Ćwiczenia

Wojciech Jedynak

Paweł Wieczorek

14 października 2011

1 Propozycja

Zadanie 1. Dodaj nowe zbiory do naszego systemu - listę parametryzowaną zbiorem A oraz drzewo binarne parametryzowane zbiorem A, tzn sformuuj wszystkie potrzebne reguły aby takie zbiory wprowadzić.

Zadanie 2. Ustalmy typy A oraz rodzinę B(a) dla każdego $a \in A$ oraz C(a, a') dla każdych $a, a' \in A$. Zbuduj termy o następujących typach:

$$((\Pi x \in A) \ (\Pi y \in A) \ C(x,y)) \to (\Pi y \in A) \ (\Pi x \in A) \ C(x,y)$$
$$((\Sigma x \in A) \ (\Pi y \in A) \ C(x,y)) \to (\Pi y \in A) \ (\Sigma x \in A) \ C(x,y)$$
$$((\Pi x \in A) \ (\Pi y \in A) \ B(x) \to B(y)) \to (\Pi x \in A) \ (\Pi y \in A) \ \neg B(y) \to \neg B(x)$$
$$(\neg(\Sigma x \in A) \ B(x)) \to (\Pi x \in A) \ \neg B(x)$$

Zadanie 3. Stwórz wyrażenie compose, za pomocą którego stworzymy następującą regulę:

$$g \in A \to B \qquad f \in B \to C$$
$$compose(f,g) \in A \to C$$

Następnie zaproponuj regulę dla wersji z typami zależnymi i zdefiniuj odpowiednie wyrażenie composeDep.

$$g \in (\Pi x \in A)B(x)$$
 $f \in (\Pi x \in A)(\Pi b \in B(x)) C(b)$
 $composeDep(f,g) \in ?$

Zdefiniuj też pomocnicze wyrażenie apply2:

$$\frac{f \in (\Pi x \in A)(\Pi y \in B(x))C(x,y) \quad x \in A \quad y \in B(x)}{apply2(f,x,y) \in C(x,y)}$$

Zadanie 4. Ustalmy typ A, wyprowadź termy o następujących typach.

$$(\Pi x \in A) \ [x =_A x]$$

$$(\Pi b \in Bool)(\Pi c \in A) \ [if \ b \ then \ c \ else \ c =_A c]$$

Zadanie 5. Wyprowadź samodzielnie regulę dla prawa Leibniza (subst). Następnie posługując się tą regulą pokaż jak stworzyć reguly dla symetrii i przechodniości.

$$P(x) \ set \ [x \in A] \qquad a \in A \qquad b \in A \qquad c \in [a =_A b] \qquad p \in P(a)$$
$$subst(c, p) \in P(b)$$

Oraz pokaż jak stworzyć cong dla poniższej reguły.

$$\frac{f \in A \to B \quad a \in A \quad b \in A \quad c \in [a =_A b]}{cong(c, f) \in [f \ a =_B f \ b]}$$

Zadanie 6. Zdefiniuj funkcję dodawania add $\in Nat \rightarrow Nat \rightarrow Nat$, a następnie stwórz termy o następujących typach:

$$[apply2(add, 0, a) =_{Nat} a]$$

$$[apply2(add, a, 0) =_{Nat} a]$$

$$[apply2(add, succ(a), b) =_{Nat} succ(apply2(add, b, a))]$$

$$[apply2(add, a, b) =_{Nat} apply2(add, b, a)]$$

Powyższe równości mogą być traktowane jako specyfikacja dodawania, można teraz zauważyć że nasz system z typami zależnymi posłużył jednocześnie do zdefiniowania funkcji, zdefiniowania specyfikacji (za pomocą typów identycznościowych) oraz udowodnił że funkcja spełnia te równości – co oznacza że wszystko zostało zweryfikowane w obrębie jednego systemu.

