Løsningsforslag INT010 høst 2009

Oppgave 1

- a) Forutsetninger:
 - a. Begge populasjonene må være normalfordelt
 - b. Populasjonene må være uavhengige
 - c. Tilfeldig utvalg
- b) F-test. Testobservator $F = s_1^2 / s_2^2 = 0.12^2 / 0.11^2 = 1.19$. Forkastningsområde på 5% signifikansnivå med 13 og 8 frihetsgrader: $F > F_{0.025, 13, 8} = 4.2$ eller $F < 1/F_{0.025, 8.13} = 1/3.39 = 0.29$. Aksepter H_0 om lik varians.
- c) Testobservator $t = (x_1 x_2) / \sqrt{[s_p^2 (1/n_1 + 1/n_2)]} = (0,317-0,210) / \sqrt{[0,014 \cdot (1/14 + 1/9)]} = 2,15$, da $s_p^2 = (13 \cdot 0,12^2 + 8 \cdot 0,11^2) / 21 = 0,014$. Kritisk grense på 5% nivå er med $n_1 + n_2 2 = 21$ frihetsgrader $t > t_{0,025,\,21} = 2,08$ eller $t < -t_{0,025,\,21} = -2,08$. Forkast H_0 (men med liten margin) og påstå at forskjellen i månedlige økning i KPI er signifikant.

Oppgave 2

a) Modell: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \epsilon$, der ϵ er normalfordelt med forventning null og standardavvik lik σ .

X_4	X ₅	Tilstand	
1	0	Dårlig	
0	1	Gjennomsnittlig	
0	0	God	

- b) Koeffisienten for bilens alder er -1132\$. Dvs. gitt alt annet konstant vil bilens verdi bli redusert med 1132\$ per år. Ny bil: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4=x_5=0$, da blir prediksjonen y = 17357 + 776 = 18133\$. Modellen synes **urimelig**, bilen vil neppe gå ned i verdi med et konstant beløp hvert år. Videre er nybilprisen i oppgaven satt til 25000\$, dermed er prediksjonen for en ny bil dårlig.
- c) Plottene på venstre side kan tyde på at residualene ikke er normalfordelte. Videre viser grafen øverst i høyre hjørne antydninger til heteroskedastisitet (variansen til residualene er økende).
- d) Når y er venstresidevariabel vil prisen falle lineært med kjørelengde (x₂), dvs. med et fast kronebeløp for hvert år. Med ln(y) som venstresidevariabel vil β₂ gi oss (omtrentlig) **prosentvis endring** i prisen ved endring i kjørelengden (dette fordi at små endringer i ln(y) tilsvarer ca. prosentvis endring).
- e) $\ln y = y^* = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \epsilon$, der ϵ er normalfordelt med forventning null og standardavvik lik σ . Prediksjon for ny bil: $y = \exp(10 0.178 \cdot x_1 0.00376 \cdot x_2 + 0.122 \cdot x_3 0.217 \cdot x_4 0.0651 \cdot x_5) = \exp(10 + 0.122) = 24884$ \$. Denne prediksjonen er mer korrekt i forhold til den vi fant i b). [Vær oppmerksom på at det

7

- egentlig ikke er så rett frem å regne om forventningen til prisen basert på forventningen til ln(pris), fordi $E(pris) \neq e^{E(ln(pris))}$, men vi forventer ikke at studentene utdyper dette].
- f) Estimat for Obamas bil : $x_1 = 2$, $x_2 = 21$, $x_3 = 0$, $x_4 = x_5 = 0$, da blir prediksjonen $y = \exp(10 0.178 \cdot 2 0.00376 \cdot 21) = 14216\$$. PI er prediksjonsintervallet for verdien av en bestemt bil, derfor vil dette intervallet være relevant for Obama. Dette intervallet gir (exp(9,2528), exp(9,8713) = (10434, 19366), dvs. at 17500\$ ikke er urimelig høyt.
- g) 95% konfidensintervall for koeffisienten til x_5 : -0,06508 ± 2,06 · 0,07195 = **[-0,2133**; **0,0831]**, der vi har benyttet at $t_{0,025,31-6} = t_{0,025,25} = 2,06$. Hvis vi tester H_0 : $\beta_5 = 0$ mot H_1 : $\beta_5 \neq 0$, vil vi dermed ikke forkaste H_0 på 5% nivå. Derfor er det rimelig å si at β_5 ikke har signifikant betydning.

Oppgave 3

a) I en kontingenstabell bør forventet verdi være minst 5 i hver celle ('rule-of-five'). Det er ikke tilfredstilt i den oppgitte tabellen. Ny tabell:

Tilstand	_	1.5	
Kategori	GG	Dårlig	SUM
Privat	4 (9,29)	14 (8,71)	18
Forhandler	12 (6,71)	1 (6,29)	13
SUM	16	15	31

De forventete frekvensene er oppgitt i parantes, og beregnet med formelen: $e_{ij} = (Rad i total \cdot Kolonne j total) / utvalgsstørrelse, for eksempel er <math>e_{11} = (18\cdot16)/31 = 9,29$. Tilsvarende for de andre cellene (trenger bare regne ut e_{12} i tillegg).

- b) Benytter testobservator $\chi^2 = \sum_{i=1}^4 (f_i e_i)^2 / e_i = (4-9,28)^2 / 9,28 + (12-6,71)^2 / 6,71 + (14-8,71)^2 / 8,71 + (1-6,29)^2 / 6,29 =$ **14,85** $. Forkast om <math>\chi^2 > \chi^2_{0,01,1} = 6,63$ (antall frihetsgrader er $\nu = (2-1)\cdot(2-1) = 1$) dvs. vi **forkaster**, og påstår at det er signifikant forskjell mellom tilstanden til biler som selges gjennom forhandler og privat.
- c) $\mathbf{E(T)} = n_1 (n_1 + n_2 + 1) / 2 = 13 (13 + 18 + 1) / 2 = \mathbf{208}. \ \sigma_T = \sqrt{[n_1 n_2 (n_1 + n_2 + 1) / 12]} = \sqrt{[13 \cdot 18 \cdot (13 + 18 + 1) / 12]} = \mathbf{25}. \ \text{Testobservator} \ Z = T E(T) / \sigma_T = (126, 5 208) / 25 = -3,26. \ \text{Kritisk verdi er} \ Z < -z_{0.05} = -1,645. \ \text{Forkast } \mathbf{H_0}.$

Oppgave 4

- a) Sett for eksempel $Y = X_1 + X_2$, da vet vi at $E(Y) = \mu_1 + \mu_2$ og $Var(Y) = \sigma_1 + \sigma_2 + 2\sigma_{12}$. Bruker nå approksimasjonsformlene; $E(Y) \approx f(\mu_1, \mu_2) = \mu_1 + \mu_2$. Ser at dette holder eksakt. For variansen ser vi at alle de partielle deriverte er lik 1, og dermed er også denne approksimasjonen eksakt.
- b) Formlene gir: E(Y) $\approx \mu_1 + \mu_2 \cdot \mu_3$. De partielle deriverte er $\frac{\partial f}{\partial X_1} = 1, \frac{\partial f}{\partial X_2} = \mu_3, \frac{\partial f}{\partial X_3} = \mu_2$, dermed blir Var(Y) $\approx \sigma_1^2 + \mu_3 \sigma_2^2 + \mu_2 \sigma_3^2 + 2\mu_3 \sigma_{12} + 2\mu_2 \sigma_{13} + 2\mu_2 \mu_3 \sigma_{23}$.