Fundamental Algorithmic Techniques.

October 10, 2025

Outline

Dynamic Programming

Optimal Substructure

Overlapping Subproblems

Fibonacci and Memoization

```
Memoized \mathcal{O}(n), space \mathcal{O}(n)
 1: function ITERFIBO1(n)
 2:
         F[0] \leftarrow 0
 3:
     F[1] \leftarrow 1
    for i = 2 to n do
 5:
             F[i] \leftarrow F[i-1] + F[i-2]
 6:
        end for
         return F[n]
 8: end function
Bottom-up \mathcal{O}(n), space \mathcal{O}(1)
 1: function ITERFIBO2(n)
 2:
         prev \leftarrow 1
 3:
        curr \leftarrow 0
 4:
        for i = 1 to n do
 5:
             next \leftarrow curr + prev
 6:
             prev \leftarrow curr
 7:
             curr \leftarrow next
 8:
         end for
9:
         return curr
10: end function
```


Matrix iteration $\mathcal{O}(\log n)$ (rep. squaring)

$$\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Fibonacci identities:

$$F_{2n} = ... = F_n(2F_{n-1} + F_n)$$

$$F_{2n-1} = \dots = F_{n-1} + F_n^2$$

Edit Distances

compare s1, s2 with operations (cost 1):

- 1 insert
- 2 remove
- 3 replace

Naive Algo: example of overlappings!

1 Last character of s_1 , s_2 are same:

$$ED(s_1, s_2, m, n) = ED(s_1, s_2, m - 1, n - 1)$$

2 ED
$$(s_1, s_2, m, n) = 1 + \min (ED(s_1, s_2, m, n - 1),$$

$$ED(s_1, s_2, m-1, n),$$

$$ED(s_1, s_2, m-1, n-1)$$

time complexity: $\mathcal{O}((3)^{n_1+n_2})$ and $\mathcal{O}(n_1 \cdot n_2)$

Edit Distances: Memoisation

Memoization Strategies:

- Top-Down ED **Memoisation** $\mathcal{O}(m \cdot n)$ time and $\mathcal{O}(m \cdot n)$ space
- Bottom-Up ED **Tabulation** $\mathcal{O}(m \cdot n)$ time and $O(m \cdot n)$ space

Edit Distances: Tabulation

Costs with: insert, remove, replace

Result bottom right!

Other name: Levenshtein Distance

Optimal Substructure

Optimal substructure if an optimal solution constructed from optimal solutions of its subproblems.

Examples:

- shortest path on road or graph
- Fibonacci: F(n) = F(n) + F(n-1)
- rod sold at prices for subsets

Counterexamples:

shortest path on a Graph without passing twice same node If optimal Substructure, you can write:

$$OPT(n) = min(OPT(n-1), OPT(n-2), ...) + f(n)$$

Dynamical Programming

⇔ Optimal Substructures

Overlapping Subproblems

overlapping subproblems if the same subproblem is solved multiple time Classic examples:

- 1 Fibonacci numbers
- 2 shortest paths
- 3 knapsack problem
- 4 edit distance.

Overlapping Subproblems \Leftrightarrow memoization/tabulation/others! No Overlapping \Leftrightarrow No Dynamic Programming!

0/1 Knapsack Problem

A knapsack with integer capacity W > 0, n items, where item i has:

- \blacksquare weight $w_i \in \mathbb{Z}^+$,
- \blacksquare value $v_i \in \mathbb{R}^+$.

Each item may be taken at most once.

Goal: Maximize total value, weight $\leq W!$

- Overlapping subproblems & Optimal Substructure Idea: $ks[i][w] = \max value achievable using the first i items with capacity <math>w$,
- Dynamic programming applies! complex problem: solvable by simple bottom up tabulation

Iteration:

$$\mathsf{ks}[i][w] = \begin{cases} \mathsf{ks}[i-1][w], & \text{if } w_i > w, \\ \mathsf{max}\left(\mathsf{ks}[i-1][w], \; \mathsf{ks}[i-1][w-w_i] + v_i\right), & \text{if } w_i \leq w. \end{cases}$$

0/1 Knapsack by Tabulation

Capacity: W = 8

Items:

Table ks[i][w]:

i	Wi	Vi
1	2	3
2	3	4
3	4	5
4	5	6

		., 1 Г	. 1.						
i∖w	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	0	3	3	3	3	3	3	3
2	0	0	3	4	4	7	7	7	7
3	0	0	3	4	5	7	8	9	9
0 1 2 3 4	0	0	3	4	5	7	8	9	10

Optimal value: ks[4][8] = 10

Selected items: 2 and 4

(weight: 3 + 5 = 8, value: 4 + 6 = 10)

- Time complexity: O(nW)
- **Space complexity**: O(nW) (optimizable to O(W))

