CLASE 06 - MANIPULACIÓN AVANZADA DE DATOS

Diplomado en Análisis de Datos y Modelamiento Predictivo con Aprendizaje Automático para la Acuicultura.

Dra. María Angélica Rueda Calderón & Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

25 April 2023

PLAN DE LA CLASE

1.- Introducción

- Limpieza de datos.
- Funciones comunes para limpieza de datos.
- Funciones avanzadas para limpieza de datos.
- Gráficas en panel: una o más variables.

2). Práctica con R y Rstudio cloud.

- Realizar manipulación de datos con tidyr y dplyr.
- Realizar gráficas avanzadas con ggplot2.

TAREAS COMUNES DE LA LIMPIEZA DE DATOS:

- Identificar y tratar valores duplicados y atípicos.
- Tratar valores faltantes mediante la eliminación o la imputación.
- Normalizar/estandarizar las variables para que estén en una escala común.
- Anonimizar datos personales.
- Verificar la consistencia y la integridad de los datos.

IMPORTANCIA DE LA LIMPIEZA DE DATOS

¿Por qué es importante la limpieza de datos?

- Mejora la precisión y eficiencia del análisis.
- Mejora la toma de decisiones.
- Identifica patrones y tendencias ocultas en los datos.
- Cumplir con regulaciones y normativas de protección de datos.
- Mejora la estimación de parámetros estadísticos lo que reduce costos.

PROBLEMÁTICAS COMUNES DEL ANALISTA DE DATOS

- ▶ Valores faltantes: Eliminar observaciones (filas) o imputar valores faltantes.
- ➤ Valores atípicos: Identificarlos (Boxplot) y tratarlos adecuadamente (eliminar o corregir).
- ▶ Datos inconsistentes: diferentes fuentes, como errores de entrada de datos o diferencias en la forma en que se registran los datos.
- ▶ Datos duplicados: pueden surgir de la combinación de diferentes conjuntos de datos o errores en la entrada/codificación de los datos.
- ▶ Datos desactualizados: Actualizar regularmente para garantizar la precisión y la calidad de los datos.
- Falta de documentación: Realizar documentación detallada sobre el proceso de la limpieza y la manipulación de los datos.

FUNCIONES DE R QUE PODEMOS USAR EN LA LIMPIEZA DE DATOS

- Verificar la estructura de los datos utilizando str()
- Obtener vista previa de los datos head()
- Verificar la consistencia y la integridad de los datos mediante la función summary()
- Identificar valores atípicos o extremos mediante gráfico boxplot()

FUNCIONES AVANZADAS DE R QUE PODEMOS USAR EN LA LIMPIEZA DE DATOS

- Identificar y tratar valores faltantes is.na()
- ► Eliminar filas de datos faltantes na.omit()
- Imputar valores faltantes replace_na()
- Identificar y tratar valores duplicados duplicated()
- Unificar datos duplicados 'distinct()
- Normalizar/estandarizar los datos para ajustarlos a una escala común scale() o normalize()

PAQUETES CLAVE

PASOS DE LIMPIEZA DE DATOS

Base de datos de salmones con **252** observaciones (filas) y **6** variables (columnas).

Revisar si hay datos faltantes (NA), duplicados o atípicos.

Sample	Ploidy	Family	Tank	Weight	Length
M100	Triploid	5	16	43	15.0
M100	Diploid	19	15	41	14.5
M1002	Diploid	9	16	NA	14.3
M1006	Diploid	9	16	38	14.6
M1010	Diploid	5	16	39	14.6
M1016	Diploid	19	16	29	13.2
M102	Diploid	19	15	39	14.3
M1022	Diploid	15	16	38	14.0
M1036	Diploid	1	16	33	13.5
M1041	Diploid	1	16	44	15.1

