Fizyka laboratorium 3

1.1. Różnice skończone

Przyjrzyjmy się równaniu różniczkowemu zwyczajnemu pierwszego rzędu, postaci:

$$f(y,t) = \frac{dy(t)}{dt} \tag{1.1}$$

Równanie (1.1) opisuje zmianę funkcji y przy zmianie parametru t, Jeżeli parametr t będzie oznaczał czas, równanie to opisuje wyrażoną przez funkcję f zmianę funkcji y w czasie. Rozwiązaniem analitycznym jest tego równania jest funkcja y(t). która podstawiona do równania (1.1) przekształca je w tożsamość.

Zamieniając odpowiednio przyrost dy na Δy oraz dt na Δt otrzymujemy:

$$\lim_{\Delta y \to 0, \Delta t \to 0} \left(\frac{\Delta y}{\Delta t} \right) = \frac{dy}{dt} \tag{1.2}$$

Równanie (1.1) w rachunku różnic skończonych zapisać możemy w postaci:

$$f(y,t) = \frac{\Delta y}{\Delta t} \tag{1.3}$$

Mnożąc obie strony przez Δt otrzymujemy wyrażenie na zmianę funkcji y w przedziale czasu Δt :

$$\Delta y = f(y, t) \Delta t \tag{1.4}$$

Znając warunki początkowe (początkowa wartość y) możemy obliczyć nową wartość y po upływie czasu Δt jako:

$$\begin{cases} \Delta y = f(y,t)\Delta t \\ y_{n+1} = y_n + f(y_n, y_n)\Delta t \end{cases}$$
 (1.5)

1.2. Całkowanie równań różniczkowych

Równanie (1.1) przedstawia funkcję y zależną od czasu t. Równanie to można rozwiązać poprzez całkowanie po parametrze t. Ponieważ będziemy rozwiązywali równanie dla kolejnych kroków czasowych wprowadzimy następujące oznaczenia: y_{n+1} – wartość y w n+1 kroku czasowym, y_n – wartość y w n-tym kroku czasowym:

$$y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(y, t)dt$$
 (1.6)

Równanie to opisuje przyrost funkcji y w przedziale czasu od t_n do t_{n+1} . Cała idea metody numerycznej skupia się na przybliżeniu różnicowym całki po prawej stronie równania. Dokładność, z jaką wyznaczymy wartość całki, ma znaczenie dla stabilności rozwiązania numerycznego równania (1.1). Należy pamiętać, że otrzymane rozwiązanie jest tylko przybliżeniem rozwiązania dokładnego.

1.3. Schemat różnicowy Eulera

Najprostszym sposobem na przybliżenie całki z równania (1.6) jest całkowanie metoda prostokatów.

Rysunek 1.1. metoda prostokatów

Stosując tę metodę otrzymamy najprostszy schemat różnicowy, zwany metodą Eulera:

$$y_{n+1} = y_n + f(y,t)h + O(h^2)$$
(1.7)

gdzie $h \leftrightarrow \Delta t$

Możemy wyprowadzić schemat metody Eulera sięgając do definicji pochodnej:

$$y'(t) = \lim_{h \to 0} \frac{y(t+h) - y(t)}{h} \tag{1.8}$$

możemy więc rezygnując z granicy możemy zapisać przybliżenie:

$$y'(t) \approx \frac{y(t+h) - y(t)}{h} \tag{1.9}$$

czyli po przekształceniu

$$y(t+h) - y(t) \approx hy'(t) \tag{1.10}$$

czyli:

$$y(t+h) \approx y(t) + hy'(t) \tag{1.11}$$

Przechodząc do wprowadzonej notacji y'(t) = f(y,t) możemy zapisać schemat w postaci:

$$y(t+h) \approx y(t) = hf(y,t) \tag{1.12}$$

Rysunek 1.2. metoda Eulera

1.3.1. Rząd dokładności metody

Dla sprawdzenia rzędu dokładności metody dokonamy rozwinięcia funkcji \boldsymbol{y} w szereg Taylora:

$$y(t+h) = \sum_{n=0}^{\infty} \frac{y^{(n)}}{n!} h^n = y(t) + y'(t)h + \frac{y''(t)}{2!}h^2 + \dots + \frac{y^{(n)}}{n!}h^n$$
 (1.13)

