다양한표본분포

χ^2 -분포

- χ²-분포
 - 표본분산과 관련이 있는 분포
 - χ^2 -분포의 모수 : 자유도 k
 - 자유도가 작을 때 꼬리가 오른쪽으로 길게 늘어지는 형태이고,
 자유도가 증가할 수록 정규분포와 유사하게 평균을 중심으로 좌우대칭 형태를 갖습니다.

χ^2 -분포

- χ²-분포
 - 표준정규분포로부터 독립적으로 추출한 k개의 확률표본 $Z_1, Z_2, ..., Z_k$ 에 대해,
 - 각각 확률표본의 제곱은 각각 자유도가 1인 χ^2 -분포를 따릅니다. $({Z_i}^2 \sim \chi^2(1))$
 - 확률표본들의 제곱의 합 ${Z_1}^2 + {Z_2}^2 + ... + {Z_k}^2 = \sum_{i=1}^k {Z_i}^2$ 은 자유도가 k인 χ^2 -분포를 따릅니다.
 - 자유도가 k인 χ^2 -분포의 기댓값과 분산은 다음과 같습니다. $(X \sim \chi^2(k))$
 - E(X) = k, Var(X) = 2k

χ^2 -분포

- 표본분산과 χ^2 -분포
 - ① $X_1, X_2, ..., X_n$ 은 정규분포 $N(\mu, \sigma^2)$ 으로부터 추출한 n개의 확률표본입니다.
 - ② 표본평균을 \bar{X} , 표본분산을 $S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$ 이라 하고, 확률변수 $V=\frac{\sum_{i=1}^n(X_i-\bar{X})^2}{\sigma^2}$ 이라 할 때,
 - ③ ②에 의해, $V=\frac{(n-1)S^2}{\sigma^2}$ 이 됩니다. $((n-1)S^2=\sum_{i=1}^n(X_i-\bar{X})^2)$
 - V는 자유도가 (n-1) 인 χ^2 -분포를 따릅니다. $(V \sim \chi^2(n-1))$
 - ④ 표본분산 S^2 의 기댓값
 - $V = \frac{(n-1)S^2}{\sigma^2}$ 으로부터 $S^2 = \frac{\sigma^2}{n-1}V$ 이고 기댓값은 다음과 같습니다. $E(S^2) = E\left(\frac{\sigma^2}{n-1}V\right) = \frac{\sigma^2}{n-1}E(V) = \frac{\sigma^2}{n-1}(n-1) = \sigma^2, \quad V \sim \chi^2(n-1), E(V) = n-1$
 - 표본분산 S^2 의 기댓값은 모분산 σ^2 입니다.

t-분포

- t-분포
 - 정규분포처럼 평균을 중심으로 좌우 대칭입니다.
 - t-분포의 모수는 자유도이며, 자유도에 따라 분포의 모양이 달라집니다.
 - t-분포는 정규분포와 비슷한 형태지만, 평균 주변에서 상대적으로 밀도가 낮고 양 끝으로 갈수록 꼬리 부분이 두툼한 형태를 갖습니다.
 - 또한 자유도가 증가할수록 표준정규분포를 닮아갑니다.

t-분포

• *t*-분포

- 표본평균의 분포와 관련이 있습니다.
- 두 개의 확률변수 Z와 V가 각각 표준정규분포와 자유도가 k인 χ^2 -분포를 따르고($Z\sim N(0,1^2)$, $V\sim \chi^2(k)$) 서로 독립인 경우 통계량 T를 다음과 같이 정의할 때,

$$T = \frac{Z}{\sqrt{V/k}}$$

- 통계량 T는 자유도가 k인 t-분포를 따릅니다 $(T \sim t(k))$.
- t-분포의 기댓값과 분산 : $X \sim t(k)$

•
$$E(X) = 0$$
, $Var(X) = \frac{k}{k-2}$, $(k > 2)$

t-분포

- 표본평균의 분포로써의 t-분포
 - 정규분포로부터 추출된 n개의 확률표본 $X_1, X_2, ..., X_n$ 의 평균들의 분포는 정규분포를 따름 $(N(\mu, \left(\frac{\sigma}{\sqrt{n}}\right)^2))$ 을 앞에서 살펴봤습니다.
 - 표본평균들의 분포는 정규분포를 따르므로 $Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1^2)$
 - 정규분포로부터 추출된 n개의 확률표본 $X_1, X_2, ..., X_n$ 의 표본평균을 \bar{X} , 표본분산을 S^2 (표준편차 S) 이라 하면 다음의 통계량 T는 자유도가 (n-1)인 t분포를 따릅니다.

$$T = \frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t(n - 1)$$

- 정규분포의 분산(표준편차)를 알지 못하는 경우 정규분포를 이용한 계산을 할 수 없어 표본들의 분산(표준편차)을 이용한 t-분포를 사용합니다.
- 표본의 개수가 클수록 t-분포의 자유도가 증가하여 표준정규분포로 근사한 계산을 할 수 있습니다.

- **F**-분포
 - 두 집단의 분산을 비교할 경우에 유용하게 사용하는 분포입니다.
 - 두 χ^2 -분포를 이용하는 분포로 두 χ^2 -분포의 모수들을 모수로 사용합니다.

