專屬全台女大專院校生的科技工作坊

線上工作坊: 2/28 ~ 3/4, 2022

實體工作坊: 3/5 & 6, 2022

專屬全台女大專院校生的科技工作坊

講師: Yvonne & Jolin

Agenda

- How Machine Learning works
 on Azure
- Azure Cognitive Services
- Low Code your Al Apps with Power Apps

What is Machine Learning?

Using known data, develop a model to predict unknown data.

Common Classes of Algorithms

(Supervised | Unsupervised)

Machine Learning on Azure

Scikit-Learn

Domain specific pretrained models

To reduce time to market

Familiar Data Science tools

To simplify model development

Popular frameworks

To build advanced deep learning solutions

Productive services

To empower data science and development teams

Powerful infrastructure

To accelerate deep learning

Pytorch

TensorFlow

Azure Machine Learning

Onnx

Machine **Learning VMs**

CPU

GPU

FPGA

Azure Al

Al apps and agents

Azure Cognitive Services

Azure Bot Service

Knowledge mining

Azure Search

Machine learning

Azure Databricks
Azure Machine Learning
Azure Al Infrastructure

Manage Model Lifecycle

- Track model versions & metadata with a centralized model registry
- Package, validate, profile models to guarantee correct behavior
- Manage dependencies for training and inference
- Provide scalable compute for training and inference
- Capture metrics & telemetry health, performance, inputs / outputs
- Encapsulate each step in the lifecycle to enable automation via CI/CD and DevOps

Prepare data

Build & train models

Deploy & predict

Data ingestion

Data storage locations

Data Preparation

Normalization

Transformation

Validation

Featurization

Model building & training

Hyper-parameter tuning

Automatic model selection

Model testing

Model validation

Model deployment

Deployment

Batch scoring

Azure Machine Learning

Make data scientists to be more productive Enable your organization to manage the ML lifecycle through MLOps

> Azure Cloud Services

Python SDK

Cross-Platform CLI

That enables you to

- ✓ Prepare Data
- ✓ Build Models
- ✓ Train Models

- ✓ Manage Models
- ✓ Track Experiments
- ✓ Deploy Models

Azure ML service

Key Artifacts

Models

Experiments

Pipelines

Compute Target

Images

Deployment

Data Stores

Modules

Apply Math Operation

A Microsoft

Applies a mathematical operation to column values.

6/17/2020

Apply SQL Transformation

A Microsoft

Runs a SQLite query on input datasets to transform the data.

6/17/2020

Car Clean Missing Data

A Microsoft

Specifies how to handle the values missing from a dataset.

6/17/2020

Clip Values

A Microsoft

Detects outliers and clips or replaces their values.

6/17/2020

<u>AzureMachineLearningGallery/tutorial1-use-existing-components.md at main · Azure/AzureMachineLearningGallery (github.com)</u>

AutoML

Which features? Which algorithm? Which parameters?

Mileage

Condition

Car brand

Year of make

Regulations

. . .

Gradient Boosted

Nearest Neighbors

SVM

Bayesian Regression

LGBM

...

Parameter 1

Parameter 2

Parameter 3

Parameter 4

Criterion

Loss

Min Samples Split

Min Samples Leaf

Others

Model

30%

91118111 01101111 01181101 01100181 01101110 00100000 01180011 01180001 01101110 00100000

import os
from azureml.opendatasets import MNIST

data_folder = os.path.join(os.getcwd(), "/tmp/qs_data")
os.makedirs(data_folder, exist_ok=True)

mnist_file_dataset = MNIST.get_file_dataset()
mnist_file_dataset.download(data_folder, overwrite=True)

Press shift + enter to execute cells

Take a look at the data

Load the compressed files into numpy arrays. Then use matplotlib to plot 30 random images from the dataset with their labels above them.

Note this step requires a load_data function that's included in an utils.py file. This file is placed in the same folder as this notebook. The load_data function simply parses the compressed files into numpy arrays.

1 from utils import load_data

0

Datasets in Azure Machine Learning

01010 010101 01010

Manage data

Decrease friction by having consistent data artifacts throughout the ML workflow

Explore and transform at scale

Use one code artifact (which is lazilyevaluated for scalability) locally and on different runtimes

Reproduce and collaborate

Enable teammates to reference and work on shared data artifacts

Data Labeling

Azure ML service Workspace Taxonomy

Integrated low-code platform

DEMO

Bring AI to every application

Redefine existing applications with Al

Pre-built AI services

Create new conversational AI experiences

Cognitive Services

Introduction of speaker

Jolin Cai

- Face API Software Engineer
- Azure Support Engineer

What is Cognitive Services?

Azure Cognitive Services enable your applications to see, hear, speak, understand, and even make decisions.

Vision

Speech

Language

Decision

Custom Vision
Computer Vision
Face

Face – Scenario(Uber)

Speech to Text Text to Speech

Speech – Scenario(VEGAS)

EMPOWER WOMEN IN TECH

Analyze sentiment and opinions Conversational language understanding

Language – Scenario(Microsoft)

Language – Scenario(LaLiga)

Content Moderator Personalizer

We think you may like...

coming AI challenges and ethics risks

Published 1 days ago

Dan Thorp-Lancaster

Decision APIs – Scenario (Greenwood Campbell)

Gary Chavez added a photo you might ... be in.

about a minute ago · 🔐

Thanks for your attention!

