PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-044315

(43) Date of publication of application: 14.02.1995

(51)Int.CI.

G06F 3/033 G06F 3/03

(21)Application number: 05-237173

(71)Applicant :

SONY CORP

(22)Date of filing:

31.08.1993

(72)Inventor:

SATO KAZUHIRO

(30)Priority

Priority number: 05141248

Priority date: 21.05.1993

Priority country: JP

(54) INPUT DEVICE

(57)Abstract:

PURPOSE: To provide an input device which eliminates the influence of the sensor drift, improves the starting of an operation, and can extremely reduce the power consumption.

CONSTITUTION: This input device consists of the motion detecting means (30, 31, 32) which detect the momentum of the input device and turn the momentum into the voltage value, the transmitter means (33, 34) which output the information corresponding to the input voltage value as the input information to be given to a prescribed equipment, the motion stop detecting means (36, 33) which detect the static state of the input device, and the detected output control means (33, 35) which apply the prescribed correction voltage value to the output of the motion detecting means so that the voltage valve applied from the motion detecting means (30, 31, 32) is set as a reference level while the static state of the input device is detected. Furthermore the correction voltage value is set based on the detection information of a temperature detecting means 37. A power supply is switched on in response to a detecting or entering operation of a touch sensor.

LEGAL STATUS

[Date of request for examination]

24.07.2000

[Date of sending the examiner's decision of rejection]

03.09.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-44315

(43)公開日 平成7年(1995)2月14日

(51) Int.Cl.⁶

庁内整理番号 識別記号

FΙ

技術表示箇所

3/033 G06F

3/03

310 Y 7165-5B

380 L 7165-5B

A 7165-5B

審査請求 未請求 請求項の数6 FD (全 14 頁)

(21)出顯番号

特願平5-237173

(22)出願日

平成5年(1993)8月31日

(31)優先権主張番号 特願平5-141248

(32)優先日

平5 (1993) 5月21日

(33)優先権主張国

日本(JP)

(71)出顧人 000002185

ソニー株式会社

東京都品川区北岛川6丁目7番35号

(72)発明者 佐藤 一博

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 脇 篤夫 (外1名)

(54) 【発明の名称】 入力装置

(57)【要約】

【目的】 センサのドリフトの影響を解消するととも に、動作立上りを改善し、さらに消費電力を著しく低減 できる入力装置を提供する。

【構成】 装置の運動量を検出して電圧値とする運動検 出手段(30,31,32)と、入力された電圧値に対 応する情報を所定機器に対する入力情報として出力する 送信手段(33,34)と、装置本体の無運動状態を検 出する運動停止検出手段(36,33)と、無運動状態 が検出されている際に、運動検出手段(30,31,3 2) からの電圧値が基準値となるように運動検出手段の 出力に所定の補正電圧値を印加することができる検出出 力制御手段(33,35)とを設けて構成する。また、 温度検出手段37を設け、その検出情報に応じて補正電 圧値の設定動作を行なう。電源オンはタッチセンサ検出 又はエンター操作に応じて実行される。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 装置本体の空間内の任意の移動運動もしくは装置本体に印加された運動について、その運動量を 検出して電圧値として出力する運動検出手段と、

前記運動検出手段からの電圧値に対応する情報を所定機器に対する入力情報として有線又は無線で出力する送信手段と、

前記装置本体の空間内の任意の移動運動もしくは装置本体に印加された運動について、その無運動状態を検出する運動停止検出手段と、

前記運動停止検出手段によって無運動状態が検出されている際に、前記運動検出手段からの電圧値が基準値となるように、前記運動検出手段の出力に所定の電圧を印加することができる検出出力制御手段と、

を備えて構成されることを特徴とする入力装置。

【請求項2】 装置本体の空間内の任意の移動運動もしくは装置本体に印加された運動についてその運動量を検出し、所定の温度特性を有する検出出力を発生させる運動検出手段と、

前記運動検出手段からの検出出力に対応する情報を所定 機器に対する入力情報として有線又は無線で出力する送 信手段と、

所定時間毎に前記装置本体内部の温度を検出し温度情報 として出力する温度検出手段と、

前記温度検出手段によって検出された温度情報を記憶することができる記憶手段と、

前記温度検出手段によって検出された温度情報を、前記記憶手段に記憶されている温度情報と比較することによって装置本体内部の温度変化を検出するとともに、所定以上の温度変化が検出された際には、前記運動検出手段からの検出出力を補正制御し、さらにこの補正量を前記温度検出手段によって検出された温度情報に対応させて前記記憶手段に記憶することができるようになされた検出出力制御手段と、

を備えて構成されることを特徴とする入力装置。

【請求項3】 所定時間毎に補正実行信号を出力するタイマ手段を有し、

前記検出出力制御手段は、前記運動停止検出手段によって無運動状態が検出されている際において前記タイマ手段からの補正実行信号に応じて、前記運動検出手段からの電圧値が基準値となるように前記運動検出手段の出力に所定の電圧を印加して前記運動検出手段からの検出出力を補正制御し、さらにこの補正量を記憶手段に記憶することができるように構成されていることを特徴とする請求項1に記載の入力装置。

【請求項4】 当該入力装置が動作待機状態である場合において、前記検出出力制御手段は、装置本体内部の温度変化が検出された際に、前記運動検出手段に対して駆動電源を供給するように構成されていることを特徴とする請求項2に記載の入力装置。

【請求項5】 前記運動検出手段による検出出力に対応 して所定機器に入力された入力情報を、その所定機器側 において確定させるためのコード情報を出力操作する操 作手段を備え、

前記検出出力制御手段は、少なくとも前記操作手段の操作によって前記コード情報が出力されている間は、前記運動検出手段に対して駆動電源の供給を停止させることができるように構成されていることを特徴とする請求項1又は請求項2に記載の入力装置。

【請求項6】 前記運動検出手段による検出出力に対応 して所定機器に入力された入力情報を、その所定機器側 において確定させるためのコード情報を出力操作する操 作手段と、

