CS 161: Design and Analysis of Algorithms

Mark Zhandry

Outline

- Why study algorithms?
- What makes a good algorithm?
- What We'll See
 - Example: Multiplication
- Asymptotics review
- Course information

Why Study Algorithms?

- Required for CS majors
- Algorithms are everywhere in CS
 - OS (CS 140)
 - Compilers (CS 143)
 - Crypto (CS 155)
 - Etc.
- Algorithms important in other fields
 - Economics (Game Theory)
 - Biology
- Exciting!

What Makes a Good Algorithm

- Computes desired result
 - Always?
 - With high probability?
 - On real-world inputs?
- Uses resources efficiently
 - Time?
 - Space?
 - Disk I/O?
 - Programmer Effort?

CS 161 Concepts

- Data Structures
- Graph Algorithms
- Greedy Algorithms
- Divide & Conquer
- Dynamic Programming
- Linear Programming
- NP-Completeness

Algorithms We'll See

- Integer/Matrix Multiplication
- Fast Fourier Transform (FFT)
- Shortest Paths
- Sequence Alignment
- Minimum Spanning Trees
- Maximum Flows

Integer Multiplication

Grade-school algorithm

3764	3764	3764
X 689	<u> X9</u>	<u>X8</u>
33876	33876	30112
301120	2-	7.6.4
+ 2258400	3764 <u>X 6</u>	
2593396		
	22584	

Can we do better? Yes!

Matrix Multiplication

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix} \times \begin{pmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{pmatrix} = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ c_{2,1} & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{pmatrix}$$

- •Computing each term uses n $c_{i,j} = \sum_{k=1}^{} a_{i,k} b_{k,j}$ multiplications and (n-1) additions
- •Total: ~2n³ operations

Can we do better? Yes!

Discrete Fourier Transform (DFT)

Given a sequence a=(a₁, a₂, ..., a_n), the DFT of a is defined as A=(A₁, A₂, ..., A_n) where

$$A_k = \sum_{i=1}^n a_i \omega_n^{ik}$$

 Important in signal processing, solving differential equations, polynomial multiplication, and integer multiplication!

Discrete Fourier Transform (DFT)

$$A_k = \sum_{i=1}^n a_i \omega_n^{ik}$$

 Appears to require ~n² additions and multiplications.

Can we do better? Yes!

Shortest Paths

How do we determine the shortest path without exploring all paths?

Sequence Alignment

- How close is "snowy" to "sunny"?
 - Cost: 3 modifications:

- Applications:
 - Spell-checkers: If I have a misspelled word, what did I mean?
 - Biology: Identify sections of DNA that are similar

Minimum Spanning Trees

Minimum Spanning Trees

 Applications to network design, approximation algorithms, and more.

Maximum Flows

Maximum Flows

Used in solutions for a host of different problems

Algorithm 1: Grade-school algorithm

3764	3764	3764
X 689	<u>X 9</u>	<u>X8</u>
33876	33876	30112
301120	2-	7.6.4
+ 2258400	3764 <u>X 6</u>	
2593396		
	22584	

- Algorithm 1: Grade-school algorithm
 - For simplicity, assume running time dominated by single-digit multiplications
 - Number of single-digit multiplications: n²
 - Can we do better?

- Algorithm 2: Recursive algorithm
 - Write n-digit number x as $10^{n/2}$ $x_1 + x_2$
 - x_1 , x_2 are n/2-digit numbers
 - Write y as $10^{n/2} y_1 + y_2$
 - $-xy = 10^{n} x_1 y_1 + 10^{n/2} (x_1 y_2 + x_2 y_1) + x_2 y_2$
 - Can multiply n-digit numbers by performing 4 multiplications of n/2-digit numbers.

- Algorithm 2: Recursive algorithm
 - $-xy = 10^{n} x_1y_1 + 10^{n/2}(x_1y_2 + x_2y_1) + x_2y_2$
 - Claim: the number of single-digit multiplications for algorithm 2 is n².
 - True for n=1
 - Assume true for n/2. Then #(multiplications for n-bits) = $4 \# (\text{multiplications for n/2 bits}) = 4 (\text{n/2})^2 = \text{n}^2$.

- Which algorithm is better?
 - Both require n² single-digit multiplications, so running time almost the same

- Algorithm 3: Another Recursive Algorithm
 - We need the quantities x_1y_1 , $(x_1y_2 + x_2y_1)$, and x_2y_2
 - Can we compute $x_1y_2 + x_2y_1$ using one multiplication?
 - Gauss: $x_1y_2 + x_2y_1 = (x_1 + x_2)(y_1 + y_2) x_1y_1 x_2y_2$
 - Already have x_1y_1 and x_2y_2 !

