MATERI 4

TUJUAN INSTRUKSIONAL KHUSUS

Setelah menyelesaikan pertemuan ini mahasiswa diharapkan :

- Mengetahui definisi Vektor Dimensi 2 dan3
- Dapat menghitung perkalian dan jarak antara 2 vektor

vektor $\mathbf{v} = \mathbf{AB}$

A disebut titik awal/inisial

B disebut titik akhir/terminal

Vektor-vektor ekivalen

Dianggap sama

Panjang dan arahnya sama

Negasi sebuah vektor $\mathbf{v} \rightarrow -\mathbf{v}$ secara geometrik

Panjang sama, arah berlawanan

Penjumlahan dua vektor: $\mathbf{w} = \mathbf{u} + \mathbf{v}$ secara geometrik

Selisih dua vektor: $\mathbf{w} = \mathbf{u} - \mathbf{v}$ sama dengan $\mathbf{w} = \mathbf{u} + (-\mathbf{v})$

Vektor Dimensi 2 dan Dimensi 3

Penjumlahan dua vektor: w = u + v

Cara analitik:

Vektor-vektor u, v, w di Ruang-2 atau Ruang-3

Ruang-2:
$$\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$$
; $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2)$; $\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2)$
 $\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2) = (\mathbf{u}_1, \mathbf{u}_2) + (\mathbf{v}_1, \mathbf{v}_2)$
 $= (\mathbf{u}_1 + \mathbf{v}_1, \mathbf{u}_2 + \mathbf{v}_2)$
 $\mathbf{w}_1 = \mathbf{u}_1 + \mathbf{v}_1$
 $\mathbf{w}_2 = \mathbf{u}_2 + \mathbf{v}_2$

Vektor Dimensi 2 dan Dimensi 3

M

Perkalian vektor dengan skalar (bilangan nyata/real number)

$$w = k v$$
; $k = skalar$

secara geometrik:

Perkalian vektor dengan skalar (bilangan nyata/real number)

$$\mathbf{w} = k \mathbf{v}$$
; $k = \text{skalar}$

Cara analitik:

Di Ruang-2:
$$\mathbf{w} = k\mathbf{v} = (k\mathbf{v}_1, k\mathbf{v}_2)$$
$$(\mathbf{w}_1, \mathbf{w}_2) = (k\mathbf{v}_1, k\mathbf{v}_2)$$
$$\mathbf{w}_1 = k\mathbf{v}_1$$
$$\mathbf{w}_2 = k\mathbf{v}_2$$

Ŋ.

Koordinat Cartesius:

$$P_1 = (x_1, y_1) \text{ dan } P_2 = (x_2, y_2)$$

- $\mathbf{P_1}$ dapat dianggap sebagai titik dengan koordinat $(\mathbf{x_1}, \mathbf{y_1})$ atau sebagai <u>vektor OP_1 </u> di Ruang-2 dengan komponen pertama $\mathbf{x_1}$ dan komponen kedua $\mathbf{y_1}$
- P_2 dapat dianggap sebagai titik dengan koordinat (x_2, y_2) atau sebagai <u>vektor OP_2 </u> di Ruang-2 dengan komponen pertama x_2 dan komponen kedua y_2

Vektor
$$P_1P_2 = OP_2 - OP_1 = (x_2 - x_1, y_2 - y_1)$$

Vektor-vektor di ruang-3

Aturan tangan kanan

Aturan tangan-kiri

x: 4 jari y: telapak tangan z: ibu jari

Lihat bab 3.1. Gambar 11

Translasi

$$x' = x - k \qquad y' = y - 1$$

Bab 3.2

Aritmatika vektor Norma sebuah vektor

g,a

Aritmatika vektor di Ruang-2 dan Ruang-3

Teorema 3.2.1.: u, v, w vektor-vektor di Ruang-2/Ruang-3

k, l adalah skalar (bilangan real)

•
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

•
$$(u+v)+w=u+(v+w)$$

•
$$u+0=0+u=u$$

•
$$u+(-u)=(-u)+u=0$$

•
$$k(l\mathbf{u}) = (kl)\mathbf{u}$$

•
$$k(\mathbf{u}+\mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

•
$$(k+l)u = ku + lu$$

Bukti teorema 3.2.1.:

- 1. Secara geometrik (digambarkan)
- 2. Secara analitik (dijabarkan)

Bukti secara analitik untuk teorema 3.2.1. di Ruang-3

$$\mathbf{u} = (\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3); \quad \mathbf{v} = (\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3); \quad \mathbf{w} = (\mathbf{w}_1, \, \mathbf{w}_2, \, \mathbf{w}_3)$$

$$\mathbf{u} + \mathbf{v} = (\mathbf{u}_1, \, \mathbf{u}_2, \, \mathbf{u}_3) + (\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3)$$

$$= (\mathbf{u}_1 + \mathbf{v}_1, \, \mathbf{u}_2 + \mathbf{v}_2, \, \mathbf{u}_3 + \mathbf{v}_3)$$

$$= (\mathbf{v}_1 + \mathbf{u}_1, \, \mathbf{v}_2 + \mathbf{u}_2, \, \mathbf{v}_3 + \mathbf{u}_3)$$

$$= \mathbf{v} + \mathbf{u}$$

$$\mathbf{u} + \mathbf{0} = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) + (0, 0, 0)$$