Zadanie 7. Skonstruuj negację bitową, tzn funkcję neg $b \in Bool \to Bool$ a następnie skontruuj term o typie:

$$(\Pi b \in N_2) \neg [b =_{Bool} apply(negb, b)]$$

Dodatkowo, zbuduj termy o następujących typach:

$$[apply(negb, true) =_{Bool} false]$$

 $[apply(negb, false) =_{Bool} true]$

Zadanie 8. Udowodnij, że nie istnieje funkcja z liczb naturalnych w ciągi zero-jedynkowe, która ma funkcję odwrotną. To jest skonstruuj term thm o następującym typie:

$$\neg(\Sigma f \in N \to BinSeq) \ (\Sigma g \in BinSeq \to N) \ (\Pi s \in BinSeq) \ [apply2(f,g,s) =_{BinSeq} s]$$
gdzie $BinSeq$ oznacza $N \to Bool$.

Wskazówka: Dowód tego twierdzenia to standardowy przykład metody przekątniowej, można znaleźć rozwiązanie w Whitebooku. Trudność polega na przeniesieniu tego na naturalną dedukcję.

2 Agda i teoria

Zadanie 9 (Da się rozwiązać w Agdzie). Ustalmy typy A oraz rodzinę B(a) dla każdego $a \in A$ oraz C(a, a') dla każdych $a, a' \in A$. Zbuduj termy o następujących typach:

$$((\Pi x \in A) (\Pi y \in A) C(x,y)) \to (\Pi y \in A) (\Pi x \in A) C(x,y)$$

$$((\Sigma x \in A) (\Pi y \in A) C(x,y)) \to (\Pi y \in A) (\Sigma x \in A) C(x,y)$$

$$((\Pi x \in A) (\Pi y \in A) B(x) \to B(y)) \to (\Pi x \in A) (\Pi y \in A) \neg B(y) \to \neg B(x)$$

$$(\neg(\Sigma x \in A) B(x)) \to (\Pi x \in A) \neg B(x)$$

$$((\Pi x \in A) B(x)) \to (\Pi x \in A) B(x)$$

Zadanie 10 (Da się rozwiązać w Agdzie). Ustalmy typy A, B, zbuduj termy o następujących typach:

$$(\Pi s \in A) \ s \equiv_A s$$

$$(\Pi s \in A)(\Pi t \in A) \ s \equiv_A t \to t \equiv_A s$$

$$(\Pi s \in A)(\Pi t \in A)(\Pi r \in A) \ s \equiv_A t \to t \equiv_A r \to s \equiv_A r$$

$$(\Pi f \in A \to B)(\Pi s \in A)(\Pi t \in A) \ s \equiv_A t \to f \ t \equiv_B f \ s$$

Zadanie 11 (Da się rozwiązać w Agdzie). Zdefiniuj dodawanie i mnożenie na liczbach naturalnych, a następnie skonstruuj termy o następujących typach:

$$(\Pi m \in N) \ add \ 0 \ m \equiv m$$

$$(\Pi n \in N) \ add \ n \ 0 \equiv n$$

$$(\Pi n \in N) \ (\Pi m \in N) \ add \ n \ m \equiv add \ m \ n$$

$$(\Pi m \in N) \ mult \ 0 \ m \equiv 0$$

$$(\Pi n \in N) \ mult \ n \ 0 \equiv 0$$

$$(\Pi n \in N) \ (\Pi m \in N) \ mult \ n \ m \equiv mult \ m \ n$$

$$(\Pi n \in N) \ (\Pi m \in N) \ mult \ (add \ 1 \ n) \ m \equiv add \ n \ (mult \ m \ n)$$

$$(\Pi n \in N) \ (\Pi m \in N) \ mult \ (add \ 2 \ n) \ m \equiv add \ (mult \ 2 \ n) \ (mult \ m \ n)$$

