Statistik – Methoden zum Mittelwertvergleich von mehreren Gruppen

- Bisher kennen wir die einfaktorielle Varianzanalyse, wir können Mittelwerte von Gruppen untersuchen, die sich durch einen Faktor unterscheiden
- Beispiel Fehlerrate für verschiedene Automobilemodelle
- Auf Grundlage der einfaktoriellen Analyse k\u00f6nnen wir entscheiden ob Unterschiede vorhanden und signifikant sind
- Was passiert, wenn wir zusätzliche Faktoren zur Unterscheidung unserer Gruppen einführen, zum Beispiel eine Motorvariante

- Im Fall von zwei Faktoren untersucht die zweifaktorielle Varianzanalyse ebenfalls die Mittelwerte der Gruppen
- Führt man weitere Faktoren ein, machen wir den Schritt von zweifaktorieller zur mehrfaktoriellen Varianzanalyse
- Das Analysekonzept wird sich dabei nicht ändern, die Auswertung wird aber komplexer

Einführung am Beispiel

Für die zweifaktorielle Varianzanalyse werden wir Daten über Haltbarkeit von Büroklammern nutzen

Sie finden die Daten in Beispiel_Büroklammer.xlsx

Wir werden für das Beispiel zwei Faktoren einführen

- Größe der Büroklammer (26 32mm)
- Eine mögliche Wärmebehandlung der Klammer (Nein/Ja)
- Das Ergebnis der Untersuchungen wird ein Biegeindex sein, der die Haltbarkeit der Klammern beschreibt.

Beispiel: Mittelwerte der Daten nach Faktoren

Größe

Wärme

	26mm	29mm	32mm
Nein	15,7495	13,7856	11,7813
Ja	19,1823	20,6881	21,9831

- Es gibt erkennbare Unterschiede hinsichtlich Größe und Wärme
- Sind diese Unterschiede aber auch signifikant?

Voraussetzungen für die zweifaktorielle Varianzanalyse

- Mindestens intervallskalierte abhängige Variable
- Merkmalsausprägungen müssen unabhängig voneinander sein (falls nicht: ANOVA mit Messwiederholung...)
- Normalverteilung der abhängigen Variable innerhalb der einzelnen Gruppen (für den Gesamtdatensatz ist dies nicht erforderlich)
- Gleiche Varianz aller Gruppen

Hypothesen

- Wir wollen mit den Hypothesen unterschiedliche Fragestellungen beantworten und werden deshalb mehrere Hypothesen brauchen
- 1. Hat die Größe einen Einfluss auf die Haltbarkeit? (Haupteffekt)
- 2. Hat die Wärme einen Einfluss auf die Haltbarkeit? (Haupteffekt)
- 3. Haben Größe und Wärmebehandlung im Zusammenspiel einen Einfluss auf die Haltbarkeit? (Wechselwirkungseffekt)

Hypothesen

Größe

- H₀ Es gibt keinen Unterschied der Haltbarkeit bei verschieden großen Büroklammern
- H₁ Es gibt einen Unterschied der Haltbarkeit bei verschieden großen Büroklammern

Wärmebehandlung

- H₀ Es gibt keinen Unterschied der Haltbarkeit durch die Wärmebehandlung
- H₁ Es gibt einen Unterschied der Haltbarkeit durch die Wärmebehandlung

Hypothesen

Wechselwirkung Größe:Wärmebehandlung

- H₀ Die Haltbarkeit der verschieden großer Büroklammern wird nicht durch die Wärmebehandlung beeinflusst
- H₁ Die Haltbarkeit der verschieden großen Büroklammern ist abhängig von der Wärmebehandlung
- Das dritte Hypothesenpaar stellt sogenannte Interaktionseffekte dar
- Gibt es eine Wechselwirkung zwischen den beiden Faktoren?

