Lectromagnetism

Professor D. Evans d.evans@bham.ac.uk

Lecture 12
Magnetic Force & Dipoles
Week 6

Last Lecture

We started Part II – Magnetism

- Definition of Current
- Current Density
- Magnetic force on a moving charge
- The Lorentz Force
- Magnetic field lines

Gauss's Law for Magnetism

- For E-fields, net electric flux: $\int_{S} \underline{E} \cdot d\underline{S} = \frac{Q_{enc}}{\varepsilon_{0}}$
- But there are no magnetic monopoles so for magnetic fields:
- Net magnetic flux:

•
$$\int_{S} \underline{B} \cdot d\underline{S} = 0$$

(not much use for this course but does form Maxwell's 2nd equation)

Summary

• A magnetic field \underline{B} is defined in terms of the force \underline{F}_m acting on a test particle with charge q and moving through the field with velocity \underline{v} :

$$\underline{F}_m = q\underline{v} \wedge \underline{B}$$

 The general case of both B-fields and E-fields is the Lorentz equation (Lorentz Force):

$$\underline{F} = q(\underline{E} + \underline{v} \wedge \underline{B})$$

This Lecture

- Special cases of magnetic force
- Force on current carrying conductor
- Current Loops and Magnetic Dipoles
 - Torque on magnetic dipole in B-field
 - Potential energy of magnetic dipole in B-field

Special Cases of Magnetic Force

- $\underline{F}_m = q\underline{v} \wedge \underline{B}$
- Special cases:
- $\underline{\mathbf{v}}$ parallel to $\underline{\mathbf{B}}$ ($\underline{\mathbf{F}}_m = q\underline{\boldsymbol{v}} \wedge \underline{\mathbf{B}} = 0$)
- v perpendicular to B
- $\underline{\mathbf{v}}$ makes an angle θ to $\underline{\mathbf{B}}$

Direction of B-field

The direction of B field in sketches (in to and out of page)

B-field going in to the page

B-field coming **out** of the page

i.e. like the back or front of a dart

V Perpendicular to B

• $\underline{V} \perp \underline{B}$ $\underline{F} \perp$ to the plane containing \underline{B} and \underline{v}

X

X

$$|\underline{F}_m| = |q\underline{v} \wedge \underline{B}| = qvB$$

Gives circular motion Equate forces:

$$qvB = \frac{mv^2}{r}$$

Use visualizer

V Perpendicular to B

• $\underline{V} \perp \underline{B}$ $\underline{F} \perp$ to the plane containing \underline{B} and \underline{v}

X

$$r = \frac{mv}{Bq} = \frac{p}{Bq}$$
where p is momentum

Also:
$$\frac{Bq}{m} = \frac{v}{r} = \omega$$

So frequency of "orbital motion": $f = \frac{\omega}{2\pi} = \frac{Bq}{2\pi m}$

v makes an angle θ with B

- a uniform circular motion (with "cyclotron angular frequency" $\omega = 2\pi/T$) in which it has the speed V sin θ in a plane perpendicular to the direction of B.
- a steady speed of magnitude $V \cos\theta$ along the direction of B
- Helical Motion

v makes an angle θ with B

Looking along x direction, clockwise motion for –q, anticlockwise motion for +q

Force on Surrent carrying Conductor

- Single charge $\underline{F}_m = q\underline{v} \wedge \underline{B}$
- N, number of charge carriers in volume Al is N = nAl

where n is charge number density

- Total force $F = Nq\underline{\boldsymbol{v}} \wedge \underline{\boldsymbol{B}} = -nAle \boldsymbol{v} \wedge \boldsymbol{B}$
- But current: $\underline{I} = -nAe\underline{v}$
- So: $\underline{F} = l \underline{I} \wedge \underline{B}$ but by convention we define l as the vector I as a scalar.

Force on Gurrent carrying Conductor

In general

$$\underline{F} = I \underline{l} \wedge \underline{B}$$

magnetic force on a straight wire segment.

