Комитет по образованию Правительства Санкт-Петербурга **САНКТ-ПЕТЕРБРУГСКИЙ КОЛЛЕДЖ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ**

Отчет по практической работе МДК 01.02 «Разработка мобильных приложений» Разработка интерактивного приложения для анализа спектров

Выполнил

студент группы 493:

Лукьянов И. А.

Преподаватель: Фомин А.В.

Структура базы данных

База данных состоит из 4 таблиц:

- 1. DisplaySettings хранит настройки отображения.
- 2. LastTag хранит последний выбранный тэг.
- 3. LastPosition хранит последнее место на спектре и последний выбранный химический элемент.
- 4. APIEndPoint хранит конечную точку API.

ER диаграмма представлена на рисунке 1.

Рисунок 1 – ER диаграмма базы данных

Таблица DisplaySettings

Содержит сведения о настройках отображения. Таблица состоит из двух столбцов:

- 1. divisions вкл./выкл. отображение делений.
- 2. intensity интенсивность фонового градиента.

Подробное описание столбцов представлено на рисунке 2.

DisplaySettings		settings of display						
#	name	type	size	default	primary	foreign	unique	description
1	divisions	int	,		no	-	no	enabled/disabled
2	instentisy	int	1		no	•	no	intesity of gradient

Рисунок 2 – Описание столбцов таблицы DisplaySettings

Таблица LastTag

Содержит сведения о последнем сохранённом тэге. Таблица состоит из одного столбца:

1. tag − тэг.

Подробное описание столбцов представлено на рисунке 3.

LastTag		last saved tag						
#	name	type	size	default	primary	foreign	unique	description
1	tag	text	-		no	-	no	tag name

Рисунок 3 – Описание столбцов таблицы LastTag

Таблица LastPosition

Содержит сведения о последнем месте и масштабе на спектре, а также о последнем выбранном химическом элементе. Таблица состоит из трёх столбцов:

- 1. wlen_min минимальная длина волны.
- 2. wlen_max максимальная длина волны.
- 3. atomic_num выбранный химический элемент.

Подробное описание столбцов представлено на рисунке 4.

LastPosition		last fixed position and atom						
#	name	type	size	default	primary	foreign	unique	description
1	wlen_min	float	-		no	-	no	min wave length
2	wlen_max	float	-		no	-	no	max wave length
3	atomic_num	int	-		no	-	no	atomic number

Рисунок 4 – Описание столбцов таблицы LastPosition

Таблица APIEndPoint

Содержит сведения о конечной точке АРІ. Таблица состоит из одного столбца:

1. endpoint – конечная точка API.

Подробное описание столбцов представлено на рисунке 5.

APIEndPoint		endpoint of api						
#	name	type	size	default	primary	foreign	unique	description
1	endpoint	text	-		no	-	no	api endpoint

Рисунок 5 – Описание столбцов таблицы APIEndPoint

Интерфейс приложения

Приложение состоит из 4 форм:

- 1. Main Form: служит для отображения спекта и изменения масштаба, а также выбора химического элемента.
- 2. Experiments Form: служит для отображения экспериментов по выбранному тэгу, также на форме имеется возможность изменения конечной точки API.
- 3. DisplaySettings Form: форма для задания настроек отображения спекта.
- 4. Тад Form: форма для выбора тэга.

Форма Main Form

На рисунке 6 показан макет внешнего вида основной формы.

Рисунок 7 – Макет формы Main Form

На рисунке 7 показан внешний вид основной формы в приложении.

Рисунок 8 – Форма Main Form в приложении

Форма Experiments Form

На рисунке 9 показан макет внешнего вида формы экспериментов.

Рисунок 9 – Макет формы Experiments Form

На рисунке 10 показан внешний вид формы экспериментов в приложении.

Рисунок 10 – Форма Experiments Form в приложении

Форма DisplaySettings Form

На рисунке 11 показан макет внешнего вида формы настроек отображения.

Рисунок 11 – Макет формы DisplaySettings Form

На рисунке 12 показан внешний вид формы настроек отображения в приложении.

Рисунок 12 – Форма DisplaySettings Form в приложении

Форма Tag Form

На рисунке 13 показан макет внешнего вида формы выбора тэга.

Рисунок 13 – Макет формы Tag Form

На рисунке 14 показан внешний вид формы выбора тэга в приложении.

