ЛАБОРАТОРНАЯ РАБОТА №4.4.3

Определение сорта стекла и спектральных характеристик призмы с помощью гониометра

Маслов Артём Казаков Данила Б01-104

08.04.2023

Аннотация

В работе с помощью гониометра определяется преломляющий угол призмы, измеряются углы наименьшего отклонения для нескольких спектральных линий ртути. По результатам измерений определяется сорт стекла и спектральные характеристики призмы.

Призма

Дисперсия показателя преломления

Принцип действия призмы основан на зависимости коэффициента преломления стекла от длины световой волны. Зная характеристики стекла, а именно показатели преломления для голубой (n_1) и красной (n_2) линий можно определить одну из основных характеристик спектрального прибора: дисперсию показателя преломления:

$$\frac{dn}{d\lambda} \approx \frac{n_1 - n_2}{\lambda_1 - \lambda_2}$$

Оценим угол $\delta \phi$ между волновыми фронтами двух близких линий λ и $\lambda + \delta \lambda$. Пусть на призму с основанием а падает параллельный пучок света шириной h, и этот пучок целиком заполняет призму. Показанный на рис. 1 симметричный ход лучей (внутри призмы лучи распространяются параллельно основанию) соответствует углу наименьшего отклонения падающего пучка θ , который в свою очередь зависит от преломляющего угла призмы α и показателя преломления $n(\lambda)$.

Рис. 1: Ход лучей для наименьшего отклонения

Максимальная разность хода двух лучей с длиной волны λ и $\lambda + \delta\lambda$ возникает вблизи основания призмы:

$$\Delta = a[n(\lambda + \delta \lambda) - n(\lambda)] \approx a \frac{dn}{d\lambda} \delta \lambda = h \delta \phi$$

Типичная зависимость $n(\lambda)$, или закон дисперсии показателя преломления, приведена на рис.2. В области, закрашенной серым, показатель преломления растёт с длиной волны $dn/d\lambda > 0$ — это так называемая область аномальной дисперсии. Аномальная дисперсия имеет место на частотах, близких к резонансным, и соответственно в этой области велико поглощение света. В области, далёкой от резонансов, вещество прозрачно, а показатель преломления убывает с ростом длины волны, $dn/d\lambda < 0$, — это область нормальной дисперсии. Стекло в оптическом диапазоне длин волн имеет нормальную дисперсию (аномальная дисперсия в стекле имеет место в ультрафиолетовой области спектра).

Рис. 2: Зависимость показателя преломления стекла от длины волны

Угловая дисперсия

Угловая дисперсия $D(\lambda)$ характеризует угловое расстояние между близкими спектральными линиями:

$$D(\lambda) = \frac{d\phi}{d\lambda}$$

В современных приборах спектроскопии регистрация изображения спектров проводится не глазом, а линейкой или матрицей чувствительных к свету элементов. Угловая дисперсия позволяет определить минимальное расстояние между ячейками приёмного устройства: если требуется разрешить две спектральные линии с разностью длин волн $\delta\lambda$, то расстояние между элементами приемного устройства должно быть заметно меньше $D\delta\lambda f$, где f — фокусное расстояние объектива зрительной трубы.

В случае призмы из уравнения максимальной разности хода следует:

$$D(\lambda) = \frac{d\phi}{d\lambda} = \frac{a}{h} \frac{dn}{d\lambda}$$

Показатель преломления

Показатель преломления материала призмы $n(\lambda)$ удобно определять по углу наименьшего отклонения $\delta(\lambda)$ (рис.1). Минимальное отклонение луча, преломлённого призмой, от направления луча, падающего на призму, получается при симметричном ходе луча (в призме луч идёт параллельно основанию). Угол минимального отклонения δ , преломляющий угол alpha и показатель преломления связаны соотношением:

$$n(\lambda) = \frac{\sin \frac{\alpha + \delta(\lambda))}{2}}{\sin \frac{\alpha}{2}}$$

Описание экспериментальной установки

Рис. 3: Оптические схемы

Внешний вид гониометра представлен на рис. 26 и 2в. Коллиматор 3, столик 7 и алидада 17 со зрительной трубой 12 крепятся на массивном основании 23. На столике 7 размещаются исследуемые объекты. Коллиматор закреплён неподвижно, а столик и алидада с трубой могут вращаться вокруг вертикальной оси.

Рис. 4: Внешний вид гониометра

Свет от источника S проходит через коллиматор (щель 1 и объектив 5) и преобразуется призмой в набор параллельных пучков, каждый из которых соответствует определенной длине волны. Параллельные пучки собираются в фокальной плоскости объектива 9 зрительной трубы и рассматриваюстся глазом через окуляр 14.

Оборудование

- 1. Гониометр.
- 2. Ртутная лампа.
- 3. Призма.

4. Стеклянная плоскопараллельная пластинка, призменный уголковый отражатель.

Результаты измерений

В работе был измерен преломляющий угол призмы $\Delta \alpha = 63^{\circ}8'35'' \pm 0^{\circ}0'1''$.

Результаты измерений углов наименьшего отклонения ϕ и определённые по формуле (??)

коэффициенты преломления для спектральных линий ртути представлены в таблице.

Цвет	фиолетовый	синий	голубой	зелёный	желтый	желтый	красный	красный
λ , HM	404,7	435,8	491,6	546,1	577,0	579,1	623,4	690,7
φ	55°17′27″	54°21′39″	53°10′55″	52°27′57″	52°7′37″	52°6′22″	51°42′45″	51°34′53″
n	1,64090	1,63291	1,62263	1,61630	1,61328	1,61310	1,60958	1,60840

Погрешность n оценивалась по формуле $\sigma_n = \sqrt{\left(\frac{\partial f}{\partial \alpha}\sigma_\alpha\right)^2 + \left(\frac{\partial f}{\partial \delta}\sigma_\delta\right)^2}$.

