Universidad del Rosario

Escuela de Ingeniería, Ciencia y Tecnología - MACC

Desarrollo Móvil

Proyecto de clase

Introducción

El proyecto de clase es una actividad en la que los estudiantes, en grupos con roles definidos, logra tener una experiencia de diseño de una solución a un problema de un cliente real. Esta actividad pretende medir por primera vez en la carrera la habilidad de aplicar diseño de ingeniería para producir soluciones que cumplan con necesidades específicas y tengan en consideración factores de salud pública, seguridad, bienestar, e impacto global, cultural, social, ambiental y económico.

El trabajo consiste en el diseño e implementación de un proyecto en Java de acuerdo con el proceso de diseño de ingeniería. Para esto deben:

- Identificar la problemática y/o necesidades para definir los criterios de evaluación, restricciones y requerimientos del diseño
- Proponer alternativas de diseño conceptual en función del alcance
- Evaluar y seleccionar la alternativa más conveniente teniendo en cuenta los criterios, restricciones y requerimientos del diseño
- Diseñar la alternativa seleccionada
- Implementar el diseño seleccionado
- Realizar pruebas para confirmar el cumplimiento de los requerimientos

El lenguaje de programación y la arquitectura de la solución es libre, pero se recomienda que incluya el paradigma de programación orientado a objetos. Puede incluir librerías de apoyo que consideren.

Entregables

Los estudiantes deben entregar informes para cada una de las fases, en las siguientes fechas:

Entregable	Descripción	Fecha de entrega
Definición del problema	El grupo debe proveer una definición clara del problema y la lista de requerimientos funcionales y no funcionales de la solución.	Semana 6 – septiembre 2
Alternativas de solución	El grupo deberá listar:	

	 Soluciones similares existentes en la literatura y en el mercado. Lista de posibles soluciones al problema (tipo de aplicación, tipo de interacción, etc.) (Mínimo 2). Tecnologías disponibles para 	
	la implementación de las soluciones.	
Evaluación y selección de la solución	El grupo deberá evaluar cada una de las soluciones propuestas, con base en los requerimientos y los factores de salud pública, seguridad, bienestar, e impacto global, cultural, social, ambiental y económico. Además, deben definir la solución que van a adoptar en el proyecto.	Semana 12 – octubre 14
Propuesta de diseño	El grupo debe presentar una propuesta inicial de diseño, documentada en diagramas UML.	
Informe final	El grupo entregará el informe final de acuerdo con la estructura planteada a continuación.	Semana de finales

En las jornadas de retroalimentación deben realizar una presentación de máximo 10 minutos de sus avances y los entregables.

Estructura del reporte de proyecto de I+D

I- Generalidades

- 1. Hoja de presentación
 - a. Título
 - b. Integrantes del grupo y rol
 - c. Director
 - d. Información del departamento, división y universidad
 - e. Ciudad y fecha

2. Resumen ejecutivo

Describir en unas 500 palabras la naturaleza del proyecto a desarrollar, cómo este es un ejemplo de uso de programación orientada a objetos, comentarios sobre la estructura interna y el impacto de la aplicación.

3. Objetivos

- a. Objetivo general: definir cuál es el problema que la aplicación va a solucionar
- b. Objetivos específicos: definir los subproblemas a solucionar durante el desarrollo del proyecto

Recuerden que los objetivos se escriben en forma de verbo en infinitivo y pueden hacer referencia a las actividades que se pretenden realizar en el proyecto.

4. Referentes de soluciones existentes

Lista y descripción de aplicaciones, productos o investigaciones relacionadas con el problema identificado. Deben incluir al menos una referencia a un artículo de investigación en revistas indexadas, que pueden encontrar en las bases de datos de la universidad.

5. Alcance

Definir los elementos de la solución que van a ser incluidos en la aplicación final, y aquellas consideraciones que delimitan el desarrollo. (Público objetivo, plataforma tecnológica, etc.)

