```
In [301]:
               import numpy as np
            2 import matplotlib.pyplot as plt
            3 import scipy.stats as sps
            4 from tqdm import tqdm notebook as tqdm
            5 from sklearn.metrics import roc auc score
            7 %matplotlib inline
 In [2]:
            1 | %set env OCTAVE EXECUTABLE=C:\Octave\octave-5.1.0-w64-64\mingw64\bin\octave.exe
          env: OCTAVE EXECUTABLE=C:\Octave\octave-5.1.0-w64-64\mingw64\bin\octave.exe
 In [3]:
            1 from oct2py import Oct2Py
            2 \text{ oc} = \text{Oct2Py()}
In [193]:
            1 n obj = 10
            2 \mid dim = 3
            3 \mid n \mod els = 5
              k = 10
            6 X = np.random.rand(n obj, dim)
            7 w = np.random.rand(dim, n models)
            8 pi = np.zeros(n models)
               pi[0] = pi[1] = 0.5
           10
           11 | a = oc.generate_mixture_logistic(X, w, pi.reshape(-1, 1))
           12 b = oc.generate single logistic(X, w[:, 0].reshape(-1, 1))
In [219]:
            1 | X, y, idx = oc.generate_syntethic_cluster(100, 2, 0, 1., 0, 0, nout = 3)
            2 y = y.reshape(y.size)
```

```
In [195]:
           1 if X.shape[1] == 2:
                  X = np.hstack([X, np.ones((X.shape[0], 1))])
           3 X[:10]
Out[195]: array([[-2.61266672, -2.23986673, 1.
                                                      1,
                 [-4.25576278, -2.96898152, 1.
                 [-2.85738672, -2.18585945, 1.
                 [-1.00902584, -1.63937964, 1.
                 [-3.10686002, -1.93344944, 1.
                 [-3.74156942, -4.19801759, 1.
                 [-3.84263114, -2.86860189, 1.
                 [-3.08322392, -3.2292212, 1.
                 [-2.90667065, -2.77943204, 1.
                 [-0.81491968, -3.35739661, 1.
                                                      ]])
In [196]:
           1 A single, w, hessian single = oc.maximize evidence single logistic laplace(X, y.reshape(-1, 1), nout = 3)
           2 w single = w.reshape(3)
In [197]:
              A, w, hessian = oc.maximize evidence multilevel logistic laplace(X, y.reshape(-1, 1), idx, nout = 3)
In [198]:
           1 w
Out[198]: Cell([array([[ 1.49701475],
                 [-1.61026852],
                 [ 0.52547267]]),
                 array([[ 1.30066182e+00],
                 [-1.23768325e+00],
                 [-5.40015117e-06]])])
```

```
In [199]:
Out[199]: Cell([array([[0.41133528, 0.
                                         , 0.
                 [0.
                            , 0.35494992, 0.
                                       , 1.17733025]]),
                 Γ0.
                            , 0.
                 array([[5.48416951e-01, 0.00000000e+00, 0.00000000e+00],
                 [0.00000000e+00, 6.05139884e-01, 0.00000000e+00],
                 [0.00000000e+00, 0.00000000e+00, 6.23489183e+04]])])
In [200]:
            1 hessian
Out[200]: Cell([array([[ 63.44196901, 56.29933652, -19.8839977 ],
                 [ 56.29933652, 54.84080098, -18.54343351],
                 [-19.8839977, -18.54343351, 8.14188954]]),
                 array([[7.51722318e+01, 7.44696527e+01, 2.37880220e+01],
                 [7.44696527e+01, 8.20620524e+01, 2.46806036e+01],
                 [2.37880220e+01, 2.46806036e+01, 6.23430103e+04]])])
In [98]:
              def get significance level(w0, hess0, w1, hess1):
                  score, n = oc.get significance level no intersect(w0, hess0, w1, hess1, nout = 2)
            2
                  return 1 - sps.chi2(df = n).cdf(score)
            3
              def get logistic bound(grid, w):
                  return - w[0] / w[1] * grid - w[2] / w[1]
```

```
In [76]:
             plt.figure(figsize = (12, 7))
           2 plt.scatter(X[:, 0], X[:, 1], c = (y + 1) // 2)
           3 grid = np.linspace(X[:, 0].min(), X[:, 0].max(), 500)
             plt.plot(grid, get_logistic_bound(grid, w_single), label = 'Single logistic')
            for i in range(2):
           6
                  w part = w[i].reshape(3)
                  print(w part)
           7
                  plt.plot(grid, get_logistic_bound(grid, w_part),
           8
           9
                          label = 'Multilevel logistic ' + str(i), color = 'red',
                          ls = '--')
          10
          11 plt.legend()
          12 plt.show()
```

```
[ 4.95510684e-01 -4.98719087e-01 -1.53697521e-06]
[ 0.37691551 -1.81725113  4.83463227]
```


