







# A.I. IN AUDIO & SIGNAL PROCESSING

Session 2: Deep learning for audio and speech processing



## SESSION 2: DEEP LEARNING FOR AUDIO & SPEECH PROCESSING



## Quick Summary

## 1. Approaches for feature learning

- a) Input représentations
- b) Filters shape
- c) Signal models
- d) Generative models
- e) How to visualize learnt représentations?

## 2. New learning paradigms

- a) Classification
- b) Auto-encoders & variational auto-encoder
- c) Metric learning
- d) Semi-supervised learning

# DEEP LEARNING FOR AUDIO AND SPEECH PROCESSING.

Approaches for feature learning



#### **2D** representation (time-frequency)

#### Representation

- spectrorgram (STFT magnitude)
- Mel-gram
- Constant-Q-transform

#### **Basic idea**

Considering time-frequency representation as a 2-D image as an input of a Conv2D network

#### **Problem**

A time-frequency representation is not an image

#### **Research direction**

Choice of 1<sup>st</sup> Conv2D layer filters



#### **Concept of Conventional Neural Network (CNN or ConvNet)**





## 2D representation (time-frequency)

#### Natural images

- the 2 axis represent the same concept
- Whatever the position of an element is, it represents the same thing
  - → spatial invariance
  - → weight sharing in the 2 dimensions
- close pixels are often strongly correlated
- close and similar pixel usually belong to a same object

#### Harmonic sounds

- The 2 axis represent completely different things
- Properties of a sound event:
  - → same signification whenever it is played
  - → usually, different signification depending on its frequency
  - → no invariance in frequency (even in log-scale)
- Frequencies of a same source are not distributed locally on spectrogram (sparsity)







#### An adapted shape of 2D filters for 1st layer

- 1) Filter covering the entire frequency bandwidth
  - → convolution only over time



Each column represents a « temporal receptive field » of a 1st layer basis in the spectrogram space



S. Dieleman. Recommending music on Spotify with deep learning



#### An adapted shape of 2D filters for 1st layer

2) 3x3 or 5x5 filters, used as in image processing

VGG-net on spectrum

- → for music automatic tagging (multi-label task)
- → using STFT, MFCC and Mel-gram representation as input



| FCN-5                                           | FCN-6                         | FCN-7                         |  |  |
|-------------------------------------------------|-------------------------------|-------------------------------|--|--|
| Mel-spectrogram (input: 96×1366×1)              |                               |                               |  |  |
| Conv 3×3×128                                    |                               |                               |  |  |
| MP (2, 4) (output: $48 \times 341 \times 128$ ) |                               |                               |  |  |
| Conv 3×3×256                                    |                               |                               |  |  |
| MP (2, 4) (output: 24×85×256)                   |                               |                               |  |  |
| Conv 3×3×512                                    |                               |                               |  |  |
| MP (2, 4) (output: 12×21×512)                   |                               |                               |  |  |
| Conv 3×3×1024                                   |                               |                               |  |  |
| MP (3, 5) (output: 4×4×1024)                    |                               |                               |  |  |
| Conv 3×3×2048                                   |                               |                               |  |  |
| MP $(4, 4)$ (output: $1 \times 1 \times 2048$ ) |                               |                               |  |  |
|                                                 | Conv $1 \times 1 \times 1024$ | Conv $1 \times 1 \times 1024$ |  |  |
|                                                 | •                             | Conv $1 \times 1 \times 1024$ |  |  |
| Output 50×1 (sigmoid)                           |                               |                               |  |  |

K. Choi, G. Fazekas and M. Sandler. Automatic tagging using deep convolutional neural networks. ISMIR 2016. K. Simonyan and A. Zisserman. Very deep conventional networks for large-scake image recognition. 2015.



## An adapted shape of 2D filters for 1st layer

3) Adapted filered forms to highlight specific properties

#### Musically-motivated CNN

→ the filters shape is suited to represent timbre (vertically) and to represent ryhtm (horizontally)





J. Pons, T. Lidy and X. Serra. Experimenting with Musically Motivated Convolutional Neural Networks. 2017.



## **1D** representation

#### Representation

Raw waveform (end-to-end learning)

#### Idea

• Learn the filter to be applied directly on the waveform to get the most appropriate representation for a given task

#### **Problem**

How to model time invariance?

