Definibilidad de \mathbb{N} en $(\mathbb{Q}, +, *, 0, 1)$

Enrique Acosta Jaramillo

Mayo 2006

1. Introducción

Teorema. N es definible en $Q = (\mathbb{Q}, +, *, 0, 1)$, es decir:

existe una fórmula $\phi(x)$ de primer orden con una variable libre sobre el lenguaje $L=\{+,.,0,1\}$ tal que

$$Q \models \phi[r] \Leftrightarrow r \in \mathbb{N}$$

1.1. Segundo Orden

En segundo orden la fórmula es simple, simplemente tome

$$\phi(x): \forall A \subseteq \mathbb{Q}\Big\{\Big[0 \in A \land \forall r(r \in A \to r+1 \in A)\Big] \to x \in A\Big\}$$

2. Consecuencias

2.1. Decidibilidad

Definición. Una teoría T de primer orden se dice

 \diamond Completasi para toda sentencia ϕ se tiene

$$T \vdash \phi \quad o \quad T \vdash \neg \phi$$
.

 \diamond Decidible si existe un algoritmo que decide para toda sentencia ϕ en un número finito de pasos si

$$T \vdash \phi \quad o \quad T \nvdash \phi.$$

 \diamond Recursivamente Axiomatizable si T eqT' con T' recursiva.

Ejemplos

- 1. Son decidibles
 - $\diamond Th(\mathbb{C},+,*,0,1)$
 - $\diamond Th(\mathbb{R}, +, *, 0, 1)$
 - ♦ La teoría de campos algebraicamente cerrados de característica de una característica fija.

- 2. Son indecidibles
 - $\diamond Th(\mathbb{C}, +, *, 0, 1, exp)$
 - $\diamond AP^1$ (Axiomática de Peano de primer orden)
 - \diamond Cualquier teoría que extienda a AP^1
 - $\diamond Th(\mathcal{N})$
 - ♦ Teoría de Grupos
 - \diamond La teoría vacía (el cálculo de predicados) sobre el lenguaje de la aritmética.
- 3. Se desconoce la decidibilidad de
 - $\diamond Th(\mathbb{R}, +, *, 0, 1, exp)$ (Propuesto por Tarski 19..)

Teorema 1. Si T es completa y recursivamente axiomatizable entonces T es decidible.

Demostración. Corra en paralelo el algotimo para ϕ y $\neg \phi$.

Corolario 1.1. $TCAC_0$ es decidible pues es completa.

Corolario 1.2. $Th(\mathbb{C}, +, *, 0, 1)$ es decidible.

Demostración. $Th(\mathbb{C}, +, *, 0, 1) = TCAC_0$ porque $TCAC_0$ es completa y $(\mathbb{C}, +, *, 0, 1) \models TCAC_0$. Como $TCAC_0$ es recursivamente axiomatizable, $Th(\mathbb{C}, +, *, 0, 1)$ es decidible.

Así, todo lo que se pueda decir en primer orden sobre estas estructuras un computador puede revisar si es verdad o no.

2.2. Indecidibilidad de $Th(\mathcal{N})$

ESCRIBIR LA AXIOMATICA DE AP

Teorema 2. Toda extension consistente de AP^1 es indecidible.

Corolario 2.1. AP^1 es indecidible.

Corolario 2.2. $Th(\mathcal{N})$ es indecidible.

Corolario 2.3 (Incompletitud de Gödel). Si $T \supseteq AP^1$ y T es recursivamente axiomatizable entonces T es incompleta.

Corolario 2.4. AP^1 es incompleta.

Corolario 2.5. $Th(\mathcal{N})$ no es recursivamente axiomatizable.

2.3. Aplicaciones de la indecidibilidad de $Th(\mathcal{N})$ y su relación con \mathcal{Q}

Teorema 3. Sea \mathcal{M} una estructura en el lenguaje de la aritmética con $\mathcal{N} \leq \mathcal{M}$. Si \mathbb{N} es definible en \mathcal{M} entonces $Th(\mathcal{M})$ es indecidible.

Demostración. Sea $\phi(x)$ la fórmula que define \mathbb{N} en \mathcal{M} . Para cada sentencia θ sobre L sea $\theta^{\phi(x)}$ su relativización. Entonces,

$$\mathcal{N} \models \theta \Leftrightarrow \mathcal{M} \models \theta^{\phi(x)}$$

luego si $Th(\mathcal{M})$ fuera decidible, $Th(\mathcal{N})$ seria decidible que es una contradicción.

