

ICPC Template Manual

作者: 贺梦杰

August 6, 2019

Contents

1	图论		2
	1.1	最短路	3
		1.1.1 单源最短路径	3
		1.1.1.1 Dijkstra	3
		1.1.1.2 Bellman-Ford 和 SPFA	3
		1.1.2 任意两点间最短路径	4
		1.1.2.1 Floyd	4
	1.2	最小生成树	6
		1.2.1 Kruskal	6
		1.2.2 Prim	6
	1.3	树的直径	10
		1.3.1 树形 DP 求树的直径	10
		1.3.2 两次 BFS/DFS 求树的直径	10
	1.4		11
		1.4.1 树上倍增	11
		1.4.2 Tarjan 算法	11
	1.5	树上差分与 LCA 的综合应用	12
	1.6	负环与差分约束	13
			13
		1.6.2 差分约束系统	13
	1.7	Tarjan 算法与无向图连通性	14
		1.7.1 无向图的割点与桥	14
		1.7.1.1 割边判定法则	14
		1.7.1.2 割点判定法则	14
		1.7.2 无向图的双连通分量	15
		1.7.2.1 边双连通分量 e-DCC 与其缩点	15
			15
		1.7.3 欧拉路问题	16
	1.8		18
			18
			18
			19

Chapter 1

图论

1.1. 最短路 CHAPTER 1. 图论

1.1 最短路

1.1.1 单源最短路径

1.1.1.1 Dijkstra

```
1 void Dijkstra()
2
   {
3
       memset(dist, 0x3f, sizeof(dist));
4
       memset(vis, 0, sizeof(vis));
       priority_queue<pii, vector<pii>, greater<pii>> q;
5
6
       dist[1] = 0;
7
        q.push({dist[1], 1});
       while (!q.empty())
8
9
       {
10
            int x = q.top().second;
11
            q.pop();
            if (!vis[x])
12
13
14
                vis[x] = 1;
                for (auto it : v[x])
15
16
17
                    int y = it.first;
18
                    if (dist[y] > dist[x] + it.second)
19
                    {
                         dist[y] = dist[x] + it.second;
20
21
                         q.push({dist[y], y});
22
                    }
23
                }
24
            }
25
        }
26
   }
```

1.1.1.2 Bellman-Ford 和 SPFA

```
1 void SPFA()
2 {
3
       memset(dis, 0x3f, sizeof(dis));
4
       memset(vis, 0, sizeof(vis));
5
       queue<int> q;
6
       dis[1] = 0;
7
       vis[1] = 1;
8
       q.push(1);
9
       while (!q.empty())
10
        {
            int x = q.front();
11
12
            q.pop();
13
            vis[x] = 0;
            for (int i = 0; i < v[x].size(); i++)</pre>
14
15
                int y = v[x][i].first;
16
17
                int z = v[x][i].second;
18
                if (dis[y] > dis[x] + z)
```

1.1. 最短路 CHAPTER 1. 图论

```
19
             {
20
                 dis[y] = dis[x] + z;
21
                 if (!vis[y])
22
                    q.push(y), vis[y] = 1;
23
             }
24
         }
25
      }
26
  }
   例题分析
     POJ3662 Telephone Lines (分层图最短路/二分答案,双端队列 BFS)
     P1073 最优贸易(原图与反图, 枚举节点)
     P3008 [USACO11JAN] 道路和飞机 Roads and Planes (DAG, 拓扑序, 连通块)
```

1.1.2 任意两点间最短路径

1.1.2.1 Floyd

```
1 void get_path(int i, int j)
2
3
        if (!path[i][j])
4
            return;
        get_path(i, path[i][j]);
5
6
        p.push_back(path[i][j]);
7
        get_path(path[i][j], j);
8
   }
9
   void Floyd()
10
   {
11
        memcpy(d, a, sizeof(d));
12
        for (int k = 1; k <= n; k++)
13
        {
            for (int i = 1; i < k; i++)</pre>
14
15
            {
16
                for (int j = i + 1; j < k; j++)
17
18
                     //注意溢出
19
                     ll temp = d[i][j] + a[i][k] + a[k][j];
                     if (ans > temp)
20
21
                     {
22
                         ans = temp;
23
                         p.clear();
24
                         p.push_back(i);
25
                         get_path(i, j);
26
                         p.push_back(j);
27
                         p.push_back(k);
28
                     }
29
                }
30
31
            for (int i = 1; i <= n; i++)</pre>
32
33
                for (int j = 1; j <= n; j++)
34
                {
35
                     ll temp = d[i][k] + d[k][j];
36
                     if (d[i][j] > temp)
```

```
{
37
                     d[i][j] = temp;
38
                     path[i][j] = k;
39
                 }
40
             }
41
42
          }
43
      }
44 }
  例题分析
     POJ1094 Sorting It All Out (传递闭包)
     POJ1734 Sightseeing trip (无向图最小环)
     POJ3613 Cow Relays (离散化,广义矩阵乘法,快速幂)
```

