Devoir surveillé n° 5 Version 3

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Montrer que les sous-groupes de \mathbb{Z} sont exactement tous les $n\mathbb{Z}$, avec $n \in \mathbb{N}$.

II. Les quaternions de Hamilton.

On pose $\mathcal{H} = \mathbb{C}^2$ et on définit les deux lois + et \times sur \mathcal{H} par :

$$\forall \left(\left(z_{1}, z_{2} \right), \left(z_{1}', z_{2}' \right) \right) \in \mathcal{H}^{2}, \left\{ \begin{array}{l} \left(z_{1}, z_{2} \right) + \left(z_{1}', z_{2}' \right) = \left(z_{1} + z_{1}', z_{2} + z_{2}' \right) \\ \left(z_{1}, z_{2} \right) \times \left(z_{1}', z_{2}' \right) = \left(z_{1} z_{1}' - z_{2} \overline{z_{2}'}, z_{1} z_{2}' + z_{2} \overline{z_{1}'} \right) \end{array} \right.$$

On pose enfin I = (1,0), J = (i,0), K = (0,1) et L = (0,i).

- 1) Montrer que $(\mathcal{H}, +, \times)$ est un anneau (on admettra que \times est associative et distributive par rapport à +). Préciser l'élément nul $0_{\mathcal{H}}$ et l'élément unité $1_{\mathcal{H}}$.
- 2) On pose $G = \{I, J, K, L, -I, -J, -K, -L\}$. Dresser la table de (G, \times) et montrer que (G, \times) est un groupe non commutatif.
- 3) Déterminer le centre du groupe (G, \times) , c'est à dire, l'ensemble des éléments de G qui commutent avec tous les autres éléments de G.
- **4)** On définit l'application $\sigma: \begin{array}{ccc} \mathcal{H} & \longrightarrow & \mathcal{H} \\ (z_1, z_2) & \longmapsto & (\overline{z_1}, -z_2) \end{array}$
 - a) Montrer que σ est un automorphisme de $(\mathcal{H}, +)$.
 - b) Déterminer l'ensemble des points fixes de $\sigma : \mathcal{F} = \{A \in \mathcal{H}, \sigma(A) = A\}.$
 - c) Montrer que : $\forall (A, B) \in \mathcal{H}^2, \sigma(A \times B) = \sigma(B) \times \sigma(A)$.
- 5) a) Démontrer que si $A \in \mathcal{H}$, alors $A \times \sigma(A) = \sigma(A) \times A = (n(A), 0)$ où n(A) est un réel dont on précisera l'expression en fonction de A.
 - **b)** Démontrer que si $(A, B) \in \mathcal{H}^2$, alors, $n(A \times B) = n(A)n(B)$.
- 6) Démontrer que tout élément non nul de \mathcal{H} est inversible (pour \times bien sûr). On dit que $(\mathcal{H}, +, \times)$ est un corps non commutatif.

III. Suites de Cauchy.

Lorsqu'une partie X de $\mathbb R$ admet une borne supérieure dans $\mathbb R$, on notera cette dernière sup X.

Partie 1 : Suites de Cauchy

Étant donné $u=(u_n)_{n\in\mathbb{N}}$ une suite à termes réels, on dit que u est une suite de Cauchy lorsque

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ \forall m \geqslant n_0, \ |u_n - u_m| \leqslant \varepsilon.$$

- 1) Lesquelles des suites ci-dessous sont de Cauchy? Justifier.
 - a) $\left(\frac{1}{n+1}\right)_{n\in\mathbb{N}}$
- **b**) $\left(\frac{(-1)^n}{n+1}\right)_{n\in\mathbb{N}}$
- c) $((-1)^n)_{n\in\mathbb{N}}$

2) Soit u une suite de Cauchy. Montrer que

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ |u_n| \leqslant |u_{n_0}| + \varepsilon.$$

En déduire que toute suite de Cauchy est bornée.

La réciproque est-elle vraie?

3) Montrer que toute suite convergente est de Cauchy.

Partie 2 : Convergence des suites de Cauchy

On cherche maintenant à démontrer la réciproque de $\boxed{3}$ de la partie précédente. Dans cette partie $(u_n)_{n\in\mathbb{N}}$ désigne une suite bornée à termes réels. Pour tout $n\in\mathbb{N}$, on pose

$$a_n = \inf \{ u_m \mid m \geqslant n \}$$

et

$$b_n = \sup \{ u_m \mid m \geqslant n \}.$$

- 4) a) Justifier que les définitions respectives de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ ont bien un sens.
 - **b)** Expliciter les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ lorsque $u=((-1)^n)_{n\in\mathbb{N}}$.
- 5) a) Montrer l'encadrement

$$\forall n \in \mathbb{N}, \ a_n \leqslant u_n \leqslant b_n.$$

- b) Montrer que $(a_n)_{n\in\mathbb{N}}$ est croissante et que $(b_n)_{n\in\mathbb{N}}$ est décroissante.
- c) On suppose qu'on a un réel h > 0 et un entier naturel n tels que

$$\forall m \geqslant n, \ |u_m - u_n| \leqslant h.$$

Montrer l'encadrement $b_n - h \leqslant u_n \leqslant a_n + h$.

- **6)** On suppose maintenant que u est une suite de Cauchy. Montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.
- 7) En déduire que toute suite de Cauchy est convergente.

Partie 3: Une application

On se donne une suite $(\varepsilon_n)_{n\in\mathbb{N}}$ d'éléments de $\{-1,1\}$, et on définit, pour tout $n\in\mathbb{N}$,

$$S_n = \sum_{k=0}^n \frac{\varepsilon_k}{2^k}.$$

8) Montrer que pour tout $(m, n) \in \mathbb{N}^2$,

$$|S_m - S_n| \leqslant \frac{1}{2^{\min(m,n)}}$$

- 9) En déduire que $(S_n)_{n\in\mathbb{N}}$ est une suite de Cauchy.
- 10) Montrer que $(S_n)_{n\in\mathbb{N}}$ converge vers un élément de [-2,2].

