# **Evolutionary Algorithms**

Inteligencia Artificial en los Sistemas de Control Autónomo Máster Universitario en Ingeniería Industrial

Departamento de Automática





### Objectives

• Describe the most relevant EAs

# Bibliography

 $\bullet~$  Eiben, A.E. and Smith, J.E. Introduction to Evolutionary Computing. Springer 2003.

### Table of Contents

- I. Genetic Algorithms
  - Introduction
  - Representation
  - Mutation
  - Recombination
  - Selection
- 2. Genetic Programming
  - Introduction
  - Representation
  - Mutation
  - Recombination
  - Initialization
  - Bloat in Genetic Programming
- 3. Evolution Strategies
  - Introduction
  - Representation
  - Mutation

  - Recombination
- Parent and survivor selection
- 4. Working with an Evolutionary Algorithm
  - Search phases
  - Fitness dynamics
  - When EAs are useful
  - Advanced EAs
- 5. Case studies
  - Case study I: Transonic wing shape optimization
    - Case study II: 9th GTOC



Introduction (I)

Genetic Algorithms

### Introduced by Holland in the 70's

- John H. Holland "Adaptation in Natural and Artificial Systems", MIT Press
- GA is the most popular EA
- Usually EAs confused with GA

Canonical GA (which is not canonical)

- Fixed length strings
- Binary codification
- Holland's Theorem

| Representation  | Bit strings  |
|-----------------|--------------|
| Recombination   | 1-point      |
| Mutation        | Bit flip     |
| Parent select   | Fitness prop |
| Survivor select | Generational |



Introduction (II)

GAs are a family of algorithms, with common features

- Representation in strings, named chromosomes
- Mutation and recombination
- Usually fixed length

GAs are like a toolbox with customizable components

- Representations, genetic operators, selections mechanism, ...
- These components are interdependent

Rule of thumb: Small genotype changes ⇒ Small phenotype changes



# Introduction (III)

Genetic Algorithms



### Representation: Binary



One of the oldest and widely used codifications

- Consequence of Holland's Theorem
- Strong historical influence

Often used to codify non-binary information (not recommended)



Hint: Use binary codification to represent binary information



### Representation: Integer



### Chomosome as a sequence of integers

- More natural codification for many problems
- Optimization of integer values
- Integer representation ( $\{1, 2, 3, 4\} = \{\text{North, East, South, West}\}$ )



Representation: Floating-point



Chomosome as a sequence of floating-point values

- Common in optimization problems
- Solutions with continous nature



Representation: Floating point (II)

### ANN encoding with a GA





# Genetic Algorithms

### Representation: Permutation



Some problems involve order

- Sequence of integers
- No repeated numbers
- Range of valid numbers
- Special genetic operators

Information can be contained in

- The locus (position)  $[3, 1, 2, 4] \Rightarrow [C, A, B, D]$
- The allele (value)

$$[3, 1, 2, 4] \Rightarrow [B, C, A, D]$$



Integer codification to solve TSP

#### Mutation

### Mutation: Genetic operator that uses one parent

- Introduces randomness into the genotype
- Depends on representation

### Main objectives

- Avoid local minima (premature convergence)
- Enhances exploration

#### Often dependent on the mutation rate

- Significant influence in the algorithm behaviour
- Higher mutation rate, higher exploration



### Mutation for binary representations

Flip bit with probability  $p_m$ 



Optimal  $p_m$  depends on the problem and goals

- Need of high fitness population
- Need of high fitness individual
- Need of genetic diversity
- Modality of the problem
- Algorithm dynamics

Rule of thumb:  $p_m = \frac{1}{lenoth}$ 



### Mutation for integer representations

### Two main mutations applied to each gene

- Random resetting: Choose new random value with  $p_m$
- Creep mutation: Add small (positive or genative) random value with p<sub>m</sub>



### Mutation for floating-point representations

Set new value with value drawn from a distribution

- Uniform mutation Choose new random value from [L, U] with  $p_m$
- Non-uniform mutation Usually adding a value drawn from a zero-mean gaussian distribution







