UNIVERSITAT DE LLEIDA Escola Politècnica Superior Grau en Enginyeria Informàtica XARXES

# Anàlisi de la xarxa mitjançant l'analitzador de protocols de xarxa Wireshark

Sergi Simón Balcells 21040111X GM3

Professorat : E. Guitart, C. Mateu Data : Diumenge 19 de Maig

# Índex

| 1            | Inti                                   | roducció                                                                                                                                                                                                           | 1                                |
|--------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2            | 2.1<br>2.2<br>2.3<br>2.4               | ractarístiques de la xarxa Tipus d'adreçament a la capa de xarxa Adreça de xarxa Adreça de broadcast Porta d'enllaç                                                                                                | 1<br>1<br>1<br>1<br>2            |
| 3            | Ana 3.1 3.2 3.3 3.4 3.5                | Alisi de nivell de enllaç i xarxa  Protocols encapsulats en les trames de nivell 2                                                                                                                                 | 2<br>4<br>5<br>6<br>7            |
| 4            | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6 | Connexions TCP no dutes a terme Connexions TCP completes 4.2.1 HTTP i HTTPS 4.2.2 Connexions no HTTP i HTTPS Connexions UDP no dutes a terme Connexions UDP dutes a terme Anàlisi connexions TCP Gràfica TCP i UDP | 9<br>9<br>10<br>11<br>11<br>12   |
| 5            | Cor                                    | nclusions                                                                                                                                                                                                          | 15                               |
| 6            | Anı                                    | nex                                                                                                                                                                                                                | 16                               |
| $\mathbf{L}$ | $\mathbf{list}$                        | a d'imatges                                                                                                                                                                                                        |                                  |
|              | 1<br>2<br>3<br>4<br>5<br>6<br>7        | Estructura ARP  Estructura IPv4  Estructura IPv6  Estructura IPv6  Estructura LLC  Gràfic de sectors dels protocols de nivell 3  Tràfic en el temps de TCP, UDP i el total                                         | 3<br>3<br>4<br>4<br>4<br>8<br>14 |
| $\mathbf{L}$ | $\mathbf{list}$                        | a de Taules                                                                                                                                                                                                        |                                  |
|              | 1                                      | Adreces MAC i IPX d'equips que utilitzen IPX                                                                                                                                                                       | 5                                |

| 2  | Taula de adreces IPX que han utilitat protocol IPv4 i ha sigut |
|----|----------------------------------------------------------------|
|    | captat                                                         |
| 3  | Taula d'adreces IPv6 i IPv4 d'un mateix node                   |
| 4  | Diferents adreces multicast i els seus protocols               |
| 5  | Taula de protocols de nivell 3                                 |
| 6  | Connexions TCP fallides                                        |
| 7  | Conversacions completes en HTTP i HTTPS                        |
| 8  | Conversacions completes no pertanyens a HTTP i HTTPS 1         |
| 9  | Connexions TCP fallides                                        |
| 10 | Connexions UDP dutes a terme                                   |
| 11 | Connexions TCP a analitzar                                     |
| 12 | Primer anàlisi de connexió TCP                                 |
| 13 | Segon anàlisi de connexió TCP                                  |
| 14 | Adreces multicast de format ff02::1:ff00:0/104                 |

### 1 Introducció

En aquesta practica es realitzarà un anàlisi d'una trama d'una xarxa en produció. Per a realitzar-ho s'utilitzarà l'analitzador de protocols de xarxa Wireshark.

Aquest treball s'ha subdividit en els tres apartats referents a l'enunciat de la pràctica. El primer d'ells, les característiques de la xarxa, tractarà sobre les dades inherents de la xarxa. La segona, analitzarà el nivell d'enllaç, i la tercera, analitarà el nivell de transport.

A més a més, s'han extret conclusions personals del desenvolupament d'aquest treball. Finalment, per a simplificar una part d'una taula, s'ha generat uns annexes.

### 2 Caractarístiques de la xarxa

### 2.1 Tipus d'adreçament a la capa de xarxa

Per a trobar el tipus d'adreçament a la xarxa, s'ha mirat els paquets tipus ARP per a observar diferents direccions IP de la xarxa.

Observant les diferents direccions que es mouen dins de la xarxa, podem extreure que les direccions de la xarxa són 172.16.x.x, sent les x valors entre 0 i 255, és a dir, l'adreça de xarxa és 172.16.0.0/16 i per tant és de classe B.

