A Probabilistic Model Revealing Shortcomings in Lua's Hybrid Tables

Pablo Rotondo

LIGM, Université Gustave Eiffel

Joint work with Conrado Martínez (UPC), Cyril Nicaud (LIGM)

COCOON 2022, Online, 23 October, 2022.

Introduction

- Aim: study and model actual implementations
 - Engineers sometimes choose innovative implementations e.g., TimSort in Python.
 - Study choices in depth, make recommendations.

Introduction

- Aim: study and model actual implementations
 - Engineers sometimes choose innovative implementations e.g., TimSort in Python.
 - Study choices in depth, make recommendations.
- The Lua programming language
 - Scripting language widely used in the gaming industry,
 - Efficient, lightweight (few Kb of C code!), embeddable.

Introduction

- Aim: study and model actual implementations
 - Engineers sometimes choose innovative implementations e.g., TimSort in Python.
 - Study choices in depth, make recommendations.
- ▶ The Lua programming language
 - Scripting language widely used in the gaming industry,
 - Efficient, lightweight (few Kb of C code!), embeddable.
- ⇒ Lua 5.0 introduced several innovations, among them a new Table structure.

- Only data-structuring mechanism in Lua
 - assignment H[x]=y, any types of x and y.

- Only data-structuring mechanism in Lua
 - assignment H[x]=y, any types of x and y.
- ► Implementation
 - originally a simple hash-table up to Lua 4.

- Only data-structuring mechanism in Lua
 - assignment H[x]=y, any types of x and y.
- Implementation
 - originally a simple hash-table up to Lua 4.
 - Lua 5 introduced a hybrid table-array,

- Only data-structuring mechanism in Lua
 - assignment H[x]=y, any types of x and y.
- Implementation
 - originally a simple hash-table up to Lua 4.
 - Lua 5 introduced a hybrid table-array,
 - integer keys form array $\{1, \ldots, n\}$ at least half-full.

- Only data-structuring mechanism in Lua
 - assignment H[x]=y, any types of x and y.
- Implementation
 - originally a simple hash-table up to Lua 4.
 - Lua 5 introduced a hybrid table-array,
 - integer keys form array $\{1,\ldots,n\}$ at least half-full.

In our work we

study the hash-table mechanism, [main result]

- Only data-structuring mechanism in Lua
 - assignment H[x]=y, any types of x and y.
- Implementation
 - originally a simple hash-table up to Lua 4.
 - Lua 5 introduced a hybrid table-array,
 - integer keys form array $\{1, \ldots, n\}$ at least half-full.

In our work we

- ▶ study the hash-table mechanism, [main result]
- in worst case, but most importantly, we introduce a reasonable probabilistic model.

- Only data-structuring mechanism in Lua
 - assignment H[x]=y, any types of x and y.
- Implementation
 - originally a simple hash-table up to Lua 4.
 - Lua 5 introduced a hybrid table-array,
 - integer keys form array $\{1, \ldots, n\}$ at least half-full.

In our work we

- study the hash-table mechanism, [main result]
- in worst case, but most importantly,
 we introduce a reasonable probabilistic model.
- present also an analysis of the hybrid table-array.

Lua's hash-table aims for space-efficiency:

Lua's hash-table aims for space-efficiency:

• insertions and lookups work in amortized O(1) even if table is full.

Lua's hash-table aims for space-efficiency:

- insertions and lookups work in amortized O(1) even if table is full.
- but we show there is a degradation if deletions are allowed.

Lua's hash-table aims for space-efficiency:

- insertions and lookups work in amortized O(1) even if table is full.
- but we show there is a degradation if deletions are allowed.

Consider sequences of T insertions/deletions starting from an empty table

Lua's hash-table aims for space-efficiency:

- insertions and lookups work in amortized O(1) even if table is full.
- but we show there is a degradation if deletions are allowed.

Consider sequences of T insertions/deletions starting from an empty table

Proposition: worst case

There is sequence of operations giving time $\Theta(T^2)$.

Lua's hash-table aims for space-efficiency:

- insertions and lookups work in amortized O(1) even if table is full.
- but we show there is a degradation if deletions are allowed.

Consider sequences of T insertions/deletions starting from an empty table

Proposition: worst case

There is sequence of operations giving time $\Theta(T^2)$.

► The example requires an unlikely cycle of delete-insert.

Lua's hash-table aims for space-efficiency:

- insertions and lookups work in amortized O(1) even if table is full.
- but we show there is a degradation if deletions are allowed.

Consider sequences of T insertions/deletions starting from an empty table

Proposition: worst case

There is sequence of operations giving time $\Theta(T^2)$.

- ► The example requires an unlikely cycle of delete-insert.
- Trouble for more realistic examples ?

Introduction: probabilistic model for the hash-table

Simple Probabilistic model

Consider $p > \frac{1}{2}$. A random sequence of T insertion/deletions:

- with probability p insert a new element,
- with probability 1-p delete an element.

Introduction: probabilistic model for the hash-table

Simple Probabilistic model

Consider $p > \frac{1}{2}$. A random sequence of T insertion/deletions:

- with probability p insert a new element,
- with probability 1 p delete an element.

Main result: Lua hash-table

With high probability time is $\Omega(T \log T)$.

Introduction: probabilistic model for the hash-table

Simple Probabilistic model

Consider $p > \frac{1}{2}$. A random sequence of T insertion/deletions:

- with probability p insert a new element,
- with probability 1 p delete an element.

Main result: Lua hash-table

With high probability time is $\Omega(T \log T)$.

Plan of the talk

1. The Lua hashmap

2. The probabilistic model

3. Conclusions and further work

Lua's hashmap consists of

• an array H of size $M = 2^m$,

Lua's hashmap consists of

- an array H of size $M = 2^m$,
- lacktriangledown a hash function $h(x) = x \bmod M$, [we do not discuss choice of h]

Lua's hashmap consists of

- an array H of size $M = 2^m$,
- ▶ a hash function $h(x) = x \mod M$, [we do not discuss choice of h]
- entries: key, value, index of next entry in chain

Lua's hashmap consists of

- an array H of size $M = 2^m$,
- ▶ a hash function $h(x) = x \mod M$, [we do not discuss choice of h]
- entries: key, value, index of next entry in chain

Insertions work as follows: key x

• if position h(x) free \Rightarrow insert

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \operatorname{put} x$ into a free position, update chain $\operatorname{pos}(y) \to \operatorname{pos}(z) \to \dots$ to $\operatorname{pos}(y) \to \operatorname{pos}(z) \to \dots$

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \text{put } x \text{ into a free position, update chain}$ $\text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots \text{ to } \text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots$
 - if $h(y) \neq h(x) \Rightarrow$ we migrate y into a free position, updating its chain and put x at position h(x).

	0	1	2	3	4	5	6	7
Н					a 11 nil			

$$h(a) = 4, h(b) = 4,$$

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \text{put } x \text{ into a free position, update chain}$ $pos(y) \rightarrow pos(z) \rightarrow \dots \text{ to } pos(y) \rightarrow pos(x) \rightarrow pos(z) \rightarrow \dots$
 - if $h(y) \neq h(x) \Rightarrow$ we migrate y into a free position, updating its chain and put x at position h(x).

$$h(a) = 4, h(b) = 4, h(d) = 4,$$

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \text{put } x \text{ into a free position, update chain}$ $\text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots \text{ to } \text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots$
 - if $h(y) \neq h(x) \Rightarrow$ we migrate y into a free position, updating its chain and put x at position h(x).

$$h(a) = 4, h(b) = 4, h(d) = 4, h(e) = 7,$$

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \text{put } x \text{ into a free position, update chain}$ $\text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots \text{ to } \text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots$
 - if $h(y) \neq h(x) \Rightarrow$ we migrate y into a free position, updating its chain and put x at position h(x).

$$h(a) = 4, h(b) = 4, h(d) = 4, h(e) = 7, h(f) = 7$$

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \text{put } x \text{ into a free position, update chain}$ $\text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots \text{ to } \text{pos}(y) \rightarrow \text{pos}(z) \rightarrow \dots$
 - if $h(y) \neq h(x) \Rightarrow$ we migrate y into a free position, updating its chain and put x at position h(x).

$$h(a) = 4, h(b) = 4, h(d) = 4, h(e) = 7, h(f) = 7$$

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \text{put } x \text{ into a free position, update chain}$ $pos(y) \rightarrow pos(z) \rightarrow \dots \text{ to } pos(y) \rightarrow pos(x) \rightarrow pos(z) \rightarrow \dots$
 - if $h(y) \neq h(x) \Rightarrow$ we migrate y into a free position, updating its chain and put x at position h(x).

