

A Proof of the Existence of Infinite Product Probability Measures

Author(s): Sadahiro Saeki

Source: The American Mathematical Monthly, Oct., 1996, Vol. 103, No. 8 (Oct., 1996),

pp. 682-683

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of

America

Stable URL: https://www.jstor.org/stable/2974880

REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/2974880?seq=1&cid=pdf-reference#references_tab_contents
You may need to log in to JSTOR to access the linked references.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Taylor & Francis, Ltd. and Mathematical Association of America are collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly

A Proof of the Existence of Infinite Product Probability Measures

Sadahiro Saeki

In memory of my dear friend Karl Stromberg

Let $\{(\Omega_i, \mathscr{F}_i, P_i): i \in I\}$ be a nonempty collection of probability spaces, and let $\Omega \coloneqq \Pi_i \Omega_i$ be the product space. A measurable cylinder in Ω is a subset A of Ω of the form $A = \Pi_i A_i$, where $A_i \in \mathscr{F}_i$ for each i and $A_i = \Omega_i$ for all but finitely many i's. For such a set A, define $P(A) \coloneqq \Pi_i P_i(A_i)$. By definition, the product probability measure of the P_i 's is the (necessarily unique) extension of P to a probability measure on $\mathscr{F}(\mathcal{M}c)$, where $\mathscr{M}c$ is the collection of all measurable cylinders in Ω and $\mathscr{F}(\mathscr{M}c)$ is the σ -field generated by $\mathscr{M}c$. The standard proof of the existence of the product probability measure is based upon Fubini's Theorem for finitely many factors; see [HS: pp. 429-435]. We give a simple proof that does not require Fubini's Theorem.

Lemma. Let $\mu: \mathcal{M}c \to [0,1]$ be a function such that $\sum_{1}^{\infty} \mu(A_n) = 1$ whenever (A_n) is a disjoint sequence in $\mathcal{M}c$ with union Ω . Then μ extends uniquely to a probability measure on $\mathcal{F}(\mathcal{M}c)$.

Proof: Let \mathscr{D} be the collection of all finite unions of measurable cylinders. It is easy to check that \mathscr{D} is a field and each $A \in \mathscr{D}$ can be written as a finite disjoint union of members of $\mathscr{M}c$. In particular, A can be written as a countable disjoint union of members of $\mathscr{M}c$, say $A = \bigcup_{1}^{\infty} A_{n}$. Let $\mu'(A) := \sum_{1}^{\infty} \mu(A_{n})$. To see that μ' is well-defined, write $\Omega \setminus A = \bigcup_{1}^{\infty} B_{k}$ with pairwise disjoint $B_{k} \in \mathscr{M}c$. Then

$$\sum_{1}^{\infty} \mu(A_n) = 1 - \sum_{1}^{m} \mu(B_k)$$
 (1)

by our assumption on μ . Since the right-hand of (1) has nothing to do with the decomposition $\bigcup_{n=1}^{\infty} A_n$ of A, it follows that μ' is well-defined and therefore countably additive of \mathcal{D} . Hence the desired result is an immediate consequence of E. Hopf's extension theorem [HS: p. 142].

Theorem. P extends uniquely to a probability measure on $\mathcal{F}(\mathcal{M}c)$.

Proof: It suffices to prove that P satisfies the hypothesis of the lemma. Without loss of generality, assume that I is an infinite set. Let (A_n) be a disjoint sequence in $\mathcal{M}c$ with union Ω .

Case 1: I is countable. Then we may assume $I = \mathbb{N}$. Write $A_n = \prod_{i=1}^{\infty} A_{n,i}$, where $A_{n,i} \in \mathscr{F}_i$ for each i and $A_{n,i} = \Omega_i$ for all $i > i_n \in \mathbb{N}$. We claim that if $m \in \mathbb{N}$ and $x = (x_i)$ is an element of A_m and if $n \in \mathbb{N}$, then

$$\left\langle \prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i) \right\rangle \prod_{i>i_m} P_i(A_{n,i}) = \delta_{m,n} \quad \text{(Kronecker's delta)}. \tag{2}$$

682 NOTES [October

For n=m, this is trivial, so assume $n\neq m$. Then, since $\sum_{1}^{\infty}\chi_{A_k}=1$ identically and $\chi_{A_m}(x_1,\ldots,x_{i_m},y_{i_m+1},\ldots)=1$ for all $y_i\in\Omega_i$ with $i>i_m$, we have

$$\left\{ \prod_{i=1}^{i_m} \chi_{A_{n,i}}(x_i) \right\} \prod_{i > i_m} \chi_{A_{n,i}}(y_i) = 0$$
 (3)

for all such y_i 's. Integrating each side of (3) finitely many times, we obtain (2) for $n \neq m$.

To get a contradiction, suppose $\sum_{n=1}^{\infty} P(A_n) \neq 1$. Then there must exist an $x_1 \in \Omega_1$ such that

$$\sum_{n=1}^{\infty} \chi_{A_{n,1}}(x_1) \prod_{i=2}^{\infty} P_i(A_{n,i}) \neq 1.$$

Hence an inductive argument yields an element $x = (x_i)$ of Ω such that

$$\sum_{n=1}^{\infty} \left\{ \prod_{i=1}^{k} \chi_{A_{n,i}}(x_i) \right\} \prod_{i=k+1}^{\infty} P_i(A_{n,i}) \neq 1$$
 (4)

for each $k \ge 1$. But $x \in A_m$ for some $m \in \mathbb{N}$. Hence (4) with $k = i_m$ contradicts (2).

Case 2: I is uncountable. Then we can choose a countable subset J of I such that $A_n = A'_n \times \Omega'$ for all $n \ge 1$, where each A'_n is a measurable cylinder in $\prod_{i \in J} \Omega_i$ and $\Omega' = \prod_{i \notin J} \Omega_i$. By Case 1 applied to (A'_n) , we obtain $\sum_{i=1}^{\infty} P(A_n) = 1$.

Dedication. Professor Karl Stromberg, my friend and colleague, died on July 3, 1994. He was an enthusiastic lover of the Monthly. When I presented the above proof in my seminar five to eight years ago, he liked it very much. Karl, I dedicate the present paper to you in the memory of our friendship. Have a peaceful sleep!

REFERENCE

[HS] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, Berlin, 1965.

Department of Mathematics Kansas State University 138 Cardwell Hall Manhattan, KS 66506

A Problem

Leo S. Gurin

TRIBUTE. I learned about this problem and its solution in 1935, when I was in the eighth grade, from my teacher of mathematics, Yakov Stepanovich Chaikovsky, a very young man at that time. Now, in retrospective of a few decades of my own

1996] NOTES 683