Discrete Mathematics: Lecture 16

proposition, truth value, propositional constant/variable, negation, truth table, conjunction, disjunction, implication, bi-implication, formula

Xuming He* Associate Professor

*School of Information Science and Technology, ShanghaiTech University

Spring Semester, 2022

Overview

- Combinatorics: complexity analysis, etc
- Number theory: cryptography
- Logic: software engineering, artificial intelligence, database theory, programming language, etc
- Graph theory: software engineering, theoretical computer science
- . . .

Textbook: Discrete Mathematics and Its Applications (7th edition) Kenneth H. Rosen, William C Brown Pub, 2011.

Mathematical Logic

Logic: the study of reasoning, the basis of all mathematical reasoning.

Mathematical logic: the mathematical study of reasoning and the study of mathematical reasoning //foundation of mathematics

- Leibniz: introduced the idea of mathematical logic in "Dissertation on the Art of Combinations" in 1666
- Universal system of reasoning: reasoning based on symbols+calculations
- Contributors: Boole, De Morgan, Frege, Peano, Russell, Hilbert, Gödel,...
- Areas: (1) set theory, (2) proof theory, (3) recursion theory, (4) model theory, and their foundation (5) propositional logic and predicate logic

Lecture 1

Our focus: propositional logic and predicate logic, (naive) set theory

Proposition

Definition: A **proposition** is a declarative sentence(that is, a sentence that declares a fact) that is either true or false.

- Lower-case letters represent propositions: p, q, r, ...
- **Truth value**: The truth value of p is true (T) if p is a true proposition. The truth value of p is false (F) if p is a false proposition.

- Washington, D.C, is the capital of the United States of America.
 (T)
- 1+1=3 (F)
- $(x^2)' = 2x$ (T)

Proposition

Example:

- Every even integer n > 2 is the sum of two primes.
 - Proposition?:

Yes!

- Goldbach's conjecture
- A proposition whose truth value is not known now
- What time is it?
 - Proposition?:No!. It's not declarative.
- Do not smoke!
 - Proposition?:No!. It's not declarative.
- x + 1 = 2.
 - Proposition?:No!. It's neither true nor false.

Proposition

Simple Proposition: cannot be broken into 2 or more propositions

• $\sqrt{2}$ is irrational.

Compound Proposition: not simple

• 2 is rational and $\sqrt{2}$ is irrational.

Propositional Constant: a concrete proposition (truth value fixed)

• Every even integer n > 2 is the sum of two primes.

Propositional variables:a variable that represents any proposition

- Lower-case letters denote proposition variables: p, q, r, s, ...
- Truth value is not determined until it is assigned a concrete proposition

Propositional Logic: the area of logic that deals with propositions

Negation: ¬

Definition: Let p be any proposition.

- The **negation** of p is the statement "It is not the case that p"
- Notation: $\neg p$; read as "not p"
- True table:

р	$\neg p$
Т	F
F	Т

Negation: ¬

- p = "Snow is black"
 - $\neg p =$ "It is not the case that snow is black."
 - $\neg p =$ "Snow is not black."
 - $\neg p \neq$ "Snow is white."
- p = "Amy's smartphone has at least 32 GB of memory."
 - $\neg p =$ "It is not the case that Amy's smartphone has at least 32 GB of memory."
 - $\neg p =$ "Amy's smartphone does not have at least 32 GB."
 - $\neg p =$ "Amy's smartphone has less than 32 GB."

Conjunction: \(\)

Definition: Let p, q be any propositions.

- The conjunction of p and q is the statement "p and q"
- Notation: $p \wedge q$; read as "p and q"
- True table:

p	q	$p \wedge q$
T	Т	Т
Т	F	F
F	Т	F
F	H	F

- $p = \text{``2} < 3\text{''}; q = \text{``2}^2 < 3^3\text{''}$
 - $p \wedge q = \text{``2} < 3 \text{ and } 2^2 < 3^3.$ ''
 (T)
- p = "Dog can fly"; q = "Eagle can fly"
 - $p \wedge q =$ "Dog can fly and Eagle can fly." **(F)**

Disjunction: \vee

Definition: Let p, q be any propositions.

- The **disjunction** of *p* and *q* is the statement "*p* or *q*"
- Notation: $p \lor q$; read as "p or q"
- True table:

p	q	$p \lor q$
T	T	Т
T	F	Т
F	Т	Т
F	F	F

- p = "2>3"; $q = "2^2 > 3^3"$
 - $p \lor q = \text{``2} > 3 \text{ or } 2^2 > 3^3.$ '' **(F)**
- p = "Dog can fly"; q = "Eagle can fly"
 - p ∨ q = "Dog can fly or Eagle can fly."
 (T)

Implication: \rightarrow

Definition: Let p, q be any propositions.

