МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА Ј	№51
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ	
ПРЕПОДАВАТЕЛЬ	
Доцент, КТН	А.В.Окатов
должность, уч. степень, подпизвание	инициалы, фамилия
ОТЧЕТ О ЛАБОРАТО	РНОЙ РАБОТЕ №4
ИССЛЕДОВАНИЕ ТРІ	ИГГЕРНЫХ СХЕМ
по курсу: СХЕМ	ОТЕХНИКА
СТУДЕНТ ГР. № 5912	И.К. Лобач
номер группы	подпись, инициалы, дата фамилия

<u>Цель работы</u>: изучение алгоритмов работы и временных диаграмм переходов важнейших триггерных схем.

1. Исследовать работу одноступенчатого асинхронного RS-триггера с прямым и инверсным управлением в системе схемотехнического моделирования Місго-Сар. Для этого в отчете надо привести соответствующие таблицы истинности, полученные (путем минимизации) логические выражения, построенные по ним схемы RS-триггеров с прямым и инверсным управлением. В системе схемотехнического моделирования Місго-Сар построить временные диаграммы работы триггеров. По временным диаграммам надо ОБЪЯСНИТЬ (описать) логику работы как одноступенчатого асинхронного RS-триггера с прямым управлением, так и одноступенчатого асинхронного RS-триггера с инверсным управлением (а не просто «опубликовать» временную диаграмму без каких-либо к ней пояснений). Сравнить результаты и особенности логики работы обоих вариантов реализации асинхронного RS-триггера.

Таблица истинности одноступенчатого асинхронного RS-триггера с прямым управлением (активный переключающий сигнал 1):

Таблица 1 - Таблица истинности асинхронного RS-триггера

S^n	R^n	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

Тогда логическое выражение для одноступенчатого асинхронного RS-триггера с прямым управлением имеет вид:

$$Q^{n+1} = \overline{S^n} \, \overline{R^n} Q^n + S^n \overline{R^n} \, \overline{Q^n} + S^n \overline{R^n} Q^n$$

Минимизируем с помощью карт Карно:

Таблица 2 - Карты Карно

S^nR^n	00	01	11	10
Q^n				
0	0	0	(-	1
1	1	0	-	1

После склейки единиц получаем:

$$Q^{n+1} = S^n + \overline{R^n}Q^n$$

Таблица 3 - Карты Карно

S^nR^n	00	01	11	10
O^n				
Y				
0	0	0	-	1
	J			
1	1	0	- J	1

После склейки нулей получаем:

$$\overline{Q^{n+1}} = R^n + \overline{S^n} \, \overline{Q^n}$$

Представим в базисе ИЛИ-НЕ:

$$\overline{Q^{n+1}} = \overline{S^n + \overline{R^n}Q^n} = \overline{S^n + \overline{R^n} + \overline{Q^n}}$$

$$Q^{n+1} = \overline{R^n + \overline{S^n} \, \overline{Q^n}} = \overline{R^n + \overline{S^n + Q^n}}$$

Схема асинхронного RS-триггера с прямым управлением:

Схема 1 - Асинхронный RS-триггер с прямым управлением

Важно уточнить, что триггер является схемой с обратными связями. Поэтому для корректной работы его надо предварительно установить в начальное состояние. Для этой цели добавляется 3-входовый логический элемент, на 3-й вход которого подать отдельный (и однократный!) управляющий сигнал Set — сигнал установки триггера в 1. Для данной схемы этот однократный сигнал подается 1 us. Далее начинается подача управляющих сигналов Rn и Sn.

Временная диаграмма:

График 1 - Временная диаграмма RS-триггера с прямым управлением

По результатам временной диаграммы можно сделать вывод о корректной работе схемы, т.к. значения Q^{n+1} совпадают с соответствующими значениями из таблицы истинности.

