Chapter 9: Part B Quantum statistics of ideal gases

Zhi-Jie Tan Wuhan University

2019 spring semester

9.2 Formulation of the statistical problem

Energy:

$$E_R = n_1 \epsilon_1 + n_2 \epsilon_2 + n_3 \epsilon_3 + \cdots = \sum_r n_r \epsilon_r$$

restriction:

$$\sum_{r} n_{r} = N$$

Partition function:

$$Z = \sum_{R} e^{-\beta E_R} = \sum_{R} e^{-\beta (n_1 e_1 + n_2 e_3 + \cdots)}$$

9.2 Formulation of the statistical problem

Mean number in *s* state:

$$\bar{n}_{*} = \frac{\sum_{R} n_{*} e^{-\beta (n_{1}e_{1} + n_{2}e_{2} + \cdots)}}{\sum_{R} e^{-\beta (n_{1}e_{1} + n_{2}e_{2} + \cdots)}}$$

$$= \frac{1}{Z} \sum_{R} \left(-\frac{1}{\beta} \frac{\partial}{\partial \epsilon_{s}} \right) e^{-\beta (n_{1} \epsilon_{s} + n_{2} \epsilon_{s} + \cdots)}$$

$$= -\frac{1}{\beta Z} \frac{\partial Z}{\partial \epsilon}$$

9.2 Formulation of the statistical problem

Maxwell-Boltzmann statistics

$$n_r = 0, 1, 2, 3,$$

$$n_r = 0, 1, 2, 3,$$
 for each r
$$\sum_r n_r = N$$

distinguishable.

Bose-Einstein statistics

$$n_r = 0, 1, 2, 3,$$
 for each r

$$\sum_{r} n_{r} = N$$

indistinguishable.

Fermi-Dirac statistics

$$n_r = 0, 1$$
 for each r

$$\sum_{r} n_{r} = N$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.3 Quantum distribution functions

$$\bar{n}_s = \frac{\sum_{n_1, n_2, \dots} n_s e^{-\beta(n_1 e_1 + n_2 e_2 + \dots + n_s e_s + \dots)}}{\sum_{n_1, n_2, \dots} e^{-\beta(n_1 e_1 + n_2 e_2 + \dots + n_s e_s + \dots)}}$$

$$\sum_{r} n_{r} = N$$

$$\bar{n}_s = \frac{\sum_{n_s} n_s e^{-\beta n_1 e_s} \sum_{n_1, n_2, \dots} e^{-\beta (n_1 e_1 + n_2 e_2 + \dots)}}{\sum_{n_s} e^{-\beta n_1 e_s} \sum_{n_2, n_2, \dots} e^{-\beta (n_1 e_1 + n_2 e_2 + \dots)}}$$

9.3 Quantum distribution functions

Photon statistics: BE statistics without restricted N

$$\bar{n}_{s} = \frac{\sum_{n_{s}} n_{s} e^{-\beta n_{s} a_{s}}}{\sum_{n_{s}} e^{-\beta n_{s} a_{s}}} \bar{n}_{s} = \frac{\sum_{n_{s}} n_{s} e^{-\beta n_{s} a_{s}} \sum_{n_{1}, n_{2}, \dots} e^{-\beta (n_{1} a_{1} + n_{2} a_{2} + \dots)}}{\sum_{n_{s}} e^{-\beta n_{s} a_{s}} \sum_{n_{1}, n_{2}, \dots} e^{-\beta (n_{1} a_{1} + n_{2} a_{2} + \dots)}} e^{-\beta (n_{1} a_{1} + n_{2} a_{2} + \dots)}$$

$$ar{n}_s = rac{(-1/eta)(\partial/\partial\epsilon_s)\Sigma \ e^{-eta_{n_i}\epsilon_s}}{\Sigma \ e^{-eta_{n_i}\epsilon_s}} = rac{(-1/eta)(\partial/\partial\epsilon_s)\Sigma \ e^{-eta_{n_i}\epsilon_s}}{\Sigma \ e^{-eta_{n_i}\epsilon_s}} = -rac{1}{eta} rac{\partial}{\partial\epsilon_s} \ln \left(\Sigma \ e^{-eta_{n_i}\epsilon_s}
ight)$$

$$= \underbrace{\frac{1}{1 - e^{-\beta \epsilon_{\bullet}}}}$$

9.3 Quantum distribution functions

Photon statistics: BE statistics without restricted N

$$\bar{n}_{s} = \frac{1}{\beta} \frac{\partial}{\partial \epsilon_{s}} \ln \left(1 - e^{-\beta \epsilon_{s}} \right) = \frac{e^{-\beta \epsilon_{s}}}{1 - e^{-\beta \epsilon_{s}}}$$

$$\bar{n}_{\epsilon} = \frac{1}{e^{\beta \epsilon_{\bullet}} - 1}$$

Plank distribution

9.3 Quantum distribution functions $\sum_{r} n_r = N$

Fermi-Dirac statistics $n_r = 0$ and 1

$$\sum_{r} n_{r} = N$$

define
$$Z_s(N) = \sum_{n_1,n_2,\ldots}^{(e)} e^{-\beta(n_1e_1+n_3e_2+\cdots)}$$

$$n_s=0$$
 1

$$ar{n}_s = rac{0 + e^{-eta \epsilon_s} Z_s (N-1)}{Z_s (N) + e^{-eta \epsilon_s} Z_s (N-1)}$$

$$\bar{n}_{*} = \frac{1}{[Z_{*}(N)/Z_{*}(N-1)]e^{\beta\epsilon_{*}}+1}$$

9.3 Quantum distribution functions

define
$$\alpha = \frac{\partial \ln Z}{\partial N}$$

$$Z(N)/Z(N-1) = e^{\alpha}$$

$$\bar{n}_{\scriptscriptstyle a} = \frac{1}{[Z_{\scriptscriptstyle a}(N)/Z_{\scriptscriptstyle a}(N-1)] e^{\beta \epsilon_{\scriptscriptstyle a}} + 1}$$

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} + 1}$$

Fermi-Dirac distribution

9.3 Quantum distribution functions

Fermi-Dirac statistics

define

$$\alpha = \frac{\partial \ln Z}{\partial N}$$

$$\alpha = -\frac{1}{kT}\frac{\partial F}{\partial N} =$$

$$=-\frac{\mu}{kT}=-\beta\mu$$

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} + 1}$$

$$0 \le \bar{n}_s \le 1$$

$$\bar{n}_{\ell} \rightarrow 0$$

if ε, becomes large enough

Chemical potential per particle

9.3 Quantum distribution functions

Bose-Einstein statistics $n_r = 0, 1, 2, 3, \ldots$

$$n_r = 0, 1, 2, 3, \dots$$

$$n_s = 0$$
 1

$$\bar{n}_s = \frac{0 + e^{-\beta \epsilon_s} Z_s (N-1) + 2e^{-2\beta \epsilon_s} Z_s (N-2) + \cdots}{Z_s (N) + e^{-\beta \epsilon_s} Z_s (N-1) + e^{-2\beta \epsilon_s} Z_s (N-2) + \cdots}$$

$$\bar{n}_s = \frac{1}{Z_s(N) + e^{-\beta \epsilon_s} Z_s(N-1) + e^{-2\beta \epsilon_s} Z_s(N-2) + \cdots}$$

$$Z(N)/Z(N-1)=e^{\alpha}$$

$$\bar{n}_{s} = \frac{Z_{s}(N)[0 + e^{-\beta \epsilon_{s}} e^{-\alpha} + 2e^{-2\beta \epsilon_{s}} e^{-2\alpha} + \cdots]}{Z_{s}(N)[1 + e^{-\beta \epsilon_{s}} e^{-\alpha} + e^{-2\beta \epsilon_{s}} e^{-2\alpha} + \cdots]}$$

$$\bar{n}_{s} = \frac{\sum_{e} n_{s} e^{-n_{s}(\alpha + \beta \epsilon_{s})}}{\sum_{e} e^{-n_{s}(\alpha + \beta \epsilon_{s})}}$$

