

STIMULUS GENERALIZATION AND DISCRIMINATION ALONG THE DIMENSIONS OF WAVELENGTH

AND ANGULAR ORIENTATION

by

Charles Miller Butter

Department of Psychology Duke University

270.00.
Approved:
Norman Guttman, Supervisor
AKaleh
Hand June
Signed took
Twing T. Diames
Paul Welst

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Psychology in the Graduate School of Arts and Sciences of Duke University

ACKNOWLEDGEMENTS

The research upon which this dissertation was based was supported by grant MH-1002 from the National Institute of Mental Health, United States Public Health Service to Dr. Norman Guttman of Duke University.

I would like to thank Dr. C. Alan Boneau for his helpful advice concerning statistical analyses, Dr. Gregory Kimble for his suggestions and criticisms of the writing, and Dr. Karl Zener for his interest and encouragement in writing this dissertation.

Most of all, thanks are due to my supervisor, Dr. Norman Guttman, for his support, advice and encouragement at all stages: the planning and carrying out of the research and the writing of the dissertation.

C. M. B.

CONTENTS

Acknowledgements

List of Figures

List of Tables

Chapter		Page
1	Introduction	2
П	Method: Experiments 1 and 2	9
Ш	Results: Experiments 1 and 2	18
IV	Method: Experiment 3	26
V	Results: Experiment 3	30
VI	Discussion	52
VII	Summary and Conclusions	60
	Appendix	66
	References	115

LIST OF TABLES (Appendix)

		Pag
1	Number of Responses to Different Stimuli in Corrected Group C Test	67
2	Number of Responses to Different Stimuli in Corrected Group C Retest	68
3	Number of Responses to Different Stimuli on Group T Test	69
4	Number of Responses to Different Stimuli on Group T Retest	70
5	Number of Responses to Different Stimuli on Group TC Test	71
6	Number of Responses to Different Stimuli on Group TC Retest	77
7	Differences between Mean Log Responses of Group TC to Stimuli Varying in One and in Two Dimensions	83
8	Mean Predicted and Obtained Responses of Group TC on Generalization Tests	86
9	Comparison between Mean Responses of Groups C and TC to Wavelength Stimuli	88
10	Comparison between Mean Responses of Groups T and TC to Angular Orientation Stimuli	89
11	Comparison of Number of Days to Discrimination Criterion for Three Discrimination Groups (Mann-Whitney U Tests)	90
12	Number of Responses to Different Stimuli on Test Following Wavelength Discrimi- nation	91

LIST OF TABLES (continued)

13	Number of Responses to Different Stimuli on Retest Following Wavelength Discrimination	94
14	Mean Predicted and Obtained Responses on Generalization Tests Following Wave- length Discrimination	97
15	Number of Responses to Different Stimuli on Test Following Angular Orientation Discrimination	99
16	Number of Responses to Different Stimuli on Retest Following Angular Orientation Discrimination	102
17	Mean Predicted and Obtained Responses on Generalization Tests Following Angular Orientation Discrimination	105
18	Number of Responses to Different Stimuli on Test Following Wavelength and Angular Orientation Discrimination	107
19	Number of Responses to Different Stimuli on Retest Following Wavelength and Angular Orientation Discrimination	110
20	Mean Predicted and Obtained Responses on Generalization Tests Following Wave- length-Angular Orientation Discrimination	113

LIST OF FIGURES

Figure		Page
1	Predictions of the Discrimination and Multiplicative Hypotheses. A. Generalization surface predicted by the Discrimination Hypothesis. B. Generalization surface predicted by the Multiplicative Hypothesis. C. Comparison between diagonals predicted by the two hypotheses with primary gradient.	4
2	Diagram of apparatus.	12
3	Wavelength gradients on test and retest for Experiment 1.	39
4	Wavelength gradient for Experiment 1 and for experiment of Honig, Thomas & King.	22
5	Angular orientation gradients on test and retest for Experiment 2.	24
6	Gradients for Experiment 3 (Group TC) on first day of testing. A. Wavelength gradients at different angular orientation values. B. Angular orientation gradients at different wavelength values	97 P
en e	Gradients for Experiment 3 (Group TC) on second day of testing. A. Wavelength gradients at different angular orientation values. B. Angular orientation gradients at different wavelength values.	33
8	Proportions of total responses to 3 in discrimination training for Groups TC-C, TC-T, and TC-TC.	39

LIST OF FIGURES (continued)

Figure		Page
9	Gradients obtained following wavelength discrimination (Group TC-C). A. Wavelength gradients at different angular orientation values. B. Angular orientation gradients at different wavelength values.	A special
10	Gradients obtained following angular orientation discrimination (Group TC-T). A. Wavelength gradients at different angular orientation values. B. Angular orientation gradients at different wavelength values.	43
condition of the condit	Gradients obtained following wavelength- angular orientation discrimination (Group TC-TC). A. Wavelength gradients at different angular orientation values. B. Angular orientation gradients at different wavelength values.	45
9 G	Ceneralization along previously undiscriminated dimensions. A. Angular orientation gradient before and after wavelength discrimination (Group TC-C). B. Wavelength gradient before and after angular orientation discrimination (Group TC-T).	50

ALONG THE DIMENSIONS OF WAVELENGTH AND ANGULAR CRIENTATION

Chapter I

INTRODUCTION

Among the important variables which centrol the rate of emission of an operant response are the external stimuli in the presence of which the response occurs and/or is reinforced. This fact appears in clear form in studies of stimulus generalization, where systematic changes in response rate occur with variations in some property of the training stimulus along some specified physical dimension.

Previous experiments using pigeons in an operant situation have shown reliable stimulus generalization gradients along the wavelength dimension (Cuttman, 1956; Guttman & Kalish, 1956) and have begun to investigate some of the more complex relationships between the generalization gradient and certain other variables (Hanson, 1956; Kalish & Guttman, 1957; Honig, 1958;

Kalish & Cuttman, 1959). The present study also uses pigeons in an operant situation and is concerned with the problem of stimulus generalization. The primary purpose of this study was to compare response rates to stimuli which differ from the training stimulus in one and in two dimensions. A related purpose was to attempt a quantitative description of the relationship between response rates under these two sets of conditions in order to be able to predict response rates to stimulidiffering from the training stimulus in two dimensions from response rates to stimuli differing in each dimension alone. An experiment using rate (Fink & Patton. 1953) found that the amount of generalization decrement of a tube-drinking response was directly related to the number of stimulus components present in training that were changed. A recent study (White, 1958), using children, found more generalization decrement to stimuli differing from the training stimulus in two dimensions (hue and brightness) than to stimuli differing in either dimension alone. However, no conclusions regarding quantitative relationships between stimulus generalization along one and two dimensions could be reached. The two stimulus dimensions chosen for use in this study were wavelength and angular orientation, both of which have been used in previous studies of stimulus generalization following single stimulus training (Guttman & Kalish, 1956; Butter & Cuttman, 1957).

Two alternative relationships between response rates to stimuli varying in one and in two dimensions may be suggested. The models describing such relationships (Fig. 1) consist of generalization gradients along two stimulus dimensions. A and B, set at right angles to each other and

Fig. 1 Predictions of the Discrimination and Multiplicative Hypotheses. A. Generalization
surface predicted by the Discrimination
Hypothesis. B. Generalization surface predicted by the Multiplicative Hypothesis.
C. Comparison between diagonals predicted
by the two hypotheses with primary gradient.

intersecting a perpendicular response axis. For simplicity, generalization gradients are drawn as straight lines of equal slope. The alternative relationships between response rates to stimuli varying in one and in two dimensions are specified in terms of the surface connecting the two primary generalization gradients.

One kind of generalization surface is predicted by the Discrimination Hypothesis, which assumes that S responds nonselectively to the sum total of all stimulus energy impinging on its receptors. Likewise, when stimuli are changed, the response strength is a function of the sum of all discriminable stimulus changes, expressed in j. a. d. steps. According to the Discrimination Hypothesis, when a stimulus is changed in two dimensions, the number of j. a. d. steps taken in each dimension alone are summed. The resulting amount of generalization decrement equals the sum of generalization decrements to stimuli changed in each dimension alone.

Thus, if

responses to the training stimulus = x

responses to a stimulus changed along dimension

A = y

responses to a stimulus changed along dimension

Baz

then

x - y = the generalization decrement to a stimulus

changed along dimension A

x - z = the generalization decrement to a stimulus changed

along dimession B

and

(x - y) + (x - z) = the generalization decrement to a stimulus changed along dimensions A and B

The generalization surface generated by the Discrimination Hypothesis consists of flat planes connecting the two primary gradients (Fig. 1A).

This hypothesis has been shown to predict judgments of similarity between multi-dimensional stimuli with only moderate success (Attneave, 1950).

A second hypothesis concerning the relationship between response rates to stimuli varying in one and in two dimensions is the Multiplicative Hypothesis. While the Discrimination Hypothesis assumes that S responds to the sum of all changed stimuli, the Multiplicative Hypothesis assumes that S actively selects and observes each stimulus change independently. A change in the probability of response occurs only if S observes a stimulus change along a particular dimension.

Thus, if

the probability of response to the training

stimulus = 1

the probability of a response to a stimulus

changed along dimension A = r

the probability of response to a stimulus

changed along dimension B = s

2 hours

1 • r = the probability of S observing a stimulus changed along dimension A
1 • s = the probability of S observing a stimulus changed along dimension B

It is assumed that these probabilities of S observing a stimulus change are independent but not mutually exclusive, so that on any short period of time. S observes either a stimulus change along dimension A, a stimulus change along dimension B, a stimulus change along both dimensions, or no change. Thus, on any stimulus presentation period in which the stimulus differs from the training stimulus with respect to both dimensions.

the probability of S observing a change in the training stimulus along dimensions A and B = (1 - r) + (1 - s) - [(1 - r) (1 - s)] = 1 - rs

and

the probability of response to a stimulus changed along dimensions A and B =

Thus, the Multiplicative Hypothesis (Fig. 1B) predicts response probabilities to stimuli changed in two dimensions by multiplying response probabilities to stimuli changed in each dimension alone. This hypothesis was suggested by the results of an exploratory study which utilized a limited number of stimulus values (Butter & Guttman, 1958)

and in a personal communication by Dr. Marvin Levine of the University of Wisconsin. The concept of an "observing response" has been used previously in analyzing discrimination learning (Wyckoff, 1952), while others (Muenzinger & Gentry, 1931; Tolman, 1938) have used the concept of VTE in a similar manner.

Both the Discrimination and the Multiplicative Hypotheses predict lower response rates to stimuli changed in two dimensions than to stimuli changed in each dimension alone. The two hypotheses differ, however, with respect to the size of the predicted difference between these two response rates. This is shown in Fig. 1C, where the diagonals along the two generalization surfaces are compared with a primary generalization gradient. The Discrimination Hypothesi s predicts a straight line intersecting the x-axis at a point above which the primary gradient is at 50% response strength. The function predicted by the Multiplicative Hypothesis lies above that predicted by the Discrimination Hypothesis; it is curvilinear and intersects the primary gradient at zero response strength. These two alternative hypothese concerning the relationships between response rates to stimuli varying in one and in two dimensions are not to be considered as the only possibilities, but as relatively simple alternatives whose psychological significance may be described.

Chapter II

METHOD: EXPERIMENTS I AND 2

These experiments are primarily control studies whose purpose was to determine whether response rates to stimuli changed in one dimension are altered by the presence of stimuli varying in another dimension. Experiment I concerns wavelength generalization when a narrow band of monochromatic light is transmitted to the key, and Experiment 2 concerns generalization along angular orientation dimension, produced by rotating the band of light, with wavelength constant.

Apparatus: The apparatus was an automatically-controlled Skinner box designed for key-pecking and similar to those used in other wavelength generalization studies (Guttman & Kalish, 1956; Hanson, 1956; Honig, 1958).

The special feature of the present apparatus, however, was that only a

narrow band of light was transmitted by the key, and this band could be rotated about its center to provide various degrees of angular orientation.

The wavelength of the transmitted light was controlled by monochromatic interference filters placed in the beam illuminating the key.

The light source was a 75 watt (G. B. BLX) projection lamp, focused on the key by means of condensing lenses. In front of the projection lamp a holder was provided for introducing an interference filter in the light path. The 11 interference filters (Bausch & Lomb Co.) used had a band width which varied between 7 and 9 Mp at half height. The actual peak transmission values of the filters differed from the nominal values as shown in Table 1 on page 11. In subsequent reference to the wavelength stimuli, nominal values will be used. However, in graphs, wavelength values are spaced according to their actual values.

The details of the mechanism for controlling the angular orientation of the band of light on the key are shown in Fig. 2. A circular piece of Insuroc, set within the Lucite frame of the key, was masked in such a manner that a strip running through its center, 1-inch in length and 1/16-inch in width, was exposed to the light beam. The Insuroc circue could be rotated about its center by means of a pair of spur gears. A rod is shown engaging the smaller spur gear; in this position, rotation of the rod produced a rotation of the exposed band about its center. The rod could be moved backwards to disengage the key. The angular orientation of the band of light on the key was set by means of a pointer attached to

Table 1

Nominal and actual peak transmission values of monochromatic interference filters

Mominal value	Actual value
490 Mu	496.5 Mp
510	511
520	523
530	538
540	539
550	548
560	561
570	570
580	586
596	589
610	611

In addition to the filters mentioned, a Wratten R-2 filter (Dastman Kodak Co.) was placed in the light path along with all wavelength values above 550 Mp. The Wratten filters were used to prevent the transmission of wavelengths below 510 Mp and any second order spectral wavelengths.

^{*}It will be noted in Table I that the actual peak transmission value of the 530 Mµ interference filter was 538 Mµ (as determined by means of spectro-photometer following the completion of all experiments). Since the actual peak transmission value deviates markedly from the nominal value, it is necessary at this point to consider whether the actual peak transmission value of this filter was 538 Mp throughout the course of the study or whether it changed at some time during the study. So in these experiments were sun in the following order: (1) three 5s in Experiment 1, (2) all 9s in Experiment 3, and (3) the remaining six So in Experiment 1 and all 5s in Experiment 2. The facts to be presented point to the conclusion that the peak transmission value of this filter changed following the completion of Experiment 3 (reported in Chapter V) and prior to the training and testing of six Ss in Experiment 1.

The generalization gradients obtained from 2s in Experiment 3 following discrimination training show sizeable generalization decrements from 540 to 530 Mp (Figs. 9-11). On the basis of these generalization decrements, it must be assumed that during the course of testing 5s in Experiment 3, the actual peak transmission values of the 540 and 530 Mp filters were much

Fig. 2. Diagram of apparatus.

- 1. Key with exposed band of light running through center.
- 2. Spur gears.
- 3. Rod to rotate band of light.
- 4. Dial.
- 5. Pointer.
- 6. Projection lamp in housing.
- 7. Holder for interference filter.
- 8. Diectric contacts
- 9. Floor and side wall of housing.

one end of the rod and a dial. Angular orientation settings, calibrated by means of a protractor, were accurate to one degree. The front section (Fig. 2) of the apparatus was enclosed in a light-proof housing, with apertures for the light beam projected on the key and for the rod to rotate the band of light.

