Atomic Hydrogen Interaction with Transition Metal Surfaces: A High-Throughput Computational Study

Miquel Allés, Ling Meng, Ismael Beltrán, Ferran Fernández, and Francesc Viñes*

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès 1-11, 08028, Barcelona, Spain

* Corresponding author: francesc.vines@ub.edu

Table S1. Adsorption, $E_{\rm ads}$, and absorption, $E_{\rm abs}$, energies, on the studied bcc structure TMs surfaces. All values are given in eV.

TM	(001)	$E_{\rm abs}$	$E_{ m ads}$	(011)	$E_{ m abs}$	$E_{ m ads}$	(111)	$E_{ m abs}$	Eads
V	T	0.12	-0.02	T	-0.18	0.13	T	0.96	0.10
	В	-0.33	-0.65	В	-0.22	-0.82	В	-0.82	-0.74
	Н	-0.74	-0.74	Н	-0.99	-1.09	H_{F}	-0.33	-0.33
							${ m H_H}$	-0.74	-0.56
Nb	T	0.32	-0.03	T	-0.10	0.28	T	1.25	0.12
	В	-0.27	-0.70	В	-0.12	-0.69	В	-0.62	-0.62
INU	Н	-0.45	-0.45	Н	-0.03	-0.95	H_{F}	0.00	0.00
							H_{H}	1.22	-0.16
	T	0.43	-0.18	T	-0.06	0.10	T	1.18	-0.18
Ta	В	-0.18	-0.75	В	-0.09	-0.77	В	-0.70	-0.73
Ta	Н	-0.44	-0.29	Н	0.05	-1.01	H_{F}	0.03	0.03
							H_{H}	0.82	-0.35
C	T	0.43	-0.38	T	1.06	-0.03	T	1.05	-0.01
	В	-0.64	-1.74	В	0.80	-0.65	В	-0.77	-0.75
Cr	Н	-0.88	-0.88	Н	0.66	-0.81	H_{F}	-0.31	-0.30
							H_{H}	0.11	-0.65
	T	0.60	-0.07	T	0.93	-0.09	T	1.29	-0.08
Mo	В	-0.23	-1.18	В	0.65	-0.70	В	-0.63	-0.63
IVIO	Н	-0.60	-0.60	Н	-0.58	-0.76	H_{F}	0.01	0.01
							H_{H}	-0.42	-0.42
	T	0.84	-0.45	T	1.24	-0.18	T	1.84	-0.30
W	В	-0.39	-1.86	В	0.94	-0.74	В	-0.59	-0.78
VV	Н	-0.61	-0.61	Н	-0.53	-0.76	H_{F}	0.16	0.16
							H_{H}	0.87	-0.42
	T	0.17	0.12	T	0.47	-0.18	T	1.40	1.88
Fe	В	-0.26	-0.48	В	0.34	-0.81	В	-0.48	-0.48
	Н	-0.49	-0.96	Н	-0.77	-0.76	H_{F}	1.94	1.94
							H_{H}	0.62	0.62

Table S2. Adsorption, E_{ads} , and absorption, E_{abs} , energies, on the studied fcc structure TMs surfaces. All values are given in eV.

