Self-taught learning: Transfer learning from unlabelled data

Authors: Rajat Raina et al.

@Stanford University

Presenter: Shao-Chuan Wang

Self-taught learning: Transfer learning from unlabelled data

Objective:

 Use the unlabelled data to improve the performance on a classification task.

Kea Ideas:

- Relax the assumption about the unlabelled data.
- Use unlabelled data to learn the best representation (dictionary)

Machine Learning Schemes

Supervised learning

Semi-supervised learning.

Transfer learning.

Next: Self-taught learning?

Self-taught Learning

Labeled examples:

$$\{(x_l^{(i)}, y^{(i)})\}_{i=1}^m \qquad x_l^{(i)} \in R^n, y^{(i)} \in \{1, \dots, T\}$$

Unlabeled examples:

$$\{x_u^{(i)}\}_{i=1}^k \qquad x_u^{(i)} \in R^n, k >> m$$

- The unlabeled and labeled data:
 - Need not share labels y.
 - Need not share a generative distribution.

Advantage: Such unlabeled data is often easy to obtain.

Self-taught learning

Table 1 Details of self-taught learning applications evaluated in the experiments.

	O	nt learning applications evalua		-
Domain	Unlabeled data	Labeled data	Classes	Raw features
Image	10 images of outdoor	Caltech101 image classifi-	101	Intensities in 14x14 pixel
classification	scenes	cation dataset		patch
Handwritten char-	Handwritten digits	Handwritten English char-	26	Intensities in 28x28 pixel
acter recognition	("0"–"9")	acters ("a"-"z")		character/digit image
Font character	Handwritten English	Font characters ("a"/"A" –	26	Intensities in 28x28 pixel
recognition	characters ("a"-"z")	"z"/"Z")		character image
Song genre	Song snippets from 10	Song snippets from 7 dif-	7	Log-frequency spectrogram
classification	genres	ferent genres		over 50ms time windows
Webpage	100,000 news articles	Categorized webpages	2	Bag-of-words with 500 word
classification	(Reuters newswire)	(from DMOZ hierarchy)		vocabulary
UseNet article	100,000 news articles	Categorized UseNet posts	2	Bag-of-words with 377 word
classification	(Reuters newswire)	(from "SRAA" dataset)		vocabulary

Use unlabelled data to learn the best representation.

Learning the structure

- Sparse coding: learning the dictionary
 - Encoding (L1-regularized least square problem)
 - Least angle regression (Efron et al. 2004) (very fast!!)
 - Feature-sign search (Honglak Lee et al. 2006)
 - Coordinate descent (Friedman et al. 2008)
 - Update dictionary(L2-constrained least square problem)
 - K-SVD (Aharon et al. 2006)
 - Online dictionary learning (Mairal et al. 2009)

$$\min_{d_{j},\alpha_{j}^{(i)}} \sum_{i} \|x_{u}^{(i)} - \sum_{j} \alpha_{j}^{(i)} d_{j}\|_{2}^{2} + \lambda \sum_{i} \|\alpha^{(i)}\|_{1}$$
Reconstruction error Sparsity penalty

Self-taught learning: flow

K-SVD, online dictionary learning...

Unlabelled Learning **Dictionary** data algorithm **Encoded SVM** Training data ➡ Training with features **Encoding** Fisher Encoded Testing data kernel

The Lasso

Testing

features

Predicted

Labels

SVM with Fisher kernel

Fisher kernel

$$U_{x} = \nabla_{d} \log P(x, \alpha \mid d) \qquad K(X_{i}, X_{j}) = U_{x}^{T} I^{-1} U_{x}$$
$$x = \hat{x} + \hat{r} \quad \hat{x} = D \alpha$$

• In Bayesian view, $\hat{r} \sim \exp(-\|x - \hat{x}\|_{2}^{2})$

$$P(\alpha) \sim \exp(-\lambda \sum_{j} |\alpha_{j}|) \quad \text{Laplace prior}$$

$$P(x, \alpha \mid d) = P(x \mid d, \alpha) P(\alpha) \propto \exp(-\|x^{j} - \hat{x}\|_{2}^{2}) \exp(-\lambda \sum_{j} |\alpha_{j}|)$$

$$U_{x} = \nabla_{d} \log P(x, \alpha \mid d) = C \nabla_{d} (\|x - \hat{x}\|_{2}^{2} + \lambda \sum_{j} |\alpha_{j}|)$$

$$K(X_{i}, X_{j}) = (\alpha^{(i)^{T}} \alpha^{(j)}) \cdot (r^{(i)^{T}} r^{(j)})$$

Example atoms

Natural images.

"edges"

Handwritten characters.

"strokes"

Sparse representation gives a higher level representation

Result: Character recognition

Sparse coding	58.5%
PCA	54.8%
Raw	54.8%

Handwritten English classification
(20 labeled images per handwritten character)

Bases learnt on digits

8.2% error reduction

Raw	17.9%
PCA	14.5%
Sparse coding	16.6%
Sparse coding + Raw	20.2%

English font classification

(20 labeled images per font character)

Bases learnt on handwritten English

2.8% error reduction

Image classification

Baseline	16%		
PCA	37%		
Sparse coding	47%		

(15 labeled images per class)

36.0% error reduction

Other reported results: Fei-Fei et al, 2004: 16% Berg et al., 2005: 17% Holub et al., 2005: 40% Serre et al., 2005: 35% Berg et al, 2005: 48%

Zhang et al., 2006: **59%** Lazebnik et al., 2006: 56%

Discussion

- Why sparse coding? Can this idea (learning structure from unlabelled image) be applied to other encoding schemes?
 - Probably because the nonlinear coding from x to alpha? Emulation of "end-stopping" phenomenon.
 (A feature is maximally activated by edges of only a specific orientation and length)

Summary

 Self-taught learning: Unlabeled data does not share the labels of the classification task.

- Use unlabeled data to discover features.
- Use sparse coding to construct an easy-toclassify, "higher-level" representation.

= 0.8 *

+ 0.3 *

0.5 *

