المحتويات

1		المسائل
1	التحليل	I
1	1-I مسألة رقم 01	
2	2- I مسألة رقم 02	
3	3- I مسألة رقم 33	
4	4- I مسألة رقم 44	
5	5- I مسألة رقم 50	
6	6- I مسألة رقم 6	
7	7- I مسألة رقم 77	
8	8- I مسألة رقم 80	
9	9- I مسألة رقم 90	
11	10- I مسألة رقم 10	
13	الأعداد العقدية	II
13	1- II مسأَّلة رقم 01	
13	2- II مسألة رقم 2 مسألة 2 مسألة رقم 2 مسأ	
14	ا -3 مسألة رقم 30	
15	4- II مسألة رقم 44	
15	5- II مسألة رقم 50	
16	6- II مسألة رقم 66	
17	7- II مسألة رقم 77	
17	8- II همسألة رقم 80	
18	9- II و مسألة رقم 90	
19	10- II مسألة رقم 10	
20	البنيات الجبرية	III
20	1- III مسأَّلة رقم 10	
20	2- III مسألة رقمٰ 2 مسألة رقمٰ	
21	3- III مسألة رقم ٰ 3 مسألة رقم ٰ 3 مسألة رقم ٰ	
22	4- III مسألة رقم d	
23	5- III حسألة رقم 50	
23	6- III -6 مسألة رقم 06	
2.4	7- III مسألة رقم 70 م م م م م م م م م م م م م م م م م م	

24	•	, .	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	08	قم	۽ ر	سأله	4	8-	- III	
25	•	,	•	•	•	•	٠	٠	٠	•		•	•	•	•	٠		٠				•	•			•	•	•	•	•	•	•	٠	•	•	٠	09	ِقم	<u>ت</u> ر	سأله	4	9.	- III	
25		,	•			•	٠	٠	٠	•		•	•	•	•	•		•						٠	٠			•	•	•		•		•	•	٠	10	ِقم	ة ر	سأله	4	10-	- III	
27	•			•	•	•	•			•	•	•	•		•	•		•		•	•	•	•			•	•	•	•	•	•	•	•	•	•	•		•	•		ت	ابياد	الحس	IV
27	•	,	٠	•	•	•	٠	٠	٠	٠	•	•	•	٠	•	٠	٠	٠	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•	٠	•	•	٠	01	ِقم	ة ر	سأله	4	1.	- IV	
27																																					02							
28																																					03							
29																																					04						- IV	
29	•	,	٠	•	•	٠	٠	٠	٠	٠		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	٠	05	ِقم	<u>ت</u> ر	سأله	4	5	- IV	
30																																					06					6	- IV	
30																																					07					7-	- IV	
31		,	•	•		•	٠	٠	٠	٠		٠	•	•	•	•		•				•	•			•	•	•	•	•	•	•		•	•	٠	08	ِقم	<u>ت</u> ر	سأله	4	8	- IV	
31	•	,	٠	•	•	٠	٠	٠	٠	٠		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	٠	09	ِقم	<u>ت</u> ر	سأله	4	9.	- IV	
31		, .	•		٠			٠	٠	٠																								٠			10	قہ	, 7	سأله	A	10-	- IV	

I التحليا

1 - I مسألة رقم 01

الجزء الأول:

.
$$(\forall x \in]0,1[\cup]1,+\infty[), \frac{x^2-x}{2\ln(x)} \leq \int_x^{x^2} \frac{dt}{\ln(t)} \leq \frac{x^2-x}{\ln(x)}$$
 :1.

يلى: $[0,1[\cup]1,+\infty[$ كما يلى: المعرفة على المجال $[0,1[\cup]1,+\infty[$

•
$$\varphi(1)=1$$
 و $\varphi(0)=0$ و $\varphi(x)=\frac{x-1}{\ln(x)}$

ا) بین أن $(\forall x \in]0,1[\cup]1,+\infty[),x-1-x\ln(x)<0$ ،ثم استنتج رتابة الدالة φ علی المجال $[0,+\infty[$ ،

(ب) باستعمال رتابة الدالة φ ، بين أن:

•
$$(\forall x \in]0, 1[\cup]1, +\infty[), x-1 \le \int_{x}^{x^{2}} \frac{\varphi(t)}{\ln(t)} dt \le \frac{x^{2}-1}{2}$$

الجزء الثاني:

نعتبر الدالة φ المعرفة على المجال $0,1[\cup]1,+\infty[$ كما يلي:

.
$$f(0) = f(1) = 0$$
 و $f(x) = -\ln(x+1) + \int_{x}^{x^{2}} \frac{dt}{\ln(t)}$

- 1. بين أن الدالة f متصلة و قابلة للاشتقاق على اليمين في الصفر f
 - $\cdot f$ ادرس الفروع اللانهائية لمنحنى الدالة f
- ، $(\forall x \in]0,1[\cup]1,+\infty[),\int_x^{x^2} \frac{\varphi(t)}{\ln(t)}dt = f(x) + \ln\left(\frac{x+1}{2}\right)$:ن الدالة f متصلة و قابلة للاشتقاق في النقطة ذات الأفصول f متصلة و قابلة للاشتقاق في النقطة ذات الأفصول
- (ميكنك استعمال مبرهنة رول) بين أنه يوجد α من الجحال [0,1[بحيث [0,1] بين أنه يوجد [0,1]

- $oldsymbol{0}$. استنتج رتابة الدالة f على المجال .5
- .6 نعتبر الدالة ψ المعرفة على المجال $0,1[\cup]1,+\infty[$ كما يلى:

.
$$\psi(0)=\psi(1)=1$$
 و $\psi(x)=(x+1)\exp\left(-\int_x^{x^2}\frac{dt}{\ln(t)}\right)$

$$(\forall x \in [0, +\infty[), \psi(x) = \exp(-f(x)))$$
 (ا) تحقق من أن:

- $\cdot [0,+\infty[$ ضع جدول تغيرات الدالة ψ على المجال ϕ
- . $\left(O,\vec{i},\vec{j}\right)$ منظم متعامد ممنظم للدالة ψ في معلم متعامد ممنظم $\left(\psi(\alpha)\simeq 1,2\right)$ و $\alpha\simeq 0,3$: رنأخذ

: نقبل أن المنحنى الممثل للدالة ψ يقبل نقطة انعطاف ،أفصولها β بحيث : $\beta\in\left[\frac{3}{2},2\right[$

بین أن : $\forall n\in\mathbb{N}^*$ ($\forall n\in\mathbb{N}^*$) $(\exists !\gamma_n>0)$, $\frac{\psi(\gamma_n)}{\gamma_n}=\frac{n}{n+1}\cdot\frac{\psi(\alpha)}{\alpha}$: 7. بین أن المتتالیة $(\gamma_n)_{n\geq 1}$ متقاربة محددا نهایتها.

2- I مسألة رقم 02

 $oldsymbol{\cdot}$ ليكن x عنصرا من المجال $[0,+\infty[$ ،نعتبر المعادلة : $[0,+\infty[$

- . f(x) بين أن المعادلة (\mathcal{F}_x) تقبل حلا وحيدا في \mathbb{R} ،و الذي نرمز له ب
 - $[0,+\infty[$ بين أن الدالة f سالبة قطعا و محدودة على $[0,+\infty[$
 - $0,+\infty$ استنتج أن الدالة f متصلة على المجال.
 - : من أن الدالة f قابلة للاشتقاق على المجال $0,+\infty$ ، ثم بين أنه f

.
$$(\forall x > 0)$$
, $f'(x) + \frac{f(x)}{x + 3f^2(x)} = 0$

- $\lim_{x \to +\infty} f(x)$: ستنتج منحى تغيرات الدالة f ، ثم احسب .5
 - 6. هل الدالة متصلة على اليمين في الصفر ؟

: على المجال
$$f(1)=1$$
 نعرف الدالة: الدالة: الدالة: المجال $f(1)=1$ و الدالة: على المجال $F(1)=-\ln(2)$ و $F(1)=-\ln(2)$ و $F(x)=\int_{x^2}^x \frac{f(t)}{\ln(t)}dt$

- \cdot [1, $+\infty$ [المجال على المجال f متصلة على المجال .1
 - 2. (١) باستعمال مكاملة بالأجزاء، برهن أنه:

$$.\left(\forall x \in]1,+\infty\right), \ F(x)-F(1) = \frac{x(x-1)(x+2)}{2} \cdot f(x) + \int_{x^2}^x \left(2 + \frac{1}{t}\right) f(t) dt$$

ب استنتج أن الدالة F متصلة على اليمين في (-1)

$$(\forall x \in]1, +\infty[) (\exists c_x \in [x, x^2]), F(x) = (x - x^2) \cdot \frac{c_x - 1}{\ln^2(c_x)}$$
: أثبت أنه : ثم استنتج أنه :

$$(\forall x \ge \left[\sqrt{2}, +\infty\right]), \frac{F(x)}{x} + \left(\frac{f(x)}{2}\right)^2 \le 0$$

(ب) استنتج حساب النهايتين : $\lim_{x\to +\infty} F(x)$ و $\lim_{x\to +\infty} \frac{F(x)}{x}$ ،ثم اول النتيجة المحصل عليها هندسيا.

