

Jak porównać dwa algorytmy?

- Możemy mierzyć czas wykonania
- Możemy mierzyć dla różnych danych wejściowych
- Co, jeśli działają inaczej na różnych maszynach?
- → Rozpatrzmy proste operacje, które wywołują się "natychmiast"
- Policzmy, ile takich operacji wykona każdy algorytm dla różnych danych
- To samo dla wielkości zajętej pamięci

Czym są O i Θ?

- Jeśli dla wielkich n nasz algorytm nie będzie spowalniał bardziej niż g(n), to jest on O(g(n))
- Jeśli wykonujemy pętle w pętli, obie n razy, to wykonamy n² operacji – działamy w O(n²)
- Jeśli wykonujemy mniej operacji, to wciąż jesteśmy w O(n²)
- Jeśli wykonujemy dokładnie n² operacji, to jesteśmy w Θ(n²)
- O to złożoność pesymistyczna w najgorszym wypadku wykonamy tyle operacji (to nie jest poprawna definicja)
- → O to złożoność dokładna zawsze wykonamy tyle operacji
- Są jeszcze złożoności o (nadpesymistyczna), ~ (oczekiwana), Ω
 (optymistyczna) i ω (nadoptymistyczna)
- Wypróbujmy to dla przykładów

Jakie mamy złożoności?

- stała $\Theta(1) = O(1) czas niezależny od n$
- → logarytmiczna Θ(logn) każdy krok pomniejsza n kilkukrotnie
- → liniowa Θ(n) wykonujemy tyle operacji, ile mamy elementów
- -> !!! liniowo-logarytmiczna Θ(nlogn) wykonujemy tyle operacji ile mamy elementów, powtarzając to dla pomniejszanych kilkukrotnie z każdym krokiem n
- → kwadratowa Θ(n²) pętla w pętli, obie n-krotnie
- → wielomianowa Θ(n🏿) kilka zagnieżdżonych pętli, mnożenie macierzy...
- → wykładnicza Θ(cⁿ) z każdym krokiem wykonujemy c razy więcej operacji
- → silniowa Θ(n!) sprawdzamy każdą możliwą kolejność n elementów

Złożoność obliczeniowa względem rozmiaru danych wejściowych

Rozmiar danych:	10	20	50	100	200	1000
log n	3,32 ns	4,23 ns	5,64 ns	6,64 ns	7,64 ns	9,97 ns
n	10 ns	20 ns	50 ns	100 ns	200 ns	1 µs
n log n	33,21 ns	86,44 ns	282,2 ns	664,4 ns	1,53 µs	9,97 μs
n ²	100 ns	400 ns	2,5 µs	10 µs	40 µs	1 ms
2 ⁿ	1 μs	1,05 ms	13 dní	4·10 ¹³ lat	5,1·10 ⁴³ lat	3,4-10 ²⁸⁴ lat
n!	3,6 ms	77 lat	9,6·10 ⁴⁴ lat	3-10 ¹⁴¹ lat	2,5·10358 lat	1,27-10 ²⁵⁵¹ lat

Jak się czujecie z tym tematem?

