Maxima and Minima

November 20, 2006

Local Maximum and Local Minimum

ullet A function f has a **local maximum** at (a,b) if

$$f(x,y) \le f(a,b)$$

when (x,y) is near (a,b).

- ullet The number f(a,b) is called a **local maximum value**.
- ullet A function f has a **local minimum** at (a,b) if

$$f(x,y) \ge f(a,b)$$

when (x,y) is near (a,b) and f(a,b) is called a **local minimum** value.

Absolute Maximum and Absolute Minimum

• If

$$f(x,y) \le f(a,b)$$

(or $f(x,y) \ge f(a,b)$) for all points (x,y) in the domain of f, then f has an **absolute maximum** (or **absolute minimum**) at (a,b).

Examples

• $f(x,y) = \sin x + \sin y$.

• $f(x,y) = (x^2 + y^2)e^{-x^2 - y^2}$

• $f(x,y) = \cos(x^2 + y^2)/(1 + x^2 + y^2)$

Theorem

• If f has a local maximum or minimum at (a,b) and the first-order partial derivatives exist there, then $f_x(a,b)=0$ and $f_y(a,b)=0$.

Lecture 27

Theorem

- If f has a local maximum or minimum at (a,b) and the first-order partial derivatives exist there, then $f_x(a,b) = 0$ and $f_y(a,b) = 0$.
- A point (a, b) is called a **critical point** (or **stationary point**) of f if $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Examples

• Find the critical points and extreme values of the function

$$f(x,y) = x^2 + y^2 - 4x - 4y + 10.$$

• Find the extreme values of $f(x,y) = y^2 - x^2$.

ullet Find the extreme values of $f(x,y)=y^2-x^2$.

Second Derivative Test

ullet Suppose the second partial derivatives of f are continuous on a disk with center (a,b), and suppose that $f_x(a,b)=0$ and $f_y(a,b)=0$. Let

$$D = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = f_{xx}f_{yy} - (f_{xy})^2.$$

- 1. If D>0 and $f_{xx}(a,b)>0$, then f(a,b) is a local minimum.
- 2. If D>0 and $f_{xx}(a,b)<0$, then f(a,b) is a local maximum.
- 3. If D < 0, then f(a,b) is not a local maximum or minimum. In this case the point (a,b) is called a **saddle point** of f.

Important

ullet If D=0, the test gives no information: f could have a local maximum or local minimum at (a,b), or (a,b) could be a saddle point of f.

Lecture 27

Example

- The function f has continuous second derivatives, and a critical point at (1,2). Suppose that $f_{xx}(1,2)=1$, $f_{xy}(1,2)=4$ and $f_{yy}(1,2)=18$. Then the point (1,2) is
 - 1. a local maximum
 - 2. a local minimum
 - 3. a saddle point
 - 4. cannot be determined.

Example

- The function f has continuous second derivatives, and a critical point at (1,2). Suppose that $f_{xx}(1,2)=1$, $f_{xy}(1,2)=4$ and $f_{yy}(1,2)=18$. Then the point (1,2) is
 - 1. a local maximum
 - 2. a local minimum
 - 3. a saddle point
 - 4. cannot be determined.
- What if $f_{yy}(1,2) = 16$?

• Find the local maximum and minimum values and saddle points of $f(x,y)=x^4+y^4-4xy+1$.