Package 'spm'

December 11, 2015

Type Package

Title Stochastic Process Model (SPM)	
Version 1.0	
Date 2015-10-05	
Author I. Y. Zhbannikov, I. V. Akushevich, K. G. Arbeev, A. I. Yashin	
Maintainer Ilya Y. Zhbannikov <i.zhbannikov@mail.ru></i.zhbannikov@mail.ru>	
Description Stochastic Process Modeling	
License GPL	
Imports Rcpp (>= 0.11.1), RcppArmadillo (>= 0.4.200.0)	
LinkingTo Rcpp, RcppArmadillo	
Depends deSolve,mice,sas7bdat,RcppArmadillo	
Suggests knitr	
VignetteBuilder knitr	
RoxygenNote 5.0.1	
R topics documented:	
simdata_cont_1D simdata_cont_MD simdata_discr_MD simdata_time_dep spm spm_continuous_1D spm_continuous_MD	2 3 4 5 6 7 8 9
Index 1	1

2 prepare_data

prepare_data	Output values include: 1). Database (data table), simulated for (slow) continuous optimization with arbitrary intervals between observations. 2). Database (data table), simulated for (quick) discrete optimization with fixed intervals between each observation.
	opiniization with fixed intervals between each observation.

Description

Output values include: 1). Database (data table), simulated for (slow) continuous optimization with arbitrary intervals between observations. 2). Database (data table), simulated for (quick) discrete optimization with fixed intervals between each observation.

Usage

```
prepare_data(longdat, vitstat, interval = 1, col.status = "IsDead",
  col.id = "ID", col.age = "Age", col.age.event = "LSmort",
  covariates = c("DBP", "BMI", "DBP1", "DBP2", "Weight", "Height"),
  verbose = T)
```

Arguments

longdat	A table with longitude records.
vitstat	A table with vital statistics (mortality).
interval	A number of breaks between observations for discrete simulation. Default = 1 (no breaks).
col.status	A name of column containing status variable (0/1 which indicate alive/dead).
col.id	A name of column containing patient ID. This ID should be the same in both longdat and vitstat tables.
col.age	A name of age column.
col.age.event	A name of event column.
covariates	A list of covariates.
verbose	A verbosing output indicator. Default=TRUE.

Value

A list of two elements: first element contains a data table for continuous case, with arbitrary intervals between observations and second element contains a data table for a discrete case (fixed intervals between observations).

```
library(spm)
#Reading longitude data:
longdat <- read.csv(system.file("data","longdat.csv",package="spm"))
# Prepare data for optimization:
vitstat <- read.csv(system.file("data","vitstat.csv",package="spm"))
# Remove unneeded NAs:
longdat.nonan <- longdat[which(is.na(longdat$Age) == F),]
vitstat.nonan <- vitstat[which(is.na(vitstat$BirthCohort) == F),]
data=prepare_data(longdat=longdat.nonan, vitstat=vitstat.nonan,interval=1, col.status="IsDead", col.id="ID"</pre>
```

simdata_cont_1D 3

```
# Parameters estimation:
pars=spm(data,k = 1)
pars
```

simdata_cont_1D

One-dimensional simulation function for continuous time (arbitrary intervals between observations).

Description

One-dimensional simulation function for continuous time (arbitrary intervals between observations).

Usage

```
simdata\_cont\_1D(N = 10, aH = -0.05, f1H = 80, QH = 2e-07, fH = 80, bH = 5, mu0H = 2e-05, thetaH = 0.08, step = 0.05, tstart = 30, tend = 105, ystart = 80, sd0 = 4)
```

Arguments

N	Number of individuals.
tstart	A number that defines starting time (30 by default).
tend	A number, defines final time (105 by default).
ystart	A vector with length equal to number of dimensions used, defines starting values of covariates.
а	A k by k matrix, which characterize the rate of the adaptive response.
f1	A particular state, which if a deviation from the normal (or optimal). This is a vector with length of ${\bf k}$.
Q	A matrix k by k, which is a non-negative-definite symmetric matrix.
f	A vector-function (with length k) of the normal (or optimal) state.
b	A diffusion coefficient, k by k matrix.
mu0	mortality at start period of time.
theta	A displacement coefficient of the Gompertz function.

Value

A table with simulated data.

```
library(spm)
dat <- simdata_cont_1D(N=2500)
dat</pre>
```

4 simdata_cont_MD

simdata_cont_M

Multi-dimensional simulation function for continuous trait.

Description

Multi-dimensional simulation function for continuous trait.

Usage

```
simdata_cont_MD(N = 100, a = -0.05, f1 = 80, Q = 2e-07, f = 80, b = 5, mu0 = 2e-05, theta = 0.08, step = 0.05, tstart = 30, tend = 105, ystart = 80, sd0 = 4, k = 1)
```

Arguments

N	Number of individuals.
а	A k by k matrix, which characterize the rate of the adaptive response.
f1	A particular state, which if a deviation from the normal (or optimal). This is a vector with length of ${\bf k}$.
Q	A matrix k by k, which is a non-negative-definite symmetric matrix.
f	A vector-function (with length k) of the normal (or optimal) state.
b	A diffusion coefficient, k by k matrix.
mu0	mortality at start period of time.
theta	A displacement coefficient of the Gompertz function.
tstart	A number that defines starting time (30 by default).
tend	A number, defines final time (105 by default).
ystart	A vector with length equal to number of dimensions used, defines starting values of covariates.
k	number of dimensions $(k = 1 \text{ by default})$.

