Advanced Practical 2022/2023 Operations Research Case

Lecture: Steady-State Simulation For an Infinite Horizon

Guanlian Xiao

Department Operations Analytics Vrije Universiteit Amsterdam

June 2023

Steady-State Definition

- Suppose that you describe the system state at time t by X_t;
- ► You observe the system at time 0 ('now');
- ▶ The system is acting already a long time (from time $-\infty$);
- You might be interested in
 - (i). What is the CDF $F_0(x)$ of X_0 ?
 - (ii). What is the expectation $\mathbb{E}[X_0]$?
 - (iii). More generally, suppose that h(x) is a function acting on the state variable, what is $\mathbb{E}[h(X_0)]$?
- $ightharpoonup F_0$ is the *steady-state distribution* of the system;
- ▶ The expectations are *steady-state performance measures*.

Looking to the Future

- You might reason as follows;
- ► The system starts at time 0;
- ► The system will act forever in the future;
- ▶ The system will be in steady-state at time $+\infty$;
- Now we are interested in
 - (i). The CDF $F_{\infty}(x)$ of X_{∞} ;
 - (ii). The expectation $\mathbb{E}[h(X_{\infty})]$.
- ▶ Question: what do we mean by random variable X_∞ ?

Limit Distribution

- Assume that $F_t(x) = \mathbb{P}(X_t \le x)$ is a CDF for all $t \ge 0$;
- ightharpoonup Equivalently, X_t is a proper random variable;

Definition

Assume

(a). The limit

$$F_{\infty}(x) = \lim_{t \to \infty} F_t(x)$$

exists for all $x \in \mathbb{R}$ (we say *pointwise*);

(b). $F_{\infty}(\cdot)$ is a CDF (recall the definition of a CDF!)

Then we say that the sequence of random variables $\{X_t, t \geq 0\}$ converges weakly or in distribution to a (proper!) random variable X_{∞} ; and we denote

$$X_t \stackrel{\mathcal{D}}{\to} X_{\infty}$$

Convergence in Mean

Definition

Assume that $X_t \stackrel{\mathcal{D}}{\to} X_{\infty}$. If

$$\mathbb{E}[X_{\infty}] = \lim_{t \to \infty} \mathbb{E}[X_t]$$

we say that the sequence of random variables $\{X_t, t \geq 0\}$ converges in mean to X_{∞} ; and we denote

$$X_t \stackrel{\mathcal{L}_1}{\to} X_{\infty}$$

Generally you need to check certain sufficient conditions to ensure connvergence in distribution and/or in mean (see the counterexamples next slides).

Counterexample I

▶ Define random variable X_t for t > 0 by

$$\mathbb{P}(X_t = 0) = 0.5; \quad \mathbb{P}(X_t = t) = 0.5.$$

Hence.

$$F_t(x) = \begin{cases} 0, & x < 0; \\ 0.5, & 0 \le x < t; \\ 1, & x \ge t. \end{cases}$$

▶ Easy to see that $F_{\infty}(x) = \lim_{t \to \infty} F_t(x)$ exists (pointwise), with

$$F_{\infty}(x) = \begin{cases} 0, & x < 0; \\ 0.5, & x \ge 0. \end{cases}$$

No convergence in distribution.

Counterexample II

▶ Define random variable X_t for $t \ge 1$ by

$$\mathbb{P}(X_t = 0) = (t - 1)/t; \quad \mathbb{P}(X_t = t) = 1/t.$$

Hence,

$$F_t(x) = \begin{cases} 0, & x < 0; \\ (t-1)/t, & 0 \le x < t; \\ 1, & x \ge t. \end{cases}$$

▶ Easy to see that $F_{\infty}(x) = \lim_{t \to \infty} F_t(x)$ exists (pointwise), with

$$F_{\infty}(x) = \begin{cases} 0, & x < 0; \\ 1, & x \ge 0. \end{cases}$$

- ▶ Conclude $X_t \stackrel{\mathcal{D}}{\to} X_{\infty}$, where $\mathbb{P}(X_{\infty} = 0) = 1$;
- ► However

$$\lim_{t\to\infty} \mathbb{E}[X_t] = \lim_{t\to\infty} 1 = 1 \neq 0 = \mathbb{E}[X_\infty].$$

Steady-State Simulation

- ► Suppose that in your system both (i) $X_t \stackrel{\mathcal{D}}{\to} X_\infty$ and (ii) $h(X_t) \stackrel{\mathcal{L}_1}{\to} h(X_\infty)$;
- ▶ NB: you may assume that also $h(X_t) \stackrel{\mathcal{D}}{\to} h(X_{\infty})$
- ► The performance measure of interest is the steady-state expectation

$$J=\mathbb{E}\big[h(X_{\infty})\big];$$

How would you estimate J by simulation?

