Assessment of dimensionality reduction methods for the detection of intermediate cancer phenotypes from 'omic data

Poizat Jérôme

Supervised by:

Dr. Nicolas Alcala, Dr. Matthieu Foll and Dr. Lynnette Fernandez-Cuesta

UNIVERSITÉ DE LYON

International Agency for Research on Cancer

Context: Cancer classification

Cancer classification

Proper diagnostic O O

Expression matrix

	geneA	geneB	geneC	geneD	
cancer1_a	42	58	12	47	
cancer1_b	25	69	87	42	
cancer2_a	35	91	25	81	
cancer2_b	9	71	44	7	

Expression matrix

	geneA	geneB	geneC	geneD	
cancer1_a	42	58	12	47	
cancer1_b	25	69	87	42	
cancer2_a	35	91	25	81	
cancer2_b	9	71	44	7	

Reduce dimensions to:

- Represent data
- Extract information

Global and local distances

Objective:

Assess dimensionality reduction (DR) methods for the detection of intermediate cancer phenotypes

Simulation approach

- Know the reality of the data
- Modify data parameters
- No limit in number of replicates

Model: Building an expression matrix

Model: Building an expression matrix

Model: Building an expression matrix

Simulation example

Projection théorique = coefficient de mixture

Evaluation of dimension reduction (DR) methods

Evaluation of dimension reduction (DR) methods

Data dependent parameters:

- Number of samples (Data size)
- Proportion of intermediates
- Distance between clusters (δ)

DR parameters:

- UMAP Min_dist
- UMAP N_neighbours

Proportion of intermediates: 10%

UMAP min_dist: 0.75

Data size: 200

Distance between clusters (δ)

Proportion of intermediates: 10%

UMAP min_dist: 0.75

Data size: 200

Proportion of intermediates: 10%

UMAP min_dist: 0,75

ì					I	
	0.77	0.9	0.92	0.82	1000	
	0.74	0.88	0.9	0.73	500	Da
	0.7	0.82	0.81	0.59	200	Data size
	0.7	0.69	0.75	0.68	100	ze
	0.58	0.62	0.61	0.54	50	
	0.5	\vdash	2	2		

Distance between cluster (δ)

UMAP

Results: UMAP

Exploration of parameters and evaluation of DR methods

UMAP behavior

UMAP min_dist

Conclusion

Acknowledgement

Genetic Cancer Susceptibility Group

Dr. Nicolas Alcala

Dr. Matthieu Foll

Dr. Lynnette Fernandez-Cuesta

Dr. Arnaud Poret

Emilie Mathian

Aurelie Gabriel

Lise Mangiante

International Agency for Research on Cancer

UMAP

