Truthful Online Scheduling with Commitments

EC 2015

Problem Glance

Online scheduling

Allowing preemption

Commitments

Problem Glance (cond't)

Online scheduling

- Jobs arrive in an online manner
- A job includes: (<u>valuation</u>, <u>demand</u>, <u>arrival time</u>, <u>deadline</u>)
- A job holds no value unless it is fully completed
- Need to pay for the completed job

Preemption

• New arrival job with enough high valuation density could suspend the executing job, and then runs itself

Problem Glance (cond't)

Truthfulness

• Users have incentives to reveal their true information for maximizing their utility

Commitment

• A Job will obtain a response whether or not it could be finished before its deadline, even if the scheduling system allows preemption

Detailed Model (Bidding Model)

• Bid:
$$\tau_j = \langle v_j, D_j, a_j, d_j \rangle$$

• Single-minded

• At most one job runs in one server at a specific time

Detailed Model (Other Parameters & Objective)

- (Only discuss the single server case)
- Bids set: $\tau = \{\tau_j : j \in \mathcal{J}\}\$ $\tau_j = \langle v_j, D_j, a_j, d_j \rangle$
- Valuation density: $\rho_j = v_j/D_j$
- Density classes: $C_{\ell} = \{j | \rho_j \in [\gamma^{\ell}, \gamma^{\ell+1})\}$
- Slackness: $s = \min_{j \in \mathcal{J}} \{ \frac{d_j a_j}{D_j} | \tau_j = \langle v_j, D_j, a_j, d_j \rangle \in \tau \}$
- Objective: maximize the total valuation of fully completed jobs

Truthful Non-committed Scheduling (Algorithm)

ALGORITHM 1: Truthful Non-Committed Algorithm A_T for a Single Server

```
\forall t, \quad J^P(t) = \{ j \in \mathcal{J} \mid j \text{ partially processed by } \mathcal{A}_T \text{ at time } t \land t \in [a_j, d_j] \}.
J^E(t) = \{ j \in \mathcal{J} \mid j \text{ unallocated by } \mathcal{A}_T \text{ at time } t \land t \in [a_j, d_j - \mu D_j] \}.
```

Event: On arrival of job j at time $t = a_j$:

1. call ClassPreemptionRule(t).

Event: On completion of job j at time t:

- 1. resume execution of job $j' = \arg \max \{ \rho_{j'} \mid j' \in J^P(t) \}$.
- 2. call ClassPreemptionRule(t).
- 3. delay the output response of j until time d_j .

ClassPreemptionRule (t):

- 1. $j \leftarrow \text{job currently being processed.}$
- 2. $j^* \leftarrow \arg \max \{ \rho_{j^*} \mid j^* \in J^E(t) \}.$
- 3. if $(j^* \succ j)$:
 - 3.1. preempt j and run j^* .

Truthful Non-committed Scheduling (Example)

$$\tau_j = \langle v_j, D_j, a_j, d_j \rangle \quad \mathcal{C}_\ell = \{ j | \rho_j \in [\gamma^\ell, \gamma^{\ell+1}) \}$$
$$\rho_j = v_j / D_j \quad \mu = 3 \quad \gamma = 2$$

$$C_0 = [1, 2), C_1 = [2, 4), C_2 = [4, 8)$$

$$\tau_1 = \langle 6, 2, 2, 20 \rangle, \ \rho_1 = 3, \ \rho_1 \in \mathcal{C}_1, \ d_1 - \mu D_1 = 14$$

$$\tau_2 = \langle 7, 1, 3, 40 \rangle, \ \rho_2 = 7, \ \rho_2 \in \mathcal{C}_2, \ d_2 - \mu D_2 = 37$$

$$\tau_3 = \langle 1, 1, 3, 7 \rangle, \ \rho_3 = 1, \ \rho_3 \in \mathcal{C}_0, \ d_3 - \mu D_3 = 4$$

High class job preempts lower class job

Unallocated job will be dropped at time d_j - μD_j

Truthful Non-committed Scheduling (Truthful & Competitive Ratio)

• Monotone → Truthfulness [Hajiaghayi et al. 2005]

$$\tau_j \succ \tau_{j'}$$
, if $v_j \ge v_{j'}$, $D_j \le D_{j'}$, $a_j \ge a_{j'}$, $d_j \le d_{j'}$
for any $\tau_j \succ \tau_{j'}$, $\mathcal{A}_j(\tau_j, \tau_{-j}) \ge \mathcal{A}_j(\tau_{j'}, \tau_{-j'})$

• Competitive-ratio (by Dual Fitting [Lucier et al. 2013]):

$$cr_{\mathcal{A}_T}(s) = 2 + \Theta\left(\frac{1}{\sqrt[3]{s} - 1}\right) + \Theta\left(\frac{1}{(\sqrt[3]{s} - 1)^3}\right), s > 1$$

$$\gamma = \frac{\sqrt{\mu}}{\sqrt{\mu} - 1}$$

$$\mu \approx s^{2/3}$$

Next, introduce the committed scheduling

Committed Scheduling (Concept of Commitment)

- Completion guarantee
 - At time $d_j \omega(d_j a_j)$, the user could know whether or not its job could be completed
 - Named ω-responsive

Committed Scheduling (Algorithm Rationale)

- Two key components:
 - simulator (virtual)
 - server (actual)
- First construct virtual jobs by arrival jobs, and then run them on the simulator (using A_{T}, i.e., the noncommitted scheduling)
- If a virtual job could be fully completed on the simulator, and then it will be executed in the server

