Today's plan: Some Review

ITIS 6200 / 8200

Properties

Policies

Mechanisms

Today's plan: Review concepts in a more abstract way

- Properties: CIA
 - Confidentiality
 - Integrity
 - Availability

Properties

- Confidentiality: Concealment of information
 - The need arises from sensitive fields (military, industry)
 - Examples: encryption (protect the key), access control,
 existence of the data, private information, resource
 hiding

Properties

- Integrity: prevent unauthorized or improper changes, is directly related to trustworthiness of data and sources
 - Include data integrity and origin integrity
 - Prevention:
 - prevent unauthorized changes
 - changes in unauthorized ways
 - Detection
 - Report integrity violation (confine dirty data??)

Properties

- Availability: ability to use the data or resources
 - Example of highway
 - DoS or DDoS attacks
 - Very difficult to detect
 - Is it attack or we are unlucky today
 - Attacker will mess with the security methods as well (packet tracing)

Threats

ITIS 6200 / 8200

Threats

- A potential violation of security (not necessarily occur at this moment).
 - The actions that cause such violations are called attacks.
 - 4 classes of threats:
 - Disclosure: unauthorized access to data
 - Deception: acceptance of false data
 - Disruption: interruption or prevention of correct operation
 - Usurpation: unauthorized control of the system

Threats

ITIS 6200 / 8200

Examples of threats:

- Snooping: unauthorized interception, is a kind of disclosure (eavesdrop on wireless). Countered by confidentiality or other information hiding methods.
- Modification: unauthorized change of data, may lead to deception, disruption, and usurpation. Countered by integrity.
- Spoofing: impersonation, may lead to deception and usurpation. Countered by integrity.
- Denial of receipt or origin: is a kind of deception

Policies and Mechanisms

- Policy is a statement of what is and what is not allowed.
 - When two communicating parties have different policies, they may need to compromise (example b/w univ. and industry)
- Mechanism is a method to enforce a policy.
 - May (often) impact the system performance
 - Prevention: to fail an attack
 - Detection
 - Recovery: fix not only data, but also vulnerabilities
 - Tolerance

Example Policies & Mechanisms

ITIS 6200 / 8200

Policies examples

- Our course policies: e.g., no cheating is allowed
- Confidentiality: Eavesdropper (e.g., Eve) should not be able to see the content of messages between two parties (e.g., Alice and Bob)
- Integrity: A manipulator (e.g., Mallory) should not be able to modify the messages without being noticed
- Availability: The server (e.g., AWS) should be able to function 99.99% of the time

Mechanisms: what we are learning mostly

- Cryptographic techniques
- Access control
- Isolation
- Secure programming and testing

Assumptions:

- Security rests on assumptions of the required security and application environments
- Assumptions of a security policy
 - A policy can correctly and unambiguously partitions system states into secure and insecure
 - A security mechanism will prevent a system from entering an insecure state
 - Examples:
 - Symmetric key encryption is secure, assumption?
 - Asymmetric key encryption is secure, assumption?