

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2008

Электронный журнал, per. N П2375 от 07.03.97 ISSN 1817-2172

 $http://www.neva.ru/journal \ http://www.math.spbu.ru/diffjournal/ \ e-mail: jodiff@mail.ru$

СУЩЕСТВОВАНИЕ РАССЛОЕНИЯ В ОКРЕСТНОСТИ ИНВАРИАНТНОГО ТОРА ОДНОЙ СУЩЕСТВЕННО НЕЛИНЕЙНОЙ СИСТЕМЫ 1

 $A. A. Боголюбов, Ю. А. Ильин <math>^{2}$

1. Постановка задачи и основные результаты

Рассмотрим систему дифференциальных уравнений

$$\dot{x} = P(x) + Q(x, \varphi),
\dot{\varphi} = a(x, \varphi),$$
(1)

где $x\in R^n,\, \varphi\in R^m,$ вектор-функции $P,\,Q$ и a непрерывно дифференцируемы по своим аргументам, Q и a 2π -периодичны по $\varphi_j,\,j=1,...,m,$ где $\varphi=(\varphi_1,...,\varphi_m).$ Также предположим, что

$$P(0) = 0, (2)$$

$$\gamma^*(P_x'(x)) \leqslant -\lambda ||x||^k, \tag{3}$$

$$||Q_x', \varphi(x, \varphi)|| \leqslant l||x||^k + 1, \tag{4}$$

$$||a_x', \varphi(x, \varphi)|| \leqslant l||x||^k + 1, \tag{5}$$

где $\lambda > 0, \ l > 0, \ k \geqslant 0, \ ||x||$ и $||\varphi||$ — произвольные нормы в R^n и $R^m, \ ||(x,\varphi)|| \stackrel{def}{=} \max(||x||,||\varphi||),$ матричные нормы понимаются как операторные.

¹ Работа выполнена при частичной финансовой поддержке Совета по грантам Президента Российской Федерации по поддержке ведущих научных школ (НШ-2271.2003.1, НШ-4609.2006.1), НИИММ им. акад. В.И.Смирнова СПбГУ.

² © А. А. Боголюбов, Ю. А. Ильин, 2008

Через $\gamma^*(A)$ для $(n \times n)$ матрицы A обозначается верхняя норма Лозинского [6], т.е.

$$\gamma_{\|\cdot\|}^*(A) = \lim_{h \to +0} \frac{1}{h} (\|E + hA\| - 1),$$

где E — единичная матрица.

При сделанных предположениях в работе [1] доказана следующая теорема.

Теорема 1. Если выполнено неравенство $2l < \lambda$, то система (1) имеет единственный инвариантный тор, представимый в виде

$$x = u(\varphi),$$

где функция $u(\varphi)$ 2π -периодична по φ_j и удовлетворяет неравенству

$$||u(\varphi_1) - u(\varphi_2)|| \leqslant L^* ||\varphi_1 - \varphi_2|| \tag{6}$$

с константой $L^*=\frac{2l}{\lambda-l}$. Этот тор устойчив в том смысле, что всякое решение начинающееся в некоторой его окрестности, стремится к нему при $t\to +\infty$.

В данной работе доказывается существование инвариантного расслоения в некоторой окрестности инвариантного тора. Это означает, что у тора существует окрестность, представимая в виде объединения непересекающихся локально-инвариантных для системы (1) поверхностей, причем каждое решение, начинающееся на такой поверхности, стремится к определенному решению на торе и решения, лежащие на одной поверхности, стремятся к одному и тому же решению на торе. Доказательство существования такого расслоения является первым шагом в доказательстве топологической сопряженности между системой (1) и "невозмущенной" системой $\dot{x} = P(x)$, $\dot{\varphi} = a(0, \varphi)$.

Замечание 1. Из периодичности и непрерывности Q следует, что существует число M>0 такое что

$$||Q(0,\varphi)|| \leqslant M. \tag{7}$$

Для того, чтобы доказать существование расслоения, достаточно доказать следующие три утверждения.

Утверждение 1. Для любого решения на торе $x = u(\varphi)$ существует локально-интегральная поверхность, содержащая это решение такая, что любое решение на этой поверхности стремится к данному решению на торе при $t \longrightarrow +\infty$.

Утверждение 2. Поверхности, построенные для различных решений на торе, не пересекаются.

Утверждение 3. Через любую точку, находящуюся в достаточно малой окрестности тора, проходит одна из локально-интегральных поверхностей, описанных в утверждении 1.

Для того, чтобы доказать существование расслоения, дополнительно предположим, что система (1) удовлетворяет следующему условию:

Условие А. Пусть $(x_i(t), \varphi_i(t)) - \partial \varepsilon a$ решения системы (1) такие, что $||x_i(t_0)|| \le \varepsilon_0$. Существует такая функция $\alpha(t)$, не зависящая ни от t_0 , ни от $x_i(t_0)$, что

$$||a(x_1(t), \varphi_1(t)) - a(x_2(t), \varphi_2(t))|| \le \alpha(t)||\Delta z(t)||$$
 (8)

для $mex\ t \geqslant t_0$, $npu\ которых\ ||x_i(t)|| \leqslant \varepsilon_0$, $\varepsilon de\ z_i(t) = (x_i(t), \varphi_i(t))$, $\Delta z(t) = z_1(t) - z_2(t)$, $||\Delta z|| = \max\ ||\Delta x||, ||\Delta \varphi||$, npuчем

$$\int_{t_{\alpha}}^{\infty} \alpha(t)dt \leqslant C_{\alpha} < \infty.$$

Замечание 2. Можно показать, что условие A выполнено при $Q(0,\varphi) = 0$.

Основная теорема. Пусть система (1) удовлетворяет условиям теоремы 1 и условию A. Тогда при достаточно малом M у системы (1) существует инвариантное расслоение с указанными свойствами.

2. Вспомогательные результаты

Прежде всего приведем без доказательства два свойства логарифмических норм Лозинского .

Лемма 1 [4]. Пусть непрерывные матричные функции $A(\theta)$ и $B(\theta)$ заданы на конечном промежутке $\langle a,b \rangle$, и пусть на этом промежутке $\gamma^*(A(\theta)) \leq 0$, $\gamma_*(B(\theta)) \geq 0$. Тогда

$$\gamma^* \left(\int_a^b A(\theta) \, d\theta \right) \leqslant \int_a^b \gamma^* (A(\theta)) \, d\theta, \qquad \gamma_* \left(\int_a^b B(\theta) \, d\theta \right) \geqslant \int_a^b \gamma_* (B(\theta)) \, d\theta. \tag{9}$$

(интегрирование матрицы означает ее поэлементное интегрирование), где $\gamma_*(A) = -\gamma^*(-A)$ есть нижняя норма Лозинского.

