Unitary Time Changes of Stationary Processes Yield Oscillatory Processes

BY STEPHEN CROWLEY
August 12, 2025

Definition 1. [Unitary time change operator on $L^2(\mathbb{R})$] Let $\theta: \mathbb{R} \to \mathbb{R}$ be absolutely continuous with $\theta'(t) \neq 0$ almost everywhere. The unitary time change operator U_{θ} on $L^2(\mathbb{R})$ is defined by

$$(U_{\theta}f)(t) := \sqrt{|\theta'(t)|} \ f(\theta(t)) \qquad \text{for } f \in L^2(\mathbb{R})$$
 (1)

Theorem 2. [Unitarity of U_{θ}] The operator U_{θ} defined above is unitary on $L^{2}(\mathbb{R})$.

Proof. Absolute continuity with $\theta'(t) \neq 0$ a.e. implies the change-of-variables formula

$$\int_{\mathbb{R}} |(U_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} |\theta'(t)| |f(\theta(t))|^2 dt = \int_{\mathbb{R}} |f(u)|^2 du$$
 (2)

so U_{θ} is isometric. Surjectivity follows from the same change-of-variables applied to $U_{\theta^{-1}}$, which exists almost everywhere under these hypotheses. Hence U_{θ} is unitary.

Definition 3. [Oscillatory processes in the sense of Priestley] An oscillatory process Z is specified by a measurable gain function $A_t(\lambda)$ and has oscillatory function

$$\varphi_t(\lambda) := A_t(\lambda) \ e^{i\lambda t} \tag{3}$$

The process Z has spectral representation

$$Z(t) = \int_{\mathbb{R}} \varphi_t(\lambda) \, \Phi(d\lambda) = \int_{\mathbb{R}} A_t(\lambda) \, e^{i\lambda t} \, \Phi(d\lambda) \tag{4}$$

where Φ is a complex orthogonal random measure on $\mathbb R$ with spectral measure F satisfying

$$E\left[\Phi\left(d\,\lambda\right)\,\overline{\Phi\left(d\,\mu\right)}\right] = 1_{\{\lambda = \mu\}} \,d\,F(\lambda) \tag{5}$$

The covariance kernel of Z is

$$R_Z(t,s) := E[Z(t)\overline{Z(s)}] = \int_{\mathbb{R}} A_t(\lambda) \,\overline{A_s(\lambda)} \, e^{i\lambda(t-s)} \, dF(\lambda) \tag{6}$$

Remark 4. [Real-valuedness condition] The oscillatory process Z is real-valued if and only if the gain satisfies conjugate symmetry:

$$A_t(-\lambda) = \overline{A_t(\lambda)}$$
 for F-almost every λ , for each fixed t (7)

Theorem 5. [Unitary time change of stationary process yields oscillatory process] Let X be a zero-mean stationary Gaussian process with Cramér spectral representation

$$X(t) = \int_{\mathbb{R}} e^{i\lambda t} \Phi(d\lambda)$$
 (8)

where Φ is the same complex orthogonal random measure with spectral measure F as in the oscillatory definition. Let U_{θ} be a unitary time change operator as defined above. Then the transformed process

$$Z(t) := (U_{\theta} X)(t) = \sqrt{|\theta'(t)|} X(\theta(t))$$

$$\tag{9}$$

is an oscillatory process in the sense of Priestley with oscillatory function

$$\varphi_t(\lambda) = \sqrt{|\theta'(t)|} \ e^{i\lambda\theta(t)} \tag{10}$$

Proof. Starting from the stationary representation, we compute

$$Z(t) = \sqrt{|\theta'(t)|} \ X(\theta(t)) \tag{11}$$

$$=\sqrt{|\theta'(t)|}\int_{\mathbb{R}}e^{i\lambda\theta(t)}\Phi(d\lambda) \tag{12}$$

$$= \int_{\mathbb{R}} \sqrt{|\theta'(t)|} \ e^{i\lambda\theta(t)} \ \Phi(d\lambda) \tag{13}$$

Defining

$$\varphi_t(\lambda) := \sqrt{|\theta'(t)|} \ e^{i\lambda\theta(t)} \tag{14}$$

we have

$$Z(t) = \int_{\mathbb{R}} \varphi_t(\lambda) \, \Phi(d\lambda)$$

which is precisely the oscillatory form. The covariance kernel becomes

$$R_Z(t,s) = \int_{\mathbb{R}} \varphi_t(\lambda) \ \overline{\varphi_s(\lambda)} \ dF(\lambda) = \int_{\mathbb{R}} \sqrt{|\theta'(t)|| \ \theta'(s)|} \ e^{i\lambda(\theta(t) - \theta(s))} \ dF(\lambda)$$

Theorem 6. [Explicit gain function for unitary time change] In the setting of the previous theorem, the gain function for the oscillatory process

$$Z(t) = (U_{\theta} X)(t) \tag{15}$$

is given by

$$A_t(\lambda) = \sqrt{|\theta'(t)|} e^{i\lambda(\theta(t) - t)}$$
(16)

