Théorie de l'information : Examen du 18 décembre 2019

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 3h. Sans document. Les exercices sont indépendants.

- EXERCICE 1. On forme le quintuplet X_1, X_2, X_3, X_4, X_5 de variables aléatoires à valeurs dans $\{0, 1, 2\}$ en choisissant au hasard avec loi uniforme une ligne de la matrice :

 $\begin{bmatrix} 1 & 1 & 2 & 2 & 0 \\ 1 & 2 & 1 & 0 & 2 \\ 2 & 1 & 0 & 1 & 2 \\ 2 & 0 & 1 & 2 & 1 \\ 0 & 2 & 2 & 1 & 1 \end{bmatrix}.$

Calculer $H(X_i)$ pour i=1...5 et $H(X_j|X_i)$ pour toutes les valeurs de i et j.

- EXERCICE 2. On considère le canal représenté par la figure suivante :

Entrée
$$X$$
 Sortie Y 0

où p=P(Y=1|X=2)=P(Y=2|X=1). Soient $\alpha=P(X=0), \beta=P(X=1)$ et $\gamma=P(X=2).$

- a) Soit Z la variable aléatoire qui vaut 0 si Y=0 et 1 sinon. Justifier l'égalité H(Y)=H(Z)+H(Y|Z) et en déduire H(Y).
- b) Pour α fixé, montrer que H(Y) est maximum pour $\beta = \gamma$.

- c) Dans ce cas, trouver la valeur de α qui maximise l'information mutuelle I(X,Y). On rappelle que $\frac{d}{dx}h(x)=\log_2\frac{1-x}{x}$ où h(x) désigne la fonction entropie binaire.
- d) Que vaut la capacité du canal? Dans le cas p = 1/2, donner un code simple qui permet d'attendre de manière fiable la capacité.
- EXERCICE 3. Quel est le plus grand nombre de mots d'un code linéaire binaire de distance minimale 3 dans $\{0,1\}^{20}$ (de longueur 20) ?
- EXERCICE 4. On considère un code de Hamming de paramètres [7, 4, 3].
 - a) Combien y a-t-il de mots de poids 3 dans le code?
 - b) Montrer que si on efface 4 coordonnées d'un mot c du code, il n'est pas possible de reconstituer c.
- -> c) On soumet un mot c du code à un canal à effacements qui efface chaque coordonnée indépendamment des autres avec une probabilité 1/2. Montrer que la probabilité que c puisse être reconstitué vaut 57/128.
 - EXERCICE 5. Soit C le code binaire de matrice génératrice

$$\mathbf{G} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}. \quad \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 10 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}.$$

- a) Quelle est la dimension de C? Donner une matrice de parité \mathbf{H} de C.
- b) Quelle est la distance minimale d de C? Combien y a-t-il de mots de poids d dans C?
- c) Quels sont les syndromes $\sigma(\mathbf{x}) = \mathbf{H}\mathbf{x}^T$ possibles des mots $\mathbf{x} \in \mathbb{F}_2^{10}$ de poids 1 et 2? En déduire que pour tout $x \notin C$, il existe un mot $c \in C$ tel que $d(\mathbf{c}, \mathbf{x}) = 1$ ou $d(\mathbf{c}, \mathbf{x}) = 2$.
- \rightarrow d) Montrer que si $\mathbf{x} \notin C$ et si $\mathbf{c} \in C$ est tel que $d(\mathbf{c}, \mathbf{x})$ est minimale, alors il n'existe pas de mot $\mathbf{c}' \in C$, $\mathbf{c} \neq \mathbf{c}'$, tel que $d(\mathbf{c}, \mathbf{x}) = d(\mathbf{c}', \mathbf{x})$.
 - Exercice 6. Soit C le code binaire défini par la matrice de parité

- a) Quels sont les paramètres de C?
- b) Montrer que tous les mots du code C sont de poids pair.
 - c) Soit c = 101?????1?? un mot de code dont les positions 3,5,6,7,9,10 ont été effacées. Quels sont les mots de code possibles pour c?
 - d) Donner une matrice génératrice du code C.
 - e) Quels sont les différents poids possibles des mots de C? Combien y a-t-il de mots de C pour chacun des poids?
 - f) Montrer que tout vecteur \mathbf{x} de \mathbb{F}_2^{10} , il existe un mot $\mathbf{c} \in C$, tel que $d(\mathbf{c}, \mathbf{x}) \leqslant 3$.
 - g) Combien y a-t-il de vecteurs x tels que pour tout $c \in C$, d(c, x) > 2?

3