Teoretické základy informatických vied Základné pojmy

Mgr. Martin Bobák, PhD.

2022/2023

Pôvodný autor: doc. Mgr. Daniela Chudá, PhD. Teoretické základy informatických vied, FIIT STU, 2020.

Základné informácia o predmete

Typ štúdia: bakalárske

Ročník: 1. (INFO-3r) a 2. (INFO-4r) Semester: Letný Trvanie: 12 týždňov

Počet hodín týždenne (prednášky - cvičenia): 2 - 2

Prednášajúci:

- Mgr. Martin Bobák, PhD., martin.bobak@stuba.sk, ÚI SAV
- Ing. Juraj Petrík, juraj.petrik@stuba.sk, 3.31

Cvičiaci:

- Mgr. Martin Bobák, PhD., martin.bobak@stuba.sk, Úl SAV
- Ing. Ivan Kapustík, ivan.kapustik@stuba.sk, 4.44
- Ing. Jakub Perdek, jakub.perdek@stuba.sk
- Ing. Juraj Petrík, juraj petrik@stuba.sk, 3.31
- Ing. Igor Stupavský, igor.stupavsky@stuba.sk, 3.31
- Ing. Juraj Vincúr, juraj.vincur@stuba.sk, 3.38-2 (3D LAB)

Základné informácia o predmete

- Teória formálnych jazykov a automatov.
- Teória vyčísliteľ nosti a zložitosti.
- Cieľom predmetu je získať vedomosti o Chomského hierarchii jazykov a jej vzťahu k abstraktným výpočtovým modelom.
- Prehĺbiť a rozvíjať abstraktné logické myslenie a podnietiť schopnosť samostatného riešenia exaktne formulovaných úloh a problémov.
- Získať zručnosti v konštruovaní umelých gramatík, abstraktných automatov, Turingových a počítadlových strojov.

Sylabus predmetu

- Teória množín
- Gramatiky a jazyky
- Konečné automaty
- Zásobníkové automaty
- Turingove stroje
- Vypočítateľ nosť

Harmonogram

Týždeň	Prednáška	Cvičenie	Iné			
1	Množiny, Jazyky	Množiny, Jazyky				
2	Konečné automaty	Množiny, Jazyky				
3	Regulárne gramatiky, Regulárne výrazy	Konečné automaty				
4	Zásobníkové automaty	Regulárne gramatiky, Regulárne výrazy	TEST 1			
5	Bezkontextové gramatiky, Uzáverové vlastnosti	Konečné automaty, Zásobníkové automaty				
6	LOA, Turingové stroje, Kontextové gramatiky	Zásobníkové automaty, Bezkontextové gramatiky				
7	Vypočítateľnosť, UTS, Syntaktická analýza, Uzáverové vlastnosti	Turingové stroje, LOA	TEST 2 Zadávanie projektov TS a RAM			
8	RAM, zložitosti	T vypočítateľnosť, Kontextové gramatiky				
9	Počítadlové stroje	RAM				
10	Ekvivalencie výpočtových modelov	RAM, AM				
11	Využiteľnosť automatov a gramatík, Vypočítateľnosť	AM, projekty				
12	Kryptografia, Aplikácie, Zhrnutie	projekty	TEST 3			
	M. Bob	ák Teoretické základy ir	formatických vied			

Rozvrh

Deň	8.00-8.50	9.00-9.50	10.00-10.50	11.00-11.50	12.00-12.50	13.00-13.50	14.00-14.50	15.00-15.50	16.00-16.50	17.00-17.50	18.00-18.50	19.00-19.50
Po		Teoretic informatic J.	SA-FIIT-FIIT) / 2 cké základy ckých vied ⁽¹⁾ Petrík) (BA-FIIT-FIIT)	Teoretické základ	j (1) Dustík				1.38 (U20b) (Teoretické základ vied J. Pe 1.39 (U20a) (y informatických _I (1) etrík	1.38 (U20b) (Teoretické základ vied J. Pe 1.39 (U20a) (y informatických (1,2) etrík
			cké základy		ty informatických				Teoretické základ		Teoretické základ	
			kých vied (1,4)		(1)				vied		vied	(1,5)
			(apustík	J. Pe					I. Stup	avský	I. Stup	avský
			SA-FIIT-FIIT) / 3	1.40 (U40) (I								
			cké základy ckých vied ⁽¹⁾	reoreticke zaklad vied	ly informatických							
			Bobák	M. B								
Ut				Teoretické základ	na) (BA-FIIT-FIIT) dy informatických j (7) obák							
St												
št		Teoretic informa	(BA-FIIT-FIIT) cké základy tických vied Perdek	1.37 (LOS) (I Teoretické záklac viec J. Pe	ly informatických j (8)	1.37 (LOS) (I Teoretické záklac viec I. Kaj	y informatických (9)	Teoretické základ vie I. Kar	ed	Teoretické záklac vi I Stu	ed	
								1.39 (U20a) (Teoretické základ	BA-FIIT-FIIT)	1.39 (U20a) (Teoretické základ	BA-FIIT-FIIT)	
								vied		vied		
								J. Vi.	ncúr	J. Vi	ncúr	
Pi												

Podmienky absolvovania predmetu TZIV

- Priebežné hodnotenie počas semestra 60 bodov (minimálne 30 bodov)
 - Absolvovanie 3 priebežných písomiek z príkladov a teórie - 35 bodov (podľa harmonogramu, píšu sa na cvičeniach)
 - Pri ospravedlnenej neúčasti na písomke si študent písomku napíše na najbližšom cvičení alebo na konci semestra (podľa rozhodnutia cvičiaceho).
 - Je možné si písomku napísať aj na inom cvičení (v prípade nahradenia si cvičenia)
 - Povinné odovzdanie a odprezentovanie 2 praktických zadaní TS a RAM - 15 bodov
 - Domáce úlohy a úlohy na cvičeniach 10 bodov (minimálne 3 bodov)
 - Štandardne sa odovzdávajú do pripraveného miesta odovzdania
 - Aktivita na cvičeniach 5 bodov (bonusové body)

