HW5

Aeren

October 2022

- 1. Prove that Dominating-Set_k is W[2]-hard.
- 2. Prove that FPT=W[0].
- 3. Consider the following problem

DetTM-Empty-String-Acceptance_k

Instance: A deterministic turing machine M, a non-negative integer n in unary form, and a non-negative integer k. Question: Does M accept the empty string in time $\leq n^k$?

- (a) Prove that $FPT \neq XP$. (Diagonalization Argument)
- (b) Prove that DetTM-Empty-String-Acceptance \in XP.
- (c) Prove that DetTM-Empty-String-Acceptance \in XP-hard and conclude that DetTM-Empty-String-Acceptance \in XP-FPT.
- 4. Let A_k and B_k be parameterized problems. A k-linear (parameterized) reduction from A_k to B_k is a parameterized reduction such that an instance (x, k) is mapped to (x', k') where $k' \in O(k)$. Let f be an arbitrary computable function, and assume ETH.
 - (a) Let A_k be a parameterized problem such that there exists a k-linear reduction from Clique $_k$ to A_k . Prove that A_k requires $f(k) \cdot n^{\Omega(k)}$ time to solve.
 - (b) Show that the following problem requires $f(k) \cdot n^{\Omega(k)}$ time to solve.

Partial-Vertex-Cover_k

Instance: A graph G, and non-negative integers k and l.

Question: Is there a set of vertices of size k that covers l edges?