F'(x) الحسب F'(x) لكل F'(x) من المجال $[1,+\infty[$ ، ثم حدد منحى تغيرات الدالة

5. (١) باستعمال مبرهنة التزايدات المنتهية مرتين، بين أنه:

$$(\forall x \in]1, +\infty) (\exists (c, d) \in]1, x[) (c > d), \frac{F(x) + \ln(2)}{x - 1} = -\left(\frac{c + 2}{2}\right) \cdot d^2$$

- (ب) ادرس قابلية اشتقاق الدالة F في النقطة ذات الافصول $x_0=1$ ،ثم اول النتيجة المحصل عليها هندسيا.
 - ، $\left(O, \vec{i}, \vec{j} \right)$ متعامد ممنظم ، المنحنى الممثل للدالة F في معلم متعامد ممنظم ، المنحنى الممثل المثل

الجزء الأول:

 $\psi_n(x) = -nx + \ln(x):$ ليكن n من \mathbb{R}^* المعرفة على ψ_n المعرفة على \mathbb{R}^* بما يلي

$$\lim_{x \to +\infty} \psi_n(x)$$
 و $\lim_{x \to 0^+} \psi_n(x)$: المحدد (۱) محدد

(ب) بین أنه لکل
$$x\in\mathbb{R}^{*+}$$
 ، لدینا $x\in\mathbb{R}^{*+}$ ، نم ضع جدول تغیرات \mathbb{R}^{*+} الدالة ψ_n علی \mathbb{R}^{*+} .

$$\forall x \in \mathbb{R}^{*+}, \quad 2x - 1 > \ln(x) :$$
بين أن (ج)

$$eta_n$$
 و $lpha_n$: المعادلة $lpha_n$ ، المعادلة $\psi_n(x)=1$ تقبل بالضبط حلين إثنين هما $lpha_n$ و $lpha_n$. $eta_n>2$ و $lpha_n<rac{1}{n}$: بحيث

$$\lim_{n\to+\infty} \sqrt[n]{\alpha_n} = \frac{1}{e^2}$$
: مثم بین أنه $\lim_{n\to+\infty} \alpha_n : -\infty$ ، احسب 3

: متقاربة ، ثم احسب النهايتين ب
$$(eta_n)_{n\in\mathbb{N}^*}$$
 متقاربة ، ثم احسب النهايتين

$$\cdot \lim_{n \to +\infty} \frac{n(\beta_n - 2)}{\ln(2)} \int_{n \to +\infty} \lim_{n \to +\infty} \beta_n$$

الجزء الثاني:

.
$$(orall n\in \mathbb{N})\,,\quad \mathcal{I}_n=\int_0^{rac{\pi}{2}}\sin^n(heta)d heta:$$
لتكن المتتالية $(\mathcal{I}_n)_{n\in \mathbb{N}}$ المعرفة بما يلي

- \mathcal{I}_2 و \mathcal{I}_1 احسب كل من \mathcal{I}_1 و
- . بين أن المتتالية $\left(\mathcal{I}_n
 ight)_{n\in\mathbb{N}}$ متقاربه2

$$\mathbf{A}\cdot (orall n\in\mathbb{N}^*)\,, \mathcal{I}_n=\int_0^{rac{\pi}{2}-rac{1}{\sqrt[3]{n}}}\sin^n(heta)d heta+\int_{rac{\pi}{2}-rac{1}{\sqrt[3]{n}}}\sin^n(heta)d heta:$$
1. $\sin^n(heta)d heta:$ 3.

$$oldsymbol{\cdot} (orall n \in \mathbb{N}^*), \quad \mathcal{I}_n \leq rac{1}{\sqrt[3]{n}} + rac{\pi}{2} \cdot \left[\cos\left(rac{1}{\sqrt[3]{n}}
ight)
ight]^n : نب استنتج أن$$

$$\cdot$$
 $(\mathcal{I}_n)_{n\in\mathbb{N}}$ ، ثم حدد نهایة المتنالیة $\lim_{x o +\infty}rac{\ln{(\cos(x))}}{x^3}=-\infty$: أثبت أن $(\Xi_n)_{n\in\mathbb{N}}$

: لدينا
$$\mathbb{N}^*$$
 لدينا (۱) بين أنه لكل n من \mathbb{N}^* لدينا (۱) $\mathcal{I}_{n+2} = \frac{n+1}{n+2} \cdot \mathcal{I}_n$ ب $(n+1)\mathcal{I}_{n+1}\mathcal{I}_n = \frac{\pi}{2}$ ب $1 \leq \frac{\mathcal{I}_n}{\mathcal{I}_{n+1}} \leq \frac{n+2}{n+1}$ •

$$\lim_{n o +\infty}\sqrt{n}\mathcal{I}_n=\sqrt{rac{\pi}{2}}:$$
 استنتج أن $\int_{0}^{\infty} 1$

05 مسألة رقم 5- I

الجزء الأول:

.
$$(\forall x \in \mathbb{R})$$
 , $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$: لتكن f الدالة المعرفة بمايلي

$$f^{-1}$$
 بين أن f تقابل من $\mathbb R$ نحو $[-1,1[$ محددا تقابلها العكسى.

: حيث ،
$$(O,\overrightarrow{i},\overrightarrow{j})$$
 و $(C_{f^{-1}})$ في معلم متعامد ممنظم $(C_{f^{-1}})$ ، حيث ، $\|\overrightarrow{i}\| = \|\overrightarrow{j}\| = 1cm$

$$\left(\mathcal{C}_{f^{-1}}\right)$$
 و $\left(\mathcal{C}_{f}\right)$ و لتكن $\lambda\in\left]0,1\right[$ مساحة الحيز Δ_{λ} المحصور بين $\lambda\in\left]0,1\right[$ و المستقيمين $x=\lambda$ و $x=0$

$$\lambda^2-2\ln\left(rac{e^{\lambda}+e^{-\lambda}}{2}
ight)$$
 (cm^2) : بين أن تعبير σ_{λ} يكتب على الشكل التالي

الجزء الثاني:

$$F_0(x)=x$$
 و $F_n(x)=\int_0^x \left(f(u)
ight)^n du$: نضع $(n,x)\in\mathbb{N} imes\mathbb{R}^+$ لكل

• x بدلالة $F_1(x)$: احسب

$$\cdot \lim_{n \to +\infty} F_n(x):$$
 بين أن $F_n(x) \leq F_n(x)$ ، ثم استنتج قيمة النهاية $0 \leq F_n(x) \leq x$.2

$$(\forall x \in \mathbb{R}), \ f'(x) = 1 - (f(x))^2 : 3$$
. (۱) عقق من أن

$$(\forall k \in \mathbb{N}), \ F_{k+2}(x) = F_{k+1}(x) - \frac{1}{k+1} (f(x))^{k+1}$$
: (ب) استنتج أن

و أن :

•
$$(\forall n \in \mathbb{N}^*)$$
, $F_{2n}(x) = x - \sum_{k=1}^n \frac{1}{2k-1} (f(x))^{2k-1}$

•
$$\lim_{n\to +\infty} \sum_{k=1}^{n} \frac{1}{(2k-1)\times 3^{2k-1}}$$
: باستعمال ما سبق ،احسب النهاية التالية .4

6- I مسألة رقم 06

■ الجزء الأول:

$$\ln(x)+x$$
 بين أن $\ln(\alpha)+\alpha=0$ بين أن $\ln(\alpha)+\alpha=0$ بين أن $\ln(\alpha)+\alpha=0$ بين أن 1 لكل 1

. $\forall x>0, \quad \varphi(x)=e^{1/x}$:نفع2

$$\cdot \forall x > 0, \quad \varphi(x) = x \Longleftrightarrow \frac{1}{x} + \ln\left(\frac{1}{x}\right) = 0 :$$
ان تحقق من أن $\forall x \in \left[\frac{3}{2}, 3\right], \quad |\varphi'(x)| \le \frac{4}{9}e^{2/3}$ (ب) بين أن $(\varphi'(x)) = \frac{4}{9}e^{2/3}$

، $\Gamma_{n+1}=arphi(\Gamma_n)$ و $\Gamma_0=2$ و المعرفة بما يلي ($\Gamma_n)_{n\in\mathbb{N}}$ و 3.

$$\cdot \forall n \in \mathbb{N}, \quad \Gamma_n \in \left[\frac{3}{2}, 3\right]$$
 ايين أن (۱)

(ب) باستعمال مبرهنة التزايدات المنتهية، بين أن المتتالية $(\Gamma_n)_{n\in\mathbb{N}}$ متقاربة محددا نهايتها.

$$\cdot \gamma_n = rac{1}{n} \sum_{j=1}^n \Gamma_j :$$
بين أن المتتالية $(\gamma_n)_{n \in \mathbb{N}}$ متقاربة محددا نهايتها و المعرفة بما يلي $(\gamma_n)_{n \in \mathbb{N}}$

■ الجزء الثاني:

 $\forall x>0,\quad f(x)=0$ نعتبر الدالة العددية f المعرفة على f(x)=0 بما يلي f(x)=0 بما يلي المثل المثل المثل المثل المثل المثل الدالة f(x)=0 بمنظم f(x)=0 بمنظم f(x)=0 بمنظم f(x)=0 بمنظم f(x)=0 بمنظم المثل ال

 \cdot (\mathcal{C}_f) ادرس الفروع الانهائية للمنحنى .1

 $\cdot [0, +\infty[$ بين أن f متصلة على $0, +\infty[$

3. بين أن f قابلة اشتقاق على اليمين في 0 و أن $f'_d(0)=0$ ،ثم أول النتيجة هندسيا.

،
$$f$$
 بين أن $f'(x)=rac{x+\ln(x)}{x^2}\cdot e^{-1/x}$ ، ثم ضع جدول تغيرات الدالة ، 4

- معادلة المماس (T) عند النقطة (A(1,0) نقطة أنعطاف رقبل أن النقطة (C_f) نقطة أنعطاف للمنحنى ((C_f)
 - (f(lpha)=-0,1: أنشئ المنحنى (\mathcal{C}_f) ونأخذ.

■ الجزء الثالث:

 $F(x)=\int_{1}^{x}f(t)dt:$ نعتبر الدالة F المعرفة على \mathbb{R}_{+} بما يلي

.
$$\forall t \geq 1, \quad f(t) \geq \ln(t) - \frac{\ln(t)}{t}$$
 أن $\forall u \in \mathbb{R}, e^{-u} \geq 1 - u$ واستنج أن 1.

.
$$\forall x \geq 1, \quad F(x) \geq x \ln(x) - x - \frac{\ln^2(x)}{2}$$
 1. استنتج أن

$$\lim_{x \to +\infty} \frac{F(x)}{x} = +\infty$$
 بین أن 3.

