TD n°3 August 2023

Rupture ductile : homogénéisation de matériaux poreux

Jérémy Hure, Djimédo Kondo, Jérémy Bleyer

Objectifs:

- Obtenir un critère de plasticité pour matériaux poreux dans le cadre de la modélisation de la rupture ductile
- Analyser ce critère et dériver l'évolution de la porosité
- Discuter des effets d'anisotropie

1 Position du problème

Le point de départ est de considérer le critère de plasticité de von Mises qui s'écrit :

$$\phi(\sigma) = \sigma_{eq} - \sigma_0 \le 0$$
 $\sigma_{eq} = \sqrt{\frac{3}{2}s \cdot s} \quad \text{avec} \quad s = \sigma - \frac{1}{3} \text{tr} \sigma I$ (1)

La déformation plastique se produit quand le critère est atteint, *i.e.*, $\phi = 0$. Dans la suite, l'écrouissage n'est pas pris en compte ($\sigma_0 = \text{cste}$) et l'élasticité est ignorée, ce qui correspond à un matériau dit *rigide parfaitement plastique*.

La loi d'écoulement plastique associée permet d'obtenir le taux de déformation plastique :

$$d = d_{eq} \frac{3s}{2\sigma_0} \qquad \qquad d_{eq} = \sqrt{\frac{2}{3}d \cdot d}$$
 (2)

Afin d'étendre ce critère à la présence d'une porosité, la géométrie présentée sur la Fig. 1 est considérée, à savoir un cylindre creux de hauteur L, de rayons intérieur a et extérieur b. La porosité, définie comme le rapport entre le volume de la cavité et le volume total est noté $f = (a/b)^2$.

Figure 1 – Géométrie considérée et critère de plasticité

La contrainte et le taux de déformation (plastique) macroscopique sont définis à l'échelle du cylindre par les relations suivantes :

$$\Sigma = \frac{1}{V} \int_{V} \sigma dV \tag{3}$$

$$D = \frac{1}{V} \int_{V} d \, dV \tag{4}$$

$$=\frac{1}{2V}\int_{\partial V}\left(v\otimes n+n\otimes v\right)dS\tag{5}$$

avec v le champ de vitesse, V le cylindre de rayon b et n la normale à la surface extérieure.

1.1. Quel matériau peut être représenté par cette géométrie? Dans le cas de chargement axisymétrique, montrer que le critère de plasticité en l'absence de cavité est donné par le critère de von Mises de la matrice et correspond à la Fig. 1 où Σ_{ℓ} désigne la contrainte latérale dans le plan (x, y).

Nous cherchons à obtenir le critère de plasticité du cylindre, c'est-à-dire l'équivalent de l'Eq. 1 pour les grandeurs macroscopiques Σ et D en présence d'une cavité. Pour cela, la théorie de l'analyse limite est utilisée. En pratique, celle-ci consiste à postuler un champ de vitesse v admissible (dans un sens qui sera détaillé dans la suite), et à calculer la dissipation plastique associée :

$$\Pi = \frac{1}{V} \int_{V} \sigma_0 d_{eq}(v) \, dV \tag{6}$$

Sous certaines conditions (qui là-encore seront détaillées dans la suite), cette dissipation plastique permet d'évaluer la contrainte maximale admissible, c'est-à-dire le critère de plasticité macroscopique, par l'équivalence suivente :

$$\Sigma \cdot D \le \Pi(D) \quad \forall D \quad \Longleftrightarrow \quad \Phi(\Sigma) \le 0$$
 (7)

où Φ désigne le critère de plasticité macroscopique. De plus, on peut montrer que la frontière $\Phi(\Sigma^*) = 0$ du critère est décrite par les états de contrainte tels que :

$$\Sigma^* \cdot D = \Pi(D) \iff \Sigma^* = \frac{\partial \Pi}{\partial D}$$
 (8)

La frontière est ainsi paramétrée par la valeur 1 de D.

