Vectors

Bruno Carpentieri bruno.carpentieri@unibz.it

3rd floor - Room 3.10 - Phone +39 047 101 6027

Course: Linear Algebra Academic year: 2023-2024

Version: October 14, 2023

Outline

Operations on Vectors

Length and Angles

Outline

Operations on Vectors

Length and Angles

Vectors

 \checkmark "You can't add apples and oranges." This is the reason to introduce vectors containing two separate numbers v_1 and v_2 .

✓ That pair (v_1, v_2) produces a *two-dimensional vector* \vec{v} (a column vector):

column vector
$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
,

where $v_1 = \textit{first component of } \vec{v} \text{ and } v_2 = \textit{second component of } \vec{v}.$

- ✓ Note that
 - we write \vec{v} as a *column*, not as a *row*,
 - we use a single letter \vec{v} for this pair of numbers v_1 and v_2 ,
 - we write \vec{v} in italic using an overrightarrow, and v_1, v_2 in lightface italic.

Vectors Addition

 \checkmark Even if we don't add the individual components v_1 to v_2 of \vec{v} , we do add vectors.

✓ Vector addition:

$$ec{v} = egin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $ec{w} = egin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ add to $ec{v} + ec{w} = egin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix}$.

The first components of \vec{v} and \vec{w} stay separate from the second components. You see the reason: we want to add apples to apples!

✓ Subtraction of vectors follows the same idea:

$$\vec{v} - \vec{w} = \begin{bmatrix} v_1 - w_1 \\ v_2 - w_2 \end{bmatrix}.$$

Vectors Addition

✓ The order of addition makes no difference:

$$\vec{v} + \vec{w} = \vec{w} + \vec{v}.$$

- ✓ Check by algebra that the first component is $v_1 + w_1$ which equals $w_1 + v_1$. Analogously for the second component.
- Check also by an example:

$$\vec{v} + \vec{w} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}, \quad \vec{w} + \vec{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}.$$

Vectors Scalar Multiplication

- ✓ The other basic operation for vectors is scalar multiplication. Vectors can be multiplied by a scalar, such as 2 or -1, or by any number c.
- ✓ The components of $c\vec{v}$ are cv_1 and cv_2 : $c\vec{v} = \begin{bmatrix} cv_1 \\ cv_2 \end{bmatrix}$. The number c is called a scalar.
- **Example**: there are two ways to double a vector. One way is to add $\vec{v} + \vec{v}$. The other way (the usual way) is to multiply each component by 2:

$$2\vec{v} = \begin{bmatrix} 2v_1 \\ 2v_2 \end{bmatrix}.$$

On the other hand:
$$-\vec{v} = \begin{bmatrix} -v_1 \\ -v_2 \end{bmatrix}$$
.

Zero Vector

✓ Notice that the sum of $-\vec{v}$ and \vec{v} is the zero vector. This is written as $\vec{0}$, which is not the same as the number zero!

 \checkmark The vector $\vec{0}$ has components 0 and 0. We write

$$-\vec{v} + \vec{v} = \begin{bmatrix} -v_1 + v_1 \\ -v_2 + v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{0}.$$

✓ Linear algebra is built on these operations $\vec{v} + \vec{w}$ and $c\vec{v}$, that is adding vectors and multiplying by scalars.

Linear Combination

Combining addition with scalar multiplication, we now form "linear combinations" of \vec{v} and \vec{w} . The rule is: multiply \vec{v} by c and multiply \vec{w} by d; then add $c\vec{v} + d\vec{w}$.

Definition

The sum of $c\vec{v}$ and $d\vec{w}$ is called a linear combination of \vec{v} and \vec{w} .

✓ Four special linear combinations are:

$$1\vec{v} + 1\vec{w} = \text{sum of vectors}$$

$$1\vec{v} - 1\vec{w}$$
 = difference of vectors

$$0\vec{v} + 0\vec{w}$$
 = zero vector

$$c\vec{v} + 0\vec{w} = \text{vector } c\vec{v}$$

Vector Representations

- 1. Two numbers. For algebra, we just need the components like 4 and 2 for $\vec{v} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, and the order in which they appear. Observe that $\begin{bmatrix} 4 \\ 2 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.
- 2. Arrow from (0,0). That vector \vec{v} is represented by an arrow. The arrow goes $v_1=4$ units to the right and $v_2=2$ units up.

