```
In [1]:
```

```
%pylab inline
import pandas
import scipy.stats as sps
import numpy as np
import matplotlib.pyplot as plt
import math
size = 100
grid = np.arange(1, size +1)
gamma = 0.95
```

Populating the interactive namespace from numpy and matplotlib

```
In [2]:
```

```
s = sps.norm.rvs(size=100)
```

In [3]:

```
# функция для построения графика
def build graph(down, up, title):
    fig = plt.figure(figsize=(20, 10))
    plt.grid(True)
    plt.title(title, fontsize=15)
    ax = fig.gca()
    plt.fill between(grid, down, up, color='red')
    ax.set xlim(1, size)
    ax.set ylim(down.mean() - 3, up.mean() + 3)
    plt.show()
```

|a| при известном $|\sigma^2|$

```
Доверительный интервал: (\overline{X}-\frac{\tau_{1-\frac{\gamma}{2}}\sigma}{\sqrt{n}},\overline{X}+\frac{\tau_{1-\frac{\gamma}{2}}\sigma}{\sqrt{n}}), где \tau_{1-\frac{\gamma}{2}} - квантиль уровня (1-\frac{\gamma}{2})
стандартного нормального распредления
```

In [4]:

```
average = s.cumsum() / np.arange(1, size + 1)
tau = sps.norm.ppf(0.5 - gamma / 2)
'$a$ with known $\sigma^2$')
```


$|\sigma^2|$ при известном a

 $\frac{N(\overline{X-a})^2}{\chi^2_{(rac{1+\gamma}{2},N)}},\, \frac{N(\overline{X-a})^2}{\chi^2_{(rac{1-\gamma}{2},N)}})$, где $\chi^2_{(p,N)}$ – квантиль уровня p распределения хиквадрат с N степенью свободы

In [5]:

a при неизвестном σ^2

Доверительный интервал: $(\overline{X} - \frac{\tau_{(\frac{\gamma+1}{2},N-1)}S)}{\sqrt{N}}, \overline{X} + \frac{\tau_{(\frac{\gamma+1}{2},N-1)}S)}{\sqrt{N}})$, где $\tau_{p,N-1}$ - квантиль уровня p распределения t-Стюдента с N-1 степенью свободы

In [6]:

$|\sigma^2|$ при неизвестном a

Доверительный интервал: $(\frac{(N-1)S^2}{\chi^2_{(\frac{1+\gamma}{2},N-1)}},\frac{(N-1)S^2}{\chi^2_{(\frac{1-\gamma}{2},N-1)}})$

In [7]:

```
s sq = s **2
chi1 = sps.chi2(np.arange(1, size+1) - 1).ppf(0.5 + gamma/2)
chi1[0] = chi1[1]
chi2 = sps.chi2(np.arange(1, size+1) - 1).ppf(0.5 - gamma/2)
chi2[0] = chi2[1]
build graph(np.arange(1, size + 1) * s_sq / chi1,
            np.arange(1, size + 1) * s sq / chi2,
            '$\sigma^2$ with unknown $a$')
```


Доверительная область для (a, σ^2)

Доверительная область: $(\overline{X} - \sqrt{\frac{s^2 z_1}{z_2}}, \overline{X} + \sqrt{\frac{s^2 z_1}{z_2}}) \times (0, \frac{N s^2}{z_2})$, где z_1 |- квантиль уровня $\sqrt{\alpha}$ | распределения $\chi^2(1)$, z_2 - квантиль уровня $1-\sqrt{\alpha}$ распределения $\chi^2(N-1)$

Построим только для N=100

In [18]:

```
down_a = np.mean(s) - sqrt(s_sq * sps.chi(1).ppf(sqrt(gamma)) / sps.chi(size -
up_a = np.mean(s) + sqrt(s_sq * sps.chi(1).ppf(sqrt(gamma)) / sps.chi(size - 1
down_sigma = np.zeros(size)
up_sigma = [size*s_sq / sps.chi(size - 1).ppf(1 - sqrt(gamma)) for x in grid]
plt.fill_between(np.linspace(down_a, up_a, size), down_sigma, up_sigma, color=
plt.xlim((-0.75, 1))
plt.ylim((-1, 13))
plt.title('trust gap for ($a, \sigma^2$)')
plt.show()
```

