Approssimazioni di funzioni

Andrea Canale

May 20, 2025

Contents

1	App	prossimare funzioni	1
2	Pol	inomio di Taylor	2
	2.1	Esempio	2
3	Svil	uppo notevoli di MacLaurin	3
	3.1	Osservazioni	3
	3.2	Casi particolari di $(1+x)^a$	3
4	For	mula di Taylor con il resto di Lagrange	3
	4.1	Osservazioni	4
	4.2	Esempio	4
5	Uti	Utilizzo del polinomio di Taylor	

1 Approssimare funzioni

Avevamo visto che data una funzione $f: I \to \mathbb{R}$ con I un intervallo aperto, ed f derivabile in c, allora vale la seguente approssimazione:

$$f(x) \approx f(c) + f'(c)(x - c) \text{ Per } x \to c$$

Questa è un approssimazione lineare di natura locale. Stimiamo f(c) usando la pendenza della retta tangente.

Questa approssimazione viene denotata come $T_{1,c}(x)$ perchè usiamo la derivata prima.

Tuttavia sappiamo che più deriviamo una funzione f(c), più informazioni otteniamo su f(c) e quindi possiamo migliorare l'approssimazione.

Dovremo trovare un polinomio tale che:

$$T_{n,c}^{(k)}(c) = f^{(k)}(c)$$

2 Polinomio di Taylor

Sia $f: I(c) \to \mathbb{R}$ derivabile n volte in c, allora esiste un unico polinomio $T_{n,c}(x)$ di grado $\leq n$ che soddisfa la seguente condizione:

$$T_{n,c}^{(k)}(c) = f^{(k)}(c)$$

Questo polinomio viene detto polinomio di Taylor di ordine n centrato in c ed è definito come:

$$T_{n,c}(x) = f(c) + f'(c) \cdot (x - c) + \frac{f''(c)}{2!} \cdot (x - c)^{2} + \dots + \frac{f^{n}(c)}{n!} \cdot (x - c)^{n}$$

Oppure più semplicemente:

$$\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} \cdot (x-c)^{k}$$

Quando c=0 questo polinomio si dice polinomio di MacLaurin

2.1 Esempio

Generalizziamo il polinomio di MacLaurin su sin(x):

- f'(x) = cos(x) e f'(0) = 1
- f''(x) = sin(x) e f''(0) = 0
- $f'''(x) = -\cos(x) e f'''(0) = -1$
- f''''(x) = sin(x) = f(x) e f''''(x) = 0

Quindi ogni 4 derivazioni, si ritorna alla funzione di partenza, inoltre nelle derivate pari, $f^{(k)} = 0$ quindi ci basta generalizzare il polinomio di MacLaurin sul generico numero dispari:

$$T_{2n+1,0} = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1}$$

3 Sviluppo notevoli di MacLaurin

Funzione	Polinomio di MacLaurin
e^x	$1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$
$\sin x$	$x - \frac{x^3}{3!} + \dots + \frac{1}{(2n+1)!} (-1)^n x^{2n+1}$
$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{1}{(2n)!} (-1)^n x^{2n}$
ln(1+x)	$x - \frac{x^2}{2} + \frac{x^3}{3} + \dots - (-1)^{n+1} \frac{x^n}{n}$
$(1+x)^a$	$1 + ax + \frac{a(a-1)}{2!}x^2 + \dots + \frac{1}{n!}a \cdot (a-1) + \dots + (a-n+1)x^n$
$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + \cdots$

3.1 Osservazioni

- Notiamo che nel caso $\sin x$ ci sono solo termini di grado dispari perchè $\sin x$ è dispari. Viceversa su $\cos x$. Notiamo anche che i segni sono al ternati
- Anche in ln(1+x) i segni sono alternati.
- Notiamo in ln(1+x) che il termine noto 1 viene ignorato qualunque esso sia

3.2 Casi particolari di $(1+x)^a$

- Se $a \in \mathbb{N} \setminus \{0\}$, allora $f(x) = (1+x)^n$ è un polinomio tale che $T_{n,0} = f(x)$
- Se $a=\frac{1}{2}$ cioè la funzione è una radice quadrata del tipo $\sqrt{1+x}$, otteniamo:

$$T_{4,0} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3$$

Procedendo per sostituzione si possono anche calcolare casi con $x=x^n$ e mi fermo quando arrivo a x^4

4 Formula di Taylor con il resto di Lagrange

Sia $f: I(c) \to \mathbb{R}$ derivabile n+1 volte in I(c) con derivate continue, allora:

 $\forall x \in I(c) \; \exists \alpha x \; \text{compreso tra} \; c \in x \; \text{tale che:}$

$$f(x) = T_{n,c}(x) + E_{n,c}(x)$$

Dove

$$E_{n,c}(x) \le \frac{f^{(n+1)}(\alpha x)}{(n+1)!} \cdot (x-c)^{n+1}$$

Negli esercizi imponiamo αx al valore massimo di $f^{(n+1)}(\alpha x)$ dove $\alpha \in [x,c]$ o $\alpha \in [c,x]$, cioè calcoliamo il massimo delle funzione $f^{(n+1)}(x)$ (che sarà in uno dei due estremi dell'intervallo se $f^{(n+1)}$ strettamente monotona) in questo modo calcoliamo l'errore del caso peggiore.

4.1 Osservazioni

- $T_{n,c}(x)$ è un approssimazione di f con $x \to c$ con un errore quantificabile e semi-esplicito(αx non è noto)
- L'approssimazione migliora più deriviamo f

 $E_{n,c}(x)$ diminuisce all'aumentare di n:

$$\left| (x-c)^{n+1} \right| \le \left| (x-c)^{n-1} \right|$$

Questo teorema è un'estensione del teorema di Lagrange
Infatti, si può riscrivere come:

 $\forall x \in I(c) \; \exists \alpha x \; \text{compreso tra} \; c \in x \; \text{tale che:}$

$$f(x) = f(c) + f'(\alpha x) \cdot (x - c)$$

4.2 Esempio

Facciamo un esempio del calcolo dell'errore con il polinomio di Taylor di e^x che è

$$\sum_{k=0}^{n} \frac{1}{k!} \cdot x^k = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$

Il generico errore è

$$E_{m,c}(x) = \frac{f^{(n+1)}(\alpha x)}{(n+1)!} \cdot (x-c)^{n+1}$$

Supponiamo di voler stimare \sqrt{e} con il polinomio di Taylor usando il resto di Lagrange nell'intervallo $[0, \frac{1}{2}]$, sappiamo e = 2,71828 quindi $0 < \sqrt{e} < 3$:

$$T_{3,0}\left(\frac{1}{2}\right) = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{6 \cdot 64} = 1,64583$$

Inoltre l'errore nel caso peggiore $(\frac{1}{2})$ sarà:

$$\frac{f''''\left(\frac{1}{2}\right)}{4!} \cdot \frac{1}{16} = 0.00451$$

5 Utilizzo del polinomio di Taylor

Grazie al polinomio di Taylor abbiamo un'approssimazione migliore della funzione in un punto. In questo modo derivando questa approssimazione, riusciamo a capire monotonia(derivata prima) e convessità(derivata seconda) della funzione.