This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

S1 1 PN=JP 9224661

1/5/1

DIALOG(R)File 347:JAPIO

(c) 2001 JPO & JAPIO. All rts. reserv.

Image available

GLUCOSE-6-PHOSPHATE DEHYDROGENASE AND DNA CAPABLE OF CODING THE SAME

PUB. NO.:

09-224661 JP 9224661 A]

PUBLISHED:

September 02, 1997 (19970902)

INVENTOR(s): HATAKEYAMA KAZUHISA

KUWABARA KOUICHIROU

KOBAYASHI MIKI

YUGAWA HIDEAKI

APPLICANT(s): MITSUBISHI CHEM CORP [000596] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

08-036345 [JP 9636345]

FILED:

February 23, 1996 (19960223)

INTL CLASS:

[6] C12N-009/04; C07H-021/04; C12N-015/09; C12N-001/20;

C12N-009/04; C12R-001/13; C12N-001/20; C12R-001/13

JAPIO CLASS: 14.5 (ORGANIC CHEMISTRY -- Microorganism Industry); 14.1

(ORGANIC CHEMISTRY -- Organic Compounds)

JAPIO KEYWORD: R014 (MICROFILTERS)

ABSTRACT

PROBLEM TO BE SOLVED: To isolate the above enzyme, derived from a coryneform bacterium and capable of catalyzing a pentose phosphate cycle according to a gene recom bination technology.

SOLUTION: This glucose 6-phosphate dehydrogenase has an amino acid sequence represented by the formula. The enzyme is obtained by expressing a DNA (hereinafter referred to as a zwf gene), obtained from a chromosome of a coryneform bacterium, isolated and determined from a Brevibacterium flavum ML-233 (FERM BP-1497) strain and capable of coding the glucose 6-phosphate dehydrogenase in a coryneform bacterium. When the coryneform bacterium is transformed with the zwf gene, a bacterium capable of highly producing the glucose 6-phosphate dehydrogenase is obtained.

番目までの塩基配列で示されるものである。

【0011】本発明におけるzwf遺伝子は、天然の細 菌、例えば、コリネ型細菌の染色体DNAから分離され たもののみならず、本明細書記載の塩基配列を元に通常 用いられるDNA合成装置、例えばベックマン社製シス テム-1プラス (System-1 Plus)を用い て合成されたものであってもよい。また、前記の如くコ リネ型細菌の染色体から取得される本発明のDNA断片 は、グルコースー6ーリン酸デヒドロゲナーゼをコード する機能を実質的に損なうことがない限り、塩基配列の 一部の塩基が他の塩基と置換されていても、削除されて いてもよく、新たに塩基が挿入されていてもよく、ある いは塩基配列の一部が転位されているものであってもよ く、さらにそれらの塩基配列にハイブリダイズする塩基 配列であってもよく、これらの誘導体のいずれもが、本 発明のグルコースー6ーリン酸デヒドロゲナーゼをコー ドする遺伝子を含むDNA断片に包含されるものであ る。

[0012]

【実施例】以下、実施例によりさらに具体的に説明する。しかしながら、これらの実施例は本発明の範囲を限定するものではない。

(A) ブレビバクテリウム・フラバムMJ-233の 全DNAの抽出

ブレビバクテリウム・フラバムMJ-233 (FERM BP-1497)を、半合成培地であるA培地 [組成: 尿素 2g、 $(NH_4)_2$ SO、 7g、 K_2 HPO4 0.5g、 K_2 PO4 0.5g、MgSO4・ $7H_2$ O 0.5g、 K_2 PO4 0.5g、MgSO4・ $7H_2$ O 0.5g、 K_2 PO5 6 mg、 K_2 PO5 6 mg、 K_2 PO5 6 mg、 K_2 PO6 6 mg、 K_2 PO6 6 mg、 K_2 PO7 1 mg K_2 PO7 1 mg K_2 PO7 1 mg K_2 PO7 2 mg K_2