Теорема 2 [4]. Рассмотрим систему дифференциальных уравнений, записанную в виде

$$\frac{dx}{dt} = \Phi(t, x)x + \Psi(t, x), \tag{10}$$

где Φ есть непрерывная $(n \times n)$ — матричная, а Ψ — непрерывная векторная функции, определенные при всех t и x. Пусть x(t) есть некоторое ее решение, и пусть $\|\cdot\|$ есть произвольная векторная норма. Тогда справедливо двойное неравенство

$$\gamma_*(\Phi(t, x(t))) \|x(t)\| - \|\Psi(t, x(t))\| \leqslant \frac{d_+ \|x(t)\|}{dt} \leqslant (\Phi(t, x(t))) \|x(t)\|$$

$$(\Phi(t, x(t))) \|x(t)\| \leqslant \gamma^*(\Phi(t, x(t))) \|x(t)\| + \|\Psi(t, x(t))\|.$$
(11)

Запись вида (10) не является ограничением, так как любую нелинейную систему $\dot{x} = F(t,x)$, где $F \in \mathbf{C_t}, \mathbf{x^0}, \mathbf{1}$, можно записать в виде (10), применив формулу конечных приращений к функции F(t,x).

В дальнейшем нам понадобится следующая оценка.

Лемма 2. Пусть $y_1(t), y_2(t)$ — векторно-значные функции, действующие из R в R^n . Справедливо неравенство

$$\int_0^1 ||y_1(t)\theta + y_2(t)(1-\theta)||^k d\theta \ge d \max\{||y_1(t)||^k, ||y_2(t)||^k\}, \tag{12}$$

где

$$d = \min_{\|s_1\| \le 1, \|s_2\| = 1} \int_0^1 ||s_1\theta + s_2(1-\theta)||^k d\theta.$$
 (13)

Доказательство леммы 2 элементарно и здесь опускается.

В доказательстве существования слоения, которое приводится ниже, существенно используется то, что тор содержится в множестве

$$H_0 = \{(x, \varphi) : ||x|| \leqslant \frac{\lambda d(k+1)}{2l}, \, \varphi \in \mathbb{R}^m\},$$

где d определяется равенством (13). При этом окрестность тора, в которой строится расслоение, тоже содержится в множестве H_0 . Поэтому найдем условия, при которых тор $x = u(\varphi)$ будет лежать в H_0 .

Лемма 3. Для любого ε можно найти $M = M(\varepsilon)$ такое, что если $||Q(0,\varphi)|| \leq M$, то тор $x = u(\varphi)$ содержится в множестве $H(\varepsilon) = \{(x,\varphi): ||x|| \leq \varepsilon, \varphi \in R^m.\}$

Доказательство леммы 3. В работе [1] показано, что тор находится в множестве $H(\varepsilon)$, если граница $\partial H(\varepsilon)$ является множеством точек строгого входа в $H(\varepsilon)$, т.е. если выполняется неравенство

$$\frac{d_{+}||x||}{dt}\Big|_{\partial H(\varepsilon)} < 0. \tag{14}$$

Применяя теорему 2 и условия (2), (3), (4) и неравенство (7), имеем

$$\frac{d_{+}||x||}{dt} \leqslant \int_{0}^{1} \gamma^{*}(P'_{x}(\theta x))d\theta ||x|| + \int_{0}^{1} ||Q'_{x,\varphi}(\theta x, \varphi)||d\theta ||x|| + \\ + ||Q(0, \varphi)|| \leqslant -\frac{\lambda - l||x||}{k+1} ||x||^{k+1} + M.$$

Так как для $x \in \partial H(\varepsilon) ||x|| = \varepsilon$, то при $M < \frac{\lambda - l\varepsilon}{k+1} \varepsilon^{k+1}$ неравенство (14) выполнено. Лемма 3 доказана.

Из леммы 3 следует, что при

$$M < \frac{\lambda - \frac{\lambda d(k+1)}{2}}{k+1} \left(\frac{\lambda d(k+1)}{2l}\right)^{k+1} \tag{15}$$

тор $x = u(\varphi)$ содержится в множестве H_0 . Так как $d = \frac{1}{k+1}$, то $\lambda - \frac{\lambda d(k+1)}{2} \geqslant \frac{\lambda}{2} > 0$. Следовательно, такое положительное M можно подобрать.

3. Доказательство утверждения 1

Докажем следующую теорему.

Теорема 3. Пусть для системы (1) выполняются все условия теоремы 1 и условие А. Предположим, что M удовлетворяет неравенству (15). Тогда при $\varepsilon_0 < \frac{\lambda d(k+1)}{2l}$ для любого решения $z_0(t) = (u(\varphi_0(t)), \varphi_0(t))$ на торе $x = u(\varphi)$ существует локально-интегральная поверхность T_{z_0} , задаваемая уравнением

$$\varphi = h_{z_0}(x, t), \tag{16}$$

где $h_{z_0}:\{(x,t):||x||\leqslant \varepsilon_0, t\in R\}\to R^m$, есть непрерывная по своим аргументам вектор-функция такая, что для любого $t\in R$ и всех x_1 и x_2 из области определения h выполняется

$$h_{z_0}(u(\varphi_0),t) = \varphi_0, \qquad ||h_{z_0}(x_1,t) - h_{z_0}(x_2,t)|| \le ||x_1 - x_2||.$$

Более того для любого $L\in (0,1]$ можно указать такие M=M(L) и $\varepsilon_x(L)>0$, что если $||x_1||,||x_2||<\varepsilon_x(L)$, то

$$||h_{z_0}(x_1,t)-h_{z_0}(x_2,t)|| \leq L||x_1-x_2||.$$

Любое решение z(t), начинающееся на этой поверхности стремится к решению $z_0(t)$ при $t \longrightarrow +\infty$ так, что справедлива оценка

$$||z(t) - z_0(t)|| \leq ||z(t_0) - z_0(t_0)|| \left[1 + \frac{k}{2^k} (\lambda d - \frac{l\varepsilon_0}{k+1}) ||z(t_0) - z_0(t_0)||^k (t-t_0) \right]^{-\frac{1}{k}}, \quad t \geqslant t_0.$$

Замечание 3. В приведенном ниже доказательстве того, что функция h_{z_0} удовлетворяет условию Липшица с константой L < 1, существенно используется то, что тор содержится в множестве

$$H(\varepsilon_x(L)) = \{(x, \varphi) : ||x|| \le \varepsilon_x(L), \varphi \in \mathbb{R}^m\},$$

где
$$\varepsilon_x(L) < \frac{L\lambda}{(L+1)l}$$
.

