Convergence in Euclidian Space Convergence of tvFunc-t

Boyd's theorem shows that defines a contraction mapping in an -bounded space. We now show that also defines a contraction mapping in an -bounded space. Calling * the unique fixed point of the operator, since () = *(),

On the other hand, $T^{-*} \in \mathcal{C}(A, B)$ and $= ||T^{-*}|| < \infty$ because T and T are in $\mathcal{C}(A, B)$. It follows that

Then we obtain

Since $_T()=\frac{1}{1-},\ _{T-1}()\leq\frac{()^{1-}}{1-}<_T()$. On the other hand, $_{T-1}\leq_T$ means $_{T-1}\leq_T$, in other words, $_{T-2}()\leq_{T-1}()$. Inductions convergence of $_t$ cFunc-t Given the proof that the value functions converge, we now show the pointwise convergence of consumption functions { Consider any convergent subsequence $\{_{T-n(i)}()\}$ of $\{_{T-n+1}()\}_{n=1}^{\infty}$ converging to $_t$. By the definition of $_{T-n}()$, we have $t \in (c_{T-n(i)}) + (c_{T-n(i)}) +$

Hence, $c^* \in T_{-n(i)} \in [1,]\arg\max\{(T_{-n(i)}) +_t [t_{+1}^{1-}(1)]\}$. By the uniqueness of $(1, t_{+1}^{2})$ by the uniqueness of $(1, t_{+1}^{2})$.