Математическая логика и теория алгоритмов Лекция 5. Логика предикатов. Сколемизация

Теоремы

Куценко Дмитрий Александрович

Белгородский государственный технологический университет имени В. Г. Шухова

Институт информационных технологий и управляющих систем Кафедра программного обеспечения вычислительной техники и автоматизированных систем

30 сентября 2011 г.

Утверждения, содержащие оборот «тогда и только тогда», встречаются в математике очень часто.

Теоремы

Утверждения, содержащие оборот «тогда и только тогда», встречаются в математике очень часто.

Если мы сможем показать, что «A тогда и только тогда, когда B», то докажем, что A и B эквивалентные (равноесильные) утверждения, поскольку истинность (или ложность) одного из них влечёт истинность (или ложность) другого.

 $A \rightarrow B \cup B \rightarrow A$.

Утверждения, содержащие оборот «тогда и только тогда», встречаются в математике очень часто.

Если мы сможем показать, что «A тогда и только тогда, когда B», то докажем, что A и B эквивалентные (равноесильные) утверждения, поскольку истинность (или ложность) одного из них влечёт истинность (или ложность) другого. Утверждение вида $A \leftrightarrow B$ заменяет сразу два высказывания:

Теоремы

Утверждения, содержащие оборот «тогда и только тогда», встречаются в математике очень часто.

Если мы сможем показать, что «A тогда и только тогда, когда B», то докажем, что A и B эквивалентные (равноесильные) утверждения, поскольку истинность (или ложность) одного из них влечёт истинность (или ложность) другого.

Утверждение вида $A \leftrightarrow B$ заменяет сразу два высказывания: $A \rightarrow B \cup B \rightarrow A$.

T. o., доказательсва теорем вида $A \leftrightarrow B$ состоят из двух частей:

- **1** Необходимость: проверяется $A \rightarrow B$

Утверждения, содержащие оборот «тогда и только тогда», встречаются в математике очень часто.

Если мы сможем показать, что «A тогда и только тогда, когда B», то докажем, что A и B эквивалентные (равноесильные) утверждения, поскольку истинность (или ложность) одного из них влечёт истинность (или ложность) другого. Утверждение вида $A \leftrightarrow B$ заменяет сразу два высказывания:

 $A \rightarrow B \cup B \rightarrow A$.

T. o., доказательсва теорем вида $A \leftrightarrow B$ состоят из двух частей:

- **1** Необходимость: проверяется $A \rightarrow B$ («для A необходимо B»);

Утверждения, содержащие оборот «тогда и только тогда», встречаются в математике очень часто.

Если мы сможем показать, что «A тогда и только тогда, когда B», то докажем, что A и B эквивалентные (равноесильные) утверждения, поскольку истинность (или ложность) одного из них влечёт истинность (или ложность) другого. Утверждение вида $A \leftrightarrow B$ заменяет сразу два высказывания:

 $A \rightarrow B \cup B \rightarrow A$.

T. o., доказательсва теорем вида $A \leftrightarrow B$ состоят из двух частей:

- **1** Необходимость: проверяется $A \rightarrow B$ («для A необходимо B»);
- **2** Достаточность: проверяется $B \rightarrow A$ («для A достаточно B»).

При работе над каждой частью можно использовать любой

Утверждения, содержащие оборот «тогда и только тогда», встречаются в математике очень часто.

Если мы сможем показать, что «A тогда и только тогда, когда B», то докажем, что A и B эквивалентные (равноесильные) утверждения, поскольку истинность (или ложность) одного из них влечёт истинность (или ложность) другого. Утверждение вида $A \leftrightarrow B$ заменяет сразу два высказывания:

 $A \rightarrow B \cup B \rightarrow A$.

T. o., доказательсва теорем вида $A \leftrightarrow B$ состоят из двух частей:

- **1** Необходимость: проверяется $A \rightarrow B$ («для A необходимо B»);
- **2** Достаточность: проверяется $B \rightarrow A$ («для A достаточно B»).

При работе над каждой частью можно использовать любой из известных методов доказательства.

Доказать, что ненулевое вещественное число положительно тогда и только тогда, когда положительно обратное к нему.

Доказательство

- *A* «Вещественное число *а* положительно»
- B- «Число, обратное к a (т. е. a^{-1}), положительно»

Доказать, что ненулевое вещественное число положительно тогда и только тогда, когда положительно обратное к нему.

Доказательство

- *A* «Вещественное число *а* положительно».
- B «Число, обратное к a (т. е. a^{-1}), положительно»

Теоремы

Доказать, что ненулевое вещественное число положительно тогда и только тогда, когда положительно обратное к нему.

Доказательство

- *A* «Вещественное число *а* положительно».
- B «Число, обратное к a (т. е. a^{-1}), положительно».

Доказать, что ненулевое вещественное число положительно тогда и только тогда, когда положительно обратное к нему.

Доказательство

- A «Вещественное число а положительно».
- B «Число, обратное к <math>a (т. е. a^{-1}), положительно».

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

T. о., число
$$a \cdot a^{-1} > 0$$
.

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

T. о., число
$$a \cdot a^{-1} > 0$$

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

T. о.. число $a \cdot a^{-1} > 0$.

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

Т. о., число $a \cdot a^{-1} > 0$.

По свойству вещественных чисел произведение сомножителей больше нуля только в двух случаях:

- оба сомножителя положительны;

Необходимость. $A \to B$ (для положительности числа a необходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

T. о., число $a \cdot a^{-1} > 0$.

По свойству вещественных чисел произведение сомножителей больше нуля только в двух случаях:

- оба сомножителя положительны;
- ② оба сомножителя отрицательны

По определению a>0

Следовательно. a^{-1} — положительное число

Необходимость. $A \to B$ (для положительности числа a необходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

T. о., число $a \cdot a^{-1} > 0$.

По свойству вещественных чисел произведение сомножителей больше нуля только в двух случаях:

- оба сомножителя положительны;
- оба сомножителя отрицательны.

По определению a>0

Следовательно. a^{-1} — положительное число

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

Т. о., число $a \cdot a^{-1} > 0$.

По свойству вещественных чисел произведение сомножителей больше нуля только в двух случаях:

- оба сомножителя положительны;
- оба сомножителя отрицательны.

По определению a > 0.

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

Т. о., число $a \cdot a^{-1} > 0$.

По свойству вещественных чисел произведение сомножителей больше нуля только в двух случаях:

- оба сомножителя положительны;
- оба сомножителя отрицательны.

По определению a > 0.

Следовательно, a^{-1} — положительное число.

Необходимость. $A \to B$ (для положительности числа aнеобходима положительность a^{-1}).

Предполагаем, что a > 0 и доказываем, что $a^{-1} > 0$.

По определению обратного числа имеем, что $a \cdot a^{-1} = 1$.

Т. о., число $a \cdot a^{-1} > 0$.

По свойству вещественных чисел произведение сомножителей больше нуля только в двух случаях:

- оба сомножителя положительны;
- оба сомножителя отрицательны.

По определению a > 0.

Следовательно, a^{-1} — положительное число.

Достаточность. $B \to A$ (для положительности числа aдостаточна положительность a^{-1}).

Достаточность. $B \to A$ (для положительности числа aдостаточна положительность a^{-1}). Здесь мы считаем, что $a^{-1} > 0$ и доказываем положительность а.

Достаточность. $B \to A$ (для положительности числа a достаточна положительность a^{-1}). Здесь мы считаем, что $a^{-1} > 0$ и доказываем положительность a.

Как и в предыдущей части, $a\cdot a^{-1}=1$, т. е. произведение $a\cdot a^{-1}$ положительно, причём (по предположению) $a^{-1}>0$.

Значит, по упомянутому свойсву вещественных чисел, второй сомножитель произведения (число а) также положителен.

Теорема доказана

Логика предикатов

Достаточность. $B \to A$ (для положительности числа aдостаточна положительность a^{-1}). Здесь мы считаем, что $a^{-1} > 0$ и доказываем положительность а.

Как и в предыдущей части, $a \cdot a^{-1} = 1$, т. е. произведение $a \cdot a^{-1}$ положительно, причём (по предположению) $a^{-1} > 0$. Значит, по упомянутому свойсву вещественных чисел, второй сомножитель произведения (число а) также положителен.

Достаточность. $B \to A$ (для положительности числа aдостаточна положительность a^{-1}). Здесь мы считаем, что $a^{-1} > 0$ и доказываем положительность а.