Research still going on to explore this approach.



## An adapted shape of 1D filters for 1st layer

1) Filter with unique size

Using waveform in input of a convolutional network (Conv1D, TDC)

→ filter size and stride: parameter of STFT

problem: is temporal invariance respected?





## An adapted shape of 1D filters for 1st layer

2) Filters of different size Multi-scale approach





## An adapted shape of 1D filters for 1st layer

3)

Sample CNN: VGG-net on waveform

→ make it easier to ensure time invariance



| 3 <sup>9</sup> model, 19683 frames<br>59049 samples (2678 ms) as input |        |                                                              |                     |  |
|------------------------------------------------------------------------|--------|--------------------------------------------------------------|---------------------|--|
| layer                                                                  | stride | output                                                       | # of params         |  |
| conv 3-128                                                             | 3      | $19683 \times 128$                                           | 512                 |  |
| conv 3-128<br>maxpool 3                                                | 1<br>3 | $19683 \times 128$<br>$6561 \times 128$                      | 49280               |  |
| conv 3-128<br>maxpool 3                                                | 1<br>3 | $6561 \times 128$ $2187 \times 128$                          | 49280               |  |
| conv 3-256<br>maxpool 3                                                | 1<br>3 | $2187 \times 256$ $729 \times 256$                           | 98560               |  |
| conv 3-256<br>maxpool 3                                                | 1<br>3 | $729 \times 256$ $243 \times 256$                            | 196864              |  |
| conv 3-256<br>maxpool 3                                                | 1<br>3 | $243 \times 256$ $81 \times 256$                             | 196864              |  |
| conv 3-256<br>maxpool 3                                                | 1<br>3 | $81 \times 256$ $27 \times 256$                              | 196864              |  |
| conv 3-256<br>maxpool 3                                                | 1<br>3 | $\begin{array}{c} 27 \times 256 \\ 9 \times 256 \end{array}$ | 196864              |  |
| conv 3-256<br>maxpool 3                                                | 1<br>3 | $\begin{array}{c} 9\times256\\ 3\times256 \end{array}$       | 196864              |  |
| conv 3-512<br>maxpool 3                                                | 1<br>3 | $3 \times 512$ $1 \times 512$                                | 393728              |  |
| conv 1-512<br>dropout 0.5                                              | 1 _    | $\begin{array}{c} 1 \times 512 \\ 1 \times 512 \end{array}$  | 262656              |  |
| sigmoid                                                                | _      | 50                                                           | 25650               |  |
| Total params                                                           |        |                                                              | $1.9 \times 10^{6}$ |  |

J. Lee, J. Park, K. Luke Kim, J. Nam. Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms 2017



# An adapted shape of 1D filters for 1st layer

DESIGN BASED
ON DOMAIN FILTERS
KNOWLEDGE? CONFIG?

INPUT SIGNAL? waveform

end-to-end learning in the strictest sense pre-processed waveform

which is generally formatted in 2D i.e.: time-frequency representation



## FRAME-LEVEL



filter length: 512 stride: 256 (Dieleman et al., 2014)

#### VERTICAL OR HORIZONTAL



filter shape: 7x90 (Lee et al., 2009)



#### FRAME-LEVEL



filter lengths: 512, 256,128 stride: 64

(Zhuet al., 2016)

## VERTICAL AND/OR HORIZONTAL



vertical filter shapes: 3x40, 1x75. horitzontal filter shapes: 1x3, 1x10.

