Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2019 CA5CO13 Theory of Computation

Branch/Specialisation: Computer Programme: MCA

Application

Duration: 3 Hrs. Maximum Marks: 60

N

		questions are compulsory. Int s) should be written in full in:		es, if any, are indicated. Answer va, b, c or d.	S O
Q.1	i.	To define finite automata number of tuples required are:			1
		(a) 2 (b) 3	(c) 4	(d) 5	
	ii.	Complementation of Regular Language is:			1
		(a) Regular	(b) Not Regular		
		(c) Context free	(d) None	of these	
	iii.	If $\Sigma = \{0,1\}$ then ϕ^* will be	equivalent t	o:	1
		(a) ε (b) ϕ	(c) Σ	(d) None of these	
	iv.	Type 2 grammar is best des	cribed as:		1
		(a) Phrase structured	(b) Contex	kt sensitive grammar	
		(c) Context free grammar	(d) Regula	ar Grammar	
	v.	PDA is more powerful than			1
		(a) Turing machine	(b) Finite	automata	
		(c) Both (a) and (b)	(d) None of	of these	
	vi.	Which operation can be applied on stack?			1
		(a) PUSH	(b) POP		
		(c) Both (a) and (b)	(d) None of	of these	
	vii.	Which of the following c	annot be a	possibility of a TM while it	1
		processes an input?			
		(a) Enters accepting state			
		(b) Enters non-accepting state			
		(c) Enters infinite loop and never halts			
		(d) None of these			
				P.T	'O

P.T.O.

5

- viii. X is a simple mathematical model of a computer. X has unrestricted 1 and unlimited memory. X is a FA with Read-Write head. X can have an infinite tape divided into cells, each cell holding one symbol. Name **X**?
 - (a) Push Down Automata
- (b) Non deterministic Finite Automata

1

1

- (c) Turing machines
- (d) None of these
- ix. PCP abbreviates for:
- (a) Post Correspondence problem
 - (b) Pre-Correspondence problem
 - (c) Past correlated problem
 - (d) None of these
- Which of the following problems is undecidable?
 - (a) Membership problem for CFGs
 - (b) Ambiguity problem for CFGs
 - (c) Finiteness problem for FSAs
 - (d) Equivalence problem for FSAs
- Define Finite Automata. Q.2 i.
 - ii. Design a DFA over $\Sigma = \{a, b\}$ accepting strings whose decimal 3 equivalent is completely divisibly by 3.
 - iii. Construct the minimum state automata for the following transition 5 diagram:

OR iv. Find equivalent NFA without ε move.

- Give CFG for following language $L = \{a^{n+2} b^n \mid n >= 0\}$ ii. Eliminate useless symbols, ∈-productions and unit productions for the 8 following grammar: $S\rightarrow0A0 \mid 1B1 \mid BB, A\rightarrow C, B\rightarrow S \mid A, C\rightarrow S \mid \in$
- OR iii. Given the context-free grammar G, find a CFG G' in Chomsky Normal 8 Form. $G: S \rightarrow AaA \mid CA \mid BaB \mid A \rightarrow aaBa \mid CDA \mid aa \mid DC \mid B \rightarrow bB \mid$ bAB | bb | aS C \rightarrow Ca | bC | D D \rightarrow bD | ϵ , ϵ represents null.
- Q.4 i. Define PDA.
 - ii. Design PDA for $\{a^ncb^n | n \ge 1\}$
- OR iii. Construct a PDA from the following CFG. $G = (\{S, X\}, \{a, b\}, P, S)$
 - where the productions are - $S \rightarrow XS \mid \varepsilon, A \rightarrow aXb \mid Ab \mid ab$
- Define TM. Q.5 i.
 - Design a Turing machine to reverse the string over alphabet $\{0, 1\}$.
- OR iii. Write short note on
 - (a) TM as language acceptors. (b) TM as Transducers
- 0.6 Attempt any two:
 - Differentiate between classes P and NP.
 - Write a short note on PCP.
 - iii. What is decidability? How to prove that the given language is 5 undecidable?

Marking Scheme CA5CO13 Theory of Computation

Q.1	i.	To define finite automata number of tuples required are:	1
		(d) 5	
	ii.	Complementation of Regular Language is:	1
		(a) Regular	
	iii.	If $\Sigma = \{0,1\}$ then ϕ^* will be equivalent to:	1
		(a) ε	
	iv.	Type 2 grammar is best described as:	1
		(c) Context free grammar	
	v.	PDA is more powerful than	1
		(b) Finite automata	
	vi.	Which operation can be applied on stack?	1
		(c) Both (a) and (b)	
	vii.	Which of the following cannot be a possibility of a TM while it	1
		processes an input?	
		(d) None of these	
	viii.	X is a simple mathematical model of a computer. X has unrestricted	1
		and unlimited memory. X is a FA with Read-Write head. X can have	
		an infinite tape divided into cells, each cell holding one symbol. Name	
		X?	
		(c) Turing machines	
	ix.	PCP abbreviates for:	1
		(a) Post Correspondence problem	
	х.	Which of the following problems is undecidable?	1
		(b) Ambiguity problem for CFGs	
Q.2	i.	Define Finite Automata.	2
-		Definition of all tuples	
	ii.	Design a DFA over $\Sigma = \{a, b\}$	3
	iii.	Construct the minimum state automata	5
		Stepwise marking	
OR	iv.	Find equivalent NFA without ε move.	5
		Stepwise marking	

Q.3	i. ii.	Give CFG for following language $L = \{a^{n+2} b^n \mid n >= 0\}$ Eliminate useless symbols Stepwise marking		8
OR	iii.	Find a CFG G' in Chomsky Normal Form. Stepwise marking		8
Q.4	i.	Define PDA. Definition of all tuples		3
	ii.	-		7
	11.	Design PDA for {a ⁿ cb ⁿ n≥1} Logic	2 marks	,
		Design of all tuples	5 marks	
OR	iii.	Construct a PDA from the following CFG. Stepwise marking		7
Q.5	i.	Define TM.		4
	ii.	Definition and explanation of all tuples Design a Turing machine to reverse the string over alphabe	et {0, 1}.	6
		Stepwise marking		
OR	iii.	Write short note on		6
		(a) TM as language acceptors.	3 marks	
		(b) TM as Transducers	3 marks	
Q.6		Attempt any two:		
	i.	Differentiate between classes P and NP.		5
		At least five differences 1 mark for each	(1 mark *5)	_
	ii.	Write a short note on PCP.		5
	iii.	Decidability	2 marks	5
		To prove that the given language is undecidable	3 marks	
