Question-6.5.3.7

EE24BTECH11038 - MALAKALA BALA SUBRAHMANYA ARAVIND

Question: Find the local maxima of the function $\frac{1}{x^2+2}$.

Solution:

Theoritical solution:

Given $f(x) = \frac{1}{x^2+2}$

$$\frac{dy}{dx} = -\frac{-2x}{(x^2 + 2)^2} = 0\tag{0.1}$$

$$\implies x = 0 \tag{0.2}$$

$$\frac{d^2y}{dx^2} = -\frac{1}{2} \tag{0.3}$$

(0.4)

1

Since $\frac{d^2y}{dx^2}$ is negative and $\frac{dy}{dx} = 0$ at x=0

Therefore, $f(0) = \frac{1}{2}$ is the maximum value of the function.

Computational Solution Using Gradient Descent:

To verify the analytical results, we use gradient descent to find the local maximum.

Gradient descent for local maximum:

Start with $x_0 = -3$

Update the value of x by the following equation.

$$x_{n+1} = x_n + \eta \cdot f'(x_n) \tag{0.5}$$

(0.6)

where:

$$\eta = 0.1 \tag{0.7}$$

$$f'(x) = -\frac{2x}{(x^2 + 2)^2} \tag{0.8}$$

computational result

Local Maximum

$$x = 0, f(x) = 0.5 (0.9)$$

