

NSR/AS

SWINBURNE
UNIVERSITY OF
TECHNOLOGY

Bluetooth Security

Lecture Twenty-Six

Outline of Lecture

- Bluetooth overview
- Bluetooth security

Bluetooth

- Short range cable replacement specification
 - Up to about 10 metres
- A 'piconet' technology
- Developed under auspices of IEEE 802.15.1
- Able to support data and voice
 - But at fairly low bit rates
 - 3 Mbps shared

Bluetooth Applications

- Applications include
 - Headsets
 - Connecting computers to peripherals (printer, speakers, scanners etc)
 - Synchronising between PDAs, Mobile Phones, and Workstations
- An ad hoc networking technology
 - Devices can form networks as needed

Bluetooth Specifications

Connection Type	Spread Spectrum (FH)
MAC	FH-CDMA
Spectrum	2.4 GHz (ISM)
Modulation	GMSK
Aggregate Data Rate	3 Mbps
Range	10 metres
Supported stations	8 devices
Voice channels	3
Data security – authentication	128 bit key
Data security – encryption	8 – 128 bits (configurable)

Bluetooth Scenarios

- Cable replacement
 - Keyboards, mouse, microphones, etc
- Ad hoc personal network
 - Networking of several different users at a short range such as in a conference room
- Integrated Access point
 - Use Bluetooth to connect to wide area voice or data services provided by cellular or wired networks

Piconet

- Network consisting of one master and up to seven slaves
- Different piconets use different Frequency Hopping sequences
- Piconet capacity is 3 Mbps (aggregate)

Piconet Station States

- Active (maximum of 8)
 - Transmitting data
 - Connected
- Connecting
 - Inquiring
 - Paging
- Unconnected
 - Standby
- Low Power
 - Parked (maximum of 200)
 - Known to the other stations but not participating in the piconet

Master / Slave

Master

- One device in the piconet is the Master
- Other devices synchronise their Frequency Hopping sequence and Clocks to this device
- The Master is responsible for paging slaves in the piconet and Connection Establishment
- Master/Slave Polling system
- Slaves
 - Other devices
- Any Bluetooth device can be either a master or slave
 - An election process

Application Protocols

- Can be both Bluetooth aware and unaware
- Bluetooth specifies several protocol stacks for different applications
- Makes use of Profiles
 - Describe how different applications are implemented

Bluetooth Profiles

Generic Access Profile

Audio/Video Remote Control Profile

Ext. Service Discovery Profile (1)

Common ISDN Access Profile

Service Discovery App. Profile

PAN Profile

ESDP (2)

TCS-BIN Based Profiles

Cordless Telephony Profile

Intercom Profile

Hardcopy Cable Replacement Profile

Generic Audio/Video Distribution Profile

Adv. Audio Distribution Profile

Video Distribution Profile

Serial Port Profile

Headset Profile

Hands-Free Profile

Dial-up Networking Profile

Fax Profile

LAN Profile

ESDP (3)

SIM Access Profile

Generic Object Exchange Profile

File Transfer Profile

Object Push Profile

Synchronization Profile

Basic Imaging Profile

Basic Printing Profile

Generic Access Profile

- Used by all other profiles
- Describes generic procedures
 - Discovery of Bluetooth devices
 - Connection procedures
 - Security

Serial Port Profile

- Incorporates Generic Access Profile
- Defines requirements for Bluetooth devices necessary for setting up emulated serial cable connections using RFCOMM
- RS232 emulation
- Cable replacement through a virtual serial port
- Includes
 - Headset, Hands free, dial-up, fax, LAN, SIM and Generic objects

Generic Object Exchange

- Defines how Bluetooth devices exchange objects
- Additional profiles specify the exchange of specific objects
 - File transfer
 - Synchronisation
 - Object Push
- Used in 'Bluejacking'
 - unsolicited transfer of binary objects

Bluetooth security architecture

- Based on symmetric keys for encryption, authentication and symmetric key generation
- Authentication
 - Challenge response protocol
- Link privacy
 - Symmetric key
 - Stream cipher with feedback
- Security modes
 - Mode1: Never demands authentication or encryption on a link
 - Mode2: Security is not initiated at the link level. Higher layers of the profile request authentication and / or encryption
 - Mode3: Security procedures initiated at startup

Pairing

- Procedure by which two devices establish a shared secret key (the link key) that can be used as a basis for later communication
- Manual exchange of key information (PIN number)
- Each device stores a (link key, device address) pair
- Pairing process consists of
 - generating an initialisation key
 - generating a link key
 - link key exchange
 - authentication