- 4. أول هندسيا النتيجة المحصلة عليها في السؤال 3. الجزء الثالث.
- .5 بين أن F قابلة للاشتقاق على \mathbb{R}_+ ثم أحسب مشتقتها الأولى.
 - $n \in \mathbb{N}$ ليكن 6

،
$$eta_n > 1$$
 بين أن المعادلة $F(x) = n$ تقبل حلا وحيدا (ا

(ب) بين أن المتتالية $(\beta_n)_{n\in\mathbb{N}}$ تزايدية و أنها غير مكبورة ، ثم استنتج نهايتها.

$$\cdot \lim_{n o +\infty} rac{eta_n}{\sqrt[3]{n}} = +\infty$$
 بین أن $($ ج $)$

7- I مسألة رقم 7

: يلي \mathbb{R} المعرفة على \mathbb{R} بما يلي نعتبر الدالة العددية

$${m u}(x)=rac{\sin(x)}{x}:$$
 و $F(0)=0$ و $F(x)=\int_x^{2x}rac{dt}{1+u^2(t)}$

. بين أن الدالة F فردية Γ

 \cdot ($\forall x \in \mathbb{R}^{*+}$), $0 \leq F(x) \leq x$: يين أَن \cdot 2

. استنتج أن الدالة F متصلة على اليمين في الصفر $(oldsymbol{\psi})$

. $(\forall x \in]0, +\infty[)$ $(\exists c_x \in [x, 2x])$, $\frac{F(x)}{x} = \frac{1}{1 + u^2(c_x)} : 3$ (۱) 3.

. $F_d'(0)$ استنتج أن الدالة F قابلة للاشتقاق على اليمين في الصفرمحددا (ب

•
$$(\forall x \in]0, +\infty[), F'(x) = \frac{1 + u^2(x) (1 + \sin^2(x))}{(1 + u^2(x)) (1 + u^2(x) \cos^2(x))}$$

(ب) استنتج رتابة الدالة F على المجالين $]\infty,+\infty[$ و $[0,+\infty[$ ، ثم ضع جدول تغيراتها على $\mathbb R$.

: ان لكل t من الججال $0, +\infty$ (ا) أثبت أن لكل t من الججال أثبت

•
$$\frac{1}{1+u^2(t)} \le \frac{1}{t^2}$$
 • $\frac{t^2}{1+t^2} \le \frac{1}{1+u^2(t)} \le 1$

: استنتج أنه لكل x من $]0,+\infty[$ ، لدينا (ب)

.
$$0 \le x - F(x) \le \frac{1}{2x}$$
 و $x + \arctan(x) - \arctan(2x) \le F(x) \le x$

$$\lim_{x \to +\infty} F(x)$$
 احسب النهايتين $F(x): \lim_{x \to +\infty} F(x)$ و

 $oldsymbol{\cdot}\left(O,\overrightarrow{i},\overrightarrow{j}
ight)$ وفي معلم متعامد و ممنظم (\mathcal{C}_F) في معلم متعامد و ممنظم (\mathcal{C}_F) .6

I -8 مسألة رقم 08

الجزء الأول:

 $v(x)=\sqrt{rac{x+2}{e^x}}:$ يلي ياي المحرفة على المجال المجال إلى المحرفة على المجال $v(x)=\sqrt{rac{x+2}{e^x}}:$

. احسب : $\lim_{x \to +\infty} v(x)$ ، ثم أول النتيجة المحصل عليها هندسيا . 1

- 0. ادرس قابلية اشتقاق الدالة v على اليمين في النقطة ذات الأفصول $x_0=-2$ ، ثم أول النتيجة المحصل عليها هندسيا .
- . لكل عنصر x من المجال $[-2,+\infty[$ ، أثبت أنه $[-2,+\infty[$ من المجال $v'(x)=-\frac{x+1}{2v(x)}$. أثبت أنه $v'(x)=-\frac{x+1}{2v(x)}$. تغيرات الدالة v
 - $(O,\overrightarrow{i},\overrightarrow{j})$ بنظم متعامد ممنظم (\mathcal{C}_v) في معلم متعامد ممنظم ،4 الجزء الثاني:

 $\mathcal{V}(x) = \int_0^{\ln(x)} v(t) dt:$ يلي ي $\left[\frac{1}{e^2}, +\infty\right[$ المعرفة على المجال $\left[\frac{1}{e^2}, +\infty\right[$ بعتبر الدالة \mathcal{V} المتتالية المعرفة بما يلي ي $u_n = \frac{2^n \cdot (n!)}{(2n+1)!} \int_{-2}^{-1} v(t) \cdot (t+2)^n dt:$ ولتكن $(u_n)_{n \in \mathbb{N}}$ المتتالية المعرفة بما يلي ي

- متقاربة $(u_n)_{n\in\mathbb{N}}$ بين أن $u_n \in \mathbb{N}$ ، $(\forall n \in \mathbb{N})$ ، $0 \le u_n \le \frac{e}{2n+1}$. معددا نهايتها
 - $S_n = \sum_{k=1}^n rac{2^k \cdot (k!)}{(2k+1)!} :$ نځي n نځي n نځي .2
 - (١) باستعمال مكاملة بالأجزاء، بين أنه:

•
$$(\forall n \in \mathbb{N})$$
 , $u_{n+1} - u_n = -2\sqrt{e} \cdot \frac{2^{n+1} \cdot (n+1)!}{(2n+3)!}$
• $(\forall n \in \mathbb{N}^*)$, $S_n = \frac{u_0 - u_n}{2\sqrt{e}}$: (ب) استنج أن $F\left(\frac{1}{e}\right) - F\left(\frac{1}{e^2}\right)$ يين أن $F\left(\frac{1}{e^2}\right)$

9- I مسألة رقم 99

الجزء الأول:

. $(\forall x \in \mathbb{R}), e^x(x-1)+1 \geq 0:$ 1. (ا) بین آن $(\forall x \in \mathbb{R}), e^x(x-1)+1 \geq x\sqrt{e^x}:$ 1. (ب) بین آن $(\forall x \in \mathbb{R}), e^x(x-1)+1 \geq x\sqrt{e^x}:$

.
$$(\forall x \in \mathbb{R}^*)$$
 , $\left| \frac{e^x - x - 1}{x^2} - \frac{1}{2} \right| \le \left| \frac{e^x - 1}{x} - 1 \right|$: ن استنج أن : $\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$: ن استنج أن : (ب)

الجزء الثاني:

: لتكن φ الدالة العددية المعرفة على $\mathbb R$ بما يلى

.
$$\varphi(0)=0$$
 و $x \neq 0$ لکل $\varphi(x)=\ln\left(\frac{x}{e^x-1}\right)$

$$\lim_{x \to -\infty} \frac{\varphi(x)}{x}$$
 و $\lim_{x \to +\infty} \frac{\varphi(x)}{x}$ و $\lim_{x \to +\infty} \frac{\varphi(x)}{x}$ و $\lim_{x \to +\infty} \varphi(x)$ التائج المحصل عليها هندسيا.

- . $\varphi'(0) = -\frac{1}{2}$: عيث أن الدالة متصلة و قابلة للاشتقاق في الصفر ، حيث . 2
 - $\cdot \, \mathbb{R}$ ورتيبة على arphi . arphi اثبت أن الدالة arphi رتيبة على arphi
 - $\cdot \, \mathbb{R}$ بين أن الدالة arphi' تناقصية قطعا على

الجزء الثالث :

 \mathbb{R} يلي : العددية المعرفة على الدالة العددية المعرفة العلى

$$\phi(0) = 0 \quad x \neq 0 \quad \text{if } \phi(x) = \frac{1}{x} \int_0^x \varphi(u) du$$

 $\cdot(O,\overrightarrow{i},\overrightarrow{j})$ منحنى الدالة ϕ في معلم متعامد ممنظم (\mathcal{C}_{ϕ}) منحنى الدالة.

- . بين أن الدالة ϕ متصلة في الصفر $\,$
- \cdot ($\forall x \in \mathbb{R}$) $, \phi(-x) \phi(x) = \frac{x}{2}$: را) تحقق من أن \cdot 2
 - : يين أن يكن x عنصرا من المجال ∞ ا, بين أن x

.
$$\frac{\varphi(-x)}{2} \leq \phi(x) + \frac{x}{2} \leq \varphi(-x)$$
 و $\frac{\varphi(x)}{2} \leq \phi(x) \leq -\frac{x}{4}$

 $+\infty$ عند $+\infty$ عند $+\infty$ ادرس الفرع اللانهائي للمنحنى (۱) عند $+\infty$ عند $+\infty$ عند $+\infty$ عند (۱) محدد نهاية الدالة

$$-\infty$$
 ادرس الفروع اللانهائية للمنحنى (\mathcal{C}_{ϕ}) بجوار $+\infty$

 $\phi'(0)$ بين أن الدالة ϕ قابلة للاشتقاق في الصفر محددا (0) .4

 \mathbb{R}^* المجال x و أن لكل x عنصر من المجال ϕ قابلة للاشتقاق على المجال \mathbb{R}^* و أن لكل x عنصر من المجال

$$\bullet \phi'(x) = \frac{\varphi(x) - \phi(x)}{x}$$

 $(ar{x}^*$ ضع جدول تغیرات الدالة ϕ علی المجال

 \cdot (\mathcal{C}_{ϕ}) أنشئ .5

الجزء الرابع للخزء الرابع \mathbb{N}^* ، نعرف المتتاليتين $(a_n)_{n\geq 1}$ و $(b_n)_{n\geq 1}$ بما يلي :

$$a_n = \frac{1}{n^2} \left(\sum_{j=1}^n \varphi(j) \right) = \frac{1}{n^2} (\varphi(1) + \varphi(2) + \dots + \varphi(n))$$

$$b_n = \frac{1}{n^2} \left(\sum_{j=1}^n \varphi(-j) \right) = \frac{1}{n^2} (\varphi(-1) + \varphi(-2) + \dots + \varphi(-n))$$