9.3 Quantum distribution functions

Bose-Einstein statistics

$$\bar{n}_s = \frac{\sum_s n_s e^{-n_s(\alpha + \beta \epsilon_s)}}{\sum_s e^{-n_s(\alpha + \beta \epsilon_s)}}$$

$$ar{n}_{\scriptscriptstyle a} = rac{1}{e^{lpha + eta \epsilon_{\scriptscriptstyle a}} - 1}$$

acan be determined by

$$\sum_{r} \frac{1}{e^{\alpha + \beta \epsilon_{r}} - 1} = N$$

$$\alpha = -\beta \mu$$

$$\bar{n}_{*}=\frac{1}{e^{\beta(\epsilon_{*}-\mu)}-1}$$

9.4 Maxwell-Boltzmann statistics

Partition function:

$$Z = \sum_{R} e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \cdots)}$$

for given values of $\{n_1, n_2, \ldots\}$

Possible way:

$$\frac{N!}{n_1!n_2!\cdots}$$

$$Z = \sum_{n_1, n_2, \dots} \frac{N!}{n_1! n_2! \dots} e^{-\beta (n_1 n_1 n_2 n_2 n_2)}$$

$$\sum_{\mathbf{r}} n_{\mathbf{r}} = N$$

9.4 Maxwell-Boltzmann statistics

Partition function:

$$Z = \sum_{n_1, n_2, \dots} \frac{N!}{n_1! n_2! \dots} e^{-\beta(n_1 n_1 + n_2 n_2)}$$

$$Z = \sum_{n_1,n_2,\dots} \frac{N!}{n_1! n_2! \dots} (e^{-\beta \epsilon_1})^{n_1} (e^{-\beta \epsilon_2})^{n_2} \dots$$

$$Z = (e^{-\beta\epsilon_1} + e^{-\beta\epsilon_2} + \cdot \cdot \cdot)^N$$

$$\ln Z = N \ln \left(\sum_{r} e^{-\beta \epsilon_r}\right)$$

9.4 Maxwell-Boltzmann statistics

Partition function:

1	2	5
\overline{AB}		
	AB	
		AB
\boldsymbol{A}	\boldsymbol{B}	
\boldsymbol{B}	A	
\boldsymbol{A}		B
\boldsymbol{B}		\boldsymbol{A}
	\boldsymbol{A}	\boldsymbol{B}
	\boldsymbol{B}	A

$$Z = \exp(-\beta \times 2\varepsilon_{1}) + \exp(-\beta \times 2\varepsilon_{2}) + \exp(-\beta \times 2\varepsilon_{3})$$

$$+ \exp(-\beta \times (\varepsilon_{1} + \varepsilon_{2})) + \exp(-\beta \times (\varepsilon_{1} + \varepsilon_{2}))$$

$$+ \exp(-\beta \times (\varepsilon_{1} + \varepsilon_{3})) + \exp(-\beta \times (\varepsilon_{1} + \varepsilon_{3}))$$

$$+ \exp(-\beta \times (\varepsilon_{2} + \varepsilon_{3})) + \exp(-\beta \times (\varepsilon_{2} + \varepsilon_{3}))$$

9.4 Maxwell-Boltzmann statistics

Partition function:

$$\ln Z = N \ln \left(\sum_{r} e^{-\beta \epsilon_r} \right)$$

$$ar{n}_s = N rac{e^{-eta \epsilon_s}}{\sum_{r} e^{-eta \epsilon_r}}$$

Maxwell-Boltzmann distribution

9.5 Photon statistics

Partition function:

$$Z = \sum_{R} e^{-\beta(n_1\epsilon_1+n_2\epsilon_1+\cdots)}$$

$$Z = \sum_{\substack{n_1, n_2, \dots \\ n_1 = 0}} e^{-\beta n_1 \epsilon_1} e^{-\beta n_2 \epsilon_2} e^{-\beta n_2 \epsilon_3} \cdots$$
 $Z = \left(\sum_{n_1 = 0}^{\infty} e^{-\beta n_1 \epsilon_1}\right) \left(\sum_{n_2 = 0}^{\infty} e^{-\beta n_2 \epsilon_3}\right) \left(\sum_{n_4 = 0}^{\infty} e^{-\beta n_1 \epsilon_4}\right) \cdots$

$$Z = \left(\frac{1}{1 - e^{-\beta \epsilon_j}}\right) \left(\frac{1}{1 - e^{-\beta \epsilon_j}}\right) \left(\frac{1}{1 - e^{-\beta \epsilon_j}}\right) \cdot \cdots$$

$$\ln Z = -\sum_{r} \ln \left(1 - e^{-\beta \epsilon_{r}}\right) \quad \frac{-}{n_{S}} = -\frac{1}{\beta Z} \frac{\partial Z}{\partial \epsilon_{s}}$$

$$\frac{1}{n_S} = -\frac{1}{\beta Z} \frac{\partial Z}{\partial \epsilon}$$

9.6 Bose-Einstein statistics

Partition function:

$$Z = \sum_{R} e^{-\beta(n_1 \epsilon_1 + n_2 \epsilon_2 + \cdots)}$$

$$n_r = 0, 1, 2, \ldots$$

$$\sum_r n_r = N$$

Considering Z(N').

Z(N') increases rapidly with N', but we are only interested in Z at N'=N.

Multiply $e^{-\alpha N'}$ to produce a function $Z(N')e^{-\alpha N'}$ with maximum at N'=N by a proper choice of α.

A sum of all N' must select only terms of interest near N

$$\sum_{N'} Z(N') e^{-\alpha N'} = Z(N) e^{-\alpha N} \Delta^* N'$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.6 Bose-Einstein statistics

Define Grand partition function

$$\sum_{N'} Z(N') e^{-\alpha N'} = Z(N) e^{-\alpha N} \Delta^* N'$$

$$Z \equiv \sum_{N'} Z(N') e^{-\alpha N'}$$

$$\ln Z(N) = \alpha N + \ln Z$$

?

9.6 Bose-Einstein statistics

Grand partition function
$$Z = \sum_{R} e^{-\beta(n_1 e_1 + n_2 e_2 + \cdots)} e^{-\alpha(n_1 + n_2 + \cdots)}$$

$$Z = \left(\frac{1}{1 - e^{-(\alpha + \beta \epsilon_1)}}\right) \left(\frac{1}{1 - e^{-(\alpha + \beta \epsilon_2)}}\right) \cdot \cdot \cdot \cdot \ln Z = -\sum_{r} \ln \left(1 - e^{-\alpha - \beta \epsilon_r}\right)$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-

Dirac statistics

 $\ln Z(N) = \alpha N + \ln Z$

9.6 Bose-Einstein statistics

Grand partition function
$$\ln Z = -\sum \ln (1 - e^{-\alpha - \beta \epsilon_r})$$

Keep N'=N by a proper choice of α

$$Z(N')e^{-aN'}$$

$$\frac{\partial}{\partial N'} \left[\ln Z(N') - \alpha N' \right] = \frac{\partial \ln Z(N)}{\partial N} - \alpha = 0$$

$$\left[\alpha + \left(N + \frac{\partial \ln Z}{\partial \alpha}\right) \frac{\partial \alpha}{\partial N}\right] - \alpha = 0$$

$$N + \frac{\partial \ln Z}{\partial \alpha} = \frac{\partial \ln Z}{\partial \alpha} = 0$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-

Dirac statistics

$$\ln Z = \alpha N - \sum_{r} \ln \left(1 - e^{-\alpha - \beta e_r}\right)$$

9.6 Bose-Einstein statistics

$$N + \frac{\partial \ln Z}{\partial \alpha} = \frac{\partial \ln Z}{\partial \alpha} = 0$$

$$\sum_{e^{\alpha+\beta}} \frac{1}{1} = N$$

$$ar{n}_s = -rac{1}{eta} rac{\partial \ln Z}{\partial \epsilon_s} = -rac{1}{eta} \left[-rac{eta e^{-lpha - eta \epsilon_s}}{1 - e^{-lpha - eta \epsilon_s}} + rac{\partial \ln Z}{\partial lpha} rac{\partial lpha}{\partial \epsilon_s}
ight]$$