Corolario 3.1. Si \mathbb{N} es definible en $\mathcal{Q} = (\mathbb{Q}, +, *, 0, 1)$ entonces $Th(\mathcal{Q})$ es indecidible y no es recursivamente axiomatizable.

Corolario 3.2. $Th(\mathbb{Z}, +, *, 0, 1)$ es indecidible.

Demostración. Por el teorema de suma de cuatro cuadrados de Lagrange, todo número natural se puede escribir como suma de cuatro cuadrados. Así,

$$\phi(x): \exists x_1 \exists x_2 \exists x_3 \exists x_4 (x = x_1^2 + x_2^2 + x_3^2 + x_4^2)$$

define a \mathbb{N} en $(\mathbb{Z}, +, *, 0, 1)$, es decir,

$$(\mathbb{Z}, +, *, 0, 1) \models \phi[n] \Leftrightarrow n \in \mathbb{N}.$$

Corolario 3.3. \mathbb{N} y \mathbb{Z} no son definibles en $(\mathbb{C}, +, *, 0, 1)$ ni en $(\mathbb{R}, +, ., 0, 1)$.

Corolario 3.4. $Th(\mathbb{C}, +, *, 0, 1, exp)$ es indecidible.

3. Definibilidad de \mathbb{N} en $(\mathbb{Q}, +, *, 0, 1)$

Es suficiente demostrar que \mathbb{Z} es definible en $(\mathbb{Q}, +, *, 0, 1)$.

3.1. Motivación

♦ El problema: En no hay forma aparente de extraer el nominador y denominador de un racional en primer orden. Inclusive si esto se puede hacer, no hay forma de hablar de primos si uno ni siquiera tiene a los naturales (eso es lo que está tratando de hacer!).

Teorema 4 (Gauss-Legendre). $n \in \mathbb{N}$ es suma de tres cuadrados racionales si y solo si n NO es de la forma $4^m(8k+7)$ $m,k \in \mathbb{N}$.

Teorema 5 (Julia Robinson). La fórmula

$$\phi(x): \exists x_1 \exists x_2 \exists x_3 (7x^2 + 2 = x_1^2 + x_2^2 + x_3^2)$$

define a los racionales cuyo denominador exacto no es divisible por 2, es decir, para $r \in \mathbb{Q}$, r = n/d con mcd(n, d) = 1

$$\mathcal{Q} \models \phi[r] \Leftrightarrow 2 \not\mid d.$$

Demostración. Existen $x_1, x_2, x_3 \in \mathbb{Q}$ tales que

$$7(n/d)^2 + 2 = x_1^2 + x_2^2 + x_3^2$$

si y solo si existen $x_1, x_2, x_3 \in \mathbb{Q}$ tales que

$$7n^2 + 2d^2 = x_1^2 + x_2^2 + x_3^2,$$

luego es suficiente ver que $7n^2 + 2d^2$ es suma de cuarto cuadrados racionales si y solo si d es impar.

 \diamond Si d es impar,

$$7n^2 + 2d^2 \equiv \pmod{8} \begin{cases} 1 & n \text{ impar} \\ 2, 6 & n \text{ par} \end{cases}$$

en ambos casos n no es de la forma $4^m(8k+7)$ $m,k\in\mathbb{N}$ pues todo entero de la forma $4^m(8k+7)\equiv 7,0,4 \pmod 8$ luego es suma de tres cuadrados racionales.

 \diamond Si d es par

 $7n^2 + 2d^2 \equiv 7 \pmod{8}$ luego no es suma de cuatro cuadrados racionales. \square

3.2. Los lemmas de Julia Robinson

♦ Los lemas fuertes enunciado.

Lema 6 (Julia Robinson). Sean $r \in \mathbb{Q}$ y p primo $p \equiv 3 \pmod 4$. Existen $x,y,z \in \mathbb{Q}$ tales que

$$x^2 + y^2 - nz^2 = nr^2 + 2$$

si y solo si el denominador exacto de r no es divisible por 2 ni por p.

Nota. $x^2 + y^2 - pz^2 = pr^2 + 2$ tiene solución en \mathbb{Q}^3 si y solo si $x^2 + y^2 - pz^2 = pn^2 + 2d^2$ tiene solución donde r = n/d. La demostración es similar a la del teorema 5, sin embargo, es necesario conocer que forma tienen los números representables en la forma $x^2 + y^2 - pz^2$.

Lema 7 (Julia Robinson). Sean $r \in \mathbb{Q}$ y p,q primos impares con $p \equiv 1 \pmod{4}$ y (q/p) = -1. Existen $x, y, z \in \mathbb{Q}$ tales que

$$x^2 + qy^2 - pz^2 = qpr^2 + 2$$

si y solo si el denominador exacto de r no es divisible por p ni por q.