 $\lim_{n \to +\infty} b_n = 0$: بين أن المتتالية $(b_n)_{n \geq 1}$ متقاربة و أن

: أ. برهن على أن أن أبية $(a_n)_{n>1}$ أن أن $(a_n)_{n>1}$

$$. \sqrt{e} = \lim_{n \to +\infty} \sqrt[n^2]{\prod_{i=1}^n (e^i - 1)}$$

10- I مسألة رقم 10

: يلي المعرفة على $n,+\infty$ من n من الدالة العددية n المعرفة على $n,+\infty$ المعرفة على الجزء الأول: نعتبر $\lambda>0$ عددا ثابتا، $f_n(x)=\sum_{k=0}^n rac{1}{x-k}$

 $[0,+\infty[$ من نحو $]n,+\infty[$ من نحو $[n,+\infty[$ من نحو $]n,+\infty[$ من نحو $[n,+\infty[$

[-1] استنتج أن المعادلة : $f_n(x)=\lambda$ تقبل حلا وحيدا λ_n في $f_n(x)=\lambda$

، حدد نهایة المتتالیة $(\lambda_n)_{n\geq 1}$ معللا جوابك (ج

$$H_n imes_{n o +\infty} +\infty :$$
د) نضع $H_n = \sum_{k=0}^n rac{1}{k} :$ د) نضع $H_n = \sum_{k=0}^n rac{1}{k} :$

 $\lambda_n > n+1: n \geq n_0$ بين أنه يوجد عدد صحيح طبيعي n_0 بحيث يكون لكل (۱) بين أنه يوجد عدد صحيح طبيعي

$$\lambda_0$$
 بين أن : λ_0 بين أن : λ_0

: يلي المعرفة على $\ln(2), +\infty$ المعرفة على الدالة العددية المعرفة على الدالة العددية المعرفة على المعرفة على المعرفة على المعرفة المعر

•
$$f(x) = x - \ln\left(\frac{e^x}{2} - 1\right)$$

 $\lim_{x\to +\infty} f(x)$ و $\lim_{x\to (\ln(2))^+} f(x)$ و التأويل الهندسي و التأويل الهندسي و التأويل الهندسي و التأويل المندسي و التأويل الهندسي و التأويل المندسي و التأويل الهندسي و التأويل المندسي و التأويل التأويل التأويل المندسي و التأويل التأوي

: و أن $\ln(2), +\infty$ و أن الدالة f قابلة للاشتقاق على و أن الدالة أن الدالة

•
$$(\forall x \in] \ln(2), +\infty[), f'(x) = \frac{2+e^x}{2-e^x}$$

- - $\cdot f$ ادرس تقعر منحنی الداله (د)
- $(O,\overrightarrow{i},\overrightarrow{j})$ منحنى الدالة f في معلم متعامد ممنظم (ه)
 - ، $\mathcal{I}=]\ln(2),+\infty[$: نضع2

 \cdot f^{-1} ينبغي تحديده ، محددا التقابل العكسي $\mathcal I$ نحو مجال $\mathcal I$ ينبغي تحديده ، محددا التقابل العكسي (۱)

$$x-rac{f(x)}{f'(x)} \leq lpha$$
: بين أن لكل x من الججال $\alpha=f^{-1}(0)$ ، لدينا $lpha=f^{-1}(0)$

: يلي المتتالية المعرفة بما يلي .3

.
$$(\forall n \in \mathbb{N}), \ \alpha_{n+1} = \alpha_n - \frac{f(\alpha_n)}{f'(\alpha_n)}$$
 $\alpha_0 = \ln(3)$

- $\cdot (\forall n \in \mathbb{N}), \ \alpha_n \in]\ln(2), \alpha]:$ (۱) بین أن (۱)
- . ريبة ، ثم استنتج أنها متقاربة ، $(\alpha_n)_{n\in\mathbb{N}}$ بين أن المتتالية
 - وج) حدد نهایة $(\alpha_n)_{n\in\mathbb{N}}$ المتتالیة معللا جوابك

II الأعداد العقدية

1- II مسألة رقم 01

ايلي: $(S_n(\theta))_{n\geq 1}$ با يلي: المتتالية $(S_n(\theta))_{n\geq 1}$ با يلي:

$$oldsymbol{\theta} \in \left]0, rac{\pi}{2} \right[:$$
 بحیث $S_n(heta) = \sum_{k=1}^n rac{\sin(k heta)}{k}$

.
$$\int_0^1 \frac{dx}{x^2 - 2x\cos(\theta) + 1} = \frac{\pi - \theta}{2\sin(\theta)}$$
: بين أن $(x^2 - 2x\cos(\theta) + 1) = (x - \cos(\theta))^2 + \sin^2(\theta)$: لاحظ أن

 \mathbb{N}^* منصرا من n

$$(\forall x \in [0,1]), \frac{1}{1 - xe^{i\theta}} = \frac{x^n e^{in\theta}}{1 - xe^{i\theta}} + \sum_{k=0}^{n-1} (xe^{i\theta})^k$$
: (۱)

،
$$(\forall x \in [0,1])$$
 , $\Im\left(\frac{e^{i\theta}}{1-xe^{i\theta}}\right) = \frac{\sin(\theta)}{x^2-2x\cos(\theta)+1}$: رب) حيث $\Im(z)$: حيث $\Im(z)$ يرمن للجء التخيلي للعدد العقدي

(ج) استنتج أنه:

$$\cdot (\forall n \in \mathbb{N}^*) \,, S_n(\theta) = \frac{\pi - \theta}{2} - \int_0^1 x^n \cdot \left(\frac{\sin\left((n+1)\,\theta\right) - x\sin(n\theta)}{x^2 - 2x\cos(\theta) + 1} \right) dx$$

 \mathbb{N}^* من \mathbb{N}^* ، لدينا :

$$\left| \int_0^1 x^n \cdot \left(\frac{\sin\left((n+1)\,\theta \right) - x\sin(n\theta)}{x^2 - 2x\cos(\theta) + 1} \right) \cdot dx \right| \le \frac{2}{(n+1)\sin^2(\theta)}$$

4. استنتج،من كل ماسبق، أن المتتالية $(S_n(\theta))_{n\geq 1}$ متقاربة بمحددا نهايتها.

2- II مسألة رقم 02

نعتبر في المجموعة C ، المعادلة :

$$m \in \mathbb{C}^*$$
: حیث $(E_m): z^2 - (m+\overline{m})z + m\overline{m} + i(m-\overline{m}) + 1 = 0$

$$\Delta = (m-\overline{m}+2i)^2$$
: يكتب على الشكل $\Delta = (E_m)$ ، كي يكتب على الشكل $\Delta = (m-\overline{m}+2i)^2$.

- (E_m) حل المعادلة (ب
- : في المستوى العقدي المنسوب إلى معلم متعامد ممنظم $(O,\overline{\,u},\overline{\,v})$ ،نعتبر النقط C(m-i) ، $B(\overline{m})$ ، A(m)
 - را) بين أن النقط A: B ، A و D مستقيمية C
 - θ_1 : الذي مركزه A و زاوية دورانه هي \mathcal{R}_1 الذي مركزه A
- و نعتبر الدوران \mathcal{R}_2 الذي مركزه B و زاوية دورانه هي θ_2 ، حيث \mathcal{R}_2 الذي مركزه θ_2
- نعتبر النقط : M و M' و التي ألحاقها على التوالي z' ، z' و z'' . بحيث : $\mathcal{R}_2(M)=M''$ و $\mathcal{R}_1(M)=M'$

M'' و M' و M' المي من أجلها تكون النقط M و M'' التي من أجلها تكون النقط M و M'' مستقيمية M'' .

3- II مسألة رقم 3

المستوى العقدي منسوب إلى معلم متعامد ممنظم و مباشر $(O,\overrightarrow{u},\overrightarrow{v})$.نعتبر النقطتين A و $b=2+\sqrt{3}+i$ و a=1-i دات اللحقين على التوالي B

- ، تحقق من أنه $e^{irac{\pi}{3}}:$ على شكله الأسي $a=\left(1+\sqrt{3}
 ight)e^{irac{\pi}{3}}:$ من أنه $a=\left(1+\sqrt{3}
 ight)e^{irac{\pi}{3}}$
 - بالدوران $\mathcal R$ الذي مركزه O و زاويته B .2 و النقطة B بالدوران $\mathcal R$ الذي مركزه B و زاويته B مورة النقطة B ، و استنتج أن النقطة B مماثلة النقطة B بالنسبة للمحور B ،
- 3. لتكن M نقطة من المستوى و النقطة M_1 صورتها بالدوران $\mathcal R$ و لتكن M' مماثلة النقطة M بالنسبة للمحور (O, \overrightarrow{u}) .
 - و لتكن (\mathcal{H}) مجموعة النقط M من المستوى ، بحيث : M
 - (H) أن النقطتين (H) و (H) تنتميان إلى المجموعة (H)
- (+) لتكن M نقطة من المستوى و M
 eq 0 ، و لحقها هو $z = re^{i\theta}$ حيث M بين أن لحق النقطة M هو $z' = re^{i\left(rac{\pi}{6} heta
 ight)}$ هو M' هو $z' = re^{i\left(rac{\pi}{6} heta
 ight)}$ ، ثم حدد قيم θ التي من أجلها تنتمي النقطة M إلى المجموعة (\mathcal{H}) .
- (+) بين أن النقط : M و B و O تكون مستقيمية إذا و فقط إذا كانت M تنتمي إلى المجموعة (\mathcal{H}) ، ثم حدد المجموعة (\mathcal{H}) .

