(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2007 年5 月10 日 (10.05.2007)

(10) 国際公開番号 WO 2007/052849 A1

(51) 国際特許分類:

A61K 31/517 (2006.01)

 A61K 31/47 (2006.01)
 A61K 31/519 (2006.01)

 A61K 31/404 (2006.01)
 A61K 31/5377 (2006.01)

 A61K 31/4409 (2006.01)
 A61K 39/395 (2006.01)

 A61K 31/4439 (2006.01)
 A61K 45/00 (2006.01)

 A61K 31/502 (2006.01)
 A61P 35/00 (2006.01)

 A61K 31/506 (2006.01)
 A61P 43/00 (2006.01)

 C07D 215/48 (2006.01)

(21) 国際出願番号: PCT/JP2006/322514

(22) 国際出願日: 2006年11月7日(07.11.2006)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2005-322946 2005年11月7日(07.11.2005) JF

- (71) 出願人 (米国を除く全ての指定国について): エーザイ・アール・アンド・ディー・マネジメント株式会社 (EISAI R&D MANAGEMENT CO., LTD.) [JP/JP]; 〒1128088 東京都文京区小石川四丁目 6 番 1 0 号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 山本 裕之 (YA-MAMOTO, Yuji) [JP/JP]; 〒3002635 茨城県つくば市東光台5丁目1番地3エーザイ株式会社 筑波研究所内 Ibaraki (JP).

- (74) 代理人: 小林 浩、 外(KOBAYASHI, Hiroshi et al.); 〒 1040028 東京都中央区八重洲二丁目 8番 7号 福岡ビル 9階 阿部・井窪・片山法律事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

─ 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

- (54) Title: USE OF COMBINATION OF ANTI-ANGIOGENIC SUBSTANCE AND c-kit KINASE INHIBITOR
- (54) 発明の名称: 血管新生阻害物質とc-kitキナーゼ阻害物質との併用
- (57) Abstract: Disclosed are: a pharmaceutical composition having an excellent anti-tumor effect; and a therapeutic method for cancer. 4-(3-Chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7 -methoxy-6-quinolinecarboxamide or an analogue thereof can be used in combination with a substance having a c-kit kinase-inhibiting activity to produce an excellent anti-tumor effect.
- (57) 要約: 本発明の課題は、優れた抗腫瘍効果を示す医薬組成物および癌の治療方法を見出すことにある。 4- (3-0 ロロ-4- (シ0 ロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドおよびその類似化合物は、c-kitキナーゼ阻害活性を有する物質と併用することにより優れた抗腫瘍効果を示すことができる。

明細書

血管新生阻害物質と c-kit キナーゼ阻害物質との併用

技術分野

本発明は、一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物(以下、「本発明の化合物」と称する場合がある)と c-kit キナーゼ阻害活性を有する物質(以下、「c-kit 阻害物質」と称する場合がある)とを組み合わせてなる医薬組成物およびキット、ならびに当該医薬組成物を患者に有効量投与することを特徴とする癌の治療方法、前記医薬組成物の製造のための本発明の化合物の使用および前記医薬組成物のための本発明の化合物などに関するものである。

背景技術

癌の化学療法剤として従来用いられている物質には、アルキル化剤のサイクロフォスファミド、代謝拮抗剤のメトトレキセート、フルオロウラシル、抗生物質のアドリアマイシン、マイトマイシン、ブレオマイシン、植物由来のタキソール、ビンクリスチン、エトポシド、金属錯体のシスプラチンなどがあるが、いずれもその抗腫瘍効果は十分であるとは言えず、新しい抗腫瘍剤の開発が切望されていた。

近年、c-kit 阻害物質として、4-(4-)メチルピペラジン-1-イルメチル) -N-[4-)メチル-3-[4-(3-)]ピリミジン-2-イルアミノ] フェニル] ベンゼンアミド (以下、「イマチニブ」または「STI571」と称する場合がある)が知られている(文献 1 および 2)。

また、VEGF レセプターキナーゼ阻害物質として、4 - (3 - クロロー4 - (シ クロプロピルアミノカルボニル)アミノフェノキシ)- 7 - メトキシー 6 - キ ノリンカルボキサミドが知られている(文献 3 - 4)。

しかしながら、これらの物質を組み合わせてなる医薬組成物がいかなる抗腫 瘍効果を示すか否かについては報告されていない。

[対献]

- 1. Blood., 96, 925-932, 2000.
- 2. J Clin Oncol., 20, 1692-1703, 2002.
- 3. 国際公開第02/32872号パンフレット
 - 4. 国際公開第2005/063713号パンフレット

発明の開示

本発明は、このような状況に鑑みてなされたものであり、その解決しようとする課題は、優れた抗腫瘍効果を示す医薬組成物および癌の治療方法を見出すことにある。

本発明者らは、上記課題を解決するため、鋭意検討を重ねた結果、4-(3--クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドは、c-kit 阻害物質であるイマチニブと併用することにより、優れた抗腫瘍効果を示すことを見出した。

すなわち本発明は、以下に関する。

- (1) 一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit キナーゼ阻害活性を有する物質とを組み合わせてなる医薬組成物。
- (2) (a) 一般式 (I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit キナーゼ阻害活性を有する物質とを併用することを記載した、包装容器、取扱説明書および添付文書からなる群から選択される少なくとも1つと、
- (b) 一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含む医薬組成物と、

を含有するキット。

(3) 一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含んでなる製剤と、c-kit キナーゼ阻害活性を有する物質を含んでなる製剤とをセットにしたことを特徴とするキット。

(4) c-kit キナーゼ阻害活性を有する物質とともに患者に投与されることを特徴とする一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含む医薬組成物。

- (5) 一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit キナーゼ阻害活性を有する物質とを患者に有効量投与することを特徴とする癌の治療方法。
- (6) c-kit キナーゼ阻害活性を有する物質と組み合わせてなる医薬組成物の製造のための一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物の使用。
- (7) c-kit キナーゼ阻害活性を有する物質と組み合わせてなる医薬組成物のための一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物。

前記一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物は、以下のとおりである。

[式(I)中、R¹は、式-V¹-V²-V³(式中、V¹は、置換基を有していてもよいC $_{1-6}$ アルキレン基を意味する;V²は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式-CONR 6 -で表される基、式-SO $_2$ NR 6 -で表される基、式-NR 6 SO $_2$ -で表される基、式-NR 6 CO-で表される基または式-NR 6 -で表される基を意味する(式中、R 6 は、水素原子、置換基を有していてもよいC $_{1-6}$ アルキル基または置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{2-6}$ アルキニル基、置換基を有していてもよいC $_{2-6}$ アルキニル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{2-6}$ アルキニル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{6-10}$ アリール基、置換基を有していてもよい5~10員へテロアリール基または置換基を有してい

てもよい3~10員非芳香族へテロ環式基を意味する。)で表される基を意味する;

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式-CO $NV^{a 11}V^{a 12}$ (式中、 $V^{a 11}$ は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アルール基または置換基を有していてもよい C_{3-6} アルール基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアカール基、置換基を有していてもよい C_{3-8} シクロアカール基、置換基を有していてもよい C_{3-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基ま意味する。)で表される基を意味する;

Y¹は、式

または

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、二トロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

 W^1 および W^2 は、それぞれ独立して置換基を有していてもよい炭素原子または

窒素原子を意味する。) で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する;

 R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい $5\sim10$ 員非芳香族へテロ環式基を意味する〕で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を挙げることができる。

また、本発明は、好ましくは以下に関する。

- (1) 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物とイマチニブとを組み合わせてなる医薬組成物。
- (2) (a) 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物とイマチニブとを併用することを記載した、包装容器、取扱説明書および添付文書からなる群から選択される少なくとも1つと、
- (b) 4-(3-クロロ-4-(シクロプロピルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含む医薬組成物と、を含有するキット。
- (3) 4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、もしくはその薬理

学的に許容される塩、またはそれらの溶媒和物を含んでなる製剤と、イマチニブを含んでなる製剤とをセットにしたことを特徴とするキット。

- (4) イマチニブとともに患者に投与されることを特徴とする4-(3-クロロ-4-(シクロプロピルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含む医薬組成物。
- (5) 4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物とイマチニブとを患者に有効量投与することを特徴とする癌の治療方法。
- (6) イマチニブと組み合わせてなる医薬組成物の製造のための4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物の使用。

本発明により、一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit 阻害物質とを組み合わせてなる医薬組成物が提供され、本発明の医薬組成物は癌の治療に用いることが可能となった。

図面の簡単な説明

図2は、ヒト癌細胞株皮下移植モデルにおける VEGF レセプターキナーゼ阻害物質と c-kit 阻害物質との併用効果を示す。図2において、化合物 A は、4-(3-クロロ-4-(シクロプロピルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミドを、化合物 B は、イマチニブを示す。

発明を実施するための最良の形態

以下に本発明の実施の形態について説明する。以下の実施の形態は、本発明を説明するための例示であり、本発明をこの実施の形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施をすることができる。

なお、本明細書において引用した文献、および公開公報、特許公報その他の特許文献は、参照として本明細書に組み込むものとする。本明細書は、本願優先権主張の基礎となる日本国特許出願 2005-322946 号明細書の内容を包含する。

1. 化合物

本明細書において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を意味する。

「ハロゲン原子」の好適な例としては、フッ素原子、塩素原子をあげることができる。

本明細書において、「 C_{1-6} アルキル基」とは、炭素数が $1\sim 6$ 個の直鎖状または分枝鎖状のアルキル基を意味し、具体例としては、メチル基、エチル基、1-プロピル基(n-プロピル基)、2-プロピル基(i-プロピル基(i-プロピル基(i-プロピル基(i-プロピル基(i-プロピル基(i- ブチル基)、2-メチル-1-プロピル基(i- ブチル基)、2- メチル-1-プロピル基(i- ブチル基)、2- ブチル基(i- ブロピル基(i- ブチルー i- ブチル

ルー2ーペンチル基、4ーメチルー2ーペンチル基、2ーメチルー3ーペンチル基、3ーメチルー3ーペンチル基、2,3ージメチルー1ーブチル基、3,3ージメチルー1ーブチル基、2ーエチルー1ーブチル基、3,3ージメチルー2ーブチル基、3,3ージメチルー2ーブチル基などがあげられる。

「 C_{1-6} アルキル基」の好適な例としては、メチル基、エチル基、1-プロピル基、2-プロピル基、2-メチル-1-プロピル基、2-メチル-2-プロピル基、1-ブチル基、2-ブチル基をあげることができる。

本明細書において、「 C_{1-6} アルキレン基」とは、上記定義「 C_{1-6} アルキル基」からさらに任意の水素原子を1個除いて誘導される二価の基を意味し、具体例としては、メチレン基、1, 2-エチレン基、1, 1-エチレン基、1, 3-プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などがあげられる。

本明細書において、「 C_{2-6} アルケニル基」とは、二重結合を1個有する、炭素数が2~6個の直鎖状または分枝鎖状のアルケニル基を意味し、具体例としては、エテニル基(ビニル基)、1-プロペニル基、2-プロペニル基(アリル基)、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基、ヘキセニル基などがあげられる。

本明細書において、「 C_{2-6} アルキニル基」とは、三重結合を1個有する、炭素数が $2\sim6$ 個の直鎖状または分枝鎖状のアルキニル基を意味し、具体例としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、ヘキシニル基などがあげられる。

本明細書において、「 C_{3-8} シクロアルキル基」とは、炭素数が3~8個の単環または二環の飽和脂肪族炭化水素基を意味し、具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ジクロオクチル基、ビシクロ[2. 1. 0]ペンチル基、ビシクロ[3. 1. 0]ヘキシル基、ビシクロ[2. 1. 1]ヘキシル基、ビシクロ[4. 1. 0]ヘプチル基、ビシクロ[2. 2. 1]ヘプチル基(ノルボルニル基)、ビシクロ[3. 3. 0]オクチル基、ビシクロ[3. 2. 1]オクチル基、ビシクロ[2. 2. 2]

オクチル基などがあげられる。

「 C_{3-8} シクロアルキル基」の好適な例としては、シクロプロピル基、シクロブチル基、シクロペンチル基をあげることができる。

本明細書において、「 C_{6-10} アリール基」とは、炭素数が $6\sim10$ 個の芳香族性の炭化水素環式基を意味し、具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、インデニル基、アズレニル基などがあげられる。

「 C_{6-10} アリール基」の好適な例としては、フェニル基をあげることができる。

本明細書において、「ヘテロ原子」とは、窒素原子、酸素原子または硫黄原子 を意味する。

本明細書において、「5~10員へテロアリール基」とは、環を構成する原子の数が5~10個であり、環を構成する原子中に1~5個のヘテロ原子を含有する芳香族性の環式基を意味し、具体例としては、フリル基、チエニル基、ピロリル基、イミダゾリル基、トリアゾリル基、テトラゾリル基、チアゾリル基、フラゾリル基、オキサゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チアジアゾリル基、オキサジアゾリル基、ピリジル基、ピリジニル基、ピリジニル基、ピリジニル基、ピリミジニル基、トリアジニル基、プリニル基、プテリジニル基、キノリル基、イソキノリル基、ナフチリジニル基、キノキサリニル基、シンノリニル基、キナゾリニル基、フタラジニル基、イミダゾピリジル基、イミダゾチアゾリル基、イミダゾオキサゾリル基、ベンゾチアゾリル基、ベンブオキサブリル基、ベンブオキサブリル基、ベンブオキサブリル基、ベンブオキサブリル基、ピロロピリジル基、チエノピリジル基、フロピリジル基、ベンブチアジアブリル基、ベンブオキサジアブリル基、ピリドピリミジニル基、ベンブラリル基、ベンブチエニル基、チエノフリル基などがあげられる。

「5~10員へテロアリール基」の好適な例としては、フリル基、チエニル 基、ピロリル基、イミダゾリル基、チアゾリル基、ピラゾリル基、オキサゾリ ル基、イソオキサゾリル基、イソチアゾリル基、ピリジル基、ピリミジニル基 をあげることができる。

本明細書において、「3~10員非芳香族へテロ環式基」とは、

(1) 環を構成する原子の数が3~10個であり、

(2) 環を構成する原子中に1~2個のヘテロ原子を含有し、

- (3) 環中に二重結合を1~2個含んでいてもよく、
- (4) 環中にカルボニル基、スルフィニル基またはスルホニル基を1~3個含んでいてもよい、
- (5) 単環式または二環式である非芳香族性の環式基を意味し、環を構成する原子中に窒素原子を含有する場合、窒素原子から結合手が出ていてもよい。具体例としては、アジリジニル基、アゼチジニル基、ピロリジニル基、ピペリジニル基、アゼパニル基、アゾカニル基、ピペラジニル基、ジアゼパニル基、ジアブカニル基、ジアザビシクロ[2.2.1]へプチル基、モルホリニル基、チオモルホリニル基、1,1ージオキソチオモルホリニル基、オキシラニル基、オキセタニル基、テトラヒドロフリル基、ジオキソラニル基、テトラヒドロピラニル基、ジオキサニル基、テトラヒドロチエニル基、テトラヒドロチオピラニル基、オキサゾリジニル基、チアゾリジニル基などがあげられる。

「3~10員非芳香族へテロ環式基」の好適な例としては、アジリジニル基、アゼチジニル基、ピロリジニル基、ピペリジニル基、アゼパニル基、ピペラジニル基、ジアゼパニル基、モルホリニル基、チオモルホリニル基、1,1-ジオキソチオモルホリニル基、テトラヒドロフリル基、テトラヒドロピラニル基をあげることができる。

