

Guide to Network Security First Edition

Chapter Six
Network Monitoring and Intrusion
Detection and Prevention Systems

Objectives

- Define the basic concepts of network packet analysis
- Explain the various network packet formats and standards
- Describe how packet analysis forms the basis of network intrusion detection
- Discuss the various types of intrusion detection and prevention

Objectives (cont'd.)

- Explain intrusion detection and prevention deployments and response strategies
- Describe various honeypot technologies

Introduction

- Key components of a network monitoring program
 - Network-monitoring software
 - Packet sniffers
 - Data collection utility
 - Intrusion detection and prevention systems (IDPSs)
 - Analyze abnormal activity or suspicious traffic

Network-Monitoring Software: Packet Sniffers

- Packet sniffer
 - Program or device that views data traversing a network
 - Can be used by network administrators for troubleshooting
 - Or for malicious purposes

Capturing Network Traffic

- Network adapter in promiscuous mode
 - Allows adapter to see all traffic
 - Destined to host or not
- Considerations for capturing network traffic
 - May be illegal if unauthorized
 - Computer must be placed on network segment on which you want to capture traffic
 - Must know how sniffer is connected to the network
 - Sniffer cannot decipher encrypted traffic

Packet Analysis

- First step: understand normal TCP/IP communications
 - See Figures 6-1 and 6-2 for IPv4 and IPv6 packet details
 - See Figures 6-3, 6-4, and 6-5 for TCP, UDP, and ICMP packet structure details

Header length (4 bits)	Type of service (8 bits)	Type of service (16 bits)	
Identification (16 bits)		Flags (3 bits)	Fragment offset (13 bits)
ve (8 bits)	Protocol (8 bits)	Header checksum (16 bits)	
	Source IP ad	dress (32	bits)
	Destination IP	address (3	2 bits)
	Ор	tions	
	D	212	
	(4 bits) Identification	length (4 bits) Identification (16 bits) Ve (8 bits) Protocol (8 bits) Source IP ad Destination IP Op	length (4 bits) Identification (16 bits) Identification (16 bits) Identification (16 bits)

Figure 6-1 IPv4 packet structure © Cengage Learning 2013

Figure 6-2 IPv6 packet structure © Cengage Learning 2013

Figure 6-3 TCP packet structure © Cengage Learning 2013

Figure 6-4 UDP packet structure © Cengage Learning 2013

Figure 6-5 ICMP packet structure © Cengage Learning 2013

Tcpdump

- Packet analysis tool
- Standard in network sniffing
- See Page 218 for various command line options
- Able to select which network packets to capture
- Prints packet header information by default
- Example expression: Tcpdump host 192.168.1.100
 - Only captures traffic originating from and destined to host 192.168.1.100

Intrusion Detection and Prevention Systems

- Intrusion
 - Attacker attempts to gain entry or disrupt operations
- Intrusion detection
 - Procedures and systems that identify system intrusions
- Intrusion prevention
 - Activities that deter an intrusion
 - Examples: writing and implementing good security policy; installing security countermeasures

Intrusion Detection and Prevention Systems (cont'd.)

- Incident response
 - Actions taken in response to an intrusion
 - Goal: limit loss and return operations to normal
- Intrusion detection systems (IDS)
 - First available in the late 1990s
 - Work like burglar alarm
 - System administrators choose configuration of alerts and alarm levels

Intrusion Detection and Prevention Systems (cont'd.)

- Intrusion prevention system (IPS)
 - Extension of IDS
 - Adds an active response
- Intrusion detection and prevention system (IDPS)
 - Describes combination of the two technologies

IDPS Terminology

- Alert
 - Indication that system has detected possible attack
- Confidence
 - Measure of IDPSs ability to correctly detect and identify certain attack types
- Evasion
 - Attacker changes network packet format or timing to avoid detection

IDPS Terminology (cont'd.)

- Events
 - IDPS events that are noteworthy but do not pose a threat
- False negative
 - Failure of IDPS to react to actual attack event
- False positive
 - Alert or alarm that occurs without actual attack
- Filtering
 - Process of reducing IDPS events to receive better confidence in alerts received

IDPS Terminology (cont'd.)

- Tuning
 - Adjusting an IDPS to maximize efficiency
 - May include:
 - Grouping similar alarms that happen close to the same time into one alarm

Why Use an IDPS?

- Reasons to use an IDPS
 - Reduce likelihood of bad behavior
 - Detect attacks that are not prevented by other security measures
 - Detect and react to common preambles of attacks
 - Document existing threats
 - Act as quality control measure for security design and operation
 - Provide useful information about intrusions

Why Use an IDPS? (cont'd.)

- Factors undermining organization's ability to make systems safe from loss
 - Information security technologies may fail to correct a known deficiency
 - Vulnerability detection process too infrequent
 - Time is needed to develop corrective measures
 - Vulnerable services may be essential to operations

Types of IDPSs

- Types of network-based IDPSs
 - Wireless IDPS
 - Focuses on wireless networks
 - Network behavior analysis (NBA) IDPS
 - Looks for abnormal traffic patterns

Figure 6-9 Intrusion detection and prevention system © Cengage Learning 2013

- Network-based IDPS (NIDPS)
 - Resides on computer or appliance connected to a network segment
 - Monitors traffic on the network segment
 - Looks for patterns
 - Example: large collections of related items of a certain type
 - Requires complex configuration and maintenance program
- See Pages 226-228 for NIDPS advantages and disadvantages

Figure 6-10 Simple network IDPS model © Cengage Learning 2013

- Wireless IDPS
 - Monitors and analyzes wireless network traffic
 - Can help detect:
 - Unauthorized WLANs and WLAN devices
 - Poorly secured WLAN devices
 - Unusual usage patterns
 - Use of wireless network scanners
 - Denial-of-service attacks and conditions
 - Impersonation and man-in-the-middle attacks

- Wireless IDPS issues
 - Unable to detect passive wireless protocol attacks
 - Attacker does not use active scanning and probing
 - Physical security of the devices
 - Sensor range
 - Access point and switch locations
 - Wired network connections
 - Cost

- Network behavior analysis system
 - Most sensors can be deployed in passive mode only
- Types of events detected by NBA sensors
 - Denial-of-service attacks
 - Scanning
 - Worms
 - Unexpected application services
 - Policy violations

- Host-based IDPS
 - Resides on a particular computer or server (host)
 - Monitors activity on only the host system
 - Benchmarks and monitors status of key system files
 - Can detect when intruder creates, modifies, or deletes monitored files
 - Monitors system configuration databases
 - Windows registry
 - Very reliable
 - See Page 232 for advantages and disadvantages

Figure 6-12 Simple HIDPS monitoring model © Cengage Learning 2013

IDPS Detection Methods

- Signature-based IDPS
 - Examines network traffic for known signature patterns
 - Many attacks have distinct signatures
 - Issue: signature database must be continually updated to keep up with new attack strategies
- Statistical anomaly-based IDPS
 - Observes normal traffic to establish performance baseline
 - Samples network activity and compares with baseline

IDPS Detection Methods (cont'd.)

- Stateful protocol analysis IDPS
 - Compares predetermined profiles of benign protocol activity against observed events
- Log file monitors
 - System reviews log files to look for attack patterns and signatures
 - Can examine multiple log files on different systems

IDPS Response Behavior

- Response behavior depends on configurations and functions
 - Response may be active or passive
- IDPS response options
 - Audible/visual alarm
 - SNMP traps and plug-ins
 - E-mail message
 - Text or phone message
 - Log entry
 - Evidentiary packet dump

IDPS Response Behavior (cont'd.)

- IDPS response options (cont'd.)
 - Take action against intruder
 - Launch program
 - Reconfigure firewall
 - Block traffic from attacker's IP address
 - Block specific TCP or UDP port traffic from attacker's address
 - Block all traffic to or from a network interface
 - Terminate the session
 - Terminate internal or external network connections

IDPS Response Behavior (cont'd.)

