Dynamic Documents with Jupyter Notebooks

Aleksandr Michuda

 Special thanks to Oscar Barriga Cabanillas for helping out today

- Special thanks to Oscar Barriga Cabanillas for helping out today
- ▶ Thank you for BITSS for organizing

- Special thanks to Oscar Barriga Cabanillas for helping out today
- ► Thank you for BITSS for organizing
- ▶ How has it been so far?

- Special thanks to Oscar Barriga Cabanillas for helping out today
- ► Thank you for BITSS for organizing
- How has it been so far?
- A Question:

- Special thanks to Oscar Barriga Cabanillas for helping out today
- Thank you for BITSS for organizing
- ► How has it been so far?
- A Question:
 - ► How familiar are you with python? Jupyter?

- Special thanks to Oscar Barriga Cabanillas for helping out today
- Thank you for BITSS for organizing
- ► How has it been so far?
- A Question:
 - How familiar are you with python? Jupyter?
 - What are you thinking of getting out of this talk?

Either:

- **Either:**
 - pit clone the repository

- **Either:**
 - pit clone the repository
 - ► Start up jupyter lab

- **Either:**
 - pit clone the repository
 - Start up jupyter lab
 - open presentation.ipynb

- **Either:**
 - pit clone the repository
 - ► Start up jupyter lab
 - open presentation.ipynb
 - follow along

- **Either:**
 - pit clone the repository
 - ► Start up jupyter lab
 - open presentation.ipynb
 - follow along
- Or:

- **Either:**
 - pit clone the repository
 - Start up jupyter lab
 - open presentation.ipynb
 - follow along
- Or:
 - ▶ Go to the repository and press the Launch Binder Button

- **Either:**
 - pit clone the repository
 - ► Start up jupyter lab
 - open presentation.ipynb
 - follow along
- Or:
 - ▶ Go to the repository and press the Launch Binder Button
 - To be explained later.

Why Dynamic Documents?

Dynamic Documents are a part of the bigger picture of Reproducible Science. Sure, there is a fixed cost; **BUT**, they make my life easier in these ways:

Short term: Easier to document fresh out of the oven results

Why Dynamic Documents?

Dynamic Documents are a part of the bigger picture of Reproducible Science. Sure, there is a fixed cost; **BUT**, they make my life easier in these ways:

- Short term: Easier to document fresh out of the oven results
- Medium term: Fast, reliable and tractable new results

Why Dynamic Documents?

Dynamic Documents are a part of the bigger picture of Reproducible Science. Sure, there is a fixed cost; **BUT**, they make my life easier in these ways:

- ▶ Short term: Easier to document fresh out of the oven results
- Medium term: Fast, reliable and tractable new results
- Long term: You can see how everything was created

What are Dynamic Documents?

Based on principles of literate programming, we aim at combining code and paper in one single document

 Best framework to achieve the holy grail of one-click reproducible workflow

What are Dynamic Documents?

Based on principles of literate programming, we aim at combining code and paper in one single document

- Best framework to achieve the holy grail of one-click reproducible workflow
- Best two current implementations: RMarkdown (R) & Jupyter (Python).

What are Dynamic Documents?

Based on principles of literate programming, we aim at combining code and paper in one single document

- Best framework to achieve the holy grail of one-click reproducible workflow
- Best two current implementations: RMarkdown (R) & Jupyter (Python).
- Stata is catching up: We will come back to this in a second

The State of Things Now

Currently, the code and the narrative components live in separate universes

 Dynamic documents are best used as part of a larger organized workflow

- Dynamic documents are best used as part of a larger organized workflow
 - ▶ Structuring folders: Data, analysis, output

- Dynamic documents are best used as part of a larger organized workflow
 - ► Structuring folders: Data, analysis, output
 - Documenting code

- Dynamic documents are best used as part of a larger organized workflow
 - ▶ Structuring folders: Data, analysis, output
 - Documenting code
 - Combining both into a final document: Pre analysis or final paper

In terms of writing the "paper"/documentation part of dynamic documents, there are many solutions

- In terms of writing the "paper"/documentation part of dynamic documents, there are many solutions
 - Latex, HTML, RST (ReStructured Text)

