Predicting Cancerous p53 Mutants

Shakuntala Mitra

- B.S. Biochemistry & Molecular Biology
- Bioinformatics research
- Data Science UCSB Officer and Project Leader
- "Most Impactful Project" award at 2019 Annual Project
 Showcase

- CAR-T cell immunotherapies
- Data Science Certification,
 Advanced Machine Learning
 Specialization

p53 protein: The Guardian of the Cell

Hallmarks of Cancer (Hanahan 2011)

> 50%

Of all human cancers

What if there was a way to restore the normal function?

Classification (normal vs cancerous)

Suppressor mutations ("corrective")

"Rescue" normal function

Data Landscape

- Source: UCI Machine Learning Repository
- Number of Instances: 16772
- Number of Attributes: 5409
- Attributes 1-4826: 2D electrostatic and surface based features.
- Attributes 4827-5408: 3D distance based features
- Attribute 5409 is the class attribute: active or inactive

```
print(k8 file.head())
     0
                              3
  -0.161
           -0.014
                    0.002
                            -0.036
                                    -0.033
                                            -0.093
                                                     0.025
  -0.158
           -0.002
                   -0.012
                            -0.025
                                    -0.012
                                            -0.106
                                                     0.013
                            -0.041
                                                     0.038
  -0.169
           -0.025
                   -0.010
                                    -0.045
                                            -0.069
  -0.183
           -0.051
                   -0.023
                            -0.077
                                   -0.092
                                            -0.015
                                                     0.071
                                                                          5407 \
                  5400
                          5401
                                 5402
                                         5403
                                                  5404
                                                          5405
                                                                  5406
  -0.015
                 0.013
                        0.021
                                 0.02
                                        0.016
                                                -0.011
                                                         0.003
                                                                 0.01
                                                                        -0.007
  -0.002
                -0.008
                        0.007
                                       -0.008
                                0.015
                                                -0.011
                                                        -0.004
                                                                0.013
                                                                         0.005
  -0.014
                  0.01
                        0.025
                                0.025
                                        0.021
                                                -0.012
                                                         0.006
                                                                0.016
                                                                        -0.018
                         0.05
                                                         0.017
  -0.019
                 0.012
                                0.038
                                        0.051
                                                -0.015
                                                                0.027
                                                                        -0.049
       5408 5409
  inactive
  inactive
             NaN
  inactive
             NaN
  inactive
             NaN
  inactive
             NaN
```

[5 rows x 5410 columns]

- Missing Values
- Numeric Data
- Missing Labels
- High
 - Dimensional
- Column of "NaN"

	index	0	1
0	1	a119e_l125p	inactive
1	2	a119e_r283k_a353v	inactive
2	3	a161t	inactive
3	4	c135y	inactive
4	5	c135y_e285m	inactive

- Separate File
- Mutant Nametags
- Also contains class attribute

Data Cleaning

- Concat numeric data and nametags
- Duplicate class attribute cols -> check equivalent -> drop one
- Change '?' to NaN -> drop NaN rows -> no more missing values
- Check for duplicates -> None
- Check datatypes -> all "object"

