Math 209-16 Homework 5

Due Date: Nov. 29 (Tue), 2022

P1.(2 pts) For any positive integers a, b, n, prove that if n is a divisor of $a^n - b^n$, then n is a divisor of $(a^n - b^n)/(a - b)$.

Proof. Obviously, it holds for n=1, so we suppose that $n\geqslant 2$. Let $d=\gcd(a-b,n)$, and write the prime factorization of n as $n=p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}$. Note that it suffices to show $p_i^{n_i}\mid \frac{a^n-b^n}{a-b}$ for all i. We consider two cases as follows:

① If $p_i \nmid d$, then $p_i^{n_i} \mid \frac{a^n - b^n}{a - b}$ since $n \mid (a^n - b^n)$.

② If $p_i \mid d$, we claim that $p_i \mid a$ and $p_i \mid b$. Clearly, $p_i \mid (a - b)$, so we may write $a = b + kp_i$ for some $k \in \mathbb{Z}$, or equivalently, $a \equiv b \pmod{p_i}$. Thus, we have

$$\frac{a^n - b^n}{a - b} = a^{n-1} + a^{n-2}b + \dots + b^{n-1} \equiv nb^{n-1} \equiv 0 \pmod{p_i}$$
 (1)

On the other hand, plug in $a = b + kp_i$, we get

$$\frac{a^n - b^n}{a - b} = \frac{(b + kp_i)^n - b^n}{kp_i} = \sum_{j=0}^{n-1} (kp_i)^j b^{n-j-1}$$

Together with (1), we see that $p_i \mid b$, and $p_i \mid a$ also follows. The claim is proved now. Next, we may write $a = p_i^{v_a} \cdots$ and $b = p_i^{v_b} \cdots$, namely, $v_a = v_{p_i}(a)$ and $v_b = v_{p_i}(b)$. Without loss of generality, we can assume that $v_a \ge v_b$. Then it follows that

$$v_{p_i}(\frac{a^n - b^n}{a - b}) = v_{p_i}(a^{n-1} + a^{n-2}b + \dots + b^{n-1}) \geqslant v_b \cdot (n-1) \geqslant n - 1 \geqslant n_i,$$

which means that $p_i^{n_i} \mid \frac{a^n - b^n}{a - b}$. So we conclude that $n \mid (a^n - b^n) \Longrightarrow n \mid \frac{a^n - b^n}{a - b}$.

P2.(2 pts) Write n in base p, and let S(n) denote the sum of the digits in this representation. Show that $p^e \parallel n!$, where e = (n - S(n))/(p - 1).

Proof 1. Suppose that $n = \sum_{i=0}^k a_i \cdot p^i$ with $k \ge 0$ and $a_i \in \{0, 1, \dots, p-1\}$, then $S(n) = \sum_{i=0}^k a_i$. Hence, we have

$$e = \sum_{i=1}^{k} \left[\frac{n}{p^i} \right] = \sum_{i=1}^{k} \sum_{j=i}^{k} a_j \cdot p^{j-i} = \sum_{j=1}^{k} a_j \left(\sum_{i=0}^{j-1} p^i \right) = \frac{\sum_{j=0}^{k} a_j (p^j - 1)}{p - 1} = \frac{n - S(n)}{p - 1}$$

Proof 2.1 For each natural number m, if $v_p(m) = e$, then the base p expansion of m should be of the form $m = \sum_{i=e}^k a_i p^i$, with $k \ge i$, $0 \le a_i \le p-1$, and $a_e \ne 0$. Therefore the base p expansion of m-1 should be

$$m-1 = \sum_{i=0}^{e-1} (p-1)p^{i} + (a_{e}-1)p^{e} + \sum_{i=e+1}^{k} a_{i}p^{i},$$

and we see immediately that S(m-1) = (p-1)e + S(m) - 1, in other words,

$$v_p(m) = e = \frac{1 + S(m-1) - S(m)}{p-1}.$$

As a consequence, we have

$$v_p(n!) = \sum_{m=1}^n v_p(m) = \sum_{m=1}^n \frac{1 + S(m-1) - S(m)}{p-1} = \frac{n - S(n)}{p-1}.$$

¹We thank Prof. Qing Xiang for providing this proof.

P3.(2 pts) Let a and b be positive integers with a + b = n. Show that the power of p dividing $\binom{n}{a}$ is exactly the number of carries when a and b are added base p.

