Bisimulation in CCS

Zhu Huibiao

Syntax and Semantics of CCS

Syntax

$$P ::= 0 \mid \alpha . P \mid \sum_{i \in I} P_i \mid P \mid P \mid P \setminus L \mid P[f]$$

Operational Semantics

• Act:
$$\frac{P_j \stackrel{\alpha}{\rightarrow} P_j'}{\sum_{i \in I} P_i \stackrel{\alpha}{\rightarrow} P_j'} (j \in I)$$

• Com:
$$\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q}$$
 $\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q}$ $\frac{P \xrightarrow{l} P' \quad Q \xrightarrow{\overline{l}} Q'}{P|Q \xrightarrow{\tau} P'|Q'}$

• Res:
$$\frac{P \xrightarrow{\alpha} P'}{P \setminus L \xrightarrow{\alpha} P' \setminus L} (\alpha, \alpha' \notin L)$$
 Rel: $\frac{P \xrightarrow{\alpha} P'}{P[f] \xrightarrow{f(\alpha)} P'[f]}$

• Con:
$$\frac{P \xrightarrow{\alpha} P'}{A \xrightarrow{\alpha} P'}$$
 $(A \stackrel{def}{=} P)$

Definition of Strong Bisimulation

A binary relation $S \subseteq \mathcal{P} \times \mathcal{P}$ over agents is a strong bisimulation if $(P, Q) \in S$ implies, for all $\alpha \in Act$,

- (i) Whenever $P \stackrel{\alpha}{\to} P'$ then, for some Q', $Q \stackrel{\alpha}{\to} Q'$ and $(P',Q') \in \mathcal{S}$
- (ii) Whenever $Q \xrightarrow{\alpha} Q'$ then, for some P', $P \xrightarrow{\alpha} P'$ and $(P',Q') \in \mathcal{S}$

Denoted by $P \sim Q$.

Example for Strong Bisimulation

- Definition of (a):
 - $A \stackrel{\text{def}}{=} a.A'$ $A' \stackrel{\text{def}}{=} \bar{c}.A$
 - $B \stackrel{\text{def}}{=} c.B'$ $B' \stackrel{\text{def}}{=} \bar{b} B$
 - $(a) \stackrel{\text{def}}{=} (A|B) \backslash c$
- Definition of (b):

•
$$C_0 \stackrel{def}{=} \bar{b}.C_1 + a.C_2$$

 $C_1 \stackrel{def}{=} a.C_3$
 $C_2 \stackrel{def}{=} \bar{b}.C_3$

$$C_3 \stackrel{def}{=} \tau.C_0$$

• $(b) \stackrel{def}{=} C_1$

Checking Strong Bisimulation

- (a) behaves like (b)
- $S = \{((A|B)\backslash c, C_1), ((A'|B)\backslash c, C_3), ((A|B')\backslash c, C_0), ((A'|B')\backslash c, C_2)\}$

Example

- $\bullet \ (A|B') \backslash c \stackrel{a}{\rightarrow} (A'|B') \backslash c$ $(A|B') \backslash c \stackrel{\bar{b}}{\rightarrow} (A|B) \backslash c$
- $\begin{array}{ccc} \bullet & C_0 \stackrel{a}{\rightarrow} & C_2 \\ C_0 \stackrel{\bar{b}}{\rightarrow} & C_1 \end{array}$
- $(a) \sim (b)$

Definition of Weak Bisimulation

Preliminary Definitions

- If $t \in Act^*$, then $\hat{t} \in \mathcal{L}^*$ is the sequence gained by deleting all occurrences of τ from t. In particular, $\widehat{\tau^n} = \varepsilon$
- If $t = \alpha_1 \cdots \alpha_n \in Act^*$, then we write $E \xrightarrow{t} E'$ if $E \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_n} E'$.
- If $t = \alpha_1 \cdots \alpha_n \in Act^*$, then $E \stackrel{t}{\Rightarrow} E'$ if $E(\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_1}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* \cdots (\stackrel{\tau}{\rightarrow})^* \stackrel{\alpha_n}{\rightarrow} (\stackrel{\tau}{\rightarrow})^* E'$

Definition of Weak Bisimulation

A binary relation $S \subseteq P \times P$ over agents is a weak bisimulation if $(P, Q) \in S$ implies, for all $\alpha \in Act$,

- (i) Whenever $P \xrightarrow{\alpha} P'$ then, for some Q', $Q \xrightarrow{\hat{\alpha}} Q'$ and $(P', Q') \in S$
- (ii) Whenever $Q \xrightarrow{\alpha} Q'$ then, for some $P', P \xrightarrow{\hat{\alpha}} P'$ and $(P', Q') \in S$
- Denoted by $P \approx Q$.

Example for Weak Bisimulation

- Definition of (b):
 - $C_0 \stackrel{\text{def}}{=} \bar{b}.C_1 + a.C_2$

$$C_1 \stackrel{def}{=} a.C_3$$

$$C_2 \stackrel{def}{=} \bar{b}.C_3$$

$$C_3 \stackrel{\text{def}}{=} \tau.C_0$$

•
$$(b) \stackrel{def}{=} C_1$$

- Definition of (c):
 - $D_0 \stackrel{def}{=} a.D_2 + \bar{b}.D_1$

$$D_1 \stackrel{def}{=} a.D_0$$

$$D_2 \stackrel{\text{def}}{=} \bar{b}.D_0$$

• $(c) \stackrel{def}{=} D_1$

Checking Weak Bisimulation

- (c) behaves like (b) in spite of internal actions
- $S = \{ (C_0, D_0), (C_1, D_1), (C_2, D_2), (C_3, D_0) \}$

Example

- $\begin{array}{ccc} \bullet & C_3 \stackrel{\tau}{\rightarrow} C_0 \\ C_0 \stackrel{\bar{a}}{\rightarrow} C_2 & C_3 \stackrel{\bar{a}}{\Rightarrow} C_2 \\ C_0 \stackrel{\bar{b}}{\rightarrow} C_1 & C_3 \stackrel{\bar{b}}{\Rightarrow} C_1 \end{array}$
- $D_0 \stackrel{a}{\rightarrow} D_2$ $D_0 \stackrel{\bar{b}}{\rightarrow} D_1$
- $(b) \approx (c)$

