B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Branch: Artificial Intelligence and Machine Learning

Course Code: 23AM5PCIML

Semester: V

Duration: 3 hrs.

Max Marks: 100

Course: Introduction to Machine Learning

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.

2. Missing data, if any, may be suitably assumed.

				UN	IT - I		CV	co	PO	Marl
1	a)	How can algorithm to new exa dataset?	CO 1	PO 1	6					
	b)	Consider the given data set having the data about which seeds are poisonous. Identify the specific hypothesis using Find-S algorithm.							PO 2	10
		Example	Color	Toughness	Fungus	Appearance	Poisonous			
		1	GREEN	HARD	NO	WRINKLED	YES			
		2	GREEN	HARD	YES	SMOOTH	NO			
		3	BROWN	SOFT	NO	WRINKLED	NO			
		4	ORANGE	HARD	NO	WRINKLED	YES			
	5	5	GREEN	SOFT	YES	SMOOTH	YES			
		6	GREEN	HARD	YES	WRINKLED	YES			
		7	ORANGE	HARD	NO	WRINKLED	YES			
	c)	List and ex	xplain any f	our main ch	allenges	in Machine Le	earning.	CO 1	PO 1	4

					τ	NIT -	II					
	2	a)			ion tree for the following training samples using ID3 onsidering "Sensitivity" as the target attribute.					CO 2	PO 2	10
			Example	Height	Hair	Eye		Sensitivi				
			1	Short	Blond	Blu	ıe	Yes				
			2	Tall	Blond	Brov	wn	No				
			3	Tall	Red	Blu	ıe	Yes				
			4	Tall	Dark	Brov	wn	No				
			5	Short	Dark	Blu	ıe	No				
			6	Tall	Dark	Blu	ıe	No				
			7	Tall	Blond	Blu		Yes				
			8	Short	Blond	Brov	wn	No		1		
		b) Consider the value of k as 5, apply KNN to dataset provided and								CO 2	PO 2	10
			classify the	instance {	ance {170,57} accordingly.							
			Height Weight Class (CM) (KG)					J_{ij} .				
				16	57	51	Und	lerweight				
				182 62 Normal		7						
				17	6	69	Normal		•			
				17	3	64						
				17	2	65	N	Tormal				
					4	56 Underweight						
				16	59	58	N	Tormal				
				17	3	57	N	Tormal				
				17	0	55	N	Tormal				
			170 57		57	?						
			OR									
	3	3 a) Elaborate inductive bias in decision tree learning.								CO 2	PO 1	5
-		b)									PO 2	10
			and Negatively labelled data points $\{(2,2), (2,-2), (-2,-2), (-2,2)\}$ and Negatively labelled data points $\{(1,1), (1,-1), (-1,-1), (-1,1)\}$, Classify the data points by applying Non Linear SVM classifier									_ 0
			considering:	-	<i>y</i> -	11 7 -	<i>-</i>					
				()	4-x	$x_0 + x_0 $	1 - 2	$x_2 $				
			$_{\Phi}$ (x_1)) _ J (4-x	$\frac{1}{1} + x $	$\frac{1}{1}-3$	$\begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$ if	$\sqrt{x_1^2 + x_2^2} > 2$ therwise			
			$\Psi_1 \left(x_2 \right)$) ⁻) ((x_1)			0	therwise			
				('	(x_2)							
		c)	Derive the gradient descent rule for a locally weighted regression to								PO 1	5
			the target function.									5
		<u> </u>				I.	<u> </u>					

		UNIT - III			
4	a)	With an example explain EM algorithm in detail.	CO 2	PO 1	10
	b)	For the Bayesian network A B C	CO 2	PO 2	10
		D E G		X	
		 i. Are D and E necessarily independent given evidence about both A and B? ii. Are A and C necessarily independent given evidence about D? iii. Are A and H necessarily independent given evidence about 			
		C?			
		OR			
5	a)	Illustrate any two ensemble learning techniques commonly used in Machine Learning, highlighting the fundamental principles and advantages of each.	CO 2	PO 1	1(
	b)	The frequency of the features {Yellow, Sweet} required to classify the fruits is summarized:	CO 2	PO 1	10
		Fruit Yellow Sweet Total Mango 350 450 800 Banana 400 300 700 Total 750 750 1500			
		Using the concept of Naïve Bayes, predict the type of fruit possessing			
		the properties {Yellow, Sweet}			
_	Q-	UNIT - IV	G0.2	no.:	
6	a)	By considering the support threshold as S=33.34% & confidence threshold as C=60%, apply Apriori algorithm on the grocery store transactions and answer the following:	CO 3	PO 1	1(
		T. ID Items			
		T1 HotDogs, Buns, Ketchup			
		T2 HotDogs, Buns			
		T3 HotDogs, Coke, Chips			
		T4 Chips, Coke			
		T5 Chips, Ketchup			
		T6 HotDogs, Coke, Chips			

	 i. Find the candidate and frequent itemset of each database scan. Make sure to enumerate all of the final frequent itemsets. ii. Summarize the generated association rules and highlight the 2 strong rules iterated on highest confidence score. 			
b)	Classify the nodes A=(2,10), B=(2,5), C=(8,4), D=(5,8), E=(7,5), F=(6,4), G=(1,2), H=(4,9) into 3 clusters using k-means clustering algorithm. Note: Node A, D, G can be considered as the initial seeds.	CO 3	PO 2	10
	UNIT - V			
7 a)	Illustrate the process of Linear Discriminant analysis with suitable equations.	CO 3	PO 1	10
b)	James has been tasked for analyzing a large dataset containing information about customer behavior in an e-commerce platform. The dataset includes various features such as browsing time, purchase history and demographic information. However, the dataset is high-dimensional and James suspects that there might be redundant or correlated features affecting the performance of the machine learning models. i. How can Principal Component Analysis (PCA) be applied to improve the efficiency and interpretability of machine learning models in the context of analyzing customer behavior in our e-commerce platform? ii. Describe the step-by-step process of implementing PCA on the dataset, including the computation of principal components and the variance explained. Discuss the implications of dimensionality reduction in terms of model complexity, training time and the potential for overfitting. iii. Explore how PCA can help identify patterns and underlying structures in the customer behavior data, leading to more insightful and effective model outcomes. Highlight any considerations or challenges that may arise in applying PCA	CO 3	PO 3	10
