# Exercise Set 2

David Zynda July 20, 2018

# (1) Proof of Injective/Surjective Function

Let  $a \in \mathbb{R}$  and  $n \in \mathbb{N}$  and define the function  $f : \mathbb{R} \to \mathbb{R}$  by  $f(x) = ax^n$ .

# (a) Use your knowledge of proof by induction to verify that if n is even, then f is neither one-to-one nor onto $\mathbb R$

Let  $n = \{k \in \mathbb{N} | k = 2m \forall m \in \mathbb{N} \}$  for  $f(x) = ax^n$ 

Step 1: Let n=2

$$f(x) = ax^2$$

Is f(x) 1-to-1 or injective? Clearly not. Let  $x_1 = 1$  and  $x_2 = -1$ . Then  $f(x_1) = f(x_2)$  where  $x_1 \neq x_2$ . Hence, f(x) is not one-to-one since each y does not have a unique x.

Secondly, f(x) is not onto or surjective either. As defined above, the target space includes all of  $\mathbb{R}$ . Yet, it is obvious that the domain does not include all the target space since it excludes all negative numbers. Consequently, the function cannot be onto.

Step 2: Let  $S_{n+1} = f(x) = ax^{n+2}$ 

$$f(x) = ax^{n+2}$$

Notice: raising any ax to the  $n^{th}$  even power for all x and a in  $\mathbb{R}$  results in a positive number. As such, the function is neither one to one nor onto.

Consequently, by the principle of induction, all even n guarantee the function  $f(x) = ax^n$  is neither one-to-one nor onto.

# (b) Assuming that the function f is coninuous, determine whether f is one-to-one or onto if n is odd instead of even.

Let  $n \in \mathbb{N}$  be an odd number in  $f(x) = ax^n$ . And, let  $m \in \mathbb{R} > 0$  and a > 0.

$$x < x + m \implies f(x) < f(x + m)$$

Since a > 0. In fact, as x approaches infinity, the limit tends towards infinity. Similarly, as x becomes infinitely negative, the limit approaches negative infinity.

Because of this:

$$\forall y \in \mathbb{R} : \exists M > 0 : x > M \implies f(x) > y$$

$$\forall y \in \mathbb{R} : \exists m > 0 : x > m \implies f(x) < y$$

By the Intermediate Value Theorem, there exists a  $c \in [m, M]$  such that f(c) = y. Hence, all the target space is in the range, and the function is onto.

1

Clearly, it is one-to-one as well. Because the function is strictly monotonically increasing given a > 0, the function must be one-to-one. Each y has a distinct x.

Now, if a < 0, the conditions above still hold, but the function would be monotonically decreasing. If a = 0 all bets are off since the function would be neither one-to-one or onto since for all x, f(x) = 0.

# (2) Proof of the sum of squared natural numbers

Prove that for every  $n \in \mathbb{N}$ :

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Proof by Induction:

Let

$$\sum_{i=1}^{n} n^2 = \frac{n(n+1)(2n+1)}{6}$$

Step 1 Let n = 1:

$$\sum_{i=1}^{1} n^2 = \frac{(1)(1+1)(1+2)}{6} = \frac{6}{6} = 1$$

Hence, the first step is true.

Step 2 Now, show that this statement holds for n+1 such that:

$$\sum_{i=1}^{n+1} n^2 = \frac{(n+1)(n+2)(2(n+1)+1)}{6} = \frac{(n+1)(n+2)(2n+3)}{6}$$

Let:

$$\sum_{k}^{n+1} n^2 = \sum_{k}^{n+1} k^2 + (n+1)^2$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{n(n+1)(2n+1) + 6(n+1)^2}{6}$$

$$= \frac{(n+1)(n(2n+1) + 6(n+1))}{6}$$

$$= \frac{(n+1)(n(2n^2 + n + 6n + 6))}{6}$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6}$$

$$= \frac{(n+1)(2n+3)(n+2)}{6} = \sum_{k=1}^{n+1} n_k^2$$

Therefore, the statement holds for n + 1. Thus, by the principle of induction, it is true that: for every  $n \in \mathbb{N}$ :

