Lawvere Metric Spaces and Quantales

Eugenio Moggi DIBRIS, Genova Univ.

Genova 2024-03-25

- Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Rendiconti del seminario matematico e fisico di Milano 43, 135–166 (1973), reprints in TAC, No. 1, 1-37 (2002)
 - Dagnino, F., Farjudian, A., Moggi, E.: Robustness in metric spaces over continuous quantales and the Hausdorff-Smyth monad, in ICTAC (2023)

Qualitative vs Quantitative

- equal/different (objects) vs how much different
- near/distant (points) vs how much distant
- faster/slower (program) vs how much faster

Question: What quantities should one use?

E.Moggi p. 2 Genova 2024-03-25 2 / 9

Summary

Goal

Present some mathematical tools for quantitative analyses

Some Uses

- general framework to define the notion of robustness [DFM2023]
- measure program differences (Ugo Dal Lago)
- measure incompleteness of abstract interpretations (Roberto Giacobazzi)
- metric space (X, d), topological space (X, τ) , open ball topology τ_d
- categories and categories enriched over an ordered monoid (more generally over a monoidal category)
- lacktriangledown the ordered monoid \mathbb{R}_+ and Lawvere metric spaces
- quantales: definition, examples, uses

3/9

Bottom-up Approach

From concrete examples to more abstract/general mathematical notions

- D (X,d) metric space \iff X set and $d:X^2 \to [0,\infty)$ metric, i.e.

 - ② $0 \ge d(x,x)$ identity or equivalently 0 = d(x,x)

 - ① $0 \ge d(x,y) \land 0 \ge d(y,x) \implies x = y$ separation or equivalently $0 = d(x,y) \implies x = y$

E.Moggi p. 4 Genova 2024-03-25 4

- D (X, d) metric space \iff X set and $d: X^2 \to [0, \infty)$ metric, i.e.
 - **1** $d(x,y) + d(y,z) \ge d(x,z)$ triangular inequality
 - 0 $\geq d(x,x)$ identity or equivalently 0 = d(x,x)

 - ① $0 \ge d(x,y) \land 0 \ge d(y,x) \implies x = y$ separation or equivalently $0 = d(x,y) \implies x = y$
- D (X, τ) topological space \iff X set and $\tau \subseteq P(X)$ topology, i.e., set of *open subsets* closed for arbitrary unions and finite intersections

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

- D (X, d) metric space \iff X set and $d: X^2 \to [0, \infty)$ metric, i.e.

 - $0 \ge d(x,x) \text{ identity or equivalently} \\ 0 = d(x,x)$

 - $0 \ge d(x,y) \land 0 \ge d(y,x) \implies x = y \text{ separation or equivalently } 0 = d(x,y) \implies x = y$
- D (X, τ) topological space $\stackrel{\triangle}{\Longleftrightarrow} X$ set and $\tau \subseteq P(X)$ topology, i.e., set of *open subsets* closed for arbitrary unions and finite intersections
- D open ball topology $\tau_d \subseteq P(X)$ for metric space (X,d) generated by **open balls** $B(x,\delta) \stackrel{\triangle}{=} \{y|d(x,y)<\delta\}$ with $x\in X$ and $\delta>0$

E.Moggi p. 6 Genova 2024-03-25 4 /

- D (X,d) metric space \iff X set and $d: X^2 \to [0,\infty)$ metric, i.e.
 - **1** $d(x,y) + d(y,z) \ge d(x,z)$ triangular inequality
 - $0 \ge d(x,x) \text{ identity or equivalently} \\ 0 = d(x,x)$

