# 算法设计与分析

蒋婷婷

# 上节课回顾

- □递归方程的求解
  - 迭代法
    - □直接迭代
    - □ 换元迭代
    - □差消化简后迭代
  - 递归树
  - ■主定理

#### 主定理

主定理: 设 $a \ge 1$ , b > 1为常数,f(n)为函数,T(n)为非负整数,且 T(n) = aT(n/b) + f(n)

#### 则有以下结果:

- 2. 若 $f(n) = \Theta(n^{\log_b a}),$  那么 $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. 若 $f(n) = \Omega(n^{\log_b a + \varepsilon}), \varepsilon > 0$ ,且对于某个常数 c < 1和充分大的n有  $a f(n/b) \le c f(n)$ ,那么  $T(n) = \Theta(f(n))$

### 顺序算法的设计技术

- □分治策略
- □动态规划算法
- □回溯法与分支估界
- □贪心算法
- □概率算法

## 分治策略 (Divide and Conquer)

- □ 分治策略的基本思想
  - 实例、主要思想、算法描述、注意问题
- □ 递归算法与递推方程
  - ■两类递推方程的求解
- □ 降低递归算法复杂性的途径
  - 代数变换减少子问题个数
  - 预处理减少递归的操作
- □ 典型实例分析

#### 分治策略的基本思想

分治策略的实例----二分检索、归并排序 主要思想-----划分、求解子问题、综合解 算法描述

#### **Divide-and-Conquer(P)**

- 1. if  $|P| \le c$  then S(P).
- 2. divide P into  $P_1, P_2, ..., P_k$ .
- 3. for i = 1 to k
- 4.  $y_i = Divide-and-Conquer(P_i)$
- 5. Return  $Merge(y_1, y_2, ..., y_k)$

注意问题----连续划分 平衡原则

### 递归算法与递推方程

- □ 分治策略的算法分析工具-----递推方程
- □ 两类递推方程

$$f(n) = \sum_{i=1}^{k} a_i f(n-i) + g(n)$$

$$f(n) = af(\frac{n}{b}) + d(n)$$

□ 求解方法 迭代法、递归树、Master定理

### 典型的递推方程

$$f(n) = af(\frac{n}{b}) + d(n)$$

当 d(n)为常数 时

$$f(n) = \begin{cases} O(n^{\log_b a}) & a \neq 1 \\ O(\log n) & a = 1 \end{cases}$$

当 d(n) = cn 时

$$f(n) = \begin{cases} O(n) & a < b \\ O(n \log n) & a = b \\ O(n^{\log_b a}) & a > b \end{cases}$$

## 实例

#### 例1 芯片测试

| A 报告 | B报告  | 结论             |
|------|------|----------------|
| B是好的 | A是好的 | A,B 都好或 A,B 都坏 |
| B是好的 | A是坏的 | 至少一片是坏的        |
| B是坏的 | A是好的 | 至少一片是坏的        |
| B是坏的 | A是坏的 | 至少一片是坏的        |

条件:有n片芯片,(好芯片至少比坏芯片多1片),

问题: 使用最少测试次数,从中挑出1片好芯片

要求: 说明测试算法, 进行复杂性分析

### 算法

```
1. k \leftarrow n
2. while k > 3 do
3. 将芯片分成 \lfloor k/2 \rfloor 组
4. for i = 1 to |k/2| do
5.
        if 2片好,则任取1片留下
       else 2 片同时丢掉
6.
7. k \leftarrow 剩下的芯片数
8. if k = 3
9. then 任取2片芯片测试
10. if 至少1坏,取没测的芯片
11. else 任取1片被测芯片
12. if k=2 or 1 then 任取1片
```

## 分析

#### □说明

上述算法只是一个概要说明,对于n为奇数的情况需要进一步处理,处理时间为O(n).

#### □复杂性分析

设W(n)表示n片芯片测试的次数,则

$$W(n) = W(n/2) + O(n)$$

$$W(1)=0$$

由Master定理, W(n) = O(n)

## 实例

#### 例2 求一个数的幂

问题: 计算 a n, n为自然数

传统算法:  $\Theta(n)$ 

分治法

$$a^{n} = \begin{cases} a^{n/2} \times a^{n/2} & n \text{ 为偶数} \\ a^{(n-1)/2} \times a^{(n-1)/2} \times a & n \text{ 为奇数} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \Rightarrow T(n) = \Theta(\log n)$$
.

#### 计算 Fibonacci 数

#### Fibonacci 数的定义

$$F_{n} = \begin{cases} 0 & if \ n = 0 \\ 1 & if \ n = 1 \\ F_{n-1} + F_{n-2} & if \ n > 1 \end{cases}$$

0 1 1 2 3 5 8 13 21 ...

