Precalculus Lecture 11 Logarithms

Todor Miley

https://github.com/tmilev/freecalc

2020

Outline

- Logarithmic Functions
 - Logarithm basics
 - Natural Logarithms
 - Shifting graphs of logarithmic functions

Basic Operations with Logarithms

License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/
 and the links therein.

Logarithmic Functions Logarithm basics 4/22

Logarithmic Functions

- Suppose a > 0, $a \neq 1$.
- Let $f(x) = a^x$.
 - Then f is either increasing or decreasing.
 - Therefore f is one-to-one.
- $y = \log_a x_{\bullet}$ Therefore f has an inverse function, f^{-1} .
 - The graph shows $y = a^x$ for a > 1.
 - The graph of $y = \log_a x$ is the reflection of this in the line y = x.

Definition $(\log_a x)$

The inverse function of $f(x) = a^x$ is called the logarithmic function with base a, and is written $\log_a x$. It is defined by the formula

$$\log_a x = y \qquad \Leftrightarrow \qquad a^y = x.$$

If x > 0, then $\log_a x$ is the exponent to which the base a must be raised to give x.

Example

Evaluate:

- 2 $\log_{25} 5 = \frac{1}{2}$ because $25^{\frac{1}{2}} = \sqrt{25} = 5$.
- $\log_{10} 0.001 = -3 \text{ because } 10^{-3} = 0.001.$

- Suppose *a* > 1.
- Domain of a^x : \mathbb{R} .

6/22

- Range of a^x : $(0, \infty)$.
- Domain of $\log_a x$: $(0, \infty)$.
- Range of $\log_a x$: \mathbb{R} .
- $\log_a(a^x) = x$ for $x \in \mathbb{R}$.
- $a^{\log_a x} = x \text{ for } x > 0.$

Graphs of various logarithmic functions with a > 1

Natural Logarithms

Definition $(\ln x)$

The logarithm with base e is called the natural logarithm, and has a special notation:

$$\log_e x = \ln x$$
.

- $\ln x = y \Leftrightarrow e^y = x$.
- $ln(e^x) = x$ for $x \in \mathbb{R}$.
- $e^{\ln x} = x \text{ for } x > 0.$

Logarithmic Functions Natural Logarithms

accepted uses for $\log x$.

In some texts/applications log x stands for

$$\log x = \log_{10} x \quad .$$

- Used in many engineering texts.
- Used in many natural sciences texts.
- Used in many high school textbooks.
- Used in old math textbooks.

What does log x stand for? **WARNING:** there are **two different**

• In other texts/applications log x stands for (the principal branch of the)

complex logarithm

$$\log x = \begin{cases} \ln x = \log_{e} x & \text{if } x > 0\\ \ln(-x) + \pi i & \text{if } x < 0\\ ? & \text{for } x \notin \mathbb{R} \end{cases}$$

- Used in mathematical, many computer science texts.
- Used in many natural science texts.
- Used in most computer algebra systems.
- This is the notation accepted by most mathematicians.
- log and In have different domains but else coincide: In is defined for positive reals, and log - for non-zero complex.

Logarithms Todor Milev Lecture 11

Logarithmic Functions Natural Logarithms 10/22

- In the present course we shall abstain from using the notation log x.
- When we need logarithms base 10 we will always write log10.
- Within this course, we request that the student abstain from using log x and use instead the unambiguous log₁₀ x.
- Outside of this course, we recommend that the student continue avoiding the notation log.
- Should our recommendation contradict the commonly accepted conventions in the field of study of the student, we expect the student to honor the conventions of their fields of study.

Logarithmic Functions Natural Logarithms 11/22

Summary of logarithm notation conventions

	Name	ISO nota- tion	Other nota- tion	Used in
$\log_2(x)$	binary logarithm	lb(x)		phy
$\log_e(x)$	natural logarithm	ln(x)	$\log(x)$	mathematics, physics, chemistry, statistics, economics, information theory, and engineering
$\log_{10}(x)$	common logarithm	lg(x)	$\log(x)$	various engineering, logarithm tables, handheld calculators, spectroscopy
Table source: Wikipedia				

Table source: Wikipedia

• Standardized in ISO_31-11 (International Standards Organization).

Draw the graph of $y = \ln(x - 2) - 1$.

- Graph y = ln(x) assumed known.
- f(x − 2) shifts graph 2 units to the right.
- g(x) − 1 shifts graph 1 unit down.

