

A hálózati határvédelem eszközei

Kovács Bálint

Miről lesz szó?

- A hálózati határvédelem értelmezése
- Hálózati alapfogalmak
- Tűzfal típusok
- Határvédelmi technológiák
- Speciális határvédelmi megoldások
- Kérdések és válaszok

Mi a biztonság?

- Kedvező <u>állapot</u>
 - Nincsenek fenyegetések
 - Nem is valószínű, de nem zárható ki
- Maradék kockázat
 - Mindig van
 - Nem mindegy, hogy ismert-e
- Folyamat és nem termék
- Biztonság menedzsment: az állapot fenntartás folyamata

Az IT biztonság elemei

- Az IT biztonsági elemei:
 - Érték: Bármi, ami a szervezet számára jelentőséggel bír (adatok, tudás, védjegy, receptek, eljárások, know-how stb).
 - Fenyegetés: Olyan negatív esemény, amelynek esetleges bekövetkezése veszteséget okozna.
 - Sérülékenység: A fenyegetettség bekövetkezését lehetővé tevő hiba.
 - Ellenintézkedések: Minden olyan eszköz, tevékenység, amely az fenyegetések minimalizálását szolgálja.
 - Kompromisszumok: Minden intézkedés, védelmi eszköz hordoz magával valamilyen hátrányt.
 - Maradék kockázat: nincs tökéletes (100%-os) védelem!

Az információ tulajdonságai

- Bizalmasság: az információ megtekintésének korlátozása
- Sértetlenség: az objektum védelme nem kívánt módosítás ellen
- Hitelesség: az információ forrásának hiteles megjelölése
- Rendelkezésre állás: az információ elérhetősége a kívánt időben
- Letagadhatatlanság: az információ forrásának hiteles megőrzése a jövőben

Ellenintézkedések típusai

- Ellenintézkedések típusai (Control intézkedések):
 - Preventív: megelőző intézkedések
 - Detektív: érzékelő intézkedések (megfigyelés)
 - Korrektív: korrigáló intézkedések

IT biztonsági eszközök

- Adminisztratív, pl. belső szabályzás;
- Fizikai, pl. zárak, beléptető rendszerek, kamerák;
- Logikai, pl. szoftveres és hardveres megvalósítások;

Mit értünk hálózati határvédelem alatt?

- Bejövő és kimenő hálózati forgalom monitorozása és szabályozása előre meghatározott biztonsági szabályok alapján
- Tipikusan különböző biztonsági szintű hálózatok közötti elválasztást valósít meg (pl a biztonságosnak tekintett belső hálózat és az internet)
- Logikai kontroll
- Preventív és detektív kontroll
- Olyan ellenintézkedés, ami az érték elérhetőségének fenntartása mellett a fenyegetések és sérülékenységek számát minimalizálja

Mit értünk hálózati határvédelem alatt?

- Azon fizikai és logikai eszközök összessége, melyek az IT Biztonsági Szabályzat ("IBSZ") hálózati határvédelemre vonatkozó követelményeit megvalósítják.
 - Az az eszköz, ami két fizikai hálózat között csak az (IBSZben) engedélyezett szabályok szerinti adatáramlást (CC: FDP IFC és IFF) kényszeríti ki.

Az IT biztonság tervezésének lépései

- A tervezés során felmerülő kérdések (Beyond Fear, Bruce Schneier):
 - Milyen értéket védünk?
 - Milyen kockázati tényezők vannak jelen?
 - A megoldás mennyire hatékonyan csökkenti a kockázatot?
 - Milyen új kockázatot jelent a megoldás?
 - Milyen költségeket és kompromisszumokat jelent a megoldás bevezetése?

