LAMPIRAN I
PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP
REPUBLIK INDONESIA
NOMOR 10 TAHUN 2012
TENTANG
PENGELOLAAN BAKU MUTU EMISI GAS BUANG KENDARAAN
BERMOTOR TIPE BARU KATEGORI L3

BAKU MUTU EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU

A. Baku Mutu Emisi Gas Buang Kendaraan Bermotor dengan Metoda Uji NEDC

KENDARAAN BERMOTOR TIPE BARU KATEGORI L DENGAN PENGUJIAN TIPE I (MODE TEST)

No	KATEGORI	PARAMETER	NILAI	METODA UJI
			AMBANG	
			BATAS	
			Gram/km	
	L3 < 150 cm3	CO	2.0	ECE R 40
		HC	0.8	UDC mode (Cold
		Nox	0.15	start)
	$L3 \ge 150 \text{ cm}3$	CO	2.0	ECE R 40
		HC	0.3	UDC+EUDC mode
		Nox	0.15	(Cold start)

UDC : Urban Driving Cycle

EUDC: Extra Urban Driving Cycle

Catatan:

1. NEDC: (New European Driving Cycle)

- 2. Pengukuran emisi idle CO dilakukan dengan metode Pengujian Tipe II UN Regulation R40. Hasil pengukuran dicatat dalam lembar hasil uji.
- 3. Kategori kendaraan L3 adalah kendaraan bermotor beroda dua dengan kapasitas silinder lebih dari 50 cm³ atau dengan desain kecepatan maksimum lebih dari 50 km/jam apapun jenis tenaga penggeraknya.

B. Baku Mutu Emisi Gas Buang Kendaraan Bermotor dengan Metoda Uji WMTC

No	KATEGORI	PARAMETER	NILAI	METODA UJI
			AMBANG	
			BATAS	
			gram/km	
1	a. (≧130km/jam)	CO	2,62	
		HC	0,33	WMTC
		NOx	0,22	
	b. (<130km/jam)	CO	2,62	
		HC	0,75	WMTC
		NOx	0,17	

Kelas	Sub	Definisi	
	Kelas		
Kelas 1	-	50 cc < kapasitas silinder mesin < 150 cc	
		dan Vmax > 50 km/jam atau	
		kapasitas silinder mesin <150cc, 50 km/jam	
		≦ Vmax < 100 km/jam	
Kelas 2	2-1	kapasitas silinder mesin <150 cc dan 100	
		km/jam ≤ Vmax < 115 km/jam, atau	
		kapasitas silinder mesin ≥150 cc dan Vmax	
		< 115 km/jam	
	2-2	115 km/jam ≤ Vmax < 130 km/jam	
Kelas 3	3-1	130 km/jam ≤ Vmax < 140 km/jam	
	3-2	Vmax ≧140 km/jam	

Catatan:

- 1. WMTC: (Worldwide Harmonized Motorcycle Emissions Certification Procedure)
- 2. Vmax adalah kecepatan maksimum kendaraan sebagaimana dinyatakan oleh produsen, diukur sesuai dengan *Directive* Uni Eropa (UE) No. 95/1/EC.

MENTERI NEGARA LINGKUNGAN HIDUP REPUBLIK INDONESIA,

BALTHASAR KAMBUAYA

LAMPIRAN II PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP REPUBLIK INDONESIA NOMOR 10 TAHUN 2012 TENTANG PENGELOLAAN BAKU MUTU EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU KATEGORI L3

PENGUJIAN KENDARAAN BERMOTOR TIPE BARU DENGAN METODA UN REGULATION 40 DAN DIRECTIVE 2002/51/EC

1. RUANG LINGKUP

Peraturan Menteri ini berlaku untuk emisi gas polutan dan emisi karbon dioksida dan konsumsi bahan bakar sepeda motor roda dua dengan kapasitas silinder mesin melebihi 50 cm³ atau kecepatan desain maksimum melebihi 50 km/jam.

2. DAFTAR ISTILAH

- a. Persetujuan kendaraan (*Approval of a vehicle*) adalah persetujuan tipe kendaraan sehubungan dengan batasan emisi polutan gas dari mesin.
- b. Tipe kendaraan (*Vehicle type*) adalah kategori kendaraan yang digerakkan oleh mesin di mana tidak memiliki perbedaan mendasar dalam beberapa hal penting seperti:
 - 1) Kelembaman/inersia ekuivalen yang ditentukan terhadap berat acuan dalam paragraf 5.b lampiran ini.
 - 2) Karakteristik mesin dan kendaraan sebagaimana ditetapkan dalam lampiran ini;
- c. Berat acuan (*Reference weight*) adalah berat kendaraan dalam keadaan berjalan, ditambah dengan berat seragam sebesar 75 kg. Berat kendaraan dalam keadaan berjalan adalah berat kosong total dengan semua tangki penuh.
- d. Bak engkol mesin (*Engine crank-case*) adalah ruang yang terdapat di dalam atau di luar mesin yang dihubungkan ke penampungan oli (*oil sump*) dengan saluran internal atau eksternal yang dapat dilalui gas dan uap untuk keluar.
- e. Polutan gas (*Gaseous pollutants*) adalah karbon monoksida, hidrokarbon, dan nitrogen oksida; nama terakhir diekspresikan sebagai ekuivalen nitrogen dioksida (NO₂).

3. APLIKASI PERSETUJUAN

- a. Aplikasi persetujuan tipe kendaraan terkait pembatasan emisi polutan gas dari mesin harus diajukan oleh produsen kendaraan atau oleh perwakilannya yang telah terakreditasi.
- b. Aplikasi tersebut harus disertai dengan dokumen dalam tiga rangkap dan disertai dengan keterangan berikut:
 - 1) Deskripsi tipe mesin yang mencakup semua keterangan yang ditunjukkan dalam Lampiran IV (Formulir Laporan Pengujian Emisi Gas Buang Kendaraan Bermotor Tipe Baru) dari Peraturan Menteri ini:
 - 2) Keterangan tentang kendaraan sebagaimana ditunjukkan dalam Lampiran IV Annex 2 Peraturan Menteri ini.
- c. Contoh kendaraan mewakili tipe kendaraan yang akan disetujui harus diserahkan kepada Balai Pengujian (*Technical Service*) untuk dilakukan pengujian persetujuan, sesuai dengan uji yang dimaksud Peraturan Menteri ini.

4. SPESIFIKASI DAN PENGUJIAN

a. Umum

Komponen yang kemungkinan terkena dampak emisi polutan gas harus dirancang, dibangun, dan dirakit sedemikian hingga memungkinkan kendaraan normal dapat memenuhi ketentuan Peraturan Menteri ini. meskipun terdapat kemungkinan terjadinya getaran pada komponen.

b. Deskripsi pengujian

Sesuai dengan kategorinya, kendaaran harus melalui dua tipe pengujian, yakni Pengujian Tipe-I dan Pengujian Tipe-II, sebagaimana ditetapkan di bawah.

1) Pengujian tipe-I

- a) Pengujian akan dilaksanakan berdasarkan metoda yang dijelaskn pada Peraturan Menteri ini. Gas akan diambil dan dianalisa berdasarkan metoda-metoda yang telah ditentukan.
- b) Pada pengujian ini, massa karbon monoksida, massa hidrokarbon, dan massa nitrogen oksida yang diperoleh akan bernilai lebih kecil dari ambang batas yang ditentukan oleh Menteri yang menyelenggarakan urusan pemerintahan dibidang perlindungan dan pengelolaan lingkungan hidup. Ukuran massa per kilometer dari nitrogen oksida dibuat hanya sebagai informasi.

- c) Untuk kendaraan kategori L3, pemenuhan terhadap baku mutu sesuai Peraturan Menteri, sepeda motor kategori L3 dengan kecepatan maksimum yang diijinkan 110 km/jam, maka untuk *extra urban driving cycle (EUDC)* kecepatan tertinggi dibatasi sampai 90 km/jam
- 2) Pengujian tipe-II (memverifikasi emisi karbon monoksida pada kecepatan langsam (*idle*))
 - a) Kandungan gas buang karbon monoksida yang dikeluarkan saat mesin dalam keadaan langsam (idle) diukur dan dicatat.
 - b) Kesesuaian terhadap persyaratan ini akan diperiksa dengan pengujian yang dilaksanakan berdasarkan metode yang dijelaskan pada Peraturan Menteri ini.

Lampiran II.A Pengujian Tipe-I

1. PENDAHULUAN

Kendaraan ditempatkan pada dinamometer (dynamometer bench) yang dilengkapi dengan rem dan roda gila (fly-wheel). Pengujian yang berlangsung selama total 13 menit dan terdiri atas empat siklus ini harus dilaksanakan tanpa gangguan. Setiap siklus harus terdiri atas 15 siklus (langsam/idle, akselerasi, kecepatan tetap, deselerasi, dsb). Selama pengujian, gas buang akan dilarutkan dengan udara untuk memperoleh aliran volumetrik campuran yang konstan. Selama pengujian, dari campuran yang diperoleh, sampel pada laju alir yang konstan harus dikumpulkan ke dalam sebuah kantong untuk penentuan konsentrasi (rata-rata uji) karbon monoksida, hidrokarbon tidak terbakar, nitrogen oksida, dan karbon dioksida, secara berurutan.

Untuk Baku Mutu Kendaraan Bermotor Kategori L3, kendaraan ditempatkan pada dinamometer (dynamometer bench) yang dilengkapi dengan rem dan roda gila (fly-wheel) dengan ketentuan sebagai berikut:

- a. Untuk Kategori L3 < 150 cm³, pengujian dilakukan dengan 6 (enam) siklus *elementary urban cycles* (*UDC*, *Urban Driving Cycle*) dengan total waktu 1170 detik.
- b. Untuk Kategori L3 \geq 150 cm³, pengujian dilakukan dengan 6 (enam) siklus *elementary urban cycles* (*UDC*, *Urban Driving Cycle*) ditambah

satu siklus *extra urban cycles* (E*UDC, Extra Urban Driving Cycle*) dengan total waktu 1570 detik secara langsung tanpa ada waktu jeda.

2. SIKLUS OPERASI PADA DINAMOMETER

a. Deskripsi siklus

Siklus operasional yang akan digunakan pada dinamometer harus sesuai dengan yang diindikasikan pada tabel berikut dan sesuai dengan yang digambarkan pada grafik dalam Lampiran II.A1 dari Peraturan Menteri ini.

b. Persyaratan umum untuk pelaksanaan siklus

Siklus pengujian awal diperlukan untuk memastikan fungsi kendali akselerator dan jika diperlukan fungsi kendali rem agar tercapai siklus yang mendekati batasan siklus teoritis.

c. Penggunaan transmisi

- 1) Penggunaan transmisi sepeda motor harus digunakan sesuai dengan kondisi berikut:
 - a) Pada kecepatan konstan, jika dimungkinkan nilai putaran mesin diantara 50 sampai 90% dari putaran mesin pada tenaga (power) mesin maksimum. Ketika kecepatan ini dapat dicapai dalam dua posisi gigi atau lebih, maka sepeda motor harus diuji dengan persneling tertinggi.
 - b) Selama akselerasi, sepeda motor harus diuji dengan persneling yang sesuai dengan akselerasi yang diterapkan oleh siklus tersebut. Apabila putaran mesin melebihi 110% dari putaran mesin pada tenaga maksimum, maka gigi harus dipindahkan ke gigi yang lebih tinggi. Apabila sepeda motor mencapai kecepatan 20 km/jam pada persneling pertama, atau 35 km/jam pada persneling kedua, maka persneling berikutnya (yang lebih tinggi) harus diaktifkan pada

kecepatan tersebut. Dalam kasus seperti ini, tidak diperbolehkan adanya perpindahan lebih lanjut ke persneling yang lebih tinggi

Selama tahapan akselerasi, perpindahan gigi telah terjadi pada kecepatan kendaraan yang sudah ditetapkan. Tahapan kecepatan konstan dilakukan dengan penggunaan gigi pada saat sepeda motor memasuki tahapan kecepatan konstan, tanpa memperhatikan kecepatan mesin.

Selama perlambatan, pemindahan gigi ke yang lebih rendah harus dilakukan sebelum putaran mesin mulai tidak stabil,

- paling lambat ketika putaran mesin setara dengan 30 persen dari putaran mesin pada tenaga maksimum. Pada saat perlambatan, tidak diperbolehkan menurunkan ke posisi gigi satu yang berakibat naiknya putaran mesin secara tiba-tiba.
- 2) Sepeda motor yang dilengkapi kotak transmisi otomatis harus diuji dengan persneling tertinggi (*drive*). Akselerator harus digunakan sedemikian hingga dapat menghasilkan akselerasi paling konstan yang dimungkinkan dari berbagai persneling yang dapat diaktifkan sesuai urutan normal. Toleransi diberlakukan dalam pengujian ini.
 - Untuk Kendaraan Kategori L3 untuk melakukan siklus *extra urban*, gigi (*gear box*) yang dipakai adalah sesuai rekomendasi pabrik pembuat. Posisi perpindahan gigi yang dinyatakan dalam *Lampiran II.A1* tidak dipakai. Percepatan harus dilanjutkan sepanjang periode yang diwakili oleh garis lurus yang menghubungkan akhir dari masing-masing periode langsam dengan awal dari periode kecepatan tetap (*steady speed*) berikutnya. Ketentuan toleransi yang dinyatakan pada paragraf 2.d dibawah digunakan.

Operasi	Strat Contras	4					The State of the State of the State of	
١.		1936	1,5/m	(km/jam)	Operasi (s)	Fase (s)	Waxtu sumulant (s)	kasus kotak transmisi manua
	Langsam (ig/e)				111	11	11	6s PMSs K
	Akselerasi	2	1.04	0-15	4	4	15	_
m.	Kecepatan konstan	m		15	00	00	23	(sesual dengan paragraf
4	Deselerasi	-	69'0	15-10	2		52	(23
10	Deselerasi, kopling	7				. 5		
	dilepas	_	-0,92	10.0	10	_	28	×
10	Langsam (idie)	ın			21	21	49	16s PM 5s K
	Akselerasi	ф	0,74	0.32	12	12	61	_
60	Kecepatan konstan	7		3.2	24	24	85	(sesual dengan paragraf
Ot	Deselerasi	_	-0.75	32-10	00	-	93	(23
10	Deselerasi, kopling	8 (11		_
	dilepas	-	-0.92	10-0	m	_	96	
=	Langsam (idle)	gh .			11	23	117	16sPM5sK
12	Akselerasi	10	0,53	0.50	26	26	143	_
e0	Kecepatan konstan	11		20	12	12	155	_
17	Deselerasi	17	-0,52	50-35	60	co)	163	(sesual dengan paragraf
15	Kecepatan konstan	13		35	13	13	176	(23
	Deselerasi	_	-0.68	35-10	Or	_	185	_
17	Deselerasi, kopling	11 () 12		_
	dilepas	-	-0,92	10.0	100		188	×
19	Langsam (idle)	15			7	7	195	7 s PM

*PM : Gigi Netral, kopling aktif K : Kopling tidak aktif

d. Toleransi

- 1) Toleransi 1 km/jam di atas atau di bawah kecepatan teoritis dapat diberlakukan pada seluruh tahapan siklus/langkah. Toleransi kecepatan yang lebih besar daripada nilai yang telah ditetapkan dapat diterima asalkan toleransi tersebut tidak pernah melampaui waktu lebih dari 0,5 detik pada kondisi apapun dengan pengecualian ketentuan paragraf 6 e dan 6 f Lampiran ini.
- 2) Toleransi waktu yang diperbolehkan ± 0,5 detik
- 3) Toleransi kecepatan dan waktu digabungkan sebagaimana tertera pada Lampiran II.A1 dari Peraturan Menteri ini.
- 4) Jarak yang ditempuh selama siklus uji akan diukur dengan ± 2 %.

3. KENDARAAN DAN BAHAN BAKAR

a. Kendaraan uji

- 1) Kendaraan yang diajukan harus dalam kondisi mekanis yang baik. Kendaraan harus sudah berjalan dan sudah dikendarai (running-in) sekurang-kurangnya 1.000 km sebelum pengujian. Laboratorium pengujian dapat memutuskan apakah kendaraan yang dikendarai kurang dari 1.000 km sebelum pengujian dapat diterima.
- 2) Tidak boleh terjadi kebocoran pada alat pembuangan yang mengakibatkan berkurangnya jumlah gas yang diukur.
- 3) Lakukan pemeriksaan kebocoran saluran udara masuk untuk memastikan karburasi tidak dipengaruhi oleh masuknya udara yang lain.
- 4) Penyetelan *(setting)* kendaraan harus dilakukan berdasarkan setelan yang telah ditentukan pabrik pembuat.
- 5) Laboratorium uji dapat memverifikasi apakah kendaraan telah sesuai dengan kinerja yang dinyatakan oleh pabrik pembuat; bahwa kendaraan dapat digunakan dalam kondisi mengemudi normal, dan secara khusus, bahwa kendaraan mampu dihidupkan ketika dingin dan ketika panas.

b. Bahan bakar motor

Bahan bakar yang digunakan adalah bahan bakar acuan dengan spesifikasi yang ditentukan dalam Peraturan Menteri ini. Jika mesin diberi pelumas campuran, maka oli yang ditambahkan ke dalam bahan bakar acuan harus memenuhi kualitas dan kuantitas yang sesuai dengan rekomendasi produsen.

4. PERLENGKAPAN UJI

a. Dinamometer

Karakteristik-karakteristik dynamometer adalah sebagai berikut: Satu set kontak *roller/*silinder ban (*roller-tyre contact*) untuk setiap roda penggerak

- Diameter roller: > 400 mm.
- Persamaan kurva penyerapan energi (power absorption curve):
 Dinamometer harus dapat memungkinkan produksi ulang dalam ± 15 % kecepatan awal 12 km/jam, dari tenaga jalan (road power) yang dihasilkan mesin; sepeda motor dikendarai pada jalan horizontal dengan kecepatan angin sedapat mungkin mendekati nol. Jika tidak, tenaga yang terserap oleh rem dan gesekan internal meja uji harus dihitung berdasarkan paragraf 11 Lampiran D Jika tidak, tenaga yang terserap oleh rem dan gesekan internal akan setara dengan:

KV 3 +/- 5% of KV 3 +/- 5% of P $_{V50}$

- Kelembaman/inersia tambahan: 10 kg kali 10 kg */
 - 1) Jarak aktual yang ditempuh akan diukur dengan penghitung putaran (revolution counter) yang digerakkan oleh roller yang menggerakkan rem dan roda gila (fly-wheel).
- b. Perlengkapan pengambilan sampel gas dan pengukuran volume
 - 1) Bagan sederhana tentang perlengkapan pengambilan sampel, pelarutan, dan pengukuran volume untuk digunakan dengan gas buang yang dikeluarkan selama pengujian dapat dilihat pada Lampiran II.A2 dan Lampiran II.A3 Peraturan Menteri ini.
 - 2) Perlengkapan uji diuraikan dalam paragraf-paragraf berikut; setiap komponen diidentifikasi berdasarkan lambang acuan yang digunakan dalam Lampiran II.A2 dan Lampiran II.A3. Perlengkapan yang mungkin digunakan apabila menurut para petugas teknis di Lembaga/Otoritas Administrasi, penggunaan perlengkapan tersebut dapat memberikan hasil yang sama.
 - Alat untuk mengambil semua gas buang yang dikeluarkan selama pengujian, umumnya merupakan alat jenis terbuka (open type device) yang dapat menjaga tekanan atmosfer pada saluran buang sepeda motor. Walau demikian, apabila kondisi tekanan balik telah memenuhi (< +/- 125 mm of H₂O), maka sebuah sistem tertutup dapat digunakan. Pengambilan sedemikian tidak terjadi harus dilakukan agar gas kondensasi pada suhu pengujian yang dapat secara signifikan mengubah sifat alami gas buang.

- b) Pipa (Tu) yang menghubungkan peralatan dengan perlengkapan pengambilan sampel gas. Pipa dan peralatan harus terbuat dari baja stainless (stainless steel) atau bahan lainnya yang tidak mempengaruhi komposisi gas yang diambil dan dapat tahan terhadap suhu gas-gas tersebut.
- c) Alat penukar panas (heat exchanger) (Sc) yang mampu membatasi variasi suhu gas terlarut dalam saluran masuk pompa sampai +/- 5 derajat selama pengujian. Alat penukar panas ini harus dilengkapi dengan sistem pemanasan awal yang dapat membantu alat penukar panas menghasilkan suhu pengoperasian (dengan toleransi suhu +/- 5 derajat) sebelum dimulainya pengujian.
- d) Pompa desak (displacement pump) (P1) yang dirancang untuk menarik ke dalam gas-gas terlarut dan digerakkan oleh motor dengan beberapa kecepatan konstan yang ketat. Distribusi tarikan harus cukup memadai untuk menjamin terisapnya seluruh gas buang. Sebuah alat yang menggunakan tabung venturi aliran-kritis dapat juga digunakan.
- e) Alat untuk mencatat secara terus-menerus suhu gas terlarut yang masuk ke dalam pompa.
- f) Probe uji, S3, dipasangkan di samping peralatan pengambilan gas, untuk mengambil sampel udara pelarut pada laju yang konstan melalui sebuah pompa, filter, dan flow-meter sepanjang pelaksanaan pengujian.
- g) Probe uji, S2, diarahkan melawan arus (upstream) ke dalam aliran/arus gas-gas yang terlarut melawan arus dalam pompa desak, untuk pengambilan sampel campuran gas terlarut pada laju yang konstan melalui sebuah pompa, filter, dan flow-meter selama pengujian. Laju minimum aliran arus gas dalam kedua sistem pengambilan sampel di atas harus sekurang-kurangnya 150 liter/jam.
- h) Dua filter, yakni F2 dan F3, dipasangkan secara berturutturut setelah probe uji S2 dan S3, untuk menangkap partikel padat yang tidak larut dalam sampel yang akan masuk menuju kantong pengambilan sampel. Filter-filter ini harus diberi perlakuan khusus agar tidak menimbulkan perubahan apa pun pada konsentrasi komponen gas dari sampel-sampel tersebut.
- i) Dua pompa, P2 dan P3, yang masing-masing memiliki fungsi mengambil sampel melalui probe uji S2 dan S3 untuk dikumpulkan ke dalam kantong Sa dan Sb.

- j) Dua katup yang dapat disetel secara manual, yakni V2 danV3, dipasangkan secara berturut-turut mengikuti arus pompa P2 dan P3, untuk mengendalikan aliran sampel yang masuk ke dalam kantong.
- k) Dua rotameter, R2 dan R3, dipasangkan secara berurutan pada jalur "probe uji, filter, pompa, katup, kantong" masingmasing, yakni "S2, F2, P2, V2, Sa" dan "S3, F3, P3, V3, Sb"; untuk memberikan hasil periksa visual segera tentang laju pengambilan sampel.
- l) Kantong pengambilan sampel untuk penyimpanan udara pelarut dan campuran gas terlarut; kantong ini harus tahan bocor dan memiliki kapasitas yang memadai, agar tidak menghambat aliran normal dari sampel yang masuk. Kantong-kantong tersebut harus memiliki penutup otomatis pada sisi kantong dan dapat diamankan/ditutup secara cepat untuk menghindari kebocoran, baik pada sirkuit pengambilan sampel maupun pada sirkuit pengukuran di akhir pelaksanaan uji.
- m) Dua alat pengukur tekanan diferensial (differential pressure gauges), g1 dan g2, yang ditempatkan seperti berikut: g1-sebelum pompa P1, untuk menentukan kurangnya tekanan di bawah tekanan atmosfer dari campuran gas buang/ udara pelarut;
 - g2 -sebelum dan sesudah pompa P1, untuk mengevaluasi kenaikan tekanan yang diberikan ke arus gas.
- n) Penghitung kumulatif, CT, untuk menghitung putaran pompa desak-putar (rotary displacement pump) Pl.
- o) Katup-katup tiga-arah (three-way cocks) di atas sirkuit pengambilan sampel untuk mengarahkan arus sampel, baik ke luar atau ke arah masing-masing kantong pengambilan selama berlangsung pengujian. Katup-katup tersebut harus dapat bekerja dengan cepat. Katup harus terbuat dari bahan yang tidak akan mempengaruhi komposisi gas; lebih lanjut, katup tersebut harus memiliki bagian aliran dan bentuk yang secara teknis memungkinkan dalam meminimalkan beban yang hilang.

c. Perlengkapan analisis

1) Menentukan konsentrasi HC

Konsentrasi hidrokarbon (HC) tidak terbakar dalam sampel yang dikumpulkan dalam kantong SA dan SB selama pengujian harus ditentukan dengan menggunakan analisator ionisasi api (flame ionization analyzer).

2) Menentukan konsentrasi CO dan CO₂

Konsentrasi karbon monoksida (CO) dan karbon dioksida (CO₂) dalam sampel yang dikumpulkan dalam kantong SA dan SB selama pengujian harus ditentukan menggunakan analisator tipe *non-dispersive* (tidak-tersebar) dengan penyerapan pada infrared.

3) Menentukan konsentrasi NOx

Konsentrasi nitrogen oksida (NO_X) dalam sampel yang dikumpulkan dalam kantong SA dan SB selama pengujian harus ditentukan dengan menggunakan analisator *chemiluminescence*.

4) Akurasi instrumen

- a) Karena rem dikalibrasi dengan pengujian yang terpisah, maka akurasi dynamometer tidak terindikasi. Inersia total massa berotasi, termasuk inersia roller dan bagian berotasi dari rem (lihat paragraf 5.b) ditetapkan pada +/- 2 %.
- b) Kecepatan kendaraan diukur berdasarkan kecepatan putaran *roller* yang tersambung pada rem dan roda gila (fly-wheel). Kecepatan ini harus dapat diukur pada +/- 2 km/jam dalam jangkauan kecepatan 0-10 km/jam dan pada +/- 1 km/jam untuk kecepatan di atas 10 km/jam.
- c) Suhu yang dipertimbangkan dalam paragraf 4.b.2).e) harus dapat diukur pada +/- 1 derajat. Suhu yang dipertimbangkan dalam paragraf 6.a.1) harus dapat diukur pada +/- 2 derajat.
- d) Tekanan atmosfer harus dapat diukur dalam +/- 1mm (alat ukur raksa/mercury gauge)
- e) Derajat di mana tekanan gas-gas terlarut mengalami kekurangan tekanan atmosfer pada saluran masuk pompa P1 (lihat paragraf 4.b.2).l) diukur sampai dengan +/- 3 mm (alat ukur raksa/mercury gauge). Perbedaan pada tekanan gas-gas terlarut antara bagian sebelum dan sesudah pompa P1 (lihat paragraf 4.b.2).m) diukur sampai dengan +/- 3 mm (alat ukur raksa/mercury gauge).
- Volume yang dipindahkan/didesak oleh setiap putaran penuh pompa P1 dan pemindahan nilai pada kecepatan pemompaan paling rendah yang dimungkinkan, sebagaimana tercatat oleh penghitung putaran kumulatif CT, harus sedemikian agar volume keseluruhan dari campuran gas buang/udara pelarut yang tergantikan oleh pompa selama pengujian dapat ditentukan dengan nilai +/- 2 %.
- g) Analisator harus memiliki jangkauan pengukuran yang sesuai/kompatibel dengan akurasi yang disyaratkan untuk

- mengukur kandungan berbagai konsitituen hingga +/- 3 % tanpa mempertimbangkan akurasi gas (kalibrasi) standar. Analisator ionisasi api (*flame*) digunakan untuk menentukan konsentrasi HC yang mampu mencapai 90 % skala penuh dalam waktu kurang dari 1 detik.
- h) Kandungan gas kalibrasi standar tidak boleh memiliki perbedaan melebihi +/- 2 % dari nilai acuan masing-masing gas. Pelarutnya harus berupa nitrogen.

5. PERSIAPAN PENGUJIAN

- a. Pengaturan Rem
- 1) Rem harus diatur sedemikian untuk mengulang kondisi operasional kendaraan pada level kecepatan konstan antara 45 dan 55 km/jam.
- 2) Rem harus disetel dengan cara berikut:
 - a) Alat bantu stop (adjustable stop) yang dapat diatur untuk membatasi kecepatan maksimum antara 45 km/jam sampai 55 km/jam harus dipasangkan pada alat pengatur pengumpanan bahan bakar (fuel-feed regulating device). Kecepatan kendaraan akan diukur dengan alat ukur kecepatan (speedometer) presisi atau dihitung dari pengukuran waktu tempuh jarak tertentu yang dilakukan pada jalan kering yang datar, di kedua arah, dan dengan menerapkan alat bantu stop (adjustable stop). Pengukuran yang harus diulang sekurang-kurangnya tiga kali di kedua arah; harus dilakukan pada jarak minimal 200 meter dan dengan jarak akselerasi yang cukup panjang. Kecepatan rata-rata harus ditentukan.
 - b) Sistem lainnya untuk pengukuran tenaga yang diperlukan dalam menggerakan kendaraan (misalnya, mengukur kopel (torque) pada transmisi, mengukur deselerasi, dsb) juga dapat diterima.
 - c) Kendaraan harus kemudian diletakkan pada bench dinamometer dan rem disetel sedemikian agar dapat memperoleh kecepatan yang sama dengan kecepatan yang dicapai pada uji jalan (alat pengatur pengumpanan bahan bakar dalam posisi *stop* dan rasio *gear box* yang sama). Penyetelan rem ini harus dapat dipertahankan selama pengujian. Setelah menyetel rem, alat henti (*stop*) yang dipasang pada alat pengumpanan bahan bakar harus dilepaskan.
 - d) Pengaturan rem berdasarkan pelaksanaan uji jalan dapat dilakukan hanya jika perbedaan tekanan barometer tidak melebihi +/- 10 torr, dan perbedaan suhu udara tidak melebihi +/- 8 derajat, antara jalan dengan ruang tempat bench dinamometer.

- e) Apabila metode sebelumnya tidak dapat diterapkan, maka dynamometer akan diatur agar sesuai dengan nilai-nilai yang tertera dalam tabel paragraf 5.b. Nilai yang terdapat dalam tabel menghasilkan tenaga yang terkait dengan berat acuan pada kecepatan 50 km/jam. Tenaga akan ditentukan oleh metode yang diberikan dalam Lampiran D
 - */ Nilai ini berhubungan dengan massa tambahan yang kemungkinan dapat digantikan oleh alat elektronik, asalkan alat pengganti tersebut dapat memberikan hasil yang sama.
- b. Pengaturan inersia ekuivalen terhadap inersia gerakan satu arah (translatory) kendaraan

Roda gila (*fly-wheel*) harus diatur untuk memperoleh inersia total massa berputar yang proporsional terhadap berat acuan dalam batasan berikut:

Berat acuan	Kelembaman	Tenaga
		terserap
(kg)	ekuivalen (kg)	(kW)
R < 105	100	0,88
105 < R < 115	110	0.90
115 < R < 125	120	0,91
125 < R < 135	130	0,93
135 < R < 150	140	0,94
150 < R < 165	150	0,96
165 < R < 185	170	0,99
185 < R < 205	190	1,02
205 < R < 225	210	1,05
225 < R < 245	230	1,09
245 < R < 270	260	1,14
270 < R < 300	280	1,17
300 < R < 330	310	1,21
330 < R < 360	340	1,26
360 < R < 395	380	1,33
395 < R < 435	410	1,37
435 < R < 475	450	1,44

c. Pengkondisian kendaraan

1) Sebelum pengujian, kendaraan harus disimpan pada suhu antara 20-30 derajat C. Setelah mesin disimpan dalam keadaan langsam (*idle*) selama 40 detik, dua siklus penuh dilaksanakan tanpa pengambilan sampel gas buang.

- 2)Tekanan ban harus sama dengan tekanan yang ditunjukkan oleh produsen pada permulaan uji jalan guna penyesuaian rem. Akan tetapi, apabila diameter *roller* kurang dari 30 mm, tekanan ban harus dinaikkan sebanyak 30-50% untuk mencegah kerusakan pada ban.
- 3)Berat pada roda penggerak harus sama dengan berat kendaraan dalam kondisi berjalan normal, dengan pengemudi berbobot 75 kg.

d. Pengaturan analisator

1) Kalibrasi analisator

Jumlah gas pada tekanan terindikasi yang kompatibel dengan fungsi tepat perangkat harus diinjeksikan ke dalam analisator dengan bantuan *flow-meter* dan katup penurun tekanan dipasangkan pada masing-masing silinder gas. Perangkat harus diatur untuk mendapatkan nilai standar dari nilai yang dimasukkan ke dalam silinder gas standar. Dimulai dari pengaturan yang diperoleh dengan silinder gas terbesar, maka kurva deviasi perangkat dapat digambarkan sesuai kandungan berbagai silinder gas standar yang digunakan. Analisator ionisasi api (*flame ionization analyser*) harus dikalibrasi secara berkala pada selang waktu yang tidak lebih satu bulan, menggunakan campuran udara/propana atau udara/hexana dengan konsentrasi hidrokarbon nominal setara 50% dan 90% pada skala penuh.

Analisator penyerapan infrared yang tidak tersebar (non-dispersive infrared absorption analyser) harus diperiksa pada selang waktu yang sama menggunakan campuran nitrogen/CO dan nitrogen/CO₂ dengan konsentrasi nominal setara 10%, 40%, 60%, 85 % dan 90 % pada skala penuh.

Untuk mengkalibrasi analisator *chemiluminescence* NO_X, maka harus menggunakan campuran nitrogen/nitrogen oksida (NO) dengan nilai konsentrasi setara 50 % dan 90 % pada skala penuh. Kalibrasi ketiga jenis analisator harus diperiksa sebelum setiap rangkaian pengujian, menggunakan campuran gas yang diukur dan dengan konsentrasi nominal setara 80% pada skala penuh. Alat pelarut dapat digunakan untuk melarutkan gas kalibrasi 100% terhadap konsentrasi yang disyaratkan.

6. PROSEDUR UNTUK UJI BENCH

- a. Kondisi khusus untuk pelaksanaan siklus
 - 1)Suhu ruangan *roller-bed* harus antara 20 derajat C dan 30 derajat C selama pengujian dan harus sedapat mungkin mendekati suhu ruangan di mana kendaraan dikondisikan untuk pengujian.

- 2)Kendaraan harus diletakkan pada permukaan datar selama pengujian untuk menghindari terjadinya distribusi tidak normal pada bahan bakar kendaraan.
- 3) Pada akhir 40 detik periode langsam pertama, arus udara dengan kecepatan bervariasi ditiup ke arah kendaraan. Setelah itu akan diikuti dua siklus penuh di mana pada waktu tersebut tidak ada gas buang yang diambil sampelnya. Blower harus dapat menggunakan mekanisme yang dikendalikan oleh kecepatan bench roller supaya pada batas kecepatan 10-50 km/jam kecepatan angin linear awal maksimum 10% dari kecepatan relatif roller,.Untuk kecepatan roller di bawah 10 km/jam, kecepatan angin mungkin nol. Bagian akhir dari blower harus memiliki karakteristik berikut:

Luas: minimal 0,4 m²;

Tinggi tepi bawah di atas lantai: antara 0,15 dan 0,20 m;

Jarak dari sisi depan kendaraan: antara 0,3 dan 0,45 m.

Untuk kendaraan kategori L3

Sepanjang pengujian, *blower* pendingin yang bisa diatur putarannya ditempatkan di depan sepeda motor, sehingga langsung mendinginkan sepeda motor, men-simulasikan kondisi aktual di jalan. Kecepatan putaran *blower* harus dalam range 1-sampai 50 km/jam, kecepatan linear dari udara di posisi *outlet* dari *blower* harus dalam range ± 5 km/jam terhadap kecepatan *roller*. Pada kecepatan diatas 50 km/jam, kecepatan linear udara harus dalam range + 10 %. Pada kecepatan *roller* kurang dari 10 km/jam, kecepatan udara boleh nol.

Kecepatan udara tersebut diatas harus ditentukan dari nilai ratarata dari sembilan titik pengukuran yang berada di pusat masing-masing kotak yang membagi penampang outlet *blower* menjadi sembilan bagian (sisi vertikal dan horisontal dari *blower* dibagi menjadi 3 bagian yang sama). Masing-masing nilai dari sembilan titik tersebut harus dalam range 10 % dari nilai rata-rata.

Lobang outlet *blower* harus mempunyai luas penampang paling sedikit 0,4 m² dan dasar dari *outlet* dari *blower* harus berada antara 5 cm sampai 20 cm dari lantai. *Outlet* dari *blower* harus tegak lurus terhadap sumbu *longitudinal* sepeda motor, berada 30 – 45 cm di depan roda depan. Alat untuk mengukur kecepatan linear udara harus ditempatkan pada jarak 0 – 20 cm dari *outlet* udara.

4) Selama pengujian, kecepatan harus direncanakan terhadap waktu supaya ketepatan siklus yang dilakukan dapat dinilai.

5) air pendingin dan oli bak engkol (*crank-case*) juga dapat dicatat/direkam.

b. Menghidupkan mesin

- 1) Setelah permulaan operasi pada peralatan untuk pengambilan, pelarutan, analisis, dan pengukuran telah dilaksanakan, maka mesin harus dihidupkan dengan menggunakan peralatan yang disediakan untuk maksud tersebut *choke*, *starter valve*, dsb sesuai dengan petunjuk produsen.
- 2) Mesin dibiarkan langsam selama periode waktu maksimal 40 detik. Siklus uji pertama harus mulai pada saat yang bersamaan dengan dimulainya pengambilan sampel dan pengukuran putaran pompa.

c. Penggunaan choke manual

Choke harus dihilangkan sesegera mungkin, dan secara prinsip dilakukan sebelum akselerasi dari nol sampai 50 km/jam. Jika prinsip ini tidak dapat diterapkan, maka perlu dinyatakan kapan saat yang tepat untuk melakukan penghilangan(cut-out) choke yang efektif. Metode yang digunakan untuk mengatur choke ini harus mengikuti spesifikasi yang diberikan pabrik pembuat.

d. Langsam (Idle)

- 1) Transmisi roda gigi dengan perubahan manual (*manual-shift gear-box*),
- a) Selama periode langsam (*idle*), kopling harus diaktifkan dan persneling dalam posisi netral.
- b)Untuk memungkinkan akselerasi bekerja sesuai siklus normal, kendaraan harus diposisikan pada persneling pertama, dengan kopling tidak aktif, 5 detik sebelum akselerasi setelah periode langsam diatas.
- c) Periode langsam (*idle*) pertama pada permulaan siklus harus terdiri atas 6 detik langsam dalam posisi netral dengan kopling aktif dan 5 detik pada persneling pertama dengan kopling tidak aktif.
- d)Untuk periode langsam pada pertengahan setiap siklus, waktu yang sesuai adalah 16 detik pada posisi netral dan 5 detik pada persneling pertama dengan koplin tidak diaktifkan.
- e) Periode langsam terakhir pada siklus harus berlangsung selama 7 detik dalam posisi netral dengan kopling diaktifkan.
- 2) Transmisi roda gigi dengan perubahan semi-otomatis Prosedur yang dipenuhi harus sesuai dengan petunjuk produsen untuk berkendara di dalam kota; apabila petunjuk tersebut tidak ada, maka prosedur yang harus dipenuhi adalah prosedur untuk kotak transmisi manual.

