Hochschule für Telekommunikation Leipzig Institut für Kommunikationstechnik Gustav-Freytag-Straße 43-45 04277 Leipzig

Themen zur PVL IKT-KMI-13

Hinweise:

- ein Thema auswählen
- Mitstreiter benennen (inklusive Emailadresse) und deren (Teil-)Aufgabe(n)
- Name des Teams wählen (Ort der Dienststelle, wenn möglich)
 - o Emails ohne Angabe "PVL, StudiengangXX, Team NameXX" werden von mir ignoriert!!
- Max. 3 Teams pro Thema (first come first serve)
- Bearbeitungszeitraum bis 4. KW, Verzögerung führt zu Punktabzug
- Formatierung der Quelltexte, siehe: http://www1.hft-leipzig.de/ice/Files/c-quell.txt
- strukturelle und inhaltliche Gestaltung der Dokumentation gemäß
 - o http://www1.hft-leipzig.de/ice/Files/ThesisTemplate.zip
- Für Programmieraufgaben darf **keine neuere** Version als Visual C++ 2008 Express verwendet werden.
- Genauere Hinweise (+Präzisierung der Aufgabenstellung, Unterlagen, Daten) gibt es nach Wahl eines Themas.

"Modifikation eines Prädiktors (MED) in Anwendung auf Farbbilder"

Es ist eine Software zur Bilddatenkompression vorhanden (TSIPcoder). Über eine grafische Nutzerschnittstelle (GUI) kann Einfluss auf die Verarbeitungskette genommen werden. Soll ein Farbild komprimiert werden, so werden die RGB-Komponenten typischer Weise in einen anderen Farbraum (YUV) konvertiert. Dadurch werden die drei Komponenten dekorreliert. Trotzdem enthalten die Komponenten Y, U und V noch ähnliche Strukturen, insbesondere hinsichtlich der Richtung der Kanten.

Der Median-Edge-Detection Prädiktor (MED) nutzt Kanteninformation aus, um zwischen drei verschiedene Prädiktoren umzuschalten. In der vorliegenden Version wird das Umschalten für alle drei Komponenten separat durchgeführt. Leider wird die Entscheidung manchmal durch Rauschen im Bild ungünstig beeinflusst.

Aufgabe ist es, eine zweite Version des MED-Prädiktors zu implementieren, bei der die Prädiktorauswahl für U und V auf Basis von Informationen aus Y erfolgt. Wenn die Y-Komponente bereits verarbeitet ist (dem Decoder steht die Information über Y zur Verfügung), dann kann nachträglich geprüft werden, ob für einen konkreten Bildpunkt der ausgewählte Prädiktor der beste war oder einer der beiden anderen evtl. einen kleineren Schätzfehler ergeben hätte. Die beste Variante wird dann auch für U und V eingesetzt.

Für einen vorgegebenen Satz an verschiedenen Bildern ist die neue Variante zu testen und die Ergebnisse mit dem normalen MED-Prädiktor zu vergleichen.

Der Quellcode ist klar zu strukturieren, mit ausreichenden Kommentaren zu versehen und gemäß

den Richtlinien zu formatieren. Variablennamen sollten selbsterklärend sein. Alle Untersuchungen sind schriftlich zu dokumentieren. Neben der schriftlichen Arbeit sind alle Quellen (Programmcode, Texte, Testbilder) und Tools abzugeben, damit eine Reproduktion der Ergebnisse möglich ist.

Teilaufgaben:

- Koordination
- Programmierung
- Dokumentation (Grundlagen, Änderungen am Quellcode, Kompressionsergebnisse)

Max. 4 Personen,

Max 2 Zusatzpunkte für Klausur

"Programmieren einer (Smartphone-)App zur einfachen Kompression von Bildern"

Es existieren drei Android-App, welche ein Bild von der Smartphone-Kamera im Roh-Format aufnehmen, verarbeiten und speichern. Diese drei Programme sind zu vergleichen und Vor- und Nachteile hinsichtlich verschiedener Eigenschaften (z.B. Bedienkomfort, Speicherbedarf, Bildfolgefrequenz, ...) zur ermitteln. Auf Basis der Analyse ist eine neue App zu programmieren, welch die positiven Eigenschaften der vorhandenen Apps vereint und als Verarbeitungsfunktion das Bild gleichmäßig mit einem einstellbaren Quantisierungsintervall quantisiert. Um die Bildfolgefrequenz zu erhöhen ist ggf. die Ausgabe-Bildgröße zu verringern.

Alle Untersuchungen sind schriftlich zu dokumentieren. Neben der schriftlichen Arbeit sind alle Quellen (Programmcode, Texte, Testbilder) und Tools abzugeben, damit eine Reproduktion der Ergebnisse möglich ist.

Teilaufgaben:

- Koordination
- Recherche
- Programmierung
- Dokumentation (Grundlagen, Methode, Änderungen am Quellcode, Kompressionsergebnisse)

Max. 4 Personen

Max. 2 Zusatzpunkte für Klausur

"Analyse Template-Matching-Prädiktion im CoBaLP2-Coder"

CoBALP2 ist ein Verfahren für die kontextbasierte lineare Prädiktion von Bilddaten auf Basis von Differenzwerten. Die Gewichte für die Berechnung der Schätzwerte werden für automatisch und signalangepasst festgelegte Kontexte sukzessive optimiert. Für manche Kontexte ist die Streuung der Schätzfehler jedoch relativ hoch. Hier kann evtl. eine Template-Matching-Prädiktion erfolgreich sein. Als Parameter sind Template-Größe, Größe des Suchraumes und vor allem die Verknüpfungsmethode von verschiedenen Matches einzustellen. Je nach Bildinhalte

können verschiedene Einstellungen günstig sein

Aufgabe ist es, systematisch zu testen, welche Einstellungen für welches Bild optimal sind. Daraus ist abzuleiten, wie die optimalen Einstellungen automatisch gewählt werden können.

