

Heurísticas para t-admissibilidade com abordagens de redes complexas

Universidade Federal Fluminense

Carlos Santos Anderson Zudio Leandro Santiago Luís Cunha

t-admissibilidade - definição

 O problema da t-admissibilidade visa decidir se um grafo G possui uma árvore geradora T no qual a maior distância em T entre dois vértices adjacentes de G é no máximo t. (fator de extensão)

• O menor t para o qual o grafo é t-admissível, chamamos de índice de extensão.

t-admissibilidade - exemplo

$$d(0,4) = 4$$

$$d(6,8) = 4$$

$$d(4,8) = 2$$

$$d(3,7) = 2$$

$$d(2,4) = 2$$

$$d(5,7) = 5$$

$$d(6,8) = 4$$

$$d(7,8) = 3$$

$$d(4,7) = 2$$

$$d(2,4) = 2$$

t-admissibilidade - exemplo

$$d(5,7) = 5$$

Índice de extensão = 4

COMPLEXIDADE COMPUTACIONAL

	Complexidade
t = 2	Polinomial
t = 3	Em aberto
t ≥ 4	NP-Completo

HEURÍSTICAS

Strategies for generating tree spanners: Algorithms, heuristics and optimal graph classes²

MEDIDAS DE CENTRALIDADE

Degree centrality

$$D_c(v) = \sum_{u=1}^n A_{uv}, u \neq v$$

Leverage centrality

$$L_{c}(v) = \frac{1}{d(v)} \cdot \sum_{v_{j} \in N(v)} \frac{d(v) - d(v_{j})}{d(v) + d(v_{j})}$$

Closeness centrality

$$C_c(v) = \frac{1}{\sum_{u \in V(G) \setminus v} d(u, v)}$$

CONTRIBUIÇÃO

- Utilizar novas medidas de centralidade para o problema de empate
- Construção de 4 heurísticas (2 adaptadas e 2 novas)
- Análise de qualidade das heurísticas

- Classificar os vértices por
 - + degree
 - + closeness
 - leverage

V	d(v)	Clos.	Lev.
3	4	0,0434	0,1547
2	4	0,0434	0,1547
6	4	0,0434	0,2857
0	3	0,0370	-0,0285
4	3	0,0454	-0,1428
1	2	0,0344	-0,0266
5	2	0,0416	-0,3333
8	2	0,0344	-0,1666
7	2	0,0344	-0,1666

- Classificar os vértices por
 - + degree
 - + closeness
 - leverage

V	d(v)
3	4
2	4
6	4
0	3
4	3
1	2
5	2
8	2
7	2

INSTRUÇÕES PARA

HEURÍSTICA 2

V	d(v)	
3	4	
2	4	
6	4	
0	3	
4	3	
1	2	
5	2	
8	2	
7	2	

V	d(v)
3	4
2	4
6	4
0	3
4	3
1	2
5	2
8	2
7	2

V	$f(v) = d_G(v) - A_{tree}(v)$
0	0
1	0
4	1
5	1

V	d(v)	
3	4	
2	4	
6	4	
0	3	
4	3	
1	2	
5	2	
8	2	
7	2	

V	$f(v) = d_G(v) - A_{tree}(v)$
0	0
5	0
1	0
6	2

V	d(v)		
3	4		
2	4		
6	4		
0	3		
4	3		
1	2		
5	2		
8	2		
7	2		

V	$f(v) = d_G(v) - A_{tree}(v)$
0	0
1	0
5	0
7	0
8	0

- Liste os vértices por
 - + degree
 - + closeness
 - leverage

V'	d(v)
3	4
2	4
6	4
0	3
4	3
1	2
5	2
8	2
7	2

V	d(v)
3	4
2	4
6	4
0	3
4	3
1	2
5	2
8	2
7	2

V	$f(v) = d_G(v) - A_{tree}(v)$
1	0
0	1
2	1
4	1
5	1
6	2
7	2
8	2

V	$f(v) = d_G(v) - A_{tree}(v)$
1	0
4	0
5	0
7	0
8	0
0	1
2	1

V	d(v)
3	4
2	4
6	4
0	3
4	3
1	2
5	2
8	2
7	2

V	f(v) = d _G (v) - A _{tree} (v)
1	0
4	0
5	0
7	0
8	0
0	0
2	0

V	Closeness	Leverage
0	0,0370	-0,0285
1	0,0344	-0,0266
2	0,0434	0,1547
3	0,0434	0,1547
4	0,0454	-0,1428
4 5	0,0454 0,0416	-0,1428 -0,3333
	•	
5	0,0416	-0,3333

 11 grafos aleatórios de 10 a 20 vértices com máximo de 34 arestas.

 400 grafos distribuídos de 100 a 1000 vértices das classes Bipartido, Erdos, Watts e Barabási.