Proof. Notice that each time a carry happens when a and b are added in base p, the difference S(a) + S(b) - S(n) would decrease by p - 1. If no carry happens, then S(a) + S(b) - S(n) = 0. Therefore, the number of such carries is equal to

$$\frac{S(a) + S(b) - S(n)}{p - 1} = \frac{n - S(n) - (a - S(a)) - (b - S(b))}{p - 1} = e_n - e_a - e_b,$$

which is exactly the power of p dividing $\binom{n}{a} = \frac{n!}{a!b!}$.

P4.(2 pts) Suppose that $a = \alpha p + a_0$ and that $0 \le a_0 < p$. Show that $a!/(\alpha!p^{\alpha}) \equiv (-1)^{\alpha}a_0! \pmod{p}$. Suppose also that $b = \beta p + b_0$ with $0 \le b_0 < p$. Show that $\binom{a+b}{a} \equiv \binom{\alpha+\beta}{\alpha}\binom{a_0+b_0}{a_0} \pmod{p}$. Deduce that if $a = \sum_i a_i p^i$ and $b = \sum_i b_i p^i$ in base p, then $\binom{a+b}{a} \equiv \prod_i \binom{a_i+b_i}{a_i} \pmod{p}$.

Proof. When $a_0 \ge 1$, we have the following:

$$\frac{a!}{\alpha!p^{\alpha}} = \prod_{k=1}^{a_0} (\alpha p + k) \cdot \frac{(\alpha p)!}{\alpha!p^{\alpha}} = \prod_{k=1}^{a_0} (\alpha p + k) \cdot \prod_{i=0}^{\alpha-1} \prod_{j=1}^{p-1} (ip+j) \equiv a_0! \cdot ((p-1)!)^{\alpha} \equiv (-1)^{\alpha} a_0! \pmod{p},$$

where the second equality holds because all the multiples of p appearing in the numerator are cancelled out by the denominator. In the case of $a_0 = 0$, the result is consistent with above since the term $\prod_{k=1}^{a_0} (\alpha p + k)$ disappears and $a_0! = 0! = 1$. Hence, the first congruence follows. This leads to the second congruence:

where we have used $\frac{a!}{\alpha!p^{\alpha}} \equiv 1 \pmod{p}$. Also notice that even if $a_0 + b_0 \geqslant p$, $\frac{(a+b)!}{(\alpha+\beta)!p^{\alpha+\beta}} \equiv (-1)^{\alpha+\beta}(a_0+b_0)! \pmod{p}$ still holds since in this case both sides are divisible by p. Finally, the last congruence is an immediate consequence by induction of the previous one.

P5.(2 pts) Show that the sum of the odd divisors of n is $-\sum_{d|n} (-1)^{n/d} d$, and that this is $\sigma(n) - 2\sigma(n/2)$ where $\sigma(a)$ is defined to be 0 if a is not an integer.

Proof. To prove the first identity, we write $n = 2^t \cdot l$ with l odd. Then

$$-\sum_{d|n}(-1)^{n/d}d = -\sum_{i=0}^{t}\sum_{k|l}(-1)^{2^{t-i}\cdot\frac{l}{k}}2^{i}k = 2^{t}\sum_{k|l}k - \left(\sum_{i=0}^{t-1}2^{i}\right)\sum_{k|l}k = \sum_{k|l}k,$$

which is exactly the sum of odd divisors of n.

It is also easy to see that the sum of odd divisors of n is equal to $\sigma(n) - 2\sigma(n/2)$. Indeed, if n is odd, they are both equal to $\sigma(n)$ since all the divisors of n are odd. And if n = 2m is even, the even divisors of n are exactly those of the form 2d with d|m, therefore, the sum of even divisors of n is $\sum_{d|m} 2d = 2\sigma(m) = 2\sigma(n/2)$.

P6.(2 pts) Show that for all positive integers n,

$$\sum_{\substack{a=1\\(a,n)=1}}^{n} (a-1,n) = d(n)\phi(n).$$

Proof. For $n = p^k$ a prime power, by direct computations we see that

$$\sum_{\substack{a=1\\(a,p)=1}}^{p^k} (a-1,p^k) = (p^k - 2p^{k-1}) + \sum_{i=1}^{k-1} p^i (p^{k-i} - p^{k-i-1}) + p^k = (k+1)p^{k-1}(p-1) = d(n)\phi(n),$$

where $p^k - 2p^{k-1}$ is the sum of those terms with $(a-1, p^k) = 1$, $p^i(p^{k-i} - p^{k-i-1})$ is the sum of those terms with $(a-1, p^k) = p^i$, and p^k represents the first term with $(1-1, n) = p^k$.

