Apellidos		Firma
Nombre	D.N.I o pasaporte	Grupo

Doble grado en Ingeniería Informática y Matemáticas Modelos Matemáticos I 14/15

Examen Final Junio

Problemas Tema 1

1 Consideremos la ecuación en diferencias de segundo orden

$$x_{n+2} + p_1 x_{n+1} + p_0 x_n = 0. (1)$$

- a) Demuestre que todas las soluciones de la ecuación (1) convergen hacia 0 si y sólo si se verifica $|p_1| < 1 + p_0 < 2$.
- b) Utilice la condición del apartado anterior para estudiar el comportamiento, en función del parámetro $\mu > 0$, de las soluciones de la ecuación en diferencias

$$x_{n+2} - x_{n+1} + \frac{1-\mu}{\mu} x_n = 0.$$

2 La siguiente ecuación en diferencias:

$$x_{n+1} = F(x_n) = \frac{\alpha x_n}{1 + \beta x_n}$$

con $\alpha > 0, \beta > 0$ y $x_n \ge 0$, fue propuesta por Kaplan & Glais en 1995 y juega un papel muy importante en análisis de modelos no lineales genéticos y en redes neuronales.

- a) Determine en función de los valores de α y β los puntos de equilibrio del sistema dinámico discreto $x_{n+1} = F(x_n)$. Determine la región en el plano de parámetros $\alpha \beta$ donde se da la estabilidad de cada uno de dichos puntos de equilibrio.
- b) Estudie la existencia de 2-ciclos para el sistema dinámico discreto $x_{n+1} = F(x_n)$.

Problemas Tema 2

- **3** Un territorio está dividido en tres zonas Z_1 , Z_2 y Z_3 entre las que habita una población de aves. Cada año y debido a diversas razones (disponibilidad de alimentos, peleas por el territorio, etc.) se producen los siguientes flujos migratorios entre las distintas zonas:
 - \blacksquare En Z_1 : un 60 % permanece en $Z_1,$ un 10 % emigra a Z_2 y un 30 % emigra a $Z_3.$
 - \blacksquare En \mathbb{Z}_2 : un 10 % emigra a $\mathbb{Z}_1,$ un 80 % permanece en \mathbb{Z}_2 y un 10 % emigra a $\mathbb{Z}_3.$
 - En Z_3 : un 10 % emigra a Z_1 , un 20 % emigra a Z_2 y un 70 % permanece en Z_3 .

Supongamos que tenemos una situación inicial en la que de la población total de aves un 30% viven en Z_1 , un 20% viven en Z_2 y un 50% viven en Z_3 .

- a) ¿Cuál será la distribución de la población de aves a largo plazo?
- b) ¿Es posible encontrar una distribución de los flujos migratorios que proporcione un comportamiento periódico de la distribución de la población?
- 4 Se considera la matriz de Leslie

$$L = \begin{pmatrix} \frac{1}{2} & \delta & \gamma \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix},$$

donde $\delta, \gamma \geqslant 0$.

- a) Encuentre las regiones donde se produce extinción, crecimiento ilimitado o convergencia a equilibrio en el plano de parámetros (δ, γ) .
- b) Describa la pirámide de edad a largo plazo correspondiente a los valores $\delta = \frac{1}{2}, \gamma = 1$.

Granada, a 18 de junio de 2015

