NAME: VANDHITHA R S

EMAIL: <u>vandithachinnu77777@gmail.com</u> (<u>mailto:vandithachinnu77777@gmail.com</u>)

In [1]:

```
Requirement already satisfied: sklearn in c:\programdata\anaconda3\lib\site-packages (0.0)Note: you may need to restart the kernel to use updated packages.

Requirement already satisfied: scikit-learn in c:\programdata\anaconda3\lib
```

\site-packages (from sklearn) (0.24.1)

Requirement already satisfied: numpy>=1.13.3 in c:\programdata\anaconda3\lib \site-packages (from scikit-learn->sklearn) (1.20.1)

Requirement already satisfied: joblib>=0.11 in c:\programdata\anaconda3\lib \site-packages (from scikit-learn->sklearn) (1.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\programdata\anacon da3\lib\site-packages (from scikit-learn->sklearn) (2.1.0)

Requirement already satisfied: scipy>=0.19.1 in c:\programdata\anaconda3\lib\site-packages (from scikit-learn->sklearn) (1.6.2)

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
```

In [4]:

```
# Loading the dataset to a Pandas DataFrame
wine_dataset = pd.read_csv('winequality.csv')
```

In [5]:

```
# number of rows & columns in the dataset
wine_dataset.shape
```

Out[5]:

(1599, 12)

In [6]:

```
#first 5 rows of the dataset
wine_dataset.head()
```

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9

In [8]:

checking for missing values
wine_dataset.isnull().sum()

Out[8]:

fixed acidity	0			
volatile acidity				
citric acid	0			
residual sugar	0			
chlorides	0			
free sulfur dioxide	0			
total sulfur dioxide	0			
density				
рН	0			
sulphates	0			
alcohol	0			
quality				
dtvpe: int64				

In [9]:

```
# statistical measures of the dataset
wine_dataset.describe()
```

Out[9]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total su dio
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000

In [10]:

```
# number of values for each quality
sns.catplot(x='quality', data = wine_dataset, kind = 'count')
```

Out[10]:

<seaborn.axisgrid.FacetGrid at 0x2267012d4c0>

In [11]:

```
# volatile acidity vs Quality
plot = plt.figure(figsize=(5,5))
sns.barplot(x='quality', y = 'volatile acidity', data = wine_dataset)
```

Out[11]:

<AxesSubplot:xlabel='quality', ylabel='volatile acidity'>

In [12]:

```
# citric acid vs Quality
plot = plt.figure(figsize=(5,5))
sns.barplot(x='quality', y = 'citric acid', data = wine_dataset)
```

Out[12]:

<AxesSubplot:xlabel='quality', ylabel='citric acid'>

In [14]:

correlation = wine_dataset.corr()

In [15]:

```
# constructing a heatmap to understand the correlation between the columns
plt.figure(figsize=(10,10))
sns.heatmap(correlation, cbar=True, square=True, fmt='.1f', annot= True, annot_kws={'size':
```

Out[15]:

<AxesSubplot:>

In [17]:

separate the data and Label
X= wine_dataset.drop('quality',axis=1)

In [18]:

print	(X)						
s \	fixed acidity	volatile acidity	citric acid resid	dual sugar	chloride		
0	7.4	0.700	0.00	1.9	0.07		
6 1	7.8	0.880	0.00	2.6	0.09		
8 2	7.8	0.760	0.04	2.3	0.09		
2	11.2	0.280	0.56	1.9	0.07		
5	7.4	0.700	0.00	1.9	0.07		
6		•••	•••				
1594	6.2	0.600	0.08	2.0	0.09		
0 1595	5.9	0.550	0.10	2.2	0.06		
2 1596	6.3	0.510	0.13	2.3	0.07		
6 1597	5.9	0.645	0.12	2.0	0.07		
5 1598 7	6.0	0.310	0.47	3.6	0.06		
0 1 2 3 4	free sulfur di	oxide total sulfu 11.0 25.0 15.0 17.0 11.0	34.0 0.99780 67.0 0.99780 54.0 0.99700 60.0 0.99800 34.0 0.99780	3.51	phates \ 0.56 0.68 0.65 0.58 0.56		
1594 1595 1596 1597 1598		32.0 39.0 29.0 32.0 18.0	44.0 0.99490 51.0 0.99512 40.0 0.99574 44.0 0.99547 42.0 0.99549	3.45 3.52 3.42 3.57 3.39	0.58 0.76 0.75 0.71 0.66		
0 1 2 3 4 1594 1595 1596 1597 1598	alcohol 9.4 9.8 9.8 9.8 9.4 10.5 11.2 11.0 10.2 11.0						
[1599 rows x 11 columns]							

In [21]:

```
Y = wine_dataset['quality'].apply(lambda y_value: 1 if y_value>=7 else 0)
```

```
In [22]:
```

```
print(Y)
0
        0
1
        0
2
        0
3
        0
        0
1594
        0
1595
        0
1596
        0
1597
        0
1598
        0
Name: quality, Length: 1599, dtype: int64
In [27]:
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=3)
In [28]:
print (Y.shape, Y_train.shape, Y_test.shape)
(1599,) (1279,) (320,)
In [29]:
model = RandomForestClassifier()
In [30]:
model.fit(X_train, Y_train)
Out[30]:
RandomForestClassifier()
In [33]:
# accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
In [34]:
print('Accuracy : ', test_data_accuracy)
```

Accuracy: 0.925

In [37]:

```
input_data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5)

# changing the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the data as we are predicting the Label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if (prediction[0]==1):
    print('Good Quality Wine')
else:
    print('Bad Quality Wine')
```

[0]
Bad Quality Wine