제 2류 위험 물(가연성 고체)

2018. 03. 00

CONTENTS

- I 공통 성질
- Ⅲ 황화린
- Ⅲ 적린(P)
- IV 황(유황)(S)
- V 마그네슘(Mg)
- VI 금속분
- ∨ 기출 문제

출제 포인트

- 이 섹션에서는 적린과 제 2류 위험물인 황린을 비교해서 묻는 문제가 가장 많이 출제되고 있다.
- 황화린은 분량이 많지 않으니 삼황화린, 오황화린, 칠황화린에 대해 잘 정리하도록 한다.
- 금속분에서는 알루미늄분과 아연분의 출제 빈도가 높으니 철 저히 대비하도록 한다.
- 또한 제2류 위험물의 일반적인 성질과 소화 방법에 대해서도 확실히 정리하도록 한다

공통 성질

- 일반적 성질
 - 대부분 비중이 1보다 크고 물에 녹지 않는다.
 - 산소를 함유하고 있지 않은 강력한 환원성 물질이다.
 - 산소와의 결합이 용이하고 잘 연소한다.
 - 대부분 산화되기 쉽다.
 - 대부분 무기화합물이다.
 - 연소속도가 빠르다.
 - 비교적 저온에서 착화한다.

• 위험성

- 강산화성 물질과의 혼합 시 충격 등에 의하여 폭발할 가능성이 있다.
- 금속분, 철분은 밀폐된 공간 내에서 분진폭발의 위험이 있다.
- 금속분, 철분, 마그네슘은 물, 습기, 산과 접촉하여 수소를 발생하고 발열한다.

공통 성질

- 저장 및 취급
 - 점화원으로부터 멀리하고 가열을 피할 것
 - 금속분, 철분, 마그네슘은 물, 습기, 산과의 접촉을 피할 것
 - 용기 파손으로 인한 위험물의 누설에 주의할 것
 - 강산화성 물질(제 1 류·제6류 위험물)과의 혼합을 피할 것
 - 저장용기는 밀봉하고 통풍이 잘 되는 냉암소에 보관한다.

• 소화 방법

- 황화린, 철분, 금속분 : 마른 모래, 분말, 이산화탄소 등을 이용한 질식 소화가 효과적이다.
- 적린, 유황 : 다량의 물에 의한 냉각소화가 효과적이다.

황화린

삼황화린(P₄S₃)

비중	착화점	융점	비점
2.03	100°C	172.5℃	407°C

- 일반적 성질
 - ❖황색 결정으로 조해성이 없다.
 - ❖ 질산, 알칼리, 이황화탄소에 녹지만, 염산, 황산, 염소에는 녹지 않는다.
 - ❖차가운 물에서는 녹지 않고 뜨거운 물에서 분해된다.
- 위험성
 - ❖ 연소 시 오산화인과 이산화황(SO₂) 이 생성된다.
 - ❖ 과산화물, 과망간산염, 황린, 금속분과 흔합하면 자연발화할 수 있다.
- 화학반응식

황화린

• 오황화린(P₂S₅)

비중	착화점	융점	비점
2.09	142°C	290°C	514℃

- 일반적 성질
 - ❖ 담황색 결정으로 조해성, 흡습성이 있다.
 - ❖알코올 및 이황화탄소에 잘 녹는다.
- 위험성
 - ❖물 또는 알칼리와 분해하여 황화수소(H₂S)와 인산을 발생하며, 황화수소 를 연소시키면 이산화황이 발생한다.
- 화학반응식
 - 물과의 분해반응식
 P2S5 + 8H2O → 5H2S + 2H3PO4↑
 오황화린 물 황화수소 인산

황화린

• 칠황화린(P₄S₇)

비중	착화점	융점	비점
2.19	310°C	523℃	514℃

- 일반적 성질
 - ❖ 담황색 결정으로 조해성이 있다.
 - ❖ 이황화탄소에 약간 녹는다.
- 위험성
 - ❖ 냉수에서는 서서히 분해되며, 온수에서는 급격히 분해되어 황화수소와 인산을 발생한다.

