

Règles du cours

Absence tolérée: jusquøà 20%

Evaluation: 50% Examen Ecrit 50% TPs et Mini-Projet

Réseaux de Mobiles & Réseaux Sans fils

RDM	RSF
Un utilisateur est considéré	Un système est considéré
comme utilisateur mobile	sans fil søil peut offrir un
søil peut communiquer hors	service de communication
de son réseau en gardant la	indépendamment des prises
même adresse	murales

Pourquoi RDM?

- Utilisation croissante des terminaux mobiles dans le monde industriel et logistique;
- ✓ Nécessité døun accès permanant des populations nomades au système døinformation des entreprises;
- ✓ Réalisation døinstallations temporaires;
- \checkmark Instaurer des réseaux dans un temps très court.

WLAN en Europe, Asie et USA

Higher density of hotspots WLAN access as an extension of cellular data access	Larger demand for wireless data applications from business users WLAN access as a substitute for fixed LAN access	
	"More advanced wireless data applications for business users	
smaller homes "Consumer-oriented wireless data market	"Higher 802.11 penetration "Airports and hotels as major hotspot locations	
"Bigger reliance on public transportation,		
"Higher density of population "Higher cellular penetration "Market dominated by mobile operators	"Higher penetration of laptop computers and PDAs "Higher Internet penetration	
Europe et Asie	USA	

Unlimited Pages and Expanded Features

Technologies Sans fil

- ✓ Radio
- ✓ Infra-rouge
- ✓ Laser

Wireless

- ❖ 1990 : projet de lancer un réseau local sans fil
- ❖ IEEE (Institute of Electrical and Electronics Engineers) :

 - * IEEE 802.11 * IEEE 802.15
- Hiperlan (High Performance Local Area Network) * HiperLAN

WLAN - IEEE 802.11

		LLC 802.2				
Couche MAC	802.11f					
	Coddiewino	802.11 – 802.11e – 802.11i				
	Couche physique	802.11 DSSS FHSS IR	802.11b	802.11g	802.11a	

3
J

IEEE 802.11

- ❖ Les fréquences se situent dans la gamme 2,4 GHz;
- ❖ Les communications sont directes de terminal à terminal ou en passant par un point døaccès;
- ❖ Les débits varient selon les techniques de codification utilisées;
- ❖ IEEE 802.11 est cellulaire.

Systèmes cellulaires

Architecture IEEE 802.11 ESS BSS BSS BSS BSS AP: Access point, BSS: Basic Set service, ESS: Extented Set Service, IBSS Independent BSS.

Méthodes døaccès

- ❖ 2 méthodes døaccès au niveau de la couche MAC:
 - ❖ DCF (Distributed Coordination Function) :
 ❖basée sur CSMA/CA
 - ❖ PCF (Point Coordination Function) :❖ basée sur le *polling*

Hidden Node Problem

Problème des nœuds cachés

 $1\ communique\ avec\ 2$

Hidden Node Problem

 $3\,communique\,\,avec\,2$

RTS/CTS

Your complimentary use period has ended. Thank you for using PDF Complete.

Click Here to upgrade to

Handover

- $\acute{\mathrm{E}}$ Le standard ne fournit pas de handover

ó mécanismes propriétaires (exemple: Inter Access Point Protocol (IAPP) de Lucent) pas døinteropérabilité

ó en cours 802.11 f

Communication des clients

Quœst ce que le Wi-Fi?

- ✓ Wireless Fidelity ✓ un label validant le respect du standard et løinteropérabilité,
- √ décerné par un groupement de constructeurs (http://www.wi-fi.org)

Wi-Fi

É14 canaux de 22 MHz (13 en France, 11 aux USA) É3 canaux disjoints (1, 6 et 11) ÉDébits théoriques: 1, 2, 5.5 et 11 Mbps É3 Points daccès ou Ponts radio peuvent couvrir la même zone, offrant un débit global de 33 Mbps

La couverture

Standards

- 802.11a 5GHz- ratified in 1999
- 802.11b 11Mbps 2.4 GHz-ratified in 1999
- 802.11d Additional regulatory domains
- 802.11e Quality of Service
- 802.11f Inter-Access Point Protocol (IAPP)
- 802.11g Higher Data rate (>20 Mbps) 2.4 GHz
- 802.11h Dynamic Frequency Selection and Transmit Power Control mechanisms
- 802.11i Authentication and security

Contention-free service

Logical Link Control

Contention-free service

Condention Function

Coordination
Function (DCF)

Distributed Coordination Function
(DCF)

2.4-Ghz
frequency-direct
hopping sequence 2 Mbps FDM sequence 1 Mbps FDM sequence 2 Mbps FDM sequence 9, 91.56,

Méthodes actuelles

· SSID : Service Set Identifier

Open / Shared Authentification

· Filtrage d'adresses MAC

· WEP : Wired Equivalent Privacy

Sécurité Résumé

Hotspot

Références

- Daniel Azuelos, Architecture des réseaux sans fil, 2005, http://2005.jres.org/tutoriel/Reseaux_sans_fil.livre.pdf
- Matthew Gast, 802.11 Réseaux sans fil, 2e édition, O'Reilly, 2005
- Luc Saccavini, Le protocole IEEE 802.1X, 2003, http://www.urec.cnrs.fr/IMG/pdf/secu.CNRS.vCARS2003.saccavini.pdf
- Nancy Cam-Winget, Tim Moore, Dorothy Stanley, Jesse Walker, IEEE 802.11i Overview, 2002

Prof. Amine Berqia Email : berqia@ensias.ma

Bluetooth

Le nom de la technologie vient du nom døun ancien Roi Viking, *Harald Blåtand* (en anglais *Blåtand* = *Bluetooth*).

