Convex Optimization II

Lecture 17: Convex-Cardinality Problems

Hamed Shah-Mansouri

Department of Electrical Engineering
Sharif University of Technology

1400-2

1/16

MOTIVATIONS

In several applications, we encounter the cardinality (i.e., the number of non-zero) of decision variables. Applications include

- sparse design
- robust estimation in statistics
- classification
- support vector machine (SVM) in machine learning
- compressed sensing

Thanks to Professor John Duchi, Stanford University, for the slides.

OUTLINE

- Convex-Cardinality Problems
- Solution
- Application
- Convex Relaxation

CARDINALITY

Cardinality: denoted by $\mathbf{card}(x)$ for $x \in \mathbb{R}^n$, is the number of non-zero components of x.

Arises in many applications including

- sparse design
- robust estimation in statistics
- Classification
- support vector machine (SVM) in machine learning
- compressed sensing

CONVEX-CARDINALITY PROBLEMS

A **convex-cardinality problem** is one that would be convex, except for appearance of **card** in the objective or constraints.

• convex minimum cardinality problem (sparse design)

minimize
$$\operatorname{card}(x)$$
 subject to $x \in \mathcal{C}$

convex problem with cardinality constraint

SOLVING CONVEX-CARDINALITY PROBLEMS

- if we fix the sparsity pattern of x (i.e., which entries are zero/nonzero) we get a convex problem.
- by solving 2^n convex problems associated with all possible sparsity patterns, we can solve convex-cardinality problem.
- convex-cardinality problem is NP-hard in general

SOLUTION: ℓ_1 -NORM HEURISTIC

Replace $\mathbf{card}(z)$ with $\delta ||z||_1$, or add regularization term $\delta ||z||_1$ to the objective.

Convex minimum cardinality problem

minimize
$$\operatorname{card}(x)$$
 subject to $x \in \mathcal{C}$

replace by

$$\begin{array}{ll} \text{minimize} & ||x||_1 \\ \text{subject to} & x \in \mathcal{C} \end{array}$$

SOLUTION: ℓ_1 -NORM HEURISTIC

convex problem with cardinality constraint

minimize
$$f(x)$$

subject to $\operatorname{card}(x) \leq k$
 $x \in C$.

replace by ℓ_1 -constrained problem

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & ||x||_1 \leq \beta \\ & x \in \mathcal{C}. \end{array}$$

or ℓ_1 -regularized problem

minimize
$$f(x) + \delta ||x||_1$$

subject to $x \in C$.

ILP AS CONVEX-CARDINALITY PROBLEMS

ILP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \in \{0,1\}. \end{array}$$

can be transformed into

where $x \in \mathbb{R}^n$.

APPLICATION: SPARSE DESIGN

Convex minimum cardinality problem

 $\begin{array}{ll} \text{minimize} & \mathbf{card}(x) \\ \text{subject to} & x \in \mathcal{C} \\ \end{array}$

APPLICATION: SPARSE MODELING / REGRESSOR SELECTION

Fit vector $b \in \mathbb{R}^m$ as a linear combination of k regressors (chosen from n possible regressors)

minimize
$$||Ax - b||_2$$

subject to $\mathbf{card}(x) \le k$

choose subset of k regressors that (together) best fit or explain b

Variations:

$$\begin{array}{ll} \text{minimize} & \mathbf{card}(x) \\ \text{subject to} & ||Ax-b||_2 \leq \epsilon \\ \\ \text{minimize} & ||Ax-b||_2 + \delta \mathbf{card}(x) \end{array}$$

APPLICATION: SPARSE SIGNAL RECONSTRUCTION

Estimate signal x, given

- noisy measurement y = Ax + v, v is unknown noise.
- prior information $\mathbf{card}(x) \leq k$

Maximum likelihood estimate is the solution of

minimize
$$||Ax - y||_2$$

subject to $\mathbf{card}(x) \le k$

APPLICATION: MINIMUM NUMBER OF VIOLATIONS

• Consider set of convex inequalities

$$f_1(x) \le 0, \dots, f_m(x) \le 0$$

• Choose x to minimize the number of violated inequalities

minimize
$$\operatorname{card}(t)$$

subject to $f_i(x) \leq t_i$, for $i = 1, \dots, m$

 Determining whether zero inequalities can be violated is (easy) convex feasibility problem.

APPLICATION: LINEAR CLASSIFIER WITH FEWEST ERRORS

- given data $(x_1, y_1), \dots, (x_m, y_m) \in \mathbb{R}^n \times \{-1, 1\}$
- we seek linear (affine) classifier $y \approx \text{sign}(w^T x + v)$
- classification error corresponds to $y_i(w^Tx_i + v) \leq 0$
- ullet to find w and v that give fewest classification errors:

minimize
$$\operatorname{card}(t)$$

subject to $y_i(w^Tx_i + v) + t_i \ge 0$, for $i = 1, \dots, m$

INTERPRETATION AS CONVEX RELAXATION

$$\begin{array}{ll} \text{minimize} & \mathbf{card}(x) \\ \text{subject to} & x \in \mathcal{C} \\ & ||x||_{\infty} \leq R \end{array}$$

is equivalent to

minimize
$$\mathbf{1}^T z$$

subject to $|x_i| \leq R z_i$, for $i = 1, \dots, n$
 $x \in \mathcal{C}$
 $z_i \in \{0, 1\}$, for $i = 1, \dots, n$.

INTERPRETATION AS CONVEX RELAXATION

Now, relax binary variables

$$\begin{array}{ll} \text{minimize} & \mathbf{1}^T z \\ \text{subject to} & |x_i| \leq R z_i, \quad \text{for } i=1,\dots,n \\ & x \in \mathcal{C} \\ & 0 \leq z_i \leq 1, \quad \text{for } i=1,\dots,n. \end{array}$$

which is equivalent to