Thermodynamics (MEL2020) Indian Institute of Technology Jodhpur

Quiz-5B Date: 9th March 2022 Maximum points: 7 Instructions: Time: 5:10 to 5:35

- Each question carries **1 point**, there are 7 questions
- Please write your final short answers in A4 type sheet and upload within 25 mins
- No extra time is given for Scanning and uploading.
- -1 negative marking for each minute of late submission
- No Step wise marks are provided here (Each question caries 1 point)

Part 2: Write only final values or expressions or draw in A4 sheet.

1. Draw the correct T- ν diagram if steam at $\nu_1 = 0.00001$ m³/kg is heated to $\nu_2 = 8$ m³/kg while maintaining P = 10 kPa. The dots are states 1 and 2 with 1 being on the left. (1P)

TABLE A-5												
Saturated water—Pressure table												
	Specific volume, m³/kg			Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg·K		
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _r	Sat. vapor, v _g	Sat. liquid, u _r	Evap.,	Sat. vapor, ug	Sat. liquid, h,	Evap.,	Sat. vapor, h _g	Sat. liquid, s _r	Evap.,	Sat. vapor, s _g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1059 0.1956 0.2606 0.3118 0.3543	8.8690 8.6314 8.4621 8.3302 8.2222	8.8270 8.7227 8.6421
4.0 5.0 7.5 10	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.4224 0.4762 0.5763 0.6492 0.7549	8.0510 7.9176 7.6738 7.4996 7.2522	8.4734 8.3938 8.2501 8.1488

- 2. Air enters an adiabatic compressor at 300 K. Find the exit temperature for a compression ratio of 3, assuming air to be an ideal gas ($\gamma = 7/5$) and the process to be reversible (1 P)
- 3. A rigid tank contains 4 kg of an ideal gas at 5 atm and 80°C. Now a valve is opened, and half of mass of the gas is allowed to escape. If the final pressure in the tank is 2.2 atm, the final temperature (°C) in the tank is (1 P)
- Carbon dioxide contained in a piston-cylinder device is compressed from 0.3 to 0.1 m3. During the process, the pressure and volume are related by P = aV⁻², where a = 8 kPa-m⁶. Calculate the work done on the carbon dioxide during this process. (1 P)
- 5. Steam enters a diffuser steadily at 0.5 MPa, 300°C, and 122 m/s at a rate of 4 kg/s. The inlet area of the diffuser is (1 point)

	$P = 0.50 \text{ MPa } (151.83^{\circ}\text{C})$				<i>P</i> =	0.60 MPa	(158.83°	$P = 0.80 \text{ MPa } (170.41^{\circ}\text{C})$			
Sat.	0.37483	2560.7	2748.1	6.8207	0.31560	2566.8	2756.2	6.7593	0.24035 2576.0	2768.3	6.6616
200	0.42503	2643.3	2855.8	7.0610	0.35212	2639.4	2850.6	6.9683	0.26088 2631.1	2839.8	6.8177
250	0.47443	2723.8	2961.0	7.2725	0.39390	2721.2	2957.6	7.1833	0.29321 2715.9	2950.4	7.0402
300	0.52261	2803.3	3064.6	7.4614	0.43442	2801.4	3062.0	7.3740	0.32416 2797.5	3056.9	7.2345
350	0.57015	2883.0	3168.1	7.6346	0.47428	2881.6	3166.1	7.5481	0.35442 2878.6	3162.2	7.4107

- 6. Steam at 1000 bar and 300 K undergoes Joule-Thomson expansion to 1 atm. What would be the temperature of steam after expansion? Assume steam to be an ideal gas. (1 P)
- 7. An ordinary egg with a mass of 0.1 kg and a specific heat of 3.32 kJ/kg.°C is dropped into boiling water at 95°C. If the initial temperature of the egg is 5°C, the maximum amount of heat transfer to the egg is (1 P)