Algoritmos de búsqueda sobre secuencias

Algoritmos y Estructuras de Datos I

Búsqueda lineal

s[0]	s[1]	s[2]	s[3]	s[4]	 s[s -1]
$= x? \neq x$		$= x? \neq x$			
↑	\uparrow	\uparrow	\uparrow		\uparrow
i	i	i	i		i

▶ ¿Qué invariante de ciclo podemos proponer?

$$I \equiv 0 \le i \le |s| \land_L$$
$$(\forall j : \mathbb{Z})(0 \le j < i \rightarrow_L s[j] \ne x)$$

▶ ¿Qué función variante podemos usar?

$$fv = |s| - i$$

Búsqueda lineal

- ► Recordemos el problema de búsqueda por valor de un elemento en una secuencia.
- ▶ proc contiene(in $s : seq\langle \mathbb{Z} \rangle$, in $x : \mathbb{Z}$, out result : Bool){
 Pre {True}

 Post {result = true $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)}}
 }$
- ▶ ¿Cómo podemos buscar un elemento en una secuencia?

Búsqueda lineal

► Invariante de ciclo:

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$$

► Función variante:

$$fv = |s| - i$$

▶ ¿Cómo lo podemos implementar en C++?

```
bool contiene(vector<int> &s, int x) {
   int i = 0;
   while( i < s.size() && s[i] != x ) {
        i=i+1;
   }
   return i < s.size();
}</pre>
```

► ¿Es la implementación correcto con respecto a la especificación?

Recap: Teorema de corrección de un ciclo

- ▶ **Teorema.** Sean un predicado I y una función $fv : \mathbb{V} \to \mathbb{Z}$ (donde \mathbb{V} es el producto cartesiano de los dominios de las variables del programa), y supongamos que $I \Rightarrow \text{def}(B)$. Si
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,

... entonces la siguiente tripla de Hoare es válida:

$$\{P_C\}$$
 while B do S endwhile $\{Q_C\}$

Recap: Teorema de corrección de un ciclo

- 1. $P_C \Rightarrow I$
- 2. $\{I \land B\} S \{I\}$,
- 3. $I \wedge \neg B \Rightarrow Q_C$
- 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
- 5. $I \wedge fv < 0 \Rightarrow \neg B$.

En otras palabras, hay que mostrar que:

- ▶ I es un invariante del ciclo (punto 1. y 2.)
- ► Se cumple la postcondición del ciclo a la salida del ciclo (punto 3.)
- ▶ La función variante es estrictamente decreciente (punto 4.)
- ► Si la función variante alcanza la cota inferior la guarda se deja de cumplir (punto 5.)

Búsqueda lineal

- ▶ Para este programa, tenemos:
 - $P_C \equiv i = 0$,
 - $Q_C \equiv (i < |s|) \leftrightarrow (\exists j : \mathbb{Z})(0 \le j < |s| \land_L s[j] = x).$
 - $B \equiv i < |s| \land_L s[i] \neq x$
 - $I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$
 - fv = |s| i
- ► Ahora tenemos que probar que:
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$,
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv < 0 \Rightarrow \neg B$.

Corrección de búsqueda lineal

; I es un invariante del ciclo?

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$$

- ► La variable *i* toma el primer valor 0 y se incrementa por cada iteración hasta llegar a |s|.
- $ightharpoonup \Rightarrow 0 \le i \le |s|$
- ► En cada iteración, todos los elementos a izquierda de *i* son distintos de *x*
- $\Rightarrow (\forall j : \mathbb{Z})(0 \le j < i \to_L s[j] \ne x)$

Corrección de búsqueda lineal

¿Se cumple la postcondición del ciclo a la salida del ciclo?

$$I \equiv 0 \le i \le |s| \land_L (\forall j : \mathbb{Z}) (0 \le j < i \rightarrow_L s[j] \ne x)$$

$$Q_C \equiv (i < |s|) \leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)$$

- ▶ Al salir del ciclo, no se cumple la guarda. Entonces no se cumple i < |s| o no se cumple $s[i] \neq x$
 - Si no se cumple i < |s|, no existe ninguna posición que contenga x
 - ▶ Si no se cumple $s[i] \neq x$, existe al menos una posición que contiene a x

Corrección de búsqueda lineal

¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?

$$fv = |s| - i$$

 $B \equiv i < |s| \land_L s[i] \neq x$

- ▶ Si $fv = |s| i \le 0$, entonces $i \ge |s|$
- ▶ Como siempre pasa que $i \le |s|$, entonces es cierto que i = |s|
- ▶ Por lo tanto i < |s| es falso.

