第 2 次习题课题目

第 1 部分 课堂内容回顾

1. 多元数量值函数的微分与偏导数

- (1) 多元数量值函数的微分:
 - (a) 函数在一点的微分为函数在该点处的最佳线性逼近, 因此是一个线性函数.
 - (b) 可微蕴含连续, 但反之不对.
 - (c) 微分若存在, 则唯一.
 - (d) 线性函数在每点的微分均等于其本身.
 - (e) 多元数量值函数求微分的四则运算法则.

(2) 多元数量值函数的偏导数:

- (a) 偏导数的定义及其几何意义.
- (b) 若 f 在点 X_0 处可微, 则它在该点可导且 $\mathrm{d}f(X_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(X_0) \, \mathrm{d}x_i$.
- (c) 计算二元函数的微分的典型方法.
- (d) **连续、可导、可微与连续可导的关系:** 连续可导蕴含可微, 可微蕴含可导, 但反过来不对: 连续与可导之间一般没有蕴含关系.
- (e) 连续可导函数空间 $\mathcal{C}^{(1)}(\Omega)$; 初等函数在 **其定义区域的内部** 连续可导.

2. 多元数量值函数的方向导数与梯度

- (1) 多元数量值函数的方向导数:
 - (a) **方向导数的定义:** 方向导数为单侧极限, 所取的方向为单位向量. 因此沿着坐标轴的方向导数存在并不意味着偏导数存在.
 - (b) 若沿某坐标轴的偏导数存在,则沿该轴正、反两方向的方向导数存在且互负.
 - (c) 函数在一点处沿任意方向均有方向导数,并不意味着函数在该点可微.
 - (d) 若 f 在点 X_0 处可微, 则沿 $\vec{\ell} = (\cos \alpha_1, \dots, \cos \alpha_n)^T$ 的方向导数存在且

$$\frac{\partial f}{\partial \vec{\ell}}(X_0) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(X_0) \cos \alpha_i.$$

(2) 多元数量值函数的梯度:

- (a) **梯度的定义:** 称向量 \vec{e} 为多元数量值函数 f 在点 X_0 处的梯度, 如果 f 在 点 X_0 处沿 \vec{e} 的方向导数的值最大, 并且该值等于 $||\vec{e}||$, 此时将 \vec{e} 记作 $\operatorname{grad} f(X_0)$ 或 $\nabla f(X_0)$, 也将之记作 $\operatorname{grad} f(X_0)$.
- (b) 若多元数量值函数 f 在点 X_0 处可微, 则 f 在该点的梯度为

$$\operatorname{grad} f(X_0) = \left(\frac{\partial f}{\partial x_1}(X_0), \dots, \frac{\partial f}{\partial x_n}(X_0)\right)^T,$$

沿向量 $\vec{\ell}$ 的方向导数为 $\frac{\partial f}{\partial \vec{\ell}^0}(X_0) = \operatorname{grad} f(X_0) \cdot \vec{\ell}^0$.

- (c) 梯度运算满足与单变量函数求导类似的四则运算及复合法则.
- (d) 典型问题: 求函数在一点的梯度与最大方向导数以及沿某向量的方向导数.

3. 高阶偏导数

- (1) 二阶偏导数可交换次序的充分条件:
 - 设 $\Omega \subset \mathbb{R}^n$ 为开集. 若 $f: \Omega \to \mathbb{R}$ 在 Ω 上有二阶偏导函数 $\frac{\partial^2 f}{\partial x_j \partial x_i}$, $\frac{\partial^2 f}{\partial x_i \partial x_j}$, 且当中一个在点 $X_0 \in \Omega$ 连续, 则 $\frac{\partial^2 f}{\partial x_j \partial x_i}(X_0) = \frac{\partial^2 f}{\partial x_i \partial x_j}(X_0)$.
- (2) 设 $\Omega \subset \mathbb{R}^n$ 为开集, 而 $k \ge 0$ 为整数. 记 $\mathscr{C}^{(k)}(\Omega)$ 为 Ω 上具有 k 阶连续偏导数的 所有函数的集合.
- (3) 设 $k \ge 2$ 为整数. 若 $f \in \mathscr{C}^{(k)}(\Omega)$, 则对任意整数 r $(1 \le r \le k)$, 均有 $f \in \mathscr{C}^{(r)}(\Omega)$ 并且 f 的任意 r 阶偏导数均与求偏导的次序无关.

