PAT-NO:

JP02002222934A

DOCUMENT-

JP 2002222934 A

IDENTIFIER:

TITLE:

SEMICONDUCTOR DEVICE AND MANUFACTURING

METHOD THEREOF

PUBN-DATE:

August 9, 2002

INVENTOR-INFORMATION:

NAME

COUNTRY

IIZUKA, TOSHIHIRO N/A YAMAMOTO, ASAE N/A

ASSIGNEE-INFORMATION:

NAME

COUNTRY

NEC CORP N/A

APPL-NO:

JP2001020514

APPL-DATE: January 29, 2001

INT-CL (IPC): H01L027/108, H01L021/8242

ABSTRACT:

PROBLEM TO BE SOLVED: To reduce the temperature dependency of the leakage current of the capacitor of a semiconductor device which has a MIM structure, and further, to improve the reliability of the semiconductor device.

SOLUTION: In the manufacturing method of the semiconductor device, the film of a barrier insulation layer 6 is so formed by an atomic-layer chemical vaporphase epitaxy method as to be deposited on a lower electrode 5 of its capacitor

and on its interlayer insulation film 3, and a high-dielectric-constant film 7 is so deposited on the barrier insulation layer 6 as to form a capacitor insulation film 8. Also, a barrier insulation layer is further formed on the high- dielectric-constant film. In this way, an upper electrode 9 covering the capacitor insulation film 8 is so provided as to manufacture its capacitor having a MIM structure. Hereupon, the flow of the electrons in the film of the barrier insulation layer 6 is subjected to a Fowler-Nordheim(F-N) tunnel-current mechanism or a direct tunnel-current mechanism.

COPYRIGHT: (C)2002,JPO

(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-222934 (P2002-222934A)

(43)公開日 平成14年8月9日(2002.8.9)

(51) Int.Cl.7

微別記号

FΙ

テーマコート*(参考)

HO1L 27/108 21/8242 H01L 27/10

621B 5F083

621C

審査請求 未請求 請求項の数12 OL (全 12 頁)

(21)出願番号

特願2001-20514(P2001-20514)

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(22)出願日 平成13年1月29日(2001.1.29)

(72)発明者 飯塚 敏洋

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 山本 朝恵

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100082935

弁理士 京本 直樹 (外2名)

最終頁に続く

(54) 【発明の名称】 半導体装置およびその製造方法

(57)【要約】

【課題】MIM構造のキャパシタのリーク電流の温度依 存性を小さくし、更にその信頼性を向上させる。

【解決手段】キャパシタの下部電極5、層間絶縁膜3に 被着するようにバリア絶縁層6を原子層化学気相成長法 で成膜し、バリア絶縁層6に高誘電率膜7を被着させ容 量絶縁膜8を形成する。また、高誘電率膜上に更にバリ ア絶縁層を形成する。このようにして、容量絶縁膜8を 被覆する上部電極9を設けMIM構造のキャパシタを製 造する。ここで、バリア絶縁層6の膜中の電子の流れ は、Fowler Nordheim(F-N)トンネ ル電流あるいは直接トンネル電流機構となる。

【特許請求の範囲】

【請求項1】 半導体基板上に下部電極、容量絶縁膜および上部電極を順次積層して形成したキャパシタを有し、前記下部電極と上部電極とは金属膜で構成され、前記容量絶縁膜は第1の誘電体膜と第2の誘電体膜の積層膜で構成され、前記第1の誘電体膜は前記下部電極あるいは上部電極と前記第2の誘電体膜との間に介在し、前記第1の誘電体膜中の電子の流れがFowler Nordheim(F-N)トンネル電流機構あるいは直接トンネル電流機構となることを特徴とする半導体装置。【請求項2】 前記第1の誘電体膜はアルミナ膜であることを特徴とする請求項1記載の半導体装置。

【請求項3】 前記第2の誘電体膜が金属酸化膜で構成されていることを特徴とする請求項1または請求項2記載の半導体装置。

【請求項4】 前記金属酸化膜はTa2 O5 膜、ZrO2 膜、HfO2 膜、SrTiO3 膜、(Ba, Sr) TiO3 膜あるいはPb(Zr, Ti)O3 膜であることを特徴とする請求項3記載の半導体装置。

【請求項5】 半導体基板上にキャパシタの下部電極を 金属膜で形成し原子層化学気相成長(ALCVD)法で もって前記下部電極を被覆する容量絶縁膜を形成する工 程と、前記容量絶縁膜上にキャパシタの上部電極を形成 する工程と、を含むことを特徴とする半導体装置の製造 方法。

【請求項6】 前記容量絶縁膜は第1の誘電体膜と第2の誘電体膜の積層膜で構成され、原子層化学気相成長(ALCVD)法でもって前記第1の誘電体膜を前記下部電極上あるいは前記第2の誘電体膜上に被着させることを特徴とする請求項5記載の半導体装置の製造方法。 【請求項7】 前記第1の誘電体膜はアルミナ膜であり、前記第2の誘電体膜は金属酸化膜で構成されることを特徴とする請求項6記載の半導体装置の製造方法。

