

Week 10: Machine Learning/ Supervised Learning

Max H. Garzon

Standard Methodology

Problem Definition/goal

- Identify/specify goals of the data analysis
- commit to specific deliverables

Data pre-processing

- Identify appropriate data
- Acquire data (gather, lookup, understand)

Data processing

- Identify methods (gather, cleanse, store)
- Carry out the analysis (patterns, trends, predictions?)

Data post-processing

- Visualize and present
- Deploy and evaluate. Iterate, if necessary

Learning Objectives

- To identify Machine Learning (ML) and define a framework for its methods
- To identify most common ML supervised algorithms
- To identify required steps for model fitting and model evaluation.
- To view case studies to gauge the degree of versatility and success of ML methods

Example Application 1: Classify

- An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc.) of newly admitted patients.
- A decision is needed: Do they need put a new patient in an intensive-care unit (ICU)?
- Due to the high cost of ICU, those patients who may survive less than a month are given higher priority.
- Problem: to predict high-risk patients and discriminate them from low-risk patients.

.. Example App 2: Classify

- A bank receives thousands of applications from potential clients. Each application contains information about an applicant, such as
 - annual salary
 - □ age
 - outstanding debts
 - credit rating
 - marital status
- Problem: How to decide whether an application should be approved, i.e., to classify applications into two categories, approved/decline. Obviously, Co wants to minimize the risk of defaults.

.. App2: Data for loan application

Approved or not

ID	Age	Has_Job	Own_House	Credit_Rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

.. App2 solution: Naïve Classifier

Algorithm

Discriminate low risk and high risk customers solely by their income and savings features

IF income > θ1 AND savings > θ2 THEN low-risk

ELSE

high-risk

.. App 3: Face Recognition

- Deciding whether a human face appears in a picture
- Deciding whether a picture contains me

.. App 4: Signature Recognition

Is that my signature?
 Structural similarities are difficult to quantify.

Mullem

Classification Problems

Given a universe Ω and a partition Π (some disjoint groups/categories whose union exhaust Ω) CLASSIFICATION PROBLEM (Π)

Instance: an element of x

Question: which part/cat in Π does x belong to?

- A classifier is a solution to the classification problem, i.e., it places each input feature vector x into one of the parts/categories in Π.
- There are many types of classifiers:
 - Statistical (e.g. Gaussian)
 - Perceptrons / Support-Vector Machines (SVMs)
 - Feed-Forward Neural Networks (FNNs)

Prediction Problems

Given a function f: Ω → Y on a population Ω PREDICTION PROBLEM(f)

Instance: an element x of Ω

Question: what is the value of f at x?

- A predictive model is a solution to the prediction problem, i.e., an algorithm that produces a (good approximation of) the value f(x) for every (or most) of the instances x in the population Ω .
- There are many types of predictive models:
 - Regression
 - Neural Networks (feed-forward, self-organizing)

Clustering Problems

- CLUSTERING PROBLEM (Ω, m) Question: what is a partition Π of Ω where elements more similar according to measure m are put into the same part (cluster)
- A clustering algorithm is a solution to the clustering problem, i.e., an algorithm that produces the clusters in a partition Π of Ω .
- There are many types of clustering algorithms, primarily when m is a notion of distance:
 - Hierarchical
 - □ k-Means

What is Machine learning (ML)?

Given

- □ a data set *D*,
- □ a task *T*, and
- □ a performance measure *M*,

an algorithm/program P is said to **learn** from D to perform the task T if upon (repeated) execution, P's performance on instances in D improves as measured by M.

In other words, A helps a computer system perform T better as compared to a nonself-modifying program (Mitchell, 1997)

.. What is Machine Learning?

X-validation set (unobserved)

COMP7/8150: Data Science I

.. What is Machine Learning?

- ML is about building artificial models / algorithms / software capable of
 - learning from past experiences (usually data/examples/cases, labeled or unlabeled)
 - Improving their performance as a result
- Some of these gadgets can be regarded as artificially intelligent programs
- Many of them follow closely methods observed to work in biological organisms
- Very different from traditional models (e.g statistical, where a prior analysis by experts is required)

ML: Data and goal

- Data: A set of data records (also called exemplars, instances, or cases) described by
 - \square A feature vector of n attributes: $(x_1, x_2, \dots x_n)$
 - a class: Each example can (my not) be labeled with a pre-defined class.
- GOAL: produce a learning algorithm to classify the given data and exhibits good
 - Generalization:

it scales well if asked to predict classes of new instances (future, or test) that the algorithm has never seen before.

ML: Un/Supervised Learning

- Supervised learning: classification is seen as supervised learning from exemplars.
 - Supervised: the algorithm is shown data (observations, measurements) including labels of the corresponding class, i.e., a "teacher" is available to tell the answer
 - Test data samples are classified into these classes too.
- Unsupervised learning (clustering)
 - Class labels of the data are unknown
 - Given a set of data, the task is to establish the existence of classes or clusters in the data

ML: Supervised learning phases

a. Acquire Data:

Training data: to show a model

Step 1: Training

Testing data: To test the model using test data unseen

by the model to assess its accuracy

- b. Learning Algorithm: to search for a good model
- c. Validation: To use it to make sound predictions

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}},$$

Step 2: Testing

Fundamental Requirement

- To eventually achieve good accuracy, the data corpus must be R³S of all the population:
 - Reliable/Consistent
 real-world data has inherent consistency checks
 (and so must synthetic data to be useful, much harder)
 - □ Representative must include balanced points from all corners of the population
 - Relevant be about the problem, the whole problem and nothing but the problem
 - Sufficient contains sufficiently many points to be representative and statistically significant re: the population (else no generalization.)
 - In practice, these requirements are rarely fully true

 Deviations will likely result in poorer solutions

Questions?

