

Deep Adaptive Image Clustering

Jianlong Chang^{1;2}, Lingfeng Wang¹, Gaofeng Meng¹, Shiming Xiang^{1;2}, Chunhong Pan¹

¹ National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

² University of Chinese Academy of Sciences

Introduction

Image search Image retrieval

What is a natural grouping among these objects?

Find potential customers Consumer behavior research

Related work

Multi-stage

- Extracting features (HoG, etc.) or learning features
- Clustering by using the features
- The learned features are fixed, the representations can not be further improved to obtain better performance.

Definition

Clustering is the task of grouping a set of objects in such a way that objects in the same group are more similar to each other than to those in other groups.
 --from Wikipedia

DAC: Motivation

From the definition

- For two data points
 - Same group
 - Different group

Binary pairwise classification

DAC: Motivation

DAC model

$$\min_{\mathbf{w}} \mathbf{E}(\mathbf{w}) = \sum_{i,j} L(r_{ij}, g(\mathbf{x}_i, \mathbf{x}_j; \mathbf{w}))$$

 r_{ij} : the unknown binary variable (1:same cluster; 0:different cluster). $g(\mathbf{x}_i, \mathbf{x}_j; \mathbf{w})$: the estimated similarity.

Problems

- The clusters are unacquirable by only accessing to $g(\mathbf{x}_i, \mathbf{x}_j; \mathbf{w})$
- $-r_{ij}$ is unknown in clustering.

(5)

DAC: Label features

Clustering constraint

$$g(\mathbf{x}_i, \mathbf{x}_j; \mathbf{w}) = f(\mathbf{x}_i; \mathbf{w}) \cdot f(\mathbf{x}_j; \mathbf{w}) = \mathbf{l}_i \cdot \mathbf{l}_j,$$

$$\forall i, \parallel \mathbf{l}_i \parallel_2 = 1, \text{ and } l_{ih} \geq 0, h = 1, \dots, k,$$

- *k* is the predefined number of clusters.
- g(.,.) represents the cosine distance.
- f is a CNN model in our method.

DAC model

$$\min_{\mathbf{w}} \mathbf{E}(\mathbf{w}) = \sum_{i,j} L(r_{ij}, \mathbf{l}_i \cdot \mathbf{l}_j),$$

s.t. $\forall i, \| \mathbf{l}_i \|_2 = 1$, and $l_{ih} \geq 0, h = 1, \dots, k$.

DAC: Label features

We have

THEOREM 1. If the optimal value of Eq. (5) is attained, for $\forall i, j, \mathbf{l}_i \in \mathbb{E}^k$, $\mathbf{l}_i \neq \mathbf{l}_j \Leftrightarrow r_{ij} = 0$ and $\mathbf{l}_i = \mathbf{l}_j \Leftrightarrow r_{ij} = 1$.

 E^k : the standard basis of the k-dimensional Euclidean space

- Label features are k diverse one-hot vectors ideally.
- $\mathbf{l}_i \neq \mathbf{l}_j \Leftrightarrow r_{ij} = 0$ and $\mathbf{l}_i = \mathbf{l}_j \Leftrightarrow r_{ij} = 1$.
- Clustering based on the learned label features.

DAC: Similarity estimation

Selecting similar/dissimilar samples

$$r_{ij} := \begin{cases} 1, & \text{if } \mathbf{l}_i \cdot \mathbf{l}_j \ge u(\lambda), \\ 0, & \text{if } \mathbf{l}_i \cdot \mathbf{l}_j < l(\lambda), \\ & \text{None, otherwise,} \end{cases} i, j = 1, \dots, n,$$

Curriculum learning (Self-paced Learning)

- $u(\lambda)$ is gradually decreased.
- $-l(\lambda)$ is gradually increased.
- $u(\lambda) = l(\lambda)$: all the samples are used for training.

