Lecture 3 : Matrices

ENSIA, May 2022

Contents

- Definitions
- Matrix operations
- Vector space of matrices
- Ring of square matrices
- Invertible matrices, Computing the inverse using RREF
- Matrix transpose
- Matrix trace
- Matrix of a linear map
- Matrix rank
- Change of basis
- Determinants

Definition

Throughout this lecture, K will denote an arbitrary field (usually $\mathbb R$ or $\mathbb C$). Definition 1

A matrix A is an $m \times n$ array of scalars from a given field K of the form

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

The individual values $a_{ij} \in K$ in the matrix are called **entries**.

The **size** of the array is $m \times n$, where m is the number of rows and n is the number of columns.

Row matrix and column matrix

Definition 2

A **row matrix** of size $1 \times n$ is a matrix of the form $(a_{11} \quad \cdots \quad a_{1n})$

A **column matrix** of size $m \times 1$ is a matrix of the form $\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}$

- $(1 \quad 0 \quad 3)$ is a row matrix of size 1×3 ;
- $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is a column matrix of size 2×1 .

Notation

Notation

A matrix A of size $m \times n$ is denoted by $A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ or (a_{ij}) when we know the number of rows and columns.

Example 2

$$K = \mathbb{R}$$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & 4 \end{pmatrix}$$

is a matrix of size 2×3 .

$$B = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}.$$

is a matrix of size 2×2 .

Square matrices

If m=n, the matrix is called **square**. In this case we have a) A matrix A is said to be **diagonal** if $a_{ij}=0$ for $i\neq j$. Example 3

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Special matrices

b) A diagonal matrix A may be denoted by $diag(d_1, d_2, ..., d_n)$, where a_{ii} and a_{ij} 0 for $i \neq j$.

The diagonal matrix diag(1, 1, ..., 1) is called the **identity matrix** and is denoted by I_n . We have then

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

0 = diag(0, ..., 0) is called the **zero matrix**.

Triangular matrices

c) A square matrix A is said to be **lower triangular** if $a_{ij} = 0$ for i < j. Example 4

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & -1 & 0 \end{pmatrix}$$

d) A square matrix A is said to be **upper triangular** if $a_{ij} = 0$ for i > j. Example 5

$$\begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 4 \end{pmatrix}$$

Symmetric matrices

e) A square matrix A is called symmetric if $a_{ij} = a_{ji}$.

Example 6

$$\begin{pmatrix} 0 & 1 & 3 \\ 1 & 1 & -1 \\ 3 & -1 & 0 \end{pmatrix}$$
.

f) E_{ij} is the matrix with 1 in the (i,j) position and zeros in all other positions.

$$E_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}; E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Notation

Notation

The set of all $m \times n$ matrices is denoted by $\mathcal{M}_{m,n}(K)$, where K is the underlying field. In the case where m = n, we write $\mathcal{M}_n(K)$ to denote the matrices of size $n \times n$.

Equality

Two matrices
$$A=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$$
, $B=(b_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$ are **equal** if, and only if, $a_{ij}=b_{ij}$ for all $i\in\{1,2,\cdots,m\}$ and $j\in\{1,2,\cdots,n\}$.

Sum of matrices

Let
$$A=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}, B=(b_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}\in\mathcal{M}_{m,n}(K).$$
 Then

$$A + B = \left(a_{ij} + b_{ij}\right)_{ij}$$

$$\begin{pmatrix} 1 & -1 & 0 \\ 3 & 1 & 2 \\ 0 & 4 & -2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 3 \\ -1 & -2 & 5 \\ 3 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 3 \\ 2 & -1 & 7 \\ 3 & 4 & -3 \end{pmatrix}$$

Multiplication by a scalar

Let
$$A=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}\in\mathcal{M}_{m,n}(K)$$
 and $\alpha\in K$. Then
$$\alpha A=\left(\alpha a_{ij}\right)_{ij}$$

$$(-2)\begin{pmatrix} 1 & -1 & 0 \\ 3 & 1 & 2 \\ 0 & 4 & -2 \end{pmatrix} = \begin{pmatrix} -2 & 2 & 0 \\ -6 & -2 & -4 \\ 0 & -8 & 4 \end{pmatrix}$$

Product of two matrices

Let
$$A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in \mathcal{M}_{m,n}(K)$$
 and $B = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le r}} \in \mathcal{M}_{n,r}(K)$.