The magazine, mounted beneath the floor of the apparatus, was set on a pivot and held in place when not in operation by a cam. The magazine was counterweighted so that when the motor was activated and the cam rotated it was released and rose to the floor of the apparatus. In this position, S could eat grain through a hole in the floor for 3 sec., after which the magazine was returned to its original position by the action of the cam. When the magazine was open, the area of the floor to which it rose was illuminated by a 7 watt lamp.

further apart than 1 Mp.

On the other hand, the six Ss in Experiment 1 run subsequent to Ss in Experiment 3 show no significant difference between their responses on the generalization tests to 530 and 540 Mp. Therefore, it was assumed that during the course of testing these six Ss, the actual peak transmission value of the 530 Mp filter was 538 Mp. In analyses of the data from Experiment 1, these six Ss' responses to 538 and 540 Mp (actual value, 539 Mp) were averaged and plotted as mean responses to 538.5 Mp.

It will be assumed in further analyses of the results of Experiment 3 that the 530 Mp filter had an actual peak transmission value in the region of 530 Mp. It should be pointed out that in addition to the presumptive evidence upon which this assumption is based, this peak transmission value is subject to an error of ± 4 Mp, according to the manufacturer.

In addition to the projection lamp and magazine light, a 7 watt lamp was mounted in the ceiling of the apparatus. Masking of relay clicks was provided by white noise from a speaker mounted in the ceiling of the apparatus. The sound source was a Grason-Stadler White Noise Generator, Model 901.

Subjects: The Ss were 18 experimentally naive white Carneau pigeons, obtained from the Palmetto Pigeon Plant, Sumter, South Carolina. They were housed in individual cages where they had tap water available at all times.

Upon arrival at the laboratory, 5s were randomly divided into two groups, Group C and Group T.

Ss were run in three squads: three Ss were in the first squad, seven Ss were in the second squad, and eight Ss were in the third squad.

Procedure: Upon arrival at the laboratory, Ss were fed pigeon grain ad libitum for several days. Ss were then starved to 75% of their normal body weight (determined on the last day of ad libitum feeding) and maintained at this weight level throughout the experiment.

Magazine training: On the first day of training, S was allowed to eat from the open magazine for three minutes. Any S which did not eat within 30 min. after being introduced into the apparatus was returned to the home cage and trained the next day. On the day following three minutes of feeding in the apparatus, S was trained to approach and eat from the magazine when it was opened. S was introduced into the apparatus, the magazine was opened, and S was allowed to eat for ten sec. On successive

trials, the time the magazine remained opened was gradually shortened until S ate immediately upon presentation of the food. Immediate approach to the opening of the magazine was accomplished in 10-20 trials. During both stages of magazine training the overhead light in the apparatus was on. The key was not illuminated during magazine training.

Key-peck training: On the day following the completion of magazine training, key-pecking was conditioned by the method of "successive approximations," and 50 continuously reinforced key-pecks were permitted.

The overhead light in the apparatus was on.

On the second day of key-peck training, Ss were allowed 50 continuous reinforcements, and the overhead light was reduced by putting a piece of paper under the lamp. For all Ss the key was illuminated by monochromatic light of 550 Mp and the band of light on the key was in vertical position (90°).

V I training: On the day following the completion of key-peck training, Ss began training on a variable interval (V I) reinforcement schedule with a mean interval of one minute. Training sessions consisted of thirty 55-sec. light-on periods, during which the key was illuminated, alternating with 15-sec. light-off periods. V I training was administered over 15 consecutive days. During this time the band of light on the key remained at 550 Mp and 90°. The overhead light was not on during this and subsequent stages of the experiment.

Generalization testing: On the day following the completion of V I training. Ss were tested for stimulus generalization. Ss which had not

attained the rate of one thousand responses over each of the last three days of V I training were given further training until this criterion was met.

Four additional days of training were given to T-5; C-4 and T-7 each received one additional day of training.

Immediately before generalization testing, Ss were presented with the training stimulus (550 Mp-90°) for six 30-sec. periods, alternating with 15-sec. dark periods. During this "warmup period," key-pecking was reinforced once during the first, third and sixth stimulus periods.

Ss in Group C were tested for generalization along the wavelength dimension. The stimuli consisted of Il values of wavelength: the training stimulus, 550 Mp, and five wavelengths above and below this value. The wavelength values were 10 Mp apart, except for 490 and 610 Mp. Each stimulus was presented 12 times in random sequence. Each stimulus presentation lasted for 30-sec. and was followed by a 15-sec. dark period.

On the following day, generalization tests were again administered to all Ss. The procedure was the same as on the first day of generalization testing, except that each of the 11 wavelength values was presented eight times. During both days of generalization testing, the angular orientation of the band of light on the key was held constant at 90°.

Ss in Group T were tested for stimulus generalization along the dimension of angular orientation of the band of light. During testing, Ss were presented with Il values of angular orientation: the training stimulus, 90°, and five values of angular orientation, 15° apart, above and below

this value. On the following day, Ss were given a second generalization test. Except for the stimulus values used in testing, the procedure on both days was identical to that employed with Group C. The wavelength of the band of light was held constant at 550 Mp throughout testing.

Chapter III

RESULTS: EXPERIMENTS 1 AND 2

Experiment 1, Wavelength generalization: The mean total responses of six Ss in Group C to the 11 wavelength stimuli presented on the first and second day of testing are shown in Fig. 3. Of the nine Ss run in Group C, the six Ss whose responses are averaged in these gradients are those run subsequent to Ss in Group TC and presumptively presented with 538 Mp in generalization testing. Total responses of the six Ss to 538 and 540 Mp (actual value, 539 Mp) were averaged and plotted in Fig. 3 as mean total responses to 538.5 Mp.

Response rates obtained on the first day of testing are inversely related to distance in wavelength from the training stimulus, 550 Mp.

The averaged generalization gradient is noticeably asymmetrical; response rates to wavelengths above 550 Mp are greater than response rates to

Fig. 3. Wavelength gradients on test and retest for Experiment 1.

wavelengths below this value, except at 610 Mp, where response rates are lower than to 490 Mp.

The averaged generalization gradient obtained on the second day of testing is similar in form to the one obtained on the first day. Response rates on the second day are inversely related to distance in wavelength from 550 Mµ, and response rates to wavelengths above 550 Mµ are greater than response rates to wavelengths below this value, except at 610 Mµ, where response rates are slightly less than those to 495 Mµ.

Examination of the response rates of individual Ss on both days of testing discloses, on the whole, the same asymmetries found in averaged generalized response rates. * Response rates of eight of the nine Ss to 560 and 590 Mp are greater than their response rates to 540 and 510 Mp, respectively. Response rates of all nine Ss to 580 Mp are greater than their response rates to 520 Mp. These findings are all the more striking when it is considered that the actual values of the 560, 580 and 590 Mp filters are further from the training stimulus than are the actual values of the 540, 520 and 510 Mp filters, respectively (see Table 1, page 11). Response rates of six of the nine Ss to 490 Mp are greater than their response rates to 610 Mp. This finding is in accordance with the fact that the actual value of the 610 Mp filter is further from the training stimulus

^{*}The responses of all nine Ss in Group C were examined. Responses to 530 Mm were not considered because of the change in the peak transmission value of this filter.

than is the actual value of the 490 Mp filter (see Table 1, page 11). Thus, the pattern of the individual scores lends support to the conclusion that the asymmetries described above represent true differences in the pattern of responding.

Response rates of the same six Ss to the 11 wavelength stimuli presented on the first and second day of testing are summed and averaged in the generalization gradient shown in Fig. 4. In the same figure, a generalization gradient obtained under comparable conditions but with the full key illuminated with monochromatic light during training to 550 Mp. and testing (Honig, Thomas & King, in press) is shown. This generalization gradient consists of mean total responses of 11 Se to 24 exposures to each wavelength stimulus presented on two days of testing. Stimulus values plotted along the abcissa are the actual values employed in the Honig, Thomas & King study, while the actual values employed in the present study are used to plot Group C's gradient. The small differences between stimulus values employed in the present study and that of Honig, Thomas & King preclude statistical comparisons between the response rates obtained in the two experiments. However, from inspection, it is clear that the gradient obtained in the present study is broader throughout its range than the one obtained with the full key illuminated, especially in the region of wavelength values distant from 550 Mp. At 490 Mp, mean response rates in the present study comprise approximately 30% of response rates to 550 MM. whereas approximately 6% of mean response rates to 550 Mu are shown at 490 Mp by Ss in the Honig, Thomas & King study. Although the slope

Fig. 4. Wavelength gradient for Experiment 1 and for experiment of Honig, Thomas & King.

between 590 and 610 Mµ in the present study is steeper than that found in the study using the fully illuminated key, mean response rates of Ss in Group C to 610 Mµ are approximately 19% of response rates to 550 Mµ, whereas approximately 9% of response rates to 550 Mµ are given to 610 Mµ by Ss in the latter study.

Experiment 2, Angular orientation generalization: The mean total responses of Ss in Group T to the 11 values of angular orientation presented on the first and second day of testing are shown in Fig. 5. (Representations of the actual stimuli are shown below each stimulus value on the ordinate.) Mean response rates obtained on the first day of testing are inversely related to distance in degrees from the training stimulus. 900, and the generalization gradient plotted in Fig. 5 forms slightly bowshaped functions, especially the one above 90°. The same generalization gradient contains several asymmetries; the most obvious one consists of the greater number of mean response rates to 1050 than to 750. Less striking but still noticeable are the higher number of mean response rates to 120°, 150°, and 165° than to equidistant stimulus values below 90°. In addition, mean response rates to 45° are higher than mean response rates to 135°.

Mean total responses obtained on the second day of testing are also inversely related to distance in degrees from 90°, except for the inversion at 105°, where the peak of responding is located. Mean response rates on the second day of testing to other values of angular orientation above 90° are not strikingly different from mean response rates to

Fig. 5. Angular orientation gradients on test and retest for Experiment 2.

equidistant stimulus values below 900.

Response rates of individual as on both days of testing were examined in order to determine whether the asymmetries described above represent true differences in responding. Response rates of seven of the nine as to 105° and 126° are higher than their response rates to 75° and 60°, respectively. However, comparison of individual as response rates to other stimuli equidistant from 90° disclosed consistent differences in response rates in, at best, only five of the nine as scores. Thus, the pattern of the individual scores supports the conclusion that mean response rates to 105° and 120° are significantly higher than mean response rates to 75° and 60° respectively, but that the asymmetries involving other angular orientation stimuli do not represent true differences in responding.

Chapter IV

METHOD: EXPERIMENT 3

Apparatus: The apparatus was the same as that used in Experiments 1 and 2.

Dubjects: Se were 27 experimentally naive White Carneau pigeons, obtained from the Palmetto Pigeon Plant, Sumter, South Carolina. Prior to the experiment they were treated in the same manner as Se in Experiments 1 and 2. Two Se, TC-121 and TC-128, were discarded because of failure to train. Se were run in five squade; five Se were run in four squade and seven in the fifth squad.

Procedure: Weight reduction and magazine training were accomplished in the same manner as in Experiments 1 and 2. Likewise, key-peck training and V I training were administered as in previous experiments; the training stimulus was maintained at 550 Mp-90° throughout

key-peck and V I training. One S, TC-141, was given one further day of training in order to meet the V I training criterion of at least 1000 responses on each of three consecutive days.

Generalization testing: On the day following the completion of V I training, all Ss were administered generalization tests. Immediately prior to generalization testing a "warmup period" was administered to all Ss in the same manner as in Experiments 1 and 2. The 25 stimuli which were presented in generalization testing were composed of all combinations of five values of wavelength, 530, 540, 550, 560, and 570 Mp, with five values of angular orientation, 30°, 60°, 90°, 120° and 150°.

Each stimulus combination was presented once in each of six series according to the following design. The first series, in which stimuli were presented in a randomized order, was divided into five blocks of four stimuli and one block of five stimuli. The six series of blocks formed a Latin Square design in which each block occupied each of the six positions over all series.

Table 2

Fesition of stimulus blocks on first day of generalization testing (Exp. 3)

		1	Es.	3	4	5	6
Position in series	1	I	11	IV	VI	III	
	2	II	III	V	1	IV	VI
	3	III	IV	VI	II	W.	7
	4	IV	V	1	III	VI	II
	5	V	VI	n	IV	Ŧ	Ш
	6	VI	1	III	VI	II	IV

On the following day, all 5s received a second generalization test in which the last three series of stimuli used on the first day of generalization testing were presented in a backward order.

Discrimination training: The purpose of this part of Experiment 3 was to describe discrimination learning involving stimuli differing in one and in two dimensions. Following the completion of generalization testing, the 27 Ss were divided into three groups of nine each: Group TC-C, TC-T and TC-TC. Assignment of Ss to groups was made so as to equalize average response rates over the last three days of V I training for each of the three groups. Group TC-C received discrimination training along the wavelength dimension (550 Mp-positive; 560 Mp-negative) with angular orientation held constant at 90°. Group TC-T received discrimination training along the angular orientation dimension (90° - positive; 120° - negative) with wavelength held constant at 550 Mp. Group TC-TC received discrimination training along both the dimensions of wavelength and angular orientation (550 Mp-90°, positive; 560 Mp-120°, negative).

Immediately prior to the first discrimination training session, all

Ss were permitted ten continuously reinforced key-pecks in the presence
of the pre-generalization training stimulus. Ss in all three groups
received daily discrimination training sessions consisting of 15 presentations
of the positive and negative stimuli in a randomized sequence. Rey-pecking

The hypothesis that average response rates were the same for all three groups could not be rejected by the results of Mann-Whitney U tests.

in the presence of the positive stimulus was reinforced on the same V I schedule used in prior V I training, while pecking in the presence of the negative stimulus was never reinforced. Daily discrimination training sessions were continued until the criterion of complete suppression of responding to ten consecutive presentations of the negative stimulus and maintainance of at least ten responses to each of ten consecutive presentations of the positive stimulus was met.

This criterion was not met by two Se, one in Group TC-C (TC-126) and one in Group TC-T (TC-123). Discrimination training for both Ss was ended after 30 days.

Post-discrimination generalization testing: A further problem to which this study is directed is a determination of changes in the form of stimulus generalization along one and two dimensions following discrimination training. On the day following the completion of discrimination training, all 3s were administered generalization tests in which the same 25 stimuli administered in pre-discrimination generalization tests were presented in the same Latin Square design. No "warmup period" was presented prior to generalization testing. On the following day, a second generalization test was administered in the same manner as in pre-discrimination generalization testing.