【0013】得られた菌体をリゾチームを10mg/m 1の濃度で含有する溶液 [組成:10mM NaCl、 20mM トリス緩衝液 (pH8: 0)、1mM ED TA・2Na] 15m I に懸濁した。該懸濁液にプロテ ナーゼKを100μg/mlの最終濃度で添加し、これ を37℃で1時間インキュベートした。次に、ドデシル 硫酸ナトリウムを最終濃度が0.5%になるように添加 し、50℃で6時間インキュベートして溶菌させた。得 られた溶菌液に等量のフェノール/クロロホルム溶液を 添加して室温で10分間穏やかに振盪した後、その全量 を10~12℃で20分間、5,000×gの遠心分離 に供し、その上清画分を分取した。該上清画分中に酢酸 ナトリウムをその濃度がO.3Mとなるように添加し、 次いで2倍量のエタノールを穏やかに添加した。水層と エタノール層の間に存在するDNAをガラス棒で搦め取 り、これを70%エタノールで洗浄して風乾した。得ら

れたDNAは、溶液[組成:10mM トリス緩衝液 (pH7. 5), 1mM EDTA · 2Na] 5m1 ≥ 加えて4℃で一晩静置した後、実験に供した。 【0014】(B) z w f 遺伝子の部分断片の採取 エシエリヒア・コリ (Escherichia col i)[J. Bacteriol., Vol. 17 3. p. 968 (1991)]、エルウィニア・クリ サンセミ(Erwinia chrysanthem i) [Gene. Vol. 101. p. 51 (199 1)]、および、ロイコノストック・メセンテロイデ ス(Leuconostoc mesenteroid es) [J. Biol. Chem., Vol. 2 66. p. 13028 (1991)] のグルコースー 6-リン酸デヒドロゲナーゼをコードするDNA遺伝子 の塩基配列をもとに推定したアミノ酸配列の相同性部分 の配列をもとに遺伝子クローニング用のPCRプライマ -DNAを設計した。

【0015】ポリメラーゼ連鎖反応の一例を以下に示 す。反応液は以下の組成である。濃度は最終濃度を表 す。[25ユニット/ml Tag DNAポリメラー ゼ、10mM トリスー塩酸緩衝液(pH8.0)、5 OmM KC1, 1.5mM MgC1, 0.25m M dATP, 0. 25mM dCTP, 0. 25mM dGTP, 0: 25 mM dTTP, 0: $5 \mu \text{g/m}$ 1 染色体DNA飽和水溶液、1μM プライマー1: AT (ATC)GA(TC)CA(TC)TA(TC)(TC)TIGGIAA(AG)GA(配列番 号1記載のアミノ酸配列174~181を元にして設計 した配列: 配列番号2)、1µM プライマー2: GGIA CICCI (TG) (GC) CCAIC (配列番号1記載のアミノ酸配列3 24~329を元にして設計した配列:配列番号3)、 として100μ1の反応混合液を用いる。] ボリメラーゼ連鎖反応の反応条件は例えば、94℃で1 分、55℃で2分、72℃で3分を1サイクルとする2 5サイクルである。そして上記反応で得られたDNAを 精製した。

【0016】それぞれ最終濃度が、50mm トリスー塩酸緩衝液(pH7.9)、10mm MgCl₂、20mM ジチオスレイトール、1mm ATP、1unit/10μl T4DNAリガーゼ 、50ng/10μl PCR産物 となるように各成分を添加し、16℃で3時間反応させて、PCR産物DNAを結合させた。【0017】ついで、常法[J. Mol. Biol. 53、159(1970)参照】に従って、得られた溶液を用いてエシエリヒア・コリJM109を形質転換した。得られた形質転換菌を選択培地[組成:トリプトン 10g、酵母エキス 5g、NaCl 5g、寒天 15g、アンピシリン 50mg、イソプロピオチオガラクトシド 0.238g、X-gal 0.2g、ジメチルホルムアミド2mlを蒸留水に溶解

して1リットルとする] に塗抹し、37℃で16時間培養した。

【0018】こうして得られたコロニーを青く白カラースクリーニングした。選択培地上に生育した菌株を、アンピシリンを最終濃度で50μg/ml含有するL培養液[トリプトン 10g、酵母エキス 5g、NaCl

5 sを蒸留水に溶解して1 リットルとする] に植菌し、これを37℃で7時間培養した。培養液を4℃で10分間、8.000/sの遠心分離にかけて菌体を回収した。回収した菌体からアルカリーSDS法[T. Maniatis. E. F. Fritsch. J. Sambrook. Molecular cloning. p.90-91(1982)参照]によりプ

