

US012390340B2

(12) United States Patent

Malinowski

(10) Patent No.: US 12,390,340 B2

(45) **Date of Patent:** Aug. 19, 2025

(54) INTERSPINOUS SPACER WITH A RANGE OF DEPLOYMENT POSITIONS AND METHODS AND SYSTEMS

(71) Applicant: **Boston Scientific Neuromodulation Corporation**, Valencia, CA (US)

(72) Inventor: Zdzislaw Bernard Malinowski,

Castaic, CA (US)

(73) Assignee: Boston Scientific Neuromodulation

Corporation, Valencia, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 U.S.C. 154(b) by 16 days.

(21) Appl. No.: 18/602,968

(22) Filed: Mar. 12, 2024

(65) Prior Publication Data

US 2024/0307189 A1 Sep. 19, 2024

Related U.S. Application Data

- (60) Provisional application No. 63/452,249, filed on Mar. 15, 2023.
- (51) Int. Cl.

 A61F 2/44 (2006.01)

 A61B 17/88 (2006.01)
- (Continued) (52) U.S. Cl.

CPC A61F 2/4425 (2013.01); A61B 17/8888 (2013.01); A61F 2/4611 (2013.01);

(Continued)

(58) Field of Classification Search

CPCA61F 2/4455; A61F 2/4425; A61F 2220/0016; A61F 2220/0091; A61L 27/3658

(Continued)

(56) References Cited

U.S. PATENT DOCUMENTS

2,248,054 A 7/1941 Becker 2,677,369 A 5/1954 Knowles (Continued)

FOREIGN PATENT DOCUMENTS

CA 268461 2/1927 CN 2794456 7/2006 (Continued)

OTHER PUBLICATIONS

ASNR Neuroradiology Patient Information website, Brain and Spine Imaging: A Patient's Guide to Neuroradiology; Myelography; http://www.asnr.org/patientinfo/procedures/myelography.shtml#sthash. sXIDOxWq.dpbs, Copyright 2012-2013.

(Continued)

Primary Examiner — Eduardo C Robert (74) Attorney, Agent, or Firm — Branch Partners PLLC; Bruce E. Black

(57) ABSTRACT

An interspinous spacer includes a body having a channel and at least one slot; an arm actuator defining a threaded channel; an actuator screw including a shaft with a threaded distal portion partially disposed in the channel of the body and the threaded channel of the arm actuator; a first pin arranged to move along the slot of the body; a second pin; and first and second arms, each having a coupling extension that defines a pin opening and a curved track. The first and second arms are coupled to the body by the second pin extending through the curved tracks and further coupled to the body and the actuator arm by the first pin extending through the pin openings. The first and second arms rotate among different deployment positions according to the curved track in response to longitudinal movement of the actuator arm as the actuator screw is rotated.

20 Claims, 4 Drawing Sheets

(51)	Int. Cl.			5,904,686 A		Zucherman et al.
	A61F 2/46		(2006.01)	5,928,207 A		Pisano et al.
	A61F 2/30		(2006.01)	5,948,017 A	9/1999	
(50)			(2000.01)	5,972,015 A		Scribner et al.
(52)	U.S. Cl.			6,039,761 A		Li et al.
	CPC	A61F	7 2002/30405 (2013.01); A61F	6,045,552 A		Zucherman et al. Zucherman et al.
	20	02/30494	4 (2013.01); A61F 2002/30495	6,048,342 A 6,048,345 A		Berke et al.
			7 2002/30528 (2013.01); A61F	6,066,154 A		Reiley et al.
	(=====	-,,	2002/4615 (2013.01)	6,068,630 A		Zucherman et al.
(50)	EU 11 6 60		, ,	6,074,390 A		Zucherman et al.
(58)	Field of Clas			6,080,155 A		Michelson
			623/17.16	6,080,157 A	6/2000	Cathro et al.
	See application	on file fo	r complete search history.	6,090,112 A		Zucherman et al.
			_	6,096,038 A		Michelson
(56)		Referen	ces Cited	6,102,928 A		Bonutti
()				6,102,950 A		Vaccaro
	U.S. 1	PATENT	DOCUMENTS	D433,193 S	10/2000	Gaw et al.
				6,132,464 A 6,149,642 A		Gerhart et al.
	2,933,114 A	4/1960	Bystrom	6,149,652 A		Zucherman et al.
	3,242,120 A		Steuber	6,152,926 A		Zucherman et al.
	3,486,505 A		Morrison	6,156,038 A		Zucherman et al.
	3,648,691 A		Lumb et al.	6,159,215 A	12/2000	Urbahns et al.
	3,780,733 A		Martinez-Manzor	6,179,873 B1		Zientek
	3,986,383 A 4,545,374 A	10/1976	Jacobson	6,183,471 B1		Zucherman et al.
	4,632,101 A		Freeland	6,190,387 B1		Zucherman et al.
	4,685,447 A		Iversen et al.	6,225,048 B1		Soderberg-Naucler et al.
	4,799,484 A		Smith et al.	6,235,030 B1 6,238,397 B1		Zucherman et al. Zucherman et al.
	4,863,476 A	9/1989	Sheppard	6,264,651 B1		Underwood et al.
	4,877,020 A	10/1989		6,264,656 B1		Michelson
	4,895,564 A	1/1990		6,267,763 B1	7/2001	
	4,986,831 A		King et al.	6,267,765 B1	7/2001	Taylor et al.
	5,011,484 A	4/1991	Michelson	6,270,498 B1		Michelson
	5,015,247 A 5,019,081 A		Watanabe	6,280,444 B1		Zucherman et al.
	5,040,542 A	8/1991		6,312,431 B1	11/2001	
	5,059,193 A	10/1991		6,328,730 B1		Harkrider, Jr.
	5,092,866 A		Breard et al.	6,332,882 B1 6,332,883 B1		Zucherman et al. Zucherman et al.
	5,178,628 A		Otsuka et al.	6,336,930 B1		Stalcup et al.
	5,180,393 A		Commarmond	6,348,053 B1		Cachia
	5,182,281 A		Frigola-Constansa et al.	6,364,883 B1		Santilli
	5,188,281 A		Fujiwara et al. de la Caffiniere	6,371,989 B1		Chauvin et al.
	5,192,281 A 5,195,526 A		Michelson	6,375,682 B1		Fleischmann et al.
	5,238,295 A		Harrell	6,379,355 B1		Zucherman et al.
	5,298,253 A		LeFiles et al.	6,387,130 B1 6,395,032 B1		Stone et al. Gauchet
	5,368,594 A	11/1994	Martin et al.	6,402,740 B1		Ellis et al.
	5,390,683 A		Pisharodi	6,402,750 B1		Atkinson et al.
	5,415,661 A		Holmes	6,402,784 B1		Wardlaw
	5,456,722 A		McLeod et al.	6,413,228 B1		Hung et al.
	5,462,738 A		LeFiles et al.	6,419,676 B1		Zucherman et al.
	5,472,452 A 5,484,437 A	12/1995	Michelson	6,419,677 B2		Zucherman et al.
	5,487,739 A		Aebischer et al.	6,440,169 B1		Elberg et al.
	5,489,308 A		Kuslich et al.	6,443,988 B2 6,447,547 B1		Felt et al. Michelson
	5,496,318 A	3/1996	Howland et al.	6,451,019 B1		Zucherman et al.
	5,531,748 A		de la Caffiniere	6,451,020 B1		Zucherman et al.
	5,549,679 A		Kuslich	6,464,682 B1	10/2002	
	5,571,189 A	11/1996		6,471,976 B1	10/2002	Taylor et al.
	5,591,165 A 5,609,634 A		Jackson Voydeville	6,478,796 B2		Zucherman et al.
	5,609,636 A		Kohrs et al.	6,478,822 B1		Leroux et al.
	5,645,599 A		Samani	6,500,178 B2		Zucherman et al.
	5,654,599 A		Casper	6,514,256 B2 6,530,925 B2		Zucherman et al. Boudard et al.
	5,658,335 A	8/1997	Allen	6,558,333 B2		Gilboa et al.
	5,658,337 A		Kohrs et al.	6,565,570 B2		Sterett et al.
	5,674,295 A		Ray et al.	6,572,617 B1		Senegas
	5,700,264 A		Zucherman et al.	6,575,981 B1		Boyd et al.
	5,725,582 A		Bevan et al.	6,579,281 B2		Palmer et al.
	5,741,253 A 5,746,720 A		Michelson Stouder, Jr.	6,579,319 B2		Goble et al.
	5,762,629 A		Kambin	6,582,433 B2	6/2003	
	5,836,948 A		Zucherman et al.	6,582,451 B1		Marucci et al.
	5,860,977 A		Zucherman et al.	6,599,292 B1	7/2003	
	5,863,948 A	1/1999	Epstein et al.	6,602,248 B1		Sharps et al.
	5,876,404 A		Zucherman et al.	6,610,065 B1		Branch et al.
	RE36,211 E		Nonomura	6,610,091 B1		Reiley
	5,904,636 A	5/1999	Chen	6,616,673 B1	9/2003	Stone et al.

