Live on the Hump: Self Knowledge Distillation via Virtual

Teacher-Students Mutual Learning

Background

Self Knowledge Distillation:

- *Peer Self KD*: Sharing the same shallowed backbone to construct multiple peer auxiliary exits in the last segment of the backbone.
 - Multiple exits in the same location typically tend to cause homogenization.
- *Hierarchical Self KD*: Adding auxiliary exits hierarchically in the deep supervised manner.
 - Limited knowledge extracted from the deepest layer only.
 - A single auxiliary exit design ignores the impact of different network sizes.

Figure 1: The overall architecture of LOTH. The dashed lines indicate auxiliary exits, which can be removed during the inference phase.

• LOTH constructs auxiliary exits hierarchically, which views each exit as a student and incorporates knowledge from auxiliary exits to build a knowledgeable virtual teacher.

• The bidirectional mutual learning between virtual teacher and students contributes significantly to the capabilities of multi-exits learning with few training overhead.

Results & Discussions

Table 1: Top-1 classification accuracy and parameter statistics of LOTH on CIFAR-100.

Networks	Baseline	Exit1		Exit2		Exit3		Exit4		Fusion
Tierrio Buscille		Acc(%)	Param(M)	Acc(%)	Param(M)	Acc(%)	Param(M)	Acc(%)	Param(M)	1 usion
VGG16	73.54	76.31	6.64	76.46	7.43	76.87	10.58	76.94 (↑ 3.40)	15.30	78.68
VGG19	73.34	75.23	6.64	75.73	8.02	76.09	13.53	76.06 († 2.72)	20.61	77.83
ResNet18	77.65	78.47	3.82	79.53	4.17	80.90	5.58	81.24 (↑ 3.59)	11.22	82.08
ResNet34	78.00	78.37	3.89	80.53	4.84	81.84	10.97	81.96 († 3.96)	21.33	82.77
MobileNetV1	73.40	76.99	2.22	77.40	2.23	78.62	3.30	79.02 (↑ 5.62)	3.31	80.62
MobileNetV2	72.22	76.46	2.93	76.79	2.78	76.95	2.45	77.51 (↑ 5.29)	2.35	80.13
ShuffleNetV1	71.39	74.31	1.91	75.31	1.89	76.69	1.85	76.35 († 4.96)	1.01	79.06
ShuffleNetV2	71.85	73.04	1.51	74.82	1.52	75.93	1.68	76.03 (↑ 4.18)	1.36	79.14

Table 1: Top-1 classification of ResNet18 on ImageNet.

Table 2: Top-1 classification accuracy on CIFAR100.

Models	BYOT	ECSD	BEED	DTSKD	LOTH	Backbones	Baseline	Exit1	Exit2	Exit3	Exit4	Fusio
Zears	2019	2021	2022	2024	2024	ResNet101	78.64	77.27	79.68	82.77	82.41	83.17
Acc(%)	69.84	70.51	70.28	70.39	70.74	ResNet152	79.64	77.58	80.74	82.88	83.18	83.58
·	·	·	·									

Table 2: Top-1 classification accuracy and parameter statistics of LOTH on Tiny-ImageNet.

Networks	Baseline	Exit1		Exit2	Exit2			Exit4	Fusion	
		Acc(%)	Param(M)	Acc(%)	Param(M)	Acc(%)	Param(M)	Acc(%)	Param(M)	1 451011
VGG16	50.38	54.22	6.70	54.74	7.48	55.02	10.63	54.63 (↑ 4.25)	15.35	57.97
VGG19	48.34	54.45	6.70	54.88	8.07	54.89	13.58	54.33 (↑ 5.99)	20.66	57.76
ResNet18	57.20	59.34	3.87	61.25	4.22	61.49	5.63	61.65 († 4.45)	11.27	63.92
ResNet34	59.54	59.10	3.94	61.13	4.89	62.39	11.02	63.35 (↑ 3.81)	21.38	64.96
MobileNetV1	52.64	56.44	2.33	57.00	2.33	58.48	3.41	59.22 (↑ 6.58)	3.41	61.81
MobileNetV2	51.61	55.27	3.06	55.92	2.91	56.66	2.58	57.04 (↑ 5.43)	2.48	59.98
ShuffleNetV1	51.25	53.80	2.01	55.56	1.98	56.15	1.94	55.68 (↑ 4.43)	1.11	58.47
ShuffleNetV2	51.84	49.91	1.61	52.45	1.62	55.61	1.78	56.47 (↑ 4.63)	1.46	58.11