The product AB is defined as follows:

$$AB = (c_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le r}} \in \mathcal{M}_{m,r}(K),$$

where

$$c_{ij} = \sum_{k=1}^{k=n} a_{ik} b_{kj}.$$

Product of matrices

Set
$$A = \begin{pmatrix} 2 & 3 & 1 \\ -3 & 0 & -1 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R}) \text{ and } B = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{R})$$

$$\begin{array}{ll}
AB \\
= \begin{pmatrix}
2 \times 1 + 3 \times 2 + 1 \times 1 & 2 \times -1 + 3 \times 1 + 1 \times 3 \\
-3 \times 1 + 0 \times 2 + (-1) \times 1 & -3 \times (-1) + 0 \times 1 + (-1) \times 3
\end{pmatrix}$$

$$AB = \begin{pmatrix} 9 & 4 \\ -4 & 0 \end{pmatrix}$$

Product of matrices

Proposition 1

The product of matrices is associative.

Product of matrices

The product of two matrices is **not commutative**.

Example 11

Set
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
; $B = \begin{pmatrix} -1 & 2 \\ 1 & 4 \end{pmatrix}$
 $AB = \begin{pmatrix} -2 & -2 \\ 1 & 16 \end{pmatrix}$

and

$$BA = \begin{pmatrix} 3 & 7 \\ 9 & 11 \end{pmatrix}.$$

We have $AB \neq BA$.

Vector space of matrices

Theorem 1

 $\mathcal{M}_{m,n}(K)$ endowed with the addition and the multiplication by a scalar is a K- vector space.

Theorem 2

The vector space $\mathcal{M}_{m,n}(K)$ has dimension mn.

The matrices E_{ij} , $1 \le i \le m$, $1 \le j \le n$, form a basis of $\mathcal{M}_{m,n}(K)$.

Ring of square matrices

Theorem 3

 $(\mathcal{M}_n(K), +, \cdot)$ is a non commutative ring.

Remark 1

 $(\mathcal{M}_n(K), +, \cdot)$ has zero divisors.

Set
$$A = \begin{pmatrix} 0 & -1 \\ 0 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix}$.

We have $A \times B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ with $A \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ and $B \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Invertible Matrices

Definition 4

Let $A \in \mathcal{M}_n(K)$. The square matrix A is said to be invertible if there exists a matrix $B \in \mathcal{M}_n(K)$ such that $AB = BA = I_n$.

In this case B is called the inverse matrix of A.

If A is invertible, B is denoted by A^{-1} .

The set of invertibles matrices of size $n \times n$ is denoted by GL(n, K).

Invertible Matrices

Example 13

The inverse of
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$$
 is
$$B = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}.$$

We have $AB = BA = I_2$.

Invertible Matrices

Proposition 2

Let $A, B \in \mathcal{M}_n(K)$ two invertible matrices. Then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Proposition 3

Let $A, B \in \mathcal{M}_n(K)$. If $AB = I_n$, then $BA = I_n$.

Matrix power

Let A be a matrix of size $n \times n$ and $m \in \mathbb{N}$.

We define

$$A^m = A \cdot A \cdot \cdots \cdot A$$
 (*m* times),

and

$$A^0 = I_n$$
.

If A is invertible, we define

$$A^{-m} = (A^{-1})^m = A^{-1} \cdot A^{-1} \cdot \dots \cdot A^{-1}$$
 (m times).

Matrix power

Theorem 4

Let A be an invertible matrix. Then

- 1. A^{-1} is invertible and $(A^{-1})^{-1} = A$
- 2. A^m is invertible and $(A^m)^{-1} = A^{-m}$.
- 3. kA is invertible if $k \neq 0$ and $(kA)^{-1} = \frac{1}{k}A^{-1}$.

Row Reduced Echelon Form (RREF)

Definition 9

We say that a matrix in Row Echelon Form (REF) is in Row Reduced Echelon Form (RREF) if it satisfies the following additional conditions:

- 1. All the pivots are 1.
- 2. Each pivot is the only nonzero entry in its column.

Theorem 5

The Row Reduced Echelon Form of a matrix is unique.

