- Increases precision
- Attempts to adjust for bias
- Often will include "pre" and "post" treatment to try to account for confounding individual differences
- Common: S.E.S., age

Covariate effects:

- Confounding variables bias estimates of treatment effects
- Covariate: a variable (or group of variables) that accounts for a portion of the variance in the dependent variable
 - Allows researchers to test for group differences while controlling for effects of the covariate

ANCOVA VS Multi-factor ANOVA?

- ANCOVA doesn't require that the variable we are trying to control for is necessarily an independent categorical variable
- Ex. Amount of tv watching for girls versus boys (independent variable 1 = gender), in four different geographic locations (independent variable 2 = North, South, West, East), the interaction (gender*geography) and S.E.S. (what type of variable could this be?)

http://www.biostathandbook.com/ancova.html

Females were mated once (white circles) or three times (black filled circles).

Since larger females are known to produce more offspring, before mating, the female fireflies were weighed.

The slopes between the once mated and thrice mated were not significantly different but the Y-intercepts are significantly different.

Is there a difference in the number of eggs laid between once and thrice mated females?

- a. No
- b. Yes
- c. Can't tell

Covariate effects:

Confounding variables bias estimates of treatment effects

Experimental - eliminate confounding variables by random assignment of treatment

Observational - include known confounding variables and correct for their distorting influence

ANCOVA: Analysis of Covariance

Two rounds of model fitting:

Response = Constant + Factor 1 + Covariate + Factor 1*Covariate

- Interaction between covariate and treatment is tested
 - Regression slopes differ among the 'groups' if interaction is present
- 2. If no interaction is detected, interaction term is dropped and treatment effect is tested

Response = Constant + Factor 1 + Covariate + Factor 1*Covariate

Two rounds of model fitting:

- 1. Interaction between covariate and treatment is tested
 - Regression slopes differ among the 'groups' if interaction is present

F-test =
$$\underline{H}_A$$
: Constant + Factor 1 + Covariate + Factor 1*Covariate
 \underline{H}_0 Constant + Factor 1 + Covariate_

2. If no interaction is detected, interaction term is dropped and treatment effect is tested

F-test =
$$H_A$$
: Constant + Factor 1 + Covariate

 H_0 Constant + Factor 1

Example: Mole-rats are eusocial mammals with a queen, reproductive males and workers in a colony. It seems as though there might be two worker castes: "frequent workers", who do most of the work of the colony, and "infrequent workers", who do work after rains. Energy expenditure varies with body mass in both groups but infrequent workers are heavier than frequent workers. How different is mean daily energy expenditure between two groups when adjusted for differences in body mass?

Covariate effects:

Energy = Constant + Caste+ Mass + Caste*mass

Two rounds of model fitting:

Interaction between covariate and treatment is tested

H₀: There is no interaction between caste and mass

H_A: There is interaction between caste and mass

F-test =
$$\underline{H}_A$$
: Constant + Factor 1 + Covariate + Factor 1*Covariate
 \underline{H}_0 Constant + Factor 1 + Covariate_

2. If no interaction is detected, interaction term is dropped and treatment effect is tested

F-test =
$$H_A$$
: Constant + Factor 1 + Covariate
$$H_0 \qquad \text{Constant + Factor 1}$$

ENERGY = CONSTANT + CASTE + MASS + CASTE*MASS

1st Round Results:

F-test = \underline{H}_A : Constant + Caste + mass + Caste*mass \underline{H}_0 Constant+Caste+Mass

Source of variation	Sum of squares	<u>df</u>	Mean Squares F	<u>P</u>
CASTE	0.0570	1	0.0570	
MASS	1.3618	1	1.3618	
CASTE*MASS	0.0896	1	0.0896 1.02	0.321
Residual	2.7249	32	0.0879	
Total	4.2333	35		

Without the interaction term, the regression lines have slopes that are not significantly different – so we can drop it!

The new model is:

 H_0 : There is no difference in energy expenditure between different castes H_A : There is a difference in energy expenditure between different castes

F-test =
$$H_A$$
: Constant + Caste + Mass
 H_0 Constant + Mass

2nd Round Results:

Source of variatio	n Sum of squares	<u>df</u>	Mean Squares	<u>F</u>	<u>P</u>
CASTE	0.6375	1	0.6375	7.25	0.011
MASS	1.8815	1	1.8815	21.39	<0.001
Residual	2.814	32	0.0880		
Total	5.3335	34			

Covariate effects:

 Problem 1: there might be other confounding variables that we didn't include in the study

- Problem 2: what if there is interaction?
 - Specify a constant value of the Factor 1

Assumptions of General Linear Models:

- Measurements at every combination (block and treatment combo) are random sample
- Measurements for every combination of values for explanatory variables have a normal distribution
- Variance of response variable is same for all combos of explanatory variables