Alex Shah

Project 8 - Orientation Sensor Data

2024-04-07

Revised 2024-05-03

EN.605.715.81.SP24

Table of Contents

Requirements	1
Design	
Implementation.	
Demo.	
References	

Requirements

This project requires using an Adafruit BNO055 Absolute Orientation Sensor on an Arduino to report orientation data from the sensor. The implementation should use FreeRTOS to create a task that runs and communicates via I2C to capture orientation data. The Arduino should be connected to a Raspberry Pi, mounted to a flight capable drone. The data from the sensor should be read via WiFi to a remote device while the drone is in flight.

Design

I used a small breadboard to connect up the Arduino UNO and Adafruit BNO055 sensor with short wires.

Figure 1. Adafruit BNO055

Figure 2. Arduino UNO

Arduino to Sensor:

5v > Vin

GND > GND

A4 > SDA

A5 > SCL

The assembly is secured and put it in a small box and attached to the drone. The Arduino plugs into the Raspberry Pi by USB.

Implementation

In oorder to use the sensor, we need to install the Adafruit Sensor and BNO055 libraries in Arduino IDE. The sensor worked, so I continued on by adding the FreeRTOS library to use RTOS capabilities like interrupt routines by creating tasks.

```
1 #include <Arduino FreeRTOS.h>
2 #include <Wire.h>
3 #include <Adafruit Sensor.h>
4 #include <Adafruit_BNO055.h>
5 #include <utility/imumaths.h>
6
7 void TaskReadIMU(void *pvParameters);
8 #define BNO055 SAMPLERATE DELAY MS (100)
9 Adafruit BNO055 bno = Adafruit BNO055(55, 0x28, &Wire);
10
11 void setup(void) {
      Serial.begin(9600);
12
13
      while (!Serial)
14
15
16
      Serial.println("Orientation Sensor Test");
17
      if (!bno.begin()) {
```

```
18
              Serial.print("No BNO055 detected !!!!!!!!!!!!!!!!");
19
              while (1)
20
                     ;
21
       }
22
23
       // Create task
24
       if (xTaskCreate(TaskReadIMU, "ReadIMU", 256, NULL, 3, NULL) != pdFAIL) {
25
              Serial.println("Task created successfully.");
26
              delay(500);
27
       } else {
28
              Serial.println("Failed to create task.");
29
30
       bno.setExtCrystalUse(true);
31 }
32
33 void loop(void) {
       // do tasks
34
35 }
36
37 void TaskReadIMU(void *pvParameters) {
38
       (void)pvParameters;
39
40
       for (;;) {
              imu::Vector<3> euler = bno.getVector(Adafruit BNO055::VECTOR EULER);
41
42
43
              Serial.print("X/ROLL: ");
              Serial.println(euler.x());
44
              Serial.print("Y/PITCH: ");
45
46
              Serial.println(euler.y());
              Serial.print("Z/YAW: ");
47
48
              Serial.println(euler.z());
49
50
              delay(BNO055_SAMPLERATE_DELAY_MS);
51
       }
52 }
Remotely connect to pi e.g.
$ ssh user@IP
make note of tty address to verify the Arduino is connected
$ ls /dev/tty*
    /dev/ttyACM1 is present after plugging the Arduino into the Pi's USB port
$ cat /dev/ttyACM1
> Serial output from the Arduino showing orientation data (X/Y/Z or Pitch, Yaw, Roll)
```

Demo

This video contains a quick demonstration of the orientation sensor alone, then flying with the sensor mounted to the drone, reporting orientation data to my laptop over wifi.

NOTE: The XYZ Roll/Pitch/Yaw labels are flip flopped in the video but fixed in the code.

https://drive.google.com/file/d/1ku1LYaIgcpg0NyLsr4TFWORH8FwcfTtZ/view?usp=sharing

May 3rd, 2024:

I took a new video outside flying the drone properly to demonstrate the flight capable drone with IMU data sent over the network:

https://drive.google.com/file/d/170mXP_PU1rTCZLqPC8pKXVAjBOuJfc9K/view?usp=sharing

References

Adafruit documentation for BNO055

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-bno055-absolute-orientation-sensor.pdf

FreeRTOS Documentation

https://www.freertos.org/features.html