ラスミドを抽出した。

【0019】次に、得られたプラスミドに挿入された染色体由来の約470bpのDNA断片の塩基配列をジデオキシヌクレオチド酵素法により決定した。具体的には、上記培養物より抽出したプラスミドDNAをパーキン・エルマー社製カタリスト800モレキュラー・バイオロジー・ラボステーション(CATALYST 800 Moleculer Biology Labostation; Perkin-Elmer)を用いてプロトコールに従い反応させた後、パーキン・エルマー社製373A DNAシークエンサーによりプラスミドの挿入DNA断片の塩基配列を決定した。

【0020】決定した塩基配列を翻訳して得られるタンパク質と、既知のエシエリヒア・コリのグルコースー6ーリン酸デヒドロゲナーゼとの相同性の比較により、それがブレビバクテイウム・フラバムMJ-233のzw 「遺伝子の一部(配列表の配列番号1記載の塩基配列中1148番目から1614番目)であることが判明した。

【0021】(C) zwf遺伝子の部分断片を含む染色体DNA制限酵素断片の大きさ決定

染色体DNAを制限酵素BamHI、EcoRI、HindIII、SalIでそれぞれ分解した。これらをOncor社製Probe tech 2を用いてサザンハイブリダイゼーション用のナイロンメンブレンフィルターを作成した。

【0022】上記、PCRで得られたzwf遺伝子の部分断片を鋳型に、標識にはアマシャム社製 [α-32P] dCTP AA0005を用いて、宝酒造社製RamdomPrimer DNA Labelling Kit Ver. 2の方法でプローブを標識した。フィルターを以下の組成の溶液 [5×SSC溶液、5×デンハルト溶液、0.5% ドデシル硫酸ナトリウム (SDS)、0.1mg/ml SIGMA社製SALMON TESTES DNA For Hybridization (10mg/ml)]で65℃で2時間プレハイブリダイゼーションを行った。なお20×SSC溶液

は、以下の組成 [3M NaCl、0.3M クエン酸ナトリウム]、100×デンハルト溶液は以下の組成 [2% 牛血清アルブミン、2% ボリビニルビロリドン、2% フィコール]である。

【0024】この結果、zwf遺伝子の部分断片を含む 染色体DNA制限酵素断片の大きさは、BamHI断 片、EcoRI断片、HindIlI断片、SalI断 片が、それぞれ約2kb、3kb、8kb、10kbで あった。

(D) zwf 遺伝子の部分断片を含む染色体DNA Bam HI断片の単離

0.2% マルトース、10mM MgSO4を添加したLB培養液に、エシエリヒア・コリP2329を植菌し、37℃で培養した。そして遺伝子ライブラリー λFIXIIファージ溶液400μ1にP2329培養液を混合し、37℃で15分間培養した。次に4m1の λトップアガー(50℃保温)を加え、λプレートに均一になるように撒いて、37℃で一晩培養した。

【0025】ニトロセルロースフィルターを入プレート上に空気が入らないように静かに置いて、子めフィルターに書いた目印の点をプレートに写した。フィルターを剥がし、吸着面を上にして、以下の混合溶液に浸した戸紙上に置き、順次5分間処理した(溶液1:[0.5M NaOH、1.5M NaCl]、溶液2:[1Mトリスー塩酸(pH7.5)、0.75M NaCl]、溶液3:2×SSC)。フィルターを乾燥させた後、80℃で30分間加熱してフィルターへDNAを固定化した。

【0026】フィルターを以下の混合溶液 [$5 \times SSPE$ 、 $1 \times \tilde{r} \times \tilde{r}$

42°C、15分間緩やかに振盪させながら洗浄した。フィルターを風乾した後、オートラジオグラフィーを行った。読みとりは、富士写真フィルム社製バイオイメージングアナライザーBAS-2000を用いた。

