Exercise 10

陈志杰 524531910034

Problem 1.

Solution. Let \mathcal{J} be the truth assignment such that $\mathcal{J}(p) = \mathbf{T}$, $\mathcal{J}(q) = \mathbf{F}$, $\mathcal{J}(r) = \mathbf{F}$. Then $[\![(p \wedge q) \to r]\!]_{\mathcal{J}} = \mathbf{T}$. However, $[\![p \to r]\!]_{\mathcal{J}} = \mathbf{F}$, $[\![q \to r]\!]_{\mathcal{J}} = \mathbf{T}$, which implies that $[\![(p \to r) \land (q \to r)]\!]_{\mathcal{J}} = \mathbf{F}$. Thus $(p \land q) \to r$ and $(p \to r) \land (q \to r)$ have different truth values under \mathcal{J} , proving that the two propositions are not logically equivalent.

Problem 2.

Solution. • Let $\mathfrak{A} = (A, \mathfrak{a})$ be an S-structure where $A = \{0, 1\}$, $\mathfrak{a}(P) = P^{\mathfrak{A}}$ is such that $P^{\mathfrak{A}}(0) = \mathbf{F}$, $P^{\mathfrak{A}}(1) = \mathbf{T}$, and $\mathfrak{a}(Q) = Q^{\mathfrak{A}}$ is such that $Q^{\mathfrak{A}}(x) = \mathbf{F}$ for all $x \in A$. Let $\mathfrak{I} = (\mathfrak{A}, \beta)$ be an S-interpretation where β is some fixed assignment in \mathfrak{A} .

- Let a=1. Then $\llbracket P(x) \to Q(x) \rrbracket_{\Im[x \mapsto 1]} = \mathbf{F}$ follows from that $\Im[x \mapsto 1](P)(1) = \mathbf{T}$ and $\Im[x \mapsto 1](Q)(1) = \mathbf{F}$. Thus $\llbracket \forall x (P(x) \to Q(x)) \rrbracket_{\Im} = \mathbf{F}$.
- $\llbracket \forall x(P(x)) \rrbracket_{\mathfrak{I}} = \mathbf{F}$ follows from that $\llbracket P(x) \rrbracket_{\mathfrak{I}[x \mapsto 0]} = \mathbf{F}$. That implies that $\llbracket \forall x(P(x)) \rightarrow \forall x(Q(x)) \rrbracket_{\mathfrak{I}} = \mathbf{T}$.

The two propositions have different truth values on \Im , and hence are not logically equivalent.

Problem 3.

Proof. We use proof by contradiction and assume that the proposition is false on interpretation \Im with domain A.

- There does not exist $a \in A$ such that $[(P(x) \to \forall y(P(y)))]_{\Im[x \mapsto a]} = \mathbf{T}$.
- For any $a \in A$, $[(P(x) \to \forall y(P(y)))]_{\Im[x \mapsto a]} = \mathbf{F}$.
- For any $a \in A$, $[P(x)]_{\mathfrak{I}[x \mapsto a]} = \mathbf{T}$ and $[\forall y (P(y))]_{\mathfrak{I}[x \mapsto a]} = \mathbf{F}$, i.e.,
 - for any $a \in A$, $[P(x)]_{\mathfrak{I}[x \mapsto a]} = \mathbf{T}$;
 - * $\llbracket \forall x (P(x)) \rrbracket_{7} = \mathbf{T}. \ (\star)$
 - $\text{ for any } a \in A, \, [\![\forall y (P(y))]\!]_{\mathfrak{I}[x \mapsto a]} = \mathbf{F}.$
 - $* \text{ Apply } a = \Im(x). \ [\![\forall y (P(y))]\!]_{\Im[x \mapsto \Im(x)]} = \mathbf{F}, \text{ i.e., } [\![\forall y (P(y))]\!]_{\Im} = \mathbf{F}.$
 - * This does not hold: for all $b \in A$, $[P(y)]_{\Im[y \mapsto b]} = \mathbf{T}$.
 - * This does not hold: for all $b \in A$, $\Im(P)(b) = \mathbf{T}$.
 - * This does not hold: for all $b \in A$, $[P(x)]_{\mathfrak{I}[x \mapsto b]} = \mathbf{T}$.
 - * $\llbracket \forall x (P(x)) \rrbracket_{\mathfrak{I}} = \mathbf{F}. \ (\star)$

The two (\star) 's trigger a contradiction. Thus the proposition in question is true under any interpretation.

Problem 4.

Solution. (a) If Φ does not talk about x, and $\Phi, \psi \vdash \phi$, then $\Phi \vdash \forall x(\psi \to \phi)$.

- (b) No logic. It is a mathematical definition.
- (c) No logic. It is a mathematical fact.

Problem 5.

Solution. (a) If Φ and ψ do not talk about x, and $\Phi, \phi \vdash \psi$, then $\Phi, \exists x \phi \vdash \psi$.

(b) No logic. It is a mathematical fact.