Simple signature-based Groebner basis algorithm**DO** CHECK SPELLING

Galkin Vasily Moscow State University email: galkin-vv@yandex.ru

May 24, 2012

Abstract

This paper presents an algorithm for computing Groebner bases based upon labeled polynomials and ideas from the algorithm F5. The main highlights of this algorithm compared with analogues are simplicity both of the algorithm and of the its correctness proof achieved without loss of the efficiency. This leads to simple implementation which performance is in par with more complex analogues ¹

Consider polynomial ring $P=k[x_1,\ldots,x_n]$ over field k. Also assume that monoid of its monomials $\mathbb T$ has a monomial order \prec . A problem asking for a Gröbner basis can be stated for any ideal (f_1,\ldots,f_l) in this ring. One of the approaches to the problem is using iterative method which computes every step a basis for ideal (f_1,\ldots,f_i) , $i=2\ldots l$ based on the already computed for (f_1,\ldots,f_{i-1}) basis R_{i-1} and polynomial f_i . The already computed in this paper is designed to perform one step of such computation. So, the algorithm's input data consist of a some polynomial f and a polynomial set referred as $\{g_1,\ldots,g_m\}$ which is Gröbner basis of ideal $I_0=(g_1,\ldots,g_m)$. After finishing the algorithm should give the resulting polynomial set R being a Gröbner basis of ideal $I=(g_1,\ldots,g_m,f)$. The special cases $f=0\Rightarrow I=I_0$ and $\exists i\ g_i\in k\Rightarrow I=P$ are not interesting from the computational point of view, so the further chapters assume that $f\neq 0, \forall i\ g_i\notin k$. The homogeniety of input polynomials is not required unlike the F5 algorithm described in [4].

Definitions

Consider the set $\mathbb{T}_0 = \mathbb{T} \cup \{0\}$ – the monomial monoid extended by zero. The order \prec can be extended to \mathbb{T}_0 as \prec_0 with defintion $\forall t \in \mathbb{T} t \succ_0 0$ which keeps the well-orderness property. The notion of division also can be extended to \mathbb{T}_0 : $t_1|t_2 \stackrel{\text{def}}{=} \exists t_3 t_1 t_3 = t_2$. For polynomial $p \in P, p \neq 0$ the highest by \prec monom

¹ Keywords: Groebner basis, F5 algorithm, labeled polynomials

and coefficient are written as $\operatorname{HM}(p) \in \mathbb{T}$ and $\operatorname{HC}(p) \in k$. For zero we define $-\operatorname{HM}(0) \stackrel{\text{def}}{=} 0 \in \mathbb{T}_0$, $\operatorname{HC}(0) \stackrel{\text{def}}{=} 0 \in k$. The least common multiple of $t_1, t_2 \in \mathbb{T}$ is written as $\operatorname{LCM}(t_1, t_2) \in \mathbb{T}$. In the following all definitions are given for fixed I_0 and f:

Definition 1. The labeled polynomial is a pair $h = (\sigma, p) \in \mathbb{T}_0 \times P$, that satisfies the correctness property: $\exists u \in P \text{ HM}(u) = \sigma, uf \equiv p \pmod{I_0}$. Some terminology is extended to labeled polynomials. The highest monomial is $\text{HM}(h) \stackrel{\text{def}}{=} \text{HM}(p)$ and coefficient is $\text{HC}(h) \stackrel{\text{def}}{=} \text{HC}(p)$. Additionally the signature is defined $\mathcal{S}(h) \stackrel{\text{def}}{=} \sigma$ and a notation is introduced for the polynomial – secand element of pair: $\text{poly}(h) \stackrel{\text{def}}{=} p$. The set of all labeled polynomials is written as $H \subset \mathbb{T}_0 \times P$. The trivial examples of labeled polynomials are (1, f) and (0, g) for $g \in I_0$. Another labeled polynomial example is (HM(g), 0) for $g \in I_0$. It satisfies correctness property because we can take u equal to g.