В силу леммы 3 этого можно добиться, уменьшая M. Для этого достаточно взять

$$M(\varepsilon_x(L)) < \frac{\lambda - l||x||}{k+1}||x||^{k+1}\bigg|_{||x||} = \varepsilon_x(L) = \frac{\lambda}{(k+1)(L+1)} \left(\frac{L\lambda}{(L+1)l}\right)^{k+1}.$$

Доказательство теоремы 3. Рассмотрим произвольное решение $z_0(t)=(u(\varphi_0(t)),\varphi_0(t))$ на торе $x=u(\varphi)$. Сделаем в системе (1) замену переменных $y(t)=x(t)-u(\varphi_0(t)),\; \psi(t)=\varphi(t)-\varphi_0(t)$. Тогда получим систему

$$\begin{cases}
\frac{dy}{dt} = P(y + u(\varphi_0(t))) - P(u(\varphi_0(t))) + H(y, \psi), \\
\frac{d\psi}{dt} = b(y, \psi),
\end{cases} (17)$$

где

$$H(y,\psi) = Q(y + u(\varphi_0), \psi + \varphi_0) - Q(u(\varphi_0), \varphi_0),$$

$$b(y,\psi) = a(y + u(\varphi_0), \psi + \varphi_0) - a(u(\varphi_0), \varphi_0).$$
(18)

Делая в системе (17) замену времени $\tau = -t$ и используя формулу конечных приращений, получаем систему

$$\begin{cases}
\frac{dy}{d\tau} = -(\int_{0}^{1} P_{y}'(u(\varphi_{0}) + \theta y)d\theta)y - H(y, \psi), \\
\frac{d\psi}{d\tau} = -b(y, \psi).
\end{cases} (19)$$

Замечание 4. Как уже было упомянуто, расслоение будет строится в окрестности тора, которая содержится в множестве H_0 . Поэтому нас будут интересовать только те решения системы (1), которые лежат в H_0 . В замечании 3 сказано, что для того чтобы функция $h_{z_0}(x,t)$ из теоремы 3 имела константу Липшица L < 1 необходимо, чтобы тор содержался в множестве H(L). Выберем такое $\varepsilon_1 > 0$, что $\varepsilon_1 + \max_{\sigma} ||u(\varphi)|| \leqslant \varepsilon_0$. Предполагая, что

M=M(L) достаточно малое (M взято из (7)), выберем такое $\varepsilon(L)>0$, что $\varepsilon(L)+\max_{\varphi}||u(\varphi)||\leqslant \varepsilon_x(L).$

Чтобы доказать теорему 3 достаточно, находясь в ее условиях, доказать следующую теорему.

Теорема 4. Система (19) имеет единственную локально-интегральную поверхность, представимую в виде

$$\psi = h(y, \tau), \tag{20}$$

где $h:\{(y,\tau):||y||\leqslant \varepsilon_1,\tau\in R\}\longrightarrow R^m$ есть непрерывная по своим аргументам вектор-функция такая,что для любого $\tau\in R$ и всех y_1 и y_2 из области определения h выполняется

$$h(0,\tau) = 0, (21)$$

$$||h(y_1,\tau) - h(y_2,\tau)|| \le ||y_1 - y_2||.$$
 (22)

Более того для любого $L \in (0,1]$ можно указать такое $\varepsilon(L) > 0$, что если $y_1,y_2 \leqslant \varepsilon(L)$, то

$$||h(y_1,\tau) - h(y_2,\tau)|| \leqslant L||y_1 - y_2||. \tag{23}$$

Любое решение $z(\tau)=(y(\tau),\psi(\tau))$ системы (19), расположенное на h, при $\tau\to-\infty$ стремится к началу координат так, что справедлива оценка

$$||z(\tau)|| \le ||z(\tau_0)|| \left[1 - \frac{k}{2^k} \left(\lambda d - \frac{l\varepsilon_0}{k+1}\right) ||z(\tau_0)||^k (\tau - \tau_0)\right]^{-\frac{1}{k}}, \quad \tau \le \tau_0,$$
 (24)

где $||z(t)|| = \max(||y(\tau)||, ||\psi(\tau)||).$

Доказательство теоремы 4. Для доказательтва теоремы будем применять ту же технику, что и в работе [2]. Найдем оценки для $\frac{d_+||\psi||}{d\tau}$ и $\frac{d_+||y||}{d\tau}$. Пользуясь определением функции $b(y,\psi)$ (см. (18)) и неравенством (5), получаем

$$\frac{d_{+}||\psi||}{d\tau} \leqslant ||b(y,\psi)|| \leqslant \int_{0}^{1} ||b'_{z}(\theta z)||d\theta||z|| \leqslant \frac{l}{k+1} ||y + u(\varphi_{0})||^{k+1}||z||.$$
 (25)

Применяя теорему 2, получаем

$$\frac{d_{+}||y||}{d\tau} \geqslant \gamma_{*}(-\int_{0}^{1} P'_{y}(u(\varphi_{0}) + \theta y)d\theta)||y|| - ||H(y, \psi)||.$$

В силу лемм 1, 2 и условия (3) имеем

$$\gamma_* \left(-\int_0^1 P_y'(u(\varphi_0) + \theta y) d\theta \right) \geqslant -\int_0^1 \gamma^* \left(P_y'(u(\varphi_0) + \theta y) \right) d\theta \geqslant$$

$$\geqslant \lambda d \max\{ ||u(\varphi_0) + y||^k, ||u(\varphi_0)||^k \},$$
(26)

где d определяется равенством (13). Пользуясь определением функции H (см. (18)) и условием (4), получаем

$$||H(y,\psi)|| \leqslant \int_{0}^{1} ||H'_{z}(\theta z)||d\theta||z|| \leqslant \frac{l}{k+1}||y+u(\varphi_{0})||^{k+1}||z||.$$
 (27)

Таким образом,

$$\frac{d_{+}||y||}{d\tau} \geqslant \lambda d \max |||u(\varphi_{0}) + y||^{k}, ||u(\varphi_{0})||^{k} ||y|| - \frac{l}{k+1}||y + u(\varphi_{0})||^{k+1}||z||.$$
 (28)

Определим множество $G(\varepsilon)=\{(\psi,y,\tau):0<||\psi||\leqslant ||y||\leqslant \varepsilon,\tau\in R\}$ и поверхность $K(\varepsilon)=\{(\psi,y,\tau):0<||\psi||=||y||\leqslant \varepsilon,\tau\in R\}.$

Лемма 4. При $\varepsilon \leqslant \varepsilon_1$ поверхность $K(\varepsilon)$ есть множество точек строгого входа в $G(\varepsilon)$.

Доказательство леммы 4. Рассмотрим функцию $W(z) = ||\psi|| - ||y||$. Ясно, что $W|_K(\varepsilon) = 0$, $W|_G(\varepsilon) \leqslant 0$. Достаточно показать, что $\frac{d_+W(\tau)}{d\tau}\Big|_{K(\varepsilon)} < 0$. В силу неравенств (25) и (28) и того, что ||z| = ||y|| на $K(\varepsilon)$, имеем

$$\begin{split} & \frac{d_+W(\tau)}{d\tau}\Big|_K(\varepsilon) = \left(\frac{d_+||\psi||}{d\tau} - \frac{d_+||y||}{d\tau}\right)\Big|_{K(\varepsilon)} \leqslant \\ & \leqslant \left(\frac{2l}{k+1}||y+u(\varphi_0)|| - \lambda d\right)||y+u(\varphi_0)||^k||y||. \end{split}$$

Так как $||y|| \le \varepsilon_1$, то в силу выбора ε_1 (см. замечание 4) $||y + u(\varphi_0)|| \le \varepsilon_1 + ||u(\varphi_0)|| \le \varepsilon_0 < \frac{\lambda d(k+1)}{2l}$. Следовательно,

$$\left(\frac{2l}{k+1}||y+u(\varphi_0)||-\lambda d\right) \leqslant \left(\frac{2l}{k+1}\varepsilon_0-\lambda d\right) < 0.$$

Лемма 4 доказана.

