AD-A286 695

THEORETICAL FORMABILITY VOLUME II APPLICATION

W. W. Wood et al

Manufacturing Research and Development
Vought Aeronautics
a division of
Chance Vought Corporation

04239

48^{P)} 94-24500

AUGUST 1961

This document has been approved for public release and sale; its distribution is unlimited

LIBRARY COPY

OV 24 1961

94 8 02 181

AERONAUTICAL SYSTEMS DIVISION

DTIC QUALITY INSPECTED 1

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related hereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., for sale to the general public.

Copies of ASD Technical Reports and Technical Notes should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

THEORETICAL FORMABILITY VOLUME II APPLICATION

W. W. Wood et al

Manufacturing Research and Development
Vought Aeronautics
a division of
Chance Vought Corporation

AUGUST 1961

Directorate of Materials and Processes Contract No. AF 33(616)-6951 Project No. 7381

-	Accesi	on For	
	Ī	CRA&I	Ŋ
-	DTIC		Ď
		●uaced	
	Justific	cation	A
	By Distrib	ution /	***************************************
	А	vailability (Codes
	Dist	Avail and Specia	
	A-1		

AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

FOREWORD

This report was prepared by the Manufacturing Research and Development Section, Vought Aeronautics, a division of Chance Vought Corporation, under Contract AF 33(616)-6951. The contract period covered from March 1960 to July 1961 and was administered by the Processes and Exploratory Application Branch, Directorate of Materials and Processes, Deputy for Technology, Aeronautical Systems Division, under the direction of Messrs: C. W. Douglass, G. L. Campbell, and J. M. Bryars. Mr. C. W. Kniffen, Air Force Systems Command, is to be commended for invaluable assistance and guidance in the program.

This report is presented in two volumes. The first volume on development gives the basic theory and the procedure used to accomplish the objective. The second volume on application gives results in handbook form for ready reference.

Mr. W. Wood was the project engineer in charge of the program. The research described in this report was conducted under the direction of Mr. G. Gasper, Manufacturing Engineering Manager, and Mr. J. A. Millsap, Chief, Manufacturing Research and Development. Others from the Manufacturing R and D Section who cooperated in the research and in the preparation of the report are: W. W. Akins, R. E. Goforth, R. A. Ford, B. L. Scott, J. N. Lesikar, G. R. DiGiacomo, F. Camden, J. R. Russell, D. L. Norwood, W. D. Moore and C. R. Clifton.

For their assistance in the program, acknowledgement is due to personnel of the Manufacturing R and D Laboratory, Production Sheet Metal Fabrication, Structures Test Laboratory, and Technical Publications sections who participated in the research work throughout the program.

The Fort Worth Division of Convair performed all the experimental work for the Androform process.

ABSTRACT

The "cut-and-try" method of determining sheet metal formability has long been the standard practice in the aircraft industry. This two-volume report presents methods of determining formability analytically for the twelve most common processes of forming sheet metal. This method is based on utilization of a material's mechanical properties to predict formability.

The first volume on development gives the procedure used to arrive at the objective of predicting formability. First, basic limit equations are developed relating geometry of the parts to the material properties. These equations are used to determine the shape of the limit graphs and to give indices relating formability to the material. Then, experimental parts are formed to position the theoretically shaped curves with the aid of the formability indices.

The second volume on application is presented in handbook form giving design and manufacturing information for the nineteen materials in the program. These materials covered some of the most currently used alloys in the following categories: (1) magnesium, (2) aluminum, (3) titanium, (4) stainless steel, (5) tool steel, (6) nickel and cobalt base, and (7) the refractory metals. Graphs, equations, and design tables are presented for each process, statistically proven with experimental work comprising a total of approximately twenty-one-thousand formed parts.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

J. TERES
Technical Director
Applications Laboratory
Directorate of Materials
and Processes

У

TABLE OF CONTENTS

Section			Page
	INTRO	DUCTION	1
I.	BENDI	ING	
	Α.	BRAKE FORMING	I-1
		Description of Process	I-1
		Definition of Part Shape and Geometric Variables	I-3
		Predictability Equations	I-5
		Composite Graphs	I-10
		Design Tables	1-16
	В.	JOGGLING	I-40
		Description of Process	I-41
		Definition of Part Shape and Geometric Variables	1-43
		Predictability Equations	I-45
		Composite Graphs	1-51
		Design Tables	I-56
II.	FLANC	SING	
	Α.	DIMPLING	II-1
		Description of Process	II-1
		Definition of Part Shape and Geometric Variables	II <i>-</i> 4
		Predictability Equations	II-5
		Composite Graphs	11-6
		Design Tables	11-8

TABLE OF CONTENTS (Contd.)

Section			Page
	в.	RUBBER FORMING SHRINK AND STRETCH FLANGES	II -1 0
		Description of Process	II- <u>1</u> 0
		Definition of Part Shape and Geometric Variables	II-12
		Predictability Equations	II-13
		Composite Graphs	II- 2 0
		Design Tables	II-27
III.	LIN	TEAR CONTOURING OF SECTIONS	
	Α.	LINEAR STRETCH FORMING	III-1
		Description of Process	III-1
		Definition of Part Shape and Geometric Variables	III-2
		Predictability Equations	III-4
		Composite Graphs	III <i>-</i> 7
		Design Tables	III-17
		LINEAR ROLL FORMING	III -7 3
		Description of Process	III -7 3
		Definition of Part Shape and Geometric Variables	III <i>-</i> 79
		Predictability Equations	111-80
		Composite Graphs	111-85
		Design Tables	111-90
IV.	PLA	NE CONTOURING OF SHEET	
	Α.	SHEET STRETCH FORMING	IV-l
		Description of Process	IV-1

TABLE OF CONTENTS (Contd.)

Section			Page
		SHEET STRETCH FORMING (Contd.)	
		Definition of Part Shape and Geometric	
		Variables	IA-5
		Predictability Equations	IV -4
		Composite Graphs	IV-9
		Design Tables	IV-12
	в.	ANDROFORMING	IV-31
		Description of Process	IV-31
		Definition of Part Shape and Geometric	
		Variables	IV-34
		Predictability Equations	IV-35
		Composite Graphs	IV-41
		Design Tables	IV-47
v .	DEE	CP RECESSING	
	A.	DEEP DRAWING WITH MECHANICAL DIES	V-1
		Description of the Forming Process	V-1
		Definition of Part Shape and Geometric	
		Variables	V -4
		Predictability Equations	V-7
		Composite Graphs	V-10
		Design Tables	V-15
	В.	MANUAL SPINNING	V-25
		Description of the Forming Process	V-25
		Definition of Part Shape and Geometric Variables	V-26

TABLE OF CONTENTS (Contd.)

Section			Page
		MANUAL SPINNING (Contd.)	
		Predictability Equations	V-29
		Composite Graphs	v-33
		Design Tables	8ز-۷
VI.	SHA	LLLOW RECESSING	
	Α.	BEADING ON THE RUBBER PRESS	VI-1
		Description of Process	VI -1
		Definition of Part Shape and Geometric Variables	VI-2
		Predictability Equations	VI -3
		Composite Graphs	VI -7
		Design Tables	VI-10
	В.	BEADING ON THE DROP HAMMER	VI -27
		Description of Process	VI-27
		Definition of Part Shape and Geometric Variables	V 1-30
		Predictability Equations	VI - 33
		Composite Graphs	VI-37
		Design Tables	VI-42

LIST OF FIGURES

Figure		Page
	BRAKE FORMING	
IA-1	Typical Brake Forming Setup	I-1
IA-S	Graphical Die Opening Values	I -2
IA- 3	Effect of Varying R/t Values	I-3
IA-4	Effect of Part Angle on R/t Value	I-4
IA-5	Effect of Direction of Roll on Bending	1-5
I A- 6	Typical Gridded Tension Specimen	I-7
I A- 7	Splitting Limit Curve for Brake Forming	1-9
1 A- 8	Recommended Tensile Specimen Gages for Brake Forming Correlation	I-12
	JOGGLING	
IB-1	Schematic of Joggle Dies	I-42
IB-2	Geometrical Parameters of a Joggle	I-44
IB-3	Typical Joggling Formability Curve	I-46
IB-4	Splitting Limit Line	I-47
IB-5	Graph Construction	I-48
IB-6	Typical Formability Envelope	I-49
IB-7	Graph Construction	I-50
IB-8	Graph Construction	I-50
IB-9	Variation of Material Properties	I-51
IB-10	Splitting Limit Line	I-52
	DIMPLING	
IIA-1	Cross Section of Ram Coin Dimpling	II-1
11 A- 2	Cross Section of Ram Coin Dimpling	11-2
IIA-3	Cross Section of Ram Coin Dimpling	II-3

Figure		Page
IIA-4	Cross Section of Ram Coin Dimpling	II-3
IIA-5	Cross Section of Dimple Showing Geometric Parameters	II-5
IIA-6	Formability Graph Construction	II-5
IIA-7	Formability Curve for 2024-T3 Aluminum	11-6
	RUBBER FORMING	
IIB-1	The Guerin Rubber Process, 1925 PSI Lake Erie Rubber Press	11-11
IIB-2	Rubber Shrink and Stretch Parts	II -12
IIB-3	Graph Construction	II -1 5
IIB-4	Graph Construction	11-16
IIB-5	Graph Construction	II-17
IIB-6	Graph Construction	11-18
IIB-7	Graph Construction	11-19
IIB-8	Typical Formability Curve	11-20
IIB-9	Absolute and Extended Rubber Shrink Formability Limits	11-22
IIB-10	Possible Range in Formability Curves	11-23
	LINEAR STRETCH FORMING	
IIIA-1	Linear Stretch Form Process	III-1
IIIA-2	Heel-Out Angle	111-5
IIIA-3	Heel-Out Channel	111-5
IIIA-4	Heel-In Angle	111-3
111 A- 5	Heel-In Channel	111-3
111A-6	Heel-In Hat Section	III-3

Figure		Page
III A- 7	Equation Application for Class 1 Formability Limit Curves	111-6
B-AIII	Equation Application for Class 2 and Class 3 Formability Limit Curves	III-6
TIIA-9	Satisfactory Formability	111-7
171A-10	Unsatisfactory Formability	111-7
TITA-11	Log Type Formability Limit Curve	111-8
111 Y- 15	Cartesian Type Formability Limit Curve	III <i>-</i> 9
IIIA-13	Effect of Mechanical Property Variation on Formability	111-9
IIIA-14	Spring Back Due to Large Bend Radii	111-10
IIIA-15	Column Collapse Due to Large Bend Radii	III-10
II1A-16	Heel-Out Angle	111-19
IIIA-17	Heel-Out Channel	111-19
III A-1 8	Heel-In Angle	111-37
IIIA-19	Heel-In Channel	111-37
IIIA-20	Heel-In Hat Sections	III-55
	LINEAR ROLL FORMING	
IIIB-1	Linear Roll Tooling	111-73
IIIB-2	Linear Roll Heel-In Machine Set-Up	111-76
111B-3	Heel-In Channel Distortion	111-77
111B-4	Linear Roll Heel-In and Heel-Out Channels	111-79
I1IB-5	Graph Construction	111-82
111B-6	Graph Construction	111-83
111B-7	Typical Formability Curve	111-84

<u>Figure</u>		Page
111B-8	Graph Construction	111-85
IIIB-9	Heel-In Channel Distortion	111-90
	SHEET STRETCH	
IVA-1	Typical Sheet Stretch Setup	2V-1
IVA-2	Geometric Variables of Sheet Stretch	IV-3
IVA-3	Setup Considering the Direction of Roll of The Material	₹ V -3
IVA-4	Typical Gridded Tension Specimen	1 V =6
JVA-5	Plotting Equation II	1v-6
JVA-6	Finding the R/L Value	IV-7
TVA-7	Plotting Index and Theoretical Limits	TV-5
8- A VI	Plotting the Forming Limits	ŢV- ^Q
	ANDROFORMING	
IVB-1	Androform Components	IV-32
IVB-2	Machine Adjustments for Androforming	IV-33
TVB-3	Geometric Variables for Androforming	IV-34
IVB-4	Splitting Limit Curve	IV-37
IVB-c	Buckling Limit Curve	IV-37
IVB-6	Procedure for Finding the Splitting Limit	IV-38
J V B-7	Procedure for Finding the Buckling Limit	IV-40
	DEEP DRAWING	
VA -1	Double Action Draw Die	V - 1
VA-2	Single Action Draw Die	V - 3
VA- 3	Geometrical Variables for Cupping	V -4

Figure		Page
VA-4	Typical Theoretical Formability Curve for Thin Walled Cylindrical Cups	V -5
VA- 5	Typical Formability Curve Showing a Constant Rd/t Line	v-6
VA-6	Typical Formability Curves Illustrating the Position of Various Materials	V-7
VA-7	Typical Formability Curve and Index Lines	V-9
VA- 8	Sample Construction of the Theoretical Formability Limit Curve for Tungsten at 1000 F	V -10
VA-9	Materials Requiring Special Mention	V-11
VA-1 0	Curve for Converting from Overhang (n) To Final Cup Height (H)	V-1 5
VA-11	Cup Wall Tension Vs. Blank Holder Pressure	V-16
VA-12	Formability Limit Increase From Reduced Blank Holder Pressure	V-17
	MANUAL SPINNING	
VB-1	A Single Stage Setup for Manual Spinning	V-25
VB- 2	Geometric Variables for Spinning	V -27
VB- 3	Theoretical Formability Curve for Spinning	V- 28
VB-4	Forming Limit Curves for Spinning Showing Machine Limits	V-29
VB-5	Plastic and Elastic Limits	V -30
vb-6	Machine Limit Curves for Spinning	V-32
VB-7	Predictability Equation for Spinning in Graph Form	V-32
vb-8	Curve for Converting From Overhang (h) to Final Cup Height (H)	V-38

Figure		Page
	RUBBER BEAD FORMING	
VIA-1	Cross-Section and Side View of Bead	VI-3
VIA-2	Graph Construction	VI -4
VIA-3	Graph Construction	VI- 5
VIA-4	Graph Construction	VI-6
VIA-5	Typical Formability Curve	VI-6
VIA-6	Range in Formability Limits	VI-7
	DROP HAMMER BEAD FORMING	
VIB-1	Drop Hammer Setup	VI -27
VIB-2	Typical Kirksite Beaded Panel Dies	V I-28
VIB-3	Cross Section of a Drop Hammer Die	VI -29
VIB-4	Geometric Parameters	VI-30
VIB-5	Relationship of Bead Spacing	VI- 31
VIB-6	Bead	VI-32
VIB-7	Typical Drop Hammer Formability Curve	VI-33
VIB-8	1/2" Wide Tensile Specimen	VI-34
VIB-9	Graph Construction	VI- 35
VIB-10	Graph Construction	VI-36
VIB-11	Typical Formability Envelope	VI-37
VIB-12	Variation of Material Properties	VI-38
VIB-13	Schematic of a Punch and Bead	VI-42

LIST OF GRAPHS

Graph		Page
	BRAKE FORMING	
IA-1	Composite Room Temperature Splitting Limits for Brake Forming	I-13
IA-2	Brake Forming Splitting Limit at Elevated Temperatures	I-1'+
I A- 3	Splitting Correlation Curves for Brake Forming at Room Temperature	1-15
	JOGGLING	
1B-1	Composite Graph for Joggling	I-54
18-2	Joggling Limits for 2024-0 Aluminum	I-55
	DIMPLING	
IIA-1	Composite Curves for Dimpling	11-7
	RUBBER FORMING	
IIB-1	Composite Graph for Rubber Stretch Flanges	II-24
IIB-2	Composite Graph for Rubber Shrink Flanges	11-25
IIB-3	Alternate Method of Plotting Rubber Stretch Formability Limits 2024-0 Aluminum	11-26
	LINEAR STRETCH	
IIIA-1	Linear Stretch Composite Graph Heel-Out Angles and Channels	III -1 3
IIIA-2	Linear Stretch Composite Graph Heel-In Angles and Channels	III -1 4
IIIA-3	Linear Stretch Composite Graph Heel-In Hat Sections	III - 15
IIIA-4	Linear Stretch Formability Limits Heel-In Angles and Channels 2024-0 Aluminum	111-16

LIST OF GRAPHS (Contd.)

<u>Graph</u>		Page
	LINEAR ROLL	
IIIB-1	Linear Roll Composite Graph Heel-In Channels	111-87
IIIB-2	Linear Roll Composite Graph Heel-Out Channels	111-88
IIIB-3	Alternate Method for Plotting Linear Roll Heel- In 17-7 PH (Condition A)	111-89
	SHEET STRETCH	
IVA-1	Sheet Stretch Correlation Graph	IV-10
IVA-2	Sheet Stretch Composite Graph for Forming Limits	IV-11
	ANDROFORMING	
1VB-1	Composite Graph for Androform Splitting Limits for (50" forming element)	IV-42
IVB-2	Composite Graph for Androform Buckling Limits for (50" forming element)	IV-43
IVB-3	Composite Graph for Androform Splitting Limits for (20" forming element)	IA-777
IVB-4	Composite Graph for Androform Buckling Limits for (20" forming element)	IV-45
IVB-5	Alternate Method of Plotting Androform Limits (2024-T4 Aluminum)	IV-46
	DEEP DRAWING	
VA-1	Composite Graph of Deep Draw Limits for Cylindrical Cups	V-13
VA-2	Alternate Method of Plotting Deep Draw Formability	V-14

LIST OF GRAPHS (Contd.)

Fraph		Page
	MANUAL SPINNING	
VB-1	Spinning Composite for Elastic and Plastic Buckling Limits	V-34
VB-2	Composite Graph of Machine Limit Index Lines II	V-35
VB-3	Manual Spinning Machine Gage Limits 2024-0 Aluminum	V-36
VB-4	Alternate Method of Plotting Spinning Formability Limits 2024-0 Aluminum	V-3 7
	RUBBER BEADING	
VIA-1	Composite Graph for Rubber Bead Panels	VI-8
VIA-2	Alternate Method of Plotting Rubber Bead Forming Limits - 2024-0 Aluminum	V1-9
	DROP HAMMER BEADING	
VIB-1	Composite Graph for Drop Hammer Beaded Panels	VI-40
VIB-2	Drop Hammer Bead Limit 2024-0 Aluminum	VI-41

LIST OF DESIGN TABLES

Table		Page
	BRAKE FORMING - MINIMUM BEND RADIUS LIMITS	
IA-1	HM21XA-T8 (Magnesium Thorium) Longitudinal and Transverse Grain Direction	1-17
IA-2	2024-0 Aluminum Longitudinal and Transverse Grain Direction	I-18
IA-3	17-7 PH (Condition "A", Mill Annealed) Longitudinal and Transverse Grain Direction	I-19
IA-4	PH 15-7 Mo (Condition "A", Mill Annealed) Longitudinal and Transverse Grain Direction	I -20
IA-5	AM-350 (Annealed) Longitudinal and Transverse Grain Direction	I-21
I A- 6	A-286 (Solution Treated Condition) Longitudinal and Transverse Grain Direction	I -22
IA-7	USS 12 MoV (Annealed) Longitudinal and Transverse Grain Direction	1-23
IA-8	Titanium (6A1-4V) (Mill Annealed) Longitudinal and Transverse Grain Direction	I-24
I A- 9	Titanium (13V-11Cr-3A1) (Solution Treated) Longitudinal and Transverse Grain Direction	I-25
IA-10	Vascojet 1000 (H-11) (Annealed) Longitudinal and Transverse Grain Direction	I-26
IA-11	Rene'41 (Solution Treated) Longitudinal Grain Direction	I <i>-2</i> 7
IA-12	Rene'41 (Solution Treated) Transverse Grain Direction	I-28
IA-13	Inconel X (C.R. Annealed) Longitudinal and Transverse Grain Direction	I <i>-</i> 29
IA-14	Hastelloy X (Solution Treated) Longitudinal and Transverse Grain Direction	1-30
IA-15	L-605 (Solution Treated) Longitudinal and Transverse Grain Direction	I-31

Table		Page
IA-16	J-1570 (Solution Treated) Longitudinal Grain Direction	1-38
IA-17	J-1570 (Solution Treated) Transverse Grain Direction	1-33
IA-18	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved, De-scaled Sheet) Longitudinal Grain Direction	1 - 34
I A-1 9	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved, De-scaled Sheet) Transverse Grain Direction	1-35
	BRAKE FORMING - MINIMUM BEND RADIUS LIMITS AT ELEVATED TEMPERATURES	
IA-20	HM21XA-T8(Magnesium Thorium) Longitudinal and Transverse Grain Direction	I -36
IA-21	Beryllium (Pure) (Condition "C") Longitudinal Grair Direction	I-37
IA-22	Beryllium (Pure) (Condition "C") Transverse Grain Direction	I-38
IA-23	Tungsten (Pure) 0.020 Gage, Longitudinal and Transverse Grain Direction	1-39
IA-214	Tungsten (Pure) 0.040 Gage, Longitudinal and Transverse Grain Direction	I-40
	JOGGLING DEPTH LIMITS	
IB-1	HM21XA-T8 (Magnesium Thorium) - Temperature 750°F	I-57
IB-2	2024-0 Aluminum	I-58
IB-3	17-7 Ph Stainless Steel (Mill Annealed, Condition "A")	I <i>-</i> 59
IB-4	Ph 15-7 Mo Stainless Steel (Mill Annealed, Condition "A")	I-60
IB-5	AM-350 Stainless Steel (Annealed)	1-61
IB-6	A-286 Stainless Steel (Solution Treated Condition)	I - 62

Table		Page
IB-7	USS-12-MoV Stainless Steel (Annealed)	1-63
IB-8	Titanium (13V-11Cr-3A1) (Solution Treated	* ().
	Condition)	I-64
IB-9	Vascojet 1000 (H-11) (Annealed)	1-65
IB-10	Beryllium (Pure) (Condition "C", Temperature 1200 F)	1-66
IB-11	Rene'41 (Solution Treated Condition)	1-67
IB-12	Inconel X (C.R. Annealed)	I -68
IB-13	Hastelloy X (Solution Treated)	1-69
IB-14	L-605 (Solution Treated)	I-70
IB-15	J-1570 (Solution Treated)	1-71
IB-16	Columbium (10 Mo-10 Ti)	I-72
IB-17	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved, De-scaled Sheet)	I-73
IB-18	Tungsten (Pure) Temperature 1000°F	I-74
	DIMPLING	
IIA-1	Design Tables for Dimpling	11-9
	RUBBER FORMING LIMITS STRETCH FLANGES	
IIB-1	HM21XA-T8 (Magnesium Thorium)	II-28
IIB-2	2024-0 Aluminum	11-29
IIB-3	17-7 PH (Condition A)	II-30
IIB-4	PH 15-7 Mo (Condition A)	II-31
IIB-5	AM-350 (Annealed)	II-32
IIB-6	A-286 (Solution Treated)	II-33
IIB-7	USS-12-MoV (Annealed)	II-3+

Table		Page
IIB-8	Titanium (6A1-4V) (Mill Annealed)	II-35
II B- 9	Titanium (13V-11Cr-3A1) (Solution Treated)	11-36
IIB-1	Vascojet 1000 (H-11) (Annealed)	II-37
IIB-11	Rene'41 (Solution Treated)	11-38
IIB-12	Inconel X (C.R. Annealed)	11-39
IIB-13	Hastelloy X (Solution Treated)	II-40
IIB-14	L-605 (Solution Treated)	11-41
IIB-15	J-1570 (Solution Treated)	11-42
IIB-16	Columbium (10 Mo-10 Ti)	11-43
IIB-17	Molybdenum (.5% Ti)	II-44
	RUBBER FORMING LIMITS SHRINK FLANGES	
IIB-18	HM21XA-T8 (Magnesium Thorium)	II-45
IIB-19	2024-0 Aluminum	II-46
IIB-20	17-7 PH (Condition A)	II-47
IIB-21	PH 15-7 Mo (Condition A)	11-48
11B-55	AM-350 (Annealed)	11-49
IIB-23	A-286 (Solution Treated)	II-50
IIB-24	USS-12-MoV (Annealed)	II-51
IIB-25	Titanium (6Al-4V) (Mill Annealed)	11-52
118-26	Titanium (13V-11Cr-3Al) (Solution Treated)	II-53
IIB-27	Vascojet 1000 (H-11) (Annealed)	II-54
IIB-28	Rene'41 (Solution Treated)	11-55
IIB-29	Inconel X (C.R. Annealed)	11-56

Table		Page
IIB-30	Hastelloy X (Solution Treated)	11-57
IIB-31	L-605 (Solution Treated)	11-58
IIB-32	J-1570 (Solution Treated)	II <i>-</i> 59
IIB-33	Columbium (10 Mo-10 Ti)	11-60
IIB-34	Molybdenum (.5% Ti)	11-61
	LINEAR STRETCH FORMING LIMITS HEEL-OUT ANGLES AND CHANN	ELS
IIIA-1	HM21XA-T8 (Magnesium Thorium) (400°F-600°F)	111-20
IIIA-2	2024-0 Aluminum	111-21
IIIA-3	17-7 PH (Condition A, Mill Annealed)	111-22
IIIA-4	PH 15-7 Mo (Condition A)	111-23
IIIA-5	AM-350 (Annealed)	III-24
IIIA-6	A-286 (Solution Treated)	111-25
IIIA-7	USS-12-MoV (Annealed)	111-26
8-AIII	Titanium (6Al-4V) (Mill Annealed)	111-27
IIIA-9	Titanium (13V-11Cr-3A1) (Solution Treated)	111-28
III A-1 0	Vascojet 1000 (H-11) (Annealed)	111-29
IIIA-11	Rene'41 (Solution Treated)	111-30
IIIA-12	Incomel X (C.R. Annealed)	III-31
IIIA-13	Hastelloy X (Solution Treated)	111-32
IIIA-14	L-605 (Solution Treated)	III-33
IIIA-15	Columbium (10 Mo-10 Ti)	III-34
11 1A-1 6	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved and De-scaled)	III-35
IIIA-17	J-1570 (Solution Treated)	111-36

Table		Page
	LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES AND CHANNELS	
IIIA-18	HM21XA-T8 (Magnesium Thorium) (400°F-600°F)	111-38
IIIA-19	2024-0 Aluminum	111-39
IIIA-20	17-7 PH (Condition A, Mill Annealed)	III-40
IIIA-21	PH 15-7 Mo (Condition A)	III-41
IIIA-22	AM-350 (Annealed)	111-42
IIIA-23	A-286 (Solution Treated)	111-43
IIIA-24	USS-12-MoV (Annealed)	III-44
IIIA-25	Titanium (6Al-4V) (Mill Annealed)	III <i>-</i> 45
111A-26	Titanium (13V-11Cr-3A1) (Solution Treateu)	III-46
IIIA-27	Vascojet 1000 (H-11) (Annealed)	II1-47
IIIA-28	Rene'41 (Solution Treated)	III-48
IIIA-29	Inconel X (C.R.Annealed)	111-49
IIIA-30	Hastelloy X (Solution Treated)	III-50
IIIA-31	L-605 (Solution Treated)	111-51
IIIA-32	Columbium (10 Mo-10 Ti)	111-52
IIIA-33	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved and De-scaled)	III-53
IIIA-34	J-1570 (Solution Treated)	III-54
	LINEAR STRETCH FORMING LIMITS HEEL-IN HAT SECTIONS	
IIIA-35	HM21XA-T8 (Magnesium Thorium) (400°F-600°F)	111-56
IIIA-36	2024-0 Aluminum	III-57
IIIA-37	17-7 PH (Condition A, Mill Annealed)	111-58

Table		Page
11 1A- 38	PH 15-7 Mo (Condition A)	III- 59
IIIA-39	AM-350 (Annealed)	111-60
IIIA-40	A-286 (Solution Treated)	111-61
IIIA-41	USS-12-MoV (Annealeu,	111-62
IIIA-42	Titanium (6A1-4V) (Mill Annealed)	111-63
IIIA-43	Titanium (13V-11Cr-3A1) (Solution Treated)	111-64
IIIA-44	Vascojet 1000 (H-11)(Annealed)	111-65
111A-45	Rene'41 (Solution Treated)	111-66
IIIA-46	Income: A (C.R. Annealed)	111-67
IIIA-47	Hastelloy X (Solution Treated)	111-68
IIIA-48	L-605 (Solution Treated)	111-69
IIIA-49	Columbium (10 Mo-10 Ti)	111-70
IIIA-50	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved and De-scaled)	111-71
IIIA-51	J-1570 (Solution Treated)	111-72
	LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS	
IIIB-1	HM21XA-T8 (Magnesium Thorium)	11 1- 93
IIIB-2	2024-0 Aluminum	III- 9 4
IIIB-3	17-7 PH (Condition A)	111-95
IIIB-4	PH 15-7 Mo (Condition A)	111-96
IIIB-5	AM-350 (Annealed)	111-97
IIIB-6	A-286 (Solution Treated)	111-98
IIIB-7	USS-12-MoV (Annealed)	111-99
IIIB-8	Titanium (6A1-4V) (Mill Annealed)	111-100

Table		Page
IIIB-9	Titanium (13V-11Cr-3A1) (Solution Treated)	111-101
IIIB-10	Vascojet 1000 (H-11)(Annealed)	111-105
IIIB-11	Rene'41 (Solution Treated)	111-103
IIIB-12	Inconel X (C.R. Annealed)	111-104
IIIB-13	Hastelloy X (Solution Treated)	111-105
IIIB-14	L-605 (Solution Treated)	111-106
IIIB-15	J-1570 (Solution Treated)	111-107
111B-16	Columbium (10 Mo-10 Ti)	111-108
IIIB-17	Molybdenum (.5% Ti)	111-109
	LINEAR ROLL FORMING LIMITS HEEL-OUT CHANNELS	
IIIB-18	HM21XA-T8 (Magnesium Thorium)	111-110
IIIB-19	2024-0 Aluminum	111-11.1
IIIB-20	17-7 PH (Condition A)	111-112
IIIB-21	PH 15-7 Mo (Condition A)	111-113
IIIB-22	AM-350 (Annealed)	III-114
IIIB-23	A-286 (Solution Treated)	111-115
IIIB-24	USS-12-MoV (Annealed)	111-116
IIIB-25	Titanium (6Al-4V) (Mill Annealed)	111-117
111B-26	Titanium (13V-11Cr-3A1) (Solution Treated)	111-118
IIIB-27	Vascojet 1000 (H-11) (Annealed)	111-119
111B-28	Rene'41 (Solution Treated)	111-120
111 B -29	Inconel X (C.R. Annealed)	1111-121
IIIB-30	Hastellov X (Solution Treated)	111-122

Table		Page
111B-31	L-605 (Solution Treated)	111-123
IIIB-32	J-1570 (Solution Treated)	III-124
IIIB-33	Columbium (10 Mo-10 Ti)	111-125
IIIB-34	Molybdenum (.5% Ti)	111-126
	SHEET STRETCH - FORMING LIMITS FOR	
IVA-1	HM21XA-T8 (Magnesium Thorium Alloy)	IV-13
IVA-2	HM21XA-T8 (Magnesium Thorium at 750°F)	IV-14
IVA-3	2024-0 Aluminum	IV-15
IVA-4	17-7 PH (Condition "A", Mill Annealed)	IV-16
IVA-5	PH 15-7 Mo (Condition "A", Mill Annealed)	IV-17
IVA-6	AM-350 (Annealed)	IV-18
IVA-7	A-286 (Solution Treated Condition)	IV-19
IVA-8	USS-12-MoV (Annealed)	IV-20
I VA- 9	Titanium (6A1-4V) (Mill Annealed)	IV-51
IVA-10	Titanium (13V-11Cr-3A1) (Solution Treated)	IV-22
IVA-11	Vascojet 1000 (H-11) (Annealed)	IV-2 3
IVA-12	Rene'41 (Solution Treated)	IV-24
IVA-13	Inconel X (C.R. Annealed)	IV-25
IVA-14	Hastelloy X (Solution Treated)	I v-2 6
IVA-15	L-605 (Solution Treated)	IV-27
IVA-16	J-1570 (Solution Treated)	IV-28
IVA-17	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved, De-scaled Sheet)	IV-29
IVA-18	Columbium (10 Mo-10 Ti)	IV-30

Table		Page
	ANDROFORM LIMITS	
IVB-1	HM21XA-T8 (Magnesium Thorium)	IV-48
IVB-2	2024-T4 Aluminum	IV-49
IVB-3	17-7 PH (Stainless Steel) (Condition TH 1050)	I V- 50
IVB-4	PH 15-7 Mo (Stainless Steel) (Condition TH 1050)	IV-51
IVB-5	AM-350 (Stainless Steel) (Age Hardened at 850°F)	IV-52
IVB-6	A-286 (Stainless Steel) (Age Hardened at 1325°F)	IV-53
IVB-7	USS-12-MoV (Stainless Steel) (Age Hardened at 800°F)	IV-54
IVB-8	Titanium (6A1-4V) (Solution Treated)	IV-55
IVB-9	Titanium (13V-11Cr-3Al) (Age Hardened 900°F)	IV-56
IVB-10	Vascojet 1000 (H-11) (Hardened)	1V-57
IVB-11	Rene'41 (Age Hardened at 1400°F)	IV-58
IVB-12	Inconel X (Age Hardened at 1300°F)	IV-59
IVB-13	Hastelloy X (Solution Treated Condition)	IV-60
IVB-14	L-605 (Solution Treated)	IV-61
I VB-1 5	Columbium (10 Mo-10 Ti)	I V- 62
IVB-16	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved, De-scaled Sheet)	IV-63
	DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS	
VA-1	17-7 PH (Annealed, Condition "A")	v-18
VA-2	A-286 (Solution Treated, USS-12-MoV at 800°F (Annealed) Incomel X (C.R. Annealed), J-1570 (Solution Treated)	V-19

Table		Page
VA- 3	2024-0 Aluminum PH 15-7 Mo (Annealed, Condition "A") AM-350 (Annealed) Rene'41 (Solution Treated) Hastelloy X (Solution Treated) L-605 (Solution Treated)	V-20
VA-4	HM21XA-T8 at 750°F, USS-12-MoV (Annealed), Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved) (900°F)	V-21
VA- 5	Vascojet 1000 (H-11) (Annealed) Vascojet 1000,(800°F)(H-11) (Annealed) Tungsten (Pure) 1000°F	V-22
VA-6	Columbium (10 Mo-10 Ti) at 500°F	V-2 3
VA-7	Titanium (6A1-4V) (Annealed) Titanium (13V-11Cr-3A1) (Solution Treated)	V-24
	MANUAL SPINNING FORMING LIMITS FOR CYLINDRICAL CUPS	
VB-1	HM21XA-T8 (Magnesium Thorium)	v -40
VB-2	2024-0 Aluminum	V-41
V B-3	17-7 PH Mill Annealed (Condition "A")	V-42
VB-4	PH 15-7 Mo (Mill Annealed, Condition "A")	V-43
VB- 5	AM-350 Stainless Steel (Annealed)	A-7+7+
VB-6	A-286 Stainless Steel (Solution Treated Condition)	V- 45
VB-7	USS-12-MoV Stainless Steel (Annealed)	V-46
vB-8	Titanium (6A1-4V) (Mill Annealed)	V-47
VB- 9	Titanium (13V-11Cr-3A1) (Solution Treated Condition)	V -48
V B-10	Vascojet 1000 (H-11) (Annealed)	V-49

Table		Page
VB-11	Beryllium (Pure) (Condition "C") (Temp. 1200°F)	V -50
VB-12	Rene'41 (Solution Treated)	V -51
VB-13	Incomel X (C.R. Annealed)	V-52
VB-14	Hastelloy X (Solution Treated)	V- 53
VB-15	L-605 (Solution Treated)	V-54
VB-16	J-1570 (Solution Treated)	V -55
VB-17	Columbium (10 Mo-10 Ti)	v -56
VB-18	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved, De-scaled Sheet) Temperature 850°F	V-57
VB-19	Tungsten (Pure) Temperature 1700°F	v -58
VB-20	HM21XA-T8 (Magnesium Thorium) (750°F)	V- 59
VB-21	USS-12-MoV (Annealed) Temperature 750°F	v -60
VB-22	Vascojet 1000 (H-11) (Annealed) Temperature 750°F	v-61
VB-23	Columbium (10 Mo-10 Ti) Temperature 750°F	v-62
	RUBBER BEAD FORMING LIMITS	
VIA-1	2024-0 Aluminum	VI-12
VIA-2	17-7 PH (Condition "A")	VI-13
VIA-3	PH 15-7 Mo (Condition "A")	VI -14
VIA-4	AM-350 (Annealed)	VI-15
VIA-5	A-286 (Solution Treated)	VI-16
VIA-6	USS-12-MoV (Annealed)	VI-17
VIA-7	Titanium (13V-11Cr-3Al) (Solution Treated)	VI -18
VIA-8	Vascojet 1000 (H-11) (Annealed)	VI- 19
VIA-9	Rene'41 (Solution Treated)	VI -20

Table		Page
VIA-10	Inconel X (C.R. Annealed)	VI-21
VIA-11	Hastelloy X (Solution Treated)	VI-22
VIA-12	L-605 (Solution Treated)	VI-23
VIA-13	J-1570 (Solution Treated)	VI -24
VIA-14	Columbium (10 Mo-10 Ti)	VI -25
VIA-15	Molybdenum (.5% Ti) (Hot Rolled, Stress Relieved)	VI-26
	DROP HAMMER BEAD LIMITS	
VIB-1	2024-0 Aluminum	AI -##
VIB-2	17-7 PH Stainless Steel (Condition "A")	VI- 45
VIB-3	PH 15-7 Mo Stainless Steel (Condition "A")	VI-46
VIB-4	AM-350 Stainless Steel (Annealed)	VI -47
VIB-5	A-286 Stainless Steel (Solution Treated Condition)	VI-48
VIB-6	USS-12-MoV Stainless Steel (Annealed)	VI-49
VIB-7	Vascojet 1000 (H-11) (Annealed)	VI-50
VIB-8	Rene'41 (Solution Treated)	V I -51
VIB-9	Inconel X (C.R. Annealed)	VI-52
VIB-10	Hastelloy X (Solution Treated)	VI -53
VIB-11	L-605 (Solution Treated)	VI-54
VIB-12	J-1570 (Solution Treated)	VI -55

LIST OF SYMBOLS

Because of the large number of terms used, the following list of symbols is supplied for easy reference:

- P= load on tensile specimen
- Q = original gage length
- Q_= final gage length
- Ao original cross-sectional area
- A final cross-sectional area
- A; = instantaneous cross-sectional area
- E = Young's Modulus of elasticity *
- $S_u =$ tensile stress $\left(\frac{P}{A_0}\right)$ at ultimate load
- S_{TY} tensile stress $\left(\frac{\mathbf{p}}{\mathbf{A}_0}\right)$ at yield point
- $S_{cy} = compressive stress <math>\left(\frac{P}{A_0}\right)$ at yield point
 - $\sigma = \text{true stress } \left(\frac{P}{A_i}\right)$; subscripts L , w and f

represent the longitudinal, width and thickness

directions

effective stress from Energy of Distortion Theory

 $\epsilon = conventional strain <math>\left(\frac{\mathbf{Q_f} - \mathbf{Q_o}}{\mathbf{Q_o}}\right)$

E conventional strain for 2 inch gage length

€ conventional strain for .02 inch gage length

 $\overline{\xi}$ = natural strain $\left(\ln \frac{Q_f}{Q_o}\right)$; subscripts L, w and t represent the longitudinal, width and thickness directions

effective strain from Energy of Distortion Theory

(6.5) = 0.5 inch gage length elongation corrected to a condition of plane strain

[CORRECTED = 0.25 inch gage length elongation corrected to a condition of plane strain

NOTE: Additional symbols are described throughout the text for continuity.

* Designates the tensile modulus of elasticity when used in conjunction with the tensile yield strength and the compressive modulus of elasticity when used in conjunction with the compressive yield strength.

INTRODUCTION

This second volume is intended to serve as a handbook covering the quantitative results generated in the program. These results are presented in a number of forms: (1) composite graphs representing the formability limits of the materials covered in the program, (2) predictability equations representing the formability limits for any material, based on the properties of the material, and (3) design tables in ready reference form for determining the formability limits of the materials tested on the program.

Composite graphs and design tables are presented for approximately nineteen materials for each of the twelve forming processes evaluated on the program. Limits are given for specific shapes of parts for each of the twelve forming processes. Some of the processes include only one part geometry while others include many. It should be emphasized that, although most of the important shapes of parts are included in the program, the limits presented are restricted to these shapes.

The predictability equations are given for use in developing formability limits for any material, based on the mechanical properties of the material. It should be realized that these equations are only as good as the properties used in them. This restricts the equation, when applied to materials with a considerable spread in properties, to those sheets from which the properties were taken.

Manuscript released by authors August 1961 for publication as an ASD Technical Report.

In general, optimum forming conditions were used with regard to lubrication, pressure, and other operating variables. These, and the other limitations and considerations associated with each forming process, are discussed in each section. It is advised that each section should be thoroughly read before application of the graphs, equations, and tables.

SECTION I
BENDING
A. BRAKE FORMING
B. JOGGLING

BRAKE FORMING

Description of Process

Brake forming is the bending of sheet metal by a press brake so that the metal on the inside of the bend is compressed while the metal on the outside of the bend is stretched. This process is invaluable to industry due to the infinite variety of shapes that, with the proper dies, may be obtained. Although a Verson 60 ton Press Brake with a three (3) inch ram stroke and workpiece specimens measuring two by three (2 x 3) inches were used for this program, the resultant data is applicable to any standard press brake and for any size material.

By referring to Figure IA-1 the set-up for a brake forming operation is apparent.

TYPICAL BRAKE FORMING SETUP FIG. 1 A-1

During the forming process the ram forces the punch and workpiece into the die cavity. In all air bends the workpiece is supported only at its outer edges so that the length of stroke of the ram determines the part angle (α). The metal is so bent that the inside radius of the workpiece is the same as the punch radius. Other means such as hand working and stress relief dies are used when necessary to finish the part.

Ram pressure must be sufficient as an increase in either sheet thickness or tensile strength of the workpiece requires an increase in pressure for a successful bend. The adjustment of the ram stroke alters the part angle while the speed of the ram (number of strokes per minute) to certain materials such as molybdenum is critical. Molybdenum should be formed at as slow a rate as possible due to the strain rate effect on this material.

The die channel width (S) is determined by the material thickness (t) and the punch radius (R), (See Figure IA-2), from which the equation S = 2.488 R + 2 t is derived. This die channel width (S) is not the optimum opening for each specific material, but rather is a median of two commonly accepted die opening values.

GRAPHICAL DIE OPENING VALUES FIG. I A-2

Definition of Part Shape and Geometric Variables

The geometric variables for brake forming are the punch radius (R), the material thickness (t), and the part angle (CI). By varying these parameters good parts and failures can be obtained. The failure of a bent part occurs when the tension in the outer fibers of the part becomes too great; i.e., when the bend becomes too sharp (small radius to material thickness for a given part angle). (See Figure IA-3).

EFFECT OF VARYING R/ VALUES FIG. I A-3

Therefore, a relationship exists between the tension in the outer fibers and the R/t value of a workpiece. As the R/t value increases the tension decreases and up to a point, as the part angle increases, the R/t value must also be increased to prevent the tension from becoming too great and resulting in failure of the part. (See Figure IA-4).

EFFECT OF PART ANGLE ON R/# VALUE FIG. I A-4

If, after being formed the metal retains some of its original elasticity, springback may be present. In case this does occur it will be necessary to lengthen the stroke of the ram and thus "overbend" the workpiece to compensate for this condition.

The direction of rolling of the metal has an appreciable effect on the ease of forming. (See Figure 1A-5). If the workpiece is bent perpendicular to the direction of rolling (longitudinal) it can, with few exceptions be bent with a smaller R/t value than if bent parallel to the direction of rolling (transverse).

TRANSVERSE

LONGITUDINAL

DIRECTION OF ROLLING

EFFECT OF DIRECTION OF ROLL ON BENDING FIG. I A-5

Predictability Equations

The basic equation to correlate natural strain to brake forming parameters:

$$\bar{\epsilon} = \ln \sqrt{1 + t/R}$$

Equation I

The formability index used for this process:

$$\vec{\xi} = \vec{\xi}$$
.25(corrected)

The equation to find the value of R/t where $\alpha > \phi$.

$$R/t_{[\alpha>\phi]} = \frac{1}{e^{2\bar{\xi}.25(CORR.)}-1}$$

Equation II

The equation to find the value of R/t where $\alpha < \phi$.

$$R/t = 1/2 \left[R/t_{\alpha>\phi} \right] \left[1 + \sin(\theta - 90^{\circ}) \right]$$

Equation III

The equation to find ϕ , that part angle where the curve reaches a maximum:

$$\phi = \frac{11.4 - R/t}{.0845} [\alpha > \phi]$$

Equation IV

The equation to find the part angle - (α):

$$\alpha = \theta \frac{\Phi}{180^{\circ}}$$

Equation V

The basic equation to find any R/t value when $\bar{\xi}.25$ (corr) is known and $\alpha < \varphi$.

Equation VI

$$R/t = 1/2 \left[e^{2\bar{\xi} \cdot 25(CORR.)} - 1 \right]^{-1} \left[1 + SIN \left(\frac{15.21\alpha}{11.4 - (e^{2\bar{\xi} \cdot 25(CORR.)} - 1)^{-1}} - 90^{\circ} \right) \right]$$

Where:

R = Punch radius or inside bend radius

t = Material thickness

e = Natural logarithmic base

C = Part angle

φ = That part angle where the curve reaches a maximum

(Any further bending will not increase the strain.)

 θ = Any selected angle from 0° to 180°.

To find the value for $\tilde{\xi}$.25(corr) a tension test must be made on a specimen gridded with one-quarter inch squares. After the specimen is pulled one grid at the point of failure is measured to determine the change in length (ΔL) and the change in width (ΔW). The measurements are taken as shown in Figure IA-6.

TYPICAL GRIDDED TENSION SPECIMEN FIG. 1 A-6

The calculations to find the corrected value of the natural strain are as follows:

$$(\xi_L)_{.25} = \frac{\Delta L}{0.25}$$
 $(\bar{\xi}_L)_{.25} = \ln[1 + (\xi_L)_{.25}]$ $(\bar{\xi}_W)_{.25} = \frac{\Delta W}{0.25}$ $(\bar{\xi}_W)_{.25} = \ln[1 + (\xi_W)_{.25}]$

Thus the equation for finding ϵ .25(corr) is:

$$\bar{\xi}.25 \text{ (corr)} = (\bar{\xi}L).25 - \frac{(\bar{\xi}W).25}{(\bar{\xi}L).25}^2$$
 Equation VII

By pulling a tension test specimen and measuring the strain, any R/t value can be found by using either Equation II or VI for any selected part angle. This data can then be used to construct a graph showing the splitting limits for any part angle for a particular material.

PROBLEM: Find the R/t value splitting limits for all part angles of a material and plot on graph.

GIVEN:
$$\bar{\xi}_{.25(CORR)} = 0.4$$
 (From tension specimen)

Step I. - Solve for R/t where $\alpha > \phi$.

Step II. - Solve for ϕ :

Step III. - Solve for R/t where $\alpha < \phi$.

When $a = 30^{\circ}$

$$R/t = 1/2 \left[e^{2\xi_{.25(CORR)}} - 1 \right]^{-1} \left[1 + SIN \left(\frac{15.21\alpha}{11.4 - \left(e^{2\xi_{.25(CORR)}} - 1 \right)^{-1}} - 90^{\circ} \right) \right]$$

$$= 1/2 \left[e^{2 \times .4} - 1 \right]^{-1} \left[1 + SIN \left(\frac{15.21 \times 30}{11.4 - \left(e^{2 \times .4} - 1 \right)^{-1}} - 90^{\circ} \right) \right]$$

Equation VI

R/t = 0.1025

Step IV. Results Step III for several values of ${\cal Q}$ less than ${m \phi}$

Step V. Construct a graph with R/t values on the ordinate and part angle α on the abscissa.

Step VI. Plot the calculated values of R/t* on the graph and connect with a smooth curve. (See Figure IA-7).

SPLITTING LIMIT CURVE FOR BRAKE FORMING FIG. 1 A-7

*The R/t value when $\alpha = \phi$ is a maximum so the slope of the curve becomes zero.

With this graph it is possible to select an R/t value for any angle - (α). Then by knowing the material thickness - (t) the correct punch radius can be selected.

Composite Graphs

For a composite graph of brake forming limits for those materials investigated in this program, see Graph IA-1.

It might prove possible in some instances to extend the splitting limits for a given material by better lubrication of the die, reducing the surface roughness of the material and the die, reducing the strain rate as in the case of Molybdenum and All Beta Titanium, or by applying heat. Those materials whose splitting limits were extended by the application of heat appear in Graph IA-2. The correlation between $\xi_{25 \text{ (CORR)}}$ and the maximum R/t values for the materials in this program appear as Graph IA-3.

In order to correlate Molybdenum it was necessary to reduce the strain rate effect on the material to that of the tension tests. This resulted in a lower R/t value than would be obtained by operating the brake press at normal speeds. This reduced strain rate effect is recommended in forming this material.

The Columbium (10-10) material used in this program varied greatly in its properties from sheet to sheet. The material as received from the mill was both hot and cold rolled. Lamination proved a problem that resulted in poor and varied R/t values. Correlation could be achieved only by taking tension and brake forming specimens from the same sheet stock. Thus the correlation and splitting limits of this material did not agree from sheet to sheet. Therefore, rather than publish misleading data from obviously erratic results Columbium (10-10) is deleted from all graphs and design tables of Section IA, Brake Forming.

Three materials failed to correlate properly. Of these 2024-0 Aluminum deviated from the theoretical curve due to the dig in effect of the punch. This caused a reduction of the tension in the outer fibers of this soft material. The two hexagonal close packed materials, 6-4 Titanium and HM21XA-T8, also deviated from the correlation curve. This was expected as hexagonal close packed materials cannot achieve a maximum slip plane in a bending operation as body centered cubic and face centered cubic materials do. Therefore, it is expected that any hexagonal close packed material will fall on some other theoretical curve with a possible position such as that shown in Graph IA-3.

It was discovered that the elongation of a material increases as its thickness (t) increases. Thus it proved necessary to recommend a particular gage for each type of alloy in order to correlate properly. In any theoretical attempt at predicting the brake forming splitting limits of an alloy the gages recommended in Fig. IA-8 should be used.

FIGURE IA-8 RECOMMENDED TENSILE SPECIMEN GAGES FOR BRAKE FORMING CORRELATION

Structure	Material Type	Recommended Tensile Specimen Gage	Materials on this Program
B.C.C.	Titanium Refractories	.010 .020 .020	All Beta Molybdenum (.5%Ti) Columbium (10-10)
F.C.C.	Nickel Base Cobalt Base Steels Aluminum	.020 .020 .020 .032 .032 .040 .040 .040 .040	Inconel X Rene'41 Hastelloy X J-1570 L-605 A-286 PH 15-7 Mo 17-7 PH AM-350 USS 12 MoV Vascojet 1000 2024-0
н ₀С ₀Р ₀	Titanium Magnesium	.071	6-4 Titanium HM21XA-T8

GRAPH I A -2 BRAKE FORMING SPLITTING LIMITS AT ELEVATED TEMPERATURES

GRAPH IA-3

SPLITTING CORRELATION CURVES FOR BRAKE FORMING AT ROOM TEMPERATURE

Design Tables

It should be noted that the punch radii recommended in these design tables are conservative so it may, in certain instances, prove possible to exceed these limits.

To use the design tables:

- (1) Select the correct table for the material.
- (2) Select a vertical column for the part angle (α) .
- (3) Read down the vertical column until crossing a horizontal column of the desired value of (t).
- (4) Where the two columns intersect read the recommended punch radius (R).

To use the Elevated Temperature Tables, note that $\alpha = \infty^{\circ}$ and has been replaced as the vertical column by a temperature in °F.

Due to the erratic behavior of Columbium (10-10) this material is deleted from the design table section as well as those materials whose splitting limits increased at elevated temperatures.

TABLE IA-1
MINIMUM BEND RADIUS LIMITS
HM21XA-T8 MAGNESIUM THORIUM
LONGITUDINAL AND TRANSVERSE
GRAIN DIRECTION

а	a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	•093	.016	.093	.016	.093	
.050	.109	.020	.125	.020	.125	
.025	.140	.025	.156	.025	.156	
.032	.187	.032	.187	.032	.187	
.040	.218	.040	.234	.040	.234	
.050	.281	.050	.312	.050	.312	
.063	•3 ¹ +3	.063	•375	.063	·375	
.071	.406	.071	.406	.071	.406	
.080	•437	.080	.468	.080	.468	
.090	•500	.090	.562	.090	.562	
.100	.562	.100	.625	.100	.625	
.125	.687	.125	.7 50	.125	•750	
.187	1.125	.187	1.125	.187	1.125	

TABLE 1A-2 MINIMUM BEND RADIUS LIMITS 2024-O ALUMINUM LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	.015	.016	.015
.020	.015	.020	.015	.020	.015
.025	.015	.025	.015	.025	.015
.032	.015	.032	.015	.032	.015
.040	.015	.040	.015	.040	.015
.050	.015	-050	.015	.050	.015
.063	.015	.063	.015	.063	.031
.071	.015	.071	.015	.071	.031
.080	.015	.080	.031	.080	.031
.090	.015	.090	.031	.090	-031
.160	.015	.100	.031	.100	١٠٥١.
.125	.015	.125	.031	.125	.046
.187	.031	.187	.046	.187	.062

TABLE IA-3 MINIMUM BEND RADIUS LIMITS 17-7 PH (CONDITION "A", MILL ANNEALED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

а	a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	.015	.016	.015	.016	.015	
.020	.015	.020	015ء	.020	.031	
.025	.015	.025	.031	.025	.031	
.032	.015	.032	.031	.032	.031	
.040	.015	•040	.031	•040	.046	
.050	1رن.	.050	•046	.050	.046	
.063	.031	.063	.046	.063	.062	
.071	.031	.071	.062	.071	.062	
.080	.031	.080	.062	.080	.078	
.090	.046	.090	.062	.090	.078	
.100	.046	.100	.078	.100	.093	
.125	.046	.125	.093	.125	.109	
.187	.078	.187	.125	.187	.156	

TABLE IA-4 MINIMUM BEND RADIUS LIMITS PH 15-7 Mc (CONDITION "A", MILL ANNEALED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

α	a = 60°		α = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	.015	.016	.015	.016	.015	
.020	.015	.020	.015	.020	.031	
.025	.015	.025	.031	.025	.031	
.032	.015	.032	.031	.032	.031	
.040	.031	.040	.031	.040	.046	
.050	.031	.050	.046	.050	.046	
.063	.031	.063	.046	.063	.062	
.071	.031	.071	.062	.071	.062	
.080	.046	.080	.062	.080	.078	
.090	.046	.090	.078	.090	.078	
.100	.046	.100	.078	•100	.093	
.125	.062	.125	.093	.125	.109	
.187	.078	.187	.140	.187	.171	

TABLE IA-5 MINIMUM BEND RADIUS LIMITS AM-350 (ANNEALED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	.015	.016	.015
.020	.015	.020	.015	.020	.031
.025	.015	.025	.031	.025	.031
.032	.015	.032	.031	.032	.031
.040	.015	•040	.031	•040	.046
.050	.031	.050	.046	.050	.046
.063	.031	.063	.046	.063	.062
.071	.031	.071	.062	.071	.062
.080	.031	.080	.062	.080	.078
.090	.046	.090	.062	.090	.078
.100	.046	.100	.078	•100	.093
.125	.046	.125	.093	•125	.109
.187	.078	.187	.125	.187	.156

TABLE IA-6 MINIMUM BEND RADIUS LIMITS A-286 (SOLUTION TREATED CONDITION) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

a= 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016_	.015	.016	.015
.020	.015	.020	.015	.020	.015
.025	.015	.025	.015	.025	.031
.032	.015_	.032	.031	.032	.031
.040	.015	.040	.031	.040	.031
.050	.015	.050	.031	.050	.046
.063	.031	.063	.046	.063	.046
.071	.031	.071	.046	.071	.046
•080	.031	.080	.046	.080	.062
.090	.031	.090	.062	.090	.062
.100	.031	.100	.062	.100	.078
.125	.046	.125	.078	.125	.093
.187	.062	.187	.109	.187	.125

TABLE IA-7 MINIMUM BEND RADIUS LIMITS USS-12-Me V (ANNEALED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

α	a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	.015	.016	1ز0.	.016	.031	
.020	.015	.020	.031	.020	.031	
.025	.015	.025	.031	.025	.031	
.032	.031	.032	.046	.032	.046	
.040	•031	.040	.046	.040	.062	
•050	.031	.050	.062	.050	.062	
.063	.046	.063	.078	.063	.078	
.071	.046	.071	.078	.071	.093	
.080	.046	.080	.093	.080	.109	
.090	.062	.090	.109	.090	.109	
.100	.062	.100	.109	.100	.125	
.125	.078	.125	.140	.125	.156	
.187	.109	.187	.203	.187	•234	

TABLE IA-8 MINIMUM BEND RADIUS LIMITS TITANIUM (6A1-4V) (MILL ANNEALED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.093	.016	.109	.016	•109
.020	.125	.020	.125	.020	.125
.025	.156	.025	.156	.025	.156
.032	.187	.032	.187	.032	.187
.040	.234	.040	-234	•040	.234
.050	.312	.050	.312	.050	.312
.063	-375	.063	•3 7 5	.063	-375
.071	.406	.071	•437	.071	.437
.080	.468	.080	.468	.080	.468
.090	.562	.090	.562	.090	.562
.100	.625	.100	.625	.100	.625
.125	.750	.125	.750	.125	.750
.187	1.125	.187	1.125	.187	1.125

TABLE IA-9 MINIMUM BEND RADIUS LIMITS TITANIUM (13V-11Cr-3A1) (SOLUTION TREATED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.031	.016	.046	.016	.046
.020	.031	.020	.046	.020	.062
.025	.031	.025	.062	.025	.062
.032	.046	.032	.078	.032	.078
.040	.062	.040	•093	.040	.109
.050	.062	.050	.125	.050	.125
.063	.078	.063	.140	.063	.156
.071	.093	.071	.171	.071	.171
.080	.093	.080	.187	.080	.203
.090	.109	.090	.203	.090	.218
.100	.125	.100	-234	.100	.250
.125	.156	.125	.281	.125	.312
.187	.218	.187	.437	.187	.468

TABLE IA-10 MINIMUM BEND RADIUS LIMITS VASCOJET 1000 (H-11) (ANNEALED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

а	a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	.015	.016	.031	.016	.031	
.020	.015	.020	.031	.020	.031	
.025	.031	.025	.031	.025	.046	
.032	.031	.032	.046	.032	.046	
.040	.031	.040	.046	.040	.062	
.050	.046	.050	.062	.050	.078	
.063	.046	.063	.078	.063	.093	
.071	•062	.071	.093	.071	.093	
•080	.ఎ62	.080	•093	.080	.109	
•090	•062	.090	.109	.090	.125	
.100	.078	.100	.125	.100	.140	
.125	•093	.125	.140	.125	.171	
.187	.125	.187	.218	.187	.250	

TABLE IA-11 MINIMUM BEND RADIUS LIMITS RENE'41 (SOLUTION TREATED) LONGITUDINAL GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	.015	.016	.015
.020	.015	.020	.015	.020	.031
.025	.015	.025	.031	.025	.031
.032	.015	.032	.031	.032	.031
.040	.015	.040	.040	•040	.046
.050	.031	.050	.046	.050	.046
.063	.031	.063	.046	.063	.062
.071	.031	.071	.062	.071	.062
.080	.031	.080	.062	.080	.078
.090	.046	.090	.062	.090	.078
.100	.046	.100	.078	.100	.093
.125	.046	.125	.093	.125	.109
.187	.078	.187	.125	.187	.156

PABLE IA-12
MINIMUM BEND RADIUS LIMITS
RENE'41 (SOLUTION TREATED)
TRANSVERSE GRAIN DIRECTION

α	α = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	.015	.016	.031	.016	.031	
.020	.031	.020	.031	.020	.046	
.025	.031	.025	.046	.025	.046	
.032	.031	.032	.046	.032	.062	
.040	.046	.040	.062	.040	.078	
.050	.046	.050	.078	.050	.093	
.063	.062	.063	.093	.063	.109	
.071	.062	.071	.109	.071	.125	
.080	.078	.080	.125	.080	-140	
.090	.078	.090	.140	.090	•156	
.100	.093	.100	.156	•100	.171	
.125	.109	.125	.187	.125	.218	
.187	.171	.187	.281	.187	.312	

TABLE IA-13 MINIMUM BEND RADIUS LIMITS INCONEL X (C.R. ANNEALED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	.015	.016	•015
.020	.015	.020	.015	.020	.015
.025	.015	.025	.015	.025	.015
.032	.015	.032	.031	.032	.031
.040	.015	.040	.031	.040	.031
.050	.015	.050	.031	.050	.031
.063	.031	.063	.046	.063	.046
.071	.031	.071	.046	.071	.046
.080	.031	.080	.046	.080	.062
.090	.031	.090	•046	.090	.062
.100	.031	.100	.062	•100	.062
.125	.046	.125	.078	.125	.078
.187	.062	.187	.093	.187	.125

TABLE IA-14 MINIMUM BEND RADIUS LIMITS HASTELLOY X (SOLUTION TREATED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	.0 15	.016	.031
.020	.015	.020	.031	.020	.031
.025	•015	.025	.031	.025	.031
.032	.031	.032	•031	•032	.046
.040	.031	•040	•046	•040	.046
.050	•031	.050	•046	.050	.062
.063	.031	.063	.062	.063	.078
.071	•046	.071	.062	.071	.078
.080	.046	.080	.078	.080	.093
.090	.046	.090	.078	•090	•093
.100	.062	.100	•093	•100	.109
.125	.062	.125	.109	.125	.125
.187	.093	.187	.156	.187	.187

TABLE IA-15 MINIMUM BEND RADIUS LIMITS L-605 (SOLUTION TREATED) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

а	a = 60°		a = 90°		Q = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	.015	.016	.015	.016	.031	
.020	.015	.020	.031	.020	.031	
.025	.015	.025	.031	.025	.031	
.032	.031	.032	.031	.032	.046	
.040	.031	.040	.046	.040	.046	
.050	•031	.050	.046	.050	.062	
.063	.031	.063	.062	.063	.078	
.071	.046	.071	.062	.071	.078	
.080	.046	.080	.078	.080	•093	
.090	.046	.090	.078	.090	.093	
.100	.062	.100	•093	.100	.109	
.125	.062	.125	•109	.125	.125	
.187	.093	.187	.156	.187	.187	

TABLE IA-16 MINIMUM BEND RADIUS LIMITS J-1570 (SOLUTION TREATED) LONGITUDINAL GRAIN DIRECTION

α= 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	.015	.016	.015
.020	.015	.020	.015	.020	.015
.025	•015	.025	.015	.025	.031
.032	.015	.032	.031	.032	.031
.040	•015	•040	.031	.040	.031
.050	.015	.050	.031	.050	.046
.063	.031	.063	.046	.063	.046
.071	•031	.071	.046	.071	.062
.080	.031	.080	.046	.080	.062
•090	.031	.090	.062	.090	.062
.100	.031	.100	.062	.100	.078
.125	.046	.125	.078	.125	•093
.187	.046	.187	.109	.187	.125

TABLE 1A-17 MINIMUM BEND RADIUS LIMITS J-1570 (SOLUTION TREATED) TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	.019	.016	.015
.020	.015	.020	.015	.020	.031
.025	.015	.025	.031	.025	.031
.032	.015	.032	.031	.032	.031
.040	.015	. 040	.031	•040	.046
.050	. 031	.050	.046	•050	.046
.063	.031	.063	.046	.063	.062
.071	.031	.071	.062	.071	.062
.080	.031	.080	.062	.080	.078
.090	.046	.090	.062	.090	.078
.100	.046	.100	.078	.100	.093
.125	. 046	.125	.093	.125	•10 <u>9</u>
.187	.078	.187	.125	.187	.156

TABLE 1A-18 MINIMUM BEND RADIUS LIMITS MOLYBDENUM (.5% TL) (HOT ROLLED, STRESS RELIEVED, DE-SCALED SHEET) LONGITUDINAL GRAIN DIRECTION

a = 60°		a= 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.015	.016	•031	.016	•031
.020	•015	.020	.031	.020	.031
.025	.031	.025	.031	.025	.046
.032	.031	.032	. 046	.032	•၁၈-
.040	•031	.040	.046	.040	.062
•050	.046	.050	.062	.050	•0 <i>1</i> 8
.063	.046	.063	.078	.063	.093
.071	.062	.071	.093	.071	•09H
.080	.062	.080	•093	.080	.309
.090	.062	.090	.109	.090	.125
.100	.078	.100	-125	.100	-140
.125	•093	.125	•140	.125	.171
.187	.125	.187	.218	.187	.250

TABLE IA-19 MINIMUM BEND RADIUS LIMITS MOLYBDENUM (.5% Ti) (HOT ROLLED, STRESS RELIEVED, DE-SCALED SHEET) TRANSVERSE GRAIN DIRECTION

a = 60°		a = 90°		a = 120°	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.031	.016	•031	.016	.046
.020	.031	.020	.046	.020	.046
.025	.031	.025	.062	.025	.062
.032	•046	.032	.078	.032	•078
.040	•046	.040	•093	•040	.093
.050	.062	.050	.109	.050	.109
.063	.078	.063	.125	.063	.140
.071	.078	.071	.156	.071	.156
.080	•093	.080	.171	.080	.187
.090	.109	.090	.187	.090	•203
.100	.109	.100	.203	.100	•218
.125	.140	.125	.250	.125	.281
.187	.203	.187	•375	.187	·437

TABLE IA-20 MINIMUM BEND RADIUS LIMITS AT ELEVATED TEMPERATURES HM21XA-T8 (MAGNESIUM THORIUM) LONGITUDINAL AND TRANSVERSE GRAIN DIRECTION

α. 90°						
Temp. =	200 °F	Temp. =	400 °F	Temp.	Temp. = 600°F	
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)	
.016	.078	.016	.046	.016	.015	
.020	.109	.020_	•062	.020	.015	
.025	.125	.025	.078	.025	.015	
.032	.156	.032	•093	.032	.015	
•040	.187	.040	.109	.040	.015	
.050	.234	.050	.140	.050	•015	
.063	.312	.063	.171	.063	•015	
.071	•343	.071	.203	.071	•015	
.080	•375	.080	.218	.080	.015	
.090	•437	.090	.250	.090	•015	
.100	.468	.100	.281	.100	.015	
.125	.625	.125	•343	.125	•031	
.187	1.000	.187	.562	.187	•031	

TABLE IA-21 MINIMUM BEND RADIUS LIMITS AT ELEVATED TEMPERATURES BERYLLIUM (PURE) (CONDITION "C")* LONGITUDINAL GRAIN DIRECTION

		a = 90	•		
Temp. =	1000 ° F	Temp. =	1100 °F	Temp.	= 1200 °F
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.140	.016	•093	.016	.078
.020	.156	.020	.109	.020	.093
.025	.2 03	.025	.140	.025	-109
.032	.281	.032	.187	.032	.140
•040	.343	.040	.218	.040	.187
.050	.406	.050	.281	.050	.218
.063	•500	.063	•343	.063	.281
.071	•562	.071	.406	.071	•312
.080	.687	.080	•437	.080	•3 7 5
.090	.7 50	.090	.500	.090	.406
.100	.812	.100	.562	.100	.468
.125	1.000	.125	.687	.125	•562
.187	1.500	.187	1.000	.187	.812

^{*}Material as rolled and stress annealed for 10 minutes at 1400 °F.

TABLE IA-22 MINIMUM BEND RADIUS LIMITS AT ELEVATED TEMPERATURES BERYLLIUM (PURE) (CONDITION "C")* TRANSVERSE GRAIN DIRECTION

		a = 90	\$		
Temp. =	1100 °F	Temp. =	1200 ° F	Temp.	= 1400°F
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.140	.016	.125	.016	.093
.020	.156	.020	.140	.020	.109
.025	.2 03	.025	.187	.025	.140
.032	.281	.032	.234	.032	.171
.040	•343	.040	-28 ت	.040	.218
.050	.406	.050	•343	.050	.281
.063	•500	.063	•437	.063	•343
.071	.502	.071	•500	.071	• 37 5
.080	.687	.080	.562	.080	•437
.090	.7 50	.090	.625	.090	.468
.100	.812	.100	.750	.100	.562
.125	1.000	.125	.812	.125	.687
.187	1.500	.187	1.375	.187	1.000

^{*}Material as rolled and stress annealed for 10 minutes at 1400 °F.

TABLE IA-23
MINIMUM BEND RADIUS LIMITS
AT ELEVATED TEMPERATURES
TUNCSTEN (PURE) .020 GAGE
LONGITUDINAL AND TRANSVERSE
GRAIN DIRECTION

		a = 90	0		
Temp. =	300°F	Temp. =	550 °F	Temp.	= 800°F
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.125	.016	.125	.016	.125
.020	.156	.020	.156	.020	.156
.025	.203	.025	.187	.025	.187
.032	.2 50	.032	•234	.032	.234
.040	.312	.040	.312	.040	.281
.050	.406	.050	•3 7 5	.050	•375
.063	.500	.063	.468	.063	.468
.071	.562	.071	.567	.071	•500
.080	.625	.080	.625	.080	.562
.090	.750	.090	.687	.090	.687
.100	.812	.100	. 750	.100	.750
.125	1.000	.125	1.000	.125	1.000
.187	1.500	.187	1.375	.187	1.375

TABLE IA-24
MINIMUM BEND RADIUS LIMITS
AT ELEVATED TEMPERATURES
TUNGSTEN (PURE) .040 GAGE
LONGITUDINAL AND TRANSVERSE
GRAIN DIRECTION

		a. 90°	•		
Temp. =	200 ° F	Temp. =	400 °F	Temp.	= 600 ° F
Gage (t)	Radius (R)	Gage (t)	Radius (R)	Gage (t)	Radius (R)
.016	.031	.016	.015	.016	ر101.
.020	.031	.020	•015	.020	.015
.025	.031	.025	.015	.025	.015
.032	.046	.032	.031	.032	.031
.040	.046	.040	•031	.040	. 031
.050	.062	.050	.031	.050	.031
.063	.078	.063	.046	.063	.046
.071	.078	.071	.046	.071	.046
.080	.093	.080	.062	.080	.046
.090	.093	.090	.062	.090	.046
.100	.109	.100	.062	.100	.062
.125	.140	.125	.078	.125	.062
.187	.203	.187	.125	.187	.093

JOGGLING

Description of the Process

The forming of joggles or offsets are common operations in the metal working industry. There are several techniques or forming methods used in the process of forming a joggle; however, for the scope of this program a Universal joggling machine made by Joggle Tool and Die, Incorporated, installed on a knuckle-joint 100 ton Hamilton Mechanical Press was used. This type of machine was selected for joggling analysis because it was adaptable to forming a large number of parts.

With the help of the illustration shown in Figure IB-1, a better understanding of this particular mechanical process of joggling can be obtained.

The description of the mechanical process is as follows: Joggle block (C) is adjusted to a certain distance to obtain the desired length of travel (L). Shims are placed above (C) and below (B) to obtain the desired joggle depth (D). (B) is spring loaded so that the block can recess downward to a desired depth (D); while (A) along with a top clamping plate (not shown in illustration) remains at a stationary position, thus holding the upper step of the joggle specimen firmly. (E) is a side clamping vice-force which holds the buckling area of the joggle part inward tightly.

The information obtained from the Universal joggling process investigation can be used for other types or techniques of joggling. Some of the other possibilities are: shim joggling, replaceable block type joggling, and special type joggling.

FIGURE IB-1 SCHEMATIC OF JOGGLE DIES

This program covered only the joggling of angle sections. However, similar relationships can be applied to channel sections, hat sections, and various other configurations of the joggling process.

It should be understood that when forming any type joggle, special care should be taken to insure that proper tooling is used. That is, a good joggle cannot be expected if a proper set-up is not used. Care should be taken to insure proper material clearance, proper vice holding action, proper flange radius and that properly matched dies are being used.

If a good machine set-up and good shop joggling procedures are used, joggles with the recommended dimensions selected from the composite graphs and design tables of this report will yield perfect joggles.

<u>Definition of Part Shape</u> and Geometrical Variables

Formability of joggled parts is governed primarily by these geometrical parameters: The depth of the joggle (D), the length of the joggle (L), the gage or thickness of material (t), D/L and D/t. These parameters are shown in their proper location on the joggle specimen sketch shown in Figure IB-2.

Two very critical radii are encountered in the joggling process.

First, the joggling block radius to which the joggle specimen was matched to a 90° bend angle. This radius is called R₁ and is shown in Figure IB-2. Second, the bend radius located on the leading edge of joggle block (A).

This radius is also shown in Figure IB-2 and is called R_2 . Radius R_2 is set at a standard radius of 0.032". It can be seen from the discussion later in this section that R_2 must be increased to form certain type of materials that fail due to the minimum bend radius. Also, by increasing the radius of R_2 , an increase in the splitting limits of all materials occur progressively.

 R_1 radius was established at a value of R/t = 6. That is, R_1 is six times the thickness of the material to be formed. This is done to eliminate failure of the joggle specimen due to the minimum bend radius of the material in forming the 90° flange on the joggle specimen.

FIGURE IB-2 GEOMETRICAL PARAMETERS OF A JOGGLE.

Predictability Equations

The equation for the sylitting limit of any material based on its mechanical properties is:

$$\frac{D}{L} = \left[\epsilon_{.02} (1.44 \epsilon_{.02} + 2.4) \right]^{\frac{1}{2}}$$

Equation I

The equation for the elastic buckling limit line is:

$$\frac{D}{L} = \frac{E}{S_{cy}} \left[\frac{.0050625}{\left(\frac{D}{t}\right)^2} \right]$$

Equation II

The equation for the elasto-plastic buckling limit line is:

$$\frac{D}{t} = \left[.0118 \frac{E}{Scy}\right]^{\frac{2}{5}}$$

Equation III

The equation for the inflection line is as follows. This line is at a slope of $(+\frac{1}{2})$ and crosses the D/L axis at 0.43.

$$\frac{D}{L} = 0.43 \sqrt{\frac{D}{t}}$$

Equation IV

The equation for finding the intersection of the elasto-plastic and elastic buckling limit line at a point on the inflection line is:

$$\frac{D}{t} = \left[.0118 \frac{E}{S_{cy}}\right] \frac{2}{5}$$

Equation V

The buckling formability index line runs vertically upward from the D/t intercept 2.25.

For the convenience of reference to the above mentioned equations, a typical theoretical formability curve is shown in Figure IB-3.

FIGURE IB-3 TYPICAL JOGGLING FORMABILITY CURVE.

The key to using the various equations is to know the following material properties: E, Scy, ϵ .02 and E/Scy X 10⁻³.

 $(E/Scy~X~10^{-3})$ - Where $E/Scy~X~10^{-3}$ is the joggling formability index. 10^{-3} is a constant of convenience used so that E/Scy~and~D/L~can~be~plotted~at~same~scale~value.

Thus, if these material properties are known, the joggling formability of any material can be determined.

To demonstrate how to use the joggling predictability equations, the following example problem is given:

PROBLEM: Find joggling limits of 2024-0 aluminum.

GIVEN: (E) compressive modulus of elasticity = 10.8×10^6

(Scy) compressive yield strength = 14,600

(.02) strain = .75

SOLUTION: Step I. - Find the splitting limit using Equation I.

Substitute in 6.02 and solve for D/L intercept.

D/L =
$$\left[\epsilon .02 (1.44 \ \epsilon .02 + 2.39) \right]^{\frac{1}{2}} = 1.62$$
.

Draw in a horizontal splitting limit line from the D/L intercept 1.62 . (See Figure IB-4).

FIGURE IB-4 SPLITTING LIMIT LINE.

Step II. - Use equation V to find the intersection point of the elasto-plastic and elastic buckling limit line at a point on the inflection line. Substitute in E/Scy and solve for D/t.

$$D/t = \left[.0118 \text{ E/Scy}\right]^{2/5} = 2.38.$$

Step III. Substitute in D/t value found in Step II and solve for D/L in Equation IV. (Inflection line equation).

$$D/L = 0.43 \sqrt{D/t} = .664$$
.

Next, draw in the D/L value (from Step III) on the inflection line. Through this point draw a (-2) slope and a vertical line upward to the splitting limit line (found in Step I). (See Figure IB-5)

FIGURE IB-5 GRAPH CONSTRUCTION.

Thus, a completely inclosed formability curve is constructed. All points inclosed in the envelope will be good parts, while those lying outside the envelope will either fail due to buckling or splitting depending on the region of the curve. A sketch of this typical formability envelope curve is shown in Figure IB-6.

FIGURE IB-6 TYPICAL FORMABILITY ENVELOPE.

An alternate method that can be used to solve for the joggling limits is as follows:

Step I - Repeat Step I as was outlined in first method.

Step II - Locate E/Scy X 10⁻³ = (.743) value on vertical formability index line (D/t = 2.25 line). From this point draw a (-2) slope from the inflection line through this point. (See Figure IB-7).

FIGURE IB-7 GRAPH CONSTRUCTION.

Step III - Draw a vertical line from the intersection point of the (-2) slope and the inflection line up to the splitting limit line. (See Figure IB-8).

FIGURE IB-8 GRAPH CONSTRUCTION.

Composite Graphs

A composite graph showing the joggling formability limits of the 19 different materials used in this program is shown in Graph IB-1.

All materials are shown at room temperature except for HM21XA-T8, Tungsten, (6A1-4V) Titanium, and Beryllium. These materials are shown at recommended elevated temperatures due to their high fracture tendency and relative unformable characteristics at room temperature. (6A1-4V) Titanium was not shown at elevated temperature due to the unavailability of tensile information at elevated temperature.

The composite theoretical formability curves for joggling were established at a point where there should be relatively no handworking necessary, that is, no buckling or splitting failures occurring. It should be understood however, that the E/Scy was taken at a minimum value. Thus, there is a maximum, average and minimum value for E/Scy and this should be taken into account when predicting the formability of any material. An example of how these different E/Scy values will affect the buckling limit curves is illustrated in Figure IB-9.

FIGURE IB-9 VARIATION OF MATERIAL PROPERTIES.

It can also be seen from Figure IB-9 that the same relationship will occur for the splitting limit line. That is, € .02 also has a maximum, average and minimum value.

All splitting limits in the composite graphs are established for a standard 0.032" die radius (R2). (See discussion under geometrical parameters.) If the splitting limits of any of the materials listed needed to be raised, the (R_2) radius can be increased. That is, as the (R_2) radius is increased, the splitting limits of all materials will also increase.

An example of this concept is shown in Figure IB-10.

FIGURE IB-10 SPLITTING LIMIT LINE.

The curve shows that as the standard 0.032" radius is increased to 0.060", there is also an increase in the D/L splitting limit value. Additional curves may be plotted showing an increase in the (Ro) radius along with a corresponding increase in the D/L splitting limit value.

It can be seen that the composite graph is constructed on a logarithmic basis. However, for the convenience of finding the depth of the joggle (D) and the length of the joggle (L) for a certain material thickness (t) directly, an alternate method of plotting is advised.

This is done by taking a certain material (2024-0 aluminum) from the logarithmic composite graph (Graph IB-1) and replotting the information on a Cartesian coordinate graph. (See Graph IB-2). Thus the values of D, L and t can be read directly from this type of graph (Graph IB-2).

GRAPH I B-1 COMPOSITE GRAPH FOR JOGGLING

GRAPH I B-2 JOGGLING LIMITS FOR 2024-0 ALUMINUM

Design Tables

The design tables give the recommended values for the depth of the joggle (D), length of the joggle (L), and the thickness of the material (t).

Thus, by having a given (t) and a given (L), the recommended (D) value can be read from the tables. Or, by having a given (D) and a given (t) the recommended value of (L) can be read from the tables.

TABLE IB-1 JOGGIE DEPTH LIMITS HM21XA-T8 (MAGNESIUM THORIUM) TEMPERATURE 750°F

GAGE (t)	910.	.020	.025	-032	0110	.050	.063	170.	080.	060.	.100	325.	187
LENGTH (L)				JOC	JOGGLE DEPTH (D)	(a) HI							
01.	840.	.053	950.	950.	940.	950*							
.20	090•	c70·	.08c	060.	:112	:112	318	312	.112	.112	.112		
.30	170.	920	.093	.106	921.	नग्र.	.168	.168	.168	.168	.168	.168	
0 ተ	.073	060	.154	.12ti	057*	.164	.192	.200	49S.	482.	,224	,224	.22
.50	9201	46c•	:112	051.	661.	.175	.205	.28%	.230	.250	.280	.28c	. 28 0
%	∙ცი•	.102	.118	33	641.	166	.216	.228	.252	.276	.288	.336	.336
.70	160.	301.	.123	741.	.168	.192	422.	5/2.	.265	.295.	.315	.350	.392
8.	-092	.108	.130	.152	.184	.204	.240	.256	.280	.304	.328	.38₺	044.
%.	660.	.113	.135	.157	.189	.216	.248	.261	.288	.315	.338	.396	774.
1.00	.105	.120	04;1.	.165	.190	.222	.257	.275	.305	.330	.350	014.	.58

TABLE IB-2 JOGGLE DEPTH LIMITS 2024-0 ALUMINUM

GAGE (t)	910.	.020	.025	-032	040.	.050	.063	170.	080.	060.	001.	.125	187
LENGTH (L)				JOC	лосск рерти (р)	(a) HI							
.10	540.	450.	290.	.077	760.	.120	151.	.160	.168	071.	.165	861	ਜ਼ੈਲਟਾ
&	.059	990.	080.	.093	.108	.125	.151	.170	.192	.216	ુ.સ્.	300	.33.
.30	.067	.078	060.	.107	.124	.145	.167	.184	.198	.216	.240	.300	8tit.
0ካ•	.073	-085	660.	.117	.136	951,	.182	.199	212.	.234	.253	ე0€.	644.8
.50	620.	.092	901.	.125	.147	.170	.197	.213	.231	.252	.270	515.	.448
9.	.083	860.	.114	.134	•155	.180	.210	.231	842.	.268	782.	2₹€•	.443
.70	.088	.104	.120	.139	.164	.190	.223	04/5.	792°	28c.	-305	3%.	.458
8.	-092	.108	.124	.148	.173	.198	.233	5,52	.272	300	.317	.368	483
%	\$60.	011.	.129	.155	.178	.204	045.	.263	.281	.336	.329	₹.	764.
1.00	660.	.115	.134	.159	.193	.207	.250	.271	.291	.315	046.	-395	.518

TABLE 1B-3 JOGGLE DEPTH LIMITS 17-7 PH STAINLESS STEEL (MILL ANNEALED, CONDITION "A")

GAGE (t)	910.	.020	.025	.032	o†o•	.050	.063	1.70.	080.	060.	.100	ंटर:	.137
LENGTH (L)				300	JOGGLE DEPTH (D)	TH (D)							
.10	540·	.050	.058	.070	.088	011.	.138	.156	.176	.198	.200	.188	.224
8.	.053	.062	.073	.087	.100	.115	.138	.156	.176	198	.220	.275	.392
.30	.061	.072	.083	.098	.114	.133	.153	171.	.180	.198	.220	.275	412
04.	290.	.078	060-	.110	,124	.145	.170	.188	.200	.216	.235	.275	514.
.50	.072	₹80.	760.	.117	.134	.156	.185	,20¢	.216	.239	.258	.294	412
9.	.075	.089	.104	.123	.143	.165	£61.	512.	.228	.248	.268	.308	412
.70	.078	1 60.	.109	.129	151.	.174	.208	.219	.237	.257	.280	.330	.421
8.	.082	b60.	.114	.134	.157	.182	.214	.230	.250	.267	.290	.338	777.
8.	.085	.101	.118	.139	.163	.191	.220	545.	.259	.280	300	.350	754.
1.00	.085	.104	.122	.143	.168	961.	.230	6 ⁴ 2.	.268	.295	.310	.362	478

TABLE IB-4 JOGGLE DEPTH LIMITS PH 15-7 MO STAINLESS STEEL (MILL ANNEALED, CCNDITION "A")

GAGE (t)	910.	.020	.025	.032	040.	.050	.063	170.	080.	060.	.100	इटा:	.187
LENGTH (L)				JOC	JOGGLE DEPTH (D)	тн (D)							
.10	.041	640.	750.	.070	.088	011.	.138	951.	921.	.198	.220	.275	.390
&	.052	090.	.073	.087	.100	.115	.138	.156	.176	.198	.220	.275	412
.30	.061	.072	.083	960.	411.	.133	.154	.171	.180	.198	.220	.275	SI 4.
04.	.067	.078	060.	011.	,124	.145	171.	.188	.200	912.	.235	.275	SI 4.
•50	.073	.084	.097	.118	.134	.156	.186	.204	.216	.239	.259	462.	.412
9.	920.	680•	.104	.124	٤41٠	.165	961.	212.	.228	842.	692.	.308	21 4.
02.	6/.0*	ग60•	.109	.130	151.	.174	.209	.220	.238	.257	.283	.330	.423
8.	±80•	860.	311.	.135	.157	.183	.215	.232	.251	.268	462.	.339	844.
%.	.087	.103	911.	.141	.164	.193	.223	.243	.260	.281	.305	.354	.463
1.00	.087	.106	.123	9۳۲۰	.169	.199	.234	.252	.270	.297	.316	.369	.483

TABLE IB-5 JOGGLE DEPTH LIMITS AM-350 STAINLESS STEEL (ANNEALED)

GAGE (t)	910.	020.	.025	-032	040.	.050	.063	170.	.080	060.	.100	. 125	.187
LENGTH (L)				JOS	JOGGLE DEPTH (D)	(D)							
.10	.039	940.	.053	₩90.	.080	.100	.126	345.	.160	.180	.200	.200	.200
8.	840.	950.	.065	620.	260.	.106	.126	142	.160	.180	.200	.250	.375
.30	.056	990.	920.	.089	.103	.120	.142	.154	.173	.180	.200	.250	.375
04.	.062	.072	.083	660.	.114	.134	.156	.169	.185	.198	.213	.250	.375
.50	.068	.078	060.	.107	.123	.144	.169	.184	761.	.213	.231	.263	.375
%.	.071	.083	960.	.114	.132	.153	.179	.193	.209	.228	,244	.282	.375
.70	٠٥٦4	780.	.100	611.	.139	.161	.188	.202	.220	.239	.258	.300	.388
8.	.077	160.	.105	.124	.145	.168	.196	212.	.230	642.	.269	.311	.411
8.		460.	011.	.129	.150	.175	-20g	.222	072.	.258	.277	.325	425
1.00		.097	.114	.133	.155	.181	.211	.230	.248	.266	.286	.333	044.

TABLE IB-6
JOGGLE DEPTH LIMITS
A-286 STAINLESS STEEL
(SOLUTION TREATED CONDITION)

GAGE (t)	910.	.020	.025	250.	070	.050	.063	.071	.080	960.	.100	.125	.187
LENGTH (L)				JOC	JOGGLE DEPTH (D)	TH (D)							
.10	ग ग0.	.051	.059	.073	-092	311.	541.	.163	.183	.206	.230	.286	.430
.20	.053	.062	.072	.088	.102	911.	.145	.163	.183	902.	.230	.286	ა430
.30	.062	.073	₩0.	.099	.115	.134	.158	171.	.187	902.	.230	.286	0۠*
01,	.068	.080	.092	.109	.128	641.	.175	.186	.20t	.213	.238	.286	.430
٥٤٠	4Z0°	.087	.100	.118	.137	.159	.187	.202	.218	.233	.256	.298	۰۴30
9.	.079	.092	901.	321.	.145	.169	.199	.219	.232	-252	.271	.316	o£ 4°
.70	.083	960.	.112	.132	.153	.178	.209	.227	442.	.266	.284	+33⁴	044.
98.	.087	.101	711.	.138	.160	.186	.218	.234	.256	.279	.297	.350	455
%	060•	.105	121.	.143	.167	.193	.227	44g.	.265	.289	.310	.366	.472
1.00	.092	.108	५दाः	ረ ተፒ・	.173	.200	.236	.255	4LZ.	.298	.321	.374	64.