Видим, что на двух кластерах имеется различие. Сравним две модели на кластерах, а также общую при помощи ѕ соге

```
In [99]:
                             get significance level(w[0], hessian[0], w[1], hessian[1])
Out[99]: 0.03726747732555202
                    Критерий отвергает гипотезу неразличимости моделей!
                    Обучим логистическую регрессию в нетривиальном случае
In [57]:
                       1 y fake = np.array([int(X[i][1] > 3) for i in range(X.shape[0])])
                       2 y fake[y fake == 0] = -1
                       3 v fake
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
                                   1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1,
                                   -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, -1, 1
In [58]:
                      1 | func args = {}
                       , w = oc.maximize evidence single logistic laplace(X, y fake.reshape(-1, 1), nout = 2)
In [59]:
Out[59]: array([[-4.48667571e-06],
                                   [ 2.41739099e+01],
                                   [-7.10542972e+01]])
```


Получается, что за месяц я наконец-таки научился нормально обучать линейную регрессию и считать s-score. Это уже почти победа

Исследование ошибки первого рода:)

Проведём следующее исследование: повторим эксперимент, проведённый выше, но с различным размером выборки в кластерах. Поймем,

в какой момент начнет отвергаться гипотеза. Полученное число будем использовать в качестве изначальной оценки для размера блока в предложенном алгоритме.

Поскольку гипотеза неверна, то есть имеем справедливость альтернативной гипотезы H_1 , интересующая нас величина - мощность критерия, которую можно проверить при помощи бутстрепа.

Постараемся добиться мощности критерия, равной 0.8

```
In [123]:
            1 def get significance clustered(n points = 10):
                   X, y, idx = oc.generate syntethic cluster(n points * 2, 2, 0, 1., 0, 0, nout = 3)
            3
                   X = np.hstack([X, np.ones((X.shape[0], 1))])
                   A, w, hessian = oc.maximize_evidence_multilevel_logistic_laplace(X, y.reshape(-1, 1), idx, nout = 3)
                   return get significance level(w[0], hessian[0], w[1], hessian[1])
            6
               def get criterion power(n points, alpha = 0.05):
            8
                   n rejected = 0
            9
                   n samples = 100 # Вычисляем с точностью до 10^(-1)
                   for i in range(n samples):
           10
                       pval = get significance clustered(n points)
           11
                       n rejected += (pval < alpha)</pre>
           12
                   return n rejected / n samples
           13
```

Переберем размер от 1 до 100

100% 99/99 [22:26<00:00, 13.76s/it]

Теперь посмотрим, что будет, если добавлять по 100 объектов

100% 5/5 [00:57<00:00, 11.61s/it]

Получаем, что оптимальный размер блока равен где-то 30. Именно его и возьмем для исследования ошибки алгоритма

Генерация одного кластера данных

Чтобы убедиться в том, что предложенный алгоритм может дать результат, сгенерируем набор синтетических данных аналогично на двух кластерах, но после каждого блока разделяющие прямые будут поворачиваться вокруг заданных точек. Таким образом, это проэмулирует ситуацию, в которой одному признаковому описанию соответствуют разные ответы.

Будем случайно генерировать матрицу ковариаций и генерировать выборку нужного размера.

Определим сначала функцию генерации одного кластера вокруг заданной точки и генерации классов с учетом нормали к разделяющей прямой

Возможно, следует добавить в распределение некоторый шум, но на первом этапе рассмотрим идеальное разделение. Обучим на кластере логистическую регрессию.

Видим, что вектор нормали (1,1) почти угадан, качество разделения получится хорошим

Исследование мощности критерия

Для предлагаемого алгоритма требуется отыскать оптимальный размер блока, на котором строится новая модель. Этот размер - гиперпараметр, однако в конкретном случае можно подобрать его, исходя из мощности критерия.

В зависимости от того, насколько различаются разделяющие прямые (по косинусному расстоянию), мощности могут получаться различными. Поэтому необходимо зафиксировать угол поворота нормали и посмотреть, на каком размере выборки мощность критерия станет достаточно высокой.

