## New Method 4

Table 1. Housing Project Areas Description

|                                     | All     |          | C       | City     | Suburb  |          |
|-------------------------------------|---------|----------|---------|----------|---------|----------|
|                                     | Const.  | Unconst. | Const.  | Unconst. | Const.  | Unconst. |
| Number of Projects                  | 166     | 139      | 84      | 92       | 82      | 47       |
| Area (km2)                          | 1.20    | 1.18     | 1.19    | 1.00     | 1.22    | 1.53     |
| Median Construction Yr.             | 2006    | 2006     | 2005    | 2006     | 2006    | 2005     |
| Delivered Houses                    | 298     | 0        | 409     | 0        | 184     | 0        |
| House Price in 1 km $(R^{\dagger})$ | 200,919 | 230,175  | 214,620 | 242,025  | 186,691 | 209,249  |
| Distance to CBD <sup>‡</sup> (km)   | 32.4    | 28.0     | 23.1    | 21.1     | 42.0    | 41.6     |

**Table 2.** Dwelling Characteristics at Baseline from 2001 Census

|                              | Constructed | Unconstructed | All Small Areas |
|------------------------------|-------------|---------------|-----------------|
| Flush Toilet                 | 0.65        | 0.45          | 0.82            |
| Piped Water in Home          | 0.14        | 0.21          | 0.42            |
| Electricity for Cooking      | 0.34        | 0.41          | 0.71            |
| Electricity for Heating      | 0.29        | 0.38          | 0.68            |
| Electricity for Lighting     | 0.58        | 0.48          | 0.80            |
| Number of Rooms              | 2.64        | 2.63          | 3.47            |
| Household Size               | 3.39        | 3.27          | 3.40            |
| % Area Overlap with Projects | 0.89        | 0.82          | 0.17            |
| N                            | 1,062       | 226           | 6,803           |

<sup>&</sup>quot;Constructed" and "Unconstructed" include census small-areas with over 30%area overlap with constructed and unconstructed projects respectively. "All" includes all small areas.

Const. refers to constructed projects and unconst. refers to unconstructed projects.

\*Calculated from *expected* completion dates using Gauteng National Treasury budget reports.

† The USD averaged to about 7.70 Rands during the 2001-2011 period.

\*Measured as the average minimum distance with respect to Johannesburg and Pretoria CBDs. City includes projects whose centroids are within 30.4 km of their nearest CBD. Suburb includes projects whose centroids are further than 30.4 km from their nearest CBD.

|                                  | (1)<br>Total                 | (2)<br>Formal               | (3)<br>Informal             | (4)<br>Informal<br>Bkyd.    | (5)<br>Informal<br>Non-Bkyd.   |
|----------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|--------------------------------|
| inside $\times$ constr           | 687.39 <sup>a</sup> (113.76) | 630.34 <sup>a</sup> (74.75) | 145.52<br>(89.91)           | 605.88 <sup>a</sup> (97.85) | -291.79 <sup>a</sup> (79.05)   |
| 0-200m outside $\times$ constr   | 107.79 <sup>b</sup> (43.74)  | 78.23 <sup>a</sup> (22.44)  | 63.80<br>(39.06)            | 104.97 <sup>a</sup> (28.03) | -27.52<br>(30.87)              |
| 200-400m outside $\times$ constr | 29.92<br>(32.03)             | 42.01 <sup>b</sup> (18.45)  | 22.10<br>(30.14)            | 35.88<br>(24.53)            | -32.35<br>(24.41)              |
| inside                           | 212.70 <sup>a</sup> (60.72)  | 73.84 <sup>a</sup> (22.75)  | 140.02 <sup>a</sup> (52.35) | 41.00 <sup>c</sup> (22.62)  | 144.79 <sup>a</sup><br>(48.40) |
| 0-200m outside                   | 125.62 <sup>a</sup> (24.21)  | 51.96 <sup>a</sup> (12.77)  | 106.50 <sup>a</sup> (20.45) | 61.70 <sup>a</sup> (15.25)  | 70.91 <sup>a</sup><br>(18.62)  |
| 200-400m outside                 | 104.13 <sup>a</sup> (22.26)  | 52.58 <sup>a</sup> (12.33)  | 93.76 <sup>a</sup> (20.75)  | 79.37 <sup>a</sup> (18.50)  | 33.53 <sup>b</sup> (14.67)     |
| constr                           | 27.13 <sup>c</sup> (15.19)   | 12.26 <sup>c</sup> (6.23)   | 37.75 <sup>b</sup> (14.74)  | 24.45 <sup>b</sup> (11.37)  | 9.99 <sup>c</sup> (5.63)       |
| lag outcome                      | 0.21 <sup>a</sup> (0.02)     | -0.02 <sup>a</sup> (0.00)   | 0.11 <sup>a</sup> (0.03)    | 0.34 <sup>a</sup> (0.06)    | -0.15 <sup>a</sup> (0.04)      |
| Mean dep. var.                   | 381.7                        | 199.2                       | 182.5                       | 97.1                        | 85.4                           |
| # Projects<br>R <sup>2</sup>     | 316<br>0.135                 | 316<br>0.143                | 316<br>0.031                | 316<br>0.113                | 316<br>0.039                   |
| N N                              | 1,855,507                    | 1,855,507                   | 1,855,507                   | 1,855,507                   | 1,855,507                      |

