WHAT IS CLAIMED IS:

1. A compound of the structural formula I:

$$R_{5}$$
 R_{2}
 C
 C
 R_{2}
 C
 C
 R_{3}
 C
 R_{4}
 O
 C
 R_{6}

5 Formula I

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof: wherein,

R represents hydrogen, or C1-6 alkyl;

10 Ry represents H, or C₁₋₆ alkyl;

 R_w represents H, C1-6 alkyl, -C(O)C1-6 alkyl, -C(O)OC1-6 alkyl, -SO2N(R)2, -SO2C1-6 alkyl, -SO2C6-10 aryl, NO2, CN or -C(O)N(R)2;

R2 represents hydrogen, C₁₋₁₀ alkyl, OH, C₂₋₆ alkenyl, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, or -(CH₂)_nC₆₋₁₀ aryl, said alkyl,

- heterocyclyl, or aryl optionally substituted with 1-3 groups selected from Ra; R3 represents hydrogen, C1-10 alkyl, -(CH2)nC3-8 cycloalkyl, -(CH2)nC3-10 heterocyclyl, (CH2)nCOOR, -(CH2)nC6-10 aryl, nitro, cyano or halogen, said alkyl, heterocyclyl, or aryl optionally substituted with 1-3 groups of Ra;
- 20 R4 and R5 independently represent hydrogen, C₁₋₆ alkoxy, OH, C₁₋₆ alkyl, COOR, SO_qC₁₋₆ alkyl, COC₁₋₆ alkyl, SO₃H, -O(CH₂)_nN(R)₂, -O(CH₂)_nCO₂R, -OPO(OH)₂, CF₃, OCF₃ N(R)₂, nitro, cyano, C₁₋₆ alkylamino, or halogen; and

R6 represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nC₃₋₁₀ heterocyclyl, -

25 (CH₂)_nC₃₋₈ cycloalkyl, said aryl, heterocyclyl and alkyl optionally substituted with 1-3 groups selected from R^a, wherein the R^a(s) can be attached to any carbon atom or heteroatom selected from N and S;

R8 represents - $(CH_2)_nC_{3-8}$ cycloalkyl, - $(CH_2)_n$ 3-10 heterocyclyl, C_{1-6} alkoxy or - $(CH_2)_nC_{5-10}$ heteroaryl, - $(CH_2)_nC_{6-10}$ aryl said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from Ra;

- $\begin{array}{lll} C_6 \ alkyl) S(CH_2)_n C_{3-10} \ heterocyclyl-R_w, -(C_1-C_6 \ alkyl)-C_{3-10} \ heterocyclyl-R_w, -(CH_2)_n-Z_{1-10} \\ C(=Z^2) N(R)_2, -(C_2-6 \ alkenyl) NR_w (CH_2)_n C_{3-10} \ heterocyclyl-R_w, -(C_2-6 \ alkenyl) O(CH_2)_n C_{3-10} \\ heterocyclyl-R_w, -(C_2-6 \ alkenyl) S(CH_2)_n C_{3-10} \ heterocyclyl-R_w, -(C_2-6 \ alkenyl)-Z_{1-10} \\ heterocyclyl-R_w, -(C_2-6 \ alkenyl)-Z_{1-10} C(=Z_2) N(R)_2, -(CH_2)_n SO_2 R, -(CH_2)_n SO_3 H, -(CH_2)_n PO(OR)_2, C_{3-10} cycloalkyl, C_{6-10} \ aryl, C_{3-10} \ heterocyclyl, C_{2-6} \ alkenyl, and C_{1-10} C_{10} \\ \end{array}$
- alkyl, said alkyl, alkenyl, alkoxy, heterocyclyl and aryl optionally substituted with 1-3 groups selected from C_1 - C_6 alkyl, halogen, (CH2)_nOH, CN, NO₂, CON(R)₂ and COOR; Z¹ and Z² independently represents NR_w, O, CH₂, or S; m is 0-3; n is 0-3 and

20 q is 0-2.

- 2. The compound according to claim 1 wherein R_6 is C_{1-10} alkyl, or $(CH_2)_nC_{3-8}$ cycloalkyl and R_y is C_{1-6} alkyl, said alkyl, optionally substituted with 1 to 3 groups of R^a .
- 3. The compound according to claim 1 wherein R₂ is C₁₋₁₀ alkyl or (CH₂)_nC₃₋₈ cycloalkyl and R₃ is C₁₋₁₀ alkyl, or (CH₂)_nC₃₋₁₀ heterocyclyl, said heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a.
 - 4. A compound which is:

Table 1

R1	R2
\$	22
-20-	محر
\$ —<	32
! —<	32
{	Sec.
	2/2 0
	22/
-\$-	The same of the sa
X x=CH, N p=0-1; $(O)_p(\sqrt{n} n=0-3)$ OH	n. 0
−ξ-(CH2) _n OH n=0-3	~~ O.

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

5. A method for treating ocular hypertension or glaucoma comprising administration to a patient in need of such treatment a therapeutically effective amount of a compound of structural formula I of claim 1.

- 6. A method for treating macular edema, macular degeneration, increasing retinal and optic nerve head blood velocity, increasing retinal and optic nerve oxygen tension, and/or a neuroprotective effect comprising administration to a patient in need of such treatment a pharmaceutically effective amount of a compound of claim 1; or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.
- 7. A method of preventing repolarization or hyperpolarization of a mammalian cell containing potassium channel or a method of treating Alzheimer's Disease, depression, cognitive disorders, and/or arrhythmia disorders in a patient in need thereof comprising administering a pharmaceutically effective amount of a compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.
- 8. A method of treating diabetes in a patient in need thereof comprising administering a pharmaceutically effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.
 - 9. A composition comprising a compound of formula I of claim 1 and a pharmaceutically acceptable carrier.
 - 10. The composition according to Claim 9 wherein the compound of formula I is applied as a topical formulation, said topical formulation administered as a solution or suspension and optionally containing xanthan gum or gellan gum.
- 11. A composition according to claim 9 wherein an active ingredient belonging to the group consisting of: β-adrenergic blocking agent, parasympatho-mimetic agent, sympathomimetic agent, carbonic anhydrase inhibitor, EP4 agonist, a prostaglandin or derivative thereof, hypotensive lipid, neuroprotectant, and/or 5-HT2 receptor agonist is optionally added.

5

10

15

30

25

12. A composition according to claim 11 wherein the β-adrenergic blocking agent is timolol, betaxolol, levobetaxolol, carteolol, or levobunolol; the parasympathomimetic agent is pilocarpine; the sympathomimetic agent is epinephrine, brimonidine, iopidine, clonidine, or para-aminoclonidine, the carbonic anhydrase inhibitor is dorzolamide, acetazolamide, metazolamide or brinzolamide; the prostaglandin is latanoprost, travaprost, unoprostone, rescula, or S1033, the hypotensive lipid is lumigan, the neuroprotectant is eliprodil, R-eliprodil or memantine; and the 5-HT2 receptor agonist is 1-(2-aminopropyl)-3-methyl-1H-imdazol-6-ol fumarate or 2-(3-chloro-6-methoxy-indazol-1-yl)-1-methyl-ethylamine.

5