Mineraloške i kristalografske osobine zeolitskog tufa HEU-tipa lokaliteta Novaković, Bosna i Hercegovina

Ana S. Radosavljević-Mihajlović¹, Aleksandra S. Daković¹, Vladan D. Kašić¹, Vojislav V. Mitić², Jovica N. Stojanović¹, Miroslav D. Sokić¹, Branislav R. Marković¹

¹Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Franš D'Epere 86, Beograd, Srbija
²Institut tehničkih nauka, Srpska akademija nauke i umetnosti, Knez Mihailova 35/IV, Beograd, Srbija; Elektronski fakultet, Univerzitet Niš, Aleksandra Medvedeva 14, Niš 18000, Srbija

Izvod

U radu su predstavljeni rezultati mineraloške i strukturne analize zeolitskog tufa lokaliteta Novaković, u Bosni i Hercegovini. Tuf je beličaste boje, osnovni mineralni sastav je mineral iz serije hejlandita – Ca-klinoptilolit. Prateća komponenta je amorfna faza, vulkansko staklo i amorfni SiO₂. Ispitivanjem termičke stabilnosti, utvrđeno je da je struktura zeolita stabilna do 600 °C. Određivana je i struktura Ca-klinoptilolita u zeolitskom tufu. Struktura je utačnjavana u prostornoj grupi C2/m, sa neuređenom raspodelom Al i Si u tetraedarskoj mreži. Za ispitivanje su korišćene metode rendgenske difrakcije praha na polikristalnom uzorku (XRD, X-Ray powder diffraction analysis), skenirajuće elektronske mikroskopije i energodisperzivne spektroskopije x-zracima (SEM/EDS, scanning electron microscopy and energy dispersive spectroscopy analysis) i diferencijalno termička i diferencijalno termogravimetrijska analiza (DTA/DTG, differential thermal and thermogravimetric analysis).

Ključne reči: zeolitski tuf; rendgenska analiza praha; termička stabilnost; kristalna struktura Dostupno na Internetu sa adrese časopisa: http://www.ache.org.rs/Hl/

STRUČNI RAD

UDC 549.67(497.11):549

Hem. Ind. 72 (6) 371-382 (2018)

1. UVOD

Zeoliti čine grupu prirodnih i sintetičkih neorganskih jedinjenja, koja poseduju specifične fizičkohemijske osobine pogodne za industrijsku primenu [1]. Po svom postanku, raznovrsnosti hemijskog sastava, strukturnim karakteristikama i primeni, zeoliti čine specifičnu grupu minerala u okviru tektosilikata. Od više različitih definicija najprihvatljivija je sledeća: Zeoliti su tektoalumosilikati u kojima (Si, Al)O₄ tetraedri izgrađuju sekundurne izgrađivačke jedinice (SIJ) koje međusobnim povezivanjem formiraju karakteristične konfiguracije četvoročlanih, petočlanih, šestočlanih i osmočlanih jednostrukih ili dvostrukih prstenova, stvarajući šupljine u kojima se nalaze katjoni i molekuli vode, koji imaju značajan stepen pokretljivosti, što dopušta katjonsku izmenljivost i reverzibilnu dehidrataciju [1-6]. Prirodni zeoliti su na osnovu svojih prostornih, hemijskih i strukturnih karakteristika sistematizovani u 13 kompozitnih serija, u okviru kojih je do sada definisasno 82 minerala [2,3]. U sedimentnim tvorenima bogatim zeolitima najkarakterističniji minerali koji su prisutni su šabazit, klinoptilolit/hejlandit, mordenit, erionit, filipsit i analcim. Osnovne hemijske i strukturne osobine ovih zeolita prikazane su u Tabeli 1.

Najrasprostranjeniji zeolit sedimentnog porekla je predstavljen – HEU serijom, opšte kristalohemijske formule (Na,K,Ca)₆Al₆Si₃₀O₇₂ nH₂O [8]. Glavna nalazišta ove sirovine prisutna su u svim delovima sveta, najveća proizvodnja ove sirovine u 2010 je bila u USA, Japanu, Jordanu, Iranu, Koreji, Slovačkoj, Turskoj i iznosila je približno 275 000 t. Potražnja za ovom sirovinom iz godine u godinu raste, predviđa se povećanje proizvodnje za 10 % godišnje. Najvažnije osobine minerala zeolita su sposobnost apsorpcije, procesi jonske izmene i katalize. Sama selektivnost zeolita za odgovarajuće katjone, zavisiće od osnovnih kristalohemijskih i strukturnih osobina svakog zeolita, i može se definisati kao mera sklonosti koju izmenjivač pokazuje za jedan jon u odnosu na drugi. Količina izmenljivih katjona ili kapacitet katjonske izmene, zavisiće od kristalohemijskog i strukturnog sastava samog zeolita (izražava se u mmol M*/100g) [3,7].

Ležišta zeolitskih tufova na prostorima bivše Jugoslavije prostorno su vezana za vulkanogeno-sedimentne stene u oblasti Srpsko Makedonske mase i spoljašnjih Dinarida. Ona su obrazovana u sedimentima marinskog ili jezerskog porekla, senonske i neogenske starosti. Nastala su kao produkt devitrifikacije vulkanskog stakla. Jezerska sredina imala

Korespodencija: Jovica N. Stojanović, Institut za tehnologiju nuklearnih i drugih mineralnih sirovina, Franš D´Epere 86, 11000 Beograd, Srbija;

E-mail: .stojanovic@itnms.ac.rs
Rad primljen: 25. jula 2018.
Rad prihvaćen: 17. decembra 2018.

https://doi.org/10.2298/HEMIND180725026R

371

je veliki uticaj na dijagenezu sedimenata i obrazovanje klinoptilolita na račun vulkanskog stakla. Najznačajnija ležišta u Republici Srbiji su Beočin (Fruškogorski basen) [9], Zlatokop (Vranjski basen) [9,10], Igroš (padine Kopaonika) [10], Toponica [10] i lokalitet Slanci (Dunavski ključ, kod Beograda) [11].

