Amendment to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A fuel tank comprising two or more sections bonded together with an adhesive which bonds to low energy surface materials, has a lap shear strength of about 400 psi or greater and which does not require surface pretreatment of the low energy surface materials.
- 2. (Original) The fuel tank of Claim 1 which is made of a thermoplastic or thermosetting polymer.
- 3. (Original) The fuel tank of Claim 1 wherein the fuel tank is a mono layer low energy surface material or a multilayer structure comprising a core layer of a fuel barrier polymer and outer layers of a low energy surface material.
- 4. (Currently Amended) The fuel tank of Claim 3 wherein the low energy surface material is high density polyethylene and the fuel barrier polymer is selected from the group consisting of polyamides, fluoroelastomers, polyacetal homopolymers and copolymers, sulfonated and fluorinated high density polyethylene, ethylene vinyl alcohol polymers and copolymers, hydroxy-functionalized polyethers and polyesters, and branched polyesters.
- 5. (Currently Amended) The fuel tank of Claim 1 wherein the adhesive ean-supports a load of 1334 Newtons.
- 6. (Currently Amended) The fuel tank of Claim 1 wherein the adhesive has a fuel vapor permeation rate of not more than 46 g-mm/m²/day. as determined by ASTM-E 96-94.
- 7. (Original) The fuel tank of Claim 1 wherein the adhesive comprises an amine/organoborane complex.
- 8. (Original) The fuel tank of Claim 7 wherein the organoborane is a trialkyl borane or alkyl cycloalkyl borane and the amine is selected from the group consisting of (1) amines having an amidine structural component; (2) aliphatic

61537B

heterocycles having at least one nitrogen in the heterocyclic ring wherein the heterocyclic compound may also contain one or more nitrogen atoms, oxygen atoms, sulfur atoms, or double bonds in the heterocycle; (3) primary amines which in addition have one or more hydrogen bond accepting groups wherein there are at least two carbon atoms, preferably at least three carbon atoms, between the primary amine and the hydrogen bond accepting group, such that due to inter- or intramolecular interactions within the complex the strength of the B-N bond is increased; and (4) conjugated imines.

9. (Currently Amended) The fuel tank of Claim 7 wherein the complex of the organoborane and the primary amine corresponds to the formula

$$(R^2)_3 B \leftarrow NH_2(CH_2 - \frac{1}{b}(C(R^1)_2)_a - \underline{X}$$
;

the organoborane heterocyclic amine complex corresponds to the formula

$$(R^2)_3$$
 B \leftarrow $(CHR^3)_x$ $(CHR^3)_x$

the organoborane amidine complex corresponds to the formula

and the organoborane conjugated imine complex corresponds to the formula

$$(R^2)_3 B \longrightarrow NR^7 \longrightarrow CR^9 \longrightarrow (CR^9 \longrightarrow CR^9)_c Y$$
 Formula 9

61537B

wherein B is boron; R¹ is separately in each occurrence hydrogen, a C₁₋₁₀ alkyl or C₃₋₁₀ cycloalkyl; R2 is separately in each occurrence a C1-10 alkyl, C3-10 cycloalkyl or two or more of R² may combine to form a cycloaliphatic ring structure; R³ is separately in each occurrence hydrogen, a C₁₋₁₀ alkyl or C₃₋₁₀ cycloalkyl; R⁴ is separately in each occurrence hydrogen, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl, C ₆₋₁₀ aryl or alkaryl; R⁵, R⁶, and R⁷ are separately in each occurrence hydrogen, C₁₋₁₀ alkyl, C₃₋₁₀ cycloalkyl, or two or more of R⁵, R⁶ and R⁷ in any combination can combine to form a ring structure which can be a single ring or a multiple ring structure and the ring structure can include one or more of nitrogen, oxygen or unsaturation in the ring structure; R⁹ is independently in each occurrence hydrogen, C₁₋₁₀ alkyl or C₃₋₁₀ cycloalkyl, Y, -(C(R⁹)₂-(CR⁹=CR⁹)_c-Y or two or more of R⁹ can combine to form a ring structure, or one or more of R⁹ can form a ring structure with Y provided the ring structure is conjugated with respect to the double bond of the imine nitrogen; X is a hydrogenbond accepting group with the proviso that where the hydrogen bond accepting group is an amine it must be secondary or tertiary; Y is independently in each occurrence hydrogen, N(R⁴)₂, OR⁴, C(O)OR⁴, a halogen or an alkylene group which forms a cyclic ring with R⁷ or R⁹; Z is separately in each occurrence oxygen or -NR⁴; a is separately in each occurrence an integer of from 1 to 10; b is separately in each occurrence 0 or 1, with the proviso that the sum of a and b should be from 2 to 10; c is separately in each occurrence an integer of from 1 to 10; x is separately in each occurrence an integer of 1 to 10, with the proviso that the total of all occurrences of x is from 2 to 10; and y is separately in each occurrence 0 or 1.

