Sistem Intelijensia Adaptif

Bab ini membahas tiga jenis sistem intelijensia adaptif, yaitu: *artificial neural network, genetic algorithm,* dan *fuzzy system*. Kita akan mempelajari karakteristik dan perbedaan dari ketiga sistem.

6.1 Jaringan Syaraf Tiruan (Artificial Neural Network)

Jaringan Syaraf Tiruan (JST) adalah prosesor tersebar paralel yang sangat besar (*massively paralel distributed processor*) yang memiliki kecenderungan untuk menyimpan pengetahuan yang bersifat pengalaman dan membuatnya siap untuk digunakan (Aleksander & Morton 1990).

JST menyerupai otak manusia dalam dua hal, yaitu:

- 1. Pengetahuan diperoleh jaringan melalui proses belajar.
- 2. Kekuatan hubungan antar sel syaraf (*neuron*) yang dikenal sebagai bobot-bobot sinaptik digunakan untuk menyimpan pengetahuan.

JST mempunyai sifat dan kemampuan:

- 1. Nonlinieritas (*Nonlinearity*)
- 2. Pemetaan Input-Output (*Input-Output Mapping*)
- 3. Adaptivitas (*Adaptivity*)
- 4. Respon Yang Jelas (*Evidential Response*)
- 5. Informasi Yang Sesuai Dengan Keadaan (Contextual Information)
- 6. Toleransi Kesalahan (Fault Tolerance)
- 7. Kemampuan Implementasi Pada VLSI (VLSI Implementability)
- 8. Keseragaman Analisis Dan Perancangan (*Unifomity of Analysis and Design*)
- 9. Analogi Sel Syaraf Biologi (Neurobiological Analogy)

6.1.1 Model Sel Syaraf (Neuron)

Satu sel syaraf dapat dimodelkan secara matematis seperti diilustrasikan oleh gambar 6.1. Satu sel syaraf terdiri dari tiga bagian, yaitu: fungsi penjumlah (*summing function*), fungsi aktivasi (*activation function*), dan keluaran (*output*).

Secara matematis kita bisa menggambarkan sebuah neuron k dengan menuliskan pasangan persamaan sebagai berikut :

$$u_k = \sum_{j=1}^p w_{kj} x_j$$

dan

$$y_k = \varphi(u_k - \theta_k)$$

dimana $x_1, x_2, ..., x_p$ adalah sinyal input; $w_{k1}, w_{k2}, ..., w_{kp}$ adalah bobot-bobot sinaptik dari neuron k; u_k adalah linear combiner output; θ_k adalah threshold; $\mu(.)$ adalah fungsi aktivasi; dan yk adalah sinyal output dari neuron. Penggunaan threshold memberikan pengaruh adanya affine transformation terhadap output u_k dari linear combiner pada model gambar 1 sebagai berikut:

$$v_k = u_k - \theta_k$$

Gambar 6.1 Model Matematis Nonlinier Dari Suatu Neuron[HAY94].

6.1.2 Fungsi Aktivasi

Terdapat berbagai macam fungsi aktivasi yang dapat digunakan tergantung karakteristik masalah yang akan diselesaikan. Tiga diantara fungsi aktivasi adalah sebagai berikut:

1. Threshold Function

$$\varphi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ 0 & \text{if } v < 0 \end{cases}$$

2. Piecewise-Linear Function

$$\varphi(v) = \begin{cases} 1 & v \ge \frac{1}{2} \\ v & \frac{1}{2} > v > -\frac{1}{2} \\ 0 & v \le -\frac{1}{2} \end{cases}$$

3. Sigmoid Function

$$\varphi(v) = \frac{1}{1 + \exp(-av)}$$

6.1.3 Arsitektur Jaringan

Pola dimana *neuron-neuron* pada JST disusun berhubungan erat dengan algoritma belajar yang digunakan untuk melatih jaringan.

1. Single-Layer Feedforward Networks

Gambar 6.2 Feedforward Network dengan satu lapisan neurons

2. Multi-Layer Feedforward Networks

3. Recurrent Networks

Gambar 6.4 Recurrent network tanpa *self-feedback loop* dan tanpa *hidden neurons*.

4. Lattice Structure

Gambar 6.6 (a) *Lattice* satu dimensi dengan 3 *neuron*s. (b) *Lattice* dua dimensi dengan 3 kali 3 *neuron*s.