Multiple Object Tracking: Course Outline

Dr. Waqas Afzal

December 7, 2022

- Tracking
- 2 Single Object Tracking
- Multiple Object Tracking
- Random Finite Sets
- 5 Multiple Object Tracking Using Conjugate Pairs

- Tracking
- Single Object Tracking
- Multiple Object Tracking
- 4 Random Finite Sets
- 5 Multiple Object Tracking Using Conjugate Pairs

- Tracking
 - Introduction
 - Bayesian Filtering
 - Motion Modeling
 - Measurement Modeling
 - Kalman Filter: A Bayesian Filtering Example

- Tracking
 - Introduction
 - Bayesian Filtering
 - Motion Modeling
 - Measurement Modeling
 - Kalman Filter: A Bayesian Filtering Example

- Tracking
 - Introduction
 - Bayesian Filtering
 - Motion Modeling
 - Measurement Modeling
 - Kalman Filter: A Bayesian Filtering Example

- Tracking
 - Introduction
 - Bayesian Filtering
 - Motion Modeling
 - Measurement Modeling
 - Kalman Filter: A Bayesian Filtering Example

- Tracking
 - Introduction
 - Bayesian Filtering
 - Motion Modeling
 - Measurement Modeling
 - Kalman Filter: A Bayesian Filtering Example

- Tracking
 - Introduction
 - Bayesian Filtering
 - Motion Modeling
 - Measurement Modeling
 - Kalman Filter: A Bayesian Filtering Example

- Tracking
- Single Object Tracking
- Multiple Object Tracking
- Random Finite Sets
- 5 Multiple Object Tracking Using Conjugate Pairs

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

Introduction

Single Object Tracking (SOT) and Multiple Object Tracking (MOT)

Single Object Tracking (SOT): SOT is a filtering problem. It can be described as the sequential processing of noisy sensor measurements to determine an object's state:

- Position.
- Other properties like kinematics, etc.
- Other attributes related to the detected object like Electronic Support Measures (ESM) data.

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Single Object Tracking
 - Introduction
 - Prediction & Measurement Updates
 - Clutter Modeling
 - Data Association
 - Algorithms
 - Nearest Neighbors
 - Probabilistic Data Association
 - Gaussian Sum Filtering
 - Gating

- Tracking
- Single Object Tracking
- Multiple Object Tracking
- 4 Random Finite Sets
- Multiple Object Tracking Using Conjugate Pairs

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

Introduction: n Object Tracking n Object Measurements Modeling Estimating n Object Density n Object Data Association Algorithms: n Object Tracking Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

Introduction: n Object Tracking n Object Measurements Modeling Endeated Tracking n Object Data Association Algorithms: n Object Tracking Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

- Multiple Object Tracking
 - Introduction: n Object Tracking
 - n Object Measurements Modeling
 - Estimating n Object Density
 - n Object Data Association
 - Algorithms: n Object Tracking
 - Global Nearest Neighbors (GNN)
 - Joint Probability Density Association (JPDA)
 - Multi Hypothesis Tracker

- Tracking
- 2 Single Object Tracking
- Multiple Object Tracking
- Random Finite Sets
- 5 Multiple Object Tracking Using Conjugate Pairs

- Random Finite Sets
 - Introduction
 - Common Random Finite Sets
 - Standard Models in MOT
 - Probabilistic Hypothesis Density Filtering
 - Metrics in MOT

- A Random Finite Sets
 - Introduction
 - Common Random Finite Sets
 - Standard Models in MOT
 - Probabilistic Hypothesis Density Filtering
 - Metrics in MOT

- Random Finite Sets
 - Introduction
 - Common Random Finite Sets
 - Standard Models in MOT
 - Probabilistic Hypothesis Density Filtering
 - Metrics in MOT

Introduction
Common Random Finite Sets
Standard Models in MOT
Probabilistic Hypothesis Density Filtering
Metrics in MOT

- Random Finite Sets
 - Introduction
 - Common Random Finite Sets
 - Standard Models in MOT
 - Probabilistic Hypothesis Density Filtering
 - Metrics in MOT

- Random Finite Sets
 - Introduction
 - Common Random Finite Sets
 - Standard Models in MOT
 - Probabilistic Hypothesis Density Filtering
 - Metrics in MOT

- Random Finite Sets
 - Introduction
 - Common Random Finite Sets
 - Standard Models in MOT
 - Probabilistic Hypothesis Density Filtering
 - Metrics in MOT

- Tracking
- Single Object Tracking
- Multiple Object Tracking
- Random Finite Sets
- 5 Multiple Object Tracking Using Conjugate Pairs

- 5 Multiple Object Tracking Using Conjugate Pairs
 - Introduction
 - Modeling a Changing Number of Objects
 - Multi-Bernoulli Mixture Filter
 - Poisson Multi-Bernoulli Mixture Filter
 - MOT Filter Implementation
 - Labels

- 5 Multiple Object Tracking Using Conjugate Pairs
 - Introduction
 - Modeling a Changing Number of Objects
 - Multi-Bernoulli Mixture Filter
 - Poisson Multi-Bernoulli Mixture Filter
 - MOT Filter Implementation
 - Labels

- 5 Multiple Object Tracking Using Conjugate Pairs
 - Introduction
 - Modeling a Changing Number of Objects
 - Multi-Bernoulli Mixture Filter
 - Poisson Multi-Bernoulli Mixture Filter
 - MOT Filter Implementation
 - Labels

- 5 Multiple Object Tracking Using Conjugate Pairs
 - Introduction
 - Modeling a Changing Number of Objects
 - Multi-Bernoulli Mixture Filter
 - Poisson Multi-Bernoulli Mixture Filter
 - MOT Filter Implementation
 - Labels

- 5 Multiple Object Tracking Using Conjugate Pairs
 - Introduction
 - Modeling a Changing Number of Objects
 - Multi-Bernoulli Mixture Filter
 - Poisson Multi-Bernoulli Mixture Filter
 - MOT Filter Implementation
 - Labels

- 5 Multiple Object Tracking Using Conjugate Pairs
 - Introduction
 - Modeling a Changing Number of Objects
 - Multi-Bernoulli Mixture Filter
 - Poisson Multi-Bernoulli Mixture Filter
 - MOT Filter Implementation
 - Labels

- 5 Multiple Object Tracking Using Conjugate Pairs
 - Introduction
 - Modeling a Changing Number of Objects
 - Multi-Bernoulli Mixture Filter
 - Poisson Multi-Bernoulli Mixture Filter
 - MOT Filter Implementation
 - Labels