Chapter 11: Computations in a functor context III Monad transformers

Sergei Winitzki

Academy by the Bay

2019-01-05

Computations within a functor context: Combining monads

Programs often need to combine monadic effects

- "Effect" \equiv what else happens in $A \Rightarrow M^B$ besides computing B from A
- Examples of effects for some standard monads:
 - ▶ Option computation will have no result or a single result
 - ▶ List computation will have zero, one, or multiple results
 - ► Either computation may fail to obtain its result, reports error
 - ▶ Reader computation needs to read an external context value
 - ▶ Writer some value will be appended to a (monoidal) accumulator
 - ► Future computation will be scheduled to run later
- How to combine several effects in the same functor block (for/yield)?

- The code will work if we "unify" all effects in a new, larger monad
- Need to compute the type of new monad that contains all given effects

Combining monadic effects I. Trial and error

There are several ways of combining two monads into a new monad:

- If M_1^A and M_2^A are monads then $M_1^A \times M_2^A$ is also a monad
 - lacktriangle But $M_1^A imes M_2^A$ describes two separate values with two separate effects
- ullet If M_1^A and M_2^A are monads then $M_1^A+M_2^A$ is usually not a monad
 - lacksquare If it worked, it would be a choice between two different values / effects
- ullet If M_1^A and M_2^A are monads then one of $M_1^{M_2^A}$ or $M_2^{M_1^A}$ is often a monad
- Examples and counterexamples for functor composition:
 - ▶ Combine $Z \Rightarrow A$ and List^A as $Z \Rightarrow List^A$
 - ► Combine Future [A] and Option [A] as Future [Option [A]]
 - ▶ But Either[Z, Future[A]] and Option[Z \Rightarrow A] are not monads
 - ► Neither Future[State[A]] nor State[Future[A]] are monads
- The order of effects matters when composition works both ways:
 - ▶ Combine Either $(M_1^A = Z + A)$ and Writer $(M_2^A = W \times A)$
 - * as $Z + W \times A$ either compute result and write a message, or all fails
 - * as $(Z + A) \times W$ message is always written, but computation may fail
- Find a general way of defining a new monad with combined effects
- Derive properties required for the new monad

Combining monadic effects II. Lifting into a larger monad

If a "big monad" BigM[A] somehow combines all the needed effects:

```
// This could be valid Scala... // If we define the various
val result: BigM[Int] = for { // required "lifting" functions:
                                       def lift_1[A]: Seq[A] \Rightarrow BigM[A] = ???
   i \leftarrow lift_1(1 \text{ to } n)
   j \leftarrow lift_2(Future\{ q(i) \})
                                       def lift_2[A]: Future[A] \Rightarrow BigM[A] = ???
   k \leftarrow lift_3(maybeError(j))
                                       def lift_3[A]: Try[A] \Rightarrow BigM[A] = ???
} yield f(k)
```

• Example 1: combining as BigM[A] = Future[Option[A]] with liftings:

```
def lift<sub>1</sub>[A]: Option[A] ⇒ Future[Option[A]] = Future.successful(_)
def lift<sub>2</sub>[A]: Future[A] \Rightarrow Future[Option[A]] = _.map(x \Rightarrow Some(x))
```

Example 2: combining as BigM[A] = List[Try[A]] with liftings:

```
def lift_1[A]: Try[A] \Rightarrow List[Try[A]] = x \Rightarrow List(x)
def lift<sub>2</sub>[A]: List[A] \Rightarrow List[Try[A]] = _.map(x \Rightarrow Success(x))
```

Remains to be understood:

- Finding suitable laws for the liftings; checking that the laws hold
- Building a "big monad" out of "smaller" ones, with lawful liftings
 - ▶ Is this always possible? Unique? Are there alternative solutions?
- Ways of reducing the complexity of code; make liftings automatic

4 / 20

Laws for monad liftings I. Identity laws

Whatever identities we expect to hold for monadic programs must continue to hold after lifting M_1 or M_2 values into the "big monad" BigM

- We assume that M_1 , M_2 , and BigM already satisfy all the monad laws Consider the various functor block constructions containing the liftings:
- Left identity law after lift₁
 // Anywhere inside a for/yield: // Must be equivalent to...
 i ← lift₁(M₁.pure(x)) i = x
 j ← bigM(i) // Any BigM value. j ← bigM(x)
 lift₁(M₁.pure(x)).flatMap(b) = b(x) in terms of Kleisli composition (◊): (pure_{M₁}; lift₁): x⇒BigM^x ◊ b: x⇒BigM^y = b with f: x⇒M^y ◊ g: y⇒M^z ≡ x ⇒ f(x).flatMap(g)
 Right identity law after lift₁
 // Anywhere inside a for/yield: // Must be equivalent to...
 x ← bigM // Any BigM value. x ← bigM
- b.flatMap(M₁.pure andThen lift₁) = b in terms of Kleisli composition:

i = x

- $b^{:X\Rightarrow \mathsf{BigM}^Y} \diamond (\mathsf{pure}_{M_1}; \mathsf{lift}_1)^{:Y\Rightarrow \mathsf{BigM}^Y} = b$
- The same identity laws must hold for M₂ and lift₂ as well

