Statistics 3: Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing two related samples, matched samples, or repeated measurements on a single sample to assess whether their population mean ranks differ (i.e. it is a paired difference test). It can be used as an alternative to the paired Student's t-test, t-test for matched pairs, or the t-test for dependent samples when the population cannot be assumed to be normally distributed.

The test is named for Frank Wilcoxon (1892–1965) who, in a single paper, proposed both it and the rank-sum test for two independent samples (Wilcoxon, 1945). The test was popularized by Siegel (1956) in his influential text book on non-parametric statistics.

			$x_{2,i} - x_{1,i}$		
i	$x_{2,i}$	$x_{1,i}$	sgn	abs	
1	125	110	1	15	
2	115	122	-1	7	
3	130	125	1	5	
4	140	120	1	20	
5	140	140		0	
6	115	124	-1	9	
7	140	123	1	17	
8	125	137	-1	12	
9	140	135	1	5	
10	135	145	-1	10	

order by absolute difference

			$x_{2,i} - x_{1,i}$				
i	$x_{2,i}$	$x_{1,i}$	sgn	abs	R_i	$\operatorname{sgn} \cdot R_i$	
5	140	140		0			
3	130	125	1	5	1.5	1.5	
9	140	135	1	5	1.5	1.5	
2	115	122	-1	7	3	-3	
6	115	124	-1	9	4	-4	
10	135	145	-1	10	5	-5	
8	125	137	-1	12	6	-6	
1	125	110	1	15	7	7	
7	140	123	1	17	8	8	
4	140	120	1	20	9	9	

LIS scholars involving computer science research $R(h_WoS) > R(h_GS) \ (\rho <= 0.05); \quad R(h_WoS) > R(h_SCO) \ (\rho <= 0.01)$

AUTHOR	R(h_GS)	R(h_SCO)	R(h_WoS)
Goker, Ayse	96	100	100
Jarvelin, Kalervo	24	15	26
Jose, Joemon M	72	67	76
Kantor, Paul B	41	36	62
Lalmas, Mounia	17	43	62
Liddy, Elizabeth DuRoss	37	81	76
Losee, Robert M	51	47	33
Ounis, Iadh	55	72	92
van Rijsbergen, CJ	6	15	76
Robertson, Stephen	81	30	62
Ruger, Stefan	87	72	76
Ruthven, Ian	41	47	62
Sanderson, Mark	24	47	76
Tait, John I.	77	88	97
Whittaker, Steve J.	3	15	87
Willett, Peter	1	1	1
Yang, Christoph C	72	30	62

			$x_{2,i}$ -	$x_{1,i}$
i	$x_{2,i}$	$x_{1,i}$	sgn	abs
1	125	110	1	15
2	115	122	-1	7
3	130	125	1	5
4	140	120	1	20
5	140	140		0
6	115	124	-1	9
7	140	123	1	17
8	125	137	-1	12
9	140	135	1	5
10	135	145	-1	10

order by absolute difference

				$x_{2,i} - x_{1,i}$			
	i	$x_{2,i}$	$x_{1,i}$	sgn	abs	R_i	$\operatorname{sgn} \cdot R_i$
е	5	140	140		0		
	3	130	125	1	5	1.5	1.5
	9	140	135	1	5	1.5	1.5
	2	115	122	-1	7	3	-3
	6	115	124	-1	9	4	-4
	10	135	145	-1	10	5	-5
	8	125	137	-1	12	6	-6
	1	125	110	1	15	7	7
	7	140	123	1	17	8	8
	4	140	120	- 1	20	9	9

 $N_r = 10-1 = 9, W = |1.5+1.5-3-4-5-6+7+8+9| = 9. \\$

四、大数据时代:从知识回到数据

- 大数据是什么?
 - > 是一种大量而复杂的数据集合数据集合
 - ▶ 在可承受的范围内,无法用传统数据库系统和常规软件和常规软件工具对内容进行获取、存储、管理和分析

● 大数据的特征 (5V)

▶ 容量 (Volumn):数据量巨大

▶ 种类 (Variety):数据类型复杂多样

➤ 速度(Velocity): 快速甚至实时地采集、处理数据并做出 正确反馈

▶价值 (Value):价值密度低

▶ 真实性 (Veracity): 数据判断准确可靠

● 大数据的发展历程

- ▶ 20世纪末是大数据的萌芽期,处于数据挖掘技术阶段。一些商业智能 工具和知识管理技术开始被应用。
- 社交网络的流行导致大量非结构化数据出现,传统处理方法难以应对,数据处理系统、数据库架构开始重新思考。
- ▶ 2006年-2009年, 大数据形成并行计算和分布式系统, 为大数据发展的成熟期。
- ➤ 2008年9月,《自然》杂志出版"big data"专刊,使"大数据"这一概念在学术界得到认可和广泛使用

大数据的发展历程

- 2010年以来,随着智能手机应用,数据碎片化、分布式、流媒体特征更加明显,移动数据急剧增长。
- 2012年维克托·舍恩伯格《大数据时代:生活、工作与思维的大 变革》宣传推广,大数据概念开始风靡全球
- 2013年5月,《颠覆性技术:技术改进生活、商业和全球经济》的研究报告确认了未来12种新兴技术。而大数据是这其中需求技术的基石
- 2014年5月,美国白宫发布的2014年全球"大数据"白皮书的研究报告《大数据:抓住机遇,守护价值》鼓励使用数据推动社会进步

• 大数据的发展趋势

>数据的资源化

指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。 因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

▶与云计算的深度结合

大数据离不开云处理, 云处理为大数据提供了弹性可拓展的基础设备, 是产生大数据的平台之一。

>科学理论的突破

随着大数据的快速发展,其很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论, 实现科学技术上的突破。

>数据科学和数据联盟的成立

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。

>数据泄露泛滥

未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到 安全保障。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初 便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全 措施已被证明于事无补。

>数据管理成为核心竞争力

数据管理成为核心竞争力,直接影响财务表现。当"数据资产是企业核心资产"的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。

大数据鉴例

● 沃尔玛与购物篮分析

某美国连锁超市,对60万个家庭的中的购买数据进行调查分析, 发现这些家庭去超市的次数以及购买的商品,与是否购买杂志、购 买哪种类型的杂志有显著相关性。

▶尿布与啤酒的故事

●数据新闻让英国撤军

2010年10月23日《卫报》利用维基解密的数据做了一篇"数据新闻"。 将伊拉克战争中所有的人员伤亡情况均标注于地图之上。

地图上一个红点便代表一次死伤事件, 鼠标点击红点后弹出的窗口则有详细的说明:

伤亡人数、时间,造成伤亡的具体原因。

密布的红点多达39万,显得格外触目惊心。

一经刊出立即引起朝野震动, 推动英国最终做出撤 出驻伊拉克军队的决定。

▶高德地图

众多用户通过手机实时反馈车速, 地图 APP 预测道路拥堵

思考与讨论1:

信息社会中,为什么决策的依据从知识回到数据?

思考与讨论2:

大数据的终点在哪里?