Hitch-hiking and polygenic adaptation

Kevin Thornton

Ecology and Evolutionary Biology, UC Irvine

Linked selection vs. fates of selected mutations

Modeling traditions

Population genetics	Evol. quantitative genetics
Fixed effect sizes	Variable effect sizes
Single selected site	Many sites
Directional sel'n	Stabilizing selection
Partial linkage	LE or QLE

Tree structures

Patterns reflect the tree structures

Linked selection during polygenic adaptation

- Use forward simulations
- fwdpy11 is a Python package
- Uses a C++ back-end (Thornton, 2014, Genetics)

Simulation scheme

- 10 unlinked loci, $\theta = \rho = 1,000$ per locus
- Additive mutations arise at rate μ , $\Theta=4N\mu$
- Two thetas cannot possibly be confusing.
- N = 5,000 diploids
- Evolve under GSS for 10N generations with optimal trait value of 0
- Shift optimal trait value to $z_o > 0$ and evolve for 10N more generations

Adaptation occurs rapidly and before fixation

Figure 1: Large optimum shift, $z_o = 1$ with $V_S = 1$.

Contributions of different loci

Figure 2: Mean trait value per locus, colored by rank.

Sweeps from SGV start out rare

This predicts "hard" sweep signals due to sweeps from large-effect SGV.

Temporal and spatial patterns of "selection signals"

Figure 3: Mean statistic per window over time for a large optimum shift. z scores are for the nS_L statistic (Ferrer-Admetlla et al. (2014), MBE

Similar patterns for new mutations vs SVG

Figure 4: Same data, but conditioning on fixations of large effect

Mutational variance matters

Figure 5: Choose σ_{μ} so that probability of a large-effect mutation is constant. Time scale is determined by δq of fixations.

Implications

- Patterns unique to "soft sweeps" are not generated by this model!
 - We are using supervised machine learning (Schrider/Kern) to further investigate this.
- Hitch-hiking signals decrease as Θ increases
 - Keep in mind that our "tests" are usuall designed to detect hard sweeps

Data not shown:

Small optimum shifts leave less dramatic patterns

Tree sequences: representing genetic data using tables

Kelleher, et al. 2016. PLoS Computational Biology a.k.a "The msprime paper"

Tree sequence simplification...

Kelleher, et al. 2018. PLoS Computational Biology

... can be done in FAST linear time...

...and give a huge performance boost...

\dots allowing chromosome-scale simulations in large N

Figure 6: $N=2\times 10^5$ diploids, $\rho=10^5$ (≈ 100 MB in humans), $\gamma\sim N(0,0.25)$, $V_S=1$. Analysis based on n=3,000 diploids.

Facilitates better testing

- Methods for detecting polygenic adaptation of continuous traits shouldn't be evaluated with simulations of strong sweeps.
- Methods assuming linkage equilibrium need to be tested using simulations involving partial linkage
- etc.

Resources

- fwdpy11: https://fwdpy11.readthedocs.org
- msprime: https://msprime.readthedocs.org
- Tree sequence tutorials: https://tskit-dev.github.io/tutorials/
- The tree sequence toolkit: https://github.com/tskit-dev/tskit ("almost ready")

Thanks

- David Lawrie
- Khoi Hyunh
- Jaleal Sanjak
- Tony Long
- Jerome Kelleher, Jaime Ashander, Peter Ralph
- NIH for funding
- UCI HPCC for computing support