EFFECT ALGEBRAS WITH COMPRESSIONS

SYLVIA PULMANNOVÁ

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, Sk-814 73 Bratislava, Slovakia (e-mail: pulmann@mat.savba.sk)

(Received April 3, 2006 - Revised April 27, 2006)

The notion of a CB-effect algebra as an effect algebra equipped with a compression base was recently introduced by S. Gudder as an analogue of the notion of a unital group with a compression base (CB-group) introduced by D. Foulis. The present paper extends the investigation of CB-effect algebras with the projection cover property, the Rickart projection property, and introduces the so-called b-general comparability, which is an effect algebra version of general comparability in CB-groups. Commutativity properties, blocks and C-blocks are studied, and it is shown that a CB-effect algebra with b-general comparability can be covered by its C-blocks, which are maximal sets of commuting elements, and can be organized into MV-algebras. Connections with sequential effect algebras (SEAs) are studied.

AMS Classification: Primary 81P10. Secondary 3G12, 06F20.

Keywords: effect algebra, sequential effect algebra, compression base, projection, general comparability, projection cover, Rickart projection property, block, C-block.

1. Introduction

In [8], D. Foulis characterized compressions on the set of self-adjoint elements of a unital C*-algebra, and the resulting characterization inspired a study of a new class of partially ordered abelian groups, so-called compressible groups introduced in [7], and further studied in [10, 29, 30, 9]. In the further development it turned out that the concept of compressible groups was too restrictive, and many important cases were omitted. Therefore the notion of compression bases was introduced in [11], and the study of unital groups (i.e. partially ordered abelian groups with strong unit) with compression bases continued in a series of papers [12, 15, 13], etc.

Effect algebras were introduced as an algebraic abstraction of the set of the Hilbert space effects, that is, self-adjoint operators on a Hilbert space lying between the zero and identity operator [14, 17, 25]. The effects correspond to yes-no quantum measurements that can be unsharp. They play an important role in the theory of quantum measurements [2, 3, 26]. An important class of effect algebras are unit intervals of unital groups [1]. Another important class are sequential effect algebras

This work was supported by Science and Technology Assistance Agency under the contract No. APVT-51-032002, grant VEGA 2/6088/26 and Center of Excellence SAS - Physics of Information I/2/2005.

[22], which are effect algebras with an additional operation of product inspired by the operation $(A, B) \rightarrow A^{1/2}BA^{1/2}$ on the Hilbert space effects.

The notion of compressions was generalized to effect algebras in [20], and effect algebras with compression bases were introduced in [21]. In the latter paper, it was shown that sequential effect algebras possess a natural compression base. The focus of a compression is called a projection, and it was shown that projections are principal, hence sharp elements of the effect algebra. Further, a projection cover property was studied there.

In the present paper we continue investigation of effect algebras with compression bases. We introduce a version of general comparability, so-called b-general comparability, in the context of effect algebras. The latter property is satisfied, e.g. in the set $\mathcal{E}(H)$ of Hilbert space effects, in σ -MV-algebras, or more generally, in unit intervals of archimedean RC-groups. We continue the study of commutants and introduce the notion of C-blocks, in analogy with [15]. We show that in an effect algebra with a compression base which has the b-general comparability property, every C-block is an MV-algebra. Moreover, the effect algebra can be covered by C-blocks, which are maximal sets of mutually commuting elements. We also show that, due to the existence of projection covers in monotone σ -complete sequential effect algebras, the set of projections in them forms an orthomodular σ -lattice, and that a commutative SEA with the b-general comparability is an MV-algebra.

2. Effect algebras

This section summarizes the basic definitions and notations concerning effect algebras. An *effect algebra* is a system $(E; \oplus, 0, 1)$ where E is a nonempty set, 0, 1 are constants and \oplus is a partial binary operation on E that satisfies the following conditions:

- (E1) If $a \oplus b$ exists then $b \oplus a$ exists and $b \oplus a = a \oplus b$.
- (E2) If $a \oplus b$ and $(a \oplus b) \oplus c$ exist, the $b \oplus c$ and $a \oplus (b \oplus c)$ exist and $a \oplus (b \oplus c) = (a \oplus b) \oplus c$.
- (E3) For every $a \in E$ there exists a unique $a' \in E$ such that $a \oplus a' = 1$.
- (E4) $a \oplus 1$ exists iff a = 0.

We write $a \perp b$ and say that a and b are orthogonal if $a \oplus b$ exists. In the sequel, whenever we write $a \oplus b$ we tacitly assume that $a \perp b$. We define $a \leq b$ if there exists a $c \in E$ such that $a \oplus c = b$. If such an element $c \in E$ exists, then it is unique and we write $c = b \ominus a$. In particular, $a' = 1 \ominus a$, and we call a' the orthosupplement of a. It can be shown that $a \perp b$ iff $a \leq b'$. Moreover, $(E; \leq, ')$ is a partially ordered set with $0 \leq a \leq 1$ for all $a \in E$, a'' = a and $a \leq b$ iff $b' \leq a'$. An element $a \in E$ is called sharp if $a \wedge a' = 0$ and we denote the set of all sharp elements in E by E_S . An element $a \in E$ is principal if $b, c \leq a$ with $b \perp c$ imply that $b \oplus c \leq a$. It is easy to see that a principal element is sharp. A subset E of an effect algebra E is a E sub-effect algebra of E if E whenever E and E whenever E whenever E whenever E and E whenever E whenever E whenever E whenever E and E whenever E whenever E whenever E whenever E whenever E and E whenever E whenever

From the point of view of quantum theory, the most important example of an effect algebra comes from the set $\mathcal{E}(H)$ of all self-adjoint operators A on a Hilbert space H satisfying $0 \le A \le I$, where the partial ordering comes from the partial ordering of self-adjoint operators [2, 3, 26]. For $A, B \in \mathcal{E}(H)$ we define $A \perp B$ if $A + B \in \mathcal{E}(H)$, in which case $A \oplus B = A + B$. Then $(\mathcal{E}(H); \oplus, I, 0)$ is an effect algebra, which is called the *Hilbert space effect algebra*. The elements $A \in \mathcal{E}(H)$ are called *quantum effects*. They correspond to yes-no quantum measurements that may be unsharp. The set $\mathcal{P}(H)$ of projection operators on H forms an orthomodular lattice which is a sub-effect algebra of $\mathcal{E}(H)$. It can be shown that the elements of $\mathcal{P}(H)$ correspond to sharp elements of $\mathcal{E}(H)$, that is, $\mathcal{P}(H) = \mathcal{E}(H)_S$.

An effect algebra E is monotone σ -complete if every ascending sequence $(a_i)_{i\in\mathbb{N}}$ has a supremum $a = \bigvee_{i\in\mathbb{N}} a_i$ in E, equivalently, if any descending sequence $(b_i)_{i\in\mathbb{N}}$ has an infimum $b = \bigwedge_{i\in\mathbb{N}} b_i$.

If E and F are effect algebras, a mapping $\phi: E \to F$ is additive if $a \perp b$ implies $\phi(a) \perp \phi(b)$ and $\phi(a \oplus b) = \phi(a) \oplus \phi(b)$. If $\phi: E \to F$ is additive and $\phi(1) = 1$, then ϕ is a morphism. If $\phi: E \to F$ is a morphism and $\phi(a) \perp \phi(b)$ implies $a \perp b$, then ϕ is called a monomorphism. A morphism ϕ is an isomorphism if ϕ is bijective and ϕ^{-1} is also a morphism. It is easy to see that a morphism ϕ is an isomorphism if and only if ϕ is a surjective monomorphism.

For $a \in E$, $a \neq 0$, define the interval $F = [0, a] = \{b \in E : 0 \leq b \leq a\}$. For $b, c \in E$ define $b \oplus_F c = b \oplus c$ if $b \perp c$ and $b \oplus c \in F$. Then $(F; \oplus_F, 0, a)$ becomes an effect algebra. If a is a principal element, then \oplus_F coincides with \oplus . Suppose that p and p' are principal elements of E. Let

$$F = [0, p] \oplus [0, p'] = \{a \oplus b : a \le p, b \le p'\}.$$

With the restriction \oplus/F of \oplus to F then $(F; \oplus/F, 0, 1)$ is a sub-effect algebra of E. An additive map $J: E \to E$ is a retraction if $a \le J(1)$ implies that J(a) = a [8, 20]. The converse that J(a) = a implies that $a \le J(1)$ automatically holds for any additive map J. We call J(1) the focus of the retraction J. A retraction is direct if $J(a) \le a$ for all $a \in E$.

We denote the kernel of J by $\ker(J) = \{a \in E : J(a) = 0\}$ and the image of J by J(E). For retractions J and I we say that I is the *supplement* of J if $\ker(J) = I(E)$ and $\ker(I) = J(E)$.

Basic properties of retractions are collected below (see also [20]).

LEMMA 2.1. Let J be a retraction on an effect algebra E with focus p. The following statements hold.

- (i) $J \circ J = J$.
- (ii) $a < p' \implies J(a) = 0$.
- (iii) p is principal, hence sharp.
- (iv) $p < a \implies J(a) = p$.
- (v) $F := \{a \in E : J(a) = a\} = [0, p]$, and F becomes an effect algebra with unit p. If I is a retraction on F, then $I \circ J$ is a retraction on E with focus I(p).

Proof: (i) $a \le 1 \implies J(a) \le J(1) = p \implies J(J(a)) = J(a)$.

- (ii) $a \le p' \implies a \perp p$, hence $J(a) \perp J(p) (= p)$, so that $J(a) \oplus p = J(a \oplus p) \le J(1) = p$, whence J(a) = 0.
- (iii) Assume $a, b \le p$, $a \perp b$. Then $a = J(a), b = J(b), a \oplus b = J(a) \oplus J(b) = J(a \oplus b) \le J(1) = p$.
 - (iv) $p \le a \implies p = J(p) \le J(a) \le J(1) = p$.
- (v) If $a \le p$, then J(a) = a by definition. Assume that $a = J(b) \in F$, then J(a) = J(J(b)) = J(b) = a, whence $a \le p$.

Since p is principal, F = [0, p] is an effect algebra with unit p. Let I be a retraction on F. Then $I \circ J$ is additive, and $I \circ J(1) = I(p)$. Since $I : F \to F$, we have $I(p) \le p$. If $a \le I(p)$, then $I \circ J(a) = I(J(a)) = I(a) = a$.

By Lemma 2.1 (ii), $a \le p'$ implies J(a) = 0. A retraction J is a compression if $J(a) = 0 \Leftrightarrow a \le p'$.

The following lemma is easy to prove.

LEMMA 2.2. Let J be a retraction on an effect algebra E with focus p. The following statements are equivalent.

- (i) J is a compression.
- (ii) $J(a) = p \implies p \le a$.
- (iii) $\ker(J) = [0, p'].$

Moreover, if a retraction J has a supplement I, then both J and I are compressions and I(1) = J(1)'.

