Комбинационные устройства

Комбинационные устройства – электронные схемы, выходной сигнал которых зависит от комбинации входных сигналов. Любое изменение входного сигнала влечет изменение сигнала на выходе.

К ним относятся: шифраторы, дешифраторы, мультиплексоры, демультиплексоры, сумматоры, вычитатели, АЛУ, преобразователи кодов и т.п.

Шифраторы – устройства, преобразующие позиционный код в двоичный. (также называют «кодером» от анг. *coder*)

Условное графическое обозначение шифратора

Х	y ₂	y ₁	y_0
\mathbf{x}_0	0	0	0
X ₁	0	0	1
X ₂	0	1	0
X ₃	0	1	1
X ₄	1	0	0
	1	0	1
x ₅ x ₆ x ₇	1	1	0
X ₇	1	1	1

Таблица устанавливает соответствие между номером входа, на который подается сигнал и двоичным кодом на выходе шифратора.

Лог. 1 должна появляться на выходе y_0 в тех случаях, когда лог. 1 подается на входы x_1 , x_3 , x_5 , x_7 , тогда можно записать:

$$y_0 = x_1 + x_3 + x_5 + x_7,$$

 $y_1 = x_2 + x_3 + x_6 + x_7,$
 $y_2 = x_4 + x_5 + x_6 + x_7.$

Комбинационные устройства Шифраторы

Схема шифратора, построенного на элементах ИЛИ будет иметь вид:

Вход Х	Y ₂	Y ₁	Yo
Χo	0	0	0
X ₁	0	0	1
X_2	0	1	1
X ₃	0	1	1
X ₄	1	0	0
X 5	1	0	1
X 6	1	1	0
X ₇	1	1	1

Шифраторы

На практике чаще используется приоритетный шифратор, отличающийся тем, что в нем допускается подача лог. 1 на несколько входов одновременно. Однако на выходе будет присутствовать двоичный код, соответствующий наибольшему (старшему) номеру одного из входов, на которые подана единица.

Т.о. шифратор работает обычно, как-будто сигнал подается на один вход. Другими словами, вход с большим номером имеет приоритет.

Приоритетный шифратор используется в телефонной клавиатуре.

Пример приоритетного шифратора – микросхема КМ555ИВ1,

Буквы ИВ – обозначение шифраторов.

Дешифратор выполняет функцию обратную шифратору, т.е. служит для преобразования двоичного кода в позиционный. (дешифратор от анг. *decoder*)

Количество входов п и выходов т связано соотношением:

$$m = 2^{n}$$
.

при V=0

X_3	x ₂	X ₁	0	1	2	3	4	5	6	7
0	0	0	0	1	1	1	1	1	1	1
0	0	~	~	0	1	1	1	1	~	1
0	1	0	~	1	0	1	1	1	~	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

Наращивание дешифраторов

Для увеличения числа выходов дешифраторы наращивают, используя разрешающий вход *V*.

При V=0 дешифратор работает как обычно.

При V=1 дешифратор не работает; на всех выходах устанавливаются либо нули, либо единицы и не меняются при изменении сигналов на входах.

1 способ

При X_4 =0 работает дешифратор *DD1*, а дешифратор *DD2* блокируется.

При X_4 =1 работает дешифратор *DD*2, дешифратор *DD*1 блокируется.

Наращивание дешифраторов

2 способ

 $X_6X_5X_4X_3X_2X_1$ – адресные входы

При подаче на адресные входы $X_3X_2X_1$ двоичного кода на одном выходе каждой из микросхем *DD1-DD8* появляется лог. 0.

Дешифратор DD9 разрешает работу одной из микросхем DD1-DD8 в зависимости от двоичного кода на адресных входах $X_6X_5X_4$.

Лог. 0 появиться только на одном из 64 выходов в соответствии с числом в двоичном коде на адресных входах.

Пример.

Пусть на адресные входы подано число 001011, т.е. $X_6X_5X_4X_3X_2X_1$ =001011.

На каждом четвертом выходе дешифраторов *DD1-DD8* установлен лог. 0, однако поскольку дешифратором *DD9* разрешена работа только микросхемы *DD8*, то лог. 0 появится только на третьем выводе *DD8*, т.е. на 60-м выходе всей 6 схемы.