【請求項8】 前記金属酸化膜はTa2 O5 膜、ZrO2 膜、HfO2 膜、SrTiO3 膜、(Ba, Sr) TiO3 膜あるいはPb(Zr, Ti)O3 膜であることを特徴とする請求項7記載の半導体装置。

【請求項9】 前記第1の誘電体膜を被着させる工程において、トリメチルアルミニウム(TMA)と酸化ガスとを反応ガスとした原子層化学気相成長(ALCVD)法でアルミナ膜を形成することを特徴とする請求項6、請求項7または請求項8記載の半導体装置の製造方法。 【請求項10】 前記容量絶縁膜はTa2 O5 膜、ZrO2 膜、HfO2 膜、SrTiO3 膜、(Ba, Sr)TiO3 膜またはPb(Zr, Ti)O3 膜であることを特徴とする請求項5記載の半導体装置の製造方法。

【請求項11】 前記金属膜は金属酸化物あるいは金属 窒化物で構成されることを特徴とする請求項5から請求 項10のうち1つの請求項に記載の半導体装置の製造方 法。 【請求項12】 前記金属酸化物、金属窒化物は、Ru O2、IrO2、TiN、TaNあるいはWNであることを特徴とする請求項11記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は半導体装置およびその製造方法に関し、特に半導体装置のキャパシタ構造と その形成方法に関する。

10 [0002]

【従来の技術】半導体デバイスの中で記憶情報の任意な 入出力が可能なものにDRAMがある。このようなメモ リーデバイスであるDRAMのメモリーセルは、1個の トランスファトランジスタと、1個のキャパシタとから なるものが構造的に簡単であり、半導体装置の高集積化 に最も適するものとして広く用いられている。

【0003】また、最近の半導体デバイスではシステム LSIが重要になってきている。このような半導体装置 では、ロジック回路とメモリー回路とが半導体チップに 搭載されたロジック混載メモリーデバイス、ロジック回 路とアナログ回路混載のアナログ混載ロジックデバイス 等、種々の混載デバイスが開発検討されている。このよ うな混載デバイスにおいても、メモリーセルは上述した ように、1個のトランスファトランジスタと1個のキャ パシタとから構成される。

【0004】このようなメモリーセルのキャパシタでは、半導体デバイスの更なる高集積化に伴い、3次元構造のものが開発され使用されてきている。このキャパシタの3次元化は次のような理由による。すなわち、半導体素子の微細化及び高密度化に伴いキャパシタの占有面積の縮小化が必須となっている。しかし、半導体デバイスのメモリー部の安定動作及び信頼性確保のためには、一定以上の容量値が必要とされる。そこで、キャパシタの電極を平面構造から3次元構造に変えて、縮小した占有面積の中でキャパシタ電極の表面積を拡大することが必要となる。

【0005】このメモリーセルの3次元構造のキャパシタにはスタック構造のものとトレンチ構造のものとがある。これらの構造にはそれぞれ一長一短があるが、スタック構造のものはアルファー線の入射あるいは回路等からのノイズに対する耐性が高く、比較的に容量値の小さい場合でも安定動作する。このために、半導体素子の設計基準が0.10μm程度となる半導体デバイスにおいても、スタック構造のキャパシタは有効であると考えられている。

【0006】そして、最近では、このスタック構造のキャパシタ(以下、スタック型のキャパシタと呼称する)の場合、微少な面積領域に所定の容量値を確保するために非常に高い誘電率を有する誘電体膜(容量絶縁膜)が 50 必要になってきている。そこで、このような高誘電率膜

として、五酸化タンタル (Taz Os) 膜、SrTiO 3 (以下、STO膜という)、(Ba, Sr) TiO3 (以下、BST膜という)、Pb(Zr, Ti)O3 (以下、PZT膜という)などの絶縁材料が精力的に検 討されている。更には、スタック型のキャパシタの下部 電極として新しい導電体材料が必要になってきている。 これは、上記のような高誘電率の絶縁材料と下部電極と の適切な組み合わせを通して、キャパシタの高い信頼性 を確保するためである。例えば、1994年 インター ナショナル エレクトロン デバイス ミーティング (International Electron D evices Meeting)のダイジェスト オブ テクニカル ペーパー (Digest of Tec hnical Papers)831~834頁に示さ れているように、容量絶縁膜にSTO膜が使用され下部 電極に二酸化ルテニウム (RuO2)の導電体材料が適 用されている。同様なキャパシタ構造については、例え ば特開2000-114482号公報に記載されてい

【0007】以下、図11を参照して従来の高誘電率膜 20 で構成されるスタック型のキャパシタの構造について説 明する。ここで、図11(a)は模式化したスタック型 のキャパシタの平面図であり、簡単化のため下部電極と 容量絶縁膜と上部電極とが示されている。図11(b) は、図11(a)に記すX-Yでの断面図である。

【0008】以下、図11(a)と図11(b)とを一 緒にして説明する。図11(b)に示すように、導電型 がP型のシリコン基板101表面の所定の領域に導電型 がN型の拡散層102が形成され、シリコン基板101 上の層間絶縁膜103の一部が開口されプラグ104が 30 形成されている。そして、下部電極105が直接に層間 絶縁膜103に被着するように形成されている。ここ で、下部電極105と拡散層102とはプラグ104で 電気接続される。

【0009】そして、図11(a)および図11(b) に示すように、下部電極105の側面および上面、さら に層間絶縁膜103上に容量絶縁膜106が形成され る。ここで、下部電極105は二酸化ルテニウムの金属 膜で構成され、容量絶縁膜106は、例えばTa2 O5 膜、STO膜等で構成される。そして、全体を被覆する ように上部電極107が形成される。なお、この上部電 極107も下部電極と同様な金属膜で構成される。

[0010]

【発明が解決しようとする課題】本発明者は、上述した ような高誘電率材料を容量絶縁膜とするMIM(Met al/Insulator/Metal) 構造のキャパ シタについて詳細に検討した.

