Week 2 Project

Question 1

For conditional distribution of the Multivariate Normal, we first get the partition X, μ , and Σ :

$$\begin{split} X &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y \\ \chi \end{bmatrix} \\ \mu &= \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} -0.0223 \\ -0.1405 \end{bmatrix} \\ \Sigma &= \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} = \begin{bmatrix} 0.8989 & 0.5629 \\ 0.5629 & 1.3152 \end{bmatrix} \end{split}$$

Therefore, given $x_2 = a$, then $x_1 \sim N(\bar{\mu}, \bar{\Sigma})$, where $\bar{\mu} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(a - \mu_2) = 0.4280 * a + 0.0379$.

Then we run the OLS estimation, and get the result $\hat{y} = 0.4280 * x + 0.0379$

OLS Regression Results							
Dep. Variable:			 V	R-squa	======== ared:		0.268
Model:				Adj. R-squared:			0.261
Method:		Least Squares		F-statistic:			35.89
Date:		Thu, 13 Jan 2022		Prob (F-statistic):):	3.47e-08
Time:		17:51:31		Log-Likelihood:			-120.46
No. Observations:			100	AIC:			244.9
Df Residuals:			98	BIC:			250.1
Df Model:			1				
Covariance Type	e: 	nonro	bust				
	coef	std err		t	P> t	[0.025	0.975]
const	0.0379	0.082		0.461	0.646	-0.125	0.201
x	0.4280	0.071		5.990	0.000	0.286	0.570
Omnibus:		5	.101	Durbir	n-Watson:		2.006
Prob(Omnibus):		0	.078	Jarque	e-Bera (JB):		2.716
Skew:		0	.145				0.257
Kurtosis:		2	.246	Cond.	No.		1.20

We can see that the coefficients are the same between two methods. The values are same because the linear regression is based on the conditional distribution, and the predicted value of y is calculated with a given x.

Question 2

Running OLS regression, we get the result $\hat{y} = 0.4280 * x + 0.0379$, and the distribution of the error term is similar to the normal distribution.

Then we define the MLE function and fit the data with MLE given the assumption of normality.

```
fun: 120.46049859542816
hess_inv: <3x3 LbfgsInvHessProduct with dtype=float64>
    jac: array([ 3.12638804e-05, -3.12638804e-05, 9.94759825e-06])
message: 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH'
    nfev: 56
    nit: 8
    njev: 14
    status: 0
success: True
    x: array([0.03787704, 0.42800357, 0.80707917])</pre>
```

The result is same as the OLS result, which means that MLE fits the assumption of normality.

Then we create a random T distribution with 99 degree of freedom and 100 samples, and we fit it with MLE method.

```
t.fit(t.rvs(df=99, size=100, loc=0, scale=1))
(1721939.2535913307, 0.042192545269869444, 1.0139618964399268)
```

The result shows that MLE does not fit in the assumption of a T distribution of the errors.

Then we compare the moments of the regression with the normal distribution, we get mean = -0.141, standard deviation = 1.141, skewness = 0.145, kurtosis = 2.246, which are close to the standard normal.

If the normality assumption breaks, $E[y_i] = \beta_0 + \beta_1 x_i + \varepsilon_i$ will be biased because $E[\varepsilon_i] \neq 0$, which will make the estimation invalid.

Question 3

When doing estimation using time series, we need to consider ACF and PACF together. For AR process, we expect ACF decrease gradually while the PACF should have a sharp drop after p significant lags. On the other hand, MA has the opposite features with ACF has a sharp drop a certain q number of lags while PACF decrease gradually.

We can distinguish AR and MA by looking at the place where a sharp drop happens and find the appropriate model by counting how many time-lag pass when the sharp drop happens. (TowardDataScience, 2020)

References

ThoughtPartnerforData (2020, August 13). *Identifying AR and Ma terms using ACF and PACF plots in time series forecasting*. Medium. Retrieved January 14, 2022, from https://towardsdatascience.com/identifying-ar-and-ma-terms-using-acf-and-pacf-plots-in-time-series-forecasting-ccb9fd073db8