LE PROBLÈME D'ULAM-HAMMERSLEY

Kevin Zagalo

Sorbonne Université

Mémoire de master dirigé par Quentin Berger, LPSM UMR 8001⁰

Septembre 2018

Résumé

Ce papier a pour but de présenter l'étude du comportement asymptotique de la taille de la plus longue sous-suite croissante d'une permutation aléatoire de loi uniforme. Pour $\sigma \in \mathfrak{S}_N$ une permutation des entiers $1, 2, \ldots, N$, une **sous-suite croissante** $(i_1 < i_2 < \ldots < i_k)$ de σ est une sous-suite satisfaisant $\sigma(i_1) < \sigma(i_2) < \ldots < \sigma(i_k)$. On définie alors la quantité $\ell(\sigma)$ comme la taille de la plus longue sous-suite croissante de la permutation σ . Soit maintenant π_N une permutation aléatoire de loi uniforme et $\ell_N := \ell(\pi_N)$. Le premier résultat consistera à donner une expression exacte de la loi dF_N de $\ell(\pi_N)$, selon les travaux de Rains [Rai98]. Nous en viendrons à la solution du problème, à savoir

$$\frac{\ell_N}{\sqrt{N}} \xrightarrow{proba} 2 \tag{*}$$

et en présenterons trois démonstrations totalement différentes, à savoir la méthode des nuages poissonniens de Hammersley [AD95], celle des matrices de Toeplitz de Johansson [Joh98] et enfin une méthode élaborée en partie par Logan et Shepp [LS77] utilisant les mesures de Plancherel.

Table des matières

Introduction			1
1	La loi de la plus longue sous-suite croissante d'une permutation aléatoire		2
	1.1	Patience sorting	2
	1.2	Diagrammes de Young et permutations	3
	1.3	La correspondance de Schensted	4
	1.4	Mesures de Plancherel	5
	1.5	ℓ_N et les matrices aléatoires	6
2	Comportement asymptotique de ℓ_N		
	2.1	Processus de Hammersley	8
	2.2	Matrices aléatoires et déterminants de Toeplitz	10
	2.3	Comportement asymptotique des mesures de Plancherel	14
\mathbf{R}	Références		
\mathbf{A}	Annexes		

^{0.} Laboratoire de Probabilités, Statistique et Modélisation : : https://www.lpsm.paris