Как и в предыдущей части, $a \cdot a^{-1} = 1$, т. е. произведение $a \cdot a^{-1}$ положительно, причём (по предположению) $a^{-1} > 0$. Значит, по упомянутому свойсву вещественных чисел, второй сомножитель произведения (число а) также положителен.

Теорема доказана.

Теоремы

Введение в логику предикатов

Логика высказываний является грубой моделью представления знаний. Высказывание здесь рассматривается как единое целое, без анализа его внутренней структуры.

Теоремы

пропозициональных связок и букв его можно записать в виде

Введение в логику предикатов

Логика высказываний является грубой моделью представления знаний. Высказывание здесь рассматривается как единое целое, без анализа его внутренней структуры.

Пример

Все люди смертны. Сократ — человек. Следовательно, Сократ смертен.

Введение в логику предикатов

Логика высказываний является грубой моделью представления знаний. Высказывание здесь рассматривается как единое целое, без анализа его внутренней структуры.

Пример

Все люди смертны. Сократ — человек. Следовательно, Сократ смертен.

С точки зрения логики это истинное умозаключение, однако оно выходит за рамки логики высказываний. С помощью пропозициональных связок и букв его можно записать в виде формулы $(A \& B) \to C$, но эта формула необщезначима!

Логика высказываний является грубой моделью представления знаний. Высказывание здесь рассматривается как единое целое, без анализа его внутренней структуры.

Пример

Все люди смертны. Сократ — человек. Следовательно, Сократ смертен.

С точки зрения логики это истинное умозаключение, однако оно выходит за рамки логики высказываний. С помощью пропозициональных связок и букв его можно записать в виде формулы $(A \& B) \to C$, но эта формула необщезначима!

Логика предикатов — это расширение возможностей логики высказываний, позволяющее строить высказывания с учётом свойств изучаемых объектов или отношений между ними.

Логика предикатов

Одноместный предикат P(x) — это утверждение об объекте x, где x рассматривается как переменная.

Логика предикатов

Одноместный предикат P(x) — это утверждение об объекте x, где x рассматривается как переменная.

Одноместные предикаты выражают свойства объектов.

объект а, то получаем высказывание, принадлежащее алгебре

Логика предикатов

Одноместный предикат P(x) — это утверждение об объекте x, где x рассматривается как переменная.

Одноместные предикаты выражают свойства объектов.

Если в P(x) вместо x подставить конкретный изучаемый объект а, то получаем высказывание, принадлежащее алгебре высказываний.

Одноместный предикат P(x) — это утверждение об объекте x, где x рассматривается как переменная.

Одноместные предикаты выражают свойства объектов.

Если в P(x) вместо x подставить конкретный изучаемый объект a, то получаем высказывание, принадлежащее алгебре высказываний.

В таком случае P(a) = 1 или P(a) = 0.

Пример

Пусть W(x) — предикат «x — белого цвета». Тогда если a — «Снег», а b — «Уголь», то W(a)=1, W(b)=0.

Одноместный предикат

Одноместный предикат P(x) — это утверждение об объекте x, где x рассматривается как переменная.

Одноместные предикаты выражают свойства объектов.

Если в P(x) вместо x подставить конкретный изучаемый объект а, то получаем высказывание, принадлежащее алгебре высказываний.

В таком случае P(a) = 1 или P(a) = 0.

Пример

Пусть W(x) — предикат «x — белого цвета».

Одноместный предикат

Одноместный предикат P(x) — это утверждение об объекте x, где x рассматривается как переменная.

Одноместные предикаты выражают свойства объектов.

Если в P(x) вместо x подставить конкретный изучаемый объект а, то получаем высказывание, принадлежащее алгебре высказываний.

В таком случае P(a) = 1 или P(a) = 0.

Пример

Пусть W(x) — предикат «x — белого цвета». Тогда если a- «Снег», а b- «Уголь», то W(a)=1, W(b)=0.

Многоместные предикаты

Многоместный предикат $P(x_1,...,x_n)$ — это утверждение об объектах x_1, \ldots, x_n , где x_1, \ldots, x_n рассматриваются как переменные. Следовательно, при подстановке конкретных значений a_1, \ldots, a_n получим высказывание $P(a_1, \ldots, a_n)$, являющееся истинным или ложным.

Теоремы

Многоместный предикат $P(x_1,...,x_n)$ — это утверждение об объектах x_1, \ldots, x_n , где x_1, \ldots, x_n рассматриваются как переменные. Следовательно, при подстановке конкретных значений a_1, \ldots, a_n получим высказывание $P(a_1, \ldots, a_n)$, являющееся истинным или ложным.

Многоместные предикаты выражают взаимодействия или отношения между объектами.

Теоремы

Многоместный предикат $P(x_1,...,x_n)$ — это утверждение об объектах x_1, \ldots, x_n , где x_1, \ldots, x_n рассматриваются как переменные. Следовательно, при подстановке конкретных значений a_1, \ldots, a_n получим высказывание $P(a_1, \ldots, a_n)$, являющееся истинным или ложным.

Многоместные предикаты выражают взаимодействия или отношения между объектами.

Пример

Теоремы

Рассмотрим высказывание «Анна — мама Бориса».

<u>Многоместные предикаты</u>

Многоместный предикат $P(x_1,...,x_n)$ — это утверждение об объектах x_1, \ldots, x_n , где x_1, \ldots, x_n рассматриваются как переменные. Следовательно, при подстановке конкретных значений a_1,\ldots,a_n получим высказывание $P(a_1,\ldots,a_n)$, являющееся истинным или ложным.

Многоместные предикаты выражают взаимодействия или отношения между объектами.

Пример

Рассмотрим высказывание «Анна — мама Бориса». Его можно записать как M(a,b), где M(x,y) — предикат «х является матерью y», a— «Анна», b— «Борис».

Многоместные предикаты

Многоместный предикат $P(x_1,...,x_n)$ — это утверждение об объектах x_1, \ldots, x_n , где x_1, \ldots, x_n рассматриваются как переменные. Следовательно, при подстановке конкретных значений a_1,\ldots,a_n получим высказывание $P(a_1,\ldots,a_n)$, являющееся истинным или ложным.

Многоместные предикаты выражают взаимодействия или отношения между объектами.

Пример

Рассмотрим высказывание «Анна — мама Бориса». Его можно записать как M(a,b), где M(x,y) — предикат «х является матерью y», a— «Анна», b— «Борис». Истинность M(a, b) зависит от того, о ком идёт речь.

Многоместные предикаты

Логика предикатов

Многоместный предикат $P(x_1,...,x_n)$ — это утверждение об объектах x_1, \ldots, x_n , где x_1, \ldots, x_n рассматриваются как переменные. Следовательно, при подстановке конкретных значений a_1,\ldots,a_n получим высказывание $P(a_1,\ldots,a_n)$, являющееся истинным или ложным.

Многоместные предикаты выражают взаимодействия или отношения между объектами.

Пример

Рассмотрим высказывание «Анна — мама Бориса». Его можно записать как M(a,b), где M(x,y) — предикат «х является матерью y», a— «Анна», b— «Борис». Истинность M(a, b) зависит от того, о ком идёт речь.

Из примера видно, что аргументы предиката нельзя менять местами.

Логика предикатов

Пример 1

Задача. Записать символически утверждение «х больше 4».

Логика предикатов

Пример 1

Задача. Записать символически утверждение «х больше 4». **Решение.** Введём G(x,y) — «x больше y», и константу a=4.

Логика предикатов

Пример 1

Задача. Записать символически утверждение «х больше 4». **Решение.** Введём G(x,y) — «x больше y», и константу a=4. Тогда исходное утверждение можно записать как G(x, a).

Логика предикатов

Пример 1

Задача. Записать символически утверждение «х больше 4». **Решение.** Введём G(x,y) — «x больше y», и константу a=4. Тогда исходное утверждение можно записать как G(x, a).

В этом примере G(x, y) — предикат, в котором G — предикатный символ, x и y — (предметные) переменные, a- (предметная) константа.

Логика предикатов

Пример 1

Задача. Записать символически утверждение «х больше 4». **Решение.** Введём G(x,y) — «x больше y», и константу a=4. Тогда исходное утверждение можно записать как G(x, a).

В этом примере G(x, y) — предикат, в котором G — предикатный символ, x и y — (предметные) переменные, a- (предметная) константа.

Предикатные символы будем обозначать заглавными латинскими буквами (A, B, ..., Z), переменные — строчными буквами из конца латинского алфавита (..., x, y, z), константы — строчными буквами из начала латинского алфавита (a, b, c, ...).

