Lab01-Proof

CS363-Computability Theory, Xiaofeng Gao, Spring 2016

- * Please upload your assignment to TA's FTP. Contact nongeek.zv@gmail.com for any questions. * Name:Wenhao Zhu StudentId: 5130309717 Email: weehowe.z@gmail.com
- 1. Prove that for any integer n > 2, there is a prime p satisfying n . (Hint: consider a prime factor <math>p of n! 1 and use proof by contradiction)

Proof. Assume that for any integer n > 2, there is no prime p satisfying n . That means for any <math>x satisfying n < x < n! is not a prime. Then we consider a prime factor p of n! - 1, if p <= n, then p is also a prime factor of n! according to the definition of factorial. Since p|n! and p|n! - 1, we know p|1, there is a contradiction. So p must be p > n, then we find a prime p satisfying n which contradicts the assumption. Therefore, for any integer <math>n > 2, there is a prime p satisfying n .

2. Use minimal counterexample principle to prove that: for every integer n > 17, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$.

Proof. If $n = i_n \times 4 + j_n \times 7$ is not true for every integer n > 17, then there are values of n for which makes the equation false, and there must be a smallest such value, say n = k. Since $18 = 1 \times 4 + 2 \times 7$, $19 = 3 \times 4 + 1 \times 7$, $20 = 5 \times 4 + 0 \times 7$. we have $k \ge 21$. Since k is the smallest value, we know k - 1 satisfying the equation, which means there exist integers $i_{k-1} \ge 0$ and $j_{k-1} \ge 0$, such that $k - 1 = i_{k-1} \times 4 + j_{k-1} \times 7$. However, we have:

$$k = i_{k-1} \times 4 + j_{k-1} \times 7 + 1$$

$$\Leftrightarrow k = (i_{k-1} + 2) \times 4 + (j_{k-1} - 1) \times 7$$

$$\Leftrightarrow k = (i_{k-1} - 5) \times 4 + (j_{k-1} + 1) \times 7$$

(1) If $j_{k-1} \ge 1$, denote $i_k = i_{k-1} + 2$, $j_k = j_{k-1} - 1$, then we know $i_k > i_{k-1} \ge 0$, $j_k = j_{k-1} - 1 \ge 0$. Thus $n = i_n \times 4 + j_n \times 7$ is still true, we have derived a contradiction.

(2) If $j_{k-1} - 1 = 0$, then we know $i_{k-1} = (k-1)/4 \ge 5$, denote $i_k = i_{k-1} - 5$, $j_k = j_{k-1} + 1$. We can get $i_k = i_{k-1} - 5 \ge 0$ and $j_k = j_{k-1} + 1 \ge 0$. Thus $n = i_n \times 4 + j_n \times 7$ is still true, we have derived a contradiction.

In conclusion, for every integer n > 17, there exist integers $i_n \ge 0$ and $j_n \ge 0$, such that $n = i_n \times 4 + j_n \times 7$.

3. Suppose $a_0 = 1$, $a_1 = 2$, $a_2 = 3$, $a_k = a_{k-1} + a_{k-2} + a_{k-3}$ for $k \ge 3$. Use strong principle of mathematical induction to prove that $a_n \le 2^n$ for all integers $n \ge 0$.

Proof. Define P(n) be the statement that $a_n \leq 2^n$. We will try to prove that P(n) is true for every integer $n \geq 0$.

Basis step. $P(0) = 1 \le 2^0$, $P(1) = 2 \le 2^1$, $P(2) = 3 \le 2^2$, thus P(0), P(1), P(2) are true. **Induction hypothesis.** For $k \ge 0$ and $0 \le n \le k$, P(n) is true. (Strong Principle) **Proof of induction step.** Then we prove P(k+1).

$$a_{k+1} = a_k + a_{k-1} + a_{k-2}$$

$$\leq 2^k + 2^{k-1} + 2^{k-2}$$

$$\leq 7 \times 2^{k-2}$$

$$\leq 2^{k+1}$$

P(k+1) is true, thus $a_n \leq 2^n$ for all integers $n \geq 0$.

4. Consider the following loop, written in pseudocode:

while
$$B$$
 do $\mid S;$ end

A condition P is called an invariant of the loop if whenever P and B are both true, and S is executed once, P is still true.

(a) Prove that if P is an invariant of the loop, and P is true before the first iteration of the loop, then if the loop eventually terminates (i.e., after some number of iterations, B is false), P is still true.

Proof. Suppose the loop totally runs n iterations, thus B is true in the first n iterations and change to false in the n+1 iteration. As P is an invariant of the loop, and it is true before the loop, thus P and B are both true at the beginning, therefore, after the iteration, P is still true. This situation remains for n iterations until B change to false. At the end of this iteration, P is true. Then in the next iteration, S won't be excuted, nothing has changed, so P remains to be true.

(b) Suppose x and y are integer variables, and initally $x \ge 0$ and y > 0. Consider the following program fragment:

$$q = 0;$$

$$r = x;$$
while $r \ge y$ do
$$q = q + 1;$$

$$r = r - y;$$
end

By considering the condition $(r \ge 0) \land (x = q \times y + r)$, prove that when this loop terminates, the values of q and r will be the integer quotient and remainder, respectively, when x is divided by y; in other words, $x = q \times y + r$ and $0 \le r < y$.

Proof. Define P is $x = q \times y + r$ and $0 \le r < y$. Then we prove P is invariant. Before the iteration, as r = x, $x = 0 \times y + x = q \times y + r$, P is true. Whenever P and $r \ge y$ are true, during the iteration, q' = q + 1, r' = r - y, x' = x, y' = y. q', r' are the value of p, q after the iteration. We know: $x' = x = q \times y + r = (q+1) \times y + r - y = q' \times y' + r'$. Therefore, P is still true. So P is invariant. Thus, when this loop terminates, P is true, which means $x = q \times y + r$, and $r \ge y$ is false when r is smaller than y and r never minus a number larger than itself, so $0 \le r < y$.