**STOCK MARKET PERFORMANCE ANALYSIS USING PYTHON **
!pip install yfinance

#TO COLLECT REAL_TIME STOCK MARKET DATA USING "yfinance" API:

import pandas as pd
import yfinance as yf
from datatime import data

from datetime import datetime

start_date=datetime.now() - pd.DateOffset(months=6)
end_date=datetime.now()

tickers=['AAPL','MSFT','NFLX','GOOG']

df_list=[]

for ticker in tickers:
 data=yf.download(ticker,start=start_date,end=end_date)
 df_list.append(data)

[********* 100%******** 1 of 1 completed

df=pd.concat(df_list,keys=tickers)
print(df.head())

		0pen	High	Low	Close	Adj Close	\
	Date						
AAPL	2023-03-17	156.080002	156.740005	154.279999	155.000000	154.577164	
	2023-03-20	155.070007	157.820007	154.149994	157.399994	156.970612	
	2023-03-21	157.320007	159.399994	156.539993	159.279999	158.845490	
	2023-03-22	159.300003	162.139999	157.809998	157.830002	157.399445	
	2023-03-23	158.830002	161.550003	157.679993	158.929993	158.496445	

Volume

Date
AAPL 2023-03-17 98944600
2023-03-20 73938300
2023-03-21 75701800
2023-03-23 67622100

IN THE ABOVE DATASET, DATECOLUMN IS THE INDEX SO BEFORE MOVING FURTHER WE NEED TO CHANGE IT

df=df.reset_index()
print(df.head())

```
level_0 Date Open High Low Close \
0 AAPL 2023-03-17 156.080002 156.740005 154.279999 155.000000
1 AAPL 2023-03-20 155.070007 157.820007 154.149994 157.399994
2 AAPL 2023-03-21 157.320007 159.399994 156.539993 159.279999
3 AAPL 2023-03-22 159.300003 162.139999 157.809998 157.830002
4 AAPL 2023-03-23 158.830002 161.550003 157.679993 158.929993
```

Adj Close Volume 0 154.577164 98944600

1 156.970612 73641400

2 158.845490 73938300

3 157.399445 75701800

4 158.496445 67622100

#now lets look at the performance in the stock market

import plotly.express as px
fig=px.line(df,x='Date',y='Close',color='level_0',title="Stock Market Performance for the last six months")
fig.show()

Stock Market Performance for the last six months

fig=px.area(df,x='Date',y='Close',color='level_0',facet_col='level_0',labels={'Date':'Date','Close':'Closing Price','Ticker':'Company'},title
fig.show()

Stock Prices for Apple, Microsoft, Netflix, and Google

#NOW LET US ANALYZE THE MOVING AVERAGES TO IDENTIFY TRENDS ANS PATTERNS IN EACH COMPANY'S STOCK PRICE MOVEMENTS OVER A PERIOD TIME

```
df['MA10']=df.groupby('level_0')['Close'].rolling(window=10).mean().reset_index(0,drop=True)
df['MA20']=df.groupby('level_0')['Close'].rolling(window=20).mean().reset_index(0,drop=True)

for level_0,group in df.groupby('level_0'):
    print(f'Moving Averages for {level_0}')
    print(group[['MA10','MA20']])
```

NOW LET US VISUALIZE MOVING AVERAGES OF THE FOLLOWING COMPANIES

```
for level_0,group in df.groupby('level_0'):
    fig=px.line(group,x='Date',y=['Close','MA10','MA20'],title=f"{level_0}Moving Averages")
    fig.show()
```


Volatility of All Companies

Correlation between Apple and Microsoft

#FROM THE ABOVE PLOT WE CAN SEE THAT THERE IS A STRONG RALATIONSHIP BETWEEN STOCK PRICES OF APPLE AND MICROSOFT(REASON MAY BE DUE TO FACTORS

#THIS IS HOW WE CAN PERFORM STOCK MARKET ANALYSIS USING PYTHON