Рассмотрим пару решений системы (19)

$$z_i(\tau) = (\psi_i, y_i)(\tau) = (\psi, y)(\tau, \tau_0, \xi_i, \eta_i), \quad i = 1, 2.$$

Обозначим через $(\Delta \psi, \Delta y)(\tau) = (\psi_1, y_1)(\tau) - (\psi_2, y_2)(\tau)$,

$$\Delta z(\tau) = (\Delta \psi, \Delta y)(\tau).$$

Лемма 5. Для любого $L \in [0,1)$ существуют M = M(L) и $\varepsilon(L)$, такие, что если $(z_i(\tau_0), \tau_0) \in G(\varepsilon(L))$ i = 1, 2 и $||\Delta \psi(\tau_0)|| \leqslant L||\Delta y(\tau_0)||$, то

$$||\Delta\psi(\tau)|| \leqslant L||\Delta y(\tau)|| \tag{29}$$

для тех $\tau \geqslant \tau_0$, при которых $(z_i(\tau), \tau) \in G(\varepsilon(L)), i = 1, 2.$

Доказательство леммы 5. При $\tau=\tau_0$ неравенство (29) выполнено. Предположим противное утверждению леммы. Тогда существует такой момент времени $\tau_1 \geqslant \tau_0$, что

$$||\Delta \psi(\tau_1)|| = L||\Delta y(\tau_1)||, \quad \frac{d_+||\Delta \psi(\tau)||}{d\tau}\Big|_{\tau} = \tau_1 \geqslant L \frac{d_+||\Delta y(\tau)||}{d\tau}\Big|_{\tau} = \tau_1.$$
 (30)

Так как

$$\frac{d_{+}\Delta\psi(\tau)}{d\tau} = -b(y_{1}, \psi_{1}) + b(y_{2}, \psi_{2}) = -(\int_{0}^{1} b'_{z}(z_{2} + \theta \Delta z)d\theta)\Delta z,$$

то в силу теоремы 2 и неравенства (5) имеем

$$\frac{d_{+}||\Delta\psi(\tau)||}{d\tau} \leqslant (\int_{0}^{1} ||b'_{z}(z_{2} + \theta\Delta z)||d\theta)||\Delta z|| \leqslant (\int_{0}^{1} l||y_{2} + \theta\Delta y + u(\varphi_{0})||^{k+1}d\theta)||\Delta z||.$$

Действуя аналогично, имеем

$$\frac{d_{+}\Delta y(\tau)}{d\tau} = \left(-\int_{0}^{1} P_{y}'(y_{2} + \theta \Delta y + u(\varphi_{0}))d\theta\right)\Delta y - \left(\int_{0}^{1} H_{z}'(z_{2} + \theta \Delta z)d\theta\right)\Delta z,$$

Тогда в силу теоремы 2, леммы 1, определения функции H (см. (18)) и условий (3), (4) имеем

$$\frac{d_{+}||\Delta y(\tau)||}{d\tau} \geqslant \left(\int_{0}^{1} \gamma_{*}(-P'_{y}(y_{2} + \theta \Delta y + u(\varphi_{0})))d\theta\right)||\Delta y|| - \left(\int_{0}^{1} ||H'_{z}(z_{2} + \theta \Delta z)||d\theta\right)||\Delta z|| \geqslant \left(\int_{0}^{1} \lambda||y_{2} + \theta \Delta y + u(\varphi_{0})||^{k}d\theta\right)||\Delta y|| - \left(\int_{0}^{1} l||y_{2} + \theta \Delta y + u(\varphi_{0})||^{k+1}d\theta\right)||\Delta z||.$$

Так как $||\Delta \psi(\tau_1)|| \le ||\Delta y(\tau_1)||$, то $||\Delta z(\tau_1)|| = ||\Delta y(\tau_1)||$. Таким образом,

$$\begin{split} &\left(\frac{d_{+}||\Delta\psi(\tau)||}{d\tau} - L\frac{d_{+}||\Delta y(\tau)||}{d\tau}\right)\Big|_{\tau} = \tau_{1} \leqslant \\ &\leqslant \left[\left.l\int\limits_{0}^{1}||y_{2} + \theta\Delta y + u(\varphi_{0})||^{k+1}d\theta||\Delta y|| - \lambda L\int\limits_{0}^{1}||y_{2} + \theta\Delta y + u(\varphi_{0})||^{k}d\theta||\Delta y|| + LL\int\limits_{0}^{1}||y_{2} + \theta\Delta y + u(\varphi_{0})||^{k+1}d\theta||\Delta y||\right]\Big|_{\tau} = \tau_{1} \end{split}$$

Возьмем такое $\varepsilon_x(L)$, что $\varepsilon_x(L) < \frac{L}{(L+1)}l\lambda$. Учитывая замечание 3, выберем такое M, что $\max_{\varphi} ||u(\varphi)|| \leqslant \varepsilon_x(L)$. Так как $(z_i(\tau), \tau) \in G(\varepsilon(L))$ при i=1,2, то в силу выбора $\varepsilon(L)$ (см. замечание 4) имеем

$$||y_2 + \theta \Delta y + u(\varphi_0)|| \le \max\{||y_1 + u(\varphi_0)||, ||y_2 + u(\varphi_0)||\} \le \varepsilon_x(L).$$

Следовательно,

$$\begin{bmatrix} \frac{d_{+}||\Delta\psi(\tau)||}{d}\tau - L\frac{d_{+}||\Delta y(\tau)||}{d\tau} \end{bmatrix}\Big|_{\tau} = \tau_{1} \leqslant \begin{bmatrix} (l(L+1)\varepsilon_{x}(L) - \lambda L) \int_{0}^{1} ||y_{2} + \theta \Delta y + u(\varphi_{0}))||^{k} d\theta \Delta ||y|| \end{bmatrix}\Big|_{\tau} = \tau_{1} < 0,$$

что противоречит неравенству (30). Лемма 5 доказана.

Замечание 5. Так как $d < \frac{1}{k+1}$, то $\varepsilon_0 < \frac{\lambda d(k+1)}{2l} < \frac{\lambda}{2l}$. Следовательно, если M удовлетворяет неравенству (15) (тор находится в множестве H_0), то утверждение леммы 5 верно для L=1.

Лемма 6. $||y(\tau)||$ возрастает вдоль траекторий в $G(\varepsilon_1)$.

Доказательство леммы 6. Так как $||\Delta z(\tau)|| = ||\Delta y(\tau)||$ и $||y|| \leqslant \varepsilon_1$, то в силу неравенства (28) и замечания 4 имеем

$$\frac{d_{+}||y||}{d\tau} \geqslant \left(\lambda d - \frac{lk+1}{||y+u(\varphi_{0})||}\right)||y+u(\varphi_{0})||^{k}||y|| > 0.$$
 (31)

Лемма 6 доказана.

