Embedded Software Engineering

3 Unit Course, Spring 2002 EECS Department, UC Berkeley

Christoph Kirsch

www.eecs.berkeley.edu/~fresco/giotto/course-2002

It's significant

It's tricky

It's risky

It's fun

Problem

Methodologies for the implementation of embedded real-time applications

- Methodology: tool-supported, abstract, compositional
- Implementation: compositional, scalable, dependable

Engine Controller

- Temporal accuracy of 3µsec
- Up to 100 concurrent software tasks
- Hard real-time: no missed deadlines

Video Streaming

- 25 frames/sec
- Dynamic resource allocation
- Soft real-time: degraded QoS

Real-Time Systems

Characteristics	Hard	Soft
Response time	Hard-required	Soft-desired
Peak-load performance	Predictable	Degraded
Control of pace	Environment	Computer
Redundancy	Active	Checkpoint
Error detection	Autonomous	User assisted

Kopetz97

Microcontroller Market

Mechatronics

Fly-by-wire

Drive-by-wire

Embedded Software Engineering

Real-Time

Concurrency

Task1 Task2

Host

In addition:

- Other resource constraints
- Time constraints

Sequential Programming

Multiprogramming

Real-Time Programming

Embedded Software

Environment vs. Platform Time

The Art of Embedded Programming

Embedded Programming

...requires the integration of:

- 1. Real-time operating system concepts
- 2. Embedded programming languages
- 3. Embedded compilers
- 4. SE, modeling, and simulation techniques
- 5. Formal methods

Real-Time Task

Worst case execution time

Real-Time Scheduling

Off-Line Scheduling

Static System

On-Line Scheduling

Dynamic System

Non-Preemptive Scheduling

Preemptive Scheduling

Shared Resources

Scheduling Problem

Earliest Due Date

	T_1	T_2	T_3	T_4	T_5
C_{i}	1	1	1	3	2
d_i	3	10	7	8	5

Buttazzo97

Processors

Earliest Deadline First

Real-Time Periodic Task

Rate Monotonic Analysis

	T_1	T_2
C_i	2	1
p_i	5	10

Scheduling Anomalies

Shorter Computation Times

More Processors

Weaker Precedence

Real-Time Communication

Real-Time Message

Explicit Flow Control

- Send time not known a priori
- Sender can detect errors

Implicit Flow Control

- Send time is known a priori
- Receiver can detect errors

Explicit Flow Control: Priority

Medium-Access Protocols:

- CSMA/CD LON, Echelon 1990
- CSMA/CA CAN, Bosch 1990
- FTDMA Byteflight, BMW 2000
- TDMA TTP, Kopetz 1993

Control Area Network

Implicit Flow Control: Time

Medium-Access Protocols:

- FTDMA Byteflight, BMW 2000
- TDMA TTP, Kopetz 1993

Time-Triggered Protocol

$$M_1 \longrightarrow M_2$$

Network

Literature

• RT scheduling:

 Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications. G. Buttazzo. Kluwer, 1997.

• RT communication:

- Real-Time Systems Design Principles for Distributed Embedded Applications. H. Kopetz. Kluwer, 1997.
- Byteflight, CAN papers.

Embedded Programming

...requires the integration of:

- 1. Real-time operating system concepts
- 2. Embedded programming languages
- 3. Embedded compilers
- 4. SE, modeling, and simulation techniques
- 5. Formal methods

Concurrency

Parallel Composition

I/O Decomposition

Task1 Task2

Task1 ← Task2

Control

Data

Control Operators

Sequential Parallel Choice Loop

Choice Loop

Real-Time

Real World

Discrete Data

State

Continuous Time

Digital Clock

Discrete Time

Event-Triggered (ET) System

Time-Triggered (TT) System

Esterel - Giotto

• Esterel:

- Synchronous reactive language
- Event-triggered semantics

• Giotto:

- Time-triggered semantics
- Distributed platforms

Event - Reaction

Esterel: Event

Esterel: Operators

Choice: Q

present S then P else Q

Esterel: Controller

```
module normal:
input A, B, R;
output O;
loop
[ await A || await B ];
emit O
each R
end module
```


Sensor - Control Law - Actuator

Giotto: Time

Giotto: Operators

Giotto: Helicopter Control

```
mode normal () period 20ms
{
    taskfreq 1 do servo = Control ( position ) ;
    taskfreq 4 do position = Navigation ( GPS, position ) ;
}
```

Semantics

Input

Computation

Output

Literature

• Esterel:

- The Foundations of Esterel. G. Berry. In Proof, Language and Interaction: Essays in Honour of Robin Milner. G. Plotkin, C. Stirling and M. Tofte, editors. MIT Press, 2000.
- Synchronous programming of reactive systems.
 N. Halbwachs. Kluwer, 1993.

• Giotto:

- Embedded Control Systems Development with Giotto. B. Horowitz, T. Henzinger, C. Kirsch. 2001.
- Giotto: A Time-Triggered Language for Embedded
 Programming. B. Horowitz, T. Henzinger, C. Kirsch. 2001.

Embedded Programming

...requires the integration of:

- 1. Real-time operating system concepts
- 2. Embedded programming languages
- 3. Embedded compilers
- 4. SE, modeling, and simulation techniques
- 5. Formal methods

Concurrency

Parallel Composition

I/O Decomposition

Task1 Task2

Task1; Task2

Task2; Task1

Task1 ← Task2

Task1 → Task2

Task2 → Task1

Real-Time

Helicopter Control

Read

Write

Worst Case Execution Time

Deadline

Code

Literature

- Some compiler books:
 - Compiler Construction, N. Wirth, Addison-Wesley, 1996.
 - Compilers, Principles, Techniques, and Tools.
 A.V. Aho, R. Sethi, J.D. Ullman. Addison-Wesley, 1985.
 - Compiler Design. R. Wilhelm, D. Maurer. Addison-Wesley, 1995.

Embedded Programming

...requires the integration of:

- 1. Real-time operating system concepts
- 2. Embedded programming languages
- 3. Embedded compilers
- 4. SE, modeling, and simulation techniques
- 5. Formal methods

Real-Time Task

Worst case execution time

Abstract Data Type

Interface: Set of methods

Abstract Interface

Interface: Set of methods

Framework

Type vs. Task

Interface: Set of methods

Literature

- Patterns & Frameworks:
 - Design Patterns: Elements of Reusable Object Oriented Software. E. Gamma, J. Vlissides, R. Johnson, R. Helm. Addison Wesley, 1994.
 - Design Patterns for Object-Oriented Software Development. W. Pree, E. Gamma. Addison Wesley, 1995.

Embedded Programming

...requires the integration of:

- 1. Real-time operating system concepts
- 2. Embedded programming languages
- 3. Embedded compilers
- 4. SE, modeling, and simulation techniques
- 5. Formal methods

Formal Verification

- Safety: Wrong things never happen!
- Liveness: Something useful will happen eventually!

Language Hierarchy

Non-Determinism

Esterel: Verification

Esterel: Hierarchy

Giotto: Verification

Giotto: Hierarchy

Giotto: Hierarchy

Literature

- Esterel:
 - Papers @ www.esterel.org
- Giotto:
 - T.A. Henzinger. Masaccio: A Formal Model for Embedded Components. LNCS 1872, Springer, 2000, pp. 549-563.

End

