Pricing Options with Mathematical Models

19. Variations on Black-Scholes-Merton

Some of the content of these slides is based on material from the book *Introduction to the Economics and Mathematics of Financial Markets* by Jaksa Cvitanic and Fernando Zapatero.

Dividends paid continuously

• Assume the stock pays a dividend at a continuous rate q. Total value of holding one share of stock is

$$G(t) := S(t) + \int_0^t qS(u)du$$

• Therefore, the wealth process of investing in this stock and the bank account is

$$dX = (X - \pi)dB/B + \pi dG/S$$

$$dX(t) = [rX(t) + \pi(t)(\mu + q - r)]dt + \pi(t)\sigma dW(t)$$

• To get the discounted wealth process to be a martingale, that is,

$$dX(t) = rX(t)dt + \pi(t)\sigma dW^{Q}(t)$$

we need to have

$$W^{Q}(t) = W(t) + t(\mu + q - r)/\sigma$$

• This makes the stock dynamics

$$dS(t) = S(t)[(r-q)dt + \sigma dW^{Q}(t)]$$

and the pricing PDE is

$$C_t + \frac{1}{2}\sigma^2 s^2 C_{ss} + (r - q)sC_s - rC = 0$$

• The solution, for the European call option, is obtained by replacing the underlying price s with $se^{-q(T-t)}$:

$$C(t,s) = se^{-q(T-t)}N(d_1) - Ke^{-r(T-t)}N(d_2)$$

where

$$d_1 = \frac{1}{\sigma\sqrt{T-t}}[\log(s/K) + (r-q+\sigma^2/2)(T-t)]$$

$$d_2 = \frac{1}{\sigma\sqrt{T-t}}[\log(s/K) + (r-q-\sigma^2/2)(T-t)]$$

Dividends paid discretely

- Assume the stock pays deterministic dividends, and denote the process of discounted dividends by $\bar{D}(t)$.
- Assume that the process

$$S_G(t) = S(t) - \bar{D}(t)$$

satisfies

$$dS_G = S_G[\mu dt + \sigma dW(t)]$$

Then, the option price is obtained by replacing s = S(t) by $S(t) - \bar{D}(t)$.

Options on futures

• Since $F(t) = e^{r(T-t)}S(t)$,

$$dF = F(\mu - r)dt + F\sigma dW$$

• With $W^Q(t) = W(t) + t(\mu - r)/\sigma$, we get

$$dF = F\sigma dW^Q$$

• Thus, the PDE for path independent options is

$$C_t + \frac{1}{2}\sigma^2 f^2 C_{ff} - rC = 0$$

• The solution for the call option is

$$C(t,f) = e^{-r(T-t)} [fN(d_1) - KN(d_2)]$$

$$d_1 = \frac{1}{\sigma_F \sqrt{T-t}} [\log(f/K) + (\sigma_F^2/2)(T-t)]$$

$$d_2 = \frac{1}{\sigma_F \sqrt{T-t}} [\log(f/K) - (\sigma_F^2/2)(T-t)]$$

Pricing Options with Mathematical Models

20. Currency options

Some of the content of these slides is based on material from the book *Introduction to the Economics and Mathematics of Financial Markets* by Jaksa Cvitanic and Fernando Zapatero.

Currency options in the B-S-M model

• Consider the payoff, evaluated in the domestic currency, equal to

$$(R(T) - K)^+$$

where R(T) is the exchange rate, the time T domestic value of one unit of foreign currency.

• Assume that the exchange rate process is given by

$$dR(t) = R(t)[\mu_R dt + \sigma_R dW(t)]$$

• The pricing formula is the same as in the case of a dividend-paying underlying, but with q replaced by r_f , the foreign risk-free rate.

Reasons why

- We trade in the domestic and foreign risk-free accounts.
- The dollar value of one unit of the foreign account is

$$R^*(t) := R(t)e^{r_f \cdot t}$$

$$dR^* = R^* \left[(\mu_R + r_f)dt + \sigma_R dW \right]$$

• The wealth dynamics (in domestic currency) of a portfolio of π dollars in the foreign account and the rest in the domestic account are

$$dX = \frac{X - \pi}{B}dB + \frac{\pi}{R^*}dR^* = [rX + \pi(\mu_R + r_f - r)]dt + \pi\sigma_R dW$$

• This is exactly the same as for dividends with q replaced by r_f .

