NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING ACADEMIC YEAR 2022-2023 SEMESTER 1

EE3013 SEMINCONDUCTOR DEVICES AND PROCESSING

Diffusion

Q1.

- a) If arsenic is diffused into a thick slice of silicon doped with 1×10^{15} boron atoms/ cm³ at a temperature of 1100° C for 3 hr, what is junction depth if the surface concentration is held constant at 4×10^{18} atoms/cm⁻³? $D_{As}=3\times10^{-14}$ cm²/s at 1100° C.
- b) If the diffusion temperature is lowered to 900°C, what is the junction depth? $D_{As}=1\times10^{-16}$ cm²/s at 900°C.

(a)
$$N_{AS}(x,t) = N_{AS0} \cdot \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

$$D = 3 \times 10^{-14} \text{ cm}^2 / s$$

$$t = 3 \times 60 \times 60 \text{ s}$$
when $x = x_j, N_{AS}(x_j, t) = N_B$

Or
$$1 \times 10^{15} = 4 \times 10^{18} \cdot \text{erfc} \left(\frac{x_j}{3.6 \times 10^{-5}} \right)$$

 $\text{erfc}(z) = 2.5 \times 10^{-4} \implies (\text{erf}(z) = 0.99975)$

From table of error function: z = 2.595 (can also be from erfc function).

$$X_i = (3.6 \times 10^{-5})(2.595) \text{ cm}$$
 $x_i = 0.93 \ \mu m$ ([1 cm = 10⁴ \ \mu m]

b) At a lower diffusion temperature of 900°C

$$\frac{x_j}{2\sqrt{Dt}} = \frac{x_j}{2\sqrt{1 \times 10^{16} \times 3 \times 60 \times 60}} = \frac{x_j}{2.078 \times 10^{-6}} = 2.595$$

or $x_j = 0.054 \ \mu m$ So at lower temperature, junction is shallower

Error Function Table

Z	erf(z)	erfc(z)	Z	erf(z)	erfc(z)
0.00	0	1	1.3	0.9340079	0.0659921
0.05	0.056372	0.943628	1.4	0.9522851	0.0477149
0.10	0.1124629	0.8875371	1.5	0.9661051	0.0338949
0.15	0.167996	0.832004	1.6	0.9763484	0.0236516
0.20	0.2227026	0.7772974	1.7	0.9837905	0.0162095
0.25	0.2763264	0.7236736	1.8	0.9890905	0.0109095
0.30	0.3286268	0.6713732	1.9	0.9927904	0.0072096
0.35	0.3793821	0.6206179	2.0	0.9953223	0.0046777
0.40	0.4283924	0.5716076	2.1	0.9970205	0.0029795
0.45	0.4754817	0.5245183	2.2	0.9981372	0.0018628
0.50	0.5204999	0.4795001	2.3	0.9988568	0.0011432
0.55	0.5633234	0.4366766	2.4	<u>0.</u> 9993115	0.0006885
0.60	0.6038561	0.3961439	2.5	0.999593	0.000407
0.65	0.6420293	0.3579707	2.6	0.999764	0.000236
0.70	0.6778012	0.3221988	2.7	0.9998657	0.0001343
0.75	0.7111556	0.2888444	2.8	0.999925	0.000075
0.80	0.742101	0.257899	2.9	0.9999589	0.0000411
0.85	0.7706681	0.2293319	3.0	0.9999779	0.0000221
0.90	0.7969082	0.2030918	3.1	0.9999884	0.0000116
0.95	0.8208908	0.1791092	3.2	0.999994	0.000006
1.00	0.8427008	0.1572992	3.3	0.9999969	0.0000031
1.20	0.910314	0.089686	3.5	0.9999993	0

Week 5 – Thermal Diffusion 4

Q2. A pn junction with a junction depth of 2 μ m is formed by diffusing predeposited boron atoms into the n-type silicon substrate at 1150°C for 1 hr. The dose for the pre-deposited boron atoms is 3×10^{13} boron atoms/cm². Assuming that the diffusion is Gaussian, find the doping of the n-type silicon substrate. Given that $D_B=9.2\times10^{-13}$ cm²/s at 1150°C.

Solution:

Pre-deposited Boron atom concentration

Constant Source
$$N(x,t) = \frac{Q}{\sqrt{\pi Dt}} e^{-\frac{x^2}{4Dt}}$$
, diffusion

For t = 1 hr, N =
$$\frac{Q}{\sqrt{\pi Dt}} = \frac{3 \times 10^{13}}{\sqrt{\pi \times 9.2 \times 10^{-13} \times 1 \times 60 \times 60}}$$
$$= 2.94 \times 10^{17} \text{ cm}^{-3}$$

$$N(x,t) = N_{\text{backgroud}}$$

Junction depth =
$$2\mu m = 2x10^{-4}$$
 cm
$$\sqrt{(2x10^{-4})^2}$$

$$N_{\text{backgroud}} = 2.94 \times 10^{17} \exp\left[-\frac{(2 \times 10^{-4})^2}{(4)(9.2 \times 10^{-13})(1 \times 60 \times 60)}\right] = 1.44 \times 10^{16} \, \text{cm}^{-3}$$

Q3. In a diffusion step 2.25×10^{13} boron atoms/cm² were deposited on the surface of a silicon slice. The slice was subsequently placed in a diffusion furnace tube at 1145° C for 2 hr. The n-type substrate had an impurity concentration of 1×10^{16} cm⁻³. Assuming that the diffusion is Gaussian, find the depth of the p-n junction in micrometers. $D_B=9.2\times10^{-13}$ cm²/s at 1145° C.