- Algorithm 3: Another Recursive Algorithm
 - Compute $P = x_1y_1$, $Q = x_2y_2$.
 - Let $x_3 = x_1 + x_2$, $y_3 = y_1 + y_2$.
 - Compute $R = x_3y_3$
 - Let S = R P Q.
 - $-xy = 10^{n} P + 10^{n/2} S + Q$

- Algorithm 3: Another Recursive Algorithm
 - Replaced 4 multiplications with 3, seems like it should be faster.
 - Not so simple:
 - One of the multiplications is slightly larger.
 - Added some extra overhead (additions and subtractions)
 - Possible to show $< 4n^{1.6}$ single-digit multiplications

- Which algorithm is faster?
 - $-4n^{1.6} > n^2$ for n < 32.
 - $-4n^{1.6} < n^2$ for n > 32.
- Algorithm 3 slower for n < 32, faster for n>32.
- How do we compare?

How to Compare Algorithms

- Say we want to compute a function f(n)
 - Algorithm 1 runs in 100,000n seconds
 - Algorithm 2 runs in n² seconds
- Which algorithm is better?
 - Algorithm 2 runs faster if n<100,000
 - Algorithm 1 runs faster if n>100,000
 - The ratio of run times goes to infinity

How to Compare Algorithms

- Say we want to compute a function g(n)
 - Algorithm 1 runs in 20n seconds
 - Algorithm 2 runs in 10n+30 seconds
- Which algorithm is better?
 - Algorithm 2 is faster than Algorithm 1 when n>3
 - However, it is only twice as fast

Asymptotics/Big Oh

- We say Algorithm 1 is "at least as fast as"
 Algorithm 2 if, for large enough inputs,
 Algorithm 1 is at most a constant factor slower than Algorithm 2.
- For this class, we will compare algorithms using "at least as fast as".

Big Oh

$$O(f(n)) =$$

$$\{g(n): \exists c, n_0 \text{ such that } g(n) \le c f(n) \forall n \ge n_0\}$$

- So $g(n) \in O(f(n))$ if
 - There are c and n₀ such that
 - $-g(n) \le c f(n)$ for all $n \ge n_0$.
- Sometimes write g(n)=O(f(n)).

- f(n) = 10n+30, g(n) = 20n
- $f(n) \in O(g(n))$
 - Proof: Let c = 1, $n_0 = 3$.
 - If $n \ge n_0$, then $f(n)=10n+30 \le 20n = c g(n)$.
- $g(n) \in O(f(n))$
 - Proof: Let c = 2, $n_0 = 1$.
 - If $n \ge n_0$, then $g(n)=20n \le 2 \times (10n+30) = c f(n)$.

- f(n) = 100,000n, $g(n) = n^2$.
- $f(n) \in O(g(n))$
 - Proof: Let c = 1, $n_0 = 100,000$.
 - If $n \ge n_0$, then $f(n)=100,000n \le n^2 = c g(n)$.
- $g(n) \in O(f(n))$?

- f(n) = 100,000n, $g(n) = n^2$.
- If $g(n) \in O(f(n))$, then
 - There are c, n_0 such that
 - $-g(n) \le c f(n)$ for all $n \ge n_0$.
- But, for any c, suppose n > 100,000c.
 - Then $g(n) = n^2 > 100,000c n = c f(n)$
- So $g(n) \notin O(f(n))$.

Big Oh Facts

- Big Oh allows us to ignore constant factors:
 - For any constant c, c f(n)∈ O(f(n))
- Big Oh allows us to ignore lower order terms:
 - If $f(n) \in O(g(n))$, then $g(n)+f(n) \in O(g(n))$

Big Oh Facts

- If $a \le b$, then $n^a \in O(n^b)$
 - Proof: $n^a \le n^b$ for all $n \ge 1$.
- If $1 < a \le b$, then $a^n \in O(b^n)$
 - Proof: $a^n \le b^n$ for all n > 0.
- For any a,b, $\log_a(n) \in O(\log_b(n))$
 - Proof: $log_a(n) = log_b(n) log_a(b)$ for all n > 0.

We can usually ignore the base for logarithms. We will use log(n) to denote $log_2(n)$

Big Oh Facts

- For any a>0, b>1, $n^a \in O(b^n)$
 - We'll see a proof in a bit
- For any a>0, $\log n \in O(n^a)$
 - We'll see a proof in a bit

Big Oh Facts

- If f(n) ∈ O(g(n)), and g(n) ∈ O(h(n)), then
 f(n) ∈ O(h(n))
 - Proof: There are c, n_0 such that $f(n) \le c g(n)$ for $n \ge n_0$.
 - There are c', n_0 ' such that $g(n) \le c' f(n)$ for $n \ge n_0$ '.
 - Let c"=c c', n_0 "=Max(n_0 , n_0 ').
 - If $n \ge n_0$ ", then $f(n) \le c g(n) \le c c' h(n) = c$ " h(n).
- $f(n) \in O(f(n))$: let c=1, n_0 =1.

