Generating Long Sequences with Sparse Transformers Rewon Child et al., 2019

Rui Yoshinaga

December 5, 2021

Background

- Consider the task of autoregressive sequence generation
- The joint probability of sequence $x = \{x_1, \dots, x_n\}$ is modeled as

$$p(x) = \prod_{i=1}^{n} p(x_i \mid x_1, \dots, x_{i-1}; \theta)$$
 (1)

where θ is a network

- θ : Transformer in decoder-only mode
 - Input: sequence of tokens
 - Output: categorical distribution
 - Objective: maximize the log-probability of the data wrt heta

Formularization of the Self-Attention

- Self-attention layer:
 - a matrix of input embeddings $X \to \text{output matrix}$
 - parameterized by a connectivity pattern $S = \{S_1, \dots, S_n\}$

$$\operatorname{attend}(X, S) = \left[a(\boldsymbol{x}_i, S_i) \right]_{i \in \{1, \dots, n\}}$$
(2)

$$a(\boldsymbol{x}_i, S_i) = \operatorname{softmax}\left(\frac{[W_q \boldsymbol{x}_i] K_{S_i}^T}{\sqrt{d}}\right) V_{S_i}$$
 (3)

$$K_{S_i} = \begin{bmatrix} W_k \boldsymbol{x}_j \end{bmatrix}_{j \in S_i} \quad V_{S_i} = \begin{bmatrix} W_v \boldsymbol{x}_j \end{bmatrix}_{j \in S_i}$$
 (4)

$$\operatorname{attention}(X) = W_p \cdot \operatorname{attend}(X, S) \tag{5}$$

where W_q, W_k, W_v, W_p : the weight matrix

Calculating the Self-Attention

$$\begin{aligned} \text{attention}(X) &= W_p \cdot \text{attend}(X, S) = W_p \cdot \left[a(\boldsymbol{x}_i, S_i) \right]_{i \in \{1, \dots, n\}} \\ &= W_p \cdot \text{softmax} \left(\frac{\left[W_q \boldsymbol{x}_i \right] \left[W_k \boldsymbol{x}_j \right]_{j \in S_i}^T}{\sqrt{d}} \right) \left[W_v \boldsymbol{x}_j \right]_{j \in S_i} \end{aligned}$$

- Example: $i = 5, \ a(x_5, S_5)$
 - $S_5 = \{1, 2, 3, 4, 5\}$

Standard Transformer

attention matrix =
$$\left[\alpha_i\right]_{i\in\{1,\dots,n\}}$$
 = \vdots \vdots \vdots

- Full self-attention for autoregressive models defines $S_i = \{j \mid j \leq i\}$
- Become intractable as n grows; $\mathcal{O}(n^2)$
- Replace S_i with efficient $A_i \subset S_i$ Let $|A_i| \propto \sqrt[p]{n}$; $\mathcal{O}(n\sqrt[p]{n})$
 - $\bullet \quad \text{In this work } p=2$

(a) Transformer

Qualitative assessment of learned attention patterns

- Learned attention patterns from a 128-layer network
 - a) Early layers: locally connected pattern like convolution
 - b) Layers 19-20: to split into row and column attention
 - c) Several layers: global, data-dependent patterns
 - d) Layers 64-128: high sparsity, with activating rarely

Sparse Transformer (strided)

(b) Sparse Transformer (strided)

Let stride $l \approx \sqrt{n}$ $A_i^{(1)} = \{t,t+1,\ldots,i\}$ $A_i^{(2)} = \{j \mid (i-j) \mod l = 0\}$

- Useful for data with periodic structure
 - image, music

where $t = \max(0, i - l)$

In left figure, i=28, l=5 $t=\max(0,28-5)=23$ $A_{28}^{(1)}=\{23,24,25,26,27,28\} \text{ (upper left)}$ $A_{28}^{(2)}=\{4,10,16,22,28\} \text{ (upper right)}$

Sparse Transformer (fixed)

(c) Sparse Transformer (fixed)

• Let stride $l \approx \sqrt{n}$

$$A_i^{(1)} = \{j \mid \lfloor i/l \rfloor = \lfloor j/l \rfloor\}$$

$$A_i^{(2)} = \{j \mid j \mod l \in \{t, t+1, \dots, l\}\}$$

where t = l - c, c is hyperparameter

- Useful for data without periodic structure
 - text

In left figure,
$$i=28, l=6, c=0$$

$$t=6-0=6$$

$$A_{28}^{(1)}=\{24,25,26,27,28\} \text{ (upper left)}$$

$$A_{28}^{(2)}=\{6,12,18,24\} \text{ (upper right)}$$

Factorized attention heads

The simplest technique:

$$\operatorname{attention}(X) = W_p \cdot \operatorname{attend}(X, A^{(r \mod p)}) \tag{6}$$

where r: index of residual block, p: number of attention heads

- Use one attention type per residual block
- Interleave them sequentially or at a ratio
- Marged head:

$$\operatorname{attention}(X) = W_p \cdot \operatorname{attend}(X, \bigcup_{m=1}^p A^{(m)})$$
 (7)

