MAP 433 : Introduction aux méthodes statistiques. Cours 7

9 Octobre 2015

Aujourd'hui

- 1 Tests asymptotiques
 - Elements de la théorie asymptotique des tests
 - Efficacité asymptotique relative
- 2 Quelques tests asymptotiques
 - Test du rapport de vraisemblance
 - Tests de Wald
 - Test de Rao
- 3 Tests d'adéquation
 - Tests de Kolmogorov-Smirnov
 - Tests du χ^2

Quelques définitions

- Soit $(\mathbb{P}_{\theta}, \theta \in \Theta)$ une famille de probabilités sur (X, \mathcal{X}) admettant des densités $\{f(\theta, x), \theta \in \Theta\}$ par rapport à une mesure de domination μ .
- Supposons que nous disposions d'un *n*-échantillon $(X_1, X_2, ..., X_n)$ de ce modèle statistique.
- Considérons le problème de tester l'hypothèse de base $H_0: \theta \in \Theta_0$ contre l'alternative $H_1: \theta \in \Theta_1$, où $\Theta_0 \cap \Theta_1 = \emptyset$ et $\Theta_0 \cup \Theta_1 = \Theta$.
- Un test pour un échantillon de taille *n* est une fonction mesurable

$$\varphi_n: \mathsf{X}^n \to [0,1]$$
 .

■ Si le test est non randomisé $\varphi_n \in \{0,1\}$, l'ensemble

$$\{(x_1,\ldots,x_n)\in\mathsf{X}^n,\varphi_n(x_1,\ldots,x_n)=1\}$$

est appelée la région critique du test.

Tests asymptotiques

■ On dit qu'une suite de tests $\{\varphi_n, n \in \mathbb{N}\}$ est asymptotiquement de niveau α pour $\alpha \in [0,1]$ si

$$\lim_{n\to\infty}\mathbb{E}_{\theta}^n[\varphi_n(X_1,\ldots,X_n)]\leq\alpha\,, \text{pour tout }\theta\in\Theta_0$$

La puissance de ce test est la fonction

$$\theta \mapsto \pi_n(\theta) = \mathbb{E}_{\theta}^n[\varphi_n(X_1,\ldots,X_n)]$$

■ Un test q'une suite de tests $\{\varphi_n, n \in \mathbb{N}\}$ est asymptotiquement consistante si, pour tout $\theta \in \Theta_1$,

$$\lim_{n\to\infty}\pi_n(\theta)=1.$$

Modèle régulier

Definition

La famille de densités $\{f(\theta,\cdot), \theta \in \Theta\}$, par rapport à la mesure dominante μ , $\Theta \subset \mathbb{R}$, est régulière si

- Θ ouvert et $\{f(\theta,\cdot)>0\}=\{f(\theta',\cdot)>0\}$, $\forall \theta,\theta'\in\Theta$.
- μ -p.p. $\theta \leadsto f(\theta, \cdot)$, $\theta \leadsto \log f(\theta, \cdot)$ sont C^2 .
- $\forall \theta \in \Theta, \exists \mathcal{V}_{\theta} \subset \Theta \text{ t.q. pour } \tilde{\theta} \in \mathcal{V}_{\theta}$

$$|\nabla_{\theta}^{2} \log f(\tilde{\theta}, x)| + |\nabla_{\theta} \log f(\tilde{\theta}, x)| + (\nabla_{\theta} \log f(\tilde{\theta}, x))^{2} \leq g(x)$$

οù

$$\int_{\mathbb{R}} g(x) \sup_{a \in \mathcal{V}(\theta)} f(\tilde{\theta}, x) \mu(dx) < +\infty.$$

L'information de Fisher est non-dégénérée :

$$\forall \theta \in \Theta, \ \mathbb{I}(\theta) > 0.$$

Consistance du test de Neyman-Pearson

- Supposons que $\Theta = \{\theta_0, \theta_1\}$ avec $\theta_0 \neq \theta_1$ et que l'on cherche à tester $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$.
- Le lemme de Neyman-Pearson montre que le test qui rejette H_0 si

$$\frac{\prod_{i=1}^n f(\theta_1, X_i)}{\prod_{i=1}^n f(\theta_0, X_i)} \ge c_{n,\alpha}$$

est U.P.P.

■ De façon équivalente, en prenant le logarithme de chaque membre de l'identité, le test de N.P. rejette H_0 si

$$\Lambda_n(\theta_0,\theta_1) = \sum_{i=1}^n \{\ell(X_i,\theta_1) - \ell(X_i,\theta_0)\} > k_{n,\alpha}$$

où $\ell(x;\theta) = \log f(\theta,x)$ et $k_{n,\alpha}$ est choisi de telle sorte que

$$\mathbb{P}_{\theta_0}^n[\Lambda_n(\theta_0,\theta_1) > k_{n,\alpha}] = \alpha$$

(on suppose qu'une telle valeur existe, autrement il faudrait randomiser)

Calcul asymptotique du seuil critique

■ En pratique, il est souvent difficile de déterminer exactement le seuil critique $k_{n,\alpha}$... mais il est souvent facile de déterminer une suite $\{k_{n,\alpha}, n \in \mathbb{N}\}$ telle que

$$\lim_{n\to\infty}\mathbb{P}_{\theta_0}^n(\Lambda_n(\theta_0,\theta_1)>k_{n,\alpha})=\alpha.$$

■ En effet, le théorème central limite montre que, sous H_0 ,

$$n^{-1/2}\sum_{k=1}^n \{\ell(X_i,\theta_1) - \ell(X_i,\theta_0) + \mathrm{KL}(\theta_0,\theta_1)\} \stackrel{d}{\to}_{\mathbb{P}^n_{\theta_0}} \mathcal{N}(0,J(\theta_0,\theta_1))$$

où $\mathrm{KL}(\theta_0,\theta_1)$ est la divergence de Kullback-Leibler définie par

$$\mathrm{KL}(\theta_0, \theta_1) = \mathbb{E}_{\theta_0} \left[\ell(X_1; \theta_0) - \ell(X_1; \theta_1) \right] > 0$$

et

$$J(\theta_0, \theta_1) = \operatorname{Var}_{\theta_0}[\ell(X_1; \theta_1) - \ell(X_1; \theta_0)].$$