Bluetooth?

- \checkmark Technologie de communications sans fil qui vise à relier divers équipements
- ✓ Technologie radio de courte portée et coût faible avec peu de consommation déénergie

Histoire

- ✓ 1994 óEricsson commence les études pour une interface sans fils entre ses équipements mobiles (téléphones et accessoires)
- ✓ 1998 óBluetooth SIG (*Special Interest Group*) est créé et diffuser au mois de Mai par les entreprises:
 - \checkmark Ericsson
 - ✓ IBM
 - ✓ Intel
 - ✓ Nokia

✓ Toshiba

Histoire

- ✓ 1999 óSIG rejoint par a Microsoft, Lucent Motorola e 3Com
- ✓ 1999 ó lancement de la version 1.0 de la technologie
- ✓ 2001 ó Commercialisation des premiers équipements
- ✓ Actuellement plus de 2500 entreprises adhérentes

Exemple Bluetooth (1) Camera Computer Scanner Access Point Access Phone Base Station PDA Cordless Phone Base Station

1	3
1	J

Caractéristiques (1)

- ✓ Tecnologie WPAN
- ✓ Utilisé en mode ad-hoc
- ✓ Portée courte (typiquement 10m, peut aller jusquoù 100m)
- ✓Coût bas

Caractéristiques (2)

- ✓ Supporte des liaisons en mode synchrones (voix) et en mode asynchrones (données)
- ✓ fréquences libres 2,4 GHz
- ✓ Débit Max ó 1 Mbps
- ✓ Modulation GFSK (Gaussian Frequency Shift Keying)

Configuration Réseaux

Inquiry

Processus qui permet a un dispositif de détecter autres qui se trouvent dans le rayon de sa portée

Unlimited Pages and Expanded Features

Your complimentary use period has ended. Thank you for using PDF Complete.

Click Here to upgrade to Unlimited Pages and Expanded Features

I	CIIIIVIV	y 105 5a	112 1112	LAN

Catégorie	WSB et WPAN	WLAN	WLAN	WSB
Nom commercial	Bluetooth	WiFi		Wireless FireWire
Norme	IEEE 802.15	IEEE 802.11b	802.11a	Wireless IEEE 1394
	www.bluetooth.co www.ieee802.org/			g ouper.ieee.org/groups/1394/1
Consommation électrique	très faible	forte	forte	forte
Débit type	0.4 Mb/s	11 Mb/s	54 Mb/s	300 Mb/s
Distance type	10 m	100 m	100 m	10 m
Bande de fréquenc	e 2,4 GHz	2,4 GHz	5 GHz	5 GHz ou 60 GHz
Topologie type	Point-à-point	Multipoint	Multipoint	Point-à-point
Protocole	Audio et	IP	IP	Video MPEG
principal	L2CAP			
Support d'IP	PPP	natif	natif	IETF RFC2734
	Emulation Etherne IP over Bluetooth	et .		IP over IEEE 1394

Technologies sans fils LAN

	HIPERLAN 1	HIPERLAN 2	HIPERLAN 3	HIPERLAN 4
Application	wireless LAN	access to ATM fixed networks	wireless local loop	point-to-point wireless ATM connections
Frequency		5.1-5.3GHz		17.2-17.3GHz
Topology	decentralized ad- hoc/infrastructure	cellular, centralized	point-to- multipoint	point-to-point
Antenna	omni-directional		directional	
Range	50 m	50-100 m	5000 m	150 m
QoS	statistical	ATM traffic classes (VBR, CBR, ABR, UBR)		
Mobility	<10r	m/s stationary		onary
Interface	conventional LAN	ATM networks		
Data rate	23.5 Mbit/s	>20 Mbit/s		155 Mbit/s
Power conservation	ye	s not nece		cessary

Références

- É http://www.bluetooth.com
- $\acute{E} \ \ \underline{http://www.bluetooth.org}$
- $\acute{E} \ \ \underline{http://electronics.howstuffworks.com/bluetooth.htm}$
- $\acute{E} \ \ \underline{http://www.telemoveis.com/bluetooth/default.asp}$
- É http://www.sysopt.com/articles/bluetooth/
- $\acute{E} \ \ \underline{http://www.palowireless.com/bluetooth/news.asp}$

Mobile IP

Prof. Amine Berqia Emails : <u>aberqia@e-ngn.org</u> berqia@gmail.com

Enregistrement

Transfert des paquets

Références

- É http://www.ietf.org
- É http://www.ietf.org/html.charters/mobileip-charter.html
- É http://www.ietf.org/html.charters/ipv6-charter.html

WWAN

Prof. Amine Berqia Email: berqia@ensias.ma

Composantes des systèmes de Télécommunication mobiles

PDF Complete.