Tabela 1. Kristalohemijske i strukturne osobine prirodnih zeolita sedimentnog porekla.

Table 1. Crystrallochemical and structural properties of natural zeolites of sedimentary origin.

Zeolit	Strukturne osobine [7]						
	Veličina kanala, nmª	Relativna zapremina ćelije ^b	KKI, mEq / 100 g ^c	Formula			
Šabazit	0,37-0,42	0,47	3,86	Ca ₂ (AlO ₂) ₄ (SiO2) ₈ 13H2O			
Klinoptilolit	0,44-0,72	0,34	2,22	Na ₆ (AlO ₂) ₆ (SiO ₂) ₃₀ 24H ₂ O			
Mordenit	0,67-0,70	0,28	2,29	Na ₈ (AlO ₂) ₈ (SiO ²) ⁴⁰ 24H ² O			
Erionit	0,36-0,52	0,35	3,16	(Ca,Mg,K,Na) _{4,5} (AlO ₂) ₉ (SiO ₂) ₂₇ 27H ₂ O			
Hejlandit	0,40-0,72	0,39	2,91	Ca ₄ (AlO ₂) ₈ (SiO ₂) ₂₈ 24H ₂ O			
Filipsit	0,42-0,44	0,31	3,50	(K,Na) ₁₀ (AlO ₂) ₁₀ (SiO ₂) ₂₂ 20H ₂ O			

veličina kanala odnosi se na najveći kanal, bzapremina je izražena kao ml vode/ml kristala, cukupan kapacitet katjonske izmene

U Republici Hrvatskoj postoji nekoliko lokacija koje imaju mali sadržaj zeolita. Zeoliti su tu prisutni u kavernama i žicama izmenjenih vulkanskih stena: mineral ferierit pronađen je na lokalitetu Gotalovac [12], hejlandit i mordenit utvrđeni su na lokalitetu Lepoglava [13], laumontit je utvrđen na lokalitetu Hruškovec u trijas vulkanogeno-sedimentim formacijama [14]. U izmenjenim piroklastičnim stenama lokaliteta Muć prisutan je mineral analcim [15], a klinoptolilit je otkriven u oblasti Maovice [16] i Medvednice [17]. U Hrvatskoj postoje samo dva regiona interesantna sa ekonomskog aspekta, i oba pripadaju Panonskom Basenu: Hrvatsko Zagorje (severozapadna Hrvatska) i Slavonija (severna Hrvatska) [18].

U republici Bosni i Hercegovini pojave zeolitskih tufova su prvo utvrđene u područiju Zvornika i Vlasenice [19]. Ležišta analcimskog tufa nalaze se u oblasti Čelnica i Milići, a ležišta klinoptilolitskog tufa Novaković u okolini Prijedora [9].

U ovom radu su predstavljeni rezultati mineraloških ispitivanja i kristalografske analize zeolitskog tufa ležišta Novakovići.

2. MATERIJAL I METODE

Za mineraloška i kristalografska ispitivanja, korišćeni su uzorci tufova veličine zrna od -63 μ m. Kvantitativna hemijska analiza rađena je metodom silikatne analize [20]. Sadržaj SiO₂ i GŽ (gubitak pri žarenju na 105 i 1000 °C) određivani su gravimetrijski. Sadržaj oksida Na₂O, K₂O, Fe₂O₃ i MgO određivan je pomoću metode AAS na atomskom apsorberu firme Perkin - Elmer, model 730. Rendgenska analiza rađena je na automatskom difraktometru za prah "PW-1710" (Philips, Holandija), sa monohromatskim CuK (alfa) zračenjem (λ = 1.5418 Å), pri naponu od 40 kV i struji 30 mA. Difraktogrami termički tretiranih uzoraka zeolita su snimani u intervalu ugla 2 θ od 4 do 35°, korakom 0,02 · Strukturna analiza rađena je na polaznom uzorku, difraktogram je sniman u intervalu ugla 2 θ od 4 do 35° i korakom 0,02° i zadržavanjem 12,5 s. Za utačnjavanje dobijenih podataka korišćen je program FULLPROF (Institut Laue-Langevin, Francuska) [21]. Strukturno utačnjavanje difrakcionih podataka izvedeno je uz konstantan faktor skale. Za opisivanje profila pikova korišćena je modifikovana Tomson-Koks-Hejstings pseudo-Fojktova funkcija (TCH – pV, odnosno Thompson-Cox-Hastings pseudo-Voigt function). Utačnjene strukture vizuelno su obrađivane u kristalografskom programu – VESTA (Nacionalni muzej prirode i nauke, Japan) [22].

Morfologija ispitivanih zeolita analizirana je pomoću skenirajućeg elektronskog mikroskopa JEOL 840A (Joel, Japan). Ispitivanje kristaliničnosti zeolitskog tufa nakon žarenja izvršena su u temperaturnom opsegu od 300 do 750 °C, u vremenskom intervalu od 2 h. Tako ižareni materijal ispitan je metodom rendgenske difrakcije praha na polikristalnom uzorku.

Termičke analize rađene su na aparatu "Netzsch STA 409EP". Uzorci su termički tretirani u rasponu od 25°C do 1000 °C, pri brzini zagrevanja od 5 °C/min, u statičnoj atmosferi vazduha. Kao referentni uzorak korišćen je Al₂O₃. Prethodno uzorci su prvo odmeravani na analitičkoj vagi po 100 mg.

