

2-3) V5=VN PV = VM. NRT 7 = VNRT = VERT May = URT = 1,6 x 831 x 293 = 29 1034 Mai = 29 g/mil: Jan = 1.02 M(00) + 1 We M(Ne) 2915= /. (2×32+ (1-/02) ×28. 41.02=29-28=0,5 1.9 = 251 Demontre que Mari = 1. Q Majo 1. 1/2/11 (air.) -> my = M. - m(02) (N= 9) NA = N+ N' = 6. 10 23 mal (1 ml)

N' No mz = No m (No) 1.02 = Nn et 1 N2 = Ne Mari = 102, NA. m(Q) + 1. Ne NA. m (Mg L CMS) 17(a)

Mari = 1.02 M(02) + 1. N2 M(16) des pourcentages massiques 1. massique de 02 = m(02) = 351. x16x2 Mai: 23. / masspiede Ne = 72,4% 3) VIte= VN RT et Va = VN RT
TIGE) VITZ = VM(Or) = V16x2 = 4 Voz. = VM(Hz) = 2 = 4 VH2 = 4102 KX - L Tra - L VAR toz = Voz L = 3L = 3L. 136 = tor - try = Vog =) L= 435 5t

CÉLÉRITÉ DE PROPAGATION DU SON DANS UN GAZ

La célérité des ondes dépend du milieu de propagation par exemple la célérité des ondes sonores dans un gaz (considéré comme parfait) est donné par la relation : $v=\sqrt{\mu\frac{p}{\rho}}$ où P est la pression et ρ la masse volumique du gaz et $\mu=1,4$ (Si) est une constante . $R=8,314J.mol^{-1}K^{-1}$, la température est 20 °C . $M(O_2)=32g/mol$, $M(H_2)=2g/mol$, $M(N_2)=28g/mol$

- 1. Par analyse dimensionnelle, trouver l'unité de μ .
- 2. Pour mesurer la célérité du son dans l'air on réalise l'expérience suivante à 20 °C : un son ,émis par une source fixe, est reçue par deux récepteurs A et B , distants de d = 50cm reliées aux vois Y_A et Y_B d' un oscilloscope.
 Les signaux reçues sont décalés par n = 6div et le coefficient de balayage est b = 0,25ms/div
 - 2.1) Calculer la célérité du son dans l'air Dans la suite de l'exercice on prendra $V_{son}=340 \, m/s$.
 - 2.2) La source se déplace d'un mouvement rectiligne uniforme à la vitesse V vers un obstacle fixe. Elle émet un son de fréquence N=10Hz vers l'obstacle qui reçoit le même son à la fréquence $N_R=11Hz$ Calculer V.
 - 2.3) l'air est un mélange gazeux de dioxygène et de diazote. Calculer le pourcentage massique de chaque gaz dans l'air
- 3. On fait passer à 20°C une onde sonore dans deux tube de longueur L Le premier rempli de dihydrogène et Le deuxième rempli de dioxygène . Montrer que la longueur L est liée au décalage horaire Δt , entre l'arrivée des deux ondes, par la relation : $L=435\Delta t$.