Detecção e Análise de Tamanho de Copas de Árvores Urbanas com YOLOv11 e K-Means: Uma Ferramenta para Planejamento Urbano

Breno Braga Galvão

Universidade de Brasília, Brasília – DF

Programa de Pos-graduação em Informática

Introdução:

• Importância da vegetação urbana

- Melhora da qualidade do ar
- Regulação térmica e equilíbrio ecológico

• Desafios no monitoramento e gestão das áreas verdes

• Necessidade de métodos precisos e escaláveis

Objetivo do estudo

• Desenvolver um pipeline automatizado para análise das copas de árvores urbanas

Metodologia

- Combinação do YOLOv11 (detecção de objetos) com K-Means (classificação das copas)
- Estimativa da área das copas e análise das características estruturais

Contextualização:

Modelos como YOLO e DETR são amplamente usados na detecção de objetos, mas enfrentam limitações ao equilibrar precisão e velocidade em tempo real. O YOLOv11, uma versão otimizada do YOLO, destaca-se por sua:

- alta precisão e
- eficiência computacional.

Nesse trabalho iremos explorar o desempenho da YOLOv11 na detecção de copas de árvores urbanas

YOLO EVOLUTION TIME LINE

Gráfico 1: Comparação entre os detectores de objetos em tempo real.

Gráfico 2: Comparação entre os detectores de objetos em tempo real.

Contextualização:

ETAPAS:

78.0

152.0

Conversão para DataFrame: Os arquivos de texto foram convertidos em um DataFrame estruturado, contendo as colunas: image_filename (nome da imagem), xmin, xmax, ymin, ymax (coordenadas das caixas delimitadoras). O DataFrame final continha 3.382 caixas delimitadoras associadas a 220 imagens.

	image_filename	xmin	xmax	ymin	ymax
0	106.png	46	176.0	0.0	39.0
1	106.png	196	366.0	42.0	182.0
2	106.png	420	512.0	7.0	137.0
3	106.png	507	512.0	0.0	59.0
4	106.png	509	512.0	182.0	215.0

- Divisão dos Dados: O conjunto de dados foi dividido em conjuntos de treinamento e validação, com 90% das imagens (198 imagens e 3.080 caixas delimitadoras) destinadas ao treinamento e 10% (22 imagens e 302 caixas delimitadoras) reservadas para validação.
- Formatação dos Rótulos: Para compatibilidade com o modelo YOLO, as coordenadas das caixas delimitadoras foram convertidas para o formato YOLO (x_center, y_center, width, height), normalizadas em relação ao tamanho da imagem.

Contextualização:

ETAPAS:

- 42: Escolha do modelo para detecção das árvores: Utilizou-se a YOLOv11 para a detecção das copas de árvores urbanas
- **Aplicação do K-Means:** Para analisar a distribuição dos tamanhos das copas das árvores detectadas, foi aplicado o algoritmo K-Means na coluna *area* (calculada como o produto de *x_extend* e *y_extend* das caixas delimitadoras).

A aplicação do algoritmo K-Means permitiu a categorização das árvores

detectadas em três clusters de

tamanho: pequeno, médio e grande

277.0

408.0

227.0

338.0

111.0

193.0

250.0

213.0 78.0 172.0

67.0

78.0

143.0

24596.0

5695.0

4602.0

106.jpg 13984.0

Resultados:

Resultados da aplicação do YOLOv11: O modelo apresentou 221 verdadeiros positivos (TP), 70 falsos negativos (FN) e 81 falsos positivos (FP).

Figura 2: Matriz de Confusão

Precisão:

Recall:

Precisão =

Dentre os **previstos como positivos**, qual a proporção de acertos.
$$Precisão = \frac{TP}{TP + FP} \qquad Precisão = \frac{221}{221 + 81} = \frac{221}{302} \approx 0,7318 \quad (\text{ou } 73,18\%)$$

Dentre os **positivos reais**, qual a proporção de acertos.

$$ext{Recall} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

Revocação
$$=rac{221}{221+70}=rac{221}{291}pprox 0,7595 \quad (ext{ou }75,95\%)$$

Combina precisão e recall.

F1-score:
$$F1 = 2 \times \frac{\operatorname{Precisão} \times \operatorname{Recall}}{\operatorname{Precisão} + \operatorname{Recall}}$$

$$\text{F1-Score} = 2 \times \frac{0,7318 \times 0,7595}{0,7318 + 0,7595} = 2 \times \frac{0,556}{1,4913} \approx 0,7456 \quad \text{(ou } 74,56\%\text{)}$$

Resultados:

2º: Resultados da aplicação do K-Means: O K-Means subdividiu as árvores em três Clusters (0 = pequeno, 1 = Médio e 2 = Grande)

Figura 3: Exemplo dos dados finais com áreas das copas e classificação em clusters.