- In terms of writing the "paper"/documentation part of dynamic documents, there are many solutions
 - Latex, HTML, RST (ReStructured Text)
- But most have honed in on using Markdown

- In terms of writing the "paper"/documentation part of dynamic documents, there are many solutions
 - Latex, HTML, RST (ReStructured Text)
- But most have honed in on using Markdown
 - Markdown is an easy way to write formatted text in a plain text format

- In terms of writing the "paper"/documentation part of dynamic documents, there are many solutions
 - Latex, HTML, RST (ReStructured Text)
- But most have honed in on using Markdown
 - Markdown is an easy way to write formatted text in a plain text format
 - But without as verbose and difficult of a syntax like latex/HTML

- In terms of writing the "paper"/documentation part of dynamic documents, there are many solutions
 - Latex, HTML, RST (ReStructured Text)
- But most have honed in on using Markdown
 - Markdown is an easy way to write formatted text in a plain text format
 - But without as verbose and difficult of a syntax like latex/HTML
- Although basic markdown has the basics for formatting, creating tables, adding figures

- In terms of writing the "paper"/documentation part of dynamic documents, there are many solutions
 - Latex, HTML, RST (ReStructured Text)
- But most have honed in on using Markdown
 - Markdown is an easy way to write formatted text in a plain text format
 - But without as verbose and difficult of a syntax like latex/HTML
- Although basic markdown has the basics for formatting, creating tables, adding figures
- We will use Pandoc, which is used in both the Stata and R sessions

There are loads of markdown cheatsheats on the web. One can be found here

Headings

```
Title -> # Title
Section -> ## Section
Subsection -> ### Subsection
Subsubsubsection -> #### Subsubsubsection
```

Lists

- ► My list
- My List
 - an *italic* and **bold** nested list

Lists

- ► My list
 - an italic and **bold** nested list
- My List
 - an *italic* and **bold** nested list

Math

We assume that comparative advantage is α and $\alpha = \beta + \gamma$

We assume that comparative advantage is \$\alpha\$ and \$\alpha

$$y_{it} = X_{it}\beta + \varepsilon_{it}$$
$$X_{it} = Z_{it}\gamma + \nu_{it}$$

```
$$\begin{aligned}
y_{it} = X_{it}\beta + \varepsilon_{it} \\
X_{it} = Z_{it}\gamma + \nu_{it}
\end{aligned}$$
```

Pandoc is sort of what it says: pan (all), doc (document)

- Pandoc is sort of what it says: pan (all), doc (document)
- lt's a way to convert between and across different file formats

- Pandoc is sort of what it says: pan (all), doc (document)
- It's a way to convert between and across different file formats ► Word -> HTML

- Pandoc is sort of what it says: pan (all), doc (document)
- lt's a way to convert between and across different file formats
 - ► Word -> HTML
 - Latex -> Markdown

- Pandoc is sort of what it says: pan (all), doc (document)
- lt's a way to convert between and across different file formats
 - ► Word -> HTML
 - Latex -> Markdown
 - ► HTML -> XML

- Pandoc is sort of what it says: pan (all), doc (document)
- lt's a way to convert between and across different file formats
 - ► Word -> HTML
 - ► Latex -> Markdown
 - ► HTML -> XML
 - Anything to anything

- Pandoc is sort of what it says: pan (all), doc (document)
- lt's a way to convert between and across different file formats
 - ► Word -> HTML
 - Latex -> Markdown
 - ► HTML -> XML
 - ► Anything to anything
- See Pandoc's website for all input and output filetypes

Pandoc and Markdown allows you to create one file that can then be used in many different places

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - ► Your website needs HTML

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - One job posting allows PDF

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - ▶ One job posting allows PDF
 - One job posting only allows Word

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - One job posting allows PDF
 - One job posting only allows Word
- Ordinarily, you would need to have three versions, Word, HTML, PDF

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - One job posting allows PDF
 - One job posting only allows Word
- Ordinarily, you would need to have three versions, Word, HTML, PDF
 - This might get unruly as you change one but forget to change the other

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - One job posting allows PDF
 - One job posting only allows Word
- Ordinarily, you would need to have three versions, Word, HTML, PDF
 - This might get unruly as you change one but forget to change the other
 - What if there's another file format you might need?