1.2. 最小生成树 CHAPTER 1. 图论

1.2 最小生成树

1.2.1 Kruskal

```
基于并查集
1 void Init()
2
   {
3
       for (int i = 1; i <= n; i++)
4
            fa[i] = i;
5
   }
   int Find(int x)
6
7
   {
8
       if (x == fa[x])
9
            return x;
10
       return fa[x] = Find(fa[x]);
11
   }
12 void Kruskal()
13 {
14
        Init();
15
        sort(e.begin(), e.end());
16
       int ans=0;
       for (int i = 0; i < e.size(); i++)</pre>
17
18
            int u = e[i].u, v = e[i].v;
19
            int fu = Find(u), fv = Find(v);
20
21
            if (fu != fv)
22
            {
23
                fa[fu] = fv;
24
                ans += e[i].w;
25
            }
26
        }
27
  }
```

1.2.2 Prim

```
1 void Prim()
2
3
        memset(vis, 0, sizeof(vis));
        memset(d, 0x3f, sizeof(d));
4
5
        d[1] = 0;
        int temp = n;
6
7
        int ret = 0;
8
        while (temp--)
9
        {
10
            int min_pos = 0;
11
            for (int i = 1; i <= n; i++)</pre>
                 if (!vis[i] && (!min_pos || d[i] < d[min_pos]))</pre>
12
13
                     min_pos = i;
14
            if (min_pos)
15
16
                 vis[min_pos] = 1;
17
                 ret += d[min_pos];
```

```
for (int i = 1; i <= n; i++)
18
19
                   if (!vis[i]) d[i] = min(d[i], weight[min_pos][i]);
20
           }
21
       }
22 }
   例题分析
      走廊泼水节 (Kruskal, 最小生成树扩充为完全图)
      POJ1639 Picnic Planning (度限制最小生成树,连通块,树形 DP)
1 #include <algorithm>
2 #include <cstring>
3 #include <iostream>
4 #include <map>
5 #include <string>
6 #include <vector>
7 using namespace std;
8 #define inf 0x3f3f3f3f
9 #define N 25
10 #define M 500
11 map<string, int> name;
12 struct edge
13 {
14
       int u, v, w;
       bool operator<(const edge &e) const
15
16
17
           return w < e.w;</pre>
18
       }
19 };
20 int n, s, ptot = 0, a[N][N], ans, fa[N], d[N], ver[N];
21 vector<edge> e;
22 bool vis[N][N];
23 edge dp[N]; //dp[i] 1...i路径上的最大边
24 void Init()
25 \quad \{
       for (int i = 1; i <= ptot; i++)
26
27
           fa[i] = i;
28 }
  int Find(int x)
29
30 {
       if (x == fa[x])
31
32
           return x;
33
       return fa[x] = Find(fa[x]);
34
  }
35 void Kruskal()
36
   {
37
       Init();
38
       sort(e.begin(), e.end());
39
       for (int i = 0; i < e.size(); i++)</pre>
40
41
           int u = e[i].u, v = e[i].v;
42
           if (u != 1 && v != 1)
43
           {
               int fu = Find(u), fv = Find(v);
44
               if (fu != fv)
45
```

```
46
                {
47
                     fa[fu] = fv;
                     vis[u][v] = vis[v][u] = 1;
48
49
                     ans += e[i].w;
50
                }
51
            }
52
        }
53
   }
   void DFS(int cur, int pre)
54
55
56
        for (int i = 2; i <= ptot; i++)</pre>
57
58
            if (i != pre && vis[cur][i])
59
            {
60
                if (dp[i].w == -1)
61
                {
                     if (dp[cur].w < a[cur][i])</pre>
62
63
                     {
64
                         dp[i].u = cur;
                         dp[i].v = i;
65
66
                         dp[i].w = a[cur][i];
67
                     }
68
                     else
69
                         dp[i] = dp[cur];
70
                DFS(i, cur);
71
72
            }
73
        }
74
   }
75
   int main()
76
   {
77
        ios::sync_with_stdio(false);
78
        cin.tie(0);
79
        cin >> n;
80
        string s1, s2;
81
        int len;
82
        name["Park"] = ++ptot;
        memset(a, 0x3f, sizeof(a));
83
        memset(d, 0x3f, sizeof(d));
84
85
        //Park: 1
        for (int i = 0; i < n; i++)</pre>
86
87
88
            cin >> s1 >> s2 >> len;
89
            if (!name[s1])
90
                name[s1] = ++ptot;
91
            if (!name[s2])
92
                name[s2] = ++ptot;
93
            int u = name[s1], v = name[s2];
            a[u][v] = a[v][u] = min(a[u][v], len); //无向图邻接矩阵
94
95
            e.push_back({u, v, len});
96
        }
        cin >> s; //度数限制
97
98
        ans = 0;
```

```
99
        Kruskal();
100
        for (int i = 2; i <= ptot; i++)</pre>
101
102
             if (a[1][i] != inf)
103
             {
104
                 int rt = Find(i);
105
                 if (d[rt] > a[1][i])
106
                     d[rt] = a[1][i], ver[rt] = i;
107
             }
108
        }
109
        for (int i = 2; i <= ptot; i++)
110
111
            if (d[i] != inf)
112
             {
113
                 s--;
114
                 ans += d[i];
115
                 vis[1][ver[i]] = vis[ver[i]][1] = 1;
116
             }
117
        }
        while (s-- > 0)
118
119
120
            memset(dp, -1, sizeof(dp));
121
            dp[1].w = -inf;
122
            for (int i = 2; i <= ptot; i++)
123
124
                 if (vis[1][i])
125
                     dp[i].w = -inf;
126
             }
127
            DFS(1, -1);
128
            int w = -inf;
129
            int v;
130
            for (int i = 2; i <= ptot; i++)
131
             {
132
                 if (w < dp[i].w - a[1][i])</pre>
133
134
                     w = dp[i].w - a[1][i];
135
                     v = i;
                 }
136
137
138
            if (w <= 0)
139
                 break;
140
            ans -= w;
141
            vis[1][v] = vis[v][1] = 1;
142
            vis[dp[v].u][dp[v].v] = vis[dp[v].v][dp[v].u] = 0;
143
        cout << "Total miles driven: " << ans << endl;</pre>
144
         system("pause");
145
146
        return 0;
147
   }
       POJ2728 Desert King (最优比率生成树, 0/1 分数规划, 二分)
       黑暗城堡(最短路径生成树计数,最短路,排序)
```

