Project ID : PNT2022TMID38737

Team Leader : Ajai B
Team Members : Karan L
Harish T

Prem Kumar B

Project Title : Efficient Water Quality Analysis and Prediction using machine Learning

Literature Survey

Paper 1:

Title	: Efficient Water Quality Prediction Using Supervised Machine
	Learning
Author	: Umair Ahmed, Rafia Mumtaz, Hirra Anwar, Asad A. Shah, Rabia
	Irfan and José García-Nieto.
Journal	: http://www.mdpi.com/journal/water
Year	: 2019
Methodology	: Multilayer preceptron
Scope	: They research and explored an alternative method of machine
	learning to predict water quality using minimal and easily
	available water quality parameters. The data used to conduct the
	study were acquired from PCRWR and contained 663 samples
	from 12 different sources of Rawal Lake, Pakistan. A set of
	representative supervised machine learning algorithms were
	employed to estimate WQI. This showed that polynomial
	regression with a degree of 2, and gradient boosting, with a
	learning rate of 0.1, outperformed other regression algorithms by
	predicting WQI most efficiently, while MLP with a
	configuration of (3, 7) outperformed other classification
	algorithms by classifying WQC most efficiently.

Paper 2:

Title	: Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony–Backpropagation Neural Network
Author	: Siyu chen, Guohua Fang, Xianfeng Huang and Yuhong Zhang.
Journal	: http://www.mdpi.com/journal/water
Year	: 2018
Methodology	: Improved artificial bee colony (IABC) algorithm and BP nerural networks model.
Scope	: They used IABC-BP model which can increase the forecasting performance of the ABC-BP by searching for the best value of each connection weight and threshold has better network stability, higher learning speed, and stronger approximation ability. In a word, the IABC-BP model has been improved effectively, and it is superior to ABC-BP in all aspects and more suitable for water quality prediction.

Paper 3:

Title	: Design and implementation of a hybrid model based on two-
	layer decomposition method coupled with extreme learning
	machines to support real-time environmental monitoring of water
	quality parameters
Author	: Elham Fijani, Rahim Barzegar, Ravinesh Deo, Evangelos Tziritis,
	Konstantinos Skordas
Journal	: 2019 Elsevier, Science of The Total Environment
Year	: 2019
Methodology	: Complete ensemble empirical mode decomposition algorithm
	with adaptive noise (CEEMDAN) and the variational mode
	decomposition (VMD) algorithm coupled with extreme learning
	machines (ELM).
Scope	: They developed methodology demonstrates the robustness of
	the two-phase VMD-CEEMDAN-ELM model in identifying and
	analyzing critical water quality parameters with a limited set of
	model construction data over daily horizons, and thus, to actively
	support environmental monitoring tasks, especially in case of
	high-frequency, and relatively complex, real-time datasets.

Paper 4:

Title	: Predicting and Analyzing Water Quality using Machine Learning.
Author	: Yafra Khan and Chai Soo See
Journal	: 2016 IEEE Long Island Systems, Applications and Technology
	Conference (LISAT).
Year	: 2016
Methodology	: Comprehensive methodology, Artificial Neural Network
Scope	: They analyzes and forecasts the values of water quality parameters, in order to determine the concentration of Chlorophyll, Dissolved Oxygen, Turbidity and Specific Conductance and analyzes the results.

Paper 5:

Title	: An application of different artificial intelligences
	techniques for water quality prediction
Author	: A. Najah, A. El-Shafie, O. A. Karim and Amr H. El-Shafie
Journal	: 2012 Springer Link, Neural Computing and Applications
Year	: 2012
Methodology	: Multilayer perceptron neural network model MLP-NN
Scope	: They used three different model techniques,
	including LRM, multilayer perceptron neural networks (MLP-NN),
	and RBF-NN, were performed to identify the optimal prediction for
	water quality parameters along the Johor River basin on two
	different levels of water bodies.
	This manuscript focuses on critical parameters that affect water
	quality due to the urbanization around the rivers. The studied
	parameters were EC, total dissolved solids (T.D. solids), and
	turbidity. The MLP-NN outperformed the conventional model LRM.
	This result shows that it is difficult to produce a reliable model with
	conventional modeling approaches.

Paper 6:

Title	: The Lake Water Bloom Intelligent Prediction Method and Water
	Quality Remote Monitoring System.
Author	: Wang xiaoyi, Dai jun, Liu zaiwen, Zhao xiaoping, Dong suoqi, Zhao
	zhiyao, Zhang miao.
Journal	: 2010 Sixth International Conference on Natural Computation.
Year	: 2010
Methodology	: Grey-BP neural network
Scope	: They combined of automatic remote water quality monitoring and
	water bloom prediction model, it is automated and intelligent for
	water quality monitoring, data analysis, water bloom prediction and
	results publishing through Web, provides valuable and efficient
	references to real-time monitoring of water quality and water
	bloom early warning, so as to provide decision-making reference for
	the environmental protection department.

Paper 7:

Title	: An application of different artificial intelligences
	techniques for water quality prediction
Author	: A. Najah, A. El-Shafie, O. A. Karim and Amr H. El-Shafie
Journal	: 2012 Springer Link, Neural Computing and Applications
Year	: 2012
Methodology	: Multilayer perceptron neural network model MLP-NN
Scope	: They used three different model techniques,
	including LRM, multilayer perceptron neural networks (MLP-NN),
	and RBF-NN, were performed to identify the optimal prediction for
	water quality parameters along the Johor River basin on two
	different levels of water bodies.
	This manuscript focuses on critical parameters that affect water
	quality due to the urbanization around the rivers. The studied
	parameters were EC, total dissolved solids (T.D. solids), and
	turbidity. The MLP-NN outperformed the conventional model LRM.
	This result shows that it is difficult to produce a reliable model with
	conventional modeling approaches.