Логику работы асинхронного RS-триггера с прямым управлением можно описать следующим образом: при $R^n=0$ и $S^n=0$ состояние триггера в момент времени n+1 Q^{n+1} равно предыдущему, т.е. $Q^{n+1}=Q^n$. При $R^n=0$ и $S^n=1$, в триггере устанавливается 1, т.е. $Q^{n+1}=1$. При $R^n=1$ и $S^n=0$, триггер сбрасывается в 0, т.е. $Q^{n+1}=0$. Комбинация $R^n=1$ и $S^n=1$ является запрещенной.

Оценим время задержки:

График 2 - Время задержки

Так, время задержки составило 19 наносекунд.

Переход в базис И-НЕ:

$$Q^{n+1} = S^n + \overline{R^n}Q^n = \overline{\overline{S^n \cdot \overline{R^n}Q^n}}$$

$$\overline{Q^{n+1}} = R^n + \overline{S^n} \, \overline{Q^n} = \overline{\overline{R^n} \cdot \overline{\overline{S^n}} \, \overline{Q^n}}$$

Схема асинхронного RS-триггера с инверсным управлением:

Схема 2 - Асинхронный RS-триггер с инверсным управлением

Важно уточнить, что тригтер является схемой с обратными связями. Поэтому для корректной работы его надо предварительно установить в начальное состояние. Для этой цели добавляется 3-входовый логический элемент, на 3-й вход которого подать отдельный (и однократный!) управляющий сигнал Reset — сигнал установки тригтера в 0. Для данной схемы этот однократный сигнал подается 1 us. Далее начинается подача управляющих сигналов notRn и notSn.

График 3 - Временная диаграмма асинхронного RS-триггера с инверсным управлением.

По результатам временной диаграммы можно сделать вывод о корректной работе схемы, т.к. значения Q^{n+1} совпадают с соответствующими значениями из таблицы истинности.

Логику работы асинхронного RS-триггера с инверсным управлением можно описать следующим образом: теперь управляющий сигнал 0, значит при $R^n=1$ и $S^n=1$ состояние триггера в момент времени n+1 Q^{n+1} равно предыдущему, т.е. $Q^{n+1}=Q^n$. При $R^n=0$ и $S^n=1$, в триггер сбрасывается в 0, т.е. $Q^{n+1}=0$. При $R^n=1$ и $S^n=0$, в триггере устанавливается 1, т.е. $Q^{n+1}=1$. Комбинация $R^n=0$ и $S^n=0$ является запрещенной.

Оценим время задержки:

График 4 - Время задержки

Таким образом, время задержки составляет 19 наносекунд.

Выводы: асинхронные RS-триггеры с прямым и инверсным управлением имеют одинаковую задержку, однако RS-триггер с инверсным управлением имеет больше ЛЭ в схеме.

- 2. Промоделировать работу синхронного одноступенчатого RS-триггера с прямым и инверсным управлением. Сравнить результаты работы соответствующих RS-триггеров, в также сравнить их с RS-триггерами из п.1.
 - 2.1. Синхронный одноступенчатый RS-триггер с прямым управлением.

Синхронный одноступенчатый RS-триггер с прямым управлением строится на основе асинхронного одноступенчатого RS-триггера *с инверсным управлением* и входной логики для синхронизации.

Таблица 4 - Истинности синхронного RS-триггера

S^n	R^n	С	Q^n	Q^{n+1}
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	-
1	1	1	1	-

Тогда логическое выражение:

$$Q^{n+1} = \overline{S^n} \, \overline{R^n} \, \overline{C} Q^n + \, \overline{S^n} \, \overline{R^n} C Q^n + \, \overline{S^n} R^n \overline{C} Q^n + \, S^n \overline{R^n} \, \overline{C} Q^n + \, S^n \overline{R^n} C \overline{Q^n} + S^n \overline{R^n} C \overline{Q^n}$$

Минимизируем с помощью карт Карно:

Таблица 5 - Карты Карно

S^nR^n	00	01	11	10
CQ^n				
00			-	
01	1	1	-	1
11	_1		<u>-</u>	
10			<u> </u>	1

После склейки получаем:

$$Q^{n+1} = \overline{C}Q^n + \overline{R^n}Q^n + S^nC = Q^n(\overline{C} + \overline{R^n}) + S^nC = Q^n\overline{CR^n} + S^nC$$

Таблица 6 - Карты Карно

S^nR^n	00	01	11	10
CQ^n				
00	[0	0	-	0
01	1	1	-	1
11	1	0	-)	1
10	0	0		1

После склейки нулей получаем:

$$\overline{Q^{n+1}} = \overline{S^n} \, \overline{Q^n} + R^n C + \overline{C} \, \overline{Q^n} = \overline{Q^n} \big(\overline{S^n} + \overline{C} \big) + R^n C = \overline{Q^n} \, \overline{S^n C} + R^n C$$

В базисе И-НЕ:

$$Q^{n+1} = \overline{\overline{Q^n \overline{CR^n}} \cdot \overline{S^n C}}$$

$$\overline{Q^{n+1}} = \overline{\overline{Q^n} \, \overline{S^n C} \cdot \overline{R^n C}}$$

Схема 3 - Синхронный RS-триггер с прямым управлением

График 5 – Временная диаграмма синхронного RS-триггера р с прямым управлением

Оценим время задержки:

График 6 - Время задержки

Время задержки составляет 27 наносекунд.

Логику триггера можно описать так: при C=0, независимо от значений R^n и S^n триггер не поменяет свое состояние, т.е. $Q^{n+1}=Q^n$. При C=1, $R^n=0$ и $S^n=1$ в RS-триггере установится 1, т.е. $Q^{n+1}=1$, при C=1, $R^n=1$ и $S^n=0$ RS-триггер сбросится в 0, т.е. $Q^{n+1}=0$, по-прежнему комбинация C=1, $R^n=1$ и $S^n=1$ является запрещенной.

2.2. Синхронный одноступенчатый RS-триггер с инверсным управлением.

Представим в базисе ИЛИ-НЕ:

$$\overline{Q^{n+1}} = \overline{Q^n \overline{CR^n} + S^n C} = \overline{\overline{Q^n} + CR^n} + \overline{\overline{S^n} + \overline{C}} = \overline{\overline{Q^n} + \overline{C} + \overline{R^n}} + \overline{\overline{S^n} + \overline{C^n}}$$

$$Q^{n+1} = \overline{\overline{Q^n} \overline{S^n C} + R^n C} = \overline{\overline{Q^n} + \overline{\overline{S^n} + \overline{C}}} + \overline{\overline{R^n} + \overline{C}}$$

Схема 4 - Синхронный одноступенчатый RS-триггер с инверсным управлением

График 7 – Временная диаграмма синхронного одноступенчатого RS-триггера с инверсным управлением

Оценим время задержки:

График 8 -Время задержки

Так, время задержки 30 наносекунд.

Теперь управляющий сигнал 0 и логику триггера можно описать так: при C=1, независимо от значений R^n и S^n триггер не поменяет свое состояние, т.е. $Q^{n+1}=Q^n$. При C=0, $R^n=1$ и $S^n=0$ в RS-триггере установится 1, т.е. $Q^{n+1}=1$, при C=0, $R^n=0$ и $S^n=1$ RS-триггер сбросится в 0, т.е. $Q^{n+1}=0$, по-прежнему комбинация C=0, $R^n=0$ и $S^n=0$ является запрещенной.

Выводы: синхронный одноступенчатый RS-триггер с прямым управлением формирует результат быстрее, чем RS-триггер с инверсным управлением. Помимо этого RS-триггер с инверсным управлением имеет больше ЛЭ в схеме.