The oscillatory function is

$$\varphi_t(\lambda) = A_t(\lambda) \ e^{i\lambda t} = \sqrt{|\theta'(t)|} \ e^{i\lambda\theta(t)}$$
(17)

and the covariance kernel takes the form

$$R_Z(t,s) = \int_{\mathbb{R}} A_t(\lambda) \, \overline{A_s(\lambda)} \, e^{i\lambda(t-s)} \, dF(\lambda) \tag{18}$$

Proof. From the previous theorem, we have

$$\varphi_t(\lambda) = \sqrt{|\theta'(t)|} \ e^{i\lambda\theta(t)} \tag{19}$$

Since the oscillatory function must satisfy

$$\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t} \tag{20}$$

one solves for the gain:

$$A_t(\lambda) = \frac{\varphi_t(\lambda)}{e^{i\lambda t}} = \frac{\sqrt{|\theta'(t)|} e^{i\lambda\theta(t)}}{e^{i\lambda t}} = \sqrt{|\theta'(t)|} e^{i\lambda(\theta(t)-t)}$$

and substitutes back into the covariance formula:

$$R_Z(t,s) = \int_{\mathbb{R}} \varphi_t(\lambda) \ \bar{\varphi}_s(\lambda) \} dF(\lambda)$$
 (21)

$$= \int_{\mathbb{R}} A_t(\lambda) e^{i\lambda t} \overline{A_s(\lambda)} e^{i\lambda s} dF(\lambda)$$
 (22)

$$= \int_{\mathbb{R}} A_t(\lambda) \, \overline{A_s(\lambda)} \, e^{i\lambda(t-s)} \, dF(\lambda) \tag{23}$$

Theorem 7. [Unitary time change on $L^2(\mathbb{R})$] Let $\theta: \mathbb{R} \to \mathbb{R}$ be absolutely continuous with $\theta'(t) \neq 0$ almost everywhere. Define the operator

$$(U_{\theta} f)(t) := \sqrt{|\theta'(t)|} \ f(\theta(t)) \qquad \text{for } f \in L^2(\mathbb{R}).$$

Then U_{θ} is unitary on $L^{2}(\mathbb{R})$.

Proof. By absolute continuity and $\theta'(t) \neq 0$ a.e., the change-of-variables formula gives

$$\int_{\mathbb{R}} |(U_{\theta} f)(t)|^2 dt = \int_{\mathbb{R}} |\theta'(t)| |f(\theta(t))|^2 dt = \int_{\mathbb{R}} |f(u)|^2 du,$$

so U_{θ} is an isometry. The inverse time change θ^{-1} exists a.e. and is absolutely continuous, yielding an isometric inverse by the same computation; hence U_{θ} is unitary.

Theorem 8. [Oscillatory processes (Priestley framework)] Fix a finite nonnegative measure F on \mathbb{R} . For each $t \in \mathbb{R}$, let $A_t: \mathbb{R} \to \mathbb{C}$ be measurable with

$$\int_{\mathbb{R}} |A_t(\lambda)|^2 dF(\lambda) < \infty.$$

Define the oscillatory function by

$$\varphi_t(\lambda) := A_t(\lambda) \ e^{i\lambda t}.$$

There exists a complex orthogonal random measure Φ on \mathbb{R} with spectral measure F such that the stochastic integral

$$Z(t) := \int_{\mathbb{R}} \varphi_t(\lambda) \, \Phi(d\lambda)$$

is well-defined for each t, and the covariance kernel satisfies

$$R_Z(t,s) := \mathbb{E}[Z(t)\overline{Z(s)}] = \int_{\mathbb{R}} \varphi_t(\lambda) \ \overline{\varphi_s(\lambda)} \ dF(\lambda) = \int_{\mathbb{R}} A_t(\lambda) \ \overline{A_s(\lambda)} \ e^{i\lambda(t-s)} \ dF(\lambda).$$

Moreover, if X is a zero-mean stationary process with spectral representation $X(t) = \int_{\mathbb{R}} e^{i\lambda t} \Phi(d\lambda)$ for the same F and Φ , then Z reduces to X when $A_t(\lambda) \equiv 1$.

Proof. Given F, there exists a complex orthogonal random measure Φ with spectral measure F, i.e.,

$$\mathbb{E}\left[\Phi\left(d\,\lambda\right)\,\overline{\Phi\left(d\,\mu\right)}\right] = 1_{\{\lambda = \mu\}}\,\,d\,F(\lambda).$$

Square-integrability of φ_t with respect to F ensures the stochastic integral isometric definition of Z(t) and yields

$$\mathbb{E}[Z(t)\overline{Z(s)}] = \int \varphi_t(\lambda) \, \overline{\varphi_s(\lambda)} \, dF(\lambda).$$

Substituting $\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t}$ gives the stated kernel. If $A_t \equiv 1$, then $\varphi_t(\lambda) = e^{i\lambda t}$ and Z coincides with the stationary Cramér form X built from the same Φ .