3) Transmisi roda gigi dengan perubahan otomatis

Pemindah gigi (s*elector*) tidak boleh dioperasikan sama sekali selama pengujian kecuali produsen menentukan sebaliknya. Apabila produsen mensyaratkan dioperasikan, maka prosedur yang ditentukan untuk Transmisi roda gigi dengan perubahan manual harus diterapkan.

e. Akselerasi

- 1) Akselerasi dilakukan sedemikian hingga laju akselerasi tetap konstan sepanjang fase tersebut.
- 2) Apabila kemampuan akselerasi sepeda motor tidak memadai untuk dilakukannya tahapan akselerasi dalam batasan toleransi yang telah ditentukan, maka sepeda motor/ siklus harus digerakkan dengan gas terbuka penuh sampai mencapai kecepatan yang telah ditentukan untuk siklus tersebut dan siklus dilanjutkan seperti sedia kala.

f. Deselerasi

- 1) Seluruh deselerasi akan dihasilkan dengan menutup secara penuh akselerator, kopling tetap aktif. Kopling akan dilepaskan/ditekan pada kecepatan 10 km/jam.
- 2) Jika periode deselerasi lebih lama daripada yang telah ditentukan untuk fase yang dimaksud, maka rem kendaraan harus digunakan untuk memungkinkan pengaturan waktu siklus tetap dipertahankan.
- 3) Jika periode deselerasi lebih pendek daripada yang telah ditentukan untuk fase yang dimaksud tersebut, maka pengaturan waktu siklus teoritis tersebut harus dapat dipulihkan dengan kecepatan konstan atau periode langsam yang akan diselaraskan masuk ke periode kecepatan konstan atau langsam berikutnya. Pada kasus seperti ini, paragarf 2 d pada Lampiran ini tidak berlaku.
- 4) Pada akhir periode deselerasi (berhentinya kendaraan pada *roller*), persneling harus ditempatkan dalam posisi netral dan kopling diaktifkan.

g. Kecepatan tetap

- 1) "Pemompaan" (pumping) atau penutupan katup (throttle) harus dapat dihindari ketika akan melewati periode akselerasi ke periode kecepatan tetap/konstan setelahnya.
- 2) Periode kecepatan konstan akan dicapai dengan menahan akselerator pada posisi yang tetap.

7. PROSEDUR PENGAMBILAN SAMPEL, ANALISIS, DAN PENGUKURAN VOLUMETRIK EMISI

- a. Prosedur sebelum menghidupkan kendaraan
- 1) Kantong pengambilan sampel SA dan SB harus dikosongkan dan ditutup.
- 2) Pompa desak berputar P1 harus dihidupkan tanpa penghitung putaran.
- 3) Pompa pengambilan sampel P2 dan P3 harus dihidupkan dengan katup pemutar (*switching valve*) yang disetel untuk pelepasan ke atmosfer; katup V2 dan V3 dapat digunakan untuk mengatur alirannya.
- 4) Alat sensor suhu T dan pengukur tekanan g1 dan g2 harus dioperasikan.
- 5) Penghitung putaran pompa CT dan penghitung putaran *roller* harus disetel/diatur pada titik nol.
- b. Memulai operasi pengambilan sampel dan pengukuran volumetrik
- 1) Setelah 40 detik permulaan periode langsam tanpa muatan dan dua siklus persiapan (saat awal dari siklus pertama), prosedur yang ditetapkan dalam urutan di bawah harus dapat dilaksanakan secara ketat dan bersamaan.
 - Untuk kendaraan kategori L3
 - Prosedur pengoperasian yang diterangkan pada urutan dibawah dilakukan secara simultan.
- 2) Katup pemutar (*switching valve*) harus disetel untuk pengumpulan sampel ke dalam kantong SA dan SB, yang mana masih dilakukan oleh *probe* uji S2 dan S3, dan sampai prosedur dilakukan pelepasan (sampel) ke atmosfer.
- 3) Saat dimulainya pengujian harus ditandai pada grafik-grafik pencatat analog yang dihubungkan ke alat sensor suhu T dan pengukur tekanan diferensial g1 dan g2.
- 4) Penghitung putaran kumulatif CT harus dihubungkan dengan pompa P1.
- 5) Blower yang dimaksud dalam paragraf 6 a dihidupkan.
- c. Akhir prosedur pengambilan sampel dan pengukuran volumetrik
- 1) Prosedur yang ditetapkan dalam urutan di bawah harus dilaksanakan secara ketat dan bersamaan di akhir siklus uji yang keempat.
 - a) Untuk kendaraan kategori L3 Prosedur yang ditetapkan dalam urutan di bawah harus dilaksanakan secara simultan.

- 2) Katup pemutar (*switching valve*) harus disetel agar menutup aliran kantong SA dan SB serta untuk melepaskan sampel yang telah diambil oleh pompa P2 dan P3 melalui *probe* uji S2 dan S3 ke atmosfer.
- 3) Momen berakhirnya pengujian harus ditandai pada grafik-grafik pencatat/perekam analog.
- 4) Penghitung putaran kumulatif (CT) harus dilepaskan dari pompa P1.
- 5) Blower yang dimaksud dalam paragraf 6 a. kemudian dimatikan.
- d. Analisis sampel yang terdapat di dalam kantong

Analisis harus dimulai sesegera mungkin, dan dalam waktu yang tidak melebihi 20 menit sejak berakhirnya pengujian; hal ini dilakukan dalam rangka menentukan:

Konsentrasi hidrokarbon, karbon monoksida, dan karbon dioksida dalam sampel udara pelarut yang tertampung dalam kantong SB;

Konsentrasi hidrokarbon, karbon monoksida, dan karbon dioksida dalam sampel gas terlarut yang tertampung dalam kantong SA.

e. Mengukur jarak tempuh

Jarak S yang ditempuh secara aktual dapat diketahui dengan cara mengalikan jumlah putaran yang terbaca dari penghitung putaran kumulatif dengan keliling *roller*. Jarak ini harus diukur dalam km.

8. PENENTUAN JUMLAH GAS YANG DIKELUARKAN

$$CO_M = \frac{1}{S} \bullet V \bullet d_{CO} \bullet \frac{CO_C}{10^6}$$

a. Massa gas karbon akan ditentukan dengan menggunakan rumus berikut:

di mana:

- 1) CO_M adalah massa karbon monoksida yang dikeluarkan selama pengujian dan dinyatakan dalam g/km;
- 2) S adalah jarak yang ditempuh secara aktual dapat diketahui dengan cara mengalikan jumlah putaran yang terbaca dari penghitung putaran kumulatif dengan keliling *roller*. Jarak ini harus diukur dalam km.:
- 3) d_{CO} adalah kepadatan karbon monoksida pada suhu 0 derajat C dan tekanan 760 mm (alat ukur raksa/ *mercury gauge*) = 1,20 kg/m³;

$$CO_c = CO_e - CO_d (1 - \frac{1}{DF})$$

- 4) CO_C adalah konsentrasi volumetrik karbon monoksida, dinyatakan dalam *part per million* (ppm), dan terkoreksi untuk mempertimbangkan polusi dalam udara pelarut. di mana:
 - a) CO_e adalah konsentrasi karbon monoksida, diukur dalam *part per million* (ppm) pada sampel gas terlarut yang ditampung dalam kantong Sa;
 - b) CO_d adalah konsentrasi karbon monoksida, diukur dalam part per million (ppm) pada sampel udara pelarut yang diambil dalam kantong Sb;
 - c) DF adalah koefisien yang ditetapkan rumusan di bawah;
- 5) V adalah volume total gas terlarut, dinyatakan dalam m³/uji,

$$V {=} V_O {\bullet} N \frac{(Pa {-} Pi) {\bullet} 273}{760 {\bullet} (T_D {+} 273)}$$

disesuaikan dengan kondisi acuan 0 derajat C (273 derajat K) dan 760 mm (alat ukur raksa): di mana:

- a) V_0 adalah volume gas yang dipindahkan pompa P1 selama satu putaran, dinyatakan dalam m3/putaran. Volume ini adalah suatu perbedaan fungsi antara bagian masuk dan keluar pompa;
- b)N adalah jumlah putaran yang dihasilkan pompa P1 selama empat siklus pengujian;
- c) Pa adalah tekanan ruangan/lingkungan (ambient pressure) dalam satuan mm (alat ukur raksa/ mercury gauge);
- d)Pi adalah rata-rata tekanan bawah pada bagian saluran masuk pompa P1 selama empat siklus uji, dinyatakan dalam mm (alat ukur raksa/ *mercury gauge*)
- e) T_p adalah suhu gas terlarut selama empat siklus uji, diukur pada bagian saluran masuk pompa P1.
- b.Massa hidrokarbon tidak terbakar yang dikeluarkan oleh sistem

$$HC_M = \frac{1}{S} \bullet V \bullet d_{HC} \bullet \frac{HC_C}{10^6}$$

pembuangan kendaraan selama pengujian akan dihitung dengan menggunakan rumus berikut:di mana:

- 1) HC_M adalah massa hidrokarbon yang dikeluarkan selama pengujian, dinyatakan dalam gram/km;
- 2) S adalah jarak yang ditempuh secara aktual dapat diketahui dengan cara mengalikan jumlah putaran yang terbaca dari penghitung putaran kumulatif dengan keliling *roller*. Jarak ini harus diukur dalam km;

3) d_{HC} adalah kepadatan hidrokarbon pada suhu 0 derajat C dan pada tekanan 760 mm (alat ukur raksa/ mercury gauge), di mana rasio karbon/hidrogen rata-rata adalah 1: 1,85 = 0,619 kg/m3.

$$HC_c = HC_e - HC_d \left(1 - \frac{1}{DF}\right)$$

- 4) HC_C adalah konsentrasi gas terlarut, dinyatakan dalam *part per million (ppm)* ekuivalen karbon (misalnya konsentrasi dalam propane yang dikalikan 3), terkoreksi untuk mempertimbangkan udarapelarut. di mana:
 - a) HC_e merupakan konsentrasi hidrokarbon, dinyatakan dalan *part per million (ppm)* ekuivalen karbon, dalam sampel gas terlarut yang dikumpulkan dalam kantong SA;
 - b)HC_d adalah konsentrasi hidrokarbon yang dinyatakan dalam *part per million (ppm)* ekuivalen karbon, dalam udara pelarut yang dikumpulkan dalam kantong SB;
 - c) DF adalah koefisien yang ditetapkan dalam paragraph 8.4 di bawah;
- 5) V adalah volume total.
- c. Massa nitrogen oksida yang dikeluarkan oleh sistem pembuangan

$$NO_{xM} = \frac{1}{S} \bullet V \bullet d_{NO_2} \bullet \frac{NO_{xC} \bullet K_h}{10^6}$$

kendaraan selama pengujian harus dihitung berdasarkan rumus berikut: di mana:

- 1) NI_{xM} adalah massa nitrogen oksida yang dikeluarkan selama pengujian, dinyatakan dalam gram/uji;
- 2) S adalah jarak yang ditempuh secara aktual dapat diketahui dengan cara mengalikan jumlah putaran yang terbaca dari penghitung putaran kumulatif dengan keliling roller. Jarak ini harus diukur dalam km:

3) d_{NO2} adalah kepadatan nitrogen oksida dalam gas buang, dengan asumsi bahwa pada suhu 0 derajat C dan tekanan 760 mm (alat

$$NO_{xc} = NO_{xe} - NO_{xd}(1 - \frac{1}{DF})$$

ukur raksa) akan berbentuk nitrat oksida = 205 kg/m3.

- 4) NO_{XC} adalah konsentrasi gas terlarut, dinyatakan dalam *part per million (ppm)*, dan terkoreksi untuk mempertimbangkan udara pelarut, di mana:
 - a) NO_{xe} adalah konsentrasi nitrogen oksida, dinyatakan dalam part per million (ppm), dalam gas yang diregangkan;
 - b) NO_{xd} adalah konsentrasi nitrogen oksida, dinyatakan dalam part per million (ppm), dalam udara pelarut yang dikumpulkan dalam kantong SB;

$$K_h = \frac{1}{1 - 0.0329(H - 10.7)}$$

- c) DF adalah koefisien yang ditetapkan dalam rumusan berikut;
- 5) Kh adalah faktor koreksi kelembaban.

di mana:

$$H = \frac{6.2111 \cdot U \cdot P_d}{P_a - P_d \frac{U}{100}} [g/kg]$$

- a) H adalah kelembaban absolute dalam gram air per kg dari udara kering.di mana:
- b) U adalah persentase kelembaban.
- c) P_d adalah tekanan jenuh air pada suhu pengujian, dinyatakan dalam mm Hg;
- d)Pa adalah tekanan atmosfer dalam mm Hg.
- d. DF adalah koefisien yang dinyatakan dengan rumus berikut:

$$DF = \frac{14.5}{CO_2 + 0.5 CO + HC}$$
 % vol.

1) "CO, CO₂ dan HC" adalah konsentrasi karbon monoksida, karbon dioksida, dan hidrokarbon dalam sampel gas-gas terlarut yang tertampung dalam kantong SA, dinyatakan dalam %.

Lampiran II.A1 SIKLUS OPERASI UNTUK MESIN BENSIN PADA UJI TIPE-I

RINCIAN DARI SIKLUS OPERASI YANG DIGUNAKAN UNTUK TEST I

Operating cycle extra-urban cycle pada dynamometer

No Operasi	Operasi	Fase	Percepatan	Kecepatan	1	setiap fase rasi	Waktu kumulatif
			(m/s2)	(km/h)	(sec)	(sec)	(sec)
1	Langsam	1			20	20	20
2	Percepatan		0.83	0 - 15	5		25
3	Pergantian gigi				2		27
4	Percepatan		0.62	15 - 35	9		36
5	Pergantian gigi	2			2	41	38
6	Percepatan		0.52	35 - 50	8		46
7	Pergantian gigi				2		48
8	Percepatan		0.43	50 - 70	13		61
9	Kecepatan tetap	3		70	50	50	111
10	Perlambatan	4	-0.69	70 - 50	8	8	119
11	Kecepatan tetap	5		50	69	69	188
12	Percepatan	6	0.43	50 - 70	13	13	201
13	Kecepatan tetap	7		70	50	50	251
14	Percepatan	8	0.24	70 - 100	35	35	286
15	Kecepatan tetap	9		100	30	30	316
16	Percepatan	10	0.28	100 - 120	20	20	336
17	Kecepatan tetap	11		120	10	20	346
18	Perlambatan		-0.69	120 - 80	16		362
19	Perlambatan	12	-1.04	80 - 50	8	34	370
20	Perlambatan dengan kopling dilepas		-1.39	50 - 0	10		380
21	Langsam	13			20	20	400

Siklus operasi, siklus perjalanan panjang pada dinamometer

Lampiran II.A2
CONTOH I PENGAMBILAN SAMPEL GAS DAN ALAT PENGUKUR VOLUME

Lampiran II.A3

CONTOH II PENGAMBILAN SAMPEL GAS DAN ALAT PENGUKUR VOLUME

Lampiran II.B PENGUJIAN TIPE-II

1. PENDAHULUAN

Lampiran ini menjelaskan prosedur uji tipe-II seperti yang ditetapkan dalam paragraf 4.a.2). Peraturan Menteri ini

2. KONDISI PENGUKURAN

- a. Bahan bakar adalah bahan bakar acuan dengan spesifikasi yang diberikan dalam Lampiran C Peraturan Menteri ini
- b. Kandungan berdasarkan volume karbon monoksida harus diukur segera setelah pengujian tipe-I dengan mesin pada kecepatan langsam.
- c. Untuk kendaraan yang memilikit transmisi roda gigi (*gear-box*) yang dioperasikan secara manual atau semi-otomatis, pengujian dilakukan dengan tuas persneling dalam posisi netral dan dengan kopling aktif.
- d. Untuk kendaraan yang memiliki transmisi roda gigi otomatis, uji dilakukan dengan pemindah gigi (gear selector) dalam posisi netral atau parkir.

3. PENGAMBILAN SAMPEL GAS BUANG

a. Saluran buang harus dilengkapi dengan sambungan yang kedap udara, sehingga alat yang digunakan untuk mengambil sampel gas buang dapat dimasukkan sekurang-kurangnya 60 cm ke dalam saluran buang, tanpa menaikkan tekanan balik melebihi 125 mm H_2O) dan tanpa gangguan dari kendaraan yang berjalan. Akan tetapi, bentuk sambungan harus dipilih agar dapat menghindari terjadinya peregangan gas buang dalam udara yang dapat diukur pada saat pengambilan sampel.

Untuk sepeda motor yang dilengkapi sistem pembuangan saluran banyak (*multiple outlets*), harus disambungkan dengan pipa/saluran bersama atau sampel kandungan karbon monoksida diambil dari setiap saluran, dengan hasil pengukuran yang diambil dari rata-rata hitung kandungan tersebut.

b. Konsentrasi dalam CO (C_{CO}) dan CO_2 (C_{CO2}) akan ditentukan dari hasil pembacaan atau rekaman instrumen pengukuran, dengan

$$C_{co} \text{ corr} = C_{co} \frac{10}{C_{co} + C_{co_2}} \text{ (vol - \%)}$$

penggunaan kurva kalibrasi yang tepat.

c. Konsentrasi yang dikoreksi untuk karbon monoksida sehubungan

$$C_{co} \text{ corr} = C_{co} \frac{15}{C_{co} + C_{co}} \text{ (vol - \%)}$$

dengan mesin dua-langkah adalah sebagaiberikut:

- d. Konsentrasi terkoreksi untuk karbon monoksida terkait dengan mesin empat-langkah adalah sebagai berikut:
- e. Konsentrasi dalam $C_{\rm CO}$ (paragraf 3.b) yang diukur sesuai rumus yang terdapat dalam paragraf 3.c dan 3.d tidak perlu dikoreksi jika total pengukuran konsentrasi ($C_{\rm CO}$ + $C_{\rm CO2}$) sekurang-kurangnya bernilai 10 untuk mesin dua-langkah dan 15 untuk mesin empat-langkah.

Lampiran II.C SPESIFIKASI BAHAN BAKAR ACUAN

- 1. Data teknis bahan bakar acuan yang akan digunakan untuk pengujian kendaraan yang dilengkapi mesin pengapian positif.
 - a. Bahan bakar acuan CEC RF-01-A-80 (Jenis: bensin premium, bertimbal)

Sifat	Ambang batas dan satuan	Metode ASTM 1/
Angka oktan riset	min. 98,0	D 2699
(Research Octane	min. 0,741 kg/l	D 1298
Number / RON) di 15	maks. 0,755	
derajat C		
-	min. 0,56 bar	D 323
Tekanan uap reid (<i>Reid</i> vapour pressure/ RVP)	maks. 0,64	
•		D 86
Distilasi (Distillation)	min. 24 derajat C	
(2)	maks. 40	
Titik didih awal	min. 42 derajat C	
	maks. 58	
Titik 10% volume	min. 90 derajat C	
	maks. 120	
Titik 50% volume	min. 150	
	maks. 170	
Titik 90% volume	min. 185	
FR. 41 14 141 1 1 4	maks. 205	
Titik didih akhir	maks. 2% volume	
Residu		D 1319
	maks. 20% volume	
Analisis hidrokarbon	maks. 45% volume	
Olefin	seimbang	
Aromatik	min. 480 menit	D 525
Jenuh	maks. 4 mg/100 ml	D 381
Stabilitas Oksidasi	maks. 0,04% massa	D 1266, D 2622
Existent Gum		or D 2785
Kandungan sulfur	min. 0.10 g/l	D 3341
	maks. 0.40 g/l	
Kandungan timbal	campuran motor	
~	tidak ditetapkan	
Sifat scavenger	laporan	
Sifat alkil timbal		
Rasio karbon/hidrogen		

- Singkatan dari American Society of Testing Materials, 1916 Race Street, Philadelphia, Pennsylvania 19015, Amerika Serikat
- b. Bahan bakar acuan No.2: CEC RF 08-A-85 (Jenis: bensin premium, bebas-timbal)

Sifat	Ambang batas dan satuan min. max.	Metode ASTM 1/
Angka oktan riset (Research Octane	95,0	D 2699
Number / RON)	85,0	D 2700
Angka oktan motor	0,748	D 1289
Densitas di 15	0,762	D 323
derajat	0,56 bar	
Tekanan uap reid	0,64 bar	
(Reid vapour		
pressure/ RVP)		D 86
	24 derajat C	D 86
Distilasi (Distillation)	40 derajat C	D 86
(2) Titik didih awal	42 derajat C	D 86
Titik 10% volume	58 derajat C	D 86
Titik 50% volume	90 derajat C	D 86
Titik 90% volume	110 derajat C 155	
Titik didih akhir	derajat C 180 derajat C	D 1319
Residu	190 derajat C	D 1319
Analisis hidrokarbon	215 derajat C	
Alkenes	are derugue e	*D 3606/ D 2267
	2%	D 1319
Aromatik		
Alkenes		D 525
Rasio Hidrokarbon/	20 vol.%	D381
hidrogen	(termasuk	D 1266/ D 2622/
Stabilitas Oksidasi	5 vol.% maks.	D2785
Existent Gum	benzole*)	
	45 vol.%	D130
Kandungan sulfur	seimbang	D 3237
Korosi tombaga		D 323
Korosi tembaga di 50 derajat	rasio	
Kandungan timbal	480 menit	
ixanuungan umbal		

Kandungan fosfor		4	
	mg/100 ml		
	mg/100 ml 0,04% massa		
	1		
	0,005 g/l		
	0,005 g/l 0,0013 g/l		

Catatan: Dilarang menambahkan komponen yang mengandung oksigen.

Lampiran II.D

METODE PENENTUAN TENAGA TERSERAP DI ATAS JALAN OLEH REM DINAMOMETRIK UNTUK SEPEDA MOTOR

Lampiran ini menjelaskan metode yang digunakan untuk menentukan tenaga yang terserap sebagaiman diukur di jalan oleh rem dinamometerik.

Tenaga yang terserap, sebagaimana di ukur di atas jalan, terdiri atas tenaga yang diserap oleh efek gesekan dan tenaga yang terserap oleh alat penyerap tenaga. Dinamometer dioperasikan melampaui jangkauan kecepatan uji. Alat yang digunakan untuk menghidupkan dinamometer selanjutnya diputus sambungannya dari dinamometer dan kecepatan putar *roller* menurun.

Energi kinetis alat dihamburkan oleh alat penyerap tenaga dinamometer dan efek gesekan dinamometer. Metode ini tidak mempertimbangkan variasi dalam efek gesekan internal *roller* yang diakibatkan oleh massa berputar kendaraan. Perbedaan antara waktu stop *roller* belakang bebas (*free rear roller*) dan *roller* penggerak depan dapat diabaikan dalam kasus dinamometer *roller*-ganda. Prosedur-prosedur berikut akan digunakan:

- 1. Ukur kecepatan putar *roller* jika belum pernah diukur sebelumnya. Metode roda kelima, penghitung putaran, atau metode lainnya dapat digunakan.
- 2. Letakkan kendaraan pada dinamometer atau gunakan metode lainnya untuk menyalakan dynamometer.
- 3. Gunakan roda gila (*fly-wheel*) atau sistem simulasi kelembaman lainnya untuk kategori massa kendaraan yang paling umum digunakan dengan dynamometer.
- 4. Atur dinamometer hingga kecepatan 50 km/jam.
- 5. Catat tenaga yang terserap.
- 6. Atur dinamometer hingga kecepatan 60 km/jam.
- 7. Lepaskan alat yang digunakan untuk menyalakan dinamometer.
- 8. Catat waktu yang dibutuhkan dinamometer untuk melaju dari kecepatan 55 km/jam ke 45 km/jam.
- 9. Setel alat penyerapan tenaga pada tingkat yang berbeda.
- 10. Ulangi tahap 4 sampai 9 di atas secukupnya untuk menjangkau tenaga jalan yang digunakan.
- 11. Hitung tenaga yang terserap menggunakan rumu berikut:

$$P_{d} = \frac{M_{1} (V_{1}^{2} - V_{2}^{2})}{2000 t} = \frac{0.03858 M_{1}}{t}$$

di mana:

P_d = tenaga dalam kW;

 M_1 = inersia ekuivalen dalam kg;

 V_1 = kecepatan awal dalam m/s (55 km/jam = 15,28 m/s);

 V_2 = kecepatan akhir dalam m/s (45 km/jam = 12,50 m/s);

T = waktu yang dibutuhkan *roller* untuk melaju dari 55 km/jam ke to 45 km/jam.

12. Buat grafik yang menunjukkan tenaga yang terserap oleh dinamometer terhadap tenaga yang ditunjukkan untuk kecepatan 50 km/jam yang digunakan sebagai kecepatan uji dalam fase empat di atas.

MENTERI NEGARA LINGKUNGAN HIDUP REPUBLIK INDONESIA,

BALTHASAR KAMBUAYA

LAMPIRAN III
PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP
REPUBLIK INDONESIA
NOMOR 10 TAHUN 2012
TENTANG
PENGELOLAAN BAKU MUTU EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU
KATEGORI L3

PENGUJIAN EMISI KENDARAAN BERMOTOR TIPE BARU DENGAN METODA UJI WMTC (WORLDWIDE HARMONIZED MOTORCYCLE EMISSIONS CERTIFICATION PROCEDURE)

1. TUJUAN

Peraturan Menteri teknis global ini menetapkan metode harmonisasi di seluruh dunia untuk penentuan tingkat emisi polutan gas, emisi karbon dioksida dan konsumsi bahan bakar kendaraan bermotor roda dua yang representatif untuk kendaraan operasional pada kondisi aktual. Hasilnya dapat digunakan sebagai dasar untuk pembatasan gas polutan dan karbon dioksida dan untuk konsumsi bahan bakar yang diindikasikan oleh produsen dalam prosedur pengujian tipe.

2. RUANG LINGKUP

Peraturan Menteri ini berlaku untuk emisi gas polutan dan emisi karbon dioksida dan konsumsi bahan bakar sepeda motor roda dua dengan kapasitas silinder mesin melebihi 50 cm³ atau kecepatan desain maksimum melebihi 50 km/jam.

3. DAFTAR ISTILAH

- a. "Tipe kendaraan" berarti kategori kendaraan bermotor roda dua yang tidak berbeda dalam hal penting berikut:
 - 1) "Inersia ekuivalen" ditentukan dalam hubungan dengan massa dalam urutan seperti dalam paragraf 3.c Peraturan Menteri ini, dan
 - 2) "Karakteristik mesin dan kendaraan": Mengikuti ketentuan paragraf 6.b, karakteristik mesin dan kendaraan sebagaimana dimaksud dalam Lampiran III.D Peraturan Menteri ini.
- b. "Massa tanpa muatan/kosong (*Unladen*)"_(mk) berarti massa nominal sebuah kendaraan yang lengkap sebagaimana ditentukan oleh kriteria sebagai berikut:

Massa kendaraan dengan bodywork dan semua peralatan pabrik terpasang, peralatan listrik dan tambahan untuk operasi normal kendaraan, termasuk cairan, alat-alat, pemadam kebakaran, suku cadang standar, chocks dan roda cadangan, jika terpasang. Tangki bahan bakar harus diisi setidaknya 90 persen dari kapasitas dan sistem yang mengandung cairan lainnya (kecuali untuk penggunaan air) hingga 100 persen dari kapasitas yang ditentukan oleh pabrikan

- c. "Massa operasi<u>"</u> (mref) berarti massa nominal kendaraan sebagaimana ditentukan oleh kriteria sebagai berikut:
 - Jumlah massa kendaraan *unladen* dan pengemudi. Massa pengemudi dirujuk sesuai Peraturan ini.
- d. "Massa pengemudi" berarti massa nominal pengemudi yang besarnya harus 75 kg (terbagi menjadi 68 kg massa yang duduk di kursi dan 7 kg massa bawaannya (bagasi) sesuai dengan standar ISO 2416-1992)
- e. "Gas Polutan" berarti karbon monoksida (CO), oksida nitrogen diekspresikan dalam nitrogen dioksida (NO2) kesetaraan, dan hidrokarbon (HC), dengan asumsi rasio: C1H1.85 untuk bensin, C1H1.86 untuk bahan bakar diesel.
- f. "Emisi CO2" berarti karbon dioksida.
- g. "Konsumsi bahan bakar" berarti jumlah bahan bakar yang dikonsumsi, dihitung dengan metode keseimbangan karbon.
- h. "Kecepatan kendaraan maksimum" (vmax) adalah kecepatan maksimum kendaraan sebagaimana dinyatakan oleh produsen, diukur sesuai dengan *Directive* Uni Eropa (UE) No. 95/1/EC (pada kecepatan desain maksimum, torsi maksimum dan daya mesin maksimum kendaraan bermotor roda dua atau tiga).
 - Simbol yang digunakan dalam Peraturan Menteri ini dirangkum dalam Lampiran III.A
- i. "Daya Maksimal bersih Mesin" adalah daya maksimal bersih pada mesin dari kendaraan bermotor yang di keluarkan oleh pabrik pembuat, diukur sesuai dengan ISO 4106:2004 (Motorcycle – Engine test code – Net power)

4. PERSYARATAN UMUM

Komponen yang mempengaruhi emisi polutan gas, emisi karbon dioksida dan konsumsi bahan bakar sehingga harus didesain, dibangun dan dirakit untuk memungkinkan kendaraan dapat digunakan dengan normal untuk memenuhi ketentuan Peraturan Menteri ini, dengan mengesampingkan getaran yang mungkin terjadi.

5. PERSYARATAN KINERJA

Ketika menerapkan prosedur uji yang terkandung dalam GTR ini massa karbon monoksida, massa hidrokarbon, dan massa nitrogen oksida yang diperoleh akan bernilai lebih kecil dari ambang batas yang ditentukan oleh Menteri yang menyelenggarakan urusan pemerintahan dibidang perlindungan dan pengelolaan lingkungan hidup.

6. KONDISI PENGUJIAN

a. Ruang pengujian dan ruang pengkondisian (soak room)

1) Ruang pengujian

Ruang pengujian dengan *chassis dynamometer* dan perangkat koleksi sampel gas, harus memiliki suhu 298 K \pm 5 K (25 ° C \pm 5 ° C). Suhu ruangan harus diukur dua kali di sekitar kipas pendingin kendaraan, baik sebelum dan setelah pengujian tipe I.

2) Soak room

Soak room harus memiliki suhu 298 K \pm 5 K (25 ° C \pm 5 ° C) dan digunakan untuk parkir kendaraan uji (sepeda motor) untuk dikondisikan.

b. Kendaraan uji (sepeda motor)

1) Umum

Kendaraan uji harus sesuai termasuk semua komponen dengan seri produksi, atau, jika sepeda motor berbeda dari seri produksi, diskripsi lengkap harus diberikan dalam laporan uji. Dalam memilih kendaraan uji, produsen dan otoritas uji harus setuju model uji sepeda motor yang merepresentasikan untuk kelompok tipe kendaraan terkait.

2) Run-in

Sepeda motor uji harus dalam kondisi mekanik yang baik. Kendaraan tersebut harus sudah dipastikan telah dijalankan dan digunakan setidaknya 1.000 km sebelum diuji. Mesin, transmisi dan sepeda motor harus benar dapat dijalankan, sesuai dengan persyaratan pabrik pembuat.

Laboratorium pengujian dapat memutuskan apakah kendaraan yang dikendarai kurang dari 1.000 km sebelum pengujian dapat diterima.

3) Penyetelan

Sepeda motor harus disetel sesuai dengan persyaratan pabrik, misalnya viskositas minyak, atau, jika sepeda motor berbeda dari seri produksi, diskripsi lengkap akan diberikan dalam laporan uji.

4) Massa uji dan distribusi pembebanan

Massa uji total termasuk massa pengendara dan instrumen harus diukur sebelum dimulai pengujian. Distribusi pembebanan antar roda harus sesuai dengan instruksi dari pabrik pembuat.

5) Ban

Tipe ban harus sesuai dengan spesifikasi pabrik pembuat kendaraan. Tekanan ban harus disesuaikan dengan spesifikasi dari pabrik pembuat kendaraan atau disesuaikan dengan tekanan pada saat kecepatan uji jalan dan pada saat kecepatan di *chassis dynamometer*. Tekanan ban harus ditunjukkan dalam laporan uji.

c. Klasifikasi kendaraan

Gambar 6-1 memberikan petunjuk tentang klasifikasi kendaraan dalam bentuk kapasitas mesin dan kecepatan maksimum kendaraan. Nilai numerik dari kapasitas mesin dan kecepatan maksimum kendaraan tidak akan dibulatkan ke atas atau bawah.

1) Kelas 1

Kendaraan yang memenuhi spesifikasi berikut adalah kelas 1:

```
50 \text{ cm}^3 < \text{kapasitas mesin} < 150 \text{ cm}^3 \text{ dan Vmax} \le 50 \text{ km/jam}
kapasitas mesin < 150 \text{ cm}^3 \text{ dan } 50 \text{ km/jam} < \text{Vmax} < 100 \text{ km/jam}, kelas 1
```

2) Kelas 2

Kendaraan yang memenuhi spesifikasi berikut adalah kelas 2:

```
Kapasitas mesin < 150 cm³ dan 100 km/jam \leq Vmax < 115 km/jam a sub-kelas 2-Kapasitas mesin \geq 150 cm³ dan Vmax < 115 km/jam sub-kelas 2-115 km/jam \leq Vmax < 130 km/jam sub-kelas 2-2
```

3) Kelas 3

Kendaraan yang memenuhi spesifikasi berikut adalah kelas 3:

```
130 \le \text{Vmax} < 140 \text{ km/jam} sub-kelas 3-1,
```


Gambar 6-1: klasifikasi kendaraan

d. Spesifikasi bahan bakar referensi

Data teknis spesifikasi bahan bakar acuan *(reference fuel)* yang digunakan untuk pengujian kendaraan ditentukan dalam Lampiran III B

e. Pengujian Tipe I

1) Pengemudi

Pengemudi harus mempunyai massa 75 kg ± 5 kg.

- 2) Spesifikasi perlengkapan uji dan penyetelan
 - a) Dinamometer harus memiliki *roller* tunggal dengan diameter minimal 0,400 m.
 - b) Dinamometer harus dilengkapi dengan penghitung putaran *roller*untuk mengukur jarak perjalanan aktual.
 - c) Roda gila *(flywheels)* dari dinamometer atau cara lain akan digunakan untuk mensimulasikan inersia yang ditentukan.
 - d) Roller dinamometer harus bersih, kering dan bebas dari sesuatu, yang memungkinkan ban tergelincir.
 - e) Spesifikasi kipas pendingin sebagai berikut:
 - (1) Sepanjang pengujian, blower (kipas) pendingin dengan kecepatan variabel harus diposisikan di depan sepeda motor, sehingga udara pendingin diarahkan ke sepeda motor supaya dapat mensimulasikan kondisi operasi aktual.

Kecepatan *blower* harus sedemikian sehingga, dalam rentang operasi dari 10 sampai 50 km /jam, kecepatan linear dari udara di outlet *blower* dengan toleransi ± 5 km /jam terhadap kecepatan *roller*. Pada kisaran lebih dari 50 km / jam, kecepatan linear udara harus dalam toleransi ± 10 persen. Pada kecepatan *roller* kurang dari 10 km / jam, kecepatan udara memungkinkan nol.

- (2) Kecepatan udara di atas akan ditentukan sebagai nilai ratarata dari 9 titik pengukuranyang terletak di pusat dari masing-masing persegi panjang membagi seluruh outlet blower menjadi 9 daerah (membagi kedua sisi horizontal dan vertikal dari outlet blower menjadi 3 bagian sama). Setiap nilai dari pengukuran 9 poin harus tidak lebih 10 persen dari nilai rata-rata pengukuran sendiri.
- (3) Outlet *blower* seharusnya memiliki luas penampang minimal 0,4 m² dan bagian bawah outlet *blower* berjarak antara 5 dan 20 cm di atas lantai. Terminal *blower* harus tegak lurus terhadap sumbu longitudinal sepeda motor antara 30 dan 45 cm di depan roda depan. Perangkat yang digunakan untuk mengukur kecepatan linear udara harus diletakkan di antara 0 dan 20 cm dari lubang udara.
- 3) Sistem pengukuran gas buang
- a) Perangkat pengumpul gas harus perangkat tipe tertutup yang dapat mengumpulkan semua gas buang pada outlet knalpot sepeda motor dengan kondisi yang sesuai kondisi tekanan balik yaitu ± 125 mm H2O. Sebuah sistem yang terbuka dapat digunakan dengan baik jika terkonfirmasi bahwa semua gas buang dikumpulkan. Pengumpul gas harus berfungsi hingga tidak ada kondensasi, yang dapat merubah kandungan alamiah gas buang pada suhu uji. Sistem perangkat pengumpul gas ditunjukkan pada Gambar 6-2, misalnya.

Gambar 6-2: Peralatan untuk pengambilan sampel gas dan pengukuran volumenya

- b) Sebuah tabung penghubung antara perangkat dan sistem sampling gas buang harus terbuat dari baja tahan karat, atau beberapa bahan lain, yang tidak mempengaruhi komposisi gas yang dikumpulkan, dan yang tahan terhadap suhu gas ini.
- c) Sebuah penukar panas (heat exchanger) mampu membatasi variasi temperatur gas terlarut dalam asupan pompa ± 5 ° C selama pengujian panas. Exchanger ini harus dilengkapi dengan sistem pemanasan awal yang mampu membawa excanger untuk suhu operasi (dengan toleransi ± 5 ° C) sebelum pengujian dimulai.
- d) Sebuah pompa menarik campuran gas buang terlarut. Pompa ini dilengkapi dengan motor memiliki kecepatan beberapa seragam ketat. Kapasitas pompa harus cukup besar untuk memastikan asupan gas buang. Sebuah perangkat menggunakan ventura aliran kritis (CFV, Critical Flow Venture) juga dapat digunakan.
- e) Sebuah perangkat (T) memungkinkan perekaman kontinyu dari suhu campuran gas buang terlarut yang diencerkan memasuki pompa.
- f) Dua alat pengukur, yang pertama untuk memastikan depresi tekanan campuran buangan cair memasuki pompa, relatif terhadap tekanan atmosfer, yang lain untuk mengukur variasi tekanan dinamis pompa perpindahan positif.