Calcul asymptotique du seuil critique

- Pour $\alpha \in (0,1)$, on note $z_{1-\alpha}$ le quantile $1-\alpha$ de la loi gaussienne standardisée.
- Nous avons donc:

$$\lim_{n\to\infty} \mathbb{P}^n_{\theta_0}\left(n^{-1/2}J^{-1}(\theta_0,\theta_1)\{\Lambda_n+n\mathrm{KL}(\theta_0,\theta_1)\}\geq z_{1-\alpha}\right)=\alpha\,.$$

ce qui implique, en posant

$$k_{n,\alpha} = -n \mathrm{KL}(\theta_0, \theta_1) + n^{1/2} z_{1-\alpha} J(\theta_0, \theta_1)$$

que le test de région critique $\{\Lambda_n > k_{n,\alpha}\}$ est asymptotiquement de niveau α ,

$$\lim_{n\to\infty}\mathbb{P}_{\theta_0}^n[\Lambda_n\geq k_{n,\alpha}]=1-\alpha.$$

Distribution du test sous l'hypothèse alternative

■ Sous $\mathbb{P}_{\theta_1}^n$, nous avons

$$\Delta_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \{\ell(X_i; \theta_1) - \ell(X_i; \theta_0) - \mathrm{KL}(\theta_1, \theta_0)\} \stackrel{d}{\to} \mathbb{P}^n_{\theta_1} \mathcal{N}(0, J(\theta_1, \theta_0))$$

οù

$$\begin{split} \mathrm{KL}(\theta_1, \theta_0) &= \mathbb{E}_{\theta_1}[\ell(X_1; \theta_1) - \ell(X1; \theta_0)] \\ J(\theta_1, \theta_0) &= \mathrm{Var}_{\theta_1}(\ell(X_1; \theta_1) - \ell(X1; \theta_0)) \end{split}$$

Distribution du test sous l'hypothèse alternative

■ Sous $\mathbb{P}_{\theta_1}^n$, nous avons

$$\Delta_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \{\ell(X_i; \theta_1) - \ell(X_i; \theta_0) - \mathrm{KL}(\theta_1, \theta_0)\} \overset{d}{\to} \mathbb{P}^n_{\theta_1} \mathcal{N}(0, J(\theta_1, \theta_0))$$

οù

$$\begin{aligned} \mathrm{KL}(\theta_1, \theta_0) &= \mathbb{E}_{\theta_1}[\ell(X_1; \theta_1) - \ell(X_1; \theta_0)] \\ J(\theta_1, \theta_0) &= \mathrm{Var}_{\theta_1}(\ell(X_1; \theta_1) - \ell(X_1; \theta_0)) \end{aligned}$$

■ Par conséquent

$$\begin{aligned} \{\Lambda_n > k_{n,\alpha}\} \\ &= \left\{ \Delta_n > J^{-1/2}(\theta_1, \theta_0) \{ z_{1-\alpha} J(\theta_0, \theta_1) - n^{1/2} I(\theta_0, \theta_1) \} \right\} \end{aligned}$$

οù

$$I(\theta_0, \theta_1) = \mathrm{KL}(\theta_0, \theta_1) + \mathrm{KL}(\theta_1, \theta_0).$$

Puissance du test de NP

La puissance du test est donc

$$\pi_n(\theta_1) = \Phi\left(J^{-1/2}(\theta_1, \theta_0) \left\{ n^{1/2} I(\theta_0, \theta_1) - z_{1-\alpha} J(\theta_0, \theta_1) \right\} \right)$$

ce qui implique que, dès que $\mathrm{KL}(\theta_0,\theta_1) \neq 0$

$$\lim_{n\to\infty}\pi_n(\theta_1)=1.$$

 $flue{\alpha}$ Si le modèle est identifiable, alors il existe un test de niveau asymptotique α et donc la puissance tend vers 1.

Efficacité asymptotique... à travers un exemple

- Supposons que $(X_1, ..., X_n)$ est un n-échantillon indépendant de densité $f(\theta, x) = f(x \theta)$ par rapport à la mesure de Lebesgue sur \mathbb{R} .
- Hypothèses
 - Variance finie $\int |x|^2 f(x) dx < \infty$
 - lacksquare Parité f est une fonction paire (donc heta est la moyenne et la médiane de la loi)
 - f est continue et f(0) > 0: unicité de la médiane
- On cherche à tester $\theta = 0$ contre $H_1 : \theta > 0$.

Un exemple

On considère deux statistiques de tests:

$$U_n = rac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i>0\}}$$
 test du signe $S_n = ar{X}_n/S_n$ t-test

οù

- $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ est la moyenne empirique
- $S_n^2 = n^{-1} \sum_{i=1}^{n-1} (X_i \bar{X}_n)^2$ est la variance empirique.
- Question: quel test est le meilleur ?

Asymptotique du test du signe

$$U_n = n^{-1} \sum_{i=1}^n \mathbb{1}_{\{X_i > 0\}}$$

■ Par le théorème de la limite centrale

$$n^{1/2}\sigma^{-1}(\theta)(U_n-\mu(\theta))\stackrel{d}{\to}_{\mathbb{P}^n_{\theta}}\mathcal{N}(0,1)$$

οù

$$\mu(\theta) = 1 - F(-\theta) \quad \sigma^2(\theta) = (1 - F(-\theta))F(-\theta).$$

Par conséquent, sous $H_0 = \theta = 0$

$$2\sqrt{n}(U_n-1/2)\stackrel{d}{
ightarrow}_{\mathbb{P}^n_0}\mathcal{N}(0,1)$$
.

