北师大附属实验中学

2019-2020 学年度高一年级第一学期数学期中练习试卷(二卷)

班級	分层班級	姓名	学号	分数
四、填空	題(本大題共 5 小局	题,每小题4分	, 共 20 分, 将〕	正确答案的序号填在 <u>答题纸</u> 上
18. 函数	$y = \sqrt{x+1} + \sqrt{3-x}$	的定义域为		
19. 己	知函数 f(x)-1+	$\frac{1}{x^2}$, 则 $f(1)$	+ f(2) + f(3) +	$f(4) + f(\frac{1}{2}) + f(\frac{1}{3}) + f(\frac{1}{4})$
	*			
20. 设、	>0 , $y>0$, $x+2$	$v=5$,则 $\frac{(x+1)}{x}$	$\frac{(2x+1)}{\sqrt{xx}}$ 的最小	值为
21. 李明	月自主创业,在网上:	经营一家水果店	,销售的水果	中有草莓、京白梨、西瓜、林
价格依め	マ为 60 元 盒、65 元	金 盒、80 元 1	盒、90元盒.	为增加销量, 李明对这四种:
果进行仍	足销:一次购买水果	的总价达到 120	元,顾客就少	>付、元. 每笔订单顾客网上
付成功后	,李明会得到支付	款的80%.		
				付元; :于促销前总价的七折,则 x l
1,000	2 4	成为 D , 如果	存在正实数 m	,使得对任意 $x \in D$,都
f(x+n)	f(x) > f(x), 则称 $f(x)$	x) 为 D 上的"	m 型增函数"。	已知函数 $f(x)$ 是定义在 R
的奇函数	女,且当 x>0时,	f'(x) = x - a -	a (den)	者 f(x) 为 R 上的 "20 型增
数",则	实数 a 的取值范围是	<u>t</u> .		

五、解答题(本大题共 3 小题, 共 30 分, 写出必要的解答过程, 将答案写在答题纸上) 23. (本小题满分 10 分)

已知关于x的一元二次方程 $x^2 - 4x + 2k = 0$.

- (1) 若方程有实数根, 求实数 k 的取值范围;
- (2) 如果k是满足(1) 的最大整数,且方程 $x^2-4x+2k=0$ 的根是一元二次方程

 $x^2 - 2mx + 3m - 1 = 0$ 的一个根,求m的值及这个方程的另一个根。

24. (本小題满分 10 分)

已知函数 f(x) = (x-2)(x+a), 其中 $a \in \mathbb{R}$.

(I) 若 f(x) 的图象关于直线 x=1 对称,求 a 的值;

(II) 求 f(x) 在区间[0,1] 上的最小值,

25. (本小題满分10分)

对于区间[a,b] (a < b), 若函数 v = f(x) 同时满足; ① f(x) 在[a,b] 上是单调函数;

- ② 函数 y = f(x), $x \in [a,b]$ 的值域是 [a,b],则称区间 [a,b] 为函数 f(x) 的"保值"区间.
- (1)求函数 = x 的所有"保值"区间;
- (II) 函数 $y = x^2 + m \quad (m \neq 0)$ 是否存在"保值"区间?若存在,求出m 的取值范围;若不存在,说明理由.

北师大附属实验中学

2019-2020 学年度高一年级第一学期数学期中练习试卷(二卷)

18. [-1, 3]

19.
$$\frac{7}{2}$$

20. $4\sqrt{3}$ 21. 130, 15

22. a < 5

五、解答题

23. (本小题满分10分)

(1) 由题意得 $\Delta \ge 0$,所以 $16-8k \ge 0$,解得 $k \le 2$3 分

(2) 由(1) 可知 k = 2.

所以方程 $x^2 - 4x + 2k = 0$ 的根 $x_1 = x_2 = 2$.

二方程 $x^2 - 2mx + 3m - 1 = 0$ 的一个根为 2,

∴ 4-4m+3m-1=0, 4 = 3.

.....7 43

 \therefore 月程 $x^2 - 2mx + 3m - 1 = 0 = x^2 - 6x + 8 = 0$, 解得 x = 2或x = 4, ……9 分

所以方程 $x^2 - 2mx + 3m - 1 = 0$ 的另一根为 4.

.....10 分

24. (本小题满分 10 分)

(I) 解法一: 因为 $f(x) = (x-2)(x+a) = x^2 + (a-2)x - 2a$,

所以, f(x) 的图象的对称轴方程为 $x = \frac{2-a}{2}$.

