

Single outcomes

Uninteresting

Events

Sometimes

Care about one particular outcome

Temperature 98.6 °F

Dow Jones will close at \$18,040

Get exactly B+ in class

Single element of Ω

Outcome

Interested in a set of possible outcomes

Temperature ≠ 98.6 °F

Stock will close higher

Pass the course

Subset of the space Ω

Event

Event?

Social event

Probabilistic event

Die Events

Event

Subset of sample space Ω

Die

$$\Omega = \{1, ..., 6\} \supseteq Event$$

Set	Name			
{1,, 6}	Ω (certain)			
{2, 4, 6}	Even			
{1, 4}	Square			
{5, 6}	≥ 5, > 4			
{1, 2, 5}	{1, 2, 5}			

Complement

Set	Name			
{ }	Ø (null)			
{1, 3, 5}	Odd			
{2, 3, 5, 6}	Non square			
{1, 2, 3, 4}	≤ 4, < 5			
{3, 4, 6}	{3, 4, 6}			

Tetrahedral Die

Face	1	2	3	4
Probability	.1	.2	.3	.4

Name	Set		
Ω (certain)	{1,2,3,4}		
Even	{2, 4}		
Prime	{2, 3}		
Ø (null)	{ }		

Event Occurrence

An event occurs, or happens, if it contains the observed outcome

E occurs if X ∈ E

Event	Subset	Outcome				
LVCIII	Subset	1	2	3	4	
Ω (certain)	{1,2,3,4}					
Even	{2, 4}					
Prime	{2, 3}					
Ø (null)	{ }					

Happened

Did not happen

Event Probability

Probability of event E

P(E) Probability that E occurs

P(X∈E)

Fraction of experiments where E occurs, as # experiments grows

P(Even)
$$\approx$$
 fraction $=\frac{7}{12} \approx 0.583$

$$P(E) = Fraction$$

General distributions and events

$P(x) \rightarrow P(E)$

Relate probability of event to probability of its elements (outcomes)

times Even occurs = sum of # times 2 and 4 occur

P(Even) = fraction of times Even occurs= sum of fraction of times 2 and 4 occur = P(2) + P(4)

General Event E

times E occurs = sum of # times its elements occur

P(E) = fraction of times E occurs

= sum of fraction of times its elements occur

= sum of its element probabilities

$$P(E) = P(X \in E) = \sum_{x \in E} P(x)$$

Tetrahedral Die

Probability

.1

.2

.3

.4

Event	Set	1	2	3	4	P(E)
Ω (certain)	{1,2,3,4}					.1+.2+.3+.4 = 1
Even	{2, 4}					.2 + .4 = .6
Prime	{2, 3}					.2 + .3 = .5
Ø (null)	{ }					0

Uniform Spaces

Equiprobable spaces

Simple formula for probability of

outcome

$$P(x) = \frac{1}{|\Omega|}$$

events?

$$P(E) = \sum_{x \in E} P(x) \stackrel{\bigvee}{=} \sum_{x \in E} \frac{1}{|\Omega|} = \frac{\sum_{x \in E} 1}{|\Omega|} = \frac{|E|}{|\Omega|}$$

Die

$$\Omega = \{1,2,3,4,5,6\}$$

$$|\Omega| = 6$$

Event Set
$$|Event|$$
 $P(Event) = \frac{|Event|}{6}$

Even
$$\{2,4,6\}$$
 3 $\frac{3}{6} = \frac{1}{2}$ Probability that $X=2, 4$, or 6 Square $\{1,4\}$ 2 $\frac{2}{6} = \frac{1}{3}$

Square
$$\{1,4\}$$
 2 $\frac{2}{6} = \frac{1}{6}$

Terminology

A, B Events

Intersect

Disjoint

Mutually exclusive

Do's and Don'ts


```
P(X ∈ Even)
```

die: $P(X \in \{2,4,6\}) = 3/6 = 1/2$

P(Even)

Capital

def P(X ∈ Even)

$$P(3 \in Even)$$

3 is a (constant) random variable, so possible The "r.v." 3 is never in Even, so probability is 0

P(4 ∈ Even)

Less common | Check that you meant it

Previous anomaly on steroids What is x?

 $\forall x \in \{3,7\}, P(x \in Even) = 0$

Double check meant it

Single outcomes to sets

Events: subsets of Ω

Occurrence: outcome in event

Probability

$$P(E) = \sum_{x \in E} P(x)$$