- g) Sampel Probe diletakkan berdekatan tetapi diluar alat pengumpul gas, digunakan untuk mengambil sampel aliran udara cair melalui pompa, filter dan flowmeter pada angka aliran tetap selama pengujian.
- h) Sampel Probe, mengarah ke arah datangnya arus (*upstream*) dari gas buang yang terlarut, untuk mengumpulkan, jika diperlukan melalui sebuah filter, sebuah *flow-meter* dan se buah pompa, sample dari gas buang yang tercampur dalam kondisi laju aliran yang konstan, sepanjang pengujian. Laju minimum aliran dalam 2 perangkat pengambil sampel harus 150 liter/jam.
- i) Katup tiga arah yang terdapat pada sistem sampling dijelaskan dalam Peraturan ini. untuk mengarahkan masuk atau keluar ke/dari masing-masing kantong selama pengujian.
- j) Kantong pengumpul gas yang rapat
 - (1) Kantong untuk udara terlarut dan gas terlarut dengan kapasitas yang sesuai sehingga tidak menghalangi aliiran sampel dan tidak akan mengubah sifat kemurnian dari gaas polutan yang bersangkutan.
 - (2) Kantong harus memiliki alat penutup otomatis yang harus dapat bekerja dengan mudah, tertutup dengan baik, baik untuk sistem sampling maupun sistem analisis di akhir pengujian.
- k) Sebuah penghitung putaran untuk menghitung putaran dari pompa pemindahan positif selama pengujian.
 - (1) Perawatan yang baik harus dilakukan pada sambungan dan bahan atau konfigurasi dari komponen-komponen yang terhubung karena ada kemungkinan bahwa setiap bagian (misalnya adaptor dan koupler) dari sistem sampling menjadi sangat panas. Jika pengukuran tidak dapat dilakukan biasanya karena kerusakan panas dari sistem sampling, sehingga sebuah perangkat pendinginan tambahan dapat digunakan asalkan gas buang tidak terpengaruh.
 - (2) Perangkat tipe terbuka(*open type*) memiliki risiko pengumpulan gas yang tidak lengkap dan kebocoran gas ke dalam sel uji. Sehingga perlu dilakukan untuk memastikan tidak ada kebocoran selama periode sampling.
 - (3) Perlu menjadi perhatian khusus, jika laju aliran konstan CVS digunakan di seluruh siklus uji yang meliputi kecepatan rendah dan tinggi digabungkan jadi satu (yaitu bagian 1, 2 dan 3 siklus) karena kondensasi air dalam rentang kecepatan tinggi memiliki resiko lebih tinggi.

4) Jadwal mengemudi (*Driving schedule*)

a) Siklus uji

Siklus uji (pola kecepatan kendaraan), untuk pengujian tipe I terdiri dari sampai dengan tiga bagian yang diuraikan dalam lampiran III.E. Tergantung pada kelas kendaraan . Bagian siklus pengujian berikut harus dijalankan:

Kelas 1:

Kelas 1 bagian 1, kecepatan dikurangi dalam kondisi dingin, yang diikuti bagian 1 pengurangan kecepatan dalamkondisi panas

Kelas 2:

Sub-kelas 2-1 bagian 1 dalam kondisi dingin, diikuti bagian 2 pengurangan kecepatan dalam kondisi panas Sub-kelas 2-2 bagian 1 dalam kondisi dingin, diikuti dengan

bagian 2 kondisi panas

Kelas 3:

Sub-kelas 3-1 bagian 1 dalam kondisi dingin, diikuti bagian 2 dalam kondisi panas, diikuti bagian 3 pengurangan kecepatan dalam kondisi panas Sub-kelas 3-2 bagian 1 dalam kondisi dingin, diikuti dengan

bagian 2 kondisi panas, diikuti dengan bagian 3 kondisi panas

b) Toleransi kecepatan

(1) Toleransi kecepatan waktu tertentu pada siklus uji yang diuraikan diatas didefinisikan sebagai batas atas dan bawah. Batas atas adalah 3,2 km/jam lebih tinggi dari pada titik tertinggi pada jejak dalam waktu 1 detik dari waktu yang diberikan. Batas bawah adalah 3,2 km/jam lebih rendah dari titik terendah pada jejak dalam waktu 1 detik dari waktu yang diberikan. Variasi kecepatan lebih besar dari toleransi (seperti mungkin terjadi selama perubahan gigi) dapat diterima asalkan terjadi kurang dari 2 detik pada setiap kesempatan. Kecepatan lebih rendah dari yang ditentukan dapat diterima untuk kendaraan yang dioperasikan pada daya maksimum yang tersedia selama kejadian tersebut. Gambar 6-3 menunjukkan kisaran toleransi kecepatan yang dapat diterima untuk poin khusus.

(2) Terlepas dari pengecualian penyimpangan kecepatan *roller* dari kecepatan yang diset dari siklus harus memenuhi persyaratan yang dijelaskan di atas. Jika tidak, hasil uji tidak akan digunakan untuk analisis lebih lanjut dan pengujian harus diulang.

Gambar 6-3: Jejak pengemudi, rentang yang diijinkan

5) Petunjuk pemindahan persneling/gigi

a) Kendaraan uji (sepeda motor) dengan transmisi otomatis Kendaraan yang dilengkapi dengan kotak *transfer*, *sprocket multi*, dan lain-lain, harus diuji dalam konfigurasi direkomendasikan produsen untuk penggunaan di jalan atau jalan raya. Semua pengujian harus dilakukan dengan transmisi otomatis pada "Drive" (persneling tertinggi). Transmisi converter torsi kopling otomatis (Automatic clutch-torque converter) dapat diubah menjadi transmisi manual sesuai opsi/pilihan dari produsen.

Mode langsam harus dijalankan dengan transmisi otomatis pada "*Drive*"dan roda terkunci (*braked*).

Transmisi otomatis akan menggeser secara otomatis melalui urutan normal persneling.

Modus perlambatan harus berjalan di persneling menggunakan rem atau katup penutup (throttle) yang diperlukan untuk mempertahankan kecepatan yang diinginkan.

- b) Kendaraan uji (sepeda motor) dengan transmisi manual
 - (1) Persyaratan Wajib
 - (a) Langkah 1 Perhitungan perubahan kecepatan

Peningkatan kecepatan $(V_{1_{\dot{a}}{}^2}$ dan $V_{i_{\dot{a}}{}^{i+1}})$ dalam km/jam selama fase akselerasi harus dihitung dengan rumus berikut:

Persamaan 6-1:

$$v_{1\to 2} = \left[(0.5753 \times e^{\frac{(-1.9v - \frac{P_n}{m_a + 75})}{m_a + 75}} - 0.1) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_1}$$

Persamaan 6-2:

$$v_{i \to i+1} = \left[(0.5753 \times e^{\frac{(-1.9 \times \frac{P_n}{m_k + 75})}{2}}) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{n dv_1}, i = 2 \text{ to ng-1}$$

dimana:

i = jumlah gigi (≥ 2) ,

ng = jumlah gigi maju,

Pn = tenaga yang diberikan dalam kW,

mk = massa kosong dalam kg,

nidle = kecepatan langsam dalam menit⁻¹,

s = kecepatan mesin yang diberikan dalam menit-1,

ndvi = rasio antara kecepatan mesin (menit-1) dan kecepatan kendaraan (km/jam) pada persneling i

Pengurangan kecepatan $(v_{i\rightarrow i-1})$ dalam km/jam selama fase meluncur atau deselerasi di gigi 4 (gigi ke 4) untuk ng harus dihitung menggunakan rumus berikut:

Persamaan 6-3:

$$v_{i \to i-1} = \left[(0.5753 \times e^{\frac{(-1.9 \times \frac{P_n}{m_k + 75})}{}}) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_{i-2}}, I = 4 \text{ to ng}$$

Dimana:

i adalah jumlah gigi (≥ 4),

ng = jumlah gigi maju,

Pn = tenaga yang diberikan dalam kW,

mk = massa kosong dalam kg,

nidle = kecepatan langsam dalam menit-1,

s = kecepatan mesin yang diberikan dalam menit-1,

ndvi-2 = rasio antara kecepatan mesin (menit-1) dan kecepatan kendaraan (km/jam) pada persneling i-

Pada fase pergeseran turun (downshift) dari gigi 3 ke gigi 2 $(v_{3\rightarrow 2})$ dapat dihitung dengan menggunakan persamaan:

Persamaan 6-4:

$$v_{3 \to 2} = \left[(0.5753 \times e^{\frac{(-1.9 \times \frac{P_n}{m_k + 75})}{-0.1}} - 0.1) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_1}$$

Dimana:

Pn = tenaga yang diberikan dalam kW,

mk = massa kosong dalam kg,

nidle = kecepatan langsam dalam menit-1,

s = kecepatan mesin yang diberikan dalam menit-1,

ndv1 = rasio antara kecepatan mesin (menit-1) dan kecepatan kendaraan (km/jam) pada persneling 1

Pada fase pergeseran turun (downshift) dari gigi 2 ke gigi 1 $(v_{2\rightarrow 1})$ dapat dihitung dengan menggunakan persamaan :

Persamaan 6-5:

$$v_{2\rightarrow 1} = \left[0.03 \times (s - n_{idle}) + n_{idle}\right] \times \frac{1}{ndv_2}$$

Dimana:

ndv2 = rasio antara kecepatan mesin (menit-1) dan kecepatan kendaraan (km/jam) pada persneling 2

Fase meluncur (*Cruise phases*) didefinisikan sebagai fase indikator (*phase indicator*), kenaikan kecepatan sedikit demi sedikit dimungkinkan dan dapat diartikan menaikkan kecepatan. Menaikkan kecepatan $(v_{1\rightarrow 2}, v_{2\rightarrow 3} \text{ dan } v_{i\rightarrow i+1})$ dalam km/jam pada *Cruise phases* dapat dihitung dengan persamaan:

Persamaan 6-6:

$$v_{1\rightarrow 2} = \left[0.03 \times (s - n_{idle}) + n_{idle}\right] \times \frac{1}{ndv_2}$$

Persamaan 6-7:

$$v_{2\to 3} = \left[(0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})} - 0.1) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_l}$$

Persamaan 6-8:

$$v_{i \to i+1} = \left[(0.5753 \times e^{\frac{(-1.9 \times \frac{P_n}{m_k + 75})}{m_k + 75}}) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_{i-1}}, i = 3 tong-1$$

(b) Langkah 2 – Pemilihan gigi untuk setiap sampel siklus

Untuk menghindari perbedaan iterpretasi tentang akselerasi, deselerasi, fase meluncur dan fase stop indikator yang sesuai ditambahkan ke pola (pattern) kecepatan kendaraan sebagai bagian integral dari siklus.

Persneling/gigi yang sesuai untuk masing-masing sampel harus dihitung sesuai dengan kisaran hasil kecepatan kendaraan dari rumusan perpindahan kecepatan pada paragraf 5)b)(1)(a) dan indikator fase pada bagian-bagian siklus yang sesuai untuk kendaraan uji sebagai berikut:

Pemilihan gigi untuk fase berhenti (stop phases):

Pada 5 detik terakhir dari *stop phases* tuas persneling pada gigi 1 dan kopling harus dilepas. Pada bagian sebelumnya dari *stop phases*, gigi pada posisi netral atau kopling harus dilepas.

- Pemilihan persneling pada fase aselerasi:

```
Persneling = 1, jika v \le v_{1\rightarrow 2},
```

Persneling = 2, jika $v_{1\rightarrow 2} < v \le v_{2\rightarrow 3}$,

Persneling = 3, jika $v_{2\rightarrow 3} < v \le v_{3\rightarrow 4}$,

Persneling = 4, jika $v_{3\rightarrow4} < v \le v_{4\rightarrow5}$,

Persneling = 5, jika $v_{4\rightarrow 5} < v \le v_{5\rightarrow 6}$,

Persneling = 6, jika $v > v_{5\rightarrow 6}$.

- Pemilihan persneling pada fase deselerasi atau meluncur:

Persneling = 1, jika $v < v_{2\rightarrow 1}$,

Persneling = 2, jika $v < v_{3\rightarrow 2}$,

Persneling = 3, jika $v_{3\rightarrow 2} \le v < v_{4\rightarrow 3}$,

Persneling = 4, jika $v_{4\rightarrow 3} \le v < v_{5\rightarrow 4}$,

Persneling = 5, jika $v_{5\rightarrow4} \le v < v_{6\rightarrow5}$,

Persneling =6, jika $v \ge v_{4\rightarrow 5}$.

Kopling harus dilepas, jika:

- kecepatan kendaraan turun dibawah 10 km/jam atau
- kecepatan mesin turun dibawah n_{idle} + $0.03 \times (s n_{idle})$;
- Ada resiko engine stalling saat fase cold start
- (c) Langkah 3 Koreksi sesuai dengan persyaratan tambahan Pemilihan gigi persneling harus diubah sesuai dengan persyaratan sebagai berikut:
 - Tidak ada perpindahan gigi pada transisi dari fase aselerasi ke fase deselerasi: menjaga gigi yang digunakan untuk kedua terakhir dari fase aselerasi juga untuk fase deselerasi berikut kecuali jika kecepatan turun di bawah kecepatan meluncur.
 - Tidak ada kenaikan atau penurunan melebihi 1 gigi, kecuali dari gigi 2 ke netral saat penurunan perlambatan ke berhenti. Contoh : 4 4 4 4 3 3 3 1 1 1 1 akan diganti dengan 4 4 4 4 3 3 3 2 1 1 1
 - Kenaikan atau penurunan sampai dengan 4 detik akan diganti dengan gigi sebelumnya, jika gigi sebelum dan

sesudahnya identik. (contoh : 2 3 3 3 2 akan digantikan dengan 2 2 2 2 2 ; 4 3 3 3 3 4 akan digantikan dengan 4 4 4 4 4)

Dalam kasus keadaan berturut turut penggunaan gigi lebih lama dapat dilakukan. contoh:

2 2 2 3 3 3 2 2 2 2 3 3 3 akan diganti dengan 2 2 2 2 2 2 2 2 2 2 3 3 3

Jika digunakan secara bersamaan, dominasi dari keberhasilan serangkaian gigi dengan serangkaian roda gigi sebelumnya .contoh:

2 2 2 2 3 3 3 2 2 2 2 3 3 3 akan diganti dengan 2 2 2 2 2 2 2 2 2 3 3 3

- Tidak ada penurunan selama fase percepatan

(2) Ketentuan Opsional

Pemilihan gigi dapat di modifikasi berdasarkan ketentuan berikut :

Penggunaan gigi yang lebih rendah dari yang ditentukan oleh persyaratan pada Persyaratan Wajib. diijinkan dalam fase siklus. Rekomendasi Pabrik pembuat untuk penggunaan gigi dapat diikuti, apabila tidak menggunakan gigi yang lebih tinggi dari persyaratan yang ditentukan pada Persyaratan Wajib.

Program perhitungan dapat diperoleh dari situs PBB pada URL di bawah ini yang dapat digunakan sebagai bantuan untuk pemilihan gigi. http://www.unece.org/trans/main/wp29/wp29wgs/wp29grpe/

wmtc.html

Penjelasan terhadap pendekatan dan strategi perpindahan gigi dan perhitungan diberikan pada lampiran III.M

6) Penyetelan dinamometer

Sebuah diskripsi lengkap dari *chassis dynamometer* dan instrumen harus diberikan sesuai dengan Lampiran III.F. Pengukuran harus dilakukan dengan akurasi sebagaimana dimaksud pada paragraf 7. Gaya resistensi jalan untuk pengaturan *chassis dynamometer* dapat diturunkan dari salah satu pada pengukuran meluncur diatas jalan atau dari tabel resistensi jalan (lihat Lampiran III.C).

a) Pengaturan *chassis dynamometer* diperoleh dari pengukuran meluncur diatas jalan (*on-road coast down*) Menggunakan alternatif pengukuran meluncur diatas jalan harus dilakukan sesuai dengan Lampiran III.G.

(1) Persyaratan peralatan

Peralatan untuk mengukur kecepatan dan waktu harus akurat sesuai paragraf 7.

(2) Penyetelan massa inersia

- (a) Massa inersia ekuivalen untuk *chassis dynamometer* harus setara massa inersia roda gila, $m_{\rm fi}$, yang paling dekat dengan massa aktual sepeda motor, $m_{\rm a}$. Massa aktual, $m_{\rm a}$, diperoleh dengan menambahkan massa berputar roda depan, $m_{\rm rf}$, ke massa total pengendara, sepeda motor dan instrumen yang diukur selama uji jalan. Alternatifnya, massa inersia ekuivalen mi dapat diturunkan dari Lampiran III.C. Nilai $m_{\rm rf}$, dalam kilogram, dapat diukur atau dihitung dengan tepat, atau dapat diestimasi sebesar 3 persen dari m
- (b) Jika massa aktual ma tidak dapat disamakan dengan massa inersia ekuivalen roda gila mi, untuk membuat gaya resisten jalan yang ditargetkan F^* sama dengan gaya resistansi jalan F_E (yang akan diatur pada *chassis dynamometer*), waktu meluncur terkoreksi Δ T_E dapat diatur sesuai dengan rasio massa total dari waktu meluncur yang ditargetkan Δ T_{road} dalam urutan berikut:

$$\Delta T_{road} = \frac{1}{3.6} (m_a + m_{rl}) \frac{2\Delta v}{F^*}$$
Persamaan 6-9
$$\Delta T_E = \frac{1}{3.6} (m_i + m_{rl}) \frac{2\Delta v}{F_E}$$
Persamaan 6-10
$$F_E = F^*$$
Persamaan 6-11
$$\Delta T_E = \Delta T_{road} \times \frac{m_i + m_{rl}}{m_a + m_{rl}}$$
Persamaan 6-12
$$dengan \qquad 0.95 < \frac{m_i + m_{rl}}{m_a + m_{rl}} < 1.05$$

di mana:

mr1 dapat diukur atau dihitung, dalam kilogram, dengan tepat. Sebagai alternatif,

mr1 dapat diestimasi sebesar 4 persen dari m.

- b) Gaya resistensi jalan berasal dari tabel resistensi jalan
 - (1) Chassis dynamometer dapat diatur dengan menggunakan tabel resistensi jalan dari pada dari gaya resistensi jalan yang diperoleh dengan metode meluncur (coast down). Dalam metode tabel ini, chassis dynamometer ditetapkan oleh massa di urutan jalan terlepas dari karakteristik tertentu dari sepeda motor.
 - Cat. 6. Perlu menjadi perhatian ketika mengaplikasikan metode ini untuk sepedamotor yang memiliki karakteristik yang ekstra (*Extra ordinary*).
 - (2) Massa inersia roda gila ekuivalen mfi harus ekuivalen dengan massa inersia mi yang ditentukan dalam Lampiran III.C. Chassis dynamometer ditetapkan oleh resistensi roller roda depan a dan koefisien tarikan aero b sebagaimana ditentukan dalam Lampiran III.C.
 - (3) Gaya resistansi jalan pada chassis dynamometer FE ditentukan

$$\mathbf{F}_{E} = \mathbf{F}_{T} = \mathbf{a} + \mathbf{b} \times \mathbf{v}^{2}$$

dari persamaan berikut:

Persamaan 6-13

Gaya Running resistance F^* harus sama dengan gaya resistensi jalan yang diperoleh dari tabel resistensi jalan F_T , koreksi untuk kondisi ambien standar tidak diperlukan.

7) Akurasi pengukuran

Pengukuran harus dilakukan menggunakan peralatan yang memenuhi persyaratan akurasi seperti dijelaskan dalam tabel 6-2 di bawah ini:

Tabel 6-1

Item pengukur	Nilai Diukur	Resolusi
a) Gaya resistensi jalan, F	+ 2 persen	
 Kecepatan sepeda motor (v₁, v₂) 	± 1 persen	0,2 km/jam
c) Interval kecepatan meluncur ($2\Delta v = v_1 - v_2$)	± 1 persen	0,1 km/jam
d) Waktu meluncur (Δt)	± 0,5 persen	0,01 detik
 e) Massa sepeda motor total (m_k + m_{rid}) 	± 0,5 persen	1,0 kg
f) Kecepatan angin	± 10 persen	0,1 m/detik
g) Arah angin	-	5 derajat
h) Suhu	± 1 °C	1 °C
i) Tekanan barometer	-	0,2 kPa
j) Jarak	± 0,1 persen	1 m
k) Waktu	± 0,1 detik	0,1 detik

f. Pengujian Tipe II

1) Aplikasi

Persyaratan ini digunakan untuk semua kendaraan uji (sepeda motor) yang tenaganya dari mesin pengapian positif.

2) Bahan bakar pengujian

Bahan bakar harus dari bahan bakar referensi dengan spesifikasi diberikan dalam Peraturan Menteri ini.

3) Polutan gas diukur

Isi volume karbon monoksida harus segera diukur setelah pengujian Tipe I

4) Kecepatan uji mesin

Pengujian harus dilakukan dengan mesin pada kecepatan langsam normal dan kecepatan "langsam tinggi (*high idle*)". Kecepatan langsam tinggi ditentukan oleh pabrik pembuat tetapi harus lebih tinggi dari 2.000 min⁻¹.

5) Posisi tuas persneling

Dalam kasus kendaraan uji (sepeda motor) yang dioperasikan secara manual atau transmisi roda gigi dengan perubahan semi-manual, pengujian harus dilakukan dengan tuas persneling di posisi "netral" dan dengan kopling diaktifkan. Dalam kasus kendaraan uji (sepeda motor) dengan transmisi roda gigi dengan perubahan otomatis, pengujian harus dilakukan dengan selector gigi (gear selector) pada salah satu posisi "nol" atau "parkir".

7. PROSEDUR PENGUJIAN

a. Diskripsi pengujian

Kendaraan uji (sepeda motor) yang harus digunakan, sesuai dengan kategorinya, untuk pengujian dari dua tipe, I dan II, sebagaimana ditentukan di bawah ini:

- 1) Pengujian tipe I (memverifikasi emisi rata-rata polutan gas, emisi CO2 dan konsumsi bahan bakar pada satu siklus karakteristik mengemudi).
 - a) Pengujian harus dilakukan dengan metode yang diuraikan dalam paragraf 7.b. pada Peraturan Menteri ini. Gas harus dikumpulkan dan dianalisisa dengan metode yang ditentukan.

b) Jumlah pengujian

- (1) Pada pengujian ini, masa karbon monoksida dan masa hidrokarbon yang didapat harus lebih kecil dari ambang batas yang ditentukan oleh Menteri yang menyelenggarakan urusan pemerintahan dibidang perlindungan dan pengelolaan lingkungan hidup.
- (2) Dari setiap pengujian, massa karbon monoksida, massa hidrokarbon, massa oksida nitrogen, massa karbon dioksida dan massa bahan bakar, yang dikonsumsi selama pengujian harus ditentukan.
- 2) Pengujian tipe II (uji karbon monoksida pada kecepatan langsam) dan data emisi yang diperlukan untuk pengujian layak jalan. Karbon monoksida isi dari gas buang yang dipancarkan harus diperiksa dengan pengujian pada mesin dengan kecepatan langsam normal dan kecepatan "langsam tinggi" (yaitu> 2,000 min-1) dilakukan dengan metode yang diuraikan pada paragraf 7.c. dengan Peraturan Menteri ini.

b. Pengujian Tipe I

1) Tinjauan

- a) Pengujian Tipe I terdiri dari urutan ditentukan dari persiapan dinamometer, pengisian bahan bakar, penempatan kendaraan, dan kondisi operasi.
- b) Pengujian ini dirancang untuk menentukan emisi massa hidrokarbon, karbon monoksida, oksida nitrogen, karbon dioksida dan konsumsi bahan bakar yang mensimulasikan operasi dunia riil. Pengujian terdiri dari menstart (start-up) mesin dan operasi sepeda motor pada chassis dynamometer, melalui siklus mengemudi tertentu. Bagian proporsional dari emisi gas buang

- cair terus dikumpulkan untuk analisis selanjutnya, menggunakan constant volume (variable dilution) sampler (CVS)
- c) Kecuali dalam kasus-kasus kerusakan komponen atau kegagalan, semua sistem kontrol emisi di-*instal* pada atau tergabung dalam sebuah sepeda motor yang diuji harus berfungsi selama semua tahapan pengujian.
- d) Konsentrasi di udara (back ground) diukur untuk semua parameter yang pengukuran emisinya dilakukan. Untuk pengujian gas buang, ini memerlukan sampling dan analisis udara pelarut.

2) Penyetelan dinamometer dan verifikasi

- a) Persiapan kendaraan uji (sepeda motor)
 - (1) Pabrikan harus menyediakan alat kelengkapan tambahan dan adapter, yang dibutuhkan untuk mengakomodasi menguras bahan bakar pada titik terendah dalam tangki yang terpasang pada kendaraan, dan menyediakan alat pengumpul sampel gas buang.
 - (2) Tekanan ban harus disesuaikan dengan spesifikasi dari pabrik pembuat kendaraan atau disesuaikan dengan tekanan pada saat kecepatan uji jalan dan pada saat kecepatan di *chassis dynamometer*.
 - (3) Kendaraan uji harus dipanaskan pada *chassis dynamometer* hingga kondisi yang sama seperti saat uji jalan.
- b) Persiapan dinamometer, jika penyetelan didasarkan pada pengukuran coast down. Sebelum pengujian, chassis dynamometer harus secara tepat dipanaskan sampai gaya gesekan Ff stabil. Beban pada chassis dynamometer FE adalah (dari sudut pandang konstruksinya) komposisi dari kerugian gesek total Ff yang merupakan jumlah dari resistensi gesek rotasi chassis dynamometer, resistensi rotasi ban, resistensi gesek bagian yang berputar dalam system penerus daya sepeda motor dan gaya pengereman dari unit menyerap daya (pau) Fpau, seperti

$$\mathbf{F}_{E} = \mathbf{F}_{f} + \mathbf{F}_{pau}$$

ditunjukkan pada persamaan berikut:

Persamaan 7-1

Gaya resistansi target sedang jalan F* berasal dari paragraf 6.c Lampiran III.G harus direproduksi pada *chassis dynamometer*

$$F_E(v_i) = F^*(v_i)$$

sesuai dengan kecepatan sepeda motor. yaitu:

Persamaan 7-2

Kerugian gesek total Ff pada *chassis dynamometer* harus diukur dengan metode dibawah ini.

(1) Memutar dengan dinamometer

Metode ini hanya berlaku pada dinamometer yang mampu memutar sepeda motor. Sepeda motor harus dijalankan oleh chassis dynamometer dengan tetap pada kecepatan referensi v0 dengan transmisi bekerja dan kopling terlepas. Kerugian gesek total Ff (v0) pada kecepatan referensi v0 diberikan oleh gaya chassis dynamometer.

(2) Coast down tanpa absorpsi

Metode mengukur waktu coast down adalah metode coast down untuk pengukuran kerugian gesek total Ff. Coast down dari sepeda motor dilakukan pada chassis dynamometer dengan prosedur yang dijelaskan dalam paragraf 5 dari Lampiran III.G dengan penyerapan chassis dynamometer nol, dan waktu coast down \(\Delta \text{ti} \) yang berhubungan dengan kecepatan referensi v0 harus diukur. Pengukuran harus

$$\overline{\Delta t} = \frac{1}{n} \sum_{i=1}^{n} \Delta t_{i}$$

dilakukan setidaknya tiga kali, dan waktu meluncur rata-rata Δ ti (diatas delta ti ada garis (bar)) dihitung dengan persamaan berikut:

Persamaan 7-3

(3) Kerugian gesek total Kerugian gesek total Ff(v0) pada kecepatan

$$F_f(v_0) = \frac{1}{3.6} (m_t + m_{r1}) \frac{2\Delta v}{\Delta t}$$

referensi v0 dihitung dengan persamaan berikut:

Persamaan 7-4

(4) Perhitungan gaya unit absorpsi daya Gaya Fpau(v0) yang akan diserap oleh *chassis dynamometer* pada kecepatan referensi v0 dihitung dengan mengurangkan Ff(v0) dari gaya resistensi target sedang jalan F*(v0) seperti yang ditunjukkan persamaan berikut:

$$\mathbf{F}_{paw}(\mathbf{v}_0) = \mathbf{F}^*(\mathbf{v}_0) - \mathbf{F}_f(\mathbf{v}_0)$$
Persamaan 7-5

(5) Penyetelan chassis dynamometer

Menurut tipenya, chassis dynamometer harus disetel oleh salah satu metode yang dijelaskan dibawah ini. Penyetelan yang dipilih harus diaplikasikan untuk pengukuran emisi polutan serta pengukuran emisi CO2.

(a) Chassis dynamometer dengan fungsi polygonal

Dalam kasus *chassis dynamometer* dengan fungsi poligonal, di mana karakteristik absorpsi ditentukan oleh nilai beban pada beberapa titik kecepatan, setidaknya tiga kecepatan yang ditentukan, termasuk kecepatan referensi, yang seharusnya dipilih sebagai titik pengaturan. Pada setiap titik pengaturan, *chassis dynamometer* harus diatur ke nilai Fpau(vj) diperoleh dalam Persamaan 7-5.

(b) Chassis dynamometer dengan coefficient control (kontrol koefisien)

Dalam kasus chassis dynamometer dengan controller koefisien, di mana karakteristik absorpsi ditentukan oleh koefisien diberikan dari fungsi polinomial, nilai Fpau(vj) pada setiap kecepatan tertentu harus dihitung dengan Persamaan 7-1 dan Persamaan 7-2.

Mengasumsikan karakteristik beban menjadi:

$$\mathbf{F}_{pos}(\mathbf{v}) = \mathbf{a} \times \mathbf{v}^2 + \mathbf{b} \times \mathbf{v} + \mathbf{c}$$
Persamaan 7-6

dimana:

koefisien a, b dan c harus ditentukan dengan metode regresi polinomial. *Chassis dynamometer* disetel terhadap koefisien a, b dan c yang diperoleh dengan metode regresi polinomial.

(c) Chassis dynamometer dengan F* polygonal digital setter

Dalam kasus chassis dynamometer dengan polygonal digital setter, di mana unit prosesor sentral (CPU) yang tergabung dalam sistem, F* adalah input langsung, dan _ti, Ff dan

Fpau secara otomatis diukur dan dihitung untuk mengatur chassis dynamometer ke gaya resistensi target jalan $F^* = f^* + f^* 2 \times v^2$.

Dalam kasus ini, beberapa poin berturutan secara langsung dimasukan secara digital dari data F*j dan vj, coast down dilakukan dan waktu coast down \(\Delta t \) diukur. Setelah coast down diulang beberapa kali, Fpau secara otomatis dihitung dan ditetapkan pada interval kecepatan sepeda motor 0,1 km/jam, dengan urutan sebagai berikut:

$$F^* + F_f = \frac{1}{3.6} (m_i + m_{r1}) \frac{2\Delta v}{\Delta t_i}$$
Persamaan 7-7
$$F_f = \frac{1}{3.6} (m_i + m_{r1}) \frac{2\Delta v}{\Delta t_i} - F^*$$
Persamaan 7-8
$$F_{pow} = F^* - F_f$$
Persamaan 7-9

(d) Chassis dynamometer dengan f*0, f*2 coefficient digital setter (pengatur digital koefisien f*0, f*2)

Dalam kasus *chassis dynamometer* dengan *coefficient digital setter*, di mana sebuah CPU (unit prosesor sentral) yang tergabung dalam sistem, gaya resistensi target jalan $F^* = f^* + f^* 2 \times v^2$ secara otomatis diset pada chassis dynamometer.

Dalam kasus ini, koefisien f*0 dan f*2 secara langsung masukan digital; coast down dilakukan dan waktu coast down \(\Delta ti \) diukur. Fpau secara otomatis dihitung dan ditetapkan pada interval kecepatan sepeda motor 0,06 km/jam, dengan urutan sebagai berikut:

$$\mathbf{F}^* + \mathbf{F}_f = \frac{1}{3.6} (\mathbf{m}_i + \mathbf{m}_{si}) \frac{2\Delta \mathbf{v}}{\Delta \mathbf{t}_i}$$
 Persamaan 7-10

$$\mathbf{F}_f = \frac{1}{3.6} (\mathbf{m}_i + \mathbf{m}_{si}) \frac{2\Delta \mathbf{v}}{\Delta \mathbf{t}_i} - \mathbf{F}^*$$
 Persamaan 7-11

$$\mathbf{F}_{pow} = \mathbf{F}^* - \mathbf{F}_f$$
 Persamaan 7-12

(6) Verifikasi penyetelan dinamometer

(a) Uji verifikasi

Segera setelah pengaturan awal, waktu *coast down* ∆tE pada dinamometer yang sesuai dengan kecepatan referensi (v0), harus diukur dengan prosedur yang sama seperti

dalam paragraf 5 Lampiran III.G. Pengukuran harus dilakukan setidaknya tiga kali, dan waktu *coast down* menengah *(mean)* ΔtE harus dihitung dari hasil pengukuran. Gaya resistensi jalan diset sesuai kecepatan referensi, FE(v0) pada *chassis dynamometer* dihitung dengan persamaan berikut:

$$F_E(v_0) = \frac{1}{3.6}(m_r + m_{r1})\frac{2\Delta v}{\Delta t_E}$$

Persamaan 7-13

(b) Perhitungan error pengaturan Error pengaturan e dihitung dengan persamaan berikut:

$$\varepsilon = \frac{\left| \mathbf{F}_{E}(\mathbf{v}_{0}) - \mathbf{F}^{*}(\mathbf{v}_{0}) \right|}{\mathbf{F}^{*}(\mathbf{v}_{0})} \times 100$$

Persamaan 7-14

Chassis dynamometer harus distel ulang jika error pengaturan tidak memenuhi kriteria berikut:

 $\xi \le 2$ persen untuk v $0 \ge 50$ km/jam

 $\xi \le 3$ persen untuk 30 km/jam $\le Vo < 50$ km/jam

 $\xi \le 10$ persen untuk Vo < 30 km/jam

Prosedur dalam paragraf diatas harus diulang sampai error pengaturan memenuhi kriteria. Penyetelan *chassis dynamometer* dan error yang diamati harus direkam. Contoh formulir rekaman diberikan pada Lampiran III.I.

- c) Persiapan dinamometer, jika penyetelan berasal dari tabel resistensi jalan.
 - (1) Kecepatan spesifik dynamometer Resistensi jalan pada *chassis* dynamometer diverifikasi pada kecepatan yang ditentukan v. Setidaknya empat kecepatan tertentu harus diverifikasi. Kisaran poin kecepatan tertentu (interval antara poin maksimum dan minimum) akan memperluas salah satu sisi kecepatan referensi atau rentang kecepatan referensi, jika ada lebih dari satu kecepatan referensi, paling tidak _v, seperti yang didefinisikan dalam paragraf 4 Lampiran III.G. Poin kecepatan tertentu, termasuk titik kecepatan referensi, tidak lebih dari 20 km/jam masing-masing dan interval kecepatan tertentu harus sama.

- (2) Verifikasi chassis dynamometer
 - (a) Segera setelah pengaturan awal, harus diukur waktu coast down pada chassis dynamometer sesuai dengan kecepatan tertentu. Sepeda motor jangan distel diatas chassis dynamometer selama pengukuran waktu meluncur. Ketika kecepatan chassis dynamometer melebihi kecepatan maksimum siklus uji, pengukuran waktu meluncur dimulai.
 - (b) Pengukuran harus dilakukan setidaknya tiga kali, dan waktu $coast\ down$ menengah $(mean)\ \Delta tE$ harus dihitung dari hasilnya.
 - (c) Gaya resistensi jalan diset FE(vj) pada kecepatan yang ditentukan diatas *chassis dynamometer* dihitung dengan persamaan berikut:

$$F_E(v_j) = \frac{1}{3.6} \times m_t \times \frac{2\Delta v}{\Delta t_E}$$

Persamaan 7-15

(d) Pengaturan Error ξ dari kecepatan spesifik dihitung dengan rumusan :

$$\varepsilon = \frac{\left| \mathbf{F}_{E} \left(\mathbf{v}_{j} \right) - \mathbf{F}_{T} \right|}{\mathbf{F}_{T}} \times 100$$

Persamaan 7-16

(e) Chassis dynamometer harus distel ulang jika error pengaturan tidak memenuhikriteria berikut:

 $\xi \le 2$ persen untuk $V \ge 50$ km/jam

 $\xi \le 3$ persen untuk 30 km/jam $\le V < 50$ km/jam

 $\xi \le 10$ persen untuk V < 30 km/jam

(f) Prosedur yang diuraikan di atas harus diulang sampai error pengaturan memenuhi kriteria. Penyetelan *chassis dynamometer* dan error yang diamati harus direkam. Sebuah contoh formulir rekaman diberikan dalam Lampiran III.J.

3) Kaliberasi analiser

a) Jumlah gas pada tekanan yang diindikasikan kompatibel dengan fungsi yang benar dari peralatan harus disuntikkan ke dalam analiser dengan bantuan flow meter dan katup pengurang tekanan yang dipasang pada setiap silinder gas. Peralatan harus disetel sampai menunjukkan nilai stabil yaitu nilai yang tertera pada silinder gas standar. Mulai dari pengaturan yang diperoleh dengan silinder gas kapasitas terbesar, kurva harus digambar dari penyimpangan peralatan sesuai dengan isi silinder standar variasi yang digunakan. Analyzer ionisasi nyala (flame ionisation analyser) harus dikalibrasi ulang secara berkala, pada interval tidak lebih dari satu bulan, menggunakan udara/propana atau udara/campuran heksan dengan konsentrasi hidrokarbon nominal sama dengan 50 persen dan 90 persen dari skala penuh.

- b) Analisa absorpsi inframerah non-dispersif harus diperiksa pada interval yang sama dengan menggunakan campuran nitrogen/CO dan nitrogen/CO2 dalam konsentrasi nominal sama dengan 10, 40, 60, 85 dan 90 persen dari skala penuh.
- c) Untuk mengkalibrasi analyzer chemiluminescence NOx, nitrogen/nitrogen oksida (NO) campuran dengan konsentrasi nominal sama dengan 50 persen dan 90 persen dari skala penuh yang harus digunakan. Kalibrasi dari semua tiga tipe analiser harus diperiksa sebelum setiap serangkaian pengujian, dengan menggunakan campuran gas-gas, yang diukur dalam konsentrasi setara dengan 80 persen dari skala penuh. Sebuah perangkat pengenceran dapat diterapkan untuk mmencairkan 100 persen gas kalibrasi menjadi konsentrasi yang dibutuhkan.

4) Pengkondisian kendaraan uji (sepeda motor)

- a) Kendaraan uji harus dipindahkan ke daerah pengujian dan persiapan berikut dilakukan:
 - Tangki bahan bakar harus dikeringkan melalui pengering tangki bahan bakar yang disediakan dan diisi dengan bahan bakar uji sebagaimana dimaksud, hingga setengah kapasitas tangki.
 - Kendaraan uji harus ditempatkan pada dinamometer dengan dikendarai atau didorong dan dioperasikan melalui siklus sebagaimana dimaksud pada aturan siklus uji. Kendaraan tidak perlu dingin, dan dapat digunakan untuk mengatur daya dinamometer.
- b) Pelaksanaannya dipraktekkan sesuai jadwal mengemudi tertentu yang dapat dilakukan pada titik uji, (sebelum sampel emisi diambil), untuk tujuan menemukan gerakan throttle minimum guna mempertahankan hubungan kecepatan-waktu yang tepat, atau untuk memungkinkan penyesuaian sistem pengambilan sampel.

c) Dalam waktu 5 menit setelah pengkondisian awal, kendaraan uji harus dipindahkan dari dinamometer dengan dikendaraai atau didorong ke ruang soaking untuk diparkir. Kendaraan harus disimpan selama tidak kurang dari 6 jam dan tidak lebih dari 36 jam sebelum pengujian tipe I dimulai dengan keadaan dingin atau hingga temperatur oli mesin T^o atau suhu pendingin T^c atau suhu dudukan/gasket busi TP (hanya untuk mesin pendingin udara) sama dengan suhu udara ruang soaking.

