ПРАКТИЧНЕ ЗАНЯТТЯ № 5.

Головні задачі математичної статистики. Непараметричне оцінювання.

Вказівка: Припустимо, що предметом статистичного дослідження є генеральна популяція з функцією розподілу F(x). Маємо в розпорядженні просту випадкову вибірку $(\xi_1, \xi_2, \dots, \xi_n)$ чисельності n з цієї популяції.

Емпірична функція розподілу, побудована на підставі вибірки ($\xi_1, \, \xi_2, \, \dots, \, \xi_n$), визначається рівністю:

$$\hat{F}_n(x) = \frac{V_n}{n}$$
,

де $v_n(x)$ означає кількість елементів вибірки менших від x.

Емпірична функція розподілу $\hat{F}_n(x)$ є статистичною оцінкою функції розподілу F(x) генеральної популяції:

$$\hat{F}_n(x) \approx F(x)$$
.

Приклад 1. Маємо дві урни A та B в яких є як *білі*, так і *чорні* кулі. Повторюється n = 25 разів наступний експеримент:

о з кожної урни випадковим чином вибирається по одній кулі, а потім в отриманій таким чином парі підраховується кількість білих куль.

Після цього кулі повертаються до своїх урн (початковий склад урн не змінюється). Результатом цього експерименту ϵ наступна вибірка (y_i – кількість білих куль в парі i-того по порядку експерименту (i = 1, 2, ..., 25)):

$$y_1 = 2$$
; $y_2 = 0$; $y_3 = 2$; $y_4 = 1$; $y_5 = 1$; $y_6 = 1$; $y_7 = 1$; $y_8 = 2$; $y_9 = 1$; $y_{10} = 0$; $y_{11} = 2$; $y_{12} = 1$; $y_{13} = 1$, $y_{14} = 0$; $y_{15} = 1$; $y_{16} = 0$; $y_{17} = 1$; $y_{18} = 2$; $y_{19} = 0$ $y_{20} = 1$; $y_{21} = 1$; $y_{22} = 0$; $y_{23} = 1$; $y_{24} = 2$; $y_{25} = 1$.

Завдання 1. Збудувати *точковий ряд*: $\{(x_1, n_1), (x_2, n_2), ..., (x_k, n_k)\}$, тобто визначити множину різних значень $\{x_1, x_2, ..., x_k\}$, що зустрічаються у вибірці, та підрахувати, скільки разів (n_i) кожне з них (x_i) зустрічаються у вибірці (i = 1, 2, ..., k).

Завдання 2. На підставі точкового ряду: $\{(x_1, n_1), (x_2, n_2), ..., (x_k, n_k)\}$, збудувати емпіричний розподіл для випадкової величини ξ , яку представляє вибірка $\{y_1, y_2, ..., y_n\}$: $\{(x_1, \hat{p}_1), (x_2, \hat{p}_2), ..., (x_k, \hat{p}_k)\}$, де $\hat{p}_i = n_i/n$ — частота появи значення x_i у вибірці (i = 1, 2, ..., k).

Вказівка: Емпіричний розподіл $\{(x_1, \ \hat{p}_1), (x_2, \ \hat{p}_2), ..., (x_k, \ \hat{p}_k)\}$ є статистичною оцінкою ймовірнісного розподілу $\{(x_1, p_1), (x_2, p_2), ..., (x_k, p_k)\}$.

Завдання 3. Збудувати емпіричну функцію розподілу $\hat{F}_n(x)$, та знайти її значення в точках x = 0.3; x = 1; x = 1.5.

Відповідь:

x_i	0	0.3	1	1,5	2	2,2
p_i	0	0,24	0,24	0,76	0,76	1

Завдання 4. Побудувати графік емпіричної функцію розподілу $\hat{F}_n(x)$.

Приклад 2. 3 генеральної популяції з функцією розподілу F(x) вибрано наступну просту випадкову вибірку:

$$x_1 = 2,1$$
; $x_2 = 1,5$; $x_3 = 3,2$; $x_4 = 0,3$; $x_5 = 2,1$; $x_6 = 2,5$; $x_7 = 1,7$, $x_8 = 4,3$; $x_9 = 3,2$; $x_{10} = 0,7$.

