Teorema de Cantor

Clase 15

IIC 1253

Prof. Cristian Riveros

Recordatorio: Cardinalidad

Sea A y B dos conjuntos.

Definición

A y B son equinumerosos si existe una biyección $f: A \rightarrow B$.

Si A es equinumeroso con B lo anotaremos como |A| = |B|.

Recordatorio: Cardinalidad

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Por lo tanto, podemos tomar las clases de equivalencia de $|\cdot| = |\cdot|$.

Definición

Para un conjunto A, denotaremos por |A| su **clase de equivalencia** según la relación $|\cdot| = |\cdot|$.

Recordatorio: Conjuntos numerables

Definición

Decimos que un conjunto A es numerable si: $|A| = |\mathbb{N}|$.

Proposición

A es numerable si, y solo si, existe una secuencia infinita:

$$a_0, a_1, a_2, a_3, \ldots, a_n, a_{n+1}, \ldots$$

- 1. $a_i \in A$ para todo $i \in \mathbb{N}$.
- 2. $a_i \neq a_j$ para todo $i \neq j$.
- 3. para todo $a \in A$, existe un $i \in \mathbb{N}$ tal que $a = a_i$.

A es numerable si, y solo si, todos sus elementos se pueden poner en una lista infinita.

Recordatorio: Conjuntos numerables

Teorema

Los conjuntos \mathbb{P} y \mathbb{Z} son numerables.

Demostración (recordatorio)

Definimos la biyección $f : \mathbb{N} \to \mathbb{Z}$ como:

$$f(n) = \begin{cases} -\frac{n}{2} & \text{si } n \text{ es par} \\ \frac{n+1}{2} & \text{si } n \text{ es impar} \end{cases}$$

Recordatorio: conjuntos numerables

Teorema Los conjuntos \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son numerables.

Paradoja del gran hotel de Hilbert

¿son todos los conjuntos numerables?

¿es \mathbb{R} numerable?

Teorema

 \mathbb{R} **NO** es numerable.

Demostración

- Demostraremos que el intervalo (0,1) de $\mathbb R$ NO es numerable.
- Por contradicción, supongamos que (0,1) es numerable.
- Entonces existe una lista infinita del los reales en (0,1), donde cada elemento aparece una vez y solo una vez.

¿son todos los conjuntos numerables?

Demo	stración	que	e ℝ N	O es	nume	rable					
	Reales	Rep	Representación decimal								
	r ₀	0.	d ₀₀	d ₀₁	d ₀₂	d ₀₃	d ₀₄	d_{05}	•••		
	r_1	0.	d_{10}	d_{11}	d_{12}	d_{03} d_{13}	d_{14}	d_{15}			
	<i>r</i> ₂	0.	d_{20}	d_{21}	d_{22}	d ₂₃	d_{24}	d_{25}			
	<i>r</i> ₃	0.	d_{30}	d_{31}	d_{32}	d ₃₃	d_{34}	d_{35}			
	<i>r</i> ₄	0.	d_{40}			<i>d</i> ₄₃		d_{45}			
	r 5	0.	d_{50}	d_{51}	d_{52}	d_{53}	d_{54}	d_{55}			
	:					:			٠.		

¿son todos los conjuntos numerables?

Demostración que $\mathbb R$ NO es numerable

Reales	Representación decimal									
<i>r</i> ₀	0.	d_{00}	d_{01}	d_{02}	d_{03}	d_{04}	d_{05}			
r_1	0.	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			
<i>r</i> ₂	0.	d_{20}	d_{21}	d ₂₂	d_{23}	d_{24}	d_{25}			
<i>r</i> ₃	0.	d_{30}	d_{31}	d ₃₂	d ₃₃	d_{34}	d_{35}			
<i>r</i> ₄	0.	d_{40}	d_{41}	d 42	d ₄₃	d ₄₄	<i>d</i> ₄₅			
r 5	0.	d_{50}	d_{51}	d_{52}	d_{53}	d ₅₄	d ₅₅			
:					÷			٠.		

Para cada
$$i \ge 0$$
, definamos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$

Defina el número real: $r = 0.d_0d_1d_2d_3d_4d_5d_6...$

¿aparece r en la lista?

; son todos los conjuntos numerables?

Demostración que \mathbb{R} NO es numerable

- Para cada $i \ge 0$, definamos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$
- Defina el número real: $r = 0.d_0d_1d_2d_3d_4d_5d_6...$

i aparece r en la lista?

Veamos:

$$r = r_0? \times$$

$$r = r_1? \times$$

$$r = r_1?$$

- $r = r_n$? NO, porque el *n*-esimo digito de *r* es distinto al de r_n :

$$d_n \neq d_{nn}$$

Argumento de diagonalización de Cantor

Georg Cantor (1845 - 1918)

"I see it, but I don't believe it!"

Carta de Cantor a Dedekind.

Argumento de diagonalización de Cantor

Georg Cantor (1845 - 1918)

Tecnica inventada por **Georg Cantor** para demostrar que no existe una biyección entre A y su conjunto potencia:

$$2^A = \{S \mid S \subseteq A\}$$

Argumento de diagonalización de Cantor

Sea A un conjunto no vacío.

Teorema de Cantor

NO existe una biyección entre A y el conjunto potencia 2^A .

Demostración

■ Si A es finito, el teorema se cumple.

¿por qué?

■ Supongamos que A es infinito.

Para hacer mas "pedagógica" la demostración:

- 1. Demostraremos que NO existe una biyección de $\mathbb N$ a $2^{\mathbb N}$.
- 2. Demostraremos que NO existe una biyección de A a 2^A .

Diagonalización entre \mathbb{N} y $2^{\mathbb{N}}$

Suponga (por contradicción) una biyección f entre \mathbb{N} y $2^{\mathbb{N}}$.

Considere la siguiente la matriz:

	0	1	2	3	4	5	6	7	•••
f(0)	1	1	0	1	0	0	1	1	
f(1)	0	0	1	1	1	0	0	1	
f(2)	1	1	1	1	0	0	0	0	
f(3)	1	0	1	0	0	1	0	1	
f(4)	0	0	1	1	0	0	1	0	•••
f(5)	1	1	0	1	0	1	1	1	
f(6)	1	0	0	0	0	0	1	0	
<i>f</i> (7)	1	0	0	1	0	1	1	1	
:					÷				٠.

La coordenada (i,j) es igual a 1 ssi $j \in f(i)$.

Cada conjunto $S \in 2^{\mathbb{N}}$ es una fila en la matriz

Diagonalización entre \mathbb{N} y $2^{\mathbb{N}}$

Ahora considere la diagonal de la matriz:

	0	1	2	3	4	5	6	7	•••
f(0)	1	1	0	1	0	0	1	1	
f(1)	0	0	1	1	1	0	0	1	
f(2)	1	1	1	1	0	0	0	0	
f(3)	1	0	1	0	0	1	0	1	
f(4)	0	0	1	1	0	0	1	0	•••
f(5)	1	1	0	1	0	1	1	1	
f(6)	1	0	0	0	0	0	1	0	
f(7)	1	0	0	1	0	1	1	1	
÷					÷				٠.

- El conjunto de la diagonal es igual a $D = \{i \in \mathbb{N} \mid i \in f(i)\}$.
- El complemento de la diagonal es $\bar{D} = \{i \in \mathbb{N} \mid i \notin f(i)\}.$

¿aparece \bar{D} en alguna fila de la matriz?

Diagonalización entre \mathbb{N} y $2^{\mathbb{N}}$

Definición (complemento de la diagonal)

$$\bar{D} = \{i \in \mathbb{N} \mid i \notin f(i)\}$$

¿aparece \bar{D} en alguna fila de la matriz?

NO, debido a que \bar{D} difiere con f(x) para todo $x \in \mathbb{N}$.

$$x \in f(x)$$
 ssi $x \notin \bar{D}$

Por lo tanto, no existe una biyección entre $\mathbb N$ y $2^{\mathbb N}$.

¿Podemos ocupar el mismo argumento de la "diagonal" para cualquier conjunto *A*?

Diagonalización entre A y 2^A

Suponga (por contradicción) una biyección f entre A y 2^A .

Definición (complemento de la diagonal)

$$\bar{D} = \{a \in A \mid a \notin f(a)\}$$

Suponga que existe $x^* \in A$, tal que $f(x^*) = \overline{D}$.

- Si $x^* \in f(x^*) \Rightarrow x^* \in \bar{D} \Rightarrow x^* \notin f(x^*)$
- Si $x^* \notin f(x^*) \Rightarrow x^* \notin \bar{D} \Rightarrow x^* \in f(x^*)$

Por lo tanto, NO existe una biyección entre A y 2^A .

¿cuántos infinitos hay?

$$|\mathbb{N}| < |2^{\mathbb{N}}| = |\mathbb{R}| < |2^{2^{\mathbb{N}}}| < |2^{2^{2^{\mathbb{N}}}}| < \cdots$$

Notación: $\aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < \cdots$

Hay una cantidad infinita de distintos infinitos!!

¿hay algún conjunto que tenga una cardinalida (infinitud) intermedia?

¿hay algún infinito entremedio?

Hipótesis del continuo

No existe ningún conjunto A tal que: $|\mathbb{N}| < |A| < |\mathbb{R}|$.

David Hilbert (1862 - 1943)

Uno de los 23 problemas de Hilbert propuestos en 1900

¿hay algún infinito entremedio?

Hipótesis del continuo

No existe ningún conjunto A tal que: $|\mathbb{N}| < |A| < |\mathbb{R}|$.

Kurt Gödel (1906 - 1978)

Paul Cohen (1934 - 2007)

Con los axiomas de teoría de conjuntos (Zermelo-Fraenkel)

1940: NO se puede demostrar que la hipótesis es falsa.

1963: NO se puede demostrar que la hipótesis es verdadera.