

Institute of Thermomechanics, Czech Academy of Sciences

Department of Waves in Solids

Air flow in the urban area of Hsinchu city

REPORT FROM THE STUDENT INTERNSHIP

AUTHOR PROGRAMME

TROGRAMME

YEAR

Ing. Tomáš Hlavatý

NARLabs student internship programme

2023

Summary

Abstract of the report will be there

Contents

1	Intr	roduction	1		
2	Mathematical model				
	2.1	Geometry generation and boundary conditions	2		
	2.2	Governing equations	2		
	2.3	Developed OpenFOAMCase python class documentation	2		
3	Computational environment				
	3.1	Preparation of the singularity container	3		
	3.2	Preparation of slurm control script and running of task	4		
4	Numerical experiments				
5	Conclusions				
6	Nomenclature				
Bi	Bibliography				

1 Introduction

Introduction here

- 2 Mathematical model
- 2.1 Geometry generation and boundary conditions
- 2.2 Governing equations
- 2.3 Developed OpenFOAMCase python class documentation

3 Computational environment

NCHC servers use Singularity container platform [singularity] and Slurm workload manager [slurm] to run user-defined tasks. Thus,

- (i) custom singularity container, which includes necessary applications and packages installed inside, is prepared, and
- (ii) slurm task (which works within the container) is prepared and run at the computational server.

3.1 Preparation of the singularity container

Assuming you have super-user permission and singularity installed, a preparation of the singularity container image from docker ubuntu:latest release and with openfoam.org/v10 and other useful applications installed inside can be done as follows:

- Navigate outside the home directory, e.g. /tmp/test/ and work here.
- New container (./ubuntu) is created from ubuntu docker repository, --sandbox flag allows to write into it later:

```
sudo singularity build --sandbox ./ubuntu docker://ubuntu:latest
```

• Shell inside container is opened with --writable flag to install necessary stuff into container:

```
sudo singularity shell ./ubuntu --writable
```

• Installation of the basic applications and openfoam.org/v10 into container:

- If you want to compile custom openfoam solver, source openfoam in container:
 - . /opt/openfoam10/etc/bashrc
- and compile it using wmake in prepared solver directory (in our case in ./01 codes/OF cases/O3 customSolvers/pollutionFoam).

• When everything is installed, the .sif container file can be build using: sudo singularity build ubuntu.sif ./ubuntu/

Following the above listed guideline, singularity container image ubuntu.sif is created. This can be uploaded to NCHC servers and used as described in following subsection.

3.2 Preparation of slurm control script and running of task

4 Numerical experiments

Some nice results her.

5 Conclusions

And conclusion here

6 Nomenclature

c_i		Molar concentration of <i>i</i> -th molar specie
$c_{ m T}$		Total molar concentration
Co		Courant number
d		Diameter
D_i		Molar diffusivity of <i>i</i> -th molar specie
D_i^{eff}		Effective molar diffusivity of <i>i</i> -th molar specie
$oldsymbol{d}_{ ext{PN}}$		Vector connecting centroids of P and N
f		Face of the cell
$oldsymbol{f}_b$		Body forces acting on cell
$oldsymbol{g}^{o}$		Gravitational acceleration
y h		Specific enthalpy
I		Time interval
I^h		Discretized time interval
_		Number of discretized FV cells
M		Molar mass
	• • • • • • • • • • • • • • • • • • • •	Number of species
n		-
n		Outer normal vector
$oldsymbol{n}_f$		Outer normal vector of the face f
p		Pressure
$p_{ ext{ref}}$		Reference pressure
\tilde{p}		Kinematic pressure
Q		Computational domain
r_i		Reaction source of the <i>i</i> -th molar specie
Rg		Universal gas constant
Re		Reynolds number
s_{ϕ}		Source of the ϕ
$oldsymbol{S}_f$		Face area vector
t		Time
T		Temperature
T_{ref}		Reference temperature
$\boldsymbol{u} = (u, v, w)$		Velocity
y_i		Molar fraction of the i -molar specie
α		Heat transfer coefficient
ε		Porosity
Γ_{ϕ}		Diffusivity of ϕ
κ		Permeability
λ		Heat conductivity
μ		Dynamic viscosity
ν		Kinematic viscosity
Ω		Domain
Ω^h		Discretized domain
Ω_P^h		Cell P
$\delta\Omega_i^h$		Volume of the cell
$\partial\Omega^{'}$		Domain boundary
ϕ		Intensive tensorial quantity
ϕ_P		Value of ϕ in the cell centroid of cell P

ϕ_f	 Value of ϕ in the face centroid of face f
$oldsymbol{\Phi}_{\phi}$	 Flux intensity of ϕ
$oldsymbol{\Phi}_{\phi, ext{conv}}$	 Convective flux intensity of ϕ
$oldsymbol{\Phi}_{\phi, ext{diff}}$	 Diffusive flux intensity of ϕ
ρ	 Fluid mass density
\sum	 Total stress tensor
au	 Tortuosity
au	 Viscous stress tensor
∇	 Nabla differential operator

Potencial appendix here.