

April 2013

Single-Channel: 6N137M, HCPL2601M, HCPL2611M Dual-Channel: HCPL2630M, HCPL2631M High-Speed 10 MBit/s Logic Gate Optocouplers

Features

- Very High Speed 10 MBit/s
- Superior CMR 10 kV/µs
- Fan-out of 8 Over -40°C to +85°C
- Logic Gate Output
- Strobable Output
- Wired OR-open Collector
- U.L. Recognized (File # E90700, Vol. 2)

Applications

- Ground Loop Elimination
- LSTTL to TTL, LSTTL or 5 V CMOS
- Line Receiver, Data Transmission
- Data Multiplexing
- Switching Power Supplies
- Pulse Transformer Replacement
- Computer-peripheral Interface

Description

The 6N137M, HCPL2601M, HCPL2611M single-channel and HCPL2630M, HCPL2631M dual-channel optocouplers consist of a 850 nm AlGaAS LED, optically coupled to a very high speed integrated photo-detector logic gate with a strobable output. This output features an open collector, thereby permitting wired OR outputs. The switching parameters are guaranteed over the temperature range of -40°C to +85°C. A maximum input signal of 5 mA will provide a minimum output sink current of 13 mA (fan out of 8).

An internal noise shield provides superior common mode rejection of typically 10 kV/ μ s. The HCPL2601M and HCPL2631M has a minimum CMR of 5 kV/ μ s. The HCPL2611M has a minimum CMR of 10 kV/ μ s.

Schematics

A $0.1\mu F$ bypass capacitor must be connected between pins 8 and $5^{(1)}$.

Figure 1. Schematics

Package Outlines

Figure 2. Package Options

Truth Table (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
Н	NC	L
L	NC	Н

Safety and Insulation Ratings for 8-Pin DIP White

As per DIN_EN/IEC 60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Mains Voltage < 150 V _{RMS}		I–IV		
	For Rated Mains Voltage < 300 V _{RMS}		I–IV		
	For Rated Mains Voltage < 450 V _{RMS}		I–III		1
	For Rated Mains Voltage < 600 V _{RMS}		I–III		1
	Climatic Classification		40/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V _{PR}	Input to Output Test Voltage, Method b, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with tm = 1 s, Partial Discharge < 5 pC	1,669			
	Input to Output Test Voltage, Method a, V _{IORM} x 1.5 = V _{PR} , Type and Sample Test with tm = 60 s, Partial Discharge < 5 pC	1,335			
V _{IORM}	Max Working Insulation Voltage	890			V _{PEAK}
V _{IOTM}	Highest Allowable Over Voltage	6,000			V _{PEAK}
	External Creepage	8.0			mm
	External Clearance	7.4			mm
	External Clearance (for Option T, 0.4" Lead Spacing)	10.16			mm
	Insulation Thickness	0.5			mm
	Safety Limit Values, Maximum Values Allowed in the Event of a Failure				
T _S	Case Temperature	150			°C
I _{S,INPUT}	Input Current	200			mA
P _{S,OUTPUT}	Output Power (Duty Factor ≤ 2.7%)	300			mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V	10 ⁹			Ω

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25$ °C unless otherwise specified.

Symbol	Param	Value	Units	
T _{STG}	Storage Temperature		-40 to +125	°C
T _{OPR}	Operating Temperature		-40 to +100	°C
T _{SOL}	Lead Solder Temperature		260 for 10 s	°C
Emitter				
I _F	DC/Average Forward	Single Channel	50	mA
	Input Current	Dual Channel (Each Channel)	30	
V _E	Enable Input Voltage Not to Exceed V _{CC} by more than 500 mV	Single Channel	5.5	V
V _R	Reverse Input Voltage	Each Channel	5.0	V
P _I	Power Dissipation	Single Channel	100	mW
		Dual Channel (Each Channel)	45	
Detector				
V _{CC} (1 minute max)	Supply Voltage		7.0	V
Io	Output Current	Single Channel	50	mA
		Dual Channel (Each Channel)		
Vo	Output Voltage	Each Channel		V
Po	Collector Output Single Channel		85	mW
	Power Dissipation	Dual Channel (Each Channel)	60	

