COMP0147 Discrete Mathematics for Computer Scientists Notes

Joe

April 15, 2019

Notes adapted from lecture notes by Max Kanovich and Robin Hirsch [1].

Contents

1	Fou	ndation	IS	7
	1.1	Set The	eory	7
		1.1.1	Set Notations	7
		1.1.2	Properties	7
		1.1.3	Set Equality	8
		1.1.4	Set Operations	8
		1.1.5	Boolean Algebra	8
		1.1.6	Set Algebra	9
	1.2	Functi	ons	11
		1.2.1	Composition of Injections	12
		1.2.2	Composition of Surjection	12
		1.2.3	Composition of Bijection	12
		1.2.4	Cardinality of Sets	13
	1.3	Permu	tations	13
	1.4	Binary	Relations	14
		-	Equivalence Relations	15
		1.4.2	Equivalence Classes	15

1 Foundations

Contents

1.1	Set Theory
	1.1.1 Set Notations
	1.1.2 Properties
	1.1.3 Set Equality
	1.1.4 Set Operations
	1.1.5 Boolean Algebra
	1.1.6 Set Algebra
1.2	Functions
	1.2.1 Composition of Injections
	1.2.2 Composition of Surjection
	1.2.3 Composition of Bijection
	1.2.4 Cardinality of Sets
1.3	Permutations
1.4	Binary Relations
	1.4.1 Equivalence Relations
	1.4.2 Equivalence Classes

1.1 Set Theory

1.1.1 Set Notations

- Set definition: $A = \{a, b, c\}$
- Set membership (element-of): $a \in A$
- Set builder notation: $\{x \mid x \in \mathbb{R} \land x^2 = x\}$
- Empty set: \emptyset

1.1.2 Properties

- No structure
- No order
- No copies

For example, a,b,c are references to actual objects in

$$\{a,b,c\} \Leftrightarrow \{c,a,b\} \Leftrightarrow \{a,b,c,b\}$$

1.1.3 Set Equality

Definition 1.1.1 (Set Equality). Set A = B iff:

- 1. $A \subseteq B \implies \forall x(x \in A \rightarrow x \in B)$
- 2. $B \subseteq A \implies \forall y(y \in B \rightarrow y \in A)$

Remark. $A = B \Leftrightarrow A \subseteq B \land B \subseteq A$

1.1.4 Set Operations

- Union: $A \cup B \equiv \{x \mid x \in A \lor x \in B\}$
- *Intersection*: $A \cap B \equiv \{x \mid x \in A \land x \in B\}$
- Relative Complement: $A \setminus B \equiv \{x \mid x \in A \land x \notin B\}$
- Absolute Complement: $A^c \equiv U \setminus A \equiv \{x \mid x \in U \land x \notin A\}$
- Symmetric Difference: $A\Delta B \equiv (A \setminus B) \cup (B \setminus A) \equiv (A \cup B) \setminus (A \cap B)$
- Cartesian Product: $A \times B \equiv \{(x,y) \mid x \in A \land y \in B\}$

1.1.5 Boolean Algebra

Definition 1.1.2 (De Morgan's Laws).

$$\neg (p \lor q) \equiv \neg p \land \neg q \tag{1.1}$$

$$\neg (p \land q) \equiv \neg p \lor \neg q \tag{1.2}$$

Definition 1.1.3 (Idempotent Laws).

$$p \lor p \equiv p \tag{1.3}$$

$$p \wedge p \equiv p \tag{1.4}$$

Definition 1.1.4 (Commutative Laws).

$$p \lor q \equiv q \lor p \tag{1.5}$$

$$p \wedge q \equiv q \wedge p \tag{1.6}$$

Definition 1.1.5 (Associative Laws).

$$p \lor (q \lor r) \equiv (p \lor q) \lor r \tag{1.7}$$

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r \tag{1.8}$$

Definition 1.1.6 (Distributive Laws).

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \tag{1.9}$$

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \tag{1.10}$$

Definition 1.1.7 (Identity Laws).

$$p \vee F \equiv p \tag{1.11}$$

$$p \vee T \equiv T \tag{1.12}$$

$$p \wedge T \equiv p \tag{1.13}$$

$$p \wedge F \equiv F \tag{1.14}$$

Definition 1.1.8 (Absorption Laws).

$$p \lor (p \land q) \equiv p \tag{1.15}$$

$$p \land (p \lor q) \equiv p \tag{1.16}$$

Definition 1.1.9 (Implication and Negation Laws).

