Estrutura do Sistema Operativo

ESTRUTURA DO SISTEMA OPERATIVO

- Componentes do sistema operativo
- Serviços do sistema operativo
- Chamadas ao sistema
- Programas de sistema
- Estrutura do sistema operativo

FEUP

Faculdade de Engenharia da Universidade do Porto

Sistemas Operativos

Estrutura do Sistema Operativo

Componentes do S.O.

Pontos de vista de um sistema operativo:

- ♦ <u>serviços</u> que fornece
- ♦ interface que disponibiliza p/ utilizadores e programadores
- ♦ seus componentes e interligações

Componentes do sistema operativo:

- ♦ Gestão de processos
- ♦ Gestão da memória principal
- ♦ Gestão da memória secundária
- ♦ Gestão de entradas/saídas
- ♦ Gestão de ficheiros
- ♦ Gestão de rede
- ♦ Sistema de protecção

Estrutura do Sistema Operativo

Serviços do S.O.

- Serviços que facilitam a tarefa do programador
 - ♦ criação de programas (editores e debuggers)
 - ♦ execução de programas
 - ♦ acesso a dispositivos de I/O
 - ♦ acesso a ficheiros
 - ♦ comunicações
 - ♦ detecção de erros/falhas
 - ♦ contabilidade da utilização
 - **♦** ...
- Serviços que garantem um funcionamento eficiente do sistema
 - ♦ alocação de recursos
 - ♦ contabilidade do sistema
 - ♦ protecção e segurança
 - » protecção impedir que um processo interfira com outros
 - » segurança impedir acessos não autorizados

FEUP

MIEIC

Faculdade de Engenharia da Universidade do Porto

Sistemas Operativos

Estrutura do Sistema Operativo

Programas de sistema

- ♦ Fornecem um ambiente conveniente para o desenvolvimento de aplicações e execução de programas.
- Alguns dos programas de sistema são apenas interfaces simples para chamadas ao sistema.
- ♦ O interpretador de comandos é o programa de sistema mais importante.

Programas:

- ♦ edição de texto
- ♦ manipulação de ficheiros e directórios
- ♦ informação de estado
- ♦ suporte a linguagens de programação
- ♦ carregamento e execução de programas
- ♦ comunicações
- **.**..

Do ponto de vista do S.O. não há distinção entre os programas do utilizador e os programas de sistema.

FEUP

MIEIC

Estrutura do Sistema Operativo

Estrutura de um S.O.

Analisamos o S.O. do ponto de vista exterior. Vamos ver como ele é interiormente.

Estrutura:

- **♦** monolítica
- ♦ em camadas
- **♦** microkernel

FEUP

MIEIC

Faculdade de Engenharia da Universidade do Porto

Sistemas Operativos

Estrutura do Sistema Operativo

Estrutura monolítica

- Primeiros S.O.'s.
- Não há estruturação ...
 - ♦ o S.O. é escrito como um conjunto de procedimentos cada um dos quais pode chamar qualquer outro.

programas do utilizador

sistema de ficheiros, memória virtual, drivers de I/O, controlo de processos, serviços de sistema, swapping, serviços de rede, protecção, tratamento de interrupções, ...

hardware

FEUP

MIEIC

Sistemas Operativos Estrutura do Sistema Operativo Estrutura monolítica ... ou há uma pequena estruturação: proced. principal proced.s de serviço (executam as chamadas ao sist.) proced.s utilitários (ajudam os proced.s de serviço) Dificuldades da estrutura monolítica: ♦ difícil de compreender ♦ difícil de modificar ♦ pouco fiável (um erro "em qualquer lado" pode provocar um crash) ♦ difícil de manter MIEIC **FEUP** Faculdade de Engenharia da Universidade do Porto

Sistemas Operativos

Estrutura do Sistema Operativo

Estrutura em camadas

- O S.O. é dividido num certo número de camadas (níveis) cada qual construída por cima da anterior.
 - ♦ camada de mais alto nível interface com o utilizador
 - ♦ camada 0 hardware
- Sistema operativo modular
 - ♦ Para cada camada especificar a funcionalidade e as características.
 - ♦ É possível alterar a estrutura interna de cada camada desde que a interface com as outras camadas se mantenha inalterada.
 - ♦ Cada camada só usa funções e serviços das camadas inferiores.
 - Uma camada não necessita de "saber" como as operações da camada inferior são implementadas, mas apenas o que elas fazem.

MIEIC

Estrutura do Sistema Operativo

Dificuldades da estruturação em camadas:

♦ Definição adequada das camadas

- » porque cada camada só deveria poder usar as funções do nível inferior
- » o sistema de gestão de ficheiros deveria ser um processo numa camada superior à de gestão de memória virtual; por sua vez, esta deverá poder usar ficheiros (!)

♦ Tende a ser menos eficiente do que outros tipos

- ex: para um programa do utilizador executar uma operação de I/O
 executa uma chamada ao sistema
 que faz um trap à camada de I/O
 que chama a camada de ...