**Figure 1.** Pre-Period Housing Densities in Constructed and Unconstructed projects



Figure 2. Housing Densities in Constructed and Unconstructed projects



Table 3. Effect of Housing Projects on Socio-demographics

|                                             | (1)<br>Age                  | (2)<br>P.O.B. not<br>Gauteng   | (3)<br>Unemployed             | (4)<br>Years of<br>Education | (5)<br>Monthly<br>Income         |
|---------------------------------------------|-----------------------------|--------------------------------|-------------------------------|------------------------------|----------------------------------|
| inside $\times$ constr $\times$ post        | -1.192 <sup>a</sup> (0.214) | -0.066 <sup>a</sup> (0.018)    | 0.109 <sup>a</sup><br>(0.016) | -1.144 <sup>a</sup> (0.119)  | -2697.579 <sup>a</sup> (322.905) |
| $0-200$ m out $\times$ constr $\times$ post | -0.969 <sup>a</sup> (0.306) | -0.033<br>(0.020)              | 0.088 <sup>a</sup><br>(0.020) | -1.059 <sup>a</sup> (0.123)  | -2770.531 <sup>a</sup> (452.937) |
| 200-400m out $\times$ constr $\times$ post  | -0.706 <sup>a</sup> (0.249) | -0.047 <sup>a</sup><br>(0.013) | 0.093 <sup>a</sup><br>(0.017) | -1.365 <sup>a</sup> (0.100)  | -2863.673 <sup>a</sup> (493.604) |
| Mean Outcome 2001<br>Mean Outcome 2011      | 27.53<br>28.53              | 0.36<br>0.43                   | 0.46<br>0.32                  | 8.35<br>9.76                 | 2,627.57<br>5,005.47             |
| R <sup>2</sup><br># projects                | 0.441<br>314                | 0.579<br>314                   | 0.378<br>314                  | 0.505<br>314                 | 0.393<br>314                     |
| N project areas<br>N spillover areas<br>N   | 3,658<br>2,849<br>14,251    | 3,658<br>2,846<br>14,245       | 3,658<br>2,844<br>14,237      | 3,658<br>2,847<br>14,243     | 3,658<br>2,845<br>14,239         |

Standard errors clustered at the project level in parenthesis.  $^{c}$  p<0.10,  $^{b}$  p<0.05,  $^{a}$  p<0.01 P.O.B. means "place of birth." Monthly income is in Rands.