(56)		Referen	ces Cited		7,491,204 B2		Marnay et al.
	U.S.	PATENT	DOCUMENTS		7,497,859 B2 7,503,935 B2	3/2009 3/2009	Zucherman et al. Zucherman et al.
	0.0.		Bocombrid		7,504,798 B2	3/2009	Kawada et al.
	6,626,944 B1	9/2003	Taylor		7,510,567 B2	3/2009	
	6,645,207 B2		Dixon et al.		7,520,887 B2 7,520,899 B2	4/2009 4/2009	Maxy et al. Zucherman et al.
	6,645,211 B2		Magana Zucherman et al.		7,547,308 B2	6/2009	Bertagnoli et al.
	6,652,527 B2 6,652,534 B2		Zucherman et al.		7,549,999 B2	6/2009	
	6,663,637 B2		Dixon et al.		7,550,009 B2	6/2009	Amin et al.
	6,679,886 B2		Weikel et al.		7,565,259 B2 7,572,276 B2	7/2009	Sheng et al. Lim et al.
	6,695,842 B2 6,699,246 B2		Zucherman et al. Zucherman et al.		7,575,600 B2	8/2009	
	6,699,247 B2		Zucherman et al.		7,585,313 B2		Kwak et al.
	6,702,847 B2		Dicarlo		7,585,316 B2	9/2009	
	6,712,819 B2		Zucherman et al.		7,588,588 B2	9/2009	Spitler et al.
	6,716,215 B1		David et al.		7,591,851 B2 7,601,170 B2	9/2009 10/2009	
	6,716,245 B2 6,723,126 B1*		Pasquel et al. Berry	A61F 2/4455	7,621,939 B2	11/2009	Zucherman et al.
	0,120,120 21		2411,	606/247	7,635,377 B2		Zucherman et al.
	6,726,690 B2		Eckman		7,635,378 B2 7,637,950 B2		Zucherman et al. Baccelli et al.
	6,733,534 B2	5/2004			7,658,752 B2		Labrom et al.
	6,746,485 B1 6,761,720 B1		Zucherman et al. Senegas		7,662,187 B2		Zucherman et al.
	6,783,529 B2		Hover et al.		7,666,186 B2	2/2010	
	6,783,546 B2		Zucherman et al.		7,666,209 B2 7,666,228 B2		Zucherman et al. Le Couedic et al.
	6,796,983 B1		Zucherman et al.		7,670,377 B2		Zucherman et al.
	6,805,697 B1 6,835,205 B2		Helm et al. Atkinson et al.		7,682,376 B2	3/2010	
	6,840,944 B2	1/2005			7,691,146 B2		Zucherman et al.
	6,858,029 B2	2/2005	Yeh		7,695,513 B2		Zucherman et al.
	6,869,398 B2		Obenchain et al.		7,699,852 B2 7,699,873 B2		Frankel et al. Stevenson et al.
	6,875,212 B2 6,902,566 B2	4/2005 6/2005	Shaolian et al. Zucherman et al.		D618,796 S	6/2010	
	6,926,728 B2		Zucherman et al.		7,727,233 B2		Blackwell et al.
	6,946,000 B2		Senegas et al.		7,727,241 B2		Gorensek et al.
	6,949,123 B2	9/2005			7,731,751 B2 7,742,795 B2		Butler et al. Stone et al.
	6,966,930 B2 6,974,478 B2		Amin et al. Reiley et al.		7,749,231 B2		Bonvallet et al.
	6,976,988 B2		Ralph et al.		7,749,252 B2		Zucherman et al.
	7,011,685 B2	3/2006	Arnin et al.		7,749,253 B2 7,753,938 B2		Zucherman et al. Aschmann et al.
	7,029,473 B2		Zucherman et al.		7,758,619 B2	7/2010	
	7,033,358 B2 7,048,736 B2		Taylor et al. Robinson et al.		7,758,647 B2		Amin et al.
	7,070,598 B2		Lim et al.		7,763,028 B2		Lim et al.
	7,083,649 B2		Zucherman et al.		7,763,050 B2 7,763,051 B2		Winslow et al. Labrom et al.
	7,087,055 B2		Lim et al.		7,763,071 B2 7,763,073 B2		Hawkins et al.
	7,087,083 B2 7,097,648 B1		Pasquel et al. Globerman et al.		7,763,074 B2	7/2010	Altarac et al.
	7,101,375 B2		Zucherman et al.		7,766,967 B2	8/2010	
	7,163,558 B2		Senegas et al.		7,776,090 B2 7,780,709 B2		Winslow et al. Bruneau et al.
	7,179,225 B2 7,187,064 B2		Shluzas et al.		7,789,898 B2		Peterman
	7,189,234 B2		Tzu et al. Zucherman et al.		7,794,476 B2		Wisnewski
	7,189,236 B2		Taylor et al.		7,803,190 B2		Zucherman et al.
	7,201,751 B2		Zucherman et al.		7,806,911 B2 7,811,308 B2		Peckham Amin et al.
	7,217,291 B2 7,223,289 B2		Zucherman et al. Trieu et al.		7,811,300 B2 7,811,322 B2		Amin et al.
	7,229,441 B2		Trieu et al.		7,811,323 B2		Amin et al.
	7,238,204 B2		Le Couedic et al.		7,811,324 B2		Amin et al.
	7,252,673 B2	8/2007			7,811,330 B2 7,819,921 B2	10/2010	Amin et al.
	7,273,496 B2 7,282,063 B2		Mitchell Cohen et al.		7,828,822 B2		Zucherman et al.
	7,297,162 B2	11/2007			7,828,849 B2	11/2010	
	7,306,628 B2		Zucherman et al.		7,833,272 B2 7,837,687 B2		Amin et al.
	7,318,839 B2		Malberg et al.		7,837,688 B2	11/2010 11/2010	Boyer et al.
	7,320,707 B2 7,335,200 B2	2/2008	Zucherman et al.		7,837,700 B2	11/2010	Harp
	7,335,200 B2 7,335,203 B2		Winslow et al.		7,837,711 B2		Bruneau et al.
	7,354,453 B2		McAfee		7,837,734 B2		Zucherman et al.
	7,384,340 B2		Eguchi et al.		7,846,183 B2 7,846,185 B2	12/2010	Carls et al.
	7,390,330 B2 7,410,501 B2	6/2008 8/2008	нагр Michelson		7,846,186 B2	12/2010	
	7,442,208 B2	10/2008	Mathieu et al.		7,857,815 B2	12/2010	Zucherman et al.
	7,445,637 B2	11/2008			7,862,569 B2		Zucherman et al.
	7,473,268 B2	1/2009	Zucherman et al.		7,862,586 B2	1/2011	
	7,476,251 B2 7,481,839 B2		Zucherman et al. Zucherman et al.		7,862,590 B2 7,862,592 B2		Lim et al. Peterson et al.
	7,481,840 B2		Zucherman et al.		7,862,615 B2		Carli et al.
	, , ==				. ,		

