Math 120A: Differential Geometry

Prof. K. Varvarezos | Fall 2024

Contents

1	Curves and Parametrizations
	1.1 Tangents to Curves
	1.2 Reparametrization
	1.3 Level Sets
2	Vector Fields
	2.1 Integral Curves
	2.2 Tangent Spaces
	2.3 Orientation
3	Curvature
	3.1 Frenet-Serret [2D]
	3.2 Frenet-Serret [3D]
4	Surfaces
	4.1 Tangent Spaces
	4.2 Orientation for Surfaces
	4.3 The Gauss Map
	4.4 Curves on Surfaces
5	Curvatures of Surfaces
	5.1 Fundamental Forms
	5.2 Isometries

Definition. A *parametrized curve* is a function $\gamma: I \to \mathbb{R}^n$ (where I is a potentially unbounded interval $I \subseteq \mathbb{R}$).

- Say that γ is **smooth** if γ is (i) continuous and (ii) infinitely differentiable
- Say that γ is **regular** if its 1^{st} derivative is never-vanishing, i.e. $\dot{\gamma} \neq \vec{0} \ \forall \ t \in I$

Definition. A set $C \subseteq \mathbb{R}^n$ is called a *(smooth) curve* if it is (locally) the image of a smooth, regular parametrized curve.

- Smoothness is a local property!
- Can still have multiple connected components, discontinuities

1.1 Tangents to Curves

Let $\gamma:(a,b)\to\mathbb{R}^n$ be a smooth parametrized curve:

- The vector $\dot{\gamma}(t) = \frac{d}{dt}\gamma(t)$ is tangent to the curve $C = \text{im}(\gamma)$ at point $\gamma(t)$
- The **speed** at time t is given by $||\dot{\gamma}(t)||$
- The $arc\ length$ of γ is given by:

$$l(\gamma) = \int_{a}^{b} ||\dot{\gamma}(t)|| dt$$

Prop. If a parametrized curve γ is **constant speed** (i.e. $||\dot{\gamma}(t)|| = c \ \forall \ t \in I$ for some $c \in \mathbb{R}$), then $\dot{\gamma}(t) \ \forall \ t \in I$.

1.2 Reparametrization

Prop. Let $\gamma_1:(a_1,b_1)\to\mathbb{R}^n, \gamma_2:(a_2,b_2)\to\mathbb{R}^n$ be smooth and regular parametrizations of the same curve C. Then for each $t\in(a_1,b_1),\ \exists$ intervals $(c_1,d_1)\subseteq(a_1,b_1),\$ and $(c_2,d_2)\subseteq(a_2,b_2)$ [with $t\in(c_1,d_1)$] and a smooth bijection [with smooth inverse] $\rho:(c_1,d_1)\to(c_2,d_2)$ s.t.

$$\implies \gamma_1 = \gamma_2 \circ \rho$$
 on the interval (c_1, d_1)

1.3 Level Sets

Definition. Let f be a (smooth) function $f: \mathbb{R}^n \to \mathbb{R}$, $c \in \mathbb{R}$; then the **level set** of f at height c is defined by:

$$f^{-1}(c) = \{x \in \mathbb{R}^n : f(x) = c\}$$

Definition. Given a function f as described above:

- A point $x \in \mathbb{R}^n$ is called a *critical point* of f if $\nabla f(x) = 0$
- A scalar $c \in \mathbb{R}$ is called a *critical value* of f if f(x) = c for some critical point $x \in \mathbb{R}^n$; otherwise, c is called a *regular value*

Thm. Let $f: \mathbb{R}^n \to \mathbb{R}$; then for any regular value $c \in \mathbb{R}$ of f, $f^{-1}(c)$ is a (smooth) curve.

2 Vector Fields

Notation:

- Base-pointed vectors: Let $p, v \in \mathbb{R}^n \to \text{denote the vector } v \text{ based at point } p \text{ as } (p, v)$
- Also denote the vector space of vectors \mathbb{R}^n based at p as \mathbb{R}^n_p
 - Base point p unchanged under addition, scalar multiplication

Definition. Let $U \subseteq \mathbb{R}^n$. A *(smooth) vector field* on U is a smooth function $X: U \to U \times \mathbb{R}^n$ such that $\forall p \in U, X(p) = (p, v)$ for some $v \in \mathbb{R}^n$.

Note. For any curve C with parametrization γ , can define its **tangent vector field** $X: C \to C \times \mathbb{R}^2$ by $X(\gamma(t)) = (\gamma(t), \dot{\gamma}(t))$.

Notation. Given a parametrized curve $\gamma:(a,b)\to\mathbb{R}^n$, a vector field along γ is a function $X:(a,b)\to\mathbb{R}^n\times\mathbb{R}^n$ s.t. $X(t)=(\gamma(t),v(t))$ [for some smooth function $v:(a,b)\to\mathbb{R}^n$].

• Can take derivatives of X w.r.t. t: $\dot{X}(t) = (\gamma(t), \dot{v}(t))$

Definition. Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$, the *gradient vector field* ∇f of f is defined by $(\forall p \in \mathbb{R}^n)$:

$$\nabla f(p) = \left(p, \left(\frac{\partial f}{\partial x_1}(p), \dots, \frac{\partial f}{\partial x_n}(p)\right)\right)$$

• For any parametrization γ of a level set $f^{-1}(c)$ [c regular value] - $\nabla f(\gamma(t)) \perp \dot{\gamma}(t)$

2.1 Integral Curves

Definition. Let $X:U\to U\times\mathbb{R}^2$ be a (smooth) vector field. An *integral curve* of X is a parametrization $\gamma:(a,b)\to U$ s.t.

$$X(\gamma(t)) = (\gamma(t), \dot{\gamma}(t)) \ \forall \ t \in (a, b)$$

Thm. Given $X: U \to U \times \mathbb{R}^2$ and $p \in U$, \exists a "maximal" integral curve of X through $p - \gamma : (a, b) \to U$ s.t. (assuming WLOG that a < 0 < b):

- 1. $\gamma(0) = p$
- 2. If $\beta: I \to U$ is another integral curve of X with $\beta(0) = p$, then $I \subseteq (a,b)$ and $\beta(t) = \gamma(t) \ \forall \ t \in I$

2.2 Tangent Spaces

Definition. Let $C \subseteq \mathbb{R}^n$ be a (smooth) curve, and let $p \in C$. A vector (p, v) based at p is said to be **tangent** to C if $v = \dot{\gamma}(t)$ for some (smooth, not necessarily regular) parametrization γ of C with $\gamma(t) = p$.

 \rightarrow The *tangent space* of C at p is defined by:

$$T_pC = \{(p, v) : (p, v) \text{ is tangent to } C\}$$

Prop. Let C be a smooth curve and γ a (smooth, regular) parametrization of C with $\gamma(t) = p$; then:

$$T_pC = \operatorname{span}\{(p, \dot{\gamma}(t))\}$$

In particular, T_pC is a 1D subspace of \mathbb{R}_p^n .

2.3 Orientation

Definition. Let $\gamma:(a,b)\to\mathbb{R}^n$ be a parametrized curve, and let $X(t)=(\gamma(t),v(t))$ be a vector field along γ .

- X is called a **unit vector field** if $||v(t)|| = 1 \ \forall \ t \in (a,b)$
- X is called a **normal vector field** if v(t) is orthogonal to $\dot{\gamma}(t) \ \forall \ t \in (a,b)$

Obtaining orientation $[\mathbb{R}^2]$:

- 1. If $C = f^{-1}(c)$ is a level set of a function f, take $\nabla f / ||\nabla f||$
- 2. If γ parametrizes C, find N(t) by rotating $\dot{\gamma}(t)$ CCW $\pi/2$ $[(x,y) \mapsto (-y,x)]$

Definition. Given a plane curve $C \subseteq \mathbb{R}^2$, an *orientation* of C is a choice of unit normal vector field along C.

Prop. Let $C \subseteq \mathbb{R}^2$ be a plane curve. If C is connected, then C has exactly 2 orientations.

Definition. For a parametrized plane curve $\gamma:(a,b)\to\mathbb{R}^2$, say that an orientation N is **consistent** with the parametrization if $\forall \ t\in(a,b),\ N(t)$ is the vector obtained by rotating the tangent direction $\frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||} \pi/2$ counterclockwise, i.e.:

$$N(t) = \frac{(-\dot{\gamma}_2(t), \dot{\gamma}_1(t))}{||\dot{\gamma}(t)||}$$

Definition. Let $C \subseteq \mathbb{R}$ be a simple [i.e. non-self-intersecting] plane curve with orientation N. Then the curvature of C at point $p \in C$ is given by:

$$\kappa(p) = \frac{\ddot{\gamma}(t) \cdot N(\gamma(t))}{\left|\left|\dot{\gamma}(t)\right|\right|^2}$$

where γ is any smooth, regular parametrization of C and $t \in \mathbb{R}$ s.t. $\gamma(t) = p$.

Note. • The curvature of a curve is independent of parametrization γ .

• Inward/outward $\rightarrow +/-$; sharp/shallow \rightarrow high/low

Definition. Let $C \subseteq \mathbb{R}^2$ be a curve with orientation N, and let $p \in C$ s.t. $\kappa(p) \neq 0$; then the *circle of curva-ture/osculating circle* of C at p is the circle $C_O \subseteq \mathbb{R}^2$ with:

- 1. Center of curvature $p + \frac{1}{\kappa(p)}N(p)$
- 2. Radius of curvature $\frac{1}{|\kappa(p)|}$
- 3. Orientation N_O s.t. $N_O(p) = N(p)$

Properties

- 1. C_O is tangent to C at point p
- 2. C_O, C have the same curvature at p

3.1 Frenet-Serret [2D]

Definition. Let $C \subseteq \mathbb{R}^2$ be a curve with orientation N, $\gamma(t)$ a unit-speed parametrization of C \rightarrow define the *unit tangent vector* to γ at time t by:

$$T(t) = (\gamma(t), \dot{\gamma}(t))$$

Frenet-Serret Formulas [2D]

$$(1) \ \dot{T} = \kappa N$$

(2)
$$\dot{N} = -\kappa T$$

$$\iff$$

$$\begin{bmatrix} \dot{T} \\ \dot{N} \end{bmatrix} = \begin{pmatrix} 0 & \kappa \\ -\kappa & 0 \end{pmatrix} \begin{bmatrix} T \\ N \end{bmatrix}$$

3.2 Frenet-Serret [3D]

Let γ be a unit-speed parametrization of a curve $C \subseteq \mathbb{R}^3$:

1. Define the *unit tangent vector* at $\gamma(t)$ by:

$$T(t) = (\gamma(t), \dot{\gamma}(t))$$

2. Define the **principal unit normal vector** of $\gamma(t)$ by:

$$N(\gamma(t)) = \left(\gamma(t), \frac{\ddot{\gamma}(t)}{||\ddot{\gamma}(t)||}\right)$$

3. Define the **binormal unit vector** of $\gamma(t)$ by:

$$B = T \times N$$

(1)
$$\dot{T} = \kappa N$$

(2)
$$\dot{N} = -\kappa T + \tau B$$

(3)
$$\dot{B} = -\tau N$$

$$\iff$$

$$\begin{bmatrix} \dot{T} \\ \dot{N} \\ \dot{B} \end{bmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}$$

Consequence: Any curve C completely determined by its initial values + curvature & torsion.

Definition. A *surface*/2-manifold is a set $S \subseteq \mathbb{R}^n$ s.t. $\forall p \in S$, S is locally parametrized in some neighborhood U of p by a smooth function $\phi: D_r^2 \to U$ satisfying rank $(\operatorname{Jac}(\phi)) = 2$.

3 ways to obtain a surface:

- 1. As the image of a local parametrization $S = \operatorname{im}(\phi)$
- 2. As the graph of a function $f: \mathbb{R}^2 \to \mathbb{R}$
- 3. As the level set of a smooth function $f: \mathbb{R}^3 \to \mathbb{R}$

2 notable classes of surfaces:

