SCC0630 | Inteligência Artificial

Trabalho 1: Busca de Doadores Compatíveis de Sangue

Leonardo Gueno Rissetto	13676482
Lucas Lima Romero	13676325
Luciano Gonçalves Lopes Filho	13676520
Marco Antonio Gaspar Garcia	11833581
Thiago Kashivagui Gonçalves	13676579

Sumário

- 0.1 Sobre o projeto
 - a. Objetivos
 - b. Contexto
- 0.2 Buscas implementadas
- 0.3 Funcionamento do projeto

Objetivo: sistema em tempo real

Qual o problema que desejamos solucionar...

Qual a nossa solução e como ela pode ajudar...

A ideia é que exista uma base de dados em tempo real com as informações de hemocentros para a busca de sangue compatível com o do usuário...

Contexto: modelagem da cidade em um grafo

Modelando o problema: gerando um grafo da cidade

Localização e Validação

H.consultar_estoque(hemocentros[0])

Definindo os Hemocentros e Localização do Usuário

Localização e Validação

blood_type = "0-"

print(hcs_validos)

[528971858, 1013811199, 1014884447]

Filtragem dos hemocentros com sangue compatível

hcs_validos = H.hemocentros_validos(blood_type)

Sumário

0.1 Sobre o projeto

0.2 Buscas implementadas

a. BFS

b. A*

0.3 Funcionamento do projeto

Justificativa da escolha das buscas

Busca Não-Informada

- A **DFS** pode ser muito ineficiente perante o nosso problema...
- Para garantir um caminho menor, escolhemos a <u>BFS</u>

Busca Informada

- As Buscas Hill-Climbing e Best-First podem ficar presas em ruas sem saída...
- Por isso, precisamos garantir uma rota confiável com <u>A*</u>

Busca em Largura (BFS) como algoritmo de busca cega...

Sobre o BFS

- No BFS não somos capazes de dizer se de fato estamos percorrendo a menor distância!
- O BFS encontrará o menor caminho em termos de arestas percorridas...
- Tem **execução mais rápida** que a do A*

Exemplo de Rota encontrada pela BFS

Exemplo de Rota encontrada pela BFS

Análise dos resultados do BFS

	BFS	Rota mais curta (Gabarito)
Número de nós visitados	34	87
Distância em metros	18246.66	17332.67

BFS encontrou uma rota diferente da mais curta em distância — esperado!

Sobre o algoritmo A*

- Utiliza uma heurística para guiar a exploração dos nós.
- Avalia os caminhos com base na função f(n) = g(n) + h(n).
- SEMPRE encontra o caminho de menor custo se a heurística for admissível.

Exemplo de Rota encontrada pelo A*

Em nosso trabalho implementamos uma Busca utilizando A* como algoritmo de busca informada...

Análise dos resultados do A*

	A *	Rota mais curta (Gabarito)
Número de nós visitados	99	99
Distância em metros	12321.37	12321.37

• A* encontrou a mesma rota da menor distância (esperado).

Sumário

- 0.1 Sobre o projeto
- 0.2 Buscas implementadas
- 0.3 Funcionamento do projeto

