Optimization methods. Seminar 2. Convex functions and matrix calculus

Alexandr Katrutsa

Moscow Institute of Physics and Technology

October 18, 2020

Definitions

Convex function

A function $f: X \subset \mathbb{R}^n \to \mathbb{R}$ is called convex (strictly convex), if X is a convex set and $\forall x_1, x_2 \in X$ and $\alpha \in [0,1]$ ($\alpha \in (0,1)$): $f(\alpha x_1 + (1-\alpha)x_2) \leq (<) \alpha f(x_1) + (1-\alpha)f(x_2)$

Concave function

A function f is concave (strictly concave), if -f is convex (strictly convex).

Strongly convex function

A function $f: X \subset \mathbb{R}^n \to \mathbb{R}$ is called strongly convex with constant m > 0, if X is a convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in X$ in $\alpha \in [0,1]$:

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1 - \alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$$

Sets definitions

Epigraph

An epigraph of a function f is called a set $epif = \{(\mathbf{x}, y) : \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}, y \geq f(\mathbf{x})\} \subset \mathbb{R}^{n+1}$

Convex function criteria

First order criterion

A function f is convex \Leftrightarrow the function is defined on the convex set X and $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$: $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle$

Second order criterion

A continuous and twice differentiable function f is convex \Leftrightarrow the function is defined on the convex set X:

$$f''(\mathbf{x}) \succeq 0$$
.

Relation to the epigraph property

A function is convex \Leftrightarrow its epigraph is convex set.

Restriction to the line

A function $f: X \to \mathbb{R}$ is convex iff X is a convex set and the univariate function $g(t) = f(\mathbf{x} + t\mathbf{v})$ defined on the set $\{t | \mathbf{x} + t\mathbf{v} \in X, \ \forall \mathbf{x}, \mathbf{v}\}$ is convex.

Strongly convexity criteria

First order criterion

A function f is strongly convex with constant $m \Leftrightarrow \text{the}$ function is defined on the convex set X and $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

Second order criterion

A continuous and twice differentiable function f is strongly convex with constant $m \Leftrightarrow$ the function is defined on the convex set X:

$$f''(\mathbf{x}) \succeq m\mathbf{I}$$
.

1. Quadratic function: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{P} \in \mathbf{S}^{n}$

- 1. Quadratic function: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{P} \in \mathbf{S}^{n}$
- 2. Norms in \mathbb{R}^n

- 1. Quadratic function: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{P} \in \mathbf{S}^{n}$
- 2. Norms in \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log(e^{x_1} + \ldots + e^{x_n}), \mathbf{x} \in \mathbb{R}^n$ smooth approximation of maximum

- 1. Quadratic function: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r$, $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{P} \in \mathbf{S}^{n}$
- 2. Norms in \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log(e^{x_1} + \ldots + e^{x_n}), \mathbf{x} \in \mathbb{R}^n$ smooth approximation of maximum
- 4. Maximum eigenvalue: $f(X) = \lambda_{max}(X)$

Matrix calculus: reminder

Consider function $f: D \rightarrow E$

► Gradient

Matrix calculus: reminder

Consider function $f: D \rightarrow E$

- ► Gradient
- ▶ Hessian in the case of $D \equiv \mathbb{R}^n$ and $E \equiv \mathbb{R}$

Matrix calculus: reminder

Consider function $f: D \rightarrow E$

- Gradient
- ▶ Hessian in the case of $D \equiv \mathbb{R}^n$ and $E \equiv \mathbb{R}$
- Jacobi matrix

1. Linear function: $f(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x}$

- 1. Linear function: $f(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x}$
- 2. Quadratic form: $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x$

- 1. Linear function: $f(\mathbf{x}) = \mathbf{c}^{\top} \mathbf{x}$
- 2. Quadratic form: $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x$
- 3. Squared ℓ_2 norm of residual vector: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$

- 1. Linear function: $f(x) = c^{T}x$
- 2. Quadratic form: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} + \mathbf{b}^{\mathsf{T}}\mathbf{x}$
- 3. Squared ℓ_2 norm of residual vector: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- 4. Trace: f(X) = trace(AXB)

- 1. Linear function: $f(x) = c^{T}x$
- 2. Quadratic form: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} + \mathbf{b}^{\top}\mathbf{x}$
- 3. Squared ℓ_2 norm of residual vector: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- 4. Trace: $f(X) = \operatorname{trace}(AXB)$
- 5. $f(x) = (x As)^T W(x As)$

Definitions

Subgradient

A vector **a** is called *subgradient* of a function $f: X \to \mathbb{R}^n$ in a point **x**, if

$$f(y) - f(x) \ge \langle a, y - x \rangle$$

for all $y \in X$.

Subdifferential

A set of subgradients of the function f in the point \mathbf{x} is called subdifferential of the function f in the point \mathbf{x} and is denoted as $\partial f(\mathbf{x})$.

Main theorems

Moreau-Rockafellar theorem

Let $f_i(\mathbf{x})$ be convex functions defined on the convex sets

$$\mathcal{X}_i, \ i=1,\ldots,n.$$
 If $\bigcap_{i=1}^n \operatorname{int}\left(\mathcal{X}_i\right)
eq \varnothing$ then a function

$$f(\mathbf{x}) = \sum_{i=1}^{n} a_i f_i(\mathbf{x}), \ a_i > 0$$
 is subdifferentiable in a set

$$\mathcal{X} = \bigcap_{i=1}^{n} \mathcal{X}_{i} \text{ and } \partial_{\mathcal{X}} f(\mathbf{x}) = \sum_{i=1}^{n} a_{i} \partial_{\mathcal{X}_{i}} f_{i}(\mathbf{x}).$$

Subdifferential of a maximum

If
$$f(\mathbf{x}) = \max_{i=1,...,m} (f_i(\mathbf{x}))$$
, where $f_i(\mathbf{x})$ are convex, then

$$\partial_{\mathcal{X}} f(\mathbf{x}) = \operatorname{conv}\left(\bigcup_{i \in \mathcal{J}(\mathbf{x})} \partial_{\mathcal{X}} f_i(\mathbf{x})\right)$$
, where $\mathcal{J}(\mathbf{x}) = \{i = 1, \dots, m \mid f_i(\mathbf{x}) = f(\mathbf{x})\}$

Find subdifferential for the following functions

- ▶ Absolute value: f(x) = |x|
- ▶ Scalar maximum: $f(x) = \max(e^x, 1 x)$
- ▶ Multivariate maximum: $f(x) = |c^T x|$
- $f(\mathbf{x}) = |\mathbf{c}_1^\top \mathbf{x}| + |\mathbf{c}_2^\top \mathbf{x}|$