ÉCOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 2018

FILIÈRE MP

COMPOSITION DE MATHÉMATIQUES B

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve

Samedi 5 mai 2018, 9h00 - 13h00

Pour des raisons qui apparaîtront dans la Troisième Partie, on utilise deux entiers naturels distincts n (minuscule) et N (majuscule). Les candidats sont priés de respecter les notations de l'énoncé.

On désigne par $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels, de degré inférieur ou égal à n. Le sous-espace de $\mathbb{R}_n[X]$ formé des polynômes pairs (c'est-à-dire vérifiant P(-X) = P(X)) est noté Π_n , et celui des polynômes impairs (c'est-à-dire vérifiant P(-X) = -P(X)) est noté J_n .

On définit l'ensemble A_N formé des $P \in \mathbb{R}_N[X]$, tels que P(-1) = P(1) = 1, qui satisfont de plus $P(x) \ge 0$ pour tout x dans l'intervalle [-1,1]. On définit sur $\mathbb{R}_N[X]$ une forme linéaire L par

$$L(P) = \int_{-1}^{1} P(x) dx.$$

L'objet du problème est l'étude de sa borne inférieure a_N sur le sous-ensemble A_N :

$$a_N = \inf\{L(P) \mid P \in A_N\}.$$

Questions préliminaires

- 1. (a) Vérifier que A_N est une partie convexe de $\mathbb{R}_N[X]$.
 - (b) Montrer que l'expression

$$||P||_1 = \int_{-1}^1 |P(x)| dx$$

définit une norme sur $\mathbb{R}_N[X]$.

- (c) Montrer que A_N est fermé dans l'espace vectoriel normé $(\mathbb{R}_N[X], \|\cdot\|_1)$.
- 2. (a) Montrer que la borne inférieure de L sur A_N est atteinte.

Dans la suite, on notera B_N l'ensemble des $P \in A_N$ tels que $L(P) = a_N$.

- (b) Montrer que B_N est une partie convexe compacte.
- (c) Vérifier que B_N contient un polynôme pair.

Première Partie

On munit $\mathbb{R}_n[X]$ du produit scalaire défini par

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x) dx,$$

et de la norme associée

$$||P||_2 = \sqrt{\langle P, P \rangle}$$

(on ne demande pas de vérifier qu'il s'agit bien d'un produit scalaire et d'une norme).

Pour $j \in \mathbb{N}$, on définit le polynôme

$$P_j(X) = \frac{1}{2^j j!} \frac{d^j}{dX^j} [(X^2 - 1)^j].$$

Par convention, $P_0 = 1$.

- 3. (a) Quel est le degré de P_j ?
 - (b) Montrer que P_i est un polynôme pair ou impair, selon la valeur de j.
 - (c) Montrer que $P_j(1) = 1$ et $P_j(-1) = (-1)^j$.
- 4. Au moyen de l'intégration par parties, montrer que la famille $(P_j)_{0 \le j \le n}$ est orthogonale dans $\mathbb{R}_n[X]$.
- 5. On note

$$g_j = \int_{-1}^{1} P_j(x)^2 dx, \qquad I_j = \int_{-1}^{1} (1 - x^2)^j dx.$$

- (a) Établir une relation entre g_i et I_i .
- (b) Trouver une relation entre I_j et $I_{j-1} I_j$, et en déduire une relation de récurrence pour la suite $(I_j)_{j \in \mathbb{N}}$.
- (c) En déduire la valeur de I_j , puis celle de g_j .
- 6. (a) Montrer que la famille $(P_j)_{0 \le j \le n}$ est une base de $\mathbb{R}_n[X]$.
 - (b) En déduire que la famille $(P_{2j})_{0 \leqslant j \leqslant \frac{n}{2}}$ est une base de Π_n , tandis que la famille $(P_{2j+1})_{0 \leqslant j \leqslant \frac{n-1}{2}}$ est une base de J_n .

Deuxième Partie

On choisit un polynôme pair dans B_N (voir la question 2.c), et on le note R_N .