Лемма 7. Если решение $z(\tau)=z(\tau,\tau_0,z_0)$ с $||z_0||\leqslant \varepsilon_1$ таково, что для любого $\tau\leqslant\tau_0$ $||\psi(\tau)||\leqslant||y(\tau)||$, то это решение с убыванием τ монотонно стремится к началу координат так, что справедлива оценка

$$||z(\tau)|| \le ||z(\tau_0)|| \left[1 - \frac{k}{2^k} (\lambda d - \frac{l}{\varepsilon_0 k + 1}) ||z(\tau_0)||^k (\tau - \tau_0)\right]^{-\frac{1}{k}}, \quad \tau \le \tau_0.$$
 (32)

Доказательство леммы 7. Вернемся к системе (17) с исходным временем t. Перепишем её в более удобном виде

$$\begin{cases}
\frac{dy}{dt} = \left(\int_{0}^{1} P_{y}'(u(\varphi_{0}) + \theta y)d\theta\right)y + H(y, \psi), \\
\frac{d\psi}{dt} = b(y, \psi).
\end{cases} (17')$$

Пользуясь леммой 1, неравенствами (26),(27) и тем, что $||z(\tau)|| = ||y(\tau)||$, получаем

$$\frac{d_{+}||y||}{dt} \leqslant \gamma^{*} \left(\int_{0}^{1} P'_{y}(u(\varphi_{0}) + \theta y) d\theta \right) ||y|| + ||H(y, \psi)|| \leqslant
\leqslant \left(-\lambda d + \frac{l_{1}k + 1}{||y + u(\varphi_{0})||} \right) \max ||u(\varphi_{0}) + y||^{k}, ||u(\varphi_{0})||^{k} ||y||.$$

Ясно, что

$$\max ||u(\varphi_0) + y||, ||u(\varphi_0)|| \ge \frac{1}{2}[||u(\varphi_0) + y|| + ||u(\varphi_0)||] \ge \frac{1}{2}||y||.$$

Так как $||y|| \leqslant \varepsilon_1$, то, в силу выбора ε_1 (см. замечание 4) и ε_0 , имеем

$$-\lambda d + \frac{lk+1}{||y+u(\varphi_0)||} \leqslant -\lambda d + \frac{lk+1}{\varepsilon_0} < 0.$$

Таким образом, учитывая, что $||y+u(\varphi_0)|| \leqslant \varepsilon_0$, получаем

$$\frac{d_+||y||}{dt} \leqslant \frac{1}{2^k}(-\lambda d + \frac{l}{\varepsilon_0 k + 1})||y||^k + 1.$$

Применяя теорему сравнения, получаем

$$||y(t)|| \le ||y(t_0)|| [1 + \frac{k}{2^k} (\lambda d - \frac{l}{\varepsilon_0 k + 1}) ||y(t_0)||^k (t - t_0)]^{-\frac{1}{k}}, \quad t \ge t_0.$$

Следовательно,

$$||y(\tau)|| \le ||y(\tau_0)|| [1 - \frac{k}{2^k} (\lambda d - \frac{l}{\varepsilon_0 k + 1}) ||y(\tau_0)||^k (\tau - \tau_0)]^{-\frac{1}{k}}, \quad \tau \le \tau_0.$$

Пользуясь тем, что $||y(\tau)|| = ||z(\tau)||$, получаем (32). Лемма 7 доказана.

Лемма 8. Пусть два решения $z_i(\tau)=z(\tau,\tau_0,\psi_i,y_0)$ системы (19) таковы, что $(z_i(\tau_0),\tau_0)\in G(\varepsilon_1)$. Существует такая постоянная A>0, не зависящая ни от τ_0 , ни от $z_i(\tau_0)$, что если $||\psi_1-\psi_2||=||\Delta\psi(\tau_0)||>0$, то

$$||\Delta\psi(\tau)|| \geqslant A||\Delta\psi(\tau_0)|| \tag{33}$$

для тех $\tau \leqslant \tau_0$, для которых $(z_i(\tau), \tau) \in G(\varepsilon_1)$.

Доказательство леммы 8. Рассмотрим систему (17'). Обозначим через $t_0 = \tau_0$. Так как $0 = ||\Delta y(t_0)|| \leqslant ||\Delta \psi(t_0)||$, то

$$||\Delta y(t)|| \leqslant ||\Delta \psi(t)||, \quad t \geqslant t_0. \tag{34}$$

Действительно, для системы (19) это означает, что если $||\Delta y(\tau_0)|| \le ||\Delta \psi(\tau_0)||$ в некоторый момент τ_0 , то $||\Delta y(\tau)|| \le ||\Delta \psi(\tau)||$ при всех $\tau \le \tau_0$. Если допустить, что существует такое $\tau^* < \tau_0$, что $||\Delta y(\tau^*)|| \ge ||\Delta \psi(\tau^*)||$, то из леммы 8 заключаем, что при $\tau_0 > \tau^* ||\Delta y(\tau_0)|| \ge ||\Delta \psi(\tau_0)||$. Но по условию леммы 5 $||\Delta y(\tau_0)|| = 0$, а $||\Delta \psi(\tau_0)|| > 0$; следовательно, приходим к противоречию, тем самым доказывая (34). Отсюда, в частности, следует, что

$$||\Delta z(\tau)|| = ||\Delta \psi(\tau)||, \quad \tau \leqslant \tau_0.$$

Заметим, что $||\Delta \psi(t)|| = ||\varphi_1(t) - \varphi_2(t)||$, $||\Delta y(t)|| = ||x_1(t) - x_2(t)||$, где $(x_1(t), \varphi_1(t)), (x_2(t), \varphi_2(t))$ — решения системы (1). Следовательно, используя (34), имеем

$$||\varphi_1(t) - \varphi_2(t)|| \ge ||x_1(t) - x_2(t)||$$
 $t \ge t_0$.

Так как по условию леммы $||y_i|| \le \varepsilon_1$, то $||x_i|| \le \varepsilon_0$. Следовательно, применяя теорему 2 и условие A, получаем

$$\frac{d_{+}||\Delta\psi(t)||}{dt} = \frac{d_{+}||\Delta\varphi(t)||}{dt} \geqslant -||a(x_{1},\varphi_{1}) - a(x_{2},\varphi_{2})|| \geqslant$$
$$\geqslant -\alpha(t)||(\Delta x, \Delta\varphi)|| = -\alpha(t)||\Delta\varphi|| = -\alpha(t)||\Delta\psi||,$$

где $x_i = y_i + u(\varphi_0)$, $\Delta x = x_1 - x_2$, $\Delta \varphi = \varphi_1 - \varphi_2$. Следовательно применяя теорему сравнения, получаем

$$||\Delta \psi(t)|| \geqslant ||\Delta \psi(t_0)|| \exp\left(-\int_{t_0}^t \alpha(t)dt\right) \qquad t \geqslant t_0.$$

Из условия А следует, что $\int_{t_0}^{\infty} \alpha(t)dt \leqslant C_{\alpha} < \infty$. Следовательно, $||\Delta \psi(t)|| \geqslant ||\Delta \psi(t_0)|| \exp\left(-C_{\alpha}\right)$ для $t \geqslant t_0$. Положим $A = \exp\left(-C_{\alpha}\right)$. Таким образом, $||\Delta \psi(t)|| \geqslant A||\Delta \psi(t_0)||$ для $t \geqslant t_0$. Следовательно, $||\Delta \psi(\tau)|| \geqslant A||\Delta \psi(\tau_0)||$ для $\tau \leqslant \tau_0$. Лемма 8 доказана.