Zadanie 12 (Da się rozwiązać w Agdzie). Zdefiniuj poprzednik na liczbach naturalnych, a następnie zbuduj termy o następujących typach:

$$pred \ 0 \equiv 0$$

$$(\Pi n \in N) \ pred \ (add \ 1 \ n) \equiv n$$

$$(\Pi n \in N)$$

Zadanie 13 (Da się rozwiązać w Agdzie). *Ustalmy typ A, zbubuj funkcję toCh o następującym typie*,

$$N \to (A \to A) \to A \to A$$

a następnie termy o takich typach:

$$(\Pi f \in A \to A) \ (\Pi x \in A) \ to Ch \ 0 \ f \ x \equiv x$$

$$(\Pi f \in A \to A) \ (\Pi x \in A) \ to Ch \ (add \ 1 \ n) \ f \ x \equiv f \ (to Ch \ n \ f \ x)$$

$$(\Pi n \in N) \ (\Pi m \in N) \ (\Pi f \in A \to A) \ (\Pi x \in A) \ to Ch \ (add \ n \ m) \ f \ x \equiv to Ch \ n \ f \ (to Ch \ m \ f \ x)$$

Zadanie 14 (Da się rozwiązać w Agdzie). Ustalmy dowolne typy A, B, C. Pokaż, że typy $A \to B \to C$ oraz $A \times B \to C$ są izomorficzne. To jest, oprócz zdefiniowana dobrze znanych funkcji zbuduj także dowód że są swoimi odwrotnościami, tzn termy o następujących typach:

$$(\Pi f \in A \to B \to C) \ curry (uncurry f) \equiv f$$

$$(\Pi f \in A \times B \to C) \ uncurry \ (curry \ f) \ \equiv f$$

(sprawdzić czy się da, czy trzeba dodać jeszcze argumenty, tzn $(\cdots f \cdots)$ $x y \equiv f x y$

2.1 Bardziej teoretyczne

Zadanie 15 (Da się rozwiązać w Agdzie). *Ustalmy typ A, zakoduj za pomocą W-typów typ Maybe A znany z Haskella.*

Zadanie 16 (NIE da się rozwiązać w Agdzie). W książce "Intuinistic type theory" pojawia się dodatkowa regula wnioskowania dotyczaca równości:

$$\frac{H \in x \equiv_A y}{x = y : A}$$

Mówi ona, że jeżeli posiadamy dowód, że dwa termy są równe to są one konwertowalne. Ta reguła sprawia, że type-checking jest nierozstrzygalny, a taką równość i teorię typów nazywany ekstensjonalną. Korzystając z tej reguły udowodnij ekstensjonalność funkcji, tzn pokaż że w ekstensjonalnej teorii typów dla ustalonych typów A, B możemy zbudować term o typie

$$(\Pi f \in A \to B) \ (\Pi g \in A \to B) \ ((\Pi x \in A) \ f \ x \equiv g \ x) \to f \equiv g$$

Zadania nie da się rozwiązać w Agdzie ponieważ nie można rozszerzać systemu o nowe reguły wnioskowania. (Sprawdzić czy η -ekspansja jest potrzebna, czy jest dowodliwa z tą równością)

Zadanie 17 (Da się rozwiązać w Agdzie). Skonstruuj negację bitową, tzn term neg $b: N_2 \to N_2$ a następnie skontruuj term o typie:

$$(\Pi b \in N_2) \neg (b \equiv negb \ b)$$

Wskazówka: Trudność to dowód że 0_2 jest różne od 1_2 , ponieważ nie mamy typów indukcyjnych to to nie jest oczywiste, trzeba użyć uniwersum jak z czwartym aksjomatem Peano na seminarium.

 $Propozycja\ rozwiązania.$ Stwórzmy najpierw dowód, że $\neg(0_2 \equiv 1_2)$. Jest on identyczny z książkowym.

Weźmy dowolny $H \in (0_2 \equiv 1_2)$ oraz zdefiniujmy rodzinę typów:

is
Zero(m) =
$$Set(N_2$$
-elim \widehat{N}_1 \widehat{N}_0 m)

Zaznaczmy, że $isZero(0_2) = Set(\widehat{N}_1) = N_1$ oraz $isZero(1_2) = Set(\widehat{N}_0) = N_0$

Term $0_1 \in N_1$ czyli $0_1 \in \text{isZero}(0_2)$. Robiąc eliminację na H możemy skonstruować absurdalną wartość, używając po prostu reguły Leibniza: (subst $0_1 H$) $\in \text{isZero}(1_2) = N_- 0$

Zadanie 18 (Da się rozwiązać w Agdzie). *Udowodnij, że nie istnieje funkcja z liczb natu*ralnych w ciągi zero-jedynkowe, która ma funkcję odwrotną. To jest skonstruuj term thm o następującym typie:

$$\neg(\Sigma f \in N \to BinSeq) \, (\Sigma g \in BinSeq \to N) \, (\Pi s \in BinSeq) \, f(g \, s) \equiv s$$

gdzie BinSeq oznacza $N \rightarrow N_2$.

