讲义习题2.1:1,2; 教材33-34页2,4,5,7; 教材39页1.

2.1

Suppose F is a field and V is a linear space on F, prove that

(1) For $c \in F \setminus \{0\}$, $\alpha, \beta \in V$, if $c\alpha = c\beta$ then $\alpha = \beta$.

Proof: Note that

$$\alpha = c^{-1} \cdot c\alpha = c^{-1} \cdot c\beta = \beta.$$

(2) For $c_1,c_2\in F$, and $\alpha\in V\backslash\{0\}$, if $c_1\alpha=c_2\alpha$ then $c_1=c_2$.

Proof: Note that

$$0=c_1\alpha-c_2\alpha=(c_1-c_2)\alpha\implies c_1=c_2.$$

33-2

If V is a vector space over the field F, verify that

$$(\alpha_1+\alpha_2)+(\alpha_3+\alpha_4)=[\alpha_2+(\alpha_3+\alpha_1)]+\alpha_4$$

for all vectors $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ in V.

Proof:

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = [(\alpha_1 + \alpha_2) + \alpha_3] + \alpha_4$$

$$= [(\alpha_2 + \alpha_1) + \alpha_3] + \alpha_4$$

$$= [\alpha_2 + (\alpha_1 + \alpha_3)] + \alpha_4$$

$$= [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4.$$

34-4

Let V be the set of all pairs (x,y) of real numbers, and let F be the field of real numbers. Define

$$(x,y) + (x_1, y_1) = (x + x_1, y + y_1)$$

 $c(x,y) = (cx, y).$

Is V, with these operations, a vector space over the field of real numbers?

Proof: Yes. Clearly addition and scalar multiplication are both associative and communicative. The zero element is (0,0), and for any $(x,y)\in V$, (x,y)+(-x,-y)=(0,0) so there is an additive inverse. For any c_1,c_2 and $(x,y),(c_1+c_2)(x,y)=((c_1+c_2)x,y)=c_1(x,y)+c_2(x,y)$. For any $c\in F$ and $(x,y),(z,w)\in V$, c((x,y)+(z,w))=c(x+z,y+w)=(cx+cz,y+w)=c(x,y)+c(z,w). Therefore V is a linear space.

34-5

On \mathbb{R}^n , define two operations

$$\alpha \oplus \beta = \alpha - \beta$$
$$c \cdot \alpha = -c\alpha.$$

The operations on the right are the usual ones. Which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, \cdot)$?

Solution:

- For $\alpha=(1,0,\cdots,0)$ and $\beta=(0,0,\cdots,0)$, $\alpha\oplus\beta\neq\beta\oplus\alpha$.
- Let $\alpha=\beta=\gamma=(1,0,\cdots,0)$, then $(\alpha\oplus\beta)\oplus\gamma=(-1,0,\cdots,0)\neq\alpha=\alpha\oplus(\beta\oplus\gamma)$.
- For $c_1, c_2 \in F$, $(c_1 \cdot c_2)\alpha = -c_1c_2\alpha \neq c_1c_2\alpha = c_1 \cdot (c_2 \cdot \alpha)$,
- while $(-1) \cdot \alpha = \alpha$ for any $\alpha \in V$.
- There exists a right identity $0=(0,\cdots,0)$ such that $\alpha+0=\alpha$, but no left identity.
- There exists an inverse $\alpha \oplus \alpha = 0$.
- For any c_1, c_2 and $\alpha \in V$, $(c_1 + c_2) \cdot \alpha = -c_1 \alpha c_2 \alpha = c_1 \cdot \alpha + c_2 \cdot \alpha$.
- For any $c \in F$ and $\alpha, \beta \in V$, $c \cdot (\alpha \oplus \beta) = c \cdot (\alpha \beta) = c\beta c\alpha = c \cdot \alpha c \cdot \beta = (c \cdot \alpha) \oplus (c \cdot \beta)$.

34-7

Let V be the set of pairs (x, y) of real numbers and let F be the field of real numbers. Define

$$(x,y) + (x_1,y_1) = (x+x_1,0)$$

 $c(x,y) = (cx,0).$

Is V, with these operations, a vector space?

Solution: No, since the additive identity does not exists: for any $(a,b) \in V$, $(0,1) + (a,b) = (a,0) \neq (0,1)$.

39-1

Which of the following sets of vectors $\alpha=(a_1,\cdots,a_n)$ in \mathbb{R}^n are subspaces of \mathbb{R}^n , ($n\geqslant 3$)

- (a) all α such that $a_1 \geqslant 0$;
- No, consider the inverse of $(1, 0, \dots, 0)$.
- (b) all lpha such that $a_1+3a_2=a_3$;

Yes, this is a linear equation.

- (c) all α such that $a_2 = a_1^2$;
- No, consider $2 \cdot (1, 1, 0, \dots, 0) = (2, 2, 0, \dots, 0)$.
- (d) all α such that $a_1a_2=0$;
- No, consider $(1, 0, \dots, 0) + (0, 1, 0, \dots, 0) = (1, 1, 0, \dots, 0)$.
- (e) all α such that a_2 is rational.
- No, consider $\sqrt{2} \cdot (0, 1, \dots, 0)$.