Sistemi - Modulo di Sistemi a Eventi Discreti

Laurea Magistrale in Ingegneria e Scienze Informatiche Tiziano Villa

26 Settembre 2019

Nome e Cognome:

Matricola:

Posta elettronica:

problema	punti massimi	i tuoi punti
problema 1	24	
problema 2	6	
totale	30	

- 1. Si considerino i due seguenti automi definiti sull'alfabeto $E = \{a_1, a_2, b_1, b_2\}$. Automa G (impianto):
 - stati: 0, 1, 2, 3, 4, 5, 6, 7, 8 con 0 stato iniziale e 8 unico stato accettante;
 - transizione da 0 a 1: a_1 , transizione da 0 a 3: a_2 , transizione da 1 a 2: b_1 , transizione da 1 a 4: a_2 , transizione da 2 a 5: a_2 , transizione da 3 a 4: a_1 , transizione da 3 a 6: b_2 , transizione da 4 a 5: b_1 , transizione da 4 a 7: b_2 , transizione da 5 a 8: b_2 , transizione da 6 a 7: a_1 , transizione da 7 a 8: b_1 .

Automa H_a (specifica):

- stati: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 con 0 stato iniziale e 8 unico stato accettante;
- transizione da 0 a 1: a_1 , transizione da 0 a 3: a_2 , transizione da 1 a 2: b_1 , transizione da 1 a 9: a_2 , transizione da 2 a 5: a_2 , transizione da 3 a 4: a_1 , transizione da 3 a 6: b_2 , transizione da 4 a 7: b_2 , transizione da 5 a 8: b_2 , transizione da 6 a 7: a_1 , transizione da 7 a 8: b_1 , transizione da 9 a 5: b_1 .

(a) Si disegnino i grafi dei due automi.

(b) Dati i linguaggi K e $M=\overline{M}$ sull'alfabeto E. Siano $E_c\subseteq E$ e $E_o\subseteq E$. Sia P la proiezione naturale da E^* a E_o^* .

Si scriva la definizione di osservabilita' di K rispetto a M, E_c ed E_o . Traccia di soluzione.

Definizione Siano K e $M=\overline{M}$ linguaggi sull'alfabeto di eventi E. Sia $E_c\subseteq E$ l'insieme degli eventi controllabili. Sia $E_o\subseteq E$ l'insieme degli eventi osservabili con P la proiezione da E^* a E_o^* .

Si dice che K e' osservabile rispetto a M, P, E_c , se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$,

$$s\sigma \not\in \overline{K} \land s\sigma \in M \Rightarrow P^{-1}[P(s)]\{\sigma\} \cap \overline{K} = \emptyset.$$

(c) Siano $M = \mathcal{L}(G)$ e $K = \mathcal{L}_m(H_a)$.

Siano $E_{uo} = \{a_2\}$ e $E_{uc} = \emptyset$.

K e' osservabile rispetto a M, E_c ed E_o ? Lo si verifichi usando la definizione.

Traccia di soluzione.

Si ha $\overline{K} = \overline{\{a_2b_2a_1b_1, a_2a_1b_2b_1, a_1b_1a_2b_2, a_1a_2b_1b_2\}}$. Si consideri la stringa $s = a_2a_1$ e $\sigma = b_1$, allora si ha che $a_2a_1b_1 \not\in \overline{K}$, ma $a_2a_1b_1 \in M$; inoltre $P(s) = a_1, P^{-1}[P(s)]\{\sigma\} = \{a_2^{\star}a_1a_2^{\star}b_1\}$, percio' $P^{-1}[P(s)]\{\sigma\} \cap \overline{K} = \{a_2^{\star}a_1a_2^{\star}b_1\} \cap \overline{K} = \{a_1a_2b_1\} \neq \emptyset$ il che falsifica la condizione di osservabilita'.

Un altro controesempio speculare al precedente si ottiene con la stringa $s=a_1a_2$ e $\sigma=b_2$. Ovviamente basta trovare un controesempio per stabilire che non vale l'osservabilita'.

Intuitivamente, dopo aver visto a_2a_1 il controllore dovrebbe disabilitare b_1 e abilitare b_2 , mentre dopo aver visto a_1a_2 il controllore dovrebbe abilitare b_1 e disabilitare b_2 , ma per l'inosservabilita' di a_2 il controllore non e' in grado di distinguere a_2a_1 da a_1a_2 (vede la loro proiezione comune come a_1), e quindi non sa che azione intraprendere dopo aver visto a_1 .

(d) Si costruisca $H_{a,obs}$, l'automa osservatore di H_a . Traccia di soluzione.

Nell'automa H_a si sostituisce a_2 con ϵ e poi si applica l'algoritmo per determinizzare mediante la ϵ -chiusura. Si veda l'automa $H_{a,obs}$ risultante in allegato.

(e) Si risponda alla domanda del punto precedente sull'osservabilita' utilizzando l'automa osservatore. Si spieghi con chiarezza il procedimento. Traccia di soluzione.

Si esaminano gli stati di $H_{a,obs}$ per verificare se ce n'e' almeno uno che testimonia un conflitto di controllo. Nel caso specifico, lo stato $\{1,4,9\}$ testimonia tale conflitto, poiche' l'azione di controllo nello stato 4 di H_a richiede l'abilitazione dell'evento b_2 e la disabilitazione dell'evento b_1 , che e' esattamente l'opposto di quanto richiesto nello stato 9. La presenza di tale conflitto di controllo in $H_{a,obs}$ indica che K non e' osservabile.

(f) Si restringa il comportamento dell'impianto rappresentato da G, applicandogli l'azione di controllo del seguente supervisore S_A : all'inizio abilita a_2 e b_2 (ma disabilita a_1), poi dopo aver visto b_2 abilita a_1 e b_1 sino alla fine.

Si designi come $H_{A,a}$ l'automa che rappresenta tale comportamento ristretto dell'impianto G sotto il controllo del supervisore S_A , cioe' sia K_A la nuova specifica del comportamento ammissibile, dove $K_A = \mathcal{L}_m(H_{A,a}) = \mathcal{L}_m(S_A/G)$.

Si risponda alla seguenti domande. Nota bene: in tutti gli automi s'indichino con chiarezza gli stati accettanti.

i. Si discuta intuitivamente questa politica di controllo. Quali stringhe marcate dell'impianto sono permesse da essa ?

Traccia di soluzione.

Abbiamo dimostrato formalmente che non vale l'osservabilita'. Intuitivamebte perche' non vale ? Se il supervisore all'inizio abilitasse sia a_1 che a_2 , e poi si osservasse a_1 . allora non si saprebbe se l'impianto e' nello stato 1 o 4 e nel secondo caso non si saprebbe se e' arrivato a 4 dal cammino a_1a_2 (che richiederebbe di disabilitare b_2) o da a_2a_1 (che richiederebbe di disabilitare b_1). Quindi non si saprebbe che politica di controllo attuare a questo punto. Per produrre un sottoinsieme della specifica ammissibile proposta (senza produrre stringhe fuori specifica e senza che l'impianto si blocchi), il supervisore all'inizio puo' abiltare solo uno tra a_1 e a_2 , ma non entrambi. Il supervisore S_A sceglie di abilitare solo a_2 .

L'unica stringa marcata permessa sotto controllo e' $a_2b_2a_1b_1$.

ii. Si disegni l'automa $H_{A,a}$.

Traccia di soluzione.

Si disegni l'automa che marca la stringa $a_2b_2a_1b_1$. Si veda la figura nell'allegato.

iii. Si disegni $H_{A,a,obs}$, l'automa osservatore di $H_{A,a}$.

Traccia di soluzione.

Si disegni l'automa osservatore ottenuto dalla determinizzazione del precedente, in cui si e' posto $a_2 = \epsilon$. Si veda la figura nell'allegato.

- iv. Si costruisca una realizzazione $R_{A,real}$ di S_A . Si ricordi che una realizzazione e' semplicemente un automa che rappresenta la politica di controllo del supervisore. Si seguano i seguenti passi:
 - A. Si costruisca un automa potato ("trim") R_A che genera e marca la specifica $\overline{K_A}$, cioe' tale che $\mathcal{L}_m(R_A) = \mathcal{L}(R_A) = \overline{K_A}$, dove $K_A = \mathcal{L}_m(H_{A,a}) = \mathcal{L}_m(S_A/G)$.

Traccia di soluzione.

 R_A e' come $H_{A,a}$, con la differenza che tutti gli stati del primo sono marcati. Si veda la figura nell'allegato.

B. Si disegni $R_{A,obs}$, l'automa osservatore di R_A . Traccia di soluzione.

 $R_{A,obs}$ e' come $H_{A,a,obs}$, con la differenza che tutti gli stati del primo sono marcati. Si veda la figura nell'allegato.

C. Si disegni $R_{A,real}$, che e' la realizzazione standard di S_A , ottenuta aggiungendo autoanelli in ogni stato x_{obs} di $R_{A,obs}$ per ogni evento inosservabile in

$$\bigcup_{x \in x_{obs}} \Gamma_{R_A}(x)$$

(Γ e' la funzione di attivazione dell'automa).

Traccia di soluzione.

 $R_{A,real}$ e' come $R_{A,obs}$, con l'aggiunta nel primo di un autoanello con evento a_2 nello stato iniziale. Si veda la figura nell'allegato.

Figure 1: La palla che rimbalza

- 2. Si consideri l'automa ibrido mostrato nella Fig. 1 che modella un oggetto elastico di posizione $x_1(t)$ e velocita' $x_2(t)$ che cade al suolo per la legge di gravitazione e rimbalza con coefficiente di elasticita' c. Si assuma che sia c=0,5.
 - (a) Si descriva formalmente tale automa seconda la notazione usata in classe. Traccia di soluzione.
 - locazioni: $Q = \{l_1\}$, dove l_1 e' la locazione iniziale con condizioni iniziali $x_1(t) \ge 0$;
 - dinamica della locazione l_1 : $\dot{x_1}(t) = x_2(t), \dot{x_2}(t) = -g$, invariante della locazione l_1 : $x_1(t) \ge 0$
 - transizione da l_1 a l_1 : $A/assente, x_2'(t) := -0, 5x_2$, dove $A = \{(x_1(t), x_2(t), u(t)) \mid x_1(t) \leq 0 \land x_2(t) \leq 0 \land u(t) = assente\}$,

(la sintassi delle annotazioni di una transizione e' guardia/uscita, azione);

- ingresso $u(t) \in \{assente\};$
- uscita $y(t) \in \{assente\}.$

(b) Si descriva il funzionamento del sistema in base alla semantica dell'automa ibrido che lo rappresenta.

Si descrivano qualitativamente le traiettorie descritte dalle variabili continue x_1 e x_2 . Per fissare le idee, si assumano i valori iniziali $x_1=5$ e $x_2=0$.

Traccia di soluzione.

Per una descrizione del comportamente e disegni di traiettorie della posizione e della velocita' si consulti il materiale di testo (Lee-Varaiya o Lee-Seshia).