Exame de Álgebra

Universidade de Brasília

Exame de Álgebra Lucas Corrêa Lopes

Notas escritas para o Exame de Qualificação em Álgebra da Universidade de Brasília, sob orientação do Prof. Dr. Pavel Zalesski. Os assuntos se resumem, essencialmente, a Grupos Profinitos, com ênfase em Construções Livres e Teoria de Bass-Serre.

Sum<mark>ário</mark>

capítulo 1	Produtos amalgamados abstratos e profinitos	Página 1.
1.1	Produtos amalgamados abstratos	1
1.2	Existênca de uma forma normal	3
1.3	O produto amalgamado depende de cada $f_i \ldots \ldots$	4
1.4	Produtos amalgamados profinitos	4
1.5	Quando é próprio?	5

Capítulo 1

Produtos amalgamados abstratos e profinitos

1.1 Produtos amalgamados abstratos

Considere dois grupos G_1 e G_2 . Suponha que ambos possuam um subgrupo em comum, isto é, existem monomorfismos $f_1: H \to G_1$ e $f_2: H \to G_2$. Considere $F = G_1 * G_2$. Seja N o fecho normal em F do conjunto

$$\{f_i(h)^{-1}f_j(h): 1 \le i, j \le 2, h \in H\}$$

Se G=F/N, então as relações identificam $f_i(H)$ em G, isto é, $f_i(h)\equiv_N f_j(h)$ de modo que os subgrupos $f_i(H)N/N$ são iguais em G. Dizemos que G é um produto livre de G_1 e G_2 com subgrupo amalgamado H. Óbviamente essa construção funciona para uma quantidade arbitrária de grupos tendo um subgrupo em comum.

Existe uma maneira mais natural de observar o produto amalgamado: considere o diagrama

que representa a propriedade universal do produto livre F de G_1 e G_2 . Seja H um subgrupo em comum de G_1 e G_2 com monomorfismos f_1 e f_2 . Se quisermos manter uma propriedade universal, precisamos determinar ? que torna o diagrama

comutativo. Observe que independente de qualquer coisa, as imagens de H em ? devem ser iguais, isto é,

$$\iota_1 f_1 = \iota_2 f_2.$$

Se as imagens de H em G_1 e G_2 forem iguais, então serão em ?, desde que ι_i seja um monomorfismo. Assim, tomando G=F/N, o diagrama

é comutativo e podemos dar a seguinte definição:

Definição 1.1.1. Seja $f_i: H \to G_i, i=1,...,n$, monomorfismos. Um produto livre com subgrupo amalgamado H é grupo G e uma família $\iota_i: G_i \to G$ de homomorfismos tais que $\iota_i f_i = \iota_j f_j$ para quaisquer $i \neq j$ satisfazendo a seguinte **propriedade universal**: sempre que $\varphi_i: G_i \to L$ são homomorfismos em um grupo L com $\varphi_i f_i = \varphi_j f_j$ para quaisquer $i \neq j$, então existe um único homomorfismo φ tal que $\varphi \iota_i = \varphi_i$ para todo i.

A demonstração de existência e unicidade do produto amalgamado segue a mesma ideia das construções livres anteriores: considere G = F/N e $G_i = \langle X_i : R_i \rangle$. Os mapas

óbvios $X_i \to G$ induzem homomorfismos $\iota_i: G_i \to G$. Se $\varphi_i: G_i \to L$ satisfazem $\varphi_i f_i = \varphi_j f_j$, defina $\varphi: G \to L$ por $\varphi(x_i) = \varphi_i(x_i)$ para $x_i \in X_i$. A unicidade segue do argumento rotineiro.

1.2 Existênca de uma forma normal

Cada elemento de G pode ser escrito como fN com $f \in F$ onde

$$f = u_1 \cdots u_m$$

com $u_j \in G_{i_j}$ e $i_j \neq i_{j+1}$. Denotaremos $H_i = f_i(H)$. Para cada i, T_i será um transversal à direita de H_i em G_i e \overline{g} o único representante da classe $H_i g$, convencionado $\overline{1} = 1$. Considere o seguinte processo

• Se $f=u_1\cdots u_m$, tome $g_m=u_m$. Como $g_m\in H_{i_m}g_m$, então $g_m=f_m(h_m)\bar{g}_m$ com $h_m\in H$. Além disso,

$$f_m(h_m) \equiv_N f_{m-1}(h_m),$$

logo,

$$g_m \equiv_N f_{m-1}(h_m)\bar{g}_m$$
.

Então

$$f \equiv_N u_1 \cdots (u_{m-1} f_{m-1}(h_m)) \bar{g}_m$$

• Seja $g_{m-1} = u_{m-1} f_{m-1}(h_m)$. Repetindo o mesmo processo, teremos

$$f \equiv_N u_1 \cdots (u_{m-2} f_{m-2} (h_{m-1})) \bar{g}_{m-1} \bar{g}_m.$$

Após um número finito de repetiçõe, obteremos

$$f \equiv_N f_1(h)\bar{q}_1\cdots\bar{q}_m$$

com
$$h \in H$$
, $f_1(h) \equiv_N f_i(h)$, $g_i \in G_{i,j}$ e $i_i \neq i_{j+1}$.