### Mutation for permutation representations

### Genes are no longer independent

 $\bullet\;$  No gene mutation,  $p_m$  affects the whole chromosome

| Swap mutation     | Insert mutation    |  |
|-------------------|--------------------|--|
| 123456789         | 123456789          |  |
| Scramble mutation | Inversion mutation |  |
| 123456789         | 1 2 3 4 5 6 7 8 9  |  |



#### Recombination

#### Recombination creates one individual from two or more parents

- Also known as crossover (specially for two parents)
- Basic feature in GA
- Parents selection mechanism needed

### Usually applied to all new individuals

- Not used when elitism is applied
- Sometimes applied with  $p_c \in [0,5,1]$

#### Objectives of recombination

- Combine parents' behavior ⇒ No new genetic material
- Constructive role
- Enhances explotation



### Recombination: Binary and integer representations

### Three crossover mechanisms for binary and integer encodings

# One-point crossover 00000000001 1101000001 1 1 0 1 1 0 0 0 0







Recombination: Floating point representations (I)

#### Discrete recombination

- Analogous to binary recombination
- No new genetic material

#### Arithmetic recombination

- Combines the parents' genes
- Weighted sums of genes:  $z_i = \alpha x_i + (1 \alpha) y_i$
- Usually,  $\alpha = 0.5$  (average values)
- Different arithmetic recombinations



Recombination: Floating point representations (II)

#### Whole arithmetic recombination (All genes are included)



### Simple arithmetic recombination (Similar to one-point crossover)



#### Single arithmetic recombination (Similar to uniform crossover)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.5 0.3



### Recombination: Permutation representations

### Specialized recombinations

- Partially Mapped Crossover
- Edge Crossover
- Order Crossover
- Cycle Crossover





### Selection

### Two purposes for selection

- Parent selection: Individuals to generate offspring
- Survivor selection: Individuals to remplace

Usually same methods applied to both



### Selection: Fitness Proportional Selection

### Selection probability proportional to fitness

- Premature convergence
- Lack of selective pressure for close fitness values
- Selective pressure not customizable
- Susceptibility to function transposition

### Historically relevant





Selection: Ranking Selection

Selection probability proportional to rank

- Individuals are sorted by fitness
- Arbitrary rank to probability mapping
- Avoid problems with super individuals
- Selective pressure independent of fitness
- Selective pressure not customizable

# Linear mapping

$$P_{lin_rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

# Exponential mapping

$$P_{exp_rank}(i) = \frac{1-e^{-i}}{c}$$

c = normalization factor



Selection: Tournament Selection

### Algorithm of tournament size k

- I. Select randomly k chromosomes
- 2. Compute their fitness
- 3. Select the fittest one
- 4. Go to 1

#### Customizable selective pressure

• Depends on k and  $\mu$ 

De facto standard

- Good for parallel computation
- Efficient implementation

Usually k = 2 in GA, in GP k = 7



Selection: Survival selection

### Two strategies

- Generational (all the population is remplaced)
- Steady-stade (partial remplacement)

#### Survival selection algorithms

- Fitness-Based Replacement (inverse of the previous ones)
- Age-Based Replacement
- Elitism



Introduction (I)

### GP is a family of algorithms

- Evolve programs
- Self-programming computers
- GP, Linear GP, Cartesian GP, EDA, ...

#### GP introduced by Koza in the 90's

Koza, J.R. "Genetic Programming: On the Programming of Computers by Means of Natural Selection", MIT Press. 1992

Genetic Programming

#### GA and ES focused on optimization

GP focused on Machine Learning







Introduction (II)

Example: Credit scoring problem within a bank. Develop a model describing good customers

Genetic Programming

| Id   | Children | Salary | Status   | Credit |
|------|----------|--------|----------|--------|
| Id-т | 2        | 45.000 | Married  | О      |
| Id-2 | 0        | 30.000 | Single   | I      |
| Id-3 | I        | 40.000 | Married  | I      |
| Id-4 | 2        | 60.000 | Divorced | I      |
|      |          |        |          |        |
| Id-X | 2        | 50.000 | Married  | I      |

