Università degli Studi di Bergamo, Facoltà di Ingegneria, Dalmine Laurea Specialistica in Ingegneria Edile

Fondamenti di Dinamica e Instabilità delle Strutture a.a. 2009/2010

III ELABORATO

Si consideri il seguente sistema strutturale compresso discreto avente aste rigide e molle elastiche lineari rotazionali (molle relative e molla assoluta d'estremità):

ove n è il numero di tratti in cui è stata suddivisa la lunghezza totale l fissa (n > 1; in fig. è rappresentato il caso n = 4). Il parametro positivo μ descrive la rigidezza della molla rotazionale d'estremità.

Richieste:

- Si considerino i primi tre casi con n = 2, n = 3 e n = 4:
 - calcolare il carico critico euleriano P_{cr} di ogni caso utilizzando il metodo energetico e il metodo statico (si parta da equazioni valide per spostamenti grandi per poi giungere a relazioni valide in regime di spostamenti geometricamente piccoli);
 - rappresentare l'andamento dei carichi critici P_{cr}ⁿ così determinati in funzione del parametro μ, ponendoli a confronto;
 - fornire in tabella il valore dei P_{cr}^{n} per i valori $\mu \to 0$, $\mu = 1$, $\mu \to \infty$, per il valore $\mu_a = 7 + (N C)/4$ (N = numero lettera iniziale del nome, C = numero lettera iniziale del cognome) e per eventuali altri valori di μ ritenuti significativi;
 - rappresentare le corrispondenti deformate critiche per gli stessi valori di μ.
- Facoltativo: determinare il carico critico per ulteriori n successivi (n > 4), indagando l'eventuale andamento asintotico per n crescenti.
- Facoltativo: individuare eventuali nessi col problema assegnato nel IV elaborato.