Bipolo

Utilizzatori

$$V = R \times I [V]$$

$$P_{Ass} = V \times I [W]$$

$$P_{Ero} = -V \times I [W]$$

$$V = R \times I [V]$$

$$P_{Ass} = V \times I [W]$$

 $P_{Ero} = -V \times I [W]$

Generatori

Teorema di Tellegen

$$\sum V_n \times I_n = 0$$

Partitori

$$I_1 = I \times \frac{R_2}{R_1 + R_2}$$

$$V_1 = V \times \frac{R_2}{R_1 + R_2}$$

Nota: Dovre è presente una maggiore resistenza, sarà presente una minore intensità di corrente ed una maggiore

	Serie	Parallelo
Corrente	$I = I_1 = \ldots = I_n$	$I = \sum I_n$
Tensione	$V = \sum V_n$	$V = V_1 = \ldots = V_n$

Trasformazioni

$Stella \rightarrow triangolo$

$$G_{12} = \frac{G_1 \times G_2}{\sum G_n}$$

 $Triangolo \rightarrow stella$

$$R_1 = \frac{R_{12} \times R_{13}}{\sum R_n}$$

Equivalenti

Thévenin

$$V_{Eq} = V_{CA}$$

$$R_{Eq} = \frac{1}{1}$$

Norton

$$I_{Eq} = I_{CC}$$
 $R_{Eq} = \frac{1}{G_{Eq}}$

Trasformatore ideale

$$V_1 = n \times V_2$$
$$I_1 = -\frac{1}{n} \times V_2$$

$$z_{AB} = n^2 \times z$$