적린(P)

비중	착화점	융점	비점
2.2	260°C	600°C	514℃

• 일반적 성질

- 암적색의 분말이다.
- 황린과 동소체이며, 비금속원소이다.
- 브롬화인에 녹으며, 물, 이황화탄소, 알칼리, 에테르, 암모니아에 녹지 않는다.
- 황린에 비해 안정적이기 때문에 공기 중에 방치해도 자연발화하지 않는다.

• 위험성

- 연소 시 오산화인을 발생한다.
- 산화제인 염소산칼륨과 혼합하면 마찰, 충격, 가열에 의해 폭발할 위 험이 높다.
- 강알칼리와 반응하여 유독성의 포스핀가스를 발생한다.

적린(P)

비중	착화점	융점	비점
2.2	260°C	600°C	514℃

- 소화 방법
 - 다량의 주수소화가 효과적이다.
- 화학반응식
 - 연소반응식 4P + 5O₂ → 2P₂O₅ ^{적린} 산소 오산화인

적린(P)

• 황린과 적린의 비교

구분	황린	적린
분류	제3류 위험물	제2류 위험물
외관	백색 또는 담황색의 고체	암적색의 분말
안정성	불안정하다.	안정하다.
착화온도	50°C	260°C
자연발화 유무	자연발화한다.	자연발화하지 않는다.
화학적 활성	화학적 활성이 크다.	화학적 활성이 작다.

황(유황)(S)

구분	비중	착화점	융점	비점
사방황	2.07	232.2℃	113℃	-
단사황	1.96	-	119℃	445°C
고무상황	-	360°C	-	-

• 일반적 성질

- 황색의 결정 또는 분말이다.
- 위험물의 기준 : 순도 60중량퍼센트 이상
- 물, 알코올에 녹지 않는다.
- 연소 형태 : 증발연소 · 푸른색 불꽃을 내면서 아황산가스(SO₂) 발생
- 사방황, 단사황은 이황화탄소에 잘 녹지만 고무상황은 이황화탄소에 녹지 않는다.

황(유황)(S)

구분	비중	착화점	융점	비점
사방황	2.07	232.2℃	113℃	-
단사황	1.96	-	119℃	445°C
고무상황	-	360°C	-	-

• 위험성

- 전기의 부도체로 마찰에 의한 정전기가 발생할 수 있으니 주의한다.
- 미분이 공기 중에 떠 있을 때 산소와 결합하여 분진폭발의 위험이 있다.
- 가연물, 산화제와의 혼합물은 가열, 충격, 마찰등에 의해 발화할 수도 있다.

황(유황)(S)

구분	비중	착화점	융점	비점
사방황	2.07	232.2℃	113℃	-
단사황	1.96	-	119℃	445°C
고무상황	-	360°C	-	-

- 소화 방법
 - 다량의 주수소화가 효과적이다.
 - 소량일 때는 모래에 의한 질식소화를 한다.
- 화학반응식
 - 연소반응식
 S + O₂ → SO₂
 황 산소 아황산가스

마그네슘(Mg)

비중	융점	비점
1.74	650°C	1,102℃

• 일반적 성질

- 은백색의 광택이 있는 금속분말로 알칼리토금속에 속한다.
- 열전도율 및 전기전도도가 큰 금속이다(알루미늄보다는 낮다).

• 위험성

- 온수 또는 강산(염산, 황산)과 반응하여 수소가스를 발생한다.
- 미분상태의 경우 공기 중 습기와 반응하여 자연발화할 수 있다.
- 염소, 브롬, 요오드, 플루오르 등의 할로겐원소와 접촉시 자연발화한다.
- 산이나 염류에 침식당한다.

