Лекция 15

6.4. Каноническая задача ЛП

Далее будем будем рассматривать только каноническую задачу ЛП. Напомним её формулировку.

Каноническая задача $\Pi\Pi$ заключается в следующем: минимизировать линейную форму (целевую функцию)

$$\langle \boldsymbol{c}, \boldsymbol{x} \rangle = \sum_{j=1}^{n} c_j x_j, \tag{4.1}$$

переменные которой подчинены следующим линейным ограничениям

$$\boldsymbol{x} \ge \boldsymbol{0} \quad j = 1, \dots, n, \tag{4.2}$$

$$A\mathbf{x} = \mathbf{b}.\tag{4.3}$$

Здесь

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, \quad \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \quad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

причём m < n и $b_i \ge 0$.

Обозначим через P_i *j*-й столбец матрицы A. Таким образом,

$$m{P}_j = egin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}, \quad j = 1, \dots, n.$$

Используя P_i , условия (4.3) записывается в виде

$$x_1 P_1 + x_2 P_2 + \ldots + x_n P_n = P_0 = b.$$
 (4.4)

 Π ланом задачи $\Pi\Pi$ называется вектор $\boldsymbol{x}=(x_1,\ldots,x_n)^t$, удовлетворяющий условиям (4.2) и (4.3).

План $\mathbf{x} = (x_1, \dots, x_n)^t$ называется *опорным*, если векторы \mathbf{P}_i , входящие в разложение (4.4) с положительными коэффициентами x_i , являются линейно независимыми. Непосредственно из определения опорного плана следует, что число положительных компонент не может превышать m.

Опорный план называется neвырож dенным, если он содержит ровно m положительных компонент.

Onmuмальным nланом или pemenueM задачи ЛП называется план, минимизирующий линейную форму (4.1).

Теорема 4.1. Множество всех планов задачи линейного программирования X выпукло и замкнуто.

Доказательство. В случае, если X пусто или состоит из единственного элемента утверждение теоремы тривиально. Допустим, что X содержит по крайней мере два плана: \pmb{x}_1 и \pmb{x}_2 . Тогда

$$x_i \ge 0$$
, $Ax_i = b$, $1 = 1, 2$.

Пусть $\boldsymbol{x} = \alpha \boldsymbol{x}_1 + (1 - \alpha) \boldsymbol{x}_2$ произвольная выпуклая комбинация \boldsymbol{x}_1 и \boldsymbol{x}_2 . Очевидно, что $\boldsymbol{x} \geq \boldsymbol{0}$. Далее

$$A\mathbf{x} = A(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) = \alpha A\mathbf{x}_1 + (1 - \alpha)A\mathbf{x}_2 = \mathbf{b}.$$

Таким образом, $x \in X$. Выпуклость X доказано.

Пусть последовательность $\{x_k\} \subset X$ сходится к некоторой точке x. Очевидно, что $x \geq 0$. Так как матрица A является непрерывной функцией $\mathbb{R}^n \to \mathbb{R}^m$, то

$$A\boldsymbol{x} = A\left(\lim_{k\to\infty}\boldsymbol{x}_k\right) = \lim_{k\to\infty}A\boldsymbol{x}_k = \lim_{k\to\infty}\boldsymbol{b} = \boldsymbol{b}.$$

Следовательно, $\boldsymbol{x} \in X$, т. е. множество X замкнуто. Теорема доказана. Точка \boldsymbol{x} называется выпуклой комбинацией точек $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m$, если

$$\boldsymbol{x} = \sum_{i=1}^{m} \alpha_i \boldsymbol{x}_i, \quad \alpha_i \ge 0, \quad i = 1, \dots, m, \quad \sum_{i=1}^{m} \alpha_i = 1.$$

Теорема 4.2. Выпуклое множество X содержит все выпуклые комбинации своих точек.

