Assignment-2

Answer all the questions. Make any suitable assumptions if needed.

Name:		
Roll Number:		

1. The shear stress induced along the z-axis when two cylinders are in contact with each other is given by

$$\frac{\tau_{zy}}{p_{\text{max}}} = -\frac{1}{2} \left[-\frac{1}{\sqrt{1 + \left(\frac{z}{b}\right)^2}} + \left\{ 2 - \frac{1}{1 + \left(\frac{z}{b}\right)^2} \right\} \times \sqrt{1 + \left(\frac{z}{b}\right)^2} - 2\left(\frac{z}{b}\right) \right]$$
(1)

where 2b is the width of the contact area and p_{max} is the maximum pressure developed at the center of the contact area (see, Figure 1) given by

$$b = \left\lceil \frac{2F}{\pi l} \frac{\frac{1 - v_1^2}{E_1} + \frac{1 - v_2^2}{E_2}}{\frac{1}{d_1} + \frac{1}{d_2}} \right\rceil^{1/2} \tag{2}$$

$$p_{\text{max}} = \frac{2F}{\pi bl} \tag{3}$$

F is the contact force; E_1, ν_1 and E_2, ν_2 are the Young's modulus and Poisson's ratio of the cylinders 1 and 2, respectively. d_1 and d_2 are the diameters of the two cylinders, and l the axial length of contact. In several applications such as roller bearings, a crack originates at the point of maximum shear stress and propagates to the surface leading to a fatigue failure. Hence, to locate the origin of a crack, it is necessary to find the point at which the shear stress attains its maximum value.

Figure 1: Contact stress between two cylinders

Show that the problem of finding the location of the maximum shear stress for $\nu_1 = \nu_2 = 0.3$ reduces to maximizing the function

$$f(\lambda) = \frac{0.5}{\sqrt{1+\lambda^2}} - \sqrt{1+\lambda^2} \left(1 - \frac{0.5}{1+\lambda^2}\right) + \lambda \tag{4}$$

where $f = \tau_{zy}/p_{\text{max}}$ and $\lambda = z/b$.

- (a) Plot the graph of the function $f(\lambda)$ given by Equation (4) in the range (0,3) and identify its maximum.
- (b) Find the maximum of the function using the following methods by writing a computer program and also using pen and paper.
 - i. Unrestricted search with a fixed step size of 0.1 from the starting point 0.0
 - ii. Unrestricted search with an accelerated step size using an initial step size of 0.1 from the starting point 0.0
 - iii. Exhaustive search method in the interval (0,3) to achieve an accuracy within 5% of the exact value.
 - iv. Dichotomous search method in the interval (0,3) to achieve an accuracy within 5% of the exact value.
 - v. Interval halving method in the interval (0,3) to achieve an accuracy within 5% of the exact value.
 - vi. Fibonacci method with n = 10.

2

2

2

- vii. Golden section method with n = 10.
- (c) Compare the relative efficiencies of all the methods and comment on their behaviour.

2

 $\boxed{2}$