 - ... até chegar ao hardware

Os sistemas são frequentemente modelados como estruturas em camadas mas nem sempre são construídos dessa forma.

A estrutura em camadas foi usada pela 1ª vez no sistema THE.

MIEIC

Faculdade de Engenharia da Universidade do Porto

Sistemas Operativos

Estrutura do Sistema Operativo

Exemplo teórico de hierarquia de camadas (Stallings):

Level	Name	Objects	Example Operations
13	Shell	User programming environment	Statements in shell language
12	User processes	User processes	Quit, kill, suspend, resume
11	Directories	Directories	Create, destroy, attach, detach, search, list
10	Devices	External devices, such as printer, displays and keyboards	Create, destroy, open, close, read, write
9	File system	Files	Create, destroy, open, close read, write
8	Communications	Pipes	Create, destroy, open. close, read, write

MIEIC

Siste	mas Operativos	Estrutura do Sistema Operativo					
Lev	el Name	Objects	Example Operations				
7	Virtual Memory	Segments, pages	Read, write, fetch				
6	Local secondary store	Blocks of data, device channels	Read, write, allocate, free				
5	Primitive processes	Primitive process, semaphores, ready list	Suspend, resume, wait, signal				
HAR	HARDWARE						
4	Interrupts	Interrupt-handling programs	Invoke, mask, unmask, retry				
3	Procedures	Procedures, call stack	Mark stack, call, return				
2	Instruction Set	Evaluation stack, micro program interpreter, scalar and array data	 Load, store, add, subtract branch 				
1	Electronic circuits	Registers, gates, buses etc.	, Clear, transfer, activate, complement				
FEU	FEUP MIEIC Faculdade de Engenharia da Universidade do Porto						

Estrutura do Sistema Operativo

Estrutura baseada em *microkernel*

- Tendência nos S.O.'s modernos:
 - Deslocar código para as camadas superiores deixando um kernel mínimo.
 - O kernel implementa a funcionalidade mínima referente a
 - gestão de memória
 - gestão básica da CPU
 - comunicação entre processos
 - suporte de I/O
 - ♦ A restante funcionalidade do S.O. é implementada em proc. os de sistema que correm em modo de utilizador. Estes processos comunicam entre si através de mensagens (modelo cliente-servidor)

Primeiro sistema baseado em *microkernel*: Hydra (CMU, 1970) Outros exemplos: Mach (CMU), Chorus (Unix-like, francês)

Windows NT/2000 - estrutura microkernel modificada;

ao contrário de uma arquitectura *microkernel* "pura" muitas das funções de sistema fora do microkernel executam em modo *kernel*, por razões de performance

MIEIC

Sistemas Operativos Estrutura do Sistema Oper								
Estrutura baseada em <i>microkernel</i> :								
		PROCESSOS DO UTILIZADOR	U S E R					
sistema de ficheir			R M O D E					
comunicação gestão de mem. vi de baixo nível	irtual	MICROKERNEL	K M O D E					
(P)	hardware	····						
FEUP	MIEIC Faculdade de Engenharia da Universidade do Porto							

Estrutura do Sistema Operativo

Estrutura de alguns S.O.'s

Linux

- ♦ Estrutura essencialmente monolítica
 - (semelhante, em termos de grandes blocos à da pág. seguinte->UNIX, Bach 1986)
- ♦ No entanto, é relativamente modular, internamente, de tal forma que a realização de modificações ou acrescentos não é considerada muito difícil.
- ♦ O kernel está estruturado em 2 camadas essenciais:
 - » uma camada independente da arquitectura do hardware (portável)
 - » uma camada dependente da arquitectura do hardware (não portável)

Inicialmente desenvolvido para processadores x86 Intel tem sido portado para sistemas baseados em Alpha, Motorola 680x0, PowerPC, SPARC, ...

(estima-se que, em média, seja necessário reescrever 50000 linhas de código para portar o *kernel* do Linux + *drivers* para novas arquitecturas)

FEUP

MIEIC

Estrutura do Sistema Operativo

Windows 2000/XP

Algumas características:

- ♦ Sistema multitasking com um único utilizador
- ♦ Suporta multiprocessamento simétrico
 - » vários processadores, partilhando memória e módulos de I/O
 - » todos os processadores podem executar qualquer tarefa
- ♦ Suporta multithreading
- » dividir um processo em várias sequências de execução (v. adiante)
- ♦ Suporta interfaces de outros sistemas operativos (subsistemas)
- ♦ Estrutura microkernel modificada
 - » os serviços correm em modo privilegiado
- Camadas:
 - » HAL Hardware Abstraction Layer
 - · Cria uma interface comum para as várias plataformas de hardware suportadas
 - Facilita a portabilidade do S.O.
 - » Microkernel
 - Serviços executivos
 - Fórnecem uma interface para a camada que corre em modo utilizador (subsistemas)
 - Subsistemas
 - · Interface de programação para os programas de aplicação

FEUP

MIEIC

