Potovanje v višje dimenzije

Jure Slak

7. december 2017

Fakulteta za matematiko in fiziko

Stara Grčija

Krog

Evklid v Elementih pravi:

Krog

Evklid v Elementih pravi:

Κύκλος έστὶ σχῆμα έπίπεδον ὑπὸ μιᾶς γραμμῆς περιεχόμενον [ἡ καλεῖται περιφέρεια], πρὸς ἡν ἀφ' ἐνὸς σημείου τῶν έντὸς τοῦ σχήματος κειμένων πᾶσαι αὶ προσπίπτουσαι εὐθεῖαι [πρὸς τὴν τοῦ κύκλου περιφέρειαν] ἴσαι ἀλλήλαις εἰσίν.

Krog

Evklid v Elementih pravi:

Κύκλος έστὶ σχῆμα έπίπεδον ὑπὸ μιᾶς γραμμῆς περιεχόμενον [ἣ καλεῖται περιφέρεια], πρὸς ἣν ἀφ' ἐνὸς σημείου τῶν έντὸς τοῦ σχήματος κειμένων πᾶσαι αὶ προσπίπτουσαι εὐθεῖαι [πρὸς τὴν τοῦ κύκλου περιφέρειαν] ἴσαι άλλήλαις εἰσίν.

Krog je ravninski lik, omejen s takšno črto (ki se imenuje periferija), za katero so vse ravne črte potegnjene od neke točke, ki je v tem liku, do te črte (do periferije kroga), med sabo enake.

Kvadrat in pravokotnik

Ravna črta je tista, ki enako leži za točke na njej.

Ravnočrtni liki so tisti, ki jih omejujejo ravne črte. Tristranski so tisti, ki so omejeni s tremi, štiristranski s štirimi, večstranski z več kot štirimi ravnimi črtami.

Med štiristranskimi liki je *kvadrat* enakostraničen in s pravimi koti; pravokotnik s pravimi koti in z neenakimi stranicami.

Srednja šola

Krog, kvadrat in pravokotnik

 Krog s središčem S in radijem r je množica točk, ki so manj ali enako r oddaljene od S .

Pravokotnik je štirikotnik, kjer sta nasprotni stranici vzporedni in enako dolgi.

Kvadrat je pravokotnik, ki ima vse stranice enako dolge.

Razvoj višjedimenzionalne

geometrije

Preboj: koordinate

René Descartes: začetnik analitične geometrije

Uvede koordinatni sistem in koordinate točk, npr. P(2,1).

Izrazi s koordinatami

Znamo izračunati razdaljo:

Izrazi s koordinatami

Znamo izračunati razdaljo:

$$d(a_1, b_1) = |a_1 - b_1|$$

$$d((a_1, a_2), (b_1, b_2)) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

$$d((a_1, a_2, a_3), (b_1, b_2, b_3)) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}$$

Izrazi s koordinatami

Znamo izračunati razdaljo:

$$d(a_1, b_1) = |a_1 - b_1|$$

$$d((a_1, a_2), (b_1, b_2)) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2}$$

$$d((a_1, a_2, a_3), (b_1, b_2, b_3)) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}$$

Like definiramo kot množice točk, ki so podane s koordinatami:

$$\{(x, y); d((x, y), (a_1, a_2)) \le r\}$$
$$\{(x, y); a_1 \le x \le b_1 \land a_2 \le y \le b_2\}$$

Posplošitev na n dimenzij

dimenzija	točka	razdalja
1	a_1	$ a_1-b_1 $
2	(a_1, a_2)	$\sqrt{(a_1-b_1)^2+(a_2-b_2)^2}$
3	(a_1, a_2, a_3)	$\sqrt{(a_1-b_1)^2+(a_2-b_2)^2+(a_3-b_3)^2}$
:	:	:

Posplošitev na n dimenzij

Posplošitev na n dimenzij

Točke pišemo kar odebeljeno $\mathbf{a} = (a_1, a_2, a_3, \dots, a_n)$.

$$d(\boldsymbol{a}, \boldsymbol{b}) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}$$

Vložitve v višje dimenzije

Definicija: *n*-dimenzionalen prostor je prostor vseh *n*-dimenzionalnih točk.

Kaj je 1D prostor, 2D prostor, 3D prostor?

Nižjedimenzionalne prostore lahko prepoznamo znotraj višjedimenzionalnih.

Kako pobegniti iz zaprte sobe?

Kocke in krogle

(Hiper)krogla, (hiper)kvader in (hiper)kocka

Posplošimo definicije iz ravnine in prostora.

$$K(\boldsymbol{s},r) = \{\boldsymbol{x}, \ d(\boldsymbol{x},\boldsymbol{s}) \le r\}$$
$$[\boldsymbol{a},\boldsymbol{b}] = \{\boldsymbol{x}, \ a_1 \le x_1 \le b_1 \land a_2 \le x_2 \le b_2 \land \dots \land a_n \le x_n \le b_n\}$$

Dolžine stranic so d = b - a.

Kvader [a, b] je kocka, če so vsi d_i med sabo enaki.