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
I _{FL}	Input Current, Low Level	0	250	μΑ
I _{FH}	Input Current, High Level	*6.3	15	mA
V _{CC}	Supply Voltage, Output	4.5	5.5	V
V _{EL}	Enable Voltage, Low Level	0	0.8	V
V _{EH}	Enable Voltage, High Level	2.0	V _{CC}	V
T _A	Ambient Operating Temperature	-40	+85	°C
N	Fan Out (TTL load)		8	

^{*6.3} mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0 mA or less.

Individual Component Characteristics

Symbol	Parameter	Test Conditions		Min.	Тур.*	Max.	Unit
EMITTER	1						
V _F	Input Forward Voltage	I _F = 10 mA				1.8	V
			$T_A = 25^{\circ}C$		1.4	1.75	
B _{VR}	Input Reverse Breakdown Voltage	Ι _R = 10 μΑ		5.0			V
C _{IN}	Input Capacitance	V _F = 0, f = 1 MHz			60		pF
$\Delta V_F / \Delta T_A$	Input Diode Temperature Coefficient	I _F = 10 mA			-1.4		mV/°C
DETECTOR	3						
I _{CCH}	High Level Supply Current	$V_{CC} = 5.5 \text{ V}, I_F = 0 \text{ mA},$	Single Channel		6	10	mA
		$V_{E} = 0.5 \text{ V}$	Dual Channel		10	15	
I _{CCL}	Low Level Supply Current	Single Channel	V _{CC} = 5.5 V, I _F = 10 mA		8	13	mA
		Dual Channel	V _E = 0.5 V		14	21]
I _{EL}	Low Level Enable Current	$V_{CC} = 5.5 \text{ V}, V_{E} = 0.5 \text{ V}$			-0.7	-1.6	mA
I _{EH}	High Level Enable Current	$V_{CC} = 5.5 \text{ V}, V_{E} = 2.0 \text{ V}$			-0.5	-1.6	mA
V _{EH}	High Level Enable Voltage	$V_{CC} = 5.5 \text{ V}, I_F = 10 \text{ mA}$		2.0			V
V _{EL}	Low Level Enable Voltage	$V_{CC} = 5.5 \text{ V}, I_F = 10 \text{ mA}^{(3)}$	3)			0.8	V

Switching Characteristics ($T_A = -40$ °C to +85°C, $V_{CC} = 5$ V, $I_F = 7.5$ mA unless otherwise specified)

