Имя, ф	амилия 	и номе	ер групі	іы:	
1. a	b	С	d	e f	11. a b c d e f
2. a	b	\Box c	d	e f	12. a b c d e f
3a	b	c	d	\Box e \Box f	13. a b c d e f
4. a	b		d	\Box e \Box f	14. a b c d e f
5a	b	c	d	\Box e \Box f	15. a b c d e f
6. a	b	c	d	\Box e \Box f	16. a b c d e f
7a	b	c	d		17. <u>a</u> b <u>c</u> d <u>e</u> f
8a	b	c	d		18. <u>a</u> b <u>c</u> d <u>e</u> f
9. a	b	\Box c	d		19.
10 a	Пь		\Box d	e f	20 a b c d e f

Удачи!

Имя, фамилия и номер группы:

- 1. Выберите верное утверждение о SPNE (равновесии Нэша, совершенном в подыграх) и NE (равновесии Нэша).
 - a) Если в игре нет других подыгр, кроме игры в целом, то количество NE меньше количества SPNE.
 - b) Если в игре нет других подыгр, кроме игры в целом, то каждое NE является SPNE.
 - c) Если в игре есть подыгры помимо игры в целом, то количество SPNE строго больше количества NE.
 - d) Если в игре нет других подыгр, кроме игры в целом, то количество NE больше количества SPNE.
 - е) нет верного ответа
 - f) Если в игре есть подыгры помимо игры в целом, то количество SPNE строго меньше количества NE.
- 2. Рассмотрим одновременную игру с матрицей

$$\begin{array}{cccc} & e & f \\ a & (3,7) & (1,3) \\ b & (1,3) & (4,6) \\ c & (1,3) & (1,3). \end{array}$$

Найдите вероятность, с которой первый игрок использует стратегию «а» в смешанном равновесии Нэша.

Ответы указаны с точностью до двух знаков после запятой.

a) 0.3

c) 0.27

e) 0.38

b) нет верного ответа

d) 0.33

f) 0.43

3. В кучке 124 камня. Петя и Вася ходят по очереди, Петя начинает. За один ход Петя берет от 1 до 5 камней, а Вася — от 1 до 4. Выигрывает тот, кто возьмёт последний камень. Оба игрока хотят выиграть.

Какой ход необходимо сделать Пете в начале игры для своей победы?

a) 2

c) 4

e) 3

b) нет верного ответа

d) 1

f) 5

4. Рассмотрим бесконечно повторяемую дилемму заключенного с дисконт-фактором $\delta.$

$$\begin{array}{ccc}
c & d \\
c & (10,10) & (6,12) \\
d & (12,6) & (7,7)
\end{array}$$

При каком наименьшем δ пара стратегий жёсткого переключения (grim trigger) будет равновесием Нэша, совершенным в подыграх?

Ответы указаны с точностью до двух знаков после запятой.

a) 0.4

e) 0.2

b) 0.14	d) 0.17	f) 0.25					
5. Каково максимальное четырьмя конечными	_	чистых стратегиях в динамической игре с					
a) 2	c) 1	е) нет верного ответа					
b) 6	d) 4	f) 8					
6. Рассмотрим одноврем число стратегий.	енную игру в которую играют (6 игроков, у каждого из которых конечное					
-	исходов в чистых стратегиях, n_I	а в чистых стратегиях, n_{NE} , и количеством p_{PO} , при увеличении выигрыша первого иг-					
a) n_{NE} может измен	ииться в любую сторону, n_{PO} мох	жет только вырасти					
b) n_{NE} не изменитс	я, n_{PO} может измениться в любу	ую сторону					
c) n_{NE} может тольк	c) n_{NE} может только вырасти, n_{PO} не изменится						
d) n_{NE} и n_{PO} могут	измениться в любую сторону						
e) n_{NE} может тольк	о вырасти, n_{PO} может только уп	асть					
f) нет верного ответ	'a						
	ительное число s , затем Тоша вы u равен $u_S=-s^2+8t$, выигрыш	ыбирает действительное число t , зная выбор тоши равен $u_T=-t^2+5st.$					
Какое число выберет С	Саша в равновесии Нэша, совери	ценном в подыграх?					
a) 6.67	c) 8	е) нет верного ответа					
b) 5	d) 10	f) 13.33					
$-t^2+10st$. Саша мож	_	не числа s и t . Полезность Тоши равна $u_T=$ ем или плохом настроении. В хорошем на- рхом $-u_S=-s^2-2st$.					
Саша чуствует своё на	строение, а Тоша не чуствует на	строение Саши.					
Какое t выбирает Тош	а в равновесии Байеса-Нэша?						
а) нет верного ответ	c) 0.83	e) 2.9					
b) 0.42	d) 1.24	f) 2.07					
9. У Саши три чистых стр a с вероятностью 0.2, b		смешанном равновесии Нэша она выбирает					
Что можно утверждат ванных стратегиях ост		ши от выбора этих стратегий при фиксиро-					

с) нет верного ответа

a)	u(c)	>	u(a
aj	a(c)		a(a

c)
$$u(a) < u(b)$$

e)
$$u(c) > u(b)$$

b)
$$u(a) > u(b)$$

d)
$$u(c) < u(a)$$

- f) нет верного ответа
- 10. Рассмотрим одновременную игру двух игроков. У первого игрока 6 чистых стратегий, у второго 7 чистых стратегий.

