INF 1010 Estruturas de Dados Avançadas

Complexidade de Algoritmos

Introdução

Exemplos:

- Ordenar *n* números
- Multiplicar duas matrizes quadradas $n \times n$ (cada uma com n^2 elementos)

Complexidade de algoritmos

- Complexidade Espacial:
 - Quantidade de recursos utilizados para resolver o problema
- Complexidade Temporal:
 - Quantidade de tempo utilizado, ou número de instruções necessárias para resolver determinado problema
- Medida de complexidade
 - Parâmetro: tamanho do problema n

• complexidade de programação e manutenção!

Complexidade de algoritmos

espacial temporal recursos (memória) tempo utilizado necessários número de instruções necessárias perspectivas: pior caso caso médio melhor caso

complexidade espacial

complexidade de tempo

- quanto tempo demanda a execução de um programa/função/trecho?
 - contagem de tempo
 - análise assintótica

parênteses: medindo tempo

- time: chamada pela linha de comando
 - man time
- time: biblioteca C
 - man 3 time
- clock: biblioteca C
 - man 3 time

medidas de tempo

- que tempo queremos medir?
 - tempo de CPU
 - tempo decorrido
 - ...
- atenção
 - nunca colocar chamadas a printf dentro do trecho a medir
 - algumas operações são rápidas demais para medir
 - podemos usar um loop com milhares de repetições

análise de desempenho

- mas muitas vezes não queremos apenas medir mas entender o comportamento
 - previsão de comportamento em outras situações
 - comportamento com o crescimento do tamanho dos dados de entrada

contando operações p/ determinar custo

```
for (i=0; i<n; i++)
   tsum += list[i];
for (i=0; i<n; i++) {
 c[i] = 0;
  for (j=0; j<n; j++)
     c[i] += a[i,j] *b[j];
```


fundamentos

- complexidade computacional
 - Termo criado por Hartmanis e Stearns (1965)
 - Relação entre o tamanho do problema e o tempo e espaço necessários para resolvê-lo
 - Fundamental para projetar e analisar algoritmos

análise assintótica - tendência com n grande

- Considere o número de operações de cada um dos dois algoritmos que resolvem o mesmo problema:
 - Algoritmo 1: $f_1(n) = 2n^2 + 5n$ operações
 - Algoritmo 2: $f_2(n) = 50n + 4000$ operações
- Dependendo do valor de n, o Alg. 1 pode requerer mais ou menos operações que o Alg. 2

$$n = 10$$
 $n = 100$ $f_1(10) = 2(10)^2 + 5*10 = 250$ $f_1(100) = 2(100)^2 + 5*100 = 20500$ $f_2(10) = 50*10 + 4000 = 4500$ $f_2(100) = 50*100 + 4000 = 9000$

Comportamento assintótico

- Comportamento assintótico:
 - Quando n tem valor muito grande (n → ∞)

• não é a ÚNICA coisa que importa!

Comportamento assintótico

- Comportamento assintótico:
 - Quando n tem valor muito grande (n → ∞)
 - Termos inferiores e constantes multiplicativas contribuem pouco na comparação e podem ser descartados

Comportamento assintótico

- Comportamento assintótico:
 - Quando *n* tem valor muito grande $(n \rightarrow \infty)$
 - Termos inferiores e constantes multiplicativas contribuem pouco na comparação e podem ser descartados
- Exemplo:
 - Algoritmo 1: $f_1(n) = 2n^2 + 5n$ operações
 - Algoritmo 2: $f_2(n) = 500n + 4000$ operações
 - $f_1(n)$ cresce com n^2
 - $f_2(n)$ cresce com n
 - crescimento quadrático é pior que crescimento linear
 - Algoritmo 2 é melhor do que o Algoritmo 1

A notação O

Definição: Sejam f e g duas funções de domínio X.

Dizemos que a função f é O(g(n)) sse

$$(\exists c \in \Re^+)(\exists n_0 \in X)(\forall n \geq n_0)(|f(n)| \leq c.|g(n)|)$$

A notação O nos dá um limite superior assintótico

A notação O

Definição: Sejam f e g duas funções de domínio X.