- Identity: $p \rightarrow q \equiv \neg p \lor q$
- Counter-example: $\neg(p \rightarrow q) \equiv p \land \neg q$
- Equivalences: $p \to q \to r \equiv (p \land q) \to r \equiv q \ to(p \to r)$
- *Absorption*:

$$p \to T \equiv T$$

$$p \to \mathcal{F} \equiv \neg p$$

$$\mathbf{T} \to p \equiv p$$

$$F \to p \equiv T$$

- Contrapositive: $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- Law of Excluded Middle:

$$p \vee \neg p \equiv T$$

$$p \wedge \neg p \equiv \mathcal{F}$$

- *Double Negation*: $\neg \neg p \equiv p$
- Reduction to Absurdity: $\neg p \rightarrow F \equiv p$

1.1.6 Set Algebra

Definition 1.1.10 (De Morgan's Laws).

$$(A \cup B)^c \equiv A^c \cap B^c \tag{1.17}$$

$$(A \cap B)^c \equiv A^c \cup B^c \tag{1.18}$$

Definition 1.1.11 (Idempotent Laws).

$$A \cup A \equiv A \tag{1.19}$$

$$A \cap A \equiv A \tag{1.20}$$

Definition 1.1.12 (Commutative Laws).

$$A \cup B \equiv B \cup A \tag{1.21}$$

$$A \cap B \equiv B \cap A \tag{1.22}$$

Definition 1.1.13 (Associativity Laws).

$$A \cup (B \cup C) \equiv (A \cup B) \cup C \tag{1.23}$$

$$A \cap (B \cap C) \equiv (A \cap B) \cap C \tag{1.24}$$

Definition 1.1.14 (Distributive Laws).

$$A \cap (B \cup C) \equiv (A \cap B) \cup (B \cap C) \tag{1.25}$$

$$A \cup (B \cap C) \equiv (A \cup B) \cap (B \cup C) \tag{1.26}$$

Definition 1.1.15 (Identity Laws).

$$A \cup \emptyset \equiv A \tag{1.27}$$

$$A \cap \emptyset \equiv \emptyset \tag{1.28}$$

$$A \cap U \equiv A \tag{1.29}$$

$$A \cup U \equiv U \tag{1.30}$$

Definition 1.1.16 (Absorption Laws).

$$A \cup (A \cap B) \equiv A \tag{1.31}$$

$$A \cap (A \cup B) \equiv A \tag{1.32}$$

Definition 1.1.17 (Difference Identity Laws).

$$C \setminus (A \cup B) \equiv (C \setminus A) \cap (C \setminus B) \tag{1.33}$$

$$C \setminus (A \cap B) \equiv (C \setminus A) \cup (C \setminus B) \tag{1.34}$$

Definition 1.1.18 (Complement-Difference Identity Law).

$$C \setminus D \equiv C \cap D^c \tag{1.35}$$

Definition 1.1.19 (Double Complement Law).

$$\left(D^{c}\right)^{c} \equiv D \tag{1.36}$$

Definition 1.1.20 (Contraposition).

$$C \subseteq D \Leftrightarrow D^c \subseteq C^c \tag{1.37}$$

$$C = D \Leftrightarrow C^c = D^c \tag{1.38}$$

Definition 1.1.21 (Arbitrary Union).

Given sets A_1, A_2, \dots, A_n where $I = \{1, 2, \dots, n\}$

$$A_1 \cup A_2 \cup \dots \cup A_n \equiv \bigcup_{i \in I} A_i \tag{1.39}$$

Then

$$x \in \bigcup_{i \in I} A_i \Leftrightarrow \exists i \in I \colon x \in A_i \tag{1.40}$$

Definition 1.1.22 (Arbitrary Intersection).

Given sets A_1, A_2, \dots, A_n where $I = \{1, 2, \dots, n\}$

$$A_1 \cap A_2 \cap \dots \cap A_n \equiv \bigcap_{i \in I} A_i \tag{1.41}$$

Then

$$x \in \bigcap_{i \in I} A_i \Leftrightarrow \forall \, i \in I \colon x \in A_i \tag{1.42}$$

1.2 Functions

Definition 1.2.1 (Function). A function f is a mapping from X to Y

$$f \colon X \mapsto Y \tag{1.43}$$

- domain(f) = X
- image(f) = f(X)

Definition 1.2.2 (Total Function). A function is *total* if

$$domain(f) = X (1.44)$$

Definition 1.2.3 (Partial Function). A function is *partial* if

$$domain(f) \subseteq X \tag{1.45}$$

Definition 1.2.4 (Surjection). A function $f: X \mapsto Y$ is *surjective* iff

$$f(X) = Y \Leftrightarrow \forall y \in Y \colon \exists x \in X \colon f(x) = y \tag{1.46}$$

Namely each $y \in Y$ has a corresponding $x \in X$.

