3D computer graphics

Francesc Sebé

'Computació gràfica i multimèdia'

Escola Politècnica Superior

Universitat de Lleida

Introduction

A three-dimensional scene has to be viewed on a two-dimensional screen.

World coordinates

- The objects composing the scene are specified with respect to some refence system
 - Employing (x,y,z)-coordinates

View-plane

We have to specify the location and orientation of the plane on which the scene will be projected

Projections

■ Parallel projection: coordinate positions are transferred to the view plane along parallel lines

Projections

■ Perspective projection: projection lines converge to a point behind the view plane

Projections

Perspective projection:

- Does not preserve relative proportions of objects
- Distant objects become smaller in size
- It produces more realistic images

Parallel projection: view volume

Contains the part of the world that will be viewed

Perspective projection: view volume

Visible surface detection

Projection algorithms have to take into account that not all the objects/or parts of them of the view volume are visible.

Polygons in the space

- In the space, polygons have front and backface.
 - Vertices are usually provided counterclockwisely

Polygons in the space

In the space, polygons have front and backface.

3D GRAPHICS IN OPENGL

Enable depth test

- glutInit(&argc, argv);
- glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
- glutInitWindowPosition(…);
- glutInitWindowSize(…);
- glutCreateWindow(…);
- glEnable(GL_DEPTH_TEST);
- glutMainLoop();

Display procedure

- First, clear the screen:
 - glClearColor(1.0,1.0,1.0,0.0);
 - glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_ BUFFER_BIT);
- Next, specify the observer position.

Display procedure

- Observer positioning:
 - glMatrixMode(GL_MODELVIEW);
 - glLoadIdentity();
 - gluLookAt(x,y,z, refx, refx, refz, upx,upx,upz);
 - = (x,y,z) Eye position
 - (refx, refy, refz) Point the viewer is looking at
 - (upx,upy,upz) Up vector (unitary)

Display procedure

- Next, set projection parameters:
 - glMatrixMode(GL_PROJECTION);
 - glLoadIdentity();
 - glOrtho(wmin, wmax, hmin, hmax, near, far);

Display procedures

Vertices are provided with (x,y,z) coordinates

gIVertex3i (x,y,z);