# AI - FOUNDATION AND APPLICATION

Instructor: Assoc. Prof. Dr. Truong Ngoc Son

Chapter 2
Back Propagation

### Outline

- ☐ Multiclass Classification With Softmax regression
- ☐ Lost function cross entropy
- ☐ Stochastic gradient descent batch and mini-batch gradient descent
- ☐ Translating math into code



# Multiclass Classification With Softmax regression

# Multiclass classification example







### Multiclass classification example



# Multiclass classification with logistic regression

Sigmoid function is used for the neurons at the output layer

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- ☐ It is ideally for two-class classification
- ☐ The outputs are independent
- ☐ The sigmoid may produces high probability for all classes, some of them, or none of them



| 0.9 | 0.9 | 0.3 |
|-----|-----|-----|

# Multiclass classification with softmax regression

We expect that there is only one right answer, the outputs are mutually exclusive.

$$\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$



- ☐ The softmax will enforce that the sum of the probabilities of output classes are equal to one
- ☐ Softmax is used for multi-classification in the Logistic Regression model, whereas Sigmoid is used for binary classification in the Logistic Regression model

# Multiclass classification with softmax regression

- ☐ Softmax function is mostly used in a final layer of Neural Network
- ☐ The outputs are probability distribution

$$\sigma(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$



# Lost function – cross entropy

Cross-entropy takes the negative log likelihood of the predicted probability

**Cross-entropy loss** 

$$Loss = -\sum_{i=1}^{M} y_i \log(o_i)$$

M – number of classes

y: class label

o: predicted probability observation



# Back propagation

### Feedforward propagation with softmax activation



$$z_{j}^{(1)} = \sum_{i=1}^{M} x_{i} w_{j,i}^{(1)} + b_{j}^{(1)} \qquad a_{j}^{(1)} = \frac{1}{1 + e^{-z_{j}^{(1)}}} \qquad z_{k}^{(2)} = \sum_{j=1}^{K} a_{j}^{(1)} w_{k,j}^{(2)} + b_{k}^{(2)} \qquad o_{k} = \frac{e^{z_{k}}}{\sum_{j=1}^{K} e^{z_{j}^{(2)}}}$$

### Feedforward propagation with softmax activation



Gradient descent

$$w_{k,j} = w_{k,j} - \eta \frac{\partial L}{\partial w_{k,j}}$$

$$L(y, o) = -\sum_{k=1}^{K} y_k \log(o_k)$$

$$o_k = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j^{(2)}}}$$

Apply the chain rule

$$\frac{\partial L}{\partial w_{k,j}} = \frac{\partial L}{\partial z_k} \frac{\partial z_k}{\partial w_{k,j}}$$

$$\frac{\partial L}{\partial z_k} = \frac{\partial L}{\partial o_k} \frac{\partial o_k}{\partial z_k}$$

Error of kth neuron of the output layer

$$\delta_k = \frac{\partial L}{\partial z_k}$$

Using calculus, we obtain  $\frac{\partial L}{\partial z_k} = o_k - y_k$   $\delta_k = o_k - y_k$ 

$$\frac{\partial L}{\partial z_k} = o_k - y_k$$

$$\delta_k = o_k - y_k$$

 $o_k$  is the kth component of the neuron's prediction and  $y_k$  is the kth component of the label

### **Back-propagation**

 $\delta_j^{(1)}$  is the error of the ith neuron in hidden layer



 $\delta_i^{(1)}$  affects all neurons of next layer via the weights

### **Back-propagation**





you should spend time to master them

Back propagate error

$$\delta_1^{(1)} = \delta_1 w_{1,1}^{(2)} + \dots + \delta_k w_{k,1}^{(2)}$$

$$\delta_j^{(1)} = \sum_{k=1}^K \delta_k w_{k,j}^{(2)}$$

Back propagate through sigmoid function

$$\frac{\partial L}{\partial z_j^{(1)}} = \delta_j^{(1)} a_j^{(1)} (1 - a_j^{(1)})$$

Update weights  $w_{j,i} = w_{j,i} - \eta \frac{\partial L}{\partial w_{i,i}}$ 

$$w_{k,j}^{(2)} = w_{k,j}^{(2)} - \eta \frac{\partial L}{w_{k,j}^{(2)}} = w_{k,j}^{(2)} - \eta \delta_k \frac{\partial \delta_k}{\partial w_{k,j}^{(2)}}$$

$$w_{k,j}^{(2)} = w_{k,j}^{(2)} - \eta \delta_k a_j^{(1)}$$

$$\delta_k = o_k - y_k$$

$$\delta_k = o_k - y_k$$

$$\delta_j^{(1)} = \sum_{k=1}^K \delta_k w_{k,j}^{(2)}$$

$$w_{j,i}^{(1)} = w_{j,i}^{(1)} - \eta \delta_j^{(1)} a_j^{(1)} (1 - a_j^{(1)}) x_i$$