Для этого рассмотрим одиночную модель логистической регрессии, для различения будем использовать s-score

Напишем функцию, которая сгенерирует 2 кластера вокруг одной и той же точки с поворотом нормали на заданный угол

Теперь напишем вычисление мощности критерия по размеру выборки. Для этого будем генерировать 100 примеров пар выборок и смотреть, в каком проценте случаев отвергается гипотеза совпадения моделей. Мощность таким образом будет получена с точностью до 0.1

Возьмём угол поворота $\alpha = \frac{\pi}{12}$

```
In [182]:
               def get criterion power(sample_size, alpha = np.pi / 12):
                   n \text{ samples} = 100
            2
                   n rejections = 0
            3
                   for i in range(n samples):
            5
                       X1, y1, X2, y2 = generate rotation samples(sample size, alpha)
                       , w1, hess1 = oc.maximize evidence single logistic laplace(X1, y1.reshape(-1, 1), nout = 3)
            6
                       _, w2, hess2 = oc.maximize_evidence_single_logistic_laplace(X2, y2.reshape(-1, 1), nout = 3)
            7
                       pval = get_significance_level(w1, hess1, w2, hess2)
            8
            9
                        n rejections += (pval < 0.05)</pre>
                   return n rejections / n_samples
           10
```

Теперь переберем размер выборки от 1 до 100.

```
In [185]:
           1 grid = np.arange(50, 120)
           2 | power = []
           3
              for n in tqdm(grid):
                  p_new = get_criterion_power(n)
           5
           6
                  print(p_new)
           7
                  power.append(p_new)
          v.0
          0.64
          0.65
          0.71
          0.65
          0.69
          0.65
          0.62
```

0.62 0.72 0.76 0.67 0.76 0.71 0.8 0.8 0.82 0.8

Видим, что на размере выборки около 90 достигается значение мощности 0.8, а значит можно использовать данный критерий. При этом, как видно из анализа ошибки первого рода, такое значение допускает также мало ложных отвержений. Таким образом будем использовать такое значение, а именно размер блока C=93

Впоследствии необходимо запустить этот же анализ с точностью до 0.01

Реализация алгоритма

Напишем функцию, которая будет делить пришедшую выборку на блоки заданного размера и давать предсказания вероятностей с помощью нового алгоритма. Затем сравним имеющиеся результаты по AUC-ROC с алгоритмом, обученным по всей выборке, а также обучаемый лишь на префиксах перед тем, как предсказывать следующий элемент (эмуляция процесса во времени)

```
In [325]:
               def predict logistic proba(X, w):
                   scores = X.dot(w)
            2
            3
                   probas = np.exp(scores) / (1 + np.exp(scores))
                   return probas
            5
            6
               def predict proba multilevel(X, w, idx):
            7
                   X1 = X[idx == 1]
                   X2 = X[idx == 2]
            8
                   pred1 = predict logistic proba(X1, w[0])
            9
                   pred2 = predict logistic proba(X2, w[1])
           10
           11
                   pred = np.zeros(X.shape[0])
                   pred[idx == 1] = pred1
           12
           13
                   pred[idx == 2] = pred2
           14
                   return pred
           15
               def get new algo predictions(X, y, block size, idx):
           16
           17
                   curr start ind = 0
           18
                   curr learning start = 0
                   curr w = np.zeros((2, 3))
           19
                   curr_hess = np.zeros((2, 3, 3))
           20
           21
                    pred = []
           22
                   while curr start ind < X.shape[0]:</pre>
           23
                       curr end ind = min(X.shape[0], curr start ind + block size)
           24
                       X new = X[curr start ind: curr end ind]
           25
                       y new = y[curr start ind: curr end ind]
           26
                       idx new = idx[curr start ind: curr end ind]
           27
                       pred new = predict proba multilevel(X new, curr w, idx new)
           28
                       pred += pred new.tolist()
           29
           30
                        _, w_new, hess_new = oc.maximize_evidence_multilevel_logistic_laplace(X_new, y_new.reshape(-1, 1),
                                                                                                idx new.reshape(-1, 1),
           31
           32
                                                                                                nout = 3)
           33
                       w new = np.array([w.reshape(3) for w in w new])
                       pval1 = get significance level(curr w[0].reshape(-1, 1), curr hess[0],
           34
           35
                                                       w new[0].reshape(-1, 1), hess new[0])
           36
                       pval2 = get_significance_level(curr_w[1].reshape(-1, 1), curr_hess[1],
                                                       w new[1].reshape(-1, 1), hess new[1])
           37
           38
           39
                       if pval1 < 0.05 or pval2 < 0.05:</pre>
           40
                           curr_w = w_new
           41
                            curr hess = hess new
```

```
42
                curr learning start = curr start ind
43
            else:
                X new = X[curr learning start: curr end ind]
44
                y new = y[curr learning start: curr end ind]
45
46
                idx new = idx[curr learning start: curr end ind]
                , w new, hess new = oc.maximize evidence multilevel logistic laplace(X new, y new.reshape(-1, 1),
47
                                                                                         idx new.reshape(-1, 1),
48
49
                                                                                         nout = 3)
50
                w new = np.array([w.reshape(3) for w in w new])
51
                curr w = w new
52
                curr hess = hess new
53
54
            curr start ind = curr end ind
55
        return pred
56
    def get_old_algo_predictions(X, y, block_size, idx):
57
        curr start ind = 0
58
59
        curr w = np.zeros((2, 3))
        curr hess = np.zeros((2, 3, 3))
60
61
        pred = []
        while curr start ind < X.shape[0]:</pre>
62
63
            curr end ind = min(X.shape[0], curr start ind + block size)
            X new = X[curr start ind: curr end ind]
64
65
            y new = y[curr start ind: curr end ind]
            idx new = idx[curr start ind: curr end ind]
66
            pred new = predict proba multilevel(X new, curr w, idx new)
67
68
            pred += pred new.tolist()
69
            X new = X[: curr_end_ind]
70
71
            y \text{ new} = y[: \text{curr end ind}]
72
            idx new = idx[: curr end ind]
73
            , w new, hess new = oc.maximize evidence multilevel logistic laplace(X new, y new.reshape(-1, 1),
74
                                                                                     idx new.reshape(-1, 1),
75
                                                                                     nout = 3)
76
            w new = np.array([w.reshape(3) for w in w new])
77
            curr w = w new
78
            curr hess = hess new
79
80
            curr_start_ind = curr_end_ind
81
        return pred
```