Now it suffices to show that both sides of the identity are multiplicative functions of n. Since d(n) and $\phi(n)$ are well-known to be multiplicative, we are only left to consider the LHS. Suppose that (m,n)=1, then an+bm runs over a reduced residue system modulo mn if a (resp. b) runs over a reduced residue system modulo m (resp. n).

Therefore, we have

$$\sum_{\substack{c=1\\(c,mn)=1}}^{mn} (c-1,mn) = \sum_{\substack{a=1\\(a,m)=1}}^{m} \sum_{\substack{b=1\\(b,n)=1}}^{n} (an+bm-1,mn)$$

$$= \sum_{\substack{a=1\\(a,m)=1}}^{m} \sum_{\substack{b=1\\(b,n)=1}}^{n} (an+bm-1,m)(an+bm-1,n)$$

$$= \sum_{\substack{a=1\\(a,m)=1}}^{m} \sum_{\substack{b=1\\(b,n)=1}}^{n} (an-1,m)(bm-1,n)$$

$$= \left(\sum_{\substack{a=1\\(a,m)=1}}^{m} (an-1,m)\right) \left(\sum_{\substack{b=1\\(b,n)=1}}^{n} (bm-1,n)\right)$$

$$= \left(\sum_{\substack{a=1\\(a,m)=1}}^{m} (a-1,m)\right) \left(\sum_{\substack{b=1\\(b,n)=1}}^{n} (b-1,n)\right)$$

where in the last step we have used the fact that when a runs over a reduced residue system of (mod m), so does an, and similar for b.

P7.(2 pts) Let s(n) denote the largest square-free divisor of n. That is, $s(n) = \prod_{p|n} p$. Show that $\sum_{d|n} d\mu(d) = (-1)^{\omega(n)} \phi(n) s(n) / n$.

Proof. Let $n = p_1^{t_1} \cdots p_k^{t_k}$ be its prime factorization. Then

$$\sum_{d|n} d\mu(d) = \sum_{s=0}^{k} (-1)^s \sum_{1 \le i_1 < \dots < i_s \le k} p_{i_1} \cdots p_{i_s} = \prod_{i=1}^{k} (1 - p_i) = (-1)^{\omega(n)} \prod_{i=1}^{k} (p_i - 1),$$

while it is easy to see that $\phi(n)s(n)/n = \prod_{i=1}^k (p_i - 1)$. Combining the two equalities, the proof is now completed.

P8.(2 pts) Let $\Phi_n(x)$ denote the polynomial with leading coefficient 1 and degree $\phi(n)$ whose roots are the $\phi(n)$ different primitive *n*-th roots of unity. Prove that $\prod_{d|n} \Phi_d(x) = x^n - 1$ for all real or complex numbers x. Deduce that $\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$. Show that the coefficients of $\Phi_n(x)$ are integers. This is the cyclotomic polynomial of order n.

Proof. The polynomial x^n-1 can be factored as $\prod_{\zeta}(x-\zeta)$ where ζ runs over all the n-th roots of unity. Now any n-th root of unity is a primitive d-th root of unity for precisely one $d\mid n$ and conversely, any primitive d-th root of unity with $d\mid n$ is of course an n-th root of unity. Therefore, we have the factorization $x^n-1=\prod_{d\mid n}\Phi_d(x)$. Then it follows from Möbius inversion (see Problem 23 on Page 197 of the textbook) that $\Phi_n(x)=\prod_{d\mid n}(x^d-1)^{\mu(n/d)}$. To show that the coefficients of $\Phi_n(x)$ are integers, we proceed by induction on n. Clearly, it is true for $\Phi_1(x)=x-1$, and now we assume that the conclusion holds for all integers less than n. Then $\prod_{d\mid n,d< n}\Phi_d(x)$ is a monic polynomial with coefficients in \mathbb{Z} , and we see from $\prod_{d\mid n}\Phi_d(x)=x^n-1$ that it divides x^n-1 over \mathbb{C} , and hence over \mathbb{Q} since $\prod_{d\mid n,d< n}\Phi_d(x)$ is monic. As a consequence, $\Phi_n(x)$ has coefficients in \mathbb{Q} . Hence, by Gauss's lemma we see that the coefficients of $\Phi_n(x)$ are integers.

P9.(2 pts) Let p be prime, and let $\Phi_{p-1}(x)$ denote the cyclotomic polynomial of order p-1. Show that g is a solution of the congruence $\Phi_{p-1}(x) \equiv 0 \pmod{p}$ if and only if g is a primitive root \pmod{p} . Show also that the sum of all the primitive roots \pmod{p} is $\equiv \mu(p-1) \pmod{p}$.