3. Point in the plane. That vector \vec{v} ends at the point of coordinates x=4, y=2.

Graphic Vector Addition: Head to Tail Rule

- \checkmark We added using the numbers, and we can also add $\vec{v} + \vec{w}$ using arrows.
- ✓ Vector addition (head to tail rule): at the end of \vec{v} , place the start of \vec{w} .

• We travel along \vec{v} and then along \vec{w} . Or we take the diagonal shortcut along $\vec{v} + \vec{w}$. Or we go along \vec{w} and then \vec{v} . The sum is the diagonal vector $\vec{w} + \vec{v}$.

Some Comments

- ✓ The graphic representation on the left side of the previous figure confirms that $\vec{w} + \vec{v}$ gives the same answer as $\vec{v} + \vec{w}$.
- \checkmark For example, for $2\vec{v}$ we double the length of the arrow.
- ✓ For $\vec{v} \vec{w}$, we reverse \vec{w} to get $-\vec{w}$. This reversing gives the subtraction on the right side of the previous figure.
- ✓ The zero vector $\vec{0}=(0,0)$ is too short to draw a decent arrow. However, we know that $\vec{v}+\vec{0}=\vec{v}$.

B. Carpentieri (UniBZ)

Vectors in Three Dimensions

- Summary from vectors in two dimensions:
 - A vector with two components corresponds to a point in the *xy* plane.
 - The components of \vec{v} are the coordinates of the point, $x = v_1$ and $y = v_2$.
 - The arrow ends at this point (v_1, v_2) , when it starts from (0, 0).
- \checkmark Now we allow vectors to have three components (v_1, v_2, v_3) . Typical vectors (still column vectors but with three components) are:

$$\vec{v} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, and $\vec{v} + \vec{w} = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$.

Vectors in Three Dimensions

✓ The vector \vec{v} corresponds to an arrow in 3-space. The arrow starts at the "origin", where the xyz axes meet and the coordinates are (0,0,0). The arrow ends at the point with coordinates v_1, v_2, v_3 .

✓ There is a perfect match between the column vector, the arrow from the origin and the point where the arrow ends.

Example of 2D and 3D vectors.

Rows and Columns Format

- \sim Notation: to save space, from now on $\vec{v}=\begin{bmatrix}1\\1\\-1\end{bmatrix}$ is also written as $\vec{v}=(1,1,-1)$.
- Note that $\vec{v} = (1, 1, -1)$ is not a row vector! It is actually a column vector, just temporarily lying down.
- ✓ In three dimensions, $\vec{v} + \vec{w}$ is still found a component at a time: the sum has components $v_1 + w_1$, $v_2 + w_2$ and $v_3 + w_3$. Can you see how to add vectors in 4 or 5 or n dimensions?
- ✓ An example of linear combination of three vectors in three dimensions $\vec{u} + 4\vec{v} 2\vec{w}$:

$$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} + 4 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 9 \end{bmatrix}.$$

Outline

Operations on Vectors

Length and Angles

Real Dot Product or Inner Product

Definition

The real dot product or inner product of two real vectors $\vec{v} = (v_1, v_2)$ and $\vec{w} = (w_1, w_2)$ is denoted by the symbol $\vec{v} \cdot \vec{w}$, and is given by the number

$$\vec{v}\cdot\vec{w}=v_1w_1+v_2w_2.$$

- **V** Rule: the real "dot product" of \vec{v} and \vec{w} involves the separate products v_1w_1 and v_2w_2 . Those two numbers are added to produce the single number $\vec{v} \cdot \vec{w}$.
- **Property**: obviously, the order of \vec{v} and \vec{w} makes no difference, $\vec{w} \cdot \vec{v} = \vec{v} \cdot \vec{w}$.
- ✓ Main point: if \vec{v} and \vec{w} have n real components, to compute $\vec{v} \cdot \vec{w}$, we multiply each v_i times w_i , then we add $\sum v_i w_i$.