Dizemos que a função f é O(g(n)) sse

$$(\exists c \in \Re^+)(\exists n_0 \in X)(\forall n \geq n_0)(|f(n)| \leq c.|g(n)|)$$

A notação O nos dá um limite superior assintótico

$$3n + 2 = O(n)$$
, pois
 $3n + 2 \le 4n$ para todo $n \ge 2$

$$1000n^2 + 100n - 6 = O(n^2)$$
, pois
 $1000n^2 + 100n - 6 \le 1001n^2$ para $n \ge 100$

$$f(n) = a_m n^m + ... + a_1 n + a_0 \Rightarrow f(n) = O(n^m)$$

Busca sequencial

```
int BuscaSequencial(char vet[], int tam, char dado)
   int i;
   for (i=0; i<tam; i++){}
      if (vet[i] == dado)
          return(i);
   return(0);
```


Busca sequencial Análise do pior caso (0)

- Quando acontece o pior caso?
 - Quando o dado procurado está na <u>última</u> posição do vetor ou <u>o dado não está no vetor</u>
 - Dado um vetor de tamanho n temos que f(n) = n
- Complexidade no pior caso: O(n)

Busca binária (vetor ordenado)

```
int BuscaBinaria( char vet[], char dado, int inic, int fim)
    int meio = (inic + fim)/2;
    if (vet[meio] == dado)
        return (meio);
    if (inic >= fim )
        return (-1);
    if ( dado < vet[meio] )</pre>
        return BuscaBinaria (vet, dado, inic, meio-1);
    else
        return BuscaBinaria (vet, dado, meio+1, fim);
```


Busca binária

O dado a ser procurado é o '7'.

inic = 0
fim = 6
meio =
$$0 + 6 / 2 = 3$$

meio

1	2	3	4	5	6	7
0	1	2	3	4	5	6

BuscaBinaria (vet, dado, meio+1, fim);

inic = 4
fim = 6
meio =
$$4 + 6 / 2 = 5$$

BuscaBinaria (vet, dado, meio+1, fim);

inic = 6
fim = 6
meio =
$$6 + 6 / 2 = 6$$

meio

O pior caso acontece quando o elemento procurado não está no vetor

n elementos

1º iteração: n elementos

2º iteração: n/2 elementos

3° iteração: n/4 elementos

4º iteração: n/8 elementos

5° iteração: n/16 elementos

K-ésima iteração: $n/(2^{k-1})$ elementos

As chamadas param quando:

- a posição do elemento é encontrada ou
- quando não há mais elementos a serem procurados,
 isto é, quando o tamanho do vetor é menor o igual a 1

As chamadas param quando:

- a posição do elemento é encontrada ou
- quando não há mais elementos a serem procurados,
 isto é, quando o tamanho do vetor é menor o igual a 1

Para qual valor de k, o tamanho do vetor é menor ou igual a 1?

As chamadas param quando:

- a posição do elemento é encontrada ou
- quando não há mais elementos a serem procurados,
 isto é, quando o tamanho do vetor é menor o igual a 1

Para qual valor de k, o tamanho do vetor é menor ou igual a 1?

$$\frac{n}{2^{k-1}} = 1 \implies n = 2^{k-1} \implies \log_2 n = \log_2 2^{k-1} \implies \log_2 n = (k-1)\log_2 2 \implies$$
$$\implies \log_2 n = k-1 \implies k = 1 + \log_2 n$$

O algoritmo para quando $k > 1 + log_2 n$

Pior caso: $1 + \log_2 n$ passos

Mas, $1 + \log_2 n < c(\log_2 n)$, para algum c > 0.