Skuska (minimum 50%)	40
Test 1	8
Test 2	12
Test 3	15
Projekt TS	10
Projekt RAM	5
Aktivita (bonus)	5
DU a body za cvicenia (minimum 30%)	10
Spolu	105

Podmienky absolvovania predmetu TZIV

- Vykonanie záverečnej skúšky 40 bodov (minimálne 20 bodov)
- Získanie aspoň 56 percent z celkového hodnotenia (minimálne 56 bodov)
- Stupnica hodnotenia je štandardná
- Účasť na cvičeniach je povinná (t. j. 0 neospravedlnených absencií)

Akademická bezúhonnosť

- Odpisovanie je vedomé prezentovanie cudzej práce ako svoj vlastný výsledok. V tomto predmete sa nebude plagiát (odpísaná pasáž z diela iného autora, časť programu) tolerovať. Typickým príkladom plagiátu je použitie (častí) práce niekoho iného bez jej citovania. Autori projektu sú preto povinní uviesť v dokumentácií všetky zdroje informácií, ktoré použili pri vypracovaní projektu.
- Nedodržanie sa podľa Študijného a skúšobného poriadku bakalárskeho a inžinierskeho štúdia na FIIT STU posudzuje a rieši pred disciplinárnou komisiou.

Študijná literatúra

- J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, tretie vydanie, 2007.
- P. Linz: An introduction to formal languages and automata. Jones & Bartlett Learning, piate vydanie, 2012.
- M. Sipser: Introduction to the Theory of Computation. Cengage Learning, 2012
- J.E. Hopcroft J.D. Ullman: Formálne jazyky a automaty. Alfa 1969.
- L'. Molnár a kol.: Gramatiky a jazyky. Alfa 1987.
- M. Nehéz, D. Chudá, I. Polický, M. Čerňanský: Teoretické základy informatiky
- Materiály v AIS

Definícia (Naivná definícia množiny)

Množina je súbor prvkov, ktoré majú spoločnú vlastnosť.

Zápis množiny:

- vymenovaním prvkov: $A = \{a, b, c\}$
- charakterizáciou vlastností jej prvkov:

$$\forall x (x \in \{x | \varphi[x]\} \leftrightarrow \varphi[x])$$

Nech $\varphi[x]$ je výroková formula, potom objekt x je prvkom množiny, ak má vlastnosť φ (napr. $Parne = \{2n | n \in \mathbb{N}\}$).

 prázdna množina: (označenie ∅, {}) je množina, do ktorej nepatrí žiadny prvok (∀x : x ∉ ∅).
 Existuje práve jedna prázdna množina.

Russellov paradox: Množina všetkých množín, ktoré nie sú prvkami seba samých.

$$M = \{X | X \notin X\}$$

Čo platí pre množinu M?

- M ∈ M: Množina všetkých množín X, pre ktorú platí X ∉ X.
 Potom musí platiť, že M ∉ M SPOR.
- M ∉ M: Množina všetkých množín X, pre ktorú platí X ∉ X.
 Potom musí platiť, že M ∈ M SPOR.

Paradox holiča: V malom meste je jediný holič, ktorý holí práve tých mužov v meste, ktorí sa neholia sami. Také mesto však nemôže existovať, lebo tu opäť dochádza ku sporu: Holí holič sám seba? Sám seba má holiť práve vtedy, kedy sám seba holiť nebude.

Naivná teória množín je nekorektná (obsahuje viacero paradoxov). To viedlo k tomu, že teória množín sa zadefinovala axiomaticky (E. Zermelo a A. Fraenkel).

Definícia (Axiomatická definícia množiny)

Množina je matematický objekt, ktorý spĺňa axiómy teórie množín.

- Axióma existencie množín Existuje aspoň jedna množina.
- Axióma extenzionality Množiny, ktoré majú tie isté prvky, sa rovnajú.
- Schéma axióm vydelenia Z každej množiny je možné vydeliť množinu všetkých prvkov, ktoré spĺňajú danú vlastnosť.
- Axióma dvojice Ľubovoľné dve množiny určujú dvojprvkovú množinu.

- Axióma sumy

 Ku každej množine A je daná

 množina všetkých prvkov, ktoré
 patria do nejakého prvku množiny A.
- Axióma potencie Ku každej množine je daná množina všetkých podmnožín.
- Schéma axióm nahradenia Definovateľné zobrazenie zobrazuje množinu na množinu.
- Axióma nekonečna
 Existuje nekonečná množina.
- Axióma fundovanosti

Poznámky:

- "Všetko je množina."
- axiómy hovoria, ako sa množiny správajú t.j. charakterizujú ich vlastnosti (podobne ako pri teórií grúp, vektorových priestoroch . . .)
 - Formálne sú vlastnosti objektov vyjadrené pomocou predikátov.

Vlastnosti:

- Pre samotnú ZF teóriu sú postačujúce axiómy č. 2, 5, 6, 7, 8 a
 9, pričom ostatné axiómy sa z týchto dajú odvodiť.
- Všimnite si, že axióma č. 1 priamo vyplýva z axiómy č. 8.