Possible model:

IF (children=2) AND (Salary>80.000) THEN good ELSE bad



Introduction (III)

#### General form

IF (Formula)
THEN good
ELSE bad

Genetic Programming

In EC terms
Phenotype: Formula
Fitness: Classification accuracy



(children=2) AND (Salary>80.000)

### Representation (I)

### GP representation differs in two aspects

- Nonlinear structure
- Variable size

New representation and genetic operators

• Same selection (done in phenotipic space)



# Genetic Programming

### Representation (II)







$$\begin{array}{l} (x \wedge \mathsf{true}) \to \\ ((x \vee \gamma) \vee (z \leftrightarrow (x \vee \gamma))) \end{array}$$



Program

Representation (III)

#### Two types of nodes

• Function set Internal nodes. It has an ssociated number of attributes

Genetic Programming

• Terminal set Leaves of the tree

#### Danger: Inviable trees

- Grammar-aware GP variants
- Strongly Typed Genetic Programming (STGP), Grammatical Evolution (GE), ...

(Complex representation example)



### Mutation (I)

### Application of genetic operators in GP contrast to GA





### Mutation (II)

#### Subtree mutation

- 1. Select a random node
- 2. Delete subtree
- 3. Add new random subtree

#### Parameters

Probability of choosing a terminal node

Highly correlated with code bloat





Mutation (III)

#### Alternative mutation operators

- Size-fair subtree mutation.
- Node replacement mutation (point mutation)

- Hoist mutation
- Shrink mutation



# Genetic Programming

### Recombination (I)

### Subtree crossover

- 1. Take a random node from both parents
- 2. Swap subtrees

### **Parameters**

• Probability of choosing a terminal node







### Recombination (II)

#### Alternative recombination operators

- Homologous crossover
- Uniform crossover
- Size-fair crossover
- Node replacement mutation (point mutation)

Genetic Programming 00000000000000

- Hoist mutation
- Shrink mutation



#### Initialization

#### Three initialization methods

• Full. Introduces non-terminals nodes until max depth

Genetic Programming

- Grow. Introduces terminal or non-terminal with equal probability
- Ramped half-n-half. Applies full or grow with equal probability



### Bloat in Genetic Programming

#### Code bloat: Uncontrolled grow of tree sizes

• Intrinsic to variable-length representations

Genetic Programming

- Undesirable effects
- Perhaps, the worse problem in GP

#### Countermeasures

- Depth limitation in genetic operators
- Parsimony pressure
- Tree plunning
- Multiobjective techniques







## Example of reporting

Cuadro 1: Main parameters used to obtain the approximations for secrets ID in the Genetic Tango attack against David-Prasad authentication protocol.

| Parameter        | ID                                   |
|------------------|--------------------------------------|
| Population       | 500                                  |
| Generations      | 10                                   |
| Terminal Set     | A, B, D, E, F, $P_{ID1}$ , $P_{ID2}$ |
| Function set     | And, or, xor                         |
| Fitness          | Hamming distance to secret           |
| Fitness tags     | 5                                    |
| Fitness sessions | 100                                  |
| Min. depth       | I                                    |
| Max. depth       | 3                                    |
| Selection        | Lexicographic tournament             |
| Tournament size  | 4                                    |
| Crossover        | 0.9                                  |
| Reproduction     | O.I                                  |
| Elitism size     | I                                    |
| Terminals        | 0.1                                  |
| Non terminals    | 0.9                                  |
| Initialization   | Rampled H-H                          |
|                  |                                      |

### Introduction (I)

Introduced by Rechenberg and Schwefel in the 60's

- Motivated by wing shape optimization
- Real-function optimization

#### ES properties

- Emphasis on mutation
- Mutation is gaussian noise
- Self-adaptation

| Representation     | Real-valued vectors                |
|--------------------|------------------------------------|
| Recombination      | Discrete                           |
| Mutation           | Gaussian perturbation              |
| Parent selection   | Uniform                            |
| Survivor selection | $(\mu,\lambda)$ or $(\mu+\lambda)$ |
| Speciality         | Self-adaptation                    |