Complexidade no algoritmo no pior caso: O(log₂n)

Notação	Complexidade	Característica	Exemplo
O(1)	constante	independe do tamanho n da entrada	determinar se um número é par ou ímpar; usar uma tabela de dispersão (hash) de tamanho fixo
O(log n)	logarítmica	o problema é dividido em problemas menores	busca binária
O(n)	linear	realiza uma operação para cada elemento de entrada	busca sequencial; soma de elementos de um vetor
O(n log n)	log-linear	O problema é dividido em problemas menores e depois junta as soluções	heapsort, quicksort, merge sort
O(n²)	quadrática	itens processados aos pares (geralmente loop aninhado)	bubble sort (pior caso); quick sort (pior caso); selection sort ; insertion sort
O(n³)	cúbica		multiplicação de matrizes n x n; todas as triplas de n elementos
O(n ^c), c>1	polinomial		caixeiro viajante por programação dinâmica
O(c ⁿ)	exponencial	força bruta	todos subconjuntos de n elementos
O(n!)	fatorial	força bruta: testa todas as permutações possíveis	caixeiro viajante por força bruta

 $\mathrm{O}(1) \leq \mathrm{O}(\log n) \leq \mathrm{O}(n) \leq \mathrm{O}(\log n) \leq \mathrm{O}(n^2) \leq \mathrm{O}(n^3) \leq \mathrm{O}(c^n) \leq \mathrm{O}(n!)$

Soma de vetores – Passos de execução

comando	passo	frequência	subtotal
float soma(float v[], int n)	0	0	0
{	0	0	0
int i;	0	0	0
float somatemp = 0;	1	0	1
for (i=0; i < n; i++)	1	n+1	n+1
<pre>somatemp += vet[i];</pre>	1	n	n
return somatemp;	1	1	1
}	0	0	0
Total			2n+3

Soma de matrizes – Passos de execução

comando	passo	frequência	subtotal
<pre>float soma(int a[][N],, int rows, int cols)</pre>	0	0	0
{	0	0	0
int i, j;	0	0	0
for (i=0; i < rows; i++)	1	rows+1	rows+1
for (j=0; j < cols; j++)	1	rows × (cols+1)	rows × (cols+1)
c[i][j] = a[i][j]+b[i][j];	1	rows × cols	rows × cols
}	0	0	0
Total			2rows × cols + 2rows + 1

Multiplicação de matrizes - complexidade

comando	complexidade assintótica
float multi(double *a, double *b, double *c, int n)	0
{	0
int i, j, k;	0
for (i=0; i < n; i++)	n
for (j=0; j < n; j++)	nxn
{	0
c[i][j] = 0	n x n
for (k=0; k < n; k++)	0
c[i][j] += a[i][k] * b[k][j];	nxnxn
}	0
}	0
Total	

Exemplo: Torres de Hanói

Diz a lenda que um monge muito preocupado com o fim do Universo perguntou ao seu mestre quando isto iria ocorrer.

O mestre, vendo a aflição do discípulo, pediu a ele que olhasse para os três postes do monastério e observasse os 64 discos de tamanhos diferentes empilhados no primeiro deles. Disse que se o discípulo quisesse saber o tempo que levaria para o Universo acabar, bastava que ele calculasse o tempo que levaria para ele mover todos os discos do Poste A para o Poste C seguindo uma regra simples: ele nunca poderia colocar um disco maior sobre um menor e os discos teriam que repousar sempre num dos postes.

Em quanto tempo você estima que o mestre disse que o Universo vai acabar?

Torres de Hanói

Torres de Hanói – Algoritmo recursivo

Suponha que haja uma solução para mover n-1 discos.

A partir dela, crie uma solução para n discos.