(Ponset al., 2017)

#### SAMPLE-LEVEL



(Lee et al., 2017)

#### SMALL RECTANGULAR FILTERS



(Choi et al., 2016)



## Signal models

1) Source-filter + harmonic

<u>Application</u>: instruments recognition with ConvNet

**CQT**: co-variant to transpositions

- chromatic scales are parallel diagonals
- low energy for frequencies over cut-off frequency

In high frequencies (f>cut-off):

- harmonics closed to each others, regularly distributed over frequency axis\_
- transposed sounds have similar spectra
- high correlation between CQT of different pitches
- the energy in a definite bandwidth is pitch-independent
  - → 1D filter (convolution over time only)





V. Lostanlen, C. E. Cella. Deep convolutional networks on the pitch spiral for musical instrument recognition. 2016.



## Signal models

1) Source-filter + harmonic

#### In low frequencies (f<cut-off):

- harmonic comb is sparse and co-variant with pitch
- harmonic structure is well described, measuring correlation between harmonics themselves
- log-frequency axis is rolled on Shepard's spiral
  - → time-frequency filters have a 1-octave differences over frequencies

$$\begin{aligned} \boldsymbol{y_2}[t, k_1, k_2] &= \boldsymbol{b_2}[k_2] \\ &+ \sum_{\tau, \kappa_1, j_1} \boldsymbol{W_2}[\tau, \kappa_1, j_1, k_2] \\ &\times \boldsymbol{x_1}[t - \tau, k_1 - \kappa_1 - Qj_1] \end{aligned}$$





V. Lostanlen, C. E. Cella. Deep convolutional networks on the pitch spiral for musical instrument recognition. 2016.



## Signal models

2) Source-filter

Application: main melody estimation

#### <u>Idea:</u>

Desomposition of signal according to NMF model [Durrieu, 2010]



• Estimated activations  $F_0$  are used as inputs of a CNN or RNN



- D. Basaran, S. Essid and G. Peeters. Main Melody Extraction with Source-Filter NMF and CRNN. ISMIR, 2018
- J. L. Durrieu, G. Richard, B. David and C. Fevotte. Source/filter model for unsupervised main melody extraction from polyphonic audio signals. 2010.



## Signal models

- 3) Harmonic-Constant-Q-Transform (HCQT):
- Representation of audio signal using Constant-Q-Transform (CQT)
- Several CQT are computed for several minimal frequencies  $hf_{\min}$ 
  - $\rightarrow$  harmonics of  $hf_0$  at same position in different CQTs
  - → CQTs are stacked in input layer (RGB) depth

**Application**: multi-pitch estimation







Audio mono 11.025 Hz

Onset-energy function

Reassigned spectrogram

Log-scale

Threshold  $> -50 \, dB$ 

Low-pass filter

High-pass filter (diff)

Half-wave rectification

Sum over frequencies

## Signal models

- 3) Harmonic-Constant-Q-Modulation (HCQM):
- In each percetive frequency bandwidth b, an onset function is computed  $X_0(b,\tau)$
- The periodical content (tempo, metric, rythm) of each onset function is represented using an HCQT  $X_{hcqm}(\phi, \tau', b, h)$  with  $\phi$  modulation, h harmonic



#### **Application**:

- Tempo estimation
- rythm classification

H. Foroughmand, G. Peeters. Deep-Rhythm for Global Tempo Estimation in Music. 2019.



#### **Generative models**

A generative model unable to generate an audio signal x(m) using a z-representation Usually:

- if z is a complex STFT
  - → use DFT inverse
- If z is a spectrogram (magnitude of STFT)
  - → use DFT inverse and try to reconstruct phase with Griffin and Lim algorithm (many artifacts)

Otherwise, do not use Fourier Transform anymore for that purpose



#### **Generative models**

1) Neural-Autoregressive Models: WaveNet

Generative model operating directly on audio samples

- « raw audio → challenging models
- Based on PixelCNN
- High resolution and long-term dependancies

Autoregressive model

next sample is almost reconstructed from linear convolution of past samples



#### **Generative models**

1) Neural-Autoregressive Models: WaveNet
Causal convolution
requires many layers of large filters to increase receptive field

Dilated convolution (wholes) increase the receptive field by orders of magnitude

Stacked dilated convolution dilation doubled

Input/ouptut signal representation

Softmax layer

Conditional wavenet



Figure 3: Visualization of a stack of *dilated* causal convolutional layers.