- The conditional statement $p \to q$ is the proposition "if p, then q."
 - p: hypothesis; q: conclusion; read as "p implies q", or "if p, then q"
- True table:

p	q	p o q
Т	Т	Т
Т	F	F
F	T	T
F	F	Т

Example:

- p = "you get 100 on the final"; q = "you will receive A+"
 - $p \rightarrow q =$ "If you get 100 on the final, you will receive A+." (T)

Lecture 1

• It is false when you get 100 on the final but don't receive A+, which is "when p is true but q is false." (F)

Bi-Implication: \leftrightarrow

Definition: Let p, q be any propositions.

- The **biconditional statement** $p \leftrightarrow q$ is the proposition "p if and only if q."
 - read as"p if and only if q"
- True table:

р	q	$p \leftrightarrow q$
T	T	Т
Т	F	F
F	Т	F
F	L	T

- p = "you can take the flight"; q = "you buy a ticket"
 - $p \leftrightarrow q =$ "You can take the flight if and only if you buy a ticket."
 - False when (p, q) = (T, F) or (F, T)

Well-Formed Formulas

Definition: recursive definition of well-formed formulas (WFFs)

- 1 propositional constants (T, F) and propositional variables are WFFs
- 2 If A is a WFF, then $\neg A$ is a WFF.
- **3** If A, B are WFFs, then $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ are WFFs
- \bullet WFFs are results of finitely many applications of 1, 2, 3.

Remark: well-formed formulas = propositional formulas = formulas

Use tree structure to check

- $(p \wedge q) \neg r$ (F)
- $m \leftrightarrow ((p \land q) \rightarrow (\neg r \land s))$ (T)

Summary

Proposition: a declarative sentence that is either true or false.

• simple, compound, propositional constant/variable

Logical Connectives:
$$\neg$$
 (unary) $\land, \lor, \rightarrow, \leftrightarrow$ (binary)

- Truth table
- Example 14 (Textbook Page 11)

Well-Formed Formulas: formulas

- propositional constant, variables
- $\neg A, (A \land B), (A \lor B), (A \leftarrow B), (A \leftrightarrow B)$
- Finite

Precedence of Logical Operators

Precedence (priority): \neg , \wedge , \vee , \rightarrow , \leftrightarrow

- formulas inside () are computed firstly
- different connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$ (Decreasing Precedence)
- same connectives: from left to the right
- Example 1: $\neg p \land q$: $(\neg p) \land q$
- Example 2: $\neg(p \land q)$: First (.), then \neg .
- Example 3: $p \lor q \land r$: $p \lor (q \land r)$
- Example 4:

$$\underbrace{(p \to q) \land (q \to r)} \leftrightarrow \underline{(p \to r)}$$

From Natural Language to WFFs

The Method of Translation:

- Introduce symbols to represent simple propositions
- Connect the symbols with logical connectives to obtain WFFs

- "It is not the case that snow is black."
 - p: "Snow is black"
 - Translation: $\neg p$

- Remark: it is better to choose the simple proposition to be affirmative sentence.
- " π and e are both irrational"
 - p : " π is irrational"; q : "e. is irrational"
 - Translation: $p \wedge q$
- "If π is irrational, then 2π is irrational"
 - $p:\pi$ is irrational; $q:2\pi$ is irrationals
 - Translation: $p \rightarrow q$

- " $e^{\pi} > \pi^e$ if and only if $\pi > e \ln \pi$ "
 - $p: e^{\pi} > \pi^e$; $q: \pi > e \ln \pi$
 - Translation: $p \leftrightarrow q$
- " $(\sqrt{2})^{\sqrt{2}}$ is rational or irrational." (ambiguity in natural language)
 - $p = (\sqrt{2})^{\sqrt{2}}$ is rational "; $q = (\sqrt{2})^{\sqrt{2}}$ is irrational"
 - Explanation 1: $(\sqrt{2})^{\sqrt{2}}$ cannot be neither rational nor irrational.
 - Emphasis: $(\sqrt{2})^{\sqrt{2}}$ is a real number, only two possibility
 - Translation 1: $p \lor q$ (by default, this is the translation of "or")
 - Explanation 2: $(\sqrt{2})^{\sqrt{2}}$ cannot be both rational or irrational
 - It is obvious that $(\sqrt{2})^{\sqrt{2}}$ is real number. Emphasis: not both
 - Translation 2: $(p \land \neg q) \lor (\neg p \land q)$ (not both)
- The specific translations remove the ambiguity.