中国科学技术大学数学科学学院

2022~2023 学年第 1 学期期中考试试卷

٨	兴	\mathbf{T}	44
\mathbf{A}	吞	К	不
4 1	(A)	ட	

课程名	脉	数学分析 (B1)			怪编号 _	MATH1006				
考试时间	闰202	2022年11月12日		考	武形式 _	闭卷				
姓名_			学号_			学 院 _				
题号	_		三	四	五	六	七	总分		
得分										
交斯 (每小斯 9 分 廿 15 分)										

一、 填空题 (每小题 3 分, 共 15 分)

思路.
$$\left(\frac{x-2}{x}\right)^{kx} = \left(1 + \frac{1}{\frac{x}{-2}}\right)^{\frac{x}{-2}\cdot(-2k)}.$$

(2) 设有参数曲线
$$\begin{cases} x = t \sin t + \cos t, \\ y = \sin t. \end{cases}$$
 则 $\frac{\mathrm{d}y}{\mathrm{d}x} = ($), $\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = ($). $(\frac{1}{t}; -\frac{1}{t^3 \cos t})$

思路.
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{1}{t}, \ \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = \frac{\frac{\mathrm{d}}{\mathrm{d}t}(1/t)}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-1/t^2}{t\cot(t)}.$$

思路.

$$\ln(\cos(x)) = \ln\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)\right)$$

$$= \left(-\frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)\right) - \frac{1}{2}\left(-\frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)\right)^2 + o(x^4)$$

$$= -\frac{x^2}{2} - \frac{x^4}{12} + o(x^4).$$

思路. 由条件可知
$$f(x) = -\sin(x) + o(x^3) = -x + \frac{x^3}{6} + o(x^3)$$
, 故 $\tan(x) + f(x) = x + \frac{x^3}{3} + o(x) - x + \frac{x^3}{6} + o(x^3) = \frac{x^3}{2} + o(x^3)$.

(5) 设函数 f(x) 在 x_0 附近有反函数,且二阶可导,满足当 $x \to x_0$ 时有 $f(x) = 1 + 2(x - x_0) + 3(x - x_0)^2 + o((x - x_0)^2)$,则 $x = f^{-1}(y)$ 在 $y_0 = f(x_0) = 1$ 处的 二阶导数等于 (). $\left(-\frac{3}{4}\right)$

思路. 由条件可知, 在 $x = x_0$ 处, y'(x) = 2, y''(x) = 6. 于是

$$\frac{\mathrm{d}^2 x}{\mathrm{d}y^2} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\mathrm{d}x}{\mathrm{d}y} \right) = \frac{\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}} \right)}{\frac{\mathrm{d}y}{\mathrm{d}x}} = \frac{-\frac{y''(x)}{(y'(x))^2}}{y'(x)} = -\frac{y''(x)}{y'(x)^3}.$$
故所求为 $-\frac{6}{2^3} = -\frac{3}{4}$.

- 二、 选择题 (每小题 3 分, 共 15 分)
 - (B) (1) 己知函数 f(x) 在 x_0 可导,则 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0 \Delta x)}{\Delta x} = ($ A. $f'(x_0)$ B. $2f'(x_0)$ C. 0 D. $f''(x_0)$

思路.
$$\frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \frac{f(x_0 - \Delta x) - f(x_0)}{-\Delta x}.$$

(C) (2) 设函数 $f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$ 则其导函数 f'(x) 在 x = 0 处 (). A. 没有定义 B. 连续但不可导 C. 不连续 D. 连续且可导

思路. 易见当 $x \neq 0$ 时, $f'(x) = 2x \cos(1/x) + \sin(1/x)$, 从而 $x \to 0$ 时 f'(x) 不收敛.

(3) 设函数 f(x) 有连续的二阶导数, $F(x) = f(\cos x)$, 则 F(x) 在 x = 0 处取得极小 **(A)** 值的一个充分条件是 ().

