Técnicas Avanzadas de Data Mining y Sistemas Inteligentes

Maestría en Informática
Escuela de Posgrado
Pontificia Universidad Católica del Perú

2018-2

Review

```
Dense(200, activation='relu')
Dropout(0.2)
Dense(100, activation='relu')
Dropout(0.2)
Dense(100, activation='relu')
Dropout(0.2)
Dense(10, activation='softmax')
Dropout(0.2)
```

```
Dense(200, activation='relu')
Dropout(0.2)
Dense(100, activation='relu')
Dropout(0.2)
Dense(100, activation='relu')
Dropout(0.2)
Dense(10, activation='softmax')
```

Dense(200, activation='relu', kernel_initializer='glorot_normal') Dense(100, activation='relu', kernel_initializer='glorot_normal') Dense(100, activation='relu', kernel_initializer='glorot_normal') Dense(10, activation='softmax', kernel_initializer='glorot_normal') Dense(200, activation='relu', kernel_initializer='he_normal') Dense(100, activation='relu', kernel_initializer='he_normal') Dense(100, activation='relu', kernel_initializer='he_normal') Dense(10, activation='softmax', kernel_initializer='glorot_normal')

```
Dense(200, activation='relu', kernel_initializer='he_normal')
BatchNormalization()
Dense(100, activation='relu', kernel_initializer='he_normal')
BatchNormalization()
Dense(100, activation='relu', kernel_initializer='he_normal')
BatchNormalization()
Dense(10, activation='softmax')
BatchNormalization()
```

```
Dense(200, activation='relu', kernel_initializer='he_normal', use_bias=False)
BatchNormalization()
Dense(100, activation='relu', kernel_initializer='he_normal', use_bias=False)
BatchNormalization()
Dense(100, activation='relu', kernel_initializer='he_normal', use_bias=False)
BatchNormalization()
Dense(10, activation='softmax')
RatchNormalizatio
```

History Review

Mark I Perceptron

Frank Rosenblatt ~1957

Adeline/Madeline

Widrow and Hoff ~1960

Fig. 2. Schematic diagram illustrating the interconnections between layers in the neocognitron

Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.

Fukushima K. 1980

The backward pass starts by computing $\partial E/\partial y$ for each of the output units. Differentiating equation (3) for a particular case, c, and suppressing the index c gives

$$\partial E/\partial y_i = y_i - d_i \tag{4}$$

We can then apply the chain rule to compute $\partial E/\partial x_i$

$$\partial E/\partial x_j = \partial E/\partial y_j \cdot dy_j/dx_j$$

Learning representations by back-propagating errors

Rumelhart et. al., 1986

Gradient-based learning applied to document recognition

Y. Le Cun et. al, 1998

Reducing the Dimensionality of Data with Neural Networks

Hinton and Salakhutdinov 2006

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each having only one layer of feature detectors. The learned feature activations of one RBM are used as the "data" for training the next RBM in the stack. After the pretraining, the RBMs are "unrolled" to create a deep autoencoder, which is then fine-tuned using backpropagation of error derivatives.

Imagenet classification with deep convolutional neural networks

Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

ImageNet Top 5 Error Rate

Classification Retrieval

[Krizhevsky 2012]

Detection

Segmentation

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

[Farabet et al., 2012]

Convolutional Neural Networks

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

Hubel & Weisel

topographical mapping

featural hierarchy

mid level

) low level

featural hierarchy Hubel & Weisel topographical mapping high level hyper-complex cells mid level complex cells simple cells low level Usi Lenet C3: f. maps 16@10x10 C1: feature maps 6@28x28 S4: f. maps 16@5x5 INPUT 32x32

Neurocognitron

Fully Connected Layer

32x32x3

Fully Connected Layer

input

Fully Connected Layer

32

Fully Connected Layer

activation map

¿Qué es una convolución?

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

			00020
m	۱2	10	Ω
	ıc	15	
	m	ma	mag

1	0	1
0	1	0
1	0	1

Kernel

4	20 00	
		100

Convolved Feature

32x32x3 image

http://setosa.io/ev/image-kernels/

32x32x3 image

5x5x3 filter

32x32x3 image

5x5x3 filter

activation map

Un segundo filtro

Si tenemos 6 filtros, el resultado tendría la forma: 28x28x6

Convolution Layer

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

7x7 input 3x3 filter

=> 5x5 output

Padding

0	0	0	0	0	0		
0							
0							
0							
0							

input 7x7
3x3 filter
padding 1

Padding

0	0	0	0	0	0		
0							
0							
0							
0							

input 7x7
3x3 filter
padding 1

7x7 output!

https://ezyang.github.io/convolution-visualizer/index.html

Pooling layer

MAX POOLING

Single depth slice

8 3 3

max pool with 2x2 filters and stride 2

6	8
3	4

У

Convolutional Neural Networks

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Keras code

```
from keras.layers import Dense, Conv2D, MaxPool2D, Flatten
model = Sequential([
    Conv2D(16, 3, activation='relu', input_shape=(28,28,1)),
    MaxPool2D(),
    Conv2D(32, 3, activation='relu'),
    MaxPool2D(),
    Flatten(),
    Dense(10, activation='softmax')
])
```

Arquitecturas conocidas

LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> **15.4%**

VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	С	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224 \times 2	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 eonv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
		max	pool	:	
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		97553777537	pool		
			4096		
			4096		
			1000		
		soft	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

Inception module (Keras code)

```
from keras.layers import Conv2D, MaxPool2D, concatenate
```

```
Previous layer
tower_1 = Conv2D(64, 1, padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, 1, padding='same', activation='relu')(input_img)
tower_2 = Conv2D(64, 3, padding='same', activation='relu')(tower_1)
tower_3 = Conv2D(64, 1, padding='same', activation='relu')(input_img)
tower_3 = Conv2D(64, 5, padding='same', activation='relu')(tower_2)
tower_4 = MaxPool2D(3, strides=(1,1), padding='same')(input_img)
tower_4 = Conv2D(64, 1, padding='same', activation='relu')(tower_3)
output = concatenate([tower_1, tower_2, tower_3, tower_4], axis = 3)
```

concatenation

5x5 convolutions

1x1 convolutions

1x1 convolutions

3x3 max pooling

3x3 convolutions

1x1 convolutions

1x1 convolutions

Inception module (Keras code)

Layer (type)	Output	Shape	Param #	Connected to		3x3 convolutions	5x5 convolutions
input (InputLayer)	(None,	112, 112, 3)	0		1x1 convolutions	1x1 convolutions	1x1 convolutions
tower_2_1 (Conv2D)	(None,	112, 112, 64	256	input[0][0]		Previous layer	
tower_3_1 (Conv2D)	(None,	112, 112, 64	256	input[0][0]			
tower_4_1 (MaxPooling2D)	(None,	112, 112, 3)	0	input[0][0]			
tower_1_1 (Conv2D)	(None,	112, 112, 64	256	input[0][0]			
tower_2_2 (Conv2D)	(None,	112, 112, 64	36928	tower_2_1[0][0]			
tower_3_2 (Conv2D)	(None,	112, 112, 64	102464	tower_3_1[0][0]			
tower_4_2 (Conv2D)	(None,	112, 112, 64	256	tower_4_1[0][0]			
concatenate_12 (Concatenate)	(None,	112, 112, 256	5 0	tower_1_1[0][0] tower_2_2[0][0] tower_3_2[0][0] tower_4_2[0][0]			

concatenation

1x1 convolutions

3x3 max pooling

GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0								
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0		-						
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1		2					1000K	1M
softmax		1×1×1000	0								

ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

28.2

ImageNet Classification top-5 error (%)

CIFAR-10 experiments


```
256-d
filters1, filters2, filters3 = filters
if K.image data format() == 'channels last':
                                                                                           1x1, 64
   bn axis = 3
                                                                                                relu
   bn axis = 1
conv name base = 'res' + str(stage) + block + ' branch'
                                                                                           3x3, 64
bn name base = 'bn' + str(stage) + block + ' branch'
                                                                                                relu
                                                                                           1x1, 256
x = Conv2D(filters1, (1, 1), name = conv name base + '2a')(input tensor)
x = BatchNormalization(axis=bn axis, name=bn name base + '2a')(x)
x = Activation('relu')(x)
                                                                                                relu
x = Conv2D(filters2, kernel size,
           padding='same', name=conv name base + '2b')(x)
x = BatchNormalization(axis=bn axis, name=bn name base + '2b')(x)
x = Activation('relu')(x)
x = Conv2D(filters3, (1, 1), name = conv name base + '2c')(x)
x = BatchNormalization(axis=bn axis, name=bn name base + '2c')(x)
x = layers.add([x, input tensor])
x = Activation('relu')(x)
return x
```

def identity block(input tensor, kernel size, filters, stage, block):

ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

ResNet [He et al., 2015]

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112	7×7, 64, stride 2						
				3×3 max pool, stride	e 2			
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $		
	1×1		average pool, 1000-d fc, softmax					
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^9		

Code time

https://colab.research.google.com/