1. Given plane curve $C \subseteq \mathbb{R}^2$, the *cylinder over* C is the set $A \subseteq \mathbb{R}^3$ given by

$$A = \{(x, y, z) : (x, y) \in C\}$$

- \bullet C smooth curve \implies cylinder over C is a smooth surface
- 2. Given $C \subseteq \mathbb{R}^2$ curve lying above the x-axis, its *surface of revolution* is:

$$S = \left\{ (x, y, z) : \left(x, \sqrt{y^2 + z^2} \right) \in C \right\}$$

4.1 Tangent Spaces

Definition. $S \subseteq \mathbb{R}^3$ a surface, $p \in S$ a point $\implies (p,v)$ is **tangent to** S if \exists smooth PC $\gamma : (a,b) \to S$ s.t. for some $t_0 \in \mathbb{R}$:

$$\gamma(t_0) = p$$
 and $\dot{\gamma}(t_0) = v$

 \implies The *tangent space* of S at p is the set $T_pS \subseteq \mathbb{R}^3_p$ [dim $T_pS = 2$] defined by:

$$T_pS = \{(p, v) : (p, v) \text{ is tangent to } S\}$$

4.2 Orientation for Surfaces

Definition. Let $S \subseteq \mathbb{R}^n$ a surface and $p \in S \implies$ the *tangent plane* of S at p is:

$$P = \{p+v : (p,v) \in T_pS\}$$

Definition. A vector (p, v) is **orthogonal** to a surface S if it is orthogonal to all vectors $(p, v_0) \in T_pS$

 \implies Let $S \subseteq \mathbb{R}^3$ a surface; then an **orientation** of S is a choice of unit normal vector field $N: S \to S: \times \mathbb{R}^3$ s.t. $\forall p \in S: N(p) \perp S, ||N(p)|| = 1$.

• Note: S a connected surface \implies S has either 0 or 2 orientations

4.3 The Gauss Map

Definition. Given an oriented curve/surface $A \in \mathbb{R}^n$ with orientation N, the associated **Gauss map** is the fuction $G: A \to S^{n-1}$ defined by:

$$N(p) = (p,G(p)) \; \forall \; p \in A$$

• Notation: S^n is unit sphere in \mathbb{R}^{n+1}

Definition. Define the *spherical image* of A as the image of the Gauss map of A

- Thm: If $A = f^{-1}(c)$ compact, then its Gauss map under orientation $N = \pm \frac{\nabla f}{||\nabla f||}$ is surjective
- Rec: $A = f^{-1}(c)$ for f smooth \implies A closed; $A \subseteq \mathbb{R}^n$ compact \iff A closed & bounded [Heine-Borel]

4.4 Curves on Surfaces

Definition. Let $S \subseteq \mathbb{R}^3$ a surface, $P \subseteq \mathbb{R}^3$, and $p \in S \cap P \implies \text{say } P$ is **orthogonal** to S at p if $\exists (p, v) \neq 0$ orthogonal to S and tangent to P

Definition. Let $f: \mathbb{R}^n \to \mathbb{R}$ smooth, and let $(p, v) \in \mathbb{R}_p^n \implies$ define **derivative of** f **w.r.t.** (p, v) [linear] by (for $\gamma: (a, b) \to \mathbb{R}^n$ PC w/ $\gamma(t_0) = p, \dot{\gamma}(t_0) = v$):

$$\nabla_{(p,v)} f = \frac{d}{dt} (f \circ \gamma)(t_0) [= \nabla f(p) \cdot v]$$

& f or a vector field $X: U \to U \times \mathbb{R}^n$:

$$\nabla_{(p,v)}X = (X \circ \gamma)(t_0) [= (p, (\nabla X_1(p) \cdot v, \dots, \nabla X_n(p) \cdot v))]$$

Definition. Let $S \subseteq \mathbb{R}^3$ be smooth surface oriented by N, and let $p \in S \implies$ define the **Weingarten map** of f at p by:

$$L_p(v) = -\nabla_{(p,v)} N(p)$$

- The Weingarten map is linear & self-adjoint: $L_p(v) \cdot w = L_p(w) \cdot v$
- For a curve $\gamma:(a,b)\to S$ on S with $\gamma(t_0)=p,\dot{\gamma}(t_0)=v$: $\ddot{\gamma}\cdot N(p)=L_p(v)\cdot v$
- Note: $\nabla_{(p,v)}N$ only depends on values of N on S

