Quantum Mechanics: Fall 2022 Midterm Exam: Brief Solutions

NOTE: Problems start on page 2. Bold symbols are 3-component vectors. Some useful facts: You can use them directly.

- 1D harmonic oscillator: $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2$. Here \hat{x} is position operator, \hat{p} is momentum operator, $[\hat{x},\hat{p}] = i\hbar$, and in position representation $\hat{p} = -i\hbar\frac{\partial}{\partial x}$. Define $\hat{a}_{\mp} = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} \pm i\frac{1}{m\omega}\hat{p}) = \sqrt{\frac{m\omega}{2\hbar}}(x \pm \frac{\hbar}{m\omega}\frac{\partial}{\partial x})$. Then $[\hat{a}_{-},\hat{a}_{+}] = 1$ and $\hat{H} = \hbar\omega$ $(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2})$. It has a unique ground state $|\psi_{0}\rangle$ with $\hat{a}_{-}|\psi_{0}\rangle = 0$, and excited states $|\psi_{n}\rangle \equiv \frac{1}{\sqrt{n!}}(\hat{a}_{+})^{n}|\psi_{0}\rangle$ with energy $E_{n} = (n + \frac{1}{2})\hbar\omega$. The ground state wavefunction is $\psi_{0}(x) = (\frac{m\omega}{\pi\hbar})^{1/4}\exp(-\frac{m\omega}{2\hbar}x^2)$.
- $\int_{-\infty}^{+\infty} e^{-x^2/a} dx = \sqrt{\pi a}$, for a > 0. Applying $\frac{\partial}{\partial a}$ can produce $\int_{-\infty}^{+\infty} x^{2n} e^{-x^2/a} dx$.
- Central potential problem: $\hat{H} = \frac{1}{2m}\hat{\boldsymbol{p}}^2 + V(r)$. Here $\hat{\boldsymbol{p}}$ is the 3D momentum $-i\hbar\frac{\partial}{\partial \boldsymbol{r}}$, and $r = |\boldsymbol{r}|$ is the radius. Under polar coordinates (r,θ,ϕ) , the eigenfunctions are generally $\psi_{E,\ell,m} = \frac{u(r)}{r} \cdot Y_\ell^m(\theta,\phi)$, where $Y_\ell^m(\theta,\phi)$ is the spherical harmonics, and u(r) satisfies $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[V(r) + \frac{\hbar^2}{2m}\frac{\ell(\ell+1)}{r^2}\right] \cdot u = E \cdot u$. Here $\ell = 0,1,\ldots$ is the angular momentum quantum number; $m = -\ell, -\ell+1,\ldots,\ell$ is the "magnetic quantum number"; E is the energy eigenvalue.
 - The spherical harmonics are orthonormal, and are eigenfunctions of $\hat{\boldsymbol{L}}^2$ and \hat{L}_z . $Y_0^0 = \frac{1}{\sqrt{4\pi}}, Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos\theta, Y_1^{\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta e^{\pm\mathrm{i}\phi}, \ldots$
- Generic angular momentum: $[\hat{J}_x, \hat{J}_y] = i\hbar \hat{J}_z$, $[\hat{J}_y, \hat{J}_z] = i\hbar \hat{J}_x$, $[\hat{J}_z, \hat{J}_x] = i\hbar \hat{J}_y$. For eigenstate $|j, m\rangle$ of $\hat{\boldsymbol{J}}^2$ and \hat{J}_z , $\hat{\boldsymbol{J}}^2|j, m\rangle = j(j+1)\hbar^2|j, m\rangle$, $\hat{J}_z|j, m\rangle = m\hbar|j, m\rangle$, and $(\hat{J}_x \pm i\hat{J}_y)|j, m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j, m \pm 1\rangle$. Here 2j is non-negative integer, $m = -j, -j + 1, \ldots, j$.
 - Orbital angular momentum: $\hat{\boldsymbol{L}} \equiv \hat{\boldsymbol{r}} \times \hat{\boldsymbol{p}}$.
 - Spin-1/2: basis states $|\uparrow\rangle$ and $|\downarrow\rangle$. Under this basis, $\hat{S}_a = \frac{\hbar}{2}\sigma_a$, where $\sigma_{x,y,z}$ are Pauli matrices, $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. $\sigma_a \sigma_b = \delta_{ab} \mathbb{1}_{2\times 2} + \mathrm{i} \sum_c \epsilon_{abc} \sigma_c$. Generic wavefunction under this basis is $\begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix}$, which means $\psi_{\uparrow} |\uparrow\rangle + \psi_{\downarrow} |\downarrow\rangle$.

- **Problem 1**. (20 points) Consider a non-relativistic particle of mass m moving on a ring of circumference L. This can be viewed as a 1D problem defined on $-\frac{L}{2} \leq x \leq \frac{L}{2}$ with periodic boundary condition for the wavefunction, $\psi(-\frac{L}{2}) = \psi(\frac{L}{2})$, and normalization condition $\int_{x=-\frac{L}{2}}^{\frac{L}{2}} |\psi(x)|^2 dx = 1$.
- (a) (5pts) For free particle (no potential energy) with this periodic boundary condition, write down all the energy eigenvalues and normalized eigenstate wavefunctions.
- (b) (5pts) Include a δ -potential, $-\alpha \delta(x)$, where α is a positive parameter. Draw the qualitative pictures of the ground state, 1st excited, and 2nd excited state wavefunctions. [NOTE: discussion about 1D bound state properties in lectures may not apply here.]
- (c) (10pts) Derive the equations satisfied by the energy eigenvalues of the ground state and 1st excited states in (b), respectively.

Solution:

(a) This is basically homework Problem 2.46.

$$\psi_n(x) = \frac{1}{\sqrt{L}} e^{i2\pi nx/L}, E_n = \frac{\hbar^2}{2m} (\frac{2\pi n}{L})^2, n \text{ is an integer.}$$

Except n = 0 case, all E_n energy level is 2-fold degenerate.