 $i \leftarrow lift_1(M_1.pure(x))$

Laws for monad liftings II. Simplifying the laws

 $(\mathsf{pure}_{M_1}^{}, \mathsf{lift}_1)$ is a unit for the Kleisli composition \diamond in the monad \mathtt{BigM}

- \bullet But the monad ${\tt BigM}$ already has a unit element, namely ${\tt pure}_{{\tt BigM}}$
- \bullet The two-sided unit element is always unique: $u=u \diamond u'=u'$
- So the two identity laws for $(pure_{M_1}, lift_1)$ can be reduced to one law: $pure_{M_1}, lift_1 = pure_{BigM}$

Refactoring a portion of a monadic program under $\mathtt{lift_1}$ gives another law:

```
// Anywhere inside a for/yield, this...

i \leftarrow lift_1(p) // Any M_1 value.

j \leftarrow lift_1(q(i)) // Any M_1 value.

j \leftarrow lift_1(p(i)) // Any M_1 value.

j \leftarrow lift_1(p(i)) // Now lift it.
```

 $lift_1(p).flatMap(q andThen lift_1) = lift_1(p flatMap q)$

- Rewritten equivalently through ${\sf flm}_M: (A\Rightarrow M^B)\Rightarrow M^A\Rightarrow M^B$ as ${\sf lift_1}^\circ, {\sf flm}_{\sf BigM} (q^\circ, {\sf lift_1}) = {\sf flm}_{M_1} q^\circ, {\sf lift_1}$ both sides are functions $M_1^A\Rightarrow {\sf BigM}^B$
- Rewritten equivalently through $\operatorname{ftn}_M: M^{M^A} \Rightarrow M^A$, the law is $\operatorname{lift_1}^{\circ}\operatorname{fmap}_{\operatorname{BigM}}\operatorname{lift_1}^{\circ}\operatorname{ftn}_{\operatorname{BigM}} = \operatorname{ftn}_{M_1}^{\circ}\operatorname{lift_1} \operatorname{both}$ sides are functions $M_1^{M_1^A} \Rightarrow \operatorname{BigM}^A$
- In terms of Kleisli composition \diamond_M it becomes the **composition law**: $(b^{:X\Rightarrow M_1^Y}\circ lift_1) \diamond_{\mathsf{BigM}} (c^{:Y\Rightarrow M_1^Z}\circ lift_1) = (b\diamond_{M_1} c)\circ lift_1$
- Liftings lift
 ind lift
 must obey an identity law and a composition law
 - ▶ The laws say that the liftings **commute with** the monads' operations

Laws for monad liftings III. The naturality law

Show that $lift_1 : M_1^A \Rightarrow BigM^A$ is a natural transformation

- It maps $pure_{M_1}$ to $pure_{BigM}$ and flm_{M_1} to flm_{BigM}
 - ▶ lift₁ is a **monadic morphism** between monads M_1^{\bullet} and BigM[•]
 - example: monad "interpreters" $M^A \Rightarrow N^A$ are monadic morphisms

The (functor) naturality law: for any $f: X \Rightarrow Y$,

$$\begin{split} \mathsf{lift}_1 \circ \mathsf{fmap}_{\mathsf{BigM}} f &= \mathsf{fmap}_{M_1} f \circ \mathsf{lift}_1 \\ M_1^X \xrightarrow{\quad \mathsf{lift}_1 \quad} &\to \mathsf{BigM}^X \\ \mathsf{fmap}_{M_1} f^{:X \Rightarrow Y} \middle\downarrow \qquad \qquad & \bigvee_{\mathsf{fmap}_{\mathsf{BigM}}} f^{:X \Rightarrow Y} \\ M_1^Y \xrightarrow{\quad \mathsf{lift}_1 \quad} &\to \mathsf{BigM}^Y \end{split}$$

Derivation of the functor naturality law for lift₁:

