Example 0.1. Let $\Omega = [0,1]$, $\mathcal{F} = \sigma$ -algebra generated by closed intervals. Now suppose we define another probability measure $\tilde{\mathbb{P}}$ by

$$\tilde{\mathbb{P}}[a,b] = \int_{a}^{b} 2\omega d\omega = b^{2} - a^{2}.$$

Then $\tilde{\mu}_X[a,b] = b^2 - a^2$, whereas $\tilde{\mu}_Y[a,b] = (1-a)^2 - (1-b)^2$. Thus under $\tilde{\mathbb{P}}$, X and Y does not have the same distribution.

Definition 0.2. The distribution function of a random variable X defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is the function $F_X : \mathbb{R} \to [0, 1]$ given by

$$F_X(x) = \mathbb{P}(X \le x)$$
.

Proposition 0.3. The distribution function of a random variable has the following properties:

- (1) $F_X(\cdot)$ is non-decreasing and hence has only jump discontinuities.
- (2) $\lim_{x \to \infty} F_X(x) = 1$, $\lim_{x \to -\infty} F_X(x) = 0$.
- (3) $\lim_{h\downarrow 0} F_X(x+h) = F_X(x), \forall x\in\mathbb{R}$, thus CDF is right continuous.
- (4) $\lim_{h \to 0} F_X(x-h) = F_X(x) P(X=x), \forall x \in \mathbb{R}.$

Theorem 0.4. Let F be a function from \mathbb{R} to [0,1] satisfying the properties of the above proposition, then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable X defined on it whose distribution function is F.

Two Special Cases

• There exists a non-negative function f on \mathbb{R} such that

$$\mu_X[a,b] = \mathbb{P}(a \le X \le b) = \int_a^b f(x)dx$$
.

Thus

$$1 = \mathbb{P}(X \in \mathbb{R}) = \lim_{n \to \infty} \mathbb{P}(-n \le X \le n) = \lim_{n \to \infty} \int_{-n}^{n} f(x) dx = \int_{-\infty}^{\infty} f(x) dx.$$

• X takes only countably many values x_i . Define $p_i = \mathbb{P}(X = x_i)$. Then

$$\mu_X(B) = \sum_{\{i: x_i \in B\}} p_i.$$

In the first case X is said to have an absolutely continuous distribution with probability density function f and in the second case X is said to have a discrete distribution with probability mass function $\{p_i\}$.

Example: Consider the functions:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}}, N(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}} dy.$$

Let X be uniformly distributed on [0,1]. Notice that N is a strictly increasing function. So it has an inverse N^{-1} . Define the random variable $Z=N^{-1}(X)$. Then

$$\mu_{Z}[a,b] = \mathbb{P}(\omega \in \Omega : a \leq Z(\omega) \leq b)$$

$$= \mathbb{P}(\omega \in \Omega : a \leq N^{-1}(X)(\omega) \leq b)$$

$$= \mathbb{P}(\omega \in \Omega : N(a) \leq NN^{-1}(X)(\omega) \leq N(b))$$

$$= \mathbb{P}(\omega \in \Omega : N(a) \leq X(\omega) \leq N(b))$$

$$= N(b) - N(a) = \int_{a}^{b} \varphi(x) dx.$$

The measure μ_X on \mathbb{R} given by this formula is called the standard normal distribution. Any random variable that has this distribution, regardless of the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ on which it is defined, is called a standard normal random variable.

0.1 Expectation

Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We want to compute an "average value" of X, where we take the probabilities into account while computing the average.

If Ω is countable then we can simply define

average value" of
$$\mathbf{X} := \ \mathbb{E}(X) := \sum_{k=0}^{\infty} X(w_k) \mathbb{P}(X = w_k)$$
 ,

where $\Omega = \{w_1, w_2, ...\}$

But if Ω is uncountable then we must think in terms of integrals.

