Core Mathematical Function of SlimR v1.0.7

Section 1 Celltype Calculate

Variables

- *N*: Number of genes
- *C*: Number of cell clusters
- $i \in \{1, C\}$: Cluster index
- $g \in \{1, N\}$: Gene index
- $x_{g,i}$: Expression value of gene g in cluster i
- $\mu_{g,i}$: Average expression of gene g in cluster i
- $\sigma_{g,i}$: Standard deviation of gene g in cluster i
- $f_{g,i}$: Fraction of cells in cluster i where $x_{g,i} > m$ (minimum expression threshold m; default: 0.1)
- w: Specificity weight parameter (default: 3)
- $\sigma_{q,i}$ Average standard deviation of all genes in cluster i
- ε : Small constant to avoid division by zero (default: 1×10^{-6})

Step 1: Specificity Score Calculation

For each gene g in cluster i:

$$s_{g,i} = \mu_{g,i} \cdot f_{g,i} \cdot (1 + w \cdot \frac{\sigma_{g,i}}{\sigma_i + \varepsilon})$$

Explanation:

- $\mu_{g,i}$: Mean expression level.
- $f_{q,i}$: Proportion of cells expressing g.
- $\sigma_{g,i}i$: Normalized variability of g compared to other genes in the cluster.
- w: Amplifies the impact of high variability.

Step 2: Normalization of Specificity Scores

Normalize $s_{q,i}$ across genes per cluster i:

$$s'_{g,i} = \frac{s_{g,i} - min(s_{g,i})}{max(s_{g,i}) - min(s_{g,i})} (if \ max(s_{g,i}) \neq min(s_{g,i}))$$

Purpose: Ensures scores are comparable across genes within the same cluster.

Step 3: Gene Weight Calculation

Compute weights for genes based on their variability-to-mean ratio:

$$g_{w} = \frac{sd(\sigma_{g,i})}{mean(\mu_{g,i})} (if mean(\mu_{g,i}) \neq 0)$$

Purpose: Prioritize genes with higher variability and lower mean expression.

Step 4: Cluster-Specific Gene Expression Score

Aggregate normalized scores $s'_{q,i}$ into a final cluster score c_i :

$$c_i = \sum_{g=1}^{N} g_w \cdot s'_{g,i}$$

Interpretation:

- c_i reflects the weighted sum of gene-specificity scores for cluster i.
- Higher c_i indicates stronger evidence for the cluster being enriched in the target gene set.

Step 5: Final Output Matrix

For all clusters $i \in \{1, C\}$ and genes $g \in \{1, N\}$, the function outputs a matrix R where:

$$R_{i,g} = c_{g,i}'$$

Visualization:

• The matrix is transposed and row-normalized for heatmap visualization.

Section 2 Celltype Verification

Variables

- $i \in \{1, C\}$: Cluster index
- $g \in \{1, N\}$: Gene index
- $f_{g,i}$: Fraction of cells in cluster i where $x_{g,i} > m$ (minimum expression threshold m; default: 0.1)
- *k*: Top gene count (default: 5)

Gene Scoring System

Screening of verification markers for cell types not located in "Markers_list", For each gene g in cell type i:

$$G_i^k = \arg \mathsf{T}_k(\sum_{i \neq i} \log_2 (\frac{\mu_{g,i}}{\overline{\mu}_{g,j}}) \cdot f_{g,i})$$

Note: When the cell type is in "Markers_list", verification markers uses the markers in it.

Feature Significance Score

Feature Significance Score, FSS, product value of 'log2FC' and 'Expression ratio':

$$FSS = \Delta \log_2(\mu_{g,i}) \cdot f_{g,i}$$

Where:

$$\Delta \log_2 (\mu_{g,i}) = \log_2 (\frac{\mu_{g,i}}{\overline{\mu}_{g,j}})$$

Note: The 'FSS' parameter is also used in the 'Read_seurat_markers()' function for Markers screening.