Math 3A03 - Tutorial 9 Solutions - Winter 2019

Nikolay Hristov

March 18/20, 2019

Problem 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property that

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) = 0. \tag{1}$$

Show that f has either an absolute maximum or an absolute minimum but not necessary both.

Solution. We assume that the function f is not identically zero on the real line, otherwise both absolute maximum and minimum of f is zero.

Since f is not identically zero on the real line, there exists a point $p \in \mathbb{R}$ satisfying $f(p) \neq 0$. Set $\epsilon := |f(p)| > 0$.

Consider the set $S := \{x : |f(x)| \ge \epsilon\}$. Note that the set S is bounded from below. Otherwise, there exists a sequence $\{x_n\} \subseteq S$ such that $x_n \to -\infty$ and $f(x_n) \to \epsilon$, which contradict to the condition (1) since $\epsilon > 0$. Similarly, we prove that S is also bounded from above. Therefore, both infimum and supremum of S exist.

Consider any accumulation point of the set S, i.e. consider a sequence $\{x_n\} \subseteq S$ such that $x_n \to x \in \mathbb{R}$. Since f is continuous, $f(x_n) \to f(x)$. Note that for each $n \in \mathbb{N}$, $f(x_n) \ge \epsilon$, and so $f(x) \ge \epsilon$ also. Then, $x \in S$, which means that the set S is closed. Therefore, $\inf(S) \in S$ and $\sup(S) \in S$. Set $c_1 := \inf(S)$ and $c_2 := \sup(S)$.

By the above construction,

$$|f(x)| < \epsilon = |f(c_1)|$$
 for all $x < c_1$, and $|f(x)| < \epsilon = |f(c_2)|$ for all $x > c_2$.

Therefore, $f(c_1)$ is either an absolute maximum or an absolute minimum of f on the interval $(-\infty, c_1]$, and $f(c_2)$ is either an absolute maximum or an absolute minimum of f on the interval $[c_2, +\infty)$.

If $c_1 = c_2$, then $f(c_1)$ is an absolute extremum of f on \mathbb{R} . If $c_1 \neq c_2$, then the interval $[c_1, c_2]$ is nonempty, and by Extreme Value Theorem, there exist

the absolute maximum M and the absolute minimum m of f on the interval $[c_1, c_2]$. If $\max(f(c_1), f(c_2)) > 0$, then $\max(f(c_1), f(c_2), M)$ is an absolute maximum of f on \mathbb{R} . If $\min(f(c_1), f(c_2)) < 0$, then $\min(f(c_1), f(c_2), m)$ is an absolute minimum of f on \mathbb{R} . If

$$\max(f(c_1), f(c_2)) = \min(f(c_1), f(c_2)) = 0,$$

then $\max(f(c_1), f(c_2), M)$ is an absolute max of f on \mathbb{R} and $\min(f(c_1), f(c_2), m)$ is an absolute min of f on \mathbb{R} .

There exist cases when there is no absolute max or absolute min. For example, the function $f(x) = \exp(-x^2)$ does not have absolute min, whereas the function $f(x) = -\exp(-x^2)$ does not have absolute max.

Problem 2. Let f be a continuous, one-to-one function defined on the interval [a,b] with f(a) < f(b). Show that, for all $x,y \in [a,b]$, if x < y then f(x) < f(y).

Solution. Assume, by contradiction, that there exist $x, y \in [a, b]$ such that x < y and f(x) > f(y). Note that $a \le x < y \le b$, and so $a \ne y$. We divide the proof into three cases.

Case 1: f(y) = f(a). Then, since $a \neq y$, we get a contradiction to the injectivity of f.