- Express fmap as fmap_M $f = \text{flm}_M(f_{?}, \text{pure}_M)$ for both monads
- Given $f: X \Rightarrow Y$, use the law $\mathsf{flm}_{M_1} q \circ \mathsf{lift_1} = \mathsf{lift_1} \circ \mathsf{flm}_{\mathsf{BigM}} (q \circ \mathsf{lift_1})$ to compute $\mathsf{flm}_{M_1} (f \circ \mathsf{pure}_{M_1}) \circ \mathsf{lift_1} = \mathsf{lift_1} \circ \mathsf{flm} (f \circ \mathsf{pure}_{M_1}) \circ \mathsf{lift_1} = \mathsf{lift_1} \circ \mathsf{flm} (f \circ \mathsf{pure}_{\mathsf{BigM}}) = \mathsf{lift_1} \circ \mathsf{fmap}_{\mathsf{BigM}} f$

A monadic morphism is always also a natural transformation of the functors

Monad transformers I: Motivation

- Combine $Z \Rightarrow A$ and 1 + A: only $Z \Rightarrow 1 + A$ works, not $1 + (Z \Rightarrow A)$
 - ▶ It is not possible to combine monads via a natural bifunctor B^{M_1,M_2}
 - It is not possible to combine arbitrary monads as $M_1^{M_2^{ullet}}$ or $M_2^{M_1^{ullet}}$
 - **★** Example: state monad $St_S^A \equiv S \Rightarrow A \times S$ does not compose
- The trick: for a fixed base monad L^{\bullet} , let M^{\bullet} (foreign monad) vary
- Call the desired result the "L's monad transformer", $T_L^{M,\bullet}$
 - ► In Scala: LT[M[_]: Monad, A] e.g. ReaderT, StateT, etc.
- $T_L^{M,\bullet}$ is generic in M but not in L
 - No general formula for monad transformers seems to exist
 - ▶ For each base monad *L*, a different construction is needed
 - ► Some monads *L* do not seem to have a transformer (?)
- To combine 3 or more monads, compose the transformers: $T_{L_1}^{T_{L_2}^{M,*}}$
 - ► Example in Scala: StateT[S, ListT[Reader[R, ?], ?], A]
- This is called a monad stack but may not be functor composition
 - ▶ because e.g. State[S, List[Reader[R, A]]] is not a monad

Monad transformers II: The requirements

A monad transformer for a base monad L^{\bullet} is a type constructor $\mathcal{T}_{L}^{M,\bullet}$ parameterized by a monad M^{\bullet} , such that for all monads M^{\bullet}

- $T_L^{M,\bullet}$ is a monad (the monad M transformed with T_L)
- "Lifting" a monadic morphism lift $_L^M: M^A \leadsto T_L^{M,A}$
- "Base lifting" a monadic morphism blift : L^A → T_L^{M,A}
 The "base lifting" could not possibly be natural in L[•]
- ullet Transformed identity monad (Id) must become L, i.e. $T_L^{\operatorname{Id},ullet}\cong L^ullet$
- $T_L^{M,\bullet}$ is monadically natural in M^{\bullet} (but not in L^{\bullet})
 - $ightharpoonup T_L^{M,ullet}$ is natural w.r.t. a monadic functor M^ullet as a type parameter
 - ▶ For any monad N^{\bullet} and a monadic morphism $f: M^{\bullet} \leadsto N^{\bullet}$ we need to have a monadic morphism $T_L^{M,\bullet} \leadsto T_L^{N,\bullet}$ for the transformed monads: $\operatorname{mrun}_I^M: (M^{\bullet} \leadsto N^{\bullet}) \Rightarrow T_L^{M,\bullet} \leadsto T_L^{N,\bullet}$
 - * If we implement $T_L^{M,\bullet}$ only via M's monad methods, naturality will hold
 - ▶ Cf. traverse: $L^A \Rightarrow (A \Rightarrow F^B) \Rightarrow F^{L^B}$ natural w.r.t. applicative F^{\bullet}
 - ▶ This can be used for lifting a "runner" $M^A \sim A$ to $T_L^{M, \bullet} \sim T_L^{\mathrm{Id}, \bullet} = L^{\bullet}$
- "Base runner": lifts $L^A \rightsquigarrow A$ into a monadic morphism $T_L^{M, \bullet} \rightsquigarrow M^{\bullet}$; brun $_L^M : (L^{\bullet} \leadsto \bullet) \Rightarrow T_L^{M, \bullet} \leadsto M^{\bullet}$

Sergei Winitzki (ABTB)

Monad transformers III: First examples

Recall these monad constructions:

- If M^A is a monad then $R \Rightarrow M^A$ is also a monad (for a fixed type R)
- If M^A is a monad then $M^{Z+A\times W}$ is also a monad (for fixed W, Z)

This gives the monad transformers for base monads Reader, Writer, Either:

```
type ReaderT[R, M[], A] = R \Rightarrow M[A] type EitherT[Z, M[], A] = M[Either[Z, A]] type WriterT[W, M[], A] = M[(W, A)]
```

