WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/13, 15/10, 15/62, 15/70, 1/21, C07K 1/04, G01N 33/53

(11) International Publication Number:

WO 97/08320

(43) International Publication Date:

6 March 1997 (06.03.97)

(21) International Application Number:

PCT/EP96/03647

A1

(22) International Filing Date:

19 August 1996 (19.08.96)

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,

(30) Priority Data:

95113021.0

18 August 1995 (18.08.95)

(34) Countries for which the regional or

international application was filed:

DE et al.

EP

(71) Applicant (for all designated States except US): MORPHOSYS GESELLSCHAFT FÜR PROTEINOPTIMIERUNG MBH [DE/DE]; Frankfurter Ring 193a, D-80807 München (DE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNAPPIK, Achim [DE/DE]; Killerstrasse 16, D-82166 Gräfelfing (DE). PACK, Peter [DE/DE]; Franz-Wolter-Strasse 4, D-81925 München (DE). ILAG, Vic [PH/DE]; Knorrstrasse 85, D-80807 München (DE). GE, Liming [CN/DE]; Nestroystrasse 17, D-81373 München (DE). MORONEY, Simon [NZ/DE]; Osterwaldstrasse 44, D-80805 München (DE). PLUCKTHUN, Andreas [DE/CH]; Möhrlistrasse 97, CH-8006 Zürich (CH).
- (74) Agent: VOSSIUS & PARTNER; P.O. Box 86 07 67, D-81634 München (DE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN/(POLY)PEPTIDE LIBRARIES

(57) Abstract

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of humanderived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia .	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	rr	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU -	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF CF	Central African Republic	-	of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI.	Côte d'Ivoire	ü	Liechtenstein	SK	Slovakia
CM	Cameroon	Ĺĸ	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
cs	Czechoslovakia	LT	Lithuania	170	Chad
cz	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EK.	Estonia	MD	Republic of Moldova	UA	Ukraine
		MG	Madagascar	UG	Uganda
ES	Spain Finland	ML	Mali	US	United States of America
FI		MN	Mongolia .	UZ	Uzhekistan
FR	France	MR	Mauritania	VN	Viet Nam
GA	Gabon	MIK	\$144000 \$1400000	***	

·1·

/),

Protein/(Poly)peptide Libraries

Field of the Invention

The present invention relates to synthetic DNA sequences which encode one or more collections of homologous proteins/(poly)peptides, and methods for generating and applying libraries of these DNA sequences. In particular, the invention relates to the preparation of a library of human-derived antibody genes by the use of synthetic consensus sequences which cover the structural repertoire of antibodies encoded in the human genome. Furthermore, the invention relates to the use of a single consensus antibody gene as a universal framework for highly diverse antibody libraries.

Background to the Invention

All current recombinant methods which use libraries of proteins/(poly)peptides, e.g. antibodies, to screen for members with desired properties, e.g. binding a given ligand, do not provide the possibility to improve the desired properties of the members in an easy and rapid manner. Usually a library is created either by inserting a random oligonucleotide sequence into one or more DNA sequences cloned from an organism, or a family of DNA sequences is cloned and used as the library. The library is then screened, e.g. using phage display, for members which show the desired property. The sequences of one or more of these resulting molecules are then determined. There is no general procedure available to improve these molecules further on.

Winter (EP 0 368 684 B1) has provided a method for amplifying (by PCR), cloning, and expressing antibody variable region genes. Starting with these genes he was able to create libraries of functional antibody fragments by randomizing the CDR3 of the heavy and/or the light chain. This process is functionally equivalent to the natural process of VJ and VDJ recombination which occurs during the development of B-cells in the immune system.

However the Winter invention does not provide a method for optimizing the binding affinities of antibody fragments further on, a process which would be functionally equivalent to the naturally occurring phenomenon of "affinity maturation", which is provided by the present invention. Furthermore, the Winter invention does not provide for artificial variable region genes, which represent a whole family of

structurally similar natural genes, and which can be assembled from synthetic DNA oligonucleotides. Additionally, Winter does not enable the combinatorial assembly of portions of antibody variable regions, a feature which is provided by the present invention. Furthermore, this approach has the disadvantage that the genes of all antibodies obtained in the screening procedure have to be completely sequenced, since, except for the PCR priming regions, no additional sequence information about the library members is available. This is time and labor intensive and potentially leads to sequencing errors.

The teaching of Winter as well as other approaches have tried to create large antibody libraries having high diversity in the complementarity determining regions (CDRs) as well as in the frameworks to be able to find antibodies against as many different antigens as possible. It has been suggested that a single universal framework may be useful to build antibody libraries, but no approach has yet been successful.

Another problem lies in the production of reagents derived from antibodies. Small antibody fragments show exciting promise for use as therapeutic agents, diagnostic reagents, and for biochemical research. Thus, they are needed in large amounts, and the expression of antibody fragments, e.g. Fv, single-chain Fv (scFv), or Fab in the periplasm of E. coli (Skerra & Plückthun, 1988; Better et al., 1988) is now used routinely in many laboratories. Expression yields vary widely, however. While some fragments yield up to several mg of functional, soluble protein per liter and OD of culture broth in shake flask culture (Carter et al., 1992, Plückthun et al. 1996), other fragments may almost exclusively lead to insoluble material, often found in so-called inclusion bodies. Functional protein may be obtained from the latter in modest yields by a laborious and time-consuming refolding process. The factors influencing antibody expression levels are still only poorly understood. Folding efficiency and stability of the antibody fragments, protease lability and toxicity of the expressed proteins to the host cells often severely limit actual production levels, and several attempts have been tried to increase expression yields. For example, Knappik & Plückthun (1995) could show that expression yield depends on the antibody sequence. They identified key residues in the antibody framework which influence expression yields dramatically. Similarly, Ullrich et al. (1995) found that point mutations in the CDRs can increase the yields in periplasmic antibody fragment expression. Nevertheless, these strategies are only applicable to a few antibodies. Since the Winter invention uses existing repertoires of antibodies, no influence on expressibility of the genes is possible.

Furthermore, the findings of Knappik & Plückthun and Ullrich demonstrate that the knowledge about antibodies, especially about folding and expression is still increasing. The Winter invention does not allow to incorporate such improvements into the library design.

The expressibility of the genes is important for the library quality as well, since the screening procedure relies in most cases on the display of the gene product on a phage surface, and efficient display relies on at least moderate expression of the gene.

These disadvantages of the existing methodologies are overcome by the present invention, which is applicable for all collections of homologous proteins. It has the following novel and useful features illustrated in the following by antibodies as an example:

Artificial antibodies and fragments thereof can be constructed based on known antibody sequences, which reflect the structural properties of a whole group of homologous antibody genes. Therefore it is possible to reduce the number of different genes without any loss in the structural repertoire. This approach leads to a limited set of artificial genes, which can be synthesized de novo, thereby allowing introduction of cleavage sites and removing unwanted cleavages sites. Furthermore, this approach enables (i), adapting the codon usage of the genes to that of highly expressed genes in any desired host cell and (ii), analyzing all possible pairs of antibody light (L) and heavy (H) chains in terms of interaction preference, antigen preference or recombinant expression titer, which is virtually impossible using the complete collection of antibody genes of an organism and all combinations thereof.

The use of a limited set of completely synthetic genes makes it possible to create cleavage sites at the boundaries of encoded structural sub-elements. Therefore, each gene is built up from modules which represent structural sub-elements on the protein/(poly)peptide level. In the case of antibodies, the modules consist of "framework" and "CDR" modules. By creating separate framework and CDR modules, different combinatorial assembly possibilities are enabled. Moreover, if two or more artificial genes carry identical pairs of cleavage sites at the boundaries of each of the genetic sub-elements, pre-built libraries of sub-elements can be inserted in these genes simultaneously, without any additional information related to any particular gene sequence. This strategy enables rapid optimization of, for example, antibody affinity, since DNA cassettes encoding libraries of genetic sub-elements can be (i), pre-built, stored and reused and (ii), inserted in any of these

٦,

sequences at the right position without knowing the actual sequence or having to determine the sequence of the individual library member.

Additionally, new information about amino acid residues important for binding, stability, or solubility and expression could be integrated into the library design by replacing existing modules with modules modified according to the new observations.

The limited number of consensus sequences used for creating the library allows to speed up the identification of binding antibodies after screening. After having identified the underlying consensus gene sequence, which could be done by sequencing or by using fingerprint restriction sites, just those part(s) comprising the random sequence(s) have to be determined. This reduces the probability of sequencing errors and of false-positive results.

The above mentioned cleavage sites can be used only if they are unique in the vector system where the artificial genes have been inserted. As a result, the vector has to be modified to contain none of these cleavage sites. The construction of a vector consisting of basic elements like resistance gene and origin of replication, where cleavage sites have been removed, is of general interest for many cloning attempts. Additionally, these vector(s) could be part of a kit comprising the above mentioned artificial genes and pre-built libraries.

The collection of artificial genes can be used for a rapid humanization procedure of non-human antibodies, preferably of rodent antibodies. First, the amino acid sequence of the non-human, preferably rodent antibody is compared with the amino acid sequences encoded by the collection of artificial genes to determine the most homologous light and heavy framework regions. These genes are then used for insertion of the genetic sub-elements encoding the CDRs of the non-human, preferably rodent antibody.

Surprisingly, it has been found that with a combination of only one consensus sequence for each of the light and heavy chains of a scFv fragment an antibody repertoire could be created yielding antibodies against virtually every antigen. Therefore, one aspect of the present invention is the use of a single consensus sequence as a universal framework for the creation of useful (poly)peptide libraries and antibody consensus sequences useful therefor.

Detailed Description of the Invention

The present invention enables the creation of useful libraries of (poly)peptides. In a first embodiment, the invention provides for a method of setting up nucleic acid sequences suitable for the creation of said libraries. In a first step, a collection of at least three homologous proteins is identified and then analyzed. Therefore, a database of the protein sequences is established where the protein sequences are aligned to each other. The database is used to define subgroups of protein sequences which show a high degree of similarity in both the sequence and, if information is available, in the structural arrangement. For each of the subgroups a (poly)peptide sequence comprising at least one consensus sequence is deduced which represents the members of this subgroup; the complete collection of (poly)peptide sequences represent therefore the complete structural repertoire of the collection of homologous proteins. These artificial (poly)peptide sequences are then analyzed, if possible, according to their structural properties to identify unfavorable interactions between amino acids within said (poly)peptide sequences or between said or other (poly)peptide sequences, for example, in multimeric proteins. Such interactions are then removed by changing the consensus sequence accordingly. The (poly)peptide sequences are then analyzed to identify subelements such as domains, loops, helices or CDRs. The amino acid sequence is backtranslated into a corresponding coding nucleic acid sequence which is adapted to the codon usage of the host planned for expressing said nucleic acid sequences. A set of cleavage sites is set up in a way that each of the sub-sequences encoding the sub-elements identified as described above, is flanked by two sites which do not occur a second time within the nucleic acid sequence. This can be achieved by either identifying a cleavage site already flanking a sub-sequence of by changing one or more nucleotides to create the cleavage site, and by removing that site from the remaining part of the gene. The cleavage sites should be common to all corresponding sub-elements or sub-sequences, thus creating a fully modular arrangement of the sub-sequences in the nucleic acid sequence and of the subelements in the corresponding (poly)peptide.

In a further embodiment, the invention provides for a method which sets up two or more sets of (poly)peptides, where for each set the method as described above is performed, and where the cleavage sites are not only unique within each set but also between any two sets. This method can be applied for the creation of (poly)peptide libraries comprising for example two α -helical domains from two different proteins, where said library is screened for novel hetero-association domains.

In yet a further embodiment, at least two of the sets as described above, are derived from the same collection of proteins or at least a part of it. This describes libraries comprising for example, but not limited to, two domains from antibodies such as VH and VL, or two extracellular loops of transmembrane receptors.

In another embodiment, the nucleic acid sequences set up as described above, are synthesized. This can be achieved by any one of several methods well known to the practitioner skilled in the art, for example, by total gene synthesis or by PCR-based approaches.

In one embodiment, the nucleic acid sequences are cloned into a vector. The vector could be a sequencing vector, an expression vector or a display (e.g. phage display) vector, which are well known to those skilled in the art. Any vector could comprise one nucleic acid sequence, or two or more nucleic sequences, either in different or the same operon. In the last case, they could either be cloned separately or as contiguous sequences.

In one embodiment, the removal of unfavorable interactions as described above, leads to enhanced expression of the modified (poly)peptides.

In a preferred embodiment, one or more sub-sequences of the nucleic acid sequences are replaced by different sequences. This can be achieved by excising the sub-sequences using the conditions suitable for cleaving the cleavage sites adjacent to or at the end of the sub-sequence, for example, by using a restriction enzyme at the corresponding restriction site under the conditions well known to those skilled in the art, and replacing the sub-sequence by a different sequence compatible with the cleaved nucleic acid sequence. In a further preferred embodiment, the different sequences replacing the initial sub-sequence(s) are genomic or rearranged genomic sequences, for example in grafting CDRs from nonhuman antibodies onto consensus antibody sequences for rapid humanization of non-human antibodies. In the most preferred embodiment, the different sequences are random sequences, thus replacing the sub-sequence by a collection of sequences to introduce variability and to create a library. The random sequences can be assembled in various ways, for example by using a mixture of mononucleotides or preferably a mixture of trinucleotides (Virnekäs et al., 1994) during automated oligonucleotide synthesis, by error-prone PCR or by other methods well known to the practitioner in the art. The random sequences may be completely randomized or biased towards or against certain codons according to

the amino acid distribution at certain positions in known protein sequences. Additionally, the collection of random sub-sequences may comprise different numbers of codons, giving rise to a collection of sub-elements having different lengths.

In another embodiment, the invention provides for the expression of the nucleic acid sequences from a suitable vector and under suitable conditions well known to those skilled in the art.

In a further preferred embodiment, the (poly)peptides expressed from said nucleic acid sequences are screened and, optionally, optimized. Screening may be performed by using one of the methods well known to the practitioner in the art, such as phage-display, selectively infective phage, polysome technology to screen for binding, assay systems for enzymatic activity or protein stability. (Poly)peptides having the desired property can be identified by sequencing of the corresponding nucleic acid sequence or by amino acid sequencing or mass spectrometry. In the case of subsequent optimization, the nucleic acid sequences encoding the initially selected (poly)peptides can optionally be used without sequencing. Optimization is performed by repeating the replacement of sub-sequences by different sequences, preferably by random sequences, and the screening step one or more times.

The desired property the (poly)peptides are screened for is preferably, but not exclusively, selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

In one embodiment, the cleavage sites flanking the sub-sequences are sites recognized and cleaved by restriction enzymes, with recognition and cleavage sequences being either identical or different, the restricted sites either having blunt or sticky ends.

The length of the sub-elements is preferably, but not exclusively ranging between 1 amino acid, such as one residue in the active site of an enzyme or a structure-determining residue, and 150 amino acids, as for whole protein domains. Most preferably, the length ranges between 3 and 25 amino acids, such as most commonly found in CDR loops of antibodies.

The nucleic acid sequences could be RNA or, preferably, DNA.

In one embodiment, the (poly)peptides have an amino acid pattern characteristic of a particular species. This can for example be achieved by deducing the consensus sequences from a collection of homologous proteins of just one species, most preferably from a collection of human proteins. Since the (poly)peptides comprising consensus sequences are artificial, they have to be compared to the protein sequence(s) having the closest similarity to ensure the presence of said characteristic amino acid pattern.

In one embodiment, the invention provides for the creation of libraries of (poly)peptides comprising at least part of members or derivatives of the immunoglobulin superfamily, preferably of member or derivatives of the immnoglobulins. Most preferably, the invention provides for the creation of libraries of human antibodies, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3. In a first step, a database of published antibody sequences of human origin is established where the antibody sequences are aligned to each other. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold of CDR loops (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed e.g. by total gene synthesis or by the use of synthetic genetic subunits. These genetic subunits correspond to structural subelements on the (poly)peptide level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the sub-elements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of corresponding genetic sub-sequences. Most preferably, said (poly)peptides are or are derived from the HuCAL consensus genes: $V\kappa1$, $V\kappa2$, $V\kappa3$, $V\kappa4$, $V\lambda1$, $V\lambda2$, $V\lambda3$, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, $C\kappa$, $C\lambda$, CH1 or any combination of said HuCAL consensus genes.

This collection of DNA molecules can then be used to create libraries of antibodies or antibody fragments, preferably Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments, which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimized using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which

binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. Preferably, an scFv fragment library comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes and at least a random sub-sequence encoding the heavy chain CDR3 sub-element is screened for binding antibodies. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic sub-sequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDRs) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are selected, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomized as described above.

A further embodiment of the present invention relates to fusion proteins by providing for a DNA sequence which encodes both the (poly)peptide, as described above, as well as an additional moiety. Particularly preferred are moieties which have a useful therapeutic function. For example, the additional moiety may be a toxin molecule which is able to kill cells (Vitetta et al., 1993). There are numerous examples of such toxins, well known to the one skilled in the art, such as the bacterial toxins Pseudomonas exotoxin A, and diphtheria toxin, as well as the plant toxins ricin, abrin, modeccin, saporin, and gelonin. By fusing such a toxin for example to an antibody fragment, the toxin can be targeted to, for example, diseased cells, and thereby have a beneficial therapeutic effect. Alternatively, the additional moiety may be a cytokine, such as IL-2 (Rosenberg & Lotze, 1986), which has a particular effect (in this case a T-cell proliferative effect) on a family of cells. In a further embodiment, the additional moiety may confer on its (poly)peptide partner a means of detection and/or purification. For example, the fusion protein could comprise the modified antibody fragment and an enzyme commonly used for detection purposes, such as alkaline phosphatase (Blake et al., 1984). There are numerous other moieties which can be used as detection or purification tags, which are well known to the practitioner skilled in the art. Particularly preferred are peptides comprising at least five histidine residues (Hochuli et al., 1988), which are able to bind to metal ions,

and can therefore be used for the purification of the protein to which they are fused (Lindner et al., 1992). Also provided for by the invention are additional moieties such as the commonly used C-myc and FLAG tags (Hopp et al., 1988; Knappik & Plückthun, 1994).

By engineering one or more fused additional domains, antibody fragments or any other (poly)peptide can be assembled into larger molecules which also fall under the scope of the present invention. For example, mini-antibodies (Pack, 1994) are dimers comprising two antibody fragments, each fused to a self-associating dimerization domain. Dimerization domains which are particularly preferred include those derived from a leucine zipper (Pack & Plückthun, 1992) or helix-turn-helix motif (Pack et al., 1993).

All of the above embodiments of the present invention can be effected using standard techniques of molecular biology known to anyone skilled in the art.

In a further embodiment, the random collection of sub-sequences (the library) is inserted into a singular nucleic acid sequence encoding one (poly)peptide, thus creating a (poly)peptide library based on one universal framework. Preferably a random collection of CDR sub-sequences is inserted into a universal antibody framework, for example into the HuCAL H3x2 single-chain Fv fragment described above.

In further embodiments, the invention provides for nucleic acid sequence(s), vector(s) containing the nucleic acid sequence(s), host cell(s) containing the vector(s), and (poly)peptides, obtainable according to the methods described above.

In a further preferred embodiment, the invention provides for modular vector systems being compatible with the modular nucleic acid sequences encoding the (poly)peptides. The modules of the vectors are flanked by restriction sites unique within the vector system and essentially unique with respect to the restriction sites incorporated into the nucleic acid sequences encoding the (poly)peptides, except for example the restriction sites necessary for cloning the nucleic acid sequences into the vector. The list of vector modules comprises origins of single-stranded replication, origins of double-stranded replication for high- and low copy number plasmids, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, purification and detection tags, and sequences of additional moieties.

The vectors are preferably, but not exclusively, expression vectors or vectors suitable for expression and screening of libraries.

In another embodiment, the invention provides for a kit, comprising one or more of the list of nucleic acid sequence(s), recombinant vector(s), (poly)peptide(s), and vector(s) according to the methods described above, and suitable host cell(s) for producing the (poly)peptide(s).

In a preferred embodiment, the invention provides for the creation of libraries of human antibodies. In a first step, a database of published antibody sequences of human origin is established. The database is used to define subgroups of antibody sequences which show a high degree of similarity in both the sequence and the canonical fold (as determined by analysis of antibody structures). For each of the subgroups a consensus sequence is deduced which represents the members of this subgroup; the complete collection of consensus sequences represent therefore the complete structural repertoire of human antibodies.

These artificial genes are then constructed by the use of synthetic genetic subunits. These genetic subunits correspond to structural sub-elements on the protein level. On the DNA level, these genetic subunits are defined by cleavage sites at the start and the end of each of the subelements, which are unique in the vector system. All genes which are members of the collection of consensus sequences are constructed such that they contain a similar pattern of said genetic subunits.

This collection of DNA molecules can then be used to create libraries of antibodies which may be used as sources of specificities against new target antigens. Moreover, the affinity of the antibodies can be optimised using pre-built library cassettes and a general procedure. The invention provides a method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of expressing the antibody fragments, and then screening them to isolate one or more antibody fragments which bind to a given target molecule. If necessary, the modular design of the genes can then be used to excise from the genes encoding the antibody fragments one or more genetic subsequences encoding structural sub-elements, and replacing them by one or more second sub-sequences encoding structural sub-elements. The expression and screening steps can then be repeated until an antibody having the desired affinity is generated.

Particularly preferred is a method in which one or more of the genetic subunits (e.g. the CDR's) are replaced by a random collection of sequences (the library) using the said cleavage sites. Since these cleavage sites are (i) unique in the vector system and (ii) common to all consensus genes, the same (pre-built) library can be inserted into all artificial antibody genes. The resulting library is then screened against any chosen antigen. Binding antibodies are eluted, collected and used as starting material for the next library. Here, one or more of the remaining genetic subunits are randomised as described above.

Definitions

Protein:

The term protein comprises monomeric polypeptide chains as well as homo- or heteromultimeric complexes of two or more polypeptide chains connected either by covalent interactions (such as disulphide bonds) or by non-covalent interactions (such as hydrophobic or electrostatic interactions).

Analysis of homologous proteins:

The amino acid sequences of three or more proteins are aligned to each other (allowing for introduction of gaps) in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15% of the amino acids in the aligned genes are identical, and at least 30% are similar. Examples for families of homologous proteins are: immunoglobulin superfamily, scavenger receptor superfamily, fibronectin superfamilies (e.g. type II and III), complement control protein superfamily, cytokine receptor superfamily, cystine knot proteins, tyrosine kinases, and numerous other examples well known to one of ordinary skill in the art.

Consensus sequence:

Using a matrix of at least three aligned amino acid sequences, and allowing for gaps in the alignment, it is possible to determine the most frequent amino acid residue at each position. The consensus sequence is that sequence which comprises the amino acids which are most frequently represented at each position. In the event that two or more amino acids are equally represented at a single position, the consensus sequence includes both or all of those amino acids.

Removing unfavorable interactions:

The consensus sequence is per se in most cases artificial and has to be analyzed in order to change amino acid residues which, for example, would prevent the resulting molecule to adapt a functional tertiary structure or which would block the interaction with other (poly)peptide chains in multimeric complexes. This can be done either by (i) building a three-dimensional model of the consensus sequence using known related structures as a template, and identifying amino acid residues within the model which may interact unfavorably with each other, or (ii) analyzing the matrix of aligned amino acid sequences in order to detect combinations of amino

acid residues within the sequences which frequently occur together in one sequence and are therefore likely to interact with each other. These probable interaction-pairs are then tabulated and the consensus is compared with these "interaction maps". Missing or wrong interactions in the consensus are repaired accordingly by introducing appropriate changes in amino acids which minimize unfavorable interactions.

Identification of structural sub-elements:

Structural sub-elements are stretches of amino acid residues within a protein/(poly)peptide which correspond to a defined structural or functional part of the molecule. These can be loops (e.g. CDR loops of an antibody) or any other secondary or functional structure within the protein/(poly)peptide (domains, α -helices, β -sheets, framework regions of antibodies, etc.). A structural sub-element can be identified using known structures of similar or homologous (poly)peptides, or by using the above mentioned matrices of aligned amino acid sequences. Here the variability at each position is the basis for determining stretches of amino acid residues which belong to a structural sub-element (e.g. hypervariable regions of an antibody).

Sub-sequence:

A sub-sequence is defined as a genetic module which is flanked by unique cleavage sites and encodes at least one structural sub-element. It is not necessarily identical to a structural sub-element.

Cleavage site:

A short DNA sequence which is used as a specific target for a reagent which cleaves DNA in a sequence-specific manner (e.g. restriction endonucleases).

Compatible cleavage sites:

Cleavage sites are compatible with each other, if they can be efficiently ligated without modification and, preferably, also without adding an adapter molecule.

Unique cleavage sites:

A cleavage site is defined as unique if it occurs only once in a vector containing at least one of the genes of interest, or if a vector containing at least one of the genes of interest could be treated in a way that only one of the cleavage sites could be used by the cleaving agent.

Corresponding (poly)peptide sequences:

Sequences deduced from the same part of one group of homologous proteins are called corresponding (poly)peptide sequences.

Common cleavage sites:

A cleavage site in at least two corresponding sequences, which occurs at the same functional position (i.e. which flanks a defined sub-sequence), which can be hydrolyzed by the same cleavage tool and which yields identical compatible ends is termed a common cleavage site.

Excising genetic sub-sequences:

A method which uses the unique cleavage sites and the corresponding cleavage reagents to cleave the target DNA at the specified positions in order to isolate, remove or replace the genetic sub-sequence flanked by these unique cleavage sites.

Exchanging genetic sub-sequences:

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or a collection of sub-sequences, which contain ends compatible with the cleavage sites thus created, is inserted.

Expression of genes:

The term expression refers to in vivo or in vitro processes, by which the information of a gene is transcribed into mRNA and then translated into a protein/(poly)peptide. Thus, the term expression refers to a process which occurs inside cells, by which the information of a gene is transcribed into mRNA and then into a protein. The term expression also includes all events of post-translational modification and transport, which are necessary for the (poly)peptide to be functional.

Screening of protein/(poly)peptide libraries:

Any method which allows isolation of one or more proteins/(poly)peptides having a desired property from other proteins/(poly)peptides within a library.

Amino acid pattern characteristic for a species:

A (poly)peptide sequence is assumed to exhibit an amino acid pattern characteristic for a species if it is deduced from a collection of homologous proteins from just this species.

Immunoglobulin superfamily (IgSF):

The IgSF is a family of proteins comprising domains being characterized by the immunoglobulin fold. The IgSF comprises for example T-cell receptors and the immunoglobulins (antibodies).

Antibody framework:

A framework of an antibody variable domain is defined by Kabat et al. (1991) as the part of the variable domain which serves as a scaffold for the antigen binding loops of this variable domain.

Antibody CDR:

The CDRs (complementarity determining regions) of an antibody consist of the antigen binding loops, as defined by Kabat et al. (1991). Each of the two variable domains of an antibody Fv fragment contain three CDRs.

HuCAL:

Acronym for <u>Human Combinatorial Antibody Library</u>. Antibody Library based on modular consensus genes according to the invention (see Example 1).

Antibody fragment:

Any portion of an antibody which has a particular function, e.g. binding of antigen. Usually, antibody fragments are smaller than whole antibodies. Examples are Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragments. Additionally, antibody fragments are often engineered to include new functions or properties.

Universal framework:

One single framework which can be used to create the full variability of functions, specificities or properties which is originally sustained by a large collection of different frameworks, is called universal framework.

Binding of an antibody to its target:

The process which leads to a tight and specific association between an antibody and a corresponding molecule or ligand is called binding. A molecule or ligand or any part of a molecule or ligand which is recognized by an antibody is called the target.

Replacing genetic sub-sequences

A method by which an existing sub-sequence is removed using the flanking cleavage sites of this sub-sequence, and a new sub-sequence or collection of sub-

sequences, which contains ends compatible with the cleavage sites thus created, is inserted.

Assembling of genetic sequences:

Any process which is used to combine synthetic or natural genetic sequences in a specific manner in order to get longer genetic sequences which contain at least parts of the used synthetic or natural genetic sequences.

Analysis of homologous genes:

The corresponding amino acid sequences of two or more genes are aligned to each other in a way which maximizes the correspondence between identical or similar amino acid residues at all positions. These aligned sequences are termed homologous if the percentage of the sum of identical and/or similar residues exceeds a defined threshold. This threshold is commonly regarded by those skilled in the art as being exceeded when at least 15 per cent of the amino acids in the aligned genes are identical, and at least 30 per cent are similar.

PCT/EP96/03647

Legends to Figures and Tables

- Fig. 1: Flow chart outlining the process of construction of a synthetic human antibody library based on consensus sequences.
- Fig. 2: Alignment of consensus sequences designed for each subgroup (amino acid residues are shown with their standard one-letter abbreviation). (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The positions are numbered according to Kabat (1991). In order to maximize homology in the alignment, gaps (—) have been introduced in the sequence at certain positions.
- Fig. 3: Gene sequences of the synthetic V kappa consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 4: Gene sequences of the synthetic V lambda consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 5: Gene sequences of the synthetic V heavy chain consensus genes. The corresponding amino acid sequences (see Fig. 2) as well as the unique cleavage sites are also shown.
- Fig. 6: Oligonucleotides used for construction of the consensus genes. The oligos are named according to the corresponding consensus gene, e.g. the gene Vκ1 was constructed using the six oligonucleotides O1K1 to O1K6. The oligonucleotides used for synthesizing the genes encoding the constant domains Cκ (OCLK1 to 8) and CH1 (OCH1 to 8) are also shown.
- Fig. 7A/B: Sequences of the synthetic genes encoding the constant domains Ck (A) and CH1 (B). The corresponding amino acid sequences as well as unique cleavage sites introduced in these genes are also shown.
- Fig. 7C: Functional map and sequence of module M24 comprising the synthetic Cλ gene segment (huCL lambda).
- Fig. 7D: Oligonucleotides used for synthesis of module M24.
- Fig. 8: Sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2. The signal sequence (amino acids 1 to 21) was derived from the E. coli phoA gene (Skerra &

Plückthun, 1988). Between the phoA signal sequence and the VH3 domain, a short sequence stretch encoding 4 amino acid residues (amino acid 22 to 25) has been inserted in order to allow detection of the single-chain fragment in Western blot or ELISA using the monoclonal antibody M1 (Knappik & Plückthun, 1994). The last 6 basepairs of the sequence were introduced for cloning purposes (EcoRI site).

- Fig. 9: Plasmid map of the vector plG10.3 used for phage display of the H3κ2 scFv fragment. The vector is derived from plG10 and contains the gene for the lac operon repressor, lacl, the artificial operon encoding the H3κ2-gene3ss fusion under control of the lac promoter, the lpp terminator of transcription, the single-strand replication origin of the *E. coli* phage f1 (F1_ORI), a gene encoding β-lactamase (bla) and the ColEI derived origin of replication.
- Fig. 10: Sequencing results of independent clones from the initial library, translated into the corresponding amino acid sequences. (A) Amino acid sequence of the VH3 consensus heavy chain CDR3 (position 93 to 102, Kabat numbering). (B) Amino acid sequences of 12 clones of the 10-mer library. (C) Amino acid sequences of 11 clones of the 15-mer library, *: single base deletion.
- Fig. 11: Expression test of individual library members. (A) Expression of 9 independent clones of the 10-mer library. (B) Expression of 9 independent clones of the 15-mer library. The lane designated with M contains the size marker. Both the gp3-scFv fusion and the scFv monomer are indicated.
- Fig. 12: Enrichment of specific phage antibodies during the panning against FITC-BSA. The initial as well as the subsequent fluorescein-specific sublibraries were panned against the blocking buffer and the ratio of the phage eluted from the FITC-BSA coated well vs. that from the powder milk coated well from each panning round is presented as the "specificity factor".
- Fig. 13: Phage ELISA of 24 independent clones after the third round of panning tested for binding on FITC-BSA.
- Fig. 14: Competition ELISA of selected FITC-BSA binding clones. The ELISA signals (OD_{405nm}) of scFv binding without inhibition are taken as 100%.
- Fig. 15: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against FITC-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).

Fig. 16: Coomassie-Blue stained SDS-PAGE of the purified anti-fluorescein softy fragments: M: molecular weight marker, A: total soluble cell extract after induction, B: fraction of the flow-through, C, D and E: purified scFv fragments 1HA-3E4, 1HA-3E5 and 1HA-3E10, respectively.

- Fig. 17: Enrichment of specific phage antibodies during the panning against β-estradiol-BSA, testosterone-BSA, BSA, ESL-1, interleukin-2, lymphotoxin-β, and LeY-BSA after three rounds of panning.
- Fig. 18: ELISA of selected ESL-1 and ß-estradiol binding clones
- Fig. 19: Selectivity and cross-reactivity of HuCAL antibodies: in the diagonal specific binding of HuCAL antibodies can be seen, off-diagonal signals show non-specific cross-reactivity.
- Fig. 20: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ß-estradiol-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat . numbering). One clone is derived from the 10mer library.
- Fig. 21: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against testosterone-BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 22: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against lymphotoxin-β, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). One clone comprises a 14mer CDR, presumably introduced by incomplete coupling of the trinucleotide mixture during oligonucleotide synthesis.
- Fig. 23: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against ESL-1, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering). Two clones are derived from the 10mer library. One clone comprises a 16mer CDR, presumably introduced by chain elongation during oligonucleotide synthesis using trinucleotides.
- Fig. 24: Sequencing results of the heavy chain CDR3s of independent clones after 3 rounds of panning against BSA, translated into the corresponding amino acid sequences (position 93 to 102, Kabat numbering).
- Fig. 25: Schematic representation of the modular pCAL vector system.
- Fig. 25a:List of restriction sites already used in or suitable for the modular HuCAL genes and pCAL vector system.
- Fig. 26: List of the modular vector elements for the pCAL vector series: shown are only those restriction sites which are part of the modular system.

Fig. 27: Functional map and sequence of the multi-cloning site module (MCS)

- Fig. 28: Functional map and sequence of the pMCS cloning vector series.
- Fig. 29: Functional map and sequence of the pCAL module M1 (see Fig. 26).
- Fig. 30: Functional map and sequence of the pCAL module M7-III (see Fig. 26).
- Fig. 31: Functional map and sequence of the pCAL module M9-II (see Fig. 26).
- Fig. 32: Functional map and sequence of the pCAL module M11-II (see Fig. 26).
- Fig. 33: Functional map and sequence of the pCAL module M14-Ext2 (see Fig. 26).
- Fig. 34: Functional map and sequence of the pCAL module M17 (see Fig. 26).
- Fig. 35: Functional map and sequence of the modular vector pCAL4.
- Fig. 35a: Functional maps and sequences of additional pCAL modules (M2, M3, M7I, M7II, M8, M10II, M11II, M12, M13, M19, M20, M21, M41) and of low-copy number plasmid vectors (pCALO1 to pCALO3).
- Fig. 35b:List of oligonucleotides and primers used for synthesis of pCAL vector modules.
- Fig. 36: Functional map and sequence of the ß-lactamase cassette for replacement of CDRs for CDR library cloning.
- Fig. 37: Oligo and primer design for Vk CDR3 libraries
- Fig. 38: Oligo and primer design for Vλ CDR3 libraries
- Fig. 39: Functional map of the pBS13 expression vector series.
- Fig. 40: Expression of all 49 HuCAL scFvs obtained by combining each of the 7 VH genes with each of the 7 VL genes (pBS13, 30°C): Values are given for the percentage of soluble vs. insoluble material, the total and the soluble amount compared to the combination H3κ2, which was set to 100%. In addition, the corresponding values for the McPC603 scFv are given.
- Table 1: Summary of human immunoglobulin germline sequences used for computing the germline membership of rearranged sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. (1) The germline name used in the various calculations, (2) the references number for the corresponding sequence (see appendix for sequence related citations), (3) the family where each sequence belongs to and (4), the various names found in literature for germline genes with identical amino acid sequences.
- Table 2: Rearranged human sequences used for the calculation of consensus sequences. (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The table summarized the name of the sequence (1),

th length of the sequence in amino acids (2), the germline family (3) as well as the computed germline counterpart (4). The number of amino acid exchanges between the rearranged sequence and the germline sequence is tabulated in (5), and the percentage of different amino acids is given in (6). Column (7) gives the references number for the corresponding sequence (see appendix for sequence related citations).

- Table 3: Assignment of rearranged V sequences to their germline counterparts.

 (A) kappa sequences, (B) lambda sequences and (C), heavy chain sequences. The germline genes are tabulated according to their family (1), and the number of rearranged genes found for every germline gene is given in (2).
- Table 4: Computation of the consensus sequence of the rearranged V kappa sequences. (A), V kappa subgroup 1, (B), V kappa subgroup 2, (C), V kappa subgroup 3 and (D), V kappa subgroup 4. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. (1) Amino acids are given with their standard one-letter abbreviations (and B means D or N, Z means E or Q and X means any amino acid). The statistical analysis summarizes the number of sequences found at each position (2), the number of occurrences of the most common amino acid (3), the amino acid residue which is most common at this position (4), the relative frequency of the occurrence of the most common amino acid (5) and the number of different amino acids found at each position (6).
- Table 5: Computation of the consensus sequence of the rearranged V lambda sequences. (A), V lambda subgroup 1, (B), V lambda subgroup 2, and (C), V lambda subgroup 3. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.
- Table 6: Computation of the consensus sequence of the rearranged V heavy chain sequences. (A), V heavy chain subgroup 1A, (B), V heavy chain subgroup 1B, (C), V heavy chain subgroup 2, (D), V heavy chain subgroup 3, (E), V heavy chain subgroup 4, (F), V heavy chain subgroup 5, and (G), V heavy chain subgroup 6. The number of each amino acid found at each position is tabulated together with the statistical analysis of the data. Abbreviations are the same as in Table 4.

Examples

Example 1: Design of a Synthetic Human Combinatorial Antibody Library (HuCAL)

The following example describes the design of a fully synthetic human combinatorial antibody library (HuCAL), based on consensus sequences of the human immunoglobulin repertoire, and the synthesis of the consensus genes. The general procedure is outlined in Fig. 1.

1.1 Sequence database

1.1.1 Collection and alignment of human immunoglobulin sequences

In a first step, sequences of variable domains of human immunoglobulins have been collected and divided into three sub bases: V heavy chain (VH), V kappa (V κ) and V lambda (V λ). For each sequence, the gene sequence was then translated into the corresponding amino acid sequence. Subsequently, all amino acid sequences were aligned according to Kabat et al. (1991). In the case of V λ sequences, the numbering system of Chuchana et al. (1990) was used. Each of the three main databases was then divided into two further sub bases: the first sub base contained all sequences derived from rearranged V genes, where more than 70 positions of the sequence were known. The second sub base contained all germline gene segments (without the D- and J- minigenes; pseudogenes with internal stop codons were also removed). In all cases, where germline sequences with identical amino acid sequence but different names were found, only one sequence was used (see Table 1). The final databases of rearranged sequences contained 386, 149 and 674 entries for V κ , V λ and VH, respectively. The final databases of germline sequences contained 48, 26 and 141 entries for V κ , V λ and VH, respectively.

1.1.2 Assignment of sequences to subgroups

The sequences in the three germline databases where then grouped according to sequence homology (see also Tomlinson et al., 1992, Williams & Winter, 1993, and Cox et al., 1994). In the case of $V\kappa$, 7 families could be established. $V\lambda$ was divided into 8 families and VH into 6 families. The VH germline genes of the VH7 family (Van Dijk et al., 1993) were grouped into the VH1 family, since the genes of the two families are highly homologous. Each family contained different numbers of germline genes, varying from 1 (for example VH6) to 47 (VH3).

1.2 Analysis of sequences

1.2.1 Computation of germline membership

For each of the 1209 amino acid sequences in the databases of rearranged genes, the nearest germline counterpart, i.e. the germline sequence with the smallest number of amino acid differences was then calculated. After the germline counterpart was found, the number of somatic mutations which occurred in the rearranged gene and which led to amino acid exchanges could be tabulated. In 140 cases, the germline counterpart could not be calculated exactly, because more than one germline gene was found with an identical number of amino acid exchanges. These rearranged sequences were removed from the database. In a few cases, the number of amino acid exchanges was found to be unusually large (>20 for VL and >25 for VH), indicating either heavily mutated rearranged genes or derivation from germline genes not present in the database. Since it was not possible to distinguish between these two possibilities, these sequences were also removed from the database. Finally, 12 rearranged sequences were removed from the database because they were found to have very unusual CDR lengths and composition or unusual amino acids at canonical positions (see below). In summary, 1023 rearranged sequences out of 1209 (85%) could be clearly assigned to their germline counterparts (see Table 2).

After this calculation, every rearranged gene could be arranged in one of the families established for the germline genes. Now the usage of each germline gene, i.e. the number of rearranged genes which originate from each germline gene, could be calculated (see Table 2). It was found that the usage was strongly biased towards a subset of germline genes, whereas most of the germline genes were not present as rearranged genes in the database and therefore apparently not used in the immune system (Table 3). This observation had already been reported in the case of V_K (Cox, et al., 1994). All germline gene families, where no or only very few rearranged counterparts could be assigned, were removed from the database, leaving 4 V_K , 3 V_A , and 6 VH families.

1.2.2 Analysis of CDR conformations

The conformation of the antigen binding loops of antibody molecules, the CDRs, is strongly dependent on both the length of the CDRs and the amino acid residues located at the so-called canonical positions (Chothia & Lesk, 1987). It has been found that only a few canonical structures exist, which determine the structural

repertoire of the immunoglobulin variable domains (Chothia et al., 1989). The canonical amino acid positions can be found in CDR as well as framework regions. The 13 used germline families defined above (7 VL and 6 VH) were now analyzed for their canonical structures in order to define the structural repertoire encoded in these families.

In 3 of the 4 V κ families (V κ 1, 2 and 4), one different type of CDR1 conformation could be defined for every family. The family V κ 3 showed two types of CDR1 conformation: one type which was identical to V κ 1 and one type only found in V κ 3. All V κ CDR2s used the same type of canonical structure. The CDR3 conformation is not encoded in the germline gene segments. Therefore, the 4 V κ families defined by sequence homology and usage corresponded also to 4 types of canonical structures found in V κ germline genes.

The 3 V λ families defined above showed 3 types of CDR1 conformation, each family with one unique type. The V λ 1 family contained 2 different CDR1 lengths (13 and 14 amino acids), but identical canonical residues, and it is thought that both lengths adopt the same canonical conformation (Chothia & Lesk, 1987). In the CDR2 of the used V λ germlines, only one canonical conformation exists, and the CDR3 conformation is not encoded in the germline gene segments. Therefore, the 3 V λ families defined by sequence homology and usage corresponded also to 3 types of canonical structures.

The structural repertoire of the human VH sequences was analyzed in detail by Chothia et al., 1992. In total, 3 conformations of CDR1 (H1-1, H1-2 and H1-3) and 6 conformations of CDR2 (H2-1, H2-2, H2-3, H2-4, H2-5 and H2-x) could be defined. Since the CDR3 is encoded in the D- and J-minigene segments, no particular canonical residues are defined for this CDR.

All the members of the VH1 family defined above contained the CDR1 conformation H1-1, but differed in their CDR2 conformation: the H2-2 conformation was found in 6 germline genes, whereas the conformation H2-3 was found in 8 germline genes. Since the two types of CDR2 conformations are defined by different types of amino acid at the framework position 72, the VH1 family was divided into two subfamilies: VH1A with CDR2 conformation H2-2 and VH1B with the conformation H2-3. The members of the VH2 family all had the conformations H1-3 and H2-1 in CDR1 and CDR2, respectively. The CDR1 conformation of the VH3 members was found in all cases to be H1-1, but 4 different types were found in CDR2 (H2-1, H2-3, H2-4 and H2-x). In these CDR2 conformations, the canonical framework residue 71 is always

defined by an arginine. Therefore, it was not necessary to divide the VH3 family into subfamilies, since the 4 types of CDR2 conformations were defined solely by the CDR2 itself. The same was true for the VH4 family. Here, all 3 types of CDR1 conformations were found, but since the CDR1 conformation was defined by the CDR itself (the canonical framework residue 26 was found to be glycine in all cases), no subdivisions were necessary. The CDR2 conformation of the VH4 members was found to be H2-1 in all cases. All members of the VH5 family were found to have the conformation H1-1 and H2-2, respectively. The single germline gene of the VH6 family had the conformations H1-3 and H2-5 in CDR1 and CDR2, respectively.

In summary, all possible CDR conformations of the $V\kappa$ and $V\lambda$ genes were present in the 7 families defined by sequence comparison. From the 12 different CDR conformations found in the used VH germline genes, 7 could be covered by dividing the family VH1 into two subfamilies, thereby creating 7 VH families. The remaining 5 CDR conformations (3 in the VH3 and 2 in the VH4 family) were defined by the CDRs themselves and could be created during the construction of CDR libraries. Therefore, the structural repertoire of the used human V genes could be covered by 49 (7 x 7) different frameworks.

1.2.3 Computation of consensus sequences

The 14 databases of rearranged sequences (4 Vκ, 3 Vλ and 7 VH) were used to compute the HuCAL consensus sequences of each subgroup (4 HuCAL- Vk, 3 HuCAL- Vλ, 7 HuCAL- VH, see Table 4, 5 and 6). This was done by counting the number of amino acid residues used at each position (position variability) and subsequently identifying the amino acid residue most frequently used at each position. By using the rearranged sequences instead of the used germline sequences for the calculation of the consensus, the consensus was weighted according to the frequency of usage. Additionally, frequently mutated and highly conserved positions could be identified. The consensus sequences were crosschecked with the consensus of the germline families to see whether the rearranged sequences were biased at certain positions towards amino acid residues which do not occur in the collected germline sequences, but this was found not to be the case. Subsequently, the number of differences of each of the 14 consensus sequences to each of the germline sequences found in each specific family was calculated. The overall deviation from the most homologous germline sequence was found to be 2.4 amino acid residues (s.d. = 2.7), ensuring that the "artificial" consensus sequences

can still be considered as truly human sequences as far as immunogenicity is concerned.

1.3 Structural analysis

So far, only sequence information was used to design the consensus sequences. Since it was possible that during the calculation certain artificial combinations of amino acid residues have been created, which are located far away in the sequence but have contacts to each other in the three dimensional structure, leading to destabilized or even misfolded frameworks, the 14 consensus sequences were analyzed according to their structural properties.

It was rationalized that all rearranged sequences present in the database correspond to functional and therefore correctly folded antibody molecules. Hence, the most homologous rearranged sequence was calculated for each consensus sequence. The positions where the consensus differed from the rearranged sequence were identified as potential "artificial residues" and inspected.

The inspection itself was done in two directions. First, the local sequence stretch around each potentially "artificial residue" was compared with the corresponding stretch of all the rearranged sequences. If this stretch was found to be truly artificial, i.e. never occurred in any of the rearranged sequences, the critical residue was converted into the second most common amino acid found at this position and analyzed again. Second, the potentially "artificial residues" were analyzed for their long range interactions. This was done by collecting all available structures of human antibody variable domains from the corresponding PDB files and calculating for every structure the number and type of interactions each amino acid residue established to each side-chain. These "interaction maps" were used to analyze the probable side-chain/side-chain interactions of the potentially "artificial residues". As a result of this analysis, the following residues were exchanged (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: $S_{65}T$ V_K1: $N_{34}A$,

V_K3: G₉A, D₆₀A, R₇₇S

Vλ3: V₇₈T

PCT/EP96/03647

1.4 Design of CDR sequences

The process described above provided the complete consensus sequences derived solely from the databases of rearranged sequences. It was rationalized that the CDR1 and CDR2 regions should be taken from the databases of used germline sequences, since the CDRs of rearranged and mutated sequences are biased towards their particular antigens. Moreover, the germline CDR sequences are known to allow binding to a variety of antigens in the primary immune response, where only CDR3 is varied. Therefore, the consensus CDRs obtained from the calculations described above were replaced by germline CDRs in the case of VH and V κ . In the case of V λ , a few amino acid exchanges were introduced in some of the chosen germline CDRs in order to avoid possible protease cleavage sites as well as possible structural constraints.

The CDRs of following germline genes have been chosen:

HuCAL gene	CDR1	CDR2
HuCAL-VH1A	VH1-12-1	VH1-12-1
HuCAL-VH1B	VH1-13-16	VH1-13-6,-7,-8,-9
HuCAL-VH2	VH2-31-10,-11,-12,-13	VH2-31-3,-4
HuCAL-VH3	VH3-13-8,-9,-10	VH3-13-8,-9,-10
HuCAL-VH4	VH4-11-7 to -14	VH4-11-8,-9,-11,-12,-14,-16
		VH4-31-17,-18,-19,-20
HuCAL-VH5	VH5-12-1,-2	VH5-12-1,-2
HuCAL-VH6	VH6-35-1	VH6-35-1
HuCAL-Vκ1	Vκ1-14,-15	Vĸ1-2,-3,-4,-5,-7,-8,-12,-13,-18,-19
HuCAL-Vκ2	Vκ2-6	Vκ2-6
HuCAL-Vκ3	Vκ3-1,-4	Vκ3-4
HuCAL-Vĸ4	Vĸ4-1	Vκ4-1
HuCAL-Vλ1	HUMLV117,DPL5	DPL5
HuCAL-Vλ2	DPL11,DPL12	DPL12
HuCAL-Vλ3	DPL23	HUMLV318

In the case of the CDR3s, any sequence could be chosen since these CDRs were planned to be the first to be replaced by oligonucleotide libraries. In order to study the expression and folding behavior of the consensus sequences in *E. coli*, it would be useful to have all sequences with the same CDR3, since the influence of the CDR3s on the folding behavior would then be identical in all cases. The dummy sequences QQHYTTPP and ARWGGDGFYAMDY were selected for the VL chains (kappa and lambda) and for the VH chains, respectively. These sequences are known to be compatible with antibody folding in *E. coli* (Carter et al., 1992).

1.5 Gene design

The final outcome of the process described above was a collection of 14 HuCAL amino acid sequences, which represent the frequently used structural antibody repertoire of the human immune system (see Figure 2). These sequences were back-translated into DNA sequences. In a first step, the back-translation was done using only codons which are known to be frequently used in E. coli. These gene sequences were then used for creating a database of all possible restriction endonuclease sites, which could be introduced without changing the corresponding amino acid sequences. Using this database, cleavage sites were selected which were located at the flanking regions of all sub-elements of the genes (CDRs and framework regions) and which could be introduced in all HuCAL VH, Vκ or Vλ genes simultaneously at the same position. In a few cases it was not possible to find cleavage sites for all genes of a subgroup. When this happened, the amino acid sequence was changed, if this was possible according to the available sequence and structural information. This exchange was then analyzed again as described above. In total, the following 6 amino acid residues were exchanged during this design (given is the name of the gene, the position according to Kabat's numbering scheme, the amino acid found at this position as the most abundant one and the amino acid which was used instead):

VH2: T₂Q

VH6: S₄₂G

Vκ3: E,D, I_{se}V

Vκ4: K₂₄R

Vλ3: T₂₂S

In one case (5'-end of VH framework 3) it was not possible to identify a single cleavage site for all 7 VH genes. Two different type of cleavage sites were used instead: BstEll for HuCAL VH1A, VH1B, VH4 and VH5, and NspV for HuCAL VH2, VH3, VH4 and VH6.

Several restriction endonuclease sites were identified, which were not located at the flanking regions of the sub-elements but which could be introduced in every gene of a given group without changing the amino acid sequence. These cleavage sites were also introduced in order to make the system more flexible for further improvements. Finally, all but one remaining restriction endonuclease sites were removed in every gene sequence. The single cleavage site, which was not removed was different in all genes of a subgroup and could be therefore used as a "fingerprint" site to ease the identification of the different genes by restriction digest. The designed genes, together with the corresponding amino acid sequences and the group-specific restriction endonuclease sites are shown in Figure 3, 4 and 5, respectively.

1.6 Gene synthesis and cloning

The consensus genes were synthesized using the method described by Prodromou & Pearl, 1992, using the oligonucleotides shown in Fig. 6. Gene segments encoding the human constant domains $C\kappa$, $C\lambda$ and CH1 were also synthesized, based on sequence information given by Kabat et al., 1991 (see Fig. 6 and Fig. 7). Since for both the CDR3 and the framework 4 gene segments identical sequences were chosen in all HuCAL $V\kappa$, $V\lambda$ and VH genes, respectively, this part was constructed only once, together with the corresponding gene segments encoding the constant domains. The PCR products were cloned into pCR-Script KS(+) (Stratagene, Inc.) or pZErO-1 (Invitrogen, Inc.) and verified by sequencing.

Example 2: Cloning and Testing of a HuCAL-Based Antibody Library

A combination of two of the synthetic consensus genes was chosen after construction to test whether binding antibody fragments can be isolated from a library based on these two consensus frameworks. The two genes were cloned as a single-chain Fv (scFv) fragment, and a VH-CDR3 library was inserted. In order to test the library for the presence of functional antibody molecules, a selection procedure

was carried out using the small hapten fluorescein bound to BSA (FITC-BSA) as antigen.

2.1 Cloning of the HuCAL VH3-Vk2 scFv fragment

in order to test the design of the consensus genes, one randomly chosen combination of synthetic light and heavy gene (HuCAL-Vk2 and HuCAL-VH3) was used for the construction of a single-chain antibody (scFv) fragment. Briefly, the gene segments encoding the VH3 consensus gene and the CH1 gene segment including the CDR3 - framework 4 region, as well as the Vk2 consensus gene and the Ck gene segment including the CDR3 - framework 4 region were assembled vielding the gene for the VH3-CH1 Fd fragment and the gene encoding the Vκ2-Cκ light chain, respectively. The CH1 gene segment was then replaced by an oligonucleotide cassette encoding a 20-mer peptide linker with the sequence AGGGSGGGGGGGGGGGS. The two oligonucleotides encoding this linker were 5'- TCAGCGGGTGGCGGTTCTGGCGGCGGTGGGAGCGGTGGCGGTGGTTC-TGGCGGTGGTTCCGATATCGGTCCACGTACGG-3' and 5'-AATTCCGTACG-TGGACCGATATCGGAACCACCACCGCCAGAACCACCGCCACCGCTCCCACCGC CGCCAGAACCGCCACCCGC-3', respectively. Finally, the HuCAL-Vk2 gene was inserted via EcoRV and BsiWI into the plasmid encoding the HuCAL-VH3-linker fusion, leading to the final gene HuCAL-VH3-Vk2, which encoded the two consensus sequences in the single-chain format VH-linker-VL. The complete coding sequence is shown in Fig. 8.

2.2 Construction of a monovalent phage-display phagemid vector pIG10.3

Phagemid plG10.3 (Fig. 9) was constructed in order to create a phage-display system (Winter et al., 1994) for the $H3\kappa2$ scFv gene. Briefly, the EcoRl/HindIII restriction fragment in the phagemid vector plG10 (Ge et al., 1995) was replaced by the c-myc followed by an amber codon (which encodes an glutamate in the amber-suppresser strain XL1 Blue and a stop codon in the non-suppresser strain JM83) and a truncated version of the gene III (fusion junction at codon 249, see Lowman et al., 1991) through PCR mutagenesis.

2.3 Construction of H-CDR3 libraries

Heavy chain CDR3 libraries of two lengths (10 and 15 amino acids) were constructed using trinucleotide codon containing oligonucleotides (Virnekās et al., 1994) as templates and the oligonucleotides complementing the flanking regions as primers. To concentrate only on the CDR3 structures that appear most often in functional antibodies, we kept the salt-bridge of R_{H94} and D_{H101} in the CDR3 loop. For the 15-mer library, both phenylalanine and methionine were introduced at position 100 since these two residues were found to occur quite often in human CDR3s of this length (not shown). For the same reason, valine and tyrosine were introduced at position 102. All other randomized positions contained codons for all amino acids except cystein, which was not used in the trinucleotide mixture.

The CDR3 libraries of lengths 10 and 15 were generated from the PCR fragments using oligonucleotide templates O3HCDR103T (5'- GATACGGCCGTGTATTA-TTGCGCGCGT (TRI), GATTATTGGGGCCAAGGCACCCTG-3') and O3HCDR153T (5'-GATACGGCCGT GTATTATTGCGCGCGT(TRI), (TTT/ATG)GAT(GTT/TAT)TGGG-GCCAAGGCACCCTG-3'), and primers O3HCDR35 (5'-GATACGGCCGTGTATTA-TTGC-3') and O3HCDR33 (5'-CAGGGTGCCTTGGCCCC-3'), where TRI are trinucleotide mixtures representing all amino acids without cystein, (TTT/ATG) and amino mixtures encoding the (GTT/TAT) are trinucleotide phenylalanine/methionine and valine/tyrosine, respectively. The potential diversity of these libraries was 4.7 x 107 and 3.4 x 1010 for 10-mer and 15-mer library, respectively. The library cassettes were first synthesized from PCR amplification of the oligo templates in the presence of both primers: 25 pmol of the oligo template O3HCDR103T or O3HCDR153T, 50 pmol each of the primers O3HCDR35 and O3HCDR33, 20 nmol of dNTP, 10x buffer and 2.5 units of Pfu DNA polymerase (Stratagene) in a total volume of 100 µl for 30 cycles (1 minute at 92°C, 1 minute at 62°C and 1 minute at 72°C). A hot-start procedure was used. The resulting mixtures were phenol-extracted, ethanol-precipitated and digested overnight with Eagl and Styl. The vector pIG10.3-scH3x2cat, where the Eagl-Styl fragment in the vector pIG10.3-scH3k2 encoding the H-CDR3 was replaced by the chloramphenical acetyltransferase gene (cat) flanked with these two sites, was similarly digested. The digested vector (35 μ g) was gel-purified and ligated with 100 μ g of the library cassette overnight at 16°C. The ligation mixtures were isopropanol precipitated, airdried and the pellets were redissolved in 100 µl of ddH2O. The ligation was mixed with 1 ml of freshly prepared electrocompetent XL1 Blue on ice. 20 rounds of electroporation were performed and the transformants were diluted in SOC medium, shaken at 37°C for 30 minutes and plated out on large LB plates (Amp/Tet/Glucose)

at 37°C for 6-9 hrs. The number of transformants (library size) was 3.2x10⁷ and 2.3x10⁷ for the 10-mer and the 15-mer library, respectively. The colonies were suspended in 2xYT medium (Amp/Tet/Glucose) and stored as glycerol culture. In order to test the quality of the initial library, phagemids from 24 independent colonies (12 from the 10-mer and 12 from the 15-mer library, respectively) were isolated and analyzed by restriction digestion and sequencing. The restriction analysis of the 24 phagemids indicated the presence of intact vector in all cases. Sequence analysis of these clones (see Fig. 10) indicated that 22 out of 24 contained a functional sequence in their heavy chain CDR3 regions. 1 out of 12 clones of the 10-mer library had a CDR3 of length 9 instead of 10, and 2 out of 12 clones of the 15-mer library had no open reading frame, thereby leading to a non-functional scFv; one of these two clones contained two consecutive inserts, but out of frame (data not shown). All codons introduced were presented in an even distribution.

Expression levels of individual library members were also measured. Briefly, 9 clones from each library were grown in 2xYT medium containing Amp/Tet/0.5% glucose at 37°C overnight. Next day, the cultures were diluted into fresh medium with Amp/Tet. At an OD_{600nm} of 0.4, the cultures were induced with 1 mM of IPTG and shaken at RT overnight. Then the cell pellets were suspended in 1 ml of PBS buffer + 1 mM of EDTA. The suspensions were sonicated and the supernatants were separated on an SDS-PAGE under reducing conditions, blotted on nylon membrane and detected with anti-FLAG M1 antibody (see Fig. 11). From the nine clones of the 10-mer library, all express the scFv fragments. Moreover, the gene III / scFv fusion proteins were present in all cases. Among the nine clones from the 15-mer library analyzed, 6/9 (67%) led to the expression of both scFv and the gene III/scFv fusion proteins. More importantly, all clones expressing the scFvs and gene III/scFv fusions gave rise to about the same level of expression.

2.4 Biopanning

Phages displaying the antibody libraries were prepared using standard protocols. Phages derived from the 10-mer library were mixed with phages from the 15-mer library in a ratio of 20:1 (1×10^{10} cfu/well of the 10-mer and 5×10^8 cfu/well of the 15-mer phages, respectively). Subsequently, the phage solution was used for panning in ELISA plates (Maxisorp, Nunc) coated with FITC-BSA (Sigma) at concentration of $100~\mu\text{g/ml}$ in PBS at 4°C overnight. The antigen-coated wells were blocked with 3% powder milk in PBS and the phage solutions in 1% powder milk were added to each

well and the plate was shaken at RT for 1 hr. The wells were then washed with PBST and PBS (4 times each with shaking at RT for 5 minutes). The bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. The eluted phage solutions were immediately neutralized with 1/2 the volume of 1 M Tris Cl, pH 7.6. Eluted phage solutions (ca. 450 μ l) were used to infect 5 ml of XL1 Blue cells at 37°C for 30 min. The infected cultures were then plated out on large LB plates (Amp/Tet/Glucose) and allowed to grow at 37°C until the colonies were visible. The colonies were suspended in 2xYT medium and the glycerol cultures were made as above described. This panning round was repeated twice, and in the third round elution was carried out with addition of fluorescein in a concentration of 100 μ g/ml in PBS. The enrichment of specific phage antibodies was monitored by panning the initial as well as the subsequent fluorescein-specific sub-libraries against the blocking buffer (Fig. 12). Antibodies with specificity against fluorescein were isolated after 3 rounds of panning.

2.5 ELISA measurements

One of the criteria for the successful biopanning is the isolation of individual phage clones that bind to the targeted antigen or hapten. We undertook the isolation of anti-FITC phage antibody clones and characterized them first in a phage ELISA format. After the 3rd round of biopanning (see above), 24 phagemid containing clones were used to inoculate 100 μ l of 2xYT medium (Amp/Tet/Glucose) in an ELISA plate (Nunc), which was subsequently shaken at 37°C for 5 hrs. 100 μ l of 2xYT medium (Amp/Tet/1 mM IPTG) were added and shaking was continued for 30 minutes. A further 100 μ I of 2xYT medium (Amp/Tet) containing the helper phage (1 x 109 cfu/well) was added and shaking was done at RT for 3 hrs. After addition of kanamycin to select for successful helper phage infection, the shaking was continued overnight. The plates were then centrifuged and the supernatants were pipetted directly into ELISA wells coated with 100 µl FITC-BSA (100µg/ml) and blocked with milk powder. Washing was performed similarly as during the panning procedure and the bound phages were detected with anti-M13 antibody-POD conjugate (Pharmacia) using soluble POD substrate (Boehringer-Mannheim). Of the 24 clones screened against FITC-BSA, 22 were active in the ELISA (Fig. 13). The initial libraries of similar titer gave rise to no detectable signal.

Specificity for fluorescein was measured in a competitive ELISA. Periplasmic fractions of five FITC specific scFvs were prepared as described above. Western blotting indicated that all clones expressed about the same amount of scFv fragment

(data not shown). ELISA was performed as described above, but additionally, the periplasmic fractions were incubated 30 min at RT either with buffer (no inhibition), with 10 mg/ml BSA (inhibition with BSA) or with 10 mg/ml fluorescein (inhibition with fluorescein) before adding to the well. Binding scFv fragment was detected using the anti-FLAG antibody M1. The ELISA signal could only be inhibited, when soluble fluorescein was added, indicating binding of the scFvs was specific for fluorescein (Fig. 14).

2.6 Sequence analysis

The heavy chain CDR3 region of 20 clones were sequenced in order to estimate the sequence diversity of fluorescein binding antibodies in the library (Fig. 15). In total, 16 of 20 sequences (80%) were different, showing that the constructed library contained a highly diverse repertoire of fluorescein binders. The CDR3s showed no particular sequence homology, but contained on average 4 arginine residues. This bias towards arginine in fluorescein binding antibodies had already been described by Barbas et al., 1992.

2.7 Production

E. coli JM83 was transformed with phagemid DNA of 3 selected clones and cultured in 0.5 L 2xYT medium. Induction was carried out with 1 mM IPTG at $OD_{600nm} = 0.4$ and growth was continued with vigorous shaking at RT overnight. The cells were harvested and pellets were suspended in PBS buffer and sonicated. The supernatants were separated from the cell debris via centrifugation and purified via the BioLogic system (Bio-Rad) by with a POROS®MC 20 column (IMAC, PerSeptive Biosystems, Inc.) coupled with an ion-exchange chromatography column. The ion-exchange column was one of the POROS®HS, CM or HQ or PI 20 (PerSeptive Biosystems, Inc.) depended on the theoretical pl of the scFv being purified. The pH of all the buffers was adjusted to one unit lower or higher than the pl of the scFv being purified throughout. The sample was loaded onto the first IMAC column, washed with 7 column volumes of 20 mM sodium phosphate, 1 M NaCl and 10 mM imidazole. This washing was followed by 7 column volumes of 20 mM sodium phosphate and 10 mM imidazole. Then 3 column volumes of an imidazole gradient (10 to 250 mM) were applied and the eluent was connected directly to the ion-exchanger. Nine column volumes of isocratic washing with 250 mM imidazole was followed by 15 column volumes of 250 mM to 100 mM and 7 column volumes of an imidazole / NaCl gradient (100 to 10 mM imidazole, 0 to 1 M NaCl). The flow rate was 5 ml/min. The purity of scFv fragments was checked by SDS-PAGE Coomassie

staining (Fig. 16). The concentration of the fragments was determined from the absorbance at 280 nm using the theoretically determined extinction coefficient (Gill & von Hippel, 1989). The scFv fragments could be purified to homogeneity (see Fig. 16). The yield of purified fragments ranged from 5 to 10 mg/L/OD.

Example 3: HuCAL H3k2 Library Against a Collection of Antigens

In order to test the library used in Example 2 further, a new selection procedure was carried out using a variety of antigens comprising ß-estradiol, testosterone, Lewis-Y epitope (LeY), interleukin-2 (IL-2), lymphotoxin-ß (LT-B), E-selectin ligand-1 (ESL-1), and BSA.

3.1 Biopanning

The library and all procedures were identical to those described in Example 2. The ELISA plates were coated with β -estradiol-BSA (100 μ g/ml), testosterone-BSA (100 μ g/ml), LeY-BSA (20 μ g/ml) IL-2 (20 μ g/ml), ESL-1 (20 μ g/ml) and BSA (100 μ g/ml), LT- β (denatured protein, 20 μ g/ml). In the first two rounds, bound phages were eluted with 0.1 M triethylamine (TEA) at RT for 10 minutes. In the case of BSA, elution after three rounds of panning was carried out with addition of BSA in a concentration of 100 μ g/ml in PBS. In the case of the other antigens, third round elution was done with 0.1 M triethylamine. In all cases except LeY, enrichment of binding phages could be seen (Figure 17). Moreover, a repetition of the biopanning experiment using only the 15-mer library resulted in the enrichment of LeY-binding phages as well (data not shown).

3.2. ELISA measurements

Clones binding to β -estradiol, testosterone, LeY, LT- β , ESL-1 and BSA were further analyzed and characterized as described in Example 2 for FITC. ELISA data for anti- β -estradiol and anti-ESL-1 antibodies are shown in Fig. 18. In one experiment, selectivity and cross-reactivity of binding scFv fragments were tested. For this purpose, an ELISA plate was coated with FITC, testosterone, β -estradiol, BSA, and ESL-1, with 5 wells for each antigen arranged in 5 rows, and 5 antibodies, one against each of the antigens, were screened against each of the antigens. Fig. 19

shows the specific binding of the antibodies to the antigen it was selected for, and the low cross-reactivity with the other four antigens.

3.3 Sequence analysis

The sequencing data of several clones against ß-estradiol (34 clones), testosterone (12 clones), LT-ß (23 clones), ESL-1 (34 clones), and BSA (10 clones) are given in Figures 20 to 24.

Example 4: Vector Construction

To be able to take advantage of the modularity of the consensus gene repertoire, a vector system had to be constructed which could be used in phage display screening of HuCAL libraries and subsequent optimization procedures. Therefore, all necessary vector elements such as origins of single-stranded or double-stranded replication, promotor/operator, repressor or terminator elements, resistance genes, potential recombination sites, gene III for display on filamentous phages, signal sequences, or detection tags had to be made compatible with the restriction site pattern of the modular consensus genes. Figure 25 shows a schematic representation of the pCAL vector system and the arrangement of vector modules and restriction sites therein. Figure 25a shows a list of all restriction sites which are already incorporated into the consensus genes or the vector elements as part of the modular system or which are not yet present in the whole system. The latter could be used in a later stage for the introduction of or within new modules.

4.1 Vector modules

A series of vector modules was constructed where the restriction sites flanking the gene sub-elements of the HuCAL genes were removed, the vector modules themselves being flanked by unique restriction sites. These modules were constructed either by gene synthesis or by mutagenesis of templates. Mutagenesis was done by add-on PCR, by site-directed mutagenesis (Kunkel et al., 1991) or multisite oligonucleotide-mediated mutagenesis (Sutherland et al., 1995; Perlak, 1990) using a PCR-based assembly method.

Figure 26 contains a list of the modules constructed. Instead of the terminator module M9 (HindIII-lpp-PacI), a larger cassette M9II was prepared to introduce Fsel as additional restriction site. M9II can be cloned via HindIII/BsrGI.

All vector modules were characterized by restriction analysis and sequencing. In the case of module M11-II, sequencing of the module revealed a two-base difference in positions 164/65 compared to the sequence database of the template. These two different bases (CA → GC) created an additional BanII site. Since the same two-base difference occurs in the f1 origin of other bacteriophages, it can be assumed that the two-base difference was present in the template and not created by mutagenesis during cloning. This BanII site was removed by site-directed mutagenesis, leading to module M11-III. The BssSI site of module M14 could initially not be removed without impact on the function of the CoIE1 origin, therefore M14-Ext2 was used for cloning of the first pCAL vector series. Figures 29 to 34 are showing the functional maps and sequences of the modules used for assembly of the modular vector pCAL4 (see below). The functional maps and sequences of additional modules can be found in Figure 35a. Figure 35b contains a list of oligonucleotides and primers used for the synthesis of the modules.

4.2 Cloning vector pMCS

To be able to assemble the individual vector modules, a cloning vector pMCS containing a specific multi-cloning site (MCS) was constructed. First, an MCS cassette (Fig. 27) was made by gene synthesis. This cassette contains all those restriction sites in the order necessary for the sequential introduction of all vector modules and can be cloned via the 5'-HindIII site and a four base overhang at the 3'-end compatible with an AatII site. The vector pMCS (Figure 28) was constructed by digesting pUC19 with AatII and HindIII, isolating the 2174 base pair fragment containing the bla gene and the CoIE1 origin, and ligating the MCS cassette.

4.3 Cloning of modular vector pCAL4

This was cloned step by step by restriction digest of pMCS and subsequent ligation of the modules M1 (via Aatll/Xbal), M7III (via EcoRI/HindIII), and M9II (via HindIII/BsrGI), and M11-II (via BsrGI/NheI). Finally, the bla gene was replaced by the cat gene module M17 (via AatlI/BgIII), and the wild type CoIE1 origin by module M14-Ext2 (via BgIII/NheI). Figure 35 is showing the functional map and the sequence of pCAL4.

4.4 Cloning of low-copy number plasmid vectors pCALO

A series of low-copy number plasmid vectors was constructed in a similar way using the p15A module M12 instead of the ColE1 module M14-Ext2. Figure 35a is showing the functional maps and sequences of the vectors pCALO1 to pCALO3.

Example 5: Construction of a HuCAL scFv Library

5.1. Cloning of all 49 HuCAL scFv fragments

All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes were assembled as described for the HuCAL VH3-Vk2 scFv in Example 2 and inserted into the vector pBS12, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991).

5.2 Construction of a CDR cloning cassette

For replacement of CDRs, a universal ß-lactamase cloning cassette was constructed having a multi-cloning site at the 5'-end as well as at the 3'-end. The 5'-multi-cloning site comprises all restriction sites adjacent to the 5'-end of the HuCAL VH and VL CDRs, the 3'-multi-cloning site comprises all restriction sites adjacent to the 3' end of the HuCAL VH and VL CDRs. Both 5'- and 3'-multi-cloning site were prepared as cassettes via add-on PCR using synthetic oligonucleotides as 5'- and 3'-primers using wild type ß-lactamase gene as template. Figure 36 shows the functional map and the sequence of the cassette bla-MCS.

5.3. Preparation of VL-CDR3 library cassettes

The VL-CDR3 libraries comprising 7 random positions were generated from the PCR fragments using oligonucleotide templates $V\kappa1\&V\kappa3$, $V\kappa2$ and $V\kappa4$ and primers O_K3L_5 and O_K3L_3 (Fig. 37) for the $V\kappa$ genes, and $V\lambda$ and primers O_L3L_5 (5'-GCAGAAGGCGAACGTCC-3') and O_L3LA_3 (Fig. 38) for the $V\lambda$ genes. Construction of the cassettes was performed as described in Example 2.3.

5.4 Cloning of HuCAL scFv genes with VL-CDR3 libraries

Each of the 49 single-chains was subcloned into pCAL4 via Xbal/EcoRI and the VL-CDR3 replaced by the ß-lactamase cloning cassette via Bbsl/MscI, which was then replaced by the corresponding VL-CDR3 library cassette synthesized as described above. This CDR replacement is described in detail in Example 2.3 where the cat gene was used.

5.5 Preparation of VH-CDR3 library cassette

The VH-CDR3 libraries were designed and synthesized as described in Example 2.3.

5.6 Cloning of HuCAL scFv genes with VL- and VH-CDR3 libraries

Each of the 49 single-chain VL-CDR3 libraries was digested with BssHII/Styl to replace VH-CDR3. The "dummy" cassette digested with BssHII/Styl was inserted, and was then replaced by a corresponding VH-CDR3 library cassette synthesized as described above.

Example 6: Expression tests

Expression and toxicity studies were performed using the scFv format VH-linker-VL. All 49 combinations of the 7 HuCAL-VH and 7 HuCAL-VL consensus genes assembled as described in Example 5 were inserted into the vector pBS13, a modified version of the pLisc series of antibody expression vectors (Skerra et al., 1991). A map of this vector is shown in Fig. 39.

E. coli JM83 was transformed 49 times with each of the vectors and stored as glycerol stock. Between 4 and 6 clones were tested simultaneously, always including the clone H3κ2, which was used as internal control throughout. As additional control, the McPC603 scFv fragment (Knappik & Plückthun, 1995) in pBS13 was expressed under identical conditions. Two days before the expression test was performed, the clones were cultivated on LB plates containing 30 μg/ml chloramphenicol and 60 mM glucose. Using this plates an 3 ml culture (LB medium

containing 90 µg chloramphenicol and 60 mM glucose) was inoculated overnight at 37 °C. Next day the overnight culture was used to inoculate 30 ml LB medium containing chloramphenicol (30 μ g/ml). The starting OD_{600nm} was adjusted to 0.2 and a growth temperature of 30 °C was used. The physiology of the cells was monitored by measuring every 30 minutes for 8 to 9 hours the optical density at 600 nm. After the culture reached an OD_{600nm} of 0.5, antibody expression was induced by adding IPTG to a final concentration of 1 mM. A 5 ml aliquot of the culture was removed after 2 h of induction in order to analyze the antibody expression. The cells were lysed and the soluble and insoluble fractions of the crude extract were separated as described in Knappik & Plückthun, 1995. The fractions were assayed by reducing SDS-PAGE with the samples normalized to identical optical densities. After blotting and immunostaining using the α-FLAG antibody M1 as the first antibody (see Ge et al., 1994) and an Fc-specific anti-mouse antiserum conjugated to alkaline phosphatase as the second antibody, the lanes were scanned and the intensities of the bands of the expected size (appr. 30 kDa) were quantified densitometrically and tabulated relative to the control antibody (see Fig. 40).

Example 7: Optimization of Fluorescein Binders

7.1. Construction of L-CDR3 and H-CDR2 library cassettes

A L-CDR3 library cassette was prepared from the oligonucleotide template CDR3L (5'-TGGAAGCTGAAGACGTGGGCGTGTATTATTGCCAGCAG(TR5)(TRI)₄CCG(TRI)-TTTGGCCAGGGTACGAAAGTT-3') and primer 5'-AACTTTCGTACCCTGGCC-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (TR5) comprised a trinucleotide mixture representing the 5 codons for Ala, Arg, His, Ser, and Tyr.

A H-CDR2 library cassette was prepared from the oligonucleotide template CDRsH (5'-AGGGTCTCGAGTGGGTGAGC(TRI)ATT(TRI)₂₋₃(6)₂(TRI)ACC(TRI)TATGCGGATA-GCGTGAAAGGCCGTTTTACCATTTCACGTGATAATTCGAAAAACACCA-3'), and primer 5'-TGGTGTTTTTCGAATTATCA-3' for synthesis of the complementary strand, where (TRI) was a trinucleotide mixture representing all amino acids except Cys, (6) comprised the incorporation of (A/G) (A/C/G) T, resulting in the formation of 6 codons for Ala, Asn, Asp, Gly, Ser, and Thr, and the length distribution being obtained by performing one substoichiometric coupling of the (TRI) mixture during synthesis, omitting the capping step normally used in DNA synthesis.

DNA synthesis was performed on a 40 nmole scale, oligos were dissolved in TE buffer, purified via gel filtration using spin columns (S-200), and the DNA concentration determined by OD measurement at 260 nm (OD $1.0 = 40 \,\mu\text{g/ml}$). 10 nmole of the oligonucleotide templates and 12 nmole of the corresponding primers were mixed and annealed at 80°C for 1 min, and slowly cooled down to 37°C within 20 to 30 min. The fill-in reaction was performed for 2 h at 37°C using Klenow polymerase ($2.0 \,\mu\text{l}$) and 250 nmole of each dNTP. The excess of dNTPs was removed by gel filtration using Nick-Spin columns (Pharmacia), and the double-stranded DNA digested with Bbsl/Mscl (L-CDR3), or Xhol/Sful (H-CDR2) over night at 37°C. The cassettes were purified via Nick-Spin columns (Pharmacia), the concentration determined by OD measurement, and the cassettes aliquoted (15 pmole) for being stored at -80°C.

7.2 Library cloning:

DNA was prepared from the collection of FITC binding clones obtained in Example 2 (approx. 10^4 to clones). The collection of scFv fragments was isolated via Xbal/EcoRI digest. The vector pCAL4 (100 fmole, $10~\mu g$) described in Example 4.3 was similarly digested with Xbal/EcoRI, gel-purified and ligated with 300 fmole of the scFv fragment collection over night at 16° C. The ligation mixture was isopropanol precipitated, air-dried, and the pellets were redissolved in $100~\mu l$ of dd H_2 O. The ligation mixture was mixed with 1 ml of freshly prepared electrocompetent SCS 101 cells (for optimization of L-CDR3), or XL1 Blue cells (for optimization of H-CDR2) on ice. One round of electroporation was performed and the transformants were eluted in SOC medium, shaken at 37°C for 30 minutes, and an aliquot plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9 hrs. The number of transformants was 5 x 10^4 .

Vector DNA (100 μ g) was isolated and digested (sequence and restriction map of scH3 κ 2 see Figure 8) with Bbsl/Mscl for optimization of L-CDR3, or Xhol/NspV for optimization of H-CDR2. 10 μ g of purified vector fragments (5 pmole) were ligated with 15 pmole of the L-CDR3 or H-CDR2 library cassettes over night at 16°C. The ligation mixtures were isopropanol precipitated, air-dried, and the pellets were redissolved in 100 μ l of dd H₂O. The ligation mixtures were mixed with 1 ml of freshly prepared electrocompetent XL1 Blue cells on ice. Electroporation was performed and the transformants were eluted in SOC medium and shaken at 37°C for 30 minutes. An aliquot was plated out on LB plates (Amp/Tet/Glucose) at 37°C for 6-9

hrs. The number of transformants (library size) was greater than 10⁸ for both libraries. The libraries were stored as glycerol cultures.

7.3. Biopanning

This was performed as described for the initial H3k2 H-CDR3 library in Example 2.1. Optimized scFvs binding to FITC could be characterized and analyzed as described in Example 2.2 and 2.3, and further rounds of optimization could be made if necessary.

References

- Barbas III, C.F., Bain, J.D., Hoekstra, D.M. & Lerner, R.A., PNAS 89, 4457-4461 (1992).
- Better, M., Chang, P., Robinson, R. & Horwitz, A.H., Science 240, 1041-1043 (1988).
- Blake, M.S., Johnston, K.H., Russel-Jones, G.J. & Gotschlich, E.C., Anal. Biochem. <u>136</u>, 175-179 (1984).
- Carter, P., Kelly, R.F., Rodrigues, M.L., Snedecor, B., Covrrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. & Henner, D., Bio/Technology 10, 163-167 (1992).
- Chothia, C. & Lesk, A.M., J. Biol. Chem. 196, 910-917 (1987).
- Chothia, C., Lesk, A.M., Gherardi, E., Tomlinson, I.A., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 799-817 (1992).
- Chothia, C., Lesk, A.M., Tramontano, A., Levitt, M., Smith-Gill, S.J., Air, G., Sheriff, S., Padlan, E.A., Davies, D., Tulip, W.R., Colman, P.M., Spinelli, S., Alzari, P.M. & Poljak, R.J., Nature 342, 877-883 (1989).
- Chuchana, P., Blancher, A., Brockly, F., Alexandre, D., Lefranc, G & Lefranc, M.-P., Eur. J. Immunol. 20, 1317-1325 (1990).
- Cox, J.P.L., Tomlinson, I.M. & Winter, G., Eur. J. Immunol. 24, 827-836 (1994).
- Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A., In: Antibody Engineering. Borrebaeck, C.A.K. (Ed.). p.229-266 (1995), Oxford University Press, New York, Oxford.)
- Gill, S.C. & von Hippel, P.H., Anal. Biochem. 182, 319.326 (1989).
- Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R. & Stüber, D., Bio/Technology 6, 1321-1325 (1988).
- Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal, D.L. & Conlon, P.J. Bio/Technology <u>6</u>, 1204-1210 (1988).
- Kabat, E.A., Wu, T.T., Perry, H.M., Gottesmann, K.S. & Foeller, C., Sequences of proteins of immunological interest, NIH publication 91-3242 (1991).
- Knappik, A. & Plückthun, A., Biotechniques 17, 754-761 (1994).
- Knappik, A. & Plückthun, A., Protein Engineering 8, 81-89 (1995).
- Kunkel, T.A., Bebenek, K. & McClary, J., Methods in Enzymol. 204, 125-39 (1991).
- Lindner, P., Guth, B., Wülfing, C., Krebber, C., Steipe, B., Müller, F. & Plückthun, A., Methods: A Companion to Methods Enzymol. 4, 41-56 (1992).
- Lowman, H.B., Bass, S.H., Simpson, N. and Wells, J.A., Biochemistry 30, 10832-10838 (1991).
- Pack, P. & Plückthun, A., Biochemistry 31, 1579-1584 (1992).

Pack, P., Kujau, M., Schroeckh, V., Knüpfer, U., Wenderoth, R., Riesenberg D. & Plückthun, A., Bio/Technology 11, 1271-1277 (1993).

- Pack, P., Ph.D. thesis, Ludwig-Maximilians-Universität München (1994).
- Perlak, F. J., Nuc. Acids Res. 18, 7457-7458 (1990).
- Plückthun, A., Krebber, A., Krebber, C., Horn, U., Knüpfer, U., Wenderoth, R., Nieba, L., Proba, K. & Riesenberg, D., A practical approach. Antibody Engineering (Ed. J. McCafferty). IRL Press, Oxford, pp. 203-252 (1996).
- Prodromou, C. & Pearl, L.H., Protein Engineering 5, 827-829 (1992).
- Rosenberg, S.A. & Lotze, M.T., Ann. Rev. Immunol. 4, 681-709 (1986).
- Skerra, A. & Plückthun, A., Science 240, 1038-1041 (1988).
- Skerra, A., Pfitzinger, I. & Plückthun, A., Bio/Technology 9, 273-278 (1991).
- Sutherland, L., Davidson, J., Glass, L.L., & Jacobs, H.T., BioTechniques 18, 458-464, 1995.
- Tomlinson, I.M., Walter, G., Marks, J.D., Llewelyn, M.B. & Winter, G., J. Mol. Biol. 227, 776-798 (1992).
- Ullrich, H.D., Patten, P.A., Yang, P.L., Romesberg, F.E. & Schultz, P.G., Proc. Natl. Acad. Sci. USA <u>92</u>, 11907-11911 (1995).
- Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder Jr., H.W. & Milner, E.C.B., Eur. J. Immunol. 23, 832-839 (1993).
- Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G. & Moroney, S.E., Nucleic Acids Research 22, 5600-5607 (1994).
- Vitetta, E.S., Thorpe, P.E. & Uhr, J., Immunol. Today 14, 253-259 (1993).
- Williams, S.C. & Winter, G., Eur. J. Immunol. 23, 1456-1461 (1993).
- Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R., Ann. Rev. Immunol. 12, 433-455 (1994).