UIM: User Identity Module MT: Mobile Terminal RAN: Radio Access Network CN: Core Network

Interface UIM-MT

Løinterface UIM-MT se situe entre la carte SIM et le terminal mobile qui peut correspondre à différents types de réseau x: GSM, GPRS, UMTS, IEEE802.11

Interface MT-RAN

Løinterface MT-RAN relie le terminal mobile à antenne et définit comment le terminal accède à løantenne et réciproquement.

Interface RAN-CN

Løinterface RAN-CR permet la transmission de løantenne au 1er commutateur du réseau

Interface CN-CN

Løinterface CN- CN définit la technologie réseau utilisée pour acheminer les informations.

Systèmes cellulaires

Les systèmes cellulaires

* GSM: Global System for Mobile communications

* GPRS: General Packet Radio Service

* EDGE : Enhanced Data for GSM Evolution

 $\begin{tabular}{ll} \star UMTS: Universal Mobile Telecommunications \\ \end{tabular}$

System

GSM

- 1979: réservation de la bande 900 MHz pour les communications mobile en Europe par løUT
- 1980: création du groupe de travail GSM (Groupe Spécial Mobile)
- ❖ 1992: commercialisation réelle des premiers systèmes GSM

Depuis le GSM est devenu (à la place du sigle français) Global System for Mobile communications.

Architecture Générale BIS BSC AIMERIA SS7 Network ISDN NSS Public network

Your complimentary use period has ended. Thank you for using PDF Complete.

Click Here to upgrade to Unlimited Pages and Expanded Features

Unlimited Pages and Expanded Features

Allocation de ressources

- ${\color{red} \diamondsuit}$ Partage de la bande passante ${\it bandwith};$
- Multiplexage des communications

FCA

FCA: Fixed Channel Assignment

- + simples et rapides;
- + attribution fixes des ressources;
- -- ne permet pas de gérer les variations brutales et instantanées du trafic.

DCA

DCA: Dynamic Channel	Assignment
----------------------	------------

- + concentration des ressources;
- + augmentation de la capacité du système;
- -- demande une importante charge en terme de
- signalisation.

T	T		٨
Г	1	u	А

HCA: Hybrid Channel Assignment

- + FCA et DCA;
- -- les 2 groupes inconvénients;

Quœst ce quøun handover?

- ❖ Mécanisme qui permet de passer døune cellule à une autre sans coupure de la communication;
- ❖ Mécanisme révolutionnaire responsable du succès de téléphonie mobile.

Avantages du handover

- É Équilibrer le trafic entre les cellules
- É Minimiser les interférences
- É Optimiser les ressources radio

Les contraintes:

- É Le nombre de handover par distance parcourue doit être le plus faible possible
- É Le handover doit être déclenché le plus prés possible de la frontière
- É La qualité de la liaison doit être maintenue pendant la phase de handover

Les types de handover

- É Handover intra-cellulaires
- É Handover inter-cellulaires

Handover: intra-cellulaires

É Handover de canal dans la même cellule

Handover inter-cellulaires

É Intra BSC

É Inter-BSC

É Inter-MSC

Handover inter-cellulaires

É Intra BSC : entre deux BTS

Handover inter-cellulaires

É Inter-BSC : entre deux BSC

Handover inter-cellulaires

É Inter-MSC

Principales phases de déroulement du handover

Le mécanisme de handover est est réalisé en trois phases :

- É Phase de réalisation de mesures de la qualité du lien
- É Phase de détermination de la cellule cible et de déclenchement du handover
- É Phase dœxécution du handover (transfert effectif des liens)

Phase de mesure

- \acute{E} MS et BS effectuent des mesures :
 - ó La puissance du signal reçu (qualité du lien)
 - ó Le taux døerreur binaire (BER)
 - ó Distance entre le mobile et la station de base.

Phase døexécution

- É Si la qualité passe sous un seuil : déclenchement
 - ó Etablissement du nouveau canal
 - ó Transfert de la connexion vers le nouveau lien
 - ó Libération de løancien

Procédures døexécution

- É Hard handover
- É Seamless handover
- É Soft handover

Hard handover

• Igancien lien libéré avant lgétablissement du nouveau lien avec la BS cible.

Saemless handover

 l'ancien lien libéré pendant l'établissement du nouveau lien avec la BS cible

Soft handover

 l'ancien lien libéré après l'établissement du nouveau lien avec la BS cible

Le mécanisme de roaming

É Permet au système de connaître à tout instant la position doun mobile

Deux mécanismes de roaming

- É La localisation
 - ó Permet de savoir ou se trouve un terminal mobile
- É La recherche døabonné
 - 6 Permet dødentifier la cellule courante où se trouve un terminal mobile pour établir une communication

Localisation des abonnées

Plusieurs niveaux:

- É Niveau 0 : pas de localisation, recherche dans tout le réseau.
- É Localisation manuelle : Løabonné doit informer manuellement le réseau de leur position courante
- \acute{E} Utilisation de zone de localisation

Utilisation de zone de localisation

Utilisation de zone de localisation

- → Le système connaît la zone de localisation précise de løabonné
- → Maintenir le réseau informé des mouvements des usagers.