Lemma 2. The product of $h \in H, t \in \mathbb{T}$ defined as $th \stackrel{\text{def}}{=} (t\sigma, tp) \in H$, is correct.

The correctness property is checked by directly finding u for th.

Definition 3. If the polynomials and monomial $h'_1, h_2 \in H, t \in \mathbb{T}$ satisfy $S(h'_1) \succ_0 S(th_2), HM(h'_1) = HM(th_2) \neq 0$, then exists a *signature-safe reduction* h'_1 by h_2 , resulting in labeled polynomial $h_1 \in H$, equal to:

$$h_1 = (\mathcal{S}(h'_1), \operatorname{poly}(h'_1) + Kt \operatorname{poly}(h_2)),$$

where the $K \in k$ is selected in a way to perform cancellation of high coefficients, so we have $\mathrm{HM}(h_1) \prec_0 \mathrm{HM}(h'_1)$. Such reduction is equivalent to plain reduction with high term cancellation extended with requirement for reductor's signature being smaller than the signature of labeled polynomial being reduced. Like in previous case the correctness check is performed directly.

Let's introduce a partial order $<_{\rm H}$ on H:

$$h_1 = (\sigma_1, p_1) <_{\mathsf{H}} h_2 = (\sigma_2, p_2) \stackrel{\text{def}}{\Leftrightarrow} \mathrm{HM}(p_1) \sigma_2 \prec_0 \mathrm{HM}(p_2) \sigma_1.$$

The elements with zero signature or high monomial are extremums:

$$\forall \sigma_1, \sigma_2, p_1, p_2 \ (0, p_1) \not <_{\mathbf{H}} \ (\sigma_2, p_2), \ (\sigma_1, 0) \not >_{\mathbf{H}} \ (\sigma_2, p_2).$$

Lemma 4. Let $h_1, h_2 \in H, t \in \mathbb{T}$. Then $h_1 >_H h_2 \Leftrightarrow h_1 >_H th_2$.

Deduced from the fact that multiplying one of the compared labeled polynomials by t leads to multiplying by t both sides in the definition of>H.

Lemma 5. Let $h_1, h_2 \in H, HM(h_1) | HM(h_2), HM(h_2) \neq 0$. Then signature-safe reduction h_2 by h_1 is possible iff $h_1 >_H h_2$.

Deduced from the fact that claims of both sides are equivalent $S(h_2) \succ_0 S(h_1) \frac{\operatorname{HM}(h_2)}{\operatorname{HM}(h_1)}$.

Lemma 6. Let $h_1 \in H$ be a result of signature-safe reduction of h'_1 by some other polynomial. Then $h_1 <_H h'_1$.

Deduced from equality $S(h_1) = S(h'_1)$ and decreasing HM during reduction: $HM(h_1) \prec_0 HM(h'_1)$.

Lemma 7. Let $h_1 <_H h_2$ be labeled polynomials. Then $\forall h_3 \in H \setminus \{(0,0)\}$ at least one of the following two inequalities is hold: $h_1 <_H h_3$ or $h_3 <_H h_2$.

The lemma clause gives inequality

$$HM(h_1) \mathcal{S}(h_2) \prec_0 HM(h_2) \mathcal{S}(h_1) \tag{1}$$

which shows $\operatorname{HM}(h_2) \neq 0$, $\mathcal{S}(h_1) \neq 0$. Therefore for the special case $\operatorname{HM}(h_3) = 0$ we get $h_3 <_{\operatorname{H}} h_2$ and for the case $\mathcal{S}(h_3) = 0$ we get $h_1 <_{\operatorname{H}} h_3$. For remaining generic non-zero case the inequality (1) can be multipled by non-zero monomial $\operatorname{HM}(h_3) \mathcal{S}(h_3)$:

$$\operatorname{HM}(h_3) \mathcal{S}(h_3) \operatorname{HM}(h_1) \mathcal{S}(h_2) \prec_0 \operatorname{HM}(h_3) \mathcal{S}(h_3) \operatorname{HM}(h_2) \mathcal{S}(h_1).$$
 (2)

So, the element $\operatorname{HM}(h_3)^2 \mathcal{S}(h_2) \mathcal{S}(h_1) \in \mathbb{T}_0$ need to be \succ_0 than left side or \prec_0 than right side of inequality (2), and gives after cancellation one of the inequalities from lemma statement.

