Texas A&M University Department of Mechanical Engineering

MEEN 655: Design of Nonlinear Control Systems Homework 5

March 5, 2022

1. Consider a nonlinear system

$$\dot{x} = f(x, u).$$

Suppose there is a smooth control input u = h(x) that renders the equilibrium x = 0 of the closed loop system

$$\dot{x} = f(x, h(x))$$

exponentially stable. You may assume that f is Lipschitz in its arguments. Show that the extended system

$$\dot{x} = f(x, z),
\dot{z} = g(x, z) + v$$

is also smoothly exponentially stabilizable, i.e., there is a smooth function $v = \psi(x, z)$ such that the equilibrium (x = 0, z = 0) of the closed loop system

$$\dot{x} = f(x, z),
\dot{z} = g(x, z) + \psi(x, z)$$

is exponentially stable.

(Hint: Use the converse Lyapunov theorem and use a procedure similar to backstepping problems in HWs 3 and 4). Also note that by setting $g(x, z) \equiv 0$, we can see that the property of smooth stabilizability is not lost when integrators are added in the system.)

2. Consider the linear time varying system:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t).$$

Let

$$\frac{d\Phi(t,t_0)}{dt} = A(t)\Phi(t,t_0), \qquad \Phi(t_0,t_0) = I.$$

Suppose for some L_A, L_B , and for all t, we have $||A(t)|| \leq L_A$ and $||B(t)|| \leq L_B$; furthermore, the controllability grammian is uniformly positive definite, i.e., for some $\delta, \alpha, \lambda > 0$,

$$W_c(t, t + \delta) := \int_t^{t+\delta} e^{4\lambda(t-\tau)} \Phi(t, \tau) B(\tau) B^T(\tau) \Phi^T(t, \tau) d\tau \succ \alpha I.$$

• Show that

$$||W_c(t, t + \delta)|| \le \frac{L_B^2}{2(2\lambda + L_A)} [1 - e^{-2(2\lambda + L_A)\delta}].$$

• Show that

$$\frac{2(2\lambda + L_A)}{L_B^2} \|x(t)\|^2 \le x^T(t) W_c^{-1}(t, t + \delta) x(t) \le \frac{1}{\alpha} \|x(t)\|^2.$$

• Show that $W_c(t, t + \delta)$ (for short W_c) satisfies:

$$\frac{dW_c}{dt} = 4\lambda W_c + AW_c + W_c A^T - B(t)B^T(t) + e^{-4\lambda\delta}\Phi(t, t+\delta)B(t+\delta)B(t+\delta)^T\Phi^T(t, t+\delta).$$

• Show further that

$$\frac{dW_c^{-1}}{dt} = -4\lambda W_c^{-1} - (A - B^T W_c^{-1})^T W_c^{-1} - W_c^{-1} (A - B^T W_c^{-1}) - W_c^{-1} B B^T W_c^{-1} - e^{-4\lambda \delta} W_c^{-1} \Phi^T(t, t + \delta) B(t + \delta) B^T(t + \delta) \Phi^T(t, t + \delta) W_c^{-1}.$$

• Show that the feedback control law

$$u = -B^{T}(t)W_c^{-1}(t, t + \delta)x(t)$$

exponentially stabilizes the linear system. (Hint: Try $V(x,t)=x^T(t)W_c^{-1}(t,t+\delta)x(t)$.)

- What is an estimate of the rate of convergence?
- 3. Suppose the equilibrium x = 0 of the linear time-varying system

$$\dot{x}(t) = A(t)x(t)$$

is exponentially stable. Suppose $\lim_{t\to\infty} ||B(t)|| = 0$, show that the equilibrium of the perturbed linear system

$$\dot{x}(t) = (A(t) + B(t))x(t)$$

is exponentially stable.

4. Consider the problem of estimating the state of a linear system:

$$\dot{x} = Ax, \quad y = Cx,$$

where A, B, C are known constants and the initial condition, $x(0) = \theta$ is unknown. One can express

$$y(t) = \underbrace{C\Phi(t,0)}_{W^T(t)} \theta,$$

where $\Phi(t,\tau) = e^{A(t-\tau)}$. Suppose the best estimate of θ after observing the output on [0,t] is $\hat{\theta}(t)$. Let

$$\hat{y}(t) = W^T(t)\hat{\theta}(t)$$

be the output estimate; the parameter estimation error is $\tilde{\theta}(t) := \hat{\theta}(t) - \theta(t)$, and the output estimation error is $e := y(t) - \hat{y}(t) = W^T(t)\tilde{\theta}(t)$. We want to construct an adaptive parameter estimation scheme to estimate the initial condition, θ . For this we use gradient estimation scheme to drive $e \to 0$ asymptotically.