■ Le test de région critique $\{2\sqrt{n}(U_n-1/2)>z_{1-\alpha}\}$ est un test de niveau asymptotique α .

Puissance du test de signe

La puissance du test de signe de niveau asymptotique lpha est donnée par

$$\begin{split} \pi_{n,\alpha}^{\mathrm{sign}}(\theta) &= \mathbb{P}_{\theta}(\sqrt{n}(U_n - \mu(0)) > \sigma(0)z_{1-\alpha}) \\ &= \mathbb{P}_{\theta}(\sqrt{n}\sigma^{-1}(\theta)(U_n - \mu(\theta)) > \sigma^{-1}(\theta)\{\sigma(0)z_{1-\alpha} + n^{1/2}\{\mu(0) - \mu(\theta)\}\}) \\ &= 1 - \Phi\left(\frac{\sigma(0)z_{1-\alpha} + n^{1/2}\{\mu(0) - \mu(\theta)\}}{\sigma(\theta)}\right) + o(1) \end{split}$$

où
$$U_n = n^{-1} \sum_{i=1}^n \mathbb{1}_{\{X_i > 0\}}$$
.

Le test est consistant: pour tout $\theta > 0$,

$$\lim_{n\to\infty}\pi_{n,\alpha}^{\mathrm{sign}}(\theta)=1.$$

Asymptotique du z-test

On considère la moyenne empirique studentisée

$$T_n = \frac{1}{n} \sum_{i=1}^n \frac{X_i}{S_n}$$
 t-test

où $S_n^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ est la variance empirique

- Loi des grands nombres : $S_n^2 \xrightarrow{\mathbb{P}}_{\mathbb{P}_\theta} \sigma^2 = \int x^2 f(x) dx$.
- Théorème Central limite: $n^{-1/2} \sum_{i=1}^n (X_i \theta) \stackrel{d}{\to}_{\mathbb{P}_{\theta}} \mathcal{N}(0, \sigma^2)$.
- Slutsky: $n^{-1/2}S_n^{-1}\left\{\sum_{i=1}^n(X_i-\theta)\right\}\stackrel{d}{\to}_{\mathbb{P}_\theta}\mathcal{N}(0,1).$
- Le test de région critique $\{T_n > n^{-1/2}z_{1-\alpha}\}$ est un test de niveau asymptotique α :

$$\begin{split} \lim_{n \to \infty} \mathbb{P}_0 \left(T_n > n^{-1/2} z_{1-\alpha} \right) &= \lim_{n \to \infty} \mathbb{P}_0 \left(n^{1/2} T_n > z_{1-\alpha} \right) \\ &= 1 - \Phi(z_{1-\alpha}) = \alpha \,. \end{split}$$

Puissance du z-test

La puissance du test de niveau α est donnée par

$$\begin{split} \pi_{n,\alpha}^{\mathrm{t-test}}(\theta) &= \mathbb{P}_{\theta}(\sqrt{n}T_n > z_{1-\alpha}) \\ &= \mathbb{P}_{\theta}(n^{-1/2}S_n^{-1}\sum_{i=1}^n (X_i - \theta) > z_{1-\alpha} - \sqrt{n}S_n^{-1}\theta). \end{split}$$

Comme $\lim_{n\to\infty}\{z_{1-\alpha}-\sqrt{n}S_n^{-1}\}=-\infty$, \mathbb{P}_{θ} -p.s., le t-test de niveau asymptotique α est consistant: pour tout $\theta>0$,

$$\lim_{n\to\infty} \pi_{n,\alpha}^{\mathrm{t-test}}(\theta) = 1.$$

Comparaison asymptotique des puissances

- Nous devons rendre la discrimination entre l'hypothèse nulle H_0 et l'hypothèse alternative plus difficile quad $n \to \infty$.
- Idée: considérer un test $H_0: \theta = 0$ contre une suite d'hypothèses alternatives $H_1^n: \theta = \theta_n$ avec $\theta_n > 0$ et $\lim_{n \to \infty} \theta_n = 0$.

Test du signe

$$\pi_{n,\alpha}^{\mathrm{sign}}(\theta) = 1 - \Phi\left(\frac{\sigma(0)z_{1-\alpha} + n^{1/2}\{\mu(0) - \mu(\theta)\}}{\sigma(\theta)}\right) + o(1)$$

■ la puissance du test contre la suite de contre-alternatives $H_1^n:\theta_n>0$, dépend de $\sqrt{n}(\mu(0)-\mu(\theta_n))$ où

$$\mu(\theta) = 1 - F(-\theta) \quad \sigma^2(\theta) = (1 - F(-\theta))F(-\theta).$$

■ Comme F est différentiable en $\theta = 0$, nous avons

$$\sqrt{n}(\mu(\theta_n) - \mu(0)) = \sqrt{n}(F(-\theta_n) - F(0)) = -\sqrt{n}\theta_n f(0) + o(\sqrt{n}\theta_n).$$

Test du signe

- Si $\sqrt{n}\theta_n \to 0$, alors $\sqrt{n}(\mu(0) \mu(\theta_n)) \to 0$; alors, $\pi_{n,\alpha}^{\text{sign}}(\theta_n) \to \alpha$, on ne distingue pas l'hypothèse de base et l'alternative.
- Si $\sqrt{n}\theta_n \to \infty$, alors $\sqrt{n}(\mu(0) \mu(\theta_n)) \to -\infty$: $\pi_{n,\alpha}^{\mathrm{sign}}(\theta_n) \to 1$, problème trop facile, la puissance tend vers 1.
- Cas intéressant!

$$\lim_{n\to\infty}\sqrt{n}\theta_n=h>0$$

■ Dans ce cas, $\sqrt{n}(\mu(0) - \mu(\theta_n)) \rightarrow -hf(0)$ et

$$\lim_{n\to\infty}\pi_{n,\alpha}^{\mathrm{sign}}(\theta_n)=\Phi(2hf(0)-z_{1-\alpha})$$

Efficacité asymptotique des tests

 Ceci conduit à une approche naturelle de comparaison des tests, qui consistent à comparer la puissance locale des tests

$$\pi(h) = \lim_{n \to \infty} \pi_n(h/\sqrt{n}).$$

 Pour les modèles réguliers, cette fonction de puissance locale asymptotique est bien définie (preuve délicate en toute généralité)

Efficacité asymptotique locale des tests

Théorème

Soit $\{\theta_n, n \in \mathbb{N}\}\subset \mathbb{R}_+^*$ telle que $\lim_{n\to\infty}\sqrt{n}\theta_nh$. Soit $\{T_n, n \in \mathbb{N}\}$ une suite de statistiques vérifiant:

- $\mathbf{2}$ μ est différentiable en $\mathbf{0}$
- σ continue en 0.

