Lab Assignment 3

Name – Md Junaid Mahmood Enrolment Number – 19116040 Department – Computer Science & Engineering Year – IInd year

We have, mod(19116040, 4) + 1 = 1Thus, Problem Set 1 was chosen corresponding to the CSE group.

Part 2)

To design a free running Multi-Vibrator of 1KHz frequency and 30% duty cycle. Standard values of Resistor and Capacitor are chosen which are:

- 1) R1 = $2.4 \text{ k}\Omega$ = 2400Ω
- 2) R2 = $5.6 \text{ k}\Omega$ = 5600Ω
- 3) C1 = $0.18 \mu F = 0.00000018 F$

Thus, following calculations were made:

- 1) Time Period (T) = ln(2) * (R1 + R2) * C1T = 0.693 * (2400 + 5600) * 0.00000018 = 0.00099 s ≈ 1 ms
- 2) Frequency (f) = (1/T) = 0.001 Hz = 1 kHz
- 3) Duty Cycle = R1/(R1 + R2) = 2400/8000 = 0.3Duty Cycle(%) = 30%

Screenshot of the Circuit Diagram and Simulation result is:

The above simulation was carried out for 13ms. Following is the colour convention:

- Yellow Colour Output voltage obtained for the Free Running Multi-Vibrator with given specifications
- 2) Red Colour Voltage variation across the capacitor

Part 3)

To design a Negative-edge triggered Monostable Multi-Vibrator of 200µs pulse width. Standard values of Resistor and Capacitor are chosen which are:

- 1) R1 = $10 \text{ k}\Omega = 10000 \Omega$
- 2) C1 = $0.018 \mu F = 0.000000018 F$

The following calculations were made:

1) Pulse Width (W) = $\ln(3)$ * R1 * C1 = 1.1 * 10000 * 0.000000018 W = 0.000198 s \approx 0.2 ms or 200 μ s

Screenshot of the Circuit Diagram and Simulation Result is:

The above simulation was carried out for 1.5ms or 1500 μ s. Following is the colour convention :

- Yellow Colour The trigger voltage which was provided as the input.
- 2) Red Colour Output voltage obtained for the Negative-Edge triggered Monostable Multi-Vibrator with given specifications
- 3) Green Colour Voltage variation across the capacitor