- ReaderT wraps the foreign monad from the outside
- EitherT and WriterT require the foreign monad to wrap them outside

Remaining questions:

- What are transformers for other standard monads (List, State, Cont)?
 - ► These monads do not compose (neither "inside" nor "outside" works)
- How to derive a monad transformer for an arbitrary given monad?
 - ▶ For monads obtained via known monad constructions?
 - ▶ For monads constructed via other monad transformers?
 - ▶ Is it always possible? (unknown; may be impossible for some monads)
- For a given monad, is the corresponding monad transformer unique?
- How to avoid the boilerplate around lift? (mtl-style transformers)

Monad transformers IV: The zoology of monads

Need to select the correct monad transformer construction, per monad:

- "Composed-inside", base monad is inside foreign monad: $T_L^{M,A} = M^{L^A}$
 - ► Examples: the "single-value monads" OptionT, WriterT, EitherT
- "Composed-outside" the base monad is outside: $T_L^{M,A} = L^{M^A}$
 - ightharpoonup Examples: ReaderT; SearchT for search monad S[A] = (A \Rightarrow Z) \Rightarrow A
 - ► More generally: all rigid monads have "outside" transformers
 - **★** Definition: a **rigid monad** has the method **fuseIn**: $(A \Rightarrow R^B) \Rightarrow R^{A \Rightarrow B}$
- "Recursive": interleaves the base monad and the foreign monad
 - Examples: ListT, NonEmptyListT, FreeMonadT
- Monad constructions: defining a transformer for new monads
 - ▶ Product monads $L_1^A \times L_2^A$ product transformer $T_{L_1}^{M,A} \times T_{L_2}^{M,A}$
 - "Consumer-choice" monads $H^A \Rightarrow A$ composed-outside transformer
 - ► Free pointed monads $A + L^A$ transformer $M^{A+T_L^{M,A}}$
- "Irregular": none of the above constructions work, need something else
 - ► $T_{\text{State}}^{M,A} = S \Rightarrow M^{S \times A}$; $T_{\text{Cont}}^{M,A} = (A \Rightarrow M^R) \Rightarrow M^R$; "selector" $F^{A \Rightarrow P^Q} \Rightarrow P^A$ - transformer $F^{A \Rightarrow T_P^{M,Q}} \Rightarrow T_P^{M,A}$; codensity $\forall R. (A \Rightarrow M^R) \Rightarrow M^R$
- Examples of monads K^A for which no transformers exist? (not sure)
 - $ightharpoonup K^A \equiv A + ((A \Rightarrow R) \Rightarrow R) \text{ and } K^A \equiv A + ((A \Rightarrow P^Q) \Rightarrow P^A)$

Composed-inside transformers I

Base monad L^{\bullet} , foreign monad M^{\bullet} , transformer $T_L^{M,\bullet} \equiv T^{\bullet} \equiv M^{L^{\bullet}}$

- ullet Monad instance: use the natural transformation $\operatorname{seq}_L^{M,A}:L^{M^A} \leadsto M^{L^A}$
 - ▶ pure_T : $A \Rightarrow M^{L^A}$ is defined as pure_T = pure_M; pure_L ↑ m
 - $\operatorname{ftn}_T: T^{T^A} \Rightarrow T^A$ is defined as $\operatorname{ftn}_T = \operatorname{seq}^{\uparrow M}_{?} \operatorname{ftn}_L^{\uparrow M \bar{\uparrow} M}_{?} \operatorname{ftn}_M$

$$T^{T^A} \equiv M^{L^{M^{L^A}}} \xrightarrow[\mathsf{fmap}_M \, \mathsf{seq}_L^{M,L^A}]{} \rightarrow M^{M^{L^A}} \xrightarrow[\mathsf{fmap}_M \, (\mathsf{fmap}_M \, \mathsf{ftn}_L)]{} M^{M^{L^A}} \xrightarrow[\mathsf{ftn}_M]{} M^{L^A} \equiv T^A$$

- Monad laws must hold for T^A (must check this separately)
 - This depends on special properties of $\operatorname{seq}_L^{M,A}$ (denoted seq for brevity), e.g. $\operatorname{pure}_L^{\,\circ}\operatorname{seq} = \operatorname{pure}_L^{\,\circ}M$ (L-identity); $\operatorname{pure}_M^{\,\circ}\operatorname{seq} = \operatorname{pure}_M$ (M-identity)
 - ★ See example code that verifies these properties for $L^A \equiv E + W \times A$
 - ★ It is not enough to have any traversable functor L[•] here!
- Monad transformer methods for $T_I^{M,\bullet} \equiv M^{L^{\bullet}}$:
 - ▶ Lifting, lift : $M^A \Rightarrow M^{L^A}$ is defined as lift = pure $L^{\uparrow M}$
 - ▶ Base lifting, blift : $L^A \Rightarrow M^{L^A}$ is equal to pure_M
 - ▶ Runner, mrun : $(\forall B.M^B \Rightarrow N^B) \Rightarrow M^{L^A} \Rightarrow N^{L^A}$ is equal to id
 - ▶ Base runner, brun : $(\forall B.L^B \Rightarrow B) \Rightarrow M^{L^A} \Rightarrow M^A$ is equal to fmap_M

