

Back to Top ▲

Custom Search

DYNAMIXEL PLATFORM STEAM SOFTWARE PARTS FAQ

C Edit on GitHub

23. Appendix #LDS-01

23. 1. Overview

- 360 Laser Distance Sensor LDS-01 is a 2D laser scanner capable of sensing 360 degrees that collects a set of data around the robot to use for SLAM (Simultaneous Localization and Mapping) and Navigation.
- The LDS-01 is used for TurtleBot3 Burger, Waffle and Waffle Pi models.
- It supports USB interface(USB2LDS) and is easy to install on a PC.
- It supports UART interface for embedded baord.

23. 2. Introduction Video

[Video #01] How to use the LDS-01

- Contents
 - 1. Specification
 - 2. ROS
 - 3. Windows, Linux, macOS
 - 4. Embedded Board
 - 5. SLAM and Navigation
 - 6. Self-Parking
 - 7. 3D Sensing
 - 8. for Makers

TurtleBot3 35 How to use LDS

[Video #02] Laser Distance Sensor (LDS) Example.

TurtleBot3

[Video #03] ROS Hector SLAM demo using only a 360 Laser Distance Sensor LDS-01 made by HLDS (Hitachi-LG Data Storage).

Back to Top ▲

[Video #04] ROS Gmapping and Cartographer SLAM demo using TurtleBot3 and 360 Laser Distance Sensor LDS-01.

23. 3. Specifications

23. 3. 1. General Specifications

Items	Specifications
-------	----------------

TurtleBot3

TurtleBot3

Items	Specifications
Operating supply voltage	5V DC ±5%
Light source	Semiconductor Laser Diode(λ=785nm)
LASER safety	IEC60825-1 Class 1
Current consumption	400mA or less (Rush current 1A)
Detection distance	120mm ~ 3,500mm
Interface	3.3V USART (230,400 bps) 42bytes per 6 degrees, Full Duplex option
Ambient Light Resistance	10,000 lux or less
Sampling Rate	1.8kHz
Dimensions	69.5(W) X 95.5(D) X 39.5(H)mm
Mass	Under 125g

23. 3. 2. Measurement Performance Specifications

Items	Specifications
Distance Range	120 ~ 3,500mm
Distance Accuracy (120mm ~ 499mm)	±15mm
Distance Accuracy(500mm ~ 3,500mm)	±5.0%
Distance Precision(120mm ~ 499mm)	±10mm
Distance Precision(500mm ~ 3,500mm)	±3.5%
Scan Rate	300±10 rpm
Angular Range	360°
Angular Resolution	1°

Back to Top ▲

23. 4. Detail Specification Document

The following link contains information about basic performance, measurement performance, mechanism layout, optical path, data information, pin description and commands.

Here is the detail specification document: PDF

Note The 360 Laser Distance Sensor LDS-01 for TurtleBot3 uses molex 51021-0800 and 53048-0810 instead of the basic housing and connector.

- [for LDS] Molex 51021-0800
- [for USB2LDS] Molex 53048-0810

23. 5. LDS for TurtleBot3

The LDS-01 is used for TurtleBot3 Burger, Waffle and Waffle Pi models.

23. 6. User Guide (for ROS)

4/27/2018

TurtleBot3

TurtleBot3

We are offering ROS package for LSD. The hls_lfcd_lds_driver package provides a driver for "HLS(Hitachi-LG Sensor) LFCD LDS(Laser Distance Sensor)".

Note Due to firmware update (after buy it on Oct. 2017), the sensor is running directly when power in on.

23. 6. 1. Installation

\$ sudo apt-get install ros-kinetic-hls-lfcd-lds-driver

23. 6. 2. Set Permission for LDS-01

\$ sudo chmod a+rw /dev/ttyUSB0

23. 6. 3. Run hlds_laser_publisher Node

\$ roslaunch hls_lfcd_lds_driver hlds_laser.launch

23. 6. 4. Run hlds_laser_publisher Node with RViz

\$ roslaunch hls 1fcd lds driver view hlds laser.launch

23. 7. User Guide (for Driver)

- In addition to ROS, the LDS-01 supports Windows, Linux, and MacOS development environments for general purposes.
- The software requirement is:
 - o GCC (for Linux and macOS), MinGW (for Windows)
 - o Boost library (Lib for boost system, tested on v1.66.0)

23. 7. 1. Download

- Download the LDS-01's driver
- \$ git clone https://github.com/ROBOTIS-GIT/hls_lfcd_lds_driver.git

or you can download directly on web browser at github repository below:

https://github.com/ROBOTIS-GIT/hls_lfcd_lds_driver

- Install dependent software and libraries for each development environment
 - GCC (for Linux and macOS), MinGW (for Windows)
 - Boost library

23. 7. 2. Build

```
$ cd hls_lfcd_lds_driver/applications/lds_driver/
$ make
```

The makefile used here is set for Linux. Windows and macOS should be changed according to their development environment.

