On Mutual Information Maximization For Representation Learning [Tschannen et al., ICLR 2020]

-Summary-

Introduction

- Dealing with unsupervised representation learning:
 - Goal : learn a function g which maps the data into lower-dimensional space (where we can solve some supervised tasks more efficiently)

Simple description of unsupervised representation learning

Introduction

Claim of this paper

: Maximizing tighter lower bounds on MI can result in worse representations.

- Recent approach : InfoMax principle (Linsker, 1998)
 - Choose a representation g(x) maximizing mutual information (MI) between the input and its representation:

$$\max_{g \in \mathcal{G}} I(X; g(X))$$

- However, estimating MI in high-dimensional is notoriously difficult task
 - In practice, we usually maximizes a tractable variational lower bound of MI (Poole et al., 2019)
 - Using this method, several recent works have demonstrated promising empirical results in representation learning using MI maximization(ex : using I_{NCE} , I_{NWI})

This paper focused on unsupervised 'image' representation learning.

- Usual problem setup (~ Becker and Hinton, 1992): Multi-view formulation
 - For a given image X, let $X^{(1)}$ and $X^{(2)}$ be different <u>views</u> of X. (ex : different cropped images, top and bottom halves of the image)
 - We focus below problem rather than original MI maximization :

$$\max_{g_1 \in \mathcal{G}_1, g_2 \in \mathcal{G}_2} I_{EST} \left(g_1(X^{(1)}); g_2(X^{(2)}) \right)$$

where I_{EST} : samples-based estimator of the true MI

Note:

$$I\left(g_1\big(X^{(1)}\big);g_2\big(X^{(2)}\big)\right)\leq I\left(X;g_1\big(X^{(1)}\big),g_2\big(X^{(2)}\big)\right)=I\big(X;g(X)\big) \ \ \text{by data-processing inequality.}$$

Thus, our problem can be interpreted as maximizing the lower bound of I(X;g(X))

Background and related work

- Q : Why we use multi-view formulations?
 - **1.** [fundamental reason] the MI has to be estimated only between the learned representations of the two views.
 - 2. it give us various modeling flexibility.
 - (1): how to choose the **objective** I_{EST} , 2): how to define **two views** of an sample)

- For example :
 - ① : choose $X^{(1)}$ = upper half of X, $X^{(2)}$ = lower half of X
 - ②: choose variational lower bounds of MI (= I_{NWI} , I_{NCE} , ...)

Background and related work

• If we assume usage of variational lower bounds such as I_{NCE} , I_{NWI} as belows :

$$I_{NCE} := \mathbb{E}\left[\frac{1}{K}\sum_{i=1}^{K}\log\frac{e^{f(x_{i},y_{i})}}{\frac{1}{K}\sum_{j=1}^{K}e^{f(x_{i},y_{j})}}\right], \qquad I_{NWJ} := \mathbb{E}\left[\frac{1}{K}\sum_{i=1}^{K}f(x,y) - e^{-1}\cdot\frac{1}{K^{2}}\sum_{i=1}^{K}\sum_{j=1}^{K}e^{f(x,y)}\right]$$

where expectation is taken over a batch (= K independent samples $\{(x_i, y_i)\}_{i=1}^K$)

Note: lower bounds get tight when $f^*(x,y) = \log p(y|x)$ [I_{NCE}] or $f^*(x,y) = 1 + \log p(y|x)$ [I_{NWI}]

• We train 'critic function' f to maximize I_{NCE} or I_{NWJ} . (= choosing $I_{EST} = \max_{f} I_{NCE(or\ NWJ)}$)

Note [Common architectures for f]:

① bilinear : $f(x,y) = x^T W y$, ② separable : $f(x,y) = \phi_1(x)^T \phi_2(y)$, ③ concatenated : $f(x,y) = \phi([x,y])$

where ϕ , ϕ_1 , ϕ_2 : (typically) shallow multi-layer perceptrons (MLPs)

Arising question from InfoMax principle

• Intuitively, we discriminate two distributions p(x,y) and p(x)p(y) by maximizing mutual information $I(X;Y) = D_{KL}(p(x,y)|p(x)p(y))$ when we adopt InfoMax principle.

- However, it does not imply the learning of useful representations (Linsker, 1998)
 - Also, some issues occurred in clustering problem when we adopts MI criterion (Bridle et al., 1992)

• Then, what is the critical factor which leads to recent success of representation learning based on InfoMax principle? (candidates : InfoMax, architectures of encoder / critic, I_{est}) (This paper argues that the connection between InfoMax and useful representations can be very loose.)

- Claim ①: Large MI is not predictive of good downstream performance.
 - Using invertible encoder (RealNVP, 2016), we can fix the MI as the constant as

$$I\left(g_1(X^{(1)});g_2(X^{(2)})\right) = I(X^{(1)};X^{(2)})$$

- 1st experiment performs training via InfoMax principle on invertible encoders
 - Although the true MI is fixed, I_{EST} and downstream performance get increased during the training
 - This confirms that the MI estimator biases the encoders towards solutions suitable
 to solve the downstream linear classification task (despite of fixed MI).

Data : MNIST / $x^{(1)}$: upper half image / $x^{(2)}$: lower half image / Critic f : bilinear Note : Use only $g_1(x^{(1)})$ as the representation for the linear evaluation

Left: Maximizing I_{EST} over invertible models

Right: Downstream classification performance (by linear evaluation protocol)

- Claim ①: Large MI is not predictive of good downstream performance. (InfoMax)
 - 2nd experiment performs adversarial training of encoder and classifier
 - By doing so, the encoder is trained to make the classifier to predict as hard as possible.
 - Here, training of encoder is not done by InfoMax principle, but by adversarial stage to deliberately make poor quality encoder.