Definícia (Definícia podmnožiny)

Množina A je **podmno**ž**inou** množiny B (označenie $A \subseteq B$), ak každý prvok množiny A je aj prvkom množiny B.

$$A \subseteq B \iff \forall x[(x \in A) \Rightarrow (x \in B)]$$

Množina A je vlastnou podmnožinou množiny B, (označenie $A \subset B$), ak platí: $A \subseteq B \land A \neq B$

Poznámky:

- Platí, že každá množina je podmnožinou samej seba.
- Vzťah označovaný symbolom ⊆ sa nazýva inklúzia.
- Vzťah označovaný symbolom ⊂ sa nazýva vlastná inklúzia.
- $A = B \iff A \subseteq B \land B \subseteq A$
- Prázdna množina je podmnožinou ľubovoľnej množiny

Definícia (Definícia prieniku dvoch množín)

Prienikom množín A a B nazývame množinu

$$A \cap B = \{x | x \in A \land x \in B\}$$

Množiny C, D sa nazývajú disjunktné, ak $C \cap D = \emptyset$.

Definícia (Definícia rozdielu dvoch množín)

Rozdielom množín A a B nazývame množinu

$$A \setminus B = \{x | x \in A \land x \notin B\}$$

Definícia (Definícia zjednotenia dvoch množín)

Zjednotením množín A a B nazývame množinu

$$A \cup B = \{x | x \in A \lor x \in B\}$$

Definícia (Definícia zjednotenia systému množín)

Majme množinu I indexov systému množím $\{A_i|i\in I\}=\{A_{i_1},\ldots,A_{i_k}\}$. Potom jeho zjednotenie nazývame množinu

$$\bigcup_{i=1}^k A_i = \{x | \exists i \in I \land x \in A_i\}$$

- **1** Komutatívny zákon $A \cup B = B \cup A$ $A \cap B = B \cap A$
- **2** Asociatívny zákon $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- **3** Distributívny zákon $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $\begin{array}{c}
 \mathbf{0} & \mathbf{Identita} \\
 A \cup \emptyset = A \\
 A \cap U = A
 \end{array}$

- **3** Komplement $A^{C} = U \setminus A$ $A \cup A^{C} = U$ $A \cap A^{C} = \emptyset$ $(A^{C})^{C} = A$ $\emptyset^{C} = U$ $U^{C} = \emptyset$
- De Morganove zákony $(A \cup B)^C = A^C \cap B^C$ $(A \cap B)^C = A^C \cup B^C$

Zdroj: Vladimír Kvasnička, Jiří Pospíchal: Algebra a diskrétna matematika, STU, 2008.

Definícia (Definícia karteziánskeho súčinu množín)

Nech A, B sú ľubovoľné množiny. Karteziánskym súčinom množín A a B nazývame množinu

$$A \times B = \{(a,b)|a \in A \land b \in B\}$$

Analogickým spôsobom možno definovať karteziánsky súčin k množín - jeho prvkami sú usporiadané k-tice.

Poznámky:

- Prvkami množiny A × B sú usporiadané dvojice prvkov, ktoré budeme označovať (a, b).
- Ak $a \neq b$, potom $(a, b) \neq (b, a)$.
- Neusporiadané dvojice prvkov a, b budeme označovať {a, b}.

Zdroj: Vladimír Kvasnička, Jiří Pospíchal:Algebra a diskrétna matematika, STU, 2008.

Definícia (Definícia binárnej relácie)

Nech sú A, B ľubovoľné množiny. Binárnou reláciou R z množiny A do množiny B nazveme ľubovoľnú podmnožinu karteziánskeho súčinu $A \times B$.

$$R \subset A \times B$$

Poznámky:

- Prvkami relácie sú usporiadané dvojice.
- Ak $(a, b) \in R$, tak používame tiež zápis aRb. Najdôležitejšou operáciou na binárnych reláciách je kompozícia relácií.

Definícia (Definícia kompozície relácií)

Nech R_1 a R_2 sú binárne relácie. Kompozícia (binárnych) relácií $R_1 \circ R_2$ je definovaná nasledovne:

$$R_1 \circ R_2 = \{(x,z) | \exists y : (x,y) \in R_1 \land (y,z) \in R_2\}$$

Poznámky:

- Ak R ⊆ A × A pre nejakú množinu A, tak hovoríme, že R je relácia na množine A.
- Identická relácia $I_A = \{(a,a)|a \in A\}$ je príkladom relácie na množine.
- Pre reláciu R na množine A poznáme napríklad operácie mocniny, reflexívneho a tranzitívneho uzáveru.

Zdroj: Vladimír Kvasnička, Jiří Pospíchal: Algebra a diskrétna matematika, STU, 2008.

Definícia (Definícia zobrazenia)

Binárna relácia $f \subset A \times B$ sa nazýva zobrazenie (funkcia) z množiny A do množiny B, ak platí:

$$\forall x \in A, \forall y_1 \in B, \forall y_2 \in B : \\ [(x,y_1) \in f \land (x,y_2) \in f \rightarrow y_1 = y_2] \ (jednoznačná) \\ \forall x \in A, \exists y \in B : (x,y) \in f \ (všade \ definovaná)$$

- Ak $f \subseteq X \times Y$ je zobrazenie, tak ho zapisujeme ako $f \cdot X \rightarrow Y$
- Ak $(x, y) \in f$ pre $x \in X, y \in Y$, tak to zapisujeme ako f(x) = f(x)у.

Zobrazenie $f: X \to Y$ sa nazýva:

- injektívne, ak $\forall x_1, x_2 \in X, x_1 \neq x_2$ potom platí, že $f(x_1) \neq f(x_2)$
- surjektívne, ak $\forall y \in Y, \exists x \in X$ potom platí, že f(x) = y
- bijektívne, ak je injektívne a zároveň surjektívne.

Zdroj: Vladimír Kvasnička, Jiří Pospíchal: Algebra a diskrétna matematika, STU, 2008.

Definícia (Definícia kompozície zobrazení)

 $Ak\ f:A\to B\ a\ g:B\to C$, potom pre ich kompozíciu platí $f\circ g:A\to C$. Formálne pre l'ubovolné prvky $x\in A\ a\ z\in C$ platí:

$$(f \circ g)(x) = z \iff \exists y \in B(f(x) = y \land g(y) = z) \iff gf(x) = z$$

Je to dôsledok toho, že jednoznačné a všade definované relácie sú uzavreté na operáciu kompozície.