Funktionsprinzip

- Untersuchung der Daten auf systematische bzw. zufällige Einflüsse
- Systematisch: Ein Faktor wirkt auf die Haltbarkeit
- Zufällig: Innerhalb einer Gruppe streuen die Daten ohne das ein Grund erkennbar ist
- Aufteilung der gesamten Streuung in den Daten in Vorhersagevarianz (Modellvarianz) und Fehlervarianz

 Die Modellvarianz wird für die zweifaktorielle Varianzanalyse durch zwei Faktoren und deren Wechselwirkung gebildet

Haupteffekte

- Unmittelbarer Einfluss eines Faktors auf die abhängige Variable
- Hier: Größe und Wärme
- Die Wirkung der beiden Haupteffekte werden über die ersten beiden Hypothesenpaare untersucht
- Wechseln wir dort zur Alternativhypothese, ist der jeweilige Hauptfaktor signifikant

Wechselwirkungseffekte

- Die Wirkung eines Faktors hängt vom zweiten Faktor ab bzw. umgekehrt
- Die Wechselwirkung lässt sich durch sogenannte Wechselwirkungsdiagramme darstellen

Wechselwirkungsdiagramm

Im Diagramm verlaufen die Linien nicht parallel, wir können erwarten, dass die beiden Faktoren miteinander wechselwirken

Keine Wechselwirkung

- Die Linien verlaufen parallel
- Es gibt keine Wechselwirkung zwischen den Faktoren

 Die Wirkung der einzelnen Hauptfaktoren kann unabhängig von einander beurteilt werden

Schwache Wechselwirkung

- Die Linien laufen aufeinander zu, kreuzen sich aber nicht
- Es gibt eine schwache Wechselwirkung zwischen den Faktoren

 Die Wirkung der einzelnen Hauptfaktoren kann nicht mehr unabhängig von einander beurteilt werden

Starke Wechselwirkung

- Die Linien laufen kreuzen sich
- Es gibt eine starke Wechselwirkung zwischen den Faktoren

 Die Wirkung der einzelnen Hauptfaktoren kann nicht unabhängig von einander beurteilt werden

Berechnung in R

- Wir können die Daten aus Beispiel_Büroklammer.xlsx in R laden und eine mehrfaktorielle Varianzanalyse durch führen
- Im Folgenden sehen Sie die Ergebnisse, die interpretiert werden müssen

Ergebnisse aus R

```
Anova Table (Type II tests)

Response: Biegung
Sum Sq Df F value Pr(>F)

Größe 11.60 2 211.84 < 2.2e-16 ***

Wärme 2121.80 1 77486.42 < 2.2e-16 ***

Größe: Wärme 350.10 2 6392.70 < 2.2e-16 ***

Residuals 4.76 174
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Ergebnisse aus R
   # means
     Wärme
Größe
           ja nein
 26mm 19.18231 15.74955
 29mm 20.68810 13.78564
 32mm 21.98309 11.71833
   # std. deviations
     Wärme
Größe
            iа
                    nein
 26mm 0.2105476 0.1699336
 29mm 0.1577139 0.1112106
 32mm 0.2052480 0.1082631
   # counts
     Wärme
Größe ja nein
 26mm 30
           30
 29mm 30
         30
 32mm 30
         30
```

```
Anova Table (Type II tests)

Response: Biegung

Sum Sq Df F value Pr(>F)

Größe 11.60 2 211.84 < 2.2e-16 ***

Wärme 2121.80 1 77486.42 < 2.2e-16 ***

Größe: Wärme 350.10 2 6392.70 < 2.2e-16 ***

Residuals 4.76 174

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
```

- Überprüfung der Faktoren Größe und Wärme
- Gibt es signifikante Unterschiede zwischen den Faktorstufen eines Faktors?

- Beide Haupteffekte (Größe und Wärme) sind durch sehr niedrige p-Werte gekennzeichnet
- Wechsel zur jeweiligen Alternativhypothese
- H₁ Es gibt einen Unterschied der Haltbarkeit bei verschieden großen
 Büroklammern
- H₁ Es gibt einen Unterschied der Haltbarkeit durch die Wärmebehandlung
- Größe und Wärme, jeweils für sich allein betrachtet, führen zu unterschiedlichen Mittelwerten der abhängigen Variable

```
Anova Table (Type II tests)

Response: Biegung

Sum Sq Df F value Pr(>F)

Größe 11.60 2 211.84 < 2.2e-16 ***

Wärme 2121.80 1 77486.42 < 2.2e-16 ***

Größe:Wärme 350.10 2 6392.70 < 2.2e-16 ***

Residuals 4.76 174

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
```

- Überprüfung der Wechselwirkung von Größe und Wärme
- Gibt es eine signifikante Wechselwirkung zwischen den Faktoren?