Algorithm

Input: polynomial set $\{g_1, \ldots, g_m\}$ being a Gröbner basis; polynomial f.

Variables: R and B – subsets of H; $(\sigma, p') \in H$ – current step's labeled polynomial before reduction; (σ, p) – the same after reduction; r, b – elements of R and B

Result: Gröbner basis of ideal $I = (g_1, \dots, g_m, f)$

SimpleSignatureGroebner($\{g_1, \ldots, g_m\}, f$)

- 1. $R \leftarrow \{(HM(g_1), 0), (HM(g_2), 0), \dots, (HM(g_m), 0), (0, g_1), (0, g_2), \dots, (0, g_m)\}$
- 2. $B \leftarrow \{\}$
- 3. $(\sigma, p') \leftarrow (1, f)$
- 4. do forever:
 - (a) $p \leftarrow \text{ReduceCheckingSignatures}(\sigma, p', R)$
 - (b) $R \leftarrow R \cup \{(\sigma, p)\}$
 - (c) **if** $p \neq 0$:
 - i. for $\{r \in R \mid r <_{\mathbf{H}} (\sigma, p), HM(r) \neq 0\}$:

```
\begin{split} & \text{A. } B \leftarrow B \cup \{\frac{\text{LCM}(\text{HM}(r), \text{HM}(p))}{\text{HM}(r)}r\} \\ & \text{ii. } \textbf{for } \{r \in R \,|\, r >_{\text{H}} (\sigma, p)\}\text{:} \\ & \text{A. } B \leftarrow B \cup \{\frac{\text{LCM}(\text{HM}(r), \text{HM}(p))}{\text{HM}(p)} (\sigma, p)\} \end{split}
```

- (d) $B \leftarrow B \setminus \{b \in B \mid \exists r \in R \, r <_{\mathsf{H}} b \land \mathcal{S}(r) \mid \mathcal{S}(b)\}$
- (e) if $B \neq \emptyset$: $(\sigma, p') \leftarrow$ element of B c \prec -minimal signature
- (f) else: break
- 5. **return** $\{poly(r) | r \in R\}$

ReduceCheckingSignatures (σ, p, R)

- 1. do while $\exists r \in R \, r >_{\mathrm{H}} (\sigma, p) \wedge \mathrm{HM}(r) | \, \mathrm{HM}(p)$:
 - (a) $p \leftarrow$ signature-safe reduce p by $>_{\mathbf{H}}$ -maximal element r from the set in cycle clause
- 2. return p

Lemma 8. All pairs from $\mathbb{T}_0 \times P$ appeared in the algorithm are labeled polynomials from $H \setminus \{(0,0)\}$.

The elements created before entering main cycle are labeled polynomials mentioned above as examples. All other labeled polynomials in the algorithm are created either with multiplication by $t \in \mathbb{T}$ or with signature-safe reduction, so they satisfy the correctness property and belongs to H.

The clauses of cycles extending B enforces the absence in B elements with zero signature or zero highest monomial. So, σ never can be 0 and the only R elements with zero signatures are $(0, g_1), ..., (0, g_m)$. Any labeled polynomial added to R can have zero highest monomial but R does not contain zero polynomial with zero sgnature.

Algorithm termination

Lemma 9. At the any moment during the algorithm execution any labeled polynomial from B can be signature-safe reduced by some element of R.

Labeled polynomials are added to B in a way ensuring existence at least one possible signature-safe reductor. The pair $(\sigma, p) \in R$ is such reductor for polynomials added in first **for** cycle, and $r \in R$ – for the polynomials added in the second cycle.

