Геометрия - 11 класс

Тела вращения

цилиндр (вращение прямоугольника)

h - высота цилиндра r - радиус основания

$$S_{\text{пов}} = 2S_{\text{осн}} + S_{\text{бок}}$$

$$S_{\text{OCH}} = \pi r^2$$

$$S_{60K} = 2\pi rh$$

$$V = S_{\text{och}} h = \pi r^2 h$$

осевое сечение

сечение, параллельное оси

сечение, параллельное основанию

конус (вращение прямоугольного треугольника вокруг катета)

h - высота конуса r - радиус основания l - образующая

$$S_{\text{пов}} = S_{\text{осн}} + S_{\text{бок}}$$

$$S_{\text{OCH}} = \pi r^2$$

$$S_{60K} = \pi r l$$

$$V = \frac{1}{3}S_{\mathrm{OCH}}h = \frac{1}{3}\pi r^2 h$$

осевое сечение

вершину и хорду

сечение, параллельное основанию

наклонный цилиндр и наклонный конус

 $V = S_{\text{och}} h = S_{\perp} l$

$$S_{\text{пов}} = S_1 + S_2 + S_{\text{бок}} =$$

= $\pi r_1^2 + \pi r_2^2 + \pi (r_1 + r_2) l$

$$V = \frac{1}{3} (S_1 + S_2 + \sqrt{S_1 S_2}) h =$$

= $\frac{1}{3} \pi (r_1^2 + r_2^2 + \sqrt{r_1 r_2}) h$

сфера и шар

 $S_{\text{пов}} = 4\pi R^2$ $V = \frac{4}{3}\pi R^3$

$$S_{\text{nob}} = 2\pi Rh + \pi r^2$$
 $S_{\text{nob}} = 2\pi Rh + \pi rR$ $V = \pi h^2 \left(R - \frac{1}{3}h\right)$ $V = \frac{2}{3}\pi R^2 h$

шаровой сектор

$$S_{\text{\tiny IIOB}} = 2\pi R h + \pi r R$$
$$V = \frac{2}{3}\pi R^2 h$$

$$S_{\text{пов}} = 2\pi Rh + \pi r_1^2 + \pi r_2^2$$

 $V = V_{\text{III}} - (V_{\text{cer1}} + V_{\text{cer2}})$

уравнение сферы:
$$(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2$$
 с центром в точке $(x_0;y_0;z_0)$ и радиусом R

подобные фигуры: соотношение периметров, площадей, объемов

$$P_2 = kP_1$$
 $S_2 = k^2S_1$ $V_2 = k^3V_1$

если все линейные размеры фигуры изменить в к раз, то периметр изменится в k раз, площадь - в k^2 раз, объем - в k^3 раз

Векторы и метод координат в пространстве

(см. векторы и метод координат на плоскости)

сложение векторов, **правило параллелепипеда:**

коллинеарные векторы: $\vec{a} \parallel \vec{b}$

$$\Rightarrow \frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{y_a}{z_b}$$
 (или $x_b = y_b = z_b 0$)

компланарные векторы: при откладывании от одной точки лежат в одной плоскости (один из этих векторов можно разложить по двум другим)

разложение вектора по трем некомпланарным векторам:

$$\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$$

все действия с векторами в пространстве аналогичны действиям с векторами на плоскости,

но в трехмерном пространстве вектор имеет три координаты $\vec{a}(x;y;z)$

удобное расположение прямоугольной системы координат при решении задач:

углы в пространстве:

угол между прямыми

- угол между направляющими векторами прямых

- угол, дополнительный к углу между направляющим вектором прямой и нормалью к плоскости

угол между плоскостями угол (острый) между нормалями к плоскостям

чтобы найти *нормаль* \vec{n} *к плоскости* (\vec{a}, \vec{b}) , нужно решить уравнения $\vec{n}\vec{a}=0$ и $\vec{n}\vec{b}=0$, одну координату можно выбрать произвольно, например, равной 1 (или 0, если 1 не подойдет)

уравнение плоскости:

$$\vec{n}(A;B;C) \Rightarrow Ax + Dy + Cz + D = 0$$
 (чтобы найти коэфиициент D нужно подставить координаты какой-нибудь точки плоскости)

расстояние от точки до плоскости:

$$M(x_0; y_0; z_0) \Rightarrow \rho(M, \alpha) = \frac{|Ax_0 + Dy_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

иногда расстояния удобно находить *методом* объемов