## Regresión Lineal Multivariable

#### Temas del día

- 1. Álgebra lineal
- 2. Regresión Lineal Multivariable
  - a. Regresión polinomial
  - b. Parámetros analíticamente
- 3. Clasificación
  - a. Regresión Logística
  - b. Clasificación multiclase
- 4. Overfitting y regularización

# Álgebra Lineal

#### Matriz

• Arreglo rectangular de números

| $\begin{bmatrix} 14 \\ 3 \\ 8 \end{bmatrix}$ | 7  | ſ | 1 | 2 | 3] |
|----------------------------------------------|----|---|---|---|----|
| 3                                            | 2  |   |   | 5 |    |
| 8                                            | 14 |   | 4 | Э | ο  |

Dimensiones: número de filas x número de columnas

#### Elementos de una matriz

A<sub>ii</sub> = entrada de la fila i y la columna j

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

#### Vector

- Matrix de nx1
- $y_i$  = elemento i

- A veces usamos índice 1 y a veces índice 0
  - En ML se suele usar vectores con índice 0

- Matrices se declaran en mayúscula: A, B
- Vectores y escalares en miníscula: a, b, x



#### Suma de matrices

- Deben tener las mismas dimensiones
- Se suma por elemento

$$\begin{bmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 2 & 1 \\ -5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 4 & 4 \\ -4 & 2 \end{bmatrix}$$

## Multiplicación con escalar

$$3 \times \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 6 & 15 \end{bmatrix}$$

#### Multiplicación Vector con Matriz

$$\begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} (1)(1) + (3)(5)) \\ (4)(1) + (0)(5)) \\ (2)(1) + (1)(5)) \end{bmatrix} = \begin{bmatrix} 16 \\ 4 \\ 7 \end{bmatrix}$$

- Para conseguir y<sub>i</sub>, multiplicar la fila i de A con los elementos del vector x, y agregar esos resultados.
- Si A tiene dimensiones m x n, y x tiene dimensiones n x 1, y tiene dimensiones m x 1.

### Aplicación

- Tamaños de las casas: [2104, 1416, 1534, 852]
- Hipótesis:  $h_{\theta}(x) = -40 + 0.25x$
- Predicción: Matriz de Datos x parámetros

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 1 & 852 \end{bmatrix} \times \begin{bmatrix} -40 \\ 0.25 \end{bmatrix} = \begin{bmatrix} h_{\theta}(2104) \\ h_{\theta}(1416) \\ h_{\theta}(1539) \\ h_{\theta}(852) \end{bmatrix}$$

### Multiplicación Matriz por Matriz (A x B = C)

- La columna i de la matriz C se obtiene por multiplicar A con la columna i de B.
- Se puede ver como descomponer B en sus columnas.

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} append \begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}] = \begin{bmatrix} 11 & 10 \\ 9 & 14 \end{bmatrix}$$

#### Aplicación

- Tamaños de las casas: [2104, 1416, 1534, 852]
- Varias hipótesis
  - Hipótesis:  $h_{\theta}(x) = -40 + 0.25x$
  - Hipótesis:  $h_{\theta}(x) = 200 + 0.1x$
  - Hipótesis:  $h_{\theta}(x) = -150 + 0.4x$

$$\begin{bmatrix} 1 & 2104 \\ 1 & 1416 \\ 1 & 1534 \\ 1 & 852 \end{bmatrix} \times \begin{bmatrix} -40 & 200 & -150 \\ 0.25 & 0.1 & 0.4 \end{bmatrix} = \begin{bmatrix} 486 & 410 & 692 \\ 314 & 342 & 416 \\ 344 & 353 & 464 \\ 173 & 285 & 191 \end{bmatrix}$$

### Propiedades de multiplicación

- No es conmutativa A x B != B x A
- Es asociativa  $A \times B \times C = (A \times B) \times C = A \times (B \times C)$
- Matriz identidad
  - $\circ$  1 es la identidad de los reales: 1 x 7 = 7
  - o I o I<sub>nyn</sub> es la de matrices
- $\bullet$  A x I = I x A = A

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

#### Matriz inversa

- En los reales  $3 * (\frac{1}{3}) = 1$ 
  - No todos tienen inverso (0)
- Si A es una matriz cuadrada y tiene inversa AA<sup>-1</sup> = A<sup>-1</sup>A = I

$$\begin{bmatrix} 3 & 4 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} 0.4 & -0.1 \\ -0.05 & 0.075 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

### Matriz transpuesta

• Si A es una matriz  $\mathbf{m} \times \mathbf{n}$ , y definimos  $B = A^T$ , entonces B es una matriz  $\mathbf{m} \times \mathbf{m}$  y  $B_{ij} = A_{ji}$ 

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix} A^T = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix}$$

