

Problem Definition

Since COVID-19 pandemic, bike rental businesses in Seoul are booming. This is an unexpected result for BT Seoul Bike Hire, so they would like some analysis on:

- How many extra staff members require during busy period. It is estimated by the management that 1 staff member required to service every 200 bikes/customers
- Quiet time of the day, so they can service their bikes with less disruption. They are currently close 1 day per month to service their bikes
- BT Seoul Bike Hire also would like to expand their business to other major metropolitan cities such as Busan and Incheon using the same business model and staffing method.

Dataset Description

- The dataset contains rented bike count at each hour with the corresponding weather data and date information for the six months period (From March to October 2018).
- Over 7890 rented bike data with 10 features which will be group as follow:

Base variables – Temperature (C), Dewpoint (C), Solar radiation (MJ/m2) due to apparent linear relationship

Continuous variables – Humidity (%), Windspeed (m/s), Visibility (10m), Snowfall (cm) and Rainfall (mm)

Discrete variables – Date and Hour

Categorical variables – Seasons and Holiday

Date	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	Seasons	Holiday	Functioning Day
0 01/12/2017	254	0	-5.2	37	2.2	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
1 01/12/2017	204	1	-5.5	38	0.8	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
2 01/12/2017	173	2	-6.0	39	1.0	2000	-17.7	0.0	0.0	0.0	Winter	No Holiday	Yes
3 01/12/2017	107	3	-6.2	40	0.9	2000	-17.6	0.0	0.0	0.0	Winter	No Holiday	Yes
4 01/12/2017	78	4	-6.0	36	2.3	2000	-18.6	0.0	0.0	0.0	Winter	No Holiday	Yes

Preprocessing / Data Cleaning

Here are some of the data preprocessing and cleaning methods being performed:

- Checked if all data are in correct data types
- Checked any missing data
- Added 2 additional categorial variables based on:
 - Date → Day_of_week: Monday to Sunday
 - Hour → Shift: 4x Shift based on 6 hour per shift (Early morning, Morning peak, Mid day,
 - Evening peak) This method will help with predicting the staffing requirements
- Drop 'Functioning Day = No' (Close down due to bike servicing day)
 Removed the 'No' value as it skews the overall data.

Modelling

- Using linear regression model to predict bike rental per hour or shift based on numerous features/variables
- Cross validation where data being split into train and test data (75/25 split)
- Testing on different variables/models based on:

Model 1: Base variables

Model 2: Base + continuous variables

Model 3: Base + continuous + discrete variables

Model 4: Recursive Features Elimination

Model 5: ALL variables including categorial variables

after being transformed using OneHotEncoder

 Popular Transformation methods performed in order to get the best fit → Logarithm, Min-Max Scaling, Standard Scaling, Polynomial-Interaction.

Result 1

R-squared score at 0.707 (Moderate Linear Relationship)

R-squared shows how well the data fit the regression model (the goodness of fit).

1 indicated the perfect fit/perfect score.

	fit_time	score_time	test_r2	train_r2	test_neg_mean_squared_error	train_neg_mean_squared_error	dataset	n_features
0	0.004127	0.000284	0.124205	0.432681	-0.836183	-0.741775	base	3
1	0.009375	0.003127	0.121082	0.508691	-0.801977	-0.642021	w/cont. feats	8
2	0.003552	0.000000	0.237863	0.574026	-0.705235	-0.557168	base+cont+disc. feats	10
3	0.000000	0.009375	0.238775	0.564145	-0.697286	-0.569875	RFE6	6
4	0.006250	0.003127	0.250754	0.573521	-0.695773	-0.557856	RFE8	8
5	0.009378	0.009372	0.418418	0.661940	-0.562520	-0.442799	all variables	28
6	0.012501	0.000000	0.418418	0.661940	-0.562520	-0.442799	all vars scaled	28
7	0.006246	0.006249	0.424244	0.707258	-0.566891	-0.383100	all vars log	28
8	0.008191	0.000600	0.424244	0.707258	-0.566891	-0.383100	all vars poly	28

Result 2

Linear regression fit models improvement

Result 3

Compare ranges of prediction to actual values

Most important features:

- Temperature
- Humidity
- Visibility
- ALL of the categorical variables e.g. Day of Week, Seasons, Shift

Next Step

- Gather more bike rental data especially post COVID-19 period, ideally throughout 2022 to allow for more accurate prediction
- Try Random Forest Regression model might work well with the Bike Rental data

Limitation

- R-squared score of 0.707 is not perfect despite numerous models and transformation being tested
- However, 0.707 is pretty good score especially in predicting human behaviour
- In business/staffing modelling, 0.707 is adequate as it provides moderate linear relationship

Thank you!

Presenter: Yessy Rayner

Email: <u>Yessy.Rayner@gmail.com</u>

LinkedIn: https://www.linkedin.com/in/yessy-rayner

GitHub: https://github.com/YessyLee