9.6 Bose-Einstein statistics

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} - 1}$$

$$\sum_{r} \bar{n}_{r} = N$$

$$\frac{\partial \ln Z(N)}{\partial N} - \alpha = 0$$

$$\mu = \frac{\partial F}{\partial N} = -kT\frac{\partial \ln Z}{\partial N} = -kT\alpha$$

$$\alpha = -\beta \mu$$

9.7 Fermi-Dirac statistics

$$n_r = 0$$
 and 1 for each r

Similar to the treatment in BE statistics

$$Z = \sum_{\substack{n_1, n_2, n_3 \\ n_1 = 0}} e^{-\beta(n_1 e_1 + n_2 e_2 + \cdots) - \alpha(n_1 + n_2 + \cdots)}$$

$$= \left(\sum_{n_1 = 0}^{1} e^{-(\alpha + \beta e_1) n_2}\right) \left(\sum_{n_1 = 0}^{1} e^{-(\alpha + \beta e_2) n_1}\right) + \cdots$$

$$Z = (1 + e^{-\alpha - \beta \epsilon_1})(1 + e^{-\alpha - \beta \epsilon_1}) - 1$$

$$\ln Z = \sum_{r} \ln (1 + e^{-\alpha - \beta \epsilon_r})$$

9.7 Fermi-Dirac statistics
$$\ln Z = \sum_{r} \ln (1 + e^{-\alpha - \beta \epsilon_r})$$

$$\ln Z = \alpha N + \sum_{r} \ln \left(1 + e^{-\alpha - \beta \epsilon_r}\right)$$

α is also determined by the condition

$$\frac{\partial \ln Z}{\partial \alpha} = N - \sum_{r} \frac{e^{-\alpha - \beta \epsilon_r}}{1 + e^{-\alpha - \beta \epsilon_r}} = 0$$

$$\sum_{r} \frac{1}{e^{\alpha + \beta \epsilon_r} + 1} = N$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics 9.7 Fermi-Dirac statistics

$$\bar{n}_s = -\frac{1}{\beta} \frac{\partial \ln Z}{\partial \epsilon_s} = \frac{1}{\beta} \frac{\beta e^{-\alpha - \beta \epsilon_s}}{1 + e^{-\alpha - \beta \epsilon_s}}$$

$$ar{n}_s = rac{1}{e^{lpha + eta \epsilon_s} + 1}$$

Maxwell-Boltzmann statistics

$$ar{n}_s = N rac{e^{-eta \epsilon_s}}{\sum_{r} e^{-eta \epsilon_r}} \quad ext{In } Z = N \ln \left(\sum_{r} e^{-eta \epsilon_r} \right)$$

$$\ln Z = N \ln \left(\sum_{r} e^{-\beta \epsilon_{r}} \right)$$

Bose-Einstein statistics

$$\bar{n}_{\bullet} = \frac{1}{e^{\alpha + \beta \epsilon_{\bullet}} - 1}$$

$$\bar{n}_s = \frac{1}{e^{\alpha+\beta\epsilon_s}-1} \quad \ln Z = \alpha N - \sum_r \ln \left(1 - e^{-\alpha-\beta\epsilon_r}\right)$$

Fermi-Dirac statistics

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} + 1}$$

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} + 1} \ln Z = \alpha N + \sum_r \ln (1 + e^{-\alpha - \beta \epsilon_r})$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-**Dirac statistics** 9.8 Quantum statistics in the classic limit

BE and FD distributions:

$$\bar{n}_r = \frac{1}{e^{\alpha + \beta \epsilon_r} \pm 1}$$

Total particles:

$$\sum_{r} \bar{n}_{r} = \sum_{r} \frac{1}{e^{\alpha + \beta \epsilon_{r}} \pm 1} = N$$

Partition function:

$$\ln Z = \alpha N \pm \sum_{r} \ln \left(1 \pm e^{-\alpha - \beta \epsilon_{r}}\right)$$

Limiting cases: very low concentration $\bar{n}_r \ll 1$ $\exp{(\alpha + \beta \epsilon_r)} \gg 1$ Very high T

$$\bar{n}_r \ll 1$$

$$\exp(\alpha + \beta\epsilon_r) \gg 1$$

$$\beta \rightarrow 0$$
 $\beta \epsilon_r \ll \alpha$

- 9.8 Quantum statistics in the classic limit
 - **Limiting cases:**

very low concentration $\bar{n}_r \ll 1$ $\exp{(\alpha + \beta \epsilon_r)} \gg 1$

$$\bar{n}_r \ll 1$$

$$\exp\left(\alpha+\beta\epsilon_{r}\right)\gg1$$

Very high T

$$\beta \rightarrow 0$$

$$\beta \rightarrow 0$$
 $\beta \epsilon_r \ll \alpha$

Number of terms contribute substantially to summation increases $\sum_{\bar{r}} \bar{n}_{r} = \sum_{\bar{e}^{\alpha+\beta\epsilon_{r}} \pm 1} \frac{1}{1} = N$ Requires α must be large enough To keep sum ==N

$$\exp(\alpha + \beta \epsilon_r) \gg 1$$

9.8 Quantum statistics in the classic limit Limiting cases:

very low concentration, very high T

$$e^{a+eta\epsilon_r}\gg 1$$

$$\bar{n}_r \ll 1$$

$$\bar{n}_r = \frac{1}{e^{\alpha + \beta \epsilon_r} \pm 1}$$

$$\sum_{\alpha}e^{-\alpha-\beta\,\epsilon_r}=e^{-\alpha}\sum_{\alpha}e^{-\beta\epsilon_r}=N$$

$$\bar{n}_r = e^{-a-\beta \epsilon_r}$$

$$e^{-\alpha} = N \left(\sum_{r} e^{-\beta \cdot r} \right)^{-1}$$

Limiting cases: low concentration high T --→MB dis.

$$\tilde{n}_r = N \frac{e^{-\beta \epsilon_r}}{\sum_r e^{-\beta \epsilon_r}}$$

Maxwell-Boltzmann, Bose-Einstein, Fermi-

Dirac statistics

$$\ln Z = \alpha N \pm \sum_{r} \ln \left(1 \pm e^{-\alpha - \beta \epsilon_r}\right)$$

9.8 Quantum statistics in the classic limit

Partition function:

$$\ln Z = \alpha N \pm \sum_{r} (\pm e^{-\alpha - \beta \epsilon_{r}}) = \alpha N + N$$

$$\alpha = -\ln N + \ln \left(\sum e^{-\beta \epsilon_r}\right)$$

$$\ln Z = -N \ln N + N + N \ln \left(\sum_{i} e^{-\beta \epsilon_{i}}\right)$$

While MB gives:

$$\ln Z = N \ln \left(\sum_{r} e^{-\beta \epsilon_r} \right)$$

9.8 Quantum statistics in the classic limit Partition function:

$$\ln Z = \ln Z_{\text{MB}} - (N \ln N - N)$$
 $\ln Z = \ln Z_{\text{MB}} - \ln N$
 $Z = \frac{Z_{\text{MB}}}{N!}$

<<< distinguishable

Ideal gas in the classical limit 9.9 Quantum states of a single particle

Wave function:

Consider a particle is non-relativistic and with mass m, position vector r and momentum p;

The particle is in volume V and experiences no force; The wave function: amplitude

$$\Psi = A e^{i(\kappa - r - \omega t)} = \psi(r) e^{-i\omega t}$$
plane wave wave vector frequency
$$\epsilon = \hbar \omega \quad \text{momentum} \quad p = \hbar \kappa$$

$$\epsilon = \frac{\mathbf{p}^2}{2m} = \frac{\hbar^2 \kappa^2}{2m}$$

Ideal gas in the classical limit 9.9 Quantum states of a single particle

Wave function $\langle ===$ **Schrodinger equation**

$$i\hbar \frac{\partial \Psi}{\partial t} = 3 \mathrm{C} \Psi$$

One can choose the potential energy to be 0 in container Then Hamiltonian reduces to kinetic energy only

$$3\mathcal{C} = \frac{1}{2m} p^2 = \frac{1}{2m} \left(\frac{\hbar}{i} \nabla\right)^2 = -\frac{\hbar^2}{2m} \nabla^2$$

A testing solution

$$\Psi = \psi \, e^{-i\omega t} = \psi \, e^{-(i/\hbar)\epsilon t}$$

Ideal gas in the classical limit 9.9 Quantum states of a single particle

$$3\mathcal{C}\psi = \epsilon\psi$$

$$\nabla^2\psi + \frac{2m\epsilon}{\hbar^2}\psi = 0$$

Time-independent Schrodinger equation $\vec{k} = (k_x, k_y, k_z)$

$$\vec{k} = (k_x, k_y, k_z)$$

General solution:
$$\psi = A e^{i(\kappa_x x + \kappa_y y + \kappa_z x)} = A e^{i\kappa \cdot x}$$

$$-(\kappa_x^2 + \kappa_y^2 + \kappa_z^2) + \frac{2m\epsilon}{\hbar^2} = 0$$

$$\epsilon = \frac{\hbar^2 \kappa^2}{2m}$$

Ideal gas in the classical limit 9.9 Quantum states of a single particle Boundary conditions and enumeration of states

Ψ must satisfy certain boundary conditions, and not all values of k, p are allowed.