Utilisation de zone de localisation

É Mise à jour périodique É Mise à jour sur changement de zone

Mise à jour périodique

É Le terminal émet, à intervalles constants, des messages vers le réseau pour signaler sa position

Procédure de mise à jour de la localisation HLR Ancien VLR Anciens BS Nouveille BS Zone de localisation 1 Zone de localisation 2

Procédure de mise à jour de localisation

- 2. Le mobile envoie une Requête au nouveau VLR
- 3. Le nouveau VLR demande au HLR loauthentification de lousager et son profit
- Réponse du HLR au nouveau VLR. Puis mise à jour du nouveau VLR et du HLR. Le mobile est alors ajouté dans la liste de mobiles du nouveau VLR
- 5. Le HLR envoie un message à løancien VLR pour enlever le mobile de sa liste
- Løancien VLR détruit ou redirige les paquets destinés au mobile vers le nouveau VLR, puis enlève ce terminal de sa liste.

Your complimentary use period has ended. Thank you for using PDF Complete.

Click Here to upgrade to Unlimited Pages and Expanded Features

Recherche des abonnées

- 1. Un appel, destiné à B, est initié par un terminal fixe ou mobile A. Cet appel arrive au VLR/MSC de A;
- Le MSC appelant envoie une requête de localisation au HLR de B. Le HLR détermine le MSC courant de B et achemine la requête de localisation au MSC de B;
- Le MSC détermine la station de base de B en lui affectant un numéro de routage temporaire;
- Le MSC retourne le numéro de routage au HLR qui, à son tour, retourne ce numéro au MSC appelant;
- Le MSC appelant établit à son tour une connexion avec le MSC appelé en utilisant le numéro de routage temporaire. La communication est établie après la recherche de la zone courante de løunité mobile B.

Technologies 2,5G

*HSCSD

*****GPRS

*****EDGE

Web site Ericsson

Unlimited Pages and Expanded Features

HSCSD et GPRS

❖ HSCSD - High Speed Circuit Switched Data
 ❖ GPRS - General Packet Radio Service

Les 2 technologies offrent des solutions pour augmenter le débit par rapport au GSM.

HSCSD

- * HSCSD est une technologie de commutation de circuits
- Un canal physique est attribué pour toute la durée de la communication
- ❖ La connexion est maintenu même søil nøy a pas de transmission de données

GPRS

- ❖ GPRS est une technologie de *commutation de paquets*
- ❖ Un canal physique est attribué quand il est nécessaire de transmettre ou recevoir des données
- ❖ Les canaux peuvent être partagés entre plusieurs utilisateurs

HSCSD et GPRS vs GSM

Multislot Divers timeslots

GSM

Unique timeslot

Unique timeslot pour downlink et uplink pour transporter un canal de trafic (TCH).

Classes do EDGE

Classe	Downlink	Uplink
А	8PSK	GMSK
В	8PSK	8PSK

EDGE Coding Schemes

Figure 4, Coding schemes for GPRS and EGPRS (user data rate), (Key; 8FSK, 8-phase shift keying; CS, Coding scheme; EGPRS, Enhanced GPRS; GMSK, Gaussian minimum shift keying; MCS, Modulation coding scheme)

EDGE Impact

- * Hardware upgrade in BSS
- ❖ Software upgrade for BS and BSC
- ❖ New Terminals
 - Terminal : 8PSK uplink e downlink
 - Terminal : GMSK uplink e 8PSK downlink

GSM + GPRS + EDGE

3G Technologies

UMTS: Universal Mobile Telecommunications Service

IMT 2000 : International Mobile Telecommunication system

CDMA 2000 : Code Division Multiple Access

W-CDMA: Wideband-Code Division Multiple Access

I	I	V	Π	ГS

2.5 G

3G

* Circuit e Packets,

* Voice: 144kb/s

* low-rate data: 384kb/s,

high-rate data :2Mb/s.

3G Frequencies

Terrestrial (230 MHz):

1885 ó 2025 MHz 2110 ó 2200 MHz

MSS (Mobile Satellite Service) (150MHz):

1980 ó 2100 MHz 2170-2200 MHz CS domain

PS domain

Class of service
UMTS (1)
Classe A (conversational)

Visiophonie i

Class of service

UMTS (4)

Examples of UMTS Services

LBS (location-based service)

VC (Video Conferencing)

IC (Internet Connectivity)

EC (Enterprise Connectivity)

Inter-connection: UMTS Telecom A Telecom B UMTS Core Network Intermet

History

Arthur C. Clarke, Article :õExtra Terrestrial Relaysõ É 1945 É 1957 SPUTNIK É 1960 ECHO GEO - SYNCOM É 1963 É 1965 õEarly Birdõ 3 sats. MARISAT É 1976 É 1982 INMARSAT-A É 1993 digital É 1998 Sats. For Cellular phones.

Types

- ✓ GEO (Geostationary Orbits) ✓ LEO (Low Earth Orbits),
- ✓ MEO (Medium Earth Orbits)
- ✓ HEO (Highly Elliptical Orbits)

Types (2) Altitude (km) tipo latência (ms) necessários 35,000 30,000 25,000 10

| Launch date | Nov. 1998, | Spring 2000 | 2001 | 2001 | Nor. available | Nov. 1998, | Spring 2000 | 2001 | 2001 | Nor. available | Nov. 1998, | Spring 2000 | 2001 | 2001 | Nor. available | Nov. 1998, | Spring 2000 | 2001 | 2001 | Nor. available | Nov. 2001 | Nor. available | Nov. 2001 | Nor. available | Nov. 2001 | Nov. available | Nov. available | Nov. 2001 | Nov. available | Nov. 2001 | Nov. available |

Operators (2)						
		IRIDIUM	GLOBALSTAR	NEW ICO	CONSTELLATION	ELLIPSO
Mobile (MHz)	1	1616-1626.5	1610-1626.5	1985-2015	2483.5-2500	1610-1626.
Mobile (MHz)	1	1616-1626.5	2483.5-2500	2170-2200	1610-1626.5	2483.5-2500
Feeder (GHz)	1	29.1-29.3	5.091-5.250	5.150-5.250	5.091-5.250	15.45-15.65
Feeder (GHz)	1	19.4-19.6	6.875-7.055	6.975-7.075	6.924-7.075	6.875-7.075
Multiple access		FDMA/TDMA	CDMA	FDMA/TDMA	CDMA	W-CDMA
Modulation		QPSK	QPSK	GMSK uplink, BPSK/QPSK	QPSK outbound, O- QPSK inbound	Not available
				downlink		

Handover (1)

Handover Intra-FES(Fixed Earth Station) :

Handover (2)

Handover Inter-Sat. :

Next Generation Networks NGNs

Prof. Amine Berqia Email : berqia@gmail.com

Click Here to upgrade to Unlimited Pages and Expanded Features

Définitions

ITU Definition of a Next Generation Network (Y.2001)

NEXT Generation Network (NGN): a packet-based network able to provide telecommunication services and able to make use of multiple broadband, QoSenabled transport technologies and in which service-related functions are independent from underlying transport-related technologies. It enables unfettered access for users to networks and to competing service providers and/or services of their choice. It supports generalized mobility which will allow consistent and ubiquitous provision of services to users.

NGN: Vs Définition ITU

- É La migration commutation circuit aux réseaux basés sur commutation de paquets est une progression logique de løévolution du monde IP.
- É La convergence fixe-mobile, voix-données, données-contenu, et d'une manière plus importante IT et télécommunications.

3GPP Releases

ÉRelease 99: December 99. All 3G mobiles are required to be release 99 compatible or above. Basis of all the existing 3G networks and mobiles available right now. All of Hutchison's networks worldwide are Release 99 compatible.

ÉRel 00;

ÉRelease 4, 5, 6, 7,í

mited Pages and Expanded Features

Services paquets ds des zones urbaines denses L +100km, +100Mbs -Très faible latence (important pour la TV et kinteractivité). Disponible sur un très grand nombre de fréquences, de 700 MHz à 2 GHz. Protocole TCP/IP natif

Informatique Ambiante

Prof. Amine Berqia Emails : <u>aberqia@e-ngn.org</u> berqia@gmail.com

Informatique ambiante

Informatique ambiante

Au quotidien

Dans la peau

Maison intelligente

Nouveau matériel

- " Nouveaux matériaux : semi conducteurs, fibres õ
 - . perspectives pour les technologies de l\(\frac{1}{2}\)information et des communications
- " Des semi conducteurs organiques
 - . Changent lapparence des ordinateurs
- " Laser «plastic»
 - . Opto électronique, écrans flexibles, õ
- " Afficheurs plastiques
- " Affichage flexibles

159

Click Here to upgrade to Unlimited Pages and Expanded Features

Capteurs plus performants

- Caméras et microphones miniaturisés
 - . Capteur demprunte digitale
 - . Capteurs radio sans alimentation
 - . Capteurs de localisation
 - ″e.g. GPS õ

160

Exemple: Capteurs radio

- " Pas doplimentation externe
 - . Energie issue de laction
 - Piezoélectriques et pyroélectriques convertissent pression et température en énergie
- " Antenne radio

Progrès des technologies de communication

- " Le réseau dφbjets et dispositifs communicants sφrganise autour dφne entité Centrale, parfois Mobile :
 - . Utilisateur
 - . Véhicule ő etc.