$$W^{Q}(t) = W(t) + t(\mu_{R} - (r - r_{f}))/\sigma_{R}$$

Call option formula

• The dollar value of the call option is

$$c(t,R) = Re^{-r_f(T-t)}N(d_1) - Ke^{-r(T-t)}[N(d_2)]$$

where

$$d_1 = \frac{1}{\sigma_R \sqrt{T - t}} [\log(R/K) + (r - r_f + \sigma_R^2/2)(T - t)]$$

$$d_2 = \frac{1}{\sigma_R \sqrt{T - t}} [\log(R/K) + (r - r_f - \sigma_R^2/2)(T - t)] = d_1 - \sigma_R \sqrt{T - t} .$$

Example: Quanto options

- - S(t): a domestic equity index
 - Payoff: S(T) F units of **foreign currency**; quanto forward
- As in the previous slide, we have

$$W^{Q}(t) = W(t) + t(\mu_{R} - (r - r_{f}))/\sigma_{R}$$

and thus

$$dR(t) = R(t)[(r - r_f)dt + \sigma_R dW^Q(t)]$$

Assume

$$dS(t) = S(t)[rdt + \sigma_S dZ^Q(t)]$$

where BMP Z^Q has instantaneous correlation ρ with W^Q . We have

$$d(S(t)R(t)) = S(t)R(t)[(2r - r_f + \rho\sigma_R\sigma_S)dt + \sigma_R dW^Q(t) + \sigma_S dZ^Q(t)]$$

• S(T) - F units of foreign currency is the same as (S(T) - F)R(T) units of domestic currency. The domestic value is

$$e^{-rT}(E^{Q}[S(T)R(T)] - FE^{Q}[R(T)])$$

• To make it equal to zero

$$F = \frac{E^{Q}[S(T)R(T)]}{E^{Q}[R(T)]}$$

• We have

$$E^{Q}[S(T)R(T)] = S(0)R(0)e^{(2r-r_f + \rho\sigma_S\sigma_R)T}$$
$$E^{Q}[R(T)] = R(0)e^{(r-r_f)T}$$

• We get

$$F = S(0)e^{(r+\rho\sigma_S\sigma_R)T}$$

• If

$$dX = aXdt + bXdW + cXdZ$$

then

$$EX(t) = X(0)e^{at}$$

• This is because

$$d(EX(t)) = a \times (EX(t))dt$$

and the solution to this ODE, that has initial value X(0), is the one above.

Pricing Options with Mathematical Models

21. Exotic options

Some of the content of these slides is based on material from the book *Introduction to the Economics and Mathematics of Financial Markets* by Jaksa Cvitanic and Fernando Zapatero.

Most popular exotic options

- Barrier options: they pay a call/put payoff only if the underlying price reaches a given level (barrier) before maturity. Thus, they depend on the maximum or the minimum price of the underlying during the life of the option.
- Asian options: a call/put written on the average stock price until maturity. Useful when the price of the underlying may be very volatile.
- Compound options: the underlying is another option.
 Call on a call:

$$E_0^Q e^{-rT_1} \left[BS(T_1) - K_1 \right]^+$$

Example: a forward start option

• A call with the strike price $S(t_1)$, $t_1 > 0$. Note that

$$S(0)\frac{S(T)}{S(t_1)} = S(0) \exp\{\sigma(W^Q(T) - W^Q(t_1)) + (r - \sigma^2/2)(T - t_1)\}$$

• We first compute the value at t_1 :

$$E_{t_1}^Q \left[e^{-r(T-t_1)} (S(T) - S(t_1))^+ \right] = E_{t_1}^Q \left[e^{-r(T-t_1)} \frac{S(t_1)}{S(0)} \left(\frac{S(0)S(T)}{S(t_1)} - S(0) \right)^+ \right]$$
$$= \frac{S(t_1)}{S(0)} BS(T - t_1, S(0)) .$$

• Today's value

$$E_0^Q \left[e^{-rt_1} \frac{S(t_1)}{S(0)} BS(T - t_1, S(0)) \right] = BS(T - t_1, S(0)) E_0^Q \left[e^{-rt_1} \frac{S(t_1)}{S(0)} \right] = BS(T - t_1, S(0))$$

Example: a chooser option

• The holder can decide at time t_1 whether the payoff will be a call or a put, with the same strike price and maturity. Thus, the value at time t_1 is, using put-call parity,

$$\max(c(t_1), p(t_1)) = \max(c(t_1), c(t_1) + Ke^{-r(T-t_1)} - S(t_1))$$
$$= c(t_1) + \max(0, Ke^{-r(T-t_1)} - S(t_1))$$

• It is a package of a call option with maturity T and strike price K, and a put option with maturity t_1 and strike price $Ke^{-r(T-t_1)}$.