TM	(001)	$E_{ m abs}$	$E_{ m ads}$	(011)	$E_{ m abs}$	$E_{ m ads}$	(111)	$E_{ m abs}$	Eads
Ir	T	0.99	-0.64	T	1.64	-0.61	T	1.06	-0.51
	В	1.11	-0.74	Н	0.00	0.00	В	-0.52	-0.47
	Н	-0.42	-0.42	$\mathrm{B_{L}}$	-0.22	-0.22	$\mathrm{H_{H}}$	-0.52	-0.52
				B_{S}	0.93	-0.65	H_{F}	-0.50	-0.50
D.	T	0.40	-0.53	T	0.52	-0.68	Т	0.24	-0.59
	В	0.34	-0.75	Н	-0.11	-0.11	В	-0.61	-0.60
Pt	Н	-0.38	-0.38	$\mathrm{B_{L}}$	-0.34	-0.34	H_{H}	-0.61	-0.60
				B_{S}	-0.70	-0.70	H_{F}	0.19	-0.56
	T	-0.19	-0.13	T	0.05	-0.13	Т	-0.19	-0.13
Pd	В	-0.18	-0.57	Н	-0.27	-0.27	В	-0.25	-0.64
Pu	Н	-0.56	-0.56	${f B}_{ m L}$	-0.49	-0.49	H_{H}	-0.25	-0.64
				B_{S}	-0.23	-0.53	H_{F}	-0.22	-0.59
Rh	T	0.25	-0.28	T	0.87	-0.21	Т	0.44	-0.21
	В	0.44	-0.58	Н	-0.22	-0.22	В	0.15	-0.57
	Н	-0.55	-0.55	${f B}_{ m L}$	-0.34	-0.34	H_{H}	0.15	-0.57
				B_{S}	0.27	-0.48	H_{F}	-0.55	-0.55
Ni	T	0.01	-0.09	T	0.59	0.00	T	0.22	-0.08
	В	0.22	-0.52	Н	-0.34	-0.34	В	-0.02	-0.50
111	Н	-0.61	-0.61	${ m B_L}$	-0.48	-0.48	H_{H}	-0.02	-0.64
				B_{S}	0.06	-0.46	H_{F}	0.15	-0.64
	T	0.49	0.28	T	0.91	0.29	T	0.60	0.33
Cu	В	0.59	-0.15	Н	-0.01	-0.01	В	0.36	-0.28
Cu	Н	-0.23	-0.22	${ m B_L}$	-0.16	-0.16	H_{H}	0.36	-0.28
				B_{S}	0.35	-0.26	H_{F}	-0.28	-0.28
	T	0.71	0.62	T	1.11	0.65	T	0.91	0.64
Ag	В	0.82	0.25	Н	0.50	0.49	В	0.18	0.19
	Н	0.25	0.25	${ m B_L}$	0.29	0.29	H_{H}	0.18	0.19
				B_{S}	0.20	0.19	H_{F}	0.19	0.19
	T	0.99	0.25	T	1.05	0.25	T	0.73	0.29
Au	В	0.02	0.02	Н	0.62	0.62	В	0.13	0.10
Au	Н	0.33	0.33	B_{L}	0.27	0.27	H_{H}	0.09	0.10
				B_{S}	-0.01	-0.01	H_{F}	0.13	0.13

Table S3. Adsorption, E_{ads} , and absorption, E_{abs} , energies, on the studied hcp structure TMs surfaces. All values are given in eV.