(56)	Referen	ces Cited	2003/0083747			Winterbottom et al.
ILS. P	ATENT	DOCUMENTS	2003/0105466 2003/0135275			Ralph et al. Garcia et al.
0.01		DOCOMENTO	2003/0149438			Nichols et al.
7,867,276 B2		Matge et al.	2003/0153976			Cauthen, III et al. Lawson
7,871,426 B2		Chin et al.	2003/0176921 2003/0220643		11/2003	
7,896,879 B2 7,942,830 B2	5/2011	Solsberg et al. Solsberg et al.	2003/0220650			Major et al.
7,955,392 B2		Dewey et al.	2003/0233098		12/2003	Markworth
7,985,246 B2		Trieu et al.	2004/0087947 2004/0106997			Lim et al. Lieberson
8,012,207 B2 8,025,684 B2	9/2011	Kım Garcia-Bengochea et al.	2004/0106999			Mathews
		Kohm et al.	2004/0148028			Ferree et al.
8,062,332 B2		Cunningham et al.	2004/0167625 2004/0220568			Beyar et al. Zucherman et al.
8,100,823 B2 8,123,782 B2	1/2012	Harp Altarac et al.	2004/0225295			Zubok et al.
8,123,807 B2	2/2012		2004/0249378		12/2004	Saint Martin et al.
8,128,662 B2	3/2012	Altarac et al.	2004/0260305		12/2004	Gorensek et al.
8,152,837 B2		Altarac et al.	2005/0021042 2005/0049708			Marnay et al. Atkinson et al.
8,167,944 B2 8,226,690 B2	5/2012 7/2012	Altarac et al.	2005/0075634			Zucherman et al.
8,273,108 B2		Altarac et al.	2005/0090822			DiPoto
		Altarac et al.	2005/0101955 2005/0125066			Zucherman et al. McAfee
	10/2012	Altarac et al.	2005/0123000			Zucherman et al.
8,409,282 B2	4/2013		2005/0165398		7/2005	Reiley
8,425,559 B2		Tebbe et al.	2005/0192586			Zucherman et al.
8,523,909 B2*	9/2013	Hess A61B 17/7065	2005/0192671 2005/0209603			Bao et al. Zucherman et al.
8,608,762 B2	12/2013	606/248 Solsberg et al.	2005/0209698			Gordon
		Altarac et al.	2005/0216087			Zucherman et al.
8,628,574 B2		Altarac et al.	2005/0228383 2005/0228384			Zucherman et al. Zucherman et al.
8,696,671 B2 8,734,477 B2		Solsberg et al. Solsberg et al.	2005/0228426			Campbell
8,740,948 B2		Reglos et al.	2005/0245937			Winslow
8,845,726 B2		Tebbe et al.	2005/0278036 2006/0030860			Leonard et al. Peterman
		Altarac et al. Solsberg et al.	2006/0036258			Zucherman et al.
		Solsberg et al.	2006/0064107			Bertagnoli et al.
8,900,271 B2	12/2014	Kim	2006/0064165 2006/0064166			Zucherman et al. Zucherman et al.
8,945,183 B2	2/2015 5/2015	Altarac et al.	2006/0004100			Sutton et al.
9,023,084 B2 9,039,742 B2		Altarac et al.	2006/0084976	A1	4/2006	Borgstrom et al.
9,119,680 B2	9/2015	Altarac et al.	2006/0084983		4/2006 4/2006	
9,125,692 B2	9/2015		2006/0084985 2006/0084988		4/2006	
, , , , , , , , , , , , , , , , , , ,		Altarac et al. Altarac et al.	2006/0084991		4/2006	Borgstrom et al.
9,161,783 B2	10/2015	Altarac et al.	2006/0085069		4/2006	
		Reglos et al.	2006/0085070 2006/0085074		4/2006 4/2006	Raiszadeh
9,211,146 B2 9,283,005 B2	12/2015	Kim Tebbe et al.	2006/0089718			Zucherman et al.
9,314,279 B2	4/2016		2006/0122458		6/2006	
9,393,055 B2		Altarac et al.	2006/0122620 2006/0149254		6/2006 7/2006	Lauryssen et al.
9,445,843 B2 9,532,812 B2		Altarac et al. Altarac et al.	2006/0149289			Winslow et al.
9,572,603 B2	2/2017	Altarac et al.	2006/0167416			Mathis et al.
9,675,303 B2	6/2017		2006/0195102 2006/0217811			Malandain Lambrecht et al.
9,861,398 B2 9,956,011 B2		Altarac et al. Altarac et al.	2006/0217811			Anderson
10,058,358 B2		Altarac et al.	2006/0235386			Anderson
10,080,587 B2		Altarac et al.	2006/0241597 2006/0241614			Mitchell et al. Bruneau et al.
10,166,047 B2 10,258,479 B2	1/2019 4/2019	Altarac et al.	2006/0241014		10/2006	Anderson
10,524,772 B2		Stewart et al. Choi et al.	2006/0247623	A1	11/2006	Anderson et al.
10,610,267 B2	4/2020	Altarac et al.	2006/0247632 2006/0247633		11/2006 11/2006	
10,653,456 B2		Altarac et al.	2006/0247650		11/2006	
	11/2020	Altarac et al. Altarac et al.	2006/0247658	A1	11/2006	Pond, Jr. et al.
11,013,539 B2	5/2021	Altarac et al.	2006/0247773		11/2006	Stamp
11,229,461 B2		Altarac et al.	2006/0264938 2006/0264939		11/2006	Zucherman et al. Zucherman et al.
2001/0031965 A1 2002/0022856 A1		Zucherman et al. Johnson et al.	2006/0264939		11/2006	
2002/0042607 A1		Palmer et al.	2006/0265067	A1	11/2006	Zucherman et al.
2002/0116009 A1		Fraser et al.	2006/0271044			Petrini et al.
		Zucherman et al. Paes et al.	2006/0271049 2006/0271055		11/2006 11/2006	Zucherman et al. Thramann
2002/0151977 A1 2003/0040746 A1		Mitchell et al.	2006/02/1055		11/2006	Beyar et al.
2003/0040753 A1	2/2003	Daum et al.	2006/0271194	A 1	11/2006	Zucherman et al.
2003/0074075 A1	4/2003	Thomas et al.	2006/0276801	A1	12/2006	Yerby et al.

(56)	Referen	ices Cited	2007/0276493	Al	11/2007	Malandain et al.
, ,	DATENT	DOCUMENTO	2007/0276496			Lange et al. Anderson
0.5.	PATENT	DOCUMENTS	2007/0276497 2007/0276500			Zucherman et al.
2006/0276007	12/2006	XX7' 1 , 1	2008/0015700			Zucherman et al.
2006/0276897 A1		Winslow et al. Labrom et al.	2008/0013/00			Zucherman et al.
2006/0282077 A1 2006/0282078 A1		Labrom et al.	2008/0021560			Zucherman et al.
2007/0016196 A1		Winslow et al.	2008/0021561			Zucherman et al.
2007/0010190 A1 2007/0032790 A1		Aschmann et al.	2008/0027545			Zucherman et al.
2007/0052730 A1 2007/0055237 A1		Edidin et al.	2008/0027552			Zucherman et al.
2007/0055246 A1		Zucherman et al.	2008/0027553	A1	1/2008	Zucherman et al.
2007/0073289 A1		Kwak et al.	2008/0033445	A1	2/2008	Zucherman et al.
2007/0073292 A1	3/2007	Kohm et al.	2008/0033553			Zucherman et al.
2007/0100340 A1	5/2007	Lange et al.	2008/0033558			Zucherman et al.
2007/0100366 A1		Dziedzic et al.	2008/0033559			Zucherman et al.
2007/0123863 A1		Winslow et al.	2008/0039853 2008/0039858			Zucherman et al. Zucherman et al.
2007/0123904 A1		Stad et al.	2008/0039838			Zucherman et al.
2007/0161991 A1		Altarac et al.	2008/0039835			Zucherman et al.
2007/0161993 A1		Lowery et al.	2008/0039946			Zucherman et al.
2007/0173818 A1 2007/0173821 A1	7/2007	Hestad et al.	2008/0039947			Zucherman et al.
2007/0173821 A1 2007/0173822 A1		Bruneau et al.	2008/0045958			Zucherman et al.
2007/0173823 A1		Dewey et al.	2008/0045959	A1	2/2008	Zucherman et al.
2007/0173832 A1		Tebbe et al.	2008/0046081	A1		Zucherman et al.
2007/0173939 A1		Kim et al.	2008/0046085			Zucherman et al.
2007/0179500 A1	8/2007	Chin et al.	2008/0046086			Zucherman et al.
2007/0185490 A1	8/2007	Implicito	2008/0046087			Zucherman et al.
2007/0191857 A1	8/2007	Allard et al.	2008/0046088			Zucherman et al.
2007/0191948 A1	8/2007		2008/0051785			Zucherman et al. Suddaby
2007/0191991 A1		Addink	2008/0051896 2008/0051898			Zucherman et al.
2007/0198045 A1		Morton et al.	2008/0051898			Zucherman et al.
2007/0198091 A1	8/2007		2008/0051904			Zucherman et al.
2007/0203493 A1		Zucherman et al. Zucherman et al.	2008/0051905			Zucherman et al.
2007/0203495 A1 2007/0203496 A1		Zucherman et al.	2008/0058806			Klyce et al.
2007/0203497 A1		Zucherman et al.	2008/0058807	A1		Klyce et al.
2007/0203501 A1		Zucherman et al.	2008/0058808	A1	3/2008	Klyce et al.
2007/0208345 A1		Marnay et al.	2008/0058941	A1		Zucherman et al.
2007/0208346 A1		Marnay et al.	2008/0065086			Zucherman et al.
2007/0208366 A1		Pellegrino et al.	2008/0065212			Zucherman et al.
2007/0210018 A1	9/2007	Wallwiener et al.	2008/0065213			Zucherman et al.
2007/0225706 A1		Clark et al.	2008/0065214			Zucherman et al.
2007/0225724 A1		Edmond	2008/0071280 2008/0071378			Winslow Zucherman et al.
2007/0225807 A1		Phan et al.	2008/0071378			Sweeney
2007/0225814 A1		Atkinson et al.	2008/0071380			Zucherman et al.
2007/0233068 A1 2007/0233074 A1		Bruneau et al.	2008/0108990			Mitchell et al.
2007/0233074 A1 2007/0233076 A1	10/2007 10/2007		2008/0114455			Lange et al.
2007/0233077 A1	10/2007		2008/0132952	$\mathbf{A}1$		Malandain et al.
2007/0233081 A1		Pasquel et al.	2008/0167655	A1	7/2008	Wang et al.
2007/0233082 A1		Chin et al.	2008/0167656			Zucherman et al.
2007/0233083 A1	10/2007	Abdou	2008/0167657			Greenhalgh
2007/0233084 A1	10/2007	Betz et al.	2008/0172057			Zucherman et al.
2007/0233088 A1		Edmond	2008/0177271		7/2008	
2007/0233089 A1		DiPoto et al.	2008/0177272 2008/0177306			Zucherman et al. Lamborne et al.
2007/0233096 A1		Garcia-Bengochea Mastrorio et al.	2008/0177300			Perez-Cruet et al.
2007/0233098 A1 2007/0233129 A1		Bertagnoli et al.	2008/0183210			Zucherman et al.
2007/0253129 A1 2007/0250060 A1		Anderson et al.	2008/0188895			Cragg et al.
2007/0260245 A1		Malandain et al.	2008/0195152	A1		Altarac et al.
2007/0265623 A1		Malandain et al.	2008/0208344	A1		Kilpela et al.
2007/0265624 A1		Zucherman et al.	2008/0215058			Zucherman et al.
2007/0265625 A1	11/2007	Zucherman et al.	2008/0221692			Zucherman et al.
2007/0265626 A1	11/2007		2008/0228225			Trautwein et al.
2007/0270822 A1	11/2007		2008/0234708			Houser et al.
2007/0270823 A1		Trieu et al.	2008/0234824 2008/0287997			Youssef et al.
2007/0270824 A1		Lim et al.	2008/0287997			Altarac et al. Zucherman et al.
2007/0270826 A1		Trieu et al.	2008/0288073			Altarac et al.
2007/0270827 A1		Lim et al.	2009/0012528			Aschmann et al.
2007/0270828 A1 2007/0270829 A1		Bruneau et al. Carls et al.	2009/0012320			Hudgins et al.
2007/0270829 A1 2007/0270834 A1		Bruneau et al.	2009/0118833			Tebbe et al.
2007/0270854 AT 2007/0272259 AT		Allard et al.	2009/0125036		5/2009	
2007/0276368 A1		Trieu et al.	2009/0138046			Altarac et al.
2007/0276369 A1		Allard et al.	2009/0138055			Altarac et al.
2007/0276370 A1		Altarac et al.	2009/0222043			Altarac et al.
2007/0276372 A1		Malandain et al.	2009/0248079			Kwak et al.
2007/0276373 A1		Malandain	2009/0265007			Colleran A61F 2/4611
2007/0276390 A1		Salsberg				606/90
		-				