Figure 3. Price Estimates over Distance from Project



Table 4. Effect of Housing Projects on Socio-demographics

|                                            | (1)                 | (2)                 | (3)                 | (4)                 | (5)                    |
|--------------------------------------------|---------------------|---------------------|---------------------|---------------------|------------------------|
|                                            | Àge                 | P.O.B. not          | Unemployed          |                     | Monthly                |
|                                            | O                   | Gauteng             | 1 ,                 | Education           | Income                 |
| inside $\times$ constr $\times$ post       | -1.192 <sup>a</sup> | -0.066 <sup>a</sup> | 0.109 <sup>a</sup>  | -1.144 <sup>a</sup> | -2697.579 <sup>a</sup> |
|                                            | (0.214)             | (0.018)             | (0.016)             | (0.119)             | (322.905)              |
| 0-200m out × constr × post                 | -0.969 <sup>a</sup> | -0.033              | $0.088^{a}$         | -1.059 <sup>a</sup> | -2770.531a             |
|                                            | (0.306)             | (0.020)             | (0.020)             | (0.123)             | (452.937)              |
| 200-400m out $\times$ constr $\times$ post | -0.706 <sup>a</sup> | -0.047 <sup>a</sup> | $0.093^{a}$         | -1.365 <sup>a</sup> | -2863.673 <sup>a</sup> |
|                                            | (0.249)             | (0.013)             | (0.017)             | (0.100)             | (493.604)              |
| inside $\times$ post                       | $0.962^{a}$         | $0.029^{c}$         | -0.141 <sup>a</sup> | 1.471 <sup>a</sup>  | 880.980 <sup>a</sup>   |
|                                            | (0.166)             | (0.016)             | (0.013)             | (0.099)             | (252.503)              |
| 0-200m out × post                          | $1.013^{a}$         | $0.039^{b}$         | $-0.106^{a}$        | $1.109^{a}$         | $1679.019^{a}$         |
|                                            | (0.240)             | (0.017)             | (0.016)             | (0.097)             | (374.141)              |
| 200-400m out × post                        | $0.869^{a}$         | $0.050^{a}$         | $-0.100^{a}$        | $1.305^{a}$         | 2346.577 <sup>a</sup>  |
|                                            | (0.216)             | (0.010)             | (0.013)             | (0.083)             | (440.341)              |
| $constr \times post$                       | $1.257^{a}$         | $0.049^{a}$         | -0.132 <sup>a</sup> | $1.347^{a}$         | 2167.915 <sup>a</sup>  |
|                                            | (0.109)             | (0.005)             | (0.006)             | (0.032)             | (169.883)              |
| $inside \times constr$                     | 0.124               | $0.072^{c}$         | $-0.094^{a}$        | $0.700^{a}$         | 2701.694a              |
|                                            | (0.419)             | (0.037)             | (0.021)             | (0.206)             | (592.490)              |
| 0-200m out × constr                        | 0.721 <sup>b</sup>  | 0.032               | $-0.075^{a}$        | $0.731^{a}$         | 2908.312a              |
|                                            | (0.364)             | (0.027)             | (0.020)             | (0.150)             | (512.040)              |
| 200-400m out × constr                      | $0.857^{a}$         | 0.017               | $-0.089^{a}$        | $1.048^{a}$         | 2784.175 <sup>a</sup>  |
|                                            | (0.291)             | (0.021)             | (0.019)             | (0.120)             | (388.503)              |
| inside                                     | -2.165a             | $0.090^{a}$         | $0.173^{a}$         | -1.684a             | -3442.485a             |
|                                            | (0.375)             | (0.032)             | (0.018)             | (0.186)             | (560.873)              |
| 0-200m out                                 | -1.708 <sup>a</sup> | 0.022               | $0.115^{a}$         | -1.062 <sup>a</sup> | -3144.437 <sup>a</sup> |
|                                            | (0.283)             | (0.020)             | (0.016)             | (0.112)             | (468.800)              |
| 200-400m out                               | -1.512 <sup>a</sup> | 0.004               | $0.106^{a}$         | -1.084 <sup>a</sup> | -2903.031a             |
|                                            | (0.235)             | (0.017)             | (0.015)             | (0.095)             | (357.620)              |
| constr                                     | -0.367              | -0.033              | $0.107^{b}$         | -1.201 <sup>a</sup> | -2801.184 <sup>a</sup> |
|                                            | (0.420)             | (0.033)             | (0.044)             | (0.192)             | (948.021)              |
| Mean Outcome 2001                          | 27.53               | 0.36                | 0.46                | 8.35                | 2,627.57               |
| Mean Outcome 2011                          | 28.53               | 0.43                | 0.32                | 9.76                | 5,005.47               |
| $\mathbb{R}^2$                             | 0.441               | 0.579               | 0.378               | 0.505               | 0.393                  |
| # projects                                 | 314                 | 314                 | 314                 | 314                 | 314                    |
| N project areas                            | 3,658               | 3,658               | 3,658               | 3,658               | 3,658                  |
| N spillover areas                          | 2,849               | 2,846               | 2,844               | 2,847               | 2,845                  |
| N                                          | 14,251              | 14,245              | 14,237              | 14,243              | 14,239                 |

Standard errors clustered at the project level in parenthesis.  $^{\rm c}$  p<0.10,  $^{\rm b}$  p<0.05,  $^{\rm a}$  p<0.01 P.O.B. means "place of birth." Monthly income is in Rands.

