习题: 对称矩阵 (LATEX 重排)

(2024-2025-1)-MATH1405H-02

Wednesday $6^{\rm th}$ November, 2024

前言

只需完成习题 1 与习题 2. 若想提升个人实力, 建议完成剩下的题目.

- 习题 3 与习题 4 的唯一作用是提升计算能力,同时熟悉一些特殊矩阵的结构.
- 习题 5 是脑经急转弯,请勿擅自点拨他人.
- 习题 6 是去年的考试题, 可以挑战在 15 分钟内完成.

IATEX 重排版修改了部分题目以及提示. 并未改动习题 1 或习题 2.

习题内容

习题 1. 对称矩阵的判断题. 不必证明真命题, 但需要对假命题举出反例.

1. 线性空间 $\mathbb{F}^{n\times n}$ 中的对称矩阵构成 $\binom{n+1}{2} = \frac{n^2+n}{2}$ -维子空间.

证明. 正确. 基底可取 $\{E_{i,i}\}_{i=1}^n \cup \{E_{i,j} + E_{j,i}\}_{1 \leq i < j \leq n}$.

完证 毕明

2. 分块矩阵 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ 是对称的, 当且仅当 $B = C^T$.

证明. 错误. A 与 D 不必是对称矩阵.

完证 毕明

3. 给定阶数相同的对称方阵 A 与 B, 则 $A \cdot B$ 亦对称.

证明. 错误. 例如 $\binom{0\ 1}{1\ 0} \cdot \binom{1\ 0}{0\ 0} = \binom{0\ 1}{0\ 0}$.

完证 毕明

4. 给定阶数相同的方阵 A 与 B, 若 $A \cdot B = B \cdot A$ 对称, 则 A 与 B 必有一者对称.

证明. 错误. 例如 A 不对称, B = O.

完证 毕明

5. 若 A^2 是对称矩阵, 则 A 对称.

证明. 错误. 例如 $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

完证 毕明

习题 2. 若 X 与线性空间 $\mathbb{F}^{n \times n}$ 中一切对称矩阵乘积可交换, 试求 X.

证明. 假定 A 与所有对称矩阵交换. A 的存在性是显然的, 例如 A = O.

- A 是对角矩阵. 对所有形如 $E_{i,i}$ 的矩阵, 均有 $E_{i,i}A = AE_{i,i}$, 此时 A 对角.
- A 是数乘矩阵. 记 $A = \sum c_i E_{i,i}$, 由 $A(E_{i,j} + E_{j,i}) = (E_{i,j} + E_{j,i})A$ 可知 $c_i = c_j$.

完证 毕明

习题 3. 给出以下方程的一个解:

$$L \cdot L^T = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}. \tag{0.1}$$

其中, 要求 L 为下三角矩阵

$$\begin{pmatrix} a \\ b & c \\ d & e & f \end{pmatrix}. \tag{0.2}$$

• 以上是数值分析中常见的 Cholesky 分解. 这一个分解对所有 (半) 正定矩阵奏效.

证明. 直接地, $a^2 = 9$. 取 $a = \sqrt{3}$, 则得 L 的第一纵列

$$L = \begin{pmatrix} \sqrt{3} \\ 2/\sqrt{3} & c \\ 1/\sqrt{3} & e & f \end{pmatrix}. \tag{0.3}$$

此时 $\frac{4}{3}+c^2=2$. 不妨取 $c=\frac{\sqrt{2}}{\sqrt{3}}$, 则得 L 的第二纵列

$$L = \begin{pmatrix} \sqrt{3} \\ 2/\sqrt{3} & \sqrt{2}/\sqrt{3} \\ 1/\sqrt{3} & \sqrt{2}/2\sqrt{3} & \sqrt{2}/2 \end{pmatrix} = \begin{pmatrix} \sqrt{3} \\ \frac{2\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \end{pmatrix}. \tag{0.4}$$

完证 毕明

习题 4. 给定 (a_1, a_2, a_3, a_4) , 求解以下方程中的 (x_1, x_2, x_3) .

空缺位置的元素都是 0.

