Lecture11: MOSFET IV

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Device structure

- Two-dimensional cross-section
 - "Potential" can be dependent on the position, V(x).

Derivation of IV (1)

Drain current

- Q_{elec} is the electron charge density *per unit length*.
- It follows

$$Q_{elec} = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (Razavi 6.3)

- At a certain position of x, the current is given by

$$I(x) = Q_{elec}(x) v(x)$$
 (Razavi 6.4)

Also v is the electron velocity.

$$v = -\mu_n E = +\mu_n \frac{dV}{dx}$$
 (Razavi 6.5 and 6.6)

Derivation of IV (2)

- Drain current (Continued)
 - It is easy to understand that $I_D = I(x)$. The drain current is

$$I_D = WC_{ox}[V_G - V(x) - V_{TH}]\mu_n \frac{dV}{dx}$$
 (Razavi 6.7)

Simply re-arranging,

$$I_D dx = \mu_n C_{ox} W[V_G - V(x) - V_{TH}] dV$$

- When integrated,

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Triode mode

Equation

- A differential equation for V(x)

$$I_D = WC_{ox}[V_G - V(x) - V_{TH}]\mu_n \frac{dV}{dx}$$

Its solution

$$V(x) = V_G - V_{TH} - \sqrt{(V_G - V_{TH})^2 - \frac{2I_D}{\mu_n C_{ox} W}} x$$

Drain current

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

Saturation mode

Current usually increases as the voltage increases...

$$|Q_{elec}| = WC_{ox}[V_G - V(x) - V_{TH}]$$
 (Razavi 6.3)

- What happens when $V(x) = V_G - V_{TH}$?

State-of-the-art MOSFET

- C. Auth et al. (Intel, IEDM 2017)
 - Slight increase of I_D in the satruation region

GIST Lecture on April 8, 2019 (Internal use only)

Review on MOSFET IV

- When $V_G < V_{TH}$,
 - No drain current!

$$I_D = 0$$

- When $V_G > V_{TH}$,
 - Triode mode $(V_{DS} < V_G V_{TH})$

$$I_D = \mu_n C_{ox} \frac{W}{L} \left[(V_G - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

- Saturation mode
$$(V_{DS} > V_G - V_{TH})$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_G - V_{TH})^2$$

- For a short channel device, I_D increases slightly as V_{DS} increases.

Example 6.6 (Razavi)

- Assume the saturation region.
 - The saturation current becomes 200 μ A.

$$I_D = \frac{1}{2} 100 \mu \frac{2.0}{0.18} (1 - 0.4)^2 = 200 \mu A$$

Then, the drain voltage is

$$V_D = 1.8 - 200\mu \times 5k = 0.8 \text{ V}$$

1.8 V

Is the MOSFET in the saturation mode?

V_{out} versus V_{in}

A table

V_{in} (V)	V _{out} (V)
0.0	1.8
<0.4	1.8
0.7	1.55
1.0	0.8
X	X - 0.4
1.8	Y

– What are the values of X and Y?