Value

A table with simulated data.

```
library(spm)
dat <- simdata_cont_MD(N=2500)
dat</pre>
```

simdata_discr_MD 5

simdata_discr_MD	Multi-dimension simulation function It uses a, $f1$, Q , f , b , $mu0$ and theta as input parameters.

Description

Multi-dimension simulation function It uses a, f1, Q, f, b, mu0 and theta as input parameters.

Usage

```
simdata_discr_MD(N = 100, a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5, mu0 = 1e-05, theta = 0.08, ystart = 80, tstart = 30, tend = 105, dt = 1, k = 1)
```

Arguments

N	Number of individuals
а	A k by k matrix, which characterize the rate of the adaptive response.
f1	A particular state, which is a deviation from the normal (or optimal). This is a vector with length of ${\bf k}$.
Q	A matrix k by k, which is a non-negative-definite symmetric matrix.
f	A vector-function (with length k) of the normal (or optimal) state.
b	A diffusion coefficient, k by k matrix.
mu0	mortality at start period of time.
theta	A displacement coefficient of the Gompertz function.
ystart	A vector with length equal to number of dimensions used, defines starting values of covariates.
tstart	A number that defines starting time (30 by default).
tend	A number, defines final time (105 by default).
dt	A time step (1 by default).
k	number of dimensions $(k = 1 \text{ by default})$.

Value

A table with simulated data.

```
library(spm)
data <- simdata_discr_MD(N=1000, ystart=80, k=1)
head(data)</pre>
```

6 spm

simdata_time_dep Simula cients.	ion function for continuous trait with time-dependant coeffi-
---------------------------------	---

Description

Simulation function for continuous trait with time-dependant coefficients.

Usage

```
simdata_time_dep(N = 10, formulas = list(at = "-0.05", f1t = "80", Qt = "2e-7*exp(0.08*t)", ft = "80", bt = "5", mu0t = "2e-5*exp(0.08*t)"), step = 0.05, tstart = 30, tend = 105, ystart = 80, sd0 = 4, k = 1)
```

Arguments

N	Number of individuals.
formulas	: a list of formulas that define age (time) - dependency. Default: list(at="a", f1t="f1", Qt="Q*exp(theta*t)", ft="f", bt="b", mu0t="mu0*exp(theta*t)")
tstart	A number that defines starting time (30 by default).
tend	A number, defines final time (105 by default).
ystart	A starting value of covariates.

Value

A table with simulated data.

Examples

```
library(spm)
dat <- simdata_time_dep(N=2500)
dat</pre>
```

spm

Stochastic Process Modelling (SPM) A main function that estimates parameters a, fl, Q, f, b, mu0, theta from given dataset.

Description

Stochastic Process Modelling (SPM) A main function that estimates parameters $a,\,f1,\,Q,\,f,\,b,\,mu0,$ theta from given dataset.

Usage

```
spm(dat, k = 2, verbose = F, tol = NULL)
```

spm_continuous_1D 7

Arguments

dat A dataset.

k Number of dimensions.verbose A verbosing output indicator.

tol A tolerance threshold for matrix inversion.

Value

A list of (1) Estimated starting point (from quick discrete optimization) and (2) Estimated coefficients.

Examples

```
library(spm)
#Prepare data for optimization
longdat <- read.csv(system.file("data","longdat.csv",package="spm"))
vitstat <- read.csv(system.file("data","vitstat.csv",package="spm"))
data=prepare_data(longdat=longdat, vitstat=vitstat,interval=1, col.status="IsDead", col.id="ID", col.age="A #Parameters estimation:
pars=spm(data,k = 1)
pars</pre>
```

spm_continuous_1D

Continuous one-dimensional optimization

Description

Continuous one-dimensional optimization

Usage

```
spm_continuous_1D(dat, a = -0.05, f1 = 80, Q = 2e-08, f = 80, b = 5, mu0 = 2e-05, theta = 0.08)
```

Arguments

dat	A data table.
а	A starting value of the rate of adaptive response to any deviation of Y from f1(t).
f1	A starting value of the average age trajectories of the variables which process is forced to follow.
Q	Starting values of the quadratic hazard term.
f	A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.
b	A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.
mu0	A starting value of the baseline hazard.
theta	A starting value of the parameter theta (axe displacement of Gompertz function).
k	A number of dimensions.
verbose	An indicator of verbosing output.
tol	A tolerance threshold for matrix inversion.

Details

spm_integral_1D runs much slower that discrete but more precise and can handle time intervals with different lengths.

Value

A set of estimated parameters a, f1, Q, f, b, mu0, theta.

