Exercise 1. Assume L is countable and let $M \leq N$ have arbitrary (large) cardinality. Let $A \subseteq N$ be countable. Adapt the construction used for the downward Löwenheim-Skolem Theorem to prove that there is a countable model K such that $A \subseteq K \leq N$ and $K \cap M \leq N$ (in particular, $K \cap M$ is a model).

Exercise 2. Give an alternative proof of Exercise 1 using the elementary chain lemma and the downward Löwenheim-Skolem Theorem (instead of its proof). Hint: construct two chains of countable models such that $K_i \cap M \subseteq M_i \leq N$ and $A \cup M_i \subseteq K_{i+1} \leq N$.

Exercise 3. Let N be free union of two countable random graphs N_1 and N_2 . That is, $N = N_1 \sqcup N_2$ and $r^N = r^{N_1} \sqcup r^{N_2}$. By \sqcup we denote the disjoint union. Prove that N is not a random graph. Write a first-order sentence $\psi(x, y) \in L$ true if x and y belong both to N_1 or both to N_2 .

Exercise 4. Let T_{lo} be the theory of linear orders in the language $L = \{<\}$. Prove that for every $b \in M \models T_{lo}$, every $N \models T_{dlo}$, every finite partial isomorphism $k : M \to N$ has an extension to a partial isomorphism defined in b.

Exercise 5. Let T_{grph} be the theory of graphs that is, the theory that says that r(x, y) is a irreflexive, symmetric relation. Let T_{rg} be the theory of random graphs. Prove the claim in Exercise 4 with T_{grph} and T_{rg} for T_{lo} , respectively T_{dlo} .

Exercise 6. Prove the converse of Exercises 4 and 5. E.g., $N \models T_{grph}$ is a random graph whenever the following holds: for every $b \in M \models T_{grph}$, every finite partial isomorphism $k : M \to N$ has an extension to a partial isomorphism defined in $b \in M$.

Exercise 7. The language contains only the binary relations < and e. The theory T_0 says that < is a strict linear order and that e is an equivalence relation. Axiomatize a theory T_1 such that what claimed in Exercise 4 holds for T_0 and T_1 .

Proof the claim for yourself, hand in only the axiomatization.

Exercise 8. Prove that the theory T_1 in Exercise 5 is ω -categorical. Try to write a proof that works simultaneously for T_1 , T_{rg} , and T_{dlo} .