Question 3 Mops	A mop expression is way of producing a number using only multiplications, ones and pluses. The length of a mop is the number of ones it contains.	
	For example, $22 = 1+1+((1+1+1+1)\times(1+1+1+1+1))$, which has a length of 11. Another mop of 22 is $1+((1+1+1)\times(1+((1+1)\times(1+1+1))))$ which has a length of 10. There are no shorter mops for 22.	
3 (a) [24 marks]	Write a program that inputs a single integer n ($1 \le n \le 10000$) and outputs the length of the shortest mop of n .	Sample run 22 10
3 (b) [3 marks]	Give a mop equal to 100, with length 16.	
3 (c) [3 marks]	If you have found a mop equal to n , with length l , is it always possible to find a longer mop that is also equal to n ? Justify your answer.	
3 (d) [5 marks]	What is the highest value a mop of length 44 can have?	

Total marks: 100.

End of BIO 2002 Round One paper