A hálózati határvédelem eszközei

- Szabályzatok, eljárásrendek (IBSZ)
- Házirend (policy) karbantartás és a hozzájuk tartozó folyamatok
- Autentikációs adatbázis karbantartása
- Hibajavítás (security patch, nem új verzió telepítés!)
- Monitorozás
- Naplógyűjtés és elemzés (on-line és periodikus)

Kontrollok a hálózati határvédelemben

	Bizalmasság (C)	Sértetlenség (I)	Rendelkezésre állás (A)	Hitelesség	Letagadhatatlanság
Preventív (Pre)	 Hozzáférés korlátozása Rejtjelezés Fizikai szeparáció User authentikáció 	 Rejtjelezés MITM védelem Protokoll elemzés IPS Vírus szűrés protokollban 	•HA •fail-over kapcsolódás	•Korrekt tanúsítvány ellenőrzés •Subject naplózás •Issuer naplózás	Subject naplózásIssuer naplózásURL naplózásAccounting
Detektív (De)	•Napló feldolgozás •ACL ellenőrzés	•Napló feldolgozás •IPS/IDS	Host monitorozásFailOver riasztás	•Napló feldolgozás	•Napló feldolgozás
Korrektív (Co)	Szabály auditSzabály módosítás	•CRL frissítés	•Node bővítés	•CA adatbázis karbantartás •CRL lista frissítés	Szabály auditSzabály módosítás módosítás

Hálózati alapfogalmak

- ISO/OSI modell
- TCP vs UDP
- Hogy néz ki egy kommunikáció

ISO/OSI layer-ek és protokollok

TCP vs UDP

TCP 3-way handshake

Packet flow routing megtartással

Tűzfalak típusai

- Routing megtartása:
 - Packet Filter
 - Stateful Packet Filter
 - Transzparens proxy
 - Moduláris, transzparens proxy
- Routing nélkül:
 - Bastion host
 - Proxy
 - SOCKS

Csomagszűrők

- Működési elv: A bejövő csomagokat tulajdonságaik alapján elfogad (továbbít, routingot végez), elvet vagy eldob illetve naplóz
- Döntés alapja: A csomagok forrása és célja (port és IP), bizonyos flag-ek. Ezért a szabályok csak a csomagokra vonatkoznak (Packet Filter).
 - Működési réteg: IP és transzport
- Megvalósítás: Minta illesztés

Routing tartó tűzfalak

A házirend tárolása

- A házirend (policy vagy szabályrendszer) tárolására szolgáló leggyakoribb eszköz, a hozzáférési lista (ACL - Acces Control List):
 - A minta (pattern) feladata a cél (döntés) kiválasztása;
 - A szabály feladata az illeszkedő (packet) sorsának eldöntése (policy verdict):
 - Engedélyezés vagy tiltás;
 - Ugrás másik szabályra;
 - Naplózás és ugrás másik szabályra;
 - Az ACL-ek feldolgozása általában az első illeszkedésig tart, ezért a számít sorrend (specifikus szabályok előre, átfogók a lista végére).

A házirend tárolása

	Source IP	Dest. IP	Source Port	Dest. Port	Action
1	192.168.21.0				deny
2				23	deny
3		192.168.21.3			deny
4		192.168.21.0		>1023	Allow

Sample Packet Filter Firewall Rule

A házirend tárolása

Csomagszűrő routerek értékelése

Előnyök:

- gyors
- egyszerűen kezelhető szabályrendszer

Hátrányok:

- az alkalmazás szintre nem lát
- többcsatornás protokollok kezelése nem megvalósítható
- sok szabály szükséges (válasz packetek kezelése)

Ismeretlen elemek kezelése:

Az ismeretlen elemeket szűrés nélkül engedik át.

Állapot tartó csomagszűrők

- **Működési elv**: A bejövő csomagokat tulajdonságaik alapján elfogad, továbbít vagy eldob.
- Döntés alapja: A teljes TCP és IP rétegek, (forrás, cél port és IP, seq és ack, csomagok sorrend illetve helye) tehát a kapcsolatok (Ezért állapot tartó – Stateful Packet Filter - SPF).
- Megvalósítás: Mintaillesztés és elemzés
- Többcsatornás protokollok kezelése: Valamilyen modul segítségével felismeri az alkalmazás szintből, hogy hová kell nyitni a további kapcsolatot, majd azt RELATED-nek jelöli.

Állapot tartó csomagszűrők

Állapot tartó értékelése

Előnyök:

- gyors
- kevesebb szabály (nem kell kezelni a válaszokat)

Hátrányok:

- alkalmazás szintre nem lát
- többcsatornás protokollok kezelése nehezen megvalósítható

• Ismeretlen elemek kezelése:

Az ismeretlen elemeket szűrés nélkül engedik át.

