Worksheet 3 #1

The landscape of machine learning

DSE 220

Three learning modalities

- 1 Supervised learning

 For solving prediction problems
- 2 Unsupervised learning
 For finding good representations
 - **3 Learning through interaction** E.g., reinforcement learning

Machine learning versus Algorithms

A central goal of both fields:

develop procedures that exhibit a desired input-output behavior.

• Algorithms: the input-output mapping can be precisely defined.

Input: Graph G, two nodes u, v in the graph.

Output: Shortest path from u to v in G.

• Machine learning: the mapping cannot easily be made precise.

Input: Picture of an animal.

Output: Name of the animal.

Machine learning versus Algorithms

A central goal of both fields:

develop procedures that exhibit a desired input-output behavior.

• Algorithms: the input-output mapping can be precisely defined.

Input: Graph G, two nodes u, v in the graph.

Output: Shortest path from u to v in G.

• Machine learning: the mapping cannot easily be made precise.

Input: Picture of an animal.

Output: Name of the animal.

Instead, we simply provide examples of (input,output) pairs and ask the machine to *learn* a suitable mapping itself.

Inputs and outputs

Basic terminology:

- The input space, X.
 E.g. 32 × 32 RGB images of animals.
- The output space, \mathcal{Y} . E.g. Names of 100 animals.

y: "bear"

Inputs and outputs

Basic terminology:

- The input space, \mathcal{X} . E.g. 32×32 RGB images of animals.
- The output space, \mathcal{Y} . E.g. Names of 100 animals.

y: "bear"

After seeing a bunch of examples (x, y), pick a mapping

$$f: \mathcal{X} \to \mathcal{Y}$$

that accurately recovers the input-output pattern of the examples.

Inputs and outputs

Basic terminology:

- The input space, \mathcal{X} . E.g. 32×32 RGB images of animals.
- The output space, \mathcal{Y} . E.g. Names of 100 animals.

y: "bear"

After seeing a bunch of examples (x, y), pick a mapping

$$f: \mathcal{X} \to \mathcal{Y}$$

that accurately recovers the input-output pattern of the examples.

Prediction problems can be categorized by the type of **output space**: (1) discrete, (2) continuous, or (3) probability values.

Discrete output space: classification

Binary classification

```
E.g., Spam detection \mathcal{X} = \{\text{email messages}\}\ \mathcal{Y} = \{\text{spam}, \text{not spam}\}\
```

Discrete output space: classification

Binary classification

E.g., Spam detection

$$\mathcal{X} = \{\text{email messages}\}$$

$$\mathcal{Y} = \{\text{spam}, \text{not spam}\}$$

Multiclass

E.g., News article classification

$$\mathcal{X} = \{\text{news articles}\}$$

$$\mathcal{Y} = \{\mathsf{politics}, \mathsf{business}, \mathsf{sports}, \ldots\}$$

Discrete output space: classification

Binary classification

E.g., Spam detection

$$\mathcal{X} = \{\text{email messages}\}$$

$$\mathcal{Y} = \{\text{spam}, \text{not spam}\}$$

Structured outputs

E.g., Parsing

$$\mathcal{X} = \{\text{sentences}\}$$

$$\mathcal{Y} = \{\text{parse trees}\}$$

Multiclass

E.g., News article classification

$$\mathcal{X} = \{\text{news articles}\}$$

$$\mathcal{Y} = \{ \text{politics}, \text{business}, \text{sports}, \ldots \}$$

x = "John hit the ball"

Continuous output space: regression

- Pollution level prediction Predict tomorrow's air quality index in my neighborhood $\mathcal{Y} = [0, \infty)$ (< 100: okay, > 200: dangerous)
- Insurance company calculations What is the expected life expectancy of this person? $\mathcal{Y} = [0, 120]$

7 {0,1,2,...,120}

What are suitable predictor variables (\mathcal{X}) in each case?

Probability estimation

 $\mathcal{Y} = [0, 1]$ represents **probabilities**

Example: Credit card transactions

- x =details of a transaction
- y = probability this transaction is fraudulent

Probability estimation

 $\mathcal{Y} = [0, 1]$ represents **probabilities**

Example: Credit card transactions

- x =details of a transaction
- y = probability this transaction is fraudulent

Why not just treat this as a binary classification problem?

Three learning modalities

1 Supervised learning

Methods:

nearest neighbor, generative models for prediction, linear regression, logistic regression, perceptron, support vector machines, kernel methods, decision trees, boosting, random forests, neural nets

Underlying math:

linear algebra, optimization, probability

Formal models:

statistical learning framework, online learning

- 2 Unsupervised learning
- **3** Learning through interaction

Three learning modalities

- **1** Supervised learning
- **2** Unsupervised learning

Types of structure:

clusters; low-dimensional subspaces; manifolds; dictionaries; independent components; topics

Algorithmic foundations:

local search; linear algebra

3 Learning through interaction