* Composed-inside transformers II. Proofs

Base monad L^{ullet} , foreign monad M^{ullet} , transformer $T_L^{M,ullet} \equiv T^{ullet} \equiv M^{L^{ullet}}$

- Identity laws for the monad T^{\bullet} hold if they hold for L^{\bullet} and M^{\bullet} and if the properties $\operatorname{pure}_{L^{\circ}}^{\uparrow M} \operatorname{seq} = \operatorname{pure}_{M}^{\uparrow L} \operatorname{seq} = \operatorname{pure}_{M}^{\downarrow L} \operatorname{hold}$
- pure $_T^{\uparrow T}$ \circ ftn $_T$ = id. Proof: pure $_T$ = pure $_M$ \circ pure $_L^{\uparrow M}$ = pure $_L$ \circ pure $_M$ (naturality); for all f: $f^{\uparrow T} = f^{\uparrow L \uparrow M}$ and f \circ pure $_M$ = pure $_M$ \circ $f^{\uparrow M}$ (naturality); so pure $_T^{\uparrow T}$ \circ ftn $_T$ is (pure $_L$ \circ pure $_M$) \circ $f^{\uparrow L \uparrow M}$ \circ (seq \circ $f^{\uparrow M}$ \circ ftn $_M$) = pure $_L^{\uparrow L \uparrow M}$ \circ pure $_M^{\uparrow M}$ \circ ftn $_L$ \circ pure $_M^{\uparrow M}$ \circ ftn $_L$ \circ pure $_M^{\uparrow M}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$ \circ ftn $_L$ \circ pure $_L^{\uparrow L}$
- Identity law for lift: $pure_{\underline{\mathcal{M}},\underline{\hat{f}}}$ lift = $pure_T$ (this is the definition of $pure_T$)
- Composition law: lift; lift[†] ; ftn_T = ftn_M; lift. Proof: ftn_M; pure_L^{↑M} = pure_L^{↑M}; ftn_M and pure_L^{↑M}; (pure_L^{↑M}; seq^{↑M}); ftn_L^{↑M}; ftn_M = (pure_L^{↑M}; seq^{↑M}); (pure_L^{↑L}↑M↑M; ftn_L^{↑M↑M}); ftn_M = pure_L^{↑M↑M}; ftn_M
- Identity law for blift: $pure_{L_{\gamma}^{\circ}}$ blift = $pure_{T}$. ($pure_{L_{\gamma}^{\circ}}$ pure_M = $pure_{M_{\gamma}^{\circ}}$ pure_L
- Composition law: blift; blift $^{\uparrow T}$; ftn $_{T} = \text{ftn}_{L}$; blift. Proof: pure $_{M}$; pure $_{M}^{\uparrow L\uparrow M}$; (seq $^{\uparrow M}$; ftn $_{L}^{\uparrow M\uparrow M}$; ftn $_{M}$) = pure $_{M}$; (pure $_{M}^{\uparrow M}$; ftn $_{L}^{\uparrow M\uparrow M}$); ftn $_{M}$ = pure $_{M}$; (ftn $_{L}^{\uparrow M}$; pure $_{M}^{\uparrow M}$); ftn $_{M}$ = ftn $_{L}$; pure $_{M}$; (pure $_{M}^{\uparrow M}$; ftn $_{M}$) = ftn $_{L}$; blift
- Runner laws follow from naturality of id and fmap

13 / 20

Rigid monads, their laws and structure I

- A rigid functor R^{\bullet} has the method fuseIn: $(A \Rightarrow R^B) \Rightarrow R^{A \Rightarrow B}$
 - Examples: $R^A \equiv A \times A$ and $R^A \equiv Z \Rightarrow A$ are rigid; $R^A \equiv 1 + A$ is not
 - ► Compare with fuseOut: $R^{A\Rightarrow B} \Rightarrow A \Rightarrow R^B$, which exists for any functor

 * Implementation: fo $h^{:R^{A\Rightarrow B}} = x^{:A} \Rightarrow (f^{:A\Rightarrow B} \Rightarrow f x)^{\uparrow R} h$

Laws: the fuseIn method (fi) must be "compatible with the monad R"

