

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

Calcul des lois a posteriori

Exercice 1.

On observe $(X_1,...X_n)$ des temps d'attente entre deux bus que l'on modélise par des variables aléatoire iid suivant une loi exponentielle de paramètre $\theta > 0$. La densité de cette loi exponentielle s'écrit $x \mapsto \theta e^{-x\theta}$

On suppose que la loi a priori du paramètre θ est la loi exponentielle de paramètre 1

- 1) Ecrire la densité de la loi conditionnelle de $(X_1,...X_n)$ sachant θ
- 2) Montrer que la loi a posteriori est une loi Gamma. Préciser les paramètres de la loi Gamma .
- 3) Quelle est l'expression de $E(\theta|X_1,...,X_n)$.
- 4) Donner l'expression de la loi prédictive a priori. $(rappel \text{ c'est la loi marginale de } (X_1, ..., X_n))$.

Exercice 2.

Soit N le nombre de personnes qui visitent un magasin un jour fixé. Ce nombre est inconnu et on souhaite l'estimer. La loi a priori choisie pour le paramètre N est la loi de Poisson de paramètre 5.

On observe Y le nombre de clients (le nombre de visiteurs qui effectue un achat). On sait que en moyenne un visiteur sur cinq effectue un achat.

- 1) Quelle est la loi conditionnelle de Y sachant N
- 2) Calculer la loi a posteriori du paramètre N.
- R On observe Y = 5. Tracer sur un même graphique la loi a priori et la loi a posteriori
- 3) On simule un échantillon $(N_1, ..., N_m)$ de la façon suivante
 - 1. Simuler un échantillon $(Z_1,...,Z_m)$ de va iid suivant le loi de poisson de paramètre 4. Il est simulé de facon indépendante de l'observation Y
 - 2. Poser $N_i = Y + Z_i$ pour tout i = 1, ..., n

Montrer que $(N_1,...,N_m)$ est un échantillon de va iid suivant la loi a posteriori

- 4) Simuler un échantillon de taille m=10000 suivant la loi a posteriori. A partir de cet échantillon donner une approximation de l'espérance, la médiane, les quantiles d'ordre 2.5% et 97.5%.
- 5) Est ce que le choix de m vous semble pertinent?

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

EXERCICE 3. MODÈLE GAUSSIEN

On dispose de n observations $X_1, ..., X_n$ que l'on modélise conditionnellement à θ par des variables aléatoires iid suivant la loi gaussienne $\mathcal{N}(\theta, 1)$. On choisit comme loi a priori sur θ la loi gaussienne $\mathcal{N}(0, \tau^{-2}), \tau > 0$

- 1) Ecrire la densité de la loi conditionnelle des observations sachant θ
- 2) Montrer que la loi a posteriori est la loi Gaussienne

$$\mathcal{N}(\frac{\bar{X}_n}{1+\tau^2/n}, \frac{1}{n+\tau^2})$$

Calcul théorique des régions HPD

- 3) Pourquoi la région HPD de niveau 1α est un intervalle?
- 4) Pourquoi cet intervalle est symétrique autour de la moyenne de la loi a posteriori $\frac{\bar{X}_n}{1+\tau^2/n}$?
- 5) Montrer que les régions HPD de niveau 1α est égale à

$$\theta \in \left[\frac{\bar{X}_n}{1 + \tau^2/n} - \frac{q_{1-\alpha/2}}{\sqrt{n+\tau^2}}; \frac{\bar{X}_n}{1 + \tau^2/n} + \frac{q_{1-\alpha/2}}{\sqrt{n+\tau^2}} \right] = I^{HPD}(\tau, \bar{X}_n)$$

où q_{α} est le quartile d'ordre α de la loi gaussienne standard.