This is a limited source diffusion:

Surface concentration

 $N(x,t) = \frac{Q}{\sqrt{\pi Dt}} e^{-\frac{x^2}{4Dt}},$

$$\frac{Q}{\sqrt{\pi Dt}} = \frac{2.25 \times 10^{3}}{\sqrt{\pi \times 9.2 \times 10^{-13} \times 2 \times 60 \times 60}}$$
$$= 1.56 \times 10^{17} \text{ cm}^{-3}$$

After diffusion, when $x = x_i$

$$\longrightarrow N(x,t) = N_{\text{backgroud}}$$

$$1 \times 10^{16} = 1.56 \times 10^{17} \exp(-\frac{x_j^2}{2.65 \times 10^{-8}})$$

Solving
$$x_j = \pm 2.7 \,\mu m$$

Note: $X_i = -2.7 \mu m$ cannot be the solution

Q4. An emitter-base junction is formed by diffusing phosphorous atoms into p-type silicon for 1 hr at 1000°C. The phosphorous concentration at the silicon surface is maintained at the limit of solid solubility. Assuming that the base has a uniform p-type background concentration of 1x10¹⁷ atoms/cm⁻³, locate the emitter-base junction.

If the emitter diffusion is performed at 900° C, determine the diffusion time for obtaining the same junction depth. Solid solubility of P in Si is suitably assumed. $D_P=1x10^{-15}$ cm²/s at 900° C and $3x10^{-14}$ cm²/s at 1000° C.

Since P concentration at surface maintained at solid-solubility limit, the diffusion is constant source

$$N(x,t) = N_s \cdot \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

Solid solubility limit for P in Si at 1000°C =10²¹ cm⁻³ (see lecture notes and also available in most textbooks). So, N_s=10²¹cm⁻³

$$x = x_j \implies N(x_j, t) = 1 \times 10^{17};$$

$$1 \times 10^{17} = 10^{21} \operatorname{erfc}(Z)$$

$$\operatorname{erfc}(Z) = 0.0001$$

→ 7 –	X_j	=2.755;
$\rightarrow L$ –	\wedge	-2.755,
	$2\sqrt{Dt}$	

z	erf(z)	erfc(z)
1.3	0.9340079	0.0659921
1.4	0.9522851	0.0477149
1.5	0.9661051	0.0338949
1.6	0.9763484	0.0236516
1.7	0.9837905	0.0162095
1.8	0.9890905	0.0109095
1.9	0.9927904	0.0072096
2.0	0.9953223	0.0046777
2.1	0.9970205	0.0029795
2.2	0.9981372	0.0018628
2.3	0.9988568	0.0011432
2.4	0.9993115	0.0006885
2.5	0.999593	0.000407
<u> </u>	0.999764	0.000236
2.7	0.9998657	0.0001343
2.8	0.999925	0.000075

• At 900 °C, then solid solubility of P is 5 × 10²⁰ cm⁻³ and diffusion coefficient of P is 1×10⁻¹⁵ cm²/s.

To have the same junction depth of 0.575×10⁻⁴ cm,

$$1 \times 10^{17} = 5 \times 10^{20} erfc(\frac{0.573 \times 10^{-4}}{2\sqrt{1 \times 10^{-15} \times t}})$$

$$0.0002 = erfc(\frac{0.573 \times 10^{-4}}{2\sqrt{1 \times 10^{-15} \times t}})$$

$$\frac{0.575 \times 10^{-4}}{2\sqrt{1 \times 10^{-15} \times t}} = 2.63$$

t = 119499 sec = 33.2 hours

\		
z	erf(z)	erfc(z)
1.3	0.9340079	0.0659921
1.4	0.9522851	0.0477149
1.5	0.9661051	0.0338949
1.6	0.9763484	0.0236516
1.7	0.9837905	0.0162095
1.8	0.9890905	0.0109095
1.9	0.9927904	0.0072096
2.0	0.9953223	0.0046777
2.1	0.9970205	0.0029795
2.2	0.9981372	0.0018628
2.3	0.9988568	0.0011432
2.4	0.9993115	0.0006885
2.5	0 999593	0.000407
2.6	0.999764	0.000236
2.7	- 0.999 8 65 7	-0.0001343
2.8	0.999925	0.000075