### 2.2 Adreça de xarxa

Com s'ha extret en l'anterior secció, la adreça de xarxa és 172.16.0.0.

### 2.3 Adreça de broadcast

Sabent l'adreça de xarxa, podem concloure que l'adreça de broadcast és 172.16.255.255, ja que aquesta és l'última adreça disponible de tota la xarxa, és a dir, la part del host de l'adreça a valor actiu a tots els bits. Inclús amb aquesta informació, per confirmar que no hi hagi hagut cap error, s'ha procedit a mirar l'adreça de broadcast en els paquets tipus:

```
! arp \&\& eth.dst == ff:ff:ff:ff:ff
```

Els paquets d'aquest tipus mostren com a direcció IP 172.16.255.255 per destí, es pot confirmar la informació extreta en aquest apartat.

### 2.4 Porta d'enllaç

S'ha vist en la xarxa que s'empra el protocol DHCP, pel que, primerament es busca aquels paquests que siguin DHCP ACK:

En aquest protocol i en aquest tipus de paquet, es pot trobar la informàció referent al router, dins de Bootstrap Protocol (ACK), en opcions de router. En aquest camp s'especifíca que l'adreça és 172.16.20.1.

### 3 Anàlisi de nivell de enllaç i xarxa

### 3.1 Protocols encapsulats en les trames de nivell 2

Al llarg de tota la trama, es poden veure 2 protocols de nivell 2 de xarxa, **Ethernet II** i **IEEE 802.3 Ethernet**. S'explicarà els protocols diferents que es troben de nivell 2:

- Ethernet II: Aquest tipus de trama s'utilitza en l'àmbit general, i es pot trobar en la majoria de paquets de la captura.
- IEEE 802.3 Ethernet: aquesta classe s'utilitza en els protocols de LLC.

Per a trobar els diferents protocols utilitzats, s'utilitza la eina de *Protocol Hierarchy*, accessible dins del menú d'estadístiques del Wireshark. En aquest menú, podem veure com és divideix els protocols segons els nivells, començant pel nivell físic, i seguint amb Ethernet. Dins d'aquest menú es pot veure els següents tipus de paquets, que són: Logical-Link Control (LLC), Internetwork Packet eXchange (IPX), Internet Protocol Version 6 (IPv6), Internet Protocol Version 4 (IPv4), Address Resolution Protocol (ARP), que s'explicaran a continuació, juntament amb el seu valor de tipus.

- ARP, amb valor 0x0806, s'encarrega de resoldre i mantenir de manera automàtoca la taula d'equivalències entre les adreces MAC i les adreces IP dels nodes o màquines que es comuniquen. La seva estructura es pot veure en 1
- IPv4, amb valor 0x0800, és el protocol per excelència d'Internet. Serveix per a la identiciació i connexió de nodes. L'estructura d'IPv4 es pot veure en la figura 2
- IPv6, amb valor 0x86dd, neix com a un protocol per a substituir IPv4, i treure els problemes que sorgeixen amb aquest, com és la falta d'adreces, seguretat i qualitat de servei. Moltes de les seves funcionalitats s'han

| 0                      | 1                     | 2 | 3 | 4 | 5   | 6    | 7     | 8     | 9    | 10   | 11 | 12 | 13 | 14 | 15 |
|------------------------|-----------------------|---|---|---|-----|------|-------|-------|------|------|----|----|----|----|----|
| HTYPE                  |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
| PTYPE                  |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
| HLEN PLEN              |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
| Operació               |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
| Adreça hardware origen |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
| següents 2 bytes       |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
| últims 2 bytes         |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
|                        |                       |   |   |   | Adr | eça  | pro   | toco  | l or | igen |    |    |    |    |    |
|                        |                       |   |   |   |     | últ  | ims   | 2 by  | tes  |      |    |    |    |    |    |
|                        |                       |   |   |   | Adı | eça  | har   | dwa   | re d | estí |    |    |    |    |    |
|                        |                       |   |   |   | 5   | segü | ients | s 2 b | ytes | 5    |    |    |    |    |    |
|                        | últims 2 bytes        |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
|                        | Adreça protocol destí |   |   |   |     |      |       |       |      |      |    |    |    |    |    |
|                        |                       |   |   |   |     | últ  | ims   | 2 by  | tes  |      |    |    |    |    |    |
|                        |                       |   |   |   |     |      |       |       |      |      |    |    |    |    |    |

