Vecteurs du plan

Définition. On note (x; y) le <u>point</u> du plan de coordonnées x et y. (x et y sont des nombres réels)

Définition. Un **vecteur** \vec{u} est un objet qui <u>contient</u> <u>deux nombres</u> x et y et se note explicitement <u>en</u> colonne $\binom{x}{y}$ ou implicitement avec une lettre minuscule surmontée d'une flèche. On peut écrire $\vec{u} = \binom{x}{y}$

 \vec{u} représente un déplacement horizontal de x unités et vertical de y unités. Il est représenté par une flèche. Conventionnellement, le déplacement est compté positivement vers la droite pour x, et vers le haut pour y.

Exemples. Sur l'image, on a représenté plusieurs vecteurs.

 $\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ car on se déplace de 2 unités à droite et 1 unité en haut.

 $\vec{v} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ car on se déplace de 0 unités horizontalement et 2 unités en haut.

 $\vec{w} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$ car on se déplace de 3 unités à gauche et 0 unités verticalement.

 $\vec{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ car on se déplace de 1 unités à droite et 1 unité en bas.

Définition. Soit $M = (x_M; y_M)$ un <u>point</u> et $\vec{u} = {x \choose y}$ un <u>vecteur</u>. On note $t_{\vec{u}}(M) = (x_M + x; y_M + y)$ Concrètement, $t_{\vec{u}}(M)$ est <u>le point</u> au bout de la flèche \vec{u} , <u>si</u> on fait partir la flèche \vec{u} <u>depuis M</u>.

Exemple. Sur la figure, $\vec{u} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. On a :

$$t_{\vec{v}}(A) = (1+3;4-2) = (4;2) = B$$

B est l'image de A par la translation de vecteur \vec{u} .

$$t_{\vec{u}}(C) = (-1+3; 1-2) = (2; -1) = D$$

D est l'image de C par la translation de vecteur \vec{u} .

Les 2 flèches sur la figure représentent le même vecteur \vec{u} .

Un vecteur est une flèche dont la position est sans importance.

Propriété. Deux vecteurs sont identiques s'ils ont même direction, même sens, même longueur.

Définition. Pour tous $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} + \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$

Additionner des vecteurs, c'est appliquer des translations successivement.

Visuellement il suffit de les mettre bout à bout, car $t_{\vec{u}+\vec{v}}(M)=t_{\vec{v}}\big(t_{\vec{u}}(M)\big)$

Exemples.
$$\binom{2}{-5} + \binom{-1}{4} = \binom{1}{-1}$$
 $\binom{1}{2} + \binom{0}{3} + \binom{-1}{-4} = \binom{0}{1}$

$$\binom{1}{2} + \binom{0}{3} + \binom{-1}{-4} = \binom{0}{1}$$

Définition. Pour tout $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}, \ -\vec{u} = -\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$

Le vecteur opposé a la même longueur mais son sens est inversé.

Exemples.
$$-\binom{1}{-1} = \binom{-1}{1}$$
 $-\binom{-5}{8} = \binom{5}{-8}$

Définition. Pour tous
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$, $\vec{u} - \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x - x' \\ y - y' \end{pmatrix}$

 $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$ donc soustraire un vecteur, c'est additionner son opposé.

Définition. Pour tout
$$\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 et tout nombre réel k , $k\vec{u} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}$

Multiplier un vecteur par $k \ge 0$, c'est multiplier sa longueur par k sans changer de sens. Multiplier un vecteur par k < 0, c'est multiplier sa longueur par |k| et inverser son sens

Exemples.
$$3 \begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 6 \\ -12 \end{pmatrix}$$
 $-4 \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} -8 \\ 4 \end{pmatrix}$

$$-4\binom{2}{-1} = \binom{-8}{4}$$

Définition. On note $\vec{\mathbf{0}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ le **vecteur nul**. Il représente la translation « immobile »

Propriétés de calcul. Pour tous vecteurs $\vec{u}, \vec{v}, \vec{w}$ et tous réels k et k':

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

$$k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

$$k(k'\vec{u}) = (kk')\vec{u}$$

$$\vec{u} + (-\vec{u}) = \vec{0}$$

$$\vec{u} + \vec{0} = \vec{u}$$

$$(k + k')\vec{u} = k\vec{u} + k'\vec{u}$$

$$0\vec{u} = \vec{0}$$

Définition. Soit deux points
$$A = (x_A; y_A)$$
 et $B = (x_B; y_B)$. On définit $\overrightarrow{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

Le vecteur \overrightarrow{AB} représente la translation qui déplace le point A au point B, car $t_{\overrightarrow{AB}}(A) = B$ La flèche représentant \overrightarrow{AB} est donc souvent représentée allant du point A au point B.

Propriété. Pour tout point A, on a $\overrightarrow{AA} = \overrightarrow{0}$.

Propriété. Pour tous points A, B on a $-\overrightarrow{AB} = \overrightarrow{BA}$.

Prop. On peut toujours écrire un vecteur \vec{u} sous la forme $\vec{u} = \overrightarrow{AB}$ pour un certain point B

Prop. On peut toujours écrire un vecteur \vec{u} sous la forme $\vec{u} = \vec{CA}$ pour un certain point C

Propriété. $\overrightarrow{AB} = \overrightarrow{CD}$ ssi \overrightarrow{ABDC} est un parallélogramme. (Attention à l'ordre des lettres).

Propriété. Relation de Chasles.

Soit A, B, C trois points. Alors $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Attention, $AB + BC \ge AC$.

