2016年青年教师课堂教学竞赛

姚媛媛

华东理工大学理学院

• 问题

• 问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

银行付息方式	年底余额计算公式	年底余额值
一年	1 + 1	2

问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

银行付息方式	年底余额计算公式	年底余额值
一年	1 + 1	2
半年	$(1+\frac{1}{2})^2$	2.25

• 问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

银行付息方式	年底余额计算公式	年底余额值
一年	1 + 1	2
半年	$(1+\frac{1}{2})^2$	2.25
三月	$(1+\frac{1}{4})^4$	≈ 2.4414

问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

银行付息方式	年底余额计算公式	年底余额值
一年	1 + 1	2
半年	$(1+\frac{1}{2})^2$	2.25
三月	$(1+\frac{1}{4})^4$	≈ 2.4414
天	$(1+\frac{1}{365})^{365}$	≈ 2.714567

• 问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

表:银行付息方式与年底余额

银行付息方式	年底余额计算公式	年底余额值
一年	1 + 1	2
半年	$(1+\frac{1}{2})^2$	2.25
三月	$(1+\frac{1}{4})^4$	≈ 2.4414
天	$(1+\frac{1}{365})^{365}$	≈ 2.714567
秒	$(1 + \frac{1}{365 \times 24 \times 3600})^{365 \times 24 \times 3600}$	≈ 2.71828178

问题

假设你在银行存了1元钱,不巧赶上通货膨胀,银行存款利率达到逆天的100%!问银行付息方式与年底余额的关系如何?

表:银行付息方式与年底余额

银行付息方式	年底余额计算公式	年底余额值
一年	1 + 1	2
半年	$(1+\frac{1}{2})^2$	2.25
三月	$(1+\frac{1}{4})^4$	≈ 2.4414
天	$(1+\frac{1}{365})^{365}$	≈ 2.714567
秒	$(1 + \frac{1}{365 \times 24 \times 3600})^{365 \times 24 \times 3600}$	≈ 2.71828178

☞年底余额的极限值就是e!

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

☞ Euler 最早将上述极限定义为e.

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

 \square Euler 最早将上述极限定义为e.

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

☞ Euler 最早将上述极限定义为e.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

☞ Euler 最早将上述极限定义为e.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$
$$e^x = (e^x)'$$

e 与数列 $\left(1+\frac{1}{n}\right)^n$

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

☞ Euler 最早将上述极限定义为e.

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$e^x = (e^x)'$$

$$e \approx 2.718 281 828 459 \cdots$$

e 与数列 $\left(1+\frac{1}{n}\right)^n$

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

☞ Euler 最早将上述极限定义为e.

问题 如何计算e?

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$e^x = (e^x)'$$

$$e \approx 2.718 281 828 459 \dots$$

评注: 这是数学史上第一次用极限定义数. 研究这种数并不容易. 例如一个尚未解决的问题是

e 与数列 $\left(1+\frac{1}{n}\right)^n$

定理 数列 $\{(1+\frac{1}{n})^n\}$ 单调递增有上界. (重要数学目标)

☞ Euler 最早将上述极限定义为e.

问题 如何计算e?

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$e^x = (e^x)'$$

$$e \approx 2.718 281 828 459 \cdots$$

评注: 这是数学史上第一次用极限定义数. 研究这种数并不容易. 例如一个尚未解决的问题是 $e+\pi$ 是无理数吗?

e 的来源 (航海、天文学-加减代替乘除)

e 的来源 (航海、天文学-加减代替乘除)

☞ 苏格兰约翰·纳皮尔(1550-1617)发明了对数logarithm.

e 的来源 (航海、天文学—加减代替乘除)

☞ 苏格兰约翰·纳皮尔(1550-1617)发明了对数logarithm.

表1 底数10 的对数表 $b = \log_{10} N$

						1.259×10^{10}	
对数 b	1	1.1	1.2	1.3	10	10.1	10.2

e 的来源 (航海、天文学一加减代替乘除)

☞ 苏格兰约翰·纳皮尔(1550-1617)发明了对数logarithm.

表1 底数10 的对数表 $b = \log_{10} N$

						1.259×10^{10}	
对数 b	1	1.1	1.2	1.3	10	10.1	10.2

表2 底数a = 1 + r, r = 0.001 的对数表 $b = \log_a N$

真数 N	1.001	1.002	1.003	1.004	1.005	3.32	22015.5	24330.7
对数 b	10	20	30	40	50	12000	100000	101000

e 的来源 (航海、天文学-加减代替乘除)

☞ 苏格兰约翰·纳皮尔(1550-1617)发明了对数logarithm.

表1 底数10 的对数表 $b = \log_{10} N$

							1.585×10^{10}
对数 b	1	1.1	1.2	1.3	10	10.1	10.2

表2 底数a = 1 + r, r = 0.001 的对数表 $b = \log_a N$

								24330.7
对数 b	10	20	30	40	50	12000	100000	101000

表3 底数 $a = (1+r)^{\frac{1}{r}}, r = 0.0001$ 的对数表 $b = \log_a N$

真数 N	1.001	1.002	1.003	1.004	1.005	3.32	22015.5	24330.7
对数 b	0.001	0.002	0.003	0.004	0.005	1.2	10	10.1

e 的来源 (航海、天文学一加减代替乘除)

☞ 苏格兰约翰·纳皮尔(1550-1617)发明了对数logarithm.

表1 底数10 的对数表 $b = \log_{10} N$

							1.585×10^{10}
对数 b	1	1.1	1.2	1.3	10	10.1	10.2

表2 底数a = 1 + r, r = 0.001 的对数表 $b = \log_a N$

真数 N	1.001	1.002	1.003	1.004	1.005	3.32	22015.5	24330.7
对数 b	10	20	30	40	50	12000	100000	101000

表3 底数 $a = (1+r)^{\frac{1}{r}}, r = 0.0001$ 的对数表 $b = \log_a N$

真数 N	1.001	1.002	1.003	1.004	1.005	3.32	22015.5	24330.7
对数b	0.001	0.002	0.003	0.004	0.005	1.2	10	10.1

应用位置 应用事例

徽积分 $(a^x)' = a^x \ln a, (\log_a x)' = 1/(x \ln a).$

应用位置	应用事例
微积分	$(a^x)' = a^x \ln a, (\log_a x)' = 1/(x \ln a).$
概率统计	1% 抽奖概率, 抽100 次, 一次没中的概率接近1/e.
数论	充分大的自然数 a , 比它小的质数约有 $a/\ln a$ 个.

应用位置	应用事例
应用位且	应用手 的
微积分	$(a^x)' = a^x \ln a, (\log_a x)' = 1/(x \ln a).$
概率统计	1% 抽奖概率, 抽100 次, 一次没中的概率接近1/e.
数论	充分大的自然数 a , 比它小的质数约有 $a/\ln a$ 个.
数学模型	连续复利模型,人口增长模型,传染病模型等.

应用位置	应用事例
微积分	$(a^x)' = a^x \ln a, (\log_a x)' = 1/(x \ln a).$
概率统计	1% 抽奖概率, 抽100 次, 一次没中的概率接近1/e.
数论	充分大的自然数 a , 比它小的质数约有 $a/\ln a$ 个.
数学模型	连续复利模型,人口增长模型,传染病模型等.
Google	招聘广告密码之一为e 中第一个十位数质数.

应用位置	应用事例
微积分	$(a^x)' = a^x \ln a, (\log_a x)' = 1/(x \ln a).$
概率统计	1% 抽奖概率, 抽100 次, 一次没中的概率接近1/e.
数论	充分大的自然数 a , 比它小的质数约有 $a/\ln a$ 个.
数学模型	连续复利模型,人口增长模型,传染病模型等.
Google	招聘广告密码之一为e 中第一个十位数质数.

e 与大自然

把指数函数 e^x 换成极坐标就是对数螺线 $\rho = e^{\theta}$. 它在自然界中广泛存在,大如星系、台风; 小如花朵、海螺; 甚至蒙娜丽莎的微笑中都隐藏着对数螺线的身影.

e 与大自然

把指数函数 e^x 换成极坐标就是对数螺线 $\rho = e^{\theta}$. 它在自然界中广泛存在,大如星系、台风; 小如花朵、海螺; 甚至蒙娜丽莎的微笑中都隐藏着对数螺线的身影.

e 与大自然

把指数函数 e^x 换成极坐标就是对数螺线 $\rho = e^{\theta}$. 它在自然界中广泛存在,大如星系、台风; 小如花朵、海螺; 甚至蒙娜丽莎的微笑中都隐藏着对数螺线的身影.

参考文献

陈仁政. 不可思议的e. 科学出版社, 北京, 2005.

副 张英锋. 知乎问答: e 的自然之美

http://zhuanlan.zhihu.com/#/zhangyingfeng/19830084

Leonhard Euler. An essay on continued fractions. Translated from the Latin by B. F. Wyman and M. F. Wyman

Math. Systems Theory 18 (1985), 295-328.

果壳网、维基百科、微课与幕课、Latex中文论坛、麻省理工学院公开课

Thank you!