마그네슘(Mg)

비중	융점	비점
1.74	650°C	1,102℃

- 소화 방법
 - 마른 모래, 금속화재용 분말소화약제가 효과적이다.
 - 이산화탄소를 이용한 질식소화는 위험하다.
- 화학반응식

금속분

구분	비중	융점	비점
알루미늄분	2.7	660°C	2,000℃
아연분	7.14	419°C	907℃

• 알루미늄분

- 일반적 성질
 - ❖은백색의 광택이 있는 금속이다.
 - ❖ 열전도율 및 전기전도도가 크며, 전성 · 연성이 풍부하다.
 - ❖ 공기 중에서 쉽게 산화하지만, 표변에 산화알루미늄(Al₂O₃)의 치밀한 산 화피막이 형성되어 내부를 보호하므로 부식성이 적다.
 - ❖ 염산, 황산, 묽은 질산에 침식당하기 쉬우며, 진한 질산에는 잘 견딘다.

■ 위험성

- ❖ 끓는 물, 산, 알칼리수용액(수산화나트륨 수용액등)과 반응하여 수소를 발생한다.
- ❖ 산화제와 혼합하면 가열, 충격, 마찰로 인해 발화할 수 있다.
- ❖ 할로겐 원소와 접촉하면 발화할 수 있다.

금속분

구분	비중	융점	비점
알루미늄분	2.7	660°C	2,000°C
아연분	7.14	419°C	907°C

- 알루미늄분
 - 저장 및 취급
 - ❖습기가 없고 환기가 잘되는 장소에 보관한다.
 - 소화 방법
 - ❖ 마른 모래, 분말, 이산화탄소 등을 이용한 질식 소화가 효과적이다.
 - ❖ 주수소화는 수소가스를 발생하므로 위험하다.

금속분

- 아연분
 - 일반적 성질
 - ❖은백색의 분말
 - ❖ 공기 중에서 연소되기 쉽지만, 표면에 산화피막이 형성되어 내부를 보호 한다.
 - 위험성
 - ❖ 산, 알칼리와 반응하여 수소를 발생한다.
 - ❖ 아연 분말은 공기 중에서 연소하여 산화아연을 발생한다.
 - 저장 및 취급
 - ❖ 환기가 잘 되는 건조한 냉소에 보관한다.

- 1. 제 2류 위험물은 어떤 성질의 물질인가? (07-02)
 - ① 산화성고체

② 가연성고체

③ 자연발화성 물질

④ 자기 반응성 물질

- 2. 제2류 위험물의 화재에 대한 일반적인 특징을 가장 옳게 설명한 것은? (12-04)
 - ① 연소 속도가 빠르다.
 - ② 산소를 함유하고 있어 질식소화는 효과가 없다.
 - ③ 화재시 자신이 환원되고 다른 물질을 산화시킨다.
 - ④ 연소열이 거의 없어 초기 화재시 발견이 어렵다.
- 3. 제2류 위험물과 제5류 위험물의 공통점에 해당하는 것은? (13-01)
 - ① 유기화합물이다.

② 가연성 물질이다.

③ 자연발화성 물질이다.

④ 산소를 포함하고 있는 물질이다.

- 4. 제2류 위험물과 제5류 위험물의 일반적인 성질에서 공통점으로 옳은 것은? (11-04)
 - ① 산화력이 세다.

② 가연성 물질이다.

③ 액체 물질이다.

④ 산소함유 물질이다.

- 5. 황화린의 성질에 해당되지 않는 것은? (07-02)
 - ① 공통적으로 유독한 연소 생성물이 발생한다.
 - ② 종류에 따라 용해성질이 다를 수 있다.
 - ③ P₄S₃ 의 녹는점은 100℃ 보다 높다.
 - ④ P₂S₅ 는 물보다 가볍다.
- 6. P₄S₃ 이 가장 잘 녹는 것은? (12-01)

 - ① 염산 ② 이황화탄소 ③ 황산

- ④ 냉수
- 7. 황화린에 대한 설명으로 틀린 것은? (15-01)
 - ① 고체이다.
 - ② 가연성 물질이다.
 - ③ P₄S₃, P₂S₅ 등의 물질이 있다.
 - ④ 물질에 따른 지정수량은 59kg, 100kg, 300kg 이다.

