TP noté 2 : Algorithme du recuit simulé

À l'issue du TP, chaque binôme envoie par email ses fichiers .hpp et .cpp . Il est impératif de mettre en commentaire, dans tous les fichiers, les nom, prénom et n° d'étudiant de chacun des membres du binôme.

Description La méthode du recuit simulé permet d'estimer des minima locaux (mais qu'on espère globaux en général) d'une fonction $\phi : E \to \mathbb{R}$. Elle est basée sur l'idée suivante : pour tout T > 0 (appelé température), on introduit la mesure π_T sur E définie 1 par :

$$\pi_T(x) = \frac{1}{Z_T} \exp(-\phi(x)/T)$$

où Z est une constante de normalisation qui n'aura aucun intérêt pour nous. Lorsque $T \to 0$, la mesure π_T se concentre sur les minima de ϕ . Lorsque $T \to +\infty$ au contraire, π_T ressemble à la mesure uniforme sur E.

La méthode du recuit simulé consiste à simuler une suite de v.a. X_n dont la loi est $proche^2$ de π_{T_n} avec (T_n) une suite de température qui tend vers 0.

Algorithme. Soit (T_n) une suite déterministe de température telle que $T_n \to 0$. Soit $x_0 \in E$ fixé. Soit $(Q_x)_{x \in E}$ une famille de lois de probabilité indexée par x. On génère une suite (X_n) de v.a. à valeurs dans E de la manière suivante :

- $X_0 = x_0$ p.s.
- pour chaque $n \in \mathbb{N}$, on choisit Y_{n+1} aléatoirement dans E selon la loi Q_{X_n} et on choisit aléatoirement U_{n+1} selon une loi uniforme sur [0,1].
- si $U_{n+1} \le \min(1, \exp((\phi(X_n) \phi(Y_{n+1}))/T_{n+1}))$, alors on pose $X_{n+1} = Y_{n+1}$, sinon on pose $X_{n+1} = X_n$.
- 1. Écrire dans un fichier recuit.hpp un modèle de fonction :

avec les contraintes suivantes :

- phi possède une méthode double operator()(const E & x) const qui calcule $\phi(x)$.
- T possède une méthode double operator() (long unsigned n) const qui renvoie T_n .
- Y possède une méthode E operator()(const E & x, RNG & G) const qui renvoie une réalisation d'une v.a. Y à valeurs dans E de loi Q_x .
- G est n'importe quel générateur de nombres pseudo-aléatoires de la STL.
- N est un nombre d'itérations à réaliser
- le résultat final est la valeur de X_N .

Premier test. Pour un premier test, nous souhaitons estimer un minimum de la fonction $\phi : \mathbb{R} \to \mathbb{R}$ définie par $\phi(x) = x^6 - 48x^2$. Pour cela, on prendra $T_n = 10 \cdot (0.9)^n$, $x_0 = 0$, $Y_{n+1} = X_n + W_n$ où W_n est une v.a. de loi normale centrée réduite et N = 1000.

^{1.} Plus précisément : si E est discret, alors la formule est celle proposée ; si $E = \mathbb{R}^d$, l'expression donnée est la densité par rapport à la mesure de Lebesgue.

^{2.} Il y a très peu de justification théorique derrière cette méthode mais les applications montrent qu'avec de bons choix de T_n cette méthode donne de très bons résultats.

- 2. Dans un fichier test1.cpp, écrire des fonctions (ou des λ -fonctions, ou des classes) pour phi, T et Y ainsi choisis avec E valant double.
- 3. Dans le même fichier test1.cpp, écrire un programme complet qui utilise les fonctions précédentes et recuit_simule pour estimer l'un des deux minima 3 de ϕ . Vous afficherez les estimations dans le terminal.
- 4. Dans le même fichier $\mathsf{test1.cpp}$, compléter le programme pour estimer la moyenne et la variance empiriques sur K=100 échantillons de l'estimation $|X_N|$ pour N=200 et N=400. Nous vous rappelons que la moyenne et la variance empiriques sur K échantillons d'une v.a. Z est définie comme :

$$M_K = \frac{1}{K} \sum_{k=1}^{K} Z_{(k)}$$
$$V_K = \frac{1}{K} \sum_{k=1}^{K} Z_{(k)}^2 - M_K^2$$

où les $Z_{(k)}$ sont des réalisations indépendantes de Z. Indication : il s'agit de faire appel K fois à recuit_simule et de moyenner sur les résultats obtenus.

Le problème du voyageur de commerce. Étant données M villes numérotées de 0 à M-1, on se donne toutes les distances $d_{i,j}$ entre deux villes. On souhaite trouver un itinéraire $x=(x_0,\ldots,x_{M-1})$ qui passe par chaque ville une unique fois et minimise la distance totale parcourue :

$$\phi(x) = \sum_{k=0}^{M-2} d_{x_k, x_{k+1}} \tag{1}$$

Pour implémenter cela en C++, il faut décrire à la fois la fonction de distance et l'itinéraire. Pour l'itinéraire, on prendra pour E la classe $\mathtt{std}: \mathtt{vector} < \mathtt{int} >$ avec des vecteurs de taille M qui contiennent chaque nombre entre 0 et M-1 une unique fois : la case i décrit le numéro de la i-ème ville visitée.

Pour la fonction à minimiser, on introduit :

```
class DistanceTotale {
    protected:
        int M;
        double * dist; // dist[i+M*j] donne la distance entre les villes i et j.
public:
        DistanceTotale(int MO);//alloue le tableau et met les distances à zéro.
        //Accesseur et mutateur
        double distance(int i,int j) const;
        double & distance(int i,int j);
        double operator()(const std::vector<int> & x) const;
};
```

- **5.** Dans des fichiers voyageur.hpp et voyageur.cpp, écrire les codes du constructeur, de l'accesseur et du mutateur.
- 6. Écrire le code de operator() qui calcule la distance totale parcourue pour la trajectoire x.

^{3.} ϕ atteint ses minima en -2 et 2.

7. (rule of three) Écrire les codes des trois méthodes nécessaires à une bonne gestion de la mémoire.

Optimisation par recuit simulé sur 50 villes. Afin d'éviter d'avoir à charger un fichier de données pour ce TP noté, nous prendrons comme distance entre les M=50 villes $d_{i,j}=\cos^2(4i+3j)$. Pour Y, nous utiliserons le modèle de fonction à ajouter dans voyageur.hpp:

- 8. Dans un fichier $test_commerce.cpp$, déclarer un objet de type DistanceTotale pour M=50 villes, remplir les distances grâce au mutateur avec la formule précédente. Déclarer également une trajectoire initiale qui parcourt les villes dans leur ordre de numérotation.
- 9. Dans le même fichier, en commentaire de la définition de Y_transposition, expliquer en commentaire du code fourni ce que génère cette fonction.
- 10. Dans le même fichier, en utilisant $T_n = 10 \cdot (0.95)^n$ et recuit_simule pour N = 100000 itérations, afficher dans le terminal à la fois la longueur de la trajectoire initiale, la trajectoire obtenue après optimisation et la longueur correspondante ⁴.

^{4.} Vous devriez passer d'autour de 24 à autour de 2 pour les longueurs.