Real Dot Product or Inner Product

Example: take $\vec{v} = (4,2)$ and $\vec{w} = (-1,2)$. Then

$$\begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -4 + 4 = 0.$$

 \checkmark Example: take $\vec{v} = (1,2,3)$ and $\vec{w} = (3,1,2)$. Then

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = 3 + 2 + 6 = 11.$$

Complex Dot Product or Inner Product

Definition

The complex dot product or inner product of two complex vectors $\vec{v} = (v_1, v_2)$ and $\vec{w} = (w_1, w_2)$ is denoted by the symbol $\vec{v} \cdot \vec{w}$, and is given by the number

$$\vec{v} \cdot \vec{w} = \vec{v}_1 w_1 + \vec{v}_2 w_2.$$

- ✓ Rule: the complex "dot product" of \vec{v} and \vec{w} involves the separate products $\vec{v}_1 w_1$ and $\vec{v}_2 w_2$. Those two numbers are added to produce the single number $\vec{v} \cdot \vec{w}$.
- ▶ Property: the order of \vec{v} and \vec{w} makes difference, $\vec{w} \cdot \vec{v} = \vec{v} \cdot \vec{w}$ (see proof later).
- ✓ Main point: if \vec{v} and \vec{w} have n real components, to compute $\vec{v} \cdot \vec{w}$, we multiply each \bar{v}_i times w_i , then we add $\sum \bar{v}_i w_i$.

Complex Dot Product or Inner Product

✓ Example: take

$$\vec{v} = \begin{bmatrix} 1+i \\ 3 \\ 1-i \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} i \\ 0 \\ 1 \end{bmatrix}$. Then
$$\begin{bmatrix} 1+i \\ 3 \\ 1-i \end{bmatrix} \cdot \begin{bmatrix} i \\ 0 \\ 1 \end{bmatrix} = 2+2i.$$

$$\begin{bmatrix} i \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1+i \\ 3 \\ 1-i \end{bmatrix} = 2-2i.$$

In general, $\vec{v} \cdot \vec{w} \neq \vec{w} \cdot \vec{v}$ for complex vectors (see next slide).

Properties of the Complex Dot Product

1. Conjugate symmetry: $\vec{v} \cdot \vec{w} = \overline{\vec{w} \cdot \vec{v}}$

Proof: let
$$\vec{v} = \begin{bmatrix} a_1 + ib_1 \\ \vdots \\ a_n + ib_n \end{bmatrix}$$
, $\vec{w} = \begin{bmatrix} c_1 + id_1 \\ \vdots \\ c_n + id_n \end{bmatrix}$. Then
$$\sum \vec{v}_i w_i = \sum (a_i - ib_i)(c_i + id_i) = \sum (a_i c_i + b_i d_i) + i \sum (a_i d_i - b_i c_i)$$

$$\sum \bar{w}_i v_i = \sum (c_i - id_i)(a_i + ib_i) = \sum (a_i c_i + b_i d_i) - i \sum (a_i d_i - b_i c_i)$$

2. Linearity: $(u\vec{v}) \cdot \vec{w} = \bar{u} (\vec{v} \cdot \vec{w})$

Proof: let
$$u = x + iy$$
, $\vec{v} = \begin{bmatrix} a_1 + ib_1 \\ \vdots \\ a_n + ib_n \end{bmatrix}$, $\vec{w} = \begin{bmatrix} c_1 + id_1 \\ \vdots \\ c_n + id_n \end{bmatrix}$.

Properties of the Complex Dot Product

$$u\vec{v} = \begin{bmatrix} u(a_1 + ib_1) \\ \vdots \\ u(a_n + ib_n) \end{bmatrix} = \begin{bmatrix} (a_1x - b_1y) + i(b_1x + a_1y) \\ \vdots \\ (a_nx - b_ny) + i(b_nx + a_ny) \end{bmatrix}.$$

$$(u\vec{v}) \cdot \vec{w} = \sum_i [c_i (a_i x - b_i y) + d_i (b_i x + a_i y)] + i \sum_i [-c_i (b_i x + a_i y) + d_i (a_i x - b_i y)].$$

$$\vec{v} \cdot \vec{w} = \sum (a_i - ib_i)(c_i + id_i) = \sum [(a_ic_i + b_id_i) + i(a_id_i - b_ic_i)].$$

$$\bar{u}(\vec{v} \cdot \vec{w}) = \sum_{i} [x(a_i c_i + b_i d_i) + y(a_i d_i - b_i c_i)] + i \sum_{i} [-y(a_i c_i + b_i d_i) + x(a_i d_i - b_i c_i)].$$

Properties of the Complex Dot Product

3. Linearity: $\vec{v} \cdot (u\vec{w}) = u(\vec{v} \cdot \vec{w})$

Proof:
$$\vec{v} \cdot (u\vec{w}) = \overline{(u\vec{w}) \cdot \vec{v}} = \overline{\vec{u}(\vec{w} \cdot \vec{v})} = u\overline{\vec{w} \cdot \vec{v}} = u(\vec{v} \cdot \vec{w})$$

