

特点

产品外形示意图

- ▶ 完全兼容 "ISO 11898"标准;
- ▶ 内置过温保护功能;
- ▶ 总线端口±70V 耐压;
- ➤ 驱动器 (TXD) 显性超时功能;
- ▶ 待机总线 (BUS) 显性超时功能;
- ▶ 带唤醒功能的低功耗待机模式;
- ➤ SIT1042AT/3 I/O 电压范围支持 3.3V 和 5V MCU;
- ▶ VCC 和 VIO 电源引脚上具有欠压保护功能;
- ▶ 高速 CAN,支持 5Mbps CAN FD 灵活数据速率;
- ➤ TXD 至 RXD 典型环路延时小于 100ns;
- ▶ 高抗电磁干扰能力;
- ▶ 未上电节点不干扰总线;
- ▶ 支持 DFN3*3-8, 小外形, 无引脚封装。

提供绿色环保无铅封装

描述

SIT1042A 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于车载、工业控制等领域,支持 5Mbps 灵活数据速率 CAN FD,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力。

SIT1042A 为 SIT1042 芯片的升级版本,改善了总线信号的对称性,拥有更低的电磁辐射性能。 另外,SIT1042A 可完全兼容 SIT1042。

参数	符号	测试条件	最小	最大	单位
供电电压	VCC		4.5	5.5	V
最大传输速率	1/t _{bit}	非归零码	5		Mbaud
CANH、CANL 引脚电压	V_{can}		-70	+70	V
总线差分电压	$V_{ m diff}$		1.5	3.0	V
结温	T_j		-40	150	$^{\circ}\mathrm{C}$

引脚分布图

引脚定义

引脚序号	引脚名称	引脚功能
1	TXD	发送器数据输入端
2	GND	地
3	VCC	供电电源
4	RXD	接收器数据输出端
5	VIO	收发器 I/O 电平转换电源电压(SIT1042AT/3 型号)
5	N.C.	无连接(SIT1042AT 型号)
6	CANL	低电位 CAN 电压输入输出端
7	CANH	高电位 CAN 电压输入输出端
8	STB	高速模式与待机模式选择,低电平为高速模式

极限参数

参数	符号	大小	单位
电源电压	VCC	-0.3~7	V
MCU 侧端口	TXD, RXD, STB, VIO	-0.3~7	V
总线侧输入电压	CANL, CANH	-70~70	V
总线差分耐压	V _{CANH-CANL}	-27~27	V
存储温度范围	$T_{ m stg}$	-55~150	°C
结温	T_{j}	-40~150	°C
环境温度	T_{amb}	-40~125	°C

最大极限参数值是指超过这些值可能会使器件发生不可恢复的损坏。在这些条件之下是不利于器件正常运作的,器件连续工作在最大允许额定值下可能影响器件可靠性,所有的电压的参考点为地。

内部电路结构框图

总线发送器直流特性

参数	符号	测试条件	最小	典型	最大	单位
CANH 输出电压 (显性)	V _{OH(D)}	正常模式, TXD=0V,	2.75	3.5	4.5	V
CANL 输出电压 (显性)	$V_{\text{OL}(D)}$	$R_L=50\Omega$ 至 65Ω	0.5	1.5	2.25	V
		正常模式, TXD=0V, R _L =50Ω 至 65Ω	1.5		3	V
总线输出差分电压 (显性)	$V_{\text{OD(D)}}$	正常模式, TXD=0V, R _L =45Ω 至 70Ω	1.4		3.3	V
		正常模式, TXD=0V, R _L =2240Ω	1.5		5	V
总线输出电压 (隐性)	$V_{O(R)}$	正常模式, TXD=VIO,无负载	2	0.5VCC	3	V
总线差分输出电压 (隐性)	$V_{\text{OD(R)}}$	正常模式, TXD=VIO,无负载	-500		50	mV
总线输出电压 (总线偏置到地)	$V_{O(S)}$	一 待机模式,无负载	-0.1		0.1	V
总线差分输出电压 (总线偏置到地)	$V_{\text{OD(S)}}$	待机模式, 无负载	-0.2		0.2	V
显性输出电压对称性	$V_{\text{dom(TX)sym}}$	V _{dom(TX)sym} =VCC- CANH - CANL	-400		400	mV
输出电压对称性	$ m V_{TXsym}$	V_{TXsym} = CANH + CANL, R_L =60 Ω , C_{SPLIT} =4.7nF, f_{TXD} =250kHZ, 1MHz, 2MHz	$0.9 m V_{CC}$		$1.1V_{\rm CC}$	V
显性隐性共模 输出电压差	V _{cm(step)}	图 3, 图 5	-150		150	mV
显性隐性共模 峰峰值	V _{cm(p-p)}	图 3, 图 5	-300		300	mV
显性短路输出电流	I _{O(SC)DOM}	正常模式, TXD=0V, CANH=-15V 至 40V	-100	-70	-40	mA

