Tutorato 1 - Algebra Vettoriale

Corso di Fisica - CdL in Informatica

12 marzo 2018

Formule Utili

- Simbologia vettoriale: $\vec{v} \equiv \mathbf{v} \equiv \overline{v}$. Modulo o norma: $v \equiv |\vec{v}| \equiv ||\vec{v}||$.
- Vettore in coordinate cartesiane: $\vec{v} = (x, y)$, polari: $\vec{v} = (\rho, \theta)$, somma di versori: $\vec{v} = a_x \hat{i} + a_y \hat{j}$
- cambio da coordinate cartesiane a polari: $\rho = \sqrt{x^2 + y^2}$, $\theta = \arctan\left(\frac{y}{x}\right)$
- cambio da coordinate polari a cartesiane: $x = \rho \cos \theta$, $y = \rho \sin \theta$
- somma vettoriale: $\vec{u} + \vec{v} = (u_x + v_x, u_y + v_y)$
- prodotto scalare o interno: $u \cdot v = u_x v_x + u_y v_y$, in modulo: $||u \cdot v|| = ||u|| ||v|| \cos \phi$
- prodotto vettoriale o esterno: $u \times v \equiv u \wedge v = (u_y v_z u_z v_y, u_z v_x u_x v_z, u_x v_y u_y v_x)$ in modulo: $||u \times v|| = ||u|| ||v|| \sin \phi$

Esercizi

- 1. Dati i vettori $\vec{v} = (3,7)$ e $\vec{u} = (4,5)$, calcolare il relativo modulo, il vettore somma e i prodotti $\vec{u} \cdot \vec{v}$, $\vec{v} \cdot \vec{u}$, $\vec{v} \cdot \vec{v}$. Riflettere sui risultati.
- 2. Dati i vettori $\vec{v} = 3\hat{i} 15\hat{j}$ e $\vec{u} = (9,0)$, convertire le loro coordinate in coordinate polari.
- 3. Dati i vettori $\vec{v} = \hat{i} 5\hat{j} + 10\hat{k}$ e $\vec{u} = (11,4,7)$, calcolare il modulo di \vec{v} , \vec{u} , $\vec{u} + \vec{v}$.
- 4. Dati i vettori $\vec{v} = (1, 1)$ e $\vec{u} = (3, 0)$, calcolare il modulo del prodotto vettoriale, $||u \times v||$.
- 5. Dati i vettori $\vec{v} = 11\hat{i} + 11\hat{j}$ e $\vec{u} = (9, -9)$, determinare se sono paralleli. (suggerimento: usare il prodotto vettoriale)
- 6. Dati i vettori $\vec{v} = (10, 0)$ e $\vec{u} = (3, 0)$, calcolare il modulo del prodotto vettoriale, $||u \times v||$ e il prodotto scalare $\vec{u} \cdot \vec{v}$. Riflettere sui risultati.
- 7. Dati i vettori $\vec{a} = (1,2)$ e $\vec{b} = (3,7)$ trovare il vettore $\vec{b} \vec{a}$ e ricavare le coordinate polari, infine calcolare l'angolo fra i vettori dati. (suggerimento: usare la formula del prodotto scalare).
- 8. In un sistema cartesiano, sono dati i punti A = (0,7) e B = (12,2). Scrivere il vettore \vec{r}_{AB} che va dal punto A al punto B e determinare il modulo. [**ESAME**]
- 9. In un sistema di assi cartesiano (x, y) siano dati i punti A = (2, 4), B = (6, 1) e C = (6, 4). Scrivere i vettori: \vec{r}_{AB} che va dal punto A al punto B, \vec{r}_{AC} che va dal punto A al punto C. Calcolare inoltre il prodotto scalare $\vec{r}_{AB} \cdot \vec{r}_{AC}$. [ESAME]
- 10. In un sistema di assi cartesiano siano dati i vettori $\vec{a} = 2\hat{i} + \hat{j}$ e $\vec{b} = \hat{i} + 2\hat{j}$. Scrivere i vettori somma $\vec{s} = \vec{a} + \vec{b}$ e differenza $\vec{d} = \vec{a} \vec{b}$. Dire se i vettori \vec{s} e \vec{d} sono perpendicolari giustificando la risposta. [ESAME]