【0028】目的プラークのソフトアガロースを砕い て、200μ1のSM緩衝液に懸濁した。上記溶液10 μ1を、37℃で3~4時間培養したエシエリヒア・コ リP2329株300x1と混合し、トップアガロース を加えて入プレートに撒いた。37℃で一晩培養し、プ ラークを形成させた。このAプレートに4mlのSM緩 衝液を加え、トップアガロースを掻き取って、4℃で1 時間穏やかに振盪した。トップアガロースを混入させな いよう、上澄みを新しいチューブに移し、クロロホルム を数滴加えた。そして5,000 rpmで5分間遠心 し、上澄みを得た。さらにDNase及びRNase (最終濃度1μg/m1)を加え、37℃で15分間保 温した。等量の20% ボリエチレングリコール (平均 分子量6,000)-2M NaClを加え、氷上で1 時間放置した後、4℃、10,000rpmで10分間 遠心後、上澄みを完全に除去した。250μ1のトリス -EDTA緩衝液を加えて懸濁し、5μ1の10% ド デシル 硫酸ナトリウムを加え、68℃で5分間加熱後、 10μ·1の5M NaC1を加え、等量のフェノール/ クロロホルムを加え、よく懸濁した。12,000rp mで10分間遠心し、水層を新しいチューブに移した。 イソプロパノール沈殿後、70% エタノール洗浄・乾 燥させ、50μ1のトリスー塩酸緩衝液に懸濁した。

【0029】以上の操作で得られた入FIXII DN AをBamHIで切断した。切断物をアガロース電気泳動して、2wf遺伝子の一部を含む染色体DNAのBamHI断片を分離・精製した。このBamHI断片約2kbをpUC118でサブクローニングした。サブクローニングしたBamHI断片約2kbを含むpUC118をBamHIで切断し、BamHI断片を回収した。【0030】(E)zwf遺伝子上流の塩基配列決定(D)項で得られたするされた。のDNA断片で流れ

(D) 項で得られた大きさ約2k bのDNA断片溶液を制限酵素Sau 3A1を用いて37℃で処理してDNA断片を部分分解した。また、クローニングベクター pU C11 Sを制限酵素BamHIで切断した。得られたベクターDNA断片と部分分解DNA断片とを混合し、この混合液にそれぞれ最終濃度が50mM トリス緩衝液(pH7. 6)、10mM ジチオスレイトール、1m M ATP、10mM MgC12、および1unit

10μ1 T4DNAリガーゼとなるように各成分を添加し、ベクターDNA断片と部分分解DNA断片とを結合させた。

【0031】上記と同様に大きさ約2kbのDNA断片 溶液を制限酵素TaqIと反応させて部分分解DNA断片を調製した。クローニングベクターpUC118を制 限酵素Acclで切断した後、これを上記と同様にして 部分分解DNAと結合させた。得られたプラスミド混液 を用い、常法によりエシエリピア・コリJM109株を 形質転換し、前記の選択培地に塗抹した。

【0032】上記選択培地に生育した菌株を常法に従い液体培養し、得られた培養物よりプラスミドDNAを抽出した。抽出したプラスミドDNAを用いて、ベクターpUC118に挿入された部分分解DNA断片の塩基配列を決定した。そして、これらの個々の配列の連結は、パーキン・エルマー社製のシークエンス解析ソフトーオートアッセンブラー(Autoassembler)を用いて行った。

【0033】この結果、配列表1記載の塩基配列中の1番目から1965番目の塩基配列が判明した。それを翻訳したタンパク質のアミノ酸一次構造と既知のエシエリヒア・コリのグルコースー6ーリン酸デヒドロゲナーゼのアミノ酸一次構造との相同性の比較により、配列表1記載の塩基配列中の629番目から1965番目がブレビバクテイウム・フラバムMJ-233のグルコースー6ーリン酸デヒドロゲナーゼ遺伝子のオープンリーディングフレームの上流であることが判明した。

【0034】(F) zwf遺伝子の全塩基配列決定オープンリーディングフレームの下流部分をクローニングするために、インバースポリメラーゼ連鎖反応[例えば、結城停、実験医学、Vol.8、No.9(増刊)、p.49(1990)参照]を行った。まず染色体DNAをEcoRIで分解した。このDNA分解物をアガロースゲル電気泳動した後、(C)で得られた結果を参考にして3kb前後のDNA分解物を含むアガロースゲルを切り出した。

【0035】このアガロースゲル中から、B10101 社製GENECLEAN IIを用いてDNA分解物を 抽出した。そして以下の組成[50mM トリスー塩酸 緩衝液(pH7.9)、10mMMgCl₂、20mM ジチオスレイトール、1mM ATP、1unit/ 10μ1 T4DNAリガーゼ 、10μg/ml 染 色体DNAのEcoRI分解物]となるように各成分を 添加し、16℃で一晩反応させて、DNA分解物を自己 結合させた。

