

Big Data Analytics

Session 2 Basic Statistics

Where were we last week

- Introduction to Big Data Analysis
 - Big: 4V dimension of Data
 - Data: Turning data to data products
 - Analysis: Statistical learning
 - Why estimate *f*?
 - How do we estimate *f*?
 - The trade-off between prediction accuracy and model interpretability
 - Supervised vs. unsupervised learning
 - Regression vs. classification problems

What is Statistics?

Main purpose of statistics, among others, is to

develop and apply methodology for

extracting useful knowledge from data.

Statistical data analysis

- Data
 - Nominal, Ordinal, Interval, and Ratio
- Descriptive statistics
 - Exploring, visualising, and summarising data without fitting the data to any models
- Inferential statistics
 - Identification of a suitable model
 - Testing either predictions or hypotheses of the model
 - → Will be covered in the following sessions

Statistical data analysis

- Data
 - Nominal, Ordinal, Interval, and Ratio
- Descriptive statistics
 - Exploring, visualizing, and summarizing data without fitting the data to any models
- Inferential statistics
 - Identification of a suitable model
 - Testing either predictions or hypotheses of the model
 - → Will be covered in the following sessions

Data

Data are the facts and figures
 collected, summarised, analysed, and interpreted.

Data

• Data are the results of measurements and can be the basis of graphs, images, or observations of a set of variables.

Data Sets

• The data collected in a particular study are referred to as the data set.

Data Sets

Observation		Variables		
Nan		Stock Exchange	Annual Sales(\$M)	Earn/ Share(\$)
	Dataram EnergySouth	AMEX OTC	73.10 74.00	0.86
	Keystone LandCare Psychemedics	NYSE NYSE AMEX	365.70 111.40 17.60	0.86 0.33 0.13
		FIVIEA	17.00	0.13

Data Set

- Scales of measurement include:
 - Nominal
 - Ordinal
 - Interval
 - Ratio
- The scale determines the amount of information contained in the data.
- The scale indicates the data summarisation and statistical analysis that are most appropriate.

- Nominal: You cannot count them.
 - Data are labels or names to identify an attribute of the element
 - A non-numeric label or numeric code may be used
 - Example:
 - Naming Schools in a University: Education, Business, Humanities, etc
 - Alternatively, using numeric code: 1 for Education, 2 for Business, etc
- Ordinal: You can count and order, but not add or subtract them.
 - The ordinal type allows for rank order by which data can be sorted
 - But it still does not allow for relative degree of difference between them.
 - Example:
 - Measuring opinion: completely agree, mostly agree, mostly disagree, etc.
 - Alternatively, using numeric code: 1 for completely agree, 2 mostly agree, etc

- Interval: can be added or subtracted, but not multiplied or divided
 - The interval type allows for the degree of difference between items, but not the ratio between them.
 - Interval data are always numeric.
 - Example:
 - Measuring temp.: 20°C, 10°C. We cannot say 20°C is twice as hot as 10°C.
- Ratio: can be multiplied or divided, has zero value
 - The ratio of two values is meaningful.
 - Variables such as distance, height, weight and time use the ratio scale.
 - A ratio scale possesses a unique and non-arbitrary zero value.
 - Example:
 - Measuring length: 10cm is twice as long as 5cm.

• Examples: pain measurement

• Examples: date

In-class Exercise

- Give your own examples of the following levels of measurements
 - Nominal
 - Ordinal
 - Interval
 - Ratio

Qualitative and Quantitative Data

- Data can be further classified as being qualitative and quantitative.
- The statistical analysis that is appropriate depends on whether the data for the variable are qualitative or quantitative.
 - Qualitative data → qualitative analysis
 - Quantitative data → quantitative analysis
- In general, there are more alternatives for statistical analysis when the data are quantitative.

Qualitative vs. Quantitative Data

1 (Education),2 (Business),2 (Mostly agree),

Education, Business,

Completely agree, 10°C, 20°C Mostly agree, ...

10cm, 20cm

...