**Table 5.** Census Household-level Post × Constructed Coefficients: City Versus Suburb

|                                        | (1)<br>Age                    | (2)<br>P.O.B. not | (3)<br>Unemployed           | (4)<br>Years of               | (5)<br>Monthly                   |
|----------------------------------------|-------------------------------|-------------------|-----------------------------|-------------------------------|----------------------------------|
|                                        |                               | Gauteng           |                             | Education                     | Income                           |
| City × proj                            | 0.137<br>(0.329)              | -0.024<br>(0.028) | -0.063 <sup>b</sup> (0.028) | 0.524 <sup>b</sup><br>(0.243) | -1275.500 <sup>b</sup> (633.922) |
| City×spill                             | 0.400 <sup>c</sup><br>(0.214) | 0.018<br>(0.012)  | -0.070 <sup>a</sup> (0.013) | 0.350 <sup>a</sup><br>(0.102) | -743.794<br>(457.428)            |
| Suburb×proj                            | 0.859 <sup>b</sup> (0.368)    | -0.016<br>(0.017) | -0.062 <sup>c</sup> (0.034) | 0.523 <sup>b</sup><br>(0.217) | -651.882<br>(441.660)            |
| Suburb×spill                           | 0.941 <sup>a</sup><br>(0.242) | -0.003<br>(0.012) | -0.106 <sup>a</sup> (0.018) | 0.809 <sup>a</sup> (0.130)    | -21.545<br>(405.773)             |
| $p$ -val, $h_0$ City: $proj = spill$   | 0.348                         | 0.112             | 0.767                       | 0.443                         | 0.194                            |
| $p$ -val, $h_0$ Suburb: $proj = spill$ | 0.808                         | 0.429             | 0.147                       | 0.177                         | 0.122                            |
| $\mathbb{R}^2$                         | 0.452                         | 0.602             | 0.363                       | 0.539                         | 0.399                            |
| N City proj areas                      | 2,152                         | 2,152             | 2,152                       | 2,152                         | 2,152                            |
| N City spill areas                     | 5,917                         | 5,913             | 5,910                       | 5,913                         | 5,910                            |
| N Suburb proj areas                    | 1,504                         | 1,504             | 1,504                       | 1,504                         | 1,504                            |
| N Suburb spill areas                   | 3,160                         | 3,159             | 3,157                       | 3,159                         | 3,158                            |

All difference-in-differences controls are included in the specification while only the interaction terms for Post  $\times$  Constructed are shown. Standard errors clustered at the project level in parenthesis.  $^c$  p<0.10,  $^b$  p<0.05,  $^a$  p<0.01. P.O.B. means "place of birth." Monthly income is in Rands.

Figure 4. Price Estimates over Distance from Project Het



7

 Table 6. Census Household-level Estimates

|                                            | (1)               | (2)                         | (3)                           | (4)                        | (5)                         | (6)                         | (7)                           | (8)                     |
|--------------------------------------------|-------------------|-----------------------------|-------------------------------|----------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------|
|                                            | Flush             | Water                       | Electricity                   | Electricity                | Electricity                 | Number of                   | Household                     | Population              |
|                                            | Toilet            | Indoors                     | Cooking                       | Heating                    | Lighting                    | Rooms                       | Size                          | Density                 |
| inside $\times$ constr $\times$ post       | 0.101<br>(0.076)  | -0.022<br>(0.040)           | 0.165 <sup>b</sup><br>(0.074) | 0.126 <sup>c</sup> (0.068) | 0.045<br>(0.079)            | -0.282 <sup>c</sup> (0.150) | 0.255 <sup>b</sup><br>(0.099) | -1323.017<br>(1652.834) |
| 0-200m out $\times$ constr $\times$ post   | -0.029<br>(0.049) | -0.096 <sup>b</sup> (0.046) | -0.036<br>(0.044)             | -0.005<br>(0.049)          | -0.067<br>(0.044)           | -0.230<br>(0.152)           | 0.160 <sup>b</sup> (0.066)    | 473.519<br>(1108.833)   |
| 200-400m out $\times$ constr $\times$ post | -0.015<br>(0.035) | -0.158 <sup>a</sup> (0.035) | -0.030<br>(0.035)             | -0.012<br>(0.038)          | -0.054 <sup>c</sup> (0.030) | -0.245 <sup>b</sup> (0.114) | 0.206 <sup>a</sup> (0.051)    | -379.912<br>(770.742)   |
| Mean Outcome 2001                          | 0.82              | 0.42                        | 0.71                          | 0.68                       | 0.80                        | 3.47                        | 3.40                          | 8,381.79                |
| Mean Outcome 2011                          | 0.85              | 0.60                        | 0.82                          | 0.74                       | 0.85                        | 3.84                        | 3.11                          | 8,792.50                |
| R <sup>2</sup>                             | 0.322             | 0.375                       | 0.384                         | 0.370                      | 0.344                       | 0.383                       | 0.407                         | 0.292                   |
| # projects                                 | 314               | 314                         | 314                           | 314                        | 314                         | 314                         | 314                           | 314                     |
| N project areas                            | 3,659             | 3,659                       | 3,659                         | 3,659                      | 3,659                       | 3,653                       | 3,659                         | 3,659                   |
| N spillover areas                          | 2,849             | 2,849                       | 2,849                         | 2,849                      | 2,849                       | 2,844                       | 2,847                         | 2,849                   |
| N                                          | 17,499            | 17,499                      | 17,499                        | 17,499                     | 17,499                      | 17,463                      | 17,488                        | 17,501                  |

All regressions include project Fixed-Effects. Standard errors clustered at the project level in parenthesis. c p<0.10, p<0.05, a p<0.01

