머신러닝 모델을 활용한

Titanic 사고 생존자 예측

목차

	1.	주제선택 및 프로젝트 개요
ı	1.	

2. 머신러닝이란?

3. 프로젝트 구조

4. 결과 및 응용

| | 5. 느낀점

1. 주제선택 및 프로젝트 개요

가 . 주제선택 : 왜 하필 타이타닉?

Intro to Machine Learning

Congratulations! You did it - now get your certificate!

Getting Started With Titanic

Create your own Kaggle Notebooks to organize your work in competitions.

1. 주제선택 및 프로젝트 개요

나 . 프로젝트 개요

탑승자	2,224명
사망자	1,514명
생존자	710명

어떤 사람이 생존확률이 높았을까? 여자, 아이, 상류층

주어진 데이터를 바탕으로 생존에 영향을 미친 요읶을 파악

1. 주제선택 및 프로젝트 개요

나 . 프로젝트 개요

train_data: 승객번호 1~891 번

Passengerld 승객번호	Survived 생존여부	100000000000000000000000000000000000000	Name 이름	Sex 성별	Age 나이	SibSp 동승한 형제자매, 배우자	Parch 동승한 부모, 자식	Ticket 티켓번호	Fare 티켓요금	Cabin 객실번호	Embarked 중선지
1	0	3	Braund, N	M male	22	1	0	A/5 21171	7.25		5
2	- 1	1	Cumings	I female	38	1	0	PC 17599	71.2833	C85	C
3	1	3	Heikkiner	n, female	26	0	0	STON/OZ.	7.925		S
4	1	1	Futrelle, I	M female	35	1	0	113803	53.1	C123	S
5	0	3	Allen, Mr	. male	35	0	0	373450	8.05		S
6	0	3	Moran, N	Ar male		0	. 0	330877	8.4583		Q

test_data: 승객번호 892~1309 번

Passengerld 승객번호	Pclass 객실등급	Name 이름	Sex 성별	Age L[0]	SibSp 동승한 형제자매, 배우자	Parch 동승한 부모, 자식	Ticket 티켓번호	Fare 티켓요금	Cabin 객실번호	Embarked 승선지
892	3	Kelly, Mr.	male	34.5	0	0	330911	7.8292		Q
893	3	Wilkes, Mr	female	47	1	0	363272	7		S
894	2	Myles, Mr.	male	62	0	0	240276	9.6875		Q
895	3	Wirz, Mr. /	male	27	0	0	315154	8.6625		S
896	3	Hirvonen,	female	22	1	1	3101298	12.2875		S
897	3	Svensson,	male	14	0	0	7538	9.225		S

train_data 의 Survived 값 분포를 이용해서

test_data 의 Survived 값을 예측

2. 머신러닝이란?

입력받은 데이터 (train_data) 에서 패턴을 찾아낸 후 그 패턴으로 모르는 데이터의 (test_data) 값 (target value) 을 예측하는 알고리즘

Titanic 문제의 경우 test_data 의 Survived 값을 모른다고 가정 또는 앞으로의 사고를 예측한다고 생각

라.필요시나,다단계반복

사용된 패키지와 모듈

```
# data analysis and wrangling
import pandas as pd
                              낯익은 친구들
import numpy as np
import random as rnd
# visualization
import seaborn as sns
                                  플롯 (그래프 그리기)
import matplotlib.pyplot as plt
%matplotlib inline
# machine learning
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
                                                    머싞러닝
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
```

안 쓸 변수(Name, Passengerld) 제거

train_df = train_df.drop(['Name', 'Passengerld'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine=[train_df.test_df]
train_df.shape, test_df.shape

((891, 9), (418, 9))

성별(sex) 변수를 숫자 범주형 변수로 변환

for dataset in combine:

dataset['Sex'] = dataset['Sex'].map({'female':1, 'male':0}) astype(int)

train_df.head()

for dataset in combine:

25	W. C. C. W. C. C. C.									
	Survived	Polass	Sex	Age	SibSp	Parch	Fare	Embarked	Title	
0	0	3	0	22.0	1	0	7.2500	s	1.	
1	1	1	1	38.0	1	0	71.2833	С	3	
2	1	3	1	26.0	0	0	7,9250	s	2	
3	1	1	1	35.0	1	0	53.1000	s	3	
A	0		0	25.0	0	0	0.0000	e	4	

데이터전처리 (시각화 제외)

연령(Age) 변수를 범주형 변수로 변환

일의로 5개 그룹을 지진 # out이라는 setted 이용하면 구간별로 나눌 수 있을 train.df['AgeBand']=pd.gut(train.df['Age'].5)

	AgeBand	Survived
0	(-0.08, 16.0]	0.550000
1	(16.0, 32.0]	0.337374
2	(32.0, 48.0)	0.412037
	Company of the Control of	

3 (48.0, 64.0) 0.434783

4 (64.0, 80.0) 0.090909

SibSp와 Parch를 가족과의 동반여부를 알 수 있는 새로운 변수로 통합

train_df[['AgeSand', 'Survived']] groupty(['AgeSand'].as_index=False) mean() sort_values(by='AgeBand', ascending=True)