DAC: Model

DAC model

Learn label feature Select samples

$$\min_{\mathbf{w},\lambda} \mathbf{E}(\mathbf{w},\lambda) = \sum_{i,j} v_{ij} L(r_{ij}, \mathbf{l}_i \cdot \mathbf{l}_j) + u(\lambda) - l(\lambda),$$

s.t.
$$l(\lambda) \leq u(\lambda)$$
, $v_{ij} \in \{0, 1\}, \ i, \ j = 1, \cdots, n$, $\forall i, \| \mathbf{l}_i \|_2 = 1$, and $l_{ih} \geq 0, \ h = 1, \cdots, k$,
$$r_{ij} := \begin{cases} 1, & \text{if } \mathbf{l}_i \cdot \mathbf{l}_j \geq u(\lambda), \\ 0, & \text{if } \mathbf{l}_i \cdot \mathbf{l}_j < l(\lambda), \ i, \ j = 1, \cdots, n, \\ \text{None, otherwise,} \end{cases}$$

where \mathbf{v} is an indicator coefficient, *i.e.*,

$$v_{ij} := \begin{cases} 1, & \text{if } r_{ij} \in \{0, 1\}, \\ 0, & \text{otherwise,} \end{cases} \quad i, j = 1, \dots, n,$$

DAC: Algorithm

Clustering constraint

A restraint layer is devised in CNN to learn label features

$$L_h^{out} := \exp^{L_h^{in} - \max_h (L_h^{in})}, \ h = 1, \dots, k,$$

$$L_h^{out} := \frac{L_h^{out}}{\| \mathbf{L}^{out} \|_2}, \ h = 1, \dots, k,$$

Alternating iterative optimization

fixing:
$$\lambda \Rightarrow \min_{\mathbf{w}} \mathbf{E}(\mathbf{w}) = \sum_{i,j} v_{ij} L(r_{ij}, f(\mathbf{x}_i; \mathbf{w}) \cdot f(\mathbf{x}_j; \mathbf{w}))$$

fixing: $w \Rightarrow \min_{\lambda} \mathbf{E}(\lambda) = u(\lambda) - l(\lambda)$

Clustering

$$c_i := \arg\max_h(l_{ih}), \ h = 1, \cdots, k,$$

DAC: Flowchart

- Step 1 generates the label features of the samples by using a CNN.
- Step 2 calculates the cosine similarities based on the label features.
- Step 3 selects training samples according to the cosine similarities.
- Step 4 trains the CNN the binary pairwise-classification model.
- Iterate step 1 to step 4 until all the samples are considered.

Datasets (5 image datasets)

Table 1. The image datasets used in our experiments.

Dataset	Images	Clusters	Image size				
MNIST [16]	70000	10	28×28				
CIFAR-10 [14]	60000	10	$32 \times 32 \times 3$				
CIFAR-100 [14]	60000	20	$32 \times 32 \times 3$				
STL-10 [5]	13000	10	$96 \times 96 \times 3$				
ImageNet-10 [7]	13000	10	$96 \times 96 \times 3$				
ImageNet-Dog [7]	19500	15	$96 \times 96 \times 3$				

Compared methods (13 approaches)

Table 2. The clustering results of various methods on six datasets. The best three results are highlighted in **bold**. DAC* represents that all the samples are considered for training in each iteration.

