Bigtable : A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber *Google, Inc.*

OSDI 'o6

August 24, 2011 Hye Chan Bae

- Introduction
- Data Model
- Implementation
- Refinements
- Evaluation
- Conclusions

Managing structured data

GFS(Google File System) for tremendous data

Managing structured data

We need a storage system like database in

Distributed Environment!!

Bigtable

- A distributed storage system
 - Wide applicability
 - Scalability
 - High performance
 - High availability
- Used by more than 60 Google products and projects
 - Google Analytics
 - Google Finance
 - Orkut
 - Personalized Search
 - Writely
 - Google Earth
 - **–** ...

Bigtable & Database

- Bigtable ≒ Database?
 - Shares many implementation strategies with databases

Table

	Column1	Column2	Column3
Row1			
Row2			
Row3			

Database

File System

Bigtable

GFS

Bigtable & Database (cont.)

- Bigtable ≠ Database!!
 - Does not support a full relational data model
 - But provides clients with a simple data model

- Introduction
- Data Model
- Implementation
- Refinements
- Evaluation
- Conclusions

Table Structure

Extends the concepts of table in Relational DB

Multi Dimensional Sorted Map

(row:string, column:string, time:int64) → string

Example: Webtable

- A kind of Bigtable
 - Want to keep a copy of a large collection of web pages
 - Could be used by many different projects

- Introduction
- Data Model
- Implementation
- Refinements
- Evaluation
- Conclusions

Tablet

- Data is distributed to a number of commodity servers
- Could split a table into row ranges
 - Called "tablet"
- Tablets are distributed and managed

3 components

- Master
- Tablet Server

Tablet Structure

- SSTable
 - A read-only table for search in GFS
 - A tablet is composed by SSTables
 - Data & Index
 - The index is loaded into memory when the SSTable is opened

Tablet Structure (cont.)

Memtable

- SSTable can't be updated (read-only table)
- A small writable table in memory per tablet
- Commit log file is created & updated before write task

Tablet Serving

Write operation

Tablet Serving (cont.)

Read operation

Accessing Tablet from Client

- METADATA
 - Information about tablet
 - is also a table
 - And is split into tablets
- Searching tablet location

- Basically, B+ tree algorithm is used in 3-level

Other

METADATA tablets

Chubby file

(1st METADATA tablet)

UserTable 1

- Introduction
- Data Model
- Implementation
- Refinements
- Evaluation
- Conclusions

Locality Groups

- Some applications use only specific column families
- Clients can group multiple column families together
 - Each SSTable can store a locality group
 - More efficient reading
- Webtable

Caching for read performance

Scan Cache

- Higher-level cache
- Caches the key-value pairs
- Most useful for applications that tend to read the same data repeatedly

Block Cache

- Lower-level cache
- Caches SSTables blocks that were read from GFS
- Useful for applications that tent to read sequential data

Commit-log implementation

- A large number of log files
 - A separate log file per tablet
 - Could cause a large number of disk seeks

- For recovery,
 - Sorting the commit log entries in order of the keys
 <table, row name, log sequence number>

- Introduction
- Data Model
- Implementation
- Refinements
- Evaluation
- Conclusions

A setting cluster

- 1,786 machines
 - 2 * 400 GB IDE Hard drives
 - 2 * 2 GHz dual-core Opteron chipsets
 - A single gigabit Ethernet link
- Used the same number of clients as table servers
- Read and write 1000-byte values to Bigtable

Values read/written per second

	# of Tablet Servers			
Experiment	1	50	250	500
random reads	1212	593	479	241
random reads (mem)	10811	8511	8000	6250
random writes	8850	3745	3425	2000
sequential reads	4425	2463	2625	2469
sequential writes	8547	3623	2451	1905
scans	15385	10526	9524	7843

- Introduction
- Data Model
- Implementation
- Refinements
- Evaluation
- Conclusions

Conclusions

- As of August 2006, more than 60 projects are using Bigtable
 - Users like the performance and high availability
 - Can scale the capacity of clusters by simply adding machines
- Unusual interface
 - How difficult it has been for our users to adapt to using it
 - Many Google products successfully use Bigtable well in practice

Future works

- Supports for secondary indices
- Builds cross-data-center infrastructure

