Reduced-Complexity Scene Text Recognition Techniques

BUOY RINA

30th June, 2024

Text Recognition

- Text passing down **knowledge**.
- Text recognition identifying text within images.
- Text recognition :
 - Printed text: almost solved (accuracy)
 - Scene & low-resource non-Latin: challenging because of diverse imaging conditions and complex text structure.

Scene text images – word level (diverse conditions)

Non-Latin samples – textline level (complex structure and layout)

ផែនការដែលបានគ្រោងទុកក្នុងនោះការបញ្ជូនបុត្រជីតា និងសាច់ញាតិមកទទួលវ៉ាក់សាំងបង្ការ គឺជាផ្នែកមួយដ៏មា

คล้องไกด์ เตสกำวิเคราะห์เสนอแทบกลุ่*มสัตว์พฤษภาคม*

Text Recognition as a Multi-Objective Optimization

- Many methods accuracy-oriented
- Beyond accuracy↑:
 - Complexity
 \(\text{(latency & memory)} \) in low-resource settings
 - Explainability (model understanding) in safety-critical settings
 - Linking a predicted character to the corresponding image regions
 - Character location
 - Others
- Optimizing all criteria Novel Techniques (this research)
- Goal: reducing model complexity

 and model latency
 while balancing accuracy
 as enhancing model explainability

Dissecting Text Recognition Methods

- Text recognition a multimodal problem:
 - Input image
 - Image encoder (extracting visual information)
 - Text decoder (extracting linguistic information)
 - Output text
- This research aims to optimize each component to reduce complexity and maximize accuracy.

Text recognition as a multimodal problem

Underlying Design Philosophy

Existing methods

••• Our design goals

To realize **these goals**, we need to **re-engineer** text recognition components **(input, encoder, decoder)**, leading us to a **series** of **research questions**.

Structure of Presentation

- Goal: to reduce overall model complexity to make models efficiently deployed in lowresource settings, while balancing accuracy and explainability.
- Achieved by reducing complexity & enhancement of each stage
 - Image encoding RQ1
 - Text decoding RQ2

The research questions (RQs) are ordered, following this architecture.

RQ1: How to select only text regions?

- Image encoder:
 - processing entire input image
 - unnecessary complexity in background regions
 - however, only text regions useful for character recognition
- 1st Research Question (RQ1): **How to select** only text regions for recognition, and thus, remove unnecessary complexity while balancing accuracy?

RQ2: How to predict many characters ahead?

- Text decoder:
 - one character at a time (i.e., autoregressive like GPT)
 - but, high latency (many decoding steps)
- 2nd Research Question (RQ2): **Can we** reduce decoding steps by predicting many characters ahead while balancing accuracy?
 - E.g., predicting two or three characters together after D in a single step.

Related Work

Related Work

Latin Scene Text Recognition (STR)

- Well-studied Transformers everything, everywhere
- Complexity bottlenecks:
 - Encoder: quadratic scaling with input width
 - Decoder: high-complexity crossattention & high-latency decoding
 - Challenging in a low-resource setting, or long inputs
- Bottlenecks => motivations for our research questions.

Similarity between text recognition & Transformers architectures.

How to Select Only Text Regions?

1st Research Question

Journal Paper:

Towards reduced-complexity scene text recognition (RCSTR) through a novel salient feature selection

Special Issue Paper | Published: 22 May 2024 (2024) Cite this article

International Journal on Document Analysis and Recognition (IJDAR) & International Conference on Document Analysis and Recognition (ICDAR 2024; Greece)

RQ1: Reduced-Complexity Scene Text Recognition Introduction

- Highly-oriented texts:
 - Small text regions.
 - Large background regions.
- Processing entire inputs:
 - Extra complexity in the background region.
- Leading to high-complexity for downstream stages.
- Is it necessary to process to the entire inputs? Can we use only the text regions?

Proposed Method

- Solution: a character region path (CRP) in the text regions.
- Text regions:
 - Collected along the CRP.
 - Used for **downstream stages** (encoder, decoder).
- Removing unnecessary computations in the background regions.
- Thus, reducing model complexity as well as enhancing latency.

3. The classifier is trained end-to-end to maximize accuracy.

in each column.

Character region path (CRP)

RQ1: Reduced-Complexity Scene Text Recognition **Proposed Method**

width of feature maps, respectively. Best viewed in color.

