Airfoil GAN

Кодировка и синтез профиля крыла для оптимизации аэродинамических характеристик

Кирилл Ленский

Moscow Institute of Physics and Technology

28 октября 2023 г.

Содержание

1. Введение

- Содержание
- Постановка задачи

2. Почему VAEGAN

- Представление данных
- Что такое VAEGAN?

3. Реализация VAEGAN

- Препроцессинг
- Имплементация VAEGAN
- Обучение нейросети

4. Заключение

Постановка задачи

- Найти способ генерации новых профилей крыла
- Научиться предсказывать подъемную силу, сопротивление, момент тангажа и критическую скорость
- Научиться генерировать профили с заданными характеристиками

Рис.: Примеры профиля крыла

Как описать профиль крыла компьютеру?

Представим задачу: векторизовать профиль. Неформально говоря, мы хотим параметризовать форму крыла векторным пространством, с помощью которого можно будет генерировать новые профили.

Как описать профиль крыла компьютеру?

Представим задачу: векторизовать профиль. Неформально говоря, мы хотим параметризовать форму крыла векторным пространством, с помощью которого можно будет генерировать новые профили.

- Полиномиальная и сплайновая кодировка
- Free-Form Deformation (FFD)
- ???

Полиномы, кривые Безье, сплайны

- Можно задавать форму профиля линейной комбинацией фиксированных многочленов
- Может появиться проблема оверфиттинга многочлены старшего порядка будут зашумлять кривую

Полиномы, кривые Безье, сплайны

- Можно задавать форму профиля линейной комбинацией фиксированных многочленов
- Может появиться проблема оверфиттинга многочлены старшего порядка будут зашумлять кривую
- Можно использовать кривые Безье или сплайны

Но как быть, если размерность данных > 1? Что, если мы хотим параметризовать не просто сечение, а целое крыло? В таком случае полиномиальная параметризация потребует слишком много опорных точек, а сама форма будет "волнистой".

Представление данных Free-Form Deformation (FFD)

- FFD описание преобразования объекта через преобразование содержащего его выпуклого множества (шара или куба).
- Преобразование можно связать со свойствами крыла аналитически.

Классические способы понижения размерности могут давать очень хорошие результаты, но обычно преобразование в них задается "вручную".

Рис.: FFD

Автокодировщики

А вот с задачей понижения размерности без участия человека хорошо справляются автокодировщики:

- Автокодировщик представляет из себя нейросеть, напоминающую песочные часы
- В первой половине данные "сжимаются", во второй – "разжимаются".
- Во время обучения кодировщик оптимизирует какую-либо функцию потерь между исходными данными и данными, прошедшими через кодировщик

Вариационный автокодировщик

Variational Auto Encoder (VAE) – модификация обычного автокодировщика, которая не просто переводит данные в пространство меньшей размерности, но делает это случайным образом, стремясь к тому, чтобы закодированные объекты были распределены нормально в латентном пространстве. Пусть

$$z \sim \operatorname{Enc}(x) = q(z|x)$$

 $\sim {\sf Dec}\,(z) = p(\tilde x|z)$ где мы предполагаем, что q(z|x) – условное распределение латентного вектора z, который выдал нам кодировщик, относительно σ -алгебры вектора признаков x, а $p(\tilde x|z)$ – распределение результата работы декодировщика относительно латентного вектора z. Будем считать, что $p(z) \sim \mathcal{N}(0,\mathbf{I})$.

Вариационный автокодировщик

Случайность в **VAE** достигается тем, что кодировщик генерирует 2 детерминированных вектора

- $\mu(x)$ вектор средних значений
- $\sigma(x)$ вектор стандартных отклонений

А после конструирует из них случайный гауссовский вектор:

$$\mathsf{Enc}(x) = \mathcal{N}(\mu, \mathsf{diag}(\sigma_1, \ldots, \sigma_n))$$

Вариационный автокодировщик

Функция потерь $\mathcal{L}_{\mathsf{VAE}}$ вычисляется по следующей формуле

$$\begin{split} \mathcal{L}_{\mathsf{VAE}} &= \left[\mathcal{L}_{\mathsf{recon}}\right] + \left[\mathcal{L}_{\mathsf{prior}}\right] = \\ &= \left[\|x - \tilde{x}\|_2^2\right] + \left[D_{\mathsf{KL}}\left(q(z|x)\|p(z)\right)\right] \end{split}$$

, где D_{KL} – дивергенция Кульбака-Лейблера

Дивергенция Кульбака-Лейблера

$$D_{\mathsf{KL}}(q\|p) = \int_{\mathcal{X}} q(x) \ln \frac{q(x)}{p(x)} \, d\mu(x)$$

Главная проблема $V\!AE$ — он не достаточно хорош в генерации примеров, которых не было в тренировочной выборке.

Генеративно-Состязательные нейросети

Generative Adversarial Network (GAN)— система, состоящая из дискриминатора $\mathcal D$ и генератора $\mathcal G$ — двух нейросетей. Генератор получает на вход случайный шум $\tilde p$, который преобразует в сгенерированный объект $\tilde x$. После этого $\mathcal D$ получает последовательно на вход 2 объекта: x — настоящий объект из выборки, и $\tilde x$ — объект, сгенерированный $\mathcal G$.

