Тема. Фракталы

Литература

- 1. Мандельброт Б. Фрактальная геометрия природы // М. Институт компьютерных исследований, 2002.
- 2. Морозов А.Д. Введение в теорию фракталов // М. Институт компьютерных исследований, 2002.
- 3. Божокин С.В., Паршин Д.А. Фракталы и мультифракталы // Ижевск, 2001

Кто придумал "фрактал"?

- Пыль Кантора.
- Линия Пеано.

Бенуа Р. Мандельброт (Benoit Mandelbrot), математик из Исследовательского центра им. Томаса Уотстона при IBM предложил термин "фрактал" для описания объектов, структура которых повторяется при переходе к все более мелким масштабам

Определения фрактала

- Ф. это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно).
- Ф. обозначает множество, имеющее дробную фрактальную размерность.
 - о Для пояснения фрактальной размерности необходимо ввести понятие топологической размерности.
- Под *топологической размерностью* Dt множества в линейном пространстве понимают число линейно независимых координат в пространстве.
 - Например, окружность и линия имеют топологическую размерность 1; круг и квадрат 2; шар и куб 3.
- *Фрактальная размерность* множества D размерность того пространства, которое полностью заполняется множеством.
- Для связи фрактальной и топологической размерностей используют показатель Херста H, вычисляемый по формуле: H = D - Dt.
- Ф. называют множество, фрактальная размерность которого не совпадает с топологической.
- Например, для кривых Пеано (кривые, заполняющие плоскость) Dt = 1, D = 2.

Группы фракталов

- геометрические фракталы
- алгебраические фракталы
- системы итерируемых функций
- стохастические фракталы

Геометрические фракталы

- Примеры: кривая Пеано, Снежинка Коха,
 Лист, Треугольник Серпинского, Драконова ломаная.
- Этот тип фракталов получается путем простых геометрических построений:
 - о берется набор отрезков, на основании которых будет строиться фрактал;
 - о далее к этому набору применяют набор правил, который преобразует его в какую-либо геометрическую фигуру;
 - о к каждой части этой фигуры применяют опять тот же набор правил.
 - о Бесконечное количество преобразований получим геометрический фрактал.

L-система

- Для построения геометрических фракталов используется L-система.
- **L-система-** это грамматика некоторого языка (достаточно простого), которая описывает инициатор(начальный набор отрезков) и преобразование, выполняемое над ним, при помощи средств, аналогичных средствам языка Лого (аксиоматическое описание простейших геометрических фигур и допустимых преобразований на плоскости и в пространстве).

-Алгебраические фракталы. Множество Мандельброта

 Для каждой точки изображения необходимо выполнить цикл итераций согласно формуле:

$$z_{k+1}=z_k^2+z_0$$
, где $\{z_k\}\in C$; $k=0, 1, ..., n$; $z_0=(x_0,y_0)$

- \blacksquare Цикл итерации выполняется n раз или до тех пор, пока модуль числа z_k не превышает 2.
- **С**ерии точек $\{z_k\}$, определяюют мнимый путь, называемый *орбитой*.
- Точки, чьи орбиты никогда не выходят за пределы мнимого цилиндра, расположенного в начале кооординат комплексной плоскости, считаются элементами множества Мандельброта и обычно закрашиваются черным.
- Точки, чьи орбиты выходят за пределы цилиндра, раскрашиваются определенным цветом, в соответствии с быстротой "убегания":.
- В результате на изображении получим множество Мандельброта и его окружение с "нестабильными" областями фрактала областями, для которых малые изменения формулы ведут к большой разнице в орбитальном поведении.

ГАлгебраические фракталы. Фрактал Жюлиа.

 Для каждой точки изображения необходимо выполнить цикл итераций согласно формуле:

$$z_{k+1}=z_k^2+c$$
, где $\{z_k, c\}\in C; k=0, 1, ..., n; z_0=(x_0,y_0)$

 \blacksquare Цикл итерации выполняется n раз или до тех пор, пока модуль числа z_k не превышает 2.

-Алгебраические фракталы. Фрактал Ньютона.

- Он основан на решении уравнений методом Ньютона.
- Решение уравнения f(z) = 0 имеет вид $z_{k+1} = N(z_k)$, где N(z) = z f(z)/f'(z).

Алгебраические фракталы. Фрактал Тейлора.

- Рассмотрим разложение ехр(z) в ряд Тейлора.
- **z** комлексное число.
- Раскраска определяется тем, насколько быстро сумма многочленов, взятых с некоторым коэффициентом (в его выборе можно поэксперементировать), приближается к значению экспоненты.

Стохастические фракталы

- Типичный представитель данного класса фракталов "Плазма".
- Для ее построения возьмем прямоугольник и для каждого его угла определим цвет.
- Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число.
- Чем больше случайное число тем более "рваным" будет рисунок.
- Если мы теперь скажем, что цвет точки это высота над уровнем моря получим вместо плазмы - горный массив.
- Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру и пожалуйста фотореалистичные горы готовы.

•Системы итерирующих функций (IFS)

■ *Система итерирующих функций* — это совокупность сжимающих аффинных преобразований.

$$x_{k+1} = Ax_k + By_k + E;$$

$$y_{k+1} = Cx_k + Dy_k + F$$

- Для синтеза фрактала выбирается начальная точка, к которой применяется случайным образом выбранное из IFS преобразование, в результате чего точка перемещается в другой конец экрана.
- Эта операция повторяется много раз (достаточно 100 итераций), и через некоторое время точка начинает блуждать по аттрактору, (аттрактор множество всех возможных траекторий), который и будет представлять собой изображение фрактала. Каждое новое положение точки окрашивается цветом, отличным от фона.
- Для того, чтобы блуждающая точка окрашивала новые пикселы, а не блуждала по старым, используют седьмой параметр, который представляет собой вероятность появления конкретного аффинного преобразования из набора преобразований IFS.

-Системы итерирующих функций (IFS). Лист папоротника

a	b	c	d	e	f	p
0	0	0	0.16	0	0	0.01
0.85	0.04	-0.04	0.85	0	1.6	0.85
0.2	-0.26	0.23	0.22	0	1.6	0.07
-0.15	0.28	0.26	0.24	0	0.44	0.07

