

planetmath.org

Math for the people, by the people.

rational set

Canonical name RationalSet

Date of creation 2013-03-22 19:01:16 Last modified on 2013-03-22 19:01:16

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 20M35
Classification msc 68Q70

Defines rational language

Given an alphabet Σ , recall that a regular language R is a certain subset of the free monoid M generated by Σ , which can be obtained by taking singleton subsets of Σ , and perform, in a finite number of steps, any of the three basic operations: taking union, string concatenation, and the Kleene star.

The construction of a set like R is still possible without M being finitely generated free.

Let M be a monoid, and \mathcal{S}_M the set of all singleton subsets of M. Consider the closure \mathcal{R}_M of S under the operations of union, product, and the formation of a submonoid of M. In other words, \mathcal{R}_M is the smallest subset of M such that

- $\varnothing \in \mathcal{R}_M$,
- $A, B \in \mathcal{R}_M$ imply $A \cup B \in \mathcal{R}_M$,
- $A, B \in \mathcal{R}_M$ imply $AB \in \mathcal{R}_M$, where $AB = \{ab \mid a \in A, b \in B\}$,
- $A \in \mathcal{R}_M$ implies $A^* \in \mathcal{R}_M$, where A^* is the submonoid generated by A.

Definition. A rational set of M is an element of \mathcal{R}_M .

If M is a finite generated free monoid, then a rational set of M is also called a *rational language*, more commonly known as a *regular language*.

Like regular languages, rational sets can also be represented by regular expressions. A regular expression over a monoid M and the set it represents are defined inductively as follows:

- \varnothing and a are regular expressions, for any $a \in M$, representing sets \varnothing and $\{a\}$ respectively.
- if a, b are regular expressions, so are $a \cup b$, ab, and a^* . Furthermore, if a, b represent sets A, B, then $a \cup b$, ab, and a^* represent sets $A \cup B$, AB, and A^* respectively.

Parentheses are used, as usual, to avoid ambiguity.

From the definition above, it is easy to see that a set $A \subseteq M$ is rational iff it can be represented by a regular expression over M.

Below are some basic properties of rational sets:

- 1. Any rational set M is a subset of a finitely generated submonoid of M. As a result, every rational set over M is finite iff M is locally finite (meaning every finitely generated submonoid of M is actually finite).
- 2. Rationality is preserved under homomorphism: if A is rational over M and $f: M \to N$ is a homomorphism, then f(A) is rational over N.
- 3. Conversely, if $B \in f(M)$ is rational over N, then there is a rational set A over M such that f(A) = B. Thus if f is onto, every rational set over N is mapped by a rational set over M. If f fails to be onto, the statement becomes false. In fact, inverse homomorphisms generally do not preserve rationality.

References

[1] S. Eilenberg, Automata, Languages, and Machines, Vol. A, Academic Press (1974).