Poznámky:

- $f \circ g = \{(x, z) \in A \times C | gf(x) = z\}$
- $\forall x \in A : (f \circ g)(x) = gf(x)$
- Všimnite si zápisy zloženého zobrazenia gf(x) a $(f \circ g)(x)$.
- Kompozícia dvoch injektívnych zobrazení je injektívne, dvoch surjektívnych zobrazení je surjektívne a dvoch bijektívnych zobrazení je bijektívne.

Definícia (Definícia potenčnej množiny)

Nech A je množina. Potenčná množina $\mathcal{P}(A)$ je množina všetkých podmnožín množiny A:

$$\mathcal{P}(A) = \{X | X \subseteq A\}$$

Príklad:

$$A = \{a, b, c\}$$

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Poznámky:

ullet zvykne sa označovať dvoma spôsobmi: $\mathcal{P}(A)$, alebo 2^A

Definícia (Definícia množiny prirodzených čísiel)

Množina prirodzených čísel $\mathbb N$ je najmenšia množina (vzhľadom na inklúziu), pre ktorú platí:

- \bullet $0 \in \mathbb{N}$
- $ak \ x \in \mathbb{N}$, $tak \ (x+1) \in \mathbb{N}$.

(zjednodušenie Peanových axióm)

Veta (Veta o matematickej indukcii)

Nech P(x) je predikát vyjadrujúci nejakú vlastnosť čísel. Nech $k \in \mathbb{N}$. Predpokladajme, že platí:

- P(0),
- ak P(k), tak P(k + 1).

Potom pre všetky $n \in \mathbb{N}$ platí P(n), teda vlastnosť P majú všetky prirodzené čísla.

$$\forall P \Big(P(0) \land \forall k \big(P(k) \rightarrow P(k+1) \big) \rightarrow \forall n \big(P(n) \big) \Big)$$

Zdroj: Grimaldi, R. P.: Discrete and Combinatorial Mathematics, Pearson Addison-Wesley, 2004.

Množina kladných celých čísel \mathbb{N}^+ :

$$\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$$

Množina (nezáporných) párnych čísel $\mathbb{E}v$ (Even):

$$\mathbb{E}v = \{2 \cdot k | k \in \mathbb{N}\}\$$

Množina (kladných) nepárnych čísel $\mathbb{O}dd$:

$$\mathbb{O}dd = \{2 \cdot k + 1 | k \in \mathbb{N}\}\$$

Množina celých čísel \mathbb{Z} :

$$\mathbb{Z} = \mathbb{N} \cup \{-k | k \in \mathbb{N}\}\$$

Množina všetkých prvočísel \mathbb{P} r

Je to množina všetkých takých čísiel z \mathbb{N}^+ , ktoré majú iba dva rôzne kladné delitele.

Množina racionálnych čísiel Q

Každé racionálne číslo sa dá zapísať v tvare zlomku, teda v tvare $\frac{p}{q}$, pričom $p \in \mathbb{Z}, q \in \mathbb{N}^+$. Avšak rôzne zlomky môžu vyjadrovať to isté číslo (napr. $\frac{1}{5} = \frac{3}{15}$). Preto sa množina \mathbb{Q} definuje ako množina všetkých zlomkov v tzv. vykrátenom (resp. kanonickom) tvare.

Množina reálnych čísiel $\mathbb R$

Množina reálnych čísiel vznikne tzv. zaplnením množiny čísiel. Okrem všetkých čísiel z $\mathbb Q$ obsahuje aj ďalšie čísla, ako napr. $\sqrt{2}$, $\sqrt{3}$, π a iné.

Mohutnosť množiny - Opakovanie

- mohutnosť (kardinalita) množiny A vyjadruje veľkosť (=počet prvkov) množiny A
- označuje sa symbolom |A|

Definícia (Definícia rovnosti mohutnosti dvoch množín)

Nech A, B sú množiny. Budeme hovoriť, že množiny A a B majú rovnakú mohutnosť, ak existuje bijektívne zobrazenie $\varphi:A\to B$ Rovnosť dvoch množín budeme označovať ako |A|=|B|.

Definícia (Definícia menšej alebo rovnakej mohutnosti dvoch množín)

Nech A, B sú množiny. Budeme hovoriť, že množina A má mohutnosť menšiu alebo rovnakú ako množina B, označujeme $|A| \leq |B|$, ak existuje injektívne zobrazenie $\psi: A \to B$. Množina A má mohutnosť menšiu ako množina B, označujeme |A| < |B|, ak $|A| \leq |B|$ a neplatí |A| = |B|.

Definícia (Definícia konečnej množiny)

Množina A sa nazýva konečná, ak $|A| < |\mathbb{N}|$.

Vlastnosti:

- mohutnosť konečnej množiny je možné vyjadriť prirodzeným číslom. Nech $k \in \mathbb{N}$. Mohutnosť konečnej množiny A označíme číslom k, píšeme |A|=k, ak $|A|=|\{1,\,2,\,\ldots,\,k\}|$. Mohutnosť prázdnej množiny sa označuje nulou.
- $\bullet |A \times B| = |A| \cdot |B|$
- $|A \cup B| \le |A| + |B|$
- $|A \cap B| \leq \min(|A|, |B|)$
- $|A \setminus B| \leq |A|$
- $|P(A)| = 2^{|A|}$

- ako spočítať nekonečnú množinu?
- je prirodzených čísiel viacej ako celých čísiel, reálnych čísiel...?
- kardinálne číslo symbol, ktorým sa označuje mohutnosť množiny.
 - konečné množiny prirodzené číslo
 - nekonečné množiny nekonečné kardinály $(|\mathbb{N}|=\aleph_0)$

- kardinalita definovaná ako relácia namiesto čísla
- |A| = |B| práve vtedy keď existuje **bijekcia** $f : A \rightarrow B$.

