

SÍLABO ANÁLISIS ESTRUCTURAL II

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VIII CURSO DE VERANO 2018-I

I. CÓDIGO DEL CURSO : 09029508040

II. CRÉDITOS : 04

III.REQUISITOS : 09027107040 Análisis Estructural I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Análisis Estructural II, pertenece al área curricular de Tecnología; es de naturaleza teórica y práctica. Su propósito es brindar al estudiante los conocimientos y métodos avanzados del análisis estructural.

El curso se desarrolla mediante las siguientes unidades de aprendizaje: I. Método de las fuerzas. II. Método de desplazamientos. III. Métodos matriciales.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Villarreal, G. (2015). Análisis Estructural 2da Edición. Perú: Gráfica Norte.
- SAP2000 (2015). *Integrated Finite Element Analysis and Design of structures*. Structural and Earthquake Engineering Software. USA: Computers and structures, Inc.

Electrónicas

 Villarreal, G. (2013). Blog de Ingeniería Estructural www.gennervillarrealcastro.blogspot.com

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: MÉTODO DE LAS FUERZAS

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos del análisis estructural para resolver armaduras y pórticos hiperestáticos por el método de las fuerzas.
- Representar gráficamente las fuerzas internas en armaduras y pórticos hiperestáticos.
- Utilizar computadoras para el cálculo estructural informático y comparar resultados con el cálculo analítico.

PRIMERA SEMANA

Primera sesión:

Grado de indeterminación del sistema. Elección del sistema principal. Sistema de ecuaciones canónicas. Diagramas finales de armaduras hiperestáticas.

Segunda sesión:

Análisis de armaduras isostáticas en 2D con el programa SAP2000 v.14

SEGUNDA SEMANA

Primera sesión:

Diagramas finales de pórticos hiperestáticos no simétricos y simétricos.

Segunda sesión:

Análisis de armaduras hiperestáticas en 2D con el programa SAP2000 v.14.

TERCERA SEMANA

Primera sesión:

Efecto de la variación de la temperatura y asentamiento o desviación de los apoyos en pórticos hiperestáticos.

Segunda sesión:

Análisis de armaduras hiperestáticas en 3D con el programa SAP2000 v.14.

CUARTA SEMANA

Primera sesión:

Práctica calificada Nº 1

Segunda sesión:

Resolución de práctica calificada Nº 1.

UNIDAD II: MÉTODO DE DESPLAZAMIENTOS

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos del análisis estructural para resolver pórticos hiperestáticos por el método de desplazamientos.
- Representar gráficamente las fuerzas internas en pórticos hiperestáticos.
- Utilizar computadoras para el cálculo estructural informático y comparar resultados con el cálculo analítico.

QUINTA SEMANA

Primera sesión:

Sistema principal. Sistema de ecuaciones. Cálculo de pórtico plano no simétrico por la forma descompuesta.

Segunda sesión:

Análisis de vigas isostáticas con el programa SAP2000 v.14.

SEXTA SEMANA

Primera sesión:

Cálculo de pórtico simétrico por la forma descompuesta.

Segunda sesión:

Análisis de vigas hiperestáticas con el programa SAP2000 v.14.

SÉPTIMA SEMANA

Primera sesión:

Práctica calificada Nº 2

Segunda sesión:

Resolución de práctica calificada Nº 2.

OCTAVA SEMANA

Examen Parcial

UNIDAD III: MÉTODOS MATRICIALES

OBJETIVOS DE APRENDIZAJE:

- Aplicar los conceptos teóricos para resolver estructuras hiperestáticas por los métodos matriciales de rigidez y flexibilidad.
- Representar gráficamente los diagramas de fuerzas internas.
- Utilizar computadoras para el cálculo estructural informático.

NOVENA SEMANA

Primera sesión:

Acción externa y su equivalencia en cargas en nudos.

Segunda sesión:

Análisis de pórticos isostáticos con el programa SAP2000 v.14.

DÉCIMA SEMANA

Primera sesión:

Formación matricial del método de rigidez.

Segunda sesión:

Análisis de de pórticos hiperestáticos con el programa SAP2000 v.14.

UNDÉCIMA SEMANA

Primera sesión:

Análisis de armaduras, vigas y pórticos hiperestáticos por el método de rigidez.

Segunda sesión:

Análisis de pórticos hiperestáticos con variación de temperatura por el programa SAP2000 v.14.

DUODECIMA SEMANA

Primera sesión:

Práctica calificada Nº 3

Segunda sesión:

Resolución de práctica calificada Nº 3

DECIMOTERCERA SEMANA

Primera sesión:

Formación matricial del método de flexibilidad.

Segunda sesión:

Análisis de pórticos hiperestáticos con asentamiento o desviación en los apoyos por el programa SAP2000 v.14.

DECIMOCUARTA SEMANA

Primera sesión:

Análisis de armaduras, vigas y pórticos hiperestáticos por el método de flexibilidad.

Segunda sesión:

Análisis de placas y losas con el programa SAP2000 v.14.

DECIMOQUINTA SEMANA

Primera sesión:

Práctica calificada Nº 4.

Segunda sesión:

Resolución de práctica calificada Nº 4.

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y para cada alumno, ecran y proyector de multimedia

Materiales: Texto base, separata, aplicaciones multimedia y software SAP2000 v.14.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2*PE+EP+EF)/4 PE= ((P1+P2+P3+P4-MN)/3 + W1)/2

PF = Promedio Final

PE = Promedio de evaluaciones

EP = Examen parcial EF = Examen final

P1...P4 = Prácticas Calificadas

MN = Menor nota de prácticas calificadas

W1 = Trabajo 1

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	K
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas y restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad.	R
(d)	Trabajar adecuadamente en un equipo multidisciplinario.	
(c)	Identificar, formular y resolver problemas de ingeniería	K
(d)	Comprensión de lo que es la responsabilidad ética y profesional.	
(f)	Comunicarse, con su entorno, en forma efectiva.	
(g)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contexto global, económico, ambiental y social.	
(h)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.	
(i)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil	
(j)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines	K

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase: Teoría Práctica Laboratorio
3 2 0

b) Sesiones por semana: Dos sesiones.

c) **Duración**: 5 horas académicas de 45 minutos

XIV JEFE DE CURSO

Ing. Marlon Cubas Armas

XV. FECHA:

La Molina, enero de 2018.