Dataset	MNIST [16]		CIFAR-10 [14]		CIFAR-100 [14]		STL-10 5		ImageNet-10 🔼			ImageNet-Dog [7]						
Metric	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	ACC
K-means 32	0.4997	0.3652	0.5723	0.0871	0.0487	0.2289	0.0839	0.0280	0.1297	0.1245	0.0608	0.1920	0.1186	0.0571	0.2409	0.0548	0.0204	0.1054
SC [40]	0.6626	0.5214	0.6958	0.1028	0.0853	0.2467	0.0901	0.0218	0.1360	0.0978	0.0479	0.1588	0.1511	0.0757	0.2740	0.0383	0.0133	0.1111
AC 9	0.6094	0.4807	0.6953	0.1046	0.0646	0.2275	0.0979	0.0344	0.1378	0.2386	0.1402	0.3322	0.1383	0.0674	0.2420	0.0368	0.0207	0.1385
NMF [3]	0.6082	0.4298	0.5447	0.0814	0.0338	0.1895	0.0791	0.0263	0.1175	0.0962	0.0458	0.1804	0.1316	0.0652	0.2302	0.0442	0.0155	0.1184
AE 🚺	0.7257	0.6139	0.8123	0.2393	0.1689	0.3135	0.1004	0.0476	0.1645	0.2496	0.1610	0.3030	0.2099	0.1516	0.3170	0.1039	0.0728	0.1851
SAE [18]	0.7565	0.6393	0.8271	0.2468	0.1555	0.2973	0.1090	0.0436	0.1567	0.2520	0.1605	0.3203	0.2122	0.1740	0.3254	0.1129	0.0729	0.1830
DAE [30]	0.7563	0.6467	0.8316	0.2506	0.1627	0.2971	0.1105	0.0460	0.1505	0.2242	0.1519	0.3022	0.2064	0.1376	0.3044	0.1043	0.0779	0.1903
DeCNN 39	0.7577	0.6691	0.8179	0.2395	0.1736	0.2820	0.0923	0.0378	0.1327	0.2267	0.1621	0.2988	0.1856	0.1421	0.3130	0.0983	0.0732	0.1747
SWWAE [41]	0.7360	0.6518	0.8251	0.2330	0.1638	0.2840	0.1034	0.0391	0.1472	0.1962	0.1358	0.2704	0.1761	0.1603	0.3238	0.0936	0.0760	0.1585
AEVB [13]	0.7364	0.7129	0.8317	0.2451	0.1674	0.2908	0.1079	0.0403	0.1517	0.2004	0.1464	0.2815	0.1934	0.1683	0.3344	0.1074	0.0786	0.1788
GAN [21]	0.7637	0.7360	0.8279	0.2646	0.1757	0.3152	0.1200	0.0453	0.1510	0.2100	0.1390	0.2984	0.2250	0.1571	0.3459	0.1213	0.0776	0.1738
JULE 36	0.9130	0.9270	0.9640	0.1923	0.1377	0.2715	0.1026	0.0327	0.1367	0.1815	0.1643	0.2769	0.1752	0.1382	0.3004	0.0537	0.0284	0.1377
DEC 35	0.7716	0.7414	0.8430	0.2568	0.1607	0.3010	0.1358	0.0495	0.1852	0.2760	0.1861	0.3590	0.2819	0.2031	0.3809	0.1216	0.0788	0.1949
DAC*	0.9246	0.9406	0.9660	0.3793	0.2802	0.4982	0.1623	0.0776	0.2189	0.3474	0.2351	0.4337	0.3693	0.2837	0.5026	0.1815	0.0953	0.2455
DAC	0.9351	0.9486	0.9775	0.3959	0.3059	0.5218	0.1852	0.0876	0.2375	0.3656	0.2565	0.4699	0.3944	0.3019	0.5272	0.2185	0.1105	0.2748

MNIST (10 classes)

- The label features learned by DAC
- MNIST/STL-10 datasets

 Various Number of Clusters on ImageNet (1300 images per clusters)

 Various Number of Clusters on MNIST and CIFAR-10

> The superiority of DAC holds with the various number of samples.

Conclusions

A single-stage method for clustering images

A binary constrained pairwise-classification model

Features are one-hot vectors (effective and efficient)

Relationships between data points is important

Future work

THEOREM 1. If the optimal value of Eq. (5) is attained, for $\forall i, j, \mathbf{l}_i \in \mathbb{E}^k$, $\mathbf{l}_i \neq \mathbf{l}_j \Leftrightarrow r_{ij} = 0$ and $\mathbf{l}_i = \mathbf{l}_j \Leftrightarrow r_{ij} = 1$.

Clustering constraint

$$g(\mathbf{x}_i, \mathbf{x}_j; \mathbf{w}) = f(\mathbf{x}_i; \mathbf{w}) \cdot f(\mathbf{x}_j; \mathbf{w}) = \mathbf{l}_i \cdot \mathbf{l}_j,$$

$$\forall i, \parallel \mathbf{l}_i \parallel_2 = 1, \text{ and } l_{ih} \geq 0, h = 1, \dots, k,$$

- Are there any other constraints?
- Which one is the best constraint?
- Why?

Thank you for your attention!

Any questions?