



8 数字钟



# 日录 ONTENTS

01 总结

02 实验内容: 数字钟

忠恕任事

03 实验报告要求



# art 01

# 总结



# 课程安排 | Plan for Course



| 序号 | 实验内容            | 周次 | 考核内容和方式              | 分类             |
|----|-----------------|----|----------------------|----------------|
| 1  | 仪器的基础使用         | 5  | 实验室里学生操作仪器           | 仪器基础           |
| 2  | 竞争与险象的分析<br>与观测 | 7  | 搭建电路观测竞争与险象          | 组合逻辑电路设计       |
| 3  | 译码器电路设计与 应用     | 8  | Quartus 图形化编程 3-8译码器 |                |
| 4  | Verilog语法基础     | 9  | Quartus 程序设计, If 语句  | <br> EDA工具和硬件描 |
| 5  | 七段数码管           | 11 | Case语句 管脚分配和下载       | 述语言            |
| 6  | 计数器设计与应用        | 12 | 计数器和分频器实现秒计数         | 时序逻辑电路设计       |
| 7  | 时序逻辑电路设计        | 13 | 任意模值计数器,动态扫描数码管      |                |
| 8  | 数字系统设计          | 14 | 数字钟                  | 数字系统           |



# 课程安排 | Plan for Course



- · Quartus Prime使用
- Verilog语言
- ・实验箱
- ・仪器使用

## 1.1 Quartus Prime使用







## 1.1 Quartus Prime使用



#### ● 常见问题

- 1.如何打开工程,而不是打开一个文件
- 2.更换芯片
- 3.更换顶层实体
- 4.关掉了某些窗口不知如何打开
- 5.仿真工具设置
- 6.仿真Endtime设置
- ✓ 将设计综合为电路网表、生成适配于可编程器件的电路配置的文件 (pof)、 下载到芯片中固化芯片内部的电路,从而使芯片表现出我们想要的数字电路的 功能

### 1.2 Verilog语言



#### ● 电路单元module

模块定义 端口定义 内部逻辑实现

#### ● 数据类型

常数: 4' b0010 == 4' h2 == 4' d2

线网wire: assign

寄存器reg: 在过程块 (always) 里赋值

#### ● Verilog操作符

&& || \ & | \ >= <= \ {2' b00, 2' b11}

#### ● 过程块和过程赋值

always @ (\*) always @ (posedge clk)

● 条件语句——if语句 和 case语句

#### ● 常见问题

- 1. 一定要和C的顺序执行区别理解
- 2. 硬件描述语言 综合后是电路模块
- 3. 线网型变量用assign赋值
- 4. 寄存器型变量在过程块中赋值
- 5. 一个变量在一个过程块里驱动,用多 条分支语句尽量涵盖完所有的情况
- 6. 运算和赋值时,注意位宽的匹配
- 7. 不要用过多的条件嵌套语句 会影响 电路的速度
- 8. 注意缩进和多写注释