Доказательство. Требуется показать, что для любого $m \in \mathbb{N}$ из условий

$$\boldsymbol{x} = \sum_{i=1}^{m} \alpha_i \boldsymbol{x}_i, \quad \boldsymbol{x}_i \in X, \quad \alpha_i \ge 0 \ (i = \overline{1, m}), \quad \sum_{i=1}^{m} \alpha_i = 1,$$
 (4.5)

следует $\boldsymbol{x} \in X$. Проведём индукцию по m. Если m=1, то высказывание тривиально. Предположим, что оно уже доказано для m=k, и пусть (4.5) выполняется при m=k+1. Если $\alpha_{k+1}=1$, то $\alpha_1=\ldots=\alpha_k=0$ и, значит $\boldsymbol{x}=\boldsymbol{x}_{k+1}\in X$. Если же $\alpha_{k+1}<1$, то мы можем записать

$$\mathbf{x} = (1 - \alpha_{k+1})\mathbf{x}' + \alpha_{k+1}\mathbf{x}_{k+1}, \quad \mathbf{x}' = \sum_{i=1}^{k} \frac{\alpha_i}{1 - \alpha_{k+1}}\mathbf{x}_i.$$
 (4.6)

Ясно, что x' — выпуклая комбинация точек x_1, \ldots, x_k . Тогда, по индукционному предположению, $x' \in X$. Поэтому из (4.6) с учётом выпуклости X следует $x \in X$.

Точка \boldsymbol{x} выпуклого множества C называется $\kappa pa \check{u} he \check{u}$ (или $y \epsilon no bo \check{u}$), если она не может быть выражена в виде выпуклой комбинации каких-либо двух различных точек этого множества.

Bыпуклой оболочкой <math>C(S) множества S называется совокупность всевозможных выпуклых комбинаций, составленных из точек множества S. Множество C(S) является наименьшим выпуклым множеством, содержащим S. Если S состоит из восьми вершин куба, то C(S) совпадает со всем кубом; если S — окружность, то C(S) — полный круг.

Если множество S состоит из конечного числа точек, его выпуклая оболочка C(S) называется выпуклым многогранником.

Теорема 4.3. (Теорема о представлении) Любая точка выпуклого, компактного множества может быть представлена в виде выпуклой комбинаций конечного числа крайних точек этого множества.

Множество планов задачи линейного программирования X может быть либо пустым множеством, либо выпуклым многогранником, либо выпуклой многогранной областью, уходящей в бесконечность.

Теорема 4.4. Пусть X — выпуклый многогранник. Линейная форма (4.1) достигает минимума в крайней точке. Если линейная форма принимает минимальное значение более чем в одной крайней точке, то она достигает того же значения в любой точке, являющейся выпуклой комбинацией этих точек.

Доказательство. По предположению X — выпуклый многогранник и, следовательно, имеет конечное число крайних точек.

Обозначим крайние точки через $\boldsymbol{x}_1, \dots, \boldsymbol{x}_p$, а оптимальный план через \boldsymbol{x}_0 . Предположим, что \boldsymbol{x}_0 не является крайней точкой, тогда мы можем записать

$$\boldsymbol{x}_0 = \sum_{i=1}^p \alpha_i \boldsymbol{x}_i, \quad \alpha_i \ge 0, \quad \sum_{i=1}^p \alpha_i = 1.$$

Так как $f(\boldsymbol{x}) = <\boldsymbol{c}, \boldsymbol{x}>$ — линейный функционал, то

$$f(\boldsymbol{x}_0) = f\left(\sum_{i=1}^p \alpha_i \boldsymbol{x}_i\right) = \sum_{i=1}^p \alpha_i f(\boldsymbol{x}_i) = m,$$
(4.7)

где $m=\min_{\pmb{x}\in X}f(\pmb{x})$. Пусть $f(\pmb{x}_s)=\min_i f(\pmb{x}_i)$. Отсюда, учитывая равенство $\sum_{i=1}^p \alpha_i=1$, получаем

$$f(\boldsymbol{x}_0) \ge \sum_{i=1}^p \alpha_i f(\boldsymbol{x}_s) = f(\boldsymbol{x}_s).$$

Так как по предположению, $f(x_0) \le f(x)$ для всех $x \in X$, то $f(x_0) = f(x_s) = m$.