(56)	Referen	nces Cited	EP EP	1056408 1343424	12/2003 9/2004
U.S.	PATENT	DOCUMENTS	\mathbf{EP}	1454589	9/2004
2000/0202215 41	11/2000	T-:	EP EP	1330987 1299042	3/2005 3/2006
2009/0292315 A1 2009/0292316 A1	11/2009 11/2009		EP	1578314	5/2007
2010/0042217 A1		Zucherman et al.	EP EP	1675535 0959792	5/2007 11/2007
2010/0082108 A1 2010/0114100 A1		Zucherman et al. Mehdizade	EP	1027004	12/2007
2010/0131009 A1	5/2010	Roebling et al.	EP	1030615	12/2007
2010/0152775 A1*	6/2010	Seifert A61B 17/3468	EP EP	1570793 1148850	5/2008 4/2009
2010/0160947 A1	6/2010	623/17.11 Akyuz et al.	EP	1861046	2/2012
2010/0228092 A1	9/2010	Ortiz et al.	FR FR	2681525 2717675	3/1993 5/1996
2010/0234889 A1 2010/0262243 A1	9/2010	Hess Zucherman et al.	FR	2717073	9/1996
2010/0280551 A1	11/2010		FR	2816197	5/2002
2010/0305611 A1		Zucherman et al.	SU WO	988281 WO9404088	1/1983 3/1994
2011/0172710 A1 2011/0245833 A1	7/2011 10/2011	Thommen et al. Anderson	WO	WO9426192	11/1994
2011/0313457 A1	12/2011	Reglos et al.	WO WO	WO9525485 WO9531158	9/1995 11/1995
2012/0078301 A1 2012/0158063 A1	3/2012 6/2012	Hess Altarac et al.	wo	WO9600049	1/1996
2012/0138003 A1 2012/0226315 A1		Altarac et al.	WO	WO9829047	7/1998
2012/0232552 A1		Morgenstern Lopez et al.	WO WO	WO9921500 WO9921501	5/1999 5/1999
2012/0303039 A1 2012/0330359 A1	11/2012	Chin et al. Kim	WO	WO9942051	8/1999
2013/0012998 A1	1/2013	Altarac et al.	WO WO	WO0013619	3/2000
2013/0072985 A1 2013/0165974 A1	3/2013 6/2013		WO	WO0044319 WO0044321	8/2000 8/2000
2013/0165974 A1 2013/0165975 A1	6/2013	Tebbe et al.	WO	WO0128442	4/2001
2013/0172932 A1		Altarac et al.	WO WO	WO0191657 WO0191658	12/2001 12/2001
2013/0172933 A1 2013/0289399 A1		Altarac et al. Choi et al.	wo	WO0203882	1/2002
2013/0289622 A1	10/2013		WO	WO0207623	1/2002
2014/0081332 A1		Altarac et al.	WO WO	WO0207624 WO02051326	1/2002 7/2002
2014/0214082 A1 2014/0358186 A1*		Reglos et al. Frock A61B 17/8891	WO	WO02067793	9/2002
		606/86 A	WO WO	WO02071960 WO02076336	9/2002 10/2002
2015/0150598 A1 2015/0150604 A1	6/2015 6/2015	Tebbe et al.	wo	WO03007791	1/2003
2015/0374415 A1	12/2015		WO	WO03007829	1/2003
2016/0030092 A1		Altarac et al.	WO WO	WO03008016 WO03015646	1/2003 2/2003
2016/0066963 A1 2016/0242822 A1	3/2016 8/2016	Altarac et al.	WO	WO03024298	3/2003
2016/0317193 A1	11/2016	Kim	WO WO	WO03045262 WO03099147	6/2003 12/2003
2017/0071588 A1 2017/0128110 A1	3/2017 5/2017	Choi et al. Altarac et al.	wo	WO03101350	12/2003
2017/0156763 A1	6/2017	Altarac et al.	WO WO	WO04073533	9/2004 12/2004
2017/0245883 A1		Tebbe et al.	WO	WO04110300 WO05009300	2/2004
2017/0258501 A1 2017/0273722 A1	9/2017 9/2017	Altarac et al. Altarac et al.	WO	WO05013839	2/2005
2017/0296238 A1	10/2017	Snell et al.	WO WO	WO05025461 WO05041799	3/2005 5/2005
2017/0348028 A1 2018/0028130 A1	12/2017 2/2018	Calvosa et al.	WO	WO05044152	5/2005
2018/0193064 A1	7/2018		WO WO	WO05055868	6/2005
2018/0228519 A1	8/2018	Altarac et al.	WO	WO05079672 WO2005086776	9/2005 9/2005
2019/0069933 A1 2019/0090912 A1	3/2019 3/2019	Altarac et al. Altarac et al.	WO	WO05115261	12/2005
2019/0090913 A1	3/2019	Altarac et al.	WO WO	WO06033659 WO06034423	3/2006 3/2006
2019/0105082 A1	4/2019		wo	WO06039243	4/2006
2019/0105083 A1 2019/0201057 A1	4/2019 7/2019		WO	WO06039260	4/2006
2021/0100592 A1	4/2021		WO WO	WO06045094 WO06063047	4/2006 6/2006
2022/0054280 A1*		Frock A61B 17/7065	WO	WO06065774	6/2006
2022/0061894 A1 2023/0240726 A1		Altarac et al. Linares	WO WO	WO2006064356 WO2006089085	6/2006 8/2006
2023/0255786 A1*		Lin A61F 2/4405	wo	WO06102269	9/2006
2024/22==2	0/25-	623/17.16	WO	WO06102428	9/2006
2024/0277384 A1*	8/2024	Malinowski A61B 17/7065	WO WO	WO06102485 WO06107539	9/2006 10/2006
FOREIG	N PATE	NT DOCUMENTS	wo	WO06110462	10/2006
			WO	WO06110464	10/2006
CN 10189'		12/2010	WO WO	WO06110767 WO06113080	10/2006 10/2006
	2334 7636	6/1989 1/1999	wo	WO06113406	10/2006
EP 0768	3843	2/1999	WO	WO06113814	10/2006
EP 1138	3268	10/2001	WO	WO2006106246	10/2006

