Advanced Image Manipulation

Stephen J. Guy

Sep 20, 2017

Recap

- · What's wrong with forward mapping?
 - o Missing pixels & double pixels
- Will backwards mapping always results in oneto-one pixel coverage?
 - o No
- · How do we fix this?
 - o Resampling weighted avg of nearby pixels
- How can we solve quantization errors?
 - o Spread errors to nearby pixels
- Contrast vs Sharpness
- Contrast vs Saturation

Outline

- Image Compositing
- Image Morphing
- Content-aware Image Editing & Image Inpainting

3

Outline

- Image Compositing
- Image Morphing
- Content-aware Image Editing & Image Inpainting

Compositing

- Key issues in computer graphics:
 - o Take images from two sources
 - o Combine them
- Three approaches
 - o Blue screen matting
 - o Alpha channel
 - o Porter-Duff compositing algebra

Image Compositing

• Separate an image into elements

Rendered independentlyComposite together

Applications

o Cel animation

o Chroma-keying

o Blue-screen matting

 Compositing saves us from re-rendering new images for each new background

Compositing Example

Titanic: DigitalDomain:

Compositing

- Key issues in computer graphics:
 - o Take images from two sources
 - o Combine them
- Three approaches
 - o Blue screen matting
 - o Alpha channel
 - o Porter-Duff compositing algebra

Blue Screen Matting

- Photograph object against blue background
 Q: Why blue?
 - o A: We want colors far from skin tones
- Take all non-blue pixels (foreground)
- Add on top of 2nd image
- Problems?:
 - Aliasing (esp. hair)
 - No notion of partial coverage

Binary image mask issues

First idea: store one bit per pixel
 answers question "is this pixel part of the foreground?"

- causes jaggies similar to point-sampled rasterization
- o same problem, same solution: intermediate

© 2006 Steve Marschner

Partial pixel coverage

 The problem: pixels near boundary are not strictly foreground or background

- o how to represent this simply?
- interpolate boundary pixels between the fg. and bg. colors

© 2006 Steve Marschner

Compositing

- Key issues in computer graphics:
 - o Take images from two sources
 - o Combine them
- Three approaches
 - o Blue screen matting
 - Alpha channel (Smith & Catmull)
 - o Porter-Duff compositing algebra

Alpha channel

- Images stored as 32 bits: RGB lpha
- α represents coverage (0 = transparent, 1 = opaque)
- Simple composting:
 - \circ OUT = α Foreground + (1- α)Background
 - Example: α = 0.3

Pixel Storage Convention

- Premultiplication
 - o Color C = (r,g,b) with coverage α is often represented at (α r, α g, α b, α)
 - o R,G,B values can be displayed directly
 - o Simplifies composition algebra (closure)
- What is (α , C) for the following?
 - \circ (0,1,0,1) = ? Full green, full coverage
 - \circ (0, ½, 0, 1) = ? Half green, full coverage
 - \circ (0, ½, 0, ½) = ? Full green, half coverage
 - $\circ (0, \frac{1}{2}, 0, 0) = ?$??? (No Coverage...)

17

Compositing

- Key issues in computer graphics:
 - o Take images from two sources
 - o Combine them
- Three approaches
 - o Blue screen matting
 - o Alpha channel
 - o Porter-Duff compositing algebra

19

Semi-Transparent Objects

• Suppose we put A over B over background G

How much of B is blocked by A?

$$(\alpha_A)$$

How much of B shows through A?

$$(1-\alpha_A)$$

How much of G shows through both A and B?

$$(1-\alpha_{\rm A})(1-\alpha_{\rm B})$$

Opaque Coverage

- How do we combine 2 partially covered pixels?
 - o 3 possible colors (0, A, B)
 - o 4 regions (0, A, B, AB)

Example: C = A over B

• For colors that are <u>not</u> premultiplied

$$\circ$$
 C = α_A A + (1- α_A) α_B B

A over B

$$\alpha = \alpha_A + (1-\alpha_A) \alpha_B$$

• For colors that are premultiplied

• C' = A' +
$$(1-\alpha_A)$$
 B'

$$\alpha = \alpha_A + (1-\alpha_A) \alpha_B$$

Assumption: coverages of A and B are uncorrelated for each pixel

Independent coverage assumption

- Why is it reasonable to blend α like a color?
- Simplifying assumption: covered areas are independent
 - o that is, uncorrelated in the statistical sense

description	area
$\bar{A} \cap \bar{B}$	$(1-\alpha_A)(1-\alpha_B)$
$A \cap \overline{B}$	$\alpha_A(1-\alpha_B)$
$\overline{A} \cap B$	$(1-\alpha_A)\alpha_B$
$A \cap B$	$\alpha_A \alpha_B$

Porter & Duff 8

© 2006 Steve Marschner

Independent coverage assumption

· Holds in most but not all cases

- This will cause artifacts
 - but we'll carry on anyway because it is simple and usually works...

© 2006 Steve Marschner

Outline

- Image Compositing
- Image Morphing
 - Specifying correspondences
 - o Warping
 - o Blending
- Content-aware Image Editing & Image Inpainting

Cross Dissolve • Blend image with "over" operator • Alpha of bottom image is 1.0 • Alpha of top images varies from 0.0 to 1.0 • Over time blend(i,j) = (1-t) $\operatorname{src}(i,j) + t \operatorname{dst}(i,j)$ $(0 \le t \le 1)$ src blend dst t = 0.0 t = 0.5 t = 1.0 t = 0.5

 We must specify pixel-to-pixel correspondences for each timestep!
 Artist intensive job

Specifying Warping

- We can use constructs to make specification easier
 - o E.g., Matched pairs of lines (Beies & Neeley)

Multiple Line Pairs

Transformation specified by weighted combination of points

39

Warping: Multiple Pairs

 Use weighted combination of points defined by each pair of corresponding lines

Weighted Pairs

• To weight contributions Beier & Neeley use:

$$weight[i] = \left(\frac{length[i]^p}{a + dist[i]}\right)^b$$

Where:

- · length[i] is the length of L[i]
- · dist[i] is the distance from X to L[i]
- · a, b, p are constants that control the warp

Morphing Uses

- Willow 1988
- Terminator 2 1991
- Jackson's Black or White 1991
 - <u>http://www.youtube.com/watch?</u> v=F2AitTPI5U0

Image Inpainting

- Intelligent Filling in of unknown pixels
- Strategy:
 - Find similar patches elsewhere in same picture

Next Time

- Display Technologies
- Color Theory