Figura 1: Estructura ARP

 Versió
 IHL
 DSCP
 ECN
 Llargada total

 Identificació
 Flags
 Fragment Offset

 Time to Live
 Protocol
 Header Checksum

 Adreça Origen

 Adreça destí

 Opcions (fins 4 vegades)

Figura 2: Estructura IPv4

portat enrere per al protocol de IPv4. La seva estructura es pot veure en  $3\,$ 

- $\bullet$  IPX, amb valor 0x8137, s'utilitza per a transmetre datagrames entre els diferents serviors i els programes de les estacions de treball. L'estructura d'IPX és la figura 4
- LLC, sense valor donat que està encapsulat amb IEEE 802.3 Ethernet i aquest no te nombre reservat pel tipus, defineix la forma en què les

 Versió
 Prioritat
 Flux

 Longitud càrrega útil
 Següent capçalera
 Limit de salt

 Adreça origen (fins 128 bits)
 Adreça destí (fins 128 bits)

Figura 3: Estructura IPv6

Checksum Longitud

Hop Count Package Type Adreça destí

...

...

Adreça Origen
...

Figura 4: Estructura IPv6

dades són transferides sobre el medi físic, proporcionant servei a les capes superiors. Finalment, la seva estructura es pot veure en 5.

Figura 5: Estructura LLC

### 3.2 Equips amb adreçament IPX i IPv4

Per aquesta secció, s'ha mirat manualment els equips que utilitzen IPX la seva adreça MAC, i, utilitzant aquesta valor s'ha mirat si hi havia un paquet que amb aquesta MAC que utilitzes IPv4 amb la comanda, substituint l'adreça MAC per aquelles trobades amb l'anterior cerca:

```
(eth.src = 00:00:74:99:b5:0b

|| eth.dst = 00:00:74:99:b5:0b) && ip
```

En la primera cerca dins dels paquests IPX s'ha trobat aquestes adreces i MAC, com es mostra en la taula 1. Finalment, buscant totes les MACS abans trobades

| Adreces IPX            | Adreces MAC       |
|------------------------|-------------------|
| 00000000.00007499b50b  | 00:00:74:99:b5:0b |
| 00000000.000074aee28d  | 00:00:74:ae:e2:8d |
| 00000000.000074b4dbcd  | 00:00:74:b4:db:cd |
| 00000000.000074d5923f  | 00:00:74:d5:92:3f |
| 00000000.000074da5833  | 00:00:74:da:58:33 |
| 00000000.000074dab870  | 00:00:74:da:b8:70 |
| 00000000.000074 ddfd6c | 00:00:74:dd:fd:6c |
| 00000000.000074e03eaf  | 00:00:74:e0:3e:af |
| 00000000.000074e04ef9  | 00:00:74:e0:4e:f9 |
| 00000000.000074e08d60  | 00:00:74:e0:8d:60 |
| 0000009.00080228 befa  | 00:08:02:28:be:fa |

Taula 1: Adreces MAC i IPX d'equips que utilitzen IPX

i eliminant aquelles files que no s'han trobat paquets d'IPv4 en la trama tenim la taula 2.

| Adreça MAC             | Adreça IPX        | Adreça IPv4  |
|------------------------|-------------------|--------------|
| 00000000.000074da5833  | 00:00:74:da:58:33 | 172.16.40.6  |
| 00000000.000074 ddfd6c | 00:00:74:dd:fd:6c | 172.16.40.11 |
| 00000000.000074e04ef9  | 00:00:74:e0:4e:f9 | 172.16.40.4  |
| 00000000.000074e08d60  | 00:00:74:e0:8d:60 | 172.16.40.3  |

Taula 2: Taula de adreces IPX que han utilitat protocol IPv4 i ha sigut captat.

# 3.3 Adreces IPv4 dels nodes que envien paquests IPv6 a ff02::1

En aquesta subsecció s'explicarà com s'ha trobat aquells equips que envien paquets d'IPv6 a tots els nodes de l'enllaç local, es a dir, a ff02::1.