(56)	Refere	ences Cited	WO WO2009114479 9/2009 WO WO2011084477 7/2011
	FOREIGN PATENT DOCUMENTS		WO WO2015171814 11/2015
WO	WO06118945	11/2006	OTHER PUBLICATIONS
WO	WO06119235	11/2006	
WO	WO06119236	11/2006	Choi, Gun et al., "Percutaneous Endoscopic Interlaminar Disectomy for Intracanalicular Disc Herniations at L5-S1 Using a Rigid
WO	WO06135511	12/2006	
WO	WO2007010140	1/2007	Working Channel Endoscope," Operative Neurosurg., 58: pp. 59-68 (2006).
WO	WO07015028	2/2007	
WO	WO07035120	3/2007	
WO	WO07075375	7/2007	Fast, Avital et al., "Surgical Treatment of Lumbar Spinal Stenosis in
WO	WO07075788	7/2007	the Elderly," Arch Phys. Med Rehabil., Mar. 1985, pp. 149-151, vol.
WO	WO07075791	7/2007	66. Lee, Seungcheol et al., "New Surgical Techniques of Percutaneous Endoscopic Lumbar Disectomy for Migrated Disc Herniation,"
WO	WO07089605	8/2007	
WO	WO07089905	8/2007	
WO	WO07089975	8/2007	Joint Dis. Rel. Surg., 16(2); pp. 102-110 (2005).
WO	WO07097735	8/2007	Lee, Seungcheol et al., "Percutaneous Endoscopic Interlaminar
WO	WO07109402	9/2007	Disectomy for L5-S1 Disc Herniation: Axillary Approach and Preliminary Results," J. of Korean Neurosurg. Soc., 40: pp. 79-83 (2006).
WO	WO07110604	10/2007	
WO	WO07111795	10/2007	
WO	WO07111979	10/2007	McCulloch, John A., Young, Paul H., "Essentials of Spinal Microsurgery," 1998, pp. 453-485. Lippincott-Raven Publishers, Phila-
WO	WO07111999	10/2007	
WO	WO07117882	10/2007	delphia, PA (37 pages total). Minns, R.J., et al., "Preliminary Design and Experimental Studies of a Noval Soft Implant for Correcting Sagittal Plane Instability in the
WO	WO07121070	10/2007	
WO	WO07127550	11/2007	
WO	WO07127588	11/2007	Lumbar Spine," (1997) Spine, 22(16): 1819-1825. Palmer, Sylvain et al., "Bilateral decompressive surgery in lumbar
WO	WO07127677	11/2007	
WO	WO07127689	11/2007	spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system," Neurosur-
WO	WO07127694	11/2007	
WO	WO07127734	11/2007	
WO WO	WO07127736 WO07131165	11/2007 11/2007 11/2007	gery Focus, Jul. 2002, pp. 1-6, vol. 13. Swan, Colby, "Point of View: Preliminary Design and Experimental
WO	WO07134113	11/2007	Studies of a Novel Soft Implant for Correcting Sogittal Plane Instability in the Lumbar Spine, "Spine, 1997, 22(16), 1826-1827. Tredway, Trent L. et al., "Minimally Invasive Transforaminal Lum-
WO	WO2008009049	1/2008	
WO	WO08048645	4/2008	bar Interbody Fusion (MI-TLIF) and Lateral Mass Fusion with the MetRx System," (14 pages total), 2005.
WO	WO2008057506	5/2008	
WO	WO2008130564	10/2008	
WO WO	WO2008130304 WO2009014728 WO2009033093	1/2009 3/2009	Vaccaro, Alexander J. et al., MasterCases Spine Surgery, 2001, pp. 100-107. Thieme Medical Publishers, Inc., NY. (10 pages total).
WO	WO2009083276	7/2009	Vertos mild Devices Kit—PRT-00430-C—Instructions for Use (13 pages total); see http://vertosmed.com/docs/mild1FU_PRT-00430-
WO	WO2009083583	7/2009	
WO	WO2009086010	7/2009	C.pdf., 2012. * cited by examiner
WO	WO2009091922	7/2009	
WO	WO2009094463	7/2009	

Fig. 6

INTERSPINOUS SPACER WITH A RANGE OF DEPLOYMENT POSITIONS AND METHODS AND SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 63/452,249, filed Mar. 15, 2023, which is incorporated ¹⁰ herein by reference.

FIELD

The present invention is directed to the area of interspinous spacers for deployment between adjacent spinous processes. The present invention is also directed to systems and methods for utilizing the interspinous spacer.

BACKGROUND

With spinal stenosis, the spinal canal narrows and pinches the spinal cord and nerves, causing pain in the back and legs. Typically, with age, a person's ligaments may thicken, intervertebral discs may deteriorate, or facet joints may 25 break down. The conditions can contribute to the narrowing of the spinal canal. Injury, heredity, arthritis, changes in blood flow, and other causes may also contribute to spinal stenosis.

Various treatments of the spine have been proposed or used including medications, surgical techniques, and implantable devices that alleviate and reduce pain associated with the back. In one surgical technique, a spacer is implanted between adjacent spinous processes of a patient's spine. The implanted spacer opens the spinal canal, maintains the desired distance between vertebral body segments, and, as a result, avoids or reduces impingement of nerves and relieves pain. For suitable candidates, an implantable interspinous spacer may provide significant benefits in terms of pain relief.

BRIEF SUMMARY

One aspect is an interspinous spacer that includes a body having a distal portion, a proximal portion, a proximal 45 surface, a channel extending longitudinally from the proximal surface, and at least one slot extending longitudinally along the distal portion; an arm actuator defining a threaded channel extending longitudinally, wherein the arm actuator is configured to fit within the body; an actuator screw 50 including a shaft having a proximal end and a distal portion, wherein the actuator screw further includes a head coupled to the proximal end of the shaft, wherein the distal portion of the shaft of the actuator screw is threaded and the actuator screw is at least partially disposed in the channel of the body 55 and the threaded channel of the arm actuator, wherein, as the actuator screw is rotated using a driver tool, the arm actuator moves longitudinally relative to the body; a first pin, wherein the first pin is arranged to move along the at least one slot of the body; a second pin; and a first arm and a 60 second arm, wherein each of the first and second arms includes a bridge, at least two receiving extensions extending from the bridge in a first direction and configured for receiving a portion of a vertebra therebetween, and a coupling extension extending from the bridge in a second 65 direction, wherein each of the coupling extensions defines a pin opening and a curved track, wherein the first and second

2

arms are coupled to the distal portion of the body by the second pin extending through the curved tracks of the coupling extensions and further coupled to the distal portion of the body and the actuator arm by the first pin extending through the pin openings of the coupling extensions, wherein the first and second arms are configured to rotate among different deployment positions according to the curved track in response to longitudinal movement of the actuator arm as the actuator screw is rotated.

In at least some aspects, the actuator screw further includes a disc disposed along the shaft distal to, and separated from, the head, wherein the shaft has an outer diameter that is smaller than outer diameters of the disc and the head. In at least some aspects, the disc includes a plurality of teeth arranged around a perimeter of the disc. In at least some aspects, the interspinous spacer further includes at least one locking inset positioned within the channel of the body for engagement by the disc of the actuator screw, each of the at least one locking inset includ-20 ing at least one tooth for interaction with the teeth of the disc to limit rotation of the actuator screw absent the driver tool. In at least some aspects, the interspinous spacer further includes a locking ring configured for engagement with the actuator screw between the head and the disc to limit movement of the actuator screw proximally or distally within the channel of the body, wherein the body defines a bounded groove within the channel to receive the locking ring, wherein the locking ring is a partial or full ring.

In at least some aspects, the interspinous spacer further includes each of the first arm and the second arm includes at least two of the coupling extensions. In at least some aspects, the interspinous spacer further includes the coupling extensions of the first arm interleave with the coupling extensions of the second arm.

In at least some aspects, the interspinous spacer further includes the body includes opposing undercut notches configured for receiving a clamp of a spacer insertion instrument. In at least some aspects, the interspinous spacer further includes the actuator screw further includes a shaped cavity formed in the head, wherein the shaped cavity is configured for receiving a bit of the driver tool that has a shape complementary to the shaped cavity.

Another aspect is an interspinous spacer that includes a body having a distal portion, a proximal portion, a proximal surface, and a channel extending longitudinally from the proximal surface; an arm actuator defining a threaded channel extending longitudinally, wherein the arm actuator is configured to fit within the body; an actuator screw including a shaft having a proximal end and a distal portion, a head coupled to the proximal end of the shaft, and a disc disposed along the shaft distal to, and separated from, the head, wherein the distal portion of the shaft of the actuator screw is threaded and the actuator screw is at least partially disposed in the channel of the body and the threaded channel of the arm actuator, wherein the disc includes a plurality of teeth arranged around a perimeter of the disc, wherein, as the actuator screw is rotated using a driver tool, the arm actuator moves longitudinally relative to the body; at least one locking inset positioned within the channel of the body for engagement by the disc of the actuator screw, each of the at least one locking inset including at least one tooth for interaction with the teeth of the disc to limit rotation of the actuator screw absent the driver tool; and a first arm and a second arm, wherein each of the first and second arms includes a bridge, at least two receiving extensions extending from the bridge in a first direction and configured for receiving a portion of a vertebra therebetween, and a cou-

pling extension extending from the bridge in a second direction, wherein each of the coupling extensions is coupled to the distal portion of the body and the actuator

In at least some aspects, the interspinous spacer further includes a locking ring configured for engagement with the actuator screw between the head and the disc to limit movement of the actuator screw proximally or distally within the channel of the body, wherein the body defines a bounded groove within the channel to receive the locking ring, wherein the locking ring is a partial or full ring. In at least some aspects, each of the first arm and the second arm includes at least two of the coupling extensions. In at least some aspects, the coupling extensions of the first arm interleave with the coupling extensions of the second arm.