8. 황화린에 대한 설명으로 옳은 것은? (07-02)

- ① P₄S₃은 회색의 비결정성 분말로 자연발화성이 있으므로 습기와 산화제의 접촉을 피한다.
- ② P_4S_3 의 연소생성물은 P_2O_5 와 H_3PO_4 이다.
- ③ P_4S_7 은 조해성이 있고, 더운물에 분해하여 H_2S 가 발생한다.
- ④ P₂S₅은 공기 중에 약 90℃에서 발화하고 냉수에 급격히 분해하여 SO₃가스가 발생한다.

9. 황화린에 대한 설명 중 잘못된 것은? (12-01)

- ① P₄S₃ 는 황색 결정 덩어리로 조해성이 있고, 공기 중 약 50℃ 에서 발화한다.
- ② P_2S_5 는 담황색 결정으로 조해성이 있고, 알칼리와 분해하여 가연성 가스를 발생한다.
- ③ P₄S₇ 담황색 결정으로 조해성이 있고, 온수에 녹아 유독한 H2S를 발생한다.
- ④ P_4S_3 과 P_2S_5 의 연소생성물은 모두 P_2O_5 와 SO_2 이다.

10. 오황화린이 물과 반응하였을 때 발생하는 물질로 옳은 것은? (13-01)

① 황화수소, 오산화인

② 황화수소, 인산

③ 이산화황, 오산화인

④ 이산화황, 인산

- 11. P_4S_7 에 더운물을 가하면 분해된다. 이 때 주로 발생하는 유독물질의 명칭은? (09-04)

- ① 아황산 ② 황화수소 ③ 인화수소 ④ 오산화린
- 12. 오황화인이 물과 작용해서 발생하는 유독성 기체는? (12-04)
 - ① 아황산가스 ② 포스겐 ③ 황화수소 ④ 인화수소

- 13. 오황화린이 습한 공기 중에서 분해하여 발생하는 가스에 대한 설명으로 옳은 것은? (08-04)

- ① 불연성이다. ② 유독하다. ③ 냄새가 없다. ④ 물에 녹지 않는다.
- 14. 오황화린의 저장 및 취급방법으로 틀린 것은? (13-04)
 - ① 산화제와의 접촉을 피한다.
 - ② 물속에 밀봉하여 저장한다.
 - ③ 불꽃과의 접근이나 가열을 피한다.
 - ④ 용기의 파손, 위험물의 누출에 유의한다.

- 15. 적린과 황린의 공통점이 아닌 것은? (14-02)
 - ① 화재발생시 물을 이용한 소화가 가능하다.
 - ② 이황화탄소에 잘 녹는다.
 - ③ 연소시 P₂O₅ 의 흰 연기가 생긴다.
 - ④ 구성원소는 P 이다.
- 16. 다음 중 적린과 황린에서 동일한 성질을 나타내는 것은? (13-02)

발화점

② 색상 ③ 유독성 ④ 연소생성물

17. 적린이 공기 중에서 연소할 때 생성되는 물질은? (13-02)

 \bigcirc P₂O

2 PO₂

 \bigcirc PO₃

 $(4) P_2O_5$

- 18. 적린에 관한 설명 중 틀린 것은? (13-04)
 - ① 황린의 동소체이고 황린에 비하여 안정하다.
 - ② 성냥, 화약 등에 이용된다.
 - ③ 연소생성물은 황린과 같다.
 - ④ 자연발화를 막기 위해 물 속에 보관한다.

19. 적린의 위험성에 대한 설명으로 옳은 것은? (12-01)

- ① 발화 방지를 위해 염소산칼륨과 함께 보관한다.
- ② 물과 격렬하게 반응하여 열을 발생한다.
- ③ 공기 중에 방치하면 자연발화한다.
- ④ 산화재와 혼합할 경우 마찰・충격에 의해서 발화한다.