A.
$$f'(1) < 0$$
 B. $f'(1) > 0$ C. $f''(1) < 0$ D. $f''(1) > 0$

思路. $F'(x) = f'(\cos(x))(-\sin(x))$, 故 F'(0) = 0, x = 0 为 F(x) 的稳定点. $F''(x) = f''(\cos(x))\sin^2(x) - f'(\cos(x))\cos(x)$, 故 F''(0) = -f'(1). 若 f'(1) < 0, 则 F''(0) > 0. 由 f'' 的连续性可知, 这说明在 x = 0 附近 F''(x) > 0, 即 F(x) 为凸函数. 这说明 x = 0 为 F(x) 的极小值点. (这一题里其实 f'' 存在导数就可以了, 由 $F''(0) = \lim_{x \to 0} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0} \frac{F'(x)}{x}$ 可知, 在 x < 0 时, 局部地有 F'(x) < 0, 从而 F(x) 严格单调递减; x > 0 时可类似讨论)

(C) (4) 设函数 f(x) 在 x = 0 处连续,且 $\lim_{x \to 0} \frac{f(x^2)}{x^2} = 1$,则 (). A. f(0) = 0 且 $f'_{-}(0) = 1$ B. f(0) = 0 且 f'(0) = 1 C. f(0) = 0 且 $f'_{+}(0) = 1$ D. f(0) = 1 且 f'(0) = 1

思路. 若令 $u=x^2$, 若 $x\to 0$, 则 $u\to 0^+$. 由 $\lim_{u\to 0^+}\frac{f(u)}{u}=1$, 可以推出 $f(0)=\lim_{u\to 0^+}f(u)=\lim_{u\to 0^+}u=0$, 以及 $f'_+(0)=\lim_{u\to 0^+}\frac{f(u)-f(0)}{u}=\lim_{u\to 0^+}\frac{f(u)}{u}=1$.

(5) 设函数 y = y(x) 由方程 $xe^{f(y)} = e^y \ln 2022$ 确定, 其中 f(x) 具有二阶导数,

$$f'(x) \neq 1, \text{ } \emptyset \text{ } dy = ($$
).

A. $\frac{dx}{x(1 - f'(y))}$ B. $\frac{1}{x(1 - f'(y))}$ C. $\frac{dx}{e^{f(y)}(1 - f'(y))}$ D. $\frac{1}{e^{f(y)}(1 - f'(y))}$

思路. 化简方程, 我们有 $x = \ln(2022)e^{y-f(y)}$, 对 x 求导后, 有 $1 = \ln(2022)e^{y-f(y)}(1-f'(y))y'$, 即 1 = x(1-f'(y))y'.

- 三、 简单计算推理题. (每题 6 分, 共 30 分)
 - (1) 用数列极限定义证明 $\lim_{n\to\infty} \frac{2^n}{n!} = 0$.

证明. 注意到

$$\left| \frac{2^n}{n!} - 0 \right| = \frac{2 \cdot 2 \cdot \cdot \cdot 2}{1 \cdot 2 \cdot \cdot \cdot n} < 2 \cdot \frac{2}{n} = \frac{4}{n},$$

于是, 对任意的正数 ε , 若取 $N = \begin{bmatrix} \frac{4}{5} \end{bmatrix} + 1$, 则当 n > N 时有

$$\left| \frac{2^n}{n!} - 0 \right| = \frac{2^n}{n!} \le \frac{4}{n} < \frac{4}{N} < \varepsilon.$$

由定义, 这说明 $\lim_{n\to\infty} \frac{2^n}{n!} = 0.$

(2) 设 $\lim_{n\to\infty} (3a_n + b_n) = 7$, $\lim_{n\to\infty} (a_n + 2b_n) = 4$. 证明数列 $\{a_n\}$ 和 $\{b_n\}$ 的极限存在, 并求出它们的极限值.

证明. 我们有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{5} \left(2 \left(3a_n + b_n \right) - \left(a_n + 2b_n \right) \right) = \frac{1}{5} (2 \cdot 7 - 4) = 2,$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left((3a_n + b_n) - 3a_n \right) = 7 - 3 \cdot 2 = 1.$$

特别地, $\{a_n\}_n$ 与 $\{b_n\}_n$ 有极限.

(3) 求出函数 $f(x) = e^{-x^2}$ 的单调性和凹凸性区间.

解. 我们有 $f'(x) = -2xe^{-x^2}$. 故 x < 0 时, f'(x) > 0, 从而 f(x) 是严格单调递增; x > 0 时, f'(x) < 0, 从而 f(x) 是严格单调递减.