3. REZULTATI I DISKUSIJA

3. 1. Geologija ležišta

Prostor na kome se nalazi ležište zeolitskog tufa Novakovići, grade sedimenti trijasa, jure i miocena, kao i magmatske stene (peridotiti, spiliti, serpentiniti i amfiboliti). Trijaski krečnjaci su sive boje, slojevite građe, sedimentološki

predstavljaju mikrite, fosilne mikrite i peletonosne mikrite. U jurskoj dijabaz rožnačkoj formaciji česte su pojave magmatskih i metamorfnih stena i metamorfita. Uže područije lažišta tufa grade sedimenti burdigal-helvetske starosti, koji leže transgresivno preko trijas/jura kompleksa. Preko njih su paketi laporca sa mrkim ugljem. Preko ovog sloja nalaze se gline i bentoniti sa čvrstim naslagama karbonata debljine oko 20 m. Konkordantno na glini se nalazi paket od tri sloja tufa. Prvi sloj (1,6 m) je svetlo sivi sitnozrnasti materijal, iznad njega je tufozna glina (2,6 m), a preko nje se nalazi sloj belog tufa sa školjkastim prelomima debljine 0,8 m [23].

3. 2. Mineraloške i hemijske analize

Zeolitski tuf ležišta Novaković je beličaste boje. Osnovni sastav je mineral HEU serije klinoptilolit, a kao prateća komponenta konstatovana je amorfna faza-vulkansko staklo i amorfni SiO₂, Slika 1.

Slika 1. Rendgenski dijagram praha zeolitskog tufa ležišta Novaković (*-klinoptilolit br.JCPDS kartice 89-7539) i SEM mikrografija minerala klinoptilolita (uvećanje ×5,000, vrednost razmernika 5 µm)

Figure 1. The X-ray powder diffraction diffractogram of the Novaković deposit zeolitic tuff (*-clinoptilolite, JCPDS card number 89-7539) and SEM micrographs of the mineral clinoptilolite (magnification $\times 5,000$, scale bar = 5 μ m)

Semikvantitativnom rendgenskom analizom u ovom uzorku izdvojene su dve faze: prva kristalna koja odgovara mineralu klinoptilolitu ~ 90 mas. %, a druga faza je amorfna materija sa ~ 10 mas.% učešća [24]. Na osnovu rendgenskog dijagrama praha, vrednosti za parametre jedinične ćelije su a = 17,662 Å (4), b = 17,874 Å (3), c = 7,402 Å (4), α = 90°, β = 116,32° (3), γ = 90°, a zapremina jedinične ćelije je V = 2122,73 ų.

Zeolitski tuf ležišta Novaković, bogat klinoptilolitom predstavljen je na SEM mikrografijama, Slika 2a-d, pri uvećanjima od 1700 i 20 000 puta.

U centralnom delu Slike 2d, zapažaju se kristalne druze kristala klinoptilolita sa razvijenim formama baznih pinakoida, kao i bočnim stranicama izgrađenih od pinakoida I i pinakoida II vrste. Kristali su veličine do 15 μ (razvijeni po b-osi). Moguće su i druge kristalografske kombinacije, ali kod monoklinične simetrije potrebno je imati monokristal (za optičku definiciju kristalografskih pljosni i odgovarajućih uglova između njih).

Kvantitativnom hemijskom analizom utvrđen je hemijski sastav i kapacitet katjonske izmene polaznog zeolitskog tufa, i prikazan je u Tabeli 2. Na osnovu rendgenskog dijagrama praha, Slika 1, zaključeno je da zeolitski tuf predstavlja višefazni sistem i hemijska analiza je urađena za kompletan sastav uzorka. Analiza pokazuje visok sadržaj silicijuma, kao i prisustvo oksida alkalnih i zemnoalkalnih metala.

Hemijska analiza posmatrana je za ceo zeolitski tuf [25]. Ukupan kapacitet katjonske izmene je 187 mmol M⁺/ 100 g. Na osnovu rezultata predstavljenih u Tabeli 2, kalcijum je najdominantniji katjon u zeolitskom tufu. Atomski odnos Si/Al je 4,36, odnos jednovalentnih katjona Na⁺/(Na⁺+K⁺) je 0,14, a odnos dvovalentnih katjona Ca²⁺/(Ca²⁺+Mg²⁺) je 0,55. Na osnovu predstavljenih rezultata hemijske analize može se pretpostaviti da je u zeolitskom tufu prisutan mineral Caklinoptilolit.

Slika 2. SEM mikrografije zeolitskog tufa ležišta Novaković sa kristalima klinoptilolita, a.) mineral klinoptilolit, vrednost razmernika od 10 μm, b-d) kristalne forme klinoptilolita, pri vrednosti razmernika od 1 μm

Figure 2. SEM micrographs of the Novaković deposit zeolitic tuff with clinoptilolite crystals, a.) mineral clinoptilolite, scale bar = $10 \mu m$, b-d) crystal forme of clinoptilolite , scale bar = $1 \mu m$

Tabela 2. Hemijska analiza polaznog zeolitskog tufa ležišta Novaković

Table 2. Chemical analysis of Novaković deposit zeolitic tuff

Oksid	SiO ₂	Al_2O_3	Fe_2O_3	CaO	MgO	Na₂O	K_2O	H_2O
Sadržaj, wt.%	63,64	12,40	0,92	4,93	1,02	0,20	1,80	15,40
Sadržaj izmenljivih katjona polaznog zeolitskog tufa, mEq / 100 g								
Jon	Ca ²⁺	+	Mg ²⁺		Na ⁺	K ⁺		KKI ^a
Sadržaj, mEq / 100 g	138	}	3,0		7,6	38,4	•	187

