1) Course of Hamiltonian land of the color of	
1) Jenveal Hamiltonian for n'electron with muclear charge Z'	
1 = 1 2 - 1 5 1 - 2 = 2 = 1 + 1 5 = e2	
$\hat{H} = -\frac{\hbar^2}{2m_N} \hat{\nabla}_N^2 - \frac{\hbar^2}{2m_e} \hat{\Sigma} \hat{\nabla}_e^2 - \frac{Ze^2}{4\pi\epsilon_o} \hat{\Sigma} \frac{1}{r_e^2} + \frac{1}{4\pi\epsilon_o} \hat{\Sigma} \frac{e^2}{\tilde{\gamma}(r_i)} \frac{e^2}{r_e^2}$	
2) Orosital abborrantion > Many electron orachunction can be	
2) Orobital approximation > Many electron eigenfunction can be expressed as product of one electron eigenfunctions	
A(21,22,20-)= \(\langle (2) \d(2) \	
N.B. This wavefunction, as a result of approximation, is no longer	7 .
an elgenfunction of Has the Hamiltonian contains operator content	_
-buting electron-electron repulsion. This wavefunction can be used	
to obtain expectation value of energy but not the eigenvalue.	
H= H1 + H2 + Hn + Eggs oij nighting	
H = H1 + H2 + Hn + \\ \frac{25}{2569} \overline{\sigma} \ \frac{1}{\text{inter-electronic supulsion}} \) he was not reglecting inter-electronic supulsion.	
Ar a 20 System, Say	
for a $2\bar{\epsilon}$ system, say $\hat{H} = \hat{H}_1 + \hat{H}_2 + \frac{1}{\sigma_{12}}$	
24/AI4> = <pi filp=""></pi> + <pi <p="" filp=""> + <pi <p="" filp=""> + <pi <p="" filp=""></pi></pi></pi>	>
inter-electronic	
- nepulsion - contribution	
and the second s	

2-e spin functions $\alpha(D\beta(2))$ or $\beta(D)$ $\alpha(2)$ is not acceptable as it violates the condition of indistinguishibility of fermions.
It violates the condition of indistinguishibility of fermions.
The dollowing Stater determinant is not a valid wavefunction
as it specifies the spin of electroon in ruspective orditals
i.e. a state in 25 orbital & B' state 35 orbital. His an exam
The following stater determinant is not a valid wavefunction as it specifies the spin of electron in respective orditals i.e. at state in 25 ordital & 'B' state 35 ordital. The an example of breach of indistinguishibility condition.
Excited state of He atom > 1525
- Ale wavefunction → (2) A(1)B(2)
Excited state of He atom \Rightarrow 15'25' Spin wavefunction \Rightarrow $\mathcal{L}(1) \times (2)$ $\mathcal{L}(2) \times (2)$ $\mathcal{L}(1) \times (2)$ $\mathcal{L}(2) \times (2)$
(3) (1) (2) + p() (2) 1 (2) (3) (4)
Ø,Ø,€ → Symmetoric 4 → antisymmetorie.
• Total wavefunction \Rightarrow . spatial part : $\phi_{5} = \frac{1}{\sqrt{2}} (15(1) 25(2) + 15(2) 25(1))$ $\phi_{as} = \frac{1}{\sqrt{2}} (15(1) 25(2) - 15(2) 25(1))$
spatial pard:
$\phi_{5} = \frac{1}{\sqrt{2}} (150) 25(2) + 15(2) 25(0)$
$\phi_{as} = \sqrt{2} \left(15(1) 25(2) - 15(2) 25(1) \right)$
1 10 10 10
To make the total wavefunction antisymmetric.
U - d. + [x(1)B(2) - x(2)B(1)] 4234 - Po (B(1)B(2)
To make the total wavefunction antisymmetrie, $ \psi_{1} = \phi_{5} + \left[x(1)\beta(2) - x(2)\beta(1) \right] + \left[\psi_{2/3/4} \right] + \left[x(1)\alpha(2) + \beta(1)\alpha(2) \right] + \left[\frac{1}{12} \left(x(1)\beta(2) + \beta(1)\alpha(2) \right) \right] $

$$\Psi_{1} = \frac{1}{\sqrt{2}} \left[15(i) 25(i) + 15(i) 26(i) \right] \frac{1}{\sqrt{2}} \left[\kappa(i) \beta(i) - \kappa(i) \beta(i) \right] \\
= \frac{1}{2} \left[\left[16(i) \kappa(i) 25(2) \beta(2) - 16(i) \beta(i) 25(2) \kappa(2) + 15(2) \beta(2) 25(i) \beta(i) \right] \\
= \frac{1}{2} \left[\left[16(i) \kappa(i) 26(2) \beta(2) - 16(2) \kappa(2) 25(i) \beta(i) \right] \frac{1}{4} \left\{ 16(i) \beta(i) 25(2) \kappa(2) \\
-16(2) \beta(2) 25(2) \kappa(2) \right] \right] \\
= \frac{1}{2} \left[15(i) \kappa(i) 26(2) \beta(2) \right] \left[15(i) \beta(i) 25(2) \kappa(2) \\
+ \frac{1}{2} \left[15(i) 26(2) - 16(2) 25(i) \right] \kappa(i) \kappa(2) \\
= \frac{1}{\sqrt{2}} \left[15(i) 26(2) - 16(2) 25(i) \right] \kappa(i) \kappa(2) \\
= \frac{1}{\sqrt{2}} \left[15(i) \kappa(i) 26(2) \kappa(2) - 16(2) \kappa(2) 25(i) \kappa(1) \right] \\
= \frac{1}{\sqrt{2}} \left[15(i) 26(2) - 15(2) 25(i) \right] \kappa(\beta(i) \beta(2) \\
= \frac{1}{\sqrt{2}} \left[15(i) 26(2) - 15(2) 25(i) \right] \kappa(\beta(i) \beta(2) \\
= \frac{1}{\sqrt{2}} \left[16(i) 26(2) - 16(2) 26(i) \right] \kappa(\beta(i) \beta(2) \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(i) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(i) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(i) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(i) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(i) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) 25(i) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(i) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(2) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(2) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(2) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(2) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) \beta(2) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) 26(2) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\
= \frac{1}{\sqrt{2}} \left[16(i) 26(2) 26(2) \beta(2) - 16(2) \beta(2) \beta(2) \right] \\$$

$$\frac{1}{4} = \frac{1}{12} \left[|s(i)| + |s(i)$$

$$S_{1x}. S_{1y} \propto (1) \propto (2) = \frac{1}{2} \beta(1) + \frac{1}{2} \beta(2) = \frac{1}{4} \beta(1) \beta(2)$$

$$S_{1y}. S_{2y} \beta(1) \propto (1) \times (2) = -\frac{1}{2} \beta(1) \cdot \left(-\frac{1}{2}\frac{h}{2}\right) \rho(2) = -\frac{h}{4} \beta(1) \beta(2)$$

$$S_{1z}. S_{2z} \propto (1) \propto (2) = \left(\frac{1}{2}\right) \propto (1) \left(\frac{h}{2}\right) \propto (2) = \frac{h}{4} \propto (1) \propto (2)$$

$$= \left[\frac{h}{4} + \frac{h}{4} + \frac{h}$$