Pneumatics

2008
FRC Kick-off Workshops
Ken Stafford

What's Wrong with Pneumatics?

- Too Heavy!
- Too Springy!
- Too much demand on Battery!
- Too Fast
- Too Slow
- Too much Footprint/Space Req'd
- Others?

Weight

- "Tare" weight: 7.5 lbs
 - Compressor
 - Accumulators (2)
 - Regulator/fittings
 - Spike relay
- Individual Systems:.5-2.0 lbs
 - Cylinder
 - Connections
 - Solenoid

Battery Problem

- Motor current is a function of its speed and load
- Rapid starting and stopping at high set pressure uses max current (easily over 10 A for start)
- Existing pressure switch has very low latency

Battery Help

- Pre-2006 FRC kit pressure switches turned off at about 115 psi—turned back on at about 105 psi
- 2006-7 switches better: 115 to 95 psi
- Still an unpredictable significant current
 - Use logic s/w to prevent turn on during critical non-pneumatic operations
 - Use delay logic to delay turn-on

What's Right with Pneumatics

- No "magic smoke"
 - Do not overheat, even with overloads
- Provide controlled force
- High speed combined with high force
- Accurate end position control
- Holds energy without additional power consumption
 - An adjustable Spring
 - No backdrive at End-of-Match!

Where to use

- Two-position linear applications
 - A "lifter" or "gate"
- Two-position with stored energy
 - Transmission Shifter
- Limited-arc rotary applications
 - Gripper
 - Arm Elbow or Shoulder

Example "Lifter"

- 2K6 FRC Robot: lifts balls to spinning shooter wheels
 - ¾ x 6 cylinder
 - Magnetic switchactivated return stroke
 - Capable of feeding
 shooter at 3 balls per 2
 secs

Lifter Design Considerations

Force of pulling vs pushing (piston rod effect)

 $-F=P \times A$, $F = 60psi * \pi ((3/8)^2 - (1/8)^2) = 24 lbs$

Example "Shifter"

- 2K4 FRC Robot: slides pins to lock/unlock "differential"
 - ¾ x 2 cylinder
 - 3 pins to be locked into 3 of 6 holes

Shifter Design Considerations

- Only wanted ¾ in of motion
 - Used adjustable fixed stop

Example "Gripper"

- 2K1 FRC Robot: grab 30" ball from floor and place on high goal tower
 - Needed secure 10 pound grip
 - Had to balance on tower
 - Nice to be able to grab 10" balls also

Gripper Design Considerations

- Geared joint insured symmetry, doubled rotation angle
- Effective radii
 - 3" for cylinder
 - 15" for gripper
- Used 1½ x 3 cylinder
 - F = 60psi * π (3/4")² = 106 lbs
 - At 3:15 ratio & 2 arms
 - Closing force = 10.6 lbs
- Used flow-controls
 - Quick grip
 - Slow release

Bits and Pieces

- Adjustable Regulator
 - Use minimum psi req'd
 - Saves air
 - Maintains force
- Magnetic Switch
 - Digital position

More Bits

- Flow Controls
 - Needle valve controls outflow only
 - DOES NOT control force, just speed
- Solenoid Valves
 - Very low current
 - Require 6-10 psi

General Suggestions

- Do not use unless you have 2 or more systems that really benefit from pneumatics
- Unless...you can use accumulators only—no compressor
 - EG: you could shift a transmission (3/4 x 1 cylinder) ~70 times on two 2 X 6 tanks
- Do not tolerate leaks!

Summary

- In 16 years of FIRST (only 14 with pneumatics?), Team 190 has used pneumatics in 10 robots—6 of the last 7
- The weight is manageable when multiple systems are used
- When used appropriately they are great
 - SHIFTERS!
 - GRABBERS!
 - LIFTERS!

Questions?