Considering a rectangular cell with $L_x \times L_y \times L_z = V$, we can completely neglect any container walls and imagine that the cell is embedded in an infinite system

Periodical boundary

Ideal gas in the classical limit 9.9 Quantum states of a single particle Boundary conditions and enumeration of states Periodical boundary

$$\psi(x + L_x, y, z) = \psi(x,y,z)$$

$$\psi(x, y + L_y, z) = \psi(x,y,z)$$

$$\psi(x, y, z + L_z) = \psi(x,y,z)$$

if L>> λ , such treatment does not affect the physics

Ideal gas in the classical limit 9.9 Quantum states of a single particle

Boundary conditions and enumeration of states

Periodical boundary

$$\psi = e^{i\mathbf{x}\cdot\mathbf{y}} = e^{i(\kappa_x x + \kappa_y y + \kappa_z x)}$$

$$\psi(x + L_x, y, z) = \psi(x,y,z)
\psi(x, y + L_y, z) = \psi(x,y,z)
\psi(x, y, z + L_z) = \psi(x,y,z)$$

$$\kappa_x(x+L_x) = \kappa_x x + 2\pi n_x$$

$$\epsilon = \frac{\hbar^2}{2m} \left(\kappa_x^2 + \kappa_y^2 + \kappa_z^2 \right)$$

$$=\frac{2\pi^2\hbar^2}{m}\left(\frac{n_x^2}{L_x^2}+\frac{n_y^2}{L_y^2}+\frac{n_z^2}{L_z^2}\right)$$

$$\kappa_x = rac{2\pi}{L_x} n_x$$
 $\kappa_y = rac{2\pi}{L_y} n_y$
 $\kappa_z = rac{2\pi}{L_z} n_z$

n_x, n_y, n_z can be any integer

Ideal gas in the classical limit 9.9 Quantum states of a single particle

Boundary conditions and enumeration of states

Periodical boundary

Since L_x , L_y , L_z are large, the possible values of k are closely spaced.

Thus, there is many states corresponding to any small dk

For given values of k_y and k_z , number Δn_x of possible integer n_x for k_x in the range

$$[k_x, k_x + dk_x]$$

$$\Delta n_x = rac{L_z}{2\pi} \, d\kappa_z$$

$$\kappa_x = rac{2\pi}{L_x} n_x$$
 $\kappa_y = rac{2\pi}{L_y} n_y$
 $\kappa_z = rac{2\pi}{L_z} n_z$

Ideal gas in the classical limit 9.9 Quantum states of a single particle

Boundary conditions and enumeration of states

Periodical boundary

Number of translational states $\rho(k)dk$ for k in the range [k, k+dk]

$$\rho d^3 \kappa = \Delta n_x \, \Delta n_y \, \Delta n_z$$

$$= \left(\frac{L_x}{2\pi} \, d\kappa_x\right) \left(\frac{L_y}{2\pi} \, d\kappa_y\right) \left(\frac{L_z}{2\pi} \, d\kappa_z\right)$$

$$= \frac{L_x L_y L_z}{(2\pi)^8} \, d\kappa_z \, d\kappa_y \, d\kappa_z$$

$$\kappa_x = rac{2\pi}{L_x} n_x$$
 $\kappa_y = rac{2\pi}{L_y} n_y$
 $\kappa_z = rac{2\pi}{L_z} n_z$

$$ho d^3 \kappa = rac{V}{(2\pi)^3} d^3 \kappa$$

 $d^3\kappa \equiv d\kappa_x \, d\kappa_y \, d\kappa_z$

Element of volume in k space

Ideal gas in the classical limit 9.9 Quantum states of a single particle **Boundary conditions and enumeration of states Periodical boundary**

$$ho_p d^3 p = \rho d^3 \kappa = \frac{V}{(2\pi)^3} \frac{d^3 p}{\hbar^3} = V \frac{d^3 p}{\hbar^3}$$

range
$$[k, k+d]$$

range
$$[k, k+dk]$$
 $\rho_{\kappa} d\kappa = \frac{V}{(2\pi)^3} (4\pi \kappa^2 d\kappa) = \frac{V}{2\pi^2} \kappa^2 d\kappa$

range [ε,ε+dε]

$$\epsilon = \frac{p^2}{\Omega_{\rm crit}} = \frac{\hbar^2 \kappa^2}{\Omega_{\rm crit}}$$

$$|\rho_{\epsilon} d\epsilon| = |\rho_{\kappa} d\kappa| = \rho_{\kappa} \left| \frac{d\kappa}{d\epsilon} \right| d\epsilon = \rho_{\kappa} \left| \frac{d\epsilon}{d\kappa} \right|^{-1} d\epsilon$$

$$\epsilon = \frac{p^{2}}{2m} = \frac{\hbar^{2}\kappa^{2}}{2m}$$

$$\rho_{\epsilon} d\epsilon = \frac{V}{2\pi^2} \kappa^2 \left| \frac{d\kappa}{d\epsilon} \right| d\epsilon = \frac{V}{4\pi^2} \frac{(2m)^{\frac{3}{2}}}{\hbar^3} \epsilon^{\frac{1}{2}} d\epsilon$$

Ideal gas in the classical limit 9.10 Evaluation of the partition function

Partition function of a monatomic ideal gas in classical limit

$$\ln Z = N(\ln \zeta - \ln N + 1) \qquad \zeta \equiv \sum_{\tau} e^{-\beta \epsilon_{\tau}}$$
Sum over all states of a single particle
$$Z = \frac{\zeta^{N}}{N!} \qquad \text{of a single particle}$$

$$\zeta = \sum_{\kappa_{x},\kappa_{y},\kappa_{z}} \exp \left[-\frac{\beta \hbar^{2}}{2m} (\kappa_{x}^{2} + \kappa_{y}^{2} + \kappa_{z}^{2}) \right]$$

$$\zeta = \left(\sum_{\kappa_{x}} e^{-(\beta \hbar^{2}/2m)\kappa_{z}^{2}} \right) \left(\sum_{\kappa_{x}} e^{-(\beta \hbar^{2}/2m)\kappa_{z}^{2}} \right) \left(\sum_{\kappa_{x}} e^{-(\beta \hbar^{2}/2m)\kappa_{z}^{2}} \right)$$

Ideal gas in the classical limit 9.10 Evaluation of the partition function

Partition function of a monatomic ideal gas in classical limit

$$\zeta = \left(\sum_{\kappa_x} e^{-(\beta h^2/2m)\kappa_x^2}\right) \left(\sum_{\kappa_y} e^{-(\beta h^2/2m)\kappa_y^2}\right) \left(\sum_{\kappa_z} e^{-(\beta h^2/2m)\kappa_z^2}\right)$$

$$k_x \leftrightarrow n_x \qquad k_y \leftrightarrow n_y \qquad k_z \leftrightarrow n_z \quad \kappa_x = \frac{2\pi}{L_x} n_x$$

 $\Delta k_x = 2\pi / L_x$ is very small

$$\left|\frac{\partial}{\partial \kappa_x} \left[e^{-(\beta h^2/2m)\kappa_x^2}\right] \left(\frac{2\pi}{L_x}\right)\right| \ll e^{-(\beta h^2/2m)\kappa_x^2}$$

Change of function versus unit change of k_x

Since L>>1, the condition can be satisfied, and ...