Examples

Example 14

The matrix

$$\begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

is in RREF, while the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Is not in RREF.

Gauss method for inverting a matrix

Let A be an invertible square matrix of size n. To determine the inverse of A, we use the Gauss method putting the matrix A in the Row Reduced Echelon Form, which is I_n . We then do the same operations in the same order on I_n , and we end up with the inverse of A.

In practice, we do both operations at the same time, as we will see in the next example.

$$R_2$$
: = $R_2 - 4R_1$; R_3 : = $R_3 + R_1$

$$\begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 4 & 0 & -1 & \vdots & 0 & 1 & 0 \\ -1 & 2 & 2 & \vdots & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & -8 & -5 & \vdots & -4 & 1 & 0 \\ 0 & 4 & 3 & \vdots & 1 & 0 & 1 \end{pmatrix}$$

$$R_2 \coloneqq \frac{-1}{8} R_2$$

$$\begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & -8 & -5 & \vdots & -4 & 1 & 0 \\ 0 & 4 & 3 & \vdots & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & 5 & \vdots & \frac{1}{8} & \vdots & \frac{-1}{8} & 0 \\ 0 & 4 & 3 & \vdots & 1 & 0 & 1 \end{pmatrix}$$

$$R_3$$
: = $R_3 - 4R_2$

$$\begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \vdots & \frac{1}{2} & \frac{-1}{8} & 0 \\ 0 & 4 & 3 & \vdots & 1 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \vdots & \frac{1}{2} & \frac{-1}{8} & 0 \\ 0 & 0 & \frac{1}{2} & \vdots & -1 & \frac{1}{2} & 1 \end{pmatrix}$$

$$R_3 := 2R_3$$

$$\begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \vdots & \frac{1}{2} & \frac{-1}{8} & 0 \\ 0 & 0 & \frac{1}{2} & \vdots & -1 & \frac{1}{2} & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \vdots & \frac{1}{2} & \frac{-1}{8} & 0 \\ 0 & 0 & 1 & \vdots & -2 & 1 & 2 \end{pmatrix}$$

$$R_2$$
: = $R_2 - \frac{5}{8}R_3$; $R_1 := R_1 - R_3$

$$\begin{pmatrix} 1 & 2 & 1 & \vdots & 1 & 0 & 0 \\ 0 & 1 & \frac{5}{8} & \vdots & \frac{1}{2} & \frac{-1}{8} & 0 \\ 0 & 0 & 1 & \vdots & -2 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & \vdots & 3 & -1 & -2 \\ 0 & 1 & 0 & \vdots & \frac{7}{4} & \frac{-3}{4} & \frac{-5}{4} \\ 0 & 0 & 1 & \vdots & -2 & 1 & 2 \end{pmatrix}$$

$$R_1 \coloneqq R_1 - 2R_2$$

$$\begin{pmatrix} 1 & 2 & 0 & \vdots & 3 & -1 & -2 \\ 0 & 1 & 0 & \vdots & \frac{7}{4} & \frac{-3}{4} & \frac{-5}{4} \\ 0 & 0 & 1 & \vdots & -2 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \vdots & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & \vdots & \frac{7}{4} & \frac{-3}{4} & \frac{-5}{4} \\ 0 & 0 & 1 & \vdots & -2 & 1 & 2 \end{pmatrix}.$$

Then the inverse of *A* is given by

$$A^{-1} = \frac{1}{4} \begin{pmatrix} -2 & 2 & 2 \\ 7 & -3 & -5 \\ -8 & 4 & 8 \end{pmatrix}.$$

Matrix transpose

Let
$$A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in \mathcal{M}_{m,n}(K)$$
.

Definition 5

The **transpose** of A, denoted by A^T , is a matrix of size $n \times m$ defined by

$$A^{T} = (a'_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}, a'_{ij} = a_{ji}$$

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \\ 0 & -2 \end{pmatrix}; \qquad A^T = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \end{pmatrix}$$

Matrix transpose

Proposition 4

Let $A, B \in \mathcal{M}_{m,n}(K)$.

- 1) $(A + B)^T = A^T + B^T$.
- 2) $(kA)^T = k(A)^T$.
- 3) $(A^T)^T = A$.
- 4) If $A \in \mathcal{M}_{m,n}(K)$ and $B \in \mathcal{M}_{n,r}(K)$, then $(AB)^T = (B)^T (A)^T$
- 5) If m = n and A invertible, then $(A^T)^{-1} = (A^{-1})^T$.

