ISG Scripts Documentation

Release v2.0.0

Sedemac R&D

CONTENTS:

1	Firetrace	3
2	Deadtrace	9
3	Assist	15
4	Speedtime	17
5	Codebase	19
6	Indices and tables	21

This repository houses scripts used to analyse data and generate plots for customer demos of ISG applications. PCAN traces are taken when cranking on vehicle.

Modules for PCAN trace files:

- firetrace
- deadtrace
- assist

Modules for Picoscope .csv files:

• speedtime module

CONTENTS: 1

2 CONTENTS:

ONE

FIRETRACE

Firetraces are traces of engine starts taken with sparkplug.

```
{
"sym_file" : "Symbol_file_isg_assist_codebase.sym",
"trace_file" : "v13_working_more_clean_cranks.trc",
"vertical_speed_jump" : 550,
"jump_time_duration" : 0.03,
"idling_speed" : 1500,
"m_speed" : "Bemf_Speed_RPM",
"operation_mode" : "MEAS_OPMODE",
"battery_current" : "IDC_Estimated",
"battery_voltage" : "Vbat",
"u_theta" : "MEAS_UTHETA"
}
```

Example set of config, trace, and .sym files are config.json, trace.trc and symbol.sym. Command below is used to analyse firetrace taken from PCAN.

Listing 1: Command

```
isg.firetrace --config config.json
```

Description of config.json file:

- "sym_file": Name of PCAN .sym file
- "trace_file": Name of .trc file
- "speed_jump": Speed jump in RPM at fire point. Motor-engine specific.
- $\bullet \ \ "jump_time_duration": Time \ in \ seconds \ required \ to \ achieve \ "vertical_speed_jump" \ at \ fire \ point.$
- "m speed": Speed variable name in .sym file
- "operation_mode": Op_mode variable name in .sym file
- "battery_current": Ibat variable name in .sym file
- "battery_voltage": Vbat variable name in .sym file
- "u_theta": U_theta variable name in .sym file

Description of script:

- Successful cranks detection based on op__mode
- For each successful crank

- Calculate reverse bang time based on utheta
- Engine-fire-time based on jump in speed
- Jump detection requires engine-motor specific parameter speed_jump. 550 RPM in 0.03 seconds is for NTorq.
- The value of jump_time_duration should be increased if m_speed data transmits are sparse.

Figure outputs are saved in folder named isg_plots created at terminal location. A sample subset of the figures is shown below.

4 Chapter 1. Firetrace

Time upto Reverse Bang (sec)

Time upto Engine Fire (sec)

6 Chapter 1. Firetrace

Energy Consumed upto 95% Idling (J)

Text-output is written in firetrace_output.csv file at terminal location.

TWO

DEADTRACE

Deadtraces are taken with sparkplug removed. Example config.json file is shown below:

```
{
"sym_file" : "Symbol_file_isg_assist_codebase.sym",
"trace_file" : "true_dead_cranks_v13.trc",
"m_speed" : "Bemf_Speed_RPM",
"operation_mode" : "MEAS_OPMODE",
"battery_current" : "IDC_Estimated",
"battery_voltage" : "Vbat",
"u_theta" : "MEAS_UTHETA",
"ia" : "IA"
}
```

Example set of config, trace_file, and sym_file files are config.json, trace.trc and symbol.sym.

Command below is used to analyse deadtrace taken from PCAN.

Listing 1: Command

```
isg.deadtrace --config deadconfig.json
```

Description of config.json file:

- "sym_file": Name of PCAN .sym file
- "trace_file": Name of trace file
- "m_speed": Speed variable name in .sym file
- "operation_mode": Op_mode variable name in .sym file
- "battery_current": Ibat variable name in .sym file
- "battery_voltage": Vbat variable name in .sym file
- "u_theta": U_theta variable name in .sym file
- "ia": Phase current variable name in .sym file

Description of script:

- Script calculates reverse bang time based on utheta.
- Sci-py is used to find compression times to isolate thermodynamic cycles.
- Statistics of power drawn from the battery, battery-current, battery-voltage and energy consumed per cycle are generated.
- At every compression, current drawn from battery is maximum and battery voltage dips to a minimum.

