THERMODYNAMICS OF A MINIMAL ALGORITHMIC COOLING REFRIGERATOR

Rodolfo Soldati, Durga Dasari, Jörg Wrachtrup, Eric Lutz University of Stuttgart, Max Planck Institute for Solid State Research

Refrigerator

Setup

NV Center in Diamond

t:¹⁴N nuclear spin

r: ¹³C nuclear spins

Processes:

Central electron spin acts as thermal bath in the Refresh step, and as the interaction mediator in Compression $(|100\rangle \rightleftharpoons |011\rangle)$ step.

npj Quantum Inf doi.org/gmztvr

1a) Cooling above reset temperatures $\epsilon_1 = \epsilon_2 = 0.6$.

1b) Fundamental bounds determined (e.g. Carnot coefficient of performance $\zeta_{\mathbb{C}}(n)$).

ARXIV:2109.14056

Theory vs Experiment

2a) Full theoretical solution available. Reproduces experimental performance of thermodynamic variables at imperfect compression (θ) and with target qubit relaxation (γ) .

2b) Experimental performance achieves upper bounds near vanishing relaxation $(\gamma \rightarrow 0)$, after a few cycles.

$$\varepsilon_{1, \max}(n \to \infty) = \frac{\varepsilon_2 + \varepsilon_3}{1 + \varepsilon_2 \varepsilon_3}$$

 ϵ_2, ϵ_3 : ¹³C spin polarization

2c) Asymptotic target polarization agrees with previous works in the literature. Corresponds to lowest possible temperature achievable.