Nota. Al igual que en el lema 6, es necesario conocer que forma tienen los números representables en la forma $x^2 + qy^2 - pz^2$.

3.3. La fórmula $\phi(x)$

Definiendo

$$\sigma(q, p, x) : \exists y \exists z \exists w (y^2 + qz^2 = qpx^2 + pw^2 + 2)$$

las hipótesis de existencia de los lemas 6 y 7 se pueden reescribir como

$$\mathbb{Q} \models \sigma[1, p, r] \quad y \quad \mathbb{Q} \models \sigma[q, p, r].$$

Note además que si

$$\mathbb{Q} \models \sigma[q, p, r], \sigma[1, p, r]$$

para todos los primos p,q entonces $r \in \mathbb{Z}$. Esto se deduce de los lemas y el hecho que para todo primo impar $p \equiv 1 \pmod{4}$ existe q primo impar tal que (q/p) = -1.

Uno esta tentado a pensar que la $\phi(x)$ buscada es precisamente

$$\phi(x): \forall p \forall q \ \sigma(q, p, x)$$

pero p,q pueden tomar cualquier valor racional y deben existir un $n\in\mathbb{N}$ $p,q\in\mathbb{Q}$ tales que

$$Q \not\models \sigma[q, p, n].$$

Sin embargo, definiendo

$$\phi(x): \forall p \forall q \Big\{ \Big[\sigma(q,p,0) \wedge \forall r \Big(\sigma(q,p,r) \rightarrow \sigma(q,p,r+1) \Big) \Big] \rightarrow \sigma(q,p,x) \Big\}$$

se obtiene la definición buscada.

Teorema 8. $\phi(x)$ define a \mathbb{Z} en $\mathcal{Q} = (\mathbb{Q}, +, *, 0, 1)$, es decir,

$$Q \models \phi[r] \Leftrightarrow r \in \mathbb{Z}.$$

Demostración. dem.

3.4. Formas cuadráticas sobre \mathbb{Q}

Al igual que con el teorema que define a los racionales cuyo denominador exacto no es divisible por 2, la demostración de los lemas 6 y 7 está estrechamente ligada con los números representables en $\mathbb Q$ por formas cuadráticas racionales diagonales.

 $\bf Definición.$ Sea D un anillo, una forma cuadrática diagonal sobre D es una función de la forma

$$f(x_1, \dots, x_n) = a_1 x_1^2 + a_2 x_2^2 + \dots + a_n x_n^2.$$

 $con a_1, a_2, \dots, a_n \in D.$

Teorema 9. Dada una forma cuadrática $f(x_1, ..., x_n)$ sobre un campo F de característica distinta de 2 y $a \in F$, la ecuación

$$f(x_1,\ldots,x_n)=a$$

tiene solución en F^n si y solo si $f - ax_{n+1}^2$ tiene solución no trivial en F^{n+1} .

Demostración. Si $f(x_1,\ldots,x_n)=a$ tiene solución entonces $f-ax_{n+1}^2=0$ tiene solución no trivial tomando $x_{n+1}=1$. Si $f-ax_{n+1}^2=0$ tiene una solución no trivial (r_1,\ldots,r_n,r_{n+1}) con $r_{n+1}\neq 0$ entonces $f(r_1/r_{n+1},\ldots,r_n/r_{n+1})=a$ es una solución no trivial. Si en la solución no trivial (r_1,\ldots,r_n,r_{n+1}) se tiene $r_{n+1}=0$ entonces $f(r_1,\ldots,r_n)=0$ donde se puede suponer $r_1\neq 0$. Tomando $\tau=a(4f(1,0,\ldots,0)r_1^2)^{-1}$ se tiene que $x_1=(1+\tau)r_1,\ x_k=(1-\tau)r_k,\ k=2,3,\ldots,n$ es una solución de f=a.

Así, el teorema de suma de tres cuadrados de Gauss se puede reescribir como

Teorema 10. Dado $n \in \mathbb{N}$,

$$x^2 + y^2 + z^2 - nw^2 = 0$$

tiene solución no trivial en \mathbb{Q} si y solo si n no es de la forma $4^m(8k+7)$ con $m,k\in\mathbb{N}$.

Este resultado, al igual que los que caracterizarán los números representables por las formas cuadráticas a las que se hace referencia en los lemas 6 y 7 son consecuencias del siguiente teorema.

Teorema 11 (Hasse-Minkowski). La ecuación

$$a_1 x_1^2 + \ldots + a_n x_n^2 = 0$$

con $a_1, \ldots, a_n \in \mathbb{Z}$ tiene solución no trivial en \mathbb{Q}^n si y solo si tiene solución no trivial ni divisible por p en \mathbb{Z} módulo p^n para todo primo p y todo $n \ge 1$.

