Set 11: Ordered Dictionary Abstract Data Types: AVL Trees

CS240: Data Structures and Data Management

Jérémy Barbay

Outline

AVL Trees

Definition Height of AVL Trees Balancing operations

Binary Search Trees

- ▶ The worst-case performance is $\Theta(h)$, i.e. $\Theta(n)$
- Randomly built trees perform well
 - Expected height $h = 1.386 \log(n+1)$
- ▶ Sequence of n^2 alternating inserts/deletes
 - ▶ Expected height $h \in \Theta(\sqrt{n})$
- Possible improvements? Keeping a small height will improve the worst case.

Height Balanced Trees

- ► Can we guarantee tree height?
 - ▶ Try to keep our search trees balanced
 - ▶ Must not affect the running time
- Balanced Node
 The heights of its subtrees differ by at most one
- AVL Tree
 A Binary Search Tree such that every node is balanced
 - Adel'son-Vel'skii and Landis, 1962

Which Trees are AVL?

Which nodes are balanced?

Recording Balance

- We can explicitly record a height for each node It would take O(lg lg n) bits per node.
- Or we can use condition codes
 - ► = Balanced
 - > Left-heavy (by one)
 - < Right-heavy (by one)</p>

It would take 2 bits per node.

AVL Tree Height

General Idea

Let S(h) be the fewest possible nodes for an AVL tree of height h (including placeholders)

AVL Tree Height

General Idea

Theorem

h is $\Theta(\log n)$ for an AVL tree of height h and n internal nodes.

Proof:

▶ Recurrence relation (close to Fibonaci Sequence) gives

$$S(h) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{h+2}}{\sqrt{5}} + 1$$

▶ Note: $S(h) \le n$.

$$h \leq \frac{\lg n}{\lg \frac{1+\sqrt{5}}{2}} + o(1)$$
$$\approx 1.44 \lg n$$

Operations

- Find:
 - As in a Binary Search Tree (BST).
- ▶ Insert
 - Find and insert as in a BST.
 - Update heights (codes) on path back to root
 - Locate a possible unbalanced node, z
 - Perform a rotation (see two next slides)
- ▶ Delete
 - Find and delete as in a BST
 - Update heights (codes) on path back to root
 - Locate possible unbalanced nodes and rotate them.

The complexity of Find is O(h), i.e. $O(\lg n)$.

"Single" Rotation

▶ node z fails the AVL test after adding node p:

single rotation regains balance:

"Double" Rotation

▶ Node z fails the AVL test after adding node p:

▶ Double rotation regains balance:

"Single" Rotation

▶ From an empty tree: Insert(1), Insert(2)

▶ Insert(3)

"Single" Rotation (Cont)

▶ Insert(4), Insert(5)

"Double" Rotation

▶ From an empty tree: Insert(1), Insert(3)

▶ Insert(2) 2 1 3

"Double" Rotation, Larger Example

▶ Insert(4)

"Double" Rotation, Solution of the large example.

Cost of Insert

- How many rotations may be required for an Insert? (A double rotation counts as one rotation.) At most one!
- How expensive is a rotation?
 Constant
- Worst-case running time for Insert? Constant? NO!!!! Same cost as Find, hence O(h), i.e. O(lg n).

Examples of Deletion

"Simple Rotation"

- ▶ Delete(1)
- ▶ Delete(2)

Examples of Deletion

"Simple Rotation", solutions

Examples of Deletion

"Simple Rotation", solutions (cont)

Delete

Larger Example

▶ Delete(1)

Delete

Solution of large Example

We need to rotate first around (2,4), and then around (5,8).

Cost of Delete

- How many rotations may be required for a Delete? at most h.
- How expensive is a rotation? constant (same rotation as for Insertsion)
- Worst-case running time for Delete? O(h), i.e. O(lg n)

Final Thoughts

- All major binary search tree operations have guaranteed worst-case Θ(log n) performance
- ► Fairly large constant hidden in order notation
- ► Each internal node stores a condition code (or height)
- ▶ Condition code is usually represented by $\{-1,0,1\}$

Summary

- AVL Trees are Balanced Binary Search Trees.
- ► Their height is Logarithmic in their size.
- The time in which the operators are supported is
 - ► Search in time $O(\lg n)$
 - ► Insertion in time $O(\lg n)$ (not constant time!)
 - ▶ Deletion in time $O(\lg n)$

References:

- Goodrich and Tamassia: pp. 152-158
- Cormen, Leisersen, Rivest, Stein: pp. 296 (poorly covered)