- 1. Consider the DFA, M_0 , whose state diagram is given below.
 - (a) ($_$ /1 pt) List the sequence of states M_0 goes through on input babb.
 - (b) (__ /1 pt) Does M_0 accept the string ε ?
 - (c) (__ /2 pts) Formally define the transition function δ of M_0 .

- a 1 2 2 3 2
- 6) yes! The start state is an accept state.
- © let Q = {1,2,3} and Z = {a,b}. S: Q × I → Q where S| a b

2. Consider the alphabet $\Gamma = \{0, 1\}$ and the following languages.

 $A_1 = \{\varepsilon\}$ and $A_2 = \{w \mid w \text{ has exactly an odd number of 0s}\}$

- (a) ($_$ /1.5 pts) Give a state diagram of a DFA, M_1 , recognizing A_1 .
- (b) ($_$ /1.5 pts) Give a state diagram of a DFA, M_2 , recognizing A_2 .
- (c) (__ /3 pts) Combine your state diagrams of M_1 and M_2 to give a state diagram of a DFA, M_3 , which recognizes $A_1 \cup A_2$.

NOTE: State (ro, di) and its outgoing edges can be deleted.