New Developments in Search at NCBI

Querying Feature Annotations

جح

High Availability Solr Stack in AWS

Overview

Querying Feature Annotations

High Availability Solr Stack in AWS

Querying Feature Annotations

Feature Location Service

Team Lead: Valerie Schneider PhD

Software Engineers: Peter Meric, Cliff Clausen PhD

Feature Annotations

- Genes
 - Locus
 - RNA
 - Protein-coding region
- Variation
 - SNPs
 - Structural variants
- Clones

Genome annotation—Genes

ВЬ	Intron Exon UTR	AED
Annotation 1		0.2
Annotation 2		0.6

Nature Reviews | Genetics

A beginner's guide to eukaryotic genome annotation. Yandell M, Ence D. Nat Rev Genet. 2012 Apr 18;13(5):329-42. doi: 10.1038/nrg3174.

Genome annotation—Genes

Genome annotation—Clones

Genome annotation—SNPs

dbSNP Build 146 (Homo sapiens Annotation	Release 107) all data	×
Somatic alleles, dbSNP Build 146 (Homo s	apiens Annotation Release 107)	×
ClinVar Short Variations based on dbSNP	Build 1	×
Cited Variants, dbSNP Build 144 (Homo sa	niens A M DD	×
1 1	4 2 3 2 2 3 3 3 1	

Why do we need FLS?

- Need to find annotations of interest
 - By location
 - By feature identifier
 - From publications
 - External queries from feature-specific resources eg. Gene
- To enable feature searching in NCBI genome browsers

FLS Architecture

FLS Search Services

Featloc schema

Field name	Туре	Indexed	Stored	Multivalued	Required
feature_id	String	⊻	✓	✓	⊻
featuretype	String	€	✓	✓	⊻
accession	String	€	✓		
fpl_id	String	✓.	✓		
xref_fpl_id	String	⊻		⋞	
any_fpl_id	String	⊻		✓	
symbol	String	⊻	✓		
gi	Long	₹	✓		
start	Integer	⊻	✓		⊻
stop	Integer	₹.	✓		₹
length	Integer	₹	✓		₹.
strand	String	✓.	✓.		
track_id	String	✓.	✓	₹.	✓.
seq_feat	BinaryField		✓		

Featloc Solr collection

- Indexes top-level assembly locations for features
- Feature tracks
 - Total possible scope: 24,500 tracks for 430 organisms
 - Human: 4,128
 - Mouse: 381
 - Cow: 165
 - Next 63 organisms: 51-150 each
 - All other organisms each account for 50 or fewer
- 316 data tracks currently indexed in featloc
- 330M records, 50GB

Featloc track content—GRCh38

155M features

FLS Service—Queries

- Locations (accession, start, stop)
- Feature ID list
 - User-generated
 - Query-generated
- Example feature IDs:
 - Gene ID
 - dbSNP ID
 - dbVar id
 - Sequence ID (accession, GI)
 - HGVS expression

FLS Service—Searching by Location

- sequence identifier
- location
 - overlapping range
 - start range, stop range
- length constraint
- order by location (start, length)

Solr—Searching by Location

- q constraints
 - overlapping range stop:[lower to *] AND start:[1 to upper]
 - start range, stop range start:[A то в]
- fq constraints
 - length constraint start: [A TO B]

FLS Service—Searching by Feature ID

- no predefined limit for feature ID list
- results ordered by:
 - sequence of input feature IDs
 - unordered
 - location (accession, start, length)

Solr—Searching by Feature ID

- q constraints
 - * *
- fq constraints
 - feature type
 - uses terms parser for feature ID list
 - up to 15K per query
 - uncached
 - avoids scoring

Solr—Result sets

- Placement info from stored fields:
 - FPL ID, accession, feature type, start, stop, strand, symbol
- ASN.1 seq-feat
 - compressed binary format, string-encoded
 - detailed feature information

HGVS collection

Document count	Туре	Unique key	Size
755M	Feature ID string HGVS string	Feature ID, HGVS	38GB
150M	Feature ID string HGVS string, multivalued	Feature ID	29GB

- Nomenclature heavily used by medical community to describe variants and locations
- HGVS collection adds HGVS expression support to FLS
- Each HGVS expression indexed twice in same document
 - complete expression "NM_003159.2:c.1675C>T"
 - suffix string, omitting sequence ID "c.1675C>T"
- 755M unique (feature ID, HGVS) tuples

Overview

Querying Feature Annotations

High Availability Solr Stack in AWS

High Availability Solr Stack on Amazon Web Services

Team Lead: Grisha Starchenko

Software Engineers: Michael Kholodov, Georgy Khoroshavtsev, Vadim Miller, Maxim Osipov

Why?

- PubOne (next generation PubMed search system)
- Scalable, distributed hardware
- Demand-driven resource allocation

Terms

- Service announcer
 - Zk_mon
 - Solr_mon
 - Mongo_mon
- LBOS load balancer, dynamic configuration

Interaction between services in the cloud environment

Shard-replica organization

INCORRECT

Both replicas of Shard_6 in same zone

CORRECT

Slave Stack with replication from Master

Creating an AWS Solr Stack

- 1. Set up AWS instance
- 2. Register Solr instance in ZK
- 3. Upload Solr configuration to ZK
- 4. Determine shard count
- 5. Generate replication plan
- 6. Create collection
- Apply security settings
- 8. Start solr_mon
- Enable replication from Master
- 10. Enable SolrCloud

Acknowledgements & Contacts

Feature Location Service

Valerie Schneider

Peter Meric

Dataflow: Ray Anderson

Advisors: Brad Holmes, Terence Murphy

DBA: Craig Oakley

Track production: NCBI Eukaryotic Genome Pipeline team

High-Availability Solr

Grisha Starchenko

grisha.starchenko@nih.gov

valerie.schneider@nih.gov

peter.meric@nih.gov