- 10. (Currently Amended) The fuel tank of Claim 7 wherein the <u>organoborane</u>/amine complex comprises an aliphatic heterocylic amine which is a five or six membered heterocylic compound.
- 11. (Currently Amended) The fuel tank of Claim 7 wherein the organoborane compound of the complex has three ligands selected from C₁₋₁₀ alkyl groups or phenyl groups, and the amine compound is selected from 1,6 diaminohexane, diethylamine, dibutylamine, diethylenetriamine, dipropylenediamine, 1,3 propylene diamine, and 1,2 propylene diamine.

- 12. (Original) The fuel tank of Claim 7 wherein the organoborane compound of the complex has three ligands attached to the borane atom and which are selected from C₁₋₁₀ alkyl groups and phenyl and the amine compound is an alkanol amine or a diamine wherein the first amine group is a primary or secondary amine and the second amine is a primary amine.
- 13. (Original) The fuel tank of Claim 7 wherein the amine compound of the complex is a polyoxyalkylene polyamine or a polyamine which is the reaction product of a diprimary amine and a compound having at least two groups which react with a primary amine.
- 14. (Original) The fuel tank of Claim 1 wherein the two or more parts are in the form of clam shells.
- 15. (Original) The fuel tank of Claim 14 wherein the clam shells are made of thermoplastic material and formed by extrusion blow molding, injection molding, thermoforming or compression molding.

Claims 16-20. (Cancelled).

21. (Currently Amended) A fuel tank assembly comprising a fuel tank and fuel tank component(s) selected from the group consisting of a fill spud, vent valve, access cover, fuel line, fuel pump, fuel cut-off valve, fuel level gauge, clip, cam lock, fuel sender, roll-over valve, and heat shield, and joined to the fuel tank by means of an adhesive.

Claim 22 (Cancelled).

- 23. (Original) The fuel tank assembly of Claim 21 wherein the fuel tank and fuel tank components are made of thermoplastic or thermosetting polymers or steel.
- 24. (Original) The fuel tank assembly of Claim 23 wherein the steel is stainless steel, pre-coated low-carbon steel, or post-coated low-carbon steel, and the thermoplastic or thermosetting polymer is polyoxymethylene, nylon, polyethylene, polyethyleneterephthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene chloride, ethylene vinyl alcohol or polypropylene.

61537B

- 25. (Original) The fuel tank assembly of Claim 23 wherein the fuel tank is co-extrusion blow-molded and the fuel tank components are joined to the external or internal surface of the fuel tank.
- 26. (Original) The fuel tank assembly of Claim 21 further comprising a primary seal applied at the joint between the fuel tank and the fuel tank component(s) and a redundant seal applied around the primary seal.
- 27. (Currently Amended) The fuel tank assembly of Claim 21 wherein the fuel tank and fuel tank components are coated with a vapor phase plasma type coating.
- 28. (Original) The fuel tank assembly of Claim 27 wherein the plasma coating is applied on the internal or external surface of the fuel tank.
- 29. (Currently Amended) A fuel tank assembly comprising a plastic fuel tank having a wall with an outer surface and an inner surface, a single or multi-walled thermoplastic or metal component having a first open end and a second open end, the first open end extending outwardly through an opening in the tank wall, and the second open end extending inwardly into the tank until it is in contact with the periphery of the tank wall opening and bonded thereto by an adhesive which bonds to low energy surface materials, has a lap shear strength of about 400 psi or greater and which does not require surface pretreatment of the low energy surface materials.
- 30. (Original) A fuel tank assembly comprising (1) a plastic fuel tank having a wall with an outwardly extending cylindrical opening and comprising a multilayer structure having inner and outer layers of low energy surface materials and a fuel barrier layer therebetween and (2) plastic component(s) attached or joined to the fuel tank wall along the periphery of the fuel tank wall opening by means of an adhesive having adequate structural strength, fuel resistance, sealing, and vapor emission properties, the plastic component comprising a multilayer structure having thermoplastic inner and outer layers and a fuel barrier layer therebetween, the adhesive contacting the barrier layers of the plastic component and the plastic fuel tank and bridging the gap between the barrier layers of the fuel tank and the plastic

components to provide a continuous barrier to fuel vapor emission from the joint between the fuel tank and the plastic components.

Claims 31-38. (Cancelled).

39. (New) A fuel tank comprising two or more pieces or sections and an adhesive layer interposed between two adjacent pieces or sections, the adhesive having a lap shear strength of about 400 psi and bonds to low energy surface materials without surface pretreatment of the low energy surface materials.