_	1
`	4

Click Here to upgrade to Unlimited Pages and Expanded Features

PDA

- " Appareil numérique portable
 - . abritant un véritable ordinateur (processeur 624 MHz)
 - . doté d'un écran tactile (associé à un stylet)
 - . ou d'un clavier incorporé avec des petites touches
- " Fonctionnalités
 - . agenda, répertoire téléphonique et de bloc-notes
 - . Multimédia: dictaphone, lecteur mp3 ou vidéo,
 - . Extension: logithèque sur internet

Smart phone

- " téléphone mobile couplé à un PDA
- " solution mobile « tout en un »
 - . Répertoire téléphonique, agenda,
 - . Navigation web, navigation GPS
 - . Bureautique, messagerie, jeux
 - . Logithèque sur internet

Tablet PC

- " bloc-notes numériques, pliables et portables
 - . Équipé de stylet pour écrire ou dessiner manuellement sur loécran
 - . Système de reconnaissance de l\(\phi\)criture naturelle et parfois de reconnaissance vocale
- Fonctionnalités
 - . prise de notes sans papier, utilisation et envoi de formulaires électroniques, suivi logistique
 - Travail dans un environnement Windows habituel (Word, Excel, etc.)
 - " Avec interface à stylet héritée du PDA

Click Here to upgrade to Unlimited Pages and Expanded Features

2 formes pour le tablet PC

- " Convertible
 - . Sous forme down ordinateur portable traditionnel
 - . Clavier contient la majeure partie de lœ́lectronique
 - . Loécran peut tourner et se rabattre sur le clavier
 - . Interaction via stylet
- " Slate (ou ardoise)
 - . Sous forme don écran contenant toute la partie électronique
 - . Interaction via stylet

Wearable computer

- " Non monopolisant
 - . Ne coupe pas lautilisateur du monde réel
- " Non restrictif
 - . Il est possible de réaliser dœutres tâches tout en utilisant læprdinateur

Systèmes deexploitation

- Plate forme logicielle assurant une parfaite interopérabilité entre les fonctions
 - Téléphoniques
 - $\circ~$ De gestion des informations personnelles
 - Bureautiques et communicantes
- Interface unifiée døaccès aux
 - · Fonctions téléphoniques
 - · Fonctions du monde de løinformatique
 - synchronisation avec un ordinateur, avec un réseau sans fil, édition de documents
- Système multi tâche
 - $^{\circ}\;$ téléphoner avec or eillette filaire ou Bluetooth, tout en consultant des documents !
 - PalmOS, SymbianOS, Windows Mobile, Linux

Limitations

- Taille de loécran
- nésolution réduite
- · Limite grandement le nombre døinformations affichées à løécran
- il faut se contenter de løessentie
- Saisie des données difficile
- Certains dispositifs disposent de mini claviers ou de logiciels de reconnaissance de caractères
- La saisie reste une opération lente et fastidieuse
- remplir un formulaire long et complexe à la manière des SMSs
- · Gestion de løautonomie
 - Les dispositifs dépendent de source défenergie limitée

Caractéristiques des dispositifs mobiles

Caractéristique	Solutions		
Mémoire limité	- extension via les cartes mémoire (SD, mini SD,etc.)		
Vitesse CPU (limitée)	- de l'ordre de 700 MHz - nouvelle architecture pour des CPUs rapides		
Multitude des systèmes d'exploitation	- palmOS, symbianOS, windows mobile - tendent à converger vers un système unique: linux.		
Saisie difficile	- reconnaissance de la voix - clavier de projection - reconnaissance des manuscrits		
Durée de vie limitée des batteries	- nouvelle génération de batteries en lithium		
Petite taille d'écran	- se contenter d'afficher l'essentiel - affichage via un film flexible pliable en dehors du dispositif [PAR 2003]		
Grand choix d'outils de développement	- clients légers: xHTML - clients lourds: J2ME, .net		

Etude de cas

Ubi-Bus: Ubiquitous Bus

Unlimited Pages and Expanded Features

Objectif døUbi-Bus

Assistance des malvoyants ou personnes à mobilité réduite dans les transports publics

Situation actuelle

- " Le voyageur se rend à lærrêt de bus
- Consulte les horaires pour connaître l\u00e1peure du prochain passage
- ″ Bus en vue → signe de la main au conducteur
- ″ Bus stoppé → le voyageur monte

Pbs pour malvoyants

- " Ne peuvent pas consulter les horaires
 - . Ne savent pas combien de temps il doivent attendre
- " Ne peuvent pas voir le bus
- " Plusieurs cas de figures se présentent:
 - . Difficulté pour faire signe au bon bus
 - . Soadresser aux autres usagers pour réclamer loarrêt, soil y en a.
 - . Soil noy a personne, si un bus scapproche de loarrêt
 - " Lærrêter systématiquement
 - " Sapssurer de monter dans le bon bus

Click Here to upgrade to Unlimited Pages and Expanded Features

Solution souhaitée

- " Se dirigeant vers labribus,
 - . Iqusager indique le souhait de prendre le bus de la ligne Numéro X via un équipement personnel (téléphone portable par exemple)
- " Arrivant à loabribus,
 - . le premier bus numéro X sœrrête pour lui permettre de monter.
- Lors de lopuverture de la porte,
 - . un message vocal indique quoi monte bien dans le bus numéro X.

