INFORME FINAL DEL PROYECTO ECOMMERCE

Introducción

El objetivo de este proyecto fue realizar un **análisis integral de un e-commerce** utilizando un enfoque completo de *ETL + Análisis + Visualización*. El proceso se dividió en dos fases principales:

- 1. Limpieza, transformación y consolidación de datos mediante Python (Pandas).
- 2. **Desarrollo de dashboards analíticos** en *Power BI* con KPIs financieros, de clientes y logísticos.

Los datasets provienen de diferentes fuentes que representan información de pedidos, productos, clientes y pagos.

Archivos de datos utilizados

Archivo	Descripción	
Ordenes	Dataset principal con información de pedidos, fechas y estados.	
df_Customers	Datos de clientes: ID, ciudad y estado.	
df_Payments	ents Detalles de pagos: tipo de pago, cuotas e importes.	
df_Products	Datos de productos y categorías.	

Se integraron todos los datasets en un modelo final denominado fact_table.xlsx, que se utilizó para el modelado y análisis en Power BI.

XFase 1: Limpieza y transformación (Python / Pandas)

1.1 Exploración inicial

- Se inspeccionaron los datasets para detectar valores nulos, tipos de datos inconsistentes y duplicados.
- Se identificó la necesidad de unificar todos los archivos mediante *joins* sobre las columnas order_id y customer_id.

1.2 Eliminación de duplicados

- Se eliminaron registros repetidos en customer_id y order_id para evitar duplicidades en ventas.
- Los seller_id duplicados se mantuvieron ya que pertenecían a líneas distintas de la misma orden.

1.3 Tratamiento de valores nulos

- Se eliminaron 1800 registros con customer_id o product_category_name vacíos.
- Se sustituyeron valores nulos en importes (price , freight_value) por 0, tras comprobar que representaban cancelaciones.

1.4 Homogeneización de tipos de datos

- Las columnas de fechas (order_purchase_timestamp), order_delivered_customer_date, etc.) se transformaron al tipo datetime.
- Los importes (price, payment_value) se convirtieron a float.
- Los identificadores (order_id, product_id, customer_id, seller_id) se establecieron como *string*.

1.5 Creación de nuevas columnas

Se agregaron columnas derivadas para enriquecer el análisis:

Columna	Descripción	Motivo
<pre>purchase_date purchase_year</pre>	Fechas derivadas de compra	Análisis temporal
hours_to_approve, days_to_deliver	Diferencia entre fechas clave	Medir eficiencia logística
line_total	Precio total de cada línea	Métrica de ingresos
on_time_flag	1 si la entrega fue a tiempo, 0 si fue tardía	Evaluación logística
delivered_flag	1 si fue entregado, 0 si no	Seguimiento de cumplimiento

1.6 Filtrado final

- Se eliminaron filas con tiempos negativos o sin fecha de entrega válida.
- Se verificó coherencia entre fechas de compra, aprobación y entrega.

1.7 Resultado final

Tras aplicar todas las transformaciones, se consolidó el dataset final fact_table.xlsx, con 15 columnas limpias, listas para el modelado en Power BI.

Fase 2: Modelado y análisis (Power BI)

2.1 Preparación en Power Query

- Se promovieron encabezados y ajustaron tipos de datos.
- Se eliminaron filas con customer_id o product_category_name vacíos.
- Se crearon columnas adicionales: price_amt, shipping_amt, line_total_amt, approve_hours, delivery_hours, leadtime_est_days.
- Se convirtieron los valores monetarios de centavos a euros.

2.2 Limpieza final en Power BI

Se eliminaron columnas obsoletas:

- price, shipping_charges, line_total (reemplazadas por versiones limpias).
- Se filtraron 5 filas con on_time_flag_clean = null .

Fase 3: Creación de medidas DAX

Las medidas se agruparon por área funcional:

Ventas

- Ingresos € = SUM(line_total_amt)
- Pedidos = COUNT(order_id)
- Ticket Medio € = DIVIDE([Ingresos €], [Pedidos])
- Unidades = COUNT(product_id)

Clientes

- Clientes Únicos = DISTINCTCOUNT(customer_id)
- Pedidos por Cliente = DIVIDE([Pedidos], [Clientes Únicos])
- Ingresos por Cliente € = DIVIDE([Ingresos €], [Clientes Únicos])
- Clientes Acumulados = Cumulative DISTINCTCOUNT(customer_id)

Logística

- | % Entregados | = DIVIDE([Pedidos Entregados], [Pedidos])
- % On-Time = DIVIDE([Pedidos On-Time], [Pedidos Entregados])
- Horas Aprobación Promedio = AVERAGE(hours_to_approve)
- Horas Entrega Promedio = AVERAGE(delivery_hours)
- Días Retraso Promedio = Promedio de días tardíos

Fase 4: Dashboards

Ventas

Objetivo: analizar ingresos, pedidos y rendimiento por categoría y región.

KPIs: Ingresos Totales, Pedidos, Ticket Medio, Unidades.

Gráficos:

- Línea: Ingresos € por mes.
- Barras: Ingresos € por estado.
- Barras: Ingresos € por categoría.
- Tabla: Top productos por ingresos.

Clientes

Objetivo: comprender el comportamiento y la distribución de los clientes.

KPIs: Clientes Únicos, Pedidos por Cliente, Ingresos por Cliente €. **Gráficos:**

- Línea: Clientes únicos por mes.
- · Barras: Clientes por estado.
- Donut: Clientes por método de pago.
- · Línea: Clientes acumulados.

Logística

Objetivo: medir eficiencia de entregas y tiempos logísticos.

KPIs: % On-Time, % Entregados, Horas Aprobación y Entrega Promedio. Gráficos:

- Línea: Pedidos entregados por mes.
- Barras: % On-Time por estado.
- Donut: Pedidos a tiempo vs tardíos.
- Tabla: Promedio de retraso por estado.

Resumen Ejecutivo (Portada)

KPIs: Ingresos Totales (€), Clientes Únicos, % On-Time. **Gráficos:**

- Pie: Ingresos € por categoría.
- Donut: Clientes por método de pago.
- Pie: Entregas a tiempo vs tardías.

Autor: Claudio Baldini - ThePower Business School (Octubre 2025)

Conclusiones

- El dataset refleja un modelo con **clientes únicos por pedido**, **sin recurrencia**. Esto se debe a que los **IDs de clientes, pedidos y productos son únicos**, por lo que no existen relaciones de repetición entre ellos.
- La categoría **Toys** concentra el **94% de las ventas** → *outlier positivo*.
- El 93,6% de pedidos se entregaron a tiempo → eficiencia logística alta.
- SP y RJ son los estados con mayor actividad comercial.
- La tarjeta de crédito representa el método de pago dominante (~70%).

Insight final: el negocio presenta un buen desempeño operativo, pero una **alta dependencia de una sola categoría** y **baja fidelización de clientes**, debido a la estructura del dataset (IDs únicos).

Estructura del repositorio

Conclusión general

El proyecto cumple con todos los requisitos del análisis de datos completo: integración, transformación, modelado, visualización e interpretación. El resultado final entrega una visión holística del e-commerce desde tres perspectivas: **financiera, de cliente y logística**, evidenciando un modelo de **ventas únicas por cliente y pedido**, con excelente eficiencia operativa pero oportunidades de diversificación.