Symbol	AC Characteristics	Test Co	nditions	Min.	Тур.*	Max.	Unit
T _{PLH}	Propagation Delay Time to Output HIGH Level	$R_L = 350 \Omega,$ $C_L = 15 pF^{(4)}$ (Fig. 14)	T _A = 25°C	20	40	75 100	ns
T _{PHL}	Propagation Delay Time to Output LOW Level	$T_A = 25^{\circ}C^{(5)}$ $R_L = 350 \ \Omega, \ C_L = 15 \ pF$ ((Fig. 14)	25	40	75 100	ns
IT _{PHL} -T _{PLH} I	Pulse Width Distortion	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	(Fig. 14)		1	35	ns
t _r	Output Rise Time (10% to 90%)	$R_L = 350 \ \Omega, \ C_L = 15 \ pF^{(6)}$	^{S)} (Fig. 14)		30		ns
t _f	Output Rise Time (90% to 10%)	$R_L = 350 \ \Omega, \ C_L = 15 \ pF^{(7)}$	⁷⁾ (Fig. 14)		10		ns
t _{ELH}	Enable Propagation Delay Time to Output HIGH Level	$I_F = 7.5 \text{ mA}, V_{EH} = 3.5 \text{ V},$ (Fig. 15)	$R_L = 350 \Omega, C_L = 15 pF^{(8)}$		15		ns
t _{EHL}	Enable Propagation Delay Time to Output LOW Level	$I_F = 7.5 \text{ mA}, V_{EH} = 3.5 \text{ V},$ (Fig. 15)	$R_L = 350 \Omega, C_L = 15 pF^{(9)}$		15	Æ	ns
ICM _H I	Common Mode	$T_A = 25^{\circ}C, V_{CM} = 50 \text{ V}$	6N137M, HCPL2630M		10,000		V/µs
	Transient Immunity (at Output HIGH Level)	$ \begin{array}{l} \mbox{(Peak), I}_{F} = 0 \mbox{ mA,} \\ \mbox{V}_{OH} \mbox{(Min.)} = 2.0 \mbox{ V,} \\ \mbox{R}_{L} = 350 \Omega^{(10)} \mbox{(Fig. 16)} \end{array} $	HCPL2601M, HCPL2631M	5000	10,000		
		IV _{CM} I = 400 V	HCPL2611M	10,000	15,000		V/µs
ICM _L I	Common Mode	$R_L = 350 \Omega, I_F = 7.5 \text{ mA},$	6N137M, HCPL2630M		10,000		
	Transient Immunity (at Output LOW Level)	V_{OL} (Max.) = 0.8 V, $T_A = 25^{\circ}C^{(11)}$ (Fig. 16)	HCPL2601M, HCPL2631M	5000	10,000		
		IV _{CM} = 400 V	HCPL2611M	10,000	15,000		

Electrical Characteristics (Continued)

Transfer Characteristics (T_A = -40 to +85°C unless otherwise specified)

Symbol	DC Characteristics	Test Conditions	Min.	Тур.*	Max.	Unit
I _{OH}	HIGH Level Output Current	$V_{CC} = 5.5 \text{ V}, V_{O} = 5.5 \text{ V},$ $I_{F} = 250 \mu\text{A}, V_{E} = 2.0 V^{(2)}$			100	μΑ
V _{OL}	LOW Level Output Current	$V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA}, V_E = 2.0 \text{ V}, I_{CL} = 13 \text{ mA}^{(2)}$		0.4	0.6	V
I _{FT}	Input Threshold Current	$V_{CC} = 5.5 \text{ V}, V_{O} = 0.6 \text{ V}, V_{E} = 2.0 \text{ V},$ $I_{OL} = 13 \text{ mA}$		3	5	mA

Isolation Characteristics (T_A = -40°C to +85°C unless otherwise specified.)

Symbol	Characteristics	Test Conditions	Min.	Typ.*	Max.	Unit
I _{I-O}	Input-Output Insulation Leakage Current	Relative humidity = 45%, $T_A = 25$ °C, $t = 5$ s, $V_{I-O} = 3000 \text{ VDC}^{(12)}$			1.0*	μА
V _{ISO}	Withstand Insulation Test Voltage	$\begin{aligned} RH &< 50\%, T_A = 25^{\circ}C, \\ I_{I-O} &\leq 10 \; \mu\text{A}, t = 1 \; \text{min.} \end{aligned}$	5000			V _{RMS}
R _{I-O}	Resistance (Input to Output)	$V_{I-O} = 500 V^{(12)}$		10 ¹¹		Ω
C _{I-O}	Capacitance (Input to Output)	f = 1 MHz ⁽¹²⁾		1		pF

^{*}All Typicals at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

Notes:

