VU Network Security Advanced Topics Lecture 2

CRT RSA

Tanja Zseby TU Wien

WS 2018/19

Summary from Last Lecture

- Recap
 - Asymmetric crypto
 - RSA
- Extended Euclidean Algorithm
 - Calculating a Multiplicative Inverse

CRT RSA

CRT-RSA

- Using the Chinese Remainder Theorem in
 - RSA signature calculation
 - RSA decryption
- Advantage
 - Calculation with p and q instead of n
 - Smaller modulus
 - Smaller exponents

CRT-RSA Claim

RSA Signature:

$$sig = m^d \mod n$$

With Chinese Remainder Theorem we can calculate signature with smaller exponents and modulus using:

$$m_1 = m^{d_p} \mod p$$

with
$$d_p = d \mod(p-1)$$

$$m_2 = m^{d_q} \mod q$$

with
$$d_q = d \mod(q-1)$$

Chinese Remainder Theorem (CRT)

- Goal: Find x that solves a system of linear congruencies
- n₁,n₂,n₃,...n_k are pairwise coprime

$$x \equiv a_1 \mod n_1$$
 $x \equiv a_2 \mod n_2$
...
 $x \equiv a_k \mod n_k$

 Chinese Remainder Theorem: The system of linear congruencies has a unique solution mod N with

$$N = n_1 \cdot n_2 \cdot n_3 \cdot \dots n_k$$

Chinese Remainder Theorem (CRT): Example

$$x \equiv 2 \mod 3$$

$$x \equiv 3 \mod 4$$

$$x \equiv 1 \mod 5$$

Check if pairwise coprime: gcd(2,3)=1, gcd(2,1)=1, $gcd(3,1)=1 \rightarrow ok$

$$N = 3 \cdot 4 \cdot 5 = 60$$

All solutions fulfill:

$$x \equiv 11 \mod 60$$

→ x=11 is unique solution mod 60

CRT: Finding a Solution

$$x = \sum_{i=1}^{\kappa} a_i \cdot e_i$$

with:

$$e_i = \frac{N}{n_i} \cdot \left[\left(\frac{N}{n_i} \right)^{-1} \right]_{n_i}$$

Multiplicative inverse of N/n_i when using mod n_i

$$e_i \equiv \begin{cases} 1 & mod \ n_i \\ 0 & mod \ n_j \quad j \neq i \end{cases}$$

Example

$$x \equiv a_1 \mod n_1$$
$$x \equiv a_2 \mod n_2$$

$$N=n_1\cdot n_2$$

One solution:

$$x = a_1 \cdot e_1 + a_2 \cdot e_2$$

with:

$$e_1 = \frac{N}{n_1} \cdot \left[\left(\frac{N}{n_1} \right)^{-1} \right]_{n_1} = n_2 \cdot [n_2^{-1}]_{n_1}$$

$$e_2 = \frac{N}{n_2} \cdot \left[\left(\frac{N}{n_2} \right)^{-1} \right]_{n_2} = n_1 \cdot [n_1^{-1}]_{n_2}$$

$$x = a_1 \cdot n_2 \cdot [n_2^{-1}]_{n_1} + a_2 \cdot n_1 \cdot [n_1^{-1}]_{n_2}$$

Why x is a Solution

$$x = a_1 \cdot n_2 \cdot [n_2^{-1}]_{n_1} + a_2 \cdot n_1 \cdot [n_1^{-1}]_{n_2}$$

x mod n_1 :

$$x = a_1 \cdot \left[n_2 \cdot [n_2^{-1}]_{n_1} \right] + a_2 \cdot \left[n_1 \cdot [n_1^{-1}]_{n_2} \right]$$
1 if taken mod n₁
0 if taken mod n₁

$$x \equiv a_1 \mod n_1$$

 $x \mod n_2$:

$$x = a_1 \cdot [n_2 \cdot [n_2^{-1}]_{n_1}] + a_2 \cdot [n_1 \cdot [n_1^{-1}]_{n_2}]$$
0 if taken mod n₂
1 if taken mod n₂

$$x \equiv a_2 \mod n_2$$

Calculate Signature with CRT RSA

RSA Signature (without CRT)

- Chose large primes p,q
- Compute $n = p \cdot q$
- Compute $\varphi(n)$
- Choose e
- Find inverse d
- Publish n,e
- Calculate signature (traditional way):

$$sig = m^d \mod n$$

Express RSA Signature with CRT

CRT:

$$x \equiv a_1 \mod n_1$$

$$x \equiv a_2 \mod n_2$$

$$N = n_1 \cdot n_2$$

Solution for $x \rightarrow can find solution mod N$:

Express m^d with congruencies:

$$m^d \equiv m_1 \mod p$$

$$m^d \equiv m_2 \mod q$$

$$n = p \cdot q$$

If we find solution for $m^d \rightarrow can find solution mod n$:

$$m^d \equiv sig \mod pq$$

Calculate Signature with CRT

$$m^d \equiv m_1 \mod p$$

express d as multiple of $\varphi(p)$: $d = k \cdot \varphi(p) + d \mod \varphi(p)$

$$m^d \mod p = m^{k \cdot \varphi(p) + d \mod \varphi(p)} \mod p$$

= $m^{k \cdot \varphi(p)} \cdot m^{d \mod \varphi(p)} \mod p$

Using Euler's Theorem $m^{\varphi(n)} \equiv 1 \mod n$ if m,n coprime $\left(m^{\varphi(n)}\right)^k \equiv 1 \mod n$

$$m^d \mod p = m^{d \mod \varphi(p)} \mod p$$
 with $\varphi(p)=p-1$

$$= m^{d \mod (p-1)} \mod p$$

$$m_1 = m^{d_p} \mod p$$
 with $d_p = d \mod (p-1)$

CRT-RSA

To calculate RSA signature

$$sig = m^d \mod n$$

$$n = p \cdot q$$

Formulate congruencies:

$$m^d \equiv m_1 \mod p$$
 $m^d \equiv m_2 \mod q$

with

$$m_1 = m^{d_p} \mod p$$
 with $d_p = d \mod (p-1)$

$$m_2 = m^{d_q} \mod q$$
 with $d_q = d \mod (q-1)$

Find solution for m^d using Chinese Remainder Theorem:

$$m^d = m_1 \cdot q \cdot [q^{-1}]_p + m_2 \cdot p \cdot [p^{-1}]_q$$

Signature is unique solution mod n: $m^d \equiv sig \mod n$

RSA Example

RSA Example

→ see separate Document

Thank you!

