LECTURE NOTES

ISAAC

0.1 Theorem A [Markov] Levy process is (strictly) stable if

$$(X_t)_{t\geq 0} \stackrel{\mathrm{d}}{=} (\frac{X_{r_t}}{r^{1/p}})_{t\geq 0}$$

- $(X_t)_{t \geq 0} \stackrel{\mathrm{d}}{=} (\tfrac{X_{r_t}}{r^{1/p}})_{t \geq 0},$ which happens iff [it is Levy and] $(1) \ \ p = 2 \ \mathrm{and} \ X \ \mathrm{is \ BM}.$ $(2) \ \ 0$

Proof. Let $X \sim Levy(b, \sigma, \nu)$ have drift, diffusion, and jump kernel coefficients. (i.e. with generator

$$G(f) = b\frac{d}{dx}f + \frac{\sigma^2}{2}\frac{d^2}{dx^2}f + \int \nu(dy)(f(x+y) - f(x)).)$$

Note, we will write $s = r^p$ in the following for notational simplicity. s is the coefficient 'r' from the theorem statement (i.e., $X_{r_t}/r^{1/p} = X_{s_t}/s^{1/p}$). Then, if we examine $X(r^pt)$, the generator associated with the drift is

$$b\frac{d}{dx} \to X_t = bt,$$

so $X_{r^pt} = br^pt$. Similarly, $\frac{\sigma^2}{2}\frac{d^2}{dx^2} \to X_t = \sigma B_t \sim \mathbb{N}(0, \sigma^2 t)$. So, $X_{r^pt} \sim \mathbb{N}(0, \sigma^2 r^p t) \stackrel{\mathrm{d}}{=} (\sigma r^{p/2})B_t$. And for the jumps, similar logic shows that $X(r^pt) \sim Levy(r^pb, r^{p/2}\sigma, r^p\nu)$. This is equal in distribution to

$$rX(t) \sim Levy(rb, r\sigma, \tilde{\nu})$$

where $\tilde{\nu}([a,b]) = \nu([\frac{a}{r},\frac{b}{r}])$. If $(X(r^pt))_{t>0} \stackrel{\mathrm{d}}{=} (rX(t))_{t>0}$ then

- (1) either b = 0 or p = 1
- (2) either $\sigma = 0$ or p = 2
- (3) either $\nu = 0$ or $r^p \nu = \tilde{\nu}$.

If $r^p \nu = \tilde{\nu}$ then $\nu([x,\infty)) = r^{-p} \nu([\frac{x}{r},\infty))$ so setting r=x implies that

$$\nu([x,\infty)) = x^{-p}\nu([1,\infty)) \implies \nu([x,\infty)) \propto x^{-p}.$$

This also holds for $\nu((-\infty, -x])$, and so if ν is absolutely continuous wrt Lebesgue measure then

$$\nu(dx) = \begin{cases} C_+ x^{-p-1} dx & x \ge 0 \\ C_- x^{-p-1} dx & x < 0 \end{cases}$$

for some $C_{\pm} \geq 0$. (this is what is meant when writing pure jump with the corresponding measure in the theorem statement.

DEFINITION (Stable limits). Let $\{Y_i\}_i$ be a family of iid (nondegenerate) Random Variables in \mathbb{R} and let $S_n = Y_1 + Y_2 + \cdots + Y_n$. Suppose $S_n/n^{\alpha} \stackrel{d}{\longrightarrow} X$ converges in distribution for some

Date: 19 November 2018.

distribution X. Then X is (strictly) stable, with index $p = 1/\alpha$ i.e., having the distribution of X(1) from the previous theorem.

Proof. $\frac{S_{nk}}{(nk)^{\alpha}} \xrightarrow{d} X$ but also converges to $\frac{X_1 + \dots + X_k}{k^{\alpha}}$ where X_i are iid and $\sim X$, all of this because $S_{nk} \stackrel{d}{=} S_n^{(1)} + \dots + S_n^{(k)}$ are iid copies of S_n . That is, we see that the distribution X can be rescaled into a k-fold convolution of k copies of itself: $X \stackrel{d}{=} \frac{X_1 + \dots + X_k}{k^{\alpha}}$.

Now let Z be the Poissonization of S, i.e. $Z_t = S_{N_t}$ where $N_t = PP(1)$ (poisson process) on $[0,\infty)$. Then, $Z \sim Levy(0,0,\nu)$ where ν is the probability distribution of Y. and $S_n/n^{\alpha} \approx Z_n/n^{\alpha}$ since $N_n = n + \mathcal{O}(\sqrt{n})$, and $Z_n/n^{\alpha} \sim Levy(0,0,\nu^{(n)})$ where $\nu^{(n)}([x,\infty)) = \nu([n^{\alpha}x,\infty))$

Let $Z_t^{(n)} = \frac{1}{n^{\alpha}} Z_{nt}$ The assumption $X_n = Y_1 + \dots + Y_n$ implies that $Z_1^{(n)}$ converges in distribution to X, and so by the fact that $X \stackrel{\text{d}}{=} \frac{X_1 + \dots + X_k}{k^{\alpha}}$, then X_t as a process is stable if the condition holds for time $t \neq 1$. but we could do the same argument to show that in fact the quoted assumption above implies $(Z_t^{(n)})_{t \geq 0} \stackrel{d}{\longrightarrow} (U_t)_{t \geq 0}$ where U is a stable process whose increments are determined by X: $U_1 \stackrel{\text{d}}{=} X$.

Note: $\tau_1 = \inf\{t \geq 0 : B_t = 1\} \sim Stable(\frac{1}{2})$ on $[0, \infty)$. So, $\tau_n \stackrel{\mathrm{d}}{=} \tau_1^{(n)} + \cdots + \tau_1^{(n)}$ decomposes into a sum of n iid copies of τ_1 . Then

$$\tau_n/n^2 \stackrel{d}{=} \frac{\tau_1^{(n)} + \dots + \tau_1^{(n)}}{n^2} \stackrel{d}{=} \tau_1,$$

(but also converges in distribution to τ_1 ($\stackrel{d}{\longrightarrow} \tau_1$).)