Generating an initialisation key

- Based on the PIN code, address and random number
- Address and random number transmitted in clear
- PIN code entered manually
 - 'secret' used to generate a shared secret key
 - Can be up to 16 octets in length
 - Default is 4 digits with default value 0000 !!!!
- Once there is a shared initialisation key, a link key is exchanged
 - Initialisation key is short lived and only used to exchange the link key

Generating a link key

- A different key is used for communication between each device pair
- Each device transmits a random number to each other, which is used to generate the link key
- The link keys are encrypted and exchanged using the other device's initialisation key
- Note
 - The link key is never used for direct encryption of data
 - A session key is generated using the link key

Authentication

- Can be either mutual or one-way
 - Depends on the security mode
- Uses a simple challenge-response authentication protocol
 - Verifier issues a random number to the claimant
 - Claimant generates a hash using the random number and the link key
 - Response to random number transmitted to claimant
 - Verifier does the same calculation and if agrees with response from claimant then claimant identity is verified

Encryption

- Link key is used to generate a session key
 - Link key is never used to directly encrypt data
- Session key generation
 - One of the parties transmits a random number encrypted with the link key
 - The random number and the link key are used to generate the session key
 - The session key is used to encrypt data
 - Encryption algorithm is E3 or AES CBC

Encryption

- E3
 - Stream cipher algorithm with feedback
 - encrypts a byte at a time
- Resynchronisation is necessary with feedback algorithms
 - Occurs at the start of every frame

Bluetooth security weaknesses

- Problems with encryption and hashing algorithms
 - Susceptible to brute force attacks
- PIN
 - Security of the keys is based on the security of the PIN
 - Some devices have fixed (unchangeable) PINs (!!!!!!!)
 - Weak PINs (1234, 2222 etc)
 - Default Pin value is usually 0000
 - Default PIN length is 4 digits
 - Very susceptible to brute force attacks

Bluetooth security weaknesses

- Eavesdropping and impersonation
 - If keys compromised or no security implemented
- Key storage
 - Needs to be very secure to prevent hackers
 - Accessing link keys
 - Installing their own link keys
- Location privacy
 - Devices can be in discoverable mode
 - Every device has fixed hardware adress
 - Adresses are sent in clear
 - possible to track devices (and users)

Other weaknesses

- No integrity checks
- No prevention of replay attacks
- Man in the middle attacks
- Lots of bluetooth exploits, mostly involving bluetooth enabled mobile phones

Bluetooth implementation based attacks

- Snarf attack
 - Bluetooth enabled phones
- Phone is enabled
- Attacker connects to the phone
 - Either through a 'bluebug' attack or because security is not set
- Attacker is able to gain access to restricted part of stored data
 - Calendar
 - Business cards
 - IMEI (International Mobile Equipment Identity)
 - Unique identifier for the phone to the mobile network

Bluebug attack

- Name of a bluetooth security loophole on many bluetoothenabled phones
 - Seems to affect most major manufacturers
- Sets up a covert channel that allows the attacker to issue AT modem control commands without the knowledge of the owner of the phone
 - Undocumented RFCOMM channels supported by Bluetooth chips
- Can do most mobile phone functions without the owner being aware of it
 - initiating phone calls, sending and reading SMS, reading and writing phonebook entries, connecting to Internet...

Bluejacking attack

- Not really an attack, more an unsolicited sending of a binary object
 - object usually a business card or phone directory entry
 - can be an image or other media item
- Could be used for spam
- Mostly irritation value but some potential for serious harm

Quite a lot of bluetooth hacking tools

- Software and systems for doing the bluebug, snarfing and bluejacking
- Bluesniper
 - Long distance attack hardware
 - Modified Bluetooth dongle
 - Range of 1.8 km
- Bloover
 - Carries out bluebug attack
- Bluesmack
 - Denial of service using buffer overflow

General comment on Bluetooth security

- Provided good practices are followed, particularly regarding the PIN, Bluetooth is reasonably secure
 - Still quite a few weaknesses, but probably not too severe given Bluetooth's intended role
- Most of the serious hacks have been at the application level
 - Undocumented channels, Poor default PINs etc

Conclusion

- Bluetooth overview
 - A short range, cable replacement technology
- Bluetooth security
 - Based on symmetric keys
 - Derived from PIN
- Bluetooth security weaknesses
 - PINs
 - Weak PINs, Default PINs of 0000, PINs that can't be changed
 - Undocumented RFCOMM channels
 - Bluetooth devices left in 'discovery' mode

