Rozdział 17 Transakcje

Definicja i własności transakcji, zatwierdzanie i wycofywanie, punkty bezpieczeństwa, spójność, anomalie współbieżnego dostępu do danych, poziomy izolacji transakcji, blokady, zakleszczenie

Definicja i własności transakcji

Transakcja:

jest sekwencją (uporządkowanym zbiorem) logicznie powiązanych operacji na bazie danych, która przeprowadza bazę danych z jednego stanu spójnego w inny stan spójny.

Atomowość (ang. atomicity)

 zbiór operacji wchodzących w skład transakcji jest niepodzielny; albo zostaną wykonane wszystkie operacje transakcji albo żadna

Spójność (ang. consistency)

transakcja pozostawia bazę danych w stanie spójnym

Izolacja (ang. isolation)

 transakcje są od siebie logicznie odseparowane. Mogą wzajemnie oddziaływać na siebie w taki sposób jak gdyby były wykonywane sekwencyjnie

Trwałość (ang. durability)

 wyniki zatwierdzonych transakcji nie mogą zostać utracone, niezależnie od awarii systemu

Rozpoczęcie transakcji

- Otwarcie nowej sesji
- Zakończenie poprzedniej transakcji

Zakończenie transakcji

Jawne zakończenie transakcji:

- zatwierdzenie: sprawdzenie ograniczeń, zwolnienie blokad, zapisanie wszystkich zmian
- wycofanie: porzucenie zmian, zwolnienie blokad

Niejawne zakończenie transakcji:

- wykonanie instrukcji DDL lub DCL (zatwierdzenie)
- normalne zakończenie sesji (zatwierdzenie)
- awaryjne zakończenie sesji (wycofanie)

Zatwierdzenie

COMMIT [WORK];

Punkt bezpieczeństwa

SAVEPOINT nazwa;

Wycofanie

ROLLBACK [WORK] [TO [SAVEPOINT] nazwa];

Ograniczenia opóźniane

Ograniczenia referencyjne i integralnościowe, które zostały zdefiniowane z klauzulą DEFERRABLE mogą być sprawdzane zarówno podczas operacji DML jak i na koniec transakcji.

```
CREATE TABLE T (x NUMBER

CONSTRAINT t_pk PRIMARY KEY DEFERRABLE INITIALLY DEFERRED);

INSERT INTO t SELECT 1 FROM pracownicy;
SELECT * FROM t;
COMMIT;
```

SET CONSTRAINT ALL | nazwa DEFERRED | IMMEDIATE;

Spójność bazy danych

Definicja:

Baza danych jest spójna jeżeli jej stan jest zgodny ze możliwym stanem reprezentowanego przez nią fragmentu świata rzeczywistego. Baza danych jest spójna jeśli spełnione są wszystkie ograniczenia referencyjne i integralnościowe.

Poziomy spójności:

- spójność polecenia
- Spójność transakcji

Zagrożenia spójności bazy danych:

- awarie sprzętu komputerowego i oprogramowania
- utrata danych w wyniku uszkodzenia pamięci masowej
- użytkownicy
- współbieżny dostęp do danych

Anomalie współbieżnego dostępu (1)

Utracona modyfikacja (ang. lost update)

Transakcja 1	Transakcja 2
	READ(x)
READ(x)	
WRITE(x)	
	WRITE(x)
COMMIT	
	СОММІТ

Brudny odczyt (ang. dirty read)

Transakcja 1	Transakcja 2
READ(x)	
WRITE(x)	
	READ(x)
ROLLBACK	
	WRITE(x)
	СОММІТ

Anomalie współbieżnego dostępu (2)

Niepowtarzalny odczyt (ang. non-repeatable read, fuzzy read)

Transakcja 1	Transakcja 2
	READ(x)
READ(x)	
	WRITE(x)
	СОММІТ
READ(x)	
COMMIT	

Fantomy (ang. phantom read)

Transakcja 1	Transakcja 2		
READ(x)			
	WRITE (UPDATE x)		
	WRITE (INSERT x)		
	COMMIT		
READ(x)			
COMMIT			

Poziomy izolacji transakcji

Dla zwiększenia współbieżności definiuje się poziomy izolacji transakcji, świadomie godząc się z występowaniem anomalii. Anomalia utraconego zapisu nigdy nie może się pojawić!

