PTP4 Zusammenfassung Theoretische Quantenmechanik Professor Matthias Bartelmann

Sommersemester 2017 Heidelberg

Ende des 19. Jahrhunderts beschrieb Physik ueberzeugend die bekannten Wechselwirkungen:

- Graviation in klassischer Mechanik durch Newton, Lagrange, Hamilton
- Elektromagnetismus durch Maxwell'sche Gleichungen
- Thermodynamik

Ungeklaerte Fragen:

- Widerspruch Galilei-Invarianz in kl. Mechanik (Geschwindigkeiten addiert) und Maxwell Elektrodynamik (Lichtgeschwindigkeit Obergrenze) aufgeloest durch Lorentz Invarianz in Einsteins spezieller Relativitaetstheorie
- Stabilitaet der Atome (im Rutherford Modell) nicht erklaerbar
- diskrete Spektrallinien nicht erklaerbar
- Schwarzkoerperstrahlung nicht beschreibbar (UV-Katastrophe)

Hohlraumstrahlung: Stehende Wellen im Hohlraum: Moden Es sind $\frac{L}{\lambda}$ Wellen auf Strecke L moeglich

Anzahl abschaetzen:

Kugel $(V_{Kugel} = \frac{4}{3} * \pi * r^3)$

Zwei Polarisationsrichtungen: E und B Feld bringt Faktor zwei

Radius ist $\frac{L}{\lambda}$ $N(\lambda) = 2 * \frac{4}{3} * \pi * (\frac{L}{\lambda})^3$

- Relativistische Energie-Impuls-Beziehung: $E = \sqrt{p^2c^2 + m^2c^4}$
- Dispersions relation: $k = \frac{\omega}{c}$

• Kreisfrequenz: $\omega = 2 * \pi * \nu$

• Wellenlaenge: $\lambda = \frac{2*\pi}{k}$

Kommutator: [A,B] := AB - BAmisst den Unterschied zwischen Reihenfolgen der Operatoren

Einsoperator: $\hat{I} = \sum_n |a_n\rangle \left\langle a_n| + \int |a\rangle \left\langle a| da \right\rangle$

Dichteoperator: $\hat{\rho} = \sum_{n} p_n |n\rangle \langle n|$

Zeitentwicklungsoperator: $\hat{U}(t, t_0) | \psi(t_0) \rangle = | \psi(t) \rangle$

Heisenberg-Gleichung: $i\hbar \frac{d}{dt}\hat{A}_{H}=\left[\hat{A}_{H},\hat{H}_{H}\right]+i\hbar\left(\partial_{t}\hat{A}\right)_{H}$

Zeitabhaengiger Operator: $\hat{A}_H(t) := \hat{U}^{-1}(t,t_0) \hat{A} \hat{U}(t,t_0)$

Translations operator: $\hat{T}_{\vec{a}} = \exp\left(-\frac{i}{\hbar}\vec{a}\cdot\hat{\vec{p}}\right)$

Dyson Reihe: $\hat{U}(t,t_0) = Texp\left(-\frac{i}{\hbar}\int_{t_0}^t \hat{H}(t')dt'\right)$

Wech selwirkungsbild: $i\hbar\frac{d}{dt}\left|\psi(t)\right\rangle_I=\hat{V}_I\left|\psi(t)\right\rangle_I$

Stoeroperator: $\hat{V}_I(t) := \hat{U}_0^{-1} \hat{V} \hat{U}_0$

ToDo:

Schroedinger und Heisenberg Bilder