DEFINITION 2.1 ([11]). A sub-effect algebra S of an effect algebra E is called *normal* if for all $e, f, d \in E$ with $e \oplus f \oplus d \in E$, we have $e \oplus d$, $f \oplus d \in S \implies d \in S$.

Recall that two elements $a, b \in E$ are coexistent if there are $a_1, b_1, c \in E$ such that $a_1 \oplus b_1 \oplus c$ exist in E and $a = a_1 \oplus c$, $b = b_1 \oplus c^1$. We shall write $a \leftrightarrow b$ if $a, b \in E$ are coexistent. If $F \subseteq E$, and $a, b \in E$, we say that a, b are coexistent in E if there are $a_1, b_1, c \in E$ with $a_1 \oplus b_1 \oplus c \in E$ such that $a = a_1 \oplus c$, $b = b_1 \oplus c$.

LEMMA 2.3 ([21]). Let F be a normal sub-effect algebra of E and let $a, b \in F$. If a, b are coexistent in E, then a, b are coexistent in F.

EXAMPLE 2.1. A simple example of a sub-effect algebra that is not normal is obtained as follows. Let $X := \{a, b, c, d\}$ and organize the set 2^X of all subsets of X into a Boolean algebra in the usual way. Then $E = (2^X, \oplus, \emptyset, X)$ is an effect algebra with $A \perp B$ iff $A \cap B = \emptyset$, in which case $A \oplus B = A \cup B$. Clearly, every two elements of E are coexistent in E. The subset E of E consisting of E of E and E are not coexistent in E. But, for example, the elements E and E are not coexistent in E and E are not a normal sub-effect algebra of E.

¹Some authors refer to this property as 'Mackey compatibility'

DEFINITION 2.2 ([11, 21]). A compression base on an effect algebra E is a family $(J_p)_{p\in P}$ of compressions on E, indexed by a normal sub-effect algebra P of E, such that

- (C1) each $p \in P$ is the focus of J_p ,
- (C2) if $p,q,r \in P$ and $p \oplus q \oplus r \in E$, then $J_{p \oplus q} \circ J_{q \oplus r} = J_q$.

An effect algebra with a compression base will be called a CB-effect algebra.

A compression base is *proper* if every direct compression belongs to $(J_p)_{p \in P}$; it is *direct* if it is the family of all direct compressions on E; it is *total* if every retraction on E is a compression and belongs to the family $(J_p)_{p \in P}$.

We make the following standing assumption:

Henceforth, E is a CB-effect algebra with compression base $(J_p)_{p \in P}$.

Proof of the following lemma is straightforward.

LEMMA 2.4. Let $a, b \in E$, $p \in P$.

- (i) $J_p(a \oplus b) = J_p(a) \oplus J_p(b)$.
- (ii) $J_0(a) = 0$, $J_1(a) = a$.
- (iii) $J_p(a) \leq p$.
- (iv) $a \le b \implies J_p(a) \le J_p(b)$.
- (v) $a \le p \Leftrightarrow J_p(a) = a, p \le a \Leftrightarrow J_p(a) = p.$
- (vi) $J_p(a) = 0 \Leftrightarrow p \perp a$.
- (vii) $a \le b \implies J_p(b \ominus a) = J_p(b) \ominus J_p(a)$.

THEOREM 2.1. The set P as a sub-effect algebra of E, is an orthomodular poset (OMP) and if $p \in P$, then $J_{p'}$ is a supplement of J_p .

Proof: To prove the first statement, it suffices to prove that $p,q \in P, p \perp q$ imply $p \oplus q = p \vee q$. It is clear that $p,q \leq p \oplus q$. Suppose that $p,q \leq a, a \in E$. Then there exists $b \in E$ such that $p \oplus b = a$, and then $q = J_q(a) = J_q(p \oplus b) = J_q(p) \oplus J_q(b) = J_q(b)$ (by Lemma 2.4 (vi), and by Lemma 2.4 (v)), $q \leq b$. Hence $p \oplus q \leq p \oplus b = a$. Thus $p \oplus q = p \vee q$. That is, $p \oplus q \in P$ is the supremum of p and q in E, and hence also in P. By Lemma 2.4 (v) and (vi), $J_p(a) = 0$ iff $J_{p'}(a) = a$. Hence $J_{p'}$ is a supplement of J_p .

THEOREM 2.2 ([21, Theorem 3.6]). If $p, q \in P$, then the following statements are equivalent.

- (i) $q \leq p$.
- (ii) $J_p \circ J_q = J_q$.
- (iii) $J_p(q) = q$.
- (iv) $J_q \circ J_p = J_q$.
- (v) $J_q(p) = q$.

THEOREM 2.3 ([21, Theorem 3.7]). If $p, q \in P$, then the following statements are equivalent.

- (i) $J_p(q) = 0$.
- (ii) $p \perp q$.
- (iii) $J_q(p) = 0$.
- (iv) $p \perp q$ and $J_{(p \oplus q)'} = J_{p'} \circ J_{q'} = J_{q'} \circ J_{p'}$.

3. Examples

EXAMPLE 3.1. The unit interval $\mathcal{E}(\mathcal{A})$ in the self-adjoint part of a unital C^* -algebra \mathcal{A} with Naimark compressions $J_p(e) := pep$, where p satisfies $p = p^2 = p^*$. It has been proved in [8] that $(J_p)_p$ is a total compression base for $\mathcal{E}(\mathcal{A})$. As special cases, we have the standard Hilbert space CB-effect algebra $\mathcal{E}(H)$ as well as the unit interval in the commutative C*-algebra of continuous functions on a compact Hausdorff space.

EXAMPLE 3.2. MV-algebras and MV-effect algebras. MV-algebras were introduced by Chang [4] as the algebraic bases for many-valued logic. We recall that an MV-algebra is an algebra $(M; \dotplus, ', 0)$, where \dotplus is a commutative and associative binary operation on M having 0 as a neutral element, ' is an involutive unary operation such that $a \dotplus 0' = 0'$ for all $a \in M$, and in addition, the Łukasiewicz identity $a \dotplus (a \dotplus b')' = b \dotplus (b \dotplus a')'$ is satisfied for all $a, b \in M$. An MV-algebra is partially ordered by the relation $a \le b$ iff $a' \dotplus b = 1$, where we define 1 := 0'. In this ordering we have $0 \le a \le 1$ for all $a \in M$, and M becomes a distributive lattice.

Given an MV-algebra, if we restrict the total operation \dotplus to elements (a,b) for which $a \leq b'$ (equivalently, $b \leq a'$), and for those elements (a,b) we put $a \oplus b := a \dotplus b$, then $(M; \oplus, 0, 1)$ becomes an effect-algebra with orthosupplement a'. On the other hand, an effect algebra $(E; \oplus, 0, 1)$ can be endowed with a total binary operation \dotplus extending \oplus such that $(E; \dotplus, ', 0)$ is an MV-algebra if and only if E is lattice ordered and for every $a, b \in E$, $(a \lor b) \ominus b = a \ominus (a \land b)$ (equivalently, if $a \leftrightarrow b$) for all $a, b \in E$ [5, 25, 6]. Such an effect algebra is called an MV-effect algebra. Notice that the partial order in an MV-algebra coincides with the partial order in the corresponding MV-effect algebra. In what follows, we use MV-algebras and MV-effect algebras as equivalent notions.

A standard example of an MV-algebra is the unit interval [0, 1] of the real line $\mathbb R$ with the $\dot +$ operation defined as $a \dot + b = \min(a+b,1)$ and a'=1-a (here + and - denote the usual addition and difference of real numbers). More generally, a set $[0,1]^X$ of functions $f: X \to [0,1]$, where X is any nonempty set, with the operations $(f \dot + g)(x) = \min(f(x) + g(x), 1)$ and f'(x) = 1(x) - f(x), where $1(x) = 1 \ \forall x \in X$, is an MV-algebra, which is called the MV-algebra of fuzzy sets. Every Boolean algebra $(B; \vee, \wedge, ', 0, 1)$ is an MV-algebra with the $\dot +$ operation defined by $a \dot + b = a \vee b$ and the remaining operations defined as in the Boolean algebra, is an MV-algebra in which $a \dot + a = a$, $a \in B$. Conversely, every MV-algebra in which the latter property is satisfied for all its elements, is a Boolean algebra.

It was proved in [27], that MV-algebras are categorically equivalent with unital lattice ordered groups (ℓ -groups), where the functor Γ assigns to every ℓ -group (G; u) with unit u the MV-algebra $\Gamma(G; u)$ consisting of the unit interval [0, u] of G endowed with the operations g' = u - g and $g \dotplus h = (g + h) \land u$. An element $a \in M$ is idempotent if $a \dotplus a = a$. An element in $a \in M$ is sharp if $a \land a' = 0$. The idempotents and sharp elements in M coincide and form a Boolean subalgebra $B(M)(=M_S)$ of M.

THEOREM 3.1. Let M be an MV-effect algebra.

- (i) For every retraction J with focus p on M and every $a \in M$, $J(a) = a \wedge p$.
- (ii) Every retraction is a direct compression, and it is uniquely defined by its focus.
- (iii) If $(J_p)_{p\in P}$ is a compression base of M, then P is a Boolean subalgebra of B(M).
- (iv) If the compression base $(J_p)_{p\in P}$ is direct (i.e. consists of all direct compressions on M), then $(J_p)_{p\in M}$ contains all retractions on M, and P=B(M).
- *Proof*: (i) Let p be a focus of a retraction J. Then $p \in B(M)$. It is well known that for every $a \in M$ and $p \in B(M)$, we have $a = a \land p \oplus a \land p'$. Therefore $J(a) = J(a \land p) \oplus J(a \land p') = a \land p$.
- (ii) Let J be a retraction with focus p. If J(a) = 0, then $a = a \wedge p' \leq p'$, hence J is a compression. If I and J are retractions such that J(1) = p = I(1), then $J(a) = I(a) = a \wedge p$ for all $a \in M$. Let $(J_p)_{p \in P}$ be a compression base for M. Then $P \subseteq B(M)$, P is a normal sub-effect algebra of M, which is an orthomodular poset. Now for every $p, q \in P$ we have $p \leftrightarrow q$ in M, hence in P, which entails that P is a Boolean algebra.
- (iv) By (ii), every retraction I is a direct compression, therefore $I \in (J_p)_{p \in P}$. For every $p \in B(M)$, the mapping $J_p : M \to M$, $J_p(a) = a \wedge p$ is a retraction (hence a compression on M, [30, Proposition 3.1], and hence P = B(M).

Moreover, it was proved in [30, Proposition 3.1] that every compression on M uniquely extends to a compression on the corresponding unital ℓ -group (G; u) such that $M = \Gamma(G; u)$.

EXAMPLE 3.3. Intervals in CB-groups. A unital group is a directed abelian group G with a distinguished element $u \in G^+$, called the unit, such that the set $E(G) := \{e \in G : 0 \le e \le u\}$, called the unit interval, generates G^+ in the sense that every element in G^+ is a finite sum of (not necessarily distinct) elements of E(G). Since G is directed, we have $G = G^+ - G^+$, hence E(G) generates G as a group.