# Stochastic gradient descent – batch and mini-batch gradient descent

- ☐ Stochastic gradient descent (SGD): use 1 sample in each iteration
- ☐ Batch gradient descent (GD): use all samples in each iteration
- $\square$  Mini-batch gradient descent (Mini-batch GD): use b sample in each iteration, in this case, b is the batch size
- $\square$  Mini-batch stochastic gradient descent (Mini-batch SGD): use b sample in each iteration, the batch of training samples is randomly selected

Stochastic Gradient Descent





# PYTHON CODE

### **Translating Math into Code**





# Translating mathematics into code

### **MNIST Dataset**







### Feed forward propagation



Define:

$$z^2 = z^1$$

$$Wh=W^{(1)}$$

$$Wo = W^{(2)}$$

Fordward

$$a = XWh^{T}$$

$$z1 = \sigma(z1) = \frac{1}{1 + e^{-z1}} \qquad z2 = XWo^{T} \qquad o_{k} = \frac{e^{z2k}}{\sum_{j=1}^{K} e^{z2k}}$$

$$z2 = z^1$$

$$Wh = W^{(1)}$$

$$Wo = W^{(2)}$$

Back-propagation error (element-wise product) Parameters  $d_i^t = \left(o_j^t - y_j^t\right)$ Training sample #1 n: number of inputs The k<sup>th</sup> output m: number of neurons in hidden layer k: number of neurons in output layer  $d_1^{_{(1)}}$  $d_2^{(1)}$  $d_k^{\scriptscriptstyle{(1)}}$ t: number of training sample (batch size) Hidden layer  $dh = [\delta_1^{(1)}, \delta_2^{(1)}, ..., \delta_j^{(1)}, ..., \delta_m^{(1)}]$  $d_1^{(2)}$  $d_2^{(2)}$  $d_k^{\!\scriptscriptstyle (2)}$ d =Outputs of neurons M: number of training sample  $W^{(1)}$  $W^{(2)}$  $d_k^{\scriptscriptstyle (t)}$  $d_1^{(t)}$  $d_2^{(t)}$ O<sub>1</sub>  $0_2^{(1)}$  $o_k^{\scriptscriptstyle (1)}$  $W^{(1)}_{1 \ 1}$ O<sub>1</sub><sup>(2)</sup>  $o_2^{(2)}$  $o_k^{(2)}$  $\delta_1$  $W^{(2)}_{1,2}$ W<sup>(2)</sup><sub>1,m</sub> O<sub>1</sub><sup>(t)</sup> **O**<sub>2</sub><sup>(t)</sup>  $O_k^{(t)}$  $+\delta_{j}^{\overline{(1)}}$  $\delta_k$  $d_j^t = \left(o_j^t - y_j^t\right)$  $W^{(2)}$  $d_1^{(1)}$  $d_k^{\scriptscriptstyle{(1)}}$  $W_{1.1}$   $W_{1.2}$   $W_{1.3}$  $W_{1.m}$ W<sup>(2)</sup><sub>k.m</sub> Output layer n inputs  $d_1^{(2)}$  $d_2^{(2)}$  $d_k^{(2)}$  $W_{2,1}$   $W_{2,2}$   $W_{2,3}$  $W_{2,m}$  $\times =$ Input layer m neurons Hidden layer  $W_{k,1} W_{k,2} W_{k,3}$  $W_{k,m}$  $d_2^{(t)}$ txk kxm  $W_{1,1}$   $W_{1,2}$   $W_{1,3}$  $W_{1,1}$   $W_{1,2}$   $W_{1,3}$  $W_{1,n}$  $W_{1,m}$  $dh = [\delta_1^{(1)}, \delta_2^{(1)}, ..., \delta_j^{(1)}, ..., \delta_m^{(1)}]$  $W_{2,1}$   $W_{2,2}$   $W_{2,3}$  $W_{2,n}$  $W_{2,1}$   $W_{2,2}$   $W_{2,3}$  $W_{2,m}$  $W^{(2)} =$  $W^{(1)} =$ mxn kxm  $\delta_j^{(1)} = \sum_{k=1}^K \delta_k w_{k,j}^{(2)}$ ( n<sub>k</sub>  $W_{m,1}$   $W_{m,2}$   $W_{m,3}$  $W_{k,n}$  $W_{k,1}$   $W_{k,2}$   $W_{k,3}$  $W_{k,m}$  $dh_k^{(2)}$  $dh = dW^{(2)}$ dh<sub>1</sub><sup>(t)</sup>  $dh_2^{(t)}$  $dh_{k}^{(t)}$ 