Итак, существует крайняя точка \boldsymbol{x}_s , в которой линейная форма $f(\boldsymbol{x})$ принимает минимальное значение.

Для доказательства второй части теоремы допустим, что $f(\boldsymbol{x})$ принимает минимальное значение более чем в одной крайней точке, например в $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_q$. Тогда

$$f(\boldsymbol{x}_1) = f(\boldsymbol{x}_2) = \ldots = f(\boldsymbol{x}_q) = m.$$

Пусть

$$\boldsymbol{x} = \sum_{i=1}^{q} \alpha_i \boldsymbol{x}_i, \quad \alpha_i \ge 0, \quad \sum_{i=1}^{q} \alpha_i = 1.$$

Тогда

$$f(\boldsymbol{x}_0) = f\left(\sum_{i=1}^q \alpha_i \boldsymbol{x}_i\right) = \sum_{i=1}^q \alpha_i f(\boldsymbol{x}_i) = \sum_{i=1}^q \alpha_i m = m.$$

Доказательство закончено. ■

Согласно теореме (4.4), поиски оптимального плана задачи ЛП можно ограничить перебором конечного числа крайних точек X.

Теорема 4.5. Если известно, что система векторов P_1, \ldots, P_k линейно независима и такова, что

$$x_1 P_1 + x_2 P_2 + \ldots + x_k P_k = P_0$$

где все $x_i \ge 0$, то точка $\mathbf{x} = (x_1, \dots, x_k, 0, \dots, 0)$ является крайней точкой множества X.

Доказательство. Предположим, что \boldsymbol{x} не является крайней точкой. В этом случае можно записать

$$x = \alpha x_1 + (1 - \alpha)x_2, \quad 0 < \alpha < 1.$$

Так как компоненты векторов \boldsymbol{x}_1 и \boldsymbol{x}_2 неотрицательны, $0 < \alpha < 1$ и последние n-k компонент вектора \boldsymbol{x} равны нулю, соответствующие компоненты векторов \boldsymbol{x}_1 и \boldsymbol{x}_2 также равняются нулю, т.е.

$$\mathbf{x}_1 = (x_1^1, \dots, x_k^1, 0, \dots, 0), \quad \mathbf{x}_2 = (x_1^2, \dots, x_k^2, 0, \dots, 0).$$

Поскольку \boldsymbol{x}_1 и \boldsymbol{x}_2 являются планами, получаем

$$A\boldsymbol{x}_1 = \boldsymbol{b}, \quad A\boldsymbol{x}_1 = \boldsymbol{b}.$$

Перепишем эти уравнения в векторной форме

$$x_1^1 P_1 + x_2^1 P_2 + \ldots + x_k^1 P_k = P_0,$$

 $x_1^2 P_1 + x_2^2 P_2 + \ldots + x_k^2 P_k = P_0.$

Векторы P_1, \ldots, P_k линейно независимы, и, следовательно, P_0 выражается через них единственным образом. Поэтому $x_i^1 = x_i^2 = x_i$. Итак, \boldsymbol{x} невозможно представить в виде выпуклой комбинации двух различных точек из X. Следовательно, \boldsymbol{x} — крайняя точка X.

Теорема 4.6. Если $\mathbf{x} = (x_1, \dots, x_n)$ является крайней точкой из X, то векторы, соответствующие положительным x_i , образуют линейно независимую систему.