- The V_{CC} supply to each optoisolator must be bypassed by a 0.1 µF capacitor or larger. This can be either a ceramic
 or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible
 to the package V_{CC} and GND pins of each device.
- 2. Each channel.
- 3. Enable Input No pull up resistor required as the device has an internal pull up resistor.
- 4. t_{PLH} Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 5. t_{PHL} Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 6. t_r Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
- 7. t_f Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
- 8. t_{ELH} Enable input propagation delay is measured from the 1.5 V level on the HIGH to LOW transition of the input voltage pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 9. t_{EHL} Enable input propagation delay is measured from the 1.5 V level on the LOW to HIGH transition of the input voltage pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 10. CM_H The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., $V_{OLIT} > 2.0 \text{ V}$). Measured in volts per microsecond (V/μ s).
- 11. CM_L The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., V_{OUT} < 0.8 V). Measured in volts per microsecond (V/μs).</p>
- 12. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.

Typical Performance Curves

For Single-Channel Devices: 6N137M, HCPL2601M, and HCPL2611M

Figure 3. Low Level Output Voltage vs. Ambient Temperature

Figure 4. Input Diode Forward Voltage vs. Forward Current

Figure 5. Switching Time vs. Forward Current

Figure 6. Low Level Output vs. Ambient Temperature

Figure 7. Input Threshold Current vs. Ambient Temperature

Figure 8. Output Voltage vs. Input Forward Current

Typical Performance Curves (Continued)

(For Single-Channel Devices: 6N137M, HCPL2601M, HCPL2611M)

Figure 9. Pulse Width Distortion vs. Temperature

Figure 10. Rise and Fall Time vs. Temperature

Figure 11. Enable Propagation Delay vs. Temperature

Figure 12. Switching Time vs. Temperature

Figure 13. High Level Output Current vs. Temperature

Typical Performance Curves (Continued)

For Dual-Channel Devices: HCPL2630M and HCPL2631M

Figure 14. Low Level Output Voltage vs. Ambient Temperature

100

Figure 16. Switching Time vs. Forward Current

Figure 17. Low Level Output Current vs. Ambient Temperature

Figure 18. Input Threshold Current vs. Ambient Temperature

Figure 19. Output Voltage vs. Input Forward Current

Typical Performance Curves (Continued)

For Dual-Channel Devices: HCPL2630M and HCPL2631M

600 Tr/Tf - RISE AND FALL TIME (ns) 500 400 $RL = 4 k\Omega (tr)$ 300 $RL = 1 k\Omega$ $RL = 4 k\Omega$ (tf) $RL = 350 \Omega$ 200 $RL = 1 k\Omega (tr)$ 100 $RL = 350 \Omega (tr)$ -60 -40 -20 20 60 80 100 40 T_A – TEMPERATURE (°C)

Figure 20. Pulse Width Distortion vs. Temperature

Figure 21. Rise and Fall Time vs. Temperature

Figure 22. Switching Time vs. Temperature

Figure 23. High Level Output Current vs. Temperature

Test Circuits

Figure 24. Test Circuit and Waveforms for t_{PLH} , t_{PHL} , t_{r} and t_{f}

Figure 25. Test Circuit $\rm t_{EHL}$ and $\rm t_{ELH}$

Test Circuits (Continued)

Figure 26. Test Circuit Common Mode Transient Immunity

Package Dimensions

Through Hole

0.4" Lead Spacing (Option TV) (Pending)

Surface Mount - 0.3" Lead Spacing (Option S)

8-Pin Surface Mount DIP - Land Pattern (Option S)

Note:

All dimensions are in inches (millimeters)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Package Dimensions (Continued)

Surface Mount – 0.4" Lead Spacing (Option TS)

8-Pin Surface Mount DIP – Land Pattern (Option TS)

Note:

All dimensions are in inches (millimeters)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

0.497 (12.6)

