OPTIMIZATION OF AN AXIALLY COMPRESSED RING AND STRINGER STIFFENED CYLINDRICAL SHELL WITH A GENERAL BUCKLING MODAL IMPERFECTION

AIAA Paper 2007-2216

David Bushnell, Fellow, AIAA, retired

In memory of Frank Brogan, 1925 - 2006, co-developer of STAGS

Summary of talk

- 1. The configuration studied here
- 2. Two effects of a general imperfection
- 3. PANDA2 and STAGS
- 4. PANDA2 philosophy
- 5. Seven cases studied here
- 6. The optimization problem
- 7. Buckling and stress constraints
- 8. Seven cases explained
- 9. How the shells fail
- 10. Imperfection sensitivity

General buckling mode from STAGS

Expanded region of buckling mode

TWO MAJOR EFFECTS OF A GENERAL IMPERFECTION

- 1. The imperfect shell bends when any loads are applied. This "prebuckling" bending causes **redistribution of stresses** between the panel skin and the various segments of the stringers and rings.
- 2. The "effective" radius of curvature of the imperfect and loaded shell is larger than the nominal radius: "flat" regions develop.

Loaded imperfect cylinder

The entire deformed cylinder

The area of maximum stress

The "flattened" region

Computer programs PANDA2 and STAGS

PANDA2 optimizes ring and stringer stiffened flat or cylindrical panels and shells made of laminated composite material or simple isotropic or orthotropic material. The shells can be perfect or **imperfect** and can be loaded by up to five combinations of **Nx**, **Ny Nxy**.

STAGS is a general-purpose program for the nonlinear elastic or elastic-plastic static and dynamic analyses. I used STAGS to check the optimum designs obtained by PANDA2.

PHILOSOPHY OF PANDA2

- 1. PANDA2 obtains optimum designs through the use of many relatively simple models, each of which yields approximate buckling load factors (eigenvalues) and stresses.
- 2. Details about these models are given in previous papers. Therefore, they are not repeated here.
- 3. "Global" optimum designs can be obtained reasonably quickly and are not overly unconservative or conservative.
- **4.** Because of the approximate nature of PANDA2 models, optimum designs obtained by **PANDA2** should be **checked** by the use of a general-purpose finite element computer program.
- 5. STAGS is a good choice because PANDA2 automatically generates input data for STAGS, and STAGS has excellent reliable nonlinear capabilities.

Example of PANDA2 philosophy

PANDA2 computes general buckling from a simple closed-form model in which the stringers and rings are "smeared out" as prescribed by Baruch and Singer (1963). [Bushnell (1987)]

Correction factors (knockdown factors) are computed to compensate for the inherent unconservativeness of this "smeared" model: one knockdown factor for "smearing" the stringers and another knockdown factor for "smearing" the rings.

The next several slides demonstrate why a knockdown factor is needed to compensate for the inherent unconservativeness of "smearing" the rings and how this knockdown factor is computed.

A general buckling mode from STAGS

Detail showing local/global deformation in STAGS model

The same general buckling mode from BIGBOSOR4 (Bushnell, 1999). n = 3 circumferential waves

Approximate BIGBOSOR4 model of general buckling, n = 3

Knockdown factor to compensate for inherent unconservativeness of "smearing" rings

Ring knockdown factor =

(Buckling load from the BIGBOSOR4 model)/

("Classical" ring buckling formula)

"Classical" ring buckling formula= $(n^2 - 1)$ EI/ r^3

SEVEN PANDA2 CASES IN TABLE 4 OF THE PAPER

Case 1: perfect shell, "no Koiter", ICONSV=1

Case 2: imperfect, "no Koiter", yes change imperf., ICONSV=-1

Case 3: imperfect, "no Koiter", yes change imperf., ICONSV= 0

Case 4: imperfect, "no Koiter", yes change imperf., ICONSV =1

Case 5: imperfect, "yes Koiter", yes change imperf., ICONSV=1

Case 6: as if perfect, "no Koiter", Nx=-6000 lb/in, ICONSV= 1

Case 7: imperfect, "no Koiter", no change imperf., ICONSV= 1

Summary of talk

- 1. The configuration studied here
- 2. Two effects of a general imperfection
- 3. PANDA2 and STAGS
- 4. PANDA2 philosophy
- 5. Seven cases studied here
- 6. The optimization problem
- 7. Buckling and stress constraints
- 8. Seven cases explained
- 9. How the shells fail
- 10. Imperfection sensitivity