SiDSP와 Parch를 가족파의 중인어우를 될 수 있는 새로운 인구도 종합

for dataset in combine:
dataset['Farch'] + dataset['BibGo'] + dataset['Farch'] + 1

	FamilySize	Survived
3	4	0,724138
2	3	0.578431
1	2	0.552795
6	7	0.333333
0	1	0.303538
4	5	0.200000
5	6	0.136364
7	8	0,000000
_	5.7	

train_df[['FenilySize', 'Survived']] groupby(['FenilySize'], as_index=False) near().sort_values(by='Survived', ascending=False)
FamilySize Survived
3 4 0.724138 Age 변수와 Polass를 곱한 Age*class 변수 생성

3	Age*Class	Age	Polass
0	66	22	3
1	38	36	1
ż	78	26	3
3	35.	35	1
4	105	35	3
	76	25	3
6	54	54	1
7	6	2	3
8	81	27	3
9	26	14	2

* for dataset in combine # 1707872 SHEMINGT BYS dataset[Auer Class 1 = dataset Aue + dataset Polass

그밖에도...

승선지 데이터를 범주형으로 변홖

티켓요금 결측값 처리 후 범주형으로 변홖

a', 'Age', 'Polana']] head(10) 解(a)を世界 ひやた 望の者、三世界 ひやた 雪の者(音

AgeBand를 바탕으로 Age를 범주형 변수로 바꿔준 후, AgeBand변수는 제거

dataset loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1

dataset loc[dataset['Age'] <= 16, 'Age'] = 0

승선지(Ebmarked) 변수를 최빈값으로 대체

freq_port = train_df.Emberked.dropne() mode()[0] freq_port

for dataset in combine: # E & SRE MESO SE MECH SENSE SENSE FOR dataset["Entarted"] fill ins(free_port)

train.df(['Entarted', 'Sarrived']] groupby(['Entarted'], se_index=False).sens() sort_values(by='Sarvived', seconding=False)

÷		Embarked	Survived
	0	C	0.563571
	1	Q	0.389610
	2	S	0.339009

(32.0, 48.0)

데이터전처리 (시각화)다. 승선지·성별과생존률 (train_data) 가 . 좌석과 생존률 (train_data) grid= sns FacetGrid(train of row="Embarked") grid map(sns.pointplot, 'Polass', 'Survived', 'Sex') or id- sns. FacetGrid(train_df, col-'Survived', row-'Pclass') grid add legend() grid map(alt hist, 'Age', bins=20) grid add legend() Embarked = 0 Embarked = 5 Embarked = C 생존 <seaborn.exisgrid.FacetGrid at 0xc1b8c30> 10 10 Primis = 1 / Survived = 1 Pritors = 1 | Survived = 0 남 0.6 0.8 R 0.6 2 06 male 1등석 2 04 S 04 · fernal 0.2 사망 여 Pclass Polacis = 2 | Survived = 0 Polacs = 2 | Servived = 1 Embarked = 5 (Survived = 0 firmarked = 5.1 harvived = 1. 생존 2 등석 나 . 나이와 생존률 (train_data) Polanz = 3 | Survived = 0 Polass = 3 | Survived = 1. Embarked = C | Survived = 0 Emberked = C | Survived = I. g= sns.Facet@rid(train_df, cof='Survived') g.map(plt.hist, 'Age', bins+20) <seaborn.axisgrid.FacetGrid at 0xc1b9850> 3 등석 읶원 Survived = 0 Survived = 1

20

Findanted = 0 | Survived = 8

Entacked = 0 | Survived = 1

가 . 결과

나이와 등급을 곱핚 값을 갖는 열을 만든 후

```
for dataset in combine:
    dataset['Age*Class'] = dataset.Age * dataset.Pclass
train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10)
```

	Age*Class	Age	Pclass
0	3	1	3
1	2	2	1
2	3	1	3
3	2	2	1
4	6	2	3
5	3	1	3
6	3	3	1
7	0	0	3
8	3	1	3
9	0	0	2

모든 열과 생존률 갂의 상관관계를 계산함

```
coeff_df = pd.DataFrame(train_df.columns.delete(0))
coeff_df.columns = ['Feature']
coeff_df["Correlation"] = pd.Series(logreg.coef_[0])
coeff_df.sort_values(by='Correlation', ascending=False)
```

	Feature	Correlation
1	Sex	2.201527
5	Title	0.398234
2	Age	0.287163
4	Embarked	0.261762
6	IsAlone	0.129140
3	Fare	-0.085150
7	Age*Class	-0.311201
0	Pclass	-0.749007

성별값이 클수록 (여성) 생존률 UP

좌석등급값 작으면 (1 등석) 생존률 UP

가 . 결과

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	78.00
6	Stochastic Gradient Decent	77.55
4	Naive Bayes	72.28

다양핚 머신러닝 모델을 적용핚 결과 모델마다 target 예측 성공률이 달랐다

데이터마다 특성을 고려하여 적절핚 모델을 선택핛 필요가 있다!