4. Right-distributivity: $(\vec{v} + \vec{w}) \cdot \vec{u} = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u}$

Proof:
$$(\vec{v} + \vec{w}) \vec{u} = \sum_i (\overline{v_i} + \overline{w_i}) u_i = \sum_i (\overline{v_i} + \overline{w_i}) u_i = \sum_i (\overline{v_i} u_i + \overline{w_i} u_i) = \sum_i \overline{v_i} u_i + \sum_i \overline{w_i} u_i = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u}.$$

5. Left-distributivity: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

Proof:
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \overline{(\vec{v} + \vec{w}) \cdot \vec{u}} = \overline{\vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u}} = \overline{\vec{v} \cdot \vec{u}} + \overline{\vec{w} \cdot \vec{u}} = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
.

Properties of the Complex Dot Product

7. Positive-definiteness:

$$\vec{v} \cdot \vec{v} \geq 0$$

$$\vec{v} \cdot \vec{v} = 0 \iff \vec{v} = 0$$

Proof: $\vec{v} \cdot \vec{v}$ is the sum of positive terms as

$$\vec{v} \cdot \vec{v} = \vec{v}_1 v_1 + \vec{v}_2 v_2 + \dots + \vec{v}_n v_n = |v_1|^2 + |v_2|^2 + \dots + |v_n|^2$$

8. $\vec{v} \cdot \vec{v}$ is real for all \vec{v} .

Proof:
$$\vec{v} \cdot \vec{v} = \overline{\vec{v} \cdot \vec{v}}$$
.

9.
$$-\vec{v}\cdot\vec{v} = \vec{v}\cdot(-\vec{v}) = (-\vec{v})\cdot\vec{v}$$

Proof:
$$-\vec{v} \cdot \vec{v} = -1 (\vec{v} \cdot \vec{v}) = \vec{v} \cdot (-\vec{v}) = (-\vec{v}) \cdot \vec{v}$$
.

Properties of the Complex Dot Product

1.
$$\begin{bmatrix} 2+2i \\ 1+i \end{bmatrix} \cdot \begin{bmatrix} 1-2i \\ 3+2i \end{bmatrix} = \overline{\begin{bmatrix} 1-2i \\ 3+2i \end{bmatrix} \cdot \begin{bmatrix} 2+2i \\ 1+i \end{bmatrix}} = 3-7i.$$

2.
$$\left(\left(1+2i\right)\left[\begin{array}{c}2+i\\1-i\end{array}\right]\right)\cdot\left[\begin{array}{c}1-2i\\3+2i\end{array}\right]=\left(1-2i\right)\left(\left[\begin{array}{c}2+i\\1-i\end{array}\right]\cdot\left[\begin{array}{c}1-2i\\3+2i\end{array}\right]\right)=1-2i.$$

3.
$$\left[\begin{array}{c} 2+i \\ 1-i \end{array} \right] \cdot \left((1+2i) \left[\begin{array}{c} 1-2i \\ 3+2i \end{array} \right] \right) = (1+2i) \cdot \left(\left[\begin{array}{c} 2+i \\ 1-i \end{array} \right] \cdot \left[\begin{array}{c} 1-2i \\ 3+2i \end{array} \right] \right) = 1+2i.$$

4.
$$\left[\begin{array}{c} 1-2i \\ 3+2i \end{array} \right] \cdot \left[\begin{array}{c} 1-2i \\ 3+2i \end{array} \right] = (1+2i)(1-2i) + (3-2i)(3+2i) = 18.$$

Length of a Vector

- ✓ Important case: the dot product of a vector with itself. In this case $\vec{v} = \vec{w}$.
- ✓ The *length* or *norm* of a vector \vec{v} is denoted by the symbol $||\vec{v}||$, and is given by the square root of $\vec{v} \cdot \vec{v}$:

$$\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$$

For real vectors: in two dimensions $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2}$, in three dimensions $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$, in four dimensions $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2 + v_4^2}$, etc.

For complex vectors: in two dimensions $\|\vec{v}\| = \sqrt{|v_1|^2 + |v_2|^2}$, in three dimensions $\|\vec{v}\| = \sqrt{|v_1|^2 + |v_2|^2 + |v_3|^2}$, etc.