<u>Предикаты</u> в языках программирования

```
Пример описания булевой функции
function implication(a, b: boolean): boolean
begin
  if (not a) and b then
    implication := false
  else
    implication := true;
end;
```

Теоремы

Предикаты в языках программирования

Пример описания булевой функции

```
function implication(a, b: boolean): boolean
begin
  if (not a) and b then
    implication := false
  else
    implication := true;
end;
```

Пример описания одноместного предиката

```
function is Empty (const S: Stack): boolean
begin
  isEmpty := (S.size = 0);
end;
```

Логика предикатов

Для описания функциональных зависимостей между объектами требуются дополнительные обозначения.

предикат E(u,v) — «u равен v», и константу $a=\frac{1}{2}$.

Логика предикатов

Для описания функциональных зависимостей между объектами требуются дополнительные обозначения.

Пример 2

Задача. Записать с помощью символов математической логики утверждение «min $\{x,y\}=\frac{1}{2}$ ».

Логика предикатов

Для описания функциональных зависимостей между объектами требуются дополнительные обозначения.

Пример 2

Задача. Записать с помощью символов математической логики утверждение «min $\{x,y\}=\frac{1}{2}$ ».

Решение. Обозначим функцию $min\{x,y\}$ как m(x,y), ведём предикат E(u, v) — «u равен v», и константу $a = \frac{1}{2}$.

Логика предикатов

Для описания функциональных зависимостей между объектами требуются дополнительные обозначения.

Пример 2

Задача. Записать с помощью символов математической логики утверждение «min $\{x,y\}=\frac{1}{2}$ ». **Решение.** Обозначим функцию $min\{x,y\}$ как m(x,y), ведём предикат E(u, v) — «u равен v», и константу $a = \frac{1}{2}$. Тогда исходное утверждение можно записать как E(m(x, y), a).

Логика предикатов

Для описания функциональных зависимостей между объектами требуются дополнительные обозначения.

Пример 2

Задача. Записать с помощью символов математической логики утверждение «min $\{x,y\}=\frac{1}{2}$ ». **Решение.** Обозначим функцию $min\{x,y\}$ как m(x,y), ведём предикат E(u,v) — «u равен v», и константу $a=\frac{1}{2}$. Тогда исходное утверждение можно записать как E(m(x, y), a).

В этом примере m- функциональный символ.

Логика предикатов

Для описания функциональных зависимостей между объектами требуются дополнительные обозначения.

Пример 2

Задача. Записать с помощью символов математической логики утверждение «min $\{x,y\}=\frac{1}{2}$ ».

Решение. Обозначим функцию $min\{x,y\}$ как m(x,y), ведём предикат E(u,v) — «u равен v», и константу $a=\frac{1}{2}$.

Тогда исходное утверждение можно записать как E(m(x, y), a).

В этом примере m- функциональный символ.

Функциональные символы будем обозначать строчными латинскими буквами (a, b, \ldots, z) .

Теоремы

Дополнительные замечания

Не следует путать предикатные и функциональные символы область значений предиката — $\{0,1\}$, а область значений функции может быть произвольной.

Дополнительные замечания

Не следует путать предикатные и функциональные символы область значений предиката — $\{0,1\}$, а область значений функции может быть произвольной.

Аргументы предиката (предметные переменные и константы, а также функциональные символы) называют термами.

Логика предикатов

Для получения высказываний из предикатов помимо подстановки вместо переменных конкретных объектов применяются также кванторы: квантор всеобщности «∀» и квантор существования «∃».

Подставим перед ним слово «любое». Получим ложное высказывание «Любое простое число x нечётно» (оно ложно,

Логика предикатов

Для получения высказываний из предикатов помимо подстановки вместо переменных конкретных объектов применяются также кванторы: квантор всеобщности «∀» и квантор существования «∃».

Пример

Пусть на множестве X простых чисел задан предикат P(x) — «Простое число x — нечётно».

Логика предикатов

Для получения высказываний из предикатов помимо подстановки вместо переменных конкретных объектов применяются также кванторы: квантор всеобщности «∀» и квантор существования «∃».

Пример

Пусть на множестве X простых чисел задан предикат P(x) — «Простое число x — нечётно».

Подставим перед ним слово «любое». Получим ложное высказывание «Любое простое число x нечётно» (оно ложно, так как 2 — простое чётное число).

Теоремы

Для получения высказываний из предикатов помимо подстановки вместо переменных конкретных объектов применяются также кванторы: квантор всеобщности «∀» и квантор существования «∃».

Пример

Пусть на множестве X простых чисел задан предикат P(x) — «Простое число x — нечётно».

Подставим перед ним слово «любое». Получим ложное высказывание «Любое простое число x нечётно» (оно ложно, так как 2 — простое чётное число).

Подставив перед данным предикатом P(x) слово «существует», получим истинное выказывание «Существует простое число x, являющееся нечётным» (например, 5).

Логика предикатов

Символ « $\forall x$ » интерпретируется как фраза «для всех x».

$$\forall x P(x) \equiv P(a_1) \& P(a_2) \& \dots \& P(a_i) \& \dots$$

Логика предикатов

Символ « $\forall x$ » интерпретируется как фраза «для всех x». Знак « \forall » произошёл от 1-й буквы английского слова All — «все».

При добавлении к предикату P(x) квантора всеобщности мы

$$\forall x P(x) \equiv P(a_1) \& P(a_2) \& \dots \& P(a_i) \& \dots$$

Символ « $\forall x$ » интерпретируется как фраза «для всех x». Знак « \forall » произошёл от 1-й буквы английского слова All — «все».

При добавлении к предикату P(x) квантора всеобщности мы получим высказывание $\forall x \, P(x)$.

Оно примет истинное значение, если предикат P(x) выполняется для всех объектов $a_1, a_2, \ldots, a_i, \ldots$, которые можно подставить вместо x:

$$\forall x P(x) \equiv P(a_1) \& P(a_2) \& \dots \& P(a_i) \& \dots$$

Пример

Утверждение «Все люди смертны» можно записать так: $\forall x (H(x) \to D(x))$, где $H(x) - \ll x -$ человек», $D(x) - \ll x -$ смертен».

Логика предикатов

Символ « $\forall x$ » интерпретируется как фраза «для всех x». Знак « \forall » произошёл от 1-й буквы английского слова All — «все».

При добавлении к предикату P(x) квантора всеобщности мы получим высказывание $\forall x P(x)$.

Оно примет истинное значение, если предикат P(x)выполняется для всех объектов $a_1, a_2, \ldots, a_i, \ldots$, которые можно подставить вместо х:

$$\forall x P(x) \equiv P(a_1) \& P(a_2) \& \dots \& P(a_i) \& \dots$$

Логика предикатов

Символ « $\forall x$ » интерпретируется как фраза «для всех x». Знак « \forall » произошёл от 1-й буквы английского слова All — «все».

При добавлении к предикату P(x) квантора всеобщности мы получим высказывание $\forall x P(x)$.

Оно примет истинное значение, если предикат P(x)выполняется для всех объектов $a_1, a_2, \ldots, a_i, \ldots$, которые можно подставить вместо х:

$$\forall x P(x) \equiv P(a_1) \& P(a_2) \& \dots \& P(a_i) \& \dots$$

Пример

Утверждение «Все люди смертны» можно записать так: $\forall x (H(x) \rightarrow D(x))$, где $H(x) - \langle x - \forall x \rangle$ человек», $D(x) - \langle x - \forall x \rangle$ смертен».

Квантор существования

Логика предикатов

Символ « $\exists x$ » представляет фразу «существует x».

$$\exists x \, P(x) \equiv P(a_1) \vee P(a_2) \vee \ldots \vee P(a_i) \vee \ldots$$

Квантор существования

Логика предикатов

Символ « $\exists x$ » представляет фразу «существует x». Знак « \exists » произошёл от 1-й буквы английского слова Exists — «существует».

При добавлении данного квантора к предикату получаем также высказывание $\exists x \, P(x)$.

Оно будет истинным, если предикат P(x) выполняется хотя бы для одного из объектов $a_1, a_2, \ldots, a_i, \ldots$, которые можно подставить вместо x:

$$\exists x \, P(x) \equiv P(a_1) \vee P(a_2) \vee \ldots \vee P(a_i) \vee \ldots$$

Пример

Утверждение «Некоторые студенты — отличники» можно записать так: $\exists x (S(x) \& O(x))$, где $S(x) - \langle x - \rangle$ студент», $O(x) - \langle x - \rangle$ отличник».

