

Plano de Ensino

Escola/ Câmpus:	Escola Politécnio	Escola Politécnica / Curitiba			
Curso:	CIÊNCIA DA CO	CIÊNCIA DA COMPUTAÇÃO Ano/Semestre: 20		2023 - 1	
Código/Nome da disciplina:	Modelagem de F	enômenos Físicos	•		
Carga Horária:	80h	80h			
Requisitos:	Não há	Não há			
Créditos:	4 Período: 1º	Turma: P1-1 / Turma	: U, Turma A e Turma	B Turno: Manhã / Noite	
Professor Responsável:	Frank Coelho de	e Alcantara			

1. Ementa

Essa disciplina é ofertada aos estudantes ingressantes no curso de Bacharelado em Ciência da Computação. Ao final da disciplina, o estudante será capaz de combinar os temas de Cálculo, Geometria Analítica e Física para modelar e resolver problemas de situações reais, tais como movimento e equilíbrio de partículas e transformações de energia. Para a modelagem, ou seja, a representação simplificada de situações reais, executará métodos de solução e simulação de fenômenos físicos utilizando ferramentas computacionais.

2. Relação com disciplinas precedentes e posteriores

As aprendizagens desenvolvidas nesta disciplina serão fundamentais para as disciplinas de matemáticas presentes no decorrer do curso e para a formação do raciocínio analítico envolvendo abstração, observação e compreensão da natureza.

3. Temas de estudo

- 1. Funções reais de uma variável real: Funções polinomiais, funções recíprocas, exponenciais e logarítmicas;
- 2. Trigonometria: Trigonometria do triângulo retângulo, relações e funções trigonométricas;
- 3. Representações matemáticas no espaço bi e tridimensional: sistema cartesiano e polar; vetores e operações;
- 4. Noção intuitiva e cálculo de limites;
- 5. Derivadas: definição e interpretação geométrica e física de derivadas; derivada de funções elementares, propriedades e aplicações;
- 6. Cálculo Integral: definição, propriedades, integral definida, soma de Riemann, Teorema Fundamental do Cálculo, Área e Volume;

Plano de Ensino

- 7. **Medidas:** Unidades, Grandezas Físicas, Vetores e Escalares;
- 8. Movimento da partícula: funções de posição, velocidade e aceleração;
- 9. Leis de Newton, Trabalho e Energia: 1ª, 2ª e 3ª Lei de Newton, Trabalho com força constante e variável;
- 10. Estratégias de simulação computacional.

4. Resultados de Aprendizagem

Resultados de Aprendizagem	Temas de Estudo	Elementos de Competência
RA1: Aplicar conceitos de álgebra e geometria analítica para modelar analiticamente fenômenos físicos da mecânica.	Tema 1: funções reais de uma variável; Tema 2: trigonometria; Tema 3: representações matemáticas no espaço tridimensional; Tema 4: noção intuitiva e cálculo de limites.	EC1. Representar fenômenos físicos e matemáticos por meio de modelos computacionais e realizar simulações para validar estes modelos.
RA2: Resolver com precisão problemas conceituais e de contexto real aplicando fundamentos de cálculo e geometria analítica.	Tema 4: noção intuitiva e cálculo de limites Tema 5: derivação; Tema 6: integração; Tema 7: medidas no sistema internacional;	EC2. Representar fenômenos físicos relacionados a taxas de variação de forma a criar modelos destes fenômenos e realizar simulações para validar estes modelos.
RA3: Verificar adequação de diferentes soluções de problemas conceituais e reais com auxílio de ferramentas experimentais e computacionais.	Tema 8: movimento de partícula; Tema 9: Leis de Newton, trabalho e energia Tema 10: Estratégias de simulação computacional.	EC3. Representar fenômenos físicos relacionados a taxas de variação de forma a criar modelos destes fenômenos e realizar simulações para validar estes modelos.

