después de designar nuevamente las constantes. Análogamente, $x(C_3 e^{ix} + C_4 e^{-ix})$ puede expresarse como $x(c_3 \cos x + c_4 \sin x)$. Por lo tanto, la solución general es

$$y = c_1 \cos x + c_2 \sin x + c_3 x \cos x + c_4 x \sin x.$$

El Ejemplo 6 ilustra un caso especial cuando la ecuación auxiliar tiene raíces complejas repetidas. En general, si $m_1 = \alpha + i\beta$ es una raíz compleja de multiplicidad k de una ecuación auxiliar con coeficientes reales, entonces su conjugado $m_2 = \alpha - i\beta$ es también una raíz de multiplicidad k. De las 2k soluciones complejas valuadas

$$e^{(\alpha+i\beta)x}, xe^{(\alpha+i\beta)x}, x^{2}e^{(\alpha+i\beta)x}, \dots, x^{k-1}e^{(\alpha+i\beta)x}$$

$$e^{(\alpha-i\beta)x}, xe^{(\alpha-i\beta)x}, x^{2}e^{(\alpha-i\beta)x}, \dots, x^{k-1}e^{(\alpha-i\beta)x}$$

se concluye, con la ayuda de la fórmula de Euler, que la solución general de la ecuación diferencial correspondiente debe contener una combinación lineal de las 2k soluciones reales linealmente independientes

$$e^{zx}\cos\beta x$$
, $xe^{zx}\cos\beta x$, $x^2e^{zx}\cos\beta x$, ..., $x^{k-1}e^{zx}\cos\beta x$
 $e^{zx}\sin\beta x$, $xe^{zx}\sin\beta x$, $x^2e^{zx}\sin\beta x$, ..., $x^{k-1}e^{zx}\sin\beta x$.

En el Ejemplo 6 se identifica a k = 2, $\alpha = 0$ y $\beta = 1$.

EJERCICIOS 4.3

Las respuestas a los problemas de número impar comienzan en la página 587

En los Problemas 1-36 encuentre la solución general de la ecuación diferencial + 36," = 0, y(0) = 0, adda. 1, y"(0) +

$$1.5 4y'' + y' = 0$$

$$2.5 2y'' - 5y' = 0$$

$$0 = (0.31) y'' - 36y = 0 = (3) (1.00) = (3) - (3) (1.00) = (3) - (3) =$$

5.
$$y'' + 9y = 0$$

7.
$$y'' - y' - 6y = 0$$

9.
$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 16y = 0$$

11.
$$y'' + 3y' - 5y = 0$$

11.
$$y'' + 3y' - 5y = 0$$

13. $12y'' - 5y' - 2y = 0$

15.
$$y'' - 4y' + 5y = 0$$

17.
$$3y'' + 2y' + y = 0$$

19.
$$y''' - 4y'' - 5y' = 0$$

21.
$$y''' - y = 0$$

23.
$$y''' - 5y'' + 3y' + 9y = 0$$

25.
$$y''' + y'' - 2y = 0$$

27.
$$y''' + 3y'' + 3y' + y = 0$$

2.
$$2v'' - 5v' = 0$$

4.
$$y'' - 8y = 0$$

6.
$$3y'' + y = 0$$

8.
$$y'' - 3y' + 2y = 0$$

$$10. \ \frac{d^2y}{dx^2} - 10 \frac{dy}{dx} + 25y = 0$$

12.
$$y'' + 4y' - y = 0$$

14.
$$8y'' + 2y' - y = 0$$

13.
$$12y'' - 3y' - 2y - 0$$

15. $y'' - 4y' + 5y = 0$
16. $2y'' - 3y' + 4y = 0$

15.
$$y'' - 4y' + 3y - 0$$

17. $3y'' + 2y' + y = 0$
18. $2y'' + 2y' + y = 0$

17.
$$3y' + 2y' + y'' = 0$$

19. $y''' - 4y'' - 5y' = 0$
20. $4y''' + 4y'' + y' = 0$

22.
$$y''' + 5y'' = 0$$

24.
$$y''' + 3y'' - 4y' - 12y = 0$$

26.
$$y''' - y'' - 4y = 0$$

28.
$$y''' - 6y'' + 12y' - 8y = 0$$

PITULO 4 ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR

29.
$$\frac{d^4y}{dx^4} + \frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} = 0$$
30.
$$\frac{d^4y}{dx^4} - 2\frac{d^2y}{dx^2} + y = 0$$
31.
$$16\frac{d^4y}{dx^4} + 24\frac{d^2y}{dx^2} + 9y = 0$$
32.
$$\frac{d^4y}{dx^4} - 7\frac{d^2y}{dx^2} - 18y = 0$$
33.
$$\frac{d^5y}{dx^5} - 16\frac{dy}{dx} = 0$$
34.
$$\frac{d^5y}{dx^5} - 2\frac{d^4y}{dx^4} + 17\frac{d^3y}{dx^3} = 0$$
35.
$$\frac{d^5y}{dx^5} + 5\frac{d^4y}{dx^4} - 2\frac{d^3y}{dx^3} - 10\frac{d^2y}{dx^2} + \frac{dy}{dx} + 5y = 0$$

36.
$$2\frac{d^5y}{dx^5} - 7\frac{d^4y}{dx^4} + 12\frac{d^3y}{dx^3} + 8\frac{d^2y}{dx^2} = 0$$

En los Problemas 37-52 resuelva la ecuación diferencial dada sujeta a las condiciones iniciales indicadas.