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - One job posting allows PDF
 - One job posting only allows Word
- Ordinarily, you would need to have three versions, Word, HTML, PDF
 - This might get unruly as you change one but forget to change the other
 - ▶ What if there's another file format you might need?
- With Pandoc and markdown, you would:

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - One job posting allows PDF
 - One job posting only allows Word
- Ordinarily, you would need to have three versions, Word, HTML, PDF
 - This might get unruly as you change one but forget to change the other
 - ▶ What if there's another file format you might need?
- With Pandoc and markdown, you would:
 - write your CV in markdown

- Pandoc and Markdown allows you to create one file that can then be used in many different places
- Example:
 - You're writing your CV and want to put it up in various places.
 - Your website needs HTML
 - One job posting allows PDF
 - One job posting only allows Word
- Ordinarily, you would need to have three versions, Word, HTML, PDF
 - This might get unruly as you change one but forget to change the other
 - ▶ What if there's another file format you might need?
- With Pandoc and markdown, you would:
 - write your CV in markdown
 - convert to PDF, Word and PDF with pandoc

▶ A way to do literate programming and dynamic documents

- A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform

- ▶ A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language

- A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language
 - Currently there are so-called kernels for many languages

- A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language
 - Currently there are so-called kernels for many languages
 - ▶ Including Stata, Python, R, C, Golang, C++, Fortran and more coming!

- ▶ A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language
 - Currently there are so-called kernels for many languages
 - Including Stata, Python, R, C, Golang, C++, Fortran and more coming!
- Uses the power of Markdown/Latex Math and Code to tell a story and provide an efficient workflow

- A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language
 - Currently there are so-called kernels for many languages
 - Including Stata, Python, R, C, Golang, C++, Fortran and more coming!
- Uses the power of Markdown/Latex Math and Code to tell a story and provide an efficient workflow
- Convert into several different formats including Latex, HTML, Presentations etc...

- A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language
 - Currently there are so-called kernels for many languages
 - Including Stata, Python, R, C, Golang, C++, Fortran and more coming!
- Uses the power of Markdown/Latex Math and Code to tell a story and provide an efficient workflow
- Convert into several different formats including Latex, HTML, Presentations etc...
- ➤ The Jupyter server is also available in other text editors such as Atom and VS Code.

- A way to do literate programming and dynamic documents
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language
 - Currently there are so-called kernels for many languages
 - Including Stata, Python, R, C, Golang, C++, Fortran and more coming!
- Uses the power of Markdown/Latex Math and Code to tell a story and provide an efficient workflow
- Convert into several different formats including Latex, HTML, Presentations etc...
- ➤ The Jupyter server is also available in other text editors such as Atom and VS Code.
- And now available in STATA!

You can think of Jupyter as broadly being made up of two parts:

- You can think of Jupyter as broadly being made up of two parts:
 - ► A JSON document that organizes text between markdown, code, figures, widgets, etc...

- You can think of Jupyter as broadly being made up of two parts:
 - A JSON document that organizes text between markdown, code, figures, widgets, etc...
 - A server that loads a "kernel" with a particular language and knows how to translate the markdown to formatted text and the code to execution

- You can think of Jupyter as broadly being made up of two parts:
 - ➤ A JSON document that organizes text between markdown, code, figures, widgets, etc...
 - A server that loads a "kernel" with a particular language and knows how to translate the markdown to formatted text and the code to execution
 - ► A web interface (although not required)

Why Jupyter Notebooks?

Jupyter is ubiquitous

Why Jupyter Notebooks?

- Jupyter is ubiquitous
- ▶ Jupyter is used by basically all of the data science community

- Jupyter is ubiquitous
- ▶ Jupyter is used by basically all of the data science community
- ▶ Jupyter is used by other software (VS Code, Atom/Hydrogen)

- Jupyter is ubiquitous
- ▶ Jupyter is used by basically all of the data science community
- ▶ Jupyter is used by other software (VS Code, Atom/Hydrogen)
- ➤ Since Jupyter is a JSON document and built using web tools, anything that uses webtools can use it

- Jupyter is ubiquitous
- ▶ Jupyter is used by basically all of the data science community
- Jupyter is used by other software (VS Code, Atom/Hydrogen)
- ➤ Since Jupyter is a JSON document and built using web tools, anything that uses webtools can use it
- Science and publishing is changing (PDFs are becoming old, open access and web journals are becoming more popular)