(b)(c)

The boundary condition at x = 0 is,

$$\psi(-0) = \psi(+0), \ -\frac{\hbar^2}{2m} \frac{\mathrm{d}}{\mathrm{d}x} \psi \Big|_{x=-0}^{+0} - \alpha \psi(0) = 0.$$

The "boundary condition" at $x = \pm L/2$ is (there is no real boundary here, eigenstates should be smooth here)

$$\psi(-L/2) = \psi(L/2), \ \frac{\mathrm{d}}{\mathrm{d}x}\psi\big|_{x=-L/2} = \frac{\mathrm{d}}{\mathrm{d}x}\psi\big|_{x=L/2}.$$

NOTE:

as in Problem 2.46, the argument of non-degenerate eigenstates does not apply; but the argument about inversion symmetry still applies, eigenstates can be chosen as either even or odd functions;

For odd eigenfunctions, $\psi(0) = 0$, the δ -potential has no effect on the energy eigenvalue

etc., and there are no odd bound states, these odd eigenstates are $\psi_{n,\text{odd}} = \sqrt{\frac{2}{L}}\sin(2\pi nx/L)$, with $E_{n,\text{odd}} = E_n$ and $n = 1, 2, \dots$

For even eigenfunctions, we must have $\frac{d}{dx}\psi\big|_{x=-L/2} = \frac{d}{dx}\psi\big|_{x=L/2} = 0$.

For even "bound states" with $E = -\frac{\hbar^2 \kappa^2}{2m} < 0$, we must have $\psi(x) = A \cdot \cosh[\kappa \cdot (|x| - L/2)]$, the boundary condition at x = 0 produces

$$\frac{\hbar^2}{m}\kappa\sinh(\kappa L/2) - \alpha\cosh(\kappa L/2) = 0$$

therefore $\kappa \tanh(\kappa L/2) = \frac{m\alpha}{\hbar^2}$, where $\kappa = \sqrt{-2mE}/\hbar$. The left-hand-side of this equation is a monotonic function of κ , so there is only one "bound state" (the ground state).

For even eigenstates with $E = \frac{\hbar^2 k^2}{2m} > 0$, we must have $\psi(x) = A \cdot \cos[k \cdot (|x| - L/2)]$, the boundary condition at x = 0 produces

$$\frac{\hbar^2}{m}k\sin(kL/2) - \alpha\cos(kL/2) = 0$$

therefore $k \tan(kL/2) = \frac{m\alpha}{\hbar^2}$, where $k = \sqrt{2mE}/\hbar$. There are infinite many solutions to k, the smallest one satisfies $0 < k < \frac{\pi}{L}$, and is the 1st excited state.

The 2nd excited state is the odd solution with $n=1, \ \psi_{1,\text{odd}}=\sqrt{\frac{2}{L}}\sin(2\pi x/L)$, with wavevector $k=\frac{2\pi}{L}$.

Qualitative pictures of the ground, 1st excited, 2nd excited states:

Problem 2. (20 points) Hydrogen atom has $\hat{H} = \frac{\hat{p}^2}{2m} - \frac{\hbar^2}{ma} \cdot \frac{1}{r}$, where $a = \frac{4\pi\epsilon_0}{e^2} \cdot \frac{\hbar^2}{m}$ is the Bohr radius. Its energy eigenvalues are $E_n = -\frac{\hbar^2}{2ma^2} \cdot \frac{1}{n^2}$, with eigenstate wavefunction $\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^m(\theta,\phi)$. Some special cases of the radial wavefunctions are, $R_{10}(r) = 2a^{-3/2}e^{-r/a}$, $R_{20}(r) = \frac{1}{\sqrt{2}}a^{-3/2}(1 - \frac{r}{2a})e^{-r/2a}$, $R_{21}(r) = \frac{1}{2\sqrt{6}}a^{-3/2}(\frac{r}{a})e^{-r/2a}$.

(a) (10pts) Compute the expectation value of kinetic energy $\frac{\hat{p}^2}{2m}$ under the state ψ_{210} .

(b) (10pts) Consider the subspace of 1st excited states, spanned by four basis states $\Psi_1 \equiv \psi_{200}, \ \Psi_2 \equiv \psi_{211}, \ \Psi_3 \equiv \psi_{210}, \ \Psi_4 \equiv \psi_{21,-1}$. Compute all the matrix elements $\langle \Psi_i | \hat{z} | \Psi_j \rangle$ for the z-component of position operator \hat{z} . [Hint: symmetry consideration can dramatically simplify this problem.]

Solution:

(a)
$$\frac{\hat{p}^2}{2m} = \hat{H} + \frac{\hbar^2}{ma} \cdot \frac{1}{r}$$
, then
$$\langle \psi_{210} | \frac{\hat{p}^2}{2m} | \psi_{210} \rangle = E_2 + \langle \psi_{210} | \frac{\hbar^2}{ma} \cdot \frac{1}{r} | \psi_{210} \rangle = -\frac{\hbar^2}{2ma^2} \cdot \frac{1}{4} + \frac{\hbar^2}{ma} \int_0^\infty \frac{1}{r} \cdot [R_{21}(r)]^2 r^2 dr$$
$$= -\frac{\hbar^2}{2ma^2} \cdot \frac{1}{4} + \frac{\hbar^2}{ma} \cdot \frac{1}{24} a^{-3} \int_0^\infty \frac{r}{a^2} e^{-r/a} r^2 dr$$
$$= \frac{\hbar^2}{8ma^2} = -E_2$$

NOTE: the fact that $\langle \psi_{210} | \frac{\hat{p}^2}{2m} | \psi_{210} \rangle = -E_2$ can be derived from "virial theorem".

(b) Note that $[\hat{z}, \hat{L}_z] = 0$, therefore \hat{z} does not change \hat{L}_z eigenvalue, then $\langle \psi_{n\ell m} | \hat{z} | \psi_{n'\ell'm'} \rangle$ will vanish if $m \neq m'$ [can also be seen from the fact that $\psi_{n\ell m}^* z \psi_{n'\ell'm'} = e^{i(m'-m)\phi} \cdot f(r,\theta)$]. By this "selection rule", most of the matrix elements $\langle \Psi_i | \hat{z} | \Psi_j \rangle$ are vanishing except for (i,j) = (1,1) or (1,3) or (2,2) or (3,1) or (3,3) or (4,4).