【0036】続いて、プライマー対 [CTGAGCTGGAAGATTC TGG (配列番号1記載の塩基配列の1943番目から1959番目:配列番号4)、CGAAAGCTGCATCATCATC (配列番号1記載の塩基配列の875番目から893番目の相補鎖:配列番号5)]を用いて、上記の自己結合染色体DNA EcoRI分解物を鋳型に、常法でポリメラーゼ連鎖反応をした。

【0037】得られたDNAを前記の方法でpGEM-Tベクターに結合し、エシエリヒア・コリJM109で サブクローニングし、アルカリーSDS法で抽出した。 そして挿入断片の塩基配列をジデオキシヌクレオチド酵 素法で決定した結果、配列表1記載の塩基配列中196 6番目から2260番目の塩基配列であることが明らか になった。

【0038】以上の結果、配列表1に示す大きさ約2、260bpのDNA塩基配列を決定した。決定した塩基配列中にはオープンリーディングフレームの存在が認められた。それを翻訳したタンパク質のアミノ酸一次構造と既知のエシエリヒア・コリのグルコースー6ーリン酸デヒドロゲナーゼのアミノ酸一次構造との相同性の比較により、配列表の配列番号1記載の塩基配列中629番目から2083番目ががブレビバクテイウム・フラバムMJ-233のグルコースー6ーリン酸デヒドロゲナーゼ遺伝子であり、該酵素のアミノ酸配列は、配列番号1記載のアミノ酸配列であることが判明した。

[0039]

【発明の効果】本発明により提供されるグルコースー6ーリン酸デヒドロゲナーゼをコードする遺伝子を用いてコリネ型細菌を育種改良することにより、グルコースー6ーリン酸デヒドロゲナーゼ高産生能を有するコリネ型細菌の取得が可能となる。

[0040]

【配列表】

配列番号:1

配列の長さ:2260

鎮の数:二本鎖 配列の型:核酸

トポロジー:直鎖状

配列の種類:Genomic DNA

配列

配列	ı]															
GAT	CCGA	TGA	GGCT	TTGG	CT C	TGCG	TGGC	A AG	GCAG	GCGT	TGC	CAAC	GCT	CAGO	CGCGCT	T 60
ACG	CTGT	GTA	CAAG	GAGC	TT T	TCGA	CGCC	G CC	GAGC	TGCC	TGT	AAGG	CGC	CAAC	CACTCA	G 120
CGC	CCAC	TGT	GGGC	ATCC	AC C	GGCG	TGAA	G AA	CCCT	GCGT	ACG	CTGC	CAAC	TCTT	TACGT	T 180
TCC	GAGC	TGG	CTGG	TCCA	AA C	ACCG	TCAA	C AC	CATG	CCAG	AAG	GCAC	CAT	CGAC	CGCTGT	T 240
CTG	GAAC	TGG	GCAA	CCTG	CA C	GGTG	ACAA	c ct	GTCC	AACT	CCG	CGGC	AGA	AGCT	GACGC	T 300
															CTGGA	
															GAAGC	
															AGTTC	
															ATCGT	
AGC	ACAA	AAC	ACGA	CCCC	CT C	CAGC	TGGA	C AA	ACCC	ACTG	CGC	GACC	ССС	AGGA	TAAAC	G 600
			ATCG													628
			TTC													676
_	Val	He	Phe	Gly	Val	Thr	Gly	Asp	Leu	Ala	Arg	Lys	Lys	Leu	Leu	
1				5					10					15		
			TAT													724
Pro	Ala	He	Tyr	Asp	Leu	Ala	Asn		Gly	Leu	Leu	Pro	Pro	Gly	Phe	
TI 000	mm a		20	-				25					30			
			GGT													772
ser	Leu		Gly	lyr	Gly	Arg		Glu	Trp	Ser	Lys			Phe	Glu	
A 4 A	TAC	35		CAT	ccc	CC1	40	ccm		~~		45				
			CGC													820
L yS	50	vai	Arg	ASP	Ala		Ser	Ala	ыy	Ala		Thr	Glu	Phe	Arg	
CAA		СТТ	TCC	CAC	ccc	55 CTC	ccc	CAC	CCT	A.W.C	60	mmm	c mm	000	~~~	
			TGG													868
65	MSII	Val	Trp	oru		Leu	Ala	GIU	ыу		Ыu	Phe	Val	Arg		
	TTT	CAT	GAT	CAT	70	CCT	ፕ ፕሮ	CAC	***	75	CCT	CC.	101	CT C	80	016
			Asp													916
11211	1 110	пор	nsp	85	ніа	MId	rije	ASP		Leu	Ala	Ala	ınr		Lys	
ርርር -	ΔΤΓ	GAC	AAA		cc~	ccc.	ACC	cco	90	AAC	TCC	CCT	T.A.C	95 TAC	CTC	064
			Lys													964
0	110	nop	100	1111	AL S	di y	1111	105	uly	ASII	тгр	ніа		ıyr ··	Leu.	
TCC	ATT	CCA	CCA	GAT	ፐርር	TTC	GCA		ርፐሮ	TGC	CAC	ር _ሳ ር	110	CAC	CCT	1010
			Pro													1012
		115	.,,	, GP	261	i ne	120	U1 CT	101	Cys	1112	125	rea	OIU	AFG	
							10					ردı				