In at least some aspects, the body further includes at least one slot extending longitudinally along the distal portion of the body, the interspinous spacer further including a first pin, wherein the first pin is arranged to move along the at least 20 one slot of the body, wherein each of the coupling extensions defines a pin opening, wherein the first and second arms are coupled to the distal portion of the body and the actuator arm by the first pin extending through the pin openings of the coupling extension. In at least some aspects, the interspinous 25 spacer further includes a second pin, wherein each of the coupling extensions further defines a curved track, wherein the first and second arms are coupled to the distal portion of the body by the second pin through the curved tracks of the coupling extensions, wherein the first and second arms are 30 configured to rotate relative to the body according to the curved track in response to longitudinal movement of the actuator arm as the actuator screw is rotated.

In at least some aspects, the at least one locking inset includes two locking insets disposed opposite each other. In at least some aspects, the body includes opposing undercut notches configured for receiving a clamp of a spacer insertion instrument. In at least some aspects, the actuator screw further includes a shaped cavity formed in the head, wherein the shaped cavity is configured for receiving a bit of the 40 driver tool that has a shape complementary to the shaped cavity.

Yet another aspect is a kit that includes any of the interspinous spacers described above; a spacer insertion instrument configured to releasably grip the interspinous ⁴⁵ spacer for implantation into a patient; and the driver tool having a spacer engaging bit configured to engage the actuator screw of the interspinous spacer and rotate the actuator screw by rotation of the driver tool.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following drawings. In the drawings, like reference numerals 55 refer to like parts throughout the various figures unless otherwise specified.

For a better understanding of the present invention, reference will be made to the following Detailed Description, which is to be read in association with the accompanying 60 drawings, wherein:

FIG. 1A is a schematic perspective view of one embodiment of an interspinous spacer in a first deployed position;

FIG. 1B is a schematic perspective view of the interspinous spacer of FIG. 1A in a second deployed position;

FIG. 1C is a schematic perspective exploded view of the interspinous spacer of FIG. 1A;

4

FIG. 2 is schematic perspective side view of an actuator screw, locking inserts, and locking ring of the interspinous spacer of FIG. 1A:

FIG. 3 is schematic perspective side view of arms and a pin of the interspinous spacer of FIG. 1A;

FIG. 4 is schematic side view of the interspinous spacer of FIG. 1A illustrating different separation distances, represented by vertical lines, for the arms;

FIG. 5 is a perspective view of one embodiment of a spacer insertion instrument; and

FIG. 6 is a perspective view of one embodiment of a driver tool.

DETAILED DESCRIPTION

The present invention is directed to the area of interspinous spacers for deployment between adjacent spinous processes. The present invention is also directed to systems and methods for utilizing the interspinous spacer.

Examples of interspinous spacers are found in U.S. Pat. Nos. 8,123,782; 8,128,662; 8,273,108; 8,277,488; 8,292, 922; 8,425,559; 8,613,747; 8,864,828; 9,119,680; 9,155, 572; 9,161,783; 9,393,055; 9,532,812; 9,572,603; 9,861, 398; 9,956,011; 10,080,587; 10,166,047; 10,610,267; 10,653,456; 10,835,295; 10,835,297; 11,013,539; and 11,229,461, all of which are incorporated herein by reference. Unless indicated otherwise, the features and methods described in these references can be applied to the interspinous spacers described herein.

Conventional interspinous spacers typically have a fixed distance between the two arms when deployed. Conventionally, interspinous spacers of different sizes are available and the clinician selects which size is to be used for a particular surgery based on the size and arrangement of the vertebrae.

In addition, in at least some conventional interspinous spacers, a spindle arrangement is provided for engagement by a tool and rotation using the tool to cause the arms of the spacer to rotate for engagement with the vertebrae (for example the spinous processes of the adjacent vertebrae). The spindle arrangement is welded to the body of the interspinous spacer.

As described herein, a single interspinous spacer can have a range of deployment positions (for example, provide for a range of distances between the two arms when deployed). This allows the interspinous spacer to fit a range of different spacings between adjacent vertebrae. Additionally or alternatively, an interspinous spacer can utilize an actuator screw instead of a spindle arrangement, as described herein.

FIGS. 1A, 1B, 1C, 2, 3, and 4 illustrate one embodiment of an interspinous spacer 100 that includes a body 102, a first (or superior) arm 104, a second (or inferior) arm 106, an actuator screw 108, two locking inserts 112, a locking ring 113, a first pin 114a, a second pin 114b, and an arm actuator 115. There is no weld between the body 102 and the actuator screw 108.

In FIG. 1A, the first and second arms 104, 106 of the spacer 100 are in a first deployed position with the first and second arms 104, 106 separated by a first distance (for example, 8 mm). In FIG. 1B, the first and second arms 104, 106 of the spacer 100 are in a second deployed position with the first and second arms 104, 106 separated by a second distance (for example, 16 mm). In this embodiment, the first and second arms 104, 106 has a range of deployment positions from the first deployed position to the second deployed position. The first and second arms 104, 106 can be separated by any distance in the range from the first distance to the second distance (for example, any distance

from 8 to 16 mm). This allows the spacer 100 to fit a range of different spacings between adjacent vertebrae.

The first arm 104 includes two receiving extensions 104a, 104b coupled by a bridge 105 from which an attachment portion 142 extends. The second arm 106 includes two 5 receiving extensions 106a, 106b coupled by a bridge 107 from which the attachment portion 142 extends. In each deployment position, the pairs of receiving extensions 104a, **104***b*, **106***a*, **106***b* extend away from the body **102** of the spacer 100 with the extensions of each pair disposed on 10 opposing sides of one of the adjacent vertebrae (for example, the spinous process of the adjacent vertebra), as illustrated in FIGS. 1A and 1B. The first and second arms 104, 106 of the spacer 100 are not necessarily perpendicular to the longitudinal axis of the body 102. Instead, the angle of the 15 first and second arms 104, 106 of the spacer 100 relative to the longitudinal axis of the body 102 depends on the selected deployed position which can range from the first deployed position of FIG. 1A to the second deployed position of FIG. 1B. In at least some embodiments, the shape of the bridges 20 105, 107 is selected to provide suitable engagement of the adjacent vertebrae for the range of selectable deployed positions.

In at least some embodiments, the length of the bridge 105 of the first arm 104 is approximately 7 to 10 millimeters and 25 the length of the bridge 107 of the second arm 106 is approximately 5 to 8 millimeters. In at least some embodiments, the tip-to-tip distance of the extensions 104a, 104b is approximately 8 to 12 millimeters and the tip-to-tip distance of the extensions 106a, 106b is approximately 8 to 12 30 millimeters. In at least some embodiments, the first arm 104 forms a larger space for receiving the superior vertebra (for example, the superior spinous process) than the space formed by the second arm 106 for receiving the inferior vertebra (for example, the inferior spinous process) as 35 vertebrae and spinous processes are naturally narrower on top and wider on the bottom. In at least some embodiments, where there is a difference in size between the first and second arms 104, 106, the spacer 100 may include a marking or other indication so that a clinician can individually 40 identify the first and second arms 104, 106 for correct implantation orientation within the patient.

In at least some other embodiments, the first and second arms 104, 106 form a same-sized space for receiving the vertebrae. In at least some embodiments, the bridges 105, 45 107 of the first and second arms 104, 106 have a same length.

The body 102 includes a distal portion 102a, a proximal portion 102b, a proximal surface 102c, and an opening 102d in the proximal surface for the actuator screw 108. The body 50 102 defines a channel 116 that extends distally from the opening 102d through at least a portion of the body 102, as illustrated in FIG. 1C. In at least some embodiments, the body 102 includes undercut notches 103 formed on opposite sides of the proximal portion 102b of the body. In at least 55 some embodiments, the notches 103 are configured for attachment of clamps 795 of a spacer insertion instrument 790 (FIG. 5).

The body 102 includes opposing slots 160 (or at least one slot) for receiving a first pin 114a and travel of the first pin 60 along the slots as the first and second arms 104, 106 are deployed or retracted. The body 102 also includes opposing pin holes 141, distal of the opposing slots 160, for receiving a second pin 114b.

The actuator screw 108 includes a head 117, a shaft 118, 65 and a disc 120 disposed along the shaft and having teeth 122 arranged around the perimeter of the disc, as illustrated in

6

FIG. 2. The disc 120 has a larger outer diameter than the shaft 118 and is positioned distal to the head 117 with a gap 168 between the disc and the head. At least a portion 121 of the shaft 118 distal to the disc is threaded. The actuator screw 108 can be made from a single piece of material or may contain two or more components that are attached together. The head 117 of the actuator screw 108 includes a shaped cavity 119 to receive a driver tool 880 (FIG. 6) with a complementary-shaped engaging bit 884. Engagement of the actuator screw 108 by the driver tool allows a user to rotate the actuator screw to further separate (or, in at least some embodiments, retract) the first and second arms 104, 106.

