北京交通大学 2021-2022 学年暑期学期

计算机与信息技术学院 硕士研究生《智能计算数学基础》试题 出题教师:《智能计算数学基础》课程组

班级:	姓名: 学号: 上课教			师:					
	试卷共 49 道题, 向量(1, -1, 2			满分 100 分。	2. 题目排序与难	度无关。3.	判断题请回答	"是" 或 "	否"。
 2。计算i	函数极限:	$\lim_{\to +\infty} \left(1 + \frac{1}{2x}\right)$	6x °						
3。判断;	题:级数∑ _n	$ \ge 1 \frac{n^2 + n + 1}{n^3 + n^2 + n + 1} $	收敛。						
4。判断;	题: 集合{(x	$(x,y) \in \mathbb{R}^2 : x^2$	$x^2 + 2y^2 < 1,$	$x + y < 1\}$	 是开集。				
5。计算i	 函数 $f(x,y)$ =	$= \frac{x}{x^2 + y^2} \stackrel{\longleftarrow}{E} (0,$	1)点处的梯,	 度。					
6。计算i	函数 $f(x,y)$ =	$= x^2 + 2xy +$	$-3y^2 + 4y$ 的	极小值。					
7。给出	二次函数 <i>f</i> (<i>x</i>	$) = \frac{1}{2}x^t P x +$	$-q^tx+r$ 的机	 及小值点,	其中 $P \in \mathbb{S}_{++}^n$,	$q \in \mathbb{R}^n$	$r \in \mathbb{R}$.		
8。给定	$P \in \mathbb{S}^n_{++}$ 以及	 :约束条件 <i>x</i>	$\parallel \leq 1$, $\equiv b$	 医数 $f(x)$ =	$=x^t P x$ 的极大	 て値是多り	>?		
9。求出	下述优化问是	 愛的极小值 {	minimize subject to	f(x, y, z) = x + y + z = 0	$= 3x^2 + 3y^2 - $ $= 1$	$z^2 + xy -$			
10。设 <i>f</i>	(A) = X - I		A、X和Y分	·····分别是维度》	 为n×m、n×	·····································	 k的矩阵,	 计算 <i>Df</i>	(A) _o
11。判断	ī题: rank(A	$t^t A = \operatorname{rank}(A)$	A) o						
12。判断	f题: 设A,B	为列数相同的	的矩阵, <i>C</i> =	$= \begin{pmatrix} A \\ B \end{pmatrix}$, \mathbb{Q}	他们的零空	间满足:	N(C) = N(C)	$(A) \cup N$	(B) _o

13。判断题: 如果 u 和 v 是单位向量,则 $u+v$ 和 $u-v$ 是正交的。
14。判断题:设 A,B 是 n 阶方阵,则 AB 和 BA 具有相同的特征值。
15 。判断题:设 x 是 A^tA 的特征值不为 0 的特征向量,则 Ax 是 AA^t 的特征向量。
16。将向量(2,1)以向量(1,2)为轴做对称,得到的向量是什么?
17 。计算矩阵 $\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ 的奇异值。
18。假设 n 阶方阵 A 有 n 个线性无关的特征向量,则随着 $k \to \infty$, $A^k \to 0$ 的充分必要条件是什么?
19。假设 $x_1 \sim \mathcal{N}(0, \sigma^2)$, $x_2 \sim \mathcal{N}(0, \sigma^2)$,并且 x_1 和 x_2 独立,则 $y = x_1^2 + x_2^2$ 服从何种分布?
20。中心极限定理的"中心"是指什么?"极限"是指什么?
21。高斯白噪声中的"白"是什么意思?
22。假设随机变量 x 和 y 的联合概率密度为 $f(x,y)=1/4$,其中 $0 \le x \le 2, 1 \le y \le 3$ 。请问 x 和 y 是否正交?是否独立?是否相关?
23。已知随机变量 $w = \sum_{i=1}^{500} z_i$,其中 z_i 是相互独立的均匀分布随机变量, $z_i \sim \mathcal{U}(-\sqrt{3}/10, \sqrt{3}/10)$ 。已知某一个测量数据 y 和要估计的参数 A 以及随机变量 w 有线性关系: $y = 4A + w$ 。请写出随机变量 w 的近似概率密度函数。
24。条件如23题,写出似然函数 $p(y A)$ 的表达式,根据最大似然准则 (ML) 来获取 A 的估计值。
25。条件如23题,利用最小二乘法(LS)来估计A,请给出表达式。

26。条件如23题,假设 A 是高斯随机变量, $A\sim\mathcal{N}(0,1)$,且 A 和 w 相互独立。利用线性最小均方误差(LMMSE)准则来估计 A ,请给出表达式。
27。按照信息的性质,可以把信息分为哪三种基本类型?
28。若一随机事件的概率为 $p(x)$,写出它的自信息 $I(x)$ 的数学定义。
29。对于任意三个离散随机事件 x 、 y 与 z ,有 $I(x;yz) = I(x;z) + I(x;y z)$,这表明信息有何种性质?
30。已知两个信源分别为 $\binom{X}{P} = \begin{pmatrix} a_1 & a_2 \\ 0.8 & 0.2 \end{pmatrix}$ 和 $\binom{Y}{Q} = \begin{pmatrix} b_1 & b_2 \\ 0.5 & 0.5 \end{pmatrix}$,则在信源熵 $H(X)$ 和 $H(Y)$ 中,较大的是哪一个,其值为多少bit/符号?
31。判断题: 两个离散随机变量 X 与 Y 之间的平均互信息为 $I(X;Y)=H(X)-H(Y X)$ 。
32。判断题:对于固定的信源,平均互信息 $I(X;Y)$ 具有凸状性, $I(X;Y)$ 是信道传递概率分布 $P(Y X)$ 的上凸函数。
33。判断题:假设 $p(x)$ 和 $q(x)$ 是定义在同一概率空间上的两种概率测度,则 p 相对于 q 的信息散度定义为 $D(p\ q)=\sum_x p(x)\log\frac{p(x)}{q(x)}$ 。
35。判断题: 博弈问题中,一个纳什均衡解也是一个帕雷托最优解。
36。判断题:一个有限决策者且有限策略的博弈问题始终能找到至少一个纯策略纳什均衡解。
37。判断题:一个正则型博弈可以等价转化为一个不完美信息的扩展型博弈。

	_ A	В	С		
A	7, 7	1, 10	-2, 3		
В	10, 1	4, 4	1, 2		
С	3, -2	2, 1	0, 0		

Figure 1: 博弈矩阵(左)和博弈树(右)

		扩展型博弈i 是一个纳什均i		一个纳什均衡解	也是一夕	个子博弈精炼均 ************************************	衡解,而	一个子博弈精炼
39.	判断题:	不完全信息	博弈中的7	下确定性比不完	美信息情	專 弈中的不确定	性要高。	
40.	简要阐述	述需要利用逆 _[· 於解扩展型博弈	(博弈林	对)的原因。		
41.	从图1左	的博弈矩阵中	1,找出所	有纯策略纳什均	匀衡解,	并简述判断理日	∄。	
42.	从图1右	的博弈树中(1	MAX和MI	N的minimax值	已给出)	,找出可进行α	-β剪枝操	作的三个位置。
43.	判断题:	NP-Complet	e问题的多	项式时间复杂点	度算法者	『是近似算法。		
在一 集 <i>C</i>	$^{\cdot}$ 个 F 中的 $\subseteq F$,使	元素 S 使得 e 是 で得 $X = \cup_{S \in C}$	是 S 中的元 S ,且 C 的	素,即 $X = \bigcup_{S_0}$	$_{\in F}S$ 。考 下面是 $\mathfrak i$	虑"集合覆盖问 正明"集合覆盖问	题": 求	中的元素 <i>e</i> ,都存 F中的一个子 P-complete的过
45.	接上题,	请说明"验证	集合覆盖	问题"的时间复	杂度是彡	多项式时间复杂 3000000000000000000000000000000000000	度。	

46。顶点覆盖问题: $G=(V,E)$ 是无向图, V 和 E 分别是顶点和边的集合,求 V 的子集 V '使得对于任意边 $(u,v)\in E$ 都有 $u\in V$ '或 $v\in V$ ',且 V '的大小 $ V' $ 最小。请将顶点覆盖问题转化为语言描述。
48。接上题,说明转化过程是多项式时间复杂度的。
49。利用上题结果,试证明:图 $G=$ 中存在大小为 k 的顶点覆盖当且仅当 $$ 中存在大小为 k 的集合覆盖。