Note that for $\langle \Psi_i | \hat{z} | \Psi_i \rangle = \int |\Psi_i(\mathbf{r})|^2 z \, \mathrm{d}^3 \mathbf{r}$, the integrand is an odd function under $\mathbf{r} \to -\mathbf{r}$, therefore all diagonal matrix elements $\langle \Psi_i | \hat{z} | \Psi_i \rangle = 0$.

So we only need to evaluate
$$\langle \Psi_3 | \hat{z} | \Psi_1 \rangle^* = \langle \Psi_1 | \hat{z} | \Psi_3 \rangle$$

$$= \int_0^\infty [R_{20}(r)]^* \cdot r \cdot R_{21}(r) \cdot r^2 \mathrm{d}r \times \int_0^\pi \sin\theta \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\phi \left[(\sqrt{\frac{1}{4\pi}})^* \cdot \cos\theta \cdot \sqrt{\frac{3}{4\pi}} \cos\theta \right]$$

$$= \frac{1}{4\sqrt{3}} \int_0^\infty r \cdot \frac{r}{a} \cdot (1 - \frac{r}{2a}) a^{-3} e^{-r/a} r^2 \mathrm{d}r \times \frac{1}{\sqrt{3}} = -3a$$

Problem 3. (30 points) Consider three spin-1/2 with spin angular momentum operators $\hat{\boldsymbol{S}}_i$, i=1,2,3 respectively. The entire Hilbert space is the tensor product of the three spin-1/2 Hilbert spaces, with tensor product basis $|S_{1z}\rangle|S_{2z}\rangle|S_{3z}\rangle$. For notation simplicity, label these basis as $|\uparrow\uparrow\uparrow\rangle$, $|\uparrow\uparrow\downarrow\rangle$, ..., $|\downarrow\downarrow\downarrow\rangle$. The spin-1/2 operators extended to the entire Hilbert space are, $\hat{\boldsymbol{S}}_1 = \frac{\hbar}{2}\boldsymbol{\sigma}\otimes\mathbb{1}\otimes\mathbb{1}$, $\hat{\boldsymbol{S}}_2 = \mathbb{1}\otimes\frac{\hbar}{2}\boldsymbol{\sigma}\otimes\mathbb{1}$, $\hat{\boldsymbol{S}}_3 = \mathbb{1}\otimes\mathbb{1}\otimes\frac{\hbar}{2}\boldsymbol{\sigma}$. Here $\mathbb{1}$ are 2×2 identity matrix (identity operator in one spin-1/2 Hilbert space). Define $\hat{\boldsymbol{S}}_{1+2} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2$, and $\hat{\boldsymbol{S}}_{1+2+3} = \hat{\boldsymbol{S}}_1 + \hat{\boldsymbol{S}}_2 + \hat{\boldsymbol{S}}_3$.

(a) (10pts) As a standard "addition of angular momentum" problem, Write down all

possible combinations of $\hat{\boldsymbol{S}}_{1+2}^2$ and $\hat{S}_{1+2,z}$ eigenvalues, and their simultaneous eigenstates $|S_{1+2}, S_{1+2,z}\rangle$ in terms of the above tensor product basis.

- (b) (10pts) Show that $\hat{\boldsymbol{S}}_{1+2+3}^2$ and $\hat{\boldsymbol{S}}_{1+2+3,z}$ and $\hat{\boldsymbol{S}}_{1+2}^2$ mutually commute.
- (c) (10pts*) Solve all possible combinations of the eigenvalues of the three observables in (b), and their simultaneous eigenstates $|S_{1+2+3}, S_{1+2+3,z}, S_{1+2}\rangle$ in terms of the tensor product basis. [Hint: $\hat{\mathbf{S}}_{1+2+3} = \hat{\mathbf{S}}_{1+2} + \hat{\mathbf{S}}_3$ as an addition of angular momentum problem]

Solution:

(a) If we consider only spin 1 and spin 2, this is the standard addition of two spin-1/2 (textbook Example 4.5), and they can form spin triplet($S_{1+2} = 1$) or singlet($S_{1+2} = 0$) states, the simultaneous eigenstates of $\hat{\boldsymbol{S}}_{1+2}^2$ and $\hat{S}_{1+2,z}$ in the two spin-1/2 space are

$$\begin{split} |S_{1+2} &= 1, S_{1+2,z} = 1\rangle = |\uparrow\uparrow\rangle, \\ |S_{1+2} &= 1, S_{1+2,z} = 0\rangle = \frac{1}{2}(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle), \\ |S_{1+2} &= 1, S_{1+2,z} = -1\rangle = |\downarrow\downarrow\rangle, \\ |S_{1+2} &= 0, S_{1+2,z} = 0\rangle = \frac{1}{2}(|\downarrow\uparrow\rangle - |\uparrow\downarrow\rangle). \end{split}$$

Including spin 3, the eigenstates of $\hat{\boldsymbol{S}}_{1+2}^2$ and $\hat{S}_{1+2,z}$ just become 2-fold degenerate $|S_{1+2}, S_{1+2,z}\rangle|S_{3z}\rangle$, where $S_{3z}=\uparrow,\downarrow$.