Soit φ_n une suite de tests simples de région critique $\{T_n > t_{n,\alpha}\}$ de niveau asymptotique α , $\lim_{n \not = \infty} \mathbb{P}_0(T_n > t_{n,\alpha}) = \alpha$.

La puissance locale asymptotique de cette suite de tests est donnée par

$$\pi(h) = \lim_{n \to \infty} \pi_n(\sqrt{n}\theta_n) = 1 - \Phi(z_{1-\alpha} - h\mu'(0)/\sigma(0)).$$

Conclusion

- Nous disposons maintenant d'une méthode simple de comparer les tests, en nous basant sur la puissance asympotique locale...
- Pour les tests asymptotiquement normaux, il suffit de comparer la pente des tests, à savoir $\mu'(0)/\sigma(0)$.
- La plus grande est la pente, le plus rapidement $\pi(h)$ augmente avec h!

Application: test du signe

$$U_n = \sum_{i=1}^n \mathbb{1}_{\{X_i > 0\}}.$$

$$\bullet \mu(\theta) = 1 - F(-\theta), \ \mu'(\theta) = -f(\theta).$$

■ Pente:
$$\mu'(0)/\sigma(0) = 2f(0)$$
.

Application: t-test

- $T_n = \bar{X}_n/S_n$
- $\mu(\theta) = \theta/\sigma$ and $\sigma(\theta) = 1$. En effet

$$\begin{split} \sqrt{n}(T_n - \theta_n/\sigma) &= \sqrt{n}(\bar{X}_n/S_n - \theta_n/S_n) + \sqrt{n}\theta_n(S_n^{-1} - \sigma^{-1}) \\ &= n^{-1/2} \sum_{i=1} n(X_i - \theta_n)/S_n + + \sqrt{n}\theta_n(S_n^{-1} - \sigma^{-1}) \stackrel{d}{\to}_{\theta_n} \mathcal{N}(0, 1) \,. \end{split}$$

■ Pente: $\mu(0)/\sigma(0) = 1/\sigma$.

Efficacité relative

- **1** test du signe: $\mu'(0)/\sigma(0) = 2f(0)$,
- **2** *t*-test: $\mu'(0)/\sigma(0) = 1/\sigma$.
- Laplace: $2f(0)\sigma = 2$.
- Logistique: $2f(0)\sigma = \pi^2/12 = 0.822$.
- Gauss: $2f(0)\sigma = 2/\pi = 0.6366$.
- Uniforme: $2f(0)\sigma = 1/3$.

Test du rapport de vraisemblance

- Soit $X^{(n)}=(X_1,\ ,\ X_n)$ un *n*-échantillon du modèle statistique $\mathbb{P}^n_{\theta} \ll \mu_n,\ \theta \in \Theta$, de densité $f_{\theta}(x^{(n)})=\mathrm{d}\,\mathbb{P}^n_{\theta}\,/\mathrm{d}\mu_n$.
- Pour tester H₀: θ ∈ Θ₀ contre H₁: θ ∈ Θ − Θ₀, le test du rapport de vraisemblance rejette H₀ lorsque la valeur du rapport de vraisemblance généralisé

$$\Lambda_n = \frac{\sup_{\theta \in \Theta_0} f_{\theta}(X^{(n)})}{\sup_{\theta \in \Theta} f_{\theta}(X^{(n)})}$$

est inférieure à un seuil.

- Lorsque les hypothèses H_0 , H_1 sont simples, ce test est U.P.P. .
- Pour des hypothèses composites, il n'y a en général aucun résultat d'optimalité, sauf dans des cas simples...

t-test

- Soient $X^{(n)} = (X_1, \dots, X_n)$ un *n*-échantillon de $\mathcal{N}(\mu, \sigma^2)$.
- On teste l'hypothèse $H_0: \mu = 0$ contre $H_1: \mu \neq 0$.
- En posant $\theta = (\mu, \sigma^2)$,

$$\Lambda_n = \frac{\sup_{\theta \in \Theta_0} (1/\sigma^n) \exp(-\frac{1}{2\sigma^2} \sum_i (X_i - \mu)^2)}{\sup_{\theta \in \Theta} (1/\sigma^n) \exp(-\frac{1}{2\sigma^2} \sum_i (X_i - \mu)^2)}$$
$$= (\frac{\sum_i (X_i - \overline{X}_n)^2}{\sum_i X_i^2})^{n/2}$$

lacktriangle Un calcul élémentaire montre que $\Lambda_n < c$ est équivalent à $t_n^2 > k$ où

$$t_n = \frac{\sqrt{n}\overline{X}_n}{\sqrt{\frac{1}{n-1}\sum_i(X_i - \overline{X}_n)^2}}$$

est la t-statistique. En d'autres termes, le t-test est un test de rapport de vraisemblance généralisé.

