Milestone 4 Interpretation of Data

ZULKANAIN BIN HASAN WQD180031

Import data source STOCK and REPLACEMENT node to diagram

Change:

- 1. Default Limits Method to None
- 2. Replacement Values to Missing

- 1. Open Replacement Editor for Interval Variables
- 2. Set adj_close to User Specified at set 1 for it Replacement Lower Limit

- 1. Run the REPLACEMENT node and view the results.
- 2. Result shows 8301 have been Train

- 1. Go back to Diagram and select REPLACEMENT node
- 2. Open Exported Data in General
- 3. Select TRAIN and Explore

- 1. TRAIN table shows Replacement have been done to adj_close as per data table
- 2. Dot (.) indicates a missing value

- 1. Open Sample and add DATA PARTITION node to diagram
- 2. Select DATA PARTITION node
- 3. Change Data Set Allocations Training to 50 and Validation to 50

- 1. Run DATA PARTITION node and view the results
- 2. Results shows TRAIN and VALIDATE are divide equally 50:50

- 1. Open Model and add DECISION TREE node to diagram
- 2. Select DECISION TREE node
- 3. Open Interactive at Train
- 4. Interactive Decision Tree will shows it properties

- 1. Open Split Node 1 by right-click purple box
- 2. Diff variable shows the highest logworth

- 1. Select Input to split
- 2. Go to Edit Rule
- 3. Select Apply at Interval Split Rule

< 0.0012 or Missing shows higher concentration

- 1. Split purple box
- 2. Select adj_close to Split
- 3. Go to Edit Rule
- 4. Apply the Interval Split Rule

Split results shows ...or Missing has higher concentration

Select Train Node to create the Maximal Tree

- 1. Select View and select Subtree Assessment Plot
- 2. 4 leaf-trees generate a lower misclassification rate

Change Use Frozen Tree in Train from No to Yes in order to assess Decision Tree

- 1. Run the DECISION TREE node and view the results
- 2. Results shows variety of diagnostic plots and tables

Here is how to assess Assessment Plot based on Average Square Error

- 1. Back to diagram and rename DECISION TREE node to MAXIMAL TREE
- 2. Add another DECISION TREE node
- 3. Change DECISION TREE node properties under Subtree; Method to Assessment and Assessment Measure to Decision

Results

Optimal tree generated by DECISION TREE node

- 1. Create PROBABILITY TREE node by adding and renamed new DECISION TREE node
- 2. Change Assessment Measure in Subtree to Average Square Error

Run the PROBABILITY TREE node and view the results

Results of Probability Tree

