Edoardo Persichetti

Test 2 Solutions

Exercise 1 Consider the finite field \mathbb{F}_2 .

- a) We have $\mathbb{F}_2[x]/(x^4+1) = \{0, 1, x, x^2, x^3, x+1, x^2+1, x^3+1, x^2+x, x^3+x, x^3+x^2, x^3+x+1, x^2+x+1, x^3+x^2+x, x^3+x^2+x+1\}.$
- b) This is not a field since $x^4 + 1$ is not irreducible (1 is a root).
- c) The principal ideal (x + 1) is entirely generated by x + 1 so we have $\{0, x + 1, x^2 + 1, x^2 + x, x^3 + x^2 + x + 1, x^3 + x^2, x^3 + x, x^3 + 1\}$.

Exercise 2 Let $p(x) = x^2 + x - 4$. In which of the following fields is p(x) irreducible and why?

- a) \mathbb{Q} : irreducible since the two roots $(-1 \pm \sqrt{17})/2$ are not rational.
- b) \mathbb{R} : reducible (see above).
- c) \mathbb{F}_5 : irreducible since no element is a root (check 0, 1, 2, 3, 4).

Exercise 3 It follows that $\mathcal{R} = \mathbb{F}_5[x]/(x^2+x-4)$ is a field, specifically $\mathbb{F}_{5^2} = \mathbb{F}_{25}$.

Exercise 4 Consider the ring \mathcal{R} as above and let α be a root of $x^2 + x - 4$.

- a) Since this is a quadratic extension the general form of an element in this ring is $\{a+b\alpha, a, b \in \mathbb{F}_5\}$.
- b) No, α is not a primitive element since it has order 3, in fact $\alpha^3 = \alpha \cdot \alpha^2 = \alpha \cdot (4\alpha + 4) = 4\alpha^2 + 4\alpha = 4 \cdot 4 = 1$.

An irreducible polynomial that works is $x^2 + x + 2$, then it is possible to define the field in terms of its root β .

Exercise 5 Consider the field F you just built.

- a) The prime subfield is \mathbb{F}_5 (it's the only one by definition).
- b) The conjugates of γ^7 are γ^7 and $(\gamma^7)^5 = \gamma^{35} = \gamma^{11}$.
- c) The automorphisms are $\sigma_0 = id$ and $\sigma_1 : \gamma \to \gamma^5$ they form a group of order 2.
- d) We have $Tr_{\mathbb{F}_5}(\gamma^7) = \gamma^7 + \gamma^{11} = 3$ and $N_{\mathbb{F}_5}(\gamma^7) = \gamma^7 \cdot \gamma^{11} = \gamma^{18} = 3$.
- e) A polynomial basis is $(1, \gamma)$ and a normal basis is (γ, γ^5) . Verify that the normal basis generates a matrix of determinant $\neq 0$.