ECE 113: Communication Electronics

Meeting 7: Resonant Circuits II

February 12, 2019

Series RL Circuit

- Example of low pass filter
- Determine the cutoff frequency

•
$$|H(\omega)|_{dB} = -3dB$$

$$\frac{R}{\sqrt{R^2 + \omega^2 L^2}} = \frac{1}{\sqrt{2}}$$

•
$$\omega_{cutoff} = \frac{R}{L}$$

Low Pass Series RL Response

Series RC Circuit

- Example of high pass filter
- Determine the cutoff frequency

•
$$|H(\omega)|_{dB} = -3dB$$

$$\frac{\omega RC}{\sqrt{1+\omega^2R^2C^2}} = \frac{1}{\sqrt{2}}$$

•
$$\omega_{cutoff} = \frac{1}{RC}$$

High Pass Series RC Response

Series RLC Circuit

Resonant frequency

$$\omega_o = \frac{1}{\sqrt{LC}}$$

- Example of band pass filter
- Determine the cutoff frequency

•
$$|H(\omega)|_{dB} = -3dB$$

$$\frac{R}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} = \frac{1}{\sqrt{2}}$$

•
$$\omega_{Hcutoff} = \frac{R}{2L} + \sqrt{(\frac{R}{2L})^2 + \frac{1}{LC}}$$

•
$$\omega_{Lcutoff} = -\frac{R}{2L} + \sqrt{(\frac{R}{2L})^2 + \frac{1}{LC}}$$

Band Pass Series RLC Response

Loaded Q

- Assumptions in RLC resonant circuits
 - Ideal reactive elements (Lossless L & C)
 - Ideal resistive elements (R without parasitics)
 - Voltage source with zero source resistance
 - No load impedance
- Loaded Q takes into account actual "in-circuit" conditions

Loaded Q in Parallel LC Circuit

- C ideal (lossless) capacitor
- L lossy inductor
- R_{loss} DC resistance of L
- R_s source resistance of V_s
- R_I load resistance

Effects of Source Impedance on Circuit Q

- C = 25pF
- L = 50nH
- $R_{loss} = 0\Omega$ (lossless L)
- $R_s = 50\Omega$
- $R_L = \infty$ (no load)

• Resonant Frequency

$$f_o = \frac{1}{2\pi\sqrt{LC}} = 142.35MHz$$

Circuit Q

$$Q=R_{s}\sqrt{\frac{C}{L}}$$

Effects of R_s on Circuit Q

Equivalent Circuit Approach

 Resonant Circuit with an external node

Equivalent circuit for Q calculations

At resonance

$$Q=\frac{R_p}{X_p}$$

 R_p - equivalent load (parallel resistance of R_s and R_l)

 X_p - inductive/capacitive reactance (they are equal at resonance)

Effects of R_s and R_L on Circuit Q

 In general, low values of source and load impedances load down ("de-Q") resonant circuits

- Becomes difficult to design high Q circuits with low source/load impedances
 - Theoretical design can be made, but component values might be impractical

Example

- Design a parallel LC circuit with the following specifications
 - Resonant frequency: $f_o = 1 GHz$
 - Source Resistance: $R_s = 50\Omega$
 - Load Resistance: $R_L = 10 \text{k}\Omega$

List L and C for various Q

$$f_o = rac{1}{2\pi\sqrt{LC}}, \; Q_p = (R_s \parallel R_L)\sqrt{rac{C}{L}}$$

Example

- Design a parallel LC circuit with the following specifications
 - Resonant frequency: $f_o = 1 GHz$ • Source Resistance: $R_s = 50\Omega$
 - Load Resistance: $R_L = 10 \text{k}\Omega$

List L and C for various Q

$$f_o = \frac{1}{2\pi\sqrt{LC}}, \ Q_p = (R_s \parallel R_L)\sqrt{\frac{C}{L}}$$

Q	С	L
0.5	0.66pF	6.59nH
1	1.33pF	3.30nH
10	13.30pF	329.90pH

• Low R_s or R_L and High-Q requirements \rightarrow impractical values for L and/or C

Component Q Transformation

 To convert series equivalent component to its parallel equivalent and vice versa

$$Q_s = \frac{X_s}{R_s}, \ Q_p = \frac{R_p}{X_p}$$
 or $Q_s = \frac{X_s}{R_p}$ or $Q_s = \frac{X_s}{R_p}$

where:
$$Q_p = Q_s = Q(component \ Q)$$

These transformations are valid at only one frequency

Example

Suppose lossy L = 50nH with $R_{loss} = 10\Omega$ at 100MHz

- Solve for component Q
- Transform series R_{loss} into equivalent parallel RL circuit.