Theorem 9. [Real-valuedness condition] Let Z be as above with oscillatory function $\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t}$. The process Z is real-valued if and only if, for each fixed t,

$$A_t(-\lambda) = \overline{A_t(\lambda)}$$
 for F -almost every λ ,

equivalently,

$$\varphi_t(-\lambda) = \overline{\varphi_t(\lambda)}$$
 for F -almost every λ .

Proof. Write $Z(t) = \int \varphi_t(\lambda) \Phi(d\lambda)$. Real-valuedness of Z(t) is equivalent to $Z(t) = \overline{Z(t)}$ in $L^2(\Omega)$, i.e.,

$$\int \varphi_t(\lambda) \, \Phi(d \, \lambda) = \overline{\int \varphi_t(\lambda) \, \Phi(d \, \lambda)} = \int \overline{\varphi_t(\lambda)} \, \overline{\Phi(d \, \lambda)}.$$

Using the standard symmetry relation for complex orthogonal random measures associated with real processes (the negative-frequency part is the complex conjugate of the positive-frequency part in the L^2 sense), one arrives at the necessary and sufficient Hermitian symmetry of the integrand: $\varphi_t(-\lambda) = \overline{\varphi_t(\lambda)}$ F-a.e. As $e^{i(-\lambda)t} = \overline{e^{i\lambda t}}$, this is equivalent to $A_t(-\lambda) = \overline{A_t(\lambda)}$ F-a.e.

Theorem 10. [Unitary time change of a stationary process is oscillatory; explicit gain] Let X be a zero-mean stationary Gaussian process with spectral representation

$$X(t) = \int_{\mathbb{R}} e^{i\lambda t} \, \Phi(d\lambda),$$

for a complex orthogonal random measure Φ with spectral measure F. Let θ satisfy the hypotheses of the unitary theorem, and define

$$Z(t) := (U_{\theta} X)(t) = \sqrt{|\theta'(t)|} X(\theta(t)).$$

Then Z is an oscillatory process in the sense above with oscillatory function

$$\varphi_t(\lambda) = \sqrt{|\theta'(t)|} e^{i\lambda\theta(t)},$$

and gain

$$A_t(\lambda) = \sqrt{|\theta'(t)|} e^{i\lambda(\theta(t)-t)}$$

Its covariance kernel is

$$R_Z(t,s) = \int_{\mathbb{R}} \varphi_t(\lambda) \ \overline{\varphi_s(\lambda)} \ dF(\lambda) = \int_{\mathbb{R}} A_t(\lambda) \ \overline{A_s(\lambda)} \ e^{i\lambda(t-s)} \ dF(\lambda).$$

Moreover, Z is real-valued if and only if

$$A_t(-\lambda) = \overline{A_t(\lambda)}$$
 for F -almost every λ , for each t .

Proof. From the previous theorem, we have $\varphi_t(\lambda) = \sqrt{|\theta'(t)|} e^{i\lambda\theta(t)}$. Since the oscillatory function must satisfy $\varphi_t(\lambda) = A_t(\lambda) e^{i\lambda t}$, we solve for the gain:

$$A_t(\lambda) = \frac{\varphi_t(\lambda)}{e^{i\lambda t}} = \frac{\sqrt{|\theta'(t)|} e^{i\lambda\theta(t)}}{e^{i\lambda t}}.$$

Using the exponential division rule $\frac{e^a}{e^b} = e^{a-b}$, we get:

$$A_t(\lambda) = \sqrt{|\theta'(t)|} \frac{e^{i\lambda\theta(t)}}{e^{i\lambda t}} = \sqrt{|\theta'(t)|} e^{i\lambda\theta(t) - i\lambda t} = \sqrt{|\theta'(t)|} e^{i\lambda(\theta(t) - t)}.$$

Substituting back into the covariance formula:

$$R_{Z}(t,s) = \int_{\mathbb{R}} \varphi_{t}(\lambda) \, \overline{\varphi_{s}(\lambda)} \, dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \, e^{i\lambda t} \, \overline{A_{s}(\lambda)} \, e^{i\lambda s} \, dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \, e^{i\lambda t} \, \overline{A_{s}(\lambda)} \, e^{i\lambda s} \, dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \, e^{i\lambda t} \, \overline{A_{s}(\lambda)} \, e^{-i\lambda s} \, dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \, \overline{A_{s}(\lambda)} \, e^{i\lambda t} \, e^{-i\lambda s} \, dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \, \overline{A_{s}(\lambda)} \, e^{i\lambda t - i\lambda s} \, dF(\lambda)$$

$$= \int_{\mathbb{R}} A_{t}(\lambda) \, \overline{A_{s}(\lambda)} \, e^{i\lambda (t - s)} \, dF(\lambda).$$