1 Riemann integration

Partition: Let [a,b] be a closed and bounded interval. A partition of [a,b] is a finite sequence $P=(x_0,x_1,\cdots,x_n)$ of points of [a,b] such that $a=x_0< x_1<\cdots< x_n=b$. The family of all partitions of [a,b] is denoted by $\mathcal{P}[a,b]$ and the partition $P=(x_0,x_1,\cdots,x_n)$ is a member of $\mathcal{P}[a,b]$.

For example, P = (0, 1/4, 1/3, 1/2, 2/3, 3/4, 1) is a partition of [0, 1], Q = (0, 1/4, 3/8, 1/2, 3/4, 7/8, 1) is another partition of [0, 1].

Riemann sums:- Let $f:[a,b] \to \mathbb{R}$ be a bounded function on [a,b]. Let $P \in \mathcal{P}[a,b]$ (i.e, $P=(x_0,x_1,\cdots,x_n)$, where $a=x_0 < x_1 < \cdots < x_n = b$). Since f is bounded on [a,b], f is bounded on $[x_{r-1},x_r]$, for $r=1,2,\cdots,n$. Let $M=\sup_{x\in [a,b]}f(x)$, $m=\inf_{x\in [a,b]}f(x)$; $M_r=\sup_{x\in [x_{r-1},x_r]}f(x)$, $m_r=\inf_{x\in [x_{r-1},x_r]}f(x)$; for $r=1,2,\cdots,n$. Then

$$m \le m_r \le M_r$$
 for $r = 1, 2, \dots, n$. The sum $U(P, f) := \sum_{i=1}^n M_r(x_r - x_{r-1})$ is said to be the upper Riemann

sum and the sum $L(P, f) := \sum_{i=1}^{n} m_r(x_r - x_{r-1})$ is said to be lower Riemann sum.

Here U(P, f) is the blue shaded area (region) and L(P, f) is the red shaded area (region) of Figure 1. Note that $m(x_r - x_{r-1}) \le m_r(x_r - x_{r-1}) \le M_r(x_r - x_{r-1})$, for $r = 1, 2, \dots, n$. Therefore,

$$m\sum_{r=1}^{n}(x_r-x_{r-1}) \le \sum_{r=1}^{n}m_r(x_r-x_{r-1}) \le \sum_{r=1}^{n}M_r(x_r-x_{r-1}) \le M\sum_{r=1}^{n}(x_r-x_{r-1}),$$

Figure 1:

or, $m(b-a) \leq L(P,f) \leq U(P,f) \leq M(b-a)$. We have two sets of real numbers $\{U(P,f): P \in \mathcal{P}[a,b]\}$ and $\{L(P,f): P \in \mathcal{P}[a,b]\}$ both sets are bounded. The supremum of the set $\{L(P,f): P \in P \in \mathcal{P}[a,b]\}$ exists and it is called the lower integral of f on [a,b] and is denoted by $\underline{\int_a^b f(x) dx}$. The infimum of the set $\{U(P,f); P \in P \in \mathcal{P}[a,b]\}$ exists and it is called the upper integral of f on [a,b] and is denoted by $\overline{\int_a^b f(x) dx}$. f is said to be Riemann integral on [a,b] if

$$\int_{a}^{b} f(x)dx = \overline{\int_{a}^{b}} f(x)dx.$$

The common value is called the Riemann integral of f on [a, b] and it is denoted by $\int_a^b f(x) dx$.

Exercise:-

- (1) Let $f(x) = c, x \in [a, b]$. Prove that f is Riemann integral on [a, b].
- (2) A function f is defined on [0, 1] by

$$f(x) = \begin{cases} 1 \text{ if } x \text{ is rational} \\ 0 \text{ if } x \text{ is irrational.} \end{cases}$$

Show that f is not Riemann integral on [0, 1].

- (3) Prove that the function f is defined on [a,b] by $f(x)=x, x\in [a,b]$ is Riemann integral on [a,b]. Evaluate $\int_a^b f(x)dx$.
- (4) $f(x) = x^2$.
- (5) $f(x) = e^x$.

