The Galileon model

Farbod Hassani

November 15, 2023

1 The Galileon model

In Galileon model the modifications to GR arise through a Galilean-invariant scalar field, i.e., the scalar field is invariant under the transformation $\partial_{\mu}\phi \rightarrow \partial_{\mu}\phi + b_{\mu}$, where b_{μ} is a constant vector.

The action of the cubic Galileon model, for when the scalar field does not have a direct coupling matter sector reads as,

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} - \frac{1}{2}c_2\mathcal{L}_2 - \frac{1}{2}c_3\mathcal{L}_3 - \mathcal{L}_m \right], \tag{1}$$

where g is the determinant of the metric $g_{\mu\nu}$, R is the Ricci scalar, c_2, c_3 are dimensionless constants and \mathcal{L}_m is the matter Lagrangian. The terms \mathcal{L}_2 and \mathcal{L}_3 in the Lagrangian are describing the Galileon field, and ∇ denotes the covariant derivative.

$$\mathcal{L}_2 = \nabla_\mu \phi \nabla^\mu \phi, \quad \mathcal{L}_3 = \frac{2}{M^3} \Box \phi \nabla_\mu \phi \nabla^\mu \phi,$$
 (2)

where ϕ is the Galileon scalar field and $\mathcal{M}^3 \equiv M_{\rm Pl}H_0^2$ where H_0 is the value Hubble function today. The Einstein field equations read:

$$G_{\mu\nu} = \kappa \left[T_{\mu\nu}^m + T_{\mu\nu}^{c_2} + T_{\mu\nu}^{c_3} \right], \tag{3}$$

and the scalar field equation,

$$c_2 \Box \phi + \frac{2}{M^3} c_3 \left[(\Box \phi)^2 - \nabla^\alpha \nabla_\beta \phi \nabla^\beta \nabla_\alpha \phi \right] - R_{\alpha\beta} \nabla^\alpha \phi \nabla^\beta \phi = 0, \tag{4}$$

where the energy-momentum tensor reads as

$$T_{\mu\nu}^{c_2} = c_2 \left[\nabla_{\mu} \phi \nabla_{\nu} \phi - \frac{1}{2} g_{\mu\nu} \nabla^{\alpha} \phi \nabla_{\alpha} \phi \right], \tag{5}$$

$$T_{\mu\nu}^{c_3} = \frac{c_3}{M^3} \left[2\nabla_{\mu}\phi\nabla_{\nu}\phi\Box\phi + 2g_{\mu\nu}\nabla^{\alpha}\nabla^{\beta}\phi\nabla_{\alpha}\nabla_{\beta}\phi - 4\nabla^{\lambda}\phi\nabla_{(\mu}\phi\nabla_{\nu)}\nabla_{\lambda}\phi \right], \quad (6)$$

and $T_{\mu\nu}^m$ is the energy-momentum tensor of other species in the universe.

It is worth noting that the general Galileon action has two more Lagrangian densities \mathcal{L}_4 and \mathcal{L}_5 , which are quartic and quintic in derivatives of scalar field. However, the higher order derivatives make the theory suffer from various theoretical problems. There is also a linear term in the general Galileon theory \mathcal{L}_1 which is often neglected if the scalar field plays the role of dark energy.

write some details

derive!

derive the equations by hand and using mathematica!

1.1 Background evolution

To derive the background equations we assume a FLRW metric,

$$ds^2 = dt^2 - a(t)^2 \delta_{ij} dx^i dx^j \tag{7}$$

then the Friedmann equations read,

$$3H^2 = 8\pi G \left[\rho_m + \frac{c_2}{2} \dot{\bar{\phi}}^2 + \frac{6c_3}{M^3} \dot{\bar{\phi}}^3 H \right], \tag{8}$$

$$\dot{H} + H^2 = -\frac{4\pi G}{3} \left[\rho_m + 4c_2 \dot{\bar{\phi}}^2 \right] + \frac{6c_3}{M^3} \left(\dot{\bar{\phi}}^3 H - \dot{\bar{\phi}} \ddot{\bar{\phi}} \right), \tag{9}$$