The direction of \underline{l} is defined as the direction of the current \underline{I}

Left Hand Rule

Force on Non-Straight Conductor

- If the conductor is not straight, consider individual segments and use:
- $\delta \underline{F} = I \delta \underline{l} \wedge \underline{B}$
- magnetic force on an infinitesimal wire segment

Total force:

•
$$\underline{F} = \int_a^b I \ d\underline{l} \wedge \underline{B}$$

Current Loops Magnetic Dipoles Magnetic Dipole Moment

Magnetic Dipoles

A current loop is known as a Magnetic Dipole

The magnitude of the of the Magnetic Dipole Moment is:

Current x Area of loop

(a) Current-carrying loop

$$\mu = I \times A$$

Magnetic Dipole Moment

The Magnetic Dipole Moment is a Vector

The area enclosed by the loop may be defined as a vector $\underline{A} = A \hat{\underline{n}}$ where $\hat{\underline{n}}$ is a unit vector normal to the area

 $\mu = I\underline{A}$

(a) Current-carrying loop

Units are Am^2

Magnetic Dipole

 A current loop produces a magnetic field, similar to that produced by a tiny bar magnet.

 We will cover Bfields produced by currents in the next lecture.

Current Loop in B-field

• Consider a current loop in a B-field (coming out of the page). v

No net force No net Torque

Torque on Current Loop

Now consider loop at an angle to x-axis

b parallel to y a makes an angle θ to x

Torque on Current Loop

$$F_2 = B I b$$

Torques:
$$\underline{\tau} = \underline{r} \wedge \underline{F}$$

$$\tau = a F_2 \sin \theta$$

Torque on Eurrent Loop

Cross-sectional view

$$z \uparrow y \longrightarrow x$$

$$F_2 = B I b$$

Torques:
$$\underline{\tau} = \underline{r} \wedge \underline{F}$$

$$\tau = a F_2 \sin \theta$$

So
$$\tau = a (B I b) \sin \theta = BI ab \sin \theta = BIA \sin \theta$$

Torque on Eurrent Loop

Cross-sectional view

$$\tau = BIA \sin \theta$$

$$\underline{\tau} = I \underline{A} \wedge \underline{B}$$

Torque on Eurrent Loop

$$\underline{\tau} = I \underline{A} \wedge \underline{B}$$

- True for loops of any shape
- But magnetic dipole moment
- So torque on any current loop

$$\mu = I\underline{A}$$

$$\underline{\tau} = \underline{\mu} \wedge \underline{B}$$

Potential Energy of Magnetic Dipole in B-field

Work done in moving dipole by a small angle, $\delta\theta$:

$$\delta W = \tau \, \delta \theta$$

- Torque is in the direction of decreasing θ so:
- $\delta W = -\mu B \sin\theta \ \delta\theta$
- work done is equal to decrease in potential energy: $\delta U = -\delta W = \mu B \sin\theta \ \delta\theta$

Potential Energy of Magnetic Dipole in B-field

$$\delta U = -\delta W = \mu B \sin \theta \ \delta \theta$$

$$U = \mu B \int \sin \theta \ d\theta$$

$$U = -\mu B \cos \theta + C$$
Define $U = 0$ when $\theta = \pi/2$

• So : $U = -\mu B \cos \theta$ i.e.

$$U = -\underline{\mu} \cdot \underline{B}$$

Comparison between Magnetic & Electric Dipoles

Electric Dipole

$$p = q \underline{a}$$

$$\mu = I\underline{A}$$

$$\underline{\boldsymbol{\tau}} = \underline{\boldsymbol{p}} \wedge \underline{\boldsymbol{E}}$$

$$\underline{\tau} = \underline{\mu} \wedge \underline{B}$$

$$U = -\underline{p} \cdot \underline{E}$$

$$U = -\underline{\mu} \cdot \underline{B}$$

Excample

- A square coil with sides equal to 20 cm carries a current of 2A. It lies on the Z=0 plane in a B-field = (0.5i + 0.2k)T with the current anticlockwise when viewed from a point on the +ve z-axis. The coil has 5 turns of wire.
- 1. What is the magnetic moment of coil?
- 2. What is the torque
- 3. What is the potential energy

Time to use the visualizer

Dipoles in Nature

- Molecules behave like electric dipoles
- What in nature behaves like a magnetic dipole?

Summary

• Force on a length l of a current carrying conductor (where \underline{l} is defined to be in the dirⁿ of current flow)

$$\underline{F} = I \underline{l} \wedge \underline{B}$$

Magnetic Dipole moment:

$$\underline{\mu} = I\underline{A}$$

• Torques on magnetic dipole:

$$\underline{\boldsymbol{\tau}} = \underline{\boldsymbol{\mu}} \wedge \underline{\boldsymbol{B}}$$

• Potential energy of magnetic Dipole:

$$U = -\underline{\boldsymbol{\mu}} \cdot \underline{\boldsymbol{B}}$$