

Deep Learning

Deeper, Better, ____, Stronger than Machine Learning

Valentin Barriere
Universidad de Chile – DCC

CC6204. Primavera 2025

Softmax

Outline: Softmax

Softmax

Recordatorios

Cross-Entropía

Entropía y Información

Intuición de la Cross-Entropía

Outline: Recordatorios

Softmax

Recordatorios

Hiperplano y producto scalar

De afina a lineal

Resumen

Clasificador multiclasses

Cross-Entropía

Entropía y Información

Intuición de la Cross-Entropía

Recordatorios de geometría: hiperplano I

Definición

En un espacio de dimensión d, como \mathbb{R}^d un hiperplano $\mathcal H$ es el

conjunto de puntos
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$
 que satisfacen una ecuación del tipo:

$$\mathcal{H}: w_1x_1+w_2x_2+...+w_dx_d+w_0=0, \quad donde \quad \forall i \quad w_i \in \mathbb{R}$$

Un hiperplano divide el espacio en 2 partes (es un espacio de dimensión d-1). En \mathbb{R}^2 (plano) es de dimensión 1 (es ??), en \mathbb{R}^3 es de dimensión 2 (es ??)...

El signo de $w_1x_1 + w_2x_2 + ... + w_dx_d + w_0$ define de qué lado del espacio separado por \mathcal{H} se encuentra \mathbf{X} : si > 0 entonces \mathbf{X} está de un lado del hiperplano, sino está del otro lado.

4

Recordatorios de geometría: hiperplano I

Definición

En un espacio de dimensión d, como \mathbb{R}^d un hiperplano $\mathcal H$ es el

conjunto de puntos
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix}$$
 que satisfacen una ecuación del tipo:

$$\mathcal{H}: w_1x_1 + w_2x_2 + ... + w_dx_d + w_0 = 0$$
, donde $\forall i \ w_i \in \mathbb{R}$

Un hiperplano divide el espacio en 2 partes (es un espacio de dimensión d-1). En \mathbb{R}^2 (plano) es de dimensión 1 (es una recta), en \mathbb{R}^3 es de dimensión 2 (es un plano)...

El signo de $w_1x_1 + w_2x_2 + ... + w_dx_d + w_0$ define de qué lado del espacio separado por \mathcal{H} se encuentra \mathbf{X} : si > 0 entonces \mathbf{X} está de un lado del hiperplano, sino está del otro lado.

4

Recordatorios de geometría: hiperplano II

Un hiperplano en 2D (= ???) definido por un vector normal $\vec{n} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ y un sesgo w_0 .

Un hiperplano en 3D (= ???) definido por un vector normal $\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ y un sesgo d

Recordatorios de geometría: hiperplano II

Un hiperplano en 2D (= Recta) definido por un vector normal $\vec{n} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ y un sesgo w_0 .

Un hiperplano en 3D (= Plano) definido por un vector normal $\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ y un sesgo d

Recordatorios de geometría: hiperplano III

Ecuación

Para cualquier punto $\mathbf{X} \in \mathbb{R}^d$, el signo de $w_1x_1 + ... w_dx_d$ delimita de qué lado del espacio separado por el hiperplano se encuentra el punto \mathbf{X}

Tenemos lo que está de un lado del plano y lo que está del otro lado del plano según el valor del producto escalar con la normal \vec{n}

Recordatorios de geometría: hiperplano IV

Con
$$\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_d \\ 1 \end{pmatrix}$$
 y $\theta = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \\ \theta_0 \end{pmatrix}$ entonces se puede reducir la ecuación anterior a:

$$\mathcal{H}: w_1 x_1 + w_2 x_2 + ... + w_d x_d + w_0 = w_0 + \sum_{i=1}^d w_i x_i = \langle \theta | \mathbf{X} \rangle = 0$$

Donde $\langle \theta | \mathbf{X} \rangle$ es el producto escalar entre θ y \mathbf{X} : una operación lineal.

Aumento del espacio para linealidad

Al aumentar el tamaño del espacio, se puede representar un hiperplano afín mediante la ecuación de un hiperplano lineal.