PCT/EP96/03647

Table 1A: Human kappa germline gene segments

Used Name	Reference ²	Family ³	Germline genes
Vk1-1	9	1	08; 018; DPK1
.Vk1-2	1	i	L14; DPK2
Vk1-3	2	1	L15(1); HK101; HK146; HK189
Vk1-4	9	1	L11-
Vk1-5	2	1	A30
Vk1-6	1	1	LFVK5
Vk1-7	1	1	LFVK431
Vk1-8	1	1	L1; HK137
Vk1-9	1	1	A20; DPK4
Vk1-10	1	1.	L18; Va"
Vk1-11	1 .	1	L4; L18; Va'; V4a
Vk1-12	2	1	L5; L19(1); Vb; Vb4; DPK5; L19(2); Vb"; DPK6
Vk1-13	2	1	L15(2); HK134; HK166; DPK7
Vk1-14	8	1	L8; Vd; DPK8
Vk1-15	8	1	L9; Ve
Vk1-16	1	1	L12(1); HK102; V1
Vk1-17	2	1	L12(2)
Vk1-18	1	1	012a (V3b)
Vk1-19	6	1	02; 012; DPK9
Vk1-20	2	1	L24; Ve"; V13; DPK10
Vk1-21	1	1	04; 014
Vk1-22	2	1	L22
Vk1-23	2	1	L23
Vk2-1	1	· 2	A2; DPK12
Vk2-2	6	· 2	01; 011(1); DPK13
Vk2-3	6	2	012(2); V3a
Vk2-4	2	2	L13
Vk2-5	1	2	DPK14
Vk2-6	4	2	A3; A19; DPK15
Vk2-7	4	2	A29; DPK27
Vk2-8	4	2	A13
Vk2-9	1	2	A23

Table 1A: (continued)

Used Name'	Reference ²	Family ³	Germline genes
Vk2-10	4	2	A7; DPK17
Vk2-11	4	2	A17; DPK18
Vk2-12	4	2	A1; DPK19
Vk3-1	11	3	A11; humkv305; DPK20
Vk3-2	1	3	L20; Vg"
Vk3-3	2	3	L2; L16; humkv328; humkv328h2; humkv328h5; DPK21
Vk3-4	11	3	A27; humkv325; VkRF; DPK22
Vk3-5	2	3	L25; DPK23
Vk3-6	2	3	L10(1)
Vk3-7	7	3	L10(2)
Vk3-7	7	3	L6; Vg
Vk3-0 Vk4-1	3	4	B3; VkIV; DPK24
Vk5-1	10	5	B2; EV15
Vk5-1 Vk6-1	12	6	A14; DPK25
Vk6-2	12	6	A10; A26; DPK26
Vk0-2 Vk7-1	5	7	B1

Table 1B: Human lambda germline gene segments

Used Name ¹	Reference ²	Family ³	Germline genes
DPL1	1	. 1	
DPL2	1	1	HUMLV1L1
DPL3	1	1	HUMLV122
DPL4	1	1	VLAMBDA 1.1
HUMLV117	2	1	,
DPL5	1	1	HUMLV117D
DPL6	1 .	1	
DPL7	1	1	IGLV1S2
DPL8	1	1 .	HUMLV1042
DPL9	1	1	HUMLV101
DPL10	1	2	
VLAMBDA 2.1	3	2	
DPL11	1	2	•
DPL12	1	. 2	
DPL13	1	2	
DPL14	1	2	
DPL16	1	3 ,	Humlv418; IGLV3S1
DPL23	1 .	3	VI III.1
Humlv318	4 ·	3	
DPL18	1	7	4A; HUMIGLVA
DPL19	. 1	7	•
DPL21	1	8	VL8.1
HUMLV801	5	8	
DPL22	1	9	
DPL24	1	unassigned	I VLAMBDA N.2
gVLX-4.4	6	10	

PCT/EP96/03647

Table 1C: Human heavy chain germline gene segments

Used Name ¹	Reference	Family ³	Germline genes
VH1-12-1	19	1	DP10; DA-2; DA-6
VH1-12-8	22	1	RR.VH1:2
VH1-12-2	6	1	hv1263
VH1-12-9	7	1	YAC-7; RR.VH1.1; 1-69
VH1-12-3	19	1	DP3
VH1-12-4	19	1	DP21; 4d275a; VH7a
VH1-12-5	18	1	1-4.1b; V1-4.1b
VH1-12-6	21	1	1D37; VH7b : 7-81; YAC-10
VH1-12-7	19	.1	DP14; VH1GRR; V1-18
VH1-13-1	10	1	71-5; DP2
VH1-13-2	10	1	E3-10
VH1-13-3	19	· 1 .	DP1
VH1-13-4	12	1	V35
VH1-13-5	8	1	V1-2b
VH1-13-6	18	1	I-2; DP75
VH1-13-7	21	1	V1-2
VH1-13-8	. 19	1	DP8
VH1-13-9	3	1	1-1
VH1-13-10	19	1	DP12
VH1-13-11	15	1	V13C
VH1-13-12	18	1	I-3b; DP25; V1-3b
VH1-13-13	3	1	1-92
VH1-13-14	18	1	I-3; V1-3
VH1-13-15	. 19	1	DP15; V1-8
VH1-13-16	3	1	21-2; 3-1; DP7; V1-46
VH1-13-17	16	1	HG3
VH1-13-18	19	, 1	DP4; 7-2; V1-45
VH1-13-19	27	1	COS 5
VH1-1X-1	19	1	DP5; 1-24P
VH2-21-1	18	2	II-5b
VH2-31-1	2	2	VH2S12-1
VH2-31-2	2	2	VH2S12-7
VH2-31-3	2	2	VH2S12-9; DP27
VH2-31-4	2	2	VH2S12-10
VH2-31-5	14	2	V2-26; DP26; 2-26
VH2-31-6	15	2	VF2-26

49

Table 1C: (continued)

Used Name'	Reference ²	Family	Germline genes
VH2-31-7	19	2	DP28; DA-7
VH2-31-14	7	2	YAC-3; 2-70
VH2-31-8	2	2	VH2S12-5
VH2-31-9	2	2	VH2S12-12
VH2-31-10	18	2	II-5; V2-5
VH2-31-11	2	2	VH2S12-2; VH2S12-8
VH2-31-12	2	2	VH2S12-4; VH2S12-6
VH2-31-13	2 .	2	VH2S12-14
VH3-11-1	13	. 3	v65-2; DP44
VH3-11-2	19	3	DP45
VH3-11-3	3	3	13-2; DP48
VH3-11-4	19	3	DP52
VH3-11-5	14	3 .	v3-13
VH3-11-6	19	3	DP42
VH3-11-7	3	3	8-1B; YAC-5; 3-66
VH3-11-8	14	3	V3-53
VH3-13-1	3	3	22-2B; DP35; V3-11
VH3-13-5	19	3	DP59; VH19; V3-35
VH3-13-6	25	3	f1-p1; DP61
VH3-13-7	19	3	DP46; GL-SJ2; COS 8; hv3005; hv3005f3; 3d21b; 56p1
VH3-13-8	24	3	VH26
VH3-13-9	5	3	vh26c
VH3-13-10	19	3	DP47; VH26; 3-23
VH3-13-11	3	3	1-91
VH3-13-12	19	3	DP58
VH3-13-13	3	3	1-9III; DP49; 3-30; 3d28.1
VH3-13-14	24	_. 3	3019B9; DP50; 3-33; 3d277
VH3-13-15	27	. 3	CO2 3
VH3-13-16	19	3	DP51
VH3-13-17	16	3	H11
VH3-13-18	19	3	DP53; COS 6; 3-74; DA-8
VH3-13-19	19	3	DP54; VH3-11; V3-7
VH3-13-20	14	3	V3-64; YAC-6
VH3-13-21	14	3	V3-48
VH3-13-22	14	3	V3-43; DP33
VH3-13-23	14	3	V3-33

Table 1C: (continued)

Used Name'	Reference ²	Family	Germline genes
VH3-13-24	14	3	V3-21; DP77
VH3-13-25	14	3	V3-20; DP32
VH3-13-26	14	3	V3-9; DP31
VH3-14-1	3	3	12-2; DP29; 3-72; DA-3
VH3-14-4	7	. 3	YAC-9; 3-73; MTGL
VH3-14-2	4	3	VHD26
VH3-14-3	19	3 .	DP30
VH3-1X-1	1	3	LSG8.1; LSG9.1; LSG10.1; HUM12IGVH; HUM13IGVH
VH3-1X-2	1	3	LSG11.1; HUM4IGVH
VH3-1X-3	3	3	9-1; DP38; LSG7.1; RCG1.1; LSG1.1; LSG3.1; LSG5.1; HUM15IGVH; HUM2IGVH; HUM9IGVH
VH3-1X-4	1	3	LSG4.1
VH3-1X-5	1	3	LSG2.1
VH3-1X-6	1	3	LSG6.1; HUM10IGVH
VH3-1X-7	18	. 3	3-15; V3-15
VH3-1X-8	1	3	LSG12.1; HUM5IGVH
VH3-1X-9	14	3	V3-49
VH4-11-1	22	4	Tou-VH4.21
VH4-11-2	17	4	VH4.21; DP63; VH5; 4d76; V4-34
VH4-11-3	23	4	4.44
VH4-11-4	23	4	4.44.3
VH4-11-5	. 23	4	4.36
VH4-11-6	23	4	4.37
VH4-11-7	18	4	IV-4; 4.35; V4-4
VH4-11-8	17	4	VH4.11; 3d197d; DP71; 58p2
VH4-11-9	20	4	Н7
VH4-11-10	20	4	H8
VH4-11-11	20	4	Н9
VH4-11-12	17	4	VH4.16
VH4-11-13	. 23	4	4.38
VH4-11-14	17	4	VH4.15
VH4-11-15	11	4	58
VH4-11-16	10	4	71-4; V4-59
VH4-21-1	11	4	11
VH4-21-2	17	4	VH4.17; VH4.23; 4d255; 4.40; DP69
VH4-21-3	17	4	VH4.19; 79; V4-4b

Table 1C: (continued)

Used Name¹	Reference ²	Family ³	Germline genes
VH4-21-4	19	4	DP70; 4d68; 4.41
VH4-21-5	19	4	DP67; VH4-4B
VH4-21-6	17	4	VH4.22; VHSP; VH-JA
VH4-21-7	17	4	VH4.13; 1-9II; 12G-1; 3d28d; 4.42; DP68; 4-28
VH4-21-8	26	4	hv4005; 3d24d
VH4-21-9	. 17	4	VH4.14
VH4-31-1	23	4	4.34; 3d230d; DP78
VH4-31-2	23	4	4.34.2
VH4-31-3	19	4	DP64; 3d216d
VH4-31-4	19 ·	4	DP65; 4-31; 3d277d
VH4-31-5	23	4	4.33; 3d75d
VH4-31-6	20	4	H10
VH4-31-7	20	4	H11
VH4-31-8	23	. 4	4.31
VH4-31-9	23	4	4.32
VH4-31-10	20	4	3d277d
VH4-31-11	. 20	4	3d216d
VH4-31-12	20	4	3d279d
VH4-31-13	17	4	VH4.18; 4d154; DP79
VH4-31-14	8 ·	4	V4-39
VH4-31-15	11 .	4	2-1; DP79
VH4-31-16	23	4	4.30
VH4-31-17	17	4	VH4.12
VH4-31-18	10	4	71-2; DP66
VH4-31-19	23	4	4.39
VH4-31-20	8	4	V4-61
VH5-12-1	9	5	VH251; DP73; VHVCW; 51-R1; VHVLB; VHVCH; VHVTT; VHVAU; VHVBLK; VhAU; V5-51
VH5-12-2	17	5	VHVJB
VH5-12-3	3	5	1-v; DP80; 5-78
VH5-12-4	9	5	VH32; VHVRG; VHVMW; 5-2R1
VH6-35-1	4	6	VHVI; VH6; VHVIIS; VHVITE; VHVIJB; VHVICH; VHVICW; VHVIBLK; VHVIMW; DP74; 6-1G1; V6-1

PCT/EP96/03647

Table 2A: rearranged human kappa sequences

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
III-3R	108	1	08	1	1,1%	70
No.86	109	1	08	3	3,2%	80
AU	108	1	08	6	6,3%	103
ROY	108	1	08	6	6,3%	43
IC4	108	1	08	6	6,3%	70
HIV-B26	106	1	08	3	3,2%	8
GRI	108	1	08	8	8,4%	30
AG	106	. 1	08	8	8,6%	116
REI	108	1	08	9	9,5%	86
CLL PATIENT 16	. 88	1	08	2	2,3%	122
CLL PATIENT 14	87	1	08	2	2,3%	122
CLL PATIENT 1.5	88	.1	08	2	2,3%	122
GM4672	108	i	08	11	11,6%	24
HUM. YFC51.1	108	1	08	12	12,6%	110
LAY	108	1	08	12	12,6%	48
HIV-b13	106	1	08 ~	9	9,7%	. 8
MAL-NaCl	108	1	80	13	13,7%	102
STRAb SA-1A	108	1	02	0	0,0%	120
HuVHCAMP	108	1	08	13	13,7%	100
CRO	108	1	02	10	10,5%	30
Am107	- 108	1	02	12	12,6%	108
WALKER	107	1	02	4	4,2%	57
III-2R	109	1	A20	0	0,0%	70
FOG1-A4	107	1	A20	4	4,2%	41
HK137	95	1	L1	0	0,0%	10
CEA4-8A	107	1	02	7	7,4%	41
Va'	95	1	L4	0	0,0%	90
TR1.21	108	1	02	4	4,2%	92
HAU	108	1	02	6	6,3%	123
HK102	95	1	L12(1)	0	0,0%	9
H20C3K	108	1	L12(2)	3	3,2%	125
СНЕВ	108	1 .	02	7	7,4%	5
HK134	95	1	L15(2)	0	0,0%	10
TEL9	108	3 1	02	9	9,5%	73

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
TR1.32	103	1	02	3	3,2%	· 92
RF-KES1	97	1	A20	4	4,2%	121
WES	108	1	L5	10	10,5%	61
DILp1	95	1	04	1	1,1%	70
SA-4B	107	1	L12(2)	8	8.4%	120
HK101	95	1	L15(1)	0	0,0%	9
TR1.23	108	1	02	5	5,3%	92
HF2-1/17	108	ľ	A30	0	0,0%	4
2E7	108	1	A30	1	1,1%	62
33.C9	107	1	L12(2)	7	7,4%	126
3D6	105	1	L12(2)	2	2,1%	34
1-2a	108	1	L8	8	8,4%	. ~ 70
RF-KL1	97	1	L8	4	4,2%	121
TNF-E7	108	1	A30	9	9,5%	`41
TR1.22	108	1	02	7 .	7,4%	92
HIV-B35	106	. 1	02	2	2,2%	. 8
HIV-b22	106	1	02	2	2,2%	8
HIV-b27	106	1	02	2	2,2%	8
HIV-B8	107	1 .	02	10	10,8%	8
HIV-b8	107	1	02	10	10.8%	8
RF-SJ5	95	1 .	A30	5	5,3%	113
GAL(I)	108	1	A30	6	6,3%	64
R3.5H5G	108	1 1	02	6	6,3%	70
HIV-b14	106	1	A20	2	2,2%	8
TNF-E1	105	1	L5	8	8,4%	41
WEA	108	1	A30	8	8,4%	37
EU	108	1	L12(2)	5	5,3%	40
FOG1-G8	108	1	L8	11	11,6%	41
1X7RG1	108	1	L1	8	8,4%	70
BLI	108	1	L8	3	3,2%	72
KUE	108	1	L12(2)	11	11,6%	32
LUNm01	108	1	L12(2)	10	10,5%	. 6
HIV-b1	106	1	A20	4	4,3%	8
HIV-s4	103	1	02	2	2,2%	8

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
CAR	107	1	L12(2)	11	11,7%	79
BR	107	1 .	L12(2)	11	11,6%	50
CLL PATIENT 10	88	1	02	0	0,0%	122
CLL PATIENT 12	88	1	02	0	0.0%	122
KING	108	1 .	L12(2)	12	12,6%	30
V13	95	1	L24	0	0,0%	46
CLL PATIENT 11	87	1	02	0	0,0%	122
CLL PATIENT 13	87	1	02	0	0,0%	122
CLL PATIENT 9	88	1	012	1	1,1%	122
HIV-B2	106	1	A20	.9	9,7%	8
HIV-b2	106	1	A20	9	9,7%	. 8
CLL PATIENT 5	89	1	A20	. 1	1,1%	122
CLL PATIENT 1	88	1	L8	2	2,3%	122
CLL PATIENT 2	88	1	L8	0	0,0%	122
CLL PATIENT 7	88	1	L5	0	0,0%	122
CLL PATIENT 8	88	1	L5	.0	0,0%	122
HIV-b5	105	1	· L5	11	12,0%	8
CLL PATIENT 3	87	1	L8	1	1,1%	122
CLL PATIENT 4	88	1	L9	0	0,0%	122
CLL PATIENT 18	85	1	L9	6	7,1%	122
CLL PATIENT 17	86	1	L12(2)	. 7	8,1%	122
HIV-b20	107	3	A27	11	11,7%	8 .
2C12	108	1 '	L12(2)	20	. 21,1%	. 68
1B11	108	1 .	L12(2)	20	21,1%	68
1H1	108	1	L12(2)	21	22,1%	. 68
2A12	108	. 1	L12(2)	21	22,1%	68
CUR	109	3	A27	0	0,0%	66
GLO	109	3	A27	0	0,0%	16
RF-TS1	96	3	A27	0	0.0%	121
GAR'	109	3	A27	0	0,0%	67
FLO	109	3	A27	0	0,0%	66
PIE	109	3	A27	0	0,0%	91
HAH 14.1	109	3	A27	1	1,0%	51
HAH 14.2	109	3	A27	1	1,0%	51

Table 2A:

(continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
HAH 16.1	109	3	A27	1	1,0%	51
NOV :	109	3	A27	1	1,0%	52
33.F12	108	3	A27	1	1,0%	126
8E10	110	3	A27	1	1,0%	25
TH3	109	3	A27	1	1,0%	25
HIC (R)	108	3	A27	0	0.0%	51
SON	110	3	A27	1	1,0%	67.
PAY	109	3	A27	1	1,0%	66
GOT	109	3	A27	1 :	1,0%	67
mAbA6H4C5	109	3	A27	· 1	1,0%	12
BOR'	109	3	A27	2	2,1%	84
RF-SJ3	96	3	A27	2	2,1%	121
SIE	109	3	A27	2	2,1%	15
ESC	109	3	A27	2	2,1%	98
HEW'	110	3	A27	2	2,1%	98
YES8c	109	3	A27	3	3,1%	33
TI	109	3	A27	3	3,1%	114
mAb113	109	3	A27	3	3,1%	71
HEW	107	3	A27	. 0	0,0%	94
BRO	106	3	A27	0	0,0%	94
ROB	106	3	A27	. 0	0,0%	94
NG9	96	3	A27	4	4,2%	11
NEU	109	3	A27	4	4,2%	66
WOL	109	3	A27	4	4,2%	2
35G6	109	3	A27	4	4.2%	59
RF-SJ4	109	3	A11	0	0,0%	88
KAS	109	3	A27	4	4,2%	84
BRA	106	3	A27	1	1,1%	94
НАН	106	3	A27	1	1,1%	94
HIC	105	3	A27	0	0,0%	94
FS-2	109	. 3	A27	6	6,3%	87
JH.	107	3	A27	6	6,3%	38
EV1-15	109	3	A27	6 .	6,3%	83
SCA	108	3	A27	6	6,3%	65
			56			

Table 2A: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference
mAb112	109	3	A27	6	6,3%	71
SIC	103	3	A27	3	3,3%	94
SA-4A	109	3	A27	6	6,3%	120
SER	108	3	A27	6	6,3%	98
GOL'	109	3	A27	7	7,3%	82
B5G10K	105	3	A27	9	9,7%	125
HG2B10K	110	3	A27	-9 .	9,4%	125
Taykv322	105	3	A27	5	5,4%	52
CLL PATIENT 24	89	3	A27	1 '	1,1%	122
HIV-b24	107	3	A27	7	7,4%	8
HIV-b6	107	3	A27	7	7,4%	8
Taykv310	99	' 3	A27	1	1,1%	52
KA3D1	108	3	L6	0	0,0%	85
19.E7	107	3	L6	0	0,0%	126
rsv6L	109	. 3	A27	12	12,5%	7
Taykv320	98	3	A27	1	1,2%	52
Vh	96	3	L10(2)	0	0,0%	89
LS8	108	3	L6	1	1,1%	109
LS1	108	3	L6	-1	1,1%	109
LS2S3-3	107	3	L6	2	2,1%	99
LS2	108	3	L6	1.	1,1%	109
LS7	108	3	L6	1	1,1%	109
LS2S3-4d	107	3	L6	2	2,1%	99
LS2S3-4a	107	3	L6	2	2,1%	. 99
LS4	108	3	L6	1	1,1%	109
LS6	108	3	L6	1	1,1%	109
LS2S3-10a	107	3	L6	2	2,1%	99
LS2S3-8c	107	3	L6	2	2,1%	99
LS5	108	3	L6	1	1,1%	109
LS2S3-5	107	3	L6	3	3,2%	99
LUNm03	109	3	A27	13	13,5%	6
IARC/BL41	108	3	A27	13	13,7%	55
slkv22	99	3	A27	3	3,5%	13
POP	108	3	L6	4	4,2%	111

PCT/EP96/03647

WO 97/08320 ·

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
LS2S3-10b	107	3	L6	3	3,2%	99
LS2S3-8f	107	3	L6	3	3,2%	99
LS2S3-12	107	3	L6	3	3,2%	99
HIV-B30	107	3	A27	11	11,7%	8
HIV-B20	107	3	A27	11	11,7%	8 .
HIV-b3	108	3	A27	11	11,7%	8
HIV-s6	104	3	A27	9	9,9%	8
YSE	107	3	L2/L16	. 1	1,1%	72
POM	109	3	L2/L16	9	9,4%	53
Humkv328	95	3	L2/L16	1	1,1%	19
CLL	109	3	L2/L16	3	3,2%	47
LES	96	3	L2/L16	3	3,2%	38
HIV-s5	104	3	A27	. 11	12,1%	8
HIV-s7	104	3	A27	11.	12,1%	8
slkv1	99	3	A27	7	8,1%	13
Humka31es	95	3	L2/L16	4	4,2%	. 18
slkv12	101	3	A27	. 8	9,2%	13
RF-TS2	95	3	L2/L16	3 .	3,2%	121
II-1	109	3	L2/L16	4	4,2%	70
HIV-s3	105	3	A27	13	14,3%	8
RF-TMC1	96	3 .	L6	10	10,5%	121
GER	109	3	L2/L16	7	7,4%	75
GF4/1.1	109	3 .	L2/L16	8	8,4%	36
mAb114	109	3	L2/L16	6	6,3%	71
HIV-loop13	109	3	L2/L16	7	7,4%	8
bkv16	86	3	L6	. 1	1,2%	13
CLL PATIENT 29	86	3	L6	1	1,2%	122
slkv9	98	3	L6	3	3,5%	13
bkv17	99	3	L6	1	1,2%	13
slkv14	99	3	L6	1	1,2%	13
slkv16	101	3	L6	2	2,3%	13
bkv33	101	3	L6	4	4.7%	13
slkv15	99	3 .	L6	2	2,3%	13
bkv6	100	3	L6	3	3,5%	13

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference?
R6B8K	108	3	L2/L16	12	12,6%	125
AL 700	107	3	<u>L2/</u> L16	9	9,5%	117
slkv11	100	3	L2/L16	3	3,5%	13
sikv4	97	3	L6	4	4,8%	13
CLL PATIENT 26	87	3 ່	L2/L16	1	1,1%	122
AL Se124	103	3	L2/L16	9	9,5%	117
sikv13	100	3	L2/L16	6	7,0%	13
bkv7	100	3	L2/L16	5	5,8%	13
bkv22	100	3	L2/L16	· 6	7,0%	13·
CLL PATIENT 27	84	3	L2/L16	0	0,0%	122
bkv35	100	3	L6	8	9,3%	13
CLL PATIENT 25	87	3	L2/L16	4	4,6%	122
slkv3	86	3	L2/L16	7	8,1%	13
slkv7	99	1	02	7	8,1%	13
HuFd79	111	. 3	L2/L16	24	24,2%	21
RAD	99	3	A27	9	10,3%	78
CLL PATIENT 28	83	3	L2/L16	4	4,8%	122
REE	104	3	L2/L16	25	27,2%	95
FR4	99	3	A27	. 8	9,2%	77
MD3.3	92	3	L6	1	1,3%	54
MD3.1	92	3	ŗ.	0	0,0%	54
GA3.6	92	3	L6	2	2,6%	54
M3.5N	92	3	L6	3	3,8%	54
WEI'	82	3	A27	0	0,0%	65
MD3.4	92	3	L2/L16	1	1,3%	54
MD3.2	91	3	L6	3	3,8%	· 54
VER	97	3	A27	19	22,4%	20
CLL PATIENT 30	78	3	L6	. 3	3,8%	122
M3.1N	92	3	L2/L16	1	1,3%	54
MD3.6	91	3	L2/L16	0	0,0%	54
MD3.8	91	3	L2/L16	0	0,0%	54
GA3.4	92	3	L6	7	9,0%	54
M3.6N	92	3	A27	0	0,0%	54
MD3.10	92	3	A27	0	0,0%	54

Table 2A:

(continued)

Name¹	.aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ¹
MD3.13	91	3	A27	0	0,0%	54
MD3.7	93	3	A27	0	0,0%	54
MD3.9	93	3	A27	0	0,0%	54
GA3.1	93	3	A27	6	7.6%	54
bkv32	101	3	A27	. 5	5,7%	13
GA3.5	93	3	A27	5	6,3%	54
GA3.7	92	3	A27	_7	8,9%	54
MD3.12	92	3	A27	2	2,5%	54
M3.2N	90	3	L6	6	7,8%	54
MD3.5	92	3	A27	1	1,3%	54
M3.4N	91	. 3	L2/L16	8	10,3%	54
M3.8N	91	3	L2/L16	. 7	9,0%	54
M3.7N	92	3	A27	3	3,8%	54
GA3.2	92	3	A27	9	11,4%	54
GA3.8	93	3.	A27	4	5,1%	54
GA3.3	92	3	A27	8	10,1%	54
M3.3N 、	92	3	A27	5	6,3%	54
B6	83	3	A27	8	11,3%	78
E29.1 KAPPA	78	3	L2/L16	0	0,0%	22
SCW ·	108	1	08	12	12,6%	31
REI-based CAMPATH-9	107	1	08	14	14,7%	39
RZ	107	1	08	14	14,7%	50
BI	108	1	08	14	14,7%	14
AND	107	1	02	13	13,7%	69
2A4	109	1	02	12	12,6%	23
KA	108	1	08	19	20,0%	107
MEV	109	1	02	14	14,7%	29
DEE	106	1	02	13	14,0%	76
OU(IOC)	108	1	02	18	18,9%	60
HuRSV19VK	111		08	21	21,0%	115
SP2	108		02	17	17,9%	93
BJ26	99	1.	08	21	24,1%	1
NI ·	112	. 1	08	24	24,2%	106
BMA 0310EUCIV2	106		L12(1)	21	22,3%	105

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CLL PATIENT 6	71	1	A20	0	0,0%	122
BJ19	85	1	80	16	21,9%	1
GM 607	113	2	A3	0	0,0%	58
R5A3K	114	2	А3	1	1,0%	125
R1C8K	114	2	А3	. 1	1,0%	125
VK2.R149	113	2	А3	· 2	2,0%	118
TR1.6	109	2	A3	4	4,0%	92
TR1.37	104	2	А3	5	5,0%	92
FS-1	113	2	A3	6	6,0%	87
TR1.8	110	2	А3	6	. 6,0%	92
NIM	113	2	А3	8	8,0%	28
Inc	112	2	A3	11	11,0%	35
TEW	107	2	A3	. 6	6,4%	96
CUM	114	2	01	7	6.9%	44
HRF1	71	2	A3	4	5,6%	124
CLL PATIENT 19	87	2	A3	0	0,0%	122
CLL PATIENT 20	87	2	A3	0	0,0%	122
MIL	112	2	A3	16	16,2%	26
FR	113	2	A3	20	20,0%	101
MAL-Urine	83	1	02	6	8,6%	102
Tayky306	73	3	A27	1	1,6%	52
Taykv312	75	3	A27	1	1,6%	52
HIV-b29	93	3	A27	14	17,5%	8
1-185-37	110	3	A27	0	0.0%	119
1-187-29	110	· 3	A27	0	0,0%	119
Π117	110	3	A27	. 9	9,4%	63
HIV-loop8	108	3	A27	16	16,8%	8
rsv23L	108	3	A27	16	16,8%	7
HIV-b7	107	3	A27	14	14,9%	8
HIV-b11	107	3	A27	15	16,0%	8
HIV-LC1	107	3 '	A27	19	20,2%	8
HIV-LC7	107	3	A27	20	21,3%	8
HIV-LC22	107	3	A27	21	22,3%	8
HIV-LC13	107	3	A27	. 21	22,3%	8
			61			

Table 2A: (continued)

Name'	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
HIV-LC3	107	3	A27	21	22,3%	8
HIV-LC5	107	3	A27	21	22,3%	8
HIV-LC28	107	3	A27	21	22,3%	8
HIV-b4	107	3	A27	22	23,4%	8
CLL PATIENT 31	87	3	A27	15	17,2%	122
HIV-loop2	108	3	L2/L16	17	17,9%	8
HIV-loop35	108	3 .	L2/L16	17	17,9%	8
HIV-LC11	107	3	A27	23	24,5%	8
HIV-LC24	107	3	A27	23	24,5%	8
HIV-b12	107	3	A27	24	25,5%	8
HIV-LC25	107	3	A27	24	25,5%	8
HIV-b21	107	3	A27	24	25,5%	8
HIV-LC26	107	3	A27	26	27,7%	8
G3D10K	108	1	L12(2)	12	12,6%	125
Π125	108	. 1	L5	8	8,4%	63
HIV-s2	103	3	A27	28	31,1%	8
265-695	108	1	L5	7	7.4%	3
2-115-19	108	1	A30	2	2,1%	119
rsv13L	107	1	02	20	21,1%	7
HIV-b18	106	1	02	-14	15,1%	8
RF-KL5	98	3	L6	36	36,7%	97
ZM1-1	113	2	A17	7	7,0%	3
HIV-s8	103	1	08	16	17,8%	8
K- EV15	95	5	B2	0	0,0%	112
RF-TS3	100	2	A23	0	0,0%	121
HF-21/28	111	2	A17	1	1,0%	17
RPMI6410	113	2	A17	1	1,0%	42
JC11	113	2	A17	1	1,0%	49
0-81	114	2	A17 .	5	5,0%	45
FK-001	113	4	В3	0	0,0%	81
CD5+.28	101	4	В3	1	1,0%	27
LEN	114	4	В3	1	1,0%	104
UC	114	4	В3	1	1,0%	- 111
CD5+.5	101	4	В3	1	1,0%	27

Table 2A: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
CD5+.26	101	4	В3	1	1,0%	27
CD5+.12	101	4	В3	2	2,0%	27
CD5+.23	101	4	В3	2	2,0%	27
CD5+.7	101	4	В3	2	2.0%	27
VJI	113	4	В3	3	3,0%	56
LOC	113	4	В3	3	3,0%	72
MAL	113	4	В3	. 3	3,0%	72
CD5+.6	101	4	В3	3	3,0%	27
H2F	113	4	В3	3	3,0%	70
.PB17IV	114	4	В3	4	4,0%	74
CD5+.27	101	.4	В3	4	4,0%	27
CD5+.9	101	4	В3	4	4,0%	27 :
CD528	101	4	. ВЗ	5	5,0%	27
CD526	101	4	В3	6	5,9%	27
CD5+.24	101	4	В3	6	5,9%	27
CD5+.10	101	4	В3	6	5,9%	27
CD519	101	4	В3	6	5,9%	27
CD518	101	4	В3	7	6,9%	27
CD516	101	. 4	В3	. 8	7,9%	27
CD524	101	4	В3	8	7,9%	27
CD517	101	4	B3	10	9,9%	27
MD4.1	92	4	В3	0	0,0%	54
MD4.4	92	4	B3	0	0,0%	54
MD4.5	92	4	B3	0	0,0%	54
MD4.6	92	4	В3	0	0,0%	54
MD4.7	92	4	В3	0	0,0%	54
MD4.2	92	4	B3	1	1,3%	54
MD4.3	92	4	В3	5	6,3%	54
CLL PATIENT 22	87	2	A17	2	2,3%	122
CLL PATIENT 23	84	2	A17	2	2,4%	122

Table 2B: rearranged human lambda sequences

Name'	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
WAH	110	1	DPL3	7	7%	68
1B9/F2	112	1	DPL3	7	7%	9
DIA	112	1	DPL2	7	. 7%	36
mAb67	89	1	DPL3	0	0%	29
НіН2	110	1	DPL3	12	11%	3
NIG-77	. 112	1	DPL2	9	9%	72
OKA	112	1	DPL2	7	7%	84
KOL	112	1	DPL2	12	11%	40
T2:C5	111	1	DPL5	0	0%	6
T2:C14	110	. 1	DPL5	0	0%	6
PR-TS1	110	1	DPL5	; 0	0%	55
4G12	. 111	1	DPL5	1	1%	35
KIM46L	1,12	1	HUMLV117	0	0%	8
Fog-B	111	1	DPL5	3	3%	31
9F2L	111	. 1	DPL5	3	3%	79
mAb111	110	. 1	DPL5	· 3	3%	48
PH0X15	111	1	DPL5	4	4%	49
BL2	111	1.	DPL5	4	4%	74
NIG-64	111	1	DPL5	4	4%	72
RF-SJ2	100	. 1	DPL5	6	6%	78
AL EZI	112	1	DPL5	7	7%	41
ZIM	112	1	HUMLV117	7	7%	18
RF-SJ1	100	1.	DPL5	9	9.%	78
IGLV1.1	98	1	DPL4	0	0%	1
NEW	112	1	HUMLV117	11	10%	42
CB-201	87	1	DPL2	1	1%	62
MEM	109	1	DPL2	6	6%	50
H210	111	. 2	DPL10	4	4%	45
NOV	110	2	DPL10	8	8%	25
NEI	111	2	DPL10	8	8%	24
AL MC	110	2	DPL11	6	6%	28
MES	112	2	DPL11	8	8%	84
FOG1-A3	. 111	2	DPL11	9	9%	27
AL NOV	112	2	DPL11	7	7%	28
			4			

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
		ramily	gene⁴		· .	
HMST-1	110	2	DPL11	4	4%	82
HBW4-1	108	2	DPL12	9	9%	52
wh.	110	2	DPL11	11	11%	34
11-50	110	2	DPL11	7	7%	82
HBp2	110	2	DPL12	8	8%	3
NIG-84	113	2	DPL11	12	11%	73
VIL	112	2	DPL11	9	9%	58
TRO	111	2	DPL12.	10	10%	61
ES492	108	2	DPL11	15	15%	76
mAb216	89	2	DPL12	1	1%	7
BSA3	109	3	DPL16	0	0%	49
THY-29	110	3	DPL16	0	0%	27
PR-TS2	108	3	DPL16	0	0%	55
E29.1 LAMBDA	107	3	DPL16	1 -	1%	13
mAb63	109.	3	DPL16	2	2%	29
TEL14	110	. 3	DPL16	. 6	6%	49
6H-3C4	108	3	DPL16	7	7%	39
SH	109	3	DPL16	7	7%	70
AL GIL	109	3	DPL16	8	8%	23
H6-3C4	108	3	DPL16	8	8%	83
V-lambda-2.DS	111	2	DPL11	3	3%	15
8.12 ID	110	2	DPL11	3	3%	81
DSC	111	2	DPL11	3	3%	56
PV11	110	2	DPL11	1	1%	56
33.H11	110	2	DPL11	4	4%	81
AS17	111	2	DPL11	7	7%	56
SD6	110	2	DPL11	7	7%	56
KS3	110	2	DPL11	9	9%	56
PV6	110	2	DPL12	5	5%	. 56
NGD9	110	2	DPL11	7	7%	56
MUC1-1	111	2	DPL11	11	10%	27
A30c	111	2	DPL10	6	6%	56
KS6	110	2	DPL12	6	6%	56
TEL13	111	2	DPL11 65	11	10%	49

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
AS7	110	2	DPL12	6	6%	56
MCG	112	2	DPL12	12	11%	20
U266L	110	2	DPL12	13	12%	77
PR-SJ2	110	2	DPL12	14	13%	55
вон	112	2	DPL12	115	10%	37
TOG	111	2	DPL11	19	18%	53
TEL16	111	2	DPL11	19	18%	49
No.13	110	2	DPL10	1.4	13%	52
ВО	112	2	DPL12	18	17%	80
WIN	112	2	DPL12	17	16%	11
BUR	104	2	DPL12	15.	15%	46
NIG-58	110	2	DPL12	20	19%	69
WEIR	112	2	DPL11	26	25%	21
THY-32	111	1	DPL8	8	8%	27
TNF-H9G1	111	1	DPL8	9	9%	27
mAb61	111	1	DPL3	1	1%	29
LV1L1	98	1	DPL2	0	O%	54
НА	113	1	DPL3	14	13%	63
LA1L1	111	1	DPL2	. 3	3%	54
RHE	112	. 1	DPL1	17	16%	22
K1B12L	113	1	DPL8	17	16%	79
LOC	113	1	DPL2	15	14%	84
NIG-51	112	1	DPL2	12	11%	67
NEWM	104	. 1	DPL8	23	22%	10
MD3-4	106	3	DPL23	14	13%	4
COX	112	1 .	DPL2	13	12%	84
HiH10	106	3	DPL23	13	12%	3
VOR	112	1	DPL2	16	15%	16
AL POL	113	1	DPL2 ·	16	15%	57
CD4-74	111	1	DPL2	19	18%	27
AMYLOID MOL	102	-3	DPL23	15	15%	30
OST577	108	3	Humlv318	10	10%	4
NIG-48	113	1	DPL3	42	40%	66
CARR	108	3	DPL23	18	17%	19
			66			

Table 2B: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
mAb60	108	3	DPL23	14	13%	29
NIG-68	99	3	DPL23	25	26%	32
KERN	107	3	DPL23	26	25%	59
ANT	106	3	DPL23	17	16%	19
LEE	110	3	DPL23	18	17%	85
CLE ·	94	3	DPL23	17	17%	19
VL8	98	. 8	DPL21	0	0%	81
MOT	110	3	Humlv318	23	22%	38
GAR	108	3	DPL23	26	25%	33
32.B9	98	8	DPL21	5	5%	81
PUG	108	3	Humlv318	24	23%	19
T1	115	8	HUMLV801	52	50%	. 6
RF-TS7	. 96	7	DPL18	4	4%	60
YM-1	116	8	HUMLV801	51.	49%	75
К6Н6	112		HUMLV801	20	19%	44
K5C7	112	8	HUMLV801	20	19%	44
K5B8	112	8	HUMLV801	20	19%	44
K5G5	112	8	HUMLV801	20	19%	44
K4B8	112	8	HUMLV801	19	18%	44
K6F5	112	8	HUMLV801	17	16%	44
HIL	108	3	DPL23	22	21%	47
KIR	109	3	DPL23	20	19%	19
CAP	109	3	DPL23	19	18%	84
1B8	110	3	DPL23	22	21%	- 43
SHO	108	3	DPL23	19	18%	19
HAN	108	3	DPL23	20	19%	19
cML23	96	3	DPL23	3	3%	12
PR-SJ1	96	3	DPL23	7	7%	55
BAU	107	3	DPL23	9	9%	5
TEX	99	3	DPL23	8	8%	19
X(PET)	107	3	DPL23	9	9%	51
DOY	106		DPL23	9	9%	19
COT	106		DPL23	13	12%	19
Pag-1	. 11		Humlv318		5%	31
. uy .	, ,	-		-		

Table 2B: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
DIS	107	3	Humlv318	2	2%	19
WIT	108	3	Humlv318	7	7%	19
I.RH	108	3	Humlv318	12	11%	19
S1-1	108	3	Humlv318	12	11%	52
DEL	108	3	Humlv318	1.4	13%	17
TYR	108	3	Humlv318	11	10%	19
J.RH	109	3	Humlv318	13	12%	19
THO	112	2	DPL13	38	36%	26
LBV	113	1	DPL3	38	36%	2
WLT	112	1	DPL3	33	31%	14
SUT	112	2	DPL12	37	35%	65

Table 2C:

rearranged human heavy chain sequences

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference'
21/28	119	1	VH1-13-12	0	0,0%	31
8E10	123	1	VH1-13-12	0	0,0%	31
MUC1-1	118	1	VH1-13-6	4	4,1%	42
gF1	98	1	VH1-13-12	10	10,2%	75
VHGL 1.2	. 98	1	VH1-13-6	2	2,0%	26
HV1L1	98	1	VH1-13-6	0	0,0%	81
RF-TS7	104	1	VH1-13-6	3	3,1%	96
E55 1.A15	106	1	VH1-13-15	1	1.0%	26
HA1L1	126	1	VH1-13-6	7	7.1%	81
UC	123	1.	VH1-13-6	5	5,1%	115
WIL2	123	1	VH1-13-6	6	6,1%	55
R3.5H5G	122	1	VH1-13-6	10	10,2%	70
N89P2	123	1	VH1-13-16	11	11,2%	. 77
mAb113	126	. 1	VH1-13-6	- 10	10,2%	. 71
LS2S3-3	125	1	VH1-12-7	5	5.1%	98
-LS2S3-12a	125	1	VH1-12-7	5	5,1%	98
LS2S3-5	125	1	VH1-12-7	5	5,1%	98
LS2S3-12e	125	1	VH1-12-7	5	5,1%	98
LS2S3-4	125	1	VH1-12-7	5	5,1%	98
LS2S3-10	. 125	1	VH1-12-7	5	5,1%	98
LS2S3-12d	125	-1	VH1-12-7	6	6,1%	98
LS2S3-8	125	1	VH1-12-7	5	5,1%	98
LS2	125	1	VH1-12-7	6	6,1%	113
LS4	105	1	VH1-12-7	6	6,1%	113
LS5	125	1	VH1-12-7	6	6,1%	113
LS1	125	1	VH1-12-7	6	6,1%	113
LS6	125	1	VH1-12-7	6	6,1%	113
LS8	125	· 1	VH1-12-7	7	7.1%	113
THY-29	122	1	VH1-12-7	0	0,0%	42
1B9/F2	122	1	VH1-12-7	10	10,2%	21
51P1	122	1	VH1-12-1	0	0.0%	105
NEI	127	1	VH1-12-1	0	0,0%	55
AND	127	1	VH1-12-1	0	0,0%	55
L7	127	1	VH1-12-1	0	0,0%	54
L22	124	1	VH1-12-1	0	0.0%	54
L24	127	1	VH1-12-1	0	0,0%	54
			65			

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L26	116	1	VH1-12-1	0	0,0%	54
L33	119	1	VH1-12-1	0	0,0%	54
L34	117	1	VH1-12-1	0	0,0%	- 54
L36	118	.1	VH1-12-1	0	0,0%	54
L39	120	1	VH1-12-1	0	0,0%	54
L41	120	1	VH1-12-1	. 0	0,0%	54
L42	125	1	VH1-12-1	0	0,0%	54
VHGL 1.8	101	1	VH1-12-1	0	0,0%	26
783c	127	1	VH1-12-1	0	0,0%	22
X17115	127	1	VH1-12-1	0	0,0%	37
L25	124	1	VH1-12-1	0	0,0%	54
L17	120	1	VH1-12-1	1	1,0%	54
L30	127	1	VH1-12-1	1	1,0%	54
L37	120	1 .	VH1-12-1	1	1,0%	54
TNF-E7	116	1	VH1-12-1	2	2.0%	42
mAb111	122	1	VH1-12-1	7	7,1%	71
III-2R	122	1	VH1-12-9	3	3,1%	70
KAS	121	1	VH1-12-1	7	7.1%	. 79
YES8c	122	1	VH1-12-1	8	8,2%	34
RF-TS1	123	1 .	VH1-12-1	8	8,2%	82
BOR'	121	1	VH1-12-8	7	7,1%	79
VHGL 1.9	101	1 .	VH1-12-1	8	8,2%	26
mAb410.30F305	117	1	VH1-12-9	5	5,1%	52
EV1-15	127	1	VH1-12-8	10	10,2%	78
mAb112	122	1	VH1-12-1	11	11,2%	71
EU ·	117	1	VH1-12-1	11	11,2%	28
H210	127	1	VH1-12-1	12	12,2%	66
TRANSGENE	104	1	VH1-12-1	0	0,0%	111
CLL2-1	93	1	VH1-12-1	0 .	0,0%	30
CLL10 13-3	97	1	VH1-12-1	0	0,0%	29
LS7	99	1	VH1-12-7	4	4,1%	113
ALL7-1	87	1 '	VH1-12-7	0	0,0%	30
CLL3-1	91	1	VH1-12-7	1	1,0%	30
ALL56-1	85	1	VH1-13-8	0	0,0%	30
ALL1-1	87	1	VH1-13-6	1	1,0%	30
ALL4-1	94	1	VH1-13-8	0	0,0%	30
					•	

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
ALL56 15-4	85	1	VH1-13-8	5	5,1%	29
CLL4-1	88	1	VH1-13-1	1	1,0%	. 30
Au92.1	98	1	VH1-12-5	0.	0,0%	49
RF-TS3	120	1	VH1-12-5	1	1,0%	82
Au4.1	98	1	VH1-12-5	1	1,0%	49
HP1	121	1	VH1-13-6	13	13,3%	110
BLI	127	1	VH1-13-15	5	5,1%	72
No.13	127	1	VH1-12-2	19	19,4%	76
TR1.23	122	1	VH1-13-2	23	23,5%	88
S1-1	125	1 .	VH1-12-2	18	18,4%	76
TR1.10	119	1	VH1-13-12	14	14,3%	88
E55 1.A2	102	1 .	VH1-13-15	3	3,1%	26 .
SP2	119	1	VH1-13-6	15	15,3%	89
TNF-H9G1	111	1	VH1-13-18	2	2,0%	42
G3D10H	127	1	VH1-13-16	19	19,4%	127
TR1.9	118.	1	VH1-13-12	14	14,3%	88
TR1.8	121	1	VH1-12-1	24	24,5%	88
LUNm01	127	1	VH1-13-6	22	22,4%	9
K1B12H	127	1	VH1-12-7	23	23,5%	127
L3B2	99	· 1	VH1-13-6	. 2	2,0%	46
ss2	100	. 1	VH1-13-6	2	2,0%	46
No.86	124	1	VH1-12-1	20	20,4%	76
TR1.6	124	1	VH1-12-1	19	19,4%	88
ss7	99	1	VH1-12-7	3	3,1%	46
s5B7	102	1	VH1-12-1	0	0,0%	46
s6A3	97	1	VH1-12-1	0	0,0%	46
ss6	99	1	VH1-12-1	0	0,0%	46
L2H7	103	1	VH1-13-12	0	0,0%	46
s6BG8	93	1	VH1-13-12	0	0.0%	46
s6C9	107	1	VH1-13-12	0	0,0%	46
HIV-b4	124	1	VH1-13-12	21	21,4%	12
HIV-b12	124	1	VH1-13-12	21	21,4%	12
L3G5	98	1	VH1-13-6	1	1,0%	46
22	115	1	VH1-13-6	11	11,2%	118
L2A12	99		VH1-13-15	3	3,1%	46
PHOX15	124		VH1-12-7	20	20,4%	73
			≯ 1			

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
LUNm03	127	1	VH1-1X-1	18	18,4%	9
CEA4-8A	129	1	VH1-12-7	1	1,0%	42
M60	121	2 .	VH2-31-3	3	3,0%	103
HiH10	127	2	VH2-31-5	. 9	9,0%	4
COR	119	2	VH2-31-2	11	11,0%	91
2-115-19	124	2 .	VH2-31-11	8	8,1%	124
OU	125	2	VH2-31-14	20	25,6%	92
HE	120	2	VH2-31-13	19	19,0%	27
CLL33 40-1	78	2 .	VH2-31-5	2	2.0%	29
E55 3.9	88	3	VH3-11-5	7	7,2%	26
MTFC3	125	3	VH3-14-4	21	21,0%	131
MTFC11	125	. 3	VH3-14-4	. 21	21,0%	131
MTFJ1	114	3	VH3-14-4	21	21,0%	131
MTFJ2	114	3	VH3-14-4	21	21,0%	131
MTFUJ4	100	3	VH3-14-4	21	21,0%	131
MTFUJ5	100	3	VH3-14-4	21	21,0%	131
MTFUJ2	100	3	VH3-14-4	22	22.0%	131
MTFC8	125	3	VH3-14-4	23	23.0%	131
TD e Vq	113	3	VH3-14-4	0	0,0%	16
rMTF	114	3	VH3-14-4	5	5,0%	131
MTFUJ6	100	3	VH3-14-4	10	10,0%	131
RF-KES	107	3	· VH3-14-4	. 9	9,0%	85
N51P8	126	3	VH3-14-1	9	9,0%	77
TEI	119	3 .	VH3-13-8	21	21,4%	20
33.H11	115	3	VH3-13-19	10	10,2%	129
SB1/D8	101	3	VH3-1X-8	14	14,0%	2
38P1	119	3	VH3-11-3	0	0,0%	104
BRO'IGM	119	3	VH3-11-3	13	13,4%	19
NIE	119	3	VH3-13-7	15	15,3%	87
3D6	126	3	VH3-13-26	5	5,1%	35
ZM1-1	112	3	VH3-11-3	8	8,2%	5
E55 3.15	110	3	VH3-13-26	0	0.0%	26
gF9	108	3	VH3-13-8	15	15,3%	75
THY-32	120	3	VH3-13-26	3	3,1%	42
RF-KL5	100.	3	VH3-13-26	5	5,1%	96
OST577	122	3	VH3-13-13	6	6,1%	5

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
ВО	113	3	VH3-13-19	15	15,3%	10
Π125	121	3	VH3-13-10	15	15,3%	64
2-115-58	127	3	VH3-13-10	11	11,2%	124
KOL	126	3	VH3-13-14	16	16,3%	102
mAb60	118	3	VH3-13-17	14	14,3%	45
RF-AN	106	3	VH3-13-26	. 8	8,2%	85
BUT	115	3	VH3-11-6	13	13,4%	119
KOL-based CAMPATH-						
9	118	3	VH3-13-13	16	16,3%	. 41
B1	119	3	VH3-13-19	13	13,3%	53
N98P1	127	.3	VH3-13-1	13	13,3%	. 77
П117	107	3	VH3-13-10	12	12,2%	64
WEA	114	3	VH3-13-12	15	15,3%	40
HIL	120	.3	VH3-13-14	14	14,3%	23
s5A10	97	3	VH3-13-14	0	0,0%	46
s5D11	98	3.	VH3-13-7	0	0,0%	46
s6C8	100	3	VH3-13-7	0	0,0%	46
s6H12	98	3	VH3-13-7	0	0.0%	46
VH10.7	119	3	VH3-13-14	16	16,3%	128
HIV-loop2	126	3	VH3-13-7	16	16,3%	12
HIV-loop35	126	3	VH3-13-7	16	16,3%	12
TRO	122	3	VH3-13-1	13	13,3%	61
SA-4B	123	3	VH3-13-1	15	15,3%	125
L2B5	98	3	VH3-13-13	0	0,0%	46
s6E11	95	3	VH3-13-13	0	0,0%	46
s6H7	100	. 3	VH3-13-13	0	0,0%	46
ss1 ·	102	3	VH3-13-13	. 0	0,0%	46
ss8	94	3	VH3-13-13	0	0.0%	46
DOB	120	3	VH3-13-26	21	21,4%	116
THY-33	115	3	VH3-13-15	20	20,4%	42
NOV	118	3	VH3-13-19	14	14,3%	38
rsv13H	120	3	VH3-13-24	20	20,4%	11
L3G11	98	3	VH3-13-20	2	2,0%	46
L2E8	99	3	VH3-13-19	0	0,0%	46
L2D10	101	3	VH3-13-10	1	1,0%	46
L2E7	98	3	VH3-13-10	1	1,0%	46

73.

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ⁷
L3A10	100	3	VH3-13-24	0	0,0%	46
L2E5	97	3	VH3-13-2	1	1,0%	46
BUR	119	3	VH3-13-7	21	21,4%	67
s4D5	107	3	VH3-11-3	1	1,0%	46
19	116	3	VH3-13-16	4	4,1%	118
s5D4	99	3	VH3-13-1	0	0,0%	46
s6A8	100	3	VH3-13-1	0	0,0%	46
HIV-loop13	123	3	VH3-13-12	17	17,3%	12
TR1.32	112	3	VH3-11-8	18	18,6%	88
L2B10	97	.3	VH3-11-3	1	1,0%	46
TR1.5	114	3	VH3-11-8	21	21,6%	88
s6H9	101	. 3	VH3-13-25	0	0.0%	46
8	112	3	VH3-13-1	6	6,1%	118
23	115	. 3	VH3-13-1	6	6,1%	118
.7	115	3	VH3-13-1	4	4,1%	118
TR1.3	120	3	VH3-11-8	20	20,6%	88
18/2 .	125	3	VH3-13-10-	0	0,0%	32
18/9	125	3	VH3-13-10	0	0,0%	31
30P1	119	3	VH3-13-10	0	0,0%	106
HF2-1/17	125	3 .	VH3-13-10	0	0,0%	8
A77	109	3	VH3-13-10	0	0,0%	44
B19.7	108	3 .	VH3-13-10	0	0,0%	44
M43	119	3	VH3-13-10	0	0,0%	103
1/17	125	3	VH3-13-10	0	0,0%	. 31
18/17	125	3	VH3-13-10	0	0,0%	31
E54 3.4	109	3	VH3-13-10	0	0,0%	26
LAMBDA-VH26	98	3	VH3-13-10	1	1,0%	95
E54 3.8	111	3	VH3-13-10	1	1,0%	26
GL16	106	3	VH3-13-10	1	1,0%	44
4G12	125	3	VH3-13-10	1	1,0%	56
A73	106	3	VH3-13-10	2	2,0%	44
AL1.3	111	3	VH3-13-10	3	3,1%	117
3.A290	118	3	VH3-13-10	2	2,0%	108
Ab18	127	3	VH3-13-8	2	2,0%	100
E54 3.3	105	3	VH3-13-10	3	3,1%	26
35G6	121	3	VH3-13-10	3	3.1%	57

タ4 SUBSTITUTE SHEET (RULE 26)

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
A95	107	3	VH3-13-10	5	5,1%	44
Ab25	128	3	VH3-13-10	5	5,1%	100
N87	126	·. 3	VH3-13-10	4	4,1%	77
ED8.4	99	3	VH3-13-10	6	6,1%	2
RF-KL1	122	3	VH3-13-10	6	6,1%	82
AL1.1	112	3	VH3-13-10	2	2,0%	117
AL3.11	102	3	VH3-13-10	1	1,0%	117
32.B9	127	3	VH3-13-8	6	6,1%	129
TK1	109	3	VH3-13-10	2	2,0%	117
POP	123	3	VH3-13-10	8	8,2%	115
9F2H	127	3	VH3-13-10	9	9,2%	127
VD	115	3	VH3-13-10	9	9,2%	10
Vh38Cl.10	121	3	VH3-13-10	8	8.2%	74
Vh38Cl.9	121	3	VH3-13-10	8	8,2%	74
Vh38Cl.8	121.	3	VH3-13-10	8	8,2%	74
63P1	120		VH3-11-8	. 0	0,0%	104
60P2	.117	3	VH3-11-8	0′	0.0%	104
AL3.5	90	3	VH3-13-10	2	2.0%	. 117
GF4/1.1	123	3	VH3-13-10	10	10,2%	39
Ab21	126	3 .	VH3-13-10	12	12,2%	100
TD d Vp	118	3	VH3-13-17	2	2,0%	16
Vh38Cl.4	119	3	VH3-13-10	8	8,2%	74
Vh38Cl.5	119	3	VH3-13-10	8	8,2%	74
AL3.4	104	. 3	VH3-13-10	· 1	1,0%	117
FOG1-A3	115	3	VH3-13-19	2	2,0%	42.
HA3D1	117	3	VH3-13-21	1	1,0%	81
E54 3.2	112	3	VH3-13-24	0	0,0%	26
mAb52	128	3	VH3-13-12	2	2.0%	51
mAb53	128	3	VH3-13-12	2	2,0%	51
mAb56	128	3	VH3-13-12	2	2,0%	51
mAb57	128	3	VH3-13-12	2	2,0%	51
mAb58	128	3	VH3-13-12	2	2,0%	51
mAb59	128	3	VH3-13-12	2	2,0%	51
mAb105	128	3	VH3-13-12	2	2,0%	51
mAb107	128	3	VH3-13-12	2	2,0%	51
E55 3.14	110	3	VH3-13-19	0	0,0%	26

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
F13-28	106	3	VH3-13-19	1 .	1,0%	94
mAb55	127	3	VH3-13-18	4	4,1%	51
YSE	117	3	VH3-13-24	6	6,1%	72
E55 3.23	106	3	VH3-13-19	2	2,0%	26
RF-TS5	101	3	VH3-13-1	3	3,1%	85
N42P5	124	3	VH3-13-2	7	7,1%	77
FOG1-H6	110	3	VH3-13-16	7	7,1%	42
0-81	115	3	VH3-13-19	11	11,2%	47
HIV-s8	122	3	VH3-13-12	11	11,2%	. 12
mAb114	125	3	VH3-13-19	12	12,2%	71
33.F12	116	3	VH3-13-2	4	4.1%	129
484	119	3	VH3-1X-3	0	0,0%	101
M26	123	3	VH3-1X-3	0	0.0%	103
VHGL 3.1	100	. 3	VH3-1X-3	0 .	0,0%	26
E55 3.13	113	. 3	VH3-1X-3	1	1,0%	26
SB5/D6	101	3	VH3-1X-6	3	3,0%	2
RAY4	101	3	VH3-1X-6	3	3,0%	2
82-D V-D	106	3	VH3-1X-3	5	5,0%	112
MAL	129	3	VH3-1X-3	5	5,0%	72
LOC	123	3	VH3-1X-6	5	5,0%	72
LSF2	101	3	VH3-1X-6	11	11,0%	2
HIB RC3	100	3	· VH3-1X-6	11	11,0%	1
56P1	119	3	VH3-13-7	0	0,0%	104
M72	122	3	VH3-13-7	0	0.0%	103
M74	121	3	VH3-13-7	0	0,0%	103
E54 3.5	105	3	VH3-13-7	0	0,0%	26
2E7	123	3	· VH3-13-7	0	0,0%	63
2P1	117	3	VH3-13-7	0	0,0%	104
RF-SJ2	127	3	VH3-13-7	1	1,0%	83
PR-TS1	114	3	VH3-13-7	1	1,0%	85
KIM46H	127	3	VH3-13-13	0	0,0%	18
E55 3.6	108	3	VH3-13-7	2	2,0%	26
E55 3.10	107	3	VH3-13-13	1	1,0%	26
3.B6	114	3	VH3-13-13	1	1,0%	108
E54 3.6	110	3	VH3-13-13	1	1,0%	26
FL2-2	114	3	VH3-13-13	1	1,0%	80

Table 2C: (continued)

Name ¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference ²
RF-SJ3	112	3	VH3-13-7	2	2,0%	85
E55 3.5	105	3	VH3-13-14	1	1,0%	26
BSA3	121	3	VH3-13-13	1	1,0%	73
HMST-1	119	3	VH3-13-7	3 .	3,1%	130
RF-TS2	126	3	VH3-13-13	4	4,1%	82
E55 3.12	109	3	VH3-13-15	0	0,0%	26
19.E7	126	3	VH3-13-14	3	3,1%	129
11-50	- 119	3	VH3-13-13	6	6.1%	130
E29.1	120	3 ·	VH3-13-15	2	2,0%	25
E55 3.16	108	3	VH3-13-7	6	6,1%	26
TNF-E1	117	3	VH3-13-7	7	7,1%	42
RF-SJ1	127	3	VH3-13-13	6 .	6,1%	83
FOG1-A4	116	3	VH3-13-7	8	8,2%	42
TNF-A1	117	3	VH3-13-15	4	4.1%	42
PR-SJ2	. 107.	- 3	VH3-13-14	8	8.2%	85
HN.14	124	. 3	VH3-13-13	10	10,2%	33
CAM'	121	3	VH3-13-7	12	12,2%	65
HIV-B8	125	3	VH3-13-7	9	9,2%	12
HIV-b27	125	3	VH3-13-7	9	9,2%	12
HIV-b8	. 125	3	VH3-13-7	9	9.2%	12
HIV-s4	125	3	VH3-13-7	9	9,2%	12
HIV-B26	125	3	VH3-13-7	9	9,2%	12
HIV-B35	125	3	VH3-13-7	10	10,2%	12
HIV-b18	125	.3	VH3-13-7	10	10,2%	.12
HIV-b22	125	3	VH3-13-7	11	11,2%	.12
HIV-b13	125	3	VH3-13-7	12	12,2%	12
333	117	3	VH3-14-4	24	24,0%	24
1H1	120	3	VH3-14-4	24	24,0%	24
1B11	120	3	VH3-14-4	23	23,0%	24
CLL30 2-3	86	3	VH3-13-19	1	1,0%	29
GA	110	3	VH3-13-7	19	19,4%	36
JeB	99	3	VH3-13-14	3	3,1%	7
GAL	110	3	VH3-13-19	10	10,2%	126
K6H6	119	3	VH3-1X-6	18	18,0%	60
K4B8	119	3	VH3-1X-6	18	18,0%	60
K5B8	119	3	VH3-1X-6	18	18,0%	60

Table 2C:

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
K5C7	119	3	VH3-1X-6	19	19,0%	60
K5G5	119	3	VH3-1X-6	19	19,0%	60
K6F5	119	3	VH3-1X-6	19	19,0%	60
AL3.16	98	3	VH3-13-10	1	1,0%	117
N86P2	98	3	VH3-13-10	3	3,1%	77
N54P6	95	3	VH3-13-16	7	7,1%	77
LAMBDA HT112-1	126	4	VH4-11-2	0	0,0%	3
HY18	121	4	VH4-11-2	0	0,0%	43
mAb63	126	4	VH4-11-2	0	0,0%	45
FS-3	105	4	VH4-11-2	0	0,0%	86
FS-5	111	· 4	VH4-11-2	0	0,0%	86
FS-7	107	4	VH4-11-2	0	0,0%	86
FS-8	110	4	VH4-11-2	0	0,0%	86
PR-TS2	105	. 4	VH4-11-2	. 0	0,0%	85
RF-TMC	102	4	VH4-11-2	0	0.0%	85
mAb216	122	4	VH4-11-2	1	1,0%	15
mAb410.7.F91	122	4	VH4-11-2	1	1,0%	52
mAbA6H4C5	124	4	VH4-11-2	1	1,0%	15
Ab44	127	4	VH4-11-2	2	2,1%	100
6H-3C4	124	4	VH4-11-2	3	3,1%	59
FS-6	108	4	VH4-11-2	6	6,2%	86
FS-2	114	4 .	VH4-11-2	6	6,2%	84
HIG1	126	4	VH4-11-2	· 7	7,2%	62
FS-4	105	4	VH4-11-2	8	8,2%	86
SA-4A	123	4	VH4-11-2	9	9,3%	125
LES-C	119	4	VH4-11-2	10	10,3%	99
DI	78	4	VH4-11-9	16	16,5%	58
Ab26	126	4	VH4-31-4	8	8,1%	100
TS2	124	4	VH4-31-12	15	15,2%	110
265-695	115	4	VH4-11-7	16	16,5%	5
WAH	129	4	VH4-31-13	19	19,2%	93
268-D	122	4	VH4-11-8	22	22,7%	6
58P2	1.18	4	VH4-11-8	0	0,0%	104
mAb67	128	4	VH4-21-4	1	1,0%	45
4.L39	115	4	VH4-11-8	2	2,1%	108
mF7	111	4 ·	VH4-31-13	3	3,0%	75

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
33.C9	122	4	VH4-21-5	7	7,1%	129
Pag-1	124	4	VH4-11-16	5	5,2%	50
B3	123	4	VH4-21-3	8	8,2%	53
IC4	120	4	VH4-11-8	6	6,2%	70
C6B2	127	4	VH4-31-12	4	4,0%	48
N78	118	4	VH4-11-9	11	11,3%	77
B2	109	4	VH4-11-8	12	12,4%	53
WRD2	123	4	VH4-11-12	6	6,2%	90
mAb426.4.2F20	126	4	VH4-11-8	2	2,1%	52
E54 4.58	115	4	VH4-11-8	1	1,0%	26
WRD6	123	4	VH4-11-12	10	10,3%	90
mAb426.12.3F1.4	122	4	VH4-11-9	·4	4,1%	52
E54 4.2	108	4	VH4-21-6	2	2,0%	26
WIL	127	4	VH4-31-13	0 .	0.0%	90
COF	126	4	VH4-31-13	0	0,0%	90
LAR	122	4	VH4-31-13	2	2,0%	90
WAT	125	4	VH4-31-13	4	4,0%	90
mAb61	123	· 4	VH4-31-13	5 .	5,1%	45
WAG	127	4	VH4-31-4	0	0,0%	90
RF-SJ4	108	4	VH4-31 - 12	2	2,0%	85
E54 4.4	110	4	VH4-11-7	0 -	0,0%	26
E55 4.A1	108	4	VH4-11-7	0	0,0%	26
PR-SJ1	103	4	VH4-11-7	1	1,0%	85
E54 4.23	111	4	VH4-11-7	1	1,0%	26
CLL7 7-2	97	4	VH4-11-12	0	0,0%	29
37P1	95	4	VH4-11-12	0	0,0%	104
ALL52 30-2	91	4	VH4-31-12	4	4,0%	29
EBV-21	98	5	VH5-12-1	0	0,0%	13
CB-4	98	5	VH5-12-1	0	0,0%	13
CLL-12	98	5	VH5-12-1	0	0,0%	13
L3-4	98	5	VH5-12-1	0	0,0%	13
CLL11	98	5	VH5-12-1	0	0,0%	17
CORD3	98	5	VH5-12-1	0	0,0%	17
CORD4	98	5	VH5-12-1	0	0,0%	17
CORD8	98	5	VH5-12-1	0	0,0%	17
CORD9	98	5	VH5-12-1	0 .	0,0%	17

マら

Table 2C: (continued)

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
CD+1	98	5	VH5-12-1	0	0,0%	17
CD+3	98	5	.VH5-12-1	0	0,0%	- 17
CD+4	98	5	VH5-12-1	0	0,0%	17
CD-1	98	5	VH5-12-1	0	0,0%	17
CD-5	98	5	VH5-12-1	0	0,0%	17
VERG14	98	5	VH5-12-1	0	0,0%	17
PBL1	98	5	VH5-12-1	0	0,0%	17
PBL10	98	5	VH5-12-1	0	0,0%	17
STRAb SA-1A	127	5	VH5-12-1	0	0,0%	125
DOB'	122	5	VH5-12-1	0	0,0%	97
VERG5	98	5	VH5-12-1	0	0.0%	17
PBL2	98	5	VH5-12-1	1	1,0%	17
Tu16	119	5	VH5-12-1	1 -	1,0%	49
PBL12	98	5	VH5-12-1	1	1.0%	17
CD+2	98	5	VH5-12-1	1	1,0%	17
CORD10	98	5	VH5-12-1	1	1,0%	17
PBL9	98	. 5	VH5-12-1	. 1	1,0%	17
CORD2	98	5	VH5-12-1	2	2,0%	17
PBL6	98	5	VH5-12-1	2	2,0%	17
CORD5	98	5	VH5-12-1	2	2,0%	17
CD-2	98	5	VH5-12-1	. 2	2,0%	17
CORD1	98	5	VH5-12-1	2	2,0%	17
CD-3	98	5	VH5-12-1	3	3,1%	17
VERG4	98	5	VH5-12-1	. 3	3,1%	17 .
PBL13	98	.5	VH5-12-1	3	3,1%	17
PBL7	98	5	VH5-12-1	3	3,1%	17
HAN	119	5	VH5-12-1	. 3	3,1%	97
VERG3	98	· 5	VH5-12-1	3	3,1%	17
PBL3	98	5	VH5-12-1	3	3,1%	17
VERG7	98	5	VH5-12-1	3	3,1%	17
PBL5	94	5	VH5-12-1	0	0,0%	17
CD-4	98	5	VH5-12-1	4	4,1%	17
CLL10	98	5	VH5-12-1	4	4,1%	17
PBL11	98	5	VH5-12-1	4	4,1%	17
CORD6	98	5	VH5-12-1	. 4	4,1%	17
VERG2	98	. 5	VH5-12-1	5	5,1%	17

Table 2C:

Name¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
83P2	119	5	VH5-12-1	0	0,0%	103
VERG9	98	5	VH5-12-1	-6	6,1%	17
CLL'6	98	5	VH5-12-1	6	6,1%	· 17
PBL8	98	5	VH5-12-1	7	7,1%	17
Ab2022	120	5	VH5-12-1	3 .	3,1%	100
CAV	127	5	VH5-12-4	0	0,0%	97
HOW'	120	5	VH5-12-4	0	0,0%	97
PET	127	5	VH5-12-4	0	0,0%	97
ANG	121	5	VH5-12-4	0	0,0%	97
KER	121	5	VH5-12-4	0	0,0%	97
5.M13	118	5	VH5-12-4	0	0,0%	107
Au2.1	118	5	VH5-12-4	1	1,0%	49
WS1	126	5	VH5-12-1	9	9.2%	110
TD Vn	98	5	VH5-12-4	1	1,0%	16
TEL13	116	5	VH5-12-1	9	9.2%	73
E55 5.237	112	. 5	VH5-12-4	2	2,0%	26
VERG1	98	5	VH5-12-1	10	10,2%	17
CD4-74	117	5	VH5-12-1	10 .	10,2%	42
257-D	125	5	VH5-12-1	11	11,2%	6
CLL4	98	5 -	VH5-12-1	11	11,2%	17
CLL8	98	5	VH5-12-1	11	11,2%	17
Ab2	124	5	VH5-12-1	12	12,2%	120
Vh383ex	98	5	VH5-12-1	12	12,2%	120
CLL3	98	5	VH5-12-2	11	11,2%	17
Au59.1	122	5	VH5-12-1	12	12,2%	49
TEL16	117	5	VH5-12-1	12	12,2%	73
M61	104	5	VH5-12-1	0	0.0%	103
TuO	99	5	VH5-12-1	5	5,1%	49
P2-51	122	5	VH5-12-1	13	13,3%	121
P2-54	122	5	VH5-12-1	11	11,2%	121
P1-56	119	5	VH5-12-1	9	9,2%	121
P2-53	122	5	VH5-12-1	10	10,2%	121
P1-51	123	5	VH5-12-1	19	19,4%	121
P1-54	123	5	VH5-12-1	3	3,1%	121
P3-69	127	. 5	VH5-12-1	4	4,1%	121
P3-9	119	5	VH5-12-1	4	4,1%	121

Table 2C:

Name¹	aa²	Computed family ³	Germline gene⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference
1-185-37	125	5 .	VH5-12-4	0	0,0%	124
1-187-29	. 125	5	VH5-12-4	0	0,0%	124
P1-58	128	5	VH5-12-4	10	10,2%	121
P2-57	118	5	VH5-12-4	3	3,1%	121
P2-55	123	5	VH5-12-1	5	5,1%	121.
P2-56	123	. 5	VH5-12-1	20	20,4%	121
P2-52	122	5	VH5-12-1	11	11.2%	121
P3-60	122	5	VH5-12-1	8	8,2%	121
P1-57	123	5	VH5-12-1	4	4,1%	121
P1-55	122	5	VH5-12-1	14	14,3%	121
MD3-4	128	5	VH5-12-4	12	12,2%	5
P1-52	121	5	VH5-12-1	. 11	11.2%	121
CLL5	98	5	VH5-12-1	13	13,3%	- 17
CLL7	98	5	VH5-12-1	14	14,3%	17
L2F10	100	5	VH5-12-1	1	1,0%	46
L3B6	98	5	VH5-12-1	1	1,0%	46
VH6.A12	119	6	VH6-35-1	13	12,9%	122
s5A9	102	6	VH6-35-1	1	1,0%	46
s6G4	99	6	VH6-35-1	1	1,0%	46
ss3	99	6	VH6-35-1	1	1,0%	46
6-1G1	101	6	VH6-35-1	0	0.0%	14
F19L16	107	6	· VH6-35-1	0	0,0%	68
L16	120	6	VH6-35-1	0	0,0%	69
M71	121	6	VH6-35-1	0	0,0%	103
ML1	120	6	VH6-35-1	0	0,0%	69
F19ML1	107	6	VH6-35-1	0	0.0%	68
15P1	127	6	VH6-35-1	0	0,0%	104
VH6.N1	121	6	VH6-35-1	0	0,0%	122
VH6.N11	123	6	VH6-35-1	0	0,0%	122
VH6.N12	123	6	VH6-35-1	0	0,0%	122
VH6.N2	125	6	VH6-35-1	0	0,0%	122
VH6.N5	125	6	VH6-35-1	0	0,0%	122
VH6.N6	127	6	VH6-35-1	0	0,0%	122
VH6.N7	126	6	VH6-35-1	0	0,0%	122
VH6.N8	123	6	VH6-35-1	0	0,0%	122
VH6.N9	123	. 6	VH6-35-1	0	0,0%	122

Table 2C: (continued)

VH6.A3 123 6 VH6-35-1 0 0,0% 122 VH6.A1: 124 6 VH6-35-1 0 0,0% 122 VH6.A4 120 6 VH6-35-1 0 0,0% 122 E55 6.16 116 6 VH6-35-1 0 0,0% 26 E55 6.17 120 6 VH6-35-1 0 0,0% 26 E55 6.6 120 6 VH6-35-1 0 0,0% 26 VHGL 6.3 102 6 VH6-35-1 0 0,0% 26 CB-201 118 6 VH6-35-1 0 0,0% 109 VH6.N4 122 6 VH6-35-1 0 0,0% 122 E54 6.4 109 6 VH6-35-1 1 1,0% 26 VH6.A6 126 6 VH6-35-1 1 1,0% 26 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 2 2,0% 26 <th>Name¹</th> <th>aa²</th> <th>Computed family³</th> <th>Germline gene⁴</th> <th>Diff. to germline⁵</th> <th>% diff. to germline⁶</th> <th>Reference'</th>	Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ⁵	% diff. to germline ⁶	Reference'
VH6.A1 124 6 VH6-35-1 0 0,0% 122 VH6.A4 120 6 VH6-35-1 0 0,0% 122 E55 6.16 116 6 VH6-35-1 0 0,0% 26 E55 6.6 120 6 VH6-35-1 0 0,0% 26 VHGL 6.3 102 6 VH6-35-1 0 0,0% 26 VHG.N4 122 6 VH6-35-1 0 0,0% 26 VH6.N4 122 6 VH6-35-1 0 0,0% 109 VH6.A6 126 6 VH6-35-1 1 1,0% 26 E54 6.4 109 6 VH6-35-1 1 1,0% 26 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26	VH6.N10	123	6	VH6-35-1	0	0,0%	122
VH6.A4 120 6 VH6-35-1 0 0,0% 122 E55 6.16 116 6 VH6-35-1 0 0,0% 26 E55 6.6 120 6 VH6-35-1 0 0,0% 26 VHGL 6.3 102 6 VH6-35-1 0 0,0% 26 CB-201 118 6 VH6-35-1 0 0,0% 109 VH6.N4 122 6 VH6-35-1 0 0,0% 122 E54 6.4 109 6 VH6-35-1 1 1,0% 26 VH6.A6 126 6 VH6-35-1 1 1,0% 26 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 <td>VH6.A3</td> <td>123</td> <td>6</td> <td>VH6-35-1</td> <td>0</td> <td>0,0%</td> <td>122</td>	VH6.A3	123	6	VH6-35-1	0	0,0%	122
E55 6.16	VH6.A1	124	6	VH6-35-1	0	0,0%	122
E55 6.17	VH6.A4	120	6	VH6-35-1	0	0,0%	122
E55 6.6	E55 6.16	116	6	VH6-35-1	0 .	0,0%	26
VHGL 6.3 102 6 VH6-35-1 0 0,0% 26 CB-201 118 6 VH6-35-1 0 0,0% 109 VH6.N4 122 6 VH6-35-1 0 0,0% 122 E54 6.4 109 6 VH6-35-1 1 1,0% 26 VH6.A6 126 6 VH6-35-1 1 1,0% 26 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.7 116 6 VH6-35-1 2 2,0% 26 <td>E55 6.17</td> <td>120</td> <td>6</td> <td>VH6-35-1</td> <td>0</td> <td>0,0%</td> <td>26</td>	E55 6.17	120	6	VH6-35-1	0	0,0%	26
CB-201 118 6 VH6-35-1 0 0,0% 109 VH6.N4 122 6 VH6-35-1 0 0,0% 122 E54 6.4 109 6 VH6-35-1 1 1,0% 26 VH6.A6 126 6 VH6-35-1 1 1,0% 26 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 3 3,0% 26	E55 6.6	120	6	VH6-35-1	0	0,0%	26
VH6.N4 122 6 VH6-35-1 0 0,0% 122 E54 6.4 109 6 VH6-35-1 1 1,0% 26 VH6.A6 126 6 VH6-35-1 1 1,0% 26 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E54 6.1 107 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.7 116 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.1 111 6 VH6-35-1 3 3,0% 26	VHGL 6.3	102	6	VH6-35-1	. 0	0,0%	26
E54 6.4 109 6 VH6-35-1 1 1,0% 26 VH6.A6 126 6 VH6-35-1 1 1,0% 122 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E54 6.1 107 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.1 111 6 VH6-35-1 3 3,0% 26 E55 6.11 111 6 VH6-35-1 3 3,0% 26 <td>CB-201</td> <td>118</td> <td>6</td> <td>VH6-35-1</td> <td>0</td> <td>0,0%</td> <td>109</td>	CB-201	118	6	VH6-35-1	0	0,0%	109
E54 6.4 109 6 VH6-35-1 1 1,0% 26 VH6.A6 126 6 VH6-35-1 1 1,0% 122 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.7 116 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.1 111 6 VH6-35-1 3 3,0% 26 E55 6.11 111 6 VH6-35-1 3 3,0% 26 <td>VH6.N4</td> <td>122</td> <td>6</td> <td>VH6-35-1</td> <td>0</td> <td>0,0%</td> <td>122</td>	VH6.N4	122	6	VH6-35-1	0	0,0%	122
VH6.A6 126 6 VH6-35-1 1 1,0% 122 E55 6.14 120 6 VH6-35-1 1 1,0% 26 E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E54 6.1 107 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 3 3,0% 26 E55 6.11 111 6 VH6-35-1 3 3,0% 26 E55 6.1 120 6 VH6-35-1 3 3,0% 68 <td></td> <td>109</td> <td>6</td> <td>VH6-35-1</td> <td>. 1</td> <td>1,0%</td> <td>26</td>		109	6	VH6-35-1	. 1	1,0%	26
E55 6.14 120 6 VH6-35-1 1 1,0% 26 E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 2 2,0% 26 E55 6.11 111 6 VH6-35-1 3 3,0% 26 E55 6.1 120 6 VH6-35-1 3 3,0% 68 E55 6.1 120 6 VH6-35-1 3 3,0% 68 <td>,</td> <td>126</td> <td>6</td> <td>VH6-35-1</td> <td>1</td> <td>1,0%</td> <td>122</td>	,	126	6	VH6-35-1	1	1,0%	122
E54 6.6 107 6 VH6-35-1 1 1,0% 26 E55 6.10 112 6 VH6-35-1 1 1,0% 26 E54 6.1 107 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.7 116 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 2 2,0% 26 E55 6.11 111 6 VH6-35-1 3 3,0% 26 VH6.A11 118 6 VH6-35-1 3 3,0% 26 E55 6.1 120 6 VH6-35-1 3 3,0% 68 E55 6.1 120 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122		120	6	VH6-35-1	1	1,0%	26
E54 6.1 107 6 VH6-35-1 2 2,0% 26 E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.7 116 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 3 3,0% 26 E55 6.11 118 6 VH6-35-1 3 3,0% 26 E55 6.1 120 6 VH6-35-1 3 3,0% 122 A10 107 6 VH6-35-1 3 3,0% 68 E55 6.1 120 6 VH6-35-1 4 4,0% 26 FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 <		107	6	VH6-35-1	1	1.0%	26
E55 6.13 120 6 VH6-35-1 2 2,0% 26 E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.7 116 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 2 2,0% 26 E55 6.11 111 6 VH6-35-1 3 3,0% 26 VH6.A11 118 6 VH6-35-1 3 3,0% 26 VH6.A11 118 6 VH6-35-1 3 3,0% 26 VH6.A11 118 6 VH6-35-1 3 3,0% 68 E55 6.1 120 6 VH6-35-1 4 4,0% 26 FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 5 5,0% 49	E55 6.10	112	6	VH6-35-1	1 ·	1.0%	26
E55 6.3 120 6 VH6-35-1 2 2,0% 26 E55 6.7 116 6 VH6-35-1 2 2,0% 26 E55 6.2 120 6 VH6-35-1 2 2,0% 26 E55 6.X 111 6 VH6-35-1 2 2,0% 26 E55 6.11 111 6 VH6-35-1 3 3,0% 26 VH6.A11 118 6 VH6-35-1 4 4,0% 26 E55 6.1 120 6 VH6-35-1 4 4,0% 26 FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 5 5,0% <	E54 6.1	107	. 6	VH6-35-1 2		2,0%	26
E55 6.7	E55 6.13	120	6	VH6-35-1	2	2,0%	26
E55 6.2	E55 6.3	120	6	VH6-35-1	2 .	2,0%	26
E55 6.X E55 6.11 E55 6.1	E55 6.7	116	6	VH6-35-1	2	2.0%	26
E55 6.11 111 6 VH6-35-1 3 3,0% 26 VH6.A11 118 6 VH6-35-1 3 3,0% 122 A10 107 6 VH6-35-1 3 3,0% 68 E55 6.1 120 6 VH6-35-1 4 4,0% 26 FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 4 4,0% 122 HBp2 119 6 VH6-35-1 4 4,0% 4 Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123 <	E55 6.2	120	6	VH6-35-1	2	2,0%	26
VH6.A11 118 6 VH6-35-1 3 3,0% 122 A10 107 6 VH6-35-1 3 3,0% 68 E55 6.1 120 6 VH6-35-1 4 4,0% 26 FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 4 4,0% 4 HBp2 119 6 VH6-35-1 4 4,0% 4 Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 2 2,0% 123 VH6-FF3 118 6 VH6-35-1 2 2,0% 123 <td>E55 6.X</td> <td>111</td> <td>6</td> <td>VH6-35-1</td> <td>2.</td> <td>2,0%</td> <td>26</td>	E55 6.X	111	6	VH6-35-1	2.	2,0%	26
A10 107 6 VH6-35-1 3 3,0% 68 E55 6.1 120 6 VH6-35-1 4 4,0% 26 FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 4 4,0% 4 HBp2 119 6 VH6-35-1 5 5,0% 49 Au46.2 123 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	E55 6.11	, 111	6	VH6-35-1	3	3,0%	26
E55 6.1 120 6 VH6-35-1 4 4,0% 26 FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 4 4,0% 122 HBp2 119 6 VH6-35-1 4 4,0% 4 Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	VH6.A11	118	6	VH6-35-1	3	3,0%	122
FK-001 124 6 VH6-35-1 4 4,0% 65 VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 4 4,0% 122 HBp2 119 6 VH6-35-1 4 4,0% 4 Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	A10	107	6	VH6-35-1	3	3,0%	68
VH6.A5 121 6 VH6-35-1 4 4,0% 122 VH6.A7 123 6 VH6-35-1 4 4,0% 122 HBp2 119 6 VH6-35-1 4 4,0% 4 Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	E55 6.1	120	6	VH6-35-1	4	4,0%	26
VH6.A7 123 6 VH6-35-1 4 4,0% 122 HBp2 119 6 VH6-35-1 4 4,0% 4 Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	FK-001	124	6	VH6-35-1	4	4,0%	65
HBp2 119 6 VH6-35-1 4 4,0% 4 Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	VH6.A5	121	6	VH6-35-1	.4	4,0%	122
Au46.2 123 6 VH6-35-1 5 5,0% 49 A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	VH6.A7	123	6	VH6-35-1	4	4,0%	122
A431 106 6 VH6-35-1 5 5,0% 68 VH6.A2 120 6 VH6-35-1 5 5,0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	HBp2	119	6	VH6-35-1	4	4,0%	4
VH6.A2 120 6 VH6-35-1 5 5.0% 122 VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	Au46.2	123	6	VH6-35-1	5	5,0%	49
VH6.A9 125 6 VH6-35-1 8 7,9% 122 VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	A431	106	6	VH6-35-1	5	5,0%	68
VH6.A8 118 6 VH6-35-1 10 9,9% 122 VH6-FF3 118 6 VH6-35-1 2 2,0% 123	VH6.A2	120	6	VH6-35-1	5	5,0%	122
VH6-FF3 118 6 VH6-35-1 2 2,0% 123	VH6.A9	125	6	VH6-35-1	. 8	7,9%	122
	VH6.A8	118	6	VH6-35-1	10	9,9%	122
VH6.A10 126 6 VH6-35-1 12 11,9% 122	VH6-FF3	118	6	VH6-35-1	2	2,0%	123
	VH6.A10	126	6	VH6-35-1	12	11,9%	122

WO 97/08320

Table 2C:

Name ¹	aa²	Computed family ³	Germline gene ⁴	Diff. to germline ^s	% diff. to germline ⁶	Reference ⁷
VH6-EB10	117	6	VH6-35-1	3	3,0%	123
VH6-E6	119	6	VH6-35-1	. 6	5,9%	123
VH6-FE2	121	6	VH6-35-1	6	5,9%	123
VH6-EE6	116	6	VH6-35-1	6	5,9%	123
VH6-FD10	118	6	VH6-35-1	6	5,9%	123
VH6-EX8	113	6	VH6-35-1	6	5,9%	123
VH6-FG9	121	6	VH6-35-1	8	7.9%	123
VH6-E5	116	6	VH6-35-1	9	8,9%	123
VH6-EC8	122	6	VH6-35-1	9	8,9%	123
VH6-E10	120	6	VH6-35-1	10	9,9%	123
VH6-FF11	122	6	VH6-35-1	11	10,9%	123
VH6-FD2	115	6	VH6-35-1	11 .	10,9%	123
CLL10 17-2	88	6	VH6-35-1	4	4,0%	29
VH6-BB11	94	6	VH6-35-1	4	4,0%	123
VH6-B4!	93	-6	VH6-35-1	7	6,9%	123
JU17	102	6	VH6-35-1	3	3,0%	114
VH6-BD9	96	6	VH6-35-1	11	10,9%	123
VH6-BB9	94	6	VH6-35-1	12	11,9%	123

WO 97/08320 PCT/EP96/03647

Table 3A: assignment of rearranged V kappa sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VkI-I	28	
1	Vk1-2	0 .	
1	Vk1-3	i	
I	Vk1-4	0	
1	Vk1-5	7	•
1	Vk1-6	0	
1	Vk1-7	0	
1	Vk1-8	2	
1	Vk1-9	9	
1	Vk1-10	0	
1 .	Vk1-11	1	
1	Vk1-12	. 7	
ŀ	Vk1-13	1	
· l .	Vk1-14	7	
1	Vk1-15	2	
1	Vk1-16	2	:
1	Vk1-17	16	
1	Vk1-18	1	
ł	Vk1-19	33	
1	Vk1-20	1	
1	Vk1-21	l ·	
1	Vk1-22	0	
1	Vk1-23	0	119 entries
2	Vk2-1	0	
2	Vk2-2	1	
2	Vk2-3	0	
2	Vk2-4	0	
2	Vk2-5	0	
2	Vk2-6	16	
2	Vk2-7	0	
2	Vk2-8	0	
2	Vk2-9	1	
2	Vk2-10	0	
2	Vk2-11	7	
2	Vk2-12	0	25 entrie
3	Vk3-1	1	
3	Vk3-2	0	

WO 97/08320

Table 3A:

Family 1	Name	Rearranged ²	Sum
3	Vk3-3	35	
3	Vk3-4	115	
3	Vk3-5	0	
. 3	Vk3-6	0	
3	Vk3-7	· 1	
3	Vk3-8	40	192 entries
4	Vk4-1	33	33 entries
5	· Vk5-1	1	l entry
6	Vk6-1	0	
6	Vk6-2	Q	0 entries
7	Vk7-1	0 .	0 entries

WO 97/08320 PCT/EP96/03647

Table 3B: assignment of rearranged V lambda sequences to their germline counterparts

Family'	Name	Rearranged ²	Sum
1	DPL1	1	
1	DPL2	14	•
1	DPL3	6	
1	DPL4	1	
1	HUMLV117	4	1
1	DPL5	13	
1	DPL6	0	
1	DPL7	0	
1	DPL8	3	
1	DPL9	0	42 entries
2	DPL10	5	
2	VLAMBDA 2.1	. 0	•
2	DPL11	23	
2	DPL12	15	
· 2	DPL13	0	•
2	DPL14	0	43 entries
3	DPL16	10	
3	DPL23	19	
3	Humlv318	. 9	38 entries
7	DPL18	1	
7	DPL19	0	1 entries
8	DPL21	2	
8	HUMLV801	6	8 entries
9	DPL22	0	0 entries
unassigned	DPL24	0	0 entries
10	gVLX-4.4	0	0 entries

WO 97/08320 PCT/EP96/03647

Table 3C: assignment of rearranged V heavy chain sequences to their germline counterparts

Family ¹	Name	Rearranged ²	Sum
1	VH1-12-1	38	
1	VH1-12-8	2	
1	VH1-12-2	2	
1	VH1-12-9	2	
1	VH1-12-3	0	
. 1	VH1-12-4	0 .	
1	VH1-12-5	3	
1	VH1-12-6	0	
1	VH1-12-7	23	
1	VH1-13-1	1	
1.	VH1-13-2	1	
1	VH1-13-3	0	
1	VH1-13-4	0	
1 .	VH1-13-5	0	
1	VH1-13-6	17	
1	VH1-13-7	0	
1	VH1-13-8	3	
1.	VH1-13-9	0	
1	VH1-13-10	0	
1	VH1-13-11	0	
1	VH1-13-12	10	
1	VH1-13-13	0	•
1	VH1-13-14	0	
1	VH1-13-15	4	
1	VH1-13-16	2	
1	VH1-13-17	0	
1	VH1-13-18	1	
1	VH1-13-19	0	
1	VH1-1X-1	1	110 entries
2	VH2-21-1	0	
2	VH2-31-1	0	•
2	VH2-31-2	. 1	
2	VH2-31-3	1	
2	VH2-31-4	Ö	
2	` VH2-31-5	2	
2	VH2-31-6	0	
2	VH2-31-7	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
2 .	VH2-31-14	1	
2	VH2-31-8	0	
2	VH2-31-9	0	
2	VH2-31-10	0	
2	VH2-31-11	1	
2	VH2-31-12	0	
2	VH2-31-13	1	7 entries
3	VH3-11-1	0	
3	VH3-11-2	0	
3	VH3-11-3	5	
3	VH3-11-4	0	
3	VH3-11-5	1	
3	VH3-11-6	1	
3 .	VH3-11-7	0	
3	VH3-11-8	5	:
3	VH3-13-1	9	
3	VH3-13-2	3	
3	VH3-13-3	0	
3	VH3-13-4	0	
3	VH3-13-5	0	
3	VH3-13-6	0 .	
3	VH3-13-7	32	
3	VH3-13-8	4	
3	VH3-13-9	0	
3	VH3-13-10	46	
3	VH3-13-11	0	
3	VH3-13-12	11	
3	VH3-13-13	17	
3	VH3-13-14	8	
3	VH3-13-15	4	
3	VH3-13-16	3	
3	VH3-13-17	2	
3	VH3-13-18	1	
3	VH3-13-19	13	
3	VH3-13-20	1	
3	VH3-13-21	1	
3	VH3-13-22	0	

Table 3C: (continued)

Family ¹	Name	Rearranged ²	Sum
3	VH3-13-23	0	
3	VH3-13-24	4	
3	VH3-13-25	1	
3	VH3-13-26	6	
3	VH3-14-1	1	
3	VH3-14-4	15	
3	VH3-14-2	0	
3	VH3-14-3	0	
3	VH3-1X-1	0	•
3	VH3-1X-2	0	
	VH3-1X-3	.6	
3 3	VH3-1X-4	0	
3 -	VH3-1X-5	0	
3	VH3-1X-6	11	
3	VH3-1X-7	0	
3	VH3-1X-8	1	
3	VH3-1X-9	0	212 entries
4	VH4-11-1	. 0	
4	VH4-11-2	20	
4	VH4-11-3	0	
4	VH4-11-4	0	•
4	VH4-11-5	0	
4	VH4-11-6	0	•
4	VH4-11-7	5	
4	VH4-11-8	7	
4	VH4-11-9	3	
4	VH4-11-10	0	
4	VH4-11-11	0	
4	VH4-11-12	4	
4	VH4-11-13	0	
4	VH4-11-14	. 0	
4	VH4-11-15	0	
4 .	VH4-11 - 16	1	
4	VH4-21,-1	0	
4	VH4-21-2	0	
4	VH4-21-3	1	
4	VH4-21-4	1	

Table 3C: (continued)

Family ¹	NI		
	Name	Rearranged ²	Sum
4	VH4-21-5	1	··
4	VH4-21-6	1	
. 4	VH4-21-7	0	
4	VH4-21-8	0	
. 4	VH4-21-9	0	
4	VH4-31-1	0	
4	VH4-31-2	0	
4	VH4-31-3	0	
. 4	VH4-31-4	' 2	
4	VH4-31-5	0	
4	VH4-31-6	0	
4	VH4-31-7	0	
4	VH4-31-8	0	
4.	VH4-31-9	0	
4	VH4-31-10	0	
4	VH4-31-11	0	
4	VH4-31-12	4	
4	VH4-31-13	· 7	
4	VH4-31-14	0	
4	VH4-31-15	0	
4 .	VH4-31-16	0	
4	VH4-31-17	. 0	•
4	VH4-31-18	0	
4	VH4-31-19	0	
4	VH4-31-20	0	57 entries
5	VH5-12-1	82	
5	VH5-12-2	1	
5	VH5-12-3	0	
5	VH5-12-4	14	97 entries
6	VH6-35-1	74	74 entries

WO 97/08320 Table 4A: Analysis of V kappa subgroup 1

A: Allalysis of V	Framework I															
amino acid'	_	2	က	4	ഹ	9	7	80	6	2	=	12	13	7	15	16
A	·	1							1		<u> </u>		102		1	
В			1			1										
С								į						1		
D	64															
E	8		14												1	
F									1	6				1		
G					·							<u></u>				105
Н																
.		65													4	
K			1													
L		6		21							96		1			
М	1	,		66												
N																
Р	ļ							103		1		2			1	
Q			62			88					1					
R													••••••			····
5							89		102	80		103	•••••	103		•••••
T		1			88					18						
V	 	1	9								8		2		98	
W							•									
X	1														•••••	
Y																
***************************************	 														•••••	
unknown (?)	ļ	<u></u>														••••••
not sequenced	-	: -														
sum of seq ² .	···		·			:	:	:		:				:		
oomcaa,		· :	·····	:	········	:	:		:							
mcaa ⁴	D	1	Q	М	T	Q	S	P	S	S	Ľ	S	Α	S	V	G
rel. oomcaas	%98	88%	71%	76%	100%	%66	100%	100%	%86	26%	91%	98%	97%	986%	93%	100%
pos occupied	:	:	:	:	:	:	:	1	3	4	3	2	3	: :	:	1

 \mathfrak{I}^2 SUBSTITUTE SHEET (RULE 26)

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

•																
amino acid' .	17	8	19	20	21	22	23	24	25	56	27	⋖	ω	U	۵	
Α			1	1		1			103							
В											1					
. C							105									
D	101			<u></u>												
Е	2							1	1		2					
F			<u> </u>		2											
G										1						
Н											1					
1			6	4	101	1										
Κ								2			1					
<u> </u>								1								
М															••••	
N				,						1					••••	
Р																
Q								20			100					
R :		94						81								
S		5		1						102						
Т		6		99		103			1	1						
V			98		2										••••••	
W															••••••	
X	1												•••••		••••••	
Y	1															
												105	105	105	105	
unknown (?)													•••••			
not sequenced																
sum of seq²	105	105	105	105	105	105	105	105	105	105	105	105	105	105	105	
oomcaa3	101	94	98	99	101	1.03	105	81	103	102	100	105	105	105	105	
mcaa*	D	R	٧	T	1	T	С	R	Α	S	Q	-	-	-	-	
rel. oomcaas	%96	90%	93%	94%	%96	%86	100%	77%	%86	97%	95%	100%	100%	100%	100%	
pos occupied6		• .							3	:		•••••	· 1			

WO 97/08320 .