Квантор существования

Символ « $\exists x$ » представляет фразу «существует x». Знак « \exists » произошёл от 1-й буквы английского слова Exists — «существует».

При добавлении данного квантора к предикату получаем также высказывание $\exists x \, P(x)$.

Оно будет истинным, если предикат P(x) выполняется хотя бы для одного из объектов $a_1, a_2, \ldots, a_i, \ldots$, которые можно подставить вместо x:

$$\exists x \, P(x) \equiv P(a_1) \vee P(a_2) \vee \ldots \vee P(a_i) \vee \ldots$$

Пример

Утверждение «Некоторые студенты — отличники» можно записать так: $\exists x (S(x) \& O(x))$, где $S(x) - \langle x - \text{студент} \rangle$, $O(x) - \langle x - \text{отличник} \rangle$.

Квантор существования

Символ « $\exists x$ » представляет фразу «существует x».

Кванторы

Знак « \exists » произошёл от 1-й буквы английского слова Exists — «существует».

При добавлении данного квантора к предикату получаем также высказывание $\exists x \, P(x)$.

Оно будет истинным, если предикат P(x) выполняется хотя бы для одного из объектов $a_1, a_2, \ldots, a_i, \ldots$, которые можно подставить вместо x:

$$\exists x \, P(x) \equiv P(a_1) \vee P(a_2) \vee \ldots \vee P(a_i) \vee \ldots$$

Пример

Утверждение «Некоторые студенты — отличники» можно записать так: $\exists x (S(x) \& O(x))$, где $S(x) - \langle x -$ студент», $O(x) - \langle x -$ отличник».

Квантор существования

Логика предикатов

Символ « $\exists x$ » представляет фразу «существует x».

Знак « \exists » произошёл от 1-й буквы английского слова Exists — «существует».

При добавлении данного квантора к предикату получаем также высказывание $\exists x \, P(x)$.

Оно будет истинным, если предикат P(x) выполняется хотя бы для одного из объектов $a_1, a_2, \ldots, a_i, \ldots$, которые можно подставить вместо x:

$$\exists x \, P(x) \equiv P(a_1) \vee P(a_2) \vee \ldots \vee P(a_i) \vee \ldots$$

Пример

Утверждение «Некоторые студенты — отличники» можно записать так: $\exists x (S(x) \& O(x))$, где S(x) - (x - студент), O(x) - (x - отличник).

Теоремы

Имеются также и другие виды кванторов, например « $\exists ! x \gg -$ «существует единственный x», «Wx» — «для большинства x» и т. п., но мы их использовать не будем.

В формулах вида $\forall x\mathfrak{A}$ и $\exists x\mathfrak{A}$ формула \mathfrak{A} называется областью действия квантора по переменной x.

В формулах вида $\forall x\mathfrak{A}$ и $\exists x\mathfrak{A}$ формула \mathfrak{A} называется областью действия квантора по переменной x.

Переменная x, входящая в формулу \mathfrak{A} , называется связанной, если она находится в области действия квантора $\forall x$ или $\exists x$.

В формулах вида $\forall x\mathfrak{A}$ и $\exists x\mathfrak{A}$ формула \mathfrak{A} называется областью действия квантора по переменной x.

Переменная x, входящая в формулу \mathfrak{A} , называется связанной, если она находится в области действия квантора $\forall x$ или $\exists x$.

В противном случае, переменная x в формуле $\mathfrak A$ является свободной.

В формулах вида $\forall x\mathfrak{A}$ и $\exists x\mathfrak{A}$ формула \mathfrak{A} называется областью действия квантора по переменной x.

Переменная x, входящая в формулу \mathfrak{A} , называется связанной, если она находится в области действия квантора $\forall x$ или $\exists x$.

В противном случае, переменная x в формуле $\mathfrak A$ является свободной.

Пример

В формуле $\exists y \forall x P(x, y, z)$ переменные x и y связанные, а переменная z — свободная.

В формулах вида $\forall x\mathfrak{A}$ и $\exists x\mathfrak{A}$ формула \mathfrak{A} называется областью действия квантора по переменной x.

Переменная x, входящая в формулу \mathfrak{A} , называется связанной, если она находится в области действия квантора $\forall x$ или $\exists x$.

В противном случае, переменная x в формуле $\mathfrak A$ является свободной.

Пример

В формуле $\exists y \forall x P(x, y, z)$ переменные x и y связанные, а переменная z — свободная.

Очевидно, что формула без свободных переменных является высказыванием.

Интерпретации

За каждой формулой скрывается её содержание. Содержательная часть формул, их смысл, относится к специальному разделу логики, называемому семантикой. Выяснить содержание формулы можно, обращаясь к реальному миру предметов. Делается это посредством интерпретации формулы.

предикатов, мы должны указать предметную область (область

Интерпретации

За каждой формулой скрывается её содержание. Содержательная часть формул, их смысл, относится к специальному разделу логики, называемому семантикой. Выяснить содержание формулы можно, обращаясь к реальному миру предметов. Делается это посредством интерпретации формулы.

Чтобы определить интерпретацию для формулы логики предикатов, мы должны указать предметную область (область значений предметных переменных) и значения констант, функциональных и предикатных символов, встречающихся в формуле.

Интерпретации

За каждой формулой скрывается её содержание. Содержательная часть формул, их смысл, относится к специальному разделу логики, называемому семантикой. Выяснить содержание формулы можно, обращаясь к реальному миру предметов. Делается это посредством интерпретации формулы.

Чтобы определить интерпретацию для формулы логики предикатов, мы должны указать предметную область (область значений предметных переменных) и значения констант, функциональных и предикатных символов, встречающихся в формуле.

Интерпретация формулы $\mathfrak A$ логики предикатов состоит из непустой (предметной) области \mathscr{D} и указания значения всех констант, функциональных символов и предикатных символов, встречающихся в \mathfrak{A} .

Интерпретации (продолжение)

Таким образом, каждой константе мы ставим в соответствие некоторый элемент из \mathscr{D} , каждому n-местному функциональному символу $f(x_1, ..., x_n)$ мы ставим в соответствие отображение из \mathcal{D}^n в \mathcal{D} :

$$\underbrace{\mathscr{D}\times\mathscr{D}\times\cdots\times\mathscr{D}}_{n\text{ pas}}\stackrel{\mathsf{f}}{\longrightarrow}\mathscr{D},$$

а каждому *n*-местному предикатному символу $P(x_1, ..., x_n)$ мы ставим в соответствие отображение из \mathcal{D}^n в $\{0,1\}$:

$$\underbrace{\mathscr{D}\times\mathscr{D}\times\cdots\times\mathscr{D}}_{P}\xrightarrow{P}\{0,1\}.$$

Интерпретации (окончание)

Логика предикатов

При интерпретации формулы наполняются содержанием благодаря тому, что элементы множества ${\mathscr D}$ уже привязаны к конкретной реальности, знакомы и понятны.

Интерпретации (окончание)

При интерпретации формулы наполняются содержанием благодаря тому, что элементы множества $\mathscr D$ уже привязаны к конкретной реальности, знакомы и понятны.

Пример

В случае, когда $\mathscr{D}=\mathbb{R}$, т. е. область \mathscr{D} является множеством действительных чисел, под формулами мы понимаем сведения из математического анализа, который прочно привязан к практической деятельности инженеров, физиков, химиков и т. д.

Следовательно, нам становится ясным, когда формула при определённой фиксации своих переменных истинна, а когда ложна.

Формула $\mathfrak A$ логики предикатов называется выполнимой в области $\mathscr M$ ($\mathscr M\subset\mathscr D$), если существуют значения переменных, входящих в эту формулу и отнесённых к области $\mathscr M$, при которых формула $\mathfrak A$ принимает истинные значения.

Формула $\mathfrak A$ логики предикатов называется выполнимой, если существует некоторая область значений переменных, на которой эта формула выполнима.

значения.

Формула $\mathfrak A$ логики предикатов называется выполнимой в области $\mathscr M$ ($\mathscr M\subset \mathscr D$), если существуют значения переменных, входящих в эту формулу и отнесённых к области $\mathscr M$, при которых формула $\mathfrak A$ принимает истинные

Формула $\mathfrak A$ логики предикатов называется выполнимой, если существует некоторая область значений переменных, на которой эта формула выполнима.

Тождественно истинные и тождественно ложные формулы ЛП

Формула $\mathfrak A$ логики предикатов называется тождественно истинной в области $\mathscr M$, если она принимает истинные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула 24 логики предикатов называется тождественно ложной в области \mathcal{M} , если она принимает ложные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула \mathfrak{A} логики предикатов называется общезначимой (тавтологией), если она является тождественно истинной на всякой области (на любой модели).