Example: when $\vec{v} = (1, 2, 3)$, we have $\vec{v} \cdot \vec{v} = 14$ and $||\vec{v}|| = \sqrt{14}$.

$$\|\vec{v}\|^2 = \vec{v} \cdot \vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 4 + 9 = 14.$$

Length of a Vector

- ✓ By the calculation above, the length of $\vec{v} = (1, 2, 3)$ is $||\vec{v}|| = \sqrt{14}$.
- ✓ Can you see the analogies with the Pythagorean theorem ? $\|\vec{v}\|$ gives the distance between the vector and the origin $\vec{0}$.

Orthogonal Vectors

Definition

Two vectors $[\text{in } \mathbb{R}^2 \text{ or } \mathbb{R}^3]$ are orthogonal (perpendicular) if the angle between them is a right angle (90°).

But the visual concept of a right angle is not at our disposal in higher dimensions, so we must dig a little deeper. We use the Pythagorean theorem:

 \vec{u} and \vec{v} are orthogonal if and only if $||\vec{u}||^2 + ||\vec{v}||^2 = ||\vec{u} - \vec{v}||^2$.

Orthogonal Vectors

▶ But $\|\vec{u}\|^2 = \vec{u} \cdot \vec{u}$, and $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$, so we can rewrite the Pythagorean statement as

$$0 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2 = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

= $\vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - (\vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}) = 2\vec{u} \cdot \vec{v}$.

Therefore,

real vectors \vec{u} and \vec{v} are orthogonal vectors if and only if $\vec{u} \cdot \vec{v} = 0$

The natural extension of this provides us with a definition in more general spaces.

Definition

Two *real* vectors \vec{x}, \vec{y} are said to be orthogonal (to each other) whenever $\vec{x} \cdot \vec{y} = 0$, and this is denoted by writing $\vec{x} \perp \vec{y}$.

Example

1.
$$\vec{u} = \begin{bmatrix} 1 \\ -2 \\ 3 \\ -1 \end{bmatrix}$$
 is orthogonal to $\vec{v} = \begin{bmatrix} 4 \\ 1 \\ -2 \\ -4 \end{bmatrix}$ because $\vec{u} \cdot \vec{v} = 0$.

2.
$$\vec{u} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ are *not* orthogonal because $\vec{u} \cdot \vec{v} \neq 0$.

Parallel vectors

Now that orthogonal vectors \vec{x} and \vec{y} are defined, how can parallel vectors be defined? Let $\vec{x} = (x_1, x_2)$ and $\vec{y} = (y_1, y_2)$ be parallel vectors.

From trigonometry we have

$$\begin{cases} x_1 = \|\vec{x}\| \cos \alpha \\ x_2 = \|\vec{x}\| \sin \alpha \end{cases}, \begin{cases} y_1 = \|\vec{y}\| \cos \alpha \\ y_2 = \|\vec{y}\| \sin \alpha \end{cases}$$

✓ Therefore, we can write

$$\begin{cases} y_1 = \|\vec{y}\| \frac{\|\vec{x}\|}{\|\vec{x}\|} \cos \alpha = \frac{\|\vec{y}\|}{\|\vec{x}\|} x_1 \\ y_2 = \|\vec{y}\| \frac{\|\vec{x}\|}{\|\vec{x}\|} \sin \alpha = \frac{\|\vec{y}\|}{\|\vec{x}\|} x_2 \end{cases}$$

✓ All in all, two vectors \vec{x} and \vec{y} are parallel if $\vec{y} = t\vec{x}$, with $t \in \mathbb{R}$. The definition is generalized to higher-dimensional vectors.

Angles

✓ Now that "right angles" in higher dimensions make sense, how can more general angles be defined? Use the law of cosines rather than the Pythagorean theorem.

 \checkmark Recall that the law of cosines in \mathbb{R}^2 or \mathbb{R}^3 says

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\| \|\vec{v}\| \cos \theta$$

 \checkmark If $\vec{u} \perp \vec{v}$ are orthogonal, the law of cosines reduces to the Pythagorean theorem.