【0011】その結果、金属酸化物である、五酸化タン タル (Ta₂ O₅)、二酸化ジリコニウム (ZrO

iO₃)膜、BST((Ba, Sr)TiO₃)膜ある いはPZT (Pb (Zr, Ti) O3) 膜、を上記の容 **量絶縁膜とすると、容量絶縁膜中のリーク電流は、測定** 温度が高くなるに従い増大することが判明した。

【0012】このようなリーク電流の測定温度依存性の 概略を図12に従って説明する。ここで、図12に示す 特性は、上述したM I M構造のキャパシタのものであ る。なお、容量絶縁膜はSTO膜の場合である。また、 下部電極-上部電極間に印加する電圧は+1V/-1V 10 の場合である。

【0013】図12では、横軸に測定温度を絶対温度に しその逆数 (1/T) をとっている。そして、容量(絶 緑) 膜中のリーク電流Jを対数表示にとっている。図1 2に示すように、容量膜中のリーク電流 J/T² は、1 /Tの増加と共にほぼ比例して減少する。 これは、 容量 膜中のリーク電流」が、キャパシタ電極である下部電極 あるいは上部電極から容量絶縁膜への電子の熱放出に律 速されることを示している。このように従来の技術で は、容量膜中のリーク電流」は、測定温度の増加と共に 急激に増大するようになる。このリーク電流の温度依存 性は上記印加電圧に依存するが、いずれにしても、この リーク電流は測定温度の増加に伴い増大するようにな る.

【0014】半導体デバイスの動作においては、動作温 度は150℃程度まで保証することが必要である。特 に、ロジック混載メモリーデバイスでは、上述したMI M構造のキャパシタにおいて、動作温度が高くなっても 容量絶縁膜中のリーク電流の増加を抑制することが強く 要求される。このデバイスでは、リーク電流の増加がそ の動作に大きく影響するからである。

【0015】本発明の主目的は、MIM構造のキャパシ タのリーク電流の温度依存性を小さくし、更にその信頼 性を向上させることにある。また、本発明の他の目的 は、高誘電率である金属酸化物の材料を容量絶縁膜とす るキャパシタにおいて、簡便な手法でもってその容量値 を向上させることにある。

[0016]

【課題を解決するための手段】このために本発明の半導 体装置では、半導体基板上に下部電極、容量絶縁膜およ び上部電極を順次積層して形成したキャパシタを有し、 前記下部電極と上部電極とは金属膜で構成され、前記容 量絶縁膜は第1の誘電体膜と第2の誘電体膜の積層膜で 構成されている。ここで、前記第1の誘電体膜は前記下 部電極あるいは上部電極と前記第2の誘電体膜との間に 介在し、前記第1の誘電体膜中の電子の流れがFow 1 er Nordheim (F-N) トンネル電流機構あ るいは直接トンネル電流機構となる。このような第1の 誘電体膜としてはアルミナ膜が用いられる。

【0017】このようなMIM構造のキャパシタにする 2)、二酸化ハフニウム (HfO2)、STO (SrT 50 ことで、このキャパシタ使用時での容量絶縁膜中のリー ク電流の温度依存性は皆無になる。そして、このMIM 構造のキャパシタを有する半導体装置の動作が非常に安 定するようになる。

【0018】そして、本発明の半導体装置では、前記第 2の誘電体膜は、Ta2 O5 膜、ZrO2 膜、HfO2 膜、SrTiO3 膜、(Ba, Sr) TiO3 膜あるい はPb(Zr, Ti)O3膜の金属酸化膜で構成されて いる。

【0019】また、本発明の半導体装置の製造方法は、 半導体基板上にキャパシタの下部電極を金属膜で形成し 原子層化学気相成長(ALCVD)法でもって前記下部 電極を被覆する容量絶縁膜を形成する工程と、前記容量 絶縁膜上にキャパシタの上部電極を形成する工程とを含 む。この容量絶縁膜は、Ta2 O5 膜、ZrO2 膜、H fO2 膜、SrTiO3 膜、(Ba, Sr) TiO3 膜 あるいはPb(Zr, Ti)Os 膜である。

【0020】あるいは、本発明の半導体装置の製造方法 では、前記容量絶縁膜は第1の誘電体膜と第2の誘電体 膜の積層膜で構成され、原子層化学気相成長(ALCV D) 法でもって前記第1の誘電体膜を前記下部電極上あ るいは前記第2の誘電体膜上に被着させる。ここで、前 記第1の誘電体膜はアルミナ膜であり、前記第2の誘電 体膜は金属酸化膜で構成される。そして、前記金属酸化 膜は、Ta2 O5 膜、ZrO2 膜、HfO2 膜、SrT iO₃ 膜、(Ba, Sr) TiO₃ 膜あるいはPb (Z r, Ti)O3 膜である。