Для общезначимой формулы будем использовать обозначение ନ ସ. Если формула ସ общезначимая, то формула ସ называется тождественно ложной, или противоречием.

Тождественно истинные и тождественно ложные формулы ЛП

Формула $\mathfrak A$ логики предикатов называется тождественно истинной в области $\mathscr M$, если она принимает истинные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула $\mathfrak A$ логики предикатов называется тождественно ложной в области $\mathscr M$, если она принимает ложные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула \mathfrak{A} логики предикатов называется общезначимой (тавтологией), если она является тождественно истинной на всякой области (на любой модели).

Для общезначимой формулы будем использовать обозначение $\vdash \mathfrak{A}$. Если формула \mathfrak{A} общезначимая, то формула $\overline{\mathfrak{A}}$ называется тождественно ложной, или противоречием.

Истинность. ЛС

Тождественно истинные и тождественно ложные формулы ЛП

Формула $\mathfrak A$ логики предикатов называется тождественно истинной в области M, если она принимает истинные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула $\mathfrak A$ логики предикатов называется тождественно ложной в области \mathcal{M} , если она принимает ложные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула $\mathfrak A$ логики предикатов называется общезначимой (тавтологией), если она является тождественно истинной на всякой области (на любой модели).

Тождественно истинные и тождественно ложные формулы ЛП

Формула $\mathfrak A$ логики предикатов называется тождественно истинной в области $\mathscr M$, если она принимает истинные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула $\mathfrak A$ логики предикатов называется тождественно ложной в области $\mathscr M$, если она принимает ложные значения для всех значений переменных, входящих в эту формулу и отнесённых к этой области.

Формула $\mathfrak A$ логики предикатов называется общезначимой (тавтологией), если она является тождественно истинной на всякой области (на любой модели).

Для общезначимой формулы будем использовать обозначение $\vdash \mathfrak{A}$. Если формула \mathfrak{A} общезначимая, то формула $\overline{\mathfrak{A}}$ называется тождественно ложной, или противоречием.

Истинность. ЛС

Примеры

Пусть P(x) — «x — положительное число».

Тогда формула P(x) тождественно истинная в области $(5,\infty)$, тождественно ложная в области [-10,-5], выполнимая в области [-1,2). Она также является выполнимой формулой.

Истинность. ЛС

Примеры

Логика предикатов

Пусть P(x) - x - положительное число».

Тогда формула P(x) тождественно истинная в области $(5, \infty)$, тождественно ложная в области [-10, -5], выполнимая в области [-1, 2). Она также является выполнимой формулой.

Логика предикатов

Пусть даны две формулы $\mathfrak{A}(x_1,\ldots,x_n)$ и $\mathfrak{B}(x_1,\ldots,x_n)$.

Логика предикатов

Пусть даны две формулы $\mathfrak{A}(x_1,\ldots,x_n)$ и $\mathfrak{B}(x_1,\ldots,x_n)$.

Формула $\mathfrak B$ является логическим следствием формулы $\mathfrak A$, если во всякой интерпретации формула ${\mathfrak B}$ выполнена на каждом наборе переменных $(x_1 = a_1), \ldots, (x_n = a_n)$, на котором выполнена формула \mathfrak{A} .

Логика предикатов

Пусть даны две формулы $\mathfrak{A}(x_1,\ldots,x_n)$ и $\mathfrak{B}(x_1,\ldots,x_n)$.

Формула $\mathfrak B$ является логическим следствием формулы $\mathfrak A$, если во всякой интерпретации формула ${\mathfrak B}$ выполнена на каждом наборе переменных $(x_1 = a_1), \ldots, (x_n = a_n)$, на котором выполнена формула \mathfrak{A} .

Символически для логического следствия используют обозначение $\mathfrak{A} \vdash \mathfrak{B}$.

Логика предикатов

Пусть даны две формулы $\mathfrak{A}(x_1,\ldots,x_n)$ и $\mathfrak{B}(x_1,\ldots,x_n)$.

Формула $\mathfrak B$ является логическим следствием формулы $\mathfrak A$, если во всякой интерпретации формула $\mathfrak B$ выполнена на каждом наборе переменных $(x_1=a_1), \ldots, (x_n=a_n)$, на котором выполнена формула $\mathfrak A$.

Символически для логического следствия используют обозначение $\mathfrak{A} \vdash \mathfrak{B}$.

В логике предикатов выполняется теорема дедукции:

 $\mathfrak{A} \vdash \mathfrak{B}$ тогда и только тогда, когда $\vdash \mathfrak{A} \to \mathfrak{B}.$

Теоремы

Формулы $\mathfrak{A}(x_1,\ldots,x_n)$ и $\mathfrak{B}(x_1,\ldots,x_n)$ называются равносильными, если $\mathfrak{A} \vdash \mathfrak{B}$ и $\mathfrak{B} \vdash \mathfrak{A}$.

Для равносильных формул используется запись: $\mathfrak{A} \equiv \mathfrak{B}$

Примеры равносильных формул

```
 \forall x \, \mathfrak{A}(x) \, \& \, \mathfrak{B} \equiv \forall x \, (\mathfrak{A}(x) \, \& \, \mathfrak{B}); \qquad \forall x \, \mathfrak{A}(x) \, \& \, \forall x \, \mathfrak{B}(x) \equiv \forall x \, (\mathfrak{A}(x) \, \& \, \mathfrak{B}(x)); \\ \exists x \, \mathfrak{A}(x) \, \& \, \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \, \& \, \mathfrak{B}); \qquad \exists x \, \mathfrak{A}(x) \vee \exists x \, \mathfrak{B}(x) \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}(x)); \\ \forall x \, \mathfrak{A}(x) \vee \mathfrak{B} \equiv \forall x \, (\mathfrak{A}(x) \vee \mathfrak{B}); \qquad \forall x \, \mathfrak{A}(x) \to \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}); \\ \exists x \, \mathfrak{A}(x) \vee \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}); \qquad \exists x \, \mathfrak{A}(x) \to \mathfrak{B} \equiv \forall x \, (\mathfrak{A}(x) \to \mathfrak{B}); \\ \forall x \, \mathfrak{A}(x) \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}); \qquad \exists x \, \mathfrak{A}(x) \equiv \exists x \, (\mathfrak{A}(x) \to \mathfrak{B}); \\ \exists x \, \mathfrak{A}(x) \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}); \qquad \mathfrak{B} \to \forall x \, \mathfrak{A}(x) \equiv \forall x \, (\mathfrak{A}(x) \to \mathfrak{B}); \\ \exists x \, \mathfrak{A}(x) \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}); \qquad \mathfrak{B} \to \exists x \, \mathfrak{A}(x) \equiv \exists x \, (\mathfrak{A}(x) \otimes \mathfrak{B}(x)); \\ \exists x \, \mathfrak{A}(x) \vee \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}); \qquad \mathfrak{A}(x) \otimes \mathfrak{B}(x) \cong \mathfrak{A}(x) \otimes \mathfrak{B}(x); \\ \exists x \, \mathfrak{A}(x) \vee \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}(x)); \qquad \mathfrak{A}(x) \otimes \mathfrak{B}(x) \cong \mathfrak{A}(x) \otimes \mathfrak{B}(x); \\ \exists x \, \mathfrak{A}(x) \vee \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}(x)); \qquad \mathfrak{A}(x) \otimes \mathfrak{B}(x) \cong \mathfrak{A}(x) \otimes \mathfrak{B}(x); \\ \exists x \, \mathfrak{A}(x) \otimes \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}(x)); \qquad \mathfrak{A}(x) \otimes \mathfrak{B}(x) \cong \mathfrak{A}(x) \otimes \mathfrak{B}(x); \\ \exists x \, \mathfrak{A}(x) \otimes \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \vee \mathfrak{B}(x)); \qquad \mathfrak{A}(x) \otimes \mathfrak{B}(x) \cong \mathfrak{A}(x) \otimes \mathfrak{B}(x); \\ \exists x \, \mathfrak{A}(x) \otimes \mathfrak{B} \equiv \exists x \, (\mathfrak{A}(x) \otimes \mathfrak{B}(x)); \qquad \mathfrak{A}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{A}(x); \\ \exists x \, \mathfrak{A}(x) \otimes \mathfrak{B}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{B}(x); \qquad \mathfrak{A}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{A}(x); \\ \exists x \, \mathfrak{A}(x) \otimes \mathfrak{B}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{B}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{B}(x); \\ \exists x \, \mathfrak{A}(x) \otimes \mathfrak{B}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{B}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{A}(x); \qquad \mathfrak{A}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{A}(x) \otimes \mathfrak{A}(x);
```

Равносильные формулы ЛП

Логика предикатов

Формулы $\mathfrak{A}(x_1,\ldots,x_n)$ и $\mathfrak{B}(x_1,\ldots,x_n)$ называются равносильными, если $\mathfrak{A} \vdash \mathfrak{B}$ и $\mathfrak{B} \vdash \mathfrak{A}$.

