PH 712 Probability and Statistical Inference

Part III: Mutiple Random Variables

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

Characterizing the joint distribution of multiple random variables

- The joint cdf of $X_1, ..., X_n$: $F_{X_1, ..., X_n}(x_1, ..., x_n) = \Pr(X_1 \le x_1, ..., X_n \le x_n), (x_1, ..., x_n) \in \mathbb{R}^n$
- Discrete X_1, \ldots, X_n
 - Joint pmf $p_{X_1,...,X_n}(x_1,...,x_n) = \Pr(X_1 = x_1,...,X_n = x_n), (x_1,...,x_n) \in \mathbb{R}^n$
 - $-\sup(X_1,\ldots,X_n) = \{(x_1,\ldots,x_p) \in \mathbb{R}^n : p_{X_1,\ldots,X_n}(x_1,\ldots,x_n) > 0\}$
 - Marginal pmf of X_i :

$$p_{X_i}(x_i) = \sum_{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n} p_{X_1, \dots, X_n}(x_1, \dots, x_n)$$

- Continuous X_1, \ldots, X_n
 - Joint pdf $f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = (\partial^n/\partial x_1\cdots\partial x_n)F_{X_1,\ldots,X_n}(x_1,\ldots,x_n), (x_1,\ldots,x_n) \in \mathbb{R}^n$
 - supp $(X_1, \dots, X_n) = \{(x_1, \dots, x_n) \in \mathbb{R}^n : f_{X_1, \dots, X_n}(x_1, \dots, x_n) > 0\}$
 - Marginal pdf of X_1 :

$$f_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} f_{\boldsymbol{X}}(\boldsymbol{x}) dx_1 \cdots dx_{i-1} dx_{i+1} \cdots dx_n$$

(Mutual) independence

• RVs X_1, \ldots, X_n are (mutually) independent \Leftrightarrow

$$F_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n F_{X_i}(x_i)$$

- Joint pmf $p_{X_1,...,X_n}(x_1,\ldots,x_n)=\prod_{i=1}^n p_{X_i}(x_i)$ (for discrete X_1,\ldots,X_n) Joint pdf $f_{X_1,...,X_n}(x_1,\ldots,x_n)=\prod_{i=1}^n f_{X_i}(x_i)$ (for continuous X_1,\ldots,X_n) (Optional) The mgf of X_i exists for all i, say $M_{X_i}(t_i)$. Then X_1,\ldots,X_n are (mutually) independent \Rightarrow $M_{X_1,...,X_n}(t_1,...,t_n) = \prod_{i=1}^n M_{X_i}(t_i)$