本明細書において、「 C_{1-6} アルコキシ基」とは、上記定義「 C_{1-6} アルキル基」の末端に酸素原子が結合した基であることを意味し、具体例としては、メトキシ基、エトキシ基、1-プロポキシ基(n-プロポキシ基)、2-プロポキシ基(i-プロポキシ基)、2-プロポキシ基(i-プロポキシ基)、2-プロポキシ基(i-プトキシ基)、2-プロポキシ基(i-プトキシ基(n-プトキシ基)、2-プトキシ基(n-プトキシ基)、2-プトキシ基(n-プトキシ基)、2-プトキシ基(n-プトキシ基)、2-プトキシ基(n-プトキシ基、2-ペンチルオキシ基、2-ペンチルオキシ基、2-ペンチルオキシ基、2-メチル-1-プトキシ基、2-メチル-1-プトキシ基、2-メチル-1-プロポキシ基、2-メチル-1-プロポキシ基、2-メチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-スチル-1-ペンチルオキシ基、2-

4-メチル-2-ペンチルオキシ基、2-メチル-3-ペンチルオキシ基、3-メチル-3-ペンチルオキシ基、2,3-ジメチル-1-ブトキシ基、3,3-ジメチル-1-ブトキシ基、2-エチル-1-ブトキシ基、3,3-ジメチル-2-ブトキシ基、2,3-ジメチル-2-ブトキシ基などがあげられる。

「 C_{1-6} アルコキシ基」の好適な例としては、メトキシ基、エトキシ基、1-プロポキシ基、2-プロポキシ基、2-メチルー1-プロポキシ基、2-メチルー2-プロポキシ基、1-ブトキシ基、2-ブトキシ基をあげることができる。

本明細書において、「C₁₋₆アルキルチオ基」とは、上記定義「C₁₋₆アルキ ル基」の末端に硫黄原子が結合した基であることを意味し、具体例としては、 メチルチオ基、エチルチオ基、1-プロピルチオ基(n-プロピルチオ基)、2 -プロピルチオ基(i-プロピルチオ基)、2-メチル-1-プロピルチオ基(i ーブチルチオ基)、2-メチル-2-プロピルチオ基(t-ブチルチオ基)、1 ーブチルチオ基(n-ブチルチオ基)、2-ブチルチオ基(s-ブチルチオ基)、 1-ペンチルチオ基、2-ペンチルチオ基、3-ペンチルチオ基、2-メチル -1-ブチルチオ基、3-メチル-1-ブチルチオ基、2-メチル-2-ブチ ルチオ基、3-メチル-2-ブチルチオ基、2,2-ジメチル-1-プロピル チオ基、1-ヘキシルチオ基、2-ヘキシルチオ基、3-ヘキシルチオ基、2 -メチル-1-ペンチルチオ基、3-メチル-1-ペンチルチオ基、4-メチ ルー1ーペンチルチオ基、2ーメチルー2ーペンチルチオ基、3ーメチルー2 ーペンチルチオ基、4-メチル-2-ペンチルチオ基、2-メチル-3-ペン チルチオ基、3-メチル-3-ペンチルチオ基、2、3-ジメチル-1-ブチ ルチオ基、3,3-ジメチル-1-ブチルチオ基、2,2-ジメチル-1-ブ チルチオ基、2-エチル-1-ブチルチオ基、3、3-ジメチル-2-ブチル チオ基、2,3-ジメチル-2-ブチルチオ基などがあげられる。

「 C_{1-6} アルキルチオ基」の好適な例としては、メチルチオ基、エチルチオ基、 $1-\mathcal{I}$ ロピルチオ基($n-\mathcal{I}$ ロピルチオ基)、 $2-\mathcal{I}$ ロピルチオ基($i-\mathcal{I}$ ロピルチオ基)、 $2-\mathcal{I}$ ロピルチオ基)、 $2-\mathcal{I}$ ロピルチオ基)、 $2-\mathcal{I}$ ロピルチオ基($i-\mathcal{I}$ チルチオ基($i-\mathcal{I}$ チルチオ基($i-\mathcal{I}$ チルチオ基($i-\mathcal{I}$ チルチオ基($i-\mathcal{I}$ チルチオ基($i-\mathcal{I}$ チルチオ基($i-\mathcal{I}$ チルチオ

チオ基)、2-ブチルチオ基(s-ブチルチオ基)をあげることができる。

本明細書において、「 C_{3-8} シクロアルコキシ基」とは、上記定義「 C_{3-8} シクロアルキル基」の末端に酸素原子が結合した基であることを意味し、具体例としては、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロイナルオキシ基、ビシクロ[2.1.0]ペンチルオキシ基、ビシクロ[3.1.0]ヘキシルオキシ基、ビシクロ[2.1.0]ペンチルオキシ基、ビシクロ[3.1.0]ヘキシルオキシ基、ビシクロ[2.1.1]ヘキシルオキシ基、ビシクロ[4.1.0]ヘプチルオキシ基、ビシクロ[2.2.1]ヘプチルオキシ基(ノルボルニルオキシ基)、ビシクロ[3.3.0]オクチルオキシ基、ビシクロ[3.2.1]オクチルオキシ基、ビシクロ[2.2.2]オクチルオキシ基などがあげられる。

「 C_{3-8} シクロアルコキシ基」の好適な例としては、シクロプロポキシ基、シクロブトキシ基、シクロペンチルオキシ基をあげることができる。

本明細書において、「モノーC₁₋₆アルキルアミノ基」とは、アミノ基中の1 個の水素原子を、上記定義「C₁₋₆アルキル基」で置換した基を意味し、具体例 としては、メチルアミノ基、エチルアミノ基、1-プロピルアミノ基(n-プ ロピルアミノ基)、2-プロピルアミノ基 (i-プロピルアミノ基)、2-メチ ルー1-プロピルアミノ基 (i-ブチルアミノ基)、2-メチル-2-プロピル アミノ基(tーブチルアミノ基)、1-ブチルアミノ基(n-ブチルアミノ基)、 2-ブチルアミノ基 (s-ブチルアミノ基)、1-ペンチルアミノ基、2-ペン チルアミノ基、3-ペンチルアミノ基、2-メチル-1-ブチルアミノ基、3 - -メチル-1-ブチルアミノ基、2-メチル-2-ブチルアミノ基、3-メチ ルー2ーブチルアミノ基、2、2ージメチルー1ープロピルアミノ基、1ーへ キシルアミノ基、2-ヘキシルアミノ基、3-ヘキシルアミノ基、2-メチル -1-ペンチルアミノ基、3-メチル-1-ペンチルアミノ基、4-メチルー 1-ペンチルアミノ基、2-メチル-2-ペンチルアミノ基、3-メチル-2 -ペンチルアミノ基、4-メチル-2-ペンチルアミノ基、2-メチル-3-ペンチルアミノ基、3-メチルー3-ペンチルアミノ基、2,3-ジメチルー 1-ブチルアミノ基、3,3-ジメチル-1-ブチルアミノ基、2,2-ジメ チルー1-ブチルアミノ基、2-エチル-1-ブチルアミノ基、3,3-ジメ チルー2-ブチルアミノ基、2,3-ジメチル-2-ブチルアミノ基などがあ

げられる。

本明細書において、「 C_{2-7} アシル基」とは、上記定義の「 C_{1-6} アルキル基」が結合したカルボニル基であることを意味し、具体例としては、例えば、アセチル基、プロピオニル基、イソプロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基などがあげられる。

本明細書において、「 C_{2-7} アルコキシカルボニル基」とは、上記定義の「 C_1 $_{-6}$ アルコキシ基」が結合したカルボニル基であることを意味し、具体例としては、例えば、メトキシカルボニル基、エトキシカルボニル基、1-プロピルオキシカルボニル基、2-メチルー2-プロポキシ基などがあげられる。

本明細書において、「置換基を有していてもよい」とは、「置換可能な部位に、任意に組み合わせて1または複数個の置換基を有してもよい」ことを意味し、具体例としては、例えば、ハロゲン原子、水酸基、チオール基、ニトロ基、シアノ基、ホルミル基、カルボキシル基、アミノ基、シリル基、メタンスルホニル基、 C_{1-6} アルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{3-8} シクロアルキル基、 C_{6-10} アリール基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{3-8} シクロアルコキシ基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルアミノ基、ジー C_{1-6} アルキルアミノ基、 C_{2-6} アルキルアミノ基、だと C_{2-6} アルキル基、 C_{2-6} アルキル基、 C_{2-6} アルキール基、 C_{2-6} アルキール基、 C_{2-6} アルキール基、 C_{2-6} アルキール基、

 C_{3-8} シクロアルキル基、 C_{6-10} アリール基、 $5\sim10$ 員へテロアリール基、 $3\sim10$ 員非芳香族へテロ環式基、 C_{1-6} アルコキシ基、 C_{1-6} アルキルチオ基、 C_{3-8} シクロアルコキシ基、モノー C_{1-6} アルキルアミノ基、ジー C_{1-6} アルキルアミノ基、 C_{2-7} アシル基および C_{2-7} アルコキシカルボニル基はそれぞれ独立して下記置換基群からなる群から選ばれる $1\sim3$ 個の基を有していてもよい。<置換基群>

ハロゲン原子、水酸基、チオール基、ニトロ基、シアノ基、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基、 C_{2-6} アルケニル基、 C_{2-6} アルキニル基、 C_{6-10} アリール基、 $5\sim10$ 員へテロアリール基、 $3\sim10$ 員非芳香族へテロ環式基、 C_{1-6} アルコキシ基および C_{1-6} アルキルチオ基。

(A) 本発明の化合物

本発明において、一般式(I)で表される化合物は、以下のとおりである。

(i) R¹

 R^1 は、式 $-V^1-V^2-V^3$ (式中、 V^1 は、置換基を有していてもよい C_{1-6} アルキレン基を意味する; V^2 は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式 $-CONR^6$ -で表される基、式 $-SO_2$ N R^6 -で表される基、式 $-NR^6SO_2$ -で表される基、式 $-NR^6CO$ -で表される基または式 $-NR^6$ -で表される基を意味する(式中、 R^6 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基または置換基を有していてもよい C_{3-8} シクロアルキル基を意味する。); V^3 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい C_{7-10} アリール基、置換基を有していてもよい C_{7-10} アリール基、置換基を有していてもよい C_{8-10} アリール基、置換基を有していてもよい C_{8-10} アリール基、置換基を有していてもよい C_{8-10} アリール基、置換基を有していてもよい C_{8-10} アリール基、置換基を有していてもよい C_{8-10}

~10員非芳香族へテロ環式基を意味する。) で表される基を意味する。

 R^1 の好適な例としては、 C_{1-6} アルキル基があげられる。ただし、この場合、 R^1 は、 C_{1-6} アルキル基を有していてもよい $3\sim 1$ 0 員非芳香族へテロ環式基、水酸基、 C_{1-6} アルコキシ基、アミノ基、モノー C_{1-6} アルキルアミノ基およびジー C_{1-6} アルキルアミノ基から選ばれる置換基を有していてもよい。

R¹のより好適な例としては、メチル基または式

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

(式中、 R^{*3} はメチル基を意味する; R^{*1} は水素原子または水酸基を意味する; R^{*2} は、メトキシ基、エトキシ基、1-ピロリジニル基、1-ピペリジニル基、4-モルホリニル基、ジメチルアミノ基またはジエチルアミノ基を意味する。)のいずれかで表される基があげられる。

 R^1 のさらに好適な例としては、メチル基または2-メトキシエチル基があげられる。

(ii) R^2

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式-CON $V^{a 11}V^{a 12}$ (式中、 $V^{a 11}$ は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アリール基または置換基を有していてもよい C_{3-6} アルキール基、置換基を有していてもよい C_{2-6} アルキール基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アルキール基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で表される基を意味する。

 R^2 の好適な例としては、シアノ基または式 $-CONV^{a11}V^{a12}$ (式中、 V^a 11 および V^{a12} は、前記定義と同意義を意味する。)で表される基があげられる

 R^2 のより好適な例としては、シアノ基または式 $-CONHV^{a16}$ (式中、 V^a 16 は、水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基または C_{3-8} シクロアルコキシ基を意味する。ただし、 V^{a16} は、ハロゲン原子、シアノ基、水酸基および C_{1-6} アルコキシ基から選ばれる置換基を有していてもよい。)で表される基があげられる。

 R^2 のさらに好適な例としては、式 $-CONHV^{*17}$ (式中、 V^{*17} は、水素原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基を意味する。)で表される基があげられる。

 R^2 のもっとも好適な例としては、式 $-CONHV^{a18}$ (式中、 V^{a18} は、水素原子、メチル基またはメトキシ基を意味する。)で表される基があげられる。

(iii) Y¹

Y¹は、式

または

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、二トロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルキルチオ基、ホルミル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

 W^1 および W^2 は、それぞれ独立して置換基を有していてもよい炭素原子または 窒素原子を意味する。)で表される基を意味する。

Y¹の好適な例としては、式

(式中、R⁷¹は、水素原子またはハロゲン原子を意味する。)で表される基があ げられる。

(iv) R³およびR⁴、

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_1 -6アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する。

R³およびR⁴の好適な例としては、水素原子があげられる。

(v) R⁵

 R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基を意味する。

 R^5 の好適な例としては、水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基または C_{6-10} アリール基(ただし、 R^5 は、ハロゲン原子およびメタンスルホニル基から選ばれる置換基を有していてもよい)があげられる。

R⁵のより好適な例としては、メチル基、エチル基またはシクロプロピル基があげられる。

また、一般式(I)で表される化合物の好適な例としては、

 $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu r) -4-+ / y v)$ オキシー 2-y ルオロフェニル) -N'-(4-y) カレア、

 $N-(4-((6-\nu r)-7-(((2R)-3-(\nu r)r)-2-$

 $N-(4-((6-\nu r)/-7-(((2R)-2-\nu r)-3-(1-\nu r)))$ ロリジノ) プロピル) オキシ) -4-+ ノリル) オキシ) フェニル) -N'-(4-7)

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

N6-シクロプロピル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) <math>-7-メトキシ-6-キノリンカルボキサミド、

N6-(2-7)ルオロエチル) -4-(3-7)ロロー4-((()シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6- + N6-

N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-x + x +

4-(3-7)ルオロー4-(2)クロプロピルアミノカルボニル)アミノフェノキシ)-7-(2-3)トキシエトキシ)-6-4ノリンカルボキサミド、

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-(2-ヒドロキシエトキシ)-6-キノリンカルボキサミド、

ンカルボキサミド、

4-(3-クロロ-4-(メチルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

4-(3-クロロー4-(エチルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

4 - (4 - ((シクロプロピルアミノ) カルボニル) アミノフェノキシ) - 7 - (2 - メトキシエトキシ) - 6 - キノリンカルボキサミド、

N-(2-7)ルオロー4- $((6-\pi)$ ルバモイルー7-メトキシー4-キノリル) オキシ)フェニル)-N'-シクロプロピルウレア、

N6-(2-EFロキシエチル)-4-(3-Dロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) <math>-7-メトキシ-6-キノリンカルボキサミド、

 $4-(3-\rho - 4-(cis-2-7) - 7-4)$ ルボニル) アミノフェノキシ) -7-4 トキシー6-4 リンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-(2-メトキシエトキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-0) -(3-0)

4-(3-0) -(2-0) -(2-0) -(2-0) -(3-0)

N6-((2R) テトラヒドロ-2-フラニルメチル) -4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) <math>-7-メトキシー6-キノリンカルボキサミド、

4-(3-フルオロ-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((xチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -3-ジxチルアミノ-2-ヒドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((1-メチル-4-ピペリジル) メトキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((xチルアミノ)) カルボニル) アミノ) フェノキシ) -7-((1-メチル-4-ピペリジル) メトキシ) -6-キノリンカルボキサミド、

 $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu x) -4-+ (1) -4 -4 (1)$

 $N - (4 - (6 - \nu r) - 7 - (3 - (4 - \tau n \pi)))$ \mathcal{I}_{1} \mathcal{I}_{2} \mathcal{I}_{3} \mathcal{I}_{4} \mathcal{I}_{5} \mathcal{I}_{5

ウレア、

4-(4-((シクロプロピルアミノ) カルボニル) アミノフェノキシ) -7 -メトキシ-6-キノリンカルボキサミド、

4-(3-フルオロ-4-((2-フルオロエチルアミノ) カルボニル) アミ ノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(4-(3-エチルウレイド)-3-フルオローフェノキシ)-7-メトキシキノリン-6-カルボキシリック アシッド (2-シアノエチル)アミド