Decision variables for PANDA2 optimization

Stringer spacing **B**(**STR**), Ring spacing **B**(**RNG**), Shell skin thickness **T1**(**SKIN**)

T-stringer web height **H(STR)** and outstanding flange width **W(STR)**

T-stringer web thickness **T2(STR)** and outstanding flange thickness **T3(STR)**

T-ring web height **H(RNG)** and outstanding flange width **W(RNG)**

T-ring web thickness **T4(RNG)** and outstanding flange thickness **T5(RNG)**

OBJECTIVE = MINIMUM WEIGHT

Global optimization: PANDA2

WEIGHT OF THE ENTIRE PANEL: 180 degrees of the circumference of the cylindrical shell

CONSTRAINT CONDITIONS

Five classes of constraint conditions:

- 1. Upper and lower bounds of decision variables
- 2. Linking conditions
- 3. Inequality constraints
- 4. Stress constraints
- 5. Buckling constraints

DEFINITIONS OF MARGINS

Buckling margin= (buckling constraint) -1
(buckling constraint) =
 (buckling load factor)/(factor of safety)

Stress margin = (stress constraint) - 1.0 (stress constraint) = (allowable stress)/ [(actual stress)x(factor of safety)]

TYPICAL BUCKLING MARGINS

- 1. Local buckling from discrete model
- 2. Long-axial-wave bending-torsion buckling
- 3. Inter-ring buckling from discrete model
- 4. Buckling margin, stringer segment 3
- 5. Buckling margin, stringer segment 4
- 6. Buckling margin, stringer segments 3 & 4 together
- 7. Same as 4, 5, and 6 for ring segments
- 8. General buckling from PANDA-type model
- 9. General buckling from double trig. series expansion
- 10. Rolling only of stringers; of rings

Example of local buckling: STAGS

Example of local buckling: BIGBOSOR4

Example of bending-torsion buckling

Bending-torsion buckling: BIGBOSOR4

Undeformed: An arc of the stiffened cylindrical shell is modeled as a huge torus [26].
 Deformed: bending-torsion buckling; PANDA2 gets 1.291 in subcase 2; This is Case 2 in Table 4

Example of general buckling: STAGS

Example of general buckling: **BIGBOSOR4**

Axial Station (inches); This BIGBOSOR4 model was generated by PANEL2

Deformed: STAGS gets load factor=1.902 (Fig.17), 1.0893(Fig.2)

Multiple planes of symmetry

60-degree STAGS model: End view

Close-up view of part of 60-deg. model

60-degree STAGS model

Detail of general buckling mode

TYPICAL STRESS MARGINS

1. Effective stress, material x, location y, computed from SUBROUTINE STRTHK (locally post-buckled skin/stringer discretized module)

2. Effective stress, material x, location y, computed from SUBROUTINE STRCON (No local buckling. Stresses in rings are computed)

Buckling and stress margins in PANDA2 design sensitivity study for Case 4 in Table 4; Optimum H(STR)=0.6365 incl

Summary of talk

- 1. The configuration studied here
- 2. Two effects of a general imperfection
- 3. PANDA2 and STAGS
- 4. PANDA2 philosophy
- 5. Seven cases studied here
- 6. The optimization problem
- 7. Buckling and stress constraints
- 8. Seven cases explained
- 9. How the shells fail
- 10. Imperfection sensitivity

SEVEN PANDA2 CASES

Case 1: perfect shell, "no Koiter", ICONSV=1

Case 2: imperfect, "no Koiter", yes change imperf., ICONSV=-1

Case 3: imperfect, "no Koiter", yes change imperf., ICONSV= 0

Case 4: imperfect, "no Koiter", yes change imperf., ICONSV =1

Case 5: imperfect, "yes Koiter", yes change imperf., ICONSV=1

Case 6: as if perfect, "no Koiter", Nx=-6000 lb/in, ICONSV= 1

Case 7: imperfect, "no Koiter", no change imperf., ICONSV=1

THE MEANING OF "ICONSV"

ICONSV = 1 (the recommended value):

- 1. Include the Arbocz theory for imperfection sensitivity.
- 2. Use a conservative knockdown for smearing stringers.
- 3. Use the computed knockdown factor for smearing rings.

ICONSV = 0:

- 1. Do not include the Arbocz theory.
- 2. Use a less conservative knockdown for smearing stringers.
- 3. Use the computed knockdown factor for smearing rings.

ICONSV = -1:

Same as ICONSV=0 except the knockdown factor for smearing rings is 1.0 and 0.95 is used instead of 0.85 for ALTSOL.

