Stochastic Optimal Control

Bangyan Liao liaobangyan@westlake.edu.cn

Nov 2024

Outline

Stochastic Optimal Control

Linear Quadratic-Regularized SOC

Path Integral Control

Forward and Backward Systems

Outline

Stochastic Optimal Control
Value Function
HJB Optimality Condition
Stochastic Maximum Principle

Path Integral Control

Forward and Backward Systems

Stochastic Optimal Control

Definition (Stochastic Optimal Control)

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathcal{P})$ be a fixed filtered probability space on which is defined a Brownian motion $W = (W_t)_{t\geq 0}$. We consider the control-affine problem

$$\min_{u \in \mathcal{U}} \mathbb{E} \left[\int_0^T f(X_t^u, u_t, t) \, \mathrm{d}t + g(X_T^u) \right],$$
where $\mathrm{d}X_t^u = (b(X_t^u, t) + \sigma(t)u(X_t^u, t)) \, \mathrm{d}t + \sqrt{\lambda}\sigma(t)\mathrm{d}W_t, \qquad X_0^u \sim p_0.$

and where $X^u_t \in \mathbb{R}^d$ is the state, $u : \mathbb{R}^d \times [0,T]$ is the feedback control and belongs to the set of admissible controls \mathcal{U} , f is the state cost, $g : \mathbb{R}^d \to \mathbb{R}$ is the terminal cost, $b : \mathbb{R}^d \times [0,T] \to \mathbb{R}^d$ is the base drift, and $\sigma : [0,T] \to \mathbb{R}^{d \times d}$ is the invertible diffusion coefficient and $\lambda \in (0,+\infty)$ is the noise level.

Value Function

Stochastic Optimal Control

Definition (Cost Functional and Value Function)

The cost functional for the control u, point x and time t is defined as $J(u;x,t) := \mathbb{E} \big[\int_t^T f(X^u_t,u_t,t) \, \mathrm{d}t + g(X^u_T) \big| X^u_t = x \big]$. That is, the cost functional is the expected value of the control objective restricted to the times [t,T] with the initial value x at time t. The value function or optimal cost-to-go at a point x and time t is defined as the minimum value of the cost functional across all possible controls:

$$V(x,t) := \inf_{u \in \mathcal{U}} J(u;x,t) = J(u^*;x,t). \tag{2}$$

Definition (HJB Optimality Condition for SOC)

If we define the infinitesimal generator

 $\mathcal{L} := \frac{\lambda}{2} \sum_{i,j=1}^d (\sigma \sigma^\top)_{ij}(t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^d b_i(x,t) \partial_{x_i} + \sum_{i=1}^d \sigma_i(t) u_i(x,t) \partial_{x_i}$, the value function solves the following Hamilton-Jacobi-Bellman (HJB) partial differential equation:

$$\frac{\partial V(x,t)}{\partial t} + \min_{u \in \mathcal{U}} \left\{ \mathcal{L}V(x,t) + f(x,u,t) \right\} = 0, V(x,T) = g(x). \tag{3}$$

Stochastic Maximum Principle

Stochastic Optimal Control

Definition (Stochastic Maximum Principle)

$$\mathcal{H}(t,x,a,y,z) = b(t,x,a)y + \sigma(t,x,a)z + f(t,x,a).$$

Assume that $(lpha_t^*) \in \mathcal{A}$ and the pair $((Y_t^*), (Z_t^*))$ is a solution to the BSDE

$$-dY_t = \mathcal{H}_x(t, X_t^*, \alpha_t^*, Y_t, Z_t)dt - Z_t dW_t,$$

$$Y_T = g_{\mathsf{x}}(X_T^*),$$

such that

$$\mathcal{H}(t, X_t^*, \alpha_t^*, Y_t^*, Z_t^*) = \max_{a \in \mathcal{A}} \mathcal{H}(t, X_t, \alpha_t, Y_t^*, Z_t^*)$$
(9)

for $0 \le t \le T$ almost surely, where X_t^* is the solution of (5) under the control (α_t^*) . If

the function $(x,a)\mapsto \mathcal{H}(t,x,a,Y_t^*,Z_t^*) \tag{10}$

is concave for all $t \in [0, T]$ a.s., then (α_*^*) is the solution of the stochastic optimal

(7)

(8)

Proof of HJB Optimality Condition

Stochastic Optimal Control

Proof.

Recall the Itô Lemma for SDE $dX_t^u = (b(X_t^u, t) + \sigma(t)u(X_t^u, t)) dt + \sqrt{\lambda}\sigma(t)dW_t$:

$$dV(X_t^u, t) = \frac{\partial V(X_t^u, t)}{\partial t} dt + \frac{\partial V(X_t^u, t)}{\partial x} dX_t^u + \frac{1}{2} \frac{\partial^2 V(X_t^u, t)}{\partial x^2} (dX_t^u)^2$$

$$= \frac{\partial V_t}{\partial t} dt + \mathcal{L}V(x, t) dt + \nabla V_t(x) \cdot \sqrt{\lambda} \sigma(t) dW_t$$
(4)

where the $\mathcal{L}V(x,t)$ is the generator which defines as

$$\mathcal{L}V(x,t) = \nabla V_t(x) \cdot (b(X_t^u,t) + \sigma(t)u(X_t^u,t)) + \frac{\lambda}{2} \operatorname{Trace}\left[\sigma(t)\sigma(t)^\top \nabla^2 V_t(x)\right] \quad (5)$$

Proof of HJB Optimality Condition

Stochastic Optimal Control

Proof.

We can derive the HJB equation for SOC through dynamic programming as:

$$V(X_{s}^{u},s) = \inf_{u} \mathbb{E} \left\{ \int_{s}^{s+\Delta s} f(X_{t}^{u},u,t) dt + V(X_{s+\Delta s}^{u},s+\Delta s) \right\}$$

$$\approx \inf_{u} \mathbb{E} \left\{ f(X_{s}^{u},u,s) \Delta s + V(X_{s+\Delta s}^{u},s+\Delta s) \right\}$$

$$\approx \inf_{u} \mathbb{E} \left\{ f(X_{t}^{u},u,s) \Delta s + V(X_{s}^{u},s) + \partial_{s} V(\mathbf{z},s) \Delta s + \nabla V(\mathbf{z},s) \Delta s + \nabla V_{s}(\mathbf{z}) \cdot \sqrt{\lambda} \sigma(s) \Delta W_{s} \right\}$$

$$dX_{t}^{u} = (b(X_{t}^{u},t) + \sigma(t)u(X_{t}^{u},t)) dt + \sqrt{\lambda} \sigma(t) dW_{t}, \quad t \in [s,\tau], \quad X_{s}^{u} = \mathbf{z}$$

$$(4)$$

8/31

Outline

Stochastic Optimal Contro

Forward and Backward Systems

Linear Quadratic-Regularized SOC Equivalent Formulations HJB Optimality Condition Optimal Distribution

Path Integral Contro

Equivalent Formulations

Linear Quadratic-Regularized SOC

Definition (Standard Linear Quadratic-Regularized SOC)

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathcal{P})$ be a fixed filtered probability space on which is defined a Brownian motion $W = (W_t)_{t\geq 0}$. We consider the control-affine problem

$$\min_{u \in \mathcal{U}} \mathbb{E} \Big[\int_0^T \left(\frac{1}{2} \| u(X_t^u, t) \|^2 + f(X_t^u, t) \right) dt + g(X_T^u) \Big],$$
where $dX_t^u = \left(b(X_t^u, t) + \sigma(t) u(X_t^u, t) \right) dt + \sqrt{\lambda} \sigma(t) dW_t, \qquad X_0^u \sim p_0.$

$$(5)$$

and where $X^u_t \in \mathbb{R}^d$ is the state, $u : \mathbb{R}^d \times [0,T]$ is the feedback control and belongs to the set of admissible controls \mathcal{U} , $f : \mathbb{R}^d \times [0,T] \to \mathbb{R}$ is the state cost, $g : \mathbb{R}^d \to \mathbb{R}$ is the terminal cost, $b : \mathbb{R}^d \times [0,T] \to \mathbb{R}^d$ is the base drift, and $\sigma : [0,T] \to \mathbb{R}^{d \times d}$ is the invertible diffusion coefficient and $\lambda \in (0,+\infty)$ is the noise level.

Equivalent Formulations

Linear Quadratic-Regularized SOC

Definition (Linear KL-Regularized SOC)

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathcal{P})$ be a fixed filtered probability space on which is defined a Brownian motion $W = (W_t)_{t\geq 0}$. We consider the control-affine problem

$$\min_{u \in \mathcal{U}} \mathbb{E} \left[\int_{0}^{T} \left(f\left(X_{t}^{u}, t\right) \right) dt + g\left(X_{T}^{u}\right) \right] + \lambda \mathbb{E}_{X_{0} \sim p_{0}^{u}} \left[D_{\mathrm{KL}}(p^{u}(\boldsymbol{X}|X_{0}) || p^{base}(\boldsymbol{X}|X_{0})) \right], \\
\text{s.t. } dX_{t}^{u} = \left(b\left(X_{t}^{u}, t\right) + \sigma(t) u\left(X_{t}^{u}, t\right) \right) dt + \sqrt{\lambda} \sigma(t) dB_{t}, \quad X_{0}^{u} \sim p_{0}$$
(6)

and where $X^u_t \in \mathbb{R}^d$ is the state, $u : \mathbb{R}^d \times [0,T]$ is the feedback control and belongs to the set of admissible controls \mathcal{U} , $f : \mathbb{R}^d \times [0,T] \to \mathbb{R}$ is the state cost, $g : \mathbb{R}^d \to \mathbb{R}$ is the terminal cost, $b : \mathbb{R}^d \times [0,T] \to \mathbb{R}^d$ is the base drift, and $\sigma : [0,T] \to \mathbb{R}^{d \times d}$ is the invertible diffusion coefficient and $\lambda \in (0,+\infty)$ is the noise level.