- fi must be a natural lifting from $A \Rightarrow R^B$ to $R^{A \Rightarrow B}$
- Naturality: fi $(f \circ g^{\uparrow R})$ = fi $f \circ (g^{:A \Rightarrow B} \Rightarrow g \circ g)^{\uparrow R}$ for $\forall f^{:A \Rightarrow R^B}$, $g^{:B \Rightarrow C}$
- A (generalized) functor from Kleisli category to "applicative" category
 - identity law: $fi(pure_R) = pure_R(id)$
 - composition law: fi $(f \diamond_R g) = (p \times q \Rightarrow p; q)^{\uparrow R}$ (fi $f \bowtie fi g$) $A \Rightarrow R^B \times B \Rightarrow R^C \xrightarrow{\text{use } \diamond_R} A \Rightarrow R^C$ $\downarrow^{\text{fi}} \qquad \downarrow^{\text{fi}}$ $R^{A \Rightarrow B} \times R^{B \Rightarrow C} \xrightarrow{\text{use } \bowtie} R^{(A \Rightarrow B) \times (B \Rightarrow C)} \xrightarrow{\text{fmap}(?)} R^{A \Rightarrow C}$
 - ▶ Alternative formulation: flm = fi; pa where pa : $R^{A\Rightarrow B} \Rightarrow R^A \Rightarrow R^B$
 - Then fig fo = id. Proof: fo x a = pa x (pure a); set $x^{:R^{A\Rightarrow B}} = fi h^{:A\Rightarrow R^B}$ and get fo x a = pa (fi h) (pure a) = flm h (pure a) = h a, so fo (fi h) = h
- Rigid monads R^{\bullet} have "composed-outside" transformers $T_R^{M,A} \equiv R^{M^A}$

Rigid monads, their laws and structure II

Examples and constructions of rigid and non-rigid monads:

- Rigid: Id, Reader, and $R^A \equiv H^A \Rightarrow A$ (where H^{\bullet} is a contrafunctor)
 - ▶ The construction $R^A \equiv H^A \Rightarrow A$ covers $R^A \equiv 1$, $R^A = A$, $R^A = Z \Rightarrow A$
- Not rigid: $R^A \equiv W \times A$, $R^A \equiv E + A$, List^A, Cont^A, State^A
- The composition of rigid monads is rigid: $R_1^{R_2^n}$
- The product of rigid monads is rigid: $R_1^A \times R_2^A$
- The selector monad $S^A \equiv (A \Rightarrow R^Q) \Rightarrow R^A$ is rigid if R^A is rigid

Use cases for rigid functors and rigid monads:

- A rigid functor is pointed: a method $A \Rightarrow R^A$ can be defined
- ullet A rigid functor has a single constructor because $R^1\cong 1$
- Handle multiple M^{\bullet} effects at once: For a rigid monad R^{\bullet} and any monad M^{\bullet} , have "R-valued flatMap": $M^{A} \times (A \Rightarrow R^{M^{B}}) \Rightarrow R^{M^{B}}$
- Uptake monadic API: For a rigid monad R^{\bullet} , can implement a general refactoring function, monadify: $((A \Rightarrow B) \Rightarrow C) \Rightarrow (A \Rightarrow R^B) \Rightarrow R^C$

Composed-outside transformers for rigid monads I

Base rigid monad R^{\bullet} , foreign monad M^{\bullet} , transformer $T_R^{M,\bullet} \equiv T^{\bullet} \equiv R^{M^{\bullet}}$

- Monad instance: define the Kleisli category with morphisms $A \Rightarrow R^{M^A}$
- pure $_T: A \Rightarrow R^{M^A}$ is defined by $pure_T \equiv pure_M^\circ, pure_R = pure_R^\circ, pure_M^{\uparrow R}$
- \diamond_{T} is defined by $f \diamond_{T} g \equiv \text{fo}((p \times q \Rightarrow p \diamond_{M} q)^{\uparrow R} (\text{fi } f \bowtie_{R} \text{fi } g))$ $(A \Rightarrow R^{M^{B}}) \qquad \diamond_{T} \qquad (B \Rightarrow R^{M^{C}}) \xrightarrow{\text{define } \diamond_{T} \text{ as}} \qquad (A \Rightarrow R^{M^{C}})$ $\downarrow^{\text{fi}} \qquad \qquad \downarrow^{\text{fi}} \qquad \qquad \downarrow^{\text{fo}} \qquad \qquad \uparrow^{\text{fo}} \qquad \uparrow^{\text{fo}} \qquad \uparrow^{\text{fo}} \qquad \uparrow^{\text{fi}} \qquad \uparrow^{\text{fo}} \qquad \uparrow^{\text{fi}} \qquad \uparrow^{\text$
- ullet Monad laws hold for T^A as Kleisli category laws
- Identity: $pure_T$ is id_{\diamond_T} due to $fi(pure_T) = pure_R(pure_M) : R^{A \Rightarrow M^A}$
- Associativity of \diamond_T follows from associativity of \diamond_M and \bowtie_R
- Monad transformer methods for $T_R^{M,\bullet} \equiv R^{M^{\bullet}}$:
 - ▶ Lifting, lift : $M^A \Rightarrow R^{M^A}$ is equal to pure_M
 - ▶ Base lifting, blift : $R^A \Rightarrow R^{M^A}$ is equal to pure_M^{↑R}
 - ▶ Runner, mrun : $(\forall B.M^B \Rightarrow N^B) \Rightarrow R^{M^A} \Rightarrow R^{N^A}$ is equal to fmap_R
 - ▶ Base runner, brun : $(\forall B.R^B \Rightarrow B) \Rightarrow R^{M^A} \Rightarrow M^A$ is equal to id