	0	1	2	3	4	5	6	7
тт				f	a	Ь	d	e
H				44 nil	11 6	44 nil	5	3
				个个			Z/	

$$h(a) = 4$$
, $h(b) = 4$, $h(d) = 4$, $h(e) = 7$, $h(f) = 7$

Insertions work as follows: key x

- if position h(x) free \Rightarrow insert
- else position h(x) is occupied by key y,
 - if $h(y) = h(x) \Rightarrow \operatorname{put} x$ into a free position, update chain $\operatorname{pos}(y) \to \operatorname{pos}(z) \to \dots$ to $\operatorname{pos}(y) \to \operatorname{pos}(z) \to \dots$
 - if $h(y) \neq h(x) \Rightarrow$ we migrate y into a free position, updating its chain and put x at position h(x).

	0	1	2	3	4	5	6	7	
Н				f	а	Ь	d	e	
				44	11 6	44 nil	-2	0	
				nil	6	nil	5	3	
	1								

Finding a free position: use pointer starting at end and moving to the left. If pointer exits, we rehash.

Deletions are simple:

▶ the *value* is marked as nil,

Deletions are simple:

- the value is marked as nil,
- chaining (next cell) kept intact.

Deletions are simple:

- the value is marked as nil.
- chaining (next cell) kept intact.

Deleted spot y

• can be reused to insert x when h(x) = y,

Deletions are simple:

- the value is marked as nil.
- chaining (next cell) kept intact.

Deleted spot y

- can be reused to insert x when h(x) = y,
- not taken into account by free position pointer
 - → necessary to keep previous chaining

Deletions are simple:

- the value is marked as nil.
- chaining (next cell) kept intact.

Deleted spot y

- can be reused to insert x when h(x) = y,
- not taken into account by free position pointer
 necessary to keep previous chaining

... deleted spots are cleaned up during rehashing

Finding a free position: use pointer starting at end and moving to the left. If pointer exits, we rehash.

Hashtable is then full, maybe with deleted cells.

Finding a free position: use pointer starting at end and moving to the left. If pointer exits, we rehash.

- Hashtable is then full, maybe with deleted cells.
- ightharpoonup Count actual used cells n,

Finding a free position: use pointer starting at end and moving to the left. If pointer exits, we rehash.

- Hashtable is then full, maybe with deleted cells.
- Count actual used cells n,
- New hashtable of size $M = 2^m$, smallest m s.t. $n + 1 \le 2^m$, $\implies +1$ for inserted element.

Finding a free position: use pointer starting at end and moving to the left. If pointer exits, we rehash.

- Hashtable is then full, maybe with deleted cells.
- Count actual used cells n.
- New hashtable of size $M = 2^m$, smallest m s.t. $n + 1 \le 2^m$, $\implies +1$ for inserted element.

Worst-case scenario

- insert until filling hashtable of size $M = 2^m$,
- alternate M deletion/insertions,
- insertions induce rehash unless deleted cell is picked,
- complexity $\Theta(M^2)$ for 3M operations.

Finding a free position: use pointer starting at end and moving to the left. If pointer exits, we rehash.

- Hashtable is then full, maybe with deleted cells.
- Count actual used cells n.
- New hashtable of size $M = 2^m$, smallest m s.t. $n + 1 \le 2^m$, $\Longrightarrow +1$ for inserted element.

Worst-case scenario

- insert until filling hashtable of size $M = 2^m$,
- alternate M deletion/insertions,
- insertions induce rehash unless deleted cell is picked,
- complexity $\Theta(M^2)$ for 3M operations.

... but it is not very realistic

We set a more interesting yet simple model

Probabilistic model

Fix $p > \frac{1}{2}$ and apply T insertion/deletions from an empty table:

- with probability p insert a new element,
- with probability 1-p delete an element among present ones.

We set a more interesting yet simple model

Probabilistic model

Fix $p > \frac{1}{2}$ and apply T insertion/deletions from an empty table:

- with probability p insert a new element,
- with probability 1-p delete an element among present ones.