Corrección de búsqueda lineal

¿Es la función variante estrictamente decreciente?

$$fv = |s| - i$$

- ▶ En cada iteración, se incremente en 1 el valor de *i*
- ▶ Por lo tanto, en cada iteración se reduce en 1 la función variante.

Corrección de búsqueda lineal

- ► Finalmente, ahora que probamos que:
 - 1. $P_C \Rightarrow I$,
 - 2. $\{I \land B\} S \{I\}$,
 - 3. $I \wedge \neg B \Rightarrow Q_C$
 - 4. $\{I \wedge B \wedge v_0 = fv\}$ **S** $\{fv < v_0\}$,
 - 5. $I \wedge fv \leq 0 \Rightarrow \neg B$,
- ...podemos por el teorema concluir que el ciclo termina y es correcto.

Búsqueda lineal

► Implementación:

```
bool contiene(vector<int> &s, int x) {
    int i = 0;
    while( i < s.size() && s[i] != x ) {
        i=i+1;
    }
    return i < s.size();
}</pre>
```

▶ Analicemos cuántas veces itera este programa:

S	Х	# iteraciones
$\overline{\langle \rangle}$	1	0
$\langle 1 \rangle$	1	0
$\langle 1,2 angle$	2	1
$\langle 1,2,3 angle$	4	3
$\langle 1,2,3,4 \rangle$	4	3
$\langle 1,2,3,4,5 \rangle$	-1	4

Búsqueda sobre secuencias ordenadas

- ► Supongamos que la secuencia está ordenada.
- ▶ proc contieneOrdenada(in $s: seq\langle \mathbb{Z} \rangle$, in $x: \mathbb{Z}$, out result : Bool){

 Pre {ordenado(s)}

 Post {result = True $\leftrightarrow (\exists i: \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)}}
 }$
- ▶ ¿Podemos aprovechar que la secuencia está ordenada para crear un programa más eficiente ?

Búsqueda lineal

- Les Cuántas veces se ejecuta el ciclo? Esto depende de
 - ► El tamaño de la secuencia
 - ▶ Si el valor buscado está o no contenido en la secuencia
- ¿Qué tiene que pasar para que la cantidad de ejecuciones sea máxima?
 - ▶ El elemento no debe estar contenido.
- ► Esto representa el **peor caso** en cantidad de iteraciones, ya que tarda mas
- ▶ Dado una secuencia cualquiera, ¿cuál es la cantidad máxima de iteraciones (el peor caso) que puede ejecutar el algortimo? En peor caso se ejecuta |s| veces.

Búsqueda sobre secuencias ordenadas

Podemos interrumpir la búsqueda tan pronto como verificamos que $s[i] \ge x$.

```
bool contieneOrdenada(vector<int> &s, int x) {
    int i = 0;
    while( i < s.size() && s[i] < x ) {
        i=i+1;
    }
    return (i < s.size() && s[i] == x);
}</pre>
```

¿Cuántas veces se ejecuta el ciclo en peor caso?

Búsqueda sobre secuencias ordenadas

¿Cuántas veces se ejecuta el ciclo en peor caso?

S	X	# iteraciones	# iteraciones
		(contiene)	(contieneOrdenada)
$\langle \rangle$	1	0	0
$\langle 1 \rangle$	10	1	1
$\langle 1,2 angle$	10	2	2
$\langle 1,2,3 angle$	10	3	3
$\langle 1,2,3,4 \rangle$	10	4	4
$\langle 1,2,3,4,5 \rangle$	10	5	5
S	x ∉ s	s	s

En **peor caso** (cuando el elemento no está) ambos se ejecutan la misma cantidad de veces.

Búsqueda sobre secuencias ordenadas

Asumamos por un momento que $|s|>1 \land_L (s[0] \le x \le s[|s|-1])$

Búsqueda sobre secuencias ordenadas

- ▶ ¿Cómo podemos aprovechar que la secuencia está ordenada para mejorar el peor caso de ejecución?
 - ▶ ¿Necesitamos iterar si |s| = 0? Trivialmente, $x \notin s$
 - ▶ ¿Necesitamos iterar si |s| = 1?Trivialmente, $s[0] == x \leftrightarrow x \in s$
 - Necesitamos iterar si x < s[0]? Trivialmente, $x \notin s$
 - ▶ ¿Necesitamos iterar si x > s[|s| 1]? Trivialmente, $x \notin s$

Búsqueda sobre secuencias ordenadas

Si $x \in s$, tiene que estar en la posición *low* de la secuencia.

