Etude des groupes, sous-groupes et transformations de motifs

UTBM - P2011 - MT51 - TP 1

Le plan \mathcal{P} est rapporté à un repère orthonormé direct $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$. On note r_{θ} la rotation de centre O et d'angle θ , s la symétrie orthogonale de miroir $\left(O, \overrightarrow{i}\right)$.

1 Outils de base

- 1. Ecrire une fonction $rote(\theta,(x,y))$ qui, à partir d'un point m(x,y) et de θ fournit le couple (x',y') des coordonnées du point $m' = r_{\theta}(m)$.
- 2. Ecrire une fonction sym((x,y)) qui, à partir d'un point m(x,y) fournit le couple (x',y') des coordonnées du point m'=s(m).

2 Etude du groupe diédral (D_{2n}, \circ) pour n = 4

On pose d'abord n = 4 et $r_{\theta} = r_{\pi/2}$.

1. On considère l'ensemble des transformations du plan défini par

$$D_8 = \{\sigma_0, ..., \sigma_{2n-1}\} = \{r^0, r^1, r^2, r^3, s, s \circ r^1, s \circ r^2, s \circ r^3\}.$$

En utilisant les résultats des travaux dirigés, rappeler le lemme fondateur et écrire des fonctions :

- $trad_dec_qu(k)$, qui à partir de $k \in \{0, ..., 2n-1\}$, fournit (α, β) tel que, en base quatre, k s'écrive $\alpha\beta$;
- $trad_qu_dec((\alpha, \beta))$, qui à partir de (α, β) considéré comme écriture en base quatre, renvoie l'entier décimal k associé.
- 2. Utiliser les résultats antérieurs et le travail préparatoire mené en td, pour construire la table $(tab(i,j))_{0 \le i,j \le 2n-1}$ de la loi \circ sur D_8 . Pour ce faire, on écrira une fonction $compose(\sigma_i, \sigma_j)$ qui à partir des transformations σ_i et σ_j de D_8 , détermine l'entier k compris entre 0 et 2n-1 défini par : $\sigma_i \circ \sigma_j = \sigma_k$.
- 3. Faire le plan des propriétés à établir pour démontrer que (D_8, \circ) est un groupe non abélien ; on fournira le plan sommaire des algorithmes qui permettront de l'établir. Ecrire une fonction inverse(i) qui, à partir de la transformation σ_i renvoie le numéro j de son inverse dans le groupe ; on évitera tout algorithme de recherche poussif et on privilégiera d'éventuels résultats théoriques obtenus en travaux dirigés.
- 4. Stocker la table relative au groupe diédral D_8 .
- 5. Déterminer l'ensemble des sous-groupes de D_8 , en utilisant les sous-groupes engendrés par chacun des éléments du groupe, puis par deux éléments bien choisis.
 - Construire les outils logiciels nécessaires en prévoyant leur généralisation éventuelle.
 - Fournir le diagramme de Hasse des sous-groupes de D_8 pour la relation d'inclusion.

3 Etude du groupe diédral (D_{2n}, \circ) pour n quelconque

Reprendre la théorie antérieure (hormis la question 5, dans un premier temps...) pour un entier n quelconque supérieur à 2. On écrira les fonctions généralisées de celles déjà écrites, en considérant n comme un paramètre complémentaire.

4 Transfert d'un motif

On considère un motif de base $\mathcal{M}_0 = [OA] \cup [AB]$ constitué de la réunion des segments indiqués, avec A(2,2) et B(2,1).

On fait opérer les transformations du plan sur les points, comme d'ordinaire, via $\sigma * m = \sigma(m)$.

- 1. Pour chaque sous-groupe H de D_8 , représenter le motif \mathcal{M}_H obtenu en faisant opérer le sous-groupe H sur \mathcal{M}_0 . On pourra écrire une fonction $creat_motif(H)$ qui à partir du sous-groupe passé comme paramètre sous une forme choisie par l'étudiant, produira une figure représentant \mathcal{M}_H .
- 2. Expliquez brièvement, mais avec précison, quelle stratégie vous adopterez, si vous devez transférer un motif obtenu à partir d'une forme de base élémentaire, sous l'opération d'un groupe donné.
- 3. Prolongement éventuel : reprendre l'exercice avec un motif de base \mathcal{M}_0 plus élaboré !