

BOTTLE STABILITY

Presenter: Jasha Karasek

Winemaking Specialist Enartis USA

enartis con Casa

WEBINAR INFO

- 40 Minute presentation + 20 minute Q&A
- Save Qs until end of presentation
- Use tab #2 in chat box for audio/connection issues
- Poll questions
- Recording in progress!

OUTLINE — BOTTLE STABILITY

- Why we care
- Wine stability challenges
- Bottle stability analysis
- Solutions for wine stability challenges

BOTTLE STABILITY: WHY DO WE CARE?

Consumer perception!

WINE STABILITY CHALLENGES

- Microbial Wild yeast, Brettanomyces, Lactic acid bacteria, Saccharomyces, Zygosaccharomyces, Acetobacter, +...
- **Colloidal** Protein, color, tartrates
- Oxidative Browning, pinking, lightstruck, reduction, off-flavors
- **Chemical** Haloanisoles (TCA, TBA, Etc)

USEFUL ANALYSIS FOR BOTTLE STABILITY

Pre/Post Bottling Analysis:

Microbial: PCR, culture plating, microscopic scan, unfiltered red/white panel, bottled wine sterility test

Colloidal: Heat stability, cold stability, bentonite fining trials, CMC panel, red color stability

Oxidative: Oxidative stability, pinking potential, Antioxidant Capacity (CAOX)

Chemical: Cork aroma evaluation, Haloanisole panel

TARTRATE STABILITY: SOURCES/CAUSES

POTASSIUM BITARTRATE REMEDIATION STRATEGIES

SUBTRACTIVE STRATEGY

REMOVAL OF POTASSIUM or POTASSIUM BITARTRATE

Chilling Electrodialysis Ion Exchange **ADDITIVE STRATEGY**

PROTECTIVE COLLOIDS

CMC Mannoproteins Gum Arabic KPA

POTASSIUM TARTRATE STABILITY: ADDITIVE METHODS PROTECTIVE COLLOIDS

CMC – CARBOXYMETHYL CELLULOSE

GUM ARABIC

MANNOPROTEINS

POTASSIUM TARTRATE STABILITY: PROTECTIVE COLLOID ACTION

POTASSIUM TARTRATE STABILITY: ADDITIVE METHODS PROTECTIVE COLLOIDS

KHT CRYSTALS

KHT CRYSTALS FORMED IN PRESENCE OF CMC

KHT crystals in 13% EtOH solution

KHT crystals in 13% EtOH solution + qum arabic

POTASSIUM TARTRATE STABILITY ADDITIVE METHODS METAL CHELATOR

POTASSIUM POLYASPARTATE – KPA

- polyamino acid (aspartic acid)
- Chelates cations
- High affinity for potassium
- Disrupts crystal formation
- Very high effectiveness

	ΔμS	Stability level
WHITE WINES	≤ 30	very stable
	30 - 50	stable
	50 - 70	at risk
	> 70	unstable

COMPARING THE METHODS: SUSTAINABILITY

StabiWine data, average of 90 european wineries

COMPARING THE METHODS:COST

^{*}includes energy, water, hygien products, additives, labour (data StabiWine)

IMPORTANCE OF COLOR STABILITY

Somers and Evans (1974)

COLOR STABILITY: A BIT MORE COMPLEX

WINE COLOR STABILITY

What factors affect bottled color stability?

Consider:

- Time
- Temperature
- Quick to market red wines = short/aging stabilization period
- Last minute blending
- Very highly colored/ phenolic red wines

COLOR STABILITY STRATEGIES

STABILIZE COLOR REMOVE UNSTABLE COLOR PROACTIVE BENTONITE FERMENTATION/MATURATION **GUM ARABIC or MANNOPROTEINS CHILLING**

COLOR STABILITY: COLOR AND TARTRATES

Stab CLK+

USING ZENITH COLOR FOR STABILITY

 $\Delta \mu S/cm = 89$

Color intensity reduction: 9.6%

Test 6 days -4° C

STABLE

KPA and FILTERABLE Verek Gum Arabic

THANK YOU FOR YOUR PARTICIPATION!

- Thank you for your participation!
- Please fill out our survey!
- Useful downloads
- More useful info and webinar videos @ http://www.enartis.com/us/focus-on
- Now, 20 minute Q&A!

- To reach the Enartis team:
- Call: (707)838-6312
- Email: Jasha.Karasek@Enartis.com