The results are summarized in the following table

	The results are summarized in the following table,					
S_{1+2}	$S_{1+2,z}$	$\hat{m{S}}_{1+2}^2$ eigenvalue	$\hat{S}_{1+2,z}$ eigenvalue	states		
1	1	$2\hbar^2$	\hbar	↑↑↑⟩ ↑↑↓⟩		
1	0	$2\hbar^2$	0	$\frac{1}{\sqrt{2}}(\downarrow\uparrow\uparrow\rangle + \uparrow\downarrow\uparrow\rangle)$ $\frac{1}{\sqrt{2}}(\downarrow\uparrow\downarrow\rangle + \uparrow\downarrow\downarrow\rangle)$		
1	-1	$2\hbar^2$	$-\hbar$	↑↑↑⟩ ↑↑↓⟩		
0	0	0	0	$\frac{1}{\sqrt{2}}(\downarrow\uparrow\uparrow\rangle - \uparrow\downarrow\uparrow\rangle)$ $\frac{1}{\sqrt{2}}(\downarrow\uparrow\downarrow\rangle - \uparrow\downarrow\downarrow\rangle)$		

(b) use

$$[\hat{S}_{1+2+3,a}, \hat{S}_{1+2,b}] = \sum_{c} i\hbar \epsilon_{abc} \hat{S}_{1+2,c},$$

$$\begin{split} & [\hat{S}_{1+2+3,a},\hat{S}_{1+2+3,b}] = \sum_{c} i\hbar \epsilon_{abc} \hat{S}_{1+2+3,c}, \\ & \text{and } [\hat{A}\hat{B},\hat{C}] = \hat{A}[\hat{B},\hat{C}] + [\hat{A},\hat{C}]\hat{B}. \\ & \text{we have} \\ & [\hat{S}_{1+2+3,a},\hat{\boldsymbol{S}}_{1+2}^2] = \sum_{b} [\hat{S}_{1+2+3,a},\hat{S}_{1+2,b}^2] \\ & = \sum_{b,c} (i\hbar \epsilon_{abc} \hat{S}_{1+2,c} \hat{S}_{1+2,b} + i\hbar \epsilon_{abc} \hat{S}_{1+2,b} \hat{S}_{1+2,c}) = \sum_{b,c} (i\hbar \epsilon_{abc} \hat{S}_{1+2,c} \hat{S}_{1+2,b} + i\hbar \epsilon_{acb} \hat{S}_{1+2,c} \hat{S}_{1+2,b}) \\ & = \sum_{b,c} (i\hbar \hat{S}_{1+2,c} \hat{S}_{1+2,b} (\epsilon_{abc} + \epsilon_{acb}) = 0. \\ & \text{in particular } [\hat{S}_{1+2+3,z},\hat{\boldsymbol{S}}_{1+2}^2] = 0, \\ & \text{similarly we have } [\hat{S}_{1+2+3,z},\hat{\boldsymbol{S}}_{1+2+3}^2] = 0, \\ & \text{finally } [\hat{\boldsymbol{S}}_{1+2+3}^2,\hat{\boldsymbol{S}}_{1+2}^2] = \sum_{a} [\hat{S}_{1+2+3,a}^2,\hat{\boldsymbol{S}}_{1+2}^2] = 0. \end{split}$$

(c) In the subspace spanned by $|S_{1+2} = 0, S_{1+2,z} = 0\rangle |S_{3z}\rangle$, this is the "addition of two spins of $S_{1+2} = 0$ and $S_3 = \frac{1}{2}$ ", so the total spin quantum number must be $S_{1+2+3} = \frac{1}{2}$, and obviously,

$$|S_{1+2+3} = \frac{1}{2}, S_{1+2+3,z} = +\frac{1}{2}, S_{1+2} = 0\rangle = |S_{1+2} = 0, S_{1+2,z} = 0\rangle |S_{3z} = \uparrow\rangle,$$

 $|S_{1+2+3} = \frac{1}{2}, S_{1+2+3,z} = -\frac{1}{2}, S_{1+2} = 0\rangle = |S_{1+2} = 0, S_{1+2,z} = 0\rangle |S_{3z} = \downarrow\rangle,$

In the subspace spanned by $|S_{1+2} = 1, S_{1+2,z}\rangle |S_{3z}\rangle$, this is the "addition of two spins of $S_{1+2} = 1$ and $S_3 = \frac{1}{2}$ ", the total spin quantum number can be $S_{1+2+3} = \frac{1}{2}$ or $\frac{3}{2}$, the relevant C.-G. coefficients have been used in homework Problem 4.40,

The $S_{1+2+3} = \frac{3}{2}$ states are (up to overall phase factor),

$$|S_{1+2+3} = \frac{3}{2}, S_{1+2+3,z} = +\frac{3}{2}, S_{1+2} = 1\rangle = |S_{1+2} = 1, S_{1+2,z} = 1\rangle |S_{3z} = \uparrow\rangle,$$

$$|S_{1+2+3} = \frac{3}{2}, S_{1+2+3,z} = +\frac{1}{2}, S_{1+2} = 1\rangle$$

$$= \frac{1}{\sqrt{3}} (\sqrt{2}|S_{1+2} = 1, S_{1+2,z} = 0\rangle |S_{3z} = \uparrow\rangle + |S_{1+2} = 1, S_{1+2,z} = 1\rangle |S_{3z} = \downarrow\rangle),$$

$$|S_{1+2+3} = \frac{3}{2}, S_{1+2+3,z} = -\frac{1}{2}, S_{1+2} = 1\rangle$$

= $\frac{1}{\sqrt{3}}(\sqrt{2}|S_{1+2} = 1, S_{1+2,z} = 0\rangle|S_{3z} = \downarrow\rangle + |S_{1+2} = 1, S_{1+2,z} = -1\rangle|S_{3z} = \uparrow\rangle),$

$$|S_{1+2+3} = \frac{3}{2}, S_{1+2+3,z} = -\frac{3}{2}, S_{1+2} = 1\rangle = |S_{1+2} = 1, S_{1+2,z} = -1\rangle |S_{3z} = \downarrow \rangle,$$

