

TRABALHO 2.1:

Bobinas de Helmholtz

Índice

1.	Resumo	

2. Introdução

3.

3.1. Parte A

- 3.1.1. Procedimento
- 3.1.2. Resultados
- 3.1.3. Erros

3.2. Parte B

- 3.2.1. Procedimento
- 3.2.2. Resultados
- 3.2.3. Erros

4. Conclusão e Contribuição dos autores

Resumo

Nesta experiência laboratorial, pretende-se atingir quatro objetivos: na Parte A, o objetivo é encontrar a Constante de calibração(cc); na Parte B, os objetivos são a medição do campo magnético entre duas bobinas, estabelecimento da configuração de Helmholtz, medição do campo magnético ao longo do eixo das bobinas e verificação do Princípio da Sobreposição.

- Parte A:
 - \circ cc =0,0301;
- Parte B:
 - o O Princípio da Sobreposição é verificado nesta atividade;
 - O Número de espiras de cada bobina: 171;

Introdução

A experiência laboratorial está dividida em duas partes: Parte A e Parte B.

Na Parte A, o objetivo é a obtenção de um gráfico do tipo a partir dos valores da corrente (I_s), do circuito montado e dos valores que a sonda de Hall regista através de um potenciómetro(v_h); sendo, o objetivo principal, encontrar o valor da Constante de calibração(cc).

Estes objetivos são obtidos através das seguintes expressões:

$$\begin{cases} B = \mu_0 \frac{N}{L} I_s \\ B = cc V_h \end{cases}$$

Na Parte B, pretende-se verificar o Princípio da Sobreposição para o campo magnético, num circuito composto por fonte de alimentação, reóstato, bobinas, sonda de Hall e restantes aparelhos necessários à medição dos valores. A partir da criação de um gráfico, avaliamos a variação do campo ao longo de várias posições, com o propósito da verificação do Princípio da Sobreposição. Pretende-se, também, calcular o número de espiras de cada bobina.

Parte A – Calibração da sonda de Hall

Procedimento

Verifica-se a presença dos materiais necessários para a realização da experiência, estando ligados de forma a fazer um circuito fechado, como está representado na imagem anterior.

- Coloca-se a sonda de Hall no meio do selenoide de modo a aproximar-se o máximo de um selenoide infinito;
- De seguida, sucede-se à verificação do potenciómetro, corroborando se este está nulo na ausência de um campo magnético. Caso não esteja nulo, realizar as alterações necessárias antes de começar;

Figura 1 - Circuito Parte A

Por fim, com o reóstato, varia-se o valor da corrente elétrica I_s (A) e de V_h(v).

Resultados

A tabela seguinte demonstra os valores obtidos de l_s e do seu V_h correspondente.

I _s (A)	0	0,050	0,10	0,160	0,20	0,260	0,30	0,350	0,398	0,447	0,504	0,556	0,610
V _h (v)	0	0,072	0,0147	0,0234	0,0292	0,0378	0,0437	0,0507	0,0577	0,6470	0,0730	0,0805	0,0882

Utilizando as seguintes equações, consegue-se a criação de um gráfico que relaciona I_s com V_h .

$$\begin{cases} B = \mu_0 \frac{N}{L} I_s \\ B = cc V_h \end{cases} \equiv V_h = \frac{\mu_0}{cc} \frac{N}{L} I_s$$
$$\mu_0 = 4\pi \times 10^{-7} Tm/A$$
$$\frac{N}{L} = 3467 \pm 60 Espirais/m$$

Considerando-se que $m=\frac{\mu_0}{cc}\frac{N}{L}$, então pode-se considerar a equação de um gráfico linear, de declive m, que relaciona V_h com I_s de expressão $V_h=m\ I_s$.