- Jupyter is ubiquitous
- ▶ Jupyter is used by basically all of the data science community
- ▶ Jupyter is used by other software (VS Code, Atom/Hydrogen)
- ➤ Since Jupyter is a JSON document and built using web tools, anything that uses webtools can use it
- Science and publishing is changing (PDFs are becoming old, open access and web journals are becoming more popular)
 - Present results in a dynamic way

- Jupyter is ubiquitous
- Jupyter is used by basically all of the data science community
- ▶ Jupyter is used by other software (VS Code, Atom/Hydrogen)
- ➤ Since Jupyter is a JSON document and built using web tools, anything that uses webtools can use it
- Science and publishing is changing (PDFs are becoming old, open access and web journals are becoming more popular)
 - Present results in a dynamic way
 - Interactive

- Jupyter is ubiquitous
- ▶ Jupyter is used by basically all of the data science community
- Jupyter is used by other software (VS Code, Atom/Hydrogen)
- ➤ Since Jupyter is a JSON document and built using web tools, anything that uses webtools can use it
- Science and publishing is changing (PDFs are becoming old, open access and web journals are becoming more popular)
 - Present results in a dynamic way
 - Interactive
 - More efficient to show quick interactive widget to experiment with colleagues/advisors than 50 figures in a static PDF

JupyterLab (the web interface) comes with many extensions for anything you might want:

▶ A language server

JupyterLab (the web interface) comes with many extensions for anything you might want:

- ▶ A language server
- multicursor support

JupyterLab (the web interface) comes with many extensions for anything you might want:

- A language server
- multicursor support
- git integration

JupyterLab (the web interface) comes with many extensions for anything you might want:

- ▶ A language server
- multicursor support
- git integration
- and more...

Running Code

```
gen x = runiform()
gen treat = x > .2
gen y = runiform()
%browse
```

Figures

 ${\tt twoway \ scatter \ y \ x}$

▶ Many Jupyter kernels have something called magics

```
%html
eststo model: qui reg y t x
esttab model, html
%latex
eststo model: qui reg y t x
esttab model, tex
```

- ▶ Many Jupyter kernels have something called magics
 - A way to make certain actions easy without having to write too much code

```
%html
eststo model: qui reg y t x
esttab model, html
%latex
eststo model: qui reg y t x
esttab model, tex
```

- Many Jupyter kernels have something called magics
 - A way to make certain actions easy without having to write too much code
 - ▶ Often language specific

```
%html
eststo model: qui reg y t x
esttab model, html
%latex
eststo model: qui reg y t x
esttab model, tex
```

- ▶ Many Jupyter kernels have something called magics
 - A way to make certain actions easy without having to write too much code
 - ▶ Often language specific
- ▶ All Stata magics can be found here

```
%html
eststo model: qui reg y t x
esttab model, html
```

```
%latex
eststo model: qui reg y t x
esttab model, tex
```

Exporting

Exporting to HTML, PDF and slides is possible through the menu: File -> Export Notebook as -> PDF

Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ▶ What if they do, but they don't have all the dependencies needed for your cool dashboard?

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ► What if they do, but they don't have all the dependencies needed for your cool dashboard?
- ► That's where binder comes in

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ▶ What if they do, but they don't have all the dependencies needed for your cool dashboard?
- ► That's where binder comes in
- Binder uses docker to create a containerized version of your notebook with all dependencies installed and anyone can access it even if they don't have jupyter installed at all.

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ► What if they do, but they don't have all the dependencies needed for your cool dashboard?
- That's where binder comes in
- Binder uses docker to create a containerized version of your notebook with all dependencies installed and anyone can access it even if they don't have jupyter installed at all.
- ▶ They just need a web browser

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ▶ What if they do, but they don't have all the dependencies needed for your cool dashboard?
- That's where binder comes in
- Binder uses docker to create a containerized version of your notebook with all dependencies installed and anyone can access it even if they don't have jupyter installed at all.
- They just need a web browser
- We've already seen how this works, either with the dashboard or with this very presentation!