Resultados:

3º:

Estimando o tamanho da copa da árvore: Para imagens de drones com baixa altitude, 1 pixel pode representar 5 cm, dessa forma, temos que:

Área da copa

0 0 277.0 111.0 172.0 143.0 106.jpg 24596.0 2 Tabela Resumida para Alta Resolução (1 pixel = 5 cm):				,	~	,	8			
Tabela Resumida para Alta Resolução (1 pixel = 5 cm):	0	0	277.0	111.0	172.0	143.0	1	06.jpg	24596.0	2
Tabela Resumida para Alta Resolução (1 pixel = 5 cm):					•	Д				
	Ó					V				
	Tabe Desc			a Alta Re	esolução (1 Centímetro	20 20 20	Metros (m)	Área	(cm²)	Área (m²
Largura (x_extend) 172,0 px 860 cm 8,6 m	Desci	rição	F	Pixels	Centímetro	os (cm)	Metros (m)		(cm²)	

class x-center y-center x extend y extend image filename

24.596 px²

614.900 cm² 61,49 m²

area cluster

Resultados:

4º:

Desempenho do modelo: Apresentou boa eficiência e precisão, com um mAP50 (mean Average Precision com IoU de 50%) de 0.75-0.80. Foram analisadas 200 épocas:

Gráficos de Perda (Loss):

Box Loss: A perda associada à regressão das caixas delimitadoras (bounding boxes) diminuiu de forma consistente ao longo das épocas, indicando que o modelo aprendeu a prever com precisão as coordenadas das caixas delimitadoras.

Class Loss: A perda de classificação, que mede o erro na identificação correta das classes (neste caso, a classe única "árvore"). A redução confirma que o modelo é capaz de distinguir corretamente as árvores de outros elementos nas imagens.

Resultados:

Desempenho do modelo: Apresentou boa eficiência e precisão, com um mAP50 (mean Average Precision com IoU de 50%) de 0.75-0.80. Foram analisadas 200 épocas:

Gráficos de Métricas:

Precision e Recall: Os gráficos de precisão e revocação mostraram um aumento rápido nas primeiras épocas, estabilizando-se em valores de **0,73** e **0,76**, respectivamente.

mAP50 e mAP50-95:As métricas de mAP50 e mAP50-95 apresentaram uma tendência de crescimento ao longo do treinamento, atingindo valores de0,75-0,80e0,40-0,45, respectivamente. Esses resultados confirmam a robustez do modelo em diferentes cenários

• mAP50 e mAP50-95 (Precisão média):

Métrica	Limiar de IoU	Rigor	
mAP50	IoU ≥ 50%	Menos rigorosa	(IoU)
mAP50-95	IoU de 50% a 95% (em 5%)	Mais rigorosa	

Conclusões:

Viabilidade do Modelo YOLOv11:

- O modelo YOLOv11 demonstrou ser eficaz para a detecção de copas de árvores urbanas, com **precisão de 73%**, **revocação de 76%** e **F1-Score de 0.745**.
- As métricas mAP50 (0.75-0.80) e mAP50-95 (0.40-0.45) confirmaram a robustez e capacidade de generalização do modelo.

Análise de Clusters com K-Means:

- A categorização das copas das árvores em três grupos (**pequeno, médio e grande**) forneceu insights valiosos sobre a distribuição dos tamanhos das árvores.
- Essa análise pode ser útil para planejamento urbano, gestão de áreas verdes e estudos ecológicos.

Análise do tamanho das copas:

Foi possível estimar com precisão o tamanho das copas, através de uma análise dos pixels.

Sugestões de trabalhos futuros:

- Expansão do Conjunto de Dados: Incluir imagens de diferentes ambientes e condições climáticas para melhorar a generalização do modelo.
- Aplicações Práticas: Integrar o modelo em sistemas de monitoramento em tempo real e desenvolver ferramentas para estimativa de biomassa ou sequestro de carbono

Referências:

P. Zamboni, J. M. Junior, J. de Andrade Silva, G. T. Miyoshi, E. T. Matsubara, K. Nogueira, and W. N. Gonçalves. "Benchmarking Anchor-Based and Anchor-Free State-of-the-Art Deep Learning Methods for Individual Tree Detection in RGB High-Resolution Images." Remote Sensing, 13(13):2482, 2021. https://doi.org/10.3390/rs13132482.

Ultralytics. "YOLOv11: State-of-the-Art Object Detection Model." Ultralytics Documentation, 2023. Available: YOLOv11 Documentation.

Obrigado!