第 2 部分 习题课题目

- 1. 选择题:
- (1) 能推出函数 f 在点 (x_0, y_0) 可微且全微分 $df(x_0, y_0) = 0$ 的条件是 ():
- A. $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0;$
- B. 函数 f 在 点 (x_0, y_0) 处的增量 $\Delta f(x_0, y_0) = \frac{\Delta x \Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$;
- C. 函数 f 在点 (x_0, y_0) 处的增量 $\Delta f(x_0, y_0) = \frac{\sin((\Delta x)^2 + (\Delta y)^2)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}}$;
- D. 函数 f 在点 (x_0, y_0) 处的增量 $\Delta f(x_0, y_0) = ((\Delta x)^2 + (\Delta y)^2) \sin \frac{1}{(\Delta x)^2 + (\Delta y)^2}$.
- (2) $\forall (x,y) \in \mathbb{R}^2$, 令 $f(x,y) = \sqrt{|xy|}$. 则函数 f 在点 (0,0) 处 ():
- A. 连续但偏导数不存在;
- B. 偏导数存在, 但函数 f 不可微;
- C. 可微:
- D. 连续可导.
- (3) 若函数 f(x,y) 在点 (x_0,y_0) 不可微,则下列命题中一定不成立的是 ():
- A. 函数 f(x,y) 在点 (x_0,y_0) 处不连续;
- B. 函数 f(x,y) 在点 (x_0,y_0) 处沿任何方向 \vec{v} 的方向导数不存在;
- C. 函数 f(x,y) 在点 (x_0,y_0) 处的两个偏导数都存在且连续;
- D. 函数 f(x,y) 在点 (x_0,y_0) 处的两个偏导数存在且至少有一个不连续.
- (4) 设函数 f(x,y) 连续可导且在点 (1,-2) 处的两个偏导数分别为

$$\frac{\partial f}{\partial x}(1,-2) = 1, \ \frac{\partial f}{\partial y}(1,-2) = -1,$$

则函数 f 在点 (1,-2) 处增加最快的方向是 ():

A.
$$\vec{i}$$
; B. \vec{j} ; C. $\vec{i} + \vec{j}$; D. $\vec{i} - \vec{j}$.

- (5) 若函数 f(x,y) 在点 $P_0(x_0,y_0)$ 处可导,则():
- A. 函数 f 在点 P_0 处连续;
- B. 一元函数 $f(x,y_0)$ 和 $f(x_0,y)$ 分别在点 x_0 和 y_0 处连续;
- C. 函数 f 在点 P_0 处的微分为 $\mathrm{d}f(P_0) = \frac{\partial f}{\partial x}(P_0)\,\mathrm{d}x + \frac{\partial f}{\partial y}(P_0)\,\mathrm{d}y;$
- D. 函数 f 在点 P_0 处的梯度为 $\operatorname{grad} f(P_0) = (\frac{\partial f}{\partial x}(P_0), \frac{\partial f}{\partial y}(P_0))^T$.

- 2. 设 $f(x,y) = (x+y)\varphi(x,y)$, 其中 φ 在点 (0,0) 处连续, 则 $df(x,y) = (\varphi(x,y) + (x+y)\varphi_x'(x,y)) dx + (\varphi(x,y) + (x+y)\varphi_y'(x,y)) dy.$ 令 $x = 0, y = 0, 那么 df(0,0) = \varphi(0,0)(dx + dy).$
 - (1) 指出上述推理当中的错误, (2) 写出正确的解法.
- 3. 设函数 f(x,y) 在点 (x_0,y_0) 处可微, 而 $\vec{v} = \vec{i} \vec{j}$, $\vec{u} = -\vec{i} + 2\vec{j}$. 如果 $\frac{\partial f}{\partial \vec{v}}(x_0,y_0) = -2, \ \frac{\partial f}{\partial \vec{v}}f(x_0,y_0) = 1,$

求函数 f 在点 (x_0, y_0) 处的微分, 其中 \vec{i} , \vec{j} 分别表示沿 x, y 轴的单位向量.