20. 황린과 적린의 성질에 대한 설명 중 틀린 것은? (12-04)

- ① 황린은 담황색의 고체이며 마늘과 비슷한 냄새가 난다.
- ② 적린은 암적색의 분말이고 냄새가 없다.
- ③ 황린은 독성이 없고 적린은 맹독성 물질이다.
- ④ 황린은 이황화탄소에 녹지만 적린은 녹지 않는다.

21. 황이 연소할 때 발생하는 가스는? (14-04)

 \bigcirc H₂S

 \bigcirc SO₂

3 CO₂

4 H₂O

- 22. 유황(S)에 대한 설명으로 옳은 것은? (12-04)
 - ① 불연성이지만 산화제 역할을 하기 때문에 가연물 접촉은 위험하다.
 - ② 유기용제, 알코올, 물 등에 매우 잘 녹는다.
 - ③ 사방황, 고무상황과 같은 동소체가 있다.
 - ④ 전기도체이므로 감전에 주의한다.
- 23. 다음 위험물 중 자연발화 위험성이 가장 낮은 것은? (13-04)
 - ① 알킬리튬
- ② 알킬알루미늄 ③ 칼륨

- ④ 유황
- 24. 다음 위험물에 화재가 발생하였을 때 주수소화를 하면 수소가스가 발생하는 것은? (10-02)
 - ① 황화린

- ② 적린
- ③ 마그네슘 ④ 황
- 25. 다음 위험물질에 대한 소화방법이 잘못 짝지어진 것은? (07-01)
 - ① 염소산칼륨 물에 의한 냉각소화
 - ② 마그네슘 탄산가스에 의한 질식소화
 - ③ 벤젠 탄산가스에 의한 질식소화
 - ④ 유황 물에 의한 냉각소화

26. 마그네슘의 위험성에 관한 설명으로 틀린 것은? (15-04)

- ① 연소 시 양이 많은 경우 순간적으로 맹렬히 폭발할 수 있다.
- ② 가열하면 가연성 가스를 발생한다.
- ③ 산화제와의 혼합물은 위험성이 높다.
- ④ 공기 중의 습기와 반응하여 열이 축척되면 자연발화의 위험이 있다.

27. 위험물의 저장 방법에 대한 설명 중 틀린 것은? (15-01)

- ① 황린은 산화제와 혼합되지 않게 저장한다.
- ② 황은 정전기가 축적되지 않도록 저장한다.
- ③ 적린은 인화성 물질로부터 격리 저장한다.
- ④ 마그네슘분은 분진을 방지하기 위해 약간의 수분을 포함시켜 저장한다.

28. 위험물의 반응성에 대한 설명 중 틀린 것은? (13-01)

- ① 마그네슘은 온수와 작용하여 산소를 발생하고 산화마그네슘이 된다.
- ② 황린은 공기 중에서 연소하여 오산화인을 발생한다.
- ③ 아연 분말은 공기 중에서 연소하여 산화아연을 발생한다.
- ④ 삼황화린은 공기 중에서 연소하여 오산화인을 발생한다.

- 29. 위험물의 저장 방법에 대한 설명 중 틀린 것은? (12-02)
 - ① 황린은 산화제와 혼합되지 않게 저장한다.
 - ② 황은 정전기가 축적되지 않도록 저장한다.
 - ③ 적린은 인화성 물질로부터 격리 저장한다.
 - ④ 마그네슘분은 분진을 방지하기 위해 약간의 수분을 포함시켜 저장한다.
- 30. 위험물의 저장법으로 옳지 않은 것은? (14-01)
 - ① 금속 나트륨은 석유 속에 저장한다.
 - ② 황린은 물 속에 저장한다.
 - ③ 질화면은 물 또는 알코올에 적셔서 저장한다.
 - ④ 알루미늄분은 분진발생 방지를 위해 물에 적셔서 저장한다.
- 31. 은백색의 광택이 있는 비중 약 2.7 의 금속으로서 열, 전기의 전도성이 크며, 진한 질산에서는 부동태가 되고 묽은 질산에 잘 녹는 것은? (15-01)

1 Al

② Mg

3 Zn

4 Sb

Thank you