高等数学(上)模拟试题1(卷)

2017 - 2018 学年第一学期

成	
绩	

开课学院	理学院	_课程_	高等	数学(上)	_学时_	88
考试日期	考试时间	2	_小时	考试形式	((A) 卷

题号	_	 ==	四	五	总分
得分					

- 一、填空题 (4'×7 = 28'))
 - 1. 设f(x)是定义在实数域上的函数,且 $f(x-1) = x^2 + x + 1$,则 $x \neq 0,1$,

$$f(\frac{1}{x-1}) = \underline{\hspace{1cm}}$$

- 2. $\frac{\mathbf{d}}{\mathbf{d}x}[e^{\sin^2(1-x)}] = \underline{\hspace{1cm}}$
- 3. 设 f(x) 为不恒为零的奇函数,且 f'(0) 存在,则函数 $g(x) = \frac{f(x)}{x}$ 在 x = 0 处有第 类的 型间断点.
- 4. $f(x) = xe^x$ 的 n 阶麦克劳林公式为 _____
- 5. 若 $\int f(x) dx = F(x) + C$,且 $x = t^2$,则 $\int f(t) dt = ______$
- 6. $\int_0^{+\infty} \frac{\arctan x}{1+x^2} dx =$ _____
- 7. 若f(x)有连续的二阶导数,f'(b) = a,f'(a) = b,则 $\int_a^b f'(x)f''(x) dx$ ______

- 二、计算题(5'×10 = 50')
 - 1. 若 $x \rightarrow 0$ 时, $(1-\alpha x^2)^{\frac{1}{4}}-1$ 与 $x\sin x$ 是等价无穷小,试确定 α 的值;

2. $\forall e^x - e^y = \sin(xy), \forall y', y'|_{x=0}$;

3. $\mathop{\forall} \begin{cases} x = 2t^3 + 2, \\ y = e^{2t} + 1, \end{cases} \mathop{\cancel{\dagger}} \frac{\mathrm{d} y}{\mathrm{d} x}, \frac{\mathrm{d}^2 y}{\mathrm{d} x^2};$

4. 设f(x)在点 x_0 的某邻域内有定义,且 $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{(x-x_0)^4} = k(k>0)$,讨论f(x)在

点 x_0 处是否有极值;若有,是极大值还是极小值?

5. 求
$$\int \arcsin \sqrt{\frac{x}{x+1}} \, dx$$
;

6. 己知
$$f'(e^x) = xe^{-x}$$
, 且 $f(1) = 0$, 求 $f(x)$;

7. 求函数
$$\varphi(x) = \int_0^x \frac{3t}{t^2 - t + 1} dt$$
在区间[0,1]上的最小值;

$$8. \ \ \vec{x} \int_{1}^{+\infty} \frac{\mathrm{d} x}{x \sqrt{x^2 - 1}};$$

9. 由曲线 $y = x^3, x = 2, y = 0$ 所围成的平面图形,绕 y 轴旋转,计算所得旋转体的体积.

10. $\vec{x} \lim_{x \to 0} \frac{\int_0^x 2t^4 dt}{\int_0^x t(t - \sin t) dt}.$

三、**(8)** 一质点作直线运动,已知其加速度为 $a = 12t^2 - 3\sin t$,如果V(0) = 5, S(0) = -3, 求(1)求速度V与时间t的关系;(2)求位移S与时间t的关系.

四、(8') 求通过点(0,0)、(1,2) 且对称轴平行于y轴,开口向下的抛物线L,使它与x轴所围的面积最小.

五、(6')设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)>0.若极限 $\lim_{x\to a^+} \frac{f(2x-a)}{x-a}$ 存在,证明:

- (1) 在(a,b)内f(x)>0;
- (2) 在(a,b) 内存在点 ξ , 使 $\frac{b^2-a^2}{\int_a^b f(x) dx} = \frac{2\xi}{f(\xi)}.$