および

 $N-(4-(6-(2-\nu r)/x + r))$ カルバモイルー7-yトキシー4-4キノリル) オキシー2-7ルオロフェニル) $-N'-\nu$ クロプロピルウレアを挙げることができる。

さらに、一般式(I)で表される化合物のより好適な例としては、

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

4 − (3 − クロロ − 4 − (エチルアミノカルボニル) アミノフェノキシ) − 7 − メトキシ − 6 − キノリンカルボキサミド、

および

N6-メトキシ-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) <math>-7-メトキシ-6-キノリンカルボキサミドを挙げることができる。

また、一般式(I)で表される化合物のさらに好適な例としては、4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-

メトキシー 6 ーキノリンカルボキサミド (式 (II) 参照) を挙げることができる。

一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物の最も好適な例としては、4-(3-クロロー4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミドのメタンスルホン酸塩を挙げることができる。

$$H_2N \longrightarrow N$$
 (II)

一般式(I)で表される化合物は、公知の方法で製造でき、例えば、国際公開第02/32872)および、国際公開第2005/063713)に記載された方法によって製造することができる。

(B) c-kit 阻害物質

本発明において、c-kit 阻害物質は、例えば、

(1) 4-(4-メチルピペラジン-1-イルメチル)-N-[4-メチル-3
 -[4-(3-ピリジル) ピリミジン-2-イルアミノ] フェニル] ベンゼンアミド(以下、「イマチニブ」および「STI571」ともいう。Blood., 96, 925-932, 2000. 、Bioorganic and Medicinal Chemistry Letters., 7: 187-192, 1997.)
 (式(III) 参照)、

(III)

(2) 3- [(2, 4-ジメチルピロール-5-イル) メチレン] -2-インドリノン (以下、「SU5416」および「semaxanib」ともいう。Cancer Research., 61, 3660-3668, 2000、Journal of Medicinal Chemistry., 41: 2588-2603, 1998.、US5792783) (式 (IV) 参照)、

(3) (Z) -3-[(2,4-ジメチル-5-(2-オキソ-1,2-ジヒドロインドール-3-イリデンメチル) -1 Hーピロール-3-イル) ープロピオニック アシッド (以下、「SU6668」ともいう。Cancer Research.,61,3660-3668,2000、Journal of Medicinal Chemistry.,42:5120-5130,1999.) (式 (V) 参照)、

$$\bigcup_{N} \bigcup_{O} (A)$$

(4) 5-(5-7)ルオロー 2-3キソー 1, 2-3ヒドロインドールー 3-4 イリデンメチル) -2, 4-3ジメチルー 1 Hーピロールー 3-4 ルボキシリック アシッド (2-3エチルアミノエチル)アミド (以下、「SU11248」ともいう。Molecular Cancer Therapeutics., 2:471-478, 2003、Journal of Medicinal Chemistry., 46:1116-9, 2003.) (式 (VI) 参照)、

(5) N- $\{2-\rho pp-4-[(6,7-ジメトキシ-4-キナゾリニル) オキシ] フェニル<math>\}$ -N'-プロピルウレア (以下、「KRN633」ともいう。Molecular Cancer Therapeutics., 3:1639-49, 2004.) (式 (VII) 参照)、

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

(6) 1- (4-クロロアニリノ) -4- (4-ピリジルメチル) フタラジン (以下、「PTK787/ZK222584」および「vatalanib」ともいう。Cancer Research, 60, 2178-2189, 2000、Journal of Medicinal Chemistry., 43:2310-23, 2000.、W098/35958) (式 (VIII) 参照)、

(7) N- $\{2-\rho \Box \Box -4-[(6,7-i)]$ トキシー4-i ノリル)オキシ] フェニル $\}$ -N'- $\{5-x$ チルー3-x ソキサゾリル)ウレア(以下、「KRN951」 ともいう。Proceedings of the American Association for Cancer Research, 45,594, (Abstract 2571), 2004.、Proceedings of the American Association for Cancer Research, 45,595, (Abstract 2575), 2004.、W02002/088110) (式 (IX) 参照)、

$$\begin{array}{c|c}
CI & H & H \\
O & N-O
\end{array}$$

$$\begin{array}{c|c}
O & & \\
O$$

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(9) 6-[2-(メチルカルバモイル) フェニルスルファニル] <math>-3-E-[2-(ピリジン-2-(1) エテニル] インダゾール (以下、「AG013736」ともいう。Proceedings of the American Association for Cancer Research, 44, 865, (Abstract 3780), 2003、American Journal of Pathology. 165:35-52, 2004.、W001/002369) (式 (XI) 参照)、

(10) N-(3-トリフルオロメチル-4-クロロフェニル)-N'-(4-(2-メチルカルバモイルピリジン-4-イル)オキシフェニル)ウレア(以

下、「BAY 43-9006」および「sorafenib」ともいう。Cancer Research., 64, 7099-7109, 2004, Organic Process Res Dev., 6, 777-81, 2002.、W000/42012) (式 (XII) 参照)、

(11) [6-[4-[(4-エチルピペラジン-1-イル) メチル] フェニル] -7H-ピロロ[2, 3-d] ピリミジン-4-イル] - ((R) -1-フェニル エチル) アミン (以下、「AEE-788」ともいう。Cancer Research., 64, 4931-4941, 2004.、Cancer Research., 64, 7977-7984, 2004.) (式 (XIII) 参照)、

(XIII)

(12) 6-(2,6-ジクロローフェニル)-2-(4-フルオロ-3-メチルーフェニルアミノ)-8-メチル8H-ピリド[2,3-d]ピリミジン-7-オン(以下、「PD180970」ともいう。Cancer Research.,62,4244-4255,2002.、Journal of Medicinal Chemistry.,40,2296-2303,1997.)(式(XIV)参照)、

(13) 6-(2,6-ij)クロロフェニル)-8-ijチルー2-(3-ij)チルスルファニルフェニルアミノ)-8 Hーピリド[2,3-/d/]ピリミジンー7-iオン(以下、「PD173955」ともいう。Cancer Research.,62,4244-4255,2002.、Journal of Medicinal Chemistry.,40,2296-2303,1997.)(式 (XV) 参照)、

(14) 4-[6-メトキシ-7-(3-ピペリジン-1-イループロポキシ) キナゾリン-4-イル] ピペラジン-1-カルボキシリック アシッド (4-イ ソプロポキシフェニル) アミド (以下、「MLN518」および「tandutinib」ともい う。Blood., 104, 3754-3757, 2004.、Journal of Medicinal Chemistry., 45, 3772-3793, 2002.) (式 (XVI) 参照)、

などを挙げることができる。

イマチニブ、SU5416、SU6668、SU11248、KRN633、PTK787/ZK222584、KRN951、AZD2171、AG013736、BAY 43-9006、AEE-788、PD180970、PD173955、MLN518 および BMS-354825 は、公知の方法で製造することができ、例えば、それぞれの文献に記載された方法で製造することができる。

また、イマチニブは、ノバルティス社からグリベック(登録商標)を購入することによって、入手することができる。

本発明において、一般式(I)で表される化合物および/または c-kit 阻害物質は、酸または塩基と薬理学的に許容される塩を形成する場合もある。本発明における上記一般式(I)で表される化合物および/または c-kit 阻害物質は、これらの薬理学的に許容される塩をも包含する。酸との塩としては、例えば、塩酸塩、臭化水素酸塩、硫酸塩、リン酸塩などの無機酸塩およびギ酸、酢酸、乳酸、コハク酸、フマル酸、マレイン酸、クエン酸、酒石酸、ステアリン酸、安息香酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸、トリフルオロ酢酸などの有機酸塩などを挙げることができる。また、塩基との塩としては、ナトリウム塩、カリウム塩などのアルカリ金属塩、カルシウム塩、マグネシウム塩などのアルカリ土類金属塩、トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、ジシクロヘキシルアミン、N,N'-ジベンジルエチレンジアミン、アルギニン、リジンなどの有機塩基塩、アンモニウム塩などを挙げることができる。

また、本発明において、一般式(I)で表される化合物および/または c-kit 阻害物質は、これら化合物の溶媒和物および光学異性体が存在する場合には、

それらの溶媒和物および光学異性体が含まれる。溶媒和物は、例えば、水和物、 非水和物などを挙げることができ、好ましくは水和物を挙げることができる。 溶媒は、例えば、水、アルコール(例えば、メタノール、エタノール、n-プロ パノール)、ジメチルホルムアミドなどを挙げることができる。

さらに、本発明において、一般式(I)で表される化合物は、結晶でも無結晶でもよく、また、結晶多形が存在する場合には、それらのいずれかの結晶形の単一物であっても混合物であってもよい。

また、本発明において、本発明の化合物および/または c-kit 阻害物質は、 生体内で酸化、還元、加水分解などの代謝を受けて一般式(I)で表される化合物および/または c-kit 阻害物質を生成する化合物をも包含する。

本発明において、c-kit 阻害物質は、例えば、抗 c-kit キナーゼ抗体を挙げることができる。

本発明において、抗 c-kit キナーゼ抗体は、c-kit キナーゼまたはその部分断 片と親和性を有する抗体である。抗 c-kit キナーゼ抗体は、c-kit キナーゼを認 識し結合することで、c-kit キナーゼの血管内皮細胞増殖活性を阻害する中和抗 体であることが好ましい。本発明において、抗 c-kit キナーゼ抗体は、例えば、 ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖抗体 (scFV) (Huston et la. (1988) Proc. Natl. Acad. Sci. USA 85: 5879-83; The Pharmacology of Monoclonal Antibody, vol. 113, Rosenburg and Moore ed., Springer Verlag (1994) pp. 269-315) 、ヒト化抗体、多特異性抗体 (LeDoussal et al. (1992) Int. J. Cancer Suppl. 7: 58-62; Paulus (1985) Behring Inst. Mitt. 78: 118-32; Millstein and Cuello (1983) Nature 305: 537-9; Zimmermann (1986) Rev. Physiol. Biochem. Pharmacol. 105: 176-260; Van Dijk et al. (1989) Int. J. Cancer 43: 944-9)、および、Fab、Fab'、F(ab')2、Fc、Fvな どの抗体断片などがあげられ、好ましくはモノクローナル抗体があげられる。 さらに、抗 c-kit キナーゼ抗体は、必要に応じ、ポリエチレングリコール(PEG) 等により修飾されていてもよい。その他、抗 c-kit キナーゼ抗体は、 β -ガラク トシダーゼ、MBP (maltose binding protein)、GST (glutathione S-transferase)、 GFP(green fluorescence protein)等との融合タンパク質として製造されること

ができ、ELISA 法などにおいて二次抗体を用いずに検出できるようにしてもよい。 また、抗 c-kit キナーゼ抗体は、ビオチン等により抗体を標識することにより アビジン、ストレプトアビジン等を用いて抗体の回収を行い得るように改変さ れていてもよい。

抗 c-kit キナーゼ抗体は、c-kit キナーゼまたはその部分断片(以下、「c-kit キナーゼのポリペプチド断片」と称する場合がある)、もしくはそれらを発現する細胞を感作抗原として常法に従い製造することができる(「Current Protocols in Molecular Biology」(John Wiley & Sons (1987) Section 11.4-11.13))。この場合、c-kit キナーゼのポリペプチド断片は、Fc 領域、GST、MBP、GFP、AP(alkaline phosphatase)などとの融合タンパク質であってもよい。

ポリクローナル抗体及びモノクローナル抗体は、当業者に周知の方法で作製することができる(Antibodies: A Laboratory Manual, E. Harlow and D. Lane, ed., Cold Spring Harbor Laboratory (Cold Spring Harbor, NY, 1988))。

ポリクローナル抗体は、例えば、抗原をマウス、ウサギ、ラットなどの哺乳動物に投与し、該哺乳動物から血液を採取し、採取した血液から抗体を分離、精製することにより得ることができる。免疫感作の方法は当業者に公知であり、例えば抗原を1回以上投与することにより行うことができる。また、抗原(c-kitキナーゼのポリペプチド断片)は、適当な緩衝液、例えば、完全フロイントアジュバント又は水酸化アルミニウム等の通常用いられるアジュバントを含有する適当な緩衝液に溶解して用いることができるが、投与経路や条件等に応じてアジュバントを使用しない場合もある。

最後の免疫感作から1~2ケ月後に当該哺乳動物から血液を採取して、該血液を、例えば、遠心分離、硫酸アンモニウム又はポリエチレングリコールを用いた沈澱、各種クロマトグラフィー等の常法によって分離、精製することにより、ポリクローナル抗血清として、ポリクローナル抗体を得ることができる。

モノクローナル抗体を産生する方法としては、ハイブリドーマ法を挙げることができる。ハイブリドーマ法は、まず、ポリクローナル抗体の産生と同様に哺乳動物を免疫感作する。免疫後、適当な日数を経過した後に部分採血を行い、ELISA 法などの公知方法で抗体価を測定することが好ましい。

次いで、感作の終了した免疫動物から脾臓を摘出し、B 細胞を得る。次いで、

B 細胞を常法に従いミエローマ細胞と融合させて抗体産生ハイブリドーマを作製することができる。用いられるミエローマ細胞は特に限定されず、公知のものを使用できる。細胞の融合方法は、センダイウイルス法、ポリエチレングリコール法、プロトプラスト法等、当該分野で公知の方法を任意に選択して用いることができる。得られたハイブリドーマは、常法に従い、HAT 培地(ヒポキサンチン、アミノプテリン、およびチミジン含有培地)中で適当な期間培養し、ハイブリドーマの選択を行うことができる。次いで、目的とする抗体産生ハイブリドーマのスクリーニングを行った後、当該ハイブリドーマのクローニングを行うことができる。

スクリーニング法としては、ELISA 法やラジオイムノアッセイ法などの公知の 抗体検出方法を用いることができ、また、クローニング法としては、当該分野 で公知の方法を用いることができ、例えば、限界希釈法および FACS 法等を用い ることができる。得られたハイブリドーマは、適当な培養液中で培養するか、 あるいはハイブリドーマと適合性のある、例えばマウス腹腔内に投与すること ができる。こうして得られる培養液中または腹水中から、塩析、イオン交換ク ロマトグラフィー、ゲル濾過、アフィニティークロマトグラフィー等により、 所望のモノクローナル抗体を単離精製することができる。

2. 医薬組成物、キット、癌の治療方法

本発明は、本発明の化合物と c-kit 阻害物質とを組み合わせる点に特徴を有する医薬組成物、キット、癌の治療方法等に関するものである。

本発明において、c-kit 阻害物質は、c-kit キナーゼを阻害する活性を有するものであれば、特に限定されない。c-kit 阻害物質は、例えば、c-kit キナーゼ阻害物質、抗c-kit キナーゼ抗体などを挙げることができる。c-kit 阻害物質は、好ましくはイマチニブ、SU5416、SU6668、SU11248、KRN633、PTK787/ZK222584、KRN951、AZD2171、AG013736、BAY 43-9006、AEE-788、PD180970、PD173955、MLN518および BMS-354825 が挙げられ、より好ましくはイマチニブが挙げられる。

本発明において、「組み合わせてなる」とは、化合物を併用して用いるための組み合わせを意味し、別々の物質を投与時に併用する形態、および混合物としての形態の両方を含む。

本発明のキットに含まれる製剤は、本発明の化合物および/または c-kit 阻害物質を含む限り、その剤形は特に限定されない。本発明の医薬組成物および/またはキットは、癌治療用医薬組成物および/またはキットとして有用である。

本発明の医薬組成物および/またはキットは、癌治療剤として使用することができる。

本発明において、癌治療剤とは、抗腫瘍剤、癌予後改善剤、癌再発予防剤、 癌転移抑制剤などを含むものをいう。

癌治療の効果は、レントゲン写真、CT等の所見や生検の病理組織診断により、 あるいは腫瘍マーカーの値により確認することができる。

本発明の医薬組成物および/またはキットは、哺乳動物(例、ヒト、ラット、 ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して、投与するこ とができる。

