

Computer Vision Term Project Presentation

Seongje Woo

School of integrated technology Program of Intelligent Robot Technology Gwangju Institute of Science and Technology (GIST)

Contents

- Introduction
- Data
- Model
- Train
- Summary

Learning a Deep Convolutional Network for Colorization in Monochrome-Color
 Dual-Lens System(Xuan Dong et, al. Association for the Advancement of Artificial Intelligence 2019)

- ./dataset.py
- Cityscapes dataset for training
- Left images for Input gray images and ground truth
- Right images for gray map of reference images
- Add Gaussian noises

noise std.	color camera	monochrome camera
Setup1	$0.03\sqrt{\kappa}$	$0.01\sqrt{\kappa}$
Setup2	$0.07\sqrt{\kappa}$	$0.01\sqrt{\kappa}$

leftImg8bit_trainextra.zip (44GB) [md5]

left 8-bit images - trainextra set (19998 images, note that the image "troisdorf_000000_000073_leftImg8bit.png" is corrupt/black)

rightImg8bit_trainextra.zip (44GB) [md5]
right 8-bit images - trainextra set (19998 images)

- ./models.py
- Define networks(ResNet1-4, Attention, 3D-regulation)
- Implement model structure for Weight volume generation

```
class WeightVolGen(nn.Module):
   def init (self):
       super(WeightVolGen, self). init ()
       self.block = ResidualBlock
       # resnet1 for Y(gray image)
       self.resnet1 y = ResNet(8, self.block, 1)
       # resnet1 for YR(ref image)
       self.resnet1 yr = ResNet(8, self.block, 1)
       # attention for Concatenated feature volume
       self.attention = Attention()
       self.regulation = Regulation3d(1)
   def forward(self, target_image, guide_image, gt_image):
        feature_map1 = self.resnet1_y(target_image)
        feature_map2 = self.resnet1_y(guide_image)
        attn weighted fvol = self.attention(torch.stack([feature map1, feature map2], dim=2))
       weight volume = self.regulation(attn weighted fvol)
        return weight volume
```

Table 1: Summary of our deep colorization architecture. Each 2-D or 3-D convolutional layer represents a block of convolution, batch normalization and ReLu.

	Layer Description	Output Tensor Dim.	
	Input gray image Y	$h \times w$	
	Gray map of reference Image YR	$h \times w$	
	ResNet1		
1	5×5 conv, n feat., stride 2	$\frac{h}{2} \times \frac{w}{2} \times n$	
2	3×3 conv, n feat.	$\frac{h}{2} \times \frac{w}{2} \times n$	
3	3×3 conv, n feat.	$\frac{h}{2} \times \frac{w}{2} \times n$	
	add layer 1 and 3 feat. (residue connection)	$\frac{h}{2} \times \frac{w}{2} \times n$	
4-17	(repeat layers 2,3 and residual connection)×7	$\frac{h}{2} \times \frac{w}{2} \times n$	
18	3×3 conv, n feat., no ReLu/BN	$\frac{h}{2} \times \frac{w}{2} \times n$	
Attention			
19	3-D conv,1 \times 1 \times 1, n feat.,Sigmoid,no BN/ReLu	$\frac{h}{2} \times \frac{w}{2} \times \frac{d}{2} \times n$	
20	3-D conv,1 $ imes$ 1 $ imes$ 1,1 feat.,Sigmoid,no BN/ReLu	$\frac{h}{2} \times \frac{w}{2} \times \frac{d}{2}$	
3-D regulation			
21	3-D conv, $3 \times 3 \times 3$, n feat.	$\frac{h}{2} \times \frac{w}{2} \times \frac{d}{2} \times n$	
22	3-D conv, $3 \times 3 \times 3$, n feat.	$\frac{h}{2} \times \frac{w}{2} \times \frac{d}{2} \times n$	
23	3-D conv, $3 \times 3 \times 3$, $2n$ feat., stride 2	$\frac{h}{4} \times \frac{w}{4} \times \frac{d}{4} \times 2n$	
24	3-D conv, $3 \times 3 \times 3$, $2n$ feat.	$\frac{h}{4} \times \frac{w}{4} \times \frac{d}{4} \times 2n$	
25	3-D conv, $3 \times 3 \times 3$, $2n$ feat.	$\frac{h}{4} \times \frac{w}{4} \times \frac{d}{4} \times 2n$	
26-34	(repeat layer 23, 24, 25)×3	$\frac{h}{32} \times \frac{w}{32} \times \frac{d}{32} \times 2n$	
35	$3 \times 3 \times 3$, 3-D trans conv, $2n$ feat., stride 2	$\frac{h}{16} \times \frac{w}{16} \times \frac{d}{16} \times 2n$	
	add layer 35 and 31 (residual connection)	$\frac{h}{16} \times \frac{w}{16} \times \frac{d}{16} \times 2n$	
36	$3 \times 3 \times 3$, 3-D trans conv, $2n$ feat., stride 2	$\frac{h}{8} \times \frac{w}{8} \times \frac{d}{8} \times 2n$	
	add layer 36 and 28 (residual connection)	$\frac{h}{8} \times \frac{w}{8} \times \frac{d}{8} \times 2n$	
37	$3 \times 3 \times 3$, 3-D trans conv, $2n$ feat., stride 2	$\frac{h}{4} \times \frac{w}{4} \times \frac{d}{4} \times 2n$	
	add layer 37 and 25 (residual connection)	$\frac{h}{4} \times \frac{w}{4} \times \frac{d}{4} \times 2n$	
38	$3\times3\times3,$ 3-D trans conv, n feat., stride 2	$\frac{h}{2} \times \frac{w}{2} \times \frac{d}{2} \times n$	
	add layer 38 and 22 (residual connection)	$\frac{h}{2} \times \frac{w}{2} \times \frac{d}{2} \times n$	
39	$3\times3\times3$, 3-D trans conv, 1 feat., no ReLu/BN	$h \times w \times d$	
	ResNet2		
40	5×5 conv, n feat.	$h \times w \times n$	
41-57	repeat layers 2-18	$h \times w \times n$	
ResNet3			
58-75	repeat layers 40-57	$h \times w \times n$	
ResNet4			
76-92	repeat layers 40-56	$h \times w \times n$	
93	3 × 3 conv, 1 feat. (no ReLu, BN)	$h \times w$	

- Implemented with PyTorch
- Model optimizer : RMSProp
- Batch size: 256 x 512 randomly located crop
- Learning late: 0.001
- Loss: Mean Squared Error


```
criterion = nn.MSELoss()
optimizer = torch.optim.RMSprop(model.parameters(), lr=lr, weight_decay=0, momentum=0)
psnr = PSNR(255.0).to(device)

for epochs in range(epochs):
    train_bar = tqdm(trainloader)

    for train_iter, items in enumerate(train_bar):
        model.train()

    # train 1
    target = Variable(items[0]).to(device)
    guide = Variable(items[1]).to(device)
    gt = Variable(items[2]).to(device)

    output = model(target, guide, gt)
    print('result of Weight volume generation : {}'.format(output.shape))
```


haight×width×

disparity × features

$$\mathbf{C}'_{j,i} = \sum_{k=0}^{d-1} \mathbf{W}_{j,i,k} \mathbf{C}_{j,i+k}^{\mathbf{R}}.$$

- Stereo datasets preprocessing
- Implement each networks structure
- Define model
- Extract concatenated feature map
- Extract attention volume
- Extract weight volume
- Rough colorization
- Color residue joint learning