Ideal gas in the classical limit $\ln Z = N(\ln \zeta - \ln N + 1)$ 9.10 Evaluation of the partition function

$$\sum_{\kappa_x = -\infty}^{\infty} e^{-(\beta \hbar^2/2m)\kappa_x^2} \approx \int_{-\infty}^{\infty} e^{-(\beta \hbar^2/2m)\kappa_x^2} \left(\frac{L_x}{2\pi} d\kappa_x\right)$$

$$= \frac{L_x}{2\pi} \left(\frac{2\pi m}{\beta \hbar^2}\right)^{\frac{1}{2}} = \frac{L_x}{2\pi \hbar} \left(\frac{2\pi m}{\beta}\right)^{\frac{1}{2}}$$

$$\zeta = \frac{V}{(2\pi\hbar)^3} \left(\frac{2\pi m}{\beta}\right)^{\frac{1}{3}} = \frac{V}{h^3} (2\pi mkT)^{\frac{1}{3}}$$

$$\ln Z = N \left(\ln \frac{V}{N} - \frac{3}{2} \ln \beta + \frac{3}{2} \ln \frac{2\pi m}{h^2} + 1 \right)$$

Ideal gas in the classical limit $\ln Z = N(\ln \zeta - \ln N + 1)$ 9.10 Evaluation of the partition function

$$\bar{E} = -\frac{\partial \ln Z}{\partial \beta} = \frac{3}{2} \frac{N}{\beta} = \frac{3}{2} NkT$$

$$\sigma_0 \equiv \frac{3}{2} \ln \frac{2\pi mk}{h^2} + \frac{5}{2}$$

Difference: in (7.3.5), h_0 is an arbitrary parameter; here, h is Plank constant

$$S = kN \left[\ln \frac{V}{N} + \frac{3}{2} \ln T + \sigma_0 \right]$$

$$\sigma \equiv \frac{3}{2} \ln \left(\frac{2\pi mk}{\hbar_0^2} \right) + \frac{3}{2}$$

7.3.5

Ideal gas in the classical limit $\ln Z = N(\ln \zeta - \ln N + 1)$ 9.11 Physical implications of quantum mechanical enumeration of states

Two points to be noted:

- 1, N! is automatically involved, and Gibbs paradox does not arise;
- 2, No arbitrary parameters in Z, and Plank constant is automatically involved

$$\mu' = \left(\frac{\partial F}{\partial N}\right)_{V,T} = -kT \left(\frac{\partial \ln Z}{\partial N}\right)_{V,T}$$

$$\mu = -kT \ln \frac{\zeta}{N}$$

Thermal ionization of hydrogen atoms

Suppose H atom is in a container with V at high T

$$H \rightleftharpoons H^+ + e^-$$

 ε_0 is the energy for ionizing the atom

means that H atom has energy of - ε_0

$$-H + H^+ + e^- = 0$$
 Chemical equilibrium

Law of mass action: (8.10.21)

$$\frac{N_+N_-}{N_{\rm H}}=K_N$$

Equilibrium constant

$$\frac{N_+N_-}{N_{\rm H}}=K_N$$

$$K_N = \frac{\zeta_+ \zeta_-}{\zeta_H}$$

Electron: (9.10.7)

$$\zeta_{-} = 2 \frac{V}{h^3} (2\pi mkT)^3$$

spin up and down

Proton:

$$\zeta_{+} = 2 \frac{V}{h^2} (2\pi MkT)^{\frac{3}{2}}$$

spin up and down

H atom:

$$\zeta_{\rm H} = 4 \frac{V}{h^3} (2\pi MkT)^{\frac{3}{2}} e^{\epsilon_0/kT}$$

two spin up and down

$$\zeta = \frac{V}{(2\pi\hbar)^3} \left(\frac{2\pi m}{\beta}\right)^{\frac{3}{2}} = \frac{V}{h^3} (2\pi m kT)^{\frac{3}{2}}$$

Ground state

$$K_N = rac{\zeta_+ \zeta_-}{\zeta_{
m H}}$$
 $K_N = rac{V}{h^2} (2\pi m kT)^{\frac{4}{3}} e^{-\epsilon_0/kT}$

Equilibrium by energy and entropy.

Energy: larger ε_0 favors H atom; T \rightarrow 0;

While entropy favors ionization; $T \rightarrow \infty$

Equilibrium \leftarrow free energy minimization

Estimate the fraction of dissociation

$$\xi \equiv rac{N_+}{N_0}$$

$$\xi \equiv \frac{N_{+}}{N_{0}}$$
 $N_{+} = N_{-} = N_{0}\xi$
 $N_{H} = N_{0} - N_{0}\xi = N_{0}(1 - \xi) \approx N_{0}$

Suppose that concentration of H+ is small

Law of mass action gives

$$\xi^2 = \left(\frac{V}{N_0}\right) \left(\frac{2\pi mkT}{h^2}\right)^{\frac{1}{2}} e^{-\epsilon_4/kT}$$

$$\xi N_0 * \xi N_0 / N_0 = K_N$$

$$\xi N_0 * \xi N_0 / N_0 = K_N$$
 $K_N = \frac{V}{h^2} (2\pi mkT)^{\frac{1}{2}} e^{-\epsilon_0/kT}$

Vapor pressure of a solid

Considering solid Argon in equilibrium in its gas

$$\mu_1 = \mu_2$$

$$\mu_1 = \mu_2$$

$$\mu = -kT \ln \frac{\zeta}{N}$$

$$\zeta = \frac{V}{(2\pi\hbar)^3} \left(\frac{2\pi m}{\beta}\right)^{\frac{1}{2}} = \frac{V}{h^3} (2\pi m kT)^{\frac{1}{2}}$$

$$\mu_1 = -kT \ln \left[\frac{V_1}{N_1} \left(\frac{2\pi m kT}{h^2} \right)^{1} \right]$$

$$\mu_2 = \left(\frac{\partial F}{\partial N_2}\right)_{T,V_2} = -kT \left(\frac{\partial \ln Z}{\partial N_2}\right)_{T,V_1} \frac{\text{Solid: N}_2}{\text{atoms in V}_2}$$

$$\mu_2 = \left(\frac{\partial F}{\partial N_2}\right)_{T,V_2} = -kT \left(\frac{\partial \ln Z}{\partial N_2}\right)_{T,V_1}$$

$$\bar{E}(T) = -\left(\frac{\partial \ln Z}{\partial \beta}\right)_V = kT^2 \left(\frac{\partial \ln Z}{\partial T}\right)_V$$

$$\ln Z(T) - \ln Z(T_0) = \int_{T_0}^T \frac{\bar{E}(T')}{kT'^2} dT'$$

 ${
m V_2}$ is nearly a constant; c(T) is the specific heat per atom

$$(\partial \bar{E}/\partial T)_V = N_2 c$$

$$(\partial \bar{E}/\partial T)_V = N_2 c_1$$

$$\ln Z(T) - \ln Z(T_0) = \int_{T_0}^T \frac{\tilde{E}(T')}{kT'^2}$$

$$\bar{E}(T) = -N_2 \eta + N_2 \int_0^T c(T'') dT''$$

$$\bar{E}(0) \equiv -N_2\eta$$

As
$$T \rightarrow 0$$
,

$$Z = \sum e^{-eta E_r}
ightharpoonup \Omega_0 \, e^{-eta (-N_2 \eta)}$$

$$\ln Z(T_0) = rac{N_2 \eta}{k T_0} \quad ext{as } T_0
ightharpoonup 0$$

$$\ln Z(T) = \frac{N_2 \eta}{kT} + N_2 \int_0^T \frac{dT'}{kT'^2} \int_0^{T'} c(T'') dT''$$

$$\ln Z(T) = \frac{N_2 \eta}{kT} + N_2 \int_0^T \frac{dT'}{kT'^2} \int_0^{T'} c(T'') dT''$$

$$\mu_2(T) = -\eta - T \int_0^T \frac{dT'}{T'^2} \int_0^{T'} c(T'') dT''$$

equilibrium

$$\ln \left[\frac{V_1}{N_2} \left(\frac{2\pi mkT}{h^2} \right)^{\frac{1}{2}} \right] = -\frac{\mu_2(T)}{kT}$$

$$\ln \bar{p} = \ln \left[\frac{(2\pi m)^{\frac{1}{2}}}{h^{2}} (kT)^{\frac{1}{2}} \right] + \frac{\mu_{2}}{kT}$$

$$\bar{p}(T) = \frac{(2\pi m)^{\frac{1}{2}}}{h^{\frac{3}{2}}} (kT)^{\frac{1}{2}} \exp \left[-\frac{\eta}{kT} - \frac{1}{k} \int_{0}^{T} \frac{dT'}{T'^{2}} \int_{0}^{T'} c(T'') dT'' \right]$$