Proof. If g is a primitive root (mod p), then g is a root of $x^{p-1}-1$ (mod p) but not a root of x^d-1 (mod p) for any d < p-1. In particular, since $\Phi_d(x)$ is a factor of x^d-1 , g cannot be a root of $\Phi_d(x)$ (mod p) for d < p-1. Therefore g must be a root of $\phi_{p-1}(x)$ (mod p) as $\prod_{d|p-1} \Phi_d(x) = x^{p-1}-1$. Since there are exactly $\phi(p-1)$ primitive roots (mod p), and there are at most $\deg(\Phi_{p-1}(x)) = \phi(p-1)$ different roots of $\Phi_{p-1}(x)$ (mod p), we deduce that g is a solution of the congruence $\Phi_{p-1}(x) \equiv 0 \pmod{p}$ if and only if g is a primitive root (mod p). Let ζ be a primitive root modulo p, i.e., $\mathbb{Z}_p^{\times} = \langle \zeta \rangle$. Then the sum of all the primitive roots (mod p) is $\sum_{k=1,(k,p-1)=1}^{p-1} \zeta^k$. Since $\sum_{d|n} \mu(d) = 1$ if n = 1; otherwise, it is 0, we have

$$\sum_{k=1,(k,p-1)=1}^{p-1} \zeta^k = \sum_{k=1}^{p-1} \zeta^k \sum_{d \mid (k,p-1)} \mu(d) = \sum_{d \mid (p-1)} \mu(d) \sum_{j=1}^{\frac{p-1}{d}} \zeta^{jd} \equiv \mu(p-1) \pmod{p}. \quad \Box$$

P10.(2 pts) Let p be a prime number. Show that $F_p \equiv (\frac{p}{5}) \pmod{p}$. Show that $F_{p+1} \equiv 1 \pmod{p}$ if $p \equiv \pm 1 \pmod{5}$, and that $F_{p+1} \equiv 0 \pmod{p}$ if $p \equiv \pm 2 \pmod{5}$. Show that $F_{p-1} \equiv 0 \pmod{p}$ if $p \equiv \pm 1 \pmod{5}$, and that $F_{p-1} \equiv 1 \pmod{p}$ if $p \equiv \pm 2 \pmod{5}$. Conclude that if $p \equiv \pm 1 \pmod{5}$ then p-1 is a period of $F_n \pmod{p}$. (This is not necessarily the least period.) Conclude also that if $p \equiv \pm 2 \pmod{5}$ then 2p+2 is a period of $F_n \pmod{p}$.

Proof. Recall $F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$ for $n = 0, 1, \cdots$. Therefore, we have

$$F_p = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^p - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^p \equiv \frac{1}{2\sqrt{5}} (1+5^{p/2}-1+5^{p/2})$$
$$= 5^{\frac{p-1}{2}} \equiv \left(\frac{5}{p} \right) = \left(\frac{p}{5} \right) \pmod{p}.$$

Similarly,

$$F_{p+1} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{p+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{p+1}$$

$$\equiv \frac{1}{4\sqrt{5}} \left((1+5^{p/2})(1+5^{1/2}) - (1-5^{p/2})(1-5^{1/2}) \right)$$

$$= \frac{5^{\frac{p-1}{2}}+1}{2}$$

$$\equiv \frac{\left(\frac{5}{p}\right)+1}{2} = \frac{\left(\frac{p}{5}\right)+1}{2} \pmod{p}.$$

Since

$$\left(\frac{p}{5}\right) = \begin{cases} 1, & p \equiv \pm 1 \pmod{5} \\ -1, & p \equiv \pm 2 \pmod{5} \end{cases}$$

the above result is exactly what we want. Moreover, the result on F_{p-1} follows immediately from $F_{p-1} = F_{p+1} - F_p$.

Finally, if $p \equiv \pm 1 \pmod 5$, we see that $F_p \equiv 1 = F_1 \pmod p$ and $F_{p+1} \equiv 1 = F_2 \pmod p$, hence p-1 is a period of $F_n \pmod p$. While if $p \equiv \pm 2 \pmod 5$, then $F_{p+1} \equiv 0 = -F_0 \pmod p$ and $F_{p+2} = F_{p+1} + F_p \equiv -1 = -F_1 \pmod p$, hence $F_{n+p+1} \equiv -F_n \pmod p$ and so $F_{n+2p+2} \equiv F_n \pmod p$ for any n.