Per a dur a terme aquest propòsit, es mira quins paquets d'IPv6 tenen com a destí l'adreça ff02::1. Primarement es volia buscar les adreces MAC i veure si aquests utilitzaven algun protocol de xarxa IPv4, però aquest tipus de paquet està encapsulat dins de IPv4 dins d'UDP, per que en un sol pas s'ha trobat els 5 nodes que fan aquest tipus de connexió, que es poden veure a la taula 3.

| Adreces IPv6                         | Adreces IPv4   |
|--------------------------------------|----------------|
| 2001:0:9d38:6ab8:2470:3837:3e6f:f31d | 172.16.103.254 |
| 2001:0:5ef5:79fb:2cfb:2fe0:3e6f:f31d | 172.16.118.198 |
| 2001:0:9d38:6ab8:30ba:1553:3e6f:f31d | 172.16.104.180 |
| 2001:0:9d38:6abd:2455:1c81:3e6f:f31d | 172.16.105.251 |
| 2001:0:9d38:6ab8:496:259b:3e6f:f31d  | 172.16.121.59  |

Taula 3: Taula d'adreces IPv6 i IPv4 d'un mateix node.

### 3.4 Adreces Multicast

Per a trobar les diferents adreces multicast s'ha utilitzat el filtre:

$$eth.dst[0] \& 1 \text{ and } !eth.dst == ff:ff:ff:ff:ff$$

Ha donat el resultat de la taula 4. S'ha simplificat les adreces del tipus ff02:1:ff00:0/104, donat que s'utilitza pel mateix protocol. Si es desitja, es pot veure a l'annex la resta de les dades, a la taula 14. A continuació, s'explicarà un per un els proto-

| Adreces multicast  | Protocols          |
|--------------------|--------------------|
| 03:00:00:00:00:01  | BROWSER            |
| 224.0.0.1          | BJNP, ICMP, IGMPv2 |
| 224.0.0.251        | IGMPv2, IPv4, MDNS |
| 224.0.0.252        | $_{ m LLMNR}$      |
| ff02::1            | ICMPv6, IPv6       |
| ff02::16           | ICMPv6             |
| ff02::1:2          | DHCPv6             |
| ff02::1:3          | $_{ m LLMNR}$      |
| ff02::1:ff00:0/104 | ICMPv6             |
| ff02::2            | ICMPv6             |
| ff02::c            | SSDP, UDP          |
| ff02::fb           | MDNS               |

Taula 4: Diferents adreces multicast i els seus protocols

cols que s'han trobat utilitzant aquest tipus de servei:

- BROWSER: aquest protocol és usat pels ordinadors amb el sistema operatiu de Windows per a navegar fàcilment i localitzar els fitxers compartits en una xarxa.
- BJNP: aquest protocol es utilitzat per les impressores Canon amb la finalitat que els ordinadors puguin autodescobrir les impressores connectades a una xarxa.
- ICMP: informa de l'estat i situacons d'error en el funcionament de la xarxa. Amb exepció de l'aplicació Ping, aquest protocol no s'utilitza directament sobre les aplicacions d'usuari.

- IGMPv2: protocol que permet establir grups de multicast en una xarxa d'IPv4.
- IPv4: protocol que permet identificar inequívocament un dispositiu lògic connectat a la xarxa, per així poder connectar nodes.
- MDNS: Multicast Domain Name Service, permet resoldre noms de host (i.e.: www.google.com) a adreces IP dins de petites xarxes que no inclouen un servidor DNS. És un servei que requereix zero configuració. Tot i que no va estar dissenyat per a servidors dee DNS propis, pot ser utilitzat amb aquests.
- LLMNR: és un protocol basant en el DNS per a trobar noms de domini en el mateix link local. És inclòs en la majoria de Windows, així com està implementat per systemd en Linux.
- IPv6: protocol que cerca solucionar els problemes de quantitat d'adreces disponibles, qualitat de servei i seguretat per a l'adreçament d'Internet. Algunes de les seves funcionalitats han sigut portades a IPv4.
- ICMPv6: ICMP per a IPv6, és una simplificació de IGMP, ICMP i ARP pel protocol d'IPv6, introduint, a més a més, algunes simplificacions i eliminant missatges obsolets.
- DHCPv6: proporciona una configuració administrada sobre els dispositius d'IPv6, és a dir, entre altres coses, donen una adreça IPv6 als clients que la soliciten.
- SSDP: protocol que serveix per a descobrir serveis dins d'una mateixa xarxa. És un dels protocols utilitzats per *Universal Pluq and Play* (UPnP).
- UDP: protocol per a enviar datagrames. En contraposició a TCP, no garanteix res, més enllà dels paquests rebuts saber en quina aplicació estan mitjançant el port.