Justification

$$t_n^2 = \frac{n\overline{X}_n^2}{\frac{1}{n-1}\sum_i (X_i - \overline{X}_n)^2}$$

$$= \frac{\sum_i X_i^2 - \sum_i (X_i - \overline{X}_n)^2}{\frac{1}{n-1}\sum_i (X_i - \overline{X}_n)^2}$$

$$= \frac{(n-1)\sum_i X_i^2}{\sum_i (X_i - \overline{X}_n)^2} - (n-1)$$

$$= (n-1)\Lambda_n^{-2/n} - (n-1)$$

ce qui montre que

$$\Lambda_n = \left(\frac{n-1}{t_n^2 + n - 1}\right)^{n/2}$$

Distribution asymptotique

Comme

$$\Lambda_n = \left(\frac{n-1}{t_n^2 + n - 1}\right)^{n/2}$$

nous avons

$$\log \Lambda_n = \frac{n}{2} \log \frac{n-1}{t_n^2 + n - 1}$$

$$\Rightarrow -2 \log \Lambda_n = n \log(1 + \frac{t_n^2}{n-1})$$

$$= n \left(\frac{t_n^2}{n-1} + o_p(\frac{t_n^2}{n-1})\right) \stackrel{d}{\to}_{\mathbb{P}_0} \chi_1^2$$

car sous H_0 , $t_n \stackrel{d}{\to}_{\mathbb{P}_0} \mathcal{N}(0,1)$.

résultat vrai en toute généralité!

Test d'égalité des proportions pour une variable multinomiale

- Soit $(X_1, ..., X_n)$ un *n*-échantillon d'une loi multinomiale à *d*-instances
- Paramètre $\mathbf{p} = (p_1, \dots, p_d) \in \mathcal{M}_d = \{(p_1, \dots, p_d), p_i \geq 0, \sum_{i=1}^d p_i = 1\}.$
- Rapport de vraisemblance généralisé

$$\Lambda_n = \frac{(1/d)^n}{\max_{(p_1,\dots,p_k)\in\mathcal{M}_d} \prod_{i=1}^d p_j^{N_i}}$$

$$= \prod_{i=1}^d \left(\frac{n}{dN_i}\right)^{N_i} = \prod_{i=1}^d (d\hat{p}_{n,i})^{-N_i}$$

où $N_i = \sum_{j=1}^n \mathbb{1}_{\{X_j = i\}}$ et $\hat{p}_{n,i} = N_i/n$ les fréquences empiriques.

Loi limite des fréquences empiriques

- On suppose $(X_1, ..., X_n)$ *n*-échantillon multinomial de proportion $(q_1, ..., q_d)$.
- Comparaison des fréquences empiriques

$$\widehat{p}_{n,\ell} = rac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i = \ell\}}$$
 proche de $q_\ell, \ \ell = 1, \ldots, d$?

Loi des grands nombres :

$$(\widehat{
ho}_{n,1},\ldots,\widehat{
ho}_{n,d})\stackrel{\mathbb{P}_{m{p}}}{\longrightarrow}(m{p}_1,\ldots,m{p}_d)=m{p}.$$

■ Théorème central-limite ?

$$U_n(\mathbf{p}) = \sqrt{n} \left(\frac{\widehat{p}_{n,1} - p_1}{\sqrt{p_1}}, \dots, \frac{\widehat{p}_{n,d} - p_d}{\sqrt{p_d}} \right) \stackrel{d}{\longrightarrow} ?$$

■ Composante par composante oui. Convergence globale plus délicate.

Statistique du Chi-deux

Proposition

Si les composantes de p sont toute non-nulles

lacktriangle On a la convergence en loi sous \mathbb{P}_p

$$\boldsymbol{\textit{U}}_{\textit{n}}(\boldsymbol{\textit{p}}) \stackrel{\textit{d}}{\longrightarrow} \mathcal{N}\big(0, \textit{V}(\boldsymbol{\textit{p}})\big)$$

avec
$$V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} \left(\sqrt{\mathbf{p}}\right)^T$$
 et $\sqrt{\mathbf{p}} = \left(\sqrt{p_1}, \dots, \sqrt{p_d}\right)^T$.

■ De plus

$$\|\boldsymbol{U}_n(\boldsymbol{p})\|^2 = n \sum_{\ell=1}^d \frac{(\widehat{\rho}_{n,\ell} - p_\ell)^2}{p_\ell} \stackrel{d}{\longrightarrow} \chi^2(d-1).$$

Preuve de la normalité asymptotique

■ Pour i = 1, ..., n et $1 \le \ell \le d$, on pose

$$Y_\ell^i = rac{1}{\sqrt{
ho_\ell}} ig(\mathbb{1}_{\{X_i = \ell\}} -
ho_\ell ig).$$

Les vecteurs $Y_i = (Y_1^i, \dots, Y_d^i)$ sont indépendants et identiquement distribués et

$$U_n(\mathbf{p}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbf{Y}_i,$$

$$\mathbb{E}\left[Y_\ell^i\right] = 0, \ \mathbb{E}\left[(Y_\ell^i)^2\right] = 1 - p_\ell, \ \mathbb{E}\left[Y_\ell^i Y_{\ell'}^i\right] = -(p_\ell p_{\ell'})^{1/2}.$$

On applique le TCL vectoriel.

Convergence de la norme au carré

- On a donc $U_n(p) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(p))$.
- On a aussi

$$\|\boldsymbol{U}_{n}(\boldsymbol{p})\|^{2} \stackrel{d}{\longrightarrow} \|\mathcal{N}(0, V(\boldsymbol{p}))\|^{2}$$
$$\sim \chi^{2}(\operatorname{Rang}(V(\boldsymbol{p})))$$

par Cochran : $V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} \left(\sqrt{\mathbf{p}}\right)^T$ est la projection orthogonale sur $\mathrm{vect}\{\sqrt{\mathbf{p}}\}^\perp$ qui est de dimension d-1.

