## **United International University (UIU)**

Dept. of Computer Science & Engineering (CSE)

## Final Assignment: Trimester: Spring 2020

Course: CSI 233/CSE 2233, Theory of Computing/Computation

Marks: 40, Time: 2 hours

Answer all the (5) questions. Numbers to the right of the questions denote their marks.

1. a) Consider the following context-free grammar (CFG) and answer the question that follows:

$$S \rightarrow 0S3 \mid 00S3 \mid A$$

$$A \rightarrow 0A2 \mid 0A22 \mid B$$

$$B \rightarrow 0B1 \mid \epsilon$$

Show a **leftmost** and a **rightmost** derivation of the string *000001233*.

[4]

b) Consider the following CFG,

$$S \rightarrow ASA \mid aB \mid C \mid AD$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \epsilon$$

$$C \rightarrow aCd \mid aDd \mid \epsilon$$

$$D \rightarrow c$$

Covert the given grammar to the normal form/CNF.

[4]

**2.** Design CFGs for the following languages:

[4\*3=12]

I. 
$$\{a^n b^m c^k \mid k = 2n + m\}$$

II. 
$$\{0^i 1^j 2^k \mid i = k \text{ or } j = k\}$$

III. 
$$\{0^i 1^j \mid 0 \le i \le j \le 2i\}$$

**3.** The 6 components of a Push down automaton is given below:

[3]

Set of states,  $Q = \{q_0, q_1, q_2, q_3\}$ 

Set of input alphabet,  $\Sigma = \{a, b\}$ 

Set of stack alphabet,  $\Gamma = \{ z, a, b \}$ 

Start state =  $\{q_0\}$ 

Set of accept states,  $F = \{q_2\}$ 

The transition table is given below:

|                       | а                     |                        |                        |   | b                     |                        |                        |   | ε                    |   |   |   |
|-----------------------|-----------------------|------------------------|------------------------|---|-----------------------|------------------------|------------------------|---|----------------------|---|---|---|
|                       | Z                     | а                      | b                      | ε | Z                     | а                      | b                      | ε | Z                    | а | b | ε |
| $\mathbf{q}_0$        | (q <sub>1</sub> , az) |                        |                        |   | (q <sub>1</sub> , bz) |                        |                        |   |                      |   |   |   |
| q <sub>1</sub>        |                       | (q <sub>2</sub> , aza) | (q <sub>3</sub> , azb) |   |                       | (q <sub>3</sub> , bza) | (q <sub>2</sub> , bzb) |   |                      |   |   |   |
| q <sub>2</sub>        |                       | (q <sub>3</sub> , aa)  | (q <sub>3</sub> , ε)   |   |                       | (q <sub>3</sub> , ε)   | (q <sub>3</sub> , bb)  |   |                      |   |   |   |
| <b>q</b> <sub>3</sub> |                       | (q <sub>3</sub> , aa)  | $(q_3, \varepsilon)$   |   |                       | $(q_3, \varepsilon)$   | (q <sub>3</sub> , bb)  |   | $(q_1, \varepsilon)$ |   |   |   |

Now show the state transition diagram for this non-deterministic push down automata.

**4.** Design a Push Down Automata for the following languages

[3\*4=12]

- a. L={ uawb | u, w  $\epsilon$  {a, b}\* and |u| = |w|}; here |u| = represents total number of characters in string u
- b.  $L = \{ p^{a+b} q^{b+c} p^c q^a \mid a, b > 0 \text{ and } c >= 0 \}$
- c.  $L = \{ p^i q^j r^k s^l | i == k \text{ or } j == l, i >= 0, j >= 1 \}$
- **5.** Consider the PDA as given below:



Now write **instantaneous description** for the following strings and decide whether these strings will be accepted or not by the given PDA. [2.5+2.5]

- a. aaaababcc
- b. aaabaabacc