Module: (TP Informatique: LATEX) 2020 Master 1, Mathématiques Appliquées

TP 3: Sections, théorèmes

Rédiger en LATEX

1 Fonctions holomorphes

Définition 1.1. Soit $U \subset C$ un ouvert. On dit que $f: U \to C$ est holomorphe (ou analytique complexe) dans U si f est dérivable $\forall z_0 \in U$, c'est à dire que

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

existe et est finie. On note la dérivée par $f'(z_0)$.

2 Equations de Cauchy-Riemann

Théorème 2.1. Soient $U \subset C$ un ouvert et $f: U \to C$ telle que, si z = x + iy,

$$u(x,y) = Ref(x+iy), \quad v(x,y) = Imf(x+iy)$$

Alors les deux assertions suivantes sont équivalentes:

- i) f est holomorphes dans U,
- ii) les fonctions $u,v \in C^1(U)$ et satisfont, $\forall (x,y) \in U$, les équations de Cauchy-Riemann

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

En particulier, si f est holomorphe dans U, alors

$$f'(z) = \frac{\partial u}{\partial x}(x,y) + i\frac{\partial v}{\partial x}(x,y) = \frac{\partial v}{\partial y}(x,y) - i\frac{\partial u}{\partial y}(x,y)$$

Exemple 2.1. La fonction $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ est holomorphe dans C et sa dérivée est $\cos z = \frac{e^{iz} + e^{-iz}}{2}$