Solutions possibles pour Ubi-Bus

- " Solution 1
 - . Sappuyer sur un couplage entre la plate-forme de service don opérateur et un système de géo-localisation.

Solutions possibles

- Solution 2
- Mise en relation de trois types døentités:
 - · Le passager malvoyant
 - Løabribus
 - Le bus
- Événement déclencheur:
 - $^{\circ}~$ Passager indique son souhait de prendre le bus de la ligne $n^{\circ}~X$
 - Indication considérée comme un «arrêt demandé» à løintérieur du bus
 - Activation du signal lumineux «arrêt demandé»

Principe de fonctionnement døUbi-Bus

- Échanges spontanés entre
 - . Le passager et la bribus
 - . Loabribus et le bus
 - . Le passager et le bus
- " Les échanges reposent sur
 - . des interfaces radio courte portée
 - . La gestion des informations localisées dans læspace
- " Pas doutilisation de plate forme de service externe

Fonctionnement de Ubi-Bus: 1/3 Cercle associé à une entité matérialise la portée physique associée à une information que cette entité porte (interface radio courte portée: bluetooth, wifi) Arrêt bus

Unlimited Pages and Expanded Features

181

Fonctionnement døUbi-Bus: 3/3

Etude de cas

Ubi-Board: Ubiquitous Board ou Affichage éclaté

Scénario døutilisation døUbi-Board

- " Voyageur Marocain descend doun avion à lopéroport de Tokyo
- " Il cherche les panneaux dopffichage numérique (audiovisuels)
 - . Informations sur le transport en commun, les hôtels, les taxis, etc.
- Problème:
 - . langue doaffichage = Japonais
- " Il a besoin de traduction

Solution souhaitée

Consulter le contenu du panneau dœffichage sur son téléphone portable mais en français

Solution souhaitée

- " Quelques instants plus tard, des compatriotes Marocains lontourent
 - . Langue dopffichage du panneau devient le français

Solution souhaitée

- " Si le groupe de Marocains sœ́loigne du panneau
 - . Affichage, à nouveau, des messages dans la langue maternelle.

Mise en ò uvre de la solution

- · Diffusion de løinformation réalisée par
 - · Un élément qui gère løafficheur principal
 - Des éléments personnels
 - · Présents dans le périmètre physique du panneau
 - · Disposant døune capacité døaffichage local
- Communication par mécanisme radio courte distance (bluetooth wifi, etc.)
- Les interactions entre éléments reposent sur la collecte déindices associés aux usagers
 - $^{\circ}~$ Âge, sexe, nationalité, langue, informations susceptibles de løintéresser, etc.

Principe de fonctionnement

- " Collecte dynamique dondices
 - Le panneau collecte les attributs associés aux terminaux présents dans le périmètre physique qui lui est associé.
- " Traitement
 - . Affichage sur le panneau et éventuellement sur un ensemble de terminaux présents dans le périmètre
- Traitement réévalué en fonction des terminaux qui peuvent entrer ou sortir du périmètre considéré
 - . mobilité des utilisateurs

Amélioration: Affichage multicritère

- Løaffichage peut être défini comme une fonction composée
 - Données multimédia : audio, vidéo, texte
 - ^o Plusieurs critères: langue, handicap physique (malvoyance ou surdité)
- · Malvoyant
 - affichage dønn message visuel sur le panneau → envoi de son équivalent audio sur le terminal personnel du concerné
- Malentendant
 - Message sonore du panneau → envoi de son équivalent visuel sur le terminal personnel du concerné

Etude de cas:

Ubi-Q: Ubiquitous Queue

Objectif

Réduction du temps danttente dans les queues pour latilisation de ressources critiques Application aux GABs

Situation actuelle

- ″ GAB
 - . Le service « retrait » est mis en %uvre avec un bon niveau de sécurité du coté client et établissement bancaire
- " Les risques dans les lieux publics
 - . Agression physique des clients pendant le retrait
 - " Objectif: vol de la carte doaccès ou de loargent retiré
 - . Vol « par espionnage » du code doaccès lors de loppération donitialisation don retrait

Deux mises en ò uvres

- Placement de l\u00e4tilisateur \u00e0 l\u00e4xtérieur du système
 - . Majorité des GABs actuels
 - . Aucun des risques identifiés næst pris en considération
 - . Sauf quelques suggestions
 - « entrez votre code à lapbri des regards indiscrets »

Deux mises en ò uvres

- Intégration du client dans le services
 - . Le guichet est à lointérieur doun « sas »
 - → ouverture par la carte dœaccès du client

- . Hypothèse « toute personne qui ouvre le sas est digne de confiance »
- " Problèmes
 - . Risques dagression lors de la ccès au sas par le client
 - . Solution chère: coût et occupation des locaux

Apports de løinformatique ambiante

- Découverte et activation implicite de service en fonction donn lieu géographique donné
- Les services sont activables dans des périmètres physiques prédéfinis
 - . Mécanismes de radio courte portée (WiFi, Bluetooth, RID)
- " Les services sont « activables » à partir du terminal du client
- " Le déclenchement des services peut être implicite ou explicite

