Design and Analysis of Algorithms

Lecture # 1

Dr. Anant V Nimkar PhD(CSE-IIT Kharagpur)
Associate Professor

Department of Computer Engineering Sardar Patel Institute of Technology Mumbai

INTRODUCTION TO DAA COURSE

(CS205)

Introduction to DAA Course

- oCredits Teaching & Exam Scheme
- OAcademic Engagement
- Evaluation Scheme
- DAA Course Outcomes
- Text Books and Syllabus

Teaching Scheme, Credits & Examination Scheme

✓ DAA Theory and Lab – Teaching Scheme and Credits

L	T	P	O	E
3	O	2	5	10

L	T	P	Credits
3	0	1	4

✓ DAA Theory Examination Scheme

ISE	MSE	ESE	Total
75	75	150	300

✓ DAA Lab - Examination Scheme

ISE	MSE	ESE	Total
50		50	100

Academic Engagement

√ Theory Session

Day	Time	Google Meet Link
Mon	12:15 PM - 01:15 PM	1
Tue	10:00 AM - 11:00 AM	-
Wed	11:15 AM - 01:15 PM	

✓ Lab Sessions

Day	Time	Batch
Mon	09:00 AM - 11:00 AM	С
Tue	11:15 AM - 12:15 PM	D
Thu	09:00 AM - 11:00 AM	A
Fri	11:15 AM - 12:15 PM	В

Evaluation Scheme of DAA Theory

✓ DAA Theory – Evaluation Scheme

Sr. No.	Components	Breakup Tests	Marks	Percentage (Weightage)
-	ISE	ISE-1 (Open House)	15	75
1	1 ISE	ISE-2 (MCQ)	10	75
2	MSE	Decided at Dept Level	50	75
3	ESE	Decided at Institute Level	100	150
			Total	300

Evaluation Scheme of DAA Lab

✓ DAA Lab - Evaluation Scheme

Sr. No.	Components	Percentage (Weightage)	Marks
1	ISE (Laboratory Experiments)	50	100
2	ESE	50	20
	Total	100	100

DAA Course Outcomes

- ✓ Analyze time and space complexity of an algorithm.
- ✓ Apply divide and conquer strategy to solve problems.
- ✓Apply the concept of dynamic programming and greedy approach to solve problems.
- ✓Apply the idea of backtracking, branch and bound strategy to solve problems.
- ✓ Apply various string matching algorithms.

Text Books

- 1) T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C Stein, "Introduction to Algorithms", MIT Press, 3rd Edition, 2009
- 2) Horowitz E, Sahni S and S. Rajasekaran, "Fundamentals of Computer Algorithms", Galgotia Publications, 2nd Edition, 2010
- 3) Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "The Design and analysis of algorithms", Pearson Education India, 1st, 2006

DAA Theory Syllabus

- ✓Introduction to Analysis of algorithm
 - ✓ Reference 1,2
- ✓ Dynamic Programming and Amortized Analysis
 - ✓ Reference 1
- √ Greedy Method
 - ✓ Reference 1,2
- ✓ Backtracking, Branch and Bound
 - ✓ Reference 2
- ✓ Approximation and String Matching algorithms
 - ✓ Reference 1
- ✓ Self-Study Topics NP Completeness Theory
 - ✓ Reference 1

- ✓ Experiment on finding the running time of an algorithm.
- ✓ Experiment based on divide and conquer approach.
- ✓ Experiment on Recurrence relation.
- ✓ Experiment using dynamic programming approach
- ✓ Experiment based on greedy approach
- ✓ Experiment based on graph Algorithms
- ✓ Experiment using Backtracking strategy
- ✓ Experiment using branch and bound strategy
- ✓ Experiment based on Approximation Algorithms
- ✓ Experiment on string matching algorithms.

√To implement Divide and conquer method

Quick Sort Merge Sort

√To implement Greedy Technique

Prim's Minimal Spanning Tree Algorithm.

Travelling Salesman Problem.

Graph – Map Coloring.

Kruskal's Minimal Spanning Tree Algorithm.

Dijkstra's Minimal Spanning Tree Algorithm.

Graph - Vertex Cover.

Knapsack Problem.

Job Scheduling Problem.

√To implement dynamic algorithms

- ✓ Floyd Warshall Algorithm
- √ 0-1 Knapsack Problem
- √ Egg Dropping Puzzle
- ✓ Box Stacking Problem
- ✓ Partition problem
- √ Travelling Salesman Problem
- ✓ Longest Palindromic Subsequence
- ✓ Longest alternating subsequenc

√To implement Backtracking algorithm

- ✓ Eight queens puzzle
- √ crosswords
- ✓ verbal arithmetic
- √ Sudoku
- √ Peg Solitaire
- ✓ To implement branch and bound algorithm
- ✓ To implement Single source shortest path
- ✓ To implement All pair shortest path

√To implement branch and bound algorithm

0/1 Knapsack 8 puzzle Problem Job Assignment Problem N Queen Problem Traveling Salesman Problem

