Ciência de Dados

Revisado: Roseli Romero

Pré-processamento de dados – Parte II

Prof. Dr. André C. P. L. F. de Carvalho Dr. Isvani Frias-Blanco ICMC-USP

Dados desbalanceados

- Número de objetos varia para as diferentes classes
 - Natural ao domínio
 - Problema com geração / coleta de dados
- Várias técnicas de AM não conseguem lidar com esse problema
 - Tendência a classificar na(s) classe(s) majoritária(s)

Dados desbalanceados

- Alternativas
 - Alteração do conjunto de dados
 - Balanceamento artificial
 - Utilizar diferentes custos de classificação para as diferentes classes
 - Induzir um modelo para uma das classes
 - Alteração do projeto de algoritmos para lidar com desbalanceamento

Balanceamento artificial

- Redefinir o tamanho do conjunto de dados
 - Acrescentar objetos (sobreamostragem)
 - Replicar objetos da classe minoritária não adiciona informação
 - Eliminar objetos (subamostragem)
 - Ignorar objetos da classe majoritária
 Para Remover informação
 - Abordagem híbrida

Dados desbalanceados

- Alguns problemas em algoritmos de AM só aparecem quando os dados estão desbalanceados
- Atenção!!!
 - Pode ser que uma distribuição igualitária das classes não seja boa
 - Mesmo se a população apresentar essa distribuição

Transformação de dados

- Mudam o tipo de um atributo
- Conversão de valores entre tipos
 - Qualitativos para quantitativos
 - Binarização
 - Quantitativos para qualitativos
- Normalização de valores numéricos
- Tradução de atributos

Qualitativos para quantitativos

- Algumas técnicas trabalham apenas com valores numéricos
- Conversão depende de:
 - Existência de ordenação dos valores
 - Se existe (ordinal), manter
 - Se não existe (nominal), não inserir
 - Número de valores
 - Se igual a 2 (binários) ou maior que 2

Conversão de valor ordinal

- Codificar para valor inteiro positivo
 - Ex. Pequeno: 1, médio: 2 e grande: 3
- Algumas técnicas trabalham apenas com valores quantitativos binários
 - Binarização

Binarização de ordinal

- Transformação no sistema numérico binário correspondente?
 - Perde ordenação
- Valores consecutivos devem diferir em 1 bit
- Codificar cada valor por um vetor binário que mantém ordenação
 - Código cinza: 000, 001, 010, 011, ...
 - Código termômetro: 001, 011, 111

Código cinza

- Existem vários códigos cinza
 - Não é único
- Um código cinza para 3 bits:
 - **•** 000, 001, 011, 010, ...
- Um código cinza para 2 bits:
 - **00**, 01, 11, 10

Dígito	Binário	Código cinza	
0	0000	0000	
1	0001	0001	
2	0010	0011	
3	0011	0010	
4	0100	0110	
5	0101	0111	
6	0110	0101	
7	0111	0100	
8	1000	1100	
9	1001	1101	
10	1010	1111	
11	1011	1110	
12	1100	1010	
13	1101	1011	
14	1110	1001	
15	1111	1000	

Algoritmo código cinza

- 1 Começa com todos os bits iguais a zero
- 2 Para cada novo número

 Mudar o valor do bit mais a direita que
 gera uma nova sequência de bits

Código termômetro

- Utiliza mais bits que código cinza
 - Tamanho cresce linearmente com número de valores

Dígito	Binário	Código termômetro
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0111
4	0100	1111

Conversão de valor nominal

- Transforma para valor quantitativo
 - Não deve inserir relação de ordem
- Codificação binária nominal sem relação de ordem
- Codificações
 - 1-de-n (n = número de valores)
 - m-de-n

Conversão de valor nominal

- Codificação 1-de-n
 - Codificação canônica
 - Fácil calcular moda = posição com maior número de valores 1
 - Quantidade de valores pode gerar vetores longos
- Codificação m-de-n
 - Dos n valores, m são iguais a 1 e os demais 0
 - Vários códigos

Conversão de valor nominal

- Número de valores de um atributo pode ser muito grande
- Pseudo atributos
 - Cria valores novos, artificiais
- Ex.: Atributo é nome de país
 - Existem 193 países (192 representados na ONU + Vaticano)
 - Alternativa de codificação:
 - Transformar valores nominais em valores numéricos utilizando a codificação 1-de-n © André de Carvalho - ICMC/USP

Alternativa 1

- Transformar valores nominais em valores binários utilizando a codificação 1-de-n
 - Maldição da dimensionalidade
 - Grande parte dos elementos possui valor 0
 - Valores esparsos

