Homework 13 of Introduction to Analysis (I), Honor Class

AM15 黃琦翔 111652028

February 19, 2024

- 1. First, we want to check there are at most $\frac{n(n+1)}{2}$ points for $x \in [0,1]$ for which $f(x) > \frac{1}{n}$.

 For $f(x) > \frac{1}{n}$, that means x is a rational number $\frac{p}{q}$ and q < n. Thus, we have $x = \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \cdots$. The number of x is less than $\frac{n(n+1)}{2}$. Thus, we suppose a_n is the number of x s.t. $f(x) > \frac{1}{n}$ For any $n \in \mathbb{N}$, we can find a $\delta > 0$ and partition $P_n = \bigcup_{i=1}^{n} [x_i \delta, x_i + \delta]$ s.t. x_i is the only point $x \in [x_i \delta, x_i + \delta]$ that $f(x) > \frac{1}{n}$ and $P'_n = [0, 1] \setminus P_n$. Thus, $|U(f, P_n) L(f, P_n)| + |U(f, P'_n) L(f, P'_n)| = U(f, p) + U(f, P'_n) < a_n \cdot (2\delta \cdot 1) + (1 a_n \cdot 2\delta) \frac{1}{n} < \frac{1}{n} + a_n \cdot 2\delta$. Thus, we can find large enough n and a tiny δ s.t. f is integrable.
- 2. Since f is bounded, we can find $M \in \mathbb{R}$ s.t. |f(x)| < M for all $x \in [a,b]$. Suppose there are n points of discontinuity of f on [a,b]. Thus, for any $\varepsilon > 0$, we take $\delta = \frac{\varepsilon}{8nM}$. Then, suppose the set of points of discontinuity is $\{y_i \mid i \in \mathbb{N}, i \leq n\}$. Take partition $P = \{x_1 = y_1 \varepsilon, x_2 = y_1 + \varepsilon, x_3 = y_2 \varepsilon, \cdots\}$ is finite. Then, for f is continuous on $[a,x_1]$, $[x_2,x_3]$, $[x_4,x_5]$, \cdots , we can find a partition P_1 s.t. $|U(f,P_1)-L(f,P_2)|<\frac{\varepsilon}{2}$ we only need to check other intervals $P_2 = [x_1,x_2] \cup [x_3,x_4] \cup \cdots \cup [x_{2n-1},x_{2n}]$ are Reimann integrable. $|U(f,P_2)-L(f,P_2)|\leq 2U(f,P_2)\leq 2\cdot n\cdot (2\delta)\cdot M = 4nM\cdot \frac{\varepsilon}{8nM} = \frac{\varepsilon}{2}$. Thus, $|U(f,P)-L(f,P)|\leq |U(f,P_1)-L(f,P_1)|+|U(f,P_2),L(f,P_2)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, which implies that $f\in R([a,b])$.

3.
$$f^{(n)}(x) = (\prod_{k=0}^{n-1} m - k)(1+x)^{m-n}$$
. $R_n = x^n \frac{f^{(n)}(\theta_n x)}{n!} = (\prod_{k=1}^n \frac{m-k+1}{k})(1+\theta_n x)^{m-n} x^n$.

For m > 0, we can find $N \in \mathbb{N}$ s.t. N > m and $N - 1 \le m$. Since x > 0, $1 + \theta_n x > 1$, $(1 + \theta_n x)^{m-n} < 1$ for n > N. And since n > N > m, $\prod_{k=1}^{n} \frac{m - k + 1}{k} = \frac{m}{N} \cdot \frac{m - 1}{N - 1} \cdots \frac{m - N + 1}{1} \cdot \frac{m - N}{N + 1} \cdots < 1$. Thus, $R_n < x^n$ for m > 0 and n > m.

For m < 0, since $\left| \frac{m-k}{k} \right| > \left| \frac{m-k-1}{k+1} \right| > \cdots > 1$, there exists $N \in \mathbb{N}$ s.t. $\left| \frac{m-n}{n} \right| < \frac{1}{x}$ for all n > N. Therefore, we can find l < 1 s.t. $\left| \frac{m-n}{n} x \right| < l$ for all n > N. Thus, $|R_n| < |\prod_{k=1}^n (\frac{m-k+1}{k} x)| = |A| \cdot |\prod_{k=1}^n (\frac{m-k+1}{k} x)| < |A| \cdot l^{n-N} \to 0$ as $n \to \infty$.

If x < 0, $(1 + \theta_n x) < 1 \implies (1 + \theta_n x)^{m-n} > 1$ for all n > m. Thus, we can't use the same argument to prove.