

NON-POLYNOMIAL ENTIRE SOLUTIONS TO σ_k EQUATIONS

MICAH WARREN

ABSTRACT. For $2k = n+1$, we exhibit non-polynomial solutions to the Hessian equation

$$\sigma_k(D^2u) = 1$$

on all of \mathbb{R}^n .

1. INTRODUCTION

In this note, we demonstrate the following.

Theorem 1. *For*

$$n \geq 2k - 1,$$

there exist non-polynomial elliptic entire solutions to the equation

$$(1) \quad \sigma_k(D^2u) = 1$$

on \mathbb{R}^n .

Corollary 2. *For all $n \geq 3$, there exist on \mathbb{R}^n non-polynomial entire solutions to*

$$(2) \quad \sigma_2(D^2u) = 1.$$

For $k = 1$, the entire harmonic functions in the plane arising as real parts of analytic functions are classically known. For $k = n$, the famous Bernstein result of Jörgens [5], Calabi [1], and Pogorelov [6] states that all entire solutions to the Monge-Ampère equation are quadratic. Chang and Yuan [2] have shown that any entire convex solution to (2) in any dimension must be quadratic. To the best of our knowledge, for $1 < k < n$, the examples presented here are the first known non-trivial entire solutions to σ_k equations.

The special Lagrangian equation is the following

$$(3) \quad \sum_{i=1}^n \arctan \lambda_i = \theta$$

(here λ_i are eigenvalues of D^2u) for

$$\theta \in \left(-\frac{n}{2}\pi, \frac{n}{2}\pi \right)$$

a constant. Fu [3] showed that when $n = 2$ and $\theta \neq 0$ all solutions are quadratic. When $n = 2$ and $\theta = 0$ the equation (3) becomes simply the Laplace equation, which admits well-known non-polynomial solutions. Yuan [8] showed that all convex solutions to special Lagrangian equations are quadratic.

The critical phase for special Lagrangian equations is

$$\theta = \frac{n-2}{2}\pi.$$

The author's work is supported in part by the NSF via DMS-1161498.

Yuan [9] has shown that for values above the critical phase, all entire solutions are quadratic. On the other hand, by adding a quadratic to a harmonic function, one can construct nontrivial entire solutions for phases

$$|\theta| < \frac{n-2}{2}\pi.$$

By [4] when $n = 3$, the critical equation

$$\sum_{i=1}^3 \arctan \lambda_i = \frac{\pi}{2}$$

is equivalent to the equation (2). Thus Corollary 2 answers the critical phase Bernstein question when $n = 3$. In the process, we also show the following.

Theorem 3. *There exists a special Lagrangian graph in \mathbb{C}^3 over \mathbb{R}^3 that does not graphically split.*

Harvey and Lawson [4], show that a graph

$$(x, \nabla u(x)) \subset \mathbb{C}^n$$

is special Lagrangian and a minimizing surface if and only if u satisfies (3). We say a graph splits graphically when the function u can be written the sum of two functions in independent variables.

There are still many holes in the Bernstein picture for σ_k equations. To begin with, when $n = 4$ the existence of interesting solutions to $\sigma_3 = 1$. For special Lagrangian equations the existence of critical phase solutions when $n \geq 4$ is open.

2. PROOF

We will assume that n is odd and

$$2k = n + 1.$$

We construct a solution u on \mathbb{R}^n . The general result will follow by noting that if we define

$$\tilde{u} : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$$

via

$$\tilde{u}(z, w) = u(z)$$

then

$$\sigma_k(D^2\tilde{u}) = \sigma_k(D^2u) = 1.$$

Consider functions on $\mathbb{R}^{n-1} \times \mathbb{R}$ of the form

$$u(x, t) = r^2 e^t + h(t)$$

where

$$r = (x_1^2 + x_2^2 + \dots + x_{n-1}^2)^{1/2}.$$

Compute the Hessian, rotating \mathbb{R}^{n-1} so that $x_1 = r$:

$$(4) \quad D^2u = e^t \begin{pmatrix} 2e^t & 0 & \dots & 0 & 2re^t \\ 0 & 2e^t & 0 & \dots & 0 \\ \dots & 0 & \dots & 0 & \dots \\ 0 & \dots & 0 & 2e^t & 0 \\ 2re^t & 0 & \dots & 0 & r^2e^t + h''(t) \end{pmatrix} = e^t \begin{pmatrix} 2 & 0 & \dots & 0 & 2r \\ 0 & 2 & 0 & \dots & 0 \\ \dots & 0 & \dots & 0 & \dots \\ 0 & \dots & 0 & 2 & 0 \\ 2r & 0 & \dots & 0 & r^2 + e^{-t}h''(t) \end{pmatrix}.$$

We then compute. The k -th symmetric polynomial is given by the sum of k -minors. Let

$$(5) \quad S = \{\alpha \subset \{1, \dots, n\} : |\alpha| = k\},$$

and let

$$A = \{\alpha \in S : 1 \in \alpha\}$$

$$B = \{\alpha \in S : n \in \alpha\}.$$

We express S as a disjoint union

$$S = (A \cap B) \cup (B \setminus A) \cup (S \setminus B).$$

Define

$$\sigma_k^{(\alpha)} = \det \begin{pmatrix} k \times k \text{ matrix with} \\ \text{row and columns} \\ \text{chosen from } \alpha \end{pmatrix}.$$

For $\alpha \in (A \cap B)$ we have

$$\sigma_k^{(\alpha)} = \det \left(e^t \begin{pmatrix} 2 & 0 & \dots & 0 & 2r \\ 0 & 2 & 0 & \dots & 0 \\ \dots & 0 & \dots & 0 & \dots \\ 0 & \dots & 0 & 2 & 0 \\ 2r & 0 & \dots & 0 & r^2 + e^{-t}h'' \end{pmatrix} \right),$$

that is

$$\sigma_k^{(\alpha)} = e^{kt} 2^{k-2} (2r^2 + 2e^{-t}h'' - 4r^2).$$

Next, for $\alpha \in B \setminus A$,

$$\sigma_k^{(\alpha)} = \det \left(e^t \begin{pmatrix} 2 & 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 & 0 \\ \dots & 0 & 2 & \dots & \dots \\ 0 & 0 & \dots & r^2 + e^{-t}h'' & 0 \end{pmatrix} \right),$$

that is

$$\sigma_k^{(\alpha)} = e^{kt} 2^{k-1} (r^2 + e^{-t}h'').$$

Finally, for $\alpha \in (S \setminus B)$ we have

$$\sigma_k^{(\alpha)} = \det \left(e^t \begin{pmatrix} 2 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 \\ \dots & 0 & 2 & \dots \\ 0 & 0 & \dots & 2 \end{pmatrix} \right),$$

that is

$$\sigma_k^{(\alpha)} = e^{kt} 2^k.$$

We sum these up:

$$\sigma_k(D^2 u) = \sum_{\alpha \in (A \cap B)} \sigma_k^\alpha + \sum_{\alpha \in (B \setminus A)} \sigma_k^\alpha + \sum_{\alpha \in (S \setminus B)} \sigma_k^\alpha.$$

Counting, we get

$$(6) \quad \begin{aligned} \sigma_k(D^2 u) &= \binom{n-2}{k-2} e^{kt} 2^{k-1} (e^{-t} h'' - r^2) \\ &\quad + \binom{n-2}{k-1} e^{kt} 2^{k-1} (r^2 + e^{-t} h'') \\ &\quad + \binom{n-1}{k} e^{kt} 2^k. \end{aligned}$$

Grouping the terms, we see

$$\begin{aligned} \sigma_k(D^2 u) &= e^{kt} 2^{k-1} \left[-\binom{n-2}{k-2} + \binom{n-2}{k-1} \right] r^2 \\ &\quad + e^{kt} 2^{k-1} \left[\binom{n-2}{k-2} + \binom{n-2}{k-1} \right] e^{-t} h'' \\ &\quad + e^{kt} 2^{k-1} 2 \binom{n-1}{k}. \end{aligned}$$