皮膚接触の有無を検知するセンサ手段と、

前記操作手段の操作信号が供給された場合、及び前記センサ手段により当該入力装置に対する皮膚接触の検知信号が供給された場合において、装置電源をオンとし当該入力装置の動作を実行可能とするとともに、前記操作手段からの操作信号が供給されずかつ前記センサ手段からの検知信号が供給されておらず、しかも無運動状態と判別された場合には、装置電源をオフとし当該入力装置の動作を停止させる制御手段と、

を有して構成されていることを特徴とする請求項1又は 請求項2に記載の入力装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は所定機器に対して操作情報等を入力するための入力装置に関するものである。

[0002]

【従来の技術】操作情報等の入力装置としては、例えば オーディオ/ビジュアル機器に対するリモートコマンダ ーや、コンピュータ装置に用いるマウス、ゲーム機器に おける操作部、等が一般に広く知られている。

[0003]

【発明が解決しようとする課題】ところが従来の入力装置は、通常多数の操作キーを設けて操作するようになされているが、操作内容が多様化すればするほど操作キーの数が増え、操作が煩雑になり、必ずしも人間が使用して操作する手段として最適であるとはいえなかった。このため、操作入力装置として、加速度センサ、角速度センサ、圧力センサ等のセンサ手段を設けて、入力装置といりである。 は印加される運動を検出し、その運動量に応じて所定機器に対する入力情報を出力することができる入力装置が、先行技術として提案されている。

【0004】ところで、このような運動を検出するセンサー手段の出力は、一般的に温度等によりドリフトが発生するため、入力操作時の動作の正確な検出手段としては難がある。例えば角速度センサや加速度センサが設けられ、装置本体の空間内の移動に応じて入力情報を出力

する入力装置を考えた場合、角速度センサや加速度セン サの出力としては、静止状態において図12に示すよう に温度特性を有する。

【0005】このため、例えば角速度センサを用いた入力装置は、例えば図11のように構成している。即ち、センサ40の出力は微小なレベルであるため、増幅部41で増幅し、A/D変換器42によってデジタルデータ化してマイコン43に供給している。マイコン43は入力されたデジタルデータ値に応じて所定機器に対して入力すべきデータを発生させ、送信部44に供給し、例えば所定のキャリア周波数で変調して電波又は赤外線により送信出力するようにしている。

【0006】ここで、増幅部 41においては、抵抗 R_2 は 10 K Ω 、 R_3 は 300 K Ω 程度に設定し、アンプ A_1 の増幅率を 31 倍程度で使用するとする。そしてセンサ 40 の出力のドリフトを鑑みて、アンプ A_1 の前段にはコンデンサ C_1 ,抵抗 R_1 による時定数回路を設け、A C 結合としている。

【0007】このように構成した場合、微小な運動量を 測定しなければならない入力装置としては、コンデンサ C1,抵抗R1による時定数をかなり大きくしなければ ならず、動作が安定するまでに長時間(1~2分)必要 となり、立上りが悪いという問題がある。また、急激な 温度変化があった場合、時定数を大きく設定していると アンプA1の出力としては温度変化によるドリフトが発 生してしまうという問題もある。

【0008】これらの問題を解消するには、常時センサーの電源をオンとしておき、温度変化のない場所に保管するなどを行なえば良いわけであるが、センサ40の消費電流は比較的大きく、例えば電池による駆動には適していない。

【0009】また立上りを改善するためにコンデンサC1を削除すると、センサ40の出力としては図12のように例えば1V程度のドリフトが発生する。これを上述のように増幅率31倍程度のアンプA1で増幅すると単純に考えてもドリフトの影響は30V程度表われ、アンプA1について電池により±2.5V程度のドライブを行なう場合だけでなく、商用電源を用いて±15V程度でドライブする場合でも使用不能となってしまう。

[0010]

【課題を解決するための手段】本発明はこのような問題点にかんがみてなされたもので、センサのドリフトの影響を解消するとともに、動作立上りを改善し、さらに消費電力を著しく低減させて例えば電池駆動の場合でも長時間動作ができるようにする入力装置を提供することを目的とする。

【0011】このため、入力装置として例えば図1に示すように、装置本体の空間内の任意の移動運動もしくは装置本体に印加された運動についてその運動量を検出して電圧値として出力する運動検出手段(30,31,3

2)と、この運動検出手段からの電圧値に対応する情報を所定機器に対する入力情報として有線又は無線で出力する送信手段(33,34)と、装置本体の空間内の任意の移動運動もしくは装置本体に印加された運動についてその無運動状態を検出する運動停止検出手段(36及び33、もしくは33のみ)と、運動停止検出手段(36,33)によって無運動状態が検出されている際に、運動検出手段(30,31,32)からの電圧値が基準値となるように運動検出手段の出力に所定の電圧を印加することができる検出出力制御手段(33,35)とを設けて構成する。

【0012】また、装置本体の空間内の任意の移動運動もしくは装置本体に印加された運動についてその運動量を検出し所定の温度特性を有する検出出力を発生させる運動検出手段(30,31,32)と、この運動検出手段からの検出出力に対応する情報を所定機器に対する人力情報として有線又は無線で出力する送信手段(33,34)と、所定時間毎に前記装置本体内部の温度を検出し温度情報として出力する温度検出手段(37,39)と、この温度検出手段によって検出された温度情報を記憶することができる記憶手段(33c)と、温度検出手段(37)によって検出された温度情報を、記憶手段

(33c)に記憶されている温度情報と比較することによって装置本体内部の温度変化を検出するとともに、所定以上の温度変化が検出された際には、運動検出手段からの検出出力を補正制御し、さらにこの補正量を温度検出手段によって検出された温度情報に対応させて記憶手段に記憶することができるようになされた検出出力制御手段(33,35)とを設けて入力装置を構成する。

