Alumno:	DNI:

Fundamentos Lógicos de la Programación

30/06/09

Señala el grupo a continuación:

Ingeniería Técnica en Informática de Gestión A

Ingeniería Técnica en Informática de Gestión B

Ingeniería técnica en Informática de Sistemas B

Todas las respuestas hay que justificarlas. Caso contrario no se puntuarán.

Ejercicio 1. De los siguientes grupos de fórmulas proposicionales, ¿cuál verifica que $I(\alpha) \cdot I(\beta) = 1 + I(\gamma)$?

- 1. $\alpha = a$, $\beta = \neg b$, $\gamma = a \lor \neg b$.
- 2. $\alpha = \alpha \lor \neg b, \beta = b \leftrightarrow c, \gamma = \alpha \rightarrow c.$
- 3. $\alpha = \alpha \rightarrow \neg b \lor c$, $\beta = \neg c \rightarrow \alpha \land b$, $\gamma = \neg c$.
- 4. $\alpha = a \rightarrow \neg b$, $\beta = \neg a \land b$, $\gamma = a \rightarrow b$.

Ejercicio 2. Si Γ es un conjunto de proposiciones y $\Gamma \models (\neg(a \rightarrow b)) \rightarrow (\neg c \rightarrow \neg d)$, entonces:

- 1. $\Gamma \cup \{\neg(\alpha \to b)\} \models d \to c$
- 2. $\Gamma \cup \{\neg(\alpha \to b), \neg d\} \models \neg c$
- 3. $\Gamma \cup \{\neg c \rightarrow \neg d\} \models \neg(a \rightarrow b)$
- 4. $\Gamma \cup \{\neg(a \rightarrow b), \neg c\} \models d$

Ejercicio 3. Consideramos los siguientes conjuntos de cláusulas proposicionales:

1.
$$\Sigma_1 = \{a \lor b, \neg a \lor b, a \lor \neg b, \neg a \lor \neg b, c \lor d\}$$

2.
$$\Sigma_2 = \{a \lor b, a \lor \neg b, \neg a \lor c \lor d, c \lor e\}$$

3.
$$\Sigma_3 = \{a \lor b \lor c, \neg a \lor c \lor d\}$$

Basándose exclusivamente en el algoritmo de Davis y Putnam para dar la respuesta, ¿cuál de las siguientes afirmaciones es verdadera?

- 1. Σ_1 y Σ_2 son insatisfacibles.
- 2. Σ_1 es insatisfacible y tanto Σ_2 como Σ_3 son satisfacibles.
- 3. Σ_3 es insatisfacible y tanto Σ_2 como Σ_1 son satisfacibles.
- 4. Σ_3 y Σ_2 son insatisfacibles.

Ejercicio 4. Dado el lenguaje de primer orden con símbolos de constante a y b, símbolos de función sum² y prod² (ambos binarios) y símbolos de predicado P¹ y Eq², consideramos la estructura dada por:

Dominio: N

Constantes: a = 0, b = 1.

Functiones: sum(x, y) = x + y, $prod(x, y) = x \cdot y$.

Predicados: $P(x) \equiv x$ es par, $Eq(x, y) \equiv x = y$.

Elige qué fórmula de las siguientes significa que "todo número par es múltiplo de 2"

- 1. $\forall x \exists y (P(x) \rightarrow Eq(x, prod(y, sum(b, b))))$.
- 2. $\forall x \exists y (P(x) \rightarrow Eq(y, prod(x, sum(b, b))))$.
- 3. $\exists x \forall y (P(x) \rightarrow Eq(x, prod(y, sum(b, b)))).$
- 4. $\forall x \exists y (P(x) \leftrightarrow Eq(x, prod(y, sum(b, b))))$.

Ejercicio 5. Para un lenguaje de primer orden \mathcal{L} se considera la interpretación dada por

$$\text{la estructura } \epsilon \equiv \left\{ \begin{array}{l} \mathcal{D} = \mathbb{N}, \\ f(x) = 2x + 1, \text{ para todo } x \in \mathcal{D}, \\ P(x) \text{ es verdadero si, y sólo si, x es un número primo,} \\ y \text{ la asignación o valoración } \nu(x) = 3. \end{array} \right.$$

(Se recuerda que 1 por definición no es un número primo)

¿Cuál de las siguientes fórmulas de \mathcal{L} es verdadera bajo la interpretación dada?