Plano de Ensino

5. Mapa Mental

Plano de Ensino

6. Metodologia e Avaliação

Alinhamento Construtivo					
Resultado de aprendizagem	Indicadores de Desempenho	Métodos e Técnicas	Processos de Avaliação		
RA1: Aplicar conceitos de álgebra e geometria analítica para modelar analiticamente fenômenos físicos da mecânica	Interpreta corretamente um problema relacionados a física. Relaciona situações reais aos princípios e leis da física e as funções matemáticas. Representa formalmente situações problema por meio de: equações, funções, gráficos ou tabelas. Usando ferramentas computacionais.	Aulas utilizando técnicas de metodologias ativas: Aprendizagem baseada em Problemas; Aprendizagem por pares. Simulação computacional. Resolução de exercícios orientados. Usando o Canvas, Repl.it e o Google Colaboratory.	Avaliação Formativa: atividades individuais, ou em grupo, resolvidas em aula ou em casa. Avaliação Somativa: atividades de simulação computacional e experimentais. Avaliação Somativa: avaliação individual de modelagem computacional.		
RA2: Resolver com precisão problemas conceituais e de contexto real aplicando computacionalmente fundamentos de cálculo e geometria analítica.	Interpreta o código computacional que representa um modelo matemático. Aplica um código computacional para realizar cálculos de um problema utilizando uma base de dados. Resolve limites, derivadas e integrais de forma coerente e precisa. Usando ferramentas computacionais.	Aulas utilizando técnicas de metodologias ativas: Aprendizagem baseada em Problemas; Aprendizagem por pares. Simulação computacional. Resolução de exercícios orientados. Usando o Canvas, Repl.it e o Google Colaboratory.	Avaliação Formativa: atividades individuais, ou em grupo, resolvidas em aula ou em casa. Avaliação Somativa: atividades de simulação computacional e experimentais. Avaliação Somativa: avaliação individual de modelagem computacional.		

Plano de Ensino

RA3: Verificar adequação de diferentes soluções de problemas conceituais e reais com auxílio de ferramentas experimentais e computacionais.

Analisa o comportamento de variáveis a partir da alteração dos parâmetros do modelo computacional.

Verifica a adequabilidade de um modelo frente um conjunto de dados.

Aulas utilizando técnicas de metodologias ativas: PBL – Aprendizagem baseada em Problemas; Aprendizagem por pares.

Simulação computacional. Resolução de exercícios orientados. Usando o Canvas, Repl.it e o Google Colaboratory. Atividades individuais ou em grupo, resolvidas em aula ou em casa.

Atividades de simulação computacional e experimentais.

Avaliação individual de modelagem computacional.

Forma de Trabalho	Item de Avaliação	RA1	RA2	RA3
[Grupo] / [Individual]	Exercícios De Fixação	3,0	3,0	3,0
[Individual]	Avaliação Individual	6,0	6,0	6,0
[Práticas em Grupo]	Prática em Grupo	1,0	1,0	1,0
	Nota da RA	10,0	10,0	10,0
	Peso da RA na média	30%	30%	40%
	Média Disciplina Para Aprovação		7,0	

7. CÁLCULO DA MÉDIA E TRABALHOS

A média desta disciplina será obtida pela média ponderada entre as notas obtidas nas três RA's, atribuindo-se peso 3 (30%) para a nota obtida na RA1, peso 3,0 (30%) para a nota obtida na RA2 e, finalmente, peso 4,0 (40%) para nota obtida na RA3.

Plano de Ensino

Caso a nota em alguma RA seja inferior a 7,0 o aluno poderá fazer uma recuperação parcial. Todas as notas obtidas na recuperação que forem maiores ou iguais a 7.0 farão com que a nota da RA recuperada seja ajustada para o valor 7.0.Regras para Entrega de Trabalhos.

Regras para Entrega de Trabalhos

- 1. Os grupos podem ser formados com até n indivíduos. Tal que: $1 \le n \le 4$.
- 2. Todos os trabalhos e exercícios poderão ser entregues até as 23:59 do dia indicado no AVA (Canvas) como prazo limite para entrega.
- 3. Cada dia de atraso na entrega do trabalho corresponde a perda de 10% do valor da nota.
- 4. Todos os trabalhos e exercícios serão verificados quanto à similaridade e trabalhos iguais serão zerados.
- 5. Todos os trabalhos que envolvam código deverão ser entregues por meio de um link para uma página de um serviço de compilação e execução online. Sugere-se o uso do Google Colaboratory ou do Repl.it.
- 6. Todas as resoluções algébricas que sejam necessárias a entrega dos trabalhos deverão estar expressas em Latex, ou usando as ferramentas matemáticas do Microsoft Word e entregues em um arquivo no formato pdf.

Os Trabalhos Discente Efetivos (TDE's) não têm peso nas médias da disciplina.