- Reporting and archiving capabilities
 - Routine reports
 - Detailed information documents
 - Provide details of events and intrusions detected
- Fail-safe considerations for IDPS responses
 - Protect IDPS from being defeated by an attacker
 - Example: encrypted tunnels to hide IDPS communications

Selecting IDPS Approaches and Products

- Technical and policy considerations
 - Technical specifications of systems environment
 - Technical specifications of current security protections
 - Enterprise goals
 - Formality of system environment and management culture
 - Security goals and objectives
 - Existing security policy

Selecting IDPS Approaches and Products (cont'd.)

- Organizational requirements and constraints
 - Requirements from outside the organization
 - Organization's resource constraints
 - Budget

IDPS Product Features and Quality

- Product evaluation questions
 - Is the product sufficiently scalable for your environment?
 - How has the product been tested?
 - What is the user level of expertise targeted by the product?
 - Is the product designed to evolve as the organization grows?
 - What are the support provisions for the product?

Strengths and Limitations of IDPSs

- Examples of IDPS strengths
 - Monitor and analyze system events and user behaviors
 - Test security states of system configurations
 - Alert appropriate staff when attacks detected
- Examples of IDPS limitations
 - Compensating for weak or missing security measures
 - Detecting newly published attacks or variants of existing attacks
 - Dealing with switched networks

Deployment and Implementation of an IDPS

- Must consider how IDPS will be managed
- IDPS control strategies
 - Centralized control strategy
 - See Figure 6-13
 - Fully distributed control strategy
 - Opposite of the centralized strategy
 - See Figure 6-14
 - Partially distributed control strategy
 - See Figure 6-15

Figure 6-13 Centralized intrusion detection approach © Cengage Learning 2013

Figure 6-14 Fully distributed IDPS control © Cengage Learning 2013

Figure 6-15 Partially distributed IDPS control © Cengage Learning 2013

Deployment and Implementation of an IDPS (cont'd.)

- IDPS deployment
 - Decisions about where to locate components important
 - Consider skill level of personnel required to install, configure, and maintain systems
- Recommended locations for NIDPS sensors
 - Behind each firewall, in the network DMZ
 - Outside an external firewall
 - On the major network backbones
 - On critical subnets

Deployment and Implementation of an IDPS (cont'd.)

- Deploying host-based IDPSs
 - Time consuming task
 - Each HIDPS must be custom configured
 - Good practice to train on nonproduction systems
- Measures to consider when selecting an IDPS
 - Thresholds
 - Blacklists and whitelists
 - Alert settings
 - Code viewing and editing

Deployment and Implementation of an IDPS (cont'd.)

- IDPSs evaluated using two sets of measurements
 - Number of attacks detected
 - Level of use at which failure occurs
 - Example: At 100 Mbps, the IDPS was able to detect
 97 percent of directed attacks
- Test process
 - Should be as realistic as possible
 - Realistic traffic loads and attack levels

Honeypots and Honeynets

- Decoy systems designed to lure potential attackers away from critical systems
- Also called decoys, lures, and fly-traps
- Honeypot goals
 - Divert attacker from critical systems
 - Collect information about attacker's activity
 - Encourage attacker to stay on system long enough for administrators to document and/or respond
- See Page 252 for advantages and disadvantages

Trap-and-Trace Systems

- Trap consists of a honeypot and an alarm
- Trace is a process for determining attacker's identity
 - Inside the organization
 - Outside the organization
- Legal drawbacks
 - Enticement (legal and ethical)
 - Entrapment (not legal or ethical)

Active Intrusion Prevention

LaBrea

- Tool that provides active intrusion prevention
- Works by taking up unused IP address space within a network
- Holds connections open and inactive
- Slows down network-based worms and other attacks
- Allows time to notify system administrators of anomalous behavior

Summary

- Intrusion detection and prevention system types
 - Network-based
 - Monitors network traffic and responds to predefined events
 - Host-based
 - Resides on a particular computer and monitor's system activity
 - Signature-based
 - Examines data traffic for patterns that match known attack signatures

Summary (cont'd.)

- Honeypots
 - Decoy systems to lure attackers away from critical systems
- Trap-and-trace applications react to intrusion events by tracing back to source(s)