5408	5407	5406	5405	5404	5403	5402	5401	5400	•	9	8	7	6	5	4	3	2	1
a119e_l125p	-0.007	0.010	0.003	-0.011	0.016	0.020	0.021	0.013		-0.015	0.000	0.005	0.025	-0.093	-0.033	-0.036	0.002	-0.014
a119e_r283k_a353v	0.005	0.013	-0.004	-0.011	-0.008	0.015	0.007	-0.008		-0.002	0.000	0.005	0.013	-0.106	-0.012	-0.025	-0.012	-0.002
c135y	-0.018	0.016	0.006	-0.012	0.021	0.025	0.025	0.010		-0.014	0.008	0.014	0.038	-0.069	-0.045	-0.041	-0.010	-0.025
c135y_e285m	-0.049	0.027	0.017	-0.015	0.051	0.038	0.050	0.012	(575	-0.019	0.020	0.027	0.071	-0.015	-0.092	-0.077	-0.023	-0.051
c135y_e285v	0.013	0.009	-0.006	0.002	-0.001	0.003	0.009	0.012		0.002	-0.003	0.002	0.005	-0.115	-0.002	-0.013	-0.011	0.005
	a119e_I125p a119e_r283k_a353v c135y c135y_e285m	-0.007 a119e_I125p 0.005 a119e_r283k_a353v -0.018 c135y -0.049 c135y_e285m	0.010 -0.007 a119e_I125p 0.013 0.005 a119e_r283k_a353v 0.016 -0.018 c135y 0.027 -0.049 c135y_e285m	0.003 0.010 -0.007 a119e_l125p -0.004 0.013 0.005 a119e_r283k_a353v 0.006 0.016 -0.018 c135y 0.017 0.027 -0.049 c135y_e285m	-0.011 0.003 0.010 -0.007 a119e_I125p -0.011 -0.004 0.013 0.005 a119e_r283k_a353v -0.012 0.006 0.016 -0.018 c135y -0.015 0.017 0.027 -0.049 c135y_e285m	0.016 -0.011 0.003 0.010 -0.007 a119e_I125p -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.021 -0.012 0.006 0.016 -0.018 c135y 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_I125p 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_I125p 0.007 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.025 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y 0.050 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_l125p -0.008 0.007 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.010 0.025 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y 0.012 0.050 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_l125p0.008 0.007 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.010 0.025 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y 0.012 0.050 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	-0.015 0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_l125p -0.002 -0.008 0.007 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v -0.014 0.010 0.025 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y_e285m -0.019 0.012 0.050 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	0.000 -0.015 0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_l125p 0.000 -0.002 -0.008 0.007 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.008 -0.014 0.010 0.025 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y_e285m 0.020 -0.019 0.012 0.050 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	0.005 0.000 -0.015 0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_I125p 0.005 0.000 -0.002 -0.008 0.015 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.014 0.008 -0.014 0.010 0.025 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y_e285m 0.027 0.020 -0.019 0.012 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	0.025 0.005 0.000 -0.015 0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_l125p 0.013 0.005 0.000 -0.002 -0.008 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v 0.038 0.014 0.008 -0.014 0.010 0.025 0.025 0.021 -0.012 0.006 0.016 -0.018 c135y_e285m 0.071 0.027 0.020 -0.019 0.012 0.038 0.051 -0.015 0.015 0.027 -0.049 c135y_e285m	-0.093 0.025 0.005 0.000 -0.015 0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_l125p -0.106 0.013 0.005 0.000 -0.0020.008 0.007 0.015 -0.008 -0.011 -0.004 0.013 0.005 a119e_r283k_a353v -0.069 0.038 0.014 0.008 -0.014 0.010 0.025 0.025 0.021 -0.012 0.006 0.016 -0.016 -0.018 c135y -0.015 0.071 0.027 0.020 -0.019 0.012 0.050 0.038 0.051 -0.015 0.017 0.027 -0.049 c135y_e285m	-0.033	-0.036	0.002 -0.036 -0.033 -0.093 0.025 0.005 0.000 -0.015 0.013 0.021 0.020 0.016 -0.011 0.003 0.010 -0.007 a119e_l125p -0.012 -0.025 -0.012 -0.045 -0.069 0.038 0.014 0.008 -0.014 0.014 0.010 0.025 0.025 0.025 0.021 -0.012 0.006 0.016 -0.015 0.017 0.027 0.027 0.029 -0.019 0.019 0.012 0.050 0.038 0.051 -0.015 0.051 0.015 0.017 0.027 0.029 c135y_e285m

singles.shape (61, 5410) doubles.shape (16374, 5410) triples.shape (114, 5410) multis.shape # four or more mutations (42, 5410)

- Overwhelming majority have 2 mutations
- Four or more mutations is least common

- Large feature overlap
- Imbalanced classes
- Long clusters of "active" class

PCA Projection (2 Components): orange = active, blue = inactive (cancerous)

t-SNE

- Captures non-linear relationships better
- Still large feature overlap, better separation
- Scattered clusters of "active"

Time for preprocessing!