Определим следующее пространство непрерывных функций

$$K(L) = \{h : ||y|| \le \varepsilon(L)\} \to R_{\psi}^m \mid h(0) = 0, ||h(y_1) - h(y_2)|| \le L||y_1 - y_2||, (35)$$

где $L \in (0,1]$. Зададим на нем метрику по формуле

$$\rho(h_1, h_2) = \max_{\|y\| \le \varepsilon(L)} \|h(y_1) - h(y_2)\|. \tag{36}$$

Нетрудно показать, что $(K(L), \rho)$ является полным и компактным пространством. Из определения K(L) следует, что $(h(y), y, \tau) \in G(\varepsilon(L))$ для $h \in K(L)$.

Зададим на K(L) для произвольных $\tau \geqslant \tau_0$ оператор $F_{\tau_0,\tau}$, сопоставляя каждой функции $h \in K(L)$ следующее множество

$$\{(\overline{\psi}, \overline{y}) : (\overline{\psi}, \overline{y}) = (\psi, y)(\tau, \tau_0, h(\eta), \eta), (z(\tau), \tau) \in G(\varepsilon(L)), \tau \in [\tau_0, \tau]\},\$$

т. е. через поверхность $\psi = h(y)$ при $\tau = \tau_0$ проводятся всевозможные решения на время $\tau > \tau_0$: если решение покидает $G(\varepsilon(L))$, то о нем "забывают"; решения, остающиеся в $G(\varepsilon(L))$ на всем промежутке $[\tau_0, \tau]$, в момент времени τ образуют некоторое множество, которое и сопоставляется функции h.

Лемма 9. Оператор $F_{\tau_0,\tau}$ действует из K(L) в K(L). При этом он непрерывен и непрерывно зависит от τ и τ_0 .

Доказательство леммы 9. Покажем, что F(K(L)) есть график некоторой функции, принадлежащей K(L). Для этого проверим, во-первых, что любые две точки $(\overline{\psi}_1, \overline{y}_1)$, $(\overline{\psi}_2, \overline{y}_2)$ этого множества подчинены неравенству

$$||\overline{\psi}_1 - \overline{\psi}_2|| \leqslant L||\overline{y}_1 - \overline{y}_2||. \tag{37}$$

Чтобы убедиться в этом, выпустим из этих точек решения в обратную сторону. Тогда через время $\tau_0-\tau$, эти решения попадут на поверхность $\psi=h(y)$, где указанниное неравенство выполнено по определению (35). Возвращаясь обратно и применяя лемму 5, получим неравенство (37). Из этого неравенства и теоремы о непрерывной зависимости решения от начальных данных следует, что множество $F_{\tau_0,\tau}h$ есть график некоторой функции, удовлетворяющей условию Липшица с константой L. Из леммы 6 вытекает, что область определения этой функции есть весь шар $||\overline{y}|| \leqslant \varepsilon(L)$. Таким образом оператор $F_{\tau_0,\tau}$ действует из K(L) в K(L).

Из теоремы об интегральной непрерывности следует, что оператор $F_{\tau_0,\tau}$ непрерывен и непрерывно зависит от τ_0 и τ в метрике

$$\rho_F(F_1, F_2) = \max_{h \in K(L)} \rho(F_1 h, F_2 h)$$

(максимум достигается, так как K(L) компактно). Лемма 9 доказана.

Лемма 10. Пусть h есть произвольная вектор-функция из K(L). При любом фиксированном τ существует предел последовательности $F_{-n,\tau}h$ при $n \to \infty$ в смысле метрики пространства $(K(L), \rho)$.

Доказательство леммы 10. Так как пространство $(K(L), \rho)$ полно, то достаточно доказать, что последовательность $F_{-n,\tau}h$ сходится в себе, т. е. для любого $\varepsilon > 0$ найдется такое N > 0, что для любых $n, m \geqslant N$ выполняется неравенство

$$\rho(F_{-n,\tau}h, F_{-m,\tau}h) \leqslant \varepsilon. \tag{38}$$

Допустим противное, что существуют такие T>0 и $\varepsilon^*>0$, что по любому N>0 можно указать $n_1,n_2\geqslant N$, для которых

$$\rho(F_{-n_1,\tau}h, F_{-n_2,\tau}h) \geqslant \varepsilon^*. \tag{39}$$

Из леммы 7 следует, что

$$||y(T-\tau^*)|| \le ||y(T)|| \left[1 + \frac{k}{2^k} (\lambda d - \frac{l}{\varepsilon_0 k + 1}) ||y(T)||^k \tau^*\right]^{-\frac{1}{k}}.$$

Следовательно, можно подобрать такое τ^* , что если решение $z(\tau)$ системы (19) остается в $G(\varepsilon(L))$ при $\tau \in [T-\tau^*,T]$, то

$$||y(T-\tau^*)|| < \frac{1}{2}A\varepsilon^*,$$

где А — постоянная из леммы 8. Выберем $N > \tau^* - T$. Неравенство (39) по определению метрики ρ означает, что существует y_N такое, что $||y_N|| \leqslant \varepsilon(L)$ и

$$||F_{-n_1,T} h(y_N) - F_{-n_2,T} h(y_N)|| \ge \varepsilon^*.$$

Заметим, что $(F_{-n_i,T}\ h(y_N),y_N,T)\in G(\varepsilon(L)),\ i=1,2.$ Рассмотрим два следующих решения системы (19): $z_i=z(\tau,T,F_{-n_i,T}\ h(y_N),y_N),\ i=1,2.$ По определению оператора $F_{-n_i,T}$ при всех $\tau\in [-N,T]\in [-n_i,T]$ должно выполняться включение $(z_i(\tau),\tau)\in G(\varepsilon(L)),\ i=1,2.$ Тогда на основании леммы 8 при всех $\tau\in [-N,T]$ имеем

$$||\psi_1(\tau) - \psi_2(\tau)|| \geqslant A\varepsilon^*.$$

В частности,

$$||\psi_1(T-\tau^*)-\psi_2(T-\tau^*)||\geqslant A\varepsilon^*.$$

Следовательно, либо $||\psi_1(T-\tau^*)||\geqslant \frac{1}{2}A\varepsilon^*$, либо $||\psi_2(T-\tau^*)||\geqslant \frac{1}{2}A\varepsilon^*$. Однако τ^* выбиралось таким, чтобы

$$||y_i(T-\tau^*)|| < \frac{1}{2}A\varepsilon^*, \qquad i=1,2.$$

Поэтому либо $||\psi_1(T-\tau^*)|| > ||y_1(T-\tau^*)||$, либо $||\psi_2(T-\tau^*)|| > ||y_2(T-\tau^*)||$. Следовательно, одно из решений $z_i(\tau)$ в момент $T-\tau^*$ должно покинуть $G(\varepsilon(L))$, а это невозможно. Лемма 10 доказана.