Distribution limite de $-2 \log \Lambda_n$

Nous avons

$$\begin{split} -2\log\Lambda_n &= 2\sum_{i=1}^d N_i \log(\hat{p}_{N,i}/p_i) \\ &= 2n\sum_{i=1}^d (\hat{p}_{N,i} - p_i + p_i) \log\left(1 + \frac{\hat{p}_{n,i} - p_i}{p_i}\right) \\ &= 2n\sum_{i=1}^d \frac{(\hat{p}_{n,i} - p_i)^2}{p_i} + 2n\sum_{i=1}^d p_i \left\{\frac{(\hat{p}_{n,i} - p_i)}{p_i} - \frac{1}{2}\left(\frac{\hat{p}_{n,i} - p_i}{p_i}\right)^2\right\} + o_{\mathbb{P}}(1) \,. \end{split}$$

car $\sum_{i=1}^d p_i(\hat{p}_{n,i}-p_i)/p_i=0...$ Par conséquent

$$-2\log\Lambda_n\stackrel{d}{\to}_{\mathbb{P}_+}\chi^2(d-1)$$

Trop beau pour qu'il n'y ait pas quelque chose de plus profond.. en PC

Le test de Wald : hypothèse nulle simple

- <u>Situation</u> la suite d'expériences $(X^n, \mathcal{X}^{\otimes n}, \{\mathbb{P}^n_{\theta}, \theta \in \Theta\})$ est engendrée par l'observation $Z^n = (X_1, \dots, X_n), \theta \in \Theta \subset \mathbb{R}$
- Objectif: Tester

$$H_0: \theta = \theta_0$$
 contre $H_1 \theta \neq \theta_0$.

lacktriangle Hypothèse : on dispose d'un estimateur $\widehat{ heta}_n$ asymptotiquement normal

$$\boxed{\sqrt{n}(\widehat{ heta}_n - heta) \stackrel{d}{
ightarrow} \mathcal{N}ig(0, v(heta)ig)}$$

en loi sous \mathbb{P}_{θ}^n , $\forall \theta \in \Theta$, où $\theta \rightsquigarrow v(\theta) > 0$ est continue.

■ Sous l'hypothèse (ici sous $\mathbb{P}_{\theta_0}^n$) on a la convergence

$$\sqrt{n}rac{\widehat{ heta}_n- heta_0}{\sqrt{
u(\widehat{ heta}_n)}}\stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

en loi sous $\mathbb{P}_{\theta_0}^n$.

Test de Wald (cont.)

- Remarque $\sqrt{v(\widehat{\theta}_n)} \leftrightarrow \sqrt{v(\theta_0)}$ ou d'autres choix encore...
- On a aussi

$$T_n = n \frac{(\widehat{\theta}_n - \theta_0)^2}{\nu(\widehat{\theta}_n)} \stackrel{d}{\longrightarrow} \chi^2(1)$$

sous $\mathbb{P}_{\theta_0}^n$.

■ Soit $q_{1-\alpha,1}^{\chi^2} > 0$ tel que si $U \sim \chi^2(1)$, on a $\mathbb{P}\left[U > q_{1-\alpha,1}^{\chi^2}\right] = \alpha$. On choisit la zone de rejet

$$\mathcal{R}_{n,\alpha}=\big\{T_n\geq q_{1-\alpha,1}^{\chi^2}\big\}.$$

Le test de zone de rejet $\mathcal{R}_{n,\alpha}$ s'appelle Test de Wald de l'hypothèse simple $\theta = \theta_0$ contre l'alternative $\theta \neq \theta_0$ basé sur $\widehat{\theta}_n$.

Propriétés du test de Wald

Proposition

Le test Wald de l'hypothèse simple $\theta=\theta_0$ contre l'alternative $\theta \neq \theta_0$ basé sur $\widehat{\theta}_n$ est

asymptotiquement de niveau α :

$$\mathbb{P}_{\theta_0}^n \left[T_n \in \mathcal{R}_{n,\alpha} \right] \to \alpha.$$

convergent ou (consistant). Pour tout point $\theta \neq \theta_0$

$$\mathbb{P}_{\theta}^{n}\left[T_{n}\notin\mathcal{R}_{n,\alpha}\right]\to0.$$

Lests de Wald

Preuve

- Test asymptotiquement de niveau α par construction.
- lacksquare Contrôle de l'erreur de seconde espèce : Soit $heta
 eq heta_0$. On a

$$T_{n} = \left(\sqrt{n} \frac{\widehat{\theta}_{n} - \theta}{\sqrt{\nu(\widehat{\theta}_{n})}} + \sqrt{n} \frac{\theta - \theta_{0}}{\sqrt{\nu(\widehat{\theta}_{n})}}\right)^{2}$$
$$=: T_{n,1} + T_{n,2}.$$

On a $T_{n,1} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$ sous \mathbb{P}^n_{θ} et

$$T_{n,2} \xrightarrow{\mathbb{P}_{\theta}^n} \pm \infty \operatorname{car} \theta \neq \theta_0$$

Donc $T_n \xrightarrow{\mathbb{P}_{\theta}^n} +\infty$, d'où le résultat.

Remarque : si $\theta \neq \theta_0$ mais $|\theta - \theta_0| \lesssim 1/\sqrt{n}$, le raisonnement ne s'applique pas. Résultat non uniforme en le paramètre.

Test de Wald : cas vectoriel

■ Même contexte: $\Theta \subset \mathbb{R}^d$ et on dispose d'un estimateur $\widehat{\theta}_n$ asymptotiquement normal :

$$\sqrt{n} \big(\widehat{\theta}_n - \theta \big) \stackrel{d}{\longrightarrow} \mathcal{N} \big(0, V(\theta) \big)$$

où la matrice $V(\theta)$ est définie positive et continue en θ .

- On cheche à tester $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_1$.
- Sous \mathbb{P}_{θ} , la convergence $n^{1/2}(\widehat{\theta}_n \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, V(\theta))$ implique que

$$V^{-1/2}(\theta)n^{1/2}(\widehat{\theta}_n-\theta)\stackrel{d}{\to} \mathcal{N}(0,\mathrm{Id}_d)$$

et donc que

$$n(\widehat{\theta}_n - \theta)^T V^{-1}(\theta)(\widehat{\theta}_n - \theta) \stackrel{d}{\to} \chi_d^2$$
.