	Dirty read	Fuzzy read	Phantom read
READ UNCOMMITTED	możliwy	możliwy	możliwy
READ COMMITTED	nie występuje	możliwy	możliwy
REPEATABLE READ	nie występuje	nie występuje	możliwy
SERIALIZABLE	nie występuje	nie występuje	nie występuje

Tryb dostępu transakcji

Standard języka SQL definiuje tryby dostępu:

- READ ONLY: transakcja nie zawiera żadnych poleceń modyfikujących stan bazy danych
- READ WRITE: transakcja może zawierać polecenia modyfikujące stan bazy danych

SET TRANSACTION READ ONLY;

SET TRANSACTION READ WRITE;

Transakcje tylko do odczytu (ang. read only)

 Zapewniają spójność na poziomie transakcji, nie można w nich dokonywać żadnych modyfikacji danych, korzystają z mechanizmu wielowersyjności.

SET TRANSACTION READ ONLY;

Włączanie poziomów izolacji

READ COMMITTED - domyślny

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

ALTER SESSION SET ISOLATION LEVEL = READ COMMITTED;

SERIALIZABLE

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

ALTER SESSION SET ISOLATION LEVEL = SERIALIZABLE;

w pliku inicjalizacyjnym

SERIALIZABLE = true

Algorytmy zarządzania współbieżnością

- Algorytmy optymistyczne
 - znaczniki czasowe
- Algorytmy pesymistyczne
 - blokady
 - blokowanie dwufazowe (ang. Two Phase Locking 2PL)

Blokowanie:

- strona dyskowa: wykorzystanie mechanizmów systemu operacyjnego, efektywność, niska współbieżność
- krotka: wysoka współbieżność, konieczność implementacji, narzuty czasowe i zasobowe.

W Oracle na poziomie krotek istnieje tylko blokada do zapisu

Blokady na poziomie tabeli (1)

 Intencjonalna współdzielona (RS) - odpowiada zablokowaniu wybranych krotek w trybie współdzielonym

SELECT ... FOR UPDATE

 Intencjonalna wyłączna (RX) - odpowiada zablokowaniu wybranych krotek w trybie wyłącznym

INSERT, UPDATE, DELETE

Współdzielona (S) - odpowiada zablokowaniu wszystkich krotek w trybie współdzielonym

LOCK TABLE ... IN SHARE MODE

 Współdzielona (SRX) - odpowiada zablokowaniu wszystkich krotek w trybie współdzielonym i wybranych krotek w trybie wyłącznym

LOCK TABLE ... IN SHARE ROW EXCLUSIVE MODE

 Wyłączna (X) - odpowiada zablokowaniu wszystkich krotek w trybie wyłącznym

LOCK TABLE ... IN EXCLUSIVE MODE

Blokady na poziomie tabeli (2)

Tabela kompatybilności blokad

	-	RS	RX	S	SRX	Х
-	Т	Т	Т	Т	Т	Т
RS	Т	T*	T*	T*	T*	N
RX	Т	T*	T*	N	N	N
S	Т	Т	N	Т	N	N
SRX	Т	Т	N	N	N	N
X	Т	N	N	N	N	N

Zmiana poziomu blokad przez daną transakcję

Blokady na słowniku bazy danych

- Wyłączne (ang. exclusive DDL locks)
 - większość operacji DDL wymaga wyłączności dla przeprowadzenia operacji, np. DROP lub ALTER
- Współdzielone (ang. shared DDL locks)
 - nieliczne operacje DDL mogą się wykonywać współbieżnie, np. CREATE PROCEDURE
- Nietrwałe (ang. breakable parse locks)
 - blokady zakładane gdy we współdzielonym obszarze SQL znajdują się sparsowane polecenia SQL, każda operacja DDL łamie te blokady
- Wewnętrzne (ang. internal locks and latches)
 - cache słownika bazy danych, pliki dziennika powtórzeń, przestrzenie tabel, itp.

Zakleszczenie (ang. deadlock)

Transakcja 1	Transakcja 2
•••	READ(x)
READ(y)	•••
***	WRITE(x)
WRITE(y)	•••
	WRITE(y)
WRITE(x)	•••

Oracle automatycznie wykrywa zakleszczenie i wycofuje polecenie w tej transakcji, która wykryła zakleszczenie.