Approximation numérique des régions HPD

- 6) Simuler un échantillon $X_1, ..., X_n$ de taille n = 10 suivant la loi normale standard. On conservera cet échantillon dans toute la suite de l'exercice.
- 7) Simuler un échantillon $\theta_1, ..., \theta_N$ suivant la loi a posteriori. (Prendre N assez grand par exemple N = 10 000)

- Calculer pour tout i=1,...,N les valeurs de la densité a posteriori $\lambda_i = \pi(\theta_i|X_1,...,X_n)$
- Trier par ordre croissant les valeurs de λ : on obtient $\lambda_1^* \leq, \ldots \leq \lambda_N^*$
- On pose $K_{N,lpha}=\lambda_{[Nlpha]}^*$ où $[\cdot]$ est la partie entière
- Trouver $\mathcal{H}=\{ heta_i:\pi(heta_i|X_1,...,X_n)>K_{N,lpha}\}$
- On pose $l_N = \min(\mathcal{H})$ et $u_N = \max(\mathcal{H})$
- 8) Justifier que $[l_N; u_N]$ est une approximation de la région HPD.
- 9) Comparer avec l'intervalle obtenu à la question 5).

Approximation numérique du plus court intervalle de crédibilité

- 10) Tracer en fonction de β (notation du cours) les bornes de tous les intervalles de crédibilité de niveau 95%
- 11) Représenter la longueur en fonction de β , et déterminer la valeur de β optimale
- 12) En déduire une approximation du plus court intervalle de crédibilité
- 13) Rappeler pourquoi cet intervalle est aussi une approximation de la région HPD.

Comparaison

- 14) Comparer numériquement les deux approximations de la région HPD avec les bornes théoriques.
- 15) Faire varier N pour illuster la qualité des approximations

Calcul théorique du niveau fréquentiste

16) Montrer que

$$P_{\theta}(\theta \in I^{HPD}(\tau, \bar{X}_n)) = \Phi\left(\frac{\theta \tau^2}{\sqrt{n}} + q_{1-\alpha/2}\sqrt{\frac{n+\tau^2}{n}}\right) - \Phi\left(\frac{\theta \tau^2}{\sqrt{n}} - q_{1-\alpha/2}\sqrt{\frac{n+\tau^2}{n}}\right)$$

où Φ est la fonction de répartition de la loi gaussienne standard.

- 17) Quelle est la limite de cette probabilité quand $n \to \infty$. Commenter.
- 18) Quelle est la limite de cette probabilité quand $\tau \to 0$. Commenter.

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

EXERCICE 4. MODÈLE NON RÉGULIER

Soit $\mathbf{X} = (X_1, \dots, X_n)$ des variables aléatoires indépendantes et identiquement distribuées suivant la loi uniforme sur $[0; \theta]$ avec $\theta > 0$ inconnu.

On pose

$$M_n = \max(X_1, \dots, X_n).$$

1) Ecrire la densité de (X_1, \ldots, X_n) conditionnellement à θ Soit (a, b) deux réels tels que a > 1 et b > 0. On choisit comme loi a priori $\pi_{a,b}$ définie par

$$\pi_{a,b}(\theta) = ab^a \frac{1}{\theta^{a+1}} \mathbb{I}_{[b; +\infty[}(\theta).$$

- 2) Calculer la loi a posteriori de θ .
- 3) Montrer que l'estimateur de Bayes sous coût quadratique associé à la loi a priori $\pi_{a,b}$ vaut

$$\delta_n^{a,b}(\mathbf{X}) = \frac{a+n}{a+n-1} \max(b, M_n).$$

4) Montrer que la région HPD de niveau $1 - \gamma$ est égale à

$$\left[\max(b, M_n) ; \max(b, M_n) \gamma^{-1/(a+n)}\right].$$

- 5) On suppose que $P_{\theta}(X_1 > b) > 0$.
 - a) Montrer que les variables aléatoires M_n et $\max(b, M_n)$ sont presque sûrement égales à partir d'un certain rang.
 - b) En déduire que l'estimateur de Bayes converge presque surement vers la vraie valeur du paramètre.
- 6) Que se passe-t-il lorsque $P_{\theta}(X_1 > b) = 0$?

