Customer Loyalty Classification

Purpose: Reward Loyalty

Problem to Solve

Elo, one of the biggest credit card company, is running a loyalty program.

How to identify loyal customers?

Process & Tools

01 | Data

02 | Exploratory Data Analysis

03 | Model Selection

04 | Visualization

Data

Unique Credit Cards

200K

Customers are classified as "Loyal", "Neutral" and "Disloyal"

Total Transactions Observed

20M

Data was joined from four different datasets use SQL

Features

30+

Include transaction, merchants and card information

All data is simulated according to certain rules to resemble normal operation

Loyals Buy More Often & Buy More

Loyal customers have higher purchase frequency

Loyal customers have higher average purchase amount

Model Selection

Model	Precision
Bayes	0.19
Decision Tree	0.18
KD Tree	0.17
Random Forest	0.20

Thank you

Future Work

• Explore other machine learning algorithms such as Gradient Boosting, Neural Networks, etc.

Visualization

Customer Loyalty

FREQUENCY AMOUNT
5

Visualization

Customer Loyalty

FREQUENCY		AMOUNT
1	~	5

Feature Importance Analysis

Model optimization

Tried the following methods to improve model performance, but only made minor difference:

- Undersampling
- Oversampling

EDA

- Credit card age is similar among classes
- Average purchase amount per use of card is similar

Model Selection

Model	Accuracy	Precision	
Logistic regression	Encountered convergence issue. Tried: solver, max_iter, C, reduce features		
Bayes	0.54	0.19	
SVM	Encountered convergence issue. Tried: solver, max_iter, C		
Decision Tree	0.55	0.18	
KNN	Computational expensive for large dataset, used KD Tree instead		
KD Tree			
Random Forest	0.57	0.20	