HJB Optimality Condition

Linear Quadratic-Regularized SOC

Definition (HJB equation fot Linear Quadratic-Regularized SOC)

Since the unique optimal control is given in terms of the value function as $u^*(x,t) = -\sigma(t)^\top \nabla V(x,t)$. If we define the infinitesimal generator $L := \frac{\lambda}{2} \sum_{i,j=1}^d (\sigma \sigma^\top)_{ij}(t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^d b_i(x,t) \partial_{x_i}$, the value function solves the following Hamilton-Jacobi-Bellman (HJB) partial differential equation:

$$(\partial_t + L)V(x,t) - \frac{1}{2} \|(\sigma^\top \nabla V)(x,t)\|^2 + f(x,t) = 0,$$

$$V(x,T) = g(x).$$
(7)

Proof of HJB equation

Linear Quadratic-Regularized SOC

Proof of HJB equation.

Recall the HJB equations of general SOC

$$\frac{\partial V(x,t)}{\partial t} + \min_{u \in \mathcal{U}} \{ \mathcal{L}V(x,t) + f(x,u,t) \} = 0, V(x,T) = g(x)$$

$$\mathcal{L} := \frac{\lambda}{2} \sum_{i,j=1}^{d} (\sigma \sigma^{\top})_{ij}(t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^{d} b_i(x,t) \partial_{x_i} + \sum_{i=1}^{d} \sigma_i(t) u_i(x,t) \partial_{x_i}$$
(8)

with $f(x, u, t) = f(x, t) + \frac{1}{2} \|u(x, t)\|^2$ Take the gradient and set to zero, we can derive the optimal control:

$$u^*(x,t) = -\sigma(t)\nabla_x V(x,t)$$
(9)

Substitute the optimal control into the general SOC problem, we complete the proof.

Optimal Conditional Distribution

Linear Quadratic-Regularized SOC

Theorem (Optimal Conditional Distribution)

$$\rho^*(\boldsymbol{X}|X_0) = \rho^{base}(\boldsymbol{X}|X_0) \exp\left(-\lambda^{-1} \int_0^1 f(X_t, t) dt - \lambda^{-1} g(X_1)\right) / C_{tar}^1$$

$$C_{tar}^1 = \mathbb{E}_{\boldsymbol{X} \sim p_{base}(\boldsymbol{X}|X_0)} \left[\exp\left(-\lambda^{-1} \int_0^1 f(X_t, t) dt - \lambda^{-1} g(X_1)\right) \right] = \exp\left(-\frac{V(X_0, 0)}{\lambda}\right)$$
(10)

Remark.

We can view the optimal control as a weighted base control.

Optimal Initial Distribution

Linear Quadratic-Regularized SOC

Theorem (Optimal Initial Distribution)

$$p^{*}(X_{0}) = p^{base}(X_{0}) \exp\left(-\frac{V(X_{0}, 0)}{\lambda}\right) / C_{tar}^{2},$$

$$C_{tar}^{2} = \int p^{base}(X_{0}) \exp\left(-\frac{V(X_{0}, 0)}{\lambda}\right) = \mathbb{E}_{\mathbf{X} \sim p_{base}(X)} \left[\exp\left(-\lambda^{-1} \int_{0}^{1} f(X_{t}, t) dt - \lambda^{-1} g(X_{1})\right)\right]$$

$$\tag{11}$$

Theorem (Optimal Joint Distribution (optimal p_0))

$$\rho^*(\boldsymbol{X}) = \frac{\rho^{\text{base}}(\boldsymbol{X}) \exp\left(-\lambda^{-1} \int_0^1 f(X_t, t) dt - \lambda^{-1} g(X_1)\right)}{\mathbb{E}_{\boldsymbol{X} \sim \rho_{base}(X)} \left[\exp\left(-\lambda^{-1} \int_0^1 f(X_t, t) dt - \lambda^{-1} g(X_1)\right) \right]}$$
(12)

Theorem (Optimal Joint Distribution (fixed p_0))

$$p^*(\boldsymbol{X}) = p^{\text{base}}(\boldsymbol{X}) \exp\left(-\int_0^1 f(X_t, t) dt - g(X_1) + V(X_0, 0)\right)$$
(13)

Outline

Stochastic Optimal Control

Forward and Backward Systems

Linear Quadratic-Regularized SOC

Path Integral Control Feynman-Kac View Kappen View Theorem (Path-integral representation of the optimal control (Feynman-Kac))

$$u^{*}(x,t) = \lambda \sigma(t)^{\top} \nabla_{x} \log \mathbb{E} \left[\exp \left(-\lambda^{-1} \int_{t}^{T} f(X_{s},s) \, \mathrm{d}s - \lambda^{-1} g(X_{T}) \right) \middle| X_{t} = x \right]$$

$$V(x,t) = -\lambda \log \mathbb{E} \left[\exp \left(-\lambda^{-1} \int_{t}^{T} f(X_{s},s) \, \mathrm{d}s - \lambda^{-1} g(X_{T}) \right) \middle| X_{t} = x \right],$$

$$(14)$$

where X_t is generated by the uncontrolled process. The optimal control and the value function are related to each other by $u^*(x,t) = -\sigma(t)^\top \nabla V(x,t)$.

Path Integral Control

Proof. (Path-integral Control).

Let us recall the HJB optimality condition

$$(\partial_t + L)V(x,t) - \frac{\lambda}{2} \|(\sigma^\top \nabla V)(x,t)\|^2 + f(x,t) = 0,$$

$$L = \frac{\lambda}{2} \sum_{i,j=1}^d (\sigma \sigma^\top)_{ij}(t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^d b_i(x,t) \partial_{x_i}$$

$$V(x,T) = g(x).$$
(15)

and perform the Cole-Hopf transform $V(x,t) = -\lambda \ln \Psi(x,t)$.

Path Integral Control

Proof. (Path-integral Control).

and perform the Cole-Hopf transform $V(x,t) = -\lambda \ln \Psi(x,t)$.

$$-\lambda \frac{\partial_t \Psi + L \Psi}{\Psi}(x, t) + \frac{\lambda^2}{2} \| \frac{\sigma^\top \nabla \Psi}{\Psi}(x, t) \|^2 - \frac{\lambda^2}{2} \| \frac{\sigma^\top \nabla \Psi}{\Psi}(x, t) \|^2 + f(x, t) = 0$$

$$L = \frac{\lambda}{2} \sum_{i,j=1}^d (\sigma \sigma^\top)_{ij}(t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^d b_i(x, t) \partial_{x_i}$$

$$\Psi(x, T) = \exp(-\lambda^{-1} g(x)).$$
(15)

19 / 31

Path Integral Control

Proof. (Path-integral Control).

After some canceling processes, we have

$$\partial_{t}\Psi(x,t) + L\Psi(x,t) - \lambda^{-1}\Psi(x,t)f(x,t) = 0$$

$$L = \frac{\lambda}{2} \sum_{i,j=1}^{d} (\sigma \sigma^{\top})_{ij}(t) \partial_{x_{i}} \partial_{x_{j}} + \sum_{i=1}^{d} b_{i}(x,t) \partial_{x_{i}}$$

$$\Psi(x,T) = \exp(-\lambda^{-1}g(x)).$$
(15)

Then, let us recall the Feynman-Kac formulation:

$$\begin{cases}
\frac{\partial u(x,t)}{\partial t} + \mu(x,t) \frac{\partial u(x,t)}{\partial x} + \frac{1}{2}\sigma^2(x,t) \frac{\partial^2 u(x,t)}{\partial x^2} - q(x,t)u(x,t) = -g(x,t) \\
u(x,T) = f(x)
\end{cases} (16)$$

with its conclusion

Path Integral Control

Proof. (Path-integral Control).

$$u(x,t) = \mathbb{E}\left[f(\xi_T)e^{-\int_t^T q(\theta,\xi_\theta)d\theta} + \int_t^T g(s,\xi_s)e^{-\int_t^s q(\theta,\xi_\theta)d\theta}ds | \xi_t = x\right]$$
(15)

Then, substitute it into the original formula,

$$\Psi(x,t) = \mathbb{E}\left[\exp(-\lambda^{-1}g(x))\exp(-\lambda^{-1}\int_{t}^{T}f(s,X_{s})ds)|X_{t}=x\right]$$
(16)

Theorem (Path-integral representation of the optimal control (Kappen))

$$u^{*}(x,t) = \lambda \sigma(t)^{\top} \nabla_{x} \log \mathbb{E}_{\mathbf{X} \sim p^{WFR}} \left[\exp \left(-\lambda^{-1} g(X_{T}) \right) \middle| X_{t} = x \right]$$

$$V(x,t) = -\lambda \log \mathbb{E}_{\mathbf{X} \sim p^{WFR}} \left[\exp \left(-\lambda^{-1} g(X_{T}) \right) \middle| X_{t} = x \right],$$

$$(17)$$

where X_t is generated by the uncontrolled fisher-rao process.

$$\begin{cases} X_t = X_t + b(X_t, t) dt + \sqrt{\lambda} \sigma(t) dB_t, & 1 - f(x, t) dt/\lambda \\ X_t = \dagger, & f(x, t) dt/\lambda \end{cases}, \quad X_t = x$$
 (18)

The optimal control and the value function are related to each other by $u^*(x,t) = -\sigma(t)^\top \nabla V(x,t)$.

Proof of Path Integral Control (Kappen)

Path Integral Control

Path-integral Control (Kappen).

We first perform the Cole-Hopf transform $V(x,t) = -\lambda \ln \Psi(x,t)$ to HJB equation.

$$-\lambda \frac{\partial_{t} \Psi + \mathcal{L} \Psi}{\Psi}(x, t) + \frac{\lambda^{2}}{2} \left\| \frac{\sigma^{\top} \nabla \Psi}{\Psi}(x, t) \right\|^{2} - \frac{\lambda^{2}}{2} \left\| \frac{\sigma^{\top} \nabla \Psi}{\Psi}(x, t) \right\|^{2} + f(x, t) = 0$$

$$\partial_{t} \Psi(x, t) + \mathcal{L} \Psi(x, t) - \lambda^{-1} \Psi(x, t) f(x, t) = 0$$

$$\mathcal{L} = \frac{\lambda}{2} \sum_{i,j=1}^{d} (\sigma \sigma^{\top})_{ij}(t) \partial_{x_{i}} \partial_{x_{j}} + \sum_{i=1}^{d} b_{i}(x, t) \partial_{x_{i}}$$

$$\Psi(x, 1) = \exp(-\lambda^{-1} g(x))$$

$$(19)$$

Proof of Path Integral Control (Kappen)

Path Integral Control

Path-integral Control (Kappen).

HJB equation is also a Kolmogorov backward equation, which has its adjoint Kolmogorov forward equation which describes the forward distribution evolution.

$$\partial_{t}\rho(x,t) = \mathcal{L}^{\dagger}\rho(x,t) - \lambda^{-1}\rho(x,t)f(x,t)$$

$$\mathcal{L}^{\dagger}\rho(x,t) = \frac{\lambda}{2} \sum_{i,j=1}^{d} \partial_{x_{i}}\partial_{x_{j}} \left((\sigma\sigma^{\top})_{ij}(t) \rho \right) - \sum_{i=1}^{d} \partial_{x_{i}} \left(b_{i}(x,t) \rho \right)$$

$$\rho(y,t|x,t) = \delta(y-x)$$
(19)

Then, according to the generator definition, we have

$$\Psi(x,t) = \int \rho(y,T|x,t) \exp(-\lambda^{-1}g(x)) dy$$
 (20)

Outline

Stochastic Optimal Control

Linear Quadratic-Regularized SOC

Path Integral Contro

Forward and Backward Systems
Forward and Backward PDEs
Forward and Backward SDEs
Verification Theorem

Forward and Backward PDEs

Forward and Backward Systems

Given the Hamilton-Jacobi-Bellman equation and the Fokker-Plank equation:

$$(\partial_t + \mathcal{L})V(x,t) - \frac{1}{2} \| (\sigma^T \nabla V)(x,t) \|^2 + f(x,t) = 0, \quad V(x,T) = g(x).$$

$$\mathcal{L} := \frac{\lambda}{2} \sum_{i,j=1}^d (\sigma \sigma^T)_{ij}(t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^d b_i(x,t) \partial_{x_i}$$

$$(\partial_t - \mathcal{L}^*)p(x,t) + \nabla \cdot [(\sigma \sigma^T \nabla V p)(x,t)] = 0, \quad p(x,0) = p_0$$

$$\mathcal{L}^* p(x,t) := \frac{\lambda}{2} \sum_{i,j=1}^d \partial_{x_i} \partial_{x_j} [(\sigma \sigma^T p)(x,t)] - \sum_{i=1}^d \partial_{x_i} [(bp)(x,t)]$$
(FK)

We can get the forward-backward PDEs system through Cole-Hopf transformation:

$$\Psi(x,t) = \exp\left(-\frac{V(x,t)}{\lambda}\right), \quad \hat{\Psi}(x,t) = p(x,t) \exp\left(\frac{V(x,t)}{\lambda}\right)$$
 (21)

Forward and Backward PDEs

Forward and Backward Systems

Theorem (Forward and Backward PDEs)

We can get the corresponding forward-backward PDEs system:

$$\begin{cases}
\frac{\partial \Psi(x,t)}{\partial t} = -\nabla \Psi^{\top} b - \frac{\lambda}{2} \sigma^2 \Delta \Psi + \lambda^{-1} f \Psi \\
\frac{\partial \hat{\Psi}(x,t)}{\partial t} = -\nabla \cdot (\hat{\Psi}b) + \frac{\lambda}{2} \sigma^2 \Delta \hat{\Psi} - \lambda^{-1} f \hat{\Psi}
\end{cases} s.t. \quad \Psi(\cdot,0) \hat{\Psi}(\cdot,0) = p_0 \\
\psi(\cdot,T) \hat{\Psi}(\cdot,T) = p_T.$$
(22)

Forward and Backward Systems

Proof. (Proof of Forward-Backward PDEs system).

1) Given the HJB equation, we first substitute the Cole-Hopf transform $V(x,t)=-\lambda \ln \Psi(x,t)$ into it and get

$$-\lambda \frac{\partial_t \Psi + \mathcal{L} \Psi}{\Psi}(x, t) + \frac{\lambda^2}{2} \left\| \frac{\sigma^\top \nabla \Psi}{\Psi}(x, t) \right\|^2 - \frac{\lambda^2}{2} \left\| \frac{\sigma^\top \nabla \Psi}{\Psi}(x, t) \right\|^2 + f(x, t) = 0$$
(23)

After some calculation, we get

$$\partial_t \Psi(x,t) + \mathcal{L}\Psi(x,t) - \lambda^{-1} \Psi(x,t) f(x,t) = 0$$

$$\mathcal{L} = \frac{\lambda}{2} \sum_{i,j=1}^d (\sigma \sigma^\top)_{ij}(t) \partial_{x_i} \partial_{x_j} + \sum_{i=1}^d b_i(x,t) \partial_{x_i}$$

$$\Psi(x,1) = \exp(-\lambda^{-1} g(x))$$
(24)

Forward and Backward Systems

Proof. (Proof of Forward-Backward PDEs system).

2) Starting directly from $\rho = \Psi \hat{\Psi}$, differentiate ρ with respect to time. Using the product rule and substituting equations:

$$\begin{split} \frac{\partial \rho}{\partial t} &= \frac{\partial (\Psi \hat{\Psi})}{\partial t} = \frac{\partial \Psi}{\partial t} \hat{\Psi} + \Psi \frac{\partial \hat{\Psi}}{\partial t} \\ &= \left(-\nabla \Psi^{\top} f - \frac{1}{2} \sigma^2 \Delta \Psi + F \Psi \right) \hat{\Psi} + \Psi \left(-\nabla \cdot (\hat{\Psi} f) + \frac{1}{2} \sigma^2 \Delta \hat{\Psi} - F \hat{\Psi} \right) \end{split}$$

We regroup the above expression by the terms associated with f, σ^2 , and F:

$$\frac{\partial \rho}{\partial t} = \underbrace{-\left[(\nabla \Psi \cdot f) \hat{\Psi} + \Psi \nabla \cdot (\hat{\Psi} f) \right]}_{\text{Term A}} + \underbrace{\frac{1}{2} \sigma^2 \left(\Psi \Delta \hat{\Psi} - \hat{\Psi} \Delta \Psi \right)}_{\text{Term B}} + \underbrace{\left(F \Psi \hat{\Psi} - F \Psi \hat{\Psi} \right)}_{\text{Term C} = 0}$$

Forward and Backward Systems

Proof. (Proof of Forward-Backward PDEs system).

(Simplify Term A)

Using the vector identity $\nabla \cdot (A\mathbf{B}) = (\nabla A) \cdot \mathbf{B} + A(\nabla \cdot \mathbf{B})$, we note that Term A is the negative of the divergence of $\rho f = (\Psi \hat{\Psi}) f$:

Term
$$A = -\left[\nabla \cdot ((\Psi \hat{\Psi})f)\right] = -\nabla \cdot (\rho f)$$

Forward and Backward Systems

Proof. (Proof of Forward-Backward PDEs system).

(Simplify Term B)

We use the divergence form of Green's second identity:

$$\nabla \cdot (A\nabla B - B\nabla A) = A\Delta B - B\Delta A.$$

Term
$$\mathsf{B} = \frac{1}{2}\sigma^2\nabla\cdot(\Psi\nabla\hat{\Psi} - \hat{\Psi}\nabla\Psi)$$

Now, we compute the expression inside the parentheses, based on the definitions $\Psi = e^{-u}$ and $\hat{\Psi} = \rho e^{u}$:

$$\Psi \nabla \hat{\Psi} = e^{-u} \nabla (\rho e^{u}) = \nabla \rho + \rho \nabla u$$
$$\hat{\Psi} \nabla \Psi = \rho e^{u} \nabla (e^{-u}) = -\rho \nabla u$$

Forward and Backward Systems

Proof. (Proof of Forward-Backward PDEs system).

Thus:

$$\Psi \nabla \hat{\Psi} - \hat{\Psi} \nabla \Psi = (\nabla \rho + \rho \nabla u) - (-\rho \nabla u) = \nabla \rho + 2\rho \nabla u$$

Substituting this back into Term B:

Term
$$\mathsf{B} = \frac{1}{2}\sigma^2\nabla\cdot(\nabla\rho + 2\rho\nabla u) = \frac{1}{2}\sigma^2\Delta\rho + \sigma^2\nabla\cdot(\rho\nabla u)$$

Forward and Backward Systems

Proof. (Proof of Forward-Backward PDEs system).

(Combine the Results)

Substituting the simplified Term A and Term B into the equation:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho f) + \frac{1}{2} \sigma^2 \Delta \rho + \sigma^2 \nabla \cdot (\rho \nabla u)$$

Rearranging the terms on the right-hand side of the above equation:

$$\frac{\partial \rho}{\partial t} = (\sigma^2 \nabla \cdot (\rho \nabla u) - \nabla \cdot (\rho f)) + \frac{1}{2} \sigma^2 \Delta \rho$$
$$= \nabla \cdot (\sigma^2 \rho \nabla u - \rho f) + \frac{1}{2} \sigma^2 \Delta \rho$$
$$\implies \frac{\partial \rho}{\partial t} - \nabla \cdot (\rho (\sigma^2 \nabla u - f)) - \frac{1}{2} \sigma^2 \Delta \rho = 0$$

Forward and Backward SDEs (PDE-inspired)

Forward and Backward Systems

Theorem (Forward and Backward SDEs (PDE-inspired))

$$dX_t = (b + \sigma^2 \lambda \nabla \log \Psi) dt + \sqrt{\lambda} \sigma dW_t, \quad X_0 \sim p_0^*, \quad X_1 \sim p_1^*$$
 (23)

$$d\bar{X}_s = (-b + \sigma^2 \lambda \nabla \log \hat{\Psi}) ds + \sqrt{\lambda} \sigma d\bar{W}_s, \quad \bar{X}_0 \sim p_1^*, \quad \bar{X}_1 \sim p_0^*$$
 (24)

where \bar{X} and \bar{W} represents the reverse process. In fact, the stochastic processes in Eq. 23 and Eq. 24 share the same marginal densities $p_t^{(23)} = p_s^{(24)} = p_t^*$. Besides, its marginal density obeys a factorization principle $p_t^*(X_t) = \Psi(t, X_t) \hat{\Psi}(s, X_s)$.

Forward and Backward SDEs

Forward and Backward Systems

Theorem (Forward and Backward SDEs)

Consider the pair of SDEs

$$dX_{t} = b(X_{t}, t) dt + \sqrt{\lambda}\sigma(t)dB_{t}, \qquad X_{0} \sim \rho_{0},$$

$$dY_{t} = (-f(X_{t}, t) + \frac{1}{2}\|Z_{t}\|^{2}) dt + \sqrt{\lambda}\langle Z_{t}, dB_{t}\rangle, \qquad Y_{T} = g(X_{T}).$$
(25)

where $Y: \Omega \times [0,T] \to \mathbb{R}$ and $Z: \Omega \times [0,T] \to \mathbb{R}^d$ are progressively measurable random processes. It turns out that Y_t and Z_t defined as $Y_t := V(X_t,t)$ and $Z_t := \sigma(t)^\top \nabla V(X_t,t) = -u^*(X_t,t)$ satisfy the HJB optimality condition.

Forward and Backward Systems

Proof of Forward and Backward SDEs.

We apply Itô's lemma to $Y_t = V(X_t, t)$:

$$dY_{t} = \frac{\partial V}{\partial t}dt + (\nabla V)^{\top}dX_{t} + \frac{1}{2}\operatorname{Tr}\left((d_{B}X_{t})(d_{B}X_{t})^{\top}H(V)\right)$$

$$= \frac{\partial V}{\partial t}dt + (\nabla V)^{\top}(b\,dt + \sqrt{\lambda}\sigma\,dB_{t}) + \frac{1}{2}\operatorname{Tr}\left((\sqrt{\lambda}\sigma)(\sqrt{\lambda}\sigma)^{\top}H(V)\right)dt$$

$$= \left(\frac{\partial V}{\partial t} + b\cdot\nabla V + \frac{\lambda}{2}\operatorname{Tr}(\sigma\sigma^{\top}H(V))\right)dt + \sqrt{\lambda}(\nabla V)^{\top}\sigma\,dB_{t}$$

The term in the parenthesis is the spatial part of the HJB operator. From the HJB equation, we can substitute this term:

$$\frac{\partial V}{\partial t} + b \cdot \nabla V + \frac{\lambda}{2} \text{Tr}(\sigma \sigma^{\top} H(V)) = \frac{1}{2} \|\sigma^{\top} \nabla V\|^{2} - f$$

Forward and Backward Systems

Proof of Forward and Backward SDEs.

