Machine learning for reflectometry: Concepts, applications, and challenges

special thanks to Kowarik group (Graz) Murphy group (Kiel)

synchrotrons neutron facilities ML excellence cluster

Vladimir Starostin and Frank Schreiber http://www.soft-matter.uni-tuebingen.de

V. Munteanu, C. Völter, M. Romodin, D. Lapkin, V. Herbst, M. Hylinski, D. Baláž, A. Greco, L. Pithan, A. Gerlach, A. Hinderhofer

Scattering from soft and hybrid materials

X-ray technology is outpacing Moore's law

DESY, Hamburg XFEL, Hamburg ESRF, Grenoble DLS, Oxfordshire Soleil, Paris APS, Chicago ALS, Berkeley

Number of transistors in processors

S. Hauf, EU-XFEL 3

Data acquisition

Improvements in measurements

- Better sources (brilliance, coherence)
- Better detectors (area detectors with high resolution/framerate (>100 MB/s))
- New/advanced experimental setups

Yearly production Estimates:

2016 - 2.8 PB

2018 - 8 PB

2021 - **20 PB**

2025 - 60 PB

This is for the ESRF; other facilities similar; storage need: 10 years raw data after 3 years public

New initiatives for handling data

- National Science Data Infrastructure (NFDI) (includes KFS and KFN)
- Backed by about 5000 PhDs + students
- DAPHNE4NFDI consortium

Data acquisition is outpacing data analysis

Improvements in measurements

- Better sources (brilliance, coherence)
- Better detectors (area detectors with high resolution/framerate (>100 MB/s))
- New/advanced experimental setups

New initiatives for handling data

- National Science Data Infrastructure (NFDI) (includes KFS and KFN)
- Backed by about 5000 PhDs + students
- DAPHNE4NFDI consortium

ML-based methods can help avoid bottlenecks

Data acquisition

ML-based data analysis

Scientific results

Improvements in measurements

- Better sources (brilliance, coherence)
- Better detectors (area detectors with high resolution/framerate (>100 MB/s))
- New/advanced experimental setups

New initiatives for handling data

- National Science Data Infrastructure (NFDI) (includes KFS and KFN)
- Backed by about 5000 PhDs + students
- DAPHNE4NFDI consortium

X-ray and neutron reflectivity (XRR/NR)

X-ray and neutron reflectivity (XRR/NR)

Characterizing samples with XRR/NR

"back-transformation"!

Conventional LMS fit

Example: Least mean squares fit with (only) two open parameters

- Stochastic algorithms (e.g. differential evolution) usually find a good minimum
- However, fitting boundaries must often be adjusted manually!

Iterative fitting is often slow and requires human expertise!

ML: Modeling of the "back-transformation"

Different approaches to inverse problem with ML

In general, inverse problem in reflectometry is ill-posed due to the phase problem \rightarrow possible multimodal solutions

Point estimators. To avoid ambiguity, **the task should be narrowed down to specific cases** (e.g., silicon + silicon oxide + organic layer)

Probability density estimators.
Resolves the ambiguity issue

e.g.:

Regression via NNs (MLP, CNN, ...)

Greco et al. J. Appl. Cryst. 2022, 55, 362 Greco et al. Mach. Learn.: Sci. Technol. 2021, 2, 045003 Greco et al. J. Appl. Cryst. 2019, 52, 1342

- Simple implementation
- Fast inference
- Fails on multimodal cases
- Does not account for parameter distribution
- Does not provide error bars / uncertainty estimation
- Should be retrained for different use cases

Variational Autoencoders (VAE)

Andrejevic et al. Appl. Phys. Rev. 2022, 9, 011421 Timmermann et al. J. Appl. Cryst. 55 (2022) 751 (XPCS)

· Reduces data dimensionality

Normalizing Flows neural posterior estimation Experimental curve Sampled SLD profiles Sample profiles via conditional inverse Normalizing Flows transformation

Accelerated Bayesian analysis

Starostin et al., in preparation

- Resolves ambiguity problem
- Provides error bars
- No retraining required
- More difficult to implement

Neural networks can approximate "back-transform"

How do we find a heuristic model for the "back-transform"?

1. Define a neural network architecture M(R; w) = pe.g.

Multi-layer

perceptron

2. Generate training data, *i.e.* regression targets

3. Perform training, i.e. non-linear regression $L
\downarrow$ Training "loss": L = MSE(M(R; w), p)

p = (thickness, roughness, SLD, ...)

Choice of hyperparameters

Number and size of layers

 $\hat{=}$ about 560.000 trainable parameters w

- Network size was reduced until loss was affected (larger models performed similarly)
- Hyperparameters were chosen empirically based on the lowest achieved validation loss

Loss was strongly affected by the input data!

