Pumping-Lemma

Zeigen oder widerlegen Sie: Die folgenden Sprachen über dem Alphabet $\Sigma = \{a,b,c\}$ sind regulär. ¹

Exkurs: Pumping-Lemma für Reguläre Sprachen

Es sei L eine reguläre Sprache. Dann gibt es eine Zahl j, sodass für alle Wörter $\omega \in L$ mit $|\omega| \geq j$ (jedes Wort ω in L mit Mindestlänge j) jeweils eine Zerlegung $\omega = uvw$ existiert, sodass die folgenden Eigenschaften erfüllt sind:

- (a) $|v| \ge 1$ (Das Wort v ist nicht leer.)
- (b) $|uv| \leq j$ (Die beiden Wörter u und v haben zusammen höchstens die Länge j.)
- (c) Für alle $i=0,1,2,\ldots$ gilt $uv^iw\in L$ (Für jede natürliche Zahl (mit 0) i ist das Wort uv^iw in der Sprache L)

Die kleinste Zahl j, die diese Eigenschaften erfüllt, wird Pumping-Zahl der Sprache L genannt.

$$L_1 = \{ww|w \in \{a,b\}^*\}$$

Angenommen L_1 sei regulär, dann müsste L_1 die Bedingungen der stärkeren Variante des Pumping-Lemmas erfüllen.

Beweis durch Widerspruch:

Sei $j \in \mathbb{N}$ die Konstante aus dem Pumping-Lemma und $\omega = a^j b a^j b$ ein Wort aus L_1 ($|\omega| > j$ gilt offensichtlich).

Dann müsste ω nach dem Pumping-Lemma zerlegbar sein in $\omega = uvw$ mit $|v| \geq 1$ und |uv| < j. uv kann wegen |uv| < j kein b enthalten und liegt komplett im ersten a^j .

Also:

$$a^{j}ba^{j}b = uvw \text{ mit } u = a^{x}, v = a^{y}, w = a^{n-x-y}ba^{j}b(n \ge x + y, x > 0)$$

Dann gilt

$$uv^0w = a^xa^{j-x-y}ba^jb = a^{j-y}ba^jb \notin L_1$$

Wir haben gezeigt, dass es keine gültige Zerlegung für ω gibt. Also gilt für L_1 die stärkere Variante des Pumping-Lemmas nicht. Somit kann L_1 nicht regulär sein.

 $^{^{1}} https://userpages.uni-koblenz.de/~dpeuter/teaching/17ss_gti/blatt04_loesung.pdf$