Exemple: loi exponentielle

- Hypothèse: $\{X_i\}_{i=1}^n$, i.i.d. de loi exponentielle de paramètre $\theta \in \Theta = \mathbb{R}_+^*$.
- log-vraisemblance

$$\ell_n(\theta) = n^{-1} \sum_{i=1}^n \log f(\theta, X_i) = \log(\theta) - \theta \bar{X}_n$$

où $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ est la moyenne empirique.

- Estimateur du MV: $\hat{\theta}_n = \bar{X}_n^{-1}$.
- Modèle régulier

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\rightarrow}_{\mathbb{P}_{\theta}} \mathcal{N}(0, I^{-1}(\theta))$$

où $I(\theta) = \theta^{-2}$ est l'information de Fisher

Exemple: test loi exponentielle

■ Test de Wald de l'hypothèse $H_0: \theta = \theta_0$ contre l'hypothèse $H_1: \theta \neq \theta_0$.

$$n(\widehat{\theta}_n - \theta_0)^2 / I(\widehat{\theta}_n) = n(1 - \theta_0 \, \widehat{\theta}_n)^2 \stackrel{d}{
ightarrow}_{\theta_0} \geq q_{1,1-lpha}^{\chi_2}$$

■ Application numérique n = 100, $\theta_0 = 0.5$,

Test de Wald: cas vectoriel

■ Le test de Wald de l'hypothèse $H_0=\theta=\theta_0$ contre $H_1=\theta \neq \theta_0$ rejette H_0 si

$$n(\widehat{\theta}_n - \theta_0)^T V^{-1}(\widehat{\theta}_n)(\widehat{\theta}_n - \theta_0) > q_{d,1-\alpha}^{\chi^2}$$

• On peut remplacer la matrice de covariance $V(\widehat{\theta}_n)$ par $V(\theta_0)$ ou tout estimateur consistant de $V(\theta_0)$.

Test de Wald : hypothèse nulle composite

■ Même contexte: $\Theta \subset \mathbb{R}^d$ et on dispose d'un estimateur $\widehat{\theta}_n$ asymptotiquement normal :

$$\sqrt{n} (\widehat{\theta}_n - \theta) \stackrel{d}{\longrightarrow} \mathcal{N} (0, V(\theta))$$

où la matrice $V(\theta)$ est définie positive et continue en θ .

■ But Tester $H_0: \theta \in \Theta_0$ contre $H_1: \theta \notin \Theta_0$, où

$$\Theta_0 = \big\{ \theta \in \Theta, \ \ g(\theta) = 0 \big\}$$

et

$$g: \mathbb{R}^d \to \mathbb{R}^m$$

 $(m \le d)$ est régulière.

Test de Wald cont.

■ Hypothèse : la différentielle (de matrice $J_g(\theta)$) de g est de rang maximal m en tout point de (l'intérieur) de Θ_0 .

Proposition

En tout point θ de l'intérieur de Θ_0 (i.e. sous l'hypothèse), on a, en loi sous \mathbb{P}^n_{θ} :

$$\sqrt{n}g(\widehat{\theta}_n) \stackrel{d}{\longrightarrow} \mathcal{N}(0, J_g(\theta)V(\theta)J_g(\theta)^T),$$

$$\begin{split} T_n &= \textit{ng}(\widehat{\theta}_n)^\mathsf{T} \Sigma_g(\widehat{\theta}_n)^{-1} g(\widehat{\theta}_n) \overset{d}{\longrightarrow} \chi^2(\textit{m}) \\ \textit{où } \Sigma_g(\theta) &= J_g(\theta) V(\theta) J_g(\theta)^\mathsf{T}. \end{split}$$

Preuve : méthode delta multidimensionnelle.

Test de Wald (fin)

Proposition

Sous les hypothèses précédentes, le test de zone de rejet

$$\mathcal{R}_{\alpha} = \left\{ T_n \geq q_{1-\alpha,m}^{\chi^2} \right\}$$

avec $\mathbb{P}\left[U>q_{1-lpha,m}^{\chi^2}
ight]=lpha$ si $U\sim\chi^2(m)$ est

■ Asymptotiquement de niveau α en tout point θ de (l'intérieur) de Θ_0 :

$$\mathbb{P}_{\theta}^{n}\left[T_{n}\in\mathcal{R}_{n,\alpha}\right]\to\alpha.$$

■ Convergent : pour tout $\theta \notin \Theta_0$ on a

$$\mathbb{P}_{\theta}^{n}\left[T_{n}\notin\mathcal{R}_{n,\alpha}\right]\rightarrow0.$$

C'est la même preuve qu'en dimension 1.

Test du score (Rao)

- Soit $\{X_i\}_{i=1}^n$ un *n*-échantillon i.i.d. associé à un modèle statistique $(\mathbb{P}_{\theta}, \theta \in \Theta)$ régulier
- Pour $\theta \in \Theta$, le score de Fisher est donné par

$$\eta_{\theta}(x) = \nabla_{\theta} \log f(\theta, x)$$

- Propriétés
 - Le score de Fisher est centré sous \mathbb{P}_{θ} ,

$$\mathbb{E}_{\theta}[\eta_{\theta}(X)] = 0, \quad \theta \in \Theta.$$

 La covariance du score de Fisher est égale à la matrice d'Information de Fisher

$$I(\theta) = \mathbb{E}_{\theta} \left[\eta_{\theta}(X) \eta_{\theta}(X)^{T} \right]$$

■ Conclusion Pour tout $\theta \in \Theta$,

$$Z_n(\theta) = n^{-1/2} \sum_{i=1}^n \eta_{\theta}(X_i) \stackrel{d}{\to}_{\mathbb{P}_{\theta_0}} \mathcal{N}(0, I(\theta)).$$

Test de Rao

■ Pour tester $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_0$, nous considérons la statistique de test

$$Z_n(\theta_0)^T I^{-1}(\theta_0) Z_n(\theta_0)$$

Sous l'hypothèse nulle,

$$Z_n(\theta_0)^T I^{-1}(\theta_0) Z_n(\theta_0) \stackrel{d}{\to}_{\mathbb{P}_{\theta_0}} \chi_d^2$$

et donc le test de Rao de rejet

$$Z_n(\theta_0)^T I^{-1}(\theta_0) Z_n(\theta_0) \geq q_{d,1-\alpha}^{\chi^2}$$

est asymptotiquement de niveau α .

