

Modélisation *ab-initio* des processus de diffusion lors de la croissance de films minces de nitrures métalliques : AIN et TiN

Matthieu David

Sous la responsabilité de : G. Abadias & C. Mastail En collaboration avec : A. Michel & F. Nita

Contexte

Les nitrures à base métaux de transition :

- Essentiellement composés de métaux du groupe IVb et Vb
- Particularité : présence de liaisons métalliques, covalentes et ioniques
 - → combinaison de propriétés originales

Contexte

Les nitrures à base métaux de transition :

- Propriétés mécaniques → outil de coupe dans l'industrie
- Barrière de diffusion → microélectronique
- Biocompatible → revêtement implant médical

Recherche actuelle se tourne vers de nouveaux alliages pour plus de performance

Diagramme de phase alliage ternaire Ti_{1-x}Al_xN

- Conducteur électrique
- Phase cubique B1 stable

- Isolant électrique
- Phase wurtzite B4 stable

DIMENSITION

• Le projet MC² (5 collaborateurs européens) Multiscale Computational-design of novel hard nanostructured (

➢Objectif : Approche multi-échelle

Revêtements Ti_{1-x}Al_xN

Pour comprendre l'évolution de la microstructure des films:

- Simulation kMC (diffusion à grande échelle, croissance)
 - Besoin des énergies d'activation (E_a)
- Calcul ab initio (VASP)
 - → Détermination des sites et des énergies d'adsorption (E_{ads})
 - → Détermination des chemins et des barrières de diffusion (E_a)

Importance de l'anisotropie de diffusion

- TiN largement étudié
- AlN: peu d'études sur la structure B1

kMC

microstructure, taille des grains

Objectif du stage : Étude de l'adsorption et diffusion sur (011)AIN

Validation du code kMC pour la croissance de TiN

Prédiction de la morphologie et de la microstructure; Influence de l'anisotropie de diffusion

PLAN

- Méthodologie
- Résultats
 - Adsorption des adatomes Al et N
 - Désorption N₂
 - Evidence d'un mécanisme concerté
- Conclusion et perspectives

Méthodologie

- Calculs VASP avec les méthodes GGA/LDA sur le cluster P'
- 2 systèmes différents : 8 atomes et 180 atomes
- Méthodologie de validation du potentiel :
 - Calcul du paramètre de maille a₀ et du module de compressibilité B₀
 - Calcul de l'énergie de surface γ₀₁₁
- Méthodologie pour les adsorptions :
 - Définition des sites
 - Positionnement de l'adatome au dessus du site (~ 2 Å)
 - Minimisation E(Z) à X et Y fixés
 - Relaxation X, Y et Z
 - → Calcul de l'énergie d'adsorption

$$E_{ads} = E_{syst + adatome} - (E_{syst} + E_{adatome})$$

- Méthodologie pour les diffusions :
 - Méthode NEB (résultats non présentés)

Validation du potentiel

Système = 4 atomes Al + 4 atomes N

- Traitement de V_{xc} par GGA/LDA
 - utilisation de PW et PBE pour GGA
- Paramètre de maille a₀
- Module de compressibilité B₀ (Birch Murnaghan)

a _o (Å)	B _o (GPa)
4,069 ^{PBE, PW} 4,01 ^{LDA}	253PBE, PW 277LDA
4,07 ^{[1]PBE} 4,07 ^{[2], PBE}	252 ^{[3], PW} 254,3 ^{[1]PBE} 251 ^{[2]PBE}

- LDA sous-estime a₀ et surestime B₀
 - ► Choix de la méthode GGA avec le potentiel PW
- [1] Verma, Bisht Sol. St. Sci. 12 (2010)
- [3] Holec et. al., PRB 85 (2010)
- [2] Wang et. al., Comp. Mat. Sci. 48 (2010)

Surface d'étude (011)AIN

Surface d'étude (011)AIN

Surface d'étude (011)AIN

- 90 motifs AIN
- Taille :(12,2x14,4x18,6 Å)
- Surface en toit d'usine (vallée et crête)
- Observations/calculs :
 - Oscillation distance inter-plan (011) (typique plan proche surface)
 - γ_{011} = 202,4 eV/ Å² (γ_{011} = 194* eV/ Å²)

* D. Holec et. al., Scripta Materialia (2012)

Adsorption des adatomes Al et N

- Définition des sites d'adsorption
- Stabilité relative des sites de Al
- Stabilité relative des sites de N

Définition des sites d'adsorption

Stabilité relative des sites de Al

Rappel des sites G [011] $[01\bar{1}]$ [100]

Stabilité relative des sites de Al

Site le plus stable C' (-4,49 eV)

H' (-3,75 eV) entre 2 sites stables

Profil du paysage d'adsorption de Al

Stabilité relative des sites de N

Stabilité relative des sites de N

Le site stable H' (E_{ads}=-4,97 eV)

Le site métastable E (E_{ads}=-3,05 eV)

Profil du paysage d'adsorption de N

Mécanismes de formation et de désorption de N₂

Formation N₂

- Formation de N₂ chimisorbé sur la surface (4 sites /10)
 - Longueur de liaison de N₂ gazeux :1,16 Å
 - Longueur de liaison de Al-N dans le massif : 2,03 Å

INSTITUTION PROPERTY.

Désorption de N₂

- Réalisation d'une DRAG : succession d'image à coordonnées précisées
 Z est imposée et augmente d'une étape à l'autre (pas : ~0,18 Å)
 - i. La liaison **AlN se rompt**
 - ii. Désorption de N₂ (calcul en cours)

Mécanisme N_{ad}-Al

• Mécanisme au cours de la désorption de N₂

Comparaison avec TiN

Surface (001) TiN

Méthode: AIMD

Diminution de d

Désorption après formation E_a ~2 eV

$$E_a = 1.37$$
 eV

Possible existence d'un autre mécanisme de désorption

Conclusion

- Pour Al : un site stable C' (proche site réseau)
- Pour N : un site métastable E et un site stable H' (site différent du réseau)
- Formation de N_2 chimisorbé , l'étude sur sa désorption est en cours .
- Mécanisme de reconstruction de surface

Perspectives

- Diffusion: Détermination des chemins et barrières d'énergie associées
- Adsorption/désorption de N₂(gaz)
- Évolution vers le système ternaire TiAlN : Ti sur AlN