Safety 'Vehicle to Everything' Network (SV2XN)

Μιχαήλ Κουτσμανής Αλέξανδρος Τζήκας

Περιγραφή

Δίκτυο επικοινωνίας μεταξύ διάφορων κόμβων που συμμετέχουν στο οδικό δίκτυο

- Κινούμενα Οχήματα
- Φανάρια
- Πεζοί

Κατηγορίες επικοινωνίας

- Vehicle to Vehicle (V2V)
- Vehicle to Pedestrian (V2P)
- Vehicle to Infrastructure (V2I)
- Vehicle to Network (V2N)

Σημασία

- 1.2 εκατομμύρια νεκροί και 50 εκατομμύρια τραυματίες από τροχαία ετησίως
- Κυκλοφοριακή συμφόρηση στους δρόμους
- Περιττό άγχος, νεύρα, κούραση, καθυστέρηση...

Στόχος

- Άυξηση της Ασφάλειας
 - Μείωση Ατυχημάτων μέσω Πρόβλεψης Επικίνδυνων Καταστάσεων
- Μείωση Καθυστερήσεων
 - Μείωση Κυκλοφοριακής Συμφόρησης

Μαθηματική Ανάλυση

> Υποθέσεις και προδιαγραφές

$$\lambda_{car} = 10 \frac{\text{packets}}{\text{sec}}$$

$$\lambda_{light} = 5 \frac{\text{packets}}{\text{sec}}$$

$$L_{packet} = 160 \text{ bits}$$

- T = 1 ms & B = 160 kbps
- 1 κανάλι
- Χρόνος διάδοσης: 1μsec
- Εμβέλεια σε κύκλο ακτίνας 50m
- Μέσος αριθμός κόμβων ανά διασταύρωση:
 - 56 κινούμενοι κόμβοι
 - 4 ακίνητοι κόμβοι

Μαθηματική Ανάλυση

- > Επιλογή πρωτοκόλλου: NP CSMA
 - Συνολικός αριθμός πακέτων: $r = \frac{packets}{s}$
 - Συνολική κίνηση: S = rT = 0.58 erlangs

$$P_{correct\ transmission} = 0.4229$$

$$D = 15ms$$

- > Κάλυψη χώρου δικτύου
- Για 95% κάλυψη του χειρότερου χρήστη $erf\left(\frac{\gamma}{\sigma\sqrt{2}}\right) = 16.44dB$

$$P_{min} = -130dBm + 10log_{10}(B) = -77.95$$

• Άρα στον πιο απομακρυσμένο δέκτη (50m) θα έχουμε ισχύ -61.5dBm

Η υλοποίηση μας

Το δίκτυο που δημιουργήσαμε αποτελείται από:

- 1 φανάρι το οποίο χρησιμοποιεί τους εξής αισθητήρες:
 - Ultrasonic sensor
 - Humidity sensor
- 2 οχήματα τα οποία περιέχουν τα εξής:
 - Ultrasonic sensor
 - Accelerometer
- Κάθε κόμβος διαθέτει και δύο LED

Λειτουργίες του DEMO

• Το φανάρι:

- Ειδοποιεί για την κατάσταση του χρώματός του
- Ειδοποιεί για την απόσταση από το κοντινότερο αντικείμενο
- Ειδοποιεί για την κατάσταση του οδοστρώματος (υγρασία)

• Τα οχήματα:

- Ειδοποιούν τα υπόλοιπα για την απόσταση τους από το προπορευόμενο όχημα ή από κάποιο αντικείμενο
- Ειδοποιούν τα υπόλοιπα για τυχόν απώλεια του ελέγχου τους
- Σταματούν όταν το φανάρι είναι κόκκινο
- Σταματούν όταν πλησιάσουν αρκετά το προπορευόμενο όχημα
- Σταματούν όταν το προπορευόμενο όχημα χάσει τον έλεγχο του
- Σταματούν όταν το προπορευόμενο όχημα πλησιάσει αρκετά ένα αντικείμενο

Αρνητικά

- Είναι απαραίτητος ο καθορισμός συχνοτήτων, πρωτοκόλλου και προτύπου επικοινωνίας από τους αρμόδιους διεθνείς οργανισμούς για την καθολικότητα του συστήματος.
- Ένα δυσεπίλυτο πρόβλημα είναι η διατήρηση της ασφάλειας του δικτύου και των προσωπικών δεδομένων που διακινούνται σε αυτό
- Αρκετά μεγάλη τηλεπικοινωνιακή κίνηση

Θετικά

- Τα χαρακτηριστικά της επικοινωνίας στηρίζονται στα συστήματα των αυτοκινήτων
- Δεν εξαρτάται από την γενιά της τεχνολογίας του οχήματος. Μπορεί να εφαρμοστεί σε όλες τις γενιές.
- Οι πληροφορίες που θα μεταφέρονται δεν απαιτείται να είναι της ίδιας κατηγορίας για κάθε όχημα.

