Universidade Federal da Fronteira Sul

Graduação em Ciência da Computação

Disciplina: Circuitos Digitais Docente: Luciano L. Caimi Acadêmico: Axel Igor Aviloff

1) Apresentar a tabela verdade de um circuito somador/subtrator completo de um bit. A tabela verdade possui 4 entradas: A (operando 1), B (operando 2) C (na soma é o 'vai um', na subtração é o 'empresta 1') e Op (quando 0 indica a soma, quando 1 indica subtração)

Entradas				Saídas	
Ор	Α	В	С	S Cout	
0	0	0	0	0 0	
0	0	0	1	1 0	
0	0	1	0	1 0	
0	0	1	1	0 1	
0	1	0	0	1 0	
0	1	0	1	0 1	
0	1	1	0	0 1	
0	1	1	1	1 1	
1	0	0	0	0 0	
1	0	0	1	1 1	
1	0	1	0	1 1	
1	0	1	1	0 1	
1	1	0	0	1 0	
1	1	0	1	0 0	
1	1	1	0	0 0	
1	1	1	1	1 1	

2) Faça a simplificação usando Mapa de Karnaugh da tabela verdade acima.

$$S = A\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}B\overline{C} + ABC$$
$$S = A \oplus B \oplus C$$

Cout = BC +
$$\overline{Op}AC$$
 + $\overline{Op}AB$ + $Op\overline{AC}$ + $Op\overline{AB}$
Cout = BC + $(Op \oplus AC)$ + $(Op \oplus AB)$
Cout = BC + $C(Op \oplus A)$ + $B(Op \oplus A)$
Cout = BC + $(Op \oplus A)(C + B)$

3) Apresente o circuito simplificado:

4) Utilizado o módulo de 1 bit desenvolvido acima, monte o circuito de um somador/subtrator 4 bits.