37.
$$y'' + 16y = 0$$
, $y(0) = 2$, $y'(0) = -2$

38.
$$y'' - y = 0$$
, $y(0) = y'(0) = 1$

39.
$$y'' + 6y' + 5y = 0$$
, $y(0) = 0$, $y'(0) = 3$

40.
$$y'' - 8y' + 17y = 0$$
, $y(0) = 4$, $y'(0) = -1$

41.
$$2y'' - 2y' + y = 0$$
, $y(0) = -1$, $y'(0) = 0$

42.
$$y'' - 2y' + y = 0$$
, $y(0) = 5$, $y'(0) = 10$

43.
$$y'' + y' + 2y = 0$$
, $y(0) = y'(0) = 0$

44.
$$4y'' - 4y' - 3y = 0$$
, $y(0) = 1$, $y'(0) = 5$

45.
$$y'' - 3y' + 2y = 0$$
, $y(1) = 0$, $y'(1) = 1$

46.
$$y'' + y = 0$$
, $y(\pi/3) = 0$, $y'(\pi/3) = 2$

47.
$$y''' + 12y'' + 36y' = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = -7$

48.
$$y''' + 2y'' - 5y' - 6y = 0$$
, $y(0) = y'(0) = 0$, $y''(0) = 1$

49.
$$y''' - 8y = 0$$
, $y(0) = 0$, $y'(0) = -1$, $y''(0) = 0$

50.
$$\frac{d^4y}{dx^4} = 0$$
, $y(0) = 2$, $y'(0) = 3$, $y''(0) = 4$, $y'''(0) = 5$

51.
$$\frac{d^4y}{dx^4} - 3\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$$
, $y(0) = y'(0) = 0$, $y''(0) = y'''(0) = 1$

52.
$$\frac{d^4y}{dx^4} - y = 0$$
, $y(0) = y'(0) = y''(0) = 0$, $y'''(0) = 1$

En los Problemas 53-56 resuelva la ecuación diferencial dada sujeta a las condiciones de frontera que se indican.

53.
$$y'' - 10y' + 25y = 0$$
, $y(0) = 1$, $y(1) = 0$

54.
$$y'' + 4y = 0$$
, $y(0) = 0$, $y(\pi) = 0$

55.
$$y'' + y = 0$$
, $y'(0) = 0$, $y'\left(\frac{\pi}{2}\right) = 2$

56.
$$y'' - y = 0$$
, $y(0) = 1$, $y'(1) = 0$

Sección 4.4 Coeficientes Indeterminados — Enfoque de Superposición 165

57. Las raíces de una ecuación auxiliar son $m_1 = 4$, $m_2 = m_3 = -5$. ¿Cuál es la ecuación diferencial correspondiente?

58. Las raíces de una ecuación auxiliar son $m_1 = -\frac{1}{2}$, $m_2 = 3 + i$, $m_3 = 3 - i$. ¿Cuál es la ecuación diferencial correspondiente?

En los Problemas 59 y 60 encuentre la solución general de la ecuación dada si se sabe que y_1 es una solución.

59.
$$y''' - 9y'' + 25y' - 17y = 0$$
; $y_1 = e^x$

60.
$$y''' + 6y'' + y' - 34y = 0$$
; $y_1 = e^{-4x} \cos x$

En los Problemas 61-64 determine la ecuación diferencial lineal homogénea con coeficientes constantes que tenga las soluciones indicadas.

61.
$$4e^{6x}$$
, $3e^{-3x}$

62.
$$10 \cos 4x$$
, $-5 \sin 4x$

63. 3,
$$2x$$
, $-e^{7x}$

64. 8 senh
$$3x$$
, 12 cosh $3x$

alid = sen in - is y cos 2x

$$i = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^2$$
 $y - i = \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i\right)^2$

para resolver la ecuación diferencial

$$\frac{d^4y}{dx^4} + y = 0.$$

[Sugerencia: Escriba la ecuación auxiliar $m^4 + 1 = 0$ como $(m^2 + 1)^2 - 2m^2 = 0$.] Observe qué sucede cuando se factoriza.]