Lemma 10. Before reduction of polynomial p'-at the step4a of any algorithm iteration – the signatures of elements $\{r \in R \mid r <_H (\sigma, p')\}$ does not divide σ .

This holds at the first algorithm iteration because $\sigma = 1$ and R does not contain elements with signatures dividing 1. This holds during next iterations because the existence such elements in R would lead to removal (σ, p') from R during previous iterations at the step 4d.

Lemma 11. After reduction of p' to p-at the step 4b of any algorithm iteration – the highest monomials of elements $\{r \in R \mid r >_{\mathbf{H}} (\sigma, p)\}$ does not divide $\mathbf{HM}(p)$.

The cycle in the ReduceCheckingSignatures (σ, p, R) stops only when it achieves p, for which there is no such elements in R.

Lemma 12. After reduction of p' to p-at the step 4b of any algorithm iteration - no one from R elements has simultaneously a highest monomial dividing HM(p) and a signature dividing σ .

The lemma 9 ensures that p' is reduced at least once, so $(\sigma, p') >_{\mathrm{H}} (\sigma, p)$. Now, by lemma 7 for $\forall r \in R$ we have $r >_{\mathrm{H}} (\sigma, p)$ or $r <_{\mathrm{H}} (\sigma, p')$. These inequalities allow to apply either lemma 10 or lemma 11.

Theorem 13. The algorithm Simple Signature Groebner $(\{g_1, \ldots, g_m\}, f)$ terminates

To prove the termination we need to show that all **do** cycles stops after finite number of executions. In the cycle inside ReduceCheckingSignatures(σ, p, R) with non-zero p during every iteraton we have $\operatorname{HM}(p)$ decrease according to \prec_0 , which is possible only finite number of times. When p becomes zero it stops immediately because of \prec_{H} -minmality of $(\sigma, 0)$.

The set $R \subset \mathbb{T}_0 \times P$ is extended n every step of the main algorithm cycle. It can be splitted to $R_{*0} \cup R_{0*} \cup R_{**}$, where $R_{*0} \subset \mathbb{T} \times \{0\}$, $R_{0*} \subset \{0\} \times P \setminus \{0\}$, $R_{**} \subset \mathbb{T} \times P \setminus \{0\}$. R_{0*} does never extend because $\sigma \neq 0$. For sets R_{*0} and R_{**} we apply a method based on idea of monoid ideals introduced in [8] as "monideal". Consider the following two sets which are monoideals: $L_{*0} = (\{\sigma \mid (\sigma,0) \in R_{*0}\}) \subset \mathbb{T}$ and $L_{**} = (\{(\sigma,t) \mid \exists (\sigma,p) \in R_{**} \ t = \operatorname{HM}(p)\}) \subset \mathbb{T} \times \mathbb{T}$. Lemma 12 shows that elements being added to R expand either L_{*0} or L_{**} in every cycle iteration. The monoids \mathbb{T} and $\mathbb{T} \times \mathbb{T}$ are isomorphic to \mathbb{N}^n and \mathbb{N}^{2n} , so the Dickson's lemma can be applied to thier monoideals. It states exactly the needed fact – only finite number of expansions is possible for such monoideals.

Correctness of output

Definition 14. S-representation of $h \in H$ over set $\{r_i\} \subset H$ is an expression $\operatorname{poly}(h) = \sum_j K_j t_j \operatorname{poly}(r_{i_j}), K_j \in k, t_j \in \mathbb{T}, i_j \in \mathbb{N}, \text{ such that } \forall j \operatorname{HM}(h) \succcurlyeq_0 \operatorname{HM}(t_j r_{i_j}), \mathcal{S}(h) \succcurlyeq_0 \mathcal{S}(t_j r_{i_j}).$

Lemma 15. Let $poly(h) = \sum_{j} K_j t_j poly(r_{i_j}) - S$ -representation of h. Then at least one j satisfies $HM(h) = HM(t_j r_{i_j})$.

To get a j satisfying the equality we can take a value which gives the \succ -maximum of $\mathrm{HM}(t_j r_{i_j})$.

The next definition extends the notation of S-basis from [1]:

Definition 16. The labeled polynomial set $R \subset H$ is called S-basis (correspondingly S_{σ} -basis), if all elements of H (correspondingly $\{h \in H \mid \mathcal{S}(h) \prec_0 \sigma\}$) have S-representation over R.

Lemma 17. Let $\sigma \succ_0 0$, $R = \{r_i\} - S_{\sigma}$ -basis and $h_1, h_2 \in H$, $S(h_i) = \sigma$ are labeled polynomials, that can't be signature-safe reduced by R elements. Then $HM(h_1) = HM(h_2)$ and h_1 has an S-representation over $R \cup \{h_2\}$.

We have from the definition of H that $\exists u_i \in P \ \mathrm{HM}(u_i) = \sigma, u_i f \equiv \mathrm{poly}(h_i)$ (mod I_0), i = 1, 2. It means that there exists a linear combination of $\mathrm{poly}(h_i)$ having signature $\prec_0 \sigma$. The can be written as:

$$\exists K \in k, v \in P \ HM(v) = \sigma' \prec_0 \sigma, vf \equiv poly(h_1) - K \ poly(h_2) \pmod{I_0},$$

or in the terminology of labeled polynomials: $(\sigma', p') = (\sigma', \text{poly}(h_1) - K \text{ poly}(h_2)) \in H$. From the definition of S_{σ} -basis and the property $\sigma' \prec_0 \sigma$ we conclude: $\exists r_j \in R, t \in \mathbb{T} \ \mathcal{S}(tr_j) \preccurlyeq_0 \sigma', \operatorname{HM}(tr_j) = \operatorname{HM}(p')$. So $\operatorname{HM}(h_i) \neq \operatorname{HM}(p'), i = 1, 2$, because in the case of equality r_j would be signature-safe reductor for h_i . It is possible only if $\operatorname{HM}(h_i)$ are canceled while subtraction with k-coefficient, what means that $\operatorname{HM}(h_1) = \operatorname{HM}(h_2)$. S-representation of h_1 is constructed by adding $K \operatorname{poly}(h_2)$ to S-representation of (σ', p') .

Theorem 18. Every iteration of the algorithm after step 4d the following invariant holds: for $\forall \sigma \in \mathbb{T}, \sigma \prec signatures$ of elements of B, exists $r_{\sigma} \in R, t_{\sigma} \in \mathbb{T}$: $S(t_{\sigma}r_{\sigma}) = \sigma$ such that $t_{\sigma}r_{\sigma}$ can't be signature-safe reduced by R.

The set $R_{\sigma} = \{r \in R \mid \mathcal{S}(r) | \sigma\}$ is not empty, because contains the element r_0 added during the first algorithm iteration with $\mathcal{S}(r_0) = 1$. Let r_{σ} be $<_{\text{H}}$ -minimal element of the set; take $t_{\sigma} = \frac{\sigma}{\mathcal{S}(r_{\sigma})}$. Suppose that $t_{\sigma}r_{\sigma}$ can be signature-safe reduced by some $r_1 \in R$. This gives that $r_1 >_{\text{H}} r_{\sigma}$ and both sides of inequality are non-zero. It means that during the iteration which inserts in R the last of $\{r_{\sigma}, r_1\}$ the set B was extended by labeled polynomial $t'r_{\sigma}$, where $t' = \frac{\text{LCM}(\text{HM}(r_1), \text{HM}(r_{\sigma}))}{\text{HM}(r_{\sigma})}$ and $t' | t_{\sigma}$. So we have $\mathcal{S}(t'r_{\sigma}) | \mathcal{S}(t_{\sigma}r_{\sigma}) = \sigma \Rightarrow \mathcal{S}(t'r_{\sigma}) \preccurlyeq \sigma \prec 0$ signatures of elements of B. This signatures inequality implies that $t'r_{\sigma}$ can't be element of B during the current iteration and was removed at the step 4d of some previous iteration, so $\exists r_2 \in R r_2 <_{\text{H}} t'r_{\sigma}, \mathcal{S}(r_2) | \mathcal{S}(t'r_{\sigma})$. This is impossible, because the existence of $r_2 <_{\text{H}} r_{\sigma}, r_2 \in R_{\sigma}$ contradicts $<_{\text{H}}$ -minimality of r_{σ} .

Theorem 19. Every iteration of the algorithm after step 4d the following invariant holds: $\forall h \in H, S(h) \prec signatures$ of elements of B has S-representation over R.

Suppose that invariant breaks during some algorithm iteration and take the \prec_0 -minimal σ that has non-empty corresponding set $V_{\sigma} \stackrel{\text{def}}{=} \{h \in H \mid h \text{ breaks invariant}, \mathcal{S}(h) = \sigma\}$. Then $R - \mathbf{S}_{\sigma}$ -basis. $\forall g \in I_0 \ (0,g)$ has S-representation over $\{(0,g_1),...,(0,g_m)\} \subset R$, so $\sigma \succ_0 0$. Select v_{σ} – one of the V_{σ} elements with \prec_0 -minimal HM. It can't be signature-safe reduced by R because the reduction result v_1 would be element of V_{σ} with $\mathrm{HM}(v_1) \prec_0 \mathrm{HM}(v_{\sigma})$. Take $w_{\sigma} \stackrel{\mathrm{def}}{=} t_{\sigma} r_{\sigma}$ from the invariant of

theorem 18 and apply lemma 17 to v_{σ} , w_{σ} and R. The lemma says that v_{σ} has S-representation over $R \cup \{w_{\sigma}\}$. All entries of w_{σ} in the representation can be replaced by $t_{\sigma}r_{\sigma}$ to acquire representation of v_{σ} over R only. It's existance leads to contradiction.

Lemma 20. If R is S-basis, then $\{poly(r) | r \in R\}$ is a Gröbner basis of ideal I.

For $\forall p \in I$ we can take some $h = (\sigma, p) \in H$ and apply lemma 15 to it.

Theorem 21. Simple Signature Groebner $(\{g_1, \ldots, g_m\}, f)$ returns Gröbner basis

At the moment of algorithm termination $B=\varnothing$ so by theorem 19 R – S-basis.

Comparison with other algorithms

Представленный алгоритм принадлежит к семейству алгоритмов вычисления базисов Грёбнера, использующих сигнатуры, которые вычисляют S-базис и в той или иной степени являются модификациями алгоритма F5 из [4]. Одно из основных направлений его модификации – упрощение теоретических обоснований и расширение области применимости – представлено в [6, 11, 10]. Другое – повышение эффективности путём ввода дополнительных критериев отбрасывания некоторых вычислений – описывается в [2, 5, 3] и позволяет проводить вычисления так, чтобы до конца редуцировались лишь многочлены, являющиеся новыми элементами S-базиса или дающие новую сигнатуру нулевого многочлена, расширяющую идеал моноида, содержащий такие сигнатуры, называемые также сигнатурами сизигий. Обобщение с одновременным применением всех критериев в алгоритмах TRB-MJ и SB [7, 9] позволяет добиться большей эффективности благодаря тому, что все отбрасывания применяются до проведения таких вычислительно трудоёмких операций, как редукция многочлена или подсчёт старшего монома S-пары, - в результате не оказывается, что результаты каких-то вычислений были отброшены.

Во всех упомянутых алгоритмах, включая немодифицированный F5, формулируется два типа критериев отброса: критерии, связанные с сизигиями, и критерии перезаписи, корректность каждого из которых доказывается независимо. Также, даже в алгоритмах, не вычисляющих S-полиномы явно, теоретическое обоснование корректности алгоритма на них опирается.