All data must

Scale data

Feature

be numerical!

selection

```
False
0
         False
         False
        False
         False
16586
          True
16587
          True
       False
16588
16589 False
         True
16590
Name: 5409, Length: 16591, dtype: bool
```

Change Target Variable to Boolean

Feature Selection and Elimination

- Drop Features with No Variance or Low Variance
- Redundancy
 - Multicollinearity
 - Pointwise Mutual Information (PMI) Score

desc = mutants.describe()
desc.head()

·	2		22 2	3		38	33
	0	1	2	3	4	5	6
count	16591.000000	16591.000000	16591.000000	16591.000000	16591.000000	16591.000000	16591.000000
mean	-0.201763	-0.004898	-0.011593	-0.024726	-0.019615	-0.077004	0.222236
std	0.415089	0.362149	0.244942	0.256497	0.195207	0.539291	1.991421
min	-6.085000	-7.409000	-4.410000	-3.419000	-3.270000	-2.241000	-0.512000
25%	-0.169000	-0.024000	-0.014000	-0.040000	-0.043000	-0.113000	0.006000

5 rows x 5408 columns

Low Variance/No Variance

descT.describe() # focus on the 'std' column!

	count	mean	std	min	25%	50%	75%	max
count	5408.0	5408.000000	5408.000000	5408.000000	5408.000000	5408.000000	5408.000000	5408.000000
mean	16591.0	0.163703	1.188337	-10.564887	-0.275089	0.087606	0.564449	18.131332
std	0.0	3.482811	3.029671	16.820849	3.499720	3.806637	3.824114	31.861964
min	16591.0	-87.251644	0.006619	-255.926167	-91.454000	-86.965000	-82.645000	0.000000
25%	16591.0	-0.030156	0.148570	-11.160500	-0.061000	-0.025000	-0.004000	1.606750
50%	16591.0	0.013918	0.297502	-4.737000	-0.011000	0.011000	0.033000	4.345500
75%	16591.0	0.148052	0.892012	-2.339750	0.023000	0.135000	0.282000	19.545750
max	16591.0	57.955999	77.348072	-0.032000	47.499500	62.450000	71.864000	281.988000

Stats for Standard Deviations

```
hv_mutants = mutants.drop(low_var_cols, axis=1)
hv_mutants.head()
```

	6	10	11	25	106	288	293	294	300	301	302	305	321	465	46
0	0.025	-0.030	-0.050	-0.031	-0.144053	-4.485	-4.222	-4.109	-0.033	-3.665	-2.676	-2.556	2.551	-0.079	0.0
1	0.013	-0.007	-0.010	-0.019	-0.172632	-4.489	-4.238	-4.111	-0.057	-3.725	-2.851	-2.645	-0.002	-0.063	0.0
2	0.038	-0.032	-0.043	-0.036	-0.158158	-4.485	-4.224	-4.107	-0.031	-3.643	-2.769	-2.580	-0.002	-0.094	0.0
3	0.071	-0.044	-0.097	-0.058	-0.038211	-4.484	-4.219	-4.106	-0.145	-3.998	-2.806	-2.557	-0.017	-0.142	0.0
4	0.005	0.006	-0.002	-0.011	-0.178263	-4.490	-4.239	-4.110	-0.060	-3.741	-2.841	-2.649	0.000	-0.049	0.0

5 rows x 1259 columns

Remaining Features (Unscaled)

Scaling the Numerical Data is Important!