Доказательство. Пусть не равными нулю являются первые k компонент вектора ${\pmb x}$, так что $\sum\limits_{i=1}^k x_i {\pmb P}_i = {\pmb P}_0.$

Допустим, что система P_1, \ldots, P_k линейно зависима. Тогда существует линейная комбинация её векторов, равная нулевому вектору

$$d_1 \mathbf{P}_1 + d_2 \mathbf{P}_2 + \ldots + d_k \mathbf{P}_k = \mathbf{0}, \tag{4.8}$$

где по крайней мере один из коэффициентов $d_i \neq 0$. По условию теоремы

$$x_1 \mathbf{P}_1 + x_2 \mathbf{P}_2 + \ldots + x_k \mathbf{P}_k = \mathbf{P}_0. \tag{4.9}$$

Умножим обе части равенства (4.8) на d>0. Прибавляя и вычитая полученный результат из (4.9), имеем

$$\sum_{i=1}^{k} x_i \boldsymbol{P}_i + d \sum_{i=1}^{k} d_i \boldsymbol{P}_i = \boldsymbol{P}_0$$

$$\sum_{i=1}^k x_i \boldsymbol{P}_i - d \sum_{i=1}^k d_i \boldsymbol{P}_i = \boldsymbol{P}_0.$$

Таким образом, система уравнений (4.9) имеет два решения:

$$\mathbf{x}_1 = (x_1 + dd_1, \dots, x_k + dd_k, 0, \dots, 0),$$

$$\mathbf{x}_2 = (x_1 - dd_1, \dots, x_k - dd_k, 0, \dots, 0)$$

(заметим, что они могут и не быть планами). Поскольку все $x_i > 0$, d можно выбрать настолько малым, чтобы первые k компонент векторов \boldsymbol{x}_1 и \boldsymbol{x}_2 были положительными. Тогда \boldsymbol{x}_1 и \boldsymbol{x}_2 станут планами. При этом

$$\boldsymbol{x} = \frac{1}{2}\boldsymbol{x}_1 + \frac{1}{2}\boldsymbol{x}_2,$$

что противоречит предположению о том, что \boldsymbol{x} — крайняя точка. Значит система векторов $\boldsymbol{P}_1,\ldots,\boldsymbol{P}_k$ линейно независима.

Поскольку каждая система из m+1 векторов в m-мерном пространстве линейно зависима, среди компонент крайней точки множества планов X не может быть более чем m положительных.

Следствие. Каждой крайней точке из X соответствует m линейно независимых векторов из данной системы P_1, P_2, \ldots, P_n ,

Доказательство. Теорема 4.6 утверждает, что имеется $k \leq m$ таких векторов. При k=m следствие доказано. Пусть k < m и существует не более r-k таких векторов P_{k+1}, \ldots, P_r , что

$$P_1,\ldots,P_k,P_{k+1},\ldots,P_r$$

— линейно независимая система. Если r < m, то остальные n - r векторов зависят от P_1, \ldots, P_r . Но это противоречит предположению о существовании m линейно независимых векторов в данной системе P_1, P_2, \ldots, P_n . Поэтому r = m.

Итак, каждой крайней точке $\boldsymbol{x}=(x_1,x_2,\ldots,x_n)$ соответствует m линейно независимых векторов $\boldsymbol{P}_1,\,\boldsymbol{P}_2,\,\ldots,\,\boldsymbol{P}_m$ таких, что

$$\sum_{i=1}^{k} x_i \mathbf{P}_i + \sum_{i=k+1}^{m} 0 \, \mathbf{P}_i = \mathbf{P}_0.$$

Следствие доказано.

Теоремы 4.5 и 4.6 могут быть объединены в следующем утверждении:

Теорема 4.7. $\boldsymbol{x} = (x_1, \dots, x_n)$ является крайней точкой множества планов X в том и только в том случае, если положительные компоненты x_j являются коэффициентами при линейно независимых векторах \boldsymbol{P}_j в разложении

$$\sum_{j=1}^n x_j \boldsymbol{P}_j = \boldsymbol{P}_0.$$

Лекция 16

6.5. Симплекс-метод

5.1. С помощью симплекс-метода решить задачу ЛП:

$$z = x_2 - 3x_3 + 2x_5 \to \min,$$

$$\begin{cases} x_1 + 3x_2 - x_3 + 2x_5 = 7, \\ -2x_2 + 4x_3 + x_4 = 12, \\ -4x_2 + 3x_3 + 8x_5 + x_6 = 10, \end{cases}$$

$$x_i \ge 0, \quad i = \overline{1, 6}.$$

Перепишем задачу в векторном виде: $\sum_{j=1}^6 x_j {\pmb P}_j = {\pmb P}_0$, где

$$P_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, P_{2} = \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}, P_{3} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}, P_{4} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, P_{5} = \begin{pmatrix} 2 \\ 0 \\ 8 \end{pmatrix},$$
$$P_{6} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, P_{0} = \mathbf{b} = \begin{pmatrix} 7 \\ 12 \\ 10 \end{pmatrix}.$$

Запишем симплекс-таблицу №1.

				0	1	-3	0	2	0
i	BS	c	P_0	P_1	P_2	P_3	P_4	P_5	P_6
1	P_1	0	7	1	3	-1	0	2	0
2	P_4	0	12	0	-2	4	1	0	0
3	P_6	0	10	0	-4	3	0	8	1
4			0	0	-1	3	0	-2	0

Симплекс-таблица №2.

				0	1	-3	0	2	0
i	BS	c	P_0	P_1	P_2	P_3	P_4	P_5	P_6
1	P_1	0	10	1	5/2	0	1/4	2	0
2	P_3	-3	3	0	$\overline{-1/2}$	1	1/4	0	0
3	P_6	0	1	0	-5/2	0	-3/4	8	1
4			-9	0	1/2	0	-3/4	-2	0

Симплекс-таблица №3.

				0	1	-3	0	2	0
i	BS	c	P_0	P_1	P_2	P_3	P_4	P_5	P_6
1	P_2	1	4	2/5	1	0	1/10	4/5	0
2	P_3	-3	5	1/5	0	1	3/10	2/5	0
3	P_6	0	11	1	0	0	-1/2	10	1
4			-11	-1/5	0	0	-4/5	-12/5	0

В результате

$$\mathbf{x} = (0, 4, 5, 0, 0, 11), \quad z_{min} = -11.$$

5.2. С помощью симплекс-метода решить задачу ЛП:

$$z = x_1 - x_2 - x_3 + x_4 - 2x_5 + x_6 \to \min,$$

$$\begin{cases} x_1 & + 2x_4 - 3x_5 - 2x_6 = 5, \\ x_2 & + 3x_4 - 2x_5 + 4x_6 = 6, \\ x_3 - 4x_4 - x_5 + 2x_6 = 3, \end{cases}$$

$$x_i \ge 0, \quad i = \overline{1, 6}.$$

Перепишем задачу в векторном виде: $\sum_{j=1}^{6} x_j \boldsymbol{P}_j = \boldsymbol{P}_0$, где

$$\boldsymbol{P}_{0} = \begin{pmatrix} 5 \\ 6 \\ 3 \end{pmatrix}, \quad \boldsymbol{P}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{P}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{P}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},$$
$$\boldsymbol{P}_{4} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}, \quad \boldsymbol{P}_{5} = \begin{pmatrix} -3 \\ -2 \\ -1 \end{pmatrix}, \quad \boldsymbol{P}_{6} = \begin{pmatrix} -2 \\ 4 \\ 2 \end{pmatrix}.$$

Запишем симплекс-таблицу.