Além disso, essa escrita está unicamente determinada ([Rob12, 6.4.1]).

Definição 1.2.1. Seja G um produto livre de G_1 e G_2 com subgrupo amalgamado H. Seja $fN \in G$ com $f \in G_1 * G_2$. Uma forma normal de f com respeito a f_i e G_i é uma expressão do tipo

$$h\bar{q}_1\cdots\bar{q}_m$$

tal aue

$$f \equiv_N f_1(h)\bar{g}_1 \cdot \bar{g}_m$$

com $h \in H$, $q_i \in G_i$, e $i_i \neq i_{i+1}$

A unicidade da forma normal nos dá

$$f_i(H) \cap N = 1 = G_i \cap N$$

isto é,

$$f_i(H)N/N \simeq f_i(H) \simeq H$$

$$G_i N/N \simeq G_i$$
.

Com está identificação, temos que G é gerado pelos G_i , $G_i \cap G_j = H$ para $i \neq j$. Assim, cada $g \in G$ pode ser identificado com sua formal e assim, ser escrito de maneira única como

$$g = h\bar{g}_1 \cdots \bar{g}_m$$

com $h \in H$, $g_j \in G_{i_j}$ e $i_j \neq i_{j+1}$.

Se tivéssemos observado a definição apenas por meio de propriedade universal, não estaria claro se cada ι_i é injetivo. Isso pode ser deduzido da forma normal: seja $g \in G_i-1$, então a forma normal $h\bar{g}_i$ de g é não trivial. Na demonstração a unicidade (veja [Rob12, 6.4.1]), temos um homomorfismo $\theta_i:G_i\to S_M$, onde M é o conjunto das formas normais, tal que $\theta_i(g)$ corresponde a permutação que leva 1 na forma normal de g, logo, $\theta_i(g) \neq 1$. Esses homomorfismos induzem, pela propriedade universal, um homomorfismo $\theta:G\to S_M$ tal que

$$\theta(\iota_i(g)) = \theta_i(g) \neq 1,$$

logo, $\iota_i(g) \neq 1$. Isso significa que cada ι_i é injetivo.

Proposição 1.2.2. A injetividade de cada ι_i pode ser deduzida a partir da propriedade universal?

1.3 O produto amalgamado depende de cada f_i

Exemplo 1.3.1.

$$A_i = \langle r_i, s_i : r_i^4 = s_i^2 = 1, s_i^{-1} r_i s_i = r_i^{-1} \rangle$$

com i = 1, 2 dois grupos diedrais de ordem 8. Sejam

$$H_1 = \langle r_1^2, s_1 \rangle \leqslant A_1$$

е

$$H_2 = \left\langle r_2^2, s_2 \right\rangle \leqslant A_2.$$

Considere os isomorfismos $\varphi, \psi: H_1 \to H_2$ dados por $\varphi(r_1^2) = r_2^2, \varphi(s_1) = s_2$ e $\psi(r_1^2) = s_2, \psi(s_1) = r_2^2$. Considere também G_1 o produto livre $A_1 *_{H_1} A_2$ com respeito à φ e G_2 o produto livre $A_1 *_{H_1} A_2$ com respeito à ψ .

Temos que

$$Z(G_1) = Z(A_1) \cap Z(A_2) \leqslant H_1$$

е

$$Z(G_2) = Z(A_1) \cap Z(A_2) \leqslant H_2.$$

Como $Z(A_1)\cap H_1=\{1,r_1^2\}$, apenas r_1^2 pode estar em $Z(G_1)$ e em $Z(G_2)$. Como em G_1 existe a relação $r_1^2=r_2^2$, então $r_1^2\in Z(A_2)$ e, consequentemente, $r_1^2\in Z(G_1)$ e $r_1^2\neq 1$ em G_1 . Em G_2 temos a relação $r_1^2=s_2$ e $s_2\notin Z(A_2)$, logo, $Z(G_2)=1$. Assim, $G_1\not\simeq G_2$.

1.4 Produtos amalgamados profinitos

Definição 1.4.1. Seja $f_i: H \to G_i, i=1,...,n$, monomorfismos onde H e G_i grupos pro- $\mathcal C$. Um produto pro- $\mathcal C$ livre com subgrupo amalgamado H é grupo pro- $\mathcal C$ G e uma família $\iota_i: G_i \to G$ de homomorfismos contínuos tais que $\iota_i f_i = \iota_j f_j$ para quaisquer $i \neq j$ satisfazendo a seguinte **propriedade universal**: sempre que $\varphi_i: G_i \to L$ são homomorfismos em um grupo pro- $\mathcal C$ L com $\varphi_i f_i = \varphi_j f_j$ para quaisquer $i \neq j$, então existe um único homomorfismo contínuo φ tal que $\varphi\iota_i = \varphi_i$ para todo i.

