Exercício 61: (i) Calcule a distribuição de $Y = \mathbb{Z}^2$ no caso $\mathbb{Z} \subset N(0,1)$.

(ii) Por meio de simulação, tente descobrir qual a distribuição da soma de duas v.a.'s independentes Y_1 e Y_2 (sendo $Y_i = Z_i^2$).

Resolução: (i) Representa-se usualmente a fd [fdp] de Z pela letra Φ [ϕ]. Para y > 0 temos

$$F_Y(y) = P(Y \le y) = (Z^2 \le y) = P(-\sqrt{y} \le Z \le \sqrt{y}) = \Phi(\sqrt{y}) - \Phi(-\sqrt{y})$$

donde

$$f_{Y}(y) = \frac{d}{dy} F_{Y}(y) = \frac{d}{dy} \Phi(\sqrt{y}) - \frac{d}{dy} \Phi(-\sqrt{y}) = \phi(\sqrt{y}) \frac{1}{2\sqrt{y}} + \phi(-\sqrt{y}) \frac{1}{2\sqrt{y}} = \phi(\sqrt{y}) \frac{1}{\sqrt{y}} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{y}} e^{-y/2}, \quad y > 0$$

Exercício 61: (ii) Por meio de simulação, tente descobrir qual a distribuição da soma de duas v.a.'s independentes Y_1 e Y_2 , com a mesma distribuição de $Y = Z^2$ (diz-se que Y_1 e Y_2 são independentes e identicamente distribuídas (i.i.d.) com Y).

Resolução: (ii)

```
# simular 2 amostras de 10^6 valores N(0,1)
x < - rnorm(10^6)
y < - rnorm(10^6)
                                                    0.3
# amostra da soma dos seus quadrados
                                                    0.2
t < - x^2 + y^2
# histograma de área unitária:
                                                    0.1
hist(t,50,freq=F, main="")
# parece uma fdp exponencial com f(0) \approx 0.5
# sobrepor gráfico da fdp Exp(1/2)
                                                                  10
                                                                        15
                                                                             20
                                                                                   25
                                                                                        30
curve (dexp(x, 1/2), 0, 30, add=T, col=2)
# ou o histograma num único comando:
```

 $hist(rnorm(10^6)^2+rnorm(10^6)^2,50,freq=F,main="",xlab="t",ylab="freq / fdp")$

Exercício 64 (cont. do exº 61):

- (i) Mostre que a lei de $Y = Z^2$, com $Z \sim N(0,1)$, é uma Gama(1/2, 1/2).
- (ii) A partir deste resultado, prove que a soma $Y_1 + Y_2$ (i.e., a soma de duas v.a.'s independentes Y_1 e Y_2 , sendo $Y_i = Z_i^2$) tem de facto distribuição Exp(1/2)

Resolução: (i) A fdp obtida foi
$$f_Y(y) = \frac{1}{\sqrt{2\pi}} y^{-1/2} e^{-y/2}, \quad y > 0$$

Ora a fdp da Gama(α , λ) é dada por $f_X(x) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}, \quad x > 0$

Note-se que
$$f_Y(y) = \frac{1}{\sqrt{2\pi}} y^{-1/2} e^{-y/2} = \frac{1}{\sqrt{2\pi}} y^{\frac{1}{2} - 1} e^{-\frac{1}{2}y}, \quad y > 0$$

que é a fdp de uma Gama(lpha, λ) com lpha=1/2 , $\lambda=1/2$

Exercício 64 (cont. do exº 61):

- (i) Mostre que a lei de $Y = Z^2$, com Z N(0,1), é uma Gama(1/2, 1/2).
- (ii) A partir deste resultado, prove que a soma Y_1+Y_2 (i.e., a soma de duas v.a.'s independentes Y_1 e Y_2 , sendo $Y_i=Z_i^2$) tem de facto distribuição Exp(1/2)

Resolução: (ii) Como a transf. Laplace da soma de v.a. independentes é o produto das respectivas transf. Laplace, temos $L_{Y_1+Y_2}(t) = L_{Y_1}(t) L_{Y_2}(t) = \left(L_{Y_1}(t)\right)^2$

Ora a transf. Laplace de X Gama (α,λ) é dada por $L_X(t) = \left(\frac{\lambda}{\lambda+t}\right)^a, \ t>-\lambda$

$$\text{Logo } L_{Y}(t) = \left(\frac{\frac{1}{2}}{\frac{1}{2}+t}\right)^{1/2}, \ t > -\lambda \qquad \text{donde } L_{Y_{1}+Y_{2}}(t) = \left(L_{Y}(t)\right)^{2} = \frac{\frac{1}{2}}{\frac{1}{2}+t}, \ t > -\lambda$$

que é a tranf. Laplace da Exp(1/2). Logo $Y_1 + Y_2$ Exp (1/2).

