National Textile University, Faisalabad

Department of Computer Science

Name:	MUHAMMAD UMAIR		
Class:	BSCS 5th-B		
Registration No:	23-NTU-CS-1054		
Assignment No:	# 1 Task A		
Course Name:	IoT Embedded Systems		
Submitted To:	Nasir Mehmood		
Submission Date:	26 - 10 - 2025		

Assignment No 1

Task B

Code

```
// Muhammad Umair
                    23-NTU-CS-1054
// Task A: Multi-Mode LED Control System with OLED Display and PWM
#include <Arduino.h>
#include <Wire.h>
#include <Adafruit GFX.h>
#include <Adafruit SSD1306.h>
// OLED CONFIGURATION
#define SCREEN WIDTH 128
                               // OLED display width (pixels)
#define SCREEN HEIGHT 64
                                // OLED display height (pixels)
Adafruit SSD1306 oled(SCREEN WIDTH, SCREEN HEIGHT, &Wire, -1); // OLED object (no reset pin)
// GPIO PIN ASSIGNMENTS
#define yellowLED 19
                              // Yellow LED pin
#define greenLED 18
                               // Green LED pin
                              // Red LED pin
#define redLED 17
#define MODE BUTTON 25
                              // Mode button pin
#define RESET_BUTTON 26
                               // Reset button pin
// PWM SETTINGS
#define PWM_YELLOW_CHANNEL 0 // PWM channel for yellow LED
#define PWM_GREEN_CHANNEL 1 // PWM channel for green LED
#define PWM_RED_CHANNEL 2 // PWM channel for red LED
#define PWM_FREQ 5000 // PWM frequency (5 kHz)
#define PWM RES 10
                              // PWM resolution (10-bit = 0-1023 range)
// TIMER VARIABLES
hw_timer_t *blinkTimer = nullptr; // Timer handler for blink sequence
volatile int blinkStep = 0;  // Tracks which LED is active in blink mode
// STATE VARIABLES
int currentMode = 0;
                                   // 0: All OFF, 1: Blink, 2: All ON, 3: PWM Fade
bool prevBtnMode = HIGH;
bool prevBtnMode = HIGH; // Stores previous Mode button state
bool prevBtnReset = HIGH; // Stores previous Reset button state
unsigned long lastDebounceTime = 0;// Tracks time for debounce
const int debounceDelay = 500;  // 500 ms debounce delay
```

```
// FUNCTION: Display current mode on OLED
void displayMode() {
 oled.clearDisplay();
 oled.setTextSize(2);
  oled.setTextColor(SSD1306 WHITE);
  oled.setCursor(0, 0);
  oled.println(" LED Modes");
  oled.drawLine(0, 18, 127, 18, SSD1306 WHITE);
  oled.setTextSize(1);
  oled.setCursor(10, 30);
 // Show mode title
  switch (currentMode) {
    case 0: oled.print("Mode 1: All OFF"); break;
    case 1: oled.print("Mode 2: Blinking"); break;
    case 2: oled.print("Mode 3: All ON"); break;
    case 3: oled.print("Mode 4: PWM Fade"); break;
  oled.display(); // Refresh OLED
// INTERRUPT SERVICE ROUTINE (Blink Mode)
void IRAM ATTR onBlinkTimer() {
  if (currentMode != 1) return; // Only run when in blink mode
  blinkStep = (blinkStep + 1) % 3; // Step through 0 \rightarrow 1 \rightarrow 2 \rightarrow 0
  switch (blinkStep) {
    case 0: // Yellow ON
      ledcWrite(PWM YELLOW CHANNEL, 255);
      ledcWrite(PWM GREEN CHANNEL, 0);
      ledcWrite(PWM_RED_CHANNEL, 0);
      break;
    case 1: // Green ON
      ledcWrite(PWM YELLOW CHANNEL, 0);
      ledcWrite(PWM GREEN CHANNEL, 255);
      ladelinita/DUM DED CHANNEL A).
```

```
case 1: // Green ON
      ledcWrite(PWM YELLOW CHANNEL, 0);
      ledcWrite(PWM GREEN CHANNEL, 255);
      ledcWrite(PWM_RED_CHANNEL, 0);
      break:
    case 2: // Red ON
      ledcWrite(PWM YELLOW CHANNEL, 0);
      ledcWrite(PWM GREEN CHANNEL, 0);
      ledcWrite(PWM RED CHANNEL, 255);
      break;
// SETUP FUNCTION
void setup() {
  Serial.begin(115200); // Initialize serial monitor
 // Configure LED pins
  pinMode(yellowLED, OUTPUT);
 pinMode(greenLED, OUTPUT);
 pinMode(redLED, OUTPUT);
 // Configure button pins
 pinMode(MODE BUTTON, INPUT PULLUP);
 pinMode(RESET_BUTTON, INPUT_PULLUP);
 // Initialize OLED
 if (!oled.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {
    Serial.println(F("OLED initialization failed!"));
    for (;;) {} // Halt execution if OLED not found
  oled.clearDisplay();
 oled.display();
 // Setup PWM for all LEDs
  ledcSetup(PWM_YELLOW_CHANNEL, PWM_FREQ, PWM_RES);
                        ♥ 🔽 🗑 Default (Task A) 🛡 Auto 🕏 Live Share
```

```
ledcAttachPin(redLED, PWM_RED_CHANNEL);
 // Setup hardware timer (used for blink mode)
 blinkTimer = timerBegin(0, 80, true);
                                                       // 1 \text{ tick} = 1 \mu s (80 MHz / 80)
 timerAttachInterrupt(blinkTimer, &onBlinkTimer, true);
 timerAlarmWrite(blinkTimer, 500000, true);
                                                  // 500 ms interval
 timerAlarmEnable(blinkTimer);
 // Turn off all LEDs initially
 ledcWrite(PWM_YELLOW_CHANNEL, 0);
 ledcWrite(PWM GREEN CHANNEL, 0);
 ledcWrite(PWM_RED_CHANNEL, 0);
 displayMode(); // Display initial mode
// MAIN LOOP
void loop() {
 bool btnMode = digitalRead(MODE BUTTON);
 bool btnReset = digitalRead(RESET_BUTTON);
 // Debounce both buttons
 if (millis() - lastDebounceTime > debounceDelay) {
   // Mode Button
   if (btnMode == LOW && prevBtnMode == HIGH) {
     currentMode = (currentMode + 1) % 4; // Cycle through modes 0-3
     blinkStep = 0;
     displayMode();
     lastDebounceTime = millis();
   if (btnReset == LOW && prevBtnReset == HIGH) {
      currentMode = 0; // Reset to Mode 0 (All OFF)
     blinkStep = 0;
     displayMode();
      lastDebounceTime = millis();
```

```
prevutnmode = btnmode;
prevBtnReset = btnReset;
// MODE HANDLING
switch (currentMode) {
    ledcWrite(PWM_YELLOW_CHANNEL, 0);
    ledcWrite(PWM GREEN CHANNEL, 0);
    ledcWrite(PWM RED CHANNEL, 0);
   break;
 case 1: // MODE 2: Blinking (handled by timer ISR)
   break;
    ledcWrite(PWM YELLOW CHANNEL, 255);
    ledcWrite(PWM GREEN CHANNEL, 255);
    ledcWrite(PWM_RED_CHANNEL, 255);
   break;
  case 3: // MODE 4: PWM Fading Effect
    for (int dutyCycle = 0; dutyCycle <= 1024 && currentMode == 3; dutyCycle++) {</pre>
      // Fade-in
      ledcWrite(PWM YELLOW CHANNEL, dutyCycle);
      ledcWrite(PWM GREEN CHANNEL, dutyCycle);
      ledcWrite(PWM_RED_CHANNEL, dutyCycle);
      delay(5);
      if (digitalRead(MODE BUTTON) == LOW || digitalRead(RESET BUTTON) == LOW) return;
    for (int dutyCycle = 1024; dutyCycle >= 0 && currentMode == 3; dutyCycle--) {
      ledcWrite(PWM_YELLOW_CHANNEL, dutyCycle);
      ledcWrite(PWM GREEN CHANNEL, dutyCycle);
      ledcWrite(PWM RED CHANNEL, dutyCycle);
      delay(5);
      if (digitalRead(MODE BUTTON) == LOW || digitalRead(RESET BUTTON) == LOW) return;
    break;
```

