Assignment Part-II

Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

	The optimal v	The optimal value for Ridge is 0.8		8	and		Lasso is 0.0003			
	Features	rfe_support	rfe_ranking	Coefficient			Features	rfe_support	rfe_ranking	Coefficient
3	GrLivArea	True	1	0.7546	5		GrLivArea	True	1	0.685697
0	OverallQual	True	1	0.5373	1		OverallQual	True	1	0.418675
1	OverallCond	True	1	0.3889	4		TotalBsmtSF	True	1	0.341698
7	MSZoning_FV	True	1	0.2468	2		OverallCond	True	1	0.315619
16	BsmtFullBath_3	True	1	0.2216	3		BsmtFinSF1	True	1	0.157505
2	BsmtFinSF1	True	1	0.2170	28		Exterior1st_BrkFace	True	1	0.102977
8	MSZoning_RH	True	1	0.1331	0		LotArea	True	1	0.102770
18	GarageCars_4	True	1	0.1288	18	Ne	eighborhood Crawfor	True	1	0.099206
9	Neighborhood Crawfor	True	1	0.1264			ighborhood StoneBr	True	1	0.096606
10	RoofStyle_Mansard	True	1	0.1031	41	110	GarageType_Attchd	True	1	0.077496
					71		OdrageType_Attend	Huc	'	0.011400
The	The optimal value for Ridge is 1.6			and		Lasso is 0.0006				
	Feature	s rfe_suppo	rt rfe_rank	ing Coeffi	cient		Feature	s rfe_support	rfe_ranking	Coefficient
3	GrLivAre	a Tru	е	1 0	.6830	5	GrLivAre	a True	1	0.683673
0	OverallQua	al Tru	е	1 0	.5316	1	OverallQua	l True	1	0.470830
1	OverallCon	d Tru	е	1 0	.3725	4	TotalBsmtS	True	1	0.357916
2	BsmtFinSF	1 Tru	е	1 0	.2170	2	OverallCon	d True	1	0.302526
7	MSZoning_F\	√ Tru	е	1 0	.2092	3	BsmtFinSF	1 True	1	0.161862
16	BsmtFullBath_	3 Tru	е	1 0	.1550	18	Neighborhood_Crawfo	r True	1	0.096135
9	Neighborhood_Crawfo	r Tru	е	1 0	.1265	0	LotAre	a True	1	0.094840
18	GarageCars_	4 Tru	е	1 0	.1124	28	Exterior1st_BrkFac			0.091449
11	Exterior1st_BrkFac	e Tru	е	1 0	.1018	20	Neighborhood_StoneB	r True	1	0.075460
10	RoofStyle_Mansar	d Tru	е	1 0	.0948	16	MSZoning_R	L True	1	0.054638

After doubling the values, the coefficient values are decreased slightly compared to previous one. Some of the Top features are changed in Ridge Regression and Lasso Regression.

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

I will choose Lasso regression instead of Ridge. In Lasso, the feature selection is automatic. IF number of variables increases, we prefer Lasso Regression.

R2 value:

	Metric	Linear Regression	Ridge Regression	Lasso Regression
0	R2 Score (Train)	0.920434	0.918885	0.934936
1	R2 Score (Test)	0.899211	0.902600	0.906698
2	RSS (Train)	12.349095	12.589498	10.098233
3	RSS (Test)	6.060608	5.856842	5.610428
4	MSE (Train)	0.111349	0.112428	0.100692
5	MSE (Test)	0.118997	0.116980	0.114492

Also, R squared value, RSS and MSE for Lasso regression is higher compared to Ridge regression.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Before removing the top 5 Predictor variables in the lasso model.

	Features	rfe_support	rfe_ranking	Coefficient
5	GrLivArea	True	1	0.683673
1	OverallQual	True	1	0.470830
4	TotalBsmtSF	True	1	0.357916
2	OverallCond	True	1	0.302526
3	BsmtFinSF1	True	1	0.161862
18	Neighborhood_Crawfor	True	1	0.096135
0	LotArea	True	1	0.094840
28	Exterior1st_BrkFace	True	1	0.091449
20	Neighborhood_StoneBr	True	1	0.075460
16	MSZoning_RL	True	1	0.054638

After removing the top 5 predictor variables in the Lasso regression. Below variables are most important.

	Features	rfe_support	rfe_ranking	Coefficient
3	2ndFlrSF	True	1	0.371099
4	GarageArea	True	1	0.169599
40	GarageType_BuiltIn	True	1	0.098220
31	BsmtExposure_Gd	True	1	0.072957
0	LotArea	True	1	0.071065
19	Neighborhood_Somerst	True	1	0.054093
12	MSZoning_RL	True	1	0.044602
1	MasVnrArea	True	1	0.043464
30	Exterior2nd_Wd Sdng	True	1	0.039491
45	GarageCars_3	True	1	0.037321

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Accuracy:

Model will not impact by outliers in the training data and test accuracy is not lesser than training.

It is used to identify the relationships and patterns between the variables in the data.

The difference between the Train and Test R squared values for the given model is lies between 5% accuracy range. We can say that the model is robust and generalisable.