Software Engineering Task-11

Kavya Aggarwal

HU22CSEN0100288

COCOMO (Constructive Cost Model)

COCOMO (Constructive Cost Model) is an algorithmic software cost estimation model developed by Barry W. Boehm in 1981. It helps estimate the effort, time, and cost required to develop a software project based on the size of the project in terms of lines of code (LOC). The model is widely used in software engineering to predict project costs effectively.

COCOMO Model Categories

COCOMO is divided into three models based on the complexity and size of the project:

- 1. **Basic COCOMO**: Estimates effort and cost based on the size of the software.
- Intermediate COCOMO: Considers additional cost drivers such as experience, tools, and hardware constraints.
- Detailed COCOMO: Further refines the estimates by considering each component of the system separately.

COCOMO Equations

The effort (E) and development time (T) are calculated using the following equations:

• Effort (E) in Person-Months (PM):

$$E = a * (KLOC)^b$$

• Time (T) in Months:

$$T = c * (E)^d$$

Where:

- KL0C = Thousands of Lines of Code
- a, b, c, d = Constants depending on project type

COCOMO Project Types

- 1. **Organic Projects**: Simple, small teams, well-understood problems. (e.g., payroll system)
- 2. **Semi-Detached Projects**: Moderate complexity, mixed experience teams. (e.g., database systems)
- 3. **Embedded Projects**: Complex, hardware-software integration required. (e.g., real-time operating systems)

Example 1: Basic COCOMO Calculation (Semi-Detached Model)

Given:

- Project Type: Semi-Detached
- Estimated Code Size: 20,000 LOC (20 KLOC)
- Constants for Semi-Detached Type: a = 3.0, b = 1.12, c = 2.5, d = 0.35

Step 1: Compute Effort (E)

$$E = 3.0 * (20)^{1.12}$$

E = 70.65 person-months

Example 2: Intermediate COCOMO Calculation (Organic Model with Cost Drivers)

Given:

- Project Type: Organic
- Estimated Code Size: 50,000 LOC (50 KLOC)
- Constants for Organic Type: a = 2.4, b = 1.05, c = 2.5, d = 0.38
- Cost Drivers (Multipliers):
 - o Analyst Capability: 1.1
 - o Software Complexity: 1.15
 - o Required Reliability: 1.2
 - Development Tools: 0.9
 - Overall Adjustment Factor (OAF) = 1.1 * 1.15 * 1.2 * 0.9 = 1.37

Step 1: Compute Effort (E)

$$E = 2.4 * (50)^{1.05}$$

E = 139.18 person-months

Adjusting for cost drivers: E = 139.18 * 1.37

E = 190.68 person-months

Example 3: Detailed COCOMO Calculation (Organic Model with Component Breakdown)

Given:

- Project Type: Organic
- Estimated Code Size: 80,000 LOC (80 KLOC)
- Constants for Organic Type: a = 2.4, b = 1.05, c = 2.5, d = 0.38
- Components:
 - User Interface (40 KLOC)
 - Backend (30 KLOC)
 - o Database (10 KLOC)

• Cost Drivers (Multipliers for each component):

o UI: 1.2

Backend: 1.1Database: 1.3

Step 1: Compute Effort for Each Component

User Interface:

$$EUI = 2.4 * (40)^{1.05}$$

EUI = 111.79 person-months

Adjusting for cost drivers: EUI = 111.79 * 1.2

EUI = 134.15 person-months

Backend:

$$EBackend = 2.4 * (30)^{1.05}$$

EBackend = 83.98 person-months

Adjusting for cost drivers: EBackend = 83.98 * 1.1

EBackend = 92.38 person-months

Database:

$$EDB = 2.4 * (10)^{1.05}$$

EDB = 24.58 person-months

Adjusting for cost drivers: EDB = 24.58 * 1.3

EDB = 31.95 person-months

Step 2: Compute Total Effort

Total Effort(ETotal) = EUI + EBackend + EDB

ETotal = 134.15 + 92.38 + 31.95

ETotal = 258.48 person-months

Conclusion

COCOMO provides a structured approach to software cost estimation, helping project managers plan resources effectively. By considering project complexity and effort, it assists in better budgeting and scheduling for software development.