Brief Explanation about Code:

This program is built for an **ESP32** that uses three LEDs (yellow, green, and red), two buttons, and an **OLED display**. It allows switching between multiple lighting modes with smooth transitions and clear visual feedback.

When the system starts, the OLED shows the current mode. There are **four modes** in total, controlled by the **Mode** and **Reset** buttons:

Mode 1 – All OFF: All LEDs remain turned off.

- Mode 2 Blinking: LEDs blink one after another (yellow → green → red) automatically using a timer.
- Mode 3 All ON: All three LEDs light up together.
- Mode 4 PWM Fade: LEDs gradually fade in and out using PWM (Pulse Width Modulation).

Pressing the **Mode button** cycles through these modes, while the **Reset button** returns the system to "All OFF." The **OLED display** updates each time to show the current mode.

In short, the project demonstrates **multi-mode LED control** with real-time **OLED feedback**, **PWM brightness effects**, and **responsive button handling** using hardware timers and interrupts.

Build Output

Upload Output

PWM Fading

All ON

All Blinking

All Off

Pin Map

Pin No	Name	Function	Use Case
GND.2	Ground	Common Ground	For all LEDs,
			Buzzer, Buttons, OLED
25	GPIO 25	Pin for Blue Button	Output for Blue
			Button (Modebtn)
26	GPIO 26	Pin for White	Output for White
		Button	Button (Resetbtn)
27	GPIO 27	Pin for Buzzer	Output for Buzzer
3v3	Power	3.3V output power	OLED VCC
22	GPIO 22	I2C SCL	OLED SCL
21	GPIO 21	I2C SDA	OLED SDA
19	GPIO 19	Pin for Yellow LED	Output for Yellow
			LED
18	GPIO 18	Pin for Green LED	Output for Green
			LED
17	GPIO 17	Pin for Red LED	Output for Red LED

Sketch