Table 4A: Analysis of V kappa subgroup 1

4A: Analysis of	CDRI	·		<u> </u>											
amino acid'	ш	ш.	28	29	30	31	32	33	34	35	36	37	38	39	40
А					1	1		1	42						
В												1	1		
. C							1								
D			25		1	5	7					1			
E							1					2			
F				1	1		7				6				
G			25		7	. 3			4						
H					1	2	2		1			2			
1				98	1	4			1						
К						7								95	
L					2	1		101							
М						•••••				-	-				
N			6		16	42			50						
Р													••••••		102
0				.,								98	103	***************************************	••••••
R					16	3	2	·····						3	1
SS			41	2	57	32	3	1	1						1
T			7			4			4					1	
V			1	4	1		•••••	1	•••••••••••••••••••••••••••••••••••••••			•••••			
<u>W</u>							21			104			•••••		
X					•••••				1				••••••		•••••
Υ					1		60				98				
-	105	105											•••••		••••••
unknown (?)						<i>:</i>								3	
not sequenced						1						-			
•		•••••••••••••••••••••••••••••••••••••••							104				••••••		***********
oomcaa,	105	105	•	98		•••••		101	***********	104	***************************************		103	· · · · · · · · · · · · · · · · · · ·	102
mcaa*	-	-	S	ı	S	·N	Υ	L	N	W	Υ	Q	Q	K	Р
rel. oomcaa'	100%	100%	39%	93%	54%	40%	58%	97%	48%	100%	94%	94%	%66	91%	%86
pos occupied⁵	1	1	6	4	12	11	9	4	8	1	2	5	2	4	3

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

A: Analysis or		ewor										С	DR II		'
amino acid'	41	42	43	44	45	46	47	48	49	20	51	52	<u>.</u>	54	52
A			94							50	95				
В															
. Ć															••••
D										21	1	1	1		
E	1	3			1	1				1		1			33
F						1			3			1			
G	100		1							9	2				
Н									2						•••••
		1				1		100					1		•••••
K		95			86					16			2		
L		1				89	103							101	•••••
M								2							
N					10					2		1	25		
Р				104					••••	1					
Q		1			1		•••••								6
R					3	3							1	1	
<u>S</u>					1				5	1		••••••		2	
Ţ		3			1	···-				1	4	1	31		
V	_[9		•••••	9					1		1		•••••
W						<u></u>	<u></u>	<u> </u>	<u></u>						•••••
X					1	ļ	<u> </u>						1		
Υ		<u> </u>				<u> </u>		<u> </u>	92	1					
-				•••••		<u></u>	ļ	<u></u>				<u></u>	ļ		
unknown (?)	£	•}••••••	j												
not sequence														:	⊨
sum of seq²			104			:	:	•	•	:	:	:	:	:	:
oomcaa,	100		·····	104	· · · · · · · · · · · · · · · · · · ·		·········	100			·	-:	•	101	:···
mcaa'	G	K	Α	Р	K	L	L	1	Y	Α	Α	S	S	L	(
rel. oomcaa	, 96%	91%	%O6	100%	83%	86%	100%	%86	%06	49%	91%	95%	39%	97%	
pos occupied	d ° 2	? 6	3	1	•	;	3	1 3	2 4	1 10	(; (3 9	3	

															
amino acid'	99	57	58	59	09	61	29	63	64	65	99	29	89	69	02
А	3										2	1	1	1	
В				1									***********		
. C								,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**********					
D	1														67
E													1		30
F			1				103			,		3			
G	2	105						· 	105	4	101		102		
Н															3
	3		4				1	3			••••••				
K	1					1									1
<u> </u>		·····		••••••				1							
M					-		-							1	
N	,6											•••••	·····		······
Р	1	•••••••	•	101	2					••••••	••••••		••••••		
Q								••••••		1					
R	1				**********	103		1		1	•••••••			2	
<u>S</u>	68				103			98	************	96	************	100	••••••		
T	19			1		1		2		3	·		•••••	101	
V		•••••	99	***********	••••		1	•••••						···	1
W											••••••		••••		
X			1			•••••		*********			1	••••••	1		2
Y								-				1			1
unknown (?)				•••••••		•••••••••					**********				
not sequenced						***********									
		105	105	105	105	105	105	105	105	105	105	105	105	105	105
oomcaa,		105					103		105		••••••	100		••••••	67
mcaa*	S	G	V	Р	S	R	F	S			G	S	G	T	D
							******		***************************************			***********			
rel. oomcaa ^s	65%	100%	94%	%96	98%	98%	%86	93%	100%	91%	% 96	95%	97%	%96	64%
pos occupied	10	1	4	4	2	3	•		1	5	4	4	4	4	7

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

4A. Allalysis of V		amew	ork II	i I											
amino acid'	7.1	72	73	74	75	92	77	78	79	80	81	82	83	84	82
А		3				1				2				101	1
В					1				3		2				
. C															
D						1					16	101			
E											83				
F	102	1	21										73		
G							4				1			2	
Н															
1					99	. 5							17		
Κ															
L			81					103	1				1		
М															1
N						7	4								1
Р										97					1
Q									97	•••••••••••••••••••••••••••••••••••••••					
R					····	2			2						
S		2		1		86	94			4			1		
T		98		102		2	1								97
V	1		2		4			1					11		1
W															
X				1	·············			•••••			1	2			
Y	1								<u> </u>						
						<u></u>			ļ		•••••	····			
unknown (?)											······				
not sequenced								=	:				: -		
•		104				:	:	:		:			1	1	
oomcaa	102	······································	·	102		·:·····	::	103	:		:·····	101	:	101	97
mcaa*	F	T	L	Τ		S	S	L	Ω	Р	E	D	F	Α	T
rel. oomcaa ^s	%86	94%	78%	%86	95%	83%	%06	%66	94%	94%	81%	%86	71%	98%	95%
pos occupied	3	4	3	3	3	7	:		4	3	:	:	5	2	6

Table 4A: Analysis of V kappa subgroup 1

			_		· · · ·					CDR I	11					
amino acid'	98	87	88	68	06	91	92	93	94	95	⋖	8	ں	۵	ш	u.
А					1	7	1		5	1						
В				2	3							<u> </u>	<u> </u>		<u> </u>	
. C			102													
D							23	5	1							
Е							1	1		1	1					
F		7				3			. 13	-						
G						. 1		1	2	1		1				
Н		1		4	6	7	3	1								
1							4	1	2	1						
K	1				7		1									
L				7		6	2		18	. 2						
М																
N					,	6	31	19	1							
Р				***********					1	82	6			`		
Q				90	86	1	2			••••••						
R						1		2	2	*********						
S	1					27	3	58	5	10						
T ·						3	1	15	25							
V									5	•				••••••		
W									1							
X																
Y	1 01	93				42	32	1	23							
										3	82	88	89	89	89	89
unknown (?)		1														
not sequenced	2	3	3	2	2	1	1	1	1	4	16	16	16	16	16	16
sum of seq²	103	102	102	103	103	104	104	104	104	101	89	89	89	89	89	89
oomcaa ³	101	93	102	90	86	42	32	58	25	82	82	88	89	89	89	89
mcaa'	Υ	Υ	С	٥	Q	Υ	Υ	S	Ţ	Р		-	-	-	-	-
rel. oomcaa³	%86	91%	100%	87%	83%	40%	31%	56%	24%	81%	92%	%66	100%	100%	100%	100%
pos occupied ⁶	3		1	4	•••••••		12	•••••••••••••••••••••••••••••••••••••••	14	•••••••••••••••••••••••••••••••••••••••	3		1	1	1	1

WO 97/08320

Table 4A: Analysis of V kappa subgroup 1

-			<u>. </u>				Fran	nev	ork	IV					
amino acid'	96	97	86	66	.100	101	102	103	104	105	106	⋖	107	108	sum
А	1														627
В				<u> </u>	1					1					19
С															209
D	1									15					459
E					2					65					258
F	6		86								2				451
G				87	29	87								2	894
Н	2	1													40
l	5								1		72				606
К	1	1						77					79		480
L	18	1	1						22	4	2				793
М		1									5				,77
N	1										1		2		232
Р	6		<u> </u>	<u></u>	7									1	620
Q	1	<u></u>	ļ	<u></u>	48					1					865
R	6							6			ļ		2	70	413
S	2	2	ļ		<u> </u>	<u> </u>								<u></u>	1636
T	2	82	ļ	<u> </u>	<u>.</u>	<u> </u>	87	3					2	<u></u>	1021
V	2				<u></u>	<u> </u>		1	63		3				440
W	15		ļ	ļ	<u> </u>	<u> </u>			<u> </u>		<u></u>				141
X	ļ			ļ	ļ	<u></u>	ļ					<u></u>			14
Y	16	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>					564
	4	1		<u> </u>	<u> </u>	ļ	<u>!</u>	<u></u>			ļ	85		1	1250
unknown (?)	w				<u></u>	<u> </u>	ļ	<u> </u>							7
not sequenced	==			<u>-</u>	•		-	:	:	$\overline{\cdot}$	7	:	:	:	7
sum of seq ²			********	**********	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	· : · · · · · ·	-	-			1		•	1
oomcaa3	*******		•••••••	••;•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	. :						:		
mcaa*	L	T	F	G	G	G	Ţ	K	V	Ε	1	<u> -</u>	K	R	
rel. oomcaas	20%	₩02b	1 /0bb	100%	55%	100%	100%	89%	73%	26%	85%	100%	93%	95%	
pos occupied	1	7	7	2	1]	5 1	1	4	1	3 5	5 6	1		1 4	J

PCT/EP96/03647

· WO 97/08320

Table 4B: Analysis of V kappa subgroup 2

		•									Frai	nev	ork	1							
amino acid'	-	7	က	4	2	9	7	8	6	2	Ξ	12	13	7	15	16	17	18	19	20	21
Α																			22		
В																					
. C																Ţ					
D	14												-					<u> </u>	<u></u>		
Е	3																15				
F		<u></u>							1	1											
G		<u></u>	<u></u>	<u></u>	<u></u>	<u></u>										22					
Н	 	<u> </u>	<u></u>																		
		8																			22
K	ļ	<u></u>		ļ									<u> </u>	<u>.</u>							
L		3	ļ	1			••••	<u></u>	17		18		<u></u>	<u>.</u>	6						
M				15										<u> </u>							
N														ļ							
P								18				18		ļ	15			22			
Q				,		18											7				
R			-											<u> </u>							
S							18			17		<u>.</u>						•••••		22	
T					17									21							
V		6	17	1									18								
W																					
X																					
Y																					_
-									•••••												
unknown (?)					1																
not sequenced			_	-			_			_	4		_			_					
					:	:	:	:		:	•••••••	•••••••			···· ·		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		22	••••••
						18	•••••		17	17	18	18	18	21	15	22	15	22	22	22	22
mcaa'	D	···†	•••••••	М					•••••••	S	L	Р	٧	T	Р	•••••••	Ε		•••••••••••••••••••••••••••••••••••••••	···	1
rel. oomcaa'	82%	47%	100%	%88	94%	100%	100%	100%	94%	94%	100%	100%	100%	100%	71%	100%	089%	100%	100%	100%	100%
pos occupied"	2	3	1	3	1	1	1	1	2	2	1	1	1	1	2	1	2	1	1	1	1

Table 4B: Analysis of V kappa subgroup 2

										(DR	<u> </u>									
amino acid'	22	23	24	25	56	27	4	8	ں —	٥	ш	ட	28	29	30	31	32	33	34	35	36
Α																					
В																					••••
· C		22																			·
D										1			9		1	1			11		
E																					
F				į											2						
G											1			22							
Н.										16							1		1		
1																					
K			1													1					
L						1		22	13									22			
М									1												
N													10		7	12			9		
Р				}																	
Q	1					21															
R			21								2										
S	21			22	22		22				19		1								
T																8					
V									8												<u> </u>
W	<u> </u>									1										22	
X													1		1				1		
Y										4			1		11		21				1
-												22									
unknown (?)			ļ																		
not sequence	d																				<u> </u>
sum of seq'	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	2
oomcaa,	21	22	21	22	22	21	22	22	13	16	19	22	10	22	11	12	21	22	11	22	1
mcaa*	S	С	R	S	S	Q	S	L	L	Н	S	-	N	G	Υ	N	Υ	L	D	W	`
rel. oomcaas)2%	000%	35%	%001	%001	.02%	%00 l	%001	%65	73%	36%	%001	15%	%001	20%	55%	35%	%001	30%	100%	200
pos occupied		Ť	1		<u>.</u>	·····	·····			i	<u>:</u>		Ĭ	ī	:	Ŧ	·····	<u>:</u>	:	· · · · · · · · · · · · · · · · · · ·	

Table 4B: Analysis of V kappa subgroup 2

				F	ram	ewo	rk l	1								С	DR				
amino acid'	37	38	33	40	4	42	43	44	45	46	47	48	49	20	5	52	23	54	22	99	57
Α																			14		
В																					
· C																					
D																			7		
E									1												
F																					
G					22										12				1	.0.170	2
Н																					
1										1		22									
K			15											5							<u></u>
L	16									14	21			14	1	<u>.</u>					ļ
M														···-							ļ
N																	18				<u> </u>
Р				22				21												<u></u>	ļ
Q	6	22				22			12					1				<u></u>		<u></u>	ļ
R	ļ		7						8	7				1				22	<u> </u>	<u></u>	<u></u>
S							21								2	22	2			22	ļ
T	ļ																1	ļ			ļ
V	ļ									<u></u>	1				6	<u></u>		ļ	ļ		<u></u>
W										ļ			<u></u>			<u></u>		ļ		ļ	<u></u>
X		<u> </u>								<u></u>	<u></u>		<u> </u>					<u> </u>	ļ		ļ
Y	_												21				1			<u> </u>	<u>_</u>
-		<u>.</u>	<u></u>	ļ			<u></u>	<u></u>			<u></u>		<u></u>			<u> </u>		ļ	<u></u>	ļ	<u>.</u>
unknown (?)	ļ	<u> </u>	ļ			ļ	ļ	<u></u>	ļ	<u> </u>	<u>.</u>		<u></u>	ļ		ļ		ļ	ļ		
not sequenced				_			1	1	1				1	1	1		<u> </u>				
sum of seq'	22	22	22	22	22	22	21	21	21	22	22	22	21	21	21	22	22	22	22	22	2
oomcaa'	16	22	15	22	22	22	21	21	12	14	21	22	21	14	12	22	18	22	14	22	2
mcaa¹	L	α	Κ	Р	G	Q	S	Р	Q	L	L	1	Υ	L	G	S	N	R	Α	S	
rel. oomcaas	73%	100%	68%	100%	100%	100%	100%	0001	57%	64%	95%	100%	100%	%29	57%	100%	82%	100%	64%	100%	
pos occupied	•		}	:	÷	:	÷	÷	:	:	:	1	:	:	:	:	:	:	:	•	

Table 4B: Analysis of V kappa subgroup 2

40,711017313 01		<u></u>												Fra	mev	vorl	k III				
amino acid'	28	59	09	19	62	63	64	65	99	29	89	69	70	71	72	73	74	75	9/	77	78
Á										_											
В																					
· C																					
D			22				1				1		22								
Е																					
F					21									22							
G							21		22		21										
Н																					
1																	1	21			
K																	19				
L																21	1				
М																					
N																	,				
Р		22																			
- Q																					
R				20				1												20	
S				1		22		21		22									20	1	
T				1						,		22			21				1		
V	22				1																21
W																	•••••				
X												.									
Y																					
-																					
unknown (?)							•••••								1						
not sequenced																1	1	1	1	1	_1
			22				• • • • • • • • • • • • • • • • • • • •					:	•••••	••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •				•
oomcaa,	········	: :	22					••••••••••••••••••••••••••••••••••••••	••••••	! :						21	19	21	20	20	21
mcaa'		•	D					:	••••••	:				•••••	•••••	L	Κ	1	S	R	٧
rel. oomcaas	100%	100%	100%	91%	95%	100%	95%	95%	100%	100%	95%	100%	100%	100%	95%	100%	% 06	100%	95%	95%	100%
pos occupied ⁿ	:	:	:			:		:		:		:	:				:	:	2	2	1

4B: Allalysis Ul		<u></u>			<u> </u>												CI	DR I	11		
amino acid'	79	80	81	85	83	84	82	98	87	88	83	96	91	92	93	94	95	⋖	8	ပ —	۵
A		20											14			1					
В												1			1						
· C										21											
D			1	21																	
E	19		20																		
F .									,												
G	1					21							6			1		2			
Н													1		· 7						
1							1									1					
K																					
Ĺ							1							12			2				
М											21										
N																					
Р	ļ	1														2	16	1			
Q	1	<u></u>	<u> </u>									20			13						
R	ļ	<u></u>	<u></u>											1							<u>.</u>
S	ļ	ļ	ļ													3	2				ļ
T	ļ	<u></u>	ļ											8		7					-
V	ļ	<u> </u>			21		19				<u></u>										-
W	ļ	<u></u>	<u> </u>										<u></u>			6					<u></u>
X	ļ	<u> </u>		<u></u>									<u> </u>								<u></u>
ΥΥ	L	<u> </u>	<u> </u>	<u> </u>				21	21											-	<u> </u>
_	ļ	ļ	<u></u>							ļ			<u></u>			<u> </u>		14	17	17	1
unknown (?)	ļ	ļ	ļ							<u></u>	ļ		<u></u>	ļ							
not sequenced	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	5	5	5	<u>_</u>
sum of seq ⁷	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	17	17	17	1
oomcaa,	19	20	20	21	21	21	19	21	21	21	21	20	14	12	13	7	16	14	17	17	1
mcaa*	Ε	Α	Ε	D	٧	G	٧	Υ	Υ	С	М	Q	Α	L	Q	T	Р	-	-	-	ļ
rel. oomcaa'	%06	95%	95%	100%	100%	100%	%06	100%	100%	100%	100%	95%	67%	57%	62%	33%	80%	82%	100%	100%	
pos occupied	•	•			:		ŧ		•		:		1		:				i		

Table 4B: Analysis of V kappa subgroup 2

Marysis of V Kap									Fra	me	wor	k IV					1
amino acid'	ш	ш	96	97	86	66	100	101	102	103	104	105	106	⋖	107	108	sum
Α																	71
В								!				1		<u></u>			3
С															`		43
D																	112
E												13					71
, F			1		17										•		72
G						17	2	16				1					233
Н																	26
1			3	,									14				94
К										12					13		66
L			2								11						219
M																	37
N																	56
Р			1														159
<u> </u>			1				14										159
R										4						12	126
S																	325
T				17					16								140
V							•••••				5						146
W			2														31
X																	3
Y			7														123
-	17	17												13			134
unknown (?)																	2
not sequenced	5	5	5	5	5	5	6	6	6	6	6	7	8	9	9	10	211
sum of seq'	17	17	17	17	17	17	16	16	16	16	16	15	14	13	13	12	
oomcaa,	17	17	7	17	17	17	14	16	16	12	11	13	14	13	13	12	
mcaa'	-	-	••••••	T						K	•••••••	Ε	•••••	-	Κ	R	
rel. oomcaa'	100%	100%	410%	100%	100%	100%	98%	100%	100%	75%	%69	87%	100%	100%	100%	100%	
pos occupied ^a	1	1	7	1	1	1	2	1	1	2	2	3	1	1	1	1	•

SUBSTITUTE SHEET (RULE 26)

Table 4C: Analysis of V kappa subgroup 3

4C. Allalysis of										•	Fra	mew	ork I			
amino acid'	-	2	က	4	5	9	7	80	6	10	=	12	13	14	15	16
А	-	5					2		27						1	
В	1															
. С												2				
D	2			<u> </u>					14							
Ε	76		27			<u>.</u>										
F .		1		<u> </u>		<u> </u>				1						
G	1			<u></u>	<u></u>	<u></u>	<u> </u>	<u> </u>	82					••••	1	152
Н				<u> </u>		<u></u>	<u> </u>	<u> </u>	<u>.</u>	1						
		75				<u></u>	<u> </u>	<u> </u>	<u> </u>							
K	3			<u> </u>		<u></u>	<u></u>	<u> </u>	<u></u>					,		
L		4	1	104			1	ļ			150		129		1	
·M	5		•••••	13			<u> </u>	<u></u>								
N							<u> </u>	<u>.</u>	<u> </u>					5		
Р							ļ	124				•••••			147	
Q						123	<u>.</u>	<u></u>								
R			•••••		1			<u> </u>								
S							119		3	. 1		150	1	141		
T		2	•••••		117					147				5	1	
V		1	89	1			1				1		22		1	
W						•••••										
X																
ΥΥ		-		-												
-																
unknown (?)			•••••													
not sequenced				_												
sum of seq'	88	•••••••••••••••••••••••••••••••••••••••											152			•••••••••••••••••••••••••••••••••••••••
oomcaa,	:	•••••••••••											129	•••••••••••••••••••••••••••••••••••••••		
mcaa'	E	1	V	L	T	Q	S	Р	G	T	L	S	L	S	Р	G
rel. oomcaa ^s	96%	85%	76%	988%	%66	100%	97%	100%	65%	%66	 %66	%66	85%	93%	97%	100%
pos occupied ^a	6	6	3	3	2	1	4	1	4	3	2	2	3	4	6	1

Table 4C: Analysis of V kappa subgroup 3

4C. Allalysis of		•	ogio												(CDRI
amino acid'	17	81	19	20	21	22	23	24	25	26	27	٧	Ф	ပ	۵	ш
А			178	2					166	1						
В					<u></u>											
. С	<u></u>		į		<u></u>	<u> </u>	181	<u> </u>	<u>.</u>	1						
D	6		į			<u></u>	<u> </u>		į				<u> </u>			
Е	146	1									1					
F					7	1										
G	1	1							71	1		1				
Н											17					
1		1		5	2								<u></u>			
K		1						5					<u>į</u>			
L					173						1	1				
·M														<u> </u>		
N												9			<u>.</u>	
Р			:													
Q											159					
R		175						176		1	1	10				
5						180			7	175		87				
T		1		174					7	2		1				
V		1	4	1			••••		1			1				
W							•••••	1								
X						••••••	•••••									
Y						1					1					
-												72	182	182	182	182
unknown (?)						,					1					•••••
not sequenced																
sum of seq'	153	181	182	182	182	182	181	182	182	181	181	182	182	182	182	182
oomcaa,	146	175	178	174	173	180	181	176	166	175	159	87	182	182	182	182
mcaa*	E	R	Α	Τ	L	S	С	R	Α	S	Q	S	-	-	-	-
rel. oomcaas	95%	97%	%86	%96	95%	%66	100%	97%	91%	97%	88%	48%	100%	100%	100%	100%
pos occupied ⁶	3	7	-	<u> </u>	:	:	:	3	-	Ī		8		1	1	1

WO 97/08320 ·

Table 4C: Analysis of V kappa subgroup 3

															Fran	new
amino acid'	u.	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Α				1	1			181								
В			<u>.</u>				<u> </u>									
. C		<u>.</u>	1													
D	ļ	<u> </u>	1	1	2	1	<u></u>	<u> </u>	<u> </u>					<u></u>		<u>.</u>
<u>E</u>			; ;			1			<u></u>	<u> </u>			1			1
F .		1			<u> </u>	7	ļ			1						
G			2	7	3	1	<u></u>	2						1	184	
Н			1			2	<u></u>			1		12	1	1		
1		24	4	1	1		<u> </u>			<u></u>						
Κ		<u>.</u>		1	1		<u></u>			<u></u>			153			
L		8	1			1	176					3				2
·M																
N			3	12	25	32	<u></u>	,								
Р					1		<u> </u>				•••••			170	••••	
Q					1	1					183	167	1			181
R			10	3	18	16		1			1		27	5		
S		72	86	151	118	4								5		
Ţ		1	1	3	8	1					••••		1			
V		76	68		1		7					3		2		
W			5						185						••••••••	
X									· · · · · · · · · · · · · · · · · · ·							
Υ				1	1	115				183		·				
-	182															
unknown (?)						• • • • • • • • • • • • • • • • • • • •					1		•••••			••••••
not sequenced																
														184		
	182													170	184	181
mcaa'	-	V	S	S	S	Υ	L	Α		Υ	Ω	Q	K	Р	G	Q
rel. oomcaa³	100%	42%	47%	83%	65%	63%	%96	%86	100%	%66	%66	% 06	83%	92%	100%	%86
pos occupied ⁶	1	6	11	10	13	12	2		1	3				•••••••••••••••••••••••••••••••••••••••	1	

WO 97/08320

Table 4C: Analysis of V kappa subgroup 3

4C. Allalysis of	rk II	<u> </u>								(CDR	1				
amino acid¹	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57	58
Α	176							4	147				176	1		
В																
. C									1							
D								43					2		4	
Ε																
F .				1		1	4									
G								125		,			· 2	10	179	
Н							9		1							
1						178					•••••		,	1		168
K			1				•••••				7	1				
L		1		179	174	1					·					
· M						3					1					
N			1					1			53			2		
Р	5	184					•••••			2			2	2		
Q							1									
R			182					1			4	180				
S							3	6	4	179	74	1		5		
TT	3								11	2	44	· · · · · · · · · · · · · · · · · · ·		164		2
V				3	9			3	19				3			15
W							1					1				
X																
Y							165								2	
_																
unknown (?)			1	·····												
not sequenced																
sum of seq'	184	185	185	183	183	183	183	183	183	183	183	183	185	185	185	185
oomcaa,	176	184	182	179	174	178	165	125	147	179	74	180	176	164	179	168
mcaa•	Α	Ρ	R	L	L	ŀ	Υ	G	Α	S	S	R	Α	Ţ.	G	
rel. oomcaa'	%96	%66	98%	%86	95%	97%	%06	68%	80%	98%	40%	%86	95%	968	97%	91%
pos occupied [«]	3	2	3	3				7	6	3	6	4	5	7	3	3

													Fr	amev	work	Ш
amino acid'	59	9	61	62	63	64	65	99	29	89	69	2	71	72	73	74
A		68						3		5	3	1		3		
В																
С																
D		112				1						152				
E								1		1		30				
F.				183									183		2	
G						184	3	178	_	177						
Н		1														
1				1										1		
K			1													
L				1											182	
. M								1								
N		1												1		
Р	177															
Q												1				
R			182		2		1				2					
<u>S</u>	7	•••••••••••••••••••••••••••••••••••••••	••••••	···-	180	••••••	179		185		3			7		
T	1		2		3	•••••	2				177			172		17
<u>V</u>		3	.,					1		1	•••••					
W										1	· • • • • • • • • • • • • • • • • • • •			•••••		
X			••••••			•••••					•					
Υ													1			
unknown (?)				•••••				1	••••••							
not sequenced	•															
	185	185	185	185	185	185	185	185	185	185	185	184	184	184	184	18
	177										177	152	183	172	182	17
mcaa*	Р	D	R	F	S	G	S	G	S	G	Ţ	D	F	Ţ	L	Ţ
rel. oomcaas	%96	61%	%86	%66	97%	%66	97%	%96	100%	%96	%96	83%	99%	93%	%66	970%
pos occupied"	3	5	3				:		۱							,

Table 4C: Analysis of V kappa subgroup 3

													3.			
amino acid'	75	9/	77	78	79	80	81	82	83	84	85	98	87	88	68	90
Α							3			174						
В			• • • • • • • • • • • • • • • • • • •		1	<u> </u>				<u></u>						
· C							<u> </u>	<u> </u>	2	<u> </u>			1	182		
D			1				3	182	Ī			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
E					149	• • • • • • • • • • • • • • • • • • •	175		<u></u>	 !	**************************************	<u> </u>	<u></u>	<u> </u>		2
F		1					•	<u> </u>	178		2	1	4	<u> </u>	<u> </u>	
G			3					1		2	Ī		Ī			
Н											1				1	7
1	178							1	1		9	<u> </u>				
K							1									
L			•••••	178		1			1		7		1			1
M										1	5					
N	1	5														
Р						149										
Q					34									1	181	155
R		1	111							3						1
S		169	65			34			1				2			
T		8	4							1						8
V	4			6					1	3	159					7
W																
X																
Y	1										1	183	176		1	2
-																·
unknown (?)											••••••					
not sequenced																
sum of seq ²	184	184	184	184	184	184	182	184	184	184	184	184	184	183	183	183
oomcaa³	178	169	111	178	149	149	175	182	178	174	159	183	176	182	181	155
mcaa'	1	S	R	L	Ε	Р	Ε	D	F	Α	٧	Υ	Υ	С	Ω	Q
rel. oomcaa ^s	97%	92%	%09	97%	81%	81%	%96	%66	97%	95%	96%	99%	%96	%66	99%	85%
pos occupied ⁶	4			. :	:	:			6							

Table 4C: Analysis of V kappa subgroup 3

					(DR I										
amino acid	91	92	93	94	95	A	8	U	٥	ш	щ,	96	97	86	66	100
Α		1	8	3	3											1
В																
· C	2			1								2				
D		8	5										1			,
Ε		2										1				
F	5		_ 2									7		166		
G	1	104	15		1	1	2		· · · ·			1			166	41
Н	4	1										2				
1			1			1						4				
Κ			2			1						1				1
L				2	7	5						42				
· M		1			1	2										
N		28	71									·· 1				
Р				1	139	24						7	2			9
Q	1		1		3	1		·			· · · · ·	3				114
R	34	2	3		2	2						19				
S	2	33	58	102	15	2						1	8			
Т		2	13	1	1	2						1	154			••••••
V		· · · · · · · · · · · · · · · · · · ·			3	· 1						2				•••••
W				69								24				• • • • • • • • • • • • • • • • • • •
X									••••							•••••
Υ	134	1	1									43				
-			3	3	7	127	167	169	169	169	169	8	1	1	1	1
unknown (?)																
not sequenced						14	14	14	14	14	14	14	17	16	16	16
sum of seq ⁷	183	183	183	182	182	169	169	169	169	169	169	169	166	167	167	167
oomcaa1	134	104	71	102	139	127	167	169	169	169	169	43	154	166	166	114
mcaa*	Υ	G	N	S	Р	-	-	-	-	-	-	Y	Ţ	F	G	Q
rel. oomcaas	73%	57%	39%	56%	76%	75%	%66	100%	100%	100%	100%	25%	93%	%66	99%	68%
pos occupied"	8	11	13	8	11	12		1	1	1	1	18		• • • • • • • • • • • • • • • • • • • •		•

		F	rame	work	IV					
amino acid'	101	102	103	104	105	106	٧	107	108	sum
А										1345
В					<u> </u>					2
С					<u> </u>	<u> </u>	<u> </u>			375
D		<u> </u>	<u> </u>	<u> </u>	23	<u> </u>	<u> </u>	•		564
E		<u> </u>	3	<u> </u>	141	<u> </u>	<u> </u>	ļ		759
F				Ī		6		<u> </u>		765
G	166	Ī		<u> </u>		 !	<u> </u>	<u> </u>	1	1804
Н		<u></u>		<u></u>	1	···········	 !	<u> </u>		64
i						143				803
K			152					157		489
L				54	•	1			2	1596
M						3				36
N		1						3		255
Р		1		1						1147
Q			1		1					1314
R			9			2		4	134	1326
S		2								2629
T		162	1					1		1593
V				111		11				646
W						······································				287
X										
Υ			1	·						1014
_	1	1	1	1	1	1	166	1	1	2151
unknown (?)		•••••	•••••							4
not sequenced	16	16	15	16	16	16	17	17	45	337
	167	167	168	167	167	167	166	166	138	
oowcaa,	166	162	152	111	141	143	166	157	134	
mcaa*	G	T	K	V	Е	1	-	K	R	
rel. oomcaa'	%66	9/0/6	%06	%99	84%	%98	100%	95%	97%	
pos occupied ^e	2	5	7	***************************************	5	7	1	5	4	

1/3

Table 4D: Analysis of V kappa subgroup 4

4D: Analysis of V				•							Fran	new	ork I					
amino acid'	_	2	3	4	2	9	7	8	6	10	=	12	13	14	15	16	17	18
А												24					1	
В																		
· C										1						1		*******
D	25								26									
E																	25	
F																		•
G												1				24		
Н																		
1		26																•••••
K						1												
L				1							26				26			
. M				24														
N	1																	
Р								26				1						•••••
Q			1			25												
R										-								26
S							26			25				26		1		
Т					26													
V			25	1									26					•••••
w													•••••					
X																		.,
Y																		
-																		
unknown (?)									•••••									
not sequenced	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
sum of seq ²	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26
oowcaa,	25	26	25	24	26	25	26	26	26	25	26	24	26	26	26	24	25	26
mcaa*	D	ı	٧	М	T	Q	.S	Р	D	S	L	Α	٧	S	L	G	E	R
rel. oomcaa	%96	100%	%96	92%	100%	%96	100%	100%	100%	%96	100%	92%	100%	100%	100%	92%	%96	100%
pos occupied ^a	2	1	2					1					1	1	1	3		1

PCT/EP96/03647

Table 4D: Analysis of V kappa subgroup 4

														CDR	1			
amino acid'	13	20	21	22	23	24	25	26	27	۷	8	ں	0	ш	ட	28	29	30
А	26						1				1							
В																		
. C					33													
D											1		1			1		
E																		
F.																		
G					·													
Н																		
1			26								1			*********	********	•		
K						33								••••	•••••	2		3
L											2	_31		****				
М				*********								•••••				• • • • • • • • • • • • • • • • • • • •		
N				26												30	31	
Р							1								1			
Q									32									
R									1								1	
<u>S</u>							31	33		33				32	32		1	
T		26												1				
V .	ļ										28	2						
W																		
Χ	ļ																	
Y													32					
unknown (?)																••••••		
not sequenced	7	7	7	7														
sum of seq	26	26	26	26	33	33	33	33	33	33	33	33	33	33	33	33	33	3
oomcaa³	26	26	26	26	33	33	31	33	32	33	28		32	32	32	30	31	3
mcaa'	Α	Ţ	1	N	С	К	S	S	Q	S	٧	Ĺ	Υ	S	S	N	N	K
rel. oomcaas	100%	100%	100%	100%	100%	100%	94%	100%	92%	100%	85%	94%	97%	92%	92%	91%	94%	0.10%
pos occupied ^a	1	1	1	1	1	1	- 1		2		5							

Table 4D: Analysis of V kappa subgroup 4

											Fran	newo	ork II	<u> </u>				
amino acid'	31	32	33	34	35	36	37	38	39	40	4	42	43	44	45	46	47	48
Α				32						2								
В																		
. С										·								
D					,													
E											1							
F -																		
G	ļ										32							
<u>H</u>	ļ					2												
<u> </u>	ļ																	3
K	ļ								33						32		·	
. L	Į		33	******		•••••										29	33	
M	ļ		••••															
N	33							••••										
Р	ļ		·····							31			31	33				
<u> </u>	ļ						32	33				32						
R	ļ						1					1			1			
<u>S</u>	ļ					· 							2					
T	ļ		•	1		••••••												
V	ļ															4		
<u>W</u>	ļ				33			····				.						
<u>X</u>									•••••					•				
<u> </u>	-	33				31												_
	ļ								••••									
unknown (?)	<u> </u>								••••									
not sequenced														20				=
sum of seq ²									•••••	33	•••••							
oomcaa³		33	•••••							31						29		3
mcaa'	N		L		W	Υ	Q			Р	G	******	Р	P	Κ	L		! :
rel. oomcaas	100%	100%	100%	97%	100%	94%	97%	100%	100%	94%	97%	97%	94%	100%	97%	%88	100%	, ,
pos occupied ⁶	1	1	1	2	1	2	2	1	1	2	2	2	2	1	2	2	1	

PCT/EP96/03647

Table 4D: Analysis of V kappa subgroup 4

•		<u> </u>		(DR	11												
amino acid'	49	20	21	52	23	54	52	26	22	28	29	09	61	62	63	64	65	99
Α			30															
В																		
. С																		
D								•••••				33						
E							32											
F														33				,
G									33						1	33		3:
Н										·		•						
<u> </u>					1	********												
K				******														
L																		
М																		
N					2													
Р				1							33		1					
Q																		
R						33							32					
S			1	31	1			33							32		33	
Ţ			2	1	29													
<u> </u>							1			33								
W		33																
X																		
Y	33																	
·····																		
unknown (?)					••••		••••					,						
not sequenced																		
sum of seq?	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa,	33	33	30	31	29	33	32	33	33	33	33	33	32	33	32	33	33	33
mcaa*	Υ								G		Ρ	D	R		S	G	S	G
rel. oomcaa'	100%	100%	91%	94%	88%	100%	97%	100%	100%	100%	100%	100%	97%	100%	97%	100%	100%	100%
pos occupied ⁶	1	1	3					1	1	1	1	1					1	

Table 4D: Analysis of V kappa subgroup 4

40. Attatysis of V				<u>F</u>		ame	wor	k III										· ;
amino acid'	67	89	69	70	11	72	73	74	75	9/	77	78	79	80	 	82	83	84
Α														33				32
В	.																	
. с													<u></u>	:				
D				32					Ī							33	:	
E														<u> </u>	33			
F .					32		<u> </u>							Ī				
G		33	-	1			Ī			<u> </u>				<u> </u>			*********	1
Н							<u> </u>		<u> </u>	 	<u> </u>			·				
1						***********	<u></u>		33				••••••••••••••••••••••••••••••••••••••		•••••		••••••	
K						**********			Ī		Ī ·					••••	•	
L	auna uni						33				<u> </u>	32					•	
. M							†			}		1				••••		•••••
N									<u> </u>	2	1						•••••	
Р										······································		••••••	•				••••••	
Ω													32		•••••			
R													1					**********
S	3 3									30	32							••••••
T			33			33		33		1				,				
V	ļ				1												33	
W																		
X																***************************************		
Y																		
·																		
unknown (?)												******				****		
not sequenced																*********		
sum of seq'	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
oomcaa ³				32		:			••••••		••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••	33	••••••••	•••••••	******	•••••••••••••••••••••••••••••••••••••••
mcaa*	S	G	Ţ	D	F	Ţ	L	Т	1	S		••••••	:	••••••	Ε	D	٧	Α
rel. oomcaa ^s	100%	100%	100%	97%	97%	100%	100%	100%	100%	91%	97%	97%	97%	100%	%001	%00 I	100%	%26
pos occupied"	1	1	1	··········· <u> </u>		1	1	1			······································	:	}			 1	1	2
	***********	**********	•••••••			خ	••••••	8										

Table 4D: Analysis of V kappa subgroup 4

											CI	DR II	1					
amino acid'	82	98	83	88	83	90	91	92	93	94	95	۷	8	ں —	٥	ш	ш	96
Α										1								•••••
В																,		••••••
С				33														•••••
D								1	1									••••
E																		•••
F ·			1					1										
G									2	_								•••••
Н			1		3				,									
	ļ									2								
K	,																	
L						1		2		1	3							
· M																		
N									4	4						••••••		
Р										1	29	1						
0					30	32					1							
R									1			1						
S							2		23	2								
Ţ .	ļ				<u></u>				2	22								
V	33		ļ		<u></u>	ļ												
W	ļ	<u> </u>			<u> </u>	ļ												
X		<u></u>	ļ		ļ													
Υ		33	31		<u></u>	<u> </u>	31	29				· ·						_
•		<u></u>	ļ	ļ <u>.</u>	<u> </u>	<u></u>			<u></u>			13	15	15	15	15	15	ļ
unknown (?)			ļ		<u></u>		<u> </u>	ļ	ļ	ļ							ļ	
not sequenced	<u> </u>	<u></u>	<u> </u>		<u> </u>	<u> </u>		_				-	_	==	===	==	18	=
sum of seq'	·····	†·····	÷····	÷	÷	·:·····	÷	::····	:		33	: :		:	······	÷	·····	···-
oomcaa3		†	·····		·····	·:······	:	·:·····	:	22	29	13	15	15	15	15	15	:
mcaa ⁴	٧	Υ	÷	·····	÷	Q	÷	Υ	S	Ţ	Р	-	-		-	-	-	F
rel. oomcaas	100%	100%	94%	100%	91%	97%	94%	88%	70%	67%	88%	87%	100%	100%	100%	100%	100%	è
pos occupied ⁶	1	1	3	:	:	2	:	4	6	7	3	3	1	1	1	1	1	

Table 4D: Analysis of V kappa subgroup 4

ilalysis of V						<u> </u>	Fra	mev	vork	IV					
amino a	acid'	97	86	66	100	101	102	103	104	105	901	∀ .	107	108	sum
А															183
В															
C															68
D						<u>.</u>									154
E										14	į				105
F			15												82
G				15	4	15									228
Н		,													6
1											14				135
К								14					13		158
									4						258
М		1													27
N										•••••			1		136
P	•••••••••••••••••••••••••••••••••••••••						1								195
Q			•••••		11				1						264
R					••••			1		1			1	11	116
S		2			••••						1				499
T		12					14	•••••				•••••			236
V									9						196
W						••••		-	1				,		69
X															
Y	······												TI.		254
								•••••		··-		15			106
unknov												••••••			
not sequ		•		-	====				18						518
sum of	•	15	15	15	15	15	15	15	15	••••••		•••••	······································	-	
oomo		12	15	15	11	15	14	14	9	14	14	15	13	11	
mca	a '	T	F	G	Q	G	T	K	٧	Ε	1	-	K	R	
rel. oor	ncaa'	80%	100%	100%	73%	100%	93%	93%	%09	93%	93%	100%	87%	100%	
pos occ	upied ^r	3	1	1	2	•	2 2 0	·	4	2	2	1	3	1	<u>.</u>

Table 5A: Analysis of V lambda subgroup 1

											Fran	new	ork l						
amino acidi		7	က	4	5	9	7	8	6	10	=	12	13	14	15	91	17	8	19
Α											19		18	20					
В																			
· C																			
D																			
Ε											************							1	
F																			
G													22			42			
Н	2																		
l			1								1								
K																		14	
L			1	41							1								
М																			
N													·						
Р							41	41						1	41				
Q	22		1			41											42		
R																		25	
S		39							41			41			1			1	
T					41									19				1	
V		1	38								20		1	1				,	4
W																			
Χ						,													
Υ																			
Z	16																		
-										41									
unknown (?)																			
not sequenced	2	2	1	1	1	1	1	1	1	1	1	1	1	1					
sum of seq?	40	40	41	41	41	41	41	41	41	41	41	41	41	41	42	42	42	42	4
oomcaa'	22	39	38	41	41	41	41	41	41	41	20	41	22	20	41	42	42	25	4
mcaa'	Ω	S	٧	L	Ţ	Q	Р	Р	S	-	٧	S	G	Α	Р	G	Q	R	٧
rel. oomcaas	55%	%86	93%	100%	100%	100%	100%	100%	100%	100%	49%	100%	54%	49%	98%	100%	100%	%09	,000
pos occupied"						1				••••••					<u>ن</u> 2	••••	••••••		

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

													C	DR	!!							
amino acid'	20	21	,	77	23	24	25	56	7,	/7	_	ш	28	-	53	<u>က</u>	<u>ب</u>	Α	32	33	₩ ₩	35
Α	2									1					2	2			1			
В			<u>.</u>																			
С					42																	
D							440000		_			3				3	1		3		1	
E									<u> </u>					_		1						
F		<u> </u>				1			<u>.</u>		1			!				1	1			•••••
G							42		3	1		,.,	<u> </u>	2	39	4	2					
Н			<u></u>	<u> </u>									<u> </u>				2		2		2	
	1	4	1					<u> </u>				1	3	7							1	
K		<u></u>						<u> </u>	<u>.</u>			1	ļ	-		1						
L		<u></u>	1					ļ					<u> </u>	1								
М		<u>.</u>						ļ	_				<u> </u>	1								
N		<u>.</u>						<u>.</u>		2	1	37	ļ	_		13	31	2	ļ	1	9	<u></u>
Р							<u></u>	<u> </u>					ļ		<u> </u>				1			ļ
Q			<u>.</u>				<u> </u>	<u> </u>			······		.ļ						1	<u> </u>		<u> </u>
R		ļ					<u> </u>		1	1			ļ			5			ļ	<u> </u>	<u> </u>	ļ
S	1	<u>.</u>	<u></u>	42		38	ļ	3	4	34	38	<u> </u>	ļ			13	1	1		÷	19	<u>-</u> -
T	38	3				3	<u></u>		4	3	2	ļ	<u>.ļ</u>	_	1		1	ļ	7	· ! ·····	2	ļ
<u>V</u>		ļ			•••••	ļ	ļ	ļ	_				ļ	1					2	40	<u> </u>	-
W							<u> </u>		_									<u> </u>	ļ	<u> </u>	ļ	
X						ļ	ļ		_			ļ	.ļ					ļ		<u>.</u>	ļ <u>.</u>	-
Υ		ļ				ļ	<u> </u>	ļ	_			<u> </u>	<u>.</u>	_			4	1	20)	7	-
Z	_	<u> </u>				<u> </u>	<u> </u>		_			<u> </u>	<u> </u>	_			_		<u> </u>	┿-	<u> </u>	+
		<u> </u>				<u> </u>	<u> </u>	╀-			<u> </u>	ļ	<u> </u>				<u> </u>	36	<u> </u>	 	<u> </u>	-
unknown (?)		<u>.</u>				ļ	<u>.</u>	<u> </u>	_		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	-	-		-
not sequence		╧	_			<u> </u>	<u> </u>	<u> </u>	4	-		<u> </u>	_	_				÷				
sum of seq ²																						
oomcaa,	3			42	42	38	3 4						•			•	:	•) 40	•	
mcaa*	Ţ		1	S	С	S	G		S	<u>S</u>	S	١	<u> </u>	ı	G	N	N		Y	٧	<u> </u>	-
rel. oomcaa	, %OC	0.00	%86	100%	100%	%U5	9001	200	81%	31%	%OUE	9000	0,000	%88	93%	31%	74%	88%	4000	98%	46%	2
pos occupied						1					•	4	:	<u></u> 5	•	:	•	•	5 1	:	:	7

122

Table 5A: Analysis of V lambda subgroup 1

- -				_		Fr	am	ewo	rk	11											
amino acid'	36	37	38	39	3	€ :	4	45	43	-	; ;	45	46	47	48	49	S -	51	25	23	54
Α								4	40)								<u> </u>	1		
В				<u> </u>						<u> </u>											
С										<u>.</u>											•••••
D				<u>.</u>			1					<u> </u>					13	10	8		
E				<u>.</u>					<u> </u>			2					5			1	
F	1				4	<u></u>			<u></u>							1					
G						<u> </u>	39		<u>.</u>								1				ļ
Н	1	1	6	5	1				<u> </u>							1				1	ļ
1				<u> </u>					<u> </u>			<u> </u>			40		1				<u></u>
K								1	<u> </u>			35					1	1		18	· • • • • • • • • • • • • • • • • • • •
Ļ			1	1 3	31				<u> </u>				41	40						1	ļ
М				<u>.</u>				1	<u>.</u>						1			ļ		1	ļ
N									<u>.</u>			1					3	28	30	2	
Р						42	1		<u>.</u>		42							ļ	<u></u>	ļ	ļ
Q		39	34	4					<u>.</u>									ļ	ļ	15	·:
R		2	<u></u>	<u> </u>	1		1	ļ	<u>.</u>			4				••••••	7	ļ	ļ	2	2 4
S		<u></u>	<u> </u>					ļ	<u>.</u>	1							9	2	3	1	<u> </u>
Ţ		<u></u>	<u> </u>	<u>.</u>				36	3	1							1	<u> </u>	<u> </u>		
V		<u></u>	ļ	1	5			<u></u>					1	2	1		<u></u>	ļ	<u>.</u>	ļ	
W		<u></u>	<u>.</u>					ļ									ļ		ļ	ļ	
Χ		<u>.</u>	<u>.</u>					ļ									ļ		ļ		
Y	40		<u>.</u>						<u>.</u>				ļ		<u></u>	40	1	1	<u> </u>	ļ	
Z																	<u> </u>	<u> </u>	<u> </u>		+
			<u>.</u>	<u>.</u>				<u>.</u>					<u></u>		<u> </u>		ļ		<u>.</u>		
unknown (?)		<u>.</u>	<u>.</u>	<u></u>				<u>.</u>					ļ		<u> </u>	ļ	ļ		 	<u>.</u>	
not sequenced		<u> </u>	<u> </u>					<u> </u>	╧	_			<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	 -	÷
sum of seq'																					
oomcaa,														40							
mcaa*	·					:·····	·····	••••••••	*******				:	L	:	:	:	;	:	•	
rel. oomcaa ^s	750v	33%		81%	74%	100%	9000		80%0	95%	100%	83%	%86	95%	95%	95%	2.10%	3170 670%	20,70	06 C	4 3 40
pos occupied	•		:	:		•								2 2							9

Table 5A: Analysis of V lambda subgroup 1

	CD	R II												·					
amino acid'	55	95	4	8	U	٥	ш	23	-58	29	09	61	62	63	64	65	99	4	8
Α	1														5				
В																			
. С																			
D											38								
E																			
F.													38						
G								41			2				36	` .			
Н								-			1								
									17				3						
K							·										38		
L		1								1									
М																			
N																			
Р	38									38									
Q																			
R												42					4		
S	2	40								2				42		42			
T							·								1				
٧									24		-		1						
W							,												
Χ																			
Υ																			
Z										···········									
_			41	41	41	41	42											42	4
unknown (?)			<u> </u>	Ī .		 ! !			•••••					•••••					••••
not sequenced	1	1						1	1	1	1							••••••	
sum of seq?	•	41	41	41	41	41	42	41	41	41	41	42	42	42	42	42	42	42	4
oomcaa ³	:	!	:	: :	·····	:········				• • • • • • • • • • • • • • • • • • • •						•••••		42	
mcaa*	Р	S	-	-	-	-	-	G	٧	Р	D	R	F	S	G	S	K	-	-
rel. oomcaa ^s	93%	%8	%00	%00	%00	%00	%00		••••••		93%		% 0		•••••			100%	7000
pos occupied ⁶		ე 2	:	:	 1	:	•	:		:	:		3		<u> </u>	•••••			

124

Table 5A: Analysis of V lambda subgroup 1

•				Fra	mev	vork	Ш												
amino acid'	29	89	69	20	71	72	73	74	75	9/	11	78	79	8	81	82	83	84	82
Α		1	3		41			24						2				38	1
В																			•••••
· C																			
D		1													1	41			37
E													1		24		42		1
F																			
G		40	•					17		1	42				15				
Н													1						2
1									41										1
K									•										••••••
L							42					41							••••••
М																			••••••
N									•••••					•••••		1			
P									•••••••	•••••				2					•••••
Q													31						•••••
R													8		-	,			
S	42		1	42		24			••••	20				20	•••••			1	•••••
T			38			18				21				17				3	*******
- V					1		•••••	1	1			1		1					••••••
W									*********				1		2				******
Χ					·														
Y																			•••••
Z															••••				*******
_																			
unknown (?)							••••		•••••										-•••••
not sequenced							••••								••••••				
sum of seq?	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42
oomcaa	42	40	38	42	41	24	42	24	41	21	42	41	31	20	24	41	42	38	37
mcaa'	·····	} :	:	• • • • • • • • • • • • • • • • • • •	•••••••	• •••••• :		 :	······	T	·····			•••••	· • • • • • • • • • • • • • • • • • • •	 :		••••••••••••••••••••••••••••••••••••••	
rel. oomcaas	%001	·····		·····	%86	• •	100%		}	50%	: :	%86	• • • • • • • • • • • • • • • • • • • •				······	·······	88%
pos occupied ^s		<u></u>	····		<u>o</u> 2	:	1	:		:	:	:	:	:		:	:		α.

WO 97/08320 Table 5A: Analysis of V lambda subgroup 1

											CDF	R III								
amino acid'	98	87	Š	20	83	90	91	92	93	94	92	⋖	<u>ω</u>	ပ	_	w	L	96	- 6-	86
Α					22	15			1				16					4	1	
В						<u></u>														
С				42																
D								39	17			7								
E													1					1		
F			2								1									3
G		<u>.</u>			14				1				-17	1	<u>ļ</u>			5	1	
Н	<u></u>		1											1						
1		<u></u>										1							1	
K		<u> </u>				<u> </u>						1								
		<u> </u>			1						37			1					1	•••••
М		ļ <u>.</u>				.													1	
N		ļ						2	2			9	1		<u></u>					
Р		ļ									1							6		
Q		<u> </u>	<u>ļ</u>		3															
R		ļ								5								2		
<u>S</u>		ļ				4				35		18		1				1		
. T		<u> </u>				22			1	i		1								_
V		<u> </u>	_		1				1		1	<u> </u>	2						34	_
<u>W</u>		ļ					38			ļ		ļ						7		
X			_					<u></u>		<u> </u>		<u></u>								ļ
Υ	42	2 3	39		••••••	ļ	3		1	<u> </u>	ļ	<u></u>						3		-
Z		 	4	_		<u> </u>			_	<u> </u>	<u> </u>		-			-00	-	•	<u> </u>	_
***************************************	_	<u> </u>	-			ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	2	4	35	39	38	38	1	<u></u>	<u> </u>
unknown (?)	B	-				<u> </u>	<u> </u>		<u> </u>	-	<u> </u>	<u> </u>	<u> </u>					2	2	<u> </u>
not sequence		_	 		1		<u></u>		<u> </u>			_	1				-	-	===	÷
sum of seq ⁷	4:	2 4	12	42	41	41	41	41	41	41	41	41	41	39	39	38	<i>ა</i> გ	79		
oomcaa,	:	;					:	•	:	•	•		17	35	39	38	38		34	· -
mcaa'	·····	_ '	Y	С	Α	Ţ	W	D	D	S	L	<u>S</u>	G	-	-	-	-	٧	V	-
rel. oomcaas	100%		93%	100%	54%	54%	93%	95%	41%	85%	%06	44%	41%	%06	100%	100%	100%	23%	87%	
pos occupied		~;	:		:·····	•	2		•	3	•	•	•		:	1	1	10	6	

120 SUBSTITUTE SHEET (RULE 26)

Table 5A: Analysis of V lambda subgroup 1

	-			F	ram	ewoi	k IV						
	amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
	А												285
	В												
	С												84
	D												224
۱	Е		1										81
	F												-87
	· G	36	31	36							26		559
	Н												25
	1												188
	К			ļ		30							141
	L			<u></u>			25			34			344
	М			<u></u>									5
	N				<u> </u>	1						<u>:</u>	176
	Р			<u></u>	<u> </u>							1	296
	Q			<u>.</u>	<u> </u>	3				1		18	251
	R		<u> </u>	<u> </u>	<u> </u>	1		ļ			2		156
	S .		1	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>			2		720
	T		3	<u> </u>	36	1	<u> </u>	36	ļ			<u> </u>	359
	V -		<u>.</u>	<u>.</u>	<u>.</u>		11	ļ	36	1		ļ	282
	W	<u> </u>			ļ			ļ			1	ļ	92
	X	ļ	ļ		.ļ	ļ	<u></u>	<u> </u>				ļ	1
	Υ		ļ		<u> </u>							<u> </u>	202
	Z		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>			<u> </u>	16
	_	ļ	<u> </u>		<u>.</u>		<u>.</u>	<u>.</u>	ļ	<u> </u>	ļ	ļ	524
	unknown (?)	ļ	<u>.</u>		<u>.</u>		<u> </u>		ļ	ļ	<u> </u>	<u> </u>	.
	not sequenced	ب	1		 -		\div	÷	6	: 	:	22	141
	sum of seq'					••••••••	**********	••••••	36	•	1)
	oowcaa,	36	3	1 3	6 36	30	25	36	36	34	26	18	3
	mcaa'	G	G	G	Ţ	K	L	Ţ	V	L	G	Q	
	rel. oomcaa ^s	100%	900	100%	100%	830%	%06Y	100%	100%	94%	84%	45%	2
	pos occupied		1	4	1	1	5	2	1 1	3	4	1 :	2

127

Table 5B: Analysis of V lambda subgroup 2

											Fra	mev	ork/	ı					
amino acid'	-	7	c	.4	2	9	7	8	6	0	11	12	13	14	15	16	17	18	19
Α			35					30			6		1	1	T				
В											<u> </u>		-		<u> </u>				
· C								<u> </u>			Ī				İ	Ī			
D				<u></u>		Ī	<u> </u>	Ī			<u> </u>		<u> </u>		İ	1	<u> </u>		<u> </u>
E		:		<u> </u>		Ī		<u> </u>			1		İ	<u> </u>		<u></u>	<u> </u>	<u> </u>	<u> </u>
F .				?••••••• •	<u> </u>						<u> </u>		<u> </u>			······	<u> </u>		
G						•				ļ			42			42			
Н	2					<u></u>									<u> </u>	 	1		
1			1			<u> </u>							<u> </u>		<u> </u>	<u></u>			28
K				: :					•••••				<u> </u>						<u> </u>
L				40					••••					•••••	3			······································	1
M									••••			*********		•••••	İ				<u></u>
N									•••••••••					•••••					
Р							42	6	••••••	•••••				••••••	40				
Q	22		4			41						*********		********		•••••	42		
R								6	1										
S		41							40			42		42				43	
T					42				1										
V		1	2						·		36							•	14
W		•					٠					·							
Х																			
Υ																			
Z	16									·									
-										42									
unknown (?)						1													,
not sequenced	3	1	1	3	1	1	1	1	1	1	1	1							
sum of seq'	40	42	42	40	42	42	42	42	42	42	42	42	43	43	43	43	43	43	43
oomcaa ₁	22	41	35	40	42	41	42	30	40	42	36	42	42	42	40	42	42	43	28
mcaa'	Q	•		L		:			S			S		•••••••••••••••••••••••••••••••••••••••		G		S	
rel. oomcaas	55%	98%	83%	100%	100%	%86	100%	71%	95%	%00ı	36%	100%	%86	%86		•••••••••••••••••••••••••••••••••••••••	•••••••	100%	9%59
pos occupied ⁶				1	<u>-</u>		:	3	:	1			2		2		2	1	

I 20

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

											CE	RI							
amino acid'	70	21	22	23	24	25	26	27	۵	m	28	29	30	31	٧	32	33	34	35
Α					3		1						1			1			
В																			
· C				42					1					1					
D								••••••		39		1	4		5				
E															1			•••••	
F .		1											- 1			4			
G						43		1				39	26						
Н								1		٠					1	1			
1		41			1						6								
K															4				
L		1														4			<u> </u>
М																			
N								1	3	4		1	4	3	28				
Р								1											
Q		٠																	
R									1				2					••••••	
S			42		3		3	35	38				5	1	2	4	1	42	
T	43				36		39	3				1		1					
V										,	37						41		
W												,							4.
X																			
Y								1				1		37		29			
Z																			
-	·														1				
unknown (?)															1				
not sequenced			1	1												·	1	1	
sum of seq ²	43	43	42	42	43	43	43	43	43	43	43	43	43	43	43	43	42	42	4:
oomcaa³	43	41	42	42	36	43	39	35	38	39	37	39	26	37	28	29	41	42	4.
•	T					G				•••••		G		Y		Y		S	······
rel. oomcaas	100%	95%	100%	100%	34%	%00 l)1%	31%	38%	10%	96%	91%	0,00	%98	65%	9/0/9	%86	%00	%00
pos occupied"					4					2				ω 5	: :				

Table 5B: Analysis of V lambda subgroup 2

	_					Fran	new	ork I	ı				-		Π				
amino acid'	36	37	38	39	40	4	42	43	44	45	46	47	48	49	20	51	52	53	54
Α					1	- 4		40									Ī		
В		<u> </u>		-							<u> </u>		<u> </u>				<u> </u>	<u> </u>	
C			Ī					<u> </u>		<u> </u>	 	<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>		
D		Ī	Ī	1		2	•••••••	<u> </u>			<u> </u>			<u> </u>	20	1	2	1	
E		<u> </u>	Ī			7	*******			†	<u> </u>		†	<u> </u>	20	 	<u> </u>	2	<u></u>
F	2						*******	İ						7		1			
G						36	••••••	•			<u> </u>		 !		2	2		1	
Н			2	34			•••••						·		<u> </u>			1	
1				<u></u>			1				1	9	43				1	•••••••	
Κ				••••••••••••••••••••••••••••••••••••••			40			41	‡	ļ			·····			21	
L			1	1			•••••		•••••		38	6							
М							•••••		•••••			26					1	•••••	
N				2			*******								1			12	•••••
Р					41				43		<u> </u>			•••••				•	
Q		41	39						••••••	2									-
R		1					1							••••••			2	•••••	43
S					1				********					2		•••••	21	3	
Ţ							1		*********								7		
V						1.		3			4	2				39			
W							٠											***********	
X														*****					
Υ	41	********		5										34				2	***************************************
Z																			***************************************
***************************************																			_
unknown (?)		1	1																
not sequenced				`															
sum of seq ⁷	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa¹	41	41	39	34	41	36	40	40	43	41	38	26	43	34	20	39	21	21	43
mcaa'															D		S	•••••••••••••••••••••••••••••••••••••••	R
rel. oomcaa ^s	:		:	:	:	84%					••••••		100%	·····	,		49%	49%	00%
pos occupied	•	•			•				•				1	·····		6 4	8	:	1

Table 5B: Analysis of V lambda subgroup 2

	CD	R II																	
amino acid'	55	26	4	8	ပ	۵	w	57	58	59	09	61	62	63	64	65	99	V	80
А															2				
В																			
Č																1			
D											17		**********						
E												1					······		
F												Ì	42						
G								43	1		-		•••••		41				
Н											2								
1									3										
К												······					42		
L				•••••							1	·····	1						
М				·								····· i							
N									•		19	İ							
Р	43									15	•••••••	İ						••••••	
Q												·····							
R												43					1		
S		43								28		•••••••		43		42			
Т												•••••••••••••••••••••••••••••••••••••••							
V									39			·i							
w				•••••															
X												••••••							
Y								•••••			2	••••••							
Z												•••••							
_			43	43	43	43	43											43	43
unknown (?)		•••••												•••••					
not sequenced					••••••	••••								•••••					
sum of seq ²		43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
						***********					19	•••••••		*********			•••••••		••••••
mcaa*	Р		-	-	-	-	-		٧	••••••	N			S			• • • • • • • • • • • • • • • • • • • •		_
	•••••		%	%	્ટ	%	%	*********					•••••	•••••	• • • • • • • • • • • • • • • • • • • •				%
rel. oomcaa'	100%	100 1	100 0	100 1	100 100	100	100	0	91%	65%	44%	100	%86	100%	95%	%86	98%	1000	100%
pos occupied ^a	1	: :	: :								:							1	1

13/

Table 5B: Analysis of V lambda subgroup 2

·	_			Fra	ame	work	(111									· ·			
amino acid'	29	89	69	70	71	72	73	74	75	9/	77	78	79	80	8	82	83	84	85
А		3		1	43									36				43	
В																			
· c	<u>.</u>												·						
D	·	1	2												3	42			39
E			•••••								1				38	••••	43		
F.																			
G		39									42				1				******
Н																			2
1									35										
К			1																
L							43					43							
M																			
N			38												1	1			1
Р														2					
Q			••••••										41						
R													- 2						
S	42			1		43				42									
T			1	41				43		1				2					
V									8					3				•	
W																			
X																			
Y	,																		
Z							٠												
-																			
unknown (?)			1																1
not sequenced	1																		
sum of seq'	42	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
oomcaa,	42	39	38	41	43	43	43	43	35	42	42	43	41	36	38	42	43	43	39
mcaa'	S	G	N	Ţ	Α	S	L	T	ı	S	G	L	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	100%	91%	%88	95%	100%	100%	100%	100%	81%	98%	%86	100%	95%	84%	88%	%86	100%	0001	91%
pos occupied ^a		3	:	:	Ī	*******	••••••			:		1			•••••			1	3

132

PCT/EP96/03647

WO 97/08320

Table 5B: Analysis of V lambda subgroup 2

						· · ·				CDI	R III								
amino acid'	98	87	88	83	90	91	95	93	94	95	A	8	ပ	۵	w	ш	96	97	86
Α				2	1		21		1								1	1	
В			<u> </u>																
· C			43	11															
D								3	1	2							1		
<u>E</u>							1	1											
F		3				3				1		1					5		4
G							1	21	3	4							1		
Н						1													
l							1	1		1	2						1	7	
Κ .										3									
<u>L</u>												1	1				6	5	
M																	1	1	
N									5	7	5						1		
Р								1				4							
Q										1	2								
R							2		3			1					5		
S ·		1		30	41			12	23	14	9						1		
. T							16	4	4	3	21						٠		
V							1										11	28	
W						•••••											5		
Χ																	,,,,,,		
Υ	43	39				39			1	6							4		
<u>Z</u>																			
-						•••••				1	3	36	42	43	43	43			
unknown (?)									2										
not sequenced					1						1							1	=
sum of seq ⁷	43	43	43	43	42	43	43	43	43	43	42	43	43	43	43	43	43	42	4
oomcaa [,]	43	39	43	30	41	39	21	21	23	14	21	36	42	43	43	43	11	28	4
mcaa'	Υ	Υ	С	S	S	Υ	Α	G	S	S	T	-	-	-	-	-	٠V	٧	F
rel. oomcaa⁵	100%	91%	100%	70%	%86	91%	49%	49%	53%	33%	20%	84%	%86	100%	100%	100%	26%	67%	0001
pos occupied"	1			3						11			2				13		

133

Table 5B: Analysis of V lambda subgroup 2

					Frar	new	ork I	v			<u>-</u>]
_	amino acid'	66	100	101	102	103	104	105	106	⋖	107	108	sum
	A		1							Ī			280
	В				<u></u>		<u> </u>			1	<u> </u>	1	1
	С				<u> </u>				<u> </u>	<u> </u>	<u> </u>		99
	D						<u></u>		<u> </u>	1	<u> </u>	<u> </u>	188
	E								<u></u>		<u> </u>	<u> </u>	107
	F											-	113
	G	42	33	42				_			19		567
	Н												48
	.							1				<u> </u>	184
	K					36				:			189
	<u> </u>						28			40			264
	M												29
	N					1							146
	Р	ļ					• •••••						238
1.	0					1						14	250
	R		1			2		,			4		121
	<u>S</u>							1			2		831
	T		7		41		•••••	40					398
	<u>V</u>				••••••		14		42	1			327
	W												48
	X				•••••								
 	Υ				•••••	1							285
	<u>Z</u>												16
	-				•••••								555
11	unknown (?)												8
r	ot sequenced	1	1	1	2	2	1	1	1	2	15	28	80
	sum of seq ²	42	42	42	41	41	42	42	42	41	25	14	
	oomcaa,	42	33	42	41	36	28	40	42	40	19	14	
	mcaa*	G	G	G	Ţ	K	Ĺ	T	٧	L	G	0	
	rel. oomcaas	100%	79%	100%	100%	9/88	%29	95%	100%	%86	%92	100%	
ţ	oos occupied ^a	1	4	1	1	5	2	3	1	2	3	1	

134

Table 5C: Analysis of V lambda subgroup 3

											Fran	new	ork !						
amino acid'	_	2	c	4	2	9	7	80	б	2	=	12	13	14	15	16	17	18	19
Α					1		1	2	7					20	1				27
В																			
. C																			
D			5				10												
E			20										1			1			
F ·	1	1										1			1				
G			1											••••		37		*****	
Н																			
1																			*********
K																	2		
L				37							4		1		9				
M																			
N																			
Р							26	35	1		,				27				1
Q	4		4			38											36		
R																			
S	13	14			1		1		28			37		18					
T					36			1										38	
V			8	1					2		34		36						10
W																			
X																			
Y		23																	
Z																			
-	20									38									
unknown (?)																			
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa³	20	23	20	37	36	38	26	35	28	38	34	37	36	20	27	37	36	38	27
mcaa*	-	Υ	Ε	L	T	Q	Р	Р	. S	-	٧	S	٧	Α	Р	G	Q	T	Α
rel. oomcaas	53%	61%	53%	97%	95%	100%	%89	92%	74%	100%	89%	97%	95%	53%	71%	97%	95%	100%	71%
pos occupied"	4		: :	:							2			:	:	:		1	3

WO 97/08320 ·

Table 5C: Analysis of V lambda subgroup 3

											Ct	ORI							
amino acid'	20	21	22	23	24	25	56	27	٥	w	28	29	30	31	٧	32	33	34	35
Α			1					5					. 1	1			21	3	
В									*******										
. С				38														5	
D							30	1					10			3		1	
E							2	2				1	3	6					
F .														1		2			
G					9	38		1				23	4						
Н						•	1		*******	•••••						2		9	•
<u> </u>		38							•••••••		9			1				•••••	
K				•••••				7	*******				2	13					
L									•••••		28								•••
M	1								•					1					•
N			2				4	9			1		2			1		2	
Р			1	·								3							•
Q					10									4					
R	25							2				10	• 1				. 1		
S	9		1		19			10					11	2		8		14	
T	3		33					1				1	4						
V																1	15		
W																	Ī		3
X																			•••••
Y							1							8		20	1	4	•••••
Z																			•••••
-									38	38					37				
unknown (?)																			
not sequenced															1	1			•••••
sum of seq'	38	38	38	38	38	38	38	38	38	38	38	38	38	37	37	37	38	38	3
oomcaa,		;					:	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••				•••••••••••••••••••••••••••••••••••••••	·	•••••••••••••••••••••••••••••••••••••••			14	•••••
mcaa*	R	1	Т	С	S	G	D	S	-	-	L	G	S	Κ	-	Υ		S	
rel. oomcaas	%99	100%	87%	0,001	20%	%001	9%67	26%	%00 l	%00	74%	61%	%6;	35%	%00I	54%		37%	
pos occupied ^a	4	•••••••	<u></u> 5	:						······		·········	:	<u>ო</u> 9			<u>5</u>	. ო 7	

WO 97/08320
Table 5C: Analysis of V lambda subgroup 3

-					F	ram	ewo	rk II											_
amino acid'	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	22	53	54
А								23								1		1	
В																			
С																			
D			. [İ										9	22	2	8	
E			1									<u> </u>			5	3		3	
F	3													2			1		
G						36	·								9	2			
Н		<u> </u>					1							1	3			1	
ı										1			28				1		
К				32											2	6	1	13	
. L			2							6	33	1							
М											1		1						
N.		<u></u>	į													1	19	9	
Р					36		1		38										
Q		37	35	1			36								9			1	
R		1		4		2									1	1	ļ	1	38
S				1	2			14									10	1	
T																2	4		
V								1		31	4	37	9	· <u></u>			<u> </u>		
W																		<u> </u>	
X																	<u> </u>	<u></u>	
Υ	35				ļ			ļ			ļ			35		ļ 		ļ	
Z	_	<u> </u>			<u> </u>	<u> </u>					<u> </u>						<u> </u>	<u> </u>	
		ļ			<u> </u>	ļ	<u>.</u>	<u> </u>	<u> </u>		<u> </u>					<u></u>	<u> </u>	<u> </u>	
unknown (?)		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	ļ	ļ		<u> </u>						<u> </u>	<u> </u>	
not sequenced		<u> </u>	<u> </u>		!	<u> </u>		<u> </u>			<u> </u>					<u> </u>	<u>! </u>		<u> </u>
sum of seq ²	*******	·			·	÷	,,	·	•	•	1	38	:	:		÷	•	:	•
oomcaa	35	37	35	32			,	:	•		:	37	28	•	<u>:</u>	·}	· <u>†</u> ····	13	· [····
mcaa*	Υ	Q	Q	K	Р	G	Q	Α	Р	٧	L	٧	1	Y	D	D	N	K	R
rel. oomcaas	92%	97%	92%	84%	%56	95%	95%	61%	100%	82%	87%	92%	74%	92%	24%	58%	50%	34%	100%
pos occupied ⁶	:		:	1	:				•	1	1	2	:	•	;	:	3 7	<u> </u>	1

SUBSTITUTE SHEET (RULE 26)

Table 5C: Analysis of V lambda subgroup 3

	CD	RII																	_
amino acid'	52	56	¥	В	ပ	۵	щ	23	28	29	09	61	62	63	64	65	99	V	8
Α		1																	
В																			
С												-							
D											9								
E											27								
F													38						
G							ŕ	38							38				
Н												-							
·				٠					37										
К																			
L											·								
М																			
N																	21		
Р	37	1								36							Ť		
Q																			
R												38							
S	1	36								1				38		38	12		
T																	5		
V																			
W																			
X							** ** ***												
Υ																			
Z																			
-			38	38	38	38	38											38	3
unknown (?)											1								
not sequenced									1	1	1								
sum of seq ²	38	38	38	38	38	38	38	38	37	37	37	38	38	38	38	38	38	38	3
oomcaa,	37	36	38	38	38	38	38	38	37	36	27	38	38	38	38	38	21	38	3
mcaa*	Р	S	-	-	-	-	-	G	١	Р	Ε	R	F	S	G	S	N	-	
rel. oomcaas	97%	95%	100%	100%	100%	100%	0001	100%	0001	97%	73%	100%	0001	0001	%00I		55%	%00I	%0001
pos occupied ⁶	•••••		:	:	:	:	:			7	:	:				····		•	