QUALIDADE DAS HEURÍSTICAS

Type	H1v1	H1v2	H2v1	H2v2	H3v1	H3v2	H4v1	H4v2r1	H4v2r3
Vertices									
10	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	1.0	1.0	1.0	0.0	0.0	0.0
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
17	0.0	0.0	0.0	0.0	3.0	3.0	0.0	1.0	0.0
18	2.0	1.0	1.0	1.0	2.0	1.0	0.0	0.0	0.0
19	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0
20	1.0	1.0	2.0	1.0	2.0	2.0	0.0	0.0	0.0
	DC	CC	CC						
		CC		CC		CC	CC	LC	LC
		LC		LC		LC	LC		

n $Av(m)$	100.0	200.0	300.0	400.0	500.0	600.0	700.0	800.0	900.0	1000.0
Class	1.9k	7.6k	17.4k	30.5k	46.9k	68.8k	93.6k	122.3k	154.8k	191.1k
Barabasi	1.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Erdos	2.8	3.2	3.3	3.8	4.0	4.4	3.8	3.6	4.3	4.3
Watts	3.6	4.8	1.04 5.1	4.8	5.2	5.3	5.2	5.5	5.3	5.0
Bipartite	4.8	5.6	5.6	6.8	7.0	6.8	7.2	8.0	6.6	7.2

- Valores inferiores na célula representam a média entre o FE da heurística e o valor do limite inferior definido na literatura
- Valores superiores na célula representam o desvio padrão

n										
Av(m)	100.0	200.0	300.0	400.0	500.0	600.0	700.0	800.0	900.0	1000.0
Class	1.9k	7.6k	17.4k	30.5k	46.9k	68.8k	93.6k	122.3k	154.8k	191.1k
Barabasi	0.45	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Darabasi	1.3	1.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Erdos	0.48	0.67	0.3	0.53	0.83	0.8	0.66	0.39	0.6	0.6
Liuos	2.4	2.5	2.9	2.9	2.9	3.4	3.4	3.2	3.2	3.2
Watts	0.63	0.6	0.66	0.63	0.48	0.78	0.64	0.8	0.66	0.64
watts	3.0	3.2	3.6	3.0	3.6	3.7	3.7	3.4	3.4	3.7
Bipartite	0.79	1.49	0.97	1.2	0.91	0.97	1.0	1.32	0.91	1.28
Dipartite	4.4	4.4	4.8	4.4	4.6	4.8	5.0	5.2	4.6	5.4

- Valores inferiores na célula representam a média entre o FE da heurística e o valor do limite inferior definido na literatura
- Valores superiores na célula representam o desvio padrão

n										
Av(m)	100.0	200.0	300.0	400.0	500.0	600.0	700.0	800.0	900.0	1000.0
Class	1.9k	7.6k	17.2k	30.5k	46.9k	68.8k	93.6k	122.3k	154.8k	191.8k
Barabasi	0.78	0.5	0.80	0.45	0.0	0.6	0.0	0.0	0.3	0.0
Darabasi	2.7	3.5	3.6	3.7	4.0	3.8	4.0	4.0	4.1	4.0
Erdos	1.34	1.3	0.66	1.0	0.0	0.94	1.28	1.13	1.79	1.49
Lidos	4.3	5.1	4.4	5.0	0.0	5.1	5.4	4.9	5.7	5.6
Watts	1.26	1.28	1.49	1.40	1.54	1.55	1.85	1.74	1.5	2.15
watts	5.3	6.4	5.4	6.2	6.0	7.3	6.5	6.4	6.5	6.4
Bipartite	1.88	1.78	2.33	1.0	1.56	1.95	1.28	2.2	1.2	1.66
Dipartite	5.33	6.0	6.88	7.0	7.4	8.4	8.6	7.4	8.4	8.2

- Valores inferiores na célula representam a média entre o FE da heurística e o valor do limite inferior definido na literatura
- Valores superiores na célula representam o desvio padrão

n										
Av(m)	100.0	200.0	300.0	400.0	500.0	600.0	700.0	800.0	900.0	1000.0
Class	1.9k	7.6k	17.4k	30.5k	46.9k	68.8k	93.6k	122.3k	154.8k	191.1k
Barabasi	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Darabasi	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Erdos	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liuos	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Watts	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Watts	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Bipartite	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dipartite	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

- Valores inferiores na célula representam a média entre o FE da heurística e o valor do limite inferior definido na literatura
- Valores superiores na célula representam o desvio padrão

- As medidas de centralidade aperfeiçoaram a seleção dos vértices
- A heurística 4 apresentou árvores com melhores soluções para o fator de extensão
- Avaliar as heurísticas com novas classes de grafos

OBRIGADO!

Perguntas?

@cthadeusantos & cthadeusantos@gmail.com
& carlosthadeu@id.uff.br