Multiple Integral

Date: 30th October 2020

Evaluation of double integral with limits

Type-1 (both independent limits)

$$\int_{4}^{3} \int_{0}^{1} xy^{2} dy dx$$

 $\underline{https://www.youtube.com/watch?v=mY_Je8GX7pM\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=4}$

$$\int_{0}^{2} \int_{0}^{1} xy \, dy \, dx$$

Type-2 (one independent limit another one dependent limit)

Evaluate
$$\int_0^1 \int_x^{\sqrt{x}} xy \, dy \, dx$$

https://www.youtube.com/watch?v=_37G6weR9Wo&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=10

Evaluate
$$\int_{0}^{\sqrt{2}} \int_{-\sqrt{4-2y^2}}^{\sqrt{4-2y^2}} y \, dy \, dx$$

https://www.youtube.com/watch?v=d5iPrK0oJog

Evaluate
$$\int_0^{\pi} \int_0^x \sin y \, dy \, dx$$

https://www.youtube.com/watch?v=T_KEmHi3uuI

Evaluate
$$\int_{1}^{\log 8} \int_{0}^{\log y} e^{x+y} dy dx$$

https://www.youtube.com/watch?v=-Cm44vdzZyE

Evaluation of triple integral with limits

Type-1 (all independent limits)

1. A) Evaluate
$$\iint_{0}^{1} \iint_{0}^{1} e^{x+y+z} dx dy dz$$
 B) Evaluate
$$\iint_{0}^{a} \iint_{0}^{a} (yz + zx + xy) dx dy dz$$

https://www.youtube.com/watch?v=EPJAnWEEIRs

Type-2 (one independent limit remaining dependent limits)

2. Evaluate
$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-x} x \, dz \, dx dy$$

3. A) Evaluate
$$\int_{1}^{3} \int_{1/x}^{1} \int_{0}^{\sqrt{xy}} xyz \, dz \, dy dx$$
 B) Evaluate
$$\int_{0}^{1} \int_{1}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2}-y^2} xyz \, dz \, dy dx$$
 C) Evaluate
$$\int_{0}^{1} \int_{y^2}^{1-x} \int_{0}^{1-x} x \, dz \, dy dx$$

https://www.youtube.com/watch?v=7SNQ56QkRm0

4. Evaluate
$$\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dz dy dx$$

5. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{1}{\sqrt{1-x^2-y^2-z^2}} dz dy dx$$

 $\underline{https://www.youtube.com/watch?v=XlNqvLtsBoY\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=13h24h2finedex=13$

Multiple Integrals in polar coordinates (when limits are given)

1. A) Evaluate
$$\int_{0}^{\pi} \int_{0}^{a \sin \theta} r \, d \, r d \, \theta$$

B) Evaluate
$$\int_{0}^{\pi/2} \int_{a(1+\cos\theta)}^{a} r dr d\theta$$

C) Evaluate
$$\int_{1}^{\pi/2} \int_{0}^{2a\cos\theta} r^2 \sin\theta \ drd\theta$$

https://www.youtube.com/watch?v=FwjpyZ1nyE0&t=447s

$$\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^2 \cos\theta dr d\theta$$

https://www.youtube.com/watch?v=_V9FEfzTSxw&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=3

Solve
$$\int_{0}^{\pi} \int_{0}^{a\cos\theta} dr d\theta$$

https://www.youtube.com/watch?v=lUzFBROiTFc&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h

4. Evaluate
$$\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{0}^{\frac{a^2 - r^2}{a}} r \, dz dr d\theta$$

https://www.youtube.com/watch?v=yruU9YNV4Es

5. Evaluate
$$\int_{a}^{\pi/2} \int_{0}^{a\cos\theta} \int_{0}^{\sqrt{a^2-r^2}} r \ dz \ dr d\theta$$

https://www.youtube.com/watch?v=QQLGMS4hlOg

https://www.youtube.com/watch?v=BGDogvhOcM4&t=93s

https://www.youtube.com/watch?v=BGDogvhOcM4&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=7

Evaluation of double integral over the region (limits they wont give)

Evaluate (finding limits) $\iint_{R} f(x, y) dx dy$ where R is region

- i) Bounded in the +ve quadrant of circle $x^2 + y^2 = a^2$
- ii) Bounded in the +ve quadrant of circle $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

https://www.youtube.com/watch?v=PFyakrPmIkc

Evaluate $\iint \sin \pi (x^2 + y^2) dxdy$ over the region bounded by the circles $x^2 + y^2 = 1$ by changing into polar coordinates.

https://www.youtube.com/watch?v=Qz9ZK88cg48&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=19

Evaluate $\iint (a^2 - x^2 - y^2) dxdy$, over the semi-circle $x^2 + y^2 = ax$ in the +ve quadrant by changing to polar coordinates.