TABLE IB-7 JOGGLE DEPTH LIMITS USS-12-MOV STAINLESS STEEL (ANNEALED)

CAGE (t)	910.	.020	.025	.032	040.	.050	.063	170.	.080	960.	.100	.125	.187
LENGTH (L)			3	JOS	JOGGLE DEPTH (D)	(a) HI							-
.10	2 ₄₀ .	8 ⁷ 건.	750.	890.	980.	701,	.135	.135	041.	.138	.148	.162	.187
&	.053	.059	690.	.085	760.	211.	.135	.152	.172	.194	.215	.269	.280
.30	.059	.070	.081	.095	.109	.127	.151	.167	.176	¥61.	.215	.269	.403
Oη . •	.065	770.	680.	.105	.121	.141	.166	.180	.193	.210	.226	.269	.403
.50	.070	.083	960.	.113	.130	.152	.180	.193	.208	.225	.241	.304	.403
%.	.075	.088	.102	.120	.139	.161	.190	4ος.	.222	.239	.260	.312	.403
.70	.079	260.	.107	.126	941.	021.	200	.215	.234	.251	.270	.320	.411
8.	.083	.096	.113	.132	.153	178	.209	422.	945.	.263	.279	.333	.428
8.	.089	.100	911.	.137	.159	.186	.218	.233	.255	.273	.286	.346	544.
1.00	.095	.103	.120	.141	.165	.193	.226	.241	.264	.282	.295	.353	.460

TABLE IB-8
JOGGLE DEPTH LIMITS
TITANIUM (13V-11Cr-3A1)
(SOLUTION TREATED CONDITION)

CAGE (t)	910.	.020	.025	-032	o † o•	.050	.063	1.70.	080.	060.	.100	ंग्टर	.187
LENGTH (L)				JOG	JOGGLE DEPTH (D)	(a) Hi							
01.	920.	.030	750.	೧೯೦.	740.	.055	690:	.078	080.	780.	060.	.100	
&.	-032	.037	S#0.	.050	.058	790.	.081	.088	.095	.102	.110	.137	
.30	.037	.043	670.	650.	.068	620.	260.	660.	.108	711.	.126	.158	.203
O†*	7.40°	740.	450.	₩90.	.075	780.	.102	011.	021.	.129	.138	.163	-S
.50		.051	650.	690.	.081	\$60.	011.	911.	.131	.140	.150	.172	.222
09:			<i>2</i> 90°	.073	35°	.100	711.	.126	.139	.148	.161	.184	.239
02.			.365	.077	<u></u> အဝ•	.105	.123	.133	94۲.	.155	.168	.195	452.
8.				.031	1 60•	.110	.128	.139	.151	.162	.175	405.	.268
%					7.60.	411.	.133	.145	.156	.168	.181	.212	.278
1.00					001.	711.	.138	.150	.160	.173	.184	.219	.288

TABLE IB-9
JOGGLE DEPTH LIMITS
VASCCJET 1000 (H-11)
(ANNEALED)

GAGE (t)	910.	.020	.025	.032	o _{tt} o.	.050	.063	1,70.	.080	060.	.100	इटा •	187
LENGTH (L)				95 1	JOGGLE DEPTH (D)	(O) HI							
.10	.038	चेच्ं	.051	750.	.072	160.	701.	.106	.109	.112	011.	.100	.090
.20	940.	.053	<i>-</i> 90.	.072	780.	.102	.116	.129	.145	. 163	.182	1.22.	.223
.30	η50°	.061	.072	.086	.100	.117	.135	.150	.156	.172	.182	.227	.342
04.	.059	890•	.080	.093	. 109	.127	.148	391.	.173	.183	308	.233	.342
.50	190•	.075	.087	660.	911.	.137	.161	.174	.089	.203	715.	.25.2	348.
9.	.068	620.	.092	.107	.125	.147	.170	1384	.201	.216	.236	.270	.358
.70	.072	.083	.097	.114	. 32	.156	.179	194	.212	.228	.245.	.285	.376
8.	.075	.087	.101	.119	.139	.163	.189	-202	.220	.238	.257	.300	.394
%.	.076	.091	.105	,124	.145	.169	.198	.210	.227	745.	.267	.317	, h07
1.00	.076	.093	.108	.128	151	.175	.207	.215	.233	.255	.276	.354	024.

TABLE IB-10
JOGGLE DEPTH LIMITS
BERYLLIUM (PURE)
(CONDITION "C")
TEMPERATURE 1200 %

GAGE (t)	910.	.020	.025	.032	040.	.050	.063	170.	080.	060.	.100	१टा:	.187
LENGTH (L)				JOG	тосства перти (в)	(a) E							
.10	9600•	110.	110.	.01	.01	.01	.01	.01	110.	.011	.011	.01	
8.	.0122	.0132	.0156	.018	.022	.022	.022	.022	.022	.022	.022	.022	.022
.30	.0138	.015	.0177	.021	.0243	.n276	.033	.033	.033	.033	.033	.033	.033
04.	.0i52	.0168	.0196	.0228	4920.	.0303	.0368	Otto.	म्म्रुं	₹ 10.	††10°	म् न्	村つ。
.50	.0165	.0180	.0205	.0245	.0285	.033	.0389	.0422	.045	.0475	.055	.055	.055
9.	.0168	.0192	5150.	.0258	0,00	.0346	1140.	क्षक्र	9740.	.0515	.0552	990.	990.
.70	.0165	.0193	.0221	.0280	.0315	.0361	4840.	9940.	.050t	.0560	.0580	.0658	.077
8.	.0176	.0216	420·	.0282	.0332	.0378	9540.	88±0.	.0525	.0563	9090.	.0688	.088
8.	.01	.0216	.0252	.0288	.0351	.0396	.0473	4050.	9470.	.0567	4690.	.0738	.099
1.00	.019	.0230	.0260	.031	.0360	0410	0490	.0520	.0560	0090	990.	.077	.100

TABLE IB-11
JOGGLE DEPTH LIMITS
RENE'41
(SOLUTION TREATED)

GAGE (t)	910.	.020	.025	-032	040.	.050	.063	170.	.080	060.	.100	३टा:	187
LENGTH (L)				Jos	JOGGLE DEPTH (D)	(D)							
01.	.041	740.	450.	290.	₩0.	.105	.132	641.	.168				
.20	.050	.058	990*	.081	1 60•	.109	.132	941.	.168	.189	.210	.262	
.30	.058	990•	.078	<i>2</i> 60•	.106	.132	ተተፒ.	.157	.172	.139	.210	.262	.382
Oη•	. 690	₩20•	980.	.102	711.	.136	.158	.173	.187	.201	.218	.262	.382
.50	.068	620.	.093	.109	.126	941.	.172	.188	-202	.217	.235	.273	.382
9.	.073	780•	660.	.116	.135	.156	.183	961.	,214	.232	.250	.290	.382
.70	.077	.089	.104	.121	.142	.164	194	.203	.225	242.	1 92•	.304	.392
8.	620.	.093	.108	.127	641.	171.	.200	,21 ⁴	.235	.251	.273	.318	÷04.
%	.080	760.	.111	.132	.154	.178	.205	.225	445.	.263	.282	.332	.422
1.00		.100	411.	.137	.159	.185	.209	.235	.252	.274	.291	.342	744°

TABLE IB-12 JCGGLE DEPTH LIMITS INCONEL X (C.R. ANNEALED)

CAGE (t)	910.	020	.025	.032	040.	050.	.063	120.	.080	060.	.100	.125	.187
LENGTH (L)				or Or	JOGGLE DEPTH (D)	(D)							
.10	.043	050.	.058	.072	060.	211°	.142	.160	.180	.202	.225	.200	.224
8.	.053	.062	.073	.086	.100	.117	.142	,160	.180	.202	.225	.280	.420
.30	.061	-072	.083	960.	.114	.132	.153	.167	.180	.202	.225	.280	.420
04.	290.	820.	.091	.107	.125	.145	.171	.184	.200	ήI2.	.235	.280	ù.
.50	.072	±80•	960.	.115	.134	.157	.183	.199	.216	.234	.250	462.	.420
%	.076	.089	.104	.122	ተተር"	.167	.195	212.	.228	942•	.266	.308	.420
.70	080•	η60°	.108	.128	151.	.175	.206	.221	042.	.258	.280	.323	.428
.80	780•	860*	311.	134	951.	.183	412·	.233	.251	.271	.290	.338	६ मृत
.90	980•	001*	911.	•139	291.	161.	.222	54Z.	-262	.284	.300	.350	654.
1.00	.087	.102	121.	441.	.168	197	.228	.250	392.	465.	.310	-362	.472

TABLE IB-13
JOGGLE DEPTH LIMITS
HASTELLOY X
(SOLUTION TREATED)

GAGE (t)	910.	.020	.025	.032	0 11 0.	.050	.063	.071	080.	060.	.100	.125	.187
LENGTH (L)				J00	JOGGLE DEPTH (D)	(a) HI							
.10	2₩0•	050*	.058	070.	.088	011.	.138	.156	371.	.13ë	. 2CC	ooz•	455.
જ.	.053	.061	.073	750.	.100	.115	.138	.156	176	.198	.220	.275	.392
.30	.061	.072	.033	.093	452.	.133	.153	171.	.130	.198	.220	.275	SI 4.
07*	290.	.078	060.	011.	,124	341.	.170	.188	.20c	.216	.235	.275	514.
.50	.072	1 80•	760.	.117	.134	.156	.185	.20t	.216	.239	.258	#62°	4.12
9.	.075	680.	.104	.123	.143	.165	.194	512.	.228	.248	.268	.308	SI #.
.70	.078	₹60•	.109	.129	.151	.174	.208	.219	.237	.257	.280	.330	.421
8.	.082	.098	.114	.134	.157	.182	.214	.230	.250	.267	290	.338	मग्ग.
%:	.085	101.	.118	.139	.163	.191	.220	S42.	.259	.280	.300	.350	754.
1.00	.085	.194	.122	.143	.168	.196	.230	642.	.268	.295	.310	.362	478

TABLE IB-14 JOGGLE DEPTH LIMITS L-605 (SOLUTION TREATED)

GAGE (t)	910.	.020	.025	.032	o 1 o•	.050	.063	170.	.080	060.	.100	. 125	.187
LENGTH (L)				or	JOCGLE DEPTH (D)	(O) HI							
.10	.041	640.	750.	020.	.088	ctr.	.138	351.	371.	.198	.200	902°	455.
%.	.052	090.	.073	.087	.100	3115	.138	.156	.176	.198	.220	.275	.392
.30	190-	.072	.085	860.	411.	.133	154	171.	.180	.193	.220	:275	514.
0ተ•	.067	.078	060.	011.	.124	.145	.171.	.138	.200	.216	.235	.275	514.
.50	.072	∄°.	760.	.118	.134	321.	.186	±05.	9T2.	.239	.258	1 62.	.412
9.	.075	.089	104	.124	.145	.165	.195	212.	.228	.248	.268	.303	51 h.
.70	620-	₽60•	.109	.130	.151	.174	.203	.220	.238	.257	.282	.330	.423
.80	.083	.098	.115	.135	.157	.132	.215	.231	.251	.267	.292	.338	744°
œ·	.086	.102	.119	04۲۰	.163	.192	.222	.243	.260	.230	.303	.353	.461
1.00	.086	.105	.123	.145	.168	.198	.233	.251	500	.295	.314	.367	.481

TABLE IB-15
JOGGLE DEPTH LIMITS
J-1570
(SOLUTION TREATED)

GAGE (t)	910.	.020	.025	-032	o † o•	.050	.063	.071	.080	% %	.100	.125	.187
LENGTH (L)				JOC	JOGGLE DEPTH (D)	(a) Hi							
.10	140°	740.	450.	.067	†80°	.105	.131	941.	.168				
.20	.050	.058	990.	.081	4 60•	.109	.131	.149	.168	.189	.210	.262	
.30	950*	990.	.078	260•	901.	.123	.143	.157	.172	.189	.210	.262	.382
04,	£90°	₩20°	.086	.102	711.	.136	.158	.173	781.	.201	.218	.262	.382
05.	890*	620	.093	601.	921.	941.	.172	.188	-202	.217	.235	.273	.382
9.	£20°	180.	.099	911.	.135	.156	.183	961.	415.	.232	.250	.290	.382
02.	220	680.	.104	.121	.142	.164	₹.	.203	.225	242.	.26 ^t	304	.392
.80	620.	.093	.108	.127	641.	171.	.200	μιz.	.235	.251	.273	.318	405
%.	080	260	.111	.132	.154	.178	.205	.225	445.	.263	.282	.332	.422
1.00		.100	411.	.137	.159	.186	.209	.235	.252	±75.	.291	.342	044.

TABLE IB-16
JOGGLE DEPTH LIMITS
COLUMBIUM (10Mo-1071)

CAGE (t)	910.	.020	.025	.032	040.	.050	.063	1.70.	080.	060.	.100	इटा:	.187
LENGTH (L)				JOC	JOGGLE DEPTH (D)	(Q) HI							
01.	.028	.033	.038										
.20	.036	.041	840.	.057	990.	920.							
.30	.041	740.	.052	990.	.075	.089	.102	011.					
0۴۰	.045	.052	090°	.072	.083	760.	411.	121.	.133	.143	.155		
.50	840.	.056	.065	.077	.089	104	.123	.132	.143	.155	.166	.194	
%:		090.	170.	.083	.095	111.	.131	041.	.153	.166	.176	.206	
.70			±70°	.087	.100	911.	.137	.148	.161	.175	.186	.218	.281
8.				.091	.105	.123	.143	.155	.168	.184	.195	.229	.293
%.				.095	.109	.127	.148	191.	.176	.189	.203	o4s.	.304
1.00				760.	.113	131	.152	.167	.180	₽	.211	.250	.314

TABLE IB-17
JOGGLE DEPTH LIMITS
MOLYBDENUM (.5% T1)
(HOT ROLLED, STRESS RELIEVED, DE-SCALED SHEET)

GAGE (t)	910.	.020	.025	-032	040.	.050	.063	.071	080.	060.	.100	.125	.187
LENGTH (L)				JOC	JOGGLE DEPTH (D)	TH (D)							
.10													
.20	.043												
.30	640.	.058	.067										
0†*	.055	.063	420.	.086									
.50	650.	890.	.080	.093	.108								
%.	.063	-072	.085	.100	.115	.134							
70.		920.	060.	.105	.121	.140	.165						
8.		.080	.093	.109	.133	941.	.172	.185					
%.			960.	.114	.145	.153	.178	.192	512.				
1.00			.100	911.	.156	.160	.183	.200	.218	.234			

TABLE IB-18
JOGGLE DEPTH LIMITS
TUNGSTEN (PURE)
TEMPERATURE 1000 °F

GAGE (t)	910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	.187
LENGTH (L)				JOG	JOGGLE DEPTH (D)	(a) Hi							
.10	900.	900.	900.	900.	900.	900.	800.	900.	800.	800.	900.		
હ	9010-	.0124	4410.	910.	910.	910.	910.	910.	910.	910.	910.	910.	
.30	-012	.0144	.0165	.0192	.0219	.02 ⁴	.024	₽20•	4'خ٥٠.	420°	,024	420.	420.
01/*	.0132	.0152	.0180	.0212	4420.	.028	.032	.032	.032	.032	.032	.032	.032
05.	5410.	910	0610.	.0225	.0265	.0305	.0305	.0315	039	040.	040.	040.	040.
9.	.0156	.0172	.0200	.0234	.0276	.033	.0324	.0354	.039	240·	.0468	.048	8 ₄₀ .
.70	.01645	.0185	.0203	.0252	4620.	.036	.035	.0371	9040.	4640.	9240.	.056	950.
.80	.0168	610.	4520°	.0264	.0304	.037	.036	.0392	.0416	.0456	.0488	950.	1 90.
%.	.0175	7020.	4620.	.0270	.0315	.036	6980.	.0405	1440.	740.	.0495	7950.	.072
1.00	.0180	.0210	7450.	.0280	.0333	.038	.039	.0410	940.	0640.	.053	.061	.080

SECTION II
FLANGING
A. DIMPLING
B. RUBBER FORMING SHRINK AND
STRETCH FLANGES

DIMPLING

Description of Process

Dimpling is the forming of a depression around a fastener hole in sheet metal by the application of pressure and heat on the material between dies. Dimpling is done so that the conical head of a flush type fastener can be installed. This has been necessary to reduce air drag in modern supersonic aircraft where metal thickness will not permit countersinking.

There are several types of dimpling machines, but for the scope of this program a CP 450 EA Dimpling machine adapted for triple action ram coin dimpling was used. A set of ram coin dimpling dies consists of four parts; the punch (A), die (B), coining ram (C), and pressure pad (D). With the help of Figures II A-1 through II A-4 the mechanical process of dimpling can be understood.

In Figure II A-1 the punch (A) and die (B) are shown in the normal open position. The part to be dimpled has been placed over the pilot on the punch. Note the position of the coining ram face (C) with respect to the die face (B) and the pressure pad (D) is raised around the punch (A).

FIGURE II A-1 CROSS SECTION OF RAM COIN DIMPLING

As the die descends, the die and coining ram makes contact with the part as seen below. If dimpling is at elevated temperatures, the die remains in this position for the specified time so that the hot die and coining ram can heat the material immediately surrounding the hole. In order to prevent the metal in the core from stretching and cracking, the ram is forced by pressure against the bottom edge of the cone as the dimple is being formed. This acts as a dam, keeping the depth of the metal uniform throughout the forming operation.

FIGURE II A-2 CROSS SECTION OF RAM COIN DIMPLING

Downward movement of the die assembly will cause the part to contact the pressure pad creating a firm griping action between the die and pad face around the dimple, thus preventing outward flow of material as the dimple is coined as in Figure II A-3.

FIGURE II A-3 CROSS SECTION OF RAM COIN DIMPLING

The coining ram controls hole stretch and balances internal strains, eliminating radial and internal shear cracks. The dimple is fully formed in Figure No. II A-4. The confining action of the pad face, die face, and coining ram has forced material into exact configuration with the tool geometry.

FIGURE II A-4 CROSS SECTION OF RAM COIN DIMPLING

There are four primary forces at work during the forming of a dimple, which tend to make it crack. The first is stretching at the hole in brittle material and in thin gages where there is insufficient material to accommodate the stretch. This causes radial cracks which start at the edge

of the dimple and grow outward. Secondly, the bending over the die cavity sets up tensile stresses in the upper portion of the dimple causing circumferential cracks running around the dimple. The third force is heavy shear loads below the top of the dimple which cause internal circumferential shear cracks. Both types of circumferential failures can be prevented by the proper application of sufficient temperature and pressure. The fourth type of failure is compressive hole cracks caused by excessive coining ram pressure. This type failure is removed by lowering the coining ram pressure.

Some of the machine variables encountered in dimpling are: dimpling pressure, coining pressure, pad pressure, slow form pressure, pad height, post height, die temperature, pad temperature, and the dwell time. By properly varying of machine parameters it is possible to find the optimum setting where a material will dimple best. This optimum setting is where formability tests should be run.

Definition of Part Shape and Geometric Variables

The formability of dimpling is governed by the following geometric variables: radius of the hole R, length of dimple flange h, angle of the dimple Q, the material gage 1, and the ratio of $\frac{h}{R}$. The parameters are shown in their proper location in the figure below.

FIGURE II A-5

CROSS SECTION OF DIMPLE SHOWING GEOMETRIC PARAMETERS

Predictability Equations

The predictability equation for dimpling is:

$$\frac{h}{R} = \frac{(0.444)(\epsilon_{2.0})^{0.253}}{1 - \cos \alpha}$$

Equation I

To construct the formability curve for dimpling using the predictability equation the following procedure is used. As an example the formability curve for 2024-T3 aluminum will be constructed. To construct this curve it is necessary to obtain the $\mathcal{E}_{2.0}$ value for the material in question. This property for 2024-T3 at room temperature is 17.9%. Using the equation, solve for $\frac{h}{R}$ using an angle Q of 40° . This value of $\frac{h}{R}$ is 1.228. Locate and plot this point in the figure below.

FIGURE II A-6 FORMABILITY GRAPH CONSTRUCTION

Solve the predictability equation for other angles α and construct the predictability curve as shown below.

FIGURE II A-7 FORMABILITY CURVE FOR 2024-T3 ALUMINUM

Composite Graphs

The formability curve representing the forming limits for all materials evaluated under this contract is shown in the composite form in Graph Il A-1.

Although current design standards are developed around the bend angle of 40° and an approximate ratio of flange width to hole radius h/R, of 1.2, future work might require dimpling for other bend angles.

Better formability is shown to increase as the curves move up and to the right. Some materials, such as HM21XA-T8, are shown to decrease with temperature, while others, such as molybdenum and columbium (10-10), increase with temperature.

COMPOSITE CURVE FOR DIMPLING

BEND ANGLE a

Design Tables

Because current design standards are based on the dimple bend angle of 40° and an approximate h/R ratio of 1.2, a single simple design table can be made for the materials on this contract. This table is shown on the following page as table II A-1.

The table indicates whether the material can be formed to the standard dimple at room temperature. Also shown on the table are the experimental results giving the temperature of the test and whether the standard dimple can be formed at the test temperature. The last column indicates the recommended elevated temperature for fabrication of standard dimples based on published elevated temperature properties.

Design Table II A-1

			Experimen	Experimental Tests	Recommended
Material	Condition	RT	Temp.	Results	Elev. Temp.
HWZIXA	T8	No	8008	Yes	750°
2024 Aluminum	T3	Yes	R	Yes	<u> </u>
17-7 Ph	TH 1050	No	RT	No	No
PH 15-7 Mo	TH 1050	No	R	No	1000
AM 350	Age Hardened 850°	No	돮	No	1000
A-286	Age Hardened 1325°	Yes	R	Yes	1450°
USS-12-MoV	Age Hardened 800°	No	RT	No	No
Titanium (6A1-4V)	Mill Annealed	No	°08	Yes	°06
Titanium (13V-11Cr-3Al)	Age Hardened 900°	No	, 008	Yes	°006
Vascojet 1000 (H-11)		No	F	No	1200°
Beryllium (Pure)	Condition "C"*	No	1200	No	1450°**
Rene'41	Age Hardened 1400°	Yes	F	No***	Any Temp.
Incomel X		Yes	R	Yes	1800
Hastelloy X	Solution Treated	Yes	돲	Yes	Any Temp.
L-605	Solution Treated	Yes	FF	Yes	. 008
J-1570	Age Hardened 1400°	Yes	RT	Yes	No
Columbium (10Mo-10T1)	As Received	No	800	No	1000
Molybdenum (.5% Ti)	Hot Rolled,)
	Stress Relieved	No	8 008	No	1800。
Tungsten (Pure)	As Received	No	, 008	No	1 2 00 2 1

Material is rolled and stress annealed for 10 minutes at 1400°F. Form dimple at 2 in./min. strain rate. Insufficient Pressure. *

^{***}

RUBBER FORMING SHRINK AND STRETCH FLANGES

Description of Process

The process of rubber forming is one of the most common and widely used processes for producing flanged parts of both straight and contoured sections. The use of this process is desirable because tooling is usually simple and most rubber presses have the capacity to form several parts at one time.

The rubber press used to form parts in this contract was a 5,000 ton Lake Eric Hydropress with approximately 1925 PSI rubber pressure capacity. The forming pad of this rubber press is 114" x 48" x 9". A sketch of the rubber press is shown in Figure II B-1.

The process of forming rubber shrink and stretch flanges is relatively simple with few steps involved. The sheet metal blanks are prepared by profile trimming, blanking dies, or by sawing. The use of the saw is usually limited to cases where only a few parts are needed. The prepared blank is placed on a forming tool and is secured on the tool by alignment pins and a cover plate as shown in Figure II B-1. The rubber press is lowered to the part and the part is formed by the rubber pressure acting on the flange.

The major failures that occur in rubber stretch flanges are elastic buckling and splitting. A third limiting factor which is considered in the formability limits is a minimum flange. A minimum flange is encountered when the pressure of the rubber press is insufficient to form the flange to the form block.

THE GUERIN RUBBER PROCESS 1925 PSI LAKE ERIE RUBBER PRESS FIGURE II B-1

There are other distortions common to stretch flanges but are considered minor since their severity can be minimized or eliminated by subsequent forming operation. These minor failures include springback, crown in the web, shear buckling, and hump.

The major failures that occur in rubber shrink flanges are elastic buckling and plastic buckling. Minimum flange is also encountered in shrink flanges and is considered a limiting forming factor. The minor failures for shrink flanges are the same as previously listed for stretch flanges.

Definition of Part Shape and Geometric Variables

Rubber stretch flanges may be either along concavely contoured portions or on holes whereas shrink flanges are along convexly contoured portions. The geometric variables, as shown in Figure II B-2, are flange height (h), material thickness (t), part radius (R), web width (w), and segment angle θ .

RUBBER SHRINK FLANGE

RUBBER STRETCH FLANGE

FIGURE II B--2 RUBBER SHRINK AND STRETCH PARTS

The geometric variables that have the greatest influence on the formability limits are flange height, material thickness, and part radius. These three variables are the only ones considered in this contract; however, it has been proved in work done prior to this contract that the buckling and splitting limits will increase with a decrease in segment angle. The extent of increase has not been determined and was not investigated in this contract.

Predictability Equations

The predictability equations for rubber stretch flanges are as follows:

The equation for the splitting limits:

$$\frac{h}{R}$$
 = .4 21 In (13.5 $\epsilon_{2.0}$)

Equation I

The equation for the inflection line:

$$\frac{h}{R} = 0.0079 \left(\frac{h}{t}\right)^{0.5}$$

Equation II

The equation for the elastic buckling line:

$$\frac{h}{R} = 0.09 \frac{E}{S_{ty}} \frac{1}{\left(\frac{h}{t}\right)^2}$$

Equation III

The equation for the pressure limit index line:

$$\frac{h}{R} = 102 \left(\frac{h}{1}\right)^{4.36}$$

Equation IV

The equation for the lower portion of the pressure limit line:

$$\frac{h}{R} = \frac{6.99 \times 10^6}{(S_y)^{4.9}} \left[\frac{h}{t} \right]^{17.0}$$

Equation V

The equation for the pressure limit inflection line:

$$\frac{h}{R} = 0.19 \left(\frac{h}{1}\right)^{0.235}$$

Equation VI

The equation for the upper portion of the pressure limit line:

$$\frac{h}{R} = \left[\frac{0.19}{\left[2.72 \times 10^8 (S_y)^{4.9}\right]^{0.0816}}\right] \left[\frac{h}{t}\right]^{1.17}$$
 Equation VII

The predictability equations for rubber shrink flanges are as follows:

The equation for the plastic buckling line:

$$\frac{h}{R} = \frac{1.4}{S_{cy}}$$

Equation VIII

The equation for the elastic buckling line:

$$\frac{h}{R} = \left[\frac{E}{S_{cy}} \right] \frac{0.0225}{\left(\frac{h}{t}\right)^2}$$

Equation IX

The equations for the pressure limits for shrink flanges are identical to the pressure limit equations for stretch flanges except that $S_{\rm cy}$ is substituted for $S_{\rm ty}$.

The formability equations for rubber stretch and shrink flanges differ slightly but the procedure for constructing formability curves from these equations is basically the same. Due to this similarity, only the use of the rubber stretch equations will be demonstrated.

To demonstrate the use of the basic formability equations a complete formability curve will be constructed for 17-7 PH steel.

The basic material properties that are needed for the construction of the curve are E/Sty, \in 2.0, and 1/Sy.

Step I: Using Equation I, h/R = 4.21 $\ln(13.5 \in 2.0)$, substitute the actual value of $\in 2.0$ in the equation and solve for h/R. The value of $\in 2.0$ for 17-7 PH is .32. The calculated value for 17-7 PH is h/R = .62. Locate h/R = .62 on log-log graph paper and construct a horizontal line from this point as shown in the following sketch.

FIGURE II B-3 GRAPH CONSTRUCTION

Step II: Using Equation II, h/R = .0079 h/t, construct the inflection line. Locate the point, .0079, on the h/R axis and draw a line with a slope of 1/2 from this point as shown in the following sketch.

FIGURE II B-4 GRAPH CONSTRUCTION

Step III: Using Equation III, construct the elastic buckling limit.

Substitute the actual value of E/S_{ty} and arbitrarily select a practical value of h/t. Solve for h/R. A value of h/t = 50 will be used.

Plot the point h/R = .0234 on the h/t = 50 line and construct a - 2 slope through this point. Extend the line from the h/t axis to the inflection line. Construct a vertical line to the splitting limit line from the point of intersection of the (-2) slope and the inflection line. See the following sketch.

FIGURE II B-5 GRAPH CONSTRUCTION

Step IV: Using Equation IV, $h/R = 102 (h/t)^{-14.36}$, construct the minimum flange (insufficient pressure) index line. Select a practical value of h/t and solve for h/R. Through this point construct a line with a slope of - 4.36. This line is not part of the formability curve but it is necessary for the construction of the pressure limit lines.

Step V: Using Equation V, $h/R = .19 (h/t)^{-.235}$, construct the pressure limit inflection line. From the point, h/R = .19 and h/t = 1, construct a line with a - .235 slope as shown in the following sketch.

FIGURE II B-6 GRAPH CONSTRUCTION

Step VI: To construct the pressure limit lines obtain the value of $1/S_y \times 10^3$ for the material in question. For 17-7 PH this value is .025. Extend a horizontal line from this point on the h/R axis to the pressure index line. From the intersection of this horizontal line and the pressure index line construct a line with a slope of 17. Extend this line to the pressure limit inflection line. From the intersection of this line and the inflection line construct a line with a slope of 1.17 and extend it to the splitting limit line. See the following sketch.

The intersection of the pressure limit lines at the inflection line, as shown in the above sketch, is a sharp break. Actually, this transition is a gradual curve as shown by the dotted line in the sketch. There is no equation for this portion of the line but the line can be fayed-in by referring to the composite graph presented in the report.

The completion of the foregoing steps will give a complete formability curve for rubber stretch flanges. A complete curve showing areas of good and failed parts is shown in the following sketch.

FIGURE II B-8 TYPICAL FORMABILITY CURVE

Composite Graphs

The formability curves representing the forming limits of materials evaluated in this contract are shown in composite form in Graphs II B-1 and II B-2. The composite for rubber stretch flanges is shown in Graph II B-1 and the composite for rubber shrink flanges is shown in Graph II B-2.

All graphs have been presented on a logarithmic basis but a method for plotting design information on Cartesian paper is possible. This type graph will enable the planner or designer to read design limits directly from the graph with no additional calculations necessary. To construct this type graph it is necessary to have previously determined the design limits for the material in question. A plot of maximum possible flange height versus minimum possible contour radius is made for all practical material gages. The design limits for all gages can be plotted on one graph. An example of this type graph using the forming limits of 2024-0 aluminum is shown in Graph II B-3.

The buckling limit lines for rubber stretch flanges represent the point of incipient buckling and should not be considered as the maximum design limits but should be considered as limits where handwork or secondary forming processes will be required. The forming of rubber stretch flanges in this program was done without the aid of overlays, wipers, traps, or other methods of increasing the formability limits. It is possible that the buckling limits can be exceeded where the dimensional tolerances of the part design are such that incipient or slight buckling is of little or no consequence.

There are ways of increasing the splitting and buckling limits of rubber stretch flanges; however, additional tooling is usually required. Splitting limits can be increased in some cases by applying a lubricating film to the surface of the material being formed. This is true

because the lubricant allows the material to elongate or draw more by reducing friction between the material and the rubber of the rubber press. The buckling limits can be extended, in some cases, by trapping or drawing devices. This is accomplished by allowing excess material to bottom out at the base of the forming tool.

The buckling limit lines for rubber shrink flanges, as shown in composite Graph II B-2, are based on buckles that are approximately .07" in depth in the plastic buckling region and .035" in depth in the elastic buckling region. It is necessary to extend the design limits for shrink flanges due to the very low limits of initial and incipient buckling. The buckling limits are extended to include practical flange heights keeping within the practical areas of handwork. The extension of the buckling limit lines for shrink flanges is demonstrated in the following schematic. Area A includes parts where buckle depth = 0. Area B₁ includes parts with buckle depths ranging from 0" to .07" and area B₂ includes parts with buckle depths ranging from 0" to .035".

FORMABILITY LIMITS

The formability limits for rubber stretch flanges are based on the minimum physical properties of each material. The physical properties of any material will vary from sheet to sheet and for this reason, it is important to consider the possible formability range for any material. An example is shown in the following sketch.

FIGURE II B-10 POSSIBLE RANGE IN FORMABILITY CURVES

GRAPH II B-1

COMPOSITE GRAPH FOR RUBBER STRETCH FLANGES

GRAPH II B-2 COMPOSITE GRAPH FOR RUBBER SHRINKFLANGES

GRAPH II B-3 ALTERNATE METHOD OF PLOTTING RUBBER STRETCH FORMABILITY LIMITS

2024-0 ALUMINUM

Design Tables

The design tables for rubber stretch flanges are shown in Tables II B-1 through II B-17 and the design tables for rubber shrink flanges are shown in Tables II B-18 through II B-34.

The design tables are so constructed that the maximum and minimum flange height and minimum contour radius can be read directly for any practical material gage. Design limits for all materials evaluated in this contract, with the exception of tungsten and beryllium, are shown in the design tables. Beryllium and tungsten were excluded due to their very brittle nature at the maximum possible forming temperatures of the rubber press.

The open spaces that appear in the design tables for rubber stretch flanges are vacant because the combination of geometric part variables makes forming impossible due to insufficient pressure.

Buckling and splitting failures are separated by a heavy line on the design tables. Design limits listed above and to the right of the heavy line are maximum due to splitting. Limits below and to the left of the line are maximum due to buckling.

The open spaces that appear in the design tables for rubber shrink flanges represent areas that are outside the forming area due to buckling or insufficient pressure.

TABLE II B-1 RUBBER FORMING LIMITS STRETCH FLANGES HW21XA-T8 (MAGNESIUM THORIUM)

Contour O.06 .069 .069 .069 .070 .069 .070 .069 .070						Material		Thickness	(£)					
1.86 1.46 1.60 1.77 1.84 1.85 1.85 1.84 1.76 1.65 1.70 1.65 1.75 1.75	Contour	910.	.020	.025	-032	040.	•050	.063	.071	.080	060.	.100	.125	191.
1.36	æ			Maximum	and Mi	oimum F	lange He	ight Li	mits (h)					
.09 .11 .14 .19 .24 .36 .43 .44 .66 .17 .14 .19 .24 .36 .44 .66 .17 .14 .47 .44 .16 .10 .14 .16 .10 .14 .16 .16 .16 .17 .16 .16 .17 .16 .16 .17 .16 .17 .16 .16 .17 .16 .16 .17 .16 .16 .17 .16 .16 .17 .16 .16 .16 .17 .16 .16 .17 <th></th> <th>.38</th> <th>84.</th> <th>09.</th> <th>.77</th> <th>₹8,</th> <th>+8.</th> <th>.85</th> <th>.85</th> <th>+8•</th> <th>.76</th> <th></th> <th></th> <th></th>		.38	84.	09.	.77	₹8,	+8.	.85	.85	+8•	.76			
38 46 60 77 36 120 131 170 164 166 170 169 171 170 151 170 166 170 170 170 160 170	~	60.	.11		.19	.24	.30	.38	.43	.54	.68			
.09 .11 .18 .12 .29 .37 .41 .47 .54 .56 .77 .69 .17 .18 .18 .18 .18 .18 .19 .19 .19 .21 .51 .70 .19 .21 .26 .77 .66 .77 .66 .77 .66 .78 .19 .19 .21 .29 .29 .21 .76 .26 .76 .26 .26 .26 .26 .26 .27 .17 .19 .26 .27 <th></th> <td>38</td> <td>.48</td> <td>.60</td> <td>.77</td> <td>96.</td> <td>1.20</td> <td>1.51</td> <td>1.70</td> <td></td> <td>1.68</td> <td>1.70</td> <td>1.63</td> <td>1.68</td>		38	.48	.60	.77	96.	1.20	1.51	1.70		1.68	1.70	1.63	1.68
445 5.52 6.60 7.77 6.66 1.29 1.51 1.70 1.92 2.16 2.46 2.72 3.64 2.72 3.64 3.65 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.69 3.73 3.74 3.62 3.75 3.70 3.62 3.71 3.67 3.75	9	66.	1	,14	.18	.23	.29	.37	.41	.47	.54	.60	•76	1.68
.08 .11 .13 .17 .22 .26 .36 .46 .46 .56 .76 .36 .36 .36 .36 .36 .36 .37 .39 .47 .36 .27 .36 .37 .36 .37 <th></th> <td>45</td> <td>.52</td> <td>.60</td> <td>.77</td> <td>96.</td> <td>1.20</td> <td>1.51</td> <td>1.70</td> <td>1.92</td> <td>2,16</td> <td>2.40</td> <td>2.44</td> <td>2.47</td>		45	.52	.60	.77	96.	1.20	1.51	1.70	1.92	2,16	2.40	2.44	2.47
50 .57 .66 .78 .96 1.20 1.71 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .17 .22 .28 .35 .39 .45 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .51 .52 .53 .45 .45 .51	15	8	11.	.13	.17	.22	.28	.36	04.	94.	.52	. 58	.7 ⁴	1.14
.08 .10 .11 .12 .28 .29 .39 .44 .51 .51 .71 .84 .26 .120 .151 .170 .192 .210 .290 .300 .300 .300 .300 .300 .31 .31 .21 .221 .329 .39 .445 .51 .240 3.00 .300 .300 .31 .31 .31 .32 .32 .39 .445 .51 .240 3.00 .3	8	.50	.57	99°	.78	96.	•	•	1.70	1.92	2,16	2.40	3.00	3.31
.53 .61 .71 .84 .96 1.20 1.51 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .17 .21 .27 .25 .39 .45 .51 .52 .51 .51 .51 .51 .51 .52 .52 .51 .52 .5	2	80.	.10	.13	.17	.22	.28	.35	.39	.45	.51	.58	•73	1.12
.08 .10 .13 .17 .21 .27 .35 .39 .44 .51 .52 .52 .53 .44 .50 .56 .71 .08 .10 .13 .11 .132 .154 .170 .192 .216 .710 .150 .710 .710 .710 .710 .710 .710 .710 .710 .710 .710 .710 .710 .710 .710		.53	19.		†8 •	96•	1.20	•	1.70	1.92	2.16	2.40	3.00	4.11
5.56 .65 .76 .89 1.03 1.20 1.51 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .17 .21 .27 .34 .39 .44 .50 .56 .71 .08 .10 .13 .17 .21 .21 .27 .34 .39 .44 .50 .56 .71 .08 .10 .13 .17 .21 .27 .34 .39 .44 .50 .56 .71 .08 .10 .13 .17 .21 .27 .34 .39 .44 .50 .56 .71 .08 .10 .13 .11 .11 .12 .14 .15 .14 .15 .14 .16 .16 .17 .16 .17 .16 .17 .16 .17 .16 .17 .16 .17 .16 .17 .16 .17 .17 .16 .17	25	88	01.		.17	.21	.27	.35	.39	45	.51	•57	.72	1.10
.08 .10 .13 .17 .21 .27 .34 .39 .44 .50 .56 .71 .08 .69 .80 .94 1.09 1.26 1.51 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .17 .21 .27 .34 .39 .44 .50 .56 .71 .08 .10 .13 .11 .13 1.54 1.70 1.92 2.16 .240 3.00 .08 .10 .13 .11 .12 .124 .154 1.70 1.92 2.16 .240 3.00 .08 .10 .13 .16 .12 .14 .150 .14 .50 .54 .50 .70 .08 .10 .13 .16 .12 .14 .15 .14 .15 .14 .50 .54 .50 .09 .10 .12 .12 .12 <th< td=""><th></th><td>.56</td><td>.65</td><td>.76</td><td>.89</td><td>1.03</td><td>1.20</td><td></td><td>1.70</td><td></td><td>2,16</td><td>2.40</td><td>3.00</td><td>64.4</td></th<>		.56	.65	.76	.89	1.03	1.20		1.70		2,16	2.40	3.00	64.4
.59 .69 .80 .94 1.29 1.26 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .17 .21 .27 .34 .39 .44 .50 .56 .71 .08 .10 .13 .17 .21 .27 .34 .39 .44 .50 .56 .71 .08 .10 .13 .11 .12 .27 .34 .38 .44 .50 .56 .71 .08 .10 .13 .16 .17 .160 .70 .192 .2.16 .70 .30 .70<	30	80.	.10	.13	.17	.21	.27	.34	.39	44.	•50	•56	.71	1.08
.08 .10 .13 .17 .21 .34 .39 .44 .50 .56 .71 .30 .14 .50 .44 .50 .72 .84 .99 1.14 1.32 1.54 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .16 .27 .34 .38 .44 .50 .76 .70 .	. 6	65.	69.	.80	46.			•	1.70	1.92	2.16	2.40	3.00	64.4
.62 .72 .84 .99 1.14 1.32 1.54 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .17 .21 .27 .34 .38 .44 .50 .56 .70 .08 .10 .13 .18 .21 .24 .38 .44 .50 .56 .70 .08 .10 .13 .16 .21 .26 .33 .38 .43 .49 .56 .70 .08 .10 .15 .122 .142 1.65 1.79 .43 .43 .49 .56 .50 .08 .10 .13 .16 .21 .26 .33 .38 .43 .43 .49 .59 .50 .09 .10 .12 .12 .14 .176 .186 .20 2.16 .240 .30 .08 .10 .12 .12 .12 .12 .12 </td <th>ک</th> <td>80.</td> <td>01.</td> <td>.13</td> <td>.17</td> <td>.21</td> <td>.27</td> <td>•34</td> <td>•39</td> <td>777</td> <td>•50</td> <td>95.</td> <td>.71</td> <td>1.08</td>	ک	80.	01.	.13	.17	.21	.27	•34	•39	777	•50	95.	.71	1.08
64 75 86 17 21 27 34 38 44 56 76 77 34 35 44 56 77 36 77 36 1.20 1.21 1.26 1.76 1.76 1.79 2.16 2.16 2.10 3.00 6.6 77 36 1.26 1.22 1.42 1.65 1.79 1.92 2.16 2.10 3.00 7.0 3.0 1.2 1.2 1.42 1.65 1.79 1.92 2.16 2.10 3.00 7.0 3.0 1.2 1.2 1.47 1.76 1.86 2.16 2.10 3.00 7.0 3.0 3.0 1.2 1.2 1.47 1.76 1.86 2.0 2.16 2.0 2.10 3.00 7.0 8.0 1.0 1.2 1.2 1.2 1.76 1.78 1.8 2.1 2.1 2.1 3.0 1.0 1	4.7	₹9•	-72	†8•	66.	•	•	1.54	1.70	1.92	2.16	2.40	3.00	64.4
64 .75 .86 1.01 1.18 1.37 1.60 1.70 1.92 2.16 2.40 3.00 .08 .10 .13 .16 .21 .26 .33 .38 .43 .49 .59 .50 .59 .06 .77 .90 .156 .122 1.42 1.65 1.79 1.92 2.16 .50	0#	80*	.10		.17	.21	.27	•34	• 38	†††°	•50	•56	•70	1.07
.08 .10 .13 .16 .21 .26 .33 .38 .43 .49 .55 .69 .69 .66 .77 .90 1.56 1.22 1.42 1.65 1.79 1.92 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.17 1.76 1.86 2.06 2.16 3.00	u ',	₹9*	•75	.86	1.01	•	•			1.92	2.16	2.40	3.00	64.4
66 77 90 1.56 1.22 1.42 1.65 1.79 1.92 2.16 2.1	4.2	80.	.10	.13	.16	21	.26	.33	.38	.43	64.	•55	•69	1.05
.08 .10 .13 .16 .21 .26 .33 .38 .43 .49 .54 .59 .50 .126 1.47 1.76 1.86 2.00 2.16 2.40 3.00 .08 .10 .12 .15 .15 1.76 1.76 1.85 2.08 2.16 2.0 2.17 2.08 2.25 2.40 3.00 3.00 .08 .10 .12 .15 1.57 1.83 1.97 2.12 2.42 2.40 3.00 .08 .10 .15 1.34 1.57 1.83 1.97 2.12 2.45 2.45 3.00 .08 .10 .12 .15 1.83 1.87 2.18 4.8 4.8 5.4 4.6 .08 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 .		99*	.77	.90		•			•	1.92	2.15	2.40	3.00	64.4
70 80 93 1.90 1.26 1.47 1.76 1.86 2.00 2.16 2.0 2.26 2.48 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.44 2.69 2.60 </td <th>50</th> <td>80.</td> <td>.10</td> <td>.13</td> <td>.16</td> <td>.21</td> <td>.26</td> <td>•33</td> <td>•38</td> <td>.43</td> <td>64.</td> <td>45.</td> <td>69•</td> <td>1.05</td>	50	80.	.10	.13	.16	.21	.26	•33	•38	.43	64.	45.	69•	1.05
.08 .10 .12 .16 .26 .26 .33 .38 .48 .48 .54 .59 .69 .69 .69 .69 .69 .50 .12 .12 .13 .15 .16 .26 .33 .37 .42 .48 .54 .68 .50 .50 .26 .33 .37 .42 .48 .54 .68 .50 .50 .20 .26 .33 .37 .42 .48 .54 .56 .50 .08 .10 .12 .16 .20 .26 .33 .37 .42 .48 .54 .56 .56 .09 .10 .18 .15 .16 .27 .21 .21 .42 .48 .54 .56 .56 .08 .10 .18 .16 .29 .21 .21 .21 .21 .22 .23 .21 .42 .43 .47 .47 .53 .50	צצ	02.	.80	.93	1.90	•	1.47		1.86	2.00	2.16	2.40	3.00	6 † •†
70 83 .95 1.32 1.50 1.76 1.92 2.08 2.25 2.40 3.00 .08 .10 .12 .16 .20 .26 .33 .37 .42 .48 .54 .68 .08 .10 .15 1.34 1.57 1.83 1.97 2.12 2.30 2.45 3.00 .08 .10 .12 .20 .26 .33 .37 .42 .48 .54 .66 .75 .94 1.00 1.18 1.50 1.87 2.01 2.18 2.53 3.00 .08 .10 .12 .20 .25 .33 .37 .42 .47 .53 .58		.08	.10		91.	.20	•36	•33	•38	•43	84.	.54	69°	1.05
.08 .10 .12 .16 .20 .26 .33 .37 .42 .48 .48 .54 .68 .74 .85 .99 1.15 1.34 1.57 1.83 1.97 2.12 2.30 2.45 3.00 .08 .10 .12 .16 .20 .26 .33 .37 .42 .48 .55 3.00 .08 .10 .18 1.50 1.50 1.87 2.01 2.18 2.53 3.00 .08 .10 .12 .16 .29 .33 .37 .42 .47 .53 .58	Ş	.70	.83	.95	1.12		•	٠	•	2.08	2.25	2.40	3.00	6 †* †
.7t .85 .99 1.15 1.34 1.57 1.83 1.97 2.12 2.30 2.45 3.00 .08 .10 .16 .20 .26 .33 .37 .42 .48 .54 .65 .75 .94 1.00 1.18 1.60 1.87 2.01 2.18 2.53 3.00 .08 .10 .12 .16 .20 .25 .33 .37 .42 .47 .53 .58	3	80.	.10	.12	.16	.20	92.	•33	.37	2ħ°	84.	÷5.	89*	50•τ
.08 .10 .12 .16 .26 .33 .37 .42 .48 .54 .68 .75 .94 1.00 1.18 1.50 1.87 2.01 2.18 2.37 2.53 3.00 .08 .10 .12 .16 .20 .25 .33 .37 .42 .47 .53 .68	65	+l∕T.	.65	.99	1.15	•	• 1		•	21.5	2.30	2.45	3.00	64.4
. 75 . 94 1.00 1.18 1.58 1.60 1.87 2.01 2.18 2.37 2.53 3.00 0.08 .10 .12 .16 .20 .25 .33 .37 .42 .47 .53 .68		90.	.10	.12	36	.20	.26	.33	.37	42	48	.54	.68	1.04
.08 .10 .12 .16 .20 .25 .33 .37 .42 .47 .53 .68	20	.75	t/6	1.00	1.18	•		1.87	2.01	2.18	2.37	2.53	3.00	64°4
	2	90•	.10		91.	.20	.25	•33	•37	2ħ•	L+1.	.53	89•	1 0°τ

TABLE II B-2 RUBBER FORMING LIMITS STRETCH FLANGES 2024-0 ALUMINUM

					Material	1	Thickness	(±)					
Contour	910.	020.	.025	-032	040.	.050	.063	170.	080.	œo.	21.	.125	751.
R			Maximum	a nd	Minimum Flange		Height Limits (h)	mits (h)					
	.65	.82	1.02	1.31	1.44	1.45	1.48	1.49	3.48	1,482	1.48		
2	.07	60	.11	.15	.190	.240	.31	.35	04.	994.	.54		
	.65	-82	1.02	1.31	1.64	2.05	2.58	2.91	2.88	2.965	2.90	2.840	2.90
9	20.	80.	.11	.14	.181	.230	.292	.33	.38	432	84	.62	.99
	69.	-82	1.02	1.31	1.64	2.05	2.58	2.91	3.28	3.69	4.10	4.37	4.34
15	%	30.	010	.139	.176	.223	.286	.32	.368	745	- h ₂	.60	.91
8	.77	.89	1.02	1.31	1,64	2.05	2.58	2.91	3.28	3.69	4.10	5.125	5.8
Ç	90.	, 08	.10	.137	.17	.220	.281	.32	.364	.41	94.	.58	89
	.83	16.	1,11	1.31	1.64	2.05	2.58	2.91	3,28	3.69	4.10	5.125	7.29
55	8	80.	10	.13	.17	.218	.278	.31	.360	04.	94.	. 58	.89
	88	1.02	1.19	1,39	1.64	2.05	2.58	2.91	3.28	3.69	4.10	5.125	7.67
30	90.	•08	.102	.133	91.	-212	.272	.31	.352	.39	44.	.57	-88
1	<i>26</i> •	1.07	1.25	1.47	1.7	2.05	2.58	2.91	3.28	3.69	4.10	5.125	3. 6
35	90.	80°	.100	.131	.167	.211	.270	30	349	•39	44.	•56	. 8%
9	96	1.13	1,31	1.52	1.77	2.05	2.58	2.91	3.28	3.69	4.10	5.12	7.67
₽	90.	.070	100	.13	91.	.210	.268	30	348	.39	† ††*	.56	•86
<i>3</i> %	00.1	1.16	1.35	1.58	1.84	2.15	2.58	2.91	3.28	3.69	4.10	5.12	7.67
42	%.	.08	660.	.13	,164	.209	±92°	•30	-345	.38	•43	.55	•85
3	1.04	1.20	1.40	1.63	1.92	2.20	2.58	2.91	3.28	3.69	4.10	5.12	7.67
ટ્ર	90.	හ	660	.13	,164	.21	•26 ⁴	.30	.342	.38	.43	.55	.85
55	1.10	1.25	1.44	1.69	1.98	2.29	2.64	2.91	3.28	3.69	4.10	5.12	7.670
*	90.	80.	.099	.13	.164	.21	.264	.30	.342	.38	-43	.55	.85
\$	1.09	1.28	1.47	1.74	2.04	2.3	2.74	2.94	3.28	3.69	4.10	5.12	7.670
3	90.	0.076	.097	.12	.160	202	.26	. 29	.336	.37	42	.54	.83
65	113	1.32	1.52	1.87	2,10	2.45	2.83	3.05	3.320	3,69	4.10	5.12	7.670
`	-	.076	60.	. 12	.16	20	.26	.29	.336	.37	24.	-54	.83
70	1.16	1.35	1.56	1.85	2.14	2.50	2.90	3.12	3.400	3.69	4.10	5.12	7.670
•		-07	. 097	.12	.16	20	-26	.29	.336	.37	.42	•54	•83

TABLE II B-3
RUBBER FORMING LIMITS
STRETCH FLANGES
17-7 PH (CONDITION A)

					Mate	Material Ib	Thickness	(£)					
Contour	910.	.020	.025	-032	040.	.050	.063	.071	080.	œo.	.100	.125	261.
æ			Maximum	a and Minimum		Flange Height Limits (h)	eight Li	mits (h					
	.56	.71.	88.	1.13	1.42	1.77	2.01	1.845					
5	.10	.13	.17	45.	•28	•36	. 74.	.582					
O.C.	•56	.71	88.	1.13	1,42	1.77	2.23	2.520	1 ∕8°7	3.19	3.55	3.87	
3	01.	.13	165	12.	.27	34	44	764	95.	.63	.71	Le.	
ر د	.61	.71	.88	1.13	1.42	1.77	2.23	2.520	2.84	3.19	3.55	44.4	5.98
;	.12	.12	.162	.21	%	.33	.43	.483	.55	.63	02.	38.	1,44
8	.78	.79	.91	1.13	1.42	1.77	2.23	2.520	2,84	3.19	3.55	77.7	t9 . 9
	60 •	.12	91.	•20	.26	•33	614.	944*	÷5÷	.51	<i>6</i> 9.	-87	1.32
30	.72	.85	80	1.15	1.42	1.77	2.23	2.520	5.84	3.19	3.55	†††	t9°9
(3	60•	.12	.16	•20	.86	,33	24°	474.	45.	.61	69.	.87	1.32
20	777	90	1.05	1.21	1.42	1.77	2.25	2.520	2.84	3.19	3.55	777.71	49.9
2	60	.12	.15	.20	.26	.32	ፒካ•	7.45	.53	09.	.67	.85	1.31
35	8	1 6	1.11	1.28	1.48	1.77	2.23	2,520	2.84	3.19	3.55	4.44	49.9
ì	8	124	15	.20	.26	32	.41	7L17	.53	09.	29.	.85	1.31
04	78	-99	1.15	1.34	1.56	1.80	2.23	2.520	2.84	3.19	3.55	ተተ•ተ	19.9
?	60	-12	15	20	-25	-32	04.	, 191	.52	.59	99.	†8•	1.29
45	-87	7.02	1.17	1.39	1.62	1.87	2.23	2.520	2.84	3.19	3.55	†††* †	t9°9
	8	-12	-15	91,	,25	-32	.41	194	.52	.58	99•	.83	1.27
20	5	1.05	1.22	1.50	3.68	1.95	2.27	2.520	2.84	3.19	3.55	44.4	6.64
	8	.12	-15	.19	.25	32	.41	.461	.52	.58	.660	.83	1.27
55	46	07-7	1.86	1.50	1.74	2.02	2.36	2,555	2.84	3.19	3.55	77.7	t9°9
	8	.12	•15	.19	,24 15	.31	04.	454	.51	.58	.65	.82	1.27
8	88	113	2	1.54	1.80	2.0	2.4	2.63	2.84	3.19	3.55	44.4	t ₉ •9
	60.	.12	.15	.19	-24	.31	04.	454.	.51	.58	•65	.82	1.26
65	89	31.1	1.3	1.60	1.84	2.15	2.52	2.70	2.92	3.19	3.55	4.44	t9°9
	8	7	.15	.19	-2 ⁴	315	400	454	.51	.58	.650	.81	1.26
20	1.02	1.13	1.39	1.62	1.9	2.20	2.55	2.77	3.00	3.06	3.55	ተተ• ተ	₹9•9
	8	7	-15	.19	-2 [‡]	.31	.39	444	.51	.57	†9 •	.81	1.25

TABLE II B-4 RUBBER FORMING LIMITS STRETCH FLANGES PH 15-7 MO (CONDITION A)

					Material		Thickness	(£)					
Contour	.016	.020	.025	-032	040.	.050	•063	.071	080.	.090.	.160	.125	137
R			Maxtmum	and	Minimum Flange		Height Limits (h)	mits (h					
	45.	89•	.85	1.09	1.36	1.70	2.00	1.42					
5	11.	41.	.18	.23	.30	.38	.52	-64					
9.	45.	.68	.85	1.09	1.36	1.70	2.14	24.5	2.72	3.06	3.40	3.82	
3	11.	ηĪ.	.17	.23	.29	.36	94.	.52	.59	.67	-76	1.00	
,	.59	69.	.85	1.09	1.36	1.70	2.14	2,42	27.5	3.06	3.40	4.25	5.89
4	11.	.13	.17	.22	.28	.35	45	.51	.58	.65	.73	.93	1.55
8	.65	92.	.89	1.09	1.36	1.70	2.14	2,42	2.72	3.06	3.40	4.25	6.35
3	.10	13	.17	.22	.27	.35	44.	.50	.57	1 9•	.72	.91	1.40
	02.	-82	.95	1.12	1.36	1.70	2.14	2,42	2.72	3.06	3.40	4.25	6.35
52	.10	.13	.17	.21	.27	.34	44.	•50	95*	†9°	.72	.91	1.38
\(\frac{1}{2}\)	7/L*	-87	1.01	1.18	1.36	1.70	2.14	2,42	2.72	3.06	3.40	4.25	6.35
30	•10	·13	.17	.21	.27	•34	.43	64.	• 95•	•63	.71	8.	1.37
•	.78	16*	1.06	1.25	1,44	1.70	2.14	2,42	2.72	3.06	3.40	4.25	6.35
35	.10	•13	•16	.21	.27	•34	•43	64.	.55	•63	02.	68•	1.36
()	-82	%	1.11	1.30	1.52	1.75	2.14	2,42	2.72	3.06	3.40	4.25	6.35
₽	•10	.13	•16	.21	.27	.34	.43	84.	.55	.62	.70	. 88	1.35
4	98	1.00	1.15	1.34	1.59	1.82	2.14	2,42	2.72	3.06	3.40	4.25	6.35
۲,	.10	.13	91.	.21	92	34	.43	48	.54	.62	69.	.88	1.34
	. 88	1.03	1.19	1.41	1.62	1.90	2.20	2,42	2.72	3.06	3.40	4.25	6.35
ጸ	10	.13	.16	.21	92	.33	42	48		.62	69•	.38	1.34
55	92	1,07	1.24	1.45	1.69	1.95	2.28	2.48	2.72	3.06	3.40	4.25	6.35
`	.10	.13	,16	.21	.26	•33	.42	.48	.5 ⁴	.62	.69	.88	1.34
5	46	1.10	1.26	1.49	1.74	2.00	2.36	2.55	2.72	3.06	3.40	4.25	6.35
3	.10	.13	91.	.21	. 26	.33	42	47	.54	.61	63	.86	1.32
65	38	1.13	1.31	1.54	1.80	2.08	2.43	2.63	2.81	3.06	3.40	4.25	6.35
	.10	.12	.16	20	.26	.33	.42	74.	.5 ¹ 4	.61	39.	98.	1.32
20	1.00	1.16	1.34	1.58	1.84	2.12	2.48	2.70	2.88	3.15	3.40	4.25	6.35
2	.10	.12	.16	.20	.26	.33	.41	74.	.53	99.	.67	-86	1.31

TABLE II B-5
RUBBER FORMING LIMITS
STRETCH FLANGES
AM-350 (ANNEALED)

					Material	rial Thi	Thickness	(£)					
Contour	910.	.020	.025	-032	040.	-050		.071	.080	060.	.100	.125	.137
R			Maximum	ı sınd Mi	and Minimum Flange		Height Limits	míts (h	_				
	64.	.61	LL.	96•	1.23	1.53	1.93						
5	.12	.15	.19	.25	32	71	9.						
9	64.	.61	.77	.98	1.23	1.53	1.93	2.18	2.46	2.76	3.07	2.68	
2	.12	.15	.18	45.	30	.38	64.	95.	.63	.72	-82	1.19	
ער	-54	.63	<i>L</i> 8•	96.	1.23	1.53	1.93	2,18	5,46	2.76	3.07	3.84	4.86
7	.11	41.	.18	, 24	.30	38	84.	.54	.62	02.	62.	1.00	1.78
8	9.	.70	%	96•	1.23	1.53	1.93	2.18	5°76	2.76	3.07	3.84	5.75
	117	.14	.18	.23	.30	.37	<u>.</u> 47	.54	.61	69.	.78	.99	1.53
30	.65	.75	.92	1.04	1.23	1.53	1.93	2.18	5,46	2.76	3.07	3.84	5.75
62	17.	,14	.18	.23	.29	.37	L#*	.53	09*	89	.76	8.	1.48
Ç	69.	-80	.97	1.09	1.26	1.53	1.93	2.18	5,46	2.76	3.07	3.84	5.75
2	.11	, 14	.18	.23	.29	.37	L4.	.53	09*	.67	-75	8.	1.46
35	.72	₹8.	1,02	1.14	1.32	1.53	1.93	2.18	5,46	2.76	3.07	3.84	5.75
<u>)</u>	.11	-14	.18	.23	62.	.36	94.	.53	09*	19.	•75	-95	1.45
9	-75	88	1.05	1.20	1.38	1.62	1.93	2.18	5,46	2,76	3,07	3.84	5.75
,	7	77-	777	-22	-28	36	45	.52	.59	29•	.75	46.	1.44
45	-78	.91	1.09	1.25	1.44	1.68	1.95	2.18	5,46	2.76	3.07	3.84	5.75
`	7.	77.	.17	-22	82	.36	.45	.51	•58	L9°	η L .	₹.	1.42
Ç	.81	\$	1777	1.28	1.50	1.73	2.05	2,18	5,46	2.76	3.07	3.84	5.78
2	171	.13	.17	-22	-28	.35	.45	.51	•58	L9 •	₽2.	₹6.	1.42
55	.85	98	1.12	1.34	1.56	1.80	2.11	2.27	2,46	2.76	3.07	3.84	5.78
	7 7 7	57	27	22	.28	-35	45	.51	.58	99*	.74	46.	1.42
8	-87	201	277	1.37	1.60	1.88	2.17	2.38	2.56	2.76	3.07	3.84	5.78
	91	-13	.17	-22	82.	.35	44.	.50	.57	.65	.73	.93	1.40
65	8	7001	1.20	1.41	1.64	1.90	2.20	2.41	2.60	2.84	3.07	3.84	5.78
	Si.	.13	-77	.22	8 %.	.35	44.	.50	.57	•65	.72	.93	1.40
70	-92	7.8	1.22	3.46	1.70	1.95	2.27	2.48	2.68	2,88	3.07	3.84	5.78
	.10	.13	.17	-22	.28	.35	44.	.50	.57	19	.72	.03	1.40

TABLE II B-6 RUBBER FORMING LIMITS STRETCH FLANGES A-286 (SOLUTION TREATED)

					Material		Thickness	(t)					
Contour	910.	.020	.025	-032	040.	.050	.063	τω.	.080	060·	.100	५दा:	751.
R			Maximum	um and Minimum Flange Height Limits (h)	ıimum FJ	lange He	ight Li	nits (h)					
	5.5 8.7.5	7.2	06	1.15	1.44	1.80	2.21	1.77					
2	Į.	.13	.17	.22			94.	.58					
	.58	.72	06.	1,15	1.44	1.80	2.27	2.56	2.88	3.24	3.60	4.12	
23	01.	.13	.17	.21	.27	.34 ∫	44.	.50	.56	1 9.	.72	%	
	ħ9°	±7.	·90	1.15	1.44	1.80	2.27	2.56	2.88	3.24	3.60	4.5	6.45
15	01.	.13	91.	.21	.26	•33	.43	.48	.55	.63	.70	88.	1.44
8	02.	-82	.95	1.15	ካተ•፣	1.80	2.27	2.56	2.88	3.24	3.60	4.5	6.73
3	ा.	.13	91.	.21	92.	.33	.43	84.	.55	.63	57	88	1.35
	.75	.88	1.02	1.18	ተካ•ፒ	1.80	2.27	2.56	2.88	3.24	3.60	4.5	6.73
\$	01.	21.	91.	.21	92.	.33	.42	74.	- 54	.61	89.	8.	1.31
	.80	.92	1,07	1.26	1.44	1.80	2.27	2.56	2.88	3.24	3.60	4.5	6.73
<u>ک</u>	οτ•	रा.	91.	.21	92	.32	.41	. h7	.53	.60	.68	88.	1.31
	.83	96.	1,13	1,31	1.52	1.80	2.27	2.56	2.88	3.24	3.60	4.5	6.73
35	.10	.12		.21	92.	•32	.41	74.	.53	09.	.67	.85	1.30
	88	1.02	1.20	1,41	1.60	1.88	2.27	2.56	2.88	3.24	3.60	4.5	6.73
9	60	12	91.	30	52	32	14.	Н	52	59	19	₽8+	1.29
1	06.	1.06	1.23	ነተ• ፒ	1.68	1.95	2.27	2.56	2.88	3.24	3.60	4.5	6.73
42	60.	.12	.15	.20	.25	-32	.41	94.	.52	.59	%	-84	1.27
•	₹6*	1.08	1,28	1.49	1.74	2.00	2.33	2.56	2.88	3.24	3.60	4.5	6.73
20	60.	.12	.15	.20	.25	.32	04.	· 46	.52	.59	99.	78.	1.27
5,5	86*	1.13	1.30	1.54	1.80	2.08	2.43	2,63	2.88	3.24	3.60	4.5	6.73
	60.	.12	.15	.20	.25	.32	04.	9ħ.	.52	.59	99.	.83	1.27
S	1.00	71.1	1,35	1.60	1.84	2.17	2.52	2.70	2.88	3.24	3.60	4.5	6.73
3	00	32	.15	.20	.25	.31	40	94	. 52	. 59	.65	83	1.26
59	1.04	1.20	1.40	1.66	1.92	2.25	2.58	2.80	3.04 F	3.24	3.60	4.5	6.73
`	.09	.12	.15	.19	.25	.31	04.	94.	.51	.59	.65	.83	1.%
20	1.06	1.23	1.43	1.68	%، ر	2,25	2.65	2.84	3.12	3.33	3.60	4.5	6.73
2	60•	.12	.15	.19	,24	.31	04.	-45	.51	.58	.65	.82	1.25

TABLE II B-7 RUBBER FORMING LIMITS STRETCH FLANGES USS-12-MOV (ANNEALED)

					Material		Thickness	(t)					
Contour	910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	761.
æ			Maximum		and Minimum Flange		Height Limits (h)	míts (h)					
	6ħ*	19*	.77	-98	1.23	1.53	1.01						
5	.13	•16	.20	.26	.34	44.	1.01						
3	6ħ*	.61	.81	.98	1.23	1.53	1.93	2.18	2.46	2.76	3.07		
OT	12	•15	61.	.25	•35	04.	.51	.58	99.	.75	.86		
i,	Ψ5*	٠63	.87	.98	1.23	1.53	1.93	2.18	2.46	2.76	3.07	3.84	2.99
ر ۲	.12	•15	61.	.25	.31	04.	.50	.57	•65	.73	.82	1.05	2.99
8	09*	0.L	06.	96•	1.23	1.53	1.93	2.18	2,46	2.76	3.07	3.84	5.75
2	.12	•15	61.	42.	•30	•39	64*	.56	₹9•	.72	.80	1.01	1.57
J	59 °	•75	-92	1.04	1.23	1.53	1.93	2.18	5,46	2.76	3.07	3.84	5.75
52	.11	31.	•19	•24	• 30	.37	64.	•56	•63	.72	-80	10.1	1.55
CC	69	.80	76.	1,09	1.26	1.53	1.93	2.18	2,46	2.76	3.07	3.84	5.75
30	.11	.14	.18	•2⁴	•30	.37	84.	•55	.63	.77	-89	1.00	1.53
20	2L*	₩.	1.02	1.14	1,32	1.53	1.93	2,18	2,46	2.76	3.07	3.84	5.75
52	77	14.	.18	.23	30	.37	48	54	.62	.70	.78	1.00	1.51
C	.75	.88	1.05	1.20	1.38	7 . 62	1.93	2.18	5.46	2.76	3.07	3.84	5.75
₽	11.	14	.18	.23	.29	.37	4.7	54	.61	69.	77.	.99	1.50
بر بر	.78	.93	1.09	1.25	1777	1.68	1.95	2.18	2.46	2.76	3.07	3.84	5.75
`	17.	-14	.18	.23	.29	.37	Lη*	.54	.61	69.	.77	.97	1.50
Ç	-81	76.	1,11	1.28	1.50	1.73	2.05	2.18	2.46	2.76	3.07	3.84	5.75
2	11.	177	.18	.23	. 29	.37	147	.53	.60	.68	.76	.97	1.49
55	-85	98.	1.12	1.34	1.56	1.80	2.11	2.27	2.46	2.76	3.07	3.84	5.75
*	7	14	.18	.23	.29	.37	<i>-</i> μ.	.53	9.	.68	.76	96•	1.49
- S	.87	1.02	1,17	1.37	1.60	1.88	2.17	2.38	2.56	2.76	3.07	3.84	5.75
	.11	41.	.18	.23	.29	.37	94.	.53	.60	89*	.76	%.	1.49
65	8	1.04	1.20	1,41	1.64	1.90	2.20	2,41	2.60	5.84	3.07	3.84	5.75
	11.	т. †Т.	.17	.23	82	.36	£.	.53	.60	.68	.76	.96	1.48
- 02	-92	7.06	1.22	1.46	1.70	1.95	2.27	2.48	2.68	2.88	3.07	3.84	5.75
	11.	47.	.17	.23	88.	.36	94.	•53	.60	.68	94.	96•	1.48

TABLE II B-8
RUBBER FORMING LIMITS
STRETCH FLANGES
TITANIUM (6 AL-4V)(MILL ANNEALED)

					Material		Thickness	(t)					
Contour	910.	.020	.025	.032	040.	.050	.063	170.	080.	060.	.100	.125	297
œ			Maximum	and Mir	and Minimum Flange	lange He	Height Li	Limits (h)					
	.29	.36	5ħ°	.58	.72	.90							
2	91.	.20	.25	.32	44.	.90							
,	•30	.36	5ħ.	.58	•72	.90	1.13	1.28	1.44	1.62	1.80		
ot	.15	.19	#2°	.31	04.	.52	t/9°	17h	68	1.04	1.80		
U	•35	0 † *	<i>L</i> η•	.58	.72	90	1.13	1.26	1.44	1.62	1.80	2.25	
7	.15	91.	42.€	.30	.39	64.	-62	.77	.81	-92	1.03	1.41	
8	.38	54.	15.	.61	.72	06.	1.13	32.1	1.44	1.62	1.80	2.25	3,37
2	ήτ.	.18	.23	• 30	• 38	84.	.62	.70	. 79	8	1.01	1.27	2,37
į	ፒቱ°	84.	55.	69.	.75	06.	1.13	1.28	1.44	1.62	1.80	2.25	3.37
\$	41.	.18	.23	30	.37	<i>L</i> ተ	19*	69	7.8	89	1.00	1.26	2.02
00	ካካ	.51	65.	69*	-80	.93	1.13	1.28	1.44	1.62	1.80	2.25	3.37
30	4τ.	91.	.23	.29	.37	Ľħ*	09*	39*	.78	88•	96•	1.25	1.91
	94*	₹5.	79°	.73	.85	86•	1.13	1.28	1.44	1.62	1.80	2.25	3.37
35	4۲۰	.18	.22	•29	.37	941*	.59	.67	.77	.87	.97	1.24	1,91
()	84*	•56	99*	.77	.88	1.04	1.20	1.30	1.44	1.62	1.80	2.25	3.37
2	.14	71.	.22	.29	.36	94.	.59	. 19	92.	98•	96.	1.23	1.87
u.	05	•58	L9*	-79	.92	1.06	1.25	1.33	1.46	1.62	1.80	2.25	3.37
	,14	.17	.22	.29	.36	9ħ*	.59	19.	.76	·86	.96	1.21	1.86
(·52	.60	.70	.83	.95	1.10	1.27	1.39	1.51	1.62	1.80	2.25	3.37
ጸ	,14	.17	.22	.29	.36	94.	.58	99•	.75	.85	.95	1.21	1.85
55	η ς•	.62	•72	98.	.99	1.14	1.32	1.43	1.55	1.69	1.80	2.25	3.37
`	.14	.17	.22	.28	.36	5ħ°	.58	99*	.75	.85	.95	1.20	1.85
5	55	.64	.75	.87	1.02	1.18	1.39	1.49	1.62	1.75	1.88	2.25	3.37
}	.13	.17	.22	.28	.36	.45	.57	.65	.74	₹8.	46.	1.19	1.83
65	.57	99•	92.	.90	1.04	1.20	04.1	15.1	1.65	1.78	1.90	2.25	3.37
`	.13	.17	.22		.35	5ħ°	.57	•65	+72.	.83	.93	1.19	1.81
- 20	.58	.68	.78	-92	1.07	1.25	5 † •τ	1.56	1.70	1.84	1.96	2.29	3.37
2	.13	.17	.22	.28	.35	54°	25.	59 °	7L.	.83	.93	1.18	1.81
				l									

TABLE II B-9
RUBBER FORMING LIMITS
STRETCH FLANGES
TITANIUM (13V-11Cr-3 A1)(SOLUTION TREATED)

Contour .016 Redius R .28 5 .16 10 .29 10 .29 15 .15	45. 92. 92. 92. 92. 93. 94. 81.		.032 and Min .33	Oto.	.050	.063	.071	080.	860.	31.	.125	751.
	48. 92. 92. 92. 93. 94. 81. 81.		and Min .55									
	34 20 39 39 44 81 81	43 45 45 50 53 53	.33	Minimum Fl	Flange He	Height Li	Limits (h	,				
	.39 .39 .19 .19 .16 .16	25. 43. 45. 57. 50. 53.	.33	69.								
	34 .19 .19 .18 .18	43 45 45 50 50 53		.43								
	. 19 . 19 . 18 . 16 . 18	45. 57. 50. 53. 53.	.55	69.	98.	1.08	1.22	1.38	1.55	1.57		
	. 39 . 19 . 18 . 18	. 24 . 20 . 50 . 23	.31	04.	.50	.65	.73	.87	1.05	1.57		
	. 19 . 18 . 18 . 18	.24 .50 .23	.55	69.	98.	1.08	1.22	1.38	1.55	1.72	2.15	
	,43 ,18 ,46	.53	.30	.39	64.	.63	.71	.81	-92	1.03	1.40	
	.18 1.8	.53	.58	69.	98.	1.08	1.22	1.38	1.55	1.72	2.15	3.22
,14	.46 18	.53	• 30	.38	84.	.61	.70	.79	8.	1.00	1.27	2.32
04.	.18		₩9•	•73	- 98	1.08	1.22	1.38	1.55	1.72	2.15	3.22
25		.23	.30	.38	84.	19.	69.	.78	-89	1.00	1.26	2.00
2h.	64.	.57	29*	.78	•90	1.08	1.22	1.38	1.55	1.72	2.15	3.22
50 14.	.18	.23	.29	.37	74.	.60	.69	. 78	88	66.	1.25	1.93
	.52	.60	.70	.81	.95	1.10	1.22	1.38	1.55	1.72	2.15	3.22
55 (ξ	.18	.22	.29	.37	<u>.</u> 47	.60	.67	1.1.	.87	.97	1.23	1.89
94*	.54	.63	.7 ⁴	. 86	1.00	1.17	1.27	1.38	1.55	1.72	2.15	3.22
4C	.18	.22	. 29	.37	94.	.59	.67	92.	98.	96	1.23	1.89
84	.56	.65	.77	.90	1.03	1.21	1.30	1.42	1.55	1.72	2.15	3.22
42.	.17	.22	.29	.36	94.	.59	.67	92.	.85	%	1.23	1.87
.50	.58	.67	.80	.92	1.08	1.23	1.35	1.44	1.57	1.72	2.15	3.22
50 .13	.17	.22	.28	.36	.45	.58	•65	+1Z.	†8•	.95	1.20	1.83
55 52	.60	70	.83	.95	1.11	1.29	1,39	1.50	1.63	1.74	2.15	3.22
.13	.17	.22	.28	.36	45	.57	.65	, 7t4	.83	46.	1.19	1.83
.53	.62	.71	.85	.97	1.15	1.32	1.43	1.56	1.69	1.82	2.15	3.22
.13	.17	12,	.28	.35	4.5	.57	.65	, 74	.83	46	1.19	1.82
65 54	79.	.73	-87	1.00	1.18	1.37	1.48	1.60	1.73	1.85	2.15	3.22
.13	.17	77	-28	.35	.45	.57	.65	-774	.83	46.	1.19	1.82
35.	.65	.75	.89	1.04	1.20	1.40	1.50	1.64	1.73	1.90	2.22	3.22
.13	.17	.21	- 28	.35	44.	.56	·64	.73	.82	.92	1.17	1.79

TAME II B-10
RUBBER FORMING LIMITS
STRETCH FLANGES
VASCOJET 1000 (H-11) (ANNEALED)

					Material	1	Thickness	(£)					
Contour	910.	080.	.025	-032	040.	H (C)	.063	.071	.080	060.	.100	.125	751.
R			Maximum	snd Mi	and Minimum Flange		ight Li	Height Limits (h)					
	24.	85	.73	.93	1.16	1.17							
5	.13	91.	.21	12.	.35	.47							
	9 4.	.58	.73	.93	1.16	1.45	1,83	2.06	2.35	2.37	2.35		
2	.13	91.	.20	92.	.33	. h2	45.	09.	.70	.81	ま		
	.51	.60	.73	.93	1.16	1.45	1.83	2.06	2.32	2.61	2.90	3.46	
ጎ	दाः	91.	.20	.25	.32	141	. 52	.59	.67	.76	.85	וויו	
8	.57	99.	.76	.93	1.16	1.45	1.83	2.06	2.32	2.61	2.90	3.62	4.68
3	टा:	.15	.19	.25	.32	Ott.	.51	.58	99.	.75	₩.	1.06	1.73
i	79.	τ1.	.82	96.	1.16	1.45	1.83	2.06	2.32	2.61	2.90	3.62	5.42
2 5	दाः	.15	.19	.25	.32	04.	.50	.57	.65	.73	.82	1.05	1.60
90	.65	92.	.87	1.02	1.20	1.45	1.83	2.06	2.32	2.61	2.90	3.62	5.45
30	दाः	.15	.19	.25	.31	04.	.50	.57	₹9.	.73	.82	1.0t	1.59
L C	89.	.79	.93	1.09	1.26	1.45	1.83	2.06	2.32	2.61	2.90	3.62	5.45
33	त.	.15	.19	դշ.	.31	.39	.50	.56	₹9.	.72	.81	1.03	1.57
	.71	78.	.96	1.14	1.32	1.52	1.83	2.06.	2.32	2.61	2.90	3.62	5.45
Q#	दाः	.15	.19	42.	.30	.39	64.	95.	₹9.	.72	.81	1.02	1.57
3 1	.74	.86	1.00	1.17	1.36	1.60	1.86	2.06	2.32	2.61	2.90	3.62	5.42
?	21.	.15	.19	т с .	.30	.39	64.	.56	.63	.72	8.	1.01	1.54
· ·		.89	1.04	1.22	1.42	1.65	1.92	2.06	2.32	2.61	2.90	3.62	5.42
χ	य:	.15	.19	ήζ.	.30	.39	64.	.56	.63	.71	œ.	1.01	1.54
55	8.	8	1.07	1.26	1.46	1.70	1.98	2.13	2.32	2.61	2.90	3.62	5.42
`	51.	.15	.19	.2 ^t	.30	.38	64.	.55	.63	.71	8.	1.00	1.53
\$	-82	%	1.10	1.30	1.50	1.75	2.05	2.20	2.40	2.61	2.90	3.62	5.42
}	.11	.15	.19	₽2.	.30	.38	64.	.55	.62		62.	1.00	1.51
65	.85	86.	1.14	1.34	1.56	1.80	2.11	2.27	2.48	2.67	2.90	3.62	5.45
`	17:	77	318	12°	30	38	149	.55	.62	.70	.79	1.00	1.51
92	.87	1.01	1.16	1.38	1.60	1.85	2.14	2.34	2.52	2.74	2.95	3.62	5.42
2	п.	77.	.18	.23	.30	.37	841.	45.	19:	69.	.78	.99	15.1

TABLE II B-11
RUBBER FORMING LIMITS
STRETCH FLANGES
RENE '41 (SOLUTION TREATED)

					Material	•	Thickness	(£)					
Contour	910.	.020	.025	-032	040.	.050	.063	170.	.080	060.	.100	.125	.187
æ			Maximum	and Minimum		Flange He	Height Limits	mits (b)					
	94.	. 58	.73	.93	1.16	1.45	.95						
5	.13	91.	.20	.26	•33	44.	.95						
Š	94.	.58	.73	.93	1.16	1.45	1.83	2.06	2:32	2.61	2.90		
OT	.12	.15	.19	.25	.32	04.	.52	. 59	.67	.76	.87		
	.51	9.	.73	.93	1.16	1.45	1.83	5.06	2.32	2.61	2.90	3.62	
ζŢ	.12	.15	.19	.25	.31	04.	.50	.57	.65	.73	.82	1.05	
8	. 57	.66	.76	.93	1.16	1.45	1.83	2.06	2.32	2.61	2.90	3.62	5.42
^>	. 12	.15	.19	,24	.31	.39	.50	.56	.64	.72	.83	1.06	1.61
	.61	.77	.82	86.	1.16	1.45	1.83	5.06	2.32	2.61	2.90	3.62	5.42
(2)	.12	.15	.18	,24	•30	-38	64.	95.	.63	. 72	.80	1.02	1.56
30	. 65	.76	.87	1.02	1.20	1.45	1.83	2.06	2.32	2.61	2.90	3.62	5.42
20	.11	.14	.18	,24	.30	.38	6 ₁ .	.55	.63	.71	. 79	1.00	1.54
	.68	. 79	.91	1.08	1.26	1.45	1.83	2.06	2.32	2.61	2.90	3.62	5.42
52	.11	.14	.18	.23	.30	.37	84.	.55	.62	.70	.78	1.00	1.52
<u></u>	.71	#8.	96.	1.14	1.32	1.52	1.83	5.06	2.32	2.61	2.90	3.62	5.45
}	.11	,14	.18	. 23	.29	.37	84.	±54 ;	.62	۰70	.78	66.	1.51
u i	.74	.85	1.00	1.17	1.36	1.60	1.86	2.06	2.32	2.61	2.90	3.62	5.42
}	.11	. 14	1.18	.23	2.9	.37	8 ¹ .	.54	.61	69.	.77	86	1.50
	.77	96.	ე. ბ	1.22	1.40	1.65	1.92	2.0	2.32	2.61	2.90	3.62	5.42
ત્ર	.11	.14	.18	.23	.29	.37	74.	η 5 ·	.61	69.	177	86.	1.50
55	.80	.92	1.05	1.26	1.46	1.70	1.95	2.13	2.32	2.61	2.90	3.62	5.42
	.11	.14	.18	.23	.29	•36	74.	.53	.60	.68	92.	.97	1.49
<u></u>	.82	96.	1.10	1.30	1.50	1.75	2.05	2.20	5.40	2.61	2.90	3.62	5.42
3	.11	ητ.	.18	.23	.29	98.	9ħ.	.53	99.	.68	92.	76.	1.48
- -	.85	.98	1.14	1.34	1.54	1.80	2.11	2.27	2.44	2.67	2.90	3.62	5.42
`	-11	. 14	.17	.23	.29	.36	94	.53	99.	.67	92.	96.	1.47
20	.86	1.01	1.16	1.38	1.60	1,85	2.14	2.34	2.52	2.74	2.95	3.62	5.42
	11:	‡7.	.17	.22	.28	.36	94.	. 52	. 59	.67	.75	96.	1.47

TABLE II B-12
RUBBER FORMING LIMITS
SIRETCH FLANGES
INCONEL X (C.R. ANNEALED)

					Material		Thickness	Œ					
Contour	910.	020.	.025	.032	040.	.050	.063	.071	.080	œo.	.100	.125	781.
Regius			Maximum		and Minimum Flange		Height Limits	nits (b)					
	7/5	89	.85	1.8	1.36	1.70	2.14						
7.	11.	77.	18	42.	.30	.39	.57						
	75.	88.	.85	1.09	1.36	1.70	2.14	2,42	2.72	3.06	3.40	4.25	
ମ	11.	41.	.18	.23	.29	.36	74.	. 52	8.	8	.77	1.12	
	67.	8	.85	1.09	1.36	1.70	2.14	2,42	2.72	3.86	3.40	4.25	6.35
15	11	.13	.17	.22	.28	.35	54.	.51	. 59	.67	.75		1.60
	.61	.777	86.	1.09	1.36	1.70	2.14	2,42	2.72	3.06	3.40	4.25	6.35
8.	1	.13	.17	.22	.28	.35	.45	.51	. 58	99.	7,2	.93	1.44
	02.	88.	.95	1.12	1.36	1.70	2.14	2.42	2.72	3.06	3.40	4.25	6.35
25	17.	.13	.17	.22	.28	.35	54.	. 50	. 57	.65	.73	.92	1.40
	77.	.87	1.01	1.18	1.36	1.70	2.14	2,42	2.72	3.06	3.40	4.25	6.35
ઝ	10	133	71.	.22	.27	.35	.45	.50	95.	₽.	.73	.91	1.40
	.78	.91	1.05	1.25	1.44	1.70	2.14	2,42	2.72	3.06	3.40	4.25	6.35
35	oi.	13	.16	.21	.27	.34	† † †	. 50	• 56	.63	.71	%	1.38
	82	96.	1.11	1.30	1.52	1.75	2.14	2,42	2.72	3.06	3.40	1,25	6.35
3	or.	.13	.16			.34	£4.	64.	.56	. 63	.70	68.	1.36
	.85	66.	1.15	1.34	1.59	1.82	2.14	2,42	2.72	3.06	3.40	4.25	6.35
45	0,	13	.16	.21	1 1	.34	.43	64.	• 55	:63	. 70	.89	1.36
	88.	1.03	1.19	1.41	1.62	1.90	2.20	2,42	2.72	3.06	3.40	4.25	6.35
ድ	.10	.13	91.	.21	.26	.34	٤4٠	6₹.	• 55	. 63	.70	88.	1.35
	.92	1.07	1.23	1.45	1.68	1.95	2.27	5,48	2.72	3.06	3.40	4.25	6.35
5	.30	.13	.16	.21	.26	₹8.	€†•	84.	. 55	.63	69.	33	1.35
,	46.	1.10	1.27	1.49	1.74	2.00	5:36	55.5	2.76	3.06	04. ز	4.25	6.35
8	01.	.13	91.	.21	.26	.33	टेंग्	84.	75.	.62	69.	.99	1.34
7	96.	1.12	1.3	1.54	1.78	5.08	2.43	2.63	5.8 4	3.0િ	3.40	4.25	6.35
6	01,	.13	91.	12.	93.	•33	717	8 ₄ .	.5 ⁴	.61	Ç.	£3.	1.33
Ç	1.00	1.16	1.34	1.58	1.83	21.5	5.48	5.66	2.88	3.15	3.40	1.25	6.35
2.	.10	.13	91.	.21	92.	•33	₹†.	<i>L</i> †₹•	45.	. 71	88.	.87	1.33

TABLE II B-13
RUBBER FORMING LIMITS
STRETCH FLANGES
HASTELLOY X (SOLUTION TREATED)

					Material	1	Thickness	Œ					
Contour	.016	.020	.025	-032	040.	.050	•063	.071	080.	060.	.100	.125	.137
æ			Maximum	snd Mt	and Minimum Flange		ight Li	Height Limits (h)	(
	.50	.63	.79	1.01	1.26	1.57	1.98	1.56					
5	.11	.14	.18	.23	.30	.38	. 52	75.					
6	05.	.63	. 79	1.01	1.26	1.57	1.98	2.23	25.5	2.83	3.15	3.94	
OT	.11	17	.17	.23	.28	∙3∴	94.	.52	.59	æ).	.76	1.04	
u r	95.	.65	.79	1.01	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
72	.11	.13	.17	.22	.28	.35	ካ ካ •	05.	.58	99.	η.	.93	1.55
8	<i>29</i> ·	.72	.84	1.01	1.26	1.57	1.98	2.23	2:52	2.83	3.15	3.94	5.89
}	.10	.13	71.	.22	.28	.35	प्रंप •	.50	.57	†9∵	.72	.91	1.42
30	29.	82.	06.	1.05	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
63	.10	.13	.17	.21	.27	.34	44.	6ħ.	95.	1 9.	.73	.91	1.39
20	. 70	.82	.95	1.12	1.30	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
20	.10	.13	91.	.21	.27	.34	٤4٠	64.	.56	₽.	.71	96.	1.38
J C	. 7t	.86	1.00	1.18	1.36	1.57	1.98	2.23	25.5	2.83	3.15	3.94	5.89
ì	.10	.13	.16	.21	.27	.34	٤4٠	64.	.55	.63	.71	.89	1.36
Cil	.78	96.	1.05	1.23	1.44	1.65	1.98	2.23	2.52	2.83	3.15	3.94	5.89
2	.10	.13	91.	.21	.26	.34	£4.	, 6ħ.	.55	.63	.70	•	1.35
1.5	18.	76.	1.09	1.28	1.48	1.72	2.01	2.23	2.52	2.83	3.15	3.94	5.89
	61.	.13	.15	.21	-26	.34	£4.	84.	. 55	.63	. 70	.88	1.35
C	:83	.97	1.12	1.33	1.54	1.80	2.08	2.23	2.52	2.83	3.15	3.94	5.89
2	27	.13	.16	.21	.26	.33	.42	84.	.54	.62	69.	.87	1.33
55	98.	1.8	1.17	1.38	1.60	1.85	2.14	2.34	2.52	2.83	3.15	3.94	5.89
	51	.13	.16	.21	.26	.33	. ¹ 42	84.	. 54	.62	69.	.87	1.33
-8	89.	1.04	1.20	1.41	1.64	1.90	2.21	2.41	5.60	2.83	3.15	3.94	5.89
	10	.13	.16	.21	.26	.33	.42	84.	. 54	.62	69.	.87	1.33
65	.91	1.8	1.24	1.47	1.70	1.95	2.26	2.48	2.68	2.88	3.15	3.94	5.89
	01.	.12	.16	.21	.26	.33	.42	.47	. 54	.61	. 68	.86	1.32
2	.94	1.10	1.27	1.50	1.74	2.02	2.33	2.55	2.76	2.97	3.15	3.94	5.89
	.10	. 12	.16	.21	.26	.33	Zħ.	74.	45.	.61	88.	98.	1.32

TABLE II B-14 RUBBER FORMING LIMITS STRETCH FLANGES L-605 (SOLUTION TREATED)