Chapter V

RESULTS: EXPERIMENT 3

Stimulus generalization along the wavelength and angular orientation dimensions following training at 550 Mp-90°: (Tables 5 and 6, Appendix) For ease of inspection, the results of this part of Experiment 3 are presented as generalization gradients along each stimulus dimension for different values of the second dimension. Mean total responses of Ss in Group TC to the 25 stimuli presented on the first day of generalization testing are plotted as a function of wavelength with angular orientation as a parameter in Fig. 6A. The averaged wavelength generalization gradients are all asymmetrical in the same direction as wavelength gradients obtained in Experiment 1 (Fig. 3). Mean response rates to 560 and 570 Mp are higher than mean response rates to 540 and 530 Mp.

Fig. 6. Gradients for Experiment 3 (Group TC) on first day of testing. A. Wavelength gradients at different angular orientation values.

B. Angular orientation gradients at different wavelength values.

All generalization gradients show decrements from 550 to 540 Mp and little or no decrement from 540 to 530 Mp. Generalization decrements to wavelengths above 550 Mp are all quite small. Furthermore, gradients at 30° and 150° are flatter than those at levels of angular orientation closer to 90°. Averaged wavelength generalization gradients obtained on the second day of testing (Fig. 7A) are similar to those obtained on the first day. Generalization decrement to wavelengths above 550 Mp is smaller than to wavelengths below 550 Mp, except at 30° and 150°, where generalization gradients are essentially flat. It is also noted that wavelength gradients at 60° and 128° are in general flatter than the gradient at 90°.

Mean total responses of the same 5s on the first day of testing are plotted as a function of angular orientation with wavelength as a parameter in Fig. 6B. It is seen, first of all, that over the range of angular orientation values at which generalization was tested, there is proportionally more generalization decrement than is found over the range of wavelength values shown in Fig. 6A. Mean total responses obtained on the first day of testing are inversely related to distance in degrees from the angular orientation training stimulus, 90°. The angular orientation gradients show no consistent asymmetries, but differences in form are noticeable; gradients at 530 and 540 Mp are flatter from 30° to 50° and from 120° to 150° than are gradients at other wavelength values.

Averaged angular orientation gradients obtained on the second day of

Fig. 7. Gradients for Experiment 3 (Group TC) on second day of testing. A. Wavelength gradients at different angular orientation values.

B. Angular orientation gradients at different wavelength values.

testing (Fig. 7B) are not markedly different from those obtained on the first day of testing. Mean total responses obtained on the second day of testing are inversely related to distance in degrees from 90°, and no consistent asymmetries appear in the set of gradients. Again, angular orientation gradients at 540 and 530 Mp are flatter from 30° to 60° and from 120° to 150° than gradients at other wavelength values.

The results of this part of Experiment 3 may be analyzed in order to determine whether there is any consistent difference between mean response rates to the 16 stimuli varying in two dimensions and mean response rates to each of the two stimuli varying to the same extent in only one dimension. For example, response rates to 530 Mp - 300 may be compared with response rates to 530 Mg-900 and with response rates to 550 Mp-300. Total responses of individual Ss on both days of testing were transformed into logs in order to normalize response distributions, and differences between mean log response rates to stimuli varying in one and in two dimensions with respect to the training stimulus were analyzed by means of the t test for correlated scores (Walker & Lev, 1953) in Table 7 (Appendix). In 29 cases, mean log response rates to stimuli varying in two dimensions were significantly lower (p 4.05) than mean log response rates to stimuli varying only in one dimension. In the remaining three cases, this difference approached significance (.1 > p 7.05). Thus, mean log response rates to stimuli differing from the training stimulus in two dimensions are consistently lower than mean log response rates to stimuli differing from the training stimulus in each dimension alone.

The generalization data may be further analyzed from the viewpoint of describing the quantitative relationship between response rates to stimuli differing from the training stimulus in one and in two dimensions.

Mean response rates to the 16 stimuli differing in two dimensions from the training stimulus are compared with mean response rates to these same stimuli predicted by the Discrimination and Multiplicative Hypotheses in Table 8 (Appendix). The standard error of the estimate was used to describe the accuracy of descriptions. The overall standard error for the Discrimination Hypothesis is 17.3, while the overall standard error for the Multiplicative Hypothesis is 9.4. In regard to the direction of prediction errors, 13 of the 16 predictions of the Discrimination Hypothesis are lower than mean obtained response rates, while 11 of the 16 predictions of the Multiplicative Hypothesis are greater than mean obtained response rates.

The mean response rates to be predicted may be divided into two groups: eight low response rates (response rates to stimuli including 30° and 150°) and eight high response rates (response rates to stimuli including 60° and 120°). For the eight low response rates, the standard error for the Discrimination Hypothesis is 15.3, while the standard error for the Multiplicative Hypothesis is 2.7. The Discrimination Hypothesis

^{*}Both sets of predictions were computed according to the formulas described in Chapt. I on the basis of mean responses of the 27 Ss on both days of generalization testing.

^{**} $dyz = \sqrt{\frac{Ed^2}{N-1}}$, where d = deviation of predicted from obtained mean response rates.

underpredicts all eight mean response rates, and the Multiplicative Hypothesis underpredicts four of these eight mean response rates.

For the eight high response rates, the standard error for the Discrimination Hypothesis is 10.7, while that for the Multiplicative Hypothesis is 9.0. Thus, the major source of difference between prediction accuracy of the Discrimination and Multiplicative Hypotheses is attributed to predictions of low response rates.

The effect on stimulus generalization along one dimension of variations in a second dimension: In this section, the results of Experiments 1 and 3 are compared in order to determine whether stimulus generalization along the wavelength dimension is changed by the presence of variations in angular orientation. Mean total responses of Ss in Group TC to 540, 560 and 570 Mp (angular orientation = 96°) and mean total responses of Ss in Group C to the same stimuli are shown in Table 9 (Appendix)*. Responses of Ss in Group TC were raised by a constant amount in order to match their mean peak of responding at 550 Mp-90° to that of Ss in Group C. None of the differences between mean response rates of the two groups to any of the three wavelength stimuli are significantly different by the t-test (in all cases, p > .75).

By comparing the results of Experiments 2 and 3, it may be determined whether stimulus generalization along the angular orientation

Because it is assumed that the peak transmission value of the 530 Mµ interference filter changed before six is in Group TC were run, no comparison of responses of Ss in the two groups to the wavelength produced by this filter can be made.

dimension is changed when stimuli are also varying along the wavelength dimension. Mean total responses of Sp in Group TC to 30°, 60° 120°. and 150° (Mu = 550) and mean total responses of Ss in Group T to the same stimuli are shown in Table 10 (Appendix). Responses of Ss in Group TC were raised by a constant amount to match their mean peak of responding at 550 Mg-900 to that of Ss in Group T. Differences between mean response rates of the two groups to 60° and 120° are not significantly different as determined by t tests (in both cases, p > .75), However, mean response rates of Ss in Group TC to 30° and 150° are significantly greater than mean response rates of Se in Croup T to these same stimuli (in both cases, p < . 05). Thus, while stimulus generalization to the three wavelength stimuli is not changed by the presence of variations in angular orientation, generalized response rates to two angular orientation stimuli are greater when wavelength stimuli are concomitantly varied.

Discrimination training: The number of days taken by the three discrimination groups to attain the discrimination learning criterion following generalization testing are shown in Table 11 (Appendix). The mean number of days for the Wavelength Discrimination Group (Group TC-C) was 14.7, for the Angular Orientation Group (Group TC-T), 17.3, and for the Wavelength-Angular Orientation Group (Group TC-TC), 9.0. The distributions of days to discrimination criterion for each of the three groups were compared by the Mann-Whitney U test (Seigel, 1956) in Table 11.

Days to discrimination criterion for Group TC-TC were significantly less than those for Group TC-T (.02 > p > .005) and less than those for

Group TC-C, the difference in the latter case approaching significance (.1 > p > .05). Days to discrimination criterion for Groups TC-C and TC-T were not significantly different (p > .1).

The course of discrimination learning for the three groups is shown in Fig. 8. The three curves are composed of mean proportions of daily total responses of Ss in each group to the ST. Two Ss, one in Group TG-C (TG-C-126), and one in Group TG-T (TG-T-123) failed to meet the discrimination learning criterion after 30 days of training and were left out of this analysis.

Differences between the three groups mean proportions of responses to the S appear on the first day of discrimination training. The mean proportion of responses to the wavelength ("C") S (560 Mp-90°) is .414, to the angular orientation ("T") S (550 Mp-120°), .257, and to the wavelength angular orientation ("TC") S (560 Mp-120°), .215.

Whereas the proportion of responses to the TC S starts to decline immediately, the proportion of responses to the C S remains at approximately the same level for the first three days of discrimination training before declining, and the proportion of responses to the TC S rises on the second day before declining.

On the first 12 days of discrimination training, the preportion of responses to the C S falls more rapidly than do preportions of responses to the T or to the TC S s. While the curve for Group TC falls to zero on the 15th day of training, the curve for Group T levels off around .1 from the 13th to the 20th day, and the curve for Group C continues to fall

Tig. 8. Proportions of total responses to S in discrimination training for Groups TC-C, TC-T and TC-TC.

until the 20th day, when it rises sharply to .237 and then drops again.

Similarly, on the 21st day, the curve for Group T rises sharply to .145
and then drops again. The curve for Group C contains responses of only
one S following the 19th day of discrimination training, and that Group T
also contains the responses of only one S following the 20th day of
training. Thus, the rises in proportions of responses to S described
above can be attributed to chance fluctuations.

Generalization following wavelength discrimination: (Tables 12 and 13, Appendix) Mean total responses of nine Ss, summed over both generalization tests following wavelength discrimination, are shown in Fig. 9. Wavelength generalization gradients at different values of angular orientation (Fig. 9A) all show suppression of responding to 560 Mp., the Sin discrimination training, and 570 Mp. In comparison with wavelength generalization gradients obtained before discrimination training, (Fig. 6 and 7), these gradients are much steeper between 560 and 570 Mp. Peaks of responding are at 540 Mp., except for the gradient at 150°, which peaks at 550 Mp. In addition, gradients which have peaks at 540 Mp are asymmetrical; responses to 530 Mp are greater than responses to 550 Mp. It is also noted that gradients at 30° and 150° are flatter than these at levels of angular orientation closer to 90°.

In Fig. 9B, mean total responses on both days of generalization testing are plotted as a function of angular orientation, with wavelength as a parameter. Response rates to 560 and 570 Mp are markedly suppressed, and gradients are found only at 550, 540 and 530 Mp. The

Fig. 9. Gradients obtained following wavelength discrimination (Group TG-C). A. Wavelength gradients at different angular orientation values. B. Angular orientation gradients at different wavelength values.

averaged angular orientation gradients peak at 90°, and response rates are inversely related to distance in degrees from 90°.

Generalization following angular orientation discrimination:

(Tables 15 and 16, Appendix) Mean total responses of nine 38 summed over both days of generalization testing following angular orientation discrimination training are shown in Fig. 10. Averaged angular orientation generalization gradients at different wavelength values (Fig. 10B) all show suppression of responding to 120°, the 3° in discrimination training, and to 30° and 150°. In comparison with angular orientation gradients obtained before discrimination training (Fig. 6B and 7B), slopes between 90° and 120° are much steeper, and there is greater responding to 60° than to 120°. In addition, the gradient at 530 Mp is flatter between 90° and 60° than gradients at other wavelength values.

Mean total responses on both days of testing are plotted as a function of wavelength for different values of angular orientation in Fig. 10A. Response rates to 30°, 120° and 150° are markedly suppressed so that generalization gradients are found only at 60° and 90°. Both gradients are asymmetrical in the same direction as wavelength gradients obtained prior to discrimination training (Fig. 6A and 7A); response rates to 560 and 570 Mμ are greater than response rates to 540 and 530 Mμ, respectively. Also, response rates to wavelength stimuli below 550 Mμ are inversely related to distance from 550 Mμ, while response rates to 570 Mμ are slightly higher than response rates to 560 Mμ.

Fig. 10 Cradients obtained following angular orientation discrimination (Group TC-T).

A. Wavelength gradients at different angular orientation values. B. Angular orientation gradients at different wavelength values.

Generalization following wavelength-angular orientation discrimination: (Tables 16 and 19, Appendix) Mean total responses of nine as summed over both days of generalization testing following wavelength-angular orientation discrimination training are shown in Fig. 11.

Averaged angular orientation generalization gradients (Fig. 11B) are quite similar to those obtained following angular orientation discrimination (Fig. 10B); there is almost complete suppression of responding to 125°, 150°, and 30°. All gradients show peaks of responding at 90° and higher response rates to 60° than to 120°. In addition, gradients at 530, 560 and 570 Mp are noticeably flatter than gradients at 540 and 550 Mp.

Mean total responses on both days of generalization testing are plotted as a function of wavelength with angular orientation as a parameter in Fig. 11A. Since response rates to 30° and 150° are markedly suppressed, the only wavelength gradients are at 90°, 60° and 120°. These gradients are noticeably different from those obtained following wavelength discrimination training (Fig. 9A); gradients at 60° and 90° peak at 550 Mp, and the gradient at 120° peaks at 540 Mp. However, the differences in response rates to 550 and 540 Mp at 60° and 120° are small. In addition, the gradients at 60° and 90° show much less response suppression to 560 Mp (the wavelength 3° in discrimination training) than do post-wavelength discrimination gradients. Response suppression to 560 Mp is also noticeably less than response suppression to 120° (the angular orientation S° in discrimination training) (Fig. 11B).

Fig. 11. Gradients obtained following wavelengthangular orientation discrimination (Group TC-TC).

A. Wavelength gradients at different angular
orientation values. B. Angular orientation
gradients at different wavelength values.

Mean response rates to 120° at all levels of wavelength are 9.8, while mean response rates to 560 Mm at all levels of angular orientation are 30.8.

Predictions of post-discrimination generalization in two dimensions:

The standard error of the estimate was used to measure accuracy of predictions on post-discrimination generalization tests. Considering first response rates on generalization tests following wavelength discrimination* (Table 14, Appendix), the standard error for the Discrimination Hypothesis is 25.1, while the standard error for the Multiplicative Hypothesis is 10.4. In regard to the direction of prediction errors, 12 of the 16 mean response rates are underpredicted by the Discrimination Hypothesis, while only seven of the 16 mean response rates are underpredicted by the Multiplicative Hypothesis.

The 16 mean response rates to be predicted were divided into two groups: eight low response rates (response rates to 560 and 576 Mµ) and eight high response rates (response rates to 530 and 530 Mµ). For low response rates, the standard error for the Discrimination Hypothesis is 6.3, while the standard error for the Multiplicative Hypothesis is 6.0. It is noted that the value of the standard error for the Discrimination Hypothesis is much smaller than the value found in pre-discrimination generalization. This change can be accounted for by the fact that mean

^{*}Predicted response rates were computed using 540 Mp-90°, where the mean peak of responding was located, as the 5+. In computations of predicted response rates in other generalization tests, the mean peak of responding was located at the true 5+, 550 Mp-90°.

obtained response rates to these stimuli are quite small (3.9) following wavelength discrimination, and mean response rates to these stimuli predicted by the Discrimination Hypothesis are all zero. While the Discrimination Hypothesis underpredicts six of the eight low response rates, the Multiplicative Hypothesis overpredicts seven of these eight response rates.