- Notice:
 - -> From (i): $X_{\infty} \stackrel{\mathcal{D}}{\approx} X_{\tau_0}$ for large τ_0 ;
 - \longrightarrow From (ii): $J = \mathbb{E}[h(X_{\infty})] \approx \mathbb{E}[h(X_{\tau_0})]$ for large τ_0 ;

A Steady-State Simulation Run

- ► Hence,
 - (i). you start simulating a run from an arbitrary initial state, for instance the empty state;
 - (ii). continue long enough, say until τ_0 , at which the system is about in steady-state;
 - (iii). continue simulating until $\tau_0 + \tau$;
- ▶ Note that for all $t \ge \tau_0$ it holds that $X_t \stackrel{\mathcal{D}}{\approx} X_{\infty}$ and $\mathbb{E}[h(X_t)] \approx J$;
- ► Thus, define as output of the run

$$Y = \frac{1}{\tau} \int_{\tau_0}^{\tau_0 + \tau} h(X_t) dt$$

▶ NB: similarly for discrete processes in which you take sums.

Replication-Deletion

The output satisfies

$$\mathbb{E}[Y] = \mathbb{E}\Big[\frac{1}{\tau} \int_{\tau_0}^{\tau_0 + \tau} h(X_t) dt\Big] = \frac{1}{\tau} \int_{\tau_0}^{\tau_0 + \tau} \mathbb{E}\big[h(X_t)\big] dt \approx J;$$

 Repeating n times independently, you get an (approximately) unbiased estimator of J by

$$\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

► The rest (SLLN; CLT; confidence interval; accuracy; ...) is the same as in static Monte Carlo simulations.

Discussion

- A simple method for estimating a steady-state expectation;
- The initial long period of a run until steady-state is called warm-up period, and is not used for computing output;
- ► The output *Y* of a run is computed from the *observation period*;
- ► Pro: iid observations which makes the statistics easy:
- ► Con: inefficient because each run needs the warm-up period.

More Good News

- Suppose the performance measure is a long-run fraction or average quantity; e.g.
 - -> the long-run fraction of time the server is available;
 - the long-run average cost per unit of time:
 - -> the long-run fraction of time the machine is down;
 - -> the long-run average number of particles per unit of time;
 - -> etc.
- These can be modelled by

$$\lim_{t\to\infty}\frac{1}{t}\int_0^t h(X_s)\,ds.$$

Almost Sure Limits

▶ If the system state process $\{X_t, t \ge 0\}$ is *regenerative* these long-run average limits converge almost surely to the steady-state expectation (this is known as an *ergodic theorem*):

$$\lim_{t\to\infty} \ \frac{1}{t} \int_0^t h(X_s) \, ds = \mathbb{E}\big[h(X_\infty)\big] \quad \text{a.s.}$$
 random variable

- ► See your textbook on Markov chains;
- ▶ Corollary: you estimate long-run averages/fractions similarly as estimating $\mathbb{E}\left[h(X_{\infty})\right]$.

The Difficulty of Steady-State Simulation

- ▶ How large should τ_0 (length of warm-up period) be before starting the observations?
- ► This is the *initial transient problem*;
- ► There are statistical techniques, but in practice you just simulate and experiment;

Steady-State Simulation Strategies

- The replication-deletion method, described in the slides above, is just one of many methods for steady-state simulation.
- ► The most important ones are
 - A. Stationary process (single run)
 - B. Replication-deletion method (multiple runs)
 - C. Batch means method (single run)
 - D. Regenerative method (multiple cycles)
- A. and D. are more involved obtaining variance estimates for the construction of the confidence intervals; not in this course.
- C. is an efficient alternative for B.

C. The Batch Means Method

- Remedy for the inefficiency of the replication-deletion method;
 - (i). simulate one long run of length T;
 - (ii). first a warm-up period of length τ_0 ;
 - (iii). then split the remaining time $T-\tau_0$ in n sections (called *batches*) of length $\tau=(T-\tau_0)/n$.
- ▶ Compute the sample mean of the *i*-th batch (i = 1, ..., n)

$$Y_{i} = \frac{1}{\tau} \int_{0}^{\tau} h(X_{\tau_{0} + (i-1)\tau + t}) dt$$

Final estimator is the average of these batch means

$$\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$$

Discussion

- ► Typically, number of batches *n* is small.
- ▶ The batch length (or size) τ should be large, so that
 - 1. the correlations between the batch means Y_i , i = 1, 2, ... are neglegible;
 - 2. each batch mean Y_i is approximately Gaussian.
- ▶ Thus the Y_i 's may be considered as independent Gaussian, with mean ℓ and variance σ^2 :

Confidence Interval

▶ The sample variance to estimate σ^2 :

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y}_{n})^{2}.$$

▶ Since *n* is small:

$$\sqrt{n}\frac{\overline{Y}_n-\ell}{S}\stackrel{\mathcal{D}}{\approx}t_{n-1},$$

where t_{n-1} is the Student-t variable with n-1 df.

ightharpoonup CI: $(\overline{Y}_n - t_{n-1,1-\alpha/2}S/\sqrt{n}, \overline{Y}_n + t_{n-1,1-\alpha/2}S/\sqrt{n}).$