Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КИБЕРНЕТИКИ

Отчет по курсу «Методы оптимизации»

Выполнил: Студент группы Б22-534 Баранов А. Т. Преподаватель: Елкина Д. Ю.

Содержание

Задание 2(Вариант 51)	•		•	•	•		•	•	•	•	•					•	•	•	•	•	•	•		1
Условие																								1
Решение																								1
Пункт А																								1
Пункт Б																								5
Пункт В																								7

Задание 2(Вариант 51)

Условие

Найти решение задачи линейного программирования симплекс-методом для целевой функции $F(x_1,x_2)=3x_1+x_2$.

$$F(x_1,x_2)=3x_1+x_2\to\max \text{ при условии} \begin{cases} 2x_1+x_2\leq 2\\ -x_1+3x_2\leq 3\\ x_1\geq 0\\ x_2\geq 0 \end{cases} \tag{A}$$

$$F(x_1,x_2)=3x_1+x_2\to\max (\min) \text{ при условии} \begin{cases} x_1-3x_2\leq 2\\ x_1+x_2\geq 10\\ x_1\geq 0\\ x_2\geq 0 \end{cases} \tag{5}$$

$$F(x_1,x_2)=3x_1+x_2\to\max \text{ при условии} \begin{cases} -x_1+x_2\geq 11\\ x_1-4x_2\geq 8\\ x_1\geq 0\\ x_2\geq 0 \end{cases} \tag{6}$$

Решение

Пункт А

Поставим задачу: наша компания продает товары A и Б. Количество продаж каждого товара - x_1 и x_2 соответственно. Прибыль компании, $F(x_1,x_2)=3x_1+x_2$, нужно максимизировать. При этом на изготовление каждого товара мы тратим ресурсы U и V. У нас есть ограничения на наличие ресурсов на складе. Пусть x_3,x_4 — остаток ресурса U и V на складе соответственно. Интерпретируем задачу математически:

$$\begin{cases} F = 3x_1 + x_2 \to max \\ 2x_1 + x_2 \le 2 \\ -x_1 + 3x_2 \le 3 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} F - 3x_1 - x_2 = 0 \\ 2x_1 + x_2 + x_3 = 2 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

Итак, нам нужно максимизировать $F=3x_1+x_2$. Используем для этого симплекс-метод. Он предполагает последовательную максимизацию функции.

Будем выходить из начальной точки: $x_1=x_2=x_3=x_4=0$. Выберем переменную: x_1 или x_2 – которую выгодней сделать максимально возможной при наших условиях. Из вида функции видно, что увеличение $x_1\geq 0$ в большей степени увеличивает значение F, чем x_2 . Поэтому стараемся максимизировать x_1 максимально возможно при данных условиях, при этом оставляя $x_2=0$. Но насколько мы можем увеличить x_1 , при этом сохраняя $x_2=0$ постоянным?

$$\begin{cases} 2x_1 + x_2 + x_3 = 2 \\ -x_1 + 3x_2 + x_4 = 3 \end{cases} \Leftrightarrow \begin{cases} x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \end{cases}$$
$$x_i \ge 0, i \in \overline{1,4}$$

Из первого уравнения системы видим $x_{1,max}=1$, а из второго уравнения видно, что можно увеличивать x_1 , не ограничиваясь. Так как у нас система, то $x_{1,max}=1$ — меньшее неотрицательное.

Увеличим x_1 до $x_{1,max}=1$. Теперь мы не можем увеличивать x_1 , потому что достигнут лимит по условиям. В таком случае зафиксируем $x_1=1$ и продолжим максимизировать F. При этом хотелось бы выразить F через другие переменные, еще можно увеличить. Сделаем так, чтобы x_1 пропал из всех уравнений, кроме одного. Сложим или вычтем уравнения таким образом, чтобы это получить:

$$\begin{cases} F = 3x_1 + x_2 \\ x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1,4} \end{cases} \Leftrightarrow \begin{cases} 3x_1 + x_2 - F = 0 \\ x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ -x_1 + 3x_2 + x_4 = 3 \\ x_i \ge 0, i \in \overline{1,4} \end{cases} \Leftrightarrow \begin{cases} -x_2 - \frac{3}{2}x_3 - F = -3 \\ x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_3 = 1 \\ \frac{7}{2}x_2 + \frac{1}{2}x_3 + x_4 = 4 \\ x_i \ge 0, i \in \overline{1,4} \end{cases}$$

Вот во что превратилось выражение для F: $F=-x_2-\frac{3}{2}x_3+3$. Анализируя это выражение, приходим к выводу, что мы достигли максимума F, так как, какую бы переменную не увеличивай, F уменьшится. Мы решили задачу нахождения максимума, осталось только дать ответ. Итак, мы зафиксировали $x_1=1$, при этом, чтобы удовлетворить второе условие, $x_4=4$. Из первого условия $x_3=0$, а $x_2=0$, так как мы его намеренно не меняли.

