Wait, this is about security and privacy?

Secure Systems Engineering Spring 2024

EE G7701

April 2, 2024 Tushar Jois

Grades

- Exam 1 grades are available on Blackboard
 - To get back your exam and rubric, email me <u>from your CCNY email</u> with the subject line "EE G7701 Exam 1 [LastName]"
- Thoughts on Exam 1
- Aside: Most other grades are also now available
 - Some "edge case" Assignment 2 grading that still needs to be done
 - Working on Assignment 3 grades now

Recap

- Secure systems can be backdoored in a myriad of ways
- The use of computing systems requires accepting large chains of trust
- Balancing the risks of cybersecurity vulnerabilities with the ease of open-source integration is a challenge

Lesson objectives

- Work through, step by step, the operation of the Signal protocol
- Describe how Tor uses onion routing to provide censorship resistance
- Understand the political and societal ramifications of privacy

Defining privacy

- What are the goals of security?
 What are the goals of privacy?
- Order the following data types by how valuable privacy is to the data:
 - a. Browser history
 - b. Financial statements
 - c. Medical records
 - d. Text messages
 - e. Grade transcript

The importance of secure messaging

- Facebook Messenger, Instagram are not "end-to-end"
 - Facebook reads the messages, delivers ads about them
 - Governments can subpoena Facebook for your messages, reconstruct your digital life
- "Surveillance capitalism"
 - The person is the product
 - "Free" services provided by Big Tech powered by the selling of your data
- Data sharing agreements
 - Seen ads for things you've talked about on Amazon?

"But I have nothing to hide!"

- Solidarity with those who do
 - Snowden/whistleblowers, but also "The Feeling of Being Watched" subjects
- You might not realize how much data is out there
 - "We kill people based on metadata"
- Data lasts forever, and you might have to someday
 - Data lasts forever -- and companies/banks/governments are looking

Key compromise?

- If Alice loses sk, the entire message history is disclosed
 - Phone loss
 - Forensic extraction
- Can we do better?

. . .

What if a party is offline?

Requires interaction

public channel color

require the other party

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_2$

Alice

. . .

 $preB_1 \rightarrow Diffie-Hellman \rightarrow sk_1$

 $Encrypt(m_1, sk_1) \rightarrow c_1$

(signed)

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_2$

• • •

Bob

 C_{1}

Rest of Diffie-Hellman $\rightarrow sk_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_2$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_2$

Bob

 $preB_1 \rightarrow Diffie-Hellman \rightarrow sk_1$

 $Encrypt(m_1, sk_1) \rightarrow c_1$

 C_1

Rest of Diffie-Hellman $\rightarrow sk_1$

 $preA_1 \rightarrow Diffie-Hellman \rightarrow sk_2$

 $Encrypt(m_2, sk_2) \rightarrow c_2$

What if they want to talk a lot or with other people?

Run out of pre-keys quickly

 C_{2}

Rest of Diffie-Hellman $\rightarrow sk_2$

KDF chain

- Special cryptographic construct that generates new keys from old keys
 - We can use the new keys for subsequent messages
 - Requires both parties to be in the same "state" of the ratchet
- Send a message, Alice encrypts with a key, and then "ratchets it forward"
 - Bob receives the message, decrypts it, and then "ratchets it forward"
 - Forward secrecy without significant interaction
 - Both have to keep in sync

Symmetric ratcheting

"The parties derive new keys for every Double Ratchet message so that earlier keys cannot be calculated from later ones...

[giving] some protection to earlier or later encrypted messages in case of a compromise of a party's keys."

Perrin and Marlinspike, "The Double Ratchet Algorithm" (2016)

 $\frac{1}{2}$ of Diffie-Hellman → $preA_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_2$

Alice

. .

 $preB_1 \rightarrow Diffie-Hellman \rightarrow sk_1$

 $Encrypt(m_1, sk_1) \rightarrow c_1$

Ratchet forward $sk_1 \rightarrow sk_2$

(signed)

Server

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_2$

 B_1

*abridged

Bob

 C_{1}

Rest of Diffie-Hellman $\rightarrow sk_1$

Ratchet forward $sk_1 \rightarrow sk_2$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preA_{2}$

Alice

. . .

