9. Regressionsanalyse

- Einfache lineare Regression
- Multiple lineare Regression
- Hypothesentests in der linearen Regression
 - Varianzzerlegung und Bestimmtheitsmaß
 - F-Test auf Modellgüte
 - F-Test auf Einfluss von Parametergruppen
 - Tests für die Regressionskoeffizienten
 - Konfidenz- und Prognoseintervalle
- Überprüfung der Modellannahmen
 - Motivation
 - Residuenanalyse
- Indikatorvariablen

9 Regressionsanalyse [1,4,5]

Ziel: Erklärung/Prognose von Variablen durch andere Variablen

- \square **Regressand** Y: zu erklärende, abhängige Zufallsvariable
- \square **Regressoren** X_1, \ldots, X_k : erklärende, unabhängige Zufallsvariablen

Beispiele

- \hookrightarrow Mietspiegel: Y = qm-Kaltmiete, $X_1 = \text{Wohnfläche}$, $X_2 = \text{Lage}$, $X_3 = \text{Baujahr}$,...
- \hookrightarrow Gebrauchtwagen: Y = Marktwert, $X_1 = Alter$, $X_2 = TKM$, $X_3 = Zustand$,...
- \hookrightarrow Paket-Service: Y = Tagesfahrtzeit eines Wagens, $X_1 = \text{Zahl}$ der Anlieferungen, $X_2 = \text{Routenlänge}$, $X_3 = \text{Zielregion}$...
- \hookrightarrow Kunden-Umsätze: Y=Wert der Aufträge, $X_1=$ Einkommen, $X_2=$ Familienstand, $X_3=$ Berufsgruppe, $X_4=$ Anzahl der Aufträge,...

In der Praxis liegen Datensätze für diese Variablen/Merkmale vor.

Beispiel 1: Größe und Gewicht

Von 10 Personen wurden Körpergröße x und Körpergewicht y gemessen:

Lässt sich ein rechnerischer Zusammenhang zwischen x,y finden, der die Daten "gut" beschreibt? Wie lässt sich das Gewicht einer Person "vorhersagen", welche 181 cm groß ist?

Beispiel 2: Lieferzeitenanalyse (aus [4])

Ein Unternehmen füllt Getränke-/Süßigkeitenautomaten nach. In der Vergangenheit wurden einige Liefervorgänge protokolliert:

Y: Lieferzeit (Minuten), delTime

X1: Anzahl nachzufüllender Produkte, n.prod

 X_2 : Fußweg (ft), distance

	n.prod	distance	delTime		n.prod	distance	delTime		n.prod	distance	delTime
1	7	560	16.68	9	30	1460	79.24	17	6	200	15.35
2	3	220	11.50	10	5	605	21.50	18	7	132	19.00
3	3	340	12.03	11	16	688	40.33	19	3	36	9.50
4	4	80	14.88	12	10	215	21.00	20	17	770	35.10
5	6	150	13.75	13	4	255	13.50	21	10	140	17.90
6	7	330	18.11	14	6	462	19.75	22	26	810	52.32
7	2	110	8.00	15	9	448	24.00	23	9	450	18.75
8	7	210	17.83	16	10	776	29.00	24	8	635	19.83
								25	4	150	10.75

Für die Tourenplanung wird eine Formel gesucht, mit der die Lieferzeit möglichst gut anhand eines konkreten Auftrags prognostiziert werden kann.

Datenquelle in R: library(robustbase),data(delivery)

Beispiel 3: Lebensdauer eines Werkzeugs (aus [5])

Für 20 Werkzeuge wurden gemessen:

- ☐ Y: Lebensdauer des Schneidwerkzeuges
- $\square X_1$: Umdrehungen pro Minute
- \square X_2 : Werkzeugtyp

	У	×1	x2		У	×1	x2
1	18.73	610	Α	11	30.16	670	В
2	14.52	950	Α	12	27.09	770	В
3	17.43	720	Α	13	25.40	880	В
4	14.54	840	Α	14	26.05	1000	В
5	13.44	980	Α	15	33.49	760	В
6	24.39	530	Α	16	35.62	590	В
7	13.34	680	Α	17	26.07	910	В
8	22.71	540	Α	18	36.78	650	В
9	12.68	890	Α	19	34.95	810	В
10	19.32	730	Α	20	43.67	500	В

Wie wirken sich Drehzahl und Werkzeugtyp auf die Lebensdauer aus?

Ziel: Erklärung/Prognose von Variablen durch andere Variablen

- $\ \square$ Regressand Y: zu erklärende, abhängige Zufallsvariable
- \square **Regressoren** X_1, \ldots, X_k : erklärende, unabhängige Zufallsvariablen
- \hookrightarrow Kausalmodell $Y = f(X_1, \dots, X_n)$:
 - □ Dabei liegt f in vorgegebener "passender" Funktionsklasse \mathcal{F} , z.B. $f(x_1, \ldots, x_k) = a_0 + a_1x_1 + \cdots + a_kx_k$
 - ☐ Dieser Idealfall ist bei stochastischen Daten unrealistisch.
- \hookrightarrow Annahme: "gestörtes" Kausalmodell $Y = f(X_1, \dots, X_k) + \epsilon$ (f, ϵ unbekannt).
- \hookrightarrow Ziel: Finde "optimales" f in Funktionsklasse \mathcal{F} .
- - \Box theoretisch: $E((Y f(X_1, ..., X_k))^2) \stackrel{!}{=} \min_{f \in \mathcal{F}}$

Memo: (Regeln für Erwartungswerte, Varianzen und Kovarianzen)

(*) $E(X^2) = var(X) + (E(X))^2$ (**) var(X + c) = var(X) für $c \in \mathbb{R}$ $(***) \quad var(X+Y) = var(X) + 2cov(X,Y) + var(Y)$

Beispiel: Minimierungsproblem für lineare Funktionen f(x) = ax + b

Für bekannte
$$\mu_1 = E(X), \mu_2 = E(Y), \sigma_1^2 = var(X), \sigma_2^2 = var(Y), \rho = cor(X, Y)$$
:

$$E(Y - (aX + b))^{2}) \stackrel{(*)}{=} var(Y - (aX + b)) + (E(Y - (aX + b))^{2}$$

$$\stackrel{(**)}{=} var(Y - aX) + (E(Y) - aE(Y) - b))^{2}$$

$$\stackrel{(***)}{=} \underbrace{\sigma_{2}^{2} - 2a cov(X, Y) + a^{2}\sigma_{1}^{2}}_{\text{min. für } a = \frac{cov(X, Y)}{\sigma_{1}^{2}} = \frac{\sigma_{2}}{\sigma_{1}}\rho$$

$$\stackrel{\text{min. für } b = \mu_{2} - a\mu_{1}}{\text{min. für } b = \mu_{2} - a\mu_{1}}$$

d.h. beste lin. Vorhersage ist $f(X) = \frac{\sigma_2}{\sigma_1} \rho X + (\mu_2 - \frac{\sigma_2}{\sigma_1} \rho \mu_1) = \mu_2 + \frac{\sigma_2}{\sigma_1} \rho (X - \mu_1)$

Ohne Vorgaben an f: Problem wird durch bedingten Erwartungswert gelöst.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Übung: Löse das Minimierungsproblem $E((Y - f(X))^2) \stackrel{!}{=} \min$ für

1. f(x) = a, mit $a \in \mathbb{R}$. Minimiere hierzu $E((Y - a)^2) = \dots$ in a.

$$E((Y-a)^{2}) = E(Y^{2}-2aY+a^{2})$$
$$= E(Y^{2})-2aE(Y)+a^{2}$$

Ein Minimum dieses Terms ergibt sich durch Ableiten nach a und Nullsetzen: $-2E(Y)+2a=0 \Leftrightarrow a=EY$. Der Erwartungswert EY ist also die beste Konstante, um Y zu erklären.

2. f(x) = ax mit $a \in \mathbb{R}$. Minimiere hierzu $E((Y - aX)^2) = \dots$ in a

$$E((Y - aX)^{2}) = E(Y^{2} - 2aXY + a^{2}X^{2})$$
$$= E(Y^{2}) - 2aE(XY) + a^{2}E(X^{2})$$

Ein Minimum dieses Terms ergibt sich durch Ableiten nach a und Nullsetzen: E(XY)

$$-2E(XY) + 2aE(X^2) = 0 \Leftrightarrow a = \frac{E(XY)}{E(X^2)}$$

Memo: Bedingte Verteilung/Bedingter Erwartungswert

- \hookrightarrow Hier bivariater Fall: Zufallsvektor (X, Y) mit
 - \Box diskreter/stetiger Dichte $f_{X,Y}(x,y)$ \Box Randdichten $f_X(x)$, $f_Y(y)$.
- \hookrightarrow Bedingte Verteilung $\mathcal{L}(Y|X=x)$: ist gegeben durch bedingte Dichte:

$$f_{Y|X=x}(y) = \begin{cases} f_{X,Y}(x,y)/f_X(x) & \text{falls Nenner} > 0\\ f_Y(y) & \text{sonst} \end{cases}$$

(Bayes-Formel) "bedingte WS in y bilden bei festem x eine WS-Verteilung".

- \hookrightarrow Bedingter Erwartungswert: f(x) = E(Y|X = x):
 - \Box Erwartungswert der bedingten Verteilung $\mathcal{L}(Y|X=x)$.
 - \Box Schreibweise für f(X): E(Y|X) = f(X)
 - \Box Der bed. EW löst das (obige) Problem $E((Y f(X))^2) \stackrel{!}{=} \min$.
- $\hookrightarrow \ \, \text{Konzept \"{u}bertragbar auf Zufallsvektoren:}$

$$\mathcal{L}(Y_1, \dots, Y_m | X_1 = x_1, \dots, X_k = x_k)$$
 bzw. $\mathcal{E}(Y | X_1 = x_1, \dots, X_n = x_n)$

Beispiel (DuW): Bivariate Normalverteilung

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left(\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\frac{x-\mu_1}{\sigma_1}\frac{y-\mu_2}{\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2}\right)^2\right)}$$

mit $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0, -1 < \rho < 1.$

- \hookrightarrow Randverteilungen sind $\mathcal{L}(X) = \mathcal{N}(\mu_1, \sigma_1^2)$ und $\mathcal{L}(Y) = \mathcal{N}(\mu_2, \sigma_2^2)$
- $\hookrightarrow \rho$ ist Pearson-Korrelation von X, Y.

Illustration: https://www.geogebra.org/m/whgyqhmf

Für
$$\mu_1 = \mu_2 = 0, \sigma_1^2 = \sigma_2^2 = 1$$
 und $\rho = 0/\rho = 0.99/\rho = -0.99$

Jeweils: $f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp(-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)})$ und $\mathcal{N}(0,1)$ -Randverteilungen.

d.h.
$$\mathcal{L}(Y|X=x) = \mathcal{N}(\rho x, 1-\rho^2)$$
 und $E(Y|X=x) = \rho x$

 \hookrightarrow Für allgemeine μ_i, σ_i^2 :

$$\square \mathcal{L}(Y|X=x) = \mathcal{N}(\mu_2 + \frac{\sigma_2}{\sigma_1} \cdot \rho(x-\mu_1), \sigma_2^2(1-\rho^2))$$

$$\Box E(Y|X=x) = \mu_2 + \frac{\sigma_2}{\sigma_1} \cdot \rho(x-\mu_1)$$

"In (multivariaten) Normalverteilungsmodellen ist die beste Prognose linear."

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Memo: Regeln für bedingte Erwartungswerte

$$E(a + bY_1 + cY_2|X) = a + bE(Y_1|X) + cE(Y_2|X)$$

 \hookrightarrow Totale Wahrscheinlichkeit:

$$E(Y) = E(E(Y|X))$$

 \hookrightarrow Faktorisierung:

$$E(Y \cdot g(X)|X) = g(X) \cdot E(Y|X)$$

 \hookrightarrow Substituieren/Eliminieren (SE): Wenn X, Y st.u. sind, dann gilt:

(SE1)
$$P(h(X, Y) \in B|X = x)) = P(h(x, Y) \in B)$$

(SE2)
$$E(h(X, Y)|X = x) = E(h(x, Y))$$

$$\hookrightarrow$$
 Varianzzerlegung: Mit $var(Y|X=x) = E((Y-E(Y|X=x))^2|X=x) = E(Y^2|X=x) - (E(Y|X=x))^2$ gilt

$$var(Y) = var(E(Y|X)) + E(var(Y|X))$$

- ☐ linker Summand: Variabilität in Y erklärt durch X
- ☐ rechter Summand: Nicht durch X erklärte Variabilität.

Aussagen jeweils "fast sicher" und unter Annahme existierender Erwartungswerte

Allgemeines Regressionsmodell mit Fehlerterm

- $\hookrightarrow Y = f(X_1, \dots, X_k) + \sigma V, f \in \mathcal{F}$ (vorgegebene Klasse von Funktionen)
- $\hookrightarrow \sigma V$: nicht beobachtbarer Fehler mit E(V) = 0, var(V) = 1, σ unbekannt.
- \hookrightarrow Grundannahme an den Fehler: $cor(f(X_1,\ldots,X_k),V)=0$. Damit lassen sich KQ-Schätzer für f, σ gewinnen, aber (noch) keine Bereichsschätzer/Tests.
- \hookrightarrow Stärkere Grundannahme (X_1, \ldots, X_k) und V sind st.u. Dann wird $\mathcal{L}(Y|X_1,\ldots,X_k)$ durch $f\in\mathcal{F},\,\mathcal{L}(V)$ und σ bestimmt:

$$P(Y \le y | X_1 = x_1, \dots, X_k = x_k) \stackrel{\text{(SE1)}}{=} P(f(x_1, \dots, x_k) + \sigma V \le y)$$

$$= P(V \le \frac{y - f(x_1, \dots, x_k)}{\sigma})$$

- $\hookrightarrow \mathcal{L}(X_1,\ldots,X_k)$ und damit $\mathcal{L}(Y,X_1,\ldots,X_k)$ bleiben i.d.R. unspezifiziert. Aussagen (Tests, Schätzer, Bereichsschätzer) werden fast ausschließlich bedingt an den Werten $X_1 = x_1, \dots, X_k = x_k$ getroffen.
- \hookrightarrow Fast ausschließlich verwendet: klassisches Regressionsmodell: $\mathcal{L}(V) = \mathcal{N}(0,1)$.

Dr. Ingolf Terveer Datenanalyse Sommersemester 2022

Regressionsmodell zu einer Stichprobe

- \hookrightarrow Es liegt eine u.i.v.-Stichprobe $(Y_i, X_{i1}, \dots, X_{ik}), i = 1, \dots, n, \text{ vor.}$
- $\hookrightarrow Y_i = f(X_{i1}, \dots, X_{ik}) + \sigma V_i$ mit unbekannter Funktion $f \in \mathcal{F}$, d.h.
 - □ bekannter "Typ" der Regressionsfunktion, keine vollständige Spezifikation.
 - \square nicht beobachtbarer Fehler $\epsilon_i = \sigma V_i$
- $\hookrightarrow E(\epsilon_i)=0$, $var(\epsilon_i)=\sigma^2$ (Homoskedastizität)
- \hookrightarrow ggf. Normalverteilungsannahme für ϵ_i .

Statistische Aufgaben im Regressionsmodell

- \hookrightarrow Schätzung von f, σ^2 , bei parametrischem Typ auch Konfidenzintervalle.
- \hookrightarrow Schätzung durch KQ/OLS-Methode: $\sum_{i=1}^{n} (Y_i f(X_{i1}, \dots, X_{ik}))^2 \stackrel{!}{=} \min_{f \in \mathcal{F}}$
- - ☐ Schätzung durch ML-Methode
 - \square Prüfung von Hypothesen zu f.

14

9.1 Einfache lineare Regression

Ein Regressor, f linear, $f(x) = \beta_0 + \beta_1 x$ mit $\beta_0, \beta_1 \in \mathbb{R}$

$$\hookrightarrow Y = \beta_0 + \beta_1 X + \epsilon \text{ mit st.u. } \epsilon, X$$

$$\Box E(Y|X=x) = \beta_0 + \beta_1 x,$$

$$\Box$$
 $var(Y|X=x) = var(\beta_0 + \beta_1 x + \epsilon) = var(\epsilon) = \sigma^2$

Gesucht: Eine Funktion $f(x) = \beta_0 + \beta_1 x$, welche die Daten möglichst gut beschreibt.

- \hookrightarrow Schätzung von β_0, β_1 anhand u.i.v.-Stichprobe $(x_1, y_1), \ldots, (x_n, y_n)$. Dabei mindestens zwei verschiedene x_i angenommen.
- \hookrightarrow **KQ-Methode**: $K(\beta_0, \beta_1) = \sum_{i=1}^n (y_i \beta_0 \beta_1 x_i)^2 \stackrel{!}{=} \min_{\beta_0, \beta_1}$. Notwendig: $\nabla K = \overline{0}$

(I)
$$\frac{\partial K}{\partial \beta_0} = -2n(\bar{y} - \beta_0 - \beta_1 \bar{x}) \stackrel{!}{=} 0$$
(II)
$$\frac{\partial K}{\partial \beta_1} = -2(\sum_{i=1}^n x_i y_i - n\beta_0 \bar{x} - \beta_1 \sum_{i=1}^n x_i^2) \stackrel{!}{=} 0$$

(Normalgleichungen)

16

 \hookrightarrow Auflösen von (I) nach β_0 und Einsetzen in (II)

$$0 = \sum_{i=1}^{n} x_{i} y_{i} - n(\bar{y} - \beta_{1} \bar{x}) \bar{x} - \beta_{1} \sum_{i=1}^{n} x_{i}^{2} \\ = \sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y} - \beta_{1} (\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}) \Rightarrow \hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}} = \frac{cov(x, y)}{s_{x}^{2}} = \frac{s_{y}}{s_{x}} r_{xy}$$

- \hookrightarrow Prognostizierte Werte: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- $\hookrightarrow e_i = y_i \hat{y}_i = y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i), i = 1, ..., n$ heißen **Residuen**. Nutzen:
 - \Box Erwartungstreue KQ-Schätzung von σ^2 durch $\frac{1}{n-2}\sum e_i^2$
 - \Box Überprüfung der Modellgüte durch $R^2 = 1 \sum_i e_i^2 / \sum_j (y_i \bar{y})^2$.

	X	у	x^2	xy	y^2	$\hat{y} = \hat{\beta}_1 x + \hat{\beta}_0$	$e = y - \hat{y}$	e ²
1	162	62	26244	10044	3844	57.74	4.26	18.13
2	173	80	29929	13840	6400	70.85	9.15	83.74
3	169	57	28561	9633	3249	66.08	-9.08	82.50
4	189	96	35721	18144	9216	89.91	6.09	37.05
5	176	75	30976	13200	5625	74.42	0.58	0.33
6	188	85	35344	15980	7225	88.72	-3.72	13.85
7	155	50	24025	7750	2500	49.40	0.60	0.36
8	174	67	30276	11658	4489	72.04	-5.04	25.41
9	183	79	33489	14457	6241	82.76	-3.76	14.17
10	195	98	38025	19110	9604	97.06	0.94	0.88
Σ	1764	749	312590	133816	58393	749.00	0.00	$SS_{Res} = 276.41$

$$\hat{\beta}_1 = \frac{\sum\limits_{i=1}^{\sum} x_i y_i - n\bar{x}\bar{y}}{\sum\limits_{i=1}^{n} x_i^2 - n\bar{x}^2} = \frac{133816 - 10 \times 176.4 \times 74.9}{312590 - 10 \times 176.4^2} = \frac{1692.4}{1420.4} \approx 1.1915$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 74.9 - 1.1915 \cdot 176.4 \approx -135.2798$$

$$SS_T = \Sigma y_i^2 - n\bar{y}^2 = 58393 - 10 \times 74.9^2 = 2292.9$$

 $R^2 = 1 - SS_{Res}/SS_T = 1 - \frac{276.41}{2292.9} \approx 0.879$

 R^2 besagt, dass sich etwa 87,9% der Gewichts-Variabilität durch die (unterschiedlichen) Größen erklären lassen, dazu später mehr.

Größe: x =	162	173	169	189	176	188	155	174	183	195	
Gewicht: y =	62	80	57	96	75	85	50	67	79	98	

$$\hat{y} = -135.28 + 1.19 \cdot x$$

Größe: x =	162	173	169	189	176	188	155	174	183	195	
Gewicht: <i>y</i> =	62	80	57	96	75	85	50	67	79	98	

$$\hat{y} = -135.28 + 1.19 \cdot x, e = y - \hat{y}$$

Umsetzung in R:

```
persdata=data.frame(
  x=c(162,173,169,189,176,188,155,174,183,195)
 v = c(62.80.57.96.75.85.50.67.79.98)
)
#pdf(file="LM_Bsp3.pdf", width=8, height=5)
lm.persdata<-lm(y~x,data=persdata) #die Funktion zur Regression.</pre>
    Standardausgabe: Koeffizienten
plot(persdata,xlab="Groesse x",ylab="Gewicht y",main=NULL,pch=16)
abline(lm.persdata,col="red") # setzt die Koeffizienten in die
    Regressionsgerade um
sapply(1:NROW(persdata),function(i){lines(rep(persdata$x[i],2),c(
    persdata$y[i],predict(lm.persdata)[i]),col="blue",lty="dashed")
    }) # zeichnet die Residuen ein
#dev.off()
```

Übung: Der Inhaber einer Kette von 5 freien Tankstellen möchte wissen, ob und wie sich der Tagesgewinn aus den Kraftstoffumsätzen erklären lässt. An einem Tag beobachtet er folgende Werte (in €): $\frac{\text{Ums. K. } \times | 6000|}{\text{Gewinn } y} \frac{2500}{3000} \frac{8500}{2000} \frac{6500}{3000} \frac{9500}{3500}$

Führe eine einfache lineare Regression durch.