Для равносильных формул используется запись: $\mathfrak{A} \equiv \mathfrak{B}$.

Равносильные формулы ЛП

Логика предикатов

Формулы $\mathfrak{A}(x_1,\ldots,x_n)$ и $\mathfrak{B}(x_1,\ldots,x_n)$ называются равносильными, если $\mathfrak{A} \vdash \mathfrak{B}$ и $\mathfrak{B} \vdash \mathfrak{A}$.

Для равносильных формул используется запись: $\mathfrak{A} \equiv \mathfrak{B}$.

Примеры равносильных формул:

```
\forall x \, \mathfrak{A}(x) \, \& \, \mathfrak{B} \equiv \forall x (\mathfrak{A}(x) \, \& \, \mathfrak{B});
                                                                                                                               \forall x \, \mathfrak{A}(x) \, \& \, \forall x \, \mathfrak{B}(x) \equiv \forall x (\mathfrak{A}(x) \, \& \, \mathfrak{B}(x));
\exists x \mathfrak{A}(x) \& \mathfrak{B} \equiv \exists x (\mathfrak{A}(x) \& \mathfrak{B});
                                                                                                                                \exists x \, \mathfrak{A}(x) \vee \exists x \, \mathfrak{B}(x) \equiv \exists x (\mathfrak{A}(x) \vee \mathfrak{B}(x));
\forall x \mathfrak{A}(x) \vee \mathfrak{B} \equiv \forall x (\mathfrak{A}(x) \vee \mathfrak{B});
                                                                                                                                               \forall x \mathfrak{A}(x) \to \mathfrak{B} \equiv \exists x (\mathfrak{A}(x) \to \mathfrak{B});
 \exists x \, \mathfrak{A}(x) \vee \mathfrak{B} \equiv \exists x (\mathfrak{A}(x) \vee \mathfrak{B});
                                                                                                                                                \exists x \, \mathfrak{A}(x) \to \mathfrak{B} \equiv \forall x (\mathfrak{A}(x) \to \mathfrak{B});
              \forall x \, \mathfrak{A}(x) \equiv \exists x \, \overline{\mathfrak{A}(x)}
                                                                                                                                                \mathfrak{B} \to \forall x \mathfrak{A}(x) \equiv \forall x (\mathfrak{B} \to \mathfrak{A}(x));
              \exists x \, \mathfrak{A}(x) \equiv \forall x \, \overline{\mathfrak{A}(x)};
                                                                                                                                                \mathfrak{B} \to \exists x \, \mathfrak{A}(x) \equiv \exists x (\mathfrak{B} \to \mathfrak{A}(x)).
```

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, ∨, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции $\&, \lor, \overline{\ }$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

- $\exists x \, \mathfrak{A}(x) \Rightarrow \exists x \, \mathfrak{A}(x);$ $\exists x \, \mathfrak{A}(x) \Rightarrow \forall x \, \overline{\mathfrak{A}(x)};$
 - 21 m 21;
 - 2(∨ 23 **→** 2(& 23;
 - o 21 & 93 m 21 \/ 93

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\bar{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

Для этого применяют следующие преобразования:

$$\begin{array}{ccc}
\bullet & \forall x \, \mathfrak{A}(x) & \Rightarrow \exists x \, \mathfrak{A}(x) \\
\bullet & \exists x \, \mathfrak{A}(x) & \Rightarrow \forall x \, \mathfrak{A}(x)
\end{array}$$

 \bullet $\overline{2}(\vee 3) \Rightarrow \overline{2}(\& \overline{3})$

Истинность. ЛС

Приведённая форма

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, ∨, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\begin{array}{ccc}
\bullet & \overline{\forall x \, \mathfrak{A}(x)} & \Rightarrow \exists x \, \overline{\mathfrak{A}(x)}; \\
\bullet & \overline{\exists x \, \mathfrak{A}(x)} & \Rightarrow \forall x \, \overline{\mathfrak{A}(x)}; \\
& = & \end{array}$$

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\bar{}$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

- $\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$
- $\bullet \quad \overline{\forall x \, \mathfrak{A}(x)} \Longrightarrow \exists x \, \overline{\mathfrak{A}(x)};$
 - $\bullet \ \exists x \, \mathfrak{A}(x) \Longrightarrow \forall x \, \overline{\mathfrak{A}(x)};$
 - 21 21
 - 21 V B 21 & B
 - a 21 & 93 mm 21 √ 93

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, ∨, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\begin{array}{ccc}
\bullet & \forall x \, \mathfrak{A}(x) & \Rightarrow \exists x \, \overline{\mathfrak{A}(x)}; \\
\bullet & \overline{\exists x \, \mathfrak{A}(x)} & \Rightarrow \forall x \, \overline{\mathfrak{A}(x)};
\end{array}$$

$$\overline{\Omega} \& \overline{\Omega} \longrightarrow \overline{\Omega} \lor \overline{\Omega}$$

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, ∨, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\begin{array}{ccc}
\bullet & \forall x \, \mathfrak{A}(x) & \Rightarrow \exists x \, \overline{\mathfrak{A}(x)}; \\
\bullet & \exists x \, \mathfrak{A}(x) & \Rightarrow \forall x \, \overline{\mathfrak{A}(x)};
\end{array}$$

•
$$\overline{\mathfrak{A} \vee \mathfrak{B}} \rightarrow \overline{\mathfrak{A}} \& \overline{\mathfrak{B}}$$
:

$$\overline{21 \& 23} \rightarrow \overline{21} \lor \overline{23}$$

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, ∨, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\begin{array}{ccc}
\bullet & \overline{\forall x} \, \mathfrak{A}(x) & \Rightarrow \exists x \, \overline{\mathfrak{A}(x)}; \\
\bullet & \overline{\exists x} \, \mathfrak{A}(x) & \Rightarrow \forall x \, \overline{\mathfrak{A}(x)};
\end{array}$$

•
$$\overline{\mathfrak{A} \vee \mathfrak{B}} \longrightarrow \overline{\mathfrak{A}} \& \overline{\mathfrak{B}}$$
:

•
$$\overline{\mathfrak{A} \& \mathfrak{B}} \rightarrow \overline{\mathfrak{A}} \lor \overline{\mathfrak{B}}$$
.

Приведённая форма

Логика предикатов

Аналогично КНФ и ДНФ в логике высказываний, всякую формулу логики предикатов с помощью эквивалентных преобразований можно привести к равносильной формуле в приведённой форме, в которой из логических операций используются только операции &, \lor , $\bar{\ }$, причём отрицания относятся только к предикатным символам и элементарным высказываниям.

Для этого применяют следующие преобразования:

$$\mathfrak{A} \to \mathfrak{B} \longrightarrow \overline{\mathfrak{A}} \vee \mathfrak{B};$$

$$\begin{array}{ccc}
\bullet & \forall x \, \mathfrak{A}(x) & \Rightarrow \exists x \, \overline{\mathfrak{A}(x)}; \\
\hline
\exists & & & & & \\
\end{array}$$

•
$$\exists x \, \mathfrak{A}(x) \Longrightarrow \forall x \, \overline{\mathfrak{A}(x)};$$

•
$$\overline{\mathfrak{A} \vee \mathfrak{B}} \longrightarrow \overline{\mathfrak{A}} \& \overline{\mathfrak{B}}$$
:

•
$$\overline{\mathfrak{A} \& \mathfrak{B}} \longrightarrow \overline{\mathfrak{A}} \vee \overline{\mathfrak{B}}$$
.

