6.5 1) On donne
$$u_k = \frac{1}{2k}$$
. Posons $v_k = \frac{1}{k}$.

$$\lim_{k \to +\infty} \frac{u_k}{v_k} = \lim_{k \to +\infty} \frac{\frac{1}{2k}}{\frac{1}{k}} = \lim_{k \to +\infty} \frac{k}{2k} = \lim_{k \to +\infty} \frac{1}{2} = \frac{1}{2}$$

Comme la série harmonique de terme $v_k=\frac{1}{k}$ diverge, la série de terme $u_k=\frac{1}{2\,k}$ diverge également.

3) On donne
$$u_k = \frac{1}{\sqrt{k(k+1)}}$$
. Posons $v_k = \frac{1}{k}$.

$$\lim_{k \to +\infty} \frac{u_k}{v_k} = \lim_{k \to +\infty} \frac{\frac{1}{\sqrt{k(k+1)}}}{\frac{1}{k}} = \lim_{k \to +\infty} \frac{k}{\sqrt{k(k+1)}} = \lim_{k \to +\infty} \frac{k}{\sqrt{k^2 + k}}$$

$$= \lim_{k \to +\infty} \frac{k}{\sqrt{k^2}} = \lim_{k \to +\infty} \frac{k}{|k|} = \lim_{k \to +\infty} \frac{k}{k} = 1$$

Étant donné que la série harmonique de terme $v_k = \frac{1}{k}$ diverge, la série de terme $u_k = \frac{1}{\sqrt{k(k+1)}}$ diverge aussi.

4) On donne
$$u_k = \frac{k+2}{k(k+1)}$$
. Posons $v_k = \frac{1}{k}$.

$$\lim_{k \to +\infty} \frac{u_k}{v_k} = \lim_{k \to +\infty} \frac{\frac{k+2}{k(k+1)}}{\frac{1}{k}} = \lim_{k \to +\infty} \frac{k+2}{k+1} = \lim_{k \to +\infty} \frac{k}{k} = 1$$

Puisque la série harmonique de terme $v_k = \frac{1}{k}$ diverge, il en va de même pour la série de terme $u_k = \frac{k+2}{k(k+1)}$.

5) On donne
$$u_k = \frac{1}{k^2 + 1}$$
. Posons $v_k = \frac{1}{k^2}$.

$$\lim_{k \to +\infty} \frac{u_k}{v_k} = \lim_{k \to +\infty} \frac{\frac{1}{k^2 + 1}}{\frac{1}{k^2}} = \lim_{k \to +\infty} \frac{k^2}{k^2 + 1} = \lim_{k \to +\infty} \frac{k^2}{k^2} = 1$$

Vu que la série de terme $v_k = \frac{1}{k^2}$ converge, la série de terme $u_k = \frac{1}{k^2 + 1}$ est elle aussi convergente.

6) On donne
$$u_k = \frac{1}{10 k + 1}$$
. Posons $v_k = \frac{1}{k}$.

$$\lim_{k \to +\infty} \frac{u_k}{v_k} = \lim_{k \to +\infty} \frac{\frac{1}{10 \, k + 1}}{\frac{1}{k}} = \lim_{k \to +\infty} \frac{k}{10 \, k + 1} = \lim_{k \to +\infty} \frac{k}{10 \, k} = \frac{1}{10}$$

Comme la série harmonique de terme $v_k=\frac{1}{k}$ diverge, de même la série de terme $u_k=\frac{1}{10\,k+1}$ diverge.