Рисунок 14 – Форма Tag Form в приложении

Описание протокола взаимодействия

Для взаимодействия с базой данных мобильное приложение использует API на основе хранимых процедур и сервера, который организует вызов процедур по протоколу HTTP и обмен данными.

Всего доступно 12 функций, список которых представлен на рисунке 15.

- 1. /rpc/get_lines получение данных спектра по химическому элементу.
- 2. /rpc/run_experiments запуск эксперимента.
- 3. /rpc/get_experiment_data получить данные эксперимента.
- 4. /rpc/get_tags получить все существующие тэги.
- 5. /rpc/get_luminace_profile получение профиля яркости эксперимента.
- 6. /rpc/get_status получение статуса эксперимента.
- 7. /rpc/get_color_profile получение цветового профиля эксперимента.
- 8. /rpc/get_experiments получение списка экспериментов по тэгу.
- 9. /rpc/nm_to_rgb_range получение цветов для заданной длины волны.
- 10./rpc/set_calibration калибровка эксперимента
- 11./rpc/get_calibration получение калибровки эксперимента.
- 12./rpc/get_elements получение списка всех химических элементов.

Рисунок 15 – Список функций

1. Функция /rpc/get_lines

Обеспечивает возможность получения спектра для заданного химического элемента.

Входных параметры:

— atomic_num – номер химического элемента.

Выходными параметрами будет массив данных со следующими характеристиками:

- wavelength длина волны.
- rel_intensity относительная интенсивность.

- red значение красного цвета.
- green значение зеленого цвета.
- blue значение синего цвета.

Пример вызова функции показан на рисунке 16.

Рисунок 16 – Вызов функции /rpc/get_lines

2. Функция /rpc/run_experiment

Обеспечивает возможность запуска нового эксперимента. А именно загрузки фото спектра (максимальный размер $-4~{\rm K}$ б) в базу данных и выделение линий спектра для заданного сегмента.

Входные параметры:

- b64image изображение в формате Base64
- note название эксперимента.
- tag тэг эксперимента, если такого не существует будет создан.
- x0 начальная координата по горизонтали.
- х1 конечная координата по горизонтали.
- у0 начальная координата по вертикали.
- у1 конечная координата по вертикали.

Выходные параметры:

— число – уникальный идентификатор созданного эксперимента.

Пример вызова функции показан на рисунке 17.

Рисунок 17 – Вызов функции /rpc/run_experiment

3. Функция /rpc/get_experiment_data

Обеспечивает возможность получение данных эксперимента.

Входные параметры:

— experiment – уникальный идентификатор эксперимента.

Выходные параметры:

- created_at дата и время начала эксперимента.
- tag тэг эксперимента.
- note название эксперимента.
- status статус эксперимента (создан/в процессе/завершён).
- b64image изображение в формате Base64.
- x0 начальная координата по горизонтали.
- х1 конечная координата по горизонтали.
- у0 начальная координата по вертикали.
- у1 конечная координата по вертикали.

Пример вызова функции показан на рисунке 18.

Рисунок 18 – Вызов функции /rpc/get_experiment_data

4. Функция /rpc/get_tags

Обеспечивает возможность получение списка всех существующих тэгов.

Входные параметров нет.

Выходными параметрами будет массив следующих элементов:

— строка – название тэга.

Пример вызова функции показан на рисунке 19.

Рисунок 19 – Вызов функции /rpc/get_tags

5. Функция /rpc/get_luminace_profile

Обеспечивает возможность получения профиля яркости эксперимента, если данный эксперимент уже завершён.

Входные параметры:

— experiment_id – уникальный идентификатор эксперимента.

Выходными параметрами будет массив следующих элементов:

- nm значение нанометров.
- lum значение яркости.

Пример вызова функции показан на рисунке 20.

Рисунок 21 – Вызов функции /rpc/get_luminace_profile

6. Функция /rpc/get_status

Обеспечивает возможность запуска получения статуса эксперимента.

Входные параметры:

— experiment – уникальный идентификатор эксперимента.

Выходные параметры:

— строка – статус эксперимента (создан/в процессе/завершён).

Пример вызова функции показан на рисунке 22.

Рисунок 22 – Вызов функции /rpc/get_status

7. Функция /rpc/get_color_profile

Обеспечивает возможность получения профиля цвета эксперимента, если данный эксперимент уже завершён.

Входные параметры:

— experiment_id – уникальный идентификатор эксперимента.