Пример

Логика предикатов

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \Big).$$

Решение
$$\forall x \bigg(P(x) \to \forall y \Big(P(y) \to P \big(f(x,y) \big) \Big) \, \& \, \overline{\forall y \big(Q(x,y) \to P(y) \big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x,y) \big) \Big) \, \& \, \overline{\forall y \big(\overline{Q(x,y)} \lor P(y) \big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x,y) \big) \Big) \, \& \, \exists y \big(\overline{Q(x,y)} \lor P(y) \big) \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x,y) \big) \Big) \, \& \, \exists y \big(Q(x,y) \& \, \overline{P(y)} \big) \bigg).$$

Пример

Логика предикатов

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \Big).$$

$$\forall x \bigg(P(x) \to \forall y \Big(P(y) \to P(f(x,y) \Big) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \lor P(y) \Big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(\overline{Q(x,y)} \lor P(y) \Big) \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(Q(x,y) \& \overline{P(y)} \Big) \bigg).$$

Пример

Логика предикатов

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \Big).$$

$$\forall x \bigg(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \overline{\forall y \Big(\overline{Q(x,y)} \lor P(y) \Big)} \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(\overline{Q(x,y)} \lor P(y) \Big) \bigg) \equiv$$

$$\equiv \forall x \bigg(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(Q(x,y) \& \overline{P(y)} \Big) \bigg).$$

Пример

Логика предикатов

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \Big).$$

$$\forall x \left(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \right) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \overline{\forall y \Big(\overline{Q(x,y)} \lor P(y) \Big)} \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(\overline{\overline{Q(x,y)}} \lor P(y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P(f(x,y)) \Big) \& \exists y \Big(\overline{Q(x,y)} \lor \overline{P(y)} \Big) \Big).$$

Пример

Логика предикатов

Получить приведённую форму формулы

$$\forall x \Big(P(x) \to \forall y \Big(P(y) \to P(f(x,y)) \Big) \& \overline{\forall y \Big(Q(x,y) \to P(y) \Big)} \Big).$$

$$\forall x \left(P(x) \to \forall y \Big(P(y) \to P \big(f(x, y) \big) \Big) \& \overline{\forall y \big(Q(x, y) \to P(y) \big)} \right) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \overline{\forall y \big(\overline{Q(x, y)} \lor P(y) \big)} \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \exists y \Big(\overline{\overline{Q(x, y)}} \lor P(y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(\overline{P(x)} \lor \forall y \Big(\overline{P(y)} \lor P \big(f(x, y) \big) \Big) \& \exists y \big(Q(x, y) \& \overline{P(y)} \big) \Big).$$

Предварённая нормальная форма

Всякую формулу логики предикатов, находящуюся в приведённой форме, с помощью эквивалентных преобразований можно привести к равносильной формуле в предварённой нормальной форме (ПНФ), в которой все кванторы стоят в её начале, а область действия каждого из них распространяется до конца формулы, т. е. привести к виду

$$\underbrace{\mathsf{M}_1 x_1 \ldots \mathsf{M}_n x_n \ldots}_{\mathsf{префикс}} \underbrace{\mathfrak{A}(x_1, \ldots, x_n, \ldots)}_{\mathsf{матрица}},$$

где $\lambda_1, \ldots, \lambda_n$ — кванторы (либо \exists , либо \forall), называемые префиксом, формула $\mathfrak A$ не содержит кванторов и называется матрицей.

Предварённая нормальная форма

Всякую формулу логики предикатов, находящуюся в приведённой форме, с помощью эквивалентных преобразований можно привести к равносильной формуле в предварённой нормальной форме (ПНФ), в которой все кванторы стоят в её начале, а область действия каждого из них распространяется до конца формулы, т. е. привести к виду

$$\underbrace{\mathbb{X}_1 x_1 \dots \mathbb{X}_n x_n \dots}_{\text{префикс}} \underbrace{\mathfrak{A}(x_1, \dots, x_n, \dots)}_{\text{матрица}},$$

где X_1, \ldots, X_n — кванторы (либо \exists , либо \forall), называемые префиксом, формула $\mathfrak A$ не содержит кванторов и называется матрицей.

Замечание

В ПНФ префикса может и не быть.

Предварённая нормальная форма (продолжение)

Для получения предварённой нормальной формы используют следующие преобразования:

1 Разделение связанных переменных:

$$\exists_1 \times \mathfrak{A}(\ldots \exists_2 \times \mathfrak{B}(\ldots \times \ldots) \ldots) \Longrightarrow$$

$$\Longrightarrow \exists_1 \times \mathfrak{A}(\ldots \exists_2 y \mathfrak{B}(\ldots y \ldots) \ldots).$$

Геперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме.

$$\mathfrak{A} \vee \mathsf{A} \times \mathfrak{B}(x) \Rightarrow \mathsf{A} \times (\mathfrak{A} \vee \mathfrak{B}(x))$$

$$\mathfrak{A} \& \mathsf{A} \times \mathfrak{B}(x) \Rightarrow \mathsf{A} \times (\mathfrak{A} \& \mathfrak{B}(x))$$

Замечание

Одна формула может допускать много эквивалентных предварённых нормальных форм.

Предварённая нормальная форма (продолжение)

Для получения предварённой нормальной формы используют следующие преобразования:

• Разделение связанных переменных:

$$\exists_1 x \mathfrak{A}(\ldots \exists_2 x \mathfrak{B}(\ldots x \ldots) \ldots) \Longrightarrow \exists \exists_1 x \mathfrak{A}(\ldots \exists_2 y \mathfrak{B}(\ldots y \ldots) \ldots).$$

Геперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме

$$\mathfrak{A} \vee \mathsf{A} \times \mathfrak{B}(x) \Longrightarrow \mathsf{A} \times (\mathfrak{A} \vee \mathfrak{B}(x))$$

$$\mathfrak{A} \& \mathsf{A} \times \mathfrak{B}(x) \Longrightarrow \mathsf{A} \times (\mathfrak{A} \& \mathfrak{B}(x))$$

Замечание

Одна формула может допускать много эквивалентных предварённых нормальных форм.

Для получения предварённой нормальной формы используют следующие преобразования:

• Разделение связанных переменных:

$$\exists \exists_1 x \, \mathfrak{A}(\ldots \exists_2 x \, \mathfrak{B}(\ldots x \ldots) \ldots) \Longrightarrow \exists \exists_1 x \, \mathfrak{A}(\ldots \exists_2 y \, \mathfrak{B}(\ldots y \ldots) \ldots).$$

Теперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме

$$\mathfrak{A} \vee \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \vee \mathfrak{B}(x));$$

$$\mathfrak{A} \& \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \& \mathfrak{B}(x)).$$

Замечание

Одна формула может допускать много эквивалентных предварённых нормальных форм.

Предварённая нормальная форма (продолжение)

Для получения предварённой нормальной формы используют следующие преобразования:

Разделение связанных переменных:

$$\exists_1 x \mathfrak{A}(\ldots \exists_2 x \mathfrak{B}(\ldots x \ldots) \ldots) \Longrightarrow$$

$$\exists_1 x \mathfrak{A}(\ldots \exists_2 y \mathfrak{B}(\ldots y \ldots) \ldots).$$

Теперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме:

$$\mathfrak{A} \vee \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \vee \mathfrak{B}(x));$$

$$\mathfrak{A} \& \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \& \mathfrak{B}(x)).$$

Предварённая нормальная форма (продолжение)

Для получения предварённой нормальной формы используют следующие преобразования:

Разделение связанных переменных:

$$\exists_1 x \mathfrak{A}(\ldots \exists_2 x \mathfrak{B}(\ldots x \ldots) \ldots)$$
 $\Rightarrow \exists_1 x \mathfrak{A}(\ldots \exists_2 y \mathfrak{B}(\ldots y \ldots) \ldots).$

Теперь формула не содержит случайно совпадающих связанных переменных.

Приведение к предварённой форме:

$$\mathfrak{A} \vee \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \vee \mathfrak{B}(x));$$

$$\mathfrak{A} \& \mathsf{M} \times \mathfrak{B}(x) \Longrightarrow \mathsf{M} \times (\mathfrak{A} \& \mathfrak{B}(x)).$$

Замечание

Одна формула может допускать много эквивалентных предварённых нормальных форм.

