Geometría II. Curso 2012-2013. Grado en Matemáticas

Convocatoria extraordinaria de septiembre

- 1. a) (1,5 puntos) Definid el concepto de endomorfismo autoadjunto de un espacio vectorial euclídeo (\mathbf{V}, \mathbf{g}). A partir de esta definición y de la de vector propio, demostrad que si $\overline{u}, \overline{v} \in \mathbf{V}$ son dos vectores propios de un endomorfismo autoadjunto f, correspondientes a valores propios distintos, entonces \overline{u} y \overline{v} son ortogonales.
 - b) Responded razonadamente si son ciertas o no las dos afirmaciones siguientes:
 - (i) (1 punto) En un espacio vectorial métrico cualquiera (V, g) dos vectores ortogonales distintos y no nulos son siempre linealmente independientes.
 - (ii) (1 punto) En el plano euclídeo \mathbb{R}^2 con su métrica estándar consideramos el giro g_{θ} de ángulo $\theta \in (0, 2\pi)$ en el sentido inducido por la base usual y la simetría ortogonal h con respecto a la recta de ecuación y = 0. Entonces, $f = g_{\theta} \circ h$ es la simetría ortogonal con respecto a la recta de ecuación $(\cos \theta 1)x + (\sin \theta)y = 0$.
- 2. (2 puntos) Sea V un espacio vectorial tridimensional y $\mathcal{B} = (\overline{b}_1, \overline{b}_2, \overline{b}_3)$ una base de V. Consideremos $f \in End \mathbf{V}$ del que se sabe lo siguiente:
 - (i) $f(\bar{b}_1) = 3\bar{b}_1 + 2\bar{b}_2 + 2\bar{b}_3$, $f(\bar{b}_2) = 2\bar{b}_1 + 2\bar{b}_2$.
 - (ii) $M(f, \mathcal{B})$ es simétrica.
 - (iii) El vector $\overline{u} = 2\overline{b}_1 2\overline{b}_2 \overline{b}_3$ está en el núcleo de f.

Calculad $M(f, \mathcal{B})$ y estudiad si f es diagonalizable. En caso afirmativo, obtened una base \mathcal{C} de \mathbf{V} tal que $M(f, \mathcal{C})$ sea diagonal.

- 3. (1,5 puntos) Sea F(x,y) = xy la forma cuadrática asociada a una métrica \mathbf{g} de \mathbb{R}^2 . Encontrad una base \mathcal{B} de \mathbb{R}^2 tal que la matriz $M(\mathbf{g},\mathcal{B})$ sea diagonal. Deducid de qué tipo es la métrica \mathbf{g} .
- 4. En el espacio vectorial S_2 de las matrices simétricas de orden 2 consideramos la forma bilineal ${\bf g}$ definida como:

$$\mathbf{g}(A,C)=traza(A\,C),$$

y el endomorfismo $f: \mathbf{S}_2 \to \mathbf{S}_2$ siguiente:

$$f\left(\begin{array}{cc}a&c\\c&b\end{array}\right)=\left(\begin{array}{cc}b&a/\sqrt{2}\\a/\sqrt{2}&-\sqrt{2}\,c\end{array}\right).$$

- a) (1,5 puntos) Demostrad que g es una métrica euclídea sobre S_2 . Calculad una base ortonormal de (S_2, g) .
- b) (1,5 puntos) Probad que f es una isometría de (S_2 , g). Estudiad los subespacios propios de f y deducid que se trata de la composición de una reflexión y de un giro.