Сравнивая результаты с асинхронным RS-триггером, можно заметить, что время задержки на асинхронном RS-триггере меньше. Главное же отличие в формировании результата состоит в том, что в синхронных триггерах используется отдельный вход для синхронизирующего сигнала. Синхронный RS-триггер отличаются от асинхронного RS-триггера наличием дополнительной входной цепи синхронизации. Поэтому, в отличие от асинхронного RS-триггера, синхронный RS-триггер может перейти в новое состояние по внешним сигналам управления только при появлении активного уровня разрешающего синхросигнала С.

3. Построить схему синхронного двухступенчатого RS-триггера, в системе схемотехнического моделирования Micro-Cap проанализировать временную диаграмму работы синхронного двухступенчатого RS-триггера, по временной диаграмме сравнить логику работы данного триггера с одноступенчатым RS-триггером.

Схема 5 - Синхронный двухступенчатый RS-триггер

График 9 - Временная диаграмма синхронного двухступенчатого RS-триггера

Оценим время задержки:

График 10 - Время задержки

Время задержки составляет 30 наносекунд.

Выводы: из временной диаграммы хорошо видно, что в отличие от одноступенчатого RS-триггера, переключение двухступенчатого RS-триггера происходит не при поступлении активного уровня синхросигнала C, а лишь по его окончании. Формирование же результата осуществляется дольше. ЛЭ в схеме также используется больше.

4. Согласно п.1 на основе синхронного двухступенчатого RS-триггера проанализировать в системе схемотехнического моделирования Micro-Cap логику работы D-триггера.

Таблица истинности для D-триггера:

Таблица 7 - Таблица истинности D-триггера

D^n	С	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Q^{n+1} = \overline{C} \ \overline{D^n} Q^n + \overline{C} D^n Q^n + \ C D^n \overline{Q^n} + \ C D^n Q^n = \overline{C} Q^n \big(\overline{D^n} + D^n \big) + C D^n \big(\overline{Q^n} + Q^n \big) = \ \overline{C} Q^n + \ C D^n Q^n + C D^n Q^n +$$

Из логического выражения следует, что принцип работы D-триггера можно писать следующим образом: когда C=0 триггер не меняет свое состояние, т.е. $Q^{n+1}=Q^n$, а при C=1 состояние триггера станет равным D^n , т.е. $Q^{n+1}=D^n$.

Для обеспечения логики работы D-триггера у двуступенчатого RS- триггера вход S надо объединить (через инвертор) с входом R. Таким образом, исключается возможность возникновения запрещенного состояния в RS-триггере.

Схема 6 - D-триггер

График 11 - Временная диаграмма D-триггера

Анализируя временную диаграмму D-триггера, убеждаемся в том, что действительно при $\mathcal{C}=1$ состояние триггера равно D^n , в противном случае состояние не меняется.

Так же сделаем вывод о корректной работе схемы, т.к. значения Q^{n+1} из временной диаграммы совпадают со значениями из таблицы.

5. Согласно п.1 на основе синхронного двухступенчатого RS-триггера собрать схему Т-триггера, проанализировать в системе схемотехнического моделирования Місго-Сар логику работы Т-триггера.

Таблица истинности для синхронного двуступенчатого Т-триггера:

Таблица 8 - Таблица истинности Т-триггера

T^n	С	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$\begin{split} Q^{n+1} &= \overline{T^n} \; \overline{C} Q^n + \; \overline{T^n} C Q^n + \; T^n \overline{C} Q^n + T^n C \overline{Q^n} = C \big(\overline{T^n} Q^n + \; T^n \overline{Q^n} \big) + \\ &+ \overline{C} \; Q^n \big(\overline{T^n} + T^n \big) = C (T^n \oplus Q^n) + \overline{C} Q^n \end{split}$$

Из логического выражения следует, что принцип работы Т-триггера можно писать следующим образом: когда C=0 триггер не меняет свое состояние, т.е. $Q^{n+1}=Q^n$, а при C=1 состояние триггера станет равным $Q^{n+1}=\left(T^n \oplus Q^n\right)$.