Angles

✓ In general,

$$\cos \theta = \frac{\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2}{2 \|\vec{u}\| \|\vec{v}\|} = \frac{\vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})}{2 \|\vec{u}\| \|\vec{v}\|} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}.$$

The Cauchy-Bunyakovsky-Schwarz inequality (see next slides) states that $|\vec{u}\cdot\vec{v}|\leqslant \|\vec{u}\|\,\|\vec{v}\|. \text{ It guarantees that }|\cos\theta|\leq 1, \text{ or }-1\leq\cos\theta\leq 1. \text{ Hence there is a unique value }\theta \text{ in }[0,\pi] \text{ such that }\cos\theta=\frac{\vec{u}\cdot\vec{v}}{\|\vec{u}\|\,\|\vec{v}\|}.$

Definition

The radian measure of the angle between real nonzero vectors \vec{x}, \vec{y} is defined to be the number θ in $[0, \pi]$ such that

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

Example

Exercise. From

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}.$$

determine the angle between

$$u = \begin{bmatrix} -4 \\ 2 \\ 1 \\ 2 \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 2 \end{bmatrix}.$$

✓ Solution. Compute $\cos \theta = 2/(5 \cdot 3) = 2/15$, and use the inverse cosine function to conclude that $\theta = 1.437$ radians (rounded).

Cauchy-Bunyakovsky-Schwarz (CBS) Inequality

Theorem

The inequality is defined for general complex vectors. For all vectors $\vec{x}, \vec{y} \in \mathbb{C}^n$,

$$|\vec{x} \cdot \vec{y}| \leqslant ||\vec{x}|| \, ||\vec{y}||$$

Equality holds if and only if $\vec{y} = c\vec{x}$ for $c = \vec{x} \cdot \vec{y}/\vec{x} \cdot \vec{x}$.

Proof. The case $\vec{x}=0$ is trivial. For $\vec{x}\neq 0$, we show that $\|\vec{x}\| \|\vec{y}\| \geqslant |\vec{x}\cdot\vec{y}| \, 0$, or, equivalently, $\|\vec{x}\|^2 \|\vec{y}\|^2 \geqslant |\vec{x}\cdot\vec{y}|^2$. To simplify, we divide both sides by $\|\vec{x}\|^2 \neq 0$. We set $c=\vec{x}\cdot\vec{y}/\vec{x}\cdot\vec{x}=\vec{x}\cdot\vec{y}/\|\vec{x}\|^2$ so that $\vec{x}\cdot(\vec{y}-c\vec{x})=\vec{x}\cdot\vec{y}-c\vec{x}\cdot\vec{x}=0$:

$$\frac{\|\vec{y}\|^2 \|\vec{x}\|^2 - (\vec{x} \cdot \vec{y}) (\vec{y} \cdot \vec{x})}{\|\vec{x}\|^2} = \vec{y} \cdot \vec{y} - c(\vec{y} \cdot \vec{x}) = \vec{y} \cdot \vec{y} - \vec{y} \cdot (c\vec{x}) = \vec{y} \cdot (\vec{y} - c\vec{x}) = \vec{y} \cdot (\vec{y} - c\vec{x}) = (\vec{y} - c\vec{x}) \cdot (\vec{y} - c\vec{x}) = \|\vec{y} - c\vec{x}\|^2 \geqslant 0.$$

Cauchy-Bunyakovsky-Schwarz (CBS) Inequality

Since $\vec{y} \cdot \vec{x} = \overline{\vec{x} \cdot \vec{y}}$, it follows that $(\vec{x} \cdot \vec{y})(\vec{y} \cdot \vec{x}) = |\vec{x} \cdot \vec{y}|^2$, so

$$0 \le \|c\vec{x} - \vec{y}\|^2 = \frac{\|\vec{y}\|^2 \|\vec{x}\|^2 - |\vec{x} \cdot \vec{y}|^2}{\|\vec{x}\|^2}.$$
 (1)

Now, $\|\vec{x}\|^2 > 0$ implies $0 \le \|\vec{y}\|^2 \|\vec{x}\|^2 - |\vec{x} \cdot \vec{y}|^2$, and thus the CBS inequality is obtained.

Equality: note that if $\vec{y} = c\vec{x}$, then $|\vec{x} \cdot \vec{y}| = |\vec{x} \cdot (c\vec{x})| = |c(\vec{x} \cdot \vec{x})| = |c| ||\vec{x}||^2 = ||\vec{x}|| ||c| ||\vec{x}|| = ||\vec{x}|| ||\vec{y}||$. Conversely, if $|\vec{x} \cdot \vec{y}| = ||\vec{x}|| ||\vec{y}||$, then from (1), $||c\vec{x} - \vec{y}|| = 0$, and hence $c\vec{x} - \vec{y} = 0$, or $c = \vec{x} \cdot \vec{y}/\vec{x} \cdot \vec{x}$.

