Hochschule Wismar University of Applied Sciences: Technology, Business and Design Fakultät für Ingenieurwissenschaften Bereich Elektrotechnik und Informatik

Prof. Dr. A. Ahrens Prof. Dr. S. Lochmann Prof. Dr. I. Müller

Spleißen von Lichtwellenleitern

Versuch Nr. KT1/Spleißen

Datum der	Gruppe:
Versuchsdurchfüh	rung:
	YY 1 1 1 601 .
Name:	Versuch durchgeführt von:
Erforderliche Gerä	ite:
Anzahl	Bezeichnung
Alizaili	Dezeleimung
1	Absetzwerkzeuge (Miller-Zange, Mantelstripper)
1	Reinigungsmittel (Alkohol, Spezialtücher)
1	Fusionsspleißgerät (Fitel S153 oder BIT MM-40)
1	Opt. Pegelmessplatz (Sender+ Empfänger) W&G
1	Millimeterpapier
2	Singlemode-LwL getrommelt
1	Faserbrechgerät
1	verschiedene Fasern zu Übungszwecken
	<u> </u>

1. Versuchsziel

- Kennenlernen des Aufbaus und der Bearbeitung von Glasfasern
- Untersuchung der Güte von LWL-Verbindungsstellen
- Untersuchung des Einflusses von Makrobiegungen auf LWL-Fasern

2. Voraussetzungen

Die Kenntnis der folgenden Themen der Vorlesungsinhalte aus dem Themenkomplex "Kommunikationstechnik" wird als bekannt vorausgesetzt:

- Aufbau von typischen Glasfasern
- Methoden der Verbindungstechnik
- Kabelaufbau
- Ursachen für optische Verluste
- Dämpfungsmessung

3. Aufgaben zur Vorbereitung

Die nachfolgenden Aufgaben sind vor der Versuchsdurchführung schriftlich zu beantworten.

- 1. Welche Arten von Lichtwellenleitern gibt es, wie sind sie aufgebaut? Welche typischen mechanischen und optischen Parameter kennen Sie?
- 2. Was sind extrinsische und intrinsische Verluste und wie lassen sich diese abschätzen? Was gibt es bei Monomode- LWL und Multimode- LWL hierbei zu beachten?
- 3. Welche Verbindungstechnologien werden typischerweise in der Praxis angewandt und mit welchen Eigenschaften ist zu rechnen?
- 4. Welche Arbeitsschritte beinhaltet das "Lichtbogen Spleißen"? Welche Spleißfehler können dabei auftreten?
- 5. Wie wirkt sich der Selbstjustierungseffekt aus? Verbessert er in jedem Fall das Spleißergebnis?
- 6. Welchen Einfluss haben Mikro- und Makrobiegungen auf die Kabeldämpfung?
- 7. Warum sinkt beim Lichtbogenspleißen die Faserfestigkeit und welche Maßnahmen muss man ergreifen, um dem entgegenzuwirken?

4. Arbeitsanleitung

4.1. Vorbereitung der Fasern

Nachdem der Kabelmantel und die Schutzhülle entfernt wurden, beginnt die eigentliche Vorbereitung der LWL-Fasern.

- Das Absetzen der Sekundärbeschichtung erfolgt mit einer LWL-Absetzzange.
 Damit dies beschädigungsfrei passiert, sind die Durchmesser des Fasermantels und die Daten auf der Zange abzugleichen.
- Gelreste sind mit Reinigungspapier zu entfernen.
- Die Nachreinigung erfolgt mit in Alkohol (Vorsicht, gesundheitsschädlich!) befeuchtetem Reinigungspapier.
- Mit dem Ziel, eine ebene, saubere, rechtwinklige Endfläche zu erzeugen, wird die Faser in einer Trennvorrichtung gebrochen.
- Legen Sie die Fasern in das Spleißgerät ein, begutachten Sie die Sauberkeit und die Bruchkanten der Fasern.