^aukupan kapacitet katjonske izmene

3. 3. Strukturna analiza

U procesu određivanja strukture klinoptilolita, utvrđivanje prostorne grupe predstavlja problem. Prostorna grupa C2/m poseduje maksimalnu simetriju, a mogu biti prisutne C2 i Cm prostorne grupe. Za prostornu grupu C2/m utvrđeno je da tetraedarski položaj T2 može da sadrži oko 50 % Al, a u ostalim položajima T1, T4 i T5 njegov sadržaj ne prelazi 25 % [26]. Struktura Ca-klinoptilolita, zeolitskog tufa Novaković, utačnjavana je u prostornoj grupi C2/m sa neuređenom raspodelom Si/Al u tetraedarskim položajima, kao i sa neuređenim parametrima okupacija za katjonske položaje u zeolitskim kavezima. Kao polazni parametri korišćeni su literaturni podaci [27]. Utačnjeni rendgenski dijagram praha Ca-klinoptilolita, predstavljen je na Slici 3. Relevantni strukturni i profilni parametri, kao i faktori slaganja dati su u Tabeli 3.

Zbog kompleksnosti ispitivane strukture, tokom utačnjavanja izotropni temperaturni faktori su bili jednaki za istu vrstu atoma, odnosno jona. Frakcione koordinate atoma, Vikofovi (Wickoff) položaji (W) i faktori zauzeća (SOF), prikazani su u Tabeli 4.

Izgled utačnjene strukture Ca-klinoptilolita, u ispitivanom ležištu zeolitskog tufa Novaković, prikazan je na Slici 4.

Kristalna struktura klinoptilolita bila je predmet istraživanja brojnih autora [28-30]. Sekundarne izgrađivačke jedinice u klinoptilolitu svojim međusobnim povezivanjem formiraju osmočlane i desetočlane prestenove, formirajući sistem kanala. U strukturi postoje četri kanala. Tri kanala su izgrađena od osmočlanih prstenova, a jedan od desetočlanog prstena.

Slika 3. Utačnjeni rendgenski dijagram praha Ca-klinoptilolita, zeolitskog tufa ležišta Novaković
Figure 3. The observed (circles), calculated (continuous line) and difference powder diffraction profiles for Ca-clinoptilolite of the Novaković deposit zeolitic tuff

Tabela 3. Strukturni i profilni faktori slaganja dobijeni Rietveldovom (Rietveld) metodom utačnjavanja Ca-klinoptilolita, zeolitskog tufa ležišta Novaković

 $Table \ 3. \ Structure \ and \ profile \ refinement \ data \ obtained \ by \ the \ Rietveld \ analysis \ of \ Ca-clinoptilolite, \ of \ the \ Novakovic \ deposit \ zeolitic \ tuff$

profilna funkcija	TCH – pV
prostorna grupa	C2/m
a / Å	17,662 (3)
b/Å	17,874(3)
c / Å	7,402 (3)
α/°	90
β/°	116,32 (2)
γ/°	90
V / Å ³	2122,73 (1)
U	0,10842 (2)
X	0,01896 (3)
Asy 1	0,083 (3)
Asy 2	0,1122 (3)
Chi ²	1,83
$R_{\sf wp}$	24,1
R_{p}	23,8
R(F)	6,54
R(B)	7,76

Tabela 4. Frakcione koordinate atoma, Vikofovi (Wickoff) položaji (W) i faktori zauzeća (SOF) Ca- klinoptilolita Table 4. Refined fractional atomic coordinates, Wickoff position (W) and site occupation factor (SOF) of Ca-clinoptilolite

atam	w -		COL		
atom		Х	у	Z	SOF
Si1	8 <i>j</i>	0,182 (2)	0,163 (1)	0,104 (2)	0,833 (2)
Al1	8 <i>j</i>	0,182 (2)	0,163 (1)	0,104 (2)	0,166 (1)
Si2	8 <i>j</i>	0,210 (2)	0,409 (1)	0,500 (2)	0,876 (2)
Al2	8 <i>j</i>	0,210 (2)	0,409 (2)	0,500 (2)	0,167 (2)
Si3	8 <i>j</i>	0,201 (1)	0,191 (2)	0,720 (1)	0,833 (1)
Al3	8j	0,201 (1)	0,191 (2)	0,720 (1)	0,166 (2)
Si4	8 <i>j</i>	0,064 (2)	0,298 (2)	0,413 (1)	0,833 (3)
Al4	8 <i>j</i>	0,064	0,298 (2)	0,413 (1)	0,166 (2)
Si5	4 <i>g</i>	0	0,212 (1)	0	0,750 (2)
Al5	4 <i>g</i>	0	0,215 (2)	0	0,279 (1)
01	4 <i>i</i>	0,197 (1)	0,5	0,456 (2)	1
<u>O2</u>	8j	0,232 (2)	0,122 (2)	0,610 (2)	1
O3	8 <i>j</i>	0,183 (3)	0,156 (3)	0,898 (2)	1
04	8 <i>j</i>	0,235 (2)	0,094 (2)	0,248 (2)	1
<u> </u>	4h	0	0,321 (2)	0,5	1
06	8 <i>j</i>	0,081 (3)	0,161 (1)	0,058 (1)	1
07	8 <i>j</i>	0,127 (3)	0,233 (1)	0,546 (1)	1
08	8j	0,011 (2)	0,268 (2)	0,185 (1)	1
<u> </u>	8j	0,212 (2)	0,252 (1)	0,183 (1)	1
010	8j	0,116 (3)	0,372 (1)	0,410 (1)	1
Na1	4i	0,142 (3)	0	0,667 (2)	0,004 (2)
Ca1	4i	0,142 (3)	0	0,667 (2)	0,234 (2)
Ca2	4i	0,142 (2)	0,5	0,208 (2)	0,403 (1)
Na2	4 <i>i</i>	0,039 (2)	0,5	0,208 (2)	0,073 (2)
K1	4 <i>i</i>	0,256 (4)	0,5	0,084 (1)	0,321 (3)
Mg1	2 <i>c</i>	0	0	0,5	0,076 (1)
011	4i	0,218 (2)	0,5	-0,005 (2)	1
012	4 <i>i</i>	0,087 (2)	0	0,897 (2)	1
013	8 <i>j</i>	0,078 (2)	0,419 (2)	0,964 (2)	1
014	2 <i>d</i>	0	0.5	0,5	1
015	4h	0	0,088 (2)	0,5	1
016	4i	0,083 (1)	0	0,267 (2)	1
017	4 <i>i</i>	0,094 (2)	0	0,074	1

