CENTRO UNIVERSITÁRIO INSTITUTO DE EDUCAÇÃO SUPERIOR DE BRASÍLIA – IEȘB

Probabilidade e Estatística aula 02

Rodrigo Gonçalves.

→ São conjuntos de dados <mark>organizados</mark> em forma de tabelas, listas, ou gráficos com o objetivo de analisar e compreender informações ou fenômenos.

→ Elas ajudam a visualizar a distribuição dos dados e identificar padrões,
 tendências e características importantes.

→ Em uma série estatística observa-se 3 elementos ou fatores: tempo, espaço e espécie.

Exemplo usando o número de vendas mensais de um produto.

- → Tempo: As observações são feitas ao longo dos meses do ano.
- → Espaço: Os dados são coletados em diferentes filiais da mesma loja.
- → Espécie: O produto em questão é um smartphone específico.

O acompanhamento de vendas de um smartphone em várias lojas de uma rede.

- → Tempo: São 12 observações (um para cada mês).
- → Espaço: As observações são feitas em várias filiais da loja.
- Espécie: O produto em análise é um modelo específico de smartphone.

Históricas, cronológicas, temporais ou marchas.

→ Referem-se a conjuntos de dados coletados ao longo do tempo para analisar mudanças, tendências e padrões em uma determinada variável ou fenômeno.

→Essas séries são usadas para estudar como uma característica específica que evolui ao longo de períodos distintos.

Históricas, cronológicas, temporais ou marchas.

Exemplo:

EM SÃO PAULO — 2003-2008				
ANOS	PREÇO MÉDIO (R\$)			
2003	2,56			
2004	2,64			
2005	2,67			
2006	2,53			
2007	3,20			

FRANGO - PRECOS MÉDIOS

FONTE: Associação Paulista de Avicultura.

3,64

2008

Geográficas, espaciais ou territoriais.

Exemplo:

DURAÇÃO MÉDIA DOS ESTUDOS SUPERIORES 1994					
PAÍSES	NÚMERO DE ANOS				
Itália	7,5				
Alemanha	7,0				
França	7,0				
Holanda	5,9				
Inglaterra Menos de 4					
FONTE: Revista Veja.					

Séries conjugadas ou de dupla entrada

Exemplo:

	199	1-93	
REGIÕES	1991	1992	1993
Norte	342.938	375.658	403.494
Nordeste	1.287.813	1.379.101	1.486.649
Sudeste	6.234.501	6.729.467	7.231.634
Sul	1.497.315	1.608.989	1.746.232
Centro-Oeste	713.357	778.925	884,822

Dados absolutos

→ São dados coletados de forma direta, sem qualquer manipulação ou medida.

Produto	Quantidade de Vendas
Smartphone	150
Laptop	80
Tablet	50
Smart TV	30
Fones de Ouvido	120

Dados relativos

→ São o resultado de comparações por quociente (razões) que se estabelecem entre dados absolutos e têm por finalidade realçar ou facilitar as comparações entre quantidades.

Dados relativos

Exemplo: (quantidade de vendas / total de vendas) * 100

Produto	Quantidade de Vendas	Percentual de Vendas
Smartphone	150	37.5%
Laptop	80	20.0%
Tablet	50	12.5%
Smart TV	30	7.5%
Fones de Ouvido	90	22.5%
Total	400	100.0%

→ A tabela nos diz

que do total de 400

produtos vendidos,

smartphones e fones

de ouvidos são os itens

mais vendidos!

Dados relativos → exercício

Matriculas nas escolas das cidades A e B.

Categorias	Numero de Alunos A	Numero de alunos B
Ensino fundamental	19.286	38.660
Ensino médio	1.681	3.399
Ensino superior	234	4.24
Total	21.201	42.483

Pergunta: qual das cidades tem comparativamente maior número de alunos em

cada nível?

Dados relativos → exercício

Matriculas nas escolas das cidades A e B.

Categorias	Numero de Alunos A	Dados relativos A %	Numero de alunos B	Dados relativos B %
Ensino fundamental	19.286	91,0	38.660	91,0
Ensino médio	1.681	7,9	3.399	8,0
Ensino superior	234	1,1	4.24	1,0
Total	21.201	100	42.483	100

Índices. O que são?

- → Índices são razões entre duas grandezas tais que uma não inclui a outra.
- → Exemplos:
- Índice cefálico = (diâmetro transverso do crânio/ diâmetro longitudinal do crânio) x 100.
- Quociente intelectual = (idade mental / idade cronológica) x 100.
- Produção per capita = (valor total da produção / população) x 100.
- Renda per capita = (receita / população) x 100.