The $S_{1+2+3} = \frac{1}{2}$ states are (up to overall phase factor),

$$|S_{1+2+3} = \frac{1}{2}, S_{1+2+3,z} = +\frac{1}{2}, S_{1+2} = 1\rangle$$

= $\frac{1}{\sqrt{3}}(|S_{1+2} = 1, S_{1+2,z} = 0\rangle |S_{3z} = \uparrow\rangle - \sqrt{2}|S_{1+2} = 1, S_{1+2,z} = 1\rangle |S_{3z} = \downarrow\rangle),$

$$|S_{1+2+3} = \frac{1}{2}, S_{1+2+3,z} = -\frac{1}{2}, S_{1+2} = 1\rangle$$

$$= \frac{1}{\sqrt{3}} (\sqrt{2} |S_{1+2} = 1, S_{1+2,z} = -1\rangle |S_{3z} = \uparrow\rangle - |S_{1+2} = 1, S_{1+2,z} = 0\rangle |S_{3z} = \downarrow\rangle),$$

The results are summarized in the following table,

$\hat{oldsymbol{S}}_{1+2+3}^2$	$\hat{S}_{1+2+3,z}$	$oldsymbol{\hat{oldsymbol{S}}}^2_{1+2}$	state
$\frac{3}{4}\hbar^2$	$+\frac{\hbar}{2}$	0	$\frac{1}{\sqrt{2}}(\downarrow\uparrow\uparrow\rangle - \uparrow\downarrow\uparrow\rangle)$
$\frac{3}{4}\hbar^2$	$-\frac{\hbar}{2}$	0	$\frac{1}{\sqrt{2}}(\downarrow\uparrow\downarrow\rangle - \uparrow\downarrow\downarrow\rangle)$
$\frac{15}{4}\hbar^2$	$+\frac{3\hbar}{2}$	$2\hbar^2$	111
$\frac{15}{4}\hbar^2$	$+\frac{1\hbar}{2}$	$2\hbar^2$	$\frac{1}{\sqrt{3}}(\downarrow\uparrow\uparrow\rangle + \uparrow\downarrow\uparrow\rangle + \uparrow\uparrow\downarrow\rangle)$
$\frac{15}{4}\hbar^2$	$-\frac{1\hbar}{2}$	$2\hbar^2$	$\frac{1}{\sqrt{3}}(\downarrow\downarrow\uparrow\rangle + \downarrow\uparrow\downarrow\rangle + \uparrow\downarrow\downarrow\rangle)$
$\frac{15}{4}\hbar^2$	$-\frac{3\hbar}{2}$	$2\hbar^2$	\
$\frac{3}{4}\hbar^2$	$+\frac{1\hbar}{2}$	$2\hbar^2$	$\frac{1}{\sqrt{6}}(\downarrow\uparrow\uparrow\rangle + \uparrow\downarrow\uparrow\rangle - 2 \uparrow\uparrow\downarrow\rangle)$
$\frac{3}{4}\hbar^2$	$-\frac{1\hbar}{2}$	$2\hbar^2$	$\frac{1}{\sqrt{6}}(2 \downarrow\downarrow\uparrow\rangle - \uparrow\downarrow\uparrow\rangle - \uparrow\uparrow\downarrow\rangle)$

Problem 4. (30 points) Consider the 1D harmonic oscillator $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = \hbar\omega\left(\hat{a}_+\hat{a}_- + \frac{1}{2}\right)$ (see page 1). Define a new Hamiltonian $\hat{H}' = \hat{H} + \frac{\Delta}{2} \cdot (\hat{a}_+\hat{a}_+ + \hat{a}_-\hat{a}_-)$, where Δ is a small real parameter ($|\Delta| \ll \hbar\omega$).

- (a) (5pts) Write down the ground state energy E'_0 and wave function $\psi'_0(x)$ of \hat{H}' . [Hint: rewrite \hat{H}' in terms of \hat{x} , \hat{p}]
- (b) (10pts**) Expand ψ'_0 as a linear combination of eigenbasis ψ_n of \hat{H} (see page 1), $|\psi'_0\rangle = \sum_{n=0}^{\infty} c_n |\psi_n\rangle$. Try to compute all c_n . [Hint: c_0 can be computed by inner product; try to derive some recursion relation, compute the first few c_n and guess the general expression; or by analogy to coherent state, guess that $|\psi'_0\rangle = c_0 \exp(\alpha \hat{a}_+ \hat{a}_+) |\psi_0\rangle$ and solve α]
- (c) (5pts) Let the initial state be $\psi(x,t=0)=\psi_0'(x)$. Evolve it by \hat{H} (not \hat{H}'), namely $i\hbar \frac{\partial}{\partial t} \psi(x,t)=\hat{H}\psi(x,t)$. Measure \hat{H} under the state $\psi(x,t)$, what are the possible

measurement results and their corresponding probabilities.

(d) (10pts**) Evaluate expectation values $\langle \hat{x} \rangle$, $\langle \hat{p} \rangle$, $\langle \hat{x}^2 \rangle$, $\langle \hat{p}^2 \rangle$, under the state $\psi(x,t)$ defined in (c). Show that the uncertainty relation $\sigma_{\hat{x}}^2 \cdot \sigma_{\hat{p}}^2 \geq \frac{\hbar^2}{4}$ is still satisfied.

Solution:

(a)
$$\hat{H}' = (\frac{1}{2m} - \frac{\Delta}{2m\hbar\omega})\hat{p}^2 + (\frac{m\omega^2}{2} + \frac{m\omega\Delta}{2\hbar})\hat{x}^2$$
 is still a harmonic oscillator, $\hat{H}' = \frac{\hat{p}^2}{2m'} + \frac{m'\omega'^2}{2}\hat{x}^2$, with $m' = \frac{m}{1-\Delta/\hbar\omega}$, $\omega' = \omega\sqrt{1-(\frac{\Delta}{\hbar\omega})^2}$.

Therefore

$$\begin{split} E_0' &= \frac{1}{2}\hbar\omega' = \frac{1}{2}\hbar\omega\sqrt{1 - (\frac{\Delta}{\hbar\omega})^2}, \\ \psi_0'(x) &= (\frac{m'\omega'}{\pi\hbar})^{1/4}e^{-\frac{m'\omega'}{2\hbar}x^2} = (\frac{1+\Delta/\hbar\omega}{1-\Delta/\hbar\omega})^{1/8}(\frac{m\omega}{\pi\hbar})^{1/4}\exp(-\sqrt{\frac{1+\Delta/\hbar\omega}{1-\Delta/\hbar\omega}}\frac{m\omega}{2\hbar}x^2) \end{split}$$

(b)
$$c_n \equiv \langle \psi_n | \psi_0' \rangle$$
.