where the derivatives and quantities are calculated with respect to physical time, ρ_m is the matter density and we have neglected the contribution from the radiation. The Galileon field equation of motion reads,

$$c_2[\ddot{\phi} + 3\dot{\phi}H] + 6\frac{c_3}{\mathcal{M}^3} \left[2\ddot{\phi}\dot{\phi}H + 3\dot{\phi}^2H^2 + \dot{\phi}^2\dot{H} \right] = 0 \tag{10}$$

1.2 Perturbation, quasi-static approximation

The derive the perturbation equations we assume a perturbed FLRW metric in Newtonian gauge,

$$ds^{2} = (1 + 2\Psi)dt^{2} - a(t)^{2}(1 - 2\Phi)\delta_{ij}dx^{i}dx^{j},$$
(11)

and we assume that the gravitational potentials are small and $\phi(\vec{x},t) = \bar{\phi}(t) + \delta\phi(\vec{x},t)$. Moreover we assume the quasi-static limit, which seems to be a good approximation in the sub-horizon scales. In the quasi-static limit we neglect the time derivative of scalar field compared with the spatial derivatives. Moreover additionally, the Newtonian potentials Φ, Ψ and their first order spatial derivatives $\Phi_{,i}$ and $\Psi_{,i}$ can be neglected compared with the $\nabla^2 \Phi$ as the Newtonian potential and their first order derivative are small in the scales of interest. So we have $(1+2\Psi)\partial_i\partial^i\phi \approx \partial_i\partial^i\phi$ and $\partial_i\partial^i\Phi\partial_j\Phi \ll \partial_i\partial^i\Phi$. Under the previously mentioned approximations the (0,0) component of the Einstein field equations (the Poisson equation) reads

$$\partial^2 \Phi = 4\pi G a^2 \delta \rho_m - \frac{\kappa c_3}{\mathcal{M}^3} \dot{\phi}^2 \partial^2 \phi. \tag{12}$$

The scalar field equations,

$$\frac{2c_3}{\mathcal{M}^3}\dot{\phi}^2\partial^2\Psi = \left[-c_2 - \frac{4c_3}{\mathcal{M}^3}(\ddot{\phi} + 2H\dot{\phi})\right]\partial^2\phi + \frac{2c_3}{a^2\mathcal{M}^3}\left[\left(\partial^2\phi\right)^2 - \left(\partial_i\partial_j\phi\right)^2\right]. \tag{13}$$

Where we have not used $\delta \phi$ and we write it as ϕ but from the order of equations we can guess whether $\bar{\phi}$ or $\delta \phi$ should be used.

Assuming $\Phi = \Psi$ we can combine the two equations,

$$\partial^2 \phi + \frac{1}{3\beta_1 a^2 \mathcal{M}^3} \left[\left(\partial^2 \phi \right)^2 - \left(\partial_i \partial_j \phi \right)^2 \right] = \frac{M_{\text{Pl}}}{3\beta_2} 8\pi G a^2 \delta \rho_m \tag{14}$$

Here, $\partial^2 = \partial_i \partial^i$ is the spatial Laplacian, $(\partial_i \partial_j \phi)^2 = (\partial_i \partial_j \phi) (\partial^i \partial^j \phi) . \delta \rho_m$ is the matter density perturbation, $\rho_m = \bar{\rho}_m(t) + \delta \rho_m(t, \vec{x})$. The dimensionless functions β_1 and β_2 are defined as

$$\beta_1 = \frac{1}{6c_3} \left[-c_2 - \frac{4c_3}{\mathcal{M}^3} (\ddot{\phi} + 2H\dot{\phi}) + 2\frac{\kappa c_3^2}{\mathcal{M}^6} \dot{\phi}^4 \right]$$
$$\beta_2 = 2\frac{\mathcal{M}^3 M_{\rm Pl}}{\dot{\phi}^2} \beta_1.$$