Details of adversarial training:

Adversarial stage: encoder + (temporary) classifier

-> encoder: minimizing CE loss with uniform label / classifier: minimizing CE loss with true label

Linear evaluation stage: encoder + (new) classifier

-> encoder : brought and fixed from above stage / classifier : minimizing CE loss with true label

• Claim ①: Large MI is not predictive of good downstream performance.

Downstream classification accuracy of a adversarially trained invertible encoder

Note: this demonstrates the existence of encoders that maximize MI yet have bad downstream performance.

: MI and downstream performance are only loosely connected

Condition number of matrix
$$A := \frac{\sigma_{max}(A)}{\sigma_{min}(A)} = ||A|| \cdot ||A^{-1}||$$

- Claim ①: Large MI is not predictive of good downstream performance. (InfoMax)
 - 3rd experiment shows training with InfoMax principle biases model towards hard-to-invert encoders
 - Here, we use MLP architecture encoder which can be both invertible / non-invertible (adding skip connection added tot each layer)
 - Recall that function is invertible ⇔ input Jacobian is invertible (Implicit function theorem)
 - To quantifying the 'invertibility' of jacobian, we use condition number of Jacobian (Higher condition number of jacobian => Harder to invert the jacobian)

Condition number of matrix
$$A := \frac{\sigma_{max}(A)}{\sigma_{min}(A)} = ||A|| \cdot ||A^{-1}||$$

- Claim ①: Large MI is not predictive of good downstream performance. (InfoMax)
 - Even though encoder is initialized to very close to identify function, the condition number of its Jacobian evaluated at randomly sampled inputs deteriorates over times.
 - This implies the objective (I_{NWI}, I_{NCE}) biases the encoder towards hard-to-invert models.

 $\textit{Left}: I_{\textit{EST}} \textit{ during training / Middle}: \textit{Downstream accuracy with } I_{\textit{NWI}}, I_{\textit{NCE}} \textit{/} \textit{Right}: \log(\kappa(Jacobian)) \textit{ during training } I_{\textit{NCE}} \textit{/} \textit{All Colors} \textit{/} \textit{All Colors$

- Claim ②: Higher capacity critics can lead to worse downstream performance. (critic archit.)
 - Higher capacity critic should allow for a tighter lower-bound on MI (Belghazi et al., 2018)
 - Here, we compare bilinear / separable / concatenate(MLP) critic f architecture (Note : # of parameters : bilinear (=10k) << separable = concatenate (= 40k))

Left: Downstream accuracy with I_{NCE} / Middle: Downstream accuracy with I_{NWI} / Right: I_{NWI} value

- Claim ③: Encoder architecture can be more important than the specific estimator.
 - Here, we compare downstream performance from MLP / ConvNet encoder when they have the same estimate of MI (I_{NCE} , I_{NWJ}). We minimize the loss $L_t(g_1, g_2) = |I_{EST}(g_1(X^{(1)}; g_2(X^{(2)}) t)|$
 - Despite of matching estimates of MI, ConvNet performs superiorly than MLP.

Left : Downstream accuracy with I_{NCE} / Right : Downstream accuracy with I_{NWJ}

- Claim 4: Big connection to deep metric learning, which does not use notion of MI.
 - [Metric learning] : Given set of triplets (x, y, z) = (anchor, positive, negative), we want to learn g such that the distance between g(x) and g(y) becomes smaller and g(x) and g(z) becomes larger.

Brief depiction of Metric learning

- Claim 4: Big connection to deep metric learning, which does not use notion of MI.
 - Although there is a loose connection between InfoMax and representation performance, why many recent works have applied I_{NCE} and achieved good performance?
 - Recall that I_{NCE} can be written as follows :

$$I_{NCE} \coloneqq \mathbb{E}\left[\frac{1}{K}\sum_{i=1}^{K}\log\frac{e^{f(x_i,y_i)}}{\frac{1}{K}\sum_{j=1}^{K}e^{f(x_i,y_j)}}\right] = \log K - \mathbb{E}\left[\frac{1}{K}\sum_{i=1}^{K}\log\left(1 + \sum_{j\neq i}e^{f(x_i,y_j)-f(x_i,y_i)}\right)\right]$$

- Claim 4: Big connection to deep metric learning, which does not use notion of MI.
 - One famous loss proposed in metric learning (multi-class-K-pair loss , 2016) :

$$L_{K-pair-mc}(\{(x_i, y_i)\}_{i=1}^K, \phi) = \frac{1}{K} \sum_{i=1}^K \log \left(1 + \sum_{j \neq i} e^{\phi(x_i)^T \phi(y_j) - \phi(x_i)^T \phi(y_i)}\right)$$

which is the same as maximizing I_{NCE} with separable critic $f(x,y) = \phi(x)^T \phi(y)$.

• Hence, the success of InfoMax principle with I_{NCE} can be attributed to it's connection to metric learning. (So, many recent paper may call this method as 'Contrastive Learning')

Claims and experiments - Summary

• Claim ①: Large MI is not predictive of good downstream performance.

Claim ②: Higher capacity critics can lead to worse downstream performance.

• Claim ③: Encoder architecture can be more important than the specific estimator.

• Claim 4: There is a big connection to deep metric learning, which does not use notion of MI.