Information theory

Entropy

- Consider a random variable X on the set $\{a,b,c,d\}$, with probabilities $P(X=a)=p_a,\ P(X=b)=p_b,\ldots$
- What is the optimal number of bits to encode the possible values of *X*?

- Since there are 4 possibilities, we can use 00 for a, 01 for b, 10 for c and 11 for d; i.e. 2 bits.
- If $p_a = p_b = p_c = p_d = \frac{1}{4}$, then on average we expect to use 2 bits to transmit a message containing just the value of X.
- Should we adopt the same encoding scheme if if $p_a = \frac{1}{2}, p_b = \frac{1}{4}, p_c = \frac{1}{8} = p_d$?

- Intuitively we should use fewer bits to encode the more frequently occurring values, and more bits to encode the less frequently occurring ones.
- Eg., we can use 0 for a, 10 for b, 110 for c and 111 for d. Note that we cannot use shorter codes for b, c or d because we need to be able to unambiguously parse a concatenation of the strings, eg. 1110110 decodes uniquely into dac.
- With this encoding scheme, on average we use

$$\left(\frac{1}{2} \times 1\right) + \left(\frac{1}{4} \times 2\right) + \left(\frac{1}{8} \times 3\right) + \left(\frac{1}{8} \times 3\right) = 1.75$$

bits.

Definition

The entropy, H(X) of a discrete random variable is given by

$$H(X) = -\sum_{i} p_{i} \log p_{i},$$

where we adopt the convention that $0 \log 0 = 0$.

If we use base 2 for the logarithm, the units of entropy are given in *bits*; if the natural logarithm is used, the units are called *nats*.

• Thus, when $p_a=\frac{1}{2}, p_b=\frac{1}{4}, p_c=p_d=\frac{1}{8}$, then

$$H(X) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{8}\log\frac{1}{8} = 1.75$$

bits, which is the same as the average number of bits we computed earlier with our encoding scheme.

• In fact, Shannon's source coding theorem (1948) (or noiseless coding theorem) tells us that we cannot do better; i.e. we cannot find a lossless encoding scheme that uses on average fewer bits than the entropy of X; i.e. entropy gives us a lower bound.

 Recall for HW 2 that entropy is maximized when X is a uniform distribution; for n classes, we need

 $\log_2 n$

bits on average to transmit X, and this is the most bandwidth required amongst all possible distributions of X.

• In contrast, if we know that $p_i = 1$ for some i, then H(X) = 0, and we do not need any bandwidth for transmission since we already know the outcome!

Cross entropy

Definition

The cross entropy of two discrete distributions p and q, such that $q_i = 0 \implies p_i = 0$, is given by

$$H(p,q) = -\sum_{i} p_{i} \log q_{i}.$$

If $q_i = 0$ for some i but $p_i > 0$, then $H(p, q) = \infty$.

We can also write H(X, Y) instead when we have two random variables X and Y with distributions p and q respectively.

- We know that $H(p,q) \ge H(p,p)$ for all q and equality occurs when q = p.
- Recall that cross entropy loss is used in logistic/softmax regression, where p denotes the target distribution (typically $p_i = 1$ for some i and 0 otherwise; this is the one-hot encoding of t = i), and q is the prediction of the model.
- Thus cross entropy gives a measure of how dissimilar q is from p.
- It is not symmetric; i.e. $H(p,q) \neq H(q,p)$ in general.

Kullback-Leibler (KL) divergence (or relative entropy)

Definition

The KL divergence of two discrete distributions p and q such that $q_i = 0 \implies p_i = 0$, is given by

$$D_{KL}(p|q) = H(p,q) - H(p,p)$$

$$= \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}.$$

If $q_i = 0$ for some i but $p_i > 0$, then $H(p, q) = \infty$.

- KL divergence measures the number of extra bits required to transmit X with distribution p, as compared to the optimal code, when we use the sub-optimal coding scheme associated with distribution q.
- As with cross entropy, it is not symmetric.
- We can use source coding theorem to infer that KL divergence is always non-negative, but there is a more direct proof using Jensen's inequality.

Convex functions

Definition

A function $\phi:(a,b)\to\mathbb{R}$ is convex if for all $x,y\in(a,b)$, $\phi(\lambda x+(1-\lambda)y)\leq\lambda\phi(x)+(1-\lambda)\phi(y)$ for all $\lambda\in(0,1)$.

Proposition

If a function ϕ is convex, then it is continuous.

Not all convex functions are differentiable, eg. $\phi(x) = |x|$, but we have the following proposition.

Proposition

If a function ϕ has a non-negative second derivative on (a, b), then it is convex.

Jensen's inequality

Theorem

Let $\phi(x)$ be a convex function. If μ is a probability measure, and f(x) and $\phi(f(x))$ are integrable, then

$$\phi\left(\int f(x) d\mu(x)\right) \leq \int \phi(f(x)) d\mu(x).$$

Example

$$Var(X) \ge 0 \iff \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \ge 0$$

 $\iff \mathbb{E}[X^2] \ge (\mathbb{E}[X])^2$

We know the second line is true by applying Jensen's inequality with $\phi(x) = x^2$ and f(x) = x.

Proposition

For any two distributions p and q, $D_{KL}(p|q) \ge 0$, and is equal to 0 when p = q.

Proof.

$$D_{\mathit{KL}}(p|q) = \sum_{i} p_{i} \left(-\log \frac{q_{i}}{p_{i}}\right)$$
 (sum runs over all i such that $p_{i} > 0$) $\geq -\log \sum_{i} p_{i} \left(\frac{q_{i}}{p_{i}}\right)$ (by Jensen's inequality) $= -\log \sum_{i} q_{i} \geq 0$.