4.tēma. Statistiskās modelēšanas pamati

- 4.7. Imitācijas modelēšanas stratēģijas.
 - 4.7.1. Programmatūras izstrādes stratēģijas
 - 4.7.2. Uz notikumiem orientēta modelēšana.
 - 4.7.3. Uz procesiem orientēta modelēšana.
 - 4.7.4. Uz darbībām orientēta modelēšana.

Imitācijas modeļa laika skaitīšana

- E notikums;
- X patērētāja ierašanās;
- S darbība;
- C process;
- ... apkalpotājs brīvs;
- apkalpotājs apkalpo patērētāju;
- -- patērētājs stāv rindā.

- notikumu plānošana (event scheduling)
- procesu sadarbība (process interaction)
- darbību pārskatīšana (activity scanning)

Modelēšanas specializētās valodas				
Event-oriented	Activity-oriented	Process-oriented		
SIMSCRIPT GASP	CSL, SIMON, GSP	SIMULA, GPSS, DEMOS, SOL		

4.7.2.Uz notikumiem orientēts simulators (event-oriented simulator)

Piemērs. Automašīnu mazgāšanas stacija ar vienu apkalpojošo iekārtu

Uzdevums: novērtēt apkalpojošās iekārtas noslodzes koeficientu

Elementi: apkalpojošā iekārta, automašīnas, stāvvieta (M vietas)

Stāvoklis: N (t) – automašīnu skaits mazgāšanas stacijā

Modelēšanas laiks: T

Notikumi: automašīnu piebraukšana, aizbraukšana

$$N(t) = N(t) + 1, N(t) = N(t) - 1$$

Datu uzkrāšana: T_0 – kopējais laiks, kurā N (t) = 0

Rezultāta izskaitļošana:
$$U = 1 - \frac{T_0}{T}$$

Programmas uzbūve

```
T:=Simulation time;
                           M:=Parking capacity;
                           t:=N:=T<sub>0</sub>:=E:=0;
                           AT:="next arrival time"
                           DT:= ∞ ;
                                                           Output results
                                     t>T?
                                                           and stop
               Arrival events
                                             Departure events
                                    AT<DT
                                                    t:=DT;
t:=AT:
                                                     N := N-1:
IF N<M THEN N:=N+1;
                                                     IF N>0 THEN
IF N=1 THEN
                                                       DT:=t +
  BEGIN
                                                    "service time";
     DT:=t + " service_time";
                                                       ELSE
     T_0 := T_0 + AT - E;
                                                       BEGIN
  END;
                                                          DT:= ∞ :
AT:=t + "next arrival time"
                                                          E:=t;
                                                       END;
```

4.7.3.Uz procesiem orientēts simulators (process-oriented simulator)

Prof. G. Merkurjeva, ITI MIK katedra

	SIMULATE		
	STORAGE	S1, 10	(M=10)
(1)	GENERATE	20,8	
(2)	GATE SNF	1, ATT -	atteikums, ja visas
(3)	ENTER	1	vietas jau aizņemtas
(4)	SEIZE	PRIB	
(5)	LEAVE	1	
(6)	ADVANCE	15, 10	
(7)	RELEASE	PRIB	
(8)	TERMINATE		 iznīcināšana
ATT	TERMINATE 1		
	START		
	END		

- ierašanās process (arrive process) GENERATE,
 TERMINATE (ģenerēt, iznīcināt);
- apkalpošanas process (service process) SEIZE,
 ADVANCE, RELEASE (aizņemt, apkalpot, atbrīvot);
- rindas izveidošanās process (queeuing process) ENTER, LEAVE.

4.7.4. Uz darbībām orientēts simulators (activity-oriented simulator)

Īpašības

- Sistēmas elementu visas darbības ir atšķirīgas, saites starp darbībām neeksistē un visas darbības tiek veiktas neatkarīgi.
- Lai uzsāktu vai veiktu darbības ir jāapmierina konkrēti nosacījumi.
- Rezultātā ir jādefinē darbību vai aktivitāšu kopa un darbības veikšanas nosacījumu pārbaudes procedūras.
- Izmanto, kad darbības ilgums saistīts ar to, cik lielā mērā sistēmas stāvoklis atbilst iepriekš uzdotajiem nosacījumiem.

Nosacījumu pārbaudes veidi

- Modeļa parametru vai mainīgo vērtību pārbaude;
- Darbības sākuma laika aprēķins.

Procedūra:

 Izveido problēmas tīkla veida modeli (ar mezgliem apraksta rindas un ar lokiem darbības) un pēc tam izveido programmu

Programmas piemērs SLAM valodā sistēmai ar vienu apkalpojošo iekārtu un vienu rindu

NETWORK;

Darbības operatora struktūra SLAM valodā

CREATE, 10,7;

ACTIVITY, 3;

QUEUE (10);

ACTIVITY (1)/3,9;

TERMINATE, 100;

ENDNETWORK;

ACTIVITY(N)/A, DUR, PROB vai COND,

NLBL;

PROB vai COND – darbības izvēles

varbūtība vai nosacījums

NLBL – beigu mezgla numurs, ja tas nav

definēts ar nākamo operatoru

DUR, PROB vai COND

- notikumu plānošana (event scheduling)
- procesu sadarbība (process interaction)
- darbību pārskatīšana (activity scanning)

Modelēšanas specializētās valodas				
Event-oriented	Activity-oriented	Process-oriented		
SIMSCRIPT GASP	CSL, SLAM, GSP	SIMULA, GPSS, DEMOS, SOL		

Priekšrocības un trūkumi

Uz notikumiem orientēts simulators

- + vienkārši realizēt vadības struktūru
- sarežģīti modelēt paralēlus procesus
- sarežģīti modelēt sarežģītus procesus

Uz procesiem orientēts simulators

- + sistēmas augsta līmeņa abstrakcija modelī
- + vienkārši realizēt savstarpēji saistītu procesu vadību
- + vienkārši modelēt paralēlus procesus

Uz darbībām orientēts simulators

- + vienkārši atrisināt paralelitātes problēmas
- sarežģīti programmēt

4.8. Imitācijas modelēšanas procedūra