Подставим данные значения в получившуюся целевую функцию:

$$F = -x_2 - \frac{3}{2}x_3 + 3 = -0 - \frac{3}{2}*0 + 3 = 3 = \max F. \operatorname{argmax} F = (x_1, x_2) = (1, 0)$$

Данные рассуждения повторились бы, если бы целевая функция могла увеличиться еще. И наш цикл повторился бы еще раз.

Данный способ - алгебраический способ решения задачи линейного программирования. Можно проиллюстрировать работу этого алгоритма на графике **??**:

Точка старта - начало координат. x_1 было увеличивать выгоднее, поэтому мы пошли по оси Ox вправо, пока не достигли граничного значения в точке 3:(1,0). Нам повезло, мы попали в точку максимума на первом цикле. В общем случае делается обход границы области определения.

На практике алгоритм данного метода можно описать множеством таблиц — симплекстаблиц. Каждый цикл — это переход между симплекс-таблицами.

Построим множество симплекс-таблиц и с помощью них решим ту же задачу оптимизации:

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{$ решающий столбец
x_3	2	1	1	0	2	1 ←min
x_4	-1	3	0	1	3	-3 < 0
F	-3 ←min	-1	0	0	0	

Таблица 1

В данном случае нашу функцию можно представить как $F=3x_1+x_2$. Теперь становится ясно, за что отвечает отрицательный минимум. Выбрали столбец. Теперь в последнем столбце считаем максимальное увеличение x_1 . Как уже было показано ранее $x_{1,max}=1$. Сначала мы выбрали элемент, который станет базисным, а теперь мы выбрали элемент, который станет свободным, отдавая место x_1 – это x_3 . Делаем то же самое, что и в системе уравнений: складываем, вычитаем, домножаем строчки. Причем, как в линейной алгебре, можно создавать любую линейную комбинацию, главное учитывать особенности данной таблицы — множители перед F и последний столбец, который не меняется от домножения:

F	-3	-1	0	0	0
2F	-6	-2	0	0	0
-F	3	1	0	0	0

Таблица 2

Теперь сделаем x_1 базисным:

	Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extsf{pe}$ шающий столбец
	x_3	2	1	1	0	2	1 ←min
(*2)	x_4	-2	6	0	2	6	-3 < 0
(*2)	2F	-6 ←min	-2	0	0	0	

Таблица 3

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{$ решающий столбец
x_1	2	1	1	0	2	
x_4	0	7	1	2	8	
2F	0	1	3	0	6	Bce > 0

Таблица 4

Таким образом выражение для нашей функции превратилось в $2F=-x_2-3x_3+6$ – сравните с ответом выше. Отсутствие отрицательных элементов в строчке при F — окончание алгоритма симплекс-метода.

Аргументы максимума находятся как $x_i = \begin{cases} 0, & x_i$ – не базисный , далее подставляются $\frac{b_i}{x_{\text{базисный},i}} & x_i$ – базисный

в исходную функцию. Значение после подстановки и в правой нижней ячейке при учете множителя перед F должны совпасть. Причем на любой итерации, не обязательно на конечной.

Как видно из таблицы, базисные элементы оптимального метода равны $x_1=1, x_4=4$, а $x_2=0, x_3=0.$

 $\max F(x_1,x_2)=3$, $\operatorname{argmax} F(x_1,x_2)=(1,0)$, т.к. $x_1=1,x_2=0$ из строки выше.

Otbet:
$$\max F(x_1,x_2)=3$$
 , $\operatorname{argmax} F(x_1,x_2)=(1,0)$

Далее решение будет идти без подробностей.

Пункт Б

Приведем задачу к каноническому виду(для max), путём введения базиса x_3, x_4 :

$$\begin{cases} F = 3x_1 + x_2 \to max \\ x_1 - 3x_2 \le 3 \\ x_1 + x_2 \ge 10 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} F - 3x_1 - x_2 = 0 \\ x_1 - 3x_2 + x_3 = 3 \\ -x_1 - x_2 + x_4 = -10 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

 $F(x_1,x_2) o \max$ Построим симплекс-таблицу и с помощью неё решим задачу оптимизации:

Базис	x_1	x_2	x_3	x_4	b_i	b_i разрешающий столбец
x_3	1	-3	1	0	3	3 ←min
x_4	-1	-1	0	1	-10	10
F	-3 ←min	-1	0	0	0	