通常算法: 从 $F_0$ ,  $F_1$ , ..., 根据定义陆续相加时间为 $\Theta(n)$ 

### 利用数幂乘法的分治算法

定理1 设  $\{F_n\}$ 为 Fibonacci 数构成的数列,那么

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

证明:对n进行归纳

算法: 令矩阵 
$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
,用分治法计算  $M^n$ 

$$T(n) = \Theta(\log n)$$
.

### 提高算法效率的途径1

#### 方法一: 代数变换 减少子问题个数

例3 位乘问题

设X,Y 是两个n 位二进制数,  $n=2^k$ ,求 XY.

传统算法  $W(n)=O(n^2)$ 

分治法 
$$令 X = A2^{n/2} + B, Y = C2^{n/2} + D.$$
 $XY = AC \ 2^n + (AD + BC) \ 2^{n/2} + BD$ 
 $W(n) = 4W(n/2) + cn,$ 
 $W(1) = 1$ 
解得  $W(n) = O(n^{\log 4}) = O(n^2)$ 

## 代数变换

$$AD + BC = (A - B) (D - C) + AC + BD$$

递推方程

$$W(n) = 3 W(n/2) + cn$$

$$W(1) = 1$$

解

$$W(n) = O(n^{\log 3}) = O(n^{1.59})$$

## 矩阵乘法

例4 A,B 为两个n 阶矩阵, $n=2^k$ ,计算C=AB.

传统算法  $W(n) = O(n^3)$ 

分治法 将矩阵分块,得

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

其中

$$\begin{split} C_{11} &= A_{11}B_{11} + A_{12}B_{21} & C_{12} = A_{11}B_{12} + A_{12}B_{22} \\ C_{21} &= A_{21}B_{11} + A_{22}B_{21} & C_{22} = A_{21}B_{12} + A_{22}B_{22} \end{split}$$

递推方程  $W(n) = 8 W(n/2) + cn^2$ 

$$W(1) = 1$$

$$W(n) = O(n^3).$$

### 变换方法

$$\begin{split} M_1 &= A_{11} \left( B_{12} - B_{22} \right) \\ M_2 &= \left( A_{11} + A_{12} \right) B_{22} \\ M_3 &= \left( A_{21} + A_{22} \right) B_{11} \\ M_4 &= A_{22} \left( B_{21} - B_{11} \right) \\ M_5 &= \left( A_{11} + A_{22} \right) \left( B_{11} + B_{22} \right) \\ M_6 &= \left( A_{12} - A_{22} \right) \left( B_{21} + B_{22} \right) \\ M_7 &= \left( A_{11} - A_{21} \right) \left( B_{11} + B_{12} \right) \\ \\ C_{11} &= M_5 + M_4 - M_2 + M_6 \\ C_{12} &= M_1 + M_2 \\ C_{21} &= M_3 + M_4 \\ C_{22} &= M_5 + M_1 - M_3 - M_7 \end{split}$$

## Strassen 矩阵乘法

#### 递推方程是

$$W(n) = 7W(\frac{n}{2}) + 18(\frac{n}{2})^2$$
  
 $W(1) = 1$ 

#### 由Master定理得

$$W(n) = O(n^{\log_2 7}) = O(n^{2.8075})$$

### 提高算法效率的途径2

#### 算法中的处理尽可能提到递归外面作为预处理

例6 平面点对问题

输入:集合S中有n个点,n > 1,

输出: 所有的点对之间的最小距离.

通常算法: C(n,2)个点对计算距离,比较最少需 $O(n^2)$ 时间

分治策略:子集P中的点划分成两个子集 $P_L$ 和 $P_R$ 

$$|P_L| = \left\lceil \frac{|P|}{2} \right\rceil$$
  $|P_R| = \left\lfloor \frac{|P|}{2} \right\rfloor$ 

### 平面最近点对算法

#### MinDistance(P,X,Y)

输入: n 个点的集合P, X 和Y 分别为横、纵坐标数组

输出:最近的两个点及距离

- 1. 如果P中点数小于等于3,则直接计算其中的最小距离
- 2. 排序X,Y
- 3. 做垂直线 l 将P划分为 $P_L$ 和 $P_R$ ,  $P_L$ 的点在 l 左边, $P_R$ 的点在 l 右边
- 4. MinDistance( $P_L, X_L, Y_L$ );  $\delta_L = P_L$ 中的最小距离
- 5. MinDistance( $P_R, X_R, Y_R$ );  $\delta_R = P_R$ 中的最小距离
- 6.  $\delta = \min(\delta_L, \delta_R)$
- 7. 对于在垂直线两边距离δ范围内的每个点,检查是否有 点与它的距离小于δ,如果存在则将δ修改为新值

