"It's all basic really"

Y13 UNIT 4 TEST 6 4.3 ACIDS AND BASES

BOA SORTE!

Answer all questions Total 50 marks

Name:
Mark for section A/35
Mark for section C/15
Total:/50
Grade

SECTION A

1.	(a)	(i)	Write an expression for the dissociation constant K_a of propanoic acid, CH_3CH_2COOH .			
			Expression for K _a			
		(ii)	Write an expression for pK_a in terms of K_a			
			Expression for p K_a			
		(iii)	Calculate the pH of a 0.10 M solution of propanoic acid, given that $K_a = 1.35 \times 10^{-5}$ mol dm ³ for this acid at 25°C.			
	(b)		lain why an aqueous solution containing propanoic acid and its sodium salt constituer system able to minimise the effect of added hydrogen ions.	(6)		
				(3) (Total 9 marks)		
2.	(a)	Write	e an equation for the reaction which occurs when the weak acid HA is added to wa	ter.		
	(b)	Writ	te an expression for the dissociation constant, K_a , for the weak acid HA.	(1)		
	(0)		e an expression for the dissociation constant, K_a , for the weak actuary.	(1)		
				(1)		

	(c)	I ne o	dissociation of the acid HA is an endothermic process. Deduce the effect, if any, of	
		(i)	an increase in temperature on the value of the dissociation constant, K_a	
		(ii)	an increase in temperature on the pH of an aqueous solution of the acid	
		(iii)	an increase in the concentration of the acid on the value of $K_{\rm a}$	
				(3
	(d)	resul	tify a compound which could be added to aqueous ethanoic acid so that the pH of the ting solution would not change significantly if a small volume of dilute hydrochloric acid added. State the name given to solutions which behave in this way.	
		Com	pound	
		Name	e	(2
			(Total 7	marks
3.	(a)	At 25	5°C, the constant $K_{\rm w}$ has the value $1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$. Define the term $K_{\rm w}$.	
		•••••		(1)
	(b)	Defin	ne the term pH .	
				(1)
	(c)	Calci	ulate the pH at 25 °C of 2.00 M HCl.	
		•••••		(1)
	(d)	Calcı	ulate the pH at 25 °C of 2.50 M NaOH.	
				(2
				(2

(e)	Calco with	Calculate the pH at 25 °C of the solution that results from mixing 19.0 cm ³ of 2.00 M HCl with 16.0 cm ³ of 2.50 M NaOH.				
	•••••					
	•••••					
	•••••					
	•••••					
	•••••					
		(6) (Total 11 marks)				
4.	Methylamine is a weak Brønsted-Lowry base and can be used in aqueous solution with other substance to prepare a basic buffer.					
	(i)	Explain the term <i>Brønsted-Lowry base</i> and write an equation for the reaction of methylamine with water to produce an alkaline solution.				
		Brønsted-Lowry base				
		Equation				
	(ii)	Suggest a substance that could be added to aqueous methylamine to produce a basic buffer.				
	(iii)	Explain how the buffer solution in part (a)(ii) is able to resist a change in pH when a small amount of sodium hydroxide is added.				
		(5) (Total 5 marks)				

5. The pH curve for the titration of the weak diprotic acid H ₂SO₃ with aqueous sodium hydroxide is shown below.

(i) Identify the sodium salt formed from H $_2SO_3$ when $x \text{ cm}^3$ of NaOH have been added.

(ii) Write an equation for the reaction that occurs between the two end-points (equivalence points).

(iii) Name an indicator which could be used to determine the second end-point (equivalence point).

.....

(3) (Total 3 marks)

SECTION B

6. A 0.210 mol dm $^{-3}$ solution of potassium hydroxide was added from a burette to 25.0 cm 3 of a 0.160 mol dm $^{-3}$ solution of ethanoic acid in a conical flask. Given that the value of the acid dissociation constant, K_a , for ethanoic acid is 1.74 x 10 $^{-5}$ mol dm $^{-3}$, calculate the pH at 25 °C of the solution in the conical flask at the following three points:

before any potassium hydroxide had been added; after $8.0~\rm cm^3$ of potassium hydroxide solution had been added; after $40.0~\rm cm^3$ of potassium hydroxide solution had been added.

(Total 15 marks)

