f: R-> R $f'(x^*) = 0$, $f''(x^*) < 0$ =) x* makommungukt x + Hen f (x*) x > 0 (a) this then f(x*) er positive def., so as de ledende underdetermnanter Dk (x*) > 0 , k = 1, ..., 4 Determinanten es en kontinuert af boldwing.

=) Des finale en lengle B(x*, r), r>0; hvor then f(x) possible, $x \in B(x^{*}, r)$ Fra Teore 2.3.2 follow, at f solving konvelos på $B(x^{*}, r)$. Teoren 3.1.2 folgs, at x* es wininum B(x* 1) Analogt to -f.

Hen $f(x^*)$ indefaut \Rightarrow Der finder

poritive og negative egenværeder af blen $f(x^*)$. $n, v \in \mathbb{R}^n$ og $x \in B(x^*, r)$, r > 0Såleder, at n^* blen $f(x) n = \alpha > 0$, v^* then $f(x) v = \beta < 0$, (c)170 tilstackheligt sille: $f(x^{*} + \tau n) = f(x^{*}) + \frac{1}{2} (\tau n)^{T} Hen f(x) (\tau n)$ $f(x_{*} + 1_{k}) = f(x_{*}) + \frac{5}{12}(1_{k})_{L} f(x_{*}) (1_{k})$ $= f(x_{*}) + \frac{5}{12}(1_{k})_{L} f(x_{*}) (1_{k})_{L}$ = f(x*) + & 15 < f(x*) I Beliegt f: IR" -> IR, fe C2 X* lokalt makermum : en onegn SCR4. g: R -> R a(t) = f(x* + th) = f(x*+th, , ..., x*++hn), her, ter, Ihl = 1. X* lokalt makfum ; S => Des findes et Saledes, at B(x*, r) CS hed $l_1 l_2 = 1$ og $t \in (-r, r)$ gælder $||(x^* + th) - x^*|| = ||th|| =$ 1t1 < ~ gældes f(x*++4) < f(x*) $g(t) \leq g(0)$ = g(t) has et lokalt makerman ; t=0 med updvendge befugles g'(0) = 0, $g''(0) \leq 0$ g'(t) = \(\tilde{\Sigma}\) f:\(\((x^* + + \mu)\) h; - \(\nabla f(x^* + + \mu)\) h; $f''(t) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} f_{ij}''(x^* + th) h_i h_j$ = h+ Henf(x++h) h $g'(0) = \langle \nabla f(x^{2}), h \rangle = 0$ $\Rightarrow \nabla f(x^*) = 0$ a"(0) = ht Hen f(x*) h \le 0 =) then f (x*) heg. temidef. I