2 Champ de vitesse virtuel et dissipation plastique

Afin d'obtenir une estimation du critère de plasticité, la première étape consiste donc à choisir un champ de vitesse pris sous la forme :

$$v = v_r(r)e_r + v_z(z)e_z \tag{9}$$

2.1. En imposant que le champ de vitesse soit incompressible, montrer que celui-ci est de la forme :

$$v = \left(\frac{B}{r} - \frac{A}{2}r\right)e_r + Aze_z \tag{10}$$

2.2. Comment s'écrit le taux de déformation macroscopique *D*?

Ce champ de vitesse est **cinématiquement admissible** avec un tenseur des déformations $\mathbf{D} = D_{xx}(\mathbf{e}_x \otimes \mathbf{e}_x + \mathbf{e}_y \otimes \mathbf{e}_y) + D_{zz}\mathbf{e}_z \otimes \mathbf{e}_z$ et **plastiquement admissible**, *i.e.*, est compatible avec la plasticité de von Mises qui impose un écoulement incompressible. De plus, il est possible de montrer que $\mathbf{v}(\partial V) = \mathbf{D} \cdot \mathbf{x}$, avec \mathbf{x} le vecteur position, ce qui correspond à des conditions aux limites de type **homogène au bords en déformation**. Ces trois conditions justifient théoriquement l'utilisation de l'analyse limite (Eq. 7).

- 2.3. Evaluer le travail des efforts extérieurs $\Sigma \cdot D$ en fonction de A et B. On pourra poser $(\Sigma_{xx} + \Sigma_{yy})/2 = \Sigma_{\ell}$.
- 2.4. Donner l'expression de la dissipation plastique Π (Eq. 6) sous forme d'une intégrale.
 - 1. En réalité, l'expression (8) ne dépend pas de la norme de *D* mais uniquement de sa direction

3 Estimations

Avant d'évaluer cette intégrale dans le cas général, nous considérons deux cas particuliers, à savoir $(B = 0, A \neq 0)$ et $(B \neq 0, A = 0)$.

- 3.1. En calculant la dissipation plastique Π et explicitant l'Eq. 7 dans chacun de ces cas, déterminer les estimations du critère de plasticité associées.
- 3.2. Tracer l'estimation précédente du critère de plasticité dans le plan $(\Sigma_{\ell}, \Sigma_{zz} \Sigma_{\ell})$

4 Expression dans le cas général

Dans le cas général, il est possible de montrer que :

$$\Pi(\mathbf{D}) = \sigma_0 A \left(\lambda M(\lambda) + N(\lambda)\right) \quad \text{avec} \quad \lambda = \frac{2B}{\sqrt{3}Ab^2}$$
 (12)

$$M(\lambda) = \operatorname{asinh}\left(\frac{\lambda}{f}\right) - \operatorname{asinh}(\lambda)$$
 (13)

$$N(\lambda) = \sqrt{1 + \lambda^2} - \sqrt{f^2 + \lambda^2} \tag{14}$$

On note en particulier que $N'(\lambda) = -\lambda M'(\lambda)$.

4.1. En explicitant l'Eq. (8), montrer que les états de contrainte Σ^* à la frontière du domaine sont donnés par :

$$\frac{\Sigma_{zz}^* - \Sigma_{\ell}^*}{\sigma_0} = N(\lambda) \tag{15}$$

$$\frac{\Sigma_{\ell}^*}{\sigma_0} = \frac{M(\lambda)}{\sqrt{3}} \tag{16}$$

4.2. En combinant les expressions précédentes, montrer que :

$$\Phi(\Sigma) = \left(\frac{\Sigma_{zz} - \Sigma_{\ell}}{\sigma_0}\right)^2 + 2f \cosh\left(\sqrt{3}\frac{\Sigma_{\ell}}{\sigma_0}\right) - (1 + f^2) = 0$$
(17)

5 Etude du critère

L'Eq. (17) correspond au critère de plasticité pour matériau poreux recherché, dont il convient de vérifier la pertinence en étudiant les cas limites.

Figure 2 – Critère de Gurson dans le plan $(\Sigma_\ell, \Sigma_{zz} - \Sigma_\ell)$ pour différentes valeurs de porosité. En noir pointillés : le critère de von Mises de la matrice. En couleurs pointillées : les estimations de la section 2.