										_						
	GGC															1060
	Gly	Met	Ala	Glu	Ser		Glu	Glu	Ala	Trp		Arg	Val	He	He	
	130		mma			135	4100.61		m		140				~ 4	4400
	AAg															1108
	Lys	rro	rne	61 y		ASD	Leu	GIU	Ser		HIS	GIU	Leu	ASI		
145	er e	Nic	ccs	CT.	150	("C" h	CAA	TCT	TOT	155	тт.	cer	470	CAC	160	1157
	GTC															1156
Leu	Val	ASII	Ald		riie	HO	GIU	ber		vai	rne	Arg	116		піѕ	
TAT	TTC	ccc	A AC	165	ACA	СТТ	CAA	A A C	170	CTC	CCT	ርፐር	CCT	175	CCT	1204
_	TTG Leu															1204
131	LCu	OLY	180	or u	110	·u1	0111	185	110	LCu	nia	Lcu	190	THE		
AAC	CAG	CTG		GAG	$\Gamma\Gamma\Delta$	(TG	TCG		Tef	AAC	TAC	GTT		CAC	GTC	1252
`.	Gln				_		_		_							ــرـــ
12011	0111	195		0. u		200	200	11011	50,			205		5	741	
CAG	ATC		ATG	GCT	GAA	GAT		GGC	TTG	GGT	GGA			GGT	TAC	1300
	He															
	210					215		•		•	220	0				
TAC	GAC	GGC	ATC	GGC	GCA	GcC	CGC	GAC	GTC	ATC	CAG	AAC	CAC	CTG	ATC	1348
Tyr	Asp	Gly	He	Gly	Ala	Ala	Arg	Asp	Val	He	Gln	Asn	His	Leu	He	
225					230					235					.240	
CAG	CTC	TTG	GCT	CTG	GTT	GCC	ATG	GAA	GAA	CCA	ATT	TCT	TTC	GTG	CCA	1396
Gln	Leu	Leu	Ala	Leu	Val	Ala	Met	Glu	Glu	Pro	lle	Ser	Phe	Val	Pro	
				245					250					255		
GCG	CAG	CTG	CAG	GCA	GAA	AAG	ATC	AAG	GTG	CLC	TCT	GCG	ACA	AAG	CCG	1444
Ala	Gln	Leu	Gln	Ala	Glu	Lys	He	Lys	Val	Leu	Ser	Ala	Thr	Lys	Pro	
			260					265					270			
	TAC															1492
(ys	Tyr			Asp	Lys	Thr		Ala	Arg	Gly	Gln		Ala	Ala	Gly	
		275					280					285				
	CAG															1540
Irp	Gln	Gly	Ser	61 u	Leu		Lys	Gly	Leu	Arg		ыu	ASP	ыу	Pne	
AAC	290	CAC	ተርር	ACC	A CT	295	A CT	ттт	ccc	CCT	300	ACC	TTA	CAC	ATC	1500
	CCT															1588
305	Pro	oiu	Sei	1111	310	Gru	ш	rue	Ala	315	CyS	1 131	Leu	Gru	320	
	TCT	EGT	rcr	TGG		CCT	GTG	rrc	ፐፐር		CTC:	ccc.	۸۲۲	CCT		1636
	Ser															1050
		5	6	325	1110	013			330		Lvu	3		335	232	
CGT	CTT	GGT	CGC		GTT	ACT	GAG	ATT		GTG	GTG	TTT	-AAA		GCA	1684
	Leu															
•		•	340					345					350	•		
CCA	CAC	CAG		TTC	GAC	GGC	GAC		ACT	GTA	TCC	CTT		CAA	AAC	1732
Pro	His	Gln	Pro	Phe	Asp	Gly	Åsp	Met	Thr	Val	Ser	Leu	Gly	Gln	Asn	
		355					360					365				
GCC	ATC	GTG	ATT	CGC	GTG	CAG	cct	GAT	GAA	GGT	GTG	стс	ATC	CGC	TTC	1780
Ala	He	v_{al}	He	Arg	Val	Gln	Pro	Asp	Glu	Gly	Val	Leu	He	Arg	Phe	
	370					375					380					
GGT	TCC	AAG	GTT	CCA	GGT	TCT	GCC	ATG	GAA	GTC	CGT	GAC	GTC	AAC	ATG	1828
Gly	Ser	Lys	Val	Pro	Gly	Ser	Ala	Met	Glu	Val	Arg	Asp	Val	Asn	Met	

