1/11/2020

# Iris Classification

DEBABRATA BHATTACHARYA



## Table of Contents

| Iris Clas | sificat | tion                                       | 2  |
|-----------|---------|--------------------------------------------|----|
| Aim of t  | he Pro  | oject                                      | 3  |
| Chapter   | 1:      | About the Project                          | 4  |
| 1.1       | Proj    | ect Steps                                  | 4  |
| 1.2       | Proj    | ect Files                                  | 4  |
| Chapter   | 2:      | About the Iris Dataset                     | 5  |
| 2.1       | Data    | aset Summarization                         | 5  |
| 2.1       | .1      | Shape of the dataset (instance, attribute) | 5  |
| 2.1       | .2      | First 20 instances.                        | 5  |
| 2.1       | .3      | Statistical summary                        | 6  |
| 2.1       | .4      | Class Distribution                         | 6  |
| 2.2       | Data    | a Visualization & analysis                 | 7  |
| 2.2       | .1      | Box and whisker                            | 7  |
| 2.2       | .2      | Histogram                                  | 9  |
| 2.2       | .3      | Scatter matrix                             | 10 |
| Chapter   | 3:      | Model Creation                             | 11 |
| 3.1       | Spo     | t Checking                                 | 11 |
| 3.1       | .1      | Results                                    | 11 |
| 3.2       | Crea    | ating the model                            | 11 |
| Chapter   | 4:      | Results                                    | 12 |
| 4.1       | Resi    | ults of Testing on Validation Dataset      | 12 |
| 4.2       | Resi    | ults of Testing on Entire Dataset          | 12 |
| Chapter   | 5:      | Tests                                      | 14 |
| 5.1       | Test    | Results:                                   | 14 |
| 5.2       | Test    | Status                                     | 14 |
| Chapter   | 6:      | Project Status                             | 15 |

## **Iris Classification**

## Aim of the Project

This project aims to build a model of the iris dataset. This model can be further used to classify unknown data.

## Chapter 1: About the Project

This is the Iris classification project. The aim of this project is to build a model that can classify the iris dataset.

## 1.1 Project Steps

- Data Download
- Data Loading
- Data Summarization
- Data Visualization
- Partitioning of dataset into Training dataset and Validation dataset
- Model Creation
- Model Selection
  - ❖ Create test harness using K-Fold Cross Validation, with scoring set to 'accuracy'
  - Evaluation of models using test harness
  - ❖ Summarization, Visualization and Comparison of Results
  - **❖** Model Selection
- Making Predictions using Selected Model
- Summarization of Results
- **♣** Saving the Pipelined Project
- ♣ Testing the saved model

## 1.2 Project Files

- Dataset
- Python file (using template.py as the base)
- Model files
- Image files
- Documentation
- README.md
- Project Report
- Slide deck

## Chapter 2: About the Iris Dataset

The repository is hosted at <u>UCI Machine Learning Repository</u>

The data set is multivariate and contains ratio(numerical) and nominal data. There are 150 instances and 4 attributes.

### 2.1 Dataset Summarization

### 2.1.1 Shape of the dataset (instance, attribute)

(150, 5)

We can see that there are 150 instances (or rows) and 5 attributes

#### 2.1.2 First 20 instances

|    | sepal-length sepal-width petal-length petal-width |     |     |                 |  |  |
|----|---------------------------------------------------|-----|-----|-----------------|--|--|
| 0  | 5.1                                               | 3.5 | 1.4 | 0.2 Iris-setosa |  |  |
| 1  | 4.9                                               | 3.0 | 1.4 | 0.2 Iris-setosa |  |  |
| 2  | 4.7                                               | 3.2 | 1.3 | 0.2 Iris-setosa |  |  |
| 3  | 4.6                                               | 3.1 | 1.5 | 0.2 Iris-setosa |  |  |
| 4  | 5.0                                               | 3.6 | 1.4 | 0.2 Iris-setosa |  |  |
| 5  | 5.4                                               | 3.9 | 1.7 | 0.4 Iris-setosa |  |  |
| 6  | 4.6                                               | 3.4 | 1.4 | 0.3 Iris-setosa |  |  |
| 7  | 5.0                                               | 3.4 | 1.5 | 0.2 Iris-setosa |  |  |
| 8  | 4.4                                               | 2.9 | 1.4 | 0.2 Iris-setosa |  |  |
| 9  | 4.9                                               | 3.1 | 1.5 | 0.1 Iris-setosa |  |  |
| 10 | 5.4                                               | 3.7 | 1.5 | 0.2 Iris-setosa |  |  |
| 11 | 4.8                                               | 3.4 | 1.6 | 0.2 Iris-setosa |  |  |
| 12 | 2. 4.8                                            | 3.0 | 1.4 | 0.1 Iris-setosa |  |  |
| 13 | 4.3                                               | 3.0 | 1.1 | 0.1 Iris-setosa |  |  |

| 14 | 5.8 | 4.0 | 1.2 | 0.2 Iris-setosa |
|----|-----|-----|-----|-----------------|
| 15 | 5.7 | 4.4 | 1.5 | 0.4 Iris-setosa |
| 16 | 5.4 | 3.9 | 1.3 | 0.4 Iris-setosa |
| 17 | 5.1 | 3.5 | 1.4 | 0.3 Iris-setosa |
| 18 | 5.7 | 3.8 | 1.7 | 0.3 Iris-setosa |
| 19 | 5.1 | 3.8 | 1.5 | 0.3 Iris-setosa |