MaxAbsScaler (sklearn)

The minimum standard deviation for the Max Abs Scaled features is 0.007958482344045307 The maximum standard deviation for the Max Abs Scaled features is 0.502363693709944

Standard Deviations for Max Abs Scaled Features

mas_descT.describe()

	count	mean	std	min	25%	50%	75%	max
count	5408.0	5408.000000	5408.000000	5408.000000	5408.000000	5408.000000	5408.000000	5408.000000
mean	16591.0	0.003436	0.057177	-0.720603	-0.014358	0.001879	0.022439	0.763602
std	0.0	0.072722	0.046824	0.324982	0.087797	0.086291	0.071768	0.316891
min	16591.0	-0.626085	0.007958	-1.000000	-0.901205	-0.900000	-0.623126	0.000000
25%	16591.0	-0.007855	0.030296	-1.000000	-0.014298	-0.006195	-0.000910	0.522188
50%	16591.0	0.002711	0.044439	-0.906027	-0.002026	0.002046	0.006816	1.000000
75%	16591.0	0.017042	0.068514	-0.431275	0.003488	0.014670	0.031127	1.000000
max	16591.0	0.612498	0.502364	-0.008848	0.612200	0.718772	0.726974	1.000000

New Threshold for Low Variances ('std' < 0.1)

```
# drop the features
```

MAS_mutants = mutants.drop(mas_low_var_cols, axis=1)
MAS_mutants.head()

_		4.5	444											444	
	25	86	106	131	288	292	293	294	297	298	299	300	301	302	30
0	-0.031	-0.024	-0.144053	-0.021	-4.485	-0.694	-4.222	-4.109	0.003	-0.004	0.011	-0.033	-3.665	-2.676	0.
1	-0.019	0.006	-0.172632	-0.038	-4.489	-0.689	-4.238	-4.111	0.006	-0.002	-0.001	-0.057	-3.725	-2.851	0.
2	-0.036	-0.056	-0.158158	-0.033	-4.485	-0.696	-4.224	-4.107	-0.012	-0.017	0.001	-0.031	-3.643	-2.769	0.
3	-0.058	-0.116	-0.038211	-0.039	-4.484	-0.701	-4.219	-4.106	-0.038	-0.043	-0.011	-0.145	-3.998	-2.806	0.
4	-0.011	0.012	-0.178263	-0.037	-4.490	-0.688	-4.239	-4.110	0.011	0.004	0.002	-0.060	-3.741	-2.841	0.

5 rows × 555 columns

Remaining Features!

Linear Correlation-Based Feature Filtering

- Calculate Linear Correlation of first two features with each other (redundancy)
 - a. Higher than threshold -> collinear and redundant -> which to drop?
 - b. Lower than threshold -> keep both features
- 2. Calculate average correlation of both features with rest of features (relevancy)
 - a. Drop the feature with highest value (more repeated info)
- 3. Repeat process for all 2D features, then all 3D features

```
upper_2D = MAS_2D_corr.where(np.triu(np.ones(MAS_2D_corr.shape), k=1).astype(np.bool)) # make u
pper triangular matrix
upper_2D.head()
# ref: Chris Albon
```

	25	86	106	131	288	292	293	294	297	298	299
25	NaN	0.010741	0.013168	0.028168	0.024823	0.016069	0.024333	0.024354	0.009462	0.010356	0.010489
86	NaN	NaN	0.054569	0.045302	0.067544	0.009928	0.060062	0.056202	0.024092	0.020681	0.017643
106	NaN	NaN	NaN	0.020465	0.321220	0.194469	0.311122	0.307030	0.087466	0.089971	0.091480
131	NaN	NaN	NaN	NaN	0.057601	0.043589	0.059245	0.057614	0.021267	0.026795	0.032862
288	NaN	NaN	NaN	NaN	NaN	0.743613	0.991983	0.986423	0.464675	0.479323	0.479890

5 rows x 513 columns

Drop 200 2D features -> 313 of 2D features remaining

```
lin_df = MAS_lin_comb.rename({5409: 'activity', 5408: 'nametags'}, axis='columns')
lin_df.head()
```