Завдання 1. На підставі випадкової вибірки побудувати варіаційний ряд:

$$x^*_1 \le x^*_2 \le \dots \le x^*_{10}$$

порядкуючи елементи вибірки.

Відповідь:
$$x*_1 = 0.3$$
; $x*_2 = 0.7$; $x*_3 = 1.5$; $x*_4 = 1.7$; $x*_5 = 2.1$; $x*_6 = 2.1$; $x*_7 = 2.5$; $x*_8 = 3.2$; $x*_9 = 3.2$; $x*_{10} = 4.3$.

Завдання 2. Використовуючи визначення емпіричної функції розподілу $\hat{F}_n(x)$ знайти її значення в точках $[x_3, x_5, x_8]$ випадкової вибірки.

Відповідь:
$$\hat{F}_n(3,2) = 0.7$$
; $\hat{F}_n(2,1) = 0.4$; $\hat{F}_n(4,3) = 0.9$.

Завдання 3. Побудувати графік емпіричної функцію розподілу $\hat{F}_n(x)$.

Емпіричний розподіл.

Припустимо, що ми маємо справу зі статистичною ознакою дискретного типу, яка має наступний розподіл:

$$\{(x_1, p_1), (x_2, p_2), ..., (x_k, p_k)\},\$$

Тобто $\xi \in \{x_1, x_2, ..., x_k\}$, при цьому

$$p_i = P\{\xi = x_i\}, i = 1, 2, ..., k.$$

У цьому випадку проблему непараметричного оцінювання вирішує *емпіричний розподіл*, який визначається наступним чином:

Це набір пар

$$\{(x_1, \hat{p}_1), (x_2, \hat{p}_2), ..., (x_k, \hat{p}_k)\},\$$

де числа \hat{p}_1 , \hat{p}_2 , ..., \hat{p}_k , визначають частоту появи відповідних значень x_1, x_2 , ..., x_k у випадковій вибірці ($\xi_1, \xi_2, \ldots, \xi_n$). Іншими словами:

$$\hat{p}_i = \frac{n_i}{n}$$
, $i = 1, 2, ..., k$,

Приклад 3. Предметом статистичного дослідження є кількісна властивість (X) дискретного типу. Підставою до дослідження є наступна проста випадкова вибірка розмірності n = 50:

7	7	4	7	10	2	7	4	7	2
7	7	7	7	10	2	10	10	10	10
7	7	2	10	2	2	2	10	7	10
7	10	7	2	2	4	7	7	7	4
10	2	2	10	7	7	7	7	10	2

Завдання 1. Збудувати *точковий ряд*: $\{(x_1, n_1), (x_2, n_2), ..., (x_k, n_k)\}$, тобто визначити множину різних значень $\{x_1, x_2, ..., x_k\}$, що зустрічаються у вибірці, та підрахувати, скільки разів (n_i) кожне з них (x_i) зустрічаються у вибірці (i = 1, 2, ..., k).

Завдання 2. На підставі точкового ряду: $\{(x_1, n_1), (x_2, n_2), ..., (x_k, n_k)\}$, збудувати емпіричний розподіл $\{(x_1, \hat{p}_1), (x_2, \hat{p}_2), ..., (x_k, \hat{p}_k)\}$, для випадкової величини ξ , яку представляє вибірка $\{y_1, y_2, ..., y_n\}$. \hat{p}_i означає частоту появи значення x_i у вибірці:

$$\hat{p}_i = \frac{n_i}{n}$$
 $i = 1, 2, ..., k$.

Завдання 3. Збудувати емпіричну функцію розподілу $\hat{F}_n(x)$, та намалювати її графік.

Розв'язок:

Завдання 1. Аналізуючи дані, які містяться в таблиці, приходимо до висновку, що статистична ознака може приймати наступні значення:

$$x_1 = 2$$
; $x_2 = 4$; $x_3 = 7$; $x_4 = 10$; $(k = 4)$.

Точковий ряд, побудований на основі аналізованої вибірки, представимо у вигляді таблиці:

$x_1 = 2$	$x_2 = 4$	$x_2 = 7$	$x_2 = 10$
$n_1 = 12$	$n_2 = 4$	$n_1 = 21$	$n_1 = 13$

Завдання 2. Провівши необхідні розрахунки, отримаємо:

$$\hat{p}_1 = \frac{12}{50} = 0.24$$
; $\hat{p}_2 = \frac{4}{50} = 0.08$; $\hat{p}_3 = \frac{21}{50} = 0.42$; $\hat{p}_4 = \frac{13}{50} = 0.26$.

Отриманий емпіричний розподіл статистичної ознаки, побудований на основі аналізованої вибірки, представимо у вигляді таблиці:

x_i	$x_1 = 2$	$x_2 = 7$	$x_2 = 7$	$x_2 = 10$
\hat{p}_i	$\hat{p}_1 = 0.24$	$\hat{p}_2 = 0.08$	$\hat{p}_3 = 0.42$	$\hat{p}_4 = 0.26$

$$\hat{p}_i = \frac{n_i}{n}, i = 1, 2, ..., k,$$

Приклад 4. Припустимо, що випадкова величина ξ має розподіл B(6; 0,25), тобто біноміальний, з параметрами (n = 6, p = 0,25).

Завдання 1. Використовуючи таблицю ймовірностей $Q(k, n, p) = P\{B(n, p) \ge k\}$ для біноміального розподілу, обчисліть ймовірності p_A та p_B наступних випадкових подій: $A = \{\xi = 2\}; B = \{\xi = 3\}.$

Завдання 2. З генеральної сукупності, що має біноміальний розподіл із параметрами n = 6, p = 0.25, (B(6; 0.25)), було взято наступну вибірку об'ємом N = 60:

1	2	5	1	0	0	1	0	3	2
2	2	1	1	1	2	0	2	1	2
0	1	0	0	1	0	1	0	1	1
0	2	0	0	2	1	2	1	1	0
1	1	2	3	2	2	0	0	2	3
0	0	2	1	2	2	3	0	1	2

Використовуючи задану вибірку, оцініть p_A та p_B , тобто обчисліть наближені значення p_A^* та p_B^* ймовірності випадкових подій A і B.

Завдання 3. Використовуючи визначення функції розподілу $F_{\xi}(x)$ випадкової величини ξ та таблицю ймовірностей Q(k, n, p), обчислити значення $F_{\xi}(2,2)$; $F_{\xi}(3,7)$ функції розподілу в точках: (x = 2,2); (x = 3,7).

Завдання 4. Використовуючи визначення емпіричної функції розподілу $\hat{F}_n(x)$ і задану вибірку, обчислити значення $\hat{F}_{60}(2,2)$ та $\hat{F}_{60}(3,7)$ емпіричної функції розподілу в точках: (x=2,2); (x=3,7).

Розв'язок:

Завдання 1. На основі визначення біноміального розподілу:

$$P{A} = P{\xi = 2} = P{B(6; 0.25) = 2} = C_6^2 \cdot 0.25^2 \cdot 0.75^4$$
.

Таблиця для біноміального розподілу містить ймовірності Q(k, n, p), задані формулою:

$$Q(k, n, p) = P\{B(n, p) \ge k\}.$$

Враховуючи наступну рівність:

$$P{B(6; 0,25) = 2} = P{B(6; 0,25) \ge 2} - P{B(6; 0,25) \ge 3},$$

приходимо до висновку, що:

$$P{A} = P{\xi = 2} = Q(2, 6, 0.25) - Q(3, 6, 0.25).$$

3 таблиці знаходимо:

$$O(2, 6, 0.25) = 0.466$$
; $O(3, 6, 0.25) = 0.169$.

