

Modelos de Computación grado en ingeniería informática

Prácticas resueltas

Autor Carlos Sánchez Páez

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2019-2020

${\bf \acute{I}ndice}$

1. Práctica 1 3

Índice de figuras

1. Práctica 1

Construir un autómata finito determinístico para aceptar cadenas de ceros y unos que tengan un número de ceros que no sea múltiplo de 3. Usar JFLAP para simular el autómata.

Solución

Para construir el siguiente autómata emplearemos la metodología inversa: elaboraremos uno que acepte un número de ceros múltiplo de 3 y cambiaremos sus estados finales por normales y viceversa, ya que así es más sencillo.

Necesitaremos definir tres estados:

- q_0 : hasta ahora el autómata ha leído un número de ceros múltiplo de 3. Es estado final y también inicial, ya que ϵ , la cadena vacía, también debe ser aceptada (0 es múltiplo de 3).
- q_1 : hemos leído un cero extra.
- q_2 : hemos leído dos ceros extra.

Las transiciones serán las siguientes:

- Si leemos un uno, nos quedamos en el mismo estado: $q_0 \stackrel{1}{\Rightarrow} q_0, q_1 \stackrel{1}{\Rightarrow} q_1 \text{ y } q_2 \stackrel{1}{\Rightarrow} q_2.$
- Si leemos un cero, avanzamos al siguiente estado: $q_0 \stackrel{0}{\Rightarrow} q_1, q_1 \stackrel{0}{\Rightarrow} q_2 \text{ y } q_2 \stackrel{0}{\Rightarrow} q_0.$

Por tanto, nuestro autómata sería el siguiente:

Ahora cambiamos los estados normales por finales y viceversa, obteniendo la solución al problema:

