IN THE CLAIMS

1. (Currently Amended) A laser system comprising:

a control path and a reference path;

a control filter for stabilizing a laser beam, said control filter having a first

periodicity, said control filter being located in said control path; and

a reference filter for determining an operating point cycle of said control filter,

said reference filter having a second periodicity greater than said first periodicity and

having a selectivity lower than a selectivity of said control filter, said reference filter

being located in said reference path.

2. (Original) The laser system of claim 1, further comprising a device for

determining the wavelength characteristics of light transmitted along said reference path

and said control path.

3. (Original) The laser system of claim 2, further comprising a controller for

comparing said wavelength characteristics.

4. (Original) The laser system of claim 3, further comprising a laser medium

for generating said laser beam, and a servo system connected to said controller for

controlling said laser medium.

5. (Original) The system of claim 1, wherein said filters include an etalon.

Examiner: D. Nguyen Art Unit: 2828

App. No. 09/931,188 Docket No. A2550.0030/P030 6. (Canceled)

7. (Currently Amended) A wavelength division multiplex communication

system, comprising:

a control path and a reference path;

a control filter for stabilizing a laser beam, said control filter having a first

periodicity, said control filter being located in said control path; and

a reference filter for determining an operating point cycle of said control filter,

said reference filter having a second periodicity greater than said first periodicity and

having a selectivity lower than a selectivity of said control filter, said reference filter

being located in said reference path; and

an optical waveguide for transmitting said laser beam.

8. (Original) The system of claim 7, wherein said waveguide includes an

optical fiber.

9. (Original) The system of claim 8, further comprising a device for

generating said laser beam, and wherein said control filter is located between said device

and said reference filter.

10. (Currently Amended) A laser system comprising:

a resonator for generating a laser beam;

App. No. 09/931,188 Docket No. A2550.0030/P030 Examiner: D. Nguyen
Art Unit: 2828

a control filter for stabilizing said laser beam, said control filter being located in a

control path and said control filter having a first periodicity; and

a reference filter for determining an operating point cycle of said control filter,

said reference filter having a second periodicity greater than said first periodicity and

having a selectivity lower than a selectivity of said control filter.

11. (Original) The system of claim 10, further comprising a wavelength

monitor for generating an output, said monitor being located in said reference path.

12. (Original) The system of claim 11, further comprising a laser medium

located in said resonator, and a controller for responding to said output of said monitor to

control said laser medium.

13. (Original) The system of claim 11, further comprising a laser medium

located in said resonator, and a servo system operatively connected to a controller for

controlling said laser medium.

14. (Original) The system of claim 10, wherein said reference filter includes

an etalon.

15. (Canceled)

App. No. 09/931,188 Docket No. A2550.0030/P030 Examiner: D. Nguyen Art Unit: 2828

4

16. (Original) The system of claim 10, further comprising a beam splitter for

transmitting a portion of said laser beam along said control path.

17. (Original) The device of claim 16, further comprising a beam splitter for

transmitting a portion of said laser beam along a reference path.

18. (Original) The device of claim 16, wherein said beam splitter is located

between said resonator and said reference filter.

19. (Currently Amended) A method of stabilizing the wavelength of a laser

beam comprising the acts of:

transmitting light through a control filter and a reference filter, wherein said

control filter has a first periodicity and said reference filter has a second periodicity

greater than said first periodicity, and wherein said reference filter has a lower selectivity

than said control filter;

measuring the wavelength characteristics of light on a reference path associated

with said reference filter;

determining an operating point cycle of said control filter based on said measured

wavelength characteristics; and

controlling a laser medium within said operating point cycle.

20. (Canceled)

App. No. 09/931,188 Docket No. A2550.0030/P030 Examiner: D. Nguyen
Art Unit: 2828

5

21. (Original) The method of claim 20, further comprising the act of transmitting said beam in a wavelength division multiplex communication system.