• 结合有理标准型, 以上构造间接解答了以下问题: 任意域上的方阵 A 通过对称矩阵与其转置相似, 即, 存在对称矩阵 S 使得 $S^{-1}AS = A^T$.

证明. 直接地, 上述方程有解, 当且仅当以下矩阵是对称的

$$\begin{pmatrix}
0 & 0 & 1 & a_{1} \\
0 & 1 & x_{1} & a_{2} + x_{1}a_{1} \\
1 & x_{1} & x_{2} & a_{3} + x_{1}a_{2} + x_{2}a_{1} \\
x_{1} & x_{2} & x_{3} & a_{4} + x_{1}a_{3} + x_{2}a_{2} + x_{3}a_{1}
\end{pmatrix}.$$
(0.6)

解得

$$x_1 = a_1, \quad x_2 = a_2 + a_1^2, \quad x_3 = a_3 + 2a_1a_2 + a_1^3.$$
 (0.7)

完证 毕明

习题 5. (这是一道脑经急转弯, 无需计算) 将以下两个实矩阵分解作 2 个实对称矩阵的乘积.

$$\begin{pmatrix} \lambda & 1 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}, \quad \begin{pmatrix} a & b & \\ -b & a & 1 \\ & & a & b \\ & & -b & a \end{pmatrix}. \tag{0.8}$$

 依照复矩阵的 Jordan 型与实矩阵的旋转-反射标准型,任意实方阵 (相应地,复方阵)一定是两个 实对称矩阵 (相应地,复对称矩阵)的乘积. • 作为推论,两个对称矩阵的乘积不必对称.

证明. 考虑矩阵
$$\begin{pmatrix} & & 1 \\ & 1 \\ 1 & \end{pmatrix}$$
.

习题 6. (去年的一道期中考题, 大约占分 15/100) 若实方阵 A 满足 $A(A-A^T)=O$, 证明 $A=A^T$.

证明. 若 $A^2 = AA^T$, 则 $tr(A^2) = tr(AA^T)$. 展开得

$$\sum_{i,j=1}^{n} a_{i,j} a_{j,i} = \sum_{i,j=1}^{n} a_{i,j}^{2}.$$
(0.9)

配凑完全平方式,得
$$\sum_{i,j=1}^{n} (a_{i,j} - a_{j,i})^2 = 0$$
. 此时 $A = A^T$.

• 若认为考试题比较简单, 可以尝试由 $A(A - A^T)A = O$ 推导 $A = A^T$. 此处可以借用实矩阵的正 交标准型:

$$A = Q^T \cdot \begin{pmatrix} S & R \\ O & O \end{pmatrix} \cdot Q. \tag{0.10}$$

其中, (S R) 是行满秩矩阵, S 是方阵. S 未必可逆, 反例如 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^{1}$.

证明. 假定 $A^3 = AA^TA$. 对 $A^3A^T = AA^TAA^T$ 使用上述标准型, 得

$$\begin{pmatrix} S^3 S^T + S^2 R R^T & O \\ O & O \end{pmatrix} = \begin{pmatrix} (SS^T + RR^T)^2 & O \\ O & O \end{pmatrix}. \tag{0.11}$$

比较分块矩阵的左上处得 $S^2(SS^T + RR^T) = (SS^T + RR^T)^2$. 由于 (S R) 行满秩,

$$\det(SS^T + RR^T) = \det\left(\begin{pmatrix} S & R \end{pmatrix} \cdot \begin{pmatrix} S & R \end{pmatrix}^T \right) > 0. \tag{0.12}$$

比较分块矩阵左上角的行列式, 得 $(\det S)^2 \cdot \det(SS^T + RR^T) = \det(SS^T + RR^T)^2$, 即

$$\det(SS^T) = \det(SS^T + RR^T). \tag{0.13}$$

依照 Cauchy-Binet 公式, 只能有 R=O. 依照行满秩条件, 此时 S 可逆, 故 $S=S^T$.

 $^{^{1}}QR$ 分解只能保证行满秩, "S 可逆" 仅对本题等特殊情况成立. 这一反例由王子涵同学提供.