Using models and satellite observations to determine the public health burden of rapid air quality degradation in cities in Africa

Eloise Marais

Fast-growing tropical megacities

Karn Vohra postdoc

The largest future megacities are all in the tropics

Mostly in tropical Africa and Asia, where air quality knowledge gaps are largest

Largest cities in 2020

[Image credit: Gongda Lu]

Adapted image: https://medium.com/ensia/here-come-the-megacities-1b0f8a2287f2

Projections: https://journals.sagepub.com/doi/full/10.1177/0956247816663557

Fastest-growing cities are in the tropics

Population growth in the 46 fastest-growing cities in tropical Africa, Asia and the Middle East

Regional annual projected population growth rates for 2020-2100 [Hoornweg & Pope, 2017]: 3-31% for Africa, 0.8-3% for South Asia, 0.5-7% for Southeast Asia

Surface monitoring of air pollution severely limited

< 1 reference monitor (filled circles) per million people!

Low-cost sensors (squares) helping to address data gaps, but reliability can be an issue

Source: https://openaq.org/#/ (accessed 16 March 2022)

Satellite observations offer global coverage of multiple pollutants

Nitrogen dioxide (NO₂)

Source: Liu et al., 2019

Formaldehyde (HCHO)

Source: De Smedt et al., 2018

[10¹⁵ molecules cm⁻²]

Satellite observations offer global coverage of multiple pollutants

Ammonia (NH₃)

Aerosol Optical Depth (AOD)

Source: Christopher and Gupta, 2020

Satellite observations of AOD reproduce trends in PM_{2.5}

Satellite AOD versus surface PM_{2.5} in **Birmingham**, UK (2009-2017)

Complicated by meteorological conditions, aerosol composition & vertical distribution

[Vohra et al., ACP, 2021]

[van Donkelaar et al., 2016; Shaddick et al., 2018]

Steep annual increases in NO_x and NH₃

 NO_2 trends (proxy for NO_x) [2005-2018]

> OMI: Ozone Monitoring Instrument

NH₃ trends (depends on acidic aerosol abundance) [2008-2018]

IASI: Infrared atmospheric sounding interferometer

Circle Features:

Size: start of record

Color: trend

Outline: significant

Decline over Indian subcontinent due to increase in uptake to acidic aerosols

NH₃ data from M. Van Damme, L. Clarisse, P.-F. Coheur at ULB

Annual changes in $PM_{2.5}$ and ozone production regimes

AOD trends (proxy for **PM**_{2.5}) [2005-2018]

MODIS: Moderate resolution imaging spectroradiometer

HCHO/NO₂ trends (proxy for ozone production regime) [2005-2018]

Circle Features:

Size: start of record

Color: trend

Outline: significant

Increases in PM_{2.5} precursors SO₂, NH₃, NO_x

Ratio > 5:

O₃ production sensitive to NO_x

Transitioning to NO_x saturated or VOC sensitive

What's driving the observed trends?

We use a statistical approach and knowledge of seasonality of emissions to assess the relative role of anthropogenic and biomass burning emission

Shift from rural fires to urban sources
Some trend dampening due to decline in agricultural activity

Increase in urban population exposure to air pollution

Combined effect of rapid air quality degradation, increase in population and urbanization

Up to 18 % a⁻¹ increase in PM_{2.5} in India

Increased incidence in many health adverse health outcomes leading to premature death

Up to 23% a⁻¹ increase in NO₂ in many cities

Premature mortality attributable to rise in PM_{2.5} exposure

Highest ranked are almost all in Asia. Worst effects in Africa buffered by improvements in healthcare.

Take-homes and additional findings from this work

Shift in dominance from traditional (rural fires) to a mix of urban anthropogenic sources

Trends in cities opposite to national and regional trends in Africa

Inventories underestimate growth in precursor emissions suggested by trends from satellite observations

Ozone production transitioning to dependence on volatile organic compounds that are more challenging than NO_x to regulate

Health impacts in cities in Asia likely to occur in cities in Africa in the next 2-3 decades

Link to paper: https://www.science.org/doi/reader/10.1126/sciadv.abm4435

Link to NYT article:

https://www.nytimes.com/2022/04/08/climate/air-pollution-cities-tropics.html

Link to The Conversation piece: https://theconversation.com/air-pollution-in-fast-growing-african-cities-presents-a-risk-of-premature-death-183944