A look at the first 20 rows shows us that the data X values are of ratio(float) type and the y values are categorical and nominal

### 2.1.3 Statistical summary

sepal-length sepal-width petal-length petal-width

| count | 150.000000 | 150.000000 | 150.0000 | 000 150.0000000 |
|-------|------------|------------|----------|-----------------|
| mean  | 5.843333   | 3.054000   | 3.758667 | 1.198667        |
| std   | 0.828066   | 0.433594   | 1.764420 | 0.763161        |
| min   | 4.300000   | 2.000000   | 1.000000 | 0.100000        |
| 25%   | 5.100000   | 2.800000   | 1.600000 | 0.300000        |
| 50%   | 5.800000   | 3.000000   | 4.350000 | 1.300000        |
| 75%   | 6.400000   | 3.300000   | 5.100000 | 1.800000        |
| max   | 7.900000   | 4.400000   | 6.900000 | 2.500000        |

From the summary we can see that the data is of 150 count. The values lie between 0 and 8.

#### 2.1.4 Class Distribution

class

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

dtype: int64

We can see that the class distributions are well balanced, with each of the 3 classes comprising a neat third of the dataset.

## 2.2 Data Visualization & analysis

#### 2.2.1 Box and whisker



#### Sepal length

We can see a well-balanced dataset. There is no visible skew. The max data point seems to be well above the 75% quartile.

#### Sepal width

We can see some outliers here, above the max point. There is slight skew towards the 75% quartile and, the data is probably skewed to the right.

#### **Petal length**

No outliers, but the data is very much skewed towards the 25% quartile. The 75% quartile is much closer to the mean than the 25% quartile. The minimum value is quite far from the mean.

#### Petal width

Again, the data is very much skewed towards the 25% quartile. The minimum value is quite far from the mean.

### Conclusion

Petal length and width are both on the smaller side. Values in these 2 columns are skewed to the left. Very interesting.

In contrast, sepal length and width are much more 'normal'.

### 2.2.2 Histogram



As expected, petal length and width are both heavily skewed to the left. You could draw a diagonal line from the left to the right across the Maxima of the petal width data.

Sepal length and width assume a very broken, but still imaginable bell curve.

Overall, the data seems very interesting.

### 2.2.3 Scatter matrix



There's a slight correlation between sepal length and sepal width for one of the classes. This is also the case for sepal length and petal length.

Petal length and width also have a correlation for a part of the data.

### Conclusion

The data has some slight correlation.

## Chapter 3: Model Creation

The following functions were considered to build the model:

- 1. Linear Regression
- 2. Linear Discriminant Analysis
- 3. K-Nearest Neighbors
- 4. CART
- 5. Gaussian Naïve Bayes
- 6. Support Vector Machine

### 3.1 Spot Checking

The models were spot checked on training dataset using a 10-k KFold Harness.

#### 3.1.1 Results

From the figure we can see the nearly all the non-linear models reach near 1.00 accuracy.

SVM and KNN seem to have the highest estimated accuracy scores. We have chosen the KNN.

### 3.2 Creating the model.

We have created the model using the KNN function.

## Chapter 4: Results

## 4.1 Results of Testing on Validation Dataset

Accuracy = 0.9

Confusion Matrix:

[[700]

[0111]

[029]]

### Classification report:

precision recall f1-score support

| Iris-setosa     | 1.00 | 1.00 | 1.00 | 7  |
|-----------------|------|------|------|----|
| Iris-versicolor | 0.85 | 0.92 | 0.88 | 12 |
| Iris-virginica  | 0.90 | 0.82 | 0.86 | 11 |
|                 |      |      |      |    |

| accuracy     | 0.90 |      |      |    |
|--------------|------|------|------|----|
| macro avg    | 0.92 | 0.91 | 0.91 | 30 |
| weighted avg | 0.90 | 0.90 | 0.90 | 30 |

## 4.2 Results of Testing on Entire Dataset

Accuracy = 0.9666666666666667

Confusion Matrix:

[[50 0 0]

[ 0 47 3]

[ 0 2 48]]

### Classification report:

precision recall f1-score support

| Iris-setosa     | 1.00 | 1.00 | 1.00 | 50  |
|-----------------|------|------|------|-----|
| Iris-versicolor | 0.96 | 0.94 | 0.95 | 50  |
| Iris-virginica  | 0.94 | 0.96 | 0.95 | 50  |
|                 |      |      |      |     |
| accuracy        |      | 0.97 | 150  |     |
| macro avg       | 0.97 | 0.97 | 0.97 | 150 |
| weighted avg    | 0.97 | 0.97 | 0.97 | 150 |

Model is accurate

## Chapter 5: Tests

The following things were tested:

- Loading and partitioning of data
- Accuracy of finalized model

### 5.1 Test Results:

### 5.2 Test Status

All tests have been successfully passed.

## Chapter 6: **Project Status**

Project has been successfully completed.