Vlastnosti:

- |A| = |A|. Definujme f ako f(x) = x
- Ak platí, že |A| = |B|, potom |B| = |A|.
- Ak platí, že |A| = |B| a zároveň |B| = |C|, potom |A| = |C|.

Veta

Mohutnosť množiny prirodzených čísel je rovnaká ako mohutnosť množiny celých čísel, teda platí nasledujúca rovnosť:

$$|\mathbb{N}| = |\mathbb{Z}|$$

Definujme $f: \mathbb{N} \to \mathbb{Z}$

$$f(n) = \begin{cases} \frac{n}{2} & n \in \mathbb{E}v \\ -\frac{n+1}{2} & n \in \mathbb{O}dd \end{cases}$$

- Podobne vieme ukázať:
 - $\mathbb{N} = \mathbb{N}^+$
 - $\mathbb{N} = \mathbb{E} \mathbf{v}$
 - $\mathbb{N} = \mathbb{O}dd$
- Menšia množina nemusí mať menej prvkov napriek tomu, že množiny $\mathbb{E} v$ a $\mathbb{O} dd$ sú vlastnými podmnožinami množiny \mathbb{N} , všetky tri majú rovnakú mohutnosť. Podobne $\mathbb{N}^+ \subset \mathbb{N}$, pričom obidve množiny majú rovnakú mohutnosť.

Lema

 $\mathbb{P}r \subset \mathbb{N}^+ \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}.$

Veta

Nech A, B sú disjunktné nekonečné množiny, pre ktoré platí: $|\mathbb{N}| = |A| = |B|$. Potom platí:

$$|\mathbb{N}| = |A \cup B|.$$

Dôkaz: Z predpokladu $|\mathbb{N}|=|\mathsf{A}|$ vyplýva, že existuje bijektívne zobrazenie $\varphi_1:\mathbb{N}\to A$, ktoré každé prirodzené číslo zobrazí na nejaký prvok z množiny A. Konkrétne, prirodzené číslo $n\in\mathbb{N}$ sa zobrazí na prvok $\varphi_1(n)\in A$. Podobne, z rovnosti $|\mathbb{N}|=|\mathsf{B}|$ vyplýva, že existuje bijektívne zobrazenie $\varphi_2:\mathbb{N}\to B$, ktoré prirodzené číslo $m\in\mathbb{N}$ zobrazí na prvok $\varphi_2(m)\in B$. Keďže množiny A a B sú disjunktné, môžeme definovať nové zobrazenie $\psi:\mathbb{N}\to(A\cup B)$ nasledujúcim spôsobom:

$$\psi(n) = \begin{cases} \varphi_1(\frac{n}{2}) & n \in \mathbb{E}v \\ \varphi_2(\lfloor \frac{n}{2} \rfloor) & n \in \mathbb{O}dd \end{cases}$$

Veta

Nech A, B sú disjunktné nekonečné množiny, pre ktoré platí: $|\mathbb{N}|=|A|=|B|$. Potom platí:

$$|\mathbb{N}|=|A\cup B|.$$

Teda platí: $\psi(0)=\varphi_1(0),\ \psi(2)=\varphi_1(1),\ \psi(4)=\varphi_1(2),\ \psi(6)=\varphi_1(3),\ \text{atd}'.$ To znamená, že v zobrazení ψ sa napr. číslo 4 zobrazí na ten prvok z množiny A, na ktorý bolo v zobrazení φ_1 zobrazené číslo 2.

$$\psi(1) = \varphi_2(0), \ \psi(3) = \varphi_2(1), \ \psi(5) = \varphi_2(2), \ \psi(7) = \varphi_2(3), \ \text{atd}'.$$
 Zobrazenie ψ je bijektívne. Tým sme dokázali, že platí $|\mathbb{N}| = |A \cup B|.$

Poznámka: Tvrdenie platí aj vtedy, ak v predpokladoch vynecháme podmienku disjunktnosti množín A a B.

Veta

Množina $P = \mathbb{N} \times \mathbb{N}$ všetkých usporiadaných dvojíc prirodzených čísel je spočítateľná, teda platí nasledujúca nerovnosť:

$$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

Dôkaz: Myšlienka dôkazu je založená na nasledujúcej úvahe. Prvkami množiny $\mathbb{N} \times \mathbb{N}$ sú usporiadané dvojice prirodzených čísel, ktoré usporiadame do dvojrozmernej tabuľky, ohraničenej ľavým a horným okrajom.

$\mathbb{N} \times \mathbb{N}$	0	1	2	3	
0	(0,0)	(0,1)	(0,2)	(0,3)	
1	(1,0)	(1, 1)		(1,3)	
2	(2,0)	(2,1)	(2,2)	(2,3)	
3	(3,0)	(3,1)	(3,2)	(3, 3)	
:	:	:	:	:	·

Zdroj: Daniela Chudá:Teoretické základy informatických vied, FIIT STU, 2020.

Veta

Množina $P = \mathbb{N} \times \mathbb{N}$ všetkých usporiadaných dvojíc prirodzených čísel je spočítateľná, teda platí nasledujúca nerovnosť:

$$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

Prvky v tejto tabuľke očíslujeme prirodzenými číslami tak, aby uvedené očíslovanie reprezentovalo bijektívne zobrazenie $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Dvojiciam v tabuľke budeme priraďovať prirodzené čísla v smere diagonály, zhora-dole a sprava-doľava tak, ako je to naznačené nižšie

\mathbb{N}	0	1	2	3	
0	0	1	3	6	
1	2	4	7	11	
2	5	8	12	17	
3	9	13	18	24	
i	:	:	:	÷	٠٠.