【0021】上述したようなALCVD法で容量絶縁膜 を成膜すると、それぞれの組成の制御が非常に向上す る。また、この方法であると、成膜の段差被覆性が非常 に高くなり、絶縁性に優れた高品質の容量絶縁膜が容易 に形成できる。そして、この方法で形成する金属酸化膜 では酸素欠損の問題が解消するようになり、その後の酸 素雰囲気での高誘電率膜の熱処理工程が不要になる。こ のようにして、信頼性が高くしかも容量値の高いキャパ シタが容易に製造できるようになる。

【0022】あるいは、本発明の半導体装置の製造方法 では、前記第1の誘電体膜を被着させる工程において、 トリメチルアルミニウム(TMA)と酸化ガスとを反応 ガスとした原子層化学気相成長(ALCVD)法でアル ミナ膜を形成する。

【0023】そして、本発明の半導体装置の製造方法で は、前記金属膜は金属酸化物あるいは金属窒化物で構成 される。前記金属酸化物、金属窒化物は、RuOz、I rO2、TiN、TaNあるいはWNである。

【0024】このようにすると、下部電極と第1の誘電 体膜あるいは容量絶縁膜との密着性が非常に向上する。 また、半導体装置を構成する層間絶縁膜と第1の誘電体 膜あるいは容量絶縁膜との密着性も大幅に向上し、高品 質のキャパシタが形成できるようになる。

うな高誘電率材料を容量絶縁膜に用いるMIM構造のキ ャパシタにおいて、下部電極あるいは上部電極と高誘電 率材料との間に膜中の電子の流れがFowler No rdheim (F-N) トンネル電流機構あるいは直接 トンネル電流機構となる絶縁膜を介在させる。ここで、 上記容量絶縁膜を原子層化学気相成長(ALCVD)法 で形成する。

【0026】このために、本発明では、MIM構造のキ ャパシタを搭載した半導体装置の動作が非常に安定する ようになる。また、上記電極あるいは層間絶縁膜から容 量絶縁膜がはがれるようなことは皆無になり、高品質の 半導体装置が製造できるようになる。

[0027]

【発明の実施の形態】次に、本発明の第1の実施の形態 について図1万至図5で説明する。この第1の実施の形 態でもって本発明の構成の特徴を説明する。ここで、図 1乃至図3は、本発明のスタック型のキャパシタの平面 図とその断面図である。図1 (a)は模式化したスタッ ク型のキャパシタの平面図であり、簡単化のため下部電 極と容量絶縁膜と上部電極とが示されている。図1

(b)は、図1(a)に記すA-Bでの断面図である。 そして、図2と図3は上記キャパシタの一部の拡大図と なっている。また、図4と図5では、本発明でのキャパ シタの容量絶縁膜の形成方法を示す。

【0028】以下、図1 (a)と図1 (b)とを一緒に して説明する。従来の技術で説明したのと同様に、導電 型がP型のシリコン基板1表面の所定の領域に導電型が N型の拡散層2が形成され、シリコン基板1上の層間絶 緑膜3の一部が開口されプラグ4が形成されている。そ して、下部電極5が直接に層間絶縁膜3に被着するよう に形成され、下部電極5と拡散層2とはプラグ4で電気 接続される。ここで、層間絶縁膜はシリコン酸化膜で構 成され、プラグ4は窒化チタン(TiN)のバリア膜と タングステンとで構成され、下部電極5は二酸化ルテニ ウムの金属膜で構成される.

【0029】そして、層間絶縁膜3表面および下部電極 5表面に第1の誘電体膜として極薄のバリア絶縁層6が 被着される。ここで、このバリア絶縁層6として、膜厚 が1 nm~5 nmのアルミナ膜が用いられている。この アルミナ膜の比誘電率は10程度である。この場合の膜 中の電流は、Fowler Nordheim (F-N)トンネル電流あるいは直接トンネル電流機構とな

【0030】そして、第2の誘電体膜として、バリア絶 緑層6に被着する高誘電率膜7が形成される。このバリ ア絶縁層6と高誘電率膜7とが容量絶縁膜8を構成する ことになる。ここで、高誘電率膜7は膜厚10nm程度 の五酸化タンタル (Ta2 O5) である。この五酸化タ ンタル膜の比誘電率は25程度になる。

【0025】このように、本発明では、金属酸化膜のよ 50 【0031】そして、全体を被覆するように上部電極7

が形成される。なお、この上部電極7もタングステン等 の金属膜で構成される。このようにして、MIM構造の キャパシタが形成されている。

【0032】次に、図1(b)に示す点線円10部位と 点線円11部位を拡大して本発明の特徴を更に説明す る。図2(a)が点線円10部位を拡大した断面図であ り、図2(b)が点線円11部位を拡大した断面図であ

