Introduction to Metric Spaces

TA: Nate Clause

Definition

A *metric space* is a pair (X, d_X) , where X is a set, and $d_X : X \times X \to \mathbb{R}$ is a function, called the *metric* or *distance*, satisfying:

Definition

A *metric space* is a pair (X, d_X) , where X is a set, and $d_X : X \times X \to \mathbb{R}$ is a function, called the *metric* or *distance*, satisfying:

(i) (identity of indiscernibles) $d_X(x, y) = 0$ if and only if x = y.

Definition

A *metric space* is a pair (X, d_X) , where X is a set, and $d_X : X \times X \to \mathbb{R}$ is a function, called the *metric* or *distance*, satisfying:

- (i) (identity of indiscernibles) $d_X(x,y) = 0$ if and only if x = y.
- (ii) (symmetry) $d_X(x,y) = d_X(y,x)$ for all $x, y \in X$.

Definition

A *metric space* is a pair (X, d_X) , where X is a set, and $d_X : X \times X \to \mathbb{R}$ is a function, called the *metric* or *distance*, satisfying:

- (i) (identity of indiscernibles) $d_X(x,y) = 0$ if and only if x = y.
- (ii) (symmetry) $d_X(x,y) = d_X(y,x)$ for all $x, y \in X$.
- (iii) (triangle inequality) For all $x, y, z \in X$, we have:

$$d_X(x,z) \leq d_X(x,y) + d_X(y,z)$$

Definition

A *metric space* is a pair (X, d_X) , where X is a set, and $d_X : X \times X \to \mathbb{R}$ is a function, called the *metric* or *distance*, satisfying:

- (i) (identity of indiscernibles) $d_X(x,y) = 0$ if and only if x = y.
- (ii) (symmetry) $d_X(x,y) = d_X(y,x)$ for all $x, y \in X$.
- (iii) (triangle inequality) For all $x, y, z \in X$, we have:

$$d_X(x,z) \leq d_X(x,y) + d_X(y,z)$$

• If *X* is understood, sometimes the subscript is dropped and we just write *d*.

Non-negativity

Claim: If (X, d_X) is a metric space, then for all $x, y \in X$, $d(x, y) \ge 0$.

Non-negativity

Claim: If (X, d_X) is a metric space, then for all $x, y \in X$, $d(x, y) \ge 0$.

Proof.

Let $x, y \in X$. Then we have:

$$2d(x,y) \stackrel{(ii)}{=} d(x,y) + d(y,x) \stackrel{(iii)}{\geq} d(x,x) \stackrel{(i)}{=} 0$$

Metric Space Example

• $X = \mathbb{R}$, $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by d(x,y) = |x-y|. We show that this is a metric space:

Proof.

To see (i):
$$|x - y| = 0 \iff x - y = 0 \iff x = y$$
.

To see (ii):
$$x - y = -(y - x) \implies |x - y| = |y - x|$$
.

Metric Space Example

• $X = \mathbb{R}$, $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by d(x,y) = |x-y|. We show that this is a metric space:

Proof.

To see (i):
$$|x - y| = 0 \iff x - y = 0 \iff x = y$$
.

To see (ii): $x - y = -(y - x) \implies |x - y| = |y - x|$. As an exercise,

show that for all $x, y \in \mathbb{R}$, $|x+y| \stackrel{*}{\leq} |x| + |y|$. Using this fact, for all $x, y, z \in \mathbb{R}$, we have:

$$d(x,z) = |x - z| = |(x - y) + (y - z)|$$

$$\stackrel{*}{\leq} |x - y| + |y - z| = d(x,y) + d(y,z)$$

Definition

Definition

(i)
$$||x + y|| \le ||x|| + ||y||$$
 for all $x, y \in X$.

Definition

- (i) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.
- (ii) $||c \cdot x|| = |c|||x||$ for all $x \in X$, $c \in \mathbb{R}$.

Definition

- (i) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.
- (ii) $||c \cdot x|| = |c|||x||$ for all $x \in X$, $c \in \mathbb{R}$.
- (iii) For all $x \in X$, ||x|| = 0 if and only if x = 0.

Norm Examples

• The function $\|\cdot\|:\mathbb{R}\to\mathbb{R}$ given by $\|x\|=|x|$.

