Задачи оптимизации. Модель двух стратегий обслуживания

Отчёт по лабораторной работе №16

Ибатулина Дарья Эдуардовна

Содержание

Сп	исок литературы	23
5	Выводы	22
4	4.1 Постановка задачи	8
3 1	Теоретическое введение Выполнение лабораторной работы	7 8
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Модель первой стратегии обслуживания	10
4.2	Отчёт по модели первой стратегии обслуживания	11
4.3	Модель второй стратегии обслуживания	12
4.4	Отчет по модели второй стратегии обслуживания	12
4.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	14
4.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	14
4.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	15
4.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	16
4.9	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	16
	Модель первой стратегии обслуживания с 4 пропускными пунктами	17
4.11	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	18
4.12	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	19
		19
4.14	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	20
		20
4.16	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	21

Список таблиц

4.1	Сравнение стратегий																									1	.3
-----	---------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Теоретическое введение

Пакет GPSS(General Purpose Simulation System — система моделирования общего назначения) предназначен для имитационного моделирования дискретных систем [1].

Имитационная модель в GPSS представляет собой последовательность текстовых строк, каждая из которых определяет правила создания, перемещения, задержки и удаления транзактов.

Транзакт — динамический объект, отождествляемый с заявкой на обслуживание, который перемещается между элементами системы.

4 Выполнение лабораторной работы

Использованы материалы из [2].

4.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта

пропуска. Интервалы времени между поступлением автомобилей имеют экс-

поненциальное распределение со средним значением μ . Время прохождения

автомобилями пограничного контроля имеет равномерное распределение на

интервале [a, b]. Предлагается две стратегии обслуживания прибывающих авто-

мобилей:

1. автомобили образуют две очереди и обслуживаются соответствующими

пунктами пропуска;

2. автомобили образуют одну общую очередь и обслуживаются освободив-

шимся пунктом пропуска.

Исходные данные: μ = 1.75 мин, a = 1 мин, b = 7 мин.

4.2 Построение модели

Целью моделирования является определение:

8

- характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;
- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. [4.1]).

```
| lab16_1.gps
 GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
 TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2 TEST E Q$Other1,Q$Other2,Obsl_1 ; длина оч. 1= длине оч. 2
 TRANSFER 0.5,Obsl_1,Obsl_2 ; длины очередей равны,
 ; выбираем произв. пункт пропуска
 ; моделирование работы пункта 1
 Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
 DEPART Other1 ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 RELEASE punktl ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; моделирование работы пункта 2
 Obsl_2 QUEUE Other2 ; присоединение к очереди 2
 SEIZE punkt2 ; занятие пункта 2
 DEPART Other2 ; выход из очереди 2
 ADVANCE 4,3 ; обслуживание на пункте 2
 RELEASE punkt2 ; освобождение пункта 2
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 4.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. [4.2]).

lab16_1.1.	1 - REPORT										
	START	TIME		END	TIME	BLOCKS	FACIL	ITIES	STORAG	SES	
	0	.000		10080	.000	18	2		0		
	NAM	-			7.7	ALUE					
	OBSL 1					5.000					
	OBSL 2					1.000					
	OTHER1				1000						
						1.000					
	OTHER2 PUNKT1				1000						
	PUNKT2					2.000					
	FUNKIZ				1000	2.000					
			DT 001			cor		DENIE 6			
LABEL		LOC	BLOCK	ATE				RENT C	DUNT RE	LIKI	
		T	TECT	ATE		5853 5853 4162					
		2	TEST			41.63		0			
		3	TDANG	EED				0		0	
ODST 1		4 5	IKANS	FEK		2431 2928		0		0	
OBSL_1			SEIZE			2928		387		0	
				T				0			
						2541		1		0	
		8	ADVAN	CE		2541		0		0	
		9	KELEA	.5L		2540		0		-	
		10	TERMI	NATE		2540				0	
OBSL_2		11 12	QUEUE			2925		388			
			DEPAR			2537 2537				0	
		14						1		-	
			RELEA			2537 2536		0		0	
								0			
		17	TERMI	NAIL		2536		0		0	
		18				1		0			
		10	IERMI	NAIL		1		U		U	
FACILITY											
PUNKT2		2537									
PUNKTI		2541	0.9	97	3.9	55 1	507	9 0	0	0	387
OHEHE		MAY C	ONT F	NTDV F	MTDV/0	\	ONT 3	UP TIM			DETEV
QUEUE OTHER1 OTHER2		303 PIMA C	297	SOSS MINI E	15	197 0	ONI. A	644 10	7 6	16 750	VEIKI
OTHER2		393	200	2920	12	107.0	14	644 92	, 61	17 479	0
UIREK2		393	300	2325	12	10/.1	1.1	077.02	3 65	:/.4/9	U
1											
FEC XN	PRI	BDT		ASSEM	CURRE	NT NEX	T PAR	AMETER	VAI	LUE	
5855 5079	0	10081.	102	5855	0	1					
E070	0	10083.	517	5079	8	9					
5079											
5079 5078 5856	0	10083. 20160.	808	5078	14	15					

Рис. 4.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. [4.3], [4.4]).