1.3. 树的直径 CHAPTER 1. 图论

1.3 树的直径

1.3.1 树形 DP 求树的直径

仅能求出直径长度,无法得知路径信息,可处理负权边。

```
1 int dp[N];
2 //dp[rt] 以rt为根的子树 从rt出发最远可达距离
  /*
3
       对于每个结点x f[x]:经过节点x的最长链长度
4
  */
5
   void DP(int rt)
6
7
   {
8
       dp[rt]=0;//单点
9
       vis[rt]=1;
10
       for(int i=head[rt];i;i=nxt[i])
11
       {
12
           int s=ver[i];
13
           if(!vis[s])
14
           {
15
               DP(s);
16
               diameter=max(diameter,dp[rt]+dp[s]+edge[i]);
               dp[rt]=max(dp[rt],dp[s]+edge[i]);
17
18
           }
19
       }
20 }
```

1.3.2 两次 BFS/DFS 求树的直径

```
无法处理负权边, 容易记录路径
```

```
1 void DFS(int start,bool record_path)
2 {
3
       vis[start]=1;
       for(int i=head[start];i;i=nxt[i])
4
5
       {
           int s=ver[i];
6
7
           if(!vis[s])
8
           {
9
              dis[s]=dis[start]+edge[i];
10
              if(record_path) path[s]=i;
11
              DFS(s,record_path);
12
           }
13
14
       vis[start]=0;//清理
15
  }
   例题分析
      P3629 [APIO2010] 巡逻(两种求树直径方法的综合应用)
      P1099 树网的核(枚举)
```

1.4 最近公共祖先 (LCA)

