

Machine Intelligence 1 3.1 Uncertainty and Inference

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2016/2017

3.1.1 Degrees of Belief

1) Degrees of Belief

Reasoning and Learning

What about logic?

- • ∀p : symptom(p, toothache) ⇒ disease(p, cavity)

 • rule is wrong: not all patients with toothache have cavities
- ② $\forall p : \operatorname{symptom}(p, toothache) \Rightarrow \operatorname{disease}(p, cavity) \lor \operatorname{disease}(p, gumdisease) \lor \dots$
 - almost unlimited list of possible causes
- - rule is wrong: not all cavities cause pain
- \blacksquare How can we make decisions when we are never 100% sure?

Degrees of belief (1)

$$P(H): H
ightarrow [0,1]$$
 assignment of numbers
$$P(H) = 0 \qquad H \text{ is false}$$

$$P(H) = 1 \qquad H \text{ is true}$$
 $0 < P(H) < 1 \qquad \text{quantifies our degree of belief}$

- lacksquare P(H) obeys the laws of probability theory
- but: no justification via repeated observations

E. T. Jaynes: Probability theory – the logic of science (2003)

Degrees of belief (2)

Application to betting agents (de Finetti, 1931)

"If Agent 1 expresses a set of degrees of belief that violate the axioms of probability theory, then there is a combination of fair bets by Agent 2 that guarantees that Agent 1 will loose money all the time."

- Agent 1 has inconsistent beliefs
 - violates $P(A \lor B) = P(A) + P(B) P(A \land B)$

Г	Agent	1	Agent	t 2		Outcome	e for Agen	t 1
Г	Proposition	Belief	Bet	Stakes	$A \wedge B$	$A \wedge \neg B$	$\neg A \wedge B$	$\neg A \wedge \neg B$
	A	0.4	A	4 to 6	-6	-6	4	4
	B	0.3	B	3 to 7	-7	3	-7	3
	$A \vee B$	0.8	$\neg (A \lor B)$	2 to 8	2	2	2	-8
					-11	-1	-1	-1

■ Agent 2 can devise a fair bet which always wins, no matter the outcome of *A* and *B*.

(see blackboard)

3.1.2 The Description of the World

Random variables and their domains

- $\blacksquare \ \, \mathsf{Boolean} \ \, \mathsf{variables}, \ \mathsf{e.g.} \ \, \mathit{cavity} \in \{\mathsf{true}, \mathsf{false}\}$
 - \blacksquare proposition: cavity = true
- lacktriangle discrete ordinal variables, e.g. $weather \in \{\text{sunny}, \text{rainy}, \text{cloudy}\}$
 - \blacksquare proposition: weather = sunny
- \blacksquare continuous variables, e.g. $temperature \in \mathbb{R}_0^+$
 - \blacksquare proposition: $temperature \in [290K, 291K]$
- description of the world: complete set of all variables

Atomic events

- atomic event: one assignment of all random variables
 - atomic events are mutually exclusive
 - set of atomic events must be exhaustive
- proposition: disjunction of atomic events
 - e.g. $cavity = \mathsf{true}$ is equivalent to: $(cavity = \mathsf{true} \wedge toothache = \mathsf{false} \wedge catch = \mathsf{false}) \lor (cavity = \mathsf{true} \wedge toothache = \mathsf{true} \wedge catch = \mathsf{true}) \lor \dots$

Prior (unconditional) probabilities

- probabilities of atomic events
 - \blacksquare e.g. $P(cavity = \mathsf{true} \land toothache = \mathsf{true} \land catch = \mathsf{true}) = 0.108$
- domain knowledge: set of unconditional probabilities for all atomic events

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

P(toothache, cavity, catch)

Conditional probabilities

- lacksquare P(X|e): degree of belief in X, given all we know is evidence e
- e.g. $P(cavity = \text{true} \mid toothache = \text{true}) = 0.8$ $P(\underbrace{cavity = \text{false}}_{\text{proposition}} \mid \underbrace{toothache = \text{true}}_{\text{observation}}) = 0.2$
- lacksquare defined by the product rule: $P(X|e) = rac{P(X,e)}{P(e)}$