Bastion hostok

- Működési elv: A több hálózathoz csatlakozó (dual home vagy multi home) hoszton a bejelentkezett felhasználók szolgáltatásokat vehetnek igénybe (kombinálható csomagszűréssel).
- Döntés alapja: A felhasználók autenikációján alapszik.

Bastion hostok

Screened host firewall (Dual-homed bastion host)

Bastion hostok értékelése

Előnyök:

- Felhasználói autentikáció általában van
- A kliens alkalmazás ellenőrizhető, kézben tartható

Hátrányok:

- Elavult, de felhasználói szolgáltatásokra újra népszerű
- nehezen karbantartható (pl. eltérő verziók felhasználónként)
- erőforrás igényes
- a felhasználó potenciális veszélyforrást jelent
- az alkalmazások sérülékenységei ellen nem nyújt védelmet

Ismeretlen elemek kezelése:

Nem értelmezhető

SOCKS tűzfalak

- Működési elv: Egy speciális, a kliensre telepített alkalmazás elveszi a kapcsolatot az operációs rendszertől és a tűzfalnak adja át.
 - Kicseréli az API hívásokat (beépül az <u>alkalmazás és a TCP</u> <u>réteg közé</u>, fixen a SOCKS szerverhez kapcsolódik) bár létezik olyan alkalmazás ami natívan beszéli a protokollt.
 - Csak kliens védelemre alkalmas (a SOCKS proxy szerver oldalán csak 1 kapcsolat lehet, tehát nem tud sok klienst kiszolgálni.
- Döntés alapja: A csomagok forrása és célja (port és IP) illetve megvalósítás függően az alkalmazási réteget is elemezheti.

SOCKS tűzfalak

SOCKS tűzfalak értékelése

Előnyök:

SOCKSv5-től felhasználói authentikáció megvalósítható (pl. Kerberos SSO)

Hátrányok:

- A kliens alkalmazások általában nem támogatják a SOCKS protokollt.
- Az OS-re telepíteni kell a SOCKS klienst (API csere).
- Szerver nem védhető.

Ismeretlen elemek kezelése:

 Megvalósítás függő, alapvetően nincs alkalmazás szintű védelem.

Alkalmazásszintű tűzfalak

- Működési elv: A kliens a tűzfalon futó alkalmazással (proxy) tart kapcsolatot, az alkalmazás pedig a szerverrel. Fontos hogy ezek a proxyk gyorsítótár (cache) funkcióval nem rendelkeznek.
- Döntés alapja: Az alkalmazási réteg protokollja.
- Megvalósítás: Összetett. Mintaillesztés a hálózati rétegekben valamint mintaillesztés és értelmezés az alkalmazási rétegben. Az értelmezés mélysége függ a megvalósítástól.

Proxy tűzfal

Apache Reverse Proxy.

Proxy tűzfalak értékelése

Előny:

- Alkalmazás szintű védelem
- Protokoll értelmezés, kifinomultabb szűrés
- Többcsatornás protokollok elemzése lehetővé válik

• Hátrány:

- Proxy használatára felkészített kliens szükséges illetve azt támogató protokoll
- Lassabb, bonyolultabb a konfigurálás

Ismeretlen elemek kezelése:

 Megvalósítás függő, az ismeretlen elemek eldobása lehetséges

Transzparencia

- Transzparens működés: A kliens és a szerver azt hiszi, hogy közvetlenül egymással kommunikálnak.
- Nem transzparens működés: A kliens a tűzfallal kommunikál (eltérő protokoll használat lehetséges!).
- A transzparencia értelmezhető:
 - Hálózati szinten (TCP/IP)
 - Alkalmazási szinten
 - Kliens vagy szerver oldalon
 - Lehet szimmetrikus vagy asszimetrikus
- A hálózati és alkalmazásszintű transzparencia lazán kötődik

Hálózati szintű transzparencia

Kliens oldali:

- A kliensek a valódi célszervert IP-jét címzik
- A kliensek a tűzfal IP-jét címzik

