Resolução das Questões 1 a 3

Questão 1

Sejam m_1 e $m_2 = 2m_1$. A colisão é inelástica, e os corpos possuem momentos lineares de mesmo módulo. A energia cinética final é metade da energia cinética inicial. Deseja-se determinar v_2 e v_2' em função de v_1 .

Conservação da quantidade de movimento (vetorial)

$$\vec{p}_{\text{inicial}} = \vec{p}_{\text{final}} \Rightarrow m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}'$$

Como $m_2 = 2m_1$, temos:

$$m_1 \vec{v}_1 + 2m_1 \vec{v}_2 = 3m_1 \vec{v}'$$

Dividindo por m_1 :

$$\vec{v}_1 + 2\vec{v}_2 = 3\vec{v}'$$
 (1)

Energia cinética

Inicial:
$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1^2 + m_1v_2^2$$

Final: $\frac{1}{2}(m_1 + m_2)v'^2 = \frac{3}{2}m_1v'^2$

A energia final é metade da inicial:

$$\frac{3}{2}m_1v'^2 = \frac{1}{2}\left(\frac{1}{2}m_1v_1^2 + m_1v_2^2\right) \Rightarrow 3v'^2 = \frac{1}{2}v_1^2 + 2v_2^2 \quad (2)$$

Usando (1) e isolando \vec{v}_2 , resolvendo o sistema vetorial ou por componentes, obtemos:

$$v_2 = \frac{1}{2}v_1, \qquad v_2' = \frac{2}{3}v_1$$

Questão 2

a) Julgar as afirmações

A. Verdadeira. O atrito realiza trabalho não conservativo na primeira metade, diminuindo a energia mecânica total.

B. Falsa. A conservação da energia mecânica não se aplica ao lado com atrito, portanto não permite concluir nada sobre o lado sem atrito.

C. Falsa. Pelo mesmo motivo acima: a energia não foi conservada no lado com atrito.

 \mathbf{D} . Falsa. A rotação retira parte da energia translacional, portanto a altura máxima no lado sem atrito será **menor** que h.

1

b) Velocidade no ponto mais baixo

Energia potencial inicial:

$$E_i = Mgh$$

Energia no ponto mais baixo (translação + rotação):

$$E_f = \frac{1}{2}Mv^2 + \frac{1}{2}I\omega^2$$

Para esfera homogênea:

$$I = \frac{2}{5}MR^2, \quad v = \omega R \Rightarrow \omega = \frac{v}{R}$$

Substituindo:

$$E_f = \frac{1}{2}Mv^2 + \frac{1}{2} \cdot \frac{2}{5}MR^2 \cdot \left(\frac{v}{R}\right)^2 = \left(\frac{1}{2} + \frac{1}{5}\right)Mv^2 = \frac{7}{10}Mv^2$$

Conservando energia:

$$Mgh = \frac{7}{10}Mv^2 \Rightarrow v = \sqrt{\frac{10}{7}gh}$$

$$v = \sqrt{\frac{10}{7}gh}$$

Questão 3

Quando o inseto se move da periferia para o centro do disco (sem atrito), há uma troca de momento angular. Como o sistema é isolado, o momento angular total L se conserva.

$$L = I\omega$$

Como o inseto se aproxima do centro, a distribuição de massa em relação ao eixo rotacional muda e o momento de inércia do sistema total diminui.

Para conservar L, a velocidade angular ω deve aumentar.

A velocidade angular do sistema aumenta.

Justificativa: O momento angular se conserva e o momento de inércia do sistema diminui à medida que o inseto se aproxima do eixo. Portanto, a velocidade angular deve aumentar para manter $L=I\omega$ constante.