Tests d'adéquation

■ <u>Situation</u> On observe (pour simplifier) un *n*-échantillon de loi *F* inconnu

$$X_1,\ldots,X_n\sim_{\text{i.i.d.}} F$$

Objectif Tester

$$H_0: F = F_0$$
 contre $F \neq F_0$

où F_0 distribution donnée. Par exemple : F_0 gaussienne centrée réduite.

Il est très facile de construire un test asymptotiquement de niveau α . Il suffit de trouver une statistique $\phi(X_1, \ldots, X_n)$ de loi connue sous l'hypothèse de base.

Test d'adéquation : situation

■ Exemples : sous l'hypothèse

$$\phi_1(X_1\dots,X_n) = \sqrt{nX_n} \sim \mathcal{N}(0,1)$$
 $\phi_2(X_1,\dots,X_n) = \sqrt{n} \frac{\overline{X}_n}{s_n} \sim \mathsf{Student}(n-1)$ $\phi_3(X_1,\dots,X_n) = (n-1)s_n^2 \sim \chi^2(n-1).$

- Le problème est que ces tests ont une faible puissance : ils ne sont pas consistants.
- Pas exemple, si $F \neq \text{gaussienne mais } \int_{\mathbb{R}} x dF(x) = 0, \int_{\mathbb{R}} x^2 dF(x) = 1$, alors

$$\mathbb{P}_{F}\left[\phi_{1}(X_{1},\ldots,X_{n})\leq x\right]\rightarrow\int_{-\infty}^{x}e^{-u^{2}/2}\frac{du}{\sqrt{2\pi}},\ x\in\mathbb{R}.$$

(résultats analogues pour ϕ_2 et ϕ_3).

■ La statistique de test ϕ_i ne caractérise pas la loi F_0 .

Test de Kolmogorov-Smirnov

■ Rappel Si la fonction de répartition *F* est continue,

$$\sqrt{n}\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\stackrel{d}{\longrightarrow}\mathbb{B}$$

où la loi de \mathbb{B} ne dépend pas de F.

Proposition (Test de Kolmogorov-Smirnov)

Soit $q_{1-\alpha}^{\mathbb{B}}$ tel que $\mathbb{P}\left[\mathbb{B}>q_{1-\alpha}^{\mathbb{B}}\right]=\alpha$. Le test défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ \sqrt{n} \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F_0(x) \right| \ge q_{1-\alpha}^{\mathbb{B}} \right| \right\}$$

est asymptotiquement de niveau $\alpha: \mathbb{P}_{F_0}\left[\widehat{F}_n \in \mathcal{R}_{n,\alpha}\right] \to \alpha$ et consistant :

$$\forall F \neq F_0 : \mathbb{P}_F \left[\widehat{F}_n \notin \mathcal{R}_{n,\alpha} \right] \to 0.$$

Test du Chi-deux

■ X variables qualitative : $X \in \{1, ..., d\}$.

$$\mathbb{P}\left[X=\ell\right]=\rho_{\ell},\;\ell=1,\ldots d.$$

- La loi de X est caratérisée par $\mathbf{p} = (p_1, \dots, p_d)^T$.
- Notation

$$\mathcal{M}_d = ig\{ oldsymbol{p} = ig(p_1, \dots, p_d ig)^T, \ \ 0 \leq oldsymbol{p}_\ell, \sum_{\ell=1}^d oldsymbol{p}_\ell = 1 ig\}.$$

■ Objectif $\mathbf{q} \in \mathcal{M}_d$ donnée. A partir d'un n-échantillon

$$X_1,\ldots,X_n\sim_{\text{i.i.d.}} \boldsymbol{p},$$

tester $H_0: \mathbf{p} = \mathbf{q}$ contre $H_1: \mathbf{p} \neq \mathbf{q}$.

Test d'adéquation du χ^2

■ distance du χ^2 :

$$\chi^2(\pmb{p},\pmb{q}) = \sum_{\ell=1}^d rac{(p_\ell-q_\ell)^2}{q_\ell}.$$

• Avec ces notations $\|\boldsymbol{U}_n(\boldsymbol{p})\|^2 = n\chi^2(\widehat{\boldsymbol{p}}_n, \boldsymbol{p}).$

Proposition

Pour $\mathbf{q} \in \mathcal{M}_d$ le test simple défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ n\chi^2(\widehat{\boldsymbol{p}}_n, \boldsymbol{q}) \geq q_{1-\alpha,d-1}^{\chi^2} \right\}$$

où $\mathbb{P}\left[U>q_{1-\alpha,d-1}^{\chi^2}\right]=\alpha$ si $U\sim\chi^2(d-1)$ est asymptotiquement de niveau α et consistant pour tester

$$H_0: \mathbf{p} = \mathbf{q}$$
 contre $H_1: \mathbf{p} \neq \mathbf{q}$.

Exemple de mise en oeuvre : expérience de Mendel

■ Soit *d* = 4 et

$$q = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right).$$

■ Répartition observée : n = 556

$$\widehat{\boldsymbol{p}}_{556} = \frac{1}{556}(315, 101, 108, 32).$$

lacktriangle Calcul de la statistique du χ^2

$$556 \times \chi^2(\widehat{\pmb{\rho}}_{556}, \pmb{q}) = 0,47.$$

- On a $q_{95\%,3} = 0,7815$.
- Conclusion : Puisque 0,47 < 0,7815, on accepte l'hypothèse $\mathbf{p} = \mathbf{q}$ au niveau $\alpha = 5\%$.