Búsqueda sobre secuencias ordenadas

▶ ¿Qué invariante de ciclo podemos escribir?

$$I \equiv 0 \le low < high < |s| \land_L s[low] \le x < s[high]$$

▶ ¿Qué función variante podemos definir?

$$fv = high - low - 1$$

Búsqueda sobre secuencias ordenadas

```
} else {
        // casos no triviales
        int low = 0:
3
       int high = s.size() -1;
4
       while (low+1 < high) {
5
         int mid = (low + high) / 2;
         if(s[mid] \le x) {
           low = mid;
          } else {
           high = mid;
10
11
12
       return s[low] == x;
13
14
```

A este algoritmo se lo denomina búsqueda binaria

Búsqueda sobre secuencias ordenadas

Búsqueda binaria

► Veamos ahora que este algoritmo es correcto.

```
P_C \equiv ordenada(s) \land (|s| > 1 \land_L s[0] \le x \le [|s| - 1])
\land low = 0 \land high = |s| - 1
Q_C \equiv (s[low] = x) \leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |s| \land_L s[i] = x)
B \equiv low + 1 < high
I \equiv 0 \le low < high < |s| \land_L s[low] \le x < s[high]
fv = high - low - 1
```

Corrección de la búsqueda binaria

- ► ¿Es / un invariante para el ciclo?
 - ▶ El valor de *low* es siempre menor estricto que *high*
 - ▶ low arranca en 0 y sólo se aumenta
 - ▶ high arranca en |s| 1 y siempre se disminuye
 - ▶ Siempre se respecta que $s[low] \le x$ y que x < s[high]
- \triangleright ; A la salida del ciclo se cumple la postcondicion Q_C ?
 - ▶ Al salir, se cumple que low + 1 = high
 - ▶ Sabemos que s[high] > x y s[low] <= x
 - ▶ Como s está ordenada, si $x \in s$, entonces s[low] = x

Búsqueda binaria

- ▶ ¿Podemos interrumpir el ciclo si encontramos x antes de finalizar las iteraciones?
- ▶ Una posibilidad **no recomendada** (no lo hagan en casa!):

```
while( low+1 < high) {
    int mid = (low+high) / 2;
    if( s[mid] < x ) {
        low = mid;
        } else if( s[mid] > x ) {
        high = low;
        } else {
        return true; // Argh!
        }
    return s[low] == x;
}
```

Corrección de la búsqueda binaria

- > ; Es la función variante estrictamente decreciente?
 - ► Nunca ocurre que *low* = *high*
 - ▶ Por lo tanto, siempre ocurre que low < mid < high
 - ▶ De este modo, en cada iteración, o bien high es estrictamente menor, o bien low es estrictamente mayor.
 - ▶ Por lo tanto, la expresión high low 1 siempre es estrictamente menor.
- ¿Si la función variante alcanza la cota inferior la guarda se deja de cumplir?
 - ▶ Si $high low 1 \le 0$, entonces $high \le low + 1$.
 - ▶ Por lo tanto, no se cumple (high > low + 1), que es la guarda del ciclo

Búsqueda binaria

► Una posibilidad aún peor (ni lo intenten!):

```
bool salir = false;

while( low+1 < high && !salir ) {

int mid = (low+high) / 2;

if( s[mid] < x ) {

low = mid;

} else if( s[mid] > x ) {

high = mid;

} else {

salir = true; // Puaj!

}

return s[low] == x || s[(low+high)/2] == x;

}
```

Búsqueda binaria

► Si queremos salir del ciclo, el lugar para decirlo es ... la guarda!

```
while( low+1 < high && s[low] != x ) {
    int mid = (low+high) / 2;
    if( s[mid] <= x ) {
        low = mid;
        } else {
            high = mid;
        }
     }
    return s[low] == x;
}</pre>
```

▶ Usamos fuertemente la condición $s[low] \le x < s[high]$ del invariante.

Búsqueda binaria

► ¿Es mejor un algoritmo que ejecuta una cantidad logarítmica de iteraciones?

	Búsqueda	Búsqueda			
s	Lineal	Binaria			
10	10	4			
10^{2}	100	7			
10^{6}	1,000,000	21			
$2,3 \times 10^{7}$	23,000,000	25			
7×10^9	7,000,000,000	33 (!)			
		•			

- ▶ Sí! Búsqueda binaria es más eficiente que búsqueda lineal
- ▶ Pero, requiere que la secuencia esté ya ordenada.