WO 97/08320

Table 5C: Analysis of V lambda subgroup 3

•				Fra	mev	vork	111						<u> </u>						
amino acid'	29	89	69			72		74	75	92	77	78	79	80	81	82	83	84	.85
А				1	36	1		1				11	1	34				38	
В																			
. C	,																		
D																38			37
Ε													10		14		38		1
F																			
G		37									28				10				
Н			1																•••••
1						1		- 1	37	1		r			1			<u></u>	
K			1									<u> </u>							······
L							38								2				
М												<u> </u>			10				
N			28							1		<u> </u>							•••••
Р																			
Q		1											25						
R										1	10		1						
S	37		2			11				23		<u></u>		1					
Т	1		6	37		25		36		12		13		2					
V					2				1		·	14	1	1	1				
W																			•
X															`				
Y																			
Z																			
-																			
unknown (?)																			
not sequenced																			
sum of seq ²	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38
oomcaa	37	37	28	37	36	25	38	36	37	23	28	14	25	34	14	38	38	38	37
mcaa*	S	G	N	T	Α	T	L	Ţ	١	S	G	٧	Q	Α	Ε	D	Ε	Α	D
rel. oomcaas	97%	97%	74%	97%	95%	%99	100%	95%	97%	61%	74%	37%	%99	99%	37%	100%	100%	100%	97%
pos occupied	1	ł	:	:	•	•	:	:										1	

WO 97/08320 ·

Table 5C: Analysis of V lambda subgroup 3

										CD	R III								
amino acid'	98	87	88	83	90	91	92	93	94	95	A	8	ပ	O	'n	ш	96	97	98
Α					13	3	2			1	2						4		
В																			
· C			38																
D							32	1	1		6								
E				1								2					· 2		
F .		2						2											3
G									3	14	3			1			3	1	
Н												12	1						
1																		4	
К											1							•••••	
L				1				1		1		1	1				4	2	
М									1					·			1	1	
N				10			2	1	2		10	1							
.P									1				3				1		
Q				25						1	1		·						
R						10		1	2			2			·				
S				1	14	1		28	26	13		1				1			
T						1		3		7	2								
V					11												18	28	
W						23											1		
Χ																			
Υ	38	36					1		1		1	3	1				3		
Z																			
											10	15	31	36	37	36		1	
unknown (?)																			
not sequenced				·			1	1	1	1	2	1	1	1	1	1	1	1	
sum of seq'	38	38	38	38	38	38	37	37	37	37	36	37	37	37	37	37	37	37	3
oomcaa,	38	36	38	25	14	23	32	28	26	14	10	15	31	36	37	36	18	28	3
mcaa¹	Υ	Υ	С	Q	S	W	D	S	S	G	N	-	-	-	-	-	٧	٧	F
rel. oomcaas	100%	95%	100%	999	37%	31%	96%	0/09/	%O,	38%	28%	41%	84%	%26	00%	97%	49%	,6%	70UU
pos occupied ⁶	1	2	1		:	•	:		•	•	:	······ 	5				:		

Table 5C: Analysis of V lambda subgroup 3

			F	ram	ewo	rk IV	'					
amino acid'	66	001	101	102	103	104	105	106	∢	107	108	sum
Α			_									265
В		•	•									
С		<u>-</u>								1		82
D		i	Ī									225
E					2							145
F												90
G	35	31	35							24		461
Н												32
												160
К					30							110
L						28			33			233
М	·		-						·			17
N												126
Р									1			249
Q											7	275
R	·				2							154
5										2		501
Т		4		35			35					347
V			·			7		35				308
W												62
X					.,							
Y						<u> </u>						211
Z		<u> </u>	<u> </u>									
	ļ	ļ	<u> </u>	<u> </u>								603
unknown (?)	<u> </u>	<u> </u>	<u></u>	<u></u>							<u> </u>	1
not sequenced	3	3	3	3	4	3	3	3	4	11	28	89
sum of seq ²	35	35	35	35	34	35	35	35	34	27	7	
oomcaa3	35	31	35	35	30	28	35	35	33	24	7	
mcaa*	G	G	G	Ţ	K	L	Τ	٧	L	G	Ω	
rel. oomcaa'	100%	89%	100%	100%	88%	80%	100%	100%	97%	89%	100%	
pos occupied ⁶	1	2	·[··	1		2	····	1	2		1	

141

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

,														Fra	me	wor	k I			_
amino acid'	-	2	က	4	ഹ	9	7	8	6	2	=	12	13	4	15	91	17	82	19	20
Α					1	14			60							24	1			
В																				· · · · · ·
· C																				
D																				
E	1				2	1		2		64										•••••
F																				•••••
G								58	1						64					
Н			2																	
		2																		
K		2										57	64						60	
L			2	59							3									
М		1																		
N												6								
Р														63						
Q	53		56		2	45														
R	<u> </u>	ļ										1							3	
<u>S</u>	 	<u></u>					60		3					1		40	63			ļ
T	ļ	<u> </u>																	1	
· V	2	55		1	55						61							64		6
W	ļ	<u> </u>																		<u> </u>
Χ	ļ	<u> </u>																		ļ,
ΥΥ	ļ	<u></u>														••••••		<u></u>		
Z	3		<u> </u>																	<u> </u>
-	 	ļ	<u> </u>																	<u> </u>
unknown (?)	 	ļ	ļ													•••••		<u></u>		<u></u>
not sequenced	11	10	10	10	10	10	10	10	6	6	6	6	6	6	6	6	6	6	6	_
sum of seq?	59	60	60	60	60	60	60	60	64	64	64	64	64	64	64	64	64	64	64	6
oomcaa ³	÷	÷	÷			······	•••••	····				57	••••••			*********	·	÷	÷	6
mcaa*	0	٧	Q	L	٧	Q	. S	G	Α	E	٧	K	K	Р	G	S	S	٧	K	١
rel. oomcaa ⁵	%06	92%	93%	98%	92%	75%	100%	97%	94%	100%	95%	89%	100%	%86	100%	63%	98%	100%	94%	300
pos occupied	:	7		:				:	:		:							:	:	:

WO 97/08320

Table 6A: Analysis of V heavy chain subgroup 1A

														CD	RI					
amino acid'	21	22	23	24	22	26	27	28	53	30	31	⋖	ω.	32	33	34	35	36	37	38
Α				62				1							41					
В											<u></u>						<u></u>	<u> </u>		
. с		63															<u> </u>	<u></u>	<u></u>	
D							1													
E																				
F .									69					3		. 3				
G				1		69	41		1		_				23		į			
Н										1				1	,		1			
1								1								61	1		1	
K			63							1	1						<u> </u>			
L															1	2			<u></u>	
M													i			4				
N										2	5						4			
Р															1					
Q																				
R		1	1							.1	1									7
S	63	<u> </u>			68		1			40	60			2			60			
T	1			2				68		25	3				3		4			
V														*******	1				69	
W		<u></u>												*******				70		
Χ		ļ																		
Y		ļ					27			•				64		<u></u>				
Z		<u> </u>																-		
		<u>.</u>	<u> </u>	<u></u>				<u></u>	<u></u>	<u> </u>	<u> </u>	70	70							<u> </u>
unknown (?)		<u> </u>	ļ							<u> </u>										
not sequenced	6	6	6	5	2	1														
sum of seq²	64	64	64	65	68	69	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa³	63	63	63	62	68	69	41	68	69	40	60	70	70	64	41	61	60	70	69	7
mcaa'	S	С	K	Α	S	G	G	T	F	S	S	-	-	Υ	Α	ı	S	W	٧	
rel. oomcaas	%86	98%	%86	95%	100%	100%	29%	%26	%66	57%	%98	100%	100%	91%	59%	87%	%98	100%	%66	
pos occupied	•	:	2		ŧ.	:	:	:	:	6	:	;	:	4	; .	:	•	:	2	Ţ

Table 6A: Analysis of V heavy chain subgroup 1A

				Fra	me	work	: II													
amino acid'	39	4	4	42	43	44	45	46	47	48	49	20	51	52	۷	ω	ပ —	53	54	55
Α		70									1				5					
В									<u> </u>											
. С																				
D								1												^
Ε								69												
F .													2					3	39	
G			1	68		69			1	\	69	39			1					6
Н			1																	
													65	38				34		
K																				
L				1			68			1		1						2	4	
M										67				2				4		
N														4				3	22	
P			68				1								44	40 b) 140 b				
Q	69				69													1	1	
R	1			1		1						4						1		
<u>S</u>					1				1	1				22					1	
Τ.													1	2	4			1	3	
V										1			2	2	16			1		
W							1		67			26			•••••					
Χ																				
Υ							•••••		1									20		
Z																				
_						•••••	•••••								•••••••	70	70			
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	7
oomcaa,	69	70	68	68	69	69	68	69	67	67	69	39	65	38	44	70	70	34	39	6
mcaa'	Q	Α	Р	G	Q	G	L	Ε	W	М	G	G	ı	١	Р	-	-	١	F	(
rel. oomcaas	%66	100%	97%	92%	%66	%66	%26	%66	%96	% 96	%66	26%	93%	54%	63%	100%	100%	49%	999	,010
pos occupied ^a																*********				:

Table 6A: Analysis of V heavy chain subgroup 1A

•	С	DR	11																	
amino acid	26	22	28	59	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75
Α	1	34			69					·						43				
В												i					<u>i</u>			
· C									<u> </u>											
D	15		1					į		2						<u> </u>	70			
E									1									33		
F				1				48				3		4						
G	1						3			67										
Н			1																<u> </u>	
1	4							<u></u>	<u></u>				1	44	<u></u>			1	<u> </u>	
κ	1		2	1			47		1		1	<u> </u>			<u></u>			8	<u></u>	
Ĺ	1	1						22				2		1		3				
М														21						
N	9		59				18													
Р	1	7																		
Q	1	1				70			64											
R	2						2		1		69							1		
S		1	2		1										5				70	
T	34	26	4						3				66		65	24		27		67
V										1		65	3							3
W																				
X																				
Y			1	68																
Z		<u> </u>																:		
_	<u> </u>	<u></u>	ļ												•••••					
unknown (?)		<u> </u>	<u> </u>																	
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	34	-	÷	<u> </u>	·····					·····				*******	•••••		•		70	67
mcaa'	Ţ	Α	N	Υ	Α	Q	K	F	Q	G	R	٧	T	ı	T	Α	D	Ε	S	Ţ
rel. oomcaas	49%	49%	84%	92%	%66	100%	67%	%69	91%	%96	%66	93%	94%	63%	93%	61%	100%	47%	100%	%96
pos occupied"	:	:	:	:	:	:	:	:	:	:	:	: .	: :	:	:	:	•	•	1	2

Table 6A: Analysis of V heavy chain subgroup 1A

		·		F	ram	ewo	rk I	II												
amino acid'	9/	77	78	79	80	81	82	٧	8	ပ	83	84	85	98	87	88	. 68	90	91	95
Α .			64			1						3			1	70				
B _.		<u></u>													<u> </u>					
- C																				70
D						2					••••••		26	70						
E						64					•••••		44	•••••					•••••	
F							•••••										1	1	2	
G							•••••		1					•						
Н				1			********	1												
I		1					3	1	1								2			
K											3									
L					3		63			70							2			
М					67										1		1			
N ·	4							1	16											
Р															·					
Q				1		3	•••••••													
R	3						******	23	1		62									
S	62		1					41	49			67			1					
Т	.1	69	2					3	2		4				67					
V			3				4				1						64			
W							••••													
X																				
Y				68	•••••													69	68	
Z																		_		_
-					•••••										•••••					
unknown (?)																				
not sequenced																				
sum of seq ²	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
oomcaa,	***************************************	*********		•••••••	• • • • • • • • • • • • • • • • • • • •	••••••••	63	41		••••••••	•••••••••••••••••••••••••••••••••••••••		44	70		70	64	69	68	70
mcaa'	S	T	Α	Υ	М	Ε	L	5	S	L	R	S	E	D	Ţ	Α	٧	Y	Υ	С
rel. oomcaa ^s	930%	%66	91%	97%	%96	91%	%06	29%	20%	100%	89%	%96	63%	100%	%96	100%	91%	%66	97%	100%
pos occupied ^a	:		4		2	4		6	•	•	•	2		1		:	:	2	2	1

148

Table 6A: Analysis of V heavy chain subgroup 1A

											CDI	3 111									
	amino acid'	93	94	95	96	97	98	66	100	4	8	ပ	0	ш	щ	9	I	_	_	×	101
	А	66	2	16		1	1	1	4	1	2	2	1	1		1	1	1	2		1
	В																				
	. С					1	1	16	2		į	ĵ	7	2	1						
	D			16	5	3		3	5	4	3	4	į		1	1	14				59
	E			9				2			1			1			1				
	F .					1	3		2		3	1	2		2	1				28	2
	G		2	14	13	20	10	14	5	20	15	16	3	3	4	15	1	1	7		
	Н					•					1	1	1	·	1						
	1				2	5	2	2		2	2	1	1			1					
	K		5			2	1			1											
	L		1	4	4	2	5	2	1	1		4	2		1			1		1	
	M			1		2		1		1			1	1						10	
	N		·		2	2	1	2	1	2	2	2	2			1	1	- 4			
	P				20	3		1	3	2	2	2	4	2	1	4	1		1		1
	Q				1			1		1	1	1									
	R		55	1	5	7	8	1	4		2		1		16						
	S		1	1	5	5	5	5	21	5	11	8	4	3		2	1		2		1
	T	1	3	3	5	4	1	3	4	2	5	2		1			1	1			
	V	3		3	2	4	3	3	3	4	2	2	2	1	2	1					
	W				1	1	3	1	1			2		3				1	5	1	
	X																				
	Y		1		2	3	20	5	4	9	1	2	11	20	10	6	9	10	7	1	
	Z																				
					1	2	2	3	6	11	11	14	23	26	26	31	34	46	39	21	1
	unknown (?)													1		1	1		2	3	
Ŀ	not sequenced			2	2	2	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5
	sum of seq ²	70	70	68	68	68	66	66	66	66	65	65	65	65	65	65	65	65	65	65	65
	oomcaa³	66	55	16	20	20	20	16	:	20	15	16	23	26	26	31	34	46	39	28	59
	mcaa'	Α	R	Α	Р	G	Υ	С	S	G	-	-	-	-	-	-	-	-	-	F	D
	rel. oomcaas	94%	79%	24%	29%	29% ;	30%	24%	32%	30%	23%	25%	35%	40%	40%	48%	52%	71%	%09	43%	91%
	pos occupied ⁶	3	:	:	•	:	:	•	•	:	:	•	•					:	:	:	: :

14 X
SUBSTITUTE SHEET (RULE 26)

WO 97/08320 PCT/EP96/03647

Table 6A: Analysis of V heavy chain subgroup 1A

						Fra	əme	wor	k IV					
	amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
	Α													670
	В								<u> </u>					
	С							Ī	<u> </u>		<u> </u>			165
	D		1	1	*******		<u> </u>	<u> </u>	<u> </u>			<u> </u>		308
	E	1	1		••••		ļ	<u> </u>	İ			<u> </u>		297
	F	2							† 	ļ				226
	G			58		59	1	1	}	<u> </u>		!		928
	Н				1				<u></u>			····		14
	ı	3							<u> </u>	4	<u></u>			286
i	K				3		1		<u> </u>		<u></u>		`	325
	L	·3			1			40	1		<u> </u>			386
	М	1						3						189
	N				1									176
	Р	5											1	238
	Q				52									494
	R				1				·					351
	S											53	51	972
	T						54	11	1	51		1		736
	V	15		1				1	54		54		1	699
	W .		59		1									243
	X													
	Υ	34		1										542
	Z													3
		1												578
	unknown (?)													8
	not sequenced	5	9	9	10	11	14	14	14	15	16	16	17	406
	sum of seq'	65	61	61	60	59	56	56	56	55	54	54	53	
	oomcaa ³		*********	•••••••••••••	52	59	54	40	54	51	54	53	51	
	mcaa'	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
	rel. oomcaa ^s	52%	92%	95%	87%	100%	%96	71%	%96	93%	100%	98%	%96	
	pos occupied ⁶	•	•	:	;				······ <u> </u>	•	1	2	3	

148

Table 6B: Analysis of V heavy chain subgroup 1B

,					,									Fra	me	wor	k I			
amino acid	-	2	က	4	S	9	7	8	6	9	=	12	13	14	15	16	17	18	13	20
Α									32							34				
В											<u></u>									
. С																				
D										<u></u>	<u></u>									
E		1			5	1				35										••••
F .																				
G								27							35					
Н			1									į		1				<u></u>		
l																		į		
К		3	1									34	33						33	
L			3	26	1				<u> </u>											
М				1	1													<u> </u>		
N																				
Р									1					33			1			
Q	21		20			26														
R	1											1	2			••••				
S							27									1	34			
T									1					1					2	
V .	3	21			20						·35							35		3
W																				
Χ								,,												
Υ																				
Z																				_
										•••••							<u></u>			ļ
unknown (?)	ļ		<u></u>														ļ	<u></u>		<u> </u>
not sequenced	15	15	15	13	13	13	13	13	6	5	5	5	5	5	5	5	5	5	5	_
sum of seq²	25	25	25	27	27	27	27	27	34	35	35	35	35	35	35	35	35	35	35	3
oomcaa³	21	21	20	····		<u>.</u>	····			•				********	•	********	34	÷······	·····	3
mcaa ⁴	Q	٧	Q	L	٧	Q	S	G	Α	Ε	٧	K	K	Р	G	Α	S	٧	K	١
rel. oomcaas	84%	84%	80%	%96	74%	%96	100%	100%	94%	100%	100%	97%	94%	94%	100%	97%	97%	100%	94%	č
pos occupied ^a	•	1	1	•	:		:	:			:						1		2	ì

Table 6B: Analysis of V heavy chain subgroup 1B

														CD	RI		<u>. </u>			
amino acid'	21	22	23	24	25	26	27	78	29	30	31	۷	ω	32	33	34	32	36	37	38
Α				30							2				6					
В																				
. C		35																		
D											1				5		1			1
<u> </u>			3								1									
<u> </u>							2		39					2	2					
G				1		40				1	14				1					1
<u>H</u>			<u></u>											3	1		34			
								1		1						9				
<u>K</u>			28																	
L	ļ								1		1					5			2	
<u>M</u> .						•••••										23				
<u>N</u>							1			1	3					1	3		••••••	
<u>P</u>															1		1			1
Q			2								1			1	1					37
R			2		40			2 5			15			<u>'</u> 2						37
<u> </u>	35			3	••••••			32		34					1					<u> </u>
T V	ļ			ა 1			1			34 1					2				38	 -
v	 	<u></u>		!			!				1				۷			40		
X		<u> </u>													••••••			10		<u> </u>
Y	l						36	··-		<u></u>	1			32	19		1	<u></u>		 -
Z	ļ	ļ																		<u> </u>
***************************************											<u></u>	40	٠40					<u></u>		
unknown (?)	-	<u></u>													•••••			<u></u>		
not sequenced	5	5	5	5							<u> </u>			•••••			<u> </u>			
sum of seq ²	÷===	•	:	35	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4(
oomcaa³	·	†	:	÷	····	:	·	:	:		÷			*******		:	:	40		<u></u>
mcaa*	S	÷	K	÷	S	·····		T	F	T	S	-	-	Υ		М	Н	W	٧	R
rel. oomcaas	%00	%00	% 0	%9	%00	%00	% 0	% 0	9%8	5%	%8	100%	%00	% 0	%8	%8	5%	100%	95%	020%
pos occupied ^o	:	:	:	:	:	:			:	:	:	:	:		:	•	:	:	!	Ť

Table 6B: Analysis of V heavy chain subgroup 1B

				Fra	mev	vork	: 11										· · · · · ·			
amino acid'	33	4	4	42	43	44	45	46	47	48	49	20	5	52	⋖	ø	ں -	23	54	52
Α		39				1					1				7			1		
B													,							
. C																				
D														1					1	
<u>E</u>	ļ			1				39										1	1	
F .		ļ					. 2						1					1		
G	<u></u>	<u></u>		39		28					39	1			1			9	1	3
Н		<u></u>	<u>.</u>															2		
1		<u></u>	<u></u>							3			34							
K					1						••••								1	
L			1				37						1							
Ņ										37		2	4							
N														35				20	12	
Р		1	34				1	٠							31					
Q	39				39			1												
R	1					10						4					· · · · · · · · · · · · · · · · · · ·	3	1	
S			1			1								2				1	20	
T		Ī	4											1					3	
V		Ī												1	1				<u> </u>	
W		-	<u> </u>	<u> </u>					40			33							<u> </u>	
Χ			<u> </u>																	
Υ		1																2		
Z																				<u> </u>
*********************************		Ī	İ													40	40			<u> </u>
unknown (?)																	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequence	ъ																<u> </u>			_
sum of seq ⁷	4() 4(40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	4
oomcaa ³	39	39	3 34	39	39	28	37	39	40	37	39	33	34	35	31	40	40	20	20	3
mcaa*		Α		· ;	Q	G	L	E	ú	М	G	W	I	N	Р	-	-	N		(
rel. oomcaa ^s	78%	980%	85%	%86	%86	20%	93%	986	100%	93%	%86	83%	85%	88%	78%	100%	100%	50%	50%	
pos occupied	•	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:		8	Ī

Table 6B: Analysis of V heavy chain subgroup 1B

•	C	DR				_														
amino acid'	99	57	28	59	09	61	62	63	64	65	99	29	89	69	70	71	72	73	74	75
. A	1	2			27	2				1		1				2				12
В																				
С																				
D	1				٠					4							35			
Е	2		2			1				1						1				
F .				4				39						3						
G	15		6		1					34										
Н			1	1													1			_
1		1	1									1	1	13						22
. к	2	2	8				36		1							1				
L						1		1						1						
М														23				1		1
N	17		18				1				·						4			
Р			·																3	
Q						36			37											
R			2				1		2		37					34		1		
S	1			2	11		1									1			37	
T		35	2		1		1						39		40	1		38		5
V	1											38								
W											3									
X															·					
Y				33																
Z																				
-																				
unknown (?)																				
not sequenced																				
sum of seq'	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
oomcaa,	17	35	18	33	27	36	36	39	37	34	37	38	39	23	40	34	35	38	37	22
mcaa'	N	T	N	Υ	Α	Q	K	F	Q	G	R	٧	T	М	T	R	D	T	S	ı
rel. oomcaas	13%	38%	15%	33%	98%	%O6	%Ot	%86)3%	35%	33%	95%	%86	28%	%001	35%	38%	35%	33%	55%
pos occupied ^a																				

Table 6B: Analysis of V heavy chain subgroup 1B

				F	ram	ewo	rk II)	_				<u>-</u>							
amino acid'	92	77	78				<u> </u>			ပ	83	84	82	98	87	88	83	06	6	92
Α			35	i	.]			i	Ī	Ī		1	2			40				
В				•																
- C						<u>-</u>	Ī	•			······································						į		į	3
D	1		•			4							19	40			1			
E						35				Ī	•••••		19							
F			1									2							2	
G						1		1	2											
Н																			į	
		1							ļ								1			
K									ĺ		1									
L					2		39		<u> </u>	39						*******	2			
М					37		1		į				-	- j			2		<u> </u>	
N	7							1	2											
Р									ļ			1					ļ		1	
Q	<u> </u>	ļ	1	ļ									****							
R	4	<u> </u>	<u> </u>					2	16		37						<u> </u>			
<u> </u>	27	ļ	ļ	1				35	20		٠ 1	36					<u> </u>	1	1	
Ţ	1	39	<u> </u>					1			1				40		<u> </u>			
V		<u> </u>	4	<u> </u>	1	<u> </u>				1							33			_
<u>W</u>	<u> </u>	<u> </u>	<u> </u>	!	<u> </u>		·										<u> </u>			
X		<u> </u>	ļ	<u> </u>	<u> </u>			<u>.</u>									<u> </u>			_
Υ			<u> </u>	39	ļ		ļ	ļ					<u> </u>				<u> </u>	38	35	
Z			<u> </u>	<u> </u>	!	<u> </u>	<u> </u>						<u> </u>				<u> </u>			<u> </u>
_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	ļ	ļ		<u> </u>		ļ	<u> </u>		ļ	<u> </u>	ļ	<u></u>	<u> </u>
unknown (?)		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequence		<u> </u>	<u>_</u>	_	<u> </u>	<u> </u>	<u> </u>						<u> </u>			<u> </u>	1	}	1	==
sum of seq ²	*******				.;	4	·innu-	-	7	1	Ţ			:		1		:	:	:
oomcaa,	9+4444	*****	~~~~	•	• • • • • • • • • • • • • • • • • • • •			·	·					-,					35	
mcaa ⁴	5	T	Α	Y	M	E	L	5	S	L	R	5	D	D	T	 	. .	Y	Υ	ļ
rel. oomcaas	%89	%86	880%	%86	93%	88%	%86	988%	50%	%86	93%	%06	48%	100%	100%	100%	85%	92%	% 06	
pos occupied	-		ī	•		i	1	İ	:	:	:	:	:	:	•	:	5	:	•	:

Table 6B: Analysis of V heavy chain subgroup 1B

										CDF	3 111									
amino acid'	93	94	92	96	97	86	66	001	∢	۵	ပ	٥	ш	u.	ပ	I	_	_	×	101
Α	37	1	6		1	1		2	3	1	3		1					5		
В	ļ								<u></u>											
C		1				3				2	1									
D			7		5	2	3	1	5	4		1		2	2	1	2			27
Ε			2		1			1	1		2		1		1					
· F				1	1	3			2	1	1	1	1					2	15	
G		1	7	7	5	5	9	4	7	1	3		2	2	1		1	3		1
Н			1				2			1	1									
l		1		1	1	3	1	1	1	1	1	1							1	
K		1			1				1	1		1		1			1			
L			2	4	4	4	3			. 1	2	1	1	2		1			2	
M,				2		1	1.								1				4	
N					1			1		1	1	1			3		1			1
Р				6	4				1	1		3	2				1			
Q					1							1	2	1						
R	1	31	-	5	1	1	3			<u></u>		1		1				1		
S		1	3	3	1	4	3	· 6	3	2	2	1		1						
T		2	1	1	2	2	1	5	1	1	1		1			1		1		
V	1		7	1	1		1	3	1	2		1			1	2	1			1
W			1		1		2	2		1	1				•••••	1		4		
X																				
Y				5	5	4	2	3		4	3	3	2	1	2	· 5	6	2		
Z																				
				1	1	4	6	8	10	11	14	20	23	25	25	25	23	18	11	6
unknown (?)		·																	3	
not sequenced	1	1	3	3	3	_3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
sum of seq ²	39	39	37	37	37	37	37	37	36	36	36	36	36	36	36	36	36	36	36	36
oomcaa ³	37							8	10	11	14	20	23	25	25	25	23	18	•	27
mcaa'	Α	R	D	G	D	G	G	-	-	-	· -	-	-	-	-	-	-	-	F	D
rel. oomcaas	95%	79%	19%	19%	14%	14%	24%	22%	28%	31%	39%	%95	64%	%69	%69	%69	64%	20%	42%	75%
pos occupied	3	8	10	12	18	13	13		12		14	13				:	8	8	5	5

Table 6B: Analysis of V heavy chain subgroup 1B

, or v incovy circuit					Fra	mew	ork	IV.	<u>.</u>				
amino acid'	102	103	104	105	106	107-	108	109	110		112	113	sum
Α													340
В	i									·			٠
С	i			i									79
D	2			i									179
E				1				İ					159
F	1												130
G			27		26					1			450
Н	1								<u> </u>				51
1	7								3				113
К				2									194
L	İ						12			1			204
М							2						144
N	1			,,,,,,,, ,,,									138
Р	1			1									128
Q				23									253
R							1						247
S	3								1		18	18	432
Т					<u></u>	21	6		16		1		390
V	6					<u> </u>		21		18			342
W		29		•	<u></u>	ļ							158
X					ļ	<u> </u>							
Y	11		ļ		<u> </u>	ļ							294
Z			<u> </u>	_		<u> </u>							
_	3		<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>					394
unknown (?)	I	ļ	<u> </u>		-	-	<u> </u>	ļ					3
not sequenced	(-	: -	÷	=	≔≕	19				:	7
sum of seq ²	····	1			;		7		•		•	:	1
oomcaa,	<u></u>	÷	·•••••	4				21	·	,			
mcaa ⁴	Y	W	G	Q	G	Ţ	L	٧	T	٧	S	S	
rel. oomcaas	31%	100%	100%	85%	100%	100%	57%	100%	80%	%06	95%	100%	
pos occupied	10	1	1	4	1	1 1	4	1	3	3	2	1	
						15	5						

Table 6C: Analysis of V heavy chain subgroup 2

											•			Fra	mev	vor	κI			
amino acid'	-	7	က	4	2	9	7	œ	б	0	=	12	<u>ლ</u>	4	15	16	17	18	5	20
Α										3										
В									!											
. C																				
D																				
Е	1					6								_		2				
F														<u>!</u>						
G								6												
H																				
		1												_						
K					3								6		1					
L				6			·				6							6		(
M							ļ													
N	ļ						1											.,		
P							1	ļ	6					6			1			
Q	2						ļ									4				
R					2		ļ	ļ												<u> </u>
<u>S</u>							4	<u> </u>									ļ			<u> </u>
T	ļ	<u> </u>	6		1	<u> </u>	·	<u>.</u>		2					5	••••••	5		6	<u> </u>
<u> </u>	ļ	5				<u> </u>	<u>.</u>	<u> </u>	ļ	1		6					<u> </u>			<u> </u>
W	<u> </u>	ļ				ļ	ļ	<u> </u>	<u> </u>	<u> </u>							ļ		<u> </u>	<u> </u>
X	<u> </u>	<u> </u>				<u> </u>	ļ	ļ	ļ	ļ	<u></u>						ļ		<u> </u>	<u> </u>
Υ		<u> </u>	ļ			<u> </u>	ļ	ļ	ļ								<u> </u>	ļ	ļ	
Z	3		<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>
	-	ļ	ļ		<u></u>	ļ	ļ	ļ	ļ	<u> </u>	ļ				•••••		<u> </u>	<u> </u>	<u> </u>	<u> </u>
unknown (?)	ļ	<u> </u>	ļ		ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-					<u> </u>	ļ	<u> </u>	<u> </u>
not sequenced	1	1	1	1	_1	1	1	; 	$\overline{\cdot}$:	•						_	=	=
sum of seq ⁷	6	6	6	6	6	6	6	6	6	6	6			*******	*******		 -	†·····	; -	†
oomcaa3	3	· • · · · · · · · ·	******		<u> </u>	. · · · · · · · · · · · · · · · · · · ·	·		÷~~~~	† ·····	÷			***********	*******	••••••	- -	6	÷	ļ
mcaa'	Z	٧	T	L	K	Ε	S	G	Р	Α	L	٧	K	Р	T	Q	T	L	T	
rel. oomcaas	20%	83%	100%	100%	20%	100%	90/9	100%	100%	20%	100%	100%	100%	100%	83%	67%	83%	100%	100%	7000
pos occupied		2	•	ŧ	i	•	1	i	•	ż	1	1	1	1		:	•	:	:	

Table 6C: Analysis of V heavy chain subgroup 2

			/y C								_					С	DRI							_
amino acid'	21	22	23	? ?	57	25	26	27	28	20	67 6	3	3	۷	8	32	33	}	34	32	36	37	, ,	2 ===
A										1				1	<u> </u>	ļ	-	1				<u> </u>	ļ.,	-
В			<u> </u>		_				<u> </u>		-				<u></u>	ļ		4				-		
· C	<u> </u>		7	<u> </u>	_			ļ	ļ	<u> </u>	<u></u>	<u> </u>			<u> </u>	-	-	2				╀	<u>.</u>	-
D		<u> </u>	<u> </u>	<u>.</u>				<u> </u>	-	-				1	<u> </u>	-	-	_				<u> </u>	<u>.</u>	
E		ļ					ļ	<u> </u>	ļ	<u>.</u>		_			-	-	-					-	-	
F		<u> </u>		_	3			(3		1				-	-	-	-				-	-	
G		<u> </u>					7		_	<u>.</u>			-		ļ	4	_	3		3	<u> </u>	-		
Н	<u> </u>	<u> </u>					<u>.</u>	<u> </u>		<u>.</u>				ļ	ļ			<u></u> į.			ļ	<u>.</u>		
1		<u>.</u>	<u></u>						_	<u>.</u>				ļ	ļ	1		4			ļ	<u> </u>	7	••••
K		<u> </u>					<u>.</u>		<u> </u>	_	<u></u>			<u>. </u>		_	<u> </u>	_			ļ			••••
L					2		<u>.</u>		1	<u>.</u>	6			<u>.</u>				_			ļ			••••
М		İ												ļ	<u> </u>		5				<u> </u>		_	
N													2	2							<u>.</u>	<u>.</u>		
Р															_		_				<u> </u>	-	-	
Q										<u>.</u>			<u></u>							<u> </u>	<u> </u>	_		
R													<u> </u>	<u>.</u>		2		1		<u> </u>	<u> </u>		_	
S				1		(6		i.	6		6		2	4						1			
T		6		6								1		3	1		_			<u> </u>	4-			
V				i	2								<u> </u>			<u></u>	2		7	<u> </u>				
w									·				<u> </u>		1					<u> </u>	<u> </u>	7		
Х				į									<u> </u>							<u> </u>	<u> </u>			
Y							1												ļ	<u> </u>	-	-		
Z													_	<u></u>	_	_	_		<u> </u>	Ļ	<u> </u>	 		_
-		j	į												_ _	_			ļ	ļ		<u>ļ.</u>		
unknown (?)				<u> </u>	<u> </u>	_						ļ	_					<u> </u>	╀				
not sequence		1			<u> </u>				╝					_	_	<u> </u>	\dashv		<u> </u>	╧	<u> </u>	4		_
sum of seq	,	6	7	7		7	7	7	7	7	7	-	7	7	7	7	7	7		7	7	7	7	
oomcaa ₃	-	6	7	6		3	6	7	6	6	6	(3	4	4	5	3	·÷		4	7	7	
mcaa*		T	С	T	F		S	G	F	S	ι	S		T _	S	G	М	G	· V		5	W		١
rel. oomcaa	5	%001	100%	96%	420%	25.0	0/098	100%	%98	%98	%98	950%	0,00	43%	57%	57%	71%	43%	100%		2/%	100%	100%	
pos occupie	d"	•	1		:	•	2	1	2		•	<u> </u>	2	3	4	3				1	2	1	-1	<u>.</u>

WO 97/08320

Table 6C: Analysis of V heavy chain subgroup 2

				Fra	me	work	(11													
amino acid'	33	40	4	42	43	44	45	46	47	48	49	20	51	52	۷	8	ပ	53	54	55
Α						6					7									
В																				
С																				
D														2					3	6
. Е								7												
. F .														2						
G		1		7		1										·				
Н						·			•			2								1
1													6							
К					6															
L							7			7		2	1	1						
M													-							
N											·								3	
Р		5	7																	
Q	6																			
R	1				1							2								
S		1																2		
T																				
V																				
W									7			1						4		
X														1				1	1	
Y														1	1					
Z																				
_															6	7	7			
unknown (?)																				
not sequenced																				
sum of seq²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa³	6						7		7	7					******	7	7			6
mcaa ⁴	Q	Р	Р	G	K	Α	L	Ε	W	L	Α	Н	1	D	-	-	-	W	D	D
rel. oomcaas	86%	71%	100%	100%	%98	%98	100%	100%	100%	100%	100%	29%	%98	29%	%98	100%	100%	57%	43%	%98
pos occúpied ^a	:		1	1	2	2	1	1	1	1	1	4	2	5	2	1	1	3	3	2

Table 6C: Analysis of V heavy chain subgroup 2

• -	С	DR	11																	
amino acid'	26	22	28	29	09	19	62	63	64	65	99	67	89	69	2	7	72	73	74	75
Α	j				į															
В																				
. С							<u></u> į		<u> </u>											
D	5																6	1		<u></u>
E	1								1						_					
F ·		1		1																
G																				
Н				1																
														6						
K	1	6	<u> </u>						4							6				6
L			<u> </u>					7				7								
М.																				
N			<u></u>														1			
Р			<u> </u>			2													ļ 	
Q			<u> </u>															<u></u>	ļ	
R		ļ	2	<u> </u>		1			2		7					1		ļ	ļ	1
S			2	<u> </u>	6		7			4			1		5		ļ	ļ	7	
T			<u> </u>	<u> </u>	<u></u>	4			.,	3			6		2		<u> </u>	6	ļ	ļ
V .			<u> </u>	<u> </u>					,					1		·	<u> </u>	<u> </u>	<u> </u>	<u> </u>
w		ļ	<u> </u>	1	ļ					<u> </u>							ļ	<u> </u>	<u> </u>	<u> </u>
X	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1												<u> </u>	ļ	ļ	<u> </u>
Y	ļ		3	4													ļ	<u> </u>		<u> </u>
Z		<u> </u>																<u> </u>	<u> </u>	<u> </u>
		<u> </u>	ļ	<u> </u>	ļ	ļ	ļ	ļ	ļ	<u> </u>	ļ				.,,		<u> </u>	ļ	ļ	ļ
unknown (?)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	ļ	ļ	ļ	<u> </u>	ļ	ļ						<u> </u>	ļ	<u> </u>	<u> </u>
not sequenced		<u> </u>	<u> </u>		<u></u>			<u> </u>									<u> </u>	<u> </u>	<u> </u>	<u> </u>
sum of seq ²	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
oomcaa ₃	5	6	3	4	· !	·•••••••		÷	÷	÷	÷	<u> </u>				·	. 	·÷	 .	÷
mcaa*	D	K	Y	Υ	S	T	S	L	K	S	R	L	T	1	S	K	D	T	 -	
rel. oomcaas	71%	86%	43%	57%	%98	57%	100%	100%	57%	57%	100%	100%	%98	%98	71%	%98	%98	%98	100%	%98
pos occupied ^e	-			:	•	:	•	15	3	:	:	1	2	2	:	:	:	2 2	•	2

Table 6C: Analysis of V heavy chain subgroup 2

•				F	ram	ewo	rk I	1												
amino acid'	92	77	.78	79	8	81	82	۷	<u> </u>	ပ	83	84	82	98	87	88	68	90	91	92
Α													1			5				
В																				
. C																				7
D				•	·						6			7					•	
Ε																				
F .					1															
G																2				
Н											,									
1				1		2		1												
K																				
L					6															
M							7			5										
N .	5								6		1									
Р												7								
Q		7				•	*******													
R																				
S	2	••••				• • • • • • • • • • • • • • • • • • • •	*******							•••••						
T	·					5		5						•	7		7			
V			7	7						1			6							
W																				
X						********														
Υ															•			7	7	
Z																				
								1	1	1										
unknown (?)						••••••							··							
not sequenced	$\overline{}$					-														
sum of seq ²	7					•	*******												~~~~	7
oomcaa,	5		·																	
mcaa ⁴	N	Q	٧	٧	L	••••••			N	М	D	Р	٧	D	T	Α	T	Υ	Υ	С
rel. oomcaas	71%	100%	100%	100%	%98	71%	100%	71%	%98	71%	%98	100%	%98	100%	100%	71%	100%	100%	100%	100%
pos occupied ⁶	2	1	1	1	2			3		3		1	2	1	1	2	1	1	1	1

Table 6C: Analysis of V heavy chain subgroup 2

ę ęc. Allalysis ol										CDR	111									
amino acid	93	94	92	96	92	86	66	100	4	8	ပ	۵	ш 1	u (ာ	I	-	<u> </u>	×	101
А	5	·						1	2	1						_				
В																	<u> </u>			
С										<u> </u>					_	_				
D																_				6
E								2	<u></u>		1			_		_				
F															_				3	
G						1	1		1	2	1	1	1	1						
Н		1		1						<u></u>										
			3			2									_					
K							1													
L								1		1				_					1	
· M.	ļ							1											2	
N	ļ			1	2									_			1		•••••	
P				1	1	•••••	1		1											
Q	ļ		1																	
R	ļ	6	1			1			1								<u> </u>			
S	ļ		<u></u>	1		1	1			•••••										
T	<u> </u>	<u> </u>	ļ	1			1	ļ	1											
V	2	<u> </u>	1	1	1		1	1			1									
W		<u> </u>	<u> </u>			1		<u> </u>	ļ						1			1		
X	<u> </u>	<u> </u>	<u> </u>	ļ				ļ	ļ											<u> </u>
Y	<u> </u>	<u> </u>	ļ	ļ	2				<u> </u>		1	2	1	1	1			2		ļ
Z		<u> </u>	<u> </u>		_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			_				_	<u> </u>	
-	.	<u> </u>	ļ	ļ			ļ	<u> </u>	<u> </u>	2	2	3	4	4	4	6	5	3	ļ	
unknown (?)	. 	<u> </u>	<u> </u>	ļ	<u>.</u>	ļ	ļ		<u> </u>		<u> </u>								-	
not sequenced		 	1	:			1	-		==	•	-				-			; 	1
sum of seq?		· †	·†	 -	 -	·	1		÷	÷	Ť					!	-		<u> </u>	·:
oomcaa		. 	·÷·····	·÷		·•••••	· <u>;</u>	. 	. 	2	2	3	4	4	4	6	5	3	F	6
mcaa'	Α	.	. 	Н	<u> </u>		G	-	÷	-	-	-	-	-	-	-		<u>-</u>	· 	D
rel. oomcaas	71%	%98	50%	17%	33%	33%	17%	33%	33%	33%	33%	20%	67%	9029	%29	100%	83%	50%	50%	100%
pos occupied		:	2 4	:	:		6			4								3	<u> </u> :	3 1

Table 6C: Analysis of V heavy chain subgroup 2

A B	102	103	4	10								_	
В			\simeq	Š	106	107	108	109	110	Ξ	112	133	sum
}									1				35
		İ	i					i					
C	***	i						-	Ī				16
D						<u>i</u>		-	Ì				43
Ε		T				<u>i</u>	Ì	-					21
F						1		i					18
G			6		6								55
Н			*****						Ī	·			6
1											***		29
K	İ			1			1						42
L	1				••••		3		:		-		78
М													20
N							••••••						23
P	1						1						41
Q				3									23
R				2					i				41
S											6	3	82
Ţ						6	1		5				102
V	3							6		6			68
W		6											29
X		.,		<u></u>		<u></u>							4
Y	1					ļ							35
Z				<u> </u>	<u> </u>	<u> </u>							3
-						<u> </u>	<u> </u>	ļ					56
unknown (?)	·				<u></u>	ļ	<u> </u>	<u> </u>					
not sequenced	1	1	1	1	1	1	1	1	1	1	1	4	54
sum of seq'	6	6	6	6	6	6	6	6	6	6	6	3	
oomcaa ₃	3	·	·····	• • • • • • • • • • • • • • • • • • • •	·;······	- 	÷	·			***********		
mcaa ⁴	٧	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa ⁵	50%	100%	100%	20%	100%	100%	50%	100%	83%	100%	100%	100%	
pos occupied ⁶	4	1	1	3	1	1	4	•	:	•	1	1	

SUBSTITUTE SHEET (RULE 26)

Table 6D: Analysis of V heavy chain subgroup 3

Γ			-											Fr	ame
amino acid'	_	7	m	4	2	9	7	8	6	0	=	12	13	14	15
А	T				1		1			12		1		3	1
В			1			1							1		
. С															
D	1					1				16					
E	110		9		15	166			9				8		2
F ·											4				
G								181	193	174		1			202
Н			5										4		
1												9			
K		5	3										26		
L		1	5	176	43						140			1	
М		1.2		1.											
N										1					
Р			i								······		1	194	
Q	41		138	1	3	12							162		
R			6										4		
5							178			2				8	
T							1								
<u>V</u>	5	147		1	118						62	195			
W					•										1
X					.,							·			
Υ												•			
Z	8														
															•
unknown (?)	ļ							<u></u>		<u> </u>					•••••
not sequenced														_	
sum of seq ²	-	· i······	***********			*******		,	·,	•	t	:	1	206	•
oomcaa,			*		,	.,					•			194	
mcaa*	E	٧	Q	L	٧	E	S	G	G	G	L	V	Q	Р	G
rel. oomcaas	67%	%68	83%	%86	%99 9	92%	%66	100%	%96	85%	%89	95%	79%	94%	%86
pos occupied	•	•		:	•	1	i	:	2	•	•	•	7	4	4

حکار

WO 97/08320 .

Table 6D: Analysis of V heavy chain subgroup 3

v	vork l														
amino acid'	16	17	18	19	20	21	22	23	24	25	56	27	28	59	8
Ä								183	192		1				
В							İ								
. C						1	209								
D														<u> </u>	7
E	8							8			3		1		
F .		1	1			1						201		201	
G	134								2		207				
Н															
ı								2				3	17	1	
К				15											
L			205		201							6		3	
М			1										1		
N													10		1
Р								1					2		
Q			1												
R	62			191											1
S		206				207		4	2	209			15		17
T	4	1		2				4	4			1	163		
٧					8			7	9				1	- 6	
W															
Χ															
Υ															
Z													<u> </u>		
-									ļ 				ļ		
unknown (?)									ļ				<u> </u>	<u> </u>	
not sequenced															: -
sum of seq?		********			***********	,	,,,,,,,,,,	•				:	:	211	:
oomcaa3	134	206	205	191	201	·	209	183		,	,			201	
mcaa*	G	S	L	R	L	S	С	Α	Α	S _.	G	F	T	F	
rel. oomcaas	64%	%66	%6 6	92%	% 96	%66	100%	%88	92%	100%	98%	95%	78%	95%	
pos occupied ⁶			:			:	:	<u> </u>	•	:		:	1	1	:

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

Γ				CD	RI									Fra	ameı
amino acid'	31	⋖	8	32	33	34	35	36	37	38	33	40	4	42	43
А	1		T	17	80		1			1		187		1	
В		•		-											
С		<u>-</u>									į	ī		1	
D	26		*******	3	7		2								
E	1				10									1	1
F .				5											
G	13				31		1					2		209	
Н				4			88								
l	1			1		15			12						
К	7						İ				1				202
L	- 3					3	İ		2	3	1	2	1		
М						193									
N	35			8	3		34								
Р				1			1					4	191	<u> </u>	
Q											209		1		1
R	7					.,				207		7			8
S	103			17	8		72					3	14		
T	9				15	ļ . 	10					4	5		
V	2			•••••	7	1			197			2			
W					30	ļ		212				*********			
X	1					ļ									
Y	1			154	19	ļ	3								
Z															
-		210	210			<u> </u>							<u> </u>		
unknown (?)	ļ				ļ	ļ	ļ								
not sequenced				2			<u> </u>		1						
sum of seq ²		***********	***********		····			,		,			:	:	212
oomcaa,		210	210	************	,,	~ ?************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	************	•					202
mcaa*	S	-	-	Y	Α	М	Н	W	٧	R	Q	Α	Р	G	K
rel. oomcaas	49%	100%	100%	73%	38%	91%	42%	100%	93%	%86	%66	88%	%06	%66	95%
pos occupied ⁶	14	1	1	9	10	:	9	1	3	3	3	9	5	4	4

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

•	work	11													
amino acid'	44	45	46	47	48	49	20	51	52	٧	8	U	53	54	52
Α	1					77	42		1	2		14		7	
В			3							1					
· c													1	i	
D			1							7			94	8	3
Е			198						3	.2	1		2		1
F							7	1	2	1				1	8
G	207					33	11	ŕ	10	46			4	163	85
Н							6			1					
ı					3		3	191		1					1
К								1	37	2	30		3	1	
L		211			5		12	1							
М				•			1	1							
N							13		7	9	2		13	11	1
P		1						1		1			1		
Q			7				7			10					
R	1						24	1	17	5	1		2		16
S	3			1		102	11	9	118	43		1	74	17	82
Ţ					٠		3	5	4	2		13	12	3	3
V.			3		204		49	2		1		6	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
W				210			1		8	6					
Х													4		3
Y				1			22		5	58					8
Z															
_										14	178	178	2	1	1
unknown (?)															
not sequenced															
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	207	211	198	210	204	102	49	191	118	58	178	178	94	163	85
mcaa'	G	L	E	W	٧	S	٧	1	S	Υ	-	-	D	G	G
rel. oomcaa ^s	%86	100%	93%	% 66	%96	48%	23%	%06	26%	27%	84%	84%	44%	77%	40%
pos occupied"	:									1					

Table 6D: Analysis of V heavy chain subgroup 3

	C	DR II													
amino acid'	26	22	28	29	09	61	62	63	64	65	99	67	89	69	2
А	9	1	2		174	33							1		
В	1	2										<u>, </u>			
. С															
D	11		17			160									
E	8	3	2			1			2	.					
F .	1		3	2		<u> </u>		<u></u>				207			
G	5	1	5		4	5	<u></u>			212	1				
Н	1		4				<u></u> į								
I	3	37	2					8					14	208	
К	1	61							199		8				
L	1	1	1		1							1		1	
М	8		2		1										
N	51		4			2			2			·			
P	1	1			6	8	18		1						
Ω	3	2							2		2				
R	5	4			5				6		201				
S	48		11		4		193					2	7		211
Т	42	97	5		7								189		1
V		2			10	2		204				1		3	
W			2												•
X	4		1		.,,.,	1									•••••••••
Υ	9	,	151	210		: :	1					1	1		•••••••
Z															
															
unknown (?)						<u> </u>									
not sequenced						<u> </u>									
sum of seq ²	212	212	212	212	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	51	97	151	210	174	•;•••••		;~~~~~	·*····	·		;	·	208	
mcaa*	N	T	Υ	Y	Α	D	S	٧	K	G	R	F	T	1	S
rel. oomcaas	24%	46%	71%	%66	82%	75%	910%	%96	94%	100%	95%	98%	%68	%86	100%
pos occupied ^a	19	12	1	i	:	:	:	2	•	1	4	5	5	3	i

167

Table 6D: Analysis of V heavy chain subgroup 3

•										Fran	newor	k III			
amino acid'	71	72	73	74	75	9/	77	78	79	80	81	82	⋖	8	ပ
Α				57			1	8						1	
В											2				
C															
D		199	38		2	2			1				10		
Ε		6			4						5				
F									13						
G													.1	4	0 00000000 00 **
Н						1			1		2		2		.
- 1			1				2	2				3	1	1	
K					186	6							3		•••••
L								188		209		3	1		212
M	1				2		10	3		2	_	205			•••••••
N		5	170		2	188					3		181	10	***********
Р							1								
Q					7						199				
R	211				1	1							2	8	
S				153	8	10	56		3				6	186	
T							142				1		4	2	
<u> </u>				1				11		1		1			
W											************				*********
X		2	2			4							1		<u></u>
Y					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				194						····
Z						·									
_															
unknown (?)															
not sequenced			1	1											
sum of seq'	212	212	211	211	212	212	212	212	212	212	212	212	212	212	212
oomcaa,	211	199	170	153	186	188	142	188	194	209	199	205	181		212
mcaa*	R	D	N.	S	K	N	T	L	Υ	L	Q	M	N	S	L
rel. oomcaas	100%	94%	81%	73%	%88	%68	%29	%68	92%	%66	94%	92%	85%	%88	100%
pos occupied	2														

Table 6D: Analysis of V heavy chain subgroup 3

_										1					
amino acid'	83	84	82	98	87	88	68	8	91		93	94	95	96	97
А		149	1	Ī	1	207		T			173	2	15	9	11
В		i													
· C									1	210		5	2		1
D		5	15	209					*************			2	54	7	6
E	1		190	.			i						11	2	11
F .							1		15			1	·	9	6
G	1	1	6			4	1				2	8	34	26	35
Н		1							1					3	11
		8			i		2						4	15	10
K	30											60	4	3	5
L	-						18					1	6	11	7
М					2		1							6	1
N		1		1								2	20	4	
Р		9						<u></u> j			1	3	4	29	10
Q				1								5	3	9	
R	177											103	9	30	19
S		1			1							3	9	8	1
T	3	28			207		1			·····	25	15	7	6	
V	.,,,,,,,,,	9					187				10	1	i		1:
W										1			3	4	
X		ļ		1											
Υ						ļ		211	194				12	9	
Z													<u> </u>		
						ļ	ļ	<u>.</u>					1	3	<u> </u>
unknown (?)			<u>.</u>			ļ									
not sequenced			<u> </u>		1		1	 						: 	-
sum of seq ²	*****	•••• ••••	•••••	:	;	- i		•	1	1	211	:	į.	ì	i
oomcaa,	;	~ ; ~~ ~~~	4		,	.;					173			- 	· ••••• ••
mcaa ⁴	R	Α	Ε	D	T	Α	٧	Υ	Υ	С	Α	R	D	R	G
rel. oomcaas	83%	20%	%06	%66	%86	98%	89%	100%	92%	100%	82%	49%	26%	15%	3
pos occupied ^a	-	10					2 7	1	-	•	2 5	14	1 18	20) 2

WO 97/08320

Table 6D: Analysis of V heavy chain subgroup 3

•					CDI	RIII							•		
amino acid'	86	66	100	⋖	8	ပ	Q	w	ш	9		-	-	×	101
A	7	13	7	9	6	2	3	5	5		9		13		2
В															
С	13	5		1	2	11	3		2					1	
D	11	7	10	4	2	3	10	3	3	1		3	2		146
E	6	3	1	13	·	1	1								1
F .	3	5	4	5	5	6	3	5	7	2		1	1	65	1
G	34	17	35	17	14	23	10	5	1	5	3	2	32		6
Н	3	4	3	2	9	2		1	3	1	2	8	1		
	6	11	4	4	3	1	3	10	3	3	2		1	2	
K	2	11			3	1									
L	26	13	4	12	8	2	6	3	10	3				2	1
. M		1	2								1			32	
N	4	6	4	3	2	2	6				2	5			2
Р	6	5	5	6	9	8	2	3	2	1		3		9	
Q	4		1	1	1	1	. 1					1			
R	4	10	9	7	5	5	2	3	1		1		2		4
S	16	28	27	25	24	8	11	9	3		2	3	1	1	1
T	6	12	9	17	17	1	2	5	1	9	3	1			
V	13	7	15	4	3	6	2	12		1	1	1	1		
W	6	5	6	7	2	4				1		6	10		
X				1											1
Y	16	14	17	5	8	18	20	13	20	25	28	32	28		
Z															
-	12	21	35	54	73	87	102	110	126	135	134	120	91	71	21
unknown (?)							3	2	1	1			3		
not sequenced	14	14	14	14	15	19	21	22	23	23	23	25	25	. 26	25
sum of seq ²	198	198	198	197	196	192	190	189	188	188	188	186	186	185	186
oowcaa ₃	34			54	73	87	102	110	126	135	134	120	91	71	146
"mcaa"	G	S	G	-	-	-	-	<u>.</u>	-	-	-	-	-	-	D
rel. oomcaas	17%	14%	18%	27%	37%	45%	54%	58%	67%	72%	71%	65%	49%	38%	78%
pos occupied ⁶	20	20	19												

Table 6D: Analysis of V heavy chain subgroup 3

					Fr	amew	ork I	/					
amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
A	1	T	1	I		2							1767
В				1	į								13
С													47(
D	2												112
E					1								833
F	2												80
G			140		130		1						274
Н	4		<u></u>										17
l	15	<u></u>	<u>i</u>						1	1			65
K			<u></u>	13									93
L	10		į	1			91					2	188
М							6						49
N	1					1							84
Р	17					1	1						56
Q				111	,								94
R				8									141
S	7	1									118	110	300
· T .		<u> </u>				123	27		122			1	142
V	34		1			1		125		119			185
W		158				<u>.</u>							68
Х						ļ	<u> </u>						2
· Y	82			<u> </u>									159
Z							<u> </u>						
	9	2	2	2	2	2	2	2	2	2	1	1	202
unknown (?)				<u> </u>	<u> </u>	<u> </u>	<u></u>	ļ					1
not sequenced	27			:								97	169
sum of seq?	184	161	144	136	133	130	·÷	127			:	114	•
oomcaa3	82		÷	· }	130	· • · · · · · · · · · · · ·	·÷	125	£	····	÷~~~~		
mcaa*	Υ	W	G	·O	G	T	L	٧	Τ	٧	S	S	•
rel. oomcaas	45%	%86	92%	82%	%86	95%	71%	%86	%86	98%	%66	%96	
pos occupied ⁶	:			-			•	2		1	:	•	1

Table 6E: Analysis of V heavy chain subgroup 4

														Fr	ame	wor	k I			
amino acid'	_	2	က	4	Ŋ	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20
Α									19					1			1		1	
В																		·		
· C															ı					
D																				
E						32										44				
F ·																				
G								54	1	53		_				2				
Н			4		2	·														
K												1	54						1	
L		7		54							53	19		1	•			53		50
M																				
N						******				•••••								•	******	
Р									33					51	1					2
Q	52		50		51	20										7				
R	1				*****															
S							33								52				52	
T									1		·						52			
V		47				1	******					34								1
W							20				·									
X																				
Y																				
Z	1																			
unknown (?)				٠																
not sequenced	_3	3	3	3	4	4	4	3	3	4	4	3	3	4	4	4	4	4	3	4
sum of seq ⁱ	54	54	54	54	53	53	53	54	54	53	53	54	54	53	53	53	53	53	54	53
oomcaa¹		********		54	51	32			33	53	53	34	54	51	52	44	52	53	52	50
mcaa'	Q	٧	Q	L	Q	Ε	S	G	Ρ	G	L	٧	K	Р	S	Ε	T	L	S	L
rel. oomcaas	%96	87%	93%	100%	%96	%09	62%	100%	61%	100%	100%	63%	100%	%96	%86	83%	%86	100%	%96	94%
pos occupied ⁶	: :							1					•••••••••••••••••••••••••••••••••••••••	•						3

Table 6E: Analysis of V heavy chain subgroup 4

•														CD	RI					
amino acid'	21	22	23	24	25	56	27	28	29	င္က	31	∢	ω	32	33	34	35	36	37	38
А			22											1	į				<u></u>	
В							.							_						
. С		53									<u> </u>	<u></u>			1					
D			1								4	1	1	1			1			
E																				
F					1			<u> </u>	22					1	1				1	
G						53	53				21	3	4				8			
Н							1	<u></u> į	İ					2						
ı			1				İ	1	32										51	
K																				<u> </u>
L																			1	<u> </u>
M																				
N										1	1		2	2			1			<u> </u>
Р								3											<u> </u>	
Q											1				*******				<u> </u>	<u> </u>
R						1				3	2		1			<u> </u>		<u> </u>	<u> </u>	5
S			2		35			51	1	52	25	5	9	1			44		1	<u> </u>
T	53		29								2	1					3	<u> </u>	<u> </u>	<u> </u>
٧				55		1			1									<u> </u>	3	
W							٠					1			2	56	<u> </u>	57	<u> </u>	<u> </u>
Χ				<u> </u>															<u> </u>	
Υ				<u> </u>	19		1							48	52		<u> </u>			
Z																			<u> </u>	<u> </u>
												45	39							
unknown (?)															<u></u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>
not sequence	4	4	2	2	2	2	2	2	1	1	1			1	1	1	<u> </u>	_	<u> </u>	<u> </u>
sum of seq'	53	53	55	55	55	55	55	55	56	56	56	56	56	56	56	56	57	57	57	5
loomcaa,	53	53	29	55	35	53	53	51	32	52	25	45	39	48	52	56	44	57	51	5
mcaa*	T		*******	٧	· ;·····	*****	G		1	·	. 	· frames	-	Υ	Υ	W	******	W		1
rel. oomcaas	90001	%CO	53%	0001	64%	%96	%96	93%	57%	33%	45%	30%	70%	%98	93%	100%	77%	100%	%68 80%	
pos occupied			1 5	· 	╁┈≖	3	•	•	4	i	7	ŧ	6	•	•				7	5

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

				Fra	ame	wor	k 11												_	
amino acid'	39	40	41					46	47	48	49	20	51	52	4	8	ပ	53	54	55
Α			8	1							1									
В																				
· C																				
D														1				1		
E				1	•			56				22		,	-					
F .												1		1						
G				55		55					56	1						1		5
Н		2																24		
l										54		1	54							
K					54															
L		1				·	55			2										
. M																				
N														21			·			
Р		50	49				2										·			
Q	56							1				1								
R					3	2						9		1						
S		3							-			7		1					52	<u> </u>
Ţ	1	1																8	5	
V										1			3							
W .									56											
Χ .																				
Υ									1			15		32				23		
Z																			~	
-															57	57	57			
unknown (?)																				
not sequenced																				_
sum of seq ²	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57	5
oomcaa ^{1.}	,		,		*********		55			54	56			32	57	57	57	24	52	5
mcaa*	Q	Р	Ρ	G	K	G	L	Ε	W	١	G	Ε	١	Υ	-	-	-	Н	S	G
rel. oomcaas	%86	98%	%98	%96	95%	%96	%96	%86	%86	95%	98%	39%	95%	26%	100%	100%	100%	42%	91%	100%
pos occupied ^a						2		•		•	•	8			1		•		2	

174

Table 6E: Analysis of V heavy chain subgroup 4

	С	DR	II																		
amino acid	26	22	ς,	3 6	ຄ	8	19	62	ន	64	65	99	67	89	<u>e</u>	2	<u> </u>	72	73	74	75
Α		1						i				1		1			1				1
В			<u> </u>													_					·········
. С			<u> </u>										_								
D			<u> </u>	2									1					55			
E			<u> </u>	_										_				1			
F			<u> </u>		3								_						1		
G	1		ļ		_						1										
Н :			<u>.</u>	2														********	<u> </u>		
<u> </u>	1	1	<u> </u>										1	1	48		3		ļ	<u></u> .	
K	.		ļ		<u> </u>	1				53		<u> </u>							1	<u> </u>	5
<u> </u>	<u></u>	<u> </u>					1		55				1				3			ļ	
<u>M</u>	<u> </u>	<u> </u>													7				2	<u> </u>	<u> </u>
N	2	ļ		10		53								2					ļ	ļ	<u> </u>
P		<u> </u>	-	_			54	<u></u>	1										ļ	-	-
Q		ļ	_	_		,												1	<u> </u>	<u> </u>	-
R	2	<u>.</u>		<u>ļ</u> .			ļ	ļ	ļ	3	 -	56						ļ	-	 	-
S	49	<u> </u>		1		2		56	ļ	<u> </u>	56			1		56		<u> </u>	· •	57	
T	1	5	4	1			1	<u> </u>	<u> </u>	1	<u> </u>			51		1	!	<u> </u>	52	<u> </u>	╀
<u>V</u>	1	<u> </u>	1				ļ	ļ	<u> </u>	ļ	ļ		53		2		50	<u> </u>	<u> </u>	<u> </u>	
W		<u> </u>	_				<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>	 	 	┼-
X	_	<u> </u>	_	_	.,				-	-	-	<u> </u>		<u> </u>	<u> </u>		-	<u> </u>	 	<u> </u>	-
Y	-	┇-		11	54	ļ	-	-	-	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>			-	<u> </u>	-	-	-
Z		<u>!</u>	<u> </u>	_		<u> </u>	<u> </u>	<u> </u>	<u> </u>	╄	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u>!</u>	<u> </u>	 -	<u> </u>	÷
	-	<u> </u>	4			-	-	-	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	╬-		-	-
unknown (?)	В	-						-	-	-	 	 		┞	<u> </u>		<u> </u>	-			╬
not sequence	d	┿-	1		_			1	·				1	<u></u>	<u></u>	_	<u> </u>		<u> </u>	 	-
sum of seq ²																					
oomcaa,	ļ		÷			*******						56	53 V		48 I	56 S					/ !
mcaa*	S		T	N	Y	N	Р	- <u> </u>	 -	K	S	R	_ V	T		-	- v				
rel. oomcaa	2000	260	95%	20%	95%	950	9090	3001	980	920	980	98%	95%	91%	84%	%86	9000		30%	3000	3
pos occupie			4		:	•	•	3	•	į	3	•	i	i	1		2	4	3	5	1

Table 6E: Analysis of V heavy chain subgroup 4

•						ewo	rk II													
amino acid'	92	77	78	79	80	81	82	∢	മ	ပ	83	84	82	98	87	88	83	06	9	92
Α									.			55	57			57				
В								İ		İ	·									
· C											<u> </u>									57
D					1						·		ļ	57						
E						1														
F .			54						1										<u> </u>	
G								1			į		<u> </u>							
Н																				
1			1					1			3		.							
K	3		<u>.</u>			46		2												
L		3	1		55		53			2							1			
M _.						1	1			1							1			
N	54					3		3	1											
Р			<u> </u>																	
Q	<u></u>	54	<u></u>		1	1	ļ													
R	<u> </u>	<u> </u>	ļ	<u> </u>	<u></u>	2		2				1					<u> </u>			
5	<u> </u>	<u> </u>	1	57	ļ	2	1	44	55		1				2		<u></u>		1	
T	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	1	ļ	4			53				55		<u> </u>			
V	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	2	ļ		54		1					55			
W	<u>.</u>	<u> </u>	ļ	ļ	<u> </u>		ļ		ļ								<u> </u>			
X	.[ļ	ļ	<u> </u>	<u> </u>		ļ		<u> </u>								<u> </u>			
Y	.[<u> </u>		<u> </u>	ļ		ļ	ļ	<u> </u>		ļ	<u> </u>					<u> </u>	57	56	
Z ·	ـــــــ	<u> </u>	<u> </u>	<u>!</u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>						<u> </u>	:		
_		<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>		ļ	ļ	<u> </u>	<u> </u>				ļ	<u> </u>	ļ	<u> </u>	ļ
unknown (?)		<u> </u>	<u> </u>	<u>.</u>	<u> </u>	ļ	ļ	<u> </u>	ļ		<u> </u>	<u> </u>	ļ			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
not sequenced	~	<u> </u>	<u>_</u>	_			<u> </u>				<u> </u>		<u> </u>				<u> </u>	<u> </u>		
sum of seq	;	·••••••	·••••••	•••••••	·*····	••••••	·••	Ţ	Ţ	Ţ	;		:		•		7		:	
oomcaa3	*****	·~···			********	**********	··; ····			÷~~~	******	÷	57	<u> </u>	7	•	·	·	·	•
mcaa'	N	0	F	S	L	K	L	S	S	٧	T	Α	Α	D	T	Α	٧	Υ	Υ	С
rel. oomcaas	95%	95%	95%	100%	%96	81%	93%	77%	%96	95%	93%	%96	100%	100%	%96	100%	%96	100%	%86	100%
pos occupied	5 2	:		•	•	•	•	•	3	•	3	:	:	1	2	1	3	1	2	1

WO 97/08320

Table 6E: Analysis of V heavy chain subgroup 4

				<u>.</u> .						(CDR	111									
	amino acid'	93	94	92	96	97	86	66	001	∢ .	ω	ပ	۵	ш	<u>.</u>		Ξ	_	_	×	101
	Α	56		3	3	3	2	5	4	2	2	4		2	1		1	1	12	i	
ľ	В		i					Ī					į							<u> </u>	
ļ	. C		Ì	Ī		1				1											
	D			6		5	5	5	4	3	2	4	3	1		1	2	1			41
	E			- 6	1	1	2	1			1	3	1	2	1						
	F .				4	1	1		2	3	2	2		1	1					31	
	G			25	9	10	8	10	11	4	7	7	6	1	1	1	2	1	9		
	Н			1				1			į			1			1				2
					1		2	4	1	3	2	3		1						1	
	К			2	1						2	2			1						
	L			2	6	7	3	5	3	2	4	1	5	3	3		1				
	М				1	4		3	1		2	1			`					9	
	N				3					2	1	1	5	1	1			2			
	P ·				4	5	3	1	1	2	1	1	1	2	3	1	2	_1			
	Q					1	1		1			1	1			3					1
	R		54	4	12	2	5	5	3	2	3	1	2			2	1				
	5		1	1	4	8	8	1	2	5	7	4	2	1	1	1					
	<u> </u>		1	1	2	1	3	4	4	3	3		ļ	1	1	-1					
	<u> </u>	1	1	4	2	2	5	4	4	7	3	1	2	1							
	W			1	2	1	2	2	4	5	1	1	2		2	1		3	2		
	<u> </u>			ļ			ļ														
	Y				1	4	5	3	6	4	2	3	4	8	4	8	3	5	. 8		2
	Z	<u> </u>		<u>!</u>			<u> </u>														
		.	<u> </u>	ļ	ļ <u>.</u>	ļ	1	2	4	6	9	11	16	23	27	29	34	31	14	4	
	unknown (?)	 	<u> </u>	ļ	<u> </u>	<u> </u>	ļ				_	_			1			1	 	 -	
	not sequenced	7	<u> </u>	1			•	1					-		_					11	_
•	sum of seq ²	·····	÷	÷	Ť		·	;				:						•	•	46	1
	oomcaa,		÷	÷	·	•••••	·••••	10	····		9	11	16	23	27	29	34	31	14	31	<u> </u>
	mcaa*	A	R	G	R	G	G	G	G	V	-	-	-	-	-	-	-	-	-	F	D
	rel. oomcaas	%86	95%	45%	21%	18%	14%	18%	20%	13%	17%	22%	32%	47%	26%	%09	72%	67%	30%	67%	%68
	pos occupied		:	:	:	:	:	:	:	÷	•	18	•	•	:	:	:	8	5	4	4

Table 6E: Analysis of V heavy chain subgroup 4

	l					Fra	mev	vork	IV					
	amino acid'	102	103	104	105	106	107	108	109	110	111	112	113	sum
	A						1			1				332
	В						Ì	i						
	Ć						i		<u>†</u>	Ī	Ī			113
	D						i	<u>†</u>	<u>†</u>					210
	E		i					i						176
	F		1					Ī						135
	G			41		40	1	i						674
·	H	1						i		1		•		45
	1	9					1							282
	K				3				i					278
	. L	4						19						540
	.М		i					.9	į					43
	N						1					,		204
	Р	3			2								2	281
	Q				29									334
	R	1			4			1	į					250
	5	1			1							36	33	986
	T				1		33	8		34				532
	V	12							36		36			488
	W		46									•••		267
	X													
	Υ	16											•	455
	Z													1
	-		<u> </u>		ļ	ļ	ļ	<u> </u>						466
	unknown (?)	<u>.</u>	<u> </u>	ļ	<u> </u>	ļ	<u> </u>	<u> </u>						4
	not sequenced	~			-			:					-	426
	sum of seq²	47	46	41	40	40	37	37	36	36	36	36	35	
	oomcaa¹	-	÷	·····	····	·		÷	36		*******	·	····	
	mcaa*	Υ	W	G	Q	G	T	L	٧	T	٧	S	S	
	rel. oomcaa ^s	34%	100%	100%	73%	100%	%68	51%	100%	94%	100%	100%	94%	
	pos occupied	8	1	1	6	1	5	4	1	3	1	1	2	

170

Table 6F: Analysis of V heavy chain subgroup 5

															Fra	mev	vork	(
amino acid'		2	က	4		. (و	_		6	0	=	12	<u>ლ</u>	4	15	16	12	<u>2</u>	19	20
Α						1			1	89		1			1				<u>.</u>		•••••
В																					
. С								1		·								<u> </u>		<u> </u>	
D									į	į	2										
E	88	1				2				4	93						92				
F .																		1			•••••
∖ G	1								92							94					
Н																					
																					9
K													94	94						77	
L		1		91			2												95		
M												3								1	
N			Ī	<u> </u>											<u></u>						
P					ı					1					94						<u>.</u>
Q	. 3		9:	2		1	90						<u> </u>				3			1	<u> </u>
R							1						1	1	<u> </u>	1				17	<u> </u>
5								92		<u> </u>	<u></u>	<u> </u>	<u>.</u>					94			<u> </u>
T										<u> </u>	<u> </u>	<u></u>	<u></u>					ļ			_
٧		90)		8	39				1		91	<u></u>					<u></u>	ļ		<u> </u>
W										<u>.</u>	<u> </u>	<u> </u>	<u>.</u>				<u> </u>	<u> </u>	ļ		<u>.</u>
Χ									<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u></u>	ļ	<u> </u>		<u> </u>
Υ													<u>.</u>	<u> </u>				ļ	<u> </u>		<u>.</u>
Z												<u> </u>	<u>!</u>	<u> </u>				<u> </u>	<u> </u>		Ļ
_			<u> </u>						<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ		ļ	ļ	ļ	<u></u>	<u>.</u>
unknown (?)									<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
not sequenced					5	4					-			2	-		2	-		=	<u> </u>
sum of seq'	*****			***	****	******	****		·	*********				95	•	•	•	•	1		•
oomcaa³	88	3 9	0 9	2 9	1	89	90	92	92	89				94	,			94	95		
mcaa'	E	۷	′ ()		٧	Q	S	G	Α	E	۷	K	K	Р	G	E	S	L	K	
rel. oomcaas	96%	2000	00-00	0,001	0/66	%96	97%	%66	% 56	940%	98%	9090	%66 2006	%66	%66	%66	9206	%66	100%	80%	
pos occupied			···†··		2		:	3 2	1	2	•	2	į	2 2	1	•	•	2 2		1	4

179

Table 6F: Analysis of V heavy chain subgroup 5

														CE	DRI					
amino acid'	21	22	23	24	25	26	27	28	29	30	31	∢	В	32	33	34	35	36	37	38
A				3	2					4							8		1	
В														·						
· C		96						• 1			1									
D								2			2						1			
E						2					1			,						
F.					3		6		97					2						
G				92		93					1						72			
H											1			4						
l										4						93				
Κ .			89					1												
L	·												,		1				2	
M			1										_		•	1.			1	
N			1					2		4	14			2		••••••	•	•		
Р					1															
Q			4																	
R			1			1		2							1					9
S	94			1	90			84		10	61			2	2		15			
Ţ	2							5		75	16					2	1			
٧															·	1			93	
W															93	·		97		
X																		·		
Y							90							87						
Z																				
•										İ		97	97							
unknown (?)																				
not sequenced	1	1	1	1	1	1	1													
sum of seq ⁷	96	96	96	96	96	96	96	97	97	97	97	97	97	97	97	97	97	97	97	9
oomcaa,	94	96	89	92	90	93	90	84	97	75	61	97	97	87	93	93	72	97	93	9
mcaa'	S	С	K	G	S	G	Υ	S	F	T	S	-	-	Υ	W	ı	G	W	V	P
rel. oomcaas	98%	100%	93%	%96	94%	97%	94%	87%	100%	77%	63%	,000 100%	100%	%06	%96	%96	74%	%001	0,96	%000
pos occupied"			5			_					8		1	5						

Table 6F: Analysis of V heavy chain subgroup 5

. •				Fra	me	work	: 11													
amino acid'	33	40	41	42	43	44	45	46	47	48	49	20	51	25	4	8	ပ	53	54	52
A			1			1									1			2	1	
В				i																
· C													.	1				1		
D														14				8	93	
E					3			97				<u>. </u>		•					2	
F												1	<u> </u>	2						
G				97		96					95							69	1	
Н														3	1					
										1		75	92		·					
K		1			94															
L							94			2		2	1							
M		92	Truspr S		. magari 30 ma		******			89			1							
N																				
Р			96				2							1	93					1
Q	97						1													
R		1									1	14						1		
S												1			1			16		96
T		1										3	1		1				<u>.</u>	
V		2					,			5	1	1	2		******				ļ	
W									94											
X																			ļ	
Y			<u> </u>	<u> </u>				ļ	3					76					ļ	<u> </u>
Z	_		<u> </u>		<u> </u>												<u> </u>	<u> </u>		
-	<u> </u>	<u> </u>	ļ	<u> </u>	ļ	ļ	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>				97	97	ļ	ļ	<u></u>
unknown (?)	ļ	ļ	<u> </u>	<u>.</u>	<u> </u>	ļ	ļ	ļ	<u> </u>	<u> </u>	ļ	<u> </u>					<u> </u>	ļ	ļ	ļ
not sequenced	?		<u> </u>	<u></u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>					<u> </u>	<u> </u>		<u> </u>
sum of seq? .	·	†····	:	÷•••••	·	! -	·•••••	i	!			÷				:	 -	:	ţ	
oomcaa,		ф	ф~~~~	*******	·	• • • • • • • • • • • • • • • • • • • •	÷	·	ėnam.	•	********	********	92		,	97	97		93	*****
mcaa*	0	М	Р	G	K	G	L	E	W	М	G	1	1	Υ	Р	-	-	G	D	S
rel. oomcaas	100%	95%	%66	100%	92%	93%	97%	100%	92%	92%	%86	77%	95%	78%	%96	100%	100%	71%	%96	%66
pos occupied ⁶	1	•	:	!	2	:	:	:	:		•	•	5	:	:	•	1	Ţ		2

Table 6F: Analysis of V heavy chain subgroup 5

•	С	DR	11										·							
amino acid'	26	23	28	23	8	19	62	83	64	65	99	67	89	69	2	71	72	73	74	75
Α		6					1									88				
В									·			·								
· C					ĵ					1										
D	77									2			·				97			
E	3								2									2		
F.				2				91				1		3						
G	1									94										
Н											15									
l		4	1					1				3		88						9
K .			2															93		
L						1		4							2					
M .														.3.						
N	2		14	2																
. Р						95	1		1.										1	
Q									91		81							1		
R			78						3		1			1				1		
5	2	2			95	1	95	1					1		95				96	
<u>T</u>		85	2		1								96							_
V				1			•••					93		2		9				_
W ·																				
X		*******	<u> </u>				i								-					
Υ	12			92																
Z	_																			_
-			ļ	ļ								· · · · · ·								
unknown (?)			<u> </u>		ļ															
not sequenced	_		<u> </u>	<u> </u>	<u> </u>															_
sum of seq?	•		†	···	 -	:							*********							 -
oomcaa ₃	ļ		÷	·····	·			*******						**********		************	,	*******	96	·····
mcaa*	D	T	R	Υ	S _.	Р	S	F	Q	G	Q	٧	Ţ	<u> </u>	S	Α	D	K	S	
rel. oomcaas	79%	88%	80%	95%	98%	98%	%86	94%	94%	92%	84%	%96	%66	91%	%86	91%	100%	%96	99%	7070
pos occupied ⁶	!		•	:	:	:														

PCT/EP96/03647

Table 6F: Analysis of V heavy chain subgroup 5

•				F	ram	ewo	rk II													
amino acid'	9/	77	78	79	80	8	82	∢	80	ပ	83.	84	82	98	87	88	83	06	91	92
Α		1	91								1	96				93			i	
В							ļ		į											
. С			į				1								İ					95
D				1										96			į			
E						1					1					·				
F .				1														2	6	-
G								3	1							4				
Н						3														
ı															2		9			
K											91						1			
L					96					97							2			
M		• •		ļ				ĺ									84			
N	7							2	2						2					
Р			1																	
Q						93							7							
R	1						1	1	3		3									<u></u>
S	87	2	1	1				90	91				96		5					<u> </u>
Ţ	2	94	2					1			1	1	1		88		1			
·V			2		1									1						<u> </u>
W							95													
Х																				
Y				94										•				94	89	
Z																				
-				į										•					<u> </u>	<u>.</u>
unknown (?)																			<u> </u>	<u></u>
not sequenced		<u> </u>	<u> </u>				<u> </u>											1	2	
sum of seq²	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	97	96	95	9
oomcaa,	87	94	91	94	96	93	95	90	91	97	91	96	96	96	88	93	84	94	89	9
mcaa*	S	T	Α	Υ	L	Q	W	S	S	L	Κ	Α	S	. D	T	Α	М	Υ	Y	(
rel. oomcaas	%06	%26	94%	92%	%66	%96	%86	93%	94%	100%	94%	%66	. %66	%66	91%	%96	87%	%86	94%	70001
pos occupied		1		:	:	•	i	:	•	†·		T	2		:	:	<u> </u>	Ī	Ī	

PCT/EP96/03647

WO 97/08320

Table 6F: Analysis of V heavy chain subgroup 5

le or. Allalysis of										CDF	R III									
amino acid'	93	94	95	96	97	86	66	100	⋖	ω	U	۵	ш	u.	ပ	I		_	×	<u>10</u>
А	92		1	1	2		3	4	3	2		1			1			4		2
В		<u> </u>														<u></u>				
. с						1	1	1			2		1							
D				3	3	3	3	1	2	1	1	2		2	1	1	2		<u> </u>	37
E			1	1	1	. 2			1	1				1			1			
F .					1		3			3	2		1						26	
G			1	9	11	12	12	5	2	4	3	. 10	2	1			<u> </u>	5		
Н			10	1		2			1	1		1								
l				3		2	2	1	. 1	4	1	1		1	1					
K		1	1	1		1	3	1								2				
L			11	2	3	1	1	2	5		1		1		1		·		·	
W					2	1	1		1	1	1	1							10	
N				1		2		1	1	2			1					2		
Р ·			5	1	4	3	1	2				1	1	. 1	1					
Q	ļ	1	3	2		1	1	4	2	1	2									3
R	<u> </u>	92	7	9	2	2		2	1		2									
S	ļ	1	1	3	2	6	4	4	5	3	5	3	2	2			1		1	
T	1		1	3	2	1	2	6	3	3	6	1		1						
V	2	<u></u>	2	4	4		1	ļ	1	2			1							
W	.	<u></u>	1		2	1	<u> </u>	ļ			1		2		1		1	1		
X	<u> </u>		<u> </u>				ļ	ļ												
Y	<u> </u>			1	6	3	6	9	8	. 7	2	1	2	6	8	9	9	10		1
Z	L		<u> </u>				<u> </u>	<u> </u>				<u> </u>								
-	<u></u>	<u> </u>	ļ	<u> </u>		1	1	2	8	10	16	23	30	30	31	32	30	22	7	2
unknown (?)	<u> </u>	<u> </u>	<u> </u>	<u>.</u>		<u> </u>	ļ	ļ	ļ			ļ	1			1				ļ!
not sequenced	-	;	; 				;		•		-	:	-	_					53	
sum of seq?	95	95	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	45	44	45
oomcaa,	92	92	11	÷		÷	12	÷	÷	10	16	23	30	30	31	32	30	22	26	*********
mcaa*	. A	R	L	G	G	G	G	Υ	Y	-	-	-	-	-	-	-	-	-	F	D
rel. oomcaas	92%	92%	24%	20%	24%	27%	27%	20%	18%	22%	36%	51%	%29	9029	%69	71%	67%	49%	59%	82%
pos occupied	-	-	Ţ	:	-	T	Ţ	7	<u> </u>	;	:	;				•		6	•	5

Table 6F: Analysis of V heavy chain subgroup 5

į		-			Fra	mev	vork	IV					
amino acid'	102	103	104	105	106	107	108	109	110	11	112	113	sum
Α							_					1	611
В				i	İ								
Ċ				i		İ					<u> </u>		205
D	1				Ì								458
E				1	<u>-</u>				*******				404
F	2												256
G			41		41					i			1065
Н													44
l	9								2				588
K				3									650
L	2						25	1					549
М							8			·			303
N													64
Р	2					1					1		414
Q				34							*****		612
R				3									351
S	2										40	39	1545
T	1					40	8		39				604
V	11		••••••					40		41			594
W		43		٠									432
X													
Υ	13												738
Z													
	2		<u> </u>				<u></u>						635
unknown (?)	<u> </u>		ļ				<u> </u>	<u>.</u>					4
not sequenced	52	54	56	56	56	56	56	56	56	56	56	57	1678
sum of seq?	45	43	41	41	41	41	41	41	41	41	41	40	
oowcsa,	13	·····	÷	;	÷	40	25	40	39	······	·••••	39	
mcaa*	Y	W	G	Q	G	T	L	٧	T	٧	S	S	
rel. oomcaa'	29%	100%	100%	83%	100%	98%	61%	%86	95%	100%	98%	98%	
pos occupied ^e	10	1	1	4	1	2	3	2	2	1	2	2	ļ

25

Table 6G: Analysis of V heavy chain subgroup 6

· .												_		Fra	mev	vork	1	_		
amino acid'	_	7	က	4	ഗ	ဖ	^	ω	6	2	=	12	13	4	5	9	1	8	<u>ნ</u>	20
A										į		1								
В																		_		
· C																				
D																				
Ε																	-			
F																			<u> </u>	****
G								52		·67										••••
Η																<u></u>	<u></u>		<u></u>	
																	<u></u>	<u></u>		•••••
K													68							
<u> </u>				52							68	1					<u></u>	67	1	6
M																				•••••
N																				
Р						•••••			68					67					1	
Q	52		52		51	52										68				
R					1					1										
<u>S</u>						•==	52							1	68				66	
T																	68			
V		52										66						1		
<u>W</u>		ļ																		
X		<u> </u>		<u>.</u>			<u> </u>													
Υ							ļ													
Z	_		<u> </u>											_						
		ļ	<u> </u>					ļ												ļ
unknown (?)		ļ	ļ	·			<u> </u>	<u></u>												<u> </u>
not sequenced	-	_								_	_			6		_				=
•	į	-	÷			·	·	·	·	·····	÷	·				**********			68	
oomcaa	******	~~~~	÷			*******	*********	•••••	·		·	£	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**********			,	,	66 C	·
mcaa•	Q	٧	 -		Q	<u></u>	S	ļ	<u> </u>	G	<u> </u>	٧		Р	S	Q		L	S	
rel. oomcaas	100%	100%	100%	100%	%86	100%	100%	100%	100%	%66	100%	92%	100%	%66	100%	100%	100%	%66	97%	
pos occupied6	1	1		-			•	;	7		:	•	1				1	•		-