参数	符号	测试条件	最小	典型	最大	单位
显性短路输出电流	I _{O(SC)DOM}	正常模式, TXD=0V, CANL=-15V至40V	40	70	100	mA
隐性短路输出电流	I _{O(SC)REC}	正常模式, TXD=VIO, CANH=CANL= -27V 至 32V	-3		3	mA

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L = 60Ω 的条件下测得。

总线发送器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延时(低到高)	$t_{d(TXD ext{-}busdom)}$	正常模式, <u>图 1</u> , <u>图 4</u>		45		ns
传播延时(高到低)	$t_{d(TXD\text{-busrec})}$	正常模式, <u>图 1</u> , <u>图 4</u>		55		ns
差分输出上升时间	$t_{r(\mathrm{BUS})}$			45		ns
差分输出下降时间	$t_{\mathrm{f(BUS)}}$	_		45		ns

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L = 60Ω 的条件下测得。

总线接收器直流特性

参数	符号	测试条件	最小	典型	最大	单位
接收器阈值电压	V	正常模式, -30V <v<sub>CM< 30V</v<sub>	0.5		0.9	V
按 収 研 関 但 电 压	$V_{\text{th(RX)dif}}$	待机模式, -12V <v<sub>CM< 12V</v<sub>	0.4		1.15	V
接收器阈值电压 迟滞区间	$V_{\rm hys(RX)dif}$	正常模式, -30V <v<sub>CM< 30V</v<sub>	50	120	400	mV
接收器隐性电压区间	V	正常模式, -30V <v<sub>CM< 30V</v<sub>	-3		0.5	V
按収益版性电压区间 	[间 V _{rec(RX)}	待机模式, -12V <v<sub>CM< 12V</v<sub>	-3		0.4	V
接收器显性电压区间	$V_{\text{dom}(RX)}$	正常模式, -30V <v<sub>CM< 30V</v<sub>	0.9		8	V

参数	符号	测试条件	最小	典型	最大	单位
接收器显性电压区间	$V_{\text{dom}(RX)}$	待机模式, -12V <v<sub>CM< 12V</v<sub>	1.15		8	V
总线漏电流·	${ m I_L}$	VCC=VIO=0V, CANH= CANL=5V	-10		10	μΑ
CANH、CANL 输入 电阻	$R_{\rm IN}$	-2V≤CANH≤7V -2V≤CANL≤7V	9	15	28	kΩ
CANH、CANL 差分 输入电阻	R_{ID}	-2V≤CANH≤7V -2V≤CANL≤7V	19	30	52	kΩ
CANH、CANL 输入 电阻失配度	$\triangle R_{IN}$	0V≤CANH≤5V 0V≤CANL≤5V	-2		2	%
CANH、CANL 对地 输入电容	$C_{\rm IN}$	TXD=VIO		24		pF
CANH、CANL 差分 输入电容	C_{ID}	TXD=VIO		12		pF
总线压摆率	SR	总线差分电压显 性至隐性的边沿			70	V/µs

如无另外说明,-40°C \leq T $_{j}\leq$ 150°C,所有典型值均在 T $_{amb}$ =25°C、电源电压 VCC=5V、VIO=5V(如果适用)、R $_{L}$ =60 Ω 的条件下测得。

总线接收器开关特性

参数	符号	测试条件	最小	典型	最大	单位
传播延迟(低到高)	t _{d(busdom-RXD)}	正常模式, <u>图 1</u> , <u>图 4</u>		45		ns
传播延迟(高到低)	t _{d(busrec-RXD)}	正常模式, <u>图 1</u> , <u>图 4</u>		45		ns
RXD 信号上升时间	$t_{r(RXD)}$			8		ns
RXD 信号下降时间	$t_{f(RXD)}$			8		ns

如无另外说明,-40°C \leq T $_{j}\leq$ 150°C,所有典型值均在 T $_{amb}=$ 25°C、电源电压 VCC=5V、VIO=5V(如果适用)、R $_{L}=$ 60Ω 的条件下测得。

器件开关特性

参数	符号	测试条件	最小	典型	最大	单位
环路延迟1,TXD下	4. .	正常模式,	40		160	n a
降沿至 RXD 下降沿	t _{loop1}	<u>图 1</u> , <u>图 4</u>	40		100	ns

参数	符号	测试条件	最小	典型	最大	单位
环路延迟 2, TXD 上 升沿至 RXD 上升沿	t_{loop2}	正常模式, <u>图 1</u> , <u>图 4</u>	40		175	ns
BUS 输出位时间	f	t _{bit(TXD)} =500ns	435		530	ns
BOS 制击位时间	t _{bit(BUS)}	t _{bit(TXD)} =200ns	155		210	ns
RXD 输出位时间	4	t _{bit(TXD)} =500ns	400		550	ns
KAD 棚 西位的 间	$t_{bit(RXD)}$	t _{bit(TXD)} =200ns	120		220	ns
BUS 与 RXD 输出	$\Delta t_{ m rec}$	$\begin{array}{c} \Delta t_{rec} = t_{bit(RXD)} - \\ \\ t_{bit(BUS)} + \\ t_{bit(TXD)} = 500 ns \end{array}$	-65		40	ns
位时间差	Δt _{rec}	$\begin{array}{c} \Delta t_{rec=} \; t_{bit(RXD)}. \\ \\ t_{bit(BUS)}. \\ \\ t_{bit(TXD)} = 200 ns \end{array}$	-45		15	ns
TXD 显性超时时间	$t_{ m dom_TXD}$		0.8	2	4	ms
BUS 显性超时时间	$t_{ m dom_BUS}$		0.8	2	4	ms
待机模式到正常模 式使能时间	$t_{ m EN}$				10	μs
总线唤醒时间	$t_{ m WAKE}$		0.5		1.8	μs

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L = 60Ω 的条件下测得。

TXD 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
TXD 端口高电平输 入电流	I _{IH} (TXD)	TXD=VIO	-5		5	μΑ
TXD 端口低电平输 入电流	$I_{IL}(TXD)$	TXD=0V	-260	-150	-30	μΑ
未上电 TXD 漏电流	I _O (off)	VCC=VIO=0V, TXD=5.5V	-1		1	μΑ
输入高电平下限	$V_{ m IH}$	SIT1042AT/3	0.7VIO		VIO+0.3	V
输入低电平上限	V_{IL}	SIT1042AT/3	-0.3		0.3VIO	V
输入高电平下限	$V_{ m IH}$	SIT1042AT	2		VCC+0.3	V
输入低电平上限	V_{IL}	SIT1042AT	-0.3		0.8	V
TXD 端口悬空电压	TXD_0			Н		logic

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L = 60Ω 的条件下测得。

STB 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
STB 端口高电平输入 电流	I _{IH} (STB)	STB=VIO	-2		2	μΑ
STB 端口低电平输入 电流	I _{IL} (STB)	STB=0V	-20		-2	μΑ
未上电 STB 漏电流	I _O (off)	VCC=VIO=0V, STB=5.5V	-1		1	μΑ
输入高电平下限	$V_{ m IH}$	SIT1042AT/3	0.7VIO		VIO+0.3	V
输入低电平上限	V_{IL}	SIT1042AT/3	-0.3		0.3VIO	V
输入高电平下限	$V_{ m IH}$	SIT1042AT	2		VCC+0.3	V
输入低电平上限	V_{IL}	SIT1042AT	-0.3		0.8	V
STB 端口悬空电压	STB_{O}			Н		logic

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L =60 Ω 的条件下测得。

RXD 引脚特性

参数	符号	测试条件	最小	典型	最大	单位
RXD 端口高电平输 出电流	I _{OH} (RXD)	VIO=VCC, RXD=VIO-0.4V	-8	-3	-1	mA
RXD 端口低电平输 出电流	I _{OL} (RXD)	RXD=0.4V, 总线显性	2	5	12	mA
未上电 RXD 漏电流	I _O (off)	VCC=VIO=0V, RXD=5.5V	-1		1	μΑ

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L = 60Ω 的条件下测得。

供电电流

参数	符号	测试条件 最		典型	最大	单位
VCC 电源电流	I_{CC_D}	正常模式显性		45	70	mA
VCC 电源电视	I_{CC_R}	正常模式隐性		5	10	mA
		待机模式,				
VCC 电源电流	I_{CC_STB}	STB=TXD=VIO,		0.5	5	μΑ
		(SIT1042AT/3 型号)				

参数	符号	测试条件	最小	典型	最大	单位
VCC 电源电流	I _{CC_STB}	待机模式, STB=TXD=VCC, (SIT1042AT 型号)		12	20	μΑ
	I_{IO_D}	正常模式显性		170	300	μΑ
VIO 电源电流	I_{IO_R}	正常模式隐性		15	30	μΑ
	I _{IO_STB}	待机模式, STB=TXD=VIO		10	17	μΑ

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L = 60Ω 的条件下测得。

过温保护

参数	符号	测试条件	最小	典型	最大	单位
过温关断	$T_{j(sd)}$			190		$^{\circ}\mathrm{C}$

如无另外说明,-40°C \leq T $_{j}\leq$ 150°C,所有典型值均在 T $_{amb}=$ 25°C、电源电压 VCC=5V、VIO=5V(如果适用)、R $_{L}=$ 60 Ω 的条件下测得。

欠压保护

参数	符号	测试条件	最小	典型	最大	单位
VCC 欠压保护	V_{uvd_VCC}		3.7	4	4.3	V
VIO 欠压保护	V_{uvd_VIO}		1.7	2	2.3	V

如无另外说明,-40℃≤ T_j ≤150℃,所有典型值均在 T_{amb} =25℃、电源电压 VCC=5V、VIO=5V(如果适用)、 R_L =60Ω 的条件下测得。

ESD 性能

参数	符号	测试条件	最小	典型	最大	单位
CAN 总线引脚接触放 电模型(IEC)	$V_{\rm ESD_IEC}$	IEC 61000-4-2:接触 放电(CANH, CANL)	-4		+4	kV
CAN 总线引脚人体放 电模型(HBM)	$V_{\text{ESD_HBM}}$	所有端口	-8		+8	kV
组件充电模型(CDM)	V_{ESD_CDM}		-750		+750	V
机械模型(MM)	V _{ESD_MM}		-300		+300	V

功能表

表 1 CAN 收发器真值表

TXD (1)	STB (1)	CANH (1)	CANL (1)	BUS 状态	RXD (1)
L	L	Н	L	显性	L
H (或浮空)	L	0.5VCC	0.5VCC	隐性	Н
X	H (或浮空)	GND	GND	隐性	Н

(1) H=高电平; L=低电平; X=不关心。

表 2 接收器功能表

工作模式	V _{ID} =CANH-CANL	BUS 状态	RXD (1)
	V _{ID} ≥0.9V	显性	L
正常模式	0.5 <v<sub>ID<0.9V</v<sub>	?	?
	$V_{ID} \leq 0.5V$	隐性	Н
	V _{ID} ≥1.15V	显性	L
待机模式	0.4 <v<sub>ID<1.15V</v<sub>	?	?
	$V_{ID} \leq 0.4V$	隐性	Н

(1) H=高电平; L=低电平; ? =不确定。

表 3 欠压保护状态表

VCC	VIO (1)	BUS 状态	BUS 输出 ⁽²⁾	RXD (2)
VCC>V _{uvd_VCC}	VIO>V _{uvd_VIO}	正常	根据 STB 和 TXD	跟随总线
VCC <v<sub>uvd_VCC</v<sub>	VIO>V _{uvd_VIO}	保护态	GND	Н
VCC>V _{uvd_VCC}	VIO <v<sub>uvd_VIO</v<sub>	保护态	Z	Н
VCC <v<sub>uvd_VCC</v<sub>	VIO <v<sub>uvd_VIO</v<sub>	保护态	Z	Н

- (1) 仅限 SIT1042AT/3 型号;
- (2) H=高电平; Z=高阻态。

波形时序图

图 1 收发器传输延时示意图

图 2 tbit 延时示意图

图 3 总线共模电压 (SAE 1939-14)

测试电路

图 4 收发器时序测试电路图

图 5 收发器总线对称性测试电路图

典型应用图

图 6 SIT1042AT 与 5V MCU 典型应用图

图 7 SIT1042AT/3 与 3.3V MCU 典型应用图

说明

1 简述

SIT1042A 是一款应用于 CAN 协议控制器和物理总线之间的接口芯片,可应用于车载、工业控制等领域,支持 5Mbps 灵活数据速率 CAN FD,具有在总线与 CAN 协议控制器之间进行差分信号传输的能力,完全兼容"ISO 11898"标准。

2 短路保护

SIT1042A 的驱动级具有限流保护功能,以防止驱动电路短路到正和负的电源电压,发生短路时功耗会增加,短路保护功能可以保护驱动级不被损坏。

3 过温保护

SIT1042A 具有过温保护功能,过温保护触发后,驱动级的电流将减小,因为驱动管是主要的耗能部件,电流减小可以降低功耗从而降低芯片温度。同时芯片的其它部分仍然保持正常工作。