Búsqueda binaria

Luántas iteraciones realiza el ciclo (en peor caso)?

Número de iteración	high — low
0	s - 1
1	$\cong (s -1)/2$
2	$\cong (s -1)/4$
3	$\cong (s -1)/8$
:	:
t	$\cong (s -1)/2^t$

Sea t la cantidad de iteraciones necesarias para llegar a high - low = 1.

 $1 \cong (|s|-1)/2^t$ entonces $2^t \cong |s|-1$ entonces $t \cong \log_2(|s|-1)$.

Nearly all binary searches are broken!

Nearly all binary searches are broken!

- ► En 2006 comenzaron a reportarse accesos fuera de rango a vectores dentro de la función binarySearch implementada en las bibliotecas estándar de Java.
- ► En la implementación en Java, los enteros tienen precisión finita, con rango $[-2^{31}, 2^{31} 1]$.
- ► Si low y high son valores muy grandes, al calcular k se produce overflow.
- La falla estuvo *dormida* muchos años y se manifestó sólo cuando el tamaño de los vectores creció a la par de la capacidad de memoria de las computadoras.
- ▶ Bugfix: Computar k evitando el overflow:

```
int mid = low + (high-low)/2;
```

Intervalo

Break!

Conclusiones

- La búsqueda binaria implementada en Java estaba formalmente demostrada ...
- ... pero la demostración suponía enteros de precisión infinita (en la mayoría de los lenguajes imperativos son de precisión finita).
 - ► En AED1 no nos preocupan los problemas de aritmética de precisión finita (+Info: Orga1).
 - ► Es importante validar que las hipótesis sobre las que se realizó la demostración valgan en la implementación (aritmética finita, existencia de acceso concurrente, multi-threading, etc.)

Strings

- ► Llamamos un string a una secuencia de **Char**.
- ► Los strings no difieren de las secuencias sobre otros tipos, dado que habitualmente no se utilizan operaciones particulares de los **Char**s.
- ► Los strings aparecen con mucha frecuencia en diversas aplicaciones.
 - 1. Palabras, oraciones y textos.
 - 2. Nombres de usuario y claves de acceso.
 - 3. Secuencias de ADN.
 - 4. Código fuente!
 - 5. ...
- ► El estudio de algoritmos sobre strings es un tema muy importante.

Búsqueda de un patrón en un texto

- ▶ **Problema:** Dado un string t (texto) y un string p (patrón), queremos saber si p se encuentra dentro de t.
- Notación: La función subseq(t, d, h) es el al substring de d entre i y h-1 (inclusive). Lo abreviamos como t[d, h)
- ▶ proc contiene(in $t, p : seq\langle Char \rangle$, out result : Bool){

 Pre {True}

 Post {result = true $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |t| |p|$ $\land_L t[i, i + |p|) = p)$ }
- ▶ ¿Cómo resolvemos este problema?

Función Auxiliar iguales

```
bool iguales(string &s, int i, string &r, int j, int len) {
   bool result = true;
   for (int k = 0; k < len; k++) {
      if (s[i+k]!=r[j+k]) {
        result = false;
      }
   }
  return result;
}</pre>
```

¿Se puede hacer que sea más eficiente (ie: más rápido)?

Función Auxiliar iguales

► Implementemos una función auxiliar con la siguiente especificación:

```
▶ proc iguales(in s: seq\langle Char \rangle, in i: \mathbb{Z}, in r: seq\langle Char \rangle, in j: \mathbb{Z}, in , len: \mathbb{Z}, out result: Bool){

Pre \{enRango(i,s) \land enRango(i+len-1,s) \land enRango(j,r) \land enRango(j+len-1,r)\}

Post \{resut = true \leftrightarrow (\forall k: \mathbb{Z})(0 \le k < len \rightarrow_L s[i+k] = r[j+k])\}
}
```

Función Auxiliar iguales

Este programa se interrumpe tan pronto como detecta una desigualdad.

Búsqueda de un patrón en un texto

▶ **Algoritmo sencillo:** Recorrer todas las posiciones i de t, y para cada una verificar si t[i, i + |p|) = p.

```
bool contiene(string &t, string &p) {
    int i = 0;
    while ( i + p.size() < t.size() && iguales(t,i,p,0,p.size())) {
        i++;
        }
    return i + p.size() < t.size() && iguales(t,i,p,0,p.size());
    }
}</pre>
```

• iguales es una función auxiliar definida anteriormente.