## 实验箱









#### 实验箱



CPLD型号: 5M160ZE64C5N

5M: MAX V 系列的命名

160Z: 含有的逻辑单元的多少,即容量大小

E: 封装类型 64: 管脚数目 C: 工作温度

速度等级

N: 多功能后缀, N表示无铅封装



# 1.3 实验箱



| 编号 | 名称          | 和5M160E64C8N的管脚连接           | 说明                   |
|----|-------------|-----------------------------|----------------------|
| 1  | USB Blaster | TMS:PIN14   TDI: PIN 15     | 板载USB Blaster编程器.    |
|    |             | TCK: PIN 16   TDO: PIN 17   | 通过JTAG管脚和CPLD器件相连,通过 |
|    |             |                             | JTAG协议配置CPLD器件.      |
| 2  | 5M160E64C5N |                             | CPLD器件               |
| 3  | 8个LED灯      | LED7: PIN 48   LED6: PIN 47 | 3.3V电平标准。            |
|    |             | LED5: PIN 46   LED4: PIN 45 | 控制信号为高时, 点亮.         |
|    |             | LED3: PIN 44   LED2: PIN 43 |                      |
|    | - P         | LED1: PIN 38 LED0: PIN 37   |                      |
| 4  | 2个按键        | Key0: PIN 35                | 3.3V电平标准。            |
|    |             | key1: PIN 36                | 按下时输出低电平,松开时输出高电平。   |
| 5  | USB-UART串口  | RXD: PIN 42                 | 3.3V电平标准             |
|    |             | TXD: PIN 40                 | RXD: 信号输入到基础板        |
|    |             |                             | TXD: 信号从基础板输出        |
| 6  | 4位拨码开关      | SW0: PIN 31   SW1: PIN 32   | 3.3V电平标准             |
|    |             | SW2: PIN 33   SW3: PIN 34   | 拨向左输出为高电平            |
|    |             |                             | 拨向右输出为低电平            |
| 7  | P6: 通用IO    | 见图所示                        | 3.3V电平标准             |
| 8  | P4: 通用IO    | 见图所示                        | 3.3V电平标准             |





# art 02

# 数字钟

## 2.1 数字钟的设计方法



- 1. BDF实现
- 2. Verilog实现
- 3. BDF+Verilog
- 4. 自顶向下、自底向上

注意: 优化设计 保证有限的资源下能够放下你的电路!

### 自底向上





#### 自底向上-扫描式七段数码管驱动设计



#### 动态扫描数码管



### 自底向上





## 自顶向下





#### 自顶向下





```
■module shuzizhong(
        input clk,
        output reg [3:0] s low,
        output reg [3:0] s high,
        output reg [3:0] m low,
        output reg [3:0] m high,
        output reg [3:0] h low,
        output reg [3:0] h high
10
11
12 □always @(posedge clk) begin
        if(s low == 4'd9) begin
14
            s low <= 4'd0;
15
        end
16 ⊟
        else begin
            s low \le s low + 4'd1;
18
        end
19
   end
20 ⊟always @(posedge clk) begin
        if((s low == 4'd9) && (s high < 4'd5)) begin
            s_{high} \le s_{high} + 4_{d1};
23
        end
        else if((s low == 4'd9) && (s high == 4'd5)) begin
            s high <= 4'd0;
26
        end
27 🗀
        else begin
            s high <= s high;
29
        end
30
   end
   仿照以上例句,继续完成分钟和小时的计数输出
   endmodule
```

## 实验内容——数字钟



- 1. 新建工程lab8;
- 2. 采用自顶向下或自底向上的设计方法,使用BDF或Verilog或者两者相结合 完成数字钟的设计;
- 3. 对设计的各模块进行仿真;
- 4. 分配管脚, 全编译;
- 5. 下载验证。

注意:尽量优化,使得资源不超出芯片的资源 可以更改芯片型号为EP4CE15F17C8N,仅作仿真



# Dart 03

## 实验报告要求

- 实验内容
- 电路设计
- 实验过程
- 实验结果

### 3.1 实验报告要求

#### ◆ 实验报告应至少包含

- 1. 实验内容
- 2. 实验原理
- 3. 实验过程
- 4. 实验结果
- 5. 总结





#### 电子技术实验 2 实验报告

班级 姓名:

#### 8 数字系统设计

#### 颗目描述

描述要实现的题目和设计目标

#### 二 实验原理

按照自顶向下或自底向上的设计思路、描述整个设计原理。 如果是自底向上,先描述各模块具体设计、再描述各模块如何组装成完整的系统 如果是自顶向下,先描述整个设计的方案和系统的模块划分、再描述各模块的具体电路 设计原理

#### 三 实验过程

实验中的过程记录,特别要注意设计文件 和 管脚分配的截图或说明。

#### 四 实验结果

包括仿真结果和下载验证结果

#### 五 总结

- 1. 描述数字系统的设计方法
- 2. 本次实验中遇到的问题及解决方法
- 3. 这门实验课程的学习体验和建议