Wskazówka: Dowód tego twierdzenia to standardowy przykład metody przekątniowej, można znaleźć rozwiązanie w Whitebooku. Trudność polega na przeniesieniu tego na naturalną dedukcję (Zaskakujące może być, że to twierdzenie jest konstruktywne!).

Propozycja rozwiązania. Zanim sformalizujemy metodę przekątniową przypomnijmy sobie ten dowód, by ustalić co konkretnie chcemy uzyskać.

Pokażmy, że dla dowolnych funkcji f i g potrafimy dojśc do sprzeczności o ile g jest odwrotnością f. Stwórzmy "przekątniowy" ciąg zero-jedynkowy h: BinSeq:

$$h = \lambda n.\text{negb} (f \ n \ n)$$

Element tego ciągu o numerze n jest równy negacji n-tego elementu w n-tym ciągu w wyznaczonej numeracji przez funkcję f. Za pomocą funkcji g możemy uzyskać numer tego ciągu, niech $n_h=g$ h. Teraz, zauważmy że

$$h n_h = \text{negb} (f n_h n_h) = \text{negb} (f (g h) n_h) = \text{negb} (h n_h)$$

czyli sprzeczność.

Możemy teraz zacząć zastanawiać się jak przenieść powyższe rozumowanie na naturalną dedukcję, musimy spróbować skonstruować funkcję diagonal o następującym typie:

$$(\Pi f \in N \to BinSeq) \, (\Pi g \in BinSeq \to N) \, \to \big((\Pi s \in BinSeq) \, f(g \, s) \equiv s \big) \to N_0$$

Chcemy aby odpowiadała ona przedstawionemu rozumowaniu. Term zacząć pisać prosto:

diagonal =
$$\lambda f. \lambda g. \lambda C.$$
 ?

W miejscu ? chcemy skonstruować absurdalną wartość. Ale jak? Sprzeczność uzyskaliśmy pokazując, że h n_h = negb (h $n_h)$, bo wiemy że dla dowolnego b zachodzi $b \neq$ negb b.

Wykorzystajmy te szczegóły w praktyce: z poprzedniego zadania mamy term Hnegb : $(\Pi b \in N_2) \neg (b \equiv \text{negb } b)$, czyli pamiętając co rozumiemy jako negację - jesteśmy w posiadaniu metody, która z dowodu $b \equiv \text{negb } b$ konstruuje absurdalną wartość. Wykorzystajmy tę metodę dla $h n_b$.

diagonal =
$$\lambda f. \lambda g. \lambda C$$
. Hnegb $(h n_h) Heq$

gdzie

$$Heq = ?$$
: $h n_h \equiv \text{negb}(h n_h)$

By skonstruować świadka tej równości musimy przeanalizować ciąg równości w oryginalnym rozumowaniu - pierwsze dwie

$$h n_h = \text{negb} (f n_h n_h) = \text{negb} (f (q h) n_h)$$

mamy z definicji h oraz n_-h . Czyli interesuje nas jedynie term typu

$$\operatorname{negb}(f(g h) n_h) \equiv \operatorname{negb}(h n_h)$$

•••

Dowód twierdzenia, to funkcja która ze świadka istnienia takich funkcji f i g ma konstruować wartość absurdalną, która jedyne co musi zrobić to rozpakować dane z argumentu i zaaplikować do nich funkcję diagonal.

$$thm = \lambda H$$
. Σ -elim $(\lambda f.\lambda H'. \Sigma$ -elim $(\lambda g.\lambda H''. \text{diagonal } f \ g \ H'') \ H') \ H$

3 Tylko Agda

5