ESTRUCTURA DE LA BASE DE DATOS

- Verificar la estructura de los datos utilizando str()
- Transformar variables que están en formato chr a factor con as.factor()
- Transformar a variable númerica con as.numeric()

```
tibble [252 x 6] (S3: tbl_df/tbl/data.frame)
$ Sample: Factor w/ 250 levels "M100","M1002",..: 1 1 2 3 4 5 6 7 8 9 ...
$ Ploidy: Factor w/ 2 levels "Diploid","Triploid": 2 1 1 1 1 1 1 1 1 1 1 ...
$ Family: Factor w/ 7 levels "1","11","15",..: 6 5 7 7 6 5 5 3 1 1 ...
$ Tank : Factor w/ 2 levels "15","16": 2 1 2 2 2 2 1 2 2 2 ...
$ Weight: num [1:252] 43 41 NA 38 39 29 39 38 33 44 ....
$ Length: num [1:252] 15 14.5 14.3 14.6 14.6 13.2 14.3 14 13.5 15.1 ...
```

IDENTIFICACIÓN DE NAs

Revisar si hay datos faltantes (NA), atípicos, duplicados con summary().

summary(salmon)

Sai	mp1	.e	Ploidy	Family	Tank	Weight	Length
M100	:	2	Diploid :233	1:40	15:129	Min. : 4.00	Min. :-12.00
M1307	:	2	Triploid: 19	11:33	16:123	1st Qu.: 32.00	1st Qu.: 13.40
M1002	:	1		15:42		Median : 37.00	Median : 14.00
M1006	:	1		17:31		Mean : 37.94	Mean : 13.72
M1010	:	1		19:42		3rd Qu.: 41.00	3rd Qu.: 14.60
M1016	:	1		5 :27		Max. :540.00	Max. : 16.00
(Other):2	44		9:37		NA's :2	NA's :1

ELIMINACIÓN DE NAs

Dimensión de la base de datos con datos faltantes

```
## [1] 252 6
dim(salmon)
```

Omitir/quitar datos faltantes na.omit()

```
salmon_new <- na.omit(salmon)</pre>
```

Dimensión de la nueva base de datos sin datos faltantes

```
dim(salmon_new)
## [1] 250 6
```

REEMPLAZAR/IMPUTAR NAs

Reemplazar datos faltantes por la media, mediana, etc replace_na()

```
salmon <- salmon%>% mutate(Weight =
replace_na(Weight, median(Weight, na.rm =
TRUE)), Length = replace_na(Length, median(Length,
na.rm = TRUE)))
```

Sample	Ploidy	Family	Tank	Weight	Length
M100	Triploid	5	16	43	15.0
M100	Diploid	19	15	41	14.5
M1002	Diploid	9	16	37	14.3
M1006	Diploid	9	16	38	14.6

IDENTIFICAR DATOS DUPLICADOS

Revisar si hay observaciones duplicadas con duplicated()

La información en todas las columnas está duplicada

dups_all <- salmon%>% filter(duplicated(.))

Sample	Ploidy	Family	Tank	Weight	Length
M1307	Diploid	19	16	48	15.5

Las observaciones están duplicadas para el mismo individuo

dups_id <- salmon%>% filter(duplicated(Sample))

Sample	Ploidy	Family	Tank	Weight	Length
M100	Diploid	19	15	41	14.5
M1307	Diploid	19	16	48	15.5

UNIFICAR DATOS DUPLICADOS

Corregir o unificar datos duplicados distinct()

salmon_unified <- salmon%>% distinct(Sample,
.keep_all = TRUE)

Sample	Ploidy	Family	Tank	Weight	Length
M100	Triploid	5	16	43	15.0
M1002	Diploid	9	16	37	14.3
M1006	Diploid	9	16	38	14.6
M1010	Diploid	5	16	39	14.6

VISUALIZAR POR NIVEL DE UN FACTOR

facet_wrap(): Permite dividir una gráfica en paneles o subgráficos basados en una o varias variables categóricas.

GRÁFICOS EN PANEL

grid.arrange(p, q, r, ncol = 3) : se utiliza para combinar varios gráficos de ggplot en una sola figura.

RESUMEN DE LA CLASE

- Identificamos valores atípicos, duplicados y faltantes.
- Usamos funciones avanzadas para unificar valores duplicados, imputación de datos faltantes y modificación de valores atípicos.
- Utilizamos tuberías o pipe %> %.
- Hicimos gráficos ggplot2 usando funciones de manipulación avanzada de datos.