【0033】図2(a)に示すように、下部電極5上に 積層してバリア絶縁層6と高誘電率膜7とが形成され、 上記高誘電率膜7表面に上部電極9が形成される。ここ で、下部電極5および上部電極9は金属膜であるが、下 部電極5はRuOz 膜の他にIrOz 膜、RuOz 膜/ Ru膜(Ru膜上にRuO2 膜を堆積した積層膜)、I rO2 膜/Ir膜でもよい。あるいは、下部電極5とし てTiN膜、TaN膜、WN膜を用いてもよい。更に は、TiN膜、TaN膜でその表面をコーティングした 金属膜でもよい。そして、上部電極9には、上記金属膜 の他にタングステン等の高融点金属を用いてもよい。

【0034】また、バリア絶縁層6は、上述したように 20 F-Nトンネル電流あるいは直接トンネル電流機構を有 する絶縁膜である。このバリア絶縁層6としてシリコン オキシナイトライド (SiON) 膜でもよい。ここで、 上述したような下部電極5とバリア絶縁層6との密着性 が高くなるような材料が用いられる。そして、高誘電率 膜7としては、Ta2 O5 膜の他に、二酸化ジルコニウ ム (ZrO₂)、二酸化ハフニウム (HfO₂)、ST O(SrTiO3)膜、BST((Ba, Sr)TiO 3) 膜あるいはPZT(Pb(Zr, Ti)O3) 膜等 の金属酸化膜を用いる。

【0035】また、図2(b)に示すように、層間絶縁 膜3上に積層してバリア絶縁層6と高誘電率膜7とが形 成され、上記高誘電率膜7表面に上部電極9が形成され る。ここで、層間絶縁膜3は、二酸化シリコン膜の他に Si-〇結合ベースの絶縁膜であってもよい。そのよう な絶縁膜としては、シルセスキオキサン類であるハイド ロゲンシルセスキオキサン (Hydrogen Silsesquioxan e)、メチルシルセスキオキサン (Methyl Silsesquiox ane)、メチレーテッドハイドロゲンシルセスキオキサ ン (Methylated Hydrogen Silsesquioxane) あるいはフ ルオリネーテッドシルセスキオキサン (Furuorinated Silsesquioxane) のような低誘電率膜がある。

【0036】ここで、重要なことは、バリア絶縁層6と して上述したような層間絶縁膜3との密着性が高くなる ような材料を用いることである。上述したアルミナ膜と 上記層間絶縁膜との密着性は非常に高い。

【0037】本発明における容量絶緑膜の別の構成につ いて、図3に基づいて説明する。図3も、図1に示すよ うなMIM構造のキャパシタでの図2と同様に拡大した 断面図である。図3(a)では、下部電極5表面に被給 50 をチャンバー内にパルス形態で導入する。この酸素ガス

して高誘電率膜7が形成される。そして、この高誘電率 膜7表面にバリア絶縁層6 aが形成され、このバリア絶 緑層6a上に上部電極9が形成される。

8

【0038】また、図3(b)では、下部電極5表面に 被着してバリア絶縁層6が形成され、バリア絶縁層6上 に高誘電率膜7とバリア絶縁層6aが積層して形成され る。そして、このバリア絶縁層6a上に上部電極9が形 成される.

【0039】上記のようなMIM構造のキャパシタにお いて、下部電極5、バリア絶縁層6,6a、高誘電率膜 7および上部電極9の材料は、図2(a)で説明したも のと同じである。

【0040】次に、図1で説明したMIM構造のキャパ シタを構成するバリア絶縁層6と高誘電率膜7の形成方 法について、図4と図5に基づいて説明する。

【0041】図4(a)は、層間絶縁膜3表面および下 部電極5表面にバリア絶縁層6を形成した後の断面図で ある。ここで、このバリア絶縁層6は、原子層化学気相 成長(ALCVD; Atomic Layer Che mical Vapor Deposition)法で 形成する。この場合の装置としては、マルチチャンバー 成膜装置を用いる。ALCVDでの成膜においては、チ ャンバー (反応室) 内には反応ガスをパルス状にしかも 断続的に導入する。このような反応ガスの導入のガスシ ーケンスを図4(b)に示す。なお、成膜する半導体ウ ェーハは、チャンバー内で温度が200℃~350℃の 基板上に載置されている。

【0042】図4(b)に示すように、チャンバー内に 雰囲気ガスを導入し、チャンパー内のガス圧力を100 30 Pa程度にする。ここで、雰囲気ガスとしては窒素ガ ス、アルゴン等の不活性ガスを用いる。そして、TMA (トリメチルアルミニウム) ガスをパルス形態にチャン バー内に導入する。このTMAガスのパルス状の断続的 な導入で、層間絶縁膜3表面および下部電極5表面にT MAあるいはその活性種を化学吸着させる。ここでの化 学吸着は一原子層である。

【0043】ここで、TMAのアルミ原子は酸素原子あ るいは窒素原子と結合して化学吸着する。このために、 下部電極5としては図2(a)のところで説明したよう な金属酸化物あるいは金属窒化物で導電性のある金属膜 を用いる必要がある。また、層間絶縁膜3はシリコン酸 化膜系の絶縁膜であるので、TMAは容易にその表面に も化学吸着するようになる.

【0044】次に、図4(b)に示すように、TMAガ スを遮断しパージガスをパルス形態でチャンバー内に導 入し、チャンバー内のTMAガスを排気し除去する。こ こで、パージガスとしては、窒素ガス、アルゴンガス、 ヘリウムガスを用いる.