The unit interval E in a unital group G with unit u forms an effect algebra with unit u under the restriction of + to E [1].

DEFINITION 3.1 ([8]). Let G be a unital group with unit u and unit interval E. A mapping $J: G \to G$ is called a retraction with focus p on G if J is an order-preserving group endomorphism, $p = J(u) \in E$, and for all $e \in E$, $e \le p \Longrightarrow$

J(e) = e. A retraction $J: G \to G$ is said to be direct if $g \in G^+ \Longrightarrow J(g) \le g$. A retraction J on G is called a compression if $J^{-1}(0) \cap E = \{e \in E : e + J(u) \in E\}$ [8]. Two retractions J and J' on G are called quasicomplements of each other if, for all $g \in G^+$, $J(g) = g \Leftrightarrow J'(g) = 0$ and $J'(g) = g \Leftrightarrow J(g) = 0$.

If J is a retraction on G, then J is an idempotent, i.e. $J \circ J = J$ and its focus is a principal, hence sharp element of E [7, Lemma 2.3]. If J and J' are quasicomplements, they are necessarily compressions [7, Lemma 3.2 (iii)].

DEFINITION 3.2. By a compression base for the unital group G with unit interval E [12], we mean a family $(J_p)_{p \in P}$ of compressions on G, indexed by a normal sub-effect algebra P of E, such that (i) each $p \in P$ is the focus of J_p and (ii) if $p,q,r \in P$ and $p+q+r \in E$, then $J_{p+r} \circ J_{q+r} = J_r$. A compression base $(J_p)_{p \in P}$ for G is proper if every direct compression on G belongs to the family $(J_p)_{p \in P}$; it is direct if it is the family of all direct compressions on G; and it is total if every retraction on G is a compression and belongs to the family $(J_p)_{p \in P}$.

A unital group G with a compression base is called a CB-group.

If G is a unital group with unit u and $(J_p)_{p \in P}$ is a compression base for G, then for each $p \in P$, we have $u - p \in P$, and J_{u-p} is the unique compression in the compression base that is a quasicomplement of J_p .

DEFINITION 3.3 ([7, Definition 3.3]). A compressible group is a unital group for which every retraction is determined by its focus and every retraction has a quasicomplementary retraction (and hence is a compression).

Proof of the following theorem is straightforward.

THEOREM 3.2. Let (G, u) be a unital group, and let $E = \{a \in G : 0 \le a \le u\}$ be the unit interval of G. Let $(J_p)_{p \in P}$ be a compression base for (G, u). Then $(\tilde{J}_p)_{p \in P}$, where $\tilde{J}_p = J_p/E$ is the restriction of J_p to E, is a compression base for E.

We note that both Examples 3.1 and 3.2 are special cases of unit intervals in compressible groups.

EXAMPLE 3.4. Any effect algebra E is organized into a proper CB-effect algebra by taking all direct compressions on E, indexed by their own foci, as the compression base. To prove the latter statement, let us first recall that an element $p \in E$ is central if p and p' are principal, and every $a \in E$ admits a decomposition $a = b \oplus c$ with $b \le p$, $c \le p'$ ([16, 6]). It can be shown that the latter decomposition is unique, and $b = a \land p$, $c = a \land p'$. The set C of all central elements, called the center of E, is a sub-effect algebra of E, and if $a, b \in C$, then $a \lor b$ and $a \land b$ exist in E and belong to C. Moreover, C forms a Boolean algebra [16, Theorem 5.4].

(a) C is a normal sub-effect algebra of E. Indeed, assume that $e, f, d \in E$ with $e \oplus f \oplus d \in E$, and $p = e \oplus d \in C$, $q = f \oplus d \in C$. Clearly, $e \leq p$, $f \leq p'$, hence $e \wedge f = 0$. Let $c = p \wedge q \in C$. Then $d \leq p, q$ implies $d \leq c$. We have

 $p = c \oplus (p \ominus c) = d \oplus (c \ominus d) \oplus (p \ominus c) = d \oplus e, \ q = c \oplus (q \ominus c) = d \oplus (c \ominus d) \oplus (q \ominus c) = d \oplus f.$ It follows that $c \ominus d \le e, f$, whence $c \ominus d = 0$, so that $d = c \in C$.

- (b) The focus of every direct compression belongs to C. Indeed, let $J: E \to E$ be a direct compression and let p = J(1) be the focus of J. Define $J': E \to E$ by $J'(a) = a \ominus J(a)$. Then J'(1) = p' and J' is a direct compression supplementary to J. It follows that p and p' are principal, and for all $a \in E$, $a = J(a) \oplus J'(a)$, where $J(a) \le p$, $J'(a) \le p'$. Hence p is central.
- (c) For every $p \in C$, the mapping $J_p: E \to E$, $J_p(a) = a \wedge p$ is a direct compression. Indeed, $a \le p \Leftrightarrow J_p(a) = a$, $a \le p' \Leftrightarrow J_p(a) = 0$. It remains to prove that J_p is additive. Let $a \perp b$, then

$$a \oplus b = (a \oplus b) \land p \oplus (a \oplus b) \land p'$$

= $(a \land p \oplus a \land p') \oplus (b \land p \oplus b \land p')$
= $(a \land p \oplus b \land p) \oplus (a \land p' \oplus b \land p'),$

where $a \wedge p \oplus b \wedge p \leq p$, $a \wedge p' \oplus b \wedge p' \leq p'$, and uniqueness of such a decomposition implies that $J_p(a \oplus b) = (a \oplus b) \wedge p = a \wedge p \oplus b \wedge p = J_p(a) \oplus J_p(b)$. Finally, for $p, q, r \in C$ with $p \oplus q \oplus r \in E$ and $a \in E$ we have $J_{p \oplus r}(J_{q \oplus r}(a)) = (p \oplus r) \wedge (q \oplus r) \wedge a = r \wedge a = J_r(a)$.

Note that Example 3.2 is a special case of Example 3.4.

4. Compatibility and commutants

We maintain our standing assumption that E is a CB-effect algebra with compression base $(J_p)_{p \in P}$.

In agreement with [7] and [21], we will say that elements a and p are *compatible*, or that a and p commute if

$$a = J_p(a) \oplus J_{p'}(a). \tag{1}$$

Define the *commutant* of p by $C(p) = \{a \in E : a = J_p(a) \oplus J_{p'}(a)\}.$

LEMMA 4.1. If $p \in P$, $a \in E$, then the following statements are equivalent.

- (i) $J_p(a) \leq a$,
- (ii) $a \in C(p)$,
- (iii) $a \in [0, p] \oplus [0, p']$,
- (iv) $a \leftrightarrow p$,
- (v) $J_p(a) = p \wedge a^2$

Proof: Equivalence of (i), (ii) and (iii) was proved in [21, Lemma 4.1]. (iii) \Leftrightarrow (iv). Assume (iii), then $a=a_1\oplus a_2$ with $a_1\leq p,\ a_2\leq p'$. Let $d\in E$ be such that $a_1\oplus d=p$. Then $a_1\oplus d\oplus a_2$ exists in E, whence $a\leftrightarrow p$. Conversely, if $a\leftrightarrow p$, then $a=a_1\oplus c,\ p=p_1\oplus c$, and $a_1\oplus p_1\oplus c\in E$. It follows that $a_1\leq (p_1\oplus c)'=p'$,

²If $a \in P$, then $J_p(a)$ is also the infimum $a \wedge_P p$ of a and p in P. Indeed, by Lemma 2.3, the coexistence of a and p in E implies the coexistence of a and p in P, and hence $a = r \oplus s$, where $r = a \wedge_P p$, $s = a \wedge_P p'$. Then $J_p(a) = J_p(r) \oplus J_p(s) = J_P(r) = r$.

and hence (iii) holds. (ii) \Rightarrow (v). If $a \in C(p)$, then $a = J_p(a) \oplus J_{p'}(a)$. We have $J_p(a) \leq a, p$. Assume that for $d \in E, d \leq a, p$. Then $d = J_p(d) \leq J_p(a)$, and hence $J_p(a) = p \wedge a$. (v) \Rightarrow (i) is evident.

THEOREM 4.1 ([21, Theorem 4.2]). For $p, q \in P$ the following statements are equivalent.

- (i) $J_p \circ J_q = J_q \circ J_p$,
- (ii) $J_p(q) = J_q(p)$,
- (iii) $J_p(q) \leq q$,
- (iv) $p \leftrightarrow q$,
- (v) There exists an $r \in P$ such that $J_p \circ J_q = J_r$,
- (vi) $J_p(q) \in P$,
- (vii) $p \in C(q)$.

THEOREM 4.2 ([21, Theorem 4.4]). Let $p \in P$, define $H = J_p(E)$, $P_H = \{q \in P\}$ $P: q \leq p$ and for every $q \in P_H$, let J_q^H be the restriction of J_q to H. Then the following statements hold.

(i) H is an effect algebra with unit p and

$$H = \{a \in E : J_p(a) = a\} = [0, p].$$

- (ii) If $q \in P_H$, then J_q^H is a compression on H.
- (iii) $(J_P^H)_{q \in P_H}$ is a compression base for H.

THEOREM 4.3 ([21, Theorem 4.5]). Let $p \in P$ and let C = C(p). For each $q \in C \cap P$, let J_q^C be the restriction of J_q to C.

- (i) $C = [0, p] \oplus [0, p']$ is a sub-effect algebra of E. (ii) If $q \in C \cap P$, then J_q^C is a compression on C.
- (iii) $(J_a^C)_{a \in C \cap P}$ is a compression base for C.

LEMMA 4.2. Suppose that $p, q \in P$ with $p \perp q$, $a \in E$, and at least one of $a \in C(p)$ or $a \in C(q)$ holds. Then $J_{p \oplus q}(a) = J_p(a) \oplus J_q(a)$.

Proof: Suppose, for definiteness, that $a \in C(p)$ and let $r := (p \oplus q)'$, so that $p \oplus q \oplus r = 1$. Then $J_{p \oplus q}(a) = J_{p \oplus q}(J_p(a) \oplus J_{p'}(a)) = J_{p \oplus q}(J_p(a)) \oplus J_{p \oplus q}(J_{q \oplus r}(a)) =$ $J_p(a) \oplus J_q(a)$.

By induction, we obtain the following.

COROLLARY 4.1. If $p_1, p_2, \ldots, p_n \in P$, $p_1 \oplus p_2 \oplus \cdots \oplus p_n$ exists and $a \in$ $\bigcap_{i=1}^{n} C(p_i), i = 1, 2, ..., p_n, then$

$$J_{p_1\oplus p_2\oplus\cdots\oplus p_n}(a)=J_{p_1}(a)\oplus\cdots\oplus J_{p_n}(a).$$

If in addition $p_1 \oplus p_2 \oplus \cdots \oplus p_n = 1$, then $a \in \bigcap_{i=1}^n C(p_i)$ if and only if $a = J_{p_1}(a) \oplus \cdots \oplus J_{p_n}(a).$

For $a \in E$, define the projection commutant of a to be

$$C_P(a) = \{ p \in P : a \in C(p) \}.$$

THEOREM 4.4. For every $a \in E$, $C_P(a)$ is a sub-orthomodular poset of P.

