

Variations de fonctions et extremums

I. Point de vue graphique

1. Fonction croissante, décroissante, constante

Définition:

On dit que f est croissante sur un intervalle I lorsque si x augmente sur I alors f (x) augmente. On dit que f est décroissante sur un intervalle I lorsque si x augmente sur I alors f (x) diminue.

Fonction décroissante sur *I* :

Définition:

Soit f une fonction et C_f sa courbe représentative dans un repère. On voit sur un graphique que :

- f est croissante sur I lorsque Cf «monte » sur I;
- f est **décroissante** sur l lorsque Cf « descend » sur l.
- Lorsque sur un intervalle, la courbe est horizontale, on dit que la fonction est constante. On considère qu'elle est à la fois croissante et décroissante.
 Une fonction qui ne change pas de sens de variations sur un intervalle est dite monotone

sur cet intervalle.

2. Maximum et minimum d'une fonction

Définition :

Sur un intervalle I,

- le maximum d'une fonction f est la plus grande des valeurs prises par f (x) ;
- le minimum d'une fonction f est la plus petite des valeurs prises par f (x).

3. Tableau de variation d'une fonction et variations

Définition:

Un tableau de variations regroupe toutes les informations concernant les variations d'une fonction numérique sur son domaine de définition.

Méthode : dresser un tableau de variation

Un tableau de variations comporte deux lignes.

• Aux extrémités de la **première ligne**, on trouve les bornes du domaine de définition de la fonction. Entre les bornes, on place d'éventuelles valeurs particulières.

- Le sens de variation de la fonction est indiqué sur la **deuxième ligne** par une ou plusieurs flèches sur les intervalles où elle est monotone :

 pour croissante et

 pour décroissante.
- Les valeurs pour lesquelles **la fonction n'est pas définie** sont indiquées par une double barre verticale sur la deuxième ligne.
- On indique au bout des flèches les images des valeurs de la première ligne.

EXEMPLE:

Dresser le tableau de variations de la fonction définie sur [-2; 2] par la courbe ci-dessous.

Voici le **tableau de variation** correspondant :

II. Point de vue algébrique

1. Variation d'une fonction

Définition : croissance, décroissance sur un intervalle.

Soit f une fonction définie sur un intervalle I et x_1 et x_2 deux nombres de I.

Si $x_1 \leq x_2$ implique $f(x_1) \leq f(x_2)$ alors f est dite croissante sur I. Si $x_1 \geq x_2$ implique $f(x_1) \geq f(x_2)$ alors f est dite décroissante sur I.

Propriété : tableau de variations des fonctions affines et de la fonction inverse.

Le sens de variation de la fonction affine dépend du signe de a. La fonction inverse est décroissante sur \mathbb{R}^{-*} et sur \mathbb{R}^{+*} .

Tableau de variation des fonctions affines

DÉMONSTRATION:

On considère une fonction f tel que f (x) = ax + b et deux nombres tels que $x_1 < x_2$. Si a < 0; $ax_1 > ax_2$ et $f(x_1) > f(x_2)$. La fonction f est donc décroissante sur R. Si a < 0; $ax_1 < ax_2$ et $f(x_1) < f(x_2)$. La fonction f est donc croissante sur R.

Tableau de variation de la fonction inverse

x	-∞ () +∞
$\frac{1}{x}$		

2. Maximum et minimum d'une fonction

Définition: maximum, minimum et extremum d'une fonction

• Dire que f admet un maximum en a sur l'intervalle I signifie que :

Il existe un réel M tel que pour tout x dans I : $f(x) \leq M$ et M = f(a);

- Dire que f admet un minimum en b sur l'intervalle I signifie que : Il existe un réel m tel que pour tout x dans I : $f(x) \geq m$ et m = f(b) ;
- Un extremum est le terme générique pour désigner un maximum ou un minimum.

Propriété : tableau de variations de la fonction carrée.

- La fonction carrée est décroissante sur \mathbb{R}^- et croissante sur \mathbb{R}^+ .
- ullet Elle admet, sur R, un minimum en 0.

x	$-\infty$	0	+∞
$f(x) = x^2$	+8		+∞