Тому:

$$P{A} = P{\xi = 2} = 0.466 - 0.169 = 0.297.$$

Аналогічно отримаємо:

$$P\{B\} = P\{\xi = 3\} = Q(3, 6, 0.25) - Q(4, 6, 0.25) = 0.169 - 0.037 = 0.132.$$

Відповідь:
$$[P{A} = 0,297; P{B} = 0,132]$$
.

Завдання 2. На основі випадкової вибірки, представленої в розглянутому прикладі, побудуємо *точковий ряд*:

$x_1 = 0$	$x_2 = 1$	$x_3 = 2$	$x_4 = 3$	$x_5 = 4$	$x_6 = 5$	$x_7 = 6$
$n_1 = 18$	$n_2 = 19$	$n_3 = 18$	$n_4 = 4$	$n_5 = 0$	$n_6 = 1$	$n_7 = 0$

У випадку статистичної ознаки дискретного типу проблему непараметричного оцінювання вирішує *емпіричний розподіл*. Випадкова подія A безпосередньо пов'язана з розподілом ознаки ξ , тобто:

$$A = \{ \xi = 2 \} = \{ \xi = x_3 \}. P\{A\} = P\{ \xi = x_3 \} = p_3.$$

Тому наближенням для ймовірності p_A буде частота \hat{p}_A появи випадкової події A у вибірці, розрахована за формулою:

$$\hat{p}_A = \frac{n_3}{n} = \frac{18}{60} = 0.3.$$

Розмірковуючи подібним чином, у випадку випадкової події B ми отримаємо:

$$\hat{p}_B = \frac{n_4}{n} = \frac{4}{60} = 0,06(6).$$

Відповідь: [$\hat{p}_A = 0.3$; $\hat{p}_B = 0.06(6)$].

Завдання 3. Виходячи з визначення функції розподілу $F_{\xi}(x)$ випадкової величини ξ отримуємо:

$$F_{\xi}(2,2) = P\{\xi < 2,2\} = 1 - P\{\xi \ge 2,2\}.$$

Оскільки ознака ξ може приймати значення тільки з множини

$$\xi \in \{0, 1, 2, 3, 4, 5, 6\},\$$

то випадкові події $\{\xi \ge 2,2\}$ та $\{\xi \ge 3\}$ еквівалентні. Отже, використовуючи таблицю Q(k,n,p) біноміального розподілу отримуємо:

$$F_{\xi}(2,2) = 1 - P\{\xi \ge 3\} = 1 - Q(3, 6, 0.25) = 1 - 0.169 = 0.831.$$

Розмірковуючи подібним чином, у випадку значення x = 3.7 отримаємо:

$$F_{\xi}(3,7) = P\{\xi < 3,7\} = 1 - P\{\xi \ge 3,7\} = 1 - P\{\xi \ge 4\} = 1 - O(4, 6, 0.25) = 1 - 0.037 = 0.963.$$

Відповідь: $[F_{\xi}(2,2) = 0,831; F_{\xi}(3,7) = 0,963].$

Завдання 4. З урахуванням визначення емпіричної функції розподілу значення $\hat{F}_{60}(2,2)$ розраховується як відношення:

$$\hat{F}_N(2,2) = \hat{F}_{60}(2,2) = \frac{v_{60}(2,2)}{60},$$

де N = 60 – обсяг вибірки, $\nu_{60}(2,2)$ – кількість елементів цієї вибірки, що менші ніж 2,2. Використовуючи точковий ряд розподілу, побудований на основі випадкової вибірки, отримуємо:

$$v_{60}(2,2) = n_1 + n_2 + n_3 = 18 + 19 + 18 = 55.$$

$$\hat{F}_{60}(2,2) = \frac{55}{60} = 0.916(6).$$

Розмірковуючи подібним чином, у випадку значення x = 3.7 отримаємо:

$$v_{60}(3,7) = n_1 + n_2 + n_3 + n_4 = 18 + 19 + 18 + 4 = 59.$$

$$\hat{F}_{60}(3,7) = \frac{59}{60} = 0.983(3).$$

Відповідь: [$\hat{F}_{60}(2,2) = 0.916(6)$; $\hat{F}_{60}(3,7) = 0.983(3)$].