SM4 加密可逆证明

zhanxix

一、SM4 简介

2012 年 3 月,国家密码管理局正式公布了包含 SM4 分组密码算法在内的 6 项密码行业标准。

SM4 算法是一种分组密码算法, 其分组长度为 128bit, 密钥长度也为 128bit。SM4 加密算法与密钥扩展算法均采用 32 轮非线性迭代结构, 以字(32 位)为单位进行加密运算, 每一次迭代运算均为一轮变换函数 F。

SM4 算法加/解密算法的结构相同(对合运算),只是使用轮密钥相反,其中解密轮密钥是加密轮密钥的逆序。

二、轮函数F

本算法采用非线性迭代结构,以字为单位进行加密运算,称一次迭代运算为一轮变换。

轮密钥表示为(rk_0 , rk_1 , ···, rk_{31}),其中 rk_i (i=0,···,31)为字。轮密钥由加密密钥生成。设输入为(X_0 , X_1 , X_2 , X_3) \in (Z_2^{32}) 4 ,轮密钥为 $rk \in Z_2^{32}$,则轮函数 F 为:

 $F(X_0, X_1, X_2, X_3, rk) = X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk)$

其中T是一个可逆变换,由非线性变换τ和线性变换L复合而成。

τ由 4 个并行的 S 盒构成; 非线性变换τ的输出是线性变换 L 的输入, 设输入为 B, 输出为 C, 则 C = L(B) = B \oplus (B <<< 2) \oplus (B <<< 10) \oplus (B <<< 18) \oplus (B <<< 24)。

三、加密算法

定义反序变换 R 为:R(A_0 , A_1 , A_2 , A_3)=(A_3 , A_2 , A_1 , A_0)。 明文输入为(X_0 , X_1 , X_2 , X_3) \in (Z_2^{32}) 4 ,密文输出为(Y_0 , Y_1 , Y_2 , Y_3) \in (Z_2^{32}) 4 。

则本算法的加密变换为:

 X_{i+4} =F(X_i , X_{i+1} , X_{i+2} , X_{i+3} , rk_i) = X_i ⊕T(X_{i+1} ⊕ X_{i+2} ⊕ X_{i+3} ⊕ rk_i), i=0,1,…,31 最后进行反序变换:

 $(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32})$

从而得到密文。

四、解密算法(加密可逆)

SM4 算法是对合的,因此解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序。

加密时轮密钥的使用顺序为: (rk₀, rk₁, ···, rk₃₁)。 解密时轮密钥的使用顺序为: (rk₃₁, rk₃₀, ···, rk₀)。

定义反序变换 R 为: R(A_0 , A_1 , A_2 , A_3)=(A_3 , A_2 , A_1 , A_0)。 密文输入为(Y_0 , Y_1 , Y_2 , Y_3) \in (Z_2^{32}) 4 ,明文输出为(X_0 , X_1 , X_2 , X_3) \in (Z_2^{32}) 4 。有(X_{35} , X_{34} , X_{33} , X_{32})=(Y_0 , Y_1 , Y_2 , Y_3)。

于是有解密变换:

X_i=F(X_{i+4}, X_{i+3}, X_{i+2}, X_{i+1}, rk_i) =X_{i+4}⊕T(X_{i+3}⊕X_{i+2}⊕X_{i+1}⊕rk_i), i=31,···,1,0 再进行反序变换:

 $(X_0, X_1, X_2, X_3) = R(X_3, X_2, X_1, X_0)$

由此, 可以进行解密, 得出明文。