1013 🔲 Найдите sin α, если:

a)
$$\cos \alpha = \frac{1}{2}$$
; 6) $\cos \alpha = -\frac{2}{3}$; B) $\cos \alpha = -1$.

Основное тригонометрическое тождество: $\sin^2 \alpha + \cos^2 \alpha = 1$

$$\sin^2 x + \left(\frac{1}{2}\right)^2 = 1$$

 $\sin^2 x = 1^4 - \frac{1}{4}$
 $\sin^2 x = \frac{3}{4}$
 $\sin^2 x = \frac{3}{4}$

$$(-\frac{2}{3})^{2} + 5ih^{2}L = 1$$

 $5ih^{2} + 5ih^{2}L = 1$
 $5ih^{2} + 5ih^{2}L = 1$

1014 Найдите соѕ α, если:

a)
$$\sin \alpha = \frac{\sqrt{3}}{2}$$
; 6) $\sin \alpha = \frac{1}{4}$; B) $\sin \alpha = 0$.

a)
$$\sin \lambda = \frac{\sqrt{3}}{2}$$

 $(\frac{\sqrt{3}}{2})^2 + \cos^2 \lambda = 1$
 $\frac{3}{7} + \cos^2 \lambda = 1$
 $\cos^2 \lambda = \frac{1}{7} - \frac{3}{7}$
 $\cos^2 \lambda = \frac{1}{7} - \frac{3}{7}$
 $\cos^2 \lambda = \frac{1}{7} - \frac{1}{7}$
 $\cos^2 \lambda = \frac{1}{7} - \frac{1}{7}$
 $\cos^2 \lambda = \frac{1}{7} - \frac{1}{7}$
 $\cos^2 \lambda = \frac{1}{7} - \frac{1}{7}$

$$\int \sin d^{2} \frac{1}{y} \\
\left(\frac{1}{y}\right)^{2} + \cos^{2} d^{2} = 1$$

$$\frac{1}{16} + \cos^{2} d^{2} = 1$$

$$\cos^{2} d = \frac{1}{16} \int_{16}^{16} \int_{$$

a)
$$\cos \alpha = 1$$
; 6) $\cos \alpha = -\frac{\sqrt{3}}{2}$; B) $\sin \alpha = \frac{\sqrt{2}}{2}$ и $0^{\circ} < \alpha < 90^{\circ}$;

г)
$$\sin \alpha = \frac{3}{5}$$
 и $90^{\circ} < \alpha < 180^{\circ}$.

$$\frac{1}{\sqrt{2}} = \frac{1 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$=\frac{12}{2}\cdot\frac{2}{\sqrt{2}}=1$$

$$\sin^2 x + \cos^2 x = 1$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \cos^2 \chi = 1$$

$$\cos \mathcal{L} = 1 - \frac{2}{4}$$

$$\cos d = -\frac{\sqrt{2}}{2}$$

2= 135

Некоторые значения тригонометрических функций

									_
α	градусы	0°	30°	45°	60°	90°	180°	270°	360°
sinα		0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
	cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$tg\alpha$		0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_	0	_	0

a)
$$\cos \alpha = 1$$
; 6) $\cos \alpha = -\frac{\sqrt{3}}{2}$; B) $\sin \alpha = \frac{\sqrt{2}}{2}$ и $0^{\circ} < \alpha < 90^{\circ}$;

r)
$$\sin \alpha = \frac{3}{5} \text{ if } 90^{\circ} < \alpha < 180^{\circ}$$
.

oc)
$$\cos \lambda = 7$$
 $\sin \lambda = 1 - \omega s^2 \lambda$
 $t \cdot g \cdot \lambda = \frac{\sin^2 \lambda}{\cos k} = 1 - 1^2$
 $t \cdot g \cdot \lambda = 0$
 $t \cdot g \cdot \lambda = 0$
 $t \cdot g \cdot \lambda = 0$
 $t \cdot g \cdot \lambda = 0$

$$3 \sin \lambda = -\frac{1}{2} = 3 + 3 + 3 = -\frac{1}{3}$$