癌治療剤の対象となる癌種は、特に限定されず、例えば、脳腫瘍、頚癌、食道癌、舌癌、肺癌、乳癌、膵癌、胃癌、小腸または十二指腸の癌、大腸癌(結腸癌、直腸癌)、膀胱癌、腎癌、肝癌、前立腺癌、子宮癌、卵巣癌、甲状腺癌、胆嚢癌、咽頭癌、肉腫(例えば、骨肉腫、軟骨肉腫、カポジ肉腫、筋肉腫、血管肉腫、線維肉腫など)、白血病(例えば、慢性骨髄性白血病(CML)、急性骨髄性白血病(AML)、慢性リンパ球性白血病(CLL)及び急性リンパ性白血病(ALL)、リンパ腫、多発性骨髄腫(MM)など)およびメラノーマなどを挙げることができる。

本発明の医薬組成物および/またはキットを使用する場合には、経口もしくは非経口的に投与することができる。本発明の医薬組成物および/またはキットを使用する場合、本発明の化合物の投与量は、症状の程度、患者の年齢、性別、体重、感受性差、投与方法、投与時期、投与間隔、医薬製剤の性質、調剤および種類、有効成分の種類等によって異なり、特に限定されないが、通常成人(体重 60 kg) 1 日あたり 0.1~1000 mg、好ましくは 0.5~100 mg、さらに好ましくは 1~30 mg でありこれを通常 1 日 1~3 回に分けて投与することができる。

本発明の医薬組成物および/またはキットを使用する場合、c-kit 阻害物質は、

特に限定されないが、通常成人 1 日あたり $10\sim6000$ mg、好ましくは $50\sim4000$ mg、 さらに好ましくは $50\sim2000$ mg でありこれを通常 1 日 $1\sim3$ 回に分けて投与することができる。

また、本発明の医薬組成物および/またはキットを使用する場合、c-kit キナーゼ阻害物質は、特に限定されないが、通常成人 1 日あたり $10\sim6000$ mg、好ましくは $50\sim4000$ mg、さらに好ましくは $50\sim2000$ mg でありこれを通常 1 日 $1\sim3$ 回に分けて投与することができる。

本発明の医薬組成物および/またはキットを使用する場合、抗 c-kit キナーゼ抗体は、特に限定されないが、通常 1~6000 mg、好ましくは 10~2000 mg、さらに好ましくは 10~1000 mg でありこれを通常 1 日から 1 週間に 1 回投与することができる。

使用する本発明の化合物の量は、特に限定されず、c-kit 阻害物質との個々の組み合わせによって異なるが、例えば、c-kit 阻害物質の約 $0.01 \sim 100$ 倍(重量比)である。 さらに好ましくは約 $0.1 \sim 10$ 倍(重量比)である。

本発明の医薬組成物は、経口用固形製剤、注射剤などにすることができる。 また、本発明のキットに含まれる本発明の化合物および c-kit 阻害物質は、 それぞれ経口用固形製剤、注射剤などにすることができる。

経口用固形製剤を調製する場合には、主薬に賦形剤さらに必要に応じて結合 剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、 被覆錠剤、顆粒剤、細粒剤、散剤、カプセル剤等とすることができる。

賦形剤としては、例えば、乳糖、コーンスターチ、白糖、ぶどう糖、ソルビット、結晶セルロース、二酸化ケイ素などが、結合剤としては、例えばポリビニルアルコール、エチルセルロース、メチルセルロース、アラビアゴム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等が、滑沢剤としては、例えばステアリン酸マグネシウム、タルク、シリカ等が、着色剤としては、例えばステアリン酸マグネシウム、タルク、シリカ等が、着色剤としては医薬品に添加することが許可されているものが、矯味矯臭剤としては、ココア末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末等が用いられる。これらの錠剤、顆粒剤には糖衣、ゼラチン衣、その他必要により適宜コーティングすることは勿論差し支えない。

注射剤を調製する場合には、必要により主薬に pH 調整剤、緩衝剤、懸濁化剤、

溶解補助剤、安定化剤、等張化剤、保存剤などを添加し、常法により静脈、皮下、筋肉内注射剤とすることができる。その際必要により、常法により凍結乾燥物とすることもできる。

懸濁化剤としては、例えば、メチルセルロース、ポリソルベート 80、ヒドロキシエチルセルロース、アラビアゴム、トラガント末、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルビタンモノラウレートなどを挙げることができる。

溶解補助剤としては、例えばポリオキシエチレン硬化ヒマシ油、ポリソルベート 80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、マクロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

また安定化剤としては、例えば亜硫酸ナトリウム、メタ亜硫酸ナトリウム等 を、保存剤としては、例えばパラオキシ安息香酸メチル、パラオキシ安息香酸 エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾールなどを挙げることができる。

本発明のキットにおいて、本発明の化合物を含んでなる製剤と、c-kit 阻害物質を含んでなる製剤とは、混合されていてもよいし、あるいは、別個に収納されて一体に包装されていてもよい。また、上記製剤の投与の順序は特に限定されるものではなく、同時に投与されてもよいし、いずれか一方を先に、他方を後に投与することができる。

本発明の医薬組成物および/またはキットは、上記の本発明の化合物および c-kit 阻害物質の他に、包装容器、取扱説明書、添付文書等を含んでいてもよい。 包装容器、取扱説明書、添付文書等には、物質を併用して用いるための組み合わせを記載することができ、また、別々の物質を投与時に併用する形態または混合物としての形態について、用法、用量などを記載することができる。用法、用量は、上記を参照して記載することができる。

また、本発明のキットは、(a) 本発明の化合物と c-kit 阻害物質とを併用して用いることを記載した包装容器、取扱説明書、および添付文書からなる群から選択される少なくとも1つと、(b) 本発明の化合物を含む医薬組成物とを含有する態様であってもよい。当該キットは、癌治療用キットとして有用である。本発明の化合物を含有する医薬組成物は、癌治療用医薬組成物として有用であ

る。包装容器、取扱説明書、添付文書等には、化合物を併用して用いることを 記載することができ、また、別々の物質を投与時に併用する形態または混合物 としての形態について、用法、用量などを記載することができる。用法、用量 は、上記を参照して記載することができる。

さらに、本発明には、c-kit 阻害物質と組み合わせてなる医薬組成物の製造のための本発明の化合物の使用も含まれる。本発明の使用において、上記医薬組成物は、癌治療用医薬組成物として有用である。

また、本発明は、本発明の化合物と c-kit 阻害物質とを同時または別々に患者に投与する癌の予防又は治療方法をも含むものである。本発明の癌の予防または治療方法において、本発明の化合物および c-kit 阻害物質の投与経路および投与方法は特に限定されないが、上記本発明の医薬組成物の記載を参照することができる。

さらに、本発明は、c-kit 阻害物質と同時または別々に患者に投与されることを特徴とする本発明の化合物を含む医薬組成物をも含むものである。本発明の医薬組成物において、本発明の化合物および c-kit 阻害物質の投与経路および投与方法は特に限定されないが、上記本発明の医薬組成物の記載を参照することができる。

実施例

以下に、具体的な例をもって本発明を示すが、本発明はこれに限られるものではない。

[実施例1] ヒト癌細胞株皮下移植モデル(in vivo)における本発明の化合物と c-kit 阻害物質との併用

ヒト消化管間質腫瘍細胞株 GIST882 (The Brigham and Women's Hospital, Inc. から供与)を 5%炭酸ガスインキュベーター内において RPMI1640 (10% FBS 含)で約 80%コンフルレントとなるまで培養した。培養後、常法に従いトリプシン-EDTA 処理により、各細胞を回収した。細胞を 50%マトリゲル含有リン酸緩衝液で懸濁し、 5×10^7 cells/mL 懸濁液を調製した。そして、細胞懸濁液を 0.2 mL ずつヌードマウス体側皮下に移植した。移植後 21 日目より、4-(3-0) ロー4-(200) ロプロピルアミノカルボニル)アミノフェノキシ)-7-3 ト

キシー6ーキノリンカルボキサミドを 10 mg/kg または 30 mg/kg の投与量で、1日1回、2週間のスケジュール、イマチニブを 160 mg/kg の投与量で、1日2回、2週間のスケジュールとし、単独または併用で経口投与した。なお、4ー(3ークロロー4ー(シクロプロピルアミノカルボニル)アミノフェノキシ)ー7ーメトキシー6ーキノリンカルボキサミド(メタンスルホン酸塩)は、国際公開第02/32872)の記載に基づいて製造した。また、イマチニブは、ノバルティス社から購入した。腫瘍長径および短径をデジマチックキャリパ(Mitsutoyo)で測定し、以下の式で腫瘍体積、比腫瘍体積を算出した。

腫瘍体積(TV)=腫瘍長径(mm)×腫瘍短径²(mm²)/2 比腫瘍体積(RTV)=測定日の腫瘍体積/投与開始日の腫瘍体積

表 1

化合物投与	Day15 における比腫瘍体積
	平均±標準偏差
コントロール (無処置)	2. 71±0. 24
イマチニブ 160 mg/kg	1. 03±0. 15
化合物 A 10 mg/kg	2.06±0.16
化合物 A 10 mg/kg	0. 77±0. 12
+ イマチニブ 160 mg/kg	

表 1 は、ヒト癌細胞株皮下移植モデルにおける、 $4-(3-\rho pp-4-(2) pp-4$

表 2

化合物投与	Day15 における比腫瘍体積
	平均±標準偏差
コントロール (無処置)	2. 71±0. 24
イマチニブ 160 mg/kg	1. 03±0. 15
化合物 A 30 mg/kg	1. 36±0. 13
化合物 A 30 mg/kg	0. 62±0. 09
+ イマチニブ 160 mg/kg	

表 2 は、ヒト癌細胞株皮下移植モデルにおける、4 - (3 - クロロー4 - (シクロプロピルアミノカルボニル) アミノフェノキシ) - 7 - メトキシー6 - キノリンカルボキサミド(表 2 中、化合物 A と示す)、イマチニブおよび4 - (3 - クロロー4 - (シクロプロピルアミノカルボニル) アミノフェノキシ) - 7 - メトキシー6 - キノリンカルボキサミドとイマチニブとの併用の抗腫瘍効果を示す。投与開始日を day1 とした。

以上の結果から、4-(3-クロロ-4-(シクロプロピルアミノカルボニ

ル) アミノフェノキシ) - 7 - メトキシ-6 - キノリンカルボキサミドとイマ チニブとを組み合わせることにより、すぐれた抗腫瘍活性を示す医薬組成物お よびキットが提供され、癌の治療に用いることが可能となった。

[参考例]

一般式(I)で表される化合物の一つである4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミドの製剤の製造法を以下に参考例として記載する。

(医薬組成物の製造)・

(1) 1 mg錠

4- (3-クロロー4- (シクロプロピルアミノカルボニル) アミノフェノ キシ) - 7 - メトキシー6 - キノリンカルボキサミド メタンスルホン酸塩の 結晶(C)(以下、「結晶(C)」と称する場合がある。なお、結晶(C)は、W02005/063713 の実施例7に記載の方法に従って製造したものである。) 24gと無水軽質ケイ 酸(ゲル化防止剤、商品名AEROSIL(登録商標)200、日本アエロジ ル株式会社) 192gを20Lスーパーミキサーで混合後、さらにD-マンニ トール(賦形剤、東和化成工業株式会社)1236g、結晶セルロース(賦形 剤、商品名アビセルPH101、旭化成工業株式会社) 720g、ヒドロキシ プロピルセルロース(結合剤、商品名HPC-L、日本曹達株式会社)72g を加えて混合した。その後、無水エタノールを適量添加し結晶(C)を含有す る造粒物を得た。この造粒物を棚式乾燥機(60℃)で乾燥後、パワーミルを 用いて整粒し、顆粒を得た。この顆粒とともに、クロスカルメロースナトリウ ム(崩壊剤、商品名 Ac-Di-Sol、FMC International Inc.) 120g、フマル酸 ステアリルナトリウム(滑沢剤、JRS Pharma LP)36gを20Lタンブラーミ キサーに入れて混合後、打錠機で製錠し、1錠あたり総質量100mgの錠剤 を得た。さらに錠剤コーティング機で、コーティング液として10%オパドラ イイエロー (OPADRY 03F42069 YELLOW、日本カラコン株式会社) 水溶液を用い て、錠剤にコーティングし、1錠あたり総質量105mgのコーティング錠を 得た。

(2) 10mg錠

結晶(C)60gと無水軽質ケイ酸(ゲル化防止剤、商品名AEROSIL(登録商標)200、日本アエロジル株式会社)192gを20Lスーパーミキサーで混合後、さらにDーマンニトール(賦形剤、東和化成工業株式会社)1200g、結晶セルロース(賦形剤、商品名アビセルPH101、旭化成工業株式会社)720g、ヒドロキシプロピルセルロース(結合剤、商品名HPCーL、日本曹達株式会社)72gを加えて混合した。その後、無水エタノールを適量添加し結晶(C)を含有する造粒物を得た。この造粒物を棚式乾燥機(60℃)で乾燥後、パワーミルを用いて整粒し、顆粒を得た。この顆粒とともに、クロスカルメロースナトリウム(崩壊剤、商品名 Ac-Di-Sol、FMCInternational Inc.)120g、フマル酸ステアリルナトリウム(滑沢剤、JRS Pharma LP)36gを20Lタンブラーミキサーに入れて混合後、打錠機で製錠し、1錠あたり総質量400mgの錠剤を得た。さらに錠剤コーティング機で、コーティング液として10%オパドライイエロー(OPADRY 03F42069 YELLOW、日本カラコン株式会社)水溶液を用いて、錠剤にコーティングし、1錠あたり総質量411mgのコーティング錠を得た。

(3) 100mg錠

結晶(C) 31. 4gと無水軽質ケイ酸(ゲル化防止剤、商品名AEROSIL(登録商標)200、日本アエロジル株式会社)4gを1Lスーパーミキサーで混合後、さらに、無水リン酸水素カルシウム(賦形剤、協和化学工業株式会社)40.1g、低置換度ヒドロキシプロピルセルロース(結合剤、商品名LーHPC(LH-21)、信越化学工業株式会社)10g、ヒドロキシプロピルセルロース(結合剤、商品名HPC-L、日本曹達株式会社)3gを加えて混合した。その後、無水エタノールを適量添加し結晶(C)を含有する造粒物を得た。この造粒物を棚式乾燥機(60℃)で乾燥後、パワーミルを用いて整粒し、顆粒を得た。この顆粒とともに、クロスカルメロースナトリウム(崩壊剤、商品名 Ac-Di-Sol、FMC International Inc.)10g、フマル酸ステアリルナトリウム(滑沢剤、JRS Pharma LP)1.5gを混合後、打錠機で製錠し、1錠あたり総質量400mgの錠剤を得た。

産業上の利用可能性

本発明により、一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit 阻害物質とを組み合わせてなる医薬組成物および/またはキットが提供され、癌の治療に用いることが可能となった。

請求の範囲

1. 下記一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit キナーゼ阻害活性を有する物質とを組み合わせてなる医薬組成物。

一般式(I)

[式(I)中、R¹は、式-V¹-V²-V³(式中、V¹は、置換基を有していてもよいC $_{1-6}$ アルキレン基を意味する;V²は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式-CONR 6 -で表される基、式-SO $_2$ NR 6 -で表される基、式-NR 6 SO $_2$ -で表される基、式-NR 6 CO-で表される基または式-NR 6 -で表される基を意味する(式中、R 6 は、水素原子、置換基を有していてもよいC $_{1-6}$ アルキル基または置換基を有していてもよいC $_{3-8}$ シクロアルキル基を意味する。);V³は、水素原子、置換基を有していてもよいC $_{1-6}$ アルキル基、置換基を有していてもよいC $_{2-6}$ アルケニル基、置換基を有していてもよいC $_{2-6}$ アルキニル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{3-6}$ アルキニル基、置換基を有していてもよいこの員へテロアリール基または置換基を有していてもよいるよい5~10員へテロアリール基または置換基を有していてもよい3~10員非芳香族へテロ環式基を意味する。)で表される基を意味する