* Composed-outside transformers for rigid monads II. Proofs

- Properties: fi \circ fo = id, pa = fo \circ flm, and flm = fi \circ pa makes $R^{A\Rightarrow M^B}$ into a category

 The operation $\diamond_M^{\uparrow R}$ ($p\bowtie_R q$) $\equiv p\star q$ defines the composition for morphisms $R^{A\Rightarrow M^B}$ It suffices to show that category laws hold for $R^{A\Rightarrow M^B}$ and that $A\Rightarrow R^{M^B}$ is
 - mapped injectively into $R^{A\Rightarrow M^B}$ via fi/fo since we define \diamond_T via this injection Identity laws for $R^{A\Rightarrow M^B}$: naturality of fi gives fi(pure_T) = fi(pure_R; pure_M^{\uparrow R}) =

 $fi(pure_R) \circ (q^{:A \Rightarrow A} \Rightarrow q \circ pure_M)^{\uparrow R} = pure_R (id) \circ (q \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} = q^{\downarrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\uparrow R} \circ (q^{\downarrow R} \Rightarrow q \circ pure_M)^{\downarrow R} \circ (q^$ $pure_R(id, pure_M) = pure_R(pure_M) : R^{A \Rightarrow M^A}$. Compose fi (pure_T) with a morphism $r: R^{A\Rightarrow M^B}$ and get $\Diamond_M^{\uparrow R}$ (pure_R(pure_M) $\bowtie_R r$) = $\Diamond_M^{\uparrow R}$ ($f \Rightarrow pure_M \times f$)^{$\uparrow R$} r) = $(f \Rightarrow \mathsf{pure}_M \diamond_M f)^{\uparrow R} r = (\mathsf{id})^{\uparrow R} r = r$, and similarly for the right composition. So

• Associativity for $R^{A \Rightarrow M^B}$: use $(f^{\uparrow R}p) \bowtie_R q = (a \times b \Rightarrow f(a) \times b)^{\uparrow R} (p \bowtie_R q)$, get $\diamond^{\uparrow R}((\diamond^{\uparrow R}(p\bowtie q))\bowtie r)=\diamond^{\uparrow R}((((a\times b)\times c\Rightarrow (a\diamond b)\times c)^{\uparrow R}(p\bowtie q))\bowtie r)=$ $((a \times b) \times c \Rightarrow (a \diamond b) \diamond c)^{\uparrow R} ((p \bowtie q) \bowtie r)$ while the other order gives $\diamond^{\uparrow R}(p\bowtie(\diamond^{\uparrow R}(q\bowtie r)))=\diamond^{\uparrow R}((a\times(b\times c)\Rightarrow a\times(b\diamond c))^{\uparrow R}(p\bowtie(q\bowtie r)))=$

pure_R (pure_M) is the identity for $R^{A \Rightarrow M^B}$, and fo (pure_R (pure_M)) = pure_T.

 $(a \times (b \times c) \Rightarrow a \diamond (b \diamond c))^{\uparrow R} (p \bowtie (q \bowtie r)),$ which is equivalent to the above. • Associativity for $A \Rightarrow R^{M^B}$: show that fi $p^{:A \Rightarrow R^{M^B}} \star$ fi $q^{:B \Rightarrow R^{M^C}} =$ fi r for $r^{:A \Rightarrow R^{M^C}}$

i.e. fi-injection preserves \star . Now, fi-injection preserves $(\circ)^{\uparrow R}(\bowtie_R)$ by def. of rigid monad R, while $f \diamond_M g = f \circ \operatorname{flm}_M g$, so fi $p \star \operatorname{fi} q = (\circ)^{\uparrow R} (\operatorname{fi} p \bowtie \operatorname{flm}_M^{\uparrow R} (\operatorname{fi} q))$. Then $fi \circ f^{\uparrow R} \circ fo \circ fi = fi \circ fo \circ fi \circ f^{\uparrow R} = fi \circ f^{\uparrow R}$ by naturality of $fo \circ fi$. So $flm_M^{\uparrow R}$ (fi g) = $fi \circ g$ for some \tilde{q} , and finally fi $p \star \text{fi } q = (\hat{\gamma})^{\uparrow R}$ (fi $p \bowtie \text{fi } \tilde{q}$) = fi r for some r.