Can be estimated by Einstein model etc

Electromagnetic radiation in equilibrium inside an closure V whose walls are maintained at T

Photons are continuously absorbed and reemitted by walls; Radiation ←----→ a collection of photons

The state s of each photon can be specified by magnitude, direction of momentum, and direction of polarization of electric field

Mean number of photon is given by the Planck distribution

$$\bar{n}_s = rac{1}{e^{eta_s}-1}$$

The electric field E satisfy the wave equation

$$abla^2 \mathbf{E} = rac{1}{c^2} rac{\partial^2 \mathbf{E}}{\partial t^2}$$

This is satisfied by plane wave solution of form

$$\mathbf{\varepsilon} = \mathbf{\Lambda} e^{i(\mathbf{\kappa} \cdot \mathbf{r} - \omega t)} = \mathbf{\varepsilon}_0(\mathbf{r}) e^{-i\omega t}$$

This is satisfied by plane wave solution of form

$$\kappa = \frac{\omega}{c}, \qquad \kappa \equiv |\kappa|$$

If the electromagnetic wave is regarded as quantized, then

$$egin{aligned} oldsymbol{\epsilon} &= \hbar\omega \ oldsymbol{p} &= \hbar\kappa \end{aligned}
ight\}$$

$$|p| = \frac{\hbar\omega}{c}$$

E satisfies the Maxwell equation

$$\nabla \cdot \mathbf{\epsilon} = 0$$
,

$$\mathbf{E} = \mathbf{\Lambda} e^{i(\mathbf{\kappa} \cdot \mathbf{r} - \omega t)} = \mathbf{E}_0(\mathbf{r}) e^{-i\omega t}$$

E is perpendicular to k; for each k, there are two direction of E

Ideal gas in the classical limit 9.13 Electromagnetic radiation in thermal

equilibrium inside enclosure

Not all possible values of k are allowed

$$\kappa_x = \frac{2\pi}{L_x} n_x$$

$$\kappa_y = \frac{2\pi}{L_y} n_y$$

$$\kappa_z = \frac{2\pi}{L_z} n_z$$

Suppose L>>λ

Let $f(\kappa) d^3 \kappa =$ the mean number of photons per unit volume, with one specified direction of polarization, whose wave vector lies between κ and $\kappa + d\kappa$.

$$f(\kappa) d^2\kappa = \frac{1}{e^{\beta\hbar\omega} - 1} \frac{d^3\kappa}{(2\pi)^3}$$

f(k) is only function of |k|

Ideal gas in the classical limit

9.13 Electromagnetic radiation in thermal

equilibrium inside enclosure

 $k=\omega/c$ and $k=(\omega+d\omega)/c$; including two polarization directions

$$2f(\kappa)(4\pi\kappa^2 d\kappa) = \frac{8\pi}{(2\pi c)^3} \frac{\omega^2 d\omega}{e^{\beta\hbar\omega} - 1}$$

$$\kappa_x = \frac{2\pi}{L_x} n_x$$

$$\kappa_y = \frac{2\pi}{L_v} n_y$$

$$\kappa_z = rac{2\pi}{L_z} n_z$$

 $u(\omega,T)d\omega$ denote the mean energy per unit volum e

$$\bar{u}(\omega; T) d\omega = [2f(\kappa)(4\pi\kappa^2 d\kappa)](\hbar\omega)$$
$$= \frac{8\pi\hbar}{c^3} f(\kappa)\omega^3 d\omega$$

$$ar{u}(\omega;T) \ d\omega = rac{\hbar}{\pi^2 c^3} rac{\omega^3}{e^{eta \hbar \omega}} rac{d\omega}{1}$$

Use dimensionless parameter $\eta \equiv \beta \hbar \omega = \frac{\hbar \omega}{kT}$

$$\eta \equiv \beta \hbar \omega = \frac{\hbar \omega}{kT}$$

Note a simple scaling property

$$egin{align} rac{\hbar ar{\omega}_1}{kar{T}_1} &= rac{\hbar ar{\omega}_2}{kar{T}_2} = ar{\eta} \ rac{ar{\omega}_1}{ar{T}_1} &= rac{ar{\omega}_2}{ar{T}_2} \ \end{aligned}$$

Wien's displacement law

The mean total energy density in all frequencies

$$\bar{u}_0(T) = \int_0^\infty \bar{u}(T;\omega) d\omega$$

$$\bar{u}_0(T) = \frac{\hbar}{\pi^2 c^3} \left(\frac{kT}{\hbar}\right)^4 \int_0^\infty \frac{\eta^3 d\eta}{e^{\eta} - 1}$$

$$\bar{u}_0(T) = \frac{\hbar}{\pi^2 c^3} \left(\frac{kT}{\hbar}\right)^4 \int_0^\infty \frac{\eta^3 d\eta}{e^{\eta} - 1}$$

Stefan-Boltzmann law

$$\bar{u}_0(T) = \frac{\hbar}{\pi^2 c^3} \left(\frac{kT}{\hbar}\right)^4 \int_0^\infty \frac{\eta^3 d\eta}{e^{\eta} - 1}$$
 Can be integrated numerically

$$\int_0^{\infty} \frac{\eta^3 \, d\eta}{e^{\eta} - 1} = \frac{\pi^4}{15}$$

$$\int_0^\infty \frac{\eta^3 \, d\eta}{e^{\eta} - 1} = \frac{\pi^4}{15} \qquad \bar{u}_0(T) = \frac{\pi^2}{15} \frac{(kT)^4}{(c\hbar)^8}$$

Calculation of radiation pressure
The pressure contribution from a photon in state s

$$-\partial \epsilon_{s}/\partial V$$

Mean pressure due to all photons

$$ar{p} = \sum_{s} ar{n}_{s} \left(-rac{\partial \epsilon_{s}}{\partial V}
ight)$$

$$\epsilon_{x} = \hbar\omega = \hbar c\kappa = \hbar c(\kappa_{x}^{2} + \kappa_{y}^{2} + \kappa_{z}^{2})^{\frac{1}{4}}$$

$$= \hbar c \left(\frac{2\pi}{L}\right) (n_{x}^{2} + n_{y}^{2} + n_{z}^{2})^{\frac{1}{4}}$$

Calculation of radiation pressure

$$\epsilon_s = CL^{-1} = CV^{-1},$$

$$\frac{\partial \epsilon_{s}}{\partial V} = -\frac{1}{3}CV^{-\frac{1}{3}} = -\frac{1}{3}\frac{\epsilon_{s}}{V}$$

$$ar{p} = \sum_{s} ar{n}_{s} \left(rac{1}{3} rac{\epsilon_{s}}{V}
ight) = rac{1}{3V} \sum_{s} ar{n}_{s} \epsilon_{s} = rac{1}{3V} ar{E}$$

$$\bar{p} = \frac{1}{3}\bar{u}_0$$

Calculating radiation pressure by detailed kinetic argument

G+ is the momentum along z to wall; G- is the momentum along z leaving wall

$$\bar{p} = \frac{1}{dA} \left[G_z^{(+)} - (-G_z^{(+)}) \right] = \frac{2G_z^{(+)}}{dA}$$

$$G_z^{(+)} = \frac{1}{dt} \int_{\kappa_z > 0} [2f(\kappa) \ d^3\kappa] (c \ dt \ dA \cos \theta) (\hbar \kappa_z)$$

$$\bar{p} = 2c\hbar \int_{\kappa_e > 0} \left[2f(\kappa) \ d^3\kappa \right] \frac{{\kappa_s}^2}{\kappa}$$