Widać, że metoda Eulera obcina rozwinięcie po pierwszej pochodnej czyli: $y(t+h) \equiv y_{n+1}, y(t) \equiv y_n, y'(t)h \equiv f(y,t)h$

Obcięcie rozwiązania do wyrazu h w potędze 1 włącznie oznacza, że metoda różnicowa ma dokładność pierwszego rzędu względem rozwinięcia w szereg Taylora. Błąd obcięcia wynosi $O(h^2)$

1.4. Metoda Midpoint

Nazwa metody wynika z faktu, że $t_n+h/2$ jest punktem środkowym pomiędzy t_n w którym wartość funkcji y(t) jest znana, oraz punktem t_{n+1} w którym szukamy

wartości funkcji y(t). Jest to metoda zaliczana do metod Runge-Kutta (inaczej zwana metoda Runge-Kutta drugiego rzędu).

Metoda ta bazuje na metodzie Eulera wykorzystując kolejną pochodną przy rozwinięciu w szereg Taylora.

$$y'(t + \frac{h}{2}) \approx \frac{y(t+h) - y(t)}{h}$$
 (1.14)

następnie:

$$y(t+h) \approx y(t) + hy'(t+\frac{h}{2})$$
 (1.15)

co możemy zapisać jako:

$$y(t+h) \approx y(t) + hf\left(y(t+\frac{h}{2}), t+\frac{h}{2}\right)$$
(1.16)

Nie możemy skorzystać z równania (1.16) ponieważ nie znamy wartości y w punkcie $t + \frac{h}{2}$. Rozwiązaniem jest rozwinięcie w szereg Taylora i przybliżenie tej wartości.

$$y\left(t + \frac{h}{2}\right) \approx y(t) + \frac{h}{2}y'(t) = y(t) + \frac{h}{2}f(y(t), t)$$
 (1.17)

Co po podstawieniu do (1.16) daje:

$$y(t+h) \approx y(t) + hf\left(y(t) + \frac{h}{2}f(y(t), t), t + \frac{h}{2}\right)$$
 (1.18)

Ogólnie schemat metody MidPoint możemy zapisać jako:

$$k_1 = f(y_n, t_n) (1.19)$$

$$k_2 = f\left(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2}\right) \tag{1.20}$$

$$y_{n+1} = y_n + hk_2 + O(h^3) (1.21)$$

Rysunek 1.3. metoda MidPoint

1.5. Metoda Runge–Kutta

Ogólnie metodę możemy zapisać w postaci:

$$y_{n+1} = y_n + h \sum_{m} a_m k_m (1.22)$$

gdzie: a_m – współczynniki wagowe, k_m styczne obliczone w kolejnych krokach $t_n \le x \le t_{n+1}$. Wagi spełniają warunek:

$$\sum_{m} a_m = 1 \tag{1.23}$$

1.5.1. Metoda RK4

Schematycznie metodę możemy zapisać w następujący sposób:

$$k_{1} = f(y_{n}, t_{n})$$

$$k_{2} = f\left(y_{n} + \frac{h}{2}k_{1}, t_{n} + \frac{h}{2}\right)$$

$$k_{3} = f\left(y_{n} + \frac{h}{2}k_{2}, t_{n} + \frac{h}{2}\right)$$

$$k_{4} = f(y_{n} + hk_{3}, t_{n} + h)$$

co zgodnie ze wzorem (1.22) daje:

$$y_{n+1} = y_n + \frac{h}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right) \tag{1.24}$$

Rysunek 1.4. metoda RK4