Algoritmo de Knuth, Morris y Pratt

- ► En 1977, Donald Knuth, James Morris y Vaughan Pratt propusieron un algoritmo más eficiente.
- ▶ **Idea:** Si t[i, i + |p|) = p, entonces quizás podemos aprovechar parte de las coincidencias entre [i, i + |p|) y p para continuar la búsqueda.
- ► Mantenemos dos índices / y r a la secuencia, con el siguiente invariante:

```
1. 0 \le r - l \le |t|
2. t[l, r) = p[0, r - l)
```

3. No hay apariciones de p en t[0, r).

Búsqueda de un patrón en un texto

- ► ¿Es eficiente este algoritmo?
- ▶ El ciclo principal realiza |t| |p| iteraciones. Sin embargo, la comparación de los substrings de t puede ser costosa si p es grande
 - 1. La comparación iguales(t,i,p,0,p.size()) requiere realizar |p| comparaciones entre chars.
 - 2. Por cada iteración del ciclo "for", se realizan |p| de estas comparaciones.
 - 3. En por caso, realizamos (|t| |p|) * |p| iteraciones.
- ▶ Aunque el algoritmo es eficiente si |p| se aproxima a |t|.

Algoritmo de Knuth, Morris y Pratt

▶ Planteamos el siguiente esquema para el algoritmo.

```
bool contiene_kmp(string &t, string &p) {
   int l = 0, r = 0;
   bool result = false;
   while( r < t.size() ) {
      // Aumentar l o r
      // Verificar si encontramos p
   }
   return result;
}</pre>
```

¿Cómo aumentamos / o r preservando el invariante?

Algoritmo de Knuth, Morris y Pratt

- ▶ Si r I = |p|, entonces encontramos p en t.
- ▶ Si r l < |p|, consideramos los siguientes casos:
 - 1. Si t[r] = p[r l], entonces encontramos una nueva coincidencia, y entonces incrementamos r para reflejar esta nueva situación.
 - 2. Si $t[r] \neq p[r-l]$ y l=r, entonces no tenemos un prefijo de p en el texto, y pasamos al siguiente elemento de la secuencia avanzando l y r.
 - 3. Si $t[r] \neq p[r-l]$ y l < r, entonces debemos avanzar l. ¿Cuánto avanzamos l en este caso? ¡Tanto como podamos! (más sobre este punto a continuación)

Algoritmo de Knuth, Morris y Pratt

- ¿Cuánto podemos avanzar 1 en el caso que $t[r] \neq p[r-l]$ y l < r?
- ► El invariante implica que t[l, r) = p[0, r l), pero esta condición dice que $t[l, r + 1) \neq p[0, r l + 1)$.
- Ejemplo:

► ¿Hasta donde puedo avanzar /?

Algoritmo (parcial) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
    int | = 0, r = 0;
    bool result = false;