					V										
	25	86	131	294	297	307	321	340	345	346	370	500	506	536	553
0	-0.031	-0.024	-0.021	-4.109	0.003	-0.103000	2.551	3.024	-0.442	-0.001	1.038	0.048	-0.019	0.033	0.04
1	-0.019	0.006	-0.038	-4.111	0.006	-0.054667	-0.002	2.952	-0.366	0.009	0.992	0.001	-0.002	0.031	0.01
2	-0.036	-0.056	-0.033	-4.107	-0.012	-0.099333	-0.002	3.031	-0.089	-0.019	1.051	0.041	-0.024	0.042	-1.1
3	-0.058	-0.116	-0.039	-4.106	-0.038	-0.134333	-0.017	-0.033	-0.056	-0.046	1.180	4.554	4.426	0.063	-1.0
4	-0.011	0.012	-0.037	-4.110	0.011	-0.057333	0.000	2.974	-0.362	0.017	0.949	0.010	0.005	0.025	0.00

5 rows × 344 columns

Drop 13 3D features -> combine -> 343 Remaining Features

Pairwise Mutual Information-Based Feature Filtering

- Calculate PMI score of first two features with each other (redundancy)
 - a. Higher than threshold -> collinear and redundant -> which to drop?
 - b. Lower than threshold -> keep both features
- 2. Calculate average entropy of both features with rest of features (relevancy)
 - a. Drop feature with lowest entropy (very predictable, low information gain)
- 3. Repeat process for all 2D features, then all 3D features

What are our metrics for success?

Recall is more important than precision!

Evaluating Baseline Models

	Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Taken
Model					
NearestCentroid	0.79	0.83	0.83	0.88	0.26
GaussianNB	0.71	0.77	0.77	0.83	0.31
LinearDiscriminantAnalysis	0.98	0.72	0.72	0.99	1.41
BernoulliNB	0.69	0.67	0.67	0.81	0.36
XGBClassifier	0.99	0.66	0.66	0.99	27.80
LinearSVC	0.99	0.66	0.66	0.99	3.23
Decision TreeClassifier	0.98	0.63	0.63	0.99	14.85
KNeighborsClassifier	0.99	0.61	0.61	0.99	29.40
AdaBoostClassifier	0.99	0.61	0.61	0.99	23.33
LogisticRegression	0.99	0.61	0.61	0.99	1.22
ExtraTreeClassifier	0.99	0.61	0.61	0.99	0.25
ExtraTreesClassifier	0.99	0.59	0.59	0.99	3.07
BaggingClassifier	0.99	0.59	0.59	0.99	87.84
PassiveAggressiveClassifier	0.99	0.59	0.59	0.99	0.41
LGBMClassifier	0.99	0.57	0.57	0.99	10.41
LabelSpreading	0.99	0.57	0.57	0.99	12.48
LabelPropagation	0.99	0.57	0.57	0.99	9.04
SGDClassifier	0.99	0.54	0.54	0.99	3.77
RandomForestClassifier	0.99	0.52	0.52	0.99	28.60
Perceptron	0.99	0.52	0.52	0.99	0.45
QuadraticDiscriminantAnalysis	0.99	0.50	0.50	0.99	1.05
RidgeClassifier	0.99	0.50	0.50	0.99	0.43
RidgeClassifierCV	0.99	0.50	0.50	0.99	1.08
svc	0.99	0.50	0.50	0.99	9.23
CalibratedClassifierCV	0.99	0.50	0.50	0.99	9.28
DummyClassifier	0.98	0.49	0.49	0.98	0.21

Balanced Accuracy and Naive Classifiers

$$\mathbf{Balanced\ accuracy} = \frac{\mathbf{Sensitivity} + \mathbf{Specificity}}{2}.$$

- Naive classifier = always predicts majority class
 - Balanced accuracy = 0.50 (50%)
- Want balanced accuracy > 0.50