1.3 Vainshtein screening

In order to observe the screening through the derivative couplings, it is instructive to use spherical symmetry. Where we can rewrite the equation as,

$$\frac{1}{r^2} \frac{d}{dr} \left[r^2 \phi_{,r} \right] + \frac{2}{3} \frac{1}{\mathcal{M}^3 a^2 \beta_1} \frac{1}{r^2} \frac{d}{dr} \left[r \phi_{,r}^2 \right] = \frac{M_{\text{Pl}}}{3\beta_2} 8\pi G a^2 \delta \rho \tag{15}$$

Integrating it once,

$$\phi_{,r} + \frac{2}{3} \frac{1}{\mathcal{M}^3 a^2 \beta_1} \frac{1}{r} \phi_{,r}^2 = \frac{2M_{\text{Pl}}}{3\beta_2} \frac{GM(r)}{r^2} a^2$$
 (16)

Now the equation becomes an algebraic equation for $\phi_{,r}$ which considering a mass profile can be solved. And $M(R) = 4\pi \int_0^R \delta \rho_m(r) r^2 dr$ is the matter contribution to the mass enclosed within a radius R. For simplicity considering a top-hat density distribution of radius R, the physical solutions of $\phi_{,r}$ are,

$$\phi_{,r} = \frac{4M_{\rm Pl}a^2r^3}{3\beta r_V^3} \left[\sqrt{\left(\frac{r_V}{r}\right)^3 + 1} - 1 \right] \frac{GM(R)}{r^2}, \ r \ge R$$
 (17)

$$\phi_{,r} = \frac{4M_{\rm Pl}a^2R^3}{3\beta r_V^3} \left[\sqrt{\left(\frac{r_V}{R}\right)^3 + 1} - 1 \right] \frac{GM(r)}{r^2}, \ r < R$$
 (18)

Where we have used the field redefinition

$$\delta\phi o rac{eta}{eta_2}\delta\phi$$

as discussed in section 2 of 1306.3219. The distance scale r_V is the Vainshtein radius and is given by,

$$r_V^3 = \frac{8M_{\rm Pl}r_S}{9\mathcal{M}^3\beta_1\beta_2},\tag{19}$$

where $r_S \equiv 2GM(R)$ is the Schwarzschild radius of the top-hat mass density.

Considering the last term in the modified Poisson equation, it represents a fifth force due to the presence of Galileon scalar field.

$$F_{5th} = -\frac{\kappa c_3}{\mathcal{M}^3} \frac{\beta}{\beta_2} \dot{\phi}^2 \phi_{,r} \tag{20}$$

Taking the limits where $r \gg r_V$ and $r \ll r_V$ we haves

$$F_{5th} = -\frac{2c_3 a^2 \dot{\phi}^2}{3\mathcal{M}^3 M_{\rm Pl} \beta_2} \frac{GM(R)}{r^2}, \quad r \gg r_V, \tag{21}$$

$$F_{5th} \sim 0, \quad r \ll r_V. \tag{22}$$

2 MG-evolution implementation

In this section we discuss the approximations and framework we use to obtain the expression for implementing in MG-evolution.

2.1 Linear part

The effective gravitational potential in Cubic Galileon theory at linear regime reads as (Eq. 29 of 1306.3219)

$$G_{\text{eff}} = G \left(1 - \frac{2}{3} \frac{c_3 \dot{\phi}^2}{M_{\text{Pl}} \mathcal{M}^3 \beta_2} \right) \tag{23}$$

where $M_{\rm Pl}$ is the Planck mass, ϕ is the Galileon scalar field and $\mathcal{M}^3 \equiv M_{\rm Pl} H_0^2$, β_1 and β_2 are,

$$\beta_{1} = \frac{1}{6c_{3}} \left[-c_{2} - \frac{4c_{3}}{\mathcal{M}^{3}} (\ddot{\phi} + 2H\dot{\phi}) + 2\frac{\kappa c_{3}^{2}}{\mathcal{M}^{6}} \dot{\phi}^{4} \right],$$

$$\beta_{2} = 2\frac{\mathcal{M}^{3} M_{\text{Pl}}}{\dot{\phi}^{2}} \beta_{1}.$$

$$\kappa = \frac{1}{M_{\text{Pl}}^{2}} = 8\pi G$$

In our discussion we set $c_2 = -1$ (see discussion at page 5 of 1709.09135). We also use the tracker solution,

$$\xi \equiv \frac{\dot{\phi}H}{M_{\rm Pl}H_0^2} \tag{24}$$

where ξ is a constant. Following the discussion which leads to E. 18 in 1709.09135 we can deduce that ξ is a constant and can be obtained given c_3 ,

$$\xi = -\frac{1}{6c_3} \tag{25}$$

As a result we can write,

$$\dot{\phi} = \frac{\xi M_{\rm Pl} H_0^2}{H} \tag{26}$$

$$\ddot{\phi} = -\frac{\xi M_{\rm Pl} H_0^2 \dot{H}}{H^2} \tag{27}$$

Note that $H = \frac{da}{dt} = \mathcal{H}/a$, where \mathcal{H} is the conformal Hubble factor. Following the discussion presented in 1308.3699 for the background tracker solution we can derive the Hubble expansion rate as a function of a (Eq. 12 of 1308.3699)

$$\mathcal{H}^{2} = \frac{\mathcal{H}_{0}^{2}}{2} \left[\left(\Omega_{m0} a^{-1} + \Omega_{r0} a^{-2} \right) + a^{2} \sqrt{\left(\Omega_{m0} a^{-3} + \Omega_{r0} a^{-4} \right)^{2} + 4 \left(1 - \Omega_{m0} - \Omega_{r0} \right)} \right]. \tag{28}$$

Where $H_0^2 = \frac{8\pi G}{3}$ in MG-evolution unit. Computing \mathcal{H}' results in,

$$\mathcal{H}' = -\frac{\mathcal{H}_0^2 (a\Omega_m + 2\Omega_r)}{4a^2} - \frac{\mathcal{H}_0^2 (a\Omega_m + \Omega_r)(3a\Omega_m + 4\Omega_r)}{4a^6 \sqrt{4(1 - \Omega_m - \Omega_r) + \frac{(a\Omega_m + \Omega_r)^2}{a^8}}} + \frac{\mathcal{H}_0^2 a^2}{2} \sqrt{4(1 - \Omega_m - \Omega_r) + \frac{(a\Omega_m + \Omega_r)^2}{a^8}}$$
(29)

We also have,

$$\dot{H} = \frac{\mathcal{H}' - \mathcal{H}^2}{a^2} \tag{30}$$

With all the previous expressions we can obtain the linear $\Delta G/G$ for the Cubic Galileon model.

3 Screening part

Following the discussion which leads to Eq. 21 of 1306.3219 we can write,

$$\frac{\Delta G}{G}|_{\text{tot}} = \frac{\Delta G}{G}|_{\text{linear}} \times \frac{\Delta G}{G}|_{\text{Vainshtein}}$$
(31)

where $\frac{\Delta G}{G}|_{\text{linear}}$ is obtained following the discussion in the previous section and $\frac{\Delta G}{G}|_{\text{Vainshtein}}$ can be written in Fourier space as 2003.05927,

$$\frac{\Delta G}{G}|_{\text{Vainshtein}} = \frac{\sqrt{1+\epsilon} - 1}{\epsilon} \tag{32}$$

where,

$$\epsilon \equiv (\frac{r_V}{r})^3 \to (\frac{k_*}{k})^3 \tag{33}$$

where r_V the Vainshtein radius and k_* is the corresponding wavenumber in Fourier space. As a result we have two free parameters, namely k_* in the screening and c_3 in the linear modification.