Triangle Inequality

✓ The CBS inequality is important because it helps to establish that the geometry in higher-dimensional spaces is consistent with the visual geometry in \mathbb{R}^2 and \mathbb{R}^3 .

 \checkmark Consider the situation depicted in the figure below in \mathbb{R}^2

Imagine traveling from the origin to the point \vec{x} and then moving from \vec{x} to the point $\vec{x} + \vec{y}$.

Clearly, you have traveled a distance that is at least as great as the direct distance from the origin to $\vec{x} + \vec{y}$ along the diagonal of the parallelogram.

In other words, it's visually evident that

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|.$$

Triangle Inequality

- ✓ The previous observation is known as the triangle inequality.
- In higher-dimensional spaces we cannot visualize the geometry with our eyes, and it is unclear whether or not the triangle inequality remains valid.
- ✓ The CBS inequality is precisely what is required to prove that, in this respect, the
 geometry of higher dimensions is no different than that of the visual spaces.
- We prove the triangle inequality in the next slide. Note that this inequality is valid for general complex vectors.

Triangle Inequality

Theorem

For all $\vec{x}, \vec{y} \in \mathbb{C}^n$

$$||\vec{x} + \vec{y}|| \leqslant ||\vec{x}|| + ||\vec{y}|| \quad \Box$$

Proof. Consider \vec{x} and \vec{y} to be column vectors, and write

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 &= (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) = \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{x} + \vec{y} \cdot \vec{y} \\ &= \|\vec{x}\|^2 + \vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{x} + \|\vec{y}\|^2. \end{aligned}$$

If
$$z = a + ib$$
, then $z + \bar{z} = 2a = 2Re(z)$ and $|z|^2 = a^2 + b^2 \ge a^2 \Rightarrow |z| \ge Re(z)$.

Using the fact that $\vec{y} \cdot \vec{x} = \overline{\vec{x} \cdot \vec{y}}$ together with the CBS inequality yields

$$\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{x} = 2 \operatorname{Re} (\vec{x} \cdot \vec{y}) \leqslant 2 |\vec{x} \cdot \vec{y}| \leqslant 2 ||\vec{x}|| ||\vec{y}||.$$

Therefore,

$$\|\vec{x} + \vec{y}\|^2 \le \|\vec{x}\|^2 + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^2 = (\|\vec{x}\| + \|\vec{y}\|)^2$$
. \square

Triangle Inequality

 It's not difficult to see that the triangle inequality can be extended to any number of vectors in the sense that

$$\left\| \sum_{i} \vec{x}_{i} \right\| \leqslant \sum_{i} \|\vec{x}_{i}\|$$

Furthermore, it follows as a corollary that for real or complex numbers, the triangle inequality for scalars (vectors with only one component)

$$\left|\left|\sum_{i} c_{i}\right| \leqslant \sum_{i} |c_{i}|\right|$$

Backward Triangle Inequality

The triangle inequality produces an upper bound for a sum, but it also yields the following lower bound for a difference called backward triangle inequality

$$|||\vec{x}|| - ||\vec{y}||| \le ||\vec{x} - \vec{y}||$$

This is a consequence of the triangle inequality because

$$\|\vec{x}\| = \|\vec{x} - \vec{y} + \vec{y}\| \leqslant \|\vec{x} - \vec{y}\| + \|\vec{y}\| \Rightarrow \|\vec{x}\| - \|\vec{y}\| \leqslant \|\vec{x} - \vec{y}\|$$

and

$$\|\vec{y}\| < \|\vec{x} - \vec{y}\| + \|\vec{x}\| \Rightarrow -(\|\vec{x}\| - \|\vec{y}\|) \le \|\vec{x} - \vec{y}\|.$$

Unit Vector

Definition

A unit vector \vec{u} is a vector whose lengths equal one. Then $||\vec{u}|| = 1$ and also $\vec{u} \cdot \vec{u} = 1$.

- ✓ Note: the word "unit" is always indicating that some measurement equals "one".
- $lap{Example:}$ in four dimensions, take $\vec{u}=\left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$. Then $\vec{u}\cdot\vec{u}=1$.
- ▶ Property: for a vector \vec{v} , $\vec{u} = \vec{v}/\|\vec{v}\|$ is a unit vector in the same direction as \vec{v} . Hence a unit vector can be obtained by dividing a general vector \vec{v} by $\|\vec{v}\|$.