### 3.5 Gràfica de distribució dels protocols de nivell 3

Per a dur a terme aquesta gràfica, s'ha extret les dades de "Statistics > Protocol Hierearchy. En aquest menú, hem aconseguit extreure l'informació de la taula 5

Amb aquestes dades, s'ha generat el gràfic 6

## 4 Anàlisi nivell de transport

Abans de començar s'ha de desestimar certs paquets i protocols per a dur a terme les diferents qüestions. A continuació, s'exposarà els filtres que s'utilitzaran per a cada un dels punts.

| Protocol | Nombre de paquets | Percentatge de paquets |
|----------|-------------------|------------------------|
| LLC      | 97                | 0.6%                   |
| IPX      | 91                | 0.6%                   |
| IPv6     | 550               | 3.5%                   |
| IPv4     | 5616              | 35.5%                  |
| ARP      | 9451              | 59.8%                  |

Taula 5: Taula de protocols de nivel<br/>l $3\,$ 



Figura 6: Gràfic de sectors dels protocols de nivell $3\,$ 

• Pels paquets que tenen com a destí l'adreça de broadcast de nivell 2, s'empraràla comanda:

!eth.dst == ff:ff:ff:ff:ff

• Pels paquets d'IPv6, s'utilitzarà:

!ipv6

• Pels paquets de multicast, s'aplicarà el filtre:

!(eth.dst[0] & 1)

Que no utilitza la segona clausula donat que el paquets de broadcast ja han estat eliminats.

• Pel protocols ARP, DNS i NTP s'emprarà:

```
!arp and !dns and !ntp
```

Aplicant totes les condicions obtenim el filtre:

```
!(eth.dst[0] & 1) and !arp and !dns and !ntp
and !ipv6 and !eth.dst == ff:ff:ff:ff:ff
```

A causa de que l'adreça de broadcast ethernet té el primer valor a 1, la filtre per a detectar multicast simplifica el filtre fins a tenir:

```
!(eth.dst[0] \& 1) and !arp and !dns and !ntp and !ipv6
```

### 4.1 Connexions TCP no dutes a terme

S'ha utilitzat el filtre:

```
tcp and tcp.flags.reset == 1
```

Per a veure les connexions que han acabat per resposta del servidor. Per a les altres connexions, s'ha mirat una per una les converses de TCP, veient si aquestes havien finalitzat de forma excepcional o si es podia treure conclusions d'aquests. Per a visualtizar les diferents connexions, s'ha utilitzat la eina Statistics > Conversations > TCP. Amb la informació obtinguda s'ha elaborat la taula 6.

S'ha tingut en compte el temps de l'últim SYN enviat i el temps de connexió gravat per a decidir si realment s'havia perdut la connexió o el paquet de resposta no s'ha gravat en la sel·lecció de la trama.

### 4.2 Connexions TCP completes

En aquesta subsecció, es diran aquelles connexions TCP que han sigut completes i com s'han trobat. Per a fer-ho, s'han subdividit aquelles connexions que són comunicacions HTTP i HTTPS, i la resta de comunicacions.

### 4.2.1 HTTP i HTTPS

Per a cercar les converses que han tingut alguna connexió TCP, s'ha utilitzat el filtro:

```
tcp.port == 80 or tcp.port == 443
```

Una vegada utilitzat, s'ha utilitzat la eina per a veure converses del Wireshark, amb la opció de només veure les que estiguin dins del filtre, per a veure quines converses s'han matingut en aquests ports. L'única conversa en HTTPS és la que té per IP origen i destí els valors 172.16.0.112 i 213.175.193.206, per a simplificar la taula 7, s'ha unificat amb una sola taula en haver-se esmentat ja els valors.

| IP origen    | Port Origen | IP Destí     | Port Destí | Motiu Fallida                                           |
|--------------|-------------|--------------|------------|---------------------------------------------------------|
| 172.16.0.112 | 34640       | 10.35.12.34  | 1759       | No hi ha hagut<br>resposta per part<br>del destí al SYN |
| 172.16.0.112 | 60158       | 10.50.54.87  | 9876       | No hi ha hagut<br>resposta per part<br>del destí al SYN |
| 172.16.0.102 | 43384       | 172.0.16.111 | 1759       | No hi ha hagut<br>resposta per part<br>del destí al SYN |
| 84.88.27.7   | 80          | 172.16.0.113 | 42901      | S'ha rebut un<br>paquet amb el flag<br>RST              |
| 172.16.0.109 | 33764       | 172.16.0.113 | 80         | S'ha rebut un<br>paquet amb el flag<br>RST              |
| 172.16.0.105 | 44730       | 172.16.0.122 | 80         | S'ha rebut un<br>paquet amb el flag<br>RST              |
| 172.16.0.106 | 42542       | 172.16.0.118 | 6591       | S'ha rebut un<br>paquet amb el flag<br>RST              |