					Material	•	Thickness	(£)					
Contour	910.	.020	.025	.032	0 11 0°	.050	.063	.071	080.	060.	.100	521.	191
rs.			Maximum		ılmum F	and Minimum Flange Height Limits (h	ight Li	míts (b)					
	.50	.63	. 79	1.01	1.26	1.57	1.42						
5	.12	.16	.20	.26	.33	. 43	72						
4	.50	.63	.79	1.01	1.26	1.57	1.98	2.23	2.52	2.83	3.19	3.75	
3	.12	.15	•19	.25	•35	04.	.51	.57	•65	92.	98.	1.75	
	95.	.65	. 79	1.01	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	2.99
CT	.12	.15	. 19	η2,	.31	.39	.50	. 56	₹9°	.72	.81	1.04	2.99
8	.62	.72	†8.	1.01	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
2	.11	.14	.18	42.	.30	.38	64.	.55	.63	.71	.80	1.00	1.59
	.67	.78	96.	1.05	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
25	.11	.14	.18	.23	.30	.38	84.	.55	.62	02.	.79	1.0	1.51
, c	07.	.82	.95	1.12	1.30	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
25	π.	.14	.18	.23	.30	37	84.	.54	19.	69.	.78	66.	1.50
r.	٠74	.86	1.00	1.18	1.36	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
35	11.	.14	.18	.23	62.	37	74.	.54	.61	69.	.77	66.	1.50
<u> </u>	.78	.90	1.05	1.23	1.44	1.65	1.98	2.23	2.52	2.83	3.15	3.94	5.89
?	.11	.14	.18	.23	. 29	.37	Lt1.	. 53	09.	.68	.77	76.	1.49
بر بر	.81	.94	1.09	1.28	1.48	1.72	2.01	2.23	2.52	2.83	3.15	3.94	5.89
	.11	.14	.18	.23	. 29	.36	.47	.53	.60	.68	.76	96.	1.48
Ç	.83	.97	1.12	1.33	1.54	1.80	2.08	2.23	2.52	2.83	3.15	3.94	5.89
X	.11	.14	.17	.22	.28	.36	94.	. 52	.60	.67	.75	.95	1.46
55	.86	1.02	1.17	1.38	1.0	1.85	2.14	2.34	2.52	2.83	3.15	3.94	5.89
	11.	. 14	.17	.22	.28	.35	94.	.52	09.	.67	.75	.95	1.46
Ş	.89	1.04	1.20	1.41	1.65	1.90	2.21	2.41	5.60	2.83	3.15	3.94	5.89
3	.11	.14	.17	.22	.28	.35	54.	. 52	65.	.67	.75	-95	1.46
65	.91	1.06	1.24	1.47	1.70	1.95	2.26	2.48	2.68	2.88	3.15	3.94	5.89
	.11	.14	.17	. 22	.28	.35	.45	.51	.58	.67	.75	.95	1.44
02	±6.	1.10	1.27	1.50	1.74	2.05	2.33	2.55	2.75	2.97	3.15	3.94	5.89
	.1.	.14	.17	.22	.28	.35	.45	.51	. 58	.67	η .	₹6.	1.44

TABLE II B-15
RUBBER FORMING LIMITS
STRETCH FLANGES
J-1570 (SOLUTION TREATED)

					Material	ial Thi	Thickness	(t)					
Contour	910.	.020	.025	-032	040.	.050	.063	.071	.080	060-	.100	.125	761.
R			Maximum	g.ng	Minimum Flange		ight Li	Height Limits (h)					
	.50	63	. 79	1,01	1.26	1.57	1.01						
2	.12	91	. 20	.ટઉ	•32	.43	1.01						
	.50	.63	.79	1.01	1.26	1.57	1.98	2.23	2.52	2.83	3.15	1.75	
മ	31.	.15	61.	ήζ.	.31	04۰	.50	.57	.65	±7.	.85	1.75	
	.56	.65	.79	1.01	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	2.80
15	.12	.15	.18	ηz•	•30	.37	64.	.57	·64	.72	8.	1.02	2.80
8	29.	.72	ਡੋ	1.01	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
R.	.11	41.	.18	.23		.37	84.	.55	.63	.71	8.	1.00	1.57
	.67	.78	96.	1.05	1.26	1.57	1.98	2.23	2.52	2.83	3.15	3.94	5.89
25	11.	.14	.18	.23	.30	.37	<i>Σ</i> η•	75°	. 62	.70	.78	.99	1.51
	.70	-82	.95	1.12	1.30	1.57	1.98	2,23	2.52	2.83	3.15	3.94	5.89
တ္က	11.	.14	.18	.23	•30	•37	∠ †₁•	1 5•	.60	89	.77	.98	1.50
	4Z.	98.	1.00	1.18	1.36	1.57	1.98	2.23	2.52	2,83	3.15	3.94	5.89
35	.11	.14	.18	.23	.30	.37	Lt1.	• 53	9.	.68	.77	.98	1.50
	.78	.90	1.05	1.23	1.44	1.65	1.98	2.23	2.52	2.83	3.15	3.94	5.89
3	11.	.14	.18	•23	.29	•36	.47	•53	.60	.68	.76	.96	1.49
-	.81	46.	1.09	1.28	1.48	1.72	2.01	2.23	2.52	2.83	3.15	3.94	5.89
1	,11	41.	LI	.22	. 28	•36	94.	.52	. 59	.67	.75	.95	1.46
	.83	26.	1.12	1.33	1.54	1.80	2.08	2.23	2.52	2.83	3.15	3.94	5.89
ድ	.11	4Γ •	21.	• 22	. 28	98.	94.	. 52	. 59	.67	.75	.95	1,46
y y	98.	1.02	1.17	1.38	1,60	1.85	2.14	2.34	2.52	2.83	3.15	3.94	5.89
2	.11	ή [.	٤٦٠	.22	.28	•36	.45	. 52	. 59	.67	.75	46.	1.45
3	68.	10°τ	1.20	14.1	1.64	1.90	2.21	2.41	2.0	2.83	3.15	3.94	5.89
8	.11	ή [.	21.	• 22	.28	.36	• 45	. 52	. 58	.67	.74	.9 ⁴	1.45
37	.91	90 ° T	1.24	1.47	1.70	1.95	2.26	2,48	2,68	2.88	3.15	3.94	5.88
Ć	.11	ή[.	.17	. 22	. 28	.35	.45	.51	. 58	.67	-74	т 6 .	1.44
70	η6.	1.10	1.27	1.50	1.74	2.02	2.33	2.55	2.76	2.97	3.15	3.94	5.89
2	.11	.13	.17	-22	.28	•35	ξ †.	.51	. 58	.66	.74 14	.93	1.43

TABLE II.B-16 RUBBER FORMING LIMITS STRETCH FLANGES COLUMBIUM (10 Mo-10 Tt)

					Material		Thickness	(±)					
Contour	910.	.020	.025	-032	040.	-050	.063	170.	.080	%o.	.100	.125	181.
K			Maximum		and Minimum Flange		ight Li	Height Limits (h)					
	.31	.39	6ħ.	.55	• 56	.55							
5	41.	.18	. 23	•30	.38	. 55							
3,	•33	•39	64.	- 62	.78	.97	1.10	1.12	1.10	1,13	1.14		
OT .	,14	.18	.22	.29	•36	94.	. 59	.67	.77	.90	1.07		
	•37	44.	.50	· 62	.78	.97	1.23	1.38	1.56	1.64	1.67	1.62	
-	ήτ.	.17	• 25	•28	98.	· 45	.57	.65	±77.	.83	.93	1.21	
8	. 41	.48	.55	59 •	. 78	.97	1.23	1.38	1.56	1.75	1.95	2.21	2.20
25	.13	.17	. 22	. 28	.35	.45	.57	ή¢,•	.73	.83	.93	1.17	1.95
70	††† ·	.51	• 59	.70	.81	.97	1.23	1.38	1.56	1.75	1.95	2.44	2.76
(2)	.13	.17	.21	.27	.35	44.	• 56	179*	.72	.81	.91	1.15	1.76
ç	L+1.	.54	.63	.74	· 8£	1.00	1.23	1.38	1.56	1.75	1.95	5.44	3.22
30	.13	.17	.21	.27	+3₁+	44.	• 56	.63	.72	.81	.91	1.14	1.75
	.50	.57	.67	. 78	.91	1.05	1.23	1.38	1.56	1.75	1.95	2.44	3.65
55	.13	91.	.21	.27	.34	.43	.55	.63	.71	.80	.90	1.13	• • 1
· ·	.51	.60	.70	. d2	.95	1.10	1.30	1.38	1.56	1.75	1.95	2.44	3.65
}	.13	.16	.21	.27	.34	.43	• 55	. 62	.70	.80	.89	1.13	1.73
7.	45.	-62	.72	.85	.99	1.15	1.34	1.44	1.56	1.75	1.95	5•11	3.65
`	.13	•16	.20	.27	,34	.43	.54	.62	.70	.79	.88	1,12	1.71
Ç,	.56	.65	.75	.88	1.02	1,19	1,39	1.49	1.62	1.75	1.95	2.44	3.65
3	.13	.16	.20	.27	.34	.43	•54	.62	.69	. 79	.88	1.11	1.70
55	.58	.67	.777	.92	1.06	1.23	1.44	1.55	1.68	1.82	1.95	2.44	3.65
	.13	.16	.20	.26	.33	개.	.54	.61	69.	.78	88.	1.11	1.69
5	.59	9.	8	.93	1.09	1.26	1.48	1.60	1.72	1.89	2.00	2.44	3.65
3	.13	.16	.20	.26	.33	.42	.53	09.	.68	.77	.87	1.10	1.68
65	.61	.70	.81	96.	1.12	1.30	1.51	1.63	1.76	1.91	2.05	2.44	3.65
	.13	.16	.20	. 26	.33	. 42	. 53	9.	.68	.77	.86	1.09	1.67
20	.62	.72	₹8.	.98	1.15	1.33	1.56	1.67	1.82	1.96	2.10	2.46	3.65
	.13	.16	.20	.26	.33	.41	.53	.60	.68	.777	98.	1.09	1.66

TABLE II B-17 RUBBER FORMING LIMITS STRETCH FLANGES MOLYBDENUM (5% II)

					Material		Thickness	(t)					
Contour	910.	. czc	.025	.032	040.	.050	.063	.071	080.	060.	.100	.125	15.3
Œ,			Maximum	and Minimum		Flange He	Height Li	Limits (b)					
	742	.42	54.	54.	745								
~					.41								
	.45	.56	.70	.82	.82	.80	.83	.85	· 8¼				
9	.15	.18	₽₽.	.31	.39	64.	.63	.72	.82				
	.50	. 53	.70	. 89	1.12	1.25	1.26	1.28	1.26	1.26	1.27		
172	.14	.18	.23	.30	.38	. 48	.61	07.	. 79	.90	1.00		
8	.55	.G4	.74	.89	1.12	1.40	1. 8	1.70	1.68	1.71	1.70	1.68	
8	71.	.18	.23	. 29	.37	74.	.60	.68	. 78	88.	99	1.25	
	%	66.	.80	.95	1.12	1.40	1.76	1.99	2.08	2.10	2.08	2.10	2.11
52	174	.17	.22	.29	•	94.	• 59	.67	.76	.86	.97	1.24	1.91
	.63	. 74	.85	1.01	1.16	1.40	1.76	1.99	2.24	2.52	2.60	2.48	2.43
30	174	.17	.22	.28	.36	.45	. 58	99.	.75	.85	.95	1.21	1.87
	99.	.77	.90	1.0	1.22	1.42	1.76	1.99	2.24	2.52	2.80	3.00	2.92
35	.13	.17	. 22	.28	.36	.45	. 58	.65	th.		1 ,6.	1.20	1.85
	.70	.81	.94	1.10	1.28	1.49	1.76	1.99	2.24	2.52	2.80	3.38	3.36
3	.13	.17	.21	.28	.35	.45	.58	• 65	. 74	#8•	±6.	1.19	1.83
u -	.72	48.	.97	1.15	1.32	1.55	1.81	1.99	2.24	2.52	2.80	3.50	3.74
+2	.13	.17	.21	.28	35	. 45	.57	.64	. 73	.83	.93	1.18	1.81
	+7 <i>L</i> +	.87	1.00	1.18	1.37	1.60	1.85	1.99	2.24	2.52	2.80	3.50	4.26
ટ્ર	.13	.16	.21	.27	.35	1,1,1	.57	₽.	.73	.82	.92	1.17	1.80
55	.78	.90	1.04	.122	1.42	1.65	1.91	2.08	2.24	2.52	2.80	3.50	4.64
,	.13	.16	.21	.27	.34	111.	.57	₽.	.72	.82	.91	1.16	1.79
S	08.	.93	1.07	1.27	1.46	1.70	2.00	2.14	2.32	2.52	2.80	3.50	5.01
3	.13	.16	.21	.27	.34	.43	95.	₽9.	.72	.81	.91	1.16	1.78
98	.81	.96	1.10	1.30	1.52	1.75	2.04	2.20	2.40	2.59	2.80	3.50	5.24
`	.13	.16	.21	.27	.34	.43	.56	.63	.72	.81	.91	1.15	1.78
02	ಹ.	.98	1.17	1.34	1.54	1.80	2.10	2.27	2.43	2.64	2.84	3.50	5.24
)	.13	.16	.2	.27	τξ.	:43	.55	.63	.77	.81	06.	1.14	1.76

TABLE II B-18 RUBBER FORMING LIMITS SHRINK FLANGES HW21XA-T8 (MAGNESIUM THORIUM)

					Mater	Material Thickness		(£)					
Contour	910.	.020	.025	.032	040.	.050	.063	.071	.080	060.	.10	.125	761.
æ			Maximum		imum F	lange He	ight Li	and Minimum Flange Height Limits (h)	_				
	15.0	0.25	0.19	0.34	0.38	0.37	0.38						
5		11.0	0.14	0.19	0.23	0.29	0.38						
9	0.26	0.31	0.36	0.42	64.0	0.57	0.66	0.72	0.75	0.75	0.75	0.75	
9	ر 80 د	0.11	1/1.0	0.18	0.23	0.27	0.37	<i>ኒ</i> ካ'0	L4.0.	0.53	09.0	0.75	
	0.31	0.35	0.38	0 . 48	0.55	0.65	92.0	0.81	0.88	96.0	1.00	1.15	1.14
15	0.08	0.11	0.13	0.17	0.22	0.28	0.35	14.0	94.0	0.52	0.58	0.74	1.14
8	0.33	0.38	0.45	0.53	0.61	0.72	0.8⁴	16.0	0.98	1.06	1.15	1.34	1.55
8	0.08	0.10	0.13	0.17	0.22	0.28	0.35	04.0	0.45	0.51	0.58	0.73	1.12
	0.35	T4.0	74.0	0.56	99.0	0.76	06.0	26.0	1,0,1	1.14	1.23	1.44	1.87
25	0.08	0.10	0.13	0.17	0.22	0.27	0.35	0.39	0.45	0.50	0.57	0.72	1.09
C	0.38	0.43	0.51	09.0	0.69	0.81	0.9⁴	1.03	1.11	1.19	1.30	1.50	1.96
30	0.08	0.10	0.13	0.17	0.21	0.27	0.34	0.39	0.44	0.50	0.56	0.71	1.08
ų.	0.39	94.0	0.53	0.62	0.73	0.85	1.00	1.07	1.18	1.16	1.36	1.59	2.05
52	0.08	0.10	0.13	0.17	0.21	0.27	0.34	0.38	0.44	0.50	0.56	0.70	1.08
(0.42	0.48	0.56	0.69	0.76	0.89	1.04	1.14	1.22	1.33	1.42	1.65	2.15
≩	0.08	0.10	0.13	.0.16	0.21	0.27	0.34	0.38	0.44	0.50	0.56	0.70	1.06
۲	0.43	0.50	0.57	0.69	0.80	0.93	1.07	1.17	1.18	1.39	1.50	1.72	2.39
,	0.08	0.10	0.12	0.16	0.21	0.27	0.33	0,38	0.43	6ंग.0	0.55	0.70	1.06
	0.44	0.52	0.60	0.72	0.83	0.95	1.13	1.21	1.32	ነ. 44	1.55	1.81	2.34
ጸ	0.08	0.10	0.12	0.16	0.20	0.26	0.33	0.38	0.42	0.49	0.54	0.69	1.05
55	9,1,6	0.54	0.62	0.73	0.86	0.98	1.15	1.2	1.3	1.48	1.59	1.85	2.39
``	0.08	0.10	0.12	0.16	0.21	0.26	0.33	0.38	0.43	6,40	0.50	0.69	1.05
\$	0.47	0.55	0.64	0.75	0.88	1.01	1.18	1.28	1.38	1.51	19.1	1.88	2.43
3	0.ග	0.10	0.13	0.16	0.21	0,26	0.33	0.38	6,43	64.0	₹6.0	69.0	1.05
99	0.48	0.56	99.0	0.77	0.90	1.05	1.21	1.31	1.43	1.55	1.68	1.96	2.52
`	0.08	0.10	0.13	0.16	0.20	0.26	0.33	0.37	0.42	0.48	0.54	0.68	1.04
02	0.50	0.57	0.68	0.78	0.97	1.05	1.23	1.35	1.4	1.57	1.70	2.00	29.2
2	0.08	0.10	0.12	0.16	0.20	0.26	0.33	0.67	0.42	0.48	0.54	0.68	1.04

TABLE II B-19 RUBBER FORITING LIMITS SHRINK FIANGES 2024-0 ALUMINUM

					Material		Thickness	(£)					
Contour	910.	020	.025	-032	010.	.050	.063	τω.	080.	960.	.100	.25	. 87
æ			Maximum		ılmım F	lange He	ight Li	and Minimum Flange Height Limits (h)					
	0.29	0.33	0.39	0.47	0.50	0.50	6tr.0	0.49	0.50	0.54	0.50		
5	0.07	0.09	0.13	0.14	0.18	0.24	0.32	0.35	0.39	0.45	0.50		
ş	0.35	₹†°0	64.0	0.57	0.7	0.77	0.91	26.0	1.02	1.02	1.05	1,05	1.02
2	90.0	0.08	0.11	0.14	0.18	0.28	0.29	0.33	0.37	0.42	0.28	09.0	0.29
	14.0	8 [†] ,0	0.55	0.65	0.76	6.89	1.04	1.12	1.21	1.32	1.42	1.54	1.53
15	0.07	90.0	11.0	ητ.0	0.17	0.22	0.29	0.33	0.37	0.42	24.0	09.0	0.92
8	0.45	0.52	0.61	0.72	0.84	0.97	1.14	1.19	1.34	1.46	1.56	1.85	2.00
2	20.0	90.0	11.0	0.13	0.17	0.22	0.28	0.32	0.36	0.41	0.60	0.58	0.89
	0.1 ₄ 8	0.56	0.65	0.78	0.90	1.05	1.22	1.33	1.44	1.57	1.68	1.96	2.58
52	0.07	0.08	0.10	0.13	0.17	0.22	0.28	0.31	0.35	0,10	0.45	0.58	0.90
OC.	0.51	0.59	0.70	0.82	96.0	1.11	1.29	1.40	1.52	1.63	1.77	2.05	2.73
۲,	0.0 %	0.08	0.10	0.13	0.17	0.21	0.22	0.31	0.35	0.40	0.44	0.57	0.86
30	0.51	0.61	0.73	0.91	1.00	1.16	1.35	1.48	-1.60	1.72	1.85	2.16	2.85
32	90.0	0.08	0.10	0.13	0.17	0.21	0.27	0.30	0.35	0,40	0.44	0.56	0.86
Ç.	0.57	99.0	0.77	0.90	1.04	1.21	1.43	1.54	1.66	1.80	1.93	2.25	2.95
3	0.06	0.08	0.10	0.13	0.16	0.21	0.26	0.30	0.34	0.39	0.44	0.5	0.86
7.7	0.52	0.68	0.77	0.93	1.08	1.2	1.47	1.60	1.74	1.89	20.2	2.35	3.08
	90.0	0.08	0.10	0.13	0.16	0.21	0.26	0.30	0.34	0.39	0.44	0.55	0.85
	0.61	0.70	1.83	0.98	1.12	1.32	1.54	1.63	1.78	1.95	2.09	2.44	3.20
ર	90.0	0.08	0.10	0.13	0.16	0.21	0.23	0.30	0.34	0.38	0.43	0.55	•8•0
55	0.63	0.72	0.85	1.00	1.16	1.35	1.58	1.70	1.86	2.05	2.17	2.56	3.33
``	0.06	0.08	0.10	0.13	0.16	0.21	0.26	0.30	0.34	0.38	0.43	0.55	0.84
Ş	0.64	0.74	0.86	1.02	1.18	1.38	1.63	1.73	1.88	1.04	2.20	2.56	3.35
3	90.0	0.03	0.10	0.13	0.16	0.20	0.26	0.30	0.34	0.38	0.43	0.54	0.32
\$9	0.66	0.75	0.89	1.04	1.22	1.41	1.66	1.78	1.94	2.12	2.27	2.63	3.48
,		0.08	0.10	0.13	0.16	0.20	0.26	0.30	0.34	0.38	0.43	0.54	0.32
20	0.67	0.79	0.91	1.07	1.24	1.45	1.70	1.85	2.00	2.16	2.30.	5.69	3.51
2		0.08	0.10	0.13	0.16	0.20	0.27	0.30	0.34	0.33	0.42	0.54	0.32

TABLE II B-20 RUBBER FORAING LIMITS SIRINK FLANGES 17-7 PH (CONDITION A)

					Material	tal Ibi	Thickness	(£)					
Contour	.016	.020	.025	.032	0±0.	.050	.063	.071	.080	960.	.100	. 125	137
R			Maximum	Pug Pug	Minimum Flange	lange He	ight Li	Height Limits (h)					
	0.18	0.18	0.18										
٠,	0.11	0.14	0.17										
	0.32	0.37	0.37	0.37	0.36	0.36							
ន	0.10	0.13	0.16	0.22	0.28	0.35							
	0.37	0.43	0.50	0.54	0.54	0.55	0.55	0.53	0.56				
15	0.10	0.13	0.16	0.21	0.27	0.34	0.4%	0.49	0.56				
8	0.41	0.47	0.55	0.65	0.74	0.74	0.74	0.74	0.73	0.73	0.74		
2	0.10	0.13	0.16	0.21	0.26	0.33	0.42	0.48	0.54	0.62	0.70		
	0.144	0.51	0.00	0.70	0.82	0.92	26.0	26.0	0.92	0.93	0.90	0.93	
25	0.10	0.13	0.16	0.21	0.26	0.33	0.1 _{1.2}	0, l _t 8	0.54	0.62	69.0	0.88	
	0.46	0.54	0.62	0.74	0.86	1.00	1.07	1.09	3.08	1.08	1.08	1.08	
ဇ္ဇ	8.0	0.12	0.16	0.21	92.0	0.33	ट्य∙0	0.48	0.5₺	0.61	0.68	0.85	
	0.50	0.57	0. 65	0.78	0.92	1.05	1.23	1.28	1.28	1.26	1.28	1.29	
35	0.09	0.12	0.16	0.21	93.0	0.33	64,0	74.0	0.54	0.60	ං.ග	ુ. છ	
	0.51	0.00	0.0	0.82	16.0	1.10	1.29	1.39	1.4%	1.44	3.45	3.44	1.48
9	0.0	0.12	0.15	0.20	97.0	0.33	61,0	94.0	0.53	0. 59	0.6	0.85	1.31
	0.53	0.62	0.71	0.83	0.96	1.15	1.32	9 †* T	1.55	1.62	1. 5	1.63	1.63
φ Λ	0.0	0.12	0.15	0.20	0.25	0.32	0.l ₁ 9	0.46	0.52	0.59	0.7	0.85	1.29
	0.54	†: 0	0.75	0.88	1.02	1.20	1.39	1.49	1.62	1.77	1.30	1.38	1.81
ይ	0.0	0.12	0.15	0.20	0.25	0.32	6tr.0	0.46	0.52	0.58	0.65	0.8	1.29
J.	0.57	99.0	0.78	0.90	1.04	1.22	1.45	1.56	1.68	1.80	1.95	2.05	2.05
2	0.10	0.12	0.15	0.20	0.25	0.32	6.43	0.46	0.52	0. 53	0. 5	0.83	1.27
3	0.58	0.68	08.0	0.93	1.08	1.25	1.48	1.60	1.72	1.39	2.00	2.15	2.11
3	0.10	0.12	0.15	0.19	0.25	0.32	6.43	o,46	0.52	0.59	0.65	0.83	1.27
Ϋ́	19.0	0.70	0.81	0.96	1.12	1.30	1.51	1.3	1.76	1.93	2.07	2.10	2.39
	0.10	0.12	0.15	0.19	0.25	0.32	0.1/3	0.45	0.51	0.58	0.65	0.83	1.27
30	0.61	0.72	0.83	0.99	1.12	1.32	1.54	1. 7	1.80	1.98	2.10	2.11	2.52
2	0.10	0.12	0.15	0.19	0.25	28.0	0.43	0.45	0.51	0.59	0.65	0.83	1.25

TABLE II B-21 RUBBER FORMING LIMITS SHRINK FLANGES PH 15-7 Mo (CONDITION A)

					Material	tal Ibi	Thickness	(t)					
Contour	910.	.020	.025	-032	040.	.050	.063	.071	080.	060.	.100	.125	187
æ			eax îmum		ıimın P	lange He	ight Li	and Minimum Flange Height Limits (h)					
	0.15	0.17									```		
5	0.12	0.34											
	0.30	0.30	0.30	0.30	0.30								
9	11.0	0.14	0.17	0.22	0.28								
t	0.38	ካ ተ 0	0.45	64.0	0.45	0.47	0.47						
77	11.0	0.13	0.16	0.22	0.28	0.35	0.45						
8	0.42	6,∙0	0.58	0.61	0.62	0.63	0.62	0.62	0.62				
23	0.10	0.13	0.16	0.22	0.27	0.35	0.44	0.50	0.56				
	0.45	0.52	19.0	12.0	0.77	0.78	0.76	0.75	0.75	0.78	0.78		
\$	0.10	0.13	0.16	0.21	12.0	0.34	ሳ ተተ	64.0	0.56	0.63	0.70		
35	74.0	0.55	0.65	0.77	0.87	0.92	06.0	68.0	06.0	0.89	0.93	0.89	
3	0.10	0.13	0.16	0.21	0.27	0.34	0.43	0.48	0.55	0.62	0.69	0.87	
2.0	0.51	0.59	0.68	0.80	46.0	1.05	1.06	1.08	1.06	1.09	1.09	1.09	
35	0.10	0.13	0.16	0.21	0.27	0.34	0.43	0.48	0.55	0.62	0.69	0.87	
	0.53	0.61	17.0	0.84	0.97	1.14	1.23	1.20	1.70	1.12	1.24	1.22	
?	0.10	0.13	0.16	0.21	0.26	0.33	0.42	84.0	0.55	0.61	0.69	0.87	
<i>u</i> .	0.55	19.0	ղՀ.0	0.87	1.01	1.20	1.39	1.36	1.38	1.37	1.39	1.40	1.40
4.5	0.10	0.13	0.16	0.21	0.26	0.33	0.42	0.48	0.55	0.61	0.69	0.87	1.32
	0.57	99.0	0.77	0.91	1.06	1.23	1.45	1.41	1.49	1.53	1.54	1.55	1.57
ጸ	0.10	0.13	0.16	0.21	0.26	0.33	0.42	0.48	0.54	0.61	0.68	0.86	1.31
55	0.58	0.68	0.79	0.93	1.08	1.25	1.47	1.58	1.69	1.70	1.68	1.73	1.69
	0.10	0.12	0.16	0.21	0.26	0.33	0.42	24.0	0.53	09.0	0.68	0.85	1.31
Ş	0.61	0.70	0.81	96.0	1.12	1.30	1.51	1.63	1.76	1.80	1.83	1.81	1.82
3	0.10	0.12	0.16	์ 0.21	0.26	0.33	0.4S	74.0	0.53	09.0	0.68	0.85	1.31
65	0.62	0.71	0.83	0.98	1.14	1.33	1.54	1.67	1.81	1.98	1.96	2.00	1.97
`	0.10	0.12	0.16	0.21	0.26	0.33	0.41	0.47	0.53	0.59	0.67	0.85	1.31
02	0.63	0.73	0.85	1.00	1.16	1.35	1.57	1.70	1.84	2.01	2.10	2.10	2.12
2	0.10	0.12	0.16	0.21	0.26	0.33	0.41	0.47	0.53	0.59	0.67	0.85	1.31

TABLE II B-22 RUBBER FORMING LIMITS SHRINK FLANGES AM-350 (ANNEALED)

					Material		Toickness	(t)					
Contour	910.	.020	.025	-032	040.	.050	£90°	.071	080•	ϡ.	.100	.125	191.
ĸ			Maximum		and Minimum Flange	lange He	Height Limits (h)	mits (h)					
	0.12												
2	0.12												
	0.25	0.25	0.25	η ∂. 0									
9	0.12	0.15	0.19	η 2. 0									
	0.35	0.37	0.38	0:37	0.37	0.38							
15	0.11	0.14	0.18	0.23	0.30	0.38							
8	0.38	0.45	0.50	0.51	0.51	0.51	0.51						
2	0.11	0.14	0.18	0.23	0.30	0.37	0.47						
30	14.0	84.0	0.56	0.61	0.62	0.62	0.62	0.62	0.52				
ζ,	0.11	41.0	0.18	0.23	0.29	0.37	Lt1.0	0.53	09.0				
30	0.44	0.51	0.60	0.70	0.74	0.74	47.0	0.74	47.0	0.74		}	
20	0.11	0.14	0.18	0.23	0.29	0.37	24.0	0.53	0.60	99.0	-		
1	94.0	0.54	0.63	ተረ 0	0.84	0.88	0.88	0.85	0.88	98.0	0.86		
35	0.11	0.14	0.18	0.22	0.28	0.36	94.0	0.53	0.59	0.68	0.75		
0	o.48	0.50	0.65	0.77	0.88	0.99	το•τ	1.00	1.00	0.99	1.00	1.00	
⊋	0.11	0.14	0.17	₹0.	0.28	0.36	54.0	0.51	0.58	19.0	۰.74	16.0	
u .	0.50	0.58	0.68	0.80	0.92	1.09	1.12	1.12	1.12	1.14	1.15	1.12	
42	11.0	0.14	0.17	0.22	0,28	0.36	0.45	0.51	0.58	19.0	0.74	0.94	
	0.51	0.60	0.70	0.83	0.97	1.10	1.26	1.24	1.24	1.26	1.26	1.25	
ጸ	11.0	0.14	0.17	0.22	0.28	0.35	0.45	0.51	0.58	99.0	0.74	0.93	
55	0.53	0.62	0.72	18.0	1.00	1.15	1.32	1.35	1.36	1.39	1.40	1.37	
	11.0،	0.13	0.17	0.22	0.28	0.35	<i>ተተ</i> ነ 0	0.50	0.58	0.65	0.73	0.93	
Ş	0.54	19.0	0.74	98.0	1.02	1.17	1.39	6¶°T	1.48	1.48	1.50	1.47	1.46
3	0.11	0.13	0.17	0.22	0.28	0.35	1 /11.0	0.50	0.58	9.65	0.73	6.93	1.40
65	0.56	99.0	0.76	06.0	1.04	1.20	1.42	1.53	1.60	1.62	1.00	1.62	1.59
,	0.11	0.13	0.17	0.22	0.28	0.35	44.0	0.50	0.58	0.65	0.73	0.93	0.40
02	0.58	0.66	0.78	0.91	1.06	1.24	1.45	1.56	1.68	1.71	1.70	1.72	1.72
	0.11	0.13	0.17	0.25	0.28	0.25	††**O	0.50	0.58	0.65	0.72	0.91	1.38

TABLE II B-23
RUBBER FORMING LIMITS
SHRINK FIANGES
A-286 (SOLUTION TREATED)

O20						Material	rial Tei	Thickness	(t)		:			
6.18 0.18 0.18 0.18 0.19 0.11 0.11 0.14 0.18 0.37 0.31 0.37 0.37 0.37 0.39 0.45 0.37 0.10 0.10 0.13 0.17 0.40 0.10 0.13 0.16 0.10 0.10 0.12 0.16 0.10 0.10 0.12 0.16 0.10 0.10 0.12 0.15 0.16 0.10 0.10 0.12 0.15 0.16 0.10 0.10 0.12 0.15 0.16 0.10 0.10 0.12 0.15 0.16 0.10 0.10 0.12 0.15 0.16 0.10 0.10 0.12 0.15 0.15 0.10 0.10 0.10 0.10 0.10 0.10	batour	.016	.020	.025	-032	040.	-050	.063	.071	080•	060.	.100	.125	.187
0.18 0.18 0.18 0.18 0.18 0.11 0.11 0.14 0.18 0.18 0.11 0.11 0.13 0.17 0.22 0.11 0.13 0.17 0.22 0.10 0.10 0.13 0.17 0.22 0.10 0.10 0.13 0.16 0.21 0.10 0.10 0.13 0.16 0.21 0.10 0.10 0.12 0.16 0.21 0.10 0.10 0.12 0.16 0.21 0.10 0.10 0.12 0.16 0.21 0.10 0.10 0.12 0.16 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20 0.10 0.10 0.12 0.15 0.20	<u> </u>			Maximum	and Mi	imm F	lange He	ight Li	mits (b,					
0.11 0.14 0.18		0.18	0.18	0.18										
0.34 0.36 0.37 0.37 0.11 0.13 0.17 0.22 0.13 0.17 0.22 0.10 0.13 0.17 0.21 0.10 0.13 0.16 0.21 0.10 0.13 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20	!	0.11	0.14	0.18										
0.11 0.13 0.17 0.22 0.38 0.45 0.53 0.55 0.10 0.13 0.17 0.21 0.10 0.13 0.17 0.21 0.45 0.53 0.62 0.68 0.46 0.53 0.62 0.73 0.10 0.12 0.16 0.21 0.54 0.62 0.75 0.85 0.10 0.12 0.16 0.21 0.56 0.64 0.75 0.88 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20		0.34	0.36	0.37	0.37	0.37	0.37							
0.38 0.45 0.53 0.55 0.10 0.13 0.17 0.21 0.10 0.13 0.16 0.21 0.10 0.13 0.16 0.21 0.10 0.13 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.20 0.10 0.12 0.15 0.88 0.10 0.12 0.15 0.88 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20	<u> </u>	0.11	0.13	0.17	0.22	0.28	0.35							
0.10 0.13 0.17 0.21 0.142 0.50 0.58 0.68 0.10 0.13 0.16 0.21 0.145 0.53 0.62 0.73 0.16 0.13 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20		0.38	0.45	0.53	0.55	0.55	0.55	0.56	0.53	0.56				
0.42 0.50 0.58 0.68 0.10 0.13 0.16 0.21 0.10 0.13 0.16 0.21 0.10 0.13 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.54 0.62 0.73 0.85 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.58 0.68 0.78 0.99 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.15 0.20		0.10	0.13	0.17	0.21	0.27	0.34	74.0	0.50	0.56				
0.10 0.13 0.16 0.21 0.45 0.53 0.62 0.73 0.10 0.13 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.56 0.64 0.75 0.88 0.10 0.12 0.15 0.20 0.59 0.68 0.78 0.94 0.10 0.12 0.16 0.20 0.59 0.68 0.80 0.94 0.10 0.12 0.15 0.20		0.42	0.50	0.58	0.68	0.73	0.75	0.73	0.74	42.0	ո.74	0.73		
0.45 0.53 0.62 0.73 0.10 0.13 0.16 0.21 0.18 0.56 0.65 0.77 0.10 0.12 0.16 0.21 0.54 0.62 0.73 0.85 0.10 0.12 0.16 0.21 0.56 0.64 0.75 0.88 0.10 0.12 0.15 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.16 0.20 0.50 0.10 0.12 0.15 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.61 0.70 0.83 0.96 0.61 0.70 0.83 0.96 0.61 0.70 0.83 0.96	L	0.10	0.13	91.0	0.21	0.27	0.34	0.43	0.48	0.55	0.63	0.70		
0.10 0.13 0.16 0.21 0.18 0.56 0.65 0.77 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.21 0.10 0.12 0.15 0.88 0.10 0.12 0.15 0.20 0.58 0.68 0.78 0.93 0.10 0.12 0.15 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.15 0.20 0.61 0.70 0.83 0.96 0.61 0.70 0.83 0.96 0.61 0.70 0.83 0.96 0.61 0.70 0.83 0.96		0.45	0.53	29.0	0.73	0.84	0.93	0.93	0.92	0.92	0.94	0.94	0.91	
0.18 0.56 0.65 0.77 0.10 0.12 0.16 0.21 0.51 0.59 0.72 0.82 0.10 0.12 0.16 0.21 0.56 0.64 0.73 0.88 0.10 0.12 0.15 0.20 0.59 0.68 0.78 0.93 0.10 0.12 0.15 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20		0.10	0.13	0.16	0.21	0.27	0.37	0.lt2	0.48	0.54	0.62	0.69	0.88	
0.10 0.12 0.16 0.21 0.51 0.59 0.72 0.82 0.10 0.12 0.16 0.21 0.10 0.12 0.15 0.85 0.10 0.12 0.15 0.88 0.10 0.12 0.15 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.16 0.20 0.61 0.70 0.83 0.96 0.62 0.72 0.89 0.61 0.70 0.89 0.61 0.70 0.89 0.61 0.70 0.89		0.48	0.56	0.65	0.77	06.0	1.05	1.08	96.0	1.10	1.08	1.10	1.09	
0.51 0.59 0.72 0.82 0.10 0.12 0.16 0.21 0.10 0.12 0.16 0.82 0.10 0.12 0.16 0.21 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.58 0.68 0.78 0.94 0.10 0.12 0.16 0.90 0.59 0.8 0.80 0.94 0.10 0.12 0.16 0.20 0.61 0.12 0.15 0.20 0.62 0.72 0.15 0.96 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20		0.10	0.12	0.16	0.21	0.27	0.33	0.42	0.48	0.54	0.61	69.0	0.88	
0.10 0.12 0.16 0.21 0.54 0.62 0.73 0.85 0.10 0.12 0.16 0.21 0.56 0.64 0.75 0.88 0.10 0.12 0.15 0.20 0.59 0.68 0.80 0.93 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20		0.51	0.59	0.72	0.82	0.95	1.10	1.28	1.29	1.28	1.26	1.28	1.30	
0.54 0.62 0.73 0.85 0.10 0.12 0.16 0.21 0.10 0.12 0.15 0.88 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20 0.10 0.12 0.16 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.15 0.20 0.61 0.70 0.83 0.96 0.61 0.70 0.83 0.96 0.61 0.70 0.83 0.96 0.10 0.12 0.15 0.20		0.10	0.12	0.16	0.21	0.27	0.33	0.42	0.48	0.54	0.61	0.68	0.86	
0.10 0.12 0.16 0.21 0.56 0.64 0.75 0.88 0.10 0.12 0.15 0.20 0.59 0.68 0.78 0.93 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.62 0.72 0.83 0.96 0.10 0.12 0.15 0.20		0.54	0.62	0.73	0.85	1.00	1.15	1.35	1.45	1.44	1.44	1.46	1.44	1.46
0.56 0.64 0.75 0.88 0.10 0.12 0.15 0.20 0.58 0.68 0.78 0.93 0.10 0.12 0.16 0.20 0.10 0.12 0.16 0.20 0.01 0.12 0.15 0.20 0.01 0.12 0.15 0.20 0.02 0.72 0.83 0.96 0.10 0.12 0.15 0.20		0.10	0.12	0.16	0.21	0.27	0.33	0.4S	0.47	0.54	0.61	0.68	0.86	1.31
0.10 0.12 0.15 0.20 0.58 0.68 0.78 0.93 0.10 0.12 0.16 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.15 0.20 0.62 0.72 0.83 0.96 0.10 0.12 0.15 0.20		0.56	₽.0	0.75	0.88	1.08	1.20	1.39	1.54	1.66	1.63	1.68	1.65	1.65
0.58 0.68 0.78 0.93 0.10 0.12 0.16 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.16 0.20 0.10 0.12 0.15 0.20 0.06 0.72 0.85 0.99 0.10 0.12 0.15 0.20	<u> </u>	0.10	0.12	0.15	0.20	92.0	0.32	14.0	74.0	0.53	09.0	0.68	0.86	1.31
0.10 0.12 0.16 0.20 0.59 0.8 0.80 0.94 0.10 0.12 0.16 0.20 0.61 0.70 0.83 0.96 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20		0.58	0.68	0.78	0.93	1.10	1.25	1.45	1.56	1.86	1.84	1.85	1.87	1.87
0.59 0.8 0.80 0.94 0.10 0.12 0.16 0.20 0.61 0.70 0.83 0.96 0.10 0.12 0.15 0.20 0.10 0.12 0.15 0.20		0.10	0.12	91.0	0.20	0.25	0.33	14.0	94.0	0.53	0.59	29.0	0.84	1.29
0.10 0.12 0.16 0.20 0.61 0.70 0.83 0.96 0.10 0.12 0.15 0.20 0.62 0.72 0.85 0.99 0.10 0.12 0.15 0.20		0.59	0.8	0.80	₹6.0	1.12	1.28	1.50	1.62	1.76	1.89	2.03	2.10	2.05
0.61 0.70 0.83 0.96 0.10 0.12 0.15 0.20 0.62 0.72 0.85 0.99 0.10 0.12 0.15 0.20	<u> </u>	0.10	0.12	91.0	0.20	0.25	₹0	14.0	94.0	0.52	65.0	99.0	0.84	1.29
0.10 0.12 0.15 0.20 0.62 0.72 0.85 0.99 0.10 0.12 0.15 0.20		0.61	0.70	0.83	96.0	1.16	1.30	1.53	1.65	1.78	1.95	5.10	5.19	2.19
0.62 0.72 0.85 0.99 0.10 0.12 0.15 0.20		0.10	0.12	0.15	0.20	0.25	0.32	14.0	94.0	0.52	0.59	99.0	0.84	
0.10 0.12 0.15 0.20		0.62	0.72	0.85	0.99	1.18	1.35	1.57	1.70	1.84	2.02	2.15	27.2	2.37
1 00 0		0.10	0.12	0.15	0.20	0.25	0:32	0.41	0.46	0.52	0.59	99.0	0.83	1.27
0.74 0.88 1.02		0.64	0.74	0.88	1.02	1.19	1.38	1.51	1.74	1.88	2.05	2.20	2.50	2.49
0.10 0.12 0.15 0.20 0.25		0.10	0.12	0.15	0.20	0.25	0.32	0,40	94.0	0.52	0.59	0.5	0.83	1.27

TABLE II B-24 RUBBER FORMING LIMITS SHRINK FLANGES USS-12-MOV (ANNEALED)

					Mate	Material Thickness		(t)					
Contour	910.	.020	.025	-032	040.	.050	.063	.071	080.	060.	.100	.125	.187
æ			Maximum	and Mt	aimum F	and Minimum Flange Height Limits (h)	ight Li	mits (h)					
5													
Š	12.0	0.24	0.24										
or	0.12	0.16	0.20										
ų r	0.36	0.36	ુ€*0	0.36	0.36								
77	0.12	0.15	0.19	0.25	0.32								
8	0,40	0.47	64.0	84.0	0.48	0.48							
2	0.12	0:15	0.19	0.25	0.31	0,40							
	6,43	0.51	0.59	0.59	09.0	0.60	09.0	09.0					
2>	0.12	0.15	0.19	η ፘ ・0	0.31	0.39	0.50	0.57					
Ş	94.0	0.53	0.62	0.71	0.71	0.70	17.0	17.0	0.70				
30	0.12	0.15	0.19	₽ 7. 0	0.30	0.39	6,49	0.55	<u> नं</u> ु∙ 0			-	
7.	64.0	0.56	0.65	0.77	0.84	0.85	0.84	0.85	0.84	0.84	0.84		
55	0.12	0.15	0.19	0.24	0.30	0.39	6,10	0.55	0.63	0.72	0.80		
7.0	0.50	0.59	0.69	0.81	0.94	0.95	96.0	96.0	1.10	0.95	0.95		
₽	0.11	0.14	0.18	0.23	0.30	0.38	0.48	0.55	0.62	0.71	0.80		
3 7	0.53	0.62	0.73	0.85	0.98	1.11	1.08	1.09	1.18	1.10	1.10	1.10	
4.5	0.11	0.14	0.18	0.23	0.30	0.38	0.48	0.55	0. 32	02.0	0.79	1.00	
i i	0.55	±9.0	0.75	0.88	1.03	1.20	1.21	1.21	1.20	1.21	1.22	1.23	
ጸ	0.11	0.14	0.18	0.23	0.30	0.38	0.48	0.55	0.62	0.70	0.79	1.00	
55	0.57	9.00	0.77	0.91	1.05	1.22	1.35	1.35	1.36	1.35	1.35	1.36	
	0.11	0.14	0.18	0.23	0.28	0.38	0.47	0.54	0.62	0.69	0.78	0.99	
Ş	0.58	0.67	0.79	0.93	1.08	1.25	1.45	1.42	1.44	1.44	1.45	1.44	
3	0.11	0.14	0.18	0.23	0.29	0.37	74.0	0.53	0.61	0.68	0.77	96.0	
65	0.59	0.69	0.80	0.96	1.11	1.29	1.49	1.56	1.56	1.57	1.57	1.59	1.55
,	0.11	0.14	0.18	0.23	0.29	0.37	0.47	0.53	0.60	0.68	0.76	96.0	1.50
20	0.61	0.71	0.83	0.96	1.12	1.30	1.52	1.65	1.64	1.65	1.68	1.65	1.66
2	0.11	0.14	0.18	0.23	0.29	0.27	₹. 74.0	0.53	09.0	0.68	0.76	96.0	1.50

TABLE II B-25 RUBBER FORMING LIMITS SHRINK FLANGES TITANIUM (6A1-4V) (MILL ANNEALED)

					Material		Thickness	(£)					
Contour	910.	.020	.025	-032	otto.	.050	.063	.071	080.	œ0·	.160	.125	787
æ			Maximum		ılmun F.	lange He	ight Li	and Minimum Flange Height Limits (h)					
5													
, i													
or —													
	0.16												
57	0.15												
8	0.21	0.22											
8	0.15	0.18											
	0.26	0.27	0.28										
25	0.15	0.18	0.23										
S S	0.28	0.32	0.32	0.32									
30	ήτ.ο	0.18	0.23	0.29									
L G	0.29	0.34	0.38	0.37									
55	0.14	0.18	0.22	0.29									
0	0.31	0.35	0.41	0.44	0.44								
⊋	ψτ.0	0.17	0.23	0.29	0.37								
3 1	0.32	0.37	0.43	0.48	0.48	0.50							
<u> </u>	0.14	0.17	0.22	0.29	0,36	94.0							
	0.33	0.38	0.45	0.53	0.56	0.56							
20	0.14	0.17	0.22	0.29	0.36	0.46							
55	0.3⅓	0.39	0.48	0.54	09.0	09.0							
,,	0.14	0.17	0.21	0.29	0.36	0.46							
S	0.35	0.40	0.47	0.55	0.64	0.65	0.65						
3	0.14	0.17	0.21	0.29	0.36	0.45	0.58						
88	0.36	0.45	0.18	0.58	ò.66	02.0	02.0	0.70					
	0.14	0.17	0.21	0.29	0.36	0.45	0.57	0. 65					
02	0.36	0.42	0.1 ₁₉	0.58	0.68	0.75	0.75	0.75					
<u>}</u>	0.14	0.17	0.21	0.28	0.36	0.45	0.57	0.55					

TABLE II B-26
RUBBER FORMING LIMITS
SHRINK FLANGES
TITANIUM (13V-11Cr-3A1) (SOLUTION TREATED)

					Mater	Material Thickness		(t)					
Contour	910.	.020	.025	.032	Oto.	.050	:90°	.071	080.	060.	.100	.125	157
R			Maximum		imum F	lange He	and Minimum Flange Height Limits (h)	mits (h)					
5													
OT													
	0.16												
4 7	0.15												
8	0.21	0.21											
8	0.14	0.18											
	0.26	0.2≦	93.0										
25	0.14	0.18	0.23										
0.00	0.28	0.32	0.32	0.32									
30	†;Έ•ο	91.0	0.23	0.30									
3.0	0.29	0.34	0.36	0.37									
35	0.14	0.18	0.23	0.30									
0.7	0.30	0.35	0.41	0.42	0.45								
2	1/1.0	0.18	0.23	0.29	0.37								
3 '(0.32	98.0	£11.0	0,40	0.148	0.48							
42	0.14	0.18	0.22	0.29	0.36	0.47							
	0.32	0.38	1,4,0	0.52	0.52	0.53							
50	11.0	0.17	ਹ ੋਟ ਾo	0.29	0.36	<u>0.4€</u>							
55	0.34	0.39	0.1,5	0.54	0.58	0.58							
	0.1^{h}	0.17	0.22	0.29	98.0	0.45							
Ş	ղ€•0	01,0	94.0	0.54	0.62	0.63	6.63						
3	ητ.ο	0.17	0.22	0.29	0.36	0.16	0.59						
, y	0.35	0.41	0.48	0.56	0.65	0.68	0.68	0.68					
5	0.13	0.17	0.22	0.28	0.37	0.45	0.58	0.65					
20	0.35	0.42	64.0	0.58	9, 0	0.70	0.72	0.71					
>	0.13	0.17	0.22	0.28	0.37	0.45	0.58	99.0					

TABLE II B-27 RUBBER FORMING LIMITS SHRINK FIANGES VASCOJET 1000 (H-11) (ANNEALED)

					Material	rial Thi	Tatckness	(£)					
Contour	910.	.020	.025	-032	0 1 10.	.050	.063	.071	080.	060.	.100	.125	137
R			Maximum	Maximum and Minimum Flange Height Limits (h)	limum F	lange He	ight Li	míts (b,	ر د د				
5													
	0.18	0.18											
or	0.13	91.0											
i c	0.27	0.26	0.28	0.28									
ÇŢ.	0.12	91.0	02.0	0.25									
8	0.35	0.36	0.35	0.35	0.36								
2	0.12	0.15	0.19	0.25	0.32								
30	0.40	14.0	0.45	0.45	0.46	94.0							
(2)	0.12	0.15	0.19	0.25	0.32	0.40							
OC.	0.43	0.50	0.50	0.54	0.54	0,55	0.55						
20	c.12	0.15	0.19	0.25	0.31	0.39	0.50						
ŭ	0.45	0.52	09.0	0.62	15.0	0.63	0.63	0.63					
52	0.12	0.15	0.19	0.25	0.31	0.39	0.50	0.57					
Ç	94.0	0 54	0.63	0.74	0.72	0.70	0.73	0.71	0.72				
⊋	0.12	0.15	0.19	0.25	0.31	0.39	64.0	0.57	10.0				
7.	0.50	0.58	0.65	0.77	0.80	0.30	0.82	0.84	0.30	0.31	0.82		
	0.12	0.15	0.19	0.24	0.30	0.39	0.50	0.57	0.64	0.73	0.82		
(0.51	0.59	0.68	0.80	0.92	0.00	0.91	0.92	0.83	0.98	0.00		
3	0.12	0.15	0.19	0.24	0.30	0.38	0.19	0.56	0.64	0.72	03.0		
55	0.53	0.62	0.70	0.84	96.0	1.00	1.01	1.00	1.04	0.90	1.00		
*	0.12	0.14	0.19	0.24	0.30	0.39	6,10	0.56	0.64	0.72	08.0		
<u></u>	0.54	0.63	0.73	0.86	1.00	1.05	1.06	1.06	70.1	1.08	1.02	1.06	
3	0.11	0.15	0.19	0.24	0.30	0.39	0.49	0.55	0.63	0.71	08.0	1.00	
65	0.56	₽.0	0.75	0.90	1.04	1.20	1.13	1.21	1.20	1.17	1.20	1.20	
`	0.11	0.15	0.19	0.24	0.30	- 98.0	6,1,0	0.55	0.63	17.0	08.0	1.00	
20	0.57	0.65	0.76	0.90	1.06	1.25	1.15	1.23	1.25	1.19	1.25	1.20	
-	0.11	0.15	0.19	0.24	0.30	0.38	0.48	0.55	0.62	02.0	08.0	1.00	

TABLE II B-28
RUBBER FORMING LIMITS
SHRINK FLANGES
RENÉ 41 (SOLUTION TREATED)

0.20 0.025 0.032 0.040 0.050 0.063 0.022 0.23 0.33 0.33 0.33 0.33 0.35 0.045 0.05 0.05 0.05 0.05 0.05 0.05 0.						Material		Thickness	(t)					
Maximum and Minimum Flange Height Limits (h)	Contour	910.	.020	.025	.032	Otto.	.050	.063	170.	.080	060.	.100	.125	751.
0.22 0.22 0.23 0.33 0.33 0.33 0.12 0.15 0.19 0.25 0.23 0.33 0.33 0.33 0.33 0.33 0.33 0.33	R			Maximu	and	nimum F.	lange He	ight Li	mits (h)					
0.22 0.23 0.23 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.45 0.65 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
0.22 0.22 0.23 0.34 0.15 0.15 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.14 0.15 0.15 0.26 <th< th=""><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	2													
0.12 0.15 0.20 0.33 0.34 0.45 0.44 0.45 0.44 0.45 0.44 0.35 0.24 0.30 0.39 0.49 0.55 0.65 0.65 0.65 0.66 0.66 0.66 0.66 0.66 0.67 0.70 <th< th=""><th></th><th>0.22</th><th>0.22</th><th>0.23</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th></th<>		0.22	0.22	0.23									1	
0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.35 0.31 0.05 0.31 0.05 0.31 0.05 0.31 0.05 <td< th=""><th>2</th><th>0.12</th><th>0.15</th><th>0.20</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	2	0.12	0.15	0.20										
0.12 0.15 0.19 0.25 0.31 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.51 0.24 0.31 0.39 0.65 0.55 0.65 0.65 0.66 <th< th=""><th></th><th>0.34</th><th>0.33</th><th>0.33</th><th>0.33</th><th>0.33</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th></th<>		0.34	0.33	0.33	0.33	0.33							1	
0.38 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.45 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.65 0.66 0.66 0.64 0.68 0.65 0.65 0.65 0.65 0.66 0.66 0.67 0.65 0.65 0.65 0.65 0.65 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.66 0.67 0.66 0.67 0.66 0.67 0.66 0.67 0.66 0.67 0.66 0.67 <th< th=""><th>15</th><td>0.12</td><td>0.15</td><td>0.19</td><td>0.25</td><td>0.31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	15	0.12	0.15	0.19	0.25	0.31								
0.12 0.15 0.19 0.24 0.31 0.39 0.45 0.42 0.48 0.55 0.55 0.55 0.55 0.65 0.11 0.15 0.19 0.24 0.30 0.39 0.49 0.11 0.14 0.18 0.64 0.65 0.65 0.66 0.66 0.11 0.14 0.18 0.24 0.30 0.36 0.49 0.56 0.66 0.11 0.14 0.18 0.26 0.67 0.66 0.65 0.67 0.17 0.18 0.29 0.30 0.38 0.48 0.59 0.79 0.11 0.14 0.18 0.23 0.30 0.38 0.48 0.57 0.79 0.11 0.14 0.18 0.23 0.30 0.38 0.48 0.59 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.70 0.78 0.79 0	8	0.38	0.44	0.45	0.45	_{የተ} •0	0.45							
0.42 0.48 0.55 0.55 0.56 0.55 0.56 0.55 0.66 0.67 0.67 <th< th=""><th>R</th><td>0.12</td><td>0.15</td><td>0.19</td><td>42.0</td><td>0.31</td><td>0.39</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	R	0.12	0.15	0.19	42.0	0.31	0.39							
0.11 0.15 0.19 0.204 0.30 0.39 0.49 0.66 0.70 <t< th=""><th></th><td>0.42</td><td>0.48</td><td>0.55</td><td>0.55</td><td>0.56</td><td>0.55</td><td>0.55</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		0.42	0.48	0.55	0.55	0.56	0.55	0.55						
0.45 0.52 0.60 0.64 0.68 0.65 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.66 0.67 0.79 0.70 0.70 0.70 0.78 0.78 0.78 0.79 0.70 0.70 0.79 0.79 0.74 0.51 0.70 0.70 0.79 0.79 0.79 0.79 0.79 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 <td< th=""><th>25</th><td>0.11</td><td>0.15</td><td>0.19</td><td>0.24</td><td>0.30</td><td>0.39</td><td>0.49</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	25	0.11	0.15	0.19	0.24	0.30	0.39	0.49						
0.11 0.14 0.18 0.24 0.30 0.38 0.49 0.55 0.63 0.17 0.54 0.63 0.74 0.80 0.80 0.79 0.78 0.77 0.90 0.80 0.79 0.77 0.62 0.77 0.88 0.90 0.88 0.80 0.80 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.		0.45	0.52	09.0	10.0	0.68	0,65	0.6	0.66	0.66				
0.47 0.54 0.63 0.74 0.80 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.75 0.62 0.77 0.88 0.90 0.89 0.85 0.90 0.70 0.89 0.89 0.89 0.90 0.70 0.89 0.70 0.89 0.98 0.99 0.70 0.89 0.90 0.89 0.89 0.98 0.99 0.70 0.89 0.98 0.99 0.70 <th< th=""><th>30</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.24</td><td>05.0</td><td>0.38</td><td>64.0</td><td>0.55</td><td>0.63</td><td></td><td></td><td></td><td></td></th<>	30	0.11	0.14	0.18	0.24	05.0	0.38	64.0	0.55	0.63				
0.11 0.14 0.18 0.23 0.30 0.38 0.46 0.65 0.77 0.88 0.90 0.89 0.86 0.80 0.90 0,11 0.14 0.18 0.23 0.30 0.38 0.48 0.80 0.80 0.80 0.90 0.80 0.80 0.80 0.80 0.90 0.48 0.60 0.61 0.70 0.90 0.10 0.10 0.70 0.70 0.80 0.92 0.07 0.04 0.61 0.70 0.70 0.80 0.37 0.47 0.53 0.60 0.63 0.11 0.14 0.18 0.22 0.29 0.37 0.47 0.53 0.60 0.63 0.54 0.62 0.73 0.86 1.00 1.15 1.21 1.20 1.21 1.20 1.21 1.20 0.54 0.65 0.73 0.86 1.00 1.04 1.20 1.21 1.21 1.20 1.21 1.21 1.22 0.50		0.47	0.54	0.63	0.74	0.80	08.0	0.79	0.78	0.41	0.79			
0,50 0,58 0,65 0,90 0,88 0,90 0,88 0,86 0,90 0,80 0,80 0,90 0,80 0,90 0,80 0,90 0,90 0,18 0,18 0,23 0,30 0,38 0,48 0,54 0,61 0,70 0,70 0,30 0,30 1,00 <th< th=""><th>35</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.23</td><td>0.30</td><td>0.38</td><td>0.48</td><td>0.55</td><td>0.62</td><td>0.70</td><td></td><td></td><td></td></th<>	35	0.11	0.14	0.18	0.23	0.30	0.38	0.48	0.55	0.62	0.70			
0.11 0.14 0.18 0.23 0.36 0.48 0.54 0.01 0.01 0.70 0.80 0.92 1.05 1.01 1.00 <th< th=""><th></th><td>0.50</td><td>0.58</td><td>0.65</td><td>0.77</td><td>0.88</td><td>0.90</td><td>0.88</td><td>0.85</td><td>0.88</td><td>0.90</td><td>0.90</td><td></td><td></td></th<>		0.50	0.58	0.65	0.77	0.88	0.90	0.88	0.85	0. 88	0.90	0.90		
0.51 0.60 0.70 0.80 0.92 1.05 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.12 1.20 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 <td< th=""><th>9</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.23</td><td>05.0</td><td>0.38</td><td>8[†].0</td><td>0.54</td><td>0.61</td><td>0.70</td><td>0.79</td><td></td><td></td></td<>	9	0.11	0.14	0.18	0.23	05.0	0.38	8 [†] .0	0.54	0.61	0.70	0.79		
0.11 0.18 0.22 0.29 0.37 0.47 0.53 0.60 0.63 0.53 0.62 0.71 0.83 0.96 1.10 1.13 1.05 1.12 1.12 0.11 0.14 0.18 0.22 0.29 0.37 0.47 0.53 0.60 0.60 0.60 0.51 0.04 0.086 1.00 1.15 1.20 1.21 1.20 1.45 <th></th> <td>0.51</td> <td>0.60</td> <td>0.70</td> <td>0.80</td> <td>0.92</td> <td>305</td> <td>1.01</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.02</td> <td></td>		0.51	0.60	0.70	0.80	0.92	305	1.01	1.00	1.00	1.00	1.00	1.02	
0.53 0.62 0.71 0.83 0.96 1.10 1.13 1.05 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.16 0.60 <td< th=""><th>4</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.22</td><td>62.0</td><td>0.37</td><td>0.4Z</td><td>0.53</td><td>0.60</td><td>0.63</td><td>0.73</td><td>0.99</td><td></td></td<>	4	0.11	0.14	0.18	0.22	62.0	0.37	0.4Z	0.53	0.60	0.63	0.73	0.99	
0.11 0.14 0.18 0.22 0.29 0.37 0.47 0.53 0.60 0.69 0.73 0.86 1.00 1.15 1.20 1.21 1.20 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.32 1.31 1.26 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.36 1.35 1.35 1.36 1.35 1.35 1.35 1.35 1.45 <td< th=""><th></th><td>0.53</td><td>0.62</td><td>12.0</td><td>0.83</td><td>96.0</td><td>1.10</td><td>1.13</td><td>1.0%</td><td>1.12</td><td>1.12</td><td>1.10</td><td>1.12</td><td></td></td<>		0.53	0.62	12.0	0.83	96.0	1.10	1.13	1.0%	1.12	1.12	1.10	1.12	
0.54 0.62 0.73 0.86 1.00 1.15 1.20 1.21 1.20 1.20 1.21 1.20 1.20 1.21 1.20 1.20 1.21 1.20 1.20 1.31 1.20 1.32 1.31 1.20 1.32 1.31 1.20 1.32 1.31 1.32 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.45 <th< th=""><th>ይ</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.22</td><td>67.0</td><td>0.37</td><td>0.47</td><td>0.53</td><td>0.00</td><td>ુક્</td><td>ρo</td><td>o.9</td><td></td></th<>	ይ	0.11	0.14	0.18	0.22	67.0	0.37	0.47	0.53	0.00	ુક્	ρo	o.9	
0.11 0.14 0.18 0.22 0.29 0.37 0.47 0.53 0.60 0.68 0.56 0.64 0.75 0.90 1.04 1.20 1.32 1.31 1.28 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.45 1.	u u	0.54	0.62	0.73	0.86	1.00	1.15	1.20	1.21	1.20	1.26	1.20	1.35	
0.56 0.64 0.75 0.90 1.04 1.20 1.32 1.31 1.28 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.45 <th< th=""><th>22</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.22</td><td>62.0</td><td>0.37</td><td>0.47</td><td>0.53</td><td>0.00</td><td>ි ල</td><td>0.76</td><td>96.0</td><td></td></th<>	22	0.11	0.14	0.18	0.22	62.0	0.37	0.47	0.53	0.00	ි ල	0.76	96.0	
0.11 0.14 0.18 0.22 0.29 0.37 0.47 0.53 0.60 0.68 0.58 0.66 0.78 0.90 1.03 1.28 1.45 1.	ÿ	95.0	19.0	0.75	06.0	1.04	1.20	1.32	1.31	1.28	1.35	1.30	1.35	
0.58 0.66 0.78 0.90 1.03 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45	8	0.11	171.0	0.18	0.22	0.29	0.37	0.47	0.53	0,50	٠. ا	0.76	96.0	
0.11 0.14 0.17 0.22 0.28 0.36 0.45 0.53 0.60 0.38 0.59 0.67 0.79 0.91 1.09 1.31 1.48 1.46 1.47 1.45 1.45 0.11 0.14 0.17 0.23 0.28 0.3 0.45 0.53 0.60 0.63	77	0.58	99.0	0.78	06.0	1.0)	1.28	1.45	1.45	3.45	1.45	1.45	1.50	
0.59 0.67 0.79 0.91 1.09 1.31 1.48 1.46 1.47 1.45 1.45 0.11 0.14 0.17 0.23 0.28 0.3 0.45 0.53 0.60 0.63	o o	11.0	0.14	0.17	0.22	0.28	0.36	0.1⊦્	0.53	0.00	<u>၀</u>	0.76	96.0	
0.11 0.14 0.17 0.23 0.28 0.35 0.45 0.53 0.60 0.63	ç	0.59	0.67	0.79	16.0	1.09	3.31	1.148	1.46	1.47	1.45	1.45	1.59	1.57
	2	0.11	0.14	0.17	0.23	0.28	0.3	्रक्∙0	0.53	09.0	0.63	0.76	96.0	1.46

TABLE II B-29
RUBBER FORMING LIMITS
SHRINK FLANGES
INCONEL X (C.R. ANNEALED)

					Mater	Material Inickness	1	(£)					
Contour	.016	.020	.025	-032	040.	•050	.063	.071	.080	060.	.100	.125	75
æ			Maximum		afmum F.	lange He	ight Li	and Minimum Flange Height Limits (h	_				
	0.15	0.15									į		
5	0.11	0.15											
9,	62.0	0.29	0.29	0.29	0.29								
OT .	0.11	0.14	0.18	0.23	0.29								
,	0.38	ሳተ 0	1,40	ተተ 0	1717.0	1717							
ÇŢ	0.11	0.13	0.17	0.22	0.28	0.36							
8	2t/ 0	0.48	0.56	09.0	09.0	0.59	09.0	09.0	19.0				
\ \	0.11	0.13	0.17	0.22	0.28	0.35	44.0	0.50	0.58				
ü	ካካ • 0	0.52	09.0	0.70	0.74	0.75	0.72	0.73	0.74	0.75	0.		
(2)	0.11	0.13	0.16	0.21	0.27	0.36	ሳተ 0	64.0	95.0	19.0	0.		
Ç	24.0	0.54	0.65	0.75	0.88	0.87	28.0	28.0	0.87	0.86	9.8		
ر در	0.11	0.13	0.16	0.21	0.27	0.34	ηή.O	05.0	0.56	19.0	0.72		
Ĺ	0.50	0.58	0.68	0.80	0.92	1.05	1.02	1.04	1.04	εο•τ	1.02	1.05	
35	0.11	0.13	0.16	0.21	0.27	0.34	<u>₩</u> 0.0	05.0	0.56	19.0	0.72	0.91	
O.	0.52	0.60	0.70	0.83	96.0	1,11	1.18	1.16	1.16	1.17	1.17	1.15	
}	0.11	0.13	0.16	0.21	0.27	0.34	0.43	05.0	0.56	0.63	ι.ν	06.0	
4	0.54	0.62	0.73	0.86	1.00	1.16	1.35	1.33	1.34	1.35	1.35	1.34	
?	0.10	0.13	0.16	0.21	0,26	0.34	0.43	64.0	0.56	0.63	0.70	0.89	
Ç	0.56	99.0	0.76	0.90	1.05	1.21	1.42	1.49	1.49	1.51	1.51	1.51	1.51
ત્ર	0.11	0.13	0.16	0.21	0.26	0.34	0.43	64.0	0.56	0.63	02.0	0.89	1.35
55	0.58	0.66	0.78	0.91	1.07	1.13	1.45	1.56	1.62	1.64	1.62	1.66	1.59
*	0.11	0.13	0.16	0.21	0.26	0.34	८.५८	84.0	0.55	0.62	0.70	0.88	1.35
9	0.59	0.68	9.80	16.0	1.10	1.28	1.49	1.60	1.76	1.76	1.76	1.76	1.74
	0.11	0.13	0.16	0.21	0.26	0.33	0.42	0.48	0.54	0.62	0.69	0.87	1.35
65	0.61	0.70	0.82	0.97	1.12	1.30	1.51	1.63	1.78	1.90	1.92	1.94	1.93
	0.10	0.13	0.16	0.21	0.26	0.33	0.42	0.48	0.54	0.62	0.69	0.88	1.33
70	0.62	0.72	0.85	0.99	1.16	1.35	1.58	1.70	1.84	1.98	2.05	2.00	5.06
	0.11	0.13	0.16	0.21	0.26	0.33	0.42	0.48	0.54	29.0	0.69	0.88	1.33

TABLE II B-30 RUBBER FORMING LIMITS SHRINK FLANGES HASTELLOY X (SOLUTION TREATED)

Contour O16 .026 .059 .059 .079 .063 .071 .080 .090						Material		Thickness	(t)					
MAXIMUM and Minimum Flange Relight Limits (h)	Contour	.016	050.	.025	.032	040.	.050	.063	.071	080.	060.	.100	.125	.187
0.15 0.17 0.19 0.10 0.11 0.12 0.22 0.23 0.24 0.15 <th< th=""><th>en es</th><th></th><th></th><th>Maximum</th><th></th><th>ıfmum FJ</th><th>ange He</th><th>ight Li</th><th>mits (h)</th><th></th><th></th><th></th><th></th><th></th></th<>	en es			Maximum		ıfmum FJ	ange He	ight Li	mits (h)					
0.11 0.14 0.17 0.29 0.30 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.75 <th< th=""><th></th><th>0.15</th><th>0.17</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		0.15	0.17											
0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.31 0.45 <th< th=""><th>~</th><th>0.11</th><th>0.14</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	~	0.11	0.14											
0.10 0.14 0.17 0.22 0.35 0.45 0.61 0.61 0.61 0.61 0.62 0.28 0.35 0.44 0.50 0.56 0.57 0.75 <th< th=""><th></th><th>0.30</th><th>0.30</th><th>0.30</th><th>0.30</th><th>0.30</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		0.30	0.30	0.30	0.30	0.30								
0.36 0.44 0.45 0.44 0.49 0.55 0.45 0.45 0.45 0.44 0.49 0.45 0.45 0.45 0.44 0.44 0.49 0.45 0.45 0.47 0.34 0.44 0.49 <th< th=""><th>9</th><th>0.30</th><th>0.14</th><th>0.17</th><th>0.22</th><th>0.08</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	9	0.30	0.14	0.17	0.22	0.08								
0.10 0.13 0.16 0.22 0.28 0.35 0.45 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.62 0.61 0.61 0.62 0.62 0.61 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.75 0.75 0.75 0.75 0.75 0.75 0.62 0.70 0.75 0.76 0.75 0.76 0.75 <th< th=""><th></th><th>0.38</th><th>0.44</th><th>0.45</th><th>0.45</th><th>0.45</th><th>0.45</th><th>0.45</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		0.38	0.44	0.45	0.45	0.45	0.45	0.45						
0,42 0,42 0,42 0,42 0,42 0,42 0,42 0,43 0,61 0,61 0,61 0,61 0,61 0,61 0,61 0,61 0,61 0,61 0,61 0,61 0,61 0,62 0,61 0,71 0,75 0,76 0,79 <th< th=""><th>15</th><th>0.10</th><th>0.13</th><th>0.16</th><th>0.22</th><th>0.28</th><th>0.35</th><th>0.45</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	15	0.10	0.13	0.16	0.22	0.28	0.35	0.45						
0.10 0.13 0.16 0.22 0.27 0.35 0.44 0.50 0.55 0.75 <th< th=""><th>8</th><th>0.42</th><th>0.42</th><th>6,19</th><th>0.58</th><th>0.61</th><th>0.61</th><th>0.61</th><th>0.61</th><th>0.61</th><th></th><th></th><th></th><th></th></th<>	8	0.42	0.42	6,19	0.58	0.61	0.61	0.61	0.61	0.61				
0.45 0.52 0.64 0.71 0.75 <th< th=""><th>8</th><th>0.10</th><th>0.13</th><th>0.16</th><th>0.22</th><th>0.27</th><th>0.35</th><th>0.44</th><th>0.50</th><th>0.56</th><th></th><th></th><th></th><th></th></th<>	8	0.10	0.13	0.16	0.22	0.27	0.35	0.44	0.50	0.56				
0.10 0.13 0.27 0.34 0.44 0.49 0.56 0.63 0.70 0.50 0.55 0.65 0.77 0.88 0.90 0.90 0.89 0.90 0.89 0.90 0.89 0.90 0.90 0.90 0.89 0.90 0.		0.45	0.52	0.61	0.71	0.76	0.75	0.7	0.75	0.75	0.76	0.75		
0.50 0.55 0.65 0.77 0.88 0.90 0.89 0.90 0.89 0.90 0.89 0.90 <th< th=""><th>25</th><td>0.10</td><td>0.13</td><td>0.16</td><td>0.21</td><td>0.27</td><td>0.34</td><td>74.0</td><td>64.0</td><td>0.56</td><td>0.63</td><td>0.70</td><td></td><td></td></th<>	25	0.10	0.13	0.16	0.21	0.27	0.34	74.0	64.0	0.56	0.63	0.70		
0.11 0.13 0.16 0.21 0.27 0.34 0.43 0.48 0.59 0.69 0.51 0.59 0.68 0.80 0.94 1.05 1.06 1.06 1.06 1.06 0.11 0.13 0.16 0.21 0.27 0.34 0.43 0.48 0.55 0.62 0.69 0.10 0.13 0.16 0.21 0.27 0.34 0.48 0.55 0.62 0.69 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.59 0.69 0.69 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.51 0.60 0.69 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.51 0.61 0.69 0.59 0.69 0.69 0.69 0.59 0.69 0.69 0.69 0.71 0.69 0.71 0.72 0.72		0.50	0.55	0.65	0.77	0.88	0.90	0.90	0.89	06.0	0.89	0.90	0.88	
0.51 0.59 0.68 0.94 1.05 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 0.05 0.06 <td< th=""><th>30</th><td>0.11</td><td>0.13</td><td>0.16</td><td>0.21</td><td>0.27</td><td>0.34</td><td>0.43</td><td>0.48</td><td>0.55</td><td>०.६२</td><td>6.0</td><td>0.88</td><td></td></td<>	30	0.11	0.13	0.16	0.21	0.27	0.34	0.43	0.48	0.55	०. ६२	6.0	0.88	
0.11 0.13 0.16 0.21 0.24 0.43 0.48 0.55 0.60 0.69 0.70 0.69 0.70 0.69 0.70 0.70 0.60 0.70 <th< th=""><th></th><th>0.51</th><th>0.59</th><th>0.68</th><th>0.80</th><th>46.0</th><th>1.05</th><th>1.06</th><th>1.06</th><th>1.06</th><th>1.06</th><th>90.۲</th><th>1.07</th><th></th></th<>		0.51	0.59	0.68	0.80	46.0	1.05	1.06	1.06	1.06	1.06	90.۲	1.07	
0.53 0.61 0.71 0.84 0.97 1.14 1.23 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 0.48 0.54 0.61 0.69 0.69 0.69 0.74 0.87 1.01 1.20 1.36 1.36 1.36 1.36 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.39 1.38 1.39 1.38 <td< th=""><th>35</th><td>0.11</td><td>0.13</td><td>0.16</td><td>0.21</td><td>0.27</td><td>0.34</td><td>0.143</td><td>0.48</td><td></td><td>0.62</td><td>0.69</td><td>0.88</td><td></td></td<>	35	0.11	0.13	0.16	0.21	0.27	0.34	0.143	0.48		0.62	0.69	0.88	
0.10 0.13 0.16 0.21 0.25 0.33 0.42 0.48 0.48 0.54 0.61 0.69 0.10 0.14 0.74 0.87 1.01 1.20 1.36 1.37 1.38 1.38 1.38 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.69 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.69 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.68 0.10 0.13 0.16 0.21 0.26 0.37 0.42 0.48 0.51 0.51 0.50 0.01 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.33 0.42 0.46		0.53	0.61	0.71	0.84	0.97	1.1^{4}	1.23	1.20	1.20	1.20		1.20	
0.55 0.4 0.74 0.87 1.01 1.20 1.36 1.36 1.37 1.38 1.38 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.69 0.10 0.13 0.16 0.21 1.06 1.23 1.47 1.49 1.53 1.53 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.63 0.10 0.13 0.16 0.21 0.26 0.37 0.42 0.48 0.54 0.51 0.68 0.10 0.13 0.16 0.21 0.26 0.12 0.42 0.48 0.54 0.51 0.68 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.51 0.61 0.61 0.10 0.12 0.16 0.21 0.26 0.33 0.42 0.48 0.51 0.51 <td< th=""><th>3</th><td>0.10</td><td>0.13</td><td>0.16</td><td>0.21</td><td>0.26</td><td>0.33</td><td>0.12</td><td>0.48</td><td>0.54</td><td>0.61</td><td>0.69</td><td>0.88</td><td></td></td<>	3	0.10	0.13	0.16	0.21	0.26	0.33	0.12	0.48	0.54	0.61	0.69	0.88	
0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.69 0.10 0.13 0.16 0.21 1.06 1.23 1.45 1.47 1.49 1.53 1.53 0.10 0.13 0.16 0.21 0.25 0.33 0.42 0.48 0.54 0.61 0.68 0.10 0.13 0.16 0.21 0.26 0.37 0.42 0.48 0.54 0.61 0.68 0.51 0.70 0.81 0.26 0.37 0.42 0.48 0.54 0.51 0.68 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.51 0.61 0.68 0.10 0.12 0.16 0.21 0.26 0.33 0.42 0.42 0.42 0.51 0.69 1.96 1.96 1.96 0.69 1.14 1.32 1.54 1.70 1.81 2.01 2.10 <th>1</th> <th>0.55</th> <th>٠<u>٠</u></th> <th>47.0</th> <th>0.87</th> <th>1.01</th> <th>•</th> <th>1.39</th> <th>1.36</th> <th>1.37</th> <th>1.38</th> <th>1.38</th> <th>1.39</th> <th>1.36</th>	1	0.55	٠ <u>٠</u>	47.0	0.87	1.01	•	1.39	1.36	1.37	1.38	1.38	1.39	1.36
0.57 0. 16 0.77 0.91 1.06 1.23 1.45 1.47 1.49 1.53 1.53 0.10 0.13 0.16 0.21 0.25 0.33 0.42 0.48 0.54 0.61 0.63 0.68 0.69 1.08 1.25 1.47 1.58 1.69 1.70 1.36 1.68 1.70 1.36 1.68 1.68 1.70 1.68 1	£	0.10	0.13	0.16	0.21	0.26	0.33	0.42	0.48	0.54	0.61	0.69	o.88	1.33
0.10 0.15 0.16 0.21 0.25 0.33 0.42 0.48 0.49 0.49 0.49 0.48 0.61 0.61 0.61 0.62 0.23 1.08 1.25 1.47 1.58 1.69 1.70 1.38 0.10 0.13 0.16 0.21 0.26 0.37 0.42 0.48 0.54 0.51 0.60 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.63 0.52 0.71 0.03 0.96 1.14 1.32 1.54 1.67 1.98 1.96 1.96 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67 0.63 0.73 0.47 0.47 0.53 0.47 0.53 0.59 0.59 0.67 0.63 0.73 0.47 0.47 0.53 0.47 0.47 0.53 0.59		0.57	96	77.0	0.91	1.06	1.23	1.45	1.47	1.49	1.53	1.53	1.53	1.53
0.58 0.68 0.78 0.93 1.08 1.25 1.47 1.58 1.69 1.70 1.8 1.6 0.10 0.13 0.16 0.26 0.26 0.37 0.42 0.48 0.54 0.51 0.60 0.61 0.70 0.82 0.96 1.12 1.13 1.15 1.63 1.76 1.80 1.83 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.68 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 1.96 0.63 0.73 0.73 0.47 0.47 0.53 0.59 0.67 0.63 0.73 0.81 0.85 1.00 1.16 1.57 1.70 1.84 2.01 2.10 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.59	50	0.10	0.13	0.16	0.21	0.25	0.33	0.42	0.48	0.54	0.61		0.86	1.31
0.010 0.13 0.16 0.21 0.26 0.37 0.42 0.48 0.54 0.51 0.60 0.01 0.02 0.081 0.096 1.12 1.15 1.63 1.76 1.80 1.83 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.68 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 1.96 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67 0.63 0.73 0.41 0.47 0.47 0.53 0.59 0.67 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67	55	0.58	0.68	0.78	0.93	1.08	1.25	7.47	1.58	1.69	1	٦. 🔞	1.72	1.6
0.61 0.70 0.82 0.96 1.12 1.13 1.15 1.63 1.76 1.80 1.83 0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.68 0.52 0.71 0.98 1.14 1.32 1.54 1.57 1.81 1.98 1.96 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67 0.63 0.73 0.73 1.76 1.70 1.84 2.01 2.10 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67		.0.10	0.13	0.16	0.27	0.26	0.37	0.1⊦ટ	0.48	0.54	0.51	ං.ගි	0.36	1.31
0.10 0.13 0.16 0.21 0.26 0.33 0.42 0.48 0.54 0.61 0.63 0.52 0.71 0.83 0.98 1.14 1.32 1.54 1.67 1.81 1.98 1.96 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67 0.63 0.73 0.73 1.57 1.70 1.84 2.01 2.10 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67	3	19.0	0.70	0.81	96.0	1.12	1.13	1.15	1.63	1.76	1.80	1.83	1.81	1.79
0.52 0.71 0.83 0.98 1.14 1.32 1.54 1.57 1.81 1.98 1.96 1.96 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67 0.65 0.63 0.73 0.85 1.00 1.16 1.35 1.57 1.70 1.84 2.01 2.10 0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67	8	0.10	0.13	0.16	0.21	0.26	0.33	ट†¹∙o	0,48	0.54	0.61	0.68	0.86	1.31
0.10 0.12 0.16 0.21 0.26 0.33 0.41 0.47 0.53 0.59 0.67 0.63 0.63 0.73 0.85 1.00 1.16 1.35 1.57 1.70 1.84 2.01 2.10 0.10 0.12 0.16 0.21 0.25 0.33 0.41 0.47 0.53 0.59 0.67	Ϋ́	0.52	0.71	0.33	0.98	1.14	1.32	1.54	1.67	1.81	1.98	1.96	2.0	1.93
0.63 0.73 0.85 1.00 1.16 1.35 1.57 1.70 1.84 2.01 2.10 0.10 0.12 0.16 0.21 0.25 0.33 0.41 0.47 0.53 0.59 0.67	C)	0.10	0.12	0.16	0.21	0.26	0.33	0.41	0.1,7	0.53	0.59	0.67	0.85	1.31
0.10 0.12 0.15 0.21 0.25 0.33 0.41 0.47 0.53 0.59 0.67	Š	6.63	0.73	0.85	1.00	1.16	1.35	1.57	1.70	1.84	2.01	2.10	2.10	2.09
	2	0.10	0.12	0.16	0.21	0.26	0.33	0.11	0.47	0.53	0.59	0.67	0.85	1.31

TABLE II B-31 RUBBER FORMING LIMITS SHRINK FIANGES L-505 (SOLUTION TREATED)

					Mate	Material Tbi	Thickness	Œ					
Contour	910.	.020	.025	-032	o 1 o•	.050	.063	.071	.080	960.	.100	. 125	751.
æ			Maximum	snd Mf	oimum F	and Minimum Flange Height Limits (h)	ight Li	mits (h	(
	0.13												
5	0.13												
9	0.26	0.26	0.27	0.27									
OT .	21.0	0.15	0.19	0.25									
	0.39	0,40	0.31	0,40	0,40	0,40							
77	0.12	0.15	0.19	ტ₹.0	0.31	0.39							
8	0,45	0,50	0.52	0.54	0.54	0.54	0.54						
2	0.11	0.14	0.19	0.24	0.30	0.38	64.0			_			
90	94.0	0.54	0.59	0.66	99.0	99.0	99.0	99.0	0.67				
(2)	0.11	41.0	0.19	0.24	0.30	0.38	8 [†] ,0	0.55	79.0				
00	84.0	0.56	0.61	0.78	0.79	0.80	0.79	0.79	0.78	0.79	0.80		
20	0.11	0.14	0.18	0.23	0.29	0.37	0.47	0.53	0.61	0.69	0.78		
ŭ	0.51	09.0	0.65	0.83	0.94	0.91	0.92	0.93	0.92	0.92	0.91		
37	0.11	0.14	0.18	0.23	0.29	0.37	0.47	0.53	0.61	0.68	0.77		
Ç	0.54	0.63	0.68	0.86	1.00	1.06	1.05	1.03	1.03	1.04	1,05	1.06	
₽	0.11	0.14	0.18	0.23	0.29	0.37	0.47	0.53	0.60	0.68	0.76	0.96	
1	0.56	0.65	0.70	0.89	1.04	1.22	1.20	1.21	1.20	1.22	1.25	1.22	
	0.11	0.14	0.18	0.22	0.29	0.37	74.0	0.53	09.0	0.68	0.76	96.0	
(0.58	0.68	0.73	0.93	1.08	1.25	1.36	1.34	1.35	1.35	1.35	1.35	
3	0.11	0.14	0.18	0.22	0.28	0.35	0.45	0.52	0.59	0.67	0.75	0.95	
55	09.0	0.70	0.75	0.96	1.12	1.30	1.51	1.49	1.48	1.53	1.50	1.50	1.50
	0.11	0.14	0.18	0.22	0.28	0.35	0.45	0.52	0.59	0.67	0.75	0.95	1.49
\$	0.61	0.71	0.78	0.99	1.14	1.33	1.58	1.63	1.60	1.62	1.60	1.63	1.59
	0.11	0.13	0.18	0.22	0.28	0.36	0.45	0.52	0.58	0.67	0.74	0.94	1.43
65	19.0	0.74	0.80	1.02	1.16	1.35	1.60	1.74	1.72	1.75	1.75	1.75	1.74
	11.0	0.13	0.17	D.22	0.28	0.36	0.45	0.52	0.58	0.67	η ζ. 0	₹6•0	1.44
20	19.0	0.75	0.88	1.03	1.20	1.40	1.64	1.78	1.84	1.94	1.85	1.87	1.87
	0.11	0.13	0.17	0.22	0.28	0.36	0.45	0.52	0.58	79.0	0.74	46.0	1.44

TABLE II B-32 RUBBER FORMING LIMITS SURINK FLANGES J-1570 (SOLMFION TREATED)

