#### Homework 4

Due data: Apr.11 $^{st}$ 

Turn in your homework in class  $\,$ 

#### Rules:

- Please work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism!
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

[14 points] The circuit is shown in Fig.1. The switch has been closed long enough before t = 0s and is opened at t = 0s. Determine the response of V(t) for  $t \ge 0$ .



Figure 1:

[14 points] The circuit is shown in **Fig.2**. The circuit has reached steady state before t = 0. Determine the response of i(t) for  $t \ge 0$ .



 $Figure\ 2:$ 

[14 points] The circuit is shown in **Fig.3**. There is no energy stored in the capacitor when t < 0. Determine the response of V(t) for  $t \ge 0$ .



Figure 3:

[15 points] The circuit is shown in **Fig.4**. There is no energy stored in the capacitor when t < 0. And the energy stored in the inductor at t = 0 is 3.125 J. Determine the response of V(t) for  $t \ge 0$ . (Hint: you can use Thevenin equivalence to first simply the circuit at terminals of series LC)



 $Figure\ 4:$ 

[14 points] The circuit is shown in Fig.5.  $v_{C1}(0-) = -3V$ ,  $v_{C2}(0-) = 2.5V$ . And  $R_1 = 10k\Omega$ ,  $R_2 = 5k\Omega$ ,  $C_1 = 100\mu$ F,  $C_2 = 200\mu$ F. For t < 0s,  $v_i(t) = 0V$ . Assume that the operational amplifier is ideal and works in its linear region.

- (a) Find the differential equation of  $v_o$  for  $t \ge 0$  with  $v_i, R_1, R_2, C_1, C_2$ .
- (b) Solve the equation aquired in (a) with  $v_i=5u(t){\bf V}$  .



Figure 5:

[14 points] The circuit is shown in Fig.6. The swith has been closed long enough before t = 0s at **a**, and it is switched to **b** at t=0s. Determine the voltage v(t) of the current sorce  $I_2$  for  $t \ge 0s$ .



Figure 6:

[15 points]The circuit is shown in **Fig.7**. The swith has been closed long enough before t=0s at **a**, and it is switched to **b** at t=0s.  $I_s(t) = te^{-t}u(t) + 4u(-t)$  A,  $V_s(t) = e^{-2t}cos(5t + \frac{\pi}{3})u(t)$  V. Determine the current i(t) for  $t \ge 0s$ .



Figure 7: