

Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Estado de México

Fecha de entrega: 15 de Noviembre del 2022

Revisión 2 - Modelación agentes

Modelación de sistemas multiagentes con gráficas computacionales (Gpo 301)

Profesorado:

Octavio Navarro Hinojosa

Jorge Adolfo Ramírez Uresti

Alumnado:

Eduardo Joel Cortez Valente A01746664

David Damián Galán A01752785

Paulo Ogando Gulias A01751587

José Ángel García Gómez A01745865

Descripción detallada del medio ambiente

Los agentes involucrados en esta interacción son los automóviles y los semáforos. La forma de interacción inteligente está planteada de la siguiente manera: Las intersecciones serán en forma de cruz, donde las vías serán rectas y perpendiculares entre sí. Las vías tendrán dos carriles, y los semáforos siempre se encontrarán en el carril derecho, siendo que el modelo gráficamente se verán tal que así:

Los semáforos estarán en amarillo cuando no detectecten ninguna señal de un carro aproximándose. Cuando alguno de ellos detecte un carro cercano, este cambiará a verde cuando el automóvil se encuentre a determinada distancia; y los demás semáforos cambiarán a rojo. Por medio de un contador general los cuatro semáforos estarán al tanto de cuántos automóviles hay formados en cada semáforo; a la vez que cada semáforo tendrá un contador individual con el número de carros esperando cruzar.

El primer semáforo que cambió a verde marcará el patrón para los demás. Cada semáforo dejará pasar un máximo de cinco automóviles, de ahí cambiará a rojo y el semáforo de la derecha cambiará a verde. Igualmente, si este semáforo no detecta carros antes de llegar a su límite de cinco automóviles, cambiará a rojo y cederá el verde a la derecha. Este patrón se mantendrá hasta que ninguno de los cuatro semáforos detecte más automóviles formados; cuando eso ocurra, todos los semáforos de esa intersección regresarán a amarillo reiniciando el patrón.

El medio ambiente al que se enfrentan nuestros agentes es:

- Accesible, ya que los semáforos detectan la cantidad de vehículos enfrente suyo y los vehículos detectan el semáforo para enviar el tiempo que le falta para llegar a él.
- Determinístico, debido al hecho que la secuencia de estados se define al momento del arribo del primer coche, y posteriormente a la cantidad de coches en cada semáforo.
- No es episódico debido a que los episodios no dependen de los anteriores.
- El medio ambiente es dinámico, ya que los coches siguen llegando a la intersección mientras se mueven los que previamente estaban ahí.
- Es continuo, no hay un número finito de coches que pueden llegar a los semáforos, por lo que estos están constantemente recibiendo información.

Descripción PEAS de cada agente

Agente Semáforo

Performance: El semáforo tiene el objetivo de controlar el tráfico, mediante mantener un estado de verde, amarillo y rojo, y comunicarse con los semáforos adyacentes en su intersección. El semáforo también puede recibir la información de los automóviles que están pasando.

Environment: Intersección de 2 calles en forma de cruz, accesible, determinístico, no episódico, dinámico y continuo.

Actuators: El semáforo es capaz de mantener y cambiar su estado.

Sensors: El semáforo es capaz de escanear la cantidad de autos que existen en fila en su calle.

Agente Automóvil

Performance: El automóvil tiene por objetivo circular por la calle sin tener accidentes (colisiones) con otros vehículos, y al mismo tiempo alcanzar el destino que tenga fijado en el mapa.

Environment: Un mapa con varias intersecciones de 2 calles en forma de cruz, accesible, determinístico, no episódico, dinámico y continuo.

Actuators: El automóvil es capaz de moverse en la dirección que indica el camino, y en la intersección, de elegir hacia dónde se quiere mover en las direcciones izquierda, derecha y enfrente. También puede enviar la distancia restante al semáforo más próximo.

Sensors: El automóvil es capaz de identificar un semáforo que está próximo en su campo de visión hacia enfrente.

Diagramas de Agente usando AUML

9	
Semaforo	
Grupo: Semáforos Rol: Agilizador	
Servicio: Agilizar el tráfico	
Protocolo: Organizar-Trafico	
Eventos:	
ActualizacionVehiculos ComunicarSemaforos	
Metas: Agilizar el tráfico Evitar accidentes	
Plan: no plans Acciones: Cambiar estado	
Knowledge: Cantidad de vehiculos en su calle Semaforo vecino	

Vehiculo
Grupo: Vehiculos Rol: Transitador
Eventos: Luz Roja Detectada Luz Verde Detectada Luz Amarilla Detectada Coche Detectado
Evento - Accion
LuzRoja -> Frenar LuzVerde -> Acelerar LuzAmarilla -> Reducir Velocidad Coche -> Ajustar Velocidad

Diagrama organización SMA

Diagramas de interacción entre agentes