 - $0 \ge d(x,y) \land 0 \ge d(y,x) \implies x = y \text{ separation or equivalently } 0 = d(x,y) \implies x = y$
- D (X, τ) topological space $\stackrel{\triangle}{\Longleftrightarrow} X$ set and $\tau \subseteq P(X)$ topology, i.e., set of *open subsets* closed for arbitrary unions and finite intersections
- D open ball topology $\tau_d \subseteq P(X)$ for metric space (X, d) generated by **open balls** $B(x, \delta) \stackrel{\triangle}{=} \{y | d(x, y) < \delta\}$ with $x \in X$ and $\delta > 0$
- P τ_d is T_2 , i.e., $x \neq y \iff \exists O_x, O_y \in \tau_d. x \in O_x \land y \in O_y \land O_x \# O_y$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

- D (X, d) metric space \iff X set and $d: X^2 \to [0, \infty)$ metric, i.e.
 - **1** $d(x,y) + d(y,z) \ge d(x,z)$ triangular inequality
 - $0 \ge d(x,x) \text{ identity or equivalently} \\ 0 = d(x,x)$

 - $0 \ge d(x,y) \land 0 \ge d(y,x) \implies x = y \text{ separation or equivalently } 0 = d(x,y) \implies x = y$
- D (X, τ) topological space $\stackrel{\triangle}{\iff} X$ set and $\tau \subseteq P(X)$ topology, i.e., set of *open subsets* closed for arbitrary unions and finite intersections
- D open ball topology $\tau_d \subseteq P(X)$ for metric space (X,d) generated by **open balls** $B(x,\delta) \stackrel{\triangle}{=} \{y|d(x,y)<\delta\}$ with $x\in X$ and $\delta>0$
- P τ_d is T_2 , i.e., $x \neq y \iff \exists O_x, O_y \in \tau_d. x \in O_x \land y \in O_y \land O_x \# O_y$
- D specialization preorder $x \leq_{\tau} y \iff \forall O \in \tau. x \in O \implies y \in O$ for topological space (X, τ) . The preorder \leq_{τ_d} is equality on X.

E.Moggi p. 8 Genova 2024-03-25 4 / 9

Categories and V-enriched Categories [Kelly1982]

Top-down Approach by Lawvere

Derive mathematical notions as instances of more abstract notions

- get definitions/theorems by auto-pilot!
- does one get the same outcome of the bottom-up approach?

A (locally small) category C consists of

- a class C of objects
- a hom-set C(a,b) of arrows for each $a,b \in C$
- an arrow $id_a \in C(a, a)$ for each $a \in C$
- a map $\circ_{a,b,c}$: $C(a,b) \times C(b,c) \to C(a,c)$ for each $a,b,c \in C$ such that $h \circ (g \circ f) = (h \circ g) \circ f$ and id $o f = f = f \circ id$ when $f \in C(a,b), g \in C(b,c), h \in C(c,d)$, we write $g \circ f$ for o(f,g).

V-enrichment

Given a monoidal category $(V, \otimes, u, ...)$, a V-enriched category C is a category where the set C(a, b) is replaced by an object in V.

E.Moggi p. 9 Genova 2024-03-25

Categories and V-enriched Categories [Kelly1982]

Preorders are categories whose hom-sets have at most one element.

V-enrichment

Given an **ordered monoid** $(V, \sqsubseteq, \otimes, \mathsf{u})$, i.e., $\otimes: V^2 \to V$ monotonic and $u \in V$ such that $x \otimes (y \otimes z) = (x \otimes y) \otimes z$ and $u \otimes x = x = x \otimes u$

- a (small) V-enriched category C (V-category for short) consists of
 - a set C of objects
 - an object C(a, b) in V of arrows for each $a, b \in C$, such that
 - $u \sqsubseteq C(a, a)$ for each $a \in C$ and
 - $C(a,b) \otimes C(b,c) \sqsubseteq C(a,c)$ for each $a,b,c \in C$.

When V is an preorder, the underlying category C_0 is a preorder, since $C_0(a,b) = V(u,C(a,b))$ has at most one element.

> E.Moggi p. 10 Genova 2024-03-25

The category $\mathcal{M}et$ of Lawvere metric spaces is the *2-category* of \mathbb{R}_+ -categories, where \mathbb{R}_+ is the ordered monoid $([0,\infty],\geq,+,0)$, i.e.