【0045】そして、パージガスを遮断して、酸化ガス

は、層間絶縁膜3表面および下部電極5表面に吸着した 上記TMAあるいはその活性種と熱反応し原子層レベル のアルミナ膜を成膜させることになる。なお、酸化ガス としてはオゾン(O3)を用いる。そして、再びパージ ガスをパルス形態でチャンバー内に導入する。

9

【0046】上述したようなTMAあるいはその活性種 の吸着とその酸化とを単位サイクルとして原子層レベル のアルミナ膜を形成し、このサイクルを繰り返してバリ ア絶縁層6の膜厚を制御する。ここで、単位サイクルは 1 秒程度であり、上記原子層レベルのアルミナ膜の膜厚 は0.1~0.2 n m である。そこで、上述したALC VD法において、上記10サイクルあるいは20サイク ル繰り返す。このようにして、膜厚が1 nm~5 nmの アルミナ膜を形成しバリア絶縁層6とする。

【0047】このALCVD法での基板の温度の設定は 重要である。下部電極5を酸化させないことが必要にな るからである。RuOz 膜のように導電性のある金属酸 化物では問題が生じないが、TiN膜、TaN膜のよう な金属窒化物ではその酸化を防止する必要がある。ここ で、TiN膜の酸化は450℃以上、TaN膜の酸化は 20 500℃以上でそれぞれ起こる。そこで、ALCVD法 での基板温度は400℃以下に設定するとよい。

【0048】上述したようなALCVD法により、層間 絶縁膜3表面および下部電極5表面に対して非常に高い 密着性を有するバリア絶縁層6が形成できるようにな

【0049】次に、上述したバリア絶縁層6上に高誘電 率膜7を形成する。図5(a)は、層間絶縁膜3表面お よび下部電極5表面上のバリア絶縁層6表面に被着する ように高誘電率膜7を成膜した後の断面図である。

【0050】ここで、この高誘電率膜7を上述したAL CVD法で形成する場合を説明する。この場合に、上述 したマルチチャンバー成膜装置のうち別のチャンバー (反応室) 内に反応ガスをパルス状にしかも断続的に導 入する。このような反応ガスの導入のガスシーケンスを 図5(b)に示している。なお、この場合も成膜する半 導体ウェーハは、上記チャンバー内で温度が200℃~ 350℃の基板上に載置されている。

【0051】図5(b)に示すように、チャンバー内に 雰囲気ガスを導入し、チャンバー内のガス圧力を200 40 Pa程度にする。そして、ソースガスとして四塩化タン タル(TaC 14)ガスをパルス形態にチャンバー内に 導入する。このソースガスのパルス状の断続的な導入 で、バリア絶縁層6表面にTa原子あるいはタンタルの 塩化物を化学吸着させる。ここでの化学吸着は一原子層 あるいは数原子層である。ここで、Ta原子は酸素に対 して化学吸着するために、バリア絶縁層 6表面に容易に 化学吸着する.

【0052】次に、図5(b)に示すように、ソースガ スを遮断しパージガスをパルス形態でチャンバー内に導 50 層間絶縁膜31を積層して堆積させる。ここで、エッチ

入し、チャンバー内のソースガスを排気し除去する。そ して、パージガスを遮断して、酸化ガスをチャンバー内 にパルス形態で導入する。この酸化ガスは、上記吸着し たTa原子と熱反応し原子層レベルの五酸化タンタル膜 を成膜させることになる。なお、酸化ガスとしては水 (H2 O)、オゾン等を用いる。そして、再びパージガ スをパルス形態でチャンバー内に導入する。上述したよ うなTa原子の吸着とその酸化とを単位サイクルとして 原子層レベルあるいは数原子層レベルの酸化タンタルを 形成し、このサイクルを繰り返して高誘電率膜7の膜厚 を制御する。ここで、五酸化タンタル膜の成膜速度は5 nm/min程度である。このために、膜厚が10nm の五酸化タンタル膜を形成する場合には、成膜時間は2 min程度となる。

【0053】上述したようなALCVD法でバリア絶縁 層6と高誘電率膜7を成膜すると、それぞれの組成の制 御が非常に向上する。また、この方法であると、成膜の 段差被覆性が非常に高くなり、絶縁性に優れた高品質の 容量絶縁膜が容易に形成できる。そして、この方法で形 成する高誘電率膜では酸素欠損の問題が解消するように なり、その後の酸素雰囲気での高誘電率膜の熱処理工程 が不要になる。上記の効果は、高誘電率膜が五酸化タン タル膜の場合に限らず、図2の説明の中で示した金属酸 化膜の場合にも同様に生じる。

【0054】次に、本発明の第2の実施の形態について 図6と図7を参照して説明する。この実施の形態は、

O. 10μmの設計基準で製造するロジックデバイスに MIM構造のキャパシタが形成される場合である。ここ で、本発明の容量絶縁膜中のリーク電流において生じる 30 効果を具体的に示す。

【0055】図6(a)に示すように、導電型がP型の シリコン基板21表面に素子分離領域22をSTI(S hallow Trench Isolation)法 で形成する。そして、シリコン基板21上にゲート絶縁 膜を介して多結晶シリコン層23を形成し、この多結晶 シリコン層23の側壁に公知の方法でサイドウォール絶 緑膜24を形成する。