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_2$

• •

Bob

The loss of one key doesn't leak previous ones → forward secrecy

 $preB_1 \rightarrow Diffie-Hellman \rightarrow sk_1$

 $Encrypt(m_1, sk_1) \rightarrow c_1$

Ratchet forward $sk_1 \rightarrow sk_2$

 \boldsymbol{c}_2

Ratchet forward $sk_2 \rightarrow sk_3$

 \boldsymbol{c}_1

Rest of Diffie-Hellman $\rightarrow sk_1$

Ratchet forward $sk_1 \rightarrow sk_2$

 $Encrypt(m_2, sk_2) \rightarrow c_2$

Ratchet forward $sk_2 \rightarrow sk_3$

f Diffie-Hellman $\rightarrow preA_1$

f Diffie-Hellman
$$\rightarrow preA_2$$

Server

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_1$

 $\frac{1}{2}$ of Diffie-Hellman $\rightarrow preB_2$

Bob

Sidebar

- Not a trivial protocol
- Complicated to provide forward secrecy, limited interaction, and efficiency
- Good example of security engineering in practice
- Needs to be usable in practice

 $B_1 \rightarrow \text{Diffie-Hellman} \rightarrow sk_1$

. . .

 $\operatorname{ncrypt}(m_1, sk_1) \rightarrow c_1$

tchet forward $sk_1 \rightarrow sk_2$

 C_{2}

tchet forward $sk_1 \rightarrow sk_2$

 C_1

Rest of Diffie-Hellman $\rightarrow sk_1$

Ratchet forward $sk_1 \rightarrow sk_2$

Encrypt $(m_2, sk_2) \rightarrow c_2$

Ratchet forward $sk_2 \rightarrow sk_3$

Censorship resistance

- Some users live under regimes with authoritarian Internet policies
- They are forbidden from accessing content that the government deems subversive
 - A government's "subversive content" could be a group's "civil rights protest"
- A system like Signal prevents direct observation of content by governments
 - So, the Signal server is blocked by an authoritarian government

- What if we decided that all users should be able to access any content?
 - This choice lies in opposition to the existence of censorship
 - Society gets to decide which values we keep
- So, there's a valid use case for technology that combats censorship

Tor Circuit

Some thoughts on Tor

- Trusting Tor
 - Tor is another system we have to trust
 - Funded by lots of people (incl. US) but mostly written by volunteers (open source)
- Virtual Private Networks and Tor
 - VPNs are similar to Tor (having another computer request traffic for you)
 - No guarantees that a VPN will not read/store/log your actions
 - VPNs claim terms of use, audits, etc but no formal promises
 - Tor has cryptographic guarantees (encrypted traffic)

- Exit nodes on Tor
 - Exit node needs to see your data to perform a web request
 - Can potentially break your privacy, but also can use TLS
- But, there's a more fundamental problem...

Censoring censorship resistance

- Censor can clearly identify traffic that's going to a Tor network
 - Single point of failure: directory server
 - Block access to directory server → block access to Tor
 - China's "Great Firewall" does this
- Use of Tor could endanger your life
 - Protestors/dissidents/whistleblowers
 - Still need to access free communication

Society

- Signal and Tor banned in several countries
 - Brittle censorship circumvention
 - Make messages look like other messages -steganography
- "Going Dark"
 - FBI's initiative to reduce prevalence of end-to-end encryption
- EARN IT Act (2020)
 - Providers that provide end-to-end encrypted messaging must monitor messages for CSAM
 - Defeats end-to-end protections in the name of detecting abuse
 - Horrible, abusive content -- but universal scanning might not be the answer
- The debate rages on

Society

Looking ahead

- Be reflective about your progress, and reach out if you need help
 - Key dates for the remainder of the semester
 - Apr 15: Project code due
 - Apr 16: Exam 2
 - May 7: Project demo day
 - May 14: Project presentations
 - Send an email with the subject "EE G7701 Exam 1 [LastName]" to get your exam back
- Today's activity: personal privacy check-up lab

Lesson objectives

- Work through, step by step, the operation of the Signal protocol
- Describe how Tor uses onion routing to provide censorship resistance
- Understand the political and societal ramifications of privacy