Пример

Логика предикатов

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big) \equiv$$

$$\equiv \forall x \Big(P(x) \& \forall y \exists z \big(\overline{Q(z,y)} \lor R(a,z,y) \big) \Big) \equiv$$

$$\equiv \forall x \forall y \exists z \Big(P(x) \& \big(\overline{Q(z,y)} \lor R(a,z,y) \big) \Big).$$

Пример

Логика предикатов

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$$\forall x \Big(P(x) \& \forall y \exists x (\overline{Q(x,y)} \lor R(a,x,y)) \Big) \equiv$$

$$\equiv \forall x \Big(P(x) \& \forall y \exists z (\overline{Q(z,y)} \lor R(a,z,y)) \Big) \equiv$$

$$\equiv \forall x \forall y \exists z \Big(P(x) \& (\overline{Q(z,y)} \lor R(a,z,y)) \Big).$$

Пример

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$$\forall x \Big(P(x) \& \forall y \exists x (\overline{Q(x,y)} \lor R(a,x,y)) \Big) \equiv$$

$$\equiv \forall x \Big(P(x) \& \forall y \exists z (\overline{Q(z,y)} \lor R(a,z,y)) \Big) \equiv$$

$$\equiv \forall x \forall y \exists z \Big(P(x) \& (\overline{Q(z,y)} \lor R(a,z,y)) \Big).$$

Пример

Логика предикатов

Найти предварённую нормальную форму для формулы

$$\forall x \Big(P(x) \& \forall y \exists x \big(\overline{Q(x,y)} \lor R(a,x,y) \big) \Big).$$

$$\forall x \Big(P(x) \& \forall y \exists x \Big(\overline{Q(x,y)} \lor R(a,x,y) \Big) \Big) \equiv$$

$$\equiv \forall x \Big(P(x) \& \forall y \exists z \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big) \equiv$$

$$\equiv \forall x \forall y \exists z \Big(P(x) \& \Big(\overline{Q(z,y)} \lor R(a,z,y) \Big) \Big).$$

Сколемизация

Логика предикатов

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы исходная $\mathfrak A$ и полученная $\mathfrak A'$ формулы были обе одновременно либо выполнимы, либо противоречивы:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'}$$
,

Сколемизация

Логика предикатов

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы исходная $\mathfrak A$ и полученная $\mathfrak A'$ формулы были обе одновременно либо выполнимы, либо противоречивы:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'},$$

при этом в общем случае $\mathfrak{A}' \not\equiv \mathfrak{A}$.

Сколемизация

Логика предикатов

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы исходная $\mathfrak A$ и полученная $\mathfrak A'$ формулы были обе одновременно либо выполнимы, либо противоречивы:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'},$$

при этом в общем случае $\mathfrak{A}' \not\equiv \mathfrak{A}$.

Одной из таких форм является сколемовская нормальная форма — такая предварённая нормальная форма, в которой исключены кванторы существования.

Кванторы существования можно удалить (элиминировать),

Теоремы

Часто необходимы ещё более строгие формы, при этом достаточно, чтобы исходная $\mathfrak A$ и полученная $\mathfrak A'$ формулы были обе одновременно либо выполнимы, либо противоречивы:

$$\overline{\mathfrak{A}} \vdash \overline{\mathfrak{A}'},$$

при этом в общем случае $\mathfrak{A}' \not\equiv \mathfrak{A}$.

Одной из таких форм является сколемовская нормальная форма — такая предварённая нормальная форма, в которой исключены кванторы существования.

Кванторы существования можно удалить (элиминировать), заменяя их на функции, называемые сколемовскими.

Рассмотрим формулу $\forall y \exists x P(x, y)$.

Здесь всё выражение выполняется для любого y и некоторого x, который, возможно, зависит от y.

Эту зависимость можно обозначить явно с помощью некоторой функции f(y), ставящей в соответствие каждому y то значение x, которое существует.

Если заменить x на f(y), то квантор $\exists x$ можно отбросить:

$$\forall y P(f(y), y).$$

T. о. если в префиксе имеется пара кванторов $\forall y \exists x$, то $\exists x$ удаляется, а все вхождения связанной с ним переменной x заменяется на функцию f(v)

Рассмотрим формулу $\forall y \exists x P(x, y)$.

Здесь всё выражение выполняется для любого у и некоторого x, который, возможно, зависит от y.

$$\forall y P(f(y), y).$$

Рассмотрим формулу $\forall y \exists x P(x, y)$.

Здесь всё выражение выполняется для любого y и некоторого x, который, возможно, зависит от y.

Эту зависимость можно обозначить явно с помощью некоторой функции f(y), ставящей в соответствие каждому y то значение x, которое существует.

Если заменить x на f(y), то квантор $\exists x$ можно отбросить:

$$\forall y P(f(y), y)$$

T. о. если в префиксе имеется пара кванторов $\forall y \exists x$, то $\exists x$ удаляется, а все вхождения связанной с ним переменной x заменяется на функцию f(y).

Логика предикатов

Рассмотрим формулу $\forall y \exists x P(x, y)$.

Здесь всё выражение выполняется для любого у и некоторого x, который, возможно, зависит от y.

Эту зависимость можно обозначить явно с помощью некоторой функции f(y), ставящей в соответствие каждому yто значение x, которое существует.

Если заменить x на f(y), то квантор $\exists x$ можно отбросить:

$$\forall y P(f(y), y).$$

Логика предикатов

Рассмотрим формулу $\forall y \exists x P(x, y)$.

Здесь всё выражение выполняется для любого у и некоторого x, который, возможно, зависит от y.

Эту зависимость можно обозначить явно с помощью некоторой функции f(y), ставящей в соответствие каждому yто значение x, которое существует.

Если заменить x на f(y), то квантор $\exists x$ можно отбросить:

$$\forall y P(f(y), y).$$

Т. о. если в префиксе имеется пара кванторов $\forall y \exists x$, то $\exists x$ удаляется, а все вхождения связанной с ним переменной xзаменяется на функцию f(y).

Сколемизация (продолжение)

Аналогично, если в префиксе имеется набор кванторов $\forall y_1 \dots \forall y_n \exists z$, то $\exists z$ удаляется, а z заменяется на функцию $g(y_1,\ldots,y_n).$

Аналогично, если в префиксе имеется набор кванторов $\forall y_1 \dots \forall y_n \exists z$, то $\exists z$ удаляется, а z заменяется на функцию $g(y_1,\ldots,y_n).$

Очевидно, что если самой левой группой кванторов являются кванторы существования $\exists x_1 \dots \exists x_{n_1}$, то они удаляются, а переменные $x_1 \dots x_{n_1}$ заменяются на константы a_1, \dots, a_{n_1} .

Каждое вхождение переменной, относящейся к квантору

Аналогично, если в префиксе имеется набор кванторов $\forall y_1 \dots \forall y_n \exists z$, то $\exists z$ удаляется, а z заменяется на функцию $g(y_1, \dots, y_n)$.

Очевидно, что если самой левой группой кванторов являются кванторы существования $\exists x_1 \dots \exists x_{n_1}$, то они удаляются, а переменные $x_1 \dots x_{n_1}$ заменяются на константы a_1, \dots, a_{n_1} .

Правило элиминирования кванторов существования

Каждое вхождение переменной, относящейся к квантору существования, заменяется на сколемовскую функцию, аргументами которой являются те переменные, которые связаны с кванторами всеобщности, в область действия которых попал удаляемый квантор существования. Если левее квантора существования нет кванторов всеобщности, то соответствующая переменная заменяется на константу. Элиминирование происходит слева направо.

Пример

Логика предикатов

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Пример

Логика предикатов

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо.

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Логика предикатов

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо. В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$.

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Пример

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо.

В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$.

Отбросим все кванторы существования, а переменную xзаменим на константу a, переменную u — на функцию f(y,z), переменную w — на функцию g(y, z, v).

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v))$$

Логика предикатов

Приведём к сколемовской нормальной форме формулу

$$\exists x \forall y \forall z \exists u \forall v \exists w P(x, y, z, u, v, w).$$

Кванторы существования элиминируем слева направо.

В этой формуле левее $\exists x$ нет кванторов всеобщности, левее $\exists u$ стоят $\forall y$ и $\forall z$, а левее $\exists w$ стоят $\forall y$, $\forall z$ и $\forall v$.

Отбросим все кванторы существования, а переменную xзаменим на константу a, переменную u — на функцию f(y,z), переменную w — на функцию g(y, z, v).

Т. о. получим следующую форму:

$$\forall y \forall z \forall v P(a, y, z, f(y, z), v, g(y, z, v)).$$

Сколемизация (окончание)

Любую формулу логики предикатов можно привести к сколемовской нормальной форме с сохранением противоречивости.

Идея использования функций вместо групп кванторов восходит к работам Т. Ско́лема и Ж. Эрбра́на, поэтому такие функции называют СКОЛЕМОВСКИМИ или (реже) эрбрановскими, а их добавление — сколемизацией.

Туральф Ско́лем (1887—1963) норвежский математик, логик и философ

Жак Эрбран (1908—1931) французский математик