1

ASSIGNMENT-2

EE24BTECH11043 - Murra Rajesh Kumar Reddy

- 1) A is targeting B, B and C are targeting to A. Probability of hitting the target by A, B and C are $\frac{2}{3}$, $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If A is hit then find the probability that B hits the target and C does not. (2003 - 2 Marks)
- 2) A and B are two independent events. C is event in which exactly one of A or B occurs. Prove that $\Pr(C) \ge \Pr(A \cup B) \Pr(\overline{A} \cap \overline{B})$ (2004-2 Marks)
- 3) A box contains 12 red and 6 white balls. Balls are drawn from the box one at a time without replacement. If in 6 draws there are at least 4 white balls, find the probability that exactly one white drawn in the next two draws. (binomial coefficients can be left as such) (2004-4 Marks)
- 4) A person goes to office either by car, scooter, bus or train the probability of which being $\frac{1}{7}$, $\frac{3}{7}$, $\frac{3}{7}$, $\frac{2}{7}$, and $\frac{1}{7}$ respectively. Probability that he reachs office late, ife takes car, scooter, bus or train is $\frac{2}{9}$, $\frac{1}{9}$, and $\frac{1}{9}$ respectively. Goven that he reached office in time, then what is the probability that he travelled by (2005-2 Marks) a car.

G Comprehension Based Questions

PASSAGE-1

There are n urns, each of these contain n+1 balls. The i^{th} urn contains i white balls and (n+1-i) red balls. Let u_1 be the event of selecting i^{th} urn, $i = 1, 2, 3 \dots, n$ and w the event of getting a white ball.

- 1) If $Pr(u_i) \propto i$, where i = 1, 2, 3, ..., n, then $\lim n \to \infty Pr(w) =$ (2006-5M,-2)
 - a) 1

 - b) $\frac{2}{3}$ c) $\frac{3}{4}$ d) $\frac{1}{4}$
- 2) If $Pr(u_i) = c$, (a constant) then $Pr(\frac{u_n}{w}) =$ (2006-5M,-2)

 - $\begin{array}{c}
 \frac{2}{n+1} \\
 0) \frac{1}{n+1} \\
 0) \frac{n}{n+1} \\
 1) \frac{1}{2}
 \end{array}$
- 3) Let $Pr(u_i) = gn$, if n is even and E denotes the event of choosing even numbered urn, then the value of $Pr\left(\frac{w}{E}\right)$ is (2006-5M,-2)

PASSAGE-2

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required. (2009)

- 4) The probability that X = 3 equals

- c) $\frac{5}{36}$ d) $\frac{125}{216}$
- 5) The probability that $X \ge 3$ equals

 - a) $\frac{125}{216}$ b) $\frac{25}{216}$ c) $\frac{5}{36}$ d) $\frac{25}{36}$
- 6) The conditional probability that $X \ge 6$ given X > 3 equals

 - a) $\frac{125}{216}$ b) $\frac{25}{216}$ c) $\frac{5}{36}$ d) $\frac{25}{36}$

PASSAGE-3

Let U_1 and U_2 be two urns such that U_1 contains 3 white and 2 red balls, and U_2 contains only 1 white ball. A fair coin is tossed. If head appears then 1 ball is drawn at random from U_1 and put into U_2 . However, if tail appears then 2 balls are drawn at random from U_1 and put into U_2 . Now 1 ball is drawn at random from U_2 . (2011)

- 7) The probability of the drawn ball from U_2 being white is
 - a)
 - b)
 - c)
 - d)
- 8) Given that the drawn ball from U_2 is white, the probability that head appeared on the coin is

 - a) $\frac{17}{23}$ b) $\frac{11}{23}$ c) $\frac{15}{23}$ d) $\frac{12}{23}$