Contour O.016 O.026 O						Material		Thickness	(t)					
Maximum and Minimum Flange Height Limits (h)	Contour	910.	.020	.025	.032	040.	.050	.063	.071	.080	960.	.130	ऽटा:	.187
0.24 0.24 0.25 0.12 0.15 0.26 0.26 0.12 0.15 0.28 0.26 0.26 0.11 0.14 0.14 0.15 0.24 0.20 0.11 0.14 0.16 0.29 0.20 0.20 0.60 0.11 0.14 0.18 0.24 0.20 0.26 0.00 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.77 0.70 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.57 0.60 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.57 0.60 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.57 0.60 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.57 0.60 0.99 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.57 0.60 0.99 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.55 0.60 0.99 0.11 0.14 0.18 0.25 0.29 0.27 0.47 0.55 0.60 0.99 0.11 0.14 0.17 0.22 0.29 0.37 0.47 0.55 0.60 0.68 0.76 0.11 0.14 0.17 0.22 0.28 0.26 0.46 0.55 0.60 0.68 0.75 0.56 0.67 0.77 0.90 0.90 0.90 0.90 0.90 0.90 0.9	æ			Maximum	and			ight Li	mits (b,					
0.24 0.24 0.25 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.36 0.37 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.44 0.31 0.34 0.38 0.44 0.30 0.39 0.45 0.40 0.40 0.40 0.40 0.40 0.40 0.40														
0.24 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.24 0.31 0.24 0.31 0.24 0.31 0.24 0.31 0.24 0.31 0.24 0.32 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 <th< th=""><th>5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	5													
0.12 0.15 0.20 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.60 <th< th=""><th>3</th><th>15.0</th><th>0.24</th><th>0.25</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	3	15.0	0.24	0.25										
0.35 0.36 0.37 <th< th=""><th>9</th><th>0.12</th><th>0.15</th><th>0.20</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	9	0.12	0.15	0.20										
6.12 6.15 6.19 6.24 6.31 6.48 6.48 6.48 6.48 6.49 6.48 6.48 6.49 6.48 6.48 6.49 6.48 6.49 6.49 6.48 6.49 6.49 6.49 6.49 6.49 6.40 <th< th=""><th></th><th>0.35</th><th>95.0</th><th>95.0</th><th>95.0</th><th>0.36</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		0.35	95.0	95.0	95.0	0.36								
0.38 0.44 0.48 0.38 0.49 0.49 0.49 0.11 0.14 0.18 0.24 0.50 0.50 0.60 0.60 0.60 0.12 0.18 0.24 0.61 0.60 0.60 0.60 0.60 0.60 0.11 0.14 0.18 0.24 0.60 0.70 0.71 0.72 0.72 0.11 0.14 0.18 0.25 0.70 0.77 0.72 0.72 0.70 0.72 0.72 0.70 0.72	15	0.12	0.15	0.19	₽ 5. 0	0.31								
0.11 0.18 0.24 0.30 0.38 0.48 0.24 0.06 0.60 0.71 0.72 <th< th=""><th>8</th><th>0.38</th><th>0.44</th><th>0.48</th><th>0.38</th><th>0.48</th><th>0.48</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	8	0.38	0.44	0.48	0.38	0.48	0.48							
0.42 0.48 0.54 0.61 0.60 0.60 0.60 0.60 0.11 0.14 0.18 0.24 0.30 0.78 0.48 0.55 0.11 0.14 0.18 0.24 0.30 0.72 0.71 0.72 0.72 0.11 0.14 0.18 0.25 0.70 0.72 0.77 0.71 0.72 0.70 0.11 0.14 0.18 0.25 0.74 0.78 0.47 0.54 0.60 0.70 0.15 0.54 0.65 0.77 0.88 0.95 1.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.70 0.70 0.70 0.80 0.37 0.47 0.55 0.60 0.70 0.89 0.37 0.47 0.55 0.60 0.70 0.89 0.77 0.89 0.87 0.47 0.55 0.60 0.68 0.77 0.90 0.45 0.45 0.75)	0.11	0.14	0.18	0.24	0.30	0.38							
0.11 0.14 0.18 0.24 0.30 0.36 0.48 0.55 0.72 0.14 0.18 0.24 0.72 0.72 0.70 0.71 0.72 0.72 0.72 0.70 0.72 0.72 0.70 0.71 0.72 0.82 0.82 0.82 0.82 0.87 <th< th=""><th>Š</th><th>2ħ.0</th><th>0.48</th><th>0.54</th><th>0.61</th><th>09.0</th><th>09.0</th><th>09.0</th><th>09.0</th><th></th><th></th><th></th><th></th><th></th></th<>	Š	2ħ.0	0.48	0.54	0.61	09.0	09.0	09.0	09.0					
0.45 0.52 0.62 0.70 0.72 0.70 0.71 0.72 0.72 0.70 0.71 0.72 0.70 0.71 0.72 0.70 0.71 0.72 0.70 0.71 0.72 0.70 0.77 0.62 0.70 <td< th=""><th>25</th><th>0.11</th><th>0.14</th><th>0.18</th><th>0.24</th><th>0.30</th><th>0.38</th><th>o• 48</th><th>0.55</th><th></th><th></th><th></th><th></th><th></th></td<>	25	0.11	0.14	0.18	0.24	0.30	0.38	o• 48	0.55					
0.11 0.14 0.18 0.25 0.29 0.38 0.47 0.54 0.62 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.88 0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.70 0.89 0.77 0.89 0.87 0.47 0.53 0.60 0.79 0.77 0.89 0.97 1.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.47 0.53 0.60 0.77 0.89 0.37 0.47 0.53 0.60 0.77 0.89 0.77 0.47 0.53 0.60 0.77 0.89 0.77 0.47 0.47 0.53 0.60 0.77 0.80 0.77 0.47 0.47 0.53 0.60 0.69 0.77 0.78 0.77 0.47 0.47 0.53 0.60 0.69 0.78 0.79 0.79 <th< th=""><th>Š</th><th>6,45</th><th>0.52</th><th>0.62</th><th>0.70</th><th>0.72</th><th>0.72</th><th>0.70</th><th>0.71</th><th>0.72</th><th>0.72</th><th></th><th></th><th></th></th<>	Š	6,45	0.52	0.62	0.70	0.72	0.72	0.70	0.71	0.72	0.72			
0.46 0.54 0.65 0.74 0.88 0.85 0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.70 0.89 0.77 0.88 0.95 1.01 0.99 0.96 0.99 1.00 0.99 0.99 0.89 0.77 0.89 0.77 0.89 0.87 0.47 0.55 0.60 0.77 0.89 0.77 0.87 0.47 0.55 0.60 0.77 0.89 0.77 0.87 0.47 0.55 0.60 0.77 0.89 0.77 0.47 0.57 0.60 0.77 0.77 0.89 0.37 0.47 0.55 0.60 0.68 0.77 0.89 0.37 0.47 0.55 0.60 0.68 0.76 0.75 0.60 0.68 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 <td< th=""><th>2</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.23</td><td>0.29</td><td>0.38</td><td>24.0</td><td>0.54</td><td>0.62</td><td>02.0</td><td></td><td></td><td></td></td<>	2	0.11	0.14	0.18	0.23	0.29	0.38	24.0	0.54	0.62	02.0			
0.11 0.14 0.18 0.23 0.37 0.47 0.53 0.61 0.69 0.78 0.77 0.50 0.56 0.56 0.67 0.77 0.88 0.95 1.01 0.99 0.96 0.99 1.00 0.11 0.14 0.18 0.23 0.29 0.77 0.47 0.89 0.77 0.47 0.75 0.60 0.68 0.77 0.47 0.55 0.60 0.68 0.77 0.47 0.57 0.60 0.69 0.77 0.77 0.77 0.87 0.47 0.55 0.60 0.68 0.77 0.77 0.77 0.77 0.78 0.77 0.47 0.57 0.60 0.68 0.76 0.77 0.75 0.86 0.75 0.40 0.55 0.60 0.68 0.75 0.60 0.68 0.75 0.60 0.68 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75<		94.0	0.54	69.0	47.0	0.88	0.85	0.88	0.85	0.88	98.0	0.85		
0.50 0.56 0.65 0.77 0.88 0.95 1.01 0.99 0.96 0.99 1.00 0.90 1.00 0.90 1.00 0.90 0.07 0.60 0.70 0.60 0.02 0.10 1.12 1.14 1.12 1.17 1.15 1.15 1.14 1.12 1.17 1.15 1.17 1.15 1.14 1.12 1.17 1.15 0.60 0.60 0.77 0.80 0.80 0.37 0.47 0.53 0.60 0.68 0.76 0.77 0.11 0.14 0.17 0.22 0.29 0.37 0.47 0.53 0.60 0.68 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.76 0.76 0.46 0.53 0.60 0.68 0.75 0.76 0.76 0.75 0.76 0.75 0.76 0.75 0.75 0.76 0.75 0.75 0.75 0.	3	0.11	0.14	0.18	0.23	0.29	0.37	74.0	0.53	0.61	69*0	97.0		
0.11 0.18 0.23 0.29 0.37 0.47 0.55 0.60 0.68 0.70 0.80 0.92 1.10 1.13 1.14 1.12 1.17 1.15 0.11 0.14 0.18 0.23 0.29 1.10 1.13 1.14 1.12 1.17 1.15 0.11 0.14 0.18 0.23 0.29 0.37 0.47 0.55 0.60 0.68 0.76 0.11 0.14 0.17 0.22 0.29 0.37 0.47 0.53 0.60 0.68 0.76 0.54 0.64 0.75 0.86 1.00 1.18 1.39 1.35 1.35 1.38 0.54 0.54 0.56 0.86 0.76 0.80 0.76 0.60 0.68 0.75 0.11 0.14 0.17 0.90 1.04 1.21 1.44 1.44 1.44 1.50 0.11 0.14 0.17 0.90 1.01 <t< th=""><th>\(\frac{1}{2}\)</th><th>0.50</th><th>0.56</th><th>0.65</th><th>0.77</th><th>0.88</th><th>0.95</th><th>1.01</th><th>0.99</th><th>96.0</th><th>66.0</th><th>1.00</th><th></th><th></th></t<>	\(\frac{1}{2}\)	0.50	0.56	0.65	0.77	0.88	0.95	1.01	0.99	96.0	66.0	1.00		
0.51 0.60 0.70 0.80 0.92 i.10 1.13 1.14 1.12 1.15 1.15 1.15 1.15 1.15 1.15 1.14 1.12 1.17 1.15 1.15 1.14 1.12 1.17 1.15 0.60 0.68 0.23 0.29 0.37 0.47 0.55 0.60 0.68 0.76 0.75 0.67 0.75 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.68 0.76 0.75 0.60 0.68 0.76 0.75 0.60 0.68 0.75 0.60 0.68 0.75 0.60 0.68 0.75 0.76 0.75 0.60 0.68 0.75 0.76 0.75 0.75 0.75 0.76 0.75 0.76 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 <th< th=""><th>₽</th><td>0.11</td><td>0.14</td><td>0.18</td><td>0.23</td><td>0.29</td><td>0.37</td><td>24.0</td><td>0.53</td><td>09.0</td><td>0.68</td><td>0.77</td><td></td><td></td></th<>	₽	0.11	0.14	0.18	0.23	0.29	0.37	24.0	0.53	09.0	0.68	0.77		
0.11 0.14 0.18 0.25 0.29 0.37 0.47 0.53 0.60 0.68 0.76 0.77 0.47 0.53 0.60 0.68 0.76 1.21 1.21 1.20 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.35 1.35 1.35 1.36 0.76 0.76 0.75 0.60 0.68 0.75 0.22 0.28 0.36 0.46 0.53 0.60 0.68 0.75 1.24 1.41 1.42 1.41 1.44 1.44 1.50 0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.	3 (0.51	0.60	0.70	0.80	0.92	7.10	1.13	1.14	1.12	1.17	1.15	1.12	
0.53 0.62 0.72 0.85 0.96 1.15 1.26 1.21 1.26 1.25 1.25 1.26 1.27 1.26 1.29 1.27 1.26 1.20 1.25 1.26 1.26 1.35 1.35 1.35 1.36 <th< th=""><th></th><td>0.11</td><td>0,14</td><td>0.18</td><td>0.23</td><td>0.29</td><td>0.37</td><td>74.0</td><td>0.53</td><td>0.60</td><td>89.0</td><td>92.0</td><td>0.98</td><td></td></th<>		0.11	0,14	0.18	0.23	0.29	0.37	74.0	0.53	0.60	89.0	92.0	0.98	
0.11 0.14 0.17 0.22 0.29 0.57 0.47 0.53 0.60 0.68 0.76 0.54 0.64 0.75 0.86 1.00 1.18 1.39 1.35 1.36 1.35 1.38 0,11 0.14 0.17 0.22 0.28 0.36 0.46 0.57 0.60 0.68 0.75 0,11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 1.01 1.25 1.41 1.42 1.44 1.44 1.44 1.50 0.12 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.68 0.75 0.59 0.68 0.75 0.59 0.68 0.75 0.59 0.69 0.69 0.80 0.95 0.96 0.46 0.52 0.59 0.68 0.75 0.59 0.68 0.75 0.59 0.68 0.75 0.96 0.69 0.80 0.96 0.80	(0.53	0.62	0.72	0.85	0.96	1.15	1.26	1.21	1.20	1.26	1.25	1.25	
0.54 0.64 0.75 0.86 1.00 1.18 1.39 1.35 1.36 1.35 1.38 1.38 0,11 0.14 0.17 0.22 0.28 0.36 0.46 0.57 0.60 0.68 0.75 0.75 0.77 0.22 0.28 0.36 0.46 0.52 0.59 0.46 0.52 0.59 0.46 0.52 0.59 0.75 0.	જ	0.11	0.14	0.17	0.22	0.29	0.37	0.47	0.53	0,.60	99.0	92.0	0.95	
0,11 0,14 0.17 0.22 0.28 0.36 0.46 0.53 0.60 0.68 0.75 0,12 0,14 0.17 0.90 1.04 1.20 1.41 1.42 1.44 1.46 1.	55	0.54	19.0	0.75	98.0	1.00	1.18	1.39	1.35	1.36	1.35	1.38	1.37	
0.56 0.67 0.99 1.04 1.41 1.42 1.44 1.44 1.44 1.44 1.44 1.44 1.45 1.41 1.41 1.45 1.45 1.41 1.44 1.45 1.45 1.45 1.44 1.44 1.45 <td< th=""><th>`</th><td>0,11</td><td>0.14</td><td>0.17</td><td>0.22</td><td>0.28</td><td>0.36</td><td>9₩.0</td><td>0.53</td><td>0.60</td><td>0.68</td><td>0.75</td><td>0.95</td><td></td></td<>	`	0,11	0.14	0.17	0.22	0.28	0.36	9₩.0	0.53	0.60	0.68	0.75	0.95	
0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 1.01 1.25 1.45 1.56 1.60 1.62 1.60 0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.69 0.69 0.75 0.08 0.95 1.08 1.47 1.58 1.68 1.71 1.70 0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.68 0.75 0.59 0.68 0.75 0.75 0.59 0.68 0.75 0.75 0.59 0.68 0.75 0.75 0.59 0.68 0.75 0.75 0.59 0.68 0.75 0.75 0.59 0.68 0.75 0.75 0.59 0.68 0.75 0.75 0.59 0.68 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75<	Ş	0.56	0.67	0.75	0.90	1.04	1.20	1.41	1.42	1.44	1.44	1.50	1.44	
0.58 0.68 0.77 0.90 1.01 1.25 1.45 1.56 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.71 1.70 <td< th=""><th>3</th><td>0.11</td><td>0.14</td><td>0.17</td><td>0.22</td><td>0.28</td><td>0.36</td><td>94.0</td><td>0.52</td><td>0.59</td><td>89.0</td><td>₹).*0</td><td>0.95</td><td></td></td<>	3	0.11	0.14	0.17	0.22	0.28	0.36	94.0	0.52	0.59	89.0	₹).*0	0.95	
0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.68 0.75 0.59 0.69 0.75 0.59 0.69 0.75 0.59 0.69 0.75 0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.68 0.75	99	0.58	0.68	0.77	0.90	1.01	1.25	1.45	1.56	1.60	1.62	3.60	1.62	1.59
0.59 0.69 0.80 0.93 1.08 1.28 1.47 1.58 1.68 1.71 1.70 0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.68 0.75	`	0.11	0.14	0.17	0.22	0.28	95.0	94.0	0.52	0.59	89*0	62.0	96.0	1.46
0.11 0.14 0.17 0.22 0.28 0.36 0.46 0.52 0.59 0.68 0.75	20	0.59	69.0	0.80	6.93	1.08	1.28	1.47	1.58	1.68	17.71	1.70	<u> </u>	1.68
	2	0.11	0.14	0.17	0.22	0.28	95.0	94.0	0.52	0.59	89.0	9.75	66.0	7**I

TABLE II B-33 RUBBER FORMING LIMITS SHRINK FLANGES COLUMBIUM (10Mo-10T1)

					Material	rial Thi	Thickness	(t)					
Contour	910.	.020	.025	-032	040.	.050	.063	.071	.080	.090	.100	.125	187
R			Maximum	Maximum and Minimum Flange Height Limits (h)	almam F	lange He	ight Li	mits (h					
5													
9.5													
OT.													
	0.22	0.21											
CT .	0.14	0.17											
8	0.26	0.28	0.29	0.29									
^3	6.13	0.17	0.21	0.27									
ı	0.28	0.32	0.35	0.35	0.36								
(2)	0.13	0.17	ਾਨਾ	0.27	c.34								
0.0	0.30	0.54	0.40	0.4S	0.44								
30	61.0	91.0	0.21	0.27	0.34								
L	15.0	0.36	0.43	0.50	0.52	0.50							
55	0.13	0.16	ਹ.ਹ	0.27	0.34	0.43							
O.	0.33	0.38	0.45	0.53	0.56	0.58	0.58						
₽	0.12	0.16	0.21	0.27	0.34	0.43	0.54						
ı v	0.34	0.40	0.46	0.54	0.64	0.65	99.0	0.67					
÷	0.13	0.16	0.21	0.27	0,34	0.42	0.54	0.61					
(0.35	0.41	0.13	0.58	99.0	0.75	0.74	0.77	0.72				
ર	0.13	0.16	0.21	0.27	0.34	0.42	0.54	0.60	0.69				
55	0.37	0.42	0.49	0.58	0.68	0.80	0.82	0.73	0.80	0.79			
	0.13	0.16	0.20	0.76	0.33	0.42	0.53	0,00	0.68	0.77			
3	0.38	0.43	0.50	0.59	69.0	0.80	0.88	0.85	0.86	98.0			
3	0.13	0.16	0.30	0.26	0.33	0.42	0.53	09.0	89.0	22.0			
65	0.38	0.44	0.51	0.61	0.72	0.84	0.95	0.95	0.96	0.95	0.93		
	0.12	0.16	0.19	0.26	0.32	0.41	0.52	0.60	0.68	0.77	0.86		
20	0.39	0.45	0.52	t9.0	0.74	0.85	1.01	1.00	1.00	1.03	1.00		
	0.12	0.16	8	0.26	0.32	0.41	0.52	0,60	0.68	0.77	0,86		

TABLE II B-34 RUBBER FORMING LIMITS SHRINK FLANGES MOLYBDENUM (5% T1)

!!!!!					Material	tal Thi	Thickness ((t)					
Redius	910.	.020	.025	-032	O#O*	.050	-063	.071	.080	%o.	.100	.125	187.
æ			Maximum	and Mir	ifmum F	ange He	and Minimum Flange Height Limits (h)	its (h)					
5													
or or							1	1			1		
	0.17												
55	0.14												
\ \frac{1}{2}	0.23	0.23	0.23										
	7.14	0.17	0.22										
	0.29	0.28	0.29										
%	0.13	0.17	0.22										
	0.34	0.54	0.34	0.35									
2	0.13	0.17		0.28									
	1+·0	14.0	υ ₁ .0	0.41	0.40								
35	61.0	21.0	ਾਡਾ	0.28	0.35								
	0.45	94.0	94.0	24.0	94.0	94.0							
⊋	0.13	0.17	0.21	0.28	0.35	44.0							
	24.0	0.53	0.53	0.53	0.52	0.58							
<u>,</u>	0.13	0.17	0.21	0.27	0.35	77.0							
	o. 49	0.57	0.58	0.59	0.58	0.58	0.58						
R	0.13	0.17	0.21	0.27	0.34	††*0	0.55						
) 28	0.50	0.58	0.63	₹9•0	₹9.0	6.65	6.65						
	0.13	91.0	0.थ	0.27	0.34	0.43	0.55						
\ <u>\</u>	0.51	09.0	0.70	0.70	69.0	69.0	69.0	0.68					
	0.13	0.16	0.21	0.27	0.34	6.43	0.55	0.62					
9	0.53	0.62	0.77	0.75	0.75	0.75	0.74	0.73	0.74				
	0.13	0.16	0.ध	0.27	0.34	0.43	0.55	0.62	0.7고				
92	0.54	0.62	0.73	0.80	0.78	0.79	0.79	0.80	0.79				
	0.13	0.16	ਹ-ਹ	0.27	0.34	0.43	0.55	0.62	0.70				

SECTION III

LINEAR CONTOURING OF SECTIONS
A. LINEAR STRETCH FORMING
B. LINEAR ROLL FORMING

LINEAR STRETCH FORMING

Description of Process

Linear stretch forming is a process whereby a brake formed or extruded part is changed from a linear configuration to a contoured configuration by utilizing a special stretch press machine having a fixed die holder and retractable traveling stretch jaws.

The process of linear stretch forming an acceptable part consists of changing a linear configuration to a contoured configuration without destroying the integrity of the original cross section. Theoretically, this is achieved by employing an optimum initial tension which will place the neutral axis at the inner fiber of the part when forming is completed. See Figure III A-1 for illustration.

FIGURE III A-1
LINEAR STRETCH FORM PROCESS

Definition of Part Shape and Geometric Variables

The formability limits presented herein are valid for the sheet metal configuration illustrated in Figures III A-2 through Figure III A-6.

Symbol designations for these configurations are listed below:

t = material thickness

D = web or flange width

h = section height of part

R = inside part radius

R_d = outside part radius

 R_{C} = contour radius (the R or R_{d} to be fastened to

another part)

Three distinct classes of formability limits are generated by the five types of configurations. They are heel-out angles and channels, heel-in angles and channels, and heel-in hat sections.

Predictability Equations

The following predictability equations define the formability limits for the three geometric classes:

Class 1: Heel-out angles and channels

(Elastic buckling equation)

$$\frac{h}{R} = \frac{E}{Sty} \left[\frac{0.4225}{(h/t)^2} \right]$$

Equation I

(Inflection line equation)

$$\frac{h}{R} = 0.01107 \sqrt{\frac{h}{t}}$$

Equation II

(Elasto-plastic buckling equation)

$$\frac{h}{t} = \left[38.2 \frac{E}{Sty}\right]^{\frac{2}{5}}$$

Equation III

(Splitting equation)

$$\frac{h}{R} = -0.836 \left[\epsilon_{2.0} + 0.045 \right] \left[\log \left(0.0025 \frac{h}{t} \right) \right]$$

Equation IV

Class 2: Heel-in angles and channels

(Elastic buckling equation)

$$\frac{h}{R} = \frac{E}{s_{ty}} \left[\frac{0.81}{(h/t)^2} \right]$$

Equation V

(Splitting equation)

$$\frac{h}{R} = -1.02 \left[\epsilon_{2.0} + 0.05597 \right] \left[\log \left(0.0033 \frac{h}{1} \right) \right]$$

Equation VI

Ciass 3: Hell-in hat sections

(Elastic buckling equation)

$$\frac{h}{R} = \frac{E}{Sty} \left[\frac{0.4225}{(h/t)^2} \right]$$

Equation VII

(Splitting equation)

$$\frac{h}{R} = -0.583 \left[\epsilon_{2.0} + 0.0644 \right] \left[\log \left(0.0025 \frac{h}{t} \right) \right]$$

Equation VIII

The geometric variables h, R and t are defined in the part geometry section and the mechanical property variables are defined in the list of symbols. E and S_{ty} were taken from standard longitudinal tension tests. When solving the various equations for h/R values, substitute arbitrarily chosen h/t values as required.

Formability limits as defined by the predictability equations are for materials having minimum mechanical property values because the curves from which the equations were developed were constructed to a minimum value criterion.

See Figures III A-7 and III A-8 for schematics of equation application.

FIGURE III A-7
EQUATION APPLICATION FOR CLASS I
FORMALITY LIMIT CURVES

FIGURE III A-8
EQUATION APPLICATION FOR CLASS 2
AND CLASS 3 FORMABILITY LIMIT CURVES

Composite Graphs

The composite graphs for the three formability classes (See Graphs III A-1 through III A-3) were constructed from the appropriate formability equations as illustrated in Figures III A-7 and III A-8.

When using the appropriate equation for Class 1 and Class 3 formability limit curves it is necessary to convert $R_{\rm C}$ to R.

It may be of interest to note that the geometric variables determine the configuration of the curves and that the mechanical property variables position the curves.

These curves may be used to determine if a specific part will form satisfactorily by plotting an h/R, h/t point on the appropriate formability graph. If the point falls within the formability envelope as illustrated in Figure III A-9, the part can be formed satisfactorily. If the point falls outside the formability envelope as shown in Figure III A-10, the part will be defective.

FIGURE III A-9
SATISFACTORY FORMABILITY

FIGURE III A-10
UNSATISFACTORY FORMABILITY

Formability limit curves may also be constructed on Cartesian graph paper in such a manner that section height (h) and contour radius (R_c) can be read directly from the graph. The procedure is:

Arbitrarily pick a point on the log type formability curve as illustrated in Figure III A-ll and express this point in h/R and h/t values.

Next, use a specific metal thickness (t), solve for (h) and (R_c) and plot the point on the Cartesian type graph as shown in Figure III A-12. (Note that R_c = R for Class 2 configuration and R_c = R+h for Class 1 and Class 3 configurations.)

Repeat the above procedure as required and draw a formability limit curve through the points.

See Graph III A-4 for a Cartesian type composite formability limit curve for heel-in angles and channels made from various thicknesses of 2024-0 aluminum.

LIMIT CURVE

CARTESIAN TYPE FORMABILITY

The absolute forming limits as presented in the design tables are practical unless the mechanical properties for a material are abnormally poor because the formability curves, which define the absolute limits, are based on minimum mechanical property values. (See Figure III A-13).

LIMIT CURVE

FIGURE III A-13
EFFECT OF MECHANICAL PROPERTY
VARIATION ON FORMABILITY

In order to approach the absolute forming limits indicated by the formability limit curves for Class 2 and Class 3 part geometries, it is mandatory that the bend radii at the inner fiber be kept to a minimum because large bend radii promote "springback" and column collapse as illustrated in Figures III A-14 and III A-15.

Notch sensitivity will also prevent a part from approaching the absolute forming limit. It is imperative that the edges of parts located at the outer fiber be properly deburred. In some instances deburring will not remove the shear cracks and splitting will result. In cases of this type the part blank should be sawed instead of sheared.

The absolute limits as defined by the design tables may be extended somewhat by using the following procedure:

Lubrication: When a part is being wrapped it has a tendency to stick to the die upon contact. Even though there are untrapped dislocations (potential elongation) left in the part area which is in contact with the die, this potential is not available

because of friction between the die and the part. The use of lubricants will reduce this friction and extend the formability limit somewhat. When the limit curves were being established the use of lubricants were discontinued because parts formed on large radii dies having small segment angles were suggesting formability limits which could not be maintained using the same die radii with large segment angles.

Multiple Process: The absolute limit may be exceeded in the buckling area but the usual result will be a buckled part. It may be possible to remove the buckle by hand working, shrinking, creep forming at elevated temperature, heat treating and aging prior to re-stretch and wrap, etc.

Splitting limits may also be exceeded slightly by wrapping at a reduced stress; however, the part will require some type of rework.

Manipulation of Stress During Wrapping: As a part is being wrapped the physical properties change somewhat due to work hardening. For some materials, particularly those having a face centered lattice structure, a gradual increase in stress as the part is being wrapped will improve formability.

Strain Rate: The rate of wrapping a part has considerable influence on formability limits, particularly for materials having a body centered or hexagonal lattice structure. Ductile to brittle transition ranges for refractory materials can be altered by rate of strain. Formability limit curves will predict formability more accurately when the pertinent physical property values for a material is established at the same strain rate that will be used to form a part.

Redistribution of Stresses: Redistribution of stresses will increase formability limits slightly in the buckling area where relatively large die radii are used. This is accomplished by unwrapping a buckled part under stress with the stretch press, stressing the part still more and rewrapping the part.

Elevated Temperature Forming: Elevated temperature forming may or may not increase formability limits. Pertinent physical property values taken from standard tensile tests made at elevated temperature can be compared with ambient temperature properties to determine if there is a probability of increasing formability.

Even though elevated temperature tensile tests for a specific material indicates the probability of extended formability, an increase in necking at elevated temperature may prevent this extension.

The optimum forming temperature for a given material must be determined before a valid elevated temperature formability limit curve can be constructed.

GRAPH III A-1

LINEAR STRETCH COMPOSITE GRAPH HEEL-OUT ANGLES AND CHANNELS

GRAPH III A-2

LINEAR STRETCH COMPOSITE GRAPH HEEL-IN ANGLES AND CHANNELS

GRAPH III A-3 LINEAR STRETCH COMPOSITE GRAPH HEEL-IN HAT SECTIONS

GRAPH III A-4

LINEAR STRETCH FORMABILITY LIMITS HEEL-IN ANGLES AND CHANNELS

Design Tables

The following design tables are presented as a guide for determining design limits for heel-out angles and channels, heel-in angles and channels, and heel-in hat sections.

These tables are constructed so that various contour radii oppose various material thicknesses. The value at the intersection for a specific contour radius and a specific material thickness denotes the maximum section height that can be formed.

Section height calculations were discontinued after reaching the first three inch value for a given contour radius and a given material thickness in order to establish a functional limit.

The heavy line drawn through the section height limits indicates whether a part having a specific $R_{\rm c}$, t and h is approaching a splitting or a buckling limit. Parts having a section height value above or to the right of the heavy line are approaching the splitting limit.

Design tables for HM21XA-T8 at ambient temperature were deleted because brittleness caused excess scrap; however, the design table for this material at elevated temperature is included.

Design values for the other materials which were formed at elevated temperatures were deleted because extension of forming limits in the buckling region were trivial and reduction of limits occurred in the splitting region.

Estimated E/S_{ty} values were used to establish the buckling limits for the molybdenum and columbium alloys because the stretch press used to

form these parts could not be operated to produce the same strain rate at which the tensile specimens were pulled.

Beryllium and tungsten were deleted from the design tables because special clamping methods must be developed to adapt linear stretch forming to these materials.

TABLES III A-1 THROUGH III A-17 LINEAR STRETCH FORMABILITY LIMITS HEEL-OUT ANGLES AND CHANNELS

HEEL-OUT ANGLE FIGURE IIIA-16

HEEL-OUT CHANNEL FIGURE IIIA-I7

TABLE III A-1 LINEAR STRETCH FORGING LIMITS HEEL-OUT ANGLES & CHANNELS HOZIXA-TÖ (MGNESIUM THORIUM) (400°F - 600°F)

					*	ster1a1	Material Thickness (t)	88 (t)					
Contour Radius	910.	ંટ્રે	.025	250.	.040	050.	.063	ιζο.	.080	% 5.	00T:	.125	.187
e.					Sect	ton Heig	Section Meight Limits	te (b)					
5	86.	1.20	1.30	1.41	1.48	1.55	3. t	1.6	1.70	1.75	1.78	1.87	1.98
35	8 8;	1.22	1.52	1.95	2.39	2.60	2.77	2.8	2.36	3.06			
15	1.07	1.22	1.52	1.9%	2.44	ئن. ر							
દ	1.18	1.38	1.57	1.95	2. S	े ं							
25	1.28	1.47	1.70	2.05	2.46	35							
0	1.36	1.56	1.82	2 2	2.44	3.05							
35	1.42	3. 7	8.1	2.2	% 3.€	3.5							
୍ୟ	1.50	1.72	2.00	2.37	2.7.	3.15							
54	1.57	1.80	2.10	5.46	9. ≤	3.27							
50	1.62	1.38	2.17	2.,6	2.5	3.40							
55	1.68	1.95	2.25	2.62	3 .0								
\$	1.73	2.01	2.35	2.72	3.16								
65	1.76	2.0	75.5	2.78	3.24								
70	1.80	2.10	2.45	2.95	3.30								

TABLE III A-2 LINEAR STRETCH FORMING LIMITS HEEL-OUT ANGLES & CHANNELS 2024-0 ALUMINUM

·					Ŧ	iterial	Material Inicaness (t)	(1) ss					
Contour Redius	910.	0 3 0.	.025	260.	0.0.	0,00.	.063	1,70.	080.	85.	2) (1) (2)	५टाः	.187
					Secti	lon Heig	Section Height Limits	ts (n)					
5	т.	.82	.87	.93	1.00	1.05	1.10	यः।	1.14		;	1.25	1.35
10	1.04	1.30	1.37	1.49	1.60	1.70	1.81	1.88	\$			21.5	2.28
15	1.12	1.30	1.62	1.92	21.5	2.30	14.5	2.53	2.0.		7		
S	1.25	1.45	1.65	2.08	2.60	2.80	3.05						
25	1.36	1.55	1.80	2.08	2.60	3.25							
30	1.41	1.64	1.87	2.24	2.60	3.25							
35	1.50	1.74	2.00	2.37	2.68	3.25							
40	1.60	1.85	2.12	2.50	2.90	3.25							
4.5	1.63	1.30	2.19	2.59	3.01								
50	1.70	1.96	2.31	2.66	3.08								
55	1.78	2.04	2.37	2.75	3.24								
\$	1.80	2.10	2.42	2.85	3.30								
65	1.89	2.20	2.52	2.96	3.44								
70	1.92	2.21	2.55	2.99	3.50								

LINEAR STRETCH FORMING LIMITS HEEL-OUT ANGLES & CHANNELS 17-7 PH (CONDITION A, MILL ANNEALED)

					7	sterial	Material Thickness (t)	(t)					
Contour Resins	910.	œ₀.	.025	520.	040.	050.	.063	170.	080.	o60:	301.	₹ 2 1.	.187
યુ					Sect	ton Hete	Section Meight Limits	ts (n)					
\$	16.	1.04	1.12	1.22	1.28	1.29	1.42	3.1	1.48	1.51	1.53	1.62	1.70
10	16.	1.14	1.42	1.82	2.08	2.25	2.39	2.51	2.56	2.61	2.70	2.81	3.05
15	8.	1.14	1.42	1.82	2.28	2.85	3.15						
R	1.10	1.28	1.46	1.82	2.28	2.85	3.59						
25	1.20	1.36	1.60	1.86	2.28	2.85	3.59						
30	1.26	1.45	1.67	1.98	2.28	2.85	3.59						
35	1.33	1.53	1.77	2.08	2.40	2.85	3.59						
01	1.42	1.61	1.87	2.18	3.5	2.32	3.59						
14.5	1.46	1.70	1.92	2.27	2.60	3.01							
95	1.52	1.76	2.05	2.37	2.72	3.15							
55	1.57	1.80	2.10	2.46	æ. ∨	3.30							
8	1.60	1.87	2.15	2.53	2.92	3.35							
65	1.68	3.1	2.25	2.62	3.04								
70	1.73	1.98	2.29	5.69	3.08								

TABLE 111 A-4
LINEAR STRETCH FORMUNG LIMITS
HEEL-OUT ANGLES & CHANNELS
PH 15-7 No
(CONDITION A)

					2	terial	Material Thickness (t)	(c)					
Contour Redius	910.	œ:	520.	250.	0.0.	050.	.063	170.	080.	06 0.	301.	₹21.	-1]]
æ, æ					Sect 1	on Heig	Section Meight Limits	ts (b)				Š	
5	.89	1.04	1.12	1.22	1.28	1.35	1.42	3.46	1.48	1.51	1.56	1.62	1.74
10	.89	1.11	1.39	1.78	2.S	2.21	2.39	2.48	3.2	2.61	2.70	2.81	3.07
15	. 98	1.12	1.39	1.78	2.25	2.77	3.12						
20	1.09	1.26	1.45	1.78	2.22	2.77	3.49						
25	1.15	1.34	1.56	1.82	2.22	2.77	3.49						
30	1.25	1.44	1.67	1.95	2.26	2.77	3.49						
35	1.30	1.50	1.72	2.05	2.36	2.77	3.49						
04	1.38	1.58	1.85	2.18	2.50	2.89	3.49						
4.5	1.42	1.64	1.92	₹. ∾	2.60	3.00							
50	1.47	1.72	1.97	2.34	2.68	3.10							
55	1.52	1.76	2.05	2.40	7.80	3.25							
9	1.58	1.82	2.10	2.50	2.88	3.32							
65	1.62	1.88	2.20	2.56	2.98	3.43							
70	1.63	1.9	2.25	2.61	3.0								

TABLE III A-5 LINEAR STRETCH FORDING LINUTS HEEL-OUT ANCLES & CHANNELS AM-350 (ANNEALED)

					Z	Meterial	Thickness (t)	88 (t)					
Costour Resius	910.	્ટ્ર	520.	250.	040.	050.	.063	170.	080.	∞ 5∵	300	.125	.187
A,					Section		Height Limits	ts (h)					
\$.81	1.01	1.16	1.28	1.35	1.41	1.47	1.51	ヌ:1	1.57	19.1	1.69	1.80
10	.81	1.01	1.26	1.62	2.05	2.5	22	2.57	2.66	2.72	2.81	2.8	3.22
15	.91	1.04	1.26	1.62	2.05	25.2	5.18						
R	1.02	1.16	1.33	1.62	2.05	2.52	3.18						
25	1.08	1.25	1.45	1.69	2.05	2.52	3.18						
્	1.15	1.36	1.55	1.80	2.05	22	3.18						
35	1.20	1.40	1.62	1.8	2.20	2::2	3.18						
04	1.28	1.46	1.70	2.00	2.32	2.65	3.18						
4.5	1.32	₹.1	1.79	2.08	2.44	2.79	3.21						
50	1.38	3.60	1.84	2.14	2.50	2.8	3.40						
55	1.4.1	1.0	1.87	2.2t	2.60	3.01							
\$	1.47	1.70	1.95	2.30	2.68	3.10							
65	1.52	1.73	8.8	2.37	2.72	3.17							
70	₹. 1	1.79	2.05	2.40	2.80	3.25							

TABLE III A-6
LINEAR STRETCH POBULIC LINITS
HEEL-OUT ANGLES & CHANNELS
A-286
(SOLUTION TREATED)

					#	sterial	Material Thickness (t)	(t)					
Costour Redius	910.	œ.	.025	260.	040.	050.	.063	170.	080.	% 5:	301.	.125	.187
å					Section	ion Height	nt Limits	ts (b)					
\$	86.	1.14	1.25	1.34	1.41	1.50	1.57	1.60	7.05	1.66	1.70	1.79	1.91
10	8.	1.22	1.52	1.95	2.25	2.43	2.69	2.71	2.78	8.8	3.00		
15	1.08	1.22	1.52	1.95	2.44	3.05							
દ્ભ	1.17	1.36	1.55	1.95	2.44	3.05							
25	1.26	1.46	1.70	1.98	2.44	3.05							
33	1.31	7.2	1.80	2.13	2.44	3.05							
35	1.40	1.6	1.87	2.2	2.56	3.05							
04	3.48	1.72	1.98	2.34	2.71	3.09							
64	1.5	1.78	2.06	2.43	2.80	3.25							
ος	1.60	1.85	21.2	2.50	2.88	3.35							
55	1.63	1.8	2.30	2.59	3.02								
\$	1.70	1.96	2.27	2.66	3.10								
65	1.74	2.05	2.35	2.75	3.20								
70	1.79	2.10	2.40	2.85	3.28								

TABLE III A-7
LINEAR STRETCH FORGING LINUTS
HEEL-OUT ANGLES & CHANNELS
USS-12-NOV
(ANNEALED)

					7	iterial	Material Thickness (t)	8s (t)					
Contour Resius	9 10.	૦૪૦:	.025	.032	040.	050.	.063	.071	080.	œ0·	.100	.125	.187
ည					Sect	ton Heig	Section Height Limits (h)	(q) •1					
\$	π.	.81	.87	ð.	1.00	1.05	1.10	1.13	1.14	1.17	1.20	1.25	1.31
10	83.	1.02	1.27	ま:1	1.62	1.72	1.86	1.95	2.00	2.0	2.10	2.19	2.37
15	.91	1.05	1.27	1.63	2.જ	2.30	2.46	2.5	2.68	2.73	2.80	3.80	
જ	1.01	1.16	1.35	1.63	ಕ್ಷ. ∽	2.55	3.05						
25	1.09	1.25	1.45	1.73	2.04	2.55	3.02						
30	1.15	¥.1	1.55	1.82	21.5	2.55	3.05						
35	1.20	1.40	1.62	3.8	2.20	2.55	3.02						
04	1.28	1.46	1.70	2.05	2.32	2.65	3.05						
64	1.31	1.52	1.77	2.08	2.40	2.77	3.28						
8	1.37	1.60	1.85	2.18	2.52	2.90	3.40						
55	1.41	1.64	1.89	2.22	2.60	3.00							
9	1.44	1.68	1.95	2.30	2.68	3.07							
65	3.5	1.74	2.05	2.37	2.76	ĵ.20							
70	1.53	1.76	2.05	2.40	2.80	3.25							

TABLE III A-8
LINEAR STRETCH FORMUNG LINUTS
HEEL-OUT ANGLES & CHANNELS
TITANIUM (6A1-4V)
(MILL ANGEALED)

					7	Meterial	Thickness (t)	68 (t)					
Contour Redius	910.	∞ ∵	.025	250.	040.	050.	.063	1,70.	080.	060.	.100	.125	.187
Яс					Section	lop Height	nt Lisits	ts (b)					
\$	(4°	3 .	79.	П.	.87	88.	.91	₫.	.95	16:	8.	1.03	1.10
10	64.	.	οZ:	8.	1.12	1.40	1.51	3.58	7.62	7,00	1.70	1.77	987
15	.56	3ં.	.75	8.	1.12	1.40	1.76	1.99	2.20	2.27	2.32	2.44	2.71
S	.63	.72	.83	.97	1.12	1.40	1.76	1.99	2.2	2.52	2.80	3.12	
25	.67	n.	8.	1.06	1.21	1.40	1.76	1.99	2.2 2.2	2.52	2.80	3.50	
30	ι7.	83.	.95	1.13	1.29	3.50	1.76	1.99	₹.°	2.55	2.80	3.50	
35	.74	.87	1.00	1.18	1.36	1.59	1.84	1.99	2.24	2.52	2.80	3.50	
04	.78	8.	1.05	1.25	1.44	1.67	1.9	2.07	2.24	2.52	2.80	3.50	
4.5	.80	ま.	1.10	1.28	1.49	1.71	2.05	2.14	2.34	2.52	2.80	3.50	
50	3 0.	8.	1.13	1.34	1.53	1.79	2.07	2.26	2.46	2.63	2.80	3.50	
55	.87	1.00	1.17	1.37	1.60	1.85	2.15	2.34	₹.S	2.72	26.2	3.50	
8	8.	1.04	1.21	1.41	1.66	1.91	2.25	2.41	2.62	2.85	3.00		
65	.93	1.06	1.25	1.47	1.68	1.96	2.28	2.47	2.68	2.88	3.05		
70	%	1.09	1.26	1.50	1.75	2.01	2.36	2.53	2.74	3.00			

TABLE III A-9
LINEAR STRETCH FORMING LIMITS
HEEL-OUT ANGLES AND CHANNELS
TITABLUM (13V-11 Cr-3A1)
(SOLUTION TREATED)

					2	Material	Thickness (t)	88 (t)					
Contour Redius	910.	œ0:	325	560.	040.	050.	.063	ιρ.	080.	œo:	001.	325.	.187
a S					Section	ton Height	tht Limits	ts (b)		i			
5	₹4.	3 5.	or.	-88	.88	.91	8;	% :	1.00	1.01	1.01	1.09	1.16
30	84.	% :	٤.	8.	1.12	1.40	1.62	1.69	1.72	1.77	1.80	1.89	2.08
15	%	.65	.75	8.	1.12	1.40	1.76	1.99	2.24	2.38	2.50	29.2	2.86
20	29.	.72	.79	<u>%</u>	1.12	1.40	1.76	1.99	2.24	2.38	2.80	3.25	
25	.67	84.	8.	1.06	1.23	1.40	1.76	1.99	2.24	2.38	2.80	3.50	
30	π.	28.	.95	1.13	1.29	3.50	1.76	1.99	₹.2	2.38	2.80	3.8	
35	¥.	. 86	1.00	1.17	1.36	1.58	1.83	1.99	2.24	2.38	2.80	3.50	
04	.78	8.	1.05	1.23	1.64	1.65	1.95	2.06	2.24	2.38	2.80	3.50	
4.5	8.	8;	1.08	1.28	1.46	1.70	2.05	2.13	2.32	2.38	2.80	3.50	
50	.85	%	1.14	1.37	1.55	1.80	2.08	2.27	2.41	2.64	2.85	3.8	
55	98.	1.00	1.16	1.38	1.60	1.83	2.14	2.33	2.54	2.70	2.90	3.50	
9	8.	20.1	1.20	1.41	1.64	1.90	2.2⁴	2.41	2.58	2.79	3.00		
65	.91	1.06	1.23	1.45	1.68	1.95	2.27	2.43	2.67	2.88	3.02		
70	š .	1.08	1.25	1.48	1.72	2.00	2.31	2.50	2.72	2.95	3.12		

TABLE III A-10
LINEAR STRETCH FORMING LINGTS
HEEL-OUT ANGLES & CHANNELS
VASCOJET 1000 (H-11)
(ANNEALED)

					#	terial.	Material Thickness (t)	88 (t)					
Contour Redius	910.	ം.	.025	535	070.	050.	.063	ıro.	o 8 o∵	∞ ≎:	oct.	े ३५	.187
e,					Sect	or Heig	Section Meignt Limits	ts (h)					
5	οί.	62:	89.	.8 5	.92	કરે	1.00	1.03	ਤੋ. ਜ	1.05	1.09	1.12	1.21
01	u.	%.	1.20	1.38	1.44	1.55	1.70	1.74	1.80	1.8	1.8	3.1	2.11
15	. 86.	98.	1.20	4.1	1.82	2.05	2.3	₹.2	2.32	2.43	2.50	2.62	2.90
R	₹.	1.10	1.25	まご	8.1	2.40	2.65	2.80	2.88	3.06			
25	1.02	1.18	3.36	1.60	1.92	2.40	3.02						
30	1.09	1.26	1.45	1.73	1.96	2.40	3.05						
35	1.14	1.32	1.52	1.79	2.08	2.40	3.05						
04	1.20	1.38	1.60	1.89	2.16	2.50	3.05						
डे ल	1.25	1.64	1.67	1.95	2.28	2.60	3.05						
50	1.28	1.50	1.74	2.05	2.36	2.75	3.21						
55	1.33	1.8	1.77	2.08	2.44	2.85	3.28						
\$	1.36	1.60	1.85	2.18	2.52	2.90	3.40						
65	1.42	1.6	1.92	2.24	2.60	3.00							
70	મુખ્∶ દ	1.68	1.95	2.27	2.6	3.10							

TABLE III A-11
LINEAR STRETCH FORMUNG LIMUTS
HEEL-OUT ANGLES & CHANNELS
RENE'41
(SOLUTION TREATED)

					2	Material Inickness (t)	Thickne	88 (t)					
Contour Retius	910.	(&):	.325	250.	o , o.	050.	.063	τ/ο:	.080	06 0.	001.	.125	.187
ى چە					Secti	Section Height Limits	ht Limi	t s (b)					
5	375	ઝ .	1.17	1.38	1.44	1.51	1.61	1.6	1.68	1.71	1.73	1.85	1.%
10	.75	ં	1.17	1.50	1.88	2.35	2.75	2.84	2.88	3.04			
15	.86	88.	1.17	1.5	1.98	2.35	2.96	3.34					
Ç	š .	1.10	1.25	3.5	1.88	2.35	8.%	3.34					
25	1.0.1	1.17	1.36	3.6	1.88	2.35	2.%	3.34					
33	1.07	1.24	1.45	1.70	1.96	2.35	2.%	3.34					
35	1.14	1.32	1.52	1.79	2.08	2.40	2.%	3.34					
୍ୟ	1.20	1.37	1.60	1.88	2.17	2.53	2.%	3.34					
54	1.23	1.43	1.67	1.98	2.25	2.61	3.0t						
δ	1.28	1.50	1.72	2.05	2.36	2.70	3.21						
55	1.32	1.5	1.77	2.08	2.44	2.80	3.28						
\$	1.36	1.60	1.82	2.16	2.52	2.90	3.40						
65	1.46	1.64	1.90	2.22	2.60	3.00							
70	1.44	1.66	1.92	2.30	2.64	3.10							

TABLE III A-12 LINEAR STRETCH FORMING LIMITS HEEL-OUT ANGLES & CHANNELS INCONEL X (C.R. ANNEALED)

					₩ ₩	iterial	Material Thickness (t)	88 (t)					
Centeur Redius	910.	050.	.025	500.	040.	050.	.063	τζο.	080.	% 0.	.100	.125	.187
æ					Section	on Heig	Height Limits	ts (b)					
5	86.	1.12	1.40	1.51	1.60	1.68	1.76	1.81	1.86	1.89	1.92	2.02	2.09
10	%.	य:१	1.40	1.79	2.24	2.80	3.02						
15	.99	1.12	1.40	1.79	2.24	2.80	3.52						
50	1.08	1.25	1.44	1.79	2.24	2.80	3.52						
25	1.17	1.35	1.56	1.82	2.24	2.80	3.52						
30	1.24	1.43	1.67	1.95	2.24	2.80	3.52						
35	1.31	1.52	1.75	2.08	2.36	2.80	3.52						
04	1.39	1.60	1.82	2.16	2.50	2.90	3.52						
5 17	1.42	1.64	1.92	2.24	2.60	3.00							
کن	1.47	1.70	2.00	2.34	2.70	3.12							
55	1.54	1.80	2.06	5.40	2.80	3.25							
9	1.59	1.84	2.11	2.46	2.88	3.30							
65	1.61	1.88	2.18	2.49	ま。2	3.40							
70	1.63	1.92	2.21	29.2	3.04								

TABLE III A-13
LINEAR STRETCH FORMING LIMITS
HEEL-OUT ANGLES & CHANNELS
HASTELLOY X
(SOLUTION TREATED)

					3	iterial	Material Thickness (t)	88 (t)					
Contour Redius	910.	.020	.025	.032	.040	.050	.063	.071	.c8o	060.	.100	<u>ξ</u> 2τ·	.187
R _c					Secti	ton Hete	Section Height Limits (h)	t s (b)					
5	. 8	1.00	1.25	1.34	1.37	1.45	1.52	1.57	1.66	1.62	1.65	1.75	1.87
10	8.	1.00	1.25	1.60	2.00	2.38	2.56	2.64	2.70	2.80	2.85	3.00	
15	8.	1.02	1.25	1.60	2.00	2.50	3.15						
R	8.	1.14	1.30	1.60	2.00	2.50	3.15						
25	1.07	1.24	1.42	1.66	2.00	2.50	3.15						
30	1.12	1.30	1.50	1.77	2.5	2.50	3.15						
35	1.19	1.37	1.57	1.87	2.16	2.50	3.15						
O¶	1.25	1.44	1.67	1.98	2.25	2.60	3.15						
4.5	1.30	1.50	1.72	2.05	2.32	2.71	3.15						
50	1.35	1.55	1.80	2.13	2.48	2.81	3.15						
55	1.39	1.60	1.86	2.18	2.5	2.96	3.15						
\$	1.43	1.66	1.91	2.24	2.60	3.00							
65	1.47	1.70	1.97	2.32	2.70	3.12							
70	1.51	1.74	2.00	2.37	2.72	3.30							

TABLE III A-14 LINEAR STRETCH FORMING LIMITS HEEL-OUT ANGLES & CHANNELS L-605 (SOLUTION TREATED)

					7	iterial	Material Thickness (t)	66 (t)					
Contour Redius	910.	.020	.025	.032	o 4 o.	050.	.063	170.	080.	06 0.	100	.125	.187
œ,					Sect1	lon Heig	Section Height Limits	ts (b)					
5	%	1.00	1.16	1.26	1.33	1.40	1.47	1.51	ま:1	1.57	1.60	1.67	1.79
30	%	1.00	1.25	1.60	2.00	2.35	2.53	2.63	2.70	2.77	2.82	2.97	3.22
15	8.	1.Q	1.25	3.60	2.80	2.50	3.15						
R	1.01	1.16	1:31	1.66	2.8	2.50	3.15						
25	1.06	1.2	1.41	1.66	2.8	2.50	3.15						
30	1.12	1.30	1.50	1.78	₹ 70.0	2.5	3.15						
35	1.18	1.36	1.58	1.86	2.16	2.50	3.15						
140	1.25	1.44	1.67	1.88	2.25	2.61	3.15						
4.5	1.30	1.50	1.70	2.05	2.34	2.73	3.15						
50	1.35	1.56	1.80	2.15	2.48	2.8	3.15						
55	1.39	1.60	1.85	2.18	2.52	2.91	3.15						
8	14.1	1.66	1.92	2.27	2.64	3.05							
65	1.47	1.70	1.97	2.32	2.70	3.12							
70	1.50	1.74	2.02	2.37	2.72	3.20							

TABLE III A-15 LINEAR STRETCH FORMING LIMITS HEEL-OUT ANGLES & CHANNELS COLUMBIUM (10Mo-10T1)

					Ĭ	Material	Thickness	88 (t)					
Contour Radius	.016	050	520.	-032	040.	.050	.063	.071	080	060.	.100	321.	.187
ar S					Section	ion Height	tht Limits	t s (b)					
5	.43	.51	.55	.58	89.	₹.	19.	19.	02.	.72	.73	11.	8.
30	74.	4 5.	19.	.86	1.01	1.07	1.15	1.19	1.22	1.25	1.27	1.35	1.44
15	ま・	.62	.73	% .	1.08	1.35	1.54	1.57	1.62	1.66	1.71	1.82	2.00
&	.60	.70	8.	₹.	1.08	1.35	1.70	1.92	2.02	2.14	2.20	2.31	2.49
25	49.	.75	.87	1.02	1.18	1.36	1.70	1.92	2.16	2.43	2.53	2.72	2.95
30	89.	.79	%	1.08	1.2ª	1.40	1.70	1.92	2.16	2.43	2.70	3.02	
35	.71	.83	.95	1.14	1.31	1.50	1.76	1.92	2.16	2.43	2.70	3.37	
O†	.75	.87	1.00	1.19	1.37	1.59	1.84	1.92	2.16	2.43	2.70	3.37	
4.5	.78	.91	1.05	1.24	1.44	1.65	1.9	2.09	2.27	2.43	2.70	3.37	
50	8.	.93	1.09	1.28	1.48	1.71	2.00	2.15	2.33	2.52	2.70	3.37	
55	.83	%.	1.11	1.29	1.52	1.78	2.07	2.26	2.41	2.59	2.78	3.37	
8	% .	1.00	1.15	1.37	1.60	1.84	2.14	2.33	2.53	2.70	2.90	3.37	
65	.89	1.04	1.20	1.41	1.63	1.90	2.30	2.39	2.57	2.79	2.97	3.47	
70	8.	1.05	1.21	1.42	1.67	1.92	2.26	2,42	29.2	2.86	3.02		

TABLE III A-16
LINEAR STRETCH FORMING LIMITS
HEEL-OUT ANGLES & CHANNELS
MOLYBDENUM (.5% Ti)
(HOT ROLLED, STRESS RELIEVED & DE-SCALED)

					ž	Material	Thickness	88 (t)					
Costour Redius	910.	.020	.025	.032	040.	050.	.063	.071	080	060.	.100	ेटा: 	.187
æ, S					Secti	Section Height	tht Limits	t s (b)					
5	.43	₹.	.58	19.	99.	69.	.72	.75	.75	.77	62.	.82	98.
10	74.	ま.	.58	.61	.66	1.16	1.22	1.29	1.32	1.35	1.38	1.46	1.55
15	ま.	.62	.72	.86	1.08	1.35	1.66	1.69	1.75	1.80	1.84	1.95	2.13
R	9.	69.	%	ま	1.08	1.35	1.70	1.92	2.16	2.29	2.34	2.50	2.67
25	₹9.	.74	%.	1.02	1.17	1.35	1.70	1.92	2.16	2.43	2.70	2.89	3.14
30	89.	.78	.91	1.08	1.25	1.44	1.70	1.92	2.16	2.43	2.70	3.25	
35	17.	ಪೆ.	-95	1.13	1.30	1.51	1.76	1.92	2.16	2.43	2.70	3.37	
70	.75	.87	1.00	1.18	1.36	1.59	1.84	1.99	2.16	2.43	2.70	3.37	
45	.78	.92	1.05	1.25	144.1	1.65	1.96	2.09	2.26	2.45	2.70	3.37	
50	8.	.93	1.08	1.28	1.48	1.70	2.00	2.15	2.33	2.52	2.70	3.37	
55	.83	%	1.11	1.29	1.53	1.76	2.07	2.25	2.41	2.62	2.79	3.37	
9	.87	1.00	1.15	1.32	1.59	1.81	2.14	2.29	2.50	2.70	2.89	3.37	
65	88.	1.02	1.19	1.40	1.60	1.89	2.19	2.34	2.55	2.73	2.92	3.41	
70	8.	1.04	1.20	1.41	1.65	1.91	2.25	2.41	2.61	2.86	3.01		

TABLE III A-17 LINEAR STRETCH FORMING LIMITS HEEL-CUT ANGLES & CHANNELS J-1570 (SOLUTION TREATED)

					*	Material Thickness (t)	Thickne	(t)					
Contour Redius	910.	.020	.025	-032	040.	050.	.063	ιω.	.080	060	.100	.125	.187
2					Secti	Section Beight Limits (h)	bt Limi	ts (h)					
5	₽.	1.01	1.25	1.34	1.41	1.50	1.57	1, 0	1.64	1.65	1.70	1.79	1,91
10	.81	1.01	1.26	1.52	2.02	2.43	2.69	2.71	2.78	2.90	3.00		
15	.91	1.04	1.2	1.62	2.02	2,52	3.18						
80	1.02	1.16	1.33	1.62	2.02	2, 52	3.18						
25	1.08	1.25	1.45	1.9	2,02	2.52	3,18						
30	1,15	1,34	1,55	1,80	2.02	2,52	3.18						
35	1.20	1,40	1.62	1.92	2.20	2, 52	3.18						
04	1.28	1.4	1.70	2.00	2.32	2,65	3,18						
45	1.32	1.54	1.79	2.08	2.44	2.79	3.21						
20	1.38	1.60	1.84	41.5	2,50	2,90	3.40						
55	1.41	1. 1	1.87	2,24	2.50	3.01							
99	1.47	1.70	1.95	2.30	6,69	3.10			_				
65	1.52	1.73	2.00	2.37	2,72	3.17							
70	1.54	1.79	2.05	2.40	2.80	3.25							

TABLES III A-18 THROUGH III A-34 LINEAR STRETCH FORMABILITY LIMITS HEEL-IN ANGLES AND CHANNELS

HEEL-IN ANGLE FIGURE IIIA-18

TABLE III A-18
LINEAR STRETCH FORMONG LIMOTS
HEEL-IN ANGLES & CHANNELS
HW21XA-T8 (WACNESIUM THORIUM)
(400-600°F)

					3	Material Thickness (t)	Thickne	58 (t)					
Contour Radius	910.	.020	.025	.032	040.	.050	.063	.071	.080	060.	.100	.125	.187
ar o					Secti	Section Height Limits	pt Limi	ts (b)					
5	8.	1.05	1.22	1.42	1.68	1.97	2.25	2.43	2.59	2.70	2.80	3.00	
10	1.14	1.33	1.54	1.80	2.10	न ा म	2.85	3.07					
15	1.30	1.50	1.75	2.07	2.37	2.77	3.27						
&	1.45	1.65	1.9	2.28	49.8	3.08							
25	1.55	1.80	2.10	2.47	2.85	3.30							
30	1.63	1.89	2.25	2.62	3.00								
35	1.73	2.03	2.34	2.76	3.18								
011	1.80	2.08	2.46	2.92	3.32								
4.5	1.89	2.18	2.52	2.97	3.46								
50	1.95	2.25	2.60	3.10									
55	2.00	2.31	2.67	3.19									
8	2.08	2.40	2.80	3.30									
65	21.5	2.44	2.83	3.38									
70	2.17	2.49	2.90	3.43									

TABLE III A-19 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS 2024-0 ALUMINUM

					2	terial	Material Thickness (t)	58 (t)					
Contour Radius	910.	020	.025	-032	040.	.050	.063	.071	.080	060.	.100	325.	.187
æ					Secti	on Heig	Section Height Limits	ts (b)					
5	.88	%.	1.06	1.15	1.26	1.35	गग र	1.50	1.55	1.60	1.66	1.76	1.9
10	1.28	1.43	1.58	1.77	1.95	2.13	2.32	2.42	2.51	2.63	2.71	2.90	3.27
15	1.45	1.69	1.95	2.20	2.44	2.67	2.95	3.09					
8	1.60	1.86	2.14	2.56	2.86	3.18							
25	1.70	1.97	2.30	2.72	3.15								
30	1.83	2.10	2.46	2.88	3.36								
35	1.92	2.24	2.59	3.Q									
011	2.05	2.32	2.70	3.16									
45	2.09	2.43	2.79	3.24									
50	2.17	2.47	2.90	3.37									
55	2.23	2.58	3.02										
8	2.34	2.67	3.09										
65	2.37	2.73	3.15										
70	2.41	2.8	3.29										

TABLE III A-20 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS 17-7 PH (CONDITION A, MILL ANNEALED)

					2	iterial	Material Thickness (t)	* (t)					
Contour Redius	910.	.020	.025	.032	.040	.050	.063	.071	080.	060.	.100	.125	.187
ຜູ					Secti	ton Heig	Section Height Limits (h)	ts (b)					
5	.87	1.02	1.18	1.38	1.60	1.80	1.97	2.05	2.14	2.22	2.30	2.46	2.75
10	1.11	1.28	1.49	1.76	2.05	2.38	2.77	2.99	3.12				
15	1.27	1.47	1.70	2.05	2.31	2.74	3.18						
8	1.38	1.60	1.87	2.20	2.56	2.96	3.50						
25	1.50	1.72	2.00	2.40	2.75	3.17							
30	1.59	1.86	2.16	2.55	2.32	3.36							
35	1.68	1.99	2.2t	2.66	3.08								
01	1.75	2.04	2.36	2.72	3.20								
4.5	1.84	2.11	2.43	2.92	3.37								
50	1.90	2.18	2.55	2.97	3.45								
55	1.98	2.28	2.64	3.08									
93	2.01	2.34	2.70	3.18									
65	2.06	2.40	2.77	3.31									
70	2.10	2.44	2.80	3.36									

TABLE III A-21
LINEAR STRETCH FORMING LIMITS
HEEL-IN ANGLES & CHANNELS
PH 15-7 Mo
(CONDITION A)

					ž	terial	Material Thickness (t)	88 (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	ι7ο.	.080	.090	.100	325	.187
A.					Sect	lon Heig	Section Height Limits	ts (b)					
5	.87	1.02	1.17	1.37	1.62	1.76	1.92	2.00	2.09	2.15	2.25	2.39	2.65
10	1.10	1.28	1.46	1.73	2.05	2.35	2.75	2.95	3.12				
15	1.24	1.45	1.69	1.99	2.31	2.67	3.12						
જ	1.38	1.60	1.8	2.18	2.52	2.9	3.44						
25	1.47	1.70	2.00	2.36	2.72	3.15							
30	1.56	1.86	2.10	2.49	2.88	3.36							
35	1.64	1.92	2.22	29.2	3.04								
04	1.72	1.98	2.30	2.72	3.20								
4.5	1.80	2.07	2.41	2.83	3.28								
50	1.85	2.15	2.47	2.90	3.40								
55	1.92	2.25	2.58	3.02									
8	1.98	2.34	2.64	3.16									
65	2.01	2.37	2.73	3.25									
70	2.06	2.41	2.80	3.29									

TABLE III A-22 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS AM-350 (ANNEALED)

					艺	iterial	Material Thickness (t)	88 (t)					
Contour Radius	910.	.020	.025	.032	040.	.050	.063	.071	080.	060.	.100	.125	.187
ജ					Sect	ton Heig	Section Height Limits	ts (b)				di Avera	
5	.80	.92	1.08	1.27	1.47	1.70	2.00	2.08	2.18	2.23	2.31	5.49	2.70
10	1.02	1.18	1.37	1.62	1.88	2.18	2.55	2.75	2.95	य-१			
15	1.12	1.33	1.57	1.89	2.14	2.50	2.91	3.12					
R	1.26	1.48	1.70	2.04	2.36	2.74	3.20						
25	1.37	1.57	1.85	2.19	2.50	2.92	3.57						
30	17.44	1.68	1.95	2.31	2.6	3.09							
35	1.5	1.78	2.06	2.43	2.80	3.32							
04	1.60	1.84	2.14	\$.\$	2.92	3.40							
4.5	1.69	1.93	2.25	2.65	3.06								
50	1.75	2.02	2.30	2.72	3.80								
55	1.79	2.06	2.36	2.83	3.30								
\$	1.83	2.13	2.46	ま.2	3.36								
65	1.88	2.18	2.53	3.02									
70	1.92	2.24	2.59	3.04									

TABLE III A-23 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS A-286 (SOLUTION TREATED)

					2	iterial	Material Thickness (t)	68 (t)					
Costour Radius	910.	.020	.025	.032	O40.	050.	.063	170.	.080	060.	.100	.125	.187
a,					Secti	lon Heig	Section Height Limits (h)	ts (b)					
5	.93	01.1	1.27	1.47	1.74	1.99	2.19	2.28	2.39	2.49	2.58	2.77	3.04
10	1.20	1.38	1.60	1.88	2.20	2.56	2.95	3.20					
15	1.35	1.57	1.83	2.17	2.47	2.91	3.42						
જ	1.48	1.70	2.00	2.36	2.76	3.14							
25	1.60	1.85	2.17	2.57	2.95	3.42							
30	1.71	1.98	2.28	2.70	3.15								
35	1.85	2.10	2.41	2.83	3.29								
01	1.88	2.16	2.52	2.96	3.48								
4.5	1.98	2.29	2.65	3.06									
50	2.05	2.35	2.70	3.15									
55	2.09	2.47	2.80	3.30									
9	2.13	2.52	2.8	3.39									
65	2.21	2.60	2.96	3.5									
70	2.2	2.63	3.01										

TABLE III A-24 LINEAR STRETCH PORMING LIMITS HEEL-IN ANGLES & CHANNELS USS-12-MOV (ANNEALED)

					£	terial	Material Thickness (t)	68 (t)					
Contour Redius	.016	050	.025	.032	040.	050.	.063	.071	.080	060.	.100	.125	.187
œ.					Secti	on Heig	Section Height Limits	ts (b)					
>	8.	.93	1.10	1.19	1.29	1.39	1.50	1.56	1.60	1.67	1.72	1.81	8.8
10	1.10	1.18	1.37	1.60	1.85	2.20	2.37	2.48	2.59	2.70	2.79	3.00	
15	1.17	1.32	1.56	₫. 1.	2.10	2.47	2.89	3.09					
R	1.26	1.46	1.70	2.05	2.36	2.74	3.16						
25	1.37	1.57	1.85	2.19	2.5	2.95	3.55						
30	1.45	1.68	1.95	2.32	2.64	3.09							
35	1.52	1.78	2.05	2.43	2.80	3.32							
01	1.60	1.84	2.16	2.54	2.9	3.40							
54	1.68	1.93	2.20	2.65	3.06								
જ	1.75	2.00	2.30	2.70	3.15								
55	1.79	2.06	2.36	2.80	3.30								
8	1.86	2.13	2.46	2.9	3.42								
65	1.88	2.18	2.52	2.99	3.51								
70	1.92	2.55	2.59	3.03									

TABLE III A-25 LINEAR STRETCH FORMING LINGTS HEEL-IN ANGLES & CHANNELS TITANIUM (6A1-4V) (MILL ANNEALED)

					Ī	iterial	Material Thickness (t)	88 (t)					
Costour Redius	910.	050.	.025	.032	040.	050.	.063	170.	.080	œ0:	.100	.125	.187
er, O					Secti	lon Heig	Section Height Limits	ts (b)					
5	64.	85.	19:	97:	92	1.06	1.18	1.22	1.27	1.32	1.36	1.43	1.59
10	.63	.72	₹.	8.	1.16	1.35	35.1	1.68	1.82	2.8	टा:ट	2.45	2.64
15	.72	.82	8.	1.14	1.30	1.54	1.80	1.93	2.08	2.25	2.43	2.80	3.52
g	.78	.91	1.06	1.25	1.14	1.66	1.9	2.12	2.32	2.46	2.66	3.10	
25	.85	.97	1.15	1.35	1.55	1.80	2.17	2.29	2.5	2.70	2.87	3.37	
30	.88	1.03	1.20	1.42	1.65	1.90	2.25	2.40	29.2	2.85	3.09		
35	ま	1.12	1.28	1.50	1.75	2.03	2.34	2.59	2.76	3.01			
04	8.	1.14	1.32	1.56	1.84	21.5	2.42	2.70	2.88	3.08			
4.5	1.03	1.19	1.39	1.62	1.89	2.20	2.56	2.79	3.01				
50	1.67	1.25	1.44	1.67	1.95	2.30	2.70	2.87	3.10				
55	1.10	1.29	1.48	1.76	2.03	2.34	2.75	2.97	3.24				
8	1.14	1.32	1.54	1.80	2.08	2.43	2.85	3.06					
65	1.16	1.38	1.56	1.85	2.14	2.50	2.92	3.15					
20	1.19	1.40	1.61	1.89	2.20	2.55	2.97	3.20					

TABLE III A-26
LINEAR STRETCH FORMING LIMITS
HEEL-IN ANGLES & CHANNELS
TITANIUM (13V-11Cr-3A1)
(SOLUTION TREATED)

					¥	Material	Thickness (t)	68 (t)					
Contour Radius	910.	.020	.025	.032	040.	.050	.063	170.	.080	060.	.100	५टा:	.187
Rc					Section	lon Heig	Height Limits	t s (b)				· ***	
5	64.	75.	99.	т.	.91	1.05	1.22	1.29	1.33	1.37	1.42	1.50	1.64
10	.62	.72	.83	8.	1.14	1.33	1.4	1.67	1.81	1.98	2.10	2.40	2.77
15	.71	-82	ま	1.12	1.29	1.51	1.77	1.90	2.07	2.25	2.40	2.77	3.67
જ	.78	-89	1.04	1.24	1.44	1.65	1.96	2.10	2.28	74.5	2.64	3.05	
25	.85	.97	1.13	1.33	1.55	1.80	2.17	2.27	2.47	2.67	2.87	3.30	
30	88.	1.02	1.18	1.41	1.63	1.89	2.25	2.37	2.59	2.80	3.06		
35	.93	1.08	1.24	1.49	1.71	1.99	2.34	2.53	2.73	2.96	3.20		
04	.98	1.14	1.32	1.56	1.80	2.10	2.46	2.66	2.86	3.08			
45	1.02	1.19	1.37	1.60	1.87	2.17	2.56	2.79	3.01				
95	1.06	1.22	1.40	1.65	1.95	2.25	2.65	2.85	3.10				
55	1.10	1.24	1.45	1.70	1.98	2.28	2.69	2.91	3.13				
8	1.11	1.25	1.50	1.77	2.04	2.40	2.76	3.8					
65	1.14	1.33	1.5	1.84	2.11	2.47	2.91	3.12					
70	1.17	1.35	1.57	1.85	2.16	2.49	2.94	3.15					

TABLE III A-2.7
LINEAR STRETCH FORMUNG LIMITS
HEEL-IN ANGLES & CHANNELS
VASCOJET 1000 (H-11)
(ANNEALED)

					7	terial	Material Thickness (t)	68 (t)					
Contour Radius	910.	.020	.025	.032	040.	.050	.063	170.	.080	060.	.100	325.	.187
ထ					Secti	on Heig	Section Height Limits	ts (b)					
5	.76	.88	.96	1.04	1.12	1.20	1.30	1.34	1.38	1.43	74.1	1.53	1.70
10	%.	1.12	1.29	1.52	1.75	1.90	2.07	2.15	2.25	2.33	2.41	2.58	2.88
15	1.09	1.26	1.47	1.77	1.86	2.34	2.67	2.79	2.35	7. E			
R	1.20	1.38	1.60	1.90	2.20	2.56	3.00						
25	1.32	1.50	1.75	2.07	2.37	2.80	3.37						
30	1.38	1.59	1.83	2.17	2.52	2.95	3.51						
35	1.44	1.70	1.94	2.31	2.69	3.11							
01/1	1.52	1.76	2.04	2.40	2.80	3.36							
4.5	1.58	1.84	2.11	74.S	2.88	3.42							
50	1.64	1.89	2.18	2.55	3.8								
55	1.68	1.95	2.25	2.69	3.13								
99	1.74	2.05	2.34	2.76	3.18								
65	1.79	2.07	2.37	2.86	3.30								
20	1.82	2.12	2.46	2.94	3.36								

TABLE III A-28 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS RENE'41 (SOLUTION TREATED)

					×	iterial	Material Thickness (t)	ss (t)					
Contour Redius	910.	020.	.025	-032	040.	.050	.063	.071	.080	060-	.100	.125	.187
ည					Sect	lon Heig	Section Height Limits	ts (b)					
5	.75	.87	1.02	1.19	1.39	1.55	1.88	2.01	2.20	2.35	2.55	2.87	3.20
10	%	1.12	1.28	1.52	1.76	2.05	2.37	2.56	2.78	3.05			
15	1.09	1.26	1.45	1.75	1.99	2.31	2.71	2.91	3.18				
R	1.20	1.37	1.58	1.90	2.20	2.56	3.00						
25	1.29	1.50	1.75	2.05	2.37	2.75	3.35						
30	1.35	1.59	1.84	2.16	2.52	2.91	3.42						
35	1.43	1.68	まって	2.29	2.66	3.08							
011	1.49	1.73	2.04	2.40	2.76	3.20							
4.5	1.57	1.84	2.11	2.47	2.86	3-33							
50	1.63	1.87	2.16	2.55	2.95	3.45							
55	1.69	1.95	2.26	2.65	3.08								
\$	1.72	2.01	2.34	2.76	3.18								
65	1.76	2.03	2.36	2.85	3.25								
70	1.82	2.10	2.45	2.87	3.32								

TABLE III A-29 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS INCONEL X (C.R. ANNEALED)

					Ž	sterial	Material Thickness (t)	88 (t)					
Contour Radius	910.	020.	.025	.032	040.	.050	.063	.071	.080	060.	.100	. 125	.187
દ્ય					Sect	ton Heig	Section Height Limits	ts (b)					
5	.	1.01	1.17	1.36	1.59	1.84	2-15.	2.30	2.50	2.70	2.95	3.04	
10	1.10	1.26	1.45	1.73	2.00	2.33	2.71	2.92	3.09				
15	1.25	गगः र	1.68	1.99	2.25	29.2	3.00						
8	1.36	1.56	1.84	2.16	2.5t	2.90	3.40						
25	1.47	1.70	1.95	2.35	2.70	3.15							
30	1.56	1.80	2.07	2.49	2.85	3.30							
35	1.64	1.94	2.20	29.2	3.01								
O†i	1.71	1.98	2.32	2.72	3.20								
4.5	1.80	2.07	2.38	2.81	3.26								
50	1.85	2.15	2.45	2.90	3.4∪								
55	1.92	2.20	2.56	3.05									
9	1.98	2.28	2.64	3.12									
65	2.01	2.34	2.70	3.22									
70	2.03	2.38	2.76	3.25									

TABLE III A-30 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS HASTELLOY X (SOLUTION TREATED)

					₽	terial	Material Thickness (t)	ss (t)					
Contour Redius	910.	020	.025	.032	040.	.050	.063	.071	.080	060.	.100	.125	.187
એ					Sect1	on Heig	Section Height Limits	ts (h)					
5	77.	ю.	1.05	1.23	1.14	1.83	1.97	2.10	2.29	2,40	2.50	2.66	2.97
10	96.	1.16	1.33	1.56	1.82	2.11	2.46	2.65	2.88	3.08			
15	1.14	1.30	1.53	1.81	2.05	2.43	2.67	3.04					
8	1.25	1,44	1.66	1.97	2.30	2.67	3.10						
25	1.35	1.56	1.81	2.15	2.45	2.87	3.45						
30	1.41	1.65	1.89	2.25	2.61	3.00							
35	1.49	1.75	1.99	2.36	2.73	3.22							
011	1.56	1.80	2.10	2.48	2.88	3.30							
54	1.65	1.89	2.18	2.58	3.01								
50	1.70	1.95	2.25	2.65	3.10								
55	1.73	2.01	2.33	2.75	3.19								
89	1.77	2.08	2.40	2.83	3.26								
65	1.85	2.14	2.47	26.2	3.44								
70	1.88	2.17	2.52	2.97	3.50								

TABLE III A-31 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS L-605 (SOLUTION TREATED)

					X	iterial	Material Thickness (t)	88 (t)					
Contour Redius	910.	.020	.025	-032	040.	.050	.063	170.	080.	060.	.100	321.	.187
æ.					Secti	lon Heie	Section Height Limits	ts (h)					
5	.81	-95	1.09	1.28	1.50	1.75	2.05	2.18	2.27	2.36	2.43	2.55	2.88
10	1.00	1.16	1.33	1.58	1.83	2.15	2.50	2.70	2.90	3.10			
15	1.12	1.30	1.50	1.78	2.05	2.38	2.79	3.00					
R	1.25	1.44	1.66	1.99	2.32	2.65	3.10						
25	1.35	1.52	1.82	2.16	2.47	2.90	3.47						
30	1.41	1.65	1.90	2.28	2.61	3.03							
35	1.50	1.75	2.03	2.38	2.76	3.22							
04	1.56	1.80	2.12	2.48	2.88	3.32							
4.5	1.64	1.91	2.20	2.56	3.01								
50	1.70	1.95	2.25	2.67	3.10								
55	1.76	2.03	2.36	2.78	3.19								
99	1.80	2.10	2.43	2.91	3.30								
65	1.85	2.14	2.50	2.99	3.41								
70	1.90	2.17	2.57	3.04									

TABLE III A-32 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES & CHANNELS COLUMBIUM (10Mo-10T1)

					2	Material Thickness (t)	Thickne	.88 (t)					
Contour Radius	.016	020	.025	.032	040.	.050	.063	τ/0.	.080	060.	.100	.125	.187
ઝ					Secti	Section Height Limits	ht Limi	ts (b)					
5	ታ ተ•	.55	49.	69.	.74	62.	₫.	.89	%	.92	.95	1.00	1.08
10	9.	.69	.80	₽.	1.08	1.28	1.37	1.42	1.48	1.52	1.58	1.67	7.8%
15	.67	.79	.91	1.08	1.23	1.45	1.71	1.86	1.95	2.02	2.10	2.25	2.50
20	.75	.86	1.00	1.19	1.36	1.62	1.88	20.2	2.18	2.36	2.56	2.74	3.10
25	-82	.92	1.09	1.29	1.47	1.72	2.10	2.20	2.37	2.55	2.75	3.20	
30	.88	%	1.15	1.35	1.59	1.83	2.16	2.31	2.53	2.76	2.94	3.42	
35	.91	1.05	1.22	1.43	1.64	1.92	2.24	2.45	2.62	2.83	3.08		
0†1	ず	1.10	1.28	1.50	1.74	2.00	2.36	2.56	2.76	2.96	3.20		
54	8;	1.15	1.33	1.57	1.82	2.11	2.47	2.70	2.90	3.15			
50	1.02	1.17	1.37	1.60	1.85	2.17	2.55	2.75	3.00				
55	1.04	1.21	1.40	1.65	1.92	2.21	2.61	2.86	3.08				
9	1.08	1.26	1.47	1.71	2.01	2.34	2.70	20.5	3.18				
65	1.10	1.29	1.49	1.79	2.08	2.40	2.79	3.05					
70	1.12	1.31	1.54	1.82	21.5	2.45	2.87	3.11					

TABLE III A-33
LINEAR STRETCH FORMING LIMITS
HEEL-IN ANGLES & CHANNELS
MOLYBDENUM (.5% T1)
(HOT ROLLED, STRESS RELIEVED & DE-SCALED)

					₹	Material	Thickness (t)	88 (t)					
Contour Radius	910.	.020	.025	.032	040.	.050	.063	.071	.080	060.	.100	. 125	.187
స్ట					Secti	lon Heig	Section Height Limits	ts (h)					
5	. ተ	.55	4	47.	-82	.87	-92	.95	.99	1.01	1.04	1.09	1.17
10	9.	.69	%	कं	1.08	1.28	1.48	1.58	1.64	1.70	1.75	1.85	₹0°2
15	.67	.79	.91	1.08	1.23	1.45	1.71	1.86	1.99	2.14	2.32	2.47	2.77
20	.75	.86	1.00	1.19	1.36	1.62	1.88	2.02	2.18	2.36	2.56	ま。2	3.40
25	.82	.92	1.09	1.29	1.47	1.72	2.10	2.20	2.37	2.55	2.75	3.20	
30	88.	.99	1.15	1.35	1.59	1.83	2.16	2.31	2.53	2.76	あ。な	3.42	
35	.91	1.05	1.22	1.43	1.64	1.92	2.2t	2.45	2.62	2.83	3.88		
04	ま.	1.10	1.28	1.50	1.74	2.00	2.36	2.56	2.76	2.%			
45	.99	1.15	1.33	1.57	1.82	2.11	2.47	2.70	2.90	3.15			
50	1.02	1.17	1.37	1.60	1.85	2.17	2.55	2.75	3.00				
55	1.04	1.21	1.40	1.65	1.92	2.21	2.61	2.86	3.08				
9	1.08	1.26	74.1	1.71	2.01	2.34	2.70	\$.5	3.18				
65	1.10	1.29	1.49	1.79	2.08	2.40	2.79	3.05					
20	1.12	1.31	1.54	1.82	2.12	2.45	2.87	3.11					

TABLE III A-34 LINEAR STRETCH FORMING LIMITS HEEL-IN ANGLES % CHANNELS J-1570 (SOLUTION TREATED)

					X	Material Thickness (t)	Thickne	ss (t)					
Centour Redius	910.	.020	.025	.032	040.	.050	.063	τ2ο.	.080	∞ ≎≎	.100	.125	.187
ပ cu					Secti	Section Height Limits	tht Limi	ts (h)					
5	8.	.92	1.08	1.27	1.47	1.70	1.91	2,16	2,40	2.49	2.58	2.77	3.04
10	7.00	1.18	1.37	1.62	1.88	2.18	2.55	2.75	2.95	3.12			
15	1.12	1.33	1.57	1.8	2.14	2,50	26.2	3.12					
ଯ	1.26	1.48	1.70	2.05	2.36	2.74	3.20						
25	1.37	1.57	1.85	2.21	2.50	2.92	3.57						
30	1.44	1.68	1.95	2.31	2.64	3.09							
35	1.54	1.78	2.06	2.43	2.80	3.32							
04	1,60	1.84	2.14	2.55	2.92	3.40							
4.5	1.69	1.93	2.25	2.65	3.06								
50	1.75	2.02	2.30	2.74	3.20								
55	1.29	2.06	2,36	2.84	3.30								
8	1.83	2.13	2,46	2.94	3.36								
65	1.88	2.18	2.53	3.03									
70	1.92	2.24	2, 59	3.05									

TABLES III A-35 THROUGH III A-51 LINEAR STRETCH FORMABILITY LIMITS HEEL-IN HAT SECTIONS

FIGURE IIIA-20 HEEL-IN HAT SECTIONS

TABLE III A-35 LINEAR STRETCH FORMING LIMITS HEEL-IN HAT SECTIONS HM21XA-T8 (MAGNESIUM THORIUM) (400°F - 600°F)

					₩	sterial	Material Thickness (t)	8s (t)					
Contour Redius	910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	.187
Яс					Sect	lon Heig	Section Height Limits	ts (b)					
5	.70	62.	.92	1.07	1.21	1.30	1.35	1.38	गग"र	1.46	1.50	1.56	1.68
10	88.	1.02	1.17	1.38	1.56	1.81	2.11	2.27	2.42	2.49	2.58	2.69	2.92
15	1.01	1.18	1.37	1.58	1.8	2.10	2.44	2.63	₹8.5	3.06			
80	1.12	1.30	1.50	1.76	2.04	2.35	2.71	2.91	3.12				
25	1.22	1.40	1.65	1.92	2.20	2.57	2.96	3.19	·				
30	1.31	1.50	1.75	2.05	2.36	2.75	3.15						
35	1.36	1.58	1.82	2.18	2.48	2.85	3.34						
011	1.44	1.66	1.92	2.27	2.60	3.02							
4.5	1.50	1.72	2.00	2.34	2.72	3.15							
50	1.55	1.80	2.07	2.46	2.8	3.25							
55	1.62	1.86	2.15	2.53	2.95	3.40							
8	1.65	1.92	2.25	2.59	3.00								
65	1.73	1.96	2.30	2.72	3.12								
20	1.76	2.02	2.35	2.75	3.19								

TABLE III A-36 LINEAR STRETCH FORMING LIMITS HEEL-IN HAT SECTIONS 2024-0 ALUMINUM

					¥.	iterial	Material Thickness (t)	88 (t)					
Contour Radius	910.	.020	.025	.032	offo.	.050	.063	170.	.080	060.	001.	321 :	.187
స్ట					Secti	lon Heig	Section Height Limits	ts (b)					
5	99.	69.	.75	.80	.85	8.	ず	.97	86.	%	1.01	1.06	1.07
10	86.	1.10	1.17	1.28	1.38	1.47	1.57	1.63	1.68	1.75	1.80	1.87	2.05
15	1.14	1.30	1.50	1.66	1.80	1.95	2.14	2.17	2.24	2.34	2.38	2.50	2.75
8	1.24	1.44	1.65	1.93	2.24	2.35	2.52	2.66	2.72	2.88	2.95	3.12	
25	1.33	1.54	1.80	2.09	2.40	2.75	2.96	3.12					
30	1.42	1.64	1.90	42.5	2.60	2.95	3.21						
35	1.47	1.72	2.00	2.37	2.72	3.15							
04	1.58	1.82	2.12	2.48	2.84	3.30							
45	1.63	1.9	2.20	2.56	3.00								
50	1.70	1.%	2.27	2.69	3.08								
55	1.76	40°2	2.35	2.75	3.20								
93	1.81	2.10	2.42	2.85	3.28								
65	1.86	2.16	2.50	₽.S	3.40								
70	1.92	2.20	2.55	3.01									

TABLE III A-37
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
17-7 PH
(CONDITION A, MILL ARNEALED)

					ž	Material	Thickness (t)	88 (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	1.00	080.	060·	.100	325.	.187
દૂ					Sect	ton Heig	Section Height Limits	ts (b)					
5	89.	.78	8.	1.02	1.10	1.15	1.22	1.24	1.28	1.29	1.32	1.37	1.46
10	.86	1.00	1.15	1.34	1.52	1.77	2.03	2.13	2.20	2.25	2.30	2.37	2.62
15	8.	1.15	46.1	1.55	1.80	2.07	2.39	2.56	2.80	3.01			
R	1.10	1.27	1.45	1.73	1.96	2.30	2.65	2.87	3.08				
25	1.20	1.36	1.60	1.86	2.16	2.50	2.90	3.12					
30	1.26	1.46	1.69	1.98	2.30	2.65	3.09						
35	1.31	1.54	1.77	2.08	2.40	2.80	3.27						
01	1,41	1.62	1.90	2.24	2.58	2.95	3.46						
4.5	1.46	1.68	1.95	2.30	2.66	3.05							
50	1.52	1.76	2.02	2.40	2.76	3.20							
55	1.55	1.80	2.05	2.45	2.8	3.30							
8	1.60	1.86	2.15	2.53	2.96	3.40							
65	1.63	1.90	2.20	2.58	3.00								
70	1.69	1.93	2.25	2.63	3.08								

TABLE III A-38
LINEAR STRETCH FORMINC LIMITS
HEEL-IN HAT SECTIONS
PH 15-7 Mo
(CONDITION A)

					¥	iterial	Material Thickness (t)	88 (t)					
Contour Radius	910.	0ZV.	.025	.032	Otto.	050.	.063	1/0.	.080	% 0.	.100	₹ 2 1.	.187
S.					Section	lon Heig	Height Limits	ts (b)					
5	99.	92.	.87	66.	1.06	य:1	1.17	1.21	1.23	1.26	1.29	1.35	1.44
10	ౙ.	8.	गःगड	1.31	1.50	1.74	1.95	2.02	2.10	2.16	2.20	2.31	2.52
15	8.	1.13	1.31	1.52	1.85	2.05	2.33	25.5	2.72	2.90	3.00		
8	1.09	1.26	17.44	1.70	1.8	2.25	2.58	2.85	3.8				
25	1.17	1.36	1.57	1.85	21.2	2.45	2.83	3.05					
30	1.25	1.44	1.67	1.95	2.26	2.60	3.05						
35	1.30	1.50	1.75	2.06	2.36	2.75	3.18						
07	1.38	1.58	1.82	2.16	2.50	2.87	3.34						
45	1.41	1.64	1.92	2.24	2.60	3.00							
50	1.47	1.72	1.97	2.34	2.70	3.10							
55	1.52	1.76	2.03	2.40	2.80	3.25							
8	1.57	1.84	2.12	2.50	2.88	3.35							
65	1.62	1.87	2.19	2.56	2.96	3.40							
70	1.63	1.9	2.25	2.59	3.00								

TABLE III A-39
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
AM-350
(ANNEALED)

					₹ 1	Material	Thickness (t)	88 (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	170.	.080	060.	.100	521.	.187
R					Sect	Section Height	ght Limits	ts (b)					
5	-62	.70	-82	ま	1.08	1.15	1.20	1.24	1.26	1.28	1.30	1.37	1.48
10	.78	<u>8</u> .	1.05	1.24	1.40	1.62	1.88	2.03	2.16	2.20	2.30	2.41	2.62
15	8.	1.04	1.21	1.34	1.64	1.87	2.17	2.34	2.52	2.72	2.90	3.20	
દ્ભ	1.00	1.16	1.32	1.57	1.80	2.10	2.41	2.63	2.80	3.06			
25	1.08	1.25	1.45	1.70	1.96	2.25	2.61	2.8t	3.08				
30	1.15	1.32	1.55	1.81	2.10	2.42	2.80	3.05					
35	1.19	1.38	1.62	1.90	2.18	2.55	2.96	3.19					
01/	1.26	1.46	1.70	8.8	2.32	2.67	3.09			-			
4.5	1.31	1.5	1.76	2.08	2.40	2.75	3.21						
50	1.36	1.59	1.82	2.18	2.50	2.85	3.37						
55	1.40	1.64	1.90	2.25	2.60	3.00							
9	11.1	1.70	1.95	2.30	2.68	3.10							
65	1.47	1.72	2.00	2.37	2.72	3.20							
70	1.52	1.76	2.05	2.40	2.76	3.25							

TABLE III A-40 LINEAR STRETCH FORMING LIMITS HEEL-IN HAT SECTIONS A-286 (SOLUTION TREATED)

					Æ	iterial	Material Thickness (t)	88 (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	170.	.080	060.	.100	.125	.187
er ,					Secti	Section Height	tht Limits	ts (b)					
5	.72	-82	.95	1.10	1.18	1.26	1.31	1.35	1.38	1.40	1.44	1.50	1.59
10	.91	1.06	1.22	1.44	1.64	1.87	2.19	2.21	2.34	2.43	2.52	2.59	2.86
15	1.06	1.22	1.42	1.65	1.88	2.20	2.52	2.70	2.92	3.15			
જ	1.17	1.36	1.55	1.87	2.06	2.47	2.80	3.05					
25	1.26	1.44	1.70	1.98	2.28	2.65	3.09						
30	1.34	1.56	1.80	2.11	2.44	2.85	3.24						
35	1.41	1.64	1.87	2.24	2.56	2.96	3.44						
01	1.48	1.72	1.97	2.30	2.68	3.10							
4.5	1.54	1.76	2.07	24.2	2.80	3.25							
50	1.60	1.85	2.15	2.56	2.92	3.35							
55	1.63	1.90	2.20	2.60	3.00								
8	1.71	1.98	2.27	2.69	3.12								
65	1.76	2.02	2.37	2.75	3.20								
70	1.79	2.06	2.40	2.85	3.28								

TABLE III A-41 LINEAR STRETCH FORMING LIMITS HEEL-IN HAT SECTIONS USS-12-MoV (ANNEALED)

					, W	Material	Thickness	ss (t)					
Contour Redius	910.	020.	.025	.032	040.	.050	.063	.071	.080	060.	.100	.125	.187
ଧୁ					Section	lon Heig	Height Limits	ts (b)					
5	-62	.70	.75	.8	98.	%	ま.	%	.98	.99	1.01	1.06	1.12
10	.78	8.	1.05	1.22	1.36	1.47	1.57	1.63	1.68	1.75	1.79	1.87	2.02
15	.91	1.04	1.20	1.41	1.64	1.90	21.5	2.20	2.24	2.34	2.40	2.55	2.80
20	1.01	1.16	1.34	1.57	1.80	2.10	2.46	2.63	2.72	2.90	3.00		
25	1.09	1.24	1.45	1.70	1.96	2.25	2.65	2.84	3.04				
30	1.14	1.34	1.55	1.82	2.08	2.45	2.80	3.05					
35	1.20	1.40	1.62	1.92	2.20	2.55	2.96	3.19					
04	1.26	1.46	1.70	2.00	2.28	2.65	3.09						
14.5	1.31	1.52	1.75	2.08	2.40	2.75	3.21						
50	1.36	1.60	1.85	2.18	2.52	2.90	3.35						
55	1.41	1.64	1.87	2.21	2.60	3.00							
9	1.44	1.70	1.95	2.30	2.68	3.10							
65	1.49	1.72	2.00	2.37	2.74	3.20							
70	1.52	1.76	2.05	2.40	2.80	3.25							

TABLE III A-42 LINEAR STRETCH FORMING LIMITS HEEL-IN HAT SECTIONS TITANIUM (6A1-4V) (MILL ANNEALED)

