Seminar 2

Limbaje. Specificari. Gramatici independente de context simple

1 Multimi si limbaje

Se cere sa se defineasca (folosind multimi si descrierea proprietatilor specifice ale elementelor) urmatoarele limbaje. Se poate folosi concatenare, operatia * - inchiderea reflexiv tranzitiva.

- A. limbajul numerelor naturale in reprezentare binara
- B. limbajul numerelor intregi in reprezentare binara
- C. limbajul numerelor reale pozitive in reprezentare binara
- D. limbajul numerelor naturale in reprezentare zecimala
- E. limbajul numerelor intregi in reprezentare zecimala
- F. limbajul numerelor reale pozitive in reprezentare zecimala

Ex:

A:
$$L_A = \{1w \mid w \in \{0, 1\}^*\} \cup \{0\}$$

2 Gramatici independente de context simple

- 1. Descrieti limbajul generat de urmatoarele gramatici:
- a) $G=(N, \Sigma, S, P)$ $N = \{A,B\}$ $\Sigma = \{a, b\}$ S = AP: $A \rightarrow a B$ $A \rightarrow B$ $B \rightarrow b$
- b) $G=(N, \Sigma, S, P)$

 $N = \{\ \, <\! \text{propozitie}>, <\! \text{subiect}>, <\! \text{predicat-nominal}>, <\! \text{verb-copulativ}>,$

<nume-predicativ>, <substantiv>, <adjectiv>,
<verb>, <determinant>}

 $\Sigma = \{$ o, orice, functie, derivabila, continua, este $\}$

S = propozitie>

P: cpropozitie> -> <subject> predicat-

<subject> -> <determinant>

<substantiv>

- 2. Dati cate o gramatica care genereaza propozitiile:
 - a) ab, ac
 - b) abc

3. BNF si EBNF

1. Dati o descriere echivalenta in BNF si EBNF pentru doua dintre limbajele definite in sectiunile precedente.

4. Descrieri de limbaje folosind mecanisme generative

- 1. Fie L un limbaj peste alfabetul {a,b} definit dupa cum urmeaza:
 - (i) $ab \in L$
 - (ii) Daca $x \in L$ atunci $axb \in L$
 - (iii) Niciun alt cuvant nu apartine lui L.
 - a) Descrieti limbajul definit mai sus folosind multimi si descrierea proprietatilor specifice ale elementelor.
 - b) Descrieti limbajul definit mai sus folosind o gramatica independenta de context

5. Gramatici independente de context si limbajul generat

1. Sa se construiasca o gramatica care genereaza limbajul:

$$L = \{x^n y^n \mid n \in \mathbf{N}\}$$

Pentru gramatica construita, demonstrati ca L(G) = L.

- 2. Analog pt. $L = \{a^{2n}bc \mid n \in \mathbb{N}\}\$
- 3. Analog pt. $L = \{a^{2n+1} \mid n \in \mathbb{N}\}\$

Problema rezolvata:

Fie gramatica

$$G = (\{S\}, \{a,b,c\}, \{S \rightarrow aaS \mid bc\}, S).$$

Sã se arate cã: $L(G) = \{a^{2n}bc \mid n \ge 0\}.$

Egalitatea multimilor, $L(G) = \{a^{2n}bc | n \ge 0\}$ se demonstrează prin dublă incluziune:

a)
$$\{a^{2n}bc | n \ge 0\} \subseteq L(G)$$
, pe scurt " \subseteq ".

Fie $w \in L$, oarecare. => $w=a^{2n}bc$. Trebuie sã arãtãm cã $w \in L(G)$.

Într-adevar, folosind de n ori productia 1. $S \rightarrow aaS$ si odata productia 2. $S \rightarrow bc$, avem:

$$S_{\frac{1}{2}}^{\frac{n}{2}} > (a^2)^n S_{\frac{n}{2}} > a^{2n}bc$$
, adica $a^{2n}bc \in L(G)$.

b) A demonstra incluziunea inversă (" \supseteq "), adică L(G) \subseteq { $a^{2n}bc \mid n \ge 0$ }, revine la a arăta că gramatica G generează numai cuvinte de forma $a^{2n}bc$. Pentru a demonstra acest lucru să considerăm propozitia care depinde de numărul natural n, P(n):

"Folosind de n ori productiile $S \rightarrow aaS$, $S \rightarrow bc$ se obtin numai secvente de forma $a^{2n}S$ sau $a^{2(n-1)}bc$ ".

Demonstrãm proprietatea P(n) prin inductie matematicã.

1. Verificare.

Dacã n=1, deci folosind o singurã productie, obtinem secventa a²S sau bc.

2. Demonstratia.

Presupunem cã P(k) este adevãratã si trebuie sã demonstrãm cã si P(k+1) este adevãratã. Secventele $a^{2(k+1)}S$, $a^{2k}bc$ se obtin folosind câte una din cele douã productii, pornind de la secventa $a^{2k}S$.

Din proprietatea P(n) rezultă că singurele cuvinte generate de gramatică sunt de forma $a^{2n}b$, $n \ge 0$ si este adevărată incluziunea " \supseteq ".