Praxiseinheit:

"Realisierung einer hardwarebeschleunigten Disparitätenberechnung zur automatischen Auswertung von Stereobildern"

Christian Werner

Institut für Betriebssysteme und Rechnerverbund TU Braunschweig

31.10., 01.11. und 28.11.2015

Gliederung

- Einführung
 - Motivation
 - Anwendungsbeispiel: Stereo Vision
 - CUDA
 - Organisatorisches
- Aufbau einer GPU
 - Recheneinheiten
 - Speicher
- 3 Coding examples
 - Kernel ausführen
 - Speicherverwaltung
 - Referenz-Manual

Anwendungsbeispiel: Stereo Vision

CUDA Organisatorisches

Motivation

- Bisher in der Vorlesung:
 Wie strukturiert man große, verteilte Anwendungen?
 - inhärent parallel
 - Trennung zwischen: UI, Logik und Daten (→ 3- bzw. 4-Schicht-Modell)
- Nun:

Wie optimiere ich die Performance, wenn es viel zu rechnen gibt?

- Parallelität vs. schnelle sequentielle Ausführung
- CPU vs. GPU
- Berechnung lokal vs. remote
- Kopplung mehrere Recheneinheiten in einem Verbund
- Schwerpunkt:
 - "General Purpose" Berechnungen auf GPUs (GPGPU)

Anwendungsbeispiel: Stereo Vision

CUDA

Organisatorisches

Motivation

- Bisher in der Vorlesung:
 Wie strukturiert man große, verteilte Anwendungen?
 - inhärent parallel
 - Trennung zwischen: UI, Logik und Daten (→ 3- bzw. 4-Schicht-Modell)
- Nun:

Wie optimiere ich die Performance, wenn es viel zu rechnen gibt?

- Parallelität vs. schnelle sequentielle Ausführung
- CPU vs. GPU
- Berechnung lokal vs. remote
- Kopplung mehrere Recheneinheiten in einem Verbund
- Schwerpunkt:

"General Purpose" Berechnungen auf GPUs (GPGPU)

Anwendungsbeispiel: Stereo Vision

CUDA

Organisatorisches

Motivation

- Bisher in der Vorlesung:
 Wie strukturiert man große, verteilte Anwendungen?
 - inhärent parallel
 - Trennung zwischen: UI, Logik und Daten (→ 3- bzw. 4-Schicht-Modell)
- Nun: Wie optimiere ich die Performance, wenn es viel zu rechnen gibt?
 - Parallelität vs. schnelle sequentielle Ausführung
 - CPU vs. GPU
 - Berechnung lokal vs. remote
 - Kopplung mehrere Recheneinheiten in einem Verbund
- Schwerpunkt:
 - "General Purpose" Berechnungen auf GPUs (GPGPU)

Anwendungsbeispiel: Stereo Vision

CUDA

Organisatorisches

Motivation

Aber kann man die Rechenleistung auch für andere Zwecke einsetzen?

Anwendungsbeispiel: Stereo Vision

CUDA

Organisatorisches

Stereobilder und Disparitätenmatrix

Motivation
Anwendungsbeispiel: Stereo Vision
CUDA

Organisatorisches

Rauminformationen aus Disparitätenmatrix

Motivation
Anwendungsbeispiel: Stereo Vision
CUDA

Organisatorisches

(Flächenbasierte) Berechnung der Disparitätenmatrix

Bewertungsfunktionen

$$f_{1}(i,j,\tau) = \frac{\sum\limits_{k=-f_{b}/2}^{f_{b}/2}\sum\limits_{l=-f_{h}/2}^{f_{h}/2}[P_{l}(i+k,j+l) - P_{r}(i+k+\tau,j+l)]^{2}}{\sqrt{\sum\limits_{k=-f_{b}/2}^{f_{b}/2}\sum\limits_{l=-f_{h}/2}^{f_{h}/2}P_{l}(i+k,j+l)^{2} \cdot \sum\limits_{k=-f_{b}/2}^{f_{b}/2}\sum\limits_{l=-f_{h}/2}^{f_{h}/2}P_{r}(i+k+\tau,j+l)^{2}}}$$

