INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA. DEPARTAMENTO DE ELETROELETRÔNICA – ENGENHARIA ELÉTRICA 1º AVALIAÇÃO DE ELETROMAGNETISMO – TURMA 2021_2

ALUNO: _____ DATA: ____/ ____

- 1. Se $A = a_x + 4a_y + 6a_z e B = 2a_x + a_y$, determine:
 - a) C = 3A + B;
 - b) O vetor unitário de C
 - c) A.B
- 2. Dada a figura a seguir com dimensões limitadas em $0 \ll z \ll 5$, $0 \ll \rho \ll 2m \ e \ 30^{\circ} \ll \phi \ll 120^{\circ}$. Determine:
 - a) o seu volume;
 - b) sua superfície externa;
 - c) a carga total se a distribuição de carga for $\rho_v = 0.1 \, nC/m^3$.

- 3. Duas cargas pontuais $Q_1 = 50\mu C$ e $Q_2 = 20\mu C$ estão localizadas nos pontos (-1,1,3) e (3,1,0) respectivamente. Determine:
 - a) A força sobre Q_1 ;
 - b) O campo elétrico na origem (0,0,0).
- 4. Uma distribuição de carga em uma esfera com $r = 0.1 \, m$ localizada na origem tem valor total de $Q = 55 \, nC$. Determine:
 - a) O fluxo total em que atravessa uma superfície gaussiana com raio r = 1 m;
 - b) A densidade de fluxo no ponto $(1, \pi/2, 0)$;
 - c) A intensidade de campo elétrico em $(1, \pi/2, 0)$.
- 5. Considere uma placa de dimensões infinita com $\rho_s = 3 \, nC/m^2$ localizada em $z = 0.1 \, m$ e outra com $\rho_s = -3 \, nC/m^2$ localizada em $z = -0.1 \, m$, determine **E** nos seguintes pontos:
 - a) M (0; 0; -0.4);
 - b) N (0; 0.3; 0.3);
 - c) O(0.1;0;0)

$$\epsilon_0 = 8.854 \times 10^{-12} = \frac{1}{36\pi} \, 10^{-9} \, F/m$$

$$\mathbf{F} = \frac{Q_1 Q_2}{4\pi\epsilon_0 R^2} Newton$$

$$E = \frac{Q}{4\pi\epsilon_o r^2}$$
 (Volts/m ou Newton/m)

$$\mathbf{E} = \int_{vol} \frac{\rho_v dv}{4\pi\epsilon_o r^2} \mathbf{a}_r$$

$$\boldsymbol{D} = \frac{Q}{4\pi r^2} \mathbf{a}_r \left(Coulomb/m^2 \right)$$

$$\mathbf{D} = \int_{vol} \frac{\rho_v dv}{4\pi r^2} \mathbf{a}_r$$

$$\Psi = \oint_{S} \mathbf{D}_{S} \cdot dS = Q \; (Coulomb)$$

$$\boldsymbol{D} = \frac{\rho_L}{2\pi\rho} \mathbf{a}_{\rho}$$

$$\boldsymbol{D} = \frac{\rho_S}{2} \mathbf{a}_z$$