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{a11}V^{a12}$ (式中、 V^{a11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリー

ル基、置換基を有していてもよい $5\sim1$ 0員へテロアリール基または置換基を有していてもよい $3\sim1$ 0員非芳香族へテロ環式基を意味する; V^a 1²は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい $5\sim1$ 0員へテロアリール基、置換基を有していてもよい $3\sim1$ 0員非芳香族へテロ環式基、水酸基、置換基を有していてもよい C_{1-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で表される基を意味する;

Y¹は、式

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルキルチオ基、ホルミル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

W¹およびW²は、それぞれ独立して置換基を有していてもよい炭素原子または窒素原子を意味する。) で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する;

 R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $3\sim 10$ 員非芳香族へテロ環式基を意味する。]

- 2. R^1 が C_{1-6} アルキル基(ただし、 R^1 は C_{1-6} アルキル基を有していてもよい3~10員非芳香族へテロ環式基、水酸基、 C_{1-6} アルコキシ基、アミノ基、モノー C_{1-6} アルキルアミノ基およびジー C_{1-6} アルキルアミノ基から選ばれる置換基を有していてもよい)である、請求項1に記載の医薬組成物。
- 3. R¹がメチル基または式

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

(式中、R^{a³}はメチル基を意味する;R^{a¹}は水素原子または水酸基を意味する;R^{a²}は、メトキシ基、エトキシ基、1-ピロリジニル基、1-ピペリジニル基、4-モルホリニル基、ジメチルアミノ基またはジエチルアミノ基を意味する。)のいずれかで表される基である、請求項1に記載の医薬組成物。

- 4. R¹がメチル基または2-メトキシエチル基である、請求項1に記載の医薬組成物。
- 5. R^2 がシアノ基または式 $-CONV^{*11}V^{*12}$ (式中、 V^{*11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基または置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基を意味する; V^{*12} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、

 $5\sim10$ 員へテロアリール基、置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい C_{1-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で表される基である、請求項1に記載の医薬組成物。

- 6. R^2 がシアノ基または式 $-CONHV^{a16}$ (式中、 V^{a16} は、水素原子、 C_1 $_{-6}$ アルキル基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基または C_{3-8} シクロアルコキシ基を意味する。ただし、 V^{a16} は、ハロゲン原子、シアノ基、水酸基および C_{1-6} アルコキシ基から選ばれる置換基を有していてもよい。)で表される基である、請求項1に記載の医薬組成物。
- 7. R^2 が式 $-CONHV^{a17}$ (式中、 V^{a17} は、水素原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基を意味する。)で表される基である、請求項1に記載の医薬組成物。
- 8. R^2 が式 $-CONHV^{a18}$ (式中、 V^{a18} は、水素原子、メチル基またはメトキシ基を意味する。)で表される基である、請求項1に記載の医薬組成物。
- 9. Y¹が式

(式中、 R^{71} は、水素原子またはハロゲン原子を意味する。)で表される基である、請求項1に記載の医薬組成物。

- 10. R³およびR⁴が水素原子である、請求項1に記載の医薬組成物。
- 11. R^5 が水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基または C_{6-10} アリール基(ただし、 R^5 は、ハロゲン原子およびメタンスルホニル基から選ばれる置換基を有していてもよい)である、請求項1に記載の医薬組成物。
 - 12. R⁵がメチル基、エチル基またはシクロプロピル基である、請求項1に記載の医薬組成物。
 - 13. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

 $N - (4 - (6 - \nu r) - 7 - (2 - \nu r) + \nu r) - 4 - \mu r)$

オキシー2-フルオロフェニル)-N'-(4-フルオロフェニル)ウレア、

 $N-(2-\rho - 4-(6-\nu r) - 7-(1-\nu r) - 4-\nu r)$ ジル) メトキシ) $-4-\nu r$ フェニル) $-N'-\nu r$ ロピルウレア、

 $N-(4-((6-\nu r)/-7-(((2R)-3-(ジェチルアミノ)-2-ヒドロキシプロピル) オキシ) <math>-4-$ キノリル) オキシ) フェニル) -N'-(4-7)ルオロフェニル) ウレア、

 $N-(4-((6-\nu r)/-7-(((2R)-2-\nu r)-3-(1-\nu r)))$ $-(4-\nu r)/-(4-\nu r)/-(4-\nu r))$ $-(4-\nu r)/-(4-\nu r)/-(4-\nu r)$ $-(4-\nu r)/-(4-\nu r)/-(4-\nu r)/-(4-\nu r)$

4-(3-0) -(3-0)

N6-(2-)トキシエチル) -4-(3-)クロロ-4-((()シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-(2-7)ルオロエチル) -4-(3-7)ロロー4-(((シ)7ロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-x + x +

4-(3-7)ルオロー4-(2)クロプロピルアミノカルボニル)アミノフェノキシ)-7-(2-3)トキシエトキシ)-6-4ノリンカルボキサミド、

4-(3-000-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-(2-ヒドロキシエトキシ)-6-キノリンカルボキサミド、

4-(3-0-1-4-(メチルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4 - (4 - ((シクロプロピルアミノ) カルボニル) アミノフェノキシ) -7 - (2 - メトキシエトキシ) -6 - キノリンカルボキサミド、

N-(2-7)ルオロー4- $((6-\pi)$ ルバモイルー7-メトキシー4ーキノリル) オキシ) フェニル) -N' -シクロプロピルウレア、

N6-(2-E)ドロキシエチル) -4-(3-D)ロロー4-(((シD)ロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-クロロ-4-(1-プロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

カルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキ サミド、

N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-(2-メトキシエトキシ) -6-キノリンカルボキサミド、

4-(3-クロロ-4-(2-フルオロエチルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

N6-((2R) テトラヒドロー2-フラニルメチル) -4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) <math>-7-メトキシ-6-キノリンカルボキサミド、

4-(3-フルオロ-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -3-ジエチルアミノ-2-ヒドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3--0ロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -3-ジエチルアミノ-2-ヒドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4- (3-クロロ-4- (((エチルアミノ) カルボニル)

N6-x+-4-(3-p-1-4-(((x+-2)-4-1)) カルボニル) アミノ) フェノキシ) -7-((1-x+-4-1)) メトキシ) -6-4 リンカルボキサミド、

 $N - (4 - (6 - \nu r) - 7 - (2 - \nu r) + \nu r + \nu) - 4 - \nu r)$ $\lambda + \nu - 2 - \nu r$

 $N-(4-(6-\nu r)/-7-(3-(4-\tau n \pi y)))$ プロポキシ) $-4-\tau y$ カンフェニル) $-N'-(3-(y \tau n \pi x \pi y))$ フェニル) ウレア、

4-(4-((シクロプロピルアミノ) カルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-(2-x++)x+v)-4-(3-p-1-4-(((x+v))-1)J) カルボニル) アミノ) フェノキシ) -7-x++シー6-+ノリンカルボキサミド、

および

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項1に記載の医薬組 成物。

14. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

- 4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、
- 4-(3-クロロ-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、
- 4-(3-クロロ-4-(メチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド および

N6-メトキシー4-(3-クロロー4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシー6-キノリンカルボキサミドからなる群から選択される少なくとも一つの化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項1に記載の医薬組成物。

- 15. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項1に記載の医薬組成物。
- 16. 一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4-(3-クロロ-4-(シクロプロピルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミドのメタンスルホン酸塩である、請求項1に記載の医薬組成物。
 - 17. c-kit キナーゼ阻害活性を有する物質が、
 - (1) 4-(4-x+r) -N-[4-x+r) -N-[4-x+r) -3-[4-(3-r)] -3-[4-(3-r)] -3-[4-(3-r)] -3-[4-(3-r)] -3-[4-(3-r)] -3-[4-(3-r)] -3-[4-(3-r)]

(2) 3-[(2, 4-ジメチルピロール-5-イル) メチレン] <math>-2-イ ンドリノン、

- (3) (Z) -3-[(2, 4-i) + 2 5 (2-i) + 2 i]ドロインドール-3-(1) デンメチル) -1 H-ピロール-3-(1) - プロピオニック アシッド、
- (4) 5-(5-7)ルオロー2ーオキソー1, 2-3ヒドロインドールー3 ーイリデンメチル) -2, 4-3メチルー1 Hーピロールー3-カルボキシリック アシッド (2-3エチルアミノエチル) アミド、
- (5) $N \{2 \rho \mu 4 [(6, 7 i j j + i j 4 i j j k j$
- (6) 1-(4-クロロアニリノ)-4-(4-ピリジルメチル) フタラジン、
- (7) $N-\{2-\rho pp-4-[(6,7-ジメトキシ-4-キノリル) オキシ] フェニル\} -N'-(5-メチル-3-イソキサゾリル) ウレア、$
- (9) 6 − [2 − (メチルカルバモイル) フェニルスルファニル] −3 −E− [2 − (ピリジン−2 − イル) エテニル] インダゾール、
- $(1\ 0)\ N-(3-)$ ア、 $(1\ 0)\ N-(3-)$ ア、 $(1\ 0)\ N-(3-)$ ア、(3-) ア
 - (11)[6-[4-[(4-エチルピペラジン-1-イル) メチル] フェニル] -7H-ピロロ[2, 3-d] ピリミジン-4-イル] ((R) -1 -フェニルエチル) アミン、
 - (12)6-(2,6-ジクロローフェニル)-2-(4-フルオロ-3-メチルーフェニルアミノ)-8-メチル8H-ピリド[2,3-d]ピリミジン-7-オン、
 - (13) 6-(2, 6-ジクロロフェニル) -8-メチル-2-(3-メチルスルファニルフェニルアミノ) <math>-8H-ピリド[2, 3-/d/]ピリミジン

-7-オン、

(14) 4-[6-メトキシー7-(3-ピペリジン-1-イループロポキシ) キナゾリン-4-イル]ピペラジン-1-カルボキシリック アシッド(4-イソプロポキシフェニル) アミド

および

(15) N- (2-クロロー6-メチルフェニル) -2-[[6-[4-(2-ヒドロキシエチル) ピペラジン-1-イル]-2-メチルピリミジン-4 ーイル]アミノ]チアゾール-5-カルボキサミド

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項1~16のいずれ か一項に記載の医薬組成物。

- 18. c-kit キナーゼ阻害活性を有する物質が、4-(4-メチルピペラジンー 1-イルメチル)-N-[4-メチル-3-[4-(3-ピリジル) ピリミ ジン-2-イルアミノ]フェニル]ベンゼンアミド、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項1~16のいずれ か一項に記載の医薬組成物。
- 19. c-kit キナーゼ阻害活性を有する物質が、抗 c-kit キナーゼ抗体である、
 請求項 $1\sim16$ のいずれか一項に記載の医薬組成物。
- 20. 医薬組成物が、癌治療用医薬組成物である、請求項1~19のいずれか 一項に記載の医薬組成物。
- 21. (a) 下記一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit キナーゼ阻害活性を有する物質とを併用することを記載した、包装容器、取扱説明書および添付文書からなる群から選択される少なくとも1つと、
 - (b) 下記一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含む医薬組成物と、

を含有するキット。

一般式(I)

[式(I)中、R¹は、式 $-V^1-V^2-V^3$ (式中、 V^1 は、置換基を有していてもよい C_{1-6} アルキレン基を意味する; V^2 は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式-CONR6-で表される基、式 $-NR^6SO_2$ -で表される基、式 $-NR^6SO_2$ -で表される基、式 $-NR^6CO$ -で表される基または式 $-NR^6$ -で表される基を意味する(式中、 R^6 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基または置換基を有していてもよい C_{3-8} シクロアルキル基を意味する。); V^3 は、水素原子、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アリール基または置換基を有していてもよい C_{3-6} アリール基または置換基を有していてもよい C_{3-6} アリール基または置換基を有していてもよい

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{a11}V^{a12}$ (式中、 V^{a11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim1$ 0員へテロアリール基または置換基を有していてもよい $3\sim1$ 0員非芳香族へテロ環式基を意味する; V^a 1²は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{5-10} アリール基、置換基を有していてもよい $5\sim1$

10 員へテロアリール基、置換基を有していてもよい $3\sim10$ 員非芳香族 ヘテロ環式基、水酸基、置換基を有していてもよい C_{1-6} アルコキシ基ま たは置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で 表される基を意味する;

Y¹は、式

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルキルチオ基、ホルミル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

W¹およびW²は、それぞれ独立して置換基を有していてもよい炭素原子または窒素原子を意味する。)で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する;

 R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $3\sim 10$ 員非芳香族へテロ環式基を意味する。]

22. R^1 が C_{1-6} アルキル基(ただし、 R^1 は C_{1-6} アルキル基を有していてもよい3~10員非芳香族へテロ環式基、水酸基、 C_{1-6} アルコキシ基、アミノ基、モノー C_{1-6} アルキルアミノ基およびジー C_{1-6} アルキルアミノ基から選ばれる置換基を有していてもよい)である、請求項21に記載のキット。

23. R¹がメチル基または式

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

(式中、 R^{a3} はメチル基を意味する; R^{a1} は水素原子または水酸基を意味する; R^{a2} は、メトキシ基、エトキシ基、1-ピロリジニル基、1-ピペリジニル基、4-モルホリニル基、ジメチルアミノ基またはジエチルアミノ基を意味する。)のいずれかで表される基である、請求項21に記載のキット。

- 24. R¹がメチル基または2-メトキシエチル基である、請求項21に記載のキット。
- $25. R^2$ がシアノ基または式一 $CONV^{a11}V^{a12}$ (式中、 V^{a11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基を意味する; V^{a12} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 日本記述のキット。
- 26. R^2 がシアノ基または式 $-CONHV^{a16}$ (式中、 V^{a16} は、水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基または C_3

 $_{-8}$ シクロアルコキシ基を意味する。ただし、 $V^{a \ 16}$ は、ハロゲン原子、シアノ基、水酸基および C_{1-6} アルコキシ基から選ばれる置換基を有していてもよい。)で表される基である、請求項21に記載のキット。

- 27. R^2 が式 $-CONHV^{*17}$ (式中、 V^{*17} は、水素原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基を意味する。)で表される基である、請求項 21 に記載のキット。
- 28. R^2 が式 $-CONHV^{a18}$ (式中、 V^{a18} は、水素原子、メチル基またはメトキシ基を意味する。)で表される基である、請求項21に記載のキット。
- 29. Y¹が式

(式中、 R^{71} は、水素原子またはハロゲン原子を意味する。)で表される 基である、請求項21に記載のキット。

- 30. R³およびR⁴が水素原子である、請求項21に記載のキット。
- 31. R^5 が水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基または C_{6-10} アリール基(ただし、 R^5 は、ハロゲン原子およびメタンスルホニル基から選ばれる置換基を有していてもよい)である、請求項21に記載のキット。
- 32. R⁵がメチル基、エチル基またはシクロプロピル基である、請求項21に 記載のキット。
- 33. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

 $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu x)-4-+)$ $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu x)-4-+)$ $N-(4-\nu r)$ $N'-(4-\nu r)$ $N'-(4-\nu r)$ $N'-(4-\nu r)$

 $N-(4-((6-\nu r)/-7-(((2R)-3-(\nu r)/r)/2-2-((12R)-3-(\nu r)/r)/r)/r)$

 $N-(4-((6-\nu r)/-7-(((2R)-2-\nu r)-3-(1-\nu r)))$ ーピロリジノ) プロピル) オキシ) -4-+ ノリル) オキシ) フェニル) $-N'-(4-\nu r)$ ウレア、

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

N6-シクロプロピルー4-(3-クロロー4-(((シクロプロピルアミノ)) カルボニル) アミノ) フェノキシ) -7-メトキシー6-キノリンカルボキサミド、

N6-(2-y++vx+y)-4-(3-ppp-4-(((vpp-y-2)-2)-4-((vpp-y-2)-4-((vpp-y-2)-4-(vpp-4-((vpp-y-2)-4-(vpp-4-(vp-4-(vp-4-(vp-4-(vp-