THE MEANING OF "YES CHANGE IMPERFECTION"

The general buckling modal imperfection amplitude is made proportional to the axial wavelength of the critical general buckling mode shape.

A simple general buckling modal imperfection

A "complex" general buckling modal imperfection

"Oscillation" of margins with "no change imperfection" option

"Oscillation" of margins with "yes change imperfection" option

THE MEANING OF "NO" AND "YES KOITER"

"NO KOITER" = no local postbuckling state is computed.

"YES KOITER" = the local postbuckling state is computed. A modified form of the nonlinear theory by KOITER (1946), BUSHNELL (1993) is used.

Local postbuckling: PANDA2

A single discretized skin-stringer module model (BOSOR4-type model) of the Case 4 optimum design as deformed at four levels of applied axial compression, Nx.

Case 4 with "no Koiter" and with "yes Koiter"

Case 4: Initial imperfection shape

Load-stress curve: static & dynamic

Deformed panel at PA=0.98

Example 1 of stress in the imperfect panel

Maximum effective (von Mises) stress in the entire panel, **63.5** ksi. (Case 4 nonlinear **STAGS** static equilibrium at load factor, PA = 0.98,before the **STAGS** dynamic run)

Example 1 of stress in the panel skin

Maximum effective (von Mises) stress in the panel skin= 47.2 ksi (Case 4 nonlinear **STAGS** static equilibrium at load factor, PA **= 0.98, before** the STAGS dynamic run)

STAGS nonlinear dynamic response

Example 2 of stress in the imperfect panel

Maximum effective (von Mises) stress in the entire panel, 70.38 ksi (Case 4 **STAGS** nonlinear static equilibrium after the dynamic STAGS run at load factor, PA = 1.00)

Example 2 of stress in the panel skin

Maximum effective (von Mises) stress in the panel skin=60.6 ksi (Case 4 nonlinear STAGS static equilibrium after dynamic STAGS run at load factor, PA = 1.00

Shell optimized with "yes Koiter"

Detail from previous slide: PA = 1.0

OPTIMIZED WEIGHTS FOR CASES 1 - 7: PANDA2

CASE WEIGHT(lb) COMMENT

- 1 31.81 perfect shell, no Koiter, ICONSV=1
- 2 39.40 imperfect, no Koiter, yes change imp., ICONSV=-1
- **40.12** imperfect, no Koiter, yes change imp., ICONSV= 0
- 4 40.94 imperfect, no Koiter, yes change imp., ICONSV= 1
- 5 41.89 imperfect, yes Koiter, yes change imp., ICONSV= 1
- **46.83** as if perfect, no Koiter, Nx = -6000 lb/in, ICONSV= 1
- 7 **56.28** imperfect, no Koiter, no change imperf., ICONSV=1

Summary of talk

- 1. The configuration studied here
- 2. Two effects of a general imperfection
- 3. PANDA2 and STAGS
- 4. PANDA2 philosophy
- 5. Seven cases studied here
- 6. The optimization problem
- 7. Buckling and stress constraints
- 8. Seven cases explained
- 9. How the shells fail
- 10. Imperfection sensitivity

60-degree STAGS model of Case 2: General buckling mode

Deformed shell at PA=1.02 with negative of general buckling mode

Enlarged view of collapsing zone

Sidesway of central stringers vs PA

Stringer 14 sidesway (v-displacement at node 25184 = rightmost edge, outstanding flange)
 Stringer 15 sidesway (v-displacement at node 28018 = rightmost edge, outstanding flange)

Deformation after dynamic run

Summary of talk

- 1. The configuration studied here
- 2. Two effects of a general imperfection
- 3. PANDA2 and STAGS
- 4. PANDA2 philosophy
- 5. Seven cases studied here
- 6. The optimization problem
- 7. Buckling and stress constraints
- 8. Seven cases explained
- 9. How the shells fail
- 10. Imperfection sensitivity

Imperfection sensitivity, Case 5

Margins from PANDA2 vs Nx Wimp=0.5 inch: Margins for Load set 1, Subcase 1; yes change imperfection

Imperfection sensitivity: Case 5

Results of survey of Wimp(m,n)

Case 2 stringer rolling margin as function of general buckling modal imperfection shape, A(m) x wimp(m,n)

Conclusions

- 1. There is reasonable agreement of PANDA2, STAGS, & BIGBOSOR4
- 2. Use "Yes Koiter" option to avoid toohigh stresses.
- 3. Use "Yes change imperfection" option to avoid too-heavy designs.
- 4. There are other conclusions listed in the paper.