【0013】また、運動検出手段(30,31,32)、送信手段(33,34)、運動停止検出手段(36及び33、もしくは33のみ)と、検出出力制御手段(33,35)に加えて、所定時間毎に補正実行信号を出力するタイマ手段(39)を有するようにし、検出出力制御手段(33,35)は、運動停止検出手段によって無運動状態が検出されている際においてタイマ手段

(39)からの補正実行信号に応じて、運動検出手段からの電圧値が基準値となるように運動検出手段の出力に所定の電圧を印加して運動検出手段からの検出出力を補正制御し、さらにこの補正量を記憶手段(33c)に記憶することができるように構成する。

【0014】また、温度検出に基づいて検出出力の補正を行なう上記構成の入力装置が動作待機状態(=スタンバイ状態)にあるときには、検出出力制御手段(33,35)は、装置本体内部の温度変化が検出された際に、運動検出手段(30,31,32)に対して駆動電源を供給するように構成する。

【0015】また、上記各構成に加えて、運動検出手段 (30,31,32)による検出出力に対応して所定機 器に入力された入力情報を、その所定機器側において確 定させるためのコード情報を出力操作する操作手段(38)を備えた場合、検出出力制御手段(33,35)は、少なくとも操作手段の操作によってコード情報が出力されている間は、運動検出手段(30,31,32)に対して駆動電源の供給を停止させることができるようにする。

【0016】また、上記各構成に加えて、運動検出手段(30,31,32)による検出出力に対応して所定機器に入力された入力情報を、その所定機器側において確定させるためのコード情報を出力操作する操作手段(38)と、皮膚接触の有無を検知するセンサ手段(36)と、操作手段の操作信号が供給された場合及び前記センサ手段により当該入力装置に対する皮膚接触の検知信号が供給された場合において装置電源をオンとし当該入力装置の動作を実行可能とするとともに、操作手段からの操作信号が供給されずかつセンサ手段からの検知信号が供給されておらず、しかも無運動状態と判別された場合には、装置電源をオフとし当該入力装置の動作を停止させる制御手段(33)を有するように構成する。

[0017]

【作用】上記構成の本発明の作用を図1の例に基づいて 説明する。上記構成の入力装置としては、装置本体の物 理的位置変位、移動速度、加速度や、もしくは装置本体 に与えられた圧力等の運動量に応じて、位置情報などを 操作入力情報として所定機器に出力することができ、入 力装置に対する人間の動作自体が入力操作とすることが できる。例えばユーザーが入力装置を保持して左右や上 下に振ったり、回転させたりすることが、そのまま所定 の操作として対応させることができる。

【0018】ここで、運動検出手段となるセンサ30、増幅部31、A/D変換器32において、センサ30の出力には温度特性によりドリフトが生ずることとなる。一方、運動停止検出手段として例えばタッチセンサ36を設け(もしくは運動検出信号のレベル変動を監視して無運動を検出する手段をマイコン33内のソフトウエア手段として設ける)、マイコン33(CPU33a、ROM33b、RAM33c)がタッチセンサ36からの情報により入力装置が停止状態にあることを検出できるようにする(タッチセンサ36の場合はユーザーが保持していない状態を運動停止状態とし、またソフトウエア手段で構成する場合は所定時間以上運動検出信号のレベル変動がない場合に運動停止状態と判断する)。

【0019】入力装置が運動停止状態にあるときは、A / D変換器32を介してマイコン33に入力される、運動量に応じた値は基準値(例えば0Vに相当する値)であるはずである。ここで運動停止状態にあるときに、マイコン33はD/A変換器35を介して或る電圧値を増幅31におけるアンプA2の入力段に印加できるようにしている。

【OO20】運動停止状態にあるときは、A/D変換器

32からの運動量の検出値は基準値(例えばゼロ)となっていなければならないが、実際にはドリフトの影響器 35を介してはならないことがある。このとき、D/A 変換器 35を介して値をインクリメントで重畳させてがある。2からの値が基準値といき、これを検出出力に重畳させでといる。即ち、A /D 変換器 32からの値が基準値となったとうの対象 35を介している値はないとなり、以降、この補正値を印加する。また、コントの補正値となり、以降、この補正値を印加する。また、コンサ30と増幅部31は抵抗 R4による直流結合といき、即ち時定数回路は不要となるため、動作の立上りを改善できる。

【0021】また、ドリフト量は温度状態によって変化するため、温度検出手段37を設け、例えばタイマ手段39によるトリガに基づいて、一定時間毎に温度情報をマイコン33が取り込むようにする。そして、マイコン33は記憶手段33cに温度情報を前回の温度情報として記憶できるようにし、今回取り込まれた温度情報と記憶された前回の温度情報を比較して温度変化を判別できるようにする。このようにすれば、温度変化に応じて再び適正な補正量を判別し、ドリフトの影響を解消できる。

【0022】さらに、温度検出手段の有無に関わらず、タイマ手段39による所定時間毎の割込信号(補正実行信号)に応じて、上記の基準値への補正動作を実行するようにしてもよい。

【0023】また、検出出力制御手段(マイコン33)は、装置本体内部の温度変化が検出された際、即ち補正値の設定動作が必要な場合に、運動検出手段(センサ30,増幅部31,A/D変換器32)に対して駆動電源を供給するように構成すれば、その他の時点(非動作期間)は、運動検出手段に電源供給をせずに、消費電力を低減させることができる。

【0024】また、運動検出手段(30,31,32)による検出出力に対応して所定機器に入力された入力情報を、その所定機器側において確定させるためのコード情報(エンターコード)を出力操作する操作手段38を備えた場合、エンター操作中は運動検出手段(30,31,32)は動作不要であるため、この間運動検出手段(30,31,32)に対して駆動電源の供給を停止させることにより、省電力化を促進できる。