- Die Wechselwirkung Größe: Wärme ist durch einen sehr niedrigen p-Wert gekennzeichnet
- Wechsel zur Alternativhypothese
- H₁ Die Haltbarkeit der verschieden großen Büroklammern ist abhängig von der Wärmebehandlung
- Größe und Wärme, in Kombination, führen zu unterschiedlichen Mittelwerten der abhängigen Variable
- Welcher funktionale Zusammenhang zwischen den beiden Faktoren besteht, ist aus der Varianzanalyse nicht erkennbar

```
Anova Table (Type II tests)

Response: Biegung
Sum Sq Df F value Pr(>F)

Größe 11.60 2 211.84 < 2.2e-16 ***
Wärme 2121.80 1 77486.42 < 2.2e-16 ***

Größe:Wärme 350.10 2 6392.70 < 2.2e-16 ***

Residuals 4.76 174
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1
```

- Residuals beschreiben die Fehlervarianz
- Wie groß ist die Streuung durch unsystematische Einflüsse im System?

- Die beiden Faktoren Größe und Wärme sind für sich allein wichtig
- Sie führen, jeweils allein betrachtet, zu Mittelwertsunterschieden in Abhängigkeit von den Faktoreinstellungen
- Die Wechselwirkung Größe: Wärme ist wichtig.
- Je nach Faktorkombination kommt es zu
 Mittelwertsunterschieden der abhängigen Variable Biegung

- Die mehrfaktorielle Varianzanalyse ist eine Weiterführung der zweifaktoriellen Varianzanalyse
- Es werden zusätzliche Faktoren in die Analyse aufgenommen
- Beispiel: Automobilmodell Motorvariante Getriebe

- Es kommt zu einer Erhöhung von Hauptfaktoren, Wechselwirkungen und zum Auftreten höherer Wechselwirkungen
 - Erhöhung der Faktorzahl: A B C
 - Erhöhung der Wechselwirkungen: A:B A:C B:C
 - Auftreten höherer Wechselwirkungen: A:B:C
- Die Berechnung der Varianzanalyse ändert sich nicht

- Für mehrfaktorielle Varianzanalysen steigt der Datenbedarf mit wachsender Anzahl der Faktoren
- Jede Gruppe, dargestellt durch die möglichen Faktorkombinationen, muss die Voraussetzungen für die Varianzanalyse erfüllen
- Bleibt die Datenmenge (N) gleich, reduziert sich die Stichprobengröße in den einzelnen Gruppen

```
Anova Table (Type II tests)
Response: Biegung
                       Sum Sq Df F value Pr(>F)
Größe
                        11.60
                                    208.2551 <2e-16 ***
Hersteller
                        0.01 1
                                      0.5107 0.4758
                                                        Faktoren
                      2121.80
                                1 76175.4841 <2e-16 ***
Wärme
                         0.06
Größe:Hersteller
                                      1.0005 0.3699
                       350.10
                                2 6284.5465 <2e-16 ***
Größe:Wärme
                                                        2-fach WW
Hersteller:Wärme
                         0.00
                                      0.0905 0.7639
                                                        3-fach WW
                         0.01
                                      0.2270 0.7972
Größe:Hersteller:Wärme
                         4.68 168
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Im vorliegenden Fall ist der Faktor Hersteller nicht signifikant (p = 0,48)
- Der Faktor Hersteller ist auch in den Zwei- und Dreifach-Wechselwirkungen nicht signifikant (alle p-Werte > α)
- Der Faktor Hersteller kann also aus dem Modell entfernt werden