5) Pengujian emisi

- a) Start dan start ulang mesin
 - (1) Mesin harus distart sesuai dengan prosedur start yang direkomendasikan produsen. Pelaksanaan siklus uji harus dimulai ketika mesin distart.
 - (2) Uji kendaraan yang dilengkapi dengan choke otomatis harus dioperasikan sesuai dengan instruksi operasi produsen atau petunjuk pemilik termasuk pengaturan choke dan "sentakan turun (kick down)" dari idle cepat dingin. Transmisi harus ditempatkan pada gigi 15 detik setelah mesin distart. Jika perlu, pengereman dapat digunakan untuk menjaga roda dari berputar.
 - (3) Uji kendaraan yang dilengkapi dengan *choke* manual harus dioperasikan sesuai dengan instruksi produsen atau petunjuk pemilik. Apabila waktu (pengoperasian *choke*) disediakan dalam petunjuk, maka titik untuk mulai operasi dapat ditentukan, yaitu dalam waktu 15 detik dari waktu yang direkomendasikan.
 - (4) Operator dapat menggunakan *choke*, klep dan lain-lain dimana diperlukan untuk menjaga mesin jalan.
 - (5) Jika instruksi operasi produsen atau petunjuk pemilik tidak menentukan prosedur start mesin hangat, mesin (mesin *choke* otomatis dan manual) harus distart dengan membuka gas sekitar setengah dan mengengkol mesin sampai start.
 - (6) Jika, selama start dingin, kendaraan uji tidak start setelah 10 detik mengengkol, atau sepuluh siklus dari mekanisme start manual, pengengkolan berhenti dengan alas an gagal untuk start yang ditentukan. Penghitung rotasi pada sampler volume konstan harus dimatikan dan katup solenoid sampel ditempatkan pada posisi "siaga"selama periode diagnostik. Di samping itu, salah satu *blower* CVS harus dimatikan atau tabung knalpot diputus dari pipa knalpot selama periode diagnostik.

- (7) Jika kegagalan untuk start adalah kesalahan operasional, kendaraan uji harus dijadwal ulang untuk pengujian dari start dingin. Jika kegagalan untuk start adalah disebabkan oleh kerusakan kendaraan, jika tindakan korektif (mengikuti ketentuan pemeliharaan terjadwal) dilakukan kurang dari durasi 30 menit maka pengujian dapat diteruskan. Sistem pengambilan sampel harus diaktifkan pada saat yang sama pengengkolan/menghidupkan mesin dimulai. Ketika mesin start, urutan prosedur mengemudi dimulai. Jika kegagalan start disebabkan oleh kerusakan kendaraan dan kendaraan tidak dapat distart, pengujian harus dibatalkan, kendaraan dipindah dari dinamometer, tindakan perbaikan diambil (mengikuti ketentuan pemeliharaan terjadwal), dan kendaraan dijadwal ulang untuk pengujian. Alasan penyebab kerusakan (jika ditentukan) dan tindakan korektif yang dilakukan harus dilaporkan.
- (8) Jika kendaraan uji tidak start selama start panas setelah sepuluh detik pengengkolan, atau sepuluh siklus dari mekanisme start manual, pengengkolan diberhentikan, pengujian harus dibatalkan, kendaraan dipindah dari dinamometer, tindakan perbaikan dilakukan dan kendaraan dijadwal ulang untuk pengujian.
 - Alasan untuk kerusakan (jika ditentukan) dan tindakan korektif yang dilakukan harus dilaporkan
- (9) Jika mesin "startnya salah", operator akan mengulangi prosedur awal yang direkomendasikan (seperti penyetelan *choke*, dll)

b) Mesin mati

- (1) Jika mesin mati selama periode langsam, mesin akan segera start ulang dan pengujian diteruskan. Jika mesin tidak dapat distart secepatnya untuk memungkinkan kendaraan mengikuti aselerasi berikutnya seperti yang ditentukan, indikator jadwal mengemudi harus dihentikan. Ketika start ulang kendaraan, indikator jadwal mengemudi harus diaktifkan kembali
- (2) Jika mesin mati selama beberapa modus operasi selain langsam, indikator jadwal mengemudi harus dihentikan, kendaraan uji kemudian harus start ulang dan dipercepat hingga kecepatan yang diperlukan pada titik dalam jadwal mengemudi dan pengujian dilanjutkan. Selama aselerasi ke titik ini, perubahan gigi harus dilakukan sesuai dengan Petunjuk pemindahan persneling/gigi

(3) Jika kendaraan uji tidak akan distart ulang dalam waktu satu menit, pengujian harus dibatalkan, kendaraan dipindah dari dinamometer, tindakan perbaikan diambil, dan kendaraan dijadwal ulang untuk diuji. Alasan kerusakan (jika ditentukan) dan tindakan korektif yang diambil harus dilaporkan.

6) Instruksi berkendaraan

- a) Kendaraan uji harus dikendaraai dengan gerakan klep penutup throttle minimum untuk mempertahankan kecepatan yang diinginkan. Tidak diperkenankan menggunakan rem dan klep penutup simultan.
- b) Jika kendaraan uji tidak dapat dipercepat pada laju tertentu, maka kendaraan dioperasikan dengan gas (*throttle*) terbuka penuh hingga kecepatan mencapai nilai yang ditentukan pada jadwal mengemudi.

7) Menjalankan uji dengan dinamometer

- a) Pengujian dinamometer komplit terdiri dari bagian-bagian yang berurutan seperti diuraikan.
- b) Langkah berikut dilakukan untuk setiap pengujian:
 - (1) Tempatkan roda penggerak kendaraan pada dinamometer tanpa menghidupkan mesin.
 - (2) Aktifkan kipas pendingin kendaraan.
 - (3) Untuk semua kendaraan uji, dengan katup pemilih sampel dalam posisi "stand by", hubungkan kantong pengumpul sampel penampungan ke sistem gas buangan terlarut dan udara pelarut.
 - (4) Aktifkan CVS (jika belum aktif), pompa sampel dan perekam suhu. (Penukar panas dari sampler volume konstan (CVS), jika digunakan, dan saluran sampel harus dipanaskan sampai suhu operasi masing-masing sebelum pengujian dimulai.)
 - (5) Atur laju aliran sampel pada laju aliran yang diinginkan dan mengatur perangkat pengukuran aliran gas ke nol.
 - Untuk sampel kantong gas (kecuali sampel hidrokarbon), laju aliran minimum adalah 0,08 liter/detik.
 - Untuk sampel hidrokarbon, untuk flame ionization detection (FID) (atau heated flame ionization detection (HFID) dalam hal kendaraan berbahan bakar metanol), laju aliran minimum 0,031 liter/detik

- (6) Pasang tabung knalpot fleksibel untuk knalpot kendaraan (s).
- (7) Mulai perangkat pengukuran aliran gas, posisi katup pemilih sampel untuk mengarahkan aliran sampel ke dalam kantong sampel gas buang "sementara", kantung sampel udara cair "sementara", memutar kunci, dan mulai mengengkol mesin.
- (8) Lima belas detik setelah mesin start, tempatkan transmisi pada gigi.
- (9) Dua puluh detik setelah mesin start, memulai percepatan kendaraan awal dari jadwal mengemudi.
- (10) Mengoperasikan kendaraan sesuai dengan siklus mengemudi yang ditentukan dalam aturan siklus uji.
- (11) Pada akhir kecepatan bagian 1 atau bagian 1 dikurangi kecepatan dalam kondisi dingin, secara bersamaan beralih sampel mengalir dari kantong pertama dan sampel ke kantong kedua dan sampel, matikan alat pengukur aliran gas No 1 dan memulai alat pengukur aliran gas No 2.
- (12) Dalam hal kelas 3 kendaraan, pada akhir bagian 2 sampel secara bersamaan alih alir sampel dari kantong kedua dan sampel ke kantong ketiga dan sampel, matikan perangkat pengukuran aliran gas No 2 dan, mulai alat pengukur aliran gas No 3.
- (13) Sebelum memulai bagian baru, catat gulungan diukur atau rotasi poros dan stel ulang penghitung atau alihkan ke penghitung kedua. Sesegera mungkin, transfer buangan dan sampel udara cair ke sistem analisis dan proses sampel menurut aturan analisa emisi gas buang dan konsumsi bahan bakar, memperoleh pembacaan stabil dari sampel kantong buang pada semua analiser dalam waktu 20 menit dari akhir fase pengumpulan sampel pengujian
- (14) Matikan mesin 2 detik setelah ujung bagian terakhir dari pengujian.
- (15) Segera setelah berakhirnya periode sampel, matikan kipas pendingin
- (16) Matikan sampler volume konstan (CVS) atau venturi aliran kritis (CFV) atau melepas tabung knalpot dari knalpot kendaraan.
- (17) Lepaskan tabung knalpot dari knalpot kendaraan dan pindahkan kendaraan dari dinamometer.

(18) Untuk alasan perbandingan dan analisis selain kantong menghasilkan juga detik demi detik data emisi (gas cair) harus dipantau.

c. Pengujian Tipe II

- 1) Kondisi pengukuran
 - a) Pengujian Tipe II ditentukan dalam peraturan ini. harus diukur segera setelah pengujian tipe I dengan mesin pada kecepatan langsam normal dan saat langsam tinggi.
 - b) Parameter berikut ini harus diukur dan dicatat pada kecepatan langsam normal dan pada kecepatan langsam tinggi:
 - (1) kandungan karbon monoksida dalam volume gas buang yang dipancarkan,
 - (2) kandungan karbon dioksida dalam volume gas buang yang dipancarkan,
 - (3) putaran mesin selama pengujian, termasuk toleransinya,
 - (4) suhu oli mesin pada saat pengujian.
- 2) Pengambilan sampel gas buang
 - a) Outlet pembuangan harus dilengkapi dengan ekstensi kedap udara, sehingga probe sampel yang digunakan untuk mengumpulkan gas buang dapat dimasukkan ke outlet pembuangan setidaknya 60 cm, tanpa meningkatkan tekanan balik lebih dari 125 mm H20, dan tanpa gangguan dari menjalankan kendaraan. Bentuk ekstensi ini namun harus dipilih untuk menghindari, di lokasi probe sampel, setiap pengenceran yang cukup emisi gas buang di udara. Dimana sepeda motor dilengkapi dengan sistem pembuangan yang memiliki beberapa outlet, baik ini harus digabung dengan pipa umum atau isi karbon monoksida harus dikumpulkan dari masing-masing, hasil pengukuran yang dicapai dari rata-rata perhitungan isinya.
 - b) Konsentrasi CO (CCO) dan CO2 (CCO2) harus ditentukan dari pembacaan alat ukur atau rekaman, dengan menggunakan kurva kalibrasi yang tepat. Hasilnya harus dikoreksi menurut aturan Pengujian Tipe II.

8. HASIL ANALISA

- a. Pengujian Tipe 1
- 1) Analisa emisi gas buang dan konsumsi bahan bakar
 - a) Analisa sampel didalam kantong (bag).

Analisa harus dimulai sesegera mungkin, dan tidak lebih dari 20 menit setelah selesai pengujian, dalam rangka untuk menentukan:

- (1) konsentrasi hidrokarbon, karbon monoksida, nitrogen oksida dan karbon dioksida dalam sampel udara pelarut yang terkandung di dalam kantong B;
- (2) konsentrasi hidrokarbon, karbon monoksida, nitrogen oksida dan karbon dioksida dalam sampel gas buang terlarut dalam kantong A.
- b) Kalibrasi analiser dan hasil-hasil konsentrasi

Analisa hasil harus dilakukan dengan langkah-langkah berikut:

- (1) Sebelum analisa sampel masing-masing, rentang (range) analiser yang digunakan untuk masing-masing polutan harus diatur ke nol dengan gas nol yang tepat.
- (2) Analiser kemudian diatur ke kurva kalibrasi dengan cara mengatur rentang konsentrasi gas nominal 70 persen menjadi 100 persen.
- (3) Kemudian lakukan pemeriksan ulang. Jika pembacaannya berbeda lebih dari rentang 2 persen dari yang ditetapkan dalam b), prosedur diulang.
- (4) Sampel kemudian dianalisa.
- (5) Setelah analisa, nol dan rentang poin diperiksa ulang menggunakan gas yang sama. Jika pemeriksaan ulang berada dalam 2 persen dari point c), analisa ini dianggap dapat diterima.
- (6) Pada semua titik di bagian ini laju aliran dan tekanan dari berbagai gas harus sama seperti yang digunakan selama kalibrasi analiser.
- (7) Angka diadopsi untuk konsentrasi setiap polutan yang diukur dalam gas yang terbaca setelah stabilisasi pada perangkat pengukuran
- c) Mengukur jarak tertutup

Jarak tertutup aktual pada bagian tes akan muncul dengan mengalikan jumlah putaran yang terbaca dari penghitung kumulatif (cumulative counter) dengan keliling roller. Jarak ini harus diukur dalam km.

d) Penentuan kuantitas gas terpancar

Hasil uji yang dilaporkan harus dihitung untuk setiap pengujian dan setiap bagian siklus dengan menggunakan rumus berikut. Hasil dari semua uji emisi dibulatkan, menggunakan "Metode Pembulatan Turun" ditentukan dalam ASTM E 29-67, dengan jumlah tempat ke kanan titik desimal diindikasikan dengan menyatakan standar yang berlaku untuk tiga angka signifikan.

(1) Volume total gas terlarut

Total volume gas terlarut, dinyatakan dalam bagian m³/siklus, disesuaikan dengan kondisi acuan 20 ° C (293 K) dan 101,3 kPa dihitung dengan

$$V = \frac{293.15 \times V_0 \times N \times (P_a - P_i)}{101.325 \times (T_P + 273.15)}$$

Persamaan 8-1

dimana:

Vo = volume gas diisi oleh pompa P selama satu putaran, dinyatakan dalam m³/putaran (m³/revolution). Volume ini adalah fungsi dari perbedaan antara bagian masuk (intake) dan keluar (output) dari pompa;

N = jumlah putaran pompa P pada masing-masing bagian pengujian;

Pa = tekanan ambien dinyatakan dalam kPa;

Pi = tekanan rata-rata selama pengujian di bagian intake pompa P, dinyatakan kPa;

TP = suhu gas terlarut selama pengujian dalam ° C, diukur pada bagian intake pompa P.

(2) Hidrokarbon

Massa hidrokarbon yang tidak terbakar dipancarkan oleh knalpot kendaraan selama pengujian harus dihitung dengan menggunakan rumus berikut:

$$HC_{\rm m} = \frac{HC_{\rm c} \times V \times dHC}{dist \times 10^6}$$

Persamaan 8-2

dimana:

HCm adalah massa hidrokarbon dipancarkan selama pengujian, dalam g/km

Dist adalah jarak didefinisikan di atas;

V adalah volume total

dHC adalah densitas dari hidrokarbon pada suhu 20 ° C dan tekanan 101,3 kPa, dimana rasio karbon/hidrogen rata-rata adalah 1:1.85; dHC = 0,577 kg/m³ untuk bensin dan 0,579 kg/m³ untuk bahan bakar diesel,

HCC adalah konsentrasi gas terlarut, dinyatakan dalam bagian per juta (ppm) setara karbon (misalnya konsentrasi di propana dikalikan dengan 3), dikoreksi untuk memperhitungkan udara pelarut oleh persamaan berikut:

$$HC_c = HC_e - HC_d \times (1 - \frac{1}{DF})$$

Persamaan 8-3

dimana:

HCe adalah konsentrasi hidrokarbon dinyatakan dalam bagian per juta (ppm) setara karbon, dalam sampel gas terlarut dalam kantong,

HCd adalah konsentrasi hidrokarbon dinyatakan dalam bagian per juta (ppm) setara karbon, dalam sampel udara pelarut dikumpulkan dalam kantong B,

DF adalah koefisien didefinisikan di bawah.

(3) Karbon monoksida

Massa karbon monoksida yang dipancarkan oleh knalpot kendaraan selama pengujian harus dihitung dengan menggunakan rumus berikut:

$$CO_m = \frac{CO_c \times V \times dCO}{dist \times 10^6}$$

Persamaan 8-4

dimana:

 $COm \qquad adalah \ massa \ karbon \ monoksida \ yang \ dipancarkan \\ pengujian, \ dalam \ g/km$

dist adalah jarak

V adalah volume total

- dCO adalah densitas karbon monoksida pada suhu 20 ° C dan tekanan 101,3 kPa, dCO = 1,16 kg/m3,
- COC konsentrasi gas terlarut, dinyatakan dalam bagian per juta (ppm) karbon monoksida, dikoreksi untuk memperhitungkan udara pelarut dengan persamaan berikut:

$$CO_c = CO_e - CO_d \times (1 - \frac{1}{DF})$$

Persamaan 8-5

dimana:

- COe adalah konsentrasi karbon monoksida dinyatakan dalam bagian per juta (ppm), dalam sampel gas terlarut dikumpulkan dalam kantong A,
- COd adalah konsentrasi karbon monoksida dinyatakan dalam bagian per juta (ppm), dalam sampel udara pelarut yang dikumpulkan dalam kantong B, DF adalah koefisien didefinisikan di bawah.

(4) Nitrogen oksida

Massa nitrogen oksida yang dipancarkan oleh knalpot kendaraan selama pengujian harus dihitung dengan menggunakan rumus berikut:

$$NO_{x_m} = \frac{NO_{x_c} \times K_h \times V \times dNO_2}{dist \times 10^6}$$

Persamaan

8-6

dimana:

NOxm adalah massa nitrogen oksida yang dipancarkan

selama pengujian, dalam g/km

Dist adalah jarak,

V adalah volume total

dNO2 adalah densitas nitrogen oksida dalam gas buang,

dengan asumsi dalam bentuk nitrat oksida, pada suhu 20 ° C dan tekanan 101,3 kPa, dNO2 = 1,91

kg/m3,

NOXC adalah konsentrasi gas terlarut, dinyatakan dalam

bagian per juta (ppm), dikoreksi untuk memperhitungkan udara pelarut oleh persamaan

berikut:

$$\mathrm{NO}_{\mathrm{x}c} = \mathrm{NO}_{\mathrm{x}c} - \mathrm{NO}_{\mathrm{x}d} \times (1 - \frac{1}{\mathrm{DF}})$$

Persamaan 8-7

dimana:

NOxe adalah konsentrasi nitrogen oksida dinyatakan dalam bagian per juta (ppm) nitrogen oksida, dalam sampel gas terlarut dikumpulkan dalam kantong A,

NOxd adalah konsentrasi nitrogen oksida dinyatakan dalam bagian per juta (ppm) nitrogen oksida, dalam sampel udara pelarut dikumpulkan dalam kantong B,

DF adalah koefisien didefinisikan,

Kh adalah koreksi faktor kelembaban, dihitung dengan rumus berikut:

$$K_h = \frac{1}{1 - 0.0329 \times (H - 10.7)}$$

Persamaan 8-8

dimana:

H adalah kelembaban absolut dalam g air per kg udara kering:

$$H = \frac{6.211 \times U \times P_d}{P_a - P_d \times \frac{U}{100}}$$

Persamaan 8-9

dimana:

U adalah kelembaban dalam persen,

Pd adalah tekanan jenuh air pada suhu pengujian, dalam kPa.

Pa adalah tekanan atmosfir dalam kPa.

(5) Karbon dioksida

Massa karbon dioksida yang dipancarkan oleh knalpot kendaraan selama pengujian harus dihitung dengan menggunakan rumus berikut:

$$CO_{2_m} = \frac{CO_{2_c} \times V \times dCO_2}{dist \times 10^2}$$

Persamaan 8-10

dimana:

CO2m adalah massa karbon dioksida dipancarkan selama

pengujian, dalam g/km

Dist adalah jarak didefinisikan

V adalah volume total

dCO2 adalah densitas karbon dioksida pada suhu 20 ° C

dan tekanan 101,3 kPa, dCO2 = 1,83 kg/m3,

CO2c adalah konsentrasi gas terlarut, dinyatakan dalam

persen karbon dioksida ekuivalen, dikoreksi untuk memperhitungkan udara pelarut oleh persamaan

berikut:

$$CO_{2c} = CO_{2c} - CO_{2d} \times (1 - \frac{1}{DF})$$

Persamaan 8-11

dimana:

CO2e adalah konsentrasi karbon dioksida dinyatakan dalam persen, dalam sampel gas terlarut dikumpulkan dalam kantong A,

CO2d adalah konsentrasi karbon dioksida dinyatakan dalam persen, dalam sampel udara pelarut yang dikumpulkan dalam kantong B,

DF adalah koefisien didefinisikan di bawah

(6) Faktor pencairan DF

Faktor pencairan DF (dalam persen vol.) adalah koefisien bensin dinyatakan menggunakan rumus:

$$DF = \frac{13.4}{CO_2 + (CO + HC) \times 10^{-4}}$$

Persamaan

8-12

Faktor pencairan DF (dalam persen vol.) adalah koefisien untuk bahan bakar solar dinyatakan menggunakan rumus:

$$DF = \frac{13.28}{CO_2 + (CO + HC) \times 10^{-4}}$$

Persamaan

8-13

dimana:

CO, CO2e dan HC adalah konsentrasi karbon monoksida dan hidrokarbon dinyatakan dalam bagian per juta (ppm) dan karbon dioksida dinyatakan dalam persen, dalam sampel gas terlarut di kantong A,

e) Penghitungan konsumsi bahan bakar

Konsumsi bahan bakar, dinyatakan dalam liter per 100 km dihitung dengan rumus berikut:

(1) Kendaraan uji (sepeda motor) dengan mesin pengapian positif (positive ignition engine) bahan bakar bensin

$$FC = \frac{0.1155}{D} \times (0.866 \times HC + 0.429 \times CO + 0.273 \times CO_2)$$
 Persamaan 8-14

dimana:

- FC adalah konsumsi bahan bakar di litre/100 km
- HC adalah emisi hidrokarbon diukur dalam g/km
- CO adalah emisi karbon monoksida diukur dalam g/km
- CO2 adalah emisi karbon dioksida diukur dalam g/km
- D adalah densitas bahan bakar pengujian dalam kg/liter pada 15° C. Dalam kasus bahan bakar gas, densitasnya pada suhu 20° C.
- (2) Kendaraan uji (sepeda motor) dengan mesin pengapian kompresi (compression ignition engine)

$$FC = \frac{0.1160}{D} \times (0.862 \times HC + 0.429 \times CO + 0.273 \times CO_2)$$
 Persamaan 8-15

dimana:

- FC adalah konsumsi bahan bakar dalam liter/100 km
- HC adalah emisi hidrokarbon diukur dalam g/km
- CO adalah emisi karbon monoksida diukur dalam g/km
- CO2 adalah emisi karbon dioksida diukur dalam g/km
- D adalah densitas bahan bakar pengujian dalam kg/liter. Dalam kasus bahan bakar gas, densitasnya pada suhu 20 ° C.
- f) Pembobotan hasil
 - (1) Dalam kasus pengukuran ulang Hasil emisi dalam g/km dan konsumsi bahan bakar di litre/100 km diperoleh dengan

metode perhitungan yang dijelaskan adalah rata-rata untuk setiap bagian siklus.

(2) Hasil (rata-rata) dari bagian 1 atau kecepatan berkurang bagian 1 adalah R1, hasil (rata-rata) bagian 2 atau kecepatan berkurang bagian 2 adalah R2 dan hasil (rata-rata) bagian 3 atau kecepatan berkurang bagian 3 adalah R3. Menggunakan hasil emisi ini dalam g/km dan konsumsi bahan bakar dalam litre/100 km, hasil akhir R, tergantung pada kelas kendaraan sebagaimana dimaksud, harus dihitung dengan menggunakan persamaan berikut:

$$\begin{array}{lll} \text{Kelas 1} & & R = R_1 \times w_1 + R_{1hot} \times w_{1hot} \\ \text{Kelas 2} & & R = R_1 \times w_1 + R_2 \times w_2 \\ \text{Kelas 3} & & R = R_1 \times w_1 + R_2 \times w_2 + R_3 \times w_3 \end{array}$$

(3) Untuk settiap polutan, bobot emisi karbon dioksida dan konsumsi bahan bakar ditunjukkan pada tabel 8-1 harus digunakan

Tabel 8-1: Faktor pembobotan hasil emisi akhir dan konsumsi bahan bakar

Kelas kendaraan	Siklus	Pem	bobotan
V-los 1	Bagian 1, dingin	\mathbf{w}_1	50 persen
Kelas 1	Bagian 1, panas	Wihot	50 persen
V-1 2	Bagian 1, dingin	\mathbf{w}_1	30 persen
Kelas 2	Bagian 2, panas	w ₂	70 persen
	Bagian 1, dingin	\mathbf{w}_1	25 persen
Kelas 3	Bagian 2, panas	w ₂	50 persen
	Bagian 3, panas	W ₃	25 persen

b. Pengujian Tipe II

- 1) Konsentrasi terkoreksi untuk karbon monoksida (CCOcorr dalam persen vol.) dihitung dengan persamaan berikut:
 - a) Untuk mesin dua langkah:

$$C_{COcorr} = 10 \times \frac{C_{CO}}{C_{CO} + C_{CO_2}}$$

Persamaan 8-17

b) Untuk mesin empat langkah:

$$C_{COcorr} = 15 \times \frac{C_{CO}}{C_{CO} + C_{CO_2}}$$

Persamaan 8-18

2) Konsentrasi dalam CCO diukur dan tidak perlu dikoreksi jika total konsentrasi diukur (CCO + CCO2) adalah minimal 10 untuk mesin dua langkah dan 15 untuk mesin empat langkah.

9. REKAMAN DIPERLUKAN

Informasi berikut harus direkam untuk setiap pengujian:

- a. nomor uji;
- b. sistem atau alat uji (diskripsi singkat);
- c. tanggal dan waktu dari hari untuk setiap bagian dari jadwal uji;
- d. operator peralatan;
- e. pengemudi atau operator;
- f. uji kendaraan: pembuat, nomor identifikasi kendaraan, tahun model, tipe transmisi, pembacaan odometer pada permulaan pengkondisian awal, kapasitas mesin, kelompok mesin, sistem kontrol emisi, kecepatan mesin yang direkomendasikan saat langsam, kapasitas tangki bahan bakar, beban inersia, massa kosong aktual pada 0 kilometer, dan tekanan ban roda saat dikendarai;
- g. nomor seri dynamometer: sebagai alternatif untuk mencatat nomor seri dinamometer, untuk referensi nomor sel uji kendaraan dapat digunakan, dengan persetujuan terlebih dahulu dari Administrasi, yang mengeluarkan pencatatan sel uji yang menunjukkan informasi instrumen yang bersangkutan;
- h. semua informasi terkait instrumen seperti tuning-gain-serial number, nomor detektor, berbagai nomor. Sebagai alternatif, referensi ke sebuah nomor sel uji kendaraan dapat digunakan, dengan persetujuan terlebih dahulu dari Administrasi, yang mengeluarkan pencatatan kalibrasi sel uji yang menunjukkan informasi instrumen yang bersangkutan;
- i. pencatatan Grafik: Mengidentifikasi nol, span, gas buang, dan jejak sampel udara pelarut;
- j. tekanan barometrik sel uji, suhu ambien dan kelembaban.
 - Catatan 7: Sebuah barometer laboratorium pusat dapat digunakan, disediakan, tekanan pada pengujian individu sel barometrik ditunjukkan berada dalam \pm 0,1 persen dari tekanan barometric di lokasi barometer pusat.

- k. Tekanan dari campuran dari knalpot dan udara pelarut masuk perangkat *metering CVS*, peningkatan tekanan di perangkat, dan suhu pada inlet. Suhu harus dicatat terus menerus untuk melihat variasi temperatur.
- jumlah putaran dari pompa displacement positif terakumulasi selama setiap tahap pengujian ketika sampel gas buang sedang dikumpulkan. Jumlah standard meter kubik diukur dengan aliran venturi kritis (CFV) selama setiap tahap uji akan menjadi rekor rekaman ekuivalen dengan CFV-CVS.
- m. kelembaban udara pelarut.
 - Jika kolom pengkondisian tidak digunakan pengukuran ini dapat dihapus. Jika kolom pengkondisian digunakan dan udara pelarut diambil dari sel uji, kelembaban ambien dapat digunakan untuk pengukuran ini.
- n. Jarak mengemudi untuk setiap bagian dari pengujian, dihitung dari roll atau putaran poros.
- o. Pola kecepatan roller aktual pada pengujian.
- p. Jadwal penggunaan gigi dalam pengujian.
- q. Hasil emisi pengujian tipe I untuk setiap bagian dari tes (lihat Lampiran III.K).
- r. nilai emisi tiap detik dari pengujian tipe I, jika perlu.
- s. Hasil uji emisi Tipe II (lihat Lampiran III.L).

LAMPIRAN III. A DAFTAR SIMBOL

Simbol	Definisi	Satuan
a	Koefisien fungsi poligonal	82
aT	Gaya resistensi rol roda depan	N
b	Koefisien fungsi poligonal	57
bТ	Koefisien fungsi aerodinamika	N/(km/jam)
c	Koefisien fungsi poligonal	74
C_{co}	Koefisien karbon monoksida	persen vol.
C _{CO corr}	Konsentrasi terkoreksi karbon monoksida	persen vol.
CO _{2 c}	Konsentrasi karbon dioksida dalam gas cair, terkoreksi untuk diperhitungkan sebagai udara cair	persen
CO _{2 d}	Konsentrasi karbon dioksida dalam sampel udara cair didalam kantong B	persen
CO _{2e}	Konsentrasi karbon dioksida dalam sampel udara cair didalam kantong A	persen
CO _{2 m}	Massa karbon dioksida dipancarkan selama bagian uji	g/km
COc	Konsentrasi karbon monoksida dalam gas cair, terkoreksi untuk diperhitungkan dari udara cair	ppm
CO_d	Konsentrasi karbon monoksida dalam sampel udara cair didalam kantong B	ppm
COe	Konsentrasi karbon monoksida dalam sampel udara cair didalam kantong A	ppm
COm	Massa karbon dioksida dipancarkan selama bagian uji	g/km
d_0	Densitas udara relatif terhadap standar ambien	17
d _{CO}	Densitas karbon monoksida	kg/m3
d_{CO2}	Densitas karbon dioksida	kg/m3
DF	Faktor pengenceran	11.21
d _{HC}	Densitas hidrokarbon	kg/m3
dist	Jarak mengemudi dalam satu bagian siklus	km
d _{NOX}	Densitas nitrogen oksida	kg/m3
d _T	Densitas udara relatif pada kondisi pengujian	-
Δt	Waktu meluncur	detik
Δt_{ai}	Waktu meluncur diukur dari uji jalan pertama	detik
Δt _{bi}	Waktu meluncur diukur dari uji jalan kedua	detik
$\Delta T_{\rm E}$	Waktu meluncur tekoreksi untuk massa inersia (mT+ m _{rf})	detik
$\Delta t_{\rm E}$	Waktu meluncur menengah diatas rangka dinamometer pada kecepatan referensi	detik
ΔT_i	Waktu meluncur rata-rata pada kecepatan tertentu	detik
Δt_i	Waktu meluncur sesuai dengan kecepatan	detik
ΔΤί	Waktu meluncur rata-rata pada kecepatan tertentu	detik

Simbol	Definisi	Satuan
ΔT_{road}	Waktu meluncur target	detik
Δt	Waktu meluncur menengah diatas rangka dinamometer tanpa absorpsi	detik
Δv	Interval kecepatan meluncur $(2\Delta v = v_1 - v_2)$	km/jam
ε	Error penyetelan rangka dinamometer	persen
F	Gaya resistensi jalan	N
F*	Gaya resistensi jalan target	N
F* _(v0)	Gaya resistensi jalan target pada kecepatan referensi diatas rangka dinamometer	N
F* _(vi)	Gaya resistensi jalan target pada kecepatan tertentu diatas rangka dinamometer	N
f*0	Resisitensi rol terkoreksi dalam kondisi ambien standar	N
f*2	Koefisien terkoreksi tarikan aerodinamika dalam kondisi ambien standar	N/(km/jam)
F*i	Gaya resistensi jalan target pada kecepatan tertentu	N
f ₀	Resistansi rol	N
f ₂	Koefisien tarikan aerodinamika	N/(km/jam)
F_E	Gaya resistensi jalan yang distel pada rangka dinamometer	N
$F_{E(v0)}$	Gaya resistensi jalan yang distel pada kecepatan referensi diatas rangka dinamometer	N
$F_{E\left(v2\right)}$	Gaya resistensi jalan yang distel pada kecepatan tertentu diatas rangka dinamometer	N
F _f	Kerugian gesek total	N
$F_{f(v0)}$	Kerugian gesek total pada kecepatan referensi	N
Fi	Gaya resistensi jalan	N
$F_{j(v0)}$	Gaya resistensi jalan pada kecepatan referensi	N
Fpau	Gaya pengereman dari unit penyerapan daya	N
F _{pau(v0)}	Gaya pengereman dari unit penyerapan daya pada kecepatan referensi	N
F _{pau(vj)}	Gaya pengereman dari unit penyerapan daya pada kecepatan tertentu	N
FT	Gaya resistensi jalan diperoleh dari tabel resistensi jalan	N
Н	Kelembaban absolut	g/km
HC _c	Konsentrasi gas cair diekspresikan dalam ekuivalen karbon, terkoreksi untuk diperhitungkan sebagai udara cair	ppm
HC_d	Konsentrasi hidrokarbon diekspresikan dalam ekuivalen karbon, dalam sampel udara cair didalam kantong B	ppm
HC _e	Konsentrasi hidrokarbon diekspresikan dalam ekuivalen karbon, dalam sampel udara cair didalam kantong A	ppm
HC _m	Massa hidrokarbon dipancarkan selama bagian pengujian	g/km
K ₀	Faktor koreksi suhu pada resistensi rol	-
Kh	Faktor koreksi kelembaban	_
L	Nilai batas emisi gas	g/km
m	Massa sepeda motor uji	kg
ma	Massa aktual sepeda motor uji	kg

Simbol	Definisi	Satuan
$m_{\rm fi}$	Massa inersia ekuivalen roda gila	kg
m _i	Massa inersia ekuivalen	kg
m_k	Massa kosong kendaraan (sepeda motor)	kg
m _r	Massa inersia ekuivalen semua roda	kg
m _{ri}	Massa inersia ekuivalen semua roda belakang dan bagian sepeda motor yang berrotasi denganroda	kg
m _{ref}	Massa kendaraan ketika jalan (sepeda motor)	kg
m _{rf}	Massa rotasi roda depan	kg
m _{rid}	Massa pengendara	kg
n	Kecepatan mesin	menit-1
n	Jumlah data tentang emisi atau pengujian	-
N	Jumlah rotasi yang dilakukan pompa P	-
ng	Jumlah gigi maju	_
n _{idle}	Kecepatan langam	menit-1
n_max_acc(1)	Kecepatan meningkat dari gigi 1 ke 2 selama fase aselerasi	menit-1
n_max_acc(i)	Kecepatan meningkat dari gigi i ke i+1 selama fase aselerasi, i>1	menit-1
n_min_acc(i)	Kecepatan mesin minimum sedang meluncur atau deselerasi pada persneling 1	menit ⁻¹
NO_{xc}	Konsentrasi nitrogen oksida dalam gas cair, terkoreksi untuk diperhitungkan dari udara cair	ppm
NO_{xd}	Konsentrasi nitrogen oksida dalam sampel udara cair didalam kantong B	ppm
NO _{xe}	Konsentrasi nitrogen oksida dalam sampel udara cair didalam kantong A	ppm
NO _{xm}	Massa nitrogen oksidas yang dipancarkan selama bagian uji	g/km
P_0	Tekanan ambien standar	kPa
Pa	Tekanan ambien/Atmosfir	kPa
P_d	Tekanan jenuh air pada suhu pengujian	kPa
P_i	Tekanan rata-rata selama bagian uji pada bagian dari pompa P	kPa
Pn	Daya mesin diberikan	kW
P _T	Tekanan ambien menengah selama pengujian	kPa
ρ0	massa volumetrik udara ambien relatif standar	kg/m3
r (i)	Rasio gigi pada persneling i	
R	Hasil uji akhir emisi polutan, karbon dioksida atau konsumsi bahan bakar	g/km, 1/100km
R_1	Hasil uji akhir emisi polutan, emisi karbon dioksida atau konsumsi bahan bakar untuk siklus bagian 1 dengan start dingin.	g/km, 1/100km
$R_{1 \text{ hot}}$	Hasil uji akhir emisi polutan, emisi karbon dioksida atau konsumsi bahan bakar untuk siklus bagian 2 dengan kondisi panas.	g/km, 1/100km
R ₂	Hasil uji akhir emisi polutan, emisi karbon dioksida atau konsumsi bahan bakar untuk siklus bagian 3 dengan kondisi panas.	g/km, 1/100km
R_3	Hasil uji akhir emisi polutan, emisi karbon dioksida atau konsumsi bahan bakar untuk siklus bagian 1 dengan kondisi panas.	g/km, 1/100km

Simbol	Definisi	Satuan
Ril	Hasil pengujian Type I pertama emisi polutan	g/km
R _{i2}	Hasil pengujian Type I kedua emisi polutan	g/km
R _{i3}	Hasil pengujian Type I ketiga emisi polutan	g/km
S	Kecepatan mesin diberikan	menit-1
T^{C}	Suhu pendingin	°C
TO	Suhu oli mesin	°C
T^{P}	Suhu dudukan dudukan busi/gasket	°C
T_0	Standard ambient temperature	K
T _P	Suhu gas cair selama bagian pengujian, diukur pada saluran masuk/intake pompa P	°C
T_T	Suhu ambien menengah selama pengujian	K
U	Kelembaban	persen
v	Kecepatan yang ditentukan	56
V	Volume total gas cair	m^3
V	Kecepatan maksimum kendaraan uji (sepeda motor)	km/jam
v0	Kecepatan referensi	km/jam
V_0	Volume gas yang dikeluarkan oleh pompa P selama satu rotasi	m³/rotas
v1	Kecepatan awal yang diukur waktu meluncur	km/jam
v2	Kecepatan akhir yang diukur waktu meluncur	km/jam
vi	Kecepatan tertentu yang dipilih saat waktu meluncur yang diukur	km/jam
w1	Faktor bobot dari siklus bagian 1 dengan start dingin	:2
w1 hot	Faktor bobot dari siklus bagian 1 dengan kondisi panas	<u> = = = = = = = = = = = = = = = = = = =</u>
w2	Faktor bobot dari siklus bagian 2 dengan kondisi panas	:2
w3	Faktor bobot dari siklus bagian 3 dengan kondisi panas	.2

LAMPIRAN III.B

A2.1. DATA TEKNIS BAHAN BAKAR REFERENSI YANG DIGUNAKAN PENGUJIAN KENDARAAN DENGAN MESIN PENGAPIAN POSITIF (SIFAT-SIFAT

BENSIN TAK BERTIMBAL)

Parameter	Catuan	Batas (1)		Matada uii	D. Lett.	
Parameter	Satuan	Minimum	Maksimum	Metode uji	Publikas	
Jumlah oktan riset, RON	1.0	95.0		EN 25164	1993	
Jumlah oktan motor, MON		85.0		EN 25163	1993	
Densitas pada 15 °C	kg/m3	748	762	ISO 3675	1995	
Tekanan uap reid	kPa	56.0	60.0	EN 12	1993	
Distilasi: - titik didih awal - penguapan pada 100 °C - penguapan pada 150 °C - titik didih akhir Residu	°C persen v/v persen v/v °C persen	24 49.0 81.0 190	40 57.0 87.0 215 2	EN-ISO 3205 EN-ISO 3205 EN-ISO 3205 EN-ISO 3205 EN-ISO 3205	1988 1988 1988 1988	
Analisis hidrokarbon - olefin - aromatik(3) - benzena - kejenuhan Rasio karbon/hidrogen	persen v/v persen v/v persen v/v persen v/v	28.0 Iaporan	10 40.0 1.0 seimbang laporan	ASTM D 1319 ASTM D 1319 pr. EN 12177 ASTM D 1319	1995 1995 1998 (2) 1995	
Stabilitas oksidasi (4)	menit	480		EN-ISO 7536	1996	
Kandungan oksigen (5)	persen m/m		2.3	EN 1601	1997 (2)	
Adanya getah (gum)	mg/ml		0.04	EN-ISO 6246	1997 (2)	
Kandungan sulfur (6)	mg/kg		100	pr.EN-ISO/DIS 14596	1998 (2)	
Korosi tembaga pada 50°C			1	EN-ISO 2160	1995	
Kandungan timbal	g/l		0.005	EN 237	1996	
Kandungan phosphor	g/1		0.0013	ASTM D 3231	1994	

1. Nilai-nilai dikutip dalam spesifikasi adalah "nilai benar". Dalam penetapan nilai batasnya mengacu ISO 4259 "Produk minyak bumi - Penentuan dan penerapan data yang presisi dalam kaitannya dengan metode pengujian", telah diterapkan dan dalam memperbaiki nilai minimum, perbedaan minimum 2R di atas nol telah dipergunakan; dalam memperbaiki nilai maksimum dan minimum, perbedaan minimum adalah 4R (R = reproduktifitas).

