# Mikroprozessortechnik

Prof. Dr. Michael Lipp





### Modul Mikroprozessoren bzw. Mikroprozessortechnik

- Bislang behandelt: Mikrocontroller
- Thema verfehlt?
- ... eigentlich nicht



- Faszinierendes Ziel: Flexibel programmierbare (Rechen-)Maschinen
  - Entwürfe immer angelehnt an die verfügbare Technik
  - 1822: Charles Babbage "Analytical Engine"
    - Nie realisiert, Mechanik war nicht ausreichend fortgeschritten



Von Science Museum London / Science and Society Picture Library - Babbage's Analytical Engine, 1834-1871. Uploaded by Mrjohncummings, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=28024313

- Obwohl nie realisiert, wurde für die Analytical Engine ein Programm geschrieben
  - Ada Lovelace (1815 1852)
  - 1842 Translation of Luigi Menebrea's algorithm of Bernoulli numbers on Charles Babbages "Analytical Engine"
  - Das erste jemals geschriebene Computer-Programm



- Inspiriert war der Analytical **Engine von mit Lochkarten** steuerbaren Webstühlen
  - Jaquardwebstuhl von Joseph-Marie Jacquard (1752 – 1834)



Von Rama - Eigenes Werk, CC BY-SA 2.0 fr, https://commons.wikimedia.org/w/index.php?curid=957310



- Erste "nutzbare" programmierbare Rechenmaschinen mit Einführung der Relais-Technik
  - Z3 (Konrad Zuse, fertiggestellt 1941)



By Venusianer, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3632073



- Elektronenröhren sind schneller
  - ENIAC (ca. 1945)
  - 17.468 Elektronenröhren



### Transistor-Computer

- Ab 1953
- Kleiner
- Geringerer Energiebedarf
- Z.B. TRADIC (1954)



### Nächster Technologischer Schritt

- Logikgatter-basierte Schaltungen
- 1962 "TTL"





Quelle: Wikipedia



- Praktische Nutzung von ICs in "Mini-Computern" (ab ca. 1970, z. B. PDP-11)
- Grundsätzlich können Mikrocomputer allein auf Basis der TTL-Technik gebaut werden
  - Beispiel "Spaß-Projekt" Gigatron TTL



Quelle: https://projects.drogon.net/gigatron/



 Mit höherer Integration komplette Prozessoren (CPUs) auf einem Chip integriert

1971: Intel 4004

2250 Transistoren

1972: Intel 8008 3500 Transistoren 1974: Intel 8080 6000 Transistoren



By Thomas Nguyen, CC BY-SA 4.0, https://commons.wikimedia.org/wiki/File:Intel\_C4004.jpg



By Konstantin Lanzet - CPU Collection Konstantin LanzetCamera: Canon EOS 400D, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=5694177



Konstantin Lanzet - CPU collection Camera: Canon EOS 400D, CC-BY-SA 3.0, https://en.wikipedia.org/ wiki/Intel\_8080#/media/File:KL\_Intel\_i8080\_Black\_Background.jpg



 Speicher etc. von zusätzlichen Chips bereitgestellt, über einen Bus mit dem μP (CPU) verbunden



 Mit fortschreitender Integration auch Speicher und Ein-/Ausgabekomponenten mit auf dem Chip integriert





#### Schalenmodell

 μC beinhalten immer auch einen μP



- Erster μC (1974): TMS 1000
- Vielleicht bekanntester früher μC (1980): 8051
  - Noch heute als "Soft-Core" auf FPGAs verwendet