同时我们又有 $f''(x) = (4x^2 - 2)e^{-x^2}$. 这说明在 $(-\infty, -1/\sqrt{2})$ 和 $(1/\sqrt{2}, +\infty)$ 这两个区间上,皆有 f''(x) > 0,从而 f(x) 都是凸函数; 在区间 $(-1/\sqrt{2}, 1/\sqrt{2})$ 上,有 f''(x) < 0,从而 f(x) 为凹函数.

(4) 已知数列 $\{a_n\}$ 收敛于 a, 求 $\lim_{n\to\infty} \frac{a_1 + 2a_2 + 3a_3 + \dots + na_n}{n^2}$.

解. 用 ∞ 型 Stolz 定理, 我们有

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + 3a_3 + \dots + na_n}{n^2}$$

$$= \lim_{n \to \infty} \frac{(a_1 + 2a_2 + 3a_3 + \dots + na_n) - (a_1 + 2a_2 + 3a_3 + \dots + (n-1)a_{n-1})}{n^2 - (n-1)^2}$$

$$= \lim_{n \to \infty} \frac{na_n}{2n - 1} = \frac{a}{2}.$$

(5) 数列 $\{x_n\}$ 由递推公式定义: $x_0 = 1$, $x_{n+1} = f(x_n)$, 其中 $f(x) = \frac{x+2}{x+1}$. 试求 $\lim_{n \to \infty} x_n$.

解. 注意到 $f(x) = 1 + \frac{1}{1+x}$, 由于 $x_0 = 1$, 用归纳法不难验证, $\{x_n\}_n$ 是一个正数数列. 假定 $\lim_{n \to \infty} x_n = a$, 对于递推公式取极限, 可得 $a = 1 + \frac{1}{1+a}$, 又由于 a > 0, 这说明极限 $a = \sqrt{2}$. 下面证明 $\{x_n\}_n$ 确实以 $\sqrt{2}$ 为极限, 为此, 注意到

$$|x_{n+1} - \sqrt{2}| = \left| \left(1 + \frac{1}{1 + x_n} \right) - \left(1 + \frac{1}{1 + \sqrt{2}} \right) \right| = \frac{|x_n - \sqrt{2}|}{\left(1 + \sqrt{2} \right) (1 + x_n)} < \frac{|x_n - \sqrt{2}|}{\left(1 + \sqrt{2} \right)}.$$

$$\text{由此不难推出所证的结果.}$$

四、(本题 10 分)对于函数

$$f(x) = \begin{cases} \frac{\ln(1 + ax^3)}{x - \arcsin(x)}, & x < 0, \\ 6, & x = 0, \\ \frac{e^{ax} + x^2 - ax - 1}{x \cdot \sin(x/4)}, & x > 0, \end{cases}$$

问参数 a 为何值时, f(x) 在 x = 0 处连续; 参数 a 为何值时, x = 0 是 f(x) 的可去间断点?

解. 我们有

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\ln(1 + ax^{3})}{x - \arcsin(x)} = \lim_{x \to 0^{-}} \frac{ax^{3}}{x - \left(x + \frac{1}{6}x^{3} + o(x^{3})\right)} = -6a,$$

另一方面, 我们同时有

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{e^{ax} + x^2 - ax - 1}{x \cdot \sin(x/4)} = \lim_{x \to 0^+} \frac{(1 + ax + \frac{(ax)^2}{2} + o(x^2)) + x^2 - ax - 1}{x^2/4} = 2a^2 + 4.$$

令 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$,我们有 $-6a = 2a^2 + 4$,即 a = -1 或 -2.

- (i) 若 a = -1, 则 $\lim_{x\to 0} f(x) = 6 = f(0)$, 故 f(x) 在 x = 0 处连续.
- (ii) 若 a = -2, 则 $\lim_{x\to 0} f(x) = 12 \neq f(0)$, 故 f(x) 在 x = 0 处有可去间断点.

五、 (本题 12 分) 求方程 $k \cdot \arctan(x) - x = 0$ 的不同实根的个数, 其中 k 为参数.

