EFC 2

Cláudio Ferreira Carneiro - RA 263796 October 20, 2019

1 Parte 1 – Classificação binária

O código referente às atividades se encontra no repositório: https://github.com/carneirofc/IA006.git

1.1 a) Características dos atributos de entrada

Os histogramas dos atributos em sua forma original são apresentados nas figuras 1, 2 e 3. A correlação dos atributos é apresentada na forma de um *heatmap* 4 e por gráficos de dispersão 5 (na diagonal principal é exibido o histograma do atributo). Percebe-se que determinados atributos apresentam alto grau de correlação.

Figure 1: Classificação binária: Histograma dos atributos (1)

Figure 2: Classificação binária: Histograma dos atributos (2)

Figure 3: Classificação binária: Histograma dos atributos (3)

Figure 4: Classificação binária: Mapa de calor da correlação dos atributos

Figure 5: Classificação binária: Correlação dos atributos em gráfico de dispersão

1.2 b) Curva ROC e F_1 -medida

 $\acute{\rm E}$ utilizado o método Z-score para normalização dos dados. Tal método foi escolhido pois favorece o progresso de algoritmos baseados no gradiente descendente, uma vez que deixa as curvas de nível da superfície de erro mais circulares.

O processo de treinamento tem como critério de parada a variação da função de custo. Quando o decréscimo por década do custo for inferior a 10^{-8} é terminado o processo de treinamento.

Parâmetros de treinamento, sendo η a taxa de aprendizagem e tol o limiar para o término do processo:

$$\eta = 10^{-2}$$
$$tol = 10^{-8}$$

A curva ROC é obtida consideranto o rótulo 1 como classe positiva.

Figure 6: Classificação binária: Curva ROC relativa aos dados de Teste

Figure 7: Classificação binária: F_1 -medida relativa aos dados de Teste

1.3 c) Melhor threshold, matriz de confusão e acurácia

Para a escolha do valor de threshold será utilizada a F_1 -medida, de forma que o recall e precisão do classificador tenham a mesma importância.

Conforme apresentado na figura 7, o valor de threshold para máxima F_1 -medida é obtido com:

$$threshold = 0.657$$

 $F_1 - medida \approx 0.9757$

Classe Estimada

		reminino	Masculino
\mathbf{Classe}	Feminino	1245	22
Verdadeira	Masculino	39	1228

Table 1: Matriz de confusão para o threshold de 0.657

	Precisão	Recall	F1-medida	Amostras
Feminino	0.969626	0.982636	0.976088	1267
Masculino	0.982400	0.969219	0.975765	1267
Média	0.976013	0.975927	0.975926	2534
Média ponderada	0.976013	0.975927	0.975926	2534

Table 2: Desempenho do classificador para o threshold de 0.657

Utilizando o limiar de máxima F_1 -medida, a classificação do dataset de testes é apresentada conforme a matriz de confusão 1. O classificador apresentou acurácia de aproximadamente 0.975927. Outras medidas de desempenho como precisão, recall e F_1 -medida são apresentadas na tabela 2. As medidas de desempenho são apresentadas por rótulo (Masculino e Feminino), na forma de uma média e como média ponderada pelo número de amostras de cada classe.

2 Parte 2 – Classificação multi-classe

Será abordado um problema de classificação multi-classe com 6 rótulos, conforme a tabela 3, e 561 atributos.

2.1 a) Regressão logística

Para a classificação multi-classe é adotada a softmax, sendo gerado um modelo capaz de produzir Q saídas que representam a probabilidade do padão apresentado pertencer a uma classe específica. Tal modelo apresenta maior robustez que as abordagens um-contra-todos e um-contra-um.

Na etapa de pré-processamento dos dados, o dataset de entrada foi normalizado utilizando a z-score e os rótulos (dataset de saída) transformados com o processo de one hot encoding. O processo de treinamento do modelo foi finalizado com o modelo classificando corretamente 98,89% dos padrões de treinamento.

0	1	2	3	4	5
Caminhada	Subindo Escadas	Descendo Escadas	Sentado	Em pé	Deitado

Table 3: Rótulos

	Caminhada	Subindo Escadas	Descendo Escadas	Sentado	Em pé	Deitado
Caminhada	479	8	9	0	0	0
Subindo	8	460	3	0	0	0
Escadas	0	400	9	U	U	
Descendo	11	33	376	0	0	0
Escadas	11	55	570	U		
Sentado	0	2	0	428	58	3
${f Em}{f p}{f e}$	0	0	0	16	516	0
Deitado	0	0	0	0	24	513

Table 4: Matriz de confusão, dataset testes com o modelo explorando a função softmax

	Precisão	Recall	F1-medida	Medidas
Caminhada	0.961847	0.965726	0.963783	496
Subindo	0.914513	0.976645	0.944559	471
Escadas	0.914515	0.970045	0.944559	4/1
Descendo	0.969072	0.895238	0.930693	420
Escadas	0.909072	0.090200	0.930093	420
Sentado	0.963964	0.871690	0.915508	491
${f Em}{f pe}$	0.862876	0.969925	0.913274	532
Deitado	0.994186	0.955307	0.974359	537
Acurácia			0.940618	2947
Média macro	0.944410	0.939089	0.940363	2947
Média ponderada	0.943691	0.940618	0.940761	2947

Table 5: Métricas de desempenho do classificador

 $\mathbf A$ matriz de confusão apresentada na tabela 4 foi obtida com o teste do modelo.

Será adotada como métrica para avaliação de desempenho a F_1 – score macro, por dar a mesmam importância para a precisão e o recall do estimador e pelo tratamento igualitário a todas as classes.

2.2 b) kNN

Para o uso do kNN, os datasets de entrada são normalizados utilizando a z-score e o melhor valor para o número de vizinhos k é encontrado com o uso da técnica de validação cruzada K-Fold, com 5 folds.

O melhor resultado de classificação na validação cruzada é obtido com k=26 vizinhos, conforme é mostrado no gráfico 8. A figura 8 apresenta o valor médio da quantidade de estimações incorretas obtidos nos 5 folds para k vizinhos.

Figure 8: kNN: Média das estimações incorretas dos K-Folds para k vizinhos

Ao término da etapa de testes é obtida a matriz de confusão 6.

	Caminhada	Subindo Escadas	Descendo Escadas	Sentado	Em pé	Deitado
Caminhada	489	2	5	0	0	0
Subindo	40	419	3	0	0	0
Escadas	49	419	9	U	U	0
Descendo	67	59	294	0	0	0
Escadas	07	99	294	U	U	0
Sentado	0	2	0	387	100	2
Em pé	0	0	0	21	511	0
Deitado	0	0	0	10	18	509

Table 6: kNN: Matriz de confusão

 ${\rm Os}$

	Precisão	Recall	$\mathbf{F1} ext{-}\mathbf{medida}$	Medidas
Caminhada	0.808264	0.985887	0.888283	496
Subindo	0.869295	0.889597	0.879328	471
Escadas	0.809293	0.009991	0.619326	4/1
Descendo	0.973510	0.700000	0.814404	420
Escadas	0.975510	0.700000	0.014404	420
Sentado	0.925837	0.788187	0.851485	491
${f Em}{f p\acute{e}}$	0.812401	0.960526	0.880276	532
Deitado	0.996086	0.947858	0.971374	537
Acurácia			0.885307	2947
Média macro	0.897566	0.878676	0.880859	2947
Média ponderada	0.896129	0.885307	0.883887	2947

Table 7: kNN: Métricas de desempenho na etapa de testes