Review of Linear Algebra

Gabriel Nivasch

March 22, 2020

Vectors

$$\begin{bmatrix} 3.6 \\ 5 \\ -4.1 \end{bmatrix} \in \mathbb{R}^3 \quad \text{or} \quad (3.6, 5, -4.1) \in \mathbb{R}^3$$

Linear Combination (LC) of vectors

Graphical representation of vectors

 \mathbb{R}^2 : the plane

 \mathbb{R}^3 : three-dimensional space

point representation

arrow representation

all the same vector

Operations in arrow representation

- $\vec{0} \in V$
- *V* is closed under addition
- *V* is closed under scalar multiplication

- $\vec{0} \in V$
- *V* is closed under addition
- *V* is closed under scalar multiplication

$$V = \{(x, y) : x^2 + y^2 \le 1\}$$

- not closed under addition
- not closed under scalar multiplication

- $\vec{0} \in V$
- V is closed under addition
- *V* is closed under scalar multiplication

$$V = \{(x, y) : y = \frac{2}{3}x + 2\}$$

- does not contain origin
- not closed under addition
- not closed under scalar multiplication

- $\vec{0} \in V$
- V is closed under addition
- *V* is closed under scalar multiplication

Linear subspaces of \mathbb{R}^2

Just the origin

Line through the origin

The whole plane

Linear subspaces of \mathbb{R}^3

- Just the origin
- Line through the origin
- Plane through the origin
- The whole space

plane through the origin

Linear Span (LS) of vectors

Set of all Linear Combinations

Exercise 1: Prove that $LS(v_1, ..., v_k)$ is always a linear subspace.

Linearly Dependent (LD) and Linearly Independent (LI) vectors

Definition 1: Vectors v_1, \dots, v_k are **LD** if one of them is a Linear Combination of the others

$$v_1 = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 5 \\ -7 \end{bmatrix}$ $v_3 = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

$$v_2 = 2v_1 - \frac{1}{2}v_3$$

 v_2 is a LC of v_1 , v_3

 v_1 , v_2 , v_3 are LD

Definition 2: Vectors v_1, \dots, v_k are **LD** if there exist scalars $\alpha_1, \dots, \alpha_k$, not all zero, such that

$$\alpha_1 v_1 + \dots + \alpha_k v_k = \vec{0}$$

$$2v_1 - v_2 - \frac{1}{2}v_k = \vec{0}$$

Def 2 is more convenient than Def 1. Def 2 is the real definition.

Example: Are these vectors LD?

$$v_1 = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$
 $v_2 = \begin{bmatrix} 5 \\ -7 \end{bmatrix}$

Do there exist scalars α_1 , α_2 , not both zero, such that $\alpha_1 v_1 + \alpha_2 v_2 = \vec{0}$?

No. The only solution is $\alpha_1 = \alpha_2 = 0$

They are LI

Exercise 2: Is a single vector v_1 LI or LD? (According to Definition 2)

Basis

"There are enough vectors" "There are not too many vectors"

Let V be a linear subspace of \mathbb{R}^d . A basis of V is a sequence of vectors $v_1, \dots, v_{k_j} \in V$ that satisfies:

- $LS(v_1, ..., v_k) = V$ $v_1, ..., v_k$ are LI

Dimension

Theorem: All bases of V have the same number of vectors.

That number is called the *dimension* of V.

Representation of linear subspaces

There are two ways to represent linear subspaces:

- With vectors
- With homogeneous equations

$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R} \middle\{ 7x + 5y - 4z = 0 \right\}$$

one homogeneous equation

A k-dimensional linear subspace of \mathbb{R}^d can be represented by:

- *k* LI vectors
- d k LI homogeneous equations

Scalar product

$$(u_1, \dots, u_k) \cdot (v_1, \dots, v_k) = u_1 v_1 + \dots + u_k v_k$$

 $(3, -1, 4) \cdot (2, 9, 0) = -3$

If $u \cdot v = 0$ then u, v are called **orthogonal**, and we write $u \perp v$

Norm

$$||v|| = \sqrt{v \cdot v}$$

If
$$||v|| = 1$$
 then v is a *unit vector*

$$||(3,-1,4)|| = \sqrt{26}$$

Orthogonal basis

Vectors are orthogonal to one another

Orthonormal basis

Vectors are orthogonal to one another and are unit vectors

Orthogonal complement

$$V \subseteq \mathbb{R}^d$$

$$V^{\perp} = \{ u \in \mathbb{R}^d | u \perp w \text{ for every } w \in V \}$$

Every vector of V is orthogonal to every vector of V^{\perp}

$$\dim V + \dim V^{\perp} = d$$

$$\begin{bmatrix} -3 & -2 & -5 \\ 2 & 4 & 6 \\ 2 & 0 & 2 \\ 1 & -5 & 4 \end{bmatrix}$$
 4x3 matrix

dimension = 2(row rank)

Row space:
$$LS((-3, -2, -5), (2, 4, 6), (2, 0, 2), (1, -5, 4))$$

Linear subspace of \mathbb{R}^3

Column space: LS
$$\begin{pmatrix} \begin{bmatrix} -3 \\ 2 \\ 2 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ 4 \\ 0 \\ -5 \end{bmatrix}$, $\begin{bmatrix} -5 \\ 6 \\ 2 \\ 4 \end{bmatrix}$ Linear subspace of \mathbb{R}^4

dimension = 2(column rank)

Theorem: The row rank and column rank of a matrix are always equal "Rank" of the matrix

Invertible matrices

Let A be a square matrix. A is called *invertible* if there exists B such that AB = I.

Theorem: If A, B are square matrices and AB = I, then also BA = I.

Determinants

$$\det \begin{bmatrix} 4 & 5 & -4 \\ 1 & 2 & 3 \\ -8 & 3 & 2 \end{bmatrix} = -226$$

Theorem: Let A be a square matrix. Then the following conditions are equivalent:

- 1. $\det A \neq 0$
- 2. *A* is invertible
- 3. The rows of *A* are LI
- 4. The columns of *A* are LI
- 5. The system Ax = b has a unique solution

Orthogonal matrices

A d imes d matrix is called **orthogonal** if its rows from an orthonormal basis of \mathbb{R}^d

If A is orthogonal, then its columns also from an orthonormal basis of \mathbb{R}^d If A is orthogonal, then $\det A = \pm 1$

Linear Transformations

An $m \times n$ matrix represents a *Linear Transformation* (LT) from \mathbb{R}^n to \mathbb{R}^m

A

 $v \mapsto Av$

matrix

Linear Transformation

Example:

$$\begin{bmatrix} 1/2 & 1/2 \\ 1 & -2 \end{bmatrix}$$

matrix

Linear Transformation

23

Linear Transformations

Let A be a square matrix. Let f be the corresponding Linear Transformation

f multiplies volumes by a factor of $|\det A|$

Example:

$$\det A = -2$$

f multiplies areas by a factor of 2

Linear Transformations

Let A be a square matrix. Let f be the corresponding Linear Transformation

If A is an orthogonal matrix, then f is rigid (preserves distances and angles)

- If $\det A = +1$ then f is a rotation
- If $\det A = -1$ then f is a rotation + mirror reflection