Таблица 5

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_1	1	-3	1	0	3	-1 < 0
x_4	0	-4	1	1	-7	$\frac{7}{4} \leftarrow \min$
F	0	-10 ←min	3	0	9	

Таблица 6

	Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
*4	x_1	4	-12	4	0	12	-1 < 0
*(-1)	x_4	0	4	-1	-1	7	$\frac{7}{4} \leftarrow min$
*2	2F	0	-20 ←min	6	0	18	

Таблица 7

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_1	4	0	1	-3	33	-11 < 0
x_2	0	4	-1	-1	7	- 7 < 0
2F	0	0	1	-5 ←min	53	

Таблица 8

Так как мы пришли к выражению $2F=-x_3+5x_4+53$, то мы должны максимизировать x_4 , однако мы можем максимизировать его бесконечно, что означает неограниченность области определения.

Otbet: $\max F(x_1,x_2) \notin \mathbb{R}, \operatorname{argmax} F(x_1,x_2) \notin \mathbb{R}^2$

$$F(x_1,x_2) o \min$$
 Пусть $G = -F(x_1,x_2)$, тогда $F o \min \Leftrightarrow G o \max$.

Таким образом, мы решаем задачу:

$$\begin{cases} G = -3x_1 - x_2 \to max \\ x_1 - 3x_2 \le 3 \\ x_1 + x_2 \ge 10 \\ x_1 \ge 0, x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} G + 3x_1 + x_2 = 0 \\ x_1 - 3x_2 + x_3 = 3 \\ -x_1 - x_2 + x_4 = -10 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

В симплекс-методе мы начинаем с точки (0, 0), но очевидно что она не входит в область определения, поэтому мы сделаем первый шаг, который уменьшит G, но дойдет до точки из области определения.

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_3	1	-3	1	0	3	-1 < 0
x_4	-1	-1	0	1	-10	10 ←min
G	3	1 ←min	0	0	0	

Таблица 9

	Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
	x_3	1	-3	1	0	3	-1 < 0
*(-1)	x_4	1	1	0	-1	10	10 ←min
	G	3	1 ←min	0	0	0	

Таблица 10

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_3	4	0	1	-3	33	
x_2	1	1	0	-1	10	
G	2	0	0	1	-10	Bce > 0

Мы сместились в точку $x_1=0, x_2=10, x_3=33, x_4=0.$ Она входит в область определения. Мы пришли к следующему выражению: $G=-2x_1-x_4.$ Мы привели $G\to\max$. А значит и $F=-G=2x_1+x_4\to\min$. Мы знаем, что $\mathop{\rm argmin} F=(0,10)$, тогда $\mathop{\rm min} F=F(0,10)=3*0+1*10=10$, что подтверждает геометрический способ решения: **??**

Ответ: $\min F = 10, \operatorname{argmin} F = (0, 10)$

Пункт В

Приведем задачу к каноническому виду(для max), путём введения базиса x_3, x_4 :

$$\begin{cases} F(x_1, x_2) = 3x_1 + x_2 \to \max \\ -x_1 + x_2 \ge 11 \\ x_1 - 4x_2 \ge 8 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases} \longrightarrow \begin{cases} F - 3x_1 - x_2 = 0 \\ -x_1 + x_2 - x_3 = 11 \\ x_1 - 4x_2 - x_4 = 8 \\ x_i \ge 0, i \in \overline{1, 4} \end{cases}$$

Начинаем рассчитывать симплекс-таблицы:

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extsf{paspe}$ шающий столбец
x_3	-1	1	1	0	11	-11 < 0
x_4	1	-4	0	1	8	8 ←min
F	-3 ←min	-1	0	0	0	

Таблица 11

Базис	x_1	x_2	x_3	x_4	b_i	$\frac{b_i}{ extstyle extstyle b_i}$
x_3	0	-3	1	1	19	$-\frac{19}{3} < 0$
x_1	1	-4	0	1	8	-2 < 0
F	0	-13 ←min	0	3	24	

Таблица 12

Мы сместились в точку (8,0), максимизируя целевую функцию F по x_1 . Точка (8,0), исходя из системы неравенств, задающую условие, не удовлетворяет ему. Точка (8,0) не пренадлежит области определения. При этом мы достигли максимума F по x_1 и двигаться дальше не можем, потому что F по x_2 дальше не максимизируется. Отсюда вывод, что область определения функции пуста. Максимума функции, как и точки максимума не существует.

Эту ситуацию наглядно показывает график??.

ОТВЕТ: $\nexists \max F(x_1, x_2), \nexists \operatorname{argmax} F(x_1, x_2).$