5* Conditions oux limites de Newmann. (Exercice 2.6)

Soit $\Omega \subseteq \mathbb{R}^N$ ouvert bornée a frontière Lipschitzienne. On s'intéresse au problème aux conditions aux limites de Neumann suivant:

$$\begin{cases} -\operatorname{div}(A\nabla u) = -\operatorname{div}F & \operatorname{dons} \Omega \\ A\nabla u \cdot n = F \cdot n & \operatorname{sur} \partial \Omega \end{cases}$$
 (5.a)

où n'est le vectour normal à DR extérieur à R.

1. Demons une formulation faible de ce problème. Soit $H = \{u \in H'(x) \mid \int_{x} u = 0\}$. et $T \in (H'(x))'$. On cherche $u \in H$ tel que

$$\int_{\mathcal{D}} A \nabla v \cdot \nabla v = \left\langle T, v \right\rangle_{H'(\mathcal{D})', H'(\mathcal{D})} \quad \forall v \in H'(\mathcal{D}). \quad (5.5)$$

Ramarque: Les conditions aux limites de Newmann sont prisers en compte dans l'espace H sur le quel on cherche les solutions.

2. Non existance pour fout TE H1(x).

H'(12) | peut être caractérisé de la façon suivante. VTE H'(12), ∃a∈IR et F∈ Le(12) N tel que

$$\langle T, u \rangle_{H'(x)^1, H'(x)} = \alpha \int_{\mathcal{L}} u + \int_{\mathcal{L}} F \cdot \nabla u \quad \forall u \in H'(x).$$

La preuve de cette coroctérisation se base sur le théorème de représentation de Riesz (1) et l'inégalitée de Pointcarée qui affirme l'éxistance de C2>0 lel que

$$\|u\|_{L^2(\Omega)} \leqslant C_{\mathcal{D}} \||\nabla u|\|_{L^2(\Omega)}$$
 $\forall u \in H$ (voir la preuse par l'absurde exercice 2.6).

On montre facilement que pour fout $T \in H'(R)'$ tel que $a \neq 0$ le problème (5.b) n'a pas de solution. En effet, comme $1_R \in H'(R)$, si l'on prond $v = 1_R$ dons (5.b) en arrive au fait que a = 0.

3. Existance et unicité à une constante près. Il s'agit de constater que, lorsque a=0

$$\int_{\mathcal{D}} A \nabla u \cdot \nabla v = \int_{\mathcal{D}} F \cdot \nabla v \quad \forall \ v \in H'(x) \quad \text{est equivalent à} \quad \int_{\mathcal{D}} A \nabla u \cdot \nabla v = \int_{\mathcal{D}} F \cdot \nabla v \quad \forall \ v \in H \quad (5.c)$$

Or (5.c) a une unique solution (on suppose ici qu'il existe 0.00 tel que 0.00 0.

Remarque: Si u est une solution de (5.6) alors u est unique a une constante près.

4. Solution Classique. Si les coefficients de A, $aij \in C^{\infty}(\bar{\mathcal{I}}, IR)$, $F \in C^{\infty}(\bar{\mathcal{I}}, IR^{N})$ et \mathcal{N} est C^{∞} et la solution foible \mathcal{N} de (5.6) est C^{∞} , alors.

En effet supposors que

$$\int_{\mathcal{N}} A \nabla v \cdot \nabla v = \int_{\mathcal{N}} F \cdot \nabla v \qquad \forall v \in \mathcal{H}.$$

En prenant $V \in C^{\infty}(I) \cap H$ et en intégrant par partier le côté gauche, an obtivit

$$\int_{\mathcal{N}} \bigwedge \nabla u \cdot \nabla v = \int_{\mathcal{N}} -(\Delta u) V + \int_{\partial \mathcal{N}} A \frac{\partial u}{\partial \vec{n}} \cdot V .$$

Comme FECO, on a write

$$\int_{\Omega} F \cdot \nabla v = - \int_{\Omega} \operatorname{div} F v + \int_{\partial \Omega} (F \cdot \vec{n}) v$$

Integration par parties: $\int_{\mathcal{D}} v \partial_i u = - \int_{\mathcal{D}} u(\partial_i v) + \int_{\partial \mathcal{D}} uv \, v_i^{\bullet}$

Un argument type lemme fondamental du calcul des voriations permet d'affirmer que

$$-\Delta u = -\operatorname{div} F$$
 et $\frac{\partial u}{\partial \vec{n}} = F \cdot \vec{n}$ p.p.t et donc en lout point.