5.1. Que devient l'Eq. (17) dans la limite $f \to 0$? Et dans la limite $f \to 1$? La figure 2 trace le critère dans le plan $(\Sigma_{\ell}, \Sigma_{zz} - \Sigma_{\ell})$ pour différentes valeurs de porosité.

Le critère de plasticité obtenu doit être accompagné d'une loi d'écoulement, de la même manière que pour la plasticité de von Mises (Eq. 2). Hill [1], puis Gurson dans le cas des matériaux poreux [2], ont montré grâce au principe de dissipation maximale que la loi de normalité est conservée au niveau macroscopique lors du changement d'échelle. On a donc :

$$D = \dot{\Lambda} \frac{\partial \phi(\Sigma)}{\partial \Sigma}, \quad \dot{\Lambda} \ge 0 \tag{18}$$

où $\dot{\Lambda}$ est le multiplicateur plastique de la loi de plasticité macroscopique.

- 5.2. Déterminer D_{xx} , D_{zz} en fonction de Σ_{ℓ} , Σ_{zz} .
- 5.3. Dans le cadre de la modélisation de la rupture ductile, l'évolution de la porosité f est particulièrement d'intérêt. Montrer que $\dot{f} = (1 f) \text{tr}(\mathbf{D})$. Donner son expression en fonction de Σ_{ℓ} , Σ_{zz} et D_{zz} .

6 Extension aux matériaux anisotropes

Le critère de plasticité pour matériaux poreux obtenu est pertinent dans le cas des matériaux isotropes. Le matériau caractérisé dans les travaux pratiques (alliage X100) est orthotrope et peut être modélisé, en l'absence de porosité, par la plasticité de Hill :

$$\phi(\sigma) = \sigma_{eq}^{H} - \sigma_{0} \le 0 \quad \text{avec } \sigma_{eq}^{H} = \sqrt{\sigma \cdot \mathbb{A} \cdot \sigma}$$
(19)

Le tenseur A contient les informations concernant l'anisotropie du matériau. En notation de Mandel, ces tenseurs sont représentés par les matrices suivantes dans les axes d'orthotropies :

$$\sigma = \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sqrt{2}\sigma_{12} \\ \sqrt{2}\sigma_{13} \\ \sqrt{2}\sigma_{23} \end{pmatrix} \qquad A = \begin{pmatrix} F + H & -F & -H & 0 & 0 & 0 \\ -F & G + F & -G & 0 & 0 & 0 \\ -H & -G & G + H & 0 & 0 & 0 \\ 0 & 0 & 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 & M & 0 \\ 0 & 0 & 0 & 0 & 0 & N \end{pmatrix}$$
 (20)

Pour F = G = H = 1/2 et L = M = N = 3/2, le critère de Hill correspond au critère de von Mises.

Il est possible de conduire la même démarche d'analyse limite que dans le cas isotrope pour prendre en compte l'effet de la porosité, ce qui conduit au critère de plasticité suivant [3]:

$$\Phi(\Sigma) = \left(\frac{\Sigma_{eq}^H}{\sigma_0^2}\right)^2 + 2f \cosh\left(\frac{\sqrt{3}}{h_m} \frac{\Sigma_\ell}{\sigma_0}\right) - (1 + f^2) = 0$$
 (21)

avec
$$h_m = \sqrt{\frac{3}{2}} \sqrt{\frac{H + G}{4(FG + FH + GH)} + \frac{1}{2L}}.$$

- 6.1. Dans quelle situation particulière de symétries matérielles est-il raisonnable de considérer le même champ de vitesse qu'en (9)?
- 6.2. À partir de l'expression précédente, commenter l'effet de l'anisotropie sur la plasticité des matériaux poreux.

Références

- [1] Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15(2), 79-95.
- [2] Gurson, A.L. (1975). Plastic flow and fracture behaviour of ductile materials incorporating void nucleation, growth and interaction. PhD thesis. Brown University, Providence, USA.
- [3] Benzerga, A. A., & Besson, J. (2001). Plastic potentials for anisotropic porous solids. European Journal of Mechanics-A/Solids, 20(3), 397-434.