K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centers
 - Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

 Pick K random points as cluster centers (means)

Shown here for *K*=2

Iterative Step 1

 Assign data points to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

Repeat until convergence

Properties of K-means algorithm

Guaranteed to converge in a finite number of iterations

- Running time per iteration:
 - 1. Assign data points to closest cluster center

O(KN) time

2. Change the cluster center to the average of its assigned points

O(N)

What properties should a distance measure have?

- Symmetric
 - -D(A,B)=D(B,A)
 - Otherwise, we can say A looks like B but B does not look like A
- Positivity, and self-similarity
 - D(A,B)≥0, and D(A,B)=0 iff A=B
 - Otherwise there will different objects that we cannot tell apart
- Triangle inequality
 - $D(A,B)+D(B,C) \ge D(A,C)$
 - Otherwise one can say "A is like B, B is like C, but A is not like C at all"

Kmeans Convergence

Objective

$$\min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2$$

Fix μ , optimize C:

optimize *C*:
$$\min_{C} \sum_{i=1}^{k} \sum_{x \in C_i} |x - \mu_i|^2 = \min_{C} \sum_{i}^{n} |x_i - \mu_{x_i}|^2$$

2. Fix C, optimize μ :

$$\min_{\mu} \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2$$

– Take partial derivative of μ_i and set to zero, we have

$$\mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Step 2 of kmeans

Kmeans takes an alternating optimization approach, each step is guaranteed to decrease the objective - thus guaranteed to converge

Example: K-Means for Segmentation

K=2

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Original

Example: K-Means for Segmentation

K=2

K=3

Original

Example: K-Means for Segmentation

