Застосування теорії симетрії у фізиці

Андрій Жугаєвич (zhugayevych@iop.kiev.ua) 19 вересня 2011 р.

1	Симетрія фізичних тензорів	1
	1.1 Приклад: симетричний тензор другого рангу	3
	1.2 Приклад: тензор пружних модулів	3
2	Просторова симетрія у класичній механіці	5
	2.1 Малі коливання	5
3	Симетрія у квантовій механіці	5
	3.1 Теорія збурень	6
	3.2 Правила відбору	6
	3.3 Метод ЛКАО	7
4	Симетрія багаточастинкових систем	7
	4.1 Симетрія молекул	7

§1. Симетрія фізичних тензорів

Нагадаємо, що (псевдо)тензором рангу k називається такий об'єкт A, що $\sum_{i_1...i_k} A_{i_1...i_k} x_{i_1} \dots x_{i_k}$ – (псевдо)скаляр. При перетворенні системи координат $x_i = \sum_j T_{ij} x_j'$, тензор перетворюється за формулою $A'_{i_1...i_k} = \sum_{j_1...j_k} T_{i_1j_1} \dots T_{i_kj_k} A_{j_1...j_k}$, а для псевдотензора правий вираз слід домножити на $\operatorname{sgn}(\det T)$. Отож, якщо координати перетворюються по представленню V групи симетрії, то тензор k-го рангу перетворюється по прямому добутку представлень $V \times \ldots \times V = V^k$.

Всі фізичні величини є тензорами або псевдотензорами по відношенню до групи O(3). Приклади:

- скаляри: маса, заряд, температура, тощо;
- псевдоскаляри: хіральність, обертання площини поляризації світла;
- вектори: координата, швидкість і імпульс, напруженість електричного поля;
- псевдовектори: кутова швидкість і момент імпульсу, момент сили, напруженість магнітного поля;
- тензори 2-го порядку: момент інерції, тензори діелектричної і магнітної проникності;
- тензори 3-го порядку: п'єзоелектричний тензор, тензор електрооптичних коефіцієнтів;
- тензори 4-го порядку: тензор пружних модулів/сталих, тензор електрострикції/фотопружності.

Додаткова симетрія фізичних тензорів при перестановці індексів з'являється за рахунок загальнофізичного варіаційного принципу, який полягає в тому, що всі рівняння можна одержати варіюванням певної скалярної форми, побудованої на цьому тензорі. Наприклад, термодинамічний потенціал Гібса для деформованої речовини в електричному полі має вигляд

$$\Phi = -\sum_{i} P_{i}^{0} E_{i} - \frac{1}{8\pi} \sum_{ij} \left(\varepsilon_{ij} + \sum_{k} r_{ijk}^{(1)} E_{k} + \sum_{kl} r_{ijkl}^{(2)} E_{k} E_{l} \right) E_{i} E_{j}$$
$$-\sum_{ikl} \gamma_{i,kl} E_{i} \sigma_{kl} - \frac{1}{2} \sum_{ijkl} \beta_{ij,kl} E_{i} E_{j} \sigma_{kl} - \frac{1}{2} \sum_{ijkl} \mu_{ij,kl} \sigma_{ij} \sigma_{kl} + \dots$$

де E — напруженість поля, σ — симетричний тензор механічних напружень, ε — діелектричний тензор, μ — тензор пружних сталих. В цій формулі наявність спонтанної поляризації P^0 описує піроелектричний ефект, тензори $r^{(1,2)}$ описують, відповідно, лінійний (ефект Покельса) і квадратичний (ефект Керра) електрооптичні ефекти, тензор γ описує п'єзоелектричні ефекти, тензор β — явища електрострикції і фотопружності.