Algebra Qualifying Exam Fall 1994

All rings are assumed to have a multiplicative identity, denoted 1. The fields \mathbb{Q} , \mathbb{R} and \mathbb{C} are the fields of rational, real and complex numbers, respectively.

- **1.** Let P be a finite p-group for a given prime number p. For any $x \in P$ show that either $\langle x \rangle$ is a normal subgroup of P, or there exists $g \in P$ such that $[x, gxg^{-1}] = 1$ and $x \neq gxg^{-1}$.
- **2.** Let G be a finite groups and p a prime number dividing the order of G. $Syl_p(G)$ is the set of all Sylow p-subgroups of G.
 - (a) Show that $N_P(Q) = P \cap Q$ for $P, Q \in Syl_p(G)$. Here $N_P(Q) = \{x \in P | xQx^{-1} = Q\}$ is the normalizer of Q in P.
 - (b) Show that is there is $P \in Syl_p(G)$ such that $P \cap xPx^{-1} = P$ or $\{1\}$ for any $x \in G$, then $|Syl_p(G)| \equiv 1 \pmod{|P|}$.
- **3.** Prove that every prime ideal in a PID is maximal. Then give an example of an integral domain, in which there is a prime ideal which is not maximal.
- 4. Recall that a ring is called Noetherian if every ascending chain of ideals terminates. Show that any PID is Noetherian. Give an example of a Noetherian integral domain which is not a PID.
- **5.** Let F by any field and $f(x) \in F[x]$. If E is the splitting field of f(x) over F, show that $[E:F] \leq (\deg(f(x))!$. Give an example for which the equality holds.
- **6.** Let $\alpha = \sqrt{3} + \sqrt[3]{2}$. It is known that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 6$.
 - (a) Calculate the minimal polynomial of α over the field \mathbb{Q} of rational numbers.
 - (b) Is the field $\mathbb{Q}(\alpha)$ Galois over \mathbb{Q} ? If yes, determine the Galois group. If not, justify your answer.
- **7.** Let R be a ring. If M is a left R-module, show that for any R-submodule N of M, the set $\{x \in R | xM \subseteq N\}$ is a two-sided ideal of R.
- **8.** Let R be a ring. Prove Schur's Lemma: For any two simple left R-modules M and N, any R-module homomorphism $\phi: M \to N$ is either identically zero or an isomorphism.
- **9.** Let F by any fixed field and V a vector space over F (of any dimension). Suppose that $A:V\to V$ is a nilpotent linear transformation (i.e., $A^n=0$, for some n). Show that A has at least one eigenvector with eigenvalue in F.
- **10.** Let $A = \begin{bmatrix} 5 & 1 & 2 \\ 0 & 4 & -1 \\ 0 & 0 & 4 \end{bmatrix}$ be a 3×3 matrix. Show that there exist complex matrices D and N such that D is diagonalizable, N is nilpotenet, DN = ND, and A = D + N.