【0025】さらに、装置電源のオン/オフとしては、タッチセンサ36と操作手段38からの情報に基づいて制御することが好適となる。つまり、ユーザーが入力装置に触れてタッチセンサ36から検出信号が得られた場合もしくは操作手段38を操作した場合に起動を行ない、一方これらの検出信号及び操作信号のいづれもが得られず、しかも無運動状態と判別された場合(例えば運動検出手段の出力について所定時間以上レベル変動がな

い場合)に装置電源をオフとすることになるが、電源オンのための手段としてタッチセンサと操作手段を併用することにより、例えばユーザーが手袋を用いておりタッチセンサによる接触検出が良好に行なわれないような場合も、操作手段により対応して電源をオンとすることができる。

[0026]

【実施例】以下、図2~図10により本発明の入力装置 の一実施例として角速度センサを用いたリモートコマン ダーについて説明する。図2はリモートコマンダーの外 観例を示し、このリモートコマンダー10には内部にx 軸方向のリモートコマンダー10の移動の際の角速度ω x を検出する角速度センサとして振動ジャイロ1xと、 y軸方向のリモートコマンダー10の移動の際の角速度 ωy を検出する角速度センサとして振動ジャイロ1yが 装備されている。このリモートコマンダー10は、ユー ザーがリモートコマンダー10を手にもって上下左右に 振ることによって、振動ジャイロ1x, 1yによりその 空間内の移動時のx方向,y方向の角速度が検出され、 これに応じてx, y方向の変位情報がコマンドコードと して所定機器に対して出力されるものである。また、7 はエンター操作キーであり、ユーザーがエンター操作キ 一フを押すことによって、リモートコマンダー10から はエンター情報(確定情報)となるコマンドコードが出 力されるようになされている。

【0027】振動ジャイロ1(1x, 1y)による角速度センサを設けた場合、リモートコマンダー10は図3の構成により、移動情報を検出することになる。振動ジャイロとは、振動している物体に回転角速度を加えると、その振動と直角方向にコリオリカが生じる特性を有しており、このコリオリカFは、次のように表わされる。

$F = 2 m v \omega$

(m:質量、v:速度、ω:角速度)

従って、角速度ωはコリオリカFに比例することになり、コリオリカFを検出することで回転角速度を検出することができる。

【0028】振動ジャイロ1(1x, 1y)には駆動用圧電磁器1aと検出用圧電磁器1bが取り付けられており、駆動用圧電磁器1aにはオシレータ2の発振出力である交番信号が印加されるようになされる。この図3において振動ジャイロ1がΩ0方向に回転されると、検出用圧電磁器1bにコリオリカFが加わり、コリオリカFに応じた電圧が発生する。検出用圧電磁器1bから得られる微少な電圧は増幅部3で増幅されてA/D変換器4に供給され、デジタルデータ(電圧値E)とされる。

【0029】このような振動ジャイロ1x, 1yを用いたリモートコマンダー10の構成を図4に示す。振動ジャイロ1xからの出力電圧は増幅部3xに供給されて増幅され、増幅部3xで増幅された電圧はA/D変換器4

【0030】同様に、振動ジャイロ1 yからの出力電圧は増幅部3 yに供給されて増幅され、増幅部3 yで増幅された電圧はA/D変換器4 yでデジタル化された電圧値E y として出力される。そして振動ジャイロ1 yの出力は増幅部3 yにおいて抵抗R15を介して直流接続されてアンプA12に入力される。アンプA12については、例えば抵抗R16は10 K Ω 、R17は300 K Ω 程度に設定されて増幅率が31倍程度とされる。

【0031】5はCPU5a、ROM5b、RAM5cを有するマイクロコンピュータによって形成される制御部を示し、ROM5b又はRAM5cには送信すべきコマンド信号が記憶されている。5dはクロック発振器を示す。この制御部5には、A/D変換器4×から電圧値Exが、またA/D変換器4yから電圧値Eyが供給される。電圧値Ex、Eyはリモートコマンダー10を×方向、y方向に振った際の角速度に相当する値であり、即5x、y方向の移動運動情報となる。

【0032】制御部5は入力された、電圧値E×に応じてROM5b又はRAM5cからx方向アップコマンド又はx方向ダウンコマンドを読み出し、また電圧値Eyに応じてROM5b又はRAM5cからy方向アップコマンド又はy方向ダウンコマンドを読み出して、これをコマンドコードとして送信部8に供給する。

【0033】振動ジャイ01x, 1yに加わった角速度 ω_X , ω_y と、制御部5に入力される電圧ex, eyは 図6 (a) (b) のように比例関係にあり、制御部5は 例えば、入力された電圧値exを電圧値ex を電圧値ex と比較することによってユーザーが リモートコマンダーex 10に対して行なったex 軸方向の操作 (例えば左右に振る操作) に応じたコマンドコードを出力することができる。同様に、入力された電圧値ex とでまってユーザーがリモートコマンダーex と比較することによってユーザーがリモートコマンダーex とによってユーザーがリモートコマンダーex とによってユーザーがリモートコマンダーex とによってユーザーがリモートコマンダーex とによってユーザーがリモートコマンダーex とになったex を聞方向の操作 (例えば上下に振る操作) に応じたコマンドコードを出力することができる。

【0034】即ち、リモートコマンダー10を左方向に振ったときの角速度により電圧Exが上昇し、右方向に振ったときの角速度により電圧Exが下降するように、リモートコマンダー10内に振動ジャイロ1xを配置し、またリモートコマンダー10を上方向に振ったときの角速度により電圧Eyが上昇し、下方向に振ったときの角速度により電圧Eyが下降するように振動ジャイロ1xを配置したとすると、制御部5は例えば図7のフローチャートに従って発生すべきコマンドコードを判別す

