# Тренировочная работа №2 по МАТЕМАТИКЕ 11 класс

20 декабря 2018 года Вариант МА10209 (профильный уровень)

| Выполнена: ФИО                          | класс |  |
|-----------------------------------------|-------|--|
| 220000000000000000000000000000000000000 |       |  |

## Инструкция по выполнению работы

На выполнение работы по математике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 19 заданий.

Часть 1 содержит 8 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 4 задания повышенного уровня сложности с кратким ответом и 7 заданий повышенного и высокого уровней сложности с развёрнутым ответом.

Ответы к заданиям 1–12 записываются в виде целого числа или конечной десятичной дроби.

При выполнении заданий 13–19 требуется записать полное решение на отдельном листе бумаги.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются.

Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Математика. 11 класс. Вариант МА10209

#### Часть 1

Ответом к каждому из заданий 1—12 является конечная десятичная дробь, целое число или последовательность цифр. Запишите ответы к заданиям в поле ответа в тексте работы.

| 1 | Для покраски 1 кв. м потолка требуется 200 г краски. Краска продаётся     |
|---|---------------------------------------------------------------------------|
|   | в банках по 1,5 кг. Какое наименьшее количество банок краски нужно купить |
|   | для покраски потолка площадью 52 кв. м?                                   |

Ответ: \_\_\_\_\_\_

2 Мощность отопителя в автомобиле регулируется дополнительным сопротивлением, которое можно менять, поворачивая рукоятку в салоне машины. При этом меняется сила тока в электрической цепи электродвигателя — чем меньше сопротивление, тем больше сила тока и тем быстрее вращается мотор отопителя. На рисунке показана зависимость силы тока от величины сопротивления. На оси абсцисе откладывается сопротивление (в омах), на оси ординат — сила тока в амперах. Каково сопротивление цепи (в омах), если сила тока составляет 8 ампер?



Ответ:

3 На клетчатой бумаге с размером клетки 1×1 изображён равнобедренный прямоугольный треугольник. Найдите длину его медианы, проведённой к гипотенузе.



2

Ответ: .

© СтатГрад 2018–2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

3

4 Вероятность того, что на тестировании по истории учащийся Т. верно решит больше 8 задач, равна 0,76. Найдите вероятность того, что Т. верно решит ровно 8 задач или меньше.

Ответ: .

**5** Найдите корень уравнения  $\sqrt{\frac{5}{20-6x}} = \frac{1}{10}$ .

Ответ: .

В треугольнике *ABC* отрезок *DE* — средняя линия, параллельная стороне *AB*. Площадь треугольника *ABC* равна 48. Найдите площадь трапеции *ABED*.



Ответ: .

7 На рисунке изображён график функции y = f(x). Найдите количество точек максимума функции f(x), принадлежащих интервалу (-4,7).



Ответ: \_\_\_\_\_\_.

8 Объём куба  $ABCDA_1B_1C_1D_1$  равен 12. Построено сечение  $EFF_1E_1$ , проходящее через середины рёбер BC, CD и  $C_1D_1$  и параллельное ребру  $CC_1$ .  $A_1$  Найдите объём треугольной призмы  $CEFC_1E_1F_1$ .



Ответ:

# Часть 2

**9** Найдите значение выражения  $\frac{5^{8,2}}{25^{2,6}}$ .

Ответ:

10 Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением a = 0,4 м/с<sup>2</sup>. Скорость  $\nu$  вычисляется по формуле  $\nu = \sqrt{2la}$ , где l — пройденный автомобилем путь. Найдите, сколько метров проедет автомобиль к моменту, когда он разгонится до скорости 30 м/с.

Ответ: .

11 Первый и второй насосы, работая вместе, наполняют бассейн за 90 минут, второй и третий, работая вместе, — за 140 минут, а первый и третий, работая вместе, — за 180 минут. За сколько минут заполнят бассейн все три насоса, работая вместе?

Ответ: .

 12
 Найдите наименьшее значение функции

  $y = 3\sin x - 12x + 2$  

 на отрезке  $[-\pi; 0]$ .

Ответ: .

5

Для записи решений и ответов на задания 13–19 используйте отдельный лист. Запишите сначала номер выполняемого задания (13, 14 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

- 13 а) Решите уравнение  $\frac{7}{1-\cos^2 x} + \frac{9}{\sin x} = 10$ .
  - б) Укажите корни этого уравнения, принадлежащие отрезку  $\left[ -3\pi; \, -\frac{3\pi}{2} \right]$
- 14 В правильной треугольной пирамиде MABC боковые рёбра равны 10, а сторона основания равна 12. Точки G и F делят стороны основания AB и AC соответственно так, что AG:GB=AF:FC=1:5.
  - а) Докажите, что сечение пирамиды плоскостью *MGF* является равнобедренным треугольником.
  - б) Найдите площадь сечения пирамиды плоскостью МGF.
- **15** Решите неравенство  $4^{x-3} 2^{x-3} (16 x^2) 16x^2 \ge 0$ .
- Дан треугольник ABC со сторонами AB = 20, AC = 12 и BC = 16. Точки M и N середины сторон AB и AC соответственно.
  - а) Докажите, что окружность, вписанная в треугольник ABC, касается одной из средних линий.
  - б) Найдите общую хорду окружностей, одна из которых вписана в треугольник ABC, а вторая описана около треугольника AMN.
- Производство x тыс. единиц продукции обходится в  $q = 0.5x^2 + 7x + 12$  млн рублей в год. При цене p тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px q. При каком наименьшем значении p через четыре года суммарная прибыль может составить не менее 344 млн рублей?

18 Найдите все значения a, при которых система  $\begin{cases} y = (a+2)x^2 + 2ax + a - 1, \\ x = (a+2)y^2 + 2ay + a - 1 \end{cases}$ 

имеет ровно одно решение.

- a) Можно ли в числителе и знаменателе дроби  $\frac{1*3*6*15}{1*4*8*16}$  вместо всех знаков \* так расставить знаки + и –, чтобы эта дробь стала равна  $\frac{5}{3}$ ?
  - б) Можно ли в числителе и знаменателе дроби  $\frac{1*3*6*9*12}{1*4*8*12*16}$  вместо всех знаков \* так расставить знаки + и –, чтобы эта дробь стала равна  $\frac{4}{7}$ ?
  - в) Какое наименьшее значение может принимать выражение  $\left|\frac{3}{4} \frac{1*3*6*9*12}{1*4*8*12*16}\right|$ , если всевозможными способами заменять каждый из знаков \* на + или -?

# Ответы на тренировочные варианты 10209-10212 (профильный уровень) от 20.12.2018

|       | 1  | 2   | 3  | 4    | 5     | 6  | 7 | 8    | 9   | 10   | 11 | 12 |
|-------|----|-----|----|------|-------|----|---|------|-----|------|----|----|
| 10209 | 7  | 1   | 3  | 0,24 | - 80  | 36 | 4 | 1,5  | 125 | 1125 | 84 | 2  |
| 10210 | 7  | 0,5 | 2  | 0,36 | - 201 | 24 | 5 | 8,75 | 216 | 875  | 72 | 8  |
| 10211 | 10 | 4   | 12 | 0,25 | - 4   | 45 | 5 | 0,3  | 2   | 60   | 8  | -4 |
| 10212 | 10 | 6   | 6  | 0,2  | - 2   | 39 | 4 | 0,6  | 3   | 60   | 27 | 7  |

# Критерии оценивания заданий с развёрнутым ответом

- 13 a) Решите уравнение  $\frac{7}{1-\cos^2 x} + \frac{9}{\sin x} = 10$ .
  - б) Укажите корни этого уравнения, принадлежащие отрезку  $\left[-3\pi; -\frac{3\pi}{2}\right]$ .

# Решение.

а) Запишем исходное уравнение в виде  $\frac{7}{\sin^2 x} + \frac{9}{\sin x} = 10$ ;

$$\frac{7 + 9\sin x - 10\sin^2 x}{\sin^2 x} = 0; -\frac{10\left(\sin x + \frac{1}{2}\right)\left(\sin x - \frac{7}{5}\right)}{\sin^2 x} = 0.$$

Следовательно,  $\sin x = -\frac{1}{2}$ , откуда  $x = -\frac{\pi}{6} + 2\pi n$  или  $x = -\frac{5\pi}{6} + 2\pi k$ ,  $n, k \in \mathbb{Z}$ .

б) С помощью числовой окружности отберём корни, принадлежащие отрезку  $\left[ -3\pi; \, -\frac{3\pi}{2} \right]$ .



Получим числа  $-\frac{17\pi}{6}$ ,  $-\frac{13\pi}{6}$ .

**Ответ**: a)  $-\frac{\pi}{6} + 2\pi n$ ;  $-\frac{5\pi}{6} + 2\pi k$ ,  $n, k \in \mathbb{Z}$ ; 6)  $-\frac{17\pi}{6}$ ;  $-\frac{13\pi}{6}$ .

| Содержание критерия                                             | Баллы |
|-----------------------------------------------------------------|-------|
| Обоснованно получены верные ответы в обоих пунктах              | 2     |
| Обоснованно получен верный ответ в пункте а.                    | 1     |
| ИЛИ                                                             |       |
| Получен неверный ответ из-за вычислительной ошибки, но при этом |       |
| имеется верная последовательность всех шагов решения            |       |
| Решение не соответствует ни одному из критериев, перечисленных  | 0     |
| выше                                                            |       |
| Максимальный балл                                               | 2     |

© СтатГрад 2018—2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

- В правильной треугольной пирамиде MABC боковые рёбра равны 10, а сторона основания равна 12. Точки G и F делят стороны основания AB и AC соответственно так, что AG:GB=AF:FC=1:5.
- а) Докажите, что сечение пирамиды плоскостью MGF является равнобедренным треугольником.
- б) Найдите площадь сечения пирамиды плоскостью МСГ.

#### Решение.

14

а) Из условия следует, что AG = AF = 2. Треугольники AMG и AMF равны по двум сторонам и углу между ними. Поэтому MG = MF.



б) Проведём высоту MH боковой грани AMB. Из прямоугольного треугольника AHM находим

$$MH = \sqrt{AM^2 - AH^2} = 8.$$

В прямоугольном треугольнике МНС катет НС равен 4. Поэтому

$$MG = \sqrt{MH^2 + HG^2} = \sqrt{64 + 16} = 4\sqrt{5}$$
.

Треугольник AGF равносторонний, поэтому GF = AG = 2. В равнобедренном треугольнике GMF проведём высоту MK. Она делит отрезок GF пополам. Из прямоугольного треугольника MKG получаем

$$MK = \sqrt{MG^2 - GK^2} = \sqrt{80 - 1} = \sqrt{79}$$
.

Следовательно, площадь треугольника GMF равна  $\frac{1}{2} \cdot GF \cdot MK = \sqrt{79}$  .

**Ответ:**  $\sqrt{79}$ .

| Содержание критерия                                                |   |  |  |
|--------------------------------------------------------------------|---|--|--|
| Имеется верное доказательство утверждения пункта а, и              | 2 |  |  |
| обоснованно получен верный ответ в пункте $\delta$                 |   |  |  |
| Верно доказан пункт а.                                             | 1 |  |  |
| или                                                                |   |  |  |
| Верно решён пункт $\delta$ при отсутствии обоснований в пункте $a$ |   |  |  |
| Решение не соответствует ни одному из критериев, перечис-          | 0 |  |  |
| ленных выше                                                        |   |  |  |
| Максимальный балл                                                  | 2 |  |  |

15 Решите неравенство  $4^{x-3} - 2^{x-3} (16 - x^2) - 16x^2 \ge 0$ .

## Решение

16

Запишем исходное неравенство в виде  $4^{x-3} - 16 \cdot 2^{x-3} + 2^{x-3} x^2 - 16x^2 \ge 0$ ;  $2^{x-3} \left(2^{x-3} + x^2\right) - 16\left(2^{x-3} + x^2\right) \ge 0$ ;  $\left(2^{x-3} + x^2\right) \left(2^{x-3} - 16\right) \ge 0$ ;  $x - 3 \ge 4$ ;  $x \ge 7$ . **Ответ:**  $[7; +\infty)$ .

| Содержание критерия                                               | Баллы |
|-------------------------------------------------------------------|-------|
| Обоснованно получен верный ответ                                  | 2     |
| Решение содержит вычислительную ошибку, возможно, приведшую       | 1     |
| к неверному ответу, но при этом имеется верная последовательность |       |
| всех шагов решения                                                |       |
| Решение не соответствует ни одному из критериев, перечисленных    | 0     |
| выше                                                              |       |
| Максимальный балл                                                 | 2     |

- Дан треугольник ABC со сторонами AB = 20, AC = 12 и BC = 16. Точки M и N середины сторон AB и AC соответственно.
- а) Докажите, что окружность, вписанная в треугольник ABC, касается одной из средних линий.
- б) Найдите общую хорду окружностей, одна из которых вписана в треугольник ABC, а вторая описана около треугольника AMN.

Решение.

3



а) Из теоремы, обратной теореме Пифагора, следует, что треугольник ABC прямоугольный с прямым углом при вершине C. Пусть радиус его вписанной окружности равен r. Тогда

$$r = \frac{AC + BC - AB}{2} = \frac{12 + 16 - 20}{2} = 4$$
.

Пусть K — середина катета BC. Тогда расстояние между прямыми KM и AC равно длине отрезка MN, то есть 8. Значит, расстояние между этими прямыми равно диаметру вписанной в треугольник ABC окружности. Следовательно, эта окружность касается средней линии KM.

б) Треугольник AMN прямоугольный с прямым углом при вершине N, значит, центр описанной окружности треугольника AMN — середина Q отрезка AM, а радиус равен 5. Пусть вписанная окружность треугольника ABC касается сторон AB и AC в точках E и F соответственно. Тогда

$$CF = r = 4$$
,  $AE = AF = AC - CF = 12 - 4 = 8$ ,  $EQ = AE - AQ = 8 - 5 = 3$ ,

$$OQ = \sqrt{OE^2 + EQ^2} = \sqrt{4^2 + 3^2} = 5$$
.

Пусть L — одна из точек пересечения рассматриваемых окружностей. Общая хорда пересекающихся окружностей перпендикулярна линии центров и делится ею пополам, значит, искомое расстояние равно удвоенной высоте LH треугольника OLQ со сторонами OQ = 5, OL = 4 и QL = 5, проведённой из вершины L. Высота QT этого равнобедренного треугольника, опущенная на основание, является медианой, значит,

$$QT = \sqrt{LQ^2 - LT^2} = \sqrt{25 - 4} = \sqrt{21}.$$

5

Поэтому

$$LH = \frac{OL \cdot QT}{OQ} = \frac{4\sqrt{21}}{5}.$$

Следовательно, искомое расстояние равно  $\frac{8\sqrt{21}}{5}$ .

**Ответ:** 
$$\frac{8\sqrt{21}}{5}$$
.

| Содержание критерия                                                   | Баллы |
|-----------------------------------------------------------------------|-------|
| Имеется верное доказательство утверждения пункта а, и                 | 3     |
| обоснованно получен верный ответ в пункте $\delta$                    |       |
| Обоснованно получен верный ответ в пункте $\delta$ .                  | 2     |
| ИЦИ                                                                   |       |
| Имеется верное доказательство утверждения пункта $a$ , и при          |       |
| обоснованном решении пункта $\delta$ получен неверный ответ из-за     |       |
| арифметической ошибки                                                 |       |
| Имеется верное доказательство утверждения пункта $a$ .                | 1     |
| ИЛИ                                                                   |       |
| При обоснованном решении пункта $\delta$ получен неверный ответ из-за |       |
| арифметической ошибки.                                                |       |
| ИЛИ                                                                   |       |
| Обоснованно получен верный ответ в пункте $\delta$ с использованием   |       |
| утверждения пункта $a$ , при этом пункт $a$ не выполнен               |       |
| Решение не соответствует ни одному из критериев, перечисленных        | 0     |
| выше                                                                  |       |
| Максимальный балл                                                     | 3     |

Производство x тыс. единиц продукции обходится в  $q = 0.5x^2 + 7x + 12$  млн рублей в год. При цене р тыс. рублей за единицу годовая прибыль от продажи этой продукции (в млн рублей) составляет px - q. При каком наименьшем значении р через четыре года суммарная прибыль может составить не менее 344 млн рублей?

Прибыль (в млн рублей) за один год выражается как

 $px - (0.5x^2 + 7x + 12) = -0.5x^2 + (p-7)x - 12.$ 

Это выражение является квадратным трёхчленом и достигает свого наибольшего значения при x = p - 7. Наибольшее значение равно

$$\frac{\left(p-7\right)^{2}}{2}$$
 – 12 . Через 4 года прибыль составит не менее 344 млн рублей, если

© СтатГрад 2018-2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Математика. 11 класс. Вариант МА10209

$$\frac{(p-7)^2}{2} - 12 \ge \frac{344}{4};$$

откуда  $(p-7)^2 \ge 196$ ;  $(p-21)(p+7) \ge 0$ .

Цена продукции не может быть отрицательной, поэтому p = 21.

Ответ: 21.

| Содержание критерия                                       | Баллы |
|-----------------------------------------------------------|-------|
| Обоснованно получен верный ответ                          | 3     |
| Верно построена математическая модель, решение сведено    | 2     |
| к исследованию этой модели, получен неверный ответ из-за  |       |
| вычислительной ошибки                                     |       |
| Верно построена математическая модель, и решение сведено  | 1     |
| к исследованию этой модели, при этом решение не завершено |       |
| Решение не соответствует ни одному из критериев,          | 0     |
| перечисленных выше                                        |       |
| Максимальный балл                                         | 3     |

Найдите все значения a, при которых система

$$\begin{cases} y = (a+2)x^2 + 2ax + a - 1, \\ x = (a+2)y^2 + 2ay + a - 1 \end{cases}$$

имеет ровно одно решение.

#### Решение.

Система не изменится, если поменять х и у местами. Следовательно, система имеет единственное решение, только если x = y. Получаем уравнение:

$$(a+2)x^2+(2a-1)x+a-1=0$$
.

Это уравнение должно иметь единственный корень.

Если  $a \neq -2$ , то дискриминант должен равняться нулю:

$$(2a-1)^2 - 4(a+2)(a-1) = 0;$$
  
-8a+9=0

откуда  $a = \frac{9}{9}$ .

При  $a = \frac{9}{8}$  получаем  $\frac{25}{8}x^2 + \frac{10}{8}x + \frac{1}{8} = 0$ , откуда x = -0, 2. Тогда решением системы является пара (-0,2;-0,2).

Если a = -2, получается линейное уравнение 5x + 3 = 0, которое имеет единственное решение x = -0.6. Решением системы является пара (-0,6;-0,6).

© СтатГрад 2018-2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Покажем, что в этих случаях нет иных решений, где  $x \neq y$ . Вычтем второе уравнение системы из первого и разделим полученное уравнение почленно на  $x - y \neq 0$ :

$$-1 = (a+2)(x+y)+2a$$
.

При a = -2 получается, что a = -0.5. Решений нет.

При  $a = \frac{9}{8}$  получаем  $y = -\frac{26}{25} - x$ . Подставим это выражение в первое

уравнение системы:

$$-\frac{26}{25} - x = \frac{25}{8}x^2 + \frac{9}{4}x + \frac{1}{8}; \quad 25x^2 + 26x + \frac{233}{25} = 0.$$

Полученное уравнение не имеет корней.

**Ответ:**  $-2; \frac{9}{9}$ .

| Содержание критерия                                              | Баллы |
|------------------------------------------------------------------|-------|
| Обоснованно получен верный ответ                                 | 4     |
| Присутствуют все шаги решения, получены верные значения          | 3     |
| параметра, но отсутствует доказательство того, что при каждом из |       |
| них система имеет единственное решение                           |       |
| С помощью верного рассуждения получено только одно значение а    | 2     |
| С помощью верного рассуждения задача сведена к исследованию      | 1     |
| квадратного уравнения                                            |       |
| Решение не соответствует ни одному из критериев, перечисленных   | 0     |
| выше                                                             |       |
| Максимальный балл                                                | 4     |

- а) Можно ли в числителе и знаменателе дроби  $\frac{1*3*6*15}{1*4*8*16}$  вместо всех знаков \* так расставить знаки + и –, чтобы эта дробь стала равна  $\frac{5}{3}$ ?
  - б) Можно ли в числителе и знаменателе дроби  $\frac{1*3*6*9*12}{1*4*8*12*16}$  вместо всех знаков \* так расставить знаки + и –, чтобы эта дробь стала равна  $\frac{4}{2}$ ?
  - Какое наименьшее значение может принимать выражение  $\left| \frac{3}{4} - \frac{1*3*6*9*12}{1*4*8*12*16} \right|$ , если всевозможными способами заменять каждый из знаков \* на + или -?

© СтатГрад 2018-2019 уч. г. Публикация в интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Решение.

а) Да. Например,  $\frac{1+3+6-15}{1+4+8-16} = \frac{5}{3}$ .

б) Рассмотрим какую-либо возможную расстановку знаков в знаменателе 1\*4\*8\*12\*16 данной дроби. Имеем  $1\pm 4\pm 8\pm 12\pm 16=1+4(\pm 1\pm 2\pm 3\pm 4)$ , где знаки + и – расставлены соответствующим образом. Сумма всех чисел в последних скобках чётна и может принимать значения вида 2m, где m некоторое целое число от -5 до 5. Значит, знаменатель дроби равен 8m+1=7m+(m+1). Среди всех возможных значений m знаменатель делится на 7 лишь при m = -1. Следовательно, если знаки расставлены так, что данная дробь равна  $\frac{4}{7}$ , то её знаменатель 1\*4\*8\*12\*16 равен -7. Тогда её числитель 1\*3\*6\*9\*12 равен -4. Пришли к противоречию, так как число  $1\pm 3\pm 6\pm 9\pm 12$  всегда при делении на 3 даёт остаток 1, а число -4 остаток 2. Значит, расставить знаки требуемым образом невозможно.

в) Аналогично доказанному в пункте б) получаем, что при всевозможных расстановках знаков + и - выражение примет вид  $\left| \frac{3}{4} - \frac{6k+1}{8m+1} \right|$ , где k и m

пробегают все целые числа от -5 до 5. Поскольку  $\frac{3}{4} = \frac{6m + \frac{3}{4}}{8m + 1}$ , получаем

$$\left| \frac{3}{4} - \frac{6k+1}{8m+1} \right| = \left| \frac{6(m-k) - \frac{1}{4}}{8m+1} \right|$$
. При фиксированном значении  $m$  это выражение

минимально при k=m. В этом случае оно равно  $\left|\frac{1}{32m+4}\right|$ . Так как mпробегает все целые числа от -5 до 5, максимум модуля 32m+4 достигается при m = 5. Значит, наименьшее значение, которое может принимать

выражение  $\frac{3}{4} - \frac{1*3*6*9*12}{1*4*8*12*16}$ , если всевозможными способами заменять

каждый из знаков \* на + или -, равно  $\frac{1}{164}$ . Оно достигается при k=m=5 в случае, когда каждый из знаков \* заменён на +.

**Ответ:** а) Да. б) Нет. в)  $\frac{1}{164}$ 

| Содержание критерия                                                       | Баллы |
|---------------------------------------------------------------------------|-------|
| Получены верные обоснованные ответы в пунктах $a$ , $\delta$ и $\delta$   | 4     |
| Получены верные обоснованные ответы в пунктах $a$ и $b$ , либо            | 3     |
| получены верные обоснованные ответы в пунктах а и в, либо                 |       |
| получены верные обоснованные ответы в пунктах $\delta$ и $\epsilon$       |       |
| Получен верный обоснованный ответ в пункте $\delta$ , пункты $a$ и $b$ не | 2     |
| решены, либо получен верный обоснованный ответ в пункте $\epsilon$ ,      |       |
| пункты $a$ и $\delta$ не решены                                           |       |
| Приведён пример в пункте $a$ , пункты $\delta$ и $\epsilon$ не решены     | 1     |
| Решение не соответствует ни одному из критериев, перечисленных            | 0     |
| выше                                                                      |       |
| Максимальный балл                                                         | 4     |