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

(3) Determine the lengths of the following vectors:

$$length = norm = ||x|| := \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \forall x \in \mathbb{R}^n$$

(a) (12, 5)

$$||x|| := \sqrt{12^2 + 5^2} = \sqrt{169} = 13$$

(b) (1,1)

$$||x|| := \sqrt{1^2 + 1^2} = \sqrt{2}$$

(c) (3,3)

$$||x|| := \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$$

(d) (3, -3)

$$||x|| := \sqrt{3^2 + (-3)^2} = \sqrt{18} = 3\sqrt{2}$$

(e) (-1, 1, -1)

$$||x|| := \sqrt{(-1)^2 + 1^2 + (-1)^2} = \sqrt{3}$$

(f) (1,1,1,1)

$$||x|| := \sqrt{1^2 + 1^2 + 1^2 + 1^2} = \sqrt{4} = 2$$

(g) (12, 0, 0, 5)

$$||x|| := \sqrt{12^2 + 0^2 + 0^2 + 5^2} = \sqrt{169} = 13$$

(h) (12, -1, 1, 5)

$$||x|| := \sqrt{12^2 + (-1)^2 + 1^2 + 5^2} = \sqrt{171} = 3\sqrt{19}$$

# (4) For each vector in #3, determine a vector of length 1 that points in the opposite direction.

# (a) (12, 5)

Direction: (-12k, -5k)

$$12^2k^2 + 5^2k^2 = 1$$

$$\implies k = \frac{1}{13}$$

So, a vector in the opposite direction of length 1 is:  $\left(-\frac{12}{13}, -\frac{5}{13}\right)$ 

# (b) (1,1)

Direction: (-1k, -1k)

$$1^2k^2 + 1^2k^2 = 1$$
$$\implies k = \sqrt{2}$$

So, a vector in the opposite direction of length 1 is:

$$(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$$

# (c) (3,3)

Direction: (-3k, -3k)

$$3^2k^2 + 3^2k^2 = 1$$
$$\implies k = \frac{1}{\sqrt{18}}$$

So, a vector in the opposite direction of length 1 is:  $(-\frac{3}{\sqrt{18}}, -\frac{3}{\sqrt{18}})$ 

#### (d) (3, -3)

Direction: (-3k, 3k)

$$3^2k^2 + (-3)^2k^2 = 1$$

$$\implies k = \frac{1}{\sqrt{18}}$$

So, a vector in the opposite direction of length 1 is:  $\left(-\frac{3}{\sqrt{18}}, \frac{3}{\sqrt{18}}\right)$ 

#### (e) (-1, 1, -1)

Opposite Direction: (1k, -1k, 1k) Set length to 1:  $(1k)^2 + (-1k)^2 + (1k)^2 = 1$  This implies  $k = \frac{1}{7}\sqrt{3}$  Hence a vector in the opposite direction of length 1 is:  $(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ 

## (f) (1,1,1,1)

Opposite Direction: (-1k,-1k,-1k,-1k) Set length to 1:  $(-1k)^2+(-1k)^2+(-1k)^2+(-1k^2)=1$  This implies  $k=\frac{1}{\sqrt{4}}=\frac{1}{2}$  Hence a vector in the opposite direction of length 1 is:  $(-\frac{1}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4})$ 

(g) (12, 0, 0, 5)

Opposite Direction: (-12k,0k,0k,-5k) Set length to 1:  $(-12k)^2+(0k)^2+(0k)^2+(-5k^2)=1$  This implies  $k=\frac{1}{\sqrt{169}}=\frac{1}{13}$  Hence a vector in the opposite direction of length 1 is:  $(-\frac{12}{13},0,0,-\frac{5}{13})$ 

(h) (12, -1, 1, 5)

Opposite Direction: (-12k, 1k, -1k, -5k) Set length to 1:  $(-12k)^2 + (-1k)^2 + (1k)^2 + (-5k^2) = 1$  This implies  $k = \frac{1}{\sqrt{171}}$  Hence a vector in the opposite direction of length 1 is:  $(-\frac{12}{\sqrt{171}}, \frac{1}{\sqrt{171}}, -\frac{1}{\sqrt{171}}, -\frac{5}{\sqrt{171}})$ 

- (5) For each of the following vectors, find two vectors u and w that are orthogonal to v and have the same length as v:
- (a) v = (1,0)

let u = (0, 1) and w = (0, -1)

$$u \cdot v = w \cdot v = 0$$

$$length: l(v) = l(w) = l(u) = 1$$

**(b)** v = (1, 1)

let u = (1, -1) and w = (-1, 1). Then, all vectors share the same length of sqrt2 and v is orthogonal to u an w since the dot product is zero (1x1 + (-1)x1 = 0).

