

MULTIVARIATE PROBABILITY DISTRIBUTIONS IN R

Reading multivariate data

Surajit Ray
Senior Lecturer, University of Glasgow

Course topics

- Read and analyze multivariate data
- Explore plotting techniques
- Use common statistical distributions
 - Gaussian and T distribution
- Techniques for high-dimensional data
 - Principal component analysis (PCA)

Structure of multivariate data

- Rectangular in shape organized by rows and columns
 - Rows represent observations
 - Columns represent variables
- May or may not include:
 - Row names or numbers
 - Column headers
- Possible missing data

Multivariate data examples

Iris Data from Cambridge University website

```
5.1 3.5 1.4 0.2 1
4.9 3.0 1.4 0.2 1
4.7 3.2 1.3 0.2 1
```

Birth Weight data (CSV with column header)

```
"", "case", "bwt", "gestation", "parity", "age", "height", "weight", "smoke"
"1", 1, 120, 284, 0, 27, 62, 100, 0
"2", 2, 113, 282, 0, 33, 64, 135, 0
```


Reading data

From a URL

```
iris_url <- "http://mlg.eng.cam.ac.uk/teaching/3f3/1011/iris.data"
iris_raw <- read.table(iris_url, sep ="", header = FALSE)</pre>
```

Locally

```
iris_raw <- read.table("iris.txt", sep = "", header = FALSE)</pre>
```


Viewing the dataset

```
head(iris_raw, n = 4)

V1 V2 V3 V4 V5

1 5.1 3.5 1.4 0.2 1

2 4.9 3.0 1.4 0.2 1

3 4.7 3.2 1.3 0.2 1

4 4.6 3.1 1.5 0.2 1
```


Assigning column names

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 1
2 4.9 3.0 1.4 0.2 1
3 4.7 3.2 1.3 0.2 1
4 4.6 3.1 1.5 0.2 1
5 5.0 3.6 1.4 0.2 1
6 5.4 3.9 1.7 0.4 1
```


Accessing specific columns

Check current names of columns

```
names(iris_raw)
"Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
```

Accessing Sepal length and Sepal width columns

```
iris_raw[, 1:2]
iris[, c('Sepal.Length', 'Sepal.Width')]
```


Changing data types

Change the last variable Species to a factor

```
iris_raw$species <- as.factor(iris_raw$species)

str(iris_raw)

'data.frame': 150 obs. of 5 variables:
   $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
   $ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
   $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
   $ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
   $ Species : Factor w/ 3 levels "1", "2", "3": 1 1 1 1 1 1 1 1 1 1 ...</pre>
```


Assigning factor labels

Recode the species labels from 1, 2 and 3 to setosa, versicolor and virginica

- Assign factor labels
- Change first variable to a factor

```
str(iris_raw)

'data.frame': 150 obs. of 5 variables:
   $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
   $ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
   $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
   $ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
   $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1
```


Reading csv data with named columns

Birth Weight data (CSV with column header)

```
"","case","bwt","gestation","parity","age","height","weight","smoke"
"1",1,120,284,0,27,62,100,0
"2",2,113,282,0,33,64,135,0
"3",3,128,279,0,28,64,115,1
"4",4,123,NA,0,36,69,190,0
```

Reading Birth Weight data

MULTIVARIATE PROBABILITY DISTRIBUTIONS IN R

Let's read some multivariate data!

MULTIVARIATE PROBABILITY DISTRIBUTIONS IN R

Mean vector and variancecovariance matrix

Senior Lecturer, University of Glasgow

Mean represents the location of the distribution

Mean 0.95

Mean vector (0.95 1.89)

Variance-covariance matrix represents the spread

Variance 1.02

Variance-covariance
$$\begin{pmatrix} 1.02 & 0.97 \\ 0.97 & 2 \end{pmatrix}$$

Calculating the mean

```
colMeans(iris_raw[, 1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width

5.84 3.05 3.76 1.20
```

Functions that calculate means by subgroups

- by()
- aggregate()

Calculating the group mean using by

Calculating the group mean using aggregate

```
aggregate(. ~ Species, iris_raw, mean)

Species Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.01 3.42 1.46 0.244

2 versicolor 5.94 2.77 4.26 1.326

3 virginica 6.59 2.97 5.55 2.026
```


Calculating the variance-covariance and correlation matrices

Variance

```
var(iris raw[, 1:4])
          Sepal.Length Sepal.Width Petal.Length Petal.Width
              0.6857
                      -0.0393
                                 1.274
                                           0.517
Sepal.Length
Sepal.Width -0.0393 0.1880
                                 -0.322
                                           -0.118
Petal.Length 1.2737 -0.3217
                                 3.113 1.296
                                  1.296
Petal.Width 0.5169
                       -0.1180
                                           0.582
```

Correlation

```
cor(iris raw[, 1:4])
         Sepal.Length Sepal.Width Petal.Length Petal.Width
                            0.872
Sepal.Length
              1.000
                      -0.109
                                          0.818
                                -0.421
Sepal.Width
             -0.109 1.000
                                         -0.357
Petal.Length 0.872 -0.421 1.000 0.963
Petal.Width
         0.818
                   -0.357 0.963
                                         1.000
```

Visualization of correlation matrix

corrplot function to visualize correlation plot

```
corrplot(cor(iris_raw[, 1:4]), method = "ellipse")
```


Interpretation of means

Means

Species	Petal.Length	Petal.Width
setosa	1.46	0.244
versicolor	4.26	1.326
virginica	5.55	2.026

Interpretation of variances

setosa	Petal.Length	Petal.Width
Petal.Length	0.030	0.006
Petal.Width	0.006	0.011
versicolor	Petal.Length	Petal.Width
Petal.Length	0.221	0.073
Petal.Width	0.073	0.039
virginica	Petal.Length	Petal.Width
Petal.Length	0.305	0.049
Petal.Width	0.049	0.075

MULTIVARIATE PROBABILITY DISTRIBUTIONS IN R

Let's practice!

MULTIVARIATE PROBABILITY DISTRIBUTIONS IN R

Plotting multivariate data

Surajit Ray
Senior Lecturer, University of Glasgow

Various plotting options

- Basic R plot
- lattice library
- ggplot
- 3D plotting options

Basic R plot for multivariate data

```
pairs(iris_raw[, 1:4])
```


Plot not as useful with many variables

Pairs plot by color

```
pairs(iris_raw[, 1:4], col = iris_raw$Species)
```


Lattice

```
library(lattice)
splom(~iris_raw[, 1:4], col = iris_raw$Species, pch = 16)
```


Using ggplot

```
library(ggplot2)
library(GGally)
ggpairs(data = iris_raw, columns = 1:4, mapping = aes(color = Species))
```


3D plots

```
library(scatterplot3d)
scatterplot3d(iris_raw[, c(1, 3, 4)], color = as.numeric(iris_raw$Species))
```


3D plots

MULTIVARIATE PROBABILITY DISTRIBUTIONS IN R

Let's practice some plotting with the wine data!