Hinweis: Sind Verschmutzungen bzw. keine planen Bruchkanten sichtbar, muss der Reinigungs- und Bruchvorgang wiederholt werden!

5. Versuchsdurchführung

5.1. Verspleißen von Faserenden

- Setzen Sie die Kabelenden entsprechend ab. Üben Sie das Brechen der LWL's und begutachten Sie im Mikroskop die Bruchstelle, vergleichen Sie die Bruchstelle mit einer handgebrochenen Faser.
- Üben Sie das Verspleißen am Spleißgerät, beurteilen Sie das Ergebnis bezüglich Wülsten, Einschnürungen, vermutlicher Dämpfung. Welche Maßnahmen wären zur Verbesserung zu ergreifen?
- Stellen Sie Ihren besten Spleiß vor!

5.2. Schutz der Spleißverbindung

 Machen Sie sich mit den mechanischen Schutzmöglichkeiten für Spleißverbindungen vertraut!

5.3. Dämpfungsmessung an der vorgegebenen LWL-Strecke

- Messen Sie die Leistung des Handpegelsenders bei verschiedenen Wellenlängen, Gleichlicht und verschiedenen Modulationsfrequenzen. Interpretieren Sie Ihre Wertetabelle!
- Trennen Sie die Strecke und bereiten Sie die Faserenden für den Spleißvorgang vor.
- Machen Sie einen Knoten in ein Faserende und justieren Sie die vorbereiteten Faserenden im Spleißgerät.
- Messen Sie die Streckendämpfung bei optimaler Ausrichtung der Faserenden zueinander!

• Nehmen Sie die Dämpfungsänderungen in Abhängigkeit der x-Verschiebung eines Faserendes auf.

Tragen Sie die Abhängigkeit auf und ermitteln Sie den Modenfeldradius ϖ_0 .

5.4. Spleißmessung

- Richten Sie die Faserenden auf Maximum aus und verspleißen Sie die Faserenden!
- Bestimmen Sie die Spleißdämpfung und beurteilen Sie diesen Wert!

5.5. Dämpfung durch Faserbiegung

 Ziehen Sie den vorbereiteten Knoten (ca. 10cm Durchmesser) langsam zusammen und nehmen Sie die Dämpfungsänderungen in Abhängigkeit des Biegeradius bis zum Faserbruch auf.

Interpretieren Sie die Ergebnisse!

6. Literaturverzeichnis

Die nachfolgende Liste gibt eine Übersicht zu in der Bibliothek verfügbaren Fachbüchern, welche die hier behandelte Thematik zum Inhalt haben.

- E.GRIMM, W.NOWAK : *Lichtwellenleitertechnik* Hüthig-Verlag, Heidelberg 1989
- J.-M. LABS u.a.: Verbindungstechnik für Lichtwellenleiter Deutscher Verlag für Schweißtechnik, Düsseldorf 1989 und Verlag für Technik, Berlin 1989
- A.B. SHARMA/ S.J. HALME / M.M. BUTUSOV: *Optical Fiber Systems and Their Components*
 - Springer-Verlag, Muenchen, Heidelberg, New York 1981
- J.M. SENIOR: Optical Fiber Communications
 Prentice Hall, New York, London, Singapore, Tokyo, 1992
- W. VAN ETTN / J. VAN DER PLAATS : Fundamentals of Optical Fiber Communications
 - Prentice Hall, New York, London, Singapore, Tokyo, 1991
- P.K. CHEO: Fiber Optics and Optoelectronics Prentice Hall, New York, London, Singapore, Tokyo,1990
- S. GECKELER: *Lichtwellenleiter für die optische Nachrichtenübertragung* Springer-Verlag, Berlin, Heidelberg usw. 1990
- W. GLASER : *Lichtleitertechnik Eine Einführung* Verlag Technik, Berlin 1990
- H.-G. UNGER: *Optische Nachrichtentechnik, Bd.1 und 2* Hüthig-Verlag, Heidelberg 1990(85)