Taula 6: Connexions TCP fallides

| IP origen    | IP destí        |
|--------------|-----------------|
| 172.16.0.109 | 10.69.4.176     |
| 172.16.0.109 | 91.195.125.127  |
| 172.16.0.109 | 147.91.204.28   |
| 172.16.0.109 | 193.219.28.2    |
| 172.16.0.109 | 94.75.223.121   |
| 172.16.0.109 | 129.177.13.120  |
| 172.16.0.109 | 5.135.162.176   |
| 172.16.0.109 | 178.33.193.139  |
| 172.16.0.109 | 91.210.88.42    |
| 172.16.0.109 | 217.31.202.63   |
| 172.16.0.112 | 209.132.181.16  |
| 172.16.0.112 | 213.175.193.206 |
| 172.16.0.113 | 84.88.27.7      |

Taula 7: Conversacions completes en HTTP i HTTPS

### 4.2.2 Connexions no HTTP i HTTPS

Per a dur a buscar aquestes connexions, s'ha utilitzat el filtre:

!(tcp.port == 80 or tcp.port == 443) and tcp

Utilitzant el mateix procediment d'abans, s'ha emprat la eina de Converses del Wireshark i s'han mirat una per una si les connexions eren completes o no. Amb aquesta premisa s'ha extret l'anàlisi de la taula 8. Per a calcular l'MTU, s'ha afegit 40 bytes al camp proporcionat pel protocol TCP sobre el segment més llarg, a causa de la mida de les capçaleres mínima de les capçaleres TCP i IP (20 bytes cada una).

|              | Orige  | en   |          | Destí        |       |      |          |
|--------------|--------|------|----------|--------------|-------|------|----------|
| IP           | Port   | MTU  | Finestra | ΙΡ           | Port  | MTU  | Finestra |
| - 11         | 1 01 0 | WITO | inicial  | 11           | 1 010 | WIIO | inicial  |
| 172.16.0.102 | 48009  | 1500 | 1868800  | 172.16.0.105 | 9642  | 1500 | 1853440  |
| 172.16.0.104 | 36664  | 1500 | 1868800  | 172.16.0.111 | 1759  | 1500 | 1853440  |
| 172.16.0.104 | 45737  | 1500 | 1868800  | 172.16.0.125 | 22    | 1500 | 1853440  |
| 172.16.0.105 | 52193  | 1500 | 1868800  | 172.16.0.108 | 7856  | 1500 | 1853440  |
| 172.16.0.106 | 45874  | 1500 | 1868800  | 172.16.0.112 | 22    | 1500 | 1853440  |
| 172.16.0.106 | 52180  | 1500 | 1868800  | 172.16.0.108 | 7856  | 1500 | 1853440  |
| 172.16.0.106 | 50316  | 1500 | 1868800  | 172.16.0.103 | 21    | 1500 | 1853440  |
| 172.16.0.106 | 38368  | 1500 | 1868800  | 172.16.0.115 | 7658  | 1500 | 1853440  |
| 172.16.0.109 | 49608  | 1500 | 1868800  | 172.16.0.108 | 7856  | 1500 | 1853440  |
| 172.16.0.112 | 42095  | 1500 | 1868800  | 172.16.0.102 | 21    | 1500 | 1853440  |

Taula 8: Conversacions completes no pertanyens a HTTP i HTTPS

### 4.3 Connexions UDP no dutes a terme

UDP no és un protocol orientat a connexió, pel que dins del protocol costarà saber si alguna connexió UDP no s'ha dut a terme. Però, el protocol ICMP avisa quan algun host, port o destí no ha sigut trobat, donant així una connexió UDP fallida. Utilitzant el filtre:

#### upd and icmp

Trobarem els missatges de xarxa produits per aquest tipus de connexió. Però, donat que hi ha molts missatges de *Time to live*, i, a causa de que aquest missatge podria ser tractat per una capa superior, s'ha desestimat tots aquests paquets treient el seu camp amb el filtre:

#### !icmp.type == 11

D'aquesta forma, es facilita adquirir les dades amb les quals, s'ha efectuat la taula 9.