 $\infty$ 

**Table 7.** Census Household-level Estimates

|                                             | (1)<br>Flush<br>Toilet      | (2)<br>Water<br>Indoors       | (3)<br>Electricity<br>Cooking | (4)<br>Electricity<br>Heating | (5)<br>Electricity<br>Lighting | (6)<br>Number of<br>Rooms   | (7)<br>Household<br>Size         | (8)<br>Population<br>Density     |
|---------------------------------------------|-----------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|-----------------------------|----------------------------------|----------------------------------|
| inside $\times$ constr $\times$ post        | 0.101<br>(0.076)            | -0.022<br>(0.040)             | 0.165 <sup>b</sup><br>(0.074) | 0.126 <sup>c</sup><br>(0.068) | 0.045<br>(0.079)               | -0.282°<br>(0.150)          | 0.255 <sup>b</sup><br>(0.099)    | -1323.017<br>(1652.834)          |
| $0-200$ m out $\times$ constr $\times$ post | -0.029<br>(0.049)           | -0.096 <sup>b</sup> (0.046)   | -0.036<br>(0.044)             | -0.005<br>(0.049)             | -0.067<br>(0.044)              | -0.230<br>(0.152)           | 0.160 <sup>b</sup> (0.066)       | 473.519<br>(1108.833)            |
| 200-400m out $\times$ constr $\times$ post  | -0.015<br>(0.035)           | -0.158 <sup>a</sup> (0.035)   | -0.030<br>(0.035)             | -0.012<br>(0.038)             | -0.054 <sup>c</sup> (0.030)    | -0.245 <sup>b</sup> (0.114) | 0.206 <sup>a</sup> (0.051)       | -379.912<br>(770.742)            |
| inside $\times$ post                        | 0.056<br>(0.063)            | $0.088^{a}$ (0.033)           | 0.198 <sup>a</sup> (0.067)    | 0.180 <sup>a</sup> (0.062)    | 0.150 <sup>b</sup> (0.068)     | 0.405 <sup>a</sup> (0.126)  | -0.187 <sup>b</sup> (0.079)      | 4056.730 <sup>a</sup> (1527.197) |
| 0-200m out × post                           | 0.044 (0.041)               | 0.086 <sup>b</sup> (0.037)    | 0.112 <sup>a</sup> (0.037)    | 0.058<br>(0.040)              | 0.075 <sup>b</sup> (0.038)     | 0.164<br>(0.121)            | -0.239 <sup>a</sup> (0.053)      | 1028.656<br>(948.021)            |
| 200-400m out $\times$ post                  | 0.019 (0.026)               | $0.130^{a}$ (0.027)           | 0.089 <sup>a</sup> (0.027)    | 0.051 <sup>c</sup> (0.028)    | $0.052^{\rm b}$ $(0.023)$      | 0.170 <sup>c</sup> (0.088)  | -0.257 <sup>a</sup> (0.036)      | 1717.660 <sup>a</sup> (549.486)  |
| $constr \times post$                        | 0.025 <sup>b</sup> (0.012)  | $0.185^{a}$ (0.016)           | 0.071 <sup>a</sup> (0.015)    | 0.033 <sup>c</sup> (0.018)    | 0.026 <sup>a</sup> (0.009)     | 0.299 <sup>a</sup> (0.044)  | -0.272 <sup>a</sup> (0.027)      | 232.409<br>(459.371)             |
| $inside \times constr$                      | 0.147<br>(0.091)            | 0.057 (0.065)                 | 0.024 (0.090)                 | 0.024<br>(0.085)              | 0.126<br>(0.100)               | 0.448 <sup>c</sup> (0.258)  | -0.135<br>(0.116)                | -486.758<br>(1380.175)           |
| 0-200m out × constr                         | 0.064 (0.054)               | 0.058 (0.053)                 | 0.069 (0.053)                 | 0.039 (0.055)                 | $0.100^{c}$ $(0.053)$          | 0.245<br>(0.191)            | -0.232 <sup>a</sup> (0.076)      | -1753.677<br>(1103.256)          |
| 200-400m out $\times$ constr                | 0.117 <sup>a</sup> (0.043)  | 0.178 <sup>a</sup><br>(0.042) | 0.111 <sup>a</sup> (0.039)    | 0.085 <sup>b</sup> (0.040)    | 0.138 <sup>a</sup> (0.038)     | 0.441 <sup>a</sup> (0.158)  | -0.136 <sup>c</sup> (0.072)      | -906.936<br>(1109.994)           |
| inside                                      | -0.349 <sup>a</sup> (0.079) | -0.323 <sup>a</sup> (0.055)   | -0.453 <sup>a</sup> (0.080)   | -0.434 <sup>a</sup> (0.076)   | -0.424 <sup>a</sup> (0.086)    | -1.432 <sup>a</sup> (0.231) | -0.096<br>(0.094)                | 1034.240<br>(1245.361)           |
| 0-200m out                                  | -0.167 <sup>a</sup> (0.041) | -0.166 <sup>a</sup> (0.041)   | -0.220 <sup>a</sup> (0.039)   | -0.176 <sup>a</sup> (0.041)   | -0.207 <sup>a</sup> (0.039)    | -0.715 <sup>a</sup> (0.152) | 0.074)<br>$0.175^{a}$<br>(0.056) | 1672.548 <sup>c</sup> (938.686)  |
| 200-400m out                                | -0.145 <sup>a</sup> (0.033) | -0.190 <sup>a</sup> (0.032)   | -0.192 <sup>a</sup> (0.030)   | -0.159 <sup>a</sup> (0.030)   | -0.179 <sup>a</sup> (0.029)    | -0.617 <sup>a</sup> (0.125) | 0.173 <sup>a</sup> (0.055)       | 653.608<br>(929.663)             |
| constr                                      | -0.401 <sup>a</sup> (0.127) | -0.218 <sup>a</sup> (0.074)   | -0.198 <sup>a</sup> (0.062)   | -0.156 <sup>b</sup> (0.070)   | -0.195 <sup>a</sup> (0.067)    | -0.857 <sup>b</sup> (0.334) | 0.084<br>(0.120)                 | -793.705<br>(1609.062)           |
| Mean Outcome 2001<br>Mean Outcome 2011      | 0.82<br>0.85                | 0.42<br>0.60                  | 0.71<br>0.82                  | 0.68<br>0.74                  | 0.80<br>0.85                   | 3.47<br>3.84                | 3.40<br>3.11                     | 8,381.79<br>8,792.50             |
| R <sup>2</sup> # projects                   | 0.322<br>314                | 0.375<br>314                  | 0.384<br>314                  | 0.370<br>314                  | 0.344<br>314                   | 0.383<br>314                | 0.407<br>314                     | 0.292<br>314                     |