For high response rates, the standard error for the Discrimination Hypothesis is 139.9, and the standard error for the Multiplicative Hypothesis is 36.3. Thus, differences in overall predictions of the two hypotheses are accounted for in terms of predictions of high response rates. The Discrimination Hypothesis underpredicts six of these eight response rates, while the Multiplicative Hypothesis overpredicts five of these eight response rates.

On generalization tests following discrimination of angular orientation differences (Table 17, Appendix), the standard error for the Discrimination Hypothesis is 14.0, while the standard error for the Multiplicative Hypothesis is 10.2. The Discrimination Hypothesis underpredicts 15 of the 16 response rates, while the Multiplicative Hypothesis underpredicts only seven of the 16 response rates.

For the eight low response rates (response rates to stimuli including 30° and 150°), the standard error for the Discrimination

Hypothesis is 2.5, while the standard error for the Multiplicative

Hypothesis is .5. The small size of the standard error for the Discrimination Hypothesis is accounted for by the fact that mean obtained low

response rates are quite small (1.2), and mean response rates predicted by the Discrimination Hypothesis are all zero. While the Discrimination Hypothesis underpredicts seven of these eight mean response rates, the Multiplicative Hypothesis underpredicts only four of these eight response rates. For the eight high response rates (response rates to stimuli including 60° and 120°), the standard error for the Discrimination Hypothesis is 20.3, while the standard error for the Multiplicative Hypothesis is 14.8. The Discrimination Hypothesis underpredicts seven of these eight response rates, while the Multiplicative Hypothesis underpredicts only three of these eight response rates. Thus, predictions of high response rates for the most part account for differences in overall predictions of the two hypotheses.

On generalization tests following discrimination of wavelength and angular orientation differences (Table 20, Appendix), the standard error for the Discrimination Hypothesis is 24.2, while the standard error for the Multiplicative Hypothesis is 5.2. The Discrimination Hypothesis underpredicts 13 of the 16 mean response rates, while the Multiplicative Hypothesis overpredicts 13 of the 16 mean response rates.

The Discrimination Hypothesis predicts low mean response rates (response rates to stimuli including 30° and 150°) with a standard error of 1.9, while the Multiplicative Hypothesis predicts the same response rates with a standard error of 2.5. The very small standard error for the Discrimination Hypothesis is accounted for by the fact that, in every case, values predicted by this hypothesis are zero, and mean obtained

low response rates average . 9. While the Discrimination Hypothesis underpredicts seven of these eight values, the Multiplicative Hypothesis overpredicts seven of the eight values.

The Discrimination Hypothesis predicts high mean response rates (response rates to stimuli including 60° and 120°) with a standard error of 35.6, while the Multiplicative Hypothesis predicts the same response rates with a standard error of 7.2. Thus, the smaller overall standard error for the Multiplicative Hypothesis is accounted for in terms of predicted high response rates. The Discrimination Hypothesis underpredicts all eight of these response rates, while the Multiplicative Hypothesis overpredicts six of the eight values.

Changes in stimulus generalization along the undiscriminated dimension: Changes in stimulus generalization gradients along previously discriminated dimensions have been described above. It is also possible to determine whether any changes take place in stimulus generalization along a previously undiscriminated dimension. In Fig. 124, angular orientation generalization gradients before and after wavelength discrimination are compared. Both gradients contain mean total responses of Group TC-C Ss to angular orientation stimuli summed over all wavelength values. It is seen that following wavelength discrimination, the angular orientation gradient is raised at 90° and is steepened on both sides.

Wavelength generalization gradients before and after angular orientation discrimination are compared in Fig. 12B. Both gradients

Fig. 12. Generalization along previously undiscriminated dimensions. A. Angular orientation gradient before and after wavelength discrimination (Group TG-C). B. Wavelength gradient before and after angular orientation discrimination (Group TG-T).

contain mean total responses of Group TC-T Ss to wavelength stimuli summed over all angular orientation values. The wavelength gradient obtained following angular orientation discrimination is raised at 550 Mp and is steeper than the pre-discrimination gradient at values below 550 Mp and at 560 Mp. At 570 Mp, however, the post-discrimination gradient rises.

Chapter VI

DISCUSSION

The results of the first part of Experiment 3 provide a clear answer to the question of the difference between stimulus generalization along one and two dimensions. Mean response rates to stimuli differing to a specified extent along the wavelength and angular orientation dimensions were consistently less than mean response rates to stimuli differing to the same extent in each dimension alone. This finding is in agreement with the results of other studies of generalized instrumental responses to stimuli varying in one and two or more dimensions (Fink & Patton, 1953; White, 1958).

Concerning the second major aim of this study, a description of the quantitative relationship between response rates to stimuli varying in one and in two dimensions, the results of the first part of Experiment 3

are in closer agreement with the predictions of the Multiplicative

Hypothesis than with predictions of the Discrimination Hypothesis, which

underpredicted the majority of mean response rates.

It is evident that the Multiplicative Hypothesis not only leads to more accurate predictions than the Discrimination Hypothesis, but also that these predictions are quite accurate in absolute terms. In a range of response rates from 17 to 92, the overall standard error of the estimate computed from the Multiplicative Hypothesis was 9.4; and threefourths of the predictions fall within this margin of error. This finding confirms the results of a previous exploratory study in which predictions of the Multiplicative Hypothesis were also in close agreement with obtained response rates (Butter & Guttman, 1958). Furthermore, the success of the Multiplicative Hypothesis' predictions strengthens the assumptions upon which the hypothesis is based, the most important of which is that the basic factor underlying stimulus generalization in two dimensions is an "observing response" rather than summated generalication decrements which operate independently of selection and observing activities. More specifically, it is assumed that 5 observes changes in the training stimulus and that the probability of such observations increases as the physical distance from the training stimulus increases along some specified dimension. When the stimulus is varied in more than one dimension, the probabilities of observing a stimulus change in each dimension alone can be combined as independent but not mutually exclusive events in order to determine the probability of observing stimulus changes

in both dimensions.

The validation of the Multiplicative Hypothesis suggests that the concept of an observing response may be applied to the analysis of stimulus generalization as well as discrimination learning (Wyckoff, 1952). Also the concept presented here is similar to that of V T E (Muenziager & Gentry, 1931; Tolman, 1938) in respect to its function of "isolating" and selecting stimuli in the presence of which an appropriate response may be made. However, while the observing response and V T E behavior have been treated as empirical dependent variables, the concept presented in this study has the status of an intervening variable whose function is to explain generalization phenomena.

While the Multiplicative Hypothesis predicts response rates
reasonably well and within smaller limits of error than does the Discrimination Hypothesis, other aspects of the predictions remain to be discussed.

It was found that predictions of low response rates are less accurate than predictions of high response rates. This difference in predictions can be explained as an artifact of the method of multiplying response probabilities. Assuming that the measurement error is always the same for these response probabilities, then the error in the product of any two of them is proportional to the size of the probabilities which are multiplied.

Thus, the product of large response probabilities will contain proportionally more error than the product of small response probabilities.

It was also found that the Multiplicative Hypothesis overpredicts
three-fourths of high mean response rates. Although there is no reason-

able explanation for this fact, it suggests that the inverse relationship between probability of a pecking response and probability of an observing response is not linear but, rather, as the probability of an observing response decreases, the probability of a pecking response increases at a faster rate. Thus, for a given probability of pecking response, the probability of an observing response should be lower than is estimated by the assumed linear relationship between the two variables.

Comparison of generalization gradients obtained in Experiment 3 with those obtained in Experiments1 and 2 discloses some effect of stimulus variation in one dimension on generalization in a second dimension. Response rates to wayslength stimuli were not changed by variations in angular orientation. However, response rates to two angular orientation stimuli (300 and 1500) were higher when variations in wavelength were present (Exp. 3) than when no wavelength variations were present (Exp. 1). This finding indicates that observing responses to stimuli changed in either dimension are not always independent, but that conditional probabilities of one observing response given a second observing response may have to be taken into consideration under some conditions. The above results suggest that observing responses having high probability (i. e., those resulting in low response rates) are more readily influenced by other observing responses. However, the Multiplicative Hypothesis' standard error for low response rates (response rates to stimuli including 300 and 1506) was quite small (2.7). It is thus unlikely that such conditional probabilities had a marked influence upon predictions.

Predictions of response rates in post-discrimination generalization were, in general, similar to those discussed above. All overall predictions of the Multiplicative Hypothesis were more accurate than those of the Discrimination Hypothesis, which underpredicted the majority of response rates. Also, the Multiplicative Hypothesis predicted low response rates with greater accuracy than it did high response rates, which are, for the most part, overpredicted.

However, in post-discrimination generalization, the greater accuracy of the Multiplicative Hypothesis' predictions is accounted for mainly by predictions of high response rates and not, as in pre-discrimination generalization, by predictions of low response rates. The lack of differential prediction errors for low response rates can be attributed to spuriously low standard errors for the Discrimination Hypothesis. Rean obtained low response rates are all extremely small, and mean response rates predicted by the Discrimination Hypothesis are in all instances zero. Thus, the Discrimination Hypothesis fails to make differential predictions of low response rates. Whenever the sum of generalization decrements to two single stimulus changes is 100% or more, the Discrimination Hypothesis predicts zero response rate to the combined double stimulus change.

The Multiplicative Hypothesis' overall standard error on generalization tests following wavelength discrimination was more than twice as large as its standard error on pre-discrimination generalization. This large standard error is due mainly to overpredictions of response rates to stimuli

including 550 Mp. No satisfactory explanation for those large prediction errors is available. However, it should be noted that the peak shift from 550 to 540 Mp following wavelength discrimination may be responsible for complicating predictions. The Multiplicative Hypothesis' predictions in other post-discrimination generalization tests were comparable in accuracy to predictions in pre-discrimination generalization.

The selectivity shown by 3s to discriminative stimuli is an interesting and significant fact. On generalization tests following wavelength-angular orientation discrimination training, there was much less response suppression to the wavelength component S than there was to the angular orientation component S . Following wavelength discrimination training, response suppression to the same wavelength 5 alone was much greater. These results support an observing response analysis which assumes that discriminable differences in stimuli do not necessarily affect 3st response rates equally, but that Ss actively select and observe some stimulus differences more than others. Other evidence for the selectivity of stimuli in discrimination training is given by Warren (1954). In this study, monkeys were trained to discriminate objects differing in form, color and size. Performance in subsequent tests was worse when color differences were climinated than when size or form differences between objects were eliminated. The results of the present study suggest that the selection of discriminative stimuli is determined by the amount of generalization decrement between the stimuli in prior generalization testing. The generalization decrement between angular orientation stimuli employed in discrimin-

ation training was significantly greater than the generalization decrement between wavelength stimuli employed in discrimination training.

The finding that discrimination learning involving stimuli differing in two dimensions was faster than discrimination learning involving stimuli differing in each dimension alone is in agreement with the results of several past experiments (Harlow, 1945; Eninger, 1952; Warren, 1953). Since the physical differences between discriminative stimuli were not varied, it is not possible to determine the range of stimuli over which the addition of stimulus differences facilitates learning.

Changes in wavelength generalization gradients following wavelength discrimination training are similar to those reported in a previous study using a fully illuminated key (Hanson, 1956). Response rates in the region of the S are suppressed, the slope between St and S is steepened, and responding is displaced to wavelength stimuli to the side of 5 + opposite Hanson's function relating model peak displacement to St . ST difference predicts a peak displacement of approximately 11 Mp for the St. S difference used in the present study. The modal peak displacement obtained in the present study was 10 Mp. It is thus interesting to note that when the total area of the monochromatic light is reduced by approximately 90%, post-discrimination generalization gradients are not markedly changed. However, it was also found that the wavelength generalization gradient obtained in Experiment I had a broader slope than the wavelength gradient obtained with the full key illuminated by monochromatic light (Honig, Thomas & King, in press). In terms of the analysis of stimulus

generalization presented previously, this result suggests that the total area of the external stimulus is a variable which determines the probability of an observing response following single stimulus training. Under these conditions, when the total area of the external stimulus is reduced, the probability of an observing response decreases, and a broader generalization gradient is obtained.

Angular orientation generalization gradients following discrimination of angular orientation stimuli are similar to those reported previously in an experiment using a band of white light (Butter & Guttman, 1957).

There is marked response suppression in the region of the 5⁻, the slope between 5⁺ and 5⁻ is steepened, and responding is displaced to stimuli away from the 5⁻.

It was also found that generalization gradients along one dimension are raised at the peak and steepened following discrimination training between stimuli differing along a second dimension. This finding is open to two interpretations. These changes in generalization may be attributed to the effects of prior discrimination training. This interpretation is consistent with Reinhold and Perkin's (1955) finding that the slope of a generalization gradient along one dimension is steepened following discrimination training between stimuli differing along a second dimension. On the other hand, the generalization changes found in the present study may be a consequence of discriminations developed along the same dimension in prior generalization testing. Since the present study did not include controls for the possible effects of this factor, it is not possible to decide between these two alternatives.

Chapter VII

SUMMARY AND CONCLUSIONS

The purpose of this study was (1) to compare response rates to stimuli differing from the training stimulus in one and in two dimensions and (2) to describe the quantitative relationship between response rates to these two kinds of stimuli. Two alternative hypotheses concerning this quantitative relationship are presented. The first, the Discrimination Hypothesis, assumes that when a stimulus is changed in two dimensions the number of j.n.d. steps taken in each dimension alone are added.

This hypothesis predicts that the generalization decrement resulting from a stimulus changed in two dimensions equals the sum of generalization decrements in each dimension alone. The second hypothesis, the

Multiplicative Hypothesis, assumes that observing responses are made to stimuli changed by some discriminable amount. By combining probabilities of observing responses to stimuli changed in each dimension alone, the Multiplicative Hypothesis predicts that the probability of a pecking response to a stimulus changed in both dimensions is the product of pecking response probabilities to stimuli changed in each dimension alone.

The Ss, 27 White Carneau pigeons, were trained to peck at a key illuminated by a narrow band of monochromatic light. In subsequent generalization tests, Ss were presented with all combinations of five values of wavelength and five values of angular orientation of the band of light (Exp. 3).

Mean response rates to stimuli differing in both dimensions from the training stimulus were consistently lower than mean response rates to stimuli differing in each dimension alone. This finding is consistent with the results of past experiments of stimulus generalization in one and several dimensions (Fink & Patton, 1953; White, 1958).

The Multiplicative Hypothesis predicted response rates to stimuli varying in two dimensions with a fairly high degree of accuracy, while predictions of the Discrimination Hypothesis showed larger errors. It was also found that the majority of Multiplicative Hypothesis' prediction errors were overpredictions. This finding suggests that the assumed relationship between observing response probability and pecking response probability is incorrect, and appropriate changes in the relationship were

suggested. Standard errors of the Multiplicative Hypothesis' predictions were larger for high response rates than for low response rates. This finding was explained as an artifact of the method of computing predictions.