Proof: Clearly, $0, 1 \in C_P(a)$. Suppose that $p \in C_P(a)$, so that $a = J_p(a) \oplus J_{p'}(a)$. Then $a = J_{p'}(a) \oplus J_{p''}(a)$, so that $p' \in C_P(a)$. Suppose that $p, q \in C_P(a)$ with $p \perp q$. By Lemma 4.2 we have $J_{p \oplus q}(a) = J_p(a) \oplus J_q(a)$. Therefore, using Lemma 4.2 and Theorem 2.3 (iv),

$$J_{p\oplus q}(a)\oplus J_{(p\oplus q)'}(a)=J_p(a)\oplus J_q(a)\oplus J_{p'}(J_{q'}(a)).$$

From

$$J_{p'}(a) = J'_{p}(J_{q}(a) \oplus J_{q'}(a)) = J_{q}(a) \oplus J_{p'}(J_{q'}(a))$$

we have that

$$J_{p'}(J_{q'}(a)) = J_{p'}(a) \ominus J_q(a).$$

Hence,

$$J_{p\oplus q}(a) \oplus J_{(p\oplus q)'}(a) = J_p(a) \oplus J_{p'}(a) = a.$$

Thus, $p \oplus q \in C_P(a)$, which concludes the proof.

For $M \subseteq P$, we write $C(M) := \bigcap_{p \in M} C(p)$.

THEOREM 4.5. Let $p, q \in P$, $p \leftrightarrow q$. Then $C(p, q) \subseteq C(p \land q) \cap C(p \lor q)$.

Proof: Assume $p \leftrightarrow q$, $p,q \in P$. Then there are $p_1,q_1,r \in P$ with $p_1 \oplus q_1 \oplus r = p_1 \vee q_1 \vee r \in P$ and $p = r \oplus p_1$, $q = r \oplus q_1$. Moreover, $r = p \wedge q$, $p_1 = p \wedge q'$, $q_1 = p \wedge q'$, and $p \vee q = p_1 \vee q_1 \vee r$ ([28]). We also know that $J_p(q) = J_q(p) = p \wedge q = r$. Let $p_1 \oplus q_1 \oplus r \oplus d = 1$. Now let $e \in C(p,q)$. Then we have

$$\begin{split} e &= J_{p_1 \oplus r}(e) \oplus J_{q_1 \oplus d}(e) \\ &= J_{p_1 \oplus r}(J_{q_1 \oplus r}(e) \oplus J_{p_1 \oplus d}(e)) \oplus J_{q_1 \oplus d}(J_{q_1 \oplus r}(e) \oplus J_{p_1 \oplus d}(e)) \\ &= J_r(e) \oplus J_{p_1}(e) \oplus J_{q_1}(e) \oplus J_{d}(e), \end{split}$$

and by Corollary 4.1, then $e \in C(p \land q)$. Using duality and the fact that C(p,q) = C(p',q'), we obtain that $e \in C(p \lor q)$.

COROLLARY 4.2. (i) Let p_1, p_2, \ldots, p_n be pairwise compatible elements of P. Then $p_1 \wedge p_2 \wedge \cdots \wedge p_n$ and $p_1 \vee p_2 \vee \cdots \vee p_n$ exist in E and belong to P, and $\bigcap_{i=1}^n C(p_i) \subseteq C(p_1 \wedge \cdots \wedge p_n) \cap C(p_1 \vee \cdots \vee p_n)$.

(ii) If $p, q, r \in P$ are pairwise compatible, then $p \leftrightarrow r \land q$ and $p \leftrightarrow r \lor q$. That is, P is a regular orthomodular poset.

COROLLARY 4.3. For every $a \in E$, $C_P(a)$ is a normal sub-effect algebra of P.

Proof: Let $e, f, d \in P$ with $e \oplus f \oplus d \in P$, and $e \oplus d, f \oplus d \in C_P(a)$. Then $e \oplus d \leftrightarrow f \oplus d$ (in P), and $d = (e \oplus d) \land (f \oplus d)$. Then, by Theorem 4.5, $a \in C(e \oplus d, f \oplus d)$ implies $a \in C(d)$, hence $d \in C_P(a)$.

THEOREM 4.6. Let E be monotone σ -complete CB-effect algebra, and let $M \subseteq P$. Assume that $(e_i)_{i \in \mathbb{N}} \subseteq C(M)$ is an ascending sequence of elements. Then $\bigvee_{E} \{e_i : i \in \mathbb{N}\} \in C(M)$. That is, C(M) is monotone σ -complete.

Proof: It suffices to prove the statement for $M = \{p\}$. So let (e_i) be an ascending sequence in C(p). Put $h_i = J_p(e_i)$, $k_i = J_{p'}(e_i)$, $i \in \mathbb{N}$. As $e_i \in C(p)$, we have $e_i = h_i \oplus k_i \ \forall i \in \mathbb{N}$. Since $(h_i)_{i \in \mathbb{N}}$, $(k_i)_{i \in \mathbb{N}}$ are ascending sequences, and E is monotone σ-complete, $h = \bigvee_E \{h_i : i \in \mathbb{N}\}$, $k = \bigvee_E \{k_i : i \in \mathbb{N}\}$ exist in E. As $h_i \leq p \ \forall i \in \mathbb{N}$, we have $h \leq p$, and hence $J_p(h) = h$ and $J_{p'}(h) = 0$. Similarly, $J_{p'}(k) = k$, $J_p(k) = 0$. But then $J_p(h \oplus k) \oplus J_{p'}(h \oplus k) = h \oplus k$, hence $h \oplus k \in C(p)$. Clearly, $h_i \oplus k_i \leq h \oplus k \ \forall i \in \mathbb{N}$. Let $c \in E$, $h_i \oplus k_i \leq c \ \forall i \in \mathbb{N}$. Fix $i \in \mathbb{N}$. Let $j \in \mathbb{N}$, and let $m = \max(i, j)$. Then $h_i \oplus k_j \leq h_m \oplus k_m \leq c$. This implies that $k_j \leq c \ominus h_i$, hence $k \leq c \ominus h_i$, and hence $h_i \leq c \ominus k$. Since $i \in \mathbb{N}$ is arbitrary, we obtain that $h \leq c \ominus k$, that is, $h \oplus k \leq c$. It follows that $h \oplus k = \bigvee_E \{h_i \oplus k_i : i \in \mathbb{N}\} = \bigvee_E \{e_i : i \in \mathbb{N}\} \in C(p)$. □

5. Rickart mapping and projection cover property

We maintain our convention that E is a CB-effect algebra with compression base $(J_p)_{p \in P}$.

The following definitions and results are inspired by [7, 9, 19, 21].

DEFINITION 5.1. We say that $e \in E$ has a projection cover $c \in P$ if for all $p \in P$, $e \le p \Leftrightarrow c \le p$. We say that E has the projection cover property (PC) if every $e \in E$ has a projection cover in P.

Let $\gamma(e)$ denote the projection cover of the element $e \in E$. Clearly, $\gamma(e)$ is uniquely defined and

$$\gamma(e) = \bigwedge \{ p \in P : e \le p \}.$$

DEFINITION 5.2. Let E be an effect algebra with the compression base $(J_p)_{p \in P}$. We say that E has the *Rickart projection property* (RP) if there is a mapping $*: E \to P$ such that

$$\forall p \in P, \ J_p(e) = 0 \Leftrightarrow p \le e^*.$$

PROPOSITION 5.1. E has the Rickart projection property if and only if it has the projection cover property, and $\gamma(e) = (e^*)^*$.

Proof: Let E have RP. For every $e \in E$ and $p \in P$ we have $J_p(e) = 0 \Leftrightarrow e \leq p'$. This yields $p \leq e^* \Leftrightarrow p \leq e'$, whence $e^* = \bigvee \{p \in P : p \leq e'\}$. If $e \in P$, then $e^* = e'$. Clearly, $e, f \in E$, $e \leq f$ implies $f^* \leq e^*$. Therefore $e^{**} = e^{*'} = \bigwedge \{p \in P : e \leq p\}$. Consequently, $e^{**} = \gamma(e)$.

Now assume that E has PC. Then $p \in P$, $e \le p \Leftrightarrow \gamma(e) \le p$ implies that $J_{p'}(e) = 0 \Leftrightarrow p' \le \gamma(e)'$. We see that $e^* = \gamma(e)'$ is a Rickart mapping.

The most important property of CB-effect algebras with PC is the following theorem.

THEOREM 5.1. If E has PC, then the set P of projections of E is an orthomodular lattice. Moreover, for every $p, q \in P$, $p \wedge q = \gamma(J_p[\gamma(J_p(q'))'])$.

Proof: We follow [10]. Put $t:=\gamma(J_p(q'))'$ and $s:=\gamma(J_p(t))$. Then $\gamma(J_p(q'))\leq p$, so $J_p(t)=J_p(1\ominus\gamma(J_p(q')))=p\ominus\gamma(J_p(q'))\in P$. Hence $s=\gamma(J_p(t))=J_p(t)=p\ominus\gamma(J_p(q'))$. We have $J_p(q')\leq\gamma(J_p(q'))=t'$, whence $J_t(J_p(q'))=0$. As $\gamma(J_p(q'))\leq p$, we have $\gamma(J_p(q'))\in C(p)$, and it follows $t=\gamma(J_p(q'))'\in C(p)$. Therefore $J_p\circ J_t=J_t\circ J_p$ is a compression with focus $J_p(J_t(1))=J_p(t)=s$. Consequently, $J_s(q')=J_t(J_p(q'))=0$, so $s\leq q$. We also have $s=\gamma(J_p(t))\leq p$. Let $r\in P$, $r\leq p$, q. Then $r=\gamma(J_p(r))\leq q$, which entails $q'\leq\gamma(J_p(r))'=r'$, and then $J_p(q')\leq\gamma(J_p(q'))\leq r'$. Hence $r\leq\gamma(J_p(q'))'$, which implies that $r=\gamma(J_p(r))\leq\gamma(J_p(\gamma(J_p(q'))'))=s$.

If $e \in E$, $e \le p, q$, then $e \le \gamma(e) \le p, q$, whence $e \le \gamma(e) \le s$. Hence s is the g.l.b. of p, q in both P and E.

COROLLARY 5.1. For $p, q \in P$, $\gamma(J_p(q)) = p \wedge (p' \vee q)$.

