

Space OS

An Spatial Operating System for the Intelligent Edge

Muthucumaru Maheswaran

McGill University, Montreal, Canada

Presentation Outline

A new spatial computing operating system that has first class support for mobile ad hoc systems developed using JAMScript.

- 1. Distributed AI for Mobile Ad-Hoc Clouds
- 1. Space Blocks (S-Blocks) and S-Block Mesh

2. Space OS: Concept

2. Trails of Nodes in Space

3. Why Space OS?

- 3. Updating State in Space OS
- 4.Example Application Scenarios 4.Current Status of Space OS
 - 5. Closing Comments

5. Space OS Architecture

Distributed AI for Mobile Ad Hoc Clouds

SDN Adopted for MaDoC

Create resilient controlplane that can handle disconnections & mobility

ML-Driven Data Processing

Use ML models of dataintensive application tasks and map them to MaDoCs

Distributed ML

Develop distributed ML algorithms that would in MaDoCs

Space OS Concept

Edge Computing

Compute servers dispersed into the space and available for use from mobile nodes

Mobile Ad Hoc Nets

Mobile ad hoc networks
that are able to connect
mobile and stationary
nodes into opportunistic
compute clusters

Representing Space

Space representation based on accurate localization both indoors and outdoors

Space OS Concept: Another View

Space as Contexts

Nodes find each other using spaces and spaces and augment and restrict the interactions of the nodes

Space for Data Storage

Information exchanged via spaces (e.g., tuple spaces) which creates new data exchange possibilities based on node movements

Space for Intelligent Behaviour

Intelligence attached to spaces such that data exchanged through them leads to different behaviours in the different spaces

- How can we use past knowledge for future anticipation?
- How can future anticipation be used to create proactive current awareness?

Space OS Vs Social OS

- Social network is an operating system that provides past knowledge, current awareness, and future anticipation for human networks at human time scales
- Space OS is a social network for machines at extremely fast time scales

The Problem

A distributed programs
(MaDoCs) react to node
movements. No
methodical framework for
anticipation in distributed
programs

The Solution—Until Now!

Use node-level anticipation (caching, pre-fetching) to accelerate processing

Your Solution

The Problem

A distributed programs
(MaDoCs) react to node
movements. No
methodical framework for
anticipation in distributed
programs

The Solution—Until Now!

Use node-level anticipation (caching, pre-fetching) to accelerate processing

Your Solution

The Problem

A distributed programs
(MaDoCs) react to node
movements. No
methodical framework for
anticipation in distributed
programs

The Solution—Until Now!

Use node-level anticipation (caching, pre-fetching) to accelerate processing

Your Solution

The Problem

A distributed programs
(MaDoCs) react to node
movements. No
methodical framework for
anticipation in distributed
programs

The Solution—Until Now!

Use node-level anticipation (caching, pre-fetching) to accelerate processing

Your Solution