### Class Overview

Elizabeth Purdom

August 14, 2024

# The Big Picture



adapted from Wasserman, 2004

Elizabeth Purdom 01-Intro August 14, 2024

# The Big Picture: Example

We consider a simple problem of visitors to a website. We could use probability to model this process.

For example, we could assume that the number of visitors in any interval of time t is distributed  $Poisson(\lambda|t)$  and independent of the number in any other interval of time s, where  $\lambda$  is the rate of visitation to the site

This would be the common (homogenous) Poisson process as a model for the distribution of the occurrence of visitors across time.

# The Big Picture: Example

We could use this probabilistic model to detail

- on average how many visitors to expect in a particular time interval
- the chances of two visitors arriving within  $\delta$  seconds of each other for any particular rate  $\lambda$
- determine the  $\lambda$  at which the probability is greater than 0.80 that the demand in a time interval  $\delta$  would be above capacity of the host (i.e. crashes).



### The Big Picture: Example

Alternatively, you could have records of visits to the website for a short period of time, and you would like to determine what is the actual rate λ.



Notice I still assume a probabilistic model generated the data, but rather than trying to understand the implications of the type of data that the probability model will generate, I want to estimate something about that probability model. More than that – I'd like to be able to say something about how accurate my estimate is.

• We have a sample of data  $X = (X_1, ..., X_n)$  from a distribution F (F can refer to the distribution or the CDF).

- We have a sample of data  $X = (X_1, ..., X_n)$  from a distribution F (F can refer to the distribution or the CDF).
- A statistical model  $\mathcal{F}$  is a set of possible distributions F that could have generated the data  $X = (X_1, \dots, X_n)$ ,

- We have a sample of data  $X = (X_1, ..., X_n)$  from a distribution F (F can refer to the distribution or the CDF).
- A statistical model  $\mathcal{F}$  is a set of possible distributions F that could have generated the data  $X = (X_1, \dots, X_n)$ ,
- Inference is the process of using the data X to draw conclusions about F

- We have a sample of data  $X = (X_1, ..., X_n)$  from a distribution F (F can refer to the distribution or the CDF).
- A statistical model  $\mathcal{F}$  is a set of possible distributions F that could have generated the data  $X = (X_1, \dots, X_n)$ ,
- Inference is the process of using the data X to draw conclusions about F
- Our conclusions might not be about the entire distribution, but some feature (or parameter) of the probability distribution  $\theta$  that we are interested in.

### Overview of Inference Procedures

#### Different classes of models $\mathcal{F}$ :

- Nonparametric inference
- Parametric inference

### Different modeling paradigms

- Frequentist inference
- Bayesian inference

### Different types of inference:

- point estimation
- confidence sets (Frequentist) or credible regions (Bayesian)
- hypothesis testing (largely frequentist)

### What is the point of this class?

- We will discuss mathematical properties of methods that try to answer these questions
- This class is mathematical in focus, but not great technicality.
  - Theorems will be given, generally not proved unless simple
  - You will be asked to derive results, but again not complicated or technically intricate.

# What is the point of this class?

- We will discuss mathematical properties of methods that try to answer these questions
- This class is mathematical in focus, but not great technicality.
  - Theorems will be given, generally not proved unless simple
  - You will be asked to derive results, but again not complicated or technically intricate.
- Goal is not to necessarily learn methods we will spend a lot of time talking about very simple examples!

# What is the point of this class?

- We will discuss mathematical properties of methods that try to answer these questions
- This class is mathematical in focus, but not great technicality.
  - Theorems will be given, generally not proved unless simple
  - You will be asked to derive results, but again not complicated or technically intricate.
- Goal is not to necessarily learn methods we will spend a lot of time talking about very simple examples!
- Idea is to learn how to think about methods what makes a good method? how do you show it? – and basic strategies for developing methods.
- Basic building blocks that can be used as a starting point for much more complicated method development
- Learn the language for talking about these concepts

- We know that organisms evolve and that this evolution is done through a process of changes introduced into DNA that change the physical features of organisms.
- We have data in the form of DNA from organisms



 We want to understand the path of evolution that created the DNA we observe



• We can think of this phylogentic tree as a complicate parameter  $\theta$  that we want to estimate

- We can think of this phylogentic tree as a complicate parameter  $\theta$  that we want to estimate
- We can develop a probability model for how DNA is created if you know the tree.

- We can think of this phylogentic tree as a complicate parameter  $\theta$  that we want to estimate
- We can develop a probability model for how DNA is created if you know the tree.
- Then to estimate the tree
  - Develop Maximum Likelihood method
  - Develop a Bayesian method
  - Use other (non-parametric) methods

- We can think of this phylogentic tree as a complicate parameter  $\theta$  that we want to estimate
- We can develop a probability model for how DNA is created if you know the tree.
- Then to estimate the tree
  - Develop Maximum Likelihood method
  - Develop a Bayesian method
  - Use other (non-parametric) methods
- We might then want to
  - Give confidence on a node of the tree
  - Ask which of these methods is better
  - Consider performance under alternative probability models