Meskipun ukuran ini, yang diperlukan untuk alasan statistik, produsen bahan bakar tetap harus bertujuan pada nilai nol dimana nilai maksimum yang ditetapkan adalah 2R dan pada nilai menengah dalam kasus kutipan dari batas maksimum dan minimum. Apakah harus perlu untuk menjelaskan pertanyaan mengenai apakah bahan

- bakar memenuhi persyaratan spesifikasi, persyaratan ISO 4259 harus diterapkan.
- 2. Bulan publikasi akan selesai pada waktunya.
- 3. Bahan bakar referensi yang digunakan harus memiliki kandungan aromatik maksimum 35 persen v/v.
- 4. Bahan bakar bisa mengandung inhibitor oksidasi dan penonaktifan logam biasanya digunakan untuk menstabilkan aliran kilang bensin, tapi aditif deterjen / dispersif dan pelarut minyak tidak akan ditambahkan.
- 5. Kandungan oksigen aktual dari bahan bakar untuk pengujian harus dilaporkan. Selain itu kandungan oksigen maksimum bahan bakar referensi harus 2,3 persen.
- 6. Kandungan belerang aktual dari bahan bakar yang digunakan untuk pengujian harus dilaporkan. Selain bahan bakar referensi harus memiliki kandungan sulfur maksimum 50 ppm.

A2.2. DATA TEKNIS BAHAN BAKAR REFERENSI YANG DIGUNAKAN PENGUJIAN KENDARAAN DENGAN MESIN DIESEL (SIFAT-SIFAT BAHAN BAKAR DIESEL)

D		Batas (1)		V/ . 1	10 4400 - 1	
Parameter	Satuan	Minimum	Maksimum	Metode uji	Publikasi	
Jumlah setan (2)		52.0	54.0	EN-ISO 5165	1998 (3)	
Densitas pada 15 °C	kg/m3	833	837	EN-ISO 3675	1995	
Distilasi: - titik 50 persen - 95 persen - titik didih akhir	°C °C °C	245 345	350 370	EN-ISO 3405 EN-ISO 3405 EN-ISO 3405	1988 1988 1988	
Titik kilat (flash)	°C	55	-	EN 22719	1993	
CFPP	°C	107-11	-5	EN 116	1981	
Viskositas 40 °C	mm²/s	2.5	3,5	EN-ISO 3104	1996	
Hidrokarbon aromatik polisiklus	persen m/m	3	6.0	IP 391	1995	
Kandungan sulfur (4)	mg/kg	-	300	pr. EN-ISO/DIS 14596	1998(3)	
Korosi tembaga			1	EN-ISO 2160	1995	
Residu karbon Conradson (10 persen DR)	persen m/m		0.2	EN-ISO 10370	1995	
Kandungan abu	persen m/m		0.01	EN-ISO 6245	1995	
Kandungan air	persen m/m	-	0.05	EN-ISO 12937	1998 (3)	
Jumlah netralisasi (acid kuat)	mg KOH/g	97.0	0.02	ASTM D 974-95	1998 (3)	
Stabilitas oksidasi (5)	mg/ml	-	0.025	EN-ISO 12205	1996	

- 1. Nilai-nilai dikutip dalam spesifikasi adalah "nilai benar". Dalam penetapan nilai batasnya sesuai ISO 4259 "Produk minyak bumi Penentuan dan penerapan data yang presisi dalam kaitannya dengan metode pengujian" telah diterapkan dan dalam memperbaiki nilai minimum, perbedaan minimum 2R di atas nol telah diperhitungkan; dalam memperbaiki nilai maksimum dan minimum, perbedaan minimum adalah 4R (R = reproduktifitas). Meskipun ukuran ini, yang diperlukan untuk alasan statistik, produsen bahan bakar tetap harus bertujuan pada nilai nol dimana ditetapkan nilai maksimum adalah 2R dan pada nilai menengah dalam kasus kutipan dari batas maksimum dan minimum. Apakah harus perlu untuk menjelaskan pertanyaan mengenai apakah bahan bakar memenuhi persyaratan spesifikasi, persyaratan ISO 4259 harus diterapkan.
- 2. Rentang untuk jumlah cetane tidak sesuai dengan persyaratan dari rentang minimal 4R. Namun, dalam kasus perselisihan antara pemasok bahan bakar dan pengguna bahan bakar, persyaratan dalam ISO 4259 dapat digunakan untuk menyelesaikan perselisihan tersebut diberikan pengukuran mereplikasi, dari jumlah cukup untuk arsip presisi diperlukan, yang dibuat dalam preferensi untuk penentuan tunggal.
- 3. Bulan publikasi akan selesai pada waktunya.
- 4. Kandungan sulfur/belerang aktual bahan bakar yang digunakan untuk pengujian tipe I harus dilaporkan. Selain itu, bahan bakar referensi harus memiliki kandungan sulfur maksimum 50 ppm.
- 5. Meskipun stabilitas oksidasi dikontrol, ada kemungkinan bahwa umur simpan akan terbatas. Saran harus dicari dari pemasok untuk kondisi penyimpanan dan kehidupan.

LAMPIRAN III.C

KLASIFIKASI MASSA INERSIA EKUIVALEN DAN RESISTENSI JALAN

Massa sesuai untuk dijalan m _{ref} kg	Massa inersia ekuivalen m _i kg	Resistensi roll roda depan a in N	Koefisien tarikan aero b in N/(km/h)2
$95 < m_{ref} \le 105$	100	8.8	0.0215
$105 < m_{ref} \le 115$	110	9.7	0.0217
$115 < m_{ref} \le 125$	120	10.6	0.0218
$125 < m_{ref} \le 135$	130	11.4	0.0220
$135 < m_{ref} \le 145$	140	12.3	0.0221
$145 < m_{ref} \le 155$	150	13.2	0.0223
$155 < m_{ref} \le 165$	160	14.1	0.0224
$165 < m_{ref} \le 175$	170	15.0	0.0226
$175 < m_{ref} \le 185$	180	15.8	0.0227
$185 < m_{ref} \le 195$	190	16.7	0.0229
$195 < m_{ref} \le 205$	200	17.6	0.0230
$205 < m_{ref} \le 215$	210	18.5	0.0232
$215 < m_{ref} \le 225$	220	19.4	0.0233
$225 < m_{ref} \le 235$	230	20.2	0.0235
$235 < m_{ref} \le 245$	240	21.1	0.0236
$245 < m_{ref} \leq 255$	250	22.0	0.0238
$255 < m_{ref} \le 265$	260	22.9	0.0239
$265 < m_{ref} \le 275$	270	23.8	0.0241
$275 < m_{\rm ref} \leq 285$	280	24.6	0.0242
$285 < m_{ref} \le 295$	290	25.5	0.0244
$295 < m_{ref} \le 305$	300	26.4	0.0245
$305 < m_{\rm ref} \leq 315$	310	27.3	0.0247
$315 < m_{ref} \le 325$	320	28.2	0.0248
$325 < m_{ref} \le 335$	330	29.0	0.0250
$335 < m_{ref} \leq 345$	340	29.9	0.0251
$345 < m_{ref} \le 355$	350	30.8	0.0253

Massa sesuai untuk dijalan m _{ref} kg	Massa inersia ekuivalen m _i kg	Resistensi roll roda depan a in N	Koefisien tarikan aero b in N/(km/h)2
$355 < m_{ref} \le 365$	360	31.7	0.0254
$365 < m_{ref} \le 375$	370	32.6	0.0256
$375 < m_{ref} \leq 385$	380	33.4	0.0257
$385 < m_{ref} \le 395$	390	34.3	0.0259
$395 < m_{ref} \le 405$	400	35.2	0.0260
$405 < m_{ref} \le 415$	410	36.1	0.0262
$415 < m_{ref} \le 425$	420	37.0	0.0263
$425 < m_{ref} \le 435$	430	37.8	0.0265
$435 < m_{ref} \le 445$	440	38.7	0.0266
$445 < m_{ref} \le 455$	450	39.6	0.0268
$455 < m_{ref} \le 465$	460	40.5	0.0269
$465 < m_{ref} \le 475$	470	41.4	0.0271
$475 < m_{ref} \leq 485$	480	42.2	0.0272
$485 < m_{ref} \leq 495$	490	43.1	0.0274
$495 < m_{ref} \le 505$	500	44.0	0.0275
Pada setiap 10 kg	Pada setiap 10 kg	a = 0.088 × m _i */	b = 0.000015 × m _i 0.02 **/

^{*/} Nilainya harus dibulatkan satu angka desimal.

**/ Nilainya harus dibulatkan empat angka desimal.

LAMPIRAN III.D

KARAKTERISTIK ESENSIAL MESIN, SISTEM KONTROL EMISI DAN INFORMASI TENTANG PELAKSANAAN PENGUJIAN

1.	Un	num
	a.	Merek:
	b.	Tipe (jelaskan varian dan versi yang memungkinkan: setiap variar dan setiap versi harus diidentifikasi oleh kode yang terdiri dar angka atau kombinasi huruf dan angka):
		1) Nama komersial (jika ada):
		2) Kategori kendaraan 1/):
	c.	Nama dan alamat pabrikan:
		1) Nama dan alamat dari pabrik perakitan:
	d.	Nama dan alamat perwakilan resmi produsen, jika ada
2.	Ma	assa (dalam kg) 2/)
	a.	Massa tanpa muatan/kosong 3/):
	b.	Massa kendaraan sesuai dijalankan 4/:
		1) Distribusi massa antara as roda:
	c.	Massa kendaraan sedang jalan, bersama dengan pengendara 5/:.
		1) Distribusi massa antara as roda:
	d.	Massa maksimum secara teknis diperbolehkan dinyatakan oleh produsen 6/:
		1) Pembagian massa antara as roda:
		2) Massa maksimum secara teknis diperbolehkan pada setiap as roda:
3.	Me	esin 7/
	a. P	rodusen:
	b. M	Ierek:
		1) Tipe (dinyatakan pada mesin, atau identifikasi lainnya):
		2) Lokasi nomor mesin (jika ada):
	c. M	Iesin penyalaan percikan atau kompresi 8/

1)	Ka	rakteristik spesifik mesin
	a)	Siklus operasi (empat atau dua langkah, pengapian percikan atau kompresi) 8/
	b)	Nomor, susunan dan urutan pengapian dari silinder:
		(1) Diameter lubang: mm 9/
		(2) Langkah: mm 9/
	c)	Kapasitas silinder: cm3 10/
	d)	Rasio kompresi 2/:
	e)	Gambar dari kepala silinder, piston, ring piston dan silinder:
	f)	Kecepatan langsam 2/: menit-1
	g)	Daya output neto maksimum: kW pada menit-1
	h)	Torsi neto maksimum: Nm pada menit-1
2)	Ba	han bakar: solar / bensin / campuran / LPG / lainnya 8/
3)	Pa	sokan bahan bakar
	a)	Lewat karburator : ya / tidak 8/
		(1)Pembuat :
		(2)Tipe:
		(3) Jumlah tepat:
		(4)Penyetelan 2/yakni dari
		(a) Difuser:
		(b) Permukaan di ruang pelampung:
		(c) Massa pelampung:
		(d) Jarum pelampung :
		(e) Kurva bahan bakar sebagai fungsi dari aliran udara dan penyetelan yang diperlukan untuk mempertahankan kurva itu:
		(5)Sistem start dingin: manual/otomatis 8/
		(a) Prinsip operasi:
	b)	Dengan injeksi bahan bakar (hanya dalam kasus pengapian kompresi): ya / tidak 8/
		(1)Diskripsi sistem:

	nsip operasi: langsung / tidak langsung / injeksi ruang rbulensi 8/
(3) Po n	npa injeksi salah satu
(a)	Merek:
(b)	Tipe:
(c)	Laju alir bahan bakar maksimum 2/ mm3 / per langkah atau siklus 8/ pompa pada kecepatan rotasi: min-1 atau diagram karakteristik:
(d)	Penaikan injeksi 2/:
(e)	Kurva penaikan injeksi 2/:
(f)	Prosedur kalibrasi: bangku uji / mesin 8/
(4)Reg	ulator
(a)	Tipe:
(b)	Titik mati (c <i>ut-off</i>)
(c)	Titik mati (c <i>ut-off</i>) bawah dengan beban: min-1
(d)	Titik mati (c <i>ut-off</i>) bawah tanpa beban: min-1
(e)	Kecepatan langsam: min-1
(5)Pipa	a injeksi
(a)	Panjang: mm
(b)	Diameter dalam: mm
(6)Inje	ector , salah satu
(a)	Merek:
	Tipe:atau
(c)	Tekanan membuka 2/: kPa atau diagram karakteristik 2/:
(7)Sist	tem start dingin (jika ada) , salah satu
(a)	Merek:
(b)	Diskripsi:
	angkat start sekunder mulai (jika ada)baik:
	Merek:

	(b) Tipe:		. .
	(c)) Diskripsi sistem:		
C		gan injeksi bahan bakar (hanya dalam kas kan): ya / tidak 8/, salah satu:	us peng	apian
	(1) D i	skripsi sistem:		
	bo ya	insip operasi: injeksi ke manifold induk eberapa titik) 8/ injeksi langsung lainnya ang): tau	a (Perny	ataan
	(a) Merek pompa injeksi:		
	(b) Tipe dari pompa injeksi: Injektor: tekanan pembukaan atau diagram karakteristik 2/:	2/:	kPa
	(3)Pe	 ningkatan injeksi :		. .
	(4)Sis	stem start dingin		
	(a) Prinsip operasi:		. .
	(b	Batas operasi / penyetelan 8/, 2/:		
d	l) Pomp	oa bahan bakar: ya / tidak 8/		
4) I	Pengapia	an		
a) Mere	k:		.
b	o) Tipe:			.
C	e) Prins	sip operasi:		, .
d	l) Kurv	a pengapian muka atau titik pengaturan d	perasi 2	2/:
e) Wakt	tu statis 2/: sebelum TDC		
f) Gap	titik 2/: mm		
g) Sudu	ıt diam (<i>dwell</i>) 2/: derajat		
5) \$	Sistem p	oendingin (cairan / udara) 8/		

\mathbf{a}	Penyetelan nominal alat kont <i>roller</i> suhu mesin:
b]) Cairan
	(1)Sifat cairan:
c)	Udara
	(1) Blower: ya / tidak 8/
6) S	istem induksi
a)	Supercharging: ya / tidak 8/
	(1)Merek:
	(2) Tipe:
	(3)Diskripsi sistem (misalnya: tekanan peningkatan maksimum kPa, saluran limbah (jika perlu))
b)	Pendingin dalam (intercooler): dengan / tanpa 8/
c)	plenum, perangkat pemanas, intake udara tambahan, dll):.
	(1)Diskripsi manifold induksi (dengan gambar dan / atau foto):
	(2) Filter udara, gambar:
	atau
	(a) Merek:
	(b) Tipe:
	(3)Peredam inlet, gambar:
	(a) Merek:
	(b) Tipe :
7) S	istem pembuangan (<i>exhaust</i>)
a)	Gambar dari sistem pembuangan lengkap:
8) P	enampang minimum bagian inlet dan pembuangan:
9) S	istem induksi atau data ekuivalen
a)	Peangkatan katup maksimum, membuka dan menutup sudut dalam hubungannya dengan titik mati, atau data mengenai pennyetelan sistem lain yang memungkinkan:
b)	Referensi dan / atau rentang penyetelan 8/:
10)P	engukuran anti polusi udara yang diadopsi

	a)	mesin empat langkah (diskripsi dan gambar):
	b)	Perangkat anti-polusi tambahan (di mana saat ini dan tidak termasuk pada ujung kepala lain):
	c)	Diskripsi dan / atau gambar
11		kasi dari koefisien simbol penyerapan (mesin kompresi – nyalaan saja) :
d.Suh	u si	stem pendingin diizinkan oleh produsen
1) Pe	ndingin cair
	a)	Suhu maksimum pada outlet: ° C
2) Pe	ndingin udara
	a)	Titik referensi:
	b)	Suhu maksimum pada titik referensi: ° C
e. Sist	em]	pelumasan
1) Di	skripsi sistem:
	a)	Lokasi reservoir oli (jika ada):
	b)	Sistem pakan (feed) (pompa / injeksi ke sistem induksi / dicampur dengan bahan bakar, dll) 8/
2) Pe	lumas dicampur dengan bahan bakar
	a)	Persentase:
3) Pe	ndingi oli: ya / tidak 8/
	a)	Gambar: atau
	b)	Merek:
	c)	Tipe:
4. Transn	nisi	11/
a. Diag	gran	n sistem transmisi:
b. Tipe	(m	ekanik, hidrolik, elektrik, dll):
c. Kop	ling	(tipe):
d. Kota	ak tı	ransmisi
1) Ti _l	pe: otomatis / manual 8/
2) M	etode pemilihan: dengan tangan / kaki 8/

e. Rasio gigi

Jumlah gigi	Rasio 1	Rasio 2	Rasio 3	Rasio 4
Transmisi variabel kontinyu minimum				
1				
2				
3				
4				
5				
6				
Transmisi variabel kontinyu maksimum				
Gigi balik				

- Rasio 1 = rasio primer (rasio kecepatan mesin dengan kecepatan rotasi dari poros persneling primer).
- Rasio 2 = rasio sekunder (rasio kecepatan rotasi poros utama dengan kecepatan rotasi poros sekunder di kotak persneling).
- Rasio 3 = rasio persneling akhir (rasio kecepatan rotasi poros persneling output dengan kecepatan rotasi dari roda penggerak)
- Rasio t = rasio keseluruhan.

1)	Penjelasan	singkat	tentang	komponen	listrik	dan	/	atau
	elektronik	yang	digu	ınakan	dalam	t	ran	smisi
		• • • • • • • • • • • • • • • • • • • •		••••				

f. Kecepatan maksimum kendaraan dan gigi yang dicapai (dalam km/jam) 12/:

Keterangan:

- 1/ Klasifikasi sesuai dengan ayat 6.3.
- 2/ Nyatakan toleransinya
- 3/ massa kendaraan siap untuk penggunaan normal dan dilengkapi sebagai berikut:
 - peralatan tambahan yang dibutuhkan semata-mata untuk penggunaan normal yang dipertimbangkan,
 - peralatan listrik yang lengkap, termasuk pencahayaan dan perangkat sinyal cahaya yang disediakan oleh produsen,

- instrumen dan perangkat yang diperlukan oleh hukum dimana massa tanpa muatan dari kendaraan telah diukur,
- jumlah yang sesuai cairan dalam rangka untuk memastikan operasi yang tepat dari semua bagian kendaraan.
- bahan bakar dan campuran bahan bakar / minyak tidak termasuk dalam pengukuran, tetapi komponen seperti asam baterai, cairan hidrolik, pendingin dan oli mesin harus disertakan.
- 4/ massa tanpa muatan dimana massa komponen-komponen berikut ditambahkan:
 - bahan bakar: tangki diisi sampai setidaknya 90 persen dari kapasitas yang dinyatakan oleh produsen,
 - peralatan tambahan biasanya disertakan oleh produsen sebagai tambahan yang diperlukan untuk operasi normal (kotak peralatan, pembawa koper, kaca depan, peralatan pelindung, dll).
 - dalam kasus kendaraan yang beroperasi dengan campuran bahan bakar / oli:
 - (a) jika bahan bakar dan oli dicampur dulu menjadi "bahan bakar" harus ditafsirkansebagai makna pra-campuran bahan bakar dan oli jenis ini;
 - (b) ketika bahan bakar dan oli secara terpisah dimasukkan ke dalam "bahan bakar" harus ditafsirkan berarti hanya bensin. Dalam hal ini, oli sudah termasuk dalam pengukuran massa tanpa muatan.
- 5/ Massa pengendara diambil sekitar angka 75 kg.
- 6/ Massa dihitung oleh produsen untuk kondisi operasi tertentu, mempertimbangkan faktor-faktor seperti kekuatan bahan, kapasitas beban ban, dll
- 7/ dimana mesin tidak konvensional dan sistem dipasang, informasi setara dengan yang disebut dalam bagian ini harus dipasok oleh produsennya.
- 8/ Hapus mana yang tidak cocok
- 9/ Angka ini harus ke kesepuluh terdekat milimeter
- 10 / Nilai ini harus dihitung dengan p = 3,1416 ke cm3 terdekat
- 11/ Informasi yang diminta harus dipenuhi terhada sebuah varian yang memungkinkan.
- 12/ Toleransi yang dijinkan 5 persen.

LAMPIRAN III.E

SIKLUS MENGEMUDI UNTUK PENGUJIAN TIPE I

Gambar A5-1: Siklus bagian 1

Gambar A5-2: Siklus bagian 2 untuk kendaraan kelas 2

<u>Annex 5, Tables A5-1 to A5-15,</u>:

"Table A5-1: Cycle part 1, 1 to 120 s

	nollon			indic	ators				roller			indi	cato	rs	
time	roller speed in km/ja m	stop	ac c	cruis e	dec.	no gear- shift	no first gear	time	spee d in km/ jam	stop	ac c	cuise	de c	no gear- shift	no first gear
1	0,0	X						61	29,7				X		
2	0,0	X						62	27,0				X		
3	0,0	X						63	23,0				X		
4	0,0	X						64	18,7				X		
5	0,0	X						65	14,2				X		
6	0,0	X						66	9,4				X		
7	0,0	X						67	4,9				X		
8	0,0	X						68	2,0				X		
9	0,0	X						69	0,0	X					
10	0,0	X						70	0,0	X					
11	0,0	X						71	0,0	X					
12	0,0	X						72	0,0	X					
13	0,0	X						73	0,0	X					
14	0,0	X						74	1,7		X				
15	0,0	X						75	5,8		X				
16	0,0	X						76	11,8		X				
17	0,0	X						77	18,3		X				
18	0,0	X						78	24,5		X				
19	0,0	X						79	29,4		X				
20	0,0	X						80	32,5		X				
21	0,0	X						81	34,2		X				
22	1,0		X					82	34,4		X				
23	2,6		X					83	34,5		X				
24	4,8		X					84	34,6		X				
25	7,2		X					85	34,7		X				
26	9,6		X					86	34,8		X				
27	12,0		X					87	35,2		X				
28	14,3		X					88	36,0		X				

	1		1	_	1	1	-	1	1		1		1	
29	16,6	X					89	37,0		X				
30	18,9	X					90	37,9		X				
31	21,2	X					91	38,6		X				
32	23,5	X					92	38,8			X			
33	25,6	X					93	38,8			X			
34	27,1	X					94	38,7			X			
35	28,0	X					95	38,5			X			
36	28,7	X					96	38,0			X			
37	29,2	X					97	37,4			X			
38	29,8	X					98	36,9			X			
39	30,4		X			X	99	36,6			X			
40	29,6		X			X	100	36,4			X			
41	28,7		X			X	101	36,4			X			
42	27,9		X		X	X	102	36,5			X			
43	27,5		X		X	X	103	36,7			X			
44	27,3		X		X	X	104	36,9			X			
45	27,4		X		X	X	105	37,0			X			
46	27,5		X		X	X	106	37,2			X			
47	27,6		X		X	X	107	37,3			X			
48	27,6		X		X	X	108	37,4			X			
49	27,6		X		X	X	109	37,3			X			
50	27,7		X		X	X	110	36,8			X			
51	27,8		X			X	111	35,8				X		
52	28,1		X			X	112	34,7				X		
53	28,6		X			X	113	31,8				X		
54	29,0		X			X	114	28,9				X		
55	29,2		X			X	115	26,7				X		X
56	29,5		X			X	116	24,6		X				X
57	29,7		X			X	117	25,2		X				X
58	30,1		X			X	118	26,2		X				X
59	30,5		X			X	119	27,6		X				X
60	30,7		X			X	120	29,2		X				X

 $\underline{\text{Table A5-2}}\text{: Cycle part 1, 121 to 240 s}$

	roller	Indica	itors	3					roller	inc	licat	tors			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/ jam		ac c	cruis e	de c	no gear- shift	no first gear
121	31,0		X				X	181	0,0	X					
122	32,8		X				X	182	0,0	X					
123	34,3		X				X	183	2,0		X				
124	35,1		X					184	6,0		X				
125	35,3				X			185	12,4		X				
126	35,1				X			186	21,4		X				
127	34,6				X			187	30,0		X				
128	33,7				X			188	37,1		X				
129	32,2				X			189	42,5		X				
130	29,6				X			190	46,6		X				
131	26,0				X			191	49,8		X				
132	22,0				X			192	52,4		X				
133	18,5				X			193	54,4		X				
134	16,6		X					194	55,6		X				
135	17,6		X					195	56,1			X			
136	21,0		X					196	56,2			X			
137	25,2		X					197	56,2			X			
138	29,1		X					198	56,2			X			
139	31,4		X					199	56,7			X			
140	31,9				X			200	57,2			X			
141	31,4				X			201	57,7			X			
142	30,6				X			202	58,2			X			
143	29,5				X			203	58,7			X			
144	28,0				X			204	59,3			X			
145	24,9				X			205	59,8			X			
146	20,2				X			206	60,0			X			
147	14,8				X			207	60,0			X			
148	9,5				X			208	59,9			X			
149	4,8				X			209	59,9			X			

	1	1		1	1	1		-	1
150	1,4		X		210	59,9	X		
151	0,0	X			211	59,9	X		
152	0,0	X			212	59,9	X		
153	0,0	X			213	59,8	X		
154	0,0	X			214	59,6	X		
155	0,0	X			215	59,1	X		
156	0,0	X			216	57,1		X	
157	0,0	X			217	53,2		X	
158	0,0	X			218	48,3		X	
159	0,0	X			219	43,9		X	
160	0,0	X			220	40,3		X	
161	0,0	X			221	39,5		X	
162	0,0	X			222	41,3	X		
163	0,0	X			223	45,2	X		
164	0,0	X			224	50,1	X		
165	0,0	X			225	53,7	X		
166	0,0	X			226	55,8	X		
167	0,0	X			227	55,8		X	
168	0,0	X			228	54,7		X	
169	0,0	X			229	53,3		X	
170	0,0	X			230	52,3		X	
171	0,0	X			231	52,0		X	
172	0,0	X			232	52,1		X	
173	0,0	X			233	51,8		X	
174	0,0	X			234	50,8		X	
175	0,0	X			235	49,2		X	
176	0,0	X			236	47,5		X	
177	0,0	X			237	45,7		X	
178	0,0	X			238	43,9		X	
179	0,0	X			239	42,0		X	
180	0,0	X			240	40,2		X	

 $\underline{Table~A5\text{--}3}\text{: Cycle part 1, 241 to 360 s}$

	roller			Indicat	ors				roller	inc	licat	tors			
time	speed	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
241	38,3				X			301	30,6			X		X	
242	36,4				X			302	28,9			X			
243	34,6				X			303	27,8			X			
244	32,7				X			304	27,2			X			
245	30,6				X			305	26,9			X			
246	28,1				X			306	26,5			X			
247	25,5				X			307	26,1			X			
248	23,1				X			308	25,7			X			
249	21,2				X			309	25,5			X			
250	19,5				X			310	25,7			X			
251	17,8				X			311	26,4			X			
252	15,3				X			312	27,3			X			
253	11,5				X			313	28,1			X			
254	7,2				X			314	27,9				X		
255	2,5				X			315	26,0				X		
256	0,0	X						316	22,7				X		
257	0,0	X						317	19,0				X		
258	0,0	X						318	16,0				X		
259	0,0	X						319	14,6		X				
260	0,0	X						320	15,2		X				
261	0,0	X						321	16,9		X				
262	0,0	X						322	19,3		X				
263	0,0	X						323	22,0		X				
264	0,0	X						324	24,6		X				
265	0,0	X						325	26,8		X				
266	0,0	X						326	27,9		X				
267	0,5	X						327	28,1			X			
268	2,9		X					328	27,7			X			
269	8,2		X					329	27,2			X			

270	13,2	X				330	26,8	X			
271	17,8	X				331	26,6	X			
272	21,4	X				332	26,8	X			
273	24,1	X				333	27,0	X			
274	26,4	X				334	27,2	X			
275	28,4	X				335	27,4	X			
276	29,9	X				336	27,6	X			
277	30,5	X				337	27,7	X			
278	30,5		X			338	27,9	X			
279	30,3		X			339	28,1	X			
280	30,2		X			340	28,3	X			
281	30,1		X			341	28,6	X			
282	30,1		X			342	29,0	X			
283	30,1		X			343	29,6	X			
284	30,1		X			344	30,1	X			
285	30,1		X			345	30,5	X			
286	30,1		X			346	30,7	X			
287	30,2		X			347	30,8	X			
288	30,4		X	2	X	348	30,8	X			
289	31,0		X		X	349	30,8	X			
290	31,8		X		X	350	30,8	X			
291	32,7		X		X	351	30,8	X			
292	33,6		X		X	352	30,8	X			
293	34,4		X		X	353	30,8	X			
294	35,0		X		X	354	30,9	X			
295	35,4		X	2	X	355	30,9	X	X	X	
296	35,5		X		X	356	30,9	X	X	X	
297	35,3		X		X	357	30,8	X	X	X	
298	34,9		X		X	358	30,4	X	X	X	
299	33,9		X		X	359	29,6	X		X	
300	32,4		X	2	X	360	28,4	X		X	

 $\underline{Table~A5\text{--}4}\text{: Cycle part 1, 361 to 480 s}$

	roller				Indic	ators			roller			ind	icat	ors	
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear		speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
361	27,1			X			X	421	34,0		X				
362	26,0			X			X	422	35,4		X				
363	25,4			X			X	423	36,5		X				
364	25,5			X		X	X	424	37,5		X				
365	26,3			X		X	X	425	38,6		X				
366	27,3			X		X	X	426	39,7		X				
367	28,4			X		X	X	427	40,7		X				
368	29,2			X		X	X	428	41,5		X				
369	29,5			X		X	X	429	41,7				X		
370	29,5			X		X	X	430	41,5				X		
371	29,0			X		X	X	431	41,0				X		
372	28,1			X		X	X	432	40,6				X		
373	27,2			X		X	X	433	40,3				X		
374	26,3			X		X	X	434	40,2				X		
375	25,7			X		X	X	435	40,1				X		
376	25,5			X		X	X	436	39,8				X		
377	25,6			X		X	X	437	38,9				X		
378	26,0			X		X	X	438	37,5				X		
379	26,4			X		X	X	439	35,8				X		
380	27,0			X		X	X	440	34,2				X		
381	27,7			X		X	X	441	32,5				X		
382	28,5			X		X	X	442	30,9				X		
383	29,4			X		X	X	443	29,4				X		
384	30,2			X		X	X	444	28,0				X		
385	30,5			X		X	X	445	26,5				X		
386	30,3			X		X		446	25,0				X		
387	29,5			X		X		447	23,5				X		
388	28,7			X		X		448	21,9				X		
389	27,9			X		X		449	20,4				X		

					•							
390	27,5			X		450	19,4			X	K	
391	27,3			X		451	18,8			Σ	(
392	27,0			X		452	18,4			Χ	ζ .	
393	26,5			X		453	18,0			Χ	ζ .	
394	25,8			X		454	17,5			Х	ζ .	
395	25,0				X	455	16,9			Х	ζ.	
396	21,5				X	456	16,4		X			
397	16,0				X	457	16,6		X			
398	10,0				X	458	17,7		X			-
399	5,0				X	459	19,4		X			
400	2,2				X	460	20,9		X			
401	1,0				X	461	22,3		X			
402	0,0	X				462	23,2			Χ	ζ .	
403	0,0	X				463	23,2			X	ζ .	
404	0,0	X				464	22,2			X	ζ .	
405	0,0	X				465	20,3			X	ζ .	
406	0,0	X				466	17,9			X	ζ .	
407	0,0	X				467	15,2			X	ζ .	
408	1,2		X			468	12,3			X	ζ .	
409	3,2		X			469	9,3			X	(
410	5,9		X			470	6,4			X	(
411	8,8		X			471	3,8			X	(
412	12,0		X			472	2,0			X	(
413	15,4		X			473	0,9			X	(
414	18,9		X			474	0,0	X				
415	22,1		X			475	0,0	X				
416	24,8		X			476	0,0	X				
417	26,8		X			477	0,0	X				
418	28,7		X			478	0,0	X				
419	30,6		X			479	0,0	X				
420	32,4		X			480	0,0	X				

<u>Table A5-5</u>: Cycle part 1, 481 to 600 s

	roller speed in km/ja m			Indicat	ors				roller	inc	licat	tors			
time		stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am		ac c	cruis e	de c	no gear- shift	no first gear
481	0,0	X						541	0,0	X					
482	0,0	X						542	2,7		X				
483	0,0	X						543	8,0		X				
484	0,0	X						544	16,0		X				
485	0,0	X						545	24,0		X				
486	1,4		X					546	32,0		X				
487	4,5		X					547	37,2		X				
488	8,8		X					548	40,4		X				
489	13,4		X					549	43,1		X				
490	17,3		X					550	44,6		X				
491	19,2		X					551	45,2			X			
492	19,7		X					552	45,3			X			
493	19,8		X					553	45,4			X			
494	20,7		X					554	45,5			X			
495	23,6		X					555	45,6			X			
496	28,1		X					556	45,7			X			
497	32,8		X					557	45,8			X			
498	36,3		X					558	45,9			X			
499	37,1				X			559	46,0			X			
500	35,1				X		X	560	46,1			X			
501	31,1				X		X	561	46,2			X			
502	28,0				X		X	562	46,3			X			
503	27,5		X				X	563	46,4			X			
504	29,5		X				X	564	46,7			X			
505	34,0		X				X	565	47,2			X			
506	37,0		X				X	566	48,0			X			
507	38,0				X		X	567	48,9			X			
508	36,1				X			568	49,8			X			
509	31,5				X			569	50,5			X			
510	24,5				X			570	51,0			X			

511	17,5			X	571	51,1		X		
512	10,5			X	572	51,0		X		
513	4,5			X	573	50,4			X	
514	1,0	X			574	49,0			X	
515	0,0	X			575	46,7			X	
516	0,0	X			576	44,0			X	
517	0,0	X			577	41,1			X	
518	0,0	X			578	38,3			X	
519	2,9		X		579	35,4			X	
520	8,0		X		580	31,8			X	
521	16,0		X		581	27,3			X	
522	24,0		X		582	22,4			X	
523	32,0		X		583	17,7			X	
524	38,8		X		584	13,4			X	
525	43,1		X		585	9,3			X	
526	46,0		X		586	5,5			X	
527	47,5			X	587	2,0			X	
528	47,5			X	588	0,0	X			
529	44,8			X	589	0,0	X			
530	40,1			X	590	0,0	X			
531	33,8			X	591	0,0	X			
532	27,2			X	592	0,0	X			
533	20,0			X	593	0,0	X			
534	12,8			X	594	0,0	X			
535	7,0			X	595	0,0	X			
536	2,2			X	596	0,0	X			
537	0,0	X			597	0,0	X			
538	0,0	X			598	0,0	X			
539	0,0	X			599	0,0	X			
540	0,0	X			600	0,0	X			

<u>Table A5-6</u>: Cycle part 1, reduced speed, 1 to 120 s

	roller			Indicat	ors				roller	inc	lica	tors			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
1	0,0	X						61	29,6				X		
2	0,0	X						62	26,9				X		
3	0,0	X						63	23,0				X		
4	0,0	X						64	18,6				X		
5	0,0	X						65	14,1				X		
6	0,0	X						66	9,3				X		
7	0,0	X						67	4,8				X		
8	0,0	X						68	1,9				X		
9	0,0	X						69	0,0	X					
10	0,0	X						70	0,0	X					
11	0,0	X						71	0,0	X					
12	0,0	X						72	0,0	X					
13	0,0	X						73	0,0	X					
14	0,0	X						74	1,7		X				
15	0,0	X						75	5,8		X				
16	0,0	X						76	11,8		X				
17	0,0	X						77	17,3		X				
18	0,0	X						78	22,0		X				
19	0,0	X						79	26,2		X				
20	0,0	X						80	29,4		X				
21	0,0	X						81	31,1		X				
22	1,0		X					82	32,9		X				
23	2,6		X					83	34,7		X				
24	4,8		X					84	34,8		X				
25	7,2		X					85	34,8		X				
26	9,6		X					86	34,9		X				
27	12,0		X					87	35,4		X				
28	14,3		X					88	36,2		X				
29	16,6		X					89	37,1		X				

30	18,9	X					90	38,0	X			
31	21,2	X					91	38,7		X		
32	23,5	X					92	38,9		X		
33	25,6	X					93	38,9		X		
34	27,1	X					94	38,8		X		
35	28,0	X					95	38,5		X		
36	28,7	X					96	38,1		X		
37	29,2	X					97	37,5		X		
38	29,8	X					98	37,0		X		
39	30,3		X			X	99	36,7		X		
40	29,6		X			X	100	36,5		X		
41	28,7		X			X	101	36,5		X		
42	27,9		X		X	X	102	36,6		X		
43	27,4		X		X	X	103	36,8		X		
44	27,3		X		X	X	104	37,0		X		
45	27,3		X		X	X	105	37,1		X		
46	27,4		X		X	X	106	37,3		X		
47	27,5		X		X	X	107	37,4		X		
48	27,6		X		X	X	108	37,5		X		
49	27,6		X		X	X	109	37,4		X		
50	27,6		X		X	X	110	36,9			X	
51	27,8		X			X	111	35,9			X	
52	28,1		X			X	112	34,8			X	
53	28,5		X			X	113	31,9			X	
54	28,9		X			X	114	29,0			X	
55	29,2		X			X	115	26,9			X	X
56	29,4		X			X	116	24,7	X			X
57	29,7		X			X	117	25,4	X			X
58	30,0		X			X	118	26,4	X			X
59	30,5		X			X	119	27,7	X			X
60	30,6			X		X	120	29,4	X			X