る。

· · · ·

【0035】即ち、入力された電圧値 $E \times E$ 電圧値 $V \times X$ 、 $V \times X$ であれば、リモートコマンダー 10 は左方向へ振られた場合であり、このときは $X \times X$ 中方ののアップコマンド、即ち左移動コマンドコードをROM5 b 又はRAM5 c から読み出す($F101 \rightarrow F103$)。また、 $V \times X$ く $E \times X$ く $E \times X$ であれば、 $E \times X$ を動コマンドコードを読み出す($E \times X$ に $E \times X$ を $E \times X$ であれば、 $E \times X$ を $E \times X$ を $E \times X$ であれば、 $E \times X$ に $E \times X$ を $E \times X$ であれば、 $E \times X$ に $E \times X$ を $E \times X$ であれば、 $E \times X$ に $E \times X$ を $E \times X$ に $E \times X$ を $E \times X$ に $E \times X$ に E

【0036】続いて入力された電圧値Eyを電圧値Vay, Vby, Vcy, Vdy と比較し、Vcy 〈Ey〈 Vdy であれば、リモートコマンダー10は上方向へ振られた場合であり、このときはy軸方向のアップコマンド、即ち上移動コマンドコードをROM5b又はRAM 5cから読み出す($F105 \rightarrow F107$)。また、Vay 〈Ey 〈 Vby であれば、y軸方向のダウンコマンド、即ち下移動コマンドコードを読み出す($F106 \rightarrow F108$)。

【0038】また、7は上記図2のように設けられるエンター操作キーであるが、エンター操作キー7の操作情報も制御部5に供給され、制御部5はエンター操作キー7の操作に応じてエンターコマンドをROM5b又はRAM5cから読み出して出力し、送信部8に供給する。【0039】このようなリモートコマンダー10からは、エンターコマンド、×方向移動コマンド(アップ方向/ダウン方向)、y方向移動コマンド(アップ方向/ダウン方向)の3種類のコマンドコードの受信機器側に図8のような構成の入力コマンド対応制御部を操作対象となる機器と一体に又は別体に設けることにより、多種類の操作が実行できる。

【0040】図8において21はリモートコマンダー1 0から赤外線又は電波で送信されたコマンドコードを受信し、電気信号に変換して復調する受信部、22は受信部21で受信復調されたコマンドコードに基づいて制御を行なうマイクロコンピュータによる入力制御部であり、CPU22a、ROM22b、RAM22cを有する。また、23は制御部22の制御に応じて、その機器と一体に形成され又は別体で接続された表示部(例えばCRT)24に対して所定のキャラクタを供給し、表示 動作をなさしめるグラフィックコントローラである。なお、25はクロック発振器である。

【0041】制御部22はグラフィックコントローラ23に対して、たとえばCRT24に図9のようなVTR、CDプレーヤ、テレビジョン受像機等に対応した操作内容の表示及びカーソルKの表示を実行させる。そして、制御部22は、リモートコマンダー10から供給された×方向、y方向のコマンドコードに応じて、CRT画面上でカーソルKを移動させる。

【0042】そして、ユーザーがリモートコマンダー1 0を上下左右に振りながらカーソルドを例えば図示する ようにVTRの再生ボタンに相当する画面上の位置に移動させた際にエンター操作キー7を押し、CPU22a がエンターコマンドの入力を確認したとすると、CPU 22aは、この『VTR:再生』を示すコマンドコード をROM22b又はRAM22cから読み出し、送信部 26に供給し、例えば赤外線信号による変調信号として 図示しないVTR装置に送信する。又は、この図8の入 カコマンド対応制御部がVTR装置内に設けられている 場合は、『VTR:再生』のコマンドコードを端子27 から所定の動作制御部に供給して、再生動作を実行させる。

【0043】即ち制御部22には、CRT24における表示画面上の各種操作内容の表示領域と対応した座標データが保持されるとともに、実際のコマンドコードが記憶されており、x,y位置変位情報に応じてカーソルドを移動させた際に、現在カーソルドによって指定されている座標位置を把握している。そして、エンターコマンドが入力されることによってその座標位置の指定が確定されたと判断して、その座標位置に対応したコマンドコードとして保持しているコマンドコードを読み出し、送信部26又は端子27に出力するようになされているものである。

【0044】従って、ユーザーはCRT24の画面をみながらリモートコマンダーを上下左右に振ってカーソルドを移動させ、所要位置でエンターキーフを押すという操作で各種機器に対する操作を行なうことができ、リモートコマンダー10に対するキー操作は非常に簡便なものとなる。またカーソルドの動きはユーザーの手の動きに連動したものとなるため、所謂ヒューマンインターフェースに著しく優れた操作手段となる。

【0045】このような基本的な入力動作を実行できる本実施例のリモートコマンダー10では、さらに図4に示すように、角速度センサ出力のドリフトの影響防止、省電力、動作立ち上げの迅速化を計る手段が設けられている。

【0046】図4において6は割込タイマであり、所定時間毎に割込信号を制御部5に供給している。9x, 9yはD/A変換器であり、それぞれ制御部5から供給された補正電圧値0x, 0yをアナログ化する。0

換器 9 x から出力されるアナログ電圧は抵抗 R14を介してアンプA11に入力される。即ち振動ジャイロ 1 x からの出力電圧に重畳される。また D / A 変換器 9 y から出力されるアナログ電圧は抵抗 R18を介して、振動ジャイロ 1 y からの出力電圧に重畳されてアンプA12に入力される。

【0047】11はタッチセンサであり、リモートコマンダー10をユーザーが保持した状態を検出し、検出信号を制御部5に供給する。タッチセンサ11はリモートコマンダー10の動作電源オンの操作手段の1つとして機能するとともに、リモートコマンダー10の本体が静止状態にあることの検出手段としても機能する。ただし静止状態の検出手段としては、後述するように制御部5による電圧値Ex, Eyの監視するソフトウエア手段によっても実現でき、いづれかが採用されるか、もしくは両方が併用される。もちろんさらに他の手段で構成することもできる。