Clasificador lineal: resumen

Resumen

- $\mathbf{X} \in \mathbb{R}^d$ es el vector de descriptores
- La ecuación $\mathbf{W}^T \mathbf{X} + b = 0$ define un hiperplano en \mathbb{R}^d
- $f_{\mathbf{W},b}(\mathbf{X}) = signo(\mathbf{W}^T\mathbf{X} + b)$ da la clase de \mathbf{X}

Clasificador lineal

Linealidad

- Separa el espacio con un hiperplano
- Clasificador de la forma $f_{\mathbf{W},b}(\mathbf{X}) = signo(\mathbf{W}^T\mathbf{X} + b)$
- Dos ejemplos anteriores: binario (2 clases) y multinomial (n clases)
- Operación matricial lineal

Clasificador lineal multiclasses : operación matricial

Ya no tenemos un simple vector de parámetros $\mathbf{W} = (w_1 \cdots w_D)$ como antes, sino una matriz $\mathbf{W} = (w_{cd})_{c=1..C,d=1..D}$

Clasificador lineal : Integración del sesgo

Linealidad

Al aumentar la dimensión y concatenar un simple vector de 1 al final de los descriptores, obtenemos una operación lineal

- Separa el espacio con un hiperplano
- Clasificador de la forma $f_{\mathbf{W},b}(\mathbf{X}) = \arg\max_{clases}(\mathbf{W}^T\mathbf{X} + b)$
- Si solo hay 2 clases, el argmax puede reemplazarse por una función de signo

Regresión Logística

Para transformar las "distancias" $\mathbf{W}^T\mathbf{X} + b$ entre los vectores y el plan en probabilidades de classes tenemos que utilizar una función de normalización, la funcion sigmoidal o softmax:

$$\Phi(\mathsf{dist}) = \frac{1}{1 + e^{-\mathsf{dist}}}$$

Regresión Logística Multiclase: Softmax

Clasificador lineal binario y función logística:

$$P(Y = 1) = \frac{1}{1 + \exp^{-\langle \theta | \mathbf{X} \rangle}} = \frac{\exp^{\langle \theta | \mathbf{X} \rangle}}{\exp^{\langle \theta | \mathbf{X} \rangle} + 1} = \frac{\exp^{\langle \theta^{(1)} - \theta^{(-1)} | \mathbf{X} \rangle}}{\exp^{\langle \theta^{(1)} - \theta^{(-1)} | \mathbf{X} \rangle} + 1}$$
$$= \frac{\exp^{\langle \theta^{(1)} | \mathbf{X} \rangle}}{\exp^{\langle \theta^{(1)} | \mathbf{X} \rangle} + \exp^{\langle \theta^{(-1)} | \mathbf{X} \rangle}}$$

• RL para varias clases: $P(Y = c) = \frac{\exp^{<\theta^{(c)}|X>}}{\sum_{i=1}^{c} \exp^{<\theta^{(i)}|X>}}$, con :

$$\theta = \begin{pmatrix} | & | & | & | \\ \theta^{(1)} & \theta^{(2)} & \dots & \theta^{(C)} \\ | & | & | & | \end{pmatrix}$$

• Clase final: $\hat{c} = \arg \max_{c} P(Y = c)$

Regresión Logística Multiclase: Softmax

Softmax

$$\mathbb{R}^d
ightarrow]0;1[^d$$

$$Softmax: (x_k)_k \mapsto (rac{e^{x_k}}{\sum_j e^{x_j}})_k$$

La funcion Softmax transforma un set de valores en probabilidades:

- Tienen valores entre 0 y 1
- La suma iguale 1:

$$\sum_{k} \left(\frac{e^{x_k}}{\sum_{j} e^{x_j}}\right)_k = 1$$

Capa final

Por eso, se puede usar un Softmax en capa final, con una loss cross-entropia que necesita probabilidades.

Cross-Entropía

Outline: Cross-Entropía

Softmax

Recordatorios

Cross-Entropía

Entropía y Información

Intuición de la Cross-Entropía

Outline: Entropía y Información

Softmax

Recordatorios

Cross-Entropía

Entropía y Información

Intuición de la Cross-Entropía

Información y Sorpresa

Para un único evento x con probabilidad P(x), la auto-información (o sorpresa) se define como:

$$I(x) = \log P(x)$$

Propiedades

- Si P(x) = 1 (cierto), entonces I(x) = 0: no hay nueva información.
- Si $P(x) \to 0$, entonces $I(x) \to \infty$: eventos muy sorprendentes conllevan mucha información.

Entropía de una distribución

- Un evento: Self-información
- Muchos eventos: La entropía mide el inverso de la cantidad promedio de información producida por una fuente estocástica de datos.

Para una variable aleatoria discreta X con distribución de probabilidad P(x), la entropía de Shannon es:

$$H(X) = \mathbb{E}[I(x)] = -\sum_{x} P(x) \log P(x)$$

Este es el número esperado de bits necesarios para codificar los resultados de X usando el esquema de codificación óptimo.

H es máximo cuando $p(x) = \frac{1}{|X|}$, es decir, p es uniforme: sin estructura/información.

Entropía de una distribución

- Un evento: Self-información
- Muchos eventos: La entropía mide el inverso de la cantidad promedio de información producida por una fuente estocástica de datos.

Para una variable aleatoria discreta X con distribución de probabilidad P(x), la entropía de Shannon es:

$$H(X) = \mathbb{E}[I(x)] = -\sum_{x} P(x) \log P(x)$$

Este es el número esperado de bits necesarios para codificar los resultados de X usando el esquema de codificación óptimo.

H es máximo cuando $p(x) = \frac{1}{|X|}$, es decir, p es uniforme: sin estructura/información.

Otra notación: La entropía de una distribución se define como:

$$H(p) = \sum_{x} p(x) \log \frac{1}{p(x)}.$$

Temperatura

Supongamos que muestreamos de una distribución p. Si introducimos una variable T esta cambiará la distribución a $p^{\frac{1}{T}}$.

Figure 1: Misma distribución con diferentes temperaturas

 $T \geq 0$ es un parámetro de **temperatura** que controla cuánta aleatoriedad queremos al muestrear de la distribución.

Temperatura y Modelos de Lenguaje Grandes

Supongamos que muestreamos de una distribución p. Si introducimos una variable T esta cambiará la distribución a $p^{\frac{1}{T}}$.

Figure 1: Misma distribución con diferentes temperaturas

 $T \ge 0$ es un parámetro de **temperatura** que controla cuánta aleatoriedad queremos al muestrear de la distribución. Si es usado por un LLM:

- T = 0: elige determinísticamente el token más probable x_i en cada posición
- ullet T=1: muestrea "normalmente" del modelo de lenguaje puro
- $T = \infty$: muestrea de una **distribución uniforme** sobre todo el vocabulario $\mathcal V$

Termodinámica y Entropía

- Una medida del **grado de aleatoriedad** de la energía en un sistema
- Cuanto menor es la entropía, más ordenado y menos aleatorio es

Figure 2: Entropía en termodinámica

Con temperatura y LM

Cuanto mayor es la temperatura de la sala, más entropía se crea. Usando $T=\infty$ obtenemos una distribución uniforme de las proba sobre $\mathcal V$, que es lo más aleatorio posible.

Termodinámica y Entropía

- Una medida del **grado de aleatoriedad** de la energía en un sistema
- Cuanto menor es la entropía, más ordenado y menos aleatorio es

Figure 2: Entropía en termodinámica

Con temperatura y LM

Cuanto mayor es la temperatura de la sala, más entropía se crea. Usando $\mathcal{T}=\infty$ obtenemos una distribución uniforme de las proba sobre \mathcal{V} , que es lo más aleatorio posible. Una distribución uniforme contiene poca información, ya que todos los eventos tienen la misma probabilidad.

Entropía e Información en Bits

La entropía mide el **número mínimo promedio de bits** necesarios para codificar sin pérdidas muestras de *p*. En otras palabras, si un evento es muy probable, debe codificarse óptimamente con menos bits para ahorrar espacio.

Intuición del porqué

- Cada bit divide el espacio de posibilidades en dos. Para aislar un evento que ocurre con probabilidad p(x), se necesitan suficientes bits para distinguirlo entre 1/p(x) eventos igualmente probables lo que requiere $\log_2(1/p(x))$ bits.
- Por ejemplo, si p(x) = 1/8, entonces x recibe un código de 3 bits
 (p. ej., 110), ya que log₂(8) = 3. Hay exactamente 8 de esos códigos de 3 bits uno para cada resultado.
- Los códigos óptimos asignan longitudes de bits proporcionales a

 log₂ p(x). La entropía es el límite teórico de compresión impuesto
 por la información.

Outline : Intuición de la Cross-Entropía

Softmax

Recordatorios

Cross-Entropía

Entropía y Información

Intuición de la Cross-Entropía

Cross-Entropía

Cross-Entropía

$$H(p,q) = \sum_{x} p(x) \log \frac{1}{q(x)},$$

mide el número esperado de bits necesarios para codificar una muestra $x \sim p$ usando el esquema de compresión dado por el modelo q (representando x con un código de longitud $\frac{1}{q(x)}$).

Una propiedad crucial es que la cross-entropía H(p,q) acota superiormente la entropía H(p):

$$H(p,q) \geq H(p)$$
,

Si queremos minimizar la entropía, necesitamos encontrar un q (nuestra predicción) lo más cercano posible a p.

Lo que nos da al final

Con los redes neuronales

- La x-entropía sirve a comparar distribuciones de probabilidades
- Despues de un softmax tenemos una pdf
- Un encoding one-hot de las etiquetas es tambien una pdf

Cross-entropía calcula una divergencia entre las distribuciones de probabilidad.

$$\ell(y, \hat{y}) = -\sum y_i \log(\hat{y}_i) = -\sum y_i \log(p(y_i)) = -\log(p(\hat{y}_k))$$

Donde $y = (\mathbb{1}_k)_i$ un encoding one-hot de la etiqueta real y_k .

References i