6. Metodología

- a. Pasos metodológicos: para cada uno de los pasos que se necesitan para el desarrollo del proyecto, debe definirse lo siguiente:
 - i. Breve descripción del proceso
 - ii. Resultados o indicadores de logro esperados al final del paso
 - iii. Los recursos a utilizar
 - iv. La(s) persona(s) encargada(s) del cumplimiento de esa etapa.
- b. Cronograma: definición de tiempos para los pasos metodológicos. Usar un diagrama de Gant.

7. Referencias y bibliografía consultada

Las referencias deben ser de fuentes confiables; es decir, no se aceptarán referencias de Wikipedia, blogs o páginas fantasmas. Wikipedia puede ser un buen punto de partida para empaparse del tema, pero no para citar. Para citas busquen las citas que están en el mismo Wikipedia o vayan a la Biblioteca. Pueden incluir referencias a textos en línea, manuales de referencia de lenguajes de programación reconocidos, artículos de revistas de investigación en línea, entre otras fuentes. Conserven un estándar a la hora de hacer referencias. He aquí algunos ejemplos de referencias:

Libro

Santi, P. Topology Control in Wireless Ad Hoc and Sensor Networks. John Wiley and Sons, England. 2005.

Autor. Título del libro. Editorial. País de impresión. Año.

Artículo de revista

Kershner, R. The number of circles covering a set. American Journal of Mathematics 61 (3), 665-671. 1939

Autor. Título del artículo. Nombre de la revista. Volumen (número), páginas. Año.

Artículo en evento

lyengar, R., Kar, K., Banerjee, S.. Low-coordination topologies for redundancy in sensor networks. En: Memorias del 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing. 332-342. 2005

Autor. Título del artículo. En: Memorias del Nombre del evento. Páginas. Año.

Contenido en línea

Wightman, P. Atarraya: a simulation tool for teaching and researching topology control protocols in wireless sensor networks. Frequently Asked Questions. http://www.cse.usf.edu/~labrador/Atarraya/faq.htm. (En línea). Último acceso: Marzo 2011.

Autor (Puede ser la compañía si no existe un autor definido). Título del sitio web. Nombre de la página específica. URL. (En línea). Último Acceso: mes y año del acceso.

8. Presupuesto

- a. Personal: rol, horas de dedicación, valor hora, total.
- b. Equipos: descripción, valor
- c. Otros recursos
 - i. Papelería
 - ii. Trabajo de campo

II- Evidencias

9. Gerencia

- a. Evidencia de comunicación con el cliente
- b. Carta del cliente con percepción general del proyecto
- c. Bitácora de cumplimiento de cronograma hitos del proyecto (Scrums u otro elemento de medida de desarrollo)
- d. Discusión sobre las alternativas de solución que exploraron y los criterios de selección para el diseño final.

10. Diseño

- a. Descripción de las clases o elementos más relevantes
- b. Diagramas UML (Clases, Casos de Uso, Diagrama relacional (base de datos) con todos los estándares, Diagrama de componentes, Diagrama de secuencia, etc.)

11. Documentación

- a. Manual de usuario
 - i. Listado de funcionalidades
 - ii. Ejemplo guiado de ejecución
 - iii. Proceso de instalación

12. Pruebas

- a. Plan de pruebas propuesto
- b. Evidencias de aplicación de plan de pruebas

13. Experiencia de usuario e Interfaz gráfica

- a. Mapa de navegación de la aplicación (interfaces, pantallas, etc.)
- b. Descripción detallada de los elementos gráficos de la aplicación
- c. Encuesta de usabilidad (con al menos resultado de 5 personas encuestadas)

14. Conclusiones

- a. Breve descripción de los principales problemas y cómo se solucionaron, y las lecciones aprendidas durante el desarrollo del proyecto, tanto a nivel técnico, como metodológico
- b. Posibles mejoras que se pudieran hacer a su proyecto