Theoretische Informatik: Blatt 7

 Abgabe bis 9. Oktober 2015 Assistent: Sacha Krug, CHN D $42\,$

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 19

Aufgabe 20

(a) $e(n) = 2^n$

- 1. Gehe auf Band 1 nach links bis ¢.
- 2. Gehe auf Band 2 nach links bis ¢
- 3. Lies Zeichen auf Band 1. Schreibe für jede gelesene 0 auf Band 1 00 auf Band 2. Für ein _ schreibe ein _.
- 4. Gehe auf Beiden Bändern nach links und kopiere Inhalt von Band 2 auf Band 1 einschließlich bis Zeichen ...
- 5. Rücke mit Lesekopf nach rechts.

Das Ergebnis steht dann auf Band 2 bis zum ersten ...

Auf diese Art generieren wir 2^n 0en. Für n 0en der Eingabe lesen wir pro Schritt 2^i Nullen. Das schreiben geschieht jeweils in $\mathcal{O}(1)$.

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2 \in \mathcal{O}(2^{n})$$

Folglich ist e(n) zeitkonstruierbar.

(b) $f(n) = fib_n$

Wir konstruieren eine 3-Band Turingmaschine M, wobei $Band\ \theta$ das Eingabeband und $B\ddot{a}nder\ 1-3$ die Arbeitsbänder sind. M bekommt als Eingabe das Wort $w=0^n$ auf $Band\ \theta$. Wir unterscheiden mehrere Eingaben w.

Fall 1: $w = \lambda$

In diesem Fall ist n = 0. M schreibt 0 auf Band 1 und akzeptiert.

Fall 2: w = 0

In diesem Fall ist n = 1. M schreibt 1 auf Band 1 und akzeptiert.

Fall 3: $|w| = n, n \ge 2$ Der Lesekopf auf Band 0 liegt auf der dritten 0.

- 1. M schreibt λ auf B and 1 und 0 auf B and 2.
- 2. M löscht B and 3 und schreibt zuerst alle 0en von B and 1 und dann alle 0en von B and 2 auf B and 3.
- 3. Der Lesekopf für $Band\ \theta$ geht nach rechts. Liest er dort \$ ist auf $Band\ 3$ das Ergebnis und M hält. Ansonsten kopiert M den Inhalt von $Band\ 2$ auf $Band\ 1$ und den von $Band\ 3$ auf $Band\ 2$. Dann wird zu Schritt 2. gesprungen.

ANALyse fehlt noch.

Aufgabe 21

Wir wissen: $f: \mathbb{N} \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ und f und g sind beide platzkonstruierbar.

$$\Rightarrow$$
 Es gibt 1-Band-Turingmaschinen F und G , so dass $\begin{array}{c} \operatorname{Space}_F(n_1) \leq f(n_1) \\ \operatorname{Space}_G(n_2) \leq g(n_2) \end{array} \quad \forall n_1, n_2 \in \mathbb{N}$

und für jede Eingabe
$$0^{n_1}$$
 generiert F das Wort $0^{f(n_1)}$ auf ihrem Arbeitsband und hält in Zustand q_{accept} .

Wir konstruieren eine 5-Band-Turingmaschine H. H bekommt als Inpt 0^n auf sein Eingabeband. H kopiert die Eingabe auf $Band\ 2$ und auf $Band\ 4$ und simuliert F, dann G. Dabei sind $Band\ 2$, 3 das Eingabeund Arbeitsband von F und $Band\ 4$, 5 Eingabe- und Arbeitsband von G.

Auf $Band\ 3$ steht nun $0^{f(n)}$ und auf $Band\ 5$ steht $0^{g(n)}$. H geht nach an den Anfang von $Band\ 3$ und geht für jede gelesene 0 eins nach rechts und hängt den gesamten Inhalt von $Band\ 5$ an $Band\ 1$ an. Hat H alle 0en auf $Band\ 3$ gelesen steht auf $Band\ 1$ nun $0^{f(n)\cdot g(n)}$. H akzeptiert.

Die längte Konfiguration über alle Bänder und Schritte hat H am Ende, wenn das Ergebnis steht. Damit ist

$$\operatorname{Space}_{H} = f(n) \cdot g(n) =: h(n) \quad \forall n \in \mathbb{N} \quad (nach \ Def. \ 6.2)$$

und H hält immer in q_{accept} .

Nach Lemma 6.1 gibt es eine äquivalente 1-Band-Turingmaschine H' mit $\operatorname{Space}_{H'} \leq \operatorname{Space}_{H} \leq h(n)$. Folglich ist h(n) platzkonstruierbar.