

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	2-21780	₹ 17,424	₹ 4,356 (20%)
	12 Months	2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	213,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	2.12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

"T&C apply, as available on the platform

Unacademy Unlock

20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	.2-23,100	₹ 18,480	₹ 4,620 (20%)
Plus	12 Months	2-16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	_4-13,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	2 52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	2-30,780	₹ 24,624	₹ 6,156 (20%)
_	6 Months	₹-2t,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code ____

*T&C apply, as available on the platform.

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

Unlock Code: GPSIR ~ PhD, CSIR NET (Maths) | Youtuber(800K+165K
 Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

Get 10% Off

Referral Code: GP SIR

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	221,780	₹ 17,424	₹ 4,356 (20%)
	12 Months	2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	¥-13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	£ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
5	12 Months	Z-16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	413,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	2.52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	7-30,780	₹ 24,624	₹ 6,156 (20%)
Ĭ	6 Months	-F-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Particular Integral (P.I.)

If nth order linear differential equation with constant coefficient is f(D)y = Q Then Particular Integral is given by $\frac{Q}{f(D)}$

$$\frac{1}{f(D)}$$
 is an operator so $\frac{Q}{D} = \int Q dx$; $\frac{Q}{D^2} = \int \left(\int Q dx \right) dx$; $DQ = \frac{d}{dx}Q$

Method of Evaluation (P.I.)

Case 1: When $Q = e^{ax}$, where a is any constant

$$\frac{e^{ax}}{f(D)} = \frac{e^{ax}}{f(a)}; \text{provided } f(a) \neq 0$$
If $f(a) = 0$ then P.I.
$$\frac{e^{ax}}{(D-a)^r g(D)} = \frac{x^r}{r! \cdot g(a)} e^{ax}$$

Case 2: When $Q = \sin ax$ or $\cos ax$, where a is any constant

$$\frac{\sin ax}{f(D^2)} = \frac{\sin ax}{f(-a^2)}; \text{provided } f(-a^2) \neq 0$$

and
$$\frac{\cos ax}{f(D^2)} = \frac{\cos ax}{f(-a^2)}$$
; provided $f(-a^2) \neq 0$

(i) If
$$f(-a^2) \neq 0$$
 then

P.I.

$$\frac{\sin ax}{f(D^2)} = \frac{x}{f'(D^2)} \sin ax = \frac{x}{f'(-a^2)} \sin ax; \text{ provided } f'(-a^2) \neq 0$$

(ii) If
$$f'(-a^2) = 0$$
 then

P.I.
$$\frac{\sin ax}{f(D)} = \frac{x^2}{f''(-a^2)} \sin ax$$
; provided $f''(a) \neq 0$ and so on

Case 3: When $Q = x^m$, where m being a positive integer

$$\frac{x^m}{f(D)} = [f(D)]^{-1} x^m$$

Use formula

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots$$

Q.1. The solution of Differential following differential equation $y'' + 4y' + 4y = x^2$, y(0) = 1, y(1) = 1 is

$$(a) y(x) = 1$$

(b)
$$y(x) = 0$$

(c)
$$y(x) = \left(\frac{5}{8} + \frac{7}{8}e^2x - \frac{5}{8}x\right)e^{-2x} + \frac{1}{4}\left(x^2 - 2x + \frac{3}{2}\right)$$

(d)
$$y(x) = 2\cos 4x + 5\sin 4x$$

The particular integral of the differential equation Q2.

$$y'' + y' + 3y = 5\cos(2x+3)$$
is

- (a) $2\cos(2x+3)-\sin(2x+3)$ (b) $2\sin(2x+3)+\cos(2x+3)$
- (c) $\sin(2x+3)-2\cos(2x+3)$
- (d) $2\sin(2x+3)-\cos(2x+3)$

TARGETED AUDIENCE

- O IIT-JAM
 - M.Sc. Entrance Exam

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.3. The solution of differential equation $y'' - y' - 2y = 3e^{2x}$

where y(0) = 0 and y'(0) = -2 is

(a)
$$y = e^{-x} - e^{2x} + xe^{2x}$$

(b)
$$y = e^x - e^{-2x} - xe^{2x}$$

(c)
$$y = e^{-x} + e^{2x} + xe^{2x}$$

(d)
$$y = e^x - e^{-2x} + xe^{2x}$$

The solution of the differential equation

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 3e^{2x} \text{ wherey}(0) = 0 \text{ and}$$
$$y'(0) = -2 \text{ is}$$

(a)
$$y = e^{-x} - e^{2x} + xe^{2x}$$

(b)
$$y = e^{-x} - e^{-2x} - xe^{2x}$$

(c)
$$y = e^{-x} + e^{2x} + xe^{2x}$$

(c)
$$v = e^{-x} + e^{2x} + xe^{2x}$$
 (d) $v = e^{-x} - e^{-2x} + xe^{2x}$

Q5. Consider the following second order differential equation

$$y'' - 4y' + 3y = 2t - 3t^2$$

The particular solution of the differential equation is

(a)
$$-2 - 2t - t^2$$

(b)
$$-2t-t^2$$

(c)
$$2t - t^2$$

$$(d)-2-2t-3t^2$$

solution of the differential equation Q6. The

$$y(t): \frac{d^2y}{dt^2} - y = 2\cosh(t)$$
, subject to the initial

conditions:
$$y(0) = 0$$
 and $\frac{dy}{dt}\Big|_{t=0} = 0$ is:

(a)
$$\frac{1}{2} \cosh(t) + t \sinh(t)$$

(b)
$$-\sinh(t) + t \cosh(t)$$

- (c) $t \cosh(t)$ (d) $t \sinh(t)$

Unacademy Unlock 20% off* on IIT JAM subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
П	24 Months	221,780	₹ 17,424	₹ 4,356 (20%)
	12 Months	2-14,974	₹ 11,979	₹ 2,995 (20%)
Plus	9 Months	¥-13,475	₹ 10,780	₹ 2,695 (20%)
	6 Months	£ 12,252	₹ 9,802	₹ 2,450 (20%)
	3 Months	₹ 6,807	₹ 5,446	₹ 1,361 (20%)

Subscribe Now

Use code GPSIR

For more details, contact: 8585858585.

*T&C apply, as available on the platform

DETAILED COURSE 2.0 LINEAR ALGEBRA FOR IIT JAM 2023

8th SEPTEMBER

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Unacademy Unlock 20% off* on CSIR UGC NET subscriptions

August 22 - 26

	Duration	Current Price	What you pay	What you Save
	24 Months	£-23,100	₹ 18,480	₹ 4,620 (20%)
5	12 Months	Z-16,748	₹ 13,398	₹ 3,350 (20%)
	6 Months	413,398	₹ 10,718	₹ 2,680 (20%)
	24 Months	2.52,975	₹ 42,380	₹ 10,595 (20%)
conic	12 Months	7-30,780	₹ 24,624	₹ 6,156 (20%)
Ĭ	6 Months	-F-21,540	₹ 17,232	₹ 4,308 (20%)

Subscribe Now

Use code

20

*T&C apply, as available on the platform.

Educator Profile

#5 Educator in CSIR-UGC NET

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

IINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 · 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

- Works at Pacific Science
 College
- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR