Ayudantes: Pedro Schilling y Gabriela Denis

Profesora: Adriana Piazza



# Microeconomía I ENECO/610 Ayudantía 5

## Pregunta 1

Suponga U:  $\mathcal{L} \to \mathbb{R}$  es una función de utilidad esperada Von Neumann-Morgensten para la relación de preferencias  $\succeq$  en  $\mathcal{L}$ . Entonces, V es otra función de utilidad esperada V.N-M para  $\succeq$  en  $\mathcal{L}$  si y solo si existen b > 0 y a tales que V = a + bU.

### Pregunta 2

Juanito Cohete es un fanático de los deportes extremos. Practica habitualmente skate urbano y parapente, estando indiferente al enfrentar los riesgos que implica practicar cualquiera de las 2 disciplinas extremas. Sin embargo, cada vez que discute con su hermano, prefiere hacer skating urbano porque es menos riesgoso. ¿La función de Juanito cumple con los axiomas de V.N-M (completitud, transitividad, continuidad e independencia)?

### Pregunta 3

Suponga que la función de utilidad Bernoulli  $u(\cdot)$  posee una aversión absoluta al riesgo decreciente. Muestre que en el óptimo, la asignación de activo riesgoso y libre de riesgo coloca una cantidad creciente de riqueza en el activo riesgoso a medida que w aumenta. ¿Qué puede decir acerca de la aversión relativa al riesgo?

## Pregunta 4

Considere una función de utilidad Bernoulli  $u: \mathbb{R}_+ \to \mathbb{R}$  estrictamente creciente. Muestre que:

- a)  $u(\cdot)$  exhibe aversión relativa al riesgo constante igual a  $\rho$  si y solo si  $u(x) = \beta x^{1-\rho} + \gamma$  donde  $\beta > 0$  e  $y \in \mathbb{R}$
- b)  $u(\cdot)$  exhibe aversión relativa al riesgo constante igual a 1 si y solo si  $u(x) = \beta log(x) + \gamma$  donde  $\beta > 0$  e  $y \in \mathbb{R}$
- c)  $\lim_{\rho \to 1} \frac{x^{1-\rho} 1}{1-\rho} = \log x, \forall x > 0$

#### Pregunta 5

Suponga que un individuo tiene una función de utilidad Bernoulli  $u(x) = \sqrt{x}$ 

- a) Calcule los coeficientes de aversión absoluta y relativa al riesgo para el nivel de riqueza w=5
- b) Calcule el equivalente cierto y el premio por riesgo de una apuesta  $(16,4;\frac{1}{2},\frac{1}{2})$
- c) Calcule el equivalente cierto y el premio por riesgo de una apuesta  $(36, 16; \frac{1}{2}, \frac{1}{2})$ . Compare este resultado con lo obtenido en b) e interprete.