A locking ring 113 fits on the actuator screw 108 in the gap 168 between the head 117 and the disc 120. As the actuator screw 108 is inserted into the channel 116 of the body 102, the locking ring 113 fits within a bounded groove 133 in the interior wall of the body. The locking ring 113 resists movement of the actuator screw 108 up or down (e.g., distally or proximally) within the body 102. The locking ring 113 can be a full ring or a partial ring (as illustrated in FIG. 1C).

Locking insets 112 fit within opposing indents 134 located below the bounded groove 133 in the interior wall of the body 102 so that the locking insets 112 are exposed within the body. Each locking inset 112 includes a body 138 and at least one tooth 140 (FIG. 2) extending from the body. The at least one tooth 140 of the locking inset 112 is arranged to engage the teeth 122 of the disc 120 of the actuator screw 108 when the actuator screw is disposed within the body 102. The at least one tooth 140 of the locking insets 112 and the teeth 122 of the disc 120 of the actuator screw 108 are arranged to resist rotation of the actuator screw except by use of a tool 880 (FIG. 6) that engages the actuator screw 108. In at least some embodiments, the shape and size of the at least one tooth 140 of the locking insets 112 and the teeth 122 of the disc 120 of the actuator screw 108 are selected to resist rotation of the actuator screw when the first and second arms 104, 106 are separated at a selected deployment position and force is applied to the first and second arms 104, 106 such as, for example, during the patient's movement and bending. In at least some embodiments, the shape and size of the at least one tooth 140 of the locking insets 112 and the teeth 122 of the disc 120 of the actuator screw 108 are selected to generate a clicking sound as the actuator screw 108 is rotated using a tool 880 (FIG. 6).

The arm actuator 115 includes a threaded channel 154 into which the threaded portion 121 of the shaft 118 of the actuator screw 108 extends. The threads and the size of the threaded channel 154 of the arm actuator 115 and the threaded shaft 118 of the actuator screw 108 are complementary so that the actuator screw 108 fits within the threaded channel 154 and moves distally or proximally, along a path defined by the threads, as the actuator screw 108 is rotated. The arm actuator 115 further includes two opposing actuator extensions 156 that each define a pin opening 158 for receiving the first pin 114a.

Each of the first and second arms 104, 106 includes at least one coupling extension 162 extending from the bridge 105, 107. Each coupling extension 162 defines an opening 164 for receiving the first pin 114a, as illustrated in FIG. 3, and a curved track 166 for receiving the second pin 114b and allowing the second pin to move along the curved track in response to rotation of the actuator screw 108. In the illustrated embodiment of FIGS. 1A, 1B, 1C, and 3, each of the first and second arms 104, 106 includes two coupling extensions 162 that, when the spacer 100 is assembled,

interleave with each other as illustrated in FIG. 3. When the spacer 100 is assembled, the first pin 114a passes through the opposing slots 160 of the body 102, the pin openings 158 of the arm actuator 115, and the openings 164 of the coupling extensions 162 of the first and second arms 104, 5 106. The second pin 115b passes through the opposing pin holes 141 of the body 102 and the curved tracks 166 of the coupling extensions 162 of the first and second arms 104, 106.

As the actuator screw 108 is rotated in a first direction, the 10 arm actuator 115 moves distally. The first pin 114a is carried distally by the arm actuator 115 pushing the portions of the first and second arms 104, 106 adjacent to the first pin 114a distally. This causes the first and second arms 104, 106 to rotate about the second pin 114b according to the path of the 15 curved tracks 166 of the first and second arms 104, 106 resulting in the first and second arms separating from each other, as illustrated by comparing FIGS. 1A and 1B.

Rotating the actuator screw 108 in a second direction, opposite the first direction, reverses the movement of the 20 arm actuator 115, pin 114a, and first and second arms 104, 106. The ends of the opposing slots 160 of the body 102 limit movement of the first pin 114a and, thereby, limit the range of separation of the first and second arms 104, 106.

In the first deployed position of FIG. 1A, the first pin 114a 25 is at the most proximal position along opposing slots 160 in the body 102. In the first deployed position of FIG. 1B, the first pin 114a is at the most distal position along the opposing slots 160 in the body 102. FIG. 4 illustrates examples of different separation distances 170 (representing 30 different deployed positions) between the first and second arms 104, 106 for one embodiment of the spacer 100. Examples of separation distances are illustrated in FIG. 4 as d_1 , d_2 , d_3 , d_4 , and d_5 (for example, 8, 10, 12, 14, or 16 mm, respectively). In at least some embodiments, any distance 35 between the largest and smallest separation distance can be achieved. In at least some embodiments, the selectable distances may be defined in part by the teeth 122 on the disc 120 of the actuator screw 118, as well as the length of the opposing slots 160 of the body 102.

U.S. Pat. Nos. 8,123,782; 8,128,662; 8,273,108; 8,277, 488; 8,292,922; 8,425,559; 8,613,747; 8,864,828; 8,945, 183; 9,119,680; 9,155,572; 9,161,783; 9,393,055; 9,532, 812; 9,572,603; 9,861,398; 9,956,011; 10,080,587; 10,166, 047; 10,610,267; 10,653,456; 10,835,295; 10,835,297; 45 11,013,539; and 11,229,461, all of which are incorporated herein by reference, illustrate a variety of tools for insertion and deployment of a spacer between adjacent spinous processes. These tools can be used or modified for insertion and deployment of the spacer 100 described above.

As an example, FIGS. 5 and 6 illustrate a spacer insertion instrument 790 and a driver tool 880, respectively. The spacer insertion instrument 790 includes a cannula 791 connected to a handle 792. The spacer insertion instrument 790 defines a central passageway 793 through the handle 55 792 and cannula 791. The driver tool 880 is removably insertable into the central passageway 793.

The cannula **791** includes clamps (for example, prongs) **795** to releasably clamp to the body **102** of the spacer **100** (for example, to the undercut notches **103** formed on opposite sides of the body **102**) for delivery of the spacer into the patient using the spacer insertion instrument **790**. In at least some embodiments, the clamps **795** include extensions **796** that extend inwardly toward each other to form hooks. In at least some embodiments, the extensions **796** can engage the 65 undercut notches **103** (FIG. 1C) formed on opposite sides of the body **102** of the spacer **100** to grip the spacer.

8

The cannula **791** also includes an inner shaft **797** (to which the clamps **795** are attached), an outer shaft **794**, and a control **798**. In at least some embodiments, the inner shaft **797** is connected to the handle **792** and the outer shaft **794** is passed over the inner shaft **797**.

The outer shaft 794 translates with respect to the inner shaft 797 (or, alternatively, the inner shaft translates with respect to the outer shaft) using the control 798. The translation of the outer shaft 794 (or the inner shaft 797) operates the clamps 795. When the outer shaft 794 moves away from the clamps 795, the clamps separate to allow loading (or unloading) of the spacer 100 on the spacer insertion instrument 790. When the outer shaft 794 moves toward the clamps 795, the clamps are moved together to grip the spacer 100. For example, the clamps 795 can grip the undercut notches 103 formed on opposite sides of the body 102 of the spacer 100. In this manner, the spacer insertion instrument 790 can hold the spacer 100 for delivery of the spacer into position between adjacent spinous processes within the patient.

Turning to FIG. 8, a driver tool 880 includes a handle 882 at the proximal end and a spacer engaging bit 884 (for example, a socket key or hexagonal tip) at the distal end. The handle 882 and spacer engaging bit 884 are connected by a shaft 886. The driver tool 880 is sized to be inserted into the central passageway 793 of the spacer insertion instrument 790 such that the spacer engaging bit 884 at the distal end operatively connects with a spacer 100 gripped by the clamps 795 of the spacer insertion instrument 790. The spacer engaging bit 884 includes features for engaging with the shaped cavity 119 (see, for example, FIG. 2) in the actuator screw 108 of the spacer 100. In at least some embodiments, the driver tool 880 has a spacer engaging bit 884 that is complementary to the shaped cavity 119 in the actuator screw 108 of the spacer 100. For example, the bit **884** can have a flat (like a regular screwdriver), cross (like a Phillips screwdriver), square, pentagonal, hexagonal, or octagonal shape (or any other suitable shape) with the shaped cavity 119 having a complementary shape. Rotating the driver tool 880 when engaged with the actuator screw 108 of the spacer 100 rotates the actuator screw 108 to separate the arms 104, 106 of the spacer, as described above.

In at least some embodiments, a small midline or lateralto-midline incision is made in the patient for percutaneous delivery of the spacer 100. In at least some embodiments, the supraspinous ligament is avoided. In at least some embodiments, the supraspinous ligament is split longitudinally along the direction of the tissue fibers to create an opening for the instrument. In at least some embodiments, one or more dilators may be used to create or enlarge the opening.

