L_1 : $x = 3 - t$, $y = 4 + 4t$, $z = 1 + 2t$ L_2 : $x = t$, $y = 3$, $z = 2t$	L_1 : $x = 3 - t$, $y = 4 + 4t$, $z = 1 + 2t$ $p_1(1, -2, 0)$, $p_2(1, 0, -2)$ and $p_3(-1, 5, 0)$. L_2 : $x = t$, $y = 3$, $z = 2t$		x - y + 2z = 0 and $2x + 3y - z + 1 = 0$.		
	$\overrightarrow{P_1P_2} = \langle 0, 2, -2 \rangle \qquad \overrightarrow{\overrightarrow{P_1P_2}}$	× P,P3 = <0+14, -(0-4), 0+4>	$\hat{n}_1 = \langle 1, -1, 2 \rangle$ $\hat{n}_1 \times \hat{n}_2 = \langle 1 - 6, -(-1 - 4), 3 + 2 \rangle$		
$\hat{n}_1 = \langle -1, 4, 2 \rangle$	$\overrightarrow{P_1P_3} = \langle -2, 7, 0 \rangle$				
$\hat{\eta}_1 = \langle 1, 0, 2 \rangle$			$\hat{n}_2 = \langle 2, 3, -1 \rangle$ = $\langle -5, 5, 5 \rangle$		
$\hat{n}_{1} \times \hat{n}_{1} = \left\langle 8 - 0, -(-2 - 2), 0 - 4 \right\rangle$		(x-1) + 4(y+2) + 4(z-0) = 0			
= <8,4,-4>		e - 14 + 4y +8 + 4Z = 0	for the xy-plane Z = 0		
	» 14.	x + 4y + 4z - 6 = 0	x-y=0 and $2x+3y+1=0$		
a passing point over (2 is P2 (0, 3,0)			$x,y = -\frac{1}{5}, -\frac{1}{5}$		
the egn of the plane contains Lz is as follows					
8(x-0)+4(y-3)-4(z-0)=0			$(-\frac{1}{5}, -\frac{1}{5}, 0) \text{ is a penning point even that}$	line	
=> 8x + 4y-12 - 4z = 0			and (-5,5,5) is the parallel vector		
> 8x + 4y - 4z - 12 = 0					
			the egn of the live:		
a passing point over L, is P,(3,4,1)			$x = -\frac{1}{5} - 5t$ $y = -\frac{1}{5} + 5t$ $z = 5t$		
: the distance between the two lines					
		c)			
$= \frac{\left \left\{ 8 \cdot 3 + 4 \cdot 4 - 4 \cdot 1 - 12 \right\} \right }{\left\{ 8^2 + 4^2 + 4^2 \right\}} = \sqrt{6}$		z			
J, , i ,			$\overrightarrow{A} = \langle 2,7,9 \rangle \qquad \qquad \overrightarrow{i} \qquad \overrightarrow{A} \cdot \overrightarrow{j} = \overrightarrow{A} \cos \theta$		
a) Find the area of the triangle with vertices $P_1(1,-1,0)$			$\Rightarrow \langle 2, 7, 9 \rangle \cdot \langle 0, 1, 0 \rangle = \overrightarrow{A}\rangle$	(0) (0)	
a) Find the area of the triangle with vertices $P_1(1,-1,0)$ $P_2(-1,0,3)$ and $P_3(0,4,1)$.			>x => cos 0 =		
$\overrightarrow{P_1}, \overrightarrow{P_2} = \langle -2, 1, 3 \rangle$ $\overrightarrow{P_1}, \overrightarrow{P_2} \times \overrightarrow{P_1}, \overrightarrow{P_3} = \langle 1-15, -(-2+3), -10+1 \rangle$			$\sqrt{2^2+7^2+9^2}$		
P ₁ P ₃ = <-1, 5, 1> = <-14, -1, -9>					
		i) Find the angle between vector A	$\Rightarrow \theta = \cos(\theta.609) = 0.32$		
onea of the triangle = 1 142+12+92 = 8.34		ii) Find a unit vector that is orthogo			
			\vec{n} $\vec{A} \times \hat{\vec{1}} = \langle 2, 7, 9 \rangle$		
b) Find the vector component (orthogonal projection) of $q = < 1, -1, 5 >$ along $p = < 4, 0, -1 >$ and orthogonal to p .			× < 1, 0, 0>		
-, -, -, -, -, -, -, -, -, -, -, -, -, -					
$\hat{\rho} = \left\langle \frac{4}{\sqrt{\pi}}, 0, -\frac{1}{\sqrt{17}} \right\rangle$			= <0,-(0-9),0-7>		
7					
$\operatorname{proj}_{\vec{p}}\vec{q} = \left\langle \left\langle 1, -1, 5 \right\rangle \cdot \left\langle \frac{4}{\sqrt{17}}, 0, -\frac{1}{\sqrt{17}} \right\rangle \right\rangle \left\langle \frac{4}{\sqrt{17}} \right\rangle$		of g onthogonal to p	= (0,9,-7)		
$= \left\{ \begin{array}{c} \frac{c_1}{\sqrt{17}} + 0 - \frac{5}{\sqrt{17}} \right\} \left\langle \frac{4}{\sqrt{17}}, 0, -\frac{1}{\sqrt{17}} \right\rangle$	> = q	- proj p q			
N. P. C.	= <1,	$\langle -1, 5 \rangle - \langle -\frac{4}{17}, 0, \frac{1}{17} \rangle$	$\operatorname{unit}\left(\left\langle 0,9,-7\right\rangle \right)=\frac{1}{\sqrt{130}}\left\langle 0,9,-7\right\rangle$		
$= -\frac{1}{\sqrt{17}} \left\langle \frac{4}{\sqrt{17}}, 0, -\frac{1}{\sqrt{17}} \right\rangle$		$(1 + \frac{4}{17}, -1, 5 - \frac{1}{17})$			
$=$ $\left\langle -\frac{4}{17}, 0, \frac{1}{17} \right\rangle$					
= \	= <	$\left(\begin{array}{c}21\\\overline{17}\end{array},-1,\begin{array}{c}84\\\overline{17}\end{array}\right)$			

c) Find an equation of a line that is intersection of the planes

x - y + 2z = 0 and 2x + 3y - z + 1 = 0.

a) Determine the distance between the given skew lines

 L_1 : x = 3 - t, y = 4 + 4t, z = 1 + 2t

b) Find the equation of the plane passing through the points

 $p_1(1,-2,0), \ p_2(1,0,-2) \ {
m and} \ p_3(-1,5,0).$