Calculating radiation pressure by detailed kinetic argument

$$\bar{p} = 2c\hbar \int_{\kappa_z > 0} \left[2f(\kappa) \ d^3\kappa \right] \frac{{\kappa_z}^2}{\kappa}$$

by symmetry

$$\bar{p} = c\hbar \int [2f(\kappa) \ d^3\kappa] \frac{\kappa_x^2}{\kappa} = \frac{1}{3} c\hbar \int [2f(\kappa) \ d^3\kappa] \frac{(\kappa_x^2 + \kappa_y^2 + \kappa_z^2)}{\kappa}$$

$$\bar{p} = \frac{1}{3} \int [2f(\mathbf{x}) \ d^3\mathbf{x}] (c\hbar\kappa) = \frac{1}{3}\bar{u}_0$$

Define f(k,r) is the mean number of photons per unit volume at r with k in [k,k+dk] with polarization by α

1. The number f is independent of r; i.e., the radiation field is homogeneous.

suppose f(k,r) are different at two positions;
Two identical small bodies are at these positions;
Different amounts of radiations are on these two bodies;
They will absorb different energy per unit time;
Their T will become different

$$f_{\alpha}(\mathbf{k},\mathbf{r}) = f_{\alpha}(\mathbf{k})$$
 independent of \mathbf{r}

Define f(k,r) is the mean number of photons per unit volume at r with k in [k,k+dk] with polarization by α

2. The number f is independent of the direction of κ , but depends only on $|\kappa|$; i.e., the rediation field is isotropic.

suppose f(k) depends on direction of k, i.e., f is greater if k points north than if points east;

Considering two identical bodies. The body on the north would have more radiation than that on east. Then they would the different temperature;

$$f_{\alpha}(\kappa) = f_{\alpha}(\kappa), \quad \text{where } \kappa \equiv |\kappa|$$

Define f(k,r) is the mean number of photons per unit volume at r with k in [k,k+dk] with polarization by α

3. The number f is independent of the direction of polarization of the radiation, i.e., the radiation field in the enclosure is unpolarized.

suppose f(k) depends on direction of polarization; Considering two small bodies surrounded by filters which transmit different directions of polarizations; Then they have different radiations and different T.

$$f_1(\kappa) = f_2(\kappa)$$

Define f(k,r) is the mean number of photons per unit volume at r with k in [k,k+dk] with polarization by α

4. The function f does not depend on the shape nor volume of the enclosure, nor on the material of which it is made, nor on the bodies it may contain.

Conduction electrons in metal 9.16 consequence of Fermi Dirac distribution **Electron obeys FD statistics**

$$\bar{n}_s = \frac{1}{e^{\alpha + \beta \epsilon_s} + 1} = \frac{1}{e^{\beta(\epsilon_s - \mu)} + 1}$$
 $\mu = -\frac{\alpha}{\bar{\beta}} = -kT\alpha$

$$\mu \equiv -\frac{\alpha}{\bar{\beta}} = -kT\alpha$$

Fermi energy

$$\sum_{e} \bar{n}_{s} = \sum_{e} \frac{1}{e^{\beta(e_{s}-\mu)}+1} = N$$

Fermi function
$$F(\epsilon) \equiv \frac{1}{e^{\beta(\epsilon-\mu)} + 1}$$

$$e^{eta(ullet-\mu)}\gg 1$$

 $e^{\beta(\mathbf{q}-\mu)} \gg 1$ \longrightarrow Maxwell-Boltzmann distribution

$$\beta(\epsilon-\mu)\ll 0$$

$$\beta(\epsilon - \mu) \ll 0$$
 \longrightarrow $F(\epsilon) = 1.$

Conduction electrons in metal 9.16 consequence of Fermi Dirac distribution

Electron obeys FD statistics

$$F(\epsilon) \equiv \frac{1}{e^{\beta(1-\mu)}+1}$$

Calculate Fermi energy of a gas at T=0;

$$\epsilon = \frac{p^2}{2m} = \frac{\hbar^2 \kappa^2}{2m}$$

At T=0, all states of lowest energy are filled up to Fermi E

$$\mu_0 = rac{p_F^2}{2m} = rac{\hbar^2 \kappa_F^2}{2m}$$

All states with $k < k_F$ are filled; while those with $k < k_F$ are empty

Volume of sphere with k_F $\left(\frac{4}{3}\pi\kappa_F^3\right)$

$$\left(\frac{4}{3}\pi\kappa_F^8\right)$$

In k space, there are
$$(2\pi)^{-3}V$$
 translational states

For each translational state, a electron has two spin states

At T=0, all states of lowest energy are filled up to Fermi E

$$2\frac{V}{(2\pi)^3} \left(\frac{4}{3}\pi \kappa_F^3\right) = N$$

$$\kappa_F = \left(3\pi^2 \frac{N}{V}\right)^4$$

$$\lambda_F \equiv \frac{2\pi}{\kappa_F} = \frac{2\pi}{(3\pi^2)^4} \left(\frac{V}{N}\right)^4$$

All states with $\lambda < \lambda_F$ are occupied, while other are empty

$$\mu_0 = \frac{\hbar^2}{2m} \, \kappa_F^2 = \frac{\hbar^2}{2m} \left(3\pi^2 \, \frac{N}{V} \right)^{1}$$

At T=0, all states of lowest energy are filled up to Fermi E

$$\mu_0 = \frac{\hbar^2}{2m} \kappa_F^2 = \frac{\hbar^2}{2m} \left(3\pi^2 \frac{N}{V} \right)^{\dagger}$$

Estimate T_F for copper

$$T_F \equiv rac{\mu_0}{k} pprox 80,000 ^{\circ} ext{K}$$

At room T

$$kT \ll \mu$$

$$\mu \approx \mu_0$$

At T=0, Cv=?

$$C_{V} = \left(\frac{\partial \bar{E}}{\partial T}\right)_{V}$$

If electrons obeyed MB statistics; equipartition theorem gives

$$\bar{E} = \frac{3}{2}NkT$$
 and $C_V = \frac{3}{2}Nk$

In fact, electrons obey FD statistics

All states are completely filled and remain so when T is changed

The small energy range kT near μ ; in this region, $F \propto e^{-\beta \epsilon}$

Roughly only a fraction of kT/µ electrons are in the tail

$$N_{
m eff} pprox \left(\!rac{kT}{\mu}\!
ight) N$$

$$C_{V} \approx \frac{3}{2} Nk \left(\frac{kT}{\mu}\right) = \nu \frac{3}{2} R \left(\frac{T}{T_{F}}\right)$$

$$c_{V}^{(e)} = \gamma T$$

$$c_{V} = c_{V}^{(e)} + c_{V}^{(L)} = \gamma T + A T^{3}$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat $\bar{E} = \sum_{e^{\beta(\epsilon_r - \mu)} + 1}^{\epsilon_r}$

$$ar{E} = 2 \int F(\epsilon) \epsilon \, \rho(\epsilon) \, d\epsilon = 2 \int_0^\infty \frac{\epsilon}{e^{\beta(\epsilon-\mu)} + 1} \, \rho(\epsilon) \, d\epsilon$$

$$2\int F(\epsilon)\rho(\epsilon) d\epsilon = 2\int_0^{\infty} \frac{1}{e^{\beta(\epsilon-\mu)}+1} \rho(\epsilon) d\epsilon = N$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat $\int_0^\infty F(\epsilon)\varphi(\epsilon)\ d\epsilon$

$$\int_0^\infty F(\epsilon)\varphi(\epsilon) \ d\epsilon = \left[F(\epsilon)\psi(\epsilon)\right]_0^\infty - \int_0^\infty F'(\epsilon)\psi(\epsilon) \ d\epsilon$$

