Wchodzimy w warstwie trees wchodzimy w właściwości, następnie styl i klasyfikujemy po wartości VEGDESC.

Zadanie 2

Wchodzimy w wektor, następnie narzędzia zarządzania danymi i podziel warstwę wektorową. Wybieramy "pole z uniklanym ID", dzielimy według VEGDESC i eksportujemy do pliku shp.

Nazwa	Data modyfikacji	Тур	Rozmiar
vegdesc_Deciduous.cpg	08.11.2024 13:30	Plik CPG	1 KB
vegdesc_Deciduous.dbf	08.11.2024 13:30	Plik DBF	40 KB
vegdesc_Deciduous.prj	08.11.2024 13:30	Plik PRJ	1 KB
vegdesc_Deciduous.shp	08.11.2024 13:30	Plik SHP	471 KB
vegdesc_Deciduous.shx	08.11.2024 13:30	Plik SHX	2 KB
vegdesc_Evergreen.cpg	08.11.2024 13:30	Plik CPG	1 KB
vegdesc_Evergreen.dbf	08.11.2024 13:30	Plik DBF	50 KB
vegdesc_Evergreen.prj	08.11.2024 13:30	Plik PRJ	1 KB
vegdesc_Evergreen.shp	08.11.2024 13:30	Plik SHP	597 KB
vegdesc_Evergreen.shx	08.11.2024 13:30	Plik SHX	2 KB
vegdesc_Mixed Trees.cpg	08.11.2024 13:30	Plik CPG	1 KB
vegdesc_Mixed Trees.dbf	08.11.2024 13:30	Plik DBF	52 KB
vegdesc_Mixed Trees.prj	08.11.2024 13:30	Plik PRJ	1 KB
vegdesc_Mixed Trees.shp	08.11.2024 13:30	Plik SHP	666 KB
vegdesc_Mixed Trees.shx	08.11.2024 13:30	Plik SHX	2 KB

Wybieramy region w tabeli atrybutów i eksportujemy go do oddzielnej warstwy. Następnie wchodzimy w narzędzia geoprocessingu, wybieramy przytnij, jako warstwę nakładki podajemy warstwę regionu, a jako warstwę wejściową warstwę linii kolejowych i otrzymujemy warstwę przyciętych linii dla tego regionu. Długość linii kolejowych dla danego regionu obliczamy w Group Stats wybierając konkretną warstwę i dodając do Value sum i Length.

Zadanie 4

Średni poziom and poziomem morza dla lotnisk wojskowych wyznaczony w Group Stats.

Liczba lotnisk o charakterze wojskowym wyznaczona w Group Stats.

Wyznaczenie lotnisk militarnych na wysokości powyżej 1400 m.n.p.m

Wyznaczamy warstwę region tak samo jak w zadaniu 3 i wyliczamy liczbę budynków w Group Stats

Zadanie 6

Tworzymy bufor dla przyciętej warstwy rivers . Wszystkie budynki dla tego regionu znajdują się wbuforze.

Zadanie 7

Wybieramy Wektor, następnie narzędzia analizy i przecięcia linii. Są 4 takie punkty.

Wybieramy wektor, nastęnie narzędzia geometrii i wydobądź wierzchołki, które zliczamy w Group Stats.

Zadanie 9

Najpierw tworzymy bufor dla airports i railways.

A następnie wyliczamy różnicę przez wektor, narzędzia geoprzetwarzania, różnica pomiędzy buforem lotnisk, a buforem railways.

Zadanie 10

Pole powierzchni przed uproszczeniem, obliczone w Group Stats

Liczba wierzchołków przed uproszczeniem, obliczona w Group Stats.

Uproszczamy geometrię przez Wektor, następnie narzędzia geometrii i uprość geometrię.

Pole powierzchni nie zmieniło się

Liczba wierzchołków zmniejszyła się.