Statistical data analysis

- Data
 - Nominal, Ordinal, Interval, and Ratio
- Descriptive statistics
 - Exploring, visualising, and summarising data without fitting the data to any models
- Inferential statistics
 - Identification of a suitable model
 - Testing either predictions or hypotheses of the model
 - → Will be covered in the following sessions

Descriptive Statistics

- Numerical measures
- Tabular and graphical presentation
 - Frequency distribution table
 - Histogram
 - Box plot
 - Scatter diagram

Sample and Population

Population (N)

Sample (n)

Numerical Measures

- If the measures are computed for data from a sample, they are called sample statistics.
- If the measures are computed for data from a population, they are called population parameters.
- A sample statistic is referred to as the **point estimator** of the corresponding population parameter.

Descriptive Analysis

- Univariate analysis: describing the distribution of a single variable
 - Measures of central tendency
 - Mean, Median, Mode
 - Measures of spread
 - Variance, Standard Deviation
 - Measures of dispersion
 - Range, Quartiles, Interquartile Range
- Bivariate analysis: describing the relationship between pairs of variables
 - Quantitative measures of dependence
 - Correlation, Covariance

Descriptive Analysis

- Univariate analysis: describing the distribution of a single variable
 - Measures of central tendency
 - Mean, Median, Mode
 - Measures of spread
 - Variance, Standard Deviation
 - Measures of dispersion
 - Range, Quartiles, Interquartile Range
- Bivariate analysis: describing the relationship between pairs of variables
 - Quantitative measures of dependence
 - Correlation, Covariance

Measures of Central Tendency

- It identifies the central position within a set of data.
- As such, measures of central tendency are sometimes called measures of central location.
 - Mean
 - Median
 - Mode

Mean

- The **mean** of a data set is the arithmetic average of all the data values.
- The sample mean \bar{x} is the point estimator of the population mean μ
- The sample mean is a statistic and the population mean is a parameter

Median

- The **median** is the middle observation in a group of data when the data are ranked in order of magnitude
 - Odd number of observations: the middle one

Even number of observations: the average of the middle two

Median =
$$(55+56)/2 = 55.5$$

Mean or Median?

- Consider data set with an outlier (extreme value)
 - Example: graduate salary

27K, 29K, 33K, 34K, 35K, 39K, 500K (an outlier)

Mean = 99.6K, Median = 34K

Which is better as a representative of the central location?

- Mean is highly influenced by one or two oddly high or low values.
- Whenever a data set has extreme values, the median is the preferred measure of central location.

Mode

- The Mode is the most frequent value in a data set
 - The mode describes the most popular option (categorical data)

Highest bar in a Histogram

Bus being the most popular means of transportation

Mode

- The mode is rare in the continuous data
- A data set might have more than one mode
- The limitation of using the mode

The mode that is far away from the rest of the data

Mean, Median and Mode - Exercise

• What is the mean, median and mode for weight and height?

		variables	
	_	weight	height
	student1	145	170
	student2	170	190
ebs	student3	155	172
₩.	student4	122	180
₹	student5	167	187
γ rvations	student6	160	174
3	student7	143	174
	student8	142	166
	studnet9	139	164
	_Student10	165	182

Consider height

- Mean (170+190+172+...+182)/10 = 175.9

Median164 166 170 172 174 174 180 182 187 190

Mode174

Descriptive Analysis

- Univariate analysis: describing the distribution of a single variable
 - Measures of central tendency
 - Mean, Median, Mode
 - Measures of spread
 - Variance, Standard Deviation
 - Measures of dispersion
 - Range, Quartiles, Interquartile Range
- Bivariate analysis: describing the relationship between pairs of variables
 - Quantitative measures of dependence
 - Correlation, Covariance

Measures of spread

- It tells us how spread out numbers are.
 - Variance (s^2 (sample); σ^2 (population))
 - The average of the squared differences from the mean
 - Standard Deviation (s(sample); σ (population))
 - The square root of variance

ш

Example – variance & standard deviation

You and your friends have just measured the heights of your dogs (in millimeters):

The heights (at the shoulders) are: 600mm, 470mm, 170mm, 430mm and 300mm.

Find out the Mean, the Variance, and the Standard Deviation.