Szerver oldali:

 A szerverek a valódi kliens IP-jéről vagy a tűzfal IP címéről látják a kapcsolatot

Alkalmazásszintű transzparencia

Szerver típusú kérés (protokoll) használata, pl.:

GET / HTTP/1.0

Host: www.balasys.hu

Connection: Keep-Alive

Proxy típusú kérés (protokoll) használata, pl.:

GET http://www.balasys.hu HTTP/1.0

Proxy-Connection: Keep-Alive

 Szimmetrikus vagy aszimmetrikus transzparencia: mindkét oldalon ugyanolyan, vagy különböző protokoll használat

Alkalmazásszintű transzparencia

(a) Access network services via a non-transparent proxy.

(b) Access network services via a transparent proxy.

Transzparens proxyk

- Működési elv: A kapcsolatot valamilyen módon eltérítik eredeti céljától a proxyhoz (Ehhez gyakran csomagszűrőt használnak). A kliens és a szerver számára a kommunikáció transzparens.
- Döntés alapja: A kliens és a protokoll minden eleme alkalmazás szinten és az azt hordozó többi réteg (TCP/IP)
- Megvalósítás: Összetett. Mintaillesztés a hálózati rétegekben valamint mintaillesztés és értelmezés az alkalmazási rétegben. Az értelmezés mélysége függ a megvalósítástól.

Transzparens proxy

Moduláris proxyk

- Működési elv: A feladatokat modulokra osztják és a modulokat kapcsolják egymáshoz. Funkcionalitásban egyezik a transzparens proxykkal.
- Döntés alapja: A transzparens proxykkal egyező
- Megvalósítás: A transzparens proxykkal egyező

Moduláris proxyk

Moduláris proxyk értékelése

Előnyök:

- Összetett és többcsatornás protokollok elemzése lehetővé válik
- Nagyobb rugalmasság, stabilitás (KISS elv), mélyebb elemzés, skálázhatóság

Hátrány:

Nagyobb CPU igény

Ismeretlen elemek kezelése:

 Megvalósítás függő, az ismeretlen elemek eldobása lehetséges

Címfordítás

- Az a technológia, mely az eszközön (router vagy tűzfal) áthaladó csomagok forrás vagy cél címét megváltoztatja (NAT: Network Address Translation)
- Fajtái:
 - Egy-egy NAT
 - Sok-egy NAT
 - Forrás és cél NAT (SNAT vagy DNAT)
 - PAT (Port Address Translation)

Címfordítás csomagszűrőkkel

- Csomagszűrők az adott szabályrendszert (minta) illesztik csomagról-csomagra, majd végrehajtják az ott előírt feladatot, ami engedély esetében a routing:
 - Alapvetően ugyanazt az IP csomagot továbbítják
- Címfordításkor a csomagszűrő az áthaladó csomag forrását (esetleg célját) módosítják
 - A válaszok esetében pedig vissza fordítanak

Címfordítás proxy tűzfalakkal

- A proxyk a kliens oldali kapcsolatokat végződtetik, majd a protokoll értelmezés után <u>független</u> kapcsolatot építenek a szerver oldalon, ezért:
 - A szerver oldali kapcsolatának forrása a tűzfal címe (tehát a proxyk natívan végzik a csomagszűrők NAT funkcionalitását)
- Címfordításkor a szerver oldali kapcsolat forrása nem a tűzfal címe (hanem pl. a kliens IP-je).

További határvédelmi funkcionalitások

- Autentikáció
- nIDS és IPS funkcionalitás
- Tartalomszűrés
- Naplózás
- VPN végződtetés (terminálás)

Autentikáció tűzfalakon

- Célja a felhasználó identitásának pontos meghatározása, majd felhasználói jogok hozzárendelése.
- Protokollon belüli (inband): egyes protokollok (pl. ftp és http) támogatják a kliens autentikácóját a proxyn, tűzfalon.
- Protokollon kívüli (outband): valamilyen külső eszközzel, független csatornán azonosítjuk a klienst (így a protokoll nem befolyásolja az autentikációs mechanizmust).

