CS113/DISCRETE MATHEMATICS-SPRING 2024

Worksheet 2

Topic: Logic And Proofs

Use the given tables of laws/Truth tables to construct equivalences between compound propositions. Happy Learning!

Student's Name and ID:	
Instructor's name:	

1 Laws Of Logical Equivalences:

Rule
$P \wedge T \equiv P$
$P \lor F \equiv P$
$\neg(\neg P) \equiv P$
$P \lor P \equiv P$
$P \vee Q \equiv Q \vee P$
$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$
$P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
$\neg (P \land Q) \equiv \neg P \lor \neg Q$
$P \lor (P \land Q) \equiv P$

Equivalence	Rule
Conditional Law 1	$p \to q \equiv \neg p \lor q$
Conditional Law 2	$p \to q \equiv \neg q \to \neg p$
Conditional Law 3	$p \lor q \equiv \neg p \to q$
Conditional Law 4	$p \land q \equiv \neg (p \to \neg q)$
Conditional Law 5	$\neg(p \to q) \equiv p \land \neg q$
Conditional Law 6	$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
Conditional Law 7	$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
Conditional Law 8	$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
Conditional Law 9	$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

Equivalence	Rule
Biconditional Law 1	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
Biconditional Law 2	$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$
Biconditional Law 3	$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
Biconditional Law 4	$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

1. Show that following conditional statements are tautologies. (use laws of equivalences and not the truth table to prove it.)

(a)

$$(\neg p \land (p \lor q)) \to q$$

(b)

$$((p \to q) \land (q \to r)) \to (p \to r)$$

$$(p \land (p \to q)) \to q$$

$$((p \lor q) \land (p \to r) \land (q \to r)) \to r$$

2. Show using truth table that $(p \to r) \land (q \to r)$ and $(p \lor q) \to r$ are logically equivalent.

3. Show using truth table that $(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$ is tautology.