Table 6G: Analysis of V heavy chain subgroup 6

										\Box				CD	RI					
amino acid	21	.22	23	24	22	76	27	78	23	9	3	∢	ω	32	33	34	35	36	37	38
Α	1		67											66	67				į	*****
В	·							_											<u> </u>	
Ċ		68									<u> </u>								<u> </u>	*****
D							68		_		1						1			
E			į																	
F .										2				1	1				1	
G			1			69							3	1	2					
Н																	1			-
			<u> </u>	64								2					1		70	
K												3								
L																				
M																				
N							1				2	66					70			
Р			·					<u> </u>												
Q																				
R											2	1								7
S	1			1	69			69		68	66		67		3		1			ļ
Ţ	67	<u> </u>									2	1	4		1					<u> </u>
V ·			1	4					70					6					2	<u> </u>
W		1														74		74		<u> </u>
Χ		<u> </u>																		<u> </u>
Y		<u> </u>		ļ 		ļ						1							1	-
Z		<u>!</u>			<u> </u>	<u> </u>														<u> </u>
-															ļ	ļ	<u></u>	<u> </u>	<u></u>	<u> </u>
unknown (?)			ļ			ļ					1	<u> </u>				ļ	<u> </u>	<u> </u>	ļ	<u> </u>
not sequence	5	5	5	5	5	5	5	5	4	4										L
sum of seq ²	69	69	69	69	69	69	69	69	70	70	74	74	74	74	74	74	74	74	74	7
oomcaa³	67	68	67	64	69	69	68	69	70	68			·	·	700101000		~	, .	70	
mcaa*	Ţ	С	Α	١	S	G	D	S	٧	S	S	N	S	Α	Α	W	N	W	1	ſ
rel. oomcaas	97%	%66	92%	93%	100%	100%	%66	100%	100%	97%	%68	%68	91%	%68	91%	100%	95%	100%	95%	7000
pos occupied	-			•	-	T	:	1	Ī	!	:	6	•	i	1	:	5	:	4	Ī

Table 6G: Analysis of V heavy chain subgroup 6

				Fra	mev	vork	: 11													
amino acid'	33	40	4	45	43	44	45	46	47	48	49	22	5	52	⋖	80	ပ	23	54	52
Α				1									1					1		
В																				··· ··· · · · · · · · · · · · · · · ·
. С					į															
D					İ				İ											
E								74												
F .														2	1			1		
G			·			74				į	74	1							1	
Н												į			1					
1											<u></u> į	i								
K	1				1											1			66	
Ļ	1						74			74										
М																				
N																			1	
Р			73																	
Q	72																			
R					73							73				72			1	
S		74	1	73												1		72		
T													73						5	
V								` .											ļ	
W		<u></u>	<u></u>						74											7.
X	ļ	<u>.</u>	<u> </u>	<u> </u>																<u> </u>
Y		<u>.</u>	<u> </u>											72	72				<u> </u>	<u> </u>
Z		<u> </u>		<u> </u>															<u> </u>	<u> </u>
	<u> </u>	<u> </u>	<u>.</u>	<u> </u>													74		ļ	<u> </u>
unknown (?)		ļ	<u> </u>	<u>.</u>	<u> </u>	<u> </u>										<u> </u>		<u></u>	ļ	<u> </u>
not sequenced	L																		<u> </u>	<u> </u>
sum of seq'	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7
oomcas,	72	74	73	73	73	74	74	74	74	74	74	73	73	72	72	72	74	72	66	7
mcaa ⁴	Q	S	Р	S	R	G	L	E	W	Ļ	G	R	T	Υ	Υ	R	-	S	Κ	٧
rel. oomcaa ^s	97%	100%	%66	%66	%66	100%	100%	100%	100%	100%	100%	%66	%66	92%	97%	97%	100%	97%	%68	9000
pos occupied		:	:	1	Ŧ		:	1	1	1	1			•	:	•	•	3	:	7

Table 6G: Analysis of V heavy chain subgroup 6

•	C	DR i	<u> </u>												-					
amino acid'	99	22	28	59	8	61	62	63	64	65	99	29	89	69	02	17	72	73	74	75
A					73	1							2			6		1		
В																				
· C				1					<u>-</u>											
D			68			1				Ī	•				2		73			
E	1		3			7			1											2
F .	7																			
G			1				1			8										
Н	1																1			
1						1						65	2	71				1		
K		1							67						1					7(
L	1					5		2				4						1		
M												1	•							
N	2	65	1						1						69					
Р					1	1										66				
Q ·									. 2		1									
R		1							3		73									
S	2	2	1	1			73			66			1		2	1	<u></u>	<u></u>	73	
T		4											69	1			ļ	71	1	
V						58		72				4		2		1		<u> </u>		_
W							•											<u> </u>		
X																	<u></u>	<u> </u>		
Υ	60	1		72													<u> </u>			
Z			<u> </u>													٠				
			<u></u>	<u></u>													İ	<u> </u>		
unknown (?)	ļ	ļ	<u> </u>	<u>.</u>	<u> </u>												<u> </u>		<u> </u>	
not sequenced	L			<u> </u>													<u> </u>	<u> </u>		
sum of seq?	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	74	7
oomcaa ¹		.	÷	<u></u>	<u></u>	į	<u> </u>	į				·····	69	71	69	66	73	71	73	÷
mcaa*	Y	N	D	Y	Α	٧	S	٧	Κ	S	R	1	Ţ	1	N	Р	D	T	S	K
rel. oomcaas	81%	98%	92%	92%	%66	78%	%66	97%	91%	89%	%66	88%	93%	%96	93%	%68	%66	%96	%66	050%
pos occupied	•	•		i	i	:	i	ł	i	:	:		: :			:	1	7	•	•

Table 6G: Analysis of V heavy chain subgroup 6

•		-		F	ram	ewo	rk II	l		•										
amino acid'	9/	77	78	79	80	81	82	٧	8	ပ	83	84	82	98	87	88	. 68	6	91	92
Α													1			74				
В		<u>-</u>										i								
· C	Ī	<u> </u>	Ī												į					73
D	Ī	···········i	i					3						73						
E			i							•			73							
F .			71						1										3	
G														1						
Н						2		1												-
1			1							,							2			
К								4												
L		1			74		72													
М							1			1	·						2			
N	74							63											1	
Р												70								
Q		72				71														
R		1				1		1												1
S		•••••		74	.,	••••		1	73		1	3								
T								1			73				74			1		
V			2				1			73							70			
W																				
X																				
Y									·									73	70	
Z						<u> </u>											<u> </u>			
_			ļ														<u></u>		ļ	
unknown (?)			ļ														<u> </u>		ļ	<u> </u>
not sequenced	<u> </u>					<u> </u>						1							<u> </u>	
sum of seq ²	74	74	74	74	74	74	74	74	74	74	74	73	74	74	74	74	74	74	74	74
oomcaa,	74	,	÷		74	71	72	63		÷	73	70		*******	•	74	·····	73	70	·
mcaa*	N	Q	F	S	L	Q	L	N	S	٧	T	Р	Ε	D	T	Α	٧	Υ	Y	С
rel. oomcaas	100%	92%	%96	100%	100%	%96	92%	85%	%66	%66	%66	%96	%66	%66	100%	100%	95%	%66	92%	%66
pos occupied ⁶	1	3	3	1	1	3	3	7	2		2	2	2	2				2	3	2

Table 6G: Analysis of V heavy chain subgroup 6

	CDR III																			
amino acid'	93	94	95	96	97	86	66	100	V	ထ	ပ	۵	u i	u .	တ	I	_	<u> </u>	×	101
Α	69		11	1	3	12	4	3	2	5		8					į	10	1	
В		i						İ	İ	j						<u></u>				
· C		į		į	1	İ	1		İ	1		1	1						<u> </u>	,,,,,,, ,
D			19	4	3	7	4	3	1	6	1	1	1						<u> </u>	62
Ε			10	4	2	1	2	2	1	2							1		<u> </u>	
F .	1		1	1	1		1	2	3		2			1					38	4
G	1		16	4	15	15	11	8	6	2	5	1	8	6	1			17		
Н				1		1			1	1	1	1				1	1	1		
1				1	2		2		5	1					<u>i</u>					
Κ		1	1	1	1	1	1	1	!			1								
			1	8	4	2	3	2	1					1	5				8	
M			••••••••	1				1			5								11	
N			1	3	1	2	1	. 1	1	3		2		1		1	3			
Р				10	4		5	3		5	1		1							
Q			1	1	1	1					1									1
R		69	1	7	8	1	8	8	3		1	1	5							1
S		3	5	5	5	7	6	7	3	4	2					1	1			
T		<u> </u>	1	1	4	3	4	4	6	3	1			1						ļ
<u>V</u>	3	1	4	5	1	9			4		9	5	1	1					2	<u> </u>
W	.	ļ	1	6	8	ļ	3	2	4								4	4	<u> </u>	<u> </u>
X	 .	ļ	ļ		ļ	<u> </u>														<u> </u>
<u>Y</u>	ļ	<u> </u>	ļ	6	4	2	2	2	6	6	2	4	2	1	8	8	12	12	<u> </u>	<u> </u>
Z	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>											▙
		ļ	ļ	2	3	7	14	23	25	33	41	47	53		*******			28	12	<u> </u>
unknown (?)	 	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ		6					ļ	<u> </u>
not sequenced	~	<u> </u>	<u> </u>	1	뜾	÷	1	÷			-	1				1	_		_	÷
sum of seq ²	<u></u>	·†·	÷	· -	· 	· <u>i</u> ·	· !··· ···		 -	:	÷	·····			********			<u>:</u>	72	
oomcaa3	j	·	·÷	· -	·	·••••••	14	23	25	33	41	47	53	54	57	56	50	28	38	· · · · · · ·
mcaa'	A	R	U	Р	G	G	<u> </u> -	-	<u> </u>	-	<u> </u>	-	-	-	-	-	-	-	<u> </u>	ם -
rel. oomcaas	93%	93%	26%	14%	21%	21%	19%	32%	35%	46%	57%	65%	74%	75%	79%	78%	%69	39%	53%	7000
pos occupied		•	;	•	•	:	•	•	:	:	:	•	:	i			į	•	•	<u> </u>

Table 6G: Analysis of V heavy chain subgroup 6

	.	Framework IV												
	amino acid'	102	103	104	105	106	107	108	109	110	==	112	113	sum
	Α							2						494
	В			i			İ							
	С				i									147
	D				i				1					403
	E			•	Ì									186
	F	2										2		150
	G			49		50								571
	Н	2												18
	· I	9					3		1					304
	К				1			1						293
	L	5		·				26						632
	M							8						31
	N													436
	Р	4			6								1	387
	Q				40									539
	R				2									495
	S	4		1			1					43	46	1271
	T						45	4		45				640
	V	21	•					2	46		48			647
·	W		65					5			********			398
	X										•••••			
	Y	19												518
	Z													
	· -	2												585
	unknown (?)	<u> </u>												13
	not sequenced		-			-			25					580
	sum of seq'	·						<u> </u>	48	******				
	oomcaa3		····			······································			46	*******	*******	? ·····	********	
	mcaa*	٧	W	G	Q	G	T	L	٧	T	٧	S	S	
	rel. oomcaas	31%	100%	%86	82%	100%	92%	54%	%96	100%	100%	%96	980%	
	pos occupied ⁶	9	1	2	4	1	. 3	7	3	1	1	2	2	

Appendix to Tables 1A-C

A. References of rearranged sequences

References of rearranged human kappa sequences used for alignment

- 1 . Alescio-Zonta, L. & Baglioni, C. (1970) Eur.J.Biochem., 15, 450-463.
- 2 Andrews, D.W. & Capra, J.D. (1981) Biochemistry, 20, 5816-5822.
- 3 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- 4 Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.
- Aucouturier, P., Bauwens, M., Khamlichi, A.A., Denoroy, L. Spinelli, S., Touchard, G., Preud'homme, J.-L. & Cogne, M. (1993) J.Immunol., 150, 3561-3568.
- 6 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164-10168.
- 8 Barbas, C.F., lii, et al. (1993) J-Mol-Biol., 230, 812-23.
- 9 Bentley, D.L. & Rabbitts, T.H. (1980) Nature, 288, 730-733.
- 10 Bentley, D.L. & Rabbitts, T.H. (1983) Cell, 32, 181-189.
- 11 Bentley, D.L. (1984) Nature, 307, 77-80.
- 12 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 13 Blaison, G., Kuntz, J.-L. & Pasquali, J.-L. (1991) Eur.J.Immunol., 21, 1221-1227.
- Braun, H., Leibold, W., Barnikol, H.U. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 647-651; (1972) Z.Physiol.Chem., 353, 1284-1306.
- 15 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1–40.; Andrews, D.W. & Capra, J.D. (1981) Proc.Nat.Acad.Sci.Usa, 78, 3799–3803.
- 16 Capra, J.D. & Kehoe, J.M. (1975) Adv.Immunology, 20, 1-40.; Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983) J.Immunol., 131, 1322-1325.
- 17 Chastagner, P., Theze, J. & Zouali, M. (1991) Gene, 101, 305-306.

18 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905.

- 19 Chen, P.P., Robbins, D.L., Jirik, F.R., Kipps, T.J. & Carson, D.A. (1987) J.Exp.Med, 166, 1900-1905; Liu, M.-F., Robbins, D.L., Crowley, J.J., Sinha, S., Kozin, F., Kipps, T.J., Carson, D.A. & Chen.P.P. (1989) J.Immunol., 142, 688-694.
- 20 Chersi, A. & Natali, P.G. (1978) Immunochemistry, 15, 585-589.
- 21 Co, M.S., Deschamps, M., Whitley, R.J. & Queen, C. (1991) Proc.Natl.Acad.Sci.Usa, 88, 2869–2873.
- Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Davidson, A., Manheimer-Lory, A., Aranow, C., Peterson, R., Hannigan, N. & Diamond, B. (1990) J.Clin.Invest., 85, 1401–1409.
- Denomme, G.A., Mahmoudi, M., Edwards, J.Y., Massicotte, H., Cairns, E. & Bell, D.A. (1993) Hum.Antibod.Hybridomas, 4, 98-103.
- Dersimonian, H., Mcadam, K.P.W.J., Mackworth-Young, C. & Stollar, B.D. (1989)
 J.Immunol., 142, 4027-4033.
- Dreyer, W.J., Gray, W.R. & Hood, L. (1967) Cold Spring Harbor Symp. Quantitative Biol., 32, 353-367.
- 27 Ebeling, S.B., Schutte, M.E.M. & Logtenberg, T. (1993) Eur.J.Immunol., 23, 1405-1408.
- 28 Eulitz, M. & Kley, H.-P. (1977) Immunochem., 14, 289-297.
- 29 Eulitz, M. & Linke, R.P. (1982) Z.Physiol.Chem., 363, 1347-1358.
- 30 Eulitz, M., Breuer, M., Eblen, A., Weiss, D.T. & Solomon, A. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 31 Eulitz, M., Gotze, D. & Hilschmann, N. (1972) Z.Physiol.Chem., 353, 487-491; Eulitz, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 842-866.
- 32 Eulitz, M., Kley, H.P. & Zeitler, H.J. (1979) Z.Physiol.Chem., 360, 725-734.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343–350.
- 34 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- Ferri, G., Stoppini, M., Iadarola, P., Bellotti, V. & Merlini, G. (1989) Biochim.Biophys.Acta, 995, 103-108.

36 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.

- 37 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- Goni, F.R., Chen, P.P., Mcginnis, D., Arjonilla, M.L., Fernandez, J., Carson, D., Solomon, A., Mendez, E. & Frangione, B. (1989) J.Immunol., 142, 3158-3163.
- 39 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- 40 Gottlieb, P.D., Cunningham, B.A., Rutishauser, U. & Edelman, G.M. (1970) Biochemistry, 9, 3155-3161.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 42 Hieter, P.A., Max, E.E., Seidman, J.G., Maizel, J.V., Jr. & Leder, P. (1980) Cell, 22, 197-207; Klobeck, H.G., Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513; Weir, L. & Leder, P. (1986)
- 43 Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1077–1080.
- Hilschmann, N. & Craig, L.C. (1965) Proc.Nat.Acad.Sci.Usa, 53, 1403–1409; Hilschmann, N. (1967) Z.Physiol.Chem., 348, 1718–1722; Hilschmann, N. (1969) Naturwissenschaften, 56, 195–205.
- 45 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- Jaenichen, H.-R., Pech, M., Lindenmaier, W., Wildgruber, N. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 5249-5263.
- 47 Jirik, F.R., Sorge, J., Fong, S., Heitzmann, J.G., Curd, J.G., Chen, P.P., Goldfien, R. & Carson, D.A. (1986) Proc.Nat.Acad.Sci.Usa, 83, 2195–2199.
- 48 Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.; Klapper, D.G. & Capra, J.D. (1976) Ann.Immunol.(Inst.Pasteur), 127c, 261-271.
- 49 Kennedy, M.A. (1991) J.Exp.Med., 173, 1033-1036.
- 50 Kim, H.S. & Deutsch, H.F. (1988) Immunol., 64, 573-579.
- 51 Kipps, T.J., Tomhave, E., Chen, P.P. & Carson, D.A. (1988) J.Exp.Med., 167, 840-852.
- 52 Kipps, T.J., Tomhave, E., Chen, P.P. & Fox, R.I. (1989) J.Immunol., 142, 4261-4268.
- 53 Klapper, D.G. & Capra, J.D. (1976) Ann. Immunol. (Inst. Pasteur), 127c, 261-271.

- 54 Klein, U., Kuppers, R. & Rajewsky, K. (1993) Eur.J.Immunol., 23, 3272-3277.
- 55 Klobeck, H.G, Meindl, A., Combriato, G., Solomon, A. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6499-6513.
- Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl. Acids Res., 13, 6515-6529.
- 57 Klobeck, H.G., Combriato, G. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 6995-7006.
- 58 Klobeck, H.G., Solomon, A. & Zachau, H.G. (1984) Nature, 309, 73-76.
- 59 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 60 Kohler, H., Shimizu, A., Paul, C. & Putnam, F.W. (1970) Science, 169, 56-59. (Kaplan, A.P. & Metzger, H. (1969) Biochemistry, 8, 3944-3951.)
- 61 Kratzin, H., Yang, C.Y., Krusche, J.U. & Hilschmann, N. (1980) Z.Physiol.Chem., 361, 1591-1598.
- 62 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992)
 Immunological Reviews, 130, 69–85.
- 64 Laure, C.J., Watanabe, S. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1503-1504.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322-1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325.
- Ledford, D.K., Goni, F., Pizzolato, M., Franklin, E.C., Solomon, A. & Frangione, B. (1983)

 J.Immunol., 131, 1322–1325. Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984)

 J.Exp.Med., 160, 893.
- 68 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- 69 Liepnieks, J.J., Dwulet, F.E. & Benson, M.D. (1990) Mol.Immunol., 27, 481-485.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991) J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.

- 74 Marsh, P., Mills, F. & Gould, H. (1985) Nuc. Acids Res., 13, 6531-6544.
- 75 Middaugh, C.R. & Litman, G.W. (1987) J.Biol.Chem., 262, 3671-3673.
- 76 Milstein, C. & Deverson, E.V. (1971) Biochem.J., 123, 945-958.
- 77 Milstein, C. (1969) Febs Letters, 2, 301-304.
- 78 · Milstein, C. (1969) Febs Letters, 2, 301-304.
- 79 Milstein, C.P. & Deverson, E.V. (1974) Eur.J.Biochem., 49, 377-391.
- 80 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 81 Nakatani, T., Nomura, N., Horigome, K., Ohtsuka, H. & Noguchi, H. (1989) Bio/Tech., 7, 805-810.
- 82 Newkirk, M., Chen, P.P., Carson, D., Posnett, D. & Capra, J.D. (1986) Mol.Immunol., 23, 239-244.
- 83 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511–1518.
- 84 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- 85 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Palm, W. & Hilschmann, N. (1973) Z.Physiol.Chem., 354, 1651-1654; (1975)
 Z.Physiol.Chem., 356, 167-191.
- Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385–4391.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 89 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 90 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 91 Pons-Estel, B., Goni, F., Solomon, A. & Frangione, B. (1984) J.Exp.Med., 160, 893-904.
- 92 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839–2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.

94 Pratt, L.F., Rassenti, L., Larrick, J., Robbins, B., Banks, P.M. & Kipps, T.J. (1989) J.Immunol., 143, 699-705.

- 95 Prelli, F., Tummolo, D., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 4169-4173.
- 96 Putnam, F.W., Whitley, E.J., Jr., Paul, C.& Davidson, J.N. (1973) Biochemistry, 12, 3763-3780.
- 97 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 98 Rassenti, LZ., Pratt, LF., Chen, P.P., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 1060-1066.
- 99 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 100 Riechmann, L., Clark, M., Waldmann, H. & Winter, G. (1988) Nature, 332, 323-327.
- Riesen, W., Rudikoff, S., Oriol, R. & Potter, M. (1975) Biochemistry, 14, 1052–1057; Riesen,
 W.F., Braun, D.G. & Jaton, J.C. (1976) Proc.Nat.Acad.Sci.Usa, 73, 2096–2100; Riesen, W.F.
 & Jaton, J.C. (1976) Biochemistry, 15, 3829.
- 102 Rodilla Sala, E., Kratzin, D.H., Pick, A.I. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Schiechl, H. & Hilschmann, N. (1971) Z.Physiol.Chem., 352, 111-115; (1972)
 Z.Physiol.Chem., 353, 345-370.
- 104 Schneider, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 1164-1168.
- 105 Shearman, C.W., Pollock, D., White, G., Hehir, K., Moore, G.P., Kanzy, E.J. & Kurrle, R. (1991) J.Immunol., 147, 4366-4373.
- 106 Shinoda, T. (1973) J.Biochem., 73, 433-446.
- 107 Shinoda, T. (1975) J.Biochem., 77, 1277-1296.
- 108 Shinoda, T., Takenawa, T., Hoshi, A. & Isobe, T. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.157-
- 109 Silberstein, L.E., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- Sims, M.J., Hassal, D.G., Brett, S., Rowan, W., Lockyer, M.J., Angel, A., Lewis, A.P., Hale, G., Waldmann, H. & Crowe, J.S. (1993) J.Immunol., 151, 2296-2308.

111 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821–2828.

- 112 Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl.Acids Res., 13, 3495–3514.
- 113 Straubinger, B., Thiebe, R., Pech, M. & Zachau, H.G. (1988) Gene, 69, 209-214.
- 114 Suter, L., Barnikol, H.U., Watanabe, S. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 275-278; (1972) Z.Physiol.Chem., 353, 189-208.
- 115 Tempest, P.R., Bremner, P., Lambert, M., Taylor, G., Furze, J.M., Carr, F.J. & Harris, W.J. (1991) Bio/Tech., 9, 266-271.
- 116 Titani, K., Shinoda, T. & Putnam, F.W. (1969) J.Biol.Chem., 244, 3550-3560.
- 117 Toft, K.G., Olstad, O.K., Sletten, K. & Westermark, P. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 118 Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 119 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 120 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 121 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991)
 J.Clin.Invest., 87, 1603-1613.
- 122 Wagner, S.D. & Luzzatto, L. (1993) Eur.J.Immunol., 23, 391-397.
- , 123 Watanabe, S. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1291-1295.
- 124 Weisbart, R.H., Wong, A.L., Noritake, D., Kacena, A., Chan, G., Ruland, C., Chin, E., Chen, I.S.Y. & Rosenblatt, J.D. (1991) J.Immunol., 147, 2795–2801.
- 125 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 126 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.

References of rearranged human lambda sequences used for alignment

Alexandre, D., Chuchana, P., Brockly, F., Blancher, A., Lefranc, G. & Lefranc, M.-P. (1989) Nuc.Acids Res., 17, 3975.

2 Anderson, M.L.M., Brown, L., Mckenzie, E., Kellow, J.E. & Young, B.D. (1985) Nuc.Acids Res., 13, 2931–2941.

- 3 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601-1616.
- 4 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Baczko, K., Braun, D.G., Hess, M. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 763-767; Baczko, K., Braun, D.G. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 131-154.
- 6 Berinstein, N., Levy, S. & Levy, R. (1989) Science, 244, 337-339.
- 7 Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011-5021.
- 8 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 9 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 10 Chen, B.L. & Poljak, R.J. (1974) Biochemistry, 13, 1295-1302.
- 11 Chen, B.L., Chiu, Y.Y.H., Humphrey, R.L. & Poljak, R.J. (1978) Biochim.Biophys.Acta, 537, 9-21.
- 12 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 13 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- 14 Dwulet, F.E., Strako, K. & Benson, M.D. (1985) Scand.J.Immunol., 22, 653-660.
- 15 Elahna, P., Livneh, A., Manheimer-Lory, A.J. & Diamond, B. (1991) J.Immunol., 147, 2771-2776.
- Engelhard, M., Hess, M. & Hilschmann, N. (1974) Z.Physiol.Chem., 355, 85-88; Engelhard,
 M. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1413-1444.
- 17 Eulitz, M. (1974) Eur.J.Biochem., 50, 49-69.
- 18 Eulitz, M., Breuer, M. & Lînke, R.P. (1987) Biol.Che.Hoppe-Seyler, 368, 863-870.
- 19 Eulitz, M., Murphy, C., Weiss, D.T. & Solomon, A. (1991) J.Immunol., 146, 3091-3096.
- 20 Fett, J.W. & Deutsch, H.F. (1974) Biochemistry, 13, 4102-4114.
- 21 Fett, J.W. & Deutsch, H.F. (1976) Immunochem., 13, 149–155.; Jabusch, J.R. & Deutsch, H.F. (1982) Mol.Immunol., 19, 901–906.
- 22 Furey, W. Jr., Wang, B.C., Yoo, C.S. & Sax, M. (1983) J.Mol.Biol., 167, 661-692.
- 23 Fykse, E.-M., Sletten, K., Husby, G. & Cornwell, G.G., Iii (1988) Biochem J., 256, 973-980.

- 24 Garver, F.A. & Hilschmann, N. (1971) Febs Letters, 16, 128-132; (1972) Eur.J.Biochem., 26, 10-32.
- 25 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 26 Ghiso, J., Solomon, A. & Frangione, B. (1986) J.Immunol., 136, 716-719.
- 27 Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- Gullasken, N., Idso, H., Nilsen, R., Sletten, K., Husby, G. & Cornwell, G.G. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.
- 30 Holm, E., Sletten, K. & Husby, G. (1986) Biochem.J., 239, 545-551.
- 31 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 32 Kametani, F., Yoshimura, K., Tonoike, H., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 848-852.
- 33 Kiefer, C.R., Mcguire, B.S., Jr., Osserman, E.F. & Garver, F.A. (1983) J.Immunol., 131, 1871-1875.
- 34 Kiefer, C.R., Patton, H.M., Jr., Mcquire, B.S., Jr. & Garver, F.A. (1980) J.Immunol., 124, 301–306.
- 35 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 36 Klafki, H.-W., Kratzin, H.D., Pick, A.I., Eckart, K. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- 37 Kohler, H., Rudofsky, S. & Kluskens, L. (1975) J.Immunology, 114, 415-421.
- 38 Kojima, M., Odani, S. & Ikenaka, T. (1980) Mol.Immunol., 17, 1407-1414.
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- Kratzin, H.D., Palm, W., Stangel, M., Schmidt, W.E., Friedrich, J. & Hilschmann, N. (1989) Biol.Chem.Hoppe-Seyler, 370, 263-272.

Kratzin, H.D., Pick, A.I., Stangel, M. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic Publishers, Dordrecht/Boston/London, Pp.181-

- 42 Langer, B., Steinmetz-Kayne, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 945-951.
- 43 Larrick, J.W., Danielsson, L., Brenner, C.A., Wallace, E.F., Abrahamson, M., Fry, K.E. & Borrebaeck, C.A.K. (1989) Bio/Tech., 7, 934-938.
- 44 Levy, S., Mendel, E., Kon, S., Avnur, Z. & Levy, R. (1988) J.Exp.Med., 168, 475-489.
- Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829–2838.
- 46 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017–1020; Infante, A. & Putnam, F.W. (1979) J.Biol.Chem., 254, 9006–9016.
- 47 Lopez De Castro, J.A., Chiu, Y.Y.H. & Poljak, R.J. (1978) Biochemistry, 17, 1718–1723.
- 48 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 49 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 50 Mihaesco, E., Roy, J.-P., Congy, N., Peran-Rivat, L. & Mihaesco, C. (1985) Eur.J.Biochem., 150, 349-357.
- 51 Milstein, C., Clegg, J.B. & Jarvis, J.M. (1968) Biochem.J., 110, 631-652.
- 52 Moran, M.J., Andris, J.S., Matsumato, Y.-l., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 53 Nabeshima, Y. & Ikenaka, T. (1979) Mol.Immunol., 16, 439-444.
- Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- 56 Paul, E., Iliev, A.A., Livneh, A. & Diamond, B. (1992) J.Immunol., 149, 3588-3595.
- Pick, A.I., Kratzin, H.D., Barnikol-Watanabe, S. & Hilschmann, N. (1990) In Amyloid And Amyloidosis, Eds. J.B.Natvig, O.Forre, G.Husby, A.Husebekk, B.Skogen, K.Sletten & P.Westermark, Kluwer Academic
- Ponstingl, H. & Hilschmann, N. (1969) Z.Physiol.Chem., 350, 1148-1152; (1971)
 Z.Physiol.Chem., 352, 859-877.

Ponstingl, H., Hess, M. & Hilschmann, N. (1968) Z.Physiol.Chem., 349, 867-871; (1971)
 Z.Physiol.Chem., 352, 247-266.

- 60 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 61 Scholz, R. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1333-1335.
- 62 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953–954.
- 63 Shinoda, T., Titani, K. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4475-4487.
- 64 Sletten, K., Husby, G. &t Natvig, J.B. (1974) Scand.J.Immunol., 3, 833-836.; Sletten, K., Natvig, J.B., Husby, G. &t Juul, J. (1981) Biochem.J., 195, 561-572.
- Solomon, A., Frangione, B. & Franklin, E.C. (1982) J.Clin.Invest., 70, 453-460.; Frangione,
 B., Moloshok, T. & Solomon, A. (1983) J.Immunol., 131, 2490-2493.
- 66 Takahashi, N., Takayasu, T., Isobe, T., Shinoda, T., Okuyama, T. & Shimizu, A. (1979) J.Biochem., 86, 1523-1535.
- 67 Takahashi, N., Takayasu, T., Shinoda, T., Ito, S., Okuyama, T. & Shimizu, A. (1980) Biomed.Res., 1, 321–333.
- Takahashi, Y., Takahashi, N., Tetaert, D. & Putnam, F.W. (1983) Proc.Nat.Acad.Sci.Usa, 80, 3686-3690.
- Takayasu, T., Takahashi, N., Shinoda, T., Okuyama, T. & Tomioka, H. (1980) J.Biochem., 89, 421-436.
- 70 Titani, K., Wikler, M., Shinoda, T. & Putnam, F.W. (1970) J.Biol.Chem., 245, 2171-2176.
- 71 Toft, K.G., Sletten, K. & Husby, G. (1985) Biol.Chem.Hoppe-Seyler, 366, 617-625.
- 72 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Biochem.Biophys.Res.Commun., 126, 1228-1234.
- 73 Tonoike, H., Kametani, F., Hoshi, A., Shinoda, T. & Isobe, T. (1985) Febs Letters, 185, 139-141.
- 74 Tsujimoto, Y. & Croce, C.M. (1984) Nucl. Acids Res., 12, 8407-8414.
- 75 Tsunetsugu-Yokota, Y., Minekawa, T., Shigemoto, K., Shirasawa, T. & Takemori, T. (1992) Mol.Immunol., 29, 723-728.
- 76 Tveteraas, T., Sletten, K. & Westermark, P. (1985) Biochem J., 232, 183-190.
- 77 Vasicek, T.J. & Leder, P. (1990) J.Exp.Med., 172, 609-620.

203

78 Victor, K.D., Randen, I., Thompson, K., Forre, O., Natvig, J.B., Fu, S.M. & Capra, J.D. (1991) J.Clin.Invest., 87, 1603-1613.

- 79 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 80 Wikler, M. & Putnam, F.W. (1970) J.Biol.Chem., 245, 4488-4507.
- 81 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- 82 Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481-1489.
- 83 Yamasaki, N., Komori, S. & Watanabe, T. (1987) Mol.Immunol., 24, 981-985.
- 84 Zhu, D., Kim, H.S. & Deutsch, H.F. (1983) Mol.Immunol., 20, 1107-1116.
- 85 Zhu, D., Zhang, H., Zhu, N. & Luo, X. (1986) Scientia Sinica, 29, 746-755.

References of rearranged human heavy chain sequences used for alignment

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993) J.Immunol., 151, 800-809.
- 2 Adderson, E.E., Shackelford, P.G., Quinn, A. & Carroll, W.L. (1991) J.Immunol., 147, 1667-1674.
- 3 Akahori, Y., Kurosawa, Y., Kamachi, Y., Torii, S. & Matsuoka, H. (1990) J.Clin.Invest., 85, 1722–1727.
- 4 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.
- 5 Andris, J.S., Ehrlich, P.H., Ostberg, L. & Capra, J.D. (1992) J.Immunol., 149, 4053-4059.
- Andris, J.S., Johnson, S., Zolla-Pazner, S. & Capra, J.D. (1991) Proc.Natl.Acad.Sci.Usa, 88, 7783-7787.
- 7 Anker, R., Conley, M.E. & Pollok, B.A. (1989) J.Exp.Med., 169, 2109-2119.
- Atkinson, P.M., Lampman, G.W., Furie, B.C., Naparstek, Y., Schwartz, R.S., Stollar, B.D. & Furie, B. (1985) J.Clin.Invest., 75, 1138-1143.;Lampman, G.W., Furie, B., Schwartz, R.S., Stollar, B.D. & Furie, B.C. (1989)
- 9 Avila, M.A., Vazques, J., Danielsson, L., Fernandez De Cossio, M.E. & Borrebaeck, C.A.K. (1993) Gene, 127, 273-274.
- 10 Bakkus, M.H.C., Heirman, C., Van Riet, I., Van Camp, B. & Thielemans, K. (1992) Blood, 80, 2326-2335.

Barbas Iii, C.F., Crowe, Jr., J.E., Cababa, D., Jones, T.M., Zebedee, S.L., Murphy, B.R., Chanock, R.M. & Burton, D.R. (1992) Proc.Natl.Acad.Sci.Usa, 89, 10164–10168.

- Barbas, C.F., Iii, Collet, T.A., Amberg, W., Roben, P., Binley, J.M., Hoekstra, D., Cababa, D., Jones, T.M., Williamson, R.A., Pilkington, G.R., Haigwood, N.L., Cabezas, E., Satterthwait, A.C., Sanz, I. & Burton, D.R. (1993) J.Mol.Biol., 230, 812–823.
- 13 Berman, J.E., Humphries, C.G., Barth, J., Alt, F.W. & Tucker, P.W. (1991) J.Exp.Med., 173, 1529–1535.
- Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.
- Bhat, N.M., Bieber, M.M., Chapman, C.J., Stevenson, F.K. & Teng, N.N.H. (1993) J.Immunol., 151, 5011–5021.
- 16 Bird, J., Galili, N., Link, M., Stites, D. & Sklar, J. (1988) J.Exp.Med., 168, 229-245.
- 17 Cai, J., Humphries, C., Richardson, A. & Tucker, P.W. (1992) J.Exp.Med., 176, 1073-1081.
- 18 Cairns, E., Kwong, P.C., Misener, V., Ip, P., Bell, D.A. & Siminovitch, K.A. (1989) J.Immunol., 143, 685-691.
- 19 Capra, J.D. & Hopper, J.E. (1976) Immunochemistry, 13, 995-999; Hopper, J.E., Noyes, C., Heinrikson, R. & Kessel, J.W. (1976) J.Immunol., 116, 743-746.
- 20 Capra, J.D. & Kehoe, J.M. (1974) Proc.Nat.Acad.Sci.Usa, 71, 845-848.
- 21 Carroll, W.L., Yu, M., Link, M.P. & Korsmeyer, S.J. (1989) J.Immunol., 143, 692-698.
- 22 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72-76; Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 23 Chiu, Y.Y.H., Lopez De Castro, J.A. & Poljak, R.J. (1979) Biochemistry, 18, 553-560.
- 24 Cleary, M.L., Meeker, T.C., Levy, S., Lee, E., Trela, M., Skiar, J. & Levy, R. (1986) Cell, 44, 97-106.
- 25 Cuisinier, A.-M., Fumoux, F., Fougereau, M. & Tonnelle, C. (1992) Mol.Immunol., 29, 1363-1373.
- Cuisinier, A.-M., Gauthier, L., Boubli, L., Fougereau, M. & Tonnelle, C. (1993) Eur.J.Immunol., 23, 110-118.
- 27 Cunningham, B.A., Gottlieb.P.D., Pflumm, M.N. & Edelman, G.M. (1971) Progress In Immunology (B.Amos, Ed.), Academic Press, N.Y., Pp.3-24.

Cunningham, B.A., Rutishauser, U., Gall, W.E., Gottlieb, P.D., Waxdal, M.J. & Edelman, G.M. (1970) Biochemistry, 9, 3161-3170.

- 29 Deane, M. & Norton, J.D. (1990) Eur.J.Immunol., 20, 2209-2217.
- 30 Deane, M. & Norton, J.D. (1991) Leukemia, 5, 646-650.
- 31 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501.
- 32 Dersimonian, H., Schwartz, R.S., Barrett, K.J. & Stollar, B.D. (1987) J.Immunol., 139, 2496-2501; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- Desai, R., Spatz, L., Matsuda, T., Ilyas, A.A., Berman, J.E., Alt, F.W., Kabat, E.A. & Latov, N. (1990) J.Neuroimmunol., 26, 35-41.
- Ezaki, I., Kanda, H., Sakai, K., Fukui, N., Shingu, M., Nobunaga, M. & Watanabe, T. (1991)

 Arthritis And Rheumatism, 34, 343–350.
- 35 Felgenhauer, M., Kohl, J. & Ruker, F. (1990) Nucl. Acids Res., 18, 4927.
- 36 Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498.
- 37 Friedlander, R.M., Nussenzweig, M.C. & Leder, P. (1990) Nucl. Acids Res., 18, 4278.
- 38 Gawinowicz, M.A., Merlini, G., Birken, S., Osserman, E.F. & Kabat, E.A. (1991) J.Immunol., 147, 915-920.
- 39 Gillies, S.D., Dorai, H., Wesolowski, J., Majeau, G., Young, D., Boyd, J., Gardner, J. & James, K. (1989) Bio/Tech., 7, 799-804.
- 40 Goni, F. & Frangione, B. (1983) Proc.Nat.Acad.Sci.Usa, 80, 4837-4841.
- 41 Gorman, S.D., Clark, M.R., Routledge, E.G., Cobbold, S.P. & Waldmann, H. (1991) Proc.Natl.Acad.Sci.Usa, 88, 4181-4185.
- Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., Mccafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes-Jones, N.C., Hoogenboom, H.R. & Winter, G. (1993) Embo J., 12, 725-734.
- 43 Grillot-Courvalin, C., Brouet, J.-C., Piller, F., Rassenti, L.Z., Labaume, S., Silverman, G.J., Silberstein, L. & Kipps, T.J. (1992) Eur.J.Immunol., 22, 1781-1788.
- Guillaume, T., Rubinstein, D.B., Young, F., Tucker, L., Logtenberg, T., Schwartz, R.S. & Barrett, K.L. (1990) J.Immunol., 145, 1934-1945; Young, F., Tucker, L., Rubinstein, D., Guillaume, T., Andre-Schwartz, J., Barrett, K.J., Schwartz, R.S. & Logtenberg, T. (1990)
- Harindranath, N., Goldfarb, I.S., Ikematsu, H., Burastero, S.E., Wilder, R.L., Notkins, A.L. & Casali, P. (1991) Int.Immunol., 3, 865-875.

46 Hillson, J.L., Oppliger, I.R., Sasso, E.H., Milner, E.C.B. & Wener, M.H. (1992) J.Immunol., 149, 3741-3752.

- 47 Hirabayashi, Y., Munakata, Y., Sasaki, T. & Sano, H. (1992) Nucl. Acids Res., 20, 2601.
- 48 Hoch, S. & Schwaber, J. (1987) J.Immunol., 139, 1689–1693.
- 49 Huang, C., Stewart, A.K., Schwartz, R.S. & Stollar, B.D. (1992) J.Clin.Invest., 89, 1331-1343.
- 50 Hughes-Jones, N.C., Bye, J.M., Beale, D. & Coadwell, J. (1990) Biochem J., 268, 135-140.
- 51 Ikematsu, H., Harindranath, N., Ueki, Y., Notkins, A.L. & Casali, P. (1993) J.Immunol., 150, 1325-1337.
- 52 Ikematsu, H., Kasaian, M.T., Schettino, E.W. & Casali, P. (1993) J.Immunol., 151, 3604-3616.
- 53 Kelly, P.J., Pascual, V., Capra, J.D. & Lipsky, P.E. (1992) J.Immunol., 148, 1294–1301.
- 54 Kipps, T.J. & Duffy, S.F. (1991) J.Clin.Invest., 87, 2087-2096.
- 55 Kipps, T.J., Tomhave, E., Pratt, L.F., Duffy, S., Chen, P.P. & Carson, D.A. (1989) Proc.Natl.Acad.Sci.Usa, 86, 5913-5917.
- 56 Kishimoto, T., Okajima, H., Okumoto, T. & Taniguchi, M. (1989) Nucl. Acids Res., 17, 4385.
- 57 Knight, G.B., Agnello, V., Bonagura, V., Barnes, J.L., Panka, D.J. & Zhang, Q.-X. (1993) J.Exp.Med., 178, 1903-1911.
- 58 Kohler, H., Shimizu, A., Paul, C., Moore, V. & Putnam, F.W. (1970) Nature, 227, 1318-1320; Florent, G., Lehman, D. & Putnam, F.W. (1974) Biochemistry, 13, 2482-2498
- Komori, S., Yamasaki, N., Shigeta, M., Isojima, S. & Watanabe, T. (1988) Clin.Exp.Immunol., 71, 508-516.
- 60 Kon, S., Levy, S. & Levy, R. (1987) Proc.Natl.Acad.Sci.Usa, 84, 5053-5057.
- Kratzin, H., Altevogt, P., Ruban, E., Kortt, A., Staroscik, K. & Hilschmann, N. (1975) Z.Physiol.Chem., 356, 1337-1342; Kratzin, H., Altevogt, P., Kortt, A., Ruban, E. & Hilschmann, N. (1978) Z.Physiol.Chem., 359, 1717-1745.
- 62 Kudo, A., Ishihara, T., Nishimura, Y. & Watanabe, T. (1985) Gene, 33, 181-189.
- 63 Kunicki, T.J., Annis, D.S., Gorski, J. & Nugent, D.J. (1991) J.Autoimmunity, 4, 433-446.
- Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B. & Fry, K.E. (1992) Immunological Reviews, 130, 69–85.
- 65 Lehman, D.W. & Putnam, F.W. (1980) Proc.Nat.Acad.Sci.Usa, 77, 3239-3243.

66 Lewis, A.P., Lemon, S.M., Barber, K.A., Murphy, P., Parry, N.R., Peakman, T.C., Sims, M.J., Worden, J. & Crowe, J.S. (1993) J.Immunol., 151, 2829-2838.

- 67 Liu, V.Y.S., Low, T.L.K., Infante, A. & Putnam, F.W. (1976) Science, 193, 1017-1020.
- Logtenberg, T., Young, F.M., Van Es, J., Gmelig-Meyling, F.H.J., Berman, J.E. & Alt, F.W. (1989) J.Autoimmunity, 2, 203-213.
- 69 Logtenberg, T., Young, F.M., Van Es, J.H., Gmelig-Meyling, F.H.J. & Alt, F.W. (1989)
 J.Exp.Med., 170, 1347-1355.
- 70 Manheimer-Lory, A., Katz, J.B., Pillinger, M., Ghossein, C., Smith, A. & Diamond, B. (1991)

 J.Exp.Med., 174, 1639-1652.
- 71 Mantovani, L., Wilder, R.L. & Casali, P. (1993) J.Immunol., 151, 473-488.
- 72 Mariette, X., Tsapis, A. & Brouet, J.-C. (1993) Eur.J.Immunol., 23, 846-851.
- 73 Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., Mccafferty, J., Griffiths, A.D. & Winter, G. (1991) J.Mol.Biol., 222, 581-597.
- 74 Meeker, T.C., Grimaldi, J., O'rourke, R., Loeb, J.Juliusson, G. & Einhorn, S. (1988) J.Immol., 141, 3994–3998.
- 75 Milili, M., Fougereau, M., Guglielmi, P. & Schiff, C. (1991) Mol.Immunol., 28, 753-761.
- 76 Moran, M.J., Andris, J.S., Matsumato, Y.-I., Capra, J.D. & Hersh, E.M. (1993) Mol.Immunol., 30, 1543-1551.
- 77 Mortari, F., Wang, J.-Y. & Schroeder, Jr., H.W. (1993) J.Immunol., 150, 1348-1357.
- 78 Newkirk, M.M., Gram, H., Heinrich, G.F., Ostberg, L., Capra, J.D. & Wasserman, R.L. (1988) J.Clin.Invest., 81, 1511-1518.
- 79 Newkirk, M.M., Mageed, R.A., Jefferis, R., Chen, P.P. & Capra, J.D. (1987) J.Exp.Med., 166, 550-564.
- Nickerson, K.G., Berman, J., Glickman, E., Chess, L. & Alt, F.W. (1989) J.Exp.Med., 169, 1391-1403.
- 81 Olee, B.T., Lu, E.W., Huang, D.-F., Soto-Gil, R.W., Deftos, M., Kozin, F., Carson, D.A. & Chen, P.P. (1992) J.Exp.Med., 175, 831-842.
- 82 Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990)
 J.Clin.Invest., 86, 1320-1328.
- Pascual, V., Randen, I., Thompson, K., Sioud, M.Forre, O., Natvig, J. & Capra, J.D. (1990) J.Clin.Invest., 86, 1320-1328; Randen, I., Brown, D., Thompson, K.M., Hughes-Jones, N., Pascual, V., Victor, K., Capra, J.D., Forre, O. & Natvig, J.B. (1992)

Pascual, V., Victor, K., Lelsz, D., Spellerberg, M.B., Hamblin, T.J., Thompson, K.M., Randen, I., Natvig, J., Capra, J.D. & Stevenson, F.K. (1991) J.Immunol., 146, 4385-4391.

- Pascual, V., Victor, K., Randen, I., Thompson, K., Steinitz, M., Forre, O., Fu, S.-M., Natvig, J.B. & Capra, J.D. (1992) Scand.J.Immunol., 36, 349-362.
- Pascual, V., Victor, K., Spellerberg, M., Hamblin, T.J., Stevenson, F.K. & Capra, J.D. (1992) J.Immunol., 149, 2337-2344.
- 87 Ponstingl, H., Schwarz, J., Reichel, W. & Hilschmann, N. (1970) Z.Physiol.Chem., 351, 1591–1594.; Ponstingl, H. & Hilschmann, N. (1976) Z.Physiol.Chem., 357, 1571–1604.
- 88 Portolano, S., Mclachlan, S.M. & Rapoport, B. (1993) J.Immunol., 151, 2839-2851.
- Portolano, S., Seto, P., Chazenbalk, G.D., Nagayama, Y., Mclachlan, S.M. & Rapoport, B. (1991) Biochem.Biophys.Res.Commun., 179, 372-377.
- 90 Pratt, L.F., Szubin, R., Carson, D.A. & Kipps, T.J. (1991) J.Immunol., 147, 2041–2046.
- 91 Press, E.M. & Hogg, N.M. (1970) Biochem.J., 117, 641-660.
- 92 Putnam, F.W., Shimizu, A., Paul., C., Shinoda, T. & Kohler, H. (1971) Ann.N.Y.Acad.Sci., 190, 83–103.
- 93 Putnam, F.W., Takahashi, N., Tetaert, D., Debuire, B. & Lin, L.C. (1981)
 Proc.Nat.Acad.Sci.Usa, 78, 6168-6172.;Takahashi, N., Tetaert, D., Debuire, B., Lin, L. & Putnam, F.W. (1982) Proc.Nat.Acad.Sci.Usa, 79, 2850-2854.
- 94 Raaphorst, F.M., Timmers, E., Kenter, M.J.H., Van Tol, M.J.D., Vossen, J.M. & Schuurman, R.K.B. (1992) Eur.J.Immunol., 22, 247-251.
- 95 Rabbitts, T.H., Bentley, D.L., Dunnick, W., Forster, A., Matthyssens, G. &t Milstein, C. (1980) Cold Spring Harb.Symp.Quanti.Biol., 45, 867–878; Matthyssens, G. &t Rabbitts, T.H. (1980) Proc.Nat.Acad.Sci.Usa, 77, 6561–6565.
- 96 Randen, I., Pascual, V., Victor, K., Thompson, K.M., Forre, O., Capra, J.D. & Natvig, J.B. (1993) Eur.J.Immunol., 23, 1220–1225.
- 97 Rassenti, L.Z. & Kipps, T.J. (1993) J.Exp.Med., 177, 1039-1046.
- 98 Reidl, L.S., Friedman, D.F., Goldman, J., Hardy, R.R., Jefferies, L.C. & Silberstein, L.E. (1991)
 J.Immunol., 147, 3623-3631.
- 99 Roudier, J., Silverman, G.J., Chen, P.P., Carson, D.A. & Kipps, T.J. (1990) J.Immunol., 144, 1526–1530.
- 100 Sanz, I., Casali, P., Thomas, J.W., Notkins, A.L. & Capra, J.D. (1989) J.Immunol., 142, 4054-4061.

101 Sanz, I., Dang, H., Takei, M., Talal, N. & Capra, J.D. (1989) J.Immunol., 142, 883-887.

- 102 Schmidt, W.E., Jung, H-.D., Palm, W. & Hilschmann, N. (1983) Z.Physiol.Chem., 364, 713-747.
- 103 Schroeder, H.W., Jr. & Wang, J.Y. (1990) Proc.Natl.Acad.Sci.Usa, 87, 6146-6150.
- 104. Schroeder, H.W., Jr., Hillson, J.L & Perlmutter, R.M. (1987) Science, 238, 791-793.
- Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791–793; Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76.
- 106 Schroeder, H.W., Jr., Hillson, J.L. & Perlmutter, R.M. (1987) Science, 238, 791-793; Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 107 Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H. & Logtenberg, T. (1991) Eur.J.Immunol., 21, 1115-1121.
- Schutte, M.E., Ebeling, S.B., Akkermans, K.E., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1991) Eur.J.lmmunol., 21, 1115–1121.
- 109 Settmacher, U., Jahn, S., Siegel, P., Von Baehr, R. & Hansen, A. (1993) Mol.Immunol., 30, 953-954.
- 110 Shen, A., Humphries, C., Tucker, P. & Blattner, F. (1987) Proc.Natl.Acad.Sci.Usa, 84, 8563-8567.
- 111 Shimizu, A., Nussenzweig, M.C., Mizuta, T.-R., Leder, P. & Honjo, T. (1989) Proc.Natl.Acad.Sci.Usa, 86, 8020-8023.
- 112 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365–2367.
- 113 Silberstein, LE., Litwin, S. & Carmack, C.E. (1989) J.Exp.Med., 169, 1631-1643.
- 114 Singal, D.P., Frame, B., Joseph, S., Blajchman, M.A. & Leber, B.F. (1993) Immunogenet., 38, 242.
- 115 Spatz, L.A., Wong, K.K., Williams, M., Desai, R., Golier, J., Berman, J.E., Alt, F.W. & Latov, N. (1990) J.Immunol., 144, 2821-2828.
- 116 Steiner, L.A., Garcia-Pardo, A. & Margolies, M.N. (1979) Biochemistry, 18, 4068-4080.
- 117 Stewart, A.K., Huang, C., Stollar, B.D. & Schwartz, R.S. (1993) J.Exp.Med., 177, 409-418.
- 118 Thomas, J.W. (1993) J.Immunol., 150, 1375-1382.
- 119 Torano, A. & Putnam, F.W. (1978) Proc.Nat.Acad.Sci.Usa, 75, 966-969.

120 Van Der Heijden, R.W.J., Bunschoten, H., Pascual, V., Uytdehaag, F.G.C.M., Osterhaus, A.D.M.E. & Capra, J.D. (1990) J.Immunol., 144, 2835-2839.

- 121 Van Der Stoep, N., Van Der Linden, J. & Logtenberg, T. (1993) J.Exp.Med., 177, 99-107.
- 122 Van Es, J.H., Gmelig-Meyling, F.H.J. & Logtenberg, T. (1992) Eur.J.Immunol., 22, 2761-2764.
- 123 Varade, W.S., Marin, E., Kittelberger, A.M. & Insel, R.A. (1993) J.Immunol., 150, 4985-4995.
- 124 Victor, K.D., Pascual, V., Lefvert, A.K. & Capra, J.D. (1992) Mol.Immunol., 29, 1501-1506.
- 125 Victor, K.D., Pascual, V., Williams, C.L., Lennon, V.A. & Capra, J.D. (1992) Eur.J.Immunol., 22, 2231-2236.
- 126 Watanabe, S., Barnikol, H.U., Horn, J., Bertram, J. & Hilschmann, N. (1973)Z.Physiol.Chem., 354, 1505-1509.
- 127 Weng, N.-P., Yu-Lee, L.-Y., Sanz, I., Patten, B.M. & Marcus, D.M. (1992) J.Immunol., 149, 2518-2529.
- 128 White, M.B., Word, C.J., Humphries, C.G., Blattner, F.R. & Tucker, P.W. (1990) Mol.Cell.Biol., 10, 3690-3699.
- 129 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Yago, K., Zenita, K., Ohwaki, I., Harada, Y., Nozawa, S., Tsukazaki, K., Iwamori, M., Endo, N., Yasuda, N., Okuma, M. & Kannagi, R. (1993) Mol.Immunol., 30, 1481–1489.
- 131 Zelenetz, A.D., Chen, T.T. & Levy, R. (1992) J.Exp.Med., 176, 1137-1148.

B. References of germline sequences

References of human germline kappa sequences

- 1 Cox, J.P.L., Tomlinson, I.M. & Winter, G. (1994) Eur.J.Immunol., 24, 827–836.
- 2 Huber, C., Et Al. (1993) Eur.J.Immunol., 23, 2868.
- 3 Klobeck, H.G., Bornkammm, G.W., Combriato, G., Mocikat, R., Pohlenz, H.D. & Zachau, H.G. (1985) Nucl.Acids Res., 13, 6515-6529.
- 4 Lautner-Rieske, A., Huber, C., Meindl, A., Pargent, W., Schäble, K.F., Thiebe, R., Zocher, I. & Zachau, H.G. (1992) Eur.J.Immunol. 22, 1023.
- 5 Lorenz, W., Schäble, K.F., Thiebe, R., Stavnezer, J. & Zachau, H.G. (1988) Mol.Immunol., 25, 479.

6 Pargent, W., Meindl, A., Thiebe, R., Mitzel, S. & Zachau, H.G. (1991) Eur.J.Immunol., 21, 1821–1827.

- 7 Pech, M. & Zachau, H.G. (1984) Nuc. Acids Res., 12, 9229-9236.
- 8 Pech, M., Jaenichen, H.-R., Pohlenz, H.-D., Neumaier, P.S., Klobeck, H.-G. & Zachau, H.G. (1984) J.Mol.Biol., 176, 189-204.
- 9 Scott, M.G., Crimmins, D.L., Mccourt, D.W., Chung, G., Schable, K.F., Thiebe, R., Quenzel, E.-M., Zachau, H.G. & Nahm, M.H. (1991) J.Immunol., 147, 4007-4013.
- Stavnezer, J., Kekish, O., Batter, D., Grenier, J., Balazs, I., Henderson, E. & Zegers, B.J.M. (1985) Nucl. Acids Res., 13, 3495-3514.
- Straubinger, B., Huber, E., Lorenz, W., Osterholzer, E., Pargent, W., Pech, M., Pohlenz, H.-D., Zimmer, F.-J. & Zachau, H.G. (1988) J.Mol.Biol., 199, 23-34.
- Straubinger, B., Thiebe, R., Huber, C., Osterholzer, E. & Zachau, H.G. (1988) Biol.Chem.Hoppe-Seyer, 369, 601-607.

References of human germline lambda sequences

- 1 Williams, S.C. & Winter, G. (1993) Eur.J.Immunol., 23, 1456-1461.
- Siminovitch, K.A., Misener, V., Kwong, P.C., Song, Q.-L. & Chen, P.P. (1989) J.Clin.Invest., 84, 1675-1678.
- Brockly, F., Alexandre, D., Chuchana, P., Huck, S., Lefranc, G. & Lefranc, M.-P. (1989) Nuc. Acids. Res., 17, 3976.
- 4 Daley, M.D., Peng, H.-Q., Misener, V., Liu, X.-Y., Chen, P.P. & Siminovitch, K.A. (1992) Mol.Immunol., 29, 1515-1518.
- 5 Deftos, M., Soto-Gil, R., Quan, M., Olee, T. & Chen, P.P. (1994) Scand. J. Immunol., 39, 95.
- 6 Stiernholm, N.B.J., Kuzniar, B. & Berinstein, N.L. (1994) J. Immunol., 152, 4969-4975.
- 7 Combriato, G. & Klobeck, H.G. (1991) Eur.J.Immunol., 21, 1513-1522.
- 8 Anderson, M.L.M., Szajnert, M.F., Kaplan, J.C., Mccoll, L. & Young, B.D. (1984) Nuc. Acids Res., 12, 6647-6661.

References of human germline heavy chain sequences

- Adderson, E.E., Azmi, F.H., Wilson, P.M., Shackelford, P.G. & Carroll, W.L. (1993)

 J.Immunol., 151, 800-809.
- 2 Andris, J.S., Brodeur, B.R. & Capra, J.D. (1993) Mol.Immunol., 30, 1601–1616.

Berman, J.E., Mellis, S.J., Pollock, R., Smith, C.L., Suh, H., Heinke, B., Kowal, C., Surti, U., Chess, L., Cantor, C.R & Alt, F.W. (1988) Embo J., 7, 727-738.

- Buluwela, L. & Rabbitts, T.H. (1988) Eur.J.Immunol., 18, 1843–1845.; Buluwela, L., Albertson, D.G., Sherrington, P., Rabbitts, P.H., Spurr, N. & Rabbitts, T.H. (1988) Embo J., 7, 2003–2010.
- 5 Chen, P.P., Liu, M.-F., Sinha, S. & Carson, D.A. (1988) Arth.Rheum., 31, 1429-1431.
- 6 Chen, P.P., Liu, M.-F., Glass, C.A., Sinha, S., Kipps, T.J. & Carson, D.A. (1989) Arthritis & Rheumatism, 32, 72–76.
- 7 Cook, G.P. et al. (1994) Nature Genetics 7, 162-168.
- 8 Haino, M. et al., (1994). J. Biol. Chem. 269, 2619-2626
- 9 Humphries, C.G., Shen, A., Kuziel, W.A., Capra, J.D., Blattner, F.R. & Tucker, P.W. (1988) Nature, 331, 446-449.
- 10 Kodaira, M., Kinashi, T., Umemura, I., Matsuda, F., Noma, T., Ono, Y. & Honjo, T. (1986) J.Mol.Biol., 190, 529-541.
- 11 Lee, K.H., Matsuda, F., Kinashi, T., Kodaira, M. & Honjo, T. (1987) J.Mol.Biol., 195, 761-768.
- Matsuda, F., Lee, K.H., Nakai, S., Sato, T., Kodaira, M., Zong, S.Q., Ohno, H., Fukuhara, S. & Honjo, T. (1988) Embo J., 7, 1047–1051.
- 13 Matsuda, F., Shin, E.K., Hirabayashi, Y., Nagaoka, H., Yoshida, M.C., Zong, S.Q. & Honjo, T. (1990) Embo J., 9, 2501–2506.
- Matsuda, F., Shin, E.K., Nagaoka, H., Matsumura, R., Haino, M., Fukita, Y., Taka-Ishi, S., Imai, T., Riley, J.H., Anand, R. Et, Al. (1993) Nature Genet. 3, 88-94
- Nagaoka, H., Ozawa, K., Matsuda, F., Hayashida, H., Matsumura, R., Haino, M., Shin, E.K., Fukita, Y., Imai, T., Anand, R., Yokoyama, K., Eki, T., Soeda, E. & Honjo, T. (1993). (Temporal)
- 16 Rechavi, G., Bienz, B., Ram, D., Ben-Neriah, Y., Cohen, J.B., Zakut, R. & Givol, D. (1982) Proc.Nat.Acad.Sci.Usa, 79, 4405-4409.
- 17 Sanz, I., Kelly, P., Williams, C., Scholl, S., Tucker, P. & Capra, J.D. (1989) Embo J., 8, 3741-3748.
- 18 Shin, E.K., Matsuda, F., Fujikura, J., Akamizu, T., Sugawa, H., Mori, T. & Honjo, T. (1993) Eur.J.Immunol., 23, 2365-2367.
- 19 Tomlinson, Im., Walter, G., Marks, Jd., Llewelyn, Mb. & Winter. G. (1992) J.Mol.Biol. 227, 776-798.

20 Van Der Maarel, S., Van Dijk, K.W., Alexander, C.M., Sasso, E.H., Bull, A. & Milner, E.C.B. (1993) J.Immunol., 150, 2858-2868.

- 21 Van Dijk, K.W., Mortari, F., Kirkham, P.M., Schroeder, Jr., H.W. & Milner, E.C.B. (1993) Eur.J.Immunol., 23, 832-839.
- Van Es, J.H., Aanstoot, H., Gmelig-Meyling, F.H.J., Derksen, R.H.W.M. & Logtenberg, T. (1992) J.Immunol., 149, 2234–2240.
- 23 Weng, N.-P., Snyder, J.G., Yu-Lee, L-Y. & Marcus, D.M. (1992) Eur.J.Immunol., 22, 1075–1082.
- 24 Winkler, T.H., Fehr, H. & Kalden, J.R. (1992) Eur.J.Immunol., 22, 1719-1728.
- Olee, T., Yang, P.M., Siminovitch, K.A., Olsen, N.J., Hillson, J.L., Wu, J., Kozin, F., Carson, D.A.&Chen, P.P. (1991) J. Clin. Invest. 88, 193-203.
- 26 Chen, P.P.& Yang, P.M. (1990) Scand. J. Immunol. 31, 593-599.
- 27 Tomlinson, M., Walter, G., Cook&Winter, G. (Unpublished)

Claims

1. A method of setting up one or more nucleic acid sequences encoding one or more (poly)peptide sequences suitable for the creation of libraries of (poly)peptides said (poly)peptide sequences comprising amino acid consensus sequences, said method comprising the following steps:

- deducing from a collection of at least three homologous proteins one or more (poly)peptide sequences comprising at least one amino acid consensus sequence;
- (b) optionally, identifying amino acids in said (poly)peptide sequences to be modified so as to remove unfavorable interactions between amino acids within or between said or other (poly)peptide sequences;
- (c) identifying at least one structural sub-element within each of said (poly)peptide sequences;
- (d) backtranslating each of said (poly)peptide sequences into a corresponding coding nucleic acid sequence;
- (e) setting up cleavage sites in regions adjacent to or between the ends of sub-sequences encoding said sub-elements, each of said cleavage sites:
 - (ea) being unique within each of said coding nucleic acid sequences;
 - (eb) being common to the corresponding sub-sequences of any said coding nucleic acids.
- A method of setting up two or more sets of one or more nucleic acid sequences comprising executing the steps described in claim 1 for each of said sets with the additional provision that said cleavage sites are unique between said sets.
- 3. The method of claim 2 in which at least two of said sets are deduced from the same collection of at least three homologous proteins.
- 4. The method according to any one of claims 1 to 3, wherein said setting up further comprises the synthesis of said nucleic acid coding sequences.
- 5. The method according to any one of claims 1 to 4, further comprising the cloning of said nucleic acid coding sequences into a vector.

6. The method according to any one of claims 1 to 5, wherein said removal of unfavorable interactions results in enhanced expression of said (poly)peptides.

- 7. The method according to any one of claims 1 to 6, further comprising the steps of:
 - (f) cleaving at least two of said cleavage sites located in regions adjacent to or between the ends of said sub-sequences; and
 - (g) exchanging said sub-sequences by different sequences; and
 - (h) optionally, repeating steps (f) and (g) one or more times.
- 8. The method according to claim 7, wherein said different sequences are selected from the group of different sub-sequences encoding the same or different sub-elements derived from the same or different (poly)peptides.
- 9. The method according to claims 7 or 8, wherein said different sequences are selected from the group of:
 - (i) genomic sequences or sequences derived from genomic sequences;
 - (ii) rearranged genomic sequences or sequences derived from rearranged genomic sequences; and
 - (iii) random sequences.
 - 10. The method according to any one of claims 1 to 9 further comprising the expression of said nucleic acid coding sequences.
 - 11. The method according to any one of claims 1 to 10 further comprising the steps of:
 - screening, after expression, the resultant (poly)peptides for a desired property;
 - (k) optionally, repeating steps (f) to (i) one or more times with nucleic acid sequences encoding one or more (poly)peptides obtained in step (i).
 - 12. The method according to claim 11, wherein said desired property is selected from the group of optimized affinity or specificity for a target molecule, optimized enzymatic activity, optimized expression yields, optimized stability and optimized solubility.

13. The method according to any one of claims 1 to 12, wherein said cleavage sites are sites cleaved by restriction enzymes.

- 14. The method according to any one of claims 1 to 13, wherein said structural sub-elements comprise between 1 and 150 amino acids.
- 15: The method according to claim 14, wherein said structural sub-elements comprise between 3 and 25 amino acids.
- 16. The method according to any one of claims 1 to 15, wherein said nucleic acid is DNA.
- 17. The method according to any one of claims 1 to 16, wherein said (poly)peptides have an amino acid pattern characteristic of a particular species.
- 18. The method according to claim 17, wherein said species is human.
- 19. The method according to any one of claims 1 to 18, wherein said (poly)peptides are at least part of members or derivatives of the immunoglobulin superfamily.
- 20. The method according to claim 19, wherein said members or derivatives of the immunoglobulin superfamily are members or derivatives of the immunoglobulin family.
- 21. The method according to claim 19 or 20, wherein said (poly)peptides are or are derived from heavy or light chain variable regions wherein said structural sub-elements are framework regions (FR) 1, 2, 3, or 4 or complementary determining regions (CDR) 1, 2, or 3.
- 22. The method according to claim 20 or 21, wherein said (poly)peptides are or are derived from the HuCAL consensus genes:
 Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2, Vλ3, VH1A, VH1B, VH2, VH3, VH4, VH5, VH6, Cκ, Cλ, CH1 or any combination of said HuCAL consensus genes.
- 23. The method according to any one of claims 20 to 22, wherein said derivative of said immunoglobulin family or said combination is an Fv, disulphide-linked Fv, single-chain Fv (scFv), or Fab fragment.

The method according to claims 22 to 23, wherein said derivative is an scFv fragment comprising the combination of HuCAL VH3 and HuCAL Vλ2 consensus genes that comprises a random sub-sequence encoding the heavy chain CDR3 sub-element.

- 25. The method according to any one of claims 1 to 24, wherein at least part of said (poly)peptide sequences or (poly)peptides is connected to a sequence encoding at least one additional moiety or to at least one additional moiety, respectively.
- 26. The method according to claim 25, wherein said connection is formed via a contiguous nucleic acid sequence or amino acid sequence, respectively.
- 27. The method according to claims 25 to 26, wherein said additional moiety is a toxin, a cytokine, a reporter enzyme, a moiety being capable of binding a metal ion, a peptide, a tag suitable for detection and/or purification, or a homo- or hetero-association domain.
- 28. The method according to any one of claims 10 to 27, wherein the expression of said nucleic acid sequences results in the generation of a repertoire of biological activities and/or specificities, preferably in the generation of a repertoire based on a universal framework.
- 29. A nucleic acid sequence obtainable by the method according to any of claims 1 to 28.
- 30. A collection of nucleic acid sequences obtainable by the method according to any of claims 1 to 28.
- 31. A recombinant vector obtainable by the method according to any of claims 5 to 28.
- 32. A collection of recombinant vectors obtainable by the method according to any of claims 5 to 30.
- 33. A host cell transformed with the recombinant vector according to claim 31.

34. A collection of host cells transformed with the collection of recombinant vectors according to claim 32.

- 35. A method of producing a (poly)peptide or a collection of (poly)peptides as defined in any of claims 1 to 28 comprising culturing the host cell according to claim 33 or the collection of host cells according to claim 34 under suitable conditions and isolating said (poly)peptide or said collection of (poly)peptides.
- 36. A (poly)peptide devisable by the method according to any one of claims 1 to 3, encoded by the nucleic acid sequence according to claim 29 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 37. A collection of (poly)peptides devisable by the method according to any one of claims 1 to 3, encoded by the collection of nucleic acid sequences according to claim 30 or obtainable by the method according to any one of claims 4 to 28 or 35.
- 38. A vector suitable for use in the method according to any of claims 5 to 28 and 35 characterized in that said vector is essentially devoid of any cleavage site as defined in claim 1(e) and 2.
- 39. The vector according to claim 38 which is an expression vector.
- 40. A kit comprising at least one of;
 - (a) a nucleic acid sequence according to claim 29;
 - (b) a collection of nucleic acid sequences according to claim 30;
 - (c) a recombinant vector according to claim 31;
 - (d) a collection of recombinant vectors according to claim 32;
 - (e) a (poly)peptide according to claim 36;
 - (f) a collection of (poly)peptides according to claim 37;
 - (g) a vector according to claim 38 or 39; and optionally,
 - (h) a suitable host cell for carrying out the method according to claim 35.
- 41. A method of designing two or more genes encoding a collection of two or more proteins, comprising the steps of:

- (a) either
 - (aa) identifying two or more homologous gene sequences, or
 - (ab) analyzing at least three homologous genes, anddeducing two or more consensus gene sequences therefrom,
- (b) optionally, modifying codons in said consensus gene sequences to remove unfavourable interactions between amino acids in the resulting proteins,
- (c) identifying sub-sequences which encode structural subelements in said consensus gene sequences
- (d) modifying one or more bases in regions adjacent to or between the ends of said sub-sequences to define one or more cleavage sites, each of which:
 - (da) are unique within each consensus gene sequence,
 - (db) do not form compatible sites with respect to any single sub-sequence,
 - (dc) are common to all homologous sub-sequences.
- **42.** A method of preparing two or more genes encoding a collection of two or more proteins, comprising the steps of :
 - (a) designing said genes according to claim 41, and
 - (b) synthesizing said genes.
- 43. A collection of genes prepared according to the method of claim 42.
- 44. A collection of two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and

(b) carry cleavage sites, each of which:

- (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
- (bb) are unique within each gene sequence,
- (bc) do not form compatible sites with respect to any single subsequence, and
- (bd) are common to all homologous sub-sequences.
- 45. The collection of genes according to either of claims 43 or 44 in which each of said gene sequences has a nucleotide composition characteristic of a particular species.
- 46. The collection of genes according to claim 45 in which said species is human.
- 47. The collection of genes according to any of claims 43 to 46 in which one or more of said gene sequences encodes at least part of a member of the immunoglobulin superfamily, preferably of the immunoglobulin family.
- The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody heavy chains.
- 49. The collection of genes according to claim 47 in which said structural subelements correspond to any combination of framework regions 1, 2, 3, and 4, and/or CDR regions 1, 2, and 3 of antibody light chains.
- 50. A collection of vectors comprising a collection of gene sequences according to any of claims 43 to 49.

- 51. The collection of vectors according to claim 50 comprising the additional feature that the vector does not comprise any cleavage site that is contained in the collection of genes according to any of claims 43 to 49.
- 52. A method for identifying one or more genes encoding one or more proteins having a desirable property, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims 50 or 51 a collection of proteins.
 - (b) screening said collection to isolate one or more proteins having a desired property,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the proteins isolated in step (b) one or more genetic sub-sequences encoding structural subelements, and replacing said sub-sequence(s) by one or more second sub-sequences encoding structural sub-elements, to generate new vectors according to either of claims 50 or 51,
 - (e) optionally, repeating steps (a) to (c).
- 53. A method for identifying one or more genes encoding one or more antibody fragments which binds to a target, comprising the steps of:
 - (a) expressing from the collection of vectors according to either of claims50 or 51 a collection of proteins,
 - (b) screening said collection to isolate one or more antibody fragments which bind to said target,
 - (c) identifying the genes encoding the proteins isolated in step (b),
 - (d) optionally, excising from the genes encoding the antibody fragments isolated in step (b) one or more genetic sub-sequences encoding structural sub-elements, and replacing said sub-sequence(s) by one or

more second sub-sequences encoding structural sub-generate new vectors according to either of claims 50 or 51,

- (e) optionally, repeating steps (a) to (c).
- 54. A kit comprising two or more genes derived from gene sequences which:
 - (a) are either homologous, or represent consensus gene sequences derived from at least three homologous genes, and
 - (b) carry cleavage sites, each of which:
 - (ba) lie at or adjacent to the ends of genetic sub-sequences which encode structural sub-elements,
 - (bb) are unique within each gene sequence,
 - (bc) do not form compatible sites with respect to any single subsequence, and
 - (bd) are common to all homologous sub-sequences.
- 55. A kit comprising two or more genetic sub-sequences which encode structural sub-elements, which can be assembled to form genes, and which carry cleavage sites, each of which:
 - (a) lie at or adjacent to the ends of said genetic sub-sequences,
 - (b) do not form compatible sites with respect to any single sub-sequence, and
 - (d) are common to all homologous sub-sequences.

