Komentar nekih zadataka iz 1. zadaće

- 1. zadatak. Nijedno rješenje nije sadržavalo jasan argument da je postojanje rješenja sustava $x^3 + Ax + B = 0$; $3x^2 + A = 0$ ekviv. uvjetu $4A^3 + 27B^2 = 0$. Evo jednog argumenta:
- Sustav je ekvivalentan sustavu: $x^3 + (-3x^2)x + B = 0$; $3x^2 + A = 0$, tj. sustavu $x^3 = \frac{B}{2}$; $x^2 = -\frac{A}{3}$ koji ima rješenje akko je $(\frac{B}{2})^2 = (-\frac{A}{3})^3$.
 - 2. zadatak. Neki nisu našli rješenje (5234, 378661).
- 5. zadatak. Za jednadžbu 2P = Q, rješenja nisu bila kompletna. Naime, ta jedn. uvijek ima 4 kompleksna rješenja, što se vidi i izravno, ali ovako: Jedn. 2P = O ima 4 kompl. rj. koji čine grupu; to su O, E_1, E_2, E_3 , gdje je $E_i := (e_i, 0)$. Zato, ako je $2P_1 = Q$, onda su rješenja jedn. 2P = Q točke: $P_1, P_1 + E_1, P_1 + E_2, P_1 + E_3$ (dokažite).

Što se tiče realnih rj. ako je jedn. s realnim koef. vrijedi:

2P = O ima 2 ili 4 elementa (zašto?) pa jedn. 2P = Q (uz realnu Q) ima 0, 2 ili 4 realna rj.

Za racionalna rješenja je ovako:

2P=Oima 1,2 ili 4 rac. rj., pa2P=Qima 0,1,2 ili 4 rj. Naime, ako ima bar jedno rac. rj., sva se dobiju dodavanjem tom rješ. racion. rješenja jed. 2P=O.