Índices. O que são?

→ Indice densidade demográfica = população total /superficie.

Coeficientes. O que são?

- → São razões entre o número de ocorrências e o total de ocorrências.
- → Exemplos:
- Coeficiente de natalidade = número de nascimento / população total.
- Coeficiente de mortalidade = número de óbitos / população total.
- Coeficiente de evasão escolar = número de alunos evadidos / número inicial de matrículas.
- Coeficiente de aproveitamento escolar = número de alunos aprovados/
 número final de matrículas.

Coeficientes. O que são?

→ Exemplos:

 Coeficiente de aproveitamento escolar = número de alunos aprovados/ número final de matrículas.

 Coeficiente de recuperação = número de alunos recuperados / número de alunos em recuperação.

Taxas

- → Taxas são coeficientes multiplicados por uma potência de 10 (10, 100, 1000.)
- → Taxa de natalidade = coeficiente de natalidade*1000.
- → Taxa de mortalidade = coeficiente de mortalidade * 1000.
- → Taxa de evasão escola = coeficiente de evasão escolar *100.
- → Taxa de aproveitamento escolar = coeficiente de evasão escolar * 100

→ Uma distribuição de frequências é uma forma de <mark>organizar</mark> e resumir dados em uma tabela, mostrando a frequência com que cada valor ou intervalo de valores ocorre em um conjunto de dados.

→ Uma distribuição de frequências geralmente é usada quando os dados são numerosos.

- Tabela primitiva → é uma tabela onde a coleta de dados encontra-se desorganizada:
- Exemplo: suponha que vamos coletar a estatura dos alunos desta sala:

166	160	161	150	162	160	165	167	164	160
162	161	168	163	156	173	160	155	164	168
155	152	163	160	155	169	151	170	164	170
154	161	153	172	153	157	156	158	158	161

■ ROL → Quando a tabela de estaturas é organizada em ordem crescente:

150	154	155	157	160	161	162	164	166	169
151	155	156	158	160	161	162	164	167	170
152	155	156	158	160	161	163	164	168	172
153	155	156	160	160	161	163	165	168	173

ROL→ após ordenado, pode-se verificar qual a <mark>menor</mark> e a <mark>maior</mark> estatura e podemos definir a amplitude: Amplitude (maior – menor).

→ Exemplo:

Suponha que estamos coletando dados sobre as alturas de estudantes dessa turma. Podemos organizar os dados em intervalos de altura, como "150-160 cm", "160-170 cm", etc. A distribuição de frequências resultante pode ser apresentada em uma tabela abaixo:

Intervalo de Altura	Frequência
150-160 cm	10
160-170 cm	15
170-180 cm	8
180-190 cm	5

→ Frequência:

Número de repetições ou de ocorrência de uma variável aleatória x. Ou seja, quantas vezes aparecem aquele valor em um determinado intervalo. Torna-se inviável tabelas grandes! Como fazer?

Altura cm	Frequência
150	1
151	1
152	1
153	1
154	1
•••	•••

→ Intervalos de classes → tabela utilizada na teoria a seguir.

i=classe

ESTATURAS (cm)	TABULAÇÃO	FREQUÊNCIA
1 150 ⊢ 154		4
<u>2</u> 154 ⊢ 158		9
<u>3</u> 158 ⊢ 162		11
<u>4</u> 162 ⊢ 166		8
<u>5</u> 166 ⊢ 170		5
6 170 ⊢ 174		3
Total		40

Desenhar na lousa essa tabela e ir anotando a teoria

Classe

- → Classes de frequência ou simplesmente classes são intervalos de variação da variável.
- → São representadas por i, sendo i =1,2,3...k (onde k é o número total de classes da distribuição).
- → Assim: na tabela anterior temos o intervalo: 154 | -- 158 que é a segunda classe (i=2).
- → Como a distribuição é formada por 6 classes, podemos afirmar que <mark>k = 6</mark>.

Limite de classe

- → Denomina-se limite de classe os extremos de cada classe
- → O menor número é o limite inferior da classe(li) e o maior número, é o limite superior da classe (Li).
- → Na segunda classe da tabela acima tem-se.
- \rightarrow |2 = 154 e | L2 = 158.
- → Note: o indivíduo que tem a estatura de 158, estará na terceira classe (i=3), pois a determinação do IBGE diz que para se enquadrar na classe, temos o limite superior -1.

Logo, o valor máximo dentro da classe é 157cm.