Дешифраторы – преобразователи кодов

Дешифратор К155ИД1, выполненный с открытым коллектором, специально предназначен для управления газоразрядным индикатором.

Существуют дешифраторы, преобразующие двоичный код в семисегментный. Используется для управления светодиодными семисегментными индикаторами. В этом случае их называют преобразователями кодов. В соответствие с двоичным кодом на входе дешифратора на индикаторе высвечиваются цифры или буквы. Пример такого дешифратора — микросхема К155ПП5.

Мультиплексоры

Мультиплексор (или селектор данных) – комбинационное устройство, осуществляющее коммутацию информационных сигналов, присутствующих на его входах на один выход по закону выбора сигналов.

Обозначается *MUX* om multiplexor или *MS* от multiplexor selector.

Мультиплексор подключает один из нескольких информационных входов к выходу устройства. Мультиплексор преобразует параллельный сигнал в последовательный.

Схема двухвходового мультиплексора

$$m = 2^n$$

«1 из *m*»

A – адресный вход

 D_0 , D_1 – информационные входы

$$F = AD_0 + \overline{A}D_1$$

Если
$$A = 1$$
, то $F = D_0$;

если
$$A = 0$$
, то $F = D_1$.

На информационные входы подаются цифровые сигналы, например, от разных источников.

Указание (адресация) какой из входов подключить к выходу осуществляется подачей соответствующих сигналов на адресный вход.

т – число информационных входов;

п – число адресных входов.

Мультиплексоры

УГО мультиплексора «1 из 8»

Существуют	мультиплексоры
на 4, 8 и 16 в	ходов.

		Is.				
N входа	V	С	В	Α	F	F
1	0	0	0	0	D_{0}	\overline{D}_{0}
2	0	0	0	1	D_1	\overline{D}_1
3	0	0	1	0	D_{2}	\overline{D}_{2}
4	0	0	1	1	D_3	\overline{D}_{3}
5	0	1	0	0	$D_{\scriptscriptstyle 4}$	$\overline{D}_{\!\scriptscriptstyle 4}$
6	0	1	0	1	$D_{\scriptscriptstyle 5}$	\overline{D}_{5}
7	0	1	1	0	D_{6}	\overline{D}_{6}
8	0	1	1	1	D ₇	\overline{D}_7
_	X	Х	Х	X	0	1

Таблица, поясняющая принцип работы мультиплексора «1 из 8»

Наращивание разрядности мультиплексоров

Способы наращивания разрядности мультиплексора:

1. последовательный; 2. пирамидальный.

1. Последовательное наращивание

Наращивание разрядности мультиплексоров

2. Пирамидальное наращивание

Схема мультиплексора «1 из 32»

Для получения мультиплексора «1 из 32» требуется пятиразрядный адрес $A_4A_3A_2A_1A_0$, т.к. $32=2^5$.

Трехразрядный адрес $A_2A_1A_0$, подаваемый на мультиплексоры DD1-DD4 ставит их в равные условия.

Выходы мультиплексоров $Y_3Y_2Y_1Y_0$ поступают на мультиплексор *DD5*, адресация которого осуществляется старшими разрядами A_4A_3 .

Диапазон адресов	F
00000 - 00111	Y ₀
<mark>01</mark> 000 - <mark>01</mark> 111	Y ₁
10000 - 10111	Y ₂
11 000 - 11 111	Y ₃

Другие функциональные назначения мультиплексоров

Решение задачи синтеза схем неминимизированной логической функции

С помощью мультиплексора можно реализовать любую ЛФ. Особенно в тех случаях, когда функция не может минимизирована.

Пример 1.

$$F = \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + A\overline{BCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

\	ĀB	ĀB	AB	ΑB
$\overline{C}\overline{D}$		1		1
C D	1		1	
CD		1		1
$C\overline{D}$	1		1	

Данная функция не может быть минимизирована, т.к. на карте нет единиц, которые можно объединить. На информационные входы *MUX* «1 из 16» подаются соответствующие значения функции **0** или **1**.