【0048】制御部5は、リモートコマンダー10の動作電源については、ユーザーがリモートコマンダー10を保持したことがタッチセンサ11により検出されること、或はエンター操作キーが押されることのいずれかー方が検出された時点で立ち上げ、上述のようなリモートコントロールのためのコマンドコードの入力装置として動作させる。また、ユーザーがリモートコマンダー10を離し、タッチセンサ11による皮膚接触検出がなされないようになり、またエンター操作キー7も操作されていない状態で、静止状態の検出手段(タッチセンサもしくは制御部5のソフトウエア手段)により静止状態が検出されたら、動作電源をオフとするようにしている。

【0049】なお、電源オンのためのトリガ手段としてタッチセンサ11とエンター操作キーフを併用しているのは、例えばユーザーが手袋をはめて操作するような場合を想定し、これに対応できるようにしているものである。つまり、タッチセンサが良好に機能しない場合でも、エンター操作キーフを用いて電源オンとできるようにしている。

【0050】また、リモートコマンダー10が完全に静止状態にあるときとは、リモートコマンダー10がユーザーに保持されていない場合であり、従って制御部5がタッチセンサ11によって保持状態が検出されていない期間は、静止状態と検出することによって、タッチセンサ11が静止検出手段として機能する。

【0051】なお、静止検出手段として制御部5が入力される電圧値Ex, Eyを監視する機能を設ける場合の検出動作は次のようになる。即ち、リモートコマンダー10が机上などに置かれて完全に静止している場合は、電圧値Ex, Eyは図10(a)のように時間的に全く変化しない。一方、ユーザーがリモートコマンダー10を保持している際は、例えばユーザーがリモートコマンダー10を振っていなくても手ぶれなどにより、電圧値

Ex, Eyは図10(b)のように変動する。このような電圧値Ex, Eyの変動状態を監視することで、静止状態か否かを判別できる。なお、静止検出手段を設けるのは、後述するドリフト補正値の設定動作が静止時に実行しなければならないためである。

【0052】 12は温度センサであり、リモートコマンダー 10の内部温度を検出する。温度センサ 12の出力(温度に応じた電圧)はA/D変換器 13によってデジタル化され、温度データとして制御部 5に入力される。【0053】 V_1 は振動ジャイロ 1x, 1y、増幅部 3x, 3y、A/D変換器 4x, 4y、及びD/A変換器 9x, 9yに対して電源電圧を供給するための電源ラインを示し、また、 V_2 は温度センサ 12、A/D変換器 13に対する電源ラインを示す。

【0054】以下、図5のフローチャートを用いて本実施例のリモートコマンダー10の動作を説明する。この図5に示す処理は割込タイマ6により例えば10分毎に割込パルスが制御部5に入力された際(F200)、もしくはユーザーがリモートコマンダー10を保持してこれをタッチセンサ11によって検出した際(F300)に実行される。

【0055】ユーザーがリモートコマンダー10を使用していない間は、割込タイマ6から供給される10分毎の割込パルスに基づいて、ステップF200以下の処理が実行される。なお、温度変化の激しい場所などで用いるリモートコマンダーの場合は割込パルス間隔を5分毎とするなど、適宜パルス間隔を変更すれば好適である。また、割込タイマ6は制御部5の外部装置とする他、制御部5となるマイコンの内部タイマを利用して構成してもよい。

【0056】割込パルスが供給されると、まず制御部5は起動動作を行なう(F201)。続いて、電源ライン V_2 に対して電源供給をオンとし、温度センサ12、A/D変換器 130動作をオンとする(F202)。

【0057】続いて制御部5は、温度センサ12からA/D変換器13を介して供給される現在の温度データを取り込み、これをRAM5cに記憶させる(F203)。なお、この実施例の場合、RAM5cにおいては前回に取り込まれた温度データも記憶されている必要があり、少なくとも今回取り込んだ温度データと前回取り込まれた温度データが記憶できるように記憶領域が設定されている。

【0058】ここで、温度データの取り込みが最初(例えばリモートコマンダー10の電池入れ換えによりデータバックアップが不能となった後における最初の起動時や、製造後の最初の起動時等)である場合、もしくは何らかの原因でRAM5cの記憶データが消失した場合で、前回の温度データが存在しないときは、処理はステップF204からF207に進む。

【0059】一方、前回の温度データがあるときは、ス

テップF205に進み、今回取り込んだ温度データと前回の温度データを比較し、温度変化量を算出する。そして温度変化量が、温度変化が生じていないとする許容範囲内であれば、処理はステップF205からF206に進み、そのまま電源ラインV2での温度センサ12、A/D変換器13に対する電源供給をオフとし、制御部5はRAM5c内のデータを保持するバックアップモードに入って動作電源をオフ(スタンバイ状態)とする(F215)。そして、次の割込を待機する(F216)。

【0060】ステップF204で前回の温度データが無かった場合、もしくはステップF205で温度変化があったと判断された場合は、続いて角速度センサ部のドリフト補正のための補正値の判別処理に移る。まず、電源ラインV1による電源電圧の供給を実行させ、角速度センサ部、即ち振動ジャイロ1x, 1y、増幅部3x, 3y、A/D変換器4x, 4y、D/A変換器9x, 9yの動作をオンとする(F207)。

【0061】そして、次にD/A変換器9×、9yに対して出力する補正値D×、Dyを初期値にセットする(F208)。そして、まずD/A変換器9×に対して、補正値D×を初期値からインクリメントしながら供給していき、A/D変換器4×から入力される電圧値E×を監視していく(F209, F210)。振動ジャイロ1×の出力についてドリフトがないとすれば、このとき検出される電圧が、ここではOVであるはずである。ところが、ドリコトがないとすれば、このときないが、ここではならないが、ここではであると電圧値E×はOVとはならないが、ここではできるはで電圧値E×はOVとはならないが、ここではその時点の温度状態により、或る時点で電圧値E×はOVとなる。即ち、このときの補正値D×はその時点の温度状態において振動ジャイロ1×の出力についてのドリフト補正を実現できる補正値となる。