EXERCICE 5.

Soient X_1, \ldots, X_n des variables aléatoires iid suivant la loi de densité f_{θ} , où $\theta \in \Theta$. Le paramètre θ est inconnu, on l'estime par une approche bayésienne.

On considère la fonction de coût

$$L(\theta, \delta) = e^{\delta - \theta} - (\delta - \theta) - 1.$$

- 1) Montrer que la fonction L définie bien une fonction de coût.
- 2) Montrer que

$$\delta^{\pi}(X_1,\ldots,X_n) = -\log\left(\mathbb{E}(e^{-\theta}|X_1,\ldots,X_n)\right)$$

est un estimateur de Bayes pour la fonction de coût L.

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

EXERCICE 6. CALCUL DES LOIS A PRIORI CONJUGUÉES

Construire une famille de lois conjuguées pour les modèles suivant :

- 1) $X_1, ..., X_n$ iid suivant la loi de Poisson $\mathcal{P}(\theta), \theta \in \mathbb{R}_+^*$
- 2) $X_1, ..., X_n$ iid suivant la loi binomiale $\mathcal{B}(M, \theta), \theta \in]0, 1[$ et M est connu.
- 3) $X_1, ..., X_n$ iid suivant la loi Gaussienne $\mathcal{N}(\theta, 1), \theta \in \mathbb{R}$ Pour chacun des modèles, vous préciserez les paramètres des lois a priori et a posteriori.

Exercice 7. Calcul des lois de Jeffrey

- 1) Calculer la loi non informative de Jeffrey (si elle exite) dans les situations suivantes :
 - a. $X_1,...,X_n$ iid suivant la loi de Poisson $\mathcal{P}(\theta),\theta\in\mathbb{R}_+^*$
 - b. $X_1,...,X_n$ iid suivant la loi binomiale $\mathcal{B}(M,\theta),\theta\in]0,1[$ et M est connu.
- 2) Montrer que l'information de Fisher apportée par un variable gaussienne sur les paramètres (μ, σ^2) est égale à

$$I(\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0\\ 0 & \frac{1}{2\sigma^2} \end{pmatrix}$$

- 3) Calculer la loi de Jeffreys (si ell
le existe) pour les paramètres θ suivants
 - a. $\theta = \mu$ et σ^2 est connu.
 - b. $\theta = \sigma$ et μ est connu.
 - c. les deux paramètres sont inconnus : $\theta = (\mu, \sigma^2)$.

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

EXERCICE 8. ESTIMATION D'UN PROPORTION

On veut estimer p la proportion des étudiants qui dorment plus de 8 heures par nuit. Les observations sur un échantillon de 27 étudiants sont :

s= 11 étudiants dorment plus de 8 heures f=16 étudiants dorment moins de 8 heures.

On note S la variable aléatoire qui représente le nombre d'étudiants qui dorment plus de 8 heures dans un échantillon de taille n = 27.

On envisage deux lois a priori sur le paramètre $p \in]0,1[$:

Modèle A- la loi discrète définie par

i	b_i	$P(p=b_i)$
1	0.05	0.03
2	0.15	0.18
3	0.25	0.28
4	0.35	0.25
5	0.45	0.16
6	0.55	0.07
7	0.65	0.03

Modèle B- la loi Beta de paramètres a = 3.4 et b = 7.4.

Comparaison des deux modèles bayésiens

- I-1) Représenter graphiquement les deux lois a priori.
- I-2) Calculer la moyenne et la variance des deux lois a priori
- I-3) Commenter les résultats obtenus. Les lois apportent-elles la même information a priori?

- I-4) Calculer les deux lois a posteriori.
- I-5) Représenter sur un même graphique les lois a priori et les lois a posteriori
- I-6) Calculer la moyenne et la variance des loi a posteriori.
- I-7) Commenter les résultats obtenus.