- LOTH performs well on various network architectures and multi-datasets.
- LOTH exceeds the performance of almost all baselines at the shallowest exit.
- Virtual teacher (Fusion) has richer knowledge, which far exceeds other exits.

Table 4: Top-1 accuracy and parameter statistics of LOTH VS. advanced SKDs with hierarchical exits in ResNet18 on Tiny-ImageNet.

Methods	Supervision	Exit1		Exit2		Exit3		Exit4		Fusion
Methods	Supervision	Acc(%)	Params(M)	Acc(%)	Params(M)	Acc(%)	Params(M)	Acc(%)	Params(M)	1 451011
BYOT	Deepest	44.83	2.91	53.26	3.47	57.80	5.63	58.97	11.27	61.32
ECSD	Ensemble-Avg	47.09	0.44	53.91	0.97	57.34	3.08	59.03	11.27	60.51
BEED	Ensemble-Weight	59.20	3.87	60.25	4.22	60.52	5.63	61.11	11.27	64.13
LOTH	Mutual Learning	59.44	3.87	61.25	4.22	61.49	5.63	61.65	11.27	63.92

- The deepest knowledge alone fails to provide wealth of knowledge, which gets the worst performance.
- Mutual learning can enhance the learning capabilities at all exits.

Table 5: Top-1 accuracy comparison of different fusion mechanism in MobileNetV1 on Tiny-ImageNet.

Fuse type	Exit1	Exit2	Exit3	Exit4	Fusion
Summation	54.65	55.33	56.70	56.78	59.45
Concatenation	56.79	57.49	58.40	58.75	60.93
Att-Sample	56.87	57.19	58.79	58.84	61.30
Ours	56.44	57.00	58.48	59.22	61.81

Our adaptive fusion strategy can mitigate feature semantic gaps with multi-exits, facilitating the distillation efficiency.

Figure 4: The effect of different auxiliary blocks for model performance on the CIFAR-100, where the red dotted line indicates the baseline. The bracketed values indicate the total trained parameters of multi-exits and the backbone networks.

Excessive auxiliary exit scales can divert training targets and reduce backbone network's performance (Exit 4).

Conclusions

- A novel self knowledge distillation framework via virtual teacher-student mutual learning been proposed, which focus on exploiting the complementary knowledge of early exits to further enhance the effective ness of distillation.
- Efficient adaptive fusion strategy can mitigate the semantic gaps between multi-exits, resulting in a knowledgeable virtual teacher.
- The scale of auxiliary exits affects the performance of model, and our well-designed two auxiliary blocks can balance effectiveness and efficiency.

References

- [1] BYOT---Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. 2019. Be your own teacher: Improve the performance of convolutional neural networks via self distillation. In *Proceedings of the ICCV*.
- [2] ECSD---Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. 2021. Self-distillation: Towards efficient and compact neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 44, 8 (2021).
- [3] BEED---Hojung Lee and Jong-Seok Lee. 2022. Rethinking Online Knowledge Distillation with Multi-exits. In *Proceedings of the ACCV*. 2289–2305.
- [4] DTSKD---Zheng Li, Xiang Li, Lingfeng Yang, Renjie Song, Jian Yang, and Zhigeng Pan. 2024. Dual teachers for self-knowledge distillation. *Pattern Recognition* (2024), 110422.