- obj (X,d) with X set and $d: X^2 \to [0,\infty]$ such that $0 \ge d(x,x)$ and $d(x,y) + d(y,z) \ge d(x,y)$
- arr $f:(X,d) \to (X',d')$ \mathbb{R}_+ -functor (aka **short map**), i.e., $f:X \to X'$ such that d(x,y) > d'(fx,fy)
- nat $f \to f'$: $(X, d) \to (X', d')$ \mathbb{R}_+ -nat. transf., i.e., $0 \ge d'(fx, f'x)$.

E.Moggi p. 11 Genova 2024-03-25 6 / 9

The category $\mathcal{M}et$ of Lawvere metric spaces is the 2-category of \mathbb{R}_+ -categories, where \mathbb{R}_+ is the ordered monoid $([0,\infty],\geq,+,0)$, i.e.

- obj (X, d) with X set and $d: X^2 \to [0, \infty]$ such that $0 \ge d(x, x)$ and $d(x, y) + d(y, z) \ge d(x, y)$
- arr $f:(X,d) \to (X',d')$ \mathbb{R}_+ -functor (aka **short map**), i.e., $f:X \to X'$ such that $d(x,y) \ge d'(fx,fy)$
- \mathbb{R}_+ complete lattice: $\bot = \infty$, $\top = 0$, $\bigvee_i q_i = \inf_i q_i$, $\bigwedge_i q_i = \sup_i q_i$ $\mathscr{M}et$ has small products and small coproducts $\prod_{i:I}(X_i,d_i) = (\prod_{i:I}X_i,d)$ with $d(x,y) = \bigwedge_i d_i(x_i,y_i)$ $\coprod_{i:I}(X_i,d_i) = (\coprod_{i:I}X_i,d)$ with $d(x_i,y_j) = d_i(x,y)$ if i=j else \bot

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

E.Moggi p. 12 Genova 2024-03-25 6/9

The category $\mathcal{M}et$ of Lawvere metric spaces is the 2-category of \mathbb{R}_+ -categories, where \mathbb{R}_+ is the ordered monoid $([0,\infty],\geq,+,0)$, i.e.

- obj (X, d) with X set and $d: X^2 \to [0, \infty]$ such that $0 \ge d(x, x)$ and $d(x, y) + d(y, z) \ge d(x, y)$
- arr $f:(X,d) \to (X',d')$ \mathbb{R}_+ -functor (aka **short map**), i.e., $f:X \to X'$ such that $d(x,y) \ge d'(fx,fy)$
- **1** \mathbb{R}_+ complete lattice: $\bot = \infty$, $\top = 0$, $\bigvee_i q_i = \inf_i q_i$, $\bigwedge_i q_i = \sup_i q_i$
- ② \mathbb{R}_+ is commutative, i.e., $p \otimes q = q \otimes p$ $\mathscr{M}et$ has $\otimes_{i:n}(X_i, d_i) = (\prod_{i:n} X_i, d)$ with $d(x, y) = \otimes_i d_i(x_i, y_i)$ if $(X, d) \in \mathscr{M}et$, then $(X, d^o), (X, d^s) \in \mathscr{M}et$, where $d^o(x, y) = d(y, x)$ dual of d and $d^s(x, y) = d(x, y) \wedge d(y, x)$ symmetrization of d

□ → < □ → < □ → < □ →
 □ → < □ →

6/9

E.Moggi p. 13 Genova 2024-03-25

The category $\mathcal{M}et$ of Lawvere metric spaces is the 2-category of \mathbb{R}_+ -categories, where \mathbb{R}_+ is the ordered monoid $([0,\infty],\geq,+,0)$, i.e.

