Statistics Question Bank

Abdullah Al Mahmud

Last updated: August 11, 2025

Contents

Ι	\Pr	obability	2						
	Probability								
	1.1	Combination	2						
		1.1.1 Simple	2						
	1.2	Conceptual	2						
		1.2.1 Multiple Completion							
		1.2.2 Simple	2						
	1.3	Permutation	4						
		1.3.1 Simple	4						

Part I

Probability

Probability 1

Combination 1.1

1.1.1	Simple
-------	--------

1.	In	how	many	ways	can	\mathbf{a}	team	of	2 b	\mathbf{e}	formed	\mathbf{from}	4 people?	

(a) 4

(b) 6

(c) 8

(d) 12

2. ${}^{n}C_{r} =$

(a) $\frac{n!}{(n-1)!(n+r)!}$ (b) $\frac{r!}{n!(n-r)!}$ (c) $\frac{n!(n-1)!}{r!}$

(d) $\frac{n!}{(r-n)!}$

1.2 Conceptual

1.2.1 Multiple Completion

3. Possible value of probability

i. -1 ii. 0.5 iii. 0

Which one is correct?

(a) i and ii

(b) i and iii

(c) ii and iii

(d) i, ii and iii

1.2.2 Simple

4. What is the probability that at least one item in a sample space will occurr?

(a) 0

(b) 0.5

(c) 1

(d) Undefined

5. The probability of two disjoint sets happening together is:

(a) 0.5

(b) 0

(c) 1

(d) $0 \le x < 1$

6. How many additive laws of probability are there?

(a) 1

(b) 2

(d) 4

7. $P(A \cup B) = P(A) + P(B)$ implies A & B are -

(a) Disjoint

(b) Independent

(c) Joint

(d) Independent

8. $P(A \cap B) = P(A) \times P(B)$ implies A & B are –

(a) Disjoint

(b) Independent

(c) Joint

(d) Independent

9. Which is the formula of classical approach of probability?

(a) $P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}}$

(b) $P = \frac{\text{No. of total outcomes}}{\text{No. of favorable outcomes}}$

(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$

(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$

10. Which is the formula of empirical/relative frequency approach of probability?

(a) $P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}}$

(b) $P = \frac{\text{No. of total outcomes}}{\text{No. of favorable outcomes}}$

11.		formula for condition (b) $P(A B) = \frac{P(A \cap B)}{P(A)}$	-	(d) $P(A B) = \frac{P(B A)}{P(B A)}$					
12.	The third axiom of I (a) $0 \le P(A) \le 1$	probability is –	(b) $P(S) = 1$						
	(c) $P(A_1UA_2U\cdots UA_n)$	$) = \sum_{i=1}^{\infty} P(A_i)$	(d) $P(A) = 1 - P(A)$						
13.	-	ler some specific cond		(1) (2)					
	(a) Event	(b) Experiment	(c) Sample	(d) Sample space					
14.	P(0) implies –								
	(a) A certain event	(b) An uncertain event	(c) An impossible event (d) A probable event						
15.	Events having some	common elements are	e called –						
	(a) Complementary eve	ents	(b) Mutually exclusive events						
	(c) Exhaustive events		(d) Non-Mutually exclusive events events						
16.	The minimum value	of probability is							
	(a) $-\alpha$	(b) 1	(c) 0	(d) -1					
17.	Each element of sam	ple space is called—							
	(a) Trial	(b) Experiment	(c) Variable	(d) Sample Point					
18.	Two events not ocurring together are called—								
	(a) dependent Events		(b) Independent Events						
	(c) Mutually Exclusive	Events	(d) Marginal Events						
19.	If A and B are indep	pendent, which formu	la is correct?						
	(a) $P(A \cap B) = P(A)$.	•	(b) $P(A \cap B) = P(\bar{A}) \cdot P(B)$						
	(c) $P(A \cap B) = P(A)$.	$P(\bar{B})$	(d) $P(A \cap \bar{B}) = P(A) \cdot P(B)$						
20.	Which of the following are disjoint events?								
	(a) $A = \{1, 2, 3\}, B = \{$	-	(b) $A = \{a, b\}, B = \{b, c\}$						
	(c) $A = \{0\}, B = \{0, 1\}$	· · · ·	(d) $A = \{x, y\}, B = \{x, y\}$						
21.	Which of the followi	ng are disjoint events	3?						
	(a) $P = \{1, 2\}, Q = \{2, \dots\}$	-	(b) $P = \{x\}, Q = \{x, y\}$						
	(c) $P = \{1, 3\}, Q = \{3, 4\}$,	(d) $P = \{m, n\}, Q = \{p, q\}$						
22.	Let the sample space be $S = \{1, 2, 3,, 10\}$. Which of the following pairs of events are disjoint?								
	 i. A: Number is prime, B: Number is greater than 3 ii. A: Number is even, B: Number is divisible by 3 iii. A: Number is less than 5, B: Number is greater than 6 								
Which one is correct?									
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii					

1.3 Permutation

1.3.1 Simple

23. Three objects can be placed in 2 positions in – ways.

(a) 3

(b) 4

(c) 6

(d) 8

24. $^{n}p_{r} =$

(a) $\frac{n!}{(n-r)!}$

(b) $\frac{n!}{(n+r)!}$

(c) $\frac{n!}{r!}$

(d) $\frac{n!}{(r-n)!}$

Answer Key

- 1. (b) 6
- 2. (a) $\frac{n!}{(n-1)!(n+r)!}$
- 3. (c) ii and iii
- 4. (c) 1
- 5. (b) 0
- 6. (b) 2
- 7. (a) Disjoint
- 8. (b) Independent
- 9. (a) $P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}}$
- 10. (a) $P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}}$
- 11. (a) $P(A|B) = \frac{P(A \cap B)}{P(B|A)}$
- 12. (c) $P(A_1UA_2U\cdots UA_n) = \sum_{i=1}^{\infty} P(A_i)$

- 13. (b) Experiment
- 14. (c) An impossible event
- 15. (a) Complementary events
- 16. (c) 0
- 17. (d) Sample Point
- 18. (c) Mutually Exclusive Events
- 19. (a) $P(A \cap B) = P(A) \cdot P(B)$
- 20. (a) $A = \{1, 2, 3\}, B = \{4, 5\}$
- 21. (d) $P = \{m, n\}, Q = \{p, q\}$
- 22. (c) ii and iii
- 23. (c) 6
- 24. (a) $\frac{n!}{(n-r)!}$