• Suppose $\phi(\tilde{\theta}) = \frac{1}{2} ||e(\tilde{\theta})||^2$. The gradient dynamical system that seeks the minimum value of ϕ is

$$\dot{\tilde{\theta}} = -\nabla \phi(\tilde{\theta}) = -W(t)e(t) = -W(t)W^{T}(t)\tilde{\theta}(t).$$

(This can be implemented as:

$$\dot{\hat{\theta}} = -W(t)e(t).$$

)

 $\bullet\,$ Show the following are equivalent:

(a) The LTV system

$$\dot{\tilde{\theta}} = -W(t)W^T(t)\tilde{\theta}(t), \quad e(t) = W^T(t)\tilde{\theta}(t)$$

is UCO if and only if the LTV

$$\dot{\tilde{\theta}} = 0, \qquad e(t) = W^T(t)\tilde{\theta}$$

is UCO.

- (b) Show that the latter LTV is UCO if and only if the pair (C, A) is completely observable.
- (c) Show that the equilibrium $\tilde{\theta} = 0$ is exponentially stable if (C, A) is completely observable.
- (d) Pick any linear system with no more than 3 states and corroborate the observation in the previous part.

5. Consider a dynamical system of the form:

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -Dx_2 - \nabla \phi(x_1),$$

where $x_1, x_2 \in \Re^n$ are the position and velocity vectors of a mechanical system. Suppose $D = D^T \succ 0$, and $\phi(x_1)$ represents the potential energy of this system with isolated extrema; you may assume $\phi(x_1)$ to be a sufficiently smooth function.

- (a) What are the equilibria of this system?
- (b) What would the corresponding Jacobi linearization be?
- (c) What can you say about the eigenvalues of the Jacobian?
- (d) What can you say about the stability of the equilibria?
- (e) Can a periodic orbit exist for this system?
- 6. Bendixson's & DuLac's criteria: A simplified version of divergence theorem for a plane states the following: If \mathcal{D} is a simply connected region of \Re^2 with Γ being its boundary. The curve Γ is parametrized by the arc length s and let $\mathcal{A} \subset \mathcal{D}$ be the area enclosed within Γ . Let $\mathbf{n}(s)$ be the outward normal to Γ at s. Let $\mathbf{f}(x_1, x_2)$ be a 2-d vector field defined on \mathcal{D} with $f_1(x_1, x_2)$ and $f_2(x_1, x_2)$ as its components. Then

$$\int_{\Gamma} \mathbf{f} \cdot \mathbf{n} \ ds = \int \int_{\mathcal{A}} div(\mathbf{f}) \ dx_1 dx_2.$$

• Consider a planar nonlinear dynamical system

$$\dot{x}_1 = f_1(x_1, x_2), \quad \dot{x}_2 = f_2(x_1, x_2).$$

Suppose $div(\mathbf{f})(x_1, x_2) > 0$ on A, then show that the planar dynamical system cannot have a closed orbit.

(Hint: If it had a periodic orbit Γ , the tangent to Γ is specified by \mathbf{f} . What would $\mathbf{f} \cdot \mathbf{n}$ be then? Use simplified divergence theorem to arrive at a contradiction).

• Consider a planar nonlinear dynamical system:

$$\dot{x}_1 = f_1(x_1, x_2), \quad \dot{x}_2 = f_2(x_1, x_2),$$

where f_1, f_2 are smooth functions. Let S be a simply connected region and $B(x_1, x_2)$ be a smooth function such that

$$div(Bf) := \frac{\partial B(x_1, x_2) f_1(x_1, x_2)}{\partial x_1} + \frac{\partial B(x_1, x_2) f_2(x_1, x_2)}{\partial x_2}$$

does not change sign or is identically zero on S. Show that S cannot have a closed orbit (trajectory) of the planar dynamical system.

7. Consider a planar dynamical nonlinear system:

$$\dot{x} = -y + xy$$
, $\dot{y} = x + \frac{1}{2}(x^2 - y^2)$.

- Show that equilibria for the above nonlinear system are: $(0,0), (-2,0), (1,\pm\sqrt{3}).$
- A sketch of phase portrait of the above system is shown in figure 1. Consider the

Figure 1: Sketch of Phase Portrait of the Planar Dynamical System

triangle with vertices A = (-2, 0), $B = (1, \sqrt{3})$ and $C = (1, -\sqrt{3})$. The equation of line connecting A and B is

$$L_{AB}(x,y) := y - \frac{1}{\sqrt{3}}(x+2) = 0.$$

Similarly, the line connecting A and C has the equation:

$$L_{AC}(x,y) = y + \frac{1}{\sqrt{3}}(x+2) = 0.$$

The line connecting B and C has the equation $L_{BC}(x,y) := x - 1 = 0$. Show that the sets $L_{AB} = 0$, $L_{AC} = 0$ and $L_{BC} = 0$ are positively invariant, i.e., if you start on them, you will remain on the respective line segment, and conclude that the triangle ΔABC is positively invariant.

• Consider the function

$$V(x,y) = -\frac{1}{2}(x^2 + y^2) + \frac{1}{2}(xy^2 - \frac{x^3}{3}),$$

and argue the plausibility of existence of a closed orbit of this system.

(Hint: For flows starting sufficiently close to the origin, who that the rate of change of V is even smaller (in order, say cubic)), while the dominating terms of V are still quadratic. Approximate cubic terms to zero and deal with dominating quadratic terms. Support your argument with a phase portrait around equilibrium).