المستوى العقدي (\mathcal{P}) منسوب إلى معلم متعامد ممنظم و مباشر $(\mathcal{P}, \overrightarrow{e_1}, \overrightarrow{e_2})$. ليكن n من \mathbb{R}^* ، نعتبر الدوران (\mathcal{R}_n) الذي مركزه النقطة B ذات اللحق 1 و زاوية دورانه $(\forall M \in (\mathcal{P}))$, $\mathcal{R}_n(M) = M_n$ ؛ و نضع $\frac{\pi}{2^n}$

،
$$(orall M\in(\mathcal{P}))\,,\;\mathcal{R}_{n+1}^{-1}\left(M_{n}
ight)=\mathcal{R}_{n+1}\left(M
ight)\,:$$
 1. تحقق من أن

: استنتج أنه لكل نقطة M من (\mathcal{P}) و تخالف النقطة B ،لدينا \mathcal{P}

$$rac{M_n M_{n+1}}{BM} = 2\sin\left(rac{\pi}{2^{n+2}}
ight)$$
 , $\left(\overrightarrow{\overline{BM}}, \overrightarrow{M_n M_{n+1}}
ight) \equiv \left(rac{3}{2^{n+2}} - rac{1}{2}
ight) \cdot \pi$ $[2\pi]$ و أنه

 $k\in\{2,3,\cdots,n+2\}$ نضع $G_k=\mathcal{R}_k(O):$ حیث $\varphi_n=\sum_{k=2}^{n+2}OO_k:$ نضع $S_k=\{2,3,\cdots,n+2\}$ نظع

.
$$\left(\forall \alpha \in \left[0, \frac{\pi}{3}\right]\right), \ \frac{\alpha}{2} \leq \sin(\alpha) \leq \alpha :$$
ا) بین أن (۱)

 $rac{\pi}{4} \leq L \leq rac{\pi}{2}$: بين أن المتتالية $(\varphi_n)_{n \in \mathbb{N}^*}$ متقاربة ، و أن نهايتها لم تحقق بين أن المتتالية

5- II مسألة رقم 5

المستوى منسوب إلى معلم متعامد ممنطم مباشر $(O,\overrightarrow{u},\overrightarrow{v})$. نعتبر المعادلة :

،
$$\omega \in \mathbb{C}$$
 حيث ، $(E): z^2 - (1+i)(\omega+2i)z - 4(\omega+i) = 0$

 $z_2 \in \mathbb{R} \Longleftrightarrow \omega = 0:$ و z_2 حلي المعادلة $z_2 \in \mathbb{R}$ بحيث $z_2 \in \mathbb{R}$

 $((1-i)(\omega+2i))^2$: یکتب علی الشکل Δ ، (E) میز المعادلة Δ ، (E) بین أن ممیز المعادلة (E) . ((+) اسینتج حلول المعادلة

M(-2+2i) و $B(z_2)$ ، $A(z_1)$ فيما يلي ،نعتبر النقط

 $oldsymbol{B}\cdot |\omega|=2\Longleftrightarrow ($ بين أن النقط B ، A) و B ، بين أن النقط

 $\frac{\pi}{2}$ الدوران الذي مركزه M و زاويته \mathcal{R} الدوران الذي مركزه M و زاويته .3

- را) بين أن الصيغة العقدية للدوران \mathcal{R} هي $z'=i\cdot z+4i$
 - \cdot \mathcal{R} بالدوران A صورة A بالدوران C

الجزء الأول: في المجموعة C ، المعادلة :

.
$$a \in \mathbb{C}$$
 : حيث (E_a) : $z^2 - (3a - 2i)z + 2a^2 - 4ai = 0$

- $\Delta = (E_a)$ بين أن $\Delta = (a+2i)^2$ ، حيث $\Delta = (a+2i)^2$. المعادلة Δ
 - رب) استنتج مجموعة حلول المعادلة (E_a)
- : علي المعادلة بحيث a=1+i و يكن z_2 علي المعادلة بحيث $|z_1|< |z_2|$.
 - $z_1 + z_2 = 0$: و z_2 على الشكل المثلثي ، ثم تحقق من أنه $z_2 = 0$ و z_1 اكتب
 - $\cdot z_2$ على الشكل الجبري الجذور المكعبة للعدد (ب

 $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ المستوى العقدي (\mathcal{P}) منسوب إلى معلم متعامد ممنظم و مباشر $K(z_J = a - 2i)$ و $I(z_I = i)$: نعتبر النقط

- $a\in i\mathbb{R}$ بين أن النقط I و J و M مستقيمية إذا وفقط إذا كان I
- ر. فيما يلي، نفترض أن $a \notin i \mathbb{R}$. خارج المثلث IJK ، نشئ النقطة H بحيث يكون المثلث JKH قائم الزاوية في النقطة H.
 - ا بين أن لحق النقطة H يكتب على الشكل (i)

•
$$z_H = \frac{(3+i)a - 2 - 2i}{2}$$
 أو $z_H = \frac{(3-i)a + 2 - 2i}{2}$

استنتج قيم a التي من أجلها يكون الرباعي IJHK مربعا ?

في المجموعة C ، المعادلة :

$$egin{aligned} egin{aligned} eta & \theta \in]0,\pi[\ : \ \mathcal{L}_{ heta}):2z^2-2e^{i heta}z+i\sin(heta)e^{i heta}=0 \end{aligned}$$

- المثلثي. المعادلة (E_{θ}) مبرزا مراحل الحل ،ثم اكتب حلولها على الشكل المثلثي.
- 0. المستوى العقدي (\mathcal{P}) منسوب إلى معلم متعامد ممنظم و مباشر (\mathcal{P}) منسوب إلى معلم متعامد ممنظم و مباشر (\mathcal{P}) منسوب إلى معلم نعتبر النقط $M(e^{i\theta})$ و $M(e^{i\theta})$ و $M(e^{i\theta})$ و التحاكي الذي مركزه M و نسبته 2 و سبته 2 و الدوران الذي مركزه M و زاويته $\frac{\pi}{2}$
- ا) بين أن المثلث MIJ قائم الزاوية في M ، ثم استنتج أن المستقيم (IJ) يوازي المستقيم (() بين أن MIJ . (M_1M_2)
 - $h(M_2)=J$ و $h(M_1)=I:$ بين أن $(a\ (ullet)$
 - بين أن النقط M و J و مستقيمية (b)
 - $oldsymbol{\cdot} rac{e^{i heta}+1}{e^{i heta}-1} \in i\mathbb{R}$: ناتج أن (c
 - MIJ قصويا، التي من أجلها يكون محيط المثلث MIJ قصويا،

II -8 مسألة رقم 08

المعادلة : \mathbb{C} عدد عقدي غير منعدم، نعتبر في \mathbb{C} المعادلة

$$(F_m): m^2 z^2 + m^3 z + 1 - im^2 = 0$$

- $m^2(m^2+2i)^2:$ الشكل المعادلة (F_m) يكتب على الشكل (F_m) . (F_m) باعط حلول المعادلة (F_m)
- $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ منسوب إلى معلم متعامد ممنظم و مباشر (P) منسوب إلى معلم (P) منسوب (P) منسوب إلى معلم (P) منسوب (P) منسوب (P) معتبر النقط (P) منسوب (P) منسوب

$$r(M)=M'$$
 و $r(A)=A'$: نضع بالدوران الذي مركزه B و زاويته و نصع بالدوران الذي مركزه $r(M)=M'$ و $r^{-1}(M)=B'$

- A' و A' النقطتين A' و A'
- بين أن B:B' هي منتصف القطعة B:B'

$$(z_B'-z_{A'})\in i\mathbb{R}:$$
 أيكن I منتصف القطعة $[AM]$ و $[AM]$ و $[AM]$ أثبت أن $[AB'-z_B]$. $A'B'=2BI$ و $[A'B']$ و $[AB']$

، $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ منسوب إلى معلم متعامد ممنظم و مباشر (\mathcal{P}) منسوب إلى معلم متعامد ممنظم و مباشر (a,b) من

د. فيما يلي، نفترض أن $b \neq 0$ ، ونعتبر في $\mathbb C$ المعادلة:

.
$$(E): 2z^2 - 4az + 2a^2 + (1 + i\sqrt{3})b^2 = 0$$

$$u = a + b\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$$
 : خقق من أن (ا) تحقق من أن

- \cdot (E) استنتج مجموعة حلول المعادلة (ب
- (ج) تحقق من أن $|u^2| + |v^2| = 2 |a + ib|^2$ على الشكل المثلثي.
- b و a : لتكن A و B و B و U و U و V خمس نقط من A التي ألحاقها على التوالي a و a و a و a
 - بين أن النقط A و U و مستقيمية . (a)
 - . بين أن المستقيمين (EU) و (EV) متعامدان (b)
- $oldsymbol{\cdot} V$ و U ، اعط طريقة هندسية لإنشاء النقطتين D و D
 - : بحيث z=a+ib هي مجموعة النقط M(z) من المستوى ذات اللحق z=a+ib عيث . $a^2-ab+b^2=1$
- أثبت أنه $|z| \leq \sqrt{2}$ النتيجة المحصل $M \in (\mathcal{H}) \Rightarrow \sqrt{\frac{2}{3}} \leq |z| \leq \sqrt{2}$ عليها .