### 4.4 Connexions UDP dutes a terme

No s'ha utilitzat cap filtre en especial per a detectar si s'ha establert una connexió UDP. En canvi, s'ha analitzat una a una les connexions. Després d'aquest

| Origen         |       | Destí        |       | Motiu            |  |
|----------------|-------|--------------|-------|------------------|--|
| IP             | Port  | IP           | Port  | Motiu            |  |
| 172.16.0.111   | 55864 | 172.16.0.112 | 1034  | Port inabastible |  |
| 131.206.192.49 | 35430 | 172.16.0.113 | 33504 | Port inabastible |  |
| 130.206.192.49 | 54863 | 172.16.0.113 | 33505 | Port inabastible |  |
| 130.206.192.49 | 50066 | 172.16.0.113 | 33503 | Port inabastible |  |
| 130.206.192.49 | 41967 | 172.16.0.113 | 33507 | Port inabastible |  |
| 130.206.192.49 | 41722 | 172.16.0.113 | 33508 | Port inabastible |  |
| 130.206.192.49 | 58040 | 172.16.0.113 | 33509 | Port inabastible |  |

Taula 9: Connexions TCP fallides

anàlisi, s'ha utilitzat les dades per a dur a terme la taula 10. Algunes d'aquestes connexions són per a fer *traceroute*, i com a tal utilitza una llarga quantitat de ports diferents. En aquests casos, s'ha deixat els nombres de port amb el caràcter "-", per a marcar-ho.

| Origen        |       | Destí          |      |
|---------------|-------|----------------|------|
| IP            | Port  | IP             | Port |
| 172.16.0.102  | 53870 | 172.16.106     | 2010 |
| 172.16.0.104  | 46434 | 172.16.0.109   | 1055 |
| 172.16.0.104  | -     | 172.16.0.109   | -    |
| 172.16.0.105  | 45346 | 172.16.0.115   | 1211 |
| 172.16.0.105  | 54055 | 10.50.54.87    | 356  |
| 172.16.0.112  | 55864 | 172.16.0.111   | 1034 |
| 172.16.0.112  | 37396 | 172.16.0.106   | 2010 |
| 172.16.0.113  | -     | 130.206.192.49 | -    |
| 172.16.0.113  | 52307 | 172.16.0.105   | 8310 |
| 213.73.40.242 | -     | 172.16.0.104   | -    |

Taula 10: Connexions UDP dutes a terme

### 4.5 Anàlisi connexions TCP

En aquest anàlisi, es demana analitzar en quatre apartats les dues comunicacions amb més transferència de dades, excloient aquelles en HTTP i en HTTPS. Per a fer un filtre d'aquestes, s'utilitzà el ja esmentat en el subapartat de Connexions no HTTP i HTTPS.

Per a seleccionar les dues connexions amb més cabal, en l'apartat Statistics > Conversations > TCP, aplicant el filtre, s'ordena pel camp bytes i s'agafa les dues connexions desitjades. Aquestes connexions tenens les IPs de la taula 11

En la següent taula, utilitzant la eina de converses s'ha fet una taula amb les

| Origen       | Į.    | Destí        |      | Bytes |  |
|--------------|-------|--------------|------|-------|--|
| IP           | Port  | IP           | Port | Dytes |  |
| 172.16.0.109 | 49608 | 172.16.0.108 | 7856 | 45k   |  |
| 172.16.0.105 | 52193 | 172.16.0.108 | 7856 | 41k   |  |

Taula 11: Connexions TCP a analitzar

dades que requeria l'enunciat. Amb aquestes dades, s'ha realitzat les taules 12 i 13.

| Connexió       | 172.16.0.109                                                     | 172.16.0.108   |
|----------------|------------------------------------------------------------------|----------------|
| Inici          | 8264 8265                                                        | 8266           |
| Tancament      | 8348 8350                                                        | 8351           |
| Nombre bytes   | 44k                                                              | 1772           |
| Bytes d'usuari | 41956                                                            | 0              |
| Bits/s Brut    | 1190k                                                            | 47k            |
| Bits/s Net     | 1133k                                                            | 0              |
| Opcions        | MSM: 1460<br>SACK: permitt<br>TSval: 246717<br>NOP<br>WS:7(x128) | ed<br>TSecr: 0 |
| Seqüència      | 4204505787                                                       | 927140671      |