Proof: We have $p' \vee q = (p \wedge q')' = \gamma(J_p[\gamma(J_p(q))'])'$, hence $p \wedge (p' \vee q) = J_p(p' \vee q) = J_p(\gamma(J_p[\gamma(J_p(q))'])') = J_p(1 \ominus \gamma(J_p(1 \ominus \gamma(J_p(q))))) = p \ominus J_p(\gamma(p \ominus J_p(q)))) = p \ominus \gamma(p \ominus \gamma(J_p(q))) = p \ominus \gamma(J_p(q)).$

COROLLARY 5.2. Every element in E can be written as a sum of two elements, one of which is a projection, and the other one does not majorize any nonzero projection.

Proof: Put $\delta(e) = \gamma(e')'$. Clearly, $\delta(e)$ is the greatest projection lying under e. So we may write $e = \delta(e) \oplus c$ for some $c \in E$. If there is a nonzero projection $q \leq c$, then $\delta(e) \oplus q \leq e$, and $\delta(e) \oplus q$ is a projection, contradicting maximality of $\delta(e)$.

We note that the element c in the preceding proof is called blunt [13], or meager [24].

COROLLARY 5.3. If E is a proper CB-effect algebra, then E is a Boolean algebra if and only if P = E.

Proof: If P = E, then E has the projection cover property, every element in E being its own projection cover. By Theorem 5.1, E is an orthomodular lattice, and for all $p, q \in P$, $p \land q = J_p(1 \ominus J_p(1 \ominus q)) = p \ominus (p \ominus J_p(q)) = J_p(q) = p \land (q \lor p')$. Consequently, P = E is a Boolean algebra, and $J_p(q) = p \land q$. Conversely, let E be a proper CB-effect algebra such that E is a Boolean algebra. For every $p \in E$, $J_p(q) = p \land q$ is a direct compression, and as E is proper, we have $P \in P$. It follows that P = E.

Let A be a partially ordered set, and $B \subseteq A$. We say that B is sup/inf-closed in A if for any subset $\emptyset \neq M \subseteq B$, if the supremum $s := \bigvee_A M$ exists in A then $s \in B$, and if the infimum $t := \bigwedge_A M$ exists in A, then $t \in B$.

THEOREM 5.2. Suppose that E has the projection cover property. Then we have the following.

- (i) Let $e \in E$. Then for every $p \in P$, $e \in C(p) \implies \gamma(e) \in C(p)$.
- (ii) P is sup/inf-closed in E.
- (iii) If E is monotone σ -complete, then P is a σ -complete OML.
- (iv) Let $M \subseteq P$, and assume that $s = \bigwedge \{p : p \in M\}$, $s \in P$ (respectively, $t = \bigvee \{p : p \in M\} \in P$). Then $q \in P$, $q \in C(M)$ implies $q \in C(s)$ (respectively, $q \in C(M)$, $q \in P$ implies $q \in C(s)$).
- *Proof*: (i) Let $e \in E$, $p \in P$ and $e \in C(p)$. Then $e = J_p(e) \oplus J_{p'}(e)$, where $J_p(e) \leq p$, $J_{p'}(e) \leq p'$. Therefore $J_p(e) \leq \gamma(J_p(e)) \leq p$, $J_{p'}(e) \leq \gamma(J_{p'}(e)) \leq p'$. Then $\gamma(J_p(e)) \oplus \gamma(J_{p'}(e)) \in P$, and $\gamma(e) \leq \gamma(J_p(e)) \oplus \gamma(J_{p'}(e))$. Also, $J_p(e), J_{p'}(e) \leq e$, and so $\gamma(J_p(e)), \gamma(J_{p'}(e)) \leq \gamma(e)$. Since $\gamma(e)$ is principal, we get $\gamma(e) = \gamma(J_p(e)) \oplus \gamma(J_{p'}(e))$. As $\gamma(J_p(e)) \leq p$, $\gamma(J_{p'}(e)) \leq p'$, we have $\gamma(J_p(e)), \gamma(J_{p'}(e)) \in C(p)$, and therefore $\gamma(e) \in C(p)$.
- (ii) Let $\emptyset \neq M \subseteq P$ and suppose that $t = \bigwedge_E \{p : p \in M\}$. As $t \leq p$ for all $p \in M$, we have $\gamma(t) \leq p$ for all $p \in M$, whence $\gamma(t) \leq t$. On the other hand, $t \leq \gamma(t)$, which gives $t = \gamma(t) \in P$. By duality we obtain that P is closed under the computation of suprema in E.
 - (iii) Follows from (ii) and the fact that P is a lattice.
- (iv) Let $s = \bigwedge \{p : p \in M\} \in P$. If $q \in C(M)$, then $q \leftrightarrow p$ for all $p \in M$. Since P is an OML, by [28, Proposition 1.3.10], this entails that $q \leftrightarrow s$, that is, $q \in C(s)$. The rest of the proof follows by duality.

6. General comparability

We maintain our convention that E is a CB-effect algebra with compression base $(J_p)_{p \in P}$.

DEFINITION 6.1. (i) We will say that an element a in E has the b-property (or is a b-element) if there is a Boolean subalgebra B(a) of P such that for all $p \in P$ we have $a \in C(p) \Leftrightarrow B(a) \subseteq C(p)$. (ii) We will say that E has the b-property if every $a \in E$ is a b-element.

Notice that for a Hilbert space effect $A \in \mathcal{E}(H)$, the role of B(A) is played by the range of the spectral measure of A.

PROPOSITION 6.1. (i) If an element $a \in E$ is a b-element, then there is a block B of P such that $a \in C(B)$.

- (ii) Every projection $q \in P$ is a b-element with $B(q) = \{0, q, q', 1\}$.
- *Proof*: (i) The Boolean subalgebra B(a) is contained in a block B of P. Therefore for every $p \in B$, $B(a) \subseteq C(p)$, which by the definition of B(a) implies

П

 $a \in C(p)$, hence $a \in \bigcap_{p \in B} C(p) = C(B)$.

(ii) Clearly,
$$q \in C(p)$$
 iff $\{0, q, q', 1\} \subseteq C(p)$.

Let $A, B \subseteq E$, we write $A \leftrightarrow B$ iff $a \leftrightarrow b$ for all $a \in A, b \in B$. The next definition extends the notion of compatibility.

DEFINITION 6.2. Let E be a CB-effect algebra with the b-property. For all $e, f \in E$, define

$$eCf \Leftrightarrow B(e) \leftrightarrow B(f)$$
 (2)

and we say that e and f are *compatible*, or equivalently, that they *commute* if condition (2) is satisfied.

LEMMA 6.1. If $p \in P$, and $a \in E$ is a b-element, then the following statements are equivalent:

- (i) $a \leftrightarrow p$,
- (ii) $a \in C(p)$,
- (iii) aCp.

Proof: Equivalence of (i) and (ii) follows by Lemma 4.1. Since a is a b-element and by (i), $a \in C(p) \Leftrightarrow B(a) \subseteq C(p) \Leftrightarrow B(a) \Leftrightarrow p \Leftrightarrow B(a) \Leftrightarrow \{0, p, p', 1\} = B(p) \Leftrightarrow aCp$.

DEFINITION 6.3. Let $e, f \in E$.

- (i) $CPC(e) = C(\{p \in P : e \in C(p)\}) = C(C_P(e)), CPC(e, f) = CPC(e) \cap CPC(f) = C\{p \in P : e, f \in C(p)\}).$
- (ii) $P(e, f) = \{ p \in P \cap CPC(e, f) : e, f \in C(p) \text{ and } J_p(e) \leq J_p(f), J_{p'}(f) \leq J_{p'}(e) \}.$
- (iii) E has the b-general comparability property (bGC), or is a b-comparability effect algebra, if
 - (a) E has the b-property,
 - (b) for all $e, f \in E$, $eCf \Rightarrow P(e, f) \neq \emptyset$.
- (iv) E is an RC-effect algebra if it has both the Rickart property and the b-general comparability property.

To prove the next theorem, we need a lemma.

LEMMA 6.2. Suppose that $p \in E_S$ and there exists $q \in P$ such that $p \in C(q)$, $J_q(p) \leq J_q(p')$, and $J_{q'}(p') \leq J_{q'}(p)$. Then $p \in P$.

Proof: As $p \in C(q)$, we have $p' \in C(q)$ and $p, p' \in C(q')$. By Lemma 4.1, $J_q(p) \leq p$ and $J_q(p') \leq p'$, hence $J_q(p) \leq p$, p', and since p is sharp, it follows that $J_q(p) = 0$. Likewise, $J_{q'}(p') = 0$, and it follows that $J_q(p') = p'$. Therefore, $p' = J_q(1 \ominus p) = q \ominus J_q(p) = q \ominus 0 = q$, so $p = q' \in P$.

THEOREM 6.1. Let E be a b-comparability effect algebra.

- (i) For any $p \in E$, p is sharp if and only if $p \in P$.
- (ii) E is a proper CB-effect algebra.

Proof: If $p \in P$, then p is principal, hence sharp, so $P \subseteq E_S$. Let $p \in E_S$. By bGC, there is $q \in P$, $q \in PCP(p, p')$, $p, p' \in C(q)$ and $J_q(p) \leq J_q(p')$, $J_{q'}(p') \leq J_{q'}(p)$. Therefore, the suppositions of Lemma 6.2 are satisfied, and the proof of (i) follows.

(ii) We have to prove that all direct compressions belong to the compression base. Let J be a direct compression with focus p. Then p is sharp, hence by (i), $p \in P$. We have to show that $J = J_p$. Define $J'(e) = e \ominus J(e)$, $e \in E$. It is easy to check that J' is a direct compression which is supplementary to J. As $0 \le J(e) \le J(1) = p$, we have $J_p(J(e)) = J(e)$. Also, $0 \le J_p(J'(e)) \le J_p(J'(1)) = J_p(1 \ominus J(1)) = J_p(p') = 0$, hence $J_p(J'(e)) = 0$. Consequently, $J_p(e) = J_p(J(e) \oplus J'(e)) = J(e)$.

An alternative possibility to introduce a version of general comparability in BC-effect algebras is the following.

DEFINITION 6.4. We will say that E has the strong general comparability (sGC) if $P(e, f) \neq \emptyset$ for every $e, f \in E$.

The following result shows that strong general comparability really is an excessively strong property.

PROPOSITION 6.2. If E satisfies strong general comparability, then $e \leftrightarrow f$ for every $e, f \in E$. Consequently, P is a Boolean algebra, and E = C(P) is an MV-effect algebra.

Proof: Let $p \in P(e, f)$. Then $J_p(e) \leq J_p(f)$, $J_{p'}(f) \leq J_{p'}(e)$, and in addition, $e = J_p(e) \oplus J_{p'}(e)$, $f = J_p(f) \oplus J_{p'}(f)$. Let $e_1 := J_{p'}(e) \ominus J_{p'}(f)$ and $f_1 := J_p(f) \ominus J_p(e)$. As $J_p(e) \leq p$, $J_{p'}(f) \leq p'$, we have $J_p(e) \perp J_{p'}(f)$, so we can define $c := J_p(e) \oplus J_{p'}(f)$. Then $e = e_1 \oplus c$, $f = f_1 \oplus c$, and $e_1 \oplus f_1 \oplus c = J_p(f) \oplus J_{p'}(e)$, whence $e \leftrightarrow f$. In particular, $p \leftrightarrow q$ for all $p, q \in P$, hence P is a Boolean algebra. Moreover, E = C(P). Using the same method as in the proof of Theorem 7.1 below, we can prove that E = C(P) is an MV-effect algebra. □

COROLLARY 6.1. Strong general comparability implies b-general comparability. If P is a Boolean algebra and E = C(P), then sGC and bGC are equivalent.

