

TECNOLOGIA EM SISTEMAS PARA INTERNET

Giovana de Oliveira Rocha Jadilson Nascimento da Cruz Junior Leandro Júnio de Sousa Gomes Tatiana Dutra Ramos Casado Melo

RELATÓRIO DE PRÁTICA INTEGRADA DE CIÊNCIA DE DADOS E INTERNET DAS COISAS

Brasília - DF

04/01/2023

Sumário

1. Objetivos	3
2. Descrição do problema	4
3. Desenvolvimento3.1 Código implementado	5
4. Considerações finais	6
Referências	7

1. Objetivos

Verificar o funcionamento do hardware de fluxo de água e coletar dados de diferentes fluxos para realizar uma comparação entre o fluxo normal e o fluxo com evasão simulando um encanamento com e sem vazamentos.

2. Descrição do problema

As principais dificuldades encontradas foram sincronizar o funcionamento dos dois sensores utilizando apenas um arduino, coletar os dados necessários e prepará-los buscando inconsistências causadas por fatores externos, como evasões de água provocadas por furos na mangueira.

3. Desenvolvimento

Tendo como objetivo a coleta de dados, foram utilizados dois Sensores de Fluxo de Água de 1/2 e 2 mangueiras com 30 centímetros de comprimento, sendo uma sem nenhum furo e outra contendo algumas aberturas de cerca de 1 cm.

Figura 1 Materiais utilizados

O sensor 1 foi utilizado para leitura do fluxo de entrada de água, enquanto o sensor 2 foi utilizado para saída, os sensores estavam na mesma altura e a água passava de forma constante.

Já nas mangueiras, a que continha furos, realizamos vários testes com ela, a cada teste progressivamente abrimos os buracos que estavam vedados permitindo a vazão de água e consequentemente a captura dos dados.

Figura 2: Hardware com os sensores 1 e 2

Durante os experimentos foram verificadas em um fluxo normal(sem furos na mangueira) variações de até 0,62 mL no sensor 1 e 0,68 mL no sensor 2 e não houveram dados ausentes ou inconsistentes.

Ao utilizar uma mangueira com uma abertura foram verificadas variações fora do padrão que foram desconsideradas. Com isso, a variação foi de 0,8 mL no sensor 1 e de 1,35 mL no sensor 2.

Nos experimentos utilizando uma mangueira com duas aberturas foram verificadas variações de 0,81 mL no sensor 1 e de 0,76 mL no sensor 2, não houveram inconsistências.

Sensor 1	Sensor 2	Aberturas
7,29	7,29	0
7,29	7,29	0
7,29	7,29	0
7,16	7,16	0
7,16	7,16	0
7,02	7,02	0
7,16	7,16	0
7,02	7,02	0
7,02	7,02	0
7,16	7,16	0
7,16	7,16	0
7,29	7,29	0
7,29	7,29	0
7,43	7,43	0

Tabela 1: Experiência com os sensores 1 e 2 utilizando a mangueira sem aberturas.

Sensor 1 =	Sensor 2 =	Aberturas 🝸
7,97	3,38	1
7,97	3,51	1
7,97	3,51	1
8,1	3,78	1
7,83	3,51	1
7,83	3,51	1
7,83	3,51	1
8,23	3,92	1
7,97	3,78	1
7,97	3,78	1
8,1	3,92	1
8,1	3,92	1
8,1	3,92	1
7,83	3,65	1

Tabela 2: Experiência com os sensores 1 e 2 utilizando a mangueira com 1 abertura.

Sensor 1	÷	Sensor 2	÷	Aberturas	T
7	7,29	4,:	19		2
7	7,29	4,:	19		2
7	7,29	4,:	19		2
7	7,02	4,0	05		2
7	7,16	4,:	19		2
7	7,16	4,:	19		2
7	7,16	4,:	19		2
7	7,16	4,:	19		2
7	7,16	4,	19		2
7	7,29	4,3	32		2
7	7,29	4,3	32		2
7	7,16	4,:	19		2
7	7,29	4,3	32		2
7	7,16	4,:	19		2

Tabela 3: Experiência com os sensores 1 e 2 utilizando a mangueira 2 aberturas.

A diferença lida de um sensor para o outro ao usar a mangueira com duas aberturas ficou entre e 1,89 mL e 3,1 mL e de 3,1 mL e 4,59 com uma abertura, enquanto a mangueira sem furos teve uma diferença média aproximadamente 0,13 que mostra que os sensores são capazes de verificar a vazão da água.

3.1 Código implementado

As variáveis flowRate1 e flowRate2 são os valores que estão sendo lidos no sensor, e a variável count1 e count2 então fazendo a contagem dos valores que estão sendo lidos, e esse número tem que ser volátil para garantir que ele seja atualizado corretamente.