7. Montrer qu'il existe des nombres entiers $r, s, t \ge 0$, des nombres réels c_1, \ldots, c_r différents de ± 1 , des réels non nuls ρ_1, \ldots, ρ_s et des nombres complexes w_1, \ldots, w_t qui ne sont ni réels ni imaginaires purs, tels que

$$R_N(X) = \prod_{j=1}^r \frac{X^2 - c_j^2}{1 - c_j^2} \prod_{k=1}^s \frac{X^2 + \rho_k^2}{1 + \rho_k^2} \prod_{\ell=1}^t \frac{X^2 - w_\ell^2}{1 - w_\ell^2} \cdot \frac{X^2 - \overline{w_\ell}^2}{1 - \overline{w_\ell}^2}.$$

8. On décide de remplacer tous les ρ_k par des zéros. On remplace donc les facteurs correspondants de R_N ,

$$\frac{X^2 + \rho_k^2}{1 + \rho_k^2}$$
,

par des facteurs X^2 . On obtient ainsi un nouveau polynôme S_N de même degré que R_N .

Montrer que $0 \leq S_N(x) \leq R_N(x)$ pour tout $x \in [-1, 1]$, puis que $S_N \in B_N$.

9. De même, dans la liste des c_j , on décide de remplacer ceux qui n'appartiennent pas à [-1,1] par des zéros. On remplace donc les facteurs correspondants de S_N ,

$$\frac{X^2 - c_j^2}{1 - c_i^2} \,,$$

par des facteurs X^2 . On obtient ainsi un nouveau polynôme T_N .

Montrer que $0 \le T_N(x) \le S_N(x)$ pour tout $x \in [-1, 1]$, puis que $T_N \in B_N$.

10. Soit $w\in\mathbb{C}$ un nombre qui n'est ni réel ni imaginaire pur.

(a) Montrer que l'équation

$$\left|\frac{z-1}{z+1}\right| = \left|\frac{w-1}{w+1}\right|$$

définit un cercle dans le plan complexe, qui passe par w. Vérifier que l'intervalle]-1,1[coupe ce cercle en un point unique ; on notera y ce point. On exprimera y en fonction du nombre

$$\lambda = \left| \frac{w - 1}{w + 1} \right| \, .$$

(b) Montrer l'inégalité

$$\left| \frac{1-w}{1-y} \right| > 1.$$

(c) Montrer que l'équation

$$\left| \frac{z - w}{z - y} \right| = \left| \frac{1 - w}{1 - y} \right|$$

définit un cercle dans le plan complexe, qui passe par 1 et par -1. En déduire que, pour tout $x \in [-1, 1] \setminus \{y\}$, on a

$$\left| \frac{w - x}{y - x} \right| \geqslant \left| \frac{w - 1}{y - 1} \right| = \left| \frac{w + 1}{y + 1} \right|.$$

11. Conclure que R_N a toutes ses racines dans l'intervalle [-1,1].

Troisième Partie

On note n la partie entière de $\frac{N}{2}$. On poursuit l'étude du polynôme R_N .

- 12. Montrer que deg $R_N = 2n$.
- 13. Montrer que R_N est le carré d'un polynôme : $R_N(X) = U_N(X)^2$ où $U_N(1) = 1$ et $U_N(-1) = \pm 1$. Que peut-on dire de la parité de U_N ?
- 14. On suppose dans cette question que U_N est pair ; on a donc $U_N \in \Pi_n$. Dans Π_n , l'équation P(1) = 1 définit un sous-espace affine noté H_n .
 - (a) Montrer que

$$||U_N||_2 = \min\{||P||_2 \mid P \in H_n\}.$$

- (b) En déduire qu'il existe un nombre réel μ tel que pour tout entier $0 \le j \le \frac{n}{2}$, on a $\langle U_N, P_{2j} \rangle = \mu$. (On pourra considérer des polynômes $P \in H_n$ de la forme $U_N + t(P_{2j} P_{2k})$ avec $t \in \mathbb{R}$.)
- (c) Exprimer U_N dans la base des P_{2j} . En déduire que

$$\frac{1}{\mu} = \sum_{0 \leqslant j \leqslant \frac{n}{2}} \frac{1}{g_{2j}}.$$

(d) Établir dans ce cas la formule

$$a_N = \left(\sum_{0 \leqslant j \leqslant \frac{n}{2}} \frac{1}{g_{2j}}\right)^{-1}.$$

- 15. On suppose maintenant que U_N est impair. Exprimer encore a_N en fonction des g_ℓ .
- 16. Discuter, en fonction de la parité de n, la valeur de a_N . On en donnera la valeur explicite.
- 17. Donner la formule explicite de R_N , en fonction des polynômes P_i .