Codensity monads

Codensity monad over a functor F is $Cod^{F,A} \equiv \forall B. (A \Rightarrow F^B) \Rightarrow F^B$ Properties:

- $Cod^{F, \bullet}$ is a monad for any functor F^{\bullet}
- If F^{\bullet} is itself a monad then we have monadic morphisms inC : $F^{\bullet} \sim \operatorname{Cod}^{F, \bullet}$ and outC : $\operatorname{Cod}^{F, \bullet} \sim F^{\bullet}$ such that inC \S outC = id

Invalid attempts to create a general monad transformer

General recipes for combining two functors L^{\bullet} and M^{\bullet} all fail:

- "Fake" transformers: $T_L^{M,A} \equiv L^A$; or $T_L^{M,A} \equiv M^A$; or just $T_L^{M,A} \equiv 1$
 - ▶ no lift and/or no base runner and/or $T_L^{Id,A} \not\equiv L^A$
- Functor composition, disjunction, or product: $L^{M^{\bullet}}$, $M^{L^{\bullet}}$, $L^{\bullet} + M^{\bullet} -$ not a monad in general; $L^{\bullet} \times M^{\bullet} -$ no lifting $M^{\bullet} \leadsto L^{\bullet} \times M^{\bullet}$
- Making a monad out of functor composition:
 - free monad over $L^{M^{\bullet}}$, Free L^{M} lift violates lifting laws
 - ▶ free monad over $L^{\bullet} + M^{\bullet}$, Free $L^{\bullet} + M^{\bullet}$ lift violates lifting laws
 - **★** Laws will hold after interpreting the free monad into a concrete monad **►** codensity monad over $L^{M^{\bullet}}$: $F^{A} \equiv \forall B. (A \Rightarrow L^{M^{B}}) \Rightarrow L^{M^{B}}$ – no lift
- Codensity-L transformer: $\operatorname{Cod}_{I}^{M,A} \equiv \forall B. (A \Rightarrow L^{B}) \Rightarrow L^{M^{B}} \operatorname{no lift}$
 - ▶ applies the continuation transformer to $M^A \cong \forall B. (A \Rightarrow B) \Rightarrow M^B$
- Codensity composition: $F^A \equiv \forall B. (M^A \Rightarrow L^B) \Rightarrow L^B \text{not a monad}$
 - ▶ Counterexample: $M^A \equiv R \Rightarrow A$ and $L^A \equiv S \Rightarrow A$
- "Monoidal" convolution: $(L \star M)^A \equiv \exists P \exists Q. (P \times Q \Rightarrow A) \times L^P \times M^Q$
 - ▶ combines $L^A \cong \exists P.L^P \times (P \Rightarrow A)$ with $M^A \cong \exists Q.M^Q \times (Q \Rightarrow A)$
 - ▶ $L \star M$ is not a monad for e.g. $L^A \equiv 1 + A$ and $M^A \equiv R \Rightarrow A$

Exercises

- Show that the method pure: $A \Rightarrow M^A$ is a monadic morphism between monads $\operatorname{Id}^A \equiv A$ and M^A . Show that $1 \Rightarrow 1 + A$ is not a monadic morphism.
- ② Show that $M_1^A + M_2^A$ is *not* a monad when $M_1^A \equiv 1 + A$ and $M_2^A \equiv Z \Rightarrow A$.
- **3** Derive the composition law for lift written using ftn as $lift_1$; fmap_{BigM} $lift_1$; ftn_{BigM} = ftn_{M_1} ; $lift_1$ from the flm-based law $lift_1$; flm_{BigM} (q; $lift_1)$ = flm_{M1}q; $lift_1$. Draw type diagrams for both laws.
- Show that the continuation monad is not rigid and does not compose with arbitrary other monads. Show that the list and state monads are not rigid.
- **5** Show that fo $(pure_P(f^{:A\Rightarrow B})) = f; pure_P \text{ for any pointed functor } P.$
- **1** Show that $T_{L_1}^{M,A} \times T_{L_2}^{M,A}$ is the transformer for the monad $L_1 \times L_2$.