	205			
	385	390	395 400	
			GAA GAA TCA CCT GAA GCA TAC	1876
		ser divi ser Phe ini 105	Glu Glu Ser Pro Glu Ala Tyr	
			410 415	
			G GAT GAA TCC AGC CTT TTC CCT	1924
	420		Asp Glu Ser Ser Leu Phe Pro	
		425 TO CAA OTO ACO TO	A30 G AAG ATT CTG GAT CCA ATT CTT	4000
			Lys He Leu Asp Pro He Leu	1972
	435	440		
		=	445 A GAG GAT TAC CCA GCA GGT ACG	2020
			Glu Asp Tyr Pro Ala Gly Thr	2020
	450	455.		
			460 CTT TCC CGC AAC GGT CAC ACC	0040
			Leu Ser Arg Asn Gly His Thr	2068
	465	470		
			475 . 480 TG ATCTTTGAAC TTCCGGATAC	04.00
	Trp Arg Arg Pro	AATTINGGO GCAAAAA	TO ATCITIGAAC TICCUGATAC	2120
	484			
		TCCA AGACCCTAAC TC	GACTGCGT GAATCGGGCA CCCAGGTCAC	24.00
			CTGACTICG GAAAGCGATG TCGCTGCAGT	2180
	TACCGAGTCC ACCAAT		CTURCTEC GRANGEGATG TEGETGEAGT	2240
配列番号:2	The condition in the case in	Of this	Nはイノシンを表す。	2260
配列の長さ:			配列番号:4	
鎖の数:1本鎖	•		配列の長さ:	
配列の型:核酸			鎖の数:1本鎖	
トポロジー:直鎖			配列の型:核酸	
配列の種類:他の権			トポロジー:直鎖状	
配列	,		配列の種類:他の核酸(合成DN	(A)
ATHGAYCAYT AYYTNG	SNAA RGA	23	配列	A)
はイノシンを表す			CTGAGCTGGA AGATTCTGG	19
配列番号:3			配列番号:5	. 19
配列の長さ:			配列の長さ:	
鎖の数:1本鎖		•	鎖の数:1本鎖	
配列の型:核酸			配列の型:核酸	
トポロジー:直鎖ホ			トポロジー:直鎖状	
配列の種類:他の根			- T. D. J. L.	۸)
配列	,		配列	A) .
GONACNOCNIK SCCANO		16	CGAAAGCTGC ATCATCATC	19
		10	constructive Alemante	19
フロントページの新				
51) Int. Cl. 6	識別記号	宁内敦阳采 马	F I	
C12R 1:1		庁内整理番号	r i	技術表示箇所
(C12N 1/20				
			•	
C12R 1:13	,			

(72) 発明者 湯川 英明

茨城県稲敷郡阿見町中央八丁目3番1号

三菱化学株式会社筑波研究所内