Proof: If sGC is satisfied, then P is a block of itself and E = C(B). Then every element $e \in E$ is a b-element with respect to B(e) = P.

Let P be a Boolean algebra and E = C(P). Assume that bGC holds. Then for every $e \in E$, $B(e) \subseteq P$, whence eCf for every $e, f \in E$, so that sGC holds. \square

7. Blocks and C-blocks

We maintain our convention that E is a CB-effect algebra with compression base $(J_p)_{p \in P}$.

DEFINITION 7.1. (i) A subset B of P is called a *block* in P if B is a maximal set of pairwise compatible elements of P. (ii) For every block B, the set C(B) is called a C-block of E.

We recall that by Corollary 4.2, P is a regular orthomodular poset. Therefore maximal sets of pairwise compatible elements coincide with maximal Boolean subalgebras of P [28].

LEMMA 7.1. Let $B \subseteq P$ be a block in P.

- (i) B is a normal sub-effect algebra of E.
- (ii) B is a Boolean algebra and for $p, q \in B$, $p' = 1 \ominus p$ is the Boolean complement of p in B, $p \wedge_B q = p \wedge q$, $p \vee_B q = p \vee q$.
- (iii) If E has the projection cover property, then B is sup/inf closed in P and in E.
- (iv) If E is monotone σ -complete and has the projection cover property, then P is a σ -complete OML and B is a σ -complete Boolean algebra.
- *Proof*: (i) Clearly, $0, 1 \in B$. If $p \in B$, then $p \leftrightarrow q$ for all $q \in B$, hence also $p' \leftrightarrow q$ for all $q \in B$ and by maximality of B, $p' \in B$. If $p, q \in B$ and $p \oplus q \leq 1$, then $p \oplus q \in P$, and by Theorem 4.4 and maximality of B, $p \oplus q \in B$. This proves that B is a sub-effect algebra of E. Let $e, f, d \in E$, $e \oplus f \oplus d \leq 1$, $p = e \oplus d$, $q = f \oplus d$, and $p, q \in B$. Then $p, q \in P$, and since P is a normal sub-effect algebra of E, we have $d \in P$. Then $e = p \ominus d \in P$, $f = q \ominus d \in P$. Since P is an OMP, we have $d = p \land q$, and by regularity of P and maximality of P, we have $Q \in B$. This proves that $P \in B$ is a normal sub-effect algebra of $P \in B$.
 - (ii) Follows from regularity of P, see Corollary 4.2, and [28].
- (iii) Let $M \subseteq B$, $s = \bigvee \{b : b \in B\} \in P$. Since P is an OML, and for every $q \in B$, $q \leftrightarrow p$ for all $p \in M$, by Theorem 5.2 (iv), we get $q \leftrightarrow s$ for all $q \in B$, and maximality of B implies that $s \in B$. Hence B is sup/inf closed in P, and since by Theorem 5.2 (ii), P is sup/inf closed in E, E is sup/inf closed in E.
- (iv) Since by (iii) B is sup/inf closed in E, and E is monotone σ -complete, it follows that B is monotone σ -complete, and a monotone σ -complete Boolean algebra is a σ -complete Boolean algebra.

LEMMA 7.2. (i) For every block B, C(B) is a sub-effect algebra of E.

- (ii) $C(B) \cap P = B$.
- (iii) $p \in B \implies J_p(C(B)) \subseteq C(B)$.
- (iv) $e \in C(B) \Rightarrow P \cap CPC(e) \subseteq B$.
- *Proof*: (i) $0, 1 \in B \subseteq C(B)$. Let $e \in C(B)$, then $e \leftrightarrow p \ \forall p \in B$ implies $e' \leftrightarrow p \ \forall p \in B$, whence $e' \in C(B)$. Let $e, f \in C(B)$, $e \perp f$. Then for every $p \in B$, $J_p(e \oplus f) \oplus J_{p'}(e \oplus f) = J_p(e) \oplus J_p(f) \oplus J_{p'}(e) \oplus J_{p'}(f) = (J_p(e) \oplus J_{p'}(e)) \oplus (J_p(f) \oplus J_{p'}(f)) = e \oplus f$, whence $e \oplus f \in C(B)$. This proves that C(B) is a sub-effect algebra of E.
- (ii) Clearly, $B \subseteq B \cap C(B)$. Let $p \in P \cap C(B)$. Then $p \in C(q) \ \forall q \in B$, and maximality of B implies $p \in B$.
- (iii) Let $p \in B$, $e \in C(B)$, then for every $q \in B$, $J_q(J_p(e)) \oplus J_{q'}(J_p(e)) = J_p(J_q(e) \oplus J_{q'}(e)) = J_p(e)$. Hence $J_p(e) \in C(B)$. Since $e \in C(B)$ was arbitrary, we get $J_p(C(B)) \subseteq C(B)$.

- (iv) If $e \in C(B)$ and $q \in P \cap CPC(e)$, then $q \leftrightarrow p$ for all $p \in B$, and by maximality of $B, q \in B$.
 - PROPOSITION 7.1. (i) If B is a block of P, then $B \cap C_P(a)$ is contained in a block B_1 of $C_P(a)$.
 - (ii) To every block B_1 of $C_P(a)$, there is a block B of P such that $B_1 = C_P(a) \cap B$.
- *Proof*: (i) Let B be a block of P. By 4.4, $C_P(a)$ is a sub-OMP of P, whence also $C_P(a) \cap B$ is a sub-OMP of P. Let $p, q \in C_P(a) \cap B$. Then $a \in C(p, q)$ and $p \leftrightarrow q$ in P. We claim that $p \leftrightarrow q$ in $C_P(a)$. Indeed, let $p = r \lor p_1$, $q = r \lor q_1$, with p_1, q_1, r mutually orthogonal elements in P. We recall that $r = p \land q$. By Theorem 4.5, we have $C(p, q) \subseteq C(p \land q)$. So we have $a \in C(r)$, which entails $r \in C_P(a)$. Now $p, q, r \in C_P(a)$ implies that $p \ominus r = p_1 \in C_P(a)$, $q \ominus r = q_1 \in C_P(a)$, and hence p, q are compatible in $C_P(a)$. It follows that $C_P(a) \cap B$ is a pairwise compatible subset of $C_P(a)$, therefore it is contained in a block B_1 of $C_P(a)$. So we have $C_P(a) \cap B \subseteq B_1$.
- (ii) Let B_1 be a block in $C_P(a)$. Then elements of B_1 are pairwise compatible in $C_P(a)$, hence also in P. Therefore there is a block B of P such that $B_1 \subseteq B \cap C_P(a)$. By (i), there is a block B_2 of $C_P(a)$ such that $B_1 \subseteq B \cap C_P(a) \subseteq B_2$, and since B_1 and B_2 are blocks, it follows that $B_1 = B_2$.

LEMMA 7.3. If e and f are b-elements, then eCf if and only if $e, f \in C(B)$ for a block B of P.

Proof: Let $e, f \in C(B)$. As e, f are b-elements, we have $B(e) \subseteq C(B)$, $B(f) \subseteq C(B)$, and since B(e), $B(f) \subseteq P$, we get by Lemma 7.2 (ii) that B(e), $B(f) \subseteq B$. This entails that $B(e) \leftrightarrow B(f)$, that is, eCf. Conversely, let eCf, then $B(e) \leftrightarrow B(f)$, hence there is a block B such that $B(e) \cup B(f) \subseteq B$, and this entails that $e, f \in C(B)$. □

THEOREM 7.1. Let E be a b-comparability effect algebra.

- (i) For every block B of P, C(B) is an MV-effect algebra.
- (ii) C(B) is a CB-effect algebra with the compression base $(\bar{J}_p)_{p \in B}$, where $\bar{J}_p = J_p/C(B)$ is the restriction of J_p to C(B).
- (iii) C(B) is a b-comparability effect algebra with respect to $(\bar{J}_p)_{p \in B}$.
- (iv) $(\bar{J}_p)_{p\in B}$ is the total direct compression base for the MV-effect algebra C(B).
- (v) If E has the projection cover property, then C(B) has the projection cover property.
- (vi) If E is monotone σ -complete, then C(B) is a σ -complete MV-effect algebra.

Proof: (i) By Lemma 7.2 (i), C(B) is a sub-effect algebra of E. Let $e, f \in C(B)$. By Lemma 7.3, eCf. By b-general comparability, there is $p \in P \cap CPC(e, f)$ with $e, f \in C(p)$, such that $J_p(e) \leq J_p(f)$, and $J_{p'}(f) \leq J_{p'}(e)$. Put $e \sqcap f := J_p(e) \oplus J_{p'}(f)$. From $e, f \in C(p)$, it follows that $e = J_p(e) \oplus J_{p'}(e) \geq e \sqcap f$, $f = J_p(f) \oplus J_{p'}(f) \geq e \sqcap f$. Assume that for $d \in C(B)$ we have $d \leq e, f$. By Lemma 7.2 (iv), $P \cap CPC(e, f) \subseteq B$, hence $p \in B$, and therefore d = C(B)

- $J_p(d) \oplus J_{p'}(d) \leq J_p(e) \oplus J_{p'}(f) = e \sqcap f$. This entails that $e \sqcap f$ is the g.l.b. of e, f in C(B). Similarly we prove that $e \sqcup f := J_p(f) \oplus J_{p'}(e)$ is the l.u.b. of e, f in C(B), hence C(B) is a lattice. Moreover, $e \ominus e \sqcap f = J_{p'}(e) \ominus J_{p'}(f) = e \sqcup f \ominus f$. By [6, Theorem 1.8.12], C(B) is an MV-effect algebra.
- (ii) By Lemma 7.2 (iii), $\bar{J}_p:C(B)\to C(B)$ for any $p\in B$. Since J_p is a compression, $\bar{J}_p=J_p/C(B)$ is a compression as well. By Lemma 7.1 (i), B is a normal sub-effect algebra of E, which entails that B is also a normal sub-effect algebra of C(B). If $e, f, d\in C(B)$, $e\oplus f\oplus d\leq 1$, and $p=e\oplus d\in B$, $q=f\oplus d\in B$, then $d\in B$, and for any $a\in C(B)$, $\bar{J}_p\circ\bar{J}_p(a)=J_p\circ J_q(a)=J_d(a)=\bar{J}_d(a)$. Therefore, $(\bar{J}_p)_{p\in B}$ is a compression base for C(B).
- (iii) Since E has b-general comparability, for every $e, f \in C(B)$, there is $p \in P \cap CPC(e, f)$ such that $e, f \in C(p)$ and $J_p(e) \leq J_p(f)$, $J_{p'}(f) \leq J_{p'}(e)$. By Lemma 7.2 (iv), $P \cap CPC(e, f) \subseteq B$, and by Lemma 7.2 (ii), $P \cap C(B) = B$. From this it follows that C(B) has the strong general comparability with respect to the compression base $(\bar{J}_p)_{p \in B}$.
- (iv) By (iii) and Theorem 6.1, every direct compression on C(B) belongs to the compression base $(\bar{J}_p)_{p \in B}$. By (i) and Theorem 3.1, every retraction on C(B) is a direct compression, hence the compression base is total. We will show that every compression \bar{J}_p , $p \in B$, is direct. Indeed, if $e \in C(B)$ and $p \in B$, then $e \in C(p)$, whence $e = J_p(e) \oplus J_{p'}(e)$, hence $\bar{J}_p(e) = J_p(e) \le e$.
- (v) Let $e \in C(B)$, and let $\gamma(e)$ be the projection cover of e in E. By Theorem 5.2, $e \in C(p)$ implies $\gamma(e) \in C(p)$ for all $p \in B$, and hence $\gamma(e) \in C(B)$.
- (vi) Assume that E is monotone σ -complete. Theorem 4.6 implies that C(B) is monotone σ -complete, and since C(B) is a lattice, it is a σ -lattice.