N6-(2-7)ルオロエチル) -4-(3-7)ロロー4-((()シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6- + + v - 4 - (3- p - 1 - 4 - (((v - 1 - 1 - 2 - 4 - ((v - 1 - 4 - (((v - 1 - 4 - ((v - 1 - 4 - (((v - 1 - 4 - ((v - 1 - 4 - (((v - 1 - 4 - ((v - 1 - 4 - (((v - 1 - ((v - 1))))))))))))))))))))))))))))

N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-7)ルオロー4-(2)クロプロピルアミノカルボニル)アミノフェノキシ)-7-(2-3)キシエトキシ)-6-キノリンカルボキサミド、

4-(3-0)00-4-(メチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-クロロ-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-メトキシ-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(4-((シクロプロピルアミノ) カルボニル) アミノフェノキシ) <math>-7-(2-3)

N-(2-7)ルオロー4-((6-7)ルバモイルー7-メトキシー4-キノリル) オキシ) フェニル) -N' -シクロプロピルウレア、

N6-(2-E)ドロキシエチル) -4-(3-D)ロロー4-(((シD)ロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6ーキノリンカルボキサミド、

4-(3-0) -(1-0)

N6-x+v-4-(3-p-1-4-(((x+v-1)-4-1)-4-((x+v-1)-4-1)-4-(x+v-1)-7-x+2-6-4-(x+v-1)-4-(x+v-

4-(3-クロロ-4-(2-フルオロエチルアミノカルボニル)アミ ノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

N6-((2R) テトラヒドロー2ーフラニルメチル) $-4-(3-\rho)$ -4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) <math>-7- メトキシー6-キノリンカルボキサミド、

4-(3-7)ルオロ-4-(x+7)アミノカルボニル)アミノフェノキシ)-7-xトキシ-6-4リンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R)-3-ジエチルアミノ-2-ヒドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R)-3-ジエチルアミノ-2-ヒドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R)-2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R)-2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((1-メチル-4-ピペリジル) メトキシ) -6-キノリンカルボキサミド、

N6-xチルー4-(3-ppp-4-(((xチルアミノ) カルボニル) アミノ) フェノキシ) <math>-7-((1-x)チルー4-yピペリジル) メトキシ) -6-xナリンカルボキサミド、

 $N-(4-(6-\nu r)/-7-(3-(4-\tau n\pi y)))$ $\gamma n\pi + \nu n - 4-\tau y n + \nu n - 4-\tau y n + \nu n - 4-\tau n$

4-(4-((シクロプロピルアミノ) カルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-7)ルオロ-4-((2-7)ルオロエチルアミノ)カルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

N6-(2-x++vx+v)-4-(3-ppp-4-(((x+vx+v)-1)) + (x+vx+v) + (x+vx+v)

および

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項21に記載のキット。

34. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

4-(3-0) -(3-0)

4-(3-クロロ-4-(エチルアミノカルボニル)アミノフェノキシ)

-7-メトキシ-6-キノリンカルボキサミド、

N6- + + - 4 - (3- - 4 - (((- 2 - 4 - 4 - ((- 2 - 4 - 4)))))))))))))))))))))))))))

4-(3-クロロ-4-(メチルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド および

N6-メトキシ-4-(3-クロロ-4-(((エチルアミノ)) カルボニル) アミノ) フェノキシ) <math>-7-メトキシ-6-キノリンカルボキサミドからなる群から選択される少なくとも一つの化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項21に記載のキット。

- 35. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項21に記載のキット。
- 3 6. 一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4 (3 クロロー4 (シクロプロピルアミノカルボニル) アミノフェノキシ) 7 メトキシー6 キノリンカルボキサミドのメタンスルホン酸塩である、請求項21に記載のキット。
- 37. c-kit キナーゼ阻害活性を有する物質が、
 - (1) 4-(4-)チルピペラジン-1-イルメチル) -N-[4-)メチル -3-[4-(3-)] ピリミジン-2-イルアミノ] フェニル] ベンゼンアミド、
 - (2) 3-[(2, 4-ジメチルピロール-5-イル) メチレン] <math>-2-インドリノン、
 - (3) (Z) -3 [(2, 4-i) + 2 5 (2-i) + 2 i]ドロインドール-3 - 4 リデンメチル) -1 + 2 - 2 - 2 - 2 - 3 - 4 レリープロピオニック アシッド、

(4) 5 - (5-7)ルオロ-2 - - + 2 - 3 - - 4 - 5 + 1 +

- (5) $N \{2 \rho \rho 4 [(6, 7 i j j + i j 4 i j j i j j i$

- (8) 4-[(4-7)(1)] (8) 4-[(4-7)(1)] (10) 4-(1) (11) 4-(1) (12) 1-(1) (13) 1-(1) (14) 1-(1) (15) 1-(1) (17) 1-(1) (17) 1-(1) (18) 1-(1) (19)
- (9) 6 − [2 − (メチルカルバモイル) フェニルスルファニル] −3 − E− [2 − (ピリジン−2 − イル) エテニル] インダゾール、
- (10) N-(3-h) フルオロメチル-4-クロロフェニル) -N'-(4-(2-メチルカルバモイルピリジン-4-イル) オキシフェニル) ウレア、
 - (11) [6-[4-[(4-x チルピペラジン-1- イル) メチル] フェニル] 7H-ピロロ <math>[2, 3-d] ピリミジン-4- イル] -((R) -1-フェニルエチル) アミン、
- (13) 6-(2, 6-ジクロロフェニル) -8-メチル-2-(3-メチルスルファニルフェニルアミノ) <math>-8H-ピリド[2, 3-/d/]ピリミジンー7-オン、
- (14) 4-[6-メトキシ-7-(3-ピペリジン-1-イループロポキシ) キナゾリン-4-イル] ピペラジン-1-カルボキシリック アシッド (4-イソプロポキシフェニル) アミド および
 - (15) N- (2-クロロ-6-メチルフェニル) -2-[[6-[4-(2-

ヒドロキシエチル) ピペラジン-1-イル]-2-メチルピリミジン-4-イル]アミノ]チアゾール-5-カルボキサミド

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項21~36のいず れか一項に記載のキット。

- 38. c-kit キナーゼ阻害活性を有する物質が、4-(4-)メチルピペラジンー1-(4-) ルー 1-(4-) ルー 1-(3-) ピリミジンー1-(3-) リンル)ピリミジンー1-(4-) ステンカー 1-(4-) ステンカー 1-(4
- 39. c-kit キナーゼ阻害活性を有する物質が、抗 c-kit キナーゼ抗体である、 請求項 21~36のいずれか一項に記載のキット。
- 40. キットが、癌治療用キットである、請求項21~39のいずれか一項に 記載のキット。
- 41. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含んでなる製剤と、c-kit キナーゼ阻害活性を有する物質を含んでなる製剤とをセットにしたことを特徴とするキット。

一般式(I)

$$\begin{array}{c|c}
R^3 & R^4 \\
\hline
 & N & R^5
\end{array}$$

$$\begin{array}{c|c}
R^1 & & & \\
\hline
 & N & & \\
\hline
 & N & & \\
\end{array}$$
(I)

[式(I)中、R¹は、式ーV¹ーV²ーV³(式中、V¹は、置換基を有していてもよい C_{1-6} アルキレン基を意味する; V^2 は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式ー $CONR^6$ ーで表される基、式ー SO_2NR^6 ーで表される基、式ー NR^6SO_2 ーで表される基、式ー NR^6CO ーで表される基または式ー NR^6 ーで表される基を意味する(式中、 R^6 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基または置換基を有していてもよい C_{3-8} シクロアルキル基を意味する。); V^3 は、水素原子、置換基を有していてもよい C_{1-6} アルキル

基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-8} シクロアルもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい てもよい $5\sim1$ 0 員へテロアリール基または置換基を有していてもよい $3\sim1$ 0 員非芳香族へテロ環式基を意味する。)で表される基を意味する

R²は、シアノ基、置換基を有していてもよいC₁₋₆アルコキシ基、カルボ キシル基、置換基を有していてもよい C2-7アルコキシカルボニル基また は式-CONV^{all}V^{al2}(式中、V^{all}は、水素原子、置換基を有してい てもよいC₁₋₆アルキル基、置換基を有していてもよいC₂₋₆アルケニル 基、置換基を有していてもよいC₂₋₆アルキニル基、置換基を有していて もよいC₃₋₃シクロアルキル基、置換基を有していてもよいC₅₋₁₀アリー ル基、置換基を有していてもよい5~10員へテロアリール基または置換 基を有していてもよい3~10員非芳香族へテロ環式基を意味する; V° 12は、水素原子、置換基を有していてもよいC₁₋₆アルキル基、置換基を 有していてもよいC。-。アルケニル基、置換基を有していてもよいC。-。 アルキニル基、置換基を有していてもよいC。-。シクロアルキル基、置換 基を有していてもよいC₆₋₁₀アリール基、置換基を有していてもよい5~ 10員へテロアリール基、置換基を有していてもよい3~10員非芳香族 ヘテロ環式基、水酸基、置換基を有していてもよいC₁₋₆アルコキシ基ま たは置換基を有していてもよいC₃₋₈シクロアルコキシ基を意味する。)で 表される基を意味する;

Y¹は、式

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{1-6} アルキシ基、置換基を有していてもよい C_{1-6} アルキ

ルチオ基、ホルミル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

W¹およびW²は、それぞれ独立して置換基を有していてもよい炭素原子または窒素原子を意味する。)で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する;

 R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $3\sim 10$ 員非芳香族へテロ環式基を意味する。]

42. R^1 が C_{1-6} アルキル基(ただし、 R^1 は C_{1-6} アルキル基を有していてもよい3~10員非芳香族へテロ環式基、水酸基、 C_{1-6} アルコキシ基、アミノ基、モノー C_{1-6} アルキルアミノ基およびジー C_{1-6} アルキルアミノ基から選ばれる置換基を有していてもよい)である、請求項41に記載のキット。43. R^1 がメチル基または式

$$R^{a2} \longrightarrow R^{a2} \longrightarrow R$$

(式中、 R^{a3} はメチル基を意味する; R^{a1} は水素原子または水酸基を意味する; R^{a2} は、メトキシ基、エトキシ基、1-ピロリジニル基、1-ピペリジニル基、4-モルホリニル基、ジメチルアミノ基またはジエチルアミノ基を意味する。)のいずれかで表される基である、請求項41に記載のキット。

44. R¹がメチル基または2-メトキシエチル基である、請求項41に記載のキット。

- $45. R^2$ がシアノ基または式 $-CONV^{a11}V^{a12}$ (式中、 V^{a11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基または置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基を意味する; V^{a12} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい10 日本記述を意味する。)で表される基である、請求項41に記載のキット。
- $46. R^2$ がシアノ基または式 $-CONHV^{a16}$ (式中、 V^{a16} は、水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基または C_3 $_{-8}$ シクロアルコキシ基を意味する。ただし、 V^{a16} は、ハロゲン原子、シアノ基、水酸基および C_{1-6} アルコキシ基から選ばれる置換基を有していてもよい。)で表される基である、請求項41に記載のキット。
- 47. R^2 が式 $-CONHV^{a17}$ (式中、 V^{a17} は、水素原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基を意味する。)で表される基である、請求項 41 に記載のキット。
- 48. R^2 が式 $-CONHV^{a18}$ (式中、 V^{a18} は、水素原子、メチル基またはメトキシ基を意味する。)で表される基である、請求項41に記載のキット。
- 49. Y¹が式

(式中、 R^{71} は、水素原子またはハロゲン原子を意味する。)で表される 基である、請求項41に記載のキット。

- 50. R³およびR⁴が水素原子である、請求項41に記載のキット。
- 5 1. R^5 が水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基または C_{6-10} アリール基(ただし、 R^5 は、ハロゲン原子およびメタンスルホニル基から選ばれる置換基を有していてもよい)である、請求項41に記載のキット。
- 5 2. R⁵がメチル基、エチル基またはシクロプロピル基である、請求項41に 記載のキット。
- 53. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

 $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu r)-4-+\nu)-4-+\nu)$ ル) オキ $\nu-2-\nu$ アルオロフェニル) $-N'-(4-\nu r)$ カレア、

- -2-ヒドロキシプロピル) オキシ) -4-キノリル) オキシ) フェニル)
- $-N'-(4-7\nu \pi T)$

 $N-(4-((6-\nu T)-7-(((2R)-2-\nu F)+2-3-(1$

- ーピロリジノ) プロピル) オキシ) -4-キノリル) オキシ) フェニル)

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

 $4-(3-\rho - 4-(\nu - 4-(\nu$

N6-シクロプロピル-4-(3-クロロ-4-(((シクロプロピルアミノ)) カルボニル) アミノ) フェノキシ) <math>-7-メトキシ-6-キノリンカルボキサミド、

N6-(2-7)ルオロエチル) -4-(3-6) ロピルアミノ) カルボニル) アミノ) フェノキシ) -7-3トキシー6-4 キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-7)ルオロー4-(2)クロプロピルアミノカルボニル)アミノフェノキシ)-7-(2-3)+キシエトキシ)-6-4ノリンカルボキサミド、

4-(3-クロロ-4-(メチルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-0)00-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-0)00-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-(2-x)1+シンカルボキサミド、

- 4-(4-((シクロプロピルアミノ) カルボニル) アミノフェノキシ) <math>-7-(2-3)
- N-(2-フルオロ-4-((6-カルバモイル-7-メトキシ-4-

キノリル)オキシ)フェニル)-N'-シクロプロピルウレア、

- N6-(2-E)ドロキシエチル) -4-(3-D)ロロー4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシー6-キノリンカルボキサミド、

- N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-(2-メトキシエトキシ) -6-キノリンカルボキサミド、
- N6-x+v-4-(3-p-1-4-(((x+v-1)-4-1)-4-((x+v-1)-4-1)-4-(x+v-1)-7-x+2-6-4-1)
- 4-(3-クロロ-4-(2-フルオロエチルアミノカルボニル)アミ ノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、
- N6-((2R) テトラヒドロ-2-フラニルメチル) -4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-xチル-4-(3-2)ロロ-4-(((x チルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R)-3-3 エチルアミノ-2-ヒドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((xチルアミノ)) カルボニル) アミノ) フェノキシ) -7-((2R)-3-ジエチルアミノ-2-ヒドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((1-メチル-4-ピペリジル) メトキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((1-メチル-4-ピペリジル) メトキシ) -6-キノリンカルボキサミド、

 $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu r)-4-4-1$ $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu r)-4-4-1$ $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu r)-4-4-1$

 $N-(4-(6-\nu r)/-7-(3-(4-\tau n)))$ プロポキシ) $-4-\tau (3-(3-(3-\tau n)))$ $-(3-(3-\tau n))$ フェニル) ウレア、

4 - (4 - ((シクロプロピルアミノ) カルボニル) アミノフェノキシ) - 7 - メトキシ-6 - キノリンカルボキサミド、

および

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項41に記載のキット。

54. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

4-(3-クロロ-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6- J N7- J N7-

および

N6-メトキシー4-(3-クロロー4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシー6-キノリンカルボキサミドからなる群から選択される少なくとも一つの化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項41に記載のキット。

5 5. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4 - (3 - クロロー4 - (シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項41に記載のキット。

