GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Manufactura Asistida por Computadora

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Noveno Semestre	110906	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer la importancia de las tecnologías asistidas por computadora para el diseño, manufactura e ingeniería, utilizadas en la industria, que permita al alumno su participación en el análisis y solución de problemas que se le presenten durante su actividad profesional.

TEMAS Y SUBTEMAS

1. Generalidades.

- 1.1 Antecedentes del CAD/CAM.
- 1.2 Importancia en la industria.
- 1.3 Tendencias.

2. Diseño y Manufactura Asistidos por Computadora.

- 2.1 Sistemas CAD
- 2.2 Sistemas CAM
- 2.3 Sistemas CAE
- 2.4 Sistemas PLM

3. Control Numérico Computarizado.

- 3.1 Introducción.
- 3.2 Desarrollo histórico.
- 3.3 Principios de control numérico.
- 3.4 Clasificación del control numérico.

4. Principios de Programación.

- 4.1 Estructura de los programas en código ISO.
- 4.2 Códigos preparatorios G.
- 4.3 Códigos misceláneos M.
- 4.4 Programación manual de piezas.

5. Programación en tornos de control numérico.

- 5.1 Medidas de seguridad.
- 5.2 Preparación de la pieza de trabajo.
- 5.3 Movimientos en modo manual.
- 5.4 Transferencia de programas entre computadora y controlador.
- 5.5 Modos de ejecución del programa.
- 5.6 Maquinado de piezas.

6. Programación en fresadoras de control numérico.

- 6.1 Medidas de seguridad.
- 6.2 Preparación de la pieza de trabajo.
- 6.3 Movimientos en modo manual.
- 6.4 Transferencia de programas entre computadora y controlador.
- 6.5 Modos de ejecución del programa.
- 6.6 Maquinado de piezas.

7. Ingeniería asistida por computadora.

- 7.1 Introducción.
- 7.2 Ventajas y desventajas.
- 7.3 Aplicaciones.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor, en donde introduzca conceptos, presente ejemplos y supervise prácticas con los estudiantes. Revisión bibliográfica de temas complementarios en libros y artículos científicos por parte de los alumnos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y una evaluación final equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros Básicos

- Computer-Aided Manufacturing. Tien-Chien Chang, Richard A. Wysk, Hsu-Pin Wang, Pearson-Prentice Hall. 2005.
- 2. Automation, Production Systems, and Computer-Integrated Manufacturing. Mikell P. Groover, Prentice Hall, 2007.
- 3. Product Lifecycle Management. Antti Saaksvuori, Anselmi Immonen. Springer. 2008.
- CNC Control Setup for Milling and Turning: Mastering CNC Control Systems, Peter Smid, Industrial Press, Inc. 2010

Libros de Consulta

- 1. Product lifecycle management–21st century paradigm for product realization. J. Stark. Springer, 2005.
- 2. Teoría y problemas resueltos en programación, control numérico. Alberto Cuesta Arranz, Félix Ledo Pernas, Marcombo, 2008.
- Control Numérico y Programación II. Francisco Cruz Teruel, Marcombo, 2009.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero industrial, ingeniero mecánico o carrera afín, con conocimientos en programación y manejo de máquinas CNC. De preferencia con maestría o doctorado.