• Thus, statistics include maximum, mean of ibat and minimum, mean of vbat.

Figure output is placed in folder named <code>isg_plots</code> created at the location of terminal initiation. A sample subset of the output-figures is shown below.

Text-output include line rms maximum and average written in deadtrace_output.csv file at terminal location.

THREE

ASSIST

The following command is used to analyse assist and charging efficiency taken from PCAN. The trace files contains charging or assist.

```
{
    "begin_time" : [11, 54, 24],
    "end_time" : [11, 54, 25],
    "Rs" : 33.5,
    "sym_file" : "Symbol_file_isg_assist_codebase.sym",
    "trace_file" : "assist_test_24nov.trc",
    "battery_current" : "IDC_Estimated",
    "battery_voltage" : "Vbat",
    "assist_state" : "Assist_State",
    "ia" : "IA",
    "ib" : "IB",
    "ic" : "IC",
    "charge_state" : "Charging_State",
    "a_or_c" : "a"
}
```

Example set of config, trace, and .sym files are config.json, trace.trc and symbol.sym.

Command below is used to analyse trace taken from PCAN.

Listing 1: Command

```
isg.assist --config assist.json
```

Description of config.json file:

- "sym_file": Name of PCAN .sym file
- "trace file": Name of .trc file
- "begin_time": Speed jump in RPM at fire point. Motor-engine specific.
- "end_time": Time in seconds required to achieve "vertical_speed_jump" at fire point.
- "Rs": Phase resistance in mOhm of the motor
- "a_or_c": Assist "a" or charging mode "c"
- "operation_mode": Op_mode variable name in .sym file
- "battery_current": Ibat variable name in .sym file
- "battery_voltage": Vbat variable name in .sym file

- "assist_state": Assist state variable name in .sym file
- "charge_state": Charging state variable name in .sym file
- "ia": Phase current A in .sym file
- "ib": Phase current B in .sym file
- "ic": Phase current C in .sym file

Energy from battery:

• e_bat = Vbat.Ibat.t

Copper loss:

• $e_{loss} = Rs.(ia^2 + ib^2 + ic^2)t$

Efficiency:

· Charging-

$$- eta = -1*e_bat/(-1*e_bat + e_loss)$$

· Assist-

$$-$$
 eta = 1 - (e_loss/e_bat)

Voltage ripple, efficiency, energy from battery and copper loss values are printed on command line. Sample output is in figure below:

```
MINGW64:/c/Users/adhishree.apte/Documents/Scripting_project/ntorque
dhishree.apte@LP677 MINGW64 ~/Documents/Scripting_project/ntorque
 isg.assist --config assistconfig.json
config file read
total_can_msgs in trace file = 228271
ariable_name_to_can_id_map {210: ['ia', 'ib', 'ic'], 212: ['vbat', 'cst', 'ast'
], 213: ['current']}
can_ids_filtered [210, 210, 210, 212, 212, 212, 213]
number of filtered can_msgs = 300
user input assist
start_time = 2022-11-24 11:54:24.007927
end_time = 2022-11-24 11:54:24.007927
Voltage ripple = 0.095 V
Energy flowing out of battery = 476.19 J
Energy of copper losses = 187.07 J
Efficiency = 0.607
(base)
dhishree.apte@LP677 MINGW64 ~/Documents/Scripting_project/ntorque
```

16 Chapter 3. Assist

FOUR

SPEEDTIME

Command below is used to analyse csv files created from data taken on Picoscope.

Listing 1: Command

isg.speedtime --file_name picodata.csv

Example .csv file is pico_data.csv.

Output filtered speed is populated in output_speedtime.csv. Plot is saved in folder named "isg_plots" created at location of terminal.

-

CHAP	ΤER
Fi	VE

CODEBASE

Download page: https://bitbucket.org/sedemac/isg_scripts/src/master/

SIX

INDICES AND TABLES

- genindex
- modindex
- search