COROLLARY 7.1. Let E be a b-comparability effect algebra.

- (i) E can be covered by its C-blocks, which are MV-algebras.
- (ii) For every subset $C \subseteq E$ which is maximal with respect the property eCf for all $e, f \in C$, there is a block B of P such that C = C(B).
- *Proof*: (i) Follows by Proposition 6.1. (ii) Let $e, f \in C$, then $B(e) \leftrightarrow B(f)$ implies that $\bigcup \{B(e) : e \in C\}$ consists of mutually compatible elements, and therefore it is contained in a block B of P. For every $e \in C$ and every $p \in B$, we have $B(e) \subseteq C(p)$, which implies that $e \in C(p)$. This implies that $C \subseteq C(B)$. On the other hand, let $e \in C(B)$. Then $e \in C(p)$, $p \in B$ implies $e \in C(B(f))$ for all $e \in C(B)$ that is, $e \in C(B)$ for all $e \in C(B)$. \Box
- REMARK 7.1. Notice that the proof of Theorem 7.1(i) suggests that for any $p, q \in P(e, f)$, it is $J_p(e) \oplus J_{p'}(f) = J_q(e) \oplus J_{q'}(f)$. In the following lemma we give an independent proof.
- LEMMA 7.4. For every $e, f \in E$ and every $p, q \in P(e, f)$, we have $J_p(e) \oplus J_{p'}(f) = J_q(e) \oplus J_{q'}(f)$.

Proof: Let $p, q \in P(e, f)$. From $p \in CPC(e, f)$ and $e, f \in C(q)$ it follows that $p \leftrightarrow q$. Therefore $J_p \circ J_q = J_q \circ J_p = J_{p \wedge q}$. We have

$$J_p(e) \le J_p(f),$$
 $J_q(e) \le J_q(f),$
 $J_{p'}(f) \le J_{p'}(e),$ $J_{q'}(f) \le J_{q'}(e).$

Then

$$J_q(J_{p'}(f)) \le J_q(J_{p'}(e)) = J_{p'}(J_q(e))$$

 $\le J_{p'}(J_q(f)) = J_q(J_{p'}(f)),$

which entails $J_q(J_{p'}(f)) = J_q(J_{p'}(e))$, and by symmetry, $J_p(J_{q'}(f)) = J_p(J_{q'}(e))$. Taking into account that $e, f \in C(p, q)$, we obtain

$$\begin{split} J_{p}(e) \oplus J_{p'}(f) &= J_{p}(J_{q}(e)) \oplus J_{p}(J_{q'}(e)) \oplus J_{p'}(J_{q}(f)) \oplus J_{p'}(J_{q'}(f)) \\ &= J_{q}(J_{p}(e)) \oplus J_{q}(J_{p'}(e)) \oplus J_{q'}(J_{p}(f)) \oplus J_{q'}(J_{p'}(f)) \\ &= J_{q}(e) \oplus J_{q'}(f). \end{split}$$

REMARK 7.2. Observe that from the proof of Theorem 7.1 (i) we can derive that $aCb \implies a \leftrightarrow b$. Indeed, we can write $a = a \sqcap b \oplus (a \ominus a \sqcap b)$, $b = a \sqcap b \oplus (b \ominus a \sqcap b)$, and $a \oplus (b \ominus a \sqcap b) = (J_p(a) \oplus J_{p'}(a)) \oplus (J_p(b) \ominus J_p(a)) = J_{p'}(a) \oplus J_p(b) = a \sqcup b \in E$. It is well known that such an implication holds for the Hilbert space effects, namely AB = BA implies $A \leftrightarrow B$, while the converse implication need not hold. As a counterexample, consider unit vectors $x, y \in H$, and let P_x, P_y be the corresponding one-dimensional projections. Then there are real numbers $0 < \lambda, \mu < 1$ such that $\lambda P_x + \mu P_y \leq I$, whence $\lambda P_x, \mu P_y$ are coexistent effects, while λP_x and μP_y commute iff either $x \perp y$, or y = rx, |r| = 1.

EXAMPLE 7.1. Notice that an MV-effect algebra (see Example 3.2) is monotone σ -complete iff it is a σ -lattice. Using the categorical equivalence between MV-algebras and Dedekind σ -complete unital ℓ -groups, we can derive from [18, Lemma 9.8] and [18, Theorem 9.9] that a σ -complete MV-effect algebra M with the compression base $(J_p)_{p \in B(M)}$ has the projection cover property and strong general comparability.

EXAMPLE 7.2. In what follows, G is a unital group with unit u, a compression base $(J_p)_{p\in P}$, and the unit interval E=[0,u]. For $g\in G$ and $p\in P$, define $C(p):=\{g\in G:g=J_p(g)+J_{u-p}(g)\}$ (see Example 3.3). Let $\tilde{J}_p,\,p\in P$, denote the restriction of J_p to E. Recall that by Theorem 3.2, $(\tilde{J}_p)_{p\in P}$ is a compression base for E.

DEFINITION 7.2 ([12]). G has the Rickart projection property if there is a mapping $*: G \to P$, called the Rickart mapping, such that, for all $g \in G$ and all $p \in P$, $p \le g^* \Leftrightarrow g \in C(p)$ with $J_p(g) = 0$.

DEFINITION 7.3 ([12, Definition 4.1]). Let $g \in G$.

(i) $CPC(g) := C(\{p \in P : g \in C(p)\}).$

- (ii) $P^{\pm}(g) := \{ p \in P \cap CPC(g) : g \in C(p) \text{ and } J_{u-p}(g) \le 0 \le J_p(g) \}.$
- (iii) G has the general comparability property or, for short, is a comparability group if $P^{\pm}(g) \neq \emptyset$ for all $g \in G$. If G is a comparability group and also an ℓ -group, then we call G a comparability ℓ -group.
- (iv) G is an RC-group iff it has both the Rickart property and the general comparability property. If G is an RC-group and also an ℓ -group, then we call G an RC ℓ -group.
- THEOREM 7.2. (i) If (G, u) with the compression base $(J_p)_{p \in P}$ has the Rickart projection property, then E with the compression base $(\tilde{J}_p)_{p \in P}$ has the Rickart projection property.
- (ii) If (G, u) with the compression base $(J_p)_{p \in P}$ has general comparability, then for E with the compression base $(\tilde{J}_p)_{p \in P}$ the following two conditions are satisfied:
- (a) For every $e \in E$, there is $p \in CPC(e)$, such that $e \in C(p)$ and $\tilde{J}_p(e) \leq \tilde{J}_p(e')$ and $\tilde{J}_{p'}(e') \leq \tilde{J}_{p'}(e)$.
- (b) Let $e, f \in E$ and let B be a block in P. If $e, f \in C(B)$ then there is $p \in C(B)$ such that $\tilde{J}_p(e) \leq \tilde{J}_p(f)$ and $\tilde{J}_{p'}(f) \leq \tilde{J}_{p'}(e)$.
- (iii) If G is an RC-group, then E has the b-general comparability.
- *Proof*: (i) is straightforward. (ii) (a) Let $e \in E$. Then $e e' \in G$, and by general comparability in G, there is a $p \in CPC(e-e')$ such that $e e' \in C(p)$ and $J_p(e-e') \leq 0 \leq J_{p'}(e-e')$. Now e e' = e (u-e) = 2e u, hence $e e' \in C(p)$ implies $e \in C(p)$. Similarly, CPC(e-e') = CPC(e). Finally, $J_p(e-e') \leq 0$ implies $\tilde{J}_p(e) = J_p(e) \leq J_p(e') = \tilde{J}_p(e')$, $0 \leq J_{p'}(e-e')$ implies $\tilde{J}_{p'}(e') = J_{p'}(e') \leq J_{p'}(e) = J_{p'}(e)$. (b) Let $e, f \in C(B)$, then $e f \in C(B)$. By general comparability in G, there is $p \in CPC(e-f)$, $e f \in C(p)$ and $J_p(e-f) \leq 0 \leq J_{p'}(e-f)$. Recall that $CPC(e-f) = C(\{p \in P : e-f \in C(p)\})$. Since $e f \in C(B)$, we have $B \subseteq \{p \in P : e-f \in C(p)\}$, which entails that $CPC(e-f) \subseteq C(B)$. Therefore $p \in C(B) \cap P = B$. The rest follows analogously as in the proof of (j).
- (iii) If G is an RC-group, then by [9], to every $a \in E$ there is a rational spectral resolution $(p_{\lambda,a})_{\lambda\in\mathbb{Q}}$, that is, to every rational number λ , there is a projection $p_{\lambda,a}\in P$, such that $p_{\lambda,a}\leftrightarrow p_{\mu,a}$ for all $\lambda,\mu\in\mathbb{Q}$, and for every $q\in P$, $a\in C(q)$ iff $(p_{\lambda,a})_{\lambda\in\mathbb{Q}}\subseteq C(q)$. Let B(a) denote the smallest sub-OML of P that contains the elements $(p_{\lambda,a})_{\lambda\in\mathbb{Q}}$. As, for every $p,q\in P$, $p\in C(q)$ iff $p\leftrightarrow q$, B(a) is a Boolean subalgebra of P. Moreover, for every $p\in P$, the set $C(p)\cap P=\{q\in P:q\leftrightarrow p\}$ is a sub-OML of P ([28]). From this we obtain, by the minimality of B(a), that $(p_{\lambda,a})_{\lambda\in\mathbb{Q}}\subseteq C(p)$ iff $B(a)\subseteq C(p)$. This implies that E has the b-property with respect to the compression base $(\tilde{J}_p)_{p\in P}$. We have eCf iff there is a block B of P such that $e,f\in C(B)$ (Lemma 7.3). Property (b) then implies that the b-general comparability is satisfied.