Case 2: f(y) < f(a). We consider two intervals (a, y) and (y, b). The second interval is nonempty since f(y) < f(a) < f(b), and so y < b. Then, for the interval (a, y), choose any $d \in (f(y), f(a))$. By Intermediate Value Theorem, there exist some $c_1 \in (a, y)$ such that $f(c_1) = d$. For the interval (y, b), since f(y) < f(a) < f(b) holds, our previously chosen $d \in (f(y), f(b))$. Then, by Intermediate Value Theorem, there exist some $c_2 \in (y, b)$ such that $f(c_2) = d$. Since $(a, y) \cap (y, b) = \emptyset$, $c_1 \neq c_2$. Therefore, $f(c_1) = d = f(c_2)$ contradicts to the injectivity of f.

Case 3: f(y) > f(a). We consider two intervals (a, x) and (x, y). The first interval is nonempty since f(a) < f(y) < f(x), and so a < x. Then, for the interval (a, x), choose any $d \in (f(y), f(x)) \subset (f(a), f(x))$. By Intermediate Value Theorem, there exist some $c_1 \in (a, x)$ such that $f(c_1) = d$. For the interval (x, y), our previously chosen $d \in (f(y), f(x))$. Then, by Intermediate Value Theorem, there exist some $c_2 \in (x, y)$ such that $f(c_2) = d$. Since $(a, x) \cap (x, y) = \emptyset$, $c_1 \neq c_2$. Therefore, $f(c_1) = d = f(c_2)$ contradicts to the injectivity of f.

In each case we have a contradiction. Therefore, for all $x, y \in [a, b]$, if x < y then f(x) < f(y).

Problem 3. Let $f:[0,1] \to \mathbb{R}$ be a continuous function that is differentiable on (0,1) and with f(0)=0 and f(1)=1. Show there must exist distinct numbers ξ_1 and ξ_2 in that interval such that

$$f'(\xi_1)f'(\xi_2) = 1.$$

Solution. By Mean Value Theorem for the interval [0, 1], there exist some $a \in (0,1)$ such that $f'(a) = \frac{f(1)-f(0)}{1-0} = 1$. We don't know the value of f(a), so we divide the proof into three cases.

Case 1: f(a) = a > 0. Then, by Mean Value Theorem for [0, a], there exists some $b \in (0, a)$ such that $f'(b) = \frac{f(a) - f(0)}{a - 0} = \frac{f(a)}{a} = 1$. Since $a \neq b$, we got the desired f'(a)f'(b) = 1.

Case 2: f(a) > a > 0. Then, by Mean Value Theorem for the intervals [0,a] and [a,1], there exist $b \in (0,a)$ and $c \in (a,1)$ such that

$$f'(b) = \frac{f(a) - f(0)}{a - 0} = \frac{f(a)}{a} > 1$$
 and $f'(c) = \frac{1 - f(a)}{1 - a} < 1$,

where the latter inequalities are obtained due to the assumption f(a) > a. Then, we can write f'(b) = 1 + p and f'(c) = 1 - q for some p > 0 and q > 0. Set $\delta := \min(p, q) > 0$. Hence, $(1, 1 + \delta) \subseteq (1, 1 + p) = (f'(a), f'(b))$ and $(1 - \delta, 1) \subseteq (1 - q, 1) = (f'(c), f'(a)).$

By Darboux's Theorem for (b, a), choose any $d \in (1, 1+\delta) \subseteq (f'(a), f'(b))$,

then there exist some $\xi_1 \in (b, a)$ such that $f'(\xi_1) = d$. Since $1 < d < 1 + \delta$, we have $1 > \frac{1}{d} > \frac{1}{1+\delta} > 1 - \delta$, where the last inequality comes from $1 > 1 - \delta^2$. Therefore, we get that $\frac{1}{d} \in (1 - \delta, 1) \subseteq$ (f'(c), f'(a)). By Darboux's Theorem for (a, c), there exists some $\xi_2 \in (a, c)$ such that $f'(\xi_2) = \frac{1}{d}$.

Since $(b,a) \cap (a,c) = \emptyset$, we have $\xi_1 \neq \xi_2$ and $f'(\xi_1)f'(\xi_2) = d \times \frac{1}{d} = 1$. Case 3: f(a) < a. Proof is similar to the Case 2.