Volumni in površine

1D: dolžina

$$V([a, b]) = b - a = d$$

2D: ploščina

$$V([\mathbf{a}, \mathbf{b}]) = (b_1 - a_1)(b_2 - a_2) = d_1 d_2$$

3D: volumen

$$V([\mathbf{a}, \mathbf{b}]) = (b_1 - a_1)(b_2 - a_2)(b_3 - a_3) = d_1 d_2 d_3$$

Volumni in površine

1D: dolžina

$$V([a, b]) = b - a = d$$

2D: ploščina

$$V([\mathbf{a}, \mathbf{b}]) = (b_1 - a_1)(b_2 - a_2) = d_1 d_2$$

3D: volumen

$$V([\mathbf{a}, \mathbf{b}]) = (b_1 - a_1)(b_2 - a_2)(b_3 - a_3) = d_1 d_2 d_3$$

*n*D: *n*-volumen:

$$V([\mathbf{a}, \mathbf{b}]) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n) = d_1 d_2 d_3 \cdots d_n$$

Primer – kocke

Kakšen je volumen $[\mathbf{0},\mathbf{1}]$?

Kakšen je volumen [-1,1]?

Volumni in površine

1D: ??

$$P([a, b]) = ??$$

2D: obseg

$$P([\boldsymbol{a},\boldsymbol{b}]) = 2(d_1 + d_2)$$

3D: površina

$$P([\mathbf{a}, \mathbf{b}]) = 2(d_1d_2 + d_1d_3 + d_2d_3)$$

Volumni in površine

1D: ??

$$P([a,b]) = ??$$

2D: obseg

$$P([\boldsymbol{a}, \boldsymbol{b}]) = 2(d_1 + d_2)$$

3D: površina

$$P([\mathbf{a}, \mathbf{b}]) = 2(d_1 d_2 + d_1 d_3 + d_2 d_3)$$

*n*D: *n*-površina:

$$P([\mathbf{a}, \mathbf{b}]) = 2(d_1 d_2 \cdots d_{n-1} + d_1 d_2 \cdots d_{n-2} d_n + \cdots + d_2 d_3 \cdots d_n) =$$

$$= 2 \sum_{i=1}^{n} \frac{V([\mathbf{a}, \mathbf{b}])}{d_i}$$

kocke:
$$P = 2n\frac{V}{d} = 2nd^{n-1}$$
.

1D:
$$V=2r$$
 $P=2$

1D: V=2r P=2

2D: $V=\pi r^2$ $P=2\pi r$

1D: V=2r P=2

2D: $V = \pi r^2$ $P = 2\pi r$

3D: $V = \frac{4}{3}\pi r^3$ $P = 4\pi r^2$

1D:
$$V=2r$$
 $P=2$
2D: $V=\pi r^2$ $P=2\pi r$
3D: $V=\frac{4}{3}\pi r^3$ $P=4\pi r^2$

4D: V = ?? P = ??

1D:
$$V = 2r$$
 $P = 2$

2D:
$$V = \pi r^2$$
 $P = 2\pi r$

3D:
$$V = \frac{4}{3}\pi r^3$$
 $P = 4\pi r^2$

4D:
$$V = ??$$
 $P = ??$

Malo bolj zapleteno – 2. letnik FMF.

$$V(K(s,r)) = \frac{\pi^{\frac{n}{2}}}{(\frac{n}{2})!} r^n$$

$$V(K(s,r)) = \frac{n}{V(K(s,r))} r^n$$

$$P(K(s,r)) = \frac{n}{r}V(K(s,r))$$

Razmerje med n-kroglo in n-kocko

Enotska *n*-krogla:

$$B_n = K(\mathbf{0}, 1) = \{ \mathbf{x}; \ x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2 \le 1 \}$$

 $Q_n = [-1, 1] = \{ \mathbf{x}; \ -1 \le x_i \le 1, \text{za } i = 1, \dots, n \}$

Ali je $B_n \subseteq Q_n$?

Najdi vsa presečišča površin!

Razmerje volumnov:

$$\frac{V(B_n)}{V(Q_n)} = \frac{\pi^{\frac{n}{2}}/(n/2)!}{2^n} \xrightarrow[n \to \infty]{} 0$$

$$\frac{n}{7} = \frac{2}{78.5\%} = \frac{3}{52.3\%} = \frac{4}{30.8\%} = \frac{5}{16.4\%} = \frac{6}{8.1\%} = \frac{100}{100}$$

Kaj pa če je kvadrat znotraj kroga?

Oglejmo si diagonalo enotske kocke.

Še en zanimiv primer: koliko je radij notranje krogle?

Poglej v 1D?

Primeri uporabe

Kodiranje in popravljanje napak

n-dimenzionalne krogle lahko uporabimo za popravljanje napak pri prenosu podatkov.

Pošiljamo 1 bit informacije: **0** ali **1**, pošljemo ga tako, da ga ponovimo 3-krat. Možni rezultati:

000 001 010 011 100 101 110 111

Primer netrivialnega kodiranja so Reed-Solomonovi kodi. Uporabljajo se za kodiranje CD, DVD, BluRay, bar kod, QR kod, DVB prenosov, RAID6 datotečnega sistema, komunikacijo s sondo Voyager.