National University of Computer and Emerging Sciences

Lab Manual 03 Computer Organization and Assembly Language Lab

Course Instructor	Ms. Aleena	
Lab Instructor (s)	Maham Saleem	
Section	BCS 3E	
Semester	Fall 2021	

Department of Computer Science FAST-NU, Lahore, Pakistan

Chapter 4 - Bit Manipulations Lab Manual 03 **Activity 1:** Write a program to swap every pair of bits in the AX register i.e. swap bit no 0 with bit no 1, bit no 2 with bit no 3 and so on.

Sample Run:

AX before Swap	10 11 00 10 01 01 11 01		
AX after Swap	1 11 00 01 10 10		
	11 10		

Activity 2: [Bit Manipulation] Calculate the number of one bits in BX and complement an equal number of least significant bits in AX. HINT: Use the XOR instruction.

Sample Run:

Initial value of BX	Total No of 1 Bits in BX	Initial value of AX	AX after Complementing 7 least significant bits
1011 0001 1000 1001	7	1010 1011 1 010 0101	1010 1 1 101 1010

Activity 3: AX contains a number between 0-15. Write code to complement the corresponding bit in BX. For example if AX contains 6; complement the 6th bit of BX.

Activity 4: Write a program to search a particular element from an array using binary search. If the element is found set AX to one and otherwise to zero. Binary Search searches a number from a sorted array. Shifting a number to right divides it by 2. Do not use division instruction use shifting for division.

As key > arr[middle], therefore start = middle + 1

As key < arr[middle], therefore end = middle - 1

As key == arr[middle], return middle as the required index

Figure 1: Binary Search Procedure