Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Butter, Coffee, Eggs
3	Milk, Butter, Coffee, Coke
4	Bread, Milk, Butter, Coffee
5	Bread, Milk, Butter, Coke

Example of Association Rules

```
\{Butter\} \rightarrow \{Coffee\},\
\{Milk, Bread\} \rightarrow \{Eggs,Coke\},\
\{Coffee, Bread\} \rightarrow \{Milk\},\
```

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Butter}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Butter\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Butter\}) = 2/5$

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Butter, Coffee,
	Eggs
3	Milk, Butter, Coffee, Coke
4	Bread, Milk, Butter,
	Coffee
5	Bread, Milk, Butter, Coke

Definition: Association Rule

- Association Rule
 - An implication expression of the form X
 Y, where X and Y are itemsets
 - Example: {Milk, Butter} → {Coffee}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain bothX and YExample:
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Butter, Coffee, Eggs
3	Milk, Butter, Coffee, Coke
4	Bread, Milk, Butter, Coffee
5	Bread, Milk, Butter, Coke

$$\{Milk, Butter\} \Rightarrow Coffee$$

$$s = \frac{\sigma(\text{Milk}, Butter, \text{Coffee})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Butter, Coffee})}{\sigma(\text{Milk, Butter})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

Example:

$\{Milk, Butter\} \Rightarrow Coffee$

$$s = \frac{\sigma(\text{Milk}, Butter, \text{Coffee})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk}, \text{Butter}, \text{Coffee})}{\sigma(\text{Milk}, \text{Butter})} = \frac{2}{3} = 0.67$$

TID	Items
1	Bread, Milk
2	Bread, Butter, Coffee, Eggs
3	Milk, Butter, Coffee, Coke
4	Bread, Milk, Butter, Coffee
5	Bread, Milk, Butter, Coke

Example of Rules:

 $\{Milk, Bread\} \rightarrow \{Coffee\} (s=1/5=0.2,$ c=1/3=0.33 $\{Milk, Coffee\} \rightarrow \{Bread\} (s=1/5=0.2,$ c=1/2=0.5) $\{Bread, Coffee\} \rightarrow \{Milk\} (s=1/5=0.2,$ c=1/2=0.5) $\{\text{Coffee}\} \rightarrow \{\text{Milk,Bread}\}\ (\text{s=1/5=0.2},$ c=1/3=0.33 $\{Bread\} \rightarrow \{Milk, Coffee\} (s=1/5=0.2,$ c=1/4=0.25) $\{Milk\} \rightarrow \{Bread, Coffee\} (s=1/5=0.2,$ c=1/4=0.25

Example of Rules:

```
\{Milk, Bread\} \rightarrow \{Coffee\} \ (s=1/5=0.2, c=1/3=0.33) \ \{Milk, Coffee\} \rightarrow \{Bread\} \ (s=1/5=0.2, c=1/2=0.5) \ \{Bread, Coffee\} \rightarrow \{Milk\} \ (s=1/5=0.2, c=1/2=0.5) \ \{Coffee\} \rightarrow \{Milk, Bread\} \ (s=1/5=0.2, c=1/3=0.33) \ \{Bread\} \rightarrow \{Milk, Coffee\} \ (s=1/5=0.2, c=1/4=0.25) \ \{Milk\} \rightarrow \{Bread, Coffee\} \ (s=1/5=0.2, c=1/4=0.25) \ (s=1/5=0.
```

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Bread, Coffee}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- N The number of transactions
- M the list of candidates
- W The number of items (the width of the transaction)
- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

• Given d unique items:

- - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by vertical-dataset mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- For all X, Y in the dataset, support (X) >= Suport(Y)
 - Support of an itemset never exceeds the support of its subsets
 - This is known as the anti-monotone property of support

Apriori Principle

- If an itemset is frequent, then all of its subsets must also be frequent
- If an itemset is infrequent, then all of its supersets must be infrequent too
 (X → Y)

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Coffee	3	
Cookies	4	
Eggs	1	

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Coffee}	2
{Bread,Cookies}	3
{Milk,Coffee}	2
{Milk, Cookies }	3
{Coffee,	3
Cookies }	

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,		
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$		
With support-based pruning,		
6 + 6 + 1 = 13		

$$n C r = n!/(r!)(n-r)!$$