1 <u>um</u>	C CITIC	CITTICCIT	c illicare iv	cgression c	iui Cii.			
	X	y	X ²	xy	y ²	ŷ	$e = y - \hat{y}$	e ²
1	6000	3000	36000000	18000000	9000000	3193.49	-193.49	37439.60
2	2500	4000	6250000	10000000	16000000	3738.87	261.13	68188.95
3	8500	2000	72250000	17000000	4000000	2803.94	-803.94	646316.88
4	6500	3000	42250000	19500000	9000000	3115.58	-115.58	13359.24
5	9500	3500	90250000	33250000	12250000	2648.12	851.88	725705.60
Σ	33000	15500	247000000	97750000	50250000	15500.00	0.00	1491010.27
		$\hat{\beta}_1 =$	$\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}$ $=$	97750000 — 24700000			$\frac{50000}{00000} \approx -0,$	1558
			$\sum_{i=1}^{n} x_i^2 - n\bar{x}^2$	24700000	$0-5 \times 6600$)2 2920	00000	

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 3100 + 0, 1558 \times 6600 = 4128.425$$

$$\hat{y} = -0.1558x + 4128.425$$

$$SS_T = \Sigma y^2 - n\bar{y}^2 = 50250000 - 5 \times 3100^2 = 2200000$$

 $R^2 = 1 - SS_{Res}/SS_T = 1 - 1491010.27/2200000 \approx 0.322$

Der Wert des Bestimmtheitsmaßes besagt, dass sich im bestimmten Modell nur etwa 32,2% der Variabilität in den Gewinndaten durch den Kraftstoffumsatz erklären lassen. Das spricht im vorliegenden Fall eher gegen eine Brauchbarkeit des einfachen linearen Modells.

22

- - \Box theoretisch (s.o.): $E((Y (aX + b))^2) \stackrel{!}{=} \min_{a,b}$

$$a = \frac{\sigma_Y}{\sigma_X} \rho_{XY}$$

$$b = E(Y) - aE(X)$$

□ Unter Normalverteilungsannahme (s.o.) $E((Y - f(X))^2) \stackrel{!}{=} \min_{f}$

$$f(x) = E(Y|X = x) = ax + b \text{ mit}$$

$$a = \frac{\sigma_Y}{\sigma_X} \rho_{XY}$$

$$b = E(Y) - aE(X)$$

- \hookrightarrow Die empirische Lösung ergibt sich aus der theoretischen, wenn man als Modell die Stichprobenverteilung der y_i, x_i annimmt.

Übung: Oben wurde die Funktion $K(\beta_0, \beta_1) = \sum (y_i - \beta_0 - \beta_1 x_i)^2$ minimiert. Dabei war (I) $\frac{\partial K}{\partial \beta_0} = -2n(\bar{y} - \beta_0 - \beta_1 \bar{x})$ (II) $\frac{\partial K}{\partial \beta_1} = -2(\sum x_i y_i - n\beta_0 \bar{x} - \beta_1 \sum x_i^2)$ Prüfe mittels Hesse-Matrix, ob die berechnete Lösung minimal ist.

$$H_K(\beta_0, \beta_1) = \begin{pmatrix} 2n & 2n\bar{x} \\ 2n\bar{x} & 2\sum x_i^2 \end{pmatrix}$$

hat die Hauptminoren

$$\square$$
 $2n > 0$

$$\Box 4n \sum x_i^2 - 4n^2 \bar{x}^2 = 4n (\sum x_i^2 - n\bar{x}^2) = 4n \sum (x_i - \bar{x})^2 \ge 0$$

Nach dem erweiterten Determinantenkriterium für 2×2 -Matrizen ist H_K stets positiv semidefinit, also ist K konvex. Der kritische Punkt ist deshalb Stelle eines globalen Minimums.