

WHAT IS CLAIMED IS:

1 1. A method for optimizing buffers in an integrated circuit design
2 comprising:
3 identifying paths and nodes within the integrated circuit design;
4 determining node overlap within the integrated circuit design;
5 calculating possible solutions for addressing timing violations within the
6 integrated circuit design;
7 choosing a solution for addressing timing violations;
8 inserting buffers at particular nodes of the integrated circuit design; and,
9 repeating the calculating possible solutions, the choosing a solution and the
10 inserting buffers at particular nodes to address timing violations within
11 the integrated circuit design.

1 2. The method for optimizing buffers in an integrated circuit design of
2 claim 1 wherein
3 the repeating continues until a previous maximum number of violations have
4 been addressed.

1 3. The method for optimizing buffers in an integrated circuit design of
2 claim 2 wherein
3 after the repeating, there are orphan timing violations remaining to be
4 addressed; and, further comprising
5 inserting buffers at particular locations to address the orphan timing violations.

1 4. The method for optimizing buffers in an integrated circuit design of
2 claim 1 wherein
3 the choosing a solution is based upon fixing a plurality of timing violations
4 based upon various input criteria.

1 5. The method for optimizing buffers in an integrated circuit design of
2 claim 4 wherein

3 the various input criteria include a median approach, the median approach
4 including calculating a nominal number of fixes from the calculating
5 possible solutions and then selecting an approach which fixes more
6 than the nominal number of fixes.

1 6. The method for optimizing buffers in an integrated circuit design of
2 claim 4 wherein

3 the various input criteria include an acquisitive approach, the acquisitive
4 approach including determining which solution from the calculating
5 possible solutions fixes a greatest number of timing violations and then
6 selecting the approach which fixes the greatest number of timing
7 violations.

1 7. The method for optimizing buffers in an integrated circuit design of
2 claim 1 further comprising:

3 identifying buffers from a list of potential buffers available to insert into the
4 integrated circuit design; and
5 choosing a subset of the buffers from the list as buffers for inserting at the
6 particular nodes of the integrated circuit.

1 8. The method for optimizing buffers in an integrated circuit design of
2 claim 7 wherein:

3 factors used in choosing a subset of the buffers from the list as buffers include
4 a first order delay characteristic of the buffer, a maximum time slack
5 characteristic of the buffer, and a drive strength characteristic of the
6 buffer.

1 9. A apparatus for optimizing buffers in an integrated circuit design
2 comprising:

3 means for identifying paths and nodes within the integrated circuit design;

4 means for determining node overlap within the integrated circuit design;
5 means for calculating possible solutions for addressing timing violations
6 within the integrated circuit design;
7 means for choosing a solution for addressing timing violations;
8 means for inserting buffers at particular nodes of the integrated circuit design;
9 and,
10 means for repeating the calculating possible solutions, the choosing a solution
11 and the inserting buffers at particular nodes to address timing
12 violations within the integrated circuit design.

1 10. The apparatus for optimizing buffers in an integrated circuit design of
2 claim 9 wherein
3 the repeating continues until a previous maximum number of violations have
4 been addressed.

1 11. The apparatus for optimizing buffers in an integrated circuit design of
2 claim 10 wherein
3 after the repeating, there are orphan timing violations remaining to be
4 addressed; and, further comprising
5 means for inserting buffers at particular locations to address the orphan timing
6 violations.

1 12. The apparatus for optimizing buffers in an integrated circuit design of
2 claim 9 wherein
3 the choosing a solution is based upon fixing a plurality of timing violations
4 based upon various input criteria.

1 13. The apparatus for optimizing buffers in an integrated circuit design of
2 claim 12 wherein
3 the various input criteria include a median approach, the median approach
4 including calculating a nominal number of fixes from the calculating
5 possible solutions and then selecting an approach which fixes more
6 than the nominal number of fixes.

1 14. The apparatus for optimizing buffers in an integrated circuit design of
2 claim 12 wherein

3 the various input criteria include an acquisitive approach, the acquisitive
4 approach including determining which solution from the calculating
5 possible solutions fixes a greatest number of timing violations and then
6 selecting the approach which fixes the greatest number of timing
7 violations.

1 15. The apparatus for optimizing buffers in an integrated circuit design of
2 claim 9 further comprising:

3 means for identifying buffers from a list of potential buffers available to insert
4 into the integrated circuit design; and
5 means for choosing a subset of the buffers from the list as buffers for inserting
6 at the particular nodes of the integrated circuit.

1 16. The apparatus for optimizing buffers in an integrated circuit design of
2 claim 15 wherein:

3 factors used in choosing a subset of the buffers from the list as buffers include
4 a first order delay characteristic of the buffer, a maximum time slack
5 characteristic of the buffer, and a drive strength characteristic of the
6 buffer.

1 17. A system for optimizing buffers in an integrated circuit design
2 comprising:
3 an identifying module, the identifying module identifying paths and nodes
4 within the integrated circuit design;
5 a determining module, the determining module determining node overlap
6 within the integrated circuit design;
7 a calculating module, the calculating module calculating possible solutions for
8 addressing timing violations within the integrated circuit design;
9 a choosing module, the choosing module choosing a solution for addressing
10 timing violations;

11 an inserting module, the inserting module inserting buffers at particular nodes
12 of the integrated circuit design; and,
13 a repeating module, the repeating module repeating the calculating possible
14 solutions, the choosing a solution and the inserting buffers at particular
15 nodes to address timing violations within the integrated circuit design.

1 18. The system for optimizing buffers in an integrated circuit design of
2 claim 17 wherein
3 the repeating continues until a previous maximum number of violations have
4 been addressed.

1 19. The system for optimizing buffers in an integrated circuit design of
2 claim 18 wherein
3 after the repeating, there are orphan timing violations remaining to be
4 addressed; and, further comprising
5 an orphan inserting module, the orphan inserting module inserting buffers at
6 particular locations to address the orphan timing violations.

1 20. The system for optimizing buffers in an integrated circuit design of
2 claim 18 wherein
3 the choosing a solution is based upon fixing a plurality of timing violations
4 based upon various input criteria.

1 21. The system for optimizing buffers in an integrated circuit design of
2 claim 20 wherein
3 the various input criteria include a median approach, the median approach
4 including calculating a nominal number of fixes from the calculating
5 possible solutions and then selecting an approach which fixes more
6 than the nominal number of fixes.

1 22. The system for optimizing buffers in an integrated circuit design of
2 claim 20 wherein
3 the various input criteria include an acquisitive approach, the acquisitive
4 approach including determining which solution from the calculating
5 possible solutions fixes a greatest number of timing violations and then
6 selecting the approach which fixes the greatest number of timing
7 violations.

1 23. The system for optimizing buffers in an integrated circuit design of
2 claim 9 further comprising:
3 an identifying module, the identifying module identifying buffers from a list of
4 potential buffers available to insert into the integrated circuit design;
5 and
6 a subset choosing module, the subset choosing module choosing a subset of
7 the buffers from the list as buffers for inserting at the particular nodes
8 of the integrated circuit.

1 24. The system for optimizing buffers in an integrated circuit design of
2 claim 23 wherein:
3 factors used in choosing a subset of the buffers from the list as buffers include
4 a first order delay characteristic of the buffer, a maximum time slack
5 characteristic of the buffer, and a drive strength characteristic of the
6 buffer.