Hashtable tends to grow: # keys $\approx pT - (1-p)T = (2p-1)T$

We set a more interesting yet simple model

Probabilistic model

Fix $p > \frac{1}{2}$ and apply T insertion/deletions from an empty table:

- with probability p insert a new element,
- with probability 1-p delete an element among present ones.

Hashtable tends to grow: # keys $\approx pT - (1-p)T = (2p-1)T$

Theorem (Martínez, Nicaud, R 2022)

With high probability, Lua uses $\Omega(T \log T)$ time for this process.

Intuition: Large number of rehashes that serve only to remove few nil cells.

We set a more interesting yet simple model

Probabilistic model

Fix $p > \frac{1}{2}$ and apply T insertion/deletions from an empty table:

- with probability p insert a new element,
- with probability 1-p delete an element among present ones.

Hashtable tends to grow: # keys $\approx pT - (1-p)T = (2p-1)T$

Theorem (Martínez, Nicaud, R 2022)

With high probability, Lua uses $\Omega(T \log T)$ time for this process.

- Intuition: Large number of rehashes that serve only to remove few nil cells.
- Each rehash costs linear time $\Theta(M)$.

Theorem (Martínez, Nicaud, R 2022)

With high probability, Lua uses $\Omega(T \log T)$ time for this process.

Number of keys in hashmap after t operations $\approx (2p-1)t$, with high probability size M only increases

Theorem (Martínez, Nicaud, R 2022)

With high probability, Lua uses $\Omega(T \log T)$ time for this process.

- Number of keys in hashmap after t operations $\approx (2p-1)t$, with high probability size M only increases
- First time we rehash into size $M = 2^m$ of order $\Theta(T)$:

```
\implies #keys = 2^{m-1} + 1 and 2^{m-1} - 1 free spots.
```

Theorem (Martínez, Nicaud, R 2022)

With high probability, Lua uses $\Omega(T \log T)$ time for this process.

- Number of keys in hashmap after t operations $\approx (2p-1)t$, with high probability size M only increases
- First time we rehash into size $M = 2^m$ of order $\Theta(T)$: $\implies \# \text{keys} = 2^{m-1} + 1 \text{ and } 2^{m-1} - 1 \text{ free spots.}$
- ▶ But then random deletions slow down growth of M:

 ⇒ from f free spots, we obtain γf after next rehash.

Theorem (Martínez, Nicaud, R 2022)

With high probability, Lua uses $\Omega(T \log T)$ time for this process.

- Number of keys in hashmap after t operations $\approx (2p-1)t$, with high probability size M only increases
- First time we rehash into size $M = 2^m$ of order $\Theta(T)$: $\Longrightarrow \# \text{keys} = 2^{m-1} + 1 \text{ and } 2^{m-1} 1 \text{ free spots.}$
- ▶ But then random deletions slow down growth of M: ⇒ from f free spots, we obtain γf after next rehash.

Lemma

If the hashmap has size M and just after a rehash it contains $f\gg \sqrt{M}$ free spots, then at the next rehash it still has size M and contains at least γf free spots (whp).

Theorem (Martínez, Nicaud, R 2022)

With high probability, Lua uses $\Omega(T \log T)$ time for this process.

- Number of keys in hashmap after t operations $\approx (2p-1)t$, with high probability size M only increases
- First time we rehash into size $M = 2^m$ of order $\Theta(T)$: $\Longrightarrow \# \text{keys} = 2^{m-1} + 1 \text{ and } 2^{m-1} 1 \text{ free spots.}$
- $\begin{tabular}{ll} \bf But then random deletions slow down growth of M: \\ &\Longrightarrow {\it from } f {\it free spots}, {\it we obtain } \gamma f {\it after next rehash}. \\ \end{tabular}$

Lemma

If the hashmap has size M and just after a rehash it contains $f\gg \sqrt{M}$ free spots, then at the next rehash it still has size M and contains at least γf free spots (whp).

 \dots at least $\log M$ rehashes to increase M

With (very) high probability:

- the hashtable is never empty after t = 0,
- we rehash at some point.

With (very) high probability:

- the hashtable is never empty after t = 0,
- we rehash at some point.