Model NearestCentroid 0.79 0.83 0.83 0.88 0.26 GaussianNB 0.71 0.77 0.77 0.83 0.31 LinearDiscriminantAnalysis 0.98 0.72 0.72 0.99 1.41 BernoulliNB 0.69 0.67 0.67 0.81 0.36 XGBClassifier 0.99 0.66 0.66 0.99 27.80 Linear SVC 0.99 0.66 0.66 0.99 3.23 Decision TreeClassifier 0.98 0.63 0.63 0.99 14.85 KNeighbors Classifier 0.99 0.61 0.61 0.99 29.40 AdaBoost Classifier 0.99 0.61 0.61 0.99 23.33 Logistic Regression 0.99 0.61 0.61 0.99 1.22 Extra Tree Classifier 0.99 0.61 0.61 0.99 0.25 Extra Tree Classifier 0.99 0.59 0.59 0.99 3.07 Bagging Classifier		Accuracy	Balanced Accuracy	ROC AUC	F1 Score	Time Tak
GaussianNB 0.71 0.77 0.83 0.31 LinearDiscriminantAnalysis 0.98 0.72 0.72 0.99 1.41 BernoulliNB 0.69 0.67 0.67 0.81 0.36 XGBClassifier 0.99 0.66 0.66 0.99 27.80 LinearSVC 0.99 0.66 0.66 0.99 3.23 DecisionTreeClassifier 0.98 0.63 0.63 0.99 14.85 KNelghborsClassifier 0.99 0.61 0.61 0.99 29.40 AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 2.22 ExtraTreeClassifier 0.99 0.69 0.61 0.61 0.99 0.25 ExtraTreeClassifier 0.99 0.59 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.59 0.99 0.41 LabelSpre	Model					
LinearDiscriminantAnalysis 0.98 0.72 0.72 0.99 1.41 BernoulliNB 0.69 0.67 0.67 0.81 0.36 XGBClassifier 0.99 0.66 0.66 0.99 27.80 LinearSVC 0.99 0.66 0.66 0.99 3.23 DecisionTreeClassifier 0.98 0.63 0.63 0.99 14.85 KNeighborsClassifier 0.99 0.61 0.61 0.99 29.40 AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 2.22 ExtraTreeClassifier 0.99 0.61 0.61 0.99 0.25 ExtraTreeClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 3.74 LabelSpreading 0.99 0.57 0.57 0.99 10.41 LabelPropagation 0.99	NearestCentroid	0.79	0.83	0.83	0.88	0.26
BernoulliNB 0.69 0.67 0.67 0.81 0.36 XGBClassifier 0.99 0.66 0.66 0.99 27.80 LinearSVC 0.99 0.66 0.66 0.99 3.23 DecisionTreeClassifier 0.98 0.63 0.63 0.99 14.85 KNeighborsClassifier 0.99 0.61 0.61 0.99 29.40 AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 1.22 ExtraTreeClassifier 0.99 0.61 0.61 0.99 0.25 ExtraTreesClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 10.41 LabelPropagation 0.99	GaussianNB	0.71	0.77	0.77	0.83	0.31
XGBClassifier 0.99 0.66 0.66 0.99 27.80 LinearSVC 0.99 0.66 0.66 0.99 3.23 DecisionTreeClassifier 0.98 0.63 0.63 0.99 14.85 KNeighborsClassifier 0.99 0.61 0.61 0.99 29.40 AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 1.22 ExtraTreeClassifier 0.99 0.61 0.61 0.99 0.25 ExtraTreeSclassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.	LinearDiscriminantAnalysis	0.98	0.72	0.72	0.99	1.41
LinearSVC 0.99 0.66 0.66 0.99 3.23 DecisionTreeClassifier 0.98 0.63 0.63 0.99 14.85 KNeighborsClassifier 0.99 0.61 0.61 0.99 29.40 AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 1.22 Extra TreeClassifier 0.99 0.61 0.61 0.99 0.25 Extra TreesClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 3.07 BagsiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 3.77 RandomForestClassifier <t< th=""><th>BernoulliNB</th><th>0.69</th><th>0.67</th><th>0.67</th><th>0.81</th><th>0.36</th></t<>	BernoulliNB	0.69	0.67	0.67	0.81	0.36
DecisionTreeClassifier 0.98 0.63 0.63 0.99 14.85 KNeighborsClassifier 0.99 0.61 0.61 0.99 29.40 AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 1.22 Extra TreeClassifier 0.99 0.61 0.61 0.99 0.25 Extra TreesClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LabelSpreading 0.99 0.57 0.57 0.99 10.41 LabelPropagation 0.99 0.57 0.57 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantA	XGBClassifier	0.99	0.66	0.66	0.99	27.80
