Proof Portfolio

Anupam Bhakta

October 24, 2021

The **Fibonacci Sequence** F_1 , F_2 , F_3 , . . . is defined by

$$F_n = \begin{cases} 1 & n = 1, 2 \\ F_{n-2} + F_{n-1} & n \ge 3 \end{cases}$$

Theorem 1. Then nth Fibonacci Sequence is

$$F_n = rac{1}{\sqrt{5}} \left[\left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight]$$

for every positive integer n.

Proof. We proceed by the Strong Principle of Mathematical Induction. Since $F_1 = 1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^1 - \left(\frac{1-\sqrt{5}}{2} \right)^1 \right]$, the formula holds for n = 1. Assume, for a positive integer k, that $F_i = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^i - \left(\frac{1-\sqrt{5}}{2} \right)^i \right]$ for every i with $1 \le i \le k$. We show that $F_{k+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right]$. First, observe that when k = 1, $F_{k+1} = F_{1+1} = F_2 = 1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^2 \right]$ and so the formula holds. Hence we may assume that $k \ge 2$. Since $k+1 \ge 3$, it follows by the recurrence relation that

$$F_{k+1} = F_{k-1} + F_k \tag{1}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k} \right]$$
(2)

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} + \left(\frac{1 + \sqrt{5}}{2} \right)^{k} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k} \right]$$
(3)

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(1 + \frac{1+\sqrt{5}}{2} \right) - \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(1 + \frac{1-\sqrt{5}}{2} \right) \right] \tag{4}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} \left(\frac{3 + \sqrt{5}}{2} \right) - \left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} \left(\frac{3 - \sqrt{5}}{2} \right) \right] \tag{5}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right] \tag{6}$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right], \tag{7}$$

where in (2), we use the Inductive hypothesis.

where in (2), we use the Inductive hypothesis. It therefore follows by the Strong Principle of Mathematical Induction that $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$ for all positive integers n.