Xu Wan

Assignmen Table 1 5

ro Table 4.1

D. . . . J. . . .

Fioteurie

Code

Q-Q Plot

. ..

Report

Xu Wang¹

April 1, 2015

¹I thank Yihui Xie and Yuchen Wang for providing this machine ≥ ≥ ∞ < ∞

Assignment

Q-Q plot and Normality Test

Xu Wang Assignment

Table 1.5 r_Q Table 4.2

Procedure Code

Q-Q Plot Normality Test

Question

The data in Table 1.5 are 42 measurements on air-pollution variables recorded at 12:00 noon in the Los Angeles area on different days. (See also the air-pollution data on the web at www.prenhall.com/statistics.)

- Consider the air-pollution data given in Table 1.5. Construct a Q-Q plot for the solar radiation measurements.
- ② Carry out a test for normality based on the correlation coefficient r_Q [see (4-31)]. Let $\alpha=.05$ and use the entry corresponding to n=40 in Table 4.2.

Table 1.5

```
Q-Q plot and
Normality
Test
```

Xu Wang

Assignmen Table 1.5

Table 4.2

- .

Q-Q Plot

Normality Tes

Question

```
data <- read.csv('C:\\Users\\WangXu\\Desktop\\rapidminer\\data.csv'</pre>
, head=FALSE)
names(data) <- c('Wind', 'Solar_radiation', 'CO', 'NO', 'NO2', 'O3'</pre>
, 'HC')
head(data)
##
     Wind Solar_radiation CO
                             NO NO2 O3 HC
## 1
        8
                       98
                                 12
## 2
                      107 4 3
                                  9 5 3
## 3
                      103 4 3
                                  5 6
## 4
       10
                       88 5 2
                                  8 15
                       91 4 2
## 5
        6
                                  8 10
                       90 5
## 6
        8
                                 12 12
```

Xu Wang

Assignmen

ro .

Table 4.

Pro ce du re

- 1

Q-Q Plot

Normality T

Question

$$r_{Q} = \frac{\sum_{j=1}^{n} (x_{(j)} - \bar{x})(q_{(j)} - \bar{q})}{\sqrt{\sum_{j=1}^{n} (x_{(j)} - \bar{x})^{2}} \sqrt{\sum_{j=1}^{n} (q_{(j)} - \bar{q})^{2}}}$$
(1)

Xu Wan

Assignment

Table 4.2

ь т

Code

Q-Q Plot

Normality To

Question

Table 4.2 Critical Points for the Q-Q Plot Correlation Coefficient Test for Normality

	Sample size	Significance levels α		
		.01	.05	.10
	5	.8299	.8788	.9032
	10	.8801	.9198	.9351
	15	.9126	.9389	.9503
	20	.9269	.9508	.9604
	25	.9410	.9591	.9665
	30	.9479	.9652	.9715
	35	.9538	.9682	.9740
	40	.9599	.9726	.9771
	45	.9632	.9749	.9792
	50	.9671	.9768	.9809
	55	.9695	.9787	.9822
	60	.9720	.9801	.9836
	75	.9771	.9838	.9866
	100	.9822	.9873	.9895
	150	.9879	.9913	.9928
	200	.9905	.9931	.9942
	300	.9935	.9953	.9960

Figure: Table 4.2

Procedure

Q-Q plot and Normality Test

Xu Wang

Assignmer Table 1.5

Table 4..

Pro ce du re

. .

Q-Q Plot

Normality Tes

Questi

The steps leading to a Q-Q plot are as follows:

- Order the original observations to get $x_{(1)}$, $x_{(2)}$,... $x_{(n)}$ and their corresponding probability values $(1-\frac{1}{2})/n$, $(2-\frac{1}{2})/n$,... $(n-\frac{1}{2})/n$;
- ullet Calculate the standard normal quantiles $q_{(1)}, q_{(2)}, \dots q_{(n)}$
- **9** Plot the pairs of observations $(q_{(1)}, x_{(1)})$, $(q_{(2)}, x_{(2)}), ..., (q_{(n)}, x_{(n)})$, and examine the "straightness" of the outcome.

Pro ce dure Co de

Q-Q Plot Normality Tes

Question

Text is nice but let's see what happens if we make a couple of plots in our chunk:

```
data <- read.csv('C:\\Users\\WangXu\\Desktop\\rapidminer\\data.csv'</pre>
.head=FALSE)
names(data) <- c('Wind', 'Solar_radiation', 'CO', 'NO', 'NO2', 'O3'</pre>
. 'HC')
test data <- data$Solar radiation
test_data <- sort(test_data)</pre>
quantile <- c()
quantile[1] <- qnorm((1-0.5)/length(test_data))
for (i in 2:length(test_data)) {
if (test_data[i-1] < test_data[i]) {</pre>
  quantile[i] <- qnorm((i-0.5)/length(test_data))
} else {
  quantile[i] = quantile[i-1]
plot(quantile,test_data)
qqline(test_data)
```

Q-Q Plot

Normality Test

```
Q-Q plot and
Normality
Test
```

Xu Wang

Table 1.5
Table 4.2

Procedure

Q-Q Plot

Normality Test

Question

 H_0 : The variable "Solar radiation" is normally distributed **vs** H_1 : The variable "Solar radiation" is not normally distributed

```
a <- qqnorm(test_data)
a$x <- sort(a$x)
a$y <- sort(a$y)
sum((a$x-mean(a$x))*(a$y-mean(a$y))) / ((sum((a$x-mean(a$x))^2))^0.5*(sum(a$x-mean(a$x))^2))</pre>
```

Due to the r_Q is 0.9693258 . Table 4.2 shows when n=40, $\alpha=0.05$, the r_Q is 0.9726 > the result in this question. So I reject this null hypothesis. We can get the conclusion is **The variable Solar radiation is not normally distributed**

Which is Q-Q Plot?

Q-Q plot and Normality Test

Xu Wang

Table 1.5

able 4.2

Pro ce dun

Codo

Q-Q Plot

Normality 7

Question

We can see this two figures.

```
plot(quantile,test_data, main='Normal Q-Q Plot')
qqline(test_data)
qqnorm(test_data)
qqline(test_data)
```


(u Wang

Assignment

ro T 11 4

_ .

Pro ce du re

Code

Q-Q Plot

...

Question

Thanks