KNeighborsClassifier 0.99 0.61 0.61 0.99 29.40 AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 1.22 ExtraTreeClassifier 0.99 0.61 0.61 0.99 0.25 ExtraTreesClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 3.77 BaggingClassifier 0.99 0.59 0.59 0.99 3.784 PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis <th>LinearSVC</th> <th>0.99</th> <th>0.66</th> <th>0.66</th> <th>0.99</th> <th>3.23</th>	LinearSVC	0.99	0.66	0.66	0.99	3.23
AdaBoostClassifier 0.99 0.61 0.61 0.99 23.33 LogisticRegression 0.99 0.61 0.61 0.99 1.22 ExtraTreeClassifier 0.99 0.61 0.61 0.99 0.25 ExtraTreesClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 3.77 RandomForestClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV </th <th>Decision TreeClassifier</th> <th>0.98</th> <th>0.63</th> <th>0.63</th> <th>0.99</th> <th>14.85</th>	Decision TreeClassifier	0.98	0.63	0.63	0.99	14.85
LogisticRegression 0.99 0.61 0.61 0.99 1.22 Extra TreeClassifier 0.99 0.61 0.61 0.99 0.25 Extra TreesClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.08 RidgeClassifier V 0.99 0.50 0.50 0.99 1.08 SVC 0.99 <th>KNeighborsClassifier</th> <th>0.99</th> <th>0.61</th> <th>0.61</th> <th>0.99</th> <th>29.40</th>	KNeighborsClassifier	0.99	0.61	0.61	0.99	29.40
ExtraTreeClassifier 0.99 0.61 0.61 0.99 0.25 ExtraTreesClassifier 0.99 0.59 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.50 0.50 0.99 1.05 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.08 RidgeClassifierCV 0.99 0.50 0.50 0.99 9.23 CalibratedClass	AdaBoostClassifier	0.99	0.61	0.61	0.99	23.33
ExtraTreesClassifier 0.99 0.59 0.59 0.99 3.07 BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99	LogisticRegression	0.99	0.61	0.61	0.99	1.22
BaggingClassifier 0.99 0.59 0.59 0.99 87.84 PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.50 0.50 0.99 1.05 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 0.43 RidgeClassifier 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	ExtraTreeClassifier	0.99	0.61	0.61	0.99	0.25
PassiveAggressiveClassifier 0.99 0.59 0.59 0.99 0.41 LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	ExtraTreesClassifier	0.99	0.59	0.59	0.99	3.07
LGBMClassifier 0.99 0.57 0.57 0.99 10.41 LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	BaggingClassifier	0.99	0.59	0.59	0.99	87.84
LabelSpreading 0.99 0.57 0.57 0.99 12.48 LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	PassiveAggressiveClassifier	0.99	0.59	0.59	0.99	0.41
LabelPropagation 0.99 0.57 0.57 0.99 9.04 SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	LGBMClassifier	0.99	0.57	0.57	0.99	10.41
SGDClassifier 0.99 0.54 0.54 0.99 3.77 RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	LabelSpreading	0.99	0.57	0.57	0.99	12.48
RandomForestClassifier 0.99 0.52 0.52 0.99 28.60 Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	LabelPropagation	0.99	0.57	0.57	0.99	9.04
Perceptron 0.99 0.52 0.52 0.99 0.45 QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	SGDClassifier	0.99	0.54	0.54	0.99	3.77
QuadraticDiscriminantAnalysis 0.99 0.50 0.50 0.99 1.05 RidgeClassifier 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	RandomForestClassifier	0.99	0.52	0.52	0.99	28.60
RidgeClassifier 0.99 0.50 0.50 0.99 0.43 RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	Perceptron	0.99	0.52	0.52	0.99	0.45
RidgeClassifierCV 0.99 0.50 0.50 0.99 1.08 SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	QuadraticDiscriminantAnalysis	0.99	0.50	0.50	0.99	1.05
SVC 0.99 0.50 0.50 0.99 9.23 CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	RidgeClassifier	0.99	0.50	0.50	0.99	0.43
CalibratedClassifierCV 0.99 0.50 0.50 0.99 9.28	RidgeClassifierCV	0.99	0.50	0.50	0.99	1.08
	svc	0.99	0.50	0.50	0.99	9.23
DummyClassifier 0.98 0.49 0.49 0.98 0.21	CalibratedClassifierCV	0.99	0.50	0.50	0.99	9.28
0.50 0.70 0.70 0.70	DummyClassifier	0.98	0.49	0.49	0.98	0.21

