「離散数学・オートマトン」演習問題 02 (解答例)

2023/10/16

1 命題

課題1 以下の演算に対する真理値表を作成しなさい。

- 1. $\neg p \lor \neg q$
- 2. $\neg (\neg p \lor q)$
- 3. $\neg (p \land \neg q)$

解答例

p	q	$\neg p \lor \neg q$	$\neg \left(\neg p \lor q \right)$	$\neg (p \land \neg q)$
F	F	Т	F	Т
F	Т	Т	F	T
T	F	${ m T}$	Т	F
$\mid T \mid$	Т	F	F	T

参考までに、Python での実行例を示す。

```
False:False:True:False:True
False:True:False:True
True:False:True:False
True:True:False:True
```

このコードは、以下の Github から取得できます。

https://github.com/discrete-math-saga/PropositionsAndPredicates/

課題 2 $\sqrt{3}$ が無理数であることを、背理法を用いて証明せよ。

解答例 $\sqrt{3}$ が有理数であると仮定し、 $\sqrt{3}=q/p$ とおく。ここで p と q は、互いに素である自然数である。両辺を二乗して以下を得る。

$$3p^2 = q^2$$

左辺は3の倍数であることから、qは3の倍数である。右辺は q^2 であるから、9の倍数であり、つまり、pも3の倍数である。これは、pとqが互いに素という仮定に反する。このことから、 $\sqrt{3}$ が有理数であるという仮定が誤りである。つまり、 $\sqrt{3}$ は無理数である。

2 述語

課題 3 N^3 上の述語 P(x,y,z): x=yz は、x が $y\times z$ であるとき真である。このとき $Q(x,y): \exists z P(x,y,z)$ が真となるのは、どのような (x,y) に対してか、答えなさい。 解答例 Q(x,y) が真となるのは、「x は y で割り切れる」場合である。

3 論理回路

課題 4 以下の論理回路に相当する論理式を求めよ。

解答例

$$w = xyz + \bar{x}yz + x\bar{y}$$

課題 5 以下の論理回路に相当する論理式を求めよ。また、その論理式を簡素化しなさい。

解答例

$$w = (xyz + \bar{x})(x + \bar{z})$$

$$= xxyz + xyz\bar{z} + \bar{x}x + \bar{x}\bar{z}$$

$$= xyz + 0xy + 0 + \bar{x}\bar{z}$$

$$= xyz + \bar{x}\bar{z}$$

x	y	z	$(xyz + \bar{x})(x + \bar{z})$	$xyz + \bar{x}\bar{z}$
1	1	1	1	1
1	1	0	0	0
1	0	1	0	0
1	0	0	0	0
0	1	1	0	0
0	1	0	1	1
0	0	1	0	0
0	0	0	1	1

課題 6 論理式 $w=(x+\bar{y})\,z+(\bar{x}+z)\,y+x\bar{y}\bar{z}$ に対応する論理回路を示しなさい。 解答例

課題 7 前問の論理式を基本積の和、つまりブール変数の積の和へと変形し、対応する論理回路を示しなさい。

解答例

$$w = (x + \bar{y}) z + (\bar{x} + z) y + x \bar{y} \bar{z}$$

$$= xz + \bar{y}z + \bar{x}y + yz + x \bar{y} \bar{z}$$

$$= xz + (y + \bar{y}) z + \bar{x}y + x \bar{y} \bar{z}$$

$$= xz + z + \bar{x}y + x \bar{y} \bar{z}$$

$$= z + \bar{x}y + x \bar{y} \bar{z}$$

x	y	z	$(x+\bar{y})z + (\bar{x}+z)y + x\bar{y}\bar{z}$	$z + \bar{x}y + x\bar{y}\bar{z}$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	0	0