Norm Examples

- The function $\|\cdot\|: \mathbb{R} \to \mathbb{R}$ given by $\|x\| = |x|$.
- The Euclidean norm: $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ given by $\|x\| = \sqrt{x \cdot x}$, where $x \cdot x$ refers to the *dot product*.

An important class of norms are the p-norms:

Definition

For $n \in \mathbb{N}$, $p \in \mathbb{R}$ with $p \in [1, \infty)$, the *p*-norm is a norm on \mathbb{R}^n given by:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

An important class of norms are the *p*-norms:

Definition

For $n \in \mathbb{N}$, $p \in \mathbb{R}$ with $p \in [1, \infty)$, the *p*-norm is a norm on \mathbb{R}^n given by:

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Examples:

- If n = 1, p = 1, we get the absolute value norm on \mathbb{R} .
- If $n \in \mathbb{N}$, p = 2, we get the Euclidean norm.

Definition

For $n \in \mathbb{N}$, $p = \infty$, the *p*-norm is a norm on \mathbb{R}^n given by:

$$||x||_{\infty} := \left(\max_{1 \le i \le n} |x_i|\right)$$

Norms to Metrics

Proposition

Let X be a vector space over $\mathbb R$ and $\|\cdot\|$ a norm on X. Define $d_X: X \times X \to \mathbb R$ by $d_X(x,y) := \|x-y\|$. Then (X,d_X) is a metric space.

Proof: Exercise

Minkowski distances

Definition

For $n \in \mathbb{N}$, $p \in [1, \infty]$, the *Minkowski distance of order p* is given by $d_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, where

$$d_p(x,y) := ||x-y||_p.$$

Minkowski distances

Definition

For $n \in \mathbb{N}$, $p \in [1, \infty]$, the *Minkowski distance of order p* is given by $d_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, where

$$d_p(x,y) := ||x-y||_p.$$

Example

If n = 2, p = 2, then we have:

$$d_2((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

Minkowski distances

Definition

For $n \in \mathbb{N}$, $p \in [1, \infty]$, the *Minkowski distance of order p* is given by $d_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, where

$$d_p(x,y) := ||x-y||_p.$$

Example

If n = 2, p = 2, then we have:

$$d_2((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

Corollary

For $p \in [1, \infty]$, $d_p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is a metric.

• For $n \in \mathbb{N}$, $p \in [1, \infty]$, let (\mathbb{R}^n, d_p) be the Minkowski metric space of order p. The *unit sphere* is defined as:

$$\{x \in \mathbb{R}^n \mid d_p(x,0) = 1\}$$

• For $n \in \mathbb{N}$, $p \in [1, \infty]$, let (\mathbb{R}^n, d_p) be the Minkowski metric space of order p. The *unit sphere* is defined as:

$$\{x \in \mathbb{R}^n \mid d_p(x,0) = 1\}$$

• Unit sphere with n = 2, p = 1:

• For $n \in \mathbb{N}$, $p \in [1, \infty]$, let (\mathbb{R}^n, d_p) be the Minkowski metric space of order p. The *unit sphere* is defined as:

$$\{x \in \mathbb{R}^n \mid d_p(x,0) = 1\}$$

• Unit sphere with n = 2, p = 2:

• For $n \in \mathbb{N}$, $p \in [1, \infty]$, let (\mathbb{R}^n, d_p) be the Minkowski metric space of order p. The *unit sphere* is defined as:

$$\{x \in \mathbb{R}^n \mid d_p(x,0) = 1\}$$

• Unit sphere with $n = 2, p = \infty$:

Modified definitions

There are some special types of spaces similar to metric spaces:

Definition

A pseudometric space has d satisfy symmetry and the triangle inequality, but allows for $x \neq y$, with d(x, y) = 0.

Modified definitions

There are some special types of spaces similar to metric spaces:

Definition

An extended metric space allows d to take on the value $d(x,y)=\infty$. All other properties of a metric remain, under the conventions $\infty=\infty$, $\infty \leq \infty$, $\infty + \infty = \infty$, and for $c \in \mathbb{R}$, $c < \infty$ and $c + \infty = \infty$.

Modified definitions

There are some special types of spaces similar to metric spaces:

Definition

An *ultrametric space* satisfies conditions (i) and (ii) but replaces the triangle inequality with the *strong triangle inequality*:

$$\forall x, y, z \in X, \ d(x, z) \leq \max(d(x, y), d(y, z))$$

Part 2:

Part 2 video: Metric Spaces in Practice!