Back propagate error

$$\delta_1^{(1)} = \delta_1 w_{1,1}^{(2)} + \dots + \delta_k w_{k,1}^{(2)}$$
$$\delta_j^{(1)} = \sum_{k=1}^K \delta_k w_{k,j}^{(2)}$$

### Update weights

output layer
$$L(y,o) = -\sum_{k=1}^{K} y_k \log(o_k)$$

$$d = o - y$$
 softmax

$$\Delta Wo = -\eta \frac{2}{\mathsf{t}} d^T a$$

$$Wo = Wo + \Delta Wo$$

output layer back propagate dh = dWo through weights dhs = dh(a(1-a)) back propagate through signmoid  $\Delta Wo = -\eta \frac{2}{t} dhs^{T} X$ 

t: number of training sample

$$\begin{split} &Update\ weights\\ &w_{j,i}=w_{j,i}-\eta\frac{\partial L}{\partial w_{j,i}}\\ &w_{k,j}^{(2)}{=}w_{k,j}^{(2)}-\eta\frac{\partial L}{w_{k,j}^{(2)}}=w_{k,j}^{(2)}-\eta\delta_k\frac{\partial\delta_k}{\partial w_{k,j}^{(2)}} \end{split}$$



# PYTHON CODE





Load dataset

```
import numpy as np
import tensorflow as tf
#load datashet
print("Load MNIST Database")
mnist = tf.keras.datasets.mnist
(x train,y train),(x test,y test)= mnist.load data()
x_{train} = np.reshape(x_{train}, (60000, 784))/255.0
x_test= np.reshape(x_test,(10000,784))/255.0
y train = np.matrix(np.eye(10)[y train])
y_test = np.matrix(np.eye(10)[y_test])
print("-----")
print(x_train.shape)
print(y train.shape)
```

#### **Batch Gradient Descent**

#### **Define functions**

```
def sigmoid(x):
   return 1./(1.+np.exp(-x))
def softmax(x):
   return np.divide(np.matrix(np.exp(x)),np.mat(np.sum(np.exp(x),axis=1)))
def Forwardpass(X,Wh,bh,Wo,bo):
   zh = X@Wh.T + bh
   a = sigmoid(zh)
   z=a@Wo.T + bo
   o = softmax(z)
   return o
def AccTest(label,prediction): # calculate the matching score
   OutMaxArg=np.argmax(prediction,axis=1)
    LabelMaxArg=np.argmax(label,axis=1)
   Accuracy=np.mean(OutMaxArg==LabelMaxArg)
   return Accuracy
```

Define network architecture, initialize weights

```
learningRate = 0.5
Epoch=50
NumTrainSamples=60000
NumTestSamples=10000
NumInputs=784
NumHiddenUnits=512
NumClasses=10
#inital weights
#hidden layer
Wh=np.matrix(np.random.uniform(-0.5,0.5,(NumHiddenUnits,NumInputs)))
bh= np.random.uniform(0,0.5,(1,NumHiddenUnits))
dWh= np.zeros((NumHiddenUnits, NumInputs))
dbh= np.zeros((1,NumHiddenUnits))
#Output layer
Wo=np.random.uniform(-0.5,0.5,(NumClasses,NumHiddenUnits))
bo= np.random.uniform(0,0.5,(1,NumClasses))
dWo= np.zeros((NumClasses, NumHiddenUnits))
dbo= np.zeros((1,NumClasses))
```