Examples

spm_continuous_MD

Continuous multi-dimensional optimization

Description

Continuous multi-dimensional optimization

Usage

```
spm_continuous_MD(dat, a = 0.05, f1 = 80, Q = 2e-08, f = 81, b = 5, mu0 = 2e-05, theta = 0.08, k = 1, verbose = F)
```

Arguments

dat	A data table.
а	A starting value of the rate of adaptive response to any deviation of Y from f1(t).
f1	A starting value of the average age trajectories of the variables which process is forced to follow.
Q	Starting values of the quadratic hazard term.
f	A starting value of the "optimal" value of variable which corresponds to the minimum of hazard rate at a respective time.
b	A starting value of a diffusion coefficient representing a strength of the random disturbance from Wiener Process.
mu0	A starting value of the baseline hazard.
theta	A starting value of the parameter theta (axe displacement of Gompertz function).
k	A number of dimensions.
verbose	An indicator of verbosing output.
tol	A tolerance threshold for matrix inversion.

spm_discrete_MD 9

Details

spm_integral_MD runs much slower that discrete but more precise and can handle time intervals with different lengths.

Value

A set of estimated parameters a, f1, Q, f, b, mu0, theta.

Examples

```
library(spm)
# Reading the data:
longdat <- read.csv(system.file("data","longdat.csv",package="spm"))
vitstat <- read.csv(system.file("data","vitstat.csv",package="spm"))
dd <- prepare_data(longdat=longdat, vitstat=vitstat,interval=1, col.status="IsDead", col.id="ID", col.age="/data <- dd[[1]][,2:6]
#Parameters estimation:
pars <- spm_continuous_MD(dat=data,a=-0.05, f1=80, Q=2e-8, f=80, b=5, mu0=2e-5, theta=0.08, k = 1)
pars</pre>
```

spm_discrete_MD

Discrete multi-dimensional optimization

Description

Discrete multi-dimensional optimization

Usage

```
spm_discrete_MD(dat, k = 1, theta_range = seq(0.001, 0.09, by = 0.001), tol = NULL)
```

Arguments

dat A data table.

k A number of dimensions.

theta_range A range of theta parameter (axe displacement of Gompertz function), default:

from 0.001 to 0.09 with step of 0.001.

tol A tolerance threshold for matrix inversion (NULL by default).

Details

This function is way much faster that continuous $spm_continuous_MD(...)$ (but less precise) and used mainly in estimation a starting point for the $spm_continuous_MD(...)$.

Value

A list of two elements: (1) estimated parameters u, R, b, epsilon, Q, mu0, theta and (2) estimated parameters a, f1, Q, f, b, mu0, theta. Note: b and mu0 from first list are different from b and mu0 from the second list.

10 spm_time_dep

Examples

```
library(spm)
# Reading longitudinal data
longdat <- read.csv(system.file("data","longdat.csv",package="spm"))
# Prepare data for optimization
vitstat <- read.csv(system.file("data","vitstat.csv",package="spm"))
data <- prepare_data(longdat=longdat, vitstat=vitstat,interval=1, col.status="IsDead", col.id="ID", col.age=
# Parameters estimation
pars <- spm_discrete_MD(data[[2]], k=1, theta_range=seq(0.001,0.09,by=0.001), tol=NULL)
pars</pre>
```

spm_time_dep

spm_time_dep : a function that can handle time-dependant coefficients:

Description

spm_time_dep: a function that can handle time-dependant coefficients:

Usage

```
spm_time_dep(data, start = list(a1 = -0.5, a2 = 0.2, f1 = 80, Q = 2e-08, f = 80, b = 5, mu0 = 1e-05, theta = 0.08), formulas = list(at = "a1*t+a2", f1t = "f1", Qt = "Q*exp(theta*t)", ft = "f", bt = "b", mu0t = "mu0*exp(theta*t)"), verbose = TRUE, lower_bound = NULL, upper_bound = NULL, factr = 1e-16, lmult = 0.5, umult = 2
```

Arguments

start : a list of starting parameters, default: llist(a=-0.5, f1=80, Q=2e-8, f=80, b=5,

mu0=1e-5, theta=0.08),

formulas : a list of formulas that define age (time) - dependency. Default: list(at="a1*t+a2",

f1t="f1", Qt="Q*exp(theta*t)", ft="f", bt="b", mu0t="mu0*exp(theta*t)")

Value

optimal coefficients

```
library(spm) Data preparation: N <- 1000 data <- simdata_cont(N=N, aH=-0.05, f1H=80, QH=2e-8, fH=80, bH=5, mu0H=2e-5, thetaH=0.08) opt.par <- spm_time_dep(data[,2:6], formulas=list(at="a", f1t="f1", Qt="Q*exp(theta*t)", ft="f", bt="b", mu0 opt.par
```

Index

```
prepare_data, 2

simdata_cont_1D, 3

simdata_cont_MD, 4

simdata_discr_MD, 5

simdata_time_dep, 6

spm, 6

spm_continuous_1D, 7

spm_continuous_MD, 8

spm_discrete_MD, 9

spm_time_dep, 10
```