Figure 1: construction of a synthetic human antibody library based on consensus sequences

S
sednences
~
v
_
-
_
3
=
$\boldsymbol{\sigma}$
=
v
~
••
S
~.
3
≌
_
_
0,1
v
~
-
5
u
~
æ
g
ра
ä
gd
gd
appa
gd
gd
. kapp
. kapp
gd
VL kapp
VL kapp
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:
: VL kapp:

										 	an	framework	\or	k 1						-							CDRI	 		
	l	7	1234567	7	5	9	L	8	6	01	11	15	13	tl	91	9١	11	81	61	50	12	77	53	74	52	56	77	A	В	Э
VK1 D I Q M		-	a	≥	<u> </u>	a	S	م	S	S		S	A	S	>	9		8	>	-	-		ပ	8	⋖	S	a	1	ı	١
Vk2	٥			Σ	—	Q	S	۵.		S	لــ	₾.	>	-	ط	G	<u>. </u>	۵	V	S	_	S	S	8	S	S	O	S		_
VK3	۵		1 / []		—	0	S	Φ.	A	—		S		S	٩	G	ш	æ	A	—	_	S	၁	æ	A	S	O	S	ı	ı
VK4 D	۵		>	∑ >	_	O	S	۵.		S		⋖	>	S		G	ш	8	4	\vdash		Z	ن	8	S	S	O	S	>	_
					اح		_				L					4					ļ		·				اد		=	
			ļ		기	51	_				\dashv					=	Iramework	ا آ	5	7							اد	בלן	=	
	0	E	58 E E D	28	52	30	31	35	33	34	35	36	37	38	39	07	17	45	43	77	St	97	74	87	67	20	lS	25	23	75
VK1	1	t	1	9	_	S	S	>-		Α.	>	∀ /	O	O	∡.	هـ	G	×	A	Ь	\prec		<u>ا</u>		>	Y.	⋖	S	S	_
VK2 H	エ	2	ı.	Z	<u> </u>	7 9	Z	>		Ω.	S	>		O	∠	Δ.	9	O	S	۵.	O	_		-	>	_	9	S	Z	\propto
VK3	1	ı	1	>	S	S	S	>		Α,	>	>	0	Q	~	٥.	g	O	⋖	۵_	8		_		>	9	A	S	S	\propto
VK4 Y S S N N	<u>></u>	S	S	2	_	_ ~	Z	<u>_</u>		A .	8	≻	0	0	X	٩	G	O	Д.	ط	\checkmark		1	_	>	≥	A	S	-	\propto

نة
ဦ
C
Ų
⊋
Ō
ន
٠.
∽
ᇙ
۳:
2
nseu
⊏
8
U
B
ō
o_
â
_
_
>
2A:
⋖.
2
b
=
2
.⊡
üΞ

	CDRII	RII												1	fra	framework	WC	rk	3											
-	99	99	129	89	69	09	19	79	£9	79	9	99	<u>7</u> 9	89	69	04	17	72	73	74	92	94	LL	87	64	08	18	85	83	48
VK1	0	S	5	>	م	S	2	Щ	S	9	S	9	S	9	-		ш	—	_	-	-	S	S	1	O	Р	Ш		ш	A
VK2 A S	<u> </u>	S	G	>	٥	\bigcirc	\propto	ш_	S	G	S	9	S	G	—	0	ᄔ	-		\mathbf{Y}		S	\propto	>	ш	X	ш		>	G
VK3	A		9	>	ط	A	æ	щ	S	G	S	Ð.	S	G	—	O	ш	<u> </u>		-	_	S	S	_	ш	α_	Ш		ш	¥
VK4	ш	S	9	>	ط		X	ட	S	G	Š	G	S	G	-		ц.	 		—	_	S	S		O	A	ш		>	, A
·			[7	ľ				ا		<u> </u>							نا				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					_				
÷	аш	framework 3	/Or	Υ Υ				기	2 2 2 2	_							=	rramework 4	اخ	١٥	지					_				
	58	98	۲8	88	68	06	16	65	63	76	96	96	۷6	86	66	100	lol	102	103	104	301	901	701	801	601	(
VK1 T Y Y	<u> </u>	>	>	ပ	O	O	ΙΞ.	>		-	Д	۵.	-	<u> </u>	9	0	9	—	Y	>	, E	_	\mathbf{x}	8	-					
VK2	>	>	>	ပ	O	0 0	I	>	—	—	٠	<u>م</u>	—	ш.	9	Q	9 7		×	<i>></i>	<u>ш</u>	_	Y	~	—					
VK3		>	>	ပ	O	Q	I	>	_	<u> </u>	<u>a</u>	۵	-		9	O	G	_	× .	<i>></i>	_ E		\checkmark	<u>~</u>	 					
VK4 V		>	>	ر ا	O	Q -	工	-			<u>a</u> .	۵.	-		9	O	6	_		<i>></i>	_ E		\mathbf{x}	<u>~</u>	-				•	

Figure 2B: VL lambda consensus sequences

TISCSGSSSNI	VOSSIBLSSDV	SCSGDAL		CDR II	53 55 55 75 75	ORPSG	NRPSG	DRPSG
1505051	CTGTSS	CSGDA-			99 79	R P	R P	A P
1505081	CTGTS	C S G D			7 9	æ	œ	~
1505081	CTGT	C S G D						
15056	L)	C S G		JQ.	23	0	Z	
1508	L)	C S	,	16) [
I S C					25	Z	S	S
 - 			•		19	Z	>	
-	S	S			9	٥	0	
1		- '			67	7	>	>
-	-				. 84	_		
	—	8		·	74		Σ	>
>		A			97			_
8	S	-			57	\mathbf{x}	¥	>
0	O	O		k 2	77	۵	٥	Д
9	G	G		framework 2	43	A	\forall	×
٩	۵	ط		e W	45	—	\checkmark	O
<	S	A		am	17	9	9	G
9	9	>		fr	04	۵.	<u>α</u>	ط
S	S	S			38	_	工	\prec
>	>	>	ļ ·		38	O.	O	O
1	ì	1			37	O	O	O
S	S	S			36	/ \	>	<u>}</u>
	V	Ф			32	3	≥	3
T Q P	Q P	۵.			34	S	S	S
	O	TOP			33	۸ ۲	>	4
-	 			RI	35	 	>	>
-	لـــ	لـــ		CD	A	'	Z	1
>	V	ш			31	Z	>	×
	S	>			30	S	9	
S	0	S			58	ြ	9	M3 G D K
								> A

יי
v
U
_
_
v
_
₹-
_
U
v
٠.
Ξ:
ب
S
_
u
ਯ
~
=
0
u
consensus
G.
Ť
\simeq
יי
_
_
G
lampqa
_
_
28: VL
~
u
2
٥
_
_
igur
اب
÷

	_				•					
	78	\forall	>	>						
	98	>	>	>						
	98	۵	٥							
	78	A	A	4						
	83	ш	ш	ш						
	85	۵	Ω							
	18	ш	ш	ш						
	08	S	A	A						
	62	O	O	O				·		
	87			-			10۷	ပြ	9	9
	LL	ပ	_G	9			A	-		_
	94	-	S	S			901	>	>	>
3	97	-		_		4	102	⊢	 	-
논	ħ۷	⋖	—	—		framework 4	701			
8 ×	73			L		WO	103	ㅗ	\checkmark	~
me	72	S	2	—		me	102	—	 	-
framework 3	1L	<	A	V		fra	101	9	9	9
	02	2	_	—			100	9	9	9
	69	 	Z	Z			66	9	9	9
	89	9	G	9			,86	1	> F	7
	Z 9	S	S	- S	1		۷6	>		>
	99	X	×	Z			96	<u>a</u>	Д.	۵.
	99	S	S	S			96	٥	_	٩
	79	9	9	G			1 6			_
	£9	S	 S	01		CDRIII	63		<u> </u>	` }_
]	79	14	ш ~	~		<u>ا</u>	76	\ H	I	_
	19	R	- X	~			16	1		аан
	09		Z	ш			06	0 0	0 0) C
	69	9	S	۵.		-	68	U	ပ) ၂
L	88	2	>	_	J		88			
		×12	W.2	W3				3	W2	W3

nsensus sequences
S
chain
/ heavy
?
20
Figure

											99	—	9		S	S		>
	30	S	 	S	S	S	_	S			99	9	9		9	9	S	≥
	58	ட	ц.		щ	_	ц.	>		. <u></u> .	79	ᄔ	S	0	9	S		¥
	28	—		S	—	Ň	S	S		R =	23	-	Z	≥	νī	>	9	S
	77	9	>_	ட	ட	9	>	0		CD	Э	i	1	ı	1	ı	1	1
	56										В	1	ı	t	ı	1	1	8
	52	S	S	S	S	S	S	S			A	ام	۵.	1	9	ı	٥	>
	74	1		ц.				- 1			25		Z		S	>	>	>
	23										ls	-	_	<u> </u>	-	_	_	-
	77	ပ	ں	ပ	ပ	ပ	ပ	ပ			9	9	≥		A	>	_	∝
	12	S	S	-	S	—	S	-			67	ග	9	A	S	9	9	9
	50	>	>								84		≥			_	≥	
	61	\prec	\checkmark	<u> </u>	\propto	S	¥	S			74	≥	≥	3	≥	≥	≥	3
-	81	>	>			_	_	_		7	97	ш	ш	ш	ш	ш	ш	ш
논	11	S	S	—	S.	-	S	_		논	94			_		_	_	ا نـــ
framework	91	i		O						mewo	77					9		
me	91	l .		_						me	CV					\checkmark		- 1
fra	τl	1		٩						frar	٠.					9		ı
	13	l		\prec							• •	l	•			٥		
	15	l		>				-			•	ĺ				_۵		
	11	1	_				_				38	1				O		- 1
	01	1		A							00	2	<u>~</u>			æ		2
	6	l		۵							37	>	>		-	_	-	
	8	ဗြ		G							36	1						1
		S	S	S							32	S	工	0	_	S	Ö	_
	9	0	0	ш	ш	ш	0	0		_	34	_	2	<i>></i>	2	>	_ >	3
	5	>	>	×	>	0	<i>></i>	0		CDRI		A	<i>></i> -	9	∢ .	>	>	
	7							ָר ו		ပ	35	_	> -	<i>></i>	-	- -	<u> </u>	A
	3	0	0	0	0	0	0	0			8							_
	7	>	>	>	>	>	>	>			A	'					. 1	Z
L	l	0	0	0	<u> </u>	0	ш	0			18	5	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>
		H1A	VH1B	'H2	VH3	VH4	/H5	9Н,				'H1A	/H1B	VH2	VH3	VH4	/H5	9H/
•		>	>	>	>	<i>></i>		BSTII	UTE 6	SHE / 20	ET (P.U 4	JLE 2	(6)	>	>	>	>	<i>></i>

ences	
s sednence	
nsensn	
hain cor	
w chi	
:V hea	
gure 2C	
Fig	

	5 8				A E			1			113	l.	S S					
		8	8	Ω	8	-	\checkmark	\vdash		rk 4	111	>	>	>	>	>	>	>
	J.			≥		>		>		WO	011	 	\vdash		 	⊢		-
	8	S	S	Z	S	S	S	S		me	601	>	>	>	>	>	>	>
	A	S	S	\vdash	Z	S	S	Z		frar	80 f	-	لد					-
	28		_	Σ	Σ	_	≥	_		-	107	 -	—	—	 	-	—	-
	18	ш	ш	\vdash	O	\checkmark	O	0			901	9	9	G	G			9
(2)	08	Σ	Σ		_	_					901	0	O		_		O	
or s	64	>	>	>	>-	S	>	S			104	9				9 /	_	_
framework	87	ŀ			_		\forall	ш.			103	<	>					_
am	LL	1		O			-				102	>		_	_	≻	_	∠
4	92	1			Z						101	0	0	_	_			M
	SZ				×					RIII	5	-	A					
İ	147	ľ			S						B	1.	/ ≻			<u> </u>		7
	73	1			Z						00 f	1	<u>ц</u>		-			
	72	1			R [66	1	. — ອ					
	04	1			S						86			۵	۵		۵	۵
	69	_	. ≥		_		_	_			76	5	9	9	9	9	9	Э
	89	 	⊢	<u> </u>	· -	—	_	—		ļ	96	9	9	9	. O	9	Ġ	Ó
-	Z9	>	>		ட	>	>	_			96	≥	≥	≥	≥	≥	≥	≥
\cdot	99	8	8	<u>~</u>	<u>~</u>	\propto	O	8			† 6	∞				\propto		
			9	· -	· ග	S	9	S		3	£6.		A					
1	† 9	1.			· _						76	<u>ا</u> ب	ပ	ပ	ပ	ں	ပ	ပ
₩ E	E9	<u> </u> ப			>	_	ц.	>		framework	16	>-	>	>	>	>	>	>
CDRI	79		: ×	: ഗ	S	S	S	S		me	06	>-	>	>-	>	>	·	>
	19	' E			· 🗅		م			fra	68	>	>	-	>	•	Σ	
	09		∶ ∢	; v	∨	Z	S	A			88	M	\forall	⋖	<	Α.	< <	< <
	69	i∣≻	· >	· >-	· >-	>	>	>			78	-	-	—	—	_	<u> </u>	_
	_] 8⊆	z	: Z	<u> </u>	<u> </u>	Z	8	_]] 98				_			
, , , , ,		VH1A	- —	- c	VH3	VH4	VH5	I	TITU	TE S 7 / 2	HEET (F 04	TINAL THE	/H1	VH2	VH3	VH4	VH5	VH6

~ ~ ~ ~ ~

Ü ഗ Ø ഗ ب Ś ഗ Д ~~~~~~ BanlI ഗ Figure 3A: V kappa 1 (Vk1) gene sequence O Σ Ø ECORV ~~~~ CTGAGCGCGA GCGTGGGTGA CGCACCCACT GACTCGCGCT TGACCCAGAG CCCGTCTAGC GGGCAGATCG ACTGGGTCTC GATATCCAGA CTATAGGTCT

口 ഗ ഗ Н G Ø ഗ Ø 召 PstI Ų > K

AGCTATCTGG TCGATAGACC GGGCATTAGC CCCGTAATCG ATTACCTGCA. GAGCGAGCCA TAATGGACGT CTCGCTCGGT AGCACACTGG TCGTGTGACC

4 Н ~~~~~~ AseI Н Ц X Д K 又 ෆ SexAI Д 又 Ø Ø KpnI Y 3 K

GCTTTGATAA TTAAATACGT CGAAACTATT AATTTATGCA GGTAAAGCAC CCATTTCGTG GCAGAAACCA CGTCTTTGGT CGTGGTACCA GCACCATGGT

BamHI ഗ G ഗ Į۲ı K ഗ വ SanDI >
 Co
 ഗ Ø 口 S ഗ K

CGTTTTAGCG GCTCTGGATC GGTCCCGTCC GCCAGCAGCT TGCAAAGCGG

	ACGITICGCC CCAGGGCAGG GCAAAAICGC CGAGACCIAG
	CAGG GCAAAATCGC (
ied)	CCAGGGCAGG
) gene sequence (continu	ACGITICGCC CCAGGG
Figure 3A: V kappa 1 (VK1)	CGGTCGTCGA

CGAGACCTAG	P E D F Eco57I	BbsI	GAAGACTTTG CTTCTGAAAC	F G Q MscI
CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG GCAAAATCGC CGAGACCTAG	FTLTISSLOPEDF ECO57I		CGGCACTGAT TTTACCCTGA CCATTAGCAG CCTGCAACCT GAAGACTTTG GCCGTGACTA AAATGGGACT GGTAATCGTC GGACGTTGGA CTTCTGAAAC	Y C Q Q H Y T T P P T F G Q MscI
CCAGGGCAGG	H S		CCATTAGCAG GGTAATCGTC	H Y
ACGTTTCGCC	F T L. T		TTTACCCTGA AAATGGGACT	о о о
cegregrega	G T	BamHI ~	CGGCACTGAT GCCGTGACTA	A T Y Y

CTTTGGCCAG GAAACCGGTC CCCCCCCCGAC CATTATACCA GTAATATGGT R T Bsiwi TTGCCAGCAG AACGGTCGTC × \mathbf{H} 口 > CGACCTATTA GCTGGATAAT × Н G

TGCATGC ACGTACG TTGAAATTAA AACTTTAATT GGTACGAAAG CCATGCTTTC

~ ~ ~ ~ ~

ſτι

Figure 3B: V kappa 2 (VK2) gene sequence

田	GA	-
ტ	999 000	24
Д.	CTCCGGGCGA GAGGCCCGCT	ß
٠	CTC	Ħ
H	SA CT	ت
>	GTC	_
വ	CCA	H
M T Q S P L S L P V T P G E BanII	CTGCCAGTGA GACGGTCACT	ISCRSSQSLLHSN
ß	ည္သ	Ø
. 7	CCCACTGAGC	ß
H	ACJ TG2	Ŋ
H H	~ ~ ~ ~ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	
S BanII	} } かひ	ద
и O	AGA TCI	Ö
حا	TGACCCAGAG ACTGGGTCTC	Ø
-	GAC	Н
Σ		••
>	TG	Ŋ
I RV	TCG AGC	Ø
D I EcoRV	CTATAGCACT	Δ

C ATTAGCTGCA GAAGCAGCCA AAGCCTGCTG CATAGCAACG	3 TAATCGACGT CTTCGTCGGT TTCGGACGAC GTATCGTTGC
AAGCCTGCTG	TTCGGACGAC
GAAGCAGCCA	CTTCGTCGGT
ATTAGCTGCA	TAATCGACGT
GCCTGCGAGC	CGGACGCTCG

PstI

K

Д

Ø	
Д	
Ø	
Ø	
ტ	A.
Д	SexAI
X	
Q	
'n	
>	KpnI
Z	Κŗ
Д	
ᆸ	
×	
Z	
×	
Q	

AAGCCCGCAG TTCGGGCGTC AACCAGGTCA TTGGTCCAGT TACCTTCAAA ATGGAAGTTT TCTGGATTGG AGACCTAACC GCTATAACTA CGATATTGAT

~~~~~

GCCTAGCAAA TCACCCCAGG AGTGGGGTCC GTTGGCACGG CAACCGTGCC ATCTGGGCAG TAGACCCGTC CTATTAATTT GATAATTAAA

Figure 3B: V kappa 2 (Vk2) gene sequence (continued)

|                        | ניז ני                   |                             |
|------------------------|--------------------------|-----------------------------|
| >                      | TG:                      | Д                           |
| <b>&amp;</b>           | GTC                      | ₽,                          |
| GSGTDFTLKISRV<br>BamHI | AGCCGTGTGG               | р V G V Y Y C Q Q H Y Т Т Р |
| н                      | TT.                      | ≻                           |
| <b>.</b>               | AAA<br>TTT               | Ħ                           |
| 니                      | CCTGAAAATT<br>GGACTTTTAA | Ø                           |
| 드                      |                          | O                           |
|                        | TA(                      | ,<br>C                      |
| т.                     | CCGATTTTAC<br>GGCTAAAATG | ⇒ı                          |
| Д                      | CGA                      | >-                          |
| E                      |                          | •                           |
| <b>o</b>               | GC2                      | >                           |
| HI ~~~                 | 200<br>300               | Q                           |
| G S<br>BamHI           | GAT                      | >                           |
| Ø                      |                          | Ωн                          |
|                        | CTC                      | 臣<br>CO57                   |
| Ŋ                      | )<br>300<br>300          | A<br>Eco                    |
| Q                      | TAGCGGCTCT<br>ATCGCCGAGA | 田                           |
|                        | 7                        | щ                           |

| ATGGTGGGGC                                    |
|-----------------------------------------------|
| T GCACCCGCAC ATAATAACGG TCGTCGTAAT ATGGTGGGGC |
| ATAATAACGG                                    |
| GCACCCGCAC                                    |
| TTCGACTTCT                                    |
|                                               |

| • | R · T | BsiWI |
|---|-------|-------|
|   | 저     |       |
|   | Н     |       |
|   | 凶     |       |
|   | >     |       |
|   | X     |       |
|   | ⊱     |       |
|   | Ö     |       |
|   | Ø     |       |
|   | ტ     | MscI  |
|   | দ     |       |
|   | E     |       |
|   | Д     |       |
|   |       |       |

00 00 00 ATTAAACGTA TAATTTGCAT GAAAGTTGAA CTTTCAACTT GCCAGGGTAC CGGTCCCATG CCGACCTTTG GCCTGGAAAC

BbsI

~ ~ ~ ~ ~ ~

GAGGCCCGCT ഥ CTGAGCCTGT CTCCGGGCGA 
 The contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of Д ഗ GACTCGGACA 口 ഗ Н TGACCCAGAG CCCGGCGACC GGGCCGCTGG Е Ø М BanII ACTGGGTCTC ഗ Figure 3C: V kappa 3 (Vx3) gene sequence Ø CTATAGCACG GATATCGTGC **>** EcoRV ~~~~

ഗ S ഗ > S O ഗ Ø ĸ PstI ပ ഗ Ц Н K  $\alpha$ 

AGCAGCTATC TCGTCGATAG GAGCGTGAGC CTCGCACTCG CTGAGCTGCA GAGCGAGCCA CICCCICGGI GACTCGACGT TGCACGCTGG ACGTGCGACC

~~~~~ AseI Н 口 凶 Ы Ø Ø ഗ SexAI Д X Ø Ø KpnI 3 Ø Ч

TAATTAAATA ATTAATTAT GTGGCGCAGA CACCGCGTCT CCAGGTCAAG GGTCCAGTTC GGTCGTCTTT CCAGCAGAAA TGGCGTGGTA ACCGCACCAT

BamHI ഗ C ഗ ہعا 召 Ø Д SanDI > ഗ Е K K ഗ S Ø Ò

GECECEAGCA GCCGTGCAAC TGGGGTCCCG GCGCGTTTTA GCGGCTCTGG

~~~~~~

Figure 3C: V kappa 3 (Vk3) gene sequence (continued)

CGGCACGTTG ACCCCAGGGC CGCGCAAAAT CGCCGAGACC CCGCGCTCGT

BbsI Eco57I ~~~~~ 臼 Д ഠ ᆸ S ഗ H H 口 ₽ ĮΉ H G BamHI

ഗ

CCTGAAGACT GGACTTCTGA CTAAAATGGG ACTGGTAATC GTCGGACCTT TGACCATTAG CAGCCTGGAA GATTTTACCC ATCCGGCACG TAGGCCGTGC ?

لتا ۲ Д Д Е Е 工 Ø Ø C  $\succ$ Ø

MscI

GACCTTTGGC CTGGAAACCG CAGCATTATA CCACCCGCC GGTGGGGCGG GTCGTAATAT TTATTGCCAG AACGCCACAT AATAACGGTC TTGCGGTGTA

BsiWI ~~~~~ K X Н 口 > X H . ტ MscI Ø

ATTTGCATGC TAAACGTACG AAGTTGAAAT TTCAACTTTA CAGGGTACGA GTCCCATGCT

Figure 3D: V kappa 4 (Vk4) gene sequence

(+1	<b>⊲</b> : [-1		K H		ပ္ပ ပ္	<b>K</b>	ပ္ ပ္ပ
闰	CG7	Ø	TATAGCAGCA ATATCGTCGT	Д	~ TCAGCCGCCG AGTCGGCGGC	Д	TCCCGGATCG AGGGCCTAGC
Ω	ရိုင္ပ သည		CA CA	Д	900	H	(CC)
니	OTG SAC	W.	rag atc	Q	AG( TC(	<u>a</u>	
	gccrgggggg cggacccgcr	×	TA		TC AG	י בסנ	TC A
Q		_	ပ္ ပ္ခ	G	<sup>×</sup> ຕ ບ	V SanDI	GGG TCCC
>	3TG	H	SCI	P G SexAI	ACCAGG T IGGTCC A	r O	~ ဗ္ဗိပ္မ
æ	CTGGCGGTGA GACCGCCACT	>	GAGCGTGCTG CTCGCACGAC		AGAAACCAGG TCTTTGGTCC	W	GAAAGCGGGG
	စ် ပ	W .	\GC PCG	×	SAA	· Lil	AA/ TT
I	SP		ซีบี	O.		•	
S	ပ္ပ ဗ္	Q	CA		TGGTACCAGC ACCATGGTCG	K	ATCCACCCGT TAGGTGGGCA
	TA:	Ø	\GC	О Н	~~ CC2 GG	H	- D 00
D	3G2 CC1	W.	25 25 25 25	Y KpnI	GGTACC CCATGG	ഗ	CCA
дн	CCCGGATAGC GGGCCTATCG		~ GAAGCAGCCA CTTCGTCGGT	Z X	TGG ACC	01	AT( TA(
S BanI	7	ద	1			4	ည္က ဗ္ဂ
	TGACCCAGAG ACTGGGTCTC	c PstI	ATTAACTGCA TAATTGACGT	Ø	CTATCTGGCG GATAGACCGC	N A	~ TTTATTGGGC AAATAACCCG
Q	CCA	Z Z	ACT TGA	H	CT( GA(	3	TT 'AA
E	AC( TG(		TA.	<b>≯</b>	TAT ATA	≯	rta Aat
, 	TG	<b>H</b>	AT		56	н	₹
Σ	3A CT	£-	ပ္ပ် ဗီဗီ	N N	AA	L AseI	~~~ PAA ATT
>	GTC		SGA SCT	×	AAA ITT	L Ase	~~~~~ ATTAA TAATT
I V	ATC PAG	K	IGC ACC	Z	AC.	H	CT
D I	~~~~~~ GATATCGTGA CTATAGCACT	民	ACGTGCGACC TGCACGCTGG		ACAACAAAAA TGTTGTTTTT	×	~~~~ AAACTATTAA TTTGATAATT
	1 0 0		A T	Z	7		

Figure 3D: V kappa 4 (Vx4) gene sequence (continued)

••			SSS	3GG		E	
U)			GTC	CAG		E	
Ŋ		•.	'TC	AG			
Н			ATTTCGTCCC	TAAAGCAGGG		H	
E			CC	GG		H	
IJ			TGA	ACT		Q	
E			TACCCTGACC	ATGGGACTGG		руа учус оон утт	
		-	T			ບ	
ĮΤι			GCACTGATTT	CGTGACTAAA		~	
Ω			GAJ	CTZ			
H	•		ACT	rga		×	
			CC	CG		>	
Ö		,	Ö	Ŋ		~	
വ	BamHI	2	JCC	AGG		7	
ტ	Ва	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	GA	CT		>	
S G S G T D F T L T I S S		(	TCTGGATCCG	AGACCTAGGC		Д	ب
			7)		•	闰	Eco57I
Q			CGG	300		Ø	Eco
ß			AG	TC		<u> </u>	
ſι			TTTTAGCGG	AAAATCGCCG		V	
			Ē	A		口	

AATATGGTGG GCCAGCAGCA TTATACCACC CGGTCGTCGT GTGTATTATT CACATAATAA TGCAAGCTGA AGACGTGGCG ACGTTCGACT TCTGCACCGC

BsiWI 召 × Н 团 X 드 G Ø MscI Ċ 江 H Д Д

CATGC GAAATTAAAC GTACG CTTTAATTTG TACGAAAGTT ATGCTTTCAA TTGGCCAGGG AACCGGTCCC CCGCCGACCT GGCGGCTGGA

BbsI

22222

				•	. · ·a		
K	CAGGTCAGCG GTCCAGTCGC	<b>&gt;</b> ⊦	AGCAACTATG TCGTTGATAC	<b>&gt;</b>	GCTGATTTAT CGACTAAATA	N K	<b>}</b>
Q	CAC		ACT IGA	Н	ATT TAZ	G S BamHI	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
ט _	SGT CCA	Z	CAZ	ъ.	TG	υщ	1
P SexAI	CAC	Ø	AG		000	ß	
A P	₹	ტ	0 0 0	ī	CT GA	Ĺτι	
Ø	7,50		LTG	×	cgccgaaact gcggctttga		
Q	3 3 3 3 3 3	Н	CAT	-	\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\fr	<b>K</b>	
W.	AGTGGCGCAC TCACCGCGTG	Z	CAACATTGGC GTTGTAACCG	A BbeI	GG CGCCGAAACT CC GCGGCTTTGA	Ω	
_		Ŋ	AG		00 00 00 00	Д	
>	GCCTTCAGTG CGGAAGTCAC Eco57I	Ŋ	GCAGCAGCAG CGTCGTCGTC	<del>[-1</del>	CCCGGGACGG	>	
ъ S	CTTCAG' GAAGTC ECO57I	ß	1307 1007	P G XmaI	000000	ტ	}
<b>ப்</b>	Ω Ω Ω Ω Ω Ω Ω Ω		GCA	면 X	222		} }
д		O.	•	. <b>1</b>	JG AC	P S Bsu36I	
$\circ$	TGACCCAGCC ACTGGGTCGG	W	TCGTGTAGCG AGCACATCGC	J.	ccagcagtrg ggrcgrcaac	ъ Вs	
uence Q	2007	OH	·~ rgt aca	o o	GCA	<b>α</b>	
ne Sequ T	GAC	S C BssSI	TCGTG	Q	CCA GGT		
አነ) ge L		щ	}	/ Y KpnI	₹	Q	
a 1 (X)	TGC	H	CAT	W Y Kpn	~~~ 3GT CCA	Z	
gure 4A: V Iambda 1 (VA.1) gene sequence Q S V L T Ç	CAGAGCGTGC GTCTCGCACG	H	TGTGACCATC ACACTGGTAG		TGAGCTGGTA ACTCGACCAT	Z	
4A: V Iai S	GAC	>	STG	ഗ	GAG	Ω.	
jure 4 <i>f</i> Q	CA		T(	>	ĒĀ		

Figure 4A: V lambda 1 (VA.1) gene sequence (continued)

				4	
GCGGATCCAA CGCCTAGGTT	S E D BbsI	AGCGAAGACG TCGCTTCTGC	Q H Y T T P P V F G CAGCATTATA CCACCCGCC TGTGTTTGGC GTCGTAATAT GGTGGGGCGG ACACAAACCG		
			0. () (b		
ETT PAST	Oi.	CA2 GTJ	300 CGC		
TT	J	OTG SAC	ССС В В В В В В В В В В В В В В В В В В		
GATCGTTTTA СТАGСААААТ	о П	GGGCCTGCAA CCCGGACGTT	Q H Y T T P P P CAGCATTATA CCACCCGCC GTCGTAATAT GGTGGGGCGG		•
უ ე ე	H	AC HG	TA AT		
) <u>0</u> 00	H	\TT. FAA	Y I'TA	rb D →	ე <u>ტ</u>
AGGCGTGCCG TCCGCACGGC	SASLAIT	TTGCGATTAC AACGCTAATG	GCA7	L G MscI	TCTTGGC
	.a				
AGCGTCCCTC TCGCAGGGAG	Ŋ	AGCGCGAGCC TCGCGCTCGG	Y C Q TTATTGCCAG AATAACGGTC	K L T V HpaI	AGTTAACCGT TCAATTGGCA
TCC	Ø	SCGA	C TTGC	L T HpaI	ATTO
ည် သည်	വ	\GCG	Y LTA1	H H	AGTT PCAA
				×	•
AAC	H	CAC	D Y SATTA STAAT	E	ACG TGC
ACZ	Q	900	A CGG	ტ	360
GATAACAACC CTATTGTTGG	W.	AAGCGGCACC TTCGCCGTGG	E A D Y AAGCGGATTA TTCGCCTAAT	O	GGCGGCACGA

	ω	CAGGTCAGAG GTCCAG'PCTC	z	GGCTATAACT CCGATATTGA	M	ACTGATGATT TGACTACTAA	G S BamHI	TTAGCGGATC
	P G SexAI	CAGGT GTCCA	G	GGCTA CCGAT	ъ	ACTGA TGACT	, W	TTAGC AATCG
	S	CTCAC	D	regec Accce	A A	CCGAA	ᅜ	CCGTT
	ω Ω	AGCGGCTCAC TCGCCGAGTG	D ,	CGATGTGGGC	A Bbe	AGGCGCCGAA TCCGCGGCTT	S	AGCAACCGTT TCGTTGGCAA
	A V	AGCTTCAGTG TCGAAGTCAC Eco57I	ω ω	GTACTAGCAG CATGATCGTC	P G K XmaI	CATCCCGGGA GTAGGGCCCT	۵ ک	crcaggcgrg gagtccgcac
	Ą		G	GTAC	H	CATC	P S Bsu36I	creage corcage corcage
) gene sequence	O EL	TGACCCAGCC ACTGGGTCGG	S C T C	TCGTGTACGG AGCACATGCC	V Y Q Q KpnI	GTACCAGCAG CATGGTCGTC	Z Z	GCAACCGTCC
Figure 4B: V lambda 2 (VA2) gene sequence	Q S A L	CAGAGCGCAC GTCTCGCGTG	H H H	CATTACCATC GTAATGGTAG	M S V Y	ATGTGAGCTG TACACTCGAC	Y D V	TATGATGTGA ATACTACACT

Figure 48: V lambda 2 (VA2) gene sequence (continued)

S G L Q A	BbsI	CAAGCGGAAG GTTCGCCTTC	уус оону ттр ру Б	GCCTGTGTTT CGGACACAAA		
Q		CAA	щ	000		
니		CTG	<u>D</u>	ည ဗဗ္ဗ		
ග		999	, [-	CAC		
လ		TAGCGGCCTG	Ľ 2	ATACCACCCC TATGGTGGGG		
Н		'AT	· H	TT.	Msc I	3 6 6 6 6
Ħ		ACC	<u>н</u>	5007 1007	ન દૂ રૂ	TTC
N T A S L T I		GCCTGACCAT	O.	CAGCAGCATT GTCGTCGTAA	V L G	CGTTCTTGGC GCAAGAACCG
ß			<b>.</b> .		E ?	
Ø		AACACCGCGA TTGTGGCGCT	\ \{\tau}	TTATTATTGC AATAATAACG	L T HpaI ~~~~~~~	CGAAGTTAAC GCTTCAATTG
H		ACC	<i>-</i>	TTZ PAAT	⊼ ,	AAG:
Z		AAC	, <b>,</b> ,	TT? AA1	T K L T HpaI	CG2
Ŋ		ည္သင္သင္သ	Д	GGA		3CA 3GT
W		၁၅၁၃	A	\@CGC	CD CD	3000
X	BamHI	~ CAAAAGCGGC GTTTTCGCCG	D E BbsI	~~ ACGAAGCGGA TGCTTCGCCT	<sub>დ</sub>	GGCGGCGGCA

Figure 4C: V lambda 3 (Vλ3) gene sequence

	E	AC I'G		CT	Ω	AT IA
	Q	AGZ FTC	Ŵ	AGG TC		ATG.
	ტ ?	GTC	A	000	Н	TGA
	S V A P G Q SexAI	CAGGTCAGAC GTCCAGTCTG	×	TACGCGAGCT ATGCGCTCGA	д О Х	ТТАТСАТСАТ ААТАСТАСТА
	Se ~~		~		н	AT PA
	4	(207) (207)	<b>H</b>	TAZ	>	TG7
	>	GAA	Д	CGA	٠,٦	rgg ₄cc
	w	AGCGTTGCAC TCGCAACGTG	G D A L G D K Y A S	GGGCGATAAA CCCGCTATTT	Q A P V L V I Bbel	TTCTGGTGAT AAGACCACTA
	>	FG AC	H	GA	>	AG
	70	STC 57 I	ø	0 0 0 0	д H∢	
	01	CTTCAG GAAGTC Eco57I	Д	ATC TAC	A P BbeI	000
	щ	GCCTTCAGTG CGGAAGTCAC Eco57I		GCGATGCGCT CGCTACGCGA	a '	CAGGCGCCAG GTCCGCGGTC
	л с д д с		Ŋ		(h H )	φ O
	Q	TGACCCAGCC ACTGGGTCGG	Ø	TCGTGTAGCG AGCACATCGC	K P G XmaI	GAAACCCGGG
	FI	000		TGT ACA	μх ;	ACC
	<b>⊢</b>	FGA	S C BSSSI	10G	×	SAA
	ᆸ.		2		O.	
	四 ;	SAA	H	TAT ATA	O1 ,	AGC ICG
		TAT(	R.	300 300	Hì	ACC.
•	`æ ≻	AGCTATGAAC TCGATACTTG	A	CGCGCGTATC	W Y KpnI	GGTACCAGCA

Figure 4C: V lambda 3 (VA3) gene sequence (continued)

				r rh	
Ŋ	TTTAGCGGAT CCAACAGCGG AAATCGCCTA GGTTGTCGCC	A.	GACGAAGCGG	G G G TGGCGGCGGC ACCGCCGCCG	
N S	AG	A	AAG PTC	00000000000000000000000000000000000000	
Z	AAC TTG	E D	~ GG3	တ္တပ္သ ပိုင္ပိပ္	
, H	∑ 5 0 0 0 0 0 0			TG	
G S BamHI	GGAT CC	E Bbs.	TCAGGCGGAA GAC AGTCCGCCTT CTG	F TT SAA	
ФЩ	~ 0 0 0 0 0 0 0	Q A E Bb	TCAGGCGGAA AGTCCGCCTT	P V F CGCCTGTGTT GCGGACACAA	
다	rag atc	·	AGG ICC	P CCT 3GA	
Įτι	TTT AAA	O.		900	
CL	ე <u>ე</u>	E	TTAGCGGCAC	Y T T P P P V F TATACCACCC CGCCTGTGTT ATATGGTGGG GCGGACACAA	
	AAC rtg	D T	360	T CAC GTG	
다 다	CCCGGAACGC GGGCCTTGCG	Ŋ	TTAGCGGCAC	T PAC	
щ	000	•		Y TA1 AT2	e e
н	AT TA	T L T I S	ACCCTGACCA TGGGACTGGT	H AT TA	Ö
ტ	70°C.	H	SAC	AGC ICG	H
S Bsu36I	CCTCAGGCAT GGAGTCCGTA	H	ACCCTGACCA TGGGACTGGT	Q Q H CCAGCAGCAT GGTCGTCGTA	V L G
Bsu	~ ~ ~ CCT	E	ACC	7 7 7 1 9 9 1 9	
щ		· ~		AG C	H
D R	CGT GC2	~	0000	Y ATA	IJ
Ω	SAC	A T N	CAC	Y ATT TAA	T X
ß	TCTGACCGTC AGACTGGCAG	Z	CAACACCGCG GTTGTGGCGC	D Y Y C ATTATTATTG TAATAATAAC	H
	C 14				

T K L T V L G

HpaI

Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Se

Ö

Ü

 $\Xi$ 

S S C Д 又 又 团 A Ö S Figure 5A: V heavy chain 1A (VH1A) gene sequence Ø 니 MfeI Ø > Ø

CGGCCAGCAG GCCCGTCGTC CACTTTTTG GTGAAAAAAC TGGCGCGGAA ACCGCGCCTT ACCAAGTCAG CAGGTGCAAT TGGTTCAGTC GTCCACGTTA

S S ഥ Е Q BspEI G ഗ Ø X C S > 又 >

Ø

×

TCGATACGCT AGCTATGCGA CACTTTTAGC GTGAAAATCG CCTCCGGAGG GGAGGCCTCC TCGACGTTTC AGCTGCAAAG GCACTTTCAC CGTGAAAGTG

~~~~~

W V R Q A P G Q G L E W BStXI XhoI

CTACCCGCCG GATGGGCGGC GTCTCGAGTG CAGAGCTCAC GCGCCAAGCC CCTGGGCAGG GGACCCGTCC CGCGGTTCGG AATCGACCCA TTAGCTGGGT

TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC U H GCGCAGAAGT X 9 . Q CCGCTTGATG GGCGAACTAC A N H AAAAACCGTG TTTTTGGCAC Ö [L Н TAATAAGGCT ATTATTCCGA Д

曰 \mathbf{z} \succ Ø H S Н S 回 Ω K Η BSTEII

Ы

SUBSTITUTE SHEET (RULE 26)

ഗ

Figure 5A: V heavy chain 1.A (VH1A) gene sequence (continued)

| ACGGCCGTGT ATTATTGCGC GCGTTGGGGC
TGCCGGCACA TAATAACGCG CGCAACCCCG | A V Y Y C A EagI BSSHII | AAAGCACCAG CACCGCGTAT
TTTCGTGGTC GTGGCGCATA |
|--|---|--|
| D G F Y A M D Y | CG TAGCGAAGAT
GC ATCGCTTCTA
F Y A M | |
| | SCAGCCTGCG TAGCG | S L R S GCAGCCTGCG TAGCG CGTCGGACGC ATCGC |

Figure 58: V.heavy chain 18 (VH1B) gene sequence

S A; U, Д 区 × 团 K C S Ø > MfeI Ы Q > Ø

CGGGCGCGAG GCCGCGCGCTC GTGAAAAAC CACTTTTTG CGGCGCGGAA GCCGCGCCTT TGGTTCAGAG ACCAAGTCTC GTCCACGTTA CAGGTGCAAT

ഗ Е ഥ Н × BSPEI 111111 Ŋ ß A × Ö വ > 又 >

AGCTATTATA TCGATAATAT TACCTTTACC ATGGAAATGG CCTCCGGATA GGAGGCCTAT AGCTGCAAAG TCGACGTTTC CGTGAAAGTG GCACTTTCAC

W V R Q A P G Q G L E BStXI XhoI

3

C

Σ

3

GATGGGCTGG CTACCCGACC GTCTCGAGTG CAGAGCTCAC CCTGGGCAGG GGACCCGTCC GGCGGTTCGG CCGCCAAGCC TGCACTGGGT ACGTGACCCA

TTCAGGGCCG GGCGTCTTCA AAGTCCCGGC _O Oi GCGCAGAAGT CACGAACTAC GTGCTTGATG Z Н ATAGCGGCGG O TATCGCCGCC G ഗ Z TAATTGGGCT ATTAACCCGA щ Z

田

Σ

| | TRDTSISTAY MEL | | | ATGGAACTGA | TACCTTGACT | R
W | | i
(|
|-------------------------------------|----------------|------------|---------|------------|------------------|--------|-------------|---------------------------------------|
| | Σ | | | ATGG | TACC | ద | H | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| | × | | | TAT | ATA | K | SSHI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| | Ø | | | 3CG | S
S
S
S | U | Щ | 1 |
| | H | | | CACCGCGTAT | TGG | X | EagI BSSHII | |
| | ഗ | | | | ບ
ບ | × | | , |
| | | | | TA | AT | > | | • |
| | М | | | CAI | GT? | A | gI | 1 |
| tinuea) | ഗ | | | CCAGCATTAG | GGTCGTAATC | H | 면
I | 1 |
| | H | | | | | | | |
| Ineuc | Ω | | | BAT | TA | Ω | | |
| 76
Se | 8 | - | | GT(| CAC | 团 | | |
| 18 (VH1B) gene sequence (continued) | E | | | ACCCGTGATA | TGGGCACTAT | S
E | | • |
| in 18 | Σ | | | TG | AC | 民 | | |
| eavy ch | H | H | 1 | GGTGACCAT | CCACTGGTA | Н | | |
| 8: V h | | LEI | 1 2 2 2 | rGA | ACT | လ | | |
| Figure 5B: V heavy chain | - | BStEI | 1 | GG. | CC? | ഗ | | |

ATTATTGCGC GCGTTGGGGC CGCAACCCCG TAATAACGCG ACGGCCGTGT TGCCGGCACA TAGCGAAGAT ATCGCTTCTA CGTCGGACGC GCAGCCTGCG

H

H

Ŋ

Oi

Ċ

3

×

Σ

K

ഥ

C

Ω

G

CCCTGGTGAC GGGACCACTG GGCCAAGGCA CCGGTTCCGT GGATTATTGG CCTAATAACC GGCGATGGCT TTTATGCGAT AAATACGCTA CCGCTACCGA

V S S BlpI

GGTTAGCTCA G CCAATCGAGT C

| | Q V Q L K E S G P A L V K P T Q T
Mfel | | CTGGTGAAAC CGACCCAAAC | ACTITCTITC GCCGGCCGG GACCACTITG GCTGGGTTTG | 7.0 | | TAGCCTGTCC ACGTCTGGCG | CGC | 그 |
|--------|---|---------------|-----------------------|--|----------------|--------------------|-----------------------|----------------------------------|----------------|
| | Ø | | CAP | ЭТТ | Ō | SGFSLSTSG
BSpEI | rĠG | ACC | WIR QPPGKALEWL |
| | [1 | | \ddot{c} | 99 | ഗ | | TC | AG | - |
| | | | GA | CT | [| | \CG | TGCAGACCGC | ഥ |
| | <u>a</u> | | ິ
ບ | <u></u> | | | C 7 | | П |
| | × | | AAA | TT | S | | TC | TGGACATGGA AAAGGCCTAA ATCGGACAGG | 4 |
| | :> | | ΓGP | ACI | ᆸ | | CTG | 3AC | A, |
| | | | GG | CC | ഗ | | CC | CG(| \times |
| | . <u>-</u> | | CI | GA | | | TA | AT | (D |
| | A | | TGAAAGAAAG CGGCCCGGCC | GG | لتا
ا | | TTTCCGGATT | AA | O |
| | | | GG | CC | Ŋ | 五
三
~~~ | GA | CT. | Д |
| | Щ. | | | 366 | ζΩ | BspEI | ĊĊĠ | 3 <u>G</u> C | വ |
| | O . | | GG(| ÿ | | • | TT(| AA(| Ø |
| | rO. | | 7.7 | G
C | ഥ | | | K . | |
| กยาด | 0] | | AA(| TT(| [1 | | CCI | GG7 | 兄 |
| ie seg | 田 | | \GA | CT | T C T F | | ACCTGTACCT | AT | H |
| z) gen | × | | AAZ | $\Gamma T T$ | O | | CTC | GAC | |
| . (MH. | . | ? ? ? | TG, | AC | ⊱ | • | AC | TG | |
| hain . | Q L
MfeI | ? | ΔŢ | ΓA | ت | | ľĞ | AC. | ტ |
| say c | OΣ | \ \ \ \ \ \ \ | CA | GT. | | | CC | GG7 | > |
| : V he | > | | CAGGTGCAAT | GTCCACGTTA | L T | | CCTGACCCTG | GGACTGGGAC | () |
| re SC | Q | | AGC | ICC | Ц | | CTG | 3ÀC | \cdot |
| gn | _ | | $\ddot{\mathcal{O}}$ | Ğ | | | $\check{\circ}$ | Ö | > |

MluI CCTTTCGGGA GCTCACCGAC TATAGCACCA GCCTGAAAAC × Ц ഗ ATATCGTGGT E ഗ GTCGGCGGAC TGATAAGTAT ACTATTCATA \simeq \Box ATTGGGATGA GACCTAAGCG TAACCCTACT Ω 3 \Box GCTCTGATTG AACCGCACCC CGAGACTAAC Н $\boldsymbol{\vdash}$ Ø

TIGGCGIGGG CIGGATICGC CAGCCGCCIG GGAAAGCCCCI CGAGIGGCIG

XhoI

BstXI

GIGCIGACIA CACGACTGAT CCTATTATTG CGCGCGTTGG GCGCGCAACC GCACCCTGGT CGTGGGACCA 3 H بر K Н H BSSHII Ø > G GGATAATAAC TGGGGCCAAG ACCCCGGTTC TTTAGTCCAC U AAATCAGGTG Styl > Ø \succ Ö G \mathbf{z} 3 Н ATACTTCGAA GATACGGCCA CTATGCCGGT GATGGATTAT TATGAAGCTT CTACCTAATA × NspV \succ K ഗ Д E Н Figure 5C: V heavy chain 2 (VH2) gene sequence (continued) Σ Ω GGACCCGGTG ATTAGCAAAG TAATCGTTTC CCTGGGCCAC GCTTTTATGC CGAAAATACG Ø \gt × \succ Д S لتا BlpI S Н C TGACCAACAT ACTGGTTGTA CGCAGACTGG GGCGGCGATG CCGCCGCTAC GCGTCTGACC \mathbf{Z} ഗ H Ω Z Ц > O MluI Н Н 召 111 G Σ

SUBSTITUTE SHEET (RULE 26)

AGTC

TCAG

GACGGTTAGC

Figure 5D: V heavy chain 3 (VH3) gene sequence

| S | | AG |
|---------------|-------|--------------------------|
| Ŋ | | 000 |
| LVESGGLVQPGGS | | CGGGCGGCAG |
| Н | | AC
I'G |
| Õ | | CAZ |
| > | | GTG |
| H. | | CTGGTGCAAC
GACCACGTTG |
| Ŋ | | <u> </u> |
| Ü | | 3000 |
| Ŋ | | 3660 |
| Ω
· | | |
| 臼 | | GAA |
| > | 1 1 1 | TGGTGGAAAG
ACCACCTTTC |
| ·L
feI | 111 | AT
FA |
| QZ | 1 | CAZ |
| > | | GAAGTGCAAT
CTTCACGTTA |
| 田 | | GAA |

K \Rightarrow S S ш Н H BSPEI G S Ø Ø Ö S Н K Н

AGCTATGCGA TCGATACGCT K ഗ \triangleright ATGGAAATCG TACCTTTAGC 3 L E XhoI G CCTCCGGATT GGAGGCCTAA × G TCGACGCGCC AGCTGCGCGG CCTGCGTCTG GGACGCAGAC > 3 ഗ Σ

Д BstXI Ø Ø K

GGTGAGCGCG CCACTCGCGC

CAGAGCTCAC GTCTCGAGTG

CCTGGGAAGG GGACCCTTCC

GCGCCAAGCC CGCGGTTCGG

TGAGCTGGGT ACTCGACCCA

 α CGCCTATCGC GCGGATAGCG ഗ Ω Ø CACCTATTAT GTGGATAATA Н GCGGCGCCAG വ CGCCGCCGTC Ö G ഗ ATTAGCGGTA TAATCGCCAT G S

Figure 5D: V heavy chain 3 (VH3) gene sequence (continued)

| S R D N PmlI | TTTTACCATT TCACGTGATA ATTCGAAAAA CACCCTGTAT CTGCAAATGA
AAAATGGTAA AGTGCACTAT TAAGCTTTTT GTGGGACATA GACGTTTACT | NSLRAEDTAVYYCARWG
Eagl BssHII | ACAGCCTGCG TGCGGAAGAT ACGGCCGTGT ATTATTGCGC GCGTTGGGGC
TGTCGGACGC ACGCCTTCTA TGCCGGCACA TAATAACGCG CGCAACCCCG | G D G F Y A M D Y W G Q G T L V T Styl | GGCGATGGCT TTTATGCGAT GGATTATTGG GGCCAAGGCA CCCTGGTGAC
CCGCTACCGA AAATACGCTA CCTAATAACC CCGGTTCCGT GGGACCACTG | V S S
BlpI | |
|--------------|--|----------------------------------|--|--|--|---------------|--|
|--------------|--|----------------------------------|--|--|--|---------------|--|

Figure 5E: V heavy chain 4 (VH4) gene sequence

| E | |
|----------------|------|
| 臼 | |
| က | |
| Д | |
| × | |
| > | |
| ᆸ | |
| တ္ | |
| ρι | |
| Ŋ | |
| ω | |
| ഥ | |
| O ² | |
| e L | 1 |
| M F | 1111 |
| > | |
| ŏ | |

CGAGCGAAAC GCTCGCTTTG GACCACTTTG CTGGTGAAAC ACCAGGCCCG TGGTCCGGGC ACGTTCTTTC TGCAAGAAAG GTCCACGTTA CAGGTGCAAT

| × | |
|----------------|-------|
| × | |
| വ | |
| S | |
| Н | |
| ß | |
| ט | |
| Ü | SPEI |
| | |
| മ | BSPEI |
| V | BSI |
| T V S | BSI |
| δ ₁ | BS |
| T V S | BS |
| CTV | BSJ |
| T C T V S | BS |
| L T C T V | BS |

TCGATAATAA AGCTATTATT GTCGTAATCG CAGCATTAGC TTTCCGGAGG AAAGGCCTCC TGGACGTGGC ACCTGCACCG GGACTCGGAC CCTGAGCCTG

GATTGGCTAT CTAACCGATA GTCTCGAGTG CAGAGCTCAC CCTGGGAAGG GGACCCTTCC TCGCCAGCCG AGCGGTCGGC GGAGCTGGAT CCTCGACCTA

AAAGCCGGGT TTTCGGCCCA CCGAGCCTGA GGCTCGGACT CAACTATAAT GTTGATATTA GCGGCAGCAC CGCCGTCGTG ATTTATTATA TAAATAATAT

Figure 5E: V heavy chain 4 (VH4) gene sequence (continued)

| S L K L S | GTTTAGCCTG AAACTGAGCA
CAAATCGGAC TTTGACTCGT | C A R W G G
Bsshii | ATTGCGCGCG TTGGGGCGGC
TAACGCGCGC AACCCCGCCG | T L V T V | CACCC TGGTGACGGT
GTGGG ACCACTGCCA | |
|----------------------|--|-----------------------|--|-------------|--------------------------------------|-------------|
| ក្ ^រ
ល | GTTTA | | ATTGC
TAACG | Q G
StyI | c caaggcaccc
g grrccgrggg | • |
| S K N Q N SpV | GTTGATACTT CGAAAAACCA
CAACTATGAA GCTTTTTGGT | T A V Y Y
Eagl | GGCGGATACG GCCGTGTATT
CCGCCTATGC CGGCACATAA | D Y W G | TTATTGGGGC
AATAACCCCG | |
| T Q V | GTTGATACTT
CAACTATGAA | A D T | GGCGGATACG | K A M | ATGCGATGGA
TACGCTACCT | |
| T I S
BStEII | GACCATTAGC
CTGGTAATCG | S V T A | GCGTGACGGC
CGCACTGCCG | D
FI | GATGGCTTTT
CTACCGAAAA | S S
BlpI |

ഗ ഥ G Д 又 又 \gt 口 Ø S Figure 5F: V heavy chain 5 (VH5) gene sequence ഗ Ø Q L MfeI > 口

CGGGCGAAAG GCCCCCTTTC CACTTTTTG GTGAAAAAAC CGGCGCGGAA GCCGCGCCTT TGGTTCAGAG CTTCACGTTA ACCAAGTCTC GAAGTGCAAT

 \succ ഗ Н 屲 S \succ BSPEI ~ ~ ~ ~ ~ ~ ~ G ഗ G \simeq \mathcal{O} **က** . 区 П

3

TCGATAACCT AGCTATTGGA AAGGAAATGC TTCCTTTACG CAAGGCCTAT GTTCCGGATA TCGACGTTTC AGCTGCAAAG CCTGAAAATT GGACTTTTAA

 Σ \geq XhoI 团 ٦ G X G Щ BstXI Σ Ø α \gt 3 G

Н

C

GATGGGCATT CTACCCGTAA CAGAGCTCAC GTCTCGAGTG CGCGGTCTAC GGACCCTTCC CCTGGGAAGG GCGCCAGATG AACCGACCCA TTGGCTGGGT

AGAGGCTCGA AAGTCCCGGT TCTCCGAGCT TTCAGGGCCA ഗ Ö ſΞι ഗ Ы ഗ ATGGGCAATA TACCCGTTAT . প্ৰ TAAATAGGCC CGCTATCGCT GCGATAGCGA ഗ G ATTTATCCGG Д

| | S A D K S I S T A Y L Q W | l | | CTTCAATGGA | GTGGCGCATA GAAGTTACCT |
|--|---------------------------|--------|-------------|----------------------------------|-----------------------|
| | >- | | | GTAT | CATA |
| | T | | . • | AGCGCGGATA AAAGCATTAG CACCGCGTAT | GTGGCG |
| | ഗ | | | AG | $^{ m LC}$ |
| | Н | | | ATT | TAA |
| tinued) | ഗ | • | | AAAGC | TTTCGTAATC |
| e (con | \bowtie | | | , A. | T |
| dnenc | Ω | | | GAT | CT^{p} |
| gene se | Ø | | | GCG | 292 |
| 5 (VHS) ç | ഗ | | | AGC | TCG |
| y chain | H | | | ATT | TAA |
| V heav | ⊣ | ΙΙ | ? | ACC | ${ m TGG}$ |
| Figure SF: V heavy chain 5 (VHS) gene sequence (continued) | > | BStEII | ~ ~ ~ ~ ~ ~ | GGTGACCATT | CCACTGGTAA TCGCGCCTAT |

ATTATTGCGC GCGTTGGGGC TGCCGGTACA ACGGCCATGT AGCGAGCGAT TCGCTCGCTA GCAGCCTGAA CGTCGGACTT

9

≥

 α

Ø

Σ

ø

۲

S

Ø

 \simeq

Ы

ഗ

S

BSSHII

 \vdash TAATAACGCG CGCAACCCCG Ęų G StyI Ø G \geq Σ K ĮΞι \mathfrak{O} G

GGGACCACTG CCGGTTCCGT GGCCAAGGCA CCTAATAACC GGATTATTGG AAATACGCTA TTTATGCGAT GGCGATGGCT CCGCTACCGA

BlpI ഗ ഗ \gt

G GGTTAGCTCA CCAATCGAGT

Figure 5G: V heavy chain 6 (VH6) gene sequence

| H | | נ) ניז |
|-----------------------------------|----------------|--------------------------|
| Ø | | CAAA(
STTT(|
| လ | | CGAGCCAAAC
GCTCGGTTTG |
| Д | | |
| \bowtie | | AAA(
TTT(|
| > | | GTG
CAC |
| J. | | CTGGTGAAAC
GACCACTTTG |
| Ŋ | | 900
099 |
| Д | |)
(CG |
| Ŋ | | TGGTCCGGGC
ACCAGGCCCG |
| ഗ | | TC
AG |
| Ø | | CAG |
| L Q Q S G P G L V K P S Q T
eI | ? ? ? | TGCAACAGTC
ACGTTGTCAG |
| Q L
MfeI | ? | ٩T
٢A |
| OΞ | \$
\$
\$ | SCA! |
| > | | GTC |
| Ø | | CAGGTGCAAT
GTCCACGTTA |

| L T C A I S G D S V S S N S | | | AGCAACAGCG | TCGTTGTCGC | • |
|-----------------------------|---------|-------------|-----------------------|------------|---|
| S V | | | TGAGC | ATCGCACTCG | |
| ഗ | | • | TAGCGTGAGC | ATCGC | |
| | | | | | |
| G | BspEI | <pre></pre> | GGA | 3CCT(| |
| ഗ | m | ? | TTTCCGGAGA | AAAGGCCTCT | |
| Н | | | | | |
| K. | | | 'GCG' | CGC' | |
| O _. | | | rgī | ACA | |
| ⊱ | | | ACC | TGGACACGCT | |
| IJ | | | CTG | GAC | |
| ഗ | | | AGC | rcg | |
| H | | | CCTGAGCCTG ACCTGTGCGA | GGACTCGGAC | |
| | 51 ID 6 | | | | |

| CGGCGTGGAA | CTGGATTCGC | CAGTCTCCT | GGCGTGGCCT | CGAGTGGCTG |
|------------|------------|-------------|-----------------|--------------|
| 出出してなってして | うけんないできる | できていることで | | |
| | りつりなせてつつなり | GI CAGAGGAC | AC CCGCACCGGA (| A GCTCACCGAC |

 \geq

回

G

凶

 \mathfrak{O}

ഗ

Ø

 α

 \mathbf{H}

 \geq

Z

Z

K

Ø

XhoI

3 Y R S ATTATCGTAG

| Figure 5G: V heavy chain 6 (VH6) gene sequence (continued) KSRITINPDTSKNQFS BSABI ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | GAAAAGCCGG ATTACCATCA ACCCGGATAC TTCGAAAAAC CAGTTTAGCC
CTTTTCGGCC TAATGGTAGT TGGGCCTATG AAGCTTTTTG GTCAAATCGG | L Q L N S V T P E D T A V Y Y C A EagI EagI *********************************** | TGCAACTGAA CAGCGTGACC CCGGAAGATA CGGCCGTGTA TTATTGCGCG
ACGTTGACTT GTCGCACTGG GGCCTTCTAT GCCGGCACAT AATAACGCGC | RWGGODGFYAMDYWGQGT
BSSHII | CGTTGGGGCG GCGATGGCTT TTATGCGATG GATTATTGGG GCCAAGGCAC
GCAACCCCGC CGCTACCGAA AATACGCTAC CTAATAACCC CGGTTCCGTG | LVTVSS
BlpI | CCTGGTGACG GTTAGCTCAG
GGACCACTGC CAATCGAGTC |
|--|--|--|--|------------------------------|--|----------------|--|
|--|--|--|--|------------------------------|--|----------------|--|

- Figure 6: oligonucleotides for gene synthesis
- O1K1 5'- GAATGCATACGCTGATATCCAGATGACCCAGAGCCCGTCTAGCCTGAGC -3'
- **01K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- O1K6 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- O2K3 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- O2K6 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGGCTAATTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG-CCCGG -3'
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- O3K3 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

Figure 6: (continued)

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- O3K5 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- O3K6 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- O4K1 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- O4K2 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAACAAAAACTATCTGGCGTGGTACCAG 3'
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **04K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **04K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC -3'
- O1L1 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- O1L2 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCAT-AAATCAGCAGTTTCGGCGCCCGTCCCGGGCAACTGC -3'
- O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCC-AAAAGCGGCACCAGCGCGAGCCTTGCG -3'

Figure 6: (continued)

01L6 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'

- **02L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **02L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **02L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- O3L1 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- O3L2 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- O3L3 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- O3L4 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- O3L5 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGGCAACACCGCGACCCTGACCATTAGCGG -3'
- O3L6 5'- CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-TCAGGGTC -3'
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCCCGG-TTTTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

Figure 6: (continued)

- **O1AH3** 5 ' GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAG GGTC -3 '
- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCC-AAAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5**5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **Olabh6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 ' GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGG-TTTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3 '
- **O1BH4** 5 ' GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3 '
- **O1BH5**5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG-3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3'
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

Figure 6: (continued)

O2H5 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT

- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- O3H3 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAAACACCCTGTATCTGCAAATGAACAG-3'
- O3H6 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **04H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGA-GGCAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- O4H4 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

- Figure 6: (continued)
- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA-ATTG -3'.
- **O5H2** 5'- CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3'
- **O5H4** 5'- CGGAGAATAACGGGTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGCGTGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTG-GCG -3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- OCLK15'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3'
 SUBSTITUTE SHEET (RULE 26)

Figure 6: (continued)

- OCLK25'- GCGGAAAAATAAACACGCTCGGAGCAGCCACCG-TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3'
- OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACA-ACTGAAAAGCGGCACGGCGAGCGTGTGCCTGCTG -3'
- OCLK45'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGC-TTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3'
- OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAG-CCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3'
- OCLK65'- GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGG-TGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG -3'
- OCLK75'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- OCLK85'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- OCH1 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGTTAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- OCH3 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- OCH4 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- OCH5 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- OCH6 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- OCH8 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

Figure 7A: sequence of the synthetic Ck gene segment

| Ö | AACA | Y
PATC
ATAG | 6
6
6
6
7
7
7
7
7
8
7
7 | S
ATTC |
|-----------------------------|---------------------------|--|---|---|
| A A P S V F I F P P S D E Q | GCGATGAACA
CGCTACTTGT | N F Y
AACTTTTATC
TTGAAAATAG | W K V D N A L Q S G
TGGAAAGTAG ACAACGCGCT GCAAAGCGGC
ACCTTTCATC TGTTGCGCGA CGTTTCGCCG | S K D S T Y S
AGCAAAGATA GCACCTATTC
TCGTTTCTAT CGTGGATAAG |
| လ | | | D H A | S & I |
| വ | TTTCCGCCGA | L L N
CCTGCTGAAC
GGACGACTTG | A
CGC
GCG | D
GAT
CTA |
| Д |)

 | L
GCT
CGA | N
ACG | K
AAA
TTT |
| ഥ | TTI | | ACA | S
AGC
TCG |
| H , | ATT | C
GTG
CAC | W K V D N A L
GGAAAGTAG ACAACGCGCT
CCTTTCATC TGTTGCGCGA | D
GAT
CTA |
| ഥ | TTT | V
GGT | K
AAG
TTC | O
CAG(
GTC(|
| > | CGTGTTTATT
GCACAAATAA | G T A S V V C
GGCACGCGA GCGTGGTG
CCGTGCCGCT CGCACCACAC | W K V D N A L
TGGAAAGTAG ACAACGCGCT
ACCTTTCATC TGTTGCGCGA | E Q D
CGAACAGGAT
GCTTGTCCTA |
| S | AG
TC | S
GA
CT | AG
TC | |
| വ | 555
555 | A
GGC
CCG | V
TTC
AAG | S V
GCGTGA
CGCACT |
| A | CTGCTCCGAG | CAC | K V Q
GAAAGTTCAG
CTTTCAAGTC | S V T
AAAGCGTGAC
TTTCGCACTG |
| A | | | | |
| ° V
Bsiwi | cgtacggtgg
gcatgccacc | L K S
ACTGAAAAGC
TGACTTTTCG | P R E A
CGCGTGAAGC
GCGCACTTCG | N S Q E
AACAGCCAGG
TTGTCGGTCC |
| Д | 2 0 0
2 0 0 | AC | Ф
С
С
С | N
AA
TT |

TGAGCAAAGC വ L S S TCTGAGCAGC

Figure 7A: sequence of the synthetic Cx gene segment (continued)

CCACTGATTT GGTGACTAAA ACTCGTCGGG TGAGCAGCCC Ŋ S H Q G CATCAAGGTC GCTTCACTGG 口 ACATACGCAC TGTATGCGTG

Ø 口 G α Z ഥ S

StuI

SphI

CTGATAAGCA

ACG GACTATTCGT CACCGCTCCG GTGGCGAGGC TCTTTTAATC AGAAAATTAG

Figure 7B: sequence of the synthetic CH1 gene segment

S S Д A, Щ Д Ŀ > ഗ ы G 又 ⊣ Sal ഗ Ø BlpI

AAGGCGACCG AGGCTCGTCG TCCGAGCAGC TTCCGCTGGC CCAAGCGTGT GGTTCGCACA CTGGTTTCCA GACCAAAGGT CGAGTCGCAG GCTCAGCGTC

~~~~

GGCTGCCTGG TTAAAGATTA CCGACGGACC AATTTCTAAT Ω × > C G GGCTGCCCTG CCGACGGGAC Ø Ø CGCCGCCGTG GCGGCGGCAC . G . ග ഗ TTTCGTGGT AAAAGCACCA <del>[--</del> လှ 又

CTGACCAGCG GACTGGTCGC GTCGCCCGC CAGCGGGGCG G ഗ GGTCAGTGGC ACTCGACCTT CCAGTCACCG TGAGCTGGAA Z 3 ഗ > Е > TTTCCCGGAA AAAGGGCCTT 띠 ഥ

CATATCGGAC GTATAGCCTG  $\succ$ CGTCGCCGGA GCAGCGGCCT ტ က ഗ CACGACGTTT GTGCTGCAAA 7 T > GAAAGGCCGC CTTTCCGGCG Д لترا CGCACGTATG GCGTGCATAC 耳 > G

TTAGGCACTC AGACCTATAT TCTGGATATA O AATCCGTGAG E ŋ GAGCAGCAGC CTCGTCGTCG ഗ ഗ ഗ AGCAGCGTTG TGACCGTGCC ACTGGCACGG ص TCGTCGCAAC ഗ

Figure 7B; sequence of the synthetic CH1 gene segment (continued)

AAAAAGTGG 又 CAAAGTGGAT > 又 ⊱≺ CGAGCAACAC GCTCGTTGTG Z · 众 Д N H K F AACCATAAAC TTGGTATTTG AACGTTGCAC TTGCAACGTG Z ပ

E F ECORI ഗ  $\bowtie$ Д

口

HindIII

TAAGCTT ?
?
?
? CGAATTCTGA ~~~~~

ATTCGAA GCTTAAGACT AACCGAAAAG TTGGCTTTTC

Figure 7C: functional map and sequence of module 24 comprising the synthetic CA gene segment (huCL lambda)



Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

| Н   | BbsI ~~~~~~ GAAGACGAAG CGGATTATTA TTGCCAGCAG                                                        | CATTATACCA            |                          |
|-----|-----------------------------------------------------------------------------------------------------|-----------------------|--------------------------|
|     | dH<br>                                                                                              |                       | Draill                   |
| 51  | GTTTGGCGGC GGCACGAAGT TAACCGTTCT<br>CAAACCGCCG CCGTGCTTCA ATTGGCAAGA                                |                       | AAAGCCGCAC<br>TTTCGGCGTG |
| 101 | Dralii<br>~~~~~~<br>CGAGTGTGAC GCTGTTTCCG CCGAGCAGCG                                                | AAGAATTGCA GGCGAACAAA | GGCGAACAAA               |
|     | GCTCACACTG CGACAAAGGC GGCTCGTCGC                                                                    | TTCTTAACGT            | CCGCTTGTTT               |
| 151 | GCGACCCTGG TGTGCCTGAT TAGCGACTTT                                                                    |                       | CCGTGACAGT               |
|     |                                                                                                     | ATAGGCCCTC            | GGCACTGTCA               |
| 201 | GGCCTGGAAG GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA CCGGACCTTC CGTCTATCGT CGGGGCAGTT CCGCCTCACAC | GGCGGGAGTG            | GAGACCACCA               |

Figure 7C: functional map and sequence of module 24 comprising the synthetic CI gene segment (huCL lambda) (continued)

GCCGGTCGTC GATAGACTCG CTATCTGAGC CGGCCAGCAG AACAAGTACG TTGTTCATGC ACAAAGCAAC TGTTTCGTTG CACCCTCCAA GTGGGAGGTT 251

RleAI

~ ~ ~ ~ ~ ~ ~

CGGTCCAGTG GCCAGGTCAC TCGATGTCGA AGCTACAGCT GTCCCACAGA CAGGGTGTCT TCGTCACCTT AGCAGTGGAA CTGACGCCTG GACTGCGGAC

301

StuI

CTCCGGACTA GAGGCCTGAT ACGCGGCTGA TGCGCCGACT GCATGAGGG AGCACCGTGG AAAAAACCGT TTTTTTGGCA TCGTGGCACC CGTACTCCCC

SphI

?
?
?
?

401 AAGCATGC

TTCGTACG

SUBSTITUTE SHEET (RULE 26) 49 / 204

351

Figure 7D: oligonucleotides used for synthesis of module M24 containing CA gene segment

## M24: assembly PCR

M24-A: GAAGACAAGCGGATTATTATTGCCAGCAGTTATACCACCCCGCCTGTGTTTGGCGGCG-

**GCACGAAGTTAACCGTTC** 

M24-B: CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-

GAACGGTTAACTTCGTGCCGC

M24-C: CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-

TTTATCCGGGAGCCGTGACA

M24-D: TGTTTGGAGGGTGTGGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-

GCCACTGTCACGGCTCCCGG

M24-E: CCACACCCTCCAAACAAAGCAACAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-

CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F: GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTCCACGGTGCTCCCCTCATGCGT-

GACCTGGCAGCTGTAGCTTC

| fragment VH3-Vk2  L F T P SapI  GC TCTTCACCCC GG AGAAGTGGGG V E S G TG GAAAGCGGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QPGSLRLSCAAS<br>BSPE |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | တ                    |
| Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-Vk2  M K Q S T I A L L L L F T P  Sap I  ATGAAACAAA GCACTATTGC ACTGGCACTC TTACCGTTGC TCTTCACCCC  TACTTTGTTT CGTGATAACG TGACCGTGAG AATGGCAACG AGAAGTGGGG  V T K A D Y K D E V Q L V E S G  Mfe I  TGTTACCAAA GCCGACTACA AAGATGAAGT GCAGTGGCGCGAATGGTTT CGGCGCGCGCCCC  TACTTACCAAA GCCGACTACA AAGATGAAGT GCAATTGGTG GAAAGCGGCGCCCCCC  TGTTACCAAA GCCGACTACA AAGATGAAGT CGTTAAACCAC CTTTCGCCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | လ                    |
| IL<br>IL<br>IL<br>IL<br>IL<br>IL<br>IL<br>IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| Sensus single-chain fra L P L S TTACCGTTGC AATGGCAACG AATGGCAACG MfeI  MfeI  CCTTAACCACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                    |
| TT AAA CG CG CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | κ.                   |
| CACTATTGC ACTGGCACTCGTGATGATGAGTGGCTGATCATCGTGATGAGGTGATGAGGTGATGAGGTGGCTGAGTGGCTGAGTGGCTGAGTGGCTGAGTGGCTGATGATGAAGTGGCTGATGATGAAGTGGCTGATGTTTCTACTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                    |
| A<br>CAC<br>GTC<br>GAP<br>CTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H                    |
| reency CGG ACC ACC DD DD CTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ω                    |
| ACT TGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                    |
| Synthe BC GG CG CG CG CG GGT CGA GGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ტ                    |
| of the I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.                   |
| map (T) CTP GAJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                   |
| GCA<br>GGTA<br>AA<br>GCC<br>CGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| igure 8: sequence and restriction map of the synthetic gene encoding the comman of the synthetic gene encoding the comman of the synthetic gene encoding the comman of the synthetic gene encoding the comman of the synthetic gene encoding the comman of the synthetic gene encoding the comman of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic gene encoding the command of the synthetic general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general general genera | $\triangleright$     |
| B: sequence and K Q GAAACAA CTTTGTT V T K TTACCAA AATGGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ъ.                   |
| ure 8: sequen<br>M K<br>ATGAAA(<br>PACTTT(<br>V T<br>V T<br>V T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| Wre B:<br>M.TG1<br>ACT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ö                    |
| ei AH HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ŋ                    |

PCT/EP96/03647

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) G G S C S Н S  $\gt$ 3 团 XhoI C

CCGTCGTGGA GGCAGCACCT CGGTAGCGGC GCCATCGCCG GCGCGATTAG CGCGCTAATC CTCACCCACT GAGTGGGTGA CTTCCCAGAG GAAGGGTCTC

NspVS Z Д R PmlI ഗ Н Γų K C ×  $\gt$ ഗ Ø  $\succ$ 

 $\succ$ 

TGATAATTCG ACTATTAAGC EagI Ø בַ Д 闰 CCATTTCACG GGTAAAGTGC Ø K Н GGCCGTTTTA ATCGCACTTT CCGGCAAAT ഗ Z Σ TAGCGTGAAA Ŏ Н  $\succ$ Н ATTATGCGGA TAATACGCCT Н Z NspV ×

AAGATACGGC TTCTATGCCG AATGAACAGC CTGCGTGCGG GACGCACGCC TTACTTGTCG TGTATCTGCA ACATAGACGT AAAAACACCC TTTTTGTGGG

Ω Σ K × ш G Ω Ŋ G 3 ø Ø Ö EagI >

BSSHII

GCGATGGATT TGGCTTTTAT GGGCGGCGA TGCGCGCGTT CGTGTATTAT

CCGCTCGGAC

TCACTGAGGC

ACTCGGACGG

GTCTCGGGTG

GCACTACTGG

C

Z

ഗ

工

П

Н

S

Ö

വ

S

ĸ

ڻ

S

 $\vdash$ 

S

Ø

22222

PstI

Figure 8: sequence and restriction map of the synthetic gene encoding the consensus single-chain fragment VH3-VK2 (continued) GGCGAGCCTG GTTCCGATAT CAAGGCTATA CGCTACCTAA ACCGCCAAGA TGGCGGTTCT ECORV 1111 Д Д G 团 ഗ G Ü GCTCAGCGGG CGAGTCGCCC ACCGAAAATA Ü GGCGGTGGTG AGTGACTCCG CCGCCACCAC Д G Е <u>ෆ</u> BlpI > C CCCCGCCGCT TGAGCCTGCC CGGTGGTTCT GCCACCAAGA GTGACGGTTA CACTGCCAAT Д ഗ Н C വ C Ц GGAGCGGTGG CAGAGCCCAC CCTCGCCACC AGGCACCCTG TCCGTGGGAC ACGCGCGCAÀ U Щ BanII G ب လ വ Ö Ø StyI G GCACATAATA ATTGGGGCCA TAACCCCGGT GGCGGCGGTG CCGCCGCCAC Ø CGTGATGACC  $\vdash$ G G  $\Sigma$ G ECORV > G

CAACGGCTAT GTTGCCGATA TGCTGCATAG ACGACGTATC AGCCAAAGCC TCGGTTTCGG CTGCAGAAGC GACGTCTTCG CGAGCATTAG GCTCGTAATC

| _                                                                                                                                                                                    |                             |                 |                                 |              |                              |                 |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------|--------------|------------------------------|-----------------|--------------------------|
| continued<br>L. L.<br>ASEI                                                                                                                                                           | CGCAGCTATT<br>GCGTCGATAA    |                 | CGTTTTAGCG<br>GCAAAATCGC        | <b>A</b>     | TGTGGAAGCT<br>ACACCTTCGA     | H               | CCCCGCCGAC               |
| ontir                                                                                                                                                                                | ['A']<br>\T.                | $\Omega$        | ار کا                           |              | Ď<br>Ď                       | Λ.              | (A) (A)                  |
| J-Vk2 (con<br>Q L,                                                                                                                                                                   | 575                         | -               | T.Y                             | 団            | A.<br>T.                     | Ĥ               |                          |
| ¥ O                                                                                                                                                                                  | AG<br>TC                    | ഥ               | TT                              | 臼            | 990                          | , <b>Д</b>      | 99                       |
| KH3                                                                                                                                                                                  | $\mathcal{O}_{\mathcal{O}}$ | ద               | GT                              | >            | GT                           |                 | )<br>()<br>()            |
| ent C.                                                                                                                                                                               | ΰ                           |                 | บ ั                             |              | HÄ                           | ت               | ပိပိ                     |
| agmen<br>P                                                                                                                                                                           | ည ဗွ                        | Q .             | TY<br>A:                        | K            | ပ္ပ ပ္ပ                      | H               | AT                       |
| S S                                                                                                                                                                                  | GGTCAAAGCC<br>CCAGTTTCGG    | ы               | GGTCCCGGAT<br>CCAGGGCCTA        |              | AAATTAGCCG<br>TTTAATCGGC     | EH              | CATTATACCA<br>GTAATATGGT |
| -cha                                                                                                                                                                                 | A.A<br>T.T                  | Ωı,             | ~<br>00<br>00                   | S            | AG<br>TC                     |                 | TA                       |
| olingle<br>Q                                                                                                                                                                         | CA                          | д<br>16         | 1 C) C)                         | H            | ľľ.                          | ≯               | LA'<br>AT                |
| us si                                                                                                                                                                                | JT(                         | > 0             | )T(                             | • •          | .A                           | h1              | T.<br>A.                 |
| Sensur<br>G<br>I.I.                                                                                                                                                                  |                             | 0               | G GGTCC<br>C CCAGG              |              | AA<br>TJ                     | H               | C.P.                     |
| ng the consensus s PGSexAI                                                                                                                                                           | TCAAAAACCA<br>AGTTTTTGGT    | G V<br>Ecool091 | ະ<br>ຜິນ                        | L K          | A H                          |                 | <u>က</u> က               |
| g the P                                                                                                                                                                              | TCAAAAACCA<br>AGTTTTTGGT    | 田               | GTGCCAGTGG                      | J            | TTTACCCTGA<br>AAATGGGACT     | Q               | TTGCCAGCAG<br>AACGGTCGTC |
| oding<br>K                                                                                                                                                                           | YA I                        | တ               | \Q_1<br>\Q_2                    |              | 5 6                          | <u> </u>        | \G(                      |
| nco.                                                                                                                                                                                 | AA.                         |                 | 22.55                           | H            | S S                          | Oĭ              | , C.Z.                   |
| S C                                                                                                                                                                                  | AA                          | <b>A</b> .      | 00.00                           |              | T.P.<br>A.I                  | Ö               | 000                      |
| و عو                                                                                                                                                                                 | T<br>A<br>G                 |                 | GT                              | ſΞų          | TT<br>AA                     |                 | TT                       |
| nthet<br>L                                                                                                                                                                           |                             | $\alpha$        | •                               |              | -                            | <b>&gt;</b> +   | 4:⊞                      |
| rys [                                                                                                                                                                                | ATTGGTACCT<br>TAACCATGGA    | z               | GGCAGCAACC<br>CCGTCGTTGG        | Ω            | c<br>cccarccar<br>cccarccara |                 | GCGTGTATTA<br>CGCACATAAT |
| ap of the s  Y  Kpn I                                                                                                                                                                | GTAC<br>CATG                | <b>~</b>        | A.<br>LT:                       | <b>.</b>     | $\mathcal{G}_{\mathcal{G}}$  | <b>&gt;</b> ⊢ . | 'A'<br>'T'               |
| р of<br>Кр                                                                                                                                                                           | CA<br>CA                    | ß               | 000                             | H            | AC                           |                 | GT                       |
| M W                                                                                                                                                                                  | TG<br>AC                    |                 | CA<br>GT                        | Ŋ            | $\mathcal{O}_{\mathcal{O}}$  | >               | GT                       |
| ctio                                                                                                                                                                                 | AT.                         | Ŋ               | G G                             |              |                              |                 | 3<br>3<br>3<br>3<br>3    |
| estri<br>D                                                                                                                                                                           |                             | •               |                                 | SHH          | ≀                            | Ŋ               |                          |
| nd r                                                                                                                                                                                 |                             | H               | TC                              | G S<br>BamHI | AT(                          |                 | 55                       |
| ice ar<br>L                                                                                                                                                                          | CT<br>GA                    |                 | TC<br>AG                        | ල<br>ස       | GA                           | >               | GI                       |
| Y                                                                                                                                                                                    | AT<br>I'A                   | ≯               | IA<br>AT                        | i            | TG<br>AC                     | ΩН              | AC<br>TG                 |
| . Sec                                                                                                                                                                                | TZ<br>3A                    | H               | TT.                             | ഗ            | Σ<br>Θ                       | E D<br>BbsI     | AG.                      |
| Figure 8: sequence and restriction map of the synthetic gene encoding the conscnsus single-chain fragment VH3-Vk2 (continued)  N Y L D W Y L Q K P G Q S P Q L L L SEXAI  KpnI SexAI | AACTATCTGG<br>TTGATAGACC    | I<br>AseI       | ~~~<br>AATTTATCTG<br>TTAAATAGAC | <b>,</b> D   | GCTCTGGATC                   | 田田              | GAAGACGTGG<br>CTTCTGCACC |
| Fig.                                                                                                                                                                                 | A T                         | Ø.              | AH                              | Ŋ            | 0 0                          |                 |                          |
|                                                                                                                                                                                      |                             |                 |                                 |              |                              |                 |                          |

| G T K V E I K R T E F |       |                                         |            |            |
|-----------------------|-------|-----------------------------------------|------------|------------|
| ĹΉ                    | Ecori | <b>1 2 3</b>                            | TTC        | AAG        |
| 口                     | EC    | 1 1                                     | GAA        | CTT        |
| RT                    | BsiWI | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ACG(       | TGC        |
| ·<br>K                | Bs    | 1                                       | ACGTACGGAA | TGCATGCCTT |
| ×                     |       |                                         |            | \TT        |
| E I K                 |       |                                         | AATT       | LTAA       |
| ,<br>БЭ               |       |                                         | TTGAAATTAA | AACTTTAATT |
| >                     |       |                                         |            |            |
| ×                     |       |                                         | SAAR       | TTT        |
| G T K V               |       |                                         | GGTACGAAAG | CCATGCTTTC |
| ט                     |       |                                         | GG1        | CCZ        |
|                       | н     | l<br>l                                  | CAG        | GTC        |
| G                     | Msc   | 1 1                                     | GGC        | ACCGGTC    |
| F G Q                 |       | ł                                       | CTTTGGCCAG | GAAA       |



SUBSTITUTE SHEET (RULE 26) 56 / 204

| EOI        | <u>&gt;</u>     | <u>&gt;</u> | ≥           | ≥        | ≥         | ≥   | ≥         | ≥         | ≥         | ≥        | ≥         | ≥         | ≥        |
|------------|-----------------|-------------|-------------|----------|-----------|-----|-----------|-----------|-----------|----------|-----------|-----------|----------|
| 201        | >               | >           | <b>&gt;</b> | >        | >         | >   | >         | >         | >-        | >-       | >         | >         | >        |
| 101        |                 |             |             |          |           |     |           |           |           |          |           |           |          |
| 100E       | ¸Σ              | i           | 1           |          | . 1       | 1   | ı         | ı         | ı         | 1        | 1         | ı         | 1        |
| 000 l      | 1               | ı           | 1           | t        | 1         | 1   | 1         | ı         | ı         | 1        | ·t        | 1         | ı        |
| J001       | i               | 1           | ı           | 1        | ı         | ı   | t         | 1         | ı         | ı        | 1         | 1         | 1        |
| 1008       | $\triangleleft$ | ı           | ı           | 1        | ı         | ı   | i         | ı         | 1         | !        | ı         | ı         | ı        |
| A001       | <b>&gt;</b>     | t           | i           | 1        | 1         | 1   | t         | ı         | 1         | 1        | ı         | 1         | 1        |
| 001        | ட               | >-          | エ           | 工        | $\propto$ | >   | ۵         | 1         | S         | <b>×</b> | ⋖         |           | Σ        |
| 66         | 5               | Z           | ≥           | >        | ⋖         | 9   | 0         | $\propto$ | Z         | S        | ⋖         | >-        | ≶        |
| 86         |                 | Σ           | ш           | _        | $\leq$    | H   | 4         | $\vdash$  | $\propto$ |          | ட         | 0         | ш        |
| <i>26</i>  | Ö               | $\prec$     | <b>—</b>    | ш        |           | ·—' | ш         |           | Z         | G        | <b>—</b>  | <u>a</u>  | S        |
| 96         | 5               | 9           | $\propto$   | $\simeq$ | ட         | Z   | Z         | ⋖         | >-        | >        | $\times$  | ⋖         | 0        |
| <i>56</i>  | $\geq$          | ட           | エ           | >        | $\times$  | ≥   | _         | <b>-</b>  | ≥         | S        | Ś         | >         | Σ        |
| <b>⊅</b> 6 | $\simeq$        | $\propto$   | ~           | $\simeq$ | $\propto$ | ≃.  | $\propto$ | $\simeq$  | $\propto$ | $\simeq$ | $\propto$ | $\propto$ | $\simeq$ |
| £6         | 4               | <u> </u>    | ⋖           | ⋖        | ⋖         | ⋖   | ⋖         | ⋖         | ⋖         | 4        | 4         | ⋖         | ⋖ .      |
| <i>76</i>  | $\circ$         | S           | ပ           | S        | ပ         | C   | S         | C         | ပ         | C        | ပ         | ပ         |          |
| A          |                 | В           |             |          |           |     |           |           |           |          |           |           |          |

Figure 10: Sequence analysis of initial libraries

O

3333333333  $\Sigma \Sigma \Pi \Sigma \Sigma \Pi \Pi \Sigma \Sigma \Sigma \Sigma$ > - ㅈ > σ - エト > - σ  $\vdash \lor \lor \circlearrowleft \lor \bot \supset \vdash \lor \circlearrowleft$  $IKZ\Gamma KO \geqslant Z m Z \vdash$ >  $\square$  Q S  $\succ$  S  $\square$  Q S  $\vdash$  D $\succ \Sigma \times \vdash \succ *$  $A \ge A \times X >$ **KKKKKKKKKK** 4444444444 000000000000

Figure 11: Expression analysis of initial library





Figure 12: Increase of specificity during the panning rounds



Figure 13: Phage ELISA of clones after the 3rd round of panning



Clone Number

Figure 14: Competition ELISA



- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

3001 чичих  $\Sigma$  чичичичич (100) L R R R R R Q > Y > R R R - Q R R 2001 4 4 I 4 Z D 4 > Y D Z A Y Y 4 V 8001 RZRZRHZH>ZZRRRHH001 ZKIKYTJ $\succ$  SKUH0 $\succ$  K $\succ$ 99 QARAZIHRRSRAHRQ86 Z Q A R - > Z I Z N R A I - A A /6 Z \ O Z \ M O F F F F C \ Z \ Z \ D T F T 96 ~ 0 Z × ~ - × × × × Z U ∑ × ≥ × 46 KKKKKKKKKKKKKKK 

Figure 16: Purification of fluorescein binding scFv fragments



Figure 17: Enrichment factors after three rounds of panning



Figure 18: ELISA of anti-ESL-1 and anti- $\beta$ -estradiol antibodies



Figure 19: Selectivity and cross-reactivity of HuCAL antibodies



| Frequency  | က            | 8            | 7            | <del></del> | ·         |           | <b>-</b>     | ς—            | <del></del>  | 2          | 4            |              |
|------------|--------------|--------------|--------------|-------------|-----------|-----------|--------------|---------------|--------------|------------|--------------|--------------|
| 103        | <u>&gt;</u>  | ≥            | ≥            | ≥           | ≥         | ≥         | ≥.           | ≥             | ≥            | ≥          | ≶            | ≶            |
| 105        | >            | <b>&gt;</b>  | >            | >-          | >         | >-        | >            | >-            | >            | >          | >            | >            |
| 101        | ۵            |              |              |             |           |           |              |               |              |            |              |              |
| 100E       | ட            | Σ            | щ.           | ட           | Σ         | Σ         | 1            | Σ             | Σ            | $\sum_{i}$ | Σ            | щ            |
| 100D       | 9            | <u>×</u>     | æ            | ட           | I         | Σ         | 1            | $\propto$     | >            | ٠          | سا           | Z            |
| J001       | $\prec$      | æ            | $\checkmark$ | >           | ≥         | $\times$  | t            | $\checkmark$  | >            | $\propto$  | $\checkmark$ | $\checkmark$ |
| 100B       | œ            | æ            | 9            | ٠           | S         | æ         | 1            | >-            | >            | <u>.</u>   | 9            | $\propto$    |
| A001       | <del>-</del> | z            | _            |             | ≥         | 工         | 1            | ட             | O            | ட          | œ            | Σ            |
| 001        | A            | $\checkmark$ | ۻ            | _           | щ         | <u>~</u>  | ط            | ≥             | S            | $\propto$  | $\sim$       | æ            |
| 66         | Q            | ட            | ≥            | $\simeq$    | ۵         | م         | م            | 工             | ≥            | Σ          |              | Σ            |
| 86         | ≥            | بس           | Σ            | ≥           | 9         | ш         | ⋖            | ≥             | ≥            | O          | X            | _            |
| ۷6         | ۵.           | ≥            | ≥            | _           | ≥         | _         | $\checkmark$ | <del></del> - |              | Q          |              | $\propto$    |
| 96         | <u>~</u>     | O            | $\propto$    | S           | مـ        | 9         | Σ            | $\checkmark$  | $\checkmark$ | $\times$   | Σ            | Σ            |
| <i>9</i> 6 | ⊢            | Z            | ×            | >           | ·>        | Z         | _            | ~             | ≥            | Z          | Z            | Z            |
| <b>7</b> 6 | æ            | $\propto$    | œ            | œ           | $\propto$ | $\propto$ | $\propto$    | œ             | $\propto$    | $\propto$  | $\propto$    | <u>~</u>     |
| 63         | Ø            | A            | Ø            | ⋖           | A         | ⋖         | ⋖            | ⋖             | V            | ⋖          | A            | ⋖            |
| <i>7</i> 6 | ر<br>ا       | ပ            | U            | C           | C         | ں         | ں            | ပ             | ں            | ی          | ں            | ပ            |

| Frequency  | 4            | က         | 2            | <del></del> |              | -            |
|------------|--------------|-----------|--------------|-------------|--------------|--------------|
| 103        | <u> </u>     | ≥         | ≥            | ≥           | ≥            | ≥            |
| 201        | >            | >-        | >-           | >           | >-           | >-           |
| 101        |              |           |              |             |              |              |
| 100E       | ட            | ட         | u.           | ட           | ட            | ட            |
| 1000       | Ø            | O         | O            | ≥           | ≥            | O            |
| J001       |              | Σ         | Σ            | <u> </u>    | $\checkmark$ | Σ            |
| 1008       | $\checkmark$ | $\prec$   | $\times$     | <b>×</b> ,  | Σ            | O            |
| A001       | ~            | O         | Z            | Σ           |              | $\propto$    |
| 100        | $\times$     | ≥         | $\alpha$     | 3           | ≃.           | S            |
| 66         | Ø            | <         | Ø            | A           | $\simeq$     | A            |
| 86         | O            | エ         | >-           | 9           | _            | æ            |
| <i>L</i> 6 | $\checkmark$ | $\simeq$  | $\checkmark$ | $\propto$   | ۵.           | $\checkmark$ |
| 96         | -            | Z         | >            | $\times$    | $\prec$      | æ            |
| 96         | >            | >-        | >            | >-          | .∝           | >-           |
| <b>7</b> 6 | 8            | $\propto$ | $\propto$    | $\simeq$    | R            | $\propto$    |
| 63         | ⋖            | X         | A            | Ø           | Ø            | Ø            |
| <i>7</i> 6 | ں            | U         | ပ            | ပ           | ں            | J            |

Figure 22: Sequence analysis of lymphotoxin-8 binders

| Frequency  | 16           | , <del></del> | <del></del> |              |           |           | <b>-</b> | -           |
|------------|--------------|---------------|-------------|--------------|-----------|-----------|----------|-------------|
| 103        | ≥            | ≶             | ≥           | ≷            | ≷         | 8         | ≥        | ≥           |
| 105        | >            | >-            | >           | >            | >-        | >         | >-       | >-          |
| 101        |              |               |             |              |           | 0         |          |             |
| 100E       | ட            | ≥             | ட           | Σ            | Σ         | ட         | Σ        | ĻĻ.         |
| 100D       | エ            | ط             | Q           | ≥            | >         | S         | ≥        | $\geq$      |
| J00i       | 9            |               | >           | 工            | エ         | O         | ·ш       | >           |
| 1008       | $\checkmark$ | >             | ≥           | 立            |           | <b> </b>  | Z        | ≥           |
| A001       |              | S             | >-          | ۵.           | $\propto$ | ட         | ш        | ட           |
| 001        | $\checkmark$ | Z             | Z           | $\checkmark$ | $\forall$ | Q         | <u></u>  |             |
| 66         | S            | ட             |             |              | Q         | S         | 0        | _           |
| 86         | <u>~</u>     |               | _           | >-           | ш         | z         | ட        | <del></del> |
| <b>Z</b> 6 | >            | $\propto$     |             | A            | _         | 工         | 工        | م           |
| 96         | æ            | ≥             | Ø           | O            |           | ≥         | Ω        | ≥           |
| 96         | O            | 1             | Σ           | _            | <u>~</u>  | S         | >        |             |
| <b>†</b> 6 | 8            | ×             | <u>~</u>    | œ            | œ         | $\propto$ | æ        | $\propto$   |
| 63         | ⋖            | ⋖             | ⋖           | 4            | A         | V         | A        | A           |
| 76         | ر            | ပ             | ں           | ں            | ပ         | ن         | ں        | ပ           |