- 4. 设 $D = [0,a] \times [0,b]$, $F:D \to \mathbb{R}$ 为函数. 求证: 存在函数 $f:[0,b] \to \mathbb{R}$ 使得 $\forall (x,y) \in D$, 均有 F(x,y) = f(y) 当且仅当 $\forall (x,y) \in D$, 均有 $\frac{\partial F}{\partial x}(x,y) = 0$.
- 5. 设 $\Omega \subseteq \mathbb{R}^2$ 为开集, 而 $(x_0, y_0) \in \Omega$. 如果 $f: \Omega \to \mathbb{R}$ 在点 (x_0, y_0) 的某个 邻域内可导且偏导数有界, 求证: 函数 f 在点 (x_0, y_0) 处连续.
- **6.** 设 $\Omega \subseteq \mathbb{R}^2$ 为开集, $(x_0, y_0) \in \Omega$, 而 $f: \Omega \to \mathbb{R}$ 为函数. 若 $\frac{\partial f}{\partial x}(x_0, y_0)$ 存在且 f 在点 (x_0, y_0) 的某个邻域内关于 y 有偏导数, 并且该偏导函数在点 (x_0, y_0) 处连续, 求证: 函数 f 在点 (x_0, y_0) 处可微.
- 7. 假设 $f: \mathbb{R}^3 \to \mathbb{R}$ 在点 $X_0 \in \mathbb{R}^3$ 可微, 而 $\vec{\ell_1}, \vec{\ell_2}, \vec{\ell_3}$ 为 \mathbb{R}^3 中互相垂直的单位向量, 求证: 在点 X_0 处, 我们有

$$\left(\frac{\partial f}{\partial \vec{\ell_1}}\right)^2 + \left(\frac{\partial f}{\partial \vec{\ell_2}}\right)^2 + \left(\frac{\partial f}{\partial \vec{\ell_3}}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2.$$

8. $\forall (x,y) \in \mathbb{R}^2$, 定义

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x^2 + y^2}, & \stackrel{\text{\'ef}}{\pi} (x,y) \neq (0,0), \\ 0, & \stackrel{\text{\'ef}}{\pi} \text{.} \end{cases}$$

问 f 是否有二阶偏导数?

- 9. 设 $D=[0,a]\times[0,b]$, 而函数 $F:D\to\mathbb{R}$ 关于第二个变量的偏导数 $\frac{\partial F}{\partial y}$ 存在. 求证: 存在函数 $g:[0,a]\to\mathbb{R}$, $h:[0,b]\to\mathbb{R}$ 使得 $\forall (x,y)\in D$, 我们均有 F(x,y)=g(x)+h(y) 当且仅当 $\forall (x,y)\in D$, 均有 $\frac{\partial^2 F}{\partial x\partial y}(x,y)=0$.
- 10. 假设 $D = [0,a] \times [0,b]$, 而 $u \in \mathscr{C}^{(2)}(D)$ 使得 $\forall (x,y) \in D$, 均有 $u(x,y) \neq 0$. 求证: 存在 $f:[0,a] \to \mathbb{R}$, $g:[0,b] \to \mathbb{R}$ 使 $\forall (x,y) \in D$, u(x,y) = f(x)g(y) 当且仅当在 D 上, 成立 $\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} = u \frac{\partial^2 u}{\partial x \partial y}$.
- **11.** $\forall (x,y) \in \mathbb{R}^2$, 定义 $f(x,y) = \begin{cases} \frac{1}{x}(1-e^{-xy}), & \text{若 } x \neq 0, \\ y, & \text{若 } x = 0. \end{cases}$ 考察函数 f 的 连续性、可微性以及连续可导性,并给出理由,