Project

Impact of Relative
Humidity on
Dengue cases in
Thailand

Proposal

By Noemi Tigrato, Lea Mrowiec, Manon Mandernach, Paula Mostert

Dengue fever

Viral Vector:

Aedes aegypti; Aedes albopictus

Four serotypes (DENV 1-4) of ssRNA virus of the genus Flavivirus

High fever, severe headaches, nausea, skin rash, joint pain etc.

Dengue fever Prevalence

Climate in Thailand

Relevance

Climate change in Thailand is creating favourable conditions for dengue transmissions:

- → increase of 1.0-3.8°C in mean temperature until 2099 is expected
- → Dengue is a high socioeconomic burden

→ Warning systems and predictions are vital to recognize outbreaks early on, to react accordingly and distribute limited resources

Hypothesis

Relative humidity has a positive impact on dengue fever cases in Thailand between the years 2006-2020

- 1. Can we define geographical and temporal Clusters for Dengue cases and humidity?
- 2. Can we find relations between the dengue and humidity clusters?
 - a) geographically
 - b) Yearly
 - c) Monthly (Pre-, Post- and Inter-monsoon)
- 3. What is the relationship between population density and dengue cases?

Chiang Mal LAOS

BURNA

THAILAND

Ubon Ratchtheni
Bangkok
CAMBODIA

VIETNAN

VIETNAN

Phuket
Halye

LINDONESIA

LINDONESIA

CAMBODIA

CAMBODIA

Phuket
Halye

LINDONESIA

CAMBODIA

ANASSA

humidity

Relation between climate and mozquito

Temperatur Increase

Decreased Incubation Rate

Increased Biting Rate

Higher Precipipitation Rate

Destroyed Larvea by heavy Rainfall

More Breeding Possibilities **Climate Change**

Geographical Shift

Relative Humidity

relative humidity < 100%

= the amount of water vapor in the air at a given temperature as a percentage of the amount needed for saturation

Relative Humidity

Blue: Udon Thani (northeast)
Green: Bankok (south-central)

Red: Trang (south)

Larger Populations improves breeding environemt for Aedes mosquito

Strongly connected provinces show higher correlation of dengue cases than weaker connected provinces

Challenge: different characteristics of provinces influence which analysis model is best suited

Data

Provinces

Dengue cases in each province per month from 2006 to 2020, extracted from yearly reports

Reported cases by Province and by Month, Thailand,							
Reporting areas	Total	Jan	Feb	Mar			
Total	89626	3323	3141	3831			
Central Region	43883	1960	1933	2323			
Bangkok	11009	601	550	605			
Zone:1	6079	259	293	415			
Nonthaburi	2479	89	79	132			
P.Nakhon S.Ayutthaya	1476	85	124	161			
Pathum Thani	1344	69	59	85			
Saraburi	780	16	31	37			

Monthly mean values of relative humidity, temperature and rainfall in each province 2006 to 2020 (ERA5)

Spatial information Monthly data from 2006-2020

1101111665	O p or or or or or or			Monany data nom 2000 202		
ADM1_EN	Longitude	Latitude	2006.01.	2006.02.	2006.03.	
Bangkok	100.6	13.8	68.46	72.41	70.94	
Samut Prakan	100.7	13.6	69.24	72.64	72.45	
Nonthaburi	100.4	13.9	65.04	70.59	68.19	
Pathum Thani	100.7	14.1	67.24	70.85	69.40	
Phra Nakhon Si Ayutthaya	100.5	14.3	62.49	66.32	65.76	
Ang Thong	100.3	14.6	57.88	61.62	61.58	
Lop Buri	100.9	15.1	58.63	60.96	64.15	

Methods

Time series analysis

spatial-temporal-analysis

Correlation analysis

Clustering

<u>Descriptive Analysis</u>

Regression analysis

Poisson modelling

ARIMA or GAM

timeline

Sources

Title: Spatiotemporal Dynamics of Dengue Epidemics, Southern Vietnam; Personal Author(s): Cuong, Hoang Quoc; Vu, Nguyen Thanh; Cazelles, Bernard; Boni, Maciej F.; Thai, Khoa T.D.; Rabaa, Maia A.; Quang, Luong Chan; Simmons, Cameron P.; Huu, Tran Ngoc; Anders, Katherine L.; Published Date: Jun 2013; Source: Emerg Infect Dis. 19(6):945-953. URL: https://stacks.cdc.gov/view/cdc/18983

Do, T.T.T., Martens, P., Luu, N.H. et al. Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam. BMC Public Health 14, 1078 (2014). https://doi.org/10.1186/1471-2458-14-1078

Pumijumnong, N., Eckstein, D. Reconstruction of pre-monsoon weather conditions in northwestern Thailand from the tree-ring widths of *Pinus merkusii* and *Pinus kesiya*. *Trees***25**, 125–132 (2011). https://doi.org/10.1007/s00468-010-0528-4

https://science.howstuffworks.com/nature/climate-weather/atmospheric/question651.htm

https://www.vaisala.com/en/expert-article/relative-humidity-how-is-it-defined-and-calculated

Campbell KM, Lin CD, lamsirithaworn S, Scott TW. The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg. 2013 Dec;89(6):1066-1080. doi: 10.4269/ajtmh.13-0321. Epub 2013 Aug 19. PMID: 23958906; PMCID: PMC3854883.

Campbell KM, Lin CD, lamsirithaworn S, Scott TW. The complex relationship between weather and dengue virus transmission in Thailand. Am J Trop Med Hyg. 2013 Dec;89(6):1066-1080. doi: 10.4269/ajtmh.13-0321. Epub 2013 Aug 19. PMID: 23958906; PMCID: PMC3854883.

Climatic Factors Affecting Dengue Haemorrhagic Fever Incidence in Southern Thailand S. Promprou, M. Jaroensutasinee! and K. Jaroensutasinee Institute of Science, Walailak University, 222 Thaiburi, Thasala District, Nakhonsrithammarat 80160, Thailand

https://www.thaizer.com/the-effects-of-the-monsoon-on-thailands-weather/

https://education.nationalgeographic.org/resource/monsoon/

https://sciiinks.gov/what-is-a-monsoon/#:~:text=A%20monsoon%20is%20caused%20bv.blow%20from%20cold%20to%20warm

https://www.thaizer.com/the-effects-of-the-monsoon-on-thailands-weather/

Schaefer TJ, Panda PK, Wolford RW. Dengue Fever. [Updated 2022 Nov 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430732/

Dengue Fever | NIH: National Institute of Allergy and Infectious Diseases

https://www.leicestermercury.co.uk/news/uk-world-news/symptoms-dengue-fever-watch-amid-8351403