Note $\psi_n(x)$ is an odd function for odd n, while $\psi'_0(x)$ is even, then $c_n = 0$ for odd n. So $\psi'_0 = \sum_{k=0}^{\infty} c_{2k} |\psi_{2k}\rangle$.

$$c_0 \equiv \langle \psi_0 | \psi_0' \rangle = \int \left(\frac{m'\omega'}{\pi\hbar}\right)^{1/4} e^{-\frac{m'\omega'}{2\hbar}x^2} \cdot \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2} \, \mathrm{d}x$$

$$= \left[\frac{4m'\omega'm\omega}{(m'\omega'+m\omega)^2}\right]^{1/4} = \left(\frac{4\sqrt{1-(\Delta/\hbar\omega)^2}}{(\sqrt{1-\Delta/\hbar\omega}+\sqrt{1+\Delta/\hbar\omega})^2}\right)^{1/4}$$

$$= \left[1 - \left(\frac{\sqrt{1+\Delta/\hbar\omega}-\sqrt{1-\Delta/\hbar\omega}}{\sqrt{1-\Delta/\hbar\omega}+\sqrt{1+\Delta/\hbar\omega}}\right)^2\right]^{1/4} = \left[1 - \left(\frac{\Delta/\hbar\omega}{1+\sqrt{1-(\Delta/\hbar\omega)^2}}\right)^2\right]^{1/4}$$

Method #1:

Consider $\hat{H}'|\psi_0'\rangle = E_0'|\psi_0'\rangle$, namely

$$\sum_{k=0}^{\infty} \left[\hbar \omega (2k + \frac{1}{2}) c_{2k} |\psi_{2k}\rangle + \frac{\Delta}{2} c_{2k} \sqrt{(2k+2)(2k+1)} |\psi_{2k+2}\rangle + \frac{\Delta}{2} c_{2k} \sqrt{(2k)(2k-1)} |\psi_{2k-2}\rangle \right]$$

$$= E_0' \sum_{k=0}^{\infty} c_{2k} |\psi_{2k}\rangle.$$

Therefore,

$$\hbar\omega(2k+\frac{1}{2})c_{2k} + \frac{\Delta}{2}c_{2k-2}\sqrt{(2k)(2k-1)} + \frac{\Delta}{2}c_{2k+2}\sqrt{(2k+2)(2k+1)} = E'_0c_{2k} \qquad (*)$$

$$c_2 = -\frac{1}{\Delta/\sqrt{2}}\cdot c_0\cdot \left(\frac{1}{2}\hbar\omega - \frac{1}{2}\hbar\omega'\right) = -c_0\cdot \frac{1}{\sqrt{2}}\cdot \frac{\Delta}{\hbar\omega + \hbar\omega'} \text{ (use } \omega^2 - \omega'^2 = \Delta^2/\hbar^2)$$

$$c_4 = \frac{1}{\sqrt{3}\Delta}\cdot \left[c_2\cdot \left(\frac{1}{2}\hbar\omega' - \frac{5}{2}\hbar\omega\right) - \frac{\Delta}{2}\cdot\sqrt{2}c_0\right] = \frac{1}{\sqrt{3}\Delta}\cdot c_0\cdot \frac{\Delta}{\sqrt{2}}\cdot \frac{\frac{3}{2}\hbar\omega - \frac{3}{2}\hbar\omega'}{\hbar\omega + \hbar\omega'} = c_0\cdot \frac{\sqrt{3}}{\sqrt{8}}\cdot \frac{\Delta^2}{(\hbar\omega + \hbar\omega')^2}$$
By mathematical induction, one can show that $c_{2k} = c_0\cdot (-1)^k\sqrt{\frac{(2k-1)!!}{(2k)!!}\cdot \left(\frac{\Delta}{\hbar\omega + \hbar\omega'}\right)^k}$. From the (*) equation,

$$\begin{split} c_{2k+2} &= \frac{2}{\sqrt{(2k+2)(2k+1)}\Delta} \cdot \left[c_{2k} \cdot \left(\frac{1}{2}\hbar\omega' - (2k+\frac{1}{2})\hbar\omega \right) - \frac{\Delta}{2} \cdot \sqrt{(2k)(2k-1)}c_{2k-2} \right] \\ &= -\frac{2}{\sqrt{(2k+2)(2k+1)}\Delta} \cdot c_{2k} \cdot \left[\left((2k+\frac{1}{2})\hbar\omega - \frac{1}{2}\hbar\omega' \right) - \frac{\Delta}{2} \cdot \frac{\hbar\omega + \hbar\omega'}{\Delta} \cdot (2k) \right] \\ &= -\frac{2}{\sqrt{(2k+2)(2k+1)}\Delta} \cdot c_{2k} \cdot \frac{2k+1}{2} \cdot \left(\hbar\omega - \hbar\omega' \right) = -\sqrt{\frac{2k+1}{2k+2}} \left(\frac{\Delta}{\hbar\omega + \hbar\omega'} \right) \cdot c_{2k} \\ &= c_0 \cdot (-1)^{k+1} \sqrt{\frac{(2k+1)!!}{(2k+2)!!}} \cdot \left(\frac{\Delta}{\hbar\omega' + \hbar\omega} \right)^{k+1} \end{split}$$

(not required) As a consistency check,

$$\sum_{k} |c_{2k}|^2 = |c_0|^2 \sum_{k} \frac{(2k+1)!!}{(2k+2)!!} (\frac{\Delta}{\hbar\omega' + \hbar\omega})^{2k} = |c_0|^2 \cdot [1 - (\frac{\Delta}{\hbar\omega' + \hbar\omega})^2]^{-1/2} = 1$$