Régions de confiance bayésiennes pour le paramètre p Modèle a priori A (loi discrète)

A-III-1) Construire une région HPD de niveau 95% (ou au moins 95%)? S'il est différent de 95% quel est le niveau exact de la région HPD.

Modèle a priori B (loi a priori beta))

- B-III-1) Calculer le plus court intervalle de crédibilité au niveau 95% à partir d'un échantillon de nombres aléatoires simulés suivant la loi a posteriori. Justifier le choix effectué pour la taille de l'échantillon
- B-III-3) Expliquer et justifier les méthodes utilisées
- B-III-4) Représenter sur un même graphique la loi a posteriori et les deux intervalles de crédibilité obtenus.

Conclusion

Comparer et commenter les résultats.

Prévision

On veut prévoir S^* le nombre d'étudiants qui dorment plus de 8 heures dans un groupe de taille 20.

Modèle a priori B (loi a priori beta)

- B-IV-1) Trouver les fonctions a(S), b(S) pour que la valeurs s^* simulée à partir de l'algorithme ci-dessous soit une réalisation de la loi prédictive de S^* .

 Quelle expression théorique de la loi prédictive permet de justifier cet algorithme?
 - 1. Simuler p suivant la loi beta de paramètre (a(S),b(S))
 - 2. Simuler s^* suivant la loi binomiale de paramètre (20,p)
- B-IV-2) Simuler un échantillon de longueur M suivant la loi predictive de S^*
- B-IV-3) A partir de l'échantillons simulé, calculer et représenter sur un même graphique :
 - (a) une approximation de la loi prédictive,

- (b) une approximation du plus court intervalle de prévision de niveau 95% (ou au moins 95%),
- (c) une approximation du prédicteur ponctuel.

Justifier le choix de M.

Ccomparaison.

- IV-1) Adapter l'algoritme précedent pour simuler un échantillon suivant la loi prédictive associée au modèle a priori A
- IV-2) Représenter sur un même graphique les deux lois prédictives (c'est à dire les lois prédictives pour les modèles A et B)
- IV-3) Comparer les plus court intervalle de prévision de niveau 95 % (ou au moins 95%) et les prédicteurs ponctuels.
- IV-4) Commenter les résultats

Statistique Bayésienne.

Anne Philippe Université de Nantes, LMJL

Exercice 9. Fiabilité: modèle exponentiel

Le fichier de données

http://www.math.sciences.univ-nantes.fr/~philippe/data/duree-de-vie.txt contient des durées de fonctionnement de 1000 ampoules.

Modèle : On modélise ces données par des variables aléatoires $X_1, ..., X_n$ iid suivant la loi exponentielle de paramètre $\theta \in \mathbb{R}^+_*$. On suppose que θ suit une loi Gamma.

- 1) L'information fournit a priori est " θ devrait être proche de 1/2". On note τ la variance de la loi a priori. Proposer des paramètres pour la loi a priori.
- 2) On choisit $\tau = 1/2$. Superposer la densité de la loi a priori et les densités a posteriori pour différentes tailles d'échantillon n (par exemple n in c(2,5,10,100,500,1000))
- 3) Reprendre la question précédente pour différentes valeurs de $\tau = 1/100, 1/10, 10, 100$.
- 4) Pour les différentes valeurs de τ , représenter l'évolution de la moyenne et de la variance de la loi a posteriori en fonction de n. La valeur n=0 correspond à la loi a priori
- 5) Ecrire une fonction qui calcule une approximation du plus court intervalle de crédibilité de niveau 95%. (Utiliser la fonction qgamma.)
- 6) Pour les différentes valeurs de τ , représenter les bornes des intervalles en fonction de n le nombre d'observations.
- 7) Une autre source d'information indique que " θ est autour de 3". Reprendre les questions précédentes et comparer les résultats.