Figure 23: Sequence analysis of ESL-1 binders

| *          |             |           |              |          |           |             |             |              |              |              |             |           |
|------------|-------------|-----------|--------------|----------|-----------|-------------|-------------|--------------|--------------|--------------|-------------|-----------|
| Frequency  | 4           | 4         | 2            | <b>-</b> | _         | . 2         | <del></del> | 13           | က            | —            | <del></del> | <b>.</b>  |
| 103        | <u>&gt;</u> | 3         | 3            | 3        | 3         | 3           | \$          | 3            | ≥            | ≥            | 3           | ≥         |
| 105        | >           | >         | >            | >        | >         | >           | >           | >            | >            | >            | >-          | >         |
| 101        |             |           | Ω.           |          |           |             |             |              |              |              | 0           | 0         |
| 100E       | ı           | ш         | Σ            | Σ        | Σ         | Σ           | ب           | ட            | Σ            | ட            |             | Σ         |
| 1000       | 1           | $\simeq$  | O            |          | Ö         |             | <u>×</u>    | $\prec$      | 8            | <u>i</u>     | 1           | نــ       |
| 100Ca      | ı           | ı,        | ı            | . 1      | æ         | 1           | 1           | 1            | 1            | .1           | ı           | 1         |
| J001       | . 1         | $\propto$ | $\propto$    | 8        | æ         | _           | 8           | $\propto$    | ≥            | $\propto$    | 1           | $\propto$ |
| 1008       | ι           | >         | S            |          | م         | <del></del> | >           | $\simeq$     | $\Box$       | $\checkmark$ | 1           | $\simeq$  |
| A001       | 1           | ட         | ¥            | A        | ≥         | Σ           | ≥           | <del></del>  | 工            | S            | ı           | O         |
| 001        | ш           | S         | S            | 9        | S         |             | $\propto$   | $\checkmark$ | >            | <b>×</b>     | ட           | $\prec$   |
| 66         | <del></del> |           | S            | >        | V         | >           | <b>—</b>    | S            | >            | <b>—</b>     | ய           | <b>—</b>  |
| 86         | u.          | ш         | ய            | ш        | لبا.      | ≥           | ш           | ш            | O            | ш            | Σ           | ш         |
| <b>Z</b> 6 | 9           |           | $\checkmark$ |          | ட         | ய           | S           | <b>×</b>     |              | <u>~</u>     | _           | ш         |
| 96         | ட           | ட         | _            | Q        | 工         | Z           | >-          | u_           | $\checkmark$ | ≥            | >-          | ш         |
| <i>9</i> 6 | G           | O         | _            | ш        | Z         | ш           | O           | O            | $\simeq$     | $\propto$    |             | O         |
| <i>t</i> 6 | 8           | $\propto$ | $\propto$    | <u>~</u> | $\propto$ | $\propto$   | $\propto$   | œ            | $\propto$    | Œ            | $\propto$   | $\propto$ |
| 83         | A           | A         | ⋖            | ⋖        | ⋖         | ⋖           | ×           | A            | A            | A            | Ø           | ⋖         |
| 76         | ر<br>ا      | ں         | ں            | ی        | ں         | ں           | ں           | ں            | ں            | ပ            | ں           | ں         |

Figure 24: Sequence analysis of BSA binders

| Frequency  | 2 | <del></del> | <del></del> | <del></del>  | <del></del> | <del></del>  |
|------------|---|-------------|-------------|--------------|-------------|--------------|
| 103        | 3 | ≥           | ≯           | 3            | 3           | ≥            |
| 105        | > | >           | >           | >            | >           | >            |
| 101        |   |             |             |              | 0           |              |
| 100E       | Σ | ட           | Σ           | Σ            | Σ           | ட            |
| 100D       | > | <u>~</u>    | $\propto$   | O            | >-          | ய            |
| J001       | > | <u>LL</u>   | >           | S            | ≥           | I            |
| 1008       |   | >-          | >           | ≥            | Z           | <b>—</b>     |
| A001       | _ | Z           | ய           | Ś            | م           |              |
| 100        | A | >           | Σ           |              | A           | م            |
| 66         | > | ≥           | Ö           | $\propto$    | ≥           | $\checkmark$ |
| 86         | ட | .>-         | ш           | >            | $\propto$   | ட்           |
| <b>∠</b> 6 | 9 | <b>—</b>    | ட           | ш            | S           | ග            |
| 96         | O | ய           | ட           | $\checkmark$ | ط           | Ŋ            |
| <i>9</i> 6 |   | >           | >           | ш            | <b>&gt;</b> |              |
| <b>7</b> 6 | æ | $\propto$   | $\approx$   | $\simeq$     | 8           | œ            |
| 63         | A | ⋖           | X           | A            | <b>∀</b>    | ⋖            |
| <i>7</i> 6 | ی | ں           | ں           | ں            | ں           | C            |

lox' site



Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                     |
|-------------------------|-----------------------------------|
| Aatll                   |                                   |
| AfIII                   | Bfrl, BspTl, Bst98l               |
| Ascl                    |                                   |
| Asel                    | Vspl, Asnl, PshBl                 |
| BamHI                   | Bstl                              |
| Bbel                    | Ehel, Kasl, Narl                  |
| Bbsl                    | BpuAl, Bpil                       |
| BgIII                   |                                   |
| Blpl                    | Bpu1102I,CellI, BlpI              |
| BsaBl                   | Maml, Bsh1365l, BsrBRl            |
| BsiWl                   | Pfl23II, SplI, SunI               |
| BspEl                   | AccIII, BseAI, BsiMI, Kpn2I, Mrol |
| BsrGl                   | Bsp1407I, SspBI                   |
| BssHII                  | Paul                              |
| BstEll                  | BstPl, Eco91l, Eco0651            |
| BstXI                   |                                   |
| Bsu36l                  | Aocl, Cvnl, Eco81l                |
| Dralll                  | 1.                                |
| DsmAl                   |                                   |
| Eagl                    | BstZI, EclXI, Eco52I, XmallI      |
| Eco57l                  |                                   |
| Eco0109l                | Drall                             |
| EcoRI                   |                                   |
| EcoRV                   | Eco32I                            |
| Fsel                    | 1                                 |
| HindIII                 |                                   |
| Hpal                    |                                   |
| Kpnl                    | Acc65l, Asp718l                   |
| Mlul                    | /                                 |
| Mscl                    | Ball, MluNl                       |

Figure 25a: List of unique restriction sites used in or suitable for HuCAL genes or pCAL vectors

| unique restriction site | Isoschizomers                      |
|-------------------------|------------------------------------|
| Muni                    | Mfel                               |
| Nhel                    |                                    |
| Nsil                    | Ppu10l, EcoT22l, Mph1103l          |
| NspV                    | Bsp119l, BstBl, Csp45l, Lspl, Sful |
| Pacl                    |                                    |
| Pmel                    |                                    |
| PmII                    | BbrPl, Eco72l, PmaCl               |
| Psp5II                  | PpuMI                              |
| Pstl                    |                                    |
| Rsrll                   | (Rsril), Cpol, Cspl                |
| SanDI                   | 1.                                 |
| Sapl                    |                                    |
| SexAl                   |                                    |
| Spel                    |                                    |
| Sfil                    | /                                  |
| Sphl                    | Bbul, Pael, Nspl                   |
| Stul                    | Aatl, Eco147l                      |
| Styl                    | Eco130I, EcoT14I                   |
| Xbal                    | BspLU11II                          |
| Xhol                    | PaeR7I                             |
| Xmal                    | Aval, Smal, Cfr91, PspAl           |

| odules |
|--------|
| E Z    |
| vecto  |
| PCAL   |
| ist of |
| 9: 1   |
| igure2 |

|                                        | WO 97/08320                                  |                                                      |                                                        |                                | PCT/EP96/03647                                                                                                                      |
|----------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                        | reference                                    | Skerra et al. (1991)<br>Bio/Technology 9,<br>273-278 | Hoess et al. (1986)<br>Nucleic Acids Res.<br>2287-2300 | see M2                         | Ge et al., (1994) Expressing antibodies in E. coli. In: Antibody engineering: A practical approach. IRL Press, New York, pp 229-266 |
|                                        | template                                     | vector<br>pASK30                                     | (synthetic)                                            | (synthetic)                    | vector<br>plG10                                                                                                                     |
|                                        | sites to be<br>inserted                      | Aatll                                                | lox, BgIII                                             | lox', Sphl                     | none                                                                                                                                |
|                                        | sites to be<br>removed                       | 2x Vspl<br>(Asel)                                    | 2x Vspl<br>(Asel)                                      | none                           | Sphl,<br>BamHI                                                                                                                      |
| HIDDUNES                               | functional element                           | lac<br>promotor/operator                             | Cre/lox<br>recombination site                          | Cre/lox'<br>recombination site | glllp of filamentous<br>phage with N-<br>terminal<br>myctail/amber<br>codon                                                         |
| Figure 26: list of pLAL Vector modules | module/flan-<br>king<br>restriction<br>sites | AatII-lacp/o-<br>Xbal                                | BgIII-lox-<br>Aatli                                    | Xbal-lox'-<br>Sphl             | EcoRI-<br>gIIIlong-<br>HindIII                                                                                                      |
| Figure 2                               | <u>8</u>                                     | M                                                    | M2                                                     | M3                             |                                                                                                                                     |

Figure 26: list of pCAL vector modules

| •                                       | WO 97/08320                                                                   |                                                                          |                               |                        |                              | PCT/E                                     | P96/03647                                 |
|-----------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|------------------------|------------------------------|-------------------------------------------|-------------------------------------------|
|                                         | see M7-I                                                                      | see M7-1                                                                 | see M3                        | see M1                 | see M1                       | see M1                                    | see M1                                    |
|                                         | vector<br>plG10                                                               | vector<br>plG10                                                          | (synthetic)                   | Pacl, Fsel (synthetic) | pASK30                       | pASK30                                    | pASK30                                    |
|                                         |                                                                               |                                                                          | XOI                           | Pacl, Fsel             | Pacl, Fsel,<br>BsrGl         | BsrGl, Nhel                               | BsrGI, Nhel                               |
|                                         | Sphl                                                                          | Sphl, Bbsl                                                               | none                          | none                   | Vspl,<br>Eco571,<br>BssSl    | Dralll<br>(Banll not<br>removed)          | DrallI,<br>BanlI                          |
| וווסמסורט                               | truncated gillp of<br>filamentous phage<br>with N-terminal Gly-<br>Ser linker | truncated gillp of filamentous phage with N-terminal myctail/amber codon | Cre/lox<br>recombination site | lpp-terminator         | beta-lactamase/bla<br>(ampR) | origin of single-<br>stranded replication | origin of single-<br>stranded replication |
| rigurezo, iist oi pene veetoi illogaies | EcoRI-gIIIss-<br>HindIII                                                      | M7-III EcoRI-gIIIss-<br>HindIII                                          | Sphl-lox-<br>HindIII          | HindIII-lpp-<br>Pacl   | Pacl/Fsel-bla-<br>BsrGl      | BsrGI-f1 ori-<br>Nhel                     | BsrGI-f1 ori-<br>Nhel                     |
| rigura                                  | M7-11                                                                         | M7-III                                                                   | M8                            | M9-II                  | M10-                         | M11-                                      | M11-                                      |

Figure 26: list of pCAL vector modules

| WO 97/08320 PCT/EPS                                |                            |                                                |                                                                             |                                  |                                                                         |  |  |
|----------------------------------------------------|----------------------------|------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------|--|--|
| Rose, R.E. (1988)<br>Nucleic Acids Res.<br>16, 355 | see M3                     | Yanisch-Peron, C.<br>(1985) Gene<br>33,103-119 | Cardoso, M. &<br>Schwarz,S. (1992)<br>J. Appl.<br>Bacteriol.72, 289-<br>293 | see M1                           | Knappik, A &<br>Plückthun, A.<br>(1994)<br>BioTechniques 17,<br>754-761 |  |  |
| pACYC184                                           | (synthetic)                | pUC19                                          | pACYC184                                                                    | (synthetic)                      | (synthetic)                                                             |  |  |
| Nhel, Bglll pACYC184                               | BgIII, lox,<br>Xmnl        | BgIII, Nhel                                    |                                                                             |                                  |                                                                         |  |  |
| BssSI, VspI,<br>NspV                               | none                       | Eco571<br>(BssSl not<br>removed)               | BspEI, MscI,<br>Styl/NcoI                                                   | (synthetic)                      | (synthetic)                                                             |  |  |
| origin of double-<br>stranded replication          | Cre/lox recombination site | origin of double-<br>stranded replication      | chloramphenicol-<br>acetyltransferase/<br>cat (camR)                        | signal sequence of phosphatase A | signal sequence of<br>phosphatase A +<br>FLAG detection tag             |  |  |
| Nhel-p15A-<br>Bgill                                | BgIII-lox-<br>BgIII        | BgIII-ColEI-<br>Nhel                           | Aatll-cat-<br>BgIII                                                         | Xbal-phoA-<br>EcoRl              | Xbal-phoA-<br>FLAG-EcoRI                                                |  |  |
| M12                                                | M13                        | M14-<br>Ext2                                   | M17                                                                         | M19                              | M20                                                                     |  |  |

Figure 26: list of pCAL vector modules

| _                                      | WO 97/08320                                                  | )·                                                               |                                                                                         |
|----------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                        | Lee et al. (1983)<br>Infect. Immunol.<br>264-268             | see M1                                                           | Lindner et al.,<br>(1992) Methods: a<br>companion to<br>methods in<br>enzymology 4, 41- |
|                                        | (synthetic)                                                  | pASK30                                                           | (synthetic)                                                                             |
|                                        |                                                              |                                                                  |                                                                                         |
|                                        | (synthetic)                                                  | BstXI,<br>MluI,BbsI,<br>BanII,<br>BstEII,<br>HpaI, BbeI,<br>VspI | (synthetic)                                                                             |
| 53000                                  | heat-stable<br>enterotoxin II signal (synthetic)<br>sequence | lac-repressor                                                    | poly-histidine tail                                                                     |
| וואמורבט. וופרטו שכיוב יכנטו וווספפונפ | Xbal-stll-<br>Sapl                                           | AfIII-laci-<br>Nhel                                              | EcoRI-Histail-<br>HindIII                                                               |
| 1.1901.4                               | M21                                                          | M41                                                              | M42                                                                                     |





SUBSTITUTE SHEET (RULE 26) 80 / 204

Figure 28: functional map and sequence of pMCS cloning vector



| Ŧ                                                                         |  |
|---------------------------------------------------------------------------|--|
| ≅                                                                         |  |
| 5                                                                         |  |
| · <u>=</u>                                                                |  |
| 5                                                                         |  |
| ؾ                                                                         |  |
| ≒                                                                         |  |
| 2                                                                         |  |
| ٦                                                                         |  |
| 2                                                                         |  |
| 5,                                                                        |  |
| Ξ.                                                                        |  |
| _0                                                                        |  |
| O.                                                                        |  |
| ស                                                                         |  |
| ž                                                                         |  |
| <u>d</u>                                                                  |  |
| <u>~</u>                                                                  |  |
| ت                                                                         |  |
| 2                                                                         |  |
| 핕                                                                         |  |
| 귥                                                                         |  |
| Š                                                                         |  |
| Ъ                                                                         |  |
| Ę                                                                         |  |
| <u>a</u>                                                                  |  |
| <u> </u>                                                                  |  |
| ⊱                                                                         |  |
| aj                                                                        |  |
| Ξ                                                                         |  |
| :≝                                                                        |  |
| 2                                                                         |  |
| _,⋽                                                                       |  |
| Figure 28: functional map and sequence of pMCS cloning vector (continued) |  |
| 28                                                                        |  |
| ٠,                                                                        |  |
| 5                                                                         |  |
| Ď                                                                         |  |
| üΞ                                                                        |  |
|                                                                           |  |

| 7 7 7 7                                     | AAA                                         |   | ATA:                |
|---------------------------------------------|---------------------------------------------|---|---------------------|
| 7.T.C.T.T.T.                                | AACAAAT                                     |   | AACCT               |
| TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTATTT | CTTGGGGATA                                  | _ | するないないないする          |
| AA'I'G'I'GCGCG                              | AAAAGCCCCT TTACACGCGC CTTGGGGATA AACAAATAAA |   |                     |
| TTTTCGGGGA                                  | AAAAGCCCCT                                  |   | 与 ス リ ス ス ス ス プ リ カ |
| CAGGTGGCAC                                  | GTCCACCGTG                                  |   |                     |
| <del>, - 1</del>                            |                                             |   | r<br>L              |

| TTGGGACTAT                                  | CAACATTTCC<br>GTTGTAAAGG                                                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------|
| TAAGTTTATA CATAGGCGAG TACTCTGTTA TTGGGACTAT | TAATATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC ATTATAACTT TTTCCTTCTC ATACTCATAA GTTGTAAAGG |
| CATAGGCGAG                                  | AAAGGAAGAG<br>TTTCCTTCTC                                                                |
| TAAGTTTATA                                  | TAATATTGAA<br>ATTATAACTT                                                                |
| TTCTAATAC<br>AAGATTTATG                     | AATGCTTCAA<br>TTACGAAGTT                                                                |
| 2 T                                         | 101                                                                                     |

| 151 | GTGTCGCCCT | TATTCCCTTT | r TATICCCITI ITIGCGGCAT ITIGCCTICC IGITITIGCI  | TTTGCCTTCC | TGTTTTTGCT |
|-----|------------|------------|------------------------------------------------|------------|------------|
|     | CACAGCGGGA | ATAAGGGAAA | SA ATAAGGGAAA AAACGCCGTA AAACGGAAGG ACAAAAACGA | AAACGGAAGG | ACAAAAACGA |

TCAACCCACG AGTTGGGTGC GCTGAAGATC CGACTTCTAG Eco57I AGTAAAAGAT TCATTTTCTA CGCTGGTGAA GCGACCACTT CACCCAGAAA GTGGGTCTTT 201

BSSSI

ATCCTTGAGA TAGGAACTCT CAGCGGTAAG GTCGCCATTC TACATCGAAC TGGATCTCAA ACCTAGAGTT ATGTAGCTTG ACGAGTGGGT TGCTCACCCA BssSI 251

1 1 1

Figure 28: functional map and sequence of pMCS cloning vector (continued)

## XmnI

|     |                          | ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                          |                          |
|-----|--------------------------|-----------------------------------------|-----------------------------------------|--------------------------|--------------------------|
| 301 | GTTTTCGCCC<br>CAAAAGCGGG | CGAAGAACGT<br>GCTTCTTGCA                | TTTCCAATGA<br>AAAGGTTACT                | TGAGCACTTT<br>ACTCGTGAAA | TAAAGTTCTG<br>ATTTCAAGAC |
| 351 | CTATGTGGCG<br>GATACACCGC | CGGTATTATC<br>GCCATAATAG                | CCGTATTGAC<br>GGCATAACTG                | GCCGGGCAAG<br>CGGCCGGTTC | AGCAACTCGG<br>TCGTTGAGCC |
| 401 | TCGCCGCATA               | CACTATTCTC<br>GTGATAAGAG                | AGAATGACTT<br>TCTTACTGAA                | GGTTGAGTAC<br>CCAACTCATG | TCACCAGTCA<br>AGTGGTCAGT |
| 451 | CAGAAAAGCA<br>GTCTTTTCGT | TCTTACGGAT<br>AGAATGCCTA                | GGCATGACAG<br>CCGTACTGTC                | TAAGAGAATT<br>ATTCTCTTAA | ATGCAGTGCT<br>TACGTCACGA |
| 501 | GCCATAACCA               | TGAGTGATAA<br>ACTCACTATT                | CACTGCGGCC<br>GTGACGCCGG                | AACTTACTTC<br>TTGAATGAAG | TGACAACGAT<br>ACTGTTGCTA |
| 551 | CGGAGGACCG<br>GCCTCCTGGC | AAGGAGCTAA<br>TTCCTCGATT                | CCGCTTTTTT<br>GGCGAAAAAÄ                | GCACAACATG               | GGGGATCATG<br>CCCCTAGTAC |
| 601 | TAACTCGCCT<br>ATTGAGCGGA | TGATCGTTGG<br>ACTAGCAACC                | GAACCGGAGC                              | TGAATGAAGC<br>ACTTACTTCG | CATACCAAAC<br>GTATGGTTTG |
| 651 | GACGAGCGTG               | ACACCACGAT                              | GCCTGTAGCA                              | ATGGCAACAA               | CGTTGCGCAA               |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

|          |      | CTGCTCGCAC               | TGTGGTGCTA               | CGGACATCGT               | TACCGTTGTT               | GCAACGCGTT               |
|----------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|          |      |                          |                          |                          |                          | AseI                     |
|          | 701  | ACTATTAACT<br>TGATAATTGA | GGCGAACTAC<br>CCGCTTGATG | TTACTCTAGC<br>AATGAGATCG | TTCCCGGCAA               | CAATTAATAG<br>GTTAATTATC |
| _        | 751  | ACTGGATGGA<br>TGACCTACCT | GGCGGATAAA<br>CCGCCTATTT | GTTGCAGGAC<br>CAACGTCCTG | CACTTCTGCG<br>GTGAAGACGC | CTCGGCCCTT<br>GAGCCGGGAA |
|          | 801  | CCGGCTGGCT               | GGTTTATTGC<br>CCAAATAACG | TGATAAATCT<br>ACTATTTAGA | GGAGCCGGTG<br>CCTCGGCCAC | AGCGTGGGTC<br>TCGCACCCAG |
|          | 851  | TCGCGGTATC               | ATTGCAGCAC<br>TAACGTCGTG | TGGGGCCAGA<br>ACCCCGGTCT | TGGTAAGCCC<br>ACCATTCGGG | TCCCGTATCG               |
| 5.00\    | 901  | TAGTTATCTA<br>ATCAATAGAT | CACGACGGGG<br>GTGCTGCCCC | AGTCAGGCAA<br>TCAGTCCGTT | CTATGGATGA<br>GATACCTACT | ACGAAATAGA<br>TGCTTTATCT |
|          | 951  | CAGATCGCTG<br>GTCTAGCGAC | AGATAGGTGC<br>TCTATCCACG | CTCACTGATT<br>GAGTGACTAA | AAGCATTGGT<br>TTCGTAACCA | AACTGTCAGA<br>TTGACAGTCT |
| $\vdash$ | 1001 | CCAAGTTTAC<br>GGTTCAAATG | TCATATATAC<br>AGTATATATG | TTTAGATTGA<br>AAATCTAACT | TTTAAAACTT<br>AAATTTTGAA | CATTTTTAAT<br>GTAAAAATTA |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| 1051 | TTAAAAGGAT               | CTAGGTGAAG               | ATCCTTTTTG                     | ATAATCTCAT                             | GACCAAAATC                |
|------|--------------------------|--------------------------|--------------------------------|----------------------------------------|---------------------------|
|      | AATTTTCCTA               | GATCCACTTC               | TAGGAAAAAC                     | TATTAGAGTA                             | CTGGTTTTAG                |
| 1101 | CCTTAACGTG               | AGTTTTCGTT               | CCACTGAGCG                     | TCAGACCCCG                             | TAGAAAAGAT                |
|      | GGAATTGCAC               | TCAAAAGCAA               | GGTGACTCGC                     | AGTCTGGGGC                             | ATCTTTTCTA                |
| 1151 | CAAAGGATCT               | TCTTGAGATC               | CTTTTTTTCT                     | GCGCGTAATC                             | TGCTGCTTGC                |
|      | GTTTCCTAGA               | AGAACTCTAG               | GAAAAAAAGA                     | CGCGCATTAG                             | ACGACGAACG                |
| 1201 | AAACAAAAAA<br>TTTGTTTTT  | ACCACCGCTA<br>TGGTGGCGAT | CCAGCGGTGG                     | TTTGTTTGCC                             | GGA'TCAAGAG<br>CCTAGTTCTC |
| 1251 | CTACCAACTC<br>GATGGTTGAG | TTTTTCCGAA<br>AAAAAGGCTT | GGTAACTGGC<br>CCATTGACCG<br>Eo | C TTCAGCAGAG<br>G AAGTCGTCTC<br>Eco57I | CGCAGATACC<br>GCGTCTATGG  |
|      | 1                        |                          | <b>₹</b>                       | ?<br>?<br>?                            |                           |
| 1301 | AAATACTGTC               | CTTCTAGTGT               | AGCCGTAGTT                     | AGGCCACCAC                             | TTCAAGAACT                |
|      | TTTATGACAG               | GAAGATCACA               | TCGGCATCAA                     | TCCGGTGGTG                             | AAGTTCTTGA                |
| 1351 | CTGTAGCACC               | GCCTACATAC               | CTCGCTCTGC                     | TAATCCTGTT                             | ACCAGTGGCT                |
|      | GACATCGTGG               | CGGATGTATG               | GAGCGAGACG                     | ATTAGGACAA                             | TGGTCACCGA                |

> CCTACAGCGT GGATGTCGCA

AACTGAGATA TTGACTCTAT

ACCTACACCG TGGATGTGGC

GGAGCGAACG

AGCCCAGCTT TCGGGTCGAA

1501

|                                        | CAAGACGATA<br>GTTCTGCTAT                                                                   | TCGTGCACAC                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                        | GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA<br>CGCTATTCAG CACAGAATGG CCCAACCTGA GTTCTGCTAT | AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC<br>TTCCGCGTCG CCAGCCCGAC TTGCCCCCCA AGCACGTGTG |
| (continued)                            | GTGTCTTACC<br>CACAGAATGG                                                                   | GGTCGGGCTG                                                                                 |
| nce of pMCS cloning vector (continued) | GCGATAAGTC<br>CGCTATTCAG                                                                   | AAGGCGCAGC<br>TTCCGCGTCG                                                                   |
| Figure 28: functional map and sequence | GCTGCCAGTG<br>CGACGGTCAC                                                                   | GTTACCGGAT<br>CAATGGCCTA                                                                   |
| Figure 28: fur                         | 1401                                                                                       | 1451                                                                                       |

| CGGACAGGTA<br>GCCTGTCCAT                                             | GAGCTTCCAG<br>CTCGAAGGTC                                                      |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| GGGAGAAAGG (CCCTCTTTCC (                                             | GAACAGGAGA GCGCACGAGG GAGCTTCCAG<br>CTTGTCCTCT CGCGTGCTCC CTCGAAGGTC<br>BSSSI |
| AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG<br>TTTCGCGGTG CGAAGGGCTT CCCTCTTTCC | GGCAGGGTCG GAACAGGAGA GCGCACGAGG<br>CCGTCCCAGC CTTGTCCTCT CGCGTGCTCC<br>BSSSI |
| AAAGCGCCAC<br>TTTCGCGGTG                                             | GGCAGGGTCG<br>CCGTCCCAGC                                                      |
| GAGCTATGAG<br>CTCGATACTC                                             | TCCGGTAAGC<br>AGGCCATTCG                                                      |
| 1551                                                                 | 1601                                                                          |
| SUBSTITU                                                             | ITE SHEET (RULE                                                               |

| LIAAAAACAC IACGAGCAGI CCCCCCGCCI CGGAI'ACCI'I' |                                                                                                | TACGAGCAGT. | AACGCGGCCT               | יז לי                    | 1751 |
|------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|--------------------------|--------------------------|------|
| GCCTATGGAA                                     | C GATTTTTGTG ATGCTCGTCA GGGGGGGGGGA GCCTATGGAA                                                 | ATGCTCGTCA  | GATTTTTGTG<br>CTAAAAACAC | CTTGAGCGTC<br>GAACTCGCAG | 1701 |
| CCACCTCTGA                                     | C CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA<br>G GACCATAGAA ATATCAGGAC AGCCCAAAGC GGTGGAGACT | TATAGTCCTG  | CTGGTATCTT<br>GACCATAGAA | GGGGAAACGC<br>CCCCTTTGCG | 1651 |

Figure 28: functional map and sequence of pMCS cloning vector (continued)

| GAA                                        | BsrGI   | GTA                                         | AatII | GTC                                          |        |                                        |
|--------------------------------------------|---------|---------------------------------------------|-------|----------------------------------------------|--------|----------------------------------------|
| ACGACCG                                    | BS<br>~ | CCCCCCTGTA<br>GGGGGGACAT                    | AatI  | CCCCGACGTC<br>GGGGCTGCAG                     | ECORI  | TTCACGT                                |
| GGACCGGAAA                                 | PacI    | CCCCCCCTT AATTAACCCC<br>GGGGGGAA TTAATTGGGG | BglII | CCCCCCCAG ATCTCCCCCC<br>GGGGGGGTC TAGAGGGGGG | EC.    | CCCCCCGAA TTCACGT<br>GGGGGGCTT AAGTGCA |
| TTGCGCCGGA AAATGCCAA GGACCGGAAA ACGACCGGAA | . ?     | CCCCCCCCTT                                  | BB ~  | CCCCCCCCAG                                   | Sphi   | CGCATGCCCC<br>GCGTACGGGG               |
| TTGCGCCGGA                                 | HindIII | GTAAGCTTCC<br>CATTCGAAGG                    | NheI  | CCGCTAGCCC<br>GGCGATCGGG                     |        | ACCCCCCCCC<br>TGGGGGGGGG               |
| TTTGCGGTCG                                 |         | TTGCTCACAT<br>AACGAGTGTA                    | BsrGI | CACCCCCCC<br>GTGGGGGGGG                      | XbaI   | CCCCCTCTAG                             |
|                                            |         | 1801                                        |       | 1851                                         |        | 1901                                   |
|                                            |         |                                             |       | CHROTITHE                                    | E CHEE | T/BHE 28                               |





Figure 29: functional map and sequence of pCAL module M1

AatII

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT GAGTGAGTAA CTCACTCATT ACACTCAATC TGTGAGTTAG CTGCAGAATT GACGTCTTAA

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 51

XbaI

~~~~~

GA CIGCTTAAAGAT CGAATTTCTA ACCATGATTA TGGTACTAAT AACAGCTATG TTGTCGATAC AGTGTGTCCT TCACACAGGA

SUBSTITUTE SHEET (RULE 26)

101

Figure 30: functional map and sequence of pCAL module M7-II (continued)

		ECORI				
	Н	GAATTCGAGC	AGAAGCTGAT TCTTCGACTA	CTCTGAGGAG GAGACTCCTC	GATCTGTAGG CTAGACATCC	GTGGTGGCTC CACCACCGAG
	51	TGGTTCCGGT ACCAAGGCCA	GATTTTGATT CTAAAACTAA	АТGААААСАТ ТАСТТТТСТА	GGCAAACGCT CCGTTTGCGA	AATAAGGGGG TTATTCCCCC
A	101	CTATGACCGA GATACTGGCT	AAATGCCGAT TTTACGGCTA	GAAAACGCGC CTTTTGCGCG	TACAGTCTGA ATGTCAGACT	CGCTAAAGGC GCGATTTCCG
	151	AAACTTGATT TTTGAACTAA	CTGTCGCTAC GACAGCGATG	TGATTACGGT ACTAATGCCA	GCTGCTATCG CGACGATAGC	ATGGTTTCAT TACCAAAGTA
	201	TGGTGACGTT	TCCGGCCTTG AGGCCGGAAC	CTAATGGTAA GATTACCATT	TGGTGCTACT ACCACGATGA	GGTGATTTTG CCACTAAAAC
	251	CTGGCTCTAA GACCGAGATT	TTCCCAAATG	GCTCAAGTCG CGAGTTCAGC	GTGACGGTGA CACTGCCACT	TAATTCACCT ATTAAGTGGA
		Xmx				
	301	TTAATGAATA AATTACTTAT	ATTTCCGTCA	ATATTTACCT TATAAATGGA	TCCCTCCCTC	AATCGGTTGA TTAGCCAACT

Figure 30: functional map and sequence of pCAL module M7-11 (continued)

AAAGATAAC	CTTTTATAT GAAAATATA	ractgcgtaa Atgacgcatt		
TTTGTCTTTG GCGCTGGTAA ACCATATGAA IIIICIAIIS AAACAGAAAC CGCGACCATT TGGTATACTT AAAAGATAAC	AATAAACTTA TTCCGTGGTG TCTTTGCGTT TCTTTTATAT TTATTTGAAT AAGGCACCAC AGAAACGCAA AGAAATATA	TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT		
GCGCTGGTAA CGCGACCATT	TTCCGTGGTG AAGGCACCAC	ATTTTCTACG TAAAAGATGC	·	
TTTGTCTTTG AAACAGAAAC	AATAAACTTA TTATTTGAAT	TTATGTATGT AATACATACA	HindIII	TGAT
ATGTCGCCCT	ATTGTGACAA TAACACTGTT	GTTGCCACCT		TAAGGAGTCT ATTCCTCAGA
351	401	451		501

Figure 31: functional map and sequence of pCAL module M9-II (continued)

Н	
Н	
Н	
מ	
Z	
-1	
工	

222

 \leftarrow

AGATTGTGCG TCTAACACGC AAAATGGCGC TTTTACCGCG TGTGAAGTGA ACACTTCACT TTCGAACTGG AAGCTTGACC 9999999999

GCCGCCCTGG CGGCCGGACC 9999999999 TTAATTAAAG AATTAATTTC ACAGACGGCA TGTCTGCCGT TGTAAAAAA ACATTTTTT

51

BsrGI

101 GGGGGGTGT ACAGGGGGG GGG CCCCCCACA TGTCCCCCCC CCC

SUBSTITUTE SHEET (RULE 26) 96 / 204

ACGTTCTTTA TGCAAGAAAT

ACGGTTTTTC GCCCTTTGAC GTTGGAGTCC

CGGGAAACTG

TGCCAAAAAG

GCCCTGATAG

251

CGGGACTATC

CAACCTCAGG

ייוו (כסוונווומכמ)		٠
ואי איים איים	,	
מווח אבלחבווכב חו		
e 32; junctional map and sequence of pear module fail tentures.	NheI	

CCCCGTCAAG GGGGCAGTTC TTTACGGCAC AAATGCCGTG GTGGGCCATC	CGCCGGCTTT GCGGCCGAAA GATTTAGTGC CTAAATCACG GGTTCTCGTA CCAAGAGCAT	TCGCCACGTT AGCGGTGCAA TTAGGGTTCC AATCCCAAGG TTAGGGTGAT	CCTTCCTTTC GGAAGGAAAG GGGCATCCCT CCCGTAGGGA AAAACTTGA	CGCTTTCTTC GCGAAAGAAG CTCTAAATCG GAGATTTAGC CTCGACCCCA GAGCTGGGGT	101 151 201
CCCCGTCAAG	CGCCGGCTTT GCGGCCGAAA	TCGCCACGTT AGCGGTGCAA	CCTTCCTTTC GGAAGGAAAG	CGCTTTCTTC	101
CCGCTCCTTT GGCGAGGAAA	GCCCTAGCGC CGGGATCGCG	ACTTGCCAGC TGAACGGTCG	TGACCGCTAC ACTGGCGATG	ACGCGCAGCG TGCGCGTCGC	51
TGTGGTGGTT ACACCACCAA	22262262626	GGCGCATTAA CCGCGTAATT	GCCCTGTAGC CGGGACATCG	GCTAGCACGC	⊣

ATAGAGCCAG TATTCTTTTG ATTTATAAGG GATTTTGCCG ATTTCGGCCT ATTGGTTAAA TATCTCGGTC CACTCAACCC GTGAGTTGGG CTTGTTCCAA ACTGGAACAA TGACCTTGTT GAACAAGGTT ATAGTGGACT TATCACCTGA 301 351

Figure 32: functional map and sequence of pCAL module M11-III (continued)	
ure 32: functional map and sequence of pCAL modul	continu
ure 32: functional map and sequence of pCAL modul	₹
ure 32: functional map and sequence of pCAL modul	Ξ
ure 32: functional map and sequence of pCAL modul	≥
ure 32: function	. module
ure 32: function	₹
ure 32: function	g
ure 32: function	o
ure 32: function	sednence
ure 32: function	Б
ure 32: function	9
ure 32: function	map
ure	functional
ure	12:
	ure

'I'AACCAA'I"I'	AAAATATTAA	TTTATAATT
TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCCAATTT	ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA	TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT
CTAAAACGGC	AATTTAACGC	TTAAATTGCG
TAAAT'A'I''I'CC	ATTTAACAAA	TAAATTGTTT
ATAAGAAAAC	AAATGAGCTG	TTTACTCGAC
	01	

BsrGI

451 CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

GAATGGCCCA

ATTCAGCACA

GGTCACCGCT

CACCGACGAC

GGACAATGGT

CGCAGCGGTC GGGCTGAACG

CCGGATAAGG

TGGACTCAAG ACGATAGTTA

351

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

BglII

⊣	AGATCTGACC TCTAGACTGG	AAAATCCCTT TTTTAGGGAA	AACGTGAGTT TTGCACTCAA	TTCGTTCCAC	TGAGCGTCAG ACTCGCAGTC
51	ACCCCGTAGA TGGGGCATCT	AAAGATCAAA TTTCTAGTTT	GGATCTTCTT CCTAGAAGAA	GAGATCCTTT CTCTAGGAAA	TTTTCTGCGC
101	GTAATCTGCT	GCTTGCAAAC	AAAAAAACCA	CCGCTACCAG	CGGTGGTTTG
	CATTAGACGA	CGAACGTTTG	TTTTTTTGGT	GGCGATGGTC	GCCACCAAAC
151	TTTGCCGGAT	CAAGAGCTAC	CAACTCTTTT	TCCGAAGGTA	ACTGGCTACA
	AAACGGCCTA	GTTCTCGATG	GTTGAGAAAA	AGGCTTCCAT	TGACCGATGT
201	GCAGAGCGCA	GATACCAAAT	ACTGTTCTTC	TAGTGTAGCC	GTAGTTAGGC
	CGTCTCGCGT	CTATGGTTTA	TGACAAGAAG	ATCACATCGG	CATCAATCCG
251	CACCACTTCA	AGAACTCTGT	AGCACCGCCT	ACATACCTCG	CTCTGCTAAT
	GTGGTGAAGT	TCTTGAGACA	TCGTGGCGGA	TGTATGGAGC	GAGACGATTA
301	CCTGTTACCA	GTGGCTGCTG	CCAGTGGCGA	TAAGTCGTGT	CTTACCGGGT

	\cup
	GCGTCGCCAG
Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)	ACCTGAGTTC TGCTATCAAT GGCCTATTCC GCGTCGCCAG C
ij.	

GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT	CGTGTGTCGG GTCGAACCTC GCTTGCTGGA TGTGGCTTGA	
CGAACGACCT	GCTTGCTGGA	
CAGCTTGGAG	GTCGAACCTC	
GCACACAGCC	CGTGTGTCGG	
GGGGGTTCGT	CCCCCAAGCA	
401		

	T GTCGCACTCG ATACTCTTTC GCGGTGCGAA GGGCTTCCCT	LSSSS	ATACTCTTTC	GTCGCACTCG	CTCTATGGAT	
--	---	-------	------------	------------	------------	--

AGGAGAGCGC	BSSSI	}
GGGTCGGAAC	りょうこうせつこう	
GTAAGCGGCA	CA11000000	
CAGGTATCCG	GI CCAI AGGC	
501		

GTCCTGTCGG	CAGGACAGCC		
TATCTTTATA	AAGGTCCCCC TTTGCGGACC ATAGAAATAT CAGGACAGCC		
TTCCAGGGG AAACGCCTGG TATCTTTATA	TTTGCGGACC		
TTCCAGGGGG	AAGGTCCCCC		
ACGAGGGAGC	TGCTCCCTCG	BssSI	~ ~ ~ ~
551			
125	T (Rl	JLE :	26)

TCGTCAGGGG	ACACTACG AGCAGTCCCC
CTCTGACTTG AGCGTCGATT TTTGTGATGC TCGTCAGGGG	AA
AGCGTCGATT .	ACTGAAC TCGCAGCTAA
CTCTGACTTG	GAGACTGAAC
GTTTCGCCAC	CAAAGCGGTG
601	

ACGGTTCCTG	TGCCAAGGAC
AC GCCAGCAACG CGGCCTTTTT	CCGGAAAAA
GCCAGCAACG	CGGTCGTTGC
ATGGAAAAAC	A TACCTTTTTG
GGCGGAGCCT	CCGCCTCGGA
651	

Figure 33: functional map and sequence of pCAL module M14-Ext2 (continued)

NheI

GCCTTTTGCT GGCCTTTTGC TCACATGGCT AGC CGGAAAACGA CCGGAAAACG AGTGTACCGA TCG

701

GTTTTCCATG AGCAAACTGA

TTGTTACACC

GTGTTCACCC

ATATGGGATA

351

Figure 34: functional map and sequence of pCAL module M17 (continued)

_	4	
_	•	
ı.	ز	
π	3	
۵	đ	
	•	

П	GGGACGTCGG	GTGAGGTTCC	AACTTTCACC TTGAAAGTGG	ATAATGAAAT TATTACTTTA	AAGATCACTA TTCTAGTGAT
51	CCGGGCGTAT	TTTTTGAGTT AAAAACTCAA	ATCGAGATTT TAGCTCTAAA	TCAGGAGCTA AGTCCTCGAT	AGGAAGCTAA TCC'TTCGATT
 101	AATGGAGAAA TTACCTCTTT	AAAATCACTG TTTTAGTGAC	GATATACCAC CTATATGGTG	ССТТСАТАТА ССААСТАТАТ	TCCCAATGGC AGGGTTACCG
151	ATCGTAAAGA TAGCATTTCT	ACATTTTGAG TGTAAAACTC	GCATTTCAGT CGTAAAGTCA	CAGTTGCTCA GTCAACGAGT	ATGTACCTAT TACATGGATA
201	AACCAGACCG TTGGTCTGGC	TTCAGCTGGA AAGTCGACCT	TATTACGGCC ATAATGCCGG	ТТТТТАААGA ААААТТТСТ	CCGTAAAGAA GGCATTTCTT
251	AAATAAGCAC TTTATTCGTG	AAGTTTTATC TTCAAAATAG	CGGCCTTTAT GCCGGAAATA	TCACATTCTT AGTGTAAGAA	GCCCGCCTGA CGGGCGGACT
301	TGAATGCTCA ACTTACGAGT	CCCGGAGTTC GGGCCTCAAG	CGTATGGCAA GCATACCGTT	TGAAAGACGG ACTTTCTGCC	TGAGCTGGTG ACTCGACCAC

Figure 34: functional map and sequence of pCAL module M17 (continued)

	татассстат	CACAAGTGGG	AACAATGTGG	CAAAAGGTAC	TCGTTTGACT
401	AACGTTTTCA TTGCAAAAGT	TCGCTCTGGA AGCGAGACCT	GTGAATACCA CACTTATGGT	CGACGATTTC GCTGCTAAAG	CGGCAGTTTC GCCGTCAAAG
451	TACACATATA	TTCGCAAGAT	GTGGCGTGTT CACCGCACAA	ACGGTGAAAA TGCCACTTTT	CCTGGCCTAT GGACCGGATA
501	TTCCCTAAAG AAGGGATTTC	GGTTTATTGA CCAAATAACT	GAATATGTTT CTTATACAAA	TTCGTCTCAG AAGCAGAGTC	CCAATCCCTG
551	GGTGAGTTTC	ACCAGTTTTG TGGTCAAAAC	ATTTAAACGT TAAATTTGCA	AGCCAATATG TCGGTTATAC	GACAACTTCT CTGTTGAAGA
601	TCGCCCCCGT	TTTCACTATG AAAGTGATAC	GGCAAATATT CCGTTTATAA	ATACGCAAGG TATGCGTTCC	CGACAAGGTG GCTGTTCCAC
651	CTGATGCCGC	TGGCGATTCA	GGTTCATCAT CCAAGTAGTA	GCCGTTTGTG CGGCAAACAC	ATGGCTTCCA TACCGAAGGT
701	TGTCGGCAGA ACAGCCGTCT	ATGCTTAATG TACGAATTAC	AATTACAACA TTAATGTTGT	GTACTGCGAT CATGACGCTA	GAGTGGCAGG
751	GCGGGGCGTA	ATTTTTTAA	GGCAGTTATT	GGGTGCCCTT	AAACGCCTGG

Figure 34: functional map and sequence of pCAL module M17 (continued)

TTTGCGGACC CGCCCCGCAT TAAAAAATT CCGTCAATAA CCCACGGGAA

BglII

TGCTAGATCT ACGATCTAGA 801

TCC

functional ssori Hind 111 (515) Fsel (599) Bsr61 (612) gIII supershort Pac! (579) Gen11-Nick Kmn1 (310) Ban [[919] Nhe! (1076) replication start EcoRI (1) 2755 bp pCAL4 Sph1 (2749) Bsss1 (1254) Figure 35: functional map and sequence of modular vector pCAL4 Colel Ext2 origin **Kbal** (2739) Hatil (2608) lac p/o Bg111 (1803) cat

SUBSTITUTE SHEET (DULE 26)

WO 97/08320 PCT/EP96/03647

ATCGGTTGAA TAGCCAACTT

CCCTCCCTCA GGGAGGGAGT

TATTTACCTT ATAAATGGAA

TTTCCGTCAA AAAGGCAGTT

TAATGAATAA ATTACTTATT

301

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

ECORI

				XmnI	
AATTCACCTT	TGACGGTGAT ACTGCCACTA	CTCAAGTCGG GAGTTCAGCC	TCCCAAATGG AGGGTTTACC	TGGCTCTAAT ACCGAGATTA	251
GTGATTTTGC	GGTGCTACTG	TAATGGTAAT	CCGGCCTTGC	GGTGACGTTT	201
CACTAAAACG	CCACGATGAC	ATTACCATTA	GGCCGGAACG	CCACTGCAAA	
TGGTTTCATT	CTGCTATCGA	GATTACGGTG	TGTCGCTACT	AACTTGATTC	151
ACCAAAGTAA	GACGATAGCT	CTAATGCCAC	ACAGCGATGA	TTGAACTAAG	
GCTAAAGGCA	ACAGTCTGAC	AAAACGCGCT	AATGCCGATG	TATGACCGAA	101
CGATTTCCGT	TGTCAGACTG	TTTTGCGCGA	TTACGGCTAC	ATACTGGCTT	
ATAAGGGGGC	GCAAACGCTA	TGAAAAGATG	ATTTTGATTA	GGTTCCGGTG	51
TATTCCCCCG	CGTTTGCGAT	ACTTTTCTAC	TAAAACTAAT	CCAAGGCCAC	
TGGTGGCTCT	ATCTGTAGGG	TCTGAGGAGG	GAAGCTGATC CTTCGACTAG	AATTCGAGCA TTAAGCTCGT	-

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

	351	TGTCGCCCTT ACAGCGGGAA	TTGTCTTTGG AACAGAAACC	CGCTGGTAAA GCGACCATTT	CCATATGAAT GGTATACTTA	TTTCTATTGA AAAGATAACT
	401	TTGTGACAAA	ATAAACTTAT TATTTGAATA	TCCGTGGTGT AGGCACCACA	CTTTGCGTTT GAAACGCAAA	CTTTTATATG GAAAATATAC
•	451	TTGCCACCTT	TATGTATGTA ATACATACAT	TTTTCTACGT AAAAGATGCA	TTGCTAACAT AACGATTGTA	ACTGCGTAAT TGACGCATTA
NIDOTITUTE CLUETE	501	AAGGAGTCTT TTCCTCAGAA	HindIII ~~~~~~ GATAAGCTTG CTATTCGAAC	ACCTGTGAAG TGGACACTTC	TGAAAAATGG ACTTTTTACC	CGCAGATTGT GCGTCTAACA
/DU E 6				PacI	į	FS & F
2)	551	GCGACATTTT CGCTGTAAAA	TTTTGTCTGC AAAACAGACG	ССТТТААТТА ССАААТТААТ	AAGGGGGGGG	5500550000
			BsrGI			
	601	TGGGGGGGGG	TGTACATGAA ACATGTACTT	ATTGTAAACG TAACATTTGC	TTAATATTT AATTATAAAA	GTTAAAATTC CAATTTTAAG

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

CACGCTGTAG

CGTGGCGCTT TCTCATAGCT

CTTCGGGAAG

GCCTTTCTCC

1301

GAAGCCCTTC

AGAGTATCGA

GCACCGCGAA

ATACCTGTCC TATGGACAGG

GCGAATGGCC

CCGACCCTGC

GAGAGGACAA

CCCTCGTGCG

1251

BssSI

CTCTCCTGTT

CGCTTACCGG

	9090990999		AAAGGCCAGC
	GCTGGCAAGT GTAGCGGTCA CGCTGCGCGT AACCACCACA CCCGCGGGGGGCGCCGCGCGCGTTCA CATCGCCAGT GCGACGCGCG TTGGTGGTGT GGGCGGCGCG		C GUBGGG GCGTGCTAGC CATGTGAGCA AAAGGCCAGC
4 (continued)	CGCTGCGCGT GCGACGCGCA	NheI	GCGTGCTAGC
e of modular vector pCAL	GTAGCGGTCA CATCGCCAGT		
Figure 35: functional map and sequence of modular vector pCAL4 (continued)	GCTGGCAAGT		
Figure 35: fe	1001		ر 1 م ر 1

AAAGGCCAGC TTTCCGGTCG	TTTCCATAGG AAAGGTATCC	GTCAGAGGTG	CTGGAAGCT
GCGTGCTAGC CATGTGAGCA AAAGGCCAGC	TGCTGGCGTT T ACGACCGCAA A	TCACAAAAAT CGACGCTCAA GTCAGAGGTG AGTGTTTTTA GCTGCGAGTT CAGTCTCCAC	GGCGTTTCCC CCTGGAAGCT CCGCAAAGGG GGACCTTCGA
GCGTGCTAGC CGCACGATCG	AAGGCCGCGT	TCACAAAAAT AGTGTTTTTA	AAAGATACCA TTTCTATGGT
GCTACAGGGC CGATGTCCCG	GAACCGTAAA CTTGGCATTT	CTGACGAGCA GACTGCTCGT	ACAGGACTAT TGTCCTGATA
TTAATGCGCC	AAAAGGCCAG TTTTCCGGTC	CTCCGCCCCC	GCGAAACCCG CGCTTTGGGC
1051	1101	1151	1201
	SUBS	TITUTE SHE	ET (RULE 26

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

1351	GTATCTCAGT	TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG
	CATAGAGTCA	AGCCACATCC	AGCAAGCGAG	GTTCGACCCG	ACACACGTGC
1401	AACCCCCCGT	TCAGCCCGAC	CGCTGCGCCT	TATCCGGTAA	CTATCGTCTT
	TTGGGGGGCA	AGTCGGGCTG	GCGACGCGGA	ATAGGCCATT	GATAGCAGAA
1451	GAGTCCAACC	CGGTAAGACA	CGACTTATCG	CCACTGGCAG	CAGCCACTGG
	CTCAGGTTGG	GCCATTCTGT	GCTGAATAGC	GGTGACCGTC	GTCGGTGACC
1501	TAACAGGATT	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA
	ATTGTCCTAA	TCGTCTCGCT	CCATACATCC	GCCACGATGT	CTCAAGAACT
1551	AGTGGTGGCC	TAACTACGGC	TACACTAGAA	GAACAGTATT	TGGTATCTGC
	TCACCACCGG	ATTGATGCCG	ATGTGATCTT	CTTGTCATAA	ACCATAGACG
1601	GCTCTGCTGT	AGCCAGTTAC	CTTCGGAAAA	AGAGTTGGTA	GCTCTTGATC
	CGAGACGACA	TCGGTCAATG	GAAGCCTTTT	TCTCAACCAT	CGAGAACTAG
1651	CGGCAAACAA GCCGTTTGTT	ACCACCGCTG TGGTGGCGAC	GTAGCGGTGG CATCGCCACC	TTTTTTGTT AAAAAACAA	TGCAAGCAGC
1701	AGATTACGCG TCTAATGCGC	CAGAAAAAAA	GGATCTCAAG CCTAGAGTTC	AAGATCCTTT TTCTAGGAAA	GATCTTTTCT CTAGAAAGA

Figure 35: functional map and sequence of modular vector pCAL4 (continued)

1751	ACGGGGTCTG	ACGCTCAGTG	GAACGAAAAC	TCACGTTAAG	GGATTTTGGT
	TGCCCCAGAC	TGCGAGTCAC	CTTGCTTTTG	AGTGCAATTC	CCTAAAACCA
1801	Bglii ~~~~~ CAGATCTAGC GTCTAGATCG	ACCAGGCGTT TGGTCCGCAA	TAAGGGCACC	AATAACTGCC TTATTGACGG	TTAAAAAAAT AATTTTTTA
1851	TACGCCCCGC	CCTGCCACTC GGACGGTGAG	ATCGCAGTAC TAGCGTCATG	ТСТТСТААТТ АСААСАТТАА	CATTAAGCAT GTAATTCGTA
1901	TCTGCCGACA	TGGAAGCCAT	CACAAACGGC	ATGATGAACC	TGAATCGCCA
	AGACGGCTGT	ACCTTCGGTA	GTGTTTGCCG	TACTACTTGG	ACTTAGCGGT
1951	GCGGCATCAG	CACCTTGTCG	CCTTGCGTAT	AATATTTGCC	CATAGTGAAA
	CGCCGTAGTC	GTGGAACAGC	GGAACGCATA	TTATAAACGG	GTATCACTTT
2001	ACGGGGGCGA	AGAAGTTGTC	CATATTGGCT	ACGTTTAAAT	CAAAACTGGT
	TGCCCCCGCT	TCTTCAACAG	GTATAACCGA	TGCAAATTTA	GTTTTGACCA
2051	GAAACTCACC	CAGGGATTGG	CTGAGACGAA	AAACATATTC	TCAATAAACC
	CTTTGAGTGG	GTCCCTAACC	GACTCTGCTT	TTTGTATAAG	AGTTATTTGG

Figure 35: f 2101	Figure 35: functional map and sequent 2101 CTTTAGGGAA GAAATCCCTT	ce of modular vector pCAL4 (continued) ATAGGCCAGG TTTTTCZ TATCCGGTCC AAAAG	f (continued) TTTTCACCGT AAAAGTGGCA	AACACGCCAC TTGTGCGGTG	ATCTTGCGAA TAGAACGCTT
2151	TATATGTGTA	GAAACTGCCG CTTTGACGGC	GAAATCGTCG CTTTAGCAGC	TGGTATTCAC ACCATAAGTG	TCCAGAGCGA AGGTCTCGCT
2201	TGAAAACGTT	TCAGTTTGCT	CATGGAAAAC	GGTGTAACAA	GGGTGAACAC
	ACTTTTGCAA	AGTCAAACGA	GTACCTTTTG	CCACATTGTT	CCCACTTGTG
2251	TATCCCATAT ATAGGGTATA	CACCAGCTCA	CCGTCTTTCA GGCAGAAAGT	TTGCCATACG AACGGTATGC	GAACTCCGGG CTTGAGGCCC
2301	TGAGCATTCA ACTCGTAAGT	TCAGGCGGGC	AAGAATGTGA TTCTTACACT	ATAAAGGCCG TATTTCCGGC	GATAAAACTT CTATTTTGAA
2351	GTGCTTATTT	TTCTTTACGG	ТСТТТААААА	GGCCGTAATA	TCCAGCTGAA
	CACGAATAAA	AAGAAATGCC	АGAAATTTTT	CCGGCATTAT	AGGTCGACTT
2401	CGGTCTGGTT	ATAGGTACAT	TGAGCAACTG	ACTGAAATGC	CTCAAAATGT
	GCCAGACCAA	TATCCATGTA	ACTCGTTGAC	TGACTTTACG	GAGTTTTACA
2451	TCTTTACGAT	GCCATTGGGA	TATATCAACG	GTGGTATATC	CAGTGATTTT
	AGAAATGCTA	CGGTAACCCT	ATATAGTTGC	CACCATATAG	GTCACTAAAA

	Figure 35: fi 2501	Figure 35: functional map and sequence of modular vector pCAL4 (continued) 2501 TTTCTCATT TTAGCTTCCT TAGCTC	ce of modular vector pCAL TTAGCTTCCT	.4 (continued) TAGCTCCTGA	AAATCTCGAT	AACTCAAAAA
		AAAGAGGTAA	AATCGAAGGA	ATCGAGGACT	TTTAGAGCTA	TIGAGITITI
	2551	ATACGCCCGG	TAGTGATCTT ATCACTAGAA	ATTTCATTAT TAAAGTAATA	GGTGAAAGTT CCACTTTCAA	GGAACCTCAC CCTTGGAGTG
		Aatii				
	2601	CCGACGTCTA	ATGTGAGTTA	GCTCACTCAT	TAGGCACCCC	AGGCTTTACA
CHIDO		GGCTGCAGAT	TACACTCAAT	CGAGTGAGTA	ATCCGTGGGG	TCCGAAATGT
יו ודוד:	2651	CTTTATGCTT	CCGGCTCGTA	TGTTGTGG	AATTGTGAGC	GGATAACAAT
ב פטב		GAAATACGAA	GGCCGAGCAT	ACAACACACC	TTAACACTCG	CCTATTGTTA
ויופי דם					XbaI	I Sphi
E 36)	2701	TTCACACAGG AAGTGTGTCC	AAACAGCTAT TTTGTCGATA	GACCATGATT CTGGTACTAA	ACGAATTTCT TGCTTAAAGA	TCT AGAGCATGCG AGA TCTCGTACGC
		EcoRI		•		

SUBSTITUTE SHEET (RULE 26) 116 / 204

WO 97/08320 PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Σ

AatII

111111

GGCTTTACAC CCGAAATGTG AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA TGTGAGTTAG ACACTCAATC CTGCAGAATT GACGTCTTAA

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA AAATACGAAG TTTATGCTTC 51

XmnI

XbaI

1111111

CATATTACAT GTATAATGTA GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

SphI

ACG AGTTATCGCA TCAATAGCGT CGCTATACGA GCGATATGCT

51

SUBSTITUTE SHEET (RULE 26) 117 / 204

101

AatII

11111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

.. .. Σ BglII

ACTGCAG TGACGTC ATGCTTCAAT TACGAAGTTA ATGTATGCTA TACATACGAT ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

SUBSTITUTE SHEET (RULE 26)

CTCTCGACGG

TATATCAACC ATATAGTTGG

GGGCTATACT

CACCTATTCC GTGGATAAGG

TACGGTGATA

301

CCCGATATGA

TGGAGGACTC

CGCCATGATT

AGACTCCCAC

CCCACCGCCA

CGCCAAGACT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-I (long):

ECORI

	11111		-		
, -	GAATTCGGTG	GTGGTGGATC	TGCGTGCGCT	GAAACGGTTG	AAAGTTGTTT
	CTTAAGCCAC	CACCACCTAG	ACGCACGCGA	CTTTGCCAAC	TTTCAACAAA
51	AGCAAAATCC	CATACAGAAA	ATTCATTTAC	TAACGTCTGG	AAAGACGACA
	TCGTTTTAGG	GTATGTCTTT	TAAGTAAATG	ATTGCAGACC	TTTCTGCTGT
 101	AAACTTTAGA	TCGTTACGCT	AACTATGAGG	GCTGTCTGTG	GAATGCTACA
	TTTGAAATCT	AGCAATGCGA	TIGATACICC	CGACAGACAC	CTTACGATGT
151	GGCGTTGTAG	TTTGTACTGG	TGACGAAACT	CAGTGTTACG	GTACATGGGT
	CCGCAACATC	AAACATGACC	ACTGCTTTGA	GTCACAATGC	CATGTACCCA
201	TCCTATTGGG	CTTGCTATCC	CTGAAAATGA	GGGTGGTGGC	TCTGAGGGTG
	AGGATAACCC	GAACGATAGG	GACTTTTACT	CCCACCACCG	AGACTCCCAC
251	GCGGTTCTGA	GGGTGGCGGT		TCTGAGGGTG GCGGTACTAA ACCTCCTGAG	ACCTCCTGAG

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

))) ; ; ; ;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
401	TTGAGGAGTC	TCAGCCTCTT	AATACTTTCA	TGTTTCAGAA	TAATAGGTTC
	AACTCCTCAG	AGTCGGAGAA	TTATGAAAGT	ACAAAGTCTT	ATTATCCAAG
451	CGAAATAGGC	AGGGGGCATT	AACTGTTTAT	ACGGGCACTG	TTACTCAAGG
	GCTTTATCCG	TCCCCCGTAA	TTGACAAATA	TGCCCGTGAC	AATGAGTTCC
501	CACTGACCCC	GTTAAAACTT	ATTACCAGTA	CACTCCTGTA	TCATCAAAAG
	GTGACTGGGG	CAATTTTGAA	TAATGGTCAT	GTGAGGACAT	AGTAGTTTTC
551	CCATGTATGA GGTACATACT	CGCTTACTGG GCGAATGACC	AACGGTAAAT TTGCCATTTA	TCAGAGACTG	CGCTTTCCAT GCGAAAGGTA
601	TCTGGCTTTA	ATGAGGATTT	ATTTGTTTGT	GAATATCAAG	GCCAATCGTC
	AGACCGAAAT	TACTCCTAAA	TAAACAAACA	CTTATAGTTC	CGGTTAGCAG
651	TGACCTGCCT ACTGGACGGA	CAACCTCCTG GTTGGAGGAC	TCAATGCTGG AGTTACGACC	CGGCGGCTCT	GGTGGTGGTT CCACCACCAA
701	CTGGTGGCGG	CTCTGAGGGT	GGTGGCTCTG	AGGGTGGCGG	TTCTGAGGGT
	GACCACCGCC	GAGACTCCCA	CCACCGAGAC	TCCCACCGCC	AAGACTCCCA

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GCCCTTTTGT CGGGAAAACA	GTTGAATGTC CAACTTACAG	CCCTCAATCG	TACCTTCCAT ATGGAAGGTA	CGTCAATATT GCAGTTATAA	1051
XmnI GAATAATTTC CTTATTAAAG	CACCTTTAAT GTGGAAATTA	GGTGATAATT CCACTATTAA	AGTCGGTGAA TCAGCCACTT	AAATGGCTCA TTTACCGAGT	1001
TCTAATTCCC AGATTAAGGG	TTTTGCTGGC	CTACTGGTGA GATGACCACT	GGTAATGGTG CCATTACCAC	CCTTGCTAAT GGAACGATTA	951
ACGTTTCCGG TGCAAAGGCC	TTCATTGGTG AAGTAACCAC	TATCGATGGT ATAGCTACCA	ACGGTGCTGC TGCCACGACG	GCTACTGATT CGATGACTAA	901
TGATTCTGTC ACTAAGACAG	AAGGCAAACT TTCCGTTTGA	TCTGACGCTA AGACTGCGAT	CGCGCTACAG GCGCGATGTC	CCGATGAAAA GGCTACTTTT	851
ACCGAAAATG TGGCTTTTAC	GGGGGCTATG	ACGCTAATAA TGCGATTATT	AAGATGGCAA TTCTACCGTT	TGATTATGAA ACTAATACTT	801
CCGGTGATTT GGCCACTAAA	GGCTCTGGTT CCGAGACCAA	TTCCGGTGGT	AGGGAGGCGG TCCCTCCGCC	GGCGGCTCTG CCGCCGAGAC	751

HindIII

ctors (continued)
'L ve
d pCA
ules and
or mode
. vecto
pCAL
additional
0
naps and sequences o
Functional n
e 35a: I
Figur

	CTGTTTTATT CACCTTTATG GTGGAAATAC	ATAACTAACA TATATGTTGC ATATACAACG	CCATTTGGGA TACTTAAAAG TGGTGTCTTT GCGTTTCTTT ACCACAGAAA CGCAAAGAAA	CCATTTGGGA TGGTGTCTTT ACCACAGAAA	GAAACCGCGA ACTTATTCCG TGAATAAGGC	1151
•	GACAAAATAA CTGTTTTATT	TATTGATTGT GACAAAATAA ATAACTAACA CTGTTTTATT	GGTAAACCCT ATGAATTTTC CCATTTGGGA TACTTAAAAG	GGTAAACCCT CCATTTGGGA	CTTTGGCGCT GAAACCGCGA	1101

AGTCTTGATA TCAGAACTAT CGTAATAAGG GCATTATTCC TAACATACTG ATTGTATGAC CTACGTTTGC TATGTATTTT 1201

AGCTT HindI 1111 1251

TCGAA

SUBSTITUTE SHEET (RULE 26)

124 / 204

TAATTTCCGT

CTTTAATGAA GAAATTACTT

GATAATTCAC CTATTAAGTG

CGGTGACGGT

TGGCTCAAGT

251

GCCACTGCCA

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 7-II (SS-TAG):

ECORI	

GA	့	CT	CT	AAA
GTGATTTTGA	GAAAATGCCG	TTCTGTCGCT	TTTCCGGCCT	AATTCCCAAA
CAC'TAAAACT	CTTTTACGGC	AAGACAGCGA	AAAGGCCGGA	TTAAGGGTTT
GTG	GAA	TTC	TTT AAA	AAT TTA
TCTGGTTCCG	GGCTATGACC	GCAAACTTGA	ATTGGTGACG	TGCTGGCTCT
	CCGATACTGG	CGTTTGAACT	TAACCACTGC	ACGACCGAGA
CGGTGGTGGC	CTAATAAGGG	GACGCTAAAG	CGATGGTTTC	CTGGTGATTT
GCCACCACCG	GATTATTCCC	CTGCGATTTC	GCTACCAAAG	GACCACTAAA
GAGGCGGTTC	ATGGCAAACG	GCTACAGTCT	GTGCTGCTAT	AATGGTGCTA
CTCCGCCAAG	TACCGTTTGC	CGATGTCAGA		TTACCACGAT
CGGGAATTCG	TTATGAAAAG	ATGAAAACGC	ACTGATTACG	TGCTAATGGT
GCCCTTAAGC	AATACTTŤTC	TACTTTTGCG	TGACTAATGC	ACGATTACCA
Н	51	101	151	201
		NUDOTITUTE	: eusst /21!	E 281

	CTTLL	
ntinueo)	GAATGTCGCC	
	igure 35a: Functional maps and sequences of comments of the property of the comment of the comme	THE PROPERTY OF THE PROPERTY O

CTTTTGTCTT	GAAAACAGAA	AAAATAAACT TTTTATTTGA	CTTTATGTAT	GARAIRCRIR
GAATGTCGCC	CTTACAGCGG	TGATTGTGAC ACTAACACTG	ATGTTGCCAC	AAAGAAATA TACAACGGTG
TCAATCGGTT	AGTTAGCCAA	AATTTTCTAT TGATTGTGAC TTAAAAGATA ACTAACACTG	TTTCTTTTAT	AAAGAAAATA
Seditional puatr vector incoming	GAAGGGAGGG	AAACCATATG TTTGGTATAC	TGTCTTTGCG	ACAGAAACGC
35a: Functional maps and sequences of additional purkt vector incoming and sequences of additional purkt vector incoming and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional purktional maps and sequences of additional maps and additional maps addition	GTTATAAATG	TGGCGCTGGT	TATTCCGTGG	ATAAGGCACC
35a: Functional	30 T	351	401	1 > r

GAACTATTCG CTTGATAAGC TTATTCCTCA AATAAGGAGT CATACTGCGT GTATGACGCA CGTTTGCTAA GCAAACGATT GTATTTTCTA CATAAAAGAT 451

HindIII

Ηi

501

HindIII 1111

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

 ∞ Σ SphI

TAAGCTT ATTCGAA TACGAAGTTA ATGCTTCAAT TACATGCGAT ATGTACGCTA TGAAGCATAT ACTTCGTATA CGTACGGTAT GCATGCCATA

SUBSTITUTE SHEET (RULE 26) 130 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 10-II:

3srGT

AACCCTGATA	CAACATTTCC
TTGGGACTAT	GTTGTAAAGG
ATGAGACAAT	TATGAGTATT
TACTCTGTTA	ATACTCATAA
GTATCCGCTC	AAAGGAAGAG
CATAGGCGAG	TTTCCTTCTC
ATTCAAATAT	TAATATTGAA
TAAGTTTATA	ATTATAACTT
GGGGGTGTAC	AATGCTTCAA TTACGAAGTT
H	51

9944419119	TATTCCCTTT TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT ATAAGGGAAA AAACGCCGTA AAACGGAAGG ACAAAAACGA	
ALIANOLI IIICCIICA AIACICAIAA GIIGIAAAGG	TTTGCCTTCC AAACGGAAGG	
	TTTGCGGCAT AAACGCCGTA	
TIQUUTUTU	TATTCCCTTT ATAAGGGAAA	
TERRORETT	GTGTCGCCCT CACAGCGGGA	
	101	

AGTTGGGTGC	A CGACTCCTAG TCAACCCACG
CGCTGGTGAA AGTAAAAGAT GCTGAGGATC	CGACTCCTAG
AGTAAAAGAT	TCATTTTCTA
CGCTGGTGAA	GCGACCACTT
GAAA	GTGGGTCTTT
151	
HEET	(RUL

G ATCCTTGAGA	TAGGAACTCT
GGTAA	TGTAGCTTG ACCTAGAGTT GTCGCCATTC TAGGAACTCT
C TGGATCTCAA CAGC	ACCTAGAGTT
TACATCGAAC	ATGTAGCTTG
GCGAGTGGGT	CGCTCACCCA
201	

KmnI

TAAAGTTCTG	ATTT
TGAGCACTTT	A A A C L C L C A A A A
TTTCCAATGA	AAAGGTTACT A
CGAAGAACGT	GCTTCTTGCA
Ŋ	CAAAAGCGGG
251	

SUBSTITUTE SHEET (RULE 26)

131 / 204

litional pCAL vector modules and pCAL vectors (continued)	
. vectors	1
d pCA	
odules and pC	
. vector m	
al pCAI	
additions	
: Functional maps and sequences of additional pCAL	
al maps and	
5a: Function	
Figure 35	

GCCGGGCAAG CGGCCCGTTC	GGTTGAGTAC CCAACTCATG	TAAGAGAATT ATTCTCTTAA	AACTTACTTC TTGAATGAAG	GCACAACATG CGTGTTGTAC	TGAATGAAGC ACTTACTTCG	ATGGCAACAA TACCGTTGTT	TTCCCGGCAA
CCGTATTGAC G GGCATAACTG C	AGAATGACTT G TCTTACTGAA C	GGCATGACAG T CCGTACTGTC A	CACTGCGGCC A GTGACGCCGG T	CCGCTTTTTT G GGCGAAAAAA C	GAACCGGAGC T CTTGGCCTCG A	GCCTGTAGCA A CGGACATCGT T	TTACTCTAGC T
CGGTATTATC C GCCATAATAG G	CACTATTCTC A GTGATAAGAG I	TCTTACGGAT G AGAATGCCTA C	TGAGTGATAA C ACTCACTATT G	AAGGAGCTAA C	TGATCGTTGG GACTAGG C	ACACCACGAT G TGTGGTGCTA C	GGCGAACTAC 1
CTATGTGGCG C	TCGCCGCATA CAGCGCGTAT	CAGAAAAGCA 7 GTCTTTTCGT 7	GCCATAACCA CGGTATIGGT	CGGAGGACCG 1 GCCTCCTGGC	TAACTCGCCT RATTGAGCGGA	GACGAGCGTG Z	ACTATTAACT (
301	351	401	451	501	551	601	651

132 / 204

WO 97/08320 PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

701	ACTGGATGGA TGACCTACCT	GGCGGATAAA CCGCCTATTT	GTTGCAGGAC CAACGTCCTG	CACTTCTGCG GTGAAGACGC	CTCGGCCCTT
751	CCGGCTGGCT	GGTTTATTGC CCAAATAACG	TGATAAATCT ACTATTTAGA	GGAGCCGGTG CCTCGGCCAC	AGCGTGGGTC TCGCACCCAG
801	TCGCGGTATC AGCGCCATAG	ATTGCAGCAC TAACGTCGTG	TGGGGCCAGA	TGGTAAGCCC ACCATTCGGG	TCCCGTATCG AGGGCATAGC
851	TAGTTATCTA	CACGACGGGG	AGTCAGGCAA	CTATGGATGA	ACGAAATAGA
	ATCAATAGAT	GTGCTGCCCC	TCAGTCCGTT	GATACCTACT	TGCTTTATCT
901	CAGATCGCTG	AGATAGGTGC	CTCACTGATT	AAGCATTGGG	TAACTGTCAG
	GTCTAGCGAC	TCTATCCACG	GAGTGACTAA	TTCGTAACCC	ATTGACAGTC
951	ACCAAGTTTA	CTCATATATA	CTTTAGATTG	ATTTAAAACT	TCATTTTAA
	TGGTTCAAAT	GAGTATATAT	GAAATCTAAC	TAAATTTTGA	AGTAAAAATT
1001	TTTAAAAGGA	TCTAGGTGAA	GATCCTTTTT	GATAATCTCA	TGACCAAAAT
	AAATTTTCCT	AGATCCACTT	CTAGGAAAAA	CTATTAGAGT	ACTGGTTTTA
1051	CCCTTAACGT GGGAATTGCA	GAGTTTTCGT CTCAAAAGCA	TCCACTGAGC	GTCAGACCCC CAGTCTGGGG	GTAGAAAAGA CATCTTTTCT

FseI

ctors (continued)
nd pCAL ve
2AL vector modules and pCAL vector
pCAL vecto
additional
ictional maps and sequences of additional po
al maps and
a: Function
Figure 35a: Func

1101	TCAAAGGATC AGTTTCCTAG	TTCTTGAGAT AAGAACTCTA	CCTTTTTGAT AATGGCCGGC GGAAAAACTA TTACCGGCCG	AATGGCCGGC TTACCGGCCG	0000 0000 0000
	PacI			·	
	1 1 1 1 1 1		-		,
1151	AATTAAGGGG	999			

SUBSTITUTE SHEET (RULE 26) 135 / 204

WO 97/08320 PCT/EP96/03647

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M11-II:

CTCGACCCCA AAAAACTTGA TTAGGGTGAT GGTTCTCGTA GAGCTGGGGT TTTTTGAACT AATCCCACTA CCAAGAGCAT	TGTGGTGGTT ACACCACCAA CCGCTCCTTT GGCGAGGAAA CCCCGTCAAG GGGGCAGTTC AAATGCCGTG GTGGGCCATC	GCGCGGCGGG CGCGCCGCCC GCCCTAGCGC CGGGATCGCG CGCCGGCTTT GCGGCCGAAA GCGGCCGAAA GCGGCCGAAA	GGCGCATTAA CCGCGTAATT ACTTGCCAGC TGAACGGTCG TCGCCACGTT AGCGGTGCAA TTAGGGTGAT AATCCCAAGG	GCCCTGTAGC CGGGACATCG TGACCGCTAC ACTGGCGATG CCTTCCTTTC GGAAGGAAAG GGGGCTCCCT CCCCGAGGGA	Nhel GCTAGCACGC GGATCGTGCG ACGCGCAGCG TGCGCGTCGC CGCTTTCTTC GCGAAAATCG GAGATTTAGC CTCGACCCCA GAGCTGGGGT	1 101 151 201
	ACGTTCTTTA	GTTGGAGTCC	GCCCTTTGAC	ACGGTTTTTC	GCCCTGATAG	251
	TTTACGGCAC	GATTTAGTGC CTAAATCACG	TTAGGGTTCC AATCCCAAGG	BanII ~~~~~~ GGGGCTCCCT CCCCGAGGGA	CTCTAAATCG GAGATTTAGC	-
BanII CTCTAAATCG GGGGCTCCCT TTAGGGTTCC GATTTAGTGC GAGATTTAGC CCCCGAGGGA AATCCCAAGG CTAAATCACG	CCCCGTCAAG GGGGCAGTTC	CGCCGGCTTT GCGGCCGAAA	TCGCCACGTT AGCGGTGCAA	CCTTCCTTTC GGAAGGAAAG	CGCTTTCTTC GCGAAAGAAG	7
CGCTTTCTTC CCTTCCTTTC TCGCCACGTT CGCCGGCTTT GCGAAGGAAG AGCGGTGCAA GCGGCCGAAA Banii CTCTAAATCG GGGCTCCCT TTAGGGTTCC GATTTAGTGC GAGATTTAGC CCCCGAGGGA AATCCCAAGG CTAAATCACG	CCGCTCCTTT GGCGAGGAAA	GCCCTAGCGC	ACTTGCCAGC TGAACGGTCG	TGACCGCTAC ACTGGCGATG	ACGCGCAGCG TGCGCGTCGC	
ACGCGCAGCG TGACCGCTAC ACTTGCCAGC GCCCTAGCGC TGCGCGTCG ACTGGCGATG TGAACGGTCG CGGGATCGCG CGCTTTCTTC CCTTCCTTTC TCGCCACGTT CGCCGGCTTT GCGAAAGAAG GGAAGGAAAG AGCGGTGCAA GCGGCCGAAA Banii CTCTAAATCG GGGGCTCCCT TTAGGGTTCC GATTTAGTGC GAGATTTAGC CCCCGAGGGA AATCCCAAGG CTAAATCACG	TGTGGTGGTT	ວວວອວວອວອວ	GGCGCATTAA CCGCGTAATT	GCCCTGTAGC	Nhei CCTAGCACGC CGATCGTGCG	 i

SUBSTITUTE SHEET (RULE 26)

L vectors (continued)	
S	
d D	
tor modules and	
Ş	
pCAL V	
s of additional	
and sequence	
il maps an	
Functions	
ure 35a:	
Ę	

301	ATAGTGGACT TATCACCTGA	CTTGTTCCAA GAACAAGGTT	CTTGTTCCAA ACTGGAACAA CACTCAACCC GAACAAGGTT TGACCTTGTT GTGAGTTGGG		TATCTCGGTC ATAGAGCCAG
351	TATTCTTTTG	ATTTATAAGG	ATTTATAAGG GATTTTGCCG	ATTTCGGCCT ATTGGTTAAA	ATTGGTTAAA
	ATAAGAAAAC	TAAATATTCC	TAAATATTCC CTAAAACGGC	TAAAGCCGGA TAACCAATTT	TAACCAATTT
401	AAATGAGCTG	ATTTAACAAA	ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA	GAATTTTAAC AAAATATTAA	AAAATATTAA
	TTTACTCGAC	TAAATTGTTT	TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT	CTTAAAATTG TTTTATAATT	TTTTATAATT

BsrGI

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451

SUBSTITUTE SHEET (RULE 26)

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CTTGGAGCGA

AGCGGTCGGA CTGAACGGGG GGTTCGTGCA TACAGTCCAG TCGCCAGCCT GACTTGCCCC CCAAGCACGT ATGTCAGGTC

301

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 12:

BglII

GATAAGGCGC CTATTCCGCG	ACTCAAGACG ATAGTTACCG TGAGTTCTGC TATCAATGGC		TCCGGGTTGG	TGCATGTCTT ACGTACAGAA	251
GTGGTGCTTT	GCTGCTGCCA	ATTACCAGTG	CTCTAAATCA	AGACTAACTC	201
CACCACGAAA	CGACGACGGT	TAATGGTCAC	GAGATTTAGT	TCTGATTGAG	
CATGACTTCA	TTAACCGGCG	CAGTTTAGCC	CTTGTCCTTT	GTCACTAAAA	151
GTACTGAAGT	AATTGGCCGC	GTCAAATCGG	GAACAGGAAA	CAGTGATTTT	
GAGGAGCGCA	AACTGGCTTG	GAACCGAGGT	CCAACTCTTT	CTCTGAGCTA	101
CTCCTCGCGT	TTGACCGAAC	CTTGGCTCCA	GGTTGAGAAA	GAGACTCGAT	
TTCGTAGGTT AAGCATCCAA	AGGGCGGTTT TCCCGCCAAA	ACCGCCTTGC TGGCGGAACG	AAACGAAAAA TTTGCTTTTT	CTTGCTCTGA	51
CGCGTAATCT	TTTTGGTCTG	CTTGAGATCG	AGATGATCTT	AGATCTAATA	₽
GCGCATTAGA	AAAACCAGAC	GAACTCTAGC	TCTACTAGAA	TCTAGATTAT	

SUBSTITUTE SHEET (RULE 26)

PCT/EP96/03647

WO 97/08320

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

TTTGCGCCGG AAACGCGGCC GGAATGAGAC CCTTACTCTG ACAGTCCGCA TGTCAGGCGT GCCTTGACTC CGGAACTGAG TGACGGATGG ACTGCCTACC 351

AgeI

TCCTCTCGCG CAGGACAGCC AGGAGAGCGC GTCCTGTCGG TTGTCAGGGG AACAGTCCCC AAGCACTACG TCCGTCCTTG TATCTTTATA AGGCAGGAAC ATAGAAATAT TTCGTGATGC TCGCAGTCTA CATTTGGCTT TTTGCGGACC AGCGTCAGAT GTAAACCGAA AAACGCCTGG TTACTGTGGC AATGACACCG GCGGTCCCC GTGACTAAAC CGCCAGGGGG CACTGATTTG CAAAGCGGTG TATTGTCGCC TCCTCCCTCG GTTTCGCCAC ATAACAGCGG AGGAGGAGC 401 51 501 4

ACTTCCCTGT TGAAGGGACA GCCGGGAGAG CGGCCCTCTC CCGAAACGGC GGCTTTGCCG TACCTTTTTG ATGGAAAAAC CCCCCTCGGA GGCGGAGCCT 551

AAGCATTCGG TTCGTAAGCC GAGGCGGGC CICCGCCCCG TCCAGGAAAT AGGTCCTTTA GGACCGTAGA CCTGGCATCT ATTCATAGAA TAAGTATCTT 601

CAGTGAGCGA GTCACTCGCT CGTAGCGAGT GCATCGCTCA AACGACCGAG TTGCTGGCTC GCCGCAGTCG CGGCGTCAGC TAAAGGCGAG ATTTCCGCTC 651

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

Agel	ACCGGTGCAG TGGCCACGTC		TCATCAGTGC AGTAGTCACG				
	CTGCTGACGC ACCGGTGCAG GACGACTGCG TGGCCACGTC		CCTGCCACAT GAAGCACTTC ACTGACACCC TCATCAGTGC GGACGGTGTA CTTCGTGAAG TGACTGTGGG AGTAGTCACG		?,	25	CG
	TATATCCTGT ATCACATATT CTGCTGACGC ATATAGGACA TAGTGTATAA GACGACTGCG	XmnI	GAAGCACTTC CTTCGTGAAG	NheI	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	AGCCAGTATA CACTCCGCTA GC	TCGGTCATAT GTGAGGCGAT CG
	TATATCCTGT ATATAGGACA		CCTGCCACAT			AGCCAGTATA	TCGGTCATAT
•	GGAAGCGGAA CCTTCGCCTT		CCTTTTTTCT GGAAAAAAGA			CAACATAGTA	GTTGTATCAT
	701		751			801	•

SUBSTITUTE SHEET (RULE 26)

BgliI

XmnI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

13: Σ BglII

11111

AAGTCTAGA TTCAGATCT ATGCTTCAAT TACGAAGTTA TACATACGAT ATGTATGCTA ACTTCGTATA TGAAGCATAT AGATCTCATA TCTAGAGTAT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 19:

SphI

XbaI

A CTATTGCACT F GATAACGTGA	ECORI ~~~~~ C GAATTC S CTTAAG
AAACAAAGCA TTTGTTTCGT	ECORI TACCAAAGCC GAATTC ATGGTTTCGG CTTAAG
GCGTAGGAGA AAATAAAATG AAACAAAGCA CGCATCCTCT TTTATTTTAC TTTGTTTCGT	TCACCCCTGT AGTGGGGACA
GCGTAGGAGA CGCATCCTCT	Sapi ~~~~~~~ CCGTTGCTCT TC GGCAACGAGA AG
TCTAGAGCAT AGATCTCGTA	GGCACTCTTA CCGTGAGAAT
Н	51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

20: Σ SphI XbaI

GATAACGTGA CTATTGCACT AAACAAAGCA TTTGTTTCGT AAATAAAATG TTTATTTAC GCGTAGGAGA CGCATCCTCT TCTAGAGCAT AGATCTCGTA

Sapi

GACTACAAAG CTGATGTTTC TACCAAAGCC ATGGTTTCGG AGTGGGGACA TCACCCCTGT CCGTTGCTCT. GGCAACGAGA GGCACTCTTA CCGTGAGAAT

ECORI MunI

ATGAAGTGCA ATTGGAATTC TAACCTTAAG TACTTCACGT 101

SUBSTITUTE SHEET (RULE 26)

147 / 204

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

21 Σ XbaI

122222

AAGAAGAACG TTCTTGC TTATAGCGTA AATATCGCAT TATGAAAAAG ATACTTTTC CTCCACTAAA GAGGTGATTT AGATCTCCAA TCTAGAGGTT

ECORI

NsiI

11111

GAATTC TGCATACGCT TTGCTACAAA

CTTAAG ACGTATGCGA AACGATGTTT CAAAAAAGAT GTTTTTTTA ATCTATGTTC TAGATACAAG

SUBSTITUTE SHEET (RULE 26)

51

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

CCGGGACGTG

ATCAACTGGG TAGTTGACCC

TCTCGCGCCG

GGCGATTAAA

AAATTGTCGC TTTAACAGCG

CCCCCTCCC

301

CGCGGCAGCG

GGCCCTGCAC

CCTCCAGTCT

GGCGTTGCCA

GTTGCTGATT CAACGACTAA

GCAAACAGIC

251

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

M 41:

NheI

SCAA AACCTTTCGC GGTATGGCAT GATAGCGCCC	AGGG TGGTGAATGT GAAACCAGTA ACGTTATACG TCCC ACCACTTACA CTTTGGTCAT TGCAATATGC	CGGT GTCTCTTATC AGACCGTTTC CCGCGTGGTG	TTTC TGCGAAAACG CGGGAAAAAG TGGAAGCGGC AAAG ACGCTTTTGC GCCCTTTTTC ACCTTCGCCG	TACA TTCCTAACCG CGTGGCACAA CAACTGGCGG ATGT AAGGATTGGC GCACCGTGTT GTTGACCGCC
AATGGCGCAA TTACCGCGTT	CAATTCAGGG GTTAAGTCCC	GTATGCCGGT CATACGGCCA	GCCACGTTTC CGGTGCAAAG	CTGAATTACA GACTTAATGT
GCTAGCATCG Z	GGAAGAGAGT CCTTCTCTCA	ATGTCGCAGA TACAGCGTCT	AACCAGGCCA	GATGGCGGAG CTACCGCCTC
Н	51	101	151	201

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GAAGCCTGTA CTTCGGACAT	GCTGATTATT CGACTAATAA	CTGCCTGCAC GACGGACGTG	CCCATCAACA GGGTAGTTGT	GGAGCATCTG CCTCGTAGAC	CATTAAGTTC GTAATTCAAG	CTCACTCGCA GAGTGAGCGT	TGCCATGTCC ACGGTACAGG
AAGCGGCGTC GAA TTCGCCGCAG CTJ	GTGTCAGTGG GCI CACAGTCACC CGA	GCTGTGGAAG CTC CGACACCTTC GAC	TGACCAGACA CCO	GACTGGGCGT GGZ CTGACCCGCA CCT	TTAGCTGGCC CATA	GCATAAATAT CT(CGTATTTATA GA(GCGACTGGAG TGO
TGGTAGAACG AA ACCATCTTGC TT	CTCGCGCAAC GT GAGCGCGTTG CA	GGATGCTATT GC CCTACGATAA CG	TTGATGTCTC TG AACTACAGAG AC	GACGGTACGC GA CTGCCATGCG CT	AATCGCGCTG TT TTAGCGCGAC AA	TGGCTGGCTG GC ACCGACCGAC CG	GAACGGGAAG GC CTTGCCCTTC CG
GTCGTGTCGA T	GCACAATCTT C CGTGTTAGAA	TGGATGACCA G ACCTACTGGT	GCGTTATTTC 1 CGCAATAAAG 1	CTCCCATGAG (GAGGGTACTC)	GCCACCAGCA 1	CGTCTGCGTC 1	GCCGATAGCG (
TGCCAGCGTG	AAGCGGCGGT TTCGCCGCCA	AACTATCCGC TTGATAGGCG	TAATGTTCCG	GTATTATTT CATAATAAAA	GTCGCATTGG CAGCGTAACC	TGTCTCGGCG	ATCAAATTCA TAGTTTAAGT
351	401	451	501	E SHEET (F	601	651	701

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

751	GGTTTTCAAC CCAAAAGTTG	AAACCATGCA TTTGGTACGT	AATGČTGAAT TTACGACTTA AGATGGCGCT	GAGGGCATCG CTCCCGTAGC GGGCGCAATG	TTCCCACTGC AAGGGTGACG CGTGCCATTA
S C C	CTACGACCAA	GCTGCGCGTT	TCTACCGCGA	CCCGCGTTAC	GCACGGTAAT
5 6 6	GGCTCAGGCC	CGACGCGCAA	CCACGCCTGT	AGAGCCATCA	CCCTATGCTG
ບ	CTATGGCTCC	TGTCGAGTAC	AATATAGGGC	GGCGACTGGT	GGTAGTTTGT
υ υ	CCTAAAAGCG CTCAGGGCCA	GACGACCCCG	TTTGGTCGCA	CCTGGCGAAC	GACGTTGAGA
B A	GAGTCCCGGT	CCGCCACTTC	CCGTTAGTCG	ACAACGGGCA	GAGTGACCAC
Ė	TTTTCTTTT	GGTGGGACCG	AGGGTTATGC	GTTTGGCGGA	GAGGGGCGCG
ש פ	CAACCGGCTA	AGTGACTACG	TCGACCGTGC	TGTCCAAAGG	GCTGACCTTT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

GGAGGCCGTT CCTCCGGCAA CTTCCTGACA GAAGGACTGT ATAAAAGCGG TATTTCGCC TCCGATGGGC AGGCTACCCG GCGGCCAGTG 1151

Aflii

GCCCACTTAA TTGTTTTGCA 1201

AACAAAACGT

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 26) 155 / 204

nees of additional oCAL vector modules and oCAL vectors (continued)

·	ААААААТТА ТТТТТТААТ	TTAAGCATTC AATTCGTAAG
	CAGGCGTTTA AGGGCACCAA TAACTGCCTT AAAAAATTA GTCCGCAAAT TCCCGTGGTT ATTGACGGAA TTTTTTAAT	CGCCCCGCCC TGCCACTCAT CGCAGTACTG TTGTAATTCA TTAAGCATTC GCGGGGGGG ACGGTGAGTA GCGTCATGAC AACATTAAGT AATTCGTAAG
	AGGGCACCAA TCCCGTGGTT	CGCAGTACTG GCGTCATGAC
יחכבי סו מחמונוסוומו הכארי	CAGGCGTTTA GTCCGCAAAT	TGCCACTCAT ACGGTGAGTA
Figure 35a: Functional maps and sequences of additional peak vector incounts and peak vectors vectors and peak BCALO-1: BglIII	GATCTAGCAC CTAGATCGTG	5550555555
Figure 35a: Function pCALO-1: Bg1	н	51

GAAGCCATCA CAAACGGCAT GATGAACCTG AATCGCCAGC	CTTCGGTAGT GTTTGCCGTA CTACTTGGAC TTAGCGGTCG
GATGAACCTG	CTACTTGGAC
CAAACGGCAT	GTTTGCCGTA
GAAGCCATCA	CTTCGGTAGT
TGCCGACATG	ACGGCTGTAC
101	
SUF	RSTITILE

TAGTGAAAAC	ATCACTTTTG	
TTGCGTATAA TATTTGCCCA TAGTGAAAAC	S AACGCATATT ATAAACGGGT	,
TTGCGTATAA	AACGCATATT	
CCTTGTCGCC	GGAACAGCGG	•
GGCATCAGCA	CCGTAGTCGT	
151		
TE SH	(EET	٦(

AAGTTGTCCA TATTGGCTAC GTTTAAATCA AAACTGGTGA TTCAACAGGT ATAACCGATG CAAATTTAGT TTTGACCACT	A GGGATTGGCT GAGACGAAAA ACATATTCTC AATAAACCCT
GTTTAAATCA CAAATTTAGT	ACATATTCTC
AAGTTGTCCA TATTGGCTAC TTCAACAGGT ATAACCGATG	GAGACGAAAA
AAGTTGTCCA TTCAACAGGT	GGGATTGGCT
GGGGGCGAAG	AACTCACCCA
201	251

TIGAGIGGGI CCCIAACCGA CICIGCIIII IGIAIAAGAG IIAITIGGGA

CAT CTTGCGAATA	GAACGCTTAT
CACGCCACAT	GCATT GTGCGGTGTA GA
AGGTT TTCACCGTAA CACGCCACAT CTTGCGA	TGGC
AT AGGCCAGGTT	TCCGGTCCAA AAG
TTAGGGAAAT	AATCCCTTTA
301	

SUBSTITUT (RULE 25)

g
2
Ē
ؾ
Ors
ect
۲_
ర్ద
and
sar
품
bo
Ē
윉
Š
3
<u>p</u>
ona
di E
g
of
ຽ
ñ
g
Q Š
a
aps
E
na
ctic
Ë
a: F
35
Figure ?
Fig

AACTGCCGGA AATCGTCGTG GTATTCACTC TTGACGCCT TTAGCAGCAC CATAAGTGAG AGTTTGCTCA TGGAAAACGG TGTAACAAGG TCAAACGAGT ACCTTTTGCC ACATTGTTCC CCAGCTCACC GTCTTTCATT GCCATACGGA GGTCGAGTG CAGAAAGTAAAAAGG CCGTAATATC CTTTACGGTC TTTAAAAAAGG CCGTAATATC GAAATGCCAG AAATTTTTCC GGCATTATAG
GTATTCACTC CATAAGTGAGG ACATTGTTCC GCCATACGGA TTTCCGGCCT CCGTAATATC GGCATTATAGG
CAGAGCGATG GTCTCGCTAC GTGAACACTA TAAAACTTGT ATTTTGAACA CAGCTGACG CAGCTGAACA CAGCTGAACA CAGCTGAACA CAGCTGAACA CAGCTGAACA

	į
	1
	•
5	ļ
2	
₹	
<u>Ş</u>	
۳	
9	
ヹ	
۶	
F	
ပ္ထ	
p	
a	
S	
Š	
В	
Ξ	
ŏ	
ນ	
>	
Ξ	
g	
<u>~</u>	
5	
☱	
헐	
<u></u>	
S	
ij	
e	
윱	
Šě	
Þ	
ä	
g	
33	
=	
Ë	
≅	
2	
£	
ë	
Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)	
٩	
g	
正	

	751	ACGCCCGGTA TGCGGGCCAT	GTGATCTTAT CACTAGAATA	TTCATTATGG AAGTAATACC	TGAAAGTTGG ACTTTCAACC	AACCTCACCC TTGGAGTGGG
	801	Aatii ~~~~~ GACGTCTAAT CTGCAGATTA	GTGAGTTAGC CACTCAATCG	TCACTCATTA AGTGAGTAAT	GGCACCCCAG CCGTGGGGGTC	GCTTTACACT CGAAATGTGA
CHEC	851	TTATGCTTCC AATACGAAGG	GGCTCGTATG CCGAGCATAC	TTGTGTGGAA AACACACCTT	TTGTGAGCGG	ATAACAATTT TATTGTTAAA
:TITI !TE			•		Xbal	
CHEST (RIV	901	CACACAGGAA GTGTGTCCTT	ACAGCTATGA TGTCGATACT	CCATGATTAC	GAATTTCTAG	ACCCCCCCC
E 03)		Sphi				HindIII
	951	CGCATGCCAT	AACTTCGTAT TTGAAGCATA	AATGTACGCT TTACATGCGA	ATACGAAGTT TATGCTTCAA	ATAAGCTTGA TATTCGAACT
	1001	CCTGTGAAGT GGACACTTCA	GAAAAATGGC CTTTTTACCG	GCAGATTGTG CGTCTAACAC	CGACATTTTT GCTGTAAAAA	TTTGTCTGCC AAACAGACGG

SUBSTITUTE SHEET (RULE 23)

ខ
2
· ≒
Ξ
ဗ
<u>,</u>
ctors (
품
ē
7
₹
ర్డ
=
≧
<u>ນ</u>
3
ᆼ
Ĕ
Ξ
2
Ų
×
8
ď
=
Ë
.2
ਵ
ਰੂ
<u></u>
5
S
$\mathbf{\tilde{c}}$
F
<u>Ž</u>
Ş
~
5
ਲ
S
ē
Ξ
₹
Ë
.9
$\overline{\mathbf{c}}$
5
Ţ
.:
Š
£.)
5
Figure
Œ.

BsrGI	~~~~~	GTA.CATGAAA CATGTACTTT	TTGTTAAATC AACAATTTAG	CTTATAAATC GAATATTTAG	TGGAACAAGA ACCTTGTTCT	AAAAACCGTC TTTTTGGCAG	CAAGTTTTTT GTTCAAAAAA	BanII	GGGAGCCCCC
	?	GGGGGGGGT	CGTTAAATTT GCAATTTAAA	GGCAAAATCC CCGTTTTAGG	TGTTCCAGTT ACAAGGTCAA	TCAAAGGGCG AGTTTCCCGC	TCACCCTAAT AGTGGGATTA		GAACCCTAAA CTTGGGATTT
FseI	111111111111111111111111111111111111111	GGGCCGGCCT	TTAAAATTCG AATTTTAAGC	GGCCGAAATC CCGGCTTTAG	GGTTGAGTGT CCAACTCACA	GACTCCAACG	ACGAGAACCA TGCTCTTGGT		CACTAAATCG GTGATTTAGC
		AGGGGGGGGG TCCCCCCCCC	ТААТАТТТТБ АТТАТААААС	TTAACCAATA AATTGGTTAT	ACCGAGATAG TGGCTCTATC	AAAGAACGTG TTTCTTGCAC	ATGGCCCCACT TACCGGGTGA		TGCCGTAAAG ACGGCATTTC
PacI	22222	GTTTAATTAA CAAATTAATT	TTGTAAACGT AACATTTGCA	AGCTCATTTT TCGAGTAAAA	AAAAGAATAG TTTTCTTATC	GTCCACTATT CAGGTGATAA	TATCAGGGCG		GGGGTCGAGG CCCCAGCTCC
		1051	1101	1151	1201	1251	1301		1351
				SUBS	STITUTE SHE 159 / 2	EET (RULE 2 04	6)		

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

AAAGGAAGGG TTTCCTTCCC	TAGCGGTCAC ATCGCCAGTG	CTACAGGGCG GATGTCCCGC	GATGAGGGTG	Agel	CCGGTGCGTC	CACTGACTCG GTGACTGAGC	ACGAACGGGG
ACGTGGCGAG TGCACCGCTC	CTGGCAAGTG GACCGTTCAC	TAATGCGCCG ATTACGCGGC	TGTTGGCACT		AAAGGCTGCA TTTCCGACGT	CTTCCTCGCT	GAAATGGCTT
AAGCCGGCGA TTCGGCCGCT	CGCTAGGGCG GCGATCCCGC	CCGCCGCGCT	TGGCTTACTA		GCAGGAGAAA CGTCCTCTTT	ATATATTCCG TATATAAGGC	GCGGCGAGCG
TTGACGGGGA	AAGGAGCGGG TTCCTCGCCC	ACCACCACAC TGGTGGTGTG	GAGTGTATAC CTCACATATG	· II	GCTTCATGTG	GTGATACAGG CACTATGTCC	TCGTTCGACT
GATTTAGAGC CTAAATCTCG	AAGAAAGCGA TTCTTTCGCT	GCTGCGCGTA CGACGCGCAT	Nhel ~~~~~ CGTGCTAGCG GCACGATCGC	cumX	TCAGTGAAGT AGTCACTTCA	AGCAGAATAT TCGTCTTATA	CTACGCTCGG
1401	1451	1501	1551		1601	1651	1701
		9	SUBSTITUTE SHEET	(RULE 2	26)	•	

TTATCCGGTA AATAGGCCAT

CCGCTGCGCC

CTGTATGCAC GAACCCCCCG TTCAGTCCGA GACATACGTG CTTGGGGGGC AAGTCAGGCT

2051

TGCTTGCCCC	GAAGTGAGAG CTTCACTCTC	GACAAGCATC CTGTTCGTAG	AGGACTATAA TCCTGATATT	CTCCTGTTCC GAGGACAAGG	CGTTTGTCTC GCAAACAGAG CCAAGCTGGA GGTTCGACCT
CTTTACCGAA TGCTTGCCCC	ACTTAACAGG TGAATTGTCC	CCGCCCCCT	GAAACCCGAC CTTTGGGCTG	CTCCTGCGCT GAGGACGCGA	GTTATGGCCG CAATACCGGC GCAGTTCGCT CGTCAAGCGA
CGCCGCTCGC	CCAGGAAGAT GGTCCTTCTA	TCCATAGGCT AGGTATCCGA	CAGTGGTGGC GTCACCACCG	TGGCGGCTCC	TCATTCCGCT AGTAAGGCGA TTCCGGGTAG
	CTGGAAGATG GACCTTCTAC	AAGCCGTTTT TTCGGCAAAA	ACGCTCAAAT TGCGAGTTTA	CGTTTCCCCC GCAAAGGGGG	Agel TTTACCGGTG AAATGGCCAC TGACACTCAG
gure 35a: Functional maps and sequences of additional power with a gardeness of additional maps and sequences of additional power with a gardeness of additional maps and sequences of additional power with a gardeness of additional maps and sequences of additional maps and additional maps and additional maps and additional maps and additional maps and additional maps and additional maps and add	CGGAGATTTC GCCTCTAAAG	GGCCGCGGCA	ACGAAATCTG TGCTTTAGAC	AGATACCAGG TCTATGGTCC	TGCCTTTCGG ACGGAAAGCC ATTCCACGCC TAAGGTGCGG
sa: Functional	1751	1801	1851	1901	1951
ure 3!			SU		IEET (RULE 26)
<u>5</u>				161 / 2	204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

ACCACTGGCA TGGTGACCGT	TCATGCGCCG AGTACGCGGC	TCCTCCAAGC AGGAGGTTCG	ACGAAAAACC TGCTTTTTGG	ACGCGCAGAC TGCGCGTCTG		
ATGCAAAAGC TACGTTTTCG	AGTCTTGAAG TCAGAACTTC	GTGACTGCGC CACTGACGCG	CAGAGAACCT GTCTCTTGGA	GCAAGAGATT CGTTCTCTAA		
CCGGAAAGAC ATGCAAAAGC GGCCTTTCTG TACGTTTTCG	TAGAGGAGTT ATCTCCTCAA	ACAAGTTTTA TGTTCAAAAT	GTTGGTAGCT CAACCATCGA	CGTTTTCAGA GCAAAAGTCT	Bglii	CATCTTATTA GTAGAATAAT
TGAGTCCAAC ACTCAGGTTG	GTAATTGATT CATTAACTAA	AACTGAAAGG TTGACTTTCC	GGTTCAAAGA CCAAGTTTCT	GCGGTTTTTT CGCCAAAAAA		TCAAGAAGAT AGTTCTTCTA
ACTATCGTCT TGATAGCAGA	GCAGCCACTG CGTCGGTGAC	GTTAAGGCTA CAATTCCGAT	CAGTTACCTC GTCAATGGAG	GCCCTGCAAG CGGGACGTTC		CAAAACGATC
2101	2151	2201	2251	2301		2351
		(SUBSTITUTE	SHEET (AU	LE 25)	

SUBSTITUTE SHEET (AULE 20)
162 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

SUBSTITUTE SHEET (RULE 25) 163 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

pCALO-2:

GCAATTTAAA CGTTAAATTT TTAAAATTCG AATTTTAAGC TAATATTTTG ATTATAAAAC TTGTAAACGT AACATTTGCA CATGTACTTT GTACATGAAA

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC AATTGGTTAT AGCTCATTTT TTAACCAATA TCGAGTAAAA AACAATTTAG TTGTTAAATC 51

TGTTCCAGTT ACAAGGTCAA GGTTGAGTGT CCAACTCACA TGGCTCTATC ACCGAGATAG AAAAGAATAG TTTTCTTATC GAATATTTAG CTTATAAATC 101

AAAGAACGTG TTTCTTGCAC CAGGTGATAA GTCCACTATT ACCTTGTTCT

TCAAAGGGCG AGILTICCCGC

GACTCCAACG

CTGAGGTTGC

ATGCCCCACT TACCGGGTGA ATAGTCCCGC TATCAGGGCG TTTTGGCAG AAAAACCGTC

AGTGGGATTA

TCACCCTAAT

ACGAGAACCA

TGCTCTTGGT

GAACCCTAAA CTTGGGATTT CACTAAATCG GTGATTTAGC TGCCGTAAAG ACGGCATTTC CCCCAGCTCC GGGGTCGAGG CAAGTTTTTT GTTCAAAAAA 251

BanII