$$f_{2}(i,j,\tau) = \sum\limits_{k=-f_{b}/2}^{f_{b}/2}\sum\limits_{l=-f_{h}/2}^{f_{h}/2}[P_{l}(i+k,j+l) - P_{r}(i+k+\tau,j+l)]^{2}}$$

$$f_{3}(i,j,\tau) = \sum\limits_{k=-f_{b}/2}^{f_{b}/2}\sum\limits_{l=-f_{h}/2}^{f_{h}/2}|P_{l}(i+k,j+l) - P_{r}(i+k+\tau,j+l)|}$$

Motivation
Anwendungsbeispiel: Stereo Vision
CLIDA

Organisatorisches

Was ist CUDA?

- Compute Unified Device Architecture
- CUDA ist eine Bibliothek, die es erlaubt, auf NVIDIA GPUs eigenen Code auszuführen
- CUDA abstrahiert die Hardware so weit, dass man auf der GPU (nahezu) normal aussehenden C-Code ausführen kann
- Neben der nativen C-Bibliothek gibt es inzwischen auch Schnittstellen zu Matlab, Java und anderen Programmiersprachen

Motivation
Anwendungsbeispiel: Stereo Vision
CUDA
Organisatorisches

- Implementieren Sie einen CUDA-Kernel, der mit Hilfe der Bewertungsfunktion $f_3(i,j,\tau)$ die Disparitätenmatrix für die Pixel eines Stereobildpaares mit einem möglichst höhen Parallelitätsgrad berechnet.
- ② Binden Sie Ihren Kernel in die Software StereoLab ein und untersuchen Sie das Laufzeitverhalten im Vergleich zur sequentiellen Ausführung auf der Host-CPU.
- Verwendem Sie einen Web-Service, der Ihren CUDA-Kernel kapselt und starten Sie eine lokale Instanz des Services. Untersuchen Sie das Laufzeitverhalten.
- Implementieren Sie eine Client/Server-Variante auf Basis von TCP-Sockets. Untersuchen Sie das Laufzeitverhalten.
- Publizieren" Sie Ihre Ergebnisse. So knapp wie möglich; min. 2, max. 4 Seiten.

Motivation
Anwendungsbeispiel: Stereo Vision
CUDA
Organisatorisches

- Implementieren Sie einen CUDA-Kernel, der mit Hilfe der Bewertungsfunktion $f_3(i,j,\tau)$ die Disparitätenmatrix für die Pixel eines Stereobildpaares mit einem möglichst höhen Parallelitätsgrad berechnet.
- Binden Sie Ihren Kernel in die Software StereoLab ein und untersuchen Sie das Laufzeitverhalten im Vergleich zur sequentiellen Ausführung auf der Host-CPU.
- Verwendem Sie einen Web-Service, der Ihren CUDA-Kernel kapselt und starten Sie eine lokale Instanz des Services. Untersuchen Sie das Laufzeitverhalten.
- Implementieren Sie eine Client/Server-Variante auf Basis von TCP-Sockets. Untersuchen Sie das Laufzeitverhalten.
- Publizieren" Sie Ihre Ergebnisse. So knapp wie möglich; min. 2, max. 4 Seiten.

Motivation
Anwendungsbeispiel: Stereo Vision
CUDA

Organisatorisches

- Implementieren Sie einen CUDA-Kernel, der mit Hilfe der Bewertungsfunktion $f_3(i,j,\tau)$ die Disparitätenmatrix für die Pixel eines Stereobildpaares mit einem möglichst höhen Parallelitätsgrad berechnet.
- Binden Sie Ihren Kernel in die Software StereoLab ein und untersuchen Sie das Laufzeitverhalten im Vergleich zur sequentiellen Ausführung auf der Host-CPU.
- Verwendem Sie einen Web-Service, der Ihren CUDA-Kernel kapselt und starten Sie eine lokale Instanz des Services. Untersuchen Sie das Laufzeitverhalten.
- Implementieren Sie eine Client/Server-Variante auf Basis von TCP-Sockets. Untersuchen Sie das Laufzeitverhalten.
- Publizieren" Sie Ihre Ergebnisse. So knapp wie möglich; min. 2, max. 4 Seiten.