Definition. Let $S \subseteq \mathbb{R}^3$ surface oriented by N, and let $p \in S$, $(p, v) \in T_pS$ unit vector. Then the **normal** curvature of S at p in the direction v is defined by:

$$k(p,v) = L_p(v) \cdot v$$

Corollary: Let $S \subseteq \mathbb{R}^3$ oriented surface, $p \in S$, P plane through p orthogonal to S at p; then $P \cap S$ is (near p) a smooth curve satisfying:

$$\kappa(p) = k(p,v)$$

Definition. Let $S \subseteq \mathbb{R}^3$ surface oriented by N, and let $p \in S$. Let $\{v_1, v_2\}$ be an orthonormal basis (for T_pS) of eigenvectors of L_p with eigenvalues λ_1, λ_2 ; then the principal curvatures of S at p are defined by:

$$k_1(p) = k(p, v_1) = \lambda_1; \quad k_2(p) = k(p, v_2) = \lambda_2$$

• The principal curvatures $k_1(p) \le k_2(p)$ are the min & max of the normal curvatures k(p,v) at p:

$$k_1(p) = \min_{v} k(p, v); \quad k_2(p) = \max_{v} k(p, v)$$

Definition. Let $S \subseteq \mathbb{R}^3$ an oriented surface, and let $p \in S$. Then the *Gauss curvature* of S at p is given by:

$$K(p) = k_1(p) \cdot k_2(p) [= \det L_p]$$

Similarly, the $mean \ curvature$ of S at p is defined by:

$$H(p) = \frac{1}{2} (k_1(p) + k_2(p))$$

Theorem. Let $S \subseteq \mathbb{R}^3$ a compact oriented surface; then $\exists p \in S$ such that either (i) $k(p,v) > 0 \forall v$, or (ii) $k(p,v) < 0 \forall v$.

[Equivalently: K(p) > 0]

Lemma. Let $S \subseteq \mathbb{R}^3$ oriented by N, and let $X : \mathbb{R}^3 \to \mathbb{R}^3$ a VF s.t. X/||X|| = N. Let $p \in S$ & $\{v_1, v_2\}$ any basis for T_pS ; then:

$$K(p) = \det \begin{pmatrix} \nabla_{(p,v_1)} X \\ \nabla_{(p,v_2)} X \\ X(p) \end{pmatrix} \cdot \frac{1}{||X(p)||^2 \det \begin{pmatrix} v_1 \\ v_2 \\ X(p) \end{pmatrix}}$$

5.1 Fundamental Forms

Definition. Llet $V \subseteq \mathbb{R}^n$ a subspace of \mathbb{R}^n , and let $T: V \to V$ a self-adjoint linear map. Then the quadratic form associated with T is the map $Q: V \to \mathbb{R}$ given by:

$$Q(v) = T(v) \cdot v$$

Definition. Let $S \subseteq \mathbb{R}^3$, and let $p \in S$. Then the *fundamental forms* of S at p are:

1. 1^{st} fundamental form: $\ell_p: T_pS \to \mathbb{R}$ defined by

$$\ell_p(v) = v \cdot v = \left| |v| \right|^2$$

2. 2^{nd} fundamental form: $\rho_p: T_pS \to \mathbb{R}$ defined by:

$$\rho_p(v) = L_p(v) \cdot v$$

Notice: Let $(p, v) \in T_p S, v \neq 0$; then:

$$\rho_p(v) = ||v||^2 k\left(p, \frac{v}{||v||}\right)$$

In particular, have the following relationships:

- 1. ρ_p definite $\iff K(p) > 0$
- 2. ρ_p indefinite $\iff K(p) < 0$
- 3. ρ_p semi-definite $\iff K(p) = 0$

[Corollary: Let $S \subseteq \mathbb{R}^3$ a compact oriented surface; then $\exists \ \rho_p \in S$ with ρ_p definite.]

5.2 Isometries

Definition. Let $X_1, X_2 \subseteq \mathbb{R}^n$, and let $\phi: X_1 \to X_2$ a diffeomorphism. We call ϕ an **isometry** if $\forall \gamma: (a,b) \to X_1$, the arc length of γ is equivalent to the arc length of $\phi \circ \gamma$, i.e.:

$$\underline{\int_a^b ||\dot{\gamma}(t)||\,dt} = \int_a^b ||\phi \dot{\circ} \gamma(t)||\,dt$$