Definition 1.2.5 (Injection (Encodings, One-to-one)). A function $f: X \mapsto Y$ is *injective* iff

$$\forall x_1, x_2 \in X \colon x_1 \neq x_2 \to f(x_1) \neq f(x_2) \tag{1.47}$$

$$\Leftrightarrow \forall x_1, x_2 \in X \colon f(x_1) = f(x_2) \to x_1 = x_2$$
 (1.48)

Namely each distinct element $x \in X$ maps to a different element in Y.

Definition 1.2.6 (Bijection). A function $f: X \mapsto Y$ is *bijective* iff f is both *injective* and *surjective*.

$$Bijective(f) \equiv Injective(f) \land Surjective(f)$$
 (1.49)

The inverse bijection $f^{-1}: Y \mapsto X$ does exist.

1.2.1 Composition of Injections

Proposition 1.2.1 (Composition of Injection). Given *injections* $f: X \mapsto Y$ and $g: Y \mapsto Z$, then their *composition* $h: X \mapsto Z$ is given by

$$h(x) = g(f(x)) \tag{1.50}$$

Then h is also an *injective* function. Namely $h = g \circ f$ where h is composed from g and f with f applied first.

Proof. Given any $x_1, x_2 \in X$ where $x_1 \neq x_2$, then

$$f(x_1) \neq f(x_2) \tag{1.51}$$

as *f* is *injective*, and thus

$$h(x_1) = g(f(x_1)) \neq g(f(x_2)) = h(x_2)$$
(1.52)

h is *injective* consequently.

1.2.2 Composition of Surjection

Proposition 1.2.2 (Composition of Surjection). Given *surjections* $f: X \mapsto Y$ and $g: Y \mapsto Z$, then their *composition* $h: X \mapsto Z$ is given by

$$h(x) = g(f(x)) \tag{1.53}$$

Then h is also a *surjective* function.

Proof. To prove $h: X \mapsto Z$ is *injective*, it is required to prove that

$$\forall z \in Z \colon \exists x \in X \colon h(x) = z \tag{1.54}$$

Where $h(x) \Leftrightarrow (g \circ f)(x) \Leftrightarrow g(f(x))$.

Given any element $z \in Z$ ($\forall z \in Z$):

- 1. That $g: Y \mapsto Z$ is *surjective* by definition, then $\exists y \in Y : g(y) = z$.
- 2. That $f: X \mapsto Y$ is surjective by definition, then $\exists x \in X : f(x) = y$.

Then
$$\forall z \in Z : \exists x \in X : h(x) = (g \circ f)(x) = g(f(x)) = g(y) = z \text{ holds true.}$$

1.2.3 Composition of Bijection

Proposition 1.2.3 (Composition of Bijection). Given *bijections* $f: X \mapsto Y$ and $g: Y \mapsto Z$, then their composition $h: X \mapsto Z$ is given by

$$h(x) = g(f(x)) \tag{1.55}$$

Then *h* is also a *bijective* function; an *inverse bijection* $h^{-1}: Z \mapsto X$ also exists.

1.2.4 Cardinality of Sets

Definition 1.2.7 (Cardinality). The number of elements in a set X is denoted |X|.

Definition 1.2.8 (Equal Cardinality and Bijection).

$$|X| = |Y| \tag{1.56}$$

Holds true if there exists a *bijection* $h: X \mapsto Y$ (one-to-one correspondence between X and Y).

Namely, X and Y have the same number of distinct elements, and each distinct element $x \in X$ corresponds to exactly one distinct element $y \in Y$.

Theorem 1.2.1 (Cantor-Bernstein). Given

- 1. *injective* function $f: X \mapsto Y$
- 2. *injective* function $g: Y \mapsto X$

Then there exists a *bijective* function $h: X \mapsto Y$.

Equivalently,

$$(|X| \le |Y|) \land (|Y| \le |X|) \to (|X| = |Y|)$$
 (1.57)

Remark. Examples include countable sets, enumerable sets

$$|\mathbb{Q}| = |\mathbb{Z}| = |\mathbb{N}| = \aleph_0 \tag{1.58}$$

Where the cardinality of countable sets such as the *rational numbers*, *integers* and the *natural numbers* is denoted as "alpeh-zero" (\aleph_0).