$$= (\mathbf{u}_1 + 0, \mathbf{u}_2 + 0, \mathbf{u}_3 + 0)$$

$$= (0 + \mathbf{u}_1, 0 + \mathbf{u}_2, 0 + \mathbf{u}_3)$$

$$= \mathbf{0} + \mathbf{u}$$

$$= (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$$

$$= \mathbf{u}$$

$$k(l\mathbf{u}) = k (l\mathbf{u}_1, l\mathbf{u}_2, l\mathbf{u}_3)$$

$$= (kl\mathbf{u}_1, kl\mathbf{u}_2, kl\mathbf{u}_3)$$

$$= kl(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$$

$$= kl\mathbf{u}$$

$$k(\mathbf{u} + \mathbf{v}) = k((\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) + (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3))$$

$$= k(\mathbf{u}_1 + \mathbf{v}_1, \mathbf{u}_2 + \mathbf{v}_2, \mathbf{u}_3 + \mathbf{v}_3)$$

$$= (k\mathbf{u}_1 + k\mathbf{v}_1, k\mathbf{u}_2 + k\mathbf{v}_2, k\mathbf{u}_3 + k\mathbf{v}_3)$$

$$= (k\mathbf{u}_1, k\mathbf{u}_2, k\mathbf{u}_3) + (k\mathbf{v}_1, k\mathbf{v}_2, k\mathbf{v}_3)$$

$$= k\mathbf{u} + k\mathbf{v}$$

$$(k + l) \mathbf{u} = ((k+l) \mathbf{u}_1, (k+l) \mathbf{u}_2, (k+l) \mathbf{u}_3)$$

$$= (k\mathbf{u}_1, k\mathbf{u}_2, k\mathbf{u}_3) + (l\mathbf{u}_1, l\mathbf{u}_2, l\mathbf{u}_3)$$

$$= k(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3) + l(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$$

$$= k\mathbf{u} + l\mathbf{u}$$

Norma sebuah vektor:

(Untuk sementara norma bisa dianggap sebagai panjang vektor)

Ruang-2: norma vektor
$$\mathbf{u} = ||\mathbf{u}|| = \sqrt{u_1^2 + u_2^2}$$

Ruang-3 : norma vektor
$$\mathbf{u} = ||\mathbf{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Vektor Satuan (*unit Vector*): suatu vektor dengan norma 1

Jarak antara dua titik:

Ruang-2: vektor $\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1)$ jarak antara $P_1(x_1, y_1)$ dan $P_2(x_2, y_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Ruang-3: vektor
$$\overrightarrow{P_1} \overrightarrow{P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

jarak antara $P_1(x_1, y_1, z_1)$ dan $P_2(x_2, y_2, z_2) =$

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

100

Jika \mathbf{u} adalah vektor dan k adalah skalar, maka

norma
$$k\mathbf{u} = |\mathbf{k}| \|\mathbf{u}\|$$

Contoh(1):

Cari norm dari v = (0,6,0)

Penyelesaian:

$$||v|| = \sqrt{0^2 + 6^2 + 0^2} = \sqrt{36} = 6$$

Contoh(2):

Anggap v = (-1,2,5). Carilah semua skalar k sehingga norm kv = 4 Penyelesaian :

$$||kv|| = 4$$

$$\sqrt{k^2 + 4k^2 + 25k^2} = 4$$

$$\sqrt{30k^2} = 4 \implies 30k^2 = 16 \implies k^2 = \frac{4}{5} \implies k = \pm \sqrt{\frac{4}{5}}$$

Contoh(3):

Carilah jarak antara

a.
$$P1 = (3,4) \text{ dan } P2 = (5,7)$$

b.
$$P1 = (3,3,3) \text{ dan } P2 = (6,0,3)$$

Penyelesaian:

a.

$$d = \sqrt{(5-3)^2 + (7-4)^2} = \sqrt{13}$$

b.
$$d = \sqrt{(6-3)^2 + (0-3)^2 + (3-3)^2} = \sqrt{9+9} = \sqrt{18}$$

Contoh(4):

- a. Jika v adalah vektor tak nol, maka tunjukkan bahwa $\frac{1}{\|v\|}v$ merupakan vektor satuan
- b. Gunakan penyelesaian dari a untuk menemukan vektor satuan yang mempunyai arah sama dengan v = (3,4)
- c. Gunakan penyelesaian dari a untuk menemukan vektor satuan yang mempunyai arah berlawanan dengan v = (-2,3,-6)

Contoh(5):

Misalkan u = (2,-2,3), v = (1,-3,4), w = (3,6,-4). Tentukan hasil dari :

$$||u+v||$$

b.
$$||-2u||+2||u||$$

b.
$$\frac{1}{\|w\|} w$$

$$\mathsf{d.} \qquad \left\| \frac{1}{\|w\|} w \right\|$$

POST TEST

- va $\frac{1}{\|v\|}v$
- 1 a. Jika v adalah vektor tak nol, maka tunjukkan bahwa $^{\|\mathcal{V}\|}$ merupakan vektor satuan
- b. Gunakan penyelesaian dari a untuk menemukan vektor satuan yang mempunyai arah sama dengan v = (3,4)
- Gunakan penyelesaian dari a untuk menemukan vektor satuan yang mempunyai arah berlawanan dengan v = (-2,3,-6)
- 2. Misalkan u = (2,-2,3), v = (1,-3,4), w = (3,6,-4). Tentukan hasil dari :
- a. ||u+v|| b. ||-2u||+2||u|| c. $\frac{1}{||w||}w$ d. $||\frac{1}{||w||}w||$
- 3. Pada kubus ABCD.EFGH yang berusuk 2 cm, titik P terletak di perpanjangan DC dengan DC:DP = 1:3 dan Q terletak di perpanjangan EH dengan EQ:HQ = 2:1. Jarak titik P ke titik Q adalah... cm

 Vektor Dimensi 2 dan Dimensi 3