Two control experiments were performed in order to determine whether response rates to stimuli changed in one dimension are changed by variations in a second dimension. In Experiment 1, a wavelength generalization gradient obtained with constant angular orientation was described, and in Experiment 2, an angular orientation generalization gradient with constant wavelength was described. Comparison of these two gradients with comparable gradients obtained in Experiment 3 discloses that mean response rates to two angular orientation stimuli (30° and 150°) are higher when wavelength variations are also present. This finding indicates that, under some conditions, observing responses are not independent.

In addition, the wavelength generalization gradient obtained in

Experiment 1 had a broader slope than a wavelength gradient obtained with
the full key illuminated with monochromatic light (Honig, Thomas & Ling,
in press). This finding was interpreted in terms of the effect of total area
of the external stimulus on the probability of an observing response.

Following the completion of generalization testing, Ss in Experiment

3 were divided into three groups. One group was given discrimination

training involving stimuli differing in wavelength, a second group was

given discrimination training involving stimuli differing in angular

orientation, and the third group was given discrimination training involving stimuli differing in both dimensions. Discrimination learning involving stimuli differing in both dimensions was faster than discrimination learning involving stimuli differing in either dimension alone. This finding is consistent with the results of several past experiments (Harlow, 1945; Eninger, 1952; Warren, 1953).

Following discrimination training, all is were tested for stimulus generalization in the same manner as described previously. Predictions of mean response rates on post-discrimination generalization tests were similar to those described in pre-discrimination generalization tests.

Also, the Multiplicative Hypothesis predicted low response rates with greater accuracy than it did high response rates. However, the Multiplicative Hypothesis' overall standard error on generalization tests following wavelength discrimination training was much larger than its standard error in pre-discrimination generalization. It was suggested that the peak shift in generalization gradients following wavelength discrimination may have complicated predictions.

The results of generalization testing following wavelength-angular orientation discrimination training indicate that Ss actively select same stimulus differences more readily than others in discrimination training. This finding is consistent with the observing response analysis presented previously. The results also suggest that the selection of discriminative stimuli is determined by the amount of generalization decrement between the stimuli.

Generalization gradients along the dimensions on which stimuli were previously discriminated were similar to those reported previously (Hanson, 1956; Butter & Cuttman, 1957). Generalization gradients along previously undiscriminated dimensions were raised at the peak and steepened at most stimulus values. Lack of appropriate controls, however, made it impossible to determine the factor responsible for these changes.

It is concluded that response rates to stimuli varied in two dimensions are consistently lower than response rates to stimuli varied in only one dimension. Furthermore, the Multiplicative Hypothesis predicts quantitative relationships between response rates under these two sets of conditions reasonably well. The validation of the Multiplicative Hypothesis supports the assumption that a basic factor underlying stimulus generalization is an observing response by means of which is selectively "attend to" stimuli changed by some discriminable amount. It is thus possible to extend the observing response and similar concepts proposed within the context of discrimination learning (Muenzinger & Gentry, 1931; Tolman, 1938; Wyckoff, 1952) to stimulus generalization phenomena.

However, the results of this study indicate that two specific assumptions of the Multiplicative Hypothesis may be incorrect. It was suggested that the function relating probability of pecking response to probability of observing response is a negatively accelerated decreasing one, rather than the assumed linear one. Also, the assumption of independence of observing response probabilities must be qualified, at least

under some conditions, and conditional probabilities of one observing response given a second observing response may have to be taken into consideration.

The predictions of the Multiplicative Hypothesis are also applicable to generalization in two dimensions following discrimination training.

However, when discrimination training results in marked shifts in the distribution of response rates, predictions of the Multiplicative Hypothesis are much less accurate.

The observing response analysis is also applicable to discrimination learning involving stimuli differing in two dimensions. Ss' selection of stimuli under these conditions appears to be a function of prior generalization decrement between stimuli. Furthermore, the effects of reducing the size of the stimulus in single stimulus training and generalization testing can be interpreted in terms of the observing response analysis.

Following discrimination training, however, this variable appears to have little or no effect on stimulus generalization. It is also concluded that discrimination learning is faster when the stimuli differ in two dimensions than when they differ in each dimension alone.

APPENDIX

Number of Responses to Different Stimuli in Corrected Group C Test Table 1

					Wave	Wavelength in Mp	rh1			
Subject	490	510	520	538.5	550	260	570	300 M	990	919
C-4	237	10	23	63	41 10	329	322	tal maj	242	2
in U	2.1	49	10	123	600 000	00 Ni	23	52	26	62
9	ro m	80	00	191	221	206	is en	N	162	60 10
	्र कीः	21	0	100	**************************************	- PA-0	500 500 500	200	252	10
0 -	30	173	190	273	0000	312	092	247	244	99
6-0	500	280	W 00 00	385	429	357	394	372	396	165
Total	688	692	886	225	9	1472	1375	200 person	1293	460
Mean	7 4	128.2	147.7	000	272.7	245.3	229.3	219.3	213.5	76.7

* Response values for this stimulus point were obtained by averaging responses of individual Ss to 530 Mp (actual value, 538 Mp) and to 540 Mp (actual value, 539 Mp).

Table 2

Number of Responses to Different Stimuli in Corrected Group C Retest

610	0	90	0	2	0	Suns Suns	52	un W	
290	~	20	٥	0	tond	44.83	60 N	000000	
088	9	60 80	Specif	9	80	60	216	98	
2.50	LD.	100	16)	4,	20	60- 6-3 had	250		
Wavelength in Mµ 550 560	613	7	2	60 03	10	6.5 At	424	٠ د.	
Wavele 550	54	49	mag Selfs	head found (A ₀)	O	240	4. 0.00	5.0	
# 10 °CC II	go go	in the	173	52	000	1.62	274	en en	
250	0	0	gring	643	in.	60	90	0,	
210	0	grant	£23	0	পৌ	50	63	0	
490	~	9	San	gard	2	44	9	о Ф	
Subject	5.	Ö	9-0	2-2	0	6-0	Total	Mean	

*Response values for this stimulus point were obtained by averaging responses of individual Ss to 530 Mm (actual value, 538 Mm) and to 540 Mm (actual value, 539 Mm).

Table 3

Number of Responses to Different Stimuli on Group T Test

				- Marie	angular o	rientation	Angular orientation in degrees	82			
Subject	15	30		0.9	T S	0.6	105	120	25 Career Contraction Contract	150	165
gend #	10 10 	122	23	295	268	262	162	263	203	prod QQ prod	
7-2	eri eri	With the second	107	200	145	love) love)	5	89	23	N N	dia
	(C)	60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	3000	990	364	356	43.37	568	027	rU W	25
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rU 60	50	200	50	342	429	462	389	219	209	140
ford 1	23	60 (N)	54	226	(C)	00	105	26	25	4	10
9:	0	80	89	200	2	(A) (C) (C)	40	169	50	43	20
Energy B Conf	S.	46	214	223	286	64) (42)	23	99	97	60	96
00 9 1	152	Gard Comp Easts	50	259	ensi CO pand	330	359	parti rest (E)	256	307	100
07° 8° (52	26	146	022	249	222	25.00	53 50 50 50 50 50 50 50 50 50 50 50 50 50	149	80	© (0)
Total	199	864	1386	1927	2030	2393	2357	2082	1250	1046	50 50 50
Mean	500 Em	0.96	154.0	2	225.6	265.9	261.9	233.3	136.9	116.2	84.1

Number of Responses to Different Stimuli on Group T Retest Table 4

	165	0	0	0	8	0	prod	0	23	god	9	. 7
	150	m	0	0	67	0	9	19		9	A	4.6
	135	00	0	0	ends ends	0	tenf bref	62	es.	○	155	17.2
B 13	120	2	0	C>	60 60	grand.	4	00 17,0	(1) 	00	290	32.2
Angular orientation in degrees	105	Agis Even	22	0	226	20	50	163	60	61	657	73.0
A SULTABORA CONTRACTOR	96	24	22	0	230	9,	63	50	62	89	940	5 mm c mm
A STANDARD	75	62	50	0	180	S	23	300		693 167	451	- CO - CO - CO - CO - CO - CO - CO - CO
e	09	26	0	٥	(Party)	m	E S	116	20	2.2	992	29.6
	45	የጥ	©	0	0	m	67	(2) (2)	02	gively comb		3,1
	30	2	0	0	63	۵	0	2.2	0	\$9	62	4. cc
	The second second	pred	٥	0	good	0	0	0	ঝ	0	9	7.
	Subject	proof.	7	(m) 4 (L)	in in its second	E-2	9-I	L. I	38	5	Total	Mean

Number of Responses to Different Stimuli on Group TC Test (Wavelength in Mp - Angular orientation in degrees) Table 5

			Mu = 5	530			G	Mp = 540		
Subject	300	009	006	1200	1500	300	009	006	1200	1500
077	09	5	69	carell Vojek	C)	47	39	(c)	37	44 EU
TC-TS	O	67	67	swi	hong	(mo)	4	37	-1	0
TC-123	Sp.	74	18	(r)	1£)	99	93	67) 30	200	Alt
IC-124	39	50	185 175 peri	99	43	10 10	32	96	0,	28
TC-125	gamb (mil)	0	69	4	0	9	0	۵	02	13
T.C-126	23	60	34	tend (UL)	26	3	57	4	20	00 e=4
TC-127	m	30	50	22	2	រេវា	83	100	tot As	ෙ
TC-129	500	36	84	32	16	ඟ	50	99	37	7
TC-130	123	193	240	135	59	84	から	157	871	25
TC-131	0	23	98	105	36	cece)	39	20	26	25
TC-132	9	24	E) mi	00	ın	granij granij	13	26	36	iΩ
TC-133	212	51	40	23	0	00	00	(A)	35	(md)
TC-134	25	03	16	C.	tond tond	រោ	57	46	23	0
TC-135	0	81	36	25	12	Ф	FF (5)	100	er4 10	0
TC-136	च्ले	60	102	164	0	havet Edul	36	245	52	emi
TC-137	સ્	56	50	9	0	រេវា	37	85	20	67)
TC-138	98	78	22	28	22	92	10	99	66	5.4
TC-139	25	68	164	N N N N N N N N N N N N N N N N N N N	hard Crit	₹º	tool And	09	194	10
TC-140	period proof.	61	100 A	174	500	60 N	37	96	211	66
TC-141	13	28	25	46	heat (2,3	22	54	107	60	16

Table 5 (continued)

Number of Responses to Different Stimuli on Group IC Test (Wavelength in Ma - Angular orientation in degrees)

		My =	Mu = 530 (continued)	inued)				= 540 (continued)	inued)	
Subject	300	2009		1200		300	099	900	1200	1 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IC-142	0	0	0	0	0	0	Total State of the	9	girtus, Nggaji	0
TC-143	00	90	223	00 46	C/2	9	06	And All	36	9
TC-144	ped	50	prod (())	00	C	0	5	(S)	() sed sed	ers me
TC-145	0	CC) peril	244	ru Ai	0	(m)	400	200	end Off	0
TC-146	0	44	16	29	0	("un	29	106	the state	30
TC-147	, 0	C) prot	डी च्य	22	30	ent (N)	9	(O)	48	23
077	0	69	2	00 10	9=	63	0	900 CD	23	ţ-
Total	545	1295	2513	1656	440	S S	330	2319	1801	609
Mean	20.3	400	60	60	30.0	19.6	49, 3	88.9	55.3	90 60 60

Number of Responses to Different Stimuli on Group TC Test (Wavelength in Mu - Angular orientation in degrees) Table 5 (continued)

			Mp = 550	0			Mp	B 550		
Subject	300	009	006	1200	1500	300	009	006	1200	1500
TC-120	32	22	Special Control	50	20	29	5	9	36	176
TC-122	2	(A) Sort	92	OF PA	0	N	817) 1 mg	្ត	શુંદ	0
TC-123	00 44	00	2.5	E-co sout prof	7.9	ent U)	0	bent bent bent	La Sh	(N)
TC-124	5	93	pent Pen pent	L(1)	01	92	53 00	500	and	500
TC-125	0	66	47	29	9	m	0	600 000	69	0
TC-126	400	(Q)	156	230	~ ~	0.03 24.	- C-	19	146	32
TC-127	tent heet	50	60	**	(2)	dje	61	200	in de	۵
TC-129	ton)	63	848	46	mag Age	ç.e.	34	82	00	K) mi
TC-130	143	308	354	(A)	10°	393	409	437	161	63
TC-131	30	(C)	308	dent) dent)	144 5.03	Ch.	69	00	00 44	67
TC-132	bout E-on	94	2	6	proof.	ĸ	diff.	53	27	0
TC-133	25.55	60	4	22	92	die	50	3	CO prot	52
T.C-134	202	(0)	107	As As	56	46	0	54	Seni) benij	Pres 2
TC-138	0	166	170	43	50	2	63	246	204	42
TC-136	Ç-a	0	2552	(~) tool tool	(week)	63	26	224	90	good
TC-137	tood Evil	20	06	60	0	gred gred	1/2	011	22	100
TC-138	00	215	Sec. A. A.	63	50	36	60	91	22	98
TC-139	56	136	123	188	2	42	00	139	211	41
TC-140	C3	2	216	183	29	673	67	170	190	56
TC-141	4qu	50	400	23	Au.	មា	32	62	(O)	50

Table 5 (continued)

Number of Responses to Different Stirnuli on Group TC Test (Wavelength in Mp - Angular orientation in degrees)

		Mp =	550 (continued)	The state of the s			Mp1 ==	560 (con	(inued)	
apject	್ಯಾ	009	ಿಂದಿ	1200	150	300		900 1200	1200	1500
IC-142	19	27	35.4	169	100) 44, 00)	4	(/) test	99	64	200E
IC-143	2	200	23	107	GN.	2	140	80	30	39
IC-144	C3	S.	144	ten) (no ten)	LS) pred	0	6	107	201	6
TC-145	4	164	00	72	រវា	proj proj	314	Part Contract of the Contract	37	0
1C-146	0	2.9	5	103	CO pres	N	99	001	00	2
TC-147	4	44 00	89	98	2.2	49	56	106	සිරි 03	55
TC-148	36	is) pool pres	179	(N.)	9	40	S S	0	889	prof
Total	1039	2105	3734	2693	822	1024	2367	35.3	2123	753
Mean	3000	100.2	13 00 00 00 00	99.7	30.	37.9	87.7	130.8	78.6	27.9

Table 5 (continued)

Number of Responses to Different Stimuli on Group TC Test (Wavelength in Mu - Angular orientation in degrees)