Method #2:

use the guessed form $|\psi_0'\rangle = c_0 \exp(\alpha \hat{a}_+ \hat{a}_+) |\psi_0\rangle$

$$= c_0 \sum_{k=0}^{\infty} \frac{\alpha^k}{k!} (\hat{a}_+)^{2k} |\psi_0\rangle = c_0 \sum_{k=0}^{\infty} \frac{\alpha^k}{k!} \sqrt{(2k)!} |\psi_{2k}\rangle = c_0 \sum_{k=0}^{\infty} (\frac{\alpha}{2})^k \sqrt{\frac{(2k-1)!!}{(2k)!!}} |\psi_{2k}\rangle$$

define ladder operators for \hat{H}' , $\hat{a}'_{\pm} = \sqrt{\frac{m'\omega'}{2\hbar}}(\hat{x} \mp \frac{i}{m'\omega'}\hat{p})$, then $\hat{a}'_{-}|\psi'_{0}\rangle = 0$.

 \hat{a}'_{-} is a linear combination of \hat{a}_{\pm} ,

$$\hat{a}'_{-} = \frac{1}{2} \left(\sqrt{\frac{m'\omega'}{m\omega}} + \sqrt{\frac{m\omega}{m'\omega'}} \right) \hat{a}'_{-} + \frac{1}{2} \left(\sqrt{\frac{m'\omega'}{m\omega}} - \sqrt{\frac{m\omega}{m'\omega'}} \right) \hat{a}'_{+}$$

define

$$u = \frac{1}{2} \left(\sqrt{\frac{m'\omega'}{m\omega}} + \sqrt{\frac{m\omega}{m'\omega'}} \right) = \frac{m'\omega' + m\omega}{2\sqrt{m'\omega'm\omega}},$$

$$v = \frac{1}{2} \left(\sqrt{\frac{m'\omega'}{m\omega}} - \sqrt{\frac{m\omega}{m'\omega'}} \right) = \frac{m'\omega' - m\omega}{2\sqrt{m'\omega'm\omega}},$$

Then
$$\hat{a}'_{-}|\psi'_{0}\rangle = (u\hat{a}_{-} + v\hat{a}_{+})c_{0}\sum_{k=0}^{\infty} (\frac{\alpha}{2})^{k} \sqrt{\frac{(2k-1)!!}{(2k)!!}} |\psi_{2k}\rangle$$

$$= c_0 \sum_{k=0}^{\infty} \left(\frac{\alpha}{2}\right)^k \sqrt{\frac{(2k-1)!!}{(2k)!!}} \left(u\sqrt{2k}|\psi_{2k-1}\rangle + v\sqrt{2k+1}|\psi_{2k+1}\rangle\right)$$

$$= c_0 \sum_{k=0}^{\infty} (\frac{\alpha}{2})^k \sqrt{\frac{(2k+1)!!}{(2k)!!}} (\frac{\alpha}{2} \cdot u + v) |\psi_{2k+1}\rangle$$

Therefore
$$\alpha = -2 \cdot \frac{v}{u} = -2 \cdot \frac{m'\omega' - m\omega}{m'\omega' + m\omega} = -2 \cdot \frac{\sqrt{1 + \Delta/\hbar\omega} - \sqrt{1 - \Delta/\hbar\omega}}{\sqrt{1 + \Delta/\hbar\omega} + \sqrt{1 - \Delta/\hbar\omega}}$$

$$=-2\cdot\frac{2\Delta/\hbar\omega}{2+2\sqrt{1-(\Delta/\hbar\omega)^2}}=-2\cdot\frac{\Delta}{\hbar\omega+\hbar\omega'}$$

$$c_n = c_0(\frac{\alpha}{2})^k \sqrt{\frac{(2k-1)!!}{(2k)!!}} = c_0(-1)^k \sqrt{\frac{(2k-1)!!}{(2k)!!}} (\frac{\Delta}{\hbar\omega + \hbar\omega'})^k.$$

From
$$1 = \sum_{k} |c_{2k}|^2 = |c_0|^2 \sum_{k=0}^{\infty} \frac{(2k-1)!!}{(2k)!!} (\frac{\Delta}{\hbar\omega + \hbar\omega'})^{2k} = |c_0|^2 [1 - (\frac{\Delta}{\hbar\omega + \hbar\omega'})^2]^{-1/2}$$
, we get $c_0 = [1 - (\frac{\Delta}{\hbar\omega + \hbar\omega'})^2]^{1/4}$.

(c)
$$|\psi(x,t)\rangle = \sum_{k=0}^{\infty} c_{2k} e^{-iE_{2k}t/\hbar} |\psi_{2k}\rangle = \sum_{k=0}^{\infty} c_{2k} e^{-i(2k+\frac{1}{2})\omega t} |\psi_{2k}\rangle,$$

therefore possible \hat{H} measurement results are $(2k + \frac{1}{2})\hbar\omega$,

with probability
$$|c_{2k}|^2 = \left[1 - \left(\frac{\Delta}{\hbar\omega' + \hbar\omega}\right)^2\right]^{1/2} \frac{(2k+1)!!}{(2k+2)!!} \left(\frac{\Delta}{\hbar\omega' + \hbar\omega}\right)^{2k}$$
.