→ Amplitude de um Intervalo de Classe (h):

É a diferença entre os limites superior e inferior da classe indicada por hi

Na tabela: temos: 158-154 = 4 portanto h = 4 cm de amplitude.

→ Amplitude Total da Distribuição (AT)

A amplitude total da distribuição é a diferença entre o limite superior da última classe (limite superior máximo) e o limite inferior da primeira classe (limite inferior mínimo)

AT =L(max) – I(min). \rightarrow no exemplo temos: 174-150 =24 \rightarrow AT =24cm.

→ Observação:

É evidente que, se as classes possuem o mesmo intervalo, é possível verificar a relação através da formula da amplitude total. Veja:

<u>Demonstração</u>

- Amplitude total = AT =24
- Amplitude dos intervalos de classe = hi = 4.

$$24/4 = 6$$

Portanto: Quantidade total de classes = k = 6.

→ Amplitude Amostral:

A amplitude amostral é a diferença entre o maior e o menor valor nos dados de uma amostra. Ela fornece uma medida da variação nos valores da amostra.

<u>Demonstração</u>

Em nosso exemplo: Temos

- Valor máximo coletado = 173cm (173, porque o limite superior -1, conforme IBGE)
- Valor mínimo coletado = 150 cm

$$AA = 173 - 150 = 23 \rightarrow AA = 23cm$$

→ Ponto médio de uma classe(xi)

É o ponto que divide o intervalo em duas partes iguais.

- → Para calcular, utiliza-se a média aritmética, onde: xi = li + Li / 2.
- → Para a tabela na segunda classe, onde i=2, temos:

<u>Demonstração</u>

$$x_2 = l_2 + L_2/2 \rightarrow 154 + 158/2 = 312/2 \rightarrow 156 \text{ cm}$$
.

∴ X₂ =156 cm

O ponto médio, representa a tendência central da classe!

→ Frequência simples ou absoluta

É o número de observações correspondentes a uma classe ou um valor.

- → É conhecida simplesmente como frequência de uma classe ou valor individual.
- \rightarrow A frequência simples, é simbolizada por f_i , lê-se: **f índice i ou frequência da classe i**
- → a soma de todas as frequências é representada pelo símbolo de somatório:

$$\sum_{i=1}^{k} f_i$$

É evidente que:

$$\sum_{i=1}^{k} f_i = \mathsf{n}$$

... Continua ...

→ Para a tabela em estudo temos:

$$\sum_{i=1}^6 f_{i=40}$$

Para não ocorrer equívocos, vamos utilizar uma forma simplificada:

$$\sum f_i = 40$$

... fim ...

→ Número de classes / Intervalo de classes

Para se construir uma distribuição de frequências, primeiramente, deve-se determinar o número de classes. Consequentemente, da amplitude e limites dos intervalos de classe.

→ Regra de Sturges → nos dá o número de classes em função de valores da variável.

<u>Demonstração</u>

$$k \cong 1 + [3,3. Log_{10}(n)]$$
, onde,

k é o número de classe,

n é o número total de frequência

... Continua ...

→ ... Continuação ...

.para 40 alunos (n), temos:

 $K=^1 + 3.3 \times \log 40 = 6.2 \rightarrow 6 \text{ classes}.$

→ Observação: além da regra de sturges existem outra formulas empíricas que pretendem resolver o problema da determinação do número de classe que deve ter a distribuição. Entretanto, não é visível nessas fórmulas uma decisão exata de classes, e sim uma aproximação. Essa aproximação deve ser interpretada a depender da realidade, de um julgamento pessoal, que deve estar ligado a natureza dos dados, da unidade utilizada para expressá-los e, ainda, do objetivo que se tem em vista.

... Fim..

 \Rightarrow Após a utilização da regra de Sturges para decidirmos empiricamente a quantidade de classes, devemos encontrar em seguida a amplitude do intervalo de classe: dividindo AT por Qtde de classes i $h\cong \frac{AT}{i}$. Quando o resultado não é exato devemos arredonda-lo para mais.

→ Outro problema: escolher os limites dos intervalos, os quais deverão ser tais que forneçam, na medida do possível, para pontos médios, números que facilitem os cálculos → ex. números naturais.

No exemplo da tabela temos : n = 40; i = 6. Logo

$$h \cong \frac{173 - 150}{6} = \frac{23}{6} = 3,833 = 4$$

ISTO é: 6 classes de intervalos iguais a 4.

Distribuição de Frequências?

→Após a regra de Sturges, encontrar a amplitude do intervalo de classe: dividindo AT por Qtde de classes

h=~ AT / i. Quando o resultado não é exato devemos arredonda-lo para mais.