Theorem (Properties of Logarithmic Functions)

If a>1, the function $f(x)=\log_a x$ is a one-to-one, continuous, increasing function with domain $(0,\infty)$ and range $\mathbb R$. If x,y,a,b>0 and r is any real number, then

Recall that
$$\log_a(x) = \log_b x \log_a b = \frac{\log_b x}{\log_b a} = \frac{\ln x}{\ln a}$$
.

Using only the In and arithmetic operations of your calculator, compute $\log_5(13)$. Confirm your answer by exponentiation.

$$\log_5(13) = \frac{\ln 13}{\ln 5} \approx \frac{2.564949357}{1.609437912} \approx 1.593693.$$

As a check of our computations, we compute by calculator: $13=5^{\log_513}\approx 5^{1.593693}\approx 13.000007508$, and our computations check out.

Use the properties of logarithms to evaluate the following.

Example

$$\log_4 2 + \log_4 32 = \log_4(2 \cdot 32)$$

= $\log_4(64)$
= 3
(because $4^3 = 64$.)

Example

$$\log_2 80 - \log_2 5 = \log_2 \left(\frac{80}{5}\right)$$

= $\log_2(16)$
= 4
(because $2^4 = 16$.)

Compute the exact value of the expression as a rational number.

$$\log_{7} \sqrt[3]{49} = \log_{7} \left(49^{\frac{1}{3}}\right)$$

$$= \frac{1}{3} \log_{7} 49$$

$$= \frac{1}{3} \log_{7} 7^{2}$$

$$= \frac{2}{3} \log_{7} 7$$

$$= \frac{2}{3}$$

Fully expand the expression to a sum of logarithms. Your answer should not contain logarithms of products or logarithms of exponents.

$$\ln\left(\frac{y\sqrt{1+x}}{z^2}\right) = \ln\left(y\sqrt{1+x}\right) - \ln\left(z^2\right)$$

$$= \ln y + \ln\sqrt{1+x} - 2\ln z$$

$$= \ln y + \frac{1}{2}\ln(1+x) - 2\ln z$$

The inverse hyperbolic function $\arcsin h = \ln (x + \sqrt{1 + x^2})$ is used when studying hyperbolas (types of curves in the plane).

Example

Demonstrate that
$$-\ln\left(\sqrt{1+x^2}-x\right)=\ln\left(x+\sqrt{1+x^2}\right)$$
.
$$-\ln\left(\sqrt{1+x^2}-x\right)=\ln\left(\frac{1}{\sqrt{x^2+1}-x}\right) \qquad | \text{ rationalize}$$

$$=\ln\left(\frac{\left(\sqrt{x^2+1}+x\right)}{\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)}\right)$$

$$=\ln\left(\frac{\sqrt{x^2+1}+x}{x^2+1-x^2}\right)$$

$$=\ln\left(\sqrt{x^2+1}+x\right) \qquad .$$

Proposition (Additional Properties of Logarithmic Functions)

If a, b > 0, then

- $\log_a b = \frac{1}{\log_b a}.$

Compute as a rational number, without using calculator.

$$\log_{\frac{1}{3/40}} \sqrt{343} =$$

Compute as a rational number, without using calculator.

$$\begin{split} \log_{7}\left(24\right) + \log_{\frac{1}{7}}\left(3\right) - \log_{49}\left(64\right) &= \log_{7}\left(24\right) + \frac{\log_{7}\left(3\right)}{\log_{7}\left(\frac{1}{7}\right)} - \frac{\log_{7}\left(64\right)}{\log_{7}\left(49\right)} \\ &= \log_{7}\left(24\right) + \frac{\log_{7}\left(3\right)}{-1} - \frac{\log_{7}\left(64\right)}{2} \\ &= \log_{7}\left(24\right) - \log_{7}\left(3\right) - \frac{1}{2}\log_{7}\left(64\right) \\ \log_{a}x - \log_{a}y &= \log_{a}\left(\frac{x}{y}\right) \\ \log_{a}x^{r} &= r\log_{a}x \end{split}$$

$$= \log_{7}\left(\frac{24}{3}\right) - \log_{7}\left(64^{\frac{1}{2}}\right) \\ &= \log_{7}\left(8\right) - \log_{7}\left(\sqrt{64}\right) \\ &= \log_{7}\left(8\right) - \log_{7}\left(\sqrt{64}\right) \\ &= \log_{7}\left(8\right) - \log_{7}\left(\frac{8}{8}\right) = \log_{7}(1) = 0. \end{split}$$
[alternatively:]
$$= \log_{7}\left(\frac{8}{8}\right) = \log_{7}(1) = 0.$$

Prove the logarithmic properties.