Refinement of a partition:- Let $P = (x_0, x_1, x_2, \dots, x_n)$ be a partition of [a, b]. A partition Q of [a, b] is said to be a refinement of P if P is a proper subset of Q. That is Q is obtained by adjoining a finite number of additional points to P.

For example, let P = (0, 1/4, 1/2, 3/4, 1) be a parttion of [0, 1] and Q = (0, 1/8, 1/4, 1/2, 3/4, 7/8, 1), then Q is a refinement of P. If R = (0, 1/8, 1/4, 3/8, 1/2, 3/4, 1), then R is a refinement of P but not a refinement of Q.

Lemma 1.1. Let $f:[a,b] \to \mathbb{R}$ be a bounded function and P be a partition of [a,b]. If Q is a refinement of P, then $U(P,f) \ge U(Q,f)$ and $L(P,f) \le L(Q,f)$.

Norm of partition:- Let $P=(x_0,x_1,\cdots,x_n)$ be a partition of [a,b]. Then norm of a partition denoted by $\|P\|$, is defined by

$$||P|| = \max_{r \in \{1,2,\cdots,n\}} |x_r - x_{r-1}|.$$

If Q is a refinement of P, then $||Q|| \le ||P||$.

Lemma 1.2. Let $f:[a,b] \to \mathbb{R}$ be bounded. If $\{P_n\}$ is a sequence of partition of [a,b] such that $\|P_n\| \to 0$, then

(i)
$$\lim_{n \to \infty} U(P_n, f) = \int_a^b f$$

(ii)
$$\lim_{n \to \infty} L(P_n, f) = \int_a^b f.$$

Condition for integrability:- Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then f is integrable on [a,b] if and only if for each $\varepsilon>0$, there exists a partition of P of [a,b] such that

$$U(P, f) - L(P, f) < \varepsilon.$$

Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then f is integrable on [a,b] iff for each $\varepsilon>0$ there exists a positive δ such that

$$U(P, f) - L(P, f) < \varepsilon$$

for every partition P of [a, b] satisfying $||P|| \leq \delta$.

Properties:-

- (1) Let $f:[a,b]\to\mathbb{R}$, $g:[a,b]\to\mathbb{R}$ be both Riemann integrable on [a,b]. Then f+g is Riemann integrable on [a,b] and $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.
- (2) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable on [a,b] and $c\in\mathbb{R}$. Then cf is integrable on [a,b] and $\int_a^b cf=c\int_a^b f$.
- (3) $|f|, f^2, f \cdot g$ are Riemann integrable. If $g \ge k > 0$ then 1/g is also Riemann integrable.

Ex. A function f is defined by $f(x) = x^2$, $x \in [a, b]$, where a > 0. Find $\overline{\int_a^b} f$ and $\underline{\int_a^b} f$. Deduce that f is integrable on [a, b].

Ans: f is bounded on [a,b]. Let $P_n=(a,a+h,a+2h,\cdots,a+nh)$ where $h=\frac{b-a}{n}$. Then P_n is partition of [a,b] with $\|P_n\|=\frac{b-a}{n}$. Since f is increasing function on [a,b],

$$M_r = (a+rh)^2$$
, $m_r = [a+(r-1)h]^2$ for $r = 1, 2, \dots, n$.

$$U(P_n, f) = h \left[(a+h)^2 + (a+2h)^2 + \dots + (a+nh)^2 \right]$$

$$= h \left[(a^2 + a^2 + \dots + a^2) + 2ah(1+2+3+\dots + n) + h^2(1^2 + 2^2 + 3^3 + \dots + n^2) \right]$$

$$= h \left[na^2 + 2ah \frac{n(n+1)}{2} + h^2 \frac{n(n+1)(2n+1)}{6} \right]$$

$$= nha^2 + anh(nh+h) + \frac{nh(nh+h)(2nh+h)}{6}$$

$$= (b-a)a^2 + a(b-a)^2(1+\frac{1}{n}) + \frac{1}{6}(b-a)^3(1+\frac{1}{n})(2+\frac{1}{n})$$

