ECE 65: Components & Circuits Lab

Lecture 23

Common-emitter / Common-source amplifier parameters

Reference notes: sections 6.1, 6.2

Sedra & Smith (7th Ed): sections 7.3

Saharnaz Baghdadchi

Course map

6. Transistor Amplifier Configurations

Review from lecture 2

We will analyze many <u>functional circuits</u>

Two-terminal Networks

Function is defined by the iv equation

Two-port Networks

Function is defined by the transfer function (e.g., v_o in terms of v_i)

A typical analog circuit contains a load and a source (two-terminal networks) and several two-port networks

We divide the circuit into building blocks to simplify analysis and design

In linear circuits:

Any two-terminal network can be replaced by its Thevenin equivalent circuit.

If a two-terminal network does not include an "independent source" it will be reduced to a single "impedance" (even if it includes dependent sources).

Source only sees a load resistor

Two-port network

Transfer function of a two-port network can be found by solving the above circuit once.

What are the amplifier parameters?

Voltage Gain of the Circuit: $A = \frac{v_o}{v_{sig}}$

Voltage Gain of the Amplifier: $A_v = \frac{v_o}{v_i}$

Open-loop Gain: $A_{vo} = \frac{v_o}{v_i} \Big|_{R_L o \infty}$

Input Resistance: $R_i = \frac{v_i}{i}$

Output Resistance of Amplifier: $R_o = -\frac{v_o}{i_o}\Big|_{v_i=0}$

Voltage Amplifier Model

Observations on the amplifier parameters

$$A = \frac{v_o}{v_{sig}} = \frac{v_i}{v_{sig}} \times \frac{v_o}{v_i} = \frac{R_i}{R_i + R_{sig}} A_v$$

When
$$R_{sig} = 0$$
, $A = A_v$

$$A_{v} = \frac{v_o}{v_i} = \frac{R_L}{R_L + R_o} A_{vo}$$

When
$$R_L = \infty$$
, $A_v = A_{vo}$

 A_{vo} is the maximum possible gain of the amplifier

From an amplifier circuit to the building block representation

Equations of A_{vo}, R_o, R_i for the common-emitter with an emitter resistance BJT amplifier

Please follow the derivations of the below parameters from the reference notes.

$$A_{vo} = \frac{-R_C}{R_E + (1 + R_C / r_o) \frac{R_E + r_{\pi}}{\beta}}$$

$$R_o = \left[\frac{\left(\frac{1}{g_m} \right) || r_o}{R_C || r_o} + \frac{r_\pi || R_E}{R_C} \right]^{-1} \left[(r_\pi || R_E) + (1/g_m) || r_o \right]$$

$$R_i = R_B || \left[R_E + r_\pi + \frac{\beta R_E}{1 + (R_E + R_C || R_L) / r_o} \right]$$

Common-emitter BJT amplifier parameters

The amplifier parameters derived for the common emitter amplifier with an emitter resistor can be used for this amplifier by setting $R_E=0$.

$$A_{vo} = -g_m(R_C||r_o)$$

$$R_o = R_C || r_o$$

$$R_i = R_B || r_{\pi}$$

Common-Source MOS amplifier parameters

Compare it with the signal circuit for the common-emitter BJT amplifier:

Common-source MOS amplifier parameters

The common emitter BJT amplifier parameters can be used for this amplifier when R_B is replaced with R_G , and R_C is replaced with R_D , and $r_\pi \to \infty$.

$$A_{vo} = -g_m(R_D||r_o)$$

$$R_o = R_D || r_o$$

$$R_i = R_G$$

Common-source MOS with a source resistance amplifier parameters

Compare it with the signal circuit for the common-emitter with an emitter resistor BJT amplifier:

Common-source MOS with a source resistance amplifier parameters

The common-emitter with an emitter resistor BJT amplifier parameters can be used for this amplifier when R_B is replaced with R_G , R_C is replaced with R_D , R_E is replaced with R_S , β/r_π is replaced with g_m and $r_\pi \to \infty$.

$$A_{vo} = \frac{-g_m R_D}{1 + g_m R_S + R_D / r_o}$$

$$R_o = R_D || [r_o (1 + g_m R_S)]$$

$$R_i = R_G$$

Some notes on common-emitter (CE) and common-source (CS) amplifiers:

- They have a high voltage gain.
- Ignoring R_G , CS has an infinite input resistance.
- Ignoring R_B , CE has a modest input resistance.
- Both CE and CS have a rather high output resistances.
- Adding R_S to the source of a CS or R_E to the emitter of a CE amplifier can have the benefits of raising the input resistance of CE amplifier, increasing linearity and increasing the amplifier bandwidth.

Lecture 23 reading quiz.

The below BJT common-emitter amplifier with $\beta=100$ is fed with a signal source having a resistance of 5 k Ω . A load resistor of 5 k Ω is connected to the output. In this amplifier, $R_i=2$ k Ω , and $R_o=5$ k Ω . $V_T=25$ mV. If the peak value of v_π (denoted by \hat{v}_π) is to be limited to 5mV, what are the corresponding peak values of v_{sig} (denoted by \hat{v}_{sig}), and v_o (denoted by \hat{v}_o)?

If Vsig is a sine wave with peak amplitude of 7 (mV), Vsig = 7 sin (at) (mV),

find and sketch all the instantaneous node voltages. Assume VD = 0.7 V

Hints:

is a sine wave with peak amplitude of 7 (mv),

find and sketch all the instantaneous node voltages

- We need to find the DC and AC components of all node voltages.
- To find the DC components, draw the bias circuit and solve it. Note that
 - the BJT will be in active mode.
- the circuit parameters are the same as what you used/ calculated in the reading quiz.
- you can use the calculated g_m value to find I_C (the DC collector current).
- Draw the signal circuit (small signal equivalent circuit) and solve the circuit to find equations relating v_{sig} to v_b, v e, and v c.
- Using the given v_{sig} waveform, find the Ac components of all node voltages.
- Draw the instantaneous or total node voltages.

Clicker question 1.

Amplifier design problem

The PMOS in the below common-source amplifier circuit has $V_{tp}=-0.7~V$ and $\lambda=0.$

- 1. Select a value for R_S to bias the transistor at $I_D=0.3\ mA$ and $V_{OV}=0.3\ V$.
- 2. Select a value for R_D that results in $A_V = -10 \ V/V$.

A.
$$R_D = 1 k\Omega$$

B.
$$R_D = 5 k\Omega$$

C.
$$R_D = 0.5 k\Omega$$

D.
$$R_D = 10 k\Omega$$

Hint:

$$g_m = \frac{2 I_D}{V_{OV}}$$

$$r_o \approx \frac{1}{\lambda . I_D}$$

$$A_{vo} = -g_m(R_D||r_o)$$

$$R_o = R_D || r_o$$

$$R_i = R_G$$