Assignment 1: Elementary Adders

Group 20

January 16, 2021

1 Ripple Carry Adder

Figure 1: 4 Bit Ripple Carry Adder[1]

For an n bit ripple carry adder and assuming XOR gate has a delay of 3 units

- 1. From A_0 , B_0 and C_0 computing C_1 takes 5 units (XOR + AND + OR) and computing S_0 takes 6 units (XOR + XOR).
- 2. Each carry forward $C_i \to C_{i+1}$ for $1 \le i < n$ takes 2 units (AND + OR) of time and this happens n-1 times : this contributes 2(n-1) time steps.
- 3. To calculate S_i from A_i , B_i and C_i we need an additional 3 units (XOR) after we get C_i (other calculations would be done by then) \therefore time delay for $S_i = 5 + 2(i-2) + 3$

From this, we can conclude for $n \geq 2$

$$\Delta_{C_n} = 5 + 2(n-1) = 2n + 3$$

$$\Delta_{S_n} = 5 + 2(n-2) + 3 = 2n + 4$$

Figure 2: Full Adder [2]

2 Ripple Carry Adder/Subtractor

Figure 3: 4 bit RCA/S

The only difference between RCA and RCA/S is the presence of an extra XOR gate, so much of the calculations remain the same as RCA.

 \therefore for an n bit RCA/S and assuming XOR gate has a delay of 3 units

- 1. From A_0 , B_0 and C_0 computing C_1 takes 8 units (XOR + XOR + AND + OR) and computing S_0 takes 9 units (XOR + XOR + XOR).
- 2. Each carry forward $C_i \to C_{i+1}$ for $1 \le i < n$ takes 2 units (AND + OR) of time and this happens n-1 times : this contributes 2(n-1) time steps.
- 3. To calculate S_i from A_i , B_i and C_i we need an additional 3 units (XOR) after we get C_i (other calculations would be done by then) \therefore time delay for $S_i = 8 + 2(i-2) + 3$

From this, we can conclude $n \geq 2$

$$\Delta_{C_n} = 8 + 2(n-1) = 2n + 6$$

$$\Delta_{S_n} = 8 + 2(n-2) + 3 = 2n + 7$$

3 Group Details

- 1. Kaushal Banthia 19CS10039
- 2. Rohit Raj $19\mathrm{CS}10049$
- 3. Animesh Jha 19CS10070
- 4. Nisarg Upadhyaya 19CS30031
- 5. Pranav Rajput 19CS30036