EE-222: Microprocessor Systems

AVR Microcontroller:
Pipelining
&
Instruction Cycle Time

Instructor: Dr. Arbab Latif

Pipelining

Fetch and execute

Old Architectures

Pipelining

Pipelining

Instruction Cycle Time for the AVR

Machine Cycles

Machine Cycles:

amount of time for the CPU to execute an instruction

Mnemonic	Operands	Description		Ор		Flags	#Clocks AVR
ADD	Rd, Rr	Add without Carry	Rd	←	Rd + Rr	Z,C,N,V,S,H	1
ADC	Rd, Rr	Add with Carry	Rd	←	Rd + Rr + C	Z,C,N,V,S,H	1
ADIW	Rd, K	Add Immediate to Word	Rd	←	Rd + 1:Rd + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract without Carry	Rd	←	Rd - Rr	Z,C,N,V,S,H	1
SUBI	Rd, K	Subtract Immediate	Rd	←	Rd - K	Z,C,N,V,S,H	1
SBC	Rd, Rr	Subtract with Carry	Rd	←	Rd - Rr - C	Z,C,N,V,S,H	1
SBCI	Rd, K	Subtract Immediate with Carry	Rd	←	Rd - K - C	Z,C,N,V,S,H	1
SBIW	Rd, K	Subtract Immediate from Word	Rd + 1:Rd	←	Rd + 1:Rd - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND	Rd	←	Rd • Rr	Z,N,V,S	1

Time taken by the Machine Cycle?

 The length of the Machine Cycle (MC) depends on the frequency of the Oscillator Cycle (OC) connected to the AVR:

$$- 1 MC = 1 OC$$

Example

The following shows the crystal frequency for four different AVR-based systems. Find the period of the instruction cycle in each case.

(a) 8 MHz (b) 16 MHz (c) 10 MHz (d) 1 MHz

Time delay

		machine cycle
LDI	R16, 19	1
LDI	R20, 95	1
LDI	R21, 5	1
ADD	R16, R20	1
ADD	R16, R21	1
		5

Delay =
$$5 \times T$$
 machine cycle = $5 \times 62.5 \text{ ns} = 312.5 \text{ ns}$

Time delay

	LDI	R16, 100	macr
AGAIN:	ADD	R17,R16	
	DEC	R16	
	BRNE	AGAIN	_

The penalty is an extra instruction cycle to fetch the instruction from the target location instead of executing the instruction right below the branch.

Delay Calculation

 Find the size of the delay of the code snippet below if the crystal frequency is 10MHz.

Instruction Cycles COUNT = R20COUNT, 0xFF LDI DELAY: NOP AGAIN: NOP DEC COUNT 2/1 BRNE AGAIN RET $[1 + ((1 + 1 + 1 + 2) \times 255) + 4] \times 0.1 \,\mu s = 128.0 \,\mu s$ Is this correct?

BRNE takes two MCs if it jumps, else one MC when falling through the loop

$$[1+((1+1+1+2)x255)-1+4] \times 0.1us = 127 us$$

Reading

- The AVR Microcontroller and Embedded Systems: Using Assembly and C by Mazidi et al., Prentice Hall
 - Chapter-3: 3.3

THANK YOU