Схема 7 - Т-триггер

График 12 - Временная диаграмма Т-триггера

Анализируя временную диаграмму D-триггера, убеждаемся в том, что действительно при C=1 состояние триггера равно $T^n \oplus Q^n$, в противном случае состояние не меняется.

Так же сделаем вывод о корректной работе схемы, т.к. значения Q^{n+1} из временной диаграммы совпадают со значениями из таблицы.

6. Согласно п.1 проверить логику работы универсального JK-триггера для следующих режимов работы: режима RS-триггера, Т-триггера и D-триггера.

Таблица 9 - Таблица истинности ЈК-триггера

J^n	K^n	С	Q^n	Q^{n+1}
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1

1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

$$Q^{n+1} = \overline{C}Q^n \left(J^n \left(K^n + \overline{K^n} \right) + \overline{J^n} \left(K^n + \overline{K^n} \right) \right) + CQ^n \left(\overline{J^n} \, \overline{K^n} + J^n \overline{K^n} \right) + CQ^n \left(\overline{J^n} \, \overline{K^n} + J^n \overline{K^n} \right) + CQ^n \left(\overline{J^n} \, \overline{K^n} + J^n \overline{K^n} \right) = \overline{C}Q^n + C(Q^n \overline{K^n} + \overline{Q^n} J^n)$$

Из логического выражения следует, что принцип работы ЈК-триггера можно писать следующим образом: когда C=0 триггер не меняет свое состояние, т.е. $Q^{n+1}=Q^n$, а при C=1 состояние триггера меняется так: если $K^n=1$, а $J^n=0$, то состояние триггера станет равным 0 (независимо от того, каким было Q^n), т.е. $Q^{n+1}=0$, если $K^n=0$, а $J^n=1$ то состояние триггера станет равным 1 (независимо от того, каким было Q^n), т.е. $Q^{n+1}=1$, если $Q^n=1$ то состояние триггера станет равным $Q^n=1$, т.е. $Q^n=1$ 0 то состояние триггера станет равным $Q^n=1$ 0, т.е. $Q^n=1$ 1 то состояние триггера станет равным $Q^n=1$ 1.

Схема 8 - ЈК-триггер

Анализируя логическое выражение, заметим, что в зависимости от комбинаций значений переменных J^n и K^n , ЈК-триггер может работать в режиме RS-триггера, в режиме Т-триггера и в режиме D-триггера.

Когда $J^n=1$, $K^n=0$, $J^n=0$, $K^n=1$ или $J^n=0$, $K^n=0$ ЈК-триггер работает в режиме RS-триггера.

График 13 - Временная диаграмма ЈК-триггера

Когда $J^n = 1$, $K^n = 1$ или $J^n = 0$, $K^n = 0$ ЈК-триггер работает в режиме Т-триггера.

График 14 - ЈК-триггер работает в режиме Т-триггера

Когда $J^n=1$, $K^n=0$ или $J^n=0$, $K^n=1$ ЈК-триггер работает в режиме D-триггера.

График 15 - ЈК-триггер работает в режиме D-триггера

Выводы: в ходе выполнения лабораторной работы Исследовать работу одноступенчатого асинхронного RS-триггера с прямым и инверсным управлением, привела соответствующие таблицы истинности, логические выражения, а также построила временные диаграммы работы триггеров.

Промоделировала работу синхронного одноступенчатого RS-триггера с прямым и инверсным управлением.

Построила схему синхронного двухступенчатого RS-триггера.

Собрала схему и проанализировала в системе схемотехнического моделирования Місго-Сар логику работы D-триггера.

Собрала схему Т-триггера, проанализировала логику работы Т-триггера.

Проверила логику работы универсального JK-триггера для следующих режимов работы: режима RS-триггера, Т-триггера и D-триггера.