- 5 6. 一般式(I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4 (3 クロロー4 (シクロプロピルアミノカルボニル) アミノフェノキシ) 7 メトキシー6 キノリンカルボキサミドのメタンスルホン酸塩である、請求項41に記載のキット。
- 57. c-kit キナーゼ阻害活性を有する物質が、
 - (1) 4-(4-)チルピペラジン-1-イルメチル) -N-[4-)チル-3-[4-(3-)]ヴル) ピリミジン-2-イルアミノ] フェニル] ベンゼンアミド、
 - (2) 3-[(2, 4-ジメチルピロール-5-イル) メチレン] <math>-2-インドリノン、
 - (3) (2) -3-[(2, 4-ジメチル-5-(2-オキソ-1, 2-ジヒドロインドール<math>-3-イリデンメチル) -1 H-ピロール-3-イル) -プロピオニック アシッド、
 - (4) 5 (5-7)ルオロ-2-3キソ-1, 2-3ヒドロインドール- 3-4リデンメチル)-2, 4-3メチル-1 H-ピロール-3-カルボキシリック アシッド (2-3エチルアミノエチル) アミド、
 - (5) $N \{2 \rho \alpha 4 [(6, 7 ジメトキシ 4 キナゾリニル) オキシ] フェニル<math>\} N' \mathcal{P} \mathcal{P$
 - (6) 1-(4-クロロアニリノ)-4-(4-ピリジルメチル) フタラジン、
 - (7) $N \{2 \rho \mu \mu 4 [(6, 7 i j j k + i j 4 i j j j k + i j 4 i j j k + i j j k + i j j k + i j j k + i j j k + i j j k + i j j k + i j j k + i j j k + i j j k + i j j k + i$

(9) 6 - [2 - (メチルカルバモイル) フェニルスルファニル] <math>-3 - E - [2 - (ピリジン-2 - イル) エテニル] インダゾール、

- (10)N-(3-トリフルオロメチル-4-クロロフェニル)-N'-(4-(2-メチルカルバモイルピリジン-4-イル) オキシフェニル) ウレア、
- (11) [6-[4-[(4-エチルピペラジン-1-イル) メチル] フェニル] -7H-ピロロ [2, 3-d] ピリミジン-4-イル] ((R) -1-フェニルエチル) アミン、
- (12) 6-(2, 6-ジクロローフェニル) -2-(4-フルオロ-3 -メチルーフェニルアミノ) <math>-8-メチル8H-ピリド[2, 3-d]ピリミジン-7-オン、
- (14) 4-[6-メトキシ-7-(3-ピペリジン-1-イループロポキシ) キナゾリン-4-イル] ピペラジン-1-カルボキシリック アシッド <math>(4-イソプロポキシフェニル) アミド

および

(15) N- (2-クロロー6-メチルフェニル) -2-[[6-[4-(2-1)]] (15) N- (2-クロロー6-メチルフェニル) -2-[[6-[4-(2-1)]] (2-メチルピリミジン-4-イル]アミノ]チアゾール-5-カルボキサミド

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項41~56のいず れか一項に記載のキット。

- 58. c-kit キナーゼ阻害活性を有する物質が、4-(4-x) ルピペラジンー 1-(1) 1 -(1) 1 -(1) 2 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 2 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 3 -(1) 4 -(1) 6 -(1) 6 -(1) 6 -(1) 6 -(1) 6 -(1) 7 -(1) 8 -(1) 9 -(1) 8 -(1) 9
- 59. c-kit キナーゼ阻害活性を有する物質が、抗 c-kit キナーゼ抗体である、

請求項41~56のいずれか一項に記載のキット。

60. キットが、癌治療用キットである、請求項41~59のいずれか一項に 記載のキット。

6 1. c-kit キナーゼ阻害活性を有する物質と同時または別々に患者に投与されることを特徴とする、一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物を含む医薬組成物。

一般式(I)

[式(I)中、 R^1 は、式 $-V^1-V^2-V^3$ (式中、 V^1 は、置換基を有していてもよい C_{1-6} アルキレン基を意味する; V^2 は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式 $-CONR^6-$ で表される基、式 $-NR^6SO_2-$ で表される基、式 $-NR^6SO_2-$ で表される基、式 $-NR^6CO-$ で表される基または式 $-NR^6-$ で表される基を意味する(式中、 R^6 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基または置換基を有していてもよい C_{3-8} シクロアルキル基を意味する。); V^3 は、水素原子、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい。3~10員ホテロアリール基または置換基を有していてもよい

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{a 11}V^{a 12}$ (式中、 $V^{a 11}$ は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していて

もよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim1$ 0員へテロアリール基または置換基を有していてもよい $3\sim1$ 0員非芳香族へテロ環式基を意味する; V^a 1²は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim1$ 0員へテロアリール基、置換基を有していてもよい $3\sim1$ 0員非芳香族へテロ環式基、水酸基、置換基を有していてもよい C_{1-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で表される基を意味する;

Y¹は、式

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルキルチオ基、ホルミル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

W¹およびW²は、それぞれ独立して置換基を有していてもよい炭素原子または窒素原子を意味する。)で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキル基、置換基を有していてもよい C_{3-6} アルキル基、置換基を有していてもよい C_{2-7} アシル基または置

換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する; R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $3\sim 10$ 員非芳香族へテロ環式基を意味する。]

- 62. R^1 が C_{1-6} アルキル基(ただし、 R^1 は C_{1-6} アルキル基を有していてもよい3~10員非芳香族へテロ環式基、水酸基、 C_{1-6} アルコキシ基、アミノ基、モノー C_{1-6} アルキルアミノ基およびジー C_{1-6} アルキルアミノ基から選ばれる置換基を有していてもよい)である、請求項61に記載の医薬組成物。
- 63. R¹がメチル基または式

$$R^{a3}$$
 N R^{a2} R^{a2} R^{a2} R^{a2}

(式中、 R^{a3} はメチル基を意味する; R^{a1} は水素原子または水酸基を意味する; R^{a2} は、メトキシ基、エトキシ基、1-ピロリジニル基、1-ピペリジニル基、4-モルホリニル基、ジメチルアミノ基またはジエチルアミノ基を意味する。)のいずれかで表される基である、請求項 61 に記載の医薬組成物。

- 6.4. R¹がメチル基または2-メトキシエチル基である、請求項6.1に記載の 医薬組成物。
- $65.R^2$ がシアノ基または式 $-CONV^{*11}V^{*12}$ (式中、 V^{*11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基または置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基を意味する; V^{*12} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい

 C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim10$ 員へテロアリール基、置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい C_{1-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で表される基である、請求項61に記載の医薬組成物。

- 6 6. R^2 がシアノ基または式 $-CONHV^{a16}$ (式中、 V^{a16} は、水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基、 C_{1-6} アルコキシ基または C_3 - $_8$ シクロアルコキシ基を意味する。ただし、 V^{a16} は、ハロゲン原子、シアノ基、水酸基および C_{1-6} アルコキシ基から選ばれる置換基を有していてもよい。)で表される基である、請求項 6 1 に記載の医薬組成物。
- 67. R^2 が式 $-CONHV^{a17}$ (式中、 V^{a17} は、水素原子、 C_{1-6} アルキル基または C_{1-6} アルコキシ基を意味する。)で表される基である、請求項 61 に記載の医薬組成物。
- 68. R^2 が式 $-CONHV^{a18}$ (式中、 V^{a18} は、水素原子、メチル基またはメトキシ基を意味する。)で表される基である、請求項61に記載の医薬組成物。
- 69. Y¹が式

(式中、 R^{71} は、水素原子またはハロゲン原子を意味する。)で表される 基である、請求項61に記載の医薬組成物。

- 70. R³およびR⁴が水素原子である、請求項61に記載の医薬組成物。
- 7 1. R^5 が水素原子、 C_{1-6} アルキル基、 C_{3-8} シクロアルキル基または C_{6-10} アリール基(ただし、 R^5 は、ハロゲン原子およびメタンスルホニル基から選ばれる置換基を有していてもよい)である、請求項 6 1 に記載の医薬組成物。
- 72. R⁵がメチル基、エチル基またはシクロプロピル基である、請求項61に 記載の医薬組成物。

73. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

 $N-(4-(6-\nu r)/-7-(2-\lambda r)+\nu r)-4-+ \nu r)$ $-(4-\nu r)-4-+ \nu r)$ $-(4-\nu r)-2-\nu r)$ $-(4-\nu r)$

 $N-(4-((6-\nu r)-7-(((2R)-3-(\nu r)-1)-2-(\nu r)-1)-2-(\nu r)-1)$ $N'-(4-\nu r)-1-2-(\nu r)-1-2-($

 $N-(4-((6-\nu r)/-7-(((2R)-2-\nu r)-3-(1-\nu r)))$ ーピロリジノ) プロピル) オキシ) -4-+ ノリル) オキシ) フェニル) $-N'-(4-\nu r)$ ウレア、

N6-シクロプロピルー4-(3-クロロー4-(((シクロプロピルアミノ)) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-(2-x++vx+v)-4-(3-ppp-4-(((vpp-2-v)-4-((vpp-2-v)-4-(vpp-4-((vpp-2-vpp-4-(vp-4-(vpp-4-(vpp-4-(vp-4-(vp-4-(vp-4-(vpp-4-(vp-4-(vp-4-(vp-4-(vp-4-(vp

N6-(2-7)ルオロエチル) -4-(3-6)ロピルアミノ) カルボニル) アミノ) フェノキシ) -7-3トキシー6-4キノリンカルボキサミド、

キサミド、.

N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-7)ルオロー4-(2)クロプロピルアミノカルボニル) アミノフェノキシ) -7-(2-3)キシエトキシ) -6-4ノリンカルボキサミド、

4-(3-0)00-4-(メチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-クロロ-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-メトキシ-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(4-((シクロプロピルアミノ) カルボニル) アミノフェノキシ) -7-(2-メトキシエトキシ) -6-キノリンカルボキサミド、

N-(2-7)ルオロー4- $((6-\pi)$ ルバモイルー7-メトキシー4-キノリル)オキシ)フェニル)-N'-シクロプロピルウレア、

N6-(2-ヒドロキシエチル)-4-(3-クロロ-4-(((シクロ

プロピルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6 -キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((シクロプロピルアミノ) カルボニル) アミノ) フェノキシ) -7-(2-メトキシエトキシ) -6-キノリンカルボキサミド、

 $N6-y \ne v - 4 - (3-p - 1 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - 4 - (((x \ne v \ne v \ne z)) + 2 - (((x \ne v \ne v \ne z)) + 2 - (((x \ne z)) + 2 - (((x \ne z)) + 2 - ((x \ne z)) + 2 - ((x \ne z)) + ((x \ne z)) + ((x \ne z) + 2 - ((x \ne z)) + ((x \ne z)) + ((x \ne z) + 2 - ((x \ne z)) + ((x \ne z)) + ((x \ne z)) + ((x \ne z) + 2 - ((x \ne z)) + ((x \ne z)) + ((x \ne z) + 2 - ((x \ne z)) + ((x \ne z$

4-(3-クロロ-4-(2-フルオロエチルアミノカルボニル)アミ ノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

N6-((2R) テトラヒドロ-2-フラニルメチル) -4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-フルオロ-4-(エチルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

N6-yチル-4-(3-pロロ-4-(((yチルアミノ) カルボニル) アミノ) フェノキシ) $-7-((2R)-3-\tilde{y}$ エチルアミノ-2-Eドロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R)-3-ジエチルアミノー2-ヒド

ロキシプロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-((2R) -2-ヒドロキシ-3-(1-ピロリジノ) プロポキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((メチルアミノ) カルボニル) アミノ) フェノキシ) -7-((1-メチル-4-ピペリジル) メトキシ) -6-キノリンカルボキサミド、

N6-メチル-4-(3-クロロ-4-(((エチルアミノ)) カルボニル) アミノ) フェノキシ) -7-((1-メチル-4-ピペリジル) メトキシ) -6-キノリンカルボキサミド、

 $N-(4-(6-\nu r)/-7-(3-(4-\tau n\pi y)))$ $-4-\tau y$ $-4-\tau y$ -4-

4-(4-((シクロプロピルアミノ) カルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

N6-(2-x++vx+v)-4-(3-ppp-4-(((x+vx+v))-1)) カルボニル) アミノ) フェノキシ) -7-x++v-6-+ノリン カルボキサミド、

および

4-キノリル) オキシ-2-フルオロフェニル) - N' -シクロプロピル ウレア

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項61に記載の医薬 組成物。

74. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、 またはそれらの溶媒和物が、

4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシ-6-キノリンカルボキサミド、

4-(3-クロロ-4-(エチルアミノカルボニル)アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド、

4-(3-クロロ-4-(メチルアミノカルボニル) アミノフェノキシ) -7-メトキシ-6-キノリンカルボキサミド

および

N6-メトキシー4-(3-クロロー4-(((エチルアミノ) カルボニル) アミノ) フェノキシ) -7-メトキシー6-キノリンカルボキサミドからなる群から選択される少なくとも一つの化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項61に記載の医薬組成物。

- 75. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4-(3-クロロ-4-(シクロプロピルアミノカルボニル)アミノフェノキシ)-7-メトキシー6-キノリンカルボキサミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項61に記載の医薬組成物。
- 76. 一般式 (I) で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物が、4-(3-2)-4-(3-2)-4-(3-2) フカルボニル) アミノフェノキシ) -7-3トキシー6-4リンカルボキ

サミドのメタンスルホン酸塩である、請求項61に記載の医薬組成物。 77. c-kit キナーゼ阻害活性を有する物質が、

- (1) 4-(4-)チルピペラジン-1-イルメチル) -N-[4-)メチル -3-[4-(3-)] ヴェニル] ベンゼンアミド、
- (2) 3- [(2, 4-ジメチルピロール-5-イル) メチレン] -2-インドリノン、
- (3) (Z) -3-[(2, 4-i)y+n-5-(2-i)+1, 2-i)+1ドロインドール-3-(1) アンッド、
- (4) 5-(5-7)ルオロ-2-3キソ-1, 2-3ヒドロインドール-3-イリデンメチル) -2, 4-3メチル-1 H-ピロール-3-カルボキシリック アシッド (2-3エチルアミノエチル) アミド、
- (5) $N \{2-\rho \mu 4 [(6, 7-i y) + + i 4 + i + y] N' プロピルウレア、$
 - (6) 1-(4-クロロアニリノ)-4-(4-ピリジルメチル) フタラジン、
- (9) 6 − [2 − (メチルカルバモイル) フェニルスルファニル] − 3 − E− [2 − (ピリジン−2 − イル) エテニル] インダゾール、
- (10) N-(3-1) N' (4-1) N' (4-1) N' (4-1) N' (4-1) N' (4-1) N' (10) N' (1
- (11)[6-[4-[(4-エチルピペラジン-1-イル) メチル] フェニル] -7H-ピロロ[2, 3-d] ピリミジン-4-イル] ((R) -1-フェニルエチル) アミン、

メチルーフェニルアミノ) -8-メチル8H-ピリド[2, 3-d]ピリミジン-7-オン、

- (14) 4-[6-メトキシ-7-(3-ピペリジン-1-イループロポキシ) キナゾリン-4-イル] ピペラジン-1-カルボキシリック アシッド (4-イソプロポキシフェニル) アミド

および

(15) N- $(2-\rho - 6- \lambda + \mu - 2 - 1)$ $-2-[[6-[4-(2-\mu + 1)]$ $-2-\mu + \mu + 1)$ $-2-\mu + 1$ $-2-\mu + 1$

からなる群から選択される少なくとも一つの化合物、もしくはその薬理学的 に許容される塩、またはそれらの溶媒和物である、請求項61~76のいず れか一項に記載の医薬組成物。

- 78. c-kit キナーゼ阻害活性を有する物質が、4-(4-メチルピペラジンー1-イルメチル)-N-[4-メチルー3-[4-(3-ピリジル) ピリミジン-2-イルアミノ]フェニル]ベンゼンアミド、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物である、請求項61~76のいずれか一項に記載の医薬組成物。
- 79. c-kit キナーゼ阻害活性を有する物質が、抗 c-kit キナーゼ抗体である、 請求項 $61\sim76$ のいずれか一項に記載の医薬組成物。
- 80. 医薬組成物が、癌治療用医薬組成物である、請求項61~79のいずれか一項に記載の医薬組成物。
- 81. 一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物と c-kit キナーゼ阻害活性を有する物質とを患者に有効量投与することを特徴とする癌の治療方法。

一般式(I)