يكن (\mathcal{D}) القرص الذي مركزه النقطة J ذات اللحق J القرص الذي مركزه النقطة J القرص الذي مركزه النقطة J بين أن : $r=2\sqrt{2}$. وليكن J مماثله بالنسبة للنقطة J بين أن : J وليكن J مماثله بالنسبة للنقطة للنقطة J مماثله بالنسبة للنسبة للنسبة للنقطة لل

- (c) لتكن الدائرة (C) التي تحصر القرص (D) ، و (C) مماثلتها بالنسبة للنقطة O . حدد نقطتي تقاطع الدائرتين (C) و (C) (نرمز لهما ب P و S و يكفي تحديد لحقيهما) بين أن المستقيم (PS) هو محور تماثل O .
 - O و نسبته $\frac{1}{2}$ و الدوران الذي مركزه O و نسبته $\frac{1}{2}$ و r الدوران الذي مركزه π arctan(3) وزاويته π وزاويته π arctan(3) وزاويته
 - (H) بين أن النقطتين T و Q تنتميان (H
 - (ب) بين أن الرباعي PQST متوازي الأضلاع PQST

10 - II مسألة رقم 10

نعتبر في المجموعة $\mathbb C$: المعادلة $\mathbb C$ المعادلة $(E_m):z^2-2mz-2(1+i)=0$ نعتبر في المجموعة $\mathbb C$ المعادلة $(E_{i\sqrt{2}})$ المعادلة $\mathbb C$ المعادلة المعادلة

- O بان من تحقق النقط O و $M_1(z_1)$ و $M_2(z_2)$ تكوِّن مثلثا قائم الزاوية في النقطة $M_2(z_1)$. $M_2(z_1)$ على المعادلة $M_1(z_1)$. $M_2(z_1)$ على المعادلة $M_2(z_1)$ بالمعادلة $M_2(z_1)$.
- 2. لتكن في المستوى العقدي ، النقط : M(m) و $M(z_1)$ و $M(z_1)$ و $M(z_1)$ ، حيث .2 و لتكن M(m) التي من أجلها يكون z_1 و لتكن Z_2 حلي المعادلة Z_2 و لتكن Z_3 و لتكن Z_4 . Z_5 و لتكن Z_5 و لتكن Z_5 المثلث Z_5 و النقطة Z_5 و النقطة Z_5 و المثلث Z_5 و المثلث Z_5 و النقطة Z_5 و النقطة Z_5 و المثلث Z_5 و المثلث والمثلث والمث
- ا) بين أن : (المثلث OM_1M_2 قائم الزاوية في OM_1M_2 قائم الزاوية Δ هو مميز المعادلة (E_m) . Δ
 - $M\left(x,y
 ight)\in\left(\Gamma
 ight)\iff x^2-y^2+2xy+2=0:$ (ب) بین أن (m=x+iy: بین أن
- رج) بين أنه إذا كانت $M(m)\in (\Gamma)$ فإن الرباعي OM_1NM_2 مستطيل ، ثم إعط طريقة هندسية لإنشاء النقطتين M_1 و M_2 بحيث عمدة العدد العقدي m_1 معلومة .

III البنيات الجبرية

في مجموعة المصفوفات المربعة
$$\mathcal{M}_2(\mathbb{R})$$
 ، نضع : $\mathcal{M}_2(\mathbb{R})$ ، نضع المربعة المجموعة المجموعة المجرعة : $\mathcal{J}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

$$. \mathcal{F} = \left\{ \mathcal{M}(a, b) = \begin{pmatrix} a & b \\ -2b & a + 2b \end{pmatrix} / (a, b) \in \mathbb{R}^2 \right\}$$

- متجهي حقيقي ،ثم حدد أساسا له و بعده. $(\mathcal{F},+,\cdot)$: نأن
 - $oldsymbol{\mathcal{M}}_2(\mathbb{R}), imes$ بين أن $\mathcal{F}: \mathcal{F}$ جزء مستقر من
- z=a+ib عدد عقدي φ و المعرف من $\mathbb C$ نعتبر التطبيق φ و المعرف من $\mathbb C$ بالمصفوفة $\mathcal M(a-b,b)$ ، بالمصفوفة و معتبر المعلق بالمحتبث $\mathcal M(a-b,b)$
 - $oldsymbol{\cdot} (\mathcal{F} \{\mathcal{O}\}\,, imes)$ نحو $(\mathbb{C}^*, imes)$ من $(\mathbb{C}^*, imes)$ نحو (۱)
 - . $(\mathcal{F}-\left\{\mathcal{O}\right\}, imes)$: بنية بنية بنية (ب)
 - $\cdot(\mathcal{F},+, imes)$: مدد بنية عدد بنية
- (د) حل في المجموعة ${\mathcal F}$ ، المعادلة التالية : ${\mathcal I} imes {\mathcal I}^3 = -4{\mathcal I}$ حيث المجهول هو المصفوفة ${\mathcal X}$.

4. برهن أن:

$$\left(\forall n\in\mathbb{N}^*-\left\{1\right\}\right),\mathcal{J}^n=-\left(\sqrt{2}\right)^{n+1}\sin\left(\frac{(n-1)\pi}{4}\right)\mathcal{I}+\left(\sqrt{2}\right)^n\sin\left(\frac{n\pi}{4}\right)\mathcal{J}$$

2- III عسألة رقم 2

، $\mathcal{G} = \{z \in \mathbb{C}, \quad |z| < 1\}$: نعتبر المجموعة

. $(\forall (z,z') \in \mathcal{G} \times \mathcal{G})$ $, 1+z\overline{z'} \neq 0$: بین أن

$$z*z'=rac{z+z'}{1+z\overline{z'}}$$
: من $\mathcal{G} imes\mathcal{G}$ من (z,z') من ء

$$\cdot$$
($\forall (z,z') \in \mathcal{G} \times \mathcal{G}$)), $|1+z\overline{z'}|^2 - |z+z'|^2 = (1-|z|^2)(1-|z'|^2)$: (1)

- (ب) استنتج أن * قانون تركيب داخلي في المجموعة $\mathcal G$
- (+) هل القانون * تبادلي في المجموعة (+) علل جوابك
 - ، بين أن $(\mathcal{G},*)$ زمرة غير تبادلية $(\mathcal{G},*)$

$$oldsymbol{ heta}$$
 . $oldsymbol{ heta}\in\mathbb{R}:$ محیث، $oldsymbol{\mathcal{H}}_{ heta}=\left\{z=lpha\cdot e^{i heta},\;lpha\in]-1,1[
ight\}:$ عتبر المجموعة . 3

(۱) تحقق من أن:

$$(\forall (z, z') \in \mathcal{H}_{\theta} \times \mathcal{H}_{\theta}), (\forall (\alpha, \alpha') \in]-1, 1[\times]-1, 1[); z*z' = \frac{\alpha + \alpha'}{1 + \alpha \cdot \alpha'} \cdot e^{i\theta}$$

، زمرة تبادلية ($\mathcal{H}_{ heta},st$) استنتج أن $\mathcal{H}_{ heta}$ جزء مستقر من (\mathcal{G},st) ، ثم بين أن

3- III مسألة رقم 3

: فضع :
$$\mathcal{N}(a,b)=egin{pmatrix}a&b\\-5b&a+2b\end{pmatrix}$$
 : نضع : \mathbb{R}^2 من (a,b) من (a,b)

، $\mathcal{J}=\mathcal{N}(0,1)$ و $\mathcal{I}=\mathcal{N}(0,0)$: نضع $\mathcal{H}=\left\{\mathcal{N}(a,b)\ /\ (a,b)\in\mathbb{R}^2\right\}$

٠. (۱) بين أن $(\mathcal{H}, +)$ زمرة تبادلية

$$\mathcal{M}_2(\mathbb{R}), imes$$
بین أن $\mathcal{J}=2\mathcal{J}-5\mathcal{I}$ ، ثم استنتج أن \mathcal{H} جزء مستقر من

- بين أن $(\mathcal{H},+,\times)$ جسم تبادلي (ج
- متجهیا بعده $(\mathbb{C},+,\cdot)$ فضاءً متجهیا بعده 2.
- \cdot ($\mathbb{C},+,\cdot$) أساس للفضاء (1,1+2i) أبين أن الأسرة ($\mathbb{C},+,\cdot$)
- : رب استنتج أنه كل عدد عقدي z يكتب بكيفية وحيدة و هي $(a,b)\in\mathbb{R}^2$ حيث z=a+b(1+2i)
- $(\mathcal{H},+)$ نحو $(\mathbb{C},+)$ نعتبر التطبیق φ المعرف من z=a+b(1+2i) نحو $\mathcal{N}(a,b)$ و الذي يربط كل عدد عقدي z بالمصفوفة $\mathcal{N}(a,b)$ بين أن φ تشاكل تقابلي من \mathbb{C} نحو \mathcal{H} .

$$\cdot$$
 ($\forall z, z' \in \mathbb{C}$), $\varphi(z \times z') = \varphi(z) \times \varphi(z') : (2)$

•
$$\varphi\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \begin{pmatrix} \frac{1}{2} - \frac{\sqrt{3}}{4} & \frac{\sqrt{3}}{4} \\ \frac{-5\sqrt{3}}{4} & \frac{1}{2} + \frac{\sqrt{3}}{4} \end{pmatrix} : نه : (1)$$
 .3

: نان ، \mathbb{N}^* من n بین أن

$$\left[\varphi \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \right]^n = \begin{pmatrix} \cos \left(\frac{n\pi}{3} \right) - \frac{1}{2} \sin \left(\frac{n\pi}{3} \right) & \frac{1}{2} \sin \left(\frac{n\pi}{3} \right) \\ \frac{-5}{2} \sin \left(\frac{n\pi}{3} \right) & \cos \left(\frac{n\pi}{3} \right) + \frac{1}{2} \sin \left(\frac{n\pi}{3} \right) \end{pmatrix}$$

4- III مسألة رقم 04

اتكن $(A,+,\times)$ حلقة واحدية وليكن a عنصرا من A

.
$$(\exists n \in \mathbb{N} - \{0, 1\}); \ a^{n-1} \neq 0_A \quad \mathbf{0} \quad a^n = 0_A$$

- A,+, imes بين أن العنصر A لا يقبل مقلوبا في الحلقة.
- ٠٠ بين أن العنصر a-a يقبل مقلوبا في الحلقة (A,+, imes) ينبغي تحديده 2

$$\mathcal{K} = \begin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$$
 ، $\mathcal{H} = \begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$: نعتبر المصفوفتين -B

ولكل (a,b) من \mathbb{R}^2 ،نضع : (a,b) عن خموعة المصفوفات المربعة $\mathcal{M}_{(a,b)}=\begin{pmatrix} a+b&a-b\\a-b&a+b \end{pmatrix}$: في مجموعة المصفوفات المربعة $\mathcal{M}=\{\mathcal{M}_{(a,b)}/(a,b)\in\mathbb{R}^2\}$ ، نعتبر المجموعة الجزئية : $\mathcal{M}_2(\mathbb{R})$

- ٠. بين أن : $(\mathcal{M},+)$ زمرة تبادلية ١
- $\mathcal{M}_2(\mathbb{R})$ بين أن \mathcal{M} مستقرة بالنسبة لضرب المصفوفات في \mathcal{M}
 - د. استنتج أن : $(\mathcal{M},+, imes)$ حلقة . هل هي كاملة ؟
 - 4. بين أن:

.
$$(\forall n \in \mathbb{N}^*)$$
, $(\mathcal{M}_{(a,b)})^n = 2^{n-1} (a^n \cdot \mathcal{H} + b^n \cdot \mathcal{K})$

III -5 مسألة رقم 05

:نضع منصرها المحاید e لکل و بنادلیة،عنصرها المحاید تبادلیة،عنصرها المحاید

$$a^0=e, \quad a^1=a, \quad a^{n+1}=a^n*a$$
من $a^0=a$

: وليكن a^{-1} مماثل a في $(\mathcal{G},*)$ وليكن أنه يوجد عدد صحيح طبيعي غير منعدم a بحيث a^{-1} . $a^{\ell}=e$

نعتبر المجموعتين:

$$\mathcal{F}=\left\{x\in\mathcal{G}|(\exists k\in\mathbb{Z}),\quad x=b^k
ight\}$$
 و $\mathcal{E}=\left\{x\in\mathcal{G}|(\exists k\in\mathbb{Z}),\quad x=a^k
ight\}$ حيث a^q مع عدد صحيح طبيعي غير منعدم يخالف $b=a^q$

.
$$(\mathcal{E},*)$$
 زمرة جزئية للزمرة $(\mathcal{F},*)$ و أن $(\mathcal{F},*)$ زمرة جزئية للزمرة $(\mathcal{E},*)$

.
$$\ell \wedge q = 1 \Longrightarrow \mathcal{E} = \mathcal{F}$$
 بين الاستلزام التالي: 2

06 مسألة رقم 66 III

$$\pm 2$$
 في المجال ± 2 نعرف قانون التركيب الداخلي ± 3 يلي المجال ± 1

$$. \quad \left(\forall (x,y) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\right), \quad x \star y = \arctan \left(\sqrt{3} + \tan(x) + \tan(y) \right)$$

. بین أن
$$\left(\left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \star \right)$$
 زمرة تبادلية

.
$$f(x) = \sqrt{3} + \tan(x)$$
 : نضع نالججال $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ نضع x من الججال x

$$oldsymbol{\cdot}$$
 $(\mathbb{R},+)$ نحو $\left(\left]-rac{\pi}{2},rac{\pi}{2}\right[,\star
ight)$ من قابلي من f نخو (۱)

$$\cdot \left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \star\right)$$
 بنية (ب) استنتج مرة أخرى بنية

$$\cdot \left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \star\right)$$
 زمرة جزئية من $\left\{\arctan\left(\ln(x) - \sqrt{3}\right)/x > 0\right\}$ زمرة جزئية من (ج)

$$n \in \mathbb{N}^*:$$
 نضع $x^{(n)} = \underbrace{x \star x \cdots \star x}_n:$ نضع $x^{(n)} = \underbrace{x \star x \cdots \star x}_n:$ نضع $x \to \infty$ ، حيث $x \to \infty$

$$(1)$$
 حدد تعبیر $x^{(n)}$ بدلالة x

.
$$x^{(2016)} = x + 2017\pi$$
 : المعادلة التالية: $-\frac{\pi}{2}, \frac{\pi}{2}$

: يلى $G=\mathbb{R}_+^* imes\mathbb{R}_+$ بقانون التركيب الداخلى $G=\mathbb{R}_+^* imes\mathbb{R}_+$

$$\forall (x,y) \in G, \forall (x',y') \in G; (x,y) \top (x',y') = \left(xx', \sqrt[n]{x}y' + x'y\right)$$

میت : n عدد صحیح طبیعی غیر منعدم n

- ٠. بين أن (G, \top) زمرة غير تبادلية
- $\mathcal{H}=\{\left(1,y\right)/y\in\mathbb{Z}\}:$ مثبت أن $\left(\mathcal{H}, op
 ight)$ زمرة تبادلية ، حيث $\left(\mathcal{H}, op
 ight)$

.
$$\mathcal{D}=\left\{M(x,y)=\left(egin{array}{c} \sqrt[n]{x} & y \\ 0 & x \end{pmatrix}/(x,y)\in G
ight\}$$
: نعتبر المجموعة الجزئية : -B

- $oldsymbol{\mathcal{M}}_2(\mathbb{R}), imes$ بين أن \mathcal{D} جزء مستقر من $oldsymbol{\mathcal{M}}_2$.
- (G, T) روج بالمصفوفة M(x,y) تشاكل تقابلي (x,y) روج بالمصفوفة M(x,y) تشاكل تقابلي M(x,y) من نحو M(x,y) ، ثم استنتج بنية (\mathcal{D},\times) محددا مقلوبا للمصفوفة M(x,y)
 - : ونعتبر المجموعة $\mathcal{I}=(1,0)$ و $\mathcal{A}=M(1,1)$: نضع

$$. \mathcal{F} = \left\{ a\mathcal{I} + b\mathcal{A}/(a,b) \in \mathbb{Z}^2 \right\}$$

- $\mathcal{A}^2 = -\mathcal{I} + 2\mathcal{A}$: ا $\mathcal{A}^2 = -\mathcal{I} + 2\mathcal{A}$ المحقق من أن
- بين أن $(\mathcal{F},+, imes)$ حلقة تبادلية و واحدية .
- $(oldsymbol{\mathcal{F}},+, imes)$ هل هي حلقة کاملة $(oldsymbol{\mathcal{F}},+, imes)$

III -8 مسألة رقم 08

في المجال $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ نعرف قانون التركيب الداخلي * بما يلي:

.
$$\forall (x,y) \in \mathcal{I}^2$$
, $x * y = \arctan(\tan(x) + \tan(y) - 1)$

- رمية تبادلية. $(\mathcal{I},*)$ نمية تبادلية.
- f(x) = an(x) 1 نضع: x من x من x من x نضع:

- ، f^{-1} بين أن f تقابل من \mathcal{I} نحو \mathbb{R} ، محددا تقابله العكسي (۱)
 - $oldsymbol{\cdot} (\mathcal{I},*)$ بين أن f^{-1} تشاكل من $(\mathcal{R},+)$ نحو
 - $(\mathcal{I},*)$ استنتج مرة أخرى، بنية (*,*)
- 3. لكل x من $\mathcal I$ ، نضع: $x * x * \cdots * x * \cdots * x$ (تتم العملية * ، مرة) . نعتبر في المجموعة $\mathcal I$ ، المعادلة: $x * x * \cdots * x * \cdots * x * \cdots * x$).
- بين المعادلة (E_n) تقبل حلا وحيدا α_n في المجال $\mathcal I$ حيث n عدد صحيح طبيعي غير (ا) منعدم.
 - $0 \leq \alpha_n < \frac{\pi}{4}$: اثبت أنه؛ لكل n عدد صحيح طبيعي غير منعدم الدينا n
 - ج) برهن على أن المتتالية $(\alpha_n)_{n\in\mathbb{N}^*}$ ،متقاربة محددا نهايتها.

.
$$M(a,b)=egin{pmatrix} a+rac{b}{\sqrt{2}}&-rac{b}{\sqrt{2}}\ rac{3b}{\sqrt{2}}&a-rac{b}{\sqrt{2}} \end{pmatrix}$$
 : نعتبر المصفوفة (a,b)

في الحلقة $(\mathcal{M}_2(\mathbb{R}),+, imes)$ ، نعتبر المجموعة : $\{M(a,b)/(a,b)\in\mathbb{R}^2\}$ ، نعتبر المجموعة

- . بين أن $(\mathcal{H},+)$ زمرة تبادلية \mathcal{H}
- ، $(\mathcal{M}_2(\mathbb{R}), imes)$ بين أن \mathcal{H} جزء مستقر من 2
- ربين أن التطبيق ϕ الذي يربط كل عدد عقدي z=a+ib بين أن التطبيق ϕ الذي يربط كل عدد عقدي z=a+ib بين أن التطبيق (\mathbb{C}^*,\times) من نحو (\mathcal{H},\times) من نحو
 - . بادلي جسم تبادلي $\mathcal{H},+, imes$

10 مسألة رقم 10 مسألة رقم 10

نعرف على ℝ قانون التركيب الداخلي * المعرف بما يلي :

$$\forall (a,b) \in \mathbb{R}^2, a * b = \ln(e^a + e^b)$$

1. (١) هل القانون * تجميعي ؟

- x*(x*x)=0 : المعادلة \mathbb{R} حل في
- ? بين أنه a>b هل هو وحيد $\exists x\in\mathbb{R}$, a=b*x على هو وحيد
 - $a+(b*c)=(a+b)*(a+c):\mathbb{R}$ من a+(b*c)=a+b من ،3 هل الجمع + توزيعي بالنسبة للقانون * ؟

IV الحسابيات

1- IV مسألة رقم 01

: يكن $n \in \mathbb{N}^{*2}$ من أن $n \geq 5$ و أنه يوجد زوج (a,b) من $n \in \mathbb{N}$ بحيث

مع : مع
$$a:$$
 مع $a:$ مع $a:$ مع $a:$ مع $a:$ مع $a:$ مع مع مع مع مع مينهما م

.
$$\theta = \arg(z) \in]-\pi,\pi[$$
 نضع $z=a+ib$: نضع

. $(a+ib)^n=(a-ib)^n$: أحسب θ بدلالة a و a ، ثم بين أن

$$.-2\,(2ib)^{n-1}=(a-ib)\left(\sum_{k=1}^{n-1}C_n^k(a-ib)^{n-1-k}\,(2ib)^{k-1}
ight)$$
: إستنتج أن

• (2b) $^{2n-2}$ يقسم a^2+b^2 : أن

$$A$$
. $\exists k \in \{1, 2, \cdots, 2n-2\} ; a^2 + b^2 = 2^k : استنج أن$

$$n=8$$
 : بين أن: $k=1$ ، ثم إستنتج أنه

2- IV مسألة رقم 2

الجزء الأول:

 $a^2+1\equiv 0$ [p]: کین x عددا من $p\geq 3$. لیکن $p\geq 3$. لیکن $p\in \mathbb{P}$

(یمکنك إستعمال مبرهنة فیرما).
$$p \equiv 1$$
 [4]. بین أن

4k+1 : لتكن ${\cal I}$ مجموعة الأعداد الأولية و التي تكتب على شكل ${\cal I}$

$$oldsymbol{\mathcal{P}} = \left(2\prod_{p_i\in\mathcal{I}}p_i
ight)^2 + 1:$$
نضع

(۱) بین أن : 3 ${\tt K}$ یقسم ${\tt R}$.

$$p|\mathcal{P} \Longrightarrow p \equiv 1 \quad [4]$$
ب أثبت أنه:

 $(ar{}+)$ إستنتج أن المجموعة I غير منتهية.