Jedan desetočlani (kanal A) i jedan osmočlani kanal (B) paralelni su osi *c*, Slika 5, drugi osmočlani kanal (C) paralelan je je kristalografskoj osi *a*. Treći kanal nalazi se pod uglom od 50° u odnosu na kristalografsku osu *a*. Postojanje četvrtog kanala uočili su Merli (Merkly) i Sloter (Slaughter) [31]. Kasnije je potvrđeno postojanje četvrtog kanala [28], koji je paralelan osi *a*. Dimenzije kanala variraju u zavisnosti od kristalohemijskog sastava klinoptilolita. Duž kristalografske ravni (001) za desetočlani i osmočlani prsten, dimenzije kanala iznose (X - 3,1·7,5 Å i VIII - 3,6·4,6 Å), za osmočlani duž kristalografske ravni (100) dimenzije su (VIII - 2,8·4,7 Å) [32].

Raspodela Si/Al u tetraedarskim položajima je prilično neuređena, (Tabela 4). U strukturi klinoptilolita utvrđeno je postojanje pet tetraedarskih pozicija, od kojih četiri položaja zauzimaju SiO₄ jedinice (T1, T2, T3, T4 i T5) [26], u položaju T2 prisutne su AlO₄ jedinice. Ako se zanemari uticaj vanmrežnih katjona, u TO₄ tetraedru izračunata dužina Si – O veze iz Šanonovih radijusa je ~ 1,61, a za Al – O dužina veze je 1,74 Å (za O⁻² u koordinaciji II) [32]. Na prisustvo aluminijuma (Al³⁺) u jednom od ovih tetraedarskih položaja ukazuje dužina T – O veze. Sa porastom sadržaja aluminijuma (Al³⁺) dužina veze se povećava, tako da je najveća verovatnoća nalaženja Al³⁺ u položaju T2. Vrednosti dužina T–O i M–O veza u strukturi klinoptilolita predstavljeni su u Tabeli 5.

Slika 4. Kristalna struktura Ca-klinoptilolita, zeolitskog tufa ležišta Novaković Figure 4. The crystal structure of Ca-clinoptilolite of the Novaković deposit zeolitic tuff

Slika 5. Kristalna struktura Ca-klinoptilolita, zeolitskog tufa ležišta Novaković, duž kristalografske ose a/b Figure 5. The crystal structure of Ca-clinoptilolite, along the crystalographic plane a/b

Tabela 5. Vrednosti za dužine T–O i M–O veza u Ca-klinoptilolita u zeolitskim tufovima Novaković Table 5. The T–O and M–O interatomic distance in the Ca-clinoptilolite structure of the Novaković deposit zeolitic tuff

Dužina veze	e ⟨T−O⟩, Å	Dužina veze ⟨M−O⟩, Å		
⟨T1−O⟩	1,632	Mg1-O	2,312	
⟨T2−O⟩	1,652	Ca1-O	2,842	
⟨T3−O⟩	1,635	Ca2-O	2,577	
⟨T4−O⟩	1,602	K1-O	3,089	
⟨T5−O⟩	1,616	Na1-O	2,842	
$\langle T-O \rangle$	1,627	Na2-O	2,592	
		$\langle M-O \rangle$	2,709	

Na osnovu literaturnih podataka [28,29], u strukturi klinoptilolita mogu se izdvojiti četri katjonska položaja, Slika 6.

Slika 6. Raspored katjonskih položaja u utačnjenoj kristalnoj strukturi Ca-klinoptilolita Figure 6. Distribution of cation positions in the refined crystal structure of Ca-clinoptilolite

U kanalu A nalaze se katjonski položaji M1 i M4. Prema ovom položaju katjoni Na i Ca pokazuju veliki afinitet. U kanalu B prisutan je katjonski položaj M2, prema kome katjoni Ca imaju veći afinitet od katjona Na [9]. Magnezijum ili aluminijum mogu zauzeti položaj M4, Slika 7. Atomi K su smešteni u kanalu C, katjonski položaj M3. Popunjenost položaja odgovarajućim katjonima zavisiće od kristalohemijskog sastava posmatranog klinoptilolita. Na osnovu podataka it Tabele 2, Ca je najzastupljeniji katjon i najveći procenat popunjenosti je u položaju M2.