	е выходения выполнения выполнения выполнения выполнения выполнения выполнения выполнения выполнения выполнения Вы учения выполнения выполнения выполнения выполнения выполнения выполнения выполнения выполнения выполнения в																				
	Alle spiral spir																				
	1500	00	(6046)	102	Cho.	63	44	٥	300	66	80	gamil	খা	6	(ma)	2	0	52	32	37	2
	1200	5	(2)	○ ===	00	0	Sec.		600	137	2.2	Att	22	29	72	107	23	10 th 100	27 00 00	90	A my
530	606	4	ent (0)	CC) prof	101	000	6	96	92	496	130	4.	in m	36	175	621	96	108	265	119	26
Mays =	009	64	2	95	110	89	92	60	50	252	99	ton)	9=	49	36	86	72	66	£73	12	89
	300	21	0	10	63	di w	15. 15.	2/4	(0)	243	2	0	0	0	end	97)	የሳን	80	26	de	2
	Subject	TC-120	TC-122	TC-123	TC-124	TC-125	TC-126	TC-127	TC-129	TC-130	TC-131	TC-132	TC-133	TC-134	TC-135	TC-136	TC-137	TC-138	TC-139	TC-140	TC-141

Table 5 (continued)

Number of Responses to Different Stimuli on Group TC Test (Wavelength in Mn - Angular orientation in degrees)

gegy v di versi i Strajan vijarigskaladir sports gdilman, sjäja i anvergegja i strajaj met Oleva, inj interpretasionanje en vezi pris	gragginals side to signe right of the extreme great error strings algorithm in provide consequent each color consequent extreme great error strings and color colors and colors									
о ливер напочен выдей выправления совершения совершеней от положения выправления сейте, чевы навычную текстор	1500	ganij	(A)	0	0	28	3 0 10	king Vij	694	25.7
and the second second between	1	643	500	\$ 0	9	20	9	26	1793	66.4
Mp = 570 (continued)	006	67) 67)	(C)	50	24	0	00	0000	60 60 60 60	200.2
	009	0	មា	A. FU	196	25	73	24	2139	79.2
Age-Office to vincenta-side	300	0	0	0	0	0	39	22	778	00
	Subject	TC-142	IC-143	TC-144	.C-145	TC-146	C-147	TC-148	Total	Mean

Number of Responses to Different Stimuli on Group TC Retest (Wave length in Mp - Angular orientation in degrees) Table 6

entreviers i vega dantalestratives has entraferen ats att varifiend	and September of the control of a formatted in a challenger		Mp = 530	30	Rengylevaertinane saintina foetatrulinian saintiniyna	verhior, subaptimotio vida del Particolo di construita del Carlo d	M	Mp = 540	and distribution of the contract of the contra	
Subject	300	609	006	1200		300	609	006	1200	1500
TC-120	3.0	39	tend Ap	23	0	(47)	27	00	10	9
TC-122	٥	0	0	0	©	0	0	N	0	0
TC-123	0	0	18 E	00 23	0	ines)	0	0	30 CC)	~
TC-124	0	0	19	٥	0	0	673	03	0	60
TC-125	Ö	4	25	20	0	0	0	0	S and	ened evet
TC-126	0	0	0	0	0	Z)°	0	0	4	, and
TC-127	0	0	90	٥	0	0	0	40	0	60
TC-129	٥	ເກ	23	 i	0	0	errol	63	priorit	0
TC-130	0	23	CG test	2	0	4	6=	(4)	00	0
TC-131	0	0	end Chi	0	٥	0	C.	prof	0	0
TC-132	택	٥	GD.	pinj	0	೦	2	9	rg.	0
TC-133	en	0	GC	9	C	0	٥	0	tent (ma)	parti-
IC-134	10	4	0	0	prof	9	0	9	٩	0
TC-135	pred	2	52	0	0	0	Çno	*	683	0
TC-136	0	0	2	0	٩	0	0	_{p=1}	0	0
TC-137	0	LC)	0	0	~	0	0	0	0	0
T'C-138	0	97	12	2	0	0	2	2	0	0
TC-139	0	0	25	30	\$	0	61	88	\ 0	0
TC-140	0	0		and other	0	0	pani	13	4	0
3 C-141	0	£-	2.1	0	9	0	~	0	30	C3

Table 6 (continued)

Number of Responses to Different Stimuli on Group TC Retest (Wavelength in Mu - Angular orientation in degrees)

	900 1200 1500 300 600 900 120 <mark>0 1500</mark>					1 0 0 0 0 0 0 0	10 0 0 0 5 0 0 0	378 156 10 67 224 294 177 62	
-		0		0	0	0	0		ox ur
Wh = 250 (contra		0	⊃ m ∞	66	0	-	07	00	2
	300 008	0	000	ල්	0	0	co	30 143	E.E.
	Subject	TC=142	TO-148	IC-145	TC-140	TC-147	TC-148	Total	Na cook

(continued)

Table 6 (continued)

Number of Responses to Different Stimuli on Group TC Retest (Wavelength in Mp - Angular orientation in degrees)

Mp = 560	900 1200 150	food food food (C)3		34 61	2 2	0 87
45 45	4040	040	W O			S
				S	in	C
On the date of the				40 O	0 0	
. With problem to be added to the control of the co	₩₽₽₽₽		v=0 0	Ŷ	¥	
300 000 000 000 000 000 000 000 000 000	\$00m00	00000	Ø C	~ 0 0	0 0	0
000		32	0	177	0	
Hall-date-later sold-specification of the state of the st	1200	Aig fact	0	0	9	0
COST STATE SHARE STATE OF THE PARTY AND THE	006	20	69	96	co	60
SERVICE PROPERTY.	009	9		500		42
		(push)		grand		dig
	300	0	0	0	dift	6
	Subject	JC-120	TC-122	TC-123	TC-124	5000

Number of Responses to Different Stimuli on Group TC Retest (Wavelength in Mp - Angular orientation in degrees) Table 6 (continued)

		= rfyg	My = 550 (continued)	nued)			Mp =	My = 560 (continued)	(penu	
Subject	300	0.09	006	1200	1500	300	609	006	1200	1500
TC-142	0	92	88	50	09	goně	pané)	0	ဆ	0
TC-143	0	2	Gr.	24	পে	0	0	N	0	0
TC-144	0	۵	44	0	0	0	0	Sp	GO	0
T.C-145	0	56	20	20	0	0	60	26	4	0
TC-146	0	0	Con-	127	C3	٥	0	0	0	0
TC-147	0	p==1	443	0	0	٥	0	77	(204) (m1)	٥
TC-148	0	prot	ເດ	es.	0	0	9	0,3	2	0
Total	ы 60	395	199	30.00	(C) June June June	44	22	797	285	ts) end
Mean	1,2	14.6	24.7	2	4.	2.0	10,0	17.2	10.6	9.

Table 6 (continued)

Number of Responses to Different Stimuli on Group TC Retest (Wavelength in Mn - Angular orientation in degrees)

	Regular di inter in the actiq national sy than 4 do the extensional point national page on																				
	en untervision de la managamente e des vision de la vision de la companya em la paga de la descripción de la c																				
And the second s	1500	2	-	30	~	⇔	0	0	0	9	0	provi	şmê	Ch.	0	0		0	0	0	0
	1200	0	0	still a	9=		0	0	0,	Start)	₽	0	0	0	2.2	0	c	0	20	0	0
Мр = 570	006	pad (mr)	N	0	Fresh 7	40	0	comit	prof.	4	good good	2	0	CE prot	45	63	(secol)	13	62	6	60
	009	22	0	දව පෙර	~	the co	prof ES	0	<i>=</i>	gent) gent)	A	យា	0	35	08	0	0	0	643	0	0
- Control of the Cont	300	22	0	673	[0	0	0	0	0	0	N	0	0 =	0	0	٥	0	0	٥	0
	Subject	TC-120	TC-122	TC-123	TC-124	TC-125	TC-126	TC-127	TC-129	T.C-130	TC-131	TC-132	TC-133	IC-134	TC-135	TC-136	TC-137	IC-138	TC-139	TC-140	TC-141

(continued)

Table 6 (continued)

Number of Responses to Different Stimuli on Group TC Retest (Wavelength in Mu - Angular orientation in degrees)

		Mps =	Mp = 570 (continued)	inued)	
Hittanie	300	009	006	1200	T 200
	ganij	0	panel	0	0
	0	tent (J.)	23	4	0
	0	0	#js	34	
	0	0	pan)	[~	0
TC-146	0	0	Ø	0	(***)
	0	ED PM	di.	٥	0
	0	67 67		Second Language	Ö
Total	45	27.2	967		42
Mean	tong a	٥ • •	60 61	9.6	o prod

Table 7

Differences between Mean Log Responses of Group TC to Stimuli Varying in One and in Two Dimensions

خه				2.00	\$	23
Mean log responses	2,164	20 E E E E E E E E E E E E E E E E E E E	m 90 m od	ord CD ord Offi Two Offi o o	20 M	M ont
Stroult	560 Mr. 30° ve. 360 Mr. 30°	560-36p-300	560 Ma-900	560 Min-630 Var.	560 Mg-1200 ve. 560 Mg-900	560 Mg-1200 vs. 550 Mg-1200
grouf (g.)	221.9	es es es	200	2,000	4	2,652
Mean log responses	9.26	60000	27 69 69 69 74 69	요한 수준 6년 연구 6년 6년 6년 6년 6년 6년 6년 6년 6년 6년 6년 6년 6년	9 % % % % % % % % % % % % % % % % % % %	1. 616 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9
	530 Ma-300 Vs.	530 Mp-300 Vs. 550 Mp-300	530 Mp-600	536 Ma-600 vs.	530 Mu-1200 vs.	550 Mp-1200 vs. 550 Mp-1200

Table 7 (continued)
Differences between Mean Log Responses of Group TC
to Stimuli Varying in One and in Two Dimensions

	(73		5	6		e	ė.		N.		.,		0%
400		000				indi For				.52.		7		\$
Mean log responses	1.079	2,106		900		2, 188	Para S	1.309	ish pend 30 2 2	(C)	23 E	00 49 60 80 80 80	1.64	30 30
ACCIDITATION AND ACCIDITATION ACCIDITATION AND ACCIDITATION ACCIDITATION ACCIDITATION AND ACCIDITATION ACCIDITATION ACCIDITATION ACCIDITATION ACCIDITATION AC	560 Mp-1500	560 Mg-900	560 Mp-1500	550 Wh-1500	570 Ma-300	570 Mu-900	570 Mr-300	550 Mp. 300	570 Mys-600	STO MA-900	570 Mh-60c	550 My-600	0021-WW 072	570 My-90°
	6.30		***				T. S.							
Mean log responses	606.	60	606.			600 600 000 000 000	20.026			64 60 63 63 63		30000	1,667	€
24 m 12 1	530 Mp-1500	530 MI-900	530 Mac 1500	550 Mp-1500	540 Aur-300	540 Mp-900	540 Mh-300	550 Ma-300	540 341-600	540 MH-900	540 Mp-60°	550 Mp-600	540 Apr-1200	-40 miles 9.10

Table 7 (continued)
Differences between Mean Log Responses of Croup TC
to Stimuli Varying in One and in Two Dimensions

(Play
1000 1000 1000 1000
12.5°3
3-90
570 Mp-1500
(S) pad d

i. de a 26 for all teates.

2. 5 c. 3.5.

Mean Predicted and Obtained Responses of Group TC on Generalization Tests

Stimulus	Mean obtained responses	Mean responses predicted by Discrimina-	Deviation of predicted from obtained	Mean responses predicted by Multiplicative Hypothesis	Deviation of predicted from obtained
530 Mp	21.3	0.0	W	26.0	Pro equ
530 Mp	56.3	න . ග හ	ان جه	50° 00° 00° 00° 00° 00° 00° 00° 00° 00°	0 000
530 Mu 120 051	67.1	69	6.3	of the second of	7.6
530 Mp	2.	0.0	17.0	24.0	0.2
540 Mp	22.	0.0	23.	23,5	emq Afri
540 Mp	37.6	% ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	9.5	689.	10.5
540 Mp	73,3	47.5	الم الم الم	67.6	5.0
540 Mµ 1500	10	Ð ° Ð	21.5	(2) (2)	~
			(hanning)		

Table 8 (continued) Mean Predicted and Obtained Responses of Group TC on Generalization Tests

Stimulus	Mean obtained responses	Mean responses predicted by Discrimination Hypothesis	Deviation of predicted from obtained	Mean responses predicted by Multiplicative Hypothesis	Deviation of predicted from obtained
30 Mp	ැර ගරි ලට	9 16 18	en en	36.3	લ
560 Mp	87.2	100.7	LC) erg oms	104.9	End Cond
560 Mps	91.9	99.66	6.2	end All	
350 May	© 00 N	4.22	un 🍨	es es	4, RJ
570 Mp	30.8	0.0	80 80 80	6.22	2.6
570 Mp	89, 3	66.3	6.22	80.7	ග න
570 MH	76.0	65.5	60 0	~ 0 0	4, 5,
570 Mp	23.	0.0	23	25.7	ب ښ
Standar Standar Standar	Standard error (30°, 150°) Standard error (60°, 150°) Standard error (60°, 120°)	orall) 0, 150° 0, 120°	17.3		4.0.0

Table 9

Comparison between Mean Responses of Groups C and TC to Wavelength Stimuli

	Mear	Mean total responses		
Wavelength in Mi	Group C test		***************************************	T Commence
0. 44. 0.	\$ 00°	206.2	254.	5
260	44 50 60	258.5	305.	63
570	25.00	224.2	.482	90

1. Responses of Sa in Group TC were raised by a constant arount to match their mean peak of responding at 550 Mp - 900 to that of Ss in Croup C.

2. p > .75.

Table 10

Comparison between Mean Responses of Groups T and TC to Angular Orientation Stimuli

Angular	Mean	Mean total responses		
orientation in degrees	The state of the s	Group T test (Mn = 550)	de element en installant under elemente en verlage del destandistrate elemente eleme	77
O	96.0	ል ሪያ ሪህ	4	David (A)
09	Col.	5. S.	600	ent
120	62 62 63	23.60.03	40 40 40 60	(1 ²)
- EO	N O	200 mm	2,30%	

1. Responses of Ss in Group TC were raised by a constant amount to match their mean peak of responding at 550 Mm - 900 to that of Ss in Group T.

2. p < .05.

3. p > .75.