 $\underline{\text{Table A5-7}}$: Cycle part 1, reduced speed, 121 to 240 s

		Indica							roller	indicators						
time	roller speed in km/ jam	stop		cruis e	dec	no gear- shift	no first gear	time	speed				de c	no gear- shift	no first gear	
121	31,2		X				X	181	0,0	X						
122	33,0		X				X	182	0,0	X						
123	34,4		X				X	183	0,0	X						
124	35,2		X					184	0,0	X						
125	35,4				X			185	0,4		X					
126	35,2				X			186	1,8		X					
127	34,7				X			187	5,4		X					
128	33,9				X			188	11,1		X					
129	32,3				X			189	16,7		X					
130	29,8				X			190	21,3		X					
131	26,1				X			191	24,7		X					
132	22,1				X			192	28,4		X					
133	18,6				X			193	31,8		X					
134	16,8		X					194	34,6		X					
135	17,7		X					195	36,3		X					
136	21,1		X					196	37,8		X					
137	25,4		X					197	39,6		X					
138	29,2		X					198	41,3		X					
139	31,6		X					199	43,3		X					
140	32,1				X			200	45,1		X					
141	31,6				X			201	47,5		X					
142	30,7				X			202	49,0		X					
143	29,7				X			203	50,0			X				
144	28,1				X			204	49,5			X				
145	25,0				X			205	48,8			X				
146	20,3				X			206	47,6			X				
147	15,0				X			207	46,5			X				
148	9,7				X			208	46,1			X				
149	5,0				X			209	46,1			X				
150	1,6				X			210	46,6			X				

151	0,0	X		211	46,9	X	
152	0,0	X		212	47,2	X	
153	0,0	X		213	47,8	X	
154	0,0	X		214	48,4	X	
155	0,0	X		215	48,9	X	
156	0,0	X		216	49,2	X	
157	0,0	X		217	49,6	X	
158	0,0	X		218	49,9	X	
159	0,0	X		219	50,0	X	
160	0,0	X		220	49,8	X	
161	0,0	X		221	49,5	X	
162	0,0	X		222	49,2	X	
163	0,0	X		223	49,3	X	
164	0,0	X		224	49,4	X	
165	0,0	X		225	49,4	X	
166	0,0	X		226	48,6	X	
167	0,0	X		227	47,8	X	
168	0,0	X		228	47,0	X	
169	0,0	X		229	46,9	X	
170	0,0	X		230	46,6	X	
171	0,0	X		231	46,6	X	
172	0,0	X		232	46,6	X	
173	0,0	X		233	46,9	X	
174	0,0	X		234	46,4	X	
175	0,0	X		235	45,6	X	
176	0,0	X		236	44,4	X	
177	0,0	X		237	43,5	X	
178	0,0	X		238	43,2	X	
179	0,0	X		239	43,3	X	
180	0,0	X		240	43,6	X	

<u>Table A5-8</u>: Cycle part 1, reduced speed, 241 to 360 s

		Indica	itors	}					roller	indic	ato	rs			
time	roller speed in km/ jam	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
241	43,9			X				301	30,6			X		X	
242	43,7				X			302	29,0			X			
243	43,0				X			303	27,8			X			
244	40,9				X			304	27,2			X			
245	36,9				X			305	26,9			X			
246	32,1				X			306	26,5			X			
247	26,6				X			307	26,1			X			
248	21,8				X			308	25,7			X			
249	17,2				X			309	25,5			X			
250	13,7				X			310	25,7			X			
251	10,3				X			311	26,4			X			
252	7,0				X			312	27,3			X			
253	3,5				X			313	28,1			X			
254	0,0	X						314	27,9				X		
255	0,0	X						315	26,0				X		
256	0,0	X						316	22,7				X		
257	0,0	X						317	19,0				X		
258	0,0	X						318	16,0				X		
259	0,0	X						319	14,6		X				
260	0,0	X						320	15,2		X				
261	0,0	X						321	16,9		X				
262	0,0	X						322	19,3		X				
263	0,0	X						323	22,0		X				
264	0,0	X							24,6		X				
265	0,0	X						325	26,7		X				
266	0,0	X						326	27,9		X				
267	0,5		X					327	28,0			X			
268	2,9		X					328	27,6			X			
269	8,2		X					329	27,1			X			

270	13,2	X			330	26,7	X		
271	17,8	X			331	26,6	X		
272	21,4	X			332	26,7	X		
273	24,1	X			333	27,0	X		
274	26,4	X			334	27,2	X		
275	28,4	X			335	27,4	X		
276	29,9	X			336	27,5	X		
277	30,5		X		337	27,7	X		
278	30,5		X		338	27,9	X		
279	30,3		X		339	28,1	X		
280	30,2		X		340	28,3	X		
281	30,1		X		341	28,6	X		
282	30,1		X		342	29,1	X		
283	30,1		X		343	29,6	X		
284	30,2		X		344	30,1	X		
285	30,2		X		345	30,6	X		
286	30,2		X		346	30,8	X		
287	30,2		X		347	30,8	X		
288	30,5		X	X	348	30,8	X		
289	31,0		X	X	349	30,8	X		
290	31,9		X	X	350	30,8	X		
291	32,8		X	X	351	30,8	X		
292	33,7		X	X	352	30,8	X		
293	34,5		X	X	353	30,8	X		
294	35,1		X	X	354	30,9	X		X
295	35,5		X	X	355	30,9	X	X	X
296	35,6		X	X	356	30,9	X	X	X
297	35,4		X	X	357	30,8	X	X	X
298	35,0		X	X	358	30,4	X	X	X
299	34,0		X	X	359	29,6	X		X
300	32,4		X	X	360	28,4	X		X

<u>Table A5-9</u>: Cycle part 1, reduced speed, 361 to 480 s

	roller	Indica	itors	;					roller	indic	ator	rs .			
time	speed in km/ jam	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
361	27,1			X			X	421	34,0		X				
362	26,0			X			X	422	35,4		X				
363	25,4			X			X	423	36,5		X				
364	25,5			X		X	X	424	37,5		X				
365	26,3			X		X	X	425	38,6		X				
366	27,3			X		X	X	426	39,6		X				
367	28,3			X		X	X	427	40,7		X				
368	29,2			X		X	X	428	41,4		X				
369	29,5			X		X	X	429	41,7			X			
370	29,4			X		X	X	430	41,4			X			
371	28,9			X		X	X	431	40,9			X			
372	28,1			X		X	X	432	40,5			X			
373	27,1			X		X	X	433	40,2			X			
374	26,3			X		X	X	434	40,1			X			
375	25,7			X		X	X	435	40,1			X			
376	25,5			X		X	X	436	39,8				X		
377	25,6			X		X	X	437	38,9				X		
378	25,9			X		X	X	438	37,4				X		
379	26,3			X		X	X	439	35,8				X		
380	26,9			X		X	X	440	34,1				X		
381	27,6			X		X	X	441	32,5				X		
382	28,4			X		X	X	442	30,9				X		
383	29,3			X		X	X	443	29,4				X		
384	30,1			X		X	X	444	27,9				X		
385	30,4			X		X	X	445	26,5				X		
386	30,2			X		X		446	24,9				X		
387	29,4			X		X		447	23,4				X		
388	28,6			X		X		448	21,8				X		
389	27,9			X		X		449	20,3				X		

		1		Т	1	1	1	1	1	1	1			_
390	27,5			X			450	19,3				X		
391	27,2			X			451	18,7				X		
392	26,9			X			452	18,3				X		
393	26,4			X			453	17,8				X		
394	25,7			X			454	17,4				X		
395	24,9				X		455	16,8				X		
396	21,4				X		456	16,3		X				
397	15,9				X		457	16,5		X				
398	9,9				X		458	17,6		X				
399	4,9				X		459	19,2		X				
400	2,1				X		460	20,8		X				
401	0,9				X		461	22,2		X				
402	0,0	X					462	23,0		X				
403	0,0	X					463	23,0				X		
404	0,0	X					464	22,0				X		
405	0,0	X					465	20,1				X		
406	0,0	X					466	17,7				X		
407	0,0	X					467	15,0				X		
408	1,2		X				468	12,1				X		
409	3,2		X				469	9,1				X		
410	5,9		X				470	6,2				X		
411	8,8		X				471	3,6				X		
412	12,0		X				472	1,8				X		
413	15,4		X				473	0,8				X		
414	18,9		X				474	0,0	X					
415	22,1		X				475	0,0	X					٦
416	24,7		X				476	0,0	X					
417	26,8		X				477	0,0	X					
418	28,7		X				478	0,0	X					
419	30,6		X				479	0,0	X					٦
420	32,4		X				480	0,0	X					

 $\underline{\text{Table A5-10}}\text{: Cycle part 1, reduced speed, 481 to 600 s}$

		Indica	ntors	<u> </u>					roller	indic	ator	'S			
time	roller speed in km/ jam	stop		cruis e	dec	no gear- shift	no first gear	time	speed			cruis e	de c	no gear- shift	no first gear
481	0,0	X						541	0,0	X					
482	0,0	X						542	2,8		X				
483	0,0	X						543	8,1		X				
484	0,0	X						544	14,2		X				
485	0,0	X						545	19,2		X				
486	1,4		X					546	23,5		X				
487	4,5		X					547	27,2		X				
488	8,8		X					548	30,4		X				
489	13,4		X					549	33,1		X				
490	17,3		X					550	35,7		X				
491	19,2		X					551	38,3		X				
492	19,7		X					552	41,0		X				
493	19,8		X					553	43,6			X			
494	20,7		X					554	43,7			X			
495	23,7		X					555	43,8			X			
496	27,9		X					556	43,9			X			
497	31,9		X					557	44,0			X			
498	35,4		X					558	44,1			X			
499	36,2				X			559	44,2			X			
500	34,2				X		X	560	44,3			X			
501	30,2				X		X	561	44,4			X			
502	27,1				X		X	562	44,5			X			
503	26,6		X				X	563	44,6			X			
504	28,6		X				X	564	44,9			X			
505	32,6		X				X	565	45,5			X			
506	35,5		X				X	566	46,2			X			
507	36,6				X		X	567	47,1			X			
508	34,6				X			568	48,0			X			
509	30,0				X			569	48,7			X			

510	23,1			X	570	49,2		X		
511	16,7			X	571	49,4		X		
512	10,7			X	572	49,3		X		
513	4,7			X	573	48,7			X	
514	1,2			X	574	47,3			X	
515	0,0	X			575	45,0			X	
516	0,0	X			576	42,3			X	
517	0,0	X			577	39,4			X	
518	0,0	X			578	36,6			X	
519	3,0		X		579	33,7			X	
520	8,1		X		580	30,1			X	
521	14,3		X		581	25,9			X	
522	19,3		X		582	21,8			X	
523	23,5		X		583	17,7			X	
524	27,3		X		584	13,5			X	
525	30,8		X		585	9,4			X	
526	33,7		X		586	5,6			X	
527	35,2		X		587	2,1			X	
528	35,2			X	588	0,0	X			
529	32,5			X	589	0,0	X			
530	27,9			X	590	0,0	X			
531	23,2			X	591	0,0	X			
532	18,5			X	592	0,0	X			
533	13,8			X	593	0,0	X			
534	9,1			X	594	0,0	X			
535	4,5			X	595	0,0	X			
536	2,3			X	596	0,0	X			
537	0,0	X			597	0,0	X			
538	0,0	X			598	0,0	X			
539	0,0	X			599	0,0	X			
540	0,0	X			600	0,0	X			

 $\underline{\text{Table A5-11}}\text{: Cycle part 2, 1 to 120 s}$

	roller	Indica	ators	5					roller	indic	ato	rs			
time	speed in km/ jam	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
1	0,0	X						61	23,7		X				X
2	0,0	X						62	23,8		X				X
3	0,0	X						63	25,0		X				X
4	0,0	X						64	27,3		X				X
5	0,0	X						65	30,4		X				X
6	0,0	X						66	33,9		X				X
7	0,0	X						67	37,3		X				X
8	0,0	X						68	39,8		X				X
9	2,3		X					69	39,5				X		
10	7,3		X					70	36,3				X		
11	15,2		X					71	31,4				X		
12	23,9		X					72	26,5				X		
13	32,5		X					73	24,2				X		X
14	39,2		X					74	24,8				X		X
15	44,1		X					75	26,6				X		X
16	48,1		X					76	27,5				X		X
17	51,2		X					77	26,8				X		X
18	53,3		X					78	25,3				X		X
19	54,5		X					79	24,0				X		X
20	55,7		X					80	23,3		X				X
21	56,9			X				81	23,7		X				X
22	57,5			X				82	24,9		X				X
23	58,0			X				83	26,4		X				X
24	58,4			X				84	27,7		X				X
25	58,5			X				85	28,3		X				X
26	58,5			X				86	28,3		X				X
27	58,6			X		X		87	28,1		X				X
28	58,9			X		X		88	28,1		X				X
29	59,3			X		X		89	28,6		X				X

30	59,8	X		X		90	29,8	X			X
31	60,2	X		X		91	31,6	X			X
32	60,5	X		X		92	33,9	X			X
33	60,8	X		X		93	36,5	X			
34	61,1	X		X		94	39,1	X			
35	61,5	X		X		95	41,5	X			
36	62,0	X		X		96	43,3	X			
37	62,5	X		X		97	44,5	X			
38	63,0	X		X		98	45,1		X		
39	63,4	X		X		99	45,1		X		
40	63,7	X		X		100	43,9		X		
41	63,8	X		X		101	41,4		X		
42	63,9	X		X		102	38,4		X		
43	63,8	X		X		103	35,5		X		
44	63,2		X	X		104	32,9		X		
45	61,7		X	X		105	31,3		X		
46	58,9		X	X		106	30,7		X		X
47	55,2		X			107	31,0	X			X
48	51,0		X			108	32,2	X			X
49	46,7		X			109	34,0	X			X
50	42,8		X			110	36,0	X			
51	40,2		X			111	37,9	X			
52	38,8		X			112	39,9	X			
53	37,9		X			113	41,6	X			
54	36,7		X			114	43,1	X			
55	35,1		X			115	44,3	X			
56	32,9		X			116	45,0	X			
57	30,4		X			117	45,5	X			
58	28,0		X			118	45,8	X		X	
59	25,9		X			119	46,0	X		X	
60	24,4		X		X	120	46,1	X		X	

 $\underline{\text{Table A5-12}}\text{: Cycle part 2, 121 to 240 s}$

	roller	Indica	ators	6					roller	indic	ato	rs			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
121	46,2		X			X		181	57,0				X		
122	46,1		X			X		182	56,3				X		
123	45,7		X			X		183	55,2				X		
124	45,0		X					184	53,9				X		
125	44,3		X					185	52,6				X		
126	44,7		X					186	51,4				X		
127	46,8		X					187	50,1		X				
128	50,1		X					188	51,5		X				
129	53,6		X					189	53,1		X				
130	56,9		X					190	54,8		X				
131	59,4		X					191	56,6		X				
132	60,2				X			192	58,5		X				
133	59,3				X			193	60,6		X				
134	57,5				X			194	62,8		X				
135	55,4				X			195	64,9		X				
136	52,5				X			196	67,0		X				
137	47,9				X			197	69,1		X				
138	41,4				X			198	70,9		X				
139	34,4				X			199	72,2		X				
140	30,0				X		X	200	72,8				X		
141	27,0				X		X	201	72,8				X		
142	26,5		X				X	202	71,9				X		
143	28,7		X				X	203	70,5				X		
144	33,8		X					204	68,8				X		
145	40,3		X					205	67,1				X		
146	46,6		X					206	65,4				X		
147	50,4		X					207	63,9				X		
148	54,0		X					208	62,8				X		
149	56,9		X					209	61,8				X		

150	59,1	X			210	61,0		X	
151	60,6	X			211			X	X
152	61,7	X			212	60,0		X	X
153	62,6	X			213	60,2	X		X
154	63,1			X	214	61,4	X		X
155	62,9			X	215	63,3	X		X
156	61,7			X	216	65,5	X		X
157	59,4			X	217	67,4	X		X
158	56,6			X	218	68,5	X		X
159	53,7			X	219	68,7		X	X
160	50,7			X	220	68,1		X	X
161	47,7			X	221	67,3		X	X
162	45,0			X	222	66,5		X	X
163	43,1			X	223	65,9		X	X
164	41,9		X		224	65,5		X	X
165	41,6		X		225	64,9		X	X
166	41,3		X		226	64,1		X	X
167	40,9		X		227	63,0		X	X
168	41,8		X		228	62,1		X	X
169	42,1		X		229	61,6	X		X
170	41,8		X		230	61,7	X		X
171	41,3		X		231	62,3	X		X
172	41,5	X			232	63,5	X		X
173	43,5	X			233	65,3	X		X
174	46,5	X			234	67,3	X		X
175	49,7	X			235	69,3	X		X
176	52,6	X			236	71,4	X		X
177	55,0	X			237	73,5	X		
178	56,5	X			238	75,6	X		
179	57,1	X			239	77,7	X		
180	57,3			X	240	79,7	X		

<u>Table A5-13</u>: Cycle part 2, 241 to 360 s

	roller			Indic	ators	.			roller			Indi	cato	ors	
time	speed	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
241	81,5		X					301	68,3				X		
242	83,1		X					302	67,3				X		
243	84,6		X					303	66,1				X		
244	86,0		X					304	63,9				X		
245	87,4		X					305	60,2				X		
246	88,7		X					306	54,9				X		
247	89,6		X					307	48,1				X		
248	90,2		X					308	40,9				X		
249	90,7		X					309	36,0				X		
250	91,2		X					310	33,9		X				
251	91,8		X					311	33,9		X				
252	92,4		X					312	36,5		X				
253	93,0		X					313	41,0		X				
254	93,6		X					314	45,3		X				
255	94,1			X				315	49,2		X				
256	94,3			X				316	51,5		X				
257	94,4			X				317	53,2		X				
258	94,4			X				318	53,9		X				
259	94,3			X				319	53,9		X				
260	94,3			X				320	53,7		X				
261	94,2			X				321	53,7		X				
262	94,2			X		X		322	54,3		X				
263	94,2			X		X		323	55,4		X				
264	94,1			X		X		324	56,8		X				
265	94,0			X		X		325	58,1		X				
266	94,0			X		X		326	58,9				X		
267	93,9			X		X		327	58,2				X		
268	93,9			X		X		328	55,8				X		
269	93,9			X		X		329	52,6				X		

270	93,9	X		X	330	49,2		2	X	
271	93,9	X		X	331	47,6	X			
272	94,0	X		X	332	48,4	X			
273	94,0	X		X	333	51,8	X			
274	94,1	X		X	334	55,7	X			
275	94,2	X			335	59,6	X			
276	94,3	X			336	63,0	X			
277	94,4	X			337	65,9	X			
278	94,5	X			338	68,1	X			
279	94,5	X			339	69,8	X			
280	94,5	X			340	71,1	X			
281	94,5	X			341	72,1	X			
282	94,4	X			342	72,9	X			
283	94,5	X			343	73,7	X			
284	94,6	X			344	74,4	X			
285	94,7	X			345	75,1	X			
286	94,8	X			346	75,8	X			
287	94,9	X			347	76,5	X			
288	94,8	X			348	77,2	X			
289	94,3		X		349	77,8	X			
290	93,3		X		350	78,5	X			
291	91,8		X		351	79,2	X			
292	89,6		X		352	80,0	X			
293	87,0		X		353	81,0	X			
294	84,1		X		354	82,0	X			
295	81,2		X		355	83,0	X			
296	78,4		X		356	83,7	X			
297	75,7		X		357	84,2		X		
298	73,2		X		358	84,4		X		
299	71,1		X		359	84,5		X		
300	69,5		X		360	84,4		X		

<u>Table A5-14</u>: Cycle part 2, 361 to 480 s

	roller	Indica	tors						roller	Indic	ator	·s			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear		spee d in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
361	84,1			X				421	63,1			X		X	
362	83,7			X				422	63,6			X		X	
363	83,2			X				423	63,9			X		X	
364	82,8			X				424	63,8			X		X	
365	82,6			X				425	63,6			X		X	
366	82,5			X				426	63,3				X	X	
367	82,4			X				427	62,8				X	X	
368	82,3			X				428	61,9				X	X	
369	82,2			X				429	60,5				X	X	
370	82,2			X				430	58,6				X	X	
371	82,2			X				431	56,5				X	X	
372	82,1			X				432	54,6				X	X	
373	81,9			X				433	53,8		X			X	
374	81,6			X				434	54,5		X			X	
375	81,3			X				435	56,1		X			X	
376	81,1			X				436	57,9		X			X	
377	80,8			X				437	59,7		X			X	
378	80,6			X				438	61,2		X			X	
379	80,4			X				439	62,3		X			X	
380	80,1			X				440	63,1		X			X	
381	79,7				X			441	63,6				X	X	
382	78,6				X			442	63,5				X	X	
383	76,8				X			443	62,7				X	X	
384	73,7				X			444	60,9				X	X	
385	69,4				X			445	58,7				X	X	
386	64,0				X			446	56,4				X	X	
387	58,6				X			447	54,5				X	X	
388	53,2				X			448	53,3				X	X	
389	47,8				X			449	53,0		X			X	

390	42,4		<u> </u>	X		450	53,5	X		X	
391	37,0		ļ	K			54,6	X		X	
392	33,0		7	X	X		56,1	X		X	
393	30,9		7	K	X	-	57,6	X		X	
394	30,9	X			X	+	58,9	X		X	
395	33,5	X			X	455	59,8	X		X	
396	38,0	X				456	60,3	X		X	
397	42,5	X				457	60,7	X		X	
398	47,0	X				458	61,3	X		X	
399	51,0	X				459	62,4	X		X	
400	53,5	X				460	64,1	X		X	
401	55,1	X				461	66,2	X		X	
402	56,4	X				462	68,1	X		X	
403	57,3	X				463	69,7	X		X	
404	58,1	X				464	70,4		X	X	
405	58,8	X				465	70,7		X	X	
406	59,4	X				466	70,7		X		
407	59,8		X			467	70,7		X		
408	59,7		X			468	70,7		X		
409	59,4		X			469	70,6		X		
410	59,2		X			470	70,5		X		
411	59,2		X			471	70,4		X		
412	59,6		X			472	70,2		X		
413	60,0		X			473	70,1		X		
414	60,5		X			474	69,8		X		
415	61,0		X			475	69,5		X		
416	61,2		X			476	69,1		X		
417	61,3		X			477	69,1		X		
418	61,4		X			478	69,5		X		
419	61,7		X			479	70,3		X	X	
420	62,3		X			480	71,2		X	X	

 $\underline{\text{Table A5-15}}\text{: Cycle part 2, 481 to 600 s}$

	roller	Indica	tors	}					roller	Indic	ato	rs			
time	speed in km/ jam	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
481	72,0			X		X		541	65,3		X				
482	72,6			X		X		542	69,6		X				
483	72,8			X		X		543	72,3		X				
484	72,7			X		X		544	73,9		X				
485	72,0				X	X		545	75,0		X				
486	70,4				X			546	75,7		X				
487	67,7				X			547	76,5		X				
488	64,4				X			548	77,3		X				
489	61,0				X			549	78,2		X				
490	57,6				X			550	78,9		X				
491	54,0				X			551	79,4			X			
492	49,7				X			552	79,6			X			
493	44,4				X			553	79,3			X			
494	38,2				X			554	78,8			X			
495	31,2				X			555	78,1			X			
496	24,0				X			556	77,5			X			
497	16,8				X			557	77,2			X			
498	10,4				X			558	77,2			X			
499	5,7				X			559	77,5			X			
500	2,8				X			560	77,9			X			
501	1,6				X			561	78,5			X			
502	0,3	X						562	79,1			X			
503	0,0	X						563	79,6			X			
504	0,0	X						564	80,0			X			
505	0,0	X						565	80,2			X			
506	0,0	X						566	80,3			X			
507	0,0	X						567	80,1			X			
508	0,0	X						568	79,8			X			
509	0,0	X						569	79,5			X			

510	0,0	X			570	79,1		X		
511	0,0	X			571	78,8		X		
512	0,0	X			572	78,6		X		
513	0,0	X			573	78,4		X		
514	0,0	X			574	78,3		X		
515	0,0	X			575	78,0			X	
516	0,0	X			576	76,7			X	
517	0,0	X			577	73,7			X	
518	0,0	X			578	69,5			X	
519	0,0	X			579	64,8			X	
520	0,0	X			580	60,3			X	
521	0,0	X			581	56,2			X	
522	0,0	X			582	52,5			X	
523	0,0	X			583	49,0			X	
524	0,0	X			584	45,2			X	
525	0,0	X			585	40,8			X	
526	0,0	X			586	35,4			X	
527	0,0	X			587	29,4			X	
528	0,0	X			588	23,4			X	
529	0,0	X			589	17,7			X	
530	0,0	X			590	12,6			X	
531	0,0	X			591	8,0			X	
532	0,0	X			592	4,1			X	
533	2,3		X		593	1,3			X	
534	7,2		X		594	0,0	X			
535	14,6		X		595	0,0	X			
536	23,5		X		596	0,0	X			
537	33,0		X		597	0,0	X			
538	42,7		X		598	0,0	X			
539	51,8		X		599	0,0	X			
540	59,4		X		600	0,0	X			

<u>Table A5-16</u>: Cycle part 2, reduced speed, 1 to 120 s

	11	Indica	ators	<u> </u>					roller	Indic	ator	:s			
time	roller speed in km/ jam	stop	ac c	cruis e	dec	no gear- shift	no first gear		speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
1	0,0	X						61	23,7		X				X
2	0,0	X						62	23,8		X				X
3	0,0	X						63	25,0		X				X
4	0,0	X						64	27,3		X				X
5	0,0	X						65	30,4		X				X
6	0,0	X						66	33,9		X				X
7	0,0	X						67	37,3		X				X
8	0,0	X						68	39,8				X		X
9	2,3		X					69	39,5				X		
10	7,3		X					70	36,3				X		
11	13,6		X					71	31,4				X		
12	18,9		X					72	26,5				X		
13	23,5		X					73	24,2				X		X
14	27,8		X					74	24,8				X		X
15	31,8		X					75	26,5				X		X
16	35,6		X					76	27,5				X		X
17	39,2		X					77	26,8				X		X
18	42,7		X					78	25,3				X		X
19	46,0		X					79	24,0				X		X
20	49,1		X					80	23,3		X				X
21	52,1		X					81	23,7		X				X
22	54,9		X					82	24,9		X				X
23	57,5		X					83	26,4		X				X
24	58,4			X				84	27,7		X				X
25	58,5			X				85	28,3		X				X
26	58,5			X				86	28,3		X				X
27	58,6			X		X		87	28,1		X				X
28	58,9			X		X		88	28,1		X				X
29	59,3			X		X		89	28,6		X				X

30	59,8	X		X		90	29,8	X			X
31	60,2	X		X		91	31,6	X			X
32	60,5	X		X		92	33,9	X			X
33	60,8	X		X		93	36,5	X			
34	61,1	X		X		94	39,1	X			
35	61,5	X		X		95	41,5	X			
36	62,0	X		X		96	43,3	X			
37	62,5	X		X		97	44,5	X			
38	63,0	X		X		98	45,1		X		
39	63,4	X		X		99	45,1		X		
40	63,7	X		X		100	43,8		X		
41	63,8	X		X		101	41,4		X		
42	63,9	X		X		102	38,4		X		
43	63,8	X		X		103	35,5		X		
44	63,2		X	X		104	32,9		X		
45	61,7		X	X		105	31,3		X		
46	58,9		X	X		106	30,7		X		X
47	55,2		X			107	31,0	X			X
48	51,0		X			108	32,2	X			X
49	46,7		X			109	34,0	X			X
50	42,8		X			110	36,0	X			
51	40,2		X			111	37,9	X			
52	38,8		X			112	39,8	X			
53	37,8		X			113	41,6	X			
54	36,7		X			114	43,1	X			
55	35,1		X			115	44,3	X			
56	32,9		X			116	45,0	X			
57	30,4		X			117	45,5	X			
58	28,0		X			118	45,8	X		X	
59	25,9		X			119	46,0	X		X	
60	24,4		X		X	120	46,1	X		X	

 $\underline{\text{Table A5-17}}\text{: Cycle part 2, reduced speed, 121 to 240 s}$

	roller	Indica	ators	<u> </u>					roller	Indic	ato	rs			
time	speed in km/ja m	stop		cruis e	dec	no gear- shift	no first gear	time	speed				de c	no gear- shift	no first gear
121	46,2		X			X		181	57,0				X		
122	46,1		X			X		182	56,3				X		
123	45,7		X			X		183	55,2				X		
124	45,0		X					184	53,9				X		
125	44,3		X					185	52,6				X		
126	44,7		X					186	51,3				X		
127	46,8		X					187	50,1		X				
128	49,9		X					188	51,5		X				
129	52,8		X					189	53,1		X				
130	55,5		X					190	54,8		X				
131	58,2		X					191	56,5		X				
132	60,2				X			192	58,5		X				
133	59,3				X			193	60,6		X				
134	57,5				X			194	62,8		X				
135	55,4				X			195	64,9		X				
136	52,5				X			196	67,0		X				
137	47,9				X			197	69,1		X				
138	41,4				X			198	70,9		X				
139	34,4				X			199	72,2		X				
140	30,0				X		X	200	72,8				X		
141	27,0				X		X	201	72,8				X		
142	26,5		X				X	202	71,9				X		
143	28,7		X				X	203	70,5				X		
144	32,7		X					204	68,8				X		
145	36,5		X					205	67,1				X		
146	40,0		X					206	65,4				X		
147	43,5		X					207	63,9				X		
148	46,7		X					208	62,8				X		
149	49,8		X					209	61,8				X		

150	52,7	X			210	61,0		X		
151	55,5	X			211	60,4		X	X	
152	58,1	X			212	60,0	X		X	
153	60,6	X			213	60,2	X		X	
154	62,9	X			214	61,4	X		X	
155	62,9			X	215	63,3	X		X	
156	61,7			X	216	65,5	X		X	
157	59,4			X	217	67,4	X		X	
158	56,6			X	218	68,5	X		X	
159	53,7			X	219	68,7		X	X	
160	50,7			X	220	68,1		X	X	
161	47,7			X	221	67,3		X	X	
162	45,0			X	222	66,5		X	X	
163	43,0			X	223	65,9		X	X	
164	41,9		X		224	65,5		X	X	
165	41,6		X		225	64,9		X	X	
166	41,3		X		226	64,1		X	X	
167	40,9		X		227	63,0		X	X	
168	41,8		X		228	62,1		X	X	
169	42,1		X		229	61,6	X		X	
170	41,8		X		230	61,7	X		X	
171	41,3		X		231	62,3	X		X	
172	41,5	X			232	63,5	X		X	
173	43,5	X			233	65,3	X		X	
174	46,5	X			234	67,3	X		X	
175	49,7	X			235	69,2	X		X	
176	52,6	X			236	71,1	X		X	
177	55,0	X			237	73,0	X			
178	56,5	X			238	74,8	X			
179	57,1	X			239	75,7	X			
180	57,3			X	240	76,7	X			

 $\underline{\text{Table A5-18}}\text{: Cycle part 2, reduced speed, 241 to 360 s}$

	roller	Indica	ators	ï					roller	Indic	atoi	'S			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear		spee d in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
241	77,5		X					301	68,3				X		
242	78,1			X				302	67,3				X		
243	78,6			X				303	66,1				X		
244	79,0			X				304	63,9				X		
245	79,4			X				305	60,2				X		
246	79,7			X				306	54,9				X		
247	80,1			X				307	48,1				X		
248	80,7			X				308	40,9				X		
249	80,8			X				309	36,0				X		
250	81,0			X				310	33,8		X				
251	81,2			X				311	33,9		X				
252	81,6			X				312	36,5		X				
253	81,9			X				313	40,1		X				
254	82,1			X				314	43,5		X				
255	82,1			X				315	46,7		X				
256	82,3			X				316	49,8		X				
257	82,4			X				317	52,8		X				
258	82,4			X				318	53,8		X				
259	82,3			X				319	53,9		X				
260	82,3			X				320	53,7		X				
261	82,2			X				321	53,7		X				
262	82,2			X				322	54,3		X				
263	82,1			X				323	55,4		X				
264	82,1			X				324	56,8		X				
265	82,0			X				325	58,1		X				
266	82,0			X				326	58,8				X		
267	81,9			X				327	58,2				X		
268	81,9			X				328	55,8				X		
269	81,9			X				329	52,6				X		

270	81,9	X		330	49,2		X	
271	81,9	X		331	47,6	X		
272	82,0	X		332	48,3	X		
273	82,0	X		333	51,4	X		
274	82,1	X		334	54,2	X		
275	82,2	X		335	56,9	X		
276	82,3	X		336	59,4	X		
277	82,4	X		337	61,8	X		
278	82,5	X		338	64,0	X		
279	82,5	X		339	66,2	X		
280	82,5	X		340	68,2	X		
281	82,4	X		341	70,1	X		
282	82,4	X		342	72,0	X		
283	82,4	X		343	73,7	X		
284	82,4	X		344	74,4	X		
285	82,5	X		345	75,1	X		
286	82,5	X		346	75,8	X		
287	82,5	X		347	76,5	X		
288	82,4	X		348	77,2	X		
289	82,3	X		349	77,8	X		
290	81,6	X		350	78,5	X		
291	81,3	X		351	79,2	X		
292	80,3	X		352	80,0	X		
293	79,9	X		353	81,0		X	
294	79,2	X		354	81,1		X	
295	79,2	X		355	81,8		X	
296	78,4		X	356	82,2		X	
297	75,7		X	357	82,2		X	
298	73,2		X	358	82,4		X	
299	71,1		X	359	82,5		X	
300	69,4		X	360	82,5		X	

 $\underline{\text{Table A5-19}}\text{: Cycle part 2, reduced speed, 361 to 480 s}$

		Indica	ntors						roller	Indic	ator	'S			
time	roller speed in km/ jam	stop		cruis e	dec	no gear- shift	no first gear	time	spee d in		ac c	cruis e	de c	no gear- shift	no first gear
361	82,5			X				421	63,0			X		X	
362	82,5			X				422	63,6			X		X	
363	82,3			X				423	63,8			X		X	
364	82,1			X				424	63,8			X		X	
365	82,1			X				425	63,6			X		X	
366	82,1			X				426	63,3			X		X	
367	82,1			X				427	62,8				X	X	
368	82,1			X				428	61,9				X	X	
369	82,1			X				429	60,5				X	X	
370	82,1			X				430	58,6				X	X	
371	82,1			X				431	56,5				X	X	
372	82,1			X				432	54,6				X	X	
373	81,9			X				433	53,8		X			X	
374	81,6			X				434	54,5		X			X	
375	81,3			X				435	56,1		X			X	
376	81,1			X				436	57,9		X			X	
377	80,8			X				437	59,7		X			X	
378	80,6			X				438	61,2		X			X	
379	80,4			X				439	62,3		X			X	
380	80,1			X				440	63,1		X			X	
381	79,7				X			441	63,5				X	X	
382	78,6				X			442	63,5				X	X	
383	76,8				X			443	62,7				X	X	
384	73,7				X			444	60,9				X	X	
385	69,4				X			445	58,7				X	X	
386	64,0				X			446	56,4				X	X	
387	58,6				X			447	54,5				X	X	
3881	53,2				X			448	53,3				X	X	
389	47,8				X			449	53,0		X			X	

390	42,4			X		450	53,5	X		X	
391	37,0			X		451	54,6	X		X	
392	33,0			X	X	452	56,1	X		X	
393	30,9			X	X	453	57,6	X		X	
394	30,9	X			X	454	58,9	X		X	
395	33,5	X			X	455	59,8	X		X	
396	37,2	X				456	60,3	X		X	
397	40,8	X				457	60,7	X		X	
398	44,1	X				458	61,3	X		X	
399	47,4	X				459	62,3	X		X	
400	50,4	X				460	64,1	X		X	
401	53,3	X				461	66,2	X		X	
402	56,1	X				462	68,1	X		X	
403	57,3	X				463	69,7	X		X	
404	58,1	X				464	70,4		X	X	
405	58,8	X				465	70,7		X	X	
406	59,4	X				466	70,7		X		
407	59,8		X			467	70,7		X		
408	59,7		X			468	70,7		X		
409	59,4		X			469	70,6		X		
410	59,2		X			470	70,5		X		
411	59,2		X			471	70,3		X		
412	59,5		X			472	70,2		X		
413	60,0		X			473	70,1		X		
414	60,5		X			474	69,8		X		
415	61,0		X			475	69,5		X		
416	61,2		X			476	69,1		X		
417	61,3		X			477	69,1		X		
418	61,4		X			478	69,5		X		
419	61,7		X			479	70,3		X	X	
420	62,3		X			480	71,2		X	X	

 $\underline{\text{Table A5-20}}\text{: Cycle part 2, reduced speed, 481 to 600 s}$

	roller	Indica	tors	<u> </u>					roller	ato	rs			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/j am	ac c	cruis e	de c	no gear- shift	no first gear
481	72,0			X		X		541	35,2	X				
482	72,6			X		X		542	37,2	X				
483	72,8			X		X		543	39,1	X				
484	72,7			X		X		544	40,8	X				
485	72,0				X	X		545	41,8	X				
486	70,3				X			546	42,5	X				
487	67,7				X			547	43,3	X				
488	64,4				X			548	44,1	X				
489	61,0				X			549	45,0	X				
490	57,6				X			550	45,7	X				
491	54,0				X			551	46,2		X			
492	49,7				X			552	46,3		X			
493	44,4				X			553	46,1		X			
494	38,2				X			554	45,6		X			
495	31,2				X			555	44,9		X			
496	24,0				X			556	44,4		X			
497	16,8				X			557	44,0		X			
498	10,4				X			558	44,0		X			
499	5,7				X			559	44,3		X			
500	2,8				X			560	44,8		X			
501	1,6				X			561	45,3		X			
502	0,3	X						562	45,9		X			
503	0,0	X						563	46,4		X			
504	0,0	X						564	46,8		X			
505	0,0	X						565	47,1		X			
506	0,0	X						566	47,1		X			
507	0,0	X						567	46,9		X			
508	0,0	X						568	46,7		X			
509	0,0	X						569	46,3		X			

510	0,0	X			570	45,9		X		
511	0,0	X			571	45,6		X		
512	0,0	X			572	45,4		X		
513	0,0	X			573	45,2		X		
514	0,0	X			574	45,1		X		
515	0,0	X			575	44,8			X	
516	0,0	X			576	43,5			X	
517	0,0	X			577	40,9			X	
518	0,0	X			578	38,2			X	
519	0,0	X			579	35,6			X	
520	0,0	X			580	33,0			X	
521	0,0	X			581	30,4			X	
522	0,0	X			582	27,7			X	
523	0,0	X			583	25,1			X	
524	0,0	X			584	22,5			X	
525	0,0	X			585	19,8			X	
526	0,0	X			586	17,2			X	
527	0,0	X			587	14,6			X	
528	0,0	X			588	12,0			X	
529	0,0	X			589	9,3			X	
530	0,0	X			590	6,7			X	
531	0,0	X			591	4,1			X	
532	0,0	X			592	1,4			X	
533	2,3		X		593	0,0	X			
534	7,2		X		594	0,0	X			
535	13,5		X		595	0,0	X			
536	18,7		X		596	0,0	X			
537	22,9		X		597	0,0	X			
538	26,7		X		598	0,0	X			
539	30,0		X		599	0,0	X			
540	32,8		X		600	0,0	X			

Table A5-21: Cycle part 3, 1 to 120 s

	roller	Indica	ators	<u> </u>					roller	Indic	ator	·s			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear		spee d in km/j am	stop	ac c	cruis e	de c	no gear- shift	no first gear
1	0,0	X						61	73,9				X	X	
2	0,0	X						62	74,1		X			X	
3	0,0	X						63	75,1		X			X	
4	0,0	X						64	76,8		X			X	
5	0,0	X						65	78,7		X			X	
6	0,0	X						66	80,4		X			X	
7	0,0	X						67	81,7		X			X	
8	0,9	X						68	82,6		X				
9	3,2		X					69	83,5		X				
10	7,3		X					70	84,4		X				
11	12,4		X					71	85,1		X				
12	17,9		X					72	85,7		X				
13	23,5		X					73	86,3		X				
14	29,1		X					74	87,0		X				
15	34,3		X					75	87,9		X				
16	38,6		X					76	88,8		X				
17	41,6		X					77	89,7		X				
18	43,9		X					78	90,3			X			
19	45,9		X					79	90,6			X			
20	48,1		X					80	90,6			X			
21	50,3		X					81	90,5			X			
22	52,6		X					82	90,4			X			
23	54,8		X					83	90,1			X			
24	55,8		X					84	89,7			X			
25	55,2		X					85	89,3			X			
26	53,9		X					86	89,0			X			
27	52,7		X					87	88,8			X			
28	52,8		X					88	88,9			X			
29	55,0		X					89	89,1			X			

30	58,5	X			90	89,3	X			
31	62,3	X			91	89,4	X			
32	65,7	X			92	89,4	X			
33	68,1	X			93	89,2	X			
34	69,1	X			94	88,9	X			
35	69,5	X			95	88,5	X			
36	69,9	X			96	88,0	X		X	
37	70,6	X			97	87,5	X		X	
38	71,3	X			98	87,2	X		X	
39	72,2	X			99	87,1	X		X	
40	72,8	X			100	87,2	X		X	
41	73,2	X			101	87,3	X		X	
42	73,4	X			102	87,4	X		X	
43	73,8	X			103	87,5	X		X	
44	74,8	X			104	87,4	X		X	
45	76,7	X			105	87,1	X			
46	79,1	X			106	86,8	X			
47	81,1	X			107	86,4	X			
48	82,1		X		108	85,9	X			
49	81,7		X	X	109	85,2		X		
50	80,3		X	X	110	84,0		X		
51	78,8		X	X	111	82,2		X		
52	77,3		X	X	112	80,3		X		
53	75,9		X	X	113	78,6		X		
54	75,0		X	X	114	77,2		X		
55	74,7		X	X	115	75,9		X		
56	74,7		X	X	116	73,8		X		
57	74,7		X	X	117	70,4		X		
58	74,6		X	X	118	65,7		X		
59	74,4		X	X	119	60,5		X		
60	74,1		X	X	120	55,9		X		

 $\underline{\text{Table A5-22}}\text{: Cycle part 3, 121 to 240 s}$

	roller	Indica	ntors						roller	Indic	atoi	`S			
time	speed in km/ jam	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
121	53,0				X			181	50,2				X		
122	51,6				X			182	48,7				X		
123	50,9				X			183	47,2			X			
124	50,5				X			184	47,1			X			
125	50,2				X			185	47,0			X			
126	50,3		X					186	46,9			X			
127	50,6		X					187	46,6			X			
128	51,2		X					188	46,3			X			
129	51,8		X					189	46,1			X			
130	52,5		X					190	46,1		X				
131	53,4		X					191	46,5		X				
132	54,9		X					192	47,1		X				
133	57,0		X					193	48,1		X				
134	59,4		X					194	49,8		X				
135	61,9		X					195	52,2		X				
136	64,3		X					196	54,8		X				
137	66,4		X					197	57,3		X				
138	68,1		X					198	59,5		X				
139	69,6		X					199	61,7		X				
140	70,7		X					200	64,4		X				
141	71,4		X					201	67,7		X				
142	71,8		X					202	71,4		X				
143	72,8		X					203	74,9		X				
144	75,0		X					204	78,2		X				
145	77,8		X					205	81,1		X				
146	80,7		X					206	83,9		X				
147	83,3		X					207	86,6		X				
148	85,4		X					208	89,1		X				
149	87,3		X					209	91,6		X				
150	89,1		X					210	94,0		X				

		1 1	T T	1		1	1	
151	90,6	X		211	96,3	X		
152	91,9	X		212	98,4	X		
153	93,2	X		213	100,4	X		
154	94,6	X		214	102,1	X		
155	96,0	X		215	103,6	X		
156	97,5	X		216	104,9	X		
157	99,0	X		217	106,2	X		
158	99,8		X	218	107,5	X		
159	99,0		X	219	108,5	X		
160	96,7		X	220	109,3	X		
161	93,7		X	221	109,9	X		
162	91,3		X	222	110,5	X		
163	90,4		X	223	110,9	X		
164	90,6		X	224	111,2	X		
165	91,1		X	225	111,4	X		
166	90,9		X	226	111,7	X		
167	89,0		X	227	111,9	X		
168	85,6		X	228	112,3	X		
169	81,6		X	229	113,0	X		
170	77,6		X	230	114,1	X		
171	73,6		X	231	115,7	X		
172	69,7		X	232	117,5	X		
173	66,0		X	233	119,3	X		
174	62,7		X	234	121,0	X		
175	60,0		X	235	122,2		X	
176	58,0		X	236	122,9		X	
177	56,4		X	237	123,0		X	
178	54,8		X	238	122,9		X	
179	53,3		X	239	122,8		X	
180	51,7		X	240	122,6		X	

 $\underline{\text{Table A5-23}}\text{: Cycle part 3, 241 to 360 s}$

	roller	Indica	ators	!					roller	Indic	ator	·s			
time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/ja m	stop	ac c	cruis e	de c	no gear- shift	no first gear
241	122,4			X				301	109,8			X			
242	122,3			X				302	109,9			X			
243	122,2			X				303	110,2			X			
244	122,2			X				304	110,4			X			
245	122,2			X				305	110,7			X			
246	122,2			X				306	110,7			X			
247	122,3			X				307	110,3			X			
248	122,4			X				308	109,3				X		
249	122,5			X				309	108,0				X		
250	122,5			X				310	106,5				X		
251	122,5			X				311	105,4				X		
252	122,5			X				312	104,9				X		
253	122,5			X				313	104,7				X		
254	122,7			X				314	104,3				X		
255	122,8			X				315	103,6				X	X	
256	123,0			X				316	102,6				X	X	
257	123,2			X				317	101,7				X	X	
258	123,3			X				318	100,8			X		X	
259	123,4			X				319	100,2			X		X	
260	123,5			X				320	99,8			X		X	
261	123,5			X				321	99,7			X		X	
262	123,6			X				322	99,7			X		X	
263	123,8			X				323	100,0			X		X	
264	124,0			X				324	100,7		X			X	
265	124,2			X				325	101,8		X			X	
266	124,5			X				326	103,2		X			X	
267	124,7			X				327	104,9		X			X	
268	125,0			X				328	106,6		X			X	
269	125,1			X				329	108,3		X			X	

270	125,2	X		330	109,9	X			X
271	125,3	X		331	111,4	X			X
272	125,3	X		332	112,7	X			X
273	125,3	X		333	113,7	X			X
274	125,2	X		334	114,3		X		X
275	125,0	X		335	114,6		X		X
276	124,8	X		336	115,0		X		X
277	124,6	X		337	115,4		X		X
278	124,4	X		338	115,8		X		X
279	124,3	X		339	116,2		X		X
280	123,9	X		340	116,5		X		X
281	123,3		X	341	116,6		X		X
282	122,1		X	342	116,7		X		X
283	120,3		X	343	116,8		X		X
284	118,0		X	344	117,0		X		X
285	115,5		X	345	117,5	X			X
286	113,2		X	346	118,3	X			X
287	111,2		X	347	119,2	X			X
288	110,1		X	348	120,1	X			X
289	109,7	X		349	120,8	X			X
290	109,8	X		350	121,1			X	X
291	110,1	X		351	120,7			X	X
292	110,4	X		352	119,0			X	X
293	110,7	X		353	116,3			X	X
294	110,9	X		354	113,1			X	X
295	110,9	X		355	110,3			X	X
296	110,8	X		356	109,0			X	X
297	110,7	X		357	109,4			X	X
298	110,4	X		358	110,4			X	X
299	110,1	X		359	111,3			X	X
300	109,9	X		360	111,5			X	X

 $\underline{\text{Table A5-24}}\text{: Cycle part 3, 361 to 480 s}$

	roller	Ind	icato	ors					roller	Indic	atoi	`S			
time	speed in km/ jam	sto p	ac c	cruis e	dec	no gear- shift	no first gear	time	speed in km/ja m	stop	ac c	cruis e	de c	no gear- shift	no first gear
361	110,1				X	X		421	116,2			X			
362	107,4				X	X		422	116,4			X			
363	104,4				X	X		423	116,6			X			
364	101,8				X	X		424	116,8			X			
365	100,0				X	X		425	117,1			X			
366	99,1				X	X		426	117,4			X			
367	98,7				X	X		427	117,9			X			
368	98,2		X			X		428	118,4			X			
369	99,0		X			X		429	118,9			X			
370	100,5		X			X		430	119,2			X			
371	102,3		X			X		431	119,5			X			
372	103,9		X			X		432	119,7			X			
373	105,0		X			X		433	119,9			X			
374	105,8		X			X		434	120,1			X			
375	106,5		X			X		435	120,3			X			
376	107,1		X			X		436	120,5			X			
377	107,7		X			X		437	120,8			X			
378	108,4		X			X		438	121,1			X			
379	109,0		X			X		439	121,5			X			
380	109,6		X			X		440	122,0			X			
381	110,3		X			X		441	122,3			X			
382	110,9		X			X		442	122,6			X			
383	111,5		X			X		443	122,9			X			
384	112,0			X		X		444	123,1			X			
385	112,3			X		X		445	123,2			X			
386	112,6			X		X		446	123,4			X			
387	112,9			X		X		447	123,5			X			
388	113,1			X		X		448	123,7			X			
389	113,3			X		X		449	123,9			X			

	1 1	1	1		1 1	
390	113,3	X	X	450	124,2	X
391	113,2	X	X	451	124,5	X
392	113,2	X	X	452	124,8	X
393	113,3	X	X	453	125,0	X
394	113,5	X	X	454	125,2	X
395	113,9	X	X	455	125,3	X
396	114,3	X	X	456	125,1	X
397	114,6	X	X	457	124,4	X
398	114,9	X	X	458	123,3	X
399	115,1	X		459	122,1	X
400	115,3	X		460	120,8	X
401	115,4	X		461	119,5	X
402	115,5	X		462	118,4	X
403	115,6	X		463	117,8	X
404	115,8	X		464	117,6	X
405	115,9	X		465	117,5	X
406	116,0	X		466	117,5	X
407	116,0	X		467	117,4	X
408	116,0	X		468	117,3	X
409	116,0	X		469	117,1	X
410	115,9	X		470	116,9	X
411	115,9	X		471	116,6	X
412	115,9	X		472	116,5	X
413	115,8	X		473	116,4	X
414	115,8	X		474	116,4	X
415	115,8	X		475	116,5	X
416	115,8	X		476	116,7	X
417	115,8	X		477	117,0	X
418	115,8	X		478	117,3	X
419	115,9	X		479	117,7	X
420	116,0	X		480	118,1	X

 $\underline{\text{Table A5-25}}\text{: Cycle part 3, 481 to 600 s}$

	roller	Indica	tors							Indic	ator	·s			
time	speed	stop	ac c	cruis e	$de \ c$	no gear - shift	no first gear	time	roller speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
481	118,5			X				541	115,0			X			
482	118,8			X				542	115,3			X			
483	118,9			X				543	116,0			X			
484	119,1			X				544	116,7			X			
485	119,1			X				545	117,5			X			
486	119,2			X				546	118,2			X			
487	119,2			X				547	118,6			X			
488	119,2			X				548	118,7			X			
489	119,3			X				549	118,8			X			
490	119,3			X				550	118,8			X			
491	119,4			X				551	118,9			X			
492	119,5			X				552	119,1			X			
493	119,5			X				553	119,4			X			
494	119,3			X				554	119,7			X			
495	119,1			X				555	119,9			X			
496	118,7			X				556	120,0			X			
497	118,2			X				557	119,7				X		
498	117,9			X				558	118,4				X		
499	117,6			X				559	115,9				X		
500	117,5			X				560	113,2				X		
501	117,5			X				561	110,5				X		
502	117,4			X				562	107,2				X		
503	117,3			X				563	104,0				X		
504	117,0			X				564	100,4				X		
505	116,7			X				565	96,8				X		
506	116,4			X				566	92,8				X		
507	116,1			X				567	88,9				X		
508	115,9			X				568	84,9				X		
509	115,7			X				569	80,6				X		

510	115,5	X	570	76,3			X	
511	115,3	X	571	72,3			X	
512	115,2	X	572	68,7			X	
513	115,0	X	573	65,5			X	
514	114,9	X	574	63,0			X	
515	114,9	X	575	61,2			X	
516	115,0	X	576	60,5			X	
517	115,2	X	577	60,0			X	
518	115,3	X	5781	59,7			X	
519	115,4	X	579	59,4			X	
520	115,4	X	580	59,4			X	
521	115,2	X	581	58,0			X	
522	114,8	X	582	55,0			X	
523	114,4	X	583	51,0			X	
524	113,9	X	584	46,0			X	
525	113,6	X	585	38,8			X	
526	113,5	X	586	31,6			X	
527	113,5	X	587	24,4			X	
528	113,6	X	588	17,2			X	
529	113,7	X	589	10,0			X	
530	113,8	X	590	5,0	X			
531	113,9	X	591	2,0	X			
532	114,0	X	592	0,0	X			
533	114,0	X	593	0,0	X			
534	114,1	X	594	0,0	X			
535	114,2	X	595	0,0	X			
536	114,4	X	596	0,0	X			
537	114,5	X	597	0,0	X			
538	114,6	X	598	0,0	X			
539	114,7	X	599	0,0	X			
540	114,8	X	600	0,0	X			
			 •	•	-	•		

<u>Table A5-26</u>: Cycle part 3, reduced speed, 1 to 120 s

	roller		ators		,					Indic	atoi	·s			
time	speed		acc	cruis e	$de \atop c$	no gear- shift	no first gear	time	roller speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gear
1	0,0	X						61	73,9				X	X	
2	0,0	X						62	74,1		X			X	
3	0,0	X						63	75,1		X			X	
4	0,0	X						64	76,8		X			X	
5	0,0	X						65	78,7		X			X	
6	0,0	X						66	80,4		X			X	
7	0,0	X						67	81,7		X			X	
8	0,9	X						68	82,6		X				
9	3,2		X					69	83,5		X				
10	7,3		X					70	84,4		X				
11	12,4		X					71	85,1		X				
12	17,9		X					72	85,7		X				
13	23,5		X					73	86,3		X				
14	29,1		X					74	87,0		X				
15	34,3		X					75	87,9		X				
16	38,6		X					76	88,8		X				
17	41,6		X					77	89,7		X				
18	43,9		X					78	90,3			X			
19	45,9		X					79	90,6			X			
20	48,1		X					80	90,6			X			
21	50,3		X					81	90,5			X			
22	52,6		X					82	90,4			X			
23	54,8		X					83	90,1			X			
24	55,8		X					84	89,7			X			
25	55,2		X					85	89,3			X			
26	53,9		X					86	89,0			X			
27	52,7		X					87	88,8			X			
28	52,8		X					88	88,9			X			
29	55,0		X					89	89,1			X			

30	58,5	X			90	89,3	X		
31	62,3	X			91	89,4	X		
32	65,7	X			92	89,4	X		
33	68,1	X			93	89,2	X		
34	69,1	X			94	88,9	X		
35	69,5	X			95	88,5	X		
36	69,9	X			96	88,0	X	X	
37	70,6	X			97	87,5	X	X	
38	71,3	X			98	87,2	X	X	
39	72,2	X			99	87,1	X	X	
40	72,8	X			100	87,2	X	X	
41	73,2	X			101	87,3	X	X	
42	73,4	X			102	87,4	X	X	
43	73,8	X			103	87,5	X	X	
44	74,8	X			104	87,4	X	X	
45	76,7	X			105	87,1	X		
46	79,1	X			106	86,8	X		
47	81,1	X			107	86,4	X		
48	82,1		X		108	85,9	X		
49	81,7		X	X	109	85,2		X	
50	80,3		X	X	110	84,0		X	
51	78,8		X	X	111	82,2		X	
52	77,3		X	X	112	80,3		X	
53	75,9		X	X	113	78,6		X	
54	75,0		X	X	114	77,2		X	
55	74,7		X	X	115	75,9		X	
56	74,7		X	X	116	73,8		X	
57	74,7		X	X	117	70,4		X	
58	74,6		X	X	118	65,7		X	
59	74,4		X	X	119	60,5		X	
60	74,1		X	X	120	55,9		X	

 $\underline{\text{Table A5-27}}\text{: Cycle part 3, reduced speed, 121 to 240 s}$

	roller			Indica	ators	;			roller			Ind	icator	rs	
time	speed in km/ jam	stop	ac c	cruis e	de c	no gear- shift	no first gea r	time	speed in km/ja m	stop	ac c	cruis e	dec	no gear- shift	no first gear
121	53,0				X			181	50,2				X		
122	51,6				X			182	48,7				X		
123	50,9				X			183	47,2			X			
124	50,5				X			184	47,1			X			
125	50,2				X			185	47,0			X			
126	50,3		X					186	46,9			X			
127	50,6		X					187	46,6			X			
128	51,2		X					188	46,3			X			
129	51,8		X					189	46,1			X			
130	52,5		X					190	46,1		X				
131	53,4		X					191	46,5		X				
132	54,9		X					192	47,1		X				
133	57,0		X					193	48,1		X				
134	59,4		X					194	49,8		X				
135	61,9		X					195	52,2		X				
136	64,3		X					196	54,8		X				
137	66,4		X					197	57,3		X				
138	68,1		X					198	59,5		X				
139	69,6		X					199	61,7		X				
140	70,7		X					200	64,4		X				
141	71,4		X					201	67,7		X				
142	71,8		X					202	71,4		X				
143	72,8		X					203	74,9		X				
144	75,0		X					204	78,2		X				
145	77,8		X					205	81,1		X				
146	80,7		X					206	83,9		X				
147	83,3		X					207	86,6		X				
148	85,4		X					208	89,1		X				
149	87,3		X					209	91,6		X				

150	89,1	X		210	94,0	X			
151	90,6	X			96,3	X			
152	91,9	X			98,4	X			
153	93,2	X		213	100,4	X			
154	94,6	X		214	102,1	X			
155	96,0	X		215	103,6	X			
156	97,5	X		216	104,9	X			
157	99,0	X		217	106,2	X			
158	99,8		X	218	106,5	X			
159	99,0		X	219	106,5	X			
160	96,7		X	220	106,6	X			
161	93,7		X	221	106,6	X			
162	91,3		X	222	107,0	X			
163	90,4		X	223	107,3	X			
164	90,6		X	224	107,3	X			
165	91,1		X	225	107,2	X			
166	90,9		X	226	107,2	X			
167	89,0		X	227	107,2	X			
168	85,6		X	228	107,3	X			
169	81,6		X	229	107,5	X			
170	77,6		X	230	107,3	X			
171	73,6		X	231	107,3	X			
172	69,7		X	232	107,3	X			
173	66,0		X	233	107,3	X			
174	62,7		X	234	108,0	X			
175	60,0		X	235	108,2		X		
176	58,0		X	236	108,9		X		
177	56,4		X	237	109,0		X		
178	54,8		X	238	108,9		X		
179	53,3		X	239	108,8		X		
180	51,7		X	240	108,6		X		

 $\underline{\text{Table A5-28}}\text{: Cycle part 3, reduced speed, 241 to 360 s}$

	roller	Indic	ators						roller	Ind	icatoi	"S			
time	speed in km/ jam	stop	acc	cruise	dec	no gear - shift	HEST	time	speed in km/ jam	sto p	acc	cruis e	dec	no gear- shift	no first gear
241	108,4			X					95,8			X			
242	108,3			X				302	95,9			X			
243	108,2			X				303	96,2			X			
244	108,2			X				304	96,4			X			
245	108,2			X				305	96,7			X			
246	108,2			X				306	96,7			X			
247	108,3			X				307	96,3			X			
248	108,4			X				308	95,3				X		
249	108,5			X				309	94,0				X		
250	108,5			X				310	92,5				X		
251	108,5			X				311	91,4				X		
252	108,5			X				312	90,9				X		
253	108,5			X				313	90,7				X		
254	108,7			X				314	90,3				X		
255	108,8			X				315	89,6				X	X	
256	109,0			X				316	88,6				X	X	
257	109,2			X				317	87,7				X	X	
258	109,3			X				318	86,8			X		X	
259	109,4			X				319	86,2			X		X	
260	109,5			X				320	85,8			X		X	
261	109,5			X				321	85,7			X		X	
262	109,6			X				322	85,7			X		X	
263	109,8			X				323	86,0			X		X	
264	110,0			X				324	86,7		X			X	
265	110,2			X				325	87,8		X			X	
266	110,5			X				326	89,2		X			X	
267	110,7			X				327	90,9		X			X	
268	111,0			X				328	92,6		X			X	
269	111,1			X				329	94,3		X			X	

270	1119	X		220	95,9	X			X
	111,2						1		
271	111,3	X			97,4	X			X
272	111,3	X		332	98,7	X			X
	111,3	X		333	99,7	X			X
	111,2	X		334	100,3		X		X
275	111,0	X			100,6		X		X
276	110,8	X		336	101,0		X		X
277	110,6	X		337	101,4		X		X
278	110,4	X		338	101,8		X		X
279	110,3	X		339	102,2		X		X
280	109,9	X		340	102,5		X		X
281	109,3		X	341	102,6		X		X
282	108,1		X	342	102,7		X		X
283	106,3		X	343	102,8		X		X
284	104,0		X	344	103,0		X		X
285	101,5		X	345	103,5	X			X
286	99,2		X	346	104,3	X			X
287	97,2		X	347	105,2	X			X
288	96,1		X	348	106,1	X			X
289	95,7	X		349	106,8	X			X
290	95,8	X		350	107,1			X	X
291	96,1	X		351	106,7			X	X
292	96,4	X		352	105,0			X	X
293	96,7	X		353	102,3			X	X
	96,9	X			99,1			X	X
295	96,9	X			96,3		1	X	X
296	96,8	X			95,0		1	X	X
297	96,7	X		357	95,4			X	X
298	96,4	X		358	96,4			X	X
299	96,1	X		359	97,3			X	X
	95,9	X			97,5		1	X	X
550	00,0] 300	07,0			4 1	/*

 $\underline{\text{Table A5-29}}\text{: Cycle part 3, reduced speed, 361 to 480 s}$

	roller	Indic	atoi	rs .					roller	indic	ators				
time	speed in km/ja m	stop	ac c	cruis e	de c	no gear- shift	no first gea r	time	speed	stop	acc	cruis e	de c	no gear - shift	no first gear
361	96,1				X	X		421	102,2			X			
362	93,4				X	X		422	102,4			X			
363	90,4				X	X		423	102,6			X			
364	87,8				X	X		424	102,8			X			
365	86,0				X	X		425	103,1			X			
366	85,1				X	X		426	103,4			X			
367	84,7				X	X		427	103,9			X			
368	84,2		X			X		428	104,4			X			
369	85,0		X			X		429	104,9			X			
370	86,5		X			X		430	105,2			X			
371	88,3		X			X		431	105,5			X			
372	89,9		X			X		432	105,7			X			
373	91,0		X			X		433	105,9			X			
374	91,8		X			X		434	106,1			X			
375	92,5		X			X		435	106,3			X			
376	93,1		X			X		436	106,5			X			
377	93,7		X			X		437	106,8			X			
378	94,4		X			X		438	107,1			X			
379	95,0		X			X		439	107,5			X			
380	95,6		X			X		440	108,0			X			
381	96,3		X			X		441	108,3			X			
382	96,9		X			X		442	108,6			X			
383	97,5		X			X		443	108,9			X			
384	98,0			X		X		444	109,1			X			
385	98,3			X		X		445	109,2			X			
386	98,6			X		X		446	109,4			X			
387	98,9			X		X		447	109,5			X			
388	99,1			X		X		448	109,7			X			
389	99,3			X		X		449	109,9			X			

390 99,3 X X 450 110,2 X X 391 99,2 X X 451 110,5 X X 392 99,2 X X X 452 110,8 X X 393 99,3 X X X 453 111,0 X X 398 190,3 X X X 455 111,1 X X 398 190,3 X X X 456 111,1 X X 398 100,3 X X X 456 111,1 X X 399 100,6 X X X 456 111,1 X X 398 100,9 X X X 457 110,4 X X 4457 110,4 X X 4467 108,1 X X 4461 105,5 X X 4461 105,5 X X 4462 104,4 </th <th></th> <th></th> <th>1</th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th> </th>			1			-			
392 99,2 X X 452 110,8 X X 393 99,3 X X 453 111,0 X X 394 99,5 X X 454 111,2 X X 395 99,9 X X 455 111,3 X X 396 100,3 X X 456 111,1 X X 397 100,6 X X 457 110,4 X X 398 100,9 X X 458 109,3 X X 400 101,3 X 459 108,1 X X 400 101,3 X 460 106,8 X X 401 101,4 X 461 105,5 X X 402 101,5 X 462 104,4 X X 403 101,6 X 463 103,8<	390	99,3		X	X	450	110,2	X	
393 99,3 X X 453 111,0 X 394 99,5 X X X 454 111,2 X 395 99,9 X X X 455 111,3 X 396 100,3 X X X 456 111,1 X 397 100,6 X X X 457 110,4 X 398 100,9 X X 458 109,3 X 399 101,1 X 459 108,1 X 400 101,3 X 460 106,8 X 401 101,4 X 461 105,5 X 402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X <	391	99,2		X	X	451	110,5	X	
394 99,5 X X 454 111,2 X 395 99,9 X X 455 111,3 X 396 100,3 X X X 456 111,1 X 397 100,6 X X X 457 110,4 X 398 100,9 X X X 458 109,3 X 399 101,1 X 459 108,1 X 400 101,3 X 460 106,8 X 401 101,4 X 461 105,5 X 402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 407 102,0 X 466 103,5 X	392	99,2		X	X	452	110,8	X	
395 99,9 X X X 455 111,3 X X 396 100,3 X X X 456 111,1 X X 397 100,6 X X X 458 111,1 X X 398 100,9 X X 458 109,3 X X 458 109,3 X X 458 109,3 X X 459 108,1 X X 400 101,3 X 460 106,8 X X 460 106,8 X X 461 105,5 X X 462 104,4 X X 462 104,4 X X 462 104,4 X X 463 103,8 X X 464 103,6 X X 464 103,6 X X 464 103,6 X X 466 103,5 X X 466 103,5 X X 466 <	393	99,3		X	X	453	111,0	X	
396 100,3 X X X 456 111,1 X X 397 100,6 X X X 457 110,4 X X 398 100,9 X X X 458 109,3 X 399 101,1 X 459 108,1 X 400 101,3 X 460 106,8 X 401 101,4 X 461 105,5 X 402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 468 103,3 X 409 102,0 X 468 103,1 X 410 101,9 X 470 102,9 X 411 <t< td=""><td>394</td><td>99,5</td><td></td><td>X</td><td>X</td><td>454</td><td>111,2</td><td>X</td><td></td></t<>	394	99,5		X	X	454	111,2	X	
397 100,6 X X X 457 110,4 X X 398 100,9 X X X 458 109,3 X X 399 101,1 X 459 108,1 X X 400 101,3 X 460 106,8 X X 460 106,8 X X 461 105,5 X X 462 104,4 X X 402 101,5 X 462 104,4 X X 403 101,6 X 463 103,8 X X 404 101,8 X 464 103,6 X X 404 101,8 X 464 103,6 X X 405 101,9 X 465 103,5 X X 406 103,5 X X 406 103,5 X X 407 102,0 X 468 103,3 X X 409 102,0 X 468 103	395	99,9		X	X	455	111,3	X	
398 100,9 X X 458 109,3 X 399 101,1 X 459 108,1 X 400 101,3 X 460 106,8 X 401 101,4 X 461 105,5 X 402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 466 103,5 X 408 102,0 X 468 103,3 X 409 102,0 X 468 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413	396	100,3		X	X	456	111,1	X	
399 101,1 X 459 108,1 X 400 101,3 X 460 106,8 X 401 101,4 X 461 105,5 X 402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 468 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 474 102,4 X 414 1	397	100,6		X	X	457	110,4	X	
400 101,3 X 460 106,8 X 401 101,4 X 461 105,5 X 402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 463 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 474 102,4 X 414 101,8 X 474 102,4 X 415 1	398	100,9		X	X	458	109,3	X	
401 101,4 X 461 105,5 X 402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 466 103,5 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 1	399	101,1		X		459	108,1	X	
402 101,5 X 462 104,4 X 403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 474 102,4 X 414 101,8 X 475 102,5 X 415 101,8 X 476 102,7 X 416 101,8 X 476 102,7 X 417 1	400	101,3		X		460	106,8	X	
403 101,6 X 463 103,8 X 404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 476 102,7 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 1	401	101,4		X		461	105,5	X	
404 101,8 X 464 103,6 X 405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 475 102,5 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,9 X 478 103,7 X	402	101,5		X		462	104,4	X	
405 101,9 X 465 103,5 X 406 102,0 X 466 103,5 X 407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,9 X 478 103,3 X 419 101,9 X 479 103,7 X	403	101,6		X		463	103,8	X	
406 102,0 X 466 103,5 X 407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,9 X 478 103,3 X 419 101,9 X 479 103,7 X	404	101,8		X		464	103,6	X	
407 102,0 X 467 103,4 X 408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,9 X 478 103,7 X	405	101,9		X		465	103,5	X	
408 102,0 X 468 103,3 X 409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,9 X 479 103,7 X	406	102,0		X		466	103,5	X	
409 102,0 X 469 103,1 X 410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	407	102,0		X		467	103,4	X	
410 101,9 X 470 102,9 X 411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	408	102,0		X		468	103,3	X	
411 101,9 X 471 102,6 X 412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	409	102,0		X		469	103,1	X	
412 101,9 X 472 102,5 X 413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	410	101,9		X		470	102,9	X	
413 101,8 X 473 102,4 X 414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	411	101,9		X		471	102,6	X	
414 101,8 X 474 102,4 X 415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	412	101,9		X		472	102,5	X	
415 101,8 X 475 102,5 X 416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	413	101,8		X		473	102,4	X	
416 101,8 X 476 102,7 X 417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	414	101,8		X		474	102,4	X	
417 101,8 X 477 103,0 X 418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	415	101,8		X		475	102,5	X	
418 101,8 X 478 103,3 X 419 101,9 X 479 103,7 X	416	101,8		X		476	102,7	X	
419 101,9 X 479 103,7 X	417	101,8		X		477	103,0	X	
	418	101,8		X		478	103,3	X	
420 102,0 X 480 104,1 X	419	101,9		X		479	103,7	X	
	420	102,0		X		480	104,1	X	

 $\underline{\text{Table A5-30}}$: Cycle part 3, reduced speed, 481 to 600 s

	roller	Indic	cators	,						Indic	cato	rs			
time	speed in	stop	acc	cruis e	de c	no gear - shift	gea	time	roller speed in km/ jam	stop	ac c	cruis e	de c	no gear - shift	no first gear
481	104,5			X				541	101,0			X			
482	104,8			X				542	101,3			X			
483	104,9			X				543	102,0			X			
484	105,1			X				544	102,7			X			
485	105,1			X				545	103,5			X			
486	105,2			X				546	104,2			X			
487	105,2			X				547	104,6			X			
488	105,2			X				548	104,7			X			
489	105,3			X				549	104,8			X			
490	105,3			X				550	104,8			X			
491	105,4			X				551	104,9			X			
492	105,5			X				552	105,1			X			
493	105,5			X				553	105,4			X			
494	105,3			X				554	105,7			X			
495	105,1			X				555	105,9			X			
496	104,7			X				556	106,0			X			
497	104,2			X				557	105,7				X		
498	103,9			X				558	105,4				X		
499	103,6			X				559	103,9				X		
500	103,5			X				560	102,2				X		
501	103,5			X				561	100,5				X		
502	103,4			X				562	99,2				X		
503	103,3			X				563	98,0				X		
504	103,0			X				564	96,4				X		
505	102,7			X				565	94,8				X		
506	102,4			X				566	92,8				X		
507	102,1			X				567	88,9				X		
508	101,9			X				568	84,9				X		
509	101,7			X				569	80,6				X		

510	101,5	X	570	76,3		X	
511	101,3	X	571	72,3		X	
512	101,2	X	572	68,7		X	
513	101,0	X	573	65,5		X	
514	100,9	X	574	63,0		X	
515	100,9	X	575	61,2		X	
516	101,0	X	576	60,5		X	
517	101,2	X	577	60,0		X	
518	101,3	X	578	59,7		X	
519	101,4	X	579	59,4		X	
520	101,4	X	580	59,4		X	
521	101,2	X	581	58,0		X	
522	100,8	X	582	55,0		X	
523	100,4	X	583	51,0		X	
524	99,9	X	584	46,0		X	
525	99,6	X	585	38,8		X	
526	99,5	X	586	31,6		X	
527	99,5	X	587	24,4		X	
528	99,6	X	588	17,2		X	
529	99,7	X	589	10,0		X	
530	99,8	X	590	5,0	X		
531	99,9	X	591	2,0	X		
532	100,0	X	592	0,0	X		
533	100,0	X	593	0,0	X		
534	100,1	X	594	0,0	X		
535	100,2	X	595	0,0	X		
536	100,4	X	596	0,0	X		
537	100,5	X	597	0,0	X		
538	100,6	X	598	0,0	X		
539	100,7	X	599	0,0	X		
540	100,8	X	600	0,0	X		

**

LAMPIRAN III.F

DISKRIPSI CHASSIS DYNAMOMETER DAN INSTRUMENTASI

Chassis dynai	<u>mometer</u>
	Nama dagang (-tanda) dan model:
	Diameter rol:
	Tipe chassis dynamometer jenis: DC / ED
	Kapasitas unit menyerap daya (pau):
	Rentang kecepatankm/jam
	Sistem absorpsi daya: kont <i>roller</i> fungsi / koefisien poligonal
	Resolusi:
	Tipe sistem simulasi inersia: mekanik / listrik
	Massa ekuivalen inersia: kg,
	dalam langkah dari
	Pengukur waktu meluncur: digital / analog / stop-watch
Sensor kecepa	<u>itan</u>
	Nama dagang (-tanda) dan model:
	Prinsip:
	Rentang (<i>range</i>):
	Posisi sensor dipasang:
	Resolusi:
	Keluaran (output):
Pengukur mel	<u>uncur</u>
	Nama dagang (-tanda) dan model:
	Kecepatan v ₁ . v ₂ : - Penvetelan kecepatan:

- Akurası:	•
- Resolusi:	
-Waktu akuisisi kecepatan:	
Vaktu meluncur: - Rentang:	
- Akurasi:	
- Resolusi:	
- Keluaran tampilan	
- Iumlah saluran:	

LAMPIRAN III.G

UJI JALAN UNTUK PENENTUAN PENYETELAN PERLENGKAPAN UJI

1. Persyaratan bagi pengendara

- a. Pengendara harus memakai pakaian yang pas di badan (satu helai) atau pakaian yang semacam itu, dan helm pelindung, pelindung mata, sepatu lars dan sarung tangan.
- b. Pengendara pada kondisi diatas seharusnya mempunyai massa 75 kg ± 5 kg dan tingginya 1.75 m ± 0.05 m.
- c. Pengendara harus duduk ditempat duduk yang disediakan, dengan kedua kakinya diatas dudukan kaki dan kedua lengannya digerakkan secara normal. Posisi ini seharusnya membuat pengendara terus menerus mempunyai controlleryang baik terhadap sepeda motor selama pengujian.

2. Persyaratan untuk jalan dan kondisi lingkungan/ambien.

- a. Jalan untuk uji seharusnya rata, datar, lurus dan diaspal halus. Permukaan jalan harus kering dan bebas dari halangan2 atau penghalang angin yang mungkin mengganggu pengukuran resistensi jalan. Kemiringan permukaan harus tidak lebih dari 0,5 persen diantara dua titik yang manapun dengan jarak paling tidak 2 m.
- b. Selama periode pengumpulan data, angin harus tenang. Kecepatan angin dan arah angin harus diukur secara terus menerus atau dengan frekuensi yang cukup pada lokasi dimana gaya angin selama peluncuran terwakili.
- c. Kondisi lingkungan harus dalam batas-batas sebagai berikut:
 - 1) kecepatan angin maksimum: 3m/detik
 - 2) kecepatan angin maksimum hembusan keras: 5m/detik
 - 3) kecepatan angin rata rata, paralel: 3m/detik
 - 4) kecepatan angin rata rata, tegak lurus: 2m/detik
 - 5) kelembaban relatif maksimum: 95 persen
 - 6) temperature udara: 278 K hingga 308 K
- d. Standar kondisi lingkungan harus sebagai berikut:
 - 1) tekanan, Po: 100 kPa
 - 2) suhu, T₀: 293 K
 - 3) densitas udara relatif, d_0 : 0.9197
 - 4) massa volumetrik udara, ρ_0 : 1.189 kg/m³

- e. Densitas udara relative ketika kendaraan (sepeda motor) di uji, dihitung sesuai dengan formula dibawah, seharusnya tidak berbeda lebih dari 7,5 persen dari densitas udara dibawah kondisi standar.
- f. Densitas udara relatif, d_T, harus dihitung dengan formula berikut:

$$\mathbf{d}_T = \mathbf{d}_0 \times \frac{\mathbf{P}_T}{\rho_0} \times \frac{\mathbf{T}_0}{\mathbf{T}_T}$$

Persamaan A7-1

dimana:

 p_T adalah tekanan ambien menengah selama pengujian, dalam kPa T_T adalah suhu ambien menengah selama pengujian, dalam K

3. Kondisi dari kendaraan uji (sepeda motor)

- a. Kendaraan uji harus sesuai dengan kondisi yang dijelaskan dalam paragraph 6.b.
- b. Pada saat pemasangan alat ukur pada sepeda motor uji, kehatihatian harus dilakukan untuk meminimalisir efek-efeknya dalam distribusi beban antara roda-roda. Ketika memasang sensor kecepatan diluar sepeda motor, ketelitian harus dilakukan untuk meminimalisir kerugian aerodinamik tambahan.

