Ajuste de una recta por mínimos cuadrados

- Los datos y su interpretación
- Los parámetros que mejor ajustan.
- Estimación de la incertidumbre de los parámetros.
- Coeficiente de correlación lineal.
- Presentación de los resultados. Ejemplo.

Los datos y su interpretación

Razones teóricas: y = mx + n

N pares de medidas $(x_1,y_1);(x_2,y_2);\cdots;(x_N,y_N)$

Antes de tomar las medidas:

- x El intervalo elegido para la variable independiente, ¿abarca todo el rango de interés?
- x ¿Están los puntos uniformemente distribuidos en este intervalo?

Ordenación y representación gráfica de los datos

x_i	y_i		
1	1.5		
2	2.0		
3	4.0		
5	4.6		
6	4.7		
8	8.5		
9	8.8		
10	9.9		

- ✗ ¿Se comportan los pares de medidas visualmente según una línea recta?
- X ¿Hay algún punto que presente un comportamiento anómalo?

Los parámetros que mejor ajustan

¿Cuál es la recta que mejor se ajusta a las N medidas?

$$\chi^{2}(\mathbf{n}, \mathbf{m}) = \sum_{i=1}^{N} (y_{i} - \mathbf{m}x_{i} - \mathbf{n})^{2}$$

$$m = \frac{NS_{xy} - S_x S_y}{NS_{xx} - S_x S_x}$$

$$n = \frac{S_{xx}S_y - S_xS_{xy}}{NS_{xx} - S_xS_x}$$

 \bigcirc ¿Qué valores de *m* y *n* hacen mínimo χ^2 ?

$$\frac{\partial \chi^2}{\partial m} = 0 \to 0 = \sum_{i=1}^N -2\left(y_i - mx_i - n\right)x_i = -2\sum_{i=1}^N \left(y_i x_i - mx_i^2 - nx_i\right) - \frac{\partial \chi^2}{\partial n} = 0 \to 0 = \sum_{i=1}^N -2\left(y_i - mx_i - n\right)$$

Definiendo

$$S_x = \sum_{i=1}^{N} x_i$$
 $S_y = \sum_{i=1}^{N} y_i$ $S_{xx} = \sum_{i=1}^{N} x_i^2$ $S_{xy} = \sum_{i=1}^{N} x_i y_i$

Estimación de la incertidumbre de los parámetros

¿Cuál es el mejor estimador de las incertidumbres de *m* y de *n*?

Suponemos que:

- Solo los valores y_i tienen error: δy_i
- Los errores en y son todos iguales: $\delta y_i = \delta y = \sigma_y$ y se estima a partir de la varianza de los datos:

$$\sigma_y^2 = \frac{1}{N-2} \sum_{i=1}^{N} (y_i - mx_i - n)^2 = \frac{\chi^2(n, m)}{N-2}$$

Aplicando propagación de errores:

$$\sigma_m^2 = \sum_{j=1}^N \left(\frac{\partial m}{\partial y_j} \sigma_y \right)^2 \; ; \qquad \sigma_n^2 = \sum_{j=1}^N \left(\frac{\partial n}{\partial y_j} \sigma_y \right)^2$$

y operando se obtiene:

$$\sigma_n^2 = \frac{S_{xx}}{NS_{xx} - S_{xx}S_{xx}} \frac{\chi^2(n,m)}{N-2}$$

$$\sigma_m^2 = \frac{N}{NS_{xx} - S_x S_x} \frac{\chi^2(n,m)}{N - 2}$$

Coeficiente de correlación lineal

¿Cómo podemos saber cuán bueno es el comportamiento lineal de los N pares de datos medidos?

- los errores en las medidas σ_{y_i} son conocidos:
 - ¿La recta pasa por casi todos las barras de error de los puntos?
 - Test de χ^2
- Elos errores en las medidas σ_{y_i} son desconocidos:
 - A partir de la dispersión de los datos.
 - Coeficiente de correlación lineal: r
 - Mide el grado de correlación lineal entre x e y.
 - $|r| \leq 1$
 - |r|=1 Correlación total.
 - r = 0 No hay correlación.

$$r = \frac{NS_{xy} - S_x S_y}{\sqrt{NS_{xx} - S_x S_x} \sqrt{NS_{yy} - S_y S_y}}$$
 siendo $S_{yy} = \sum_{i=1}^{N} y_i^2$

Presentación de los resultados

Ejemplo

Tabla de datos y cálculos

i	x_i	y_i	$x_i y_i$	x_i^2	y_i^2	$(n+mx_i-y_i)^2$
1	1	1.5	1.5	1.0	2.25	0.042
2	2	2.0	4.0	4.0	4.00	0.052
3	3	4.0	12.0	9.0	16.00	0.699
4	5	4.6	23.0	25.0	21.16	0.187
5	6	4.7	28.2	36.0	22.09	1.606
6	8	8.5	68.0	64.0	72.25	0.440
7	9	8.8	79.2	81.0	77.44	0.000
8	10	9.9	99.0	100.0	98.01	0.037

N=8	$S_x=44$	$S_{y} = 44$	$S_{xy} = 314.9$	$S_{xx} = 320$	$S_{yy} = 313.2$	$\chi^2 = 3.066$
-----	----------	--------------	------------------	----------------	------------------	------------------

PARÁMETROS DEL AJUSTE:

$$m = \frac{NS_{xy} - S_x S_y}{NS_{xx} - S_x S_x} = 0.935 \qquad \varepsilon(m) = \sqrt{\frac{N}{NS_{xx} - S_x S_x}} \frac{\chi^2(n, m)}{N - 2} = 0.081$$

$$n = \frac{S_{xx}S_y - S_xS_{xy}}{NS_{xx} - S_xS_x} = 0.36 \qquad \varepsilon(n) = \sqrt{\frac{S_{xx}}{NS_{xx} - S_xS_x} \frac{\chi^2(n, m)}{N - 2}} = 0.512$$

$$r = \frac{NS_{xy} - S_x S_y}{\sqrt{NS_{xx} - S_x S_x} \sqrt{NS_{yy} - S_y S_y}} = 0.978$$

$$y = (0.94 \pm 0.08) x + (0.4 \pm 0.5)$$