Example – variance & standard deviation

Mean =
$$\frac{600 + 470 + 170 + 430 + 300}{5} = \frac{1970}{5} = 394$$

so the mean (average) height is 394 mm. Let's plot this on the chart:

Example – variance & standard deviation

Now, we calculate each dogs difference from the Mean:

To calculate the Variance, take each difference, square it, and then average the result:

Variance:
$$\sigma^2 = \frac{206^2 + 76^2 + (-224)^2 + 36^2 + (-94)^2}{5}$$
$$= \frac{42,436 + 5,776 + 50,176 + 1,296 + 8,836}{5}$$
$$= \frac{108,520}{5} = 21,704$$

So, the Variance is 21,704.

Note that SD has the same unit as mean

And the Standard Deviation is just the square root of Variance, so:

Standard Deviation: $\sigma = \sqrt{21,704} = 147.32... = 147$ (to the nearest mm)

Standard Deviation

- Why study standard deviation (SD)?
 - From the point of view of one data:
 - A 'standard' way of knowing what is normal, and what is extra large or extra small.

Rottweilers **are** tall dogs. And Dachshunds **are** a bit short ... but don't tell them!

Standard Deviation

- Why study standard deviation (SD)?
 - From the point of view of the data set:
 - A low SD indicates that the data points tend to be very close to the mean;
 - A high SD indicates that the data points are spread out over a large range of values.

SD for Sample & Population

The "Population Standard Deviation":
$$\sigma = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i - \mu)^2}$$

The "Sample Standard Deviation":
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

• Example:

If our 5 dogs were just a **sample** of a bigger population of dogs, we would divide by **4 instead of 5** like this:

- Sample Variance = 108,520 / 4 = 27,130
- Sample Standard Deviation = $\sqrt{27,130}$ ≈ **164**
- Why divided by n-1?

Why divided by n-1?

Simulation showing bias in sample variance

Descriptive Analysis - Exercise

• Compute the variance and standard deviation of height and weight

		variables	
			,
		weight	height
	student1	145	170
	student2	170	190
sdo	student3	155	172
**	student4	122	180
₹	student5	167	187
 Yations	student6	160	174
9	student7	143	174
	student8	142	166
	studnet9	139	164
	_Student10	165	182

- Height
 - Mean

$$(170+190+172+...+182)/10 = 175.9$$

Variance

$$[(170-175.9)^2 + (190-175.9)^2 + ... + (182-175.9)^2]/10=67.29$$

Standard deviation

$$\sqrt{67.29} \approx 8.20$$

Descriptive Analysis

- Univariate analysis: describing the distribution of a single variable
 - Measures of central tendency
 - Mean, Median, Mode
 - Measures of spread
 - Variance, Standard Deviation
 - Measures of dispersion (variability)
 - Range, Quartiles, Interquartile Range
- Bivariate analysis: describing the relationship between pairs of variables
 - Quantitative measures of dependence
 - Correlation, Covariance

Measures of dispersion

- Range: difference between maximum and minimum value
 - Min: the lowest, or minimum value in variable
 - Max: the highest, or maximum value in variable
- Q1: the first (or 25th) quartile
- Q2: the second (or 50th) quartile the Median
- Q3: the third (or 75th) quartile

In-class Exercises

Use the following observations of variable *x* to find the values below. 10, 2, 15, 6, 4, 9, 12, 11, 3, 0, 12, 10, 9, 7, 11, 10, 8, 5, 10, 6

- Q1: *n* (number of observations)
- Q2: sum of *x*'s
- Q3: *X* (mean)
- Q4: Median and Mode
- Q5: Five number summary
 - Min, Q1, M, Q3, Max
- Q6: s^2 (variance)
- Q7: s (standard deviation)

Descriptive Analysis

- Univariate analysis: describing the distribution of a single variable
 - Measures of central tendency
 - Mean, Median, Mode
 - Measures of spread
 - Variance, Standard Deviation
 - Measures of dispersion
 - Range, Quartiles, Interquartile Range
- Bivariate analysis: describing the relationship between pairs of variables
 - Quantitative measures of dependence
 - Correlation, Covariance

Covariance and Correlation

- Variables may change in relation to each other.
- Both quantify relationship.
- Difference:
 - Covariance is a dimensional quantity
 - The value depends on the units of the data
 - → difficult to compare covariances among data sets that have different scales.
 - Correlation is a dimensionless quantity
 - Always between -1 and 1
 - → facilitates the comparison of different data sets