4. Kecepatan meluncur spesifik

a. Waktu meluncur harus diukur antara v_1 and v_2 seperti yang ditentukan dalam table A7-1 yang tergantung pada kelas kendaraan seperti yang ditentukan dalam paragraph 6.c.

<u>Tabel A7-1.</u> Pengukuran waktu meluncur kecepatan awal dan kecepatan akhir.

Kelas sepeda motor	v _j dalam km/jam	v1 dalam km/jam	v₂ dalam km/jam
	50	55	45
1	40	45	35
1	30	35	25
	20	25	15
2	100	110	90

	80 */	90	70
	60 */	70	50
	40 */	45	35
	20 */	25	15
	120	130	110
	100 */	110	90
3	80 */	90	70
3	60 <u>*</u> /	70	50
	40 */	45	35
	20 */	25	15

^{*/}Kecepatan meluncur tertentu dari sepeda motor hsrus dikendarai sesuai versi "kecepatan berkurang"

(Untuk spesifikasi versi kecpatan berkurang lihat paragraf 6.e.d.)

b. Ketika resistensi jalan diverifikasi sesuai dengan paragraf 7.b.2).c).(2) pengujian bisa dilakukan pada $v_j \pm 5$ km/jam, didukung bahwa akurasi waktu meluncur sesuai tabel 6-2. dalam aturan ini tepat.

5. <u>Pengukuran waktu luncur.</u>

- a. Setelah periode pemanasan, sepeda motor harus di aselerasi hingga kecepatan awal meluncur, yang mana prosedur pengukuran meluncur harus dimulai.
- b. Jika hal ini menjadi berbahaya dan sulit dari sudut pandang konstruksinya sehingga transmisi harus dipindah ke posisi netral, peluncuran mungkin dilakukan dengan posisi kopling dilepas. Untuk sepeda motor yang tidak punya cara mematikan daya transmisi mesin sebelum peluncuran, sepeda motor dapat di derek sampai mencapai kecepatan awal peluncuran. Ketika uji peluncuran dilakukan diatas dinamometer, transmisi dan kopling harus sama kondisinya seperti selama uji jalan.
- c. Kemudi sepeda motor harus bersiap untuk perubahan sekecil mungkin dan rem harus tidak dioperasikan sampai periode pengukuran peluncuran.

- d. Waktu peluncuran pertama ΔT_{ai} yang sesuai dengan kecepatan tertentu v_j harus diukur sebagai waktu yang hilang dari kecepatan sepeda motor $v_i + \Delta v$ ke $v_i \Delta v$.
- e. Prosedur diatas harus diulangi dalam arah yang sebaliknya untuk mengukur waktu peluncuran kedua ΔT_{bi} .
- f. ΔT_i rata-rata dari dua waktu peluncuran ΔT_{ai} dan ΔT_{bi} harus dihitung dengan persamaan berikut:

$$\Delta T_i = \frac{\Delta T_{a i} + \Delta T_{b i}}{2}$$

Persamaan A7-2

g. Paling tidak empat pengujian harus dilakukan dan waktu luncur rata rata ΔT_i dihitung dengan persamaan berikut:

$$\Delta T_j = \frac{1}{n} \times \sum_{i=1}^{n} \Delta T_i$$

Persamaan A7-3

h. Pengujian harus dilakukan sampai akurasi statistik P sama dengan atau kurang dari 3 persen ($P \le 3$ persen).

Akurasi statistik P sebagai persentase, dihitung dengan persamaan berikut:

$$P = \frac{t \times s}{\sqrt{n}} \times \frac{100}{\Delta T_i}$$

Persamaan A7-4

dimana:

t adalah koefisien diberikan pada tabel A7-2;

s adalah standar deviasi yang diberikan dengan rumus berikut

$$s = \sqrt{\sum_{i=1}^{n} \frac{(\Delta T_i - \Delta T_j)^2}{n-1}}$$

Persamaan A7-5

dimana:

n adalah jumlah pengujian

Tabel A7-2: Koefisien akurasi statistik

n	t	$\frac{t}{\sqrt{n}}$
4	3.2	1.60
5	2.8	1.25
6	2.6	1.06
7	2.5	0.94
8	2.4	0.85
9	2.3	0.77
10	2.3	0.73
11	2.2	0.66
12	2.2	0.64
13	2.2	0.61
14	2.2	0.59
15	2.2	0.57

- i. Dalam mengulang pengujian, harus diperhatikan untuk memulai peluncuran setelah mengamati prosedur pemanasan yang sama dan pada kecepatan awal peluncuran sama.
- j. Pengukuran waktu luncur untuk penggandaan kecepatan tertentu mungkin dibuat dengan sebuah peluncuran yang terus menerus. Dalam kasus ini, peluncuran harus diulang setelah memperhatikan prosedur pemanasan yang sama dan pada kecepatan awal peluncuran sama.
- k. Waktu luncur harus dicatat. Contoh dari formulir pencatatan ada di Lampiran 8

6. Pemrosesan data

- a. Perhitungan gaya resistensi jalan
 - 1) Gaya resistensi jalan F_j , dalam Newton, pada kecepatan tertentu v_j harus dihitung dengan persamaan berikut:

$$F_{j} = \frac{1}{3.6} \times (m + m_{r}) \times \frac{2\Delta v}{\Delta T_{j}}$$

Persamaan A7-6

dimana:

 $m_{\rm r}$ harus diukur atau dihitung yang sesuai. Sebagai alternative, $m_{\rm r}$ barangkali diperkirakan sekitar 7 persen dari massa sepeda motor tanpa muatan.

- 2) Gaya resistensi jalan F_j harus dikoreksi sesuai dengan paragraph 6.b dibawah.
- b. Pembuatan kurva resistensi jalan

Gaya resistensi jalan, F, harus dihitung sebagai berikut:

1) Persamaan berikut harus sesuai dengan data F_j dan v_j yang diperoleh diatas dengan regresi linier untuk menentukan koefisien f_0 dan f_2 ,

$$\mathbf{F} = \mathbf{f}_0 + \mathbf{f}_2 \times \mathbf{v}^2$$

Persamaan A7-7

2) Koefisien f₀ dan f₂ yang ditentukan harus dikoreksi ke kondisi ambien standar dengan persamaan berikut:

$$f^*_0 = f_0[1 + K_0(T_r - T_0)]$$

Persamaan A7-8

$$\mathbf{f}^*_2 = \mathbf{f}_2 \times \frac{\mathbf{T}_T}{\mathbf{T}_0} \times \frac{\mathbf{p}_0}{\mathbf{p}_T}$$

Persamaan A7-9

dimana:

 K_0 harus ditentukan berdasarkan pada data empiris untuk sepeda motor khusus dan pengujian ban, atau seharusnya diasumsikan sebagai berikut, jika informasi tidak tersedia: $K_0 = 6 \times 10^{-3} \ K^{-1}$

c. Gaya resistensi jalan target F^* untuk penyetelan *chassis* dynamometer

Gaya resistensi jalan target F^* (v0) diatas *chassis dynamometer* pada kecepatan sepeda motor referensi v_0 , dalam Newton, ditentukan dengan persamaan berikut:

$$F^*(v_0) = f^*_0 + f^*_2 \times v_0^2$$

Persamaan A7-10

LAMPIRAN III.H FORMULIR REKAMAN WAKTU MELUNCUR

Merek:	Nomer produksi (B	odi):
Tanggal: //.	Tempat uji:	Nama rekaman:
Cuaca:	Tekanan atmosfir: kPa	Suhu atmosfir:
Kecepatan angin (pa	aralel/tegak lurus):/	m/detik
Tinggi pengemudi: .	m	

Kecepat an sepeda motor km/jam	Waktu meluncur detik			ır	Akurasi statistik Persen	Waktu meluncur rata-rata detik	Resistensi jalan N	Resistensi jalan target N	Cat.
	Pertama								
	Kedua								
	Pertama								
	Kedua								
	Pertama								
	Kedua								
	Pertama								
	Kedua								
	Pertama								
	Kedua								
	Pertama								
	Kedua								
	Pertama								
	Kedua								
	Pertama								
	Kedua								
	Pertama								
	Kedua								

Penyesuain kurva $F^* = ... + ... v^2$

LAMPIRAN III.I REKAMAN PENYETELAN CHASSIS DYNAMOMETER (METODE MELUNCUR)

Merek:	Nomer produksi (B	odi):
Tanggal: //.	Tempat uji:	Nama rekaman:

Kecepatan sepeda	,		melui Detik	ncur	Resistensi N	i jalan	Penentuan error	Cat.
motor km/jam	Uji 1	Uji 2	Uji 3	Rata- rata	Nilai ditentukan	Nilai target	persen	Cat.

Penyesuain kurva $F^* = ... + ... v^2$

LAMPIRAN III.J

REKAMAN PENYETE	CLAN CHASSIS DYNAMOME	ETER (METODE TABEL)
Merek:	Nomer produksi (B	odi):
Tanggal: //.	Tempat uji:	Nama rekaman:

Kecepatan sepeda	Wakt Detik	tu mel	uncur		Resistensi ja N	alan	Penentuan error	Cat.
motor km/jam	Uji 1	Uji 2	Uji 3	Rata- rata	Nilai ditentukan	Nilai target	persen	Cat.

Penyesuain kurva $F^* = ... + ... v^2$

LAMPIRAN III.K

REKAMAN HASIL PENGUJIAN TIPE I

Merek:	Nomer produksi (B	odi):
Tanggal: //.	Tempat uji:	Nama rekaman:
Cuaca:	Tekanan atmosfir: . kPa	Suhu atmosfir:

Kelas sepeda Kecepatan turun		Bagian	Kondisi	Bagian	Bagian tempuh		Kons. Bahan bakar			
motor	Ya/Tidak	siklus	awal	uji	km	нс	СО	NOx	CO ₂	liter
				1						
1.0				2						
1,2 atau 3		1	Dingin	3						
				Rata- rata						
				1						
		1	Panas	2						
1				3						
				Rata- rata						
				1						
2 atau				2						
2 atau 3		2	Panas	3						
				Rata- rata						
				1						
				2						
1		3	Panas	3						
				Rata- rata						

Kelas seped a motor Kecepata n turun Ya/Tidak	Bagia K	Kondis	Pembobota	E	misi g	Kons. Bahan bakar			
	n siklus	i awal	n persen	H C	C O	NO x	CO ₂	liter/k m	
		1	Dingin	50					
1		1	Panas	50					
	-	-	-	Hasil akhir					
		1	Dingin	30					
2		2	Panas	70					
	-	-	-	Hasil akhir					
		1	Dingin	25					
3		2	Panas	50					
3		3	Panas	25					
<u> </u>	-	-	-	Hasil akhir					

LAMPIRAN III.L REKAMAN HASIL PENGUJIAN TIPE II

Merek:	Nomer produksi (B	odi):
Tanggal: //.	Tempat uji:	Nama rekaman:
Cuaca:	Tekanan atmosfir: kPa	Suhu atmosfir: K

Kecepatar menit ⁻¹	1	langsam,	Suhu oli	Kandunga n CO	Kandungan CO ₂ persen vol.	Kandunga n CO terkoreksi persen vol.
Minimu m	Rat a- rata	Maksim um	mesin	persen vol.		

Kecepatar menit ⁻¹	n langs	sam tinggi,	Suhu oli mesi n °C	Kandunga n CO ₂ persen vol.	Kandunga n CO terkoreksi persen vol.
Minimu m	Rata -rata	Maksimu m			

LAMPIRAN III.M

CATATAN PENJELASAN PROSEDUR PERPINDAHAN PERSNELING

Catatan penjelasan ini bukan bagian dari standar, tetapi menjelaskan halhal yang spesifik atau yang diterangkan dalam standar atau appendik, dan hal-hal yang berkaitan.

1. Pendekatan

- a. Pengembangan prosedur perpindahan persneling didasarkan pada analisa pada titik-titik perpindahan persneling dalam data terpakai. Dalam penyesuaian mendapatkan hubungan yang umum antara spesifikasi teknis dari kendaraan dan kecepatan perpindahan persnelingi, kecepatan mesin dinormalisasikan untuk mampu mennyesuaikan antara kecepatan rata-rata dan kecepatan langsam.
- b. Langkah kedua, kecepatan akhir (kecepatan kendaraan maupun kecepatan mesin yang dinormalkan) untuk perpindahan ke posisi tinggi ataupun rendah ditentukan dan dikumpulkan dalam sebuah tabel terpisah. Rata-rata dari kecepatan ini untuk setiap persneling dan kendaraan di kalkulasi dan dihubungkan dengan spesifikasi teknis dari kendaraan tersebut.
- c.Hasil dari analisa dan perhitungan ini bisa disimpulkan sebagai berikut:
 - 1) Perilaku perpindahan persneling lebih pada hubungan kecepatan mesin dari pada hubungan kecepatan kendaraan.
 - 2) Hubungan terbaik antara kecepatan perpindahan persneling dan data teknis ditemukan untuk menormalkan kecepatan mesin dan daya pada rasio massa (nilai daya/ massa tak bermuatan + 75kg).
 - 3) Variasi residu tidak dapat dijelaskan oleh data teknis yang lain atau oleh rasio transmisi berbeda. Hal ini paling mungkin ditujukan untuk membedakan perilaku pengemudi pada kondisi traffic dan individunya.
 - 4) Perkiraan terbaik antara kecepatan perpindahan persneling dan daya pada rasio massa diperoleh untuk fungsi exponential.
 - 5) Fungsi perpindahan persneling untuk persneling pertama secara signifikan lebih rendah dibanding untuk semua persneling yang lain.
 - 6) Kecepatan perpindahan persneling untuk semua persneling lainnya dapat diperkirakan dengan satu fungsi umum.

- 7) Tidak ada perbedaan didapatkan antara persneling kecepatan lima dan kecepatan enam.
- 8) Perilaku memindahkan persneling di Jepang secara signifikan berbeda dari perilaku memindahkan persneling yang sama di Uni Eropa dan di Amerika.
- d. Dalam menentukan kompromi keseimbangan antara tiga wilayah, sebuah fungsi perdekatan baru untuk menormalkan kecepatan persneling tinggi melawan daya pada rasio massa dikalkulasi sebagai bobot rata-rata dari kurva EU/USA (dengan 2/3 bobot) dan kurva Jepang (dengan 1/3 bobot), menghasilkan persamaan berikut untuk menormalkan kenaikan mesin:

Persamaan A13-1, menormalkan kenaikan mesin pada gigi 1st

$$n_{max_{acc}(1)} = (0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})} - 0.1) \times (s - n_{idle}) + n_{idle}$$

Persamaan A13-2, menormalkan kenaikan mesin pada gigi > 1

$$n_{max}(i) = (0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})}) \times (s - n_{idle}) + n_{idle}$$

e.Data perilaku berkendara dari India sudah ditambahkan ke WMTC database pada tahap berikutnya. Hasil modifikasisiklus part 1 dan part 2, mengurangi siklus kecepatan. Dalam melakukan modifikasi, perilaku perpindahan gigi juga di periksa. Untungnya, perpindahan gigi dalam WMTC juga sesuai dengan prilaku perpindahan gigi orang India.

2. Contoh

Gambar A13-1 ditunjukkan pada contoh dari perpindahan gigi untuk kendaraan kecil:

- a. Garis tebal menunjukkan gigi yang digunakan pada fase akselerasi.
- b. Garis titik-titik menunjukkan penurunan gigi pada fase penurunan
- c. Fase meluncur, keseluruhan kecepatan pada rentang penurunan kecepatan dan kenaikan kecepatan dapat digunakan.

Dalam kasus kenaikan kecepatan secara bertahap pada fase meluncur, kenaikan kecepatan $(v_{1\rightarrow 2},\ v_{2\rightarrow 3}\ and\ v_{i\rightarrow i+1})$ dalam Km/jam dapat dihitung dengan persamaan berikut :

Persamaan A13-3:

$$v_{1\rightarrow 2} = \left[0.03 \times (s - n_{idle}) + n_{idle}\right] \times \frac{1}{ndv_2}$$

Persamaan A13-4:

$$v_{2\to 3} = \left[(0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})} - 0.1) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_1}$$

Persamaan A13-5:

$$v_{i \to i+1} = \left[(0.5753 \times e^{(-1.9 \times \frac{P_n}{m_k + 75})}) \times (s - n_{idle}) + n_{idle} \right] \times \frac{1}{ndv_{i-1}}, i = 3 \text{ to ng}$$

Figure A13-1: Contoh sketsa perpindahan gigi

Untuk memungkinkan fleksibilitas pengujian dan untuk memastikan driveability fungsi perpindahan gigi dianggap sebagai batas bawah. Kecepatan mesin tinggi dijinkan pada setiap fase sklus.

Untuk fase aselerasi transmisi manual harus dipindahkan dari persneling pertama ke kedua ketika kecepatan mesin mencapai sebuah nilai sesuai rumus berikut:

3. Fase Indikator

Untuk menghindari interpretasi yang berbeda dalam penerapan persamaan perpindahan gigi an untuk meningkatkan perbandingan dari pengujian, indicator fase tetap digunakan sebagai pola kecepatan dari siklus. Spesifikasi dari fase indicator didasarkan pada difinisi JARI pada 4 mode jalan yang ditunjukkan pada table dibawah:

Table A13-1: Divinisi dari mode jalan

4 modes	Definition
Idle mode	vehicle speed < 5 km/jam and
	-0,5 km/jam/s (-0,139 m/s²) < acceleration < 0,5 km/jam/s (0,139 m/s²)
Acceleration mode	acceleration 3 0,5 km/jam/s (0,139 m/s²)

Deceleration mode	acceleration £ - 0,5 km/jam/s (- 0,139 m/s²)
Cruise mode	vehicle speed ³ 5 km/jam and
	-0,5 km/jam/s (-0,139 m/s²) < acceleration < 0,5 km/jam/s (0,139 m/s²)

Indikator kemudian dimodifikasi untuk menghindari perubahan yang terus menerus selama bagian siklus yang relative homogeny dan dengan demikian dapat meningkatkan driveability. Gambar A13-2 menunjukkan contoh dari siklus bagian 1.

Gambar A13-2: Contoh modifikasi fase indicator

4. Contoh Perhitungan

- a. Sebuah contoh dari data input yang diperlukan untuk perhitungan perubahan kecepatan ditunjukkan dalam tabel A13-1. Kecepatan meningkat pada fase aselerasi untuk persneling pertama dan persneling lebih tinggi dihitung menggunakan persamaan 6-1 dan persamaan 6-2. Denormalisasi kecepatan mesin bisa dilakukan dengan menggunakan persamaan n=n_norm * (s n_{idle}) = n _{idle}.
- b. Penurunan kecepatan pada fase deselerasi dapat dihitung dengan persamaan A13-4. Nilai-nilai ndv dalam table A13-1 bisa digunakan sebagai rasio persneling. Nilai-nilai ini juga bisa digunakan untuk

- menghitung kecepatan kendaraan yang digabungkan (kecepatan perpindahan kendaraan pada persneling i= kecepatan perpindahan mesin pada persneling i/ndv $_i$). Hasil-hasil yang sesuai ditunjukkan dalam tabel A13-2 dan tabel A13-3.
- c. Pada langkah selanjutnya, kemungkinan penyederhanaan dari algoritma perpindahan persneling yang dijelaskan diatas diuji dengan analisis dan perhitungan tambahan. Ini harus secara khusus di cek apakah kecepatan perpindahan mesin bisa digantikan dengan kecepatan perpindahan kendaraan. Analisisnya menunjukkan bahwa kecepatan kendaraan tidak bisa dibawa sejalan dengan prilaku pemindahan persneling dalam data yang digunakan.

<u>Tabel A13-2</u>: Data input untuk perhitungan kecepatan perpindahan mesin dan kendaraan.

Item	Data Input		
Kapasitas mesin dalam cm ³	600		
P _n dalam kW	72		
m _k dalam kg	199		
s dalam menit-1	11.800		
n _{idle} dalam menit ⁻¹	1.150		
ndv ₁ */	133,66		
ndv ₂	94,91		
ndv ₃	76,16		
ndv ₄	65,69		
ndv ₅	58,85		
ndv ₆	54,04		
pmr <u>**</u> / dalam kW/t	262,8		
*/ ndv berarti rasio antara kecepatan mesin dalam menit-1 dan kecepatan kendaraan dalam km/jam			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

<u>Tabel A13-3</u>: Kecepatan perpindahan untuk fase aselerasi pada persneling pertama dan persneling yang lebih tinggi. (sesuai pada tabel A13-2)

Kasanatan Masin	Perilaku berkendaraan UE/USA/Jepang			
Kecepatan Mesin	n_acc_maks(1)	n_acc_maks(1)		
n_norm */ dalam persen	24,8 persen	34,8 persen		
n dalam menit-1	3.804 4.869			
*/ n_norm berarti nilai yang dihitung dengan persamaan A13-1 dan A13-2				

BALTHASAR KAMBUAYA

MENTERI NEGARA LINGKUNGAN HIDUP REPUBLIK INDONESIA,

LAMPIRAN IV
PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP
REPUBLIK INDONESIA
NOMOR 10 TAHUN 2012
TENTANG
PENGELOLAAN BAKU MUTU EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU
KATEGORI L3

FORMULIR LAPORAN PENGUJIAN EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU

1. DATA UMUM
<u>a. Data Umum Mesin/Kendaraan Uji</u>
(diisi oleh penanggung jawab usaha/kegiatan)
1) Data penanggung jawab dan data umum kendaraan:
(General information of vehicle)
2) Nama penanggung jawab usaha/kegiatan dan alamat:
(Manufacturer's name and address)
3) Nama dagang/merk kendaraan:
(Trade name or type of vehicle)
4) Jenis, berat dan kategori kendaraan:
(Type, Reference weight and category of vehicle)
5) Kapasitas berat maksimum kendaraan:
(Maximum capacity weight of vehicle)
6) Jenis pembakaran:
(Type of combustion)
7) No registrasi
(number register/frame number)
a. No. rangka :
b. No. mesin :
8) Tampilan fisik/tampak depan dan samping:
(picture/ front view and side view)
<u>b. Data Laboratorium Penguji</u>

(diisi oleh laboratorium penguji)

1)	Nama lab. penguji/alamat /no. telepon/email:
	(Name of lab./address/phone/email address)
2)	$Kepemilikan \ lab: \ swasta, \ pemerintah, \ luar \ negeri/dalam \ negeri \dots \dots \dots$
	(Lab owner; private / government/ foreign/ Indonesian)
3)	Nama pemilik/pimpinan:
	(Head of Lab)
4)	Salinan akreditasi dari badan yang berwenang (sertifikat terlampir)
	(Copy of certificate accreditation from legal institution (attached)
5)	Tanggal, bulan dan tahun mendapatkan akreditasi dan masa berlakunya
	(Date, month and year of certificate accreditation)
c. l	Data Hasil Pengujian
(dii	isi oleh penanggung jawab usaha/kegiatan)
(Te	est Result Data)
Ha	sil pengujian harus memuat data-data sebagai berikut:
(Ty	pe approval result Test must include data as follows)
1)	Jam, tanggal pengujian dan lamanya pengujian:
	(Hour, date Test and duration of Test)
2)	Kondisi temperatur, kelembaban dan tekanan atmosfer:
	(Condition of temperature, pressure and humidity)
3)	Pembacaan odometer pada saat dilakukan pengujian:
	(Odometer reading (Km))
4)	Angka-angka parameter hasil uji dengan melampirkan data sebagai berikut:
	a. protokol hasil Pengujian sesuai Annex 2 (diisi oleh penanggung jawab usaha/kegiatan)
	(protocol result test according annex 2)
	b. lampiran Test cycle
	(copy of Test cycle enclosed)
CO	
HC	C + NOx : (g/Test)/(g/km)
	rticulate : (g/km)/(g/kWh)

Metoda Uji	Jenis Bahan Bakar	НС	СО	HC+NOx	Partikel
R-40	Bensin				
R-47	Bensin				
R-83-04	Bensin/Gas				
	Solar				
R-49	Bensin/Gas				
	Solar				

5)	Spesifika	si bahan bakar	yang d	ligunak	an (ter	lampir)	
	(Copy fue	el specification to	o be us	ed as fu	ıel)		
<i>6)</i>	Konsums	si bahan bakar	•	. l/100	km (Ca	arbon baland	ce)
	(Fuel con	sumption):	g/k	ĸWh			
2	. DATA K	ENDARAAN BE	RMOTO	OR			
	PENGUJI	SIAN UNTUK KI AN UN <i>REGULA</i> MTC (<i>Worldwid</i>	TION 4 e Harm	0 & EU	DIREC Motorc	CTIVE 2002/	51/EC DAN
			A	NNEX :	l		
	KARAK	TERISTIK UTAN	IA MES	SIN DAI	N INFO	RMASI MEN	YANGKUT
		PELA	KSANA	AN PE	NGUJIA	N(1)	
	(ESSENT	IAL CHARACTE	RISTIC	S OF TH	IE ENG	INE AND INI	FORMATION
		CONCERN	ING TH	IE CON	DUCT (OF TESTS)	
a.	DESKRI	PSI MESIN					
	(Descrip	tion of Engine)					
1)	Pembu	at/Pabrik		• • • • • • • • • • • • • • • • • • • •	•••••		
	(Make)						
2)	Tipe		•••••	•••••	•••••	•••••	
	(Type)						

3)	Siklus: empat-langkah/dua-langkah (2)
	(Cycle: four-stroke/two-stroke)
4)	Jumlah dan konfigurasi dari silinder
	(Number and arrangement of cylinders)
5)	Diameter silindermm
	(Bore)
6)	Panjang langkah:mm
	(Stroke)
	W. danna and an
	Keterangan: (1) Khusus untuk mesin dan system bukan konvensional, informasi yang sama
	seperti yang disebutkan harus diberikan.
	(In the case of unconventional engine dan systems, particulars equipvalent to those mentioned here shall be supplied)
	(2) Coret yang tidak berlaku (Strike out what does not apply)
7)	Kapasitas Mesin:cm3
	(Cylinder capacity)
8)	Perbandingan Kompresi (3) (4)
	(Compression ratio)
9)	Gambar ruang bakar dan torak, termasuk cincin torak
	(Drawing of the combustion chamber and the piston, including the piston rings)
10)	Sistem pendinginan
	(System of cooling)
11)	Supercharged: dengan/tidak dengan (1) deskripsi dari sistem:
	(Supercharged with/without (1) description of the system)
12)	Peralatan untuk daur ulang gas-gas di crank-case (deskripsi dan diagram): (Device for recycling crank-case gases (description and diagrams)
13)	Saringan udara: gambar atau pembuat/pabrik dan tipe:
	(Air filter: drawings, or makes and types)
14)	Sistem pelumasan: (dua-langkah, terpisah atau pencampuran)
	(System of lubrication (two-stroke engines-separate or by mixture))

b.	PERALATAN TAMBAHAN UNTUK PENGENDALI POLUSI
	(jika ada, dan tidak tercantum di paragraf lain)
	(Additional Anti-pollution Devices (if any, and if not covered by another
	heading))
	Deskripsi dan
	diagram
	(Description and diagrams)
c.	SALURAN UDARA MASUK DAN PENGUMPANAN BAHAN BAKAR
	(AIR INTAKE AND FUEL FEED)
1)	Deskripsi dan diagram dari saluran udara dan perlengkapanny (dashpot, peralatan pemanas, saluran udara tambahan, dsh
	(Description and diagrams of air intakes and their accessories (dashpot, heating device, additional air intakes, etc))
	Keterangan:
	(1) Coret yang tidak berlaku (Strike out what does not apply)
	(3) Perbandingan kompresi = <u>Volume ruang bakar + kapasitas silinder</u>
	Volume ruang bakar
	Compression ratio = Volume combustion chamber + cylinder capacity
	Volume combustion chamber
2)	Pengumpanan bahan bakar
	(Fuel feed)
	a) Dengan karburator(1) Jumlah
	(by carburettor (s)) (number)
	(1) Pembuat/pabrik
	(Make)
	(2) Tipe
	(Type)
	(3) Penyetelan (2)
	(Settings)

	(a) Ukuran <i>Jets</i>))
	(b) Ukuran <i>Venturi</i>)		
	(c)Level pelampung)		(Kurva pasokan bahan bakar terhadap aliran udara
	(jika ada)(1)(2)		
	(d) Berat pelampung) against (Weight of float))(flow (1)(2)	or	((curve of fuel delivery plotted air ((Float-chamber level
	(e)jarum pelampung)		(
	(Float needle)		(
(4)	Manual/otomatis choke (1)	Pe	nyetelan akhir(2)
	(Manual/automatic choke)		(Closure setting)
(5)	Pompa pengumpanan		
	(Feed pump)		
	Tekanan (2)atau di	agram	karakteristik (jika ada) (2)
I) D		naract	eristic diagram)
	engan injektor (1)		
	by injector)		
(1)	Pompa		
	(Pump)		
	(a) Pembuat/pabrik	• • • • • • • •	
	(Make)		
	(b) Tipe	•••••	
	(Type)		
Keterang	an:		
(1) Coret	yang tidak berlaku (Strke out what d	oes not	apply)
(2) Tolera	ansi spesifik (Specify the tolerance)		
	(c) Pasokanmm3 per langka r.p.m(1) (2)	ah pad	la putaran pompa
	atau diagram karakteristik(1) (2)	

	(Deliverymm3 per stroke at pump speed ofr.p.m1) (2),or characteristic diagram)
	(2) Injektor
	(Injector(s))
	(a) Pembuat/pabrik
	(Make)
	(b) Tipe
	(Type)
	(c) Kalibrasi barsbars
	(1)(2) Atau diagram karakteristik (1)(2)
	(Calibration) (or characteristic diagram)
d.	WAKTU BUKAAN KATUP
	(VALVE TIMING)
(1)	Waktu bukaan katup mekanis
	(Timing for mechanically operated valves)
a)	Tinggi angkat maksimum, sudut buka dan sudut tutup dalam hubungannya dengan titik mati
	(Maximum lift of valves and angles of opening and closing in relation to dead centres)
b)	Referensi dan/atau celah penyetelan(1)
	(Reference and/or setting clearance)
(2)	Distribusi oleh saluran
	(Distribution by ports)
a)	Volume kavitasi dari <i>crank-case</i> saat torak di TMA
	(Volume of crank-case cavity with piston at tdc)
b)	Deskripsi dari Katup buluh, jika ada (dengan gambar dan ukuran)
	(Description of reed valves, if any (with dimensional drawing)
c)	Deskripsi (dengan gambar dan ukuran) dari <i>inlet ports</i> , <i>scavenging</i> dan saluran gas buang dalam hubungan dengan diagram <i>timing</i>
	Description (with dimensional drawing) of inlet ports, scavenging and
	exhaust, with corresponding timing diagram)

Keterangan:

- (1) Coret yang tidak berlaku (Strike out what does not apply)
- (2) Toleransi spesifik (Specify the tolerance)
 - d) Volume kavitasi dari *crank-case* saat torak di TMA (*Volume of crank-case cavity with piston at tdc*)
 - e) Deskripsi dari Katup buluh, jika ada (dengan gambar dan ukuran) (Description of reed valves, if any (with dimensional drawing)
 - f) Deskripsi (dengan gambar dan ukuran) dari inlet ports, scavenging dan saluran gas buang dalam hubungan dengan diagram timing Description (with dimensional drawing) of inlet ports, scavenging and exhaust, with corresponding timing diagram)

e.	P	ENGAPIAN
	(1	GNITION)
(1)	Di	istributor (s)
;	a)	Pembuat/pabrik
		(Make)
1	b)	Tipe
		(Type)
(c)	Kurva pemajuan pengapian (2)
		(Ignition advance curve)
(d)	Waktu pengapian (2)
		(Ignition timing)
(e)	Celah titik kontak(2)
		(Contact-point gap)
f.	S	ISTEM SALURAN GAS BUANG
	(1	EXHAUST SYSTEM)
De	sk	ripsi dan diagram
(D	es	cription and diagrams)

Keterangan:

g. INFORMASI TAMBAHAN PADA KONDISI UJI (ADDITIONAL INFORMATION ON TEST CONDITION)

1) Pelumas yang digunakan
(Lubricant used)
a) Pembuat/pabrik
(Make)
b) Tipe
(Type)
Sebutkan persentase dari pelumas bila pelumas dan bahan bakar dicampur
(State percentage of oil in mixture if lubricant and fuel mixed)
2) Busi
(Sparking plugs)
a) Pembuat
(Make)
b) Tipe
(Type)
c) Jarak celah busi
(Spark-gap setting)
3) Koil pengapian
(Ignition coil)
a) Pembuat
(Make)
b) Tipe
(Type)
4) Kondensor pengapian
(Ignition condenser)
a) Pembuat
(Make)
b) Tipe
(Type)
5) Sistem <i>idling</i> . (Deskripsi dari penyetelan keperluan yang relevan berdasarkan dengan paragrap 5.2.1.2.1.ECE R 40)

(Idling system. Description of setting and relevant requirements in accordance with Paragraph 5.2.1.2.1. ECE R 40) 6) Kandungan volume Carbon Monoksida didalam gas buang, pada saat mesin *idling* per cent (standar pembuat) (Carbon monoxide content in the exhaust gas, with the engine idling per cent) (manufacturer standard). h. UNJUK KERJA MESIN (Engine Performance) 1) Putaran idling r.p.m.(1)(Idling speed) 2) Putaran mesin pada daya maksimum r.p.m. (1) (Engine speed at maximum power) 3) Daya maksimum kW **ECE** (Maximum power) **Keterangan:** (1) Toleransi spesifik (Specify the tolerance) **ANNEX 2** FORM ISIAN TAMBAHAN 1. Nama dagang atau merk..... (Trade name or mark) 2. Tipe sepeda motor (Type of motorcycle) 3. Nama pabrikan dan alamat (Manufacturer's name and address) 4. Jika ada, nama dan alamat dari perwakilan pabrikan.

(If applicable, name and address of manufacturer's representative)

5. Massa kosong kendaraan	
(Unladen weight of vehicle)	
a) Massa referensi kendaraa	n
(Reference weight of vehic	le)
6. Berat maksimum kendaraan	
(Maximum weight of vehicle).	
7. Transmisi	
(Gear-box)	
a) Manual/otomatis (1)	
(Manual or automatic)	
b) Jumlah perbandingan rod	la gigi
(Number of gear ratios)	
c) Perbandingan roda gigi (2))
(Gear ratio)	
Gigi pertama (First g	gear)
Gigi kedua (Second ¿	gear)
Gigi ketiga (Third ge	ar)
Perbandingan gigi a	khir (Final drive ratio)

Keterangan:

- (1) Coret yang tidak berlaku (Strke out what does not apply)
- (2) Khusus kendaraan dengan perpindahan transmisi otomotis, berikan seluruh datadata teknis

yang diperlukan(In the case of power-driven vehicles equipped with automatic-shift gearboxes, give all pertinent technical data)

Ban (<i>Tyres</i>) :	Dimensi
(dimension)	
Lingkar gelindin	g dinamik (Dynamic rolling circumference)

d) Cek performa mengacu pada Annex 4, paragraph 3.1.5 dari UN Reg

(check of performances refered to in Annex 4, paragraph 3.1.5, from UN Reg 40)

8.	No. Referensi bahan bakar
	(Reference fuel No.)
9.	Kendaraan dikirim untuk approval pada
	(Vehicle submitted for approval on)
10.	Bidang teknis yang melakukan uji persetujuan
	(Technical service responsible for conducting approval Tests)
11.	Tanggal laporan diberikan oleh bidang teknis
	(Date of report issued by that service)
12.	Nomor dari laporan yang diberikan oleh bidang teknis
	(Number of report issued by that service)
13.	Persetujuan penerimaan/penolakan(1)
	(Approval granted/refused)
14.	Tempat tanda persetujuan pada kendaraan
	(Position of approval mark on the vehicle)
15 .	Tempat
	(Place)
16 .	Tanggal
	(Date)
Ke	terangan:
(1)	Coret yang tidak berlaku (Strke out what does not apply)
17.	Tanda tangan
	(Signature)
18.	Dokumen-dokumen berikut, yang memuat nomor persetujuan seperti yang ditunjukkan diatas, ditambahkan ke dalam lembar komunikasi ini : 1 copy Annex 1, telah diisi lengkap dengan gambar dan diagram yang berkaitan:
1 1	foto dari mesin dan ruangannya;
	copy dari hasil uji;
	- · · · · · · · · · · · · · · · · · · ·

(The following documents, bearing the approval number shown above, are annexed to this communication :)

1 copy of Annex 1, duly completed and accompanied by the drawings and diagrams referred to;

1 photograph of the engine and its compartment;

1 copy of the test report

MENTERI NEGARA LINGKUNGAN HIDUP REPUBLIK INDONESIA,

BALTHASAR KAMBUAYA

LAMPIRAN V
PERATURAN MENTERI NEGARA LINGKUNGAN HIDUP
REPUBLIK INDONESIA
NOMOR 10 TAHUN 2012
TENTANG
PENGELOLAAN BAKU MUTU EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU
KATEGORI L3

HASIL UJI EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU

DITERBITKAN UNTUK:	•••••
(Issued for)	
IDENTITAS KENDARAAN YANG DIUJI	
(Test Vehicle Identification)	
1. Nama Pabrik :	
(Manufacturer)	
2. Model/Tipe :	
(Model/Type)	
3. Nomor Rangka:	
(Frame Number)	
4. Nomor Mesin :	
(Engine Number)	
5. Tanggal Pengujian :	
(Testing Date)	
6. Laporan ini terdiri atas :	halaman
(This report includes)	(pages)
Diterbitkan,	
Date of	

HASIL UJI EMISI GAS BUANG KENDARAAN BERMOTOR TIPE BARU (Emission Test Report)

Metode uji:

(test method)

Test No	:	Manufacturer	:
Test date	;	Model	;
Start	:	Engine No	:
End	:	Chasis No	:
		Transmission	:
		Odometer	:

Vehicle Condition at Start Dynamometer Settings Test Fuel Inertia (kg) Oli Temperature (deg C) (kw) **Power** 80 : (at km/h) **Water Temperature (deg C) Test Condition (average)** Sat. Vapour Press (kPa) : **Barometric Pressure (Pa) Ambient Temperature (deg C) Nox Correction Factor Relative Humidity (%) Dilution Factor (DF1)** CVS No. **Dilution Factor (DF 2)**

Concentra	ation	CO (pp m)	HC (ppm)	Nox (pp m)	HC+No x (ppm)	CO 2 %	Distan ce (km)	Vmix (ltr/tes t)
Part I	Backgroun d Sampel							
	Corr.			1]	
Part II	g/km Backgroun d							

	Sampel			
	Corr.			
	g/km			
TOTAL	g/km			
	g/km X DF			
	Deteriorati on Factor			
LIMIT	g/km			
Percenta ge				
JUDGE				
				-
				Test Enginer:

MENTERI NEGARA LINGKUNGAN HIDUP REPUBLIK INDONESIA,

BALTHASAR KAMBUAYA