(c) v = (1, 0, 0)

let u = (0, 1, 0) and w = (0, 0, 1)

(d) v = (1, 1, 1)

of course, length =  $\frac{1}{\sqrt{3}}$ 

let  $u=(0,\sqrt{\frac{\sqrt{3}}{2}},-\sqrt{\frac{\sqrt{3}}{2}})$ . Clearly the length will be  $\sqrt{3}$  and the dot product is 0.

let  $w=(\sqrt{\frac{\sqrt{3}}{2}},-\sqrt{\frac{\sqrt{3}}{2}},0)$  for a similar and correct result as above with u.

(6) Draw a diagram in  $\mathbb{R}^2$  and vector a=(1,-1), the line H, and vectors (1,1),(1,0),(2,1),(0,-1),(0,1),(-1,0),(-1,2),(-1,0),(-1,1). Determine  $a\cdot v$ , which side of the line H each is on both visually and analytically and determine angle between.

Below is a plot. Notice in the comments to the right of the code the corresponding vectors and colors to aid in matching them on the plot.

5

```
par(pty = 's')
plot(c(-3, 3), c(-3, 3), type = '1', lty=4, ylab = 'x2', xlab='x1') #Line H
abline(h=0)
abline(v=0)
points(c(0,1), c(0,-1), type = 'l', col='red')
                                                       #(1,0)
                                                               Red
points(c(0,1), c(0,1), type = 'l', col='orange')
                                                       \#(1,1)
                                                               Orange
points(c(0,1), c(0,0), type = 'l', col='green')
                                                       \#(1,0)
                                                               Green
points(c(0,2), c(0,1), type = 'l', col='blue')
                                                       #(2,1) Blue
points(c(0,0), c(0,-1), type = 'l', col='purple')
                                                       #(0,-1) Purple
points(c(0,0), c(0,1), type = 'l', col='yellow')
                                                       #(0,1) Yellow
points(c(0,-1), c(0,2), type = 'l', col='pink')
                                                       \#(-1,2) Pink
points(c(0,-1), c(0,0), type = 'l', col='deeppink3')
                                                       #(-1,0) Dark Pink
points(c(0,-1), c(0,1), type = 'l', col='chocolate4') #(-1,1) Brown
```



#### (a) (1,1)

Dot product: 1x1 + (-1)x1 = 0. This lies on the line H. The angle is 90 degrees visually. Because the dot product is 0, this guarentees the angle is 90 since  $\cos(90 \text{ degrees}) = 0$ 

#### (b) (1,0)

Dot product: 1x1 + -1x0 = 1 This lies on the lower-right side of H or below H. The angle appears visually 45 degrees and acute.  $1 / (1 * \operatorname{sqrt}(2)) = \frac{1}{\sqrt{2}}$  which is 45 degrees since  $\cos(45 \text{ degrees}) = \frac{1}{\sqrt{2}}$  So, the angle is acute.

#### (c) (2,1)

Dot product: 1x2 + -1x1 = 1 This lies on the southeast side or below H. The angle appears acute. Since the dot product is greater than zero, the angle is acute analytically.

#### (d) (0,-1)

Dot Product:  $1x0 + -1^*-1 = 1$  This lies on the northwest side of the plot or above H. The angle appears acute. The angle is acute since the dot product is greater than zero.

#### (e) (0,1)

Dot Product: 1x0 + -1x1 = -1 This lies on the Northwest side of the plot or above H. The angle appear obtuse. The angle is obtuse since the dot product is less than one.