Now

$$-\binom{n-2}{k-2} + \binom{n-2}{k-1} = -\frac{(n-2)!}{(n-k)!(k-2)!} + \frac{(n-2)!}{(n-k-1)!(k-1)!}.$$

This vanishes if and only if

$$1 = \frac{(n-k)!(k-2)!}{(n-k-1)!(k-1)!} = \frac{(n-k)}{(k-1)},$$

or precisely when

$$n - k = k - 1$$

or

$$2k = n + 1.$$

Thus for this choice of k , (6) becomes

$$\sigma_k(D^2 u) = A_{n,k} e^{(k-1)t} h'' + B_{n,k} e^{kt}$$

for some constants $A_{n,k}, B_{n,k}$. Setting to this expression to 1, we solve for $h''(t)$

$$(7) \quad h''(t) = \frac{1 - B_{n,k} e^{kt}}{A_{n,k} e^{(k-1)t}},$$

noting the right-hand side is a smooth function in t . Integrating twice in t yields solutions to (7) and hence to (1).

To see that the equation is elliptic, we first note that inspecting (4) the $n - 2$ eigenvalues in the middle must be positive. Of the remaining two, at least one must be positive as the diagonal (of the 2×2 matrix) contains at least one positive entry. We then note the following.

Lemma 4. Suppose that

$$\sigma_k(D^2u) > 0$$

and D^2u has at most 1 negative eigenvalue. Then $D^2u \in \Gamma_k^+$.

Proof. Diagonalize D^2u so that $D^2u = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ with $0 \leq \lambda_2 \leq \lambda_3 \dots \leq \lambda_n$. Clearly

$$\frac{d}{ds}\sigma_k(\text{diag}\{\lambda_1 + s, \lambda_2, \dots, \lambda_n\}) \geq 0$$

so we may deform D^2u to a positive definite matrix $D^2u + M$, with $\sigma_k(D^2u + sM) > 0$ for $s \geq 0$. Thus D^2u is in the component of $\sigma_k > 0$ containing the positive cone, that is, $D^2u \in \Gamma_k^+$. \square

Example 5. When $n = 3$ the function

$$u(x, y, t) = (x^2 + y^2)e^t + \frac{1}{4}e^{-t} - e^t$$

solves

$$\sigma_2(D^2u) = 1.$$

Remark 6. This method allows one to construct solutions to complex Monge-Ampère equations as well. See [7].

REFERENCES

- [1] Eugenio Calabi. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. *Michigan Math. J.*, 5:105–126, 1958. folder 5.
- [2] Sun-Yung Alice Chang and Yu Yuan. A Liouville problem for the sigma-2 equation. *Discrete Contin. Dyn. Syst.*, 28(2):659–664, 2010.
- [3] Lei Fu. An analogue of Bernstein’s theorem. *Houston J. Math.*, 24(3):415–419, 1998.
- [4] Reese Harvey and H. Blaine Lawson, Jr. Calibrated geometries. *Acta Math.*, 148:47–157, 1982.
- [5] Konrad Jörgens. Über die Lösungen der Differentialgleichung $rt - s^2 = 1$. *Math. Ann.*, 127:130–134, 1954.
- [6] A. V. Pogorelov. On the improper convex affine hyperspheres. *Geometriae Dedicata*, 1(1):33–46, 1972.
- [7] Micah Warren. A Bernstein result and counterexample for entire solutions to Donaldson’s equation. *arXiv:1503.06847*.
- [8] Yu Yuan. A Bernstein problem for special Lagrangian equations. *Invent. Math.*, 150(1):117–125, 2002.
- [9] Yu Yuan. Global solutions to special Lagrangian equations. *Proc. Amer. Math. Soc.*, 134(5):1355–1358 (electronic), 2006.

FENTON HALL, UNIVERSITY OF OREGON, EUGENE, OR 97403

E-mail address: micahw@uoregon.edu