Zdroj: Daniela Chudá:Teoretické základy informatických vied, FIIT STU, 2020.

Veta

Množina $P=\mathbb{N}\times\mathbb{N}$ všetkých usporiadaných dvojíc prirodzených čísel je spočítateľná, teda platí nasledujúca nerovnosť:

$$|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

Platí: f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 2, f(0, 2) = 3, f(1, 1) = 4, f(2, 0) = 5, atď. Funkčný predpis potom možno vyjadriť nasledovne:

$$f(m,n)=\frac{(m+n)(m+n+1)}{2}+m$$

Takto definované zobrazenie je bijektívne, a teda požadovaná rovnosť je dokázaná.

Veta

Mohutnosť množiny prirodzených čísel je menšia ako mohutnosť množiny reálnych čísel, teda platí nasledujúca nerovnosť:

$$|\mathbb{N}| < |\mathbb{R}|$$

Dôkaz (Sporom): Predpokladajme, že platí $|\mathbb{N}|=|\mathbb{R}|$ a budeme sa snažiť dostať spor, z ktorého by potom hneď vyplynulo tvrdenie vety. Ak by platilo $|\mathbb{N}|=|\mathbb{R}|$, tak potom aj $|(0,1)|=|\mathbb{N}|$. To by znamenalo, že interval (0,1) možno zoradiť do postupnosti:

Veta

Mohutnosť množiny prirodzených čísel je menšia ako mohutnosť množiny reálnych čísel, teda platí nasledujúca nerovnosť:

$$|\mathbb{N}| < |\mathbb{R}|$$

kde $a_{i,k}$ je k-ta cifra desatinného rozvoja čísla a_i . Ukážeme, že existuje číslo b = 0, b_1b_2 ..., ktoré zrejme patrí do intervalu (0, 1), ale nenachádza sa v postupnosti a_1, a_2, \ldots Toto číslo zostrojíme pomocou diagonalizácie nasledovným spôsobom.

Veta

Mohutnosť množiny prirodzených čísel je menšia ako mohutnosť množiny reálnych čísel, teda platí nasledujúca nerovnosť:

$$|\mathbb{N}| < |\mathbb{R}|$$

Stačí vziať $b_1 \neq a_{1,1}$, $b_2 \neq a_{2,2}$, ..., $b_i \neq a_{i,i}$... Keďže b sa v i-tej cifre líši od i-teho čísla v postupnosti, nemôže sa rovnať žiadnemu číslu z tejto postupnosti.

$$b_b = \begin{cases} 1 & \text{ak } a_{k,k} \neq 1 \\ 9 & \text{ak } a_{k,k} = 1 \end{cases}$$

Veta

Mohutnosť množiny prirodzených čísel je menšia ako mohutnosť množiny reálnych čísel, teda platí nasledujúca nerovnosť:

$$|\mathbb{N}| < |\mathbb{R}|$$

Zdroj: Daniela Chudá: Teoretické základy informatických vied, FIIT STU, 2020.

Potom číslo b patrí do intervalu (0,1), teda existuje také m, že $a_m=b$. Špeciálne, musí byť $a_{m,m}=b_m$. Ale číslo b bolo zostrojené tak, aby pre každé k bolo $b_k\neq a_{k,k}$, teda aj $b_m\neq a_{m,m}$. To je hľadaný spor. \square

Veta

Mohutnosť množiny prirodzených čísel je menšia ako mohutnosť množiny reálnych čísel, teda platí nasledujúca nerovnosť:

$$|\mathbb{N}| < |\mathbb{R}|$$

Poznámka: Ukázali sme, že neexistuje bijekcia $f: |\mathbb{N}| \to |(0,1)|$. Pomocou diagonalizácie sme ukázali, že žiadna funkcia $f: |\mathbb{N}| \to |(0,1)|$ nie je surjektívna. To sme ukázali tak, že sme našli prvok $x \in (0,1)$, na ktorý sa f nezobrazí (nech je f akákoľ vek funkcia).

Spočítateľné a nespočítateľné množiny - Opakovanie

Definícia (Definícia spočítateľ nej a nespočítateľ nej množiny)

Množina A sa nazýva spočítateľná, ak $|A| \leq |\mathbb{N}|$ (t.j. $|A| \leq \aleph_0$). Množina, ktorá nie je spočítateľná, sa nazýva nespočítateľná.

Veta

Množina $\mathbb{R} \setminus \mathbb{Q}$ iracionálnych čísel je nespočítateľná.

Dôkaz (Sporom): Predpokladajme, že množina $\mathbb{R}\setminus\mathbb{Q}$ je spočítateľná. V tom prípade je buď konečná alebo nekonečná spočítateľná. Predpokladajme najprv, že množina $\mathbb{R}\setminus\mathbb{Q}$ je konečná. Keďže vieme, že platí $|\mathbb{Q}|=\aleph_0$, existuje bijektívne zobrazenie $(\mathbb{R}\setminus\mathbb{Q})\cup\mathbb{Q}\to\mathbb{N}$. To znamená, že množina $(\mathbb{R}\setminus\mathbb{Q})\cup\mathbb{Q}=\mathbb{R}$ je nekonečná spočítateľná, čo je spor.

V prípade, keby bola množina $\mathbb{R}\setminus\mathbb{Q}$ nekonečná spočítateľná, dostaneme taktiež spor. Množina \mathbb{Q} je nekonečná spočítateľná, pričom množiny \mathbb{Q} a $\mathbb{R}\setminus\mathbb{Q}$ sú disjunktné. Potom ich zjednotenie, teda množina \mathbb{R} , musí byť spočítateľná. To je opäť spor. Tým je tvrdenie dokázané. \square

Spočítateľné a nespočítateľné množiny - Opakovanie

Zdroj: Daniela Chudá: Teoretické základy informatických vied, FIIT STU, 2020.