Comparison of Number of Days to Discrimination Criterion for Three Discrimination Groups (Mann-Whitney U Tests)

Subject	Days to criterion: Wavelength dis- crimination group	Subject	Days to criterion: Angular orientation discrimination group	Subject	Days to criterion: Wave- length-angular orientation discrimination group
TC-C-124	16.9	TC-T-122	0	TC-TC	5
TC-C-126	30.0	TC-1-123	30.0) in ()
TC-C-130	14°.0	TC-I-29	0 0	70-10-123	() () () () () () () () () ()
TC-C-133	C S	TC-1-135	000		0.00
TC-C-134	0.6	JC-1-130	Secret costs	3C-1C-135	E-10
TC-C-136	0 7	Ser I	0 2		CEC LL
TC-C-142	E a	TC-1-	(m)	EC-SC-14) (C) o () paol
TC-C-146	100 m	TC-7-143	or m	TC-TC-144	
TC-C-148	23.9	TC-7-145	28.0	TC-TC-147	
Mean	and of the		Sond Sport		© *&
Median	14.0		7 00		1/2 00

Wavelength discrimination vs. wavelength-angular orientation discrimination

Angular orientation discrimination vs. wavelength-angular orientation discrimination .002 < p < .02 U = 80,53

Wavelength discrimination vs. angular orientation discrimination

U = 32.5

Number of Responses to Different Stimuli on Test Following Wavelength Discrimination (Wavelength in Mg - Angular orientation in degrees) Table 12

	Mp = 530			Mp =	540
006	1200 1500	300	009	006	1200
497	452	State Constant	& 3	63	601
474	473	300	632	0 18 18	609
088	180	© Fr	649 CO	402	367
4.0	grand grand	592	79	C) evel evel	9
N3 00	20	N	© 100	172	lovely Species Among
	fore CIL See See	S. S.	464	674	60 60
	0 0	0	0	0	C
0	0	(°)	0	0	0
	130 102	○ ===	109	309	291
6.522	377	603	2,081	3108	2165
246.6		67 6	231.2	345	240.6

Table 12 (continued)

Mumber of Responses to Different Stimuli on Test Following Wavelength Discrimination (Wavelength in Mu - Angular orientation in degrees)

			Ma	550				Mu = 560	0,0	
Subject	300	0.09	036	1200	1500	300	009	0.06	1200	1500
TC-C-124	0	12	40	270	0	0	harring Byrnya	0	0	- Address CORNEL
TC-C-126	N	293	133	(r)) cod	60	\$100 kg	O W	0	good	0
TC-C-130	٥	and for	tang Age Age	4	\$8	ts?	0	٥	0	East)
70-0-33	673	2	49	N	0	٥	0	30	0	0
TC-C-13%	gad	98	24.2	222	50	0	60	See See	conf	di
TC-C-136	die	400	340	·\$, many many		0	10	0	٥
TC-C-142	00	9	600 600	(1) (70 (10)	0mg	0	0	0	٥	٥
TC-C-146	0	0	62	0	Car.	0	٥	00	Q	Э
TC-C-148	0	44	tang hand	22	50 50	m	0	37	(mm)	0
Total	26	693	₩ ₩ ₩	98.60	334	6	99	203	m	41
Mean	10.0	2.66	00 60 60 60 60	986	27	0	2.6	22.6	· ·	o Zh

(continued)

Table 12 (continued)

Number of Responses to Different Stimuli on Test Following Wavelength Discrimination (Wavelength in Mp - Angular orientation in degrees)

			Mp = 570		
Subject	300	009	006	1200	
TC-C-124	0	0	0	0	©
TC-C-126	0	0	6	0	25
TC-C-130	0		٥	0	0
TC+C+133	0	0	d ₁	0	0
TC-C-134	64.) (4.)	102	di Q	30	0
TC-C-136	۵	0	(2004)	0	0
TC-C-142	0	٥	0	0	Ð
TC-C-146		0	0	O	0
TC.C.148	0	·P	48	All (1)	0
Total	23	106	Send Send Send	10	0
Mean	yout b	(Z) = ===================================	(1) (2)	7.8	63

Table 13 Number of Responses to Different Stimuli on Retest Following Wavelength Discrimination

		My	Mµ = 530				My	My = 540	177.	91
Subject	300	009	006	1200	150 0	300	009	906	1200	1500
TC-C-124	0	ເດ	0	0	0	0	en in	prof.	0	0
FC-C-126	0	0	0	٥	0	0	0	0	٥	0
061-0-01	77	77)	٥	ඓ	0	۵	9	26	4/8	0
IC-C-133	0		0	0	0	٥	23	C-1	c	0
EC-C-13	0	នា	10	10	53	0	N	prof	0	0
IC-C-136	0	0	52	0	-	0	67	E/S less pes	0	0
C-C-142	0	0	0	۵	-	0	٥	en	٥	in
C-C-146	₩	West of the second	102	পৌ	0	0	٥	100 40	23	٥
0.0.0	23	65	100	8	gm/j	O	10	0000 624 636	មា	N
Total	92	52	237	102	good	0	100	631	19	~
Mean	2.9	2.0	26.3	(°)	e=0 •	С	Scool) Complete Compl	70,1	00	63

Table 13 (continued)

Number of Responses to Different Stimuli on Retest Following Wavelength Discrimination

		346	Man = 550				M	Mp = 560		
Subject	300	009	006	1200	1503	000	009	006	1200	1500
TC-C-124	0	N	23	0	0	0	٥	pel	٥	9
TC-C-126	0	©	0	0		And the second s	0	\(\tilde{\tilie}\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde	<u></u>	-
70-0130	0	dis tot	0	Georg	٥			0	0	0
TC-C-133	0	٥	0	0	0	9		٥	0	0
TC-C-134	0	(C) ent	64	೦	~	9	\$	0	٥	0
TC-C-136	0	0	П	0	٥	0	0		٥	٥
TC-C-142	00	633	268	\$3 80 per	124	٥	0	٩	C'3	0
TC-C-146	\(\rightarrow \)	0	123	٥	0	0		(C)	0	0
TC-C-148	0	(seed)	3D 3D	್ಷ	9	9	9	9	0	0
Total	00	156	65	1-4 1-4	124	٥	\$	gard)	0	0
Mean	2,0	17.3	22.3	23	60	0	9	e e e e e e e e e e e e e e e e e e e	0	0

Table 13 (continued)

Number of Responses to Different Stimuli on Retest Following Wavelength Discrimination

	оенны прузнанизначациями ценачировани продененно порен помененнаризи процести наждененна под											
	1500	grang South	Fig.	£23		0	0	0	0	The party		0
	1200	\$ constant	0	60		0	0	0	Ç	0	0	٥
My = 570	006	0		\$	(m)	0	0	0	0	00	and Enn	- m-1
SAS.	009	0	0	0	0	ginsj	٥	0	0	(P)	offi	de
	300		0	63	0	Carlo.	0	0	\times	0	0	0
	Subject	C-C-124	Ce C. 126	C-C-130	C. C. 133	C-C-134	2000	C-C-142	C-C-146	000	Total	Mean

Table 14

Mean Predicted and Obtained Responses on Generalization Tests Following Wavelength Discrimination

of mulus	Mean obtained responses	Mean responses predicted by Discrimination Hypothesis	Deviation of predicted from obtained responses	Mean responses predicted by Multiplicative Hypothesis	Deviation of predicted from obtained responses
530 Mp	56.8			and the contraction of the contr	
530 Mp	174.3	2.66	74.6	ent 000	15,2
530 My 1200	164.3	104.7	59.6	162,4	and o
530 My 1500	Prop.	0	Song Dony Sery	sard e CZ prd	0,00
30° Mp	22.8	0.0	64 65	47.4	24.6
600 My	116.6	122.9	6,3	172.7	P
550 My	119.2	127.9	00	176.2	57.0
550 Mg	56.9	0 %	50.9	root o (P) poot	37.8
			(continued)		97

Table 14 (continued)

Mean Predicted and Obtained Responses on Generalization Tests Following Wavelength Discrimination

570 Mµ 1.4 0.0 1.4 1.4 5.0 1.0 1.4 1.4 5.0 1.0 1.2 12.2 12.0 12.0 12.0 12.0 12.0	ം ന ന ശ ാ ⊶ സ് ധ ഗ് ്	
Standard error (overall) Standard error (530 Mµ, 550 Mµ) Standard error (560 Mµ, 570 Mµ) 6.3		4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 15

Number of Responses to Different Stimuli on Test Following Angular Orientation Discrimination

			May	My = 530				My # 540	240	
Subject	300	009	006	1200	1500	300	609	006	1200	1500
TC-T-122	٥	0	5. 4.	500	0	0	6	80	N	0
TC-T-123	part	0	00	dia	e-i	0	199	61.5 44.2	proj	(4)
IC-I-129	guniĝ	(V)	84	વ્યુવ	quel		SD	44 C	0	0
C.T. 35	0	100	92	Control of the Contro	0	٥	Lon long	50	0	0
FC-T-138	0	0	5	0	0	0	0	32	(3)	0
IC-T-139	0	0	9	0	0	pad	m	305	0	0
044	quel	CO	20	0	٩	Ö	(%)	65 60	0	0
TC-T-143	0	prod	to the state of th	<i>⇔</i>	0	0	٥	(101)	0	0
IC-I-145	0	2.4	23	٥	0	Φ	St.	00 Q-	0	0
Total	eri .	346	736	9	63	part	good C's cont	1001	m	m
Mean	4 (1)	16.2	60	0.	63	g group	23.2	The state of	2 (2)	গে)

Number of Responses to Different Stimuli on Test Following Angular Orientation Discrimination

			Mp = 550				154	Mu = 560		
Subject	300	009	006	1200	1500	300	009	006	1200	1500
TCT	92	00	(C)	63	Ö	0	0	123	As	94
TC-I-123	pront	129	189	13	0	2	19	LE? prod prod	2	0
TC-1-129	0	and Als	000 1941 000	0	0	0	en en	mos PLJ dijs	٥	0
in the second se	C	hand (v)	53	83	6	0	EE) Tole and	0	0	0
50 m H H H	0	0	Ci Cii	Ċ	c		CO pred	0	0	0
TC-T-139	0	post (E) post	293	W.St.	0	0	200	0000	0	0
IC-I-140	0	Alle Evil	240	C	0	0	02	60	173	0
10.10	0	proj	92	0	0	0	N	N	0	0
TC-T-145	4	324	94 121	m	0	5)	PG PPG prof	269	0	0
Total	33	951	1754	00 (N)	6	20	634	44	00	profi
Mean	4,	105.7	194.9	m	O	N	70.4	157.0	603 pm	geolf 9

Table 15

Number of Responses to Different Stimuli on Test Following Angular Orientation Discrimination

		pard.	C>	Car	Contraction		0		9		kanij	prog.
	1200	٥	37	0	0	0	60	0	0	N	42	2.2
$M\mu = 570$	906	63	15 60 81	60	**** ****	160	63	© 10	00 00 =1	279	1564	79.8 174.0
	009	222	prod prod	56	N	0	133	\$00 pml	4	193	00	79.
	300	0	30	0	0	0	0	0	0	٥	36	6.2
	Subject	EC-1-122	TC-T-123	TC-I-129	TC-1-132	E - 1 30	TC-T-139	TC-T-140	TC-T-143	TC-T-145	Total	Mean

Table 16

Number of Responses to Different Stimuli on Retest (Wavelength in Mp - Angular Orientation in Degrees) Following Angular Orientation Discrimination

	Commission of the Commission o	M	$M_{\rm H} = 530$	001001-paged utto-paga, months som up deligangs			Part .	My = 540		
Subject	300	009	006	1200	1500	300	009	006	1200	150
TC-T-122	0	٥	44 33	0	0	0	0	34	0	
TC-T-123	٥	0	63	0	0	0	a	क्रभी	0	0
TC-T-129	٥	0	Energy (0	٥	٥	0	ES:	۵	0
TC-1-135	٥	0	200	0	0	0	0	0	0	0
TC-T-138	0	0	proj	0	Topper	0	çavğ	හ	0	0
TC-T-139	0	16	N	0	C3	\$	Ċ.Ĵ	80	0	(2)
TC-T-140	0	omi	12)	٥	٥	0	0	រេ	0	٥
TC-T-143	0	\$23	0	0		0	٥	gree)	0	¢
TC-T-145	0		9		0	0	٥	rs.	٥	0
Total	0	17	02	٦	2	0	41	20	٥	٥
Mean	0	2.9	7.00	٥	2	0	41	9.7	3	0

Table 16 (continued)

Number of Responses to Different Stimuli on Retest Following Angular Orientation Discrimination (Wavelength in Mp - Angular Orientation in Degrees)

		MA	Mps = 550				NS)3	Ma = 560		
Subject	300	009	006	1200	1200 mm	300	009	006	1200	1500
TC-T-122	0	0	36	0	0	0	0	62	0	Ann
TC-T-123	0	10	104			0	574	03	0	0
TC-T-129	Q	genj	6	0	٥	0	0	0	0	0
70-7-135	٥	٥	47	0	٥	0	47	6	~	¢
TC-T-138	9	0	8	•	0	0	0	07) mi	٥	0
TC-T-139	0	0	22	2	0	0	0	53	0	0
TC-T-140	C	3.6	22	~	0	0	god	NI post	0	0
TC-T-143	0	0	40	0	0	0	0	36	0	0
TC-1-145	0	0	73	0	0	0	0	E S	0	0
Total	0	22	486	4	0	0	2.9	23	m	0
Mean	0	3.0	54.0	4	0	0	7.4	31.	en.	0
						(continued)	led)			10

Table 16 (continued)

Number of Responses to Different Stimuli on Retest Following Angular Orientation Discrimination (Wavelength in Mu - Angular Orientation in Degrees)

	Mary strict in the distalling with windows	My	Mp = 570		
Subject	300	009	006 009	1200	1500
TC-T-122	0	en en	22	0	0
TC-T-123	٥	41	200	0	0
TC-T-129	0	0	dený.	0	0
TC-1-135	٥	P	2	0	٥
TC-T-138	0	0	3	0	0
TC-T-139	0	(4)	2	0	-5
TC-T-140	0	0	40	٥	0
TC-T-143	0	grad	0	0	0
TC-T-145	0	21	92	0	0
Total	0	70	278	0	7,20
Mean	٥	00	30.9	0	ن

Table 17

Mean Fredicted and Obtained Responses on Generalization Tests
Following Angular Orientation Discrimination

Stimulus	Mean obtained responses	Mean responses pre- dicted by Discrimi- nation Hypothesis	Deviation of predicted from obtained responses	Mean responses predicted by Multiplicative Hypothesis	Deviation of predicted from obtained response
530 Mp	e.d.	•	್ .		٥.
530 Mgs	600	Ø • 6	200 400 400	500	21.0
530 Mgs	σ.	0.0	6.	(M) end	य्य
530 Mp 150°	~	0.0	r.	0.0	73
540 Mp	provid G	0.0	gend B	the fact	9 * pd
540 My	23 pm	0.0	~ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	^{യർ} നീ ചി	رن ه سرد م
540 Mp	*	0.0	? ⁷ 3	the tree!	
540 Mµ 1500	9	0.0	ers .	o °°	٠,

Table 17 (continued)

Mean Predicted and Obtained Responses on Generalization Tests

			Mean	Mean responses	
timulus	Mean obtained responses	Mean responses predicted by Discrimi-	Deviation of predicted from obtained responses	predicted by Multiplicative Hypothesis	Deviation of predicted from obtained responses
550 Mp	63	0.0	23.		entimental description of management of mana
560 Mp	000	48,2	29.8	80	A1 W
560 Mp	er)	0.0	66.3 Quad	2.2	o da
560 Mp 1500	0.0	0 0	0	0.0	0.0
570 Mp	6.2	0°0	<i>n</i>	900 643	8.6
570 Mp	7.86	64.5	8.00	89.4	60
570 Mp	4.7	0.0	6.00 6.00	6.2	00
570 Mp	•	0.0	prosp.	0.0	good 0
Standa	Standard error (overall) Standard error (30°, 15 Standard error (60°, 12	(overall) (300, 1500) (600, 1200)	14.0 2.5 20.3		로 로 아 아 아
				The second secon	Annual control of the