~~~~~

TIGACGGGA AAGCCGGCGA ACGIGGCGAG GATTTAGAGC GGGAGCCCCC 301

SUBSTITUTE SHEET (RULE 26)

151

201

TGGAACAAGA

| TGCACCGCTC                                                  | CTGGCAAGTG<br>GACCGTTCAC | TAATGCGCCG<br>ATTACGCGGC | TGTTGGCACT<br>ACAACCGTGA                   | AgeI  | AAAGGCTGCA               |      | CTTCCTCGCT               | GAAATGGCTT |
|-------------------------------------------------------------|--------------------------|--------------------------|--------------------------------------------|-------|--------------------------|------|--------------------------|------------|
| GGCGCT                                                      | CGCTAGGGCG               | CCGCCGCGCT               | TGGCTTACTA<br>ACCGAATGAT                   |       | GCAGGAGAAA<br>CGTCCTCTTT |      | ATATATTCCG<br>TATATAAGGC | GCGGCGAGCG |
| additional pCAL vector modules and pCAL vectors (continued) | AAGGAGCGGG<br>TTCCTCGCCC | ACCACCACAC<br>TGGTGGTGTG | GAGTGTATAC<br>CTCACATATG                   | Ħ     | GCTTCATGTG               |      | GTGATACAGG<br>CACTATGTCC | TCGTTCGACT |
| Jitional pCAL vector modu<br>CTAAATCTCG                     | AAGAAAGCGA<br>TTCTTTCGCT | GCTGCGCGTA<br>CGACGCGCAT | NheI<br>~~~~~~<br>CGTGCTAGCG<br>GCACGATCGC | IrmX  | TCAGTGAAGT<br>AGTCACTTCA |      | АССАСААТАТ<br>ТССТСТТАТА | CTACGCTCGG |
| ure 35a: Functional maps and sequences of add<br>CCCTCGGGGG | AAAGGAAGGG<br>TTTCCTTCCC | TAGCGGTCAC<br>ATCGCCAGTG | CTACAGGGCG<br>GATGTCCCGC                   |       | GATGAGGGTG<br>CTACTCCCAC | AgeI | CCGGTGCGTC               | CACTGACTCG |
| յչո։ Functional r                                           | 351                      | 401                      | 451                                        |       | 501                      |      | 551                      | 601        |
| ure 3                                                       |                          | -                        | SUBSTITUTE                                 | SHEET | (RULE 26)                |      |                          |            |

| ,                                               | 日ででできる。その日でもようなは、これには、 |
|-------------------------------------------------|------------------------|
|                                                 | ļ                      |
|                                                 | ì                      |
| ଟ୍ର                                             | ì                      |
| ž                                               | Ì                      |
| ÷                                               | (                      |
| Ö                                               |                        |
| ۳                                               | •                      |
| Ö                                               |                        |
| ر<br>در                                         | į                      |
| _                                               | ì                      |
| S                                               | ı                      |
| ā                                               |                        |
| tor modules and                                 | (                      |
| Ş                                               | (                      |
| ž                                               | 1                      |
| 징                                               | 1                      |
| Ε                                               | i                      |
| Ē                                               | į                      |
| Š                                               | - (                    |
| pCAL vector modules                             | ,                      |
| ಶ್                                              |                        |
| additional pC/                                  |                        |
| Ö                                               |                        |
| ∄                                               |                        |
| ğ                                               |                        |
| id sequences of add                             |                        |
| S                                               |                        |
| ĕ                                               |                        |
| ž                                               |                        |
| 5                                               |                        |
| þ                                               |                        |
| 핆                                               |                        |
| ğ                                               |                        |
| E                                               |                        |
| <del>-</del>                                    |                        |
| 8                                               |                        |
| 끙                                               |                        |
| 5                                               |                        |
| <u>::</u>                                       |                        |
| 35,8                                            |                        |
| رن                                              |                        |
| ĭ                                               |                        |
| Figure 35a: Functional maps and sequences of ad | •                      |
|                                                 |                        |

| ;AA                                                                                                                                       | 1GG                      | CCT                      | SAC                      | GGA                      | 000<br>000                                 | GCT                      | 200        |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|--------------------------|------------|
| CTTTACCGAA                                                                                                                                | ACTTAACAGG<br>TGAATTGTCC | CCGCCCCCT                | GAAACCCGAC<br>CTTTGGGCTG | CTCCTGCGCT<br>GAGGACGCGA | GTTATGGCCG                                 | GCAGTTCGCT<br>CGTCAAGCGA | SOBSELSSSS |
| CGCCGCTCGC                                                                                                                                | CCAGGAAGAT<br>GGTCCTTCTA | TCCATAGGCT<br>AGGTATCCGA | CAGTGGTGGC<br>GTCACCACCG | TGGCGGCTCC               | TCATTCCGCT<br>AGTAAGGCGA                   | TTCCGGGTAG               | TTCAGTCCGA |
| AGCAAGCTGA                                                                                                                                | CTGGAAGATG<br>GACCTTCTAC | AAGCCGTTTT<br>TTCGGCAAAA | ACGCTCAAAT<br>TGCGAGTTTA | CGTTTCCCCC<br>GCAAAGGGGG | Agel<br>~~~~~~<br>TTTACCGGTG<br>AAATGGCCAC | TGACACTCAG<br>ACTGTGAGTC | GAACCCCCCG |
| ilitional pCAL vector modu<br>GATGCGAGCC                                                                                                  | CGGAGATTTC<br>GCCTCTAAAG | GGCCGCGGCA               | ACGAAATCTG<br>TGCTTTAGAC | AGATACCAGG<br>TCTATGGTCC | TGCCTTTCGG                                 | ATTCCACGCC<br>TAAGGTGCGG | CTGTATGCAC |
| re 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued) GTGACTGAGC GATGCGAGCC AGCAAGCTGA CGC | ACGAACGGGG<br>TGCTTGCCCC | GAAGTGAGAG<br>CTTCACTCTC | GACAAGCATC               | AGGACTATAA<br>TCCTGATATT | CTCCTGTTCC                                 | CGTTTGTCTC               | CCAAGCTGGA |
| 15a: Functional n                                                                                                                         | 651                      | 701                      | 751                      | 801                      | 851                                        | 901                      | 951        |
| ة<br>ك                                                                                                                                    |                          | •                        | SUBS                     | STITUTE SHE              | ET (RULE 26)                               |                          |            |

166 / 204 .

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ATGCAAAAGC<br>TACGTTTTCG | AGTCTTGAAG<br>TCAGAACTTC | GTGACTGCGC<br>CACTGACGCG | CAGAGAACCT<br>GTCTCTTGGA | GCAAGAGATT               | Bglii  | GATCTAGCAC               | 22262222222              |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------|--------------------------|--------------------------|
| CCGGAAAGAC<br>GGCCTTTCTG | TAGAGGAGTT<br>ATCTCCTCAA | ACAAGTTTTA<br>TGTTCAAAAT | GTTĠGTAGCT<br>CAACCATCGA | CGTTTTCAGA<br>GCAAAAGTCT |        | CATCTTATTA               | AAAAAATTA<br>TTTTTTAAT   |
| TGAGTCCAAC<br>ACTCAGGTTG | GTAATTGATT<br>CATTAACTAA | AACTGAAAGG<br>TTGACTTTCC | GGTTCAAAGA<br>CCAAGTTTCT | GCGGTTTTTT<br>CGCCAAAAAA |        | TCAAGAAGAT<br>AGTTCTTCTA | TAACTGCCTT<br>ATTGACGGAA |
| ACTATCGTCT               | GCAGCCACTG<br>CGTCGGTGAC | GTTAAGGCTA<br>CAATTCCGAT | CAGTTACCTC<br>GTCAATGGAG | GCCCTGCAAG<br>CGGGACGTTC |        | CAAAACGATC<br>GTTTTGCTAG | AGGGCACCAA               |
| TTATCCGGTA<br>AATAGGCCAT | ACCACTGGCA<br>TGGTGACCGT | TCATGCGCCG               | TCCTCCAAGC<br>AGGAGGTTCG | ACGAAAAACC<br>TGCTTTTTGG |        | ACGCGCAGAC<br>TGCGCGTCTG | CAGGCGTTTA<br>GTCCGCAAAT |
| 1001                     | 1051                     | 1101                     | 1151                     | 1201                     |        | 1251                     | 1301                     |
|                          |                          | (                        | SUBSTITUTE               | SHEET (RU                | LE 26) |                          |                          |
|                          |                          |                          |                          |                          |        |                          |                          |

| _           | f |
|-------------|---|
| <u>S</u>    | • |
| .≧          | į |
| ä           | ŧ |
| ت           | 1 |
| S<br>S      | 1 |
| ย           | i |
| d pCAL vect |   |
| ঠ           | 1 |
| D<br>D      |   |
| dules an    | 1 |
| <u>S</u>    | ļ |
| ᅙ           |   |
| Ē           |   |
| ō           |   |
| ยู          |   |
| رِـ         |   |
| $\circ$     |   |
| al p(       |   |
| Ö           |   |
| Ħ           |   |
| ag          |   |
| õ           |   |
| Š           |   |
| Ę           |   |
| 3           |   |
| aps and seq |   |
| and         |   |
| SS          |   |
| na          |   |
| =           |   |
| Ö           |   |
| 등           |   |
| F           |   |
| a:          |   |
| 35          |   |
| Ę           |   |
| ij          |   |
| ш.          |   |

| TCA TTAAGCATTC TGCCGACATG<br>AGT AATTCGTAAG ACGGCTGTAC                                                                            | CTG AATCGCCAGC GGCATCAGCA | CCA TAGTGAAAAC GGGGGGGAAG<br>GGT ATCACTTTTG CCCCCGCTTC | TCA AAACTGGTGA AACTCACCCA | CTC AATAAACCCT TTAGGGAAAT    | CAT CTTGCGAATA TATGTGTAGA    | CTC CAGAGCGATG AAAACGTTTC<br>GAG GTCTCGCTAC TTTTGCAAAG | AGG GTGAACACTA TCCCATATCA |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------|---------------------------|------------------------------|------------------------------|--------------------------------------------------------|---------------------------|
| TTGTAATTCA                                                                                                                        | CATGAACCTG                | A TATTTGCCCA<br>F ATAAACGGGT                           | CAPATTAGE CAPATER         | A ACATATTCTC<br>I TGTATAAGAG | A CACGCCACAT<br>I GIGCGGIGIA | G GTATTCACTC                                           | 3 TGTAACAAGG              |
| CGCAGTACTG GCGTCATGAC                                                                                                             | CAAACGGCAT<br>GTTTGCCGTA  | TTGCGTATAA<br>AACGCATATT                               | TATTGGCTAC                | GAGACGAAAA<br>CTCTGCTTTT     | TTCACCGTAA<br>AAGTGGCATT     | AATCGTCGTG<br>TTAGCAGCAC                               | TGGAAAACGG                |
| Figure 35a: Functional maps and sequences of auditional posts victorially and 1351 TGCCACTCAT CGCAGTACTG TTGTAA ACGTCATGAC AACATT | GAAGCCATCA<br>CTTCGGTAGT  | CCTTGTCGCC<br>GGAACAGCGG                               | AAGTTGTCCA<br>TTCAACAGGT  | GGGATTGGCT<br>CCCTAACCGA     | AGGCCAGGTT<br>TCCGGTCCAA     | AACTGCCGGA<br>TTGACGGCCT                               | AGTTTGCTCA                |
| 1351: Functional                                                                                                                  | 1401                      | 1451                                                   | 1501                      | 1551                         | 1601                         | 1651                                                   | 1701                      |
| Figure 3                                                                                                                          | ٠                         |                                                        | SUBSTIT                   | UTE SHEET<br>168 / 204       | (RULE 26)                    |                                                        |                           |

| _                           |
|-----------------------------|
| <u></u>                     |
| ت                           |
| 3                           |
| .⊆                          |
| ☱                           |
| Ξ                           |
| 2                           |
| <u>ت</u>                    |
| S                           |
| ≍                           |
| =                           |
| Ü                           |
| ىھ                          |
| >                           |
|                             |
| ₹                           |
| ڀ                           |
| <u>d</u>                    |
| ъ                           |
| Ē                           |
| ਲ                           |
| S                           |
| S                           |
| =                           |
| ヸ                           |
| ಗ                           |
| ĭ                           |
| or mo                       |
| _                           |
| 0                           |
| ٠,                          |
| ĭ                           |
| . vecto                     |
| د_                          |
| 7                           |
| ~                           |
| $\approx$                   |
|                             |
| <u></u>                     |
| Ĕ                           |
| 5                           |
| .≝                          |
| Ξ                           |
| 72                          |
| $\mathbf{z}$                |
| .00                         |
| <u>~</u>                    |
| C                           |
| Š                           |
| بو                          |
| ×                           |
| 5                           |
| ĭ                           |
| 5                           |
| ũ                           |
| sed                         |
| 70                          |
| Ĕ                           |
| =                           |
|                             |
|                             |
| SC                          |
| sde                         |
| naps                        |
| maps                        |
| ıl maps                     |
| al maps                     |
| anal maps                   |
| ional maps                  |
| tional maps                 |
| nctional maps               |
| unctional maps              |
| Functional maps             |
| : Functional maps           |
| a: Functional maps          |
| 5a: Functional maps         |
| 35a: Functional maps        |
| 35a: Functional maps        |
| re 35a: Functional maps     |
| ure 35a: Functional maps    |
| gure 35a: Functional maps   |
| Figure 35a: Functional maps |

WO 97/08320

| AGCATTCATC<br>TCGTAAGTAG                                                                                                   | GCTTATTTT<br>CGAATAAAAA  | GTCTGGTTAT<br>CAGACCAATA | TTTACGATGC<br>AAATGCTACG | TCTCCATTTT<br>AGAGGTAAAA | ACGCCCGGTA<br>TGCGGGCCAT | Aatii<br>~~~~~~<br>GACGTCTAAT<br>CTGCAGATTA | TTATGCTTCC |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------------------|------------|
| AGCAT<br>TCGTA                                                                                                             | GCTTA<br>CGAAT           | GTCTG                    | TTTAC                    | TCTCC                    | ACGCC                    | Aatii<br>~~~~~<br>GACGTC<br>CTGCAG          | TTATG      |
| ACTCCGGGTG                                                                                                                 | TAAAACTTGT<br>ATTTTGAACA | CAGCTGAACG<br>GTCGACTTGC | CAAAATGTTC<br>GTTTTACAAG | GTGATTTTTT<br>CACTAAAAAA | CTCAAAAAAT<br>GAGTTTTTTA | AACCTCACCC<br>TTGGAGTGGG                    | GCTTTACACT |
| GCCATACGGA                                                                                                                 | AAAGGCCGGA<br>TTTCCGGCCT | CCGTAATATC<br>GGCATTATAG | TGAAATGCCT<br>ACTTTACGGA | GGTATATCCA<br>CCATATAGGT | ATCTCGATAA<br>TAGAGCTATT | TGAAAGTTGG<br>ACTTTCAACC                    | GGCACCCCAG |
| GTCTTTCATT<br>CAGAAAGTAA                                                                                                   | GAATGTGAAT<br>CTTACACTTA | TTTAAAAAGG<br>AAATTTTTCC | AGCAACTGAC<br>TCGTTGACTG | TATCAACGGT<br>ATAGTTGCCA | GCTCCTGAAA<br>CGAGGACTTT | TTCATTATGG<br>AAGTAATACC                    | TCACTCATTA |
| rigure 358: runctional maps and sequences of accuration por except median 1751 CCAGCTCACC GTCTTTCATT GGTCGAGTGG CAGAAAGTAA | AGGCGGGCAA               | CTTTACGGTC<br>GAAATGCCAG | AGGTACATTG<br>TCCATGTAAC | CATTGGGATA<br>GTAACCCTAT | AGCTTCCTTA<br>TCGAAGGAAT | GTGATCTTAT<br>CACTAGAATA                    | GTGAGTTAGC |
| a: Functional<br>1751                                                                                                      | 1801                     | 1851                     | 1901                     | 1951                     | 2001                     | 2051                                        | 2101       |
| เดินre 35                                                                                                                  |                          |                          |                          | JTE SHEET (              | RULE 26)                 |                                             |            |
| Ē.                                                                                                                         |                          |                          |                          | 169 / 204                |                          |                                             |            |

| ntinued)                                        | E CECE                      |
|-------------------------------------------------|-----------------------------|
| or modules and pCAL vectors (co                 | FOR CHARGO CHORD IN THE CO. |
| . vecto                                         | 1 1                         |
| inctional maps and sequences of additional pCAL |                             |
| a: Functional maps                              |                             |
| Figure 35                                       |                             |

| Sphī                     |                                                                                           | XbaI       |            |            |      |
|--------------------------|-------------------------------------------------------------------------------------------|------------|------------|------------|------|
| CACACAGGAA<br>GTGTGTCCTT | TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA<br>AACACCCTT AACACTCGCC TATTGTTAAA GTGTGTCCTT | TTGTGAGCGG | TTGTGTGGAA | GGCTCGTATG | 2151 |
| PARI ACGRAGG             | AGTGAGTAAT CCGIGGGIC CGAAAIGIGA AAIACGAAGG                                                | CC616661C  | AGTGAGTAAT | CACTCAATCG |      |

| CGCATGCCAT                                 | GCGTACGGTA            |
|--------------------------------------------|-----------------------|
| CCATGATTAC GAATTTCTAG ACCCCCCCC CGCATGCCAT | TGGGGGGGGG            |
| GAATTTCTAG                                 | CTTAAAGATC TGGGGGGGGG |
| CCATGATTAC                                 | GGTACTAATG            |
| ACAGCTATGA                                 | TGTCGATACT            |
| 2201                                       |                       |



| ATAAGCTTGA CCTGTGAAGT | GGACACTTCA |      | PacI |
|-----------------------|------------|------|------|
| ATAAGCTTGA            | TATTCGAACT |      |      |
| ATACGAAGTT            | TATGCTTCAA |      |      |
| AATGTACGCT            | TTACATGCGA |      |      |
| AACTTCGTAT            | TTGAAGCATA |      |      |
| 2251                  |            |      |      |
| E S                   | HEE        | T (F | ULE  |

| <i>در</i> |      |            |            |            |                                             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|-----------|------|------------|------------|------------|---------------------------------------------|-----------------------------------------|
|           | 2301 | GAAAAATGGC | GCAGATTGTG | CGACATTTT  | GCAGATTGTG CGACATTTTT TTTGTCTGCC GTTTAATTAA | GTTTAATTAA                              |
|           |      | CTTTTTACCG | CGTCTAACAC | GCTGTAAAAA | CGTCTAACAC GCTGTAAAAA AAACAGACGG CAAATTAATT | CAAATTAATT                              |

|      | ???       | 222222                                        |            | •          |            |
|------|-----------|-----------------------------------------------|------------|------------|------------|
| 2351 | ეხმხენენე | SC CGGCCATTAT CAAAAGGAT CTCAAGAAGA TCCTTTGATC | CAAAAAGGAT | CTCAAGAAGA | TCCTTTGATC |
|      | ອນນນນນນນນ | CG GCCGGTAATA GTTTTCCTA GAGTTCTTCT AGGAAACTAG | GTTTTTCCTA | GAGTTCTTCT | AGGAAACTAG |

SUBSTITUTE SHEET (RULE 26)

- 170 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| GTTAAGGGAT | CTTTTAAATT | AACTTGGTCT              | GCGATCTGTC               | GATAACTACG               | TACCGCGAGA               | CCAGCCGGAA | CATCCAGTCT |
|------------|------------|-------------------------|--------------------------|--------------------------|--------------------------|------------|------------|
| CAATTCCCTA | GAAAATTTAA | TTGAACCAGA              | CGCTAGACAG               | CTATTGATGC               | ATGGCGCTCT               | GGTCGGCCTT | GTAGGTCAGA |
| GAAACTCAC  | CACCTAGATC | TATATGAGTA              | ACCTATCTCA               | CCGTCGTGTA               | GCTGCAATGA               | AATAAACCAG | TATCCGCCTC |
| CTTTTGAGTG | GTGGÄTCTAG | ATATACTCAT              | TGGATAGAGT               | GGCAGCACAT               | CGACGTTACT               | TTATTTGGTC |            |
| TCAGTGGAAC | AAAGGATCTT | ATCTAAAGTA              | TCAGTGAGGC               | GCCTGACTCC               | TGGCCCCCAGT              | ATTTATCAGC | CCTGCAACTT |
| AGTCACCTTG | TTTCCTAGAA | TAGATTTCAT              | AGTCACTCCG               | CGGACTGAGG               | ACCGGGGGTCA              | TAAATAGTCG |            |
| GGTCTGACGC | AGATTATCAA | TTTTAAATCA              | CAATGCTTAA               | ATCCATAGTT               | GCTTACCATC               | CCGGCTCCAG | CAGAAGTGGT |
| CCAGACTGCG | TCTAATAGTT | AAAATTTAGT              | GTTACGAATT               | TAGGTATCAA               | CGAATGGTAG               | GGCCGAGGTC | GTCTTCACCA |
| TTTTCTACGG | TTTGGTCATG | AAAATGAAG<br>TTTTTACTTC | GACAGTTACC<br>CTGTCAATGG | TATTTCGTTC<br>ATAAAGCAAG | ATACGGGAGG<br>TATGCCCTCC | CCCACGCTCA | GGGCCGAGCG |
| 2401       | 2451       | 2501                    | 2551                     | 2601                     | 2651                     | 2701       | 2751       |
|            |            | \$                      |                          | SHEET (RUI<br>/ 204      | LE 26)                   |            |            |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| TTAATAGTTT<br>AATTATCAAA | CGCTCGTCGT<br>GCGAGCAGCA | GCGAGTTACA<br>CGCTCAATGT | GTCCTCCGAT               | GTTATGGCAG<br>CAATACCGTC | CTTTTCTGTG<br>GAAAAGACAC | TGCGGCGACC               | CCACATAGCA<br>GGTGTATCGT |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| AGTTCGCCAG<br>TCAAGCGGTC | CGTGGTGTCA<br>GCACCACAGT | AACGATCAAG<br>TTGCTAGTTC | AGCTCCTTCG               | ATCACTCATG<br>TAGTGAGTAC | CCGTAAGATG<br>GGCATTCTAC | GAATAGTGTA<br>CTTATCACAT | TAATACCGCG               |
| TAGAGTAAGT<br>ATCTCATTCA | CTACAGGCAT<br>GATGTCCGTA | TCCGGTTCCC<br>AGGCCAAGGG | AAAAGCGGTT<br>TTTTCGCCAA | CCGCAGTGTT<br>GGCGTCACAA | GTCATGCCAT               | GTCATTCTGA<br>CAGTAAGACT | CAATACGGGA<br>GTTATGCCCT |
| GCCGGGAAGC<br>CGGCCCTTCG | GTTGCCATTG<br>CAACGGTAAC | TTCATTCAGC<br>AAGTAAGTCG | TGTTGTGCAA<br>ACAACACGTT | AGTAAGTTGG<br>TCATTCAACC | TTCTCTTACT<br>AAGAGAATGA | ACTCAACCAA<br>TGAGTTGGTT | TGCCCGGCGT               |
| ATTAACTGTT<br>TAATTGACAA | GCGCAACGTT<br>CGCGTTGCAA | TTGGTATGGC<br>AACCATACCG | TGATCCCCCA<br>ACTAGGGGGT | CGTTGTCAGA               | CACTGCATAA<br>GTGACGTATT | ACTGGTGAGT<br>TGACCACTCA | GAGTTGCTCT<br>CTCAACGAGA |
| 2801                     | 2851                     | 2901                     | 2951                     | 3001                     | 3051                     | 3101                     | 3151                     |
|                          |                          | 5                        | SUBSTITUTE               | SHEET (RU!               | .E 20)                   |                          |                          |

SUBSTITUTE SHEET (RULE 20 172 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

## XmnI

| GCGAAAACTC   | CCACTCGCGC              | TCTGGGTGAG                   | GGCGACACGG               | GAAGCATTTA                                                                                                       |
|--------------|-------------------------|------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|
| CGCTTTTGAG   |                         | AGACCCACTC                   | CCGCTGTGCC               | CTTCGTAAAT                                                                                                       |
| GTTCTTCGGG G | TCGATGTAAC AGCTACATTG C | CACCAGCGTT 1<br>GTGGTCGCAA 1 | AGGGAATAAG<br>TCCCTTATTC | AAATGTTGAA TACTCATACT CTTCCTTTTT CAATATTATT GAAGCATTTA<br>TTTACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT |
| ATTGGAAAAC   | GAGATCCAGT              | CTTTTACTTT                   |                          | TACTCATACT CTTCCTTTTT                                                                                            |
| TAACCTTTTG   | CTCTAGGTCA              | GAAAATGAAA                   |                          | ATGAGTATGA GAAGGAAAAA                                                                                            |
| AGTGCTCATC   | TACCGCTGTT              | TCCTCAGCAT                   | AAGGCAAAAT GCCGCAAAAA    | TACTCATACT                                                                                                       |
| TCACGAGTAG   | ATGGCGACAA              | AGGAGTCGTA                   | TTCCGTTTTA CGGCGTTTTT    |                                                                                                                  |
| GAACTTTAAA   | TCAAGGATCT              | ACCCAACTGA                   | CAAAAACAGG               | AAATGTTGAA                                                                                                       |
| CTTGAAATTT   | AGTTCCTAGA              | TGGGTTGACT                   | GTTTTTGTCC               | TTTACAACTT                                                                                                       |
| 3201         | 3251                    | 3301                         | 3351                     | 3401                                                                                                             |
|              |                         |                              | JTE SHEET (              | RULE 26)                                                                                                         |

# BsrGI

ATTTGAAT TAAACTTA TCAGGGTTAT TGTCTCATGA GCGGATACAT AGTCCCAATA ACAGAGTACT CGCCTATGTA 3451

:) 173 / 204

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)



SUBSTITUTE SHEET (RULE 26) 174 / 204

PacI

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| AatII         | GACGTCTAAT               | TTATGCTTCC<br>AATACGAAGG  | CACACAGGAA<br>GTGTGTCCTT | SphI<br>~~~~~~<br>CGCATGCCAT<br>GCGTACGGTA | CCTGTGAAGT<br>GGACACTTCA                      |
|---------------|--------------------------|---------------------------|--------------------------|--------------------------------------------|-----------------------------------------------|
|               | ACGAAGTTAT<br>TGCTTCAATA | GCTTTACACT<br>CGAAATGTGA  | ATAACAATTT<br>TATTGTTAAA | ACCCCCCCCC                                 | HindIII<br>~~~~~~<br>ATAAGCTTGA<br>TATTCGAACT |
|               | ТGТАТGСТАТ<br>АСАТАСGАТА | GGCACCCCAG<br>CCGTGGGGGTC | TTGTGAGCGG<br>AACACTCGCC | XbaI<br>~~~~~<br>GAATTTCTAG<br>CTTAAAGATC  | ATACGAAGTT<br>TATGCTTCAA                      |
|               | CTTCGTATAA<br>GAAGCATATT | TCACTCATTA                | TTGTGTGGAA               | CCATGATTAC<br>GGTACTAATG                   | AATGTACGCT                                    |
| )-3:<br>Bglii | GATCTCATAA<br>CTAGAGTATT | GTGAGTTAGC<br>CACTCAATCG  | GGCTCGTATG<br>CCGAGCATAC | ACAGCTATGA<br>TGTCGATACT                   | AACTTCGTAT<br>TTGAAGCATA                      |
| pCALO-3:      | $\leftarrow$             | 51                        | 101                      | 151                                        | 201                                           |
|               |                          | SU                        | RRITUTE S                | SKEET (RULE 26)                            |                                               |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

|                          | •    |                                  |                          |                          |                          |                          | 7D 71                    |
|--------------------------|------|----------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| GТТТААТТАА<br>САААТТААТТ |      | TCCTTTGATC<br>AGGAAACTAG         | GTTAAGGGAT<br>CAATTCCCTA | СТТТТАААТТ<br>GAAAATTTAA | AACTTGGTCT<br>TTGAACCAGA | GCGATCTGTC<br>CGCTAGACAG | GATAACTACG<br>CTATTGATGC |
| GTTT<br>CAAAT            |      | TCCTT<br>AGGAA                   | GTTA<br>CAATT            | CTTT<br>GAAAA            | AACT!<br>TTGA            | GCGA!                    | GATA                     |
| TTTGTCTGCC<br>AAACAGACGG |      | CTCAAGAAGA<br>GAGTTCTTCT         | GAAACTCAC<br>CTTTTGAGTG  | CACCTAGATC<br>GTGGATCTAG | TATATGAGTA<br>ATATACTCAT | ACCTATCTCA<br>TGGATAGAGT | CCGTCGTGTA               |
| CGACATTTTT<br>GCTGTAAAAA |      | CAAAAAGGAT<br>GTTTTTCCTA         | TCAGTGGAAC<br>AGTCACCTTG | AAAGGATCTT<br>TTTCCTAGAA | ATCTAAAGTA<br>TAGATTTCAT | TCAGTGAGGC<br>AGTCACTCCG | GCCTGACTCC<br>CGGACTGAGG |
| GCAGATTGTG               | eI   | GGC CGGCCATTAT<br>CCG GCCGGTAATA | GGTCTGACGC<br>CCAGACTGCG | AGATTATCAA<br>TCTAATAGTT | TTTTAAATCA<br>AAAATTTAGT | CAATGCTTAA<br>GTTACGAATT | ATCCATAGTT<br>TAGGTATCAA |
| GAAAAATGGC<br>CTTTTTACCG | Fsel | ຼອວວວວວວວວວ<br>ວອອອອອອອອອອ       | TTTTCTACGG<br>AAAAGATGCC | TTTGGTCATG<br>AAACCAGTAC | AAAAATGAAG<br>TTTTTACTTC | GACAGTTACC<br>CTGTCAATGG | TATTTCGTTC               |
| 251                      |      | 301                              | 351                      | 401                      | 451                      | 501                      | 551                      |
|                          |      |                                  | SUBSTI                   | TUTE SHEET               | (RULE 26)                |                          |                          |

SUBSTITUTE SHEET (RULE 20)

|                                    | (             |
|------------------------------------|---------------|
| _                                  | (             |
| <u>5</u>                           | Į             |
| .ਵੱ                                | ì             |
| ö                                  | •             |
| ت                                  | Ę             |
| 0.0                                | (             |
| r<br>T                             | 1             |
| nd pCAL vecto                      | でではない はん いいいい |
| స్త                                |               |
| ρ                                  |               |
| odules an                          |               |
| <u>s</u> .                         | ĺ             |
| ğ                                  |               |
| Ĕ                                  | ,             |
| ğ                                  |               |
| AL vector m                        |               |
| بر                                 |               |
| Š                                  |               |
| <u>=</u>                           |               |
| Ö                                  |               |
| additional                         |               |
| tional maps and sequences of addit |               |
| and sequences of a                 |               |
| ĕ                                  |               |
| en en                              |               |
| g                                  |               |
| d s                                |               |
| 핆                                  |               |
| SQ.                                |               |
| Ë                                  |               |
| nal                                |               |
| :2:                                |               |
| Juc                                |               |
| 正                                  |               |
| Sa                                 |               |
| Figure 3                           |               |
| 'nE                                |               |
| Ĕ                                  |               |
|                                    |               |

| TACCGCGAGA                | CCAGCCGGAA<br>GGTCGGCCTT | CATCCAGTCT<br>GTAGGTCAGA | TTAATAGTTT<br>AATTATCAAA | CGCTCGTCGT               | GCGAGTTACA<br>CGCTCAATGT                                                               | GTCCTCCGAT               | GTTATGGCAG               |
|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------------------------------------------------|--------------------------|--------------------------|
| GCTGCAATGA<br>CGACGTTACT  | AATAAACCAG<br>TTATTTGGTC | TATCCGCCTC               | AGTTCGCCAG<br>TCAAGCGGTC | CGTGGTGTCA               | AACGATCAAG<br>TTGCTAGTTC                                                               | AGCTCCTTCG<br>TCGAGGAAGC | ATCACTCATG<br>TAGTGAGTAC |
| TGGCCCCAGT<br>ACCGGGGGTCA | ATTTATCAGC<br>TAAATAGTCG | CCTGCAACTT<br>GGACGTTGAA | TAGAGTAAGT<br>ATCTCATTCA | CTACAGGCAT               | TCCGGTTCCC                                                                             | AAAAGCGGTT<br>TTTTCGCCAA | CCGCAGTGTT               |
| GCTTACCATC<br>CGAATGGTAG  | CCGGCTCCAG               | CAGAAGTGGT<br>GTCTTCACCA | GCCGGGAAGC<br>CGGCCCTTCG | GTTGCCATTG               | TTCATTCAGC                                                                             | TGTTGTGCAA<br>ACAACACGTT | AGTAAGTTGG<br>TCATTCAACC |
| ATACGGGAGG                | CCCACGCTCA<br>GGGTGCGAGT | GGGCCGAGCG<br>CCCGGCTCGC | ATTAACTGTT<br>TAATTGACAA | GCGCAACGTT<br>CGCGTTGCAA | TTGGTATGGC<br>AACCATACCG                                                               | TGATCCCCCA               | CGTTGTCAGA               |
| 601 ATA<br>TAT            | 651                      | 701                      | NESTATUS 1               | 15 SHSEL (8              | 80 T S S 2 T S S 2 T S S 2 T S S 2 T S S 2 T S S 2 T S S 2 T S S 2 T S S S 2 T S S S S | 901                      | 951                      |
| J                         |                          |                          | 20201110                 |                          |                                                                                        |                          |                          |

| AL vectors (continued) |
|------------------------|
| ర్జ                    |
| Ð                      |
| a                      |
| S                      |
| nodule                 |
| õ                      |
| Ξ                      |
| ₫                      |
| Ş                      |
| _                      |
| ₹                      |
| <u>a</u>               |
| ra<br>L                |
| .酉                     |
| ij                     |
| aq                     |
| οę                     |
| S                      |
| ĕ                      |
| s and seque            |
| ģ                      |
| S                      |
| Ē                      |
| S                      |
| <u>3</u>               |
| _                      |
| n<br>a                 |
| Ę.                     |
| 2                      |
| 2                      |
|                        |
| 35                     |
| ۾                      |
| Figur                  |
| iΞ                     |

| CTTTTCTGTG<br>GAAAAGACAC                                                                                                                                                                     | TGCGGCGACC               | CCACATAGCA<br>GGTGTATCGT |      | GCGAAAACTC<br>CGCTTTTGAG | CCACTCGCGC<br>GGTGAGCGCG | TCTGGGTGAG<br>AGACCCACTC  | GGCGACACGG<br>CCGCTGTGCC  | GAAGCATTTA |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|------|--------------------------|--------------------------|---------------------------|---------------------------|------------|
| CCGTAAGATG                                                                                                                                                                                   | GAATAGTGTA<br>CTTATCACAT | TAATACCGCG               | ;    | GTTCTTCGGG               | TCGATGTAAC<br>AGCTACATTG | CACCAGCGTT<br>GTGGTCGCAA  | AGGGAATAAG<br>TCCCTTATTC  | CAATATTATT |
| GTCATGCCAT<br>CAGTACGGTA                                                                                                                                                                     | GTCATTCTGA               | CAATACGGGA<br>GTTATGCCCT | IrmX | ATTGGAAAAC<br>TAACCTTTTG | GAGATCCAGT<br>CTCTAGGTCA | CTTTTTACTTT<br>GAAAATGAAA | GCCGCAAAAA<br>CGGCGTTTTT  | CTTCCTTTTT |
| TTCTCTTACT AAGAGAATGA                                                                                                                                                                        | ACTCAACCAA<br>TGAGTTGGTT | TGCCCGGCGT               | •    | AGTGCTCATC<br>TCACGAGTAG | TACCGCTGTT<br>ATGGCGACAA | TCCTCAGCAT                | AAGGCAAAAT<br>TTCCGTTTTTA | TACTCATACT |
| jure 35a: Functional maps and sequences of additional post, vector incoders and post, vectors results and 1001  1001 CACTGCATAA TTCTCTTACT GTCATGCCAT CCGG GCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCG | ACTGGTGAGT<br>TGACCACTCA | GAGTTGCTCT<br>CTCAACGAGA |      | GAACTTTAAA<br>CTTGAAATTT | TCAAGGATCT<br>AGTTCCTAGA | ACCCAACTGA<br>TGGGTTGACT  | CAAAAACAGG<br>GTTTTTGTCC  | AAATGTTGAA |
| rre 35a: Functional<br>1001                                                                                                                                                                  | 1051                     | 11.01                    | SUB  | 2111151<br>1151          | 1201<br>1201             | 1251                      | 1301                      | 1351       |
| 2                                                                                                                                                                                            |                          |                          |      |                          |                          |                           |                           |            |

TCAAAAAACC

TGGGATTAGT

CTCTTGGTAG

CCGGGTGATG

AGTCCCGCTA

BanII

TTTACAACTT ATGAGTATGA GAAGGAAAAA GTTATAATAA CTTCGTAAAT Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

# BsrGI

| ACATGAAATT   | GTTAAATCAG                | TATAAATCAA               | GAACAAGAGT            | AAACCGTCTA               | AGTTTTTGG  |
|--------------|---------------------------|--------------------------|-----------------------|--------------------------|------------|
| TGTACTTTAA   | CAATTTAGTC                | ATATTTAGTT               | CTTGTTCTCA            | TTTGGCAGAT               |            |
| ATTTGAATGT I | TTAAATTTT (<br>AATTTAAAAA | CAAAATCCCT<br>GTTTTAGGGA | TTCCAGTTTG AAGGTCAAAC | AAAGGGCGAA<br>TTTCCCGCTT | ACCCTAATCA |
| GCGGATACAT   | AAAATTCGCG                | CCGAAATCGG               | TTGAGTGTTG            | CTCCAACGTC               | GAGAACCATC |
| CGCCTATGTA   | TTTTAAGCGC                | GGCTTTAGCC               | AACTCACAAC            | GAGGTTGCAG               |            |
| TGTCTCATGA   | ATATTTTGTT                | AACCAATAGG               | CGAGATAGGG            | AGAACGTGGA               | GGCCCACTAC |
| ACAGAGTACT   | TATAAAACAA                | TTGGTTATCC               | GCTCTATCCC            | TCTTGCACCT               |            |
| TCAGGGTTAT   | GTAAACGTTA                | CTCATTTTTT               | AAGAATAGAC            | CCACTATTAA               | TCAGGGCGAT |
| AGTCCCAATA   | CATTTGCAAT                | GAGTAAAAAA               | TTCTTATCTG            | GGTGATAATT               |            |
| 1401         | 1451                      | 1501                     | 1551                  | 1601                     | 1651       |
|              |                           | SUBSTITUTI               | E SHEET (RU           | ILE 26)                  |            |

| GAGCCCCCGA                                                                                                      | AGGAAGGGAA<br>TCCTTCCCTT | GCGGTCACGC<br>CGCCAGTGCG | ACAGGGCGCG<br>TGTCCCGCGC  | TGAGGGTGTC<br>ACTCCCACAG                   | H    | GGTGCGTCAG               | CTGACTCGCT<br>GACTGAGCGA |
|-----------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|---------------------------|--------------------------------------------|------|--------------------------|--------------------------|
| ntinued)<br>ACCCTAAAGG<br>TGGGATTTCC                                                                            | GTGGCGAGAA<br>CACCGCTCTT | GGCAAGTGTA<br>CCGTTCACAT | ATGCGCCGCT<br>_TACGCGGCGA | TTGGCACTGA                                 | AgeI | AGGCTGCACC               | TCCTCGCTCA               |
| dditional pCAL vector modules and pCAL vectors (continued) CCGTAAAGCA CTAAATCGGA ACC( GGCATTTCGT GATTTAGCCT TGG | GCCGGCGAAC               | CTAGGGCGCT<br>GATCCCGCGA | GCCGCGCTTA                | GCTTACTATG                                 |      | АGGAGAAAAA<br>ТССТСТТТТТ | ATATTCCGCT<br>TATAAGGCGA |
| ditional pCAL vector modi<br>CCGTAAAGCA<br>GGCATTTCGT                                                           | GACGGGGAAA<br>CTGCCCCTTT | GGAGCGGGCG               | CACCACACCC<br>GTGGTGTGGG  | GTGTATACTG<br>CACATATGAC                   |      | TTCATGTGGC               | GATACAGGAT<br>CTATGTCCTA |
| Figure 35a: Functional maps and sequences of add 1701 GGTCGAGGTG CCAGCTCCAC                                     | TTTAGAGCTT<br>AAATCTCGAA | GAAAGCGAAA<br>CTTTCGCTTT | TGCGCGTAAC<br>ACGCGCATTG  | NheI<br>~~~~~~<br>TGCTAGCGGA<br>ACGATCGCCT | XmnI | AGTGAAGTGC<br>TCACTTCACG | CAGAATATGT<br>GTCTTATACA |
| 35a: Functional<br>1701                                                                                         | 1751                     | 1801                     | 1851                      | 1901                                       |      | 1951                     | 2001                     |
| Figure 3                                                                                                        |                          |                          | SUBSTITU                  | JTE SHEET (RULE 26)<br>180 / 204           | )    |                          |                          |

Figure 35a: Functional maps and sequences of additional pCAL vector modules and pCAL vectors (continued)

| ၁၅၁                      | ၁၁၁                      | CAC                      | AAG                      | CTG                      | CAT                                        | ACT                      |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|--------------------------|
| GAACGGGGCG               | AGTGAGAGGG<br>TCACTCTCCC | CAAGCATCAC<br>GTTCGTAGTG | GACTATAAAG<br>CTGATATTTC | CCTGTTCCTG<br>GGACAAGGAC | TTTGTCTCAT                                 | AAGCTGGACT<br>TTCGACCTGA |
| AATGGCTTAC<br>TTACCGAATG | TTAACAGGGA<br>AATTGTCCCT | GCCCCCCTGA<br>CGGGGGGACT | AACCCGACAG<br>TTGGGCTGTC | CCTGCGCTCT               | TATGGCCGCG                                 | AGTTCGCTCC<br>TCAAGCGAGG |
| GGCGAGCGGA<br>CCGCTCGCCT | AGGAAGATAC<br>TCCTTCTATG | CATAGGCTCC<br>GTATCCGAGG | GTGGTGGCGA               | GCGGCTCCCT<br>CGCCGAGGGA | ATTCCGCTGT                                 | CCGGGTAGGC<br>GGCCCATCCG |
| GTTCGACTGC<br>CAAGCTGACG | GGAAGATGCC<br>CCTTCTACGG | GCCGTTTTTC<br>CGGCAAAAAG | GCTCAAATCA<br>CGAGTTTAGT | TTTCCCCCTG               | AgeI<br>~~~~~~<br>TACCGGTGTC<br>ATGGCCACAG | ACACTCAGTT<br>TGTGAGTCAA |
| ACGCTCGGTC<br>TGCGAGCCAG | GAGATTTCCT<br>CTCTAAAGGA | CCGCGGCAAA               | GAAATCTGAC<br>CTTTAGACTG | ATACCAGGCG<br>TATGGTCCGC | CCTTTCGGTT                                 | TCCACGCCTG               |
| 2051                     | 2101                     | 2151                     | 2201                     | 2251                     | 2301                                       | 2351                     |
|                          |                          | 5                        | SUBSTITUTE               | SHEET (RUL               | E 26)                                      |                          |

SUBSTITUTE SHEET (RULE 26) 181 / 204

AAGAAGATCA TCTTATTA TTCTTCTAGT AGAATAAT

AAACGATCTC TTTGCTAGAG

2701

|                              | 1 |
|------------------------------|---|
| _                            | 1 |
| <u>5</u>                     |   |
| Ž                            |   |
| tors (contin                 |   |
| 5                            |   |
| ت                            |   |
| ĸ                            |   |
| 유                            |   |
| ĕ                            |   |
| I pCAL vecto                 |   |
| 8                            |   |
| ď                            |   |
| -0                           |   |
| dules an                     |   |
| S                            |   |
| ⋽                            |   |
| ğ                            |   |
| Ε                            |   |
| ō                            |   |
| ಭ                            |   |
| ž                            |   |
| ¥                            |   |
| ರ್ಷ                          |   |
| nces of additional pC        |   |
| Ē                            |   |
| ₽.                           |   |
| ë                            |   |
| рe                           |   |
| Ç                            |   |
| onal maps and sequences of a |   |
| ន្ទ                          |   |
| 딞                            |   |
| 쿬                            |   |
| Š                            |   |
| g                            |   |
| ä                            |   |
| 8                            |   |
| ह्य                          |   |
| =                            |   |
| ਤੁ                           |   |
| .ō                           |   |
| $\overline{z}$               |   |
| 5                            |   |
| Figure 35a: Functio          |   |
| 53                           |   |
| <u></u>                      |   |
| ي                            |   |
| 20                           | ١ |
| ίΞ                           |   |
|                              |   |

|                          |                          | Bglii                                |                           |                                                                                |                        |             |
|--------------------------|--------------------------|--------------------------------------|---------------------------|--------------------------------------------------------------------------------|------------------------|-------------|
| GCGCAGACCA<br>CGCGTCTGGT | AAGAGATTAC<br>TTCTCTAATG | TTTTCAGAGC<br>AAAAGTCTCG             | GGTTTTTTCG                | CCTGCAAGGC<br>GGACGTTCCG                                                       | 2651                   | MULE 26)    |
| GAAAAACCGC               | GAGAACCTAC<br>CTCTTGGATG | TGGTAGCTCA<br>ACCATCGAGT             | TTCAAAGAGT<br>AAGTTTCTCA  | GTTACCTCGG<br>CAATGGAGCC                                                       | 2601                   | JTE SHEET ( |
| CTCCAAGCCA<br>GAGGTTCGGT | GACTGCGCTC<br>CTGACGCGAG | AAGTTTTAGT<br>TTCAAAATCA             | CTGAAAGGAC<br>GACTTTCCTG  | TAAGGCTAAA<br>ATTCCGATTT                                                       | 2551                   | SUBSTITU    |
| ATGCGCCGGT<br>TACGCGGCCA | TCTTGAAGTC<br>AGAACTTCAG | GAGGAGTTAG<br>CTCCTCAATC             | AATTGATTTA<br>TTAACTAAAT  | AGCCACTGGT<br>TCGGTGACCA                                                       | 2501                   |             |
| CACTGGCAGC               | GCAAAAGCAC<br>CGTTTTCGTG | GGAAAGACAT<br>CCTTTCTGTA             | AGTCCAACCC<br>TCAGGTTGGG  | TATCGTCTTG<br>ATAGCAGAAC                                                       | 2451                   |             |
| ATCCGGTAAC<br>TAGGCCATTG | GCTGCGCCTT               | ACCCCCGTT CAGTCCGACC GCT(TGGGGGGCAA) | ACCCCCCGTT<br>TGGGGGGCCAA | gure 35a: Functional maps and sequences of ad<br>2401 GTATGCACGA<br>CATACGTGCT | 35a: Functiona<br>2401 | gure        |

Figure 35b: List of oligonucleotides used for synthesis of modules

M1: PCR using template

NoVspAatll: TAGACGTC

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

**AAGTTAT** 

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

**AGATCTCA** 

M3: PCR, NoVspAatll as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-I: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

**AAACGGTTGAAAGTTG** 

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGAATTCGAGCAGAAGCTGATCTCT-

GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

SUBSTITUTE SHEET (AULE 25)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M8: synthesis

lox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

lox514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

**TATGGCATG** 

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCAGGCCGGCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10II: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

**GAGGCGG** 

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

**AAGGATCTCAAGAAGATCC** 

M11II/III: PCR, site-directed mutagenesis

SUBSTITUTE SHEET (RULE 28) 184 / 204

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

### M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

**CAAGGCG** 

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

#### M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

ΠCΑ

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

**TGAGA** 

### M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

Col-rev: CCCCCCGCTAGCCATGTGAGCAAAAGGCCAGCAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

IAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

**GGAGCCAGGGTGGTTTTTC** 

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

**AGCTGCATCAGTGAATCGGCCAAC** 

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGCTT-

AAGGGGGGGGGGG

SUBSTITUTE SHEET (RULE 26)

Figure 35b: List of oligonucleotides used for synthesis of modules (continued)

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCACCATTGACGTCTA

Eco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

Figure 36: functional map and sequence of ß-lactamase-MCS module

| Bbe 1 (1361)<br>Ase 1 (1364)<br>Eco 571 (1366)                                                | Xho I (1371)<br>Bss HII (1376)<br>Bbs I (1386)   | Bsp El (1397)<br>Bsr Gl (1403)             |                                               |                    |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------|
| 89) Bam H I (192) Pst I (1356)<br>2) Kpn I (202) Bss SI (1346)<br>3) Fse I (210) Eag I (1340) | -35 (bla)<br>-10 (bla)                           | bla<br>bla-term                            |                                               | bla MCS<br>1289 bp |
| <i>Pml</i> I (189)<br><i>Bsa</i> BI (182)<br><i>Nsp</i> V (173)                               | Bsi WI (166)<br>Eco O109I (161)<br>Psp 5II (161) | Sty 1 (157)<br>Msc 1 (156)<br>Bst XI (152) | Bst Ell (140)<br>Bsu 36l (136)<br>Hna I (132) | Mlu I (126)        |

SUBSTITUTE SHEET (RULE 26) 188 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| •   |                          |                                                |                                      | Styl                     |                              |
|-----|--------------------------|------------------------------------------------|--------------------------------------|--------------------------|------------------------------|
|     |                          |                                                |                                      | Psp5II                   |                              |
|     | MluI Bsu                 |                                                | BstXI                                | Eco01091                 |                              |
|     | ~~~~~<br>HpaI            | ~~~~~~~~<br>BstEII                             |                                      |                          | BsiwI NspV                   |
| 126 | CGCGTTAACC<br>GCGCAATTGG | TCAGGTGACC<br>AGTCCACTGG                       | AAGCCCCTGG CCA                       | AGGTCC                   | c gracgricga<br>c cargcaagcr |
|     |                          | PmlI                                           |                                      |                          |                              |
|     |                          |                                                |                                      | FseI                     |                              |
| 176 | AGATTACCAT<br>TCTAATGGTA | CACGT                                          | GGATC CGGTACCAGG<br>CCTAG GCCATGGTCC | CCGGCCATTA               | TCAAAAAGGA<br>AGTTTTTCCT     |
| 226 | TCTCAAGAAG<br>AGAGTTCTTC | ATCCTTTGAT<br>TAGGAAACTA                       | CTTTTCTACG<br>GAAAAGATGC             | GGGTCTGACG<br>CCCAGACTGC | CTCAGTGGAA<br>GAGTCACCTT     |
| 276 | CGAAAACTCA<br>GCTTTTGAGT | CGAAAACTCA CGTTAAGGGA<br>GCTTTTGAGT GCAATTCCCT | TTTTGGTCAT                           | GAGATTATCA<br>CTCTAATAGT | AAAAGGATCT<br>TTTTCCTAGA     |

SUBSTITUTE SHEET (RULE 26) 189 / 204

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| CTACAGGCAT               | GTTGCCATTG               | GCGCAACGTT               | ТТААТАСТТТ               | AGTTCGCCAG               | 979 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----|
| GATGTCCGTA               | CAACGGTAAC               | CGCGTTGCAA               | ААТТАТСААА               | TCAAGCGGTC               |     |
| TAGAGTAAGT<br>ATCTCATTCA | GCCGGGAAGC<br>CGGCCCTTCG | ATTAACTGTT<br>TAATTGACAA | CATCCAGTCT<br>GTAGGTCAGA | TATCCGCCTC               | 626 |
| CCTGCAACTT<br>GGACGTTGAA | CAGAAGTGGT<br>GTCTTCACCA | GGGCCGAGCG<br>CCCGGCTCGC | CCAGCCGGAA               | AATAAACCAG<br>TTATTTGGTC | 576 |
| ATTTATCAGC<br>TAAATAGTCG | CCGGCTCCAG               | CCCACGCTCA<br>GGGTGCGAGT | TACCGCGAGA<br>ATGGCGCTCT | GCTGCAATGA<br>CGACGTTACT | 526 |
| TGGCCCCCAGT              | GCTTACCATC               | ATACGGGAGG               | GATAACTACG               | CCGTCGTGTA               | 476 |
| ACCGGGGGTCA              | CGAATGGTAG               | TATGCCCTCC               | CTATTGATGC               | GGCAGCACAT               |     |
| GCCTGACTCC               | ATCCATAGTT               | TATTTCGTTC               | GCGATCTGTC               | ACCTATCTCA               | 426 |
| CGGACTGAGG               | TAGGTATCAA               | ATAAAGCAAG               | CGCTAGACAG               | TGGATAGAGT               |     |
| TCAGTGAGGC               | CAATGCTTAA               | TGACAGTTAC               | AAACTTGGTC               | ATATATGAGT               | 376 |
| AGTCACTCCG               | GTTACGAATT               | ACTGTCAATG               | TTTGAACCAG               | TATATACTCA               |     |
| AATCTAAAGT               | GTTTTAAATC               | ТАААААТGАА               | CCTTTTAAAT               | TCACCTAGAT               | 326 |
| TTAGATTTCA               | CAAAATTTAG               | АТТТТТАСТТ               | GGAAAATTTA               | AGTGGATCTA               |     |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of B-lactamase-MCS module (continued)

| 726 CG     | 776 AA<br>TT | 826        | 876        | 926 CC<br>GG | 916        | 1026 TA<br>AT | 1076 GT<br>CA |
|------------|--------------|------------|------------|--------------|------------|---------------|---------------|
| CGTGGTGTCA | AACGATCAAG   | AGCTCCTTCG | ATCACTCATG | CCGTAAGATG   | GAATAGTGTA | TAATACCGCG    | GTTCTTCGGG    |
|            | TTGCTAGTTC   | TCGAGGAAGC | TAGTGAGTAC | GGCATTCTAC   | CTTATCACAT | ATTATGGCGC    | CAAGAAGCCC    |
| CGCTCGTCGT | GCGAGTTACA   | GTCCTCCGAT | GTTATGGCAG | CTTTTCTGTG   | TGCGGCGACC | CCACATAGCA    | GCGAAAACTC    |
| GCGAGCAGCA | CGCTCAATGT   |            | CAATACCGTC | GAAAAGACAC   | ACGCCGCTGG | GGTGTATCGT    | CGCTTTTGAG    |
| TTGGTATGGC | TGATCCCCCA   | CGTTGTCAGA | CACTGCATAA | ACTGGTGAGT   | GAGTTGCTCT | GAACTTTAAA    | TCAAGGATCT    |
| AACCATACCG | ACTAGGGGGGT  |            | GTGACGTATT | TGACCACTCA   | CTCAACGAGA | CTTGAAATTT    | AGTTCCTAGA    |
| TTCATTCAGC | TGTTGTGCAA   | AGTAAGTTGG | TTCTCTTACT | ACTCAACCAA   | TGCCCGGCGT | AGTGCTCATC    | TACCGCTGTT    |
| AAGTAAGTCG | ACAACACGTT   | TCATTCAACC | AAGAGAATGA | TGAGTTGGTT   |            | TCACGAGTAG    | ATGGCGACAA    |
| TCCGGTTCCC | AAAAGCGGTT   | CCGCAGTGTT | GTCATGCCAT | GTCATTCTGA   | CAATACGGGA | ATTGGAAAAC    | GAGATCCAGT    |
|            | TTTTCGCCAA   | GGCGTCACAA | CAGTACGGTA | CAGTAAGACT   | GTTATGCCCT | TAACCTTTTG    | CTCTAGGTCA    |

SUBSTITUTE SHEET (RULE 26)

Figure 36: functional map and sequence of ß-lactamase-MCS module (continued)

| CTTTTACTTT<br>GAAAATGAAA           | GCCGCAAAAA<br>CGGCGTTTTT | CTTCCTTTTT<br>GAAGGAAAAA | GCGGATACAT<br>CGCCTATGTA   | XhoI     | BSSHII    | ATGGCTCGAG<br>TACCGAGCTC | ·           |
|------------------------------------|--------------------------|--------------------------|----------------------------|----------|-----------|--------------------------|-------------|
| CTT'T<br>GAAA                      | 0000                     | CTTC                     | )<br>)<br>)<br>)<br>)<br>) |          | · · ·     | ATG(<br>TAC(             |             |
| TCTTCAGCAT<br>AGAAGTCGTA<br>Eco57I | AAGGCAAAAT<br>TTCCGTTTTA | TACTCATACT<br>ATGAGTATGA | TGTCTCATGA                 | }        | Bbel Asel | GGCGCCATTA<br>CCGCGGTAAT | I 5         |
| ACCCAACTGA<br>TGGGTTGACT           | CAAAAACAGG<br>GTTTTTGTCC | AAATGTTGAA<br>TTTACAACTT | TCAGGGTTAT<br>AGTCCCAATA   | PstI     | BSSSI     | ACGAGCTGCA<br>TGCTCGACGT | BspEI BsrGI |
| CCACTCGTGC<br>GGTGAGCACG<br>BSSSI  | TCTGGGTGAG               | GGCGACACGG<br>CCGCTGTGCC | GAAGCATTTA<br>CTTCGTAAAT   |          | Eagl      | ACTCGGCCGC               |             |
| TCGATGTAAC<br>AGCTACATTG           | CACCAGCGTT<br>GTGGTCGCAA | AGGGAATAAG<br>TCCCTTATTC | CAATATTATT<br>GTTATAATAA   |          |           | ATTTGAATGT<br>TAAACTTACA | BSSHII      |
| 1126                               | 1176                     | 1226                     | 1276                       |          |           | 1326                     | ·           |
|                                    |                          | SUBSTIT                  | UTE SHEET                  | (RULE 20 | 6)        |                          |             |

CATGAAATT AGGCCTACAT TCCGGATGTA Figure 36: functional map and sequence of B-lactamase-MCS module (continued) BbsI CGCTTTGTCT GCGAAACAGA CGCGCTTCAG Eco57I 1376

~~~~~

SUBSTITUTE SHEET (RULE 26)

Figure 37: Oligo and primer design for Vx CDR3 libraries

Figure 37: Oligo and primer design for $\mbox{V}\kappa$ CDR3 libraries

30 -3' Q CA TGCGACTTATTGC CAGGGCGTGTA G CAT G G C G G T G T A T T A T T G C Α C D E G Н CA K N P CAG Q R S T ٧ W Y 80% Q

> SUBSTITUTE SHEET (RULE 26) 195 / 204

Figure 37: Oligo and primer design for Vκ CDR3 libraries

G A C C T

 $_{\mathsf{G}}$ A C C T

- T
ı
Τ
G
· T
T
T
T
G
T
G
G
T
T
T
T
G
T

SUBSTITUTE SHEET (RULE 26) 196 / 204

PCT/EP96/03647

Figure 37: Oligo and primer design for $V\kappa$ CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26) 199 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

SUBSTITUTE SHEET (RULE 26)
200 / 204

Figure 38: Oligo and primer design for VA CDR3 libraries

Figure 39: functional map of expression vector series pBS13

SUBSTITUTE SHEET (RULE 25) 202 / 204

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

% soluble	×	ξ 2	\mathfrak{L}	К4	7	72	73
H1A	61%	58%	52%	42%	%06	61%	%09
H18	39%	48%	%99	48%	47%	39%	36%
H2	47%	57%	46%	49%	37%	36%	45%
H3	85%	67%	16%	61%	80%	71%	83%
H4	%69	52%	51%	44%	45%	33%	42%
H	49%	49%	46%	%29	54%	46%	47%
9H	%06	58%	54%	47%	45%	20%	51%

Total amount	7	5	2	r.d	۸1	22	73
compared to H3K2	2	2	2	+	3	3	3
H1A	289%	94%	166%	272%	20%	150%	78%
H18	219%	122%	%68	139%	117%	158%	101%
H2	186%	223%	208%	182%	126%	%09	97%
H3	20%	•	71%	54%	29%	130%	47%
H4	37%	55%	%09	77%	195%	107%	251%
H5 H	98%	201%	167%	83%	93%	128%	115%
He	65%	117%	89%	109%	299%	215%	278%

Figure 40: Expression data for HuCAL scFvs (pBS13, 30°C)

Soluble amount		(,	Š	, <u>, , , , , , , , , , , , , , , , , , </u>	7.1	32	73
compared to H3K2	-	2	2	† 2	₹	77	3
H1A	191%	988	121%	122%	26%	211%	76%.
H1B	124%	95%	83%	107%	29%	142%	29%
H2	126%	204%	139%	130%	%99	20%	70%
H3	63%	ı	81%	49%	%69	143%	61%
H4	40%	47%	49%	54%	95%	55%	125%
H5	%69	158%	116%	80%	72%	84%	84%
H6 85%	85%	122%	87%	77%	162%	162%	212%
	McPC						
soluble	38%						
%H3k2 total	117%						
%H3k2 soluble	%69						

SUBSTITUTE SHEET (RULE 26) 204 / 204

INTERNATIONAL SEARCH REPORT

Inv onal Application No PCT/EP 96/03647

A. CLASSIFICATI N OF SUBJECT MATTER
IPC 6 C12N15/13 C12N15/10 C12N1/21 C12N15/62 C12N15/70 C07K1/04 G01N33/53 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages EP 0 368 684 A (MEDICAL RES COUNCIL) 16 1-55 A May 1990 cited in the application see the whole document EUROPEAN J. IMMUNOLOGY, 1-55 A vol. 23, July 1993, VCH VERLAGSGESELLSCHAFT MBH, WEINHEIM, BRD, pages 1456-1461, XP000616572 S.C. WILLIAMS AND G. WINTER: "Cloning and sequencing of human immunoglobulin V-lambda gene segments" cited in the application see the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. ΙXΙ Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention carnot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) ments, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 1 02 97 30 January 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Hornig, H Fax (+31-70) 340-3016

Form PCT/ISA/218 (second sheet) (July 1992)

1

ategory '	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α	PROC. NATL.ACAD SCI.,	1-55
•	vol. 89, May 1992, NATL. ACAD	
	SCI., WASHINGTON, DC, US;,	
	pages 4457-4461, XP002024223	·
	C. F. BARBAS III ET AL.: "Semisynthetic	
	combinatorial antibody libraries: a	·
	chemical solution to the diversity	
	problem"	
	cited in the application	
	see the whole document	
	===	
Α .	PROCEEDINGS OF THE NATIONAL ACADEMY OF	1-55
•	SCIENCES OF USA,	·
	vol. 89. no. 21. 1 November 1992,	ļ
	pages 10026-10030, XP000322464	
•	COLLET T A ET AL: "A BINARY PLASMID	
	SYSTEM FOR SHUFFLING COMBINATORIAL	ļ.
	ANTIBODY LIBRARIES"	·
	see the whole document	·
		1 55
A	PROCEEDINGS OF THE NATIONAL ACADEMY OF	1-55
	SCIENCES OF USA,	1
	vol. 89, no. 8, 15 April 1992,	. 1
	pages 3576-3580, XP000384398	
	GRAM H ET AL: "IN VITRO SELECTION AND	·
	AFFINITY MATURATION OF ANTIBODIES FROM A	
	NAIVE COMBINATORIAL IMMUNOGLOBULIN	
	LIBRARY" see the whole document	·
	200 0110 1111010 G2001110110	
A	PROTEIN ENGINEERING,	1-55
• •	vol. 8, no. 1, 1 January 1995,	
	pages 81-89, XP000500393	·
	KNAPPIK A ET AL: "ENGINEERED TURNS OF	
	RECOMBINANT ANTIBODY IMPROVE ITS IN VIVO	
	FOLDING"	
	cited in the application	
	see the whole document	
	ANNUAL DEVIEW OF IMMUNOLOGY	1-55
A	ANNUAL REVIEW OF IMMUNOLOGY,	
	vol. 12, 1 January 1994, pages 433-455, XP000564245	
	WINTER G ET AL: "MAKING ANTIBODIES BY	
	PHAGE DISPLAY TECHNOLOGY"	
	cited in the application	
	see the whole document	1
Α	JOURNAL OF MOLECULAR BIOLOGY,	1-55
``	vol. 224, no. 2, 1 January 1992,	
1	pages 487-499, XP000564649	
	FOOTE J ET AL: "ANTIBODY FRAMEWORK	
	RESIDUES AFFECTING THE CONFORMATION OF THE	
]	HYPERCARIABLE LOOPS"	.
	cited in the application	•
	see the whole document	
	•••	
l	-/	1

1

INTERNATIONAL SEARCH REPORT

.. Al .

Int ional Application No PCT/EP 96/03647

C.(Continu Category *	DOCUMENTS CONSIDERED TO BE RELEVANT		
~~~~~~	Citation of document, with indication, where appropriate, of the relevant passages	R	elevant to claim No.
	Clearly via all all control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control via a control vi		
A	NUCLEIC ACIDS RESEARCH, vol. 21, no. 9, 11 May 1993, page 2265/2266 XP000575849 WATERHOUSE P ET AL: "COMBINATORIAL INFECTION AND IN VIVO RECOMBINATION: A STRATEGY FOR MAKING LARGE PHAGE ANTIBODY REPERTOIRES" see the whole document		1-55
A	WO 95 11998 A (UNITED BIOMEDICAL INC) 4 May 1995 see the whole document		1-55
A	ANNALES DE BIOLOGIE CLINIQUE, vol. 49, no. 4, April 1991, PARIS, FR, pages 231-242, XP000407361 R.H. MELOEN ET AL.: "The use of peptides to reconstruct conformational determinants" see page 231, right-hand column, paragraph 2 - page 233, right-hand column, line 4		1-55
<b>A</b>	CHEMICAL ABSTRACTS, vol. 122, no. 3, 16 January 1995 Columbus, Ohio, US; abstract no. 24865z, COX, JONATHAN P. L. ET AL: "A directory of human germ-line V.kappa. segments reveals a strong bias in their usage" page 227; column 1; XP002024224 cited in the application see abstract & EUR. J. IMMUNOL. (1994), 24(4), 827-36 CODEN: EJIMAF; ISSN: 0014-2980, 1994,		1-55

#### INTERNATIONAL SEARCH REPORT

anformation on patent family members

Int onal Application No PCT/EP 96/03647

				* <u>-</u>
Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0368684	16-05-90	AU-B- AU-A- CA-A- DE-D- DE-T- ES-T- WO-A- JP-T-	634186 4520189 2002868 68913658 68913658 2052027 9005144 3502801	18-02-93 28-05-90 11-05-90 14-04-94 08-09-94 01-07-94 17-05-90 27-06-91
WO-A-9511998	04-05-95	AU-A- EP-A-	8091694 0725838	22-05-95 14-08-96

Form PCT/ISA/210 (patent family annex) (July 1992)