On the other hand, continuum such as the real numbers are not countable and as such

$$|\mathbb{R}| > \aleph_0 \tag{1.59}$$

1.3 Permutations

Definition 1.3.1 (Permutation). The bijection – *permutation* – of

Is denoted as

$$\begin{pmatrix}
1 & 2 & 3 & \cdots & n \\
1 & 2 & 3 & \cdots & n
\end{pmatrix}$$
(1.61)

Where $\sigma \colon \{1, \dots, n\} \to \{1, \dots, n\}$ is the *permutation* bijection.

Definition 1.3.2 (Counting Permutations).

$$|S_n| \equiv n! \tag{1.62}$$

Which is the number of different ways to permutate n elements $\{1, 2, ..., n\} \subset \mathbb{Z}$. Together, the different permutations for n distinct elements is the *symmetric group* S_n .

Remark. For example, with $S_3 = \{1, 2, 3\}$, there are 3! = 6 different ways to arrange the three distinct elements

$$\begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
1 & 3 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
2 & 1 & 3
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 \\
2 & 3 & 1
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 1 & 2
\end{pmatrix} \quad
\begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}$$
(1.63)

Definition 1.3.3 (Order of Permutation). The *order* of a permutation σ is the smallest $k \in \mathbb{Z}^+$ such that

$$\sigma^k = \epsilon \tag{1.64}$$

Where ϵ is the *identity permutation*

$$\epsilon(x) = x \tag{1.65}$$

Definition 1.3.4 (Sign of Permutation). The *sign* of a permutation $\operatorname{sgn} \sigma \colon \sigma \to \{-1, +1\}$ where $\sigma \in S_n$ is defined as

$$\operatorname{sgn}(x) = (-1)^k \tag{1.66}$$

Where k is the number of *disorders* within σ , the number of pairs (x,y) such that $x > y \to \sigma(x) < \sigma(y)$ or the converse $x < y \to \sigma(x) > \sigma(y)$. Additionally,

$$\operatorname{sgn}(x) = \begin{cases} +1 & \text{if k is even} \\ -1 & \text{if k is odd} \end{cases}$$
 (1.67)

Remark. For example, in

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

1 < 2 but $\sigma(1) = 2 > \sigma(2) = 1$, hence a disorder.

For each $i \in \{1, ..., n\}$, starting from i = 1, compare $\sigma(i)$ with $\sigma(i + 1), ..., \sigma(n)$ and add the number of disordered pairs, then move on to i + 1 and compare $\sigma(i + 1)$ with $\sigma(i + 2), ..., \sigma(n)$ and so on.

Theorem 1.3.1 (Composition of Permutation).

$$\operatorname{sgn}(\sigma_1 \sigma_2) \equiv \operatorname{sgn}(\sigma_1) \cdot \operatorname{sgn}(\sigma_2) \tag{1.68}$$

Where

- $even \circ even = even$
- even \circ odd = odd
- odd ∘ even = odd
- odd ∘ odd = even

1.4 Binary Relations

Definition 1.4.1 (Binary Relation). A binary relation R(x, y) describes some relationship between x and y where $R: X \to Y$, $R \subseteq X \times Y$, $x \in X$ and $y \in Y$. This relation can be expressed in infix notation as xRy.

1.4.1 Equivalence Relations

Definition 1.4.2 (Equivalence Relation). A binary relation E(x, y) is an *equivalence relation* on X iff it satisfies all three conditions:

1. Reflexivity

$$\forall x \in X : E(x, x)$$

2. Symmetry

$$\forall x, y \in X \colon E(x, y) \to E(y, x)$$

3. Transitivity

$$\forall x, y, z \in X \colon E(x, y) \land E(y, z) \rightarrow E(x, z)$$

1.4.2 Equivalence Classes

Definition 1.4.3 (Equivalence Class). If $a \in X$, the *equivalence class* [a] is

$$[a] \equiv \{x \in X \colon E(x,a)\} \subseteq X \tag{1.69}$$

Definition 1.4.4 (Congruence Class). For *congruence mod* m on \mathbb{Z} , if $a \in \mathbb{Z}$ then the *congruence class* of a is

$$[a]_m \equiv \{x \in \mathbb{Z} \colon x = a + km\} \tag{1.70}$$

Where $k \in \mathbb{Z}$.

Bibliography

[1] Max Kanovich and Robin Hirsch.

"Lecture Notes on Discrete Mathematics for Computer Scientists".

URL: http://www.cs.ucl.ac.uk/1819/a4u/t2/comp0147_discrete_
mathematics_for_computer_scientists/.