Abstract Algebra

: Lecture 5

Leo

2024.09.26

Let A, B two groups, then we can get a bigger group by Direct Product, i.e. $A \times B$.

Example 1. $G = (\mathbb{Z}_{15}, +), |G| = 15, G = <1>, cyclic group. <math>A \leq G \text{ s.t } A = <3>, and <math>B \leq G \text{ s.t}$ B = <5>. Claim: $G = A \times B$?

Theorem 2. Let $H, K \triangleleft G$ s.t. G = HK, then the following statements are equivalent:

- (1). $\phi: H \times K \to G$ s.t. $(h, k) \mapsto hk$ is an isomorphism.
- (2). $H \cap K = \{e\}$, where e is the identity.

证明. $(1) \to (2)$: Assume ϕ is an isomorphism. Suppose $x \in H \cap K$ s.t. $x \neq e$. Then $\phi: (x,e) \to xe = e$ and $(e, x) \to ex = x$, which is impossible since ϕ is an bijection. Thus $H \cap K = \{e\}$.

 $(2) \to (1)$: Assume $H \cap K = \{e\}$. Define $\phi: H \times K \to G$ s.t. $(h,k) \mapsto hk$. We need to show that ϕ is a homomorphism, injective and surjective. Claim: hk = kh for all $h \in H$ and $k \in K$. Consider $[h,k] = hkh^{-1}k^{-1} = k_1k^{-1} \in K$, and $[k,h] = khk^{-1}h^{-1} = h_1h^{-1} \in H$. Since $H \cap K = \{e\}$, we have $k_1 k^{-1} = h_1 h^{-1} = e$. Thus hk = kh.

Homomorphism: $\phi((h_1, k_1)(h_2, k_2)) = \phi(h_1h_2, k_1k_2) = h_1h_2k_1k_2 = h_1k_1h_2k_2 = \phi(h_1, k_1)\phi(h_2, k_2)$.

Injective: Suppose $\phi(h_1, k_1) = \phi(h_2, k_2)$. Then $h_1 k_1 = h_2 k_2$. Since $H \cap K = \{e\}$, $h_2^{-1} h_1 = k_2 k_1^{-1} \in \{e\}$ $H \cap K$, we have $h_1 = h_2$ and $k_1 = k_2$. Thus ϕ is injective.

Surjective: For any $g \in G$, since G = HK, there exist $h \in H$ and $k \in K$ s.t. g = hk. Thus $\phi(h,k) = hk = g$. Thus ϕ is surjective.

In a word, $H \times K \simeq HK$, HK is called a inner product of H and K. i.e. $G = H \times K = HK$.

Example 3. $G = H \times H$ where $H = \mathbb{Z}_3$, $G \neq HH$ since HH = H.

 $\begin{array}{l} \textbf{Example 4. Let } G = \{ \begin{bmatrix} a & 0 & 0 \\ 0 & b_1 & b_2 \\ 0 & b_3 & b_4 \end{bmatrix} | a \in \mathbb{F}_p - \{0\}, b_1b_4 \neq b_2b_3 \}. & \textit{Then G is a group with matrix} \\ \textit{multiplication where } G < \operatorname{GL}_3(\mathbb{F}_p). & \textit{Claim: } G \simeq \mathbb{Z}_{p-1} \times \operatorname{GL}_2\mathbb{F}_p. \\ \textit{Let } A = \{ \begin{bmatrix} a & 0 \\ 0 & I_2 \end{bmatrix} | a \in \mathbb{F}_p - \{0\} \} & \textit{and } B = \{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & b_1 & b_2 \\ 0 & b_3 & b_4 \end{bmatrix} | b_1b_4 \neq b_2b_3 \}, & \textit{then $G = A \times B$.} \\ \end{array}$

$$Let \ A = \{ \begin{bmatrix} a & 0 \\ 0 & I_2 \end{bmatrix} | a \in \mathbb{F}_p - \{0\} \} \ and \ B = \{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & b_1 & b_2 \\ 0 & b_3 & b_4 \end{bmatrix} | b_1b_4 \neq b_2b_3 \}, \ then \ G = A \times B.$$

Definition 5. A subgroup H of G is called a maximal subgroup if H is not contained in any other proper subgroup of G. i.e. If $H \leq K \leq G$, then K = G or K = H.

Definition 6. Subgroups of $\operatorname{Sym}(\Omega)$ are called permutation groups. Let $G \leq \operatorname{Sym}(\Omega)$. Then G is transitive on Ω if for all $\alpha, \beta \in \Omega$ there exists $\gamma \in G$ such that $\alpha^{\gamma} = \beta$. Otherwise G is intransitive.

Homework 7. (1). Let $G = S_n$. Describe maximal intransitive subgroups of G.

(2). Let $G = GL_n(\mathbb{F}_p)$. Describe maximal subgroups of G which fixes a 1 dimensional subspace of \mathbb{F}_n^n .

Let G be a cyclic group of order n. Then G is generated by a single element g. i.e. $G = \langle g \rangle = \mathbb{Z}_n$.

- (1). If n = lm s.t. gcd(l, m) = 1, then $\mathbb{Z}_n = \mathbb{Z}_l \times \mathbb{Z}_m$.
- (2). If $n = p_1^{e_1} \dots p_r^{e_r}$, then $\mathbb{Z}_n = \mathbb{Z}_{p_1^{e_1}} \times \dots \times \mathbb{Z}_{p_r^{e_r}}$.

Theorem 8. Let G be a group of order p^2 , where p is a prime number. Then either $G \simeq \mathbb{Z}_{p^2}$ or $G \simeq \mathbb{Z}_p \times \mathbb{Z}_p$. In particular G is abelian.

延明. Let G be a group of order p^2 . $e \neq g \in G$ has order p or p^2 . If g has order p^2 , then $G = \langle g \rangle$. Suppose G does not have elements of order p^2 . Let $a \in G - e$. Then $\langle a \rangle \simeq \mathbb{Z}_p$. Let $b \in G - \langle a \rangle$. Then $\langle b \rangle \simeq \mathbb{Z}_p$. Furthermore $\langle a \rangle \cap \langle b \rangle = \{e\}$. Then $G \simeq \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_p \times \mathbb{Z}_p$.

Homework 9. Prove $G \simeq \langle a \rangle \times \langle b \rangle \simeq \mathbb{Z}_p \times \mathbb{Z}_p$.

Theorem 10. (Fundamental Theorem of Finite Abelian Groups) Let G be a finite abelian group of order n. Let $n = p_1^{e_1} \dots p_r^{e_r}$. Then:

- (1). $G = G_1 \times \cdots \times G_r$ where $|G_i| = p_i^{e_i}$.
- (2). G is a direct product of cyclic groups.

延明. (1). Let $n = p^e m$ s.t. p is a prime and (p, m) = 1. Let $H = \{g^m | g \in G\}$. Then H is a subgroup and every element of H has order p-power. Moreover $|H| = p^e$, and $G = H \times K$ where K has order m. By induction K we can prove (1).

(2). Assume that $|G| = p^e$. Let $g \in G$ which has the largest order. i.e. $|g| \le |h|$ for any $h \in G$. If $G = \langle g \rangle$, we are done. Suppose $G \ne \langle g \rangle$. Claim: $G = \langle g \rangle \times H$ for some H < G. Let $h \in G - \langle g \rangle$ s.t. $h^p \in \langle g \rangle$, so $h^p = g^k$ for some integer k. Since $|g| \le |h|$, k = pl. Let $x = h^{-1}g^l$. Them |x| = p as $x^p = h^{-p}g^{lp} = 1$. And $x \notin \langle g \rangle$.

Let $\bar{G} = G/< h>$. Then $|\bar{G}| \leq |G|$. By induction we may assume $\bar{G} = \langle \bar{g} \rangle \times \bar{H}$, where \bar{g} is the image of g in \bar{G} , and $|\bar{g}| = |g|$ is the largest order in \bar{G} .

Let H be the full preimage of \bar{H} under $\pi: G \to \bar{G}$, i.e. $H = \{h \in G | \bar{h} \in \bar{H}\}$. Then H < G and $H \cap G = \{e\}$. Thus $G = \{g > H = \{g > xH, \text{ as claimed.} \Box$