Interrogation 1

Dans les énoncés, lorsqu'on écrit z := x + iy, il est sous-entendu que x et y sont des réels.

Exercice 1. Soit *U* un ouvert de \mathbb{C} et $z_0 \in U$.

- 1. Soit $f: U \to \mathbb{C}$. Définir les assertions « f est \mathbb{C} -dérivable en z_0 » et « f est holomorphe sur U. »
- 2. Soit $f: U \to \mathbb{C}$ différentiable. Définir l'assertion « f vérifie les conditions de Cauchy-Riemann en z_0 .»

Exercice 2. On considère la fonction $f: \mathbb{C} \setminus \{z \in \mathbb{C}, \text{R\'e}(z) \text{Im}(z) = 0\} \to \mathbb{C}, z \mapsto \frac{z}{\text{R\'e}(z) \text{Im}(z)}$.

- 1. Écrire f comme une fonction d'un ouvert de \mathbb{R}^2 dans \mathbb{R}^2 et calculer sa matrice jacobienne en tout point.
- 2. Déterminer l'ensemble des points du plan où f est \mathbb{C} -dérivable.
- 3. Existe-t-il des ouverts du plan sur lesquels f est holomorphe et si oui lesquels?

Exercice 3. Soit $u: \mathbb{C} \to \mathbb{R}$, $x + iy \mapsto e^y \cos x$. Déterminer toutes les fonctions $v: \mathbb{C} \to \mathbb{R}$ telles que f:=u+iv soit une fonction holomorphe (que l'on pourra supposer de classe \mathscr{C}^2) sur \mathbb{C} . Écrire alors f en fonction de la variable z en donnant une expression simplifiée.

Exercice 4. Rappeler la définition des notations de Wirtinger $\frac{\partial}{\partial z}$ et $\frac{\partial}{\partial \overline{z}}$, puis calculer $\frac{\partial}{\partial \overline{z}} \left(\frac{z + \overline{z}}{z\overline{z}} \right)$.

Correction de l'interrogation 1

Correction de l'exercice ??.

- 1. La fonction f est dérivable au sens complexe en z_0 si le taux d'accroissement $\frac{f(z) f(z_0)}{z z_0}$ admet une limite (finie) lorsque z tend vers z_0 dans U. La fonction f est holomorphe sur U si elle est dérivable au sens complexe en tout point de U.
- 2. Notons u et v les parties réelle et imaginaire de f. Alors, f vérifie les conditions de Cauchy-Riemann en z_0 si $\partial_x u(z_0) = \partial_y v(z_0)$ et $\partial_y u(z_0) = -\partial_x v(z_0)$. Ceci est équivalent au fait que la matrice jacobienne de f en z_0 soit une matrice $\mathbb C$ -linéaire, c'est-à-dire de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, où a et b sont réels.

Correction de l'exercice ??.

- 1. On obtient $f: \mathbb{R}^2 \setminus \{(x, y) \in \mathbb{R}^2 \mid xy = 0\} \to \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1/y \\ -1/x \end{pmatrix}$, donc $Jac(f) = \begin{pmatrix} 0 & -1/y^2 \\ 1/x^2 & 0 \end{pmatrix}$.
- 2. La fonction f étant différentiable, elle est donc dérivable au sens complexe exactement là où les conditions de Cauchy-Riemann sont vérifiées, c'est-à-dire aux points $(x,y) \in U$ pour lesquels $\frac{1}{x^2} = \frac{1}{y^2}$, c'est-à-dire $x^2 = y^2$, c'est-à-dire x = y ou x = -y. Il s'agit de l'union de deux droites.
- 3. Le lieu où f est dérivable au sens complexe est d'intérieur vide. Il n'existe donc pas d'ouvert de U sur lequel la fonction f est holomorphe.

Correction de l'exercice ??.