Committed Scheduling (Detailed Parameters)

 $\omega \in (0,1)$

- Virtual demand (increased): $D_j^{(v)} = D_j/\omega$
- Virtual deadline (antedated): $d_j^{(v)} = d_j \omega(d_j a_j)$
- Virtual job: $\tau_j^{(v)} = \left\langle v_j, D_j^{(v)}, a_j, d_j^{(v)} \right\rangle$
- Slackness assumption (with figure)

$$\forall \tau_j^{(v)}: D_j/\omega \le (1-\omega)sD_j \Rightarrow s \ge \frac{1}{\omega(1-\omega)}$$

Committed Scheduling (Algorithm)

• Simulator: run virtual jobs by non-committed algorithm

algorithm
$$\tau_{j} = \langle v_{j}, D_{j}, a_{j}, d_{j} \rangle \longrightarrow \begin{cases} d_{j}^{(v)} = d_{j} - \omega(d_{j} - a_{j}) \\ D_{j}^{(v)} = D_{j}/\omega \end{cases} \qquad \tau_{j}^{(v)} = \left\langle v_{j}, D_{j}^{(v)}, a_{j}, d_{j}^{(v)} \right\rangle$$

- Server: Earliest Deadline First (EDF) allocation rule with new admitted jobs
 - An admitted job corresponds with the fully completed virtual job in simulator

$$\tau_{j} = \langle v_{j}, D_{j}, a_{j}, d_{j} \rangle$$

$$\tau_{j}^{(v)} = \langle v_{j}, D_{j}^{(v)}, a_{j}, d_{j}^{(v)} \rangle$$

$$\tau_{j}^{(a)} = \langle v_{j}, D_{j}, d_{j}^{(v)}, d_{j} \rangle$$

Committed Scheduling (How to convert into virtual job & run)

Committed Scheduling (Truthfulness in Public Arrival Time)

Almost truthful except the arrival time

• Example: misreporting the arrival time

Committed Scheduling (Competitive Ratio)

$$cr_{\mathcal{A}_C}(s) \le \frac{cr_{\mathcal{A}}(s \cdot \omega(1-\omega))}{w(1-\omega)}, \quad s > \frac{1}{\omega(1-\omega)}$$

Advantages

• Responsiveness (commitment)

• No early processing (execute after being admitted)

Thanks

Backup – Relaxed Primal Problem (for Dual Fitting)

$$\begin{aligned} & \max \qquad \sum_{j \in \mathcal{J}} \sum_{i=1}^{C} \int_{a_{j}}^{d_{j}} \rho_{j} y_{j}^{i}(t) dt \\ & \sum_{i=1}^{C} \int_{a_{j}}^{d_{j}} y_{j}^{i}(t) dt \leq D_{j} & \forall j \\ & \sum_{j:t \in [a_{j},d_{j}]} y_{j}^{i}(t) \leq 1 & \forall i,t \\ & \sum_{i=1}^{C} y_{j}^{i}(t) - \frac{1}{D_{j}} \cdot \sum_{i=1}^{C} \int_{a_{j}}^{d_{j}} y_{j}^{i}(t) dt \leq 0 & \forall j,t \in [a_{j},d_{j}] \\ & y_{j}^{i}(t) \geq 0 & \forall j,i,t \in [a_{j},d_{j}] \end{aligned}$$

Backup – Relaxed Dual Problem (for Dual Fitting)

$$\begin{aligned} & \min \quad \sum_{j \in \mathcal{J}} D_j \alpha_j + \sum_{i=1}^C \int\limits_0^\infty \beta_i(t) dt \\ & \text{s.t.} \quad \alpha_j + \beta_i(t) + \pi_j(t) - \frac{1}{D_j} \int\limits_{a_j}^{d_j} \pi_j(t') dt' \ \geq \ \rho_j \qquad \forall j \in \mathcal{J}, \, i, \, t \in [a_j, d_j] \\ & \alpha_j, \, \beta_i(t), \, \pi_j(t) \ \geq \ 0 \qquad \qquad \forall j \in \mathcal{J}, \, i, \, t \in [a_j, d_j] \end{aligned}$$

Backup – Single Compared with Multiple (Competitive Ratio A_{T})

• Single-server:

$$cr_{\mathcal{A}_T}(s) = 2 + \Theta\left(\frac{1}{\sqrt[3]{s} - 1}\right) + \Theta\left(\frac{1}{(\sqrt[3]{s} - 1)^3}\right), s > 1$$

• Multiple-servers:

$$cr_{\mathcal{A}_T}(s) = 2 + \Theta\left(\frac{1}{\sqrt[3]{s} - 1}\right) + \Theta\left(\frac{1}{(\sqrt[3]{s} - 1)^3}\right), s > 1$$

• The constants hidden inside \$\Theta\$ are slightly larger for the multiple-server case

Backup – Illustration of Commitment Proof

Backup – Fully Truthfulness

• Multiple simulators

Competitive ratio

$$\operatorname{cr}_{\mathcal{A}_{TC}}(s) = c_0 + \Theta\left(\frac{1}{\sqrt[3]{s/s_0} - 1}\right) + \Theta\left(\frac{1}{(\sqrt[3]{s/s_0} - 1)^3}\right), \quad s > \max\{s_0, 12\beta\},$$

where $c_0 = 187.496$ and $s_0 = 279.744$. For the single server case, $c_0 = 17$ and $s_0 = 24$.