Matrix Trace

Let

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n1} & \cdots & a_{nn} \end{pmatrix}$$

be a square matrix of size $n \times n$.

Definition 6

The **Trace** of A denoted by Tr(A) is defined as follows:

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

Matrix Trace

Example 17

Let

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 1 & 2 \\ 0 & 4 & -2 \end{pmatrix},$$

then

$$Tr(A) = 1 + 1 + (-2) = 0$$

Matrix Trace Properties

Proposition 5

Let $A, B \in \mathcal{M}_n(K)$.

1)
$$Tr(A+B) = Tr(A) + Tr(B)$$
.

- 2) $Tr(\alpha A) = \alpha Tr(A), \forall \alpha \in K$.
- 3) $Tr(A^T) = Tr(A)$.
- 4) Tr(AB) = Tr(BA).

Matrix of a linear map

Let V and W be finite dimensional K- vector spaces and let $f:V \longrightarrow W$ be a linear map.

Let $B=(v_1,v_2,\cdots,v_n)$ a basis of V and $B'=(w_1,w_2,\cdots,w_m)$ a basis of W.

Each vector $f(v_i)$, $i \in \{1,2,\dots,n\}$, can be written with respect to the basis (w_1, w_2, \dots, w_m) of W as follows:

$$f(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$f(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots$$

$$f(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m$$

Matrix of a linear map

Definition 7

The matrix

$$\mathcal{M}(f,B,B') = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m1} & \cdots & a_{mn} \end{pmatrix}.$$

is called the matrix representing the linear map f with respect to the bases B and B' of V and W respectively.

Matrix of a linear map

Example 18

Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear map defined by f(x,y) = (x-y,2x+y,x+3y).

We have

$$f(1,0) = (1,2,1) = e'_1 + 2e'_2 + e'_3;$$

 $f(0,1) = (-1,1,3) = -e'_1 + e'_2 + 3e'_3.$

The matrix representing f with respect to the standard bases $B=(e_1,e_2)$ and $B'=(e'_1,e'_2,e'_3)$ of \mathbb{R}^2 and \mathbb{R}^3 respectively is :

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix} = \mathcal{M}(f, B, B')$$

Matrix of the identity map

Remark 2

Let V be a K-vector space of dimension n and $Id_V:V \to V$ the identity map. Then the matrix representing Id_V with respect to a basis B of V is the identity matrix I_n .

Composed linear maps matrix

Proposition 6

Let U, V and W be finite-dimensional vector spaces over K with bases $B_1 = (u_1, \cdots, u_n)$, $B_2 = (v_1, \cdots, v_m)$ and $B_3 = (w_1, \cdots, w_r)$ respectively. Let $f \colon U \to V$ and $g \colon V \to W$ be two linear maps, A the matrix representing f with respect to B_1 and B_2 , and B the matrix representing g with respect to B_2 and B_3 . Then BA is the matrix representing the linear map $g \circ f \colon U \to W$ with respect to B_1 and B_3 .

Composed linear maps matrix

Example 19

Let $f: \mathbb{R}^2 \to \mathbb{R}^3$, $g: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear maps defined by f(x,y) = (x+2y, x-y, x) and g(x,y,z) = (x+y+z, x-y-z).

Let A, B, the matrices representing f and g with respect to the standard bases of \mathbb{R}^2 and \mathbb{R}^3 . Then

$$A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \end{pmatrix}$.

The matrix representing $g \circ f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is $BA = \begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix}$

The isomorphism between vector space of matrices and vector space of linear maps

Theorem 6

Let V and W be finite-dimensional vector spaces over K with (ordered) bases $B=(v_1,v_2,\cdots,v_n)$ and $B'=\{w_1,w_2,\cdots,w_m\}$ respectively. Then, there exists an isomorphism φ from the K-vector space $\mathcal{L}(V,W)$ of linear maps to $\mathcal{M}_{m,n}(K)$ that sends a linear map $f\colon V \to W$ to the matrix representing f with respect to B and B'.