					Ma	Material	Thickness	ss (t)					
Contour Regius	910.	.020	.025	-032	040.	.050	.063	120.	.080	060.	001,	ξ 2 Ι.	.187
Rc					Secti	Section Height	ght Limits	ts (h)					
5	•39	54.	.51	.60	89.	.71	47.	-75	77.	.78	8.	.83	.86
10	64.	.56	99.	.77	.89	1.02	1.18	1.29	1.34	1.38	1.42	7.47	1.55
15	.56	.65	.75	.89	1.02	1.18	1.39	1.48	1.60	1.73	1.84	2.01	2.21
20	.62	.72	.83	86.	1.13	1.21	1.46	1.57	1.71	1.84	2.05	2.37	2.71
25	.67	.78	8.	1.06	1.22	1.41	1.66	1.79	1.94	2.10	2.23	2.65	3.29
30	17.	.83	%.	1.14	1.32	1.52	1.75	1.92	2.08	2.21	2.39	2.76	3.55
35	.75	88.	1.01	1.20	1.38	1.60	1.86	2.00	2.17	2.36	2.51	2.91	3.74
01	.78	.91	1.05	1.24	1.44	1.67	1.93	2.08	2.26	2.45	2.63	3.01	
4.5	-82	ま・	1.10	1.30	1.52	1.72	20.5	2.20	2.36	2.56	2.74	3.19	
50	.85	86.	1.12	1.34	1.56	1.80	2.08	2.27	2.46	2.65	\$.5	3.25	
55	88.	1.01	1.17	1.38	1.60	1.87	2.17	2.34	2.56	2.74	2.98	3.37	
8	8.	1.06	1.22	1.42	1.68	1.93	2.27	2.45	2.64	2.88	3.08		
65	.93	1.08	1.25	1.47	1.70	2.00	2.31	2.48	2.68	2.95	3.12		
70	ま	1.09	1.27	1.49	1.72	2.05	2.35	2.56	2.72	2.97	3.18		

TABLE III A-4 3 LINEAR STRETCH FORMING LIMITS HEEL-IN HAT SECTIONS TITANIUM (13V-11Cr-3A1) (SOLUTION TREATED)

					₩	Material	Thickness	ss (t)					
Costour Redius	910.	020.	.025	-032	040.	.050	.063	.071	.080	% 0.	.100	.125	.187
က္					Secti	lon Heig	Section Height Limits	ts (h)					
5	.38	5ħ•	.51	%	.70	.79	-82	₽.	.85	.86	.89	26.	.95
10	.50	.57	%.	.77	.89	1.02	1.18	1.28	1.38	1.48	1.55	1.62	1.80
15	.57	.65	92.	8.	1.02	1.17	1.39	1.48	1.59	1.71	1.83	2.12	2.43
8	.62	.72	-82	8.	1.12	1.32	1.51	1.63	1.76	1.92	2.05	2.35	2.99
25	.67	.78	<u>8</u> .	1.05	1.22	1.40	1.64	1.77	1.92	2.07	2.20	2.5	3.25
30	.71	.83	.95	1.12	1.30	1.50	1.74	1.9	2.06	2.80	2.36	2.72	3.55
35	ή <u>ζ</u> .	.87	۰.1 1.00	1.23	1.37	1.58	1.84	1.99	2.34	2.32	2.50	2.87	3.74
01	.78	.91	1.05	1.25	गग-र	1.65	1.93	2.06	2.24	2.43	2.63	3.00	
14.5	-82	.97	1.10	1.28	1.50	1.71	2.02	2.16	2.35	2.年	2.73	3.16	
50	æં.	8.	1.14	1.34	1.56	1.80	2.08	2.27	2.44	2.64	2.80	3.30	
55	.87	1.00	1.17	1.38	1.60	1.86	2.15	2.31	2.48	2.70	2.92	3.37	
8	8.	1.05	1.20	1.41	1.66	1.91	2.2t	2,42	2.61	2.83	3.00		
65	.6.	1.07	1.25	1.46	1.68	1.95	2.28	2.46	2.68	2.89	3.08		
70	ま	1.10	1.27	1.50	1.72	2.01	2.36	2.56	2.72	2.97	3.17		

TABLE III A-44
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
VASCOJET 1000 (H-11)
(ANNEALED)

					W.	terial	Material Thickness (t)	ss (t)					
Contour Radius	910.	.020	.025	-032	070.	.050	.063	170.	.080	060·	.100	ेटा :	.187
Re					Secti	lon Heig	Section Height Limits	ts (h)					
5	.59	.62	.67	.72	92.	8.	₽.	.87	88.	8.	.91	ā .	%
10	η . -	.86	1.00	1.17	1.24	1.32	1.42	1.48	1.52	1.55	1.58	1.65	1.78
15	.86	8.	1.15	1.34	1.54	1.75	1.89	1.95	2.02	2.07	2.13	2.25	2.47
20	ま	1.10	1.26	7.47	1.70	1.97	2.30	2.41	2.44	2.57	2.65	2.81	2.99
25	1.02	1.18	1.37	1.60	1.84	2.15	94.5	2.70	2.88	3.06			
30	i.09	1.26	1.45	1.73	1.96	2.30	2.65	2.88	3.12				
35	1.14	1.32	1.52	1.79	2.08	2.40	2.77	2.95	3.28				
04	1.20	1.38	1.62	1.89	2.20	2.55	2.96	3.16					
4.5	1.25	क्ष. र	1.67	1.98	2.28	2.65	3.02						
50	1.30	1.50	1.74	2.05	2.36	2.75	3.21						
55	1.33	1.53	1.77	2.10	2.40	2.80	3.28						
9	1.36	1.60	1.85	2.18	2.52	2.90	3.40						
65	1.42	1.62	1.90	2.24	2.60	3.00							
70	1.45	1.67	1.95	2.29	2.64	3.03							

TABLE III A-45
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
RENE'41
(SOLUTION TREATED)

					M.	Material	Thickness (t)	ss (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	τ2ο:	.080	060·	001.	.125	.187
ല്					Secti	lon Heig	Section Height Limits	ts (b)					
5	65.	79.	.77	.91	1.05	1.19	1.36	1.39	1.45	1.47	1.50	1.57	1.68
10	47.	.86	1.00	1.17	1.34	1.52	1.79	1.93	2.08	2.23	2.37	2.69	2.99
15	-86	86.	1.15	1.34	1.56	1.79	1.95	2.23	2.40	2.56	2.76	3.19	
50	96	1.10	1.27	1.49	1.72	2.00	2.28	2.48	2.66	2.88	3.10		
25	1.02	1.18	1.37	1.60	1.84	2.15	2.46	2.70	2.88	3.15			
30	1.09	1.25	1.47	1.73	1.98	2.30	2.65	2.87	3.12				
35	1.14	1.32	1.52	1.79	2.08	2.40	2.77	3.02					
01	1.20	1.40	1.60	1.89	2.18	2.51	2.93	3.14					
4.5	1.25	1.44	1.67	1.98	2.28	2.65	3.04						
50	1.28	1.50	1.72	2.08	2.36	2.75	3.21						
55	1.33	1.54	1.77	2.11	2.48	2.85	3.32						
8	1.36	1.59	1.85	2.18	2.52	2.90	3.40						
65	1.41	1.63	1.90	2.24	2.60	3.00							
70	1.44	1.68	1.95	2.30	2.64	3.15							

TABLE III A-46
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
INCONEL X
(C.R. ANNEALED)

					Ma	iterial	Material Thickness (t)	ss (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	170.	.080	.cgo	001.	325.	.187
ည္မ					Secti	lon Heig	Section Height Limits	ts (h)					
5	99.	.75	.87	1.02	1.16	1.33	1.45	1.49	1.52	1.56	1.60	1.67	1.78
10	.85	%.	1.12	1.31	1.50	1.75	20.5	2.17	2.32	2.49	2.67	2.87	3.14
15	8.	1.12	1.30	1.50	1.74	2.00	2.34	2.52	2.72	26.5	3.14		
22	1.07	1.25	1.42	1.68	1.92	2.25	2.58	2.80	3.00				
25	1.15	1.34	1.55	1.82	2.12	2.45	2.80	3.05					
30	1.23	1.43	1.65	1.9	2.24	2.60	2.99	3.27					
35	1.28	1.50	1.72	2.03	2.32	2.70	3.15						
01	1.36	1.54	1.80	2.14	2.48	2.85	3.28						
14.5	1.41	1.64	1.89	2.25	2.58	2.95	3.46						
50	1.46	1.70	1.97	2.30	2.68	3.15							
55	1.50	1.74	2.00	2.37	2.76	3.20							
8	1.55	1.81	2.10	2.46	2.84	3.28							
65	1.60	1.85	2.17	2.53	2.92	3.40							
70	1.63	1.90	2.19	2.56	3.00								

TABLE III A-47 LINEAR STRETCH FORMIL; LIMITS HEEL-IN HAT SECTIONS HASTELLOY X (SOLUTION TREATED)

					Ma	Material	Thickness	ss (t)					
Contour Redius	910.	.020	.025	.032	070.	050.	.063	170.	.080	œ0.	001.	, i25	.187
ಜ್					Section	lon Height	tht Limits	ts (h)					
5	3.	69.	8.	.93	1.07	1.22	1.29	1.33	1.35	1.37	1.41	74.1	1.54
10	.76	98	1.02	1.20	1.37	1.57	18.1	1.97	2.11	2.29	2.43	29.2	2.75
15	.88	1.02	1.17	1.37	1.59	1.82	2.13	2.27	2.46	2.65	2.83	3.25	
20	96.	1.14	1.30	1.53	1.76	2.05	2.36	2.56	2.74	2.99	3.18		
25	1.06	1.23	7.42	1.66	1.91	2.21	2.56	2.77	2.99	3.24			
30	1.12	1.30	1.50	1.76	2.04	2.35	2.71	2.98	3.20				
35	1.18	1.36	1.57	1.86	2.16	2.50	2.8	5.12					
С ц	1.24	1.43	1.65	1.95	2.26	2.60	3.00						
45	1.28	1.49	1.72	2.02	2.34	2.70	3.15						
50	1.34	1.54	1.80	2.11	2.47	2.85	3.28						
55	1.38	1.60	1.85	2.18	2.52	2.95	3.40						
9	1.42	1.65	1.90	2.2	2.60	3.00							
65	1.46	1.70	1.97	2.30	2.68	3.10							
70	1.50	1.73	2.00	2.37	2.72	3.8							

TABLE III A-48
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
L-605
(SOLUTION TREATED)

					W _S	iterial	Material Thickness	ss (t)					
Contour Redius	910.	.020	.025	-032	040.	050.	.063	.071	.080	060:	001.	इडा.	.187
Rc					Secti	lon Heig	Section Height Limits	ts (h)					
5	.61	.70	-82	.95	1.09	1.20	1.27	1.31	1.34	1.37	1.40	94.1	1.55
10	.TT	8.	1.04	1.21	1.40	19.1	1.86	2.02	2.16	2.32	2.38	2.50	2.71
15	8.	1.04	1.20	1.39	1.62	1.86	2.17	2.31	2.51	2.71	2.87	3.31	
20	·9	1.15	1.32	1.55	1.79	2.08	2.39	2.59	2.78	3.03			
25	1.07	1.23	1.43	1.68	1.93	2.25	2.59	2.80	3.04				
30	1.14	1.32	1.52	1.81	2.08	2.40	2.78	3.02					
35	1.18	1.36	1.59	1.89	2.18	2.51	2.91	3.16					
04	1.25	1.44	1.67	1.97	2.26	2.65	3.06						
4.5	1.30	1.50	1.75	2.08	2.36	2.75	3.21						
50	1.34	1.57	1.80	2.14	2.48	2.85	3.34						
55	1.39	1.61	1.87	2.20	2.56	3.00							
9	1.44	1.66	1.92	2.27	2.64	3.10							
65	1.47	1.70	2.00	2.34	2.68	3.15							
70	1.50	1.74	2.02	2.40	2.76	3.20							

TABLE III A-49
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
COLUMBIUM (10Mo-10Ti)

					Ma	iterial	Material Thickness	.ss (t)					
Contour Redius	910.	.020	.025	-032	040.	.050	.063	170.	.080	060.	.100	521.	.187
ဗ					Section	lon Height	tht Limits	ts (h)					
5	37	£4°	94.	.50	.53	立.	95.	75.	.58	.59	· 60	.62	.62
10	94.	.55	વં.	ካ L•	.86	.92	.99	1.02	1.04	1.06	1.08	1.14	1.18
15	±₹.	.62	.72	.85	.97	1.12	1.31	1.35	1.40	1.42	1.45	1.华	1.64
8	.59	69.	8.	.93	1.08	1.25	1.45	1.58	1.68	1.84	1.88	す.1	2.06
25	₽.	.74	.87	1.01	1.17	1.36	1.57	1.70	1.86	2.01	2.16	2.31	2.49
30	69	.80	.92	1.09	1.26	1.45	1.70	1.85	2.00	2.13	2.30	2.62	2.95
35	.72	₹.	96.	1.14	1.32	1.52	1.76	1.92	2.08	2.25	2.40	2.79	3.27
01	.75	.87	1.00	1.18	1.38	1.60	1.82	1.99	2.16	2.34	2.50	2.90	3.55
4.5	.78	8.	1.05	1.23	1.42	1.65	1.95	2.06	2.26	2.43	2.64	3.00	
50	-82	ま	1.10	1.28	1.49	1.73	2.02	2.20	2.36	去.5	2.75	3.15	
55	₹.	%	1.12	1.34	1.52	1.80	2.08	2.27	2,42	2.61	2.84	3.25	
8	.86	1.00	1.16	1.37	1.60	1.85	2.15	2.34	2.54	2.70	2.90	3.37	
65	-89	1.02	1.20	1.41	1.64	1.87	2.20	2.39	2.56	2.79	3.00		
70	%	1.05	1.22	17.1	1.68	1.95	2.27	2.43	2.6	2.88	3.08		

TABLE III A-50
LINEAR STRETCH FORMING LIMITS
HEEL-IN HAT SECTIONS
MOLYBDENUM (.5% T1)
(HOT ROLLED STRESS RELLEVED AND DE-SCALED)

					Me	Material	Thickness	ss (t)					
Contour Radius	910.	020.	.025	-032	040.	.050	.063	.071	080.	060.	.100	.125	.187
Rc					Section	lon Height	sht Limits	ts (b)					
5	.37	£#°	64.	.53	. 57	.58	99.	.62	.63	.65	99.	19.	79.
10	94.	.55	1 9.	ηL·	.86	.97	1.04	1.09	1.11	1.13	1.16	1.22	1.27
15	去.	.62	.72	.85	.97	1.12	1.31	1.42	1.52	1.56	1.59	1.67	1.79
20	.59	69.	8.	.93	1.08	1.25	1.45	1.58	1.68	1.84	1.97	2.12	2.24
25	₹9.	.7 ⁴	.87	1.01	1.17	1.36	1.57	1.70	1.86	2.01	2.16	2.46	2.67
30	69.	8.	.92	1.09	1.26	1.45	1.70	1.85	2.00	2.13	2.30	2.62	3.12
35	.72	₹.	%	1.14	1.32	1.52	1.76	1.92	2.08	2.25	2.40	2.79	3.51
70	.75	.87	1.00	1.18	1.38	1.60	1.82	1.99	2.16	2.34	2.50	2.90	3.74
4.5	.78	8.	1.05	1.23	1.42	1.65	1.95	2.06	2.26	2.43	2.64	3.00	
50	-82	ま・	1.10	1.28	1.49	1.73	2.02	2.20	2.36	2.54	2.75	3.15	
55	.8⊈	%.	1.12	1.34	1.52	1.80	2.08	2.27	2,42	2.61	2.8µ	3.25	
93	%.	1.00	1.16	1.37	1.60	1.85	2.15	2.34	2.54	2.70	2.90	3.37	
65	.89	1.02	1.20	1.41	1.64	1.87	2.20	2.39	2.56	2.79	3.00		
70	8.	1.05	1.22	1.44	1.68	1.95	2.27	2.43	2.64	2.88	3.08		

TABLE III A-51 LINEAR STRET**CH** FORMING LIMITS HEEL-IN HAT SECTIONS J-1570 (SOLUTION TREATED)

					Z	Material Thickness (t)	Thickne	58 (t)					
Contour Redius	910.	.020	.025	.032	040.	050.	.063	.071	080.	060.	.100	.125	.187
Rc					Secti	Section Height Limits	ht Limi	ts (h)					
5	9.	.70	-82	ħ6°.	1.10	1,25	1.31	1.35	1.38	1.40	1.44	1.50	1.59
10	.78	96	1.05	1.24	1.40	1.62	1,88	2.03	2.16	2.34	2.52	2.59	2.86
15	06.	1,0t	1.21	1.34	1.64	1.87	2.17	2.34	2.52	2.72	2.90	3.35	
20	1.00	1.16	1.32	1.57	1.80	2.10	2.41	2.63	2.80	3.06			
25	1.08	1.25	1.45	1.70	1.96	2.25	2.61	2.84	3.08				
30	1.15	1.32	1.55	1.81	2,10	2.1.2	2.80	3.05					
35	1.19	1.38	1.62	1.90	2.18	2.55	2.96	3.19					
01	1,26	1.45	1.70	2.00	2.32	2.67	3.09						
45	1.31	1,54	1.76	2.08	2.40	2.75	3.21						
50	1,36	1,59	1.82	2.18	2.50	2.85	3.37						
55	1.40	1.64	1.90	2.22	2.60	3.00							
8	1,44	1.70	1.95	2.30	2.68	3.10							
65	1,47	1.72	2.00	2.37	2.72	3.20							
70	1.52	1.76	2.05	2.40	2.76	3.25							

LINEAR ROLL FORMING

Description of Process

The linear roll process is used to contour angle and channel parts of both extruded and brake formed sheet metal sections. For the purpose of this evaluation sheet metal channels were formed. When angle sections are desired, a channel can be formed and split down the web thus providing two angle sections.

There are several types of linear roll machines available but the one used in this evaluation was a three roll Kane and Roach rolling machine. This machine was chosen for use because very simple tooling can be utilized to form channel sections. Tooling consists simply of circular rolls machined to the desired dimensions. A schematic of roll tooling is shown in the following sketch:

FIGURE III B-1 LINEAR ROLL TOOLING

Due to the nature of the linear roll process, handwork is required on practically all sheet metal parts formed by this process, especially if close dimensional tolerances are required. In cases where close web and flange tolerances are essential it is recommended that the parts be formed by the linear stretch process.

There are many uncontrollable variables associated with the linear roll process. Included in these variables are: Material property variations, lateral flange support, bending pressure to produce contouring, work hardening and operator technique. The successful fabrication of a quality part is dependent to a great extent upon the skill of the operator. Not only does the operator have to have a feel for the particular material he is forming, but he must also determine the amount of lateral flange support to be used, as well as the amount of bending pressure to produce contouring.

As a rule, only the heavier gage materials are formed by the linear roll process; however, the lighter gages, .020 - .040, are often formed but extreme care must be exercised by the operator to produce parts of good quality. Parts formed by this process are formed in increments and it may take several passes to reach the desired part radius. The thinner gage materials have less section rigidity and as a result, have a tendency to collapse when too much lateral flange support or bending pressure is applied.

A typical three roll heel-in machine set-up is shown in Figure III B-2. The rolling tools C_1 and C_2 are machined to the dimensions dictated by the configuration of the channel to be formed. The rolls are to be of sufficient radius to accommodate the channel section height and their width is governed by the width of the web of the channel. The rolling tools are power driven and supply the motion to move the channel. A third roll, A, is used to supply pressure to the web of the channel so that contouring can be accomplished as the channel, D, is passed through the rolls C_1 and C_2 . The lateral support blocks, E_1 and E_2 are fastened to the shaft of the roll machine on each side of the roll tooling. Their purpose is to eliminate flange spreading under the bending pressure exerted by roll A. E_1 and E_2 are shims to provide spacing between the lateral support blocks and the channel being formed. The shims are the same gage as the channel being formed.

The primary failure encountered in the heel-in process is transverse buckling; however, there are other flange and web distortions common to the process. Among these distortions are web crowning, web widening, and flange spreading. These distortions are considered minor except in severe cases where it is obvious that their presence is brought about by stresses that ordinarily cause buckling. The severity of web crowning and flange spreading increases in materials having low values of E/S_{ty} , particularily in Titanium, Columbium, and Vascojet 1000. In these materials having low values of E/S_{ty} transverse buckling becomes less bronounced but flange spreading and plate buckling become more pronounced.

LINEAR ROLL HEEL-IN MACHINE SET-UP FIGURE III B-2

Another limitation of the linear roll heel-in process is a progressive build-up of material in the bend radius area of the channel. See Figure III B-3. This build-up is characteristic of the more ductile materials such as aluminum. It does not necessarily affect the structural characteristics of the part; however, due to this build-up the web of the channel widens. As the web widens the original bend radius is reduced. This occurrence increases in severity with a reduction in part radius and is more characteristic of the heavier gages and should be considered when selecting a forming process. If the structural application of the part is such that a definite bend radius is required, it is recommended that another flanging process be used. In most cases the alternate process would be the linear stretch process.

BEFORE FORMING

AFTER FORMING

FIGURE III B-3 HEEL-IN CHANNEL DISTORTION

The limitations of the linear roll heel-out process are much the same as previously described for the heel-in process; however, the quality of parts produced by this process is usually superior to the quality of heel-in parts.

The primary failure encountered in forming heel-out channels is compression wrinkling or buckling of the flanges. There are other section distortions such as crowning in the web, flange spreading and web buckling; however, these secondary failures are considered minor.

The linear roll heel-out process is similar to the heel-in process. It employs incremental type forming and the successful operation is highly dependent upon the skill of the operator. As with heel-in forming, there are many uncontrollable variables associated with this process which makes duplication of results very difficult. The most important mechanical variables that must be controlled by the operator are the amount of lateral support for the flanges and the amount of bending pressure supplied to produce contouring. For heel-out channels, insufficient lateral support will cause "grabbing" in the rolls resulting in either a destroyed part or an uneven contour radius. The amount of bending pressure is also important to the forming of heel-out sections. Too much bending pressure will cause either premature flange wrinkling, crowning in the web or a collapse of the section. The amount of lateral flange support and bending pressure required will vary with the particular material being formed. The softer materials require less pressure to produce contouring, therefore it is necessary for the operator to apply less bending pressure to minimize the chances of premature part failure.

Definition of Part Shape and Geometric Variables

FIGURE III B-4 LINEAR ROLL HEEL-IN AND HEEL-OUT CHANNELS

Linear roll heel-in and heel-out channels are linear sections prepared from sheet metal stock by brake forming the sheet metal to the
desired section height and web width, then roll forming to the desired
contour radius. Linear roll heel-in channels are used where it is
necessary to fasten the section to a convex surface of a structure whereas heel-out sections are fastened to concave surfaces of a structure.

Parts formed by the linear roll process can be formed to a constant radius or in many cases, parts with varying radii can be formed with relative ease. No special tooling is required for parts with varying radii; however, the machine operator must be supplied with a template representing the various radii to be formed.

The geometric variables, as shown in Figure III B-4, are material thickness (t), section height (h), contour radius (R) and web width (w). The material thickness, section height, and contour radius are the only variables considered in this evaluation; however, web width can be a limiting parameter for formability limits of the lighter gage materials. A web width of .75" is satisfactory for the material gages used in this evaluation, but this web width is considered maximum for .020 and lighter gage materials.

Predictability Equations

Heel-in Channel:

The equation for the inflection line:

$$\frac{h}{R} = 0.0146 \left(\frac{h}{t}\right)^{\frac{1}{2}}$$

Equation I

The equation for the elastic buckling line:

$$\frac{h}{R} = \frac{E}{S_{ty}} \left[\frac{0.025}{\left(\frac{h}{t}\right)^2} \right]$$

Equation II

The equation for the buckling line above the inflection line:

$$\frac{h}{1} = \left[1.713 \frac{E}{S_{ty}}\right]^{\frac{2}{5}}$$

Equation III

Heel-Out Channels:

The equation for the inflection line:

$$\frac{h}{R} = 0.0209 \left(\frac{h}{t}\right)^{\frac{1}{2}}$$

Equation IV

The equation for elastic buckling:

$$\frac{h}{R} = \frac{E}{S_{cy}} \left[\frac{0.02116}{\left(\frac{h}{t}\right)^2} \right]$$

Equation V

The equation for buckling above the inflection line:

$$\frac{h}{t} = \left[1.01 \frac{E}{S_{cy}} \right]^{\frac{2}{5}}$$

Equation VI

The formability equations and curve shapes for both heel-in and heelout channels are basically the same. Due to this similarity only the equations and formability curves for heel-in sections will be discussed.

To construct a formability curve for heel-in channels using the predictability equations, the following procedure is followed.

As an example, the formability curve for 2024-O aluminum will be constructed. To construct the formability curve it is necessary to obtain the E/S_{ty} value for the material in question. This property for 2024-O aluminum is E/S_{ty} = 900.

Step I: Using Equation I: $h/R = .0146 (h/t)^{\frac{1}{2}}$, locate the position of the inflection line by positioning the point, h/R = .0146, on the h/t = 1 line. From this point construct a line with a slope of $\frac{1}{2}$. See Figure III B-5.

FIGURE III B-5 GRAPH CONSTRUCTION

Step II: Using Equation II:
$$h/R = E/S_{ty}$$
 $\left[\frac{.025}{(h/t)^2}\right]$:

Insert the value of E/S_{ty} and arbitrarily select a value for h/t and solve for h/R. Locate the point on log-log graph paper and construct a -2 slope through this point to the h/t axis and to the inflection line. From the inflection line construct a vertical line to the machine limit line. See the following sketch.

FIGURE III B-6 GRAPH CONSTRUCTION

The machine limit line is a mechanical limit and has nothing to do with material properties; however, it is a limiting parameter. The limit will depend on the material gage, the maximum section height that the tooling will accommodate, and the minimum part radius that the machine and tooling will produce. The machine limit line will have a different position with a change in any of the previously mentioned variables. The machine limit line presented in this report is constructed using the following limiting parameters: 5" minimum obtainable part radius, .063 gage material, and 2" maximum section height. The plot of points on the h/R axis was accomplished by keeping R = 5" constant and varying h to a maximum of 2". Points on the h/t axis were plotted by keeping the material thickness, t = .063, constant and varying h to a maximum of 2".

A complete formability curve constructed from the formability equations and the machine limit line is shown in the following sketch.

FIGURE III B-7 TYPICAL FORMABILITY CURVE

An alternate method for constructing a formability curve for linear roll section is as follows:

Step I: Construct the inflection line as described in the first method.

Step II: Locate $E/S_{ty} \times 10^{-5}$ on the vertical index line. This index line is h/t = 50 for heel-in channels. The value for $E/S_{ty} \times 10^{-5}$ for 2024-0 aluminum is .009. Construct a line with a (-2) slope through this point to the inflection line. From the intersection of this line and the inflection line construct a vertical line to the machine limit line as shown in the following sketch.

FIGURE III B-8 GRAPH CONSTRUCTION

Composite Graphs

The formability curves representing the forming limits of all materials evaluated under this contract will appear in composite form in Graphs III B-1 and III B-2. Graph III B-1 is the composite for linear roll heel-in channels and Graph III B-2 is the composite for heel-out channels.

All individual graphs and composite graphs have been presented on a logarithmic basis; however, a method of plotting design limits on Cartesian graph paper is possible. To construct this type graph it is necessary to have previously determined the formability limits of the material in question. A plot of maximum section height versus minimum contour radius for any material thickness is made on Cartesian graph paper as illustrated in Graph III B-3. This type graph enables the planner or designer to read design limits directly with no calculations necessary.

GRAPH III B-1 LINEAR ROLL COMPOSITE GRAPH HEEL-IN CHANNELS

GRAPH III B-2 LINEAR ROLL COMPOSITE GRAPH HEEL-OUT CHANNELS

GRAPH III B-3

ALTERNATE METHOD FOR PLOTTING LINEAR ROLL HEEL-IN - 17-7 PH (CONDITION "A")

Design Tables

The design tables presented in this report are derived from the composite graphs presented in the previous section. The design limits for linear roll heel-in channels appear in Tables III B-1 through III B-17, and the design limits for heel-out channels appear in Tables III B-18 through III B-34.

Due to the nature of the linear roll heel-in process it is very difficult to form parts with practical section heights that are perfectly free of buckling and require no handwork. Because of this a certain amount of handworkable buckling is tolerated and the design limits presented for heel-in channels may include parts with transverse buckles to approximately .02" in depth as shown in the following sketch.

FIGURE III B-9 HEEL-IN CHANNEL DISTORTION

The formability limits for heel-out channels are based on incipient flange buckling. For design purposes these limits can be exceeded where handwork is applicable. The maximum amount of handwork that can be tolerated will depend on the tolerance requirements and structural application of the individual part.

It is possible, especially for heavy gage materials, to extend the formability limits for heel-out channels. This may be accomplished by tightening the gap between the roll tool and the flange support blocks so that there is less clearance in which the flanges may buckle. This procedure is actually a procedure of in-process handwork and is done at the risk of destroying the channel. As the channel is roll formed to a contour radius that exceeds the theoretical buckling limit small buckles will appear in the flanges. In some cases, the contour radius may be decreased considerably after the buckling limit is reached; however, the scrap rate can be expected to be high. The small buckles that appear in the flanges may cause "grabbing" in the rol tooling resulting in either an uneven contour radius or a completely collapsed part.

The following design tables are so constructed that the maximum section height can be determined for any practical combination of material thickness and contour radius. For linear roll sections the practical range of material gage is .020 - .187, and the practical range of part radii is R = 5" - R = 70".

The composite graphs and design tables for tungsten and beryllium are not shown for the linear roll process. The extreme brittleness of these materials at room temperature makes room temperature forming impossible.

The design limits for .016 material are excluded for all materials because of the high scrap rate that can be expected of the lighter gage materials using the three roll linear roll process. The other vacant areas in the design tables are due to a limitation imposed by the tooling and machine design.

The following design limits are established for channel sections formed on a Kane and Roach three roll linear roll machine.

TABLE III B-1 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS HM21XA-T8 (MAGNESIUM THORIUM)

					Ma Ma	Material	Thickness	88 (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	.071	.080	œo.	.100	325	.187
æ					Section	lon Height	tht Limits	ts (h)					
5		₽.	.28	.37	777	.55	02.	62.					
10		.30	.34	24.	84.	.55	.70	.79	.89	1.00	1.11	1.39	
15		.34	.39	84.	1 5.	.63	÷2.	.79	.89	1.00	1.11	1.39	2.06
20		.37	.43	.53	%	.69	.81	.87	.95	1.02	1.11	1.39	2.06
		04*	94.	.56	₫.	.74	.87	.93	1.03	1.10	1.19	1.39	2.06
30		54٠	.50	9.	89.	-79	.91	.99	1.08	1.16	1.25	1.46	2.06
35		.45	.52	.63	-72	₽.	.97	1.06	1.13	1.23	1.32	1.53	2.06
04		74.	₹.	99.	η <i>L</i> .	.86	1.01	1.08	1.18	1.27	1.38	1.60	2.06
54		84.	95.	89.	.77	%	1.06	1.13	1.23	1.34	1.42	1.66	2.19
50		.51	.59	.72	8.	ま・	1.10	1.19	1.28	1.39	1.50	1.75	2.26
55		.52	9.	.74	.82	%:	1.13	1.22	1.32	1.44	1.53	1.79	2.34
8		45.	-62	.76	₫.	.99	1.16	1.25	1.36	1.47	1.58	1.84	2.39
65		•55	79.	.78	98.	1.00	91.1	1.28	1.38	1.52	1.61	1.89	2.45
70		.56	99.	8.	8.	1.04	1.21	1.31	1.43	1.54	1.67	1.90	2.52

TABLE III B-2 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS 2024-O ALUMINUM

					×	Material	Thickness	88 (t)					
Contour	910.	.020	.025	-032	040.	.050	.063	.071	.080	<u>06</u> 0.	.100	्तः	.187
×					Section	lon Height	pt Limits	ts (h)					
5		•37	94.	.59	•73	.92	1.15	1.30	7.47				
10		94.	.53	29.	.73	.92	1.15	1.30	1.47	1.65	1.83	2.29	
15		.52	જે.	.71	.82	96.	1.15	1.30	74.1	1.65	1.83	2.29	3.42
8		.56	.65	.77	8.	1.05	1.23	1.35	1.47	1.65	1.83	2.29	3.42
25		.60	.73	.83	%	1.14	1.32	1.43	1.55	1.70	1.83	2.29	3.42
30		.64	.75	.91	1.02	1.20	1.39	1.50	1.63	1.76	1.80	2.29	3.42
35		.68	.77	.93	1.08	1.25	1.46	1.59	1.72	1.87	2.00	2.35	3.42
04		.71	-82	.97	1.12	1.31	1.54	1.66	1.79	1.96	2.10	2.44	3.42
14.5		.74	.86	1.01	1.18	1.36	1.61	1.74	1.88	2.05	2.20	2.55	3.42
50		.77	.89	1.07	1.24	1.43	1.61	1.80	1.95	2.12	2.29	. 2.65	3.42
55		.78	8.	1.08	1.26	1.45	1.70	1.85	2.00	2.18	2.32	2.74	3.55
8		.82	.95	1.12	1.31	1.51	1.78	1.92	2.08	2.25	T4° Z	2.81	3.68
65		.83	96.	1.14	1.32	1.53	1.79	1.95	2.10	2.39	54.5	2.86	3.74
70		.85	66.	1.16	1.35	1.55	1.84	1.98	2.15	2.33	2.50	2.89	3.81

TABLE III B-3 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS 17-7 PH (CONDITION A)

					We We	Material	Thickness	88 (t)					
Contour Radius	910.	.020	.025	-032	0170*	.050	.063	.071	.080	060.	.100	े टाः	.187
æ					Section	lon Height	tht Limits	ts (b)					
5		.33	τη.	52	99•	78.	ξ0*τ	01°T					
10		.41	84.	.57	99.	28,	1.03	1.16	1.31	1.48	1.64	2.05	
15		74.	.55	79	92.	88	1.03	1,16	1.31	1.48	1.64	2.05	3.07
20		52.	00.	.71	9.	.95	1.13	1.21	1.31	1.48	1.64	20.5	3.07
25		.54	ۇن.	.76	88.	1,02	1.20	1.29	1.42	1.53	1.64	2.05	3.07
30		. 58	ල ි	.80	.93	1.09	1.26	1.37	1.50	1.62	1.74	2.05	3.07
35		50.	.72	.85	.99	1.15	1.33	1.45	1.58	1.71	1.82	2.13	3.07
04		.65	.75	.89	1.04	1.20	1.41	1.51	1.65	1.80	1.91	2.25	3.07
4.5		γò.	.78	.91	1.07	1.25	1.45	1.57	1.70	1.85	2.00	2.32	3.07
50		.70	.81	%	1.12	1.30	1.51	1.63	1.76	1.92	5.06	04.5	3.18
55		.72	.83	.99	1.14	1.32	1.57	1.70	1.84	1.98	2.11	2.49	3.22
9		47.	.85	1.01	1.18	1.36	1,61	1.73	1.86	2.04	2.20	2.56	3.33
65		.76	.87	1.04	1.20	1.40	1.64	1.77	1.92	2.09	2.25	2.62	3.38
70		.77	.90	1.05	1.23	1.42	1.67	1.81	1.95	2.13	2.30	2.68	3.48

TABLE III B-4 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS PH 15-7 Mo (CONDITION A)

					Z.	Material	Thickness (t)	58 (t)					
Contour Redius	910.	.020	.025	-032	040.	.050	.063	1,70.	080	060-	.100	.125	.187
æ					Section	ion Height	sht Limits	ts (h)					
5		-32	ɔ+.	.52	1 9°	.81	1,01	1.14					
οτ		54.	74.	.55	1 9•	.81	1,01	1.14	1,29	1.45	1,61	10-5	
15		94.	4€.	₹9•	•74	.	1.01	1.14	1.29	1.45	1,01	2.01	3.01
&		.50	.59	69.	-80	46.	1.08	1.19	1,29	1,45	1،61	7-01	3.01
25		.54	.63	47.	.86	1.00	1.18	1.28	1.38	1.49	1.62	01،2	3.01
30		.58	29•	.79	-92	1.06	1.26	1.35	1,46	1.58	1.71	7.01	3.01
35		09•	.70	.83	%.	1.13	1.32	1.43	1.54	1.67	1,80	2.11	3.01
04		ħ9°	•75	•88	10.1	1.18	1.39	1.49	1,61	1.75	1.90	2.19	3.01
45		99*	.76	.90	1.04	1.23	1.43	1.55	1,68	1.81	1.90	2.28	3.01
50		69.	80	.95	1.11	1.29	1,50	1,62	1.75	1.89	20.5	2.37	3.04
55		.70	.81	%.	1.12	1.30	1.51	1.64	1.79	1.95	Z.07	7*77	3.18
93		.72	.85	.99	1.16	1,35	1.57	1.70	1.84	1,99	2.14	2.50	3.25
65		.75	.	1.02	1.20	1.38	1,61	1.74	1.89	2.05	2.20	2.50	3.37
70		.76	88.	1.04	1,20	3.40	1.64	1.77	1.92	2.08	मेट ट	2.58	3.44

TABLE III B-5 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS AM-350 (ANNEALED)

					Z	Material	Thickness	88 (t)					
Contour Redius	910.	.020	.025	-032	040.	050.	.063	170.	080.	060.	.100	.125	.187
æ					Section	lon Height	pht Limits	ts (b)					
5		.30	.37	8₁•	09.	.75	₽6.	1.07					
3.0		.37	.43	.51	9.	.75	46.	1.07	1.20	1.35	1.50	1.83	
15		7ħ.	.50	.58	99•	-79	₽6.	1.07	1.20	1.35	1.50	1.83	2.81
80		74.	. 55	49.	.75	.87	1.02	11.1	1.20	1,35	1.50	1.83	2.81
25		•50	.58	69.	-80	₽6.	1.08	1.14	1.24	1.35	1.50	1.83	2.81
30		.53	.62	.73	48.	.98	1.14	1.24	1.35	1.45	1.55	1,83	2,81
35		.56	.65	22.	.90	1.05	1.22	1.32	1.43	1.54	1.68	1.94	2.81
04		.59	, •ó8	.81	.93	1.10	1.27	1.38	1.50	1.62	1.75	2.01	2.81
54	2	.61	.71	₹8.	.97	1.14	1.32	1.43	1.56	1.69	1.80	2.13	2.81
50		.63	.73	.	1.00	1.17	1.37	1.46	1.59	1.72	1.85	2.15	2.81
55		<u>.</u> 65	.75	.90	1.04	1.20	1.42	1.53	1.66	1.80	1.92	2.25	2.96
93		29•	.77	.93	1.07	1.25	1.46	1.57	1.70	1.82	1.99	2.28	3.10
65		69.	89	.95	1,10	1.27	1.49	1.62	1.76	1.89	2.03	2.37	3.14
70		.70	. 82	%	1.12	1.30	1.52	1.64	1.78	1.90	10ء	2.42	3.18

TABLE III B-6 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS A-286 (SOLUTION TREATED)

					Me	Material	Thickness	88 (t)					
Contour Radius	910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	.187
æ					Section	lon Height	ht Limits	ts (h)					
5		.35	44.	5ć	.70	.88	1.10	1.24					
10		54.	•50	.58	02.	88	1.10	1.24	1.40	1.58	1.75	2.19	
15		84.	.57	Ć7	.78	.91	1.10	1.24	1.40	1.58	1.75	2.19	3.27
&		₹5•	63	47.	. 85	1.00	1.17	1.27	1.40	1.58	1.75	2.19	3.27
25		.57	.67	.78	.92	1.06	1.20	1.35	1.38	1.59	1.75	2.19	3.27
30		<u>.</u>	.70	.83	S	21 • 1	1.31	1.42	1.54	1.06	1.80	4.19	3.27
35		40.	.74	.87	1.01	1.19	1.39	1.49	1.02	1.76	1.90	2-25	3.27
04			.78	.91	1.00	1.24	1.45	1.50	1.68	1.84	1.98	ح30	3.27
45		.70	.81	%	1.11	1.31	1.51	1.04	1.78	1.94	80.5	न्त्र ह	3.27
50		-72	.85	1.00	1.16	1.35	1.58	1.70	1.83	1.98	2.13	2.50	3.27
55		-7.5	.87	1.02	1.20	1.38	1.03	1.77	1.91	2.07	2.21	2.61	3.38
8		.76	.89	1.04	1.21	1.41	1.05	1.78	1.93	2.09	2.20	2.63	3.42
65		.78	.91	1.07	1.24	1.45	1.70	1.84	2.00	2.16	2.31	2.70	3.55
70		. 80	46•	1.09	1.28	1.49	1.74	1.87	2.00	2.21	2.36	2.75	3.59

TABLE III B-7 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS USS-12-M° V (ANNEALED)

					Y	Material	Thickness	88 (t)					
Contour Redius	910.	.020	.025	-032	040.	.050	.063	.071	.080	060:	.100	.125	.187
oc;					Section	ion Height	ght Limits	.ts (h)					
5		.30	.37	74.	.59	ή <i>L</i> •	.93	1.04					
10		.37	.43	.51	00	ήZ•	.93	1.04	1,18	1.32	1.47	1.84	
15		.43	.50	.59	6° .	.80	η6.	1.04	1.18	1.32	1.47	1.84	2.75
&		ù.	-54	्ं प्	74	.86	1,01	1.10	1.20	1.35	1.47	1.84	2.75
25		.50	.58	89.	.80	4 6•	1.08	1.18	1.28	1.39	1.50	1.84	2.75
30		•53	7Ģ.	.73	.85	66	1.14	44 ر	1.37	1.45	1.58	1.85	2.75
35		56	59.	LL^{\bullet}	90.	1.05	1.23	1.32	ተ ተ•ፒ	1.54	1,67	1,96	2•75
04		.58	69	.80	.93	1.09	1.27	1,38	64*1	1.62	1.73	2.01	2.75
4.5		.61	.71	1 8.	.98	1.15	1.32	1.43	1.58	1.70	1.82	21.5	2.80
50		, 64	47.	.88	1.01	1,18	1.38	1.48	1.60	1.75	1.89	2.20	2.86
55		.65	•75	.90	1.05	1.20	1.42	1.53	1.06	1.80	1.92	2.20	2.96
9		.67	.78	-92	1.07	1.24	1.45	1.56	1.69	1.83	1.99	2.28	3.01
65		.68	8.	46.	1.09	1.26	1.47	1.60	1.75	1.87	2.01	∠•3ઇ	3.06
70		69.	.81	%.	1.15	1.30	1.51	1.63	1.76	1.90	2.06	2.39	3.14

TABLE III B-8 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS TITANIUM (6A1-4v) (MILL ANNEALED)

					W	Material	Thickness	88 (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	170.	.080	œo:	.100	.125	.187
æ					Secti	Section Height Limits	ht Limi	ts (b)					
5		.19	.23	.27	.32	. 4.	.51						
10		.22	.26	.31	٥, •	[ተ	.51	.57	₹9•	72	80	1.02	
15		98,	.30	92.	24.	48	.57	.61	79•	4/L*	85	1.02	1.54
80		.28	.33	.39	45	.53	62	-67	.73	- 79	-84	1.00	1.50
25		.31	.36	94.	64.	. 56	.67	.72	.78	96.	26	1.07	1.53
30		.32	.38	.45	.52	.61	.70	.77	.82	96	%	1.11	1.53
35		,34	.40	۲4.	.55	, 64	.7 ⁴	62.	.87	.93	1.01	1.19	1.53
011		.36	.41	84.	.56	•65	.76	.83	.89	.97	1.03	1.27	1.59
4.5		.38	.43	.51	.60	.70	.81	.87	.95	1.03	1.10	1.27	1.08
50		.39	.45	.54	-62	.72	.83	.91	.97	1.00	1.14	1,35	1.74
55		04.	94.	.55	.63	-74	%	-92	1.01	1.09	1.18	1.36	1.76
8		.41	84.	.57	.65	•76	.89	%	1.12	1.13	1.21	1.40	1.80
65		2ħ.	4.9	.58	.67	.79	.90	.99	1.00	1.16	1.23	1.40	1.88
70		•43	.50	09.	.68	8.	お	1,01	1.10	1.18	1.28	1.49	1.91

TABLE III B-9 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS TITANIUM (13V-11Cr-3A1) (SOLUTION TREATED)

					×	Material	Thickness	88 (t)			j		
Contour Radius	910.	.020	.025	.032	040.	.050	.063	.071	.080	060.	.100	325.	.187
24					Secti	lon Heig	Section Height Limits	t s (b)					
5		,17	.20	.25	.32	04.	.50						
10		.22	.26	.30	.36	.41	.50	.57	.64	.72	.80	1.00	
15		.25	.30	.35	04.	: 47	.55	.60	.65	.72	.80	1.00	1.50
હ્ય		.28	.33	.39	.45	. 52	.62	.67	.72	.72	₩.	1.00	1.50
25		.30	.35	Ţή.	.48	.56	.65	.71	.76	.84	.89	1.04	1.50
30		.32	.28	444.	.52	.60	.70	92.	.82	.88	.95	τι.ι	1.50
35		.34	. 40	74.	.54	.63	.74	. 79	.87	.93	υ· 00	1.17	1.52
04		.36	.41	64.	.56	.65	.77	48.	.90	76.	1.04	1.22	1.59
45		.37	.42	.50	. 59	.68	.80	.86	:46.	1.00	1.09	1.25	1.65
50		.38	.45	.53	ú.	.71	.83	.89	6.	1.05	1.13	1.31	1.72
55		0.4.	.45	.54	.63	.73	, 84	.92	.99	1.07	1.15	1.36	1.76
\$		04.	74.	.55	♂.	.74	.88	.93	46.	1.10	1.19	1.38	1.80
65		.42	84.	.57	99.	.77	.89	76.	1.05	1.15	1.22	1.43	1.87
70		.42	64.	. 58	.67	.77	.91	.99	3.05	1.15	1.24	1.14	1.92

TABLE III B-10 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS VASCOJFT 1000 (H-11) (ANNEALED)

					Me	Material	Thickness	ess (t)					
Contour Radius	.016	.020	.025	.032	040.	.050	.063	.071	080°	060.	.100	.125	.187
×					Section	ion Height	sht Limits	its (h)					
5		.28	+3₽	44.	.55	69.	.87	.98					
10		.35	04.	84.	.55	69.	.87	86.	1.10	1.24	1.30	1.73	
15		04.	94.	τς•	₩.	.75	.87	86.	1.10	1.24	1.30	1.73	2.58
ଧ		44.	.51	.63	.70	.82	-95	1.04	1.12	1.24	1.30	1.73	2.58
25		84.	.55	·64	.76	98*	1.03	1.13	1.21	1.32	1.41	1.73	2.58
30		. 50	.58	.68	.30	.93	1.07	1.17	1.30	1.36	1.48	72.1	2.58
35		45.	.63	47.	.84	86.	1.15	1.26	1.36	1.45	1.58	1.86	2.58
01		.56	.65	.77	.88	1.02	1.20	1.29	24.1	1.53	1.64	1.89	2.58
4.5		.58	.67	.79	-92	1.08	1.25	1.35	3,46	1.59	1.71	2,00	2.60
50		.50	69.	.83	96.	1.10	1.29	1.38	15.1	1.63	1.77	₹0*2	2.68
55		.61	.72	.85	.99	1.15	1.33	1.43	1.58	1.71	1.81	41.5	2.79
8		.63	47.	.87	1.02	1.18	1.39	1.48	1.60	1.74	1.89	2.18	2.84
65		.65	.75	06.	1.04	1.21	04.1	1.53	1.66	1.80	1.92	5.26	2.94
70		99*	.77	.91	1.05	1.23	1.44	1.56	1.38	1.83	1.95	2.29	2.98

TABLE III B-11 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS RENE'41 (SOLUTION TREATED)

					Me	Material	Thickness	sss (t)					
Contour Radius	510.	050.	.025	.032	otic.	.050	.063	τ <i>L</i> o•	080.	060.	.100	.125	.187
æ					Section	lon Height	sht Limits	lts (h)					
5		82.	•35	54.	.56	.70	98*	66.					
10		•36	.42	64.	.56	.70	.86	.99	1.12	1.26	1.40	1.75	
15		οη.	£4.•	• 55	₹9•	•75	98•	-99	1.12	1.26	1.40	1.75	29.8
20		h4.	.51	.61	.71	.83	<u> </u>	1.05	1.13	1.25	1.40	1.75	2,62
25		84.	.55	•65	92.	68.	η0°τ	1.13	1.21	1.34	1.42	1.75	29.2
30		.50	. 59	69.	.80	46.	1.08	1.19	1.28	1.39	1.50	1.75	29.62
35		.54	.62	.74	.85	1.00	1.15	1.26	1.36	74.1	1.58	1.86	29.5
04		.57	99.	.78	06.	1.05	1.23	1.33	1.44	1.55	1.68	1.95	29.2
54		. 58	.68	.30	.93	1.09	1.26	1.36	1.50	1.62	1.72	2.02	2.64
50		.60	.70	.83	96.	1.13	1.31	1.41	1.52	1,66	1.79	2.10	2.75
55		.62	.72	.86	1.00	1.15	1.34	1.45	1.57	1.71	1.82	2.15	2.80
9		t9·	٠74	.87	1.01	1.19	1.39	1.49	1.60	1.76	1.89	2.18	2.84
65		.65	.75	•89	1.04	1.26	1.40	1.52	1. 6€	1.80	1.93	2.25	2.96
70		19'	.78	-92	1.08	1.25	1.45	1.57	1.69	1.84	1.98	2.28	3.01

TABLE III B-12 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS INCONEL X (C.R. ANNEALED)

					M _S	Material	Thickness (t)	ss (t)					
Contour Radius	910.	.020	.025	-032	040.	.050	.063	.071	080.	060.	.100	.125	.187
œ					Secti	Section Height	sht Limits	ts (h)					
5		-32	04.	.50	.63	.79	ю́.	1.12					
10		98.	94.	45.	.63	62.	66.	1.12	1.26	34.1	1.58	1.98	
15		टम∙	.52	.62	.72	₩8.	66•	1.12	1.26	7.42	1.58	1.98	2.96
20		९५.	. 58	.68	.80	.93	66•	1.15	1.28	1,42	1.58	1.98	2.96
25		05.	z9•	η . .	.85	1,00	1.15	1.27	1.37	1.48	1.50	1.98	2.96
30		•53	99•	.77	.91	1.05	1.22	1.34	1.44	1.56	1.69	1.98	2.96
35		.60	.70	£0.	96.	1.10	1.31	1.42	1.52	1.65	1.79	2.10	2.96
011		79•	•73	98*	1.00	1.15	1.37	1.46	1.59	1.72	1.84	P.14	2.96
54		₹9•	.76	68•	1.04	1.22	1.43	1.52	1.67	1,80	1.96	2.26	2.96
50		89•	.78	.93	1.07	1.25	1.45	1.56	1.69	1,85	2.00	₽8•3	3.03
55		69.	.80	56 *	1.10	1.28	1.51	1.63	1.76	16.1	2.06	2.40	3.16
9		.70	.82	86•	1.12	1.30	1.54	1.65	1.78	1.96	2.10	1111.3	3.18
65		.72	.85	66.	1.16	1.35	1.57	1.70	1.85	2.00	2.18	2.50	3.29
70		.80	98.	1.02	1.18	1.37	1.60	1.74	1.88	2.05	2.20	2.65	3.38

TABLE III B-13 LIMEAR ROLL FORMING LIMITS HEXL-IN CHANDITLS HASTELOY X (SOLUTION TREATER)

					W	Material	Thickness	ss (t)					
Contour Radius	.015	.020	.025	-032	040.	.050	.063	170.	080.	060.	.100	325.	.187
rc					Section	ion Height	ght Limits	ts (h)					
5		.2 <i>j</i>	.36	94.	.58	.72	.91	1.03					
10		98.	.42	.51	. 58	.72	.91	1.03	1.16	1.30	1.45	1.81	
15		.42	θ4.	.57	.67	.74	.91	1.03	1.16	1.30	1.45	1.81	2.71
20		94.	.53	. 53	.73	.85	1.00	1.08	1.18	1.30	1.45	1.81	2.71
25		64.	.57	.67	.80	.91	1.07	1.16	1.27	1.36	1.48	1.81	2.71
30		. 52	09•	.71	. ටි3	.95	1.13	1.21	1.33	1.14	1.54	1.81	2.71
35		.55	, Gh	•76	88.	1.02	1.20	1.30	1.41	1.52	1.62	1.90	2.71
01		.58	٦.	.80	.92	1.05	1.25	1.35	1.45	1.60	1.72	1.99	2.71
14.5		.60	.70	.32	.95	1.00	1.29	1.41	1.52	1. 74	1.78	2.07	2.71
50		.62	.72	.86	1.00	1.15	1.35	1.46	1.58	1.72	1.86	2.15	2.80
55		.63	•74·	. 88	1.03	1.19	1.39	1.50	1.62	1.73	1.90	2.23	2.90
9		99.	.75	.90	1.95	1.22	1.44	1.56	1.37	1.80	1.95	2.26	2,98
65		. 68	.78	.93	1.08	1.25	1.50	1.58	1.72	1.87	2,00	2.35	3.03
70		69.	.80	.95	1.09	1.29	1.51	1.52	1.76	1.89	20.5	2.36	3.12

TABLE III B-14 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS L-605 (SOLUTION TREATED)

					Ž	Material	Thickness	ss (t)					
Contour Radius	510.	050.	.025	500.	040.	.050	.063	.071	.080	060.	.100	.125	.187
n:					Section	ion Height	ght Limits	ts (h)					
5		ÖC.	.35	94.	.58	.72	.91	1.03					
10		98.	24.	.51	. 58	.72	.91	1.03	1.16	1.30	1.45	1.81	
15		₹1.	84.	.57	.67	•74	.91	1.03	1.16	1.30	1.45	1.81	2.71
20		94.	.53	.63	.73	.85	1,00	1.08	1.18	1.30	1.45	1.81	2.71
25		6ħ.	.57	19•	.80	.91	1.07	1.16	1.27	1.36	1.48	1.81	2.71
30		. 52	09•	.71	.83	.95	1.13	1.21	1.33	ነተ፣	1.54	1.81	2.71
35		.55	1 9•	92.	.88	1.02	1.20	1.30	1.41	1.52	1.62	1.90	2.71
01		.58	£9•	08.	.92	1.05	1.25	1.35	1.45	1.60	1.72	1.99	2.7.1
45		0,	02.	-82	-95	1.10	1.29	1,41	1.52	J. 64	1.78	2.07	2.71
50		.62	.72	98*	1.00	1.15	1.35	1.46	1.58	1.72	1.85	2.15	2.80
55		.63	.7 ¹ 4	88*	1.03	1.19	1.39	1.50	1.62	1.78	1.90	2.23	2.90
60		99.	•75	06•	1.05	1.22	1.44	1.56	1.67	1.80	1.95	2.26	2.98
65		.68	.78	.93	1.08	1.25	1.50	1.58	1.72	1.87	2.00	2.35	3.03
70		69.	.80	-95	1.09	1.29	1.51	1.62	1.76	1.89	20.2	2.36	3.12

TABLE III B-15 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS J-1570 (SOLUTION TREATED)

					W.	Material	Thickness	ss (t)					
Contour Redius	910.	.020	.025	.032	040.	.050	.063	170.	.080	o60:	001.	<u> </u>	.187
ρς					Section	ion Height	ght Limits	ts (h)					
5		•30	•37	84.	00.	.75	.95	1.07					
10		.38	44.	.52	09.	.75	.95	1.07	1.20	1.35	1.50	1.87	
15		.43	.50	.59	89•	-80	.95	1.07	1.20	1.35	1.50	1.87	2.80
S		84.	.55	66	.76	-89	1.03	1.13	1.20	1,35	1.50	1,87	2.80
25		.50	.59	.70	.81	46.	1.10	1.20	1.29	1.40	1,50	1.87	2.80
30		.54	sò.	47.	8ć	1,00	1.17	1.28	1.37	1.49	1,00	1,87	2.80
35		56	.65	.78	06•	1,05	1.23	1.34	1.45	1,55	1.69	1.96	2,80
04		09.	69.	.81	46.	1.10	1.28	1.38	1.50	1.03	1.75	70.2	2.80
54		ين.	.71	.83	96•	1.15	1,32	1.43	1.57	1.70	1.81	51.5	2.80
50		ф9 .	.75	.88	1,03	1.19	1.39	1,49	1,61	1.78	1.90	2.22	2,88
55		. 06	.76	.90	1.04	1.21	1.44	1.56	1.68	1.82	1.95	2.28	2.99
8		.67	.78	.93	1.08	1.25	1.46	1.59	1.72	1.85	2.00	2.34	3.04
65		0,1	.80	%	1.11	1.29	1.51	1.03	1.70	1.91	≥.03	2.39	3.10
70		.72	-82	.99	1.14	1.32	1.54	1.00	1.80	1.96	2.10	44.5	3.20

TABLE III B-16 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS COLUMBIUM (10M)-10Ti)

					W.	Material	Thickness (t)	ss (t)					
Contour Redius	910.	.020	.025	-032	040.	050.	.063	170.	.080	%).	.100	ेंडा:	.187
ρij					Section	ion Height	ght Limits	its (b)					
5		05.	42°	.30	.38	۲4.	၁၀.						
10		.25	.29	•33	04.	74.	00°	70.	ن	.85	.95	1.18	
15		82.	•33	•39	5ħ•	.53	, 20.	.07	.76	.85	.95	1.18	1.78
20		.31	36	.43	.45	.59	80 .	-72	80	. 85	46.	1.18	1.78
25		.34	•39	,h7	•54	•03	٠′/4	.79	.8	.93	1.00	1.18	1.78
30		•30	.41	84.	50	• ບ ິ	67.•	48.	.90	.97	1.03	1.22	1.78
35		•38	444.	-52	00.	.70	.81	96.	%.	1.04	1.11	1.29	1.78
011		04.	54.	45.	63	+77+	.8°	-92	.98	1.08	1.17	1.35	1.78
4.5		ކ,•	74.	56	•05	•76	.	.90	1.04	1.12	1.21	1.40	1.83
50		24.	.50	.58	8°.	-79	.95	.99	1.06	1,17	1.20	1.40	1.91
55		44.	.50	99.	.70	.81	.95	1.03	1.12	15.1	1.29	1,51	1.90
8		.45	.52	.61	-72	48.	&	1.05	1.13	1.27	1.33	1.53	70-7
65		94.	.53	ή9°	-74	.85	-99	1 . 0ઇ	1.18	1.27	1.30	1.00	80•.7
70		74.	.55	₹9.	.75	.85	1,01	1,08	1,19	1.29	1, 39	1,01	6.03

TABLE III B-17 LINEAR ROLL FORMING LIMITS HEEL-IN CHANNELS MOLYBDEIUN (5% TY)

					Ma	Material	Thickness	ss (t)					
Contour Radius	510.	050.	.025	-032	0ħ0 .	.050	.063	.071	080.	060.	.100	.125	.187
ሌ					Section	lon Height	sht Limits	ts (h)					
5		.28	•33	.43	.53	99•	†8•	46.					
10		.34	04٠	74.	.55	.65	.84	ħ6.	1.06	1.20	1.33	1.66	
15		•39	54.	+5.	.62	.72	.86	ф 6 .	1.06	1.20	1.33	1.66	2.49
20		٤4٠	•50	.63	69.	.80	ħ6°	1.02	1.10	1.20	1.33	1.66	2.49
25		۲4.	₹5•	.64	47.	.86	10.1	1.09	1.19	1.29	1.40	1.66	2.49
30		64.	.57	19.	.78	.90	1.07	1.15	1.25	1.35	1.45	1.69	2.49
35		.52	.60	.71	.83	.96	1.13	1.22	1.33	3.42	1.53	1.30	2.19
04		.54	.63	+12.	.87	1.00	1.18	1.28	1.37	1.49	1.60	1.87	2.49
45		.57	99.	.77	06•	1.05	1.22	1.33	1.44	1.56	1.68	1.92	2.54
50		. 58	.68	.81	46.	1.09	1.26	1.36	1.48	1.60	1.72	2.00	2,62
55		.60	.70	.83	96.	1.11	1.31	1.42	1.53	1.38	1.78	2.09	2.73
9		.62	.72	.85	66.	1.15	1.35	1.45	1.58	1.71	1.83	2.12	2.80
65		. A.	.7 ⁴	.87	1.02	1.18	1.37	1.49	1.62	1.76	1.88	2.18	2.88
70		.65	.75	06.	1.04	1.20	1.41	1.52	1.55	1.80	1.92	2.23	2.96

TABLE III B-18 LINEAR ROLL FORMING LIMITS HEEL-OUT CHANNELS HM21XA-T8 (MAGNESIUM THORIUM)

					¥	Material Thickness (t)	Thickne	ss (t)					
Contour Redius	910.	.020	.025	500.	040.	.050	.063	170.	.080	060.	.100	.125	.187
œ					Sect	Section Height Limits	tht Limi	ts (b)					
5		₽2.	.27	-35	04.	.50							
10		30	.35	.41	84.	45,	₹9,	-72	.81	.91	1.01		
15		• 34	۰40	74.	.55	, Ú3	47.	.79	38.	-92	1.01	1.26	
20		38	77	55	ó	02	.81	.88	46.	1.03	1.10	1.26	1.89
25		04.	74.	.56	1 9•	ħζ•	88.	1 16•	1.01	1.11	1.18	1.37	1.89
30		44.	.50	.59	.68	-79	ħ6 .	66.	1.09	1.17	1.27	1,44	1.89
35		<u>0,4.</u>	.53	<u>.</u>	.72	48.	.97	1.06	1.14	1.24	1.32	1.53	1.98
01		84.	.55	<u> </u>	.70	.88	1.02	1.11	1.20	1.31	1.39	1.62	2.07
45		.50	.57	, ó7	.78	.90	1.06	1.13	1.24	1.35	1.44	1.66	2.17
50		55	0ن.	.70	.81	46∙	1.09	1.18	1.28	1.39	1.50	1.72	2.24
55		.54	غۇر	.72	•84	.97	1.13	1.23	1.33	1.44	1.54	1.79	2.31
9		.55	ħŷ.	ή ζ.	.87	1.00	1.18	1.28	1.36	1.48	1.60	1.85	2,43
65		5ć	60	.77	.89	1.04	1.20	1.30	1.41	1.53	1.64	1.90	2.50
70		.58	89.	.80	.91	1.05	1.27	1.33	1.45	1.57	1.68	1.95	2.56

TABLE III B-19 LINEAR ROLL FORMING LIMITS HEEL-OUT CHANNELS 2024-0 ALUMINUM

					W	Material	Thickness (t)	ss (t)					
Contour Radius	510.	050.	.025	-032	040.	.050	.063	1,70.	080.	060.	.100	.125	.187
ra					Sect	Section Height	ght Limits	ts (h)					
5		.31	.36	45	.56	02.							
10		04.	.45	45.	.62	.77	.88	66.	1.12	1.26	1.40		
15		.46	.52	.61	.72	-82	96.	1.05	1.12	1.26	1.40	1.75	
20		.50	.58	.68	.76	-92	1.07	1.16	1.24	1.30	1.44	1.75	29.2
25		.54	-62	47.	.84	86.	113	1.24	1.35	1.35	1.53	1.75	2,62
30		.57	99.	11.	.90	1.04	1.20	1.31	1.43	1.40	1.67	1.89	2,62
35		.60	.70	- 82	-95	1.10	1.27	1.38	1.51	1.54	1.73	2.00	29.2
01		1 9°	.73	98*	1.00	1.15	1.34	1.44	1.58	1.62	1.81	2.11	2,62
45		.65	.75	68.	1.03	1.20	1.39	1.49	15.1	1.71	1.90	2.20	2.77
50		.68	.78	26.	1.07	1.25	1.45	1.56	1.68	1.79	1.97	2.26	2.84
55		.70	.80	₹6•	1.11	1.29	15.1	1.53	1.76	1.85	2.01	2.35	3.01
9		.72	.83	96.	1.14	1.32	1.55	1.67	1,80	1.89	5.06	7 † †7	3.18
65		. 7 ¹ 4	.85	1.00	1.15	1.35	1.57	1.71	1.84	1.99	2.12	2.47	3.28
7.5		.76	. 88	1.05	1.20	1.39	1.63	1.77	16.1	2.07	2.20	2.56	3.35

TABLE III B-20 LIMEAR ROLE FOLUTING LITITS HEEL-OUT CHANNELS 17-7 PH (Condition A)

					Ma	Material Thickness	Thickne	88 (t)					
Contour Redius	910.	020.	.025	.032	040.	.050	.063	170.	080.	060.	.100	. 321.	.187
æ					Secti	Section Height Limits	ht Limi	t s (h)					
5		é7*	±48.	Z4.	.52	.65							
10		.37	.43	.50	.53	.67	<i>3</i> ℃.	т6·	1.04	1.17	1.30		
15		.42	.50	.58	.67	.777	.91	છે.	1.05	1.17	1.30	7, ८८	
20		.47	.55	†?9•	.75	.87	1.00	1.09	1.13	1.26	1.36	1.62	2.43
25		.51	65.	69.	.80	.93	1.03	1.17	1.26	1.37	1.43	59 · τ	2.43
30		.54	<i>5</i> 0.	ħĹ.	48.	.98	1.14	1.23	1.34	1.45	1.56	1.77	2.43
35		.56	.65	<i>LL</i> .	.39	1.04	1.20	1.31	1.41	1.53	1.65	1.39	2.43
70		.60	.77	.31	46.	1.10	1.27	1.36	1.47	1.60	1.71	1.99	2.53
45		.61	.72	.33	96.	1.13	1.32	7 . 42	1.54	1.67	1.79	2.06	2.71
50		.64	+√7.	35	1.00	1.16	1.35	1.47	1.59	1.71	1.35	2.14	2.73
55		.00	.76	%	1.05	1.20	1.39	1.50	1.64	1.79	1.90	2.20	म्∵-ट
8		83	.79	.93	1.03	1.25	1.46	1.57	1.69	1.33	1.30	2.27	2. K
65		.70	.30	-95	1.10	1.33	1.49	1.61	1.75	30.t	.01	2.35	3.05
70		.71	ડે.	75.	1.12	1.31	1.52	1.64	1.73	1.72	2.05	72	3.14

TABLE III B-21 LINEAR ROLL FORMING LIMITS HEEL-OUT CHANNELS PH 15-7 Mo (Condition A)

					W	Waterial	Thickness	ss (t)					
Contour Radius	510.	050.	.025	.032	040.	.050	.063	.071	.080	060.	.100	.125	.187
r 4					Sect	Section Height	sht Limits	ts (h)					
5		.31	•36	.45	.56	.71							
10		.39	.45	.54	.62	.71	. 38	66.	1.12	1.26	1.40		
15		.45	.52	.61	.71	.82	96.	1.05	1.12	1.26	1.40	1.75	
20		.50	.58	89.	.80	.91	30 ° T	1.15	1.24	1.35	1.44	1.75	2,62
25		. 54	.62	.74	.84	.99	1.14	1.24	1.35	1.45	1.55	1.79	2.62
30		.57	99•	.77	.90	1.04	1.20	1.31	17.41	1.55	1.67	1.89	2,62
35		.60	.70	.82	46.	1.10	1.27	1.38	1.50	1.62	1.74	2.01	2,62
011		.62	.72	.86	1.00	1.15	1.34	1.44	1.58	1.70	1.81	2.11	2.77
45		₹9.	.75	.88	1.03	1.19	1.39	1.49	1.63	1.79	1.89	2.19	2,82
50		99.	.77	.92	1.06	1.24	1.44	1.56	1.68	1.84	1.96	2.26	2.95
55		.70	.81	.94	1.11	1.28	1.49	1.63	5 2° T	1.89	2.01	2.35	3.01
60		.72	.83	96.	1.14	1.32	1.54	1.67	1.80	1.96	2.10	५५°ट	3.18
65		.74	.85	1.00	1.17	1.35	1.57	1.70	1.84	2.00	2.14	2.49	3.27
70		.76	.87	1.04	1.20	1.40	1,63	1.77	1.91	2.07	2.20	2.57	3.36

TABLE III B-22 LIMBA ROLL FORUME LIMERS HEEL-OUT CARWELS AM-350 (Annealed)

					M.	Material	Thickness	.ss (t)					
Contour Redius	910.	.020	.025	-032	040.	.050	.063	170.	.080	06 0·	.100	.125	.187
oc;					Section	ion Height	ght Limits	ts (b)					
5		.28	-32	04.	.50	. 62							
10		.36	. 41.	. AS	.56	±∂.	.79	68.	1.00	1.12	1.25		
15		141.	747	.56	.64	.74	.37	ħ6.	1.02	1.12	1.25	1.56	
20		-45	55.	.ol	.72	.33	96.	1.05	1.13	1.22	1.30	1.56	2.33
25		. 43	.50	نَنَ.	.75	69.	1.03	1.13	1.20	7.32	1.10	1.62	2.33
30		.52	0ن.	.70	.31	46.	1.10	1.19	í2.t	1.40	1.50	1.72	2.33
35		±5.	.63	٠7,4	.85	.99	1.15	1.26	1.35	1.46	1.53	1.82	2.37
01		.56	.00	.77	.30	1.04	1.21	1.31	1.42	1.53	1.64	1.30	2.43
45		.53	G	.30	.92	1.07	1.26	1.36	1.47	1.60	1.7.1	2.00	2.53
50		. óo	02.	.33	96.	1.11	1.29	1.41	1.52	1.64	1.73	2.05	2.67
55		.63	.73	.05	1.00	1.15	1.34	1.46	1.53	1.71	1.82	ਰ:ਫ	2.75
8		₩9.	-75	.03	1.03	1.19	1.39	1.50	1.51	1.70	1.90	2.20	2.37
65		99.	.75	%	1.05	1.21	1.42	1.53	1.67	1.30	1.92	1,7,7	2.97
70		S	.777	.93	1.03	1.25	1.46	1.57	1.71	4.35	ς6 • τ	2.31	3.03

TABLE III B-23 LINERAR ROLL FORTING LINITS HEEL-OUT CHANNILS A-235 (Solution treated)

					W.	Material	Thickness (t)	.ss (t)					
Costour Redius	910.	.020	.025	-032	0η0.	.050	.063	170.	080.	o60·	.100	ंटा:	.187
æ					Sect	Section Height Limits	tht Limi	ts (b)					
5		.32	33	84.	.60	.75							
10		.42	.43	.57	.65	.75	46.	1.07	1.20	1.35	1.50		
15		St.	.55	.65	92.	.36	1.01	1.12	1.20	1.35	1.50	1.37	
20		.53	ښ.	.72	34	76.	1,13	1.21	1.32	11. 44	1.52	1.37	2.30
25		.55	.65	.77	.89	1.04	1.20	1.31	1.43	1.53	1.64	1.89	2.30
30		0ò.	.70	. d2	.95	1.10	1.27	1.41	1.51	1.63	1.75	2.00	2.30
35		.62	.73	.36	1.00	1.15	1.34	1.46	1.59	1.71	1.33	2.12	2.50
01		. 00	•76	96.	1.04	1.30	11,4	1.55	1.67	1.30	1.91	2.24	2.93
4.5		.70	62.	.93	1.03	1.35	1.49	1.59	1.75	1.39	2.00	2.33	3.03
50		57.	56	,3, ,3,	1.12	1.40	1.52	1.6 h	1.30	1. 96	ó0.5	2.40	3.15
55		47.	.35	1.00	1.16	1.45	1.57	1.70	1.34	2.00	2.13	≥.50	3.27
9		.76	<i>1</i> ₽•	1.02	1.20	1.50	1.04	1.77	1.91	2.07	2.21	2.56	3.36
65		.73	96	1.07	1.24	1.55	1.69	1.32	1.97	2.12	2.29	2.62	3.43
70		.30	.92	1.09	1.26	1.57	1.71	1.05	2.00	2.16	2.31	2.74	3.55

TABLE III B-24 LINEAR ROLL FORMING LIMITS HEEL-OUT CHANNELS USS-12-MOV (Annealed)

	,				W.	Material	Thickness	ss (t)					
Contour Radius	910.	020	.025	-032	040.	.050	.063	120.	080	060.	.100	.125	.187
œ					Section	lon Height	ht Limits	ts (h)					
5		.23	.32	•39	64.	. 62							
10		.36	24.	⊖†'	.56	.65	.75	76.	S	1.11	1.23		
15		. 41	74.	.56	.64	.75	S	. y5	1.01	3.13.	1.23	1.54	
20		. 45	.52	19	.72	.83	.95	1.05	1.42	17.1	1.30	1.54	2.30
25		۠*	.56	99°	.76	60.	1.03	1.12	1.20	1.31	1.40	1.63	2.30
30		.52	.50	02.	.81	46.	1.10	ા.19	1.23	1.10	1.50	1.73	2.30
35		.54	.63	.74	.35	66.	1.15	1.26	1.35	1.46	1.53	1.33	2.34
04		.57	.65	LL	06•	1.05	1.22	1.32	1.42	1.56	1.55	1.90	2.47
45		.59	B	.30	.93	1.03	1.27	1.35	1.43	1.61	1.71	1.99	2.60
50		.61	.70	.33	.94	1.11	1.29	1.41	1.52	1.64	1.78	2.05	2.63
55		+0·	.73	90*	96	1.16	1.34	1.45	1.53	1.71	1.32	2.13	2.75
99		.65	.75	60.	1.00	1.20	1.39	1.50	1.51	1.79	1.90	2.16	2.04
65		.67	.777	ડ.	1.06	1.24	1.44	1.56	1.33	1.80	1.94	2.25	2.96
70		.69	.30	₽6.	1.08	1.26	1.46	1.53	1.70	1.36	2.00	2.31	3.03

TABLE III B-25 LINEAR ROLL FO.MING LIMITS HEEL-OUT CHANNELS Titanium (6AL-W)(Mill Annealed)

					eW.	Material	Thickness (t)	ss (t)					
Contour Radius	910.	.020	.025	.032	040.	.050	.063	1.00.	.080	060.	.100	. 125	.187
œ					Secti	Section Height	tht Limits	ts (b)					
5		.17	.13	.22	.28								
10		.22	.25	.30	.35	04.	74.	.51	.53	.63	.70		
15		.25	.29	.35	04.	94.	45.	.59	.67	.68	4Z.	.87	
20		.23	쌼.	.33	44.	.51	09.	.65	.73	.76	.81	46.	1.31
25		.30	.35	.42	. 48	.55	.63	.70	.73	.82	.37	1.01	1.31
30		.32	.37	t tt.	.50	.58	.63	.74	.33	.36	.93	1.06	1.40
35		.34	.39	94.	.53	.61	.77	.78	.36	بن.	86.	1.13	1.43
04		.35	04.	.43	.56	.65	.76	. 32	.38	.97	1.02	1.19	1.55
45		.36	7,5	.50	.53	.67	.79	.35	8.	66.	1.07	1.24	1.63
50		.38	44.	.51	%	.70	.31	.87	.95	1.03	1.10	1.27	1.63
55		.39	.45	.53	.62	.72	.83	છ.	<u>96</u> .	1.06	1.13	1.31	1.72
9		04.	94.	.54	. G4	.75	.86	.93	1.02	1.09	1.18	1.37	1.78
65		14.	84.	.57	99.	.76	.33	96.	1.04	1.13	1.20	1.40	1.83
70		54.	64.	.58	.63	.77	16.	<u>.</u>	1.06	1.16	1.23	1.44	1.37

TABLE III 2-26
LINEAR ROLL FORMING LIMITS
HEEL-OUT CHANNELS
Titanium (13V-11 Cr-3 A1)(Solution treated)

					M.	Material	Thickness	ss (t)					:
Contour Redius	910.	.020	.025	-032	040.	.050	:063	.071	080.	060.	.100	.125	.187
æ					Secti	Section Height	ht Limits	ts (b)					
5		۲۲۰	.19	42.	.27	.32							
10		.21	.25	62.	.34	.39	54.	.50	45.	99.	.67		
15		42.	82.	.33	.33	† ††	.52	.57	.61	.66	.71	.34	
20		.27	.31	.37	64٠	64.	.57	.62	ĿĢ.	.73	.78	%	1.25
25		.29	.33	.39	.45	.53	.62	.67	.72	.79	.35	.9T	1.27
30		.30	.35	टम् •	84.	.55	99•	τγ.	.77	±8.	99.	1.02	1.34
35		-32	.37	₹4.	.51	.59	69•	47.	.81	.37	46.	1.09	1.40
011		.34	.39	94.	.53	ú.	.72	.78	.35	%	. 99	1.14	1.49
4.5		.35	04.	£4.	.55	.64	.75	.31	33.	.95	1.03	1.19	1.59
50		.36	.42	64.	.56	99•	.77	.34	96.	96.	1.06	1.22	1.63
55		.37	.43	.51	.59	69.	.3o	.87	4 6.	1.01	1.09	1.26	1.66
8		.33	, 1,1,	.52	.61	.70	.8 2	.39	96.	1.05	1.13	1.31	1.72
65		.39	.45	.54	.62	.72	ήC.	.92	.99	1.03	1.16	1.34	1.77
70		04.	.47	.55	.34	.75	.33	‡ ೆ.	1.02	1.10	1.13	1.37	1.31

TABLE ITI B-27
LINTAR RCLL PCNYING LIMITS
HEEL-CUT CHANNELS
Vascojet 1000 (H-11)(Annealed)

					W.	Material	Thickness	ss (t)					
Contour Radius	510.	.020	.025	-032	040.	.050	•063	.071	.080	060.	.100	5 21:	.187
æ					Sect	Section Height	tht Limits	ts (h)					
5		98.	.30	.35	44.	.50							
10		55.	-37	44.	.51	.59	.70	62.	€8•	3.00	1.11		
15		.38	54.	.51	.59	69.	.80	.8E	46.	1.00	1.11	1.39	
20		.41.	.148	.57	.66	.75	88°	<i>%</i>	1.04	1.16	1.24	1.44	2.08
25		414.	.51	.60	.70	.30	46.	1.05	1.11	1.21	3.29	1.50	2.08
30		, 47	55*	†/9 *	. 7h	.85	1.01	1.07	1.19	1.27	1.38	1.56	2.08
35		.50	.58	.67	82.	96.	1.06	1.14	1.23	1.34	1.44	1.65	2.15
04		.52	09*	.70	.82	•95	1.11	1.20	1.29	1.39	1.50	1.75	2.26
4.5		.54	79.	47.	.85	66•	1.15	1.24	1.36	1.48	1.58	1.82	2.39
50		.56	.65	92.	88	1.02	1.19	1.28	1.39	1.52	1.61	1.87	5.46
55		.58	.67	.78	95.	1.05	1.23	1.34	1.14	1.56	1.68	1.94	2.52
60		.60	69.	-80	46.	1.09	1.27	1.36	1.50	1.62	1.72	2.00	29.6
65		.61	.71	.83	%	1.12	1.31	1.41	1.53	1.66	1.78	5.04	2.69
70		3.	.73	.8C	1.00	1.15	1.33	1.43	1.58	1.70	1.81	2.12	2.76

TABLE III B-28 LINEAR ROLL FORMING LIMITS HEEL-OUT CHANNELS Rene''41 (Solution Treated)

					× ×	Material	Thickness	88 (t)					
Contour Radius	.016	.020	.025	.032	040.	.050	.063	170.	.080	œo:	.100	<u>ξ</u> ετ:	.187
æ					Section	lon Height	tht Limits	ts (h)					
5		.28	.33	. 41	.52	40.							
10		.36	54.	64.	95.	.65	.81	%.	1.03	1.16	1.29		
15		. 41	£4.	.57	.65	.75	.83	96.	1.04	1.16	1.29	1.61	
20		94.	.52	<i>3</i> 9.	.72	±8.	96•	1.07	1.13	1.24	1.32	1.61	2.41
25		64.	.57	19.	.77	.90	1.06	1.14	1.21	1.34	1.42	1.64	2.41
30		.52	.60	.71	.82	-95	1.12	1.21	1.31	1.41	1.52	1.74	2.41
35		.54	. 63	η ζ.	.87	1.00	1.16	1.27	1.36	1.43	1.60	1.85	2.41
04		.57	99.	.78	.91	1.05	1.23	1.34	1.44	1.54	1.67	1.94	2.52
45		.60	69•	.80	η6.	1.09	1.26	1.36	1.50	1.62	1.72	2.00	29.2
50		.62	.72	.83	.97	1.14	1.32	1.42	1.54	1.69	1.80	2.11	2.71
55.		.64	٠٦4	.87	1.00	1.16	1.36	1.48	1.60	1.72	1.86	2.17	2.30
93	_	99.	.75	.89	1.04	1.20	1.40	1.51	1.64	1.79	1.91	2.24	2.83
65		.67	.77	જ.	1.07	1.24	1.45	1.56	1.68	1.81	1.95	2.30	3.00
70		88.	.30	₽.	1.09	1.27	1.48	1.60	1.73	1.87	2.00	2.36	3.03

TABLE III 3-29 LINEAR ROLL FORMING LIWITS HEEL-OUT CHANNELS INCONEL X (C.R. ANNEALED)

					W	Material	Thickness	88 (t)					
Contour Radius	.015	020.	.025	-032	040.	.050	.063	.071	.080	060.	.100	इस:	.187
æ					Section	ion Height	ght Limits						
5		62.	.34	-1,2	.52	.65							
10		.37	.43	.50	.58	.67	-82	.91	1.04	1.17	1.30		
15		zη.	.50	.58	.67	.77	.91	96.	1.05	1.17	1.30	1.62	į
20		74.	.55	1 9•	.75	.87	1.00	1.09	1.18	1.26	1.36	1.62	2.43
25		.51	•59	69•	.80	.93	1.08	1.17	1.26	1.37	1.48	1.69	2.43
30		45.	.62	47.	,84	96.	1.14	1.23	1.34	1.45	1.56	1.77	2,43
35		.56	.65	.77	.89	1.04	1.20	1.31	1.41	1.53	1.65	1.89	2.43
04		09•	.71	.81	416.	1.10	1.27	1.36	1.47	1.60	1.71	1.99	2,58
45		.61	.71	.83	%.	1.13	1.32	1.42	1.54	1.67	1.79	2.06	2.71
50		ħ9.	ħĹ.	.	1.00	1.16	1.35	1.47	1.59	1.71	1.85	2.14	2.78
55		.66	.76	.90	1.05	1.20	1.39	1.50	1.64	1.79	1.90	2.30	ग्रह•ैंट
9		99.	.79	.93	1.08	1.25	1.46	1.57	1.69	1.83	1.98	2.27	2.98
65		02.	.80	.95	1.10	1.33	1.49	1.61	1.75	1.88	2.01	2.35	3.05
70		.77	.82	.97	1.12	1.31	1.52	1.64	1.78	1.92	2.05	2.41	3.14

TABLE III E-30 LINEAR ROLL FORMING LIMITS HEEL-CUT CHANNELS HASTELLOY X (SOLUTION TREATED)

					Me	iterial	Material Thickness	ss (t)					
Contour Radius	510.	.020	.025	.032	040.	.050	.063	.071	.080	060.	.100	.125	.187
æ					Section	lon Heig	Height Limits	ts (h)					
5		.30	.35	.43	.54	89•	1 !			-	-	-	
10		•38	t/t7*	.51	.60	69.	.86	%	1.09	1.22	1.36	-	
15		44.	.50	.60	.69	-80	46.	1.01	1.10	1.22	1.36	1.70	1
20		84.	.55	.65	92.	-89	1.02	1.12	1.20	1.31	1.40	1.70	2.55
25		45.	.60	.71	.81	.95	1.11	1.21	1.29	1.41	1.50	1.75	2.55
30		.56	.63	.75	.87	1.00	1.17	1.28	1.37	1.50	1.60	1.%	2.55
35		.58	29•	67.	.92	1.05	1.24	1.34	1.44	1.57	1.69	2.00	2.56
04		.60	.70	.83	.96	1.10	1.29	1.40	1.52	1.63	1.75	₹0.2	2.63
511		- 62	.73	98*	1.00	1.15	1.34	1.44	1.58	1.72	1.83	2.12	2.78
50		₹9*	.75	88.	1.02	1.19	1.39	64.	19.1	1.77	1.90	2.20	2.86
55		.67	.77	.91	1.06	1.23	1.44	1.56	1.68	1.82	1.95	2.26	2.93
9		69.	.80	416.	1.10	1.27	1.49	1.62	1.75	1.89	2.01	2.36	3.06
65		17.	-82	%	1.12	1.30	1.51	1.64	1.77	1.91	3.06	८ ५ ट	3.16
70		.72	ψ8.	66.	1.16	1.34	1.57	1.70	1.84	1.98	2.10	2.49	3.20

TAPLE 111 B-31 LINEAR ROLL FORVING LIMITS HEEL-OUT CHANNELS L-605 (SOLUTION TREATED)

					M.	Material	Thickness	88 (t)					
Contour Radius	510.	050.	.025	-032	040.	.050	.063	.071	.080	060:	.100	३टा:	.187
æ					Section	ion Height	sht Limits	ts (h)					
5		.31	.36	54.	95.	.71	•					i	
10		•39	54.	45.	-62	.71	-88	66•	21.1	1.26	1.40		-
15		.45	.52	.61	.71	.82	<i>%</i>	1.05	1.12	1.26	1.40	1.75	 - -
20		•50	.58	.68	.80	16.	1.06	1.15	1.24	1.35	1.14	1.75	29.2
25		₹5•	·62	47.	*8⁴	66•	1.14	1.24	1.35	1.45	1.55	1.79	29.2
30		15.	99*	.77	06.	1.04	1.20	1.31	1,4,4	1.55	1.67	1.89	29°2
35		09*	02.	-82	₹6•	1.10	1.27	1.38	1.50	1.62	1.74	2.01	29.2
04		z9 '	.72	98.	1.00	1.15	1.34	1,44	1.58	1.70	1.81	2.11	2.77
45		ħ9°	.75	.88	1.03	1.19	1.39	1.49	1.63	1.79	1.89	2.19	2.85
50		.68	.77	.92	1.06	1.24	1.44	1.56	1.68	1.84	1.96	2.26	2.95
55		.70	.81	46∙	1.11	1.28	1.49	1.63	1.75	1.89	2.01	2.35	3.01
9		.72	.83	%.	1.14	1.32	1.54	1.67	1.80	1.96	2.10	t/t¹° €	3.18
65		47.	.85	1.00	1.17	1.35	1.57	1.70	1.84	2.00	2.14	2.49	3.27
70		.76	.87	1.04	1.20	1.40	1.63	1.77	1.91	2.07	2.20	2.57	3.36

FABLE III B-32 LINEAR ROLL FORNING LIMITS HEEL-OUT CHANNELS J-1570 (SOLUTION TREATED)

					W.	Material	Thickness	88 (t)					
Contour Radius	510.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	.187
æ					Secti	lon Heig	Section Height Limits	ts (h)					
5		.30	45.	54.	.53	99	# I	i , , , , , , , , , , , , , , , , , , ,	‡ L				
10		•34	04.	Ľ۴.	£16.	999*	.93	46	1.05	1.10	1.33		# 3 -
15		.43	.50	.58	.68	.78	<i>-</i> 92	36	1.07	1.39	1.33	7.69	
20		74.	.55	†9 •	•75	87	10.1	1.10	1.10	1.27	1.37	1.65	24,*5
25		.50	65.	02.	.80	26*	1.08	1.18	1.27	1.30	148	1.71	2.47
30		4€.	.62	քլ է.	£8.	66.	1.14	1.04	1.26	1.46	1.00	1.00	८4.०
35		.56	.65	.77	.90	1.04	1.20	1.31	1.13	1.53	1.65	1.92	2.47
011		09•	69.	.81	†₁6•	1.10	1.27	1.38	2.49	2.60	1.72	00.0	2 .6 2
45		.62	.71	.83	%.	1.13	1.32	1.42	1.54	1.CR	1.00	20.0	2.72
50		.65	.73	. 86	1.00	1.15	1.35	1.47	1.59	1.72	1.05	2.14	65°€
55		99.	•75	.89	1.04	1.20	1.39	1.50	1.04	1.78	1.90	€ 6.	αυ · · ·
9		.68	.77	36°	1.08	1.25	1.45	1.57	1.0	9.4 9.3	1.95	οζ. Σ	3.00
65		69.	.80	4€.	1.10	1.07	ۆ,•1	1.61	1.71	€ ي	0 <u>1</u> .	2.36	3.00
, 02		.71	.82	.97	1.12	1.30	1.52	1.65	1.79	3.95	۵Ù•	01.0	2,10

TABLE III B-33 LINEAR RCLL FORMING LIMITS HEEL-OUT CHANNELS COLUMBIUM (10 Mo - 10 Ti)

					Ma	Material	Thickness	:88 (t)					
Contour Radius	.015	.020	.025	.032	070*	.050	.063	.071	080.	060.	.100	325.	.187
pe;					Section	lon Height	sht Limits	.ts (h)					
5		.18	.22	.26	.32	.39		4 4	3 6	L .			1
10		,2 ¹ 4	.28	.32	.38	44.	.51	.55	.62	.70	.78		
15		.27	.32	.38	44.	.50	.59	1 9.	69.	.75	-80	.97	1
જ		.30	.35	. 42	84.	.56	ħ9.	.71	92.	.82	.88	1.03	3.46
25		.32	.37	††·	.52	.60	69.	.75	.81	.89	.95	1.10	1.46
30		.34	04.	Σħ•	.55	†19 *	ħ ∠ .	62.	.87	.93	1.00	1.16	1.51
35		.36	<i>г</i> ү5	64.	.57	99.	.78	.85	.90	.99	3.06	1.20	1.59
01		.38	44.	.51	.60	.70	-82	68*	96.	1.04	1.11	1.27	1.68
45		04.	.45	.5i	·62	.72	†8°	<i>2</i> 6•	66•	1.08	1.15	1.35	1.76
50		.41	74.	.56	1 9.	.75	-87	46.	1.03	1.11	1.20	1.38	1.79
55		.42	64.	.58	.56	.77	.89	.99	1.05	1.16	1.21	1.40	1.85
9		.43	.50	.59	88.	.80	46.	1.00	1.10	1.18	1.28	1.46	1.91
65		44.	.52	.61	.71	-82	.95	1.04	1.13	1.22	1.30	1.50	.98
70		94.	.53	29.	57.5	₩.	86•	1.07	1.15	1.25	1.33	1.56	2.04

TABLE III B-34 LINEAR ROLL FORMING LIMITS HEEL-OUT CHANNELS MOLYBDENUM (5% T1)

					Ma	Material	Thickness	ss (t)					
Contour Radius	.015	050.	.025	.032	0 ⁴ 0.	.050	.063	.071	.080	060.	.100	.125	, 187
æ					Section	on Heig	Height Limits	ts (h)					
5		.25	.29	•35	64،	.54							
10		.32	.37	.43	.50	.58	89.	.77	.86	76.	1.08		
15		.36	2ħ.	.50	.58	99.	.78	.85	.91	.97	1.08	1.35	
20		04.	.47	.55	49.	.75	.86	ф е.	1.01	1.10	1.18	1.35	2.02
25		.43	.50	.59	.68	.80	.93	1,00	1.08	1.18	1.26	1.45	2.02
30		94.	.53	.63	.72	ή8.	66.	1.06	1.15	1.25	1.34	1.54	2.02
35		84.	.56	99.	.76	.89	1.03	1.12	1.21	1.31	1.40	1.62	2.11
70		.51	. 59	69.	.80	46.	1.08	1.18	1.27	1.37	24.1	1.71	2.22
45		. 53	. í1	.72	48.	.97	1.13	1.21	1.32	1.44	1.53	1.77	2.34
50		.55	.63	+1√.	.86	1.00	1.17	1.26	1.36	1.49	1.59	1.85	2.40
55		.55	.65	.77	.89	1.03	1.20	1.30	1.42	1.53	1.63	1.89	2.47
9		.58	.67	62.	-92	1.07	1.25	1.35	1.46	1.57	υ.το	1.97	2.58
65		%	<i>©</i> .	.82	46.	1.10	1.28	1.38	1.50	1.62	1.73	2.00	2.69
70		.61	.71	18	76.	1.13	1.31	1.42	1.54	1.66	1.78	2.07	2.71

SECTION IV
PLANE CONTOURING OF SHEET
A. SHEET STRETCH FORMING
B. ANDROFORMING

SHEET STRETCH

Description of Process

The sheet stretch process is the contouring of a sheet of metal by stretching over a die in such a manner that permanent set takes place, thus holding springback to a minimum. The forming of difficult shapes in one operation makes this a valuable process. Although a Sheridan 300 ton Stretch Press and workpiece specimens measuring 24 x 40 inches were used in this program the resultant data is applicable to any standard stretch press and any size material.