Сколько всего есть смешанных стратегий у первого игрока?

a) 5

- с) нет верного ответа
- e) 42

b) 7

d) 6

- f) 12
- 11. У Ани есть старый левый ботинок, у Бори левый, у Вовы правый. Продать можно только пару ботинок за 600 рублей. По отдельности ботинки ничего не стоят.

Выберите вектор (a,b,c) выигрышей Ани, Бори и Вовы, лежащий в ядре этой кооперативной игры.

a) (100, 100, 400)

c) (200, 200, 200)

e) (100, 100, 100)

b) (150, 150, 300)

d) (300, 300, 300)

- f) нет верного ответа
- 12. Рассмотрим дерево игры с совершенной информацией. Первый игрок делает ход в двух узлах дерева, второй игрок делает ход в других двух узлах. В каждом узле у каждого игрока 8 вариантов хода. Узлы второго игрока лежат в одном информационном множестве.

Укажите сумму количества чистых стратегий первого игрока и количества чистых стратегий второго игрока.

a) 80

c) 72

e) 88

b) 104

- d) нет верного ответа
- f) 112
- 13. Рассмотрим дерево игры с совершенной информацией. Первый игрок делает ход в двух узлах дерева, второй игрок делает ход в других двух узлах. В каждом узле у каждого игрока 5 вариантов хода. Узлы второго игрока лежат в одном информационном множестве.

Укажите количество вероятностей, необходимых для описания поведенческой стратегии первого игрока.

«Последнюю» вероятность считать не нужно, так как она определяется ограничением на сумму вероятностей.

a) 12

c) 7

е) нет верного ответа

b) 8

d) 11

- f) 10
- 14. Выберите верное утверждение про одновременную антагонистическую игру с конечным числом чистых стратегий у каждого игрока.
 - а) нет верного ответа
 - b) Ни один исход не является равновесием Нэша
 - с) Все исходы являются равновесиями Нэша

	d) Все Парето-оптимальные исхe) Нет Парето-оптимальных исхf) Все исходы являются Парето-		ша			
15.	Рассмотрим бесконечно повторяемую классическую дилемму заключенного с дисконт-фактором S.					
	Сколько существует различных равновесий Нэша, совершенных в подыграх, при $\delta \to 1$?					
	а) бесконечно много	c) 2	e) 1			
	b) 3	d) нет верного ответа	f) 4			
16.	б. Выберите верное утверждение о произвольной кооперативной игре в коалиционной форме для конечного числа игроков.					
	 а) Ядро может быть пустым, но если оно непусто, то вектор Шепли лежит в ядре. b) Вектор Шепли всегда существует и единственный. c) Ядро всегда непусто, вектор Шепли может не лежать в ядре. d) Вектор Шепли не существует, если ядро пусто. е) нет верного ответа 					
1.77	f) Ядро всегда непусто, вектор I	_				
17.	17. Рассмотрим одновременную игру с матрицей $\begin{array}{ccc} & e & f \\ a & (1,4) & (3,4) \\ b & (4,4) & (1,3) \\ c & (3,0) & (2,2). \end{array}$					
	Найдите количество равновесий Р	Нэша в чистых стратегиях.				
	a) 4	c) 2	e) 1			
	b) нет верного ответа	d) 0	f) 3			
18.	За день Ыуы может откопать 3 кореньев, а Уыу — 17 килограмм. Работая вместе они откопали за день 38 килограмм кореньев. Сколько килограмм должен получить Ыуы в векторе Шепли? Ответы округлены с точностью до двух знаков после запятой.					
	a) 21	c) 18.3	е) нет верного ответа			
	b) 3	d) 5.7	f) 12			
19.	Рассмотрим одновременную игру	,				

Найдите количество Парето-оптимальных исходов в чистых стратегиях.

a) 4

c) 2

e) 5

b) 3

- d) нет верного ответа
- f) 6

20. Рассмотрим одновременную игру с матрицей

$$\begin{array}{cccc} & e & f \\ a & (4,4) & (6,4) \\ b & (7,2) & (4,3) \\ c & (6,0) & (5,2). \end{array}$$

Найдите множество наилучших ответов первого игрока на смешанную стратегию второго $s_2=0.3e+0.7f.$

- а) нет верного ответа
- c) {*a*}

e) $\{a, b\}$

b) {*c*}

d) $\{b, c\}$

f) {b}