Datasets & Training

- MJSynth^{12,}
- SynthText¹³
- SynthAdd¹⁴
- SynthTiger⁶⁵

Training on Synthetic Data

Finetuning on Real Labeled Data

- COCO-Text⁹⁶
- RCTW⁹⁷
- Uber-Text⁹⁸
- ArT^{99,}
- LSVT¹⁰⁰
- ReCTS¹⁰¹
- TextOCR⁶⁵
- OpenImages V5⁶⁰

- SVT⁸⁹
- IIIT⁹⁰
- ICDAR2013⁹¹
- ICDAR2015⁹²
- SVTP⁹³
- CUTE80⁹⁴

Evaluation

Experimental setup & efficiency comparison

- Encoder:
 - Convolutional Transformer as image encoder
- Decoder:
 - Transformer decoder as text decoder
- Inputs:
 - using **text regions** only based on the **proposed technique**.
- Baseline model:
 - using entire inputs.

FLOPs ↓ and inference time **↓** comparisons

Model	Para	ms	FLC	Time	
				(ms)	
	Enc.	Dec.	Enc.	Dec.	
Baseline-TrDec (No CRP)	22.5	12.7	6.1	14.5	270
RCSTR-TrDec (CRP - Ours)	22.5	12.7	3.8	5.4	182

- Efficiency analysis:
 - reducing model complexity in both encoder (6.1 -> 3.8B FLOPs) and decoder (14.5 -> 5.4B FLOPs).
 - reducing inference time by half (270 -> 182 ms).

Accuracy comparisons with the baseline model

- Comparing with the baseline:
 - Comparable accuracy -<0.4%
 - Two times faster
- Identified text regions:
 - Consistent text regions even for highly-oriented texts, thus validating our proposed text regions technique.

Accuracy ↑ (%) comparison with the baseline

Method	IIIT	SVT	IC13	IC15	SVTP	CUTE	Total
Baseline-TrDec	97.8	95.7	97.3	89.8	90.5	96.5	94.9
(No CRP)							
RCSTR-TrDec	97.8	94.9	97.0	89.1	90.2	94.8	94.5
(CRP - Ours)							

Relevant inputs

RQ1: Reduced-Complexity Scene Text Recognition Accuracy comparisons with the SOTA methods

- Comparing with the most recent
 SOTA method using entire inputs:
 - Consistently improving accuracy or comparable (<0.4%).
- Thus, the **proposed technique** can effectively **reduce complexity** by focusing only on the **text regions**.

Accuracy ↑ (%) comparison with the recent existing methods

Method	IIIT	SVT	IC13	IC15	SVTP	CUTE	Total
TRBA [95]	94.8	91.3	94.0	80.6	82.7	88.1	89.6
DiG-ViT-T [23]	96.4	94.4	96.2	87.4	90.2	94.1	93.4
DiG-ViT-S [23]	97.7	96.1	97.3	88.6	91.6	96.2	94.7
DiG-ViT-B [23]	97.6	96.5	97.6	88.9	92.9	96.5	94.9
RCSTR-TrDec	97.8	94.9	97.0	89.1	90.2	94.8	94.5
(CRP - Ours)							

RQ1: Reduced-Complexity Scene Text Recognition **Known limitations**

- Character region paths:
 - Text regions collected along the width => not applicable to vertical text.

A vertical text

Can We Predict Many Characters Ahead?

2nd Research Question

Journal Paper:

Parstr: partially autoregressive scene text recognition

Special Issue Paper | Published: 22 May 2024

(2024) Cite this article

International Journal on Document Analysis and Recognition (IJDAR) & International Conference on Document Analysis and Recognition (ICDAR 2024; Greece)

RQ2: Partially Autoregressive Decoder for STR **Introduction**

- Text decoder:
 - one character at a time (i.e., autoregressive like GPT)
 - but, high latency (many decoding steps)
- Instead of predicting one character at a time, can we predict more than one?
 - E.g., predicting **two or three characters** after **D**.
- Leading to reduced-complexity decoding and, thus lower latency.

RQ2: Partially Autoregressive Decoder for STR

Proposed Method

- Solution: innovative decoding strategies to predict many characters in a single step.
- Two proposed decoding schemes:
 - **b-first**: first **b** characters one at a time, the rest together.
 - 0-first = all at once, n-first = one by one.
 - **b-ahead**: **b** characters in one step.
 - 0-ahead = one by one, n-ahead = all at once.

7 characters

3-first (b = 3):

- COL (one at a time 3 steps)
- **LEGE** (one step)

3-ahead (b = 3):

- **COL** (one step)
- **LEG** (one step)
- **G** (one step)

RQ2: Partially Autoregressive Decoder for STR **Proposed Method & Model Setup**

- Decoding efficiency:
 - **b-first:** approximately **b** decoding steps.
 - b-ahead: approximately a factor of b
- Proposed decoder: partially autoregressive decoder (PAR)
- Model Setup:
 - Encoder: vision Transformer as image encoder
 - Decoder: our proposed PAR decoder as text decoder

RQ2: Partially Autoregressive Decoder for STR **Proposed Method & Model Setup**

	[B]						
K	1	0	0	0	0	0	0
N	1	1	0	0	0	0	0
I	1	1	1	0	0	0	0
G	1	1	1	1	0	0	0
H	1	1	1	1	1	0	0
T	1	1	1	1	1	1	0
[E]	1 1 1 1 1 1	1	1	1	1	1	1