Example

Example 20

Let $A = \begin{pmatrix} 2 & 3 & 1 \\ -3 & 0 & -1 \end{pmatrix}$ the matrix representing the linear map

 $f: \mathbb{R}^3 \to \mathbb{R}^2$ with respect to the standard bases $B = \{e_1, e_2, e_3\}$ and $B' = \{e'_1, e'_2\}$ of \mathbb{R}^3 and \mathbb{R}^2 respectively. Then

$$f(x, y, z) = A {x \choose y} = (2x + 3y + z, -3x - z)$$

Some properties

Theorem 7

A matrix $A \in \mathcal{M}_n(K)$ is invertible if, and only if, the linear map representing A is bijective.

Proposition 7

Let $A \in \mathcal{M}_n(K)$. The matrix A is invertible if, and only if, the column vectors of A are linearly independent.

Matrix rank

Definition 8

The rank of a matrix $A \in \mathcal{M}_{p,q}(K)$ is the rank of the linear map representing A. It is denoted by r(A).

Theorem 8

For any matrix A, we have $r(A) = r(A^T)$.

Proposition 8

Let $A \in \mathcal{M}_n(K)$. The matrix A is invertible if, and only if, the rank of A equals to n.

Change of coordinates matrix

Let V be a K-vector space of dimension n. Let $B=(v_1,v_2,\cdots,v_n)$ and $B'=(v_1,v_2,\cdots,v_n')$ be two ordered bases of V such that

$$v'_{1} = a_{11}v_{1} + a_{21}v_{2} + \dots + a_{n1}v_{n}$$

$$v'_{2} = a_{12}v_{1} + a_{22}v_{2} + \dots + a_{n2}v_{n}$$

$$\vdots$$

$$v'_{n} = a_{1n}v_{1} + a_{2n}v_{2} + \dots + a_{nn}v_{n}.$$

Change of coordinates matrix

Definition 10

The matrix

$$P_{B' \to B} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

changing B' coordinates into B coordinates is called the change of coordinates matrix.

Proposition 9

The matrix *P* is invertible.

Change of basis

Theorem 9

Let V and W be K-vector spaces of dimension n. Let $f:V \to W$ be a linear map. Let $B=(v_1,v_2,\cdots,v_n), B'=(v'_1,v'_2,\cdots,v'_n)$ be two ordered bases of V and $R=(w_1,w_2,\cdots,w_m), R'=(w'_1,w'_2,\cdots,w'_m)$ be two ordered bases of W. Denote by P the matrix changing B coordinates into B' coordinates and by Q the matrix changing R coordinates into R' coordinates. Then

$$\mathcal{M}(f, B', R') = Q^{-1}\mathcal{M}(f, B, R)P.$$

Determinant

Definition 11

Let $A = (a_{ij})_{1 \le i,j \le n}$ be a square matrix. Denote by $A_{i,j}$ the **submatrix** of A of size n-1 obtained by deleting row i and column j. Then the **determinant** of A, denoted by $\det(A)$ or |A|, is the scalar defined recursively as :

- If n = 1, $\det(A) = a_{11}$.
- For all $n \ge 2$, $\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1,j})$.

Example 21

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Minor and Cofactor

Definition 12

The scalar

 $\det(A_{i,j})$

is called a minor.

The scalar

$$(-1)^{i+j}\det(A_{i,j})$$

is called a **cofactor**.

Laplace expansion

Theorem 10

Expansion along row i:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{i,j}).$$

Expansion along column j:

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{i,j}).$$

Example

Let

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 1 & 2 \\ 0 & 4 & -2 \end{pmatrix}.$$

Computing along the first row:

$$\det(A) = 1 \cdot \begin{vmatrix} 1 & 2 \\ 4 & -2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 2 \\ 0 & -2 \end{vmatrix} + 0 \cdot \begin{vmatrix} 3 & 1 \\ 0 & 4 \end{vmatrix} = -10 - 6 = -16.$$

Computing along the second column:

$$\det(A) = (-1)(-1)\begin{vmatrix} 3 & 2 \\ 0 & -2 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 0 & -2 \end{vmatrix} + (-1) \cdot 4 \begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix}$$
$$= -6 - 2 - 8 = -16.$$

Numerical note

By today's standards, a square matrix of size 25 is small. Yet it would be impossible to calculate its determinant by cofactor expansion. In general, a cofactor expansion requires more than n! multiplications, and 25! is approximately 1.5×10^{25} .