Hyperparameters

Training set size
Mini-batch size
Activation functions
Initialization
Optimizer
Initial learning rate
LR schedules

300k, 100k, 3M, ...
512, 256, 1024, ...
ReLU, sigmoid, tanh, ...
Glorot uniform, normal, ...
Adam, RMSprop, ... $10^{-3}, 10^{-2}, 10^{-4}, ...$ reduce on plateau

Challenges for ML specific to reflectometry

1. High dynamic range

2. Phase problem/ambiguity

3. Experimental artifacts

Solutions for reflectometry-related challenges

1. High dynamic range

2. Phase problem/ambiguity

Optimizing the noise of the training data

3. Experimental artifacts

Fitting performance vs. training noise

Greco et al. J. Appl. Crystallogr., 2019, **52**, 1342-1347

Improving performance through input resampling

- Systematic errors (e.g. misalignment, footprint correction, slit convolution) can impact prediction quality
- Resampling the data can help minimize this

Resampling using q_z shifts:

- 1. Interpolate the data for many small q_z shifts
- 2. Predict parameters using neural network
- 3. Calculate MSE between data and prediction
- 4. Pick parameters/shift with the lowest MSE

Neural network speed can be exploited to evaluate 1000 different q_Z shifts within less than a second!

Resampling method implemented in *mlreflect*!

The *mlreflect* package

Python package *mlreflect* was developed for a BMBF project

- Installed on Maxwell Custer at DESY (P08/PETRA III)
- Available on GitHub
- Installable via PyPI
- Online documentation available on Read the Docs
- Can be used with Jupyter notebooks as GUI

The *mlreflect* pipeline

Example: organic thin film on Si/SiOx

Thin film model for training:

Generate random parameter sets and simulate curves

(trained model included in *mlreflect*)

Prediction error distribution of *mlreflect*

Test neural network on a test dataset of **242 curves**

Dataset contains thin films of:

- Diindenoperylene
- Pentacene
- Perylene diimides
- Molecular mixtures

Organic thin film
Oxide
Silicon

In situ applications of *mlreflect*

- Real-time parameter prediction is useful for in situ experiments
- After training, no human input is necessary
- Results are obtained within <1s per curve
- Ideal for monitoring and feedback loops

Hinderhofer *et al. Europhys. Lett.*, 2010, **91**, 56002 Kowarik *et al. Phys. Rev. Lett.*, 2006, **96**, 125504 Bommel *et al. Nat. Comm.*, 2014, **5**, 5388

mlreflect: Summary / Successes

Features of *mlreflect*

- Once a neural network model is trained, predictions are obtained within <1ms
- Predictions can be refined via LMS fit
- Fast prediction time can be exploited for input resampling
- Final result is obtained within <1s/curve
- Everything is provided in a Python package

mlreflect: Remaining Challenges

- Full analysis pipeline / mlreflect package
- Can be used for fitting in real time / for in-situ experiments
- Even if ML does not give final result, it provides starting parameters for faster conventional fit

- High dynamic range in XRR / NR is a challenge
- Adding FFT of reflectivity curve as input did not affect performance
- Correction of q₇ scale important (even small misalignment of 10⁻³ degrees!)
- Pathological cases addressed (e.g., no edge for some NR curves)
- Co-refinement of larger data sets / XRR & NR / contrast variation NR yet to be addressed
- Closed-loop experiment-ML-experimental control-experiment (demonstrated; see Pithan et al.)
- More than 1 layer / more complex layered structures (Starostin)
- Handling phase problem / fitting ambiguity (Starostin)
- XRR / NR data base for proper ML training; please do contribute! (All)
- Support efforts for a coherent data infrastructure; e.g., DAPHNE (All)

Challenges in XRR/NR

Challenge: Specifics of neutrons (NR)

- Typically lower counts and statistics (but isotope variation and other opportunities)
- Cross section for some isotopes can lead to SLD < 0 for NR (no edge)
- Lack of edge complicates ML analysis (if training is with edge!)

Challenge: Ambiguity & phase problem

Electron density profiles $\rho(z)$

Simulated reflectivity curves

Color is used to distinguish between different profiles & connect to the corresponding curves

Multiple solutions occur even in the simplest case of two-layer structures

- Theoretical ambiguity (phase loss)
- Counting statistics
- Finite q range & q resolution
- Deviations from the box model
- Experimental artefacts
- ..