3. 4. DTA/DTG analiza zeolitskog tufa

Na osnovu hemijske i analize rendgenske difrakcije praha nije moguće razdvojiti klinoptilolit i hejlandit, zbog njihove izostrukturne prirode. Za identifikaciju ova dva izostrukturna minerala, najjednostavniji je tzv. Mamptonov (Mumpton) test [33]. Mampton definiše klinoptilolit kao stabilniju formu u odnosu na hejlandit, čija stuktura ostaje nepromenjena do temperature od 700 °C, dok polimorfne promene kod hejlandita počinju već pri temperaturi od 350–400 °C. Za njihovo razlikovanje, uvodi se eksperimentalni test: rendgenskim ispitivanjem i upoređivanjem difraktograma praha nakon zagrevanja na temperaturama od 350 do 400 °C. Posmatraju se međupljosna rastojanja, d-vrednosti za difrakcionu liniju (020) na uglu 2 θ 9,90 Å. Ako ne dolazi do promene d-vrednosti u pitanju je klinoptilolitu, a u suprotnom o hejlanditu. Uporedni difraktogrami praha termički tretiranog zeolitskog tufa u temperaturnom opsegu od 300 do 650 °C, prikazani su na Slici 7.

Na osnovu uporednih rendgenskih dijagrama praha (Slika 7), ako se posmatraju polazni i uzorci termički tretirani do $400\,^{\circ}$ C, uočava se stabilnost strukture. Pri ovim temperaturama procesi dehidratacije odgovaraju najslabije vezanoj vodi, u kanalu A. Na temperaturi od $500\,^{\circ}$ C struktura zeolita je i dalje stabilna (slika 7), na rendgenskom dijagramu praha prisutne su osnovne refleksije 020, 220, 311/111 i 330. U ovom temperaturnom intervalu dolazi do procesa dehidratacije, odnosno gubitka vode koja je vezana za katjone koji su smešteni u kanalu B (slika 6). Na temperaturama većim od $600\,^{\circ}$ C dolazi do procesa amorfizacije. Rezultati Mamptonovog (Mumpton) testa pokazuju da su vrednosti međupljosnih rastojanja za refleksiju 020 praha zeolitskog tufa termički tretiranog na temperaturama od $400\,^{\circ}$ C različite. Uočeno je da vrednosti ugla 2θ iznose 9,90 ($400\,^{\circ}$ C) i 9,82 ($500\,^{\circ}$ C). Na osnovu literaturnih podataka [33], ove

vrednosti su karakteristične za mineral klinoptilolit. U zeolitskom tufu ležišta Novaković, na osnovu rezultata Mumptonovog testa (Slika 7) se može zaključiti da je prisutan mineral Ca-klinoptilolit.

Slika 7. Uporedni rendgenski dijagrami praha termički tretiranog zeolitskog tufa ležišta Novaković, Mamptonov (Mumpton) test Figure 7. Comparative X-ray powder diffraction diffractograms of the thermally treated Novaković deposit zeolitic tuff, Mumpton test

Ustanovljeni uticaj temperature termičkog tretmana na osobine zeolitskih tufova u skladu je sa literaturnim podacima [35-38]. Te osobine zavise od kristalohemijskog sastava zeolitskog tufa, odnosno vrste i sadržaja vanmrežnih katjona, kao i mrežnih katjona Si i Al. U svojim radovima Biš (D. Bich) [35-37] i Armbruster (T. Ambruster) [38] pratili su uticaj izmenljivih katjona na termalno ponašanje i stepen dehidratacije strukture klinoptilolita-hejlandita. Njihova istraživanja potvrdila su da vrsta, sadržaj i raspored izmenljivih katjona u zeolitskim kavezima ima bitan uticaj na dehidrataciju, gde u ovim procesima važniju ulogu imaju jednovalentni katjoni, koji su skloniji dehidrataciji u odnosu na dvovalentne katjone. Diferencijalno termička analiza zeolitskog tufa ležišta Novaković, predstavljena je DTA/DTG dijagramom na Slici 8.

Slika 8. a – DTA i b - DTG dijagrami zeolitskog tufa ležišta Novaković. Figure 8. a – DTA and b - DTG graphs of the Novaković deposit zeolitic tuff.

Voda je u zeolitskim kavezima vezana slabijim ili jačim vezama, za različite vanmrežne katjone [36]. Prema opisanom strukturnom modelu u poglavlju 1.3., približno 21 molekul vode je koordinisan sa vanmrežnim katjonima (Ca²+, Mg²+, Na+, K+), koji mogu da se nalaze u četiri katjonska položaja (M1, M2, M3 i M4). Kanale prvo napušta najslabije vezana voda, koja je vezana sa katjonima prisutnim u položajima M1 i M4, u kanalu A (Slika 4). Na osnovu opisanog strukturnog modela (Slika 3) najveći afinitet prema ovim katjonskim položajima imaju katjoni Na+ i Mg²+ (Slika 6). Na DTA dijagramima ovaj proces dehidratacije okarakterisan je prvim širokim endotermnim pikom, u temperaturnom intervalu od 50 do 150 °C. DTG dijagram zeolitskog tufa Novaković ukazuju da se proces dehidratacije odvija u dve faze. Prva faza sa temperaturnim maksimumom na 95°C i druga faza sa slabije izraženim temperaturnim maksimumom (prelom) na oko 200 °C. Ostali endotermni efekti preko temperature od 300 °C posledica su otpuštanja vode iz kanala B (Slika 4) gde ona ostvaruje jaču vezu sa katjonima u položaju M2. Prema ovom katjonskom položaju najveći afinitet imaju joni Ca²+ (Slika 6). U ovoj temperaturnoj oblasti na DTG krivi prisutan je pik na 326 °C. U temperaturnoj oblasti od 450 do 700 °C javljaju se endotermni efekti koji odgovaraju vodi vezanoj za katjone u položaju M3 (Slika 6), kao i procesima dehidroksilacije.

Diferencijalno termička analiza ispitivanog zeolitskog tufa ležišta Novaković ukazuje na klinoptilolitsku strukturu, što je u saglasnosti sa predstavljenim strukturnim modelom.

