Лабораторная работа 5

Тагиев Байрам Алтай оглы

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы 2.1 Задание для самостоятельного выполнения	8
3	Выводы	11

Список иллюстраций

2.1	Модель SIR в xcos	6
2.2	Эпидемический порог модели SIR при $\beta = 1$, $\nu = 0.3$	7
2.3	Модель SIR в xcos и modelica	7
2.4	Эпидемический порог модели SIR при $\beta = 1$, $\nu = 0.3$	8
2.5	SIR	9
	SIR	9
2.7	SIR	10

Список таблиц

1 Цель работы

Целью данной работы является построение модели эпидемии.

2 Выполнение лабораторной работы

- 1. Зададим переменные окружения. beta=1, nu=.3
- 2. Сделаем блок-схему для моделирования.

Модель SIR в xcos

3. Запустив, получим следующий график.

Эпидемический порог модели SIR при $\beta = 1$, $\nu = 0.3$

4. Дальше сделаем аналогичную схему на хсоз с применением modelica. Для этого сделаем следующую схему.

Модель SIR в xcos и modelica

- 5. Запустив, получим аналогичный график как в пункте 3.
- 6. Перейдем к реализации на OpenModelica.

```
model lab5
Real beta = 1, nu = 0.3;
Real s(start = .999);
```

```
Real i(start = .001);
Real r(start = .0);
equation
  der(s) = -beta*s*i;
  der(i) = beta*s*i - nu*i;
  der(r) = nu*i;
  annotation(
    experiment(StartTime = 0, StopTime = 30, Tolerance = 1e-06, Interval = 0.06)
end lab5;
```


Эпидемический порог модели SIR при $\beta=1$, $\nu=0.3$

2.1 Задание для самостоятельного

выполнения

1. xcos + modelica

SIR

2. OpenModelica

```
model lab5
  Real beta = 1, nu = 0.3, mu = 0.2, N = 1;
  Real s(start = .999);
  Real i(start = .001);
  Real r(start = .0);
  equation
   der(s) = -beta*s*i + mu*N - s*mu;
   der(i) = beta*s*i - nu*i - mu*i;
   der(r) = nu*i - mu*r;
end lab5;
```


SIR

3 Выводы

Мы реализовали модель "Хищник-жертва" в xcos, modelica и OpenModelica.