				1	-1	-1	1	-2	1
i	BS	c	P_0	P_1	P_2	P_3	P_4	P_5	P_6
1	P_1	1	5	1	0	0	2	-3	-2
2	P_2	-1	6	0	1	0	3	-2	4
3	P_3	-1	3	0	0	1	-4	-1	2
4			-4	0	0	0	2	2	- 9

Из таблицы видно, что план $\boldsymbol{x}=(5,6,3,0,0,0)$ не оптимален и его можно улучшить за счёт включения в базис вектора \boldsymbol{P}_4 или \boldsymbol{P}_5 . Рассмотрим \boldsymbol{P}_5 . Имеем

$$5P_1 + 6P_2 + 3P_3 = P_0,$$

 $-3P_1 - 2P_2 - P_3 = P_5.$

Умножим второе уравнение на $\theta > 0$ и вычтем из первого. Получим

$$(5+3\theta)P_1 + (6+2\theta)P_2 + (3+\theta)P_3 = P_0 - \theta P_5.$$

Обозначим

$$x(\theta) = (5 + 3\theta, 6 + 2\theta, 3 + \theta, 0, \theta).$$

Очевидно, что $\boldsymbol{x}(\theta)$ является планом (не опорным) для любого $\theta > 0$. Далее

$$z(\theta) = \langle \boldsymbol{c}, \boldsymbol{x}(\theta) \rangle = (5+3\theta) - (6+2\theta) - (3+\theta) - 2\theta = -4-2\theta.$$

Отсюда видно, что целевая функция данной задачи не ограничена снизу.

5.3. Решить задачи ЛП симплекс-методом с использованием искусственного базиса

$$A = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 4 & 1 & 1 & 2 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2 \\ 8 \\ 2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 5 \\ 1 \\ -1 \\ 1 \\ 2 \end{pmatrix}, \quad \boldsymbol{x} \ge \mathbf{0}.$$

Добавим в ограничения искусственные переменные $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0$:

$$\begin{cases}
-x_1 + 2x_2 + x_3 & + y_1 & = 2, \\
4x_1 + x_2 + x_3 + 2x_4 + x_5 & + y_2 & = 8, \\
x_1 + x_2 & + x_5 & + y_3 = 2.
\end{cases}$$

Будем искать минимум новой целевой функции:

$$w = y_1 + y_2 + y_3$$
.

Перепишем задачу в векторном виде: $\sum_{j=1}^5 x_j \boldsymbol{P}_j + \sum_{j=1}^3 y_j \boldsymbol{Q}_j = \boldsymbol{P}_0$, где

$$m{P}_1 = egin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}, \ m{P}_2 = egin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \ m{P}_3 = egin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ m{P}_4 = egin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \ m{P}_5 = egin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix},$$

$$oldsymbol{Q}_1 = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}, \; oldsymbol{Q}_2 = egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix}, \; oldsymbol{Q}_3 = egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}, \; oldsymbol{P}_0 = egin{pmatrix} 2 \ 8 \ 2 \end{pmatrix}.$$

Запишем симплекс-таблицу №1.

				0	0	0	0	0	1	1	1
i	BS	w	P_0	P_1	P_2	P_3	P_4	P_5	Q_1	Q_2	Q_3
1	Q_1	1	2	-1	2	1	0	0	1	0	0
2	Q_2	1	8	4	1	1	2	1	0	1	0
3	Q_3	1	2	1	1	0	0	1	0	0	1
4			12	4	4	2	2	2	0	0	0

Симплекс-таблица №2.

				0	0	0	0	0	1	1	1
i	BS	w	P_0	P_1	P_2	P_3	P_4	P_5	Q_1	Q_2	Q_3
1	P_2	0	1	-1/2	1	1/2	0	0	1/2	0	0
2	Q_2	1	7	9/2	0	1/2	2	1	-1/2	1	0
3	Q_3	1	1	3/2	0	-1/2	0	1	-1/2	0	1
4			8	6	0	0	2	2	-2	0	0

Симплекс-таблица №3.

				0	0	0	0	0	1	1	1
i	BS	w	P_0	P_1	P_2	P_3	P_4	P_5	Q_1	Q_2	Q_3
1	P_2	0	1	-1/2	1	1/2	0	0	1/2	0	0
2	Q_2	1	6	3	0	1	2	0	0	1	-1
3	P_5	0	1	3/2	0	-1/2	0	1	-1/2	0	1
4			6	3	0	1	2	0	-1	0	-2

Симплекс-таблица №4.

