

Enhancing Multi-Scale Diffusion Prediction via Sequential Hypergraphs and Adversarial Learning

Pengfei Jiao^{1, 4}, Hongqian Chen¹, Qing Bao¹, Wang Zhang², Huaming Wu^{3*}

¹School of Cyberspace, Hangzhou Dianzi University, China
²College of Intelligence and Computing, Tianjin University, China
³Center for Applied Mathematics, Tianjin University, China
⁴Data Security Governance Zhejiang Engineering Research Center, Hangzhou Dianzi University, China {pjiao, hqchen, qbao}@hdu.edu.cn, {wangzhang, whming}@tju.edu.cn

https://github.com/CZ-TAO12/DisenIDP

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

Figure 1: Illustrations depicting macroscopic cascade size prediction (left) and microscopic next influenced user prediction (right).

Firstly, information dissemination involves complex interactions not only within a given cascade but also between different cascades.

Secondly, ensuring the purity of public features in the presence of potential contamination by private features poses a significant challenge.

Figure 2: The architectural overview of our model.

Method

Figure 3: The two stages of hypergraph convolution.

$$y_{j,t}^l = \sigma \left(w_{e_j^t} \cdot \sum_{u_i^t \in \mathcal{N}_v(e_j^t)} \frac{x_{i,t}^l}{|\mathcal{N}_v(e_j^t)|} \right), \tag{1}$$

$$x_{i,t}^{l+1} = \sigma \left(\Theta^l \cdot \sum_{e_j^t \in \mathcal{N}_e(u_i^t)} \frac{y_{j,t}^l}{|\mathcal{N}_e(u_i^t)|} \right), \tag{2}$$

$$x_{i,t+1}^{0} = \alpha x_{i,t}^{L} + (1 - \alpha) x_{i,t}^{0}$$

$$\alpha = \frac{\exp(\mathbf{W}_{F_{2}}^{T} \sigma(\mathbf{W}_{F_{1}} x_{i,t}^{L}))}{\exp(\mathbf{W}_{F_{2}}^{T} \sigma(\mathbf{W}_{F_{1}} x_{i,t}^{L})) + \exp(\mathbf{W}_{F_{2}}^{T} \sigma(\mathbf{W}_{F_{1}} x_{i,t}^{0}))},$$
(3)

$$\mathbf{X}_{S}^{l+1} = \sigma(\tilde{\mathbf{D}}_{S}^{-\frac{1}{2}}\tilde{\mathbf{A}}_{S}\tilde{\mathbf{D}}_{S}^{-\frac{1}{2}}\mathbf{X}_{S}^{l}\mathbf{W}_{S}), \tag{4}$$

Method

$$h_t = \mathbf{LSTM}(h_{t-1}, x_t, \theta_p), \tag{5}$$

$$h_t^{cas} = \mathbf{LSTM}(h_{t-1}^{cas}, x_t^d, \theta_{cas})$$

$$h_t^{user} = \mathbf{LSTM}(h_{t-1}^{user}, x_t^s, \theta_{user}),$$
(6)

$$f_{t} = \sigma(x_{t-1}^{D}W_{f} + x_{t-1}^{S}U_{f} + h_{t-1}V_{f} + b_{f}),$$

$$i_{t} = \sigma(x_{t-1}^{D}W_{i} + x_{t-1}^{S}U_{i} + h_{t-1}V_{i} + b_{i}),$$

$$o_{t} = \sigma(x_{t-1}^{D}W_{o} + x_{t-1}^{S}U_{o} + h_{t-1}V_{o} + b_{o}),$$

$$\tilde{c}_{t} = \tanh(x_{t-1}^{D}W_{c} + x_{t-1}^{S}U_{c} + h_{t-1}V_{c} + b_{c}),$$

$$c_{t} = \tilde{c}_{t} \cdot i_{t} + c_{t-1} \cdot f_{t}, \qquad h_{t} = o_{t} \cdot \tanh c_{t},$$

$$(7)$$

$$D(h, \theta_D) = softmax(b + Uh), \tag{8}$$

$$L_{adv} = \min_{\theta_{share}} \max_{\theta_{D}} \sum_{k=1}^{2} \sum_{n=1}^{N} (\log D(h_{n}^{k}) + \log(1 - D(h_{n}^{share}))),$$
(9)

$$L_{diff} = \left\| H^{share^T} H^{cas} \right\|_F^2 + \left\| H^{share^T} H^{user} \right\|_F^2, \quad (10)$$

Method

$$S_m = \text{MLP}(\text{concat}(h^{cas}, h^{share})),$$
 (11)

$$L_{macro} = \frac{1}{M} \sum_{m=1}^{M} (S_m - \hat{S}_m)^2,$$
 (12)

$$p_i = \text{softmax}(\text{MLP}(\text{concat}(h^{user}, h^{share}))).$$
 (13)

$$L_{micro} = -\sum_{j=2}^{|d_m|} \sum_{i=1}^{|U|} \hat{p}_{ji} \log(p_{ji}),$$
 (14)

$$L = \lambda L_{macro} + (1 - \lambda)L_{micro} + L_{adv} + \gamma L_{diff}, \quad (15)$$

Dataset	Christ	Android	Douban	Meme
# Users	2,897	9,958	12,232	4,709
# Links	35,624	48,573	39,658	209,194
# Cascades	589	679	3,475	12,661
Avg. Length	22.9	33.3	21.76	16.24

Table 1: Statistics of datasets. Christ is short for the dataset Christianity, and Meme is short for the dataset Memetracker.