nIDS és IPS funkcionalitás tűzfalakon

- Működési elv: az eszközön áthaladó, engedélyezett forgalomban rossz szándékú aktivitás érzékelése és blokkolása
- Csomagszűrők esetében ez csak kiegészítő eszközzel (modullal) megvalósítható
- Proxyk esetében, amennyiben az ismeretlen protokollelemeket az tiltja, több IPS funkcionalitás megvalósítható

Tartalomszűrés

- Vírusszűrés
- Spam szűrés
- Egyéb tartalom szűrés
 - URL
 - HTML, XML, SOAP (XML validáció)

Naplózás

- Minden tűzfal megoldás az által értelmezett protokoll elemekkel kapcsolatos naplózási funkciókat képes megvalósítani.
- Csomagszűrők csak TCP/IP szinten naplóznak
- Proxyk esetében ez akár a teljes kapcsolat és minden protokoll elem naplózását is jelentheti (erőforrás igényes).
- Accounting információk naplózása lehetséges.

Virtuális Magánhálózatok

- Olyan technológiák összessége, mely egymástól távol eső eszközöket és hálózatokat kötnek össze úgy, hogy a köztük megvalósult kommunikáció bizalmassága, sértetlensége és hitelessége ne sérüljön.
- Megvalósítás: általában valamilyen autentikált, rejtjelezett csatornát használnak.
- Alkalmazás szinten: OpenVPN, SSTP, IP over HTTPS és gyártó-specifikus implementációk
- Transzport szinten: IPSec, Teredo, 6to4

Virtuális Magánhálózatok

VPN megvalósítás tűzfalon

- A kikényszerített házirend a VPN csatornákon is érvényes.
- Rejtjelezett kapcsolatokban is lehetséges protokoll ellenőrzés, vírus és tartalom szűrés (melynek feltételeit az IBSZ-ben rögzíteni kell).
- VPN-ek autentikációja a központi PKI rendszerhez.

Integrált határvédelmi megoldások

- Unified Threat Management
- User-based Firewall

Unified Threat Management

- Packet filter + mintaillesztés
- Alkalmazás felismerés signature database segítségével
- Alap TLS inspection
- URL szűrés
- Tartalom szűrés
- Authentikáció
- VPN

Leánykori nevén Next-generation Firewall

UTM értékelése

Előnyök:

- Több technológiát egyesít
- Egy felületről állítható
- Nagy rugalmasság
- Hátrány:
 - SPF (Single point of failure)
 - Állandó frissítés
 - "checkbox security" a pontos működése az adminisztrátor számára nem ismert
- Ismeretlen elemek kezelése:
 - Megvalósítás és szignatúra függő

User-based Firewall

- Packet filter + beépített authentikáció
- User felismerés több forrásból
- Szabályok a felismert felhasználó alapján lépnek érvényre

User-based Firewall értékelése

- Előnyök:
 - IBSZ-ben megfogalmazott szabályokhoz közeli a konkrét tűzfal konfiguráció
- Hátrány:
 - Nem kiforrott user felismerés (agent nélkül)
 - Rugalmatlan szabályrendszer konfiguráció
- Ismeretlen elemek kezelése:
 - Eldobásra kerülnek

Speciális határvédelmi megoldások

- Threat Intelligence
- Software-defined Networking
- Speciális kiegészítő megoldások
 - Web Application Firewall
 - XML firewall
 - API Firewall
 - Dinamikus malware elemzés
 - Terheléselosztók
 - Privileged access monitoring
 - User behaviour analytics

Threat Intelligence

- A hálózaton található biztonsági eszközök együttműködnek és információforrásként szolgálnak egymás számára
- A detektív kontrollok által felismert fenyegetésekre preventív kontrollt léptet életbe

Példa:

Végponti víruskereső által felismert fertőzés alapján a határvédelmi eszköz lezárja a hoszt hozzáféréseit

Threat Intelligence értékelése

- Előnyök:
 - Kiegészítő megoldásként nagyban növeli akár egy csomagszűrő hatékonyságát
- Hátrány:
 - Bonyolult infrastruktúra
 - Gyártó specifikus megvalósítások (változóban, STIX/TAXXI)
- Ismeretlen elemek kezelése:
 - Eldobásra kerülnek