4. ZAKLJUČAK

Na osnovu predstavljenih rezultata, možemo da zaključimo da je zeolitski tuf sastavljen od minerala hejlanditske serije. Na osnovu hemijske analize, termičkog tretmana i rendgenske difrakcije praha na polikristalnom uzorku, utvrđeno je da se radi o mineralu Ca-klinoptilolitu. Termičkom analizom u temperaturnom intervalu od 300 do 700 °C, pokazano je da je zeolitski tuf ležišta Novaković stabilan do temperature od 60 °C. Struktura Ca-klinoptilolita određivana je u centrosimetričnoj prostornoj grupi C2/m, sa parametrima jedinične ćelije a = 17,662 Å, b = 17,874 Å, c = 7,402 Å β = 116,32° V = 2122,73 ų. Zeolitski tuf predstavlja mineralnu sirovinu koja sadrži ~90 % minerala HEU-serije, Ca-klinoptilolita. Zeolitski tuf je termički i strukturno stabilan i može da ima primenu različitim oblastima industrije i poljoprivrede.

Zahvalnica: Autori se zahvaljuju Ministarstvu prosvete, nauke i tehnološkog razvoja Republike Srbije za podršku istraživanjima kroz projekat III-45012, OI-176016, TR-34013. Autori se zahvaljuju i kolegama Instituta Ruđer Bošković iz Zagreba, posebno Dr.sc G. Kniewald i Prof.dr.sc., akademik V. Bermanecu, Prirodoslovno-matematički fakultet Mineraloško-petrografski zavod, na pruženoj pomoći u dostupnosti literaturnim podacima o zeolitima sa područija zapadnog Balkana.

LITERATURA

- [1] Radosavljević-Mihajlović A, Matović B. Prirodni zeoliti i mogućnost njihove primene u zaštiti životne sredine. *NBP-Journal of criminalistics and law* 2008, 13(2): 107-119.
- [2] Gottardi G, Galli E. Natural Zeolites. Springer-Verlag, Berlin; 1985.
- [3] Barrer RM. Zeolites and Clay Minerals as Sorbent and Molecular Sieves. Academic Press, London New York; 1978.

- [4] Betekhtine AG. Manuel de Mineralogie Descriptive. Editions MIR, Moscow; 1968:659-666.
- [5] Douglas SC, Alberto A, Armbruster T, Artioli G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickle EH, Passaglia E, Peacor DR, Quartieri S, Rinaldi R, Ross MI, Sheppard RA, Tillmanns E, Vezzalini G. Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. Can Mineral. 1997; 35:1571-1606.
- [6] Mumpton F. Occurrence, Properties and Utilization of Natural Zeolites. In D. Kallo and H. S. Sherry, Eds., Akadémiai Kiadó, Budapest; 1988.
- [7] Breck DW. Zeolite Molecular Sieves: Structure, Chemistry, and Use. John Wiley &Sons, New York, London, Sydney, and Toronto; 1974.
- [8] Armbruster T. Clinoptilolite-heulandite: applications and basic research. Stud Surf Sci Catal. 2001; 135:13-27.
- [9] Radosavljević-Mihajlović A. Karakterizacija i stabilnost dealuminisanih klinoptilolitskih tufova različitih ležišta. Magistarska teza, Fakultet fizičke hemije, Univerzitet u Beogradu; 2004. (in Serbian)
- [10] Radosavljević-Mihajlović A, Kašić V, Lemić J. Mineralogy and crystal chemistry of zeolitic tuffs from three deposits: Zlatokop, Beocin and Novakovici, *Bulletin of Geoinstitute* 2003; 38:149-155.
- [11] Radosavljević-Mihajlović A, Stojanović J, Kašić V. Comparative mineralogical, crystallochemical and thermal features of Serbian zeolitic tuffs rich in HEU- type minrals. *Bulletin of Geoinstitute* 2005; 40:191-200.
- [12] Barić Lj. Ferrierit aus dem Steinbruch Gotalovec in Hrvatsko Zagorje (Nordkroatien). Bull. Sci. Cons. Acad. Yougosl. 1965; A10:177- 178.
- [13] Šoufek M, Tibljaš D, Zebec V, Slavković R. First Croatian Geological Congress. Book of Abstracts. Opatija Zagreb, Hrvatska, 1995, pp.89.
- [14] Palinkaš LA, Bermanec V, Borojević Šoštarić S, Kolar Jurkovšek T, Strmić Palinkaš S, Molnar F, Kniewald G. Volcanic facies of a subaqueons basalt lava-flow complex at Hruskovec NW Croatia-Evidence of advanced rifting in the Tethyan domain, *J Volcanol Geother Res.* 2008; 178: 644-656.
- [15] Šćavničar B, Šćavničar S, Šušnjara A. Prirodoslovna istraživanja, 49, Acta Geol. 1984; 14(2):35-82.
- [16] Braun K. Prirodoslovna istraživanja, 63, Acta Geol. 1991; 21(1):1-34.
- [17] Slovenec D., Bermanec V. Sistematska mineralogija mineralogija nesilikata, Denona, Zagreb; 2003.
- [18] Tibljaš D, Jelavić S. Zeolite deposits in Croatia. *Proceedings of the 5th Serbian-Croatian-Slovenian Symposium on Zeolites*, Zlatibor, Serbia, 2013, pp. 24-27.
- [19] Đorđević D, Stojanović D. Pojave zeolita u Bosni. Zemaljski muzej BIH. Naučni skup, Sarajevo, Jugoslavija; 1988. (In Serbian)
- [20] Groves A.W. Silicate analysis. A manual for geologists and chemists with chapters on check calculations and geochemical data. 2nd edition. With a foreword by Professor A. Holmes. George Allen & Unwin Ltd. London; 1951.
- [21] Rodríguez-Carvajal J. Recent developments of the program FULLPROF. IUCr Newsletter 2001; 26:12–19.
- [22] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volometric and morphology data. *J Appl Crystallogr*. 2011; 44:1272-1276.
- [23] Protić Lj, Glamočanin D. Projekat detaljnih geoloških istraživanja ležišta tufa Novakovići kod Snjegotine, Rudarsko-Geološki Institut Prijedor, 1998. (In Serbian)
- [24] Kraus W, Nolze G. POWDER CELL a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. *J Appl Cryst*. 1996; 29:301-303.
- [25] Allieti A, Brigatti MF, Poppi L. Natural Ca-rich clinoptilolite (heulandites of groupe 3): new data and review, Neues Jahrb Mineral. 1977; 493-501.
- [26] Rabdel Ruiz-Salvador A, Rodriguez-Fuentes G, Rubayo-Soneira J. Computer simulation of the local environment around aluminum atoms in clinoptilolite. A defect calculation approach. *In: Natural Zeolites '97*. Ischia, Italy, 1997, pp. 261-263.
- [27] Koyama K, Takeuchi Y. Clinoptilolite: The distribution of potassium atoms and its role in thermal stability. Zeitschrift für Kristallographie 1977; 145:216-239.
- [28] Alberti A. The crystal structures of two clinoptilolites. *Tschermaks mineralogische und petrographische Mitteilungen* 1975; 22:25-37.
- [29] Smyth JR, Spaid AT, Bish DL. Crystal structures of a natural and a Cs-exchanged clinoptilolite. Am Mineral. 1990; 75: 522-528.
- [30] Merkle AB, Slaughter M. Determination and refinement of the structure of heulandite. Am Mineral. 1968; 53:1120-1138.
- [31] Baerlocher Ch, Meier WM, Olson DH. Atlas of zeolite farmework types. Structure Commission of International Zeolite Association, Amsterdam; 2001.
- [32] Shannon RD, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Crystall. 1969; B25:925-945.
- [33] Mumpton FA. Clinoptilolite redefined. Am Mineral. 1960; 45:351-369.
- [34] Yang P, Armbruster T. X-ray single-crystal structure refinement of NH₄-exchanged heulandite at 100 K. *Eur J Mineral*. 1998; 10:461-471.
- [35] Bish DL. Effects of exchangeable cation composition on the thermal expansion/contraction of clinoptilolite. *Clay Clay Miner*. 1984; 32: 444-452.
- [36] Bish DL. Long-term thermal stability of clinoptilolite: The development of a "B" phase. Eur J Mineral. 1990; 2:771-777.