Для всех значений n погрешность косвенных измерений примерно одинакова и равна $\sigma_n = 10^{-5}$.

Построим график дисперсионной кривой $n(\lambda)$.

Согласно ГОСТ-13659-78 средняя дисперсия определяется по формуле:

$$D = n_F - n_C$$

где n_F – показатель преломления стекла для длины волны голубой спектральной линии водорода F=486,1 нм, n_C – показатель преломления стекла для длины волны красной спектральной линии водорода C=656,2 нм.

Так как теоретическая формула для зависимости $n(\lambda)$ не известна, для оценки средней дисперсии аппроксимируем зависимость сплайном.

$$n_F = 1,6234$$

$$n_C = 1,6081$$

$$D = n_F - n_C = 0,015.$$

Определим значение показателя преломления стекла для зелёной спектральной линии ртути $e=546,1\,\mathrm{hm}$ и жёлтой спектральной линии натрия $D=589,3\,\mathrm{hm}$.

$$n_e = 1,6163$$

$$n_D = 1,6122.$$

Число Аббе
$$\nu_D = \frac{n_D - 1}{n_F - n_C} = 39, 9.$$

Определим тип стекла по ГОСТ-13659-78. Наилучшим образом характеристики исследуемого образца совпадают с материалом флинт Ф1:

$$n_e = 1,6169$$

$$n_D = 1,6128$$

$$D = n_F - n_C = 0,01659$$

$$\nu_D = 36,93$$

Определим угловую дисперсию призмы по измерения координат спектральных линий жёлтой пары:

$$D = \frac{d\varphi}{d\lambda} \approx \frac{\Delta\varphi}{\Delta\lambda} = (1,73 \pm 0,03) \cdot 10^{-4}.$$

Разность длин волн спектральных линий $\Delta \lambda = 2, 1$ нм. Погрешность угловой дисперсии оценим как $\varepsilon_D = \varepsilon_{\Delta \varphi} = \frac{\sqrt{2}\sigma_{\varphi}}{\Delta \varphi}$, где $\sigma_{\varphi} = 1''$ – погрешность измерения угла.

Оценим максимальную разрешающую способность призмы в окрестности жёлтой пары спектральных линий. Разрешающая способность $R=a|\frac{dn}{d\lambda}|$ максимальна, если модуль производной $n(\lambda)$ максимален. Проведём прямую через две точки, соответствующие паре жёлтых спектральных линий, и по тангенсу угла наклона прямой оценим максимальное значение $|\frac{dn}{d\lambda}|$. Длина основания призмы $a=72\pm1$ мм.

Максимальная разрешающая способность $R = (6, 4 \pm 0, 1) \cdot 10^3$.

Погрешность оценим как $\varepsilon_R = \varepsilon_a$.

Оценим максимальную разрешающую способность спектрального прибора, состоящего из гониометра, призмы и глаза экспериментатора. Проведём измерения ширины одной спектральной линии из жёлтой пары:

$$\varphi_1 = 128^{\circ}02'44''$$

$$\varphi_2 = 128^{\circ}03'03''$$

Считаем угловую дисперсию в области жёлтой пары спектральных линий одинаковой, тогда

$$D = \frac{\delta \varphi}{\delta \lambda} = \frac{\Delta \varphi}{\Delta \lambda}$$

$$R = \frac{\lambda}{\delta \lambda} = \frac{\lambda}{\Delta \lambda \frac{\delta \varphi}{\Delta \varphi}}$$

где $\delta \varphi$ — угловая ширина жёлтой спектральной линии, $\delta \lambda$ — разность длин волн, соответствующая ширине жёлтой спектральной линии. $\Delta \varphi$ и $\Delta \lambda$ — угловая ширина и разность длин волн для пары жёлтых спектральных линий. $R=(1,1\pm0,1)\cdot 10^3$.

Погрешность оценим как
$$\varepsilon_R = \varepsilon_{\delta\lambda} = \sqrt{(\frac{\sqrt{2}\sigma_{\varphi}}{\delta\varphi})^2 + (\frac{\sqrt{2}\sigma_{\varphi}}{\Delta\varphi})^2}.$$

Обсуждение результатов и выводы

В работе с помощью гониометра был измерен преломляющий угол призмы $\Delta \alpha = 63^{\circ}8'35''\pm 0^{\circ}0'1''$.

Был определёны основные спектральные параметры исследуемого материла и его тип –

		n_e	n_D	$n_F - n_C$	$ u_D$
Ф1.	Исследуемый образец	1,6163	1,6122	0,015	39,9
	Ф1	1,6169	1,6128	0,01659	36,93

Была определена угловая дисперсия призмы в окрестности жёлтой спектральной линии ртути

$$D = (1,73 \pm 0,03) \cdot 10^{-4}$$
.

Максимальная разрешающая способность призмы $R_1 = (6, 4 \pm 0, 1) \cdot 10^3$.

Разрешающая способность спектрального прибора, состоящего из гониометра, призмы и глаза экспериментатора, $R_2 = (1, 1 \pm 0, 1) \cdot 10^3$ меньше R_1 в примерно 6 раз, потому что система гониометр-призма изготовлены не идеально точно. Также на разрешающую способность влияет острота зрения экспериментатора.