Pricing Options with Mathematical Models

22. Pricing options on more underlyings

Some of the content of these slides is based on material from the book *Introduction to the Economics and Mathematics of Financial Markets* by Jaksa Cvitanic and Fernando Zapatero.

Two risky assets

$$dS_1 = S_1[\mu_1 dt + \sigma_1 dW_1] dS_2 = S_2[\mu_2 dt + \sigma_2 dW_2]$$

Equivalently,

$$dS_1 = S_1[\mu_1 dt + \sigma_1 dB_1]$$

$$dS_2 = S_2[\mu_2 dt + \sigma_2 \rho dB_1 + \sigma_2 \sqrt{1 - \rho^2} dB_2]$$

This is because, given two independent Brownian Motions B_1 and B_2 , we can set

$$W_1 = B_1, \quad W_2 = \rho B_1 + \sqrt{1 - \rho^2} B_2$$

Wealth process

$$dX = \frac{\pi_1}{S_1}dS_1 + \frac{\pi_2}{S_2}dS_2 + \frac{X - (\pi_1 + \pi_2)}{B}dB .$$

This gives

$$dX = [rX + \pi_1(\mu_1 - r) + \pi_2(\mu_2 - r)]dt + \pi_1\sigma_1dW_1 + \pi_2\sigma_2dW_2 .$$

For the discounted wealth process to be a martingale under the risk-neutral probability Q, we need to have

$$dX = rXdt + \pi_1 \sigma_1 dW_1^Q + \pi_2 \sigma_2 dW_2^Q$$

for some Q-Brownian Motions W_i^Q with correlation ρ . For that to be the case, we must have

$$W_i^Q(t) = W_i(t) + t(\mu_i - r)/\sigma_i$$

The pricing PDE with two factors

• Suppose $C(T) = g(S_1(T), S_2(T))$. Using the two-dimensional Ito's rule

$$dC = \left[C_t + rS_1 C_{s_1} + rS_2 C_{s_2} + \frac{1}{2} \sigma_1^2 S_1^2 C_{s_1 s_1} + \frac{1}{2} \sigma_2^2 S_2^2 C_{s_2 s_2} + \rho \sigma_1 \sigma_2 S_1 S_2 C_{s_1 s_2} \right] dt$$
$$+ \sigma_1 S_1 C_{s_1} dW_1^Q + \sigma_2 S_2 C_{s_2} dW_2^Q .$$

Comparing the dt term with the wealth equation, or making the drift of the discounted C equal to zero,

$$C_t + \frac{1}{2}\sigma_1^2 s_1^2 C_{s_1 s_1} + \frac{1}{2}\sigma_2^2 s_2^2 C_{s_2 s_2} + \rho \sigma_1 \sigma_2 s_1 s_2 C_{s_1 s_2} + r(s_1 C_{s_1} + s_2 C_{s_2} - C) = 0 .$$

$$C(T, s_1, s_2) = g(s_1, s_2)$$

$$\frac{\pi_1}{S_1} = C_{s_1}, \quad \frac{\pi_2}{S_2} = C_{s_2}$$

Example: exchange option

The payoff is

$$g(S_1(T), S_2(T)) = (S_2(T) - S_1(T))^+ = \max(S_2(T) - S_1(T), 0)$$

Since we have

$$(s_2 - s_1)^+ = s_1 \left(\frac{s_2}{s_1} - 1\right)^+$$

it is reasonable to expect that the option price will be of the form

$$C(t, s_1, s_2) = s_1 D(t, z)$$

for some function D and a new variable $z = s_2/s_1$. After some computations, we can show that D has to satisfy

$$D_t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2)z^2D_{zz} = 0, \quad D(T, z) = (z - 1)^+$$

Example: exchange option (continued)

This is the Black-Scholes PDE corresponding to the European call option with strike price K = 1, interest rate r = 0, and volatility

$$\sigma_E = \sqrt{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2} \quad .$$

Using the Black-Scholes formula for D, and the fact that $C = s_1 D$, we get

$$C(t, s_1, s_2) = s_2 N(d_1) - s_1 N(d_2) ,$$

$$d_1 = \frac{1}{\sigma_E \sqrt{T - t}} [\log(s_2/s_1) + (\sigma_E^2/2)(T - t)]$$

$$d_2 = \frac{1}{\sigma_E \sqrt{T - t}} [\log(s_2/s_1) - (\sigma_E^2/2)(T - t)] = d_1 - \sigma_E \sqrt{T - t} ,$$