## 跨边界的最近点

$$d = \sqrt{(\delta/2)^2 + (2\delta/3)^2}$$

$$= \sqrt{\delta^2/4 + 4\delta^2/9}$$

$$= \sqrt{25\delta^2/36} = 5\delta/6$$



右边每个小方格至多1个点,每个点至多比较对面的6个点,

只需考察常数个点。将边界区域内的点按照纵坐标进行扫描,对于每个点进行检查,考察在另一侧相关区域内的点(不超过6个),检查1个点是常数时间,O(n) 个点需要O(n)时间  $^{22}$ 

## 算法分析

```
分析: 步1 O(1)
      步2 O(n\log n)
      步3 O(1)
      步4-5 2T(n/2)
      步6 O(1)
      步7 O(n)
      T(n) = 2T(\frac{n}{2}) + O(n\log n)
       T(n) = O(1) \qquad n \le 3
由递归树估计T(n) = O(n\log^2 n)
```

23

### 预排序的处理方法

在每次调用时将已经排好的数组分成两个排序的子集,每次调用这个过程的时间为O(n)

W(n)总时间,T(n)算法递归过程, $O(n\log n)$ 预处理排序

$$W(n) = T(n) + O(n \log n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n)$$

$$T(n) = O(1) \qquad n \le 3$$

解得

$$T(n)=O(n\log n)$$

$$W(n) = O(n\log n)$$

# 实例: 递归中的拆分



## 典型实例分析

#### 算法 快速排序

输入:数组A[p..r]

输出:排好序的数组A

#### Quicksort(A,p,r)

- 1. if p < r
- 2. then  $q \leftarrow \text{Partition}(A, p, r)$
- 3.  $A[p] \leftrightarrow A[q]$
- 4. Quicksort(A,p,q-1)
- 5. Quicksort(A,q+1,r)

### 划分过程

#### Partition(A,p,r)

- 1.  $x \leftarrow A[p]$
- 2.  $i \leftarrow p$
- 3.  $j \leftarrow r+1$
- 4. while true do
- 5. repeat  $j \leftarrow j-1$
- 6. until  $A[j] \leq x$
- 7. repeat  $i \leftarrow i + 1$
- 8. until A[i] > x
- 9. if i < j
- 10. then  $A[i] \leftrightarrow A[j]$
- 11. else return j

### 实例

| 27 | 99<br>i | 0 | 8 | 13 | 64      | 86      | 16                 | 7                    | 10                 | 88 | 25<br>j | 90 |
|----|---------|---|---|----|---------|---------|--------------------|----------------------|--------------------|----|---------|----|
| 27 | 25      | 0 | 8 | 13 | 64<br>i | 86      | 16                 | 7                    | <b>10</b> <i>j</i> | 88 | 99      | 90 |
| 27 | 25      | 0 | 8 | 13 | 10      | 86<br>i | 16                 | <b>7</b><br><i>j</i> | 64                 | 88 | 99      | 90 |
| 27 | 25      | 0 | 8 | 13 | 10      | 7       | <b>16</b> <i>j</i> |                      | 64                 | 88 | 99      | 90 |
| 16 | 25      | 0 | 8 | 13 | 10      | 7       | 27                 | 86                   | 64                 | 88 | 99      | 90 |

# 复杂度分析

$$\mathbf{W}(\mathbf{n}) = \mathbf{W}(\mathbf{n} - 1) + \mathbf{0}(\mathbf{n})$$

$$\boldsymbol{W}(1) = 0$$

$$\boldsymbol{W}(\boldsymbol{n}) = \frac{1}{2} \boldsymbol{n}(\boldsymbol{n} - 1) = \boldsymbol{\Theta}(\boldsymbol{n}^2)$$

#### 最好划分

$$T(n) = 2T(\frac{n}{2}) + 0 (n)$$

$$T(1) = 0$$

$$T(n) = \Theta(n \log n)$$

$$T(n) = T(\frac{9n}{10}) + T(\frac{n}{10}) + O(n)$$

$$T(1) = 0$$

$$T(n) = \Theta(n \log n)$$

### 均衡划分



### 平均情况

假设输入数组首元素排好序后的正确位置处在1,2,...,*n* 各种情况是等可能的

$$T(n) = \frac{1}{n} \sum_{k=0}^{n-1} (T(k) + T(n - k - 1)) + O(n)$$

$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + O(n)$$

$$T(1) = 0$$

利用差消法求得  $T(n)=O(n\log n)$