No exemplo da tabela temos : n = 40; i =6. Logo

 $H = ^{173-150}/6 \rightarrow 23/6 = 3.8 e portanto 4.$

ISTO é: 6 classes de intervalos iguais a 4.

Vamos fazer exercícios?

Exercícios para fixação

1) As notas obtidas por 50 alunos de uma classe foram.

1	2	3	4	5	6	6	7	7	8
2	2	3	4	5	6	6	7	8	8
2	2	4	4	5	6	6	7	8	9
2	3	4	5	5	6	6	7	8	9
2	3	4	5	5	6	7	7	8	9

a) Complete a distribuição de frequência abaixo:

i	NOTAS	x_i	f_i
1	0⊢2	1	1
2	2 ⊢4	•••	
3	4 ⊢6	•••	
4	6⊢8	•••	
5	8⊢10	•••	•••
			$\sum f_i = 50$

CRESPO, Antônio Arnot. Estatística Fácil. 19. ed. São Paulo: Saraiva, 2016

Exercícios para fixação

- b) Responda
- Qual amplitude amostral?
- 2. Qual a amplitude da distribuição?
- 3. Qual o número de classes da distribuição?
- 4. Qual é o limite inferior da quarta classe?
- 5. Qual o limite superior da classe de ordem 2?
- 6. Qual a amplitude do segundo intervalo de classe?

→ Frequência simples ou absoluta(fi)

São os valores que realmente representam o número de dados cada classe.

O número das frequências simples é igual ao número total de dados. Representado pela fórmula:

$$\sum fi = n$$

Logo, a frequência relativa da terceira classe, na tabela exemplo é: $fr3 = \frac{f3}{\sum fi} \Rightarrow 11/40 = 0,275 \times 100 = 27,5\%$.

Evidentemente $\sum fri = 100\%$ ou = 1.

OBS) o propósito das frequências relativas é o de permitir a análise ou facilitar as comparações.

- → Frequência Acumulada (Fi)
- É o total das frequências de todos os valores inferiores ao limite superior do intervalo de uma dada classe.
- É a quantidade total de vezes que um valor ou um intervalo de valores ocorreu até o valor atual na distribuição $-\to Fi = \sum fi (i=1,2,...k)$

Para a tabela exemplo, a frequência acumulada correspondente à terceira classe é:

$$F3 = \sum_{i=1}^{3} fi = f1 + f2 + f3 = 4 + 9 + 11 = 24$$

- → Frequência Acumulada Relativa(Fr)
- É a frequência acumulada da classe dividida pela frequência total da distribuição.
- $\blacksquare \quad \frac{Fi}{\sum fi}$

Assim, para a tabela exemplo na terceira classe temos:

$$Fr3 = \frac{F3}{\sum fi} \rightarrow 24/40 = 0,600$$
.

→ A tabela resultante após a teoria ficou assim: → xi = ponto médio.

1	ESTATURAS (cm)	f	X,	fr _i	F _i	Fr _i	po
1	150 ⊢ 154	4	152	0,100	4	0,100	b
2	154 ⊢ 158	9	156	0,225	13	0,325	
3	158 ⊢ 162	11	160	0,275	24	0,600	
4	162 ⊢ 166	8	164	0,200	32		-
5	166 ← 170	5	168	0,125		0,800	
6	170 ⊢ 174	3	172	0,075	37	0,925	200
die vo		$\Sigma = 40$			40	1,000	
				Σ = 1,000	Control of the last	MARIE .	

TARFI 4 5 8

CRESPO, Antônio Arnot. Estatística Fácil. 19. ed. São Paulo: Saraiva, 2016

Rodrigo Gonçalves

Para que utilizamos essa teoria?

- → Para responder perguntas, como:
- a) Quantos alunos tem estatura entre 154 cm, inclusive, e 158 cm?
- b) Qual a porcentagem de alunos cujas as estaturas são inferiores a 154 cm? \rightarrow resposta na primeira classe:0,100 = 10%.
- c) Quantos alunos tem estatura abaixo de 162 cm? 24 alunos. Somatório das frequências, classes 1,2e3.

Para que utilizamos essa teoria?

- → Para responder perguntas, como:
- a) Quantos alunos tem estatura entre 154 cm, inclusive, e 158 cm?
- b) Qual a porcentagem de alunos cujas as estaturas são inferiores a 154 cm? \rightarrow resposta na primeira classe:0,100 = 10%.
- c) Quantos alunos tem estatura abaixo de 162 cm? 24 alunos. Somatório das frequências, classes 1,2e3.