More parameters → more possible solutions

Simple regression approach does not work in this case and requires modifications

Starostin *et al.*, in preparation

Challenge: Ambiguity & phase problem

Color is used to distinguish between different profiles & connect to the corresponding curves

The simplest solution: Reflectivity curve + prior information (parameter ranges) Neural network

Fitted parameters

Output

Starostin *et al.*, in preparation

Challenge: Complex layers & prior information

Model with up to 10 independent layers (34 parameters)

Additional input to the NN: prior information (parameter bounds)

	value	min_bounds	max_bounds
d ₁ (Å)	42.037739	39.184216	42.616123
d_2 (Å)	77.311508	77.111908	78.215942
d_3 (Å)	34.977425	32.797459	35.063744
d_4 (Å)	9.158137	1.130505	42.924904
d_5 (Å)	44.515999	44.158146	45.443974
d ₆ (Å)	68.165474	31.190752	71.174347
d7 (m)	.07	6.025970	16.775602
d_8 (Å)	69.037971	67.564674	94.205093
d_9 (Å)	94.839729	4.820899	99.694885
d_{10} (Å)	79.697815	72.856003	80.207466
σ_1 (Å)	10.517209	8.877889	10.646556
σ_2 (Å)	21.736792	20.606285	23.074373
σ_3 (Å)	13.955317	11.801105	14.783772
σ ₄ (Å)	1.462993	0.806769	5.021014
σ ₅ (Å)	4.997059	4.913222	5.006497
σ ₆ (Å)	24.348034	24.326130	24.609074
σ_7 (Å)	2.172500	2.165510	2.224050
σ_8 (Å)	0.725138	0.536709	0.802633
σ ₉ (Å)	34.671829	34.214241	35.585129
σ ₁₀ (Å)	16.005610	15.912833	16.364159
σ_{sub} (Å)	13.230497	0.050126	39.973686
ρ_1 (10 ⁻⁶ Å ⁻²)	35.362869	29.266710	35.743782
$ ho_2$ ($10^{-6}~{\rm \AA}^{-2}$)	10.396585	8.924903	12.488024
$ ho_3$ ($10^{-6}~{\rm \AA}^{-2}$)	17.368107	10.014867	30.106400
$ ho_4$ ($10^{-6}~{\rm \AA}^{-2}$)	32.545441	32.307068	33.391468
$ ho_5$ ($10^{-6}~{\rm \AA}^{-2}$)	8.655873	8.557591	9.007924
$ ho_6$ ($10^{-6}~{\rm \AA}^{-2}$)	35.939438	35.167191	36.193665
$ ho_7$ ($10^{-6}~{\rm \AA}^{-2}$)	29.229452	29.140913	30.717520
$ ho_8$ ($10^{-6}~{\rm \AA}^{-2}$)	23.307163	14.935647	25.304579
$ ho_9$ ($10^{-6}~{\rm \AA}^{-2}$)	7.394635	7.065134	8.340148
$ ho_{10}$ (10^{-6} Å $^{-2}$)	9.717937	7.334828	9.721244
ρ_{sub} (10 ⁻⁶ Å ⁻²)	37.876534	36.874977	38.831841
Δq (Å $^{-1}$)	0.000612	0.000605	0.000627
ΔI	0.911696	0.901667	0.929386

Challenge: Complex layers & prior information

Multilayer model with Bragg peaks (19 parameters)

- We can provide different parametrization to analyze various cases such as multilayer structure
- As before, parameter ranges are used as an additional input to the model

Starostin *et al.*, in preparation

Challenge: XRR/NR datasets for ML

- Repository for NR/XRR data for machine learning
- Currently contains 242 XRR curves from Schreiber group
- Contains raw data + layer parameters
- Plan to convert to ORSO formats
 - HDF5
 - Nexus
 - ORSO model language
- Currently maintained by <u>Linus Pithan (linus.pithan@uni-tuebingen.de)</u>

https://doi.org/10.5281/zenodo.6497437

Please contribute if possible (especially NR data)!

Machine Learning for Surface Scattering

- ML for scattering data works, is fast, and is needed
- Further need comes from ever-improving sources
- Surface scattering geometry has specific challenges
- Two working packages established: mlreflect and gixi
- XRR/NR ("1D") ... ML works, but trickier than thought
- GIXD ("2D") ... feature recognition etc works with ML
- Full 2D-structure determination yet to be addressed

- A. Hinderhofer et al., Machine learning for scattering data: Strategies, perspectives, and applications to surface scattering
- J. Appl. Cryst. 56 (2023) 3
- V. Starostin et al., End-to-end deep learning pipeline for real-time processing of surface scattering data at synchrotron facilities Synchrotron Radiation News 35 (2022) 21
- V. Starostin et al., Tracking perovskite crystallization via deep learning-based feature detection on 2D X-ray scattering data npj Comput Mater Nature 8 (2022) 101
- S. Timmermann et al., Automated matching of two-time X-ray photon correlation maps from protein dynamics ... using autoencoder networks
- J. Appl. Cryst. 55 (2022) 751
- A. Greco et al., Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering
- J. Appl. Cryst. 55 (2022) 362
- A. Greco et al., Neural network analysis of neutron and X-ray reflectivity data: Pathological cases, performance and perspectives
- Mach. Learn.: Sci. Technol. 2 (2021) 045003
- A. Greco et al., Fast fitting of reflectivity data of growing thin films using neural networks
- J. Appl. Cryst. 52 (2019) 1342