Que en realidad fue enunciado y demostrado por Hasse en la siguiente forma un poco más general.

Teorema 12 (Hasse-Minkowski, enunciado de Hasse). Sea $f(x_1, \ldots, x_n)$ una forma cuadratica sobre \mathbb{Q} . Entonces

$$f(x_1,\ldots,x_n)=0$$

tiene solución no trivial en \mathbb{Q} si y solo si tiene solución no trivial en \mathbb{R} y en \mathbb{Q}_p (el campo de los números p-adicos) para todo primo p.

El siguiente teorema (sin demostración ni comentarios sobre esta), caracteriza completamente estas formas en \mathbb{Q}_p en función de sus coeficientes.

Teorema 13. Dada una forma cuadrática $f(x_1, \ldots, x_n)$ sobre \mathbb{Q}_p con determinante $d \neq 0$, la ecuación

$$f(x_1,\ldots,x_n)=0$$

tiene solución no trivial si y solo si

 $\diamond n = 2 : -d$ es un cuadrado (en \mathbb{Q}_p).

 $\diamond n = 3 : c_p(f) = 1.$

 $\diamond n = 4 : c_p(f) = 1$ cuando d es un cuadrado.

 $\diamond n \geq 5.$

Nota. .

Si d=0, existe una solución no trivial.

 $c_p(f)$ es una función de los coeficientes de f en $\{-1,1\}$.

Los siguientes lemas caracterizan a los enteros representables por las formas cuadráticas que se mencionan en los lemas 6 y 7.

Lema 14. Sean $n \in \mathbb{N}$, $n \neq 0$ y p primo $p \equiv 3 \pmod{4}$. Existen $x, y, z \in \mathbb{Q}$ tales que

$$x^2 + y^2 - pz^2 = n$$

si y solo si al escribir n en la forma $n=st^2$ con s "squarefree" se cumplen las dos condiciones siguientes

a. $s \not\equiv p \pmod{8}$

b. si s = pk entonces $(k \mid p) = -1$.

Lema 15. Sean $n \in \mathbb{N}$, $n \neq 0$ y p,q primes impares con $p \equiv 1 \pmod{4}$ y (q/p) = -1. Existen $x, y, z \in \mathbb{Q}$ tales que

$$x^2 + qy^2 - pz^2 = n$$

si y solo si al escribir n en la forma $n=st^2$ con s "squarefree" se cumplen las dos condiciones siguientes

a. Si s = pk entonces $(k \mid p) = 1$.

b. Si s = qk entonces $(k \mid q) = 1$.

En los lemas 14 y 15 es suficiente que $x^2+y^2-pz^2-nw^2=0$ y $x^2+qy^2-pz^2-nw^2=0$ tienen soluciones no triviales en $\mathbb Q$ respectivamente.

Así, por el teorema de Hasse-Minkowski, dado que ambas formas ecuaciones tienen soluciones no triviales en \mathbb{R} , es suficiente ver bajo que condiciones sobre n existen soluciones no triviales (mod p^k) para todo primo p y $k \in \mathbb{N}$.

Los siguientes teoremas generales, que se demuestran con teoría elemental de números le permiten a uno demostrar los lemas 14 y 15, (no se si mencionarlos en la exposición).

Definición. Sea $f(x_1, ..., x_n)$ una forma cuadrática sobre \mathbb{Z} . Se dice que f representa cero módulo p^n si

$$f(x_1,\ldots,x_n)=0$$

tiene solución no trivial ni divisible por p en $\mathbb Z$ módulo $p^n.$

Teorema 16. Si p es un primo impar y $a,b,c,d\in\mathbb{N}$ con $p\nmid abcd$ entonces

$$\diamond ax^2 + by^2 + cz^2$$

representa cero módulo p^n para todo n y las siguientes representan cero módulo p^n para todo n si y solo si

$$\begin{array}{l} \diamond \quad ax^2 + by^2 : & (-ab \,|\, p) = 1. \\ \diamond \quad ax^2 + by^2 + pcz^2 + pdw^2 : & (-ab \,|\, p) = 1 \text{ o } (-cd \,|\, p) = 1. \end{array}$$

Teorema 17. Si $a, b, c, d \in \mathbb{N}$ son impares entonces

$$\diamond ax^2 + by^2 + cz^2 + 2dw^2$$

representa cero módulo 2^n para todo n y las siguientes representan cero módulo 2^n para todo n excepto cuando