PHIL3110 - Assignment 1

Maxwell Bo

April 16, 2018

Part A

Problem 1

1.
$$\frac{Pa \vee Qa^{(1)} \qquad (Pa \vee Qa) \to \bot}{\frac{\bot}{\neg (Pa \vee Qa)} \qquad (DM-1)}}$$

De Morgan's Law 1

$$\frac{\varphi^{(1)}}{\varphi \vee \psi} \qquad \neg(\varphi \vee \psi) \qquad \frac{\psi^{(2)}}{\varphi \vee \psi} \qquad \neg(\varphi \vee \psi)$$

$$\frac{\bot}{\neg \varphi} \qquad (1) \qquad (\neg I) \qquad \frac{\bot}{\neg \psi} \qquad (2) \qquad (\neg I)$$

$$\neg \varphi \wedge \neg \psi$$

$$2. \quad \frac{Qa \vee Ra^{(3)}}{Qa \vee Ra^{(3)}} \quad \frac{Qa^{(1)}}{Pa} \quad \frac{Qa \rightarrow Pa}{Pa} \quad \frac{Ra^{(2)}}{Pa} \quad \frac{Ra \rightarrow Pa}{(1) \ (2) \ (\vee E)} \quad \frac{Pa}{(Qa \vee Ra) \rightarrow Pa} \quad ^{(3) \ (\rightarrow I)}$$

Problem 2

1.

$$Q^{\mathcal{M}} = \{m_1\}$$

$$T^{\mathcal{M}} = \{\langle m_1, m_1 \rangle, \langle m_1, m_2 \rangle, \langle m_2, m_2 \rangle\}$$

2. Distressingly, \mathcal{L} does not define any constant symbols, nor does \mathcal{M} provide interpretations of constant symbols in \mathcal{M} .

Thus

$$\mathcal{M} \nvDash \exists x \neg Txx$$

However assuming \mathcal{M}^+ , where \mathcal{M}^+ is the expanded model \mathcal{M} , where $m^{\mathcal{M}}=m$ for all $m \in \mathcal{M}$, we see that

$$M \models \exists x \neg Txx$$

as

$$\langle m_3^{\mathcal{M}}, m_3^{\mathcal{M}} \rangle \not\in T^{\mathcal{M}}$$

3. No, as \mathcal{M} does not define any constant symbols $\mathcal{M} \nvDash \exists x \varphi$ for some arbitrary φ (as x will bind no constant symbols), and thus

$$\mathcal{M} \nvDash \exists x \forall y (Qy \leftrightarrow Tyx)$$

Assuming \mathcal{M}^+ ,

$$\mathcal{M}^+ \nvDash \exists x \forall y (Qy \leftrightarrow Tyx)$$

By fixing x to $m_1^{\mathcal{M}}$, we see that

$$\forall y \cdot y \in Q^{\mathcal{M}} \leftrightarrow \langle y, m_1^{\mathcal{M}} \rangle \in T^{\mathcal{M}}$$

as

$$\begin{split} & m_1^{\mathcal{M}} \in Q^{\mathcal{M}} \text{ and } \langle m_1^{\mathcal{M}}, m_1^{\mathcal{M}} \rangle \in T^{\mathcal{M}} \\ & m_2^{\mathcal{M}} \not\in Q^{\mathcal{M}} \text{ and } \langle m_2^{\mathcal{M}}, m_1^{\mathcal{M}} \rangle \not\in T^{\mathcal{M}} \\ & m_3^{\mathcal{M}} \not\in Q^{\mathcal{M}} \text{ and } \langle m_3^{\mathcal{M}}, m_1^{\mathcal{M}} \rangle \not\in T^{\mathcal{M}} \end{split}$$

Part B

Problem 3

- 1. (a) BHMB is not a good sandwich
 - (b) (((B)JB)HB) is a good sandwich
 - (c) BHBMBJM is not a good sandwich
- 2. **Definition 1** A sandwich is good iff there is some stage n such that sandwich \in Stage(n) where:
 - $Stage(0) = \{B\}$
 - Stage(n+1) is the set of φ such that either:
 - (a) $\varphi \in Stage(n)$
 - (b) φ is of the form ψMB , ψHB , or ψJB , where $\psi \in Stage(n)$
- 3. Make A the set of all n such that for each $\psi \in Stage(n)$, ψ does not contain any two instances of the same ingredient adjacently.

Base

 $0 \in A$. As $Stage(0) = \{B\}$, all $\varphi \in Stage(0)$ do not contain any two instances of the same ingredient adjacently. We can also see that all $\varphi \in Stage(0)$ are terminated by B

Induction Step

Suppose $n \in A$.

Lemma 1 Since $n \in A$, and every $\varphi \in Stage(n)$ is of the form B, ψMB , ψHB , or ψJB , for $\psi \in Stage(m)$ for some m < n, all φ are terminated by B.

Lemma 2 Since $n \in A$, every $\varphi \in Stage(n)$ does not contain any two instances of the same ingredient adjacently.

For each $\varphi \in Stage(n+1) \setminus Stage(n)$, recalling the definition for Stage(n+1), φ is of the form ψMB , ψHB , or ψJB , for some $\psi \in Stage(n)$

Given

- all $\varphi \in Stage(n)$ are terminated by B (Lemma 1)
- all $\varphi \in \{MB, HB, JB\}$ don't begin with B, and are not themselves adjacent ingredients
- $\bullet \;$ Lemma 2

all $\varphi \in Stage(n+1) \setminus Stage(n)$ do not contain two instances of the same ingredient adjacently.

Thus, $n+1 \in A$. Then by induction, we see that every $n \in A$.

Problem 4