[式(I)中、 R^1 は、式 $-V^1-V^2-V^3$ (式中、 V^1 は、置換基を有していてもよい C_{1-6} アルキレン基を意味する; V^2 は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式-CONR6-で表される基、式 $-NR^6SO_2$ -で表される基、式 $-NR^6SO_2$ -で表される基、式 $-NR^6CO$ -で表される基または式 $-NR^6$ -で表される基を意味する(式中、 R^6 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基または置換基を有していてもよい C_{3-8} シクロアルキル基を意味する。); V^3 は、水素原子、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アリール基、置換基を有していてもよい C_{3-10} アリール基、置換基を有していてもよい C_{3-10} アリール基、置換基を有していてもよい C_{3-10} アリール基、置換基を有していてもよい C_{3-10} アリール基、置換基を有していてもよい C_{3-10} アリール基、置換基を有していてもよい C_{3-10} アリール基または置換基を有していてもよい C_{3-10} アリール基または置換基を有していてもよい C_{3-10} アリール基または置換基を有していてもよい C_{3-10} アリール基または置換基を有していてもよい C_{3-10} アリール基または置換基を有していてもよい C_{3-10}

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{a11}V^{a12}$ (式中、 V^{a11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim1$ 0員へテロアリール基または置換基を有していてもよい $3\sim1$ 0員非芳香族へテロ環式基を意味する; V^a 1²は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} とのロアルキル基、置換基を有していてもよい C_{3-8} とのロアルキル基、

10員へテロアリール基、置換基を有していてもよい $3\sim10$ 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい C_{1-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で表される基を意味する;

Y¹は、式

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

W¹およびW²は、それぞれ独立して置換基を有していてもよい炭素原子または窒素原子を意味する。) で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する;

 R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 負へテロアリール基、置換基を有していてもよい $3\sim 10$ 負非芳香族へテロ環式基を意味する。]

8 2. c-kit キナーゼ阻害活性を有する物質と組み合わせてなる医薬組成物の製造のための一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物の使用。

一般式(I)

$$\begin{array}{c|c}
R^3 & R^4 \\
\hline
 & N & R^5
\end{array}$$

$$\begin{array}{c|c}
R^2 & & & & \\
R^1 & & & & \\
\end{array}$$
(I)

[式(I)中、R¹は、式 $-V^1-V^2-V^3$ (式中、 V^1 は、置換基を有していてもよい C_{1-6} アルキレン基を意味する; V^2 は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式 $-CONR^6-$ で表される基、式 $-NR^6SO_2-$ で表される基、式 $-NR^6SO_2-$ で表される基、式 $-NR^6CO-$ で表される基または式 $-NR^6-$ で表される基を意味する(式中、 R^6 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基または置換基を有していてもよい C_{3-8} シクロアルキル基を意味する。); V^3 は、水素原子、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-6} アリール基または置換基を有していてもよい C_{3-6} アリール基または置換基を有していてもよい C_{3-6} アリール基または置換基を有していてもよい C_{3-6} 0。)で表される基を意味する

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{a11}V^{a12}$ (式中、 V^{a11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい C_{3-8} ンクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい C_{6-10} アリール基または置換基を有していてもよい C_{6-10} アリール基または置換基を有していてもよい C_{6-10} アリール基または置換

 12 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $3\sim 10$ 員非芳香族へテロ環式基、水酸基、置換基を有していてもよい C_{1-6} アルコキシ基または置換基を有していてもよい C_{3-8} シクロアルコキシ基を意味する。)で表される基を意味する;

Y¹は、式

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルキルチオ基、ホルミル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{d1}V^{d2}$ (式中、 V^{d1} および V^{d2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

W¹およびW²は、それぞれ独立して置換基を有していてもよい炭素原子または窒素原子を意味する。) で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する;

 R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6}

アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $3\sim 10$ 員非芳香族へテロ環式基を意味する。]

83.c-kit キナーゼ阻害活性を有する物質と組み合わせてなる医薬組成物のための一般式(I)で表される化合物、もしくはその薬理学的に許容される塩、またはそれらの溶媒和物。

一般式(I)

[式(I)中、R¹は、式-V¹-V²-V³(式中、V¹は、置換基を有していてもよいC $_{1-6}$ アルキレン基を意味する;V²は、単結合、酸素原子、硫黄原子、カルボニル基、スルフィニル基、スルホニル基、式-CONR 6 -で表される基、式-SO $_2$ NR 6 -で表される基、式-NR 6 SO $_2$ -で表される基、式-NR 6 SO $_2$ -で表される基、式-NR 6 CO $_2$ -で表される基または式-NR 6 -で表される基を意味する(式中、R 6 は、水素原子、置換基を有していてもよいC $_{1-6}$ アルキル基または置換基を有していてもよいC $_{3-8}$ シクロアルキル基を意味する。);V 3 は、水素原子、置換基を有していてもよいC $_{1-6}$ アルキール基、置換基を有していてもよいC $_{2-6}$ アルキニル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよいC $_{3-8}$ シクロアルキル基、置換基を有していてもよい

 R^2 は、シアノ基、置換基を有していてもよい C_{1-6} アルコキシ基、カルボキシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式 $-CONV^{a11}V^{a12}$ (式中、 V^{a11} は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル

基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい C_{1-6} アルール基、置換基を意味する; V^{8} I^{12} I^{12} I

Y¹は、式

(式中、 R^7 および R^8 は、それぞれ独立して水素原子、ハロゲン原子、シアノ基、ニトロ基、アミノ基、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{1-6} アルコキシ基、置換基を有していてもよい C_{1-6} アルキルチオ基、ホルミル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アシル基、置換基を有していてもよい C_{2-7} アルコキシカルボニル基または式-CONV d_1 V^{d_2} (式中、 V^{d_1} および V^{d_2} は、それぞれ独立して水素原子または置換基を有していてもよい C_{1-6} アルキル基を意味する。)で表される基を意味する;

W¹およびW²は、それぞれ独立して置換基を有していてもよい炭素原子または窒素原子を意味する。)で表される基を意味する;

 R^3 および R^4 は、それぞれ独立して水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{3-6} アルキニル基、置換基を有していてもよい C_3

 $_{-8}$ シクロアルキル基、置換基を有していてもよい C_{2-7} アシル基または置換基を有していてもよい C_{2-7} アルコキシカルボニル基を意味する; R^5 は、水素原子、置換基を有していてもよい C_{1-6} アルキル基、置換基を有していてもよい C_{2-6} アルケニル基、置換基を有していてもよい C_{2-6} アルキニル基、置換基を有していてもよい C_{3-8} シクロアルキル基、置換基を有していてもよい C_{6-10} アリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $5\sim 10$ 員へテロアリール基、置換基を有していてもよい $5\sim 10$ 員本デロ環式基を意味する。]

図 1

図 2

International application No.

	INTERNATIONAL SEARCH REPORT		шистнацопат аррп	Cation 190.
			PCT/JP2	006/322514
A. CLASSIFIC See extra	CATION OF SUBJECT MATTER a sheet.			
According to Int	ternational Patent Classification (IPC) or to both national	al classification and IP	PC .	
B. FIELDS SE	EARCHED			
A61K31/47 A61K31/50	mentation searched (classification system followed by cl 7, A61K31/404, A61K31/4409, A61I 06, A61K31/517, A61K31/519, A61 0, A61P43/00, C07D215/48	K31/4439, A6		
Documentation Jitsuyo Kokai J		ent that such documen tsuyo Shinan T roku Jitsuyo S	Toroku Koho	1996-2007
	base consulted during the international search (name of RY(STN), CAplus(STN)	data base and, where	practicable, search	terms used)
C. DOCUME	NTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	propriate, of the relev	ant passages	Relevant to claim No.
X Y	WO 2002/032872 A1 (Eisai Co. 25 April, 2002 (25.04.02), Full text; particularly, Cla: & JP 2002-536056 A & EP & US 2004/053908 A1 & CN & KR 2003040552 A	ims; example 1415987 A1	ន	61-80,83 1-60,82
X Y	WO 2004/080462 A1 (Eisai Co. 23 September, 2004 (23.09.04) Full text; particularly, Clas & JP 2005-503539 A & EP & US 2004/253205 A1), ims; example	ន	61-80,83 1-60,82
X Y	WO 2005/063713 A (Eisai Co., 14 July, 2005 (14.07.05), Full text; particularly, Clas & EP 1698623 A1 & NO	ims; example		61-80,83 1-60,82
× Further de	ocuments are listed in the continuation of Box C.	See patent far	nily annex.	
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family		
Date of the actual completion of the international search 04 January, 2007 (04.01.07)		Date of mailing of the international search report 23 January, 2007 (23.01.07)		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2006/322514

C (Continuation	n). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2004-531549 A (Novartis AG.), 14 October, 2004 (14.10.04), Full text; particularly, Claims; Par. Nos. [0002], [0019], [0020] & WO 2002/092091 A1 & EP 1392313 A1 & US 2004/167134 A1 & CN 1700917 A & KR 2003094415 A	1-60,82
Y	WO 2005/027972 A2 (NOVARTIS PHARMA GMBH), 31 March, 2005 (31.03.05), Full text; particularly, Claims; page 8, lines 1 to 3 & EP 1682181 A2 & NO 200601777 A	1-60,82
Y	JP 2005-520834 A (Dana-Farber Cancer Institute, Inc.), 14 July, 2005 (14.07.05), Full text; particularly, Par. No. [0028] & WO 2003/079020 A2 & EP 1488239 A2 & US 2005/233991 A1	1-60,82

INTERNATIONAL SEARCH REPORT	International application No.
	PCT/JP2006/322514
Continuation of A. CLASSIFICATION OF SUBJECT MAT	
(International Patent Classification (IPC))	1111
(Incommendational faccine chapping action (inc))	
A61K31/47(2006.01)i, A61K31/404(2006.01)i, A61K. A61K31/4439(2006.01)i, A61K31/4709(2006.01)i, A A61K31/506(2006.01)i, A61K31/517(2006.01)i, A61 A61K31/5377(2006.01)i, A61K39/395(2006.01)i, A6 A61P35/00(2006.01)i, A61P43/00(2006.01)i, C07D2	61K31/502(2006.01)i, K31/519(2006.01)i, 1K45/00(2006.01)i,
(AccordingtoInternationalPatentClassificatication and IPC)	on (IPC) ortobothnational

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2006/322514

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. X Claims because	al search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: s Nos.: 81 se they relate to subject matter not required to be searched by this Authority, namely: 81 pertains to methods for treatment of the human body by therapy.
	s Nos.: e they relate to parts of the international application that do not comply with the prescribed requirements to such an that no meaningful international search can be carried out, specifically:
3. Claims becaus	s Nos.: se they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
1. As all a claims	required additional search fees were timely paid by the applicant, this international search report covers all searchable
2. As all	searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of ditional fee.
3. As only	y some of the required additional search fees were timely paid by the applicant, this international search report covers nose claims for which fees were paid, specifically claims Nos.:
	quired additional search fees were timely paid by the applicant. Consequently, this international search report is ted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Pro	The additional search fees were accompanied by the applicant's protest and, where applicable, payment of a protest fee
inc	The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
	No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2006/322514

<Subject of search>

There is a term "a substance having a c-kit kinase-inhibiting activity" in claims 1, 21, 41, 61, 82 and 83. However, it appears that those substances which are supported by the description in the meaning within PCT Article 6 and disclosed in the meaning within PCT Article 5 are limited to a specific, extremely small part of the compounds having the property (e.g., imatinib).

With respect to the property "a substance having a c-kit kinase-inhibiting activity", even though the common technical knowledge at the time of the filing of the present application is taken into the consideration, it appears that the scope of the compound having the property cannot be specified.

Such being the case, the search was made on the relationship between a c-kit kinase-inhibiting activity and a compound of the formula (I) and also made on a combination of imatinib that is a compound specifically cited in the description as "a substance having a c-kit kinase-inhibiting activity" and specified in claims 18 or 19 or the like or an anti-c-kit antibody and a compound of the formula (I).

A. 発明の属する分野の分類(国際特許分類(IPC)) Int.Cl. 特別ページ参照

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. A61K31/47, A61K31/404, A61K31/4409, A61K31/4439, A61K31/4709, A61K31/502, A61K31/506, A61K31/517, A61K31/519, A61K31/5377, A61K39/395, A61K45/00, A61P35/00, A61P43/00, C07D215/48

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報1922-1996年日本国公開実用新案公報1971-2007年日本国実用新案登録公報1996-2007年日本国登録実用新案公報1994-2007年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY (STN), CAplus (STN)

C. 関連すると認められる文献

引用文献の カテゴリー *	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	WO 2002/032872 A1 (エーザイ株式会社) 2002.04.25 全文、特に、特許請求の範囲及び実施例参照 & JP 2002-536056 A & EP 1415987 A1 & US 2004/053908 A1 & CN 1478078 A & KR 2003040552 A	61-80, 83 1-60, 82
X Y	WO 2004/080462 A1 (エーザイ株式会社) 2004.09.23 全文、特に、特許請求の範囲及び実施例参照 & JP 2005-503539 A & EP 1604665 A1 & US 2004/253205 A1	61-80, 83 1-60, 82

▼ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す。
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日
04.01.2007国際調査報告の発送日
23.01.2007国際調査機関の名称及びあて先
日本国特許庁(ISA/JP)
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号特許庁審査官(権限のある職員)
榎本 佳予子4P 9638

C (続き).	関連すると認められる文献	
引用文献の カテゴリー *	│ │ 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	WO 2005/063713 A1 (エーザイ株式会社) 2005.07.14 全文、特に、特許請求の範囲及び実施例参照 & EP 1698623 A1 & NO 200603383 A	61-80, 83 1-60, 82
Y	JP 2004-531549 A (ノバルティス アクチェンゲゼルシャフト) 2004.10.14 全文、特に、特許請求の範囲、段落【0002】、【0019】、【0 020】参照 & WO 2002/092091 A1 & EP 1392313 A1 & US 2004/167134 A1 & CN 1700917 A & KR 2003094415 A	1-60, 82
Y	WO 2005/027972 A2 (NOVARTIS PHARMA GMBH) 2005.03.31 全文、特に、特許請求の範囲、第8頁1~3行参照 & EP 1682181 A2 & NO 200601777 A	1-60, 82
Y	JP 2005-520834 A (ダナーファーバー キャンサー インスティテュート, インコーポレイテッド) 2005.07.14 全文、特に、段落【0 0 2 8】参照 & WO 2003/079020 A2 & EP 1488239 A2 & US 2005/233991 A1	1-60, 82

発明の属する分野の分類 A61K31/47(2006.01)i, A61K31/404(2006.01)i, A61K31/4409(2006.01)i, A61K31/4439(2006.01)i, A61K31/4709(2006.01)i, A61K31/502(2006.01)i, A61K31/506(2006.01)i, A61K31/517(2006.01)i, A61K31/519(2006.01)i, A61K31/5377(2006.01)i, A61K39/395(2006.01)i, A61K45/00(2006.01)i, A61P35/00(2006.01)i, A61P43/00(2006.01)i, C07D215/48(2006.01)i

第Ⅱ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条 成しなか	第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。
1. 🔽	請求の範囲 は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲81は、治療による人体の処置方法に係るものである。
2.	請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述	:べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
	内に支払われなかった。

<調査の対象について>

請求の範囲1、21、41、61、82、83には、「c-kit キナーゼ阻害活性を有する物質」と記載されているが、当該性質を有する化合物のうち、PCT6条の意味において明細書に裏付けられ、また、PCT5条の意味において開示されているのは、イマチニブ等の特定のわずかな部分にすぎないものと認められる。

また、「c-kit キナーゼ阻害活性を有する物質」は、出願時の技術常識を勘案しても、そのような性質を有する化合物の範囲を特定することができない。

よって、調査は、c-kit キナーゼ阻害活性と一般式(I)で表される化合物との関係について、及び、「c-kit キナーゼ阻害活性を有する物質」として明細書に具体的に記載され、請求の範囲18又は19等で特定されている化合物であるイマチニブ又は抗c-kit 抗体と一般式(I)で表される化合物との組合せについて行った。