【0056】そして、導電型がN型のソース・ドレイン 拡散層25をイオン注入と熱処理とで形成する. 更にサ リサイド技術で多結晶シリコン層23の表面とソース・ ドレイン拡散層25の表面に選択的にシリサイド層26 を形成する。ここで、シリサイド層26はコバルトシリ サイドで形成される。

【0057】次に、シリコン窒化膜で保護絶縁膜27を 形成し、シリコン酸化膜で第1層間絶縁膜28を積層し て形成する。そして、第1層間絶縁膜28の所定の領域 を開口しプラグ29を形成する。ここで、プラグ29は タングステンで構成される.

【0058】次に、エッチングストッパー層30と第2

11 ングストッパー層30は薄いシリコン窒化膜であり、第 2層間絶縁膜31はシリコン酸化膜である。

【0059】この第2層間絶縁膜31の所定の領域を反 応性イオンエッチング (RIE)でドライエッチングし 容量用開孔32を形成する。ここで、エッチングストッ パー層30は、上記RIEにおけるドライエッチングか らプラグ29を保護する。そして、続くドライエッチン グでエッチングストッパー層30を選択的に除去して上 記容量用開孔32は形成される。

【0060】次に、図6(b)に示すように、容量用開 10 孔32の内面に沿って下部電極33を形成する。この下 部電極33はプラグ29と接続している。ここで、下部 電極33は膜厚が20nm程度のTiN膜で構成され る。

【0061】次に、図7(a)に示すように、下部電極 33および第2層間絶縁膜31表面に、第1の実施の形 態で説明したように、バリア絶縁層34を膜厚2nmの アルミナ膜で形成し、更に、高誘電率膜35を膜厚10 nmの五酸化タンタルで形成する。

【0062】次に、図7(b)に示すように、高誘電率 膜35上にバリア導電層36とタングステン膜37を形 成し、公知のフォトリソグラフィ技術とドライエッチン グ技術とでパターニングし上部電極38とする。このよ うにして、MIM構造のキャパシタの基本構造が完成す る。

【0063】このようにして形成したMIM構造のキャ パシタのリーク電流について詳細に調べた。その結果を 図8で説明する。ここで、図8では、横軸に下部電極3 3と上部電極38間に印加する電圧をとっている。具体 的には、ソース・ドレイン拡散層25およびシリコン基 30 に、金属の酸窒化物、炭化物等がある。 板21を接地電位にし、上部電極38に正負の電圧を印 加している。そして、縦軸に容量(絶縁)膜中のリーク 電流Jをとっている。また、測定温度をパラメーターと して室温(25℃)、85℃、125℃にしている。

【0064】図8から判るように、本発明では、容量膜 中のリーク電流は全く測定温度に依存しなくなる。これ は、バリア絶縁層34中を流れる電流に温度依存性が全 く無くなるからである。ここで、バリア絶縁層34中の 電子の流れは、FowlerNordheim (F-N)トンネル電流あるいは直接トンネル電流機構にな る。

【0065】比較として、従来のMIM構造のキャパシ タの場合について説明する。従来の技術の構造は図9に 示している。ここで、下部電極33上に高誘電率膜35 を被着させる他は、第2の実施の形態で説明したのと同 じ構成である。すなわち、下部電極33上に高誘電率膜 35が膜厚10nmの五酸化タンタルで形成され、高誘 電率膜35上にバリア導電層36とタングステン膜37 とで上部電極38が形成されている。

【0066】このようにして形成したMIM構造のキャ 50 3)膜で100、BST((Ba, Sr)TiO3)膜

パシタのリーク電流の結果を図10で説明する。ここ で、図10では、横軸に下部電極33と上部電極38間 に印加する電圧をとり、縦軸に容量(絶縁)膜中のリー ク電流Jをとっている。また、測定温度をパラメーター として室温(25℃)、85℃、125℃にしている。 図10から判るように、従来の構造では、容量膜中のリ ーク電流は測定温度に大きく依存する。すなわち、測定 温度が上がるとリーク電流が増大するようになる。これ は、図12に説明した特性の具体例となっている。

【0067】第2の実施の形態では、バリア絶縁層34 が下部電極33表面に形成される場合について説明して いるが、第1の実施の形態で図3に基づいて説明したの と同様に、バリア絶縁層が高誘電率膜と上部電極間に介 在する場合、あるいは、バリア絶縁層が下部電極と高誘 電率膜間および上部電極と高誘電率膜間に介在する場合 でも、容量絶縁膜中のリーク電流の温度依存性は消滅す る。

【0068】以上の実施の形態においては、下部電極あ るいは上部電極に用いる金属膜として、オスミウム(O s)もしくはその酸化物あるいはレニウム(Re)、白 金(Pt)、パラジウム(Pd)、ロジウム(Rh)を 用いてもよい。しかし、上述したALCVD法でバリア 絶縁層を形成する場合には、上記レニウム、白金、パラ ジウム、ロジウム等の金属膜の表面に酸素あるいは水酸 基を吸着させておく必要がある。また金属膜としては、 チタン(Ti)、タンタル(Ta)、ルテニウム(R u)、イリジウム(Ir)を用いてもよい。更には、導 電性のある金属化合物を用いてもよい。このような金属 化合物としては、上述した金属酸化物、金属窒化物の他

【0069】あるいは、下部電極あるいは上部電極を構 成する金属膜として、異種の金属膜を積層して用いても よい。

【0070】また、上記の実施の形態では、バリア絶縁 層としてアルミナ膜、SiON膜について説明したが、 バリア絶縁層はF-Nトンネル電流あるいは直接トンネ ル電流機構を有する絶縁膜であればよい。

【0071】また、上記の実施の形態では、ALCVD 法で五酸化タンタル膜を形成する場合について詳述し た。このALCVD法で高誘電率膜である二酸化ジリコ ニウム (ZrO2)、二酸化ハフニウム (HfO2)、 STO(SrTiO3)膜、BST((Ba, Sr)T iO3) 膜を成膜する場合には、図5(b)に示したソ ースガスとして、それぞれ、塩化ジルコニウムあるいは 乙rのアルコラート、塩化ハフニウム、ストロンチウム DRM、バリウムDRM、塩化チタンを用いるとよい。 【0072】上記の高誘電率膜の比誘電率は、二酸化ジ リコニウム (Zr〇²) でその比誘電率は25、二酸化 ハフニウム (HfO2) で30、STO (SrTiO

で300程度と安定して容量値の高い容量絶縁膜とな る。なお、この場合の成膜温度は上述したような200 ℃~350℃でよい。

【0073】また、上述したALCVD法で上記のよう な金属酸化膜を成膜すると、この金属酸化膜をMIM構 造のキャパシタの容量絶縁膜として使用できるようにな る。なお、このような金属酸化膜は異種のものを積層し て用いてもよい。

[0074]

【発明の効果】以上に説明したように、本発明の主要部 10 来のMIM構造キャパシタの断面図である。 では、金属酸化膜のような高誘電率材料を容量絶縁膜に 用いるMIM構造のキャパシタにおいて、キャパシタの 下部電極あるいは上部電極と上記高誘電率材料との間 に、膜中の電子の流れがFowler Nordhei m (F-N)トンネル電流機構あるいは直接トンネル電 流機構となる絶縁膜をバリア絶縁層として介在させる。 あるいは、上記バリア絶縁層あるいは容量絶縁膜を原子 層化学気相成長(ALCVD)法で形成する。

【0075】このために、本発明では、容量絶縁膜の組 成の制御が非常に向上すると共に、成膜の段差被覆性が 20 3,103 非常に高くなる。そして、高い誘電率で絶縁性に優れ、 動作温度依存性の小さな高品質の容量絶縁膜が容易に形 成できる。

【0076】このようにして、MIM構造のキャパシタ を搭載した半導体装置の動作が非常に安定するようにな る。そして、高誘電率膜をキャパシタの容量絶縁膜とし た、信頼性の高いスタック型のキャパシタが可能にな り、半導体装置の超高集積化および高密度化が大幅に促 進される。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態を説明するためのM I M構造キャパシタの平面図とその断面図である。

【図2】上記M I M構造キャパシタの一部拡大した断面 図である。

【図3】別のMIM構造キャパシタの一部拡大した断面 図である。

【図4】本発明の容量絶縁膜の成膜方法を説明するため のキャパシタ断面図と反応ガスの導入シーケンス図であ る。

14

【図5】本発明の容量絶縁膜の成膜方法を説明するため のキャパシタ断面図と反応ガスの導入シーケンス図であ

【図6】本発明の第2の実施の形態を説明するためのM IM構造キャパシタの製造工程順の断面図である。

【図7】上記MIM構造キャパシタの製造工程の続きを 示す工程順の断面図である。

【図8】本発明の効果を説明するためのグラフである。

【図9】本発明の第2の実施の形態と対比するための従

【図10】上記従来のMIM構造キャパシタの容量絶縁 膜中のリーク電流を示すグラフである。

【図11】従来の技術で形成したMIM構造キャパシタ の平面図と断面図である。

【図12】従来の技術での課題を説明するための容量膜 中のリーク電流の測定温度依存性を示すグラフである。 【符号の説明】

1, 21, 101 シリコン基板

2, 102 拡散層

層間絶縁膜

4, 29, 104 プラグ

5, 33, 105 下部電極

6, 6a, 34 バリア絶縁層

7, 35 高誘電率膜

8, 106 容量絶縁膜

9, 38, 107 上部電極

10, 11 点線円

22 索子分離領域

23 多結晶シリコン層

30 24 サイドウォール絶縁膜

> 25 ソース・ドレイン拡散層

26 シリサイド層

27 保護絶縁膜

28 第1層間絶縁膜

30 エッチングストッパー層

31 第2層間絶縁膜

32 容量用開孔

36 バリア導電層

37 タングステン膜

フロントページの続き

Fターム(参考) 5F083 AD24 AD42 GA06 JA03 JA05 JA06 JA14 JA15 JA17 JA35 JA38 JA39 JA40 JA43 MA06 MA17 NA01 PR21