Exercício 63:

Calcule os momentos $E(X^n)$ no caso X — Gama (α, λ) , usando a transf. Laplace

Resolução: Temos a fórmula geral (desde que exista t.Laplace) $E(X^n) = (-1)^n L_X^{(n)}(0)$

Ora a transf. Laplace de X Gama (α, λ) é dada por $L(t) = \left(\frac{\lambda}{\lambda + t}\right)^{\alpha}, t > -\lambda$

Então
$$L'(t) = \frac{d}{dt} \left(\frac{\lambda}{\lambda + t} \right)^{\alpha} = \lambda^{\alpha} \frac{d}{dt} (\lambda + t)^{-\alpha} = \lambda^{\alpha} (-\alpha) (\lambda + t)^{-\alpha - 1}, \ t > -\lambda,$$

donde
$$\mu = E(X) = -L'(0) = -\lambda^{\alpha} (-\alpha)(\lambda)^{-\alpha-1} = \frac{\alpha}{\lambda}$$

Resolução (cont.):

$$L''(t) = \frac{d}{dt} \lambda^{\alpha} (-\alpha)(\lambda + t)^{-\alpha - 1} = \lambda^{\alpha} (-\alpha)(-\alpha - 1)(\lambda + t)^{-\alpha - 2}, \quad t > -\lambda,$$

donde
$$\mu'_2 = E(X^2) = L''(0) = \lambda^{\alpha} (-\alpha)(-\alpha - 1)(\lambda)^{-\alpha - 2} = \frac{\alpha(\alpha + 1)}{\lambda^2}$$

$$L'''(t) = \frac{d}{dt}\lambda^{\alpha}(-\alpha)(-\alpha - 1)(\lambda + t)^{-\alpha - 2} = \lambda^{\alpha}(-\alpha)(-\alpha - 1)(-\alpha - 2)(\lambda + t)^{-\alpha - 3}, \quad t > -\lambda,$$

donde
$$\mu'_3 = (X^3) = -L'''(0) = -\lambda^{\alpha} (-\alpha)(-\alpha - 1)(-\alpha - 2)(\lambda)^{-\alpha - 3} = \frac{\alpha(\alpha + 1)(\alpha + 2)}{\lambda^3}$$

Generalizando, temos

$$E(X^{n}) = \frac{\alpha(\alpha+1)(\alpha+2)...(\alpha+n-1)}{\lambda^{n}} = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)\lambda^{n}}$$

$$= \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)\lambda^{n}}$$
porque $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$

Resolução (cont.):

Adicionalmente, calculamos (i) a variância e desvio padrão de X, recorrendo aos cálculos anteriores dos momentos de ordem 1 e 2, como segue

$$\sigma^{2} = Var(X) = E(X^{2}) - E^{2}(X) = \frac{\alpha(\alpha + 1)}{\lambda^{2}} - \frac{\alpha^{2}}{\lambda^{2}} = \frac{\alpha}{\lambda^{2}} \quad \text{donde} \quad \sigma = \frac{\sqrt{\alpha}}{\lambda}$$

(ii) o coeficiente de assimetria de X,

$$\beta_{1} = E\left(\left(\frac{X - \mu}{\sigma}\right)^{3}\right) = \frac{1}{\sigma^{3}}E((X - \mu)^{3}) = \frac{1}{\sigma^{3}}E(X^{3} - 3X^{2}\mu + 3X\mu^{2} - \mu^{3}) = \frac{\lambda^{3}}{\alpha^{3/2}}\left(\frac{\alpha(\alpha + 1)(\alpha + 2)}{\lambda^{3}} - 3\frac{\alpha(\alpha + 1)}{\lambda^{2}}\frac{\alpha}{\lambda} + 3\frac{\alpha}{\lambda}\frac{\alpha^{2}}{\lambda^{2}} - \frac{\alpha^{3}}{\lambda^{3}}\right) = \dots = \frac{2\alpha}{\alpha^{3/2}} = \frac{2}{\sqrt{\alpha}}$$