Rank-76308 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_0^2 X_1 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 76308

General information

Number of lines	4
Number of points	11
Number of singular points	0
Number of Eckardt points	1
Number of double points	1
Number of single points	7
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{4}
Type of lines on points	$3, 2, 1^7, 0^2$

Singular Points

The surface has 0 singular points:

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_4$$

$$\ell_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

$$\ell_3 = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \mathbf{Pl}(0, 1, 1, 1, 1, 1)_{34}$$

Rank of lines: (34, 18, 12, 26)

Rank of points on Klein quadric: (1, 4, 32, 34)

Eckardt Points

The surface has 1 Eckardt points:

 $0: P_{12} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1). T = 13$

Double Points

The surface has 1 Double points:

The double points on the surface are:

$$P_2 = (0,0,1,0) = \ell_0 \cap \ell_1$$

Single Points

The surface has 7 single points:

The single points on the surface are:

 $0: P_3 = (0,0,0,1)$ lies on line ℓ_0

1: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_2

2: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_2

3: $P_8 = (1, 1, 1, 0)$ lies on line ℓ_3

The single points on the surface are:

$4: P_9 = (1,0,0,1)$ lies on line ℓ_1

5:
$$P_{11} = (1, 1, 0, 1)$$
 lies on line ℓ_3

6: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_1

Points on surface but on no line

The surface has 2 points not on any line:

The points on the surface but not on lines are:

$$0: P_1 = (0, 1, 0, 0)$$

$$1: P_{14} = (0, 1, 1, 1)$$

Line Intersection Graph

$$\begin{array}{c|c}
0123\\
\hline
00111\\
11000\\
21001\\
31010
\end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_{12}	P_{12}

Line 1 intersects

Line	ℓ_0
in point	P_2

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_3
in point	P_{12}	P_{12}

Line 3 intersects

Line	ℓ_0	ℓ_2
in point	P_{12}	P_{12}

The surface has 11 points:

The points on the surface are:

 $0: P_1 = (0, 1, 0, 0)$ $1: P_2 = (0, 0, 1, 0)$ $2: P_3 = (0, 0, 0, 1)$ $3: P_4 = (1, 1, 1, 1)$ $4: P_5 = (1, 1, 0, 0)$ $5: P_8 = (1, 1, 1, 0)$ $6: P_9 = (1, 0, 0, 1)$ $7: P_{11} = (1, 1, 0, 1)$ $8: P_{12} = (0,0,1,1)$ $9: P_{13} = (1,0,1,1)$ $10: P_{14} = (0,1,1,1)$