Após a obtenção do gráfico, calcula-se o erro do seu declive *m*:

$$\Delta m = |M| \sqrt{\frac{\frac{1}{R^2} - 1}{N - 2}} \Delta m = 0$$

Por fim, descobre-se o valor da constante de calibração, e o seu respetivo erro, através das expressões:

$$cc = \frac{\mu_0}{m} \frac{N}{L} \quad cc = 0.0301$$

$$\Delta cc = \left| \frac{dcc}{dm} \right| \Delta m + \left| \frac{dcc}{d\frac{N}{L}} \right| \Delta \frac{N}{L} \quad \Delta cc = 0,00052$$

Erros

Possíveis erros que podem ter ocorrido durante a experiência:

- A posição da sonda de Hall no selenoide pode não ter sido exata, pois foi posta a olho, logo os valores registados podem variar, dependendo da posição da sonda relativa ao selenoide;
- Como existe tensão residual, quando a sonda de Hall está fora do selenoide, esta irá registar valores, apesar de não estar num campo magnético. Se estes valores não forem nulos, os valores a registar irão ser diferentes;
- Por fim, os valores registados no amperímetro e no potenciómetro, estão numa escala superior ao dos valores obtidos, logo, com os arredondamentos, os valores afastar-se-ão dos valores originais.

Parte B – Verificação do Princípio da Sobreposição do campo magnético

Procedimento

Para a preparação da Parte experimental B, coloca-se as bobinas na configuração de Helmholtz, existindo, entre ambas, uma distância inalterável de 3,75 cm, que corresponde ao raio das bobinas.

Para se proceder à montagem do circuito, liga-se uma fonte de 15V, ajusta-se o reóstato para o valor fixo de 0,50A e conecta-se o mesmo às bobinas. Realiza-se, então, medição e registo dos resultados com a sonda de Hall.

Figura 2 - Circuito Parte B

Resultados

Tabela 1

Posição	V1 (V)	V2 (V)	V3 (V)
0,00	0,0034	0,0195	0,0234
1,00	0,0045	0,0264	0,0319
2,00	0,0063	0,0341	0,0420
3,00	0,0087	0,0380	0,0485
4,00	0,0125	<mark>0,0354</mark>	<mark>0,0482</mark>
5,00	0,0175	0,0282	0,0449
6,00	0,0249	0,0206	0,0441
7,00	0,0320	0,0142	0,0466
8,00	0,0375	0,0100	0,0483
9,00	0,0364	0,0070	0,0443
10,0	0,0302	0,0050	0,0353
11,0	0,0219	0,0037	0,0255
12,0	0,0159	0,0028	0,0176
13,0	0,0109	0,0022	0,0123
14,0	0,0076	0,0015	0,0087
15,0	0,0056	0,0012	0,0064
16,0	0,0041	0,0009	0,0048

Começa-se por ligar o reóstato a uma bobina, registando os valores da tensão numa folha *Excel*, com a introdução da sonda de Hall no centro da bobina. Este registo é feito a cada centímetro, por 18 centímetros. Utiliza-se o mesmo processo para a segunda bobina. Por fim, liga-se o circuito em série (V3), verificando-se a montagem, e a inexistência de valores de tensão negativos. Anota-se os valores pelo mesmo processo.

Após o registo de todos os valores, verificase que o maior valor (destacado) de cada coluna, representa a altura em que se passa no centro da bobina ou no meio de ambas, como é o caso da última coluna da **Tabela** 1.

Tabela 2

B1 (T)	B2 (T)	B1+B2 (T)	B3(T)
1,02E-04	5,87E-04	6,89E-04	7,04E-04
1,35E-04	7,95E-04	9,30E-04	9,60E-04
1,90E-04	1,03E-03	1,22E-03	1,26E-03
2,62E-04	1,14E-03	1,41E-03	1,46E-03
3,76E-04	1,07E-03	1,44E-03	1,45E-03
5,27E-04	8,49E-04	1,38E-03	1,35E-03
7,49E-04	6,20E-04	1,37E-03	1,33E-03
9,63E-04	4,27E-04	1,39E-03	1,40E-03
1,13E-03	3,01E-04	1,43E-03	1,45E-03
1,10E-03	2,11E-04	1,31E-03	1,33E-03
9,09E-04	1,51E-04	1,06E-03	1,06E-03
6,59E-04	1,11E-04	7,71E-04	7,68E-04
4,79E-04	8,43E-05	5,63E-04	5,30E-04
3,28E-04	6,62E-05	3,94E-04	3,70E-04
2,29E-04	4,52E-05	2,74E-04	2,62E-04
1,69E-04	3,61-05	2,05-04	1,93E-04
1,23E-04	2,71E-05	1,51E-04	1,44E-04

De seguida, completou-se a **Tabela 2** com os valores do campo magnético, calculando-os através da expressão **B** = **Cc** * **V**_H, onde **Cc** é a constante de calibração, que fora já calculada na Parte A, e **V**_H os valores da **Tabela 1**.

Desta vez, para além do registo dos valores para cada uma das bobinas e para o circuito em série, realiza-se a soma dos campos produzidos em **B1+B2.** A partir daqui, estão reunidos os dados necessários para a criação do gráfico da variação do campo magnético **B**_H relativamente à posição **x**.

Gráfico 1

O **Gráfico 1** corrobora o **Princípio da Sobreposição do campo magnético**, apesar da diferença de valores entre o circuito em série e soma de ambas as bobinas.

Raio das bobinas	0,0375 ± 0,0005 (m)
Campo produzido por 1 espira	$\pi \times 10^{-7}$
Número de espiras	171±6

O último passo desta atividade experimental passa pelo cálculo do número de espiras de cada bobina, utilizando a expressão $B(x) = \frac{\mu_0}{2} \frac{I.R^2}{(R^2 + x^2)^{3/2}}$, que representa o campo produzido por uma espira. Recorrendo a uma regra de três simples, utilizase o campo máximo produzido em **B1+B2** para se chegar ao resultado, dividindo-se por 2. Assim, conclui-se que cada bobina seria constituída por 171 espiras.

Para o cálculo do erro correspondente ao número de espiras, utiliza-se a expressão $\Delta N = \left| \frac{B_{exp}}{B_t} \right| \Delta B_{exp} + \left| \frac{B_{exp}}{B_t} \right| \Delta B_t = 6;$

Com B_t sendo obtido através de cálculos teóricos e o B_{exp} obtido pelas medições experimentais.

$$B_{exp} = cc \times V_h$$

$$B_t = \frac{\mu_0 I}{2R}$$

Erros

Para além dos erros dos instrumentos de medição, houve vários erros cometidos na resolução desta experiência. Inicialmente verificou-se que a sonda de Hall não tinha a régua direita, apesar de não representar um grande obstáculo à realização da experiência.

Enquanto os valores das bobinas a trabalhar individualmente foram medidos com uma corrente elétrica de 0.495 A, houve uma pequena alteração neste valor enquanto mudávamos o circuito, sendo que quando ambas estavam ligadas, a medição foi feita com a corrente a 0.500 A.

Por último, a maior fonte de erro, foi o posicionamento errado das bobinas, tal como pode ser observado na **Figura 2**, na qual se pode verificar que a distância entre as bobinas é maior do que o raio de ambas, pois foi medida a distância final de uma bobina ao início da outra, quando se deveria ter usado o centro de massa ambas as bobinas.

Conclusão

Apesar de conseguirmos verificar o valor da cc(constante de calibração) na parte A desta experiência, os resultados obtidos na parte B não foram os esperados, devido aos erros supramencionados. Contudo, consegue-se verificar o comportamento do campo magnético consoante a distância do solenoide ao centro de massa de cada bobina.

Contribuição dos Autores:

- António Moreira:
 - 0 34%
- Rúben Pequeno:
 - 0 33%
- Filipe Sousa:
 - 0 33%