

Subject Overview

CSCI316: Big Data Mining Techniques and Implementation

Teaching Team

Lectures:

- Dr. Su Guoxin
 - Email: guoxin@uow.edu.au

Tutorials/Workshops:

- Mr. Sionggo Japit
 - Email: sjapit@uow.edu.au

Assessments

- 2 Individual Assignments 2 * 15% = 30%
- 1 Group Assignment (two questions) 2 * 10% = 20%
- Final Exam 50%
- ❖ All submissions (except final exam) are uploaded via Moodle.

Subject Learning Outcomes

- 1. Demonstrate an understanding of Big Data project lifecycle and related concepts.
- 2. Demonstrate an understanding of Big Data processing models and methodologies.
- 3. Understand and implement data pre-processing and post-processing techniques for Big Data applications.
- 4. Understand and implement data mining algorithms for Big Data applications.
- 5. Understand and implement real-time processing and stream mining methods for Big Data applications
- 6. Demonstrate the ability to develop Big Data application by using popular programming libraries and software platforms.

Learning Outcomes

- Knowledge
 - Understanding techniques of building big data applications
 - Dive into selected data mining / machine learning algorithms
- Practical Skills
 - Implementation of Big Data applications.
 - Hands-on experience with some popular Big Data and machine learning tools (e.g., Apache Spark and TensorFlow)
- Teamwork
 - Build up team spirit in solving challenging problems.

Subject Materials

- Subject Materials are available on Moodle:
 - Subject Outline (including reference books)
 - Lecture Slides
 - **&** Laboratories
 - Assignments
- Major reference text:
 - [1] Han, J., Pei, J. and Kamber, M., 2012. Data mining: concepts and techniques (3ed). Elsevier
 - [2] Aurelien Geron. 2022. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow (3ed)
 - [3] Chambers, B. and Zaharia, M., 2017. Spark: The Definitive Guide. O'Reilly.

Lecture Topics

Lect ure	Contents	Reference/ reading
1	Introduction to big data, Programming basics, Data collection	[1] Chapter 1
2	Data Pre-processing	[1] Chapter 2 & 3
3	Big Data Project Life-cycle	[2] Chapter 2
4	Classification by Splitting Data Sets	[1] Chapter 8
5	Probabilistic Classification and Model Evaluation	[1] Chapter 8
6	Handling Massive Data Sets	[3] Chapter 1 & 24
7	Training Artificial Neural Networks	[2] Chapter 10

Note. There are **more than 7 lecture notes** on Moodle, but the content are grouped into **7 lecture themes** above.

Programming & Software

- **Python 3** (plus libraries)
 - Scientific-computing & data analytics libraries: Numpy, Pandas,
 Matplotlib and others (https://www.scipy.org/)
 - Machine linear library: Scikit-Learn (https://scikit-learn.org/stable/)
- Big data processing platform **Apache Spark** (https://spark.apache.org)
 - PySpark (Spark's Python APIs)
- Deep learning library **TensorFlow** (https://www.tensorflow.org/)
- All software are available or downloaded in Google Colab. They can can also be installed in your personal computers.

What contents to expect in this subject?

- Big data includes a very large and fast-growing area which encompasses a large collection of techniques
 - ranging from maths and algorithms to programming libraries and APIs, and from prototype development to tools and frameworks
 - including data storing, streaming, querying, analytics and artificial intelligence (machine learning, deep learning, image processing, LLM)
- The subject contents include two perspectives.
 - On the **practical** perspectives, you will learn the whole life cycle of big data project, and the tools and libraries to build big data and machine learning applications.
 - On the **fundamental/theoretical** perspective, you will learn some selected models/algorithms in depth. You will test your knowledge by writing code in a low level.
- Why learn both levels?
 - A natural learning process, a solid understanding
 - Cannot use a tool in a good way if you lack knowledge of it
 - Foster an ability to learn and use other models, algorithms, methods, libraries, tools, etc.

Questions