Motivation
Anwendungsbeispiel: Stereo Vision
CUDA
Organisatorisches

- Implementieren Sie einen CUDA-Kernel, der mit Hilfe der Bewertungsfunktion $f_3(i,j,\tau)$ die Disparitätenmatrix für die Pixel eines Stereobildpaares mit einem möglichst höhen Parallelitätsgrad berechnet.
- Binden Sie Ihren Kernel in die Software StereoLab ein und untersuchen Sie das Laufzeitverhalten im Vergleich zur sequentiellen Ausführung auf der Host-CPU.
- Verwendem Sie einen Web-Service, der Ihren CUDA-Kernel kapselt und starten Sie eine lokale Instanz des Services. Untersuchen Sie das Laufzeitverhalten.
- Implementieren Sie eine Client/Server-Variante auf Basis von TCP-Sockets. Untersuchen Sie das Laufzeitverhalten.
- Publizieren" Sie Ihre Ergebnisse. So knapp wie möglich; min. 2, max. 4 Seiten.

Anwendungsbeispiel: Stereo Vision CUDA
Organisatorisches

- Implementieren Sie einen CUDA-Kernel, der mit Hilfe der Bewertungsfunktion $f_3(i,j,\tau)$ die Disparitätenmatrix für die Pixel eines Stereobildpaares mit einem möglichst höhen Parallelitätsgrad berechnet.
- Binden Sie Ihren Kernel in die Software StereoLab ein und untersuchen Sie das Laufzeitverhalten im Vergleich zur sequentiellen Ausführung auf der Host-CPU.
- Verwendem Sie einen Web-Service, der Ihren CUDA-Kernel kapselt und starten Sie eine lokale Instanz des Services. Untersuchen Sie das Laufzeitverhalten.
- Implementieren Sie eine Client/Server-Variante auf Basis von TCP-Sockets. Untersuchen Sie das Laufzeitverhalten.
- "Publizieren" Sie Ihre Ergebnisse. So knapp wie möglich; min. 2, max. 4 Seiten.

- Im Unterschied zu CPUs gibt es bei GPUs nur kleine Caches und keine komplexe Logik um den Programmablauf vorherzusagen
- Aber: Auf GPUs gibt es viele parallele Recheneinheiten

- Im Unterschied zu CPUs gibt es bei GPUs nur kleine Caches und keine komplexe Logik um den Programmablauf vorherzusagen
- Aber: Auf GPUs gibt es viele parallele Recheneinheiten

- Eine aktuelle GPU besitzt mehrere Stream-Multiprozessoren (SM).
- Jeder davon besitzt mehrere Stream-Prozessoren (SP, alias Unified Shader oder Unified Streaming Processor)
- Jeder Stream-Prozessor kann pro Instruktion mehrere Datensätze verarbeiten (SIMD: single instruction, multiple data)
- Aktuelle NVIDIA-GPUs enthalten sehr viele Stream-Prozessoren
- im Pool: Kepler-Architektur, GK104, 1.152 SP verteilt auf 6 SM

Speicher der GPU

Local memory

Speicher pro Thread, z.B. für lokale Variablen

Shared memory

Speicher pro Block, nur Threads im Block haben Zugriff

Global memory

Globaler Speicher, alle Threads haben darauf Zugriff (am langsamsten)

Texture memory

Globaler Read-only Speicher

Speicher der GPU

Aufruf eines Kernels

Aufruf eines Kernels

- nvcc, ein von NVIDIA gestellter spezieller (Pre)-Compiler übersetzt .cu Dateien (C-Dateien mit zusätzlichen Annotationen).
- Mit __global__ annotierte Funktionen werden auf der GPU ausgeführt.
- FunctionName<<<...>>> () ist der Syntax zum Ausführen der Funktion auf der GPU.