while( r < t.size() && r-l < p.size()) {
    if( t[r] == p[r-l] ){
        r++;
    } else if( | == r ) {
        r++;
        | ++;
        | ++;
        | else {
        | | | = // avanzar |
        | | | }
        return r-l == p.size();
    }
</pre>
```

Bifijos: Prefijo y Sufijo simultáneamente

- ▶ **Definición:** Una cadena de caracteres b es un bifijo de s si $b \neq s$, b es un prefijo de s y b es un sufijo de s.
- ► Ejemplos:

S	bifijos					
а	$\langle \rangle$					
ab	$\langle \rangle$					
aba	$\langle \rangle$,a					
abab	$\langle angle$,ab					
ababc	⟨⟩					
aaaa	$\langle angle$,a, aa, aaa, aaa					
abc	$\langle \rangle$					
ababaca	⟨⟩,a					

▶ **Observación:** Sea una cadena *s*, su máximo bifijo es único.

KMP: Función π

- ▶ **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de p[0, i+1)
- ▶ Por ejemplo, sea *p*=abbabbaa:

i	p[0, i+1)	Máx. bifijo	$\pi(i)$
0	a	⟨⟩	0
1	ab	⟨⟩	0
2	abb	$\langle \rangle$	0
3	abba	а	1
4	abbab	ab	2
5	abbabb	abb	3
6	abbabba	abba	4
7	abbabbaa	а	1

Algoritmo de Knuth, Morris y Pratt

Ejemplo: Supongamos que ...

		I		<i>I</i> ′			r					
		\downarrow		\downarrow			\downarrow					
 	 	а	b	а	b	а	а	b	С	b	а	b
		=	=	=	=	=	\neq					
		а	b	а	b	а	С	а				

- ► En este caso, podemos avanzar / hasta la posición ababa, dado que no tendremos coincidencias en las posiciones anteriores.
- ▶ Por lo tanto, en este caso fijamos $l' = r \pi(r l 1)$.

KMP: Función π

- ▶ **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de p[0, i+1)
- ▶ Otro ejemplo, sea p=ababaca:

Algoritmo (parcial) de Knuth, Morris y Pratt

Algoritmo de Knuth, Morris y Pratt

- ▶ ¿Se cumplen los tres puntos del teorema del invariante?
 - 1. El invariante vale con l = r = 0.
 - 2. Cada caso del if... preserva el invariante.
 - 3. Al finalizar el ciclo, el invariante permite retornar el valor correcto.
- L'Cómo es una función variante para este ciclo?
 - ▶ Notar que en cada iteración se aumenta / o r (o ambas) en al menos una unidad.
 - ▶ Entonces, una función variante puede ser:

$$fv = (|t| - I) + (|t| - r) = 2 * |t| - I - r$$

► Es fácil ver que se cumplen los dos puntos del teorema de terminación del ciclo, y por lo tanto el ciclo termina.

Algoritmo de Knuth, Morris y Pratt

```
vector<int> precalcular_pi(string &p) {
     int i = 0, i = 1:
     vector<int> pi(p.size()); // inicializado en 0
     pi[0] = 0; // valor de pi para 0
     while( j < p.size()) {</pre>
       if(p[i] == p[j]) 
         pi[j] = i+1;
         i++;
         i++;
       \} else if( i > 0 ) {
       i = pi[i-1];
        } else {
          pi[j] = 0;
         i++;
15
16
     return pi;
17
18
```

Algoritmo de Knuth, Morris y Pratt

- ▶ Para completar el algoritmo debemos calcular $\pi(i)$.
- Podemos implementar una función auxiliar, pero una mejor idea es precalcular estos valores y guardarlos en un vector (¿por qué?).
- ▶ Para este precálculo, recorremos *p* con dos índices *i* y *j*, con el siguiente invariante:

```
1. 0 \le j \le |p|
```

- 2. $pi(k) = \pi(k)$ para k = 0, ..., j 1.
- 3. i es la longitud de un bifijo de p[0, j + 1).

Algoritmo de Knuth, Morris y Pratt

- ► ¡Es importante observar que sin el invariante, es muy difícil entender este algoritmo!
- ► Cómo es una función variante adecuada para el ciclo?
 - 1. En la primera rama, se incrementan i y j.
 - 2. En la segunda rama, se disminuye el valor de i.
 - 3. En la tercera rama, se incrementa j.
- Luego, en cada iteración se incrementa 2j i.
- Además, $2j i \le 2 \times |p|$, y entonces una función variante puede ser $fv = 2 \times |p| (2j i)$.

Algoritmo (completo) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
     int l = 0, r = 0;
     vector<int> pi = precalcular_pi(p);
     bool result = false;
     while( r < t.size() \&\& r-l < p.size())  {
        if( t[r] == p[r-l] ){
          r++;
7
        \} else if( I == r ) {
8
          r++;
          I++;
10
        } else {
11
         I = r - pi[r-l-1];
12
13
     return r-l == p.size();
15
```

Algoritmo de Knuth, Morris y Pratt

¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?

- ▶ El algoritmo naïve realiza, en peor caso, |t| * |p| iteraciones.
- ▶ El algoritmo kmp realiza, en peor caso, |t| + |p| iteraciones

Por lo tanto, comparando sus peores casos, el algoritmo KMP es más eficiente (menos iteraciones) que el algoritmo naïve.

Algoritmo de Knuth, Morris y Pratt

¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?

Veamos como funciona cada algoritmo en la computadora

http://whocouldthat.be/visualizing-string-matching/

Bibliografía

- ▶ David Gries The Science of Programming
 - ► Chapter 16 Developing Invariants (Linear Search, Binary Search)
- ► Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein- Introduction to Algorithms, 3rd edition
 - ► Chapter 32.1 The naive string-matching algorithm
 - ► Chapter 32.4 The Knuth-Morris-Pratt algorithm