23. 7. 3. Run

```
$ ./lds_driver
r[359]=0.438000,r[358]=0.385000,r[357]=0.379000,...
```

You can see the raw data in the terminal when you run the driver of LDS-01. Please check the source code for details.

23. 8. User Guide (for GUI)

Back to Top ▲

TurtleBot3

TurtleBot3

- We provide a basic GUI tool for visually checking the data of the LDS-01.
- It supports Linux, Windows, and macOS.
- The software requirement is:
 - Qt Creator and Libs (tested on Qt Creator v4.5.0 and Qt Libs v5.10.0)
 - GCC (for Linux and macOS), MinGW (for Windows), This can be installed together while installing Qt.
 - o Boost library (Lib for boost system, tested on v1.66.0)

23. 8. 1. Download

- Download the LDS-01's driver and GUI source code.
- \$ git clone https://github.com/ROBOTIS-GIT/hls_lfcd_lds_driver.git

or you can download directly on web browser at github repository below:

https://github.com/ROBOTIS-GIT/hls_lfcd_lds_driver

- Install dependent software and libraries for each development environment
 - Qt Open Source Version
 - o GCC (for Linux and macOS), MinGW (for Windows)
 - Boost library

23. 8. 2. Build

- Run the Qt Creator
- Open file (ctrl-o) the lds_polar_graph.pro file (hls_lfcd_lds_driver/applications/lds_polar_graph/lds_polar_graph.pro)
- Change the input your portname of source code
- Build all (Ctrl-Shift-B)

23. 8. 3. Run

• Run the application (ctrl-R)

Back to Top ▲

- 1. Overview [+]
- 2. Notice [+]
- 3. Features [+]
- 4. Specifications [+]
- 5. Hardware Setup [+]

23. 9. User Guide (for Embedded Board)

- We provide a way to connect to an embedded board.
- The data of the LDS-01 can be used on the embedded board like OpenCR and Arduino, and it can be confirmed on the LCD as a graph like below.

TurtleBot3 [+]

- 7. SBC Setup [+]
- 8. OpenCR Setup [+]
- 9. Bringup [+]
- 10. Teleoperation [+]
- 11. Example [+]
- 12. SLAM [+]
- 13. Navigation [+]
- 14. Simulation [+]
- 15. Manipulation [+]
- 16. Autonomous Driving [+]
- 17. Applications [+]
- 18. Friends [+]
- 19. Learn [+]
- 20. Video [+]
- 21. Appendix #OpenCR1.0 [+]
- 22. Appendix #DYNAMIXEL [+]
- 23. Appendix #LDS-01 [+]
- 24. Appendix #RealSense™ [+]
- 25. Appendix #Raspberry Pi C... [+]
- 26. Appendix #OpenSource [+]
- 27. License [+]
- 28. FAQ
- 29. Contact US [+]

Back to Top ▲

23. 9. 1. Preparations

• It does not provide a dedicated interface board, but you can connect it to the power and UART of the embedded board as shown below.

- OpenCR develops and downloads firmware through the Arduino IDE. Therefore, you
 must install the Arduino IDE in advance and install the OpenCR board package. Install
 through the following link document.
 - o Install Arduino IDE and OpenCR

23. 9. 2. Download firmware and run

- 1. After connecting USB to PC, select Tools -> Board -> OpenCR Board in Arduino IDE.
- 2. Change Tools-> Port to the port to which the board is connected.
- 3. In the Arduino IDE Examples, select the firmware for LDS (File -> Examples -> OpenCR -> Etc -> LDS -> drawLDS).
- 4. Click on the icon in the Arduino IDE that displays the red circle to build and download the firmware. When the download is completed, the firmware is automatically executed.

TurtleBot3

Back to Top ▲