در R^m در $q_1,q_2,...,q_n$ هستند. ا. فرض کنید

الف) اگر c_1, c_2, \ldots, c_n اعدادی حقیقی باشند، مقدار $\|c_1q_1+c_2q_2+\cdots+c_nq_n\|^2$ را بدست آورید. ب) نشان دهید q_1, q_2, \ldots, q_n بردارهایی مستقل خطی هستند.

ياسخ:

الف) چون $q_1,q_2,...,q_n$ برای هر q_i . $q_i=0$ مستند پس میدانیم q_i . $q_i=0$ برای هر q_i . q_i برای هر q_i . q_i برای هر $i\neq j$

$$||c_1q_1 + c_2q_2 + \dots + c_nq_n||^2 = (c_1q_1 + c_2q_2 + \dots + c_nq_n) \cdot (c_1q_1 + c_2q_2 + \dots + c_nq_n)$$

$$= \sum_{i=1}^n c_i^2 (q_i \cdot q_i) + \sum_{i < j} 2c_ic_j(q_i \cdot q_j) = \sum_{i=1}^n c_i^2$$

ب) فرض کنید اعداد حقیقی c_1, c_2, \ldots, c_n و جود دارند به طوری که c_1, c_2, \ldots, c_n در اینصورت c_1, c_2, \ldots, c_n و جود دارند به طوری که c_1, c_2, \ldots, c_n در اینصورت c_1, c_2, \ldots, c_n و جود دارند به طوری که c_1, c_2, \ldots, c_n و جود دارند به طوری که ایجاب می کند تمامی c_1, c_2, \ldots, c_n می دهد که c_1, c_2, \ldots, c_n نتیجه می دهد که c_1, c_2, \ldots, c_n بنابراین طبق تعریف c_1, c_2, \ldots, c_n مستقل خطی اند.

۲. نشان دهید اگر P یک ماتریس P خواهد بود. P خواهد بود.

ياسخ:

میدانیم اگر P یک ماتریس orthogonal باشد، بنابراین $P^TP=I$. پس میتوان گفت:

$$\det(P^{\mathsf{T}})\det(P) = \det(P^{\mathsf{T}}P) = \det(I) = 1$$

$$\det(P) = \pm 1$$
 می دهد ($\det(P)$)، که نتیجه می دهد . $\det(P^T) = \det(P)$ اما

 u_2 و u_1 که u_2 و u_1 و u_2 که ان را u_2 و منحه ای در u_3 که u_4 و u_5 آن را u_5 می کنند را بیابید.

$$\mathbf{y} = \begin{bmatrix} 5 \\ -9 \\ 5 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} -3 \\ -5 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

پاسخ:

فاصله y در \mathbb{R}^3 تا زیرفضایی مانند W به صورت فاصله میان y و نزدیک ترین نقطه در W تعریف می شود. از آنجاییکه نزدیکترین نقطه در \mathbb{F}^3 تا زیرفضایی مانند \mathbb{F}^3 به صورت فاصله مورد نظر ما \mathbb{F}^3 است.

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 \quad \rightarrow \quad \hat{y} = \begin{bmatrix} 3 \\ -9 \\ -1 \end{bmatrix}, \quad y - \hat{y} = \begin{bmatrix} 2 \\ 0 \\ 6 \end{bmatrix} \quad \rightarrow \quad ||y - \hat{y}|| = \sqrt{40} = 2\sqrt{10}$$

۴. باتوجه به اینکه a,b,c اسکالر هستند، سیستم معادلات زیر inconsistent است؛ زیرا نمودار معادلات صفحات با یکدیگر موازی هستند.

نشان دهید که مجموعه تمام راهحلهای Least Squares سیستم دقیقاً صفحهای است که معادله آن به شکل x-2y+5z=(a+b+c)/3

$$\begin{cases} x - 2y + 5z = a \\ x - 2y + 5z = b \\ x - 2y + 5z = c \end{cases}$$

پاسخ:

ابتدا بردارها و ماتریس زیر را درنظر می گیریم.

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \ \mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}, \text{ and } A = \begin{bmatrix} \mathbf{v}^T \\ \mathbf{v}^T \\ \mathbf{v}^T \end{bmatrix} = \begin{bmatrix} 1 & -2 & 5 \\ 1 & -2 & 5 \\ 1 & -2 & 5 \end{bmatrix}.$$

حال برای Least squares باید معادله Least squares حال برای

$$A^{T}b = av + bv + cv = (a + b + c)v$$

 $A^{T}A = vv^{T} + vv^{T} + vv^{T} = 3vv^{T}$ \Rightarrow $A^{T}A = 3(vv^{T})x = 3v(v^{T}x)$

از آنجایی که $v^T \chi$ یک اسکالر (ضرب داخلی دوبر دار) است معادله را میتوانیم به فرم زیر بازنویسی کنیم:

$$3(v^Tx)v = (a+b+c)v \implies 3(v^Tx) = (a+b+c) \implies (v^Tx) = (a+b+c)/3$$

 $v^Tx = 1x - 2v + 5z$

$$1x - 2y + 5z = (a + b + c)/3$$
 پس داریم: