Week 3

Companion Numericals

Consider the following one-dimensional dataset:

$$X = [-15, -10, 0, 5, 15, 20, 25]$$

Consider the following one-dimensional dataset:

$$X = [-15, -10, 0, 5, 15, 20, 25]$$

Consider the following one-dimensional dataset:

K-means algorithm with k=3 for the above cluster assignment is run on the given data points.

Cluster Assignment:

Cluster Assignment:

We need to find, for each point, the centre closest to the point.

Distance of (-15, 0) from:

$$-\mu_1 = \sqrt{(-15 - (-15))^2 + (0 - 0)^2} = 5$$

$$-\mu_2 = \sqrt{(-15 - (0))^2 + (0 - 0)^2} = 15$$

$$-\mu_3 = \sqrt{(-15 - (5))^2 + (0 - 0)^2} = 20$$

Cluster Assignment:

Center\Point	-15	-10	0	5	15	20	25
$\mu_1 = -15$	0	5	15	20	30	35	40
$\mu_2 = 0$	15	10	0	5	15	20	25
$\mu_3 = 5$	20	15	5	0	10	15	20

Iteration 1: Distance between points and cluster centers

$$\mu_1 = \frac{-15 - 10}{2} = -12.5$$

$$\mu_2 = \frac{0}{1} = 0$$

$$\mu_3 = \frac{5 + 15 + 20 + 25}{4} = 16.25$$

$$\mu_1 = \frac{-15 - 10}{2} = -12.5$$

$$\mu_2 = \frac{0}{1} = 0$$

$$\mu_3 = \frac{5 + 15 + 20 + 25}{4} = 16.25$$

Iteration 2: Distance between points and cluster centers

$$\mu_1 = \frac{-15 - 10}{2} = -12.5$$

$$\mu_2 = \frac{0 + 5}{2} = 2.5$$

$$\mu_3 = \frac{15 + 20 + 25}{3} = 20$$

 μ_1

$$\mu_1 = \frac{-15 - 10}{2} = -12.5$$

$$\mu_2 = \frac{0 + 5}{2} = 2.5$$

$$\mu_3 = \frac{15 + 20 + 25}{3} = 20$$

Iteration 3: Distance between points and cluster centers

The cluster assignments do not change.

The algorithm has therefore converged.

Consider the following dataset:

$$\left\{\mathbf{x_1} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \mathbf{x_2} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ \mathbf{x_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \mathbf{x_4} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}, \ \mathbf{x_5} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}\right\}$$

Consider the following dataset:

$$\left\{\mathbf{x_1} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \mathbf{x_2} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \ \mathbf{x_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \mathbf{x_4} = \begin{bmatrix} 0 \\ -2 \end{bmatrix}, \ \mathbf{x_5} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}\right\}$$

K-means++ Algorithm with k=2 is run on this dataset to initialize the cluster centers.

$$\mu = \begin{bmatrix} \mathbf{x_2} \end{bmatrix}$$

$$P(\mu = [\mathbf{x_2} \ \mathbf{x_1}]) = 0.2 \times$$

$$\mu = \begin{bmatrix} \mathbf{x_2} \end{bmatrix}$$

$$P(\mu = [\mathbf{x_2} \ \mathbf{x_1}]) = 0.2 \times$$

Compute score for each datapoint to be the minimum value of the set of squared distances between the datapoint and the chosen clusters.

$$\mu = \begin{bmatrix} \mathbf{x_2} \end{bmatrix}$$

$$P(\mu = [\mathbf{x_2} \ \mathbf{x_1}]) = 0.2 \times$$

Normalize scores
$$P(\mathbf{x}_i) = \frac{S_i}{\sum S_i}$$

Where S_i denotes the score for \mathbf{x}_i

$$\mu = \begin{bmatrix} \mathbf{x_2} & \mathbf{x_1} \end{bmatrix}$$

$$P(\mu = \begin{bmatrix} \mathbf{x_2} & \mathbf{x_1} \end{bmatrix}) = 0.2 \times 0.222$$

$$\mu = \begin{bmatrix} \mathbf{x_2} & \mathbf{x_1} \end{bmatrix}$$

$$P(\mu = [\mathbf{x_2} \ \mathbf{x_1}]) = 0.2 \times 0.222 \approx \boxed{0.044}$$