Зададим вектор-функцию

$$h(y,\tau) = \lim_{n \to \infty} F_{-n,\tau} \ h_0(y),$$

где h_0 — произвольный элемент из K(L). При каждом фиксированном τ $h(y,\tau) \in K(L)$ и поэтому, удовлетворяет условию Липшица с константой L. Справедливы равенства

$$h(y,\tau_2) = \lim_{n \to \infty} F_{-n,\tau_2} \ h_0(y) = F_{\tau_1,\tau_2} \lim_{n \to \infty} F_{-n,\tau_1} \ h_0(y) = F_{\tau_1,\tau_2} \ h(y,\tau_1), \quad \tau_2 > \tau_1.$$

Отсюда следует, что поверхность $\psi = h(y,\tau)$ — локально-интегральная для системы (19). Из равномерной относительно τ непрерывности по y и непрерывности по τ следует, что $h(y,\tau)$ непрерывна по совокупности аргументов. Тем самым доказано существование локально-интегральной поверхности со сколь угодно малой константой Липшица L. Любое решение, расположенное на поверхности, остается при всех $\tau \leqslant \tau_0$ в секторе $G(\varepsilon(L))$, так как не может покинуть его ни через границу $||y|| = \varepsilon(L)$ в силу леммы 6, ни через границу $||y|| = ||\psi||$ в силу условия Липшица. Следовательно, оно удовлетворяет условию леммы 7, откуда следует (24).

Докажем единственность данной поверхности. Допустим, что наряду с $\psi = h(y,\tau)$ существует поверхность $\psi = \hat{h}(y,\tau)$. Возьмем такие y_0 и τ_0 , что $h(y_0,\tau_0) \neq \hat{h}(y_0,\tau_0)$. Рассмотрим два решения системы (19): $z_1(\tau) = z(\tau,\tau_0,h(y_0,\tau_0),y_0)$ и $z_2(\tau) = z(\tau,\tau_0,\hat{h}(y_0,\tau_0),y_0)$. Так как оба эти решения остаются в $G(\varepsilon(L))$ при $\tau \leqslant \tau_0$, то на основании леммы $7 ||\Delta z(\tau)|| \to 0$ при $\tau \to -\infty$. Следовательно, $||\Delta \psi(\tau)|| \to 0$ при $\tau \to -\infty$. С другой стороны из леммы 8 следует, что $||\Delta \psi(\tau)|| \geqslant A||\Delta \psi(\tau_0)||$ при $\tau \leqslant \tau_0$, и мы приходим к противоречию. Единственность поверхности доказана.

В качестве искомой возьмем поверхность $\psi=h(y,\tau)$, найденную для L=1. Она удовлетворяет всем утверждениям теоремы 4, кроме (23). Докажем (23). Система (19) имеет локально-интегральные поверхности со сколь угодно малой константой Липшица, определенные в достаточно малых окрестностях решения $z\equiv 0$. С другой стороны, в этих окрестностях определена и h. В силу единственности они должны совпадать с h. Отсюда следует, что h имеет сколь угодно малую константу Липшица при $||y||\leqslant \varepsilon(L)$. Теорема 4, а с ней и теорема 3 доказаны.

4. Доказательство утверждения 2

Теорема 5. Пусть $z_1(t) = (u(\varphi_1(t)), \varphi_1(t))$ и $z_2(t) = (u(\varphi_2(t)), \varphi_2(t))$ — различные решения системы (1) на торе $x = u(\varphi)$. Тогда поверхности T_{z_1} и T_{z_2} , построенные для решений $z_1(t)$ и $z_2(t)$ соответственно, не пересекаются.

Доказательство теоремы 5. Предположим противное утверждению теоремы. Так как поверхности T_{z_1} и T_{z_2} инвариантны, то их пересечение инвариантно. Пусть решение $z(t) = (u(\varphi(t)), \varphi(t))$ содержится в пересечении T_{z_1} и T_{z_2} . Обозначим через $\psi_1(t) = \varphi(t) - \varphi_1(t), \ \psi_1(t) = \varphi(t) - \varphi_1(t), \ \Delta \varphi(t) = \varphi_1(t) - \varphi_2(t), \ \Delta \psi(t) = \psi_1(t) - \psi_2(t), \ \Delta z(t) = z_1(t) - z_2(t)$. В силу теоремы $1 ||u(\varphi_1) - u(\varphi_2)|| \leqslant L^* ||\varphi_1 - \varphi_2||$, где $L^* = \frac{2l}{\lambda - l}$. Следовательно,

$$||\Delta z|| = \max ||\varphi_1 - \varphi_2||, ||u(\varphi_1) - u(\varphi_2)|| \le \mu ||\varphi_1 - \varphi_2||,$$

где $\mu = \max\{1, L^*\}$. Так как $z_i(t)$ — решения на торе, то $||x_i(t)|| \le \varepsilon_0$ для любого $t \in R$. Тогда, пользуясь условием A, имеем

$$\frac{d_{+}||\Delta\varphi(t)||}{dt} \geqslant -||a(u(\varphi_{1}),\varphi_{1}) - a(u(\varphi_{2}),\varphi_{2})|| \geqslant -\alpha(t)||\Delta z|| \geqslant -\mu\alpha(t)||\Delta\varphi||.$$

Действуя так же, как и при доказательстве леммы 8, получаем

$$||\Delta\varphi(t)|| \geqslant A||\Delta\varphi(t_0)||$$
 $t \geqslant t_0,$

где $A = exp(-C_{\alpha}\mu)$. Из теоремы 4 следует, что $||z(t) - z_1(t)|| \to 0$ и $||z(t) - z_2(t)|| \to 0$ при $t \to \infty$. Выберем такое $t^* \geqslant t_0$, что

$$||z(t^*) - z_i(t^*)|| < \frac{A}{2} ||\Delta \varphi(t_0)||$$
 $i = 1, 2.$

Тогда $||\Delta z(t^*)|| \leq ||z(t^*) - z_1(t^*)|| + ||z(t^*) - z_2(t^*)|| < A||\Delta \varphi(t_0)||$, но с другой стороны $||\Delta z(t^*)|| = ||\Delta \varphi(t^*)|| \geq A||\Delta \varphi(t_0)||$. Приходим к противоречию. Теорема 5 доказана.

5. Доказательство утверждения 3

Теорема 6. При достаточно малых M и ε для любой точки z_0 , находящейся в ε -окрестности тора, существует такая поверхность T_{z_0} из теоремы 3, что решение $z(t) = z(t, t_0, z_0)$ лежит на поверхности T_{z_0} .

Доказательство теоремы 6. Для доказательства теоремы будем применять ту же технику, что и в работе [3]. Возьмем точку $z_0 = (x_0, \varphi_0)$ такую, что $||x_0 - u(\varphi_0)|| \le \varepsilon \le \varepsilon_1$, где ε_1 взято из теоремы 4.