Nº	A	В	O	D	F
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

К155КП1

Другие функциональные назначения мультиплексоров

Особенности мультиплексоров КМОП

Мультиплексоры КМОП отличаются от ТТЛ схемотехникой. В основе КМОП-мультиплексоров лежит двунаправленный ключ, который пропускает ток в обоих направлениях, а значит позволяет коммутировать не только цифровые, но и аналоговые сигналы.

КМОП-мультиплексор может выполнять функцию демультиплексора (обратную мультиплексору).

Обычные КМОП-мультиплексоры могут передавать аналоговые сигналы положительной полярности с амплитудой $0 \div U_{\text{пит}}$ при однополярном напряжении питания. Для передачи положительных и отрицательные сигналов необходимо обеспечить двухполярное питание микросхемы величиной $\pm U_{\text{пит}}/2$. В этом случае амплитуда коммутируемых сигналов составляет до $\pm U_{\text{пит}}/2$.

MUX-DMX входят в состав серий:

К176, К561, К591, К1564 и др.

Примеры мультиплексоров-демультиплексоров: К564КП2, 590КП1.

Упрощённая схема коммутатора на полевых транзисторах (двунаправленный ключ)

Демультиплексоры

Демультиплексор – устройство, преобразующее последовательный сигнал в параллельный.

Демультиплексор выполняет функцию обратную мультиплексору, производит коммутацию одного информационного входа на несколько выходов в заданной последовательности.

Обозначение демультиплексора: *DMX* или *DMS*.

«1 в *m*» или «1 на *m*»

УГО демультиплексора «1 на 8»

Демультиплексор на два выхода

A – адресный вход;DI – информационный вход.

При A = 1 на выходе $D_0 = DI$; при A = 0 на выходе $D_1 = DI$.

Демультиплексор выполняет роль дешифратора, если на информационном входе будет подан неизменный уровень (**0** или **1**).

Увеличение разрядности демультиплексоров

Способы наращивания разрядности мультиплексора:

1. последовательный; 2. пирамидальный.

1. Последовательное наращивание

Построение демультиплексора «1 на 16» на базе демультиплексора «1 на 8».

Демультиплексоры

Увеличение разрядности демультиплексоров

2. Пирамидальное наращивание

Построение демультиплексора «1 на 32».

Трехразрядный адрес $A_2A_1A_0$, подаваемый на демультиплексоры DD1-DD4 ставит их в равные условия.

Входной информационный сигнал распределяется между этими демультиплексорами с помощью DD5 - демультиплексора с меньшей выходной разрядностью, адресуемого старшими разрядами адреса A_4A_3 .

Сумматоры и вычитатели

Сумматоры – комбинационные устройства, выполняющие функцию сложения чисел.

Полусумматор и полный сумматор

Задача. Сложить два числа.

A	В	S	Р
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A,B — одноразрядные числа; S — сумма;

P - перенос.

Схема одноразрядного полусумматора

УГО полусумматора

Полный сумматор, в отличие от полусумматора, учитывает результат предыдущего сложения и для этого имеет вход переноса из предыдущего разряда.

На базе одноразрядного полного сумматора строятся многоразрядные сумматоры.

Параллельный сумматор осуществляет сложение двух 4-х разрядных чисел.

$$A_3A_2A_1A_0 + B_3B_2B_1B_0 = S_3S_2S_1S_0$$

Окончательный перенос необходим для дальнейшего увеличения разрядности сумматора.

В рассмотренной схеме перенос выполняется последовательно из разряда в разряд, что занимает некоторое время. При суммировании многоразрядных чисел это время значительно! и именно оно определяет время суммирования. С целью уменьшения времени суммирования вместо последовательного используют параллельный перенос. Такой перенос реализован в 4-х разрядном сумматоре К555ИМ6.

В ИМС выпускаются одно-, двух- и 4-х разрядные двоичные

SM

SM

SM

SM

окончательный

перенос

В

"0"

 B_1

Вычитатели

Вычитатели строятся на базе сумматоров и в виде отдельных устройств не предусмотрены. Для выполнения операции вычитания на сумматоре необходимо вычитаемое представить в обратном коде, и к результату прибавить 1.

