HW4Jacobi 方法

王启骅 PB20020580

2022年10月25日

1 实验结果与分析

1.1 SVD 分解

生成的初始矩阵如图 1

初始随机矩阵:		
0.001251	0. 563585	0. 193304
0. 808741	0. 585009	0. 479873
0. 350291	0.895962	0.822840
0. 746605	0. 174108	0.858943

图 1: 初始矩阵 A

计算得到 AA^T 并使用 Jacobi 方法得到对角特征值矩阵结果为图 2

A*A [^] T的Jacob	i特征值矩阵:		
0.000000	0.000162	0.000067	0.000002
0.000162	0. 129216	-0.000000	0.000000
0.000067	-0.000000	3.870294	0.000005
0.000002	0.000000	0.000005	0.510095

图 2: AA^T 的 Jacobi 方法结果特征值对角矩阵

得到迭代过程中每次的非对角元平方和如图 3, 可见非对角元平方和确实每次都呈迅速下降趋势。

```
非对角元平方和:6.40945379
非对角元平方和:1.41017494
非对角元平方和:0.14340713
非对角元平方和:0.05674756
非对角元平方和:0.00989821
非对角元平方和:0.00450824
非对角元平方和:0.00271219
非对角元平方和:0.00102853
非对角元平方和:0.00013152
非对角元平方和:0.00002915
非对角元平方和:0.00000006
```

图 3: 非对角元平方和

最后输出变换矩阵 Q 即为所需的 U,再计算 SIGMA 与 V 得到结果如图 4

```
0.080233
                                                   0.788437
                -0.568333
                0. 162285
                                  0.817740
0.539568
                                                   -0.117608
                                  -0.378072
                -0.491326
                                                   -0.488055
0.614380
0.531485
                0.639734
                                  -0.426528
                                                   0.355441
SIGMA:
. 967306
                0.000000
                                  0.000000
0.000000
                                  0.000000
                0.714210
                0.000000
                                  0.359467
0.000000
0.000000
                0.000000
                                  0.000000
0.533048
                0.550657
                                  0.642368
0.610544
                -0.775952
                                  0.158536
                 0.307687
                                  -0.749821
 585745
```

图 4: U Σ V 矩阵

接下来按照图 2 所求的特征值矩阵对角元顺序一次求 $det(AA^T - \lambda_i I)$ 得到结果如图 5, 如图可见该行列式绝对值计算结果均小于 10^{-7} 次方,趋于 0, 可见所求结果确实为正确的矩阵特征值。

```
det(AAT-lambda_i*I)=-0.000000052345
det(AAT-lambda_i*I)=-0.000000037566
det(AAT-lambda_i*I)=-0.000000056680
det(AAT-lambda_i*I)=-0.0000000000002
```

图 5: $det(AA^T - \lambda_i I)$

1.2 PCA 分析

所求得到 $\frac{1}{m}XX^T$ 协方差矩阵为图 6

协方差矩阵:	10		
0. 681122	-0. 039007	1. 265191	0. 513458
-0. 039007	0. 186751	-0. 319568	-0. 117198
1. 265191	-0. 319568	3. 092425	1. 287745
0. 513458	-0. 117195	1. 287745	0. 578532

图 6: $\frac{1}{m}XX^T$

计算其特征值、特征向量矩阵为图 6,7

协方差特征值	[矩阵 :		
4. 196675	0. 000053	0. 000000	-0.000002
0. 000053	0. 240629	-0.000000	-0.000110
0.000000	-0.000000	0.078000	0.000000
-0. 000002	-0.000110	0. 000000	0. 023525

图 7: $\frac{1}{m}XX^T$ 的特征值矩阵

将生成的投影坐标输出到 coordinate.txt, 读入到 python 文件 Cov pic.py 画图得到可视化结果如图 8, 其中前 50个点对应蓝色,50-100 对应红色,100-150 对应绿色

可见对于第 0 组数据点,其特征向量投影再靠近 $x=-3,y=-1 \sim 1.5$ 的位置附近,说明第 0 组数据在 $\hat{e_1}$ 方向的投影相近,都在-3 左右,而在 $\hat{e_2}$ 方向投影差异较大;对于第 1 组数据,可见其主要分布在近似于 y=x 的靠近原点

协方差特征值	直列向量矩阵:		
0. 361590	0.656512	0. 581221	0. 316902
-0. 082269	0. 729741	-0. 596194	-0. 324442
0.856572	-0. 175986	-0. 072598	-0. 479628
0. 358844	-0. 074149	-0. 549058	0. 751178

图 8: $\frac{1}{m}XX^T$ 的特征向量矩阵

图 9: IRIS 可视化结果

的直线上,说明其数据大多分布在朝向 $\hat{e_1}$, $\hat{e_2}$ 方向之间的某一夹角的方向正负附近;对于第 2 组数据,其主要分布在 4>x>0,1.5>y>-1.5 的区域,也主要沿 y=x 的方向分布,说明该组数据在 $\hat{e_1}$ 方向投影均为正值,说明数据相对 $\hat{e_1}$ 的方向不改变,而相对 $\hat{e_2}$ 则总体上随对 $\hat{e_1}$ 的投影增大而增大的趋势。由此可见三组数据明显属于不同种类的花,有不同特性。