Данная работа описывает алгоритм вычисляющий минимальный S-базис и осуществляющий отброс вычислений не менее эффективно, чем в TRB-MJ, но использующий лишь единственный критерий отброса на шаге 4d, основанный на $<_{\rm H}$ -упорядочивании множества R. Вопрос наиболее эффективного способа выбора редуктора в ReduceCheckingSignatures(σ , p, R) является открытым. Представленный в этой работе способ выбора основан на всё том же упорядочении R и совпадает для случая однородных многочленов со способом выбора, применявшемся в алгоритме F5. Теоретическое обоснование сформулировано

без S-полиномов и позволяет применять к нему простую алгебраическую интерпретацию из [11].

Упрощение формулировки алгоритма повлекло значительное уменьшение времени на его реализацию и отладку на компьютере по сравнению с аналогами, как за счёт меньшего количества множеств, так и за счёт общего для критериев отбрасывания и процедуры редукции порядка. Простота реализации и нетребовательность к структурам данных позволяет за небольшое время внедрять эффективную версию алгоритма в любую систему компьютерной алгебры. Реализация, упоминаемая ниже, была создана автором за 8 часов, что на порядок меньше, чем время, затраченное автором на экспериментальные реализации других алгоритмов в подобных условиях. Доказательство, основанное на инвариантах в терминах S-представлений, позволило сделать работу алгоритма более прозрачной с алгебраической точки зрения и потенциально расширяемым на объекты, обобщающие кольцо многочленов над полем.

Алгоритм был реализован на C++ с использованием функций ядра программного комплекса Singular 3-1-4 и открытых наработок Кристиана Эдера (одного из авторов [3]) по реализации F5-подобных алгоритмов на этом ядре. Исходный код реализации содержится в функции ssg файла, доступного по адресу https://github.com/galkinvv/Singular-f5-like/blob/ssg/kernel/kstd2.cc

Сравнение реализации SimpleSignatureGroebner с другими алгоритмами вычисления базисов Грёбнера, реализованных Кристианом Эдером подтвердили следующие соображения:

- алгоритм SimpleSignatureGroebner корректно вычисляет базис Грёбнера;
- результат содержит не большее число многочленов, чем результат других инкрементальных алгоритмов, возвращающих S-базис;
- время работы алгоритма оказывается не больше, чем у других инкрементальных алгоритмов, основанных на сигнатурах.

References

- [1] A. Arri and J. Perry. The f5 criterion revised. *ArXiv e-prints*, December 2010.
- [2] C. Eder and J. Perry. F5c: a variant of faugère's f5 algorithm with reduced gröbner bases. *ArXiv e-prints*, June 2009.
- [3] C. Eder and J. Perry. Signature-based algorithms to compute gröbner bases. ArXiv e-prints, January 2011.
- [4] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases without reduction to zero (f5). In Proceedings of the 2002 international symposium on Symbolic and algebraic computation, ISSAC '02, pages 75–83, New York, NY, USA, 2002. ACM.
- [5] Shuhong Gao, Yinhua Guan, and Frank Volny, IV. A new incremental algorithm for computing gröbner bases. In *Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation*, ISSAC '10, pages 13–19, New York, NY, USA, 2010. ACM.
- [6] O. German. Proof of the faugère criterion for the f5 algorithm. *Mathematical Notes*, 88(4):502–510, 2010.
- [7] L. Huang. A new conception for computing gröbner basis and its applications. *ArXiv e-prints*, December 2010.
- [8] Martin Kreuzer and Lorenzo Robbiano. Computational commutative algebra. 1. Springer-Verlag, Berlin, 2000.
- [9] B. Roune and M. Stillman. Practical gröbner basis computation. 2012.
- [10] Y. Sun and D. Wang. The f5 algorithm in buchberger's style. ArXiv e-prints, June 2010.
- [11] A. I. Zobnin. Generalization of the f5 algorithm for calculating gröbner bases for polynomial ideals. *Program. Comput. Softw.*, 36(2):75–82, March 2010.