Úvod do teórie formálnych jazykov

Čo je to jazyk?

- súbor slov a metód skladania slov, ktorý používa a chápe dostatočne veľká ľudská spoločnosť (Webster - americký výkladový slovník angličtiny).
- sústava osobitných znakových hodnôt, ktorá slúži ako nástroj vyjadrovania, dorozumievania a ukladania poznatkov v istom spoločenstve (Slovník súčasného slovenského jazyka)
- matematický systém (J.E. Hopcroft J.D. Ullman: Formálne jazyky a automaty. Alfa 1969.)

Úvod do teórie formálnych jazykov

Na abstraktnej úrovni rozlišujeme 3 základné typy jazykov:

- prirodzené (lingvistické)
- umelé (napr. programovacie)
- formálne

Jazyk je možné skúmať z dvoch hľadísk:

- syntax (štruktúra a stavba)
- sémantika (význam a obsah)

Úvod do teórie formálnych jazykov

Reprezentácia jazyka:

- Matematický opis jazyka množina.
- Systematické generovanie slov z jazyka (generovanie jazyka) gramatika.
- Zostrojenie algoritmu, ktorý určí, či dané slovo patrí do jazyka (rozpoznanie jazyka) – automat

Teória jazykov:

 štúdium množín znakov, reťazcov, ich reprezentácií, štruktúr a vlastností

Abeceda

Definícia (Definícia abecedy jazyka)

Abeceda je konečná neprázdna množina symbolov (písmen). Označuje sa Σ .

Príklad:

•
$$\Sigma = \{a, b, c\}$$

Slovo

Definícia (Definícia slova nad abecedou Σ)

Slovo (veta, reťazec) nad abecedou Σ je konečná postupnosť symbolov zo Σ . Označuje sa malým písmenom (najčastejšie u, v, w, x, y).

$$u = a_1 a_2 ... a_n$$

 $kde \ \forall i \in \mathbb{N}^+ : a_i \in \Sigma.$

Prázdnu postupnosť (prázdne slovo) označujeme ε .

Príklady:

- u = aa
- v = ababac
- $\mathbf{w} = \varepsilon$

Podslovo

Definícia (Definícia podslova)

Podslovo u slova $v = a_1 a_2 ... a_n$ je súvislá podpostupnosť $u = a_i a_{i+1} ... a_j$ pričom platí $1 \le i \le j \le n$. Špeciálne podslová:

- prefix (počiatočné podslovo, predpona) platí i = 1.
 Slovo u je prefixom slova v, ak platí že v = uw pre nejaké slovo w.
- sufix (koncové podslovo, prípona) platí j = n.
 Slovo u je sufixom slova v, ak platí že v = wu pre nejaké slovo w.
- infix (podslovo, časť slova) ak platí že $v = w_1 u w_2$ pre nejaké slová $w_1 a w_2$.

Prázdne slovo ε je prefixom a zároveň sufixom každého slova.

Operácie nad slovami

- Rovnosť slov
- Zreťazenie slov
- Mocnina slova
- Zrkadlový obraz
- Dĺžka slova
- Počet výskytov symbolu
- Homomorfizmus

Rovnosť slov

Definícia (Definícia rovnosti slov)

Nech k, $l \in \mathbb{N}^+$ a $u = a_1...a_k$, $v = b_1...b_l$ sú slová. Potom platí, že slovo u sa rovná slovu v (zapisujeme u = v), ak k = l a zároveň $\forall 1 \leq i \leq k$: $a_i = b_i$.

Naopak, slová u, v sa nerovnajú (zapisujeme u \neq v), ak k \neq l alebo $\exists 1 \leq j \leq k : a_i \neq b_i$.

Príklady:

- ε aa = aa
- $abbbaaaa = ab^3a^4$

Zreťazenie slov

Definícia (Definícia zreťazenia slov)

Nech $u = u_1 u_2 ... u_n, v = v_1 v_2 ... v_m$, potom

 $u \cdot v = u_1 u_2 \dots u_n v_1 v_2 \dots v_m.$

Nech u, v, w sú slová nad abecedou Σ. Potom operácia zreťazenia spĺňa nasledujúce vlastnosti:

- (uzavretosť) slovo uv je tiež nad abecedou Σ
- (asociatívnosť) (uv)w = u(vw)
- (neutrálny prvok) $u\varepsilon = \varepsilon u = u$

Znak zreťazenia (bodku) budeme väčšinou vynechávať.

Príklad:

• $u = aabb, v = ccc, w = \varepsilon$ potom uv = aabbccc, vw = ccc

Mocnina slova

Definícia (Definícia mocniny slova)

Nech w je ľubovoľné slovo nad abecedou Σ a $i \in \mathbb{N}^+$, potom platí:

- $w^0 = \varepsilon$
- $w^{i} = w^{i-1}w$

(je zrejmé, že platí $w^1 = w$.)

Príklady:

- $a^2b^1e^0s^3 = aabsss$
- $(ab)^2 \neq a^2b^2$

Zrkadlový obraz slova

Definícia (Definícia zrkadlového obrazu slova)

Nech w je ľubovoľné slovo, potom pre jeho zrkadlový obraz platí:

- $\bullet \ \varepsilon^R = \varepsilon$
- $(au)^R = u^R a$

Ak pre slovo w platí $w^R = w$, takéto slovo sa nazýva palindróm.

Príklady:

- $abbac^R = cabba$
- $(a^3b)^R = ba^3$

Dĺžka slova

Definícia (Definícia dĺžky slova)

Dĺžka slova w je dĺžka postupnosti symbolov, ktorá ho tvorí. Označuje sa ako |w|.