Model	Christ	Android	Douban	Meme
DeepCas	1.446	2.122	2.122	2.231
DeepHawkes	1.111	1.971	1.725	1.143
CasCN	1.046	0.981	1.476	0.967
CasFlow	0.765	1.041	0.465	0.535
TCSE-net	2.391	2.882	1.033	2.285
FOREST	1.726	0.556	0.825	0.621
DMT-LIC	1.692	0.201	0.741	0.701
MINDS	0.572	0.151	0.404	0.506

Table 4: Experimental results on four datasets in terms of *MSLE*, where lower scores indicate better performance. Christ is short for the dataset Christianity, and Meme is short for the dataset Memetracker.

Models	Christianity			Android			Douban			Memetracker		
	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100
TopoLSTM	0.1559	0.3653	0.4777	0.0460	0.1318	0.2103	0.0306	0.0143	0.0184	0.1908	0.3687	0.4683
NDM	0.0464	0.1145	0.1461	0.0170	0.0423	0.0555	0.0388	0.0506	0.0528	0.0931	0.1228	0.1279
SNIDSA	0.0660	0.2098	0.3502	0.0271	0.0829	0.1299	0.0702	0.1807	0.2324	0.1395	0.2945	0.3977
Inf-VAE	0.0767	0.2569	0.3853	0.0318	0.0938	0.1452	0.1364	0.2361	0.3059	0.1165	0.3096	0.4200
DyHGCN	0.2380	0.4689	0.5923	0.0748	0.1746	0.2596	0.1438	0.2648	0.3329	0.2522	0.4603	0.5710
TAN-DURD	0.1908	0.4406	0.5697	0.0281	0.1024	0.1658	0.0841	0.1604	0.2175	0.2139	0.4247	0.5383
FOREST	0.2746	0.4665	0.5603	0.0866	0.1739	0.2314	0.1106	0.1986	0.2559	0.2648	0.4502	0.5499
DMT-LIC	0.2768	0.4442	0.5669	0.0932	0.1639	0.2315	0.1465	0.2506	0.3054	0.2746	0.4619	0.5656
MINDS	0.3214	0.4978	0.6250	0.1096	0.1989	0.2766	0.1956	0.3087	0.3641	0.2819	0.4760	0.5790

Table 2: Results on four datasets (Hits@k scores for k = 10, 50 and 100), where higher scores indicate better performance.

Models	Christianity			Android			Douban			Memetracker		
1.104015	@10	@50	@100	@10	@50	@100	@10	@50	@100	@10	@50	@100
TopoLSTM	0.0523	0.0619	0.0635	0.0166	0.0202	0.0213	0.0354	0.0824	0.0884	0.0870	0.0955	0.0969
NDM	0.0144	0.0177	0.0182	0.0059	0.0070	0.0072	0.0141	0.0824	0.0884	0.0463	0.0480	0.0481
SNIDSA	0.0246	0.0306	0.0326	0.0100	0.0122	0.0129	0.0371	0.0419	0.0148	0.0605	0.0674	0.0689
Inf-VAE	0.0172	0.0254	0.0272	0.0076	0.0103	0.0110	0.0543	0.0588	0.0598	0.0425	0.0509	0.0525
DyHGCN	0.1062	0.1167	0.1184	0.0392	0.0434	0.0446	0.0801	0.0856	0.0865	0.1410	0.1502	0.1518
TAN-DURD	0.0752	0.1167	0.1184	0.0099	0.0130	0.0139	0.0359	0.0401	0.0409	0.0991	0.1086	0.1102
FOREST	0.1569	0.1658	0.1672	0.0628	0.0667	0.0675	0.0655	0.0694	0.0702	0.1429	0.1514	0.1528
DMT-LIC	0.1649	0.1728	0.1746	0.0622	0.0652	0.0662	0.0812	0.0856	0.0897	0.1496	0.1581	0.1595
MINDS	0.1955	0.2037	0.2054	0.0677	0.0716	0.0727	0.1142	0.1199	0.1213	0.1535	0.1623	0.1638

Table 3: Results on four datasets (MAP@k scores for k = 10, 50 and 100), where higher scores indicate better performance.

Models		Christianity		Douban			
	Hits@100	MAP@100	MSLE	Hits@100	MAP@100	MSLE	
w/o AdvDiff	0.5893	0.1958	0.971	0.3682	0.1170	0.642	
w/o Diff	0.6004	0.1949	1.222	0.3688	0.1173	0.712	
w/o Adv	0.5915	0.1926	0.861	0.3572	0.1193	0.742	
w/o HGNN	0.5871	0.2013	1.074	0.3692	0.1178	0.581	
w/o Macro	0.5580	0.1874	9.255	0.3665	0.1191	4.669	
w/o Micro	0.5871	0.1937	0.865	0.3591	0.1174	0.711	
MINDS	0.6250	0.2054	0.572	0.3736	0.1213	0.549	

Table 5: Ablation study on Christianity and Douban datasets. We design six variants to demonstrate the rationale behind our model: w/o Adv Diff removes L_{adv} and L_{diff} . w/o Diff removes L_{diff} . w/o Adv removes L_{adv} . w/o HGNN replaces sequential hypergraphs with sequential digraphs and HGNN with GAT. w/o Macro removes L_{macro} . w/o Micro removes L_{micro} .

Thank you!