

Photodétection

CeTI / Semestre 5 / Institut d'Optique / B3

Déroulement des modules CéTI

4 blocs de 2 séances de TD

Séance 1 : travail en groupe sur une thématique

Séance 2 : synthèse / démo

Capteurs et mise en forme

Filtrage actif

Photodétection

Asservissement

3 blocs de 2 séances de TP

Mise en forme / Filtrage

Photodétection

Numérique

Notions avancées

Photodétection

- Transmettre une information par la lumière
- Détecter un obstacle
- Rendre spécifique une communication

 $egin{aligned} \mathbf{V_p} \colon & \text{tension de polarisation} \\ \mathbf{I_{PhD}} \colon & \text{courant proportionnel} \\ & \text{au flux lumineux} \end{aligned}$

Ressources

• Fiche Résumé : ALI

• Fiche Résumé : Photodétection

M1 - Emettre une information lumineuse

• LED SFH415

Grenzwerte ($T_{\rm A}$ = 25 °C) Maximum Ratings

V_F	=	1,	3	V
1		•		

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op}$; $T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	ν_{R}	5	V
Durchlassstrom Forward current	I_{F}	100	mA
Stoßstrom, $t_p = 10 \mu s$, $D = 0$ Surge current	I_{FSM}	3	A
Verlustleistung Power dissipation	P_{tot}	165	mW
Wärmewiderstand Thermal resistance	R_{thJA}	450	K/W

M1 - Emettre une information lumineuse

• Montage émetteur

$$V_F = 1.3V$$

• Récepteur simple

Transforme une grandeur physique observée (mesurande) vers une autre grandeur physique utilisable (électrique)

Photodiode

Photocurrent $I_P = f(E_v), \ V_R = 5 \ \lor$ Open-Circuit Voltage $V_O = f(E_v)$ SFH 229

Capacitance

 $C = f(V_R), f = 1 \text{ MHZ}, E = 0$

Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	20	V
Verlustleistung Total power dissipation	P_{tot}	150	mW

Characteristics

Bezeichnung Parameter	Symbol Symbol	Wert Value		Einheit Unit
		SFH 229	SFH 229 FA	
Fotostrom Photocurrent				
$V_{\rm R}$ = 5 V, Normlicht/standard light A, T = 2856 K, $E_{\rm V}$ = 1000 lx	I_{P}	28 (≥ 18)	_	μА
$V_{\rm R}$ = 5 V, λ = 950 nm, $E_{\rm e}$ = 1 mW/cm ²	I_{P}	-	20 (≥ 10.8)	μΑ
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	$\lambda_{\text{S max}}$	860	900	nm
Spektraler Bereich der Fotoempfindlichkeit S = 10% von $S_{\rm max}$ Spectral range of sensitivity S = 10% of $S_{\rm max}$	λ	380 1100	730 1100	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	0.3	0.3	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	$L \times B$ $L \times W$	0.56 × 0.56	0.56 × 0.56	mm× mm
Halbwinkel Half angle	φ	±17	±17	Grad deg.

• Photodiode

Photocurrent $I_P = f(E_v)$, $V_R = 5 \text{ V}$ Open-Circuit Voltage $V_O = f(E_v)$ SFH 229

Capacitance

 $C = f(V_R), f = 1 \text{ MHZ}, E = 0$

Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	$T_{\sf op};\ T_{\sf stg}$	- 40 + 100	°C
Sperrspannung Reverse voltage	V_{R}	20	V
Verlustleistung Total power dissipation	P_{tot}	150	mW

Directional Characteristics

 $S_{\text{rel}} = f(\varphi)$

Récepteur simple

Récepteur simple

$$V_{S} = R_{PhD} \cdot I_{photo}$$

• Récepteur simple

$$V_s = R_{PhD} . I_{photo}$$

• Récepteur simple

• Récepteur simple / Modèle

Récepteur simple / Modèle

Capacité linéique C_{cab} ≈ 100 pF / m Rosc ≈ 1 MΩ

Cosc ≈ 10 pF

Pour
$$V_R = 5 V$$

• Récepteur simple / Modèle

• Récepteur simple

 Récepteur transimpédance

$$V_{S} = R_{T} \cdot I_{photo}$$

 Récepteur transimpédance

10⁵

fréquence (Hz)

10⁶

10⁷

• Récepteur transimpédance

 C_{Phd}

 Récepteur transimpédance

 $-A_0 \cdot R_F$

 $\overline{(1+jR_FC_{PHD}\omega)\cdot(1+j\omega/\omega_0)+A_0}$

 Récepteur transimpédance

$$\frac{\boldsymbol{V}_{S}}{\boldsymbol{I}_{Phd}} = \frac{\boldsymbol{R}_{T} \cdot \boldsymbol{A}_{0}}{(1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{0}}) \cdot (1 + \frac{\boldsymbol{j} \cdot \boldsymbol{\omega}}{\boldsymbol{\omega}_{c}}) + \boldsymbol{A}_{0}}$$

En utilisant le modèle du premier ordre pour l'amplificateur intégré (A_o, w_o)

Gain-peaking:
$$f_T = \sqrt{f_C \cdot GBP}$$
 avec $f_C = \frac{1}{2 \cdot \pi \cdot R_{PhD} \cdot C_{PhD}}$

• Récepteur transimpédance

Signal carré à 10kHz / GBF : offset +4.8V / Amp = 3.3V

Récepteur transimpédance

Signal carré à 10kHz / GBF : offset +4.8V / Amp = 3.3V

Signal numérique comparé (LM311)

Signal carré à 10kHz / GBF : offset +4.8V / Amp = 3.3V

M5 - Détecter un obstacle

 Capteurs TOF - Time of Flight