• The component Q of the inductor

$$Q = \frac{X_{L,s}}{R_{loss,s}} = \frac{2\pi (100 \times 10^6)(50 \times 10^{-9})}{10} = 3.14$$

Equivalent parallel resistance

$$R_{loss,p} = (Q^2 + 1)R_{loss,s} = 108.7\Omega$$

Equivalent parallel reactance

$$X_{L,p} = \frac{R_{loss,p}}{Q_p} = \frac{108.7}{3.14} = 34.62\Omega$$

The parallel inductance

$$L_p = \frac{X_{L,p}}{\omega} = 55.1 nH$$
$$R_{loss,p} = 108.7\Omega$$

- Equivalent circuit can be used to find loaded Q of circuit
- In general, lossy components tend to reduce loaded Q

Impedance Transformation

- We may use a tapped-C or tapped-L impedance transformer to make the small source or load impedance appear larger to the resonant circuit
 - For a tapped-C circuit

• We always set $R'_s = R_L$ for maximum power transfer

Impedance Transformation

For a tapped-L circuit

$$R_{S}' = R_{S} \left(\frac{n}{n_{1}}\right)^{2} \qquad Q = \omega_{0} R_{S}' C$$

$$Q_{1} = \frac{R_{S}}{\omega_{0} L_{1}}$$

$$R_{S}' = R_{S} \left(\frac{L}{L_{1}}\right)^{2}$$

$$L - L_{1} = \frac{QQ_{1} - Q_{1}^{2}}{1 + Q_{2}^{2}} L_{1}$$

• Similarly, we set $R'_s = R_L$ for maximum power transfer

Example

Design a resonant circuit with a loaded Q of 20 at a center frequency of 100MHz that will operate between a source resistance of 50Ω and a load resistance of 2000Ω . The inductor has a Q of 100 at 100MHz.

- Loaded Q = 20
- $f_o = 100 MHz$
- $R_s = 50\Omega$
- $R_I = 2000\Omega$

ullet Used a tapped-C transformer to match R_s with R_L

• Set
$$R_s' = R_L = 2000\Omega$$

$$\frac{C_1}{C_2} = \sqrt{\frac{R_s'}{R_s}} - 1 = \sqrt{\frac{2000}{50}} - 1 = 5.3 \rightarrow C_1 = 5.3C_2$$

• Using the component Q of the inductor

$$R_{loss,p} = QX_p \rightarrow R_{loss,p} = 100X_p$$

• Using the loaded Q of the circuit

$$Q_{loaded} = 20 = rac{R_{total}}{X_p}$$
 $R_{total} = rac{1000R_{loss,p}}{1000 + R_{loss,p}}$

Solving the equations simultaneously

$$X_p = 40\Omega$$
 $R_{loss,p} = 4000\Omega$

Solving for the values of the components

$$L_{p} = \frac{X_{p}}{\omega} = 63.6nH$$
 $C_{T} = \frac{1}{\omega X_{p}} = 39.78pF$

• We can now solve for C_1 and C_2

$$C_T = \frac{C_1 C_2}{C_1 + C_2} = 39.78 pF$$
 $C_1 = 5.3 C_2$

Insertion Loss

- Part of the power delivered by the source is dissipated by lossy resonant circuit placed in between source and load
- Consider the following circuit where $R_s = R_L$

By voltage division,

$$\frac{V_L}{V_s} = \frac{R_L}{R_s + R_L} = \frac{1}{2}$$

Inserting a parallel resonant circuit between source and load resistances

At resonance, the circuit is reduced to

$$\frac{V_L}{V_s} = \frac{\left(R_{loss,p} \parallel R_L\right)}{R_s + \left(R_{loss,p} \parallel R_L\right)} < \frac{1}{2}$$

$$IL_{dB} = 20log\left(\frac{V_L/V_s}{0.5}\right)$$

Coupling of Resonant Circuits

- In some applications, one resonant circuit may not be enough to meet necessary requirements
 - "steep" passband skirts
 - Small shape factors
- Resonant circuits may be coupled together to produce more attenuation at certain frequencies

Capacitive Coupling

Most common due to simplicity and low cost

- Critical coupling
 - Reasonable bandwidth
 - Lowest insertion loss
 - Maximum power transfer

$$C_{12}=\frac{C}{Q}$$

• $Q = 0.707 Q_{circuit}$

Inductive Coupling

For Critical Coupling

$$L_{12} = QL$$

ullet For same operating Q, $X_{L_12}=X_{C_12}$ at resonant frequency

$$\omega_o L_{12} = \frac{1}{\omega_o C_{12}}$$

Example

• Design a parallel resonant circuit to provide a 3dB bandwidth of 10 MHz at a center frequency of 100 MHz. The source and load impedances are 100Ω each. Assume the capacitor to be lossless, and the inductor have a Q of 85. What is the insertion loss of the network?

END