				0	0	0	0	0	1	1	1
i	BS	w	P_0	P_1	P_2	P_3	P_4	P_5	Q_1	Q_2	Q_3
1	P_2	0	1	-1/2	1	1/2	0	0	1/2	0	0
2	P_4	0	3	3/2	0	1/2	1	0	0	1/2	-1/2
3	P_5	0	1	3/2	0	-1/2	0	1	-1/2	0	1
4			0	0	0	0	0	0	-1	-1	-1

Запишем симплекс-таблицу №1 исходной задачи.

				-5	-1	1	-1	-2
i	BS	c	P_0	P_1	P_2	P_3	P_4	P_5
1	P_2	-1	1	-1/2	1	1/2	0	0
2	P_4	-1	3	3/2	0	1/2	1	0
3	P_5	-2	1	3/2	0	-1/2	0	1
4			-6	1	0	-1	0	0

Симплекс-таблица №2 исходной задачи.

				-5	-1	1	-1	-2
i	BS	c	P_0	P_1	P_2	P_3	P_4	P_5
1	P_2	-1	4/3	0	1	1/3	0	1/3
2	P_4	-1	2	0	0	1	1	-1
3	P_1	-5	2/3	1	0	-1/3	0	2/3
4			-20/3	0	0	-2/3	0	-2/3

Условия оптимальности выполнено. В результате

$$f_{\text{max}} = f(\mathbf{x}_*) = \frac{20}{3}, \quad \mathbf{x}_* = (2/3, 4/3, 0, 2, 0)^t.$$

5.4. Рассмотрим задачу ЛП:

$$z = x_1 - x_2 \to \min,$$

$$\begin{cases} x_1 + x_2 = 3, \\ x_1 + x_2 = 2, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

Очевидно, что эта задача имеет пустое множество планов.

Добавим в ограничения искусственные переменные $y_1 \ge 0, y_2 \ge 0$:

$$\begin{cases} x_1 + x_2 + y_1 & = 3, \\ x_1 + x_2 & + y_2 = 2, \end{cases}$$

Будем искать минимум новой целевой функции

$$w = y_1 + y_2.$$

Запишем задачу в векторном виде: $x_1 \boldsymbol{P}_1 + x_2 \boldsymbol{P}_2 + y_1 \boldsymbol{Q}_1 + y_2 \boldsymbol{Q}_2 = \boldsymbol{P}_0$, где

$$m{P}_0 = egin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad m{P}_1 = egin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad m{P}_2 = egin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad m{Q}_1 = egin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad m{Q}_2 = egin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Запишем симплекс-таблицу.

				0	0	1	1
i	BS	w	P_0	P_1	P_2	Q_1	Q_2
1	Q_1	1	3	1	1	1	0
2	Q_2	1	2	1	1	0	1
4			5	2	2	0	0

Из таблицы видно, что план $\mathbf{x} = (0,0,3,2)$ не оптимален и его можно улучшить за счёт включения в базис вектора \mathbf{P}_1 или \mathbf{P}_2 . Рассмотрим \mathbf{P}_1 . Имеем

$$3Q_1 + 2Q_2 = P_0,$$

 $Q_1 + Q_2 = P_1.$

Умножим второе уравнение на $\theta > 0$ и вычтем из первого. Получим

$$(3-\theta)\mathbf{Q}_1 + (2-\theta)\mathbf{Q}_2 + \theta \mathbf{P}_1 = \mathbf{P}_0.$$

Симплекс-таблица №2.

				0	0	1	1
i	BS	w	P_0	P_1	P_2	Q_1	Q_2
1	Q_1	1	1	0	0	1	-1
2	P_1	0	2	1	1	0	1
4			1	0	0	0	-2

План $\mathbf{x} = (2, 0, 1, 0)$ является оптимальным и $w_{min} = 1$. В результате, получается, что исходная задача имеет пустое множество планов.