Introduction to deep learning Quiz, 10 questions \leftarrow

10/10 points (100%)

1/ [·] poir	
1. What	does the analogy "Al is the new electricity" refer to?
	Through the "smart grid", Al is delivering a new wave of electricity.
	Al runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.
	Al is powering personal devices in our homes and offices, similar to electricity.
0	Similar to electricity starting about 100 years ago, AI is transforming multiple industries.
Corr Yes.	rect . Al is transforming many fields from the car industry to agriculture to supply-chain
1 / poir 2. Which	
Corr Yes!	rect ! The digitalization of our society has played a huge role in this.
	Neural Networks are a brand new field.
Un-selected is correct	
	We have access to a lot more computational power.
	rect ! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning prithms' performance.
	Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.

Correct

These were all examples discussed in lecture 3.

1 / 1 point

3

Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that apply.)

Correct

Yes, as discussed in Lecture 4.

Correct

Yes, as discussed in Lecture 4.

It is faster to train on a big dataset than a small dataset.

Un-selected is correct

Correct

Yes. For example, we discussed how switching from sigmoid to ReLU activation functions allows faster training.

1/1 point

4.

When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to iterate multiple times through different models. True/False?

True

False

Correct

Yes. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model.

1/1 point

5.

Which one of these plots represents a ReLU activation function?

Figure 1:

Figure 2:

Figure 3:

Correct

Correct! This is the ReLU activation function, the most used in neural networks.

Figure 4:

Correct	
1/1 point	
10. Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)	
Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.	
Correct Yes. According to the trends in the figure above, big networks usually perform better than small networks.	
Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.	
Un-selected is correct	
Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.	
Correct Yes. Bringing more data to a model is almost always beneficial.	
Decreasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.	
Un-selected is correct	