Action spotting on SoccerNet Challenge

MSc Artificial Intelligence for Science and Technology

Advanced techniques

Submitted by

Daniele Cecca Mat.914358

\longrightarrow

Introduction

This project focuses on the development and implementation of classification system for ball events in a football match, also called ball action spotting.

It utilizes the **SoccerNet dataset** and draws inspiration from previously proposed solutions

PROJECT STRUCTURE

- 1. Load create and explore the **dataset**
- 2. Create the ActionRecognitionDataset
- 3. Design and develop the architecture of the network.
- 4. Train the network using different hyperparameters.
- 5. Select the **best-performing network** and train it for additional epochs.
- 6. Evaluate the network's performance.
- 7. Implementation of a web app with **Streamlit**

SoccerNet Dataset

The dataset is composed of **7 videos of English Football League games**, and to each video a **JSON** with the **timestamp** and the **label** is associated.

In total we have have 12 different types of action

Pass	Drive	Header	High Pass
Out	Cross	Throw in	Shot
Ball Player Block	Player Successful Tackle	Free Kick	Goal

SoccerNet Dataset

CREATION OF THE DATASET

Divide the videos matches into segments

02

Create the dataframe

I will apply label encoding on the label

Since defining precise **temporal boundaries** for actions is challenging because it's hard to fix the exact **start** and **end** times, and knowing what occurs after the action can be beneficial, I **extend** the interval by one **second beyond** the defined action times in the JSON file.

	clip_filename	label	clip_duration
0	/content/data/new_val_data/2019-10-01 - Middle	PASS	1
1	/content/data/new_val_data/2019-10-01 - Middle	DRIVE	2
2	/content/data/new_val_data/2019-10-01 - Middle	PASS	3
3	/content/data/new_val_data/2019-10-01 - Middle	DRIVE	4
4	/content/data/new_val_data/2019-10-01 - Middle	HIGH PASS	7

Advanced techniques

SoccerNet Dataset

EXPLORATION OF THE DATASET

\longrightarrow

Training Set

Validation set

Test set

ActionRecognition Dataset class

The main idea is to take for each clip **15 frames**, one every 12 frames (because the mean length is 4), and then divide these frames into **stacks of 3 frames**.

So in the end we will have a vector of [1, 5, 3, 224, 398] where [B, T, C, H, W].

This will be useful to stack temporal information that will be processed by the network.

Videos will be transformed into grayscale

Network architecture

Building blocks

NETWORK

EfficientNetV2

Inverted residual network

(a) Residual block

(b) Inverted residual block

Residual block

3D Convolution

NetVLAD

$$V(j,k) = \sum_{i=1}^{N} a_k(\mathbf{x}_i) \left(x_i(j) - c_k(j) \right),$$

$$V(j,k) = \sum_{i=1}^{N} \frac{e^{\mathbf{w}_k^T \mathbf{x}_i + b_k}}{\sum_{k'} e^{\mathbf{w}_{k'}^T \mathbf{x}_i + b_{k'}}} \left(x_i(j) - c_k(j) \right)$$

HyperParameters Tuning NETWORK

I create a configuration that will be used by the **Weights and Biases agent** to set the different **hyperparameters** during various experiments. I used the simplest agent which chose the combination of the **parameters randomly**.

Parameters	Values
epochs	5
learning rate	[0.01, 0.001, 0.0001]
dropout	[0.4, 0.5]
Batch Size	[1,3,5]
loss function	focal loss
optimizer	adam

Focal Loss

NETWORK

Focal Loss is a loss function designed to address the challenge of class imbalance in tasks such as object detection.

Focal Loss is a modified version of the standard **Cross-Entropy Loss** that down-weights the contribution of easy-to-classify examples and focuses more on hard-to-classify examples. It is defined as

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t)$$

- ullet p_t is the model's estimated probability for the true class.
- ullet $lpha_t$ is a weighting factor for the class, balancing the importance of positive/negative example
- \bullet γ is a focusing parameter that adjusts the rate at which easy examples are down-weighted.

Training

NETWORK

Parameter	Value	
Batch Size	1	
Drop Out	0.4	
Epochs	5	
Learning Rate	0.0001	

Training the best model

NETWORK

The behavior of the model is a little bit strange because both the **training** loss and the validation loss are volatile.

Despite it all I think the model is becoming better at generalizing because both validation and training losses are **decreasing on average**.

So in this case, it is difficult to talk about overfitting and underfitting.

5 epochs model

- accuracy micro: 0.36precision micro: 0.36
- recall micro: 0.3
- f1 micro: 0.36

- accuracy macro: 0.36
- precision macro: 0.03
- recall macro: 0.08
- f1 macro: 0.045

20 epochs model

- accuracy macro : 0.44
- precision macro: 0.08
- recall macro: 0.09
- f1 macro: 0.07

- accuracy micro: 0.44
- precision micro: 0.44
- recall micro: 0.44
- f1 micro: 0.44

Evaluation

NETWORK

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

$$\text{Recall} = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

F1 Score =
$$2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

--> Streamlit app

Start classification

Network

- Increase the dataset
- FineTune the model on the dataset of the task of action spotting
- Train for more epochs
- Try other hyperparameters
- Use high quality video
- Use RGB video
- Try other architectures

Streamlit

- Add a trigger to start the video when the classification begins.
- Use YOLO or another object detection model to assign the event to each player and compute some statistics relevant to the players.

INSPIRATION

State of art

INSPIRATION-BIBLIOGRAPHY

- NetVlad ++
- Encoder2D3DLateFusion
- <u>EfficientNetV2</u>
- <u>SoccerNet</u>
- NetVlad

- Vlad
- <u>DatasetSoccerNet</u>
- OverviewTrends
- <u>InvertedResidualBlocks</u>
- <u>LibraryActionSpotting</u>
- FocalLoss

THANKS FOR ATTENTION

DANIELE CECCA MAT 914358

Advanced techniques 2023-2024

Presentation

DEMO

DEMO

DANIELE CECCA MAT 914358

Advanced techniques 2023-2024

Presentation