Software-defined Networking

- Hálózati eszközök konfigurációját teljesen új alapokra helyezi, központosított, pluginelhető, teljesen rugalmas architektúra kialakításával
- A hálózati döntések elszeparálása négy, jól elkülöníthető rétegre (síkra): menedzsment, szolgáltatás, vezérlés és továbbítás
- Vezérlés (kontroller) és továbbítás (switchek, routerek tűzfalak) valósítja meg a határvédelemet és hálózat szegmentálást
- A továbbítási réteg minden kapcsolatra döntést kér a vezérlési rétegtől
- A vezérlés akár alkalmazást is kérdezhet a döntéshez

Software-defined Networking értékelése

Előnyök:

- Dinamikus (pl felhő) infrastruktúrák könnyű kezelése
- Emberi hiba kiküszöbölése nagy hálózatokban
- Bevált elemekből építkezik (VLAN, GRE, stb)

• Hátrány:

- A kontroller Single Point of Failure a hálózaton
- A kontroller biztonsága határozza meg minden eszköz biztonsági szintjét
- Az első csomag latency-je nem determinisztikus
- Nehéz hibakeresés, komplex generált konfiguráció
- Önmagában nem hálózatbiztonsági technológia
- Nem kiforrott

Speciális kiegészítő megoldások

Web Application Firewall

- elterjedt webes sebezhetőségek elhárítása (OWASP Top10)
- szignatúra alapú
- széles körben használt alkalmazások hibáira külön ruleset

XML Firewall

- biztosítja az XML üzenetek megfelelőségét
- parzolás és séma validálás, XML signature ellenőrzés

API Firewall

- biztosítja az API (SOAP és REST) request és response megfelelőségét
- Parzolás, séma validálás, API endpoint alapján
- Naplózás, transzformáció, aggregálás

Speciális kiegészítő megoldások

Dinamikus malware elemzés

- 0-day és ismeretlen malware-ek felismerése
- minták futtatása sandboxban és a footprint elemzése
- viselkedés alapú

Terheléselosztók

- szerepük egyre növekszik és változtik
- alkalmazás szintű tűzfal funkciókat kezdenek megvalósítani
- scriptelhető

Speciális kiegészítő megoldások

Privileged access monitoring

- privilegizált felhasználók hozzáféréseinek rögzítése
- munkamenetek 4-szem elv alapú authorizálása
- másodlagos azonosítás hozzáadása a munkamenethez

User behaviour analytics

- felhasználói viselkedés anomáliáinak felismerése
- machine learning alapú megoldás, baseline építés után automatikus felismerés
- semi-biometrikus adatok (gépelési dinamika, egérmozgás) drámaian növelik a megbízhatóságát

Hálózatbiztonság a felhőben

Szolgáltatófüggő megoldások

- általában állapottartó csomagszűrő (security groups)
- Identity-aware proxy
- minden cloud szolgáltatónál más feature set ÉS túl sok eszköz, nem egyértelmű céllal

Kihívások

- a cloud szolgáltatón belüli forgalom integritása, sértetlensége és hitelessége nem biztosított
- orchestration megoldások nem foglalkoznak a biztonsággal
- bonyolult hálózati architektúra nehezíti a kockázatok felmérését és hibakeresést

Hálózatbiztonság a felhőben

- On-premise virtualizációs infrastruktúra
 - VMware Virtual Distributed Switch ACL-ek (proprietary)
 - OpenStack Nova FwaaS (csomagszűrő), CNI (tunneling)
- Konténer orchestration
 - Kubernetes Ingress Controller (csomagszűrő, proxy és alkalmazásszintű proxy), CNI (tunneling)
- Serverless :D
- Felkészül: Industry4.0 és IoT

Kérdések?

Kovács Bálint Chief Technology Officer kovacs.balint@balasys.hu

Miről volt szó?

- A hálózati határvédelem értelmezése
- Hálózati alapfogalmak
- Tűzfal típusok
- Határvédelmi technológiák
- Speciális határvédelmi megoldások
- Kérdések és válaszok