Пусть $z(t,t_0,z_0)=(x(t,t_0,x_0),\varphi(t,t_0,\varphi_0))$ — решение системы (1), $z(t,t_0,\alpha)=(\chi(t,t_0,\alpha),\xi(t,t_0,\alpha))$ — решение системы (1) на торе $x=u(\varphi)$, где α — m-мерный вектор, лежащий на торе $x=u(\varphi)$. Решение $z(t,t_0,\alpha)$ будет иметь начальные данные $\chi(t_0,t_0,\alpha)=u(\alpha)$, $\xi(t_0,t_0,\alpha)=\alpha$.

Покажем, что при фиксированном t_0 каждому (n+m)-мерному вектору z_0 соответствует m-мерный вектор α такой, что решение $z(t, t_0, z_0)$ принадлежит поверхности T_{α} , построенной по решению $z(t, t_0, \alpha)$.

Сделаем в системе (1) замену переменных $\psi(t)=\varphi(t)-\xi(t,t_0,\alpha),\,y(t)=x(t)-\chi(t,t_0,\alpha).$ Получим систему

$$\begin{cases}
\frac{dy}{dt} = (\int_{0}^{1} P_y'(\chi(t, t_0, \alpha) + \theta y) d\theta) y + H(y, \psi), \\
\frac{d\psi}{dt} = b(y, \psi),
\end{cases} (40)$$

где

$$H(y,\psi) = Q(y + \chi(t,t_0,\alpha), \psi + \xi(t,t_0,\alpha)) - Q(\chi(t,t_0,\alpha), \xi(t,t_0,\alpha)),$$

$$b(y,\psi) = a(y + \chi(t,t_0,\alpha), \psi + \xi(t,t_0,\alpha)) - a(\chi(t,t_0,\alpha), \xi(t,t_0,\alpha)).$$
(41)

По теореме 4 существует инвариантная поверхность T_{α} , представимая в виде

$$\psi = h(t, y, \alpha), \tag{42}$$

причем

$$h(0,t,\alpha) = 0, \ ||h(y,t,\alpha) - h(\overline{y},t,\alpha)|| \leqslant L||y - \overline{y}||. \tag{43}$$

Очевидно, что любое решение $(y(t), \psi(t))$ с начальными данными

$$t = t_0, \ y = y_0, \ \psi = h(y_0, t_0, \alpha)$$

лежит на поверхности T_{α} .

Для того. чтобы доказать, что для некоторого α решение $z(t,t_0,z_0)$ лежит на поверхности T_{α} , достаточно показать, что для всех t выполняются равенства

$$\begin{cases}
\psi(t) = \varphi(t, t_0, \varphi_0) - \xi(t, t_0, \alpha), \\
y(t) = x(t, t_0, x_0) - \chi(t, t_0, \alpha).
\end{cases}$$
(44)

По теореме единственности, если равенства (44) соблюдаются при $t=t_0$, то они соблюдаются и при всех t. При $t=t_0$ равенства (44) имеют вид

$$\begin{cases} h(y_0, t_0, \alpha) = \varphi_0 - \alpha \\ y_0 = x_0 - u(\alpha). \end{cases}$$
(45)

Будем рассматривать равенства (45) как систему уравнений относительно y_0 и α . Подставляя значение y_0 из второго уравнения в первое, получаем

$$\alpha = \varphi_0 - h(x_0 - u(\alpha), t_0, \alpha). \tag{46}$$

Покажем, что уравнение (46) имеет решение при любых φ_0, x_0 . Используя равенства (6) и (43), получаем

$$||\alpha - \varphi_0|| = ||h(x_0 - u(\alpha), t_0, \alpha)|| \leqslant L||x_0 - u(\alpha)|| \leqslant$$

$$\leqslant L||x_0 - u(\varphi_0)|| + L||u(\alpha) - u(\varphi_0)|| \leqslant L||x_0 - u(\varphi_0)|| + LL^*||\alpha - \varphi_0||$$

или

$$||\alpha - \varphi_0|| \le \frac{L}{1 - L} L^* ||x_0 - u(\varphi_0)||,$$
 (47)

где $L^*=\frac{2l}{\lambda-l}$. В силу теоремы 4, уменьшая M и ε , можно добиться того, что будет выполняться неравенство $L<\frac{1}{1+L^*}$. Тогда

$$\frac{L}{1-L}L^* < 1. \tag{48}$$

Рассмотрим в m-мерном пространстве шар B, определяемый неравенством $||\alpha-\varphi_0|| \le ||x_0-u(\varphi_0)||$. Из неравенств (47) и (48) следует, что преобразование (46) переводит шар B в себя, а тогда по теореме Брауэра это преобразование имеет неподвижную точку. Таким образом, уравнение (46) имеет решение $\alpha=\alpha^*$. Подставляя решение α^* во второе уравнение (45), находим, что пара α^* , y_0^* , где $y_0^*=x_0-u(\alpha^*)$, удовлетворяет системе (44). Теорема 5 доказана.

Замечание 6. Так как $\lambda > 2l$ по условию теоремы 1, то $L^* = \frac{2l}{\lambda - l} < 2$. Следовательно, если функция $h(t,y,\alpha)$ удовлетворяет условию Липшица с константой $L < \frac{1}{3}$, то неравенство (48) выполняется. Из теоремы 4 следует что этого можно добиться, если взять $\varepsilon = \varepsilon(\frac{1}{3})$ и $M = M(\varepsilon(\frac{1}{3}))$ (см. замечание 3). Таким образом, в формулировке теоремы 6 в качестве M можно взять

$$M < \frac{3\lambda}{4(k+1)} \left(\frac{\lambda}{4l}\right)^{k+1}. \tag{49}$$

При этом тор будет лежать в множестве $H(\frac{1}{3})$. Заметим, что $\varepsilon_x(\frac{1}{3}) \leqslant \frac{\lambda}{4l}$.

Таким образом, существование расслоения доказано при выполнении условия A и для M, удовлетворяющего неравенству (49).

Литература

1. Волков Д. Ю., Ильин Ю. А. О существовании инвариантного тора у существенно нелинейной системы дифференциальных уравнений // Вестн. С.-Петерб. ун-та. Сер.1. 1992. Вып.4 (N 22).

- 2. *Ильин Ю. А.* Существование интегральных многообразий в окрестности точки покоя существенно нелинейных систем дифференциальных уравнений / Диссертация на соиск. уч. ст. канд. физ.-мат. н. Ленинград. 1989.
- 3. *Плисс В. А.* Интегральные множества периодических систем дифференциальных уравнений. М.: Наука, 1977. 304 с.
- 4. *Ильин Ю. А.* О применении логарифмических норм к нелинейным системам дифференциальных уравнений // Нелинейные динамические системы. Вып. 2. СПб. 1999.
- 5. $Хартман \Phi$. Обыкновенные дифференциальные уравнения. М.: Мир, 1970.
- 6. Лозинский С. М. Оценки погрешности численного интегрирования обыкновенных дифференциальных уравнений. І // Изв. высш. учебн. заведений. Математика, 1958. N 5.

Боголюбов Андрей Александрович - аспирант кафедры дифференцуиальных уравнений математико-механического факультета Санкт-Петербургского государственного университета

Ильин Юрий Анатольевич - доцент кафедры дифференцуиальных уравнений математико-механического факультета Санкт-Петербургского государственного университета

Раб. тел.: 428 69 59