解. 令 $f(x) = k \arctan(x) - x$. 为了讨论其零点个数, 由于 f 为奇函数, 我们不妨先考虑 $x \ge 0$ 的情形. 容易看到,

$$f(0) = 0,$$
 $\lim_{x \to +\infty} f(x) = -\infty,$ $\bigvee \mathcal{R} \qquad f'(x) = \frac{k}{1 + x^2} - 1.$

- (i) 若 $k \le 1$, 则当 x > 0 时 $\frac{k}{1+x^2} \le \frac{1}{1+x^2} < 1$, 于是 f'(x) < 0, 从而 f(x) 在 $[0, +\infty)$ 上严格单调递减, 仅有 x = 0 为零点. 这说明 f(x) 在实轴上仅有一个根.
- (ii) 若 k > 1, 则 f'(x) = 0 在 x > 0 时仅有一个根 $x_0 = \sqrt{k-1}$. 当 $0 < x < x_0$, f'(x) > 0, 故 f(x) 严格单调递增; 当 $x > x_0$, f'(x) < 0, 故 f(x) 严格单调递减. 由于 f(0) = 0 而 $f(+\infty) = -\infty$, 这说明 f(x) 在 x > 0 时恰有一个实根 x_1 , 并且 $x_1 > x_0$. 综上, 这说明 f(x) 在实轴上恰有三个根: $-x_1, 0, x_1$.

六、 (本题 12 分) 设 y = f(x) 二阶可导且 f''(x) > 0, f(0) = 0, f'(0) = 0. 求

$$\lim_{x \to 0} \frac{x^2 f(u)}{f(x)\sin^2 u},$$

其中 u = u(x) 是曲线 y = f(x) 上点 P = (x, f(x)) 处切线在 x 轴上的截距.

解. 曲线 y = f(x) 在点 P(x, f(x)) 处的切线方程为

$$Y - f(x) = f'(x)(X - x).$$

若令 Y=0, 则 $X=x-\frac{f(x)}{f'(x)}$. 这说明截距 $u=x-\frac{f(x)}{f'(x)}$. 经计算, 我们有

$$\lim_{x \to 0} u = \lim_{x \to 0} \left(x - \frac{f(x)}{f'(x)} \right) = -\lim_{x \to 0} \frac{f(x)}{f'(x)} = -\lim_{x \to 0} \frac{\frac{f(x) - f(0)}{x}}{\frac{f'(x) - f'(0)}{x}} = -\frac{f'(0)}{f''(0)} = 0.$$

我们没有假设 f'' 连续, 因此上面的计算不能用洛必达法则. 另外, 上面的计算表明, $x \to 0$ 时 u(x) 是一个无穷小量; 我们必须验证这一点, 下面才可以用 $\frac{0}{0}$ 型的洛必达法则. 函数 f(x) 有麦克劳林公式

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + o(x^2) = \frac{f''(0)}{2}x^2 + o(x^2).$$

于是

$$\lim_{x \to 0} \frac{u}{x} \stackrel{\frac{0}{0}}{=} 1 - \lim_{x \to 0} \frac{f(x)}{xf'(x)} = \lim_{x \to 0} \frac{\frac{f''(0)}{2}x^2 + o(x^2)}{xf'(x)} = 1 - \lim_{x \to 0} \frac{\frac{f''(0)}{2} + o(1)}{\frac{f'(x) - f'(0)}{x}}$$
$$= 1 - \frac{1}{2} \cdot \frac{f''(0)}{f''(0)} = \frac{1}{2}.$$

这说明 u 是 1 阶无穷小量. 由此可知

$$\lim_{x \to 0} \frac{x^2 f(u)}{f(x) \sin^2 u} \xrightarrow{\sin(u) \sim u} \lim_{x \to 0} \frac{x^2 \left(\frac{f''(0)}{2} u^2 + o(u^2)\right)}{u^2 \left(\frac{f''(0)}{2} x^2 + o(x^2)\right)} = 1.$$

七、 (本题 6 分) 设 f(x) 在 [0,1] 是有二阶导函数,且 f(0) = f'(0),f(1) = f'(1).求证: 存在 $\xi \in (0,1)$ 满足 $f(\xi) = f''(\xi)$.

证明. 考虑辅助函数 $F(x) = (f(x) - f'(x))e^x$. 由于 F(x) 在 [0,1] 上可导, 满足 F(0) = F(1), 由 Rolle 定理可知, 存在 $\xi \in (0,1)$ 满足 $F'(\xi) = 0$, 即 $(f(\xi) - f''(\xi))e^{\xi} = 0$. 由于 $e^{\xi} \neq 0$, 这说明 $f(\xi) = f''(\xi)$.