```
punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей

QUEUE Other ; присоединение к очереди

ENTER punkt,1 ; занятие пункта 1

DEPART Other ; выход из очереди

ADVANCE 4,3 ; обслуживание на пункте

LEAVE punkt,1 ; освобождение пункта 1

TERMINATE ; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080 ; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели (7 дней к 24 часа к 60 мин = 10080 мин)

TERMINATE 1 ; остановить моделирование

START 1 ; запуск процедуры моделирования
```

Рис. 4.3: Модель второй стратегии обслуживания

```
lab16_2.3.1 - REPORT
                  GPSS World Simulation Report - lab16_2.3.1
                         суббота, мая 24, 2025 15:34:40
               NAME
                                    VALUE
10001.000
10000.000
                                                         VALUE
              OTHER
              PUNKT
                          LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
1 GENERATE 5719 0 0
2 QUEUE 5719 668 0
3 ENTER 5051 0 0
4 DEPART 5051 0 0
5 ADVANCE 5051 2 0
6 LEAVE 5049 0 0
7 TERMINATE 5049 0 0
8 GENERATE 1 0 0
9 TERMINATE 1 0 0
 LABEL
                         MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 668 668 5719 4 344.466 607.138 607.562 0
OUEUE
                         CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 2 0 0 2 5051 1 2.000 1.000 0 668
STORAGE
FEC XN PRI BDT 5721 0 10080.466 5051 0 10081.269 5052 0 10083.431 5722 0 20160.000
                                          ASSEM CURRENT NEXT PARAMETER VALUE
                                         5721 0 1
5051 5 6
                         10081.269 5051
10083.431 5052
                       10083.431 5052 5
20160.000 5722 0
```

Рис. 4.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. [4.1]).

Таблица 4.1: Сравнение стратегий

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 - значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

4.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0.5; 0.95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;

• среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. [4.5]).

```
Punkt STORAGE 1

GENERATE (Exponential (1,0,1.75)); прибытие автомобилей 
QUEUE Other; присоединение очереди 
ENTER punkt,1; занятие пункта 
DEPART Other; Выход и 3 очереди 
ADVANCE 4,3; обслуживание на пункте 
LEAVE punkt,1; освобождение пункта 
TERMINATE; автомобиль покидает систему 
; задание условия остановки процедуры моделирования 
GENERATE 10080; тенерация фиктивного транэакта, указывающего на окончание рабочей недели 
; (7 дней x 24 часа x 60 мин = 10080 мин) 
TERMINATE 1; остановить моделирование 
START 1; запуск процедуры моделирования
```

Рис. 4.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. [4.6]).

ab16_3.1	7.1 - REPORT						
	•						
	anaa		_				
	GPSS Wo:	rld Simulatio	n Report	- lab16	3.17.1		
	cvi	ббота, мая 24	. 2025 16	:41:59			
	-	Journal L.	., 2020 20				
		El					
	0.000	100	080.000	9	0	1	
	NAME OTHER		VA 10001				
	PUNKT		10001				
	FUNKI		10000	.000			
ABEL	L	