Isso significa que o diagrama

é comutativo.

A existência a unicidade segue praticamente o mesmo argumento do produto pro- \mathcal{C} , então:

Exercício. Demonstre a existência e unicidade do produto pro- $\mathcal C$ livre amalgamado.

1.5 Quando é próprio?

Essa questão era irrelevante nas outras construções livre, mas aqui é diferente: os homomorfismos contínuos ι_i não precisam ser injetivos!

Exemplo 1.5.1. Sejam

$$N_1 = \langle a, b : [[a, b], b] = [[a, b], a] = 1 \rangle$$

е

$$N_2 = \langle c, d : [[c, d], d] = [[c, d], c] = 1 \rangle.$$

Considere os subgrupos isomorfos $A=\left\langle a,[a^2,b]\right\rangle$ e $B=\left\langle c,[c^2,d]\right\rangle$ de N_1 e N_2 , respectivamente. Note que a comuta com $[a^2,b]$ e c comuta com $[c^2,d]$, logo, A e B são grupos abelianos livres de posto 2. Assim, se $K=\mathbb{Z}\times\mathbb{Z}$, então

$$K \simeq A \simeq B$$
.

Seja $N_1*_K N_2$ o produto livre abstrato com amalgamação. Como N_1 e N_2 são nilpotentes gerado por dois elementos de ordem infinita, por [Bau63, Teorema 1], $N_1*_K N_2$ não é residualmente finito. Sejam $G_1 = \hat{N}_1$ e $G_2 = \hat{N}_2$ os completamentos profinitos de N_1 e N_2 , respectivamente. Temos também que $\overline{A} = \hat{A}$ em G_1 e $\overline{B} = \hat{B}$ em G_2 . Se $H = \hat{\mathbb{Z}} \times \hat{\mathbb{Z}}$, os isomorfismos abstratos induzem isomorfismos contínuos

$$H \simeq \overline{A} \simeq \overline{B}$$
,

pela relação entre grupos profinitos livres e completamento profinito.

Considere $G_1*_HG_2$ o produto abstrato livre com amalgamação. Por [Rob12, Proposição 5.2.21] N_1 e N_2 são residualmente finitos, logo, $N_1\hookrightarrow G_1$ e $N_2\hookrightarrow G_2$, então, $N_1*_KN_2\hookrightarrow G_1*_HG_2$. Então $G_1*_HG_2$ não é residualmente finito já que possui um subgrupo que não é residualmente finito. Se o produto profinito livre com amalgamação $G_1\sqcup_HG_2$ é próprio, então $G_1*_HG_2\hookrightarrow G_1\sqcup_HG_2$ e $G_1*_HG_2$ seria residualmente finito.

Quando cada ι_i de um produto pro- $\mathcal C$ amalgamado G é injetivo, dizemos que G é próprio.

Proposição 1.5.2. Sejam G_1, G_2 grupos pro-C e H um subgrupo em comum. Seja $f: G_1 *_H G_2 \to G = G_1 \sqcup_H G_2$ o mapa natural. Então G é próprio se, e somente se, $\ker f \cap G_i = 1$ para cada i.

Demonstração. Se G é próprio, então cada ι_i é injetiva. Uma vez que $\iota_i=f\iota_i^{abs}$ onde $\iota_i^{abs}:G_i\to G_1*_HG_2$ é injetiva, então f é injetiva. Reciprocamente, suponha que $\ker f\cap G_i=1$ para cada i. Se $xy^{-1}\in\ker\iota_i$. Por definição,

$$\ker \iota_i = \{ x \in G_i : (f \iota_i^{abs})(x) = 1 \},$$

$$\log_i \iota_i^{abs}(xy^{-1}) \in \ker f \cap G_i$$
. Assim, $xy^{-1} = 1$.

Suponha agora que $G_1 \sqcup_H G_2$ seja um produto amalgamado não próprio. Considere $\tilde{G}_1 = \iota_1(G_1)$, $\tilde{G}_2 = \iota_2(G_2)$ e $\tilde{H} = (\iota_1 f_1)(H) = (\iota_2 f_2)(H)$. Uma vez que

$$G = \overline{\left\langle \tilde{G}_1, \tilde{G}_2 \right\rangle},$$

trocando G_1 , G_2 e H por suas imagens, G se torna um produto amalgamado próprio. Assim, sempre que for conveniente, podemos assumir, sem perda de generalidade, que G é próprio.

Referências Bibliográficas

- [Bau63] G. Baumslag. On the residual finiteness of generalised free products of nilpotent groups. *Transactions of the American Mathematical Society*, 106(2):193–209, 1963.
- [Rob12] D. J. S. Robinson. *A Course in the Theory of Groups,* volume 80. Springer Science & Business Media, 2012.