Evaluate $\iint_R (x^2 + y^2) dx dy$ where R is a region bounded by positive quadrant for which

 $x + y \le 1$ by changing into polar coordinates

 $\underline{https://www.youtube.com/watch?v=DtR-ibVlfkQ}$

Evaluate
$$\iint \sqrt{a^2 - x^2 - y^2} dxdy$$
 over the semi-circle

 $x^2 + y^2 = ax$ in the positive quadrant

https://www.youtube.com/watch?v=7AZ0d4CuuC0&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=14

Figure Evaluate $\iint_R xy(x+y)dydx$ where R is a region over the area between $y=x^2$ and y=x

https://www.youtube.com/watch?v=J5wg0qJ5I00

Evaluate
$$\iint_R x^2 y^2 dx dy$$
 over the circle $x^2 + y^2 = 1$

https://www.youtube.com/watch?v=UAJRT6wK4so

Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2\sin\theta$ and $r = 4\sin\theta$ https://www.youtube.com/watch?v=eGqQS3fPUfw&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=24

Show that $\iint_R r^2 \sin \theta dr d\theta = \frac{2a^3}{3}$ where R is the region. Bounded by the semi circle $r = 2a \cos \theta$ above the initial line.

 $\underline{https://www.youtube.com/watch?v=BvyvCDAlWyA\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=25}$

Find, by double integration, the area lying inside the cardioid $r = a(1 + \cos \theta)$ and outside the circle r = a

https://www.youtube.com/watch?v=HxwzMx9NJjs&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=28

Evaluate
$$\iint_R r \sin \theta \ dr d\theta$$
 over the cardioids $r = a(1 - \cos \theta)$ above the initial line

 $\underline{https://www.youtube.com/watch?v=gPV18ElvYn8\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=9}$

Evaluate
$$\iint \frac{rd\ dr}{\sqrt{a^2+r^2}}$$
 over one loop of the lemniscates $r^2 = a^2 \cos 2\theta$

By changing the order of integration

Evaluation of double integral by changing the order of integration $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dy dx$

 $\underline{https://www.youtube.com/watch?v=n0c-tK0bGhw\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=11}$

Evaluation of double integral by changing the order of integration $\int_{0}^{1} \int_{4y}^{4} e^{x^2} dx dy$

https://www.youtube.com/watch?v=6R9wErh5EXY

Evaluation of double integral by changing the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$

https://www.youtube.com/watch?v=mvN-rMr2qVg

Evaluation of double integral by changing the order of integration $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} dy dx$

https://www.youtube.com/watch?v=R5XNSM6GSXY&t=34s (in telugu)

https://www.youtube.com/watch?v=fSjexcMEjno

Evaluation of double integral by changing the order of integration $\int_{0}^{\infty} \int_{x}^{e^{-y}} \frac{e^{-y}}{y} dxdy$

https://www.youtube.com/watch?v=1kEvIpJJ14U (in telugu)

https://www.youtube.com/watch?v=tRYIYmeWV4s

Evaluation of double integrals by Change of variables

ightharpoonup Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$ by changing to polar coordinates

 $\underline{https://www.youtube.com/watch?v=6_HaCy0e3xc\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=162acdeseted and the second second$

Figure 2. Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2} + y^{2}}} dxdy$ by changing to polar coordinates.

https://www.voutube.com/watch?v=gCEFsdVIIME&list=PL3b73JEaFpKbsEkzC7fYYgMxY7z2Gn28h&index=18

Evaluation of double integration by change of variable method $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$

Figure 2. Evaluate $\iint_R (x^2 + y^2)^{\frac{7}{2}} dx dy$, over the circle $x^2 + y^2 = 1$ by changing to polar coordinates.

 $\underline{https://www.youtube.com/watch?v=QoirsCInvTk\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b74A&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b74A&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b74A&index=212https://www.youtube.com/watch?v=QoirsCInvTk&list=PL3b74A&index=212https://www$

Evaluate $\int_{-a}^{a} \int_{\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} dy dx$ by changing to polar coordinates

 $\underline{https://www.youtube.com/watch?v=fbXOJmac1ZU\&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h\&index=23}$

Evaluate $\iint_R xy(x^2+y^2)^{\frac{3}{2}} dxdy$ over the quadrant of the circle $x^2+y^2=1$, by changing into polar coordinates.

Miscellaneous problems

Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$

Find the volume of the region bounded by $z = x^2 + y^2$, z = 0, x = -a, x = a and y = a, y = a

https://www.youtube.com/watch?v=UzK_9IK_RR4&list=PL3b73JEqFpKbsEkzC7fYYgMxY7z2Gn28h&index=12

Fig. If $\overline{F} = (3x^2 - 2z)i - 4xyj - 5xk$, evaluate $\int_{V} curl \ \overline{F} dV$ where v is a volume bounded by planes. x = 0y = 0, z = 0 ad 3x + 2y - 3z = 6

Dear students, for remaining topics I need time, happy to help you