- Merge factorized attentions, use it as a single attention
- Multi-head attention:

$$\operatorname{attention}(X) = W_p \left[\operatorname{attend}(X, A)^{(i)} \right]_{i \in \{1, \dots, n_h\}}$$
(8)

• n_h attention products are computed in parallel then concatenated

Sparse Transformer

Define a network of N layers as follows:

$$H_0 = \text{embed}(X, W_e) \tag{9}$$

$$H_k = H_{k-1} + \operatorname{resblock}(H_{k-1}) \tag{10}$$

$$y = \operatorname{softmax}(\operatorname{norm}(H_N) W_{out})$$

$$a(H) = dropout(attention(norm(H)))$$
 (12)

$$b(H) = \operatorname{dropout}(\operatorname{ff}(\operatorname{norm}(H + a(H))))$$
 (13)

$$resblock(H) = a(H) + b(H)$$
 (14)

$$ff(x) = W_2 f(W_1 x + b_1) + b_2$$

$$f(x) = GELU(x) = x \cdot sigmoid(1.702x)$$

$$\operatorname{embed}(X, W_e) = \left[\boldsymbol{x}_i W_e + \sum_{j=1}^{n_{emb}} \boldsymbol{o}_i^{(j)} W_j \right]_{\boldsymbol{x}_i \in X} \tag{15}$$

(11)

Experiments

Task: Density modeling

Image: CIFAR-10, ImageNet 64x64

Text: EnWik8

Audio: Classical music

Evaluation: Bits/byte

Negative log-likelihood per byte

Results:

Sota in images and text

Easily adaptable to raw audio

Model	Bits per by
CIFAR-10	
PixelCNN (Oord et al., 2016)	3.03
PixelCNN++ (Salimans et al., 2017)	2.92
Image Transformer (Parmar et al., 2018)	2.90
PixelSNAIL (Chen et al., 2017)	2.85
Sparse Transformer 59M (strided)	2.80
Enwik8	
Deeper Self-Attention (Al-Rfou et al., 2018)	1.06
Transformer-XL 88M (Dai et al., 2018)	1.03
Transformer-XL 277M (Dai et al., 2018)	0.99
Sparse Transformer 95M (fixed)	0.99
ImageNet 64x64	
PixelCNN (Oord et al., 2016)	3.57
Parallel Multiscale (Reed et al., 2017)	3.7
Glow (Kingma & Dhariwal, 2018)	3.81
SPN 150M (Menick & Kalchbrenner, 2018)	3.52
Sparse Transformer 152M (strided)	3.44
Classical music, 5 seconds at 12 kHz	
Sparse Transformer 152M (strided)	1.97

ImageNet 64x64

Unconditional samples from ImageNet 64x64

Classical music from raw audio

- Model: Strided Sparse Transformer 152M parameters
- Task: 12kHz audio generation
 - 65535 sequence length = 5 second audio at 12kHz
 - Trained models on classical music dataset
- Samples: https://openai.com/blog/sparse-transformer/
 - Clearly demonstrate global coherence
 - Exhibit a variety of play styles and tones
- Sequence length vs. Model capacity
 - The largest model which entirely fit into 16GB V100 accelerators
 - We could use factorized self-attention on sequences over 1M timesteps, albeit with extremely few parameters (3M)

Parameters	Bits per byte
152M	1.97
25M	2.17
3M	2.99
	152M 25M

Conclusion

- Sparse Transformer
 - Reduce the computation in the self-attention
- Factorized Self-Attention
 - Separate the self-attention across several attention patterns
- Better performances on density modeling of long sequences
 - Sota in images and text, Easily adaptable to raw audio

Learnable Embedding

Add n_{emb} embeddings to each input location

$$\text{embed}(X, W_e) = \left[\boldsymbol{x}_i W_e + \sum_{j=1}^{n_{emb}} \boldsymbol{o}_i^{(j)} W_j \right]_{\boldsymbol{x}_i \in X}$$

where $m{x}_i$: one-hot encoded ith element in the sequence $m{o}_i^{(j)}$: one-hot encoded position of $m{x}_i$ in the jth dimension

- For images: $n_{emb} = 3$ (row, column, channel)
- For text and audio: $n_{emb} = 2$ (row, column)

Model details in Experiments

CIFAR-10

- Strided Sparse Transformer
 - 2 heads, 128 layers, d = 256
- CIFAR-10: 3,072 contexts

Text

- Fixed Sparse Transformer
 - 8 heads, 30 layers, d = 512, stride = 128, c = 32, merged head
- EnWik8 dataset: 12,288 contexts

ImageNet 64x64

- Strided Sparse Transformer
 - 16 heads, 48 layers, d = 512, stride = 128

Model Comparison

Model	Bits per byte	Time/Iter
Enwik8 (12,288 context)		
Dense Attention	1.00	1.31
Sparse Transformer (Fixed)	0.99	0.55
Sparse Transformer (Strided)	1.13	0.35
CIFAR-10 (3,072 context)		
Dense Attention	2.82	0.54
Sparse Transformer (Fixed)	2.85	0.47
Sparse Transformer (Strided)	2.80	0.38

- Running signiticantly faster than full attention
- Converged to lower error