A partir da linha 7, estão sendo configuradas as funções e iniciado. E na linha 12 está sendo iniciado com a função loop que está sendo os dados por segundo.

```
unsigned long tempo = millis();
 2 double flowRate1;
 3 double flowRate2;//Este é o valor que pretende-se calcular
 4 volatile int count1; //Este número precisa ser setado como volátil para garantir que ele seja
    atualizado corretamente durante o processo de interrupção
 5 volatile int count2;
 7 void setup() {
 8 attachInterrupt(digitalPinToInterrupt(2), Flow1, RISING);//Configura o interruptor 0 (pino 2 no Arduino
    Uno) para rodar a função "Flow"
 9 attachInterrupt(digitalPinToInterrupt(3), Flow2, RISING);//Configura o interruptor 0 (pino 3 no Arduino
    Uno) para rodar a função "Flow"
10 Serial.begin(9600); //Inicia o Serial
12 void loop() {
13 //SENSOR 1
14 count1 = 0;//Reseta o contador para iniciarmos a contagem em 0 novamente
    interrupts();//Habilita o interrupção no Arduino
    delay (1000);//Espera 1 segundo
18 noInterrupts(); //Desabilita o interrupção no Arduino
```

```
20 //Cálculos matemáticos
21 flowRate1 = (count1 * 2.25);//Conta os pulsos no último segundo e multiplica por 2,25mL, que é a vazão
   de cada pulso
   flowRate1 = flowRate1 * 60;//Converte segundos em minutos, tornando a unidade de medida mL/min
23 flowRate1 = flowRate1 / 1000;//converte mL em litros, tornando a unidade de medida L/min
24 Serial.print(tempo ++);
25 Serial.print(",");
   //Serial.print("Fluxo de Agua Pino2, Sensor 1: ");
27 Serial.print(" Sensor 1, ");
28 Serial.println(flowRate1);//Imprime a variável flowRate no Serial
31 //SENSOR 2
32 //Cálculos matemáticos
33 flowRate2 = (count2 * 2.25);//Conta os pulsos no último segundo e multiplica por 2,25mL, que é a vazão
   de cada pulso
   flowRate2 = flowRate2 * 60;//Converte segundos em minutos, tornando a unidade de medida mL/min
37 Serial.print(tempo ++);
   Serial.print(",");
38
39
   //Serial.print("Fluxo de Agua Pino3, Sensor 2: ");
40 Serial.print(" Sensor 2, ");
    //Serial.print(",");
42 //Serial.println(flowRate1);
43 //
    Serial.println(flowRate2);//Imprime a variável flowRate no Serial
    //Serial.print(',');
45
46
47
48
    }
49
50
    void Flow1()
51
    count1++; //Quando essa função é chamada, soma-se 1 a variável "count"
52
53
54
55
    void Flow2()
56
57
    count2++; //Quando essa função é chamada, soma-se 1 a variável "count"
58
    }
59
```

Figura 3: Código para exibição de dados do sensor de fluxo de água.

Link do GitHub:https://github.com/infocbra/pratica-integrada-cd-e-ic-2022-2-ljtg

O código implementado abaixo, importa os dados lidos pelos sensores para um arquivo csv.

```
1 import serial
 2 porta = "COM5"
 3 baud = 9600
    arquivo = "Dados.csv"
 4
 5
 6 # Estabelecendo a Conexão
 7 try:
        ser = serial.Serial(porta, baud)
 8
        #Abrindo Serial
       ser.flushInput()
10
        #Quantidade de Amostras coletadas
11
12
        amostra = 600
        linha = 0
13
14
        #Adicionando Linha ao Arquivo
15
        while linha <= amostra:
16
            data = str(ser.readline().decode("utf-8"))
            #Inserindo os dados no Arquivo
17
18
            print(data)
            file = open(arquivo, "a")
19
20
            file.write(data)
            file.close()
21
22
            linha+=1
23
        print("Final de Leitura")
24
25
        #Fechando Conexão
26
        ser.close()
27
    except serial.SerialException:
        print("Porta USB nao detectada")
28
```

Figura 4 Código para o armazenamento de dados do sensor de fluxo de água

Link do GitHub:https://github.com/infocbra/pratica-integrada-cd-e-ic-2022-2-ljtg

4. Considerações finais

Na segunda sprint foi necessário capturar os dados e com isso tivemos a experiência de verificar possíveis falhas ao testar o hardware e pôr em prática os conhecimentos adquiridos, além disso tivemos problema em registrar o tempo de captura de cada dados, iremos corrigir isto para a próxima sprint.

Também houve problemas na execução física na captura dos dados, onde a equipe decidiu utilizar as instalações do Instituto Federal de Brasília, campus Brasília, a equipe teve dificuldade em encontrar pontos de energia que funcionasse e que estivessem dispostas perto de torneiras que também funcionassem.

O objetivo para a realização da próxima sprint é organizar e estudar os dados coletados durante o projeto.

Referências

Eletrogate. **Título: Guia Prático do Sensor de Fluxo de Água**.blog.eletrogate, 2022. Disponível em: https://blog.eletrogate.com/sensor-de-fluxo-de-agua/. Acesso em: 11/12/2022.

SOUZA, Fabio. **Data Logger em Python para salvar dados de sensores.**Youtube, 2021. Disponível em: https://www.youtube.com/watch?v=UGjjP45wrKQ. Acesso em: 23 de dezembro de 2021.