Der Quellcode ist klar zu strukturieren, mit ausreichenden Kommentaren zu versehen (inkl. Tags zum Markieren der Änderungen am originalen Quellcode) und gemäß den Richtlinien zu formatieren. Variablennamen sollten selbsterklärend sein. Alle Untersuchungen sind schriftlich zu dokumentieren. Neben der schriftlichen Arbeit sind alle Quellen (Programmcode, Texte, Testbilder) und Tools abzugeben, damit eine Reproduktion der Ergebnisse möglich ist.

Teilaufgaben:

- Koordination
- Recherche
- Programmierung
- Dokumentation (Grundlagen, Methode, Änderungen am Quellcode, Kompressionsergebnisse)

Max. 4 Personen,

Max. 2 Zusatzpunkte für Klausur

"Restauration von synthetischen Bilddaten nach DCT-basierter JPEG-Kompression durch near-lossless Codierung"

Synthetische Bilddaten werden aus Unkenntnis häufig mit JPEG (DCT-basierter Modus) komprimiert. Dadurch entstehen störende rauschartige Strukturen im Bild, insbesondere an Helligkeits- oder Farbkanten.

Eine vorhandene Software zur verlustlosen Bilddatenkompression (TSIPcoder) soll so modifiziert werden, dass auf Basis einer gewissen Toleranz das Rauschen im Bild reduziert wird. Dadurch wird die Kompression verlustbehaftet. Ein entsprechender Parameter ist in die grafische Nutzerschnittstelle (GUI) aufzunehmen.

Der Quellcode ist klar zu strukturieren, mit ausreichenden Kommentaren zu versehen (inkl. Tags zum Markieren der Änderungen am originalen Quellcode) und gemäß den Richtlinien zu formatieren. Variablennamen sollten selbsterklärend sein. Alle Untersuchungen sind schriftlich zu dokumentieren. Neben der schriftlichen Arbeit sind alle Quellen (Programmcode, Texte, Testbilder) und Tools abzugeben, damit eine Reproduktion der Ergebnisse möglich ist.

Teilaufgaben:

- Koordination
- Programmierung
- Dokumentation (Grundlagen, Methode, Änderungen am Quellcode, Kompressionsergebnisse)

"Optimierung von Parametern zur Kompression von Farbbildern"

Eine vorhandene Software (TSIP) zur Kompression von Bilddaten analysiert das geladene Bild und wählt günstige Parameter zur Kompression aus. Die Auswahl ist jedoch nicht in jedem Fall optimal.

Für ein gegebenes Set von Bilddaten sind manuell die Einstellungen zu variieren um eine bessere Kompression zu erzielen. Auch das Decodieren der komprimierten Bilder ist zu testen. Das TSIP-Programm kann über ein Batch-File aufgerufen, sodass ein systematischer Test mit einer Vielzahl von verschiedenen Einstellungen erfolgen kann.

Die Zusatzpunkte ergeben sich wie folgt:

- besseres Kompressionsergebnis als mit automatisch gewählten (oder bereits bekannten) Parametern: 0.05 Punkte (pro Team)
- -"- und besseres Ergebnis als alle andere Teams: +0.2 Punkte (pro Team)
- Entdecken eines Bugs: 0.1 Punkte (pro Team)

Alle Untersuchungen sind schriftlich zu dokumentieren. Neben der schriftlichen Arbeit sind alle Quellen (Programmcode, Texte, Testbilder) und Tools abzugeben, damit eine Reproduktion der Ergebnisse möglich ist.

Teilaufgaben:

- Recherche
- Dokumentation (Grundlagen, Änderungen am Quellcode, Kompressionsergebnisse)

Max. 2 Personen, (maximal 3 Teams mit diesem Thema möglich) Max 1.5 Zusatzpunkte für Klausur

"Automatische Wahl von Parametern zur Kompression von Farbbildern"

Eine vorhandene Software (TSIP) zur Kompression von Bilddaten analysiert das geladene Bild und wählt günstige Parameter zur Kompression aus. Die Auswahl ist jedoch nicht in jedem Fall optimal.

Auf Basis einer vorhandenen Datenbank, welche numerische Eigenschaften von Bildern und die besten Kompressionseinstellungen enthält, sind Zusammenhänge (Korrelationen) zu ermitteln

und die Frage zu beantworten, welche Einstellungen (automatisch) vorgenommen werden müssen, damit die komprimierte Datei möglichst klein ist.

Die herausgefundenen Zusammenhänge sind anhand vorhandener Testbilder zu prüfen.

Alle Untersuchungen sind schriftlich zu dokumentieren. Neben der schriftlichen Arbeit sind alle Quellen (Programmcode, Texte, Testbilder) und Tools abzugeben, damit eine Reproduktion der Ergebnisse möglich ist.

Teilaufgaben:

- Recherche
- Dokumentation (Grundlagen, Änderungen am Quellcode, Kompressionsergebnisse)

Max. 2 Personen, (maximal 3 Teams mit diesem Thema möglich) Max 1.5 Zusatzpunkte für Klausur