

Faculty of Engineering and Technology Electrical and Computer Engineering Department DIGITAL INTEGRATED CIRCUITS—ENCS3330

Assignment No. 2 Report

Buffer and invertor using electric

Prepared by:

Dana Ghnimat 1200031

Instructor:

Dr. Khader Mohammad

Assistant:

Eng. Raha Zabade

Section: 1

Date: 6/4/2024

Table of Contents

Table of Figures	2
Assignment parts:	3
Part 1: invertor:	3
1.1 Schematic:	3
1.2 Icon:	4
1.3 Layout:	5
1.4: buffer using two invertors:	7
Part2: buffer:	8
1.1 schematic:	8
1.2 Icon	9
1.3 layout:	10
Code:	12
References	12

Table of Figures

FIGURE 1 SCALES	3
FIGURE 2 INVERTOR SCHEMATIC	3
FIGURE 3 INVERTOR SIMULATION1	4
FIGURE 4 SCHEMATIC VIEW	4
FIGURE 5 INVERTOR ICON	4
FIGURE 6 INVERTOR LAYOUT	
FIGURE 7 LAYOUT SIMULATION:	
FIGURE 8 INVERTOR LAYOUT VIEW	6
FIGURE 9 ERROR CHECK FOR INVERTOR	6
FIGURE 10 BUFFER USING TWO INVERTORS	7
FIGURE 11 SIMULATION OF BUFFER	7
FIGURE 12 BUFFER SCHEMATIC	
FIGURE 13 BUFFER SIMULATION1	
FIGURE 14 BUFFER SCHEMATIC VIEW	9
FIGURE 15 BUFFER ICON	9
FIGURE 16 SIMULATION	9
FIGURE 17 SCHEMATIC AS COMPONENT	
FIGURE 18 BUFFER LAYOUT	
FIGURE 19 BUFFER SIMULATION	
FIGURE 20 BUFFER LAYOUT VIEW	
FIGURE 21 ERROR CHECK FOR BUFFER	

Assignment parts:

Lambda" Design Rules– lambda, λ , = 1/2 minimum feature size

The program has scaling number we have to follow, which is 3µm.

Figure 1 Scales

Part 1: invertor:

1.1 Schematic:

First part is to build an investor with width 10 and length 2. For both NMOS and PMOS as the following:

Figure 2 invertor schematic

Simulation:

Figure 3 invertor simulation1

Schematic view:

Figure 4 schematic view

1.2 Icon:

Figure 5 invertor icon

1.3 Layout:

Figure 6 invertor layout

The measurement I used are:

PMOS: 10 width, 2 length, NMOS: 10 width, 2 length.

VDD: 12 length, width 5, as the maximum length is 12 for VDD (nwell).

GND: 25 length, 5 width.

Gate to input: 2 widths.

P, N, Act to output: 4 widths.

Figure 7 layout simulation:

Layout view:

Figure 8 invertor layout view

Error check:

Figure 9 error check for invertor

1.4: buffer using two invertors:

vdd vdd 0 DC 5
vin in 0 pwl 10n 0 20n 5 50n 5 60n 0
cload out 0 250fF
.measure tran tf trig v(out) val=4.5 fall=1 td=8ns trag v(out) val=0.5 fall=1
.measure tran tr trig v(out) val=0.5 rais=1 td=50ns trag v(out) val=4.5 rais=1
.tran 0 0.1us
.include "C:\Users\CS Net Games\Desktop\4th 2ndSem\IC\New folder\C5_models.txt"

Figure 10 buffer using two invertors

Figure 11 simulation of buffer

Part2: buffer:

1.1 schematic:

Figure 12 buffer schematic

Simulation:

Figure 13 buffer simulation1

Schematic view:

Figure 14 buffer schematic view

1.2 Icon

Figure 15 buffer icon

Icon schematic:

vdd vdd 0 DC 5
vin in 0 pwl 10n 0 20n 5 50n 5 60n 0
cload out 0 250fF
.measure tran tf trig v(out) val=4.5 fall=1 td=8ns trag v(out) val=0.5 fall=1
.measure tran tr trig v(out) val=0.5 rais=1 td=50ns trag v(out) val=4.5 rais=1
.tran 0 0.1us
.include "C:\Users\CS Net Games\Desktop\4th 2ndSem\IC\New folder\C5_models.txt"

Figure 17 schematic as component

1.3 layout:

Figure 18 buffer layout

Simulation:

Figure 19 buffer simulation

Layout view:

Figure 20 buffer layout view

Error checks:

```
Checking library 'buffer' for repair... library checked
No errors found
                      ======34===
Checking Wells and Substrates in 'buffer:bufferr{lay}' ...
  Geometry collection found 22 well pieces, took 0.002 secs
  Geometry analysis used 8 threads and took 0.001 secs
NetValues propagation took 0.001 secs
Checking short circuits in 2 well contacts
  Additional analysis took 0.0 secs
No Well errors found (took 0.004 secs)
Hierarchical NCC every cell in the design: cell 'bufferr{sch}' cell 'bufferr{lay}'
Comparing: buffer:bufferr{sch} with: buffer:bufferr{lay}
 exports match, topologies match, sizes not checked in 0.002 seconds.
Summary for all cells: exports match, topologies match, sizes not checked
NCC command completed in: 0.002 seconds.
```

Figure 21 error check for buffer

Code:

```
vdd\ vdd\ 0\ DC\ 5 vin\ in\ 0\ pwl\ 10n\ 0\ 20n\ 5\ 50n\ 5\ 60n\ 0 cload\ out\ 0\ 250fF .measure\ tran\ tf\ trig\ v(out)\ val=4.5\ fall=1\ td=8ns\ trag\ v(out)\ val=0.5\ fall=1 .measure\ tran\ tr\ trig\ v(out)\ val=0.5\ rais=1\ td=50ns\ trag\ v(out)\ val=4.5\ rais=1 .tran\ 0\ 0.1us .include\ "C:\Users\CS\ Net\ Games\Desktop\4th\ 2ndSem\IC\New\ folder\C5\_models.txt"
```

I used the same code for invertor and for the buffer.

References

https://en.wikichip.org/wiki/File:Buffer_gate_cmos.png