MCD – Associations spécialisées et héritage

Concepts de base MCD

Modèle Entités – Associations (ou relations)

Cardinalités

Propriétés

Identifiants

→ Les concepts ci-dessus doivent être maitrisés pour poursuivre la présentation!!

Degrés d'association

- Nombre d'entités qui participent à la relation
- Le plus souvent : associations binaire, c'est-à-dire une association entre deux tables

Associations ternaires

- Degré 3 : 3 tables qui sont en liées via une association
- Cas particulier : plus difficile à manipuler et à interpréter (notamment au niveau des cardinalités, requêtes)
- Cardinalités max toujours à n

Exemple: Un module est donné par un enseignant à une classe donnée

Associations ternaires : risques

L'association ci-contre est-elle correcte?

NON car une ligne de «Contient» sera générée pour chaque produit / client / facture → une facture est toujours liée au même client → donnée redondante

Associations ternaires : risques

Dans le cas précédent le schéma devrait être modifié pour contenir 2 associations binaires plutôt qu'une ternaire

Associations ternaires : décomposition

Dans la mesure du possible, il faudrait toujours décomposer les associations ternaires en plusieurs associations binaire

Avantages:

- Détecter certaines erreurs de conception (voir exemple précédent)
- Simplifier la gestion des cardinalités
- Une fois passé à l'utilisation de la DB : Simplifier les requêtes

Associations ternaires: exercice

Comment décomposer la relation ternaire «module / classe / enseignant»?

Associations ternaires : règles de décomposition

Les règles de décomposition d'une association ternaire sont les suivantes:

- On remplace l'association ternaire par un entité et on lui attribut un identifiant.
- On crée des types association binaire entre le nouveau type entité et tous les types entité de la collection de l'ancien type association ternaire.
- La cardinalité de chacun des types association binaires créés est 1,1 du côté du type entité créé (celui qui remplace le type association n-aire), et 0,n ou 1,n du côté des types entité de la collection de l'ancien type association ternaire.

Associations ternaires et n-aires : conclusion

- La décomposition peut résulter en un schéma logique / physique identique que l'association ternaire initiale
- A retenir : Si le cas se présente, réfléchir si choix judicieux ou si décomposition plus simple / pertinente

Associations N-aires

- Généralisation des associations ternaires avec N tables
- Les mêmes règles s'appliquent que pour les associations ternaires

Associations plurielles

Deux entités peuvent être liées par plusieurs associations différentes

Par exemple pour deux entités qui représentent des gares et des trajets on a deux associations qui seraient la gare de départ et la gare d'arrivée

Associations réflectives

Association entre une entité et elle-même!

Peut-être symétrique ou non

Dans le cas où non symétrique : toujours préciser le rôle sur la patte de l'association

Généralisation et Spécialisation

Soit la situation suivante :

- Vous devez modéliser des clients et des collaborateurs d'une entreprise lambda
- Les deux entités ont des propriétés similaires

 ce sont des personnes

Comment procédez-vous pour éviter la redondance des données?

Spécialisation et généralisation

La **spécialisation** est une opération visant à **différencier** plusieurs entités en fonction de leurs caractéristiques spécifiques.

La **généralisation** est une opération visant à réunir sous une entité unique plusieurs entités ayant des propriétés communes

Généralisation

La généralisation consiste en l'abandon des propriétés des entités filles pour regrouper toutes les propriétés dans l'entité mère:

- 1 seule entité (plus tard une table) personne regroupant toutes les propriétés des 2 soustypes
- On «supprime» l'héritage dans ce cas
- Avantage : requêtes moins complexes (tout dans la même table)
- **Inconvénient** : perte de place (beaucoup de champs pas renseignés) et perte potentielle de sens

Spécialisation

- La spécialisation est mise en œuvre lors de la présence:
 - de propriétés spécifiques à certaines occurrences et pas d'autres
 - ou d'associations en lien avec certaines occurrences et pas d'autres.
- Avantage: on gère l'héritage
- Inconvénient : les requêtes / contraintes peuvent être plus complexes à mettre en oeuvre

Spécialisation : contraintes

Plusieurs types de contraintes entre les relations peuvent être définies lors la spécialisation :

- La partition, notée XT
- Exclusion, notée X
- La totalité, notée T

C

Spécialisation : Partition

Une personne est soit un client soit un collaborateur

Spécialisation: Exclusion

Une personne est soit un client soit un collaborateur soit un autre type de personne sans propriétés particulières

Spécialisation : Totalité

Une personne est soit un client soit un collaborateur soit les deux en même temps

Spécialisation : aucune contrainte

Une personne peut être dans n'importe lequel des cas précédents

Spécialisation : MLD

- Le résultat en MLD d'une spécialisation se traduit par une FK dans chacune des entités filles qui lie la PK de la table mère:
- Les contraintes sont mises en œuvre à l'aide de trigger / procédures stockées

Conclusion

• Pas de solution unique : chercher la meilleure solution en fonction du contexte

Sources et liens

http://laurent-audibert.developpez.com/Cours-BD/?page=conception-des-bases-de-donnees-modele-a#L2-2-4

http://sqlpro.developpez.com/cours/modelisation/heritage/

https://stph.scenari-community.org/bdd/0/co/rel3c11.html