【0062】電圧値E×が0Vとなった時点で、同様に y軸方向の振動ジャイロ1yの出力についても、補正値 を判別する。即ち、D/A変換器9yに対して、補正値 Dyを初期値からインクリメントしながら供給していき、A/D変換器4yから入力される電圧値Eyを監視する(F211, F212)。そして電圧値Eyが0Vとなった時の補正値Dyを、その時点の温度状態において振動ジャイロ1yの出力についてのドリフト補正を実現できる補正値として把握する。

【0063】ドリフト補正を実現できる補正値が判別されたら、この補正値Dx, DyをRAM5cに記憶させる(F213)。なお、補正されて入力された電圧値Ex, Eyとしては、若干のオフセットが残ることがあるため、この値もRAM5cに対応させて記憶しておく。

【0064】補正値Dx, Dyを記憶したら、電源ラインV1 及びV2 による電源供給をオフとし、温度センサ12、A/D変換器13、振動ジャイロ1x, 1y、増幅部3x, 3y、A/D変換器4x, 4y、D/A変換器9x, 9yの動作をオフとする(F214)。そして、制御

部5はバックアップモードに入ってスタンバイ状態とし (F215)、次の割込を待機する(F216)。

【0065】このような割込タイマ6により所定時間毎にステップF200~F216の処理が行なわれることにより、RAM5cには温度状態に対応してドリフト補正を行なうことのできる補正値が常時保持されていることになる。

【0066】ここで(ステップF216の割込待機状態であり動作電源オフの状態)、ユーザーがリモートコマンダー10を保持してタッチセンサ11がこれを検出するか、もしくはタッチセンサ11による検出がなされなくともエンター操作キー7が押された場合は、このタッチセンサからの検出信号もしくはエンター操作キー7の操作信号を割込信号としてステップF300以下の処理が開始される。

【0067】タッチセンサ11による検出もしくはエンター操作キー7の操作に応じて割込パルスが供給されると、まず制御部5は起動動作を行なう(F301)。続いて、電源ライン V_1 に対して電源供給をオンとし、角速度センサ部を起動させる(F302)。さらに、その時点でRAM5 cに記憶されている補正値D x, D y を読み出し、これをD/A変換器9 x, 9 y に出力する(F304)。

【0068】この補正値Dx, DyはステップF202~F2 15の処理により少なくとも10分前の温度状態において適正であるとされた補正値であるため、ユーザーが操作入力のためのリモートコマンダー10を持った時点において、この補正値Dx, Dyによる電圧を、振動ジャイロ1x, 1yの出力電圧と重畳させてアンプA11, A12 に供給するようにすることで、温度特性によるドリフトは解消され、制御部5に入力される移動検出値となる電圧値Ex, Eyはドリフトの影響がキャンセルされたものとなる。

【0069】そして制御部5は、入力された電圧値Ex, Eyの応じて図7、図8で説明したようにx, y方向の位置変位情報となるコマンドコードを出力する(F304)。また、エンター操作キー7が押された場合は、処理はステップF305からF306に進み、まず電源ラインV1による電源供給をオフとする。エンター操作中は角速度検出は不要なためである。そして、エンターコマンドをROM5b又はRAM5cから読み出し、これを送信部8に対して出力し、所定の機器に対してエンターコマンドを送信する(F307)。

【0070】エンター操作が解除されたら、処理はステップF305からF308に進むことになるが、ここで、エンター操作時に電源ラインV1による電源供給をオフとした場合、再び電源供給をオンとして、角速度検出を実行させる。

【0071】この角速度検出又はエンター操作に応じた コマンドコード出力動作はユーザーがリモートコマンダ -10を離したことをタッチセンサ11が検出するまで 実行され、所定の機器に対するリモートコントロールが 実現される(F304~F310のループ処理)。

【0072】ユーザーが入力操作を終了してリモートコマンダー11から手を離し、タッチセンサ11による検出がオフとなり、静止状態となると、処理はステップF310からF202に進む。そして、以降前述したようにその時点の温度と記憶されていた温度の間に温度変化があるとされれば、補正値の判別動作を実行して新たな補正値Dェ、Dyを記憶し、もしくは前回の温度状態から温度変化がないと判断されれば、補正値Dェ、Dyの更新を行なわずに、制御部は電源ラインV1、V2による電源供給のオフとし、また制御部自身はバックアップモードに入って割込待機状態となる(F202~F216)。

【0073】以上の構成及び動作による本実施例では、 補正値によりドリフト補正が実行され、適正なコマンド 出力動作を実行できることになる。さらに、ドリフト補 正のためにCR時定数回路を設けていないため、立上り 時の動作安定化に時間がかかることも解消される。

【0074】さらに、電源ラインV2により温度センサ部が電源オンとされるのは、割込タイマー6による割込時もしくはユーザーがリモートコマンダー10による操作を終了して手から離したときのみであり、また、電源ラインV1により角速度センサ部分が電源オンとされるのは、ユーザーの操作中か、もしくは補正値D×、Dyの判別処理中のみである。そのうえ、角速度センサ部分はユーザーのリモートコマンダー10の操作中であっても、エンター操作中においては電源オフとされる。

【0075】このように角速度センサ部及び温度センサ部は最低限必要な期間のみしか電源供給がなされず、これによって大幅な省電力化を計ることができ、リモートコマンダーの電池駆動に適している。もちろん、角速度センサ部に対してこのように電源オン/オフを細かく制御して省電力化を計ることは、ドリフトの影響の解消を時定数回路を用いないで実現し、立ち上げ時の不安定さを解消したことにより、有効に機能するものである。

【0076】また、ユーザーがリモートコマンダー10を持つことにより、タッチセンサ11の検出信号で電源オンとされるため、非常に操作性のよいものとなり、またエンター操作キー7を押した場合も電源オンとされることで、手袋等によりタッチセンサが良好に機能しない場合にも対応できる。さらに、リモートコマンダー10を離して静止状態とすれば電源オフとなるため、無駄な電力消費もない。