- obj (X, d) with X set and $d: X^2 \to [0, \infty]$ such that $0 \ge d(x, x)$ and $d(x, y) + d(y, z) \ge d(x, y)$
- arr $f:(X,d) \to (X',d')$ \mathbb{R}_+ -functor (aka **short map**), i.e., $f:X \to X'$ such that $d(x,y) \ge d'(fx,fy)$
- **1** \mathbb{R}_+ complete lattice: $\bot = \infty$, $\top = 0$, $\bigvee_i q_i = \inf_i q_i$, $\bigwedge_i q_i = \sup_i q_i$
- **2** \mathbb{R}_+ is commutative, i.e., $p \otimes q = q \otimes p$
- ③ \mathbb{R}_+ is *closed*, i.e., exists [p,q]=q-p if $q\geq p$ else 0 such that $x\otimes p\sqsubseteq q\iff x\sqsubseteq [p,q]$ ([p,q] is like an implication $p\implies q$), \mathbb{R} is \mathbb{R}_+ -enrichable ($\mathbb{R},d_\mathbb{R}$) ∈ $\mathcal{M}et$, where $d_\mathbb{R}(x,y)=[x,y]$

From \mathbb{R}_+ -metric spaces to Q-metric spaces.

E.Moggi p. 14 Genova 2024-03-25 6/9

Quantales [Mul86]

An ordered monoid $(Q, \sqsubseteq, \otimes, \mathsf{u})$ is a **quantale** \iff (Q, \sqsubseteq) complete and **distributivity** holds, i.e., $p \otimes \bigvee_i q_i = \bigvee_i p \otimes q_i \& (\bigvee_i p_i) \otimes q = \bigvee_i (p_i \otimes q)$ distributivity is equivalent to require Q bi-closed

- *Q* commutative $\iff p \otimes q = q \otimes p$ *Q* affine \iff $u = \top$
- Q locale $\iff p \otimes q = p \wedge q \ (\implies Q \ \text{commutative \& affine})$
- Q linear \iff (Q, \Box) linear order

Examples: variations on \mathbb{R}_+

- \bullet \mathbb{R}_+ linear, commutative, affine quantale
- $\mathbb{R}_{\wedge} = ([0, \infty], \geq, \max, 0)$ locale: ultra-metric spaces are \mathbb{R}_{\wedge} -categories
- $\mathbb{N}_{+} = (\{0, 1, \dots, \infty\}, \geq, +, 0)$: size of data structures
- $\Sigma = (\{0, \infty\}, \geq, +, 0)$ locale: preorders are Σ -categories

p. 15 Genova 2024-03-25

Quantales [Mul86]

An ordered monoid $(Q, \sqsubseteq, \otimes, \mathsf{u})$ is a **quantale** \iff (Q, \sqsubseteq) complete and **distributivity** holds, i.e., $p \otimes \bigvee_i q_i = \bigvee_i p \otimes q_i \& (\bigvee_i p_i) \otimes q = \bigvee_i (p_i \otimes q)$

- Q commutative $\iff p \otimes q = q \otimes p$ Q affine \iff $u = \top$
- Q locale $\iff p \otimes q = p \wedge q \ (\implies Q \ \text{commutative \& affine})$
- Q linear $\iff (Q, \sqsubseteq)$ linear order

Examples: quantale constructions

- the product $\prod_{i:I} Q_i$ of quantales is a quantale
- the set Q^P of monotonic maps from a poset P to a quantale Q is a sub-quantale of $\prod_{p:P} Q$
- Q/u affine sub-quantale of Q with carrier $\{q: Q|q \sqsubseteq u\}$
- $(P(X^2), \subseteq, \otimes)$ quantale of binary relations on X
- $(D(V), \subseteq, \otimes)$ quantale of downwards closed subsets of $(V, \sqsubseteq, \otimes)$.