$$F(\infty) = 0, \qquad \psi(0) = 0$$

$$\int_0^\infty F(\epsilon)\varphi(\epsilon) \ d\epsilon = -\int_0^\infty F'(\epsilon)\psi(\epsilon) \ d\epsilon$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat

$$\psi(\epsilon) = \psi(\mu) + \left[\frac{d\psi}{d\epsilon}\right]_{\mu} (\epsilon - \mu) + \frac{1}{2} \left[\frac{d^2\psi}{d\epsilon^2}\right]_{\mu} (\epsilon - \mu)^2 +$$

$$= \sum_{m=0}^{\infty} \frac{1}{m!} \left[\frac{d^m\psi}{d\epsilon^m}\right]_{\mu} (\epsilon - \mu)^m$$

$$\int_0^\infty F\varphi \ d\epsilon = -\sum_{m=0}^\infty \frac{1}{m!} \left[\frac{d^m \psi}{d\epsilon^m} \right]_{\mu} \int_0^\infty F'(\epsilon) (\epsilon - \mu)^m \ d\epsilon$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat

$$\int_0^\infty F'(\epsilon)(\epsilon - \mu)^m d\epsilon = -\int_0^\infty \frac{\beta e^{\beta(\epsilon - \mu)}}{(e^{\beta(\epsilon - \mu)} + 1)^2} (\epsilon - \mu)^m d\epsilon$$
$$= -\beta^{-m} \int_{-\beta\mu}^\infty \frac{e^x}{(e^x + 1)^2} x^m dx$$

$$\int_0^\infty F'(\epsilon)(\epsilon-\mu)^m d\epsilon = -(kT)^m I_m \qquad I_m \equiv \int_{-\infty}^\infty \frac{e^x}{(e^x+1)^2} x^m dx$$

$$I_m \equiv \int_{-\infty}^{\infty} \frac{e^x}{(e^x + 1)^2} x^m dx$$

$$\frac{e^x}{(e^x+1)^2} = \frac{1}{(e^x+1)(e^{-x}+1)}$$
 even function for x

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat $I_m \equiv \int_{-\infty}^{\infty} \frac{e^x}{(e^x + 1)^2} x^m dx$

$$I_m = 0$$
 if m is odd

$$I_0 = \int_{-\infty}^{\infty} \frac{e^x}{(e^x + 1)^2} dx = -\left[\frac{1}{e^x + 1}\right]_{-\infty}^{\infty} = 1$$

$$\int_0^{\infty} F\varphi \ d\epsilon = \sum_{m=0}^{\infty} I_m \frac{(kT)^m}{m!} \left[\frac{d^m \psi}{d\epsilon^m} \right]_{\mu} = \psi(\mu) + I_2 \frac{(kT)^2}{2} \left[\frac{d^2 \psi}{d\epsilon^2} \right]_{\mu} + \cdot$$

$$I_2=\frac{\pi^2}{3}$$

$$\int_0^{\infty} F(\epsilon)\varphi(\epsilon) d\epsilon = \int_0^{\mu} \varphi(\epsilon) d\epsilon + \frac{\pi^2}{6} (kT)^2 \left[\frac{d\varphi}{d\epsilon} \right]_{\mu} + \cdots$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic

specific heat

$$\int_0^{\infty} F(\epsilon)\varphi(\epsilon) d\epsilon = \int_0^{\mu} \varphi(\epsilon) d\epsilon + \frac{\pi^2}{6} (kT)^q \left[\frac{d\varphi}{d\epsilon} \right]_{\mu} + \cdots$$

Calculation of specific heat

$$\bar{E} = 2 \int_0^{\mu} \epsilon \rho(\epsilon) \ d\epsilon + \frac{\pi^2}{3} (kT)^2 \left[\frac{d}{d\epsilon} (\epsilon \rho) \right]_{\mu}$$

$$2\int_{0}^{\mu}\epsilon\rho(\epsilon)\ d\epsilon = 2\int_{0}^{\mu_{0}}\epsilon\rho(\epsilon)\ d\epsilon + 2\int_{\mu_{0}}^{\mu}\epsilon\rho(\epsilon)\ d\epsilon =$$

$$= \bar{E}_{0} + 2\mu_{0}\rho(\mu_{0})(\mu - \mu_{0})$$

$$ar{E} = ar{E}_0 + 2\mu_0
ho(\mu_0)(\mu - \mu_0) + rac{\pi^2}{3} (kT)^2 \left[
ho(\mu_0) + \mu_0
ho'(\mu_0)
ight]$$

Normalization:

$$2\int_0^\mu \rho(\epsilon)\ d\epsilon + \frac{\pi^2}{3}(kT)^2\rho'(\mu) = N$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat

Calculation of specific heat

Normalization:

$$2\int_0^{\mu}\rho(\epsilon)\,d\epsilon+\frac{\pi^2}{3}\left(kT\right)^2\rho'(\mu)=N$$

$$2\int_0^\mu \rho(\epsilon) \ d\epsilon = 2\int_0^{\mu_0} \rho(\epsilon) \ d\epsilon + 2\int_{\mu_0}^\mu \rho(\epsilon) \ d\epsilon = N + 2\rho(\mu_0)(\mu - \mu_0)$$

$$2\rho(\mu_0)(\mu-\mu_0)+\frac{\pi^2}{3}(kT)^2\rho'(\mu_0)=0$$

$$(\mu - \mu_0) = -\frac{\pi^2}{6} (kT)^2 \frac{\rho'(\mu_0)}{\rho(\mu_0)}$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat π^2 $\alpha x > e^2$

Calculation of specific heat

$$(\mu - \mu_0) = -\frac{\pi^2}{6} (kT)^2 \frac{\rho'(\mu_0)}{\rho(\mu_0)}$$

$$\bar{E} = \bar{E}_0 - \frac{\pi^2}{3} (kT)^2 \mu_0 \rho'(\mu_0) + \frac{\pi^2}{3} (kT)^2 [\rho(\mu_0) + \mu_0 \rho'(\mu_0)]$$

$$\bar{E} = \bar{E}_0 + \frac{\pi^2}{3} (kT)^2 \rho(\mu_0)$$

$$C_V = \frac{\partial \bar{E}}{\partial T} = \frac{2\pi^2}{3} \, k^2 \rho(\mu_0) T$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat

Calculation of specific heat

$$C_V = \frac{\partial \bar{E}}{\partial T} = \frac{2\pi^2}{3} \, k^2 \rho(\mu_0) T$$

$$\rho(\epsilon) d\epsilon = \frac{V}{(2\pi)^3} \left(4\pi \kappa^2 \frac{d\kappa}{d\epsilon} d\epsilon \right) = \frac{V}{4\pi^2} \frac{(2m)^4}{\hbar^3} \epsilon^4 d\epsilon$$

$$\mu_0 = \frac{\hbar^2}{2m} \left(3\pi^2 \frac{N}{V} \right)^4$$

$$\rho(\mu_0) = V \frac{m}{2\pi^2 \hbar^2} \left(3\pi^2 \frac{N}{V} \right)^4$$

$$\rho(\mu_0) = \left[\frac{m}{2\pi^2\hbar^2} (3\pi^2N)^{\frac{1}{2}}\right] \left[\frac{1}{\mu_0} \frac{\hbar^2}{2m} (3\pi^2N)^{\frac{1}{2}}\right] = \frac{3}{4} \frac{N}{\mu_0}$$

Conduction electrons in metal 9.17 Quantitative calculation of electronic specific heat

Calculation of specific heat

$$C_V = \frac{\partial \bar{E}}{\partial T} = \frac{2\pi^2}{3} k^2 \rho(\mu_0) T$$

$$C_V = \frac{\pi^2}{2} k^2 \frac{N}{\mu_0} T = \frac{\pi^2}{2} k N \frac{kT}{\mu_0}$$

$$c_{y} = \frac{3}{2} R \left(\frac{\pi^{2}}{3} \frac{kT}{\mu_{0}} \right)$$

$$C_V \approx \frac{3}{2} Nk \left(\frac{kT}{\mu}\right) = \nu \frac{3}{2} R \left(\frac{T}{T_F}\right)$$
 Crude estimate

Class-work

P 398 9.16

Homework

P 398 9. 17-18