Alternativa 2

- Transformar 193 atributos em 10 pseudo-atributos
 - Continente: 7 valores binários
 - IDH: 1 valor real
 - População: 1 valor inteiro
 - Área: 1 valor inteiro

- Transformar valores do atributo nome de automóvel em pseudo-atributos
 - Ex.: Uno, fox, amarok, corsa, zafira, corolla, TR4, gol, palio, doblo, clio, kangoo, omega

Quantitativos para qualitativos

- Discretização de valores
 - Transformar valores numéricos em intervalos (ou categorias)
- Subtarefas
 - Definição do número de categorias
 - Geralmente feito pelo usuário
 - Definição de como mapear valores dos atributos numéricos para essas categorias
 - Por frequência ou largura dos intervalos
 - Geralmente feito por um algoritmo

Transformação de atributos

- Muda valor numérico de um atributo para outro valor numérico
 - Limites de valores para atributos distintos podem ser muito diferentes
 - Evitar que um atributo predomine sobre outro
 - A menos que isso seja importante
 - Valores podem estar concentrados em uma determinada faixa ou região
 - Possível necessidade de binarização

Transformação de atributos

- Aplicada aos valores de um atributo específico para todos os exemplos
- Variações
 - Funções simples
 - Normalização
 - Padronização

Funções simples

- Uma função matemática simples é aplicada a cada valor do atributo
 - Muda distribuição de valores de um atributo
 - Possíveis transformações para um atributo x de um conjunto de dados:
 - x^k , log(x), e^x , \sqrt{x} , 1/x, sqrt(x), seno(x) e |x|

Funções simples

- Valor absoluto
 - Em algumas aplicações, apenas magnitude do valor de um atributo é importante
 - Converte valor de todos os atributos para o valor positivo correspondente
 - Ex.: -4, 5 e -2 se tornam 4, 5 e 2

Funções simples

- Utilizando função log₁₀
 - Comprime valores de atributos com um grande intervalo de possíveis valores
 - Ex.: relação, para alguns animais, entre:
 - Peso do cérebro e
 - Peso do corpo

http://onlinestatbook.com/2/transformations/log.html

Normalização

- Para normalizar os valores de um atributo:
 - 1. Adicionar ou subtrair uma constante
 - 2. Multiplicar ou dividir por uma constante
- Utilizado para mudar intervalo de valores dos dados
 - Permite converter todos os valores de um atributo para o intervalo [0, 1]

$$x' = \frac{(x - \min_{x})}{(\max_{x} - \min_{x})}$$

Exercício

- Normalizar os valores 12, 5, 4, 10, 20, 3 para os intervalos:
 - **•** [-1, +1]
 - **•** [-7, 12]

Padronização

- Para padronizar os valores de um atributo:
 - 1. Adicionar ou subtrair uma medida de localização
 - 2. Multiplicar ou dividir por uma medida de espalhamento
- Se os valores têm uma distribuição Gaussiana
 - Subtrair a média
 - Dividir pelo desvio padrão
 - Produz valores com distribuição normal (0,1)

Exercício

 Converter os seguintes valores numéricos utilizando normalização e padronização

Valores	Re-escala	Padronização
3		
9		
5		
11		
5		
7		

$$var(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Exercício

 Converter os dados abaixo para valores numéricos no intervalo [0, 1]

Febre	Enjoo	Batimentos	Vacina	Diagnóstico
baixa	sim	baixo	A	doente
média	não	normal	C	saudável
alta	sim	alto	Α	B saudável
alta	não	baixo		doente
baixa	não	alto		D saudável
média	não	sem	С	doente

Conversão de valores numéricos

- É preferível padronizar a normalizar
- Em algumas aplicações
 - Atributos mais importantes podem ser deixados com limites maiores

- Ocorre devido a limitações no formato utilizado para armazenar o atributo
 - Algumas técnicas podem ter dificuldades com o formato original
 - Exemplos
 - Conversão de hora para valor inteiro
 - Conversão de data para valor inteiro
 - Conversão de nome de rua para código postal

Considerações finais

- Qualidade de dados
 - Fontes de problemas
- Pré-processamento
- Limpeza de dados
- Desbalanceamento
- Transformação de dados

Perguntas

Exercício

- Que alternativa para lidar com dados desbalanceados você sugere para os casos abaixo?
 - 2 classes, com 5 e 90 exemplos cada
 - 2 classes com 3000 e 200 exemplos cada
 - 3 classes com 14, 100 e 600 exemplos cada