1.4.1 树上倍增

6 }

```
1 void BFS()
2
   {
3
       queue<int> q;
       q.push(1);
4
5
       d[1] = 1;
       while (!q.empty())
6
 7
8
            int x = q.front();
9
            q.pop();
            for (int i = head[x]; i; i = nxt[i])
10
11
12
                int y = ver[i];
13
                if (!d[y])
14
15
                    d[y] = d[x] + 1;
16
                    fa[y][0] = x;
17
                    for (int j = 1; j <= k; j++)
18
                         fa[y][j] = fa[fa[y][j - 1]][j - 1];
19
20
                     }
21
                    q.push(y);
22
                }
23
            }
24
       }
25
   }
26
   int LCA(int x, int y)
27
28
       if (d[x] < d[y])
29
            swap(x, y);
30
       for (int i = k; i >= 0; i--)
            if (d[fa[x][i]] >= d[y])
31
32
                x = fa[x][i];
        if(x == y)
33
34
            return y;
       for (int i = k; i >= 0; i--)
35
36
            if (fa[x][i] != fa[y][i])
37
                x = fa[x][i], y = fa[y][i];
38
        return fa[x][0];
39
   }
            Tarjan 算法
   1.4.2
   int Find(int x)
 2
   {
3
       if(x == fa[x])
4
            return x;
 5
       return fa[x] = Find(fa[x]);
```

```
7 void Tarjan(int x)
8
   {
9
       vis[x] = 1;
10
       for (int i = head[x]; i; i = nxt[i])
11
12
            int y = ver[i];
13
            if (!vis[y])
14
            {
                Tarjan(y);
15
                fa[y] = x;
16
17
            }
18
       for (int i = 0; i < q[x].size(); i++)</pre>
19
20
            int y = q[x][i].first, id = q[x][i].second;
21
22
            if (vis[y] == 2)
23
                lca[id] = Find(y);
24
        }
25
       vis[x] = 2;
26 }
```

1.5 树上差分与 LCA 的综合应用

1.6 负环与差分约束

1.6.1 负环

例题分析

POJ3621 Sightseeing Cows (0/1 分数规划, SPFA 判定负环)

1.6.2 差分约束系统

例题分析

POJ1201 Intervals (单源最长路)

1.7 Tarjan 算法与无向图连通性

1.7.1 无向图的割点与桥

1.7.1.1 割边判定法则

```
void Tarjan(int x, int in_edge)
2
   {
3
       dfn[x] = low[x] = ++num;
4
       for (int i = head[x]; i; i = nxt[i])
5
6
            int y = ver[i];
 7
            if (!dfn[y])
8
9
                Tarjan(y, i);
10
                low[x] = min(low[x], low[y]);
                if (low[y] > dfn[x])
11
12
                {
                    bridge[i] = bridge[i ^ 1] = true;
13
                }
14
15
            else if (i != (in_edge ^ 1))
16
17
                low[x] = min(low[x], dfn[y]);
18
        }
19
   }
```

1.7.1.2 割点判定法则

```
void Tarjan(int x)
2
3
       dfn[x] = low[x] = ++num;
4
       int flag = 0;
5
       for (int i = head[x]; i; i = nxt[i])
6
7
            int y = ver[i];
8
            if (!dfn[y])
9
            {
10
                Tarjan(y);
11
                low[x] = min(low[x], low[y]);
                if (low[y] >= dfn[x])
12
13
14
                     flag++;
                     if (x != root || flag >= 2)
15
16
                         cut[x] = true;
                }
17
18
            }
19
            else
20
                low[x] = min(low[x], dfn[y]);
21
       }
22
   }
```

例题分析

P3469 [POI2008]BLO-Blockade (割点,连通块计数)