(a) AR left-to-right decoding

(b) NAR parallel decoding

RQ2: Partially Autoregressive Decoder for STR

Proposed Method & Model Setup

Figure 7.6: The b-first vs. b-ahead decoding steps for the target text, KNIGHT. (a) b-first with b=2. (b) b-ahead with b=3: in each generation, three characters are decoded and used in the subsequent steps. The first row is the context sequence and the first column is the target sequence. 1 indicates allowing attention, while 0 indicates the opposite. The blue mask values correspond to the blue characters, which are decoded. Best viewed in color.

(b) b-ahead decoding

RQ2: Partially Autoregressive Decoder for STR **Experimental setup & efficiency analysis**

Accuracy analysis:

- between all-at-one decoding (one step) and one-by-one decoding (all steps)
- **b**-first: b increases, accuracy increases.
- **b**-ahead: b increases, accuracy decreases.
- Optimal range 3 to 5 (<0.5%)

Accuracy \uparrow (%) comparisons – at different b

RQ2: Partially Autoregressive Decoder for STR **Experimental setup & efficiency comparison**

- Efficiency analysis:
 - significant reduction of latency with a marginal accuracy loss (<0.5%).

RQ2: Partially Autoregressive Decoder for STR **Accuracy comparisons with the recent existing methods**

Comparing with the most recent SOTA methods decoding one by one:

- Consistently improving accuracy despite having fewer decoding steps.
- Thus, the proposed decoding strategies can effectively reduce number of decoding steps to b or by b while maintaining high accuracy.

Accuracy ↑ (%)comparison with the recent existing methods

Method	IIIT	SVT		IC15	SVTP)	Total	N
			IC13			CUTE		
TRBA* [95]	94.8	91.3	94.0	80.6	82.7	88.1	89.6	n
DiG-ViT-T [23]	96.4	94.4	96.2	87.4	90.2	94.1	93.4	n
DiG-ViT-S [23]	97.7	96.1	97.3	88.6	91.6	96.2	94.7	n
DiG-ViT-B [23]	97.6	96.5	97.6	88.9	92.9	96.5	94.9	n
TRBA* [15]	98.6	97.0	97.6	89.8	93.7	97.7	95.7	n
MAERec	97.4	95.7	97.3	86.7	91.0	96.2	94.1	n
(no pre-								
training) [113]								
MAERec (pre-	98.0	96.8	97.6	87.1	93.2	97.9	95.1	n
training) [113]								
PARSTR-3-	97.7	97.5	98.0	90.5	95.0	97.2	95.7	b
First (Ours)								
PARSTR-4-	97.8	97.4	98.0	90.7	95.0	97.2	95.8	b
First (Ours)								
PARSTR-5-	97.8	97.5	98.0	90.7	95.2	97.6	95.8	b
First (Ours)								
PARSTR-3-	98.4	97.4	98.4	90.3	94.9	97.9	96.0	n/b
Ahead (Ours)								
PARSTR-4-	98.3	97.4	98.2	90.4	94.9	97.2	95.9	n/b
Ahead (Ours)								
PARSTR-5-	98.0	96.9	98.0	90.2	94.7	96.9	95.7	n/b
Ahead (Ours)								

RQ2: Partially Autoregressive Decoder for STR **Known limitations**

- The proposed decoding schemes:
 - Fixed choice of *b* not adaptive
 - *b*-first & *b*-ahead: independent decoding, no dynamic selection

Concluding Remarks

Conclusions

Text Recognition – Constrained Multi-Objective Optimization

- Design considerations:
 - Accuracy
 - Complexity
 - Explainability
 - Others
- Constraints:
 - Script structure (Latin vs. non-Latin)
 - Text modality (word vs. textline; regular vs. curved)
 - Deployment resource
- Thus, requiring innovative techniques to **enhance model explainability, reduce complexity,** and **maximize accuracy.**

Conclusions

Summary of Findings

- In the **RQ1**, to **reduce model complexity**, we introduced a **text region selection** technique, which can:
 - reduce latency by half with a marginal accuracy loss.
 - obtain comparable and better accuracy with the high-complexity SOTA methods.
- In the **RQ2**, to **speed up decoding** process, we introduced **two innovative decoding approaches** (**b-first & b-ahead**) and a **PAR decoder**, which can:
 - reduce latency up to 5 times and to at most 5 steps with accuracy loss of <0.5%.
 - obtain comparable and better accuracy with the SOTA methods decoding one by one.

Conclusions

Way Forward

- 1. Addressing the limitations of each proposed techniques.
- 2. Novel combinations of these techniques.

Thank you!