If a computer performs one trillion multiplications per second, it would have to run for more than 500 000 years to compute a determinant of size 25 by this method. Fortunately, there are faster methods, as we'll soon discover.

Properties of determinants

Theorem 11 (Row operations)

Let A be a square matrix

- a. If a multiple of one row of A is added to another row to produce a matrix B, then det(B) = det(A).
- b. If two rows of A are interchanged to produce B, then det(B) = -det(A).
- c. If one row of A is multiplied by k to produce B, then det(B) = k det(A).

Determinant of REF Matrix

Proposition 10

If A is a triangular matrix, the det(A) is the product of the entries of the diagonal of A.

Corollary 1

Let U be the REF of a square matrix A, and suppose that r interchanges have been performed. Then we have

$$\det(A) = \begin{cases} (-1)^r \times \text{ product of pivots in } U, \text{ when } A \text{ is invertible} \\ 0, \text{ when } A \text{ is not invertible.} \end{cases}$$

Numerical note

- **1.** Most computer programs that compute det(A) for a general matrix A use the method of corollary above.
- **2.** It can be shown that evaluation of a determinant of size n using row operations requires about $2n^3/3$ arithmetic operations. Any modern microcomputer can calculate a determinant of size 25 in a fraction of a second, since only about 10 000 operations are required.

Example

Example 23

Let

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 3 & -3 & 2 \\ 2 & 4 & -2 \end{pmatrix}.$$

Then

$$\det(A) = \begin{vmatrix} 1 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 6 & -4 \end{vmatrix} = - \begin{vmatrix} 1 & -1 & 1 \\ 0 & 6 & -4 \\ 0 & 0 & -1 \end{vmatrix} = - (1 \times 6 \times (-1)) = 6.$$

Determinant and Invertibility

Theorem 12

A square matrix A is invertible if and only if $det(A) \neq 0$.

Determinant and transpose

Theorem 13

If A is a square matrix, then

$$\det(A^T) = \det(A).$$

Determinants and matrix products

Theorem 14

If A and B are square matrices of size n, then det(AB) = det(A) det(B).

Corollary 2

If A is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

An inverse formula

Definition 13

Let A be an $n \times n$ matrix. The **adjugate** matrix of A, denoted by adj(A), is the transpose of the matrix of cofactors of A; that is,

$$\operatorname{adj}(A) = \left(\left((-1)^{i+j} \operatorname{det}(A_{i,j}) \right)_{1 \le i,j \le n} \right)^{T}$$

Theorem 15

Let A be an invertible matrix. Then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Example

Let

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & 1 & 2 \\ 0 & 4 & -2 \end{pmatrix}.$$

We have seen that det(A) = -16. The cofactors

$$C_{ij} = (-1)^{i+j} \det(A_{i,j})$$

of A are

$$C_{11} = \begin{vmatrix} 1 & 2 \\ 4 & -2 \end{vmatrix} = -10, C_{12} = -\begin{vmatrix} 3 & 2 \\ 0 & -2 \end{vmatrix} = 6, C_{13} = \begin{vmatrix} 3 & 1 \\ 0 & 4 \end{vmatrix} = 12,$$

$$C_{21} = -\begin{vmatrix} -1 & 0 \\ 4 & -2 \end{vmatrix} = -2$$
, $C_{22} = \begin{vmatrix} 1 & 0 \\ 0 & -2 \end{vmatrix} = -2$, $C_{23} = -\begin{vmatrix} 1 & -1 \\ 0 & 4 \end{vmatrix} = -4$,

Example

$$C_{31} = \begin{vmatrix} -1 & 0 \\ 1 & 2 \end{vmatrix} = -2, C_{32} = -\begin{vmatrix} 1 & 0 \\ 3 & 2 \end{vmatrix} = -2, C_{33} = \begin{vmatrix} 1 & -1 \\ 3 & 1 \end{vmatrix} = 4.$$

Then the inverse of A is

$$A^{-1} = \frac{-1}{16} \begin{pmatrix} -10 & -2 & -2 \\ 6 & -2 & -2 \\ 12 & -4 & 4 \end{pmatrix}.$$