나 . 응용 1: 새로운 열 (feature) 만들기

생존률에 영향을 미친 나이와 티켓요금을 곱해 Age*Fare 열을 만든 것과 비슷하게

성별과 티켓요금을 곱핚 Sex*Fare 열을 만든 후의 결과 비교

	Survived	Polass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class	Sex*Fare
886	0	2	0	1	1	0	5	1	2	0
887		1	1	1	2	0	2	1	1	.2
888	0	3	1	1	2	0	2	0	3	2
889	- 1	1	0	1	2	1	1	1	1	0
890	0	3	0	1	0	2	1	1	3	0

< 기존 >

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	78.00
6	Stochastic Gradient Decent	74.19
4	Naive Bayes	72.28

	<sex*fare 생성="" 후=""> Model</sex*fare>	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84.85
0	Support Vector Machines	84.18
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	77.78
6	Stochastic Gradient Decent	77.33
4	Naive Bayes	75.42

나 . 응용 1: 새로운 열 (feature) 만들기

비슷핚 방법으로 승선지와 성별을 곱핚 feature, 나이와 성별을 곱핚 feature 생성 후 각각 결과 비교

Embarked*Sex

for dataset in combine: dataset['E+S']=dataset['Embarked'] *dataset['Sex'] display(train df.head()) display(test df.head())

	Passengerld	Polass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class	E'S
0	892	3	0	2	0	2	- 1		6	0
1	893	3	1	2	0	0	3	0	6	0
2	894	2	0	3	1	2	- 1		6	0
3	895	3	0	1	1	0	- 1	1	3	.0
4	896	3	1	1	1	0	3	0	3	0

< 기존 >

	Model	Score
3	Random Forest	86.76
8	Decision Tree	86.76
1	KNN	84,74
0	Support Vector Machines	83.84
2	Logistic Regression	80.36
7	Linear SVC	79.01
5	Perceptron	78.00
6	Stochastic Gradient Decent	74,19
4	Naive Bayes	72.28

<E*S 생성 후 > Model Random Forest Decision Tree 86.76 KNN 84.74 Logistic Regression Linear SVC 79.57 Support Vector Machines Stochastic Gradient Decent 77.89 Naive Bayes 74.75 Perceptron 66.78

Age*Sex

for dataset in combine: dataset['Age+Sex'] = dataset.Age * dataset.Sex train_df.head()

	Survived	Pclass	Sex	Age	Fare	Embarked	Title	IsAlone	Age*Class	Age Sex
0	0	3	0	1	7.2500	S	1	0	3	0
1	1	1	1	2	71 2833	C	3	0	2	2
2	1	3	- 1	1	7.9250	S	2	1	3	1
3	1	1	1	2	53.1000	S	3	0	2	2
4	0	3	0	2	8.0500	5	1	1	6	0

∠ 기조 ╮

	< 기존 >			<age*sex th="" 생성="" 후<=""><th>Score</th></age*sex>	Score
I	Model	Score	3	Random Forest	86.76
	Random Forest	86.76	8	Decision Tree	86 76
1	Decision Tree	86.76			
Ī	KNN	84.74	1	KNN	84.85
1	Support Vector Machines	83.84	2	Logistic Regression	81.37
1	Logistic Regression	80.36	7	Linear SVC	79.12
1	Linear SVC	79.01	6	Stochastic Gradient Decent	79.01
	Perceptron	78.00	0	Support Vector Machines	78.34
	Stochastic Gradient Decent	74.19	4	Naive Bayes	75.20
-	Naive Bayes	72.28	5	Perceptron	74.41

나 . 응용 2: 나이를 범주화 하지 않는다면?

	< 범주화 후 >		12 17 12 12 12 1		< 범주화 전	
	Model	Score	Out [51] :		Model	Score
3	Random Forest	86.76		3	Random Forest	94.16
8	Decision Tree	86.76		8	Decision Tree	94.16
1	KNN	84.74	-	1	KNN	87.2
0	Support Vector Machines	83.84	1	7	Linear SVC	81.59
2	Logistic Regression	80.36	3	2	Logistic Regression	80.58
7	Linear SVC	79.12		4	Naive Bayes	77.10
6	Stochastic Gradient Decent	78.56		5	Perceptron	74.52
5	Perceptron	78.00		6	Stochastic Gradient Decent	73.40
4	Naive Bayes	72.28		0	Support Vector Machines	70.93

5. 느낀점

가 . 데이터전처리가 머싞러닝을 이용한 데이터분석의 대부분을 차지한다 .

나 . 머싞러닝 모델을 제대로 적용하기 위해서는 알고리즘의 작동방식에 대해 더 자세히 이해할 필요가 있다

다 . 이번 프로젝트에서는 다루지 않은 데이터 수집과정을 더 알아볼 필요가 있다 .