Variance

• First recall: variance of one variable

Case	X	X - Avg	(X - Avg)^2
Α	3	-1	1
В	1	-3	9
C	3	-1	1
D	9	5	25
Sum:	16	Sum:	36
Avg:	4	Variance:	9

Variance =
$$\sum (x-Avg)^2 / N = 36/4 = 9$$

- X: 4, 4, 4, 4; variance = 0
- X: 1, 1, 1, 13; variance = $[(-3)^2 + (-3)^2 + (-3)^2 + (-3)^2 + (-3)^4 = 108/4 = 27$

Covariance

- Variance of one variable
- Covariance of two variables

Case	Х	Υ	(X - Xavg)	(Y - YAvg)	Multipli	ed
Α	3	4	-1	-2	2	
В	1	4	- <mark>3</mark>	-2	6	
C	3	8	-1	2	-2	
D	9	8	5	2	10	covariance
Sum:	16	24		Sum:	16	coefficient
Avg.	4	6		Avg:	4	

Covariance =
$$\Sigma (X_i - Xavg)(Y_i - Yavg) / N = (2+6-2+10)/4 = 4^{-1/2}$$

- X: 4, 4, 4, 4; covariance = 0
- X: 1, 1, 1, 13; covariance = 6
- X: 13, 1, 1, 1; covariance = -6

We write covariance of X and Y as σ_{XY}

 σ_{XX} is the covariance of X with itself \rightarrow Variance of X: σ_{X}^{2}

Covariance

Formally, covariance coefficient can be calculated as:

$$S_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$
 for samples

$$\sigma_{xy} = \frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{N}$$
 for populations

Covariance

- Covariance measures how much the movement in one variable predicts the movement in a corresponding variable
 - Positive covariance indicates that higher than average values of one variable tend to be paired with higher than average values of the other variable.
 - Negative covariance indicates that higher than average values of one variable tend to be paired with lower than average values of the other variable.
- In other words, it measures the degree of linkage between two variables that covary.

From Covariance to Correlation

- Covariance is a dimensional quantity
 - The value depends on the units of the data
 - → difficult to compare covariances among data sets that have different scales.
- We need a dimensionless quantity to facilitate comparison \rightarrow correlation
 - Always between -1 and 1
- The correlation of X and Y, denoted ρ_{XY} , is simply calculated as:

correlation of X and Y =
$$\frac{\text{covariance of X and Y}}{\text{standard deviation of X * standard deviation of Y}}$$

$$\rho_{XY} = \sigma_{XY} / (\sigma_{X*}\sigma_{Y})$$

Correlation

1-4: CV 1V	covariance of X and Y
correlation of X and $Y =$	standard deviation of X * standard deviation of Y

• Example:

Case	X	Y	(X - Xavg)	(Y - YAvg)	Multiplied
Α	3	4	-1	-2	2
В	1	4	- <mark>3</mark>	-2	6
C	3	8	-1	2	-2
D	9	8	5	2	10
Sum:	16	24		Sum:	1 6
Avg.	4	6		Avg:	4

- SD of X: $\sigma_X = 3$
- SD of Y: $\sigma_Y = 2$
- Covariance of X and Y: $\sigma_{XY} = 4$
- Correlation of X and Y: $\rho_{XY} = 4/(2*3) = 0.67$

Correlation Coefficient

- When the two sets of data are strongly linked together, we say they have a high correlation.
- Correlation is positive when the values increase together, and
- Correlation is negative when one value decreases as the other increase.
- The coefficient can take on values between -1 and +1.
- Values near +1 indicate a strong positive linear relationship.
- Values near -1 indicate a strong negative linear relationship.

Correlation Coefficient

• The correlation coefficient is computed as follows:

• It is obtained by dividing the covariance of the two variables by the product of their standard deviations.

In R

The commands are most straightforward

```
x=c(3,1,3,9)
mean(x)
median(x)
var(x)
sd(x)

y=c(4,4,8,8)
cov(x,y)
cor(x,y)
```

• Question: what is the sd(x) function computing? Unbiased or biased SD? How to calculate the other one?

Correlation and Causation

- Correlation is a measure of linear association and not necessarily causation.
- Just because two variables are highly correlated, it does not mean that one variable is the cause of the other.

Example

- Ice cream and homicide rates are positively correlated
- Do they have a causal relationship?
 - Does ice cream consumption turn harmless Joe into a murderous monster?