В качестве ошибки, в силу причин Байесовского характера, обычно берется кросс-энтропия:

$$\mathcal{L}_{\mathsf{GAN}} = \log \mathcal{D}(x) + \log(1 - \mathcal{D}(\tilde{x}))$$

VAE vs. GAN

VAE:

- Позволяет понижать размерность
- Плохо генерирует новые объекты

GAN:

- Не позволяет понижать размерность
- Хорошо генерирует новые объекты

VAEGAN совмещает плюсы VAE и GAN

Рис.: VAE, GAN и VAEGAN

- х реальный объект из выборки
- $\tilde{x} = \text{Dec}(\text{Enc}(x)) \text{объект},$ пропущенный сквозь автокодировщик
- $\hat{x} = \text{Dec}(z) \text{объект},$ сгенерированный **VAE** из нормального шума

Функция потерь **VAEGAN** представляет из себя взвешенную сумму нескольких функций:

 $\mathcal{L}_{\mathsf{GAN}}$ – лосс-функция, относящаяся к \mathbf{GAN} . Теперь дискриминатору надо классифицировать \hat{x} и \tilde{x} как неправильные, а x как правильный объект, поэтому в кросс-энтропии три слагаемых:

$$\mathcal{L}_{\mathsf{GAN}} = \log(\mathcal{D}(x)) + \log(1 - \mathcal{D}(\mathsf{Dec}\,(z)) + \log(1 - \mathcal{D}(\mathsf{Dec}\,(\mathsf{Enc}\,(x)))$$

Функция потерь **VAEGAN** представляет из себя взвешенную сумму нескольких функций:

 $\mathcal{L}_{\text{layer}}$ — дополнительная функция потерь для **VAE**, которая сравнивает, насколько отличается результат на скрытом слое \mathcal{D} для шума и закодированного объекта:

$$\mathcal{L} = \|\mathcal{D}_I(x) - \mathcal{D}_I(\mathsf{Dec}\,(z))\|_1$$

В нашем случае в качестве слоя выбран предпоследний скрытый слой.

Функция потерь **VAEGAN** представляет из себя взвешенную сумму нескольких функций:

Функции \mathcal{L}_{recon} и \mathcal{L}_{prior} , которые уже встречались нам в **VAE**

$$\mathcal{L}_{\mathsf{recon}} = \|\tilde{x} - x\|_2^2$$

$$\mathcal{L}_{\mathsf{prior}} = D_{\mathsf{KL}}(q(z|x) || p(z))$$

Причем дивергенция вычисляется явно через $\mu(x)$ и $\sigma(x)$ как

$$D_{\mathsf{KL}} = \frac{1}{2} \left[\left(\sum_{i=1}^{n} \mu_i^2 + \sum_{i=1}^{n} \sigma_i^2 \right) - \sum_{i=1}^{n} (\log(\sigma_i^2) + 1) \right]$$

Функция потерь **VAEGAN** представляет из себя взвешенную сумму нескольких функций:

$$\mathcal{L} = \lambda_0 \mathcal{L}_{\text{preior}} + \lambda_1 \mathcal{L}_{\text{recon}} + \lambda_2 \mathcal{L}_{\text{layer}} + \lambda_3 \mathcal{L}_{\text{GAN}}$$

где гиперпараметры λ_i модели надо подбирать отдельно.

Препроцессинг

Прежде, чем мы начнем имплементировать VAEGAN, необходимо привести данные к регулярному виду. Авторы использовали сглаживание кубическими сплайнами

Алгоритм приближения

- Разбить профиль крыла на верхнюю и нижнюю кривые
- Приблизить каждую из них кубическими сплайнами
- ullet Выбрать N=100 опорных координат x, $x_k=1-\cos\left(rac{\pi k}{2N}
 ight)$
- ullet Вернуть вектор из 200 чисел конкатенацию $y_{
 m up}(x_i)$ и $y_{
 m down}(x_i)$
- Нормализовать получившиеся векторы

Препроцессинг

При приближении может возникнуть множество артефактов, которые необходимо корректно обработать:

(а) Артефакт приближения

(b) Удачное приближение

Имплементация нейросети

В качестве основного фреймворка я использовал PyTorch. JupyterNotebook со всей необходимой реализацией можно найти по этой ссылке.

Упомяну только особо специфические детали реализации:

 клиппинг — значения параметров в кросс-энтропии пришлось ограничить, чтобы избежать NaN при попытке взять логарифм от нуля.

```
L_gan = torch.log(torch.clamp(y, min=1e-2)) + \
    torch.log(torch.clamp(1-y_tilde, min=1e-2)) + \
    torch.log(torch.clamp(1-y_hat, min=1e-2))
```

Имплементация нейросети

• Нормализация σ – чтобы матрица ковариаций была положительно определена, пришлось возвести σ в квадрат

```
mu = x[:1_dim]
sigma = x[1_dim:]**2

# Kullback-Leibler Divergence
self.kl = (sigma**2 + mu**2 - torch.log(sigma) - 1/2).sum()
```

Конечно, можно было взять $|\sigma|$, но особой разницы нет – x^2 довольно здорово приближается перцептроном вблизи 0.

Обучение нейросети

В качестве оптимизатора я выбрал Adam. Модель обучалась на протяжении 10^3 эпох, причем каждые 100 эпох создавался бэкап.

Заключение

Спасибо за внимание:)