Under these conditions, between two rehashes, the number of deleted cells satisfies the recurrence (starting from $\delta_{t_0} = 0$)

$$\delta_{t+1} = \begin{cases} \delta_t - 1 & \text{with probability } \frac{p\delta_t}{M} & [\textit{insertion at deleted key}], \\ \delta_t & \text{with probability } p\left(1 - \frac{\delta_t}{M}\right) & [\textit{insertion at free cell}], \\ \delta_t + 1 & \text{with probability } 1 - p & [\textit{deletion}]. \end{cases}$$

$$\delta_{t+1} = \begin{cases} \delta_t - 1 & \text{with probability } \frac{p\delta_t}{M} & [\textit{insertion at deleted key}], \\ \delta_t & \text{with probability } p\left(1 - \frac{\delta_t}{M}\right) & [\textit{insertion at free cell}], \\ \delta_t + 1 & \text{with probability } 1 - p & [\textit{deletion}]. \end{cases}$$

- Equilibrium point at $\delta_t pprox rac{1-p}{p} M$,
 - \otimes when $\delta_t < \frac{1-p}{p}M$ tendency to increase,
 - \circledast when $\delta_t > \frac{\hat{1-p}}{p}M$ tendency to decrease,

$$\delta_{t+1} = \begin{cases} \delta_t - 1 & \text{with probability } \frac{p\delta_t}{M} & [\textit{insertion at deleted key}], \\ \delta_t & \text{with probability } p\left(1 - \frac{\delta_t}{M}\right) & [\textit{insertion at free cell}], \\ \delta_t + 1 & \text{with probability } 1 - p & [\textit{deletion}]. \end{cases}$$

- ▶ Equilibrium point at $\delta_t \approx \frac{1-p}{p}M$, \circledast when $\delta_t < \frac{1-p}{p}M$ tendency to increase,
 - \circledast when $\delta_t > \frac{1-p}{p}M$ tendency to decrease,
- Rehash occurs a fraction before reaching equilibrium \dots sufficiently before to make δ_t increase linearly

$$\delta_{t+1} = \begin{cases} \delta_t - 1 & \text{with probability } \frac{p\delta_t}{M} & [\textit{insertion at deleted key}], \\ \delta_t & \text{with probability } p\left(1 - \frac{\delta_t}{M}\right) & [\textit{insertion at free cell}], \\ \delta_t + 1 & \text{with probability } 1 - p & [\textit{deletion}]. \end{cases}$$

- ▶ Equilibrium point at $\delta_t \approx \frac{1-p}{p}M$, \circledast when $\delta_t < \frac{1-p}{p}M$ tendency to increase, \circledast when $\delta_t > \frac{1-p}{p}M$ tendency to decrease,
- Rehash occurs a fraction before reaching equilibrium \dots sufficiently before to make δ_t increase linearly
- Tools: concentration inequalities.

And without deletions?

Problem arises when considering effects of deletions.

 \otimes Rehashes into same size hashtables pile up to $\Omega(T \log T)$.

And without deletions?

- Problem arises when considering effects of deletions.
- The hybrid data-structure presents a similar issue: using the array-part "simulates" deletions on the hash-part

Proposition [only insertions]

Inserting n elements into Lua's table takes $\Theta(n \log n)$ in the worst case.

 \otimes Rehashes into same size hashtables pile up to $\Omega(T \log T)$.

And without deletions?

- Problem arises when considering effects of deletions.
- The hybrid data-structure presents a similar issue: using the array-part "simulates" deletions on the hash-part

Proposition [only insertions]

Inserting n elements into Lua's table takes $\Theta(n \log n)$ in the worst case.

Example: inserting $-(2^k-1), -(2^k-2), \ldots, -1, 0, 1, \ldots, 2^k$

Recap and conclusions

- Lua's hybrid data-structure is an interesting idea.
- We have presented a simple and natural probabilistic model revealing shortcomings in Lua's hashtables.

Recap and conclusions

- Lua's hybrid data-structure is an interesting idea.
- We have presented a simple and natural probabilistic model revealing shortcomings in Lua's hashtables.
- Solution
 Solution
 State of the state of
- This would also fix the hybrid part.

Recap and conclusions

- Lua's hybrid data-structure is an interesting idea.
- We have presented a simple and natural probabilistic model revealing shortcomings in Lua's hashtables.
- ® Issue can be fixed by ensuring more room when rehashing.
- This would also fix the hybrid part.

Conclusions

- Will Lua conceptors take this into account?
- Important to model and study algorithms implemented in practice.

Thank you!