Moyens technologiques

- · Terminal utilisateur

 - Équipé de moyens de communication sans fil
 Possibilité de chargement dynamique des applications
- Extension de loautomate
 - Point døaccès sans fil
 - Communication courte portée entre le terminal utilisateur et leautomate
- Communication courte portée entre le terminal utilisateur et lauutomate
 Calcultateur associé au point denccès
 Simplifier les intenctions entre le point d'auccès et la partie
 «traditionnelle» de kautomate
 1 Liveur de billets
 1 Chiséer namérique → saisie du code
 Gestion de la délivance des billets
 1 Communication avec le serveur dantorisation distant → validation de la demande de certait.

Souscription au service

- « Amine » souscrit au service « retrait »
- « Retrait dargent à partir de son terminal mobile à proximité doµn GAB »
 - . Informations douthentification implantées sur le téléphone
 - . Code confidentiel à conserver hors téléphone mobile

Scénario de retrait

- · Préparation de la transaction
 - ① Amine souhaite retirer de løargent du GAB situé à une dizaine de mètres de lui
 - ② Son téléphone « découvre » implicitement le service «retrait»
 - ③ Il « ouvre » le service
 - ① On lui demande son code confidentiel et le montant demandé
 - S II entre ces deux informations
 - Quelques instants plus tard í
- © « opération acceptée, voici votre code døaccès XYZ »
- · Terminaison de la transaction
 - Il se dirige vers le GAB ...
 - Tentre XYZ au clavier de løautomate

Unlimited Pages and Expanded Features

Atouts de la solution

- Aucune utilisation de carte de crédit physique
- " Existence doun sas virtuel
 - . Périmètre physique associé au terminal
 - . La sortie de ce sas annule implicitement toute transaction en cours

Traitement parallèle des requêtes

- Plusieurs clients susceptibles dactiver le service pour le même GAB dans le périmètre physique associé
- Les étapes de préparation se déroulent en parallèle
- Les phases de terminaison se déroulent de manière séquentielle

Sensibilité au contexte

Contexte .. ?

- Le bon fonctionnement don système doubiquité numérique suppose une connaissance de la situation physique des entités qui participent à son fonctionnement
- " Contexte:
 - . Représentation de la situation du monde réel dont doit disposer un environnement ubiquitaire
 - . Concrètement lié à des méta-données caractérisant une situation

Sensibilité au contexte

- " Caractérisation des éléments suivants
 - . Où?
 - " Information sur læspace physique (position, vitesse, etc.)
 - . Quand?
 - " Information sur le temps (date, heure, etc.)
 - . Quoi?
 - " Activité ou statut courant de loutilisateur

Informations spatiales

- " Information sur la position
- Information sur les entitésenvironnantes

Informations spatiales: la position

- - ^o Dans un espace physique, les éléments sont organisés par thèmes
 - · Logement, entreprise, magasin, bibliothèque, ville, etc.
- · Localisation cartésienne
 - · Localisation satellite (GPS)
 - ° Localisation par triangulation p/r à des BTS dans un réseau cellulaire
- · Localisation topologique
 - Localisation d
 øune entit
 é par son appartenance
 à un domaine d
 éfini logiquement
 - Exemple: système ParcTab → chaque pièce dispose døune balise infrarouge émettant un identifiant unique

Informations spatiales: entités environnantes

- Indicateur contextuel: identité des entités environnantes
 - Dépend de la position dans lœspace (proximité)
- La localisation topologique exploite directement cette propriété
 - Détection døappartenance à un domaine
 - exploitation de la proximité physique døun marqueur (balise, RFID)
- · Sol intelligent
 - · Détection doun humain dans une zone physique
 - ° Profilage du « pas » des utilisateurs (rythme et force)
 - Reconnaissance qui atteint un succès de plus de 90%

Autres informations spatiales

- " Vitesse, accélération, orientation, etc.
- " Acquises à partir de capteurs dédiés
- Dérivées à partir de lœvolution de la position

-		

Informations temporelles

- Mesure doun phénomène météo par des capteurs
- " Rendez-vous planifié dans un agenda
- Date constatée doune infraction pour stationnement

Informations de statut

- Association døinformations numériques à des objets réels
- · Objets statiques
 - Un livre dans une bibliothèque ubiquitaire
 - · Localisation: par étiquetage, stockage de la position
 - · Ajouter un marqueur reconnaissable par une interface numérique
 - Annotations: note ajoutée à un livre emprunté rappelant la date de retour
- Entités dynamiques
 - · Leur état associé est variable
 - · Appareils, personnes
 - ° Transmission de løétat par adjonction døinterfaces
 - Personnes: il est possible de dériver le niveau de stress à partir de la mesure du rythme cardiaque

Recherche contextuelle d\u00e1nformations

- Un chariot du supermarché est considéré comme une structure de données
- Son garnissage avec des produits représentant chacun un prix
- " Un calcul aboutit au prix total de ce panier

-			