Ordering Information

Option	Example Part Number	Description	
No Suffix	6N137M	Standard Through Hole Device, 50 pcs per tube	
S	6N137SM	Surface Mount Lead Bend	
SD	6N137SDM	Surface Mount; Tape and Reel	
V	6N137VM	DIN_EN/IEC60747-5-2 (VDE)	
TV	6N137TVM	DIN_EN/IEC60747-5-2 (VDE), 0.4" lead spacing	
SV	6N137SVM	DIN_EN/IEC60747-5-2 (VDE), surface mount	
SDV	6N137SDVM	DIN_EN/IEC60747-5-2 (VDE), surface mount, tape and reel	
TS	6N137TSM	Surface Mount, 0.4" lead spacing	
TSV	6N137TSVM	Surface Mount, 0.4" lead spacing, IEC60747-5-2 approval pending (VDE)	
TSR2	6N137TSR2M	Surface Mount, Tape and Reel, 0.4" lead spacing	
TSR2V	6N137TSR2VM	Surface Mount, Tape and Reel, 0.4" lead spacing, IEC60747-5-2 approval pending (VDE)	

Marking Information

Definiti	Definitions				
1	Fairchild logo				
2	Device number				
3	DIN_EN/IEC60747-5-2 (VDE) mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	Two digit year code, e.g., '13'				
5	Two digit work week ranging from '01' to '53'				
6	Assembly package code				

Note

'HCPL' devices are marked only with the numerical characters (for example, HCPL2630 is marked as '2630').

The 'M' suffix on the part number is an order identifier only. It is used to identify orders for the white package version. The 'M' does not appear on the device's top mark.

Carrier Tape Specifications (Option SD)

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
Е	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂		2.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ±0.20
B ₀		10.30 ±0.20
K ₀		4.90 ±0.20
W ₁	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 maximum
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Carrier Tape Specifications (Option TSR2)

Symbol	Description	Dimension in mm
W	Tape Width	24.0 ± 0.3
t	Tape Thickness	0.40 ± 0.1
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	11.5 ± 0.1
P ₂		2.0 ± 0.1
Р	Pocket Pitch	16.0 ± 0.1
A ₀	Pocket Dimensions	12.80 ± 0.1
B ₀		10.35 ± 0.1
K ₀		5.7 ±0.1
W ₁	Cover Tape Width	21.0 ± 0.1
d	Cover Tape Thickness	0.1 max
\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Reflow Profile

Profile Freature	Pb-Free Assembly Profile	
Temperature Minimum (Tsmin)	150°C	
Temperature Maximum (Tsmax)	200°C	
Time (t _S) from (Tsmin to Tsmax)	60 to 120 seconds	
Ramp-up Rate (t _L to t _P)	3°C/second maximum	
Liquidous Temperature (T _L)	217°C	
Time (t _L) Maintained Above (T _L)	ned Above (T _L) 60 to 150 seconds	
Peak Body Package Temperature	260°C +0°C / -5°C	
Time (t _P) within 5°C of 260°C	30 seconds	
Ramp-down Rate (T _P to T _L)	6°C/second maximum	
Time 25°C to Peak Temperature	8 minutes maximum	

(J)

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 FPS™

 AccuPower™
 F-PFS™

 AX-CAP®*
 FRFET®

 BitSiC™
 Global Power Resource®™

 Build it Now™
 GreenBridge™

 CorePLUS™
 Green FPS™

 CorePOWER™
 Green FPS™ e-Series™

 CROSSVOLT™
 Gmax™

CTL™ GTO™

Current Transfer Logic™ IntelliMAX™

DEUXPEED® ISOPLANAR™

Dual Cool™ Making Small Sp

EcoSPARK®
EfficientMax™
ESBC™
®

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]
FAST[®]
FastvCore[™]

Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroPEt™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™

TinyBoost™
TinyBoost™
TinyCalc™
TinyLogic®
TinyLogic®
TinyPOPTO™
TinyPOWAT™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®**

Sync-Lock™

µSerDes™
SerDes
UHC®
Ultra FRFET™
UniFET™
VCX™

UniFETTM
VCXTM
VisualMaxTM
VoltagePlusTM
XSTM

OPTOLOGIC®

OPTOPLANAR®

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 164

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.