Big Oh inclusion is a sort of "≤" on functions

Big Omega

$$\Omega(f(n)) =$$

$$\{g(n): \exists c, n_0 \text{ such that } g(n) \ge c f(n) \forall n \ge n_0\}$$

- So $g(n) \in \Omega(f(n))$ if
 - There are c and n₀ such that
 - $-g(n) \ge c f(n)$ for all $n \ge n_0$.
- Sometimes write $g(n)=\Omega$ (f(n)).

Big Omega

- $g(n) \in \Omega(f(n))$ is equivalent to $f(n) \in O(g(n))$
 - Proof: $f(n) \in O(g(n))$ means there is c, n_0 such that $f(n) \le c g(n)$ for $n \ge n_0$.
 - Then $g(n) \ge (1/c) f(n)$ for $n \ge n_0$.
 - Similar proof for other direction.

Big Omega inclusion is a sort of "≥" on functions

Big Theta

- $g(n) \in \Theta(f(n))$ if:
 - $-g(n) \in O(f(n))$ and
 - $-g(n) \in \Omega(f(n))$ (or equivalently $f(n) \in O(g(n))$)
- Note: the constants c, n_0 may be different for showing $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$
- $g(n) \in \Theta(f(n))$ is equivalent to $f(n) \in \Theta(g(n))$

Big Theta inclusion is a sort of "=" on functions

Little o, omega

- f(n) ∈ o(g(n)) if, for all c, there is an n₀:
 f(n)<c g(n) for all n ≥ n₀.
- $f(n) \in \omega(g(n))$ if, for all c, there is an n_0 : f(n)>c g(n) for all $n \ge n_0$.
- $f(n) \in o(g(n))$ is equivalent to $g(n) \in \omega(f(n))$

Little o and omega are a sort of "<" and ">" for functions

Big Oh Is Not Total!

- It is not true that f(n) ∈ O(g(n)) or g(n) ∈ O(f(n))
 f(n) = n^{1+Cos(πn)}, g(n) = n
- Similarly, $f(n) \notin O(g(n))$ does not imply that $f(n) \in \omega(g(n))$

Limit Test

- Let $c = \lim_{n \to \infty} f(n)/g(n)$
 - If c = 0, then $f(n) \in o(g(n))$
 - If $0 < c < \infty$, then f(n) ∈ Θ(g(n)).
 - If c = ∞, then f(n) ∈ ω(g(n))

Limit Test

- For any a>0, $\log n \in o(n^a)$
 - Proof: Let $c = \lim_{n \to \infty} \log n/n^a$
 - L'Hôpital's rule:

$$c = \lim_{n \to \infty} (1/n)/(a n^{a-1}) = \lim_{n \to \infty} 1/(a n^a) = 0.$$

Limit Test

- For any a>0, b>1, $n^a \in o(b^n)$
 - Proof: Let c = $\lim_{n\to\infty} n^a/b^n$
 - L'Hôpital's rule:

$$c = \lim_{n \to \infty} (a n^{a-1})/(b^n \ln b) = (a/\ln b) \lim_{n \to \infty} n^{a-1}/b^n$$

- Repeat until a ≤ 0
- We have that c = const x $\lim_{n\to\infty} n^{a'}/b^n$ for a' ≤ 0
 - Numerator goes to 0, denominator goes to infinity
 - Thus c = 0.

Other Notation

- $f(n) \in g(n)+o(h(n))$ means $f(n)-g(n) \in o(h(n))$
 - Common example: f(n) ∈ g(n)+o(1) means f(n) converges to g(n).
- $f(n) \in g(n)^{O(h(n))}$ means there is some function $h'(n) \in O(h(n))$ such that $f(n)=g(n)^{h'(n)}$.
 - Common example: $f(n) ∈ n^{O(1)}$ means $f(n) ∈ O(n^a)$ for some a.

Course Information

- Lectures: WMF 2:15-3:30
- Text: Algorithm Design by Kleinberg and Tardos
- Webpage: http://cs161.stanford.edu
- Piazza: http://piazza.com/class#summer2012/cs161
- Staff Email: cs161-summer2012-staff@lists.stanford.edu

Grading

- Homeworks: 50%
 - Five weekly homeworks
- Midterm: 20%
 - Wednesday, July 25th in class
- Final: 30%
 - Friday, August 17th, Location: TBA

Homework

- Assigned each Wednesday, due following Friday
 - Exceptions: no homework due week of midterm or final
 - Due at beginning of class (2:15PM)
- May work in groups of up to three
 - Write up solutions individually
- One 72-hour extension
- Can submit digitally to cs161-summer2012-submissions@lists.stanford.edu
- See website for policies