Пример. $\begin{array}{c|c} \hline 11_{10} \\ \hline 5_{10} \\ \hline 6_{10} \end{array}$ $\begin{array}{c|c} \hline 1011_2 \\ \hline 0101_2 \\ \hline 0110_2 \end{array}$ $\begin{array}{c|c} + & 1011_2 \\ \hline 10101_2 \\ \hline 10101_2 \\ \hline + & 1_2 \end{array}$ - промежуточный результат

Данный метод вычитания реализуется схемой с циклическим переносом. Циклический перенос позволяет использовать «1» на выходе *P* для сложения с промежуточным результатом вычитания.

Возможно обойтись без циклического переноса, но в этом случае на вход P_0 =1.

Если P=1, то число на выходе положительное, т.е. представлено в прямом коде.

Если P = 0, то число на выходе отрицательное, т.е. представлено в обратном коде, \Rightarrow результат вычитания нужно инвертировать.

Вычитатели

Вычитатели строятся на базе сумматоров и в виде отдельных устройств не предусмотрены. Если в предыдущей схеме вычитателя с циклическим переносом вместо инверторов поставить элементы «исключающего ИЛИ», то на одной ИМС можно производить и сложение и вычитание.

Цифровые компараторы

Цифровые компараторы осуществляют сравнение двух чисел в двоичном коде. Цифровой компаратор имеет три выхода: A > B, A = B, A < B.

Компаратор можно построить на сумматоре, если производить на нем вычитание двух сравниваемых величин.

Пусть
$$A = B$$
 $A = 1110_2 = 14_{10}$
 $B = 1110_2 = 14_{10}$
 $P = 110000$
 $P = 110000$
 $P = 110000$
 $P = 110000$

Пусть
$$A < B$$
 $A = 1100_2 = 12_{10}$
 $B = 1110_2 = 14_{10}$
 $P = 0$
 $P = 0$
 $P = 0$
 $P = 0$
 $A < B$

Цифровые компараторы

Схема сравнения двух одноразрядных чисел.

А	В	F ₁ (A <b)< th=""><th>F₂ (A=B)</th><th>F₂ (A>B)</th></b)<>	F ₂ (A=B)	F ₂ (A>B)
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

$$A>B$$
 F_3 $F_1=\overline{A}B$; $F_3=A\overline{B}$;

$$F_2 = \overline{\overline{AB} + A\overline{B}}$$
 - исключающее ИЛИ-НЕ

К564ИП2

На базе простейшей схемы строятся *n*-разрядные компараторы.

При сравнении многоразрядных чисел $A_3A_2A_1A_0$ и $B_3B_2B_1B_0$ сравнение начинается со старших разрядов.

Входы A < B, A = B, A > B — входы расширения - для наращивания разрядности компаратора.

Наращивание разрядности компараторов осуществляется последовательно (каскадно) или параллельно (пирамидально).

Если используется одна ИМС, то на расширяющие входы подаются 1,1,0.

Примеры цифровых компараторов: K564<u>ИП</u>2, K561<u>ИП</u>2, 555<u>СП</u>1.

Информационные источники

- 1. Забродин Ю.С. Промышленная электроника: Учебник для вузов. М.: Альянс, 2008. 496 с.: ил.
- 2. Лачин В.И., Савёлов Н.С. Электроника: Учебное пособие. Ростов н/Д: Феникс, 2007. 703, [1] с.
- 3. Гусев В.Г., Гусев Ю.М. Электроника и микропроцессорная техника: Учеб. для вузов. М.: Высш. шк., 2008. 798 с.: ил.
- 4. Алексенко А.В., Шагуров И.И. Микросхемотехника. М.: Радио и связь, 1990 (1982).
- 5. Потемкин И.С. Функциональные узлы цифровой автоматики. М.: Энергоатомиздат, 1988.
- 6. Зельдин Е.А. Цифровые интегральные схемы в информационно-измерительной аппаратуре. Л.: Энергоатомиздат, 1986.
- 7. Токхейм Р. Основы цифровой электроники. Пер. с англ. М.: Мир, 1988. 390 с.