3.1.3 Inference

3) Inference

- lacktriangle probability of event x given observations $\underline{\mathbf{e}}$
 - \blacksquare X: query variable
 - \blacksquare E_i : evidence variables
 - $\blacksquare Y_j$: unobserved variables

$$P(x|\underline{\mathbf{e}}) \ = \ \frac{P(x,\underline{\mathbf{e}})}{P(\underline{\mathbf{e}})} \ = \ \overbrace{\alpha\,P(x,\underline{\mathbf{e}})}^{\text{normalization}} \ = \ \overbrace{\alpha\,\sum_{\underline{\mathbf{y}}}P(x,\underline{\mathbf{e}},\underline{\mathbf{y}})}^{\text{marginalization}}$$

- \blacksquare normalization α can be computed...
 - \blacksquare ...explicitly by $\frac{1}{\alpha}=P(\underline{\bf e})=\sum\limits_{x,\underline{\bf y}}P(x,\underline{\bf e},\underline{\bf y})$
 - \blacksquare ...implicitly by ensuring $\sum P(x|\underline{\mathbf{e}}) = 1$

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

 \blacksquare calculate P(cavity)

(see blackboard)

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

lacksquare calculate P(cavity)

cavity	$\neg cavity$
0.2	0.8

 \blacksquare calculate P(cavity | toothache = true)

(see blackboard)

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

 \blacksquare calculate P(cavity)

cavity	$\neg cavity$
0.2	0.8

 \blacksquare calculate P(cavity | toothache = true)

cavity	$\neg cavity$
0.6	0.4

Computational complexity

- Inference requires complete table of prior (unconditional) probabilities.
- N binary random variables X_i :
 - lacktriangle table of joint probabilities has 2^N entries
 - \blacksquare summation over approx. 2^N entries for inference
- This procedure does not scale: additional assumptions are needed.

3.1.4 Conditional Independence

Cause and effect

"causal rule" P(W|U) $P(W_1, W_2|U) = P(W_1|U) P(W_2|U)$

Conditional independence

Two random variables X and Y are conditionally independent given Z if:

$$P(X,Y|Z) = P(X|Z) P(Y|Z).$$

We write $X \perp Y \mid Z$.

The Naïve Bayes ansatz

 \blacksquare assumtion $W_i \perp W_i \mid U$, $\forall i, j$

$$\underbrace{P(w_1, w_2, \dots, w_{N-1}, u)}_{2^N-1 \text{ independent table entries}}$$

$$1+2(N-1)=2N-1 \text{ independent table entries}$$

reduction of computational complexity from $O(2^N)$ to O(N)

3.1.5 Bayes' Theorem

Common inference tasks

(arrows denote statistical dependencies, not causation)

Bayes' theorem

$$P(W|U) \ P(U) = P(W,U) = P(U|W) \ P(W)$$
 (product rule)

$$P(U|W) = \frac{P(W|U) P(U)}{P(W)} = \alpha P(W|U) P(U)$$
 (Bayes' theorem)

End of Section 3.1

the following slides contain

OPTIONAL MATERIAL

Probabilities of stochastic variables

• for stochastic variables $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ must hold:

$$P(x) \geq 0 \,, \quad \forall x \in \mathcal{X} \,, \qquad \qquad \sum_{x \in \mathcal{X}} P(x) = 1 \qquad \qquad \text{(distribution)}$$

$$P(x) = \sum_{y \in \mathcal{Y}} P(x,y) \,, \qquad \qquad \forall x \in \mathcal{X} \qquad \text{(marginalization)}$$

$$P(x,y) = P(x|y) \, P(y) \,, \qquad \forall x \in \mathcal{X} \,, \forall y \in \mathcal{Y} \qquad \text{(product law)}$$

Example domain knowledge

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.114	0.576

P(toothache, cavity, catch)

	catch	$\neg catch$
cavity	0.54	0.06
$\neg cavity$	0.08	0.32

 $P(cavity, catch \mid toothache = true)$

cavity	$\neg cavity$
0.87	0.13

P(cavity | toothache = true, catch = true)