

Thesis Progress Presentation

Direct Integration of Structural Simulation Results into Rigid Body Dynamics

Organizational Info & Thesis Goal

Advisors: Dorit Kaufmann (MMI), Jan-Lukas Archut (IGMR)

Time duration of the thesis: 22 Weeks

Course: MSc CAME (Faculty 4 Mechanical Engineering)

Goal:

Test a simulation approach that can help in including a flexible body in a RBD simulation.

State of the art

Design Optimizations

Control of flexible parts

Co-simulation

Traditional way (Elasto-dynamics)

Simulation A (RBD)

Our approach

Simulation A (RBD)

Data Transfer (One way communication)

Constraint/joint forces

Data Transfer (Two way communication)

Kinematic quantities

Restoring forces

Simulation B (FEA)

Simulation B (FEA)

Why Co-simulation:

- Pre-existing codes can be utilized avoiding starting from the ground up
- A code that transfers data between the two codes needs to be written.

Methodology

Theory

The DAE equation of Motion in RBD:

$$M\ddot{q} - S(q, \dot{q}, t) - Q(q, t) + J(q, t)^{T} * \lambda = 0$$

$$C(q, t) = 0$$

The EOMs of FEA are

Static case:

$$Ku = f$$

Dynamic case:

$$M\ddot{u} + C\dot{u} + Ku = f$$

Implementation

The RBD was coded from scratch in Julia programming.

For the FEA part the two Matrices M, K were imported from Abaqus and solved in Julia

So almost everything was done in Julia.

The co-simulation algorithm

Progress and Findings

Validation of custom code to Adams RBD

RBD with Transient FEA (includes inertia of the deformable body)

RBD with Static FEA (doesn't include inertia of the deformable body)

Reasons that

- FEA is not known to be used for rigid body motion.
- Hard to find equilibrium at the interface nodes

Plan going forward

Thank you for your attention ©

Utkarsh Kulkarni

Institut für Mensch-Maschine-Interaktion RWTH Aachen

www.mmi.rwth-aachen.de www.youtube.com/VEROSIMSimulation