1.7.2 无向图的双连通分量

1.7.2.1 边双连通分量 e-DCC 与其缩点

```
1 void DFS(int x)
2
   {
3
       color[x] = dcc;
4
       for (int i = head[x]; i; i = nxt[i])
5
            int y = ver[i];
6
7
            if (!color[y] && !bridge[i])
8
                DFS(y);
9
       }
10
   }
11
   void e_DCC()
12
   {
13
       dcc = 0;
14
       for (int i = 1; i <= n; i++)
            if (!color[i])
15
16
                ++dcc, DFS(i);
17
       totc = 1;
       for (int i = 2; i <= tot; i++)</pre>
18
19
20
            int u = ver[i ^ 1], v = ver[i];
21
            if (color[u] != color[v])
22
                add_c(color[u], color[v]);
23
        }
24
       origin_bridges = (totc - 1) / 2;
25
       k = log2(dcc) + 1;
26 }
   1.7.2.2 点双连通分量 v-DCC 与其缩点
```

```
void Tarjan(int x)
1
2
   {
3
       dfn[x] = low[x] = ++num;
4
       int flag = 0;
        stack[++top] = x;
5
        if (x == root \&\& !head[x])
6
7
8
            dcc[++cnt].push_back(x);
9
            return;
10
11
       for (int i = head[x]; i; i = nxt[i])
12
13
            int y = ver[i];
            if (!dfn[y])
14
15
            {
                Tarjan(y);
16
17
                low[x] = min(low[x], low[y]);
18
                if (low[y] >= dfn[x])
19
                {
20
                     flag++;
```

```
if (x != root || flag >= 2)
21
22
                        cut[x] = true;
23
                   cnt++;
24
                   int z;
25
                   do
26
                   {
                        z = stack[top--];
27
28
                        dcc[cnt].push_back(z);
29
                    } while (z != y);
30
                   dcc[cnt].push_back(x);
31
               }
32
           }
33
           else
34
               low[x] = min(low[x], dfn[y]);
       }
35
36
   }
37
   void v_DCC()
38
   {
39
       cnt = 0;
40
       top = 0;
       for (int i = 1; i <= n; i++)
41
42
43
           if (!dfn[i])
               root = i, Tarjan(i);
44
45
       }
       // 给每个割点一个新的编号(编号从cnt+1开始)
46
47
       num = cnt;
48
       for (int i = 1; i <= n; i++)
49
           if (cut[i]) new_id[i] = ++num;
50
       // 建新图, 从每个v-DCC到它包含的所有割点连边
51
       tc = 1;
       for (int i = 1; i <= cnt; i++)</pre>
52
           for (int j = 0; j < dcc[i].size(); j++)</pre>
53
54
               int x = dcc[i][j];
55
               if (cut[x]) {
56
57
                   add_c(i, new_id[x]);
58
                   add_c(new_id[x], i);
               }
59
60
               else c[x] = i; // 除割点外, 其它点仅属于1个v-DCC
61
           }
62
  }
   例题分析
      POJ3694 Network (e-DCC 缩点, LCA, 并查集)
      POJ2942 Knights of the Round Table (补图, v-DCC, 染色法奇环判定)
```

1.7.3 欧拉路问题

欧拉图的判定

无向图连通, 所有点度数为偶数。

欧拉路的存在性判定

无向图连通,恰有两个节点度数为奇数,其他节点度数均为偶数

```
1 // 模拟系统栈,答案栈
  void Euler() {
      stack[++top] = 1;
3
4
      while (top > 0) {
          int x = stack[top], i = head[x];
5
          // 找到一条尚未访问的边
6
          while (i && vis[i]) i = Next[i];
7
          // 沿着这条边模拟递归过程, 标记该边, 并更新表头
8
9
          if (i) {
              stack[++top] = ver[i];
10
11
             head[x] = Next[i];
12
             vis[i] = vis[i ^ 1] = true;
13
          }
14
          // 与x相连的所有边均已访问,模拟回溯过程,并记录于答案栈中
          else {
15
16
             top--;
17
              ans[++t] = x;
18
          }
19
      }
20 }
   例题分析
     POJ2230 Watchcow (欧拉回路)
```

1.8 Tarjan 算法与有向图连通性

1.8.1 强连通分量 (SCC) 判定法则

```
void Tarjan(int x)
2
   {
3
       dfn[x]=low[x]=++num;
4
       stack[++top]=x,in_stack[x]=true;
5
       for(int i=head[x];i;i=nxt[i])
6
 7
            int y=ver[i];
            if(!dfn[y])
8
9
10
                Tarjan(y);
                low[x]=min(low[x],low[y]);
11
12
13
           else if(in_stack[y])
14
                low[x]=min(low[x],dfn[y]);
15
       if(dfn[x]==low[x])
16
17
18
            cnt++;
            int y;
19
20
            do
21
22
                y=stack[top--],in_stack[y]=false;
23
                color[y]=cnt, scc[cnt].push_back(y);
24
            } while (x!=y);
       }
25
26
   }
           SCC \rightarrow DAG
   1.8.2
   void SCC()
1
2
   {
3
       for (int i = 0; i <= n; i++)
4
            if (!dfn[i])
 5
                Tarjan(i);
6
       //缩点
7
       for (int x = 1; x <= n; x++)
8
9
            for (int i = head[x]; i; i = nxt[i])
10
            {
11
                int y = ver1[i];
12
                if (color[x] != color[y])
                    add_c(color[x], color[y]);
13
14
            }
15
        }
16
   }
   例题分析
      POJ1236 Network of Schools (SCC->DAG, 入度出度)
      P3275 [SCOI2011] 糖果(SPFA TLE, SCC->DAG, Topo, DP)
```

1.8.3 有向图的必经点与必经边