Exemple.
$$\overrightarrow{DE} + \overrightarrow{EF} + \overrightarrow{FG} = \overrightarrow{DF} + \overrightarrow{FG} = \overrightarrow{DG}$$

Exemple.
$$\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$$

Exemple.
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$$

Définition. La norme (ou longueur) d'un vecteur $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, est définie par $||\vec{u}|| = \sqrt{x^2 + y^2}$

Définition. La **longueur de** [AB] est
$$AB = \|\overrightarrow{AB}\| = \|\binom{x_B - x_A}{y_B - y_A}\| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Exemple. Soit $\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, alors $||\vec{u}|| = \sqrt{(3)^2 + (-4)^2} = 5$. \vec{u} est de longueur 5.

Définition. *M* est le **milieu d'un segment** [AB] ssi $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$

Propriété. Les coordonnées du milieu M de [AB] sont $x_M = \frac{x_A + x_B}{2}$ et $y_M = \frac{y_A + y_B}{2}$

Exemple. Si A = (-1, 0) et B = (3, 2) alors le milieu est $M = \left(\frac{-1+3}{2}, \frac{0+2}{2}\right) = (1, 1)$

Remarque. On peut techniquement définir, la longueur d'une courbe, puis l'angle géométrique entre deux vecteurs (non nuls).

Définition. Deux vecteurs non nuls sont **colinéaires**, s'ils forment un angle nul ou plat (0° ou 180°), autrement dit s'ils sont alignés, dans le même sens ou de sens opposés.

 $ec{v}$ $ec{v}$

Exemple. Les vecteurs \vec{u} , \vec{v} et \vec{k} sur l'image ci-contre sont colinéaires entre eux. Le vecteur \vec{w} n'est colinéaire avec aucun des autres vecteurs.

Définition. Deux vecteurs non nuls sont **orthogonaux**, s'ils forment un angle droit (90°).

Exemple. Les vecteurs \vec{u} et \vec{v} sur l'image ci-contre sont orthogonaux, car si on les fait partir du même point, ils forment un angle droit.

Définition. Un **repère** désigne la donnée d'un point 0 et de vecteurs \vec{i} et \vec{j} non colinéaires. On note $(0; \vec{i}; \vec{j})$ un tel repère.

Un repère sert à repérer les coordonnées, les longueurs, aires, angles, etc..

Remarque. Quand on change de repère, les coordonnées d'un vecteur ou d'un point changent. Cependant, les définitions et formules précédentes restent valables, si on les écrit dans un $m\hat{e}me$ repère R.

Attention : Les longueurs, aires et angles sont des notions a priori relatives au repère utilisé.

Définition. On note $\mathbf{R_0} = \left((0;0); \binom{1}{0}; \binom{0}{1}\right)$ le **repère canonique**. Jusqu'ici, on a toujours utilisé R_0 .

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 (dans R_0).

Propriété. Les longueurs, aires et angles géométriques sont identiques dans tout repère <u>orthonormé</u>.

Exemple. Le repère canonique R_0 est orthonormé.

Exemples. lci on considère R_0 comme le repère de référence.

Ci-contre, les repères R_0 , R_1 et R_2 sont orthonormés. Les longueurs ont donc la même mesure dans R_0 , R_1 , R_2 . R_3 n'est pas orthonormé car ses vecteurs sont de longueur 2 (en les mesurant dans R_0).

 R_4 n'est pas orthonormé car ses vecteurs ne sont pas orthogonaux (au sens de R_0).

Définition. Le **déterminant** de deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ est

 $\frac{\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'. \quad \text{(A priori le déterminant dépend du repère)}$ **Exemple.** Si $\vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, alors

Exemple. Si
$$\vec{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, alors

$$\det(\vec{u}; \vec{v}) = \begin{vmatrix} 2 & -1 \\ -1 & 4 \end{vmatrix} = (2)(4) - (-1)(-1) = 8 - 1 = 7$$

Propriété. Dans un repère orthonormé, l'aire du parallélogramme formé par \vec{u} et \vec{v} quand on les fait partir d'un même point, vaut $|\det(\vec{u}; \vec{v})|$

Exemple. En supposant que l'unité de base est le cm, l'aire du parallélogramme précédent délimité par \vec{u} et \vec{v} est $|\det(\vec{u}; \vec{v})| = 7 \text{ cm}^2$

Propriété. Deux vecteurs non nuls
$$\vec{u}$$
 et \vec{v} sont **colinéaires** ssi il existe un nombre réel k tel que $\vec{u} = k\vec{v}$ **Exemple.** $\binom{3}{2}$ et $\binom{-9}{-6}$ sont colinéaires car $\binom{-9}{-6} = -3\binom{3}{2}$.

Exemple. Les vecteurs ci-contre sont colinéaires entre eux puisqu'ils sont proportionnels à \vec{u}

(dans n'importe quel repère)

Propriété. Deux droites (AB) et (MN) sont parallèles ssi \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{MN}) = 0$.

Propriété. Trois points distincts A, B et C sont alignés ssi \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires ssi $\det(\overrightarrow{AB}; \overrightarrow{AC}) = 0$.

Exemple. Les points A = (1, 3), B = (2, 6) et C = (3, 9) sont-ils alignés ?

$$\det(\overrightarrow{AB}; \overrightarrow{AC}) = \begin{vmatrix} (2-1) & (3-1) \\ (6-3) & (9-3) \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 3 & 6 \end{vmatrix} = 1 \times 6 - 3 \times 2 = 0. \text{ Donc } A, B \text{ et } C \text{ sont alignés.}$$