- **F**-분포
 - 서로 독립인 두 개의 확률변수 V_1, V_2 가 각각 자유도가 k_1, k_2 인 χ^2 -분포를 따르고($V_1 \sim \chi^2(k_1), V_2 \sim \chi^2(k_2)$), 각각의 확률변수를 각각의 자유도로 나눈통계량 F를 다음과 같이 정의할 때

$$F = \frac{V_1}{V_2/k_1}$$

• 통계량 F는 자유도가 (k_1, k_2) 인 F-분포를 따릅니다. $(F \sim F(k_1, k_2))$

- 두 표본분산 분산비로써로의 F-분포
 - F-분포는 독립인 두 χ^2 -분포의 비율을 이용하는 것으로 두 모집단의 분산 비율을 알고자 할 때 사용할 수 있습니다.
 - 두 개의 정규분포 $(N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$ 에서 확률표본 $X_1, X_2, ..., X_n$ 과 $Y_1, Y_2, ..., Y_m$ 을 서로 독립으로 추출했을 때, 각 확률표본의 통계량 $V_1 = \frac{(n-1)S_1^2}{\sigma_1^2}$ 은 자유도가 (n-1)인 χ^2 -분포를, $V_2 = \frac{(m-1)S_2^2}{\sigma_2^2}$ 은 자유도가 (m-1)인 χ^2 -분포를 따릅니다 (S_1^2, S_2^2) 은 각 확률표본의 표본분산).
 - 이 때 V_1 , V_2 가 서로 독립이고 각각을 자유도 (n-1)과 (m-1)로 나눈 값의 비율인 다음의 통계량 F는 자유도가 (n-1, m-1)인 F분포를 따릅니다. $(F \sim F(n-1, m-1))$

$$F = \frac{\frac{V_1}{(n-1)}}{\frac{V_2}{(m-1)}} = \frac{\frac{\frac{(n-1)S_1^2}{\sigma_1^2}}{n-1}}{\frac{(m-1)S_2^2}{\sigma_2^2}} = \frac{\frac{S_1^2}{\sigma_1^2}}{\frac{S_2^2}{\sigma_1^2}}$$

• **F**-분포

• 통계량
$$F = \frac{{s_1}^2/{\sigma_1}^2}{{s_2}^2/{\sigma_1}^2}$$
에서, $P(a < F < b) = P\left(a < \frac{{s_1}^2/{\sigma_1}^2}{{s_2}^2/{\sigma_1}^2} < b\right) = P\left(a \frac{{s_2}^2}{{s_1}^2} < \frac{{\sigma_2}^2}{{\sigma_1}^2} < b \frac{{s_2}^2}{{s_1}^2}\right)$

• 자유도가 k인 t-분포를 따르는 통계량 $T=\frac{Z}{\sqrt{V/k}}$ 에 대해 다음이 성립하여 $T^2 \sim F(1,k)$ 입니다.

$$T^2 = \frac{Z^2}{V/k} = \frac{Z^2/1}{V/k} = \frac{V_1/1}{V/k'}$$
 $Z^2 = V_1 \sim \chi^2(1)$

- 확률변수 X가 자유도가 (n, m)인 F-분포를 따를 때 기댓값과 분산
 - $E(X) = \frac{m}{m-2}$, $m \ge 3$
 - $Var(X) = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}, \quad m \ge 5$

함수	시작문자	함수명	함수 형태
확률함수 $P(X=x)$	d	chisq t f	dchisq(x, df) dt(x, df) df(x, df1, df2)
분포함수 $P(X \le x)$	р	chisq t f	pchisq(x, df) pt(x, df) pf(x, df1, df2)
분위수함수 $P(X \le x) = q$	q	chisq t f	qchisq(q, df) qt(q, df) qf(q, df1, df2)
난수생성함수	r	chisq t f	rchisq(n. df) rt(n, df) rf(n, df1, df2)

- 자유도가 3인 χ^2 -분포 $(X \sim \chi^2(3))$
 - *P*(*X* ≤ 3) : 기댓값 이하일 확률

```
> pchisq(3, df=3)
[1] 0.6084
```

- *P*(*X* ≤ *x*) = 0.95 : 어떤 값 이하의 확률이 0.95인지
 - 1 P(X > x) = 0.95

```
> qchisq(0.95, df=3)
[1] 7.815
```

• 자유도가 3인 χ^2 -분포로 부터 10개의 난수 추출(표본 추출)

```
> rchisq(10, df=3)
[1] 1.5351 0.6144 0.4465 2.0851 7.4897
[6] 1.3151 1.8537 2.4792 6.6432 1.0466
```

- 자유도가 5인 t-분포 (*X∼t*(5))
 - $P(X \le 0)$: 기댓값 이하일 확률 (t-분포는 좌우대칭입니다.)

```
> pt(0, df=5)
[1] 0.5
```

• $P(-2.571 \le X \le 0)$

```
> pt(0, df=5) - pt(-2.571, df=5)
[1] 0.475
```

• *P*(*X* ≤ *x*) = 0.975 : 어떤 값 이하의 확률이 0.975인지

```
> qt(0.975, df=5)
[1] 2.571
```

• 자유도가 5인 t-분포로 부터 10개의 난수 추출(표본 추출)

```
> rt(10, df=5)
[1] -0.4034 -1.7081 0.7053 -0.7799 -0.1970
[6] 0.2080 1.3272 -0.5517 0.9401 0.4124
```

- 자유도가 (3, 5)인 **F**-분포 (**F∼F(3, 5**))
 - $P(X \le 5.409)$

```
> pf(5.409, df1=3, df2=5)
[1] 0.95
```

- *P*(*X* ≤ *x*) = 0.95 : 어떤 값 이하의 확률이 0.95인지
 - 1 P(X > x) = 0.95

```
> qf(0.95, df1=3, df2=5)
[1] 5.409
```

• 자유도가 (3, 5)인 F-분포로 부터 10개의 난수 추출(표본 추출)

```
> rf(10, df1=3, df2=5)
[1] 1.4447 0.4273 2.7416 0.6569 0.4024
[6] 1.0139 0.7866 0.7381 0.2702 0.7502
```