الجزء الثاني:

- a^2+ab+b^2 يقبل القسمة على $a\neq b$ و $a\neq a$ و $a\neq a$ يقبل القسمة على ab(a+b) . 1. ليكن ab(a+b) . $a\neq a$ و $a\neq a$ و $a\neq a$. $a\neq a$.
- ع $ab=c^n$ ع $a\wedge b=1$: بین أنه : لکل زوج (a,b) من (a,b) بحیث یکون : (a,b) مع (a,b) بین أنه : لکل زوج (a,b) من (a,b) بیث یکقت : $(c,n)\in\mathbb{N}^{*2}$

الجزء الثالث:

 $a^2=2b^2+1$:ليكن $(a,b)\in \mathbb{N}^{*2}$ نيځيث

- $a \wedge b = 1$ بين أن.
- $(a+1) \wedge (a-1) = 2$ بين أن.
- 3. بين أن أحد العددين لا يقبل القسمة على 4.
 - $oldsymbol{.}$ 4 ل يقبل القسمة على a-1 كل يقبل القسمة على .4

$$(a+1) \wedge \left(\frac{a-1}{2}\right) = 1: يين أنه: (۱)$$

- (ب) إستنتج أن العددين $\sqrt{a-1\over 2}$ و $\sqrt{a+1}$ عددان صحيحان طبيعيان؛ يقبلان القسمة على b
- . $(p,q)\in \mathbb{N}^{*2}$: حيث $p^3=3q^3+1$: 5. فقرض أن $p^3=3q^3+1$ و أن $p^3=3q^3+1$ عددان بين أنه إذا كان 9 لا يقسم $p^3=3q^3+1$ فإن العددين $p^3=3q^3+1$ عددان صحيحان طبيعيان و يقسمان العدد $p^3=3q^3+1$

3- IV مسألة رقم 3

- 7 القسمة الإقليدية للعدد 2017^{2017} على 1
- 11 على العدد الصحيح الطبيعي n ، باقي القسمة الإقليدية للعدد 4^n على (-1)

 $\cdot 2017^{2017} + 6 \equiv 0$ [77] : استنتج أن

- ع ، المعادلة $\alpha_n=\sum_{k=0}^n 2017^k:$ و نعتبر في $\alpha_n=\sum_{k=0}^n 2017^k:$ المعادلة ، المعادلة ، $\alpha_n=\sum_{k=0}^n 2017^k:$ التالية : $\alpha_n=\sum_{k=0}^n 2017^k:$
 - $x\equiv 2\alpha_n\ [11]:$ بين أنه إذا كان x حلا للمعادلة (E) ، فإن
 - (ب) حدد مجموعة حلول المعادلة (E) ، ثم استنتج حلولها القابلة للقسمة على (E)

الجزء الأول: ليكن $p \in \mathbb{Z}$ و ليكن p عددا أوليا أكبر قطعا من $p \in \mathbb{Z}$ يقسم العدد $p \in \mathbb{Z}$. $p \in \mathbb{Z}$ العدد $p \in \mathbb{Z}$ بقسم العدد

$$(a^3-1=(a-1)(a^2+a+1):$$
1. وين أن $a^3\equiv 1$ $[p]:$ 1.

- $p \wedge (a+1) = 1$ و $p \wedge (a-1) = 1$. بين أن $p \wedge (a-1) = 1$
- $a^k\equiv 1$ [p] عند منعدم k منعدم عدد صحیح طبیعی غیر منعدم k بخقق k ، باستعمال ما سبق، أثبت أن أصغر عدد صحیح طبیعی غیر منعدم k=3 . k=3 هو k=3
 - $p \equiv 1 \quad [3]:$ بتطبیق مبرهنة فیرما ، بین أن
 - . $\mathcal{A}_n = (3(n!))^2 + 3(n!) + 1:$ نضع וلثاني: لكل n من n من n نضع
- استعمل)، $p_n\equiv 1\quad [3]$ و $p_n>n$ و استعمل)، بين أن لكل p_n من \mathbb{N}^* ،يقبل قاسما أوليا p_n بحيث p_n و استعمل نتيجة السؤال 4. من الجزء الأول)
- 3k+1: استنتج أنه توجد مالانهاية من الأعداد الأولية الموجبة و التي تكتب على الشكل $k\in\mathbb{N}^*$.

7- IV مسألة رقم 05

 $a \wedge b = 1$ نضع $(a,b) \in \mathbb{Z}^2$ ، حیث $\mathcal{D} = a^2 + b^2$ و

- . $(\forall k \in \mathbb{Z}), (2k+1)^4 \equiv 1[16] : 1$. 1
 - , $\mathcal{D}\equiv 2[16]$ أو $\mathcal{D}\equiv 1[16]$: (ب) استنتج أن
 - $\cdot \mathcal{D}$ قاسما أوليا فرديا للعدد p

$$p \wedge a = 1 :$$
ا) بين أن (ا)

(ب) استنتج أن :أو بين أنه يوجد عدد صحيح نسبي
$$c=1$$
 ، بحيث أنه يوجد عدد صحيح مبرهنة بوزو و السؤال السابق)

رج) استنتج أن
$$[p]: x^{r-1} \equiv 1$$
 هو باقي القسمة الإقليدية (ج) استنتج أن . 8 للعدد p على 8 .

(د) أثبت أنه :
$$p \equiv 1[8]$$
 ، مكنك استعمال البرهان بفصل الحالات)

المتالية العددية المعرفة بما يلي: لتكن $(a_n)_{n\geq 0}$

$$a_{n+2} = (2a+1) a_{n+1} - a(a+1)a_n$$
 و $a_1 = 2a+1$ و $a_0 = 2$. $a \in \mathbb{N}^*$

،
$$(\forall n \in \mathbb{N})$$
 , $a_{n+1} \wedge [a(a+1)] = 1:$ 1.

.
$$(\forall n \in \mathbb{N})\,,\; a_{n+1} \wedge a_n = 1\,:$$
 يين أن 2

.
$$(\forall n \in \mathbb{N}), \ a_{2n+1} \equiv 0 \ [2a+1]:$$
 . 3

4. (١) بين الإستلزام التالي:

.
$$\left(\left(\forall\left(\alpha,\beta,\gamma\right)\in\mathbb{Z}^{3}\right),\;\alpha\wedge\beta=1$$
 و $\gamma|\alpha\right)\Rightarrow\alpha\wedge\beta\gamma=|\gamma|$. $\left(\forall n\in\mathbb{N}\right),\;a_{2n+3}\wedge a_{2n+1}=1:$ (ب) استنتج أن

7- IV مسألة رقم

,
$$\varphi(k)=rac{k+2015}{k-2}:$$
نضع $\mathbb{Z}-\{-2015,2\}$ نضع نيكن k من

$$(k-2) \wedge (k+2015) = (k-2) \wedge 2017$$
 : بین أن (۱)

(ب) تحقق من أن 2017 عدد أولى .

$$\mathcal{H}_1 = \{ arphi(k) \in \mathbb{Z}/k \in \mathbb{Z} \} :$$
 حدد المجموعة التالية بتفصيل (z, z)

$$lpha \wedge eta = 1 \Rightarrow eta^2 \wedge \left(lpha^2 - eta^2
ight) = 1:$$
يين أن $lpha \wedge eta = 1$

$$oldsymbol{\mathcal{H}}_2 = \left\{ \sqrt{arphi(k)} \in \mathbb{Q}/k \in \mathbb{Z}
ight\} :$$
 حدد المجموعة التالية بتفصيل.

نعتبر العددين:

.
$$b = \sum_{k=0}^{2009} 2011^k$$
 $a = \sum_{k=0}^{9} 2011^k$

 $a \equiv 60[100]$: بين أن (۱) بين أن

$$\mathbf{k} \in \mathbb{N}^* - \{1\}; \ a^k \equiv 0 \ [100] : (ب)$$
 استنتج أنه

 $.~b \equiv 201a[100]:$ يين أن $.b \equiv 201a[100]$

b استنتج رقمي وحدات و عشرات العدد b

9- IV مسألة رقم 9

ليكن $a,b\in\mathbb{N}^*$ بحيث: $a,b\in\mathbb{N}$ بحيث: $a,b\in\mathbb{N}$ بغتلفين، $\forall n\in\mathbb{N}, a^n+n|b^n+n$ بغتلفين، $(a-b)\land p=1$ بحيث: $a,b\in\mathbb{N}^*$ عددا أوليا موجبا بحيث:

m = a(p-1) + p: عقق من أنm = a(p-1) + p: على للنظمة.

$$.(S): \left\{ \begin{array}{ll} x \equiv & -a \ [p] \\ x \equiv & 1 \ [p-1] \end{array} \right.$$

- $oldsymbol{\mathcal{S}} = \{m + kp(p-1) | k \in \mathbb{Z}\}:$ و استنتج أن مجموعة حلول النظمة (S) هي(S)
 - 3. (يمكنك استعمال مبرهنة فيرما الصغرى)

$$a \wedge p = 1$$
: ابين أن (۱)

$$a^m+m\equiv 0 \ [p]:$$
بين أَن $(oldsymbol{\psi})$

$$b^m+m\equiv b-a \ [p]:$$
رج) بین اُن (z)

(د) إستنتج ؟.

10 - IV مسألة رقم 10

a=b بين أنه إذا كان لكل n من $\mathbb N$ ، $\mathbb N$ بين أنه إذا كان لكل n