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ▶ What if they do, but they don't have all the dependencies needed for your cool dashboard?
- That's where binder comes in
- Binder uses docker to create a containerized version of your notebook with all dependencies installed and anyone can access it even if they don't have jupyter installed at all.
- They just need a web browser
- We've already seen how this works, either with the dashboard or with this very presentation!
- ➤ All you need is a public github repository and notebook in that repository and that's it!

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ► What if they do, but they don't have all the dependencies needed for your cool dashboard?
- That's where binder comes in
- Binder uses docker to create a containerized version of your notebook with all dependencies installed and anyone can access it even if they don't have jupyter installed at all.
- They just need a web browser
- We've already seen how this works, either with the dashboard or with this very presentation!
- ▶ All you need is a public github repository and notebook in that repository and that's it!
- Waiting time for spinning up the notebook will vary

- Jupyter is great and all, but what if you advisor/boss doesn't have Jupyter installed?
- ▶ What if they do, but they don't have all the dependencies needed for your cool dashboard?
- That's where binder comes in
- Binder uses docker to create a containerized version of your notebook with all dependencies installed and anyone can access it even if they don't have jupyter installed at all.
- ▶ They just need a web browser
- We've already seen how this works, either with the dashboard or with this very presentation!
- ▶ All you need is a public github repository and notebook in that repository and that's it!
- Waiting time for spinning up the notebook will vary
- While it's spinning it up, any questions so far?

Many people might have servers in their universities/organizations that are more powerful than a laptop.

Setting up jupyter on a server

- ▶ Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.

Setting up jupyter on a server

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - ▶ This requires jupyter being installed on the server

Setting up jupyter on a server

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

Setting up jupyter on a server

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - ▶ This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

Setting up jupyter on a server

► The first thing you need to do is log on to the server and start a jupyter instance:

- ▶ Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

Setting up jupyter on a server

The first thing you need to do is log on to the server and start a jupyter instance:

jupyter notebook --no-browser --port=8888

This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

Setting up jupyter on a server

The first thing you need to do is log on to the server and start a jupyter instance:

- This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
- ► For Mac users, you can use ssh to finish the process. Just type: ssh username@host -L 8888:localhost:8888

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

Setting up jupyter on a server

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

Setting up jupyter on a server

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - This requires jupyter being installed on the server.
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

Setting up jupyter on a server

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- ▶ Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - laptop screen), but using the power of the server.

 This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

- The first thing you need to do is log on to the server and start a jupyter instance:
- jupyter notebook --no-browser --port=8888
 - This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
 For Mac users, you can use ssh to finish the process. Just
 - type: ssh username@host -L 8888:localhost:8888
 - ▶ Which will forward your computer 8888 port, to the server's

One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser

- One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser
- Not very good for version control

- One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser
- Not very good for version control
- Rmd files (used with RMarkdown) are just markdown files with code cells.

- One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser
- Not very good for version control
- Rmd files (used with RMarkdown) are just markdown files with code cells.
 - Great for version control

- One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser
- Not very good for version control
- Rmd files (used with RMarkdown) are just markdown files with code cells.
 - Great for version control
 - Readble

- One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser
- Not very good for version control
- Rmd files (used with RMarkdown) are just markdown files with code cells.
 - ► Great for version control
 - Readble
 - Easy to share and read in its raw form

- One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser
- Not very good for version control
- Rmd files (used with RMarkdown) are just markdown files with code cells.
 - ► Great for version control
 - Readble
 - Easy to share and read in its raw form
- Can we do this with Jupyter?

- One drawback of jupyter (besides dependencies) is the fact that you need to install all of this and use a browser
- Not very good for version control
- Rmd files (used with RMarkdown) are just markdown files with code cells.
 - ► Great for version control
 - Readble
 - Easy to share and read in its raw form
- Can we do this with Jupyter?
 - Yes! with jupytext

Shameless self-promotion

Export notebook to a do-file!

https://github.com/amichuda/jupyter-doexport

stata-markdown

- ▶ stata-markdown
- dyndoc

- ▶ stata-markdown
- dyndoc
- putdocx

- ▶ stata-markdown
- dyndoc
- putdocx
- putpdf

Other Extras not Covered

jupyter-cache

Other Extras not Covered

- jupyter-cache
- codebraid

Other Extras not Covered

- jupyter-cache
- codebraid
- binder and docker