8. CRONOGRAMA

	RA	Atividades Pedagógicas	Tipo	Carga
06/03/2023 Semana 1	RA 1	[Tema 1] Apresentação da disciplina, do plano de ensino e das ferramentas computacionais [Tema 2] Trigonometria do triângulo retângulo e relações trigonométricas. [Exercícios de Fixação 1]	Em aula	4 h
13/03/2023 Semana 2	RA 1	[Tema 3] [Tema 4] Representações matemáticas no espaço tridimensional. Noção intuitiva e cálculo de limites. Noção intuitiva e cálculo de limites. [Exercícios de Fixação 1]	Em aula	4 h
20/03/2023 Semana 3	RA 1	[Tema 4] Operações com limites. Plotagem no plano cartesiano computacionalmente. [Prática em Grupo 1]	Em aula	4h

Plano de Ensino

27/03/2023 Semana 4		[Tema 5] definição e interpretação geométrica e física de derivadas; derivada de funções elementares, propriedades e aplicações [Entrega Prática em Grupo 1]	Em aula	4 h
03/04/2023 Semana 5	RA 2	[Avaliação Individual RA1] [2h] [Apresentação TDE 1] [2h]	Em aula	4 h
10/04/2023 Semana 6	RA 2	[Tema 6] definição, propriedades, integral definida, soma de Riemann [Prática em Grupo 1] Modelagem de integrais	Em aula	4 h
17/04/2023 Semana 7	RA 2	[Tema 6] Teorema Fundamental do Cálculo, Área e Volume; [Entrega Prática em Grupo 1]	Em aula	4 h
		Trabalho Discente Efetivo	TDE	7,5 h
24/04/2023 Semana 8	RA 2	[Tema 6] Teorema Fundamental do Cálculo, Área e Volume; [Entrega TDE 1]	Em aula	4 h
01/05/2023	RA 2	Feriado		
08/05/2023 Semana 10		[Avaliação Individual RA2][2h] [Apresentação TDE 2] [2h]	Em aula	4 h
15/05/2023 Semana 11	RA 3	[Tema 7] Derivadas Parciais: gradiente, Vetores e Escalares. [Exercícios de Fixação 2] Uso de unidades na modelagem de problemas.	Em aula	4 h
22/05/2023 Semana 12	RA 3	[Tema 8] funções de posição, velocidade e aceleração; [Prática em Grupo 2] Modelagem computacional. [Entrega Exercícios de Fixação 2]	Em aula	4 h
29/05/2023 Semana 13	RA 3	[Tema 9] 1 ^a , 2 ^a e 3 ^a Lei de Newton, Trabalho com força constante e variável; Modelagem computacional. [Entrega Prática em Grupo 2]	Em aula	4 h
		Trabalho Discente Efetivo	TDE	7,5 h
05/06/2023 Semana 14	RA 3	[Tema 10] Estratégias de simulação computacional; [Entrega TDE 2]	Em aula	4 h

Plano de Ensino

12/06/2023 Semana 15	[Avaliação RA 3][4h]	Em aula	4 h
19/06/2023 Semana 16	[Recuperação Todas RA's][4h]	Em aula	4 h
Semana 17	[Recuperação Estendida]	Em aula	4 h

9. REFERÊNCIAS

Bibliografia Básica:

FLEMMING, Diva Marília; GONÇALVES, MírianBuss. **Cálculo A:** funções, limite, derivação e integração. 6. ed., rev. e ampl. São Paulo: Pearson Prentice Hall, 2006.

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl, Fundamentos de Física, Vol.1, 8 ed., Rio de Janeiro: LTC, 2008.

STEINBRUCH, A. & WINTERLE, P. Geometria Analítica. 2a. ed. São Paulo: Makron Books, 1987.

STEWART, James. Cálculo, vol.1. 5a. ou 6a. ou 7a. ed. São Paulo, Cengage Learning.

Bibliografia Complementar:

DEMANA, Franklin D. Pré-cálculo.2. ed. São Paulo: Pearson, 2013. xx, 452 p.

GUIDORIZZI, H. L.. Um curso de cálculo. Vol. 1. Rio de Janeiro: LTC, 2001.

HEWITT, Paul G. Fundamentos de Física Conceitual, Vol. Único, 9 ed., Porto Alegre: Bookman, 2009.

TIPLER, Paul A. e Mosca, G. Física para Cientistas e Engenheiros. Vol.1, 6 ed., Rio de Janeiro: LTC, 2009.

THOMAS, George Brinton; WEIR, Maurice D.; HASS, Joel. Cálculo. São Paulo: Pearson, 2012. 2 v.

WINTERLE, P. Vetores e Geometria Analítica. São Paulo: Makron Books, 2000.

10. Acessibilidade

Será descrito após a segunda semana de aula, de acordo com o perfil da turma.