DNA are compacted as chromatin fibres, more compacted chromatin are less accessible.
Experiment: DNA in undifferentiated leukemia cells and mature erythrocytes treated with DNase, electrophoresis
 DNA in mature cells actively transcribed, less compact, digested by DNase, degraded, no band on
autoradiograph. Undigested compact DNA in undifferentiated cells shown as a dark band.
Chromatin Remodelling complexes conduct chromatin remodelling to expose/hide BRE/TATA
Histone modification: chromatin accessibility determinant:
Acetylation: acetyl group transferred from Acetyl-CoA onto lysine residue
Enzyme: Histone Acetyltransferase (HAT), Histone deacetylase (HDAC)
Neutralise the positive charge of lysine residue, less interaction between +ve tail and -ve DNA
Promote expression
Acetylated lysine bind with bromodomain of regulatory protein
Methylation: Promote/repress
Enzyme: Histone methyltransferase (HMT), Histone lysine methyltransferase (HKMT), catalyse in SET
domain. Removed by Lysine demethylase (KDM)
Add 1/2/3 methyl groups to lysine or arginine on H3 and H4 N-tails
 Methylated amino acid recognised by chromodomains of effector proteins, recruit other proteins for histone remodelling.
○ Unbiquitination (H2A and H2B C-tails only)
• Phosphorylation
Serine, threonine can be phosphorylated
H2A H2B expose both C and N tail, H1 H3 H4 expose N tail, most modification is on the N tail.
Histone modification interaction:
Regulate DNA-histone interaction
Regulate histone-histone interaction
Recruit effector proteins
Influence effect of other histone modifications
• Influence effect of effector
Histone modification transmission:
Parent histones are distributed onto daughter strands, enzymes recognise specific sequences from parental histones and
apply the same modifications.
Examples

	A PLANTING
Experiment on chromatin accessibility	
Histone structure	
Possible modifications:what, where, who, effect, effectors	
General effects 5	
Modification transmission	