Генерация итогового датасета

Теперь будем генерировать данные для двух кластеров сразу. Сделаем так, чтобы обе разделяющие прямые сделали полный оборот (для этого надо сделать 24 генерации).

В каждом положении будем генерировать 2 блока, чтобы модель успевала учитывать изменения во времени. Итого должно получиться 48 блоков по 93 примера в каждом, и всё это на 2 кластерах. То есть получится около 10000 примеров.

Для начала сгенерируем один пример в качестве демонстрации

Видим, что в обоих кластерах есть разделяющие прямые, при этом они перпендикулярны друг другу

```
In [365]:
            1 X all = np.empty(shape = (0, 2))
            2 y all = np.empty(shape = 0)
            3 idx all = np.empty(shape = 0)
            4 sample size = 93
              alpha = np.pi / 12
               normal left = [1, 1]
               normal right = [-1, 1]
           10
               for alpha ind in range(24):
           11
                   for i in range(2):
           12
                       X1 l, y1 l, X2 l, y2 l = generate rotation samples(sample size, alpha, [-3, -3], normal left)
           13
                       X1 r, y1 r, X2 r, y2 r = generate rotation samples(sample size, alpha, [3, 3], normal right)
                       idx new = np.concatenate([np.zeros(sample size), np.ones(sample size)]) + 1
           14
                       X all = np.vstack([X all, X2 l, X2 r])
           15
                       y all = np.concatenate([y all, y2 l, y2 r])
           16
                       idx_all = np.concatenate([idx all, idx new])
           17
           18
           19
                   normal left = rotate origin only(normal left, alpha)
           20
                   normal right = rotate origin only(normal right, alpha)
In [366]:
            1 | X all = np.hstack([X all, np.ones((X all.shape[0], 1))])
            2 X all.shape, v all.shape, idx all.shape
Out[366]: ((8928, 3), (8928,), (8928,))
```

Тестирование алгоритма

Остаётся только получить предсказания и вычислить AUC-ROC для двух алгоритмов

```
In [374]: 1 pred_old = get_old_algo_predictions(X_all, y_all, 93 * 2, idx_all)
In [375]: 1 roc_auc_score((y_all + 1) // 2, pred_old)
Out[375]: 0.611747159090909
```

Визуализация датасета