## Regresión Lineal con multiples variables

## Regresión Lineal

#### **Supervised Learning: Regression**

| Observation # | Years of Higher<br>Education (X) | Income<br>(Y) |  |
|---------------|----------------------------------|---------------|--|
| 1             | 4                                | \$80,000      |  |
| 2             | 5                                | \$91,500      |  |
| 3             | 0                                | \$42,000      |  |
| 4             | 2                                | \$55,000      |  |
|               |                                  |               |  |
| N             | 6                                | \$100,000     |  |

training set

test set

| 1 | 4 | ??? |
|---|---|-----|
| 2 | 6 | ??? |

#### Loss Function (1)

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( \hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left( h_{\theta}(x_i) - y_i \right)^2$$

- Objetivo: Elegir  $\theta_0$  y  $\theta_1$  de manera que  $h_{\theta}(x)$  se acerque a la y real en nuestros ejemplos de entrenamiento (x,y), es decir, que minimicen la función de pérdida J.
- En este caso usamos Mean Squared Error, pero hay otras.

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

#### Gradient Descent



Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

## Gradient Descent para MSE

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( \hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left( h_{\theta}(x_i) - y_i \right)^2$$
$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = -\frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$
$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = -\frac{1}{m} \cdot x^{(i)} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

### Algoritmo de Gradient Descent

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

## Antes Ahora

| Tamaño (x) | Costo (y) |
|------------|-----------|
| 2100       | 400       |
| 1416       | 232       |
|            |           |

| Tamaño<br>x1 | # cuartos<br>x2 | pisos<br>x3 | Edad<br>x4 | Costo (y) |
|--------------|-----------------|-------------|------------|-----------|
| 2104         | 5               | 1           | 45         | 460       |
| 1416         | 3               | 2           | 40         | 232       |

#### Conceptos

#### De antes

- m = # de training samples
- x = variables de entrada o features
- y = variable de salida
- (x, y) un ejemplo de entrenamiento
- $(x^{(i)}, y^{(i)})$   $i^{th}$  training sample

#### Adicionalmente

- o n = # de features
- o x<sup>(i)</sup>=entradas (features) del sample o ejemplo i
- o  $x_{j}^{(i)}$  = valor del feature j en el sample o ejemplo i

| Tamaño<br>x1 | # cuartos<br>x2 | pisos<br>x3 | Edad<br>x4 | Costo (y) |
|--------------|-----------------|-------------|------------|-----------|
| 2104         | 5               | 1           | 45         | 460       |
| 1416         | 3               | 2           | 40         | 232       |

$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

$$x_3^{(2)} = 2$$

Antes Ahora

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
  $h_{\theta}(x) = \theta_0 + \theta_0 x_1 + \theta_2 x_2 + ... + \theta_n x_n$ 

## Hipótesis

$$h_{\theta}(x) = \theta_0 + \theta_0 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• Definimos  $x_0$  como 1 ( $x_0 = 1$ )

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$$

Por lo tanto, usando multiplicación de matrices

$$h_{\theta} = \theta^T x$$

## Hipótesis

$$h_{\theta}(x) = \theta_0 + \theta_0 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• Definimos  $x_0$  como 1 ( $x_0 = 1$ )

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$$

Por lo tanto, usando multiplicación de matrices

$$h_{\theta}(x) = \theta^T x$$
 
$$\begin{bmatrix} \theta_0 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ \dots \\ x_n \end{bmatrix}$$

#### Gradient Descent

- Hipótesis  $h_{\theta}(x) = \theta^T x$
- Parámetros Θ vector n+1
- Función de costo?
- Gradient Descent?

#### Antes

### Ahora

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( \hat{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^{m} \left( h_{\theta}(x_i) - y_i \right)^2 \quad J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

#### Antes

#### Ahora

$$J(\theta_0,\theta_1) = \frac{1}{2m} \sum_{i=1}^m \left( \mathring{y}_i - y_i \right)^2 = \frac{1}{2m} \sum_{i=1}^m \left( h_\theta(x_i) - y_i \right)^2 \quad J(\theta_0,\theta_1,\dots,\theta_n) = \frac{1}{2m} \sum_{i=1}^m \left( h_\theta(x^{(i)}) - y^{(i)} \right)^2$$
 Repeat  $\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right\}$  
$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 (simultaneously update  $\theta_0,\theta_1$ )  $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$  (simultaneously update  $\theta_j$  for  $j = 0,\dots,n$ )

Repeat {

 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update  $heta_j$  for j = 0, ..., n

## ¡Listo!

Idea: Asegurarse que los features tengan la misma escala

```
x_1 = tamaño (0-500 metros)
```

 $x_2 = \#$  de cuartos (máximo 5)

- Esto hace que Gradient Descent se tarde más tiempo en encontrar un mínimo
- ¿Qué pueden hacer?

 $x_1$  = tamaño (0-500 metros)

 $x_2 = \#$  de cuartos

• Los convertimos a la misma escala (0 a 1)

$$x_1 = \frac{tamano}{2000}x_2 = \frac{numcuartos}{5}$$

- No tienen que tener misma escala, pero se sugiere que sea similar
- El rango más aceptado es de -1 a 1
  - Pero que los números no sean demasiado pequeños tampoco (0.00001)

#### Mean Normalisation

- Idea: Hacer que el promedio sea 0
- No se aplica a  $X_0$  porque su valor es 1
- Reemplazamos los valores de los features

$$X_i = X_i - \mu_i$$

# Técnicas de hacer feature scaling

Reescalar 
$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Estandarización

$$x'=rac{x-ar{x}}{\sigma}$$

Mean Normalisation

$$x' = \frac{x - \text{mean}(x)}{\text{max}(x) - \text{min}(x)}$$

# ¿Por qué?

- Los parámetros descienden rápidamente en rangos bajos y lentamente en rangos altos
  - Oscila ineficientemente para llegar al óptimo si las variables no están en escalas similares

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Repeat until convergence {

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

- Nosotros definimos el learning rate.
- Debe ser pequeño
- ¿Cómo graficamos el error vs número de iteraciones?

- ¿Cómo graficamos el error vs número de iteraciones?
- El error J(θ) debe bajar en cada iteración
- Podemos agregar pruebas de convergencia automática
  - Si J(θ) disminuye menos que ε en una iteración
- ¿Qué pasa si el error aumenta en las iteraciones?

- ¿Cómo graficamos el error vs número de iteraciones?
- El error J(θ) debe bajar en cada iteración
- Podemos agregar pruebas de convergencia automática
  - Si J(θ) disminuye menos que ε en una iteración
- ¿Qué pasa si el error aumenta en las iteraciones?



- ¿Cómo graficamos el error vs número de iteraciones?
- El error J(θ) debe bajar en cada iteración
- Podemos agregar pruebas de convergencia automática
  - Si J(θ) disminuye menos que ε en una iteración
- Esto es lo que nos asegura un learning rate pequeño
  - Si es muy pequeño, el algoritmo es lento
  - Converge lento

# Para definir Learning Rate

• Prueba un rango de valores: 0.001, 0.003, 0.01, 0.03. 0.1, 0.3

 Grafica la pérdida vs learning rate, y revisa hasta iteración 100 como máximo en problemas sencillos.

Agrega pruebas de convergencia

 Nota en cuanto a número de iteraciones: varía mucho y no hay reglas fijas. Algunos problemas requieren 10 y otros 3,000,000.

# Regresión Polinomial

### Regresión Polinomial

- ¿Cómo hacemos si nuestros datos no se comportan de manera lineal?
- Hay trucos para que funcione
- El más sencillo y común es el siguiente.

Feature 1 - tamaño

Feature 2 - (tamaño)<sup>2</sup>

Feature 3 - (tamaño)<sup>3</sup>

Es necesario hacer feature scaling

# Calculando los Parámetros Analíticamente

### Ecuación normal

Método para resolver θ analíticamente.

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

¿Cómo podemos calcular el mínimo de una función?

### Ecuación normal

Método para resolver θ analíticamente.

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- ¿Cómo podemos calcular el mínimo de una función?
  - Cuando su derivada es 0 para cada j

$$\frac{\delta}{\delta\theta_i}J(\Theta) = \dots = 0$$

### Un ejemplo donde m=4

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

$$y = \begin{vmatrix} 460 \\ 232 \\ 315 \\ 178 \end{vmatrix}$$

- X se llama matriz de diseño en este caso
- ¿Cómo se crea?

#### Matriz de diseño

- x<sup>(i)</sup>=entradas (features) del sample o ejemplo i
- $x_{j}^{(i)}$  = valor del feature j en el sample o ejemplo i

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ \dots \\ x_n^{(i)} \end{bmatrix} \qquad X = \begin{bmatrix} \dots (x^i)^T \dots \\ \dots \\ \dots (x^m)^T \dots \end{bmatrix} \qquad X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

### Calculamos analíticamente

$$\Theta = (X^T X)^{-1} X^T y$$

### Gradient Descent

- Necesitas elegir learning rate
- Necesita iterar

#### Ecuación Normal

- No necesitas learning rate
- No se necesita iterar

#### Gradient Descent

- Necesitas elegir learning rate
- Necesita iterar
- Funciona muy bien cuando n es largo (muchos features)
  - Algoritmo O(n<sup>2</sup>)
- Funciona bien para muchas técnicas de ML
  - Regresión Logística
  - Redes Neuronales

#### Ecuación Normal

- No necesitas learning rate
- No se necesita iterar
- Funciona mal cuando n es largo (muchos features)
  - Algoritmo O(n³)
  - Calcular inversas es muy costoso computacionalmente

### Ecuación normal $\Theta = (X^T X)^{-1} X^T y$

• ¿Qué pasa si X<sup>T</sup>X no es invertible?

- 1. Features redundantes (crea dependencia linear)
  - a. Si un feature es el tamaño en metros y el otro en pies

- 2. Si hay demasiados features (m < n)
  - a. Significa que no hay suficientes datos.
  - b. Podemos eliminar features o utilizar regularización