### Training the model

#### **Batch Gradient Descent**

```
from IPython.display import clear output
loss = []
Acc = []
for ep in range (Epoch):
 #feed fordware propagation
 x = x_{train}
 y=y_train
 zh = x@Wh.T + bh
 a = sigmoid(zh)
 z=a@Wo.T + bo
 o = softmax(z)
 #calculate loss
 loss.append(-np.sum(np.multiply(y,np.log10(o))))
 #calculate the error for the ouput layer
 d = o - v
  #Back propagate error
 dh = d@Wo
 dhs = np.multiply(np.multiply(dh,a),(1-a))
 #update weight
 dWo = np.matmul(np.transpose(d),a)
 dbo = np.mean(d) # consider a is 1 for bias
  dWh = np.matmul(np.transpose(dhs),x)
 dbh = np.mean(dhs) # consider a is 1 for bias
 Wo =Wo - learningRate*dWo/NumTrainSamples
 bo =bo - learningRate*dbo
 Wh =Wh-learningRate*dWh/NumTrainSamples
 bh =bh-learningRate*dbh
  #Test accuracy with random innitial weights
  prediction = Forwardpass(x test,Wh,bh,Wo,bo)
  Acc.append(AccTest(y test,prediction))
  clear output(wait=True)
 plt.plot([i for i, _ in enumerate(Acc)],Acc,'o')
 plt.show()
```





Test the model

```
prediction = Forwardpass(x_test,Wh,bh,Wo,bo)
Rate = AccTest(y_test,prediction)
Print(Rate)
```

### Training the model

```
from IPython.display import clear output
loss = []
Acc = []
Batch size = 200
Stochastic samples = np.arange(NumTrainSamples)
for ep in range (Epoch):
 np.random.shuffle(Stochastic samples)
 for ite in range (0,NumTrainSamples,Batch size):
   #feed fordware propagation
   Batch samples = Stochastic samples[ite:ite+Batch size]
   x = x train[Batch samples,:]
   y=y train[Batch samples,:]
   zh = x@Wh.T + bh
   a = sigmoid(zh)
   z=a@Wo.T + bo
   o = softmax(z)
   #calculate loss
   loss.append(-np.sum(np.multiply(y,np.log10(o))))
   #calculate the error for the ouput layer
   d = o - v
   #Back propagate error
   dh = d@Wo
   dhs = np.multiply(np.multiply(dh,a),(1-a))
   #update weight
```

```
#update weight
    dWo = np.matmul(np.transpose(d),a)
    dbo = np.mean(d) # consider a is 1 for bias
    dWh = np.matmul(np.transpose(dhs),x)
    dbh = np.mean(dhs) # consider a is 1 for bias
    Wo =Wo - learningRate*dWo/Batch size
    bo =bo - learningRate*dbo
   Wh =Wh-learningRate*dWh/Batch size
   bh =bh-learningRate*dbh
    #Test accuracy with random innitial weights
   prediction = Forwardpass(x test, Wh, bh, Wo, bo)
    Acc.append(AccTest(y test,prediction))
    clear output(wait=True)
   plt.plot([i for i, _ in enumerate(Acc)],Acc,'o')
    plt.show()
 print('Epoch:', ep )
  print('Accuracy:',AccTest(y_test,prediction) )
```

### Just calculate the loss and accuracy after each epoch

```
from IPython.display import clear output
loss = []
Acc = []
Batch size = 200
Stochastic samples = np.arange(NumTrainSamples)
for ep in range (Epoch):
  np.random.shuffle(Stochastic samples)
 for ite in range (0, NumTrainSamples, Batch size):
   #feed fordware propagation
   Batch samples =
Stochastic samples[ite:ite+Batch size]
   x = x train[Batch samples,:]
   y=y train[Batch samples,:]
   zh = x@Wh.T + bh
    a = sigmoid(zh)
    z=a@Wo.T + bo
   o = softmax(z)
   #calculate loss
    loss.append(-np.sum(np.multiply(y,np.log10(o))))
   #calculate the error for the ouput layer
   d = o - y
   #Back propagate error
   dh = d@Wo
   dhs = np.multiply(np.multiply(dh,a),(1-a))
```

```
dWo = np.matmul(np.transpose(d),a)
  dbo = np.mean(d) # consider a is 1 for bias
  dWh = np.matmul(np.transpose(dhs),x)
  dbh = np.mean(dhs) # consider a is 1 for bias
  Wo =Wo - learningRate*dWo/Batch_size
  bo =bo - learningRate*dbo
  Wh =Wh-learningRate*dWh/Batch_size
  bh =bh-learningRate*dbh

#Test accuracy with random innitial weights
  prediction = Forwardpass(x_test,Wh,bh,Wo,bo)
  Acc.append(AccTest(y_test,prediction))
  print('Epoch:', ep )
  print('Accuracy:',AccTest(y_test,prediction))
```

```
Epoch: 0
Accuracy: 0.8762
Epoch: 1
Accuracy: 0.9013
Epoch: 2
Accuracy: 0.9136
Epoch: 3
Accuracy: 0.9165
Epoch: 4
Accuracy: 0.9251
```



Training the model