4 欠压保护

SIT1042A 电源引脚上具有欠压检测功能,可将器件置于受保护模式。这样可在 VCC 低于 V_{uvd_VCC} 或 VIO 低于 V_{uvd_VIO} (如果适用)时保护总线。

5 控制模式

控制引脚 STB 允许选择两种工作模式: 高速模式和待机模式。

高速模式是正常工作模式,通过将引脚 STB 接地来选择。CAN 驱动器和接收器均能完全正常运行且 CAN 通信双向进行。

将引脚 STB 设置为高电平,可激活低功耗待机模式。CAN 驱动器和接收器均关断,以节省功耗。引脚 STB 上的高电平激活该低功耗接收器和唤醒滤波器,一旦低功率差分比较器检测到超过 t_{wake} 的 主导总线电平,引脚 RXD 将变为低电平。(在 SIT1042AT/3 中, 当 VCC 欠压或者 VCC 浮空,只要 VIO 正常供电,低功耗接收器仍可检测总线上的显隐性电平)。

图 8 唤醒时序

6 显性超时功能

在高速模式下,如果引脚 TXD 上的低电平持续时间超过内部定时器值(tdom TXD),发送器将被

禁用,驱动总线进入隐性状态。可防止引脚 TXD 因硬件或软件应用故障而被强制为永久低电平导致 总线线路被驱动至永久显性状态(阻塞所有网络通信)。引脚 TXD 出现上升沿信号可复位。 在待机模式下,如果总线出现显性状态并持续时间超过(t_{dom BUS}),引脚 RXD 将强制变为高电 平。可防止由于总线短路或网络上其他一个节点的故障导致的永久唤醒。当总线由显性变为隐性即可 复位。

SOP8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm
A	1.40	-	1.80
A1	0.10	-	0.25
A2	1.30	1.40	1.50
A3	0.60	0.65	0.70
b	0.38	-	0.51
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
e		1.27BSC	
L	0.40	0.60	0.80
L1		1.05REF	
С	0.20	-	0.25
θ	0°	-	8°

LAND PATTERN EXAMPLE (Unit: mm)

DFN3*3-8 外形尺寸

封装尺寸

符号	最小值/mm	典型值/mm	最大值/mm		
A	0.70	0.75	0.80		
A1	0	0.02	0.05		
A3		0.203 REF			
D	2.90	3.00	3.10		
Е	2.90	3.00	3.10		
D2	2.05	2.15	2.25		
Nd		1.95BSC			
E2	1.10	1.20	1.30		
b	0.25	0.30	0.35		
e		0.65 TYP			
k	0.50REF				
L	0.35	0.4	0.45		
h	0.20	0.25	0.30		

LAND PATTERN EXAMPLE (Unit: mm)

编带信息

A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
	component length
K0	Dimension designed to accommodate the
	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

PIN1 is in quadrant 1

封装类型	卷盘直径	编带宽度	A0	В0	K0	P1	W
	A (mm)	W1 (mm)	(mm)	(mm)	(mm)	(mm)	(mm)
SOP8	330±1	12.4	6.60±0.1	5.30±0.10	1.90±0.1	8.00±0.1	12.00±0.1
DFN3*3-8	329±1	12.4	3.30±0.1	3.30±0.1	1.10±0.1	8.00±0.1	12.00±0.3

定购信息

定购代码	封装	包装方式
SIT1042AT	SOP8	盘装编带
SIT1042AT/3	SOP8	盘装编带
SIT1042ATK/3	DFN3*3-8, 小外形, 无引脚	盘装编带

SOP8 编带式包装为 2500 颗/盘, DFN3*3-8 编带式包装为 6000 颗/盘。

回流焊

参数	无铅焊接条件
平均温升速率(T _L to T _P)	3 °C/second max
预热时间 ts(T _{smin} =150 ℃ to T _{smax} =200 ℃)	60-120 seconds
融锡时间 t _L (T _L =217 ℃)	60-150 seconds
峰值温度 TP	260-265 °C
小于峰值温度 5 ℃以内时间 t _P	30 seconds
平均降温速率(T _P to T _L)	6 °C/second max
常温 25℃ 到峰值温度 TP 时间	8 minutes max

重要声明

芯力特有权在不事先通知的情况下,保留更改上述资料的权利。

修订历史

版本号	修订内容	修订时间
V1.0	初始版本。	2022.10
V1.1	增加环境温度 T _{amb} 范围; 更新封装尺寸图(尺寸不变)。	2023.04