Chosen Models

- Nearest Centroid
- Gaussian Naive Bayes
- Random Forest Classifier
- Logistic Regression

Classifier

Random Forest v1

SMOTE-Tomek

	precision	recall	f1-score	support
False	1.00	1.00	1.00	3297
True	0.50	0.27	0.35	22
accuracy			0.99	3319
macro avg	0.75	0.64	0.67	3319
weighted avg	0.99	0.99	0.99	3319

	precision	recall	f1-score	support
False	1.00	0.99	0.99	3297
True	0.24	0.27	0.26	22
accuracy			0.99	3319
macro avg	0.62	0.63	0.63	3319
weighted avg	0.99	0.99	0.99	3319

Random Forest v3 (Increasing Weights on Minority Class)

	precision	recall	f1-score	support
False	0.99	1.00	0.99	3297
True	0.17	0.14	0.15	22
accuracy			0.99	3319
macro avg	0.58	0.57	0.57	3319
weighted avg	0.99	0.99	0.99	3319

Logistic Regression

	precision	recall	f1-score	support
False	1.00	0.94	0.97	3297
True	0.08	0.73	0.14	22
accuracy			0.94	3319
macro avg	0.54	0.84	0.56	3319
weighted avg	0.99	0.94	0.96	3319

	precision	recall	f1-score	support
False	1.00	0.67	0.81	3297
True	0.02	0.86	0.03	22
accuracy			0.68	3319
macro avg	0.51	0.77	0.42	3319
weighted avg	0.99	0.68	0.80	3319

Discussion: Best model (so far)

- Nearest Centroid had best recall for minority class
 - 86%
- High recall, low precision
- Reliability curves not ideal

Questions to Think About

- Out of mutants predicted to be non-cancerous
 - Affected domain(s)? (DBD, NLS, etc)
 - Core domain affected?
- Potentially visualize "active" mutants with PyMol

Future Work and Improvements, pt.1

- Filtering Features Using Pairwise Mutual Information
- Play with the number of features/attributes used to train the models to find optimum number of features
- Instead of just a train-test-split, make a train-test-validation split of the data
- Visualize the data with UMAP and Compare UMAP with t-SNE
- Hyperparameter Tuning with Bayesian Optimization
- Resampling Data with SMOTE-ENN and comparing noise with SMOTE-Tomek

Future Work and Improvements, pt.2

- Calibrating the Classifier Models
- Neural Networks
- Calculate the MCC scores
- This was built using the 2010 dataset, but can combine with 2012 dataset
- Investigate specific clusters of "active" p53 proteins more closely
- Combine with protein visualization software for easier interpretation of the results
 - Maybe cross-check/sanity check with which domains of p53 are the most important to preserving wild-type function
- Use Cloud Computing services, containerize and deploy model