Solution to Attribute-Based Assignment Problems A Primer to the University Timetabling Problem

Folarin, Wasiu Jr. MTH/2014/014

Dr. B. S. Ogundare Supervisor

April 9, 2019

Outline

- Introduction
 - Objective
 - Core Concepts
- 2 A Sample Problem: NYSC Posting
 - Problem Statement
 - The Constraints
 - Assignment Schedule
- 3 End

Introduction

Claim

Given any set of objects $U = \{u_1, u_2, ..., u_n\}$ each possessing certain attributes, and a set of constraining conditions for assignment, we can:

- Construct functions describing those constraints
- 2 Assign each object to a class of best fit

The Nature of Attributes

Definition

An Attribute is any characteristic of a group of objects that can serve as a basis for classification

- Age
- State of Origin
- Courses offered in a semester
- Body mass
- O'Level Results
- etc...

Partitions

Definition

A Partition, is a classification of objects based on an <u>ideal value</u> of one or more attributes

- Teens, Young Adults,... (based on the Age attribute of objects)
- Hausa, Igbo, Yoruba,... (based on the State of Origin attribute)
- etc...

Constraints '

Definition

A Constraint function, μ , matches the <u>Ideal value</u> of a partition, p_i , to the attribute value of an object, u_i , and assigns a membership value viz:

$$\mu(p_i, u_j) \mapsto [0, 1]$$
 $i, j \in \mathbf{Z}$

Classes of Constraints

Definition

- Binary Constraints assign a membership value $v \in \{0,1\}$ to each object
- Continuous Constraints assign a membership value $v \in [0,1]$ to each object

Definition

- Inclusion Constraints admit objects based on proximity to the ideal value
- Exclusion Constraints admit objects based on distance from the ideal value

The NYSC Posting Problem

Problem Statement

Given a number of graduates, we seek to post them to Service States under the following constraints:

- No student should be posted to their State of origin
- No student should be posted to their State of study
- The maximum capacity of each state must not be exceeded

The States - Partitions

Δs	State	Capacity
1	Osun State	3
2	Kwara State	2
3	Enugu State	1
4	Akwa-Ibom State	5
5	Kano State	10

The Graduates - Objects

Graduate	Name	State of Origin	University
u_1	GR01	Kwara(2)	OAU(1)
и2	GR02	Kwara(2)	BUK(5)
и3	GR03	Kwara(2)	NSUKKA(3)
И4	GR04	Kwara(2)	UNILORIN(2)
и ₅	GR05	Akwa-Ibom(4)	OAU(1)
и ₆	GR06	Akwa-Ibom(4)	BUK(5)
и ₇	GR07	Akwa-Ibom(4)	NSUKKA(3)
:	:	:	
u ₁₆	GR16	Kano(5)	AKSU(4)
:	:	: :	:
u ₂₀	GR20	Enugu(3)	AKSU(4)

Constraint A, μ_A : $(p_i, u_i) \mapsto [0, 1]$

Constraint A, μ_A : No student should be posted to their State of Origin

Illustration

$$\mu_{A_j}(u_i) = \frac{(j - s_A(u_i))^2}{1 + (j - s_A(u_i))^2}$$

$$\mu_{A_1}(u_1) = \frac{(1 - s_A(u_1))^2}{1 + (1 - s_A(u_1))^2}$$

$$= \frac{(1 - 2)^2}{1 + (1 - 2)^2}$$

$$= 0.5$$

Constraint B, $\mu_B : (p_i, u_j) \mapsto [0, 1]$

Constraint B, μ_B : No student should be posted to their State of studies

Illustration

$$\mu_{B_j}(u_i) = \frac{(j - s_B(u_i))^2}{1 + (j - s_B(u_i))^2}$$

$$\mu_{B_1}(u_1) = \frac{(1 - s_B(u_1))^2}{1 + (1 - s_B(u_1))^2}$$

$$= \frac{(1 - 1)^2}{1 + (1 - 1)^2}$$

$$= 0$$

The Solution

Name	S. of Origin	University	Posting	Membership
GR06	Akwa-Ibom	BUK, Kano	Osun	85%
GR16	Kano	AKSU, Akwa-Ibom	Osun	84%
GR04	Kwara	UNILORIN, Kwara	Akwa-Ibom	64%
GR01	Kwara	OAU, Osun	Akwa-Ibom	45%
GR03	Kwara	NSUKKA, Enugu	Kano	88%
GR05	Akwa-Ibom	OAU, Osun	Kano	47%
GR07	Akwa-Ibom	NSUKKA, Enugu	Kano	45%
GR20	Enugu	AKSU, Akwa-Ibom	Kano	40%
:	:	i:	:	:

The Presentation

Thank You!