#### (f) (-1,2)

Dot Product: 1x-1 + -1x2 = -3 This lies on the northwest side, or above H. The angle appears obtuse. The angle is obtuse since the dot product is less than zero.

## (-1,0)

Dot product: 1x-1 + -1x0 = -1 This lies on the northwest side or above H. The angle appears obtuse. The angle is obtuse since the dot product is less than zero.

#### (-1, 1)

Dot Product: -1x1 + -1x1 = -2 This lies on the northwest side or above H. The angle appears obtuse. The angle is obtuse since the dot product is less than zero.

# (7) Vectors in $\mathbb{R}^3$

(a) 
$$v = (1, 0, 0)$$

 $a \cdot v = (1)(1) + (1)(0) + (1)(0) = 1 \mid a \cdot v > 0 \implies$  the angle is acute. Lies on the same side of H

**(b)** 
$$v = (0, 0, 1)$$

 $a \cdot v = (1)(0) + (1)(0) + (1)(1) = 1 \mid a \cdot v > 0 \implies$  the angle is acute. Lies on the same side of H

(c) 
$$v = (0, -1, 0)$$

 $a \cdot v = (1)(0) + (1)(-1) + (1)(0) = -1 \mid a \cdot v < 0 \implies$  the angle is obtuse. Lies on the opposite side of H

(d) 
$$v = (0, 1, 1)$$

 $a \cdot v = (1)(0) + (1)(1) + (1)(1) = 2 \mid a \cdot v > 0 \implies$  the angle is acute Lies on the opposite side of H

(e) 
$$v = (1, -1, 0)$$

 $a \cdot v = (1)(0) + (1)(-1) + (1)(1) = 0 \mid a \cdot v = 0 \implies$  the angle is a right angle and the vectors are orthogonal. Lies on the plane of H

# (8) Prove that if n > 1 then the $x_1$ axis in $\mathbb{R}^n$ is a closed set.

Please grade me on the first answer below. I have included a second proof too that I thought up. Can you check the second one and tell me if it works, but only grade the first one?

#### Proof 1:

The compliment of the  $x_1$  axis is defined as  $\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n | x_2, ..., x_n \neq 0\}$ 

It must be the case that the compliment is open. For any point in the compliment as a part of  $\mathbb{R}^n$ , there must be an  $\varepsilon > 0$  such that a ball can be constructed around any point which is the subset of that space. The compliment has no boundary points. Therefore, every point in it can have a ball constructed which is a subset of the compliment. The only boundary is the point a which  $x_2, ... x_n = 0$  which is contained in  $x_1$ . Consequently the compliment is open.

If the compliment is open, then the original set is closed. Therefore, the  $x_1$  axis is a closed set.

#### Proof 2:

Using contradiction, assume that the  $x_1$  axis in  $\mathbb{R}^n$  is an open set. Simply let  $x_1$  denote the entire  $x_1$  axis. Then, by definition:

$$\forall x \in x_1 : \exists \varepsilon > 0 : B(x, \varepsilon) \subseteq x_1$$

Let  $a \in \mathbb{R}$  be on the line  $x_1$ . Then, there exists a neighborhood around a which is a subset of  $x_1$  for all values of  $\varepsilon > 0$ . But,  $x_1$  itself is a line. Therefore, any ball around a will not be on the line  $x_1$ . By definition, this would mean that  $x_1$  is a closed set. But, we assumed it was open, creating a contradiction. Therefore,  $x_1$  axis in  $\mathbb{R}^n$  is closed.

# (9) Prove that every finite subset of $\mathbb{R}^n$ is a closed set.

Let  $S_1, S_2, ... S_n$  each be a singleton subset of  $\mathbb{R}^n$ . Because each subset  $S_n$  is a singleton, it is closed - that is there is no  $\varepsilon > 0$  for which a ball can be a subset of any  $S_n$ .

Take the union of each  $S_n$  to make the subset S such that:

$$S_1 \cup S_2 \cup \ldots \cup S_n = S$$

The union of closes sets itself is closed. Therefore, S is closed. Therefore, any finite subset of  $\mathbb{R}^n$  is closed.