Исследование коронавирусной инфекции

Автор: Золотарев Даниил Александрович, факультет МКН

СПбГУ.

email: danyzolotarev@gmail.com

Данные: https://ourworldindata.org/coronavirus

Исходный код: https://github.com/DanzillaPepe/covid-19 analysis

Цель: для нахождения закономерностей изучить влияние предоставленных в базе данных параметров на заразность и опасность коронавирусной инфекции.

Выбор методов

Для достижения поставленной цели будет использоваться метод линейной регрессии, метод k-ближайших соседей и алгоритм имитации отжига для нахождения локального экстремума функции. Язык программирования — Python 3.9, используемые модули: pandas, numpy, matplotlib, sklearn.

Выбор параметров

В качестве параметров будем использованы основные статичные показатели состояния стран, находящиеся в предоставленной базе данных. Они не меняются со временем. Их список будет приведён ниже. Для измерения же динамических показателей, сильно меняющихся с течением времени, введём несколько новых параметров, посчитанных из формулы оптимального (с точки зрения среднеквадратичного отклонения) коэффициента линейной регрессии.

• Средний прирост прививок при распространении заболевания:

$$k_{vaccinations/cases} = k_{v/c} = \frac{cov(X, Y)}{var(X)},$$

$$X = total_cases,$$

 $Y = total_vaccinations,$
 $cov(X, Y) - ковариация X и Y,$
 $var(X) - вариация X (дисперсия).$

• Средний прирост смертей при распространении заболевания:

$$k_{deaths/cases} = k_{d/c} = \frac{cov(X,Y)}{var(X)},$$
 где $X = total_cases,$ $Y = total_deaths.$

Для обоснования ввода этих параметров нужно количественно оценить, насколько данные коррелируют. Будем использовать коэффициент корреляции Пирсона, рассчитываемой по формуле:

$$r = \frac{cov(X,Y)}{\sigma_X \sigma_Y},$$

 σ_X и σ_Y — среднеквадратичные отклонения X и Y соотв. Среднее значение коэффициента Пирсона, посчитанного в 244 странах, составило 0. 88 и 0. 94 для $k_{v/c}$ и $k_{d/c}$ соответственно, что позволяет делать выводы о взаимосвязи исследуемых параметров относительно друг друга.

Замечание. Используются именно коэффициенты линейной регрессии, а не обычные частные при делении соответствующих параметров, т.к. мы считаем, что линейная регрессия более устойчива к пробелам в данных и имеет бо льшую предсказательную силу. На деле оказывается, что относительная разность этих коэффициентов и простых частных равна порядка 30% и 43% для $k_{v/c}$ и $k_{d/c}$ соответственно (под относительной разностью имеется в виду модуль разности значений, делённый на одно из них).

Корреляция нововведенных параметров с известными

Параметры $k_{v/c}$ и $k_{d/c}$ были посчитаны для каждой страны, основываясь на последних возможных данных. Можно посмотреть на зависимость среднего числа заболевших

(total_cases_per_million) от нового коэффициента $k_{v/c}$ во всех странах (График 1).

Распределение похоже на экспоненциальное. Поэтому прологарифмируем теперь ось Y и попробуем построить линейную регрессию (График 2).

Коэффициент Пирсона r=0.92, что является показателем наличия довольно сильной антикоррелляции.

Рассчитаем коэффициент детерминации R^2 по формуле:

$$R^2 = 1 - \frac{var(\varepsilon)}{var(Y)},$$

где

ε – распределение остатков:

$$\varepsilon = Y - (k * X + b),$$

 $Y = total_cases_per_million,$

k и b — параметры полученной регрессии Y = kx + b.

В нашем случае коэффициент оказывается равен 0. 84. То есть около 84% дисперсии доли заболевших в стране можно объяснить темпом, с которым жители делают прививки.

Посмотрим теперь, как плотность населения

(population_density) коррелирует с коэффициентом смертности

 $k_{d/c}$ (<u>График 3</u>). Здесь также неплохой коэффициент корреляции -

0.71 и коэффициент детерминации $R^2 = 0.51$, значит примерно половина дисперсии роста смертности объясняется плотностью населения.

График 1

График 2

График 3

Статичные параметры

Отберём те параметры, данные по которым представлены в достаточном количестве стран.