Vlastnosti:

- Ak $w = a_1 a_2 ... a_n$, potom |w| = n.
- $|\varepsilon| = 0$
- $|v^R| = |v|$
- $|u \cdot v| = |u| + |v|$

Počet výskytov symbolu

Definícia (Definícia počtu výskytov symbolu)

Počet výskytov symbolu a v slove w sa označuje ako $\sharp_a w$ a je definovaný nasledovne:

•
$$\sharp_a \varepsilon = 0$$

Homomorfizmus

Definícia (Definícia homomorfizmu)

Homomorfizmus h nad slovami je zobrazenie z množiny všetkých slov nad abecedou Σ_1 do množiny všetkých slov nad abecedou Σ_2 $(h: \Sigma_1^* \to \Sigma_2^*)$, pričom pre $\forall u, v \in \Sigma_1^*$ platí:

$$h(u \cdot v) = h(u) \cdot h(v)$$

Vlastnosti:

- zachováva operáciu zreťazenia
- $h(\varepsilon) = \varepsilon$

$$h: \{0,1\}^* \to \{a,b\}^*$$

 $h(0) = ab$
 $h(1) = ba$
 $h(0011) = ababbaba$

Jazyk

Definícia (Definícia jazyka)

Jazyk nad abecedou Σ je ľubovoľná množina slov nad abecedou Σ . Označujú sa väčšinou písmenom L (s indexom, ak je to potrebné).

Mohutnosť:

- jazyky konečné
- jazyky nekonečné (väčšinou spočítateľné)

Množinové operácie:

- zjednotenie, prienik, rozdiel, rovnosť, nerovnosť, podmnožina
- zreťazenie jazykov, mocnina jazyka, Kleeneho uzáver (iterácia), kladný uzáver, doplnok jazyka, homomorfizmus jazyka

Zreťazenie jazykov

Definícia (Definícia zreťazenia jazykov)

Nech L_1 a L_2 sú jazyky. **Zreťazenie jazykov** (označuje sa ·) je definované nasledovne:

$$L_1 \cdot L_2 = L_1 L_2 \{uv | u \in L_1, v \in L_2\}$$

Vlastnosti:

- $L_1L_2 \neq L_2L_1$
- $L \cdot \emptyset = \emptyset \cdot L = \emptyset$
- $L \cdot \{\varepsilon\} = \{\varepsilon\} \cdot L = L$

Mocnina jazyka

Definícia (Definícia mocniny jazyka)

Nech L je jazyk. **Mocnina jazyka** L (označuje sa Lⁱ , kde $i \in \mathbb{N}$) je definovaná nasledovne:

- $L^0 = \{ \varepsilon \}$
- $L^i = L^{i-1} \cdot L$ pre $i \in \mathbb{N}^+$

Kleeneho uzáver (iterácia) jazyka

Definícia (Definícia iterácie jazyka)

Nech L je jazyk. **Kleeneho iterácia** alebo uzáver jazyka L (označuje sa L^*) je definovaná nasledovne:

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Kleeneho kladný uzáver (iterácia) jazyka

Definícia (Definícia kladnej iterácie jazyka)

Nech L je jazyk. **Kleeneho kladná iterácia** alebo kladný uzáver jazyka L (označuje sa L^+) je definovaná nasledovne:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$

Vlastnosti:

•
$$L^* = L^+ \cup \{\varepsilon\}$$

Doplnok (komplement) jazyka

Definícia (Definícia doplnku jazyka)

Nech L je jazyk a Σ_L je najmenšia abecedu,nad ktorou je L. **Doplnok jazyka** alebo komplement jazyka L (označuje sa L^C) je definovaný nasledovne:

$$L^C = \Sigma_I^* \setminus L$$

Homomorfizmus jazyka

Definícia (Definícia homomorfizmu jazyka)

Nech Σ_1 a Σ_2 sú abecedy, L je jazyk nad Σ_1 a $h: \Sigma_1^* \to \Sigma_2^*$ je homomorfizmus (nad slovami). **Homomorfizmus jazyka** (označuje sa h(L)) je definovaný nasledovne:

$$h(L) = \{h(w)|w \in L\}$$

Triedy jazykov

Definícia (Definícia tried jazykov)

Jazyk sa nazýva kontextový (bezkontextový, resp. regulárny), ak je generovaný kontextovou (bezkontextovou, resp. regulárnou) gramatikou. Jazyk sa nazýva rekurzívne vyčísliteľný, ak je generovaný frázovou gramatikou.

Triedy jazykov

Tried jazykov sa označujú nasledovne:

- L_{RE} trieda rekurzívne vyčísliteľných jazykov, (ang. recursive enumerable), generovaných frázovou gramatikou (Turingov stroj)
- \mathcal{L}_{CS} trieda kontextových jazykov, (ang. context sensitive), generovaných kontextovou gramatikou (lineárne ohraničený automat)
- L_{CF} trieda bezkontextových jazykov (ang. context free), generovaných bezkontextovou gramatikou (zásobníkový automat)
- \mathcal{R} trieda regulárnych jazykov (ang. regular), generovaných regulárnou gramatikou (konečný automat)

Hierarchia tried jazykov

Definícia (Definícia hierarchie tried jazykov)

Medzi triedami jazykov **Chomského hierarchie** platia nasledujúce vzťahy $\mathcal{L}_{RE} \supsetneq \mathcal{L}_{CSE} \supsetneq \mathcal{L}_{CF} \supsetneq \mathcal{R}$.

Vyššie definovaná trieda kontextových jazykov (budeme sa im venovať neskôr) neumožňuje vygenerovať prázdne slovo, rozšírime ju nasledovne:

$$\mathcal{L}_{\textit{CSE}} = \{L, L \cup \{\varepsilon\} | L \in \mathcal{L}_{\textit{CS}}\}$$

Hierarchia tried jazykov

Zdroj: https://en.wikipedia.org/wiki/Chomsky_hierarchy

Ďakujem vám za pozornosť.

Dotazník k prednáške:

https://forms.gle/gPpbqYUYSnGfbG9X9