Substituting this into the expression for dY_t yields:

$$dY_t = \left(\frac{1}{2}\|\sigma^\top \nabla V(X_t, t)\|^2 - f(X_t, t)\right) dt + \sqrt{\lambda}(\sigma(t)^\top \nabla V(X_t, t))^\top dB_t$$

Now, we use the definitions from our ansatz (??), $Z_t = \sigma^\top \nabla V$:

$$dY_t = \left(-f(X_t, t) + \frac{1}{2}\|Z_t\|^2\right)dt + \sqrt{\lambda}Z_t \cdot dB_t$$

This is exactly the required BSDE dynamics (??). Finally, the terminal condition is met since:

$$Y_T = V(X_T, T) = g(X_T)$$

Verification Theorem

Linear Quadratic SOC

Definition (Verification Theorem for Linear Quadratic SOC)

The *verification theorem* states that if a function V solves the HJB equation above and has certain regularity conditions, then V is the value function (2) of the problem (6). An implication of the verification theorem is that for every $u \in \mathcal{U}$,

$$V(x,t) + \mathbb{E}\left[\frac{1}{2}\int_{t}^{T} \|\sigma^{\top}\nabla V + u\|^{2}(X_{s}^{u},s) \,\mathrm{d}s \,\big|\, X_{t}^{u} = x\right] = J(u,x,t). \tag{26}$$

Equation (26) can be deduced by integrating the HJB equation (7) over [t, T], and taking the conditional expectation with respect to $X_t^u = x$.

Proof of Verification Theorem

Linear Quadratic SOC

Proof. (Verification Theorem).

By Itô Lemma, we have that

$$egin{aligned} V(X^u_T,T) - V(X^u_t,t) &= \int_t^T \left(\partial_s V(X^u_s,s) + \langle b(X^u_s,s) + \sigma(X^u_s,s) u(X^u_s,s),
abla V(X^u_s,s)
ight) \\ &+ rac{\lambda}{2} \sum_s^d \left(\sigma \sigma^\top
ight)_{ij} (X^u_s,s) \partial_{x_i} \partial_{x_j} V(X^u_s,s)
ight) \mathrm{d}s + S^u_t, \end{aligned}$$

$$i,j=1$$

where $S_t^u = \sqrt{\lambda} \int_t^T \nabla V(X_s^u, s)^\top \sigma(X_s^u, s) dB_s$. Note that by (7),

$$\partial_{s}V(X_{s}^{u},s) + \langle b(X_{s}^{u},s) + \sigma(X_{s}^{u},s)u(X_{s}^{u},s), \nabla V(X_{s}^{u},s)\rangle$$

$$+ \frac{\lambda}{2} \sum_{s=0}^{d} (\sigma \sigma^{\top})_{ij}(X_{s}^{u},s)\partial_{x_{i}}\partial_{x_{j}}V(X_{s}^{u},s)$$
(28)

30 / 31

(27)

Proof of Verification Theorem

Linear Quadratic SOC

Proof. (Verification Theorem).

$$= \frac{1}{2} \| (\sigma^{\top} \nabla V)(X_{s}^{u}, s) \|^{2} - f(X_{s}^{u}, s) + \langle \sigma(X_{s}^{u}, s) u(X_{s}^{u}, s), \nabla V(X_{s}^{u}, s) \rangle$$

$$= \frac{1}{2} \| (\sigma^{\top} \nabla V)(X_{s}^{u}, s) + u(X_{s}^{u}, s) \|^{2} - \frac{1}{2} \| u(X_{s}^{u}, s) \|^{2} - f(X_{s}^{u}, s),$$
(27)

and this implies that

$$g(X_T^u) - V(X_t^u, t) = \int_t^T \left(\frac{1}{2} \| (\sigma^\top \nabla V)(X_s^u, s) + u(X_s^u, s) \|^2 - \frac{1}{2} \| u(X_s^u, s) \|^2 - f(X_s^u, s) \right) ds + S_t^u$$
(28)

Since $\mathbb{E}[S_t^u | X_t^u = x] = 0$, rearranging and taking the conditional expectation with respect to X_t^u yields the final result.

Reference

- Stochastic Optimal Control Matching
- An optimal control approach to particle filtering
- Stochastic Optimal Control
- ► Continuous Time Stochastic Optimal Control: Lagrange-Chow Redux