- 1. $P(x) \rightarrow \forall x (P(x) \lor \neg P(f(x))),$
- 2. $P(x) \rightarrow \exists x \neg P(f(f(x))),$
- 3. $\forall y (P(y) \rightarrow P(f(y)))$,
- 4. $\forall y (P(x) \rightarrow P(y))$.

Ejercicio 6. ¿Cuál de las siguientes fórmulas es equivalente a la fórmula

$$\forall x (\forall x R(x, y) \rightarrow \exists y R(x, f(y)))$$
?

- 1. $\forall x \exists t \exists y (R(t,y) \rightarrow R(x,f(y)))$
- 2. $\forall x \forall z (R(x,y) \rightarrow R(x,f(z)))$
- 3. $\forall x \exists y (R(x, z) \rightarrow R(x, f(y)))$
- 4. $\forall x \exists w (R(w, y) \rightarrow R(x, f(w)))$

Ejercicio 7. Dados los literales P(g(f(x), u), f(a), g(z, f(y))) y P(g(f(f(y)), g(v, a)), f(v), g(g(x, b), x)), di cuál de las siguientes sustituciones es un unificador principal.

- 1. (v|a; u|g(v, a); z|g(a, b); x|a).
- 2. (v|a; u|g(a, a); z|g(f(b), b); y|b; x|f(b)).
- 3. (v|a)(u|g(a,a))(z|g(x,b))(x|f(u)).
- 4. (x|f(y); v|a; z|g(f(y), b); u|g(a, a)).

Ejercicio 8. ¿Cuál de los siguientes conjuntos de cláusulas es satisfacible?

- 1. $\{P(x, f(x), g(y)) \lor P(f(y), z, f(z)), \neg P(x, f(y), x)\}$
- 2. $\{P(x, f(x), y) \lor P(f(y), z, g(y)), \neg P(x, y, z)\}$
- 3. $\{P(f(x), g(y), f(z)) \lor P(x, y, z), \neg P(f(a), g(b), z)\}$
- 4. $\{P(x, f(x), f(f(x))) \lor P(f(x), x, f(x)), \neg P(f(y), x, f(x))\}$

Ejercicio 9. Dado un lenguaje de primer orden, supongamos que tenemos un conjunto de Horn, Σ , que además no tiene ninguna cláusula de Horn unitaria (con un único literal)

¿Cuál de las siguientes afirmaciones es verdadera?

- 1. Σ es satisfacible.
- 2. Σ es insatisfacible.
- 3. Si además de las tres condiciones que cumple Σ cumple también que es finito, entonces seguro que es insatisfacible.
- 4. Con las condiciones que enumera el enunciado y que se dice que cumple Σ , no es suficiente para saber si es satisfacible o insatisfacible.

Ejercicio 10. Consideremos las siguientes cláusulas en el lenguaje de primer orden apropiado:

$$\begin{aligned} \gamma_1 &= \neg P(x, f(b, x)) \lor Q(x) \lor Q(a) \\ \gamma_2 &= P(h(z), w) \lor \neg Q(h(y)) \end{aligned}$$

¿Hay alguna deducción de la cláusula vacía a partir del conjunto de hipótesis $\{\gamma_1, \gamma_2\}$?

- 1. Sí, pues las fórmulas atómicas Q(x), Q(h(y)), P(x, f(b, x)), P(h(z), w) y Q(a) son unificables.
- 2. Si en el lugar de α en γ_1 estuviese el símbolo de variable u, sí ocurriría pues $\neg P(x, f(b, x)) \lor Q(x)$ es un factor de $\neg P(x, f(b, x)) \lor Q(x) \lor Q(u)$
- 3. No, pues hay una estructura, con dominio los números naturales, en la que las dos fórmulas se interpretan como ciertas.
- 4. Sí, debido a que no hay variables comunes en las dos fórmulas