and

$$L(P_n, f) = h \left[a^2 + (a+h)^2 + (a+2h)^2 + \dots + (a+(n-1)h)^2 \right]$$

$$= h \left[na^2 + 2ah \frac{n(n-1)}{2} + h^2 \frac{n(n-1)(2n-1)}{6} \right]$$

$$= nha^2 + anh(nh-h) + \frac{nh(nh-h)(2nh-h)}{6}$$

$$= (b-a)a^2 + a(b-a)^2 (1 - \frac{1}{n}) + \frac{1}{6}(b-a)^3 (1 - \frac{1}{n})(2 - \frac{1}{n}).$$

Consider the sequence of partitions $\{P_n\}$ of [a,b] with $\lim_{n\to\infty}\|P_n\|=\lim_{n\to\infty}\frac{b-a}{n}=0$. Then $\overline{\int_a^b}f(x)dx=\lim_{n\to\infty}U(P_n,f)=(b-a)a^2+a(b-a)^2+\frac{(b-a)^3}{3}=\frac{b^3-a^3}{3}$ and

$$\underbrace{\int_{a}^{b} f(x)dx}_{n \to \infty} = \lim_{n \to \infty} L(P_n, f)$$

$$= (b - a)a^2 + a(b - a)^2 + \frac{(b - a)^3}{3} = \frac{b^3 - a^3}{3}.$$

As $\overline{\int_a^b} f(x) dx = \underline{\int_a^b} f(x) dx$, f is integrable on [a,b] and $\int_a^b f(x) dx = \frac{b^3 - a^3}{3}$.

Ex. A function f is defined on [0, 1] by

$$f(x) = \begin{cases} x \text{ if } x \in [0,1] \cap \mathbb{Q} \\ 0 \text{ if } x \in [0,1] \backslash \mathbb{Q}. \end{cases}$$

Find $\int_0^1 f(x)dx$ and $\overline{\int_0^1} f(x)dx$. Deduce that f is not integrable on [0,1].

Ans:- f is bounded on [0,1]. Let us take the partition P_n of [0,1] defined by $P_n=(0,1/n,2/n,\cdots,n/n)$. Let $M_r=\sup_{x\in [\frac{r-1}{n},\frac{r}{n}]}f(x),$ $m_r=\inf_{x\in [\frac{r-1}{n},\frac{r}{n}]}f(x),$ for $r=1,2,\cdots,n$. Then $M_r=r/n$ and $m_r=0$ for $r=1,2,\cdots n$.

$$U(P_n, f) = M_1(\frac{1}{n} - 0) + M_2(\frac{2}{n} - \frac{1}{n}) + \dots + M_n(\frac{n}{n} - \frac{n-1}{n})$$

$$= \frac{1}{n} \left[\frac{1}{n} + \frac{2}{n} + \dots + \frac{n}{n} \right]$$

$$= \frac{n(n+1)}{2n^2} = \frac{n+1}{2n}$$

and

$$L(P_n, f) = m_1(\frac{1}{n} - 0) + m_2(\frac{2}{n} - \frac{1}{n}) + \dots + m_n(\frac{n}{n} - \frac{n-1}{n}) = 0.$$

Let us consider the sequence of partitions $\{P_n\}$ of [0,1] with $\|P_n\|=\frac{1}{n}$ and $\lim_{n\to\infty}\|P_n\|=0$. Then $\lim_{n\to\infty}U(P_n,f)=0$

$$\overline{\int_0^1} f(x) = \lim_{n \to \infty} \frac{n+1}{2n} = \frac{1}{2} \text{ and } \lim_{n \to \infty} L(P_n, f) = \underline{\int_0^1} f(x) dx = 0. \text{ Since } \overline{\int_0^1} f(x) dx \neq \underline{\int_0^1} f(x) dx, f \text{ is not Reimann integrable on } [0, 1].$$