By referring to Figure IV A-1 the set-up for a sheet stretch operation is apparent.

TYPICAL SHEET STRETCH SET-UP FIGURE IVA-I

The ram raises the die into the workpiece while the jaws of the stretch press hold the workpiece securely. The force exerted by the ram forces the sheet metal to contour to the shape of the die.

To achieve the best results a proper set-up is a necessity. The die table should be perfectly level and the jaws of the machine should be as tangential as possible to the curvature of the die. The stretch press must be of sufficient tonnage as any increase in either material thickness or tensile strength will require an increase in pressure to stretch the material. The dies must be able to withstand the great pressures exerted on them or failure of the die will occur. Therefore, all hollow dies must have internal strengthening members.

There is an excess of material in any sheet stretch operation. This excess is the material that lies outside the formed area. This excess must be trimmed off and the workpiece cut to size for a finished part.

Definition of Part Shape and Geometric Variables

The geometric variables concerned with sheet stretch operations are the radii of the two curvatures and their respective chord lengths. The radius over which the sheet is pulled is designated as $(R_{\rm T})$ with its respective chord length being designated (T). The other radius is designated as $(R_{\rm L})$ with its chord length being (L). (See Figure IV A-2)

GEOMETRIC VARIABLES OF SHEET STRETCH FIGURE IV A-2

The direction of pull in a sheet stretch operation is determined by the smaller radii on the die. The work sheet is always stretched over the smallest radius. The work sheet should also be pulled parallel to the direction of rolling. In this way the "grain" of the metal will be parallel to the severest radius rather than perpendicular to it. The direction of rolling has an appreciable effect on the forming limits and should always be considered in a stretching operation. (See Figure IV A-3).

SET-UP CONSIDERING THE DIRECTION OF ROLL OF THE MATERIAL FIGURE IVA-3

In most cases even though the work sheet does not stretch completely over the die, splitting does not occur in the formed area, but rather in that region between the edge of the die and the jaws of the stretch press. This means that even if a part has split, it is still useful. The few exceptions to this are those materials which are very brittle. These brittle materials on occasions split at the crown of the die rendering the piece useless. Of the materials stretched in this program only HM21XA-T8 split at the crown of the most severe dies.

The sheet stretch process is not concerned with the gage of a material, but rather with the elongation. If all other properties are equal the thickness will have no effect on the formability. This means that work sheets of the same material and of varying gages when stretched over the same die will be approximately equal in size.

Predictability Equations

The basic equation to correlate conventional strain to sheet stretch parameters:

Equation I

The formability indice used for this program:

$$\epsilon = f(\epsilon_{2.0}) = \frac{\epsilon_{2.0}}{4}$$

The specific equation for finding (R/L) value when $\epsilon_{2.0}$ is known:

$$\epsilon_{2.0} = 4[2(R/L) CSC^{-1} 2(R/L) - 1]$$

Equation II

The equation showing relationship of sheet stretch parameters:

$$\frac{R_{\rm T}}{T} \times \frac{R_{\rm L}}{L} = C$$

Equation III

Where:

C = constant

R_L = radius perpendicular to direction of pull

RT = radius parallel to direction of pull.

L = chord length of RL and/or of R

T =chord length of R_T

R = radius when $R/L = R_T/T = R_I/L$

In order to find the value for $\xi_{2.0}$ a tension test specimen is grided with 2 inch squares. The specimen is pulled and a grid at the point of failure is measured to find the change in length (Δ L) caused by the strain. (See Figure IV A-4).

TYPICAL GRIDDED TENSION SPECIMEN FIG. IV A-4

After measuring Δ L use this equation to find $\epsilon_{2.0}$

$$\epsilon_{2.0} = \frac{\Delta L}{2.0}$$

Equation IV

It is now possible to use equation II and plot a curve for all R/L values and all values of $\boldsymbol{\epsilon}_{2.0}$. Then by pulling a tension specimen of a given material it is possible to use this curve to find the particular R/L value for that material. With this R/L value it would then become possible to construct a graph showing all R_T/T and R_L/L values for that material.

PROBLEM: Construct a graph showing all $R_{\rm T}/T$ and $R_{\rm L}/L$ values.

GIVEN: $\epsilon_{2.0} = 0.3$ (from tension specimen)

- Step I. Construct a graph with R/L as the ordinate and £2.0 as the abscissa.
- Step II. Plot Equation II $\epsilon_{2.0} = 4 \left[2(R/L) CSC^{-1} 2(R/L) 1 \right]$ on the graph. (See Figure IV A-5).

PLOTTING EQUATION II FIG. IV A~5

- Step III. Locate the given value of $\epsilon_{2.0}$ ($\epsilon_{2.0} = 0.3$ from tension specimen) on the abscissa.
- Step IV. Construct a vertical line from this point until intersecting the curve.
- Step V. At the point of intersection construct a horizontal line back to the ordinate.
- Step VI. Read the R/L value at the ordinate. (See Figure IV A-6). (R/L = .82)

FINDING THE R/L VALUE FIG. IV A-6

- Step VII. Construct a graph on log-log paper with $R_{\rm T}/T$ as the ordinate and $R_{\rm L}/L$ as the abscissa.
- Step VIII. Next construct a 45° index line passing through $R_{T}/T = R_{L}/L = .1 \text{ and } R_{T}/T \text{ and } R_{L}/L = .5.$ $(R_{T}/T = R_{L}/L = .5 \text{ is the theoretical limit for sheet stretch.}) (See Figure IV A-7).$

PLOTTING INDEX AND THEORETICAL LIMITS FIG. IV A-7

- Step IX. On the index line plot the value of R/L taken from the first graph. (R/L = .82 so R/L = R_T/T = R_L/L = 0.82). Through this point construct a line perpendicular to the index line.
- Step X. This line is the forming limit for the particular material. The constant (C) for this material is $(0.82)^2$ so from Equation III R_T/T X $R_L/L = (0.82)^2$. (See Figure IV A-8).

PLOTTING THE FORMING LIMITS FIG. IV A-8

Composite Graphs

For a composite graph showing the correlation of the R/L values for the materials in this program to $\boldsymbol{\epsilon}_{2.0}$ see Graph IV A-1. For a composite graph of the forming limits see Graph IV A-2.

It might prove possible in some instances to extend the forming limits for a specific material by reducing the strain rate effect (slower forming), reducing surface roughness of both material and die, or by the application of heat. The forming limits of HM21XA-T8 were extended by the application of heat and appear in Graph IV A-2.

Tungsten and Beryllium were omitted from the Sheet Stretch phase of the program because these materials fracture when clamped in the jaws of the stretch press. If double contouring of these materials is necessary it is suggested that matched, heated dies be used.

SHEET STRETCH CORRELATION GRAPH

GRAPH IV A-2

SHEET STRETCH COMPOSITE GRAPH FOR FORMING LIMITS

Design Tables

The sheet stretch design tables present a chord length for a given radius. It should be noted that these values are given for the maximum forming limits of the various materials.

To use the design tables note that the vertical columns represent both R_L and R_T values. Each horizontal column is divided with the chord length (L) being in the top half of the divided rectangle and the chord length (T) being in the bottom half.

- (1) Select the correct table for the material.
- (2) Select the radius desired for (R_T) .
- (3) Read down the vertical column until crossing the (T) value desired on a horizontal column.
- (4) Staying on the same horizontal column move to the right underneath the desired radius (R_L), then read the value for (L) in the top half of the rectangle.

TABLE IV A-1 SHEET STRETCH FORMING LIMITS FOR HM21XA-T8 (MAGNESIUM THORIUM)

١		m /		F /	CI A	(o)	<u> </u>		m .	0 4	80 7
	100	80.3	71.4	63.7	56.2	50.6 128	141	41.6	38.3	35.0	32.8
	8	72.3	64.3	57.3	50.6	45.6	41.5	37.4	34.5 152	31.5	29.5
	80	64.2 64.2	57.1	51.0	6. hμ .9		36.9	33.3	30.6	28.0 148	26.2
Or R _L	02	56.2	50.0	•	39.3	35.4	32.2	,	26.8	24.5 130	23.0
£.	09	48.2 48.2	42.8 54.3	38.2	33.7	30.4	27.6	24.9 93.0	23.0	21.0	19.7
Die Radii	50	40.2	35.7	31.8	28.1	25.3	23.0	20.8	19.2	17.5	16.4
	04	32.1	28.6 36.2	25.5	22.5	20.2	18.4	16.6	15.3	74.1	13.1
	30	24.1 24.11	27.2	30.3	34.5	38.5	13.8	3.21	11.5	10.5	60.09
	20	16.1	18.1	12.7	23.0	10.1	28.2	31.0	33.9	37.3	6.6 40.0
	10	8.03	9.05	10.1	11.5	12.8	14.1	15.5	3.8	3.5	3.3
		r /	1	r /	н	н	13	Н	L	I	L
		_ H	E4	/ F	нож	F 5	HZU	E H	EH	F-1	£4
	ļ							F - 1m4			

TABLE IV A-2
SHEFT STRETCH
FORMING LIMITS FOR HW21XA-T8
(MAGNESIUM THORIUM)
(750°F)

		. 7	1 - 1	t- 7	(in /	0	0 /	<i>¬</i>	0 /	ιζ /	m
	8 1	104	25.7	87.7 123	80.5	74.9	69.9	167	61.0	57.5	514.3
	8.	93.7	$\frac{96.1}{10^{\circ}}$	78.9	70.3	130	6°.9 140	58.8	54.9	51.7	180
	86	g.3	9°92 90°4	. o. 7 8.8 8.8	ं _{(१} ५, ०	59.9	55.9 124	52.3 134	9.84 142	152	⁴ 3.5
ය R _L	70	72.9	67.0	-61.4	56.2	52.5	1.08	45.8	म <i>ा</i> 1-ःग	40.2 132	38.0
- Ry	09	62.5	57.4	52.6	81.1	57.0	h2.0	39.2	36.6	34.5	32.6
Die Radii	50	52.1	47.8 56.5	61.7	β. 0.2 9.	37.4	35.0	32.7	30.5	28.7	27.2
	047	41.7	38.3	35.1	32.1	30.0	28.0	26.1	24.4	23.0	21.7
	30	31.2	28.7 33.9	37.0	24.1 40.5	22.5	21.0	19.6	18.3	17.2	16.3
	83	20.8	19.1	24.7	27.0	15.0	31.0	33.4	35.6	37.9	10.9
	οτ	10.4	9.6	12.3	13.5	7.5	7.0	16.7	6.1	5.7	5.4
		1	T	П	13	r]	17	П	7	T	L
		H	EH	H ن	нож	P H	H C S E	F1 #1	E4	F	
					- • •						

TAPLE IV 4-3 SHEET STRETCH FORMING LIMITS FOR 2024-0 ALUMINUM

	90 100	92.8	100	78.3	27	129 66.2 73.5	/ ,	150 166	53.9 59.9	170 50.6 56.2	180 200
	8	82.5	75.8	9.69	107	58.8 115	5μ.8 123	51.0	541 241	μμ.9 151	160 ±2.6
Or R _L	70	72.2	4.99	Y	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. /1	108	V	41.9	/	37.2
- RT	09	61.8	56.9	52.2	* / *			38.2	35.9	33.7	31.9
Die Radii	50	51.5	4.74	43.5	0.0 ₄ / 1.00	. / .	5.45. 76.97	4 / 1	6.63 8.8	28.1 94.5	26.6
	04	41.2	37.9	34.8	53.3	1 / -	27.14 61.5	25.5	24.0 70.9	22.5	£1.3 80
	30	6.00	33.5	36.6	0.42	22.0	20.5	19.1	18.0	16.8	16.0
	20	20.6 20.6	19.0	17.4	16.0	14.7 28.8	30.8	12.7 33.3	35.5	37.8	10.6
	01	10.3	3.5	8.7	8.0	1:4:	6.8	6.4	6.0	18.9	5.3
************		FI FI	FI FI	H	H	H	H	H	1]	T L	T L
				U	HOK	U H	田宮ひ	e ¤			

TABLE IV A-4
SHEET STRETCH
FORMING LIMITS FOR 17-7 Ph
(CONDITION "A" MILL ANNEALED)

		, , , , , , , , , , , , , , , , , , ,	7					N Z	0 /	0 7	ω <i>λ</i>
	87	821 821	135	311 241	011	105	165	95.2	91.0	87.0	82.8
	8	211	011	105	99.5	94.28	90.5	85.7	81.9	78.3	74.5
	8	102	97.6	93.0	4.88.4	83.8	80.4 132	76.2	72.8 145	69.6	66.2
Or R _L	70	89.8 89.8	/	81.4	4.77 104	Ł	v	66.6	63.7	60.9	57.9 Ω40
. Pan	9	76.9	73.2	85.5	66.3		60.3	57.1	109	52.2	49.7 120
Die Radii	50	64.1	67.5	58.1	74.6	78.1	50.2	47.6 86.2	45.5	43.5	100
	O ⁴ 7	51.3	54.0	16.5	59.7	41.8	40.2	38.1	36.4	34.8	33.1
	30	38.4	36.6	34.9	33.2	31.4	30.1	28.6	27.3 54.6	26.1	60 24.8
	20	25.6	27.0	23.2	22.1	31.2	33.1	34.4	36.4	17.4 37.9	16.5
	10	8.51 12.8	13.5	11.6	11.0	15.6	16.5	9.5	18.2	19.0	8.3
•••••••••••••••••••••••••••••••••••••••		IJ E	티	H E4	H	H E4	r] E4	H	H	T L	17
				υ	жож	а н	MZO	日田			

TABLE IV A-5 SHEET STRETCH FORMING LIMITS FOR Ph 15-7 Mo (CONDITION "A" MILL ANNEALED)

	1	7		7			0 7	72	5	ω <i>1</i>	0 1
	00T	127	133	1140	108 148	103	98.0	93.5	180	84.8 189	80.0
	8	411 411	107	102	97.2	92.9	146	84.0 155	19.6	170	180
	&	101	107	90.9	4.986.4	82.6 124	130	138	70.8 144	67.8	160
r R <u>r</u>	70	88.6	83.3	79.5	75.6	72.2	68.6 114	65.4 120	62.0	59.4	140
l - 18 _T Or	%	76.0	71.14	68.2	88.9	61.9	58.8	103	53.1	50.9	120
Die Radii	50	63.3	59.5	56.8	74.1	51.5	μ9.0 81.2	46.7 86.2	h4.3	4.54	100
	01	50.6	147.6		43.2 59.3	41.2	39.2	37.4	35.4	33.9	32.0 80
	30	38.0	10.0	34.1 42.0	32.4	30.9	4.63.4	28.0	26.6	25.4 56.6	24.0 60
	80	25.3	26.7	22.7	29.6	31.0	31.5	34.5	36.0	27.8	16.0
	01	7.51	13.3	11.4.0	14.8	15.5	9.8	9.4	18.0	8.5	8.0
		П	1	17	п	н	1	П	T	L	L
	į	E	F+	EH	EH	EH	FH	E4	FH	E	E1
	ļ			ن -	HOK	U H	e z o	日田			

TABLE IV A-6 SHEET STRETCH FORMING LIMITS FOR AM-350 (ANWEALED)

			/	<u></u>		10	(c) 7	근 /	n,	ις.	<u>ش</u> /
	700	129	136 \	117	111	106	105	97.1	97. 182	98.	84.8 200
	8	211 311	011	105	135	141	91.8	87.14 155	164	79.7	76.3
	8	103	109	93.6	9.88	35.1	81.6	38	74.1	70.8	67.8
RL	70	90.3	85.9	81.9	77.8	100	116	68.0	137 64.8	61.9	79.3
- Ry Or	- 8	4.77	81.6	70.3	66.7	63.8	99.3	103	109 55.6	53.1	50.8
Die Radii	50	64.5	68.0	58.5	55.6	73.2	2.0 2.0	48.5	46.3 90.9	44.2 1	100
	O†	51.6	1.64.4	1,6.8	հի. հ	12.6	8.04 66.5	38.8	37.0	35.4 75.8	33.9
	30	38.7	36.8	35.1	33.3	31.9	30.6	29.1	57.7	36.6	4.6% و
	80	25.8	24.6 27.2	23.4 28.6	27.73	31.2	33.1	34.5	18.5 36.4	17.7	17.0
	10	6.51	12.3	14.3	רינו ס	9.01	0.01	17.5	3.3	a`.	2.9
<u></u>		н	13/	13	17	н	17	r]	п	1	T /
		EH	E	FH	EH	E4	E4	FH	EH	F	€1
				ပ	HOK	<u>н</u>	e z o	H H			

TABLE IV A-7
SHEET STRETCH
FORMING LIMITS FOR A-286
(SOLUTION TREATED CONDITION)

				·			<u> </u>						
	700	137	132	721	120	911		168	176	201	1 1 2 1	1.90	200
	8	123	118	114	108	101	100	151	7-56	92.3	165	171	180
	8	110	105	101	125	92.5	6.88	134	85.1 Idi	82.1	747	152	160
r R <u>r</u>	70	95.9	32.1	88.6	g/3	81.0	77.8	118	74.5	71.8	1	133	140
- Ry Or	9	2.28		76.0	72.8 93.8	7.69	•	101	63.8	61.5	7 011	59.5	120 56.6
Die Radii	50	68.5	65.8	63.3	60.2	8.73	55.6	84.0	53.2	51.3	91.6	49.5	100
	04	8.42	52.6	50.6	48.2 62.5	45.2	4:44	67.2	10.5	41.0	73.4	39.6	37.8
	30	41.1 1.14	39.5	38.0	1 /	7:4	33.3	50.4	31.9		55.0	57.1	28.3
	80	4.72		25.3	31.2		22.22	33.6	21.3	• • • • • •	36.7	38.1	18.9
	30	13.7	13.2	7.51		11.6	717	16.8	17.6	10.9	18.4	19.0	4.6
		1	П	1	н /	н	Н		н	н		I /	1
		E H	EH	FH	F 0 7	F1		E	F		F1	F1	£4
				ن 	HOK		1612	. O	H H				

TABLE IV A-8
SHEET STRETCH
FORMING LIMITS FOR USS-12-MoV
(ANNEALED)

hr R <u>L</u>	70 80 90 100	72.9 83.3 93.7 104	67.0	61.4 70.2 78.9	56.2 94.6	/ 2	108 124 140 155	117 134 150 167	12h 142 160 178	μο.2 μ6.0 51.7 57.5 132 152 170 189	38.0 43.5 48.9 54.3 140 160 180 200
Radii - Ry Or	99	52.1 62.5	7.8 57.4 67.8 79.1	43.8 52.6 74.1 86.1	10.2 48.2 81.1 94.6	37.4 44.9	35.0 42.0	/ /	30.5 36.6		
Die	05 04	41.7	38.3	35.1	32.1	30.0	28.0	26.1	24.4 71.2 89.0	23.0	80 100
	20 30	20.8 31.2	19.1	17.5	16.1 24.1	0.15.0	31.0 46.5	13.1	12.2 18.3	11.5	10.9
	10	1	9.6	80,	8.0 5.7	5.7	15.5	16.7	6.1	18.9	5.4
	!	H	H	H C	HOK	H H	H H	FI HI	H	H	r) E4

TABLE IV A-9
SHEET STRETCH
FORMING LIMITS FOR TITANIUM (6A1-4V)
(MILL ANNEALED)

	180	9.9	83.3	109	69.9	64.1	58.8	53.8	49.3	183	200
	8.	81.8	0.57	.8	65.9	57.72	52.9	т 8 .4	14.3	40.4	37.3
		81	7	8	9 206	3 711	0.	0 137	,4	.9	.2 180
	8	72.7	66.7	60.6	55.9 94.1	51.3	113	43.0 122	39.4	35	160
r Rt	70	63.6 63.6	70.0	53.0	49.0	6.44 9.09	41.2	37.6	34.5	31.4	29.0
- Ry Or	9	54.5	50.0	45.4	10.6	38.5	35.3	32.2	101	26.9	24.9
Die Radii	50	45.4	+1.7	37.9	58.8	32.0	4.65	6.9	9.45	22.4	20.7
	Ott	36.4	33.3	30.3	28.0	25.6	23.5	21.5	19.7	17.9	16.6
	30	27.3	30.0	32.6	21.0	19.2	17.6	16.1	14.8 50.4	13.4	4.5%
	82	18.2	20.0	15.2	14.0	26.0	28.2	30.5	33.6	36.7	ho 8.3
	10	9.1	10.0	10.9	11.8	13.0	14.1	15.3		18.3	4.1
<u> </u>		n/	1	н	н /	н	1	П	ч	17	17
		F	F	FI	F	F-1	F1	E4	E4	F	£1
	!	L			HOK	н н	BEU		·. · · · · · · · · · · · · · · · · · ·		

TABLE IV A-10 SHEET STRETCH FORMING LIMITS FOR TITANIUM (13V-11Cr-3A1) (SOLUTION TREATED)

		/		7	7	/	1	1			7
	100	8.46	10 ⁴	211	73.5	133	144	155	169	48.5 184	45.0
	8	85.3 85.3	78.3	1 / 0	66.2	60.8	55.2	51.9	47.9 152	43.7 165	40.5 180
	88	75.8 75.8	6.69	71.1	58.8 97.6	54.0	50.0	45.1 124	42.6 135	38.8	36.0
9. R.	1	4.99 7.99	72.5	62.2 78.2	51.5 85.4	47.3 93.3	101	40.3 108	37.2	34.0	31.5
F2	99	56.9 56.9	52.2 62.2	67.0	44.1 73.2	40.5 80.0	37.5	34.6	31.9	29.1	27.0
Die Radii	53	η• <i>L</i> η η• <i>L</i> η	13.5 51.8	4.44 55.9	36.8	33.8	31.2	28.8	26.6	24.3	22.5
	O†	37.9	34.8	35.6	1,62 1,8.8	53.3	25.0	62.0	21.3	19.4	18.0
	30	28.4 28.4	26.1	26.7	22.0	20.3	18.8	17.3	16.0	14.6 55.1	13.5
	&	19.0	17.4	17.8	24.4	13.5	28.8	31.0	33.8	36.8	9.0
	10	9.5	8.7	8.9	12.2	6.8	6.2 14.4	5.8	5.3	18.4	20 4.5
		T	T	T	I L	T	J F	I L	T	H F	T
			<u> </u>		HOK		M Z O	/			
	•										

TABLE IV A-11
SHEET STRETCH
FOPMING LIMITS FOR VASCOCET 1000 (H-11)
(ANNEALED)

	100	98.5 98.5	99.7	81.3	170	68.5 141	63.3	5°.8 165	54.9	51.3	200
	8	88.7	80.7 36.8	73.2 3.06	117	61.6 17	137	52.9 149	49.4	170 lt6.2	180
	80	78.8 78.8	71.7 86.0	65.0 94.1	104	54.8	50 . 6	132	141	41.0	38.6
Or R _L	70	0.69 69.0	62.8 75.3	56.93 82.4	0.27 90.9	98.6	μ4.3 106	911 2°14	38.5	35.9	33.8
F.	90	59.1	53.8 64.5	48.8 70.6	9.44 77.9	141.1 194.5	38.0	35.3	33.0	30.8	29.0
Die Radii	50	49.3 49.3	44.8 53.8	40.6 58.8	37.2	34.2	31.6	29.4 92.6	27.5	25.6 94.3	24.2
	Оħ	39.4	35.9	32.5	5.65	27.4	25.3	23.5	70.3	20.5	19.3
	30	9.62 9.62	26.9	24.4 35.3	39.0	25	19.0	17.6	16.5	15.4	14.5
	82	19.7	21.5	23.5	26.0	28.2	30.4 30.4	33.0	35.2	37.7	9.7 ho
	οτ	9.8	9.01	11.8	13.0	14.1	6.3	16.5	5.5	18.9	4.8 20
•		T L	H	Ħ	H	H	H	H	1-J	J	I L
				ပ	m o m	ВΗ	BEO	HЩ			

TABLE IV A-12
SHEET STRETCH
FORMING LIMITS FOR RENE '41
(SOLUTION TREATED)

		٩ /	ر ة /	<u>و</u> /	رن \	24	9/	- /	9/	ε /	g /
	100	०५ ^{०५ र}	135	130	125	164	911	178	184	192	200
	8	126 126	122	136	2112	0110	154	161	95.3	92.8	051
	88	या या	108	121	127	131	92.5	88.9	85.1 147	82.5 153	30
Or R _L	70	98.0	94.6 103	90.19	87.5	35.4	31.0	77.8	74.5 129	72.2	70 140
F	93	84.0 84.0	88.3	78.0	75.0	73.2	4.69° t	66.7 101	63.8	61.8	071
Die Radii	8	70.07	67.5	65.0	62.5 79.4	61.0	57.3 85.5	55.6 39.2	53.2	51.5 96.0	100
	Oή	56.0 56.0	54.0 58.3	52.0 60.6	50.0	43.3 65.6	4.6.3 60.4	4.44 72.4	73.7	41.2 76.3	η 30
	30	0.54	40.5	39.0	37.5	36.6 19.4	34.7	33.3	31.9	30.9 57.5	30
	20	28.0	27.0 29.4	30.3	31.8	32.9	34.2	22.2	36.3	20.0 33.4	70 SO
	οτ	14.0	13.5	15.2	12.5	12.2	17.1	17.3	13.4	10.3 19.2	10
		T	L	I /	1 / L	r] Et	r]	I L	I]	T L	I L
		EH .	F1	ا ا	нож	/	MEO	/	<u> </u>		
	1								·		

TABLE IV A-13
SHEET STRETCH
FORMING LIMITS FOR INCONEL X
(C. R. ANNEALED)

	,		, ,	7		,		, , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , ,	
	00T	9 ¹ 16	151	136	132	126 168	123	118	115	192	200
	8	131	126 136	123 140	118	151	111	163	167	173	96.3
	80	711	121	125	130	135	98.8	91.6	92.0 149	89.0 15h	160
Or R _L	70	102	99.2	95.2	92.1	38.5	96.5	82.8 127	130	135	74.9 140
Fg.	60	87.6 87.6	85.0 90.8	81.6	78.9	101	74.1 104	109	111	66.7	120
Die Radii	50	73.0	70.8	68.0	65.8	84.0	61.7	55.2 90.5	92.9	55.6 96.2	100
	ОĦ	58.4	56.7	54.6	52.6	50.6	η·6η 9·69	47.4 72.4	74.47	77.0	42.8 80
	30	43.8	42.5	8.04	39.5 48.8	30.4	37.0	35.5	34.5	33.4	32.1
	20	29.2	30.3	31.2	26.3	25.3	34.8	22.6 36.2	37.2	38.4	21. ¹ 4
	10	14.64 14.6	t. 2	3.6	13.2	2.6	12.3	18.1	11.5	11.11	10.7
		I L	i) H	i)	T	I H	J H	I L	I H	T	T
				ن 	HOK	а н	MZO	E+ III			

TABLE IV A-14
SHEET STRETCH
FORMING LIMITS FOR HASTELLOY X
(SCLUTION TREATED)

	80 90 100	94.5 108 122 135	89.8 103 115 128	87.0 99.4 112 124	82.4 94.1 106 118 123 138 154	8.68	75.3 86.0 96.8 108	72.2 82.5 92.8 103	69.4 79.3 89.2 99.1 146 164 162	66.6 76.2 85.8 95.3	63.6 72.7 81.8 90.9
I - Ry Or	9	81.0 81.0	85.0	74.5 88.2	70.6 92.3	4.79 %.0	64.5	105	59.5	114 57.1	54.6
Die Radii	50	67.5	1.40	7	76.9	2.5	83.3	51.5	49.5 91.0	47.6	100
	04	54.0	51.3		47.0	45.0	43.0	41.2	39.6	38.1	36.4 80
	30	40.5	38.5	37.2	35.3	33.7	32.2	30.9	29.7	28.6	27.3
	8	27.0 27.0	Y	29.4.8	Y	32.0	21.5	20.6	19.8 36.4	19.0	18.2
	10	13.5	12.8	12.4	15.4	16.0	16.7	17.5	9.9	9.5	20 9.1
		FI 13	H	H	H	ri Er	r] Er	FI FI	J H	T	J _
				υ 	нон	A H	図との	e m			

TABLE IV A-15
SHEET STRETCH FORMING LIMITS
L-605
(SOLUTION TREATED)

			1						0/	α /	0 /
	700	132	139	120	151	159	105	300 174	96.2	91.8	87.0 200
	8	118	112	108	136	98.9	οςι 2° ηό	30 156	36.5	82.7	180
	86	105	111	%.3 116	90.9	87.9	83.8 133	80 139	77.0	73.5	69.6
Or R _L	70	92.1	87.5 97.2	84.3	79.5	111	73.3	70 122	67.3	64.2	6.03 140
F.	60	78.9	75.0	77.2	68.2	65.9	100	10 ^t	109	55.1	52.2 120
Die Radii	50	65.8 65.8	2.5	2.2	75.7	79.4.9	83.3 83.3	87.0	48.1 90.9	45.9 95.3	100
	04	52.6	55.5	148.2	45.5	44.0	41.9	о ц 9.69	38.4	36.7	34.8
	30	39.5	37.5	36.1	34.1	33.0	31.4	30	28.8	27.5	26.1
	20	26.3	25.0	29.0	30.3	31.8	33.3	34.8	19.2 36.4	18.4	17.4 40
	òτ	13.2	13.9		11.4	11.0	16.7	17.4	9.6	9.6	8.7
		٦/	1-1	12/	17	н	13	н	н	1	1
		E+	E	FH	FH	FH	£4	E	E	E	€4
				ပ	# O #	A H	M Z O	日田			

TABLE IV A-15
SHEET STRETCH FORMING LIMITS
J-1570
(SOLUTION TREATED)

			~ /	~ /	~ /	0 /	/	_ /	to. /		F. /
	300	139 139	133	108 150	123) St	الارا 19 فير	900 777	ξοί 40ι	101 92	200
	8	125 125	120 130	115)110 541	103	,103 152	93.4 159	33.2	90.9	37.3
	98	11.	107	103	12	96.4 13 1	91.5	3)12	33.8	30.0 153	73.5
Or R _L	0,	97.3	93.3	89.8 105	05.9	84.3	80.0 119	76.5 124	73.3	70.7 195	340
- Rg	9	83.4	80.0 87.0	76.9 90.3	76.6	72.3 98.4	302	10	2.3	115	53.8 3.20
Die Radii	50	9.5 69.5	56.7 72.5	μ.1. 75.2	78.8	82.0	37.2	5½.6 83.5	52.1	50.5 95.9	0.0
	Otl	55.	53.0	60.2	3.0	48.2 65.6	7.5.7 C7.8	70.3	41.9 73.6	1.0.1	37.2
	30	7.1.7	40.0 13.5	38.18	36.8	36.1	34.3	32.8	41.14 55.2	30.3 57.5	1.62
	20	27.8	26.5 29.0	30.1	2h.5	32.8	. , .	35.4	36.8	20.8 38.3	30°C
	01	13.9	13.3	15.0	15.8	12.0	4.11	10.9	10.5	10.3	9.8
		1	н	13	н	ы	13	н	н	17	1]
		E1	E	EH	E1	EH	£4	E1	FH	E	€1
				U	HOK	<u>а</u> н	M Z O	E III			

TABLE IV A-17
SHEET STRETCH
FORMING LIMITS FOR MOLYBDENUM (.5% T1)
(HOT ROLLED, STRESS RELIEVED, DE-SCALED SHEET)

	100	 	75.2	0.69	86.5	56.9	7	51.6	2	0.74		42.8	/	38.8		35.1	
		75.0	/ % 	62.1	5.112	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	123	16.5	135	42.3	149	.5	164	6.	181	9.	8 /
	8	75.0	67.7		92/101	12/	/ 	91	122	24	134	38	148	#	163	31	/ 84
	80	7.99 7.99	260.2	55.2	0./	15:	6.8	41.3	108	37.6	120	34.2	131	31.0	145	28.1	160
Or R _L	70	58.3	52.7	73.0	78.2	39.8	86.5	36.2	95.0	6.55	105	30.0	115	21.2	121	9. 42	्री भार
- R _T	99	0.03 50.03	45.1	41.4	37.5	1.1	74.2	31.0	81.5	28.2	89.6	7.55	8.5	23.3	109	21.1	120
Die Radii	50	41.7	37.6	34.5	31.2		61.8	8.25	67.8	23.5	74.7	५. १५	82.0	η. 6τ	7.%	9. '1'	1 0c
	O†(33.3	30.1		25.0	22.8	49.5	9.02	54.2	18.8	59.7	1.71	65.7	5.51	72.6	0. 41	%.0
	30	25.0 25.0	22.6		I / ~	/ k	37.1	15.5	40.7	14.1	4th .8	८.डा	49.3	9.11	54.5	10.5	0.09
	20	7.91 16.7	15.0	13.8	32 12.5	11.4	24.7	10.4	27.1	7.6	29.9	9.8	32.8	7.8	36.3	7.0	0.04
	οτ	8.3	7.5	4 / ·	6.2		12.3	5.2	13.5	1.4	14.9	4.3	16.4	3.9	18.1	3.5	20.02
		1	17	Ч	J /	17		7		17		17		1		ы /	
		F	F	F	HOA	<u> </u>	ET	M Z	E4	F-1 57	EH		E	_	E	_	£-1

TABLE IV A-18
SHEET STRETCH
FORMING LIMITS FOR COLUMBIUM (10 Mo-10 T1)

	90 100	67.8	67.8	1.79 8.09	77.5 85.0	2.09 9.45	85.0 4.5	9.05 2.64	\$.3\\\\ 205\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	र. ६५ ट. मेग	105	39.5 43.9	117 130	35.6 39.6	130 144	32.0 35.5	144	28.8 32.0	191	25.7 28.6	180 200
	80	2.09/3	2.09	54.1	68.0	48.5	75.5	43.7	83.9	39.3	93.2	35.1	104	31.6	911	7º LZ	128	25.6	143	22.9	160
Or R _L	70	52.7	52.7	4.74	59.5	42.5	66.1	38.2	73.4	7:48	81.5	30.8	0.16	27.6	101	8. 42	211	η· 22	125	20.02	140
Fg	99	B. 54	45.2	9.04	51.0	798	56.6	32.8	65.9	29.5	6.69	₹97.	78.0	23.7	8.98	21.3	8.3	19.2	107	27.2	120
Die Radii	50		38.6	33.8	42.5	30.3	7.7.2	27.3	52.4	9.45	58.2	0.22	65.0	19.7	72.3	17.8	80.2	16.0	89.5	5.41	100
	04	30.1	30.1	0.72	34.0	2. 42	37.8	21.8	41.9	9.61	16.5	9.71	52.0	7.51	57.9	2. 41	64.2	8.51	71.8	7.11	<i>8</i>
	30	22.6	55.6	80.3	25.5	18.8	28.3	16.4	31.4	7-47	€: #£	13.8	39.0	6.11	43.4	9.01	1.8.1	9.6	53.7	8.6	8
	8	15.1	15.1	13.5	0.71	ाना /	7 6.81	10.9	21.0	9.6	23.3	8.8	26.0	7.9	28.9	7:1	32.1	9/	35.8	2.5	07
	ŌΓ	6.7	7.5	9.9	8.5	6.1	7	5:3	70.5	6.4	9:11	7: 1	13.0	0: 1	14.41	3.6	16.0	3.8	17.9	5.9	8
		13	-1	17	E	17	/ E+	17	 	17	E	1	£1	1	EH	17	EH	17	F	7	E
		L						# C	, ₁ ,	Н	н —	H K	- U	<u>-</u> μ	•				-		

ANDROFORMING

Description of Process

Androforming is a double contour skin forming process. The machine used was the Model J Androform machine located at Convair, Fort Worth,

Texas. The results obtained are good for any Androform machine that consists of the following three components: (a) the hold-back system, (b) the shaping system, and (c) the gripper jaws. (See Figure IV B-1).

The leading edge of the sheet is fed between the elements in "a" and "b" and clamped in "c". The elements at "a" and "b" are then closed to predetermined gaps and the sheet pulled between them as "c" moves as shown. The elements at "a" are straight; i.e., they have no transverse curvature, while the elements at "b" and "c" are set to a given curvature (the element radius) before forming begins. The edges, represented by the distance "x - x", change little during forming but the center longitudinal element stretches to the length "y - y". It is this difference between the stretch at the center and the edge of the sheet that causes the contour in the transverse as well as the longitudinal direction. There is another factor which contributes to contour. The center longitudinal element, having stretched more than the edges, has a greater amount of springback, thus adding to the double contour.

The machine adjustments are represented by the dimensions in Figure IV B-2. Changing the "A" dimension has by far the greatest effect on the severity of double contouring of any of the machine adjustments. Other adjustments should be set at optimum conditions for each gage and the "A" dimension varied for different contours desired.

FIGURE IV B-1 ANDROFORM COMPONENTS

FIGURE IV B-2 MACHINE ADJUSTMENTS FOR ANDROFORMING

By using the large shaping element radius (100" and above) no limit could be reached; however, the resulting compound radius was very high. Smaller contour radii were obtained by using 50" and 20" forming elements and the splitting and buckling limits were obtained.

Definition of Part Shape and Geometric Variables

The geometric variables of double contoured androformed parts are illustrated in Figure IV B-3.

FIGURE IV B-3 GEOMETRIC VARIABLES FOR ANDROFORMING

 $R_{\rm L}$ and $R_{\rm T}$ are the longitudinal and transverse radii, respectively. By adjusting the machine settings these radii can be reduced down to the limit. For a particular formed part if $R_{\rm L}$ is forced to a large radius, $R_{\rm T}$ will be reduced to a smaller radius proportionately, i.e., $R_{\rm T}/R_{\rm L}$ is equal to a constant.

Splitting or buckling will occur if the radii are made too small. By increasing the thickness, buckling is reduced; however, the possibility of splitting increases.

Predictability Equations

The following predictability equations were developed for the 20 inch and 50 inch forming element radius.

The equations for the splitting limits of any material based upon its mechanical properties are:

For 50 inch forming die:

$$\frac{R_{T}}{\sqrt{\P}} = 41 \left[\frac{E}{\epsilon_{2,0} S_{TY}} \right] \left[\frac{R_{L}}{\sqrt{\P}} \right]^{-1}$$

Equation I

For 20 inch forming die:

$$\frac{R_{T}}{\sqrt{1}} = 5.0 \left[\frac{E}{\epsilon_{2,0} S_{TY}} \right] \left[\frac{R_{L}}{\sqrt{1}} \right]^{-1}$$

Equation II

The equations for the buckling limits of any material based upon its mechanical properties are:

For 50 inch forming die:

$$R_{T}^{\dagger} = \left[2.51 \times 10^{-6}\right] \left[\frac{S_{TY}}{E}\right]^{-2.7} \left[R_{L}^{\dagger}\right]^{-1}$$
 Equation III

For 20 inch forming die:

$$R_{T}^{\dagger} = 1.471 \times 10^{-6} \left[\frac{S_{TY}}{E} \right]^{-2.7} \left[R_{L}^{\dagger} \right]^{-1}$$
 Equation IV

To use Equations I through IV the mechanical properties of the material must be known along with two of the three geometric variables. The problem is to find the smallest $R_{\rm L}$ that can be formed without splitting or buckling for a particular $R_{\rm T}$ and t.

As an example utilizing the 50 inch die limits; solve Equation I and III for $R_{\rm L}$.

$$R_{L} = 41\sqrt{f} \left[\frac{E}{\epsilon_{2,0} S_{TY}}\right] \left[\frac{R_{T}}{\sqrt{f}}\right]^{-1}$$

$$Equation I-a$$

$$R_{L} = \left[\frac{2.51 \times 10^{-6}}{f}\right] \left[\frac{S_{TY}}{E}\right]^{-2.7} \left[R_{T}f\right]^{-1}$$

$$Equation III-a$$

The actual forming limit for R_L is the largest value obtained from either Equation (I-a) or (III-a). Values of R_L smaller than that found by Equation (I-a) will split while values of R_L smaller than that found by Equation (III-a) will buckle.

An alternate, and somewhat simpler, method of finding the formability limits is to construct the curves as defined by Equations I and III.

Typical theoretical formability limit curves for splitting and buckling are shown in Figures IV B-4 and IV B-5.

Knowing the mechanical properties that are included in Equations I and III the formability limit graphs can be constructed as follows:

FIG. IV B-4
SPLITTING LIMIT CURVE

FIG. IV B-5
BUCKLING LIMIT CURVE

Splitting

Step I: Using log-log graph paper and plotting $\frac{R_T}{\sqrt{t}}$ on the ordinate and $\frac{R_L}{\sqrt{t}}$ on the abscissa , construct the formability index line at a constant $\frac{R_T}{\sqrt{t}}$ of 410. See Figure IV B-4.

Step II: From the mechanical properties of the material as defined by the standard tensile specimen, calculate the splitting index.

Step III: At the intersection of $\frac{R_L}{\sqrt{t}} = \frac{E}{2.0 \text{ S}_{ty}} \times 10^{-1}$ and $\frac{R_T}{\sqrt{t}} = 410$ plot the limiting curve with a slope of minus one (-1). See Figure IV B-4.

Step IV: Knowing a particular R_T and t $(R_T^{'}$, t'), the splitting limit $R_L^{'}$ can be determined as follows:

FIGURE IV B-6 PROCEDURE FOR FINDING THE SPLITTING LIMIT

The value of $\frac{R_T}{\sqrt{t'}}$ is plotted horizontally until it intersects the splitting limit curve. From this intersection a line is drawn vertically to the $\frac{R_L}{\sqrt{t'}}$ axis. The value of $\frac{R_L}{\sqrt{t'}}$ is read directly.

SPLITTING LIMIT
$$R_{L'} = \left[\frac{R_{L'}}{\sqrt{1}}\right] \times \sqrt{1}$$
 Equation IV

Buckling

Step I: Using log-log graph paper and plotting $R_{\rm T}$ t on the ordinate and $R_{\rm L}$ t on the abscissa , construct the buckling formability index line with a slope of -0.27 intersecting the $R_{\rm T}$ t axis at 8.8 at an $R_{\rm L}$ t of 0.1. See Figure IV B-5.

Step II: From the mechanical properties of the material as defined by the standard tensile specimen, calculate the buckling index.

Step III: At the intersection of R_T t = $\frac{S_{ty}}{E}$ x 103 and the buckling index line plot the limiting curve with a slope of minus one (-1). See Figure IV B-5.

Step IV: Knowing the particular R_T and t $(R_T'$, t'), the buckling limit R_L'' can be determined as follows:

FIGURE IV B-7 PROCEDURE FOR FINDING THE BUCKLING LIMIT

The value of $R_{\rm T}$ ' t' is plotted horizontally until it intersects the buckling limit curve. From this intersection a line is drawn vertically to the $R_{\rm L}$ t axis. The limiting value of $R_{\rm L}$ " t' is read directly.

If R_L " is greater than R_L ', the actual limit is defined by R_L , i.e. any value of R_L less than R_L " will cause buckling. If R_L ' is greater than R_L ", the actual limit is defined by R_L ', i.e. any value of R_L less than R_L ' will cause splitting.

Composite Graphs

Composite graphs were constructed for the 20 inch and 50 inch radius forming elements. The splitting and buckling limit composites for the 50 inch and 20 inch dies are in Graphs V B-1 through V B-4 respectively.

An alternate method of plotting the limits for each material is illustrated in Graph IV B-5. The $R_{\rm L}$ limit can be read directly from the curve by selecting $R_{\rm T}$ and t. Buckling limits are shown in solid lines and splitting limits in dashed lines.

By using a larger forming element radius the resulting double contour would have larger radii. Preliminary investigations revealed that actual limits could not be reached by using the large radius form dies.

GRAPH IV B-1 COMPOSITE GRAPH FOR ANDROFORM SPLITTING LIMITS FOR (50" FORMING ELEMENT)

GRAPH IV B-2 COMPOSITE GRAPH FOR ANDROFORM BUCKLING LIMITS FOR (50" FORMING ELEMENT)

GRAPH IV B-3 GOMPOSITE GRAPH FOR ANDROFORM SPLITTING LIMITS FOR (20" FORMING ELEMENT)

ASD TR 61-191(II)

IV-44

GRAPH IV B-4 COMPOSITE GRAPH FOR ANDROFORM BUCKLING LIMITS FOR (20" FORMING ELEMENT)

GRAPH IV B-5

ASD TR 61-191(II)

BUCKLING LIMITS
SPLITTING LIMITS ALTERNATE METHOD OF PLOTTING ANDROFORM LIMITS (2024-T4 ALUMINUM) 0.040 - 0.071 - 0.080 - 0.090 - 0,032 œ 20 ₩ 500

<u>5</u>

IV-46

150

Design Tables

Design tables for all materials for the 50 inch forming die have been established with the exception of tungsten, beryllium and J-1570. Tungsten and beryllium have to be formed at elevated temperatures. Mechanical property values for J-1570 in the heat treated condition were not obtained. Design tables are in Tables IV B-1 through IV B-16.

Knowing $R_{\rm T}$ and t, the minimum $R_{\rm L}$ can be read directly from the table. Splitting and buckling failure is designated on the table.

TABLE IV B-1 ANDROFORM LIMITS HW21XA-T8 (MAGNESIUM-THORIUM)

					Ma.	Material I	Thickness	(t)			±		
Trans.	910.	.020	.025	-032	040.	050.	.063	.071	080.	060-	001.	325	781.
(R _T)					Long1	Longitudinal	Radius	(R _L)					
		- •	BUCKLING						SPLITTING	TING			
ୟ	2060	1310	848	518	330	380	624	538	809	549	727	η56	1427
36	1380	885	268	344	216	250	316	357	399	£24	7/27	989	952
04	1040	662	420	253	162	189	237	265	300	318	354	<i>ካ</i> ሪተ	417
R	825	525	326	203	135	158	188	213	242	256	263	375	295
8	688	430	276	170	108	126	157	178	201	213	237	316	η 128
8	506	325	208	127	82	94	611	133	150	159	178	237	350
100	901	260	166	101	65	75	95	107	120	121	142	187	281
120	341	217	139	85	54	62	79	89	100	106	118	156	234
140	291	107	. 811	75	147	53	89	76	85	91	700	ηετ	201
160	253	163	104	1 9	41	47	09	67	75	80	88	911	177
180	220	145	92	57	36	745	53	59	68	72	62	ηΟτ	158
800	506	130	83	51	33	38	Ĺτι	53	09	ф9	τ	η6	140

Table - IV B-2 ANDROFORM LIMITS 2024-T4 ALUMINUM

					*	Material I	Thickness	(t)					
Trans. Radius	910.	.020	.025	-032	040.	050.	.063	.071	080.	060.	.100	.125	781.
(P _T)					Longit	Longitudinal	Radius	$(R_{\rm L})$					
	Ø	Buckling					S	Splitting					
8	1110	700	1460	278	177	120	151	169	161	212	237	297	544
30	745	524	302	188	120	81	705	115	129	941	158	198	298
04	555	350	230	141	8	99	77	98	97	110	122	152	220
ጸ	544	285	184	113	72	84	61	68	77	87	96	ารา	182
8	375	240	153	ま	8	017	15	57	59	73	81	101	151
8	281	178	315	02	54	30	38	43	64	45	98	76	112
100	225	144	92	26	36	45	31	35	39	77	611	99	8.
27	187	120	76	1,7	30	8	56	29	32	37	140	51	75
140	160	103	%	040	%	17	22	25	28	31	35	143	65
160	141	8	58	35	22	15	19	22	24	27	30	38	57
180	125	8	51	31	8	14	17	19	22	た	27	34	51
800	112	72	94	28	18	12	15	17	80	22	54	30	94

TABLE IV B-3
ANDROFORM LIMITS
17-7 PH (STAINLESS STEEL)
(CONDITION TH 1250)

					Mari	Material I	Thickness (t)	(£)					
Trans. Radius	910.	.020	.025	-032	040.	050.	.063	170.	080.	ϡ.	001.	321.	.187
(RT)					Long1	Longitudinal	Radius	$(R_{\rm L})$					
		BUCKLING	JNG					SPLI	SPLITTING				
જ્ઞ	695	544	284	181	173	219	276	314	348	393	471	559	822
30	1469	300	190	711	911	140	184	208	232	260	291	364	541
0+	350	222	142	88	87	110	138	154	174	198	220	276	90†
ያ	278	178	1 11	70	70	92	οττ	125	041	156	174	217	326
8	232	641	95	58	58	73	92	104	117	131	941	184	566
8	172	111	72	†††	††	55	69	78	88	98	109	138	20 4
100	139	8	57	35	35	44	55	62	70	79	88	110	164
०ट्टा	116	75	48	29	29	37	94	52	58	65	74	91	136
140	95	1 9	147	25	25	31	017	44	50	56	63	78	711
160	87	95	36	22	22	28	35	Š	†††	64	55	89	102
180	78	50	32	20	20	54	31	35	39	ካተ	64	61	92
200	70	45	29	18	18	21	28	31	35	39	44	55	82

TABLE IVB-4
ANDROFORM LIMITS
PH 15-7 MO (STAINLESS STEEL)
(CONDITION TH 1050)

					May 1	terial T	Material Thickness (t)	(£)					
Trans. Radius	910.	.020	.025	-032	040.	050.	.063	.071	080.	960.	ooi.	.125	.187
(F)					Longi	Longitudinal	Radius	(R_{L})					
				BUCKLING	ING					LO L	SPLITTING	ئ	
ଷ							ħL9	521	125	642	720	890	
30						700	8414	350	384	432	1,80	009	920
O 1					829	530	330	263	285	324	363	451	656
R					299	422	268	210	232	261	288	357	540
8				862	550	356	524	176	192	216	540	302	450
88				650	418	264	165	132	ተተፒ	162	180	226	336
100			848	522	333	214	134	106	116	130	145	180	268
82			71.1	432	275	177	2112	88	92	108	121	151	228
140		950	607	369	238	152	95	7.1	83	93	96	129	191
160		835	527	325	208	133	83	99	73	82	90	113	169
180		740	1,71	290	185	118	75	59	65	73	81	100	151
800		099	424	260	165	106	29	53	57	64	72	68	133

TABLE IVB-5 ANDROFORM LIMITS AM-350 (STAINLESS STEEL) (AGE HARDENED AT 850°F)

					Ma	Material I	Thickness	(£)					
Trans.	910.	.020	.025	-032	040.	.050	.063	170.	080.	860.	.100	.125	.187
(R _T)					Longit	Longitudinal	Radius	$(R_{\rm L})$					
	i	BUCKLING	ING					SP	SPLITTING				
&	η6 η	320	204	125	114	143	181	200	226	252	288	353	522
30	331	211	135	82	78	94	120	133	148	171	191	238	354
04	250	159	101	79	57	72	8	101	113	127	144	176	264
ß	661	921	18	611	91	58	13	81	26	104	115	141	214
99	791	οττ	89	τη	38	84	09	29	77	98	%	120	179
8	125	62	15	31	29	36	45	51	57	ф9	72	89	134
100	66	63	र म	25	23	29	36	4.1	94	52	58	17	108
120	82	52	34	21	15	24	31	34	38	43	48	90	8
140	τL	54	. 63	18	16	21	92	29	33	37	41	52	77
760	<i>2</i> 9	017	92	91	1,4	18	23	25	59	32	36	54	29
180	55	35	23	14	13	16	20	23	<i>S</i> e	29	32	70	90
200	64	31	20	12	11	14	18	20	23	25	29	35	52

TABLE IVB-6
ANDROFORM LIMITS
A-286 (STAINLESS STEEL)
(AGE HARDENED AT 1325°F)

					Mag.	Material I	Thickness	(£)					
Trans. Radius	910.	020	.025	-032	040.	.050	.063	.071	080.	œ0·	001.	325.	.187
(F)					Longit	Longitudinal	Radius	(R_L)					
			BUC	BUCKLING					51	SPLITTING	כיז		
ଷ			760	694	300	190	181	700	225	252	288	353	522
30		308	511	313	198	120	120	133	148	171	161	238	354
017	938	009	380	203	149	95	06	101	113	771	ነተር	170	764
R	750	475	302	186	911	76	7.3	81	76	104	115	141	714
8	625	395	252	153	66	79	09	67	77	36.	96	120	179
8	459	298	180	116	80	48	54	51	57	ý.	72	89	134
100	372	236	152	87	60	38	36	14.1	94	52	58	7.1	108
821	309	199	128	77	50	32	31	34	38	43	841	00	96
140	265	170	109	29	4.2	28	55	59	33	37	Τη	52	77
160	232	150	96	59	37	1 77	23	25	29	32	36	45	ĵ
180	708	132	85	52	33	22	20	23	کے	67	32	140	ეი
88	188	119	76	L+1	30	19	18	70	23	52	67	35	52

TABLE IV B-7
ANDROFORM LIMITS
USS-12-MOV (STAINLESS STEEL)
(AGE HARDENED AT 800°F)

					S	Material T	Thickness	(t)					
Trans. Radius	910.	020	.025	-032	040.	.050	.063	.071	080.	060.	001.	.125	.187
(R _T)					Long1	Longitudinal	Radius	$(R_{\rm L})$					
	BUCKLING	ING					SPL	SPLITTING					
8	333	512	155	700	545	313	768	0††	56 ₇	1 65	وکی	822	37.78
30	220	139	707	132	105	708	405	.867	328	369	11-1	919	778
01	166	106	1.1	104	124	155	195	220	L#?	627	310	396	584
R	133	48	62	80	66	130	150	521	195	222	847	309	457
%	ττι	7.1	52	99	82	104	129	146	165	186	202	797	278
8	83	53	38	50	حَن	لات	96	110	121	139	154	233	290
100	99	43	31	7:0	50	20	7.8	88	66	112	124	155	टमर
021	56	36	26	33	4.1	51	65	73	82	93	104	129	190
140	48	30	22	28	35	44	95	<u>ن</u> 3	7.1	79	88	110	105
160	7t	27	19	25	31	37	64	55	62	69	77	96	144
180	37	44	17	21	85.	34	41	64	55	62	69	98	130
300	33	נא	16	0건	25	31	39	ተተ	64	55	حق	LL	315

TABLE IV B-8
ANDROFORM LIMITS
TITANIUM (6A1-4V)
(SOLUTION TREATED)

					S	terial T	Material Thickness	(t)					
Trans. Radius	910.	.020	.025	-032	040.	.050	.063	120.	980.	060.	.100	ंडर	.187
(Fr)					Longi	Longitudinal	Radiue	$(R_{\underline{L}})$					
	BU(BUCKLING						SPLITTING	NG				
83	200	130	82	90	47	76	118	133	148	155	187	231	298
30	132	85	55	0۴	50	79	80	06	100	112	1:25	156	233
O ⁺ (102	65	14.7	30	37	L+1	90	ć7	75	84	26	118	174
S	81	51	33	24	30	38	۲۲	53	09	58	92	93	140
99	57	Z†I	58	20	25	31	040	45	50	56	63	78	118
80	51	32	50	13	19	23	30	33	37	42	<i>۲</i> ۲	59	87
001	40	56	17	12	15	19	₽Z	27	30	34	38	λ 4	70
120	33	22	14	10	13	16	50	55	25	58	31	740	58
140	30	18	टा	8.6	11	13	17	19	21	क्र	12	34	50
091	25	91	10	7.4	4.6	टा	15	17	19	21	73	67	ተተ
180	75	14	8.2	6.4	₽•8	10	13	15	17	19	21	55	39
200	50	13	8.2	6.0	7.5	9.5	त्र	13	15	17	19	23	35

TABLE IV B-9
ANDROFORM LIMITS
TITANIUM (13V-11Cr-3A1)
(AGE HARDENED 900°F)

					\$	Material T	Thickness	(£)					
Trans.	910.	.020	.025	-032	040.	050.	.063	.07	080.	060.	001.	.125	.187
(R _T)					Longi	Longitudinal	Radius	$(R_{\rm L})$					
	BUCKLING	-				31	SPLITTING	_O					
8	88	83	105	132	164	503	261	<u>.</u> 95	334	370	418	5.3	7.0
30	59	55	7.0	90	112	139	5 2 1	η6Τ	627	6/2	527	ं क्	215
04	45	7;7	05	òc	83	101	131	747	Lot	187	607	857	(S)
ያ	35	33	7.tq	53	57	83	105	118	134	150	155	(-O2	309
8	30	28	37	45	55	69	88	66	110	35t	138	173	65-
8	22	73	22	34	44	53	96	47	83	93	104	671	134
100	18	17	12	27	34	74	53	59	ý۲	7.5	84	104	255
120	15	14	18	23	53	35	†††?	49	55	ó3	70	88	130
140	13	75	15.	19	45	30	38	143	1,8	54	0c	75	110
160	נו	10	13	17	21	26	33	37	4.	1, 4	5,2	44	97
180	6.6	9.5	ટા	15	19	23	30	33	37	77	147	58	87
300	8.9	9.0	11	14	17	12	25	30	34	38	24	52	78

TABLE IV B-10
ANDROFORM LIMITS
VASCOJET 1000 (H-11)
(HARDENED)

					Ma Ma	Material Thickness	nickmess	(£)					
Trans. Radius	910.	020.	.025	-032	040.	.050	.063	170.	080.	060-	.100	.125	.187
(P _T)					Longit	Longitudinal B	Radius	$(R_{\rm L})$					
	BUCKLING	ING						SPLITTING	D.V.	i !			
ଷ	c77	178	113	145	180	4/ىك	ن85	322	305	η.Τ. 1	181	573	855
30	185	123	42	56	150	143	161	:OT>	Sit2	27C	304	375	504
O [†] 1	139	89	55	7/5	90	171	747	lóc	181	t¦O <i>?</i>	クラウ	~გ~	ذيبا
ß	110	7.1	517	86	75	96	114	128	17 7 [Tot.	180	955	340
%	93	66	38	617	0;	75	95	107	ודין	135	150	190	-72
88	7.0	54	£2	35	łξ	57.	7.1	90	τć	102	11.	τητ	212
100	56	36	3	62	30	lt.o	58	ήç	<i>1</i> 4.	78	90	ት፫ፒ	J70
120	1,5	30	<u></u>	با زح	30	38	48	53	O.,	80	آرً	ボ	0;त
07[0;1	56	17	12	56	33	14.1	: :†:	52	58	40	61	ולו
160	35	73	1.4	18	23	67	36	940	λοί	51	50	7.1	100
180	32	20	13	15	70	Ğ÷	34	50	۲ <u>۰</u>	45	51	3.	95
800	58	18	ㄷ	15	18	£3	67	32	<u> </u>	٦.	40	23	35

TABLE IV B-11
ANDROFORM LIBITS
RENE '41
(AGE HARDENED AT 1400°F)

					Mas	Material II	Thickness	(£)					
Trans. Radius	910.	.020	.025	-032	040.	050.	.063	170.	.080	œ0·	.100	.125	.187
(Pr_T)					Long1	Longitudinal	Radius	$(R_{\rm L})$					
	 - 	BUCKLING	ING					ຜ	SPLITTING				
8	881	570	198	ħ22	141	891	516	240	272	303	342	ħ Zħ	632
30	165	375	540	Lήτ	46	113	841	191	181	204	228	284	433
04	844	281	180	ττι	17	98	301	120	136	151	1/1	208	320
ß	350	225	144	88	51	69	87	76	011	123	136	170	255
09	294	187	120	1 7L	24	58	73	80	88	102	114	143	218
8	220	745	06	95	35	£†7	55	19	89	78	98	107	160
100	176	113	73	ηη	28	34	44	84	55	19	69	85	127
120	147	94	09	£8	214	29	37	14	54	51	57	1,2	108
140	126	81	52	32	20	25	₹.	35	04	43	64	62	91
160	111	7.7	54	28	18	21	12	31	35	39	143	₹5	80
180	66	49	017	25	16	19	25	28	31	34	38	84	72
200	88	57	36	22	14	17	22	24	Lz	30	34	टम्	63

TABLE IV B-12 ANDROFORM LIMITS INCONEL X (AGE HARDENED AT 1300 °F)

					¥.	Material II	Thickness	(±)					
Trans.	910.	020.	.025	.032	040.	.050	.063	170.	080:	060.	001.	.125	781.
(F)					Long1	Longitudinal	Radius	(R _L)					
			BUCK	BUCKLING	ļ	!		ัช	SPLITTING				
8	1330	850	543	331	212	136	124	138	157	177	961	842	365
30	980	595	360	252	142	91	82	92	103	117	130	163	546
O†	059	52ħ	212	991	107	89	19	69	77	88	~	121	184
ያ	528	340	218	133	85	54	64	55	62	70		96	145
9	<i>ካ</i> ተተ	285	180	111	72	94	T †	94	52	58	65	82	121
8	331	ટાટ	136	†8	54	34	31	35	39	† †	64	61	92
300	997	02τ	109	<i>L</i> 9	143	28	25	28	31	35	39	841	73
120	222	241	91	56	35	22	21	23	56	29	32	ħΊ	61
041	190	122	78	L+t	30	19	18	19	22	25	28	34	52
160	191	101	68	टक्	27	17	16	17	20	22	25	31	917
180	149	65	61	37	24	15	14	16	18	20	22	28	141
200	134	85	55	33	21	1,4	12	14	91	18	20	777	37

TABLE IVB-13
ANDROFORM LIMITS
HASTELLOY X
(SOLUTION TREATED)

					, ak	Material I	Thickness	(£)					
Trans. Radius	910.	020	.025	-032	040.	050.	.063	170.	980.	060.	οη .	.125	781.
(Fr)					Longi	Longitudinal	Radius	$(R_{\rm L})$					
					BUCKLING	QQ.				SF	SPLITTING		
જ					895	572	357	586	225	200	237	762	144
30				932	009	384	231	190	150	140	158	161	262
O 1 1				1 10 <i>L</i>	450	288	178	142	111	701	811	/ ተፒ	217
ያ			912	295	350	230	777	114	8	85	95	711	174
8			760	794	300	190	120	94	75	70	79	66	149
8		006	568	350	222	142	68	7.1	95	95	65	23	110
100		720	954	280	178	114	72	57	45	٤4	Łħ	65	87
120	935	009	380	232	149	95	09	ሪ ቱ	37	35	39	611	73
140	800	510	324	204	129	81	52	Tή	32	30	33	Z†	63
160	700	544	284	176	111	7.1	45	35	28	27	62	36	55
180	625	395	256	155	66	63	14]	31	25	54	92	&	6,0
300	563	355	228	141	90	57	36	29	22	20	ħZ	62	71

TABLE IVB-14
ANDROFORM LIMITS
L-605
(SOLUTION TREATED)

					Mar	Material I	Thickness	(t)					
Trans. Radius	910.	.020	.025	-032	040.	.050	.063	170.	080-	060.	.100	.125	.187
(F)					Longit	Longitudinal	Radius	$(R_{\rm L})$					
		i :	BUCKLING	ING					Ω.	SPLITTING			
&				641	413	264	181	500	226	252	288	353	523
30			002	07.tl	275	174	120	133	148	τ/1	191	238	354
01		578	875	325	505	130	06	τοτ	911	127	ተ ተፒ	176	465
ያ		ر 6 0	07.ħ	75t	163	104	73	81	76	104	115	141	714
9	856	550	346	וופ	135	88	09	2o	22	86	96	120	179
8	638	014	250	159	102	66	54	51	25	4ċ	72	68	134
100	510	325	210	128	82	52	35	4.1	λú	52	58	71	108
120	ी.ट.ट	271	175	105	58	† ₇ †;	31	34	38	43	48	90	96
140	364	232	150	55	59	38	نٰے	29	33	37	14.7	52	11
160	319	220	130	80	51	33	23	25	67	32	30	5 t ₁	50
180	283	181	120	72	4.5	65.	07	23	کنے	67	32	υ τ	O.
200	757	163	105	4 ℃	14.1	کے	18	07	57	52	67	35	ζ,

TABLE IVB-15
ANDROPORM LIMITS
COLUMBIUM (10 MO-10Ti)

					Mat	Material I	Thickness	(t)					
Trans. Radius	910.	020	.025	-032	040.	.050	.063	.071	080.	%0.	001.	.125	.187
(FT)					Longit	Longitudinal	Radius	$(R_{\rm L})$					
		BUCKLING	LING				SPLITTING	NG					
8	378	242	155	95	108	135	ηΖι	193	215	078	692	336	264
30	253	165	100	63	72	96	113	126	143	162	177	524	333
O†I	161	122	2.2	84	54	<i>L</i> 9	85	95	108	120	135	167	250
8	151	96	62	38	143	75	89	77	28	97	108	134	200
09	127	81	52	31	36	547	25	63	7.1	81	6	113	17c
8	Ģ(09	38	ħZ	27	34	£† ₇	सह	45	19	29	85	126
100	92	841	31	19	22	27	34	38	44	611	55	29	100
120	63	14]	56	16	18	23	62	35	95.	14	54	45	85
140	45	35	. 22	ητ	91	19	25	ನಿನ	31	36	39	611	72
091	<u>,</u>	31	19	12	14	1.7	21	₽5	Z	31	34	Z†1	63
180	ċ†	27	17	11	12	15	19	21	₩2	27	30	38	25
200	38`	†₁2	16	οτ	11	14	17	19	21	ħΖ	27	34	50

TABLE IVB-16
ANDROFORM LIMITS
MOLYBDENUM (0.5% Ti)
(HOT ROLLED, STRESS RELIEVED, DE-SCALED SHEET)

					Ma	Material Thickness	nickness	(t)					
Trans. Radius	910.	.020	.025	-032	070.	.050	۶90.	.071	080.	060.	.100	325	.187
(Pr)					Long1	Longitudinal E	Radius	$(R_{\rm L})$					
			BUCKLING	ሪ ካ					SI	SPLITIG			
8						820	557	61,	701	780	<i>5</i> 28		
30					850	544	374	413	475	525	1 65	735	
O ₁					638	410	279	314	350	393	5111	845	81.3
R				300	513	328	223	250	283	318	158	884	657
8				6.3	1,25	274	187	205	232	564	262	367	554
&			918	200	320	70 2	139	157	175	198	153	922	410
100			959	1,00	255	164	112	126	141	160	175	219	326
150		586	ተተና	335	213	136	† ₁ 6	105	117	132	871	185	276
140		735	1,72	787	183	117	62	89	102	411	9टा	159	233
160	1000	01C	1,08	250	191	1.01	70	78	88	100	110	138	212
180	1.80	570	364	4188	143	92	Ġ.	70	79	88	98	124	18<
200	200	510	328	200	128	82	95	62	70	78	87	011	162

SECTION V
DEEP RECESSING
A. DEEP DRAWING WITH MECHANICAL DIES
B. MANUAL SPINNING

DEEP DRAWING WITH MECHANICAL DIES

Description of the Forming Process

The deep drawing tests in this program were performed using double action dies as shown in the sketch below.

FIGURE V A-1 DOUBLE ACTION DRAW DIE

Equivalent results can be obtained in any press provided with an adjustable blank holder pressure and sufficient power to provide the necessary drawing force.

For the experimental cup forming in this program, dies of the type shown in the above sketch were used in two different presses. The presses used were: (1) the 1000 ton and (2) the 600 ton Lake Erie Hydraulic presses. In both presses the blank holder pressure is obtained from the lower cushion which is air operated on the 600 ton press, and hydraulic on the 1000 ton press with a maximum of 150 tons in both cases.

The forming tool consists of (1) a cylindrical mechanite steel casting used to secure the draw die to the main ram, (2) a draw die, (3) blank holder, and (4) punch. The draw dies and blank holders are hardened steel with hard chrome plating on the surfaces in contact with the part. The cup wall clearance is 20% of the metal thickness. The punches are also hardened steel. The draw die and blank holder are provided with holes to accommodate four 500 watt heaters each for the elevated temperature tests.

The friction between the surfaces of the part and the tool must be held to a minimum for good drawability. Two factors that can influence the frictional force are: (1) the surface condition of the material and (2) the drawing lubricant. The tooling surfaces must be polished and considerably harder than the material being formed.

Although the surface finish does not appear to influence drawability to any significant extent from friction effects, materials such as the H-ll tool steels may be supplied with a heavy oxide surface coating that scales off during the draw operation. A good general purpose lubricant such as "International Drawing Compound #155DS" is essential in cupping all materials at room temperature. A colloidal graphite preparation such as "Electrofilm T-22" is recommended for elevated temperature cupping.

The applicability of this data to cupping with single action presses using rigid blank holders involves certain qualifications. Drawability is reduced considerably in the rigid type blank holders unless a critical amount of clearance is provided for the thickening of the material.

FIGURE V A-2 SINGLE ACTION DRAW DIE

Too great a clearance may result in an excessive draw force because of buckling while insufficient clearance will create a condition similar to that of excessive blank holder pressure in double

action tools. Applicability would also depend to a large extent on the type of material being considered.

In general, particular attention must be paid to the pressure distribution on the blank holder, the surface condition of the draw die, and the blank holder. Any scratches or marks on these surfaces perpendicular to the direction of movement of the material can seriously reduce the drawability.

Definition of Part Shape and Geometrical Variables

The part shape for this investigation is limited to thin walled cylindrical cups. The geometrical variables involved are shown below.

FIGURE V A-3 GEOMETRICAL VARIABLES FOR CUPPING

R = Radius of the blank

Radius of the die

h = Rh- Rd = overhang flange width

H = finished height of cup with no flange

rp = radius of the punch

r_d = draw radius

t = material thickness

The radius of the blank (R_b) and the radius of the die (R_d) are used to define drawability. The end radius of the punch r_p was held constant at 5/8 inches. The draw die corner radius r_d was made equal to ten times the material thickness. These values of r_p and r_d were selected to obtain maximum drawability for a wide variety of materials. For values of r_d greater than 10t excessive blank holder pressure would be required to prevent buckling in unsupported material around the die radius. This condition is often termed "puckering." Smaller values of r_p and r_d cannot be used for materials with limited bend ductility. Although materials with good bendability could be formed at lower values of r_d , the tension in the cup wall raises with smaller values of r_d ; hence, the drawing limit is reduced.

The drawability is defined as the maximum value of the ratio $h/R_{\bf b}$ that results in a cup free of defects. Plotting $h/R_{\bf b}$ vs. h/t on log-log paper yields a curve with the following shape:

FIGURE V A-4 TYPICAL THEORETICAL FORMABILITY CURVE FOR THIN WALLED CYLINDRICAL CUPS

Since h R b - R only the values of three variables (R , R only the values of three variables (R only the blank can be successfully cupped. Similarly, if the material thickness and the cup or die diameter is given, then the largest blank can be determined graphically by assigning values to R as shown below:

FIGURE V A-5 TYPICAL FORMABILITY CURVE SHOWING A CONSTANT Re 1 LINE

A series of constant t and $R_{\mbox{\scriptsize d}}$ lines can be superimposed over the drawability curve and values of $R_{\mbox{\scriptsize b}}$ obtained graphically.

The drawability limit lines for various materials fall in different locations on the graph:

FIGURE V A-6 TYPICAL FORMABILITY CURVES ILLUSTRATING THE POSITION OF VARIOUS MATERIALS

There is a correlation between certain mechanical properties of a material and the drawability of the material; hence, the drawability of any material may be predicted on the basis of its mechanical properties.

Predictability Equations

The index I for cupping is:

$$I = \frac{E}{S_{CY}} \times \frac{S_{TY}}{S_{CY}}$$

where:

E = Elastic Modulus

 $S_{CY} = Compressive Yield Strength$

S_{TY} = Tensile Yield Strength

The value of the index I increases with increasing drawability and may, therefore, be used to position the forming limit lines on the graph. The shape of the curve, on a log-log plot, is defined by the following equations:

Plastic Buckling Limit Line

$$\frac{\mathbf{h}}{R_{\mathbf{b}}} = 0.258 \left[\mathbf{I} \times 10^{-1} \right]^{.139} \left[\frac{\mathbf{h}}{\mathbf{f}} \right]^{.0506}$$
 EQUATION I

Elastic Buckling Limit Line

$$\frac{\mathbf{h}}{R_{\mathbf{b}}} = 27.0 \left[\mathbf{I} \right]^{.618} \left[\frac{\mathbf{h}}{\mathbf{f}} \right]^{-2}$$
 EQUATION II

In order to simplify the development of the limit lines on a composite graph, the following index lines and points (where the limit lines and index lines intersect) are given.

Index Lines

$$\frac{\mathbf{h}}{R_{\mathbf{b}}} = 0.258 \left[\frac{\mathbf{h}}{\mathbf{t}} \right]^{0.19}$$
EQUATION III
$$\frac{\mathbf{h}}{R_{\mathbf{b}}} = 3.96 \times 10^8 \left[\frac{\mathbf{h}}{\mathbf{t}} \right]^{-5.24}$$
EQUATION IV

Intersection Points

$$\frac{\mathbf{h}}{R_{\mathbf{b}}} = I \times 10^{-3}$$
 EQUATION VI

FIGURE V A-7 TYPICAL FORMABILITY CURVE AND INDEX LINES

Use of the predictability equations to determine the formability limit line for a particular material can best be illustrated by the following example:

Step 1: Calculate the value of I:

For Tungsten at 1000°F:

$$E = 50.5 \times 10^6$$

$$S_{CY} = 101.5 \times 10^3 : I = \frac{E}{S_{CY}} \times \frac{S_{TY}}{S_{CY}} = 542$$

 $S_{TY} = 110.4 \times 10^3$

Step 2: Locate the index lines from Equations (III) and (IV).

The index lines for cupping are plotted as follows:

- 1. For Equation (III) the slope of the line is .19 and its intercept on the h/R_B axis is .40.
- 2. For Equation (IV) the slope is -5.42 and the h/t intercept is 68.

From this, the index lines are constructed as shown below:

FIGURE V A-8 SAMPLE CONSTRUCTION OF THE THEORETICAL FORMABILITY LIMIT CURVE FOR TUNGSTEN AT 1000° F

From Equation (V) the elastic buckling limit line for tungsten intersects the index line at $\frac{\mathbf{h}}{\mathbf{t}} = \mathbf{I} \times 10^{-1} = 54.2$ and has a slope of -2. From Equation (VI) the plastic buckling limit line for tungsten intersects its index line at $\frac{\mathbf{h}}{R_{\mathbf{b}}} = \mathbf{I} \times 10^{-3} = .542$ and has a slope of .051. The two segments of the formability limit line are joined with a smooth curve.

Composite Graphs

The composite graphs are based on average values of the mechanical properties reported in Progress Report #4. The predicted cupping limits for a majority of the program materials were verified experimentally.

Five materials presented special problems with regards to experimental verification as outlined in the following chart:

Material	E Sty Scy Scy	Temperature (°F)	Experimental Verification
HM21XA-T8	495	R.T.	Note (1)
Beryllium	3970	1200	Note (2)
Molybdenum .5 Ti	432	900	Note (3)
Columbium 10 Mo-10 Ti	177	R.T.	Note (1)
Tungsten	542	1000	Note (3)

FIGURE V A-9 MATERIALS REQUIRING SPECIAL MENTION

Note (1): HM21XA-T8 and columbium (10 Mo-10 Ti) at room temperature do not exhibit a typical drawing failure. In both these materials failure originated in the bend radius of the punch and proceeded across the blank on a line 45° to the grain direction. Since the drawing index is based on failure in the cup wall, experimental verification cannot be expected.

Note (2): Beryllium at 1200°F failed in a brittle manner in bend radii. By the same reasoning applyed to HM21XA-T8 and columbium (10 Mo-10 Ti) in Note (1), beryllium at 1200°F cannot be evaluated.

Note (3): The experimental cup tests for molybdenum and tungsten were performed at 600 °F. At this temperature, which is above the brittle to ductile transition temperatures of the metals, reasonably good agreement was obtained between the test data and the predicted formability at the

higher temperatures. This indicates that the forming temperature is not critical once the material is in its ductile range.

Graph VA-2 shows an alternate method of plotting the critical variables, h, R_b , and t, for a given material; in this case 2024-0 aluminum. This type of graph has the advantage that values of the parameters may be read off directly thus eliminating the calculations required when using Graph VA-1.

GRAPH V A-I

COMPOSITE GRAPH OF DEEP DRAW LIMITS FOR CYLINDRICAL CUPS

GRAPH V A-2 ALTERNATE METHOD OF PLOTTING DEEP DRAW FORMABILITY LIMITS 2024-0 ALUMINUM

Design Tables

The design tables were obtained from the composite graphs. The values of $R_{\bf d}$, $R_{\bf b}$, h, and t were obtained by overlay plots as described in the previous section. The value of H, the height of an unflanged cup, was calculated using the following equation:

FIGURE V A-10 CURVE FOR CONVERTING FROM OVERHANG (h)
TO FINAL CUP HEIGHT (H)

The value of H for cupping is based on a constant volume and a net material thickness change of zero. Production conditions that favor thinning of the cup wall (such as ironing) because of minimum metal clearance between the punch and die or oversize material gage, will result in a larger value of H than is predicted, provided the material does not fracture as a result of the increased cup wall tension that results from these conditions.

It should also be pointed out that under conditions where a certain amount of buckling and ironing can be tolerated, the stated formability limits are conservative. This is particularly true in the cupping of soft materials such as aluminum and magnesium (at elevated temperature) where die wear is not a problem. The following sketches illustrate this point.

FIGURE VA-II CUP WALL TENSION VS. BLANK HOLDER PRESSURE

- A The minimum pressure required to prevent flange buckling.
- B = The ideal pressure required to produce maximum formability where flange buckling and ironing is permitted.
- C = A low pressure such that the ironing action raises the cup wall tension excessively.

