, u^+\}. \]$
- 2. a, b 同号, 令 $a \leftarrow |a|, b \leftarrow |b|$,
 - (a) $a, b \in \lambda$ 同侧: $\alpha = \max\{|a^3 \frac{5}{2}a|, |b^3 \frac{5}{2}b|\}.$
 - (b) $a, b \in \lambda \not= max\{|a^3 \frac{5}{2}a|, |b^3 \frac{5}{2}b|, \frac{5}{2}\lambda\}.$
- 3. a,b 异号:
 - (a) $\max\{|a|,|b|\} \leqslant \lambda$: $\alpha = \max\{|a^3 \frac{5}{2}a|,|b^3 \frac{5}{2}b|\}$.
 - (b) $\max\{|a|,|b|\} \ge \lambda$: $\alpha = \max\{|a^3 \frac{5}{2}a|, |b^3 \frac{5}{2}b|, \frac{5}{3}\lambda\}$.

下面,我们引入一个简易的处理 Dirichlet 边界的方法:

以左侧为例,由于使用 5 阶 WENO,我们设置 x_0 处的值为边界条件给出的值,然后在 $x_{0,1,2,3,4}$ 上对 u 构造 5 阶插值多项式,获得 u_{-1},u_{-2} ,其具有 5 阶误差。具体地,由 Lagrange 多项式插值知:

$$u_{-2} = 15u_0 - 40u_1 + 45u_2 - 24u_3 + 5u_4 \tag{144}$$

$$u_{-1} = 5u_0 - 10u_1 + 10u_2 - 5u_3 + u_4 (145)$$

最后,因为 $|H'(u)| \leqslant 3$,所以取 $\frac{\Delta t}{\Delta x} = 0.2$,那么 CFL c = 0.6. 选取终止时刻 T = 1.0.

图 33: solution at T = 1.0, c = 0.6

 $^{^{23}2021.7.8}$

参考文献

- [1] Chi-Wang Shu, 1997. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws.
- [2] Chi-Wang Shu, 2009. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems. SIAM review, 51(1), pp.82–126.
- [3] Sigal Gottlieb and Chi-Wang Shu, 1998. Total variation diminishing Runge-Kutta schemes. Mathematics of computation, 67(221), pp.73–85.
- [4] Xu-Dong Liu, Stanley Osher and Tony Chan, 1994. Weighted Essentially Non-oscillatory Schemes. Journal of Computational Physics, 115(1), pp.200-212. ISSN 0021-9991.
- [5] Yan Jiang, Chi-Wang Shu, and Meng-Ping Zhang. 2013. An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM Journal on Scientific Computing, 35(2), A1137-A1160.
- [6] 苏克勤, 姬利娜. 2013. 二维非定常 euler 方程计算方法研究. 西北大学学报 (自然科学版), 43(001), pp.18-21.
- [7] Andrew Christlieb, Wei Guo, and Yan Jiang. 2019. A kernel based high order 'explicit' unconditionally stable scheme for time dependent Hamilton–Jacobi equations. Journal of Computational Physics, 379, pp.214-236.