Thread-Index

```
// Kernel definition
      global void MatAdd(float A[N][N], float B[N][N],
2
                            float C[N][N])
3
        int i = threadIdx.x;
5
        int j = threadIdx.y;
6
       C[i][j] = A[i][j] + B[i][j];
8
9
   int main()
10
11
        // Kernel invocation
12
13
        dim3 dimBlock(N, N);
        MatAdd<<<1, dimBlock>>>(A, B, C);
14
15
```

Thread-Index

- In FunctionName<<<dimGrid, dimBlock>>>()
 geben dimGrid und dimBlock an, auf wievielen
 GPU-Blöcken (dimGrid) und auf wievielen Threads pro
 Block der Kernel ausgeführt wird
- Innerhalb des Kernels kann dann mittels threadldx und blockldx auf den Index des entsprechenden Threads und Blocks zugegriffen werden (globale Variablen)
- Über threadldx und blockldx kann man innerhalb des Kernels erkennen, in welchem Thread und Block man sich befindet, um unterschiedliche Berechnungen durchführen zu können (z.B. andere Abschnitte eines Bildes)

Berechnungen auf mehrere Blöcke verteilen

```
// Kernel definition
      global void MatAdd(float A[N][N], float B[N][N],
2
                             float C[N][N]) {
3
        int i = blockldx.x * blockDim.x + threadldx.x;
        int j = blockldx.y * blockDim.y + threadldx.y;
5
        if (i < N \&\& i < N)
6
            C[i][j] = A[i][j] + B[i][j];
7
8
9
   int main() {
10
        // Kernel invocation
11
        dim3 dimBlock(16, 16);
12
        dim3 dimGrid ((N + dimBlock.x - 1) / dimBlock.x)
13
                      (N + dimBlock.y - 1) / dimBlock.y);
14
        MatAdd<<<dimGrid, dimBlock>>>(A, B, C);
15
16
```

Berechnungen auf mehrere Blöcke verteilen

- Hier werden pro Block immer genau 16 * 16 = 256
 Threads eingesetzt
- Dies ist notwendig, da die eingesetzten Grafikprozessoren Beschränkungen setzen (typische GPUs können zurzeit maximal 512 Threads pro Block ausführen)
- Um am Ende das ganze zweidimensionale Array abzudecken wird die Dimension des Grids dann dynamisch aus der Größe des Arrays und der Größe des Blocks berechnet
- dimBlock darf nie mehr Threads angeben als die GPU pro Block ausführen kann
- dimGrid kann dagegen mit der Größe der zu verarbeitenden Daten skalieren. Die GPU führt so viele Blöcke wie möglich parallel aus, der Rest sequenziell

Speicher allokieren

```
float *d_A, *d_B, *d_C;
cudaMalloc((void**)&d_A, N * sizeof(float));
cudaMalloc((void**)&d_B, N * sizeof(float));
cudaMalloc((void**)&d_C, N * sizeof(float));

// [...]
// [ree memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
```

Speicher allokieren

- Globaler Speicher in der GPU wird wie in C üblich allokiert und freigegeben, nur mit speziellen Methoden
- Der resultierende Pointer darf nicht in Host-Code benutzt werden, da auf den GPU-Speicher nicht direkt zugegriffen werden kann!

Zwischen Host-Speicher und CUDA-Speicher kopieren

```
// Copy vectors from host memory to device memory
// h_A and h_B are input vectors stored in host memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// [execute kernel]
// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
```

Zwischen Host-Speicher und CUDA-Speicher kopieren

 Mittels cudaMemcpy können zwischen Host- und CUDA-Speicher Daten ausgetauscht werden

Zum Weiterlesen...

- CUDA C Programming Guide (http://docs.nvidia. com/cuda/cuda-c-programming-guide/)
- Beispiel-Styles für Publikation (http: //www.ieee.org/publications_standards/ publications/authors/authors_journals.html)