- [37] Bish DL, Duffy CJ. Thermogravimetric analysis of Minerals. In CMS Workshop lectures, Vol. 3, Thermal Analysis in Clay Science (J. W. Stucki; D.L., Bish; F. A. Mumpton; editors). The Clay Minerals Society, 96-157. Boulder, Colorado, USA, 1990.
- [38] Armbruster T. Dehydration mechanism of clinoptilolite and heulandite: Single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at 100 K. Am Mineral 1993; 78:260-264.

SUMMARY

Mineralogy and crystallographic properties of HEU-type zeolitic tuff from the Novakovic deposit, Bosnia and Herzegovina

Ana S. Radosavljević-Mihajlović¹, Aleksandra S. Daković¹, Vladan Kašić¹, Vojislav V.Mitić², Jovica N. Stojanović¹, Miroslav D. Sokić¹, Branislav R. Marković¹

¹Institute for Technology of Nuclear and Other Mineral Raw Materials, Franchet D'Esperey 86, Belgrade, Serbia ²Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, Belgrade, Serbia; Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, Niš 18000, Serbia

(Technical paper)

This paper presents mineralogical and crystallographic characterization of the zeolitic tuff from the Novakovic deposit, Republic of Bosnia and Herzegovina. The zeolitic tuff is of a whitish color composed of Ca-clinoptilolite and an amorphous phase (volcanic glass and amorphous SiO₂). The zeolitic tuff was analyzed by X-ray diffraction of the polycrystalline sample (XRPD), scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), and differential thermal and thermogravimetric (DTA/DTG) methods. According to the results obtained, it can be concluded that the studied zeolitic tuff is composed of Heu-type minerals. Based on the chemical analysis, thermal treatment and XRPD analysis it was determined that this is a mineral Ca-clinoptilolite. Thermal analysis in the temperature range from 300 up to 700 °C showed that the examined zeolite minerals from the Novaković deposit are stable up to the temperature of 600 °C. The crystal structure of Ca-clinoptilolite has been refined in the centrosymmetric space group C2/m (S.G. 12) with disordered distribution of Al and Si in the tetrahedral framework. The unit-cell parameters are as follows: a = 17.662 Å, b = 17.874 Å, c = 7.402 Å, β = 116.32° and V = 2122.73 Å³. The basic structural motif is represented by four channels. Three channels are composed of eight-membered rings, and one of tenmembered rings. The ten-membered (channel A) and one eight-membered channel (B) are parallel to the crystallographic axis c, and the other eight-membered channel is parallel to the a-axis. Ca-clinoptilolite comprises approximately 90 % of the studied zeolite tuff while the rest 10 % is the amorphous phase. The overall cation exchange capacity (CEC) amounts to 187 mmolM⁺/ 100 g, and calcium represents the most abundant cation in the studied sample. The atomic ratios of Si/Al, $Na^+/(Na^++K^+)$, and $Ca^{2+}/(Ca^{2+}+Mg^{2+})$ are as follows: 4.36, 0.14, and 0.55, respectively. The zeolite tuff is both thermally and structurally stable and has applications in various areas of industry and agriculture.

Keywords: zeolitic tuff, X-ray powder diffraction, thermal stability, crystal structure