(d) Obviously that $\psi(x,t)$ is an even function of x, therefore

$$\langle \hat{x} \rangle = 0$$
 and $\langle \hat{p} \rangle = 0$ under $\psi(x, t)$.

$$\begin{split} \hat{x}^2 &= \frac{\hbar}{2m\omega} (2\hat{a}_+ \hat{a}_- + 1 + \hat{a}_+ \hat{a}_+ + \hat{a}_- \hat{a}_-), \\ \hat{p}^2 &= \frac{\hbar m\omega}{2} (2\hat{a}_+ \hat{a}_- + 1 - \hat{a}_+ \hat{a}_+ - \hat{a}_- \hat{a}_-), \\ \text{so we just need to evaluate } \langle \psi(x,t) | 2\hat{a}_+ \hat{a}_- + 1 | \psi(x,t) \rangle, \text{ and } \langle \psi(x,t) | \hat{a}_+ \hat{a}_+ + \hat{a}_- \hat{a}_- | \psi(x,t) \rangle, \\ \langle \psi(x,t) | 2\hat{a}_+ \hat{a}_- + 1 | \psi(x,t) \rangle &= \sum_{k=0}^{\infty} |c_{2k}|^2 \cdot (2 \cdot 2k + 1) \\ &= \langle \psi(x,t=0) | 2\hat{a}_+ \hat{a}_- + 1 | \psi(x,t=0) \rangle = \langle \psi_0' | 2\hat{a}_+ \hat{a}_- + 1 | \psi_-' \rangle \\ &\text{from } 2\hat{a}_+ \hat{a}_- + 1 &= \frac{2}{\hbar\omega} (\frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2} \hat{x}^2), \\ &\text{and } \langle \psi_0' | \hat{x}^2 | \psi_-' \rangle &= \frac{\hbar}{2m'\omega'}, \langle \psi_0' | \hat{p}^2 | \psi_-' \rangle &= \frac{\hbar m'\omega'}{2}, \\ &\text{we have } \langle \psi(x,t) | 2\hat{a}_+ \hat{a}_- + 1 | \psi(x,t) \rangle &= \frac{m'\omega'}{2m\omega'} + \frac{m\omega}{2m'\omega'} &= \frac{1}{2} (\sqrt{\frac{1+\Delta/\hbar\omega}{1-\Delta/\hbar\omega}} + \sqrt{\frac{1-\Delta/\hbar\omega}{1+\Delta/\hbar\omega}}]) \\ &= \frac{1}{\sqrt{1-(\Delta/\hbar\omega)^2}} \end{split}$$

Note that all c_{2k} are real numbers, $\langle \psi(x,t)|\hat{a}_{+}\hat{a}_{+}+\hat{a}_{-}\hat{a}_{-}|\psi(x,t)\rangle$

$$= \sum_{k=0}^{\infty} \left[c_{2k+2}^* \sqrt{(2k+2)(2k+1)} c_{2k} e^{2i\omega t} + c_{2k}^* \sqrt{(2k+1)(2k+2)} c_{2k+2} e^{-2i\omega t} \right]$$

$$= \sum_{k=0}^{\infty} 2\sqrt{(2k+2)(2k+1)}c_{2k}c_{2k+2}\cos(2\omega t)$$

$$= \langle \psi(x, t = 0) | \hat{a}_{+} \hat{a}_{+} + \hat{a}_{-} \hat{a}_{-} | \psi(x, t = 0) \rangle \cdot \cos(2\omega t) = \langle \psi'_{0} | \hat{a}_{+} \hat{a}_{+} + \hat{a}_{-} \hat{a}_{-} | \psi'_{0} \rangle \cdot \cos(2\omega t)$$
$$\hat{a}_{+} \hat{a}_{+} + \hat{a}_{-} \hat{a}_{-} = \frac{2}{\Lambda} [\hat{H}' - \hbar \omega (\hat{a}_{+} \hat{a}_{-} + \frac{1}{2})]$$

therefore
$$\langle \psi_0' | \hat{a}_+ \hat{a}_+ + \hat{a}_- \hat{a}_- | \psi_0' \rangle = \frac{2}{\Delta} \left[\frac{\hbar \omega'}{2} - \hbar \omega \left(\frac{m' \omega'}{4m\omega} + \frac{m\omega}{4m'\omega'} \right) \right]$$

= $\frac{\hbar \omega}{\Delta} \left(\sqrt{1 - (\Delta/\hbar\omega)^2} - \frac{1}{2} \left[\sqrt{\frac{1 + \Delta/\hbar\omega}{1 - \Delta/\hbar\omega}} + \sqrt{\frac{1 - \Delta/\hbar\omega}{1 + \Delta/\hbar\omega}} \right] \right)$

$$= \frac{\hbar\omega}{\Delta} \left(\sqrt{1 - (\Delta/\hbar\omega)^2} - \frac{1}{2} \left[\sqrt{\frac{1 + \Delta/\hbar\omega}{1 - \Delta/\hbar\omega}} + \sqrt{\frac{1 - \Delta/\hbar\omega}{1 + \Delta/\hbar\omega}} \right] \right)$$

$$= \frac{\hbar\omega}{\Delta} \left[\sqrt{1 - (\Delta/\hbar\omega)^2} - \frac{1}{\sqrt{1 - (\Delta/\hbar\omega)^2}} \right] = -\frac{\Delta}{\hbar\omega} \cdot \frac{1}{\sqrt{1 - (\Delta/\hbar\omega)^2}}$$

Finally,

$$\begin{split} \langle \psi(x,t) | \hat{x}^2 | \psi(x,t) \rangle &= \frac{\hbar}{2m\omega} \frac{1}{\sqrt{1 - (\Delta/\hbar\omega)^2}} [1 - \frac{\Delta}{\hbar\omega} \cos(2\omega t)], \\ \langle \psi(x,t) | \hat{p}^2 | \psi(x,t) \rangle &= \frac{\hbar m\omega}{2} \frac{1}{\sqrt{1 - (\Delta/\hbar\omega)^2}} [1 + \frac{\Delta}{\hbar\omega} \cos(2\omega t)], \end{split}$$

The uncertainty relation is still satisfied,

$$\begin{split} &\sigma_x^2 \cdot \sigma_p^2 = \langle \hat{x}^2 \rangle \cdot \langle \hat{p}^2 \rangle = \frac{\hbar^2}{4} \frac{1}{1 - (\Delta/\hbar\omega)^2} [1 - (\frac{\Delta}{\hbar\omega})^2 \cos^2(2\omega t)] \\ &\geq \frac{\hbar^2}{4} \frac{1}{1 - (\Delta/\hbar\omega)^2} [1 - (\frac{\Delta}{\hbar\omega})^2] = \frac{\hbar^2}{4} \end{split}$$