8. Sequential effect algebras

A sequential effect algebra (SEA) [22] is a system $(E; 0, 1, \oplus, \circ)$ where $(E; 0, 1, \oplus)$ is an effect algebra and $\circ: E \times E \to E$ is a binary operation that satisfies the following conditions (we write $a \mid b$ if $a \circ b = b \circ a$):

- (S1) $b \mapsto a \circ b$ is additive for all $a \in E$,
- (S2) $1 \circ a = a$ for all $a \in E$,
- (S3) If $a \circ b = 0$ then $a \mid b$,
- (S4) If $a \mid b$ then $a \mid b'$ and $a \circ (b \circ c) = (a \circ b) \circ c$ for all $c \in E$,
- (S5) If $c \mid a$ and $c \mid b$ then $c \mid a \circ b$ and $c \mid (a \oplus b)$ if in addition $a \perp b$.

An operation that satisfies (S1)-(S5) is called a sequential product on E. If $a \mid b$ for all $a, b \in E$ we call E a commutative SEA.

A prototype of a SEA is the Hilbert space effect algebra $\mathcal{E}(H)$, where the sequential product is defined by $A \circ B = A^{1/2}BA^{1/2}$, $A^{1/2}$ being the unique positive square root of A. It was shown that $A \mid B$ iff AB = BA [23].

The following lemma summarizes some properties of a SEA E.

LEMMA 8.1. (i) $a \circ 0 = 0 \circ a = 0$ and $a \circ 1 = 1 \circ a = a$.

- (ii) $a \circ b \leq a$ for all $a, b \in E$.
- (iii) If $a \le b$, then $c \circ a \le c \circ b$ for all $c \in E$.
- (iv) If $a \le b$ then $c \circ (b \ominus a) = c \circ b \ominus c \circ a$.
- (v) If $a \le b$ and $c \mid a$, $c \mid b$, then $c \mid b \ominus a$.

Recall that an element a of an effect algebra E is sharp if $a \wedge a' = 0$. The set of all sharp elements of E is denoted by E_S . In a SEA, we have the following characterizations of sharp elements [22].

LEMMA 8.2. In a SEA, the following statements are equivalent.

- (i) $a \in E_S$,
- (ii) $a \circ a' = 0$,
- (iii) $a \circ a = a$.

The following important theorem was proved in [22, Corollary 3.5].

THEOREM 8.1. The set E_S of sharp elements of a SEA E is a sub-effect algebra of E that is an orthomodular poset.

In addition, we have the following results in a SEA E (see [22]).

PROPOSITION 8.1. An element $a \in E$ is principal if and only if $a \in E_S$.

PROPOSITION 8.2. Let $a \in E$, $b \in E_S$, then

- (i) $a \circ b = b \circ a = a$ if and only if $a \le b$.
- (ii) $a \perp b$ if and only if $a \circ b = 0$.

The following statements give relations between the commutativity of \circ and the coexistence relation \leftrightarrow in E.

PROPOSITION 8.3. Let E be a SEA.

- (i) For $a, b \in E$, $a \mid b \implies a \leftrightarrow b$.
- (ii) For $a \in E$, $b \in E_S$, $a \mid b \Leftrightarrow a \leftrightarrow b$. Moreover, if $a \leftrightarrow b$ then $a \circ b = a \wedge b$.

Compressions on SEAs were studied in [20, 21]. It is easy to check that for any $p \in E_S$, the mapping $J(a) = p \circ a$ is a compression.

THEOREM 8.2 ([21]). Let E be a SEA. The family $\{J_p : p \in E_S\}$, where $J_p(a) = p \circ a$, is a compression base for E.

- *Proof*: (1) First we prove that the set E_S is a normal sub effect algebra of E. Let $e, f, d \in E$ be such that $e \oplus f \oplus d \in E$ and $p = e \oplus d$, $q = f \oplus d$, $p, q \in E_S$. Then $p \leftrightarrow q$, and by Proposition 8.3, $p \circ q = q \circ p = p \wedge q = d$. Then $d \circ d = (p \circ q) \circ d = p \circ (q \circ d) = p \circ d = d$. Hence $d \in E_S$.
- (2) Let $p, q, r \in E_S$ and $p \oplus q \oplus r \in E$. Then $p \oplus r, q \oplus r \in E_S$, and $p \oplus r \leftrightarrow q \oplus r$, whence $p \oplus r \mid q \oplus r$. By (S4), for any $a \in E$, $J_{p \oplus r} \circ J_{q \oplus r}(a) = (p \oplus r) \circ ((q \oplus r) \circ a) = ((p \oplus r) \circ (q \oplus r)) \circ a = r \circ a = J_r(a)$, hence $J_{p \oplus r} \circ J_{q \oplus r} = J_r$.

This concludes the proof that $(J_p)_{p \in E_S}$ is a compression base for E.

In [21, Theorem 3.4] it was proved, in addition, that $\{J_p : p \in E_S\}$ is a maximal compression base for E.

For $n \in \mathbb{N}$, $a \in E$ we define $a^n = a \circ a \circ \cdots \circ a$ (n-factors). The smallest $n \in \mathbb{N}$ such that $a^n \in E_S$ (if it exists) is called the *sharpness index* of a, and is denoted by s(a). If no such n exists, then the sharpness index of a is ∞ [22].

LEMMA 8.3. [22] If $n = s(a) < \infty$, then a^n is the largest sharp element below a.

A σ -SEA is a SEA that is a monotone σ -complete effect algebra satisfying

- 1. if $a_1 \ge a_2 \ge \cdots$, then $b \circ (\bigwedge a_i) = \bigwedge (b \circ a_i)$ for every $b \in E$,
- 2. if $a_1 \ge a_2 \ge \cdots$ and $b \mid a_i, i = 1, 2, \ldots$, then $b \mid \bigwedge a_i$.

In particular, $\mathcal{E}(H)$ is a σ -SEA.

THEOREM 8.3 ([22]). Let E be a σ -SEA. If $a \in E$, then there exist $b, c \in E_S$ such that b is the largest sharp element below a and c is the smallest sharp element above a.

From Theorems 8.2 and 8.3 we conclude that a σ -SEA has the projection cover property. Consequently, the set E_S of all projections (equivalently, sharp elements) in E is a σ -orthomodular sublattice of E.

A counterexample in [22] shows that a commutative SEA need not be an MV-algebra, in general.

THEOREM 8.4. Let E be a commutative SEA with the b-general comparability. Then E is an MV-algebra.

Proof: As E is commutative, we have $p \mid e$ for every $e \in E$ and $p \in E_S$. By Proposition 8.3(i) this implies that $e \leftrightarrow p$ for all $e \in E$, $p \in E_S$, and by Lemma 4.1 it follows that $e \in C(p)$ for all $e \in E$ and all $p \in E_S$. Since an orthomodular

poset in which any two elements are compatible is a Boolean algebra, we obtain that $B = E_S$ is a Boolean algebra, hence the unique block of itself. In addition, $E = C(E_S)$. By Theorem 7.1 (i) we conclude that E is an MV-algebra.

Acknowledgement

The author is very much indebted to the referee for his valuable suggestions and comments, especially concerning the definition of b-general comparability. Without his kind help and encouragement, this paper would never be accomplished.

REFERENCES

- [1] M. K. Bennett and D. J. Foulis: Interval and scale effect algebras, Advances in Appl. Math. 19 (1997), 200.
- [2] P. Busch, P. J. Lahti and P. Mittelstaedt: The Quantum Theory of Measurement, Lecture Notes in Physics, m2, Springer, Berlin/Heidelberg/New York 1991.
- [3] P. Busch, M. Grabowski and J. P. Lahti: Operational Quantum Physics, Springer, Berlin 1995.
- [4] C. C. Chang: Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1957), 467.
- [5] F. Chovanec and F. Kôpka: Boolean D-posets, Tatra Mt. Math. Publ. 10 (1997), 183.
- [6] A. Dvurečenskij and S. Pulmannová: New Trends in Quanum Structures, Kluwer Academic Publ. Dordrecht, and Ister Science, Bratislava, 2000.
- [7] D. J. Foulis: Compressible groups, Math. Slovaca 53 (2003), 433.
- [8] D. J. Foulis: Compressions on partially ordered abelian groups, Proc. Amer. Math. Soc. 132 (2004), 3581.
- [9] D. J. Foulis: Spectral resolution in a Rickart comgroup, Rep. Math. Phys. 54 (2004), 319.
- [10] D. J. Foulis: Compressible groups with general comparability, Math. Slovaca 55 (2005), 409.
- [11] D. J. Foulis: Compression bases in unital groups, Internat. J. Theoret. Phys., to appear.
- [12] D. J. Foulis: Comparability groups, Demonstratio Math. 39 (2006), 15.
- [13] D. J. Foulis: Sharp and fuzzy elements of an RC-group, Math. Slovaca, to appear.
- [14] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325.
- [15] D. J. Foulis and S. Pulmannová: Monotone σ-complete RC-groups, J. London Math. Soc. 73 (2) (2006) 304.
- [16] R. J. Greechie, D. J. Foulis and S. Pulmannová: The center of an effect algebra, Order 12 (1995), 91.
- [17] R. Giuntini and H. Greuling: Toward a forma language for unsharp properties, Found. Phys. 19 (1989), 931.
- [18] K. R. Goodearl: Partially Ordered Abelian Groups with Interpolation, A.M.S. Mathematical Surveys and Monographs, No. 20, American Mathematical Society, Providence, RI, 1986.
- [19] S. Gudder: Sharply dominating effect algebras, Tatra Mt. Math. Publ. 15 (1998), 23.
- [20] S. Gudder: Compressible effect algebras, Rep. Math. Phys. 54 (2004), 93.
- [21] S. Gudder: Compression bases in effect algebras, Demonstratio Math. 39 (2006), 43.
- [22] S. Gudder and R. Greechie: Sequential products on effect algebras, Rep. Math. Phys. 54 (2002), 87.
- [23] S. Gudder and G. Nagy: Sequential quantum measurements, J. Math. Phys. 42 (2001), 5212.
- [24] G. Jenča: Sharp and meager elements in orthocomplete homogeneous effect algebras, Preprint (2004), available from http://www.elf.stuba.sk/'jenca/preprint
- [25] F. Kôpkaand F. Chovanec: D-posets, Math. Slovaca 44 (1994), 21.
- [26] K. Kraus: States, Effects, and Operations, Springer, Berlin 1983.
- [27] D. Mundici: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15.
- [28] P. Pták and S. Pulmannová: Orthomodular Structures as Quantum Logics, Kluwer Academic Publ. Dordrecht, and VEDA, Bratislava 1991.
- [29] S. Pulmannová: A spectral theorem for σ -MV-algebras, Kybernetika 41 (2005), 361.
- [30] S. Pulmannová: Spectral resolutions in Dedekind- σ -complete ℓ -groups, J. Math. Anal. Appl. **309** (2005), 322.