Let's learn how to predict the sign of  $\Delta S_{rxn}$  or  $\Delta S_{o}$ 

 $20_{9}(g) \longrightarrow 30_{2}(g)$   $\Delta n_{9}=3-2=+1$ increase in gas moler.  $\Delta S^{\circ}=+\nu e$ 

 $N_2(g) + O_2(g) \longrightarrow 2NO(g) \Delta g = 2-2 = 0$  $\Delta S^{\circ} \approx 0$ 

 $2(06) + 026) \longrightarrow 2(026) \Delta n_3 = -1$   $\Delta S^\circ = -ve$ 

 $C_3H_8(g) + 5O_2(g) \longrightarrow 3(O_2(g) + 4H_2O(g))$  $\Lambda S^2 = -vr$   $2^{m}L_{ow}$ :  $\Delta S_{univ} \ge 0$   $\Delta S_{univ} = \Delta S_{mn} + \Delta S_{surr}$   $\Delta S_{univ} = \Delta S_{univ} + \Delta S_{surr}$   $\Delta S_{univ} = \Delta S_{univ} + \Delta S_{univ}$ 

How do we cale  $\Delta S$  and  $\Delta S_{sur}$ ?  $S^{\circ}(P) - \Sigma S^{\circ}(R)$ Sourr =  $\frac{1}{2}$  sur if we're  $\Theta$ if we're  $\Theta$  high?... a little bit of Qa little bit of Q makes a makes a large much smaller increase (Showhite in lib.)

$$\Delta S_{swr} = -\frac{q_{sys}}{T}$$

$$= -\frac{q_{sys}}{T}$$

$$= -\frac{q_{sys}}{T}$$

$$= -\frac{q_{sys}}{T}$$

$$= -\frac{q_{sys}}{T}$$

N2(9) + 3H2(9) 
$$\longrightarrow$$
 2NH3(9)  
already saw:  $\Delta S^{\circ} = -198.5 \text{ J/mol.K}$   
however,  $\Delta H^{\circ} = -92.6 \text{ KJ/mol}$   
exothermic sm.  
 $\Delta S_{univ} = \Delta S + \Delta S_{surr} = \Delta S - \Delta H$ 

criterion for whether a ron Defin: G = H-TS Gibb's Free Energy  $\Delta G = \Delta H - T\Delta S$  (Tobes

if  $\Delta G = 0$ : @ com

△G>O: rxn is impossible (fund)