The design tables are based on blank holding pressure in the range from B to A which represents a comparatively small range of pressures. On the splitting limit curves, the increase in drawability obtained is shown as follows:

FIGURE V A-12 FORMABILITY LIMIT INCREASE FROM REDUCED BLANK HOLDER PRESSURE

TABLE VA-1
DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS
17-7 PH
(ANNEALED CONDITION "A")

Gage (t)		910.	.020	.025	-032	040.	.050	.063	170.	.080	% 00.	.100	इटा:	.187
Die Diameter (Dg)	ter		Ē	Flange He	eight (H)		Blank Diameter	eter (D _b)						
,	26	₽.5	2.3	2•3	2.3									
4	Ħ	7.2	1.1	1.1	τ•τ									
	ရ	3.9	4.2	4.5	8*1	9*4	4.5	4.5						
v	щ	1.4	Ι•Τ	2.1	2.3	2.1	2.0	5.0						
	^Q	5.1、	5.5	0.9	6.5	6.9	7.1	0.7	0.7	6.8	2.9			
n	E	1.4	1.7	2.2	2.7	3.2	3.4	3•3	3•2	3•1	3.0			
-	ಗೆ	5. 5	₹9	7•1	7.8	₽•8	9.1	5.6	9.5	9.3	5•٥	τ•9	6•5	
÷	H	7.4	1.7	2.2	2.8	3.5	τ•η	با ان ف	S•4	4.4	4.3	3.2	3.0	
t	ದೆ	₹•2	7.8	8.7	0.6	2.6	10.5	11.3	7.51	11.8	11.7	्रगा	11.4	
^	н	1.5	1.8	Z•2	8.5	3.5	6.4	5.1	9• و	2.8	9•5	5•5	5•3	
4	જુ	8.5	8.9	ት .6	10.1	10.9	11.9	12.8	13.4	13.9	14.1	7,41	13.14	13.4
o	н	1.5	1.8	2•2	5.8	3.5	۴•4	5.3	6*5	5 •9	8•ი	6.8	ဝ•္ဝ	5.9
٠	9्त	9.6	10.0	10.6	11.3	12.1	13.1	14.2	14.8	15.4	15.9	1ं∙3	५•९ा	15.8
•	H	5°T	1.8	5• 5	2.8	3.5	ተ•ተ	₽•5	τ • 9	2•9	7.3	8.7	7.8	7.2
α	ΩP	L.01	τ•ττ	2.11	५•टा	13•3	₹•4۲	15.5	76.2	15.9	17.5	18.1	18.7	18.3
,	Ħ	9*1	6•τ	2.3	2.8	3.5	η•η	5.5	5•6	6.9	7.6	8.2	8.9	8.4
o	^Q d	٤•τπ	ट•टा	12.8	13.6	14.4	15.4	16.7	17.5	18.2	19.0	19.7	70-1	8.02
`	ш	1.6	1.9	2•3	2.9	3.5	4.4	5.5	ے•٥	6•9	7.7	8.5	9.6	8.6
10	ad	12.8	13.3	13.9	14.7	15.6	16.6	17.8	18.7	19.4	ح-0ءع	21.1	4.55	23•3
	H	9.1	1.9	2•3	2.9	3.5	†₁• †₁	5.5	?• 9	6.9	7.8	9*8	10.0	11.1

TABLE VA-2 DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS

USS-12-mov (Annealed) at 800°F

A-286 (SOLUTION TREATED)

INCONEL X (C.R. ANNEALED)

J-1570 (SOLUTION TREATED)

Gage (t)		910.	.020	.025	-032	040.	.050	.063	170.	.080	œo.	.100	321.	.137
Die Diameter $(D_{\hat{G}})$	ter		E4	Flange He	Height (H)		ık Diam	Blank Diameter (Db)						
·	දු	2•2	2•2	2.1										
-1	н	0•τ	6.0	6.0										
,	o _C	3.7	0*17	4.3	4.5	4.3	4.3							
צ	Ħ	1.2	1.5	β* τ	2.0	1.8	1.8							
	_C	₽.4	2•5	L•5	6.1	6.5	9.9	6.7	₽ * 9	₹9				
n	ш	1.2	1.5	1.9	2.4	2.8	5.9	6•7	2.7	9*7				
	ይ	0.9	₽*9	8.9	7.4	8.0	8.5	8.9	8.8	9 . ن	8.6	8.5		
;	щ	1.3	1.6	1.9	2.4	3.0	3.6	3.9	3.8	3.7	3.6	3.6		
u	िय	7.1	5.7	7.8	9.8	9.3	10.0	10.7	ο•ττ	0.11	6.01	10.8	ن-10	
`	щ	1.3	1.6	5.0	2•5	3.1	3.7	ካ° ካ	L• 17	L* 17	9•11	9.	₦•₦	
¥	ο _α	8.2	8.7	9.1	8.6	5 •0T	11.3	ट•टा	८•त्त	13.0	⋷• €੮	13.2	12.9	
•	Ħ	1.3	1.6	2.0	5.5	τ•ε	3.9	L•17	5.2	5.5	2.5	2.5	5.5	
,	<u>વ</u>	£•6	8*6	10.3	6 • 01	9•11	५•त	13.5	14.1	9*41	15.0	15.4	15.2	14.7
_	H	ϯ• τ	1.6	5.0	5.5	3•1	3.9	8*4	5•3	6•5	ó . 3	5.0	Ö.5	0.0
σ	^Q C	η•οτ	10.9	77.11	ाः त	8•त	13.7	14.8	15.4	16.0	10.0	17.1	17.5	17.1
>	H	η•τ	1.7	2.1	9.2	3.1	3.9	8.4	7.5	6.0	و • و	7.1	7.7	7.4
o	^q d	5.11	12.0	12.5	13.2	14.0	6•ητ	16.0	16.7	17.4	18.0	18.7	19.7	19.3
`	H	1.4	1.7	2.1	5.6	3.2	3.9	8°ħ	5.5	1.6	2.9	7.4	8.5	τ.8
10	^o d	9•टा	13.0	13.6	14.3	15.1	0.91	17.2	17.9	18.6	19.4	70.0	21.3	21.6
	H	1.5	1.7	2.1	2.6	3.4	6*8	6.4	5.5	6.1	6.9	7.5	8.7	9.1

FENE '41 Flange Height (H -036 .025 .032 2.2 2.1 2.1 4.4 2.2 2.1 2.1 4.4 3.7 4.0 4.2 4.4 1.2 1.5 1.9 2.3 1.2 1.5 1.9 2.4 1.2 1.5 1.9 2.4 1.2 1.5 1.9 2.4 1.3 1.5 1.9 2.4 1.3 1.5 1.9 2.4 1.3 1.5 1.9 2.4 1.3 1.6 2.0 9.8 1.3 2.6 2.0 2.4 1.3 1.6 2.0 2.4 1.3 1.6 2.0 2.4 1.3 1.6 2.0 2.4 1.4 1.6 1.9 2.4 1.4 1.6 2.0 2.4 1.4 1.6 2.0	E(t) (.016 .020 .025 .032 Diameter Trans Height (Height (Heig			0-7606	A I J IMT NI II		EP DRAW	ING LIM	TABLI ITS F	9	TABLE VA-3 ITS FOR CYLINDR PH 15-7 Mo	E VA-3 OR CYLINDRICAL CU -7 Mo	TABLE VA-3 DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS PH 15-7 Mo		
.016 .020 .025 .032 .0.0 .016 .020 .025 .032 .0.0 2.2 2.1 2.1 2.1 4.4 4. 2.2 2.2 1.5 1.9 1.9 1.0 1.2 1.5 1.8 2.3 2.0 1.2 1.5 1.8 2.3 2.0 1.2 1.5 1.9 2.4 2.0 1.3 1.5 1.9 2.4 3.0 1.3 1.5 1.9 2.4 3.0 1.3 1.6 1.9 2.4 3.0 1.3 1.6 1.9 2.4 3.0 1.1 1.6 1.0 2.1 3.0 1.1 1.6 1.9 2.4 3.0 1.1 1.6 1.9 2.4 3.0 1.1 1.6 1.9 2.4 3.0 1.1 1.1 1.6 1.9 2.4 3.0 1.1 1.1 1.6 1.9 2.4 3.0 1.1 1.1 1.6 1.9 2.4 3.0 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2	.016 .020 .025 .032 .032 .032 2.0 Flenge Height (H): .02 .032 .03 2.2 2.1 2.1 4.4 4.4 2.2 2.1 2.1 4.4 4.4 3.7 4.0 4.2 4.4 4. 1.2 1.5 1.7 1.9 2. 1.2 1.5 1.8 2.3 2. 1.2 1.5 1.9 2.4 3. 1.2 1.5 1.9 2.4 3. 1.3 1.5 1.9 2.4 3. 1.3 1.5 1.9 2.4 3. 1.3 1.6 1.9 2.4 3. 1.4 1.6 1.9 2.4 3. 1.4 1.6 1.9 2.4 3. 1.3 1.6 1.9 2.4 3. 1.4 1.6 1.9 2.4 3. 1.0			ZOZ4-0. KEN SOLUTIO		¥ (Œ		(ANNEAL)	ED (ED (CONDI CELLO	FA 12-7 MO FALED CONDITION "A HASTELLOY X (SOLUTION TREATED)	(ANNEALED CONDITION "A") HASTELLOY X (SOLUTION TREATED)			SONDITION "A") (ANNEALED) FILLOY X ON TREATED) (SOLUTION TREATED)
Flange Height (H) 2.2 2.1 2.1 4.4 0.9 0.8 0.8 4.4 1.2 1.5 1.7 1.9 1.2 1.5 1.7 1.9 1.2 1.5 1.8 2.3 6.0 6.3 6.8 7.3 1.2 1.5 1.9 2.4 1.3 1.5 1.9 2.4 1.3 1.5 1.9 2.4 1.3 1.6 2.0 9.8 1.3 1.6 1.9 2.4 1.3 1.6 1.9 2.4 1.3 1.6 1.9 2.4 1.4 1.6 1.9 2.4 1.0 2.0 2.4 1.0 1.0 2.4 1.0 1.0 2.4 1.0 1.0 2.4 1.0 2.0 2.4 1.0 2.0 2.4 1.0 2.	Flange Height (H): 2.2 2.1 2.1 4.0 0.9 0.8 0.8 4.0 4.0 3.7 4.0 4.2 4.0 4. 1.2 1.5 1.7 1.9 2. 1.2 1.5 1.8 2.3 2. 1.2 1.5 1.9 2. 2. 1.2 1.5 1.9 2. 2. 1.3 1.5 1.9 2.0 2.0 3. 1.3 1.5 1.9 2.0 2.0 3. 1.3 1.5 1.9 2.0 3. 1.3 1.5 1.9 2.0 3. 1.3 1.6 1.9 2.0 3. 1.4 1.6 1.9 2.0 3. 1.4 1.6 1.9 2.0 3. 1.4 1.6 1.9 2.0 3. 1.4 1.6 1.9 2.0 3. <th>(t)</th> <th></th> <th>910.</th> <th></th> <th>.025</th> <th>-032</th> <th>040</th> <th>050.</th> <th></th> <th>590.</th> <th><u> </u></th> <th>.063</th> <th>.063 .071</th> <th>.063 .071 .080</th>	(t)		910.		.025	-032	040	050.		590.	<u> </u>	.063	.063 .071	.063 .071 .080
Db 2.2 2.1 2.1 2.1 7.1 7.2	Db 2.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.2 <th>Ojame (</th> <th>eter</th> <th></th> <th>124</th> <th>lange He</th> <th>ight (B</th> <th>i</th> <th>nk Diam</th> <th></th> <th>eter (De</th> <th>ter (D_b)</th> <th>eter (D_b)</th> <th>eter (D_b)</th> <th>eter (D_b)</th>	Ojame (eter		124	lange He	ight (B	i	nk Diam		eter (De	ter (D _b)	eter (D _b)	eter (D _b)	eter (D _b)
H 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9	B 0.9 0.8 0.9		R		2.1	2.1				(L					
Db 3.7 μ.0 μ.2 μ.4 μ.2 μ.2 B 1.2 1.5 1.7 1.9 1.7 1.7 Db μ.8 5.2 5.6 6.0 6.4 6.4 B 1.2 1.5 1.8 2.3 2.6 2.7 Db 6.0 6.3 6.8 7.3 7.9 8.4 B 1.2 1.5 1.9 2.4 2.9 8.4 Db 8.3 8.6 9.0 9.8 10.3 11.2 B 1.3 1.5 1.9 2.4 3.0 3.6 Db 8.3 8.6 9.0 9.8 10.3 11.2 B 1.03 1.05 2.4 3.0 3.7 B 1.0 1.6 1.9 2.4 3.0 3.7 B 1.0 1.0 2.0 2.4 3.0 3.7 B 1.0 1.0 2.0	Db 3.7 4.0 4.2 4.4 4.2 4.9 4.9 4.2 4.9 4.2	- 1	m		0.8	0.8				L_					
H 1.2 1.5 1.7 1.9 1.7 1.7 Db h.8 5.2 5.6 6.0 6.4 6.4 H 1.2 1.5 1.8 2.3 2.6 2.7 Bb 6.0 6.3 6.8 7.3 7.9 8.4 Db 7.1 7.5 1.9 2.4 2.9 3.4 B 1.3 1.5 1.9 2.4 3.0 3.4 B 8.3 8.6 9.0 9.8 10.3 11.2 B 1.3 1.5 1.9 2.4 3.0 3.4 B 1.3 1.6 1.9 2.4 3.0 3.7 B 1.4 1.6 1.9 2.4 3.0 3.7 B 1.0.2 10.3 11.3 11.5 12.4 B 1.0.2 1.0 2.4 3.0 3.7 B 1.0 1.0 2.4 3.	B 1.2 1.5 1.7 1.9 1.7		ದ್ದ		7.0	4.2	4.4	7.5	7.5						
Db 4.8 5.2 5.6 6.0 6.4 6.4 3 1.2 1.5 1.8 2.3 2.6 2.7 B 6.0 6.3 6.8 7.3 7.9 8.4 B 1.2 1.5 1.9 2.4 2.9 8.4 Db 3.1 7.5 7.9 8.5 9.8 3.4 B 1.3 1.5 1.9 2.4 3.0 3.4 Db 8.3 8.6 9.0 9.8 11.2 12.4 B 1.3 1.6 1.9 2.4 3.0 3.7 B 1.4 1.6 1.9 2.4 3.0 3.7 B 1.0.2 10.3 11.3 11.5 12.4 13.6 B 10.2 10.3 11.3 11.9 2.4 3.0 3.7 B 10.2 10.3 11.3 11.3 12.4 13.0 3.7	Db 4.8 5.2 5.6 6.0 6.4 6.4 B 1.2 1.5 1.8 2.3 2.6 2.7 B 6.0 6.3 6.3 7.3 7.9 8.4 B 1.2 1.5 1.9 2.4 2.9 8.4 Db 7.1 7.5 7.9 8.5 9.2 9.8 9.8 B 1.3 1.5 1.9 2.4 3.0 3.6 Db 8.3 8.6 9.0 9.8 10.3 11.2 B 1.3 1.5 1.0 2.4 3.0 3.7 B 1.0.2 1.0 1.0 2.4 3.0 3.7 B 1.0.2 1.0.3 11.3 11.9 3.0 3.7 B 1.0.2 1.0.3 11.3 13.8 14.7		田	1.2	1.5	1.7	1.9	1.7	1.7						
H 1.2 1.5 1.8 2.3 2.6 2.7 B 6.0 6.3 6.6 7.3 7.9 8.4 B 1.2 1.5 1.9 2.4 2.9 3.4 B 7.1 7.5 7.9 8.5 9.8 3.4 Do 8.3 8.6 9.0 9.8 10.3 11.2 B 1.3 1.6 1.9 2.4 3.0 3.7 B 9.4 9.7 10.2 10.8 11.5 12.4 B 10.2 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.3 11.5 12.4 B 10.2 10.3 11.9 12.7 13.6 B 10.4 1.6 2.0 2.4 3.0 3.7 B 10.4 1.6 2.0 2.4 3.0 3.7 B 1.4 1.6 2.0	H 1.2 1.5 1.8 2.3 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 3.4		ይ	_	5.2	5.6	0•9	₽•9	4.9	9	4.9	th 6.3		6.3	6.3
Db 6.0 6.3 6.6 7.3 7.9 8.4 B 1.2 1.5 1.9 2.4 2.9 3.4 B 7.1 7.5 7.9 8.5 9.2 9.8 B 1.3 1.5 1.9 2.4 3.0 3.6 B 8.3 8.6 9.0 9.8 10.3 11.2 B 1.5 1.6 1.9 2.4 3.0 3.7 B 1.4 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.3 11.5 12.4 B 10.2 10.3 11.9 2.4 3.0 3.7 B 10.2 10.3 11.3 11.9 13.6 13.6 B 10.4 1.6 2.0 2.4 3.0 3.7 B 10.2 10.3 11.3 11.9 2.4 3.0 3.7 B 10.4	Bb 6.0 6.3 6.6 7.3 7.9 8.4 Bb 1.2 1.5 1.9 2.4 2.9 3.4 Bb 7.1 7.5 7.9 8.5 9.2 9.8 Bb 3.1 1.5 1.9 2.4 3.0 3.6 Bb 9.4 9.7 10.2 10.8 11.5 12.4 Bb 10.2 10.3 11.9 2.4 3.0 3.7 Bb 10.2 10.3 11.3 12.7 13.6 B 10.4 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.3 12.7 13.6 B 10.4 1.6 2.4 3.0 3.7 B 10.5 10.3 11.9 12.7 13.6 B 10.5 10.3 11.9 13.9 14.7		ы	1.2	1.5	1.8	2.3	2.6	2.7	7	2.7	.7 2.5		2.5	2.5
H 1.2 1.5 1.9 2.4 2.9 3.4 D ₀ 7.1 7.5 7.9 8.5 9.2 9.8 H 1.3 1.5 1.9 2.4 3.0 3.6 B 8.3 8.6 9.0 9.8 10.3 11.2 H 1.5 1.6 1.9 2.4 3.0 3.7 B 1.4 1.6 1.9 2.4 3.0 3.7 H 1.4 1.6 2.0 2.4 3.0 3.7 H 1.4 1.6 2.0 2.4 3.0 3.7	H 1.2 1.5 1.9 2.4 2.9 3.4 Do 7.1 7.5 7.9 8.5 9.2 9.8 H 1.3 1.5 1.9 2.4 3.0 3.6 B 8.3 8.6 9.0 9.8 10.3 11.2 H 1.5 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.9 2.4 3.0 3.7 H 1.4 1.6 2.0 2.4 3.0 3.7 H 1.4 1.5 12.4 13.1 14.7		ಗೆ		6•3	6•ઉ	7.3	4.9	8.4	8	8.7	.7 8.5		8.5	8.5 8.4
Db. 7.1 7.5 7.9 8.5 9.2 9.8 Bb 8.3 8.6 9.0 9.8 10.3 11.2 Bb 9.4 9.7 10.2 10.8 11.5 12.4 Bb 10.2 10.3 11.9 2.4 3.0 3.7 Bb 10.2 10.3 11.9 12.4 3.0 3.7 B 10.4 1.6 2.0 2.4 3.0 3.7 B 10.4 1.6 2.0 2.4 3.0 3.7	D _b 7.1 7.5 7.9 8.5 9.2 9.8 B _b 8.3 8.6 9.0 9.8 10.3 11.2 B _b 9.4 9.7 10.2 10.8 11.5 12.4 B _b 10.4 1.6 1.9 2.4 3.0 3.7 B _b 10.2 10.3 11.9 12.4 13.6 B _b 10.2 10.3 11.9 12.7 13.6 B _b 10.4 1.6 2.0 2.4 3.0 3.7 B _b 10.5 10.3 11.3 11.9 12.7 13.6 B _b 11.5 11.9 12.4 3.0 3.7 14.7		H	1.2	1.5	1.9	₽•3	2.9	3.4	3	3.7	7 3.6		3.6	3.6 3.5
1.3 1.5 1.9 2.4 3.0 3.6 8.3 8.6 9.0 9.8 10.3 11.2 1.3 1.6 4.9 2.4 3.0 3.7 9.4 9.7 10.2 10.8 11.5 12.4 1.4 1.6 1.9 2.4 3.0 3.7 10.2 10.3 11.3 11.9 12.7 13.6 1.4 1.6 2.0 2.4 3.0 3.7	1.3 1.5 1.9 2.4 3.0 3.6 8.3 8.6 9.0 9.8 10.3 11.2 1.3 1.6 1.9 2.4 3.0 3.7 9.4 9.7 10.2 10.8 11.5 12.4 10.4 1.6 1.9 2.4 3.0 3.7 10.2 10.3 11.3 11.9 12.7 13.6 11.5 11.9 12.4 3.0 3.7 11.5 11.9 12.4 13.1 13.8 14.7		ದ್ದ		7.5	7.9	8.5	8.5	8.6	10.5	.5	.5 10.7	-	10.7	10.7 10.8
Db 8.3 8.6 9.0 9.8 10.3 11.2 B 1.3 1.6 4.9 2.4 3.0 3.7 B 9.4 9.7 10.2 10.8 11.5 12.4 B 10.4 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.3 11.9 12.7 13.6 B 1.4 1.6 2.0 2.4 3.0 3.7	Db 8.3 8.6 9.0 9.8 10.3 11.2 B 1.3 1.6 4.9 2.4 3.0 3.7 B 9.4 9.7 10.2 10.8 11.5 12.4 B 1.4 1.6 1.9 2.4 3.0 3.7 B 1.4 1.6 2.0 2.4 3.0 3.7 B 11.5 11.9 12.4 3.0 3.7 B 11.5 11.9 12.4 13.1 13.8 14.7		ш	1.3	1.5	1.9	₽•2	3.0	3.6	4.1	H	1 4.5	 -	4.5	4.5 4.5
B 1.5 1.6 1.9 2.4 3.0 3.7 B 9.4 9.7 10.2 10.8 11.5 12.4 B 1.4 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.9 12.7 13.6 B 1.4 1.6 2.0 2.4 3.0 3.7	B 1.3 1.6 1.9 2.4 3.0 3.7 Db 9.4 9.7 10.2 10.8 11.5 12.4 Db 10.2 10.3 11.3 11.9 12.7 13.6 B 1.4 1.6 2.0 2.4 3.0 3.7 B 11.5 11.9 12.4 3.0 3.7 B 11.5 11.9 12.4 13.1 13.8 14.7		ဂိ		8.6	0.6	9.8	10.3	11.2	12.0	0	0 12.4	-	12.4	12.4 12.7
D _b 9.4 9.7 10.2 10.8 11.5 12.4 B 1.4 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.3 11.9 12.7 13.6 B 1.4 1.6 2.0 2.4 3.0 3.7	D _b 9.4 9.7 10.2 10.8 11.5 12.4 B 1.4 1.6 1.9 2.4 3.0 3.7 B 10.2 10.3 11.3 11.9 12.7 13.6 B 1.4 1.6 2.0 2.4 3.0 3.7 D _b 11.5 11.9 12.4 13.1 13.8 14.7	,	E		7.6	6•1	₽•2	3.0	3.7	.⇒	4.5	5.0	 	5,0	5.0 5.2
H 1.4 1.6 1.9 2.4 3.0 3.7 D _b 10.2 10.3 11.9 12.7 13.6 H 1.4 1.6 2.0 2.4 3.0 3.7	H 1.4 1.6 1.9 2.4 3.0 3.7 D _b 10.2 10.3 11.3 11.9 12.7 13.6 H 1.4 1.6 2.0 2.4 3.0 3.7 D _b 11.5 11.9 12.4 13.1 13.8 14.7		ፈ		2.6	10.2	10.8	11.5	12.4	13.3	•3	.3 13.9	-	13.9	13.9 1/4.3
10.2 10.3 11.3 11.9 12.7 13.6 1.4 1.6 2.0 2.4 3.0 3.7	D _b 10.2 10.3 11.3 11.9 12.7 13.6 H 1.4 1.6 2.0 2.4 3.0 3.7 D _b 11.5 11.9 12.4 13.1 13.8 14.7		н	1.4	1.6	1.9	2.4	3.0	3.7	†	4.5	.5 5.1	-	5.1	5.1 5.6
7.5 3.0 2.0 2.4 3.0 3.7	H 1.4 1.5 2.0 2.4 3.0 3.7 D _b 11.5 11.9 12.4 13.1 13.8 14.7	ac	ဂ္ဂ		10.3	11.3	11.9	12.7	13.6	14.6	9	6 15.2		15.2	15.2 15.7
	b 11.5 11.9 12.4 13.1 13.8 14.7		н	1.4	1.6	.5.0	2.4	3.0	3.7	.⊅	ر 4.5	5.2	-	5.2	5.2 5.7

19.0

21.2 8.7

20.1

6.5

5.8 18.3 5.9

5.2

19.7

19.1 6.7

3.7.5

16.9

14.2 2.4

13.5

12.6

щ d

ဌ

ш

2.0

5.8 16.8

12.3

.187

TABLE VA-4 DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS

HM21XA-T8 (MAGNESIUM THORIUM)
750 % (.5%T1.)(H.R.-STRESS RELIEVED)

USB-12-MoV (ANNEALED)

900 F

Gage (t)		910.	.020	.025	-032	040.	.050	.063	.071	.080	%o.	.100	321.	.187
Die Diameter $(\mathbb{D}_{\mathbb{C}})$	ter		F	Flange He	Height (H)		ık Diame	Blank Diameter (Db)						
	P	2•5	2.1	ר•7										
-1	斑	6.0	0.8	8.0										
	og.	3.6	3.9	T•17	4.3	₹•7	1, 1							
บ	四	1.1	7.4	्र•ा	β•τ	1.7	1.6							
	ಕ್ಷ	14.B	5.1	5.5	0*!	ં.3	4•0	6.3	5• 9	6.2				
٧)	Þ	1.2	1.4	1.3	7*7	5.5	2.7	2.5	2.5	2.4				
-	ದೆ	6•3	€.0	ý.7	η·Ĺ	8°L	8.3	8.5	8.5	₹8	4.8	8.3		
÷	四	1.2	1.4	1.8	2•3	8*7	3.5	3.6	3.5	3.5	3•3	3.3		
u	ದ್ದ	0.7	7.4	7.9	8.4	9.1	9.7	10.4	9.01	10.6	10.5	10.4	10.3	
`	ш	1.2	1.5	1.8	2•3	6.2	3.5	τ•η	η•η	†*†	4.3	4.2	0.4	
7	$\Omega_{\rm p}$	8.1	8.5	0.6	9 • 6	10.3	11.1	8*11	ट • टा	9•ता	12.7	8•टा	12.5	
)	Ħ	1.2	1.5	1.9	2.3	6*7	3.6	£•†	L*17	1*5	5.2	5.3	5.0	
t	D _o	7•6	9•6	10.1	10.7	11.4	75.2	13.2	13.7	τ•ητ	14.6	14.8	14.7	
	H	1.3	9*1	1.9	7.7	6.5	9•8	畆 _ι	2.0	₹*5	5.8	6.1	5.8	
ıς	$\mathcal{D}_{\mathbf{b}}$	10.3	10.7	11.5	11.9	12.0	13.4	14.5	15.0	ŷ• 5 τ	16.2	9•91	17.0	16.6
	H	1.3	ુ•τ	1.9	4.5	6•7	9*8	4.5	5.1	5•6	6.2	9•9	0 2	ó.6
σ	ρ ^ο	11.3	11.8	12.3	13.0	13.7	ं भा	15.6	16.3	16.9	17.6	18.1	19.0	18.7
`	ш	1.3	1.0	7.0	2.4	3.0	3.6	4.5	5.1	5.7	ن•3	6.9	7.8	7.5
10	ď	12.4	12.9	13.4	14.1	14.3	15.7	16.8	17.5	18.2	18.9	19.5	9•02	20.8
	Н	1.4	1.7	0.2	4.5	3.0	3.8	4.5	5.2	5.7	ተ•ዕ	0.7	1*8	8.3

DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS
VASCOJET 1000
(H-11)(ANNEALED) 800°F TABLE VA-5

VASCOJET 1000 (H-11)(ANNEALED)

TUNGSTEN (PURE) 1000 F

(+)		710	8	300	650	0,10	Cac	690	150	080	0.00		3	إ
رما علام الم		270.	200.	(20:	200.	2.5	200.	.003	T)0.	30.	350.	301.	(Z.	.187
Die Diameter (DG)	ter		E	Flange He	Height (H)		ik Diame	Blank Diameter (Db)	(c					
-	名	2.1	2.0	Ö•2										
4	H	0.9	0.8	2.0										
	ကိ	3.6	3.8	4.1	Z•ħ	4.1								
s	田	1.1	1.3	1.6	∠•τ	1.6								
~	ရ	4.3	5.1	5.5	6.5	2. 9	5.0	ύ . 1	٥٠٥	ن. 0.0				
`	Ħ	1.1	1.4	1.7	2.1	ħ•7	4.5	4.2	2.3	7.7				
	ይ	6.5	6. 2	9*9	₹•2	7.7	8.1	8.4	8.2	8.1	8.0	0.8		
	Ħ	1.2	1.4	1.7	ਰ • ਟ	2.7	3.1	3.4	3.2	3.1	3.0	3.0		
v	ည်	7.0	7.3	7.8	8.4	0.6	9.6	10.1	10.3	10.3	10.2	10.2	10.0	
`	H	1.2	1.4	1.8	5•2	2.8	3.3	3.9	4.1	7.0	0.4	3.9	3.8	
9	දු	8.1	8.4	8.9	9.5	10.1	10.9	11.6	12.0	12.3	4.51	12.4	12.2	
	Ħ	1.3	1.5	1.8	ج•3	8.2	3.5	14.1	4.5	4.8	6.4	6.4	4.7	
-	P _Q	5.6	9.6	10.0	9.01	11.3	12.1	13.0	13.5	13.9	14.2	14.5	14.41	
-	н	1.3	1.5	1.8	5•3	8.5	3.5	4.3	7.4	5.2	5.5	5.7	5.0	
~~	D_{b}	10.3	10.7	τ•ττ	11.8	12.4	13.3	14.2	14.8	15.3	15.9	16.3	16.5	16.1
	H	1.3	1.5	1.9	2.3	۶•۶	3.5	4.3	6.4	5.3	5.8	6.3	6.5	5
o	ď	11.3	11.7	ट•टा	12.9	13.6	14.4	15.4	16.1	16.6	17.3	17.8	18.6	18.
	н	1.3	J•6	1.9	4.5	2.9	3.5	† * †	4.9	5.4	0.0	0.0	7.3	7.0
01	ď	12.4	12.8	13.3	14.0	14.7	15.5	10.6	17.3	17.9	18.6	19.2	202	203
	H	1.4	л . 6	1.9	4.5	6.5	3.5	4-4	4.0		0.6	7 7	4 4	αι
						/	1.5	-	∠• ⊢	- ```	V.	_	•	0

TABLE VA-6
DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS
COLUMBIUM

COLUMBIUM (10Mo-10T1) AT 500°F

Gage (t)	<u></u>	910.	.020	.025	-032	0710	.050	.063	.071	080	%o.	7100	325	.187
Die Diemeter $(D_{\tilde{a}})$	recer		E4	Flange He	Height (H):	- 1	ok Diam	Blank Diameter (Do)	~					
	P _P	1.9	1.8											
4	H	C•7	9.0											
ď	o _Q	3.4	3.6	3.8	3.8	3.7								
บ	н	6.0	1.1	F•1	1.3	7.2								
٠	^Q d	6.5	ρ• †	5.1	5.5	5.6	5.6	5.6						
r	H	6.0	1.2	1.4	1.7	1.9	1.9	1.8						
1	જ	5.6	5.8	6.2	6.8	7.1	7:5	7.6	7.5	7.4	7.4			
+	н	1.0	1.2	1.4	1.9	2.2	2.5	2.6	2.4	2.4	2.4			<u> </u>
u	વ્વ	9.9	0.7	ተ•ረ	7.9	4.8	8.9	7.6	9.5	7.6	9.4	9.2		
`	н	0°1	1.2	1.5	1.9	2.3	2.7	3.2	3.3	3.1	3.1	3.0		ļ
9	o _C	7.8	8.2	8.5	0.6	9.8	10.2	10.8	11.1	11.3	11.3	11.2	11.1	
,	н	1.1	1.3	1.5	1.9	5. 4	2.8	3.4	3.6	3.8	3.8	3.3	3.7	
r	90	6.8	6. 5	2.6	10.2	10.7	11.4	12.2	12.3	12.8	13.1	13.2	13.1	
_	Н	1.1	1.3	1.6	2.0	7.5	2.9	3.5	3.9	4.1	7.7	4.5	†•†	
ďΩ	ပို	10.0	10.4	10.7	10.3	11.9	12.6	13.4	13.9	14.3	14.7	15.0	15.2	15.4
,	H	1.1	1.4	1.6	2.0	2.4	2.9	3.6	0.4	7.7	4.7	5.0	5.2	オ・ヤ
σ	മ	11.1	11.4	11.8	12.4	13.0	13.7	14.6	15.1	15.6	16.1	16.5	17.0	36.6
`	H	1.1	1.4	1.6	2.0	7.5	3.0	3.7	4.1	4.5	5.0	5.3	5.6	77 5
ន	ရ ^၀	12.1	12.5	13.0	13.6	14.1	14.8	15.7	16.3	16.8	17.4	17.8	18.7	18.7
	¤	1.2	1.4	1.7	2.1	2.5	3.0	3.7	4.1	4.6	5.1	5.4	6.2	0.0

TABLE VA-7 DEEP DRAWING LIMITS FOR CYLINDRICAL CUPS

TITANIUM (6A1-4V)(ANNEALED)

TITANIUM (13V-11Cr-3A1) (SOLUTION TREATED)

.187																					
. 125														12.2	3.6	14.0	4.1	15.3	4.6	17.4	5.1
.100												10.5	3.1	12.3	3.7	14.0	4.1	15.5	4 **;	16.7	4.5
œo.								,		8.7	2.6	10.5	3.1	12.2	3.5	13.7	3.9	15.1	4.1	16.4	4.2
080-										8.7	2.6	10.5	3.1	15.1	3.4	13.4	3.6	74.7	3.7	14.9	3.3
.071	(0.7	2.1	8°3	2.6	10.4	3.0	3.11	3.2	13.1	3•3	14.3	3.4	15.4	3.4
.063	Blank Diameter (D _b)							0°2	2.1	8.7	2.6	10.2	2.8	11.5	5.9	12.7	3.0	13.8	3.1	14.9	3.1
.050	ık Diam					7.2	1.	0.7	2.1	₩ . 8	2.2	9.6	2.3	10.8	7.5	6•11	₽•2	13.0	₽*2	14.2	2.5
040.						۲۰۰۶	1.3	6.7	1.8	7.9	1.9	9.1	1.9	10.2	2.0	11.3	2.0	12,4	5.0	13.5	2.1
.032	Height (H)			3.5	1.1	2.0	1.4	ф•9	1.5	7.5	1.6	8.6	1.6	9.7	1.6	10.8	1.7	11.9	1.7	13.0	1.7
.025	Flange He			3.5	1.0	8*4	1.2	9•9	1.2	7.1	1.2	8.2	1.3	9•3	1.3	10.4	η•τ	11.4	դ•ፒ	12.5	7.1
080	E			-3•3	6.0	4.5	1.0	5.7	1.0	8.9	1.0	7.8	1.0	8.9	1.1	10.0	1.1	10.1	1.2	12.1	1.3
910.		1.7	0.5	3.2	8.0	E•4	8.0	ħ•5	0.8	6.5	6.0	7.6	6.0	9. 8	6.0	6.6	1.0	10.8	1.0	11.9	1.0
	ter	ይ	Ħ	o _C	Ħ	පි	Ħ	ፈ	ш	ဌ	ш	ဂ္ဂ	æ	o C	н	$D_{\mathbf{b}}$	H	δ	н	^Q d	н
Gage (t)	$\left(\begin{array}{c} \mathtt{Die} \ \mathtt{Diameter} \\ (\mathtt{De}) \end{array}\right)$		-1	(V		n	-=	+		^	4	>	•	_	er		σ	`	10	

MANUAL SPINNING

Description of Forming Process

Although manual spinning is used for the production of a wide variety of part shapes, in this program the scope was necessarily limited to a "single stage" operation, that is, the cups were spun directly from a circular blank to the cylindrical mandrel in one spinning operation with out preforming or annealing stages. The mechanical set up used is shown in Figure VB-1:

FIGURE VB-I A SINGLE STAGE SETUPFOR MANUAL SPINNING

The equipment requirements for manual spinning are not severe. A rigidly built lathe of sufficient power is, however, a necessity.

The tooling requirements, particularity the mandrel material, depends on the type of material to be formed, and the required number of parts as well as the part tolerance required. Hardened steel, rather than wood or aluminum, was used in view of the high strength materials to be tested, and the elevated temperature test requirements.

In this type of forming, operator skill is unquestionably a vital factor. The correct proceedures with regard to spinning speed, and application of the forming forces must be varied for different material gages of a particular material. Similarly, the procedures for obtaining maximum formability differs from material to material. Lubrication of the part is necessary to prevent galling of the part by the forming bar. The best lubricant for spinning aluminum, stainless steel, tool steels and super alloys, at room temperature is a mixture of petroleum grease and graphite. Vaseline with graphite may also be used. "Moly cote" is the recommended lubricant for elevated temperature spinning of all alloys and for the spinning of Titanuim and magnesium at room temperature.

Definition of Part Shape and Geometric Variables

The part shape for this investigation is limited to thin walled cylindrical cups. The geometrical variables involved are shown in Figure VB-2:

FIGURE VB-2 GEOMETRIC VARIABLES FOR SPINNING

The radius of the blank (R_b) and the radius of the die (R_d) are used to define the forming limits.

The end radius of the die (r_d) should be made sufficiently large to avoid excess thinning. For the dies used in this program, the end radius was held constant at three-eights inches, which is sufficiently large for materials with low bend ductility and is well over the standard minimum corner radius of 5T, normally specified in spinning dies.

The formability limit in spinning is defined by the value of (h/R_b) . Plotting h/R_b vs h/t on log-log graph paper yields a curve with the characteristic shape shown in Figure VB-3:

FIGURE VB-3 THEORETICAL FORMABILITY CURVE FOR SPINNING

The elastic buckling limit line appears on the graph as a straight line that has a slope of -2. The plastic buckling limit is associated with heavy gages and appears on the graph as a straight horizontial line.

Since the over hang flange height (h) is the difference between R_b and R_d , only three parameters R_b , R_d and t, are required to define the formability limit line. In addition to the plastic and elastic buckling limits imposed by the material properties there is a machine limit that further restricts the spinning process. The machine limits are dependent on the strength or toughness of the material and its gage. Figure VB-4 illustrates the machine limits:

FIGURE VB-4 FORMING LIMIT CURVES FOR SPINNING SHOWING MACHINE LIMITS

In both the elastic and plastic ranges there is a correlation between the spinning formability and certain mechanical properties of the materials; hence, the formability can be predicted theoretically for any material. The machine limits have been established empirically and correlated to the strength of the materials; therefore, the machine limits can be predicted for any material.

Predictability Equations

The following predictability equations are used to determine the spinning formability for any material.

Plastic Buckling Forming Limit Line:

$$\frac{h}{R_b} = 0.162 \left[\frac{E}{S_U} \times 10^{-2} \right]^{0.91}$$

EQUATION I

The index line for this limit is:

$$\frac{\mathbf{h}}{\mathbf{R}_{\mathbf{b}}} = 0.162 \left[\frac{\mathbf{h}}{\mathbf{t}} \right]^{0.91}$$

EQUATION II

Elastic Buckling Forming Limit Line:

$$\frac{\mathbf{h}}{\mathbf{R}_{\mathbf{b}}} = \left[\frac{\mathbf{E}}{\mathsf{Scr}}\right]^{1.769} \left[\frac{.00485}{(\mathbf{h/t})^2}\right]$$

EQUATION III

The index line for this limit is:

$$\frac{h}{R_b} = 0.0001279 (h/t)^{2.6}$$

EQUATION IV

The intersection points of the index lines and the forming limit lines are as follows:

Elastic limit intersection point:

$$\frac{\mathbf{h}}{\mathbf{R}_{\mathbf{b}}} = \frac{\mathbf{E}}{\mathbf{S}_{CY}} \times 10^{-3}$$

EQUATION V

Plastic limit intersection point:

$$\frac{\mathbf{h}}{\mathbf{R}_{\mathbf{b}}} = \frac{\mathbf{E}}{\mathbf{S}_{\mathbf{U}}} \times 10^{-2}$$

EQUATION VI

Figure V B-5 illustrates these lines plotted on log-log coordinates

FIGURE VB-5 PLASTIC AND ELASTIC LIMITS

The machine limits are a function of the material properties and the gage. For this reason, two index lines have been established. One index line (I) position the curve based upon the mechanical properties. The other index line (II) position the curve based upon the gage. The following equations were developed:

The equation for index line I: $\frac{\mathbf{h}}{R_{\mathbf{b}}} = .072 \left(\frac{\mathbf{h}}{f} \right)^{0.40}$

EQUATION VII

The equation for index line II: $\frac{\mathbf{h}}{R_{\mathbf{b}}} = \begin{bmatrix} 8.13 \times 10^{-4} \end{bmatrix} \begin{bmatrix} \frac{E}{S_U} \times 10^{-3} \end{bmatrix}^{-1.7} \begin{bmatrix} \frac{\mathbf{h}}{1} \end{bmatrix}^{1.08}$

EQUATION VIII

The equation for the machine limit for each gage and material is:

$$\frac{h}{R_b} = \frac{\left[4.787 \times 10^{-7}\right] \left[\frac{1}{2}\right]^{2.96} \left[\frac{h}{f}\right]^{4.27}}{\left[E/S_U \times 10^{-3}\right]^{6.74}}$$

EQUATION IX

The intersection point between index line I and index line II is:

$$\frac{\mathbf{h}}{\mathbf{R}_{\mathbf{b}}} = \frac{\mathbf{E}}{\mathbf{S}_{\mathbf{U}}} \times 10^{-3}$$

EQUATION X

The intersection point between index line II and the machine limit curve is:

$$\frac{\mathbf{h}}{\mathbf{R}_{\mathbf{b}}} = \frac{1}{\mathbf{t}} \times 10^{-2}$$

EQUATION XI

Figure VB-6 illustrates these lines plotted on log-log coordinates.

FIGURE VB-6 MACHINE LIMIT CURVES FOR SPINNING

Forming limit curves can be constructed from the preceding equation: by knowing the mechanical properties and following the procedure in Figures VB-5 and VB-6. The equations are summarized in figure V B-7:

FIGURE VB-7 PREDICTABILITY EQUATION FOR SPINNING IN GRAPH FORM

Composite Graphs

Graph VB-1 is the composite graph for plastic and elastic buckling limits for all of the program materials. Graph VB-2 is the composite graph of the machine limit index lines (index line II) for all materials. Graph VB-3 is a complete composite graph for the elastic and plastic buckling limits along the machine limits for each gage of 2024-0 aluminum. Graph VB-4 illustrates an alternate method of plotting the formability limits. The limiting value of (h) can be read directly from the graph for 2024-0 aluminum.

GRAPH V B-I SPINNING COMPOSITE FOR ELASTIC AND PLASTIC BUCKLING LIMITS

GRAPH V B-2 MANUAL SPINNING COMPOSITE GRAPH OF MACHINE LIMIT INDEX LINES II

R

GRAPH V B-3 MANUAL SPINNING MACHINE GAGE LIMITS 2024-0 ALUMINUM

GRAPH V B -4 ALTERNATE METHODS OF PLOTTING SPINNING FORMABILITY LIMITS

2024-0 ALUMINUM

DESIGN TABLES

Design tables have been established for the materials on this program and are given in Tables VB-1 through VB-23. The values of $D_{\rm b}$, $D_{\rm d}$, h and t shown in the design tables were taken directly from the composite graphs. The value of H, the final cup height, is determined from equation XII.

$$\frac{H}{h} = .641 (D_b/D_d + 1)$$

EQUATION XII

FIGURE VB-8 CURVE FOR CONVERTING FROM OVERHANG (h) TO FINAL CUP HEIGHT (H)

As can be seen by this graph the finished cup height is larger than the original over hang flange width (h). Although much of this difference is a result of "free" elongation, the average cup wall thickness is considerably less than the original metal thickness. The equation for determining H has been verified with test data from a representative variety of different materials and gages.

TABLE VB-1 MANUAL SPINNING LIMITS HW21XA-T8 (MAGNESIUM THORIUM)

Table Tabl	1		710	85	305	020	010	050	0,63	1600	8	8	5	30.5	t
*** Plante Diameter* (Dp.) 1.37 1.38	משלפ (ב)		070:	95	.063	350.	3	30.	con.	7/0.	000.	3	. TOO	(34.	101.
Db 1.3F 1.3E 1	Die Diam (Dd)	eter		je,		alght (B		ok Diam	eter (D	(,					
B 28 29 </th <th>-</th> <th>8</th> <th>1.37</th> <th>1.38</th> <th>1.38</th> <th></th>	-	8	1.37	1.38	1.38										
Db 2-71 2-76 6-70 7-70 7-70 7-70 7	-1	н	.28	.28	.28										
H 54 60 60 4.10 4.15 4.16 7.10 4.15 4.16 7.10 4.15 4.16 7.10 4.16 7.10 4.16 7.10 4.16 7.10 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 4.16 7.10 <th>ď</th> <th>ο<mark>σ</mark></th> <th>2.71</th> <th>2.78</th> <th>2.78</th> <th></th>	ď	ο <mark>σ</mark>	2.71	2.78	2.78										
Db 3.79 4.04 4.10 4.15 4.16 4.16 4.15 4.16 4	2	Ħ	.54	.60	.60										
H 58 69 99 </th <th>~</th> <th>ይ</th> <th>3.79</th> <th>3.93</th> <th>40.4</th> <th>4.10</th> <th>4.15</th> <th>4.16</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	~	ይ	3.79	3.93	40.4	4.10	4.15	4.16							
Pb 4.86 4.96 5.02 5.13 5.18 5.24 5.27 5.31 5.35 5.37 5.35 5.37 5.35 5.37 5.35 5.37 5.35 5.37 5.35 5.37 5.35 5.37 5.37 5.35 5.37 5	,	pr;	.58	69.	.79	+8.	68.	.90							
H 6.5 6.9 7.4 80 83 .67 .92 .93 .12 .13 1.04 1.04 1.04 .13 .61 6.20 6.25 .93 .13 1.04 1.02 1.04 1.04 .13 6.25 7.25 7.27 7.22	#	ន្ត	4.86	4.96	5.02	5.08	5.13	5.18	5.24	5.27	5.31	5.35	5.37	5.45	5.54
B 5.90 5.95 6.00 6.10 6.16 6.20 6.25 7.27 7.22 7.		ш	62	69	47t	.80	.83	.87	-92	.95	වුද	1.32	1.04	1.11	1.18
B .63 .64 .71 .75 .79 .83 .86 .91 .94 .95 .91 .79 .71	v	ದ್ದ	5.90	5.95	6.00	6.05	6.10	6.16	6.20	6.25	0.29	ú.32	0.35	6.42	6.60
Pb 6.89 6.98 7.03 7.10 7.11 7.12 7.27 7.37 7.32 B .62 .65 .68 .72 .76 .80 .83 .87 .81 .81 .87 .83 .8	`	н	.63	.67	.71	.75	.79	.83	93.	16.	す。	.96 .	(.(.	1.05	1.20
B 66 68 72 80 80 80 80 90 </th <th>9</th> <th>ದ್ದ</th> <th>6.89</th> <th>6.9th</th> <th>6.98</th> <th>7.03</th> <th>7.09</th> <th>7.14</th> <th>7.18</th> <th>7.22</th> <th>7.27</th> <th>7.30</th> <th>7.32</th> <th>7.40</th> <th>7.57</th>	9	ದ್ದ	6.89	6.9th	6.98	7.03	7.09	7.14	7.18	7.22	7.27	7.30	7.32	7.40	7.57
b 7.87 7.92 7.96 8.01 8.07 8.12 8.16 8.29 8.29 8.14 8.15 8.16 8.29 8.29 7.4 7.8 8.1 8.29 8.29 9.10 9.14 9.19 9.23 9.26 9.28 D 8.86 8.91 8.95 8.99 9.05 9.10 9.14 9.19 9.23 9.26 9.28 D 9.84 9.89 9.93 9.97 10.04 10.08 10.12 10.17 10.12		н	-62	.65	89.	.72	92.	.80	.83	.87	ce.	£6.	ţı,	1.01	1.15
B .66 .69 .74 .78 .81 .84 .85 .70 .71 .81 .81 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .82 .83	-	P	7.87	7.92	7.96	8.01	8.07	8.12	8.16	8.20	8.25	35.3	6.30	0.37	6.55
Pb 8.86 8.91 8.95 9.10 9.14 9.19 9.23 9.26 9.28 B .58 .62 .65 .68 .72 .76 .79 .82 .85 .87 .89 B 9.84 9.89 9.93 9.97 10.04 10.08 10.12 10.17 10.21 10.21 10.21 10.21 10.21 10.21 10.21 11.11 11.15 11.12 11.12 11.13 11.13 11.23 11.25 11.25	-	н	9.	.63	99.	69.	47.	.78	13.	†∂.	38.	٥٢.	ιζ.	76.	1.11
B 58 65 68 72 76 79 82 85 87 89 B 9.84 9.89 9.93 9.97 10.04 10.08 10.12 10.17 10.21 10.24 10.25 B 56 60 64 65 71 74 77 83 65 87 O Da 10.83 10.92 11.03 11.11 11.11 11.12 11.23 11.23 11.25	90	ď	8.86	8.91	8.95	8.99	9.05	9.10	41.6	9.19	9.23	7.26	9.28	9.35	9.53
Pb 9.84 9.89 9.93 9.97 10.04 10.08 10.12 10.17 10.21 10.24 10.26 B .56 .60 .64 .65 .71 .74 .77 .80 .83 .85 .87 D Da 10.83 10.92 10.95 11.03 11.07 11.11 11.16 11.23 11.23 11.25		H	.58	.62	.65	89•	.72	92.	62.	. B2	.85	.87	.83	.95	1.07
B .56 .60 .64 .65 .71 .74 .77 .83 .85 .85 .87 O Do 10.83 10.92 10.96 11.03 11.07 11.11 11.12 11.23 11.25	•	ď		9.89	9.93	9.97			10.12		ţ		10.26	0.33	10.51
P 10.83 10.88 10.92 10.96 11.03 11.07 11.11 11.16 11.20 11.23 11.25	`	н		.60	1 9°	59.	l .	l	77.		l	1	.87	db.	1.06
	2		10.83	10.88		10.96			11.11	11.16	1	11.23	11.25	11.32	11.50
3. 43. 48. 81. 87. 73. 74. 87. 81. 84. 90. 84. 84. 90. 84. 84. 85. 84. 85. 84. 85. 84. 85. 84. 85. 85. 84. 85. 85. 85. 85. 85. 85. 85. 85. 85. 85		Ħ		.59	1	.65			92.	37.	1	ಪ	93	06	700

TABLE V B-2 MANUAL SPINNING LIMITS 2024-0 ALUMINUM

Flenge Height (H): 2.07 2.24 <t< th=""><th>Gage (t)</th><th></th><th>910.</th><th>020</th><th>.025</th><th>-032</th><th>040.</th><th>050.</th><th>.063</th><th>.071</th><th>080.</th><th>060.</th><th>.100</th><th>521.</th><th>.187</th></t<>	Gage (t)		910.	020	.025	-032	040.	050.	.063	.071	080.	060.	.100	521.	.187
Db 2.07 2.24 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.13 4.14 4.14 4.14 4.15 2.11 4.26 2.12 2.12 2.12 2.13 2.14 2.14 2.14 2.15 2.13 2.16 2.13 2.16 2.13 2.16 2.13 2.16 2.13 2.16 2.13 2.16 2.16 2.13 2.16 2	le Diamet (Dd)	er		E.	ange He	ight (H		nk Diameter	eter (D _b)						
B 1.06 1.30 1.30 1.30 Db 3.24 3.46 3.74 4.13 B 1.05 1.29 1.62 2.11 Db 4.36 4.60 4.90 5.31 B 1.07 1.31 1.62 2.07 B 1.12 1.31 1.62 2.07 B 1.12 1.35 1.65 2.07 B 1.16 1.40 1.70 2.13 B 1.20 1.40 1.74 2.16 B 1.20 1.44 1.74 2.16 B 1.24 1.48 1.79 2.20 B 1.24 1.48 1.79 2.25 B 1.27 1.52 1.82 2.25 B 1.27 1.52 1.54 11.90 B 1.27 1.52 1.82 2.25 B 1.21 1.22 1.22 1.23 B </th <th></th> <th>ದ್ದ</th> <th>2.07</th> <th>2.24</th> <th>2.24</th> <th>2.24</th> <th>2.24</th> <th>2.24</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		ದ್ದ	2.07	2.24	2.24	2.24	2.24	2.24							
Db 3.24 3.46 3.74 4.13 B 1.05 1.29 1.62 2.11 Db 4.36 4.60 4.90 5.31 B 1.07 1.31 1.62 2.07 B 1.07 1.31 1.62 2.07 B 5.47 5.72 6.04 6.48 B 1.12 1.35 1.65 2.10 B 1.26 1.40 1.70 2.13 B 1.20 1.44 1.74 2.16 B 1.20 1.44 1.74 2.16 B 1.24 1.48 1.79 2.20 D 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 B 1.27 1.52 1.54 1.90 B 1.27 1.52 1.82 2.25 B 1.27 1.15 1.15 1.10		四	1.06	1.30	1.30	1.30	1.30	1.30							
B 1.05 1.29 1.62 2.11 Db 4.36 4.60 4.90 5.31 Db 1.07 1.31 1.62 2.07 B 1.07 1.31 1.62 2.07 B 1.12 1.35 1.65 2.10 B 1.12 1.40 1.70 2.13 B 1.20 1.40 1.74 2.16 B 1.20 1.44 1.74 2.16 B 1.20 1.44 1.74 2.16 B 1.24 1.48 1.79 2.20 B 1.24 1.48 1.79 2.20 B 1.27 1.52 1.82 2.25 B 1.27 1.52 1.52 1.90 1.90 B 1.27 1.52 1.82 2.25 B 1.27 1.52 1.82 2.25 B 1.28 1.15 1.15 1.10		දු	3.24	3.46	3.74	4.13	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43
Db 4,36 4,60 4,90 5.31 B 1.07 1.31 1.62 2.07 B 1.07 1.31 1.62 2.07 B 5.47 5.72 6.04 6.48 B 1.12 1.35 1.65 2.10 B 7.64 7.92 8.26 8.73 B 1.20 1.40 1.74 2.16 B 1.20 1.48 1.79 2.20 B 1.24 1.48 1.79 2.20 B 1.24 1.48 1.79 2.25 B 1.27 1.52 1.82 2.25 B 1.21 1.52 1.82 2.25 B		四	1.05	1.29	1.62	2.11	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53
B 1.07 1.31 1.62 2.07 D 5.47 5.72 6.04 6.48 B 1.12 1.35 1.65 2.10 B 1.12 1.40 1.76 7.15 B 7.64 7.92 8.26 8.73 B 1.20 1.44 1.74 2.16 B 1.24 1.48 1.79 2.20 B 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 1 B 1.27 1.52 1.82 2.25 1 B 1.27 1.52 1.82 2.25 1 B 10.85 11.15 11.50 1 B 1.31 1.55 1.82 2.25 B 1.31 1.55 1.86 2.15 1 B 1.31 1.55 1.86 2.25 1		ရ	4.36	4.60	4.90	5.31	5.73	6.28	6.67	6.67	6.67	29.9	79.9	6.75	6.67
Db 5.47 5.72 6.04 6.48 B 1.12 1.35 1.65 2.10 Db 6.56 6.83 7.16 7.61 B 1.16 1.40 1.70 2.13 B 7.64 7.92 8.26 8.73 B 1.20 1.44 1.74 2.16 B 8.71 9.00 9.36 9.83 1 Db 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 B 1.27 1.52 1.82 2.25 B 10.85 11.15 11.50 11.90 B 10.31 11.52 11.54 11.90 B 10.85 11.15 11.50 11.90		Ħ	1.07	1.31	1.62	2.07	2.56	3.28	3.82	3.82	3.82	3.82	3.82	3.93	3.82
B 1.12 1.35 1.65 2.10 D 6.56 6.83 7.16 7.61 B 1.16 1.40 1.70 2.13 B 7.64 7.92 8.26 8.73 B 1.20 1.44 1.74 2.16 B 8.71 9.00 9.36 9.83 1 D 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 B 1.27 1.52 1.82 2.25 B 10.85 11.15 11.50 1 B 10.85 11.15 11.50 1		ይ	5.47	5.72	40.9	6.48	46.9	64.7	8.19	8.50	8.69	8.69	8.86	8.88	8.23
Do 6.56 6.83 7.16 7.61 B 1.16 1.40 1.70 2.13 Do 7.64 7.92 8.26 8.73 Do 8.71 9.00 9.36 9.83 1 Do 9.78 10.08 1.79 2.20 1 B 1.24 1.48 1.79 2.20 1 B 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 B 10.85 11.15 11.50 1 B 10.31 1.52 1.82 2.25 B 10.85 11.15 11.50 1	i	щ	1.12	1.35	1.65	2.10	2.59	3.24	4.13	4.55	4.80	4.80	5.03	5.04	4.19
H 1.16 1.40 1.70 2.13 Db 7.64 7.92 8.26 8.73 Db 8.71 9.00 9.36 9.83 1 Db 9.78 1.48 1.79 2.20 1 Db 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 B 10.85 11.15 11.50 1 B 10.31 1.52 1.82 2.25 B 10.35 11.15 11.90 1		δ	6.56	6.83	7.16	7.61	8.06	8.63	9.22	9.38	9.58	9.61	9.78	9.75	9.11
Db 7.64 7.92 8.26 8.73 B 1.20 1.44 1.74 2.16 B 8.71 9.00 9.36 9.83 1 B 1.24 1.48 1.79 2.20 2 Do 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 Do 10.85 11.15 11.50 1 H 1.31 1.55 1.86 2.18		щ	1.16	1.40	1.70	2,13	2.59	3.19	3.89	4.08	4.30	4,35	4.56	45.4	3.74
B 1.20 1.44 1.74 2.16 Db 8.71 9.00 9.36 9.83 1 B 1.24 1.48 1.79 2.20 2 Db 9.78 10.08 10.45 10.94 1 B 1.27 1.52 1.82 2.25 B 10.85 11.15 11.54 11.90 1 B 1.31 1.55 1.86 2.18	1	දු	7.64	7.92	8.26	8.73	9.20	9.70	10.08	10.26	10.46	10.50	10.64	10.64	10.00
Db 8.71 9.00 9.36 9.83 B 1.24 1.48 1.79 2.20 Db 9.78 10.08 10.45 10.94 B 1.27 1.52 1.82 2.25 B 10.85 11.15 11.50 11.90 B 1.31 1.55 1.86 2.18		H	1.20	ተተ• ፒ	1.74	2,16	2,62	3.13	3.53	4.73	3.95	4.00	4.17	4.17	3.46
B 1.24 1.48 1.79 2.20 Db 9.78 10.08 10.45 10.94 B 1.27 1.52 1.82 2.25 Db 10.85 11.15 11.54 11.90 B 1.31 1.55 1.86 2.18	/	Po	8.71	9.00	9.36	9.83	10.30	10.60	10.97	11.15	11.33	11.37	11.56	11.50	10.89
Db 9.78 10.08 10.45 10.94 B 1.27 1.52 1.82 2.25 Db 10.85 11.15 11.54 11.90 B 1.31 1.55 1.86 2.18		H	1.24	1.48	1.79	2.20	5.64	2.93	3.29	3.48	3.68	3.72	3.90	3.87	3.21
B 1.27 1.52 1.82 2.25 Db 10.85 11.15 11.54 11.90 R 1.31 1.55 1.86 2.18		ο _O		10.08	10.45	10.9	11.22	11.51	11.88	12.03	12.22	12.30	12.44	12.43	11.82
D _b 10.85 11.15 11.54 11.90 1 H 1.31 1.55 1.86 2.18		Ħ		1.52	1.82	2.25	2.50	2.76	3.12	3.26	3.46	3.52	3 66	3 //5	7
H 1.31 1.55 1.86 2.18		P	Н	11,15	13.54	11.90	12.17	12.42	12.76	12.96	13.15	13.20	13.38	13.33	12.74
		H	1.31	1.55	1.86	2.18	2.41	2.63	2.93	3.12	3.30	3.36	3.53	3.48	2.32
				12.23	12.58	12.87	13.10	13.36	13.68	13.86	14.13	14.14	14.34	14.25	13.67
H 1.33 1.59 1.87 2.12 2.31		Ш	1.33	1.59	1.87	2.12	2.31	2.54	2.82	2.97	3.22	3.22	3.42	3.34	2.81

TABLE V B-3
MANUAL SPINNING LIMITS
17-7 PH
(MILL-ANNEALED, CONDITION "A")

Gage (t)		910.	020.	.025	.032	040.	.050	.063	170.	.080	060.	001.	ऽटाः	.187
Die Diameter (Dd)	ter		E	Flange He	eight (H)		Blank Diameter	eter $(D_{\mathbf{b}})$	(*					
r	g	1.52	1.50	1.53										
4	Ħ	745	.42	.43										
o	$D_{\mathbf{p}}$	2.90	3.04	3.03	3.04	3.04	3.07							
ij	Щ	.71	.85	.85	.85	.85	98*							
٠	ရိ	4.05	4.13	4.21	4.34	44.4	4.52							
n	щ	.80	.87	46	1.06	1.15	1.23							
η	ይ	4.99	5.07	5.15	5.27	5.37	24.5	2.57	5.66	5.73	5.80	5.85	5.96	6.18
+	н	.72	.79	.85	-95	1.04	1.13	1.23	1.30	1.36	1.42	1.47	1.58	1.79
v	Do	5.94	6.03	6.10	6.21	6.31	6.41	6.52	19.9	6.65	6.74	6.80	6.90	7.12
`	H	29.	•73	62.	.87	<u> </u>	1.04	1.13	1.21	1.24	1.32	1.37	1.46	1.65
9	တို	6.93	7.00	7.08	7.18	7.27	7.35	74.7	7.55	7.61	7.68	7.74	7.84	8.07
•	H	t9°	.70	.75	.83	06*	76.	1.07	1.13	1.18	1.24	1.28	1.37	1.57
4	o _C	7.90	7.97	8.04	8.12	8.23	8.31	8.44	8.51	8.57	9.64	8.69	8.79	9.01
-	H	19*	19.	.72	.78	98.	26.	1.02	1.08	1.12	1.18	1.22	1.30	1.49
ď	$D_{\mathbf{p}}$	98.8	8.95	00.6	9.10	9.20	9.27	04.6	94.6	9.54	9.59	99.6	9.75	9.97
	Ħ	.58	.65	69.	92.	.83	88	96	1.03	1.08	1.13	1.19	1.25	1.43
σ	^q d	78.6	9.92	9.98	10.08	10.17	10.25	10.36	10.42	10.50	10.56	10.62	10.70	10.93
,	H	.56	.63	99*	ħL•	·80	93*	₽6.	66.	1.05	1.09	1.13	1.20	1.37
10	ď		10.91	10.95	11.04	11.13	11.23	11.32	11.40	11.46	13.51	11.58	11.69	11.89
	H	.55	.61	†9°	.71	2.2.	78.⁴	.90	96.	1.01	1.05	1.09	1.18	1.33

TABLE V B-4
MANUAL SPINNING LIMITS
PH 15-7 Mo
(MILL ANNEALED, CONDITION "A")

Gage (t) Die Diameter	ter	910.	.020		CU I	0	.050	.063	.071	.080	060-	.100		125
(pg)	É	7,1 6	-	range ne	neignt (H)		Blank Diam	Diameter (Db.	2					
Н	н	.38	.38											1
	ရိ	2.97	2.97	2.97	2.97	2.97	2.97							1
ت ت	Ħ	.78	.78	.78	.78	.78	.78							1
۰	ይ	4.09	4.12	4.16	6 t• †	4.22	4.27	4.30	4.33	4.35	4.35	4.35	4.35	2
า	p;	.83	.86	96•	z6 •	56.	66.	1.02	1.05	1.06	1.06	1.36	1.8	ی ا
- 1	ይ	5.07	5.10	5.14	5.17	5.21	5.25	5.28	5.31	5.33	5.36	5.38	5.41	۱ 4
,	щ	62.	.81	†8•	98*	06•	.93	96	36.	1.00	1.03	1.05	20	$ _{\infty}$
v	$D_{\rm b}$	90•9	90*9	6.12	6.16	6.19	6.23	6.26	6.29	6.31	η _ε 9	6.35	04.9	
,	н	92.	.78	.80	.83	.85	68.	-92	16 .	.95	86.	99	1.03	~
9	ದೆ	7.05	70.7	7.11	7.15	7.18	7.22	7.25	7.27	7.30	7.32	7.34	7.38	a a
,	н	•73	η).	77.	08.	.83	.87	.89	06.	.93	1 6	%	6	
7	$q_{\overline{\Omega}}$	8.04	8.06	8.10	8.13	8.16	8.21	8.24	8.26	8.29	8.31	8.33	8.37	, l _~
-	н	.72	.7 ^t	92.	6L·	τ8•	†8•	-87	68.	.91	-92	ま。	.97	.]
- 00	^Q	9.03	9.05	60.6	9.12	9.15	9.20	9.23	9.25	9.27	9.30	9.32	9.36	1,0
	Щ	.70	.72	.75	LL.	99	.83	.85	88.	88.	.91	.93	96	
0	മ	10.02	10.04	10.08	10.11	10.14	91.01	10.22	10.24	10.26	10.29	10.31	10.35	
	н	69.	.71	.74	92.	62.	-82	1 8	.85	.87	.89	16.	86	
ន	മ്	10.11	11.03	11.07	01.11	11.13	11.18	11.21	11.23	11.25	11.28	11.30	11.34	1 _
	щ	.68	.70	•73	.75	2.2.	8.	-82	₽.	%.	.87	88	.92	

TABLE V B-5
MANUAL SPINNING LIMITS
AM-350 STAINLESS STEEL
(ANNEALED)

			i											
Gage (t)		910.	020.	.025	-032	040.	.050	.063	.071	080.	060.	.100	.125	.187
Die Diameter (Dd)	ter		প্র	Flange He	Height (H)		Blank Diameter	eter (D _b)						
	26	1.40	1.40											
-1	Ħ	•30	•30											
	$D_{\mathbf{p}}$	2.82	2.82	2.82	2.82									
u	Ħ	1 9•	.64	₹9*	. 64									
٠	ညိ	4.30	4.22	lt.22	lt.22	4.22	4.22							
1	Ħ	•84	.95	.95	.95	.95	.95							
1	₂	5.14	5.25	5.31	5.38	5.47	5.56	5.57	5.5)	5.00	5.00	5.60	5.60	
•	H	₹8*	•93	86.	1.05	1.13	1.22	1.23	1.24	1.24	1.24	1.24	1.24	
u	٩d	91.9	6.22	62.59	6.35	6.45	6.53	6.61	29•9	6.71	6.75	6.50	6.91	7.02
`	H	₹8*	88•	η6 ·	.99	1.07	1.14	1.21	1.26	1.2)	1.35	1.37	1.47	1.58
y	QΩ	7.14	7.21	7.27	7.33	7.43	7.50	7.58	7.65	7.63	7.73	7.76	7.38	8.08
,	н	.80	98.	06•	.95	1.03	1.09	1.16	1.21	1.24	1.28	1.30	1.40	1.58
4	o _C	8.12	8.19	8.25	8.31	8.40	8,48	8.56	8,62	8.65	0Z•8	8.74	8.85	9.04
-	H	•78	.83	•88	.92	-99	1.06	1.12	1.17	1.19	1.23	1.25	1.35	1.50
α	Ω	9.10	9.17	9.23	9.29	9.37	94.6	9.54	65.6	9.63	19.6	z L •ú	9.83	10.02
,	H	.76	τ8.	.85	.90	<i>L</i> 6•	1.03	1.08	1.13	1.16	1.20	1.23	1.31	1. 47
σ	O _Q	10.09	10.15	10.21	10.27	10.36	10.44	10.52	10.57	10.61	10.65	10.70	10.80	11.00
`	H	.75	.78	.83	.88	1 16•	1.00	1.07	1.10	1.12	1.16	1.20	36.1	1,4,4
10	ď	11.08	11.13	11.19	11.25	11.34	11.42	11.51	11.56	11.60	11.64	39.11	11.78	11.98
	Щ	+J.	.77	.80	. .86	-92	.97	1.05	1.07	1.12	1.15	31.1	1.25	04.1

TABLE V B-6
MANUAL SPINNING LIMITS
A-286 STAINLESS STEEL
(SOLUTION TREATED CONDITION)

Gage (t)		910.	.020	.025	.032	.040	.050	.063	.071	.080	060-	οστ•	325.	187
Die Diameter (Dd)	ter		E	Flange He	eight (H)		nk Diam	Blank Diameter (Db	~					
·	ይ	2,00	2.00	2,00	2.00	2,00	2,00							
1	Ħ	26.	16.	26*	26.	26.	26.							
ď	$D_{\mathbf{b}}$	3.34	3.57	3.88	7.00	4,00	14.00							
J)	Ħ	1.16	1,41	1.78	η 6°τ	η6•τ	46•τ							
2	D_{b}	24.4	4.73	90*5	5.50	5.87	6.00	6.00	6.00					
r	H	1.18	1.44	1.79	2,30	72.2	26.5	2.92	26.2					
1	ይ	5.59	5.87	6.21	6.65	6.80	6.94	7.11	7.20	7.26	7.36	7.43	7.65	7.92
ŀ	н	1.25	1.49	1.82	2.27	77.5	2.60	2.80	2.89	2.97	3.09	3.17	3.43	3.78
v	$D_{\mathbf{p}}$	69.9	66.9	7.34	7.61	42.7	7.89	8.05	8.14	8.22	8.31	6.40	8.53	8.92
`	H	1.28	1.54	1.87	2.13	2.25	2.40	2.58	2.66	2.74	2.54	2.95	3.04	3.52
9	ည်	7.78	8.08	8.39	8.55	8.69	8.83	8.99	90.6	9.15	9.56	9.34	9.50	0.85
•	H	1.32	1.57	58°T	2.00	2.13	2.26	2,41	2.51	2.57	2.67	2.75	20.5	3.20
-	Po	98.8	9.17	45.6	9.51	9.64	9.79	76.6	10.02	10.10	10.21	10.28	10.45	10.81
-	H	1.36	19.1	1.78	1.92	20.2	2.09	2.30	2.38	2.44	2.55	29.8	2.70	3, 12
œ	$\mathbf{D}_{\mathbf{b}}$	9.93	91.01	10.31	10.47	10.59	10.75	10.90	10.98	11.05	11.15	11.24	11.40	11.78
•	H	1.39	1.60	1.71	1.83	1.94	2.08	2.21	2.28	2.33	2.44	2.52	2.5	3.02
σ	ρ°	10.11	11.15	11.28	11.43	11.56	11.71	11.86	11.94	12.02	12.12	12.20	12.35	12.73
,	н	ተተግ	1.55	99°1	1.78	1.89	2.01	2.14	2.20	2.27	2.37	2.43	2.57	2.41
101	Q	12.03	12,12	12.24	12.41	12.53	12.68	12.81	12.88	12.99	13.08	13,18	13.32	13.67
	Щ	1.42	1.51	1.60	1.75	1.84	1.95	2.07	2.13	2.21	2.30	2.37	2.48	2.82
	•							,			•	•		

TABLE V B-7

MANUAL SPINNING LIMITS
USS-12-MOV STAINLESS STEEL
(ANNEALED)

1.50 1.52	`		,												
1.59 1.59 1.59 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.	Gage (اۍ	910.	020.	.025	-032	040	.050	.063	170.	980.	060.	.100	521.	.187
Db 1.59 1	de Diar (Dd)	meter		je,		ight (A		nk Diam	eter (De	(5					1
H .50	-	g		1.59	1.59		ì								
Db 3.15 3.18 4.76 4	4	н	.50	.50	.50										
H .95 .99	α	ရ		3.18	3.18	3.18	3.18	3.18							
Db 4.26 4.48 4.76 1.47 1.48 1.58 1.59 1.59 1.59 1.59 1.59 1	,	щ	.95	-99	66.	66.	66.	66.							
H -98 1.19 1.47 1.49 1.98 1.99 1.99 2.27 2.42 2.46 2.4	~	ဂ္ဂ	4.26	4.48	92" 4	4.76	4.76	7.4	4.76	72. 7	72 77				
Do 5.37 5.60 5.89 6.29 6.37 7.94 7	,	н	.98	61.1	L++	1.47	1.47	1.47	1.47	1.47	1.47				
B 1.04 1.24 1.50 1.98 2.13 2.75 2.42 2.46 2.	. ‡	ಗ	5.37	5.60	5.89	6.29	6.37	6.37	6.37	6.37	6.37	6.37	6 37	400	6 27
Bo 6.45 6.67 6.94 7.42 7.62 7.75 7.90 7.94 2.28 2.37 2.44 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.96 2.98 2.97 2.46 2.46 2.96 2.98 2.97 2.40 2.96 2.98 2.97 2.40 2.96 2.98 2.97 2.40 2.46 2.46 2.96 2.98 2.97 2.40 2.46 2.46 2.98 2.97 2.46 2.46 2		田	1.04	1.24	15°1	1.90	1.98	1.98	1.98	1.98	1.98	7.08	1080	2 c	0.17 80.1
H 1.07 1.26 1.50 1.93 2.13 2.27 2.42 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.46 2.47 2.44 2.46 2.28 2.37 2.44 2.50 3.13 3.15 3.44 9.54 9.54 9.66 9.89 9.97 3.00 3.20 3.27 2.44 2.52 2.33 2.42 3.62 3.34 3.62 3.80 9.89 9.97 3.00 3.20 3.	بر	ದ್ದಿ	6.45	6.67	46.9	7.42	7.62	7.75	7.90	7.94	7.94	7.94	7.04	7.24	10 7
Pb 7.53 7.79 8.11 8.49 8.58 8.70 8.85 8.94 9.02 9.10 9.20 B 1.12 1.33 1.61 1.92 2.03 2.13 2.28 2.37 2.44 2.53 2.62 9.80 9.89 9.97 10.06 10.14 10.14 10.14 10.14 10.20 10.14 10.14 10.20 2.10 2.25 2.33 2.42 2.48 2.54 2.48 2.54 2.48 2.54 2.48 2.54 2.53 2.48 2.54 2.48 2.53 2.42 2.48 2.54 2.48 <t< td=""><th>. </th><th>ш</th><td>1.07</td><td>1.26</td><td>1.50</td><td>1.93</td><td>2.13</td><td>2.27</td><td>2,42</td><td>2.46</td><td>2.46</td><td>0.46</td><td>2.46</td><td>7-0</td><td>1000</td></t<>	.	ш	1.07	1.26	1.50	1.93	2.13	2.27	2,42	2.46	2.46	0.46	2.46	7-0	1000
B. 60 B. 50 1.61 1.92 2.03 2.13 2.28 2.37 2.44 2.52 2.03 2.13 2.28 2.37 2.44 2.52 2.03 2.14 2.53 2.05 2.10 2.25 2.31 2.42 2.62 3.80 9.89 9.97 10.06 10.14 10.50 1.94 2.05 2.10 2.25 2.33 2.42 2.42 2.48 3.48 3.49 3.40 3.40 3.50 3.40 3.50 3.10	9	ಕ್ಷ	7.53	7.79	11.8	8.49	8.58	8.70	8.85	8.94	0.00	01.0	000	0	25.5
Db 8.60 6.91 9.21 9.44 9.54 9.66 9.80 9.88 9.97 10.06 10.14 Db 9.67 9.67 9.66 9.80 9.89 9.97 10.06 10.14 Db 9.67 9.67 1.65 1.66 1.66 1.66 1.66 1.67 1.66 1.66 1.67 1.66 1.67 1.66 1.67 1.67 1.66 1.67 1.67 1.67 1.66 1.67 1.67 1.67 <th></th> <th>æ</th> <td>1,12</td> <td>1.33</td> <td>1,61</td> <td>1.92</td> <td>2.03</td> <td>2,13</td> <td>90 C</td> <td>0 27</td> <td>17.0</td> <td>2</td> <td>0 0</td> <td>7:32</td> <td>7.21</td>		æ	1,12	1.33	1,61	1.92	2.03	2,13	90 C	0 27	17.0	2	0 0	7:32	7.21
H 1.15 1.39 1.65 1.80 1.94 2.05 2.10 9.00 9.97 10.00 10.14 11 Do 9.67 9.67 1.69 1.64 1.65 1.94 2.05 2.10 2.25 2.33 2.42 2.48 Do 9.67 1.60 1.78 1.87 1.96 2.09 2.16 2.24 2.31 2.39 Do 10.72 11.02 11.19 11.38 11.48 11.72 11.81 11.88 11.97 12.06 1 H 1.22 1.45 1.82 1.91 2.02 2.10 2.16 2.23 2.31 2.36 O Do 11.78 12.69 12.69 12.69 12.69 12.69 12.91 12.92 12.92 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	t	Ω Ω	8.60	8.91	12.6	177 0	10	99 0	01 0	2000	## Z	6.23	70.7	92	2.93
Do 9.67 9.95 10.21 10.41 10.50 10.62 10.76 10.76 10.84 10.93 11.10 11.1	~	н	1.15	1.30	, א) BE		3	20.5	3.00	75.5	10.0c	10.14	10.30	10.66
B 1.20 1.41 10.50 10.62 10.76 10.76 10.93 11.01 11.10 11.10 11.10 11.10 11.10 11.13 11.48 11.72 11.61 11.83 11.97 12.06 1 A 10.72 11.02 11.13 11.48 11.72 11.81 11.88 11.97 12.06 1 B 11.78 12.22 1.43 1.82 1.91 2.02 2.10 2.16 2.23 2.31 O D 11.78 12.03 12.43 12.55 12.68 12.94 13.02 1		á	,			70.1	Ĭ.	4.02	2.10	2.52	2.33	2,42	2.48	5.64	2.98
B 1.20 1.41 1.61 1.78 1.96 2.09 2.16 2.24 2.31 2.39 Pb 10.72 11.02 11.19 11.48 11.56 11.72 11.81 11.97 12.06 1 Pb 11.78 12.25 1.43 12.55 12.43 12.55 12.68 12.77 12.85 12.94 13.02 B 11.25 1.42 1.52 1.64 1.65 1.64 1.65 1.64 1.65 1.64 1.65 1.64 1.65 1	0	.[3.0	9.95	10.21	10.41	7	10.62	-		10.93	10.11	11.10	11.25	11.61
b 10.72 11.02 11.19 11.38 11.48 11.58 11.72 11.81 11.88 11.97 12.06 1 B 11.72 1.45 1.74 1.82 1.91 2.02 2.10 2.16 2.23 2.31 B 11.78 12.03 12.15 12.43 12.55 12.68 12.77 12.85 12.94 13.02 1 B 11.25 1.42 1.62 1.				1.4.1	1.61	1.78	1.87	1.96	2.09	2.16	2.24	2.31	2.39	2.53	78.0
H 1.22 1.45 1.57 1.74 1.82 1.91 2.02 2.10 2.16 2.23 2.31 Da 11.78 12.15 12.35 12.43 12.55 12.68 12.77 12.85 12.94 13.02 1 H 1.25 1.42 1.75 1.76 1.62 1.62 1.23 </td <th>σ\</th> <th>क</th> <td>10.72</td> <td>11.02</td> <td>11.19</td> <td>11.38</td> <td></td> <td>11.58</td> <td></td> <td></td> <td>11.88</td> <td>11.97</td> <td>12.06</td> <td>12.20</td> <td>12,57</td>	σ\	क	10.72	11.02	11.19	11.38		11.58			11.88	11.97	12.06	12.20	12,57
De 11.78 12.03 12.15 12.43 12.55 12.68 12.77 12.85 12.94 13.02 1		E	1.22	1.45	1.57	1.74	1.82	1.91		T-	2 16	0 00	10.0		1
H 1.25 1.42 1.59 1.68 1.76 2.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1	9	മ്		12.03	12.15		Т	12.55	+	7	12.85		_	12 17	رع در م دع
- 0. 0 - 0. 0 - 1. 0 0 - 1. 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1 - 0. 1		H	1.25	1.42	1.52	-		7.85	+-	7-		-1-	_	17.57	13.73

TABLE V B-8
MANUAL SPINNING LIMITS
TITANIUM (6 A1-4V)
(MILL ANNEALED)

Gage (t)		910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	.187
Die Diameter (Dd)	ter		154	Flange He	Height (H):		ık Diam	Blank Diameter (D _b						
,	P _P	1.28	1.28	1.28										
-1	Ħ	tz•	.21	τz•										
٥	δ	5.36	2.44	5.54	5.64	5.64	2,64	2.64						
V	Ħ	.25	.31	04*	Ĺή·	Lt1*	747	74.						
٠	٩ď	3.44	3.51	3.54	3.57	3.60	3.63	3.66	3.68	3.70	3.72	3.74	3.77	3.84
c	н	•30	.36	.37	.41	.43	.45	L_{4} .	64.	.51	.52	.54	.56	.61
	ፈ	94.4	4.50	4.53	4.55	85*1	4.61	η9 ° η	99• 4	89*1	4.69	4.71	4.75	4.82
+	Ħ	-32	↑ E•	•36	.38	04.	5ħ°	777	94*	84.	64.	•50	.53	.58
u	ည်	94.5	64.5	5.52	5.54	5.57	5.59	5.63	19*5	99*5	2.67	5.70	5.73	5.80
,	H	15.	•33	.35	.37	•39	.47	£4.	†††	54.	94.	.48	•50	.56
y	ကို		84*9	6.51	6.53	6.55	6.58	6.61	6.63	6.65	99.9	6.68	6.72	62.9
>	H		•32	.34	.35	.37	.39	.41	.43	44.	.45	94.	64.	.54
•	ကို							7.60	7.61	7.63	4.65	7.67	7.71	7.78
-	н							04.	.41	.42	77.	.45	84.	•53
σc	$D_{\mathbf{b}}$													
,	H													
σ	δ			,										
\	H													
10	ď													
	H													

TABLE V B-9
MANUAL SPINNING LIMITS
TITANIUM (13V-11Cr-3A1)
(SOLUTION TREATED CONDITION)

									•					
Cage (t)	Ç	.016	.020	.025	-032	040.	.050	£90°	.071	.080	œo.	001.	325.	.187
Die Diameter $(D_{\rm d})$	eter		je,	Flange He	Height (H)		Blank Diameter (Db.	eter (D	~					
-	Ω	1.19	1.20											
1	H	.13	,14											
a	δ	2.37	2.43	2.43	2.43									
ı	H	.26	•30	.30	•30									
~	δ	3.38	3.41	3.43	3.45	3.47	3.49							
٠	H	.26	.28	•30	.31	.32	78.							
	ድ	4.37	4.39	ፒተ•ተ	4.43	4.45	ረተ• ተ	64.4	4.51	4.52	4.53	45.4		
	H	.25	.26	.28	.29	.31	.32	±34	.35	.35	95.	.37		
v	વ	5.36	5.38	04.5	5.42	5.44	5.46	5.48	5.50	5.51	5.52	5.53	5.57	5.63
`	H	,24	.25	LZ*	35.	.30	.31	.33	45.	.35	.35	36	33	L3
9	Ω	6.35	6.37	6.39	6.41	6.43	6.45	24.9	64.9	6.50	6.51	6.52	6.56	6.62
	H	.23	.25	92	.27	.29	02.	35	.33	772	377	35	3.8	1.0
_	ဂို	7.34	7.36	7.38	7.40	7.42	ተተ• ረ	7.46	7.48	7.50	7.51	7.52	7.55	7.61
-	н	.22	.24	.25	.26	8Z•	62*	.31	-32	.33	.34	.35	.37	14.
ω	မို	8.34	8.36	8.38	8.40	8.42	ħħ•8	94.8	8,48	64.8	8.50	8.51	8.54	8,60
	н	.22	,24	.25	.26	.28	.29	.31	.32	.33	78.	.35	37	07
σ,	a	9.34	9.36	9:38	04.6	9.42	9.44	9,46	9.47	64.6	9.50	9.51	9.53	9.59
	H	-22	ήZ.	.25	,26	.28	62*	.31	.31	.33	-34	.35	36	5
ន	ď	10.33	10.35	10.37	10.39	10.41	10.43	10.45	I	10.48	10.49	10.50	10.52	10.58
	H	-22	.23	.24	.25	.27	82.	•30		32	33	45.	.35	38
											3		10.	٠ ٢

TABLE V B-10
MANUAL SPINNING LIMITS
VASCOJET 1000 (H-11)
'ANNEALED'

Gage (t)		910.	020.	.025	.032	040.	.050	.063	.071	980.	060.	2001.	.125	.187
$\begin{array}{c} \mathtt{Die} \ \mathtt{Diameter} \\ (\mathtt{Dd.}) \end{array}$	ter		F	Flange He	leight (H)		ok Diam	Blank Diameter (D _b)						
	<mark>2</mark>	1.675	1,675	1.675										
-1	田	85.	.58											
	$D_{\mathbf{D}}$	2.884	3.04	3.235	3.35	3.35	3.35							
u	Ħ	69*	.85	1.05	1.17	1.17	1.17							
٠	ης.	3.98	4.15	98.4	49.4	46.4	5.00	5.00	5.00	5.00	5.00	5.00	5.00	
n	Ħ	₹2.	68.	1.07	1.35	1.66	1.72	1.72	1.72	1.72	1.72	1.72	1.72	
-	ሪ	5.065	5.24	594.5	5.70	6.08	6.47	6.58	6.67	02•9	6.70	6.70	6.70	6.70
f	н	62.	-92	21.1	1.33	1.69	2.10	2.20	2.30	2.33	2,33	2.33	2.33	2.33
u	$D_{\mathcal{O}}$	6.13	6.32	95.9	2a•9	7.19	7.43	7.55	7.63	7.69	7.76	7.82	7.95	5.24
	н	.81	96.	1.16	1.43	1.72	1.94	2.08	2.14	2.21	2.28	2.33	2,40	2.76
y	^업	7.185	7.375	7.63	7.96	8.28	8.40	8.51	8.58	3.66	8.72	8.78	6.90	9.20
>	H	.83	•99	1.20	1.46	1.75	1.86	1.96	2.03	2.10	2.15	2.21	2,33	2.62
t	Q _U	8.24	8.144	8.71	9.05	9.26	9.37	94.6	9.55	39. 6	02.6	9.74	28.€	10.15
_	В	.87	1.02	1.24	1.51	1.69	1.80	1.89	1.94	2.00	2.05	L0• Z	2.23	2.49
σc	Ω	9.29	9.50	9.775	10.12	10.22	10.33	10.45	10.53	10.59	10.66	27.01	10.85	11.12
•	Ħ	.90	1.06	1.27	η5•τ	7.62	1.72	1.82	68.1	1.94	2,00	2.05	2.17	2.41
o	ο _α	10.345	10.56	10.84	60°11	11,20	11.30	24°TT	05•11	11.56	11.63	89.11	23.11	60.51
`	н	.93	1.09	1.31	1.50	1.59	1.68	1.77	1.84	1.89	1.95	86•τ	2.11	2.34
10	^Q d	11.385 11.61	11.61	11.86	12.07		12.28	12.39	12,46	12.53	12.60	12.66	12.78	13.06
	Щ	.95	1.11	1.31	1.45	1.54	1.64	1.73	1.78	1.84	1.89	1.94	2.05	2.27

TABLE V B-11
MANUAL SPINNING LIMITS
BERYLLIUM (PURE)
CONDITION "C", TEMP. 1200°F

Gage (t)	(910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	001.	521.	.187
Die Diameter (Dd)	eter		124	Flange He	Height (H):		ok Diam	Blank Diameter (D _b)	7					
,	g	1.13	1.17	1.19	1.20	1.20	1.20							
-1	H	60.	.12	•13	η Γ•	η ι .	41.							
	ဂိ	2.18	2.21	2.24	2.29	2.33	2.39	2.41	2.41	2,41	2.41	2.41	2.41	
J	H	.12	4٦.	.16	61.	•23	.27	62.	.29	.29	.29	.29	.29	
~	ይ			3.27	3.32	3•38	3.43	3.51	3.54	3.55	3.57	3.58	3.61	
,	щ			31.	.22	92.	•30	.36	.37	38	.41	24.	77	
. 	ਨੀ				4.35	14.4	84.4	4.51	4.53	4.54	4.55	4.56	4.59	
	н				.23	.28	.33	.35	.36	.37	38.	.39	Lt1.	
ır	ဂိ						5.48	5.49	5.51	5.53	5.54	5.55	5.58	
,	н						•33	.34	.35	.36	.37	.38	.39	
9	2 2						94.9	64.9	6.50	6.52	6.53	6.55	6.58	
	E						.32	•33	-34	.35	36	.37	ವ್ಯ	
1	ကို										7.53	7.55	7.58	
_	H										.35	75.	32	
က	å											8.54	8.58	
	П											.37	ű. G.	
σ	$D_{\mathbf{b}}$												3	
	H													
10	D _o													
	Щ													
											,	•		

TABLE V B-12
MANUAL SPINNING LIMITS
RENE'41
(SOLUTION TREATED)

Flange 1.52 1.52 1.52 1.52 1.62 1.03 1.03 1.03 1.03 1.03 1.04 1.05 1.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	Height (H):	ı							3.5	187
1.52 3.04 3.04 3.04 4.25 4.25 2.22 5.22 5.22 5.22 6.20 6.20 6.20			nk Diam	Blank Diameter (Db.	<u>~</u>					
3.04 3.04 3.04 3.04 3.65 2.25 5.22 5.22 5.20 6.20 6.20										
3.04 .85 .4.25 .98 .98 .7 .86	Q.									
. 85. 4 4. 25. 4 1. 98. 1 2. 21. 5 6. 20 6 6. 20 6	4 3.04	3.04	3.04							
4.25.4 .98.1 .91.6 .91.7	5 .85	.85	.85							
.98 .91 .86 .86	1 4.39	94.4	4.54	4.54	4.5	4.54	45.4	4.54	4.54	
.91 .92 .93 .96 .96	3 1.10	1.17	1.25	1.25	1.25	1.25	1.25	ا 25	1 25	
.91 .86.20 87.7		.542	5.50	5.59	5.63	5.66	5.71	5.74	18.5	6.03
.86		1.09	91.1	1.25	1.28	1.30	1.34	1.37	1.45	1.63
98.	6.33	04.9	94*9	6.55	6.60	6.63	6.68	6.71	6.80	6.07
7 18 7		1.03	1.08	1.16	1.20	1.23	1.27	1.31	1.37	1 50
27.0	7.31	7.38	44.7	7.53	7.57	7.60	7.65	7.68	7.77	10
. 79 . 83 . 87	.93	66.	1.05	11.1	1.15	1.17	1.21	1.24	1.31	1.45
8.11 8.16 8.21	8	8.36	8.42	8.50	8.55	8,5	8 62	77 0	E a	2
.81 .84		%	1.00	1.07	1.10	1.13	1.16	2 2	1 %	1 40
9.09 9.14 9.20	9.27	9.34	04.6	9.48	9.52	9.56	09.60	0.64	07.0	o Bo
.83	-	6.	86.	10,1	79	1 10	7 -	יון ר	7.02	7.07
10.13 10	1 3		10.38	10.46	10.50	10 54	מה טר	10.60	20.70	200.1
1		I	8.	1.02	1.05	1.08	1.1	1 13	2 %	33 5
51.11 11.11 70.11	11.24	l	11.37	11.45	11.49	11.52	11.56		11.68	18
.73 .76 .79	.85	88.	₹.	2.0	д 7	1.06	1.07	T	1,18	- 3

TABLE V B-13
MANUAL SPINNING LIMITS
INCONEL X
(C.R. ANNEALED)

Gage (t)		910.	.020	.025	-032	040.	.050	.063	.071	080.	œ0·	.100	321.	.187
Die Diameter (Dd)	eter		je4	lange He	Flange Height (H)		ok Diam	Blank Diameter (D _b)						
	26	1.76	1.76	1.76										
7	Ш	89*	99•	.68										
,	ď	3.10	3.30	3.52	3.52	3.52	3.52							
V	Ħ	.91	1.11	1.35	1.35	1.35	1.35							
٠	^Q	4.21	††* †	4.70	5.06	5.24	5.26	5.26	5.26	5.26	.526	.526	5.26	5.26
γ	ы	46.	1.15	1.41	1.79	1.99	2.01	2.01	2.01	2.01	2.01	2.01	2.01	2.01
-4	ይ	5.31	5.55	5.82	6.10	6.22	6.35	6.47	6.54	6.62	6.70	6.78	6.95	6.99
	H	96.	1.21	1.43	1.71	1.83	1.96	2.09	2,16	2.24	2.33	2.42	2.61	2.66
v	ဂိ	6.40	6.65	6.94	7.05	7.17	7.30	7.42	7.50	7.56	7.65	7.72	7.90	8.19
`	H	1.03	1.24	1.49	1.60	1.71	1.83	η6•τ	2,01	2.09	21.5	2.23	2.41	2.71
و	ဌိ	L4°L	7.73	7.90	8.01	8.14	8.26	8.37	94.8	8.51	8.61	89.8	8.85	9.14
,	н	1.06	1.28	1.43	1.52	1.63	1.73	1.83	1.91	1.96	2.05	2.12	2.28	2.56
•	ဂိ	8.54	8.76	8.86	8.98	9.10	9.22	9.33	9.45	84.6	9.56	79.6	9.80	10.10
_	H	01.1	1.27	1.36	1.46	1.55	1.65	1.75	1.84	1.89	1.95	20.2	2.10	2.44
nc	Ω Ω	9.61	9.73	9.83	9.95	10.06	10.19	10.30	10.38	10.45	10.54	10.62	10.75	11.06
	H	1.14	1.24	1.31	1.41	1.50	1.60	1.70	1.76	1.84	1.90	96*τ	2.08	2.34
σ	ď	10.61	10.71	10.80	10.92	11.03	91.11	11.27	11.34	11.42	13.11	11.58	07.11	12.01
`	щ	1.13	1.21	1.28	1.37	1.46	1.56	1.65	1.71	1.77	1.85	16.1	2.00	2.26
o r	႖ိ	11.59	11.68	11.78	11.90	0.51	12.12	12.25	12.32	12.39	12.47	15.51	12.67	12,98
	H	1.11	1.18	1.25	1.34	1.42	1.51	19.1	1.67	1.73	1.79	1.85	1.95	2.20

TABLE V B-14
MANUAL SPINNING LIMITS
HASTELLOY X
(SOLUTION TREATED)

		T			020	0,70	050	1,500	1200	S	000	001	.125	184.
Gage (t)		.016	020.	(ZO:	550.	5	3	500.	1 1 2	332				
$\begin{bmatrix} \mathtt{Die\ Diameter} \\ (\mathtt{D}_{C}) \end{bmatrix}$	ter		E.	Flange He	eight (H)	••	ik Diame	Blank Diameter (Do			** **********************************			
	8	1.68	1.68	1.68										
-I	н	.58	.58	.58										
,	οd	3.15	3.36	3.36	3.36	3.36	3.36							
V	Ħ	\$6.	1.18	1.18	1.18	1.18	1.18							
,	å	4.28	64.4	4.75	4.87	5.00	5.00	5.00	2.8	5.00	5.00	5.00		
*1	μi	1.00	1.20	94.1	1.58	1.72	1.72	1.72	1.72	1.72	1.72	1.72		
	ಕ್ಷ	5.38	5,65	17.5	5.83	5.94	90.9	6.17	6.26	6.30	6.40	6.46	6.60	6.65
<i>‡</i>	ш	1.05	1.29	1.34	1.45	1.56	1.66	1.78	1.87	1.91	2.01	2.08	2.22	2.28
	င္မိ	6.47	6.59	89.9	% .9	6.90	7.02	2.13	7.22	7.26	7.36	7.42	7.55	7.80
<u>'</u>	ш	1.09	1.18	1.28	1.37	3,46	1.58	99 ° 1	1.75	1.79	1.89	1.93	2.08	2.31
	Ω	7.50	7.56	7.65	7.77	7.87	7.98	8.09	8.17	8.22	8.32	8.38	8.50	8.77
0	E	1.09	1.14	1.21	18.1	1.40	6 † •τ	1.59	1.65	1.70	1.79	1.84	1.95	2.20
	ကိ	9,46	8.54	8.62	47.8	18.8	8.95	9.07	9.14	9.19	9.29	9.34	24.6	9.73
-	н	1.04	cr.1	1.17	1.25	ηε•τ	1.43	1.53	1.58	1.62	1.71	1.76	1.84	2.06
r	ď	44.6	9.52	09.6	12.6	9.81	9.93	10.04	10.12	10.16	10.25	10.32	10.43	10.69
0	ш	1.01	1.06	1.14	1.22	1.30	1.40	1.49	1.54	1.58	1.65	1.72	1.82	2.03
	ഹ	10.42	10.50	10.58	10.69	10.79	10.91	11.00	11.09	11.13	11.22	11.28	11.40	11.66
^	H	66.	1.05	1.11	1.19	1.27	1.35	1.43	1.51	1.54	1.59	1.66	1.75	1.96
Ç	ď	11.40	34.11	11.56	11.67	11.77	11.89	11.99	12.07	12.11	12.20	12.26	12.38	12.63
3	H	%.	1.03	1.07	11.15	1.24	1.33	1.41	1.45	1.50	1.56	1.62	1.72	1.92

TABLE V B-15
MANUAL SPINNING LIMITS
L-605
(SOLUTION TREATED)

				1				(222.2						
Gage (t)	(;	910.	.020	.025	.032	070°	.050	.063	170.	080.	%o.	901.	ऽद्यः	.187
Die Diameter (D∈)	eter		ഥ	Flange H	Height (H)		Blank Diameter (D _b)	eter (D	~					1
,	දු	1.60	1.60	1.60										
4	ш	.51	.51	.51										
, (ဂိ	3.20	3.20	3.20	3.20	3.20	3.20							
,	H	1.00	1.00	1.00	1.00	1.00	1.8							
~	ර	4.31	4.38	94.4	4.54	79.4	4.70	4.76	4.76	4.76				
,	ы	1.03	1,09	7,17	1.25	1.33	1,41	74.1	74-۲	1 127				
7	ਨੰ	5.28	5.34	5.42	5.49	5.58	5.66	5.74	5.80	5.8	5.89	10, 7	6.05	70,7
	ıcı	%	1.01	1.09	1.14	1.24	1.30	1.37	1,41	1.45	1.51	1.56	1.6%	1.85
ī.	ค์	6.25	6.31	6.39	6.47	6.55	6.62	6.70	6.76	6.81	6.85	6.91	7.01	7.20
	ш	द	.95	1.02	1.09	1.15	1.22	1.29	1.34	1.38	1.42	1.47	1.56	1.74
ω ·	පි	7.23	7.29	7.36	7.44	7.53	7.59	7.68	7.73	7.78	7.82	7.88	7.07	8 17
	E	-87	.92	.98	1.05	टा ।	1.16	1.24	1.28	1.32	1.35	1,41	1.47	1.65
۲-	ദ	8.21	8.27	8.34	8.42	8.50	8.57	8.65	8.70	8.75	8.80	8.85	8.94	9.14
	H	.85	-89	.94	1.00	1.07	1.12	1.19	1.23	1.26	1.31	1.35	1.43	1,59
ന	음	9.19	9.25	9.32	9.40	9*48	9.55	9.63	9.68	9.72	9.7	9.82	9.91	10.11
	П	-82	88.	-92	.98	η∪•τ	1.09	1.15	1.21	1.24	7.8	7.30	1.37	1 53
σ.	ကိ	10.17	10.23	10.30	10.38	94*01	10.53	10.01	1	10.69	10.75	10.80	10.80	2 8
	н	8.	ಹ.	.90	%.	1.02	1.08	1.13	1	1.19	1.24	1 28	7 7	5
ទ	ရ	11.16	11.22	11.29	11.36	44.11	11.51	11.60	T	11.68	11.73	11.78	11.87	12.06
	Щ	.78	.83	.89	.93	.99	1.05	1.12	1.15	1.18	1.21	1.25	1.31	7 77
												,		

