Lecture Session 11: Janury 26, 2021

Notation

macros for copy-and-paste:

- purge_u(α)
- $obs_u(s)$
- step(s, a)

Transitive Policies

- $L_1 \rightarrow L_2$
- $L_2 \rightarrow L_3$
- transitivity would mean: this "automatically" gives us $L_1 \rightarrow L_3$

intransitive policies: " L_2 may talk to L_3 , but not about the stuff he learned from L_1 ".

purge function

- $D = \{L_1, L_2, H_1, H_2\}$
- policy: $L_1 \to L_2$, $L_2 \to L_1$, $H_1 \to H_2$, $H_2 \to H_1$, $L_1 \to H_1$, $L_1 \to H_2$, $L_2 \to H_1$, $L_2 \to H_2$
- $A = \{l_1, l_2, h_1, h_2\}$
- $\operatorname{dom}(l_x) = L_x, \operatorname{dom}(h_x) = H_x$
- $\alpha = l_1 l_2 h_1 h_1 l_1 l_2 h_1$
- purge_{I_1} (α) =?
- idea: $\dot{\text{purge}}_{L_1}(\alpha)$ contains exactly those actions from α that
 - " L_1 is allowed to see."
 - i.e., actions a that are performed by some agent v with $v \rightarrow L_1$
 - i.e., actions a with dom(a) $\rightarrow L_1$
 - i.e., actions a with dom $(a) \in L_1, L_2$
 - i.e., actions a with $a \in l_1, l_2$
- so: $purge_{L_1}(\alpha) = l_1 l_2 l_1 l_2$
- so: $purge_{H_1}(\alpha) = \alpha$
- so: $purge_{L_2}(\alpha) = l_1 l_2 l_1 l_2$

P-secure example system

why is the system P-secure?

- need to show: if $\operatorname{purge}_L(\alpha_1) = \operatorname{purge}_L(\alpha_2)$, and s is a state, then $\operatorname{obs}_u(s \cdot \alpha_1) = \operatorname{obs}_u(s \cdot \alpha_2)$.
- differently: $obs_L(s \cdot \alpha)$ only depends on:
 - *s*,
 - $purge_L(\alpha)$
- how can we write $obs_L(s \cdot \alpha)$ as a function of s and $purge_I(\alpha)$?
- $obs_u(s \cdot \alpha) =$
 - if α does not contain any l-action, then this is just $obs_L(s)$,
 - otherwise: observation is the index of the last l-action in α .