5.
$$F(x) = \sum_{x_i \le t} P_i$$

$$\gamma$$
 (- ω_{i-2}) (-2,3] (3;5] (5, ω)
F(x) 0 0,2 0,4 1

$$F((-\infty, 23) = 0)$$

$$F((-2, 33) = 0, 2$$

$$F((3, 53) = 0, 2 + 2 = 0, 2$$

$$F((5, \infty)) = 0, 2 + 0, 5 + 2 = 0$$

Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 2. Tydzień rozpoczynający się 9. marca Zadania

- √ 1. Niech Σ będzie σ-ciałem zbiorów.
 - \checkmark (a) Sprawdzić, że $\emptyset \in \Sigma$.
- $\sqrt{(b)}$ Załóżmy, że $A_k \in \Sigma$, dla $k = 1, 2, 3, \ldots$ Wykazać, że $\bigcap A_k \in \Sigma$.
- \checkmark 2. Niech $\Omega = \{a, b, c\}$.
- √ (a) Opisać σ-ciała zbiorów tej przestrzeni zdarzeń.
- √ (b) Podać przykład funkcji X, Y takich, że X jest zmienną losową, a Y nie jest zmienna losowa.
- \checkmark 3. Niech $Ω = \{1, 2, 3, 4, 5\}$ oraz $S = \{1, 4\}$. Wyznaczyć najmniejsze σ -ciało zbiorów zawierające S.
- V 4. Wyznaczyć dystrybuantę i obliczyć wartość oczekiwaną zmiennej X o rozkładzie

$$x_i$$
 2 3 4 5 p_i 0.2 0.4 0.1 0.3

Dystrybuanta F zmiennej losowej X określona jest następująco:

Podać postać funkcji gęstości f(x).

- \checkmark 6. Niech Xbędzie zmienną losową typu dyskretnego. Udowodnić, że $\mathrm{E}(aX+b)=a\;\mathrm{E}(X)+b$
- $\sqrt{7}$. Niech X będzie zmienną losową typu ciąglego. Udowodnić, że E(aX + b) = a E(X) + b.
- \checkmark (a) $B(p, q + 1) = B(p, q) \frac{q}{p + q}$, \checkmark (b) B(p, q) = B(p, q + 1) + B(p + 1, q).
- 9. 2p. Udowodnić, że $\Gamma(p)$ $\Gamma(q) = \Gamma(p+q)$ B(p,q), gdzie $p,q \in \mathbb{R}^+$ (czyli wszystkie potrzebne calki

DEF. Funkcją beta nazywamy wartość calki

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt, \ p > 0, \ q > 0.$$

Witold Karczewski