1. O Estado A apresentou 733.986 matrículas na 1 série, no início do ano de 1994, e 683.816 no fim do ano. O Estado B apresentou, respectivamente, 436.127 e 412.457 matrículas. Qual o Estado que apresentou maior evasão escolar?

2. Uma escola registrou em março, na 1º série a matrícula de 40 alunos e a matrícula efetiva, em dezembro, de 35 alunos. A taxa de evasão foi de?

3. Calcule a taxa de aprovação de um professor de uma classe de 45 alunos, sabendo que obtiveram aprovação 36 alunos.

4. Considere a série estatística.

Séries	Alunos matriculados	%
1°	546	
2°	328	
3°	280	
4°	120	
Total	1.274	

Complete-a determinando as porcentagens com uma casa decimal apenas.

5. Um escola apresentava, no final do ano o seguinte quadro

	Matrí	culas
Séries	Março	Novembro
1°	480	475
2°	458	456
3°	436	430
4°	420	420
Total	1.794	1.781

- a. Calcule a taxa de evasão por séries.
- b. Calcule a taxa de evasão da escola.

6. Considere a tabela abaixo:

Evolução das receitas do café industrializado jan/abr -2008

Meses	Valor (US\$ milhões)
Janeiro	33,3
Fevereiro	54,1
Março	44,5
Abril	52,9
Total	184,8

- a. Complete-a com uma coluna de taxas percentuais.
- b. Como se distribuem as receitas em relação ao total?

CRESPO, Antônio Arnot. Estatística Fácil. 19. ed. São Paulo: Saraiva, 2016

- 6. continuação....
- c. Qual o desenvolvimento das receitas de um mês para o outro?
- d. Qual o desenvolvimento das receitas em relação ao mês de janeiro?

7. São Paulo tinha em 1992 uma população de 32,000,182.7 mil habitantes. Sabendo que sua área terrestre é de 248.256 km2, calcule a sua densidade demográfica.

19. ed. São Paulo: Saraiva, 2016

- 8. Considerando que Minas Gerais em 1992 apresentou: população 15,957.6 mil habitantes; superfície 586.624 km2; nascimentos 292.036; óbitos 99,281.0 Calcule.
- a) O índice da densidade demográfica.
- b) A taxa de natalidade.
- c) A taxa de mortalidade.

9. Considere os dados abaixo.

			PROMO-					TOTAL GERAL	
SÉRIE E TURMA	Nº DE ALUNOS 30.03	Nº DE ALUNOS 30.11	VIDOS SEM RECUPE- RAÇÃO	RETIDOS SEM RECUPE- RAÇÃO	EM RECUPE- RAÇÃO	RECU- PERADOS	NÃO RECU- PERADOS	PROMO- VIDOS	RETIDOS
1º B	49	44	35	03	06	05	01	40	04
1º C	49	42	42	00	00	00	00	42	00
1º E	47	35	27	00	08	03	05	30	05
1º F	47	40	33	06	01	00	01	33	07
Total	192	161	137	09	15	08	07	145	16
Total	192	161	137	09	15	08	07	145	16

- 9. continuação. Calcule:
- a) Taxa de evasão escolar por classe;
- b) Taxa de evasão escolar total;
- c) Taxa de aprovação por classe;
- d) Taxa de aprovação geral;
- e) Taxa de recuperação por classe;
- f) Taxa de recuperação geral;
- g) Taxa de reprovação na recuperação geral;
- h) Taxa de aprovação sem recuperação.
- i) Taxa de retidos sem recuperação.

10. As notas obtidas por 50 alunos de uma classe foram:

1	2	3	4	5	6	6	7	7	8
2	3	3	4	5	6	6	7	8	8
2	3	4	4	5	6	6	7	8	9
2	3	4	5	5	6	6	7	8	9
2	3	4	5	5	6	7	7	8	9

- a) Faça a distribuição de frequência.
- b) Qual a amplitude amostral.
- c) Qual a amplitude da distribuição.
- d) Qual o número de classes da distribuição

- e) Qual é o limite inferior da quarta classe?
- f) Qual é o limite superior da classe 2?
- g) Qual a amplitude do segundo intervalo de classe?

11) Considere as notas de um teste de inteligência aplicado a 120 alunos. Sabe-se que as notas variam de 60 a 90. Sua tarefa é criar uma tabela com a distribuição de frequências usando intervalos de classe para analisar os resultados.

THANKS
FOLKS !!
AND
HOPE YOU

ENJOYED

Banco de Dados

By the way.....

Thanks Folks!

