NAME - ARIJIT GHOSAL

STREAM- INFORMATION TECHNOLOGY

MAKAUT ROLL NO- 11200221003

SUBJECT- ANALOG & DIGITAL ELECTRONICS LAB

COLLEGE- GOVERNMENT COLLEGE OF

ENGINEERING AND LEATHER TECHNOLOGY

SEMESTER- 3RD

SESSION- 2022-23

EXPERIMENT NO. 4

Design a 2-to-4 Line Decoder with Enable input using minimum number of basic gates.

TRUTH TABLE

En	w_1	w_0	у ₀	y_1	y_2	y_3
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0

PIN DIAGRAM OF THE ICS USED

1) AND GATE

2) NOT GATE

CIRCUIT DIAGRAM

CONCLUSION

EXPERIMENT NO. 5

Design a MODULO-4 Asynchronous up Counter (MOD-4 UP RIPPLE Counter).

COUNTER STATE TABLE

Counter State	Q1	Q0
0	0	0
1	0	1
2	1	0
3	1	1
0	0	0

PIN DIAGRAM OF THE ICs USED

1) JK Flip Flop

CIRCUIT DIAGRAM

TIMING DIAGRAM

CONCLUSION

EXPERIMENT NO. 6

Design a MODULO-3 Synchronous up Counter.

Pin Diagram of JK Flip Flop (7473 IC)

Counter State Table

Presen	t State	Next	State		Inp	uts	
Q ₁	Q_0	Q_1	Q_0	J_1	K ₁	J_0	K ₀
0	0	0	1	0	Х	1	х
0	1	1	0	1	Х	Х	1
1	0	0	0	х	1	0	х

Boolean Expression and K-map

J_1	=	Q_0
-------	---	-------

Q_0 Q_1	${Q_0}'$	Q_0
${Q_1}'$	1	(x)
Q_1	0	×

 $J_0=Q_1^{'}$

Q_0 Q_1	${Q_0}'$	Q_0
${Q_1}'$	x	х
Q_1	1	х

 $K_1 = 1$

Q_0 Q_1	${Q_0}'$	Q_0
${Q_1}'$	x	1
Q_1	x	x

K₀ = 1

Circuit Diagram and Timing Diagram

CONCLUSION