Taula 12: Primer anàlisi de connexió TCP

| Connexió          | 172.16.0.105                                                      | 172.16.0.108   |
|-------------------|-------------------------------------------------------------------|----------------|
| Inici             | 1302 1303                                                         | 1304           |
| Tancament         | 1383 1393                                                         | 1394           |
| Nombre bytes      | 40k                                                               | 1616           |
| Nombre de paquets | 27                                                                | 20             |
| Bytes d'usuari    | 38459                                                             | 0              |
| Bits/s Brut       | 5383k                                                             | 216k           |
| Bits/s Net        | 5145k                                                             | 0              |
| Opcions           | MSM: 1460<br>SACK: permitte<br>TSval: 197661<br>NOP<br>WS:7(x128) | ed<br>TSecr: 0 |
| Seqüència         | 273017509                                                         | 196424145      |

Taula 13: Segon anàlisi de connexió TCP

Per a calcular les dades de bytes d'usuari i bits nets s'ha buscat paquet a paquet quin *Payload* tenien, per a calcular realment aquests valors sense aproximacions. Per a calcular els valors nets, s'ha dividit aquesta quantitat, però en bits, i s'ha dividit per la durada de la comunicació.

Per les opcions que s'han mostrat, s'explicarà la seva utilitzat:

- Maximum Segment Size (MSM), expressa el nombre de bytes que es poden rebre en un sol segment de TCP
- TCP Selective Acknolowledgement Permitted Option, determina si els paquets Selective ACKnolowledgement (SACK) són acceptats. Aquests, permeten informar qins paquets, segments o missatges han sigut rebuts. S'envia afegint-lo en un paquet duplicat d'ACK.
- Timestamps: data i hora que s'utilitza per a mesurar el RTT i també en el mecanisme de Protect Agianst Wrapped Sequences, el qual elimina duplicats de segements que podrien corrompre una seqüència de TCP. El primer valor TSval conté la data hora del transmissor, mentre que el TSecr conté l'enviat abans pel receptor.
- No OPeration (NOP): s'utilitza per acabar la capçalera de les opcions.
- Window Scale S'utilitza com a multiplicador del windows size.

### 4.6 Gràfica TCP i UDP

En aquesta subsecció, és donarà una gràfica que representarà el trànsit en el temps, de tres opcions, tots, aquells paquets TCP, i aquells paquets UDP.

Per a fer-ho s'ha emprat l'eina del Wireshark Statistics > I/O Graph, i en la figura 7 es pot veure el resultat.



Figura 7: Tràfic en el temps de TCP, UDP i el total

## 5 Conclusions

Aquesta pràctica ha permès assimilar els conceptes que s'han ensenyat al llarg de la assignatura de xarxes, arribant a coneixements més enllà dels ensenyats en alguns casos, aprenent a utilitzar una eina tan potent com el Wireshark, havent fet una presa de contacte amb el llenguatge de Lua, tot i que al final no s'ha requerit en cap dels apartats, i, finalment, arribar a entendre en un pas més abstracte i real com funciona internament una xarxa en producció.

En resum, aquesta pràctica ha estat una experiència positiva per al desenvolupament personal com a enginyer informàtic.

## 6 Annex

| Adreces multicast                           |
|---------------------------------------------|
| ff02::1:ff16:f8e9                           |
| ff02::1:ff3a:5c61                           |
| ff02::1:ff4e:9436                           |
| ff02::1:ff52:275                            |
| ff02::1:ff5f:1802                           |
| ff02::1:ff62:ce40                           |
| ff02::1:ff74:9938                           |
| ff02::1:ff84:f581                           |
| ff02::1:ff90:170b                           |
| ff02::1:ff92:210f                           |
| ff02::1:ff9e:c17f                           |
| ff02::1:ffac:b684                           |
| ff02::1:ffb5:ecdb                           |
| ff02::1:ffbf:a6df                           |
| ff02::1:ffc8:6083                           |
| ff02::1:ffca:c1b3                           |
| ff02::1:ffdb:187                            |
| ff02::1:ffe1:112f                           |
| ${\it ff}02{::}1{:}{\it ff}eb{:}4{\it add}$ |

Taula 14: Adreces multicast de format ff02::1:ff00:0/104