Показатели состояния здоровья населения (будут отмечаться зелёным):

- Процент больных диабетом (diabetes prevalence)
- Смертность от сердечно-сосудистых заболеваний (cardiovasc_death_rate)
- Средний возраст (median_age)
- Доля жителей старше 65 лет (aged_65_older)
- Доля жителей старше 70 лет (aged_70_older)

Социально-экономические и санитарные показатели (будут отмечаться синим):

- Плотность населения (population_density)
- ВВП на душу населения (gdp per capita)
- Число мест в больнице на каждую 1000 человек (hospital_beds_per_thousand)

- Коэффициент прививания $k_{v/c}$ (k_v/c)
- Средний уровень мер по сдерживанию вируса (stringency index)

Метод k-ближайших соседей

Чтобы понять, какие данные больше всего определяют опасность вируса, построим kNN-модель для числа соседей k=5. Профильтровав все страны по наличию этих данных, получаем 148 стран. Из них выбираются ~90% стран — данные для обучения и ~10% оставшихся стран — тестовых данных. В задаче kNN существенность параметра можно соотнести с его "весом", мультипликатором при пересчёте расстояний для выбора соседей:

$$d(X_1, X_2) = \sqrt{\sum_{i=1}^{n} w_i (X_1^i - X_2^i)^2},$$

 $X_{_{1}},\ X_{_{2}}$ — два набора параметров, $w_{_{i}}$ — вес параметра i,

 X_{1}^{i} , X_{2}^{i} — i параметр 1 и 2 набора параметров,

n -число параметров.

Предсказываемыми параметрами будут общее число заболевших на миллион человек (total_cases_per_million) и число смертей на миллион человек (total_deaths_per_million)

Использование имитации отжига

Для подбора оптимальных весов используется алгоритм имитации отжига. На каждом шаге совершается локальное изменение весов. Это прибавление к случайно выбранному из них случайного числа в диапазоне [-1,1]. Далее пересчитывается значение коэффициента детерминации R^2 для новых весов. Если результат улучшился, он сразу принимается и становится текущим состоянием. Условие принятия при ухудшенном значении выглядит так:

$$rnd \leq e^{\frac{new_score - old_score}{t}},$$

rnd — случайное число в диапазоне [0, 1], new_score , old_score — старое и новое значение $R^2(weights)$, t — текущая температура.

Данное условие проверяется, если new_score оказывается не больше old_score , и если оно оказывается выполнено, то всё равно старому значению old_score присваивается новое значение new_score и поиск продолжается. С уменьшением температуры условие срабатывает всё реже. Начальная температура tMax имеет значение среднего изменения показателя R^2 , выведенного эмпирическим способом и оказавшееся равным 0. 05. Меняется температура каждый раз домножением на коэффициент tMult, выбираемые в зависимости от желаемого времени работы. В нашем случае он составлял $1 - 4 * 10^{-7}$ или $1 - 1 * 10^{-7}$. Минимальная температура tMin = 0.1 * tMax. Алгоритм продолжается, пока текущая температура не упадёт ниже значения минимальной температуры tMin.

Результаты

Для заболеваемости (<u>Таблица 1</u>) наиболее значимыми оказались возраст, количество больных диабетом, плотность населения и лишь затем темп прививания.

Для смертельности (<u>Таблица 2</u>) же наоборот, возраст имеет куда меньшую значимость, тогда как на первое место встаёт прививание, ВВП, число мест в больницах на 1000 человек, плотность населения и меры сдерживания. Сердечно-сосудистые заболевания в обоих случаях играют незначительную роль в 7% и 4%.

Таблица 1

Целевой параметр	total_cases_per_million	
3 начение R^2	0.90	

Nº	Имя параметра	Bec	Доля
1	aged_65_older	621.26	24%
2	aged_70_older	442.50	17%
3	diabetes_prevalence	386.34	15%
4	median_age	273.72	11%
5	population_density	207.91	8%
6	k_v/c	204.10	8%
7	cardiovasc_death_rate	164.89	7%
8	stringency_index	151.77	6%
9	hospital_beds_per_thou sand	87.93	3%
10	gdp_per_capita	10.85	1%

Таблица 2

Целевой параметр	total_deaths_per_millio n
3 начение R^2	0.85

No	Имя параметра	Bec	Доля
1	k_v/c	1694.61	24%
2	gdp_per_capita	1516.79	21%
3	hospital_beds_per_thou sand	1136.59	16%
4	population_density	894.36	13%
5	stringency_index	677.34	9%
6	diabetes_prevalence	610.48	9%
7	cardiovasc_death_rate	290.15	4%

8	aged_70_older	249.74	3%
9	aged_65_older	30.31	1%
10	median_age	1.78	0%

Вывод

Как мы увидели из обработанных данных, на заболеваемость бо льшее влияние имеют факторы здоровья: возраст, хронические заболевания.

В то же время смертность зависит скорее от социально-экономических и санитарных условий: прививание, ВВП на душу населения, число мест в больницах на 100 человек, меры по сдерживанию. Естественно предположить, что в обоих случаях не учтены некоторые дополнительные параметры, такие, как климат с одной стороны или экономические издержки с другой.