E.Moggi p. 16 Genova 2024-03-25 7/9

Quantales [Mul86]

An ordered monoid $(Q, \sqsubseteq, \otimes, \mathsf{u})$ is a **quantale** \iff (Q, \sqsubseteq) complete and **distributivity** holds, i.e., $p \otimes \bigvee_i q_i = \bigvee_i p \otimes q_i \& (\bigvee_i p_i) \otimes q = \bigvee_i (p_i \otimes q)$

- Q commutative $\iff p \otimes q = q \otimes p$ Q affine \iff $u = \top$
- Q locale $\iff p \otimes q = p \wedge q \ (\implies Q \ \text{commutative \& affine})$
- Q linear $\iff (Q, \sqsubseteq)$ linear order

Examples: quantales for data sizes/cost analyses

- $\mathbb{N}_+ = (\{0, 1, \dots, \infty\}, \geq, +, 0)$: size of data, number of step
- \mathbb{N}_+^{ω} : time complexities T of programs, T(n) upper bound on the number of steps to compute result for inputs of size at most $n \in \omega$
- $O(\mathbb{N}_+^{\omega})$: ordered monoid of O-classes for time complexity, i.e., replace T with $O(T) = \{T' | \exists m, C. \forall n > m. T'(n) \leq C * T(n)\}$

Use different quantales for different data/cost analyses.

E.Moggi p. 17 Genova 2024-03-25 7 / 9

Q-metrics on P(X) - [Goubault-Larrecq2008]

If Q is a quantale and (X, d) is Q-metric space (i.e., a Q-category), then one can define the following Q-metrics on the powerset P(X)

- $d_{HH}(A, B) = \bigwedge_{x:A} \bigvee_{y:B} d(x, y)$ Hausdorff-Hoare
- $d_{HS}(A, B) = \bigwedge_{y:B} \bigvee_{x:A} d(x, y)$ Hausdorff-Smyth
- $d_H(A, B) = d_{HH}(A, B) \wedge d_{HS}(A, B)$ Hausdorff
- P $d_{HH}(\{x\},\{y\}) = d(x,y) = d_{HS}(\{x\},\{y\})$
- P if $A \subseteq B$, then $u \sqsubseteq d_{HH}(A, B)$ and $u \sqsubseteq d_{HS}(B, A)$
- P if $\emptyset \subset A$, then $d_{HH}(A, \emptyset) = \bot = d_{HS}(\emptyset, A)$

Problems with ordinary metric (when Q is \mathbb{R}_+)

- \bullet d_{HH} and d_{HS} are never ordinary metrics (they are not symmetric)
- if (X, d) is an ordinary metric space, then d_H is an ordinary metric only when it is restricted to a subset of P(X), e.g., the set of compact non-empty subsets of X.

E.Moggi p. 18 Genova 2024-03-25 8 / 9

More Results (see [DFM2023])

● Transforming Q-metric spaces into Q'-metric spaces using lax-monoidal maps, i.e., monotonic maps $h: Q \to Q'$ such that $u' \sqsubseteq' h(u)$ and $h(p) \otimes' h(q) \sqsubseteq' h(p \otimes q)$

E.Moggi p. 19 Genova 2024-03-25 9/9

More Results (see [DFM2023])

● Transforming Q-metric spaces into Q'-metric spaces using lax-monoidal maps, i.e., monotonic maps $h: Q \to Q'$ such that $u' \sqsubseteq' h(u)$ and $h(p) \otimes' h(q) \sqsubseteq' h(p \otimes q)$

- ② Transforming Q-metric spaces (X, d) into topological spaces on X, when Q is a *continuous* quantale (use the **way-below** relation \ll)
 - τ_d generated by open balls $B(x, \delta) = \{y | \delta \ll d(x, y)\}$
 - au_d^o generated by dual open balls $B^o(x,\delta)=\{y|\delta\ll d(y,x)\}$

where $\delta \ll u$ (in \mathbb{R}_+ the relation \ll is > and in \mathbb{N}_+ is \ge).

◆□▶◆□▶◆壹▶◆壹▶ 壹 少Qで

9/9