Name: Rama Krishna Kamma

CWID: 50321021

CSCI 563 Assignment 1

Problem 1. Access Control

Assumption:

- Privileges: read ("R"), write ("W"), execute ("X")
- Resources:
 - Document files: syllabus.doc, ch1.ppt
 - Image files: trees.jpg, jkim.png, csci563.gif
 - Binary files: prog1.exe, chrome.exe, wireshark.exe
- Access permissions (for users A, B, and C):
 - A has privilege to read all image files.
 - C has privilege to read and write all document files.
 - A and B have privilege to read "syllabus.doc"
 - A and C have privilege to read and execute "prog1.exe", "chrome.exe".
 - B and C have privilege to read csci563.gif.
- a. Construct the corresponding access control matrix. To answer, use the format in Table 1.1 in the textbook.

Solution:

Users	Syllab	Ch1.ppt	Trees.jpg	Jkim.	Csci563	Prog1.e	Chrome.	Wireshark
	us.doc			png	.gif	xe	exe	.exe
Α	Read		Read	Read	Read	Read,	Read,	
						Execute	Execute	
В	Read				Read			
С	Read,	Read,			Read	Read,	Read,	
	Write	Write				Execute	Execute	

b. Construct the corresponding access control list. To answer, use the format in Figure 1.5 in the textbook.

Solution:

Where R: Read, W: Write, X: Execute.

c. Construct the corresponding capabilities list. To answer, use the format in Figure 1.6 in the textbook.

Solution:

Where

R: Read, W: Write, X: Execute.

Problem 2. Vernam Cipher:

Suppose the following table for encoding and decoding.

Letter	A	Е	Y	M	О	R	Н	L
Binary	000	001	010	011	100	101	110	111

a. Assume a message M is 'MORAL' and the key is 'HELLO'. What is the ciphertext C? Show your work.

Solution:

Given

Message = "MORAL"

Key = "HELLO"

Vernam Cipher = Message (XOR) Key

XOR Operation:

Α	В	Result
0	0	0
0	1	1
1	0	1
1	1	0

Step-1: Convert given message into binary format according to the given table.

Message M O R A L Binary 011 100 101 000 111

Step-2: Convert given key into binary format according to the given table.

Key H E L L O Binary 110 001 111 111 100

Step-3: Performing XOR Operation

Message Binary	011	100	101	000	111	
Key Binary	110	001	111	111	100	
XOR	101	101	010	111	011	

Step-4:

Cipher Text R R Y L M

From the above vernam cipher the cipher text for given message and key is "RRYLM"

b. Now assume a ciphertext C is 'HYMYR' and the key is 'HELLO'. What is the plaintext P? Show your work.

Solution:

Given

Ciphertext = "HYMYR" Key = "HELLO"

Vernam Cipher = Cipher text (XOR) Key

XOR Operation:

А	В	Result
0	0	0
0	1	1
1	0	1
1	1	0

Step-1: Convert given cipher text into binary format according to the given table.

Ciphertext H Y M Y R Binary 110 010 011 010 101

Step-2: Convert given key into binary format according to the given table.

Key H E L L O Binary 110 001 111 111 100

Step-3: Performing XOR Operation

Ciphertext Binary Key Binary	110 110	010 001	011 111	010 111	101 100	
XOR	000	011	100	101	001	
Step-4: Plain Text	A	M	О	R	Е	

From the above vernam cipher the plain text for given message and key is "AMORE"