TABLE V B-16
MANUAL SPINNING LIMITS
J-1570
(SOLUTION TREATED)

						,								
Gage (t)		910.	.020	.025	-032	040.	.050	.063	.071	.080	œo.	.100	.125	.187
$\begin{bmatrix} \texttt{Die} & \texttt{Diameter} \\ (\texttt{D}_{\vec{G}}) \end{bmatrix}$	ter		Ē	Flange He	Height (H):	l Ì	Blank Diameter	eter (\mathtt{D}_{b})	()					
	g	1.55	1.55	1.55										
4	ш	54.	54.	.45										
,	o _C	3.08	3.08	3.08	3,08	3.08								
U	Ħ	.87	.87	.87	.87	.87								
,	ρ°	4.21	4.32	4.38	4.45	4.53	7.60							
ĵ	н	46.	1.04	1.10	1.16	1.24	1.31							
1	જુ	5.22	5.29	5.34	5.42	5.50	5.56	19.5	5.69	5.75	5.78	5.81	5.93	6.13
r	н	16•	.97	1.00	1.08	51.1	1.22	1.28	1.32	1.38	1.40	1.43	1.55	1.74
u	ည်	6.20	6.27	6.32	6.39	6.47	6.53	6.62	99*9	6.71	η 2. 9	6.78	6.90	7.10
`	н	.88	.92	%.	1.02	1.09	71.14	1.22	1.25	1.29	1.32	1.35	1.46	1.63
,	ο <mark>α</mark>	7.18	7.25	7.30	7.37	7.45	7.51	7.59	7.63	7.68	1.71	7.75	7.86	8.06
•	Ħ	.83	-88	.93	.99	1.05	01.1	1.17	1.20	1.24	92.1	1.29	1.39	1.56
-	٩ d	8.16	8.23	8.28	8.35	8.42	8.49	8.56	8.60	8.65	69*8	8.72	8.83	9.03
	н	.81	-88	%	.95	1.00	1.07	1.11	1.15	1.19	1.22	1.25	1.33	1.51
70	ይ	9.14	9.20	9.56	9-33	9.40	24.6	9.52	9.59	9.63	6.67	02.6	18.6	10.01
	H	62.	.83	.87	.93	.98	1.04	1.06	1.13	1.16	1.20	1.22	1.29	3,46
σ	οd	10.13	10.19	10.24	10.31	1	10.45	10.51	10.57	19.01	10.65	10.68	10.79	10.99
`	н	.77	.81	.85	.91	%.	10.1	30.1	01.1	1.13	1.15	1.18	1.27	1.43
10	മ്	21.11	11.18	հ1.23	11.29	11.37	11.43	11.50	11.55	11.60	11.64	11.67	11.77	11.97
	H	.76	-80	₽.	.89	46·	96.	1.04	1.07	1.11	1.15	1.16	1.24	1.40

TABLE V B-17 MANUAL SPINNING LIMITS COLUMBIUM (10 Mc-10 T1)

Diameter Flange Height (H): Blank Diameter (Db. 133 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.34 1.40 1.	.050 .063	.071 .080	80.	8	ऱ्यः	.187
1.33 1.33 1.33 1.33 1.33 1.34 1.35 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 3.77 4.8 4.8 4.8 4.8 4.8 4.6 <t< th=""><th>meter (D</th><th>5)</th><th></th><th></th><th></th><th></th></t<>	meter (D	5)				
2.6 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 3.77						
34 2.55 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65 3.48 .48 .48 .48 .48 .48 .48 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.72 3.73 3.72 3.73 3.72 3.73 3.72 3.73 3.72 3.73 3.72 3.73 3.7						
34. 3	5 2.65	2.65	2.65 2.65	2.65		
3.53 3.62 3.69 3.72 3.77 3.77 3.77 3.77 3.62 3.69 3.72 3.77 3.77 3.65 3.69 3.72 3.77 3.75 3.77 3.75 3.77 3.75 3.77 3.75 3.77 3.77	L			977		
36 .50 .5	~	<u> </u>	ľ	3.05	3 07	3 07
4.57 4.64 4.75 4.46 4.75 4.75 4.75 4.75 6.33 6.33 6.53 6.53 6.53 6.53 6.53 6.53 6.73 6.53 6.53 6.73 6.65 6.65 6.65 6.65 6.65 6.65 6.65 6.73 6.75 6.75 6.65	L	_		12.	7.	72.
.39 .44 .45 .45 .45 .55 .56 .56 .56 .56 .573 .573 .573 .41 .42 .43 .50 .43 .43 .44 .46 .49 .49 .49 .49 .48 .48 .48 .48 .48 .43 .44 .44 .44 .44 .47 .47 .47 .47 .44 <t< td=""><td>9 4.82</td><td> </td><td> =</td><td>4.93</td><td>4.07</td><td>5.05</td></t<>	9 4.82	 	=	4.93	4.07	5.05
5.59 5.62 5.62 5.63 5.73 6.61 6.61 6.61 6.65 6.68 6.72 7.6 6.72 6.63 6.72 6.63 6.72 6.63 6.72 7.71 7.71 7.71 7.71 7.71 7.71 7.67 7.71	5 .58	<u> </u>	<u> </u>	99	70	2 2
1.1 1.2 1.4	5	-	7	5.90	5.05	6.03
6.58 6.61 6.65 6.68 6.72 04. .4.	_	ļ	Ļ.	.63	89	22
94. 34. 14. 14. 04. 14. 64. 64. 64. 64. 64. 64. 64. 64. 64. 6	9	9	9	6.88	6.93	20.7
7.67 7.71 145 4.8 84.65 8.70 141. 47	<u> </u>	.57	.58 .59	.61	79.	.72
24°. 24°. 24°. 24°. 24°. 24°. 24°. 24°.	7.78	-	7	7.87	7.91	6
24. 4μ. 7μ.	<u> </u>		ļ	9	29	2
<i>Lη</i> • ηη•	00	α	ω α	α χα α	α. C.	2 00
	_	<u> </u>	↓_	3	2 5	66.0
	10	╁	10	9.85	9.89	86.
	.51	╀-	ļ	57	19	77
		3	12	T	10. 88 01	8 6
	_	+-	 		202	3

TABLE V B-18

MANUAL SPINNING LIMITS

MOLYBDENUM (.5% Ti)

(HOT ROLLED, STRESS RELIEVED, DE-SCALED SHEET)

TEMPERATURE 850°F

Gage (t)		910.	.020	.025	.032	040.	.050	.063	.071	.080	060.	200	.125	.187
$ \begin{array}{c} \mathtt{Die} \ \mathtt{Diameter} \\ (\mathtt{Dd}) \end{array} $	eter		E	Flange He	Height (H	(H): Blan	ok Man	Blank Diameter (Db.	~					
_	පි	1.66	1.68	1.68										
-1	н	.57	85.	.58										
٥	2	2.78	2.92	3.09	3.32	3.35	3.35							
J	H	9.	•73	.90	1.13	1.17	1.17							
۲	ď	3.87	4.03	4.20	4.45	4.60	5.01	5.01	5.01					
า	н	1 9°	.78	.93	91.1	1.31	1.73	1.73	1.73					
	ಗೆ	46.4	5.11	5.30	25.5	5.74	6.18	6.56	6.63	6.70	6.70	6.70	6.70	6.70
	H	.67	.82	76.	1.23	1.37	1.79	2.17	2.25	2.33	2.33	2.33	2.33	2.33
ប	ဌိ	6.00	6.17	6.38	99.9	6.84	7.30	7.52	7.59	7.66	7.72	7.80	7.83	8.20
`	H	.72	.84	1.02	1.25	1.41	1.83	2.03	2.11	2.18	2.23	2.31	2.45	2.72
9	ದ್ದ	7.03	7.21	7.44	7.73	7.94	8.36	8.48	8.55	8.61	8.68	8.76	8.88	9.16
	E	.72	.85	1.05	1.28	14.1	1.82	1.92	2.00	2.05	2.12	1.19	2.31	2.58
-	ഹ്	8.08	8.27	8.51	8.82	9.03	9.33	9.45	9.52	9.58	9.65	9.72	9.83	10.11
-	ш	.75	.89	1.08	1.33	1.51	1.75	1.86	1.92	1.97	2.04	2.07	2.20	2.45
60	Å	9.13	9.33	9.57		10.13	10.30	10.42	10.49	10.54	19.01	10.68	10.80	11.08
	щ	.78	.93	1.11	1.35	1.55	1.70	1.79	1.86	1.90	1.95	2.02	2.12	2.36
6	ဂ	10.18	10.38	10.62	10.95	91.11	72.11		11.46	11.51	11.57		11.78	12.0t
`	щ	.81	%	1.14	0۴٬ ۲	1.56	1.65	1.74	1.80	1.85	1.90	1.%	2.07	2.29
9	മ	11.22	11.43	11.66	12.00	12.14	12.24	12.36	12.43	12.49	12.54	Т	12.75	13.00
	Ħ	.83	.99	1.16	1.42	1.51	1.60	1.69	1.76	1.81	1.84	T	2.02	2.22

TABLE V B-19 MANUAL SPINNING LIMITS TUNGSTEN (PURE) TEMPERATURE 1700⁹F

1.016 .020 .032 .0340 .050 .063 .071 .080 .090									· .						
Flange Height (H): Blank Diameter (Db) 1.42	Gage (t	<u></u>	910.	.020	.025	-032	040.	.050	.063	.071	.080	.090	.100	ऽटाः	.187
Db 1.42 1.47 1.41 1	Die Diam (Dd)	eter		ÉE,		ight (H		ak Diam	eter (D	~G					
H 2.3 3.8	_	ρ	1.42	1.47	1.47	1.47									
Db 2.35 2.47 2.64 2.94 2	4	Н	•33	.38	•38	.38									
B 3.3 3.4 4.6 6.6 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 4.0	0	^Q d	2.35	2.47	2.63	2.84	2.94	2.94	2.94	2.94	2.94				
Db 3.3.1 3.4.1 3.56 3.76 4.02 4.05 4.13 4.13 4.02 4.03 4.13 4.13 4.03 4.03 4.13 5.13 <th< td=""><td>J</td><td>H</td><td>.25</td><td>•34</td><td>941.</td><td>99.</td><td>42.</td><td>42.</td><td>η/.</td><td>ηL</td><td>ηL.</td><td></td><td></td><td></td><td></td></th<>	J	H	.25	•34	941.	99.	42.	42.	η /.	ηL	ηL.				
H -21 -28 -40 -55 -77 -81 -86 -89	~	^Q C	3.31	3.41	3.56	3.76	4.02	4.06	4.12	4.15	4.18	4.22	4.25	4.32	04.4
Db 4.28 4.53 4.69 4.94 5.03 5.10 5.12 5.15 5.19 5	1	ы	.21	.28	04.	.55	.77	.81	. 86	68°	16.	.93	.95	₽.1	1.11
B .36 .36 .48 .67 .48 .67 .81 .83 .86 .81 .83 .84 .60 .83 .81 .83		ይ	4.28	4.38	4.53	4.69	46.4	5.03	5.10	5.12	5.15	5.19	5.22	5.28	5.42
Db 5.35 5.47 5.65 5.87 6.01 6.09 6.09 6.13 6.16 6.16 6.01 6.01 6.09 6.13 6.13 6.16 6.17 7.11 7		щ	.18	.25	.36	84.	.67	.75	.81	.83	.85	.88	.93	%.	1.09
B D C	···	હ		5.35	5.47	5.65	5.87	6.01	6.07	60.9	6.13	6.16	6.19	6.25	6.39
Db Db Co.5 6.62 6.83 6.99 7.07 7.11 7.14 <th< td=""><td>`</td><td>ш</td><td></td><td>.23</td><td>-32</td><td>.45</td><td>.61</td><td>τγ.</td><td>92.</td><td>84.</td><td>.81</td><td>.83</td><td>.85</td><td>06•</td><td>1.02</td></th<>	`	ш		.23	-32	.45	.61	τγ.	92.	84.	.81	.83	.85	06•	1.02
B Db T	9	8				6.62	6.83	6.99	7.05	7.07	7.11	7.14	7.17	7.23	7.37
Db Bb Bb <th< td=""><td></td><td>н</td><td></td><td></td><td></td><td>.42</td><td>.58</td><td>69.</td><td>.72</td><td>ηζ.</td><td>11.</td><td>8.</td><td>-82</td><td>88•</td><td>8.</td></th<>		н				.42	.58	69.	.72	η ζ .	11.	8.	-82	88 •	8.
B Db Dc 0.39 .54 6.69 .72 .72 .74 .75 8.57 8.57 8.57 9.02 9.05 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.07 9.09 10.09	~	മ				7.59	7.79	7.98	8.04	8.06	8.09	8.12	8.15	8.21	8.35
Do Do Po	-	н				•39	.5 ⁴	.68	.72	-74	91.	81.	.80	†8•	.95
H .38 .51 .67 .71 .73 .73 .73 .73 .74 .75 .73 .7	· 00	ဂို				8.57	8.75	8.97	9.02	9.05	L0°6	9.10	9.13	9.19	9.33
Db H 9.73 9.96 10.01 10.06 10.09 10.09 10.09 10.09 10.09 10.09 10.09 11.09 <td></td> <td>н</td> <td></td> <td></td> <td></td> <td>.38</td> <td>.51</td> <td>.67</td> <td>.71</td> <td>.73</td> <td>7∠•</td> <td>92.</td> <td>87.</td> <td>-82</td> <td>.93</td>		н				.38	.51	.67	.71	.73	7 ∠•	92.	87.	-82	.93
B θ .64 .68 .70 .73 .73 0 D D .60 10.72 10.94 11.03 11.05 11.08 11.08	Φ	ဂိ					9.73	9.96	10.01	10.01	10.06	10.09	10.12	10.18	10.31
P _b 11.05 11.03 11.05 11.08 11	,	н					64.	₦9*	89°	02.	τλ.	.73	.77	18	8.
	2	ದ್					10.72	10.94	11.00	11.03	11.05	11.08	11.11	11.17	11.30
. 49 .63 .68 .72 .73		В					64.	.63	89*	02.	.72	.73	.75	8.	88

TABLE V B-20 MANUAL SPINNING LIMITS HM21XA-T8 (MAGNESIUM THORIUM) TEMPERATURE 750°F

Gage (t)		910.	020.	.025	-032	040.	.050	.063	1.70.	080.	œo.	001.	ऽद्यः	.187
$\begin{bmatrix} \mathtt{Die} & \mathtt{Diameter} \\ (\mathtt{Dd}) \end{bmatrix}$	ter		E	Flange He	eight (H)): Blank		Diameter (Db)	(,					
-	Db	2.71	3.07	3.50	3.58	3.58	3.58							
4	田	2.05	2.72	3.62	3.82	3.82	3.82							
٥	ဂို	3.93	4.32	4.79	5.41	6.14	2.00	7.16	7.16					
3	Ħ	1.83	2.37	3.06	4.05	5.41	7.25	99.7	99.7					
~	ထိ	5.30	5.51	00.9	6.65	2.40	8.30	9.45	10.19	10.80	10.80	10.80	10.80	10.80
)	н	1.82	2.31	2.92	3.80	06.4	6.45	8.65	z•01	9.11	11.6	11.6	9.11	11.6
	ይ	6.25	89.9	7.20	7.86	8.63	9.58	10.71	84.11	11.64	11.85	12.00	12.30	12.56
	Ħ	1.85	2.31	2.89	3.74	b.76	TT-9	7.99	9.35	9.60	10.1	10.3	10.9	77.77
v	ဂိ	7.38	7.82	8.35	9.05	9.82	10.80	11.86	12.46	12.55	12.76	12.90	13.22	13.48
`	Ħ	1.91	2.33	2.87	3.66	79.4	5.89	7.62	8.40	8.53	8.89	9.13	9.6	10.1
9	^Q C	8.50	8.96	9.50	10.21	11.02	12.00	13.16	13.40	13.48	13.68	13.81	14.15	14.41
	н	1.95	2.39	2.92	3.69	09.4	5.80	7.35	7.73	7.85	8.10	8.31	8.80	9.25
-	P _o	9.60	10.08	10.64	11.37	12.27	13.20	14.09	14.34	14.42	14.62	14.73	15.08	15.34
-	H	1.99	2.42	2.97	3.72	4.77	5.77	6.87	7.22	7.32	7.58	7.73	8.20	8.58
· co	υ _ο	10.70	91.11	11.76	12.50	13.36	14.40	15.03	15.26	15.36	15.54	15.66	16.00	16.26
	H	2.03	2,47	3.01	3.71	19.4	5.75	6.47	6.65	A BE	7 13	7 21	7 73	0
6	ď	11.79	12,29	12.86	13.64	14.51	15.54	15.%	16.19	16.31	16.49	16.62	16.95	17.19
`	н	2.08	11.94	3.01	3.78	4.63	5.75	6.20	94.9	6.62	6.86	6.97	7.36	7.65
ន	ď	12,87	13.38	13.96	14.76	15.65	16.63	16.92	17.13	17.26	17.44	17.58	17.90	18.15
	H	2.12	2.56	3.06	3.78	99.4	5.67	5.99	6.24	6.35	6.55	6.75	7.10	7,38
													2	00:-

TABLE V B-21
MANUAL SPINNING LIMITS
USS-12-MOV
(ANNEALED)
TEMPERATURE 750°F

Gage (t)		910.	020.	.025	-032	040.	.050	.063	.071	080.	960.	.100	.125	.187
$ \begin{array}{c} \mathtt{Die} \ \mathtt{Diameter} \\ (\mathtt{Dd.}) \end{array} $	ter		R	Flange He	Height (H)): Blank	ak Diameter	eter (D _b)	(1				,	
•	P _C	1.90	1.97	1.92										
1	H	-85	.87	.87										
	od O	3.05	3.24	9₩*8	3.79	3.92								
ij	H	.85	1.05	1.29	1.68	1.82								
,	Ω°	91.4	4.36	19.4	4.95	5.30	5.74	5.78	5.78	5.78	5.78	5.78		
•	H	68*	1.07	1.32	1.67	2.06	2.57	59.2	5•63	59°2	2.63	2.63		
4	જુ	5.25	24.5	5.72	5.11	L ₄ .9	6.93	91.7	7.30	0 † *L	7.50	09.7	4.68	7.68
-	н	.93	1.12	1.35	1.72	5.09	2.58	†8°2	3.02	3.13	3.25	3.38	3.46	3.46
tr	ကို	6.33	95.9	₩.9	7.22	7.59	7.92	01.8	12,8	8.33	8.42	8.52	8.75	9.19
`	H	%.	1.16	1.40	1.75	s.12	£ή°2	29.2	2.73	98° 2	2.97	3.08	3.33	3.85
9	^Q Q	04.7	19•2	7.93	8.32	8.67	8.86	η 0° 6	41.6	9.36	9.35	74.6	99.6	10.11
,	н	10.1	1.20	1.45	1.79	ττ · ε	5.29	94.5	2.56	29.5	2.76	2.86	3.11	3.56
•	ကိ	94.8	8.71	9.01	9.41	29 •6	9.80	66.6	10.08	10.20	10.28	10.38	10.60	11.04
_	Н	1.04	1.24	1.49	1.83	2.00	2,10	2.35	24.5	45.5	2.62	2.71	2.93	3.43
70	ဂို	64.6	9.77	10.09	10.42	10.57	92.01	10.93	20.11	ητ•ττ	11.22	11.32	11.55	11.97
	H	1.06	1.27	1.53	1.79	7.92	5.08	42.5	2.32	2.43	2.50	2.59	2.81	3.21
6	ď	10.58	10.84	91.11	11.38	11.53	11.71	11.88	11.98	12.09	12.17	12.26	12.50	12.93
	ш	1.10	1.30	1.56	1.74	1.85	2.01	2.16	75.5	2,33	2.41	2.48	2.70	3.00
ឧ	മ	11.62	11.91	12.19	12.35	12.49	12.67	12.83	12.94	13.04	13.13	13.22	13.45	13.89
	PA	1.13	1.34	1.55	1.68	1.80	1.95	2.08	2.18	2.26	2.35	24.5	2.61	3.00

TABLE V B-22
MANUAL SPINNING LIMITS
VASCOJET 1000 (H-11)
(ANNEALED)
TEMPERATURE 750°F

Gage (t)		910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	.187
$egin{pmatrix} ext{Die Diameter} \ (ext{D}_{ ext{Cl}}) \end{matrix}$	ter		[F]	Flange He	Height (H)): Blank	ok Diameter	eter (D _b)						
•	Ω	1.68	1.73	1.73										
-1	н	85*	1 9°	ħ9°										
c	^o d	2.81	2.96	3.13	3.37	3.47	3.47							
٧	田	.63	.77	.93	1.18	1.28	1.28							
٠	ဌ	3.90	4.05	4.25	4.57	12. ti	5.10	5.16	5.16	5.16	5.16	5.16	5.16	
c	Ħ	99*	.80	76.	1.28	1.46	1.84	1.90	1.90	1.90	1.90	1.90	1.90	
η	රි	14.97	5.12	5.34	5.62	5.91	6.05	6.16	6.23	6.29	6.38	6.42	6.57	48.9
-	н	oZ.	.83	το.τ	1.26	1.53	1.66	1.77	1.84	1.90	1.99	2.03	2.19	2.48
ď	ည်	6.03	5.21	Et ₁ *9	17.9	6.91	7.02	7.13	7.19	7.26	7.34	04.7	7.52	7.80
,	H	.72	.87	90°T	1.29	1.47	1.58	99*1	1.72	62•τ	1.87	1.92	2.03	2.31
9	^Q C	7.07	7.26	7.50	7.77	7.88	7.99	8.09	8.16	8.23	8.30	8.36	84.8	8.76
>	H	47.	.89	1.09	1.31	τη•τ	1.50	1.59	1.65	τ2•τ	1.77	1.82	1.93	2.19
•	^Q C	8.12	8.32	8.56	8.75	8.85	96.8	20.6	9.13	9.20	9.27	c•35	5 † *6	9.72
	н	.78	.93	1.11	1.28	1.35	ተተ•ፒ	1.53	1.59	1.63	1.69	1.74	1.87	2.07
70	$D_{\mathbf{b}}$	9.18	9.37	9.62	9.72	9.83	6.93	10.01	01.01	91.01	10.23	10.28	20.42	10.69
	H	.81	.96	1.15	1.23	16.1	1.39	1.4.2	1.53	1.58	1.63	1.68	18.1	2.03
σ	Do	10.22	10.42	10.01	10.70	10.80	10.91	11.02	11.08	11.13	11.20	11.26	04.11	11.65
`	Ħ	±8•	.99	1.12	1.20	1.28	1.35	1.45	11.49	1.54	1.58	1.64	1.75	1.97
OT	ď	11.25	11.47	11.60	11.68	11.78	11.89	11.99	12.05	12.11	12.18	12.24	12.38	12.62
	щ	.86	1.02	1.11	1.17	1.25	1.33	1.41	1,44	1.50	1 5•τ	1.60	1.72	16.1

TABLE V B-23 SPINNING RESULTS COLUMBIUM (10 Mo-10 T1) TEMPERATURE 750°F

								•						
Cage (t)	;)	910.	0 3 0.	.025	.032	040.	.050	.063	.071	980.	86.	907	125	187
Die Diameter (Dd)	eter		je,	Flange He	Height (H)		ok Diam	Blank Diameter (Dr.	-					1
	8	1.33	1.33	R		1								
4	Ħ	L	Ж.											
a	ဌိ	2	2.60	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2,65		
,	田	.37	44.	84*	84.	84.	84.	84.	148	84.		NA IN		
~	රි	3.57	3.66	3.69	3.72	3.77	3.81	3.8	3.88	3.90	~	3.95	3,97	3 07
,	H	.41	74.	.50	.52	.56	.59	.61	.65	99.	89.	2.	72	72
4	ಗೆ	4.61	19.1	4.68	14.70	4.75	4.79	4.82	4.85	4.88	7	17	1, 07	1 4
	н	24.	44.	84.	64.	.53	.56	.58	.61	79	65	2,2	5	3 8
	ဂို	5.59	5.62	5.66	5.69	5.73	5.77	5.81	5.84	5.86	7 88	3 6	2 4	0.0
	н	.41	.43	54.	24.	.50	-54	.57	.50	9	69	5.52	77.7	3.53
<i>ر</i>	ဂိ	6.58	6.61	6,65	6.68	6.72	6.75	6.70	68.9	18 7	7 2 7	60,00	3	0.00
) 	E	Uη	01/	10.1	7"	-		1		5	3	3	223	70.
	4		7		21,	1	-22	.54	.57	.58	.59	.62	.64	.77
-	2 ,				7.67	7.71	7.74	7.78	7.81	7.82	7.84	78.7	7.91	8.00
	11 (.45	84.	.50	.53	.55	.56	.57	09.	.62	69.
ю.	द				8.65	8.70	8.73	8.77	8.80	8.81	8.83	8.86	8.90	8.99
	щ				777.	74.	64.	.52	.54	.55	.57	.58	.62	89.
0	ကိ		-			-		9.76	0.78	0	0 83	O BE	a	00
,	Ħ			<u> </u>		 			2 3	3	7.05	7.07	60.7	8,2
Ç	ď					1			-25	.53	.54	.55	99.	%
2	þ			1	1	1	1	10.75	10.77	10.79	10.81	10.83	10.88	10.97
	"							50	55.	5,	, <u>(</u> ,	22	37	1

SECTION VI SHALLOW RECESSING A. BEADING ON THE RUBBER PRESS B. BEADING ON THE DROP HAMMER

BEADING ON THE RUBBER PRESS

Description of Process

The rubber bead process is used to form beads in sheet metal structures for stiffening purposes. This process is usually restricted to the forming of low strength materials such as aluminum and magnesium in their soft condition. This restriction is imposed on the process because of the requirement of high rubber pressure to produce parts of good bead definition.

An HPM Diaform Press with an operating pressure of 3000 psi was used in this evaluation. This pressure will produce good part definition (free form radius) for the practical gages of 2024-0 aluminum and for the lighter gages of the higher strength materials.

The process of forming beaded panels on a rubber press is relatively simple. Tooling consists of a form block containing male beads positioned at the desired location on the form block. The sheet metal blank to be beaded is prepared by profile trimming, blanking dies, or by sawing. The prepared sheet metal blank is positioned on the form block then formed by rubber pressure acting on the blank.

The criteria for failure in rubber bead forming are splitting and insufficient pressure. Splitting is due to the physical properties of the material, the applied rubber pressure, and the geometric variables. Insufficient pressure is due mainly to inadequate rubber pressure but is dependent on the geometric variables and the material properties. For the purpose of this evaluation parts are considered

unacceptable due to insufficient pressure if there is less than 1/2" flat area between beads.

Other factors that may be considered limiting factors in rubber bead forming are longitudinal buckling and free form radius.

Longitudinal buckling generally occurs in the heavy gage materials where the bead is of insufficient length. The free form radius may be considered a limiting factor due to the fact that a large free form radius reduces the stiffening characteristics of a bead.

Definition of Part Shape and Geometric Variables

The geometric variables considered in the rubber bead formability limits are material thickness (t), bead radius (R), and distance between bead centers (L). Other variables include free form radius (R_f) , and bead length (L_2) . The free form radius and bead length were not considered in the construction of the formability curves; nowever, they may impose restrictions on design limits as previously described.

FIGURE VI A-1 CROSS-SECTION AND SIDE VIEW OF BEAD

Predictability Equations

The predictability equations for rubber bead forming are as follows:

The equation for the pressure index line:

$$\frac{R}{L} = 0.065 \left[\frac{R}{t} \right]^{0.37}$$

Equation I

The equation for the pressure line:

$$\frac{R}{L} = 0.065 \left[\frac{\frac{1}{S_{ty}} \times 10^4}{0.065} \right]^{0.216} \left[\frac{R}{t} \right]^{0.29}$$

Equation II

The equation for the splitting index line:

$$\frac{R}{L} = 6.84 \times 10^{-4} \left(\frac{R}{t}\right)^{1.5}$$

Equation III

The equation for the lower portion of the splitting line:

$$\frac{R}{L} = 6.0 \times 10^{-21} \left[\epsilon_{2.0} \ s_{U} \right]^{9.3} \left[\frac{R}{1} \right]^{-12.4}$$

Equation IV

To consulted a formability curve using the predictability equations the following procedure is followed:

Step 1: Using Equation II, construct the pressure limit line. Arbitrarily select practical values for R/t and solve for R/L. The pressure limit line is a straight line; therefore, only two points, P_1 and P_2 , are necessary. Connect these points as shown in the following sketch:

FIGURE VI A-2 GRAPH CONSTRUCTION

Step 2: Using Equation IV construct the lower portion of the splitting line. Solve for R/L by inserting the numerical values for $E_{2.0}$ and $E_{2.0}$ and select practical values for $E_{1.0}$ and $E_{2.0}$ and draw a line through these points, $E_{1.0}$ and $E_{2.0}$ extending it from the $E_{1.0}$ axis to the $E_{1.0}$ line as shown in the following sketch:

FIGURE VI A-3 GRAPH CONSTRUCTION

The remaining or upper portion of the splitting limit line has no developed predictability equation. The line is a continuous curve extending from the h/R = 1.0 line to the pressure limit line. This line may be fayed in by referring to the composite graph for rubber bead forming that is presented in this report. For demonstration purposes the following sketch is drawn with known curve locations for material A and C. After finding the pressure limit line and lower

splitting line for material B, fay in the upper splitting line symmetrically as shown in the following sketch:

FIGURE VI A-4 GRAPH CONSTRUCTION

The completion of the foregoing step will give a complete formability curve for rubber bead forming. A curve showing good and split parts is shown in the following sketch:

FIGURE VI A-5 TYPICAL FORMABILITY CURVE

Composite Graphs

The formability curves representing the forming limits of all applicable materials evaluated under this contract will appear in Graph VI A-1.

The individual graphs and design data in tabular form are based on the minimum material properties. Due to the fact that there is a considerable range in physical properties of any material, the formability limits will vary with this range. An example of the possible forming range is shown in the following sketch:

FIGURE VI A-6 RANGE IN FORMABILITY LIMITS

GRAPH VI A-I

COMPOSITE GRAPH FOR RUBBER BEAD PANELS

GRAPH VI A-2

ALTERNATE METHOD OF PLOTTING RUBBER BEAD FORMING LIMITS

2024-0 ALUMINUM

Design Tables

Design tables for all materials evaluated except HM21XA-T8

Titanium (6Al - 4V), Tungsten, and Beryllium are shown in Tables

VI A-1 through VI A-15. HM21XA-T8 and Titanium (6Al-4V) are

excluded due to the fact that their minimum bend properties coupled

with tensile stresses are such that splitting occurs across the top

of the bead on all practical panels. Tungsten and Beryllium are

excluded due to their very brittle nature and low formability limits

at the maximum operating temperature of rubber forming.

The design limits for .125 and .187 gage materials are excluded due to the large free form radius that can be expected of these gages.

The vacant spaces in the lower left hand corner of the design tables are vacant because of the impracticality of forming in this range.

The free form radius (R_f) for each gage of each material is included in the design tables. This variable is not considered in the formability limits; however, it should be considered when selecting a forming process. In many cases the following design tables will include formable parts where (R_f) is much larger than the actual bead radius.

Design limits listed in the design tables that appear above and to the right of the heavy line are limits due to insufficient pressure, whereas those that appear below and to the left of the line are limits due to splitting.

The design limits for rubber bead forming are constructed such that the minimum possible distance between bead centers can be determined for any practical bead radius and material thickness.

The design limits listed in the following tables are based on an operating rubber pressure of 3000 psi. Due to the nature of the process an increase in pressure will result in lower splitting limits but a better bead definition can be expected.

TABLE VI A-1 RUBBER TEAD FORMING LIMITS 2024-0 ALUMINUM

Gage (t)	910.	020.	.025	-032	040.	.050	.063	120.	080.	060 .	.100	.125	.187
Radius (R _f)	641.	.187	.233	.299	.373	ο2η•	.587	.663	L†L.	.830	.930		
Radius (R)			ij	1 1	nce Bet	(Distance Between Centers)	nters)						
0.25	6•1	1.4	3.3	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.7		
0.30	9*1	2.1	1.7	1.5	1.5	1.6	1.7	1.7	1.8	1.8	1.9		
0.35		4*4	2.3	1.9	1.7	1.7	1.9	2.0	2.0	2.1	2.1		
O†*0			3.2	2.3	2.1	2.0	2.0	2.1	2.2	2.3	2.3		
54.0				2.9	₽*2	2.2	2.2	2.3	2,4	2.5	2.6		
0.50				3.8	2.9	2.6	2.5	2.5	2.6	2.7	2.8		
09.0					0.4	3.4	3.0	3.0	3.0	3.0	3.1		
0.70						4.5	3.7	3.6	3.5	3.4	3.5		
0.80						4.9	4.7	4.3	4.1	0.4	3.9		
06.0							6.0	5.3	4.9	9.4	4.5		
1.00							7.7	6.5	5.7	5.4	5.2		

TABLE VI A-2 RUBBER BEAD FORMING LIMITS 17-7 PH (CONDITION A)

Gage (t)	910.	.020	.025	-032	040.	.050	.063	170.	080.	0 60.	.100	.125	.187
Radius $(R_{ m f})$.720	.900	1.12	1.44	1.80	2.25	2.83	3.19	3.6	4.05	4.5		
Radius (R)			H	1 1	nce Bet	(Distance Between Centers)	aters)						
0.25	1.3	1.4	1.5	1.6	1.7	1.9	2.0	2.1	2.2	2.2	2.3		
0.30	1.5	1.6	1.7	1.8	2.0	2.1	2.3	₽•2	2.5	2.5	2.6		
0.35	1.7	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.7	2.8	2.9		
0ካ* 0	1.8	2.0	T*2	2.3	4. S	2.6	2.8	2.9	3.0	3.1	3.2		
0.45	2.0	2.1	2.2	2.4	2.6	2.8	3.0	3.1	3.2	3.4	3.5		
0.50	2.1	2.3	2.4	2.6	2.8	3.0	3•3	3.4	3.5	3.6	3.7		
09.0	2.4	2.6	2.8	3.0	3.2	3.4	3.7	3.8	٥٠١	4.1	4.2		
0.70	2.7	2.9	3.1	3.3	3.5	3.7	4.0	4.2	4.4	4.6	7.4		
0.80	3.0	3.2	3.4	3.6	3.9	4.2	4.5	4.7	4.9	5.0	5.2		
06.0	₹°€	† •€	3.7	3.9	4.2	4.5	h.8	5.0	5.2	5.3	5.6		
1.00	τ•η	3.7	4.0	4.3	·9*†	4.9	5.2	5.4	5.6	5.8	5.9		

TABLE VI A-3 RUBBER BEAD FORMING LIMITS PH 15-7 MO (CONDITION A)

٠٠	.016	.020	.025	.032	040.	.050	.063	.071	.080	060.	.100	.125	.187
.71	1	-89	1.11	1.42	1.77	2.22	2,80	3.15	3.55	4.00	कृष्-क		
l li			ı	1 1	nace Bet	(Distance Between Centers)	nters)						
	1.3	1.4	1.5	1.6	1.7	1.9	2.0	2.1	2.2	2.2	2.3		
	1.5	1.6	1.7	1.8	2.0	2.1	2.3	2.4	2.5	.5•5	9*3		
	1.7	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.7	2.8	5.9		
. • 1	1.9	2.0	2.1	2.3	2.4	2.6	2.8	2.9	3.0	3.1	3.2		
•	2.0	2.2	2.3	2.5	2.6	2.8	3.0	3.1	3.2	3.4	3.5		
•	2.2	2.4	2.5	2.6	2.9	3.1	3.3	3.4	3.5	3.6	3.7		
•	2.5	2.7	2.9	3.1	3.3	3.5	3.7	3.8	4.0	4.1	4.2		
:1	2.8	3.0	3.2	3.4	3.6	3.8	0.4	4.2	7-1	h.6	7.4		
<u></u>	3.1	3.3	3.5	3.8	4.0	4.2	4.5	4.7	4.9	5.0	5.5		
, i	3.4	3.6	3.8	4.0	4.3	9•4	4.9	5.1	5.3	5.5	9.6		
4.1	7	3.9	4.1	7.7	L.4	5.0	5.3	9.6	5.8	5.9	6.1		

TABLE VI A-4 RUBBER BEAD FORMING LIMITS AM-350 (ANNEALED)

Gage (t)	910.	.020	.025	.032	040.	.050	.063	.071	080.	0 60.	.100	.125	.187
Radius (R _f)	8.53	1.07	1.34	1.71	2.13	2.66	3.36	3.78	4.26	4.80	5.33		
Radius (R)			ī)	nce Bet	(Distance Between Centers)	aters)						
0.25	1.5	1.6	1.7	1.8	1.9	2.1	2.2	2.3	2.4	2.5	2.5		
0.30	1.7	1.8	1.9	2.0	2.2	2.3	2.5	2.6	2.7	2.8	2.9		
0.35	1.9	2.0	2.1	2.3	2.4	2.6	2.7	2.9	3.0	3.1	3.2		
O+1* O	2.0	2.2	2.3	5.5	2.7	2.9	3.0	3.1	3.3	3.4	3.5		
54.0	2.2	ተ • ፘ	2.5	2.7	2.9	3.1	3.3	3.4	3.5	3.7	3.8		
0.50	2.4	2.5	2.7	2.9	3.1	3.3	3.5	3.7	3.8	3.9	4.1		
09.0	5.6	5.9	3.1	3.3	3.5	3.8	4.0	4.2	4.3	4.5	7.4		
02.0	6•2	3.1	3.5	3.7	3.9	4.2	4.5	4.7	4.9	5.1	5.2		
0.80	3.2	3.5	3.8	4.1	ተ• ተ	7.4	5.0	5.2	5.3	5.5	5.7		
0.0	ź•£	3.7	0.4	4.5	4.7	5.0	5.3	5.6	5.8	6.0	6.2		
1.00	3.7	0.4	1. 1	8.4	5.1	5.5	5.8	6.1	6.3	6.5	6.7		

TABLE VI A-5 RUBBER BEAD FORMING LIMITS A-286 (SOLUTION TREATED)

Gage (t)	910.	.0æ	.025	.032	040.	.050	.063	.071	080.	060.	.100	.125	.187
Radius (R _f)	08₁•	009•	.750	066•	1.20	1.50	1.89	2.13	₽ . 5	2.7	3.0		
Radius (R)			ы	1 1	ince Bet	(Distance Between Centers)	aters)						
0.25	1.3	1.4	1.5	1.6	1.7	1.9	2.0	2.1	2.2	2.2	2.3		
0.30	1.5	1.6	1.7	1.8	2.0	2.1	2.3	2.4	2.5	2.5	2.6		
0.35	1.7	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.7	2.8	2.9		
0η·0	1.9	2.0	2.1	2.3	₽*2	2.6	2.8	5.9	3.0	3.1	3.2		
54،0	2.0	2.2	2.3	2.5	2.6	2.8	3.0	3.1	3.2	3.4	3.5		
0.50	2.2	₽•2	2.5	2.6	2.9	3.1	3.3	3.4	3.5	3.6	3.7		
09.0	2.5	2.7	5.9	3.1	3.3	3.5	3.7	3.8	0.4	τ.4	₹.4		
0.70	2.8	3.0	3.2	3.4	3.6	3.8	0.4	4.2	†* †	9.4	L-4		
0.80	3.4	3.3	3.5	3.8	0*†	4.2	4.5	ታ •ተ	6.4	5.0	2.2		
0.00	4.3	3.6	3.8	4.0	4.3	9.4	6.4	5.1	5.3	5.5	9.6		
1.00	5.4	4.3	1.4	7° 7	7.4	5.0	5.3	5.6	5.8	5.9	6.1		

TABLE VI A-6 RUBBER BEAD FORMING LIMITS USS-12-MOV (ANNEALED)

Gage (t)	910.	.020	.025	.032	040.	.050	.063	.071	080.	œ0·	.100	.125	.187
Radius (R _f)	.532	099•	.832	90*1	1.33	1.66	2,10	2.36	2,66	2.99	3.33		
Radius (R)			니	1 1	nnce Bet	(Distance Between Centers)	aters)						
0.25	1.5	1.6	1.7	1.8	1.9	2.1	2.2	2.3	2.4	2.5	2.5		
0.30	1.7	1.8	1.9	2.0	2.2	2.3	2.5	2.6	2.7	.2.8	2.9		
0.35	1.9	5.0	2.1	2.3	7.5	2.6	2.7	2.9	0°€	3.1	3.2		
04.0	2.0	2.2	2.3	2.5	2.2	2.9	3.0	3.1	3•3	3.4	3.5		
6.45	2.2	4°2	2.5	2.7	5.9	3.1	3.3	3.4	3.5	3.7	3.8		
0.50	2.4	2.5	2.7	2.9	3.1	3•3	3.5	3.7	3.8	3.9	4.1		
09.0	3.2	2.9	3.1	3.3	3.5	3.8	0.4	4.2	4.3	4.5	L•4		
0.70	5.6	3.5	3.5	3.7	3.9	4.2	4.5	4.7	4.9	5.1	5.2		
o.80		4.5	3.8	4.1	4.4	7.4	5.0	5.2	5.3	5.5	5.7		
0.0		9.8	4.5	4.5	17	5.0	5.3	5.6	5.8	6.0	6.2		
1.00			5.6	8*1	5.1	5.5	5.8	6.1	6.3	6.5	6.7		

TABLE VI A-7
RUBBER BEAD FORMING LIMITS
TITANIUM (13V-11Cr-3Al)(SOLUTION TREATED)

Gage (t)	910.	.020	.025	-032	040.	.050	.063	.071	.080	060.	.100	.125	.187
Radius (R _f)	οτ2•	.890	1.11	1.42	1.77	2.22	2.80	3.15	3.55	14.00	††* †		
Radius (R)			H	1 1	(Distance Between Centers)	ween Ce	aters)						
0.25	1.7	1.8	1.9	2.0	2.2	2.4	2.5	2.6	2.7	2.8	2.9		
0.30	1.9	2.0	2.2	2.3	2.5	2.7	2.9	3.0	3.1	.3.2	3.3		
0.35	2.1	2.3	2.4	2.6	2.8	3.0	3.2	3.3	3.4	3.5	3.6		
04.0	2.3	5.5	2.7	2.5	3.1	3•3	3.5	3.6	3.8	3.9	0.4		
5 ተ . 0	2.5	2.7	2.9	3.1	3.3	3.5	3.7	3.9	4.1	4.3	† •†		
0.50	2.7	2.9	3.1	3.3	3.5	3.8	4.0	4.2	4.4	4.5	4.7		
09.0	3.2	3.4	3.5	3.8	4.0	4.3	9.4	4.8	5.0	5.2	5.4		
0.70	5.8	3.7	4.0	4.3	9.4	4.9	5.2	5.4	5.6	5.7	5.9		
0.80		4.7	ተ•ተ	4.7	5.0	5.3	5.7	5.9	6.1	6.3	6.5		
0.0			4.7	5.0	5.4	5.8	6.1	4.9	6.7	6.9	1.7		
1.00			5.9	5.5	6.5	6.3	6.7	6.9	7.1	7.4	7.7		

TABLE VI A-8
RUBBER BEAD FORMING LIMITS
VASCOJET 1000 (H-11)(ANNEALED)

Gage (t)	910.	.020	.025	-032	040.	.050	.063	170.	.080	960.	.100	.125	.187
Radius (R _f)	.532	099°	.832	1.06	1.33	1.66	2.10	2.36	2.66	2.99	3.33		
Radius (R)			H	1 1	nce Bet	(Distance Between Centers)	aters)						
0.25	1.5	1.6	7.1	1.8	1.9	2.0	2.2	2.3	2.4	2.5	2.5		
0.30	1.7	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.7	2.8	2.9		
0.35	1.9	2.0	2.1	2.3	2.4	2.6	2.8	2.9	3.0	3.1	3.2		
04.0	2.0	2.2	2.3	2.5	2.7	2.9	3.1	3.2	3•3	3.4	3.5		
54.0	2.2	2.4	2.5	2.7	2.9	3.1	3.3	3.4	3.5	3.7	3.8		
0.50	2.4	2.6	2.7	2.9	3.1	3•3	3.6	3.8	3.9	٥٠١	4.1		
0.60	3.5	2.9	3.1	3•3	3.6	3.8	4.1	4.3	ተ• ተ	4.5	9*1		
0.70		3.7	3.5	3.7	4.0	4.3	4.5	h.7	6.4	5.1	5.2		
o.0		5.3	3.9	4.1	4.4	4.7	5.د	5.2	5.3	5.5	5.7		
0.00			5.0	17. 11	4.7	5.1	5.4	5.6	5.8	0.9	6.2		
1.00			6.7	8*17	5.1	5.5	5.9	6.1	6.3	6.5	2.9		

TABLE VI A-9
RUBBER BEAD FORMING LIMITS
RENÉ"41 (SOLUTION TERATED)

Gage (t)	910.	.020	.025	-032	040.	.050	.063	£70.	080.	060.	.100	.125	.187
Radius (R _f)	£19°	996°	17.21	1.55	1.93	2,41	3.04	3.43	3.88	4.35	4.83		
Radius (R)			니		ince Bet	(Distance Between Centers)	nters)						
0.25	1.5	1.6	1.7	1.8	1.9	2.1	2.2	2.3	2.4	2.5	2.5		
0.30	1.7	1.8	1.9	2.0	2.2	2.3	2.5	2.6	2.7	2.8	2.9		
0.35	1.9	2.0	2.1	2.3	2.4	2.6	2.7	2.9	3.0	3.1	3.2		
0,4;0	2.0	2.2	2.3	2.5	2.7	2.9	3.0	3.1	3.3	3.4	3.5		
54.0	2.2	2.4	2.5	2.7	2.9	3.1	3.3	3.4	3.5	3.7	3.8		
0.50	2.4	2.5	2.7	2.9	3.1	3•3	3.5	3.7	3.8	3.9	τ•ή		
09.0	2.7	2.9	3.1	3•3	3.5	3.8	0.4	4.2	4.3	4.5	J. 4		
0.70	3.1	3.3	3.5	3.7	3.9	4.2	4.5	4.7	4.9	5.1	5.2		
0.80	3.4	3.6	3.8	μ.1	ተ•ተ	4.7	5.0	5.2	5.3	5.5	5.7		
0.0	3.6	3.9	4.3	4.5	1.4	5.0	5.3	5.6	5.8	0.9	6. 2		
1.00	0.4	₹*5	4.5	8.4	5.1	5.5	5.8	6.1	6.3	6.5	2.9		

TABLE VI A-10 RUBBER BEAD FORMING LIMITS INCONEL X (C.R. ANNEALED)

Gage (t)	.016	.020	.025	-032	040.	.050	.063	.071	.080	060 .	.100	.125	.187
Radius (R _f)	•603	45۲۰	.942	1.21	1.51	1.88	2.51	2.67	3.01	3.39	3.77		
Radius (R)			ιJ) j	nnce Bet	(Distance Between Centers)	aters)						
0.25	1.3	1.4	1.5	1.6	1.7	1.9	2.0	2.1	2.2	2.2	2.3		
0.30	1.5	1.6	1.7	1.8	2.0	2.1	2.3	2.4	2.5	.2.5	2.6		
0.35	1.7	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.7	2.8	2.9		
04.0	6•τ	2.0	2.1	2.3	2.4	2.6	2.8	2.9	3.0	3.1	3.2		
54.0	2.0	2.2	2.3	2.5	2.6	2.8	3.0	3.1	3.2	3.4	3.5		
0.50	2.2	2.4	2.5	2.6	2.9	3.1	3.3	3.4	3.5	3.6	3.7		
09.0	2.5	2.7	2.9	3.1	3.3	3.5	3.7	3.8	4.C	4.1	4.2		
0.70	2.8	3.0	3.2	3.4	3.6	3.8	0.4	4.2	ħ•ħ	4.6	4.7		
0.80	τ•ε	3•3	3.5	3.8	0.4	4.2	4.5	4.7	4.9	5.0	5.2		
0.0	4.€	3.0	3.8	4.0	4.3	9.4	6.4	5.1	5.3	5.5	5.6		
1.00	3.7	3.9	4.1	4.4	7.4	5.0	5.3	5.6	5.8	5.9	6.1		

TABLE VI A-11 RUBBER BEAD FORMING LIMITS HASTELLOY X (SOLUTION TREATED)

Gage (t)	910.	.020	.025	.032	040.	.050	.063	.071	080.	960.	.100	.125	.187
Radius (R _f)	965•	9ħL•	.922	1.20	1.50	1.86	2.35	2.64	2.98	3.36	3.73		
Radius (R)			i i	1 1	(Distance Between Centers	ween Ce	nters)						
0.25	1.1	1.5	1.6	1.7	1.8	1.9	2.1	2.2	2.2	2.3	2.4		
0:30	1.6	1.7	1.8	2.0	2.1	2.2	2.4	2.5	2.5	2.6	2.7		
0.35	1.8	1.9	2.0	2.2	2.3	2.5	2.6	2.7	2.8	2.9	3.0		
04°C	2.0	2.1	2.2	2.4	2.6	2.7	2.9	3.0	3.1	3.2	3•3		
54.0	2.1	2.3	2.5	2.7	2.8	3.0	3.2	3.3	3.4	3.5	3.6		
0.50	2.3	2.5	2.6	2.8	3.0	3.2	3.4	3.5	3.7	3.8	3.9		
09.0	5.6	2.8	3.0	3.2	3.4	3.7	3.9	h.0	4.2	4.3	ተ° ተ		
0.70	2.9	3.1	3.3	3.6	3.8	4.1	4.3	4.5	4.7	4.8	5.0		
0.80	3.2	3.5	3.7	4.0	4.2	4.4	h.7	4.9	5.1	5.3	5.4		
06.0	3.6	3.7	0•4	4.3	9.4	6.4	5.2	5.3	5.5	5.8	6•5		
1.00	4.5	0°†	4.3	9.4	6.4	5.3	5.6	5.8	0.9	6.2	†*9		

TABLE VI A-12
RUBBER BEAD FORMING LIMITS
L-605 (SOLUTION TREATED)

Gage (t)	.016	.020	.025	.032	040.	.050	.063	.071	.080	060.	.100	.125	.187
Radius (R _f)	69.	.87	1.08	1.38	1.73	2.16	2.72	3.07	3,46	3.90	4.33		
Radius (R)			ιì	1 1	nce Bet	(Distance Between Centers)	aters)						
0.25	1.5	1.6	7-1	1.8	1.9	2.0	2.2	2.3	2.4	2.5	2.5		
0.30	1.7	1.8	1.9	2.1	2.2	2.3	2.5	2.6	2.7	2.8	2.9		
0.35	1.9	2.0	2.1	2.3	2.4	2.6	2.8	2.9	3.0	3.1	3.2		
04.0	2.0	2.2	2.3	2.5	2.7	2.9	3.1	3.2	3.3	3.4	3.5		
54°0	2.2	2.4	2.5	2.7	5.9	3.1	3.3	3.4	3.5	3.7	3.8		
0.50	2.4	2.6	2.7	2.9	3.1	3•3	3.6	3.8	3.9	٥٠١	1.4		
09.0	2.7	2.9	3.1	3•3	3.6	3.8	4.1	4.3	†• †	4.5	9•4		
0.70	3.0	3.2	3.5	3.7	4.0	4.3	4.5	4.7	4.9	5.1	5.2		
0.80	3.2	3.5	3.7	4.1	4.4	4.7	5.0	5.2	5.3	5.5	5.7		
0.0	3.5	3.8	4.1	ग॰ ग	4.7	5.1	5.4	5.6	5.8	6.0	6.2		
1.00	3.9	0*17	₹° †	8.4	5.1	5.5	5.9	6.1	6.3	6.5	2.9		

TABLE VI A-13
RUBBER BEAD FORMING LIMITS
J-1570 (SOLUTION TREATED)

Gage (t)	910.	.020	.025	.032	040.	.050	.063	.071	.080	06 0.	.100	.125	.187
Radius (R $_{ m f}$)	÷Д.	-92	1.15	1.48	1.84	2.30	2.90	3.27	3.68	4.14	4.16		
Radius (R)			ij	y 1	unce Bet	(Distance Between Centers)	nters)						
	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.6		
	1.9	2.0	2.1	2.2	5.4	2.5	2.7	2.8	2.9	3.0	3.1		
	2.2	2.3	4.5	5.6	2.7	2.9	3.0	3.1	3.2	3•3	3.4		
	2.4	2.5	9*2	2.8	3.0	3.2	3.4	3.5	3.6	3.7	3.8		
	2.6	2.8	2.9	3.1	3.2	3.4	3.6	3.7	3.9	0.4	t•4		
	2.8	3.0	3.1	3•3	3.5	3.7	3.9	4.1	4.2	4.3	4.5		
	3.2	3.4	3.6	3.8	4.0	4.3	4.5	4.7	4.8	5.0	5.1		
	3.6	3.8	4.1	4.3	4.6	4.8	5.1	5.2	5.4	5.6	5.7		
	0.4	4.2	4.4	4.8	5.0	5.3	5.7	5.8	5.9	6.1	6.3		
	£-4	9.4	6*11	5.2	5.5	5.8	6.1	6.3	6.5	6.7	6.8		
	L• 1	5.0	5.3	9•5	6.5	6.3	9.9	8.9	7.1	7.3	4.7		

TABLE VI A-14 RUBBER BEAD FORMING LIMITS COLUMBIUM (10 Mo-10 I1)

	,	,		·				·					
.187													
.125													
.100	3.67		2.8	3.1	3.5	3.8	4.2	4.5	5.1	5.7	6.3	8.9	7.3
% 0.	3.30		2.7	3.0	3.4	3.7	4.1	4.3	5.0	5.5	6.1	9.9	7.1
.080	2.94		2.6	2.9	3.3	3.6	3.9	4.2	8.4	4.5	5.9	6.3	6.9
.071	2,60		2.5	2.3	3.2	3.5	3.7	4.1	9.4	5.2	9.6	6.1	6.7
.063	2.31	ntere)	2.4	2.7	3.0	3.3	3.6	3.9	₽. ₽	5.0	₽•5	0.9	4.9
.050	1.84	(Distance Between Centers)	2.3	2.5	2.8	3.1	3.4	3.6	4.2	J. ₽	5.1	5.6	0.9
040.	1.47	nce Bet	2.1	2.4	2.7	2.9	3.2	3.4	3.9	η•η	8.4	5.2	6.2
.032	1.17	i i	2.0	2.2	2.5	2.7	3.0	3.2	3.7	4.1	6.4	7.2	
.025	-92	H	1.8	2.1	2.3	2.5	2.8	3.0	3.5	5.3			
80.	.73		1.7	2.0	2.2	4.5	2.6	3.1	6.7				
910.	•59		1.6	1.8	2.0	2.5	3.6						
Gage (t)	Radius (R _f)	Radius (R)	0.25	05.0	0.35	04.0	6.45	0.50	09.0	0.70	€9.€	06.0	1.00

TABLE VI A-15
RUBBER BEAD FORMING LIMITS
MOLYBDENUM (5% Ti)
(HOT ROLLED, STRESS RELIEVED, DE-SCALEL SHEET)

Cage (t)	910.	.020	.025	•032	040.	.050	.063	170.	080.	060.	.100	.125	.187
Radius (Rr)	.70	.87	1.09	04.1	1.75	2.18	2.75	3.10	3.50	3.93	14.37		
Radius (R)			니	(Distance	ince Bet	Between Centers)	nters)						
0.25	1.7	1.8	1.9	2.0	2.2	2.3	2.5	2.5	2.6	2.7	2.8		
0:30	1.9	2.0	2.1	2.3	2.5	2.6	2.8	2.9	3.0	.3.1	3.2		
0.35	T*2	2.2	ካ• ፘ	5.6	2.7	2.9	3.1	3.2	3.4	3.5	3.6		
04.0	2•3	2.5	5.6	2.8	3.0	3.2	3.4	3.6	3.7	3.8	0.4		
54.0	2.8	2.7	2.8	3.0	3.2	3.5	3.7	3.9	0.4	4.2	4.3		
0.50	3.7	2.9	3.1	3.3	3.5	3.8	0.4	4.2	6.4	4.5	9•4		
09.0		4.3	3.5	3.7	0.4	4.3	4.5	7.4	6.4	5.1	5.3		
0.70			4.3	7.5	4.4	4.7	5.1	5.3	5.5	5.7	5.8		
0.80			8.0	4.6	4.9	5.5	5.6	5.8	6.0	6.2	4.9		
06.0				5.7	5.3	5.7	6.0	6.3	6.5	6.8	6.9		
1.00				7.4	5.7	6.2	9.9	6.7	0.7	7.3	7.5		

BEADING ON THE DROP HAMMER

Description of the Process

Drop hammer forming is the process or operation of forming metal into a desired shape by repeated blows of a drop hammer ram.

All drop hammer forming in this program was of the typical nature and was conducted on a piston driven Cecostamp drop hammer. This particular drop hammer has a die bed area of 46" x 36" and operates at 120 lbs./in.² of air pressure. An illustration of this hammer is shown below.

FIGURE VI B-1 DROP HAMMER SET-UP.

All testing and evaluation of the drop hammer process was performed on metal beaded panels. Special Kirksite beaded panel dies were fabricated into various bead configurations for this investigation. An illustration of a typical set of Kirksite beaded panel dies is shown in Figure VI B-2.

FIGURE VI B-2 TYPICAL KIRKSITE BEADED PANEL DIES.

To insure testing continuity of all forming operations, all operations were performed as close as possible to a standard operating procedure. This procedure is described as follows.

The forming process was accomplished in several stages. First, starting the process with thick heavy rubber mats laid over the metal part to be formed. (See Figure VI B-3). Then, reducing the thickness of the rubber mats at each stage until the final stage, which is accomplished with metal to metal contact of the die and part.

FIGURE VI B-3 CROSS SECTION OF A DROP HAMMER DIE.

All beaded panels were formed with complete "trapping". It can be seen from the illustration in Figure VIB-2, that the drop hammer die has a continuous bead which completely surrounds the bead forming area. This continuous bead is known as a "trapping" bead. That is, the bead completely traps the metal part around the outside perimeter of the forming area. This is done so that only the metal inside the trapped perimeter is allowed to draw or stretch over the beads inside. This type of trapping is selected for evaluation in this process because of the maximum strain the metal part must undergo to be formed into shape.

This full or complete trapping procedure is accomplished by placing extra strips of hard rubber over the top of the trapped bead. (See Figure VI B-3) Thus on the first blow from the hammer ram, complete trapping occurs. These extra strips of rubber are used continuously to insure proper trapping during the entire forming process.

Drop hammer forming is very much an "operator technique" forming operation. That is, the operator usually has his own method of technique to use in forming a part. That is why, in this investigation, the forming procedures were held as constant as possible so as to minimize the operator technique factor.

Results obtained in this program establish that formability of the drop hammer bead forming process can definitely be predicted from the geometrical parameters of the dies and the material properties of a selected material.

Definition of Part Shape and Geometrical Variables

Formability of drop hammer beaded panels is governed by the following geometrical parameters: Bead radius of the die (R), the length of space between the center line of the beads (L), the gage of the material (t), R/L and R/t. (r) is a selected radius of the female punch. This (r) radius was selected at 1/2" in order to allow protection from failure due to the minimum bend radius of a selected material. These parameters are shown in the following sketch:

FIGURE VI B-4 GEOMETRICAL PARAMETERS.

Two standard bead radii were selected for evaluation purposes. These radii were 1/2" and 1" respectfully.

The die radius was held constant while varying only the (L) length between the centerline of the beads. This yielded various combinations of R/L and R/t for evaluation purposes.

There is an upper forming limit for R/L governed by the physical spacing of the beads. That is, the beads are so close together that it is physically impossible to form a part as the bead spacing approaches R/L = .35. This is readily seen from the following sketch:

FIGURE VI B-5 RELATIONSHIP OF BEAD SPACING.

As (R) increases (L) has to increase also. Since (r) is a standard 1/2", the female punch has to be a minimum of 1". Thus, as R/L approaches .35 the bead spacing (L) will close and not allow proper clearance for the female punch and the material thickness.

There is also a lower limit based upon the minimum radius and maximum (L) which is effective as far as the stiffness of the beaded panel is concerned. In other words at an (R) of 0.5 and an (L) of approximately 8 inches, the structural efficiency of the panel is lowered considerably. Therefore, in general, beaded panels below R/L = .060 would result in lowering of the structural efficiency of the panel.

Minimum bend failures occurred in the drop hammer process for HM21XA-T8 Magnesium Thorium, (6A1-4V) Titanium, and (13V-11Cr-3A1) Titanium.

Minimum bend radii of these materials are 5t, 6t, and 3t respectively. It can be seen from the following sketch of a bead, there is a very sharp radius that will not allow these three problem materials to form properly.

FIGURE VI B-6 BEAD.

On the initial blow from the drop hammer ram, the material is forced down around this sharp radius and exceeds the minimum bend radius of the material. Thus, splitting occurs at the radius and propagates across the bead. Due to this standard bead radius of .090" it is impossible to form these materials at room temperature.

Predictability Equations

The equation for the splitting limit of any material based on its mechanical properties is:

$$\frac{R}{L} = 60.6 \left(\epsilon_{.50} (CORR.) \right)^2 \left(\frac{R}{t} \right)^{-1}$$

Equation I

The equation for the index line is:

$$\frac{R}{L}$$
=.0165 $\left(\frac{R}{t}\right)$ or, $\frac{R}{t}$ =60.6 $\left(\frac{R}{L}\right)$

Equation II

The index line has a slope of + 1 and intersects at a point R/t = 2, R/L = .033.

For the convenience of reference to the above mentioned equations, a typical theoretical formability curve for drop hammer is shown in Figure VI B-7.

FIGURE VI B-7 TYPICAL DROP HAMMER FORMABILITY CURVE.

The key to using the various equations is to know the following material property.

 $\epsilon_{.50}$ (CORR.) = Where,

$$\epsilon_{.50(CORR.)} = \ln^{-1} \left[\left[\overline{\epsilon}_{L} \right]_{.50} - \frac{\left[\overline{\epsilon}_{W} \right]_{.50}^{2}}{\left[\overline{\epsilon}_{L} \right]_{.50}} \right] - 1$$

 $\epsilon_{.50}$ (CORR.) is found from a standard 1/2" wide tensile specimen.

With the aid of the sketch in Figure VIB-8, it can be seen where the various measurements were taken by a Cathetometer.

FIGURE VI B-8 1/2" WIDE TENSILE SPECIMEN.

$$\begin{bmatrix} \varepsilon_{L} \end{bmatrix}_{.5} = \frac{\Delta L}{0.5}$$

$$\begin{bmatrix} \overline{\varepsilon}_{L} \end{bmatrix}_{.5} = \ln \left[1 + (\varepsilon_{L})_{.5} \right]$$

$$\varepsilon_{W.5} = \frac{\Delta W}{0.5}$$

$$\begin{bmatrix} \overline{\varepsilon}_{W} \end{bmatrix}_{.5} = \ln \left[1 + (\varepsilon_{W})_{.5} \right]$$

Thus, the value of the various measurements can be substituted into the original equation to solve for the $\epsilon.50$ (CORR.) corrected value.

Thus if £.50(CORR.) is known, the drop hammer formability of any material can be determined.

To demonstrate how to use the drop hammer predictability equations, the following example problem is given:

PROBLEM: Find the splitting limits for drop hammer forming 2024-0 aluminum.

GIVEN: $\epsilon_{.50}(\text{CORR.}) = \underline{.200}$ R (radius of bead on die) = 1/2"

t (gage of material) = 0.020 R/t = 25

SOLUTION: Step I. Select the R/t value from the die bead radius (R) and the gage of material (t). Substitute in the R/t = 25 value into Equation II and solve for R/L intercept.

$$R/L = 60.6 (\epsilon_{.50}(corr.))^2 (R/t)^{-1} = .097$$

Now, locate R/L = .097 value on R/L scale and go over to the intersection of the R/t = .097 and R/t = .097 and R/t = .097. Through this point draw a -1 slope. See Figure VI B-9.

FIGURE VI B-9 GRAPH CONSTRUCTION.

Thus, the splitting limit line is established for 2024-0 aluminum.

An alternate method that can be used is as follows:

Step I. Use the relationship $\epsilon_{.50}(\text{CORR.}) = \Re/L$ Thus, $\epsilon_{.50}(\text{CORR.})$ and $\Re/L = .200$.

Step II. The index line is a + 1 slope and intersects at a point R/t = 2, R/L = .033. Simply locate R/L = .200 on the R/L axis, then go over to the intersection of this R/L value on the index line. (See Figure VIB-10). Now draw a -1 slope through this intersection point and the splitting limit is established.

FIGURE VI B-10 GRAPH CONSTRUCTION.

These two methods yield the splitting limit line for 2024-0 aluminum. Any part formed to the right of the splitting limit line will fail due to splitting and any part formed to the left of the splitting limit line will yield a good part.

The following typical formability curve for drop hammer forming of beaded panels is shown in Figure VI B-11.

FIGURE VI B-11 TYPICAL FORMABILITY ENVELOPE.

Composite Graphs

A composite graph showing the drop hammer formability of 12 different materials used in this program is shown in Graph VI B-1. (11 materials are shown at room temperature.

Formability evaluations for HM21XA-T8, (6A1-4V) Titanium and (13V-11Cr-3A1) Titanium were also evaluated in the drop hammer process. However, due to the minimum bend radius failure for these materials, results are not recorded in the composite graphs.

It should be understood that the material property $\mathcal{E}_{.50}(\text{CORR.})$ used in predicting drop hammer formability curves, will have a maximum, average and minimum value depending upon the material properties of the material in which the tensile specimens were taken. This variation in $\mathcal{E}_{.50}(\text{CORR.})$ will affect the splitting limit of a selected material. This is illustrated in the following sketch.

FIGURE VI B-12 VARIATION OF MATERIAL PROPERTIES.

It can be seen that the composite Graph VIB-1 was constructed on a logarithmic basis. However, for the convenience of finding the radius of the bead (R) and the distance between the beads (L) for a certain material thickness (t), an alternate method is advised.

This is done by taking a certain material (2024-0 aluminum) from the logarithmic composite graph (Graph VIB-1) and re-plotting the information on a Cartesian coordinate graph. (See Graph VI B-2). Thus, 22: values of R, L and t can be read directly from this type of graph (Graph VI B-2).

Formability evaluations for Molybdenum (.5% Ti), Tungsten (pure), Columbium (10 Mo - 10 Ti), and Beryllium (pure) were also performed in this program. However, these materials are not recorded in the composite graph and design tables due to the bending failure of these materials on the sharp end radius of the standard bead. (See discussion under geometrical variables).

Elevated temperature results are also not recorded, due to being unable to read the grids on the elevated temperature tensile specimens.

GRAPH VI B-1 COMPOSITE GRAPH FOR DROP HAMMER BEADED PANELS

GRAPH VI B-2 DROP HAMMER BEAD LIMITS 2024-O ALUMINUM

(R) BEAD RADIUS (IN.)

ASD TR 61-191(II)

Design Tables

The design tables are established to provide recommended geometrical parameters for forming beaded panels by the drop hammer process. These tables are arranged to provide recommended values of (L) the distance between the center line of the beads for a certain (R) bead radius and (t) gage of material. (See Figure VI B-4).

The design tables are based on using a minimum female punch of 1". Since 0.020", 0.040" and 0.063" gage material was used for evaluation purposes on all dies, a 1/2" standard punch radius was necessary to insure protection against minimum bend failure. It can be readily seen from the following illustration that when using the 1/2" punch radius, the web or width of the punch must be a 1" minimum.

FIGURE VI B-13 SCHEMATIC OF A PUNCH AND BEAD.

The design tables will have vacant sections due to the bead spacing (L) being too close to allow this 1" punch radius to properly clear the material and the beads.

The design tables are used in the following manner: For a given (t) gage of material and a given (R) radius of bead, there is a corresponding selected (L) length between the center line of the beads. Thus, by having a given (t) and a given (R) the recommended (L) can be read from the tables. Or, by having a given (L) and a given (t) the recommended (R) can be read from the tables. These tables are recorded in the following section.

TABLE VI B-1 DROP HAMMER BEAD LIMITS 2024-0 ALUMINUM

GAGE (t)	910.	.020	.025	-032	040.	.050	.063	120.	080°	060.	.100	.125	.187
RADIUS (R))	(L) Distance Between Center Line of Beads	ance Bet	veen Ce	nter Li	ne of B	eads			• •	
0.30	2.5	1.9	1.65	1,06	1.08	1.70	1.73	1.74	1.70	1.78	1.80	1.85	1.97
c.35	3.4	2.7	2.1	1.76	1.78	1.80	1.83	1.84	1.80	1.88	1.90	1.95	2.07
0,40	4.3	3.5	2.8	2.2	1.38	1.90	1.93	1.94	1.90	1.98	2.00	20٠۶	2.17
54.0	5.5	4.4	3.€	2.7	2.2	2.00	2.03	7.04	ن0.2	2.08	01.۶	2.15	2.27
0.50	8.0	5.4	4.3	3.3	2.7	2.20	2.13	2.14	c1.5	2.18	2.20	2-5	2.37
09.0	9.8	7.9	5 . ن	5.0	3.9	3.1	2.5	2.34	2.30	2.38	2.40	2.45	<.57
0.70		10.0	8.5	ۇ . 3	5.4	4.2	3.3	3.0	2.6	2.58	2.00	ځ۰۰۶	2.77
0.80			11.1	8.7	7.1	5.5	4.4	3.9	3.5	3.1	2.80	2.85	2.97
0.90			14.3	11.0	9.0	7.2	5.5	5.0	4.1	3.9	3.5	3.05	3.17
1.30				13.5	10.9	8.8	7.0	ن.ن	5.4	4.8	4.4	3.4	3.37

TABLE VI B-2
DROP HAMMER BEAD LIVITS
17-7 PH STAINLESS STEEL
(CONDITION "A")

CAGE (t)	910.	.020	.025	.032	040.	.050	.063	.071	080.	060.	.100	.125	.187
RADIUS (R))	(L) Dist	ance Be	tween Ce	nter L	(L) Distance Between Center Line of Beads	eads				
0.30	1.63	1.64	1.65	1.66	1.69	1.70	1.73	1.74	1.76	1.78	1.30	1.35	1.97
0.35	1.73	1.74	1.75	1.76	1.73	1,30	1.33	1.84	1.36	1.33	1.90	1.95	2.07
0.40	1.33	1.34	1.85	1.86	1.83	1.90	1.93	1.94	1.96	1.98	2.00	50.5	2.17
54.0	1.93	1.94	1.95	1.96	1.93	2.00	2.03	2.04	2.06	2.03	2.10	2.15	2.22
0.50	2.03	2.04	2.05	2.06	2.03	2.10	2.13	2.13	2.16	2.13	2.20	2.25	2.37
09.0	2.8	2.2	2.15	2.26	2.28	2,30	2.33	2.33	2.30	2.38	2.40	2.45	2.57
0.70	3.3	3.0	2.4	54.5	2.143	2.50	2.53	2.54	2.50	2.53	2.60	2.65	2.77
0.80	5.0	4.0	3.2	2.65	2.63	2.70	2.73	2.74	2.76	2.73	≥.30	2.05	2.97
0.9	6.2	5.0	4.0	3.1	2.88	2.90	2.93	2.94	2.90	ે6. ટ	3.00	3.05	3.17
1.00	8.0	6.2	5.0	3.8	3.1	3.10	3.13	3.14	3.15	3.10	3.20	3.25	3.37

TABLE VI B-3
DROP HAMMER BEAD LINITS
PH 15-7 Mo STAINLESS STEEL
(MILL ANNEALED, CONDITION "A")

GAGE (t)	910.	.020	.025	.032	040.	.050	.063	170.	.080	060.	.100	.125	.187
RADIUS (R)				(L) Dist	ance Be	tween Ce	nter Li	(L) Distance Between Center Line of Beads	eade			;	
0.30	1.63	1.64	1.65	1.66	1.68	1.70	1.73	1.74	1.76	1.73	1.80	1.85	1.97
0.35	1.73	1.74	1.75	1.76	1.78	1.80	1.83	1.84	1.36	1.88	1.90	1.95	2.07
04.0	1.83	1.84	1.85	1.86	1.88	1.90	1.93	1.94	1.96	1.93	2.00	2.05	2.17
54.0	1.93	1.94	1.95	1.96	1.98	2.00	2.03	2.04	2.06	2.08	2.10	2.15	2.22
0.50	2.03	2.04	2.05	2.06	2.08	2.10	2.13	2.13	2.16	2.18	2.20	2.25	2.37
0.60	2.8	2.2	2.15	2.26	2.28	2.30	2.33	2.33	2.36	2.38	2.40	2,45	2.57
0.70	3.8	3.0	4.5	2.46	2.48	2.50	2.53	2.54	2.56	2.58	2.60	2.65	2.77
0.80	5.0	4.0	3.2	2.66	2.68	2.70	2.73	2.74	2.76	2.78	2.80	2.85	2.97
0.90	6.2	5.0	4.0	3.1	2.88	2.90	2.93	2.94	2.96	2.98	3.00	3.05	2.17
1.00	3.0	6.2	5.0	3.3	3.1	3.10	3.13	3.14	3.16	3.18	3.20	3.25	3.37

TABLE VI B-4
DROP HANMER BEAD LIMITS
AM-350 STAINLESS STRFT,
(ANNEALED)

CAGE (t)	910.	050	.025	-032	040*	050.	.063	.071	.080	060-	300	:125	.187
RADIUS (R)				L) Dist	ance Be	tween Ce	nter Li	(L) Distance Between Center Line of Beads	eads				
0.30	1.63	1.64	1.65	1.66	1.68	1.70	1.73	1.74	1.76	1.78	1.80	1.85	1.97
0.35	1.73	1.74	1.75	1.76	1.78	1.30	1.83	1.84	1.36	1,88	1.90	1.95	2.07
0.40	1.83	1.84	1.85	1.36	1.83	1.90	1.93	1.94	1.96	1.98	2.00	2.05	2.17
54.0	1.93	1.94	1.95	1.96	1.98	2.00	2.03	2.04	2.06	2.03	2.10	2.15	2.25
0.50	2.03	₹0.2	2.05	2.06	2.08	2.10	2.13	2.13	2.16	2.18	2.20	2.25	2.37
0.60	2.3	2.2	2.15	2.26	2.28	2.30	2.33	2.33	2.36	2.33	2.40	2.45	2.57
0.70	3.8	3.0	2.4	2.46	5.43	2.50	2.53	2.54	2.56	2.58	2.60	2.65	2.77
0.80	5.0	0*†	3.2	2.66	2.63	2.70	2.73	2.74	2.76	2.78	2.80	2.85	2.97
0.90	6.2	5.0	4.0	3.1	2.58	2.90	2.93	2.9h	2.96	2.93	3.00	3.05	3.17
1.00	3.0	6. 2	5.0	3.8	3.1	3.10	3.13	3.14	3.16	3.18	3.20	3.25	3.37

TABLE VI B-5
DROP HAWMER BEAD LIMITS
A-286 STAINLESS STEEL
(SOLUTION TREATED CONDITION)

GAGE (t)	910.	.020	.025	.032	040.	.050	.063	120.	.080	060.	.100	.125	.187
RADIUS (R))	L) Dist	ance Be	tween Ce	inter Li	(L) Distance Between Center Line of Beads	eads				
0.30	1.63	1.64	1.65	99•1	1.68	1.70	1.73	1.74	1.76	1.78	1.30	1.35	1.97
0.35	1.73	1.74	1.75	1.76	1.78	1.80	€0•т	1.84	1.86	1.08	1.90	1.95	2.07
04.0	1.83	1.84	1.35	1.86	1.38	1.90	1.93	1.94	1.96	1.93	2.00	2.05	2.17
54°0	1.93	1.94	1.95	1.96	1.98	2.00	2.03	2.04	2.05	2.03	2.10	2.15	2.27
05.0	2.03	2.04	2.05	2.06	2.08	2.10	2.13	2.14	2.16	2.13	2.20	2.25	2.37
09:0	2.9	2.3	2.25	2.26	2.28	2.30	2.33	2.34	2.36	2.38	2.40	2.45	2.57
0.70	4.0	3.2	2.5	2.46	2.48	2.50	2.53	2.54	2.56	2.53	2.60	2.65	2.77
0.80	5.2	4.2	3.3	2.6	2.68	2.70	2.73	2.74	2.76	2.78	2.80	2.35	2.97
0.90	4.9	5.3	4.2	3.3	2.88	2.90	2.93	2.94	2.96	2.93	3.00	3.05	3.17
1.00	7.7	6.4	5.3	4.1	3.2	3.10	3.13	3.14	3.16	3.98	3.20	3.15	3.37

TABLE VI B-6
DROP HAMMER BEAD LIMITES
USS-12-Mov STAINLESS STEET,
(ANNEALED)

GAGE (t)	910.	.020	.025	.032	040.	050.	.063	.071	.080	.090	.100	.125	781.
RADIUS (R)				(L) Dist	ance Be	tveen Ca	inter Li	(L) Distance Between Center Line of Beads	eads				
0.30	3.0	₽.S	6.1	77.00	1.68	1.70	1.73	1.74	1.75	1.78	1.80	1.85	1.97
0.35	η.0	3.2	2.6	2.0	1.78	1.80	1.83	1.84	1.8	1.88	1.90	1.95	2.07
04.0	5.3	4.2	3.4	2.6	2.1	1.90	1.93	1.94	1.96	1.98	2.00	2.05	2.17
54.0	6.7	5.3	14.3	3.3	2.6	2.1	2.03	2.04	2.06	2.08	2.10	2.15	2.27
05.0	8.3	9•9	5.2	4.2	3.3	2.6	2.1	2.14	2.16	2.1.8	2.20	2.25	2.37
09.0		9.7	7.6	6.0	4.8	3.8	3.0	2.7	2.3	2.38	2.40	2.45	2.57
0.70			10.4	8.8	6.7	5.3	4.1	3.7	3.2	2.9	2.60	2.5	2.97
08.0			13.4	10.5	8.5	6.8	5.4	4.7	4.2	3.7	3.4	2.85	2.97
05.0				13.6	10.7	8.8	6.9	6.1	5.4	4.7	4.3	3.4	3.17
1.00				16.7	13.2	10.4	8.3	7.7	6.7	6.0	5.2	4.3	3.37

TABLE VI B-7
DROP HAMMER BEAD LIMITS
VASCOJET 1000 (H-11)
(ANNEALED)

CAGE (t)	910.	.020	.025	-032	070.	050.	.063	170.	980.	060.	.100	.125	.187
RADIUS (R)				L) Dist	ance Bet	(L) Distance Between Center Line of Beads	nter Li	ne of B	eads				
0.30	2.5	1.9	1.05	1.66	1.68	1.70	1.73	1.74	1.70	1.78	1.80	1.85	1.97
0.35	3.4	2.7	2.1	1.70	1.78	1.80	1.83	1.84	1.80	1.88	1.90	1.95	2.07
0,40	4.3	3.5	2.8	2.2	1.88	1.90	1.93	1.94	1.90	1.98	2.00	50.5	2.17
0.45	5.5	7. 1	3.6	2.7	2.2	2.00	2.03	40.5	ن0.2	2.08	2.10	<.15	2.27
0.50	0.8	5.4	4.3	3.3	2.7	2.20	2.13	41.5	2.10	2.18	2.20	2.25	2.37
09.0	9.6	7.9	ó.2	5.0	3.9	3.1	2.5	₽5•2	2.30	2.38	04.2	2.45	2.57
0.70		10.6	8.5	6.8	5.4	4.2	3.3	3.0	٥٠٦	2.58	2.00	2.65	2.77
0.80			11.1	8.7	7.1	5.5	ή, μ	3.9	3.5	3.1	2.80	2.85	2.97
o.9			14.3	11.0	9.0	7.2	5.5	5.0	17. 17	3.9	3.5	3.05	3.17
1.00				13.5	10.9	8.8	7.0	0.1	₹.5	4.8	η• η	3.4	3.37

TABLE VI B-8
DRCP HAMMER BEAD LIMITS
RENE'41
(SOLUTION TREATED)

GAGE (t)	910.	.020	.025	-032	040	050	.063	170.	.080	060	001.	इ टाः	.187
RADIUS (R)				(L) Distance Between Center Line of Beads	ance Be	tween Ce	enter Li	ne of B	eads				
0.30	1.63	1.64	1.65	1.66	1.68	1.70	1.73	1.74	1.76	1.78	1.30	1.85	1.97
0.35	1.73	1.74	1.75	1.76	1.73	1.30	1.83	1.84	1.86	1.33	1.90	1.95	2.07
0,40	1.83	1.84	1.85	1.36	1.80	1.90	1.93	1.94	1.96	1.98	2.00	2.05	2.17
54.0	1.93	1.94	1.95	1.96	36.1	2.00	2.03	2.04	2.06	30.5	2.10	2.15	2.27
05.0	2.03	2.04	2.05	2.06	20.2	2.10	2.13	2.14	2.16	81.5	2.20	2.25	2.37
0.60	2.3	2.24	2.25	2.26	2.28	2.30	2.33	2.34	2.36	2.38	2.40	2.45	2.57
02.0	3.2	2.5	2.45	2.46	2.48	2.50	2.53	2.54	2.56	2.58	2.60	59.2	2.77
0.80	₹*†	3.3	2.7	2.66	2,68	2.70	2.73	2.74	2.76	3 L •2	2,80	2.85	2.97
0.90	5-3	4.2	3.4	2.86	2.8	2.90	2.93	2.94	2.96	2.98	00•€	3.05	3.17
1.00	6.9	5.3	7.2	3.1	3.08	3.10	3.13	3.14	3.16	go•£	02.0	3.25	3.37

TABLE VI B-9
DROP HALLER BTAD LIMITS
INCOLT, X
(C. R. AMITALED)

GAGE (t)	910.	.020	.025	.032	040.	.050	.063	τ20.	.080	060.	.100	५टा:	781.
RADIUS (R))	L) Dist	ance Be	tween Ce	inter Li	(L) Distance Between Center Line of Beads	esds				
0.30	1.63	ղ. դ	1.65	1.66	1.68	1.70	1.73	1.74	1.76	1.78	1.30	1.85	1.97
0.35	1.73	1.74	1.75	1.76	1.78	1.80	1.83	1.34	1.86	1.88	1.90	1.95	2.07
0,40	1.83	1.84	1.85	1.86	1.83	1.90	1.93	1.94	1.96	1.98	2.00	2.05	2.1.7
54.0	1.93	1.94	3.95	1.96	1.98	2.00	2.03	2.04	2.06	2.03	2.10	2.15	2.27
0.50	2.03	2.04	2.05	2.0	2.08	2.10	2.13	2.14	2.16	2.18	2.20	2.25	2. 93.
0.60	2.23	2.24	2.25	2.26	2.28	2.30	2.33	2.34	2.3	2.33	2.10	2.45	2.57
0.70	2.5	2.44	2.15	2.46	2.40	2.50	2.53	2.54	2.56	2.58	2.60	2.65	2.77
0.80	3.3	3.0	2.65	2.65	2.68	2.70	2.73	2.74	2.76	2.78	2.30	2.85	2.97
0.0	4.3	3.4	2.85	2.36	2.68	2.90	2.93	2.94	2.96	2.93	3.00	3.05	3.17
1.00	5.3	4.2	3.8	3.06	3.08	3.10	3.13	3.14	3.16	3.13	3.20	3.05	3.37

OL-8 IV EURAP PROPILIU UASE ETINI GORU X KOLLEPSEIION (CERAEME NOLLEPSEII)

GAGE (t)	910.	.020	.025	.032	040.	.050	.063	.071	.080	.090	.100	.125	.187
RADIUS (R)				(L) Dist	ance Ber	tveen Ce	inter Li	(L) Distance Between Center Line of Beads	spea				
0.30	1.63	1.64	1.65	1.6	1.68	1.70	1.73	1.74	1.76	1.78	1.80	1.85	1.97
0.35	1.73	1.7/;	1.75	3.76	1.78	л. 30	1.83	1.3%	1.36	1.83	1.90	1.95	2.07
04.0	1.83	1.84	1.05	1.86	1.83	1.90	1.93	1,61	1.9	1.98	2.00	2.05	2.17
54.0	1.93	1.94	1.95	1.96	1.98	2.00	2.03	2.04	2.06	2.03	2.10	2.15	2.27
05.0	5.5 5.5	2.04	2.05	2.06	2.08	2.10	2.13	2.14	2.1	2.13	2.20	2.25	2.5
09.0	3.1	2.5	2.25	2.26	2.28	2.30	2.33	2.34	2.3	2.38	2.40	2.45	2.57
0.70	1, 2	3.4	2.7	2,46	2.48	2.56	2.53	2.54	2.56	2.58	2.60	2.65	2.TI
0.80	5.7	1,.1,	3.6	2.8	2.68	5.70	2.73	2.74	51.0	2.73	2.30	2.85	2.97
0.90	7.2	5.6	1,.5	3.5	2.88	2.90	2.93	46°8	2.9	2.90	3.00	3.05	3,17
1.00	8.3	7.1	5.6	h, h	3.14	3.10	3.13	3.14	3.16	3.1.3	3.20	3.25	3.37

TABLE VI B-11
DROP HAMMER BEAD LIMITS
L-605
(SOLUTION TREATED)

GAGE (t)	910.	.020	.025	-032	040.	.050	.063	120.	.080	060.	.100	.125	.187
RADIUS (R))	(L) Dist	ance Be	tween Ce	inter Li	(L) Distance Between Center Line of Beads	spea				
0.30	1.63	1. G4	1.65	3.65	1.68	1.70	1.73	1.74	1.76	1.78	1.80	1.85	1.97
0.35	1.73	1.74	1.75	1.76	1.78	1.30	1.83	1.84	1.86	1.33	1.90	1.95	2.07
04.0	1.83	1.84	1.35	1.36	1.88	1.90	1.93	1.94	1.96	1.93	2.00	2.05	2.17
54.0	1.93	1,6,1	1.95	1.96	1.98	2.00	2.03	2.04	2.06	2.08	2.10	2.15	2.27
0.50	2.2	2.04	2.05	2.06	2.08	2.10	2.13	2.14	2.16	2.18	2.20	2.25	2.37
09.0	3.1	2.5	2.25	2.26	2.28	2.30	2.33	2.34	2.36	2.33	2.40	2.45	2.57
0.70	2,4	3.4	2.7	2.4.5	2.148	2,56	2.53	2.54	2.56	2.58	2.60	2.65	2.77
0.80	5.7	47 ° 17	3∙5	S. S	2.68	2.70	2.73	2.74	2.76	2.78	2.30	2.85	2.97
0.90	7.2	5.6	14.5	3.5	2.88	2.90	2.93	2.94	2.96	2.93	3.00	3.05	3.17
1.00	3.8	7.1	5.6	1, 1,	3.4	3.10	3.13	3.14	3.16	3.16	3.20	3.25	3.37

TABLE VI B-12
DROP HAMMER BEAD LIMITS
J-1570
(SOLUTION TREATED)

GAGE (t)	910.	.020	.025	-032	040.	.050	.063	170.	.080	060.	.100	.125	.187
RADIUS (R)				(L) Distance Between Center Line of Beads	ance Be	tween Ce	nter Li	ne of B	eads				
0.30	1.63	1.64	1.65	1.66	1.68	1.70	1.73	1.74	1.76	1.78	1.80	1.85	1.97
0.35	1.73	1.74	1.75	1.76	1.78	1.80	1.83	1.84	1.86	1.88	1.90	1.95	2.07
04.0	1.83	1.84	1.85	1.86	1.88	1.90	1.93	1.94	1.%	1.98	2.00	2.05	2.17
54.0	1.93	1.94	1.95	1.%	1.98	2.00	2.03	2.04	2.05	2.08	2.10	2.15	2.27
05.0	2.03	2.04	2.05	2.06	2.08	2.10	2.13	2.14	2.16	2.18	2.20	2.25	2.37
0.60	2.3	2.24	2.25	2.26	2.28	2.30	2.33	2.34	2.36	2.38	2.40	2.45	2.57
0.70	3.2	2.5	2.45	5,46	2.48	2.50	2.53	2.54	2.56	2.58	2.60	2.65	2.77
0.80	4.2	3•3	2.7	2.66	2.68	2.70	2.73	2.74	2.76	2.78	2.80	2.85	2.97
0.90	5.3	4.2	3.4	2.86	2.88	2.90	2.93	2.94	2.96	2.38	3.00	3.05	3.17
1.00	6.9	5.3	₹.4	3.1	3.08	3.10	3.13	3.14	3.16	3.08	3.20	3.25	3.37