Soit $v:\mathbb{C}\to\mathbb{R}$ différentiable et soit f=u+iv. Si f est holomorphe sur U, alors f satisfait les conditions de Cauchy-Riemann en tout point. Ceci permet d'obtenir les deux dérivées partielles de v grâce à celles de u, qui sont connues :

$$\partial_x v = -\partial_y u = -e^y \cos(x)$$
 et $\partial_y v = \partial_x u = -e^y \sin(x)$.

Fixons $x \in \mathbb{R}$. La fonction partielle $\mathbb{R} \to \mathbb{R}$, $y \mapsto v(x,y)$ a pour dérivée $y \mapsto \partial_y v = \partial_x u = -e^y \sin(x)$. On en déduit que la fonction $\mathbb{R} \to \mathbb{R}$, $y \mapsto \partial_y v + e^y \sin(x)$ a une dérivée nulle, donc est localement constante sur \mathbb{R} qui est connexe, donc est constante sur \mathbb{R} . On note h(x) cette constante, qui dépend du réel x qui a été fixé en début de paragraphe. On a donc $v(x,y) = -e^y \sin(x) + h(x)$.

Faisons maintenant varier x. Comme f est différentiable, la fonction $x \mapsto h(x)$ est dérivable, en la variable x et en dérivant suivant x on obtient $\partial_x v(x,y) = -e^y \cos(x) + h'(x)$.

Or, d'après les relations de Cauchy-Riemann rappelées plus haut, on sait que $\partial_x v = -\partial_y u = -e^y \cos(x)$, d'où l'on tire que h a une dérivée nulle, donc est localement constante. Comme $\mathbb C$ est connexe, h est constante, égale à un réel K.

Finalement, si f = u + iv est holomorphe, on a prouvé qu'il existe $K \in \mathbb{R}$ tel que $v(x, y) = -e^y \sin(x) + K$. Réciproquement, si K est un réel et $v(x, y) := -e^y \sin(x) + K$, alors la fonction f := u + iv est différentiable et vérifie les conditions de Cauchy-Riemann en tout point de \mathbb{C} , donc est holomorphe sur \mathbb{C} .

et vérifie les conditions de Cauchy-Riemann en tout point de \mathbb{C} , donc est holomorphe sur \mathbb{C} . Enfin, on voit que $f(z) = e^y(\cos x - i\sin x) + iK = e^y e^{-ix} + iK = e^{y-ix} + iK = e^{-iz} + iK$. Si on ne voit pas directement que y - ix = -iz, on utilise la méthodologie de base : $y - ix = \frac{z - \bar{z}}{2i} - i\frac{z + \bar{z}}{2} = \frac{z - \bar{z}}{2i} + \frac{z + \bar{z}}{2i} = \frac{2z}{2i} = -iz$.

Correction de l'exercice ??.

D'après le cours, les opérateurs $\frac{\partial}{\partial z}$ et $\frac{\partial}{\partial \overline{z}}$ sont définis par $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$ et $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$. On a $\frac{\partial}{\partial \overline{z}} \frac{z + \overline{z}}{z \overline{z}} = \frac{\partial}{\partial \overline{z}} \left(\frac{1}{\overline{z}} \right) + \frac{\partial}{\partial \overline{z}} \left(\frac{1}{z} \right) = -\frac{1}{\overline{z}^2} + 0 = -\frac{1}{\overline{z}^2}$

Si on veut justifier le calcul de $\frac{\partial}{\partial \overline{z}} \left(\frac{1}{\overline{z}} \right)$, on peut par exemple utiliser la formule du produit appliquée à $1 = \overline{z} \times \frac{1}{\overline{z}}$ ce qui donne $0 = \frac{\partial}{\partial \overline{z}}(1) = \frac{\partial}{\partial \overline{z}}(\overline{z}) \times \frac{1}{\overline{z}} + \overline{z} \times \frac{\partial}{\partial \overline{z}} \left(\frac{1}{\overline{z}} \right)$. On peut bien sûr tout écrire en fonction de x et y et revenir à la définition.