#### **Generative models**

2) Neural-Autoregressive Models: SampleRNN



S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville, Y. Bengio. SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. 2017.

# DEEP LEARNING FOR AUDIO AND SPEECH PROCESSING.

New learning paradigms



#### Classification

Binary classification

$$\begin{split} x^{(i)} \rightarrow \hat{y}^{(i)} &= f_{\theta} \big( x^i \big) \\ \theta^* &= \min_{\theta} \mathcal{L} \left( \hat{y}^{(i)}, y^{(i)} \right) \\ \mathcal{L} \big( \hat{y}^{(i)}, y^{(i)} \big) &= - \big( y^{(i)} \log \hat{y}^{(i)} \big) + \big( 1 - y^{(i)} \log (1 - \hat{y}^{(i)}) \big) \end{split}$$

Multi-class classification (single-label)

$$x^{(i)} \to \hat{y}^{(i)} = f_{\theta}(x^{i})$$

$$\theta^{*} = \min_{\theta} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

$$\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\sum_{k=1}^{K} y_{k}^{(i)} \log \hat{y}_{k}^{(i)}$$





## **Encoder/Decoder (Auto-encoder/VAE)**

1) Auto-encoder

$$z = q_{\phi}(x)$$

$$\hat{x} = p_{\theta}(x)$$

$$\mathcal{L} = \|x - \hat{x}\|_2^2$$

z refers to code, latent variable or latent representation (projection of x in a variety/manifold)







## Encoder/Decoder (Auto-encoder/VAE)

- 2) Denoising auto-encoderU-Net
- Contracting path to capture context and a symmetric expanding path that enables precise localization

Separation of vocal and instrumental parts

A time-frequency mask is learnt so that:

$$X = X_{v} + X_{i} 
\widehat{X}_{v} = X \otimes M$$

$$\mathcal{L} = \left\| X_{v} - \widehat{X}_{v} \right\|_{1}$$









## **Network Architecture**



- A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, T. Weyde. Singing voice separation with deep U-Net convolutional networks. 2017.
- O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015.



## Encoder/Decoder (Auto-encoder/VAE)

- 3) Complex input / complex network
- Deep Complex U-Net for source separation (complex mask) Complex convolution

$$W = A + iB$$

$$h = x + iy$$

$$W * h = (A * x - B * y) + i \cdot (B * x + a * y)$$

Complex masking

$$\widehat{Y}_{t,f} = \widehat{M}_{t,f} \cdot X_{t,f}$$

$$= |\widehat{M}_{t,f}| \cdot |X_{t,f}| \cdot e^{i\phi_{\widehat{M}_{t,f}} + \phi_{X_{t,f}}}$$





(b)



## Encoder/Decoder (Auto-encoder/VAE)

- 4) Translating music across musical instruments, genres and styles
- O(s,r):
  - random augmentation of input s with seed r
- Encoder E:
  - shared wavenet
- Disentangled latent space
   Domain classification C
- Decoder  $D^j$  (domain j):
  - multiple wavenet, conditioned on the latent representation produced by E
- Adversial loss
  - minimize reconstruction loss
  - maximize domain classification
    - → prevent the latent space to learn domain characteristic





## **Encoder/Decoder (Auto-encoder/VAE)**

- 5) Variational Auto-Encoder
- Latent variables are drawn from a prior  $z_i \sim p(z)$
- data x have a likelihood that is conditioned on latent variables z:  $x_i \sim p(x|z)$
- likelihood and prior: p(x,z) = p(x|z)p(z) = p(xz)p(z)







#### **Metric learning**

#### 1) Triplet Loss

We train the network for a triplet of data anchor, positive, negative



Figure 3. The **Triplet Loss** minimizes the distance between an *an*chor and a positive, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

- F. Schroff. FaceNet: A Unified Embedding for Face Recognition and Clustering
- G. Doras, G. Peeters. Cover Detection using Dominant Melody Embeddings

# DEEP LEARNING FOR AUDIO AND SPEECH PROCESSING.

Thank you for your attention.

## Refenencences:

Geoffroy Peeters, Telecom Paris Tech