Table 10

Number of Responses to Different Stimuli on Test Following (Wavelength in Mp - Angular orientation in degrees) Wavelength and Angular Orientation Discrimination

		MAL = 530	330				$M\mu = 540$	540		
Subjection	300	009	006	1200	1500	300	0630	006	1200	1500
TC-TC-120	0	98	0	00		guenĝ guenĝ	60	const Alg const	120	0
TC_TC-125	0	23	62	4	C.	0	Print.	99	奶	0
TC.TC-127	(3)	23	200	gunt	0	ंदीर	4	126	~	0
TC_TC-131	(9	126	green 8	0	0	25	2000 6.50 6.50	0	ecc)
TC-TC-132		98	5-	0	L Printer	٥	E 1	200	E-00	ets.
TC.TC-137	0	40	57 127 227	O PM	0	0	46	64	'	0
TC.1C-141	0	~ ~	23	0	2	4/4	108	200	69	9
TC.TC-144	0	0	63	٥	0	0	٥	78	Э	D
TC_TC-147	0	d _i	0	(See)	٥	o	end (C)	216	0	0
Total	0	390	නි නි	25	63	19	547	1442	203	grant)
Mean	©	전: 다. 다.	95.0	5.6	2	2.1	60.8	160.2	22.6	0 (no)

Table 18 (continued)

Number of Responses to Different Stimuli on Test Following Wavelength and Angular Orientation Discrimination (Wavelength in Mp. - Angular orientation in degrees)

		P.	$M\mu = 550$					Mp = 560	eander der strettnister settengdigter ender in	
Subject	300	009	006	1200		300	009	0.06	1200	1500
TC-TC-120	949	386	169		37	0	grows	0	pred;	0
TC-TC-125	100	5.4	107	ØD	٥	4	22	ਲੀ ਵਰ	2	0
TC-TC-127	9	137	50	pools	<u></u>	0	00	00) prof	٥	٥
TC-TC-131	0	grow)	168	0	Engl.	0	<i>ল</i> ী	94	0	٥
TC-TC-132	9	921	500	0	<i>©</i>	0	98	243	9	23
TC-TC-137	2	uned vijel	8	0	pard)	0	54	47	0	٥
TC-TCelal	٥	prof.	361	0	0	0	C) peop	2	6	0
TC-TC-144	0	gun]	~~	C)	0	\$	٥	49	0	0
TC-1C-147	9	N	286	0	0	0	0	0	0	0
Total	10	569	© 10 80 80	150	60 10	44	218	817	2001	2
Mean	0.00	63.2	205.6	16.7	4.2	41	24.2	90.8	6.	. 2
							(continued)	(p)		108

Table 18 (continued)

Number of Responses to Different Stirnuli on Test Following (Wavelength in Mu - Angular orientation in degrees) Wavelength and Angular Orientation Discrimination

30° 60° 90° 120° 0 3 0 0 0 29 30 3 0 21 23 1 0 5 80 0 0 65 174 0 0 0 75 10 0 0 0 0 0 0 0 0 1 0 0 0 1 0 137 529 17 1 0 15.2 53.8 1.9			MA	Mµ = 570			
0 29 30 3 0 21 23 1 0 21 23 1 0 5 80 0 0 65 174 0 0 14 147 3 0 0 0 0 0 15.2 58.8 1.9	Subject	300	009	006	1200	1500	Колядан сіўтіга, умецей посня менення басня касану візная ана передіяну, «басна цада візна, рака дата селення песняг одата, я
0 21 23 1 0 5 80 0 0 65 174 0 0 0 75 10 0 0 0 0 0 0 0 0 1 137 529 17		0	(4)	0	0	0	
0 5 80 0 0 65 174 0 0 0 75 10 0 14 147 3 0 0 0 0 0 0 0 0 1 137 529 17	10 N	0	00	30	67	0	
0 65 174 0 0 0 75 10 0 14 147 3 0 0 0 0 0 0 0 0 1 137 529 17	TC-127	0	N	23	pani	©	
0 65 174 0 0 14 147 3 0 0 0 0 0 0 0 0 1 137 529 17	10-13	0	ហេ	08	0	50	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TC-132	0	65	7 7 4	0	0	
14 147 3 0 0 0 0 0 0 0 0 0 0 137 529 17 0 0 15.2 58.8 1.9	I C-137	۵	0	En Con	0	0	
0 0 0 0 0 0 17 0 1.9	IC-14	0	्र	Contraction of the Contraction o	6/3	0	
1 0 137 529 17 n 0 15.2 58.8 1.9	TC-144	0	0	0	0	0	
0 137 529 17 0 15.2 58.8 1.9	TC-147	0	0	0	0	0	
0 15,2 58,8 1.9	Total	٥	33	529	2.3	0	
	Mean	0	15.2	50.00		٥	

Table 19

Number of Responses to Different Stinuli on Retest Following (Wavelength in Mu - Angular orientation in degrees) Wavelength and Angular Orientation Discrimination

		2	Mp = 530				of the same of the	Mp = 540		
Subject	300	009	006	1200	1500	300	600	006	1200	1500
TC-120	٥	20	00 (**)	0	0	0	00	32	0	٥
TC-TC-125	0	2	N	0	0	٥	7	0.45	0	0
TC-TC-127	0	0	0	0	0	0	powij	0.1	0	0
TC-TC-131	0	0	50	0	٥	0	٥	45	end	0
TC-TC-132	0	0	56	Φ	0	0	6	60	0	0
TC-TC-137	C	c	٥	0	0	0	0	cont	0	0
TC-TC-141	0	00	161	٥	0	0	26	93	0	0
TC-TC-144	0	2	4,	0	0	0	0	50	0	0
TC-TC-147	0	0	0	0	0	0	2	12	0	0
Total	0	42	339	0	0	0	63	344	ent	0
Mean	0	4.	37.7	٥	0	0	7.0	38.2	possej •	0

Table 19 (continued)

Number of Responses to Different Stimuli on Retest Following (Wavelength in Mu - Angular orientation in degrees) Wavelength and Angular Orientation Discrimination

		N	Mµ = 550				M	Mu = 560		
Subject	300	009	006	1200	1500	300	009	006	1200	1500
TC-TC-120	~	ধ্য	106	0	grord	0	0	granis	0	0
TC-TC-125	Ф	٥	23	٥	0	0	٥	67) (7)	0	0
TC-TC-127	0	5	96	0	0	٥	0	٥	0	0
TC-TC-131	0	0	52	0	\$000 A	0	Q	∞ in	0	0
TC-TC-132	0	0	36	0	0	0	£~~	27	0	0
TC-TC-137	0	વ્યુંગ	87	٩	0	0	0	0	0	0
TC-TC-141	0	46	73	0	٥	G	0	120	٥	0
TC-TC-144	0	0	59	0	0	0	0	92	0	0
TC-TC-147	٥	0	145	0	0	0	9	0	0	0
Total	2	146	623	0	gronj	0	test 7	265	0	0
Mean	. 2	16.2	69.2	0	•	0	e post	29.4	0	0

Table 19 (continued)

Number of Responses to Different Stimuli on Retest Following Wavelength and Angular Orientation Discrimination (Wavelength in Mu - Angular orientation in degrees)

			$M\mu = 570$		And the second s
Subject	300	009	006	120°	1500
TC-TC-120	0	0	0	0	ୈ
TC-TC-125	0	prof	9	0	0
TC-TC-127	0	0	0	C	0
TC-22-31	0	gong	16	0	0
TC-TC-132	0	0		0	0
TC-TC-137	0	0	0	0	0
TC-TC-141	0	0	60	0	0
TC-TC-144	0	0	15° N	0	0
TC-TC-147	٥	0	0	C	\$
Total	٥	~	146	0	٥
Mean	0	2	16.2	0	0

Table 20

Mean Predicted and Obtained Responses on Ceneralization Tests Following Wavelength-Angular Orientation Discrimination

530 Mp 0.0 0.0 3.4 3.4 530 Mp 48.0 0.0 43.0 38.4 9.6 530 Mp 5.6 0.0 5.6 8.1 2.5 530 Mp .2 0.0 .2 1.9 540 Mp 2.1 0.0 2.1 5.1 540 Mp 56.7 3.1 53.6 57.4 .7 540 Mp 22.7 0.0 22.7 12.0 10.7 540 Mp 22.7 0.0 22.7 12.0 10.7 540 Mp .1 0.0 .1 13.0 13.0	Stirrate and the state of the s	Mean obtained responses	Mean responses predicted by Discrimination Hypothesis	Deviation of predicted from obtained responses	Mean responses predicted by Multiplicative Hypothesis	Deviation of predicted from obtained responses
48.0 6.0 48.0 38.4 5.6 0.0 5.6 8.1 2.1 .2 2.1 2.1 0.0 2.1 5.1 56.7 3.1 53.6 57.4 22.7 12.0 1 .1 0.0 .1 13.1	530 My	0.0	0.0	o	स्व ००	4.
5.6 0.0 5.6 8.1 2.1 0.0 2.1 56.7 3.1 53.6 57.4 13.1 13.1	530 MH	48.0	0.0	Q *83*	33.4	9.6
2.1	530 Mµ 120	5.6	0.0	ຜິ	e=4 CO	2.5
2.1 0.0 2.1 5.1 56.7 3.1 53.6 57.4 22.7 0.0 22.7 12.0 1	530 Mp.	.2	0°0	N.	23.	ord ord
56.7 3.1 57.4 57.4 52.7 0.0 22.7 12.0 .1 13.1	540 Mp	62	0.0	2.2	ond •	· •
22.7 0.0 22.7 12.0	540 Mp	56.7	ome) e (v ²)	53.6	57.	
. 3 3.3	540 My	22.7	0°0	22.7	12.0	10.7
	540 Mu	gand;	0.0	prot •	prod 67 prod	13,0

Table 20 (continued)

Mean Predicted and Obtained Responses on Generalization Tests Following Wavelength-Angular Orientation Discrimination

	open to the second seco	Mean obtained responses	Mean responses pre- dicted by Discrimi- nation Hypothesis	Deviation of predicted from obtained responses	Mean responses predicted by Multiplicative Hypothesis	Deviation of predicted from obtained responses
1.9 26.1 3.9 0.0 3.2 3.6 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	560 Mp	4.	0.0	L. A.	642)	
1.9 0.0 1.9 0.0 1.5.4 0.0 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	560 Mps	26.3	0.0	26.3	& & & & & & & & & & & & & & & & & & &	000
15.4 0.0 0.0 15.4 1.9 1.9 1.9 1.9	560 Mg.	ing O	0.0	©\ • p=1	[6]	62) 24
15.4 0.0 0.0 15.4 1.9 1.9 0.0 0.0	560 Mpt 1500	C3	0.0	2.	0.	
1.9 0.0 0.0 0.0	570 Mys 300	٥	0°0	0.0	1.9	1.9
1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	10 009 009	50.0	0 0	end Eff end	21.7	6,3
0.0 0.0	570 My	O .	0.0	o o and	4.6	2.7
The second secon	570 Mp	ं	0.0	0.0	~	
Standard error (30°, 150°) 1.9 Standard error (60°, 120°) 35.6	Standa	ird error (306)	. 150°) 120°)	24 L C S 2 - 0 C		46.50

REFERENCES

REFERENCES

- Attneave, F. Dimensions of similarity. Amer. J. Psychol., 1950-63, 516-566.
- Butter, C. M., & Cuttman, N. Stimulus generalization and discrimination along the dimension of angular orientation. Amer.

 Psychologist, 1957, 12, 449. (Abstract)
- Butter, C. M. & Cuttman, N. Stimulus generalization along the dimensions of wavelength and angular orientation. Amer. Psychologist, 1958, 13, 416. (Abstract)
- Eninger, M. U. Habit summation in a selective learning problem.

 J. comp. physiol. Psychol., 1952, 45, 604-608.
- Fink, J. B., & Fatton, R. M. Decrement of a learned drinking response accompanying changes in several stimulus characteristics.

 J. comp.physiol. Psychol., 1953, 46, 23-27.
- Guttman, N. The pigeon and the spectrum and other perplexities. Psychol. Rep., 1956, 2, 449-468.
- Guttman, N., & Kalish, H. 1. Discriminability and stimulus generalization. J. exp. Psychol., 1956, 51, 79-88.
- Hanson, H. M. The effects of discrimination training on stimulus generalization. Doctoral dissertation deposited at Duke University Library, 1956.
- Harlow, H. F. Studies in discrimination learning by monkeys: VI.

 Discrimination between stimuli differing in both color and form, only in color, and only in form. J. gen. Psychol., 1945, 33, 225-235.
- Honig, W. K. Predictions of preference, transposition, and transposition-reversal from the generalization gradient. Doctoral dissertation deposited at Duke University Library, 1958.
- Kalish, H. I., & Guttman, N. Stimulus generalization after equal training on two stimuli. J. exp. Fsychol., 1957, 53, 139-144.
- Kalish, H. I. & Guttman, N. Stimulus generalization after training on three stimuli: a test of the summation hypothesis.

 J. exp. Fsychol., 1959, 57, 268-272.

- Muenzinger, K. F., & Gentry, E. Tone discrimination in the white rat. J. comp. Psychol., 1931, 12, 195-206.
- Seigel, S. Nonparametric Statistics. New York: McGraw-Hill, 1956.
- Tolman, E. C. The determiners of behavior at a choice point. Psychol. Rev., 1938, 45, 1-41.
- Walker, H. M., & Lev, J. Statistical Inference. New York: Henry Holt and Co., 1953.
- Warren, J. M. Additivity of cues in a visual pattern discrimination by monkeys.

 J. comp. physiol. Psychol., 1953, 46,
 484-486.
- by monkeys. J. comp. physiol. Fsychol., 1954, 47, 290-293.
- White, S. W. Generalization of an instrumental response with variations in two attributes of the Co. J. exp. Psychol., 1958, 56, 339-343.
- Wyckoff, L. B., Jr. The role of observing responses in discrimination learning: Fart L. Psychol. Rev., 1952, 59, 431-442.

BIOGRAPHICAL NOTE

Date of birth:

January 10, 1934.

Place of birth:

Providence, Rhode Island.

Education:

Harvard University, 1951-55. B. A. in Psychology Duke University, 1955-Graduate study in Tsychology

Positions:

Graduate assistant, Duke University, 1955-56. Research, assistant, Ur. Norman Guttman, 1956-58. Graduate assistant, Duke University, 1958-59.

Honors:

B. A. degree cum laude Sigma Ki, Duke University

Publications:

(With Norman Guttman) Stimulus generalization and discrimination along the dimension of angular orientation. Amer. Psychologist. 1957, 12, 449. (Abstract)

(With Norman Cuttman) Stimulus generalization along the dimensions of wavelength and angular orientation.

Amer. Psychologist, 1958, 13, 416.

(Abstract)

(With David R. Thomas) becordary reinforcement as a function of the amount of primary reinforcement.

J. comp. physiol. Psychol., 1953, 51, 346-348.