Выходными параметрами будет массив следующих элементов:

- nm значение нанометров.
- red значение красного цвета.
- green значение зелёного цвета.
- blue значение синего цвета.

Пример вызова функции показан на рисунке 23.

Рисунок 23 – Вызов функции /rpc/get_color_profile

8. Функция /rpc/get_experiments

Обеспечивает возможность запуска получения списка экспериментов по тэгу.

Входные параметры:

— tagname – тэг.

Выходными параметрами будет массив следующих элементов:

— id – уникальный идентификатор эксперимента.

- created_at дата и время создания эксперимента.
- note название эксперимента.
- status статус эксперимента (создан/в процессе/завершён).

Пример вызова функции показан на рисунке 24.

Рисунок 24 – Вызов функции /rpc/get_experiments

9. Функция /rpc/nm_to_rgb_range

Обеспечивает возможность расчета и получения набора цветов для заданной длины волны.

Входные параметры:

- nm_from начало в нанометрах.
- nm_to конец в нанометрах.
- steps число шагов.

Выходными параметрами будет массив следующих элементов:

— wavelength – длина волны.

- red значение красного цвета.
- green значение зелёного цвета.
- blue значение синего цвета.

Пример вызова функции показан на рисунке 25.

Рисунок 25 – Вызов функции /rpc/nm_to_rgb_range

10.Функция /rpc/set_calibration

Обеспечивает возможность запуска калибровки для заданного сегмента и длины волны эксперимента.

Входные параметры:

- experiment уникальный идентификатор эксперимента.
- new_i_max конец сегмента.
- new_i_min начало сегмента.
- new_nm_max конец длины волны.
- new_nm_min начало длины волны.

Выходные параметры:

— true/false – результат функции.

Пример вызова функции показан на рисунке 26.

Рисунок 26 – Вызов функции /rpc/set_calibration

11. Функция /rpc/get_calibration

Обеспечивает возможность возврата последней калибровки эксперимента.

Входные параметры:

— experiment – уникальный идентификатор эксперимента.

Выходными параметрами будет массив следующих элементов:

- i_max конец сегмента.
- i_min начало сегмента.
- nm_max конец длины волны.
- nm_min начало длины волны.

Пример вызова функции показан на рисунке 27.

Рисунок 27 – Вызов функции /rpc/get_calibration

12. Функция /rpc/get_elements

Обеспечивает возможность получения списка всех химических элементов нового эксперимента. А именно загрузки фото спектра (максимальный размер – 4 Кб) в базу данных и выделение линий спектра для заданного сегмента.

Входные параметров нет.

Выходными параметрами будет массив следующих элементов:

- atomic_num номер химического элемента.
- full_name полное имя элемента.

Пример вызова функции показан на рисунке 28.

Рисунок 28 – Вызов функции /rpc/get_elements

Демонстрация работы приложения

При запуске приложения отображается список экспериментов по последнему выбранному тэгу (рис. 29):

Рисунок 29 – Список экспериментов

Изменим конечную точку АРІ (рис. 30):

Рисунок 30 – Изменение конечной точки АРІ

Теперь проверим загрузку тэгов (рис. 31):

Рисунок 31 – Загрузка тэгов по новой конечной точке АРІ

Имеется возможность выбрать один из существующих тэгов, при этом список экспериментов изменяется до выхода из диалогового окна (рис. 32):

Рисунок 32 – Список тэгов

Эксперименты со статусами «создан» и «в процессе» обновляются каждую секунду и содержат информацию о пройденном с момента создания времени (рис. 33):

Рисунок 33 – Не завершённые эксперименты

При выборе элемента из списка запускается форма спектров с последним сохраненным химическим элементом и настройками отображения (рис. 34):

Рисунок 34 – Форма спектров

Имеется возможность перемещения по спектру (рис. 35):

Рисунок 35 – Перемещение по спектру

Имеется возможность изменения масштаба (рис. 36):

Рисунок 36 – Изменение масштаба

Имеется возможность выбора химического элемента из списка загруженных (рис. 37):

Рисунок 37 – Список химических элементов

Также имеется возможность задания настроек, а именно отображение делений на спектре и регулирование интенсивности фонового градиента (рис. 38):

Рисунок 38 – Настройки отображения

Изменённые настройки отображения, они применяются также до выхода из диалогового окна (рис. 39):

Рисунок 39 – Изменённые настройки

Приложение имеет собственную иконку (рис. 40):

Рисунок 40 – Иконка приложения