Example

- An increase in both global temperature and number of pirates
 - That's a positive correlative relationship
- Do the pirates cause the global warming?

Reflection

- Every correlation you have ever heard of can be questioned in your own mind.
 - Is there a cause and effect here, or
 - Is it just coincidence?
 - How are the two factors really related?

Summary

	Population (parameter)	Sample (statistic)
mean	$\mu = \frac{\sum_{i=1}^{n} x_i}{N}$	$\overline{x} = \frac{\sum_{i}^{1} x_{i}}{n}$
Variance	$\sigma^2 = \frac{\sum (x_i - \mu)^2}{N}$	$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$
Standard deviation	$\sigma = \sqrt{\sigma^2}$	$s = \sqrt{s^2}$
Covariance	$\sigma_{xy} = \frac{\sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)}{N}$	$s_{xy} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{n - 1}$
Correlation	$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$	$r_{xy} = \frac{s_{xy}}{s_x s_y}$

Scale of Measurement

- Nominal
 - Mode
- Ordinal
 - Median, Mode
- Interval
 - Mode, Median, Mean
 - Range, Variance, Standard deviation
- Ratio
 - Mode, Median, Mean
 - Range, Variance, Standard deviation
 - And many more: geometric mean, harmonic mean, coefficient of variation, and all the other statistical measures

Exercises

- Investigate relationship between cigarette smoking and lung capacity
- Data: sample group response data on
 - smoking habits (number of years)
 - measured lung capacities (Spirometer)

N	Cigarettes (X)	Lung Capacity (Y)
1	0	45
2	5	42
3	10	33
4	15	31
5	20	29

Questions:

- 1. Try to plot the data
- 2. Calculate the sample covariance
- 3. Calculate the sample correlation
- 4. How are X and Y correlated?
- 5. Is there a causation between X and Y?

Descriptive Statistics

- Numerical measures
- Tabular and graphical presentation
 - Frequency distribution
 - Histogram
 - Box plot
 - Scatter plot

Tabular & Graphical Presentation

Frequency distribution

- A table that displays the frequency of various outcomes in a data set
 - Example:

Frequency Distribution for a Class of 25 M.B.A. Students				
Grade Scale Student/Grade Frequency Relative				
A	5	20%		
В	12	48%		
С	4	16%		
D	2	8%		
F	1	4%		
I (Incomplete)	1	4%		
TOTAL	25	100%		

Histogram

- A Histogram is a graphical display of data using bars of different heights.
- It is similar to a Bar Chart, but a histogram groups numbers into **ranges**. And you decide what ranges to use!
- Histograms are a great way to show results of continuous data, such as weight, height, how much time, etc.
- When the data is in **categories** (such as Country or Favorite Movie), we should use a Bar Chart.

Histogram

• Every month you measure how much weight your puppy has gained and get these results:

$$0.5, 0.5, 0.3, -0.2, 1.6, 0, 0.1, 0.1, 0.6, 0.4$$

- They vary from -0.2 (the puppy lost weight that month) to 1.6
- Put in order from lowest to highest weight gain:

- You decide to put the results into groups of 0.5:
 - The -0.5 to just below 0 range,
 - The 0 to just below 0.5 range,
 - etc ...

Box Plot

• You can show all the important values in a "Box and Whisker Plot", like this:

• Example: Box Plot and Interquartile Range for

• Put them in order:

• Cut it into quarters:

Box Plot

- 3, 4, 4 | 4, 7, 10 | 11, 12, 14 | 16, 17, 18
- In this case all the quartiles are between numbers:
 - Quartile 1 (Q1) = (4+4)/2 = 4
 - Quartile 2 (Q2) = (10+11)/2 = 10.5
 - Quartile 3 (Q3) = (14+16)/2 = 15
- Also:
 - The lowest value is 3,
 - The highest value is 18
- So now we have enough data for the Box and Whisker Plot:

And the Interquartile Range is:

$$Q3 - Q1 = 15 - 4 = 11$$

Scatter Plots

- A graph of plotted points that show the relationship between two sets of data.
- In this example, each dot represents one person's weight versus their height.

• (The data is plotted on the graph as "Cartesian (x, y) Coordinates")