……1分

由 $\frac{2-a}{2}=1$, 得a=0.

-----3分

解法二:因为函数 f(x) 的图象关于直线 x=1 对称,

所以必有 f(0) = f(2) 成立,

所以 -2a=0, 得a=0.

-----3分

(II) 解: 函数 f(x) 的图象的对称轴方程为 $x = \frac{2-a}{2}$.

①
$$\triangleq \frac{2-a}{2} \le 0$$
, $\text{th} \ a \ge 2 \text{ th}$,

因为 f(x) 在区间(0,1) 上单调递增,

所以 f(x) 在区间[0,1]上的最小值为 f(0) = -2a.

......5分

当
$$0 < \frac{2-a}{2} < 1$$
, 即 $0 < a < 2$ 时,

因为 f(x) 在区间 $(0, \frac{2-a}{2})$ 上单调递减,在区间 $(\frac{2-a}{2}, 1)$ 上单调递增,

②
$$\stackrel{2}{=} \frac{2-a}{2} \ge 1$$
, $\mathbb{P} \ a \le 0$ \mathbb{P} ,

因为 f(x) 在区间(0,1) 上单调递减,

所以 f(x) 在区间 [0,1] 上的最小值为 f(1) = -(1+a).

......9 分

線上:
$$f(x)_{min} = \begin{cases} -2a, a \ge 2 \\ -\left(\frac{a+2}{2}\right)^2, 0 < a < 2 \\ -1-a, a \le 0 \end{cases}$$

25. (本小顯满分10分)

解: (I) 因为函数 $y = x^2$ 的值域是 $[0, +\infty)$,且 $y = x^2$ 在 [a, b] 的值域是 [a, b],

所以 $[a, b] \subseteq [0, +\infty)$, 所以 $a \ge 0$, 从而函数 $y = x^2$ 在区间[a, b]上单调递增,

故有
$$\begin{cases} a^2 = a, \\ b^2 = b, \end{cases}$$
 解得 $\begin{cases} a = 0, & \text{致 } a = 1, \\ b = 0, & \text{坟 } b = 1. \end{cases}$

又a < b, 所以 $\begin{cases} a = 0, \\ b = 1. \end{cases}$

所以函数 $v = x^2$ 的 "保值" 区间为[0,1].

.....4

(II) 若函数 $v = x^2 + m$ $(m \neq 0)$ 存在"保值"区间,则有:

① 若 $a < b \le 0$, 此时函数 $v = x^2 + m$ 在区间 [a, b] 上单调递减,

所以 $\begin{cases} a^2 + m = b, \\ b^2 + m = a \end{cases}$ 消去 m 得 $a^2 - b^2 = b - a$, 整理得 (a - b)(a + b + 1) = 0.

综合 ①、② 得,函数 $y=x^2+m \pmod{m\neq 0}$ 存在"保值"区间,此时 m 的取值范围是

因为a < b, 所以a + b + 1 = 0, 即 a = -b - 1.

$$X \begin{cases} b \le 0, \\ -b - 1 < b, \end{cases}$$
 所以 $-\frac{1}{2} < b \le 0.$

因为
$$m = -b^2 + a = -b^2 - b - 1 =$$

因为
$$m = -b^2 + a = -b^2 - b - 1 = -\left(b + \frac{1}{2}\right)^2 - \frac{3}{4} \quad \left(-\frac{1}{2} < b \le 0\right)$$

② 若
$$b > a \ge 0$$
,此时函数 $y = x^2 + m$ 在区间 $[a, b]$ 上单调递增,

所以
$$\begin{cases} a^2 + m = a, \\ b^2 + m = b \end{cases}$$
 消去 m 得 $a^2 - b^2 = a - b$, 整理得 $(a - b)(a + b - 1) = 0$.

-----10 分

因为
$$a < b$$
,所以 $a + b - 1 = 0$,即 $b = 1 - a$ 。

因为 $m = -a^2 + a = -\left(a - \frac{1}{2}\right)^2 + \frac{1}{4} \quad \left(0 \le a < \frac{1}{2}\right)$,

因为
$$a < b$$
,所以 $a + b - 1 = 0$
又 $\begin{cases} a \ge 0, \\ a < 1 - a, \end{cases}$ 所以 $0 \le a < \frac{1}{2}$.

所以 $0 \le m < \frac{1}{4}$.

 $\left[-1,-\frac{3}{4}\right]U\left(0,\frac{1}{4}\right).$

所以 $-1 \le m < -\frac{3}{4}$.