Torres de Hanói – Algoritmo recursivo

Passo 1

Mova n-1 discos do poste A para o poste B (hipótese da recursão)

Passo 2

Mova o n-ésimo disco de A para C

Passo 3

Mova n-1 discos de B para C (hipótese da recursão)

Torres de Hanoi - Implementação

```
#include <stdio.h>
void torres(int n, char origem, char destino, char auxiliar)
  if (n == 1) {
    printf("Mova o Disco 1 do Poste %c para o Poste %c\n", origem, destino);
    return;
  else {
    torres(n-1, origem, auxiliar, destino);
    printf("Mova o Disco %d do Poste %c para o Poste %c\n", n, origem, destino);
    torres(n-1, auxiliar, destino, origem);
int main( void )
                                               1
  torres(3, 'A', 'C', 'B');
  return 0;
                                           A (origem) B (auxiliar)
                                                                      C (destino)
```

Execução para 3 discos:

Mova o disco 1 do Poste A para o Poste C

Mova o disco 2 do Poste A para o Poste B

Mova o disco 1 do Poste C para o Poste B

Mova o disco 3 do Poste A para o Poste C

Mova o disco 1 do Poste B para o Poste A

Mova o disco 2 do Poste B para o Poste C

Mova o disco 1 do Poste A para o Poste C

Torres de Hanoi – Análise da complexidade

Seja t_n o tempo necessário para mover n discos

$$t_n = 1 + 2t_{n-1}$$
 (a constante 1 pode ser ignorada)

$$t_n \approx 2t_{n-1} = 2(2(2(2(2(2(2(2(2(2(2))))))))$$

$$t_n \approx 2^{n-1}t_1$$
 (exponencial)

Para 64 discos: $t_{64} \approx 2^{63}t_1 = 9.2 \times 10^{18}t_1$

Supondo que o tempo para mover um disco seja $t_1 = 1$ s, o monge levaria

292.277.265 milênios para terminar a tarefa!

n	2 ⁿ⁻¹
1	1
2	2
3	4
4	8
5	16
6	32
7	64
8	128
9	256
10	512
11	1024
12	2048
13	4096

Importância da complexidade de um algoritmo

Complexidade temporal

log(n)	n	n.log(n)	n²	2 n
0	1	0	1	2
0,69	2	1,39	4	4
1,10	3	3,30	9	8
1,39	4	5,55	16	16
1,61	5	8,05	25	32
1,79	6	10,75	36	64
1,95	7	13,62	49	128
2,08	8	16,64	64	256
2,20	9	19,78	81	512
2,30	10	23,03	100	1024
2,40	11	26,38	121	2048
2,48	12	29,82	144	4096
2,56	13	33,34	169	8192
2,64	14	36,95	196	16384
2,71	15	40,62	225	32768
2,77	16	44,36	256	65536
2,83	17	48,16	289	131072
2,89	18	52,03	324	262144
2,94	19	55,94	361	524288
3,00	20	59,91	400	1048576
3,04	21	63,93	441	2097152
3,09	22	68,00	484	4194304
3,14	23	72,12	529	8388608
3,18	24	76,27	576	16777216
3,22	25	80,47	625	33554432
3,26	26	84,71	676	67108864
3,30	27	88,99	729	1,34E+08
3,33	28	93,30	784	2,68E+08
3,37	29	97,65	841	5,37E+08
3,40	30	102,04	900	1,07E+09
3,43	31	106,45	961	2,15E+09
3,47	32	110,90	1024	4,29E+09
3,50	33	115,38	1089	8,59E+09
3,53	34	119,90	1156	1,72E+10
3,56	35	124,44	1225	3,44E+10
3,58	36	129,01	1296	6,87E+10
3,61	37	133,60	1369	1,37E+11
3,64	38	138,23	1444	2,75E+11
3,66	39	142,88	1521	5,5E+11
3,69	40	147,56	1600	1,1E+12
3,71	41	152,26	1681	2,2E+12
3,74	42	156,98	1764	4,4E+12
				8,8E+12
3,76 3,78	43 44	161,73 166,50	1849 1936	1,76E+13
3,81	45	171,30	2025	3,52E+13
	46			
3,83 3,85	46	176,12 180,96	2116 2209	7,04E+13 1,41E+14
3,83	48	185,82	2304	2,81E+14
3,89	48	190,70	2304	2,81E+14 5,63E+14
3,89	50	195,60	2500	1,13E+15
3,91		195,60	2500	1,13E+15