### • Bekannte neuere Familie (ab 1997): AVR

| Ausschnitt aus der AVR Familie |         |        |    |            |      |        |      |           | _ Atmel                    |  |
|--------------------------------|---------|--------|----|------------|------|--------|------|-----------|----------------------------|--|
| Туре                           | Flash   | SRAM   | IO | Timer 8/16 | UART | $I^2C$ | AD   | Price (€) |                            |  |
| ATTINY11                       | 1 KiB   |        | 6  | 1/-        | 170  | 11.70  | -    | 0.31      | Einzelstückpreis           |  |
| ATTINY13                       | 1 KiB   | 64 B   | 6  | 1/-        | (7)  | -      | 4*10 | 0.66      | Distributor Farnell (nicht |  |
| ATTINY2313                     | 2 KiB   | 128 B  | 18 | 1/1        | 1    | 1      | -    | 1.06      | mehr aktuell!)             |  |
| ATMEGA4820                     | 4 KiB   | 512 B  | 23 | 2/1        | 2    | 1      | 6*10 | 1.26      | mem antaett.)              |  |
| ATMEGA8515                     | 8 KiB   | 512 B  | 35 | 1/1        | 1    | 1070   | (5)  | 2.04      |                            |  |
| ATMEGA8535                     | 8 KiB   | 512 B  | 32 | 2/1        | 1    | 1      | (5)  | 2.67      | Verfügbarkeit (            |  |
| ATMEGA169                      | 16 KiB  | 1024 B | 54 | 2/1        | 4    | 1      | 8*10 | 4.03      | von Speicher               |  |
| ATMEGA64                       | 64 KiB  | 4096 B | 53 | 2/2        | 2    | 1      | 8*10 | 5.60      | korreliert stark           |  |
| ATMEGA128                      | 128 KiB | 4096 B | 53 | 2/2        | 2    | 1      | 8*10 | 7.91      | mit dem Preis              |  |
|                                |         |        | *  |            |      |        |      |           |                            |  |

Ressourcen sind <u>limitiert!</u>

FLASH Speicher für konstante Daten und Programmcode ---- knapp Speicher für Laufzeitvariablen

Sorgfältiger Umgang! Wenige ,unbedacht' eingesetzte Bytes → höhere Stückzahlkosten!



### Aktuell populär: ARM Prozessoren

- ARM = Advanced Risc Machine
- Von ARM Limited entwickelte SoC-Architektur
- Keine eigene Chip-Produktion
- Lizenznehmer kaufen...
  - Entwicklerlizenz (ermöglicht Weiterentwicklung) oder
  - Funktionsblöcke (IP-Cores) um eigene SoCs zusammenzustellen
- Unterschiedliche Versionen (ARMv1 bis ARMv8)
  - Beispiel: Raspberry Pi 4: ARMv7
- → Unzahl möglicher Ausprägungen



### • "Unser" Prozessor STM32F401RE

- Verwendet ARM Cortex-M4 Core (ARMv7)
  - FPU (single precision)
  - DSP instructions
  - MPU (Memory Protection Unit)
- ST-Konfiguration
  - 512 Kbytes Flash, 96 Kbytes SRAM
  - 2 APB Busse, 2 AHB Busse, 32-bit multi-AHB Bus-Matrix
  - 12-bit ADC
  - Low-Power RTC
  - ...

# Advanced Feature Instruction Pipeline



### Wdh. Program Counter

- 32-Bit Register
- Zeigt auf den nächsten auszuführenden Befehl
- Wird nach jedem Befehl erhöht



Außer bei Sprungbefehlen und Unterprogrammaufrufen

### Prinzip Befehlszyklus



Die Ausführung eines Befehls ist in drei Teilschritte unterteilt

#### Instruction Fetch

- Durch den Befehlszähler adressierten Befehl aus dem Programmspeicher laden
- Befehlszähler inkrementieren



#### Instruction Decode

- Befehl dekodieren
- Registeroperanden bereitstellen



#### Execution

- ALU-Operation ausführen
- Bei Load/Store Operationen effektive Adresse berechnen



### Pipelining – Parallelisierung der Befehlsverarbeitung



Pipelining – Parallelisierung der Befehlsverarbeitung



### • (Ausgeführte) Sprungbefehle leeren die Pipeline

- Wird der Sprung durchgeführt, war das vorausschauende Holen der nächsten Befehle umsonst
- Vorteil der Bedingung im Befehls-Code (ARM Befehlssatz) bzw. des IT-Blocks (Thumb2 Befehlssatz): Pipeline läuft weiter