IE1 2020 PCC2+AS2+SC2

Exo1	Electrocinétique	6.5 points
Q1 (1.5)	Association série de $Z_L = jL\omega$, $Z_R = R$, $Z_C = \frac{1}{jC\omega}$: $\underline{Z} = R + j(L\omega - \frac{1}{C\omega})$	0.5
(1.5)	Module: $ \underline{Z} = \sqrt{R^2 + (L\omega - \frac{1}{C\omega})^2}$ minimal $qd L\omega = \frac{1}{C\omega}$, soit $\omega_b = \frac{1}{\sqrt{LC}} = 10^3$ rad/s	0.5(litt)+0.5(AN)
Q2	$\frac{1}{ C\omega }$	0.5
(3)	$\frac{\underline{H}(j\omega) = \frac{\overline{jC\omega}}{R + j(L\omega - \frac{1}{C\omega})}$	
	$Si \omega \rightarrow 0, H \rightarrow 1. \ Et \ si \omega \rightarrow \infty, H \rightarrow 0.$	0.5
	$\underline{H}(j\omega_0) = \frac{1}{jRC\omega_0} d'argument - \frac{\pi}{2} et de module 10$	0.5+0.25+0.25
	Bonus pour tout commentaire soulignant que le gain peut donc être >1 pour ce filtre passif Allure du graphe :	(+0.5bonus)
	Bande passante indiquée à -3 dB si $GdB(\omega)$ ou à $Gmax/\sqrt{2}$ si $G(\omega)$.	0.5
		0.5
Q3	$u_C = q/C$, $u_R = Ri = Rdq/dt$, $u_L = L di/dt = L d^2q/dt^2$	0.5
(2)	d'où l'équation différentielle du second ordre E_0 = q/C + Rdq/dt + L d ² q/dt ²	0.5
	Continuité du courant dans la bobine, continuité de la charge du condensateur	0.5
	Donc $i(0^+)=0$ et $q(0^+)=0$	0.5

Exo2	Champ de vecteurs	6 points
Q1	Schéma avec les 2 fils, les 3 axes, a, b, M, et $\overrightarrow{B_1}$ et $\overrightarrow{B_2}$	1 (seult 0.5 si il
(2)	Dans le demi-plan $y = 0$, $x > 0$, $\theta = 0$ et donc $\overrightarrow{u_{\theta}}$ coïncide avec $\overrightarrow{u_{y}}$, r avec x	manque les
	$\overrightarrow{B_1} = \frac{\mu_0 I}{2\pi x} \overrightarrow{u_y}$, Le champ engendré par l'autre fil est de même sens : $\overrightarrow{B_2} = \frac{\mu_0 I}{2\pi (b-x)} \overrightarrow{u_y}$	champs)
	$(\overrightarrow{u_{\theta}} \ coincide \ avec \ - \overrightarrow{u_{y}}, \ r \ avec \ b-x, \ I \ change \ de \ signe)$	0.5 B ₁ + 0.5 B ₂
Q2	Les champs sont colinéaires et de sens opposé à la normale.	
(2)	$\overrightarrow{B_1} \cdot \overrightarrow{dS} = \frac{-\mu_0 I}{2\pi x} dx dz$ s'intègre en $\frac{-\mu_0 I}{2\pi} h \ln(\frac{b-a}{a})$; même valeur pour le flux de B2 (en	1 pour flux B1
	repassant à la variable $r = b-x$!); d'où le flux total : $\frac{-\mu_0 I}{\pi} h \ln(\frac{b-a}{a})$.	1 pour total
Q3	Calcul de $\overrightarrow{rot}(\overrightarrow{A})$ justifié (avec \overrightarrow{rot} en cylindrique)	0.5
(2)	Stokes \rightarrow flux $\overrightarrow{B_1}$ de = circulation de \overrightarrow{A} sur le contour orienté par $-\overrightarrow{u_y}$	0.5
	En partant du coin x=a et z=0, les 4 contributions à la circulation de \vec{A} sont 0, 0, $\frac{-\mu_0 I}{2\pi}h$	1
	$ln(\frac{b-a}{a})$, 0. (Donc bien la mm chose qu'à la question 2 \rightarrow bonus de 0.25)	(+bonus 0.25)

Exo3	Electrostatique	7.5 points
Q1	Schéma avec axes, mur entre -a et +a, et un point M	0.25
(1.5)	En un point M quelconque de l'espace, tout plan contenant la droite (M, ux) est plan de	0.5
	symétrie <u>des charges</u> donc du champ E, donc E est orienté selon ux	
	Invariance de la distribution <u>des charges</u> par translation selon uy ou uz : donc E ne dépend	0.25
	que de x.	
	\Rightarrow E = f(x) ux	
	Un plan de symétrie particulier des charges : $x = 0$, donc le champ en $+ x$ est l'opposé du	0.5
	champ en -x : la fonction $f(x)$ est impaire, en particulier $f(0) = 0$. (pas exigé dans cette	
	question mais utile ultérieurement : mettre les 0.5pt qd c'est dit)	
Q2	Méthode locale : exiger la détermination claire des constantes d'intégration (continuité de	
(3)	E citée et mathématiquement écrite).	
	Méthode intégrale : exiger la boite de gauss sur le schéma ainsi que la justification pour le	
	calcul du flux si tous les coté (simplification du produit scalaire et intégrale)	
	Dans tous les cas ne mettre les 2.5 points que si c'est clair et bien rédigé (1 pt max pour	2.5
	<u>résultat mal expliqué).</u>	
	Résultat : pour $0 < x < a$, $f(x) = \rho x^2/(2\varepsilon_0 a)$, si $x>a$ $f(x) = \rho a/2\varepsilon_0$	
	Du côté x< 0 les valeurs s'obtiennent par imparité.	0.5
Q3	E = -grad(V) signifie $dV/dx = -f(x)$	0.5
(3)	Pour $0 < x < a$, $V = -\rho x^3/6 \varepsilon_0 a + c$; c est nulle car l'énoncé impose $V(x = 0)$	1
	Pour x > a, V = - ρ ax/2 ϵ 0 + k, continuité de V en a : - ρ a²/6 ϵ 0 =- ρ a²/2 ϵ 0 +k, d'où k=+ ρ a²/3 ϵ 0	1
	La fonction V(x) est paire, f étant impaire.	(+bonus 0.5)
	Allure de E(x) correcte	0.5