Chapter-4: Group Theory.

Let A be any non-empty set. A binary operation * on A is a mapping from AXA -> A, i.e.,

a*bea, whenever a, b e A.

Example: 1) On N, define a*b= a+b, a, b ∈ N

't' is a binary operation.

- 2) On N, define a*b=a-b, $a,b\in N$.

 '-' is not a binary operation.
- 3) let a,b fa, axb = a+b-ab.

 Then 'x' is a binary operation.

If * is a binary operation on A, then we say ci) * is closure if a*bEA. Ya,bEA.

(ii) * is associative if a*(b*c) = (a*b)*c, for all $a,b,c \in A$.

(iii) An element echis called an identity element $\omega.x$ to x if $\alpha x e = e \times \alpha = \alpha$, for all $\alpha \in A$. (iv) For $\alpha \in A$, an element $b \in A$ is said to be inverse of α w. x to x ef $\alpha x b = b \times \alpha = e$, where e is an identity element. a'

(V) * is commutative (abelian) if qxb=b*a for a,b e A.

Semigroup: Let A be a non-empty set with binary operation *. A is said to be a semigroup if the following properties are satisfied.

(i) closure

(ii) Associative

Example: (N,+), (N, •)

Monoid: Let A be a non-empty set with binary operation *. A is said to be a monoid if it satisfies the following properties.

(i) Closure

(ii) Associative

(iii) Identity

Example: (N, °)

Group: Let G be a non-empty set with binary operation *. G is said to be a group if it satisfies the following properties.

(i) Closure

(ii) Associative

(iii) Identity

(iv) Inverse

Note: we represent a group G & its binary operation ** as (G, *).

Example; (Z, +)

Abelian group: A group (G, X) is said to be abelian if it is commutative.

Example: (2,+) is an abelian group.

(Q-{0}, .) es an abelian group.

Properties:

Theorem 1: In a group (G, *), identity element is unique.

Proof: Let e, and ea be the 2 identity dement of G.

As e_1 is an identity element and $e_2 \in G$ we have $e_2 \times e_1 = e_1 \times e_2 = e_2 - G$ axe=exa=GAlso as e_2 is an identity element and $e_1 \in G$, then we have

 $e_1 \times e_2 = e_2 \times e_1 = e_1 - \widehat{a}$ From $e_1 \times e_2 = e_2 \times e_1 = e_1 - \widehat{a}$

Theorem 2: In a group (9, *), inverse element is unique.

Proof: let there are 2 inverse b and c of an element $a \in G$. $a \times b = b \times a = e$ $a \times c = c \times a = e$ $a \times c = c \times a = e$

Conjer

 $b = e \times b = (c \times a) \times b$ $= c \times (a \times b)$ Associative $= c \times e$ $= c \times e$ inverse $= c \times e$ inverse

Note: In a group $(\alpha,*)$, $(\alpha^{-1})^{-1}$ = α for all $\alpha \in G$.