4/14/2019 Calc Team

question 2 views

Daily Challenge 22.6

(Due: Monday 2/25 at 12:00 noon Eastern)

Today I'll ask you to write up a Python simulation that seems to have nothing to do with the gamma function.

(1) The coupon collector's problem.

Suppose that you buy one box of cereal every day. Each box of cereal contains a randomly chosen coupon, and there are n different types of coupons in total. On average, how many days will it take you to collect all n coupons?

For instance, if there are 3 coupons, one possible run might look like this:

- 1. On the first day, I get coupon 1.
- 2. On the second day, I get coupon 3.
- 3. On the third day, I get coupon 3 again. Ignore duplicates; I keep going until I have at least one of every coupon.
- 4. On the fourth day, I get coupon 1. Ignore.
- 5. On the fifth day, I get coupon 2. Now the game stops because I have all three.

So the above trial would have n=3 and t=5 days. We want to know the *average* number of days t that you need to get n coupons, as a function of n.

Write a Python simulation which takes in a value of n and runs some large number, say 1,000 trials, then outputs the average time until all n coupons are collected. Your code might look like this:

```
def coupon_collector(n, trials=1000):
"""
Takes in a number of different coupons, returns average amount of time to collect all of them
"""
times_list = []
for trial in range(trials):
## Run a simulation that picks a random coupon every day and increments a counter until you have all of them.
## You might want to use np.random.choice to pick a random coupon, store the coupons you have so far in a list,
## then end the while loop when the list has all n different coupons. Then append the time counter to your list.
return np.mean(times_list) ## This just takes the average
```

As a check, when there are n=50 coupons, your program should return an average of $225\,\mathrm{days}$.

Now suppose I tell you that the closed-form answer to this question is approximately

(average number of days) $\approx n \log n + \gamma n + \frac{1}{2}$,

where γ is some special number, and the approximation becomes better as n gets larger.

Plug in some large value of n to find the left side of the equation above, and then solve for the number γ ,

$$\gamma \approx \frac{1}{n} \bigg((\text{average number of days}) - n \log n - \frac{1}{2} \bigg) \,.$$

What value of γ do you find? It should be close to 0.577.

Post your code on Github.

daily_challenge

Updated 1 month ago by Christian Ferko

the students' answer, where students collectively construct a single answer

The first part of the solution can be found on GitHub; we shall let n = 100 for the sake of a large number that still has sub 1-minute computing times. $coupon_collector(100) = 520.37$

and thus by calculating

$$\frac{1}{100} \left(520.37 - 100 \cdot \log(100) - \frac{1}{2} \right) = 0.593...$$

Close enough to be close.

4/14/2019 Calc Team

	Updated 1 month ago by Logan Pachulski
the instructors' answer, where instructors collectively construct a single answer	
Click to start off the wiki answer	
followup discussions for lingering questions and comments	