### Introduction (II)

#### Example of basic ES

- Representation: Vector of real values
- Recombination: Not used
- Mutation: Gaussian noise with step-size  $\sigma$

#### Adaptative $\sigma$ (1/5 rule)

- Theoretical foundations
- Based on the ratio of success mutations (ps)
- After k iterations a new  $\sigma$  is computed

$$\sigma = \begin{cases} \sigma/c & \text{if } p_s > 1/5, \\ \sigma \cdot c & \text{if } p_s < 1/5, \\ \sigma & \text{if } p_s = 1/5 \end{cases}$$

where  $0.817 \le c \le 1$  is a parameter



### Representation

#### Nowdays ES is usually self-adapted

- Step size ( $\sigma$ ) is included in the genotype
- Evolution includes variables and parameters

#### One or more $\sigma$ values

• One 
$$\sigma$$
:  $\langle \underbrace{x_1, x_2, ..., x_n}_{\bar{x}}, \sigma \rangle$ 

$$\bullet \ \, \text{Several:} \, \sigma: \big\langle \underbrace{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_{\mathbf{n}}}_{\bar{\mathbf{x}}}, \underbrace{\sigma_1, \sigma_2, ..., \sigma_{\mathbf{n}_{\sigma}}}_{\bar{\sigma}} \big\rangle$$



#### Mutation

#### Genetic operators to modify $\sigma$

Mutation with one step size:

$$\begin{aligned} x_i' = & x_i + N_i(0, \sigma') \\ \sigma' = & \sigma \cdot e^{\cdot N(0, \tau)}, \tau \propto 1/\sqrt{n} \end{aligned}$$

au is analogous to learning rate in ANN

Mutation with n step sizes:

$$x_i' = x_i + N_i(0, \sigma_i)$$

$$\sigma' = \sigma \cdot e^{\cdot N(0, \tau') + N_i(0, \tau)}$$

with 
$$au' \propto 1/\sqrt{2\mathfrak{n}}$$
 and  $au \propto 1/\sqrt{2\sqrt{\mathfrak{n}}}$ 



#### Recombination

#### Secondary operator in ES

- Discrete recombination. Like uniform crossover in GA
- Intermediate recombination. Like arithmetic crossover in GA

#### ES tends to use global recombination

• More than two parents



# Parent and survivor selection

The whole population is seen as parent

- Select individual with uniform probability
- No selective pressure in parent selection

After creating the offspring, the  $\lambda$  fittests individuals are selected

Deterministic procedure

Two selection mechanisms depending on who can be selected

- $(\mu, \lambda)$  selection. Only the offpring.
- $(\mu + \lambda)$  selection. Parents and offpring

 $(\mu, \lambda)$  selection is more popular



### Search phases

Initial phase: Random distribution, high genetic diversity Advanced phase: Begins to converge **Convergence**: Around one or few points, low genetic diversity

Premature convergence if population not located in global maxima





(Animation)



### Fitness dynamics





Working with an Evolutionary Algorithm

Few long runs or many short runs?



When EAs are useful





#### Advanced FAs

- Multiobjective Evolutionary Algorithms (MOEAs)
- Optimization with constrains
- Coevolution
- Dinamic optimization
- Islands models
- Memetic algorithms
- Hyperheuristics



### Case studies

### Case study I: Transonic wing shape optimization

Problem: Design a wing shape for transonic flight

Maximize lift



Holst T.L., Pulliam T.H. (2003) Transonic Wing Shape Optimization Using a Genetic Algorithm. In: IUTAM Symposium Transsonicum IV. Fluid Mechanics and its Applications, vol 73. Springer.



### Case studies

# Case study II: 9<sup>th</sup> Global Trajectory Optimization Competition

#### GTOC: Global Trajectory Optimization Competition

- Proposed by ESA Advanced Concepts Team
- Difficult trajectory optimization problems
- (More info)

#### GTOC 9: The Kesser Run

- 123 orbiting debris
- Remove debris
- Design multiple missions

(Video) (Solution) (Acta Futura special issue)