TM	(0001)	$E_{ m abs}$	$E_{ m ads}$	(1010)	$E_{ m abs}$	$E_{ m ads}$	(1120)	$E_{ m abs}$	E_{ads}
Sc	T	-1.12	-1.07	T	-0.20	0.25	T	-0.82	-1.01
	В	-0.87	-1.14	Н	-0.91	-0.19	Н	-1.01	-1.01
	Н	-0.91	-1.07	${f B}_{ m L}$	-0.97	-0.97	B_{L}	-1.11	-1.11
	H_{E}	-0.87	-1.14	B_{S}	-0.73	-1.03	B_{S}	-0.84	-0.71
Y	Т	-1.17	-0.97	Т	-0.32	0.25	Т	-0.83	-0.92
	В	-0.79	-1.06	Н	-0.91	-0.04	Н	-0.92	-0.92
	Н	-0.95	-0.97	$\mathrm{B_{L}}$	-0.87	-0.87	B_{L}	-1.03	-1.03
	H_{E}	-0.78	-1.06	B_{S}	-0.77	-0.99	B_{S}	-0.79	-0.68
	Т	-0.42	-1.21	Т	0.01	-0.05	Т	-0.28	-0.80
т:	В	-0.56	-1.21	Н	-0.46	-0.34	Н	-0.80	-0.80
Ti	Н	-1.21	-1.20	$\mathrm{B_{L}}$	-0.92	-0.91	$\mathrm{B_{L}}$	-0.84	-0.43
	$H_{\rm E}$	-0.56	-1.16	B_{S}	-0.35	-0.90	B_{S}	-0.58	-0.58
	Т	-0.51	-1.06	Т	-0.20	-0.03	T	-0.33	-0.06
7	В	-0.48	-1.11	Н	-0.44	-0.10	Н	-0.72	-0.83
Zr	Н	-0.57	-1.11	B_{L}	-0.79	-0.79	B_{L}	-0.80	-0.41
	H_{E}	-0.48	-1.06	B_{S}	-0.32	-0.83	B_{S}	-0.53	-0.66
Hf	T	-0.36	-1.13	T	-0.11	-0.12	T	-0.07	-0.18
	В	-0.42	-1.14	Н	-0.36	-0.06	Н	-0.65	-0.65
	Н	-0.57	-1.13	B_{L}	-0.80	-0.80	B_{L}	-0.71	-0.32
	$H_{\rm E}$	-0.42	-1.14	B_{S}	-0.24	-0.96	B_{S}	-0.32	-0.71
	Т	0.70	-0.76	T	0.84	0.92	T	0.66	-0.37
Œ	В	0.09	-0.82	Н	0.52	1.44	Н	-0.37	-0.37
Tc	Н	-0.76	-0.76	$\mathrm{B_{L}}$	0.54	-0.62	B_{L}	-0.35	-0.35
	$H_{\rm E}$	0.09	-0.82	B_{S}	0.91	-0.80	B_{S}	0.30	-0.52
	Т	0.87	-0.91	Т	0.95	-0.31	Т	1.15	-0.35
D -	В	0.19	-0.95	Н	0.96	-0.13	Н	-0.21	-0.21
Re	Н	-0.90	-0.91	${f B}_{ m L}$	0.57	-0.55	B_{L}	-0.20	-0.20
	H_{E}	0.19	-0.95	B_{S}	0.94	-0.91	B_{S}	0.79	-0.72
	Т	1.01	-0.65	Т	0.83	-0.28	Т	0.55	-0.43
D	В	0.29	-0.65	Н	0.85	-0.67	Н	-0.43	-0.43
Ru	Н	-0.58	-0.58	B_{L}	0.58	-0.61	B_{L}	-0.49	-0.49
	H_{E}	0.29	-0.65	B_{S}	0.57	-0.66	B_{S}	0.13	-0.59
	Т	1.56	-0.44	Т	1.22	-0.61	Т	0.30	-0.55
Os	В	-0.61	-0.61	Н	1.36	-0.21	Н	-0.47	-0.47
	Н	-0.55	-0.55	$\mathrm{B_{L}}$	0.97	-0.33	B_{L}	-0.58	-0.58
	$H_{\rm E}$	-0.61	-0.61	B_{S}	1.16	-0.79	B_{S}	0.74	-0.74
	Т	0.45	-0.02	Т	0.71	0.07	Т	0.46	-0.40
Ca	В	0.06	-0.64	Н	0.49	-0.15	Н	-0.40	-0.40
Co	Н	-0.61	-0.61	${ m B_L}$	0.53	-0.52	${f B}_{ m L}$	-0.39	0.08
	$H_{\rm E}$	0.06	-0.64	B_{S}	0.49	-0.60	B_{S}	0.23	-0.46
Zn	Т	0.93	0.50	T	0.77	0.56	Т	0.67	0.20

Supporting Information

	В	0.89	0.43	Н	0.77	1.70	Н	0.11	0.21
	Н	0.89	0.58	${f B}_{ m L}$	0.90	0.49	B_{L}	0.28	0.22
	H_{E}	1.04	0.53	B_{S}	0.90	0.41	B_{S}	0.38	0.31
Cd	T	0.72	0.63	T	0.89	0.82	T	0.57	0.26
	В	0.68	0.53	Н	0.88	0.83	Н	0.52	1.55
	Н	0.69	0.59	${f B}_{ m L}$	0.88 0.89	0.81	$\mathrm{B_{L}}$	0.67	1.64
	$H_{\rm E}$	0.74	0.55	B_{S}	0.90	0.75	B_{S}	0.71	0.24

Figure S1. Adsorption energy, E_{ads} , vs. surface energy, γ . The bcc, fcc, and hcp crystallographic structures are represented in red, blue, and green, respectively. The overall linear regression is shown, along with the regression coefficient, R.

Figure S2. Adsorption energy, E_{ads} , vs. work function, ϕ . The bcc, fcc, and hcp crystallographic structures are represented in red, blue, and green, respectively. The overall linear regression is shown, along with the regression coefficient, R.

Figure S3. Adsorption energy, E_{ads} , vs. corrected d-band center, ε_d^W . The bcc, fcc and hcp crystallographic structures are represented in red, blue, and green, respectively. The overall linear regression is shown, along with the regression coefficient, R.

Figure S4. Adsorption energy, E_{ads} , vs. highest Hilbert transform d-band peak, ε_u . The bcc, fcc and hcp crystallographic structures are represented in red, blue, and green, respectively. The overall linear regression is shown, along with the regression coefficient, R.

Figure S5. Volcano plot of overpotential, $-\eta$, vs. computed H* $\Delta G_{\rm ads}$ for each TM averaging the stability of Wulff surfaces. The *bcc*, *fcc*, and *hcp* crystallographic structures are represented in red, blue, and green, respectively.