In at least some embodiments, the spacer 100, in the first deployed position, is releasably attached to the spacer insertion instrument 790 as described above. In at least some embodiments, the spacer 100 is inserted into a port or cannula, if one is employed, which has been operatively positioned to form an opening to the interspinous space within a patient's back. The spacer 100, attached to the spacer insertion instrument 790, is inserted into the interspinous space between the spinous processes of two adjacent vertebral bodies. In at least some embodiments, the spacer 100 is advanced beyond the end of a cannula or, alternatively, the cannula is pulled proximately to uncover the spacer 100 connected to the spacer insertion instrument 790. Once in position, the driver tool 880 is inserted into the spacer insertion instrument 790, if not previously inserted, to engage the actuator screw 108. The driver tool 880 is rotated to rotate the actuator screw 108. The rotating actuator screw

q

108 changes the deployed position of the spacer 100. Rotation in one direction, for example, clockwise, for example, increase the separation distance between the arms 104, 106 (compare, for example, FIGS. 1A and 1B).

The arms **104**, **106** of the spacer may be positioned in one 5 of many deployed positions with different separation distances. In at least some, embodiments, the separation of the arms **104**, **106** can be reversed by rotating the actuator screw **108** in the opposite direction, for example, counterclockwise.

In at least some embodiments, a clinician can observe with fluoroscopy or other imaging technique the positioning of the spacer 100 inside the patient and then choose to reposition the spacer 100, if desired. Repositioning of the spacer may involve reversing, or partially reversing, the 15 separation of the arms 104, 106. The spacer 100 may then be re-deployed into the desired location. This process can be repeated as necessary until the clinician has achieved the desired positioning of the spacer in the patient.

Following deployment of the spacer, the spacer insertion 20 instrument **790** and driver tool **880** (and any other instrumentation, such as a cannula or dilator) is removed from the body of the patient. The spacer insertion instrument **790** can be operated as described above to release the clamps **795** from the spacer **100**.

The above specification provides a description of the manufacture and use of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention also resides in the claims hereinafter appended.

What is claimed as new and desired to be protected by Letters Patent of the United States is:

- 1. An interspinous spacer, comprising:
- a body having a distal portion, a proximal portion, a proximal surface, a channel extending longitudinally 35 from the proximal surface, and at least one slot extending longitudinally along the distal portion;
- an arm actuator defining a threaded channel extending longitudinally, wherein the arm actuator is configured to fit within the body;
- an actuator screw comprising a shaft having a proximal end and a distal portion, wherein the actuator screw further comprises a head coupled to the proximal end of the shaft, wherein the distal portion of the shaft of the actuator screw is threaded and the actuator screw is at 45 least partially disposed in the channel of the body and the threaded channel of the arm actuator, wherein, as the actuator screw is rotated using a driver tool, the arm actuator moves longitudinally relative to the body;
- a first pin, wherein the first pin is arranged to move along 50 the at least one slot of the body;
- a second pin; and
- a first arm and a second arm, wherein each of the first and second arms comprises a bridge, at least two receiving extensions extending from the bridge in a first direction 55 and configured for receiving a portion of a vertebra therebetween, and a coupling extension extending from the bridge in a second direction, wherein each of the coupling extensions defines a pin opening and a curved track, wherein the first and second arms are coupled to 60 the distal portion of the body by the second pin extending through the curved tracks of the coupling extensions and further coupled to the distal portion of the body and the arm actuator by the first pin extending through the pin openings of the coupling extensions, 65 wherein the first and second arms are configured to rotate among different deployment positions according

10

- to the curved track in response to longitudinal movement of the arm actuator as the actuator screw is rotated.
- 2. The interspinous spacer of claim 1, wherein the actuator screw further comprises a disc disposed along the shaft distal to, and separated from, the head, wherein the shaft has an outer diameter that is smaller than outer diameters of the disc and the head.
- 3. The interspinous spacer of claim 2, wherein the disc comprises a plurality of teeth arranged around a perimeter of the disc.
- 4. The interspinous spacer of claim 3, further comprising at least one locking inset positioned within the channel of the body for engagement by the disc of the actuator screw, each of the at least one locking inset comprising at least one tooth for interaction with the teeth of the disc to limit rotation of the actuator screw absent the driver tool.
- 5. The interspinous spacer of claim 3, further comprising a locking ring configured for engagement with the actuator screw between the head and the disc to limit movement of the actuator screw proximally or distally within the channel of the body, wherein the body defines a bounded groove within the channel to receive the locking ring, wherein the locking ring is a partial or full ring.
- **6**. The interspinous spacer of claim **1**, wherein each of the first arm and the second arm comprises at least two of the coupling extensions.
- 7. The interspinous spacer of claim 6, wherein the coupling extensions of the first arm interleave with the coupling extensions of the second arm.
- **8**. The interspinous spacer of claim **1**, wherein the body comprises opposing undercut notches configured for receiving a clamp of a spacer insertion instrument.
- 9. The interspinous spacer of claim 1, wherein the actuator screw further comprises a shaped cavity formed in the head, wherein the shaped cavity is configured for receiving a bit of the driver tool that has a shape complementary to the shaped cavity.
- 10. A kit, comprising:
 - the interspinous spacer of claim 1;
 - a spacer insertion instrument configured to releasably grip the interspinous spacer for implantation into a patient; and
 - the driver tool comprising a spacer engaging bit configured to engage the actuator screw of the interspinous spacer and rotate the actuator screw by rotation of the driver tool.
 - 11. An interspinous spacer, comprising:
 - a body having a distal portion, a proximal portion, a proximal surface, and a channel extending longitudinally from the proximal surface;
 - an arm actuator defining a threaded channel extending longitudinally, wherein the arm actuator is configured to fit within the body;
 - an actuator screw comprising a shaft having a proximal end and a distal portion, a head coupled to the proximal end of the shaft, and a disc disposed along the shaft distal to, and separated from, the head, wherein the distal portion of the shaft of the actuator screw is threaded and the actuator screw is at least partially disposed in the channel of the body and the threaded channel of the arm actuator, wherein the disc comprises a plurality of teeth arranged around a perimeter of the disc, wherein, as the actuator screw is rotated using a driver tool, the arm actuator moves longitudinally relative to the body;

- at least one locking inset positioned within the channel of the body for engagement by the disc of the actuator screw, each of the at least one locking inset comprising at least one tooth for interaction with the teeth of the disc to limit rotation of the actuator screw absent the 5 driver tool; and
- a first arm and a second arm, wherein each of the first and second arms comprises a bridge, at least two receiving extensions extending from the bridge in a first direction and configured for receiving a portion of a vertebra 10 therebetween, and a coupling extension extending from the bridge in a second direction, wherein each of the coupling extensions is coupled to the distal portion of the body and the arm actuator.
- 12. The interspinous spacer of claim 11, further comprising a locking ring configured for engagement with the actuator screw between the head and the disc to limit movement of the actuator screw proximally or distally within the channel of the body, wherein the body defines a bounded groove within the channel to receive the locking 20 ring, wherein the locking ring is a partial or full ring.
- 13. The interspinous spacer of claim 11, wherein each of the first arm and the second arm comprises at least two of the coupling extensions.
- **14**. The interspinous spacer of claim **13**, wherein the 25 coupling extensions of the first arm interleave with the coupling extensions of the second arm.
- 15. The interspinous spacer of claim 11, wherein the body further comprises at least one slot extending longitudinally along the distal portion of the body, the interspinous spacer 30 further comprising a first pin, wherein the first pin is arranged to move along the at least one slot of the body, wherein each of the coupling extensions defines a pin opening, wherein the first and second arms are coupled to

the distal portion of the body and the arm actuator by the first pin extending through the pin openings of the coupling extensions.

12

- 16. The interspinous spacer of claim 15, further comprising a second pin, wherein each of the coupling extensions further defines a curved track, wherein the first and second arms are coupled to the distal portion of the body by the second pin through the curved tracks of the coupling extensions, wherein the first and second arms are configured to rotate relative to the body according to the curved track in response to longitudinal movement of the arm actuator as the actuator screw is rotated.
- 17. The interspinous spacer of claim 11, wherein the at least one locking inset comprises two locking insets disposed opposite each other.
- **18**. The interspinous spacer of claim **11**, wherein the body comprises opposing undercut notches configured for receiving a clamp of a spacer insertion instrument.
- 19. The interspinous spacer of claim 11, wherein the actuator screw further comprises a shaped cavity formed in the head, wherein the shaped cavity is configured for receiving a bit of the driver tool that has a shape complementary to the shaped cavity.
 - 20. A kit, comprising:

the interspinous spacer of claim 11;

- a spacer insertion instrument configured to releasably grip the interspinous spacer for implantation into a patient; and
- the driver tool comprising a spacer engaging bit configured to engage the actuator screw of the interspinous spacer and rotate the actuator screw by rotation of the driver tool.

* * * * *