【0077】なお、図5の処理を採用する場合は、ユーザーがリモートコマンダー10を使用している間は補正値の更新は実行されないことになる。このため、長時間使用して温度変化が生じ、ドリフトをそのときの補正値でキャンセルできなくなることが発生することも考えられる。

【0078】このような場合に対応するため、例えば制

御部は或る程度の期間で入力される電圧値Ex, Eyの平均値を算出し、静止状態における電圧値(=ドリフト量)を予測するようにする。そして、これに応じて補正値Dx, Dyをさらに調整できるようにすることで、長時間使用にも対応できる。また或は、使用中にも或る時間毎に温度センサ部をオンとして温度検出を行ない、それに応じて補正値Dx, Dyを調整するようにしてもよい。

【0080】このようにすると、何日か使用することによって必要な温度状態での補正値のデータが殆ど記憶されることになる。そして、一旦、対応する補正値Dx・Dyが判別された温度については、以降補正値の判別動作を実行する必要はなく、省電力化をさらに促進できる。そして、ユーザーがリモートコマンダーを用いるときは、そのときの温度データを検出して、それに応じた補正値を読み出して出力するようにすればよい。

【0081】また、温度変化に関わらず所定の時間毎に補正動作(図5のステップF207~F214)を行なうようにすることも考えられる。つまり、割込タイマ6からの割込パルスに応じて補正を実行するものであり、この場合の制御部5の処理としては、図5におけるステップF202~F206の処理を省略したものとなる。

【0082】このようにする場合は温度センサ12は不要とすることができるが、タイマー割込みによる補正動作と温度変化に基づく補正動作を併用して採用するようにしてもよい。例えば或る期間単位でタイマー割込により必ず補正が実行されるようにしておくとともに、このタイマー割込よりも短い時間単位で温度変化の判断処理を行ない、温度変化があった時は補正を行なうようにすることなどが考えられる。

【0083】なお、本発明の入力装置としては以上の実施例の構成及び処理動作に限定されるものではなく、各種変更が可能である。例えば運動検出手段、運動停止検出手段の実現方式は各種考えられ、また温度検出に基づく処理方式も他にも各種考えられる。

【0084】また、振動ジャイロを用いた入力装置の実施例を説明したが、入力装置として上下方向のみ又は左

右方向のみの移動情報を出力するのみでよい場合は、振動ジャイロを1単位設ければよく、また3次元の移動情報を出力する必要のあるときは、振動ジャイロを3単位設けることになる。また、入力装置の空間内の移動や入力装置に与えられた運動を検出するセンサとしては、角速度センサの他に、加速度センサや圧力センサ等を用いてもよい。さらに、上述の実施例は被操作機器に対してワイヤレスの入力装置として説明したが、もちろん有線接続された入力装置としてもよい。

【0085】また、本発明の入力装置としてはAV機器やエアコンディショナー等の電子機器に対するリモートコマンダーや、パーソナルコンピュータ等に対応するマウスと同等の入力装置として採用したり、ゲーム機器に対する操作部としても採用できる。さらに、本発明によるセンサ出力のドリフトキャンセルの技術は、カーナビゲーションシステムやクレーン車のクレーン、工作機械などにおける、姿勢制御機構において広く応用できる。

[0086]

【発明の効果】以上説明したように本発明の入力装置 は、CR時定数回路を用いず、温度変化に応じて測定さ れた補正値、もしくは所定期間毎に測定された補正値を 検出出力に重畳していくように構成したために、運動検 出手段の出力におけるドリフトを有効にキャンセルする ことができるとともに、動作の安定までに時間を要しな いという優れた効果がある。また、運動検出手段に対し ては、補正値の判別時及び操作時以外には電源供給を行 なわず、また操作時であっても運動検出出力動作の不要 なエンター操作時は電源供給を行なわないようにするこ とで、大幅な省電力化を実現することができ、例えば電 池駆動方式の場合でも、長期間の使用が可能になるとい う効果がある。さらに、入力装置の電源をオンとするた めには、ユーザーは入力装置に触れるか、もしくはエン ター操作を行なえばよく、特に、入力装置に触れること で電源オンとされることにより操作性は向上され(特別 な電源操作は不要となる)、また、手袋をはめて用いる 場合などでタッチセンサが反応せず電源オンとされない ような場合でも、エンター操作により電源オンとするこ とができるという効果がある。また、ユーザーが入力装 置を離して静止状態とすれば、自動的に電源オフとなる ため無駄な電力消耗もない。

【図面の簡単な説明】

- 【図1】本発明の基本的な構成の説明図である。
- 【図2】実施例の入力装置の説明図である。
- 【図3】実施例に用いられる角速度センサ部の説明図である。
- 【図4】実施例の入力装置の構成のブロック図である。
- 【図5】実施例の入力装置の動作のフローチャートである。
- 【図6】実施例の角速度センサにおける角速度と電圧出力の関係の説明図である。
- 【図7】実施例の角速度検出に基づくコマンドコード判 別動作のフローチャートである。
- 【図8】実施例の入力装置に対応する入力コマンド対応 制御部の構成図である。
- 【図9】実施例の入力コマンド対応制御部による操作内容表示例の説明図である。
- 【図10】実施例の入力装置の静止状態の運動検出信号 の説明図である。
- 【図11】先行技術における入力装置の説明図である。
- 【図12】センサ出力のドリフト特性の説明図である。 【符号の説明】
- 1. 1 x. 1 y 振動ジャイロ
- 3, 3x, 3y, 31 増幅部
- 4, 4x, 4y, 32 A/D変換器
- 5, 33 制御部
- 5 a, 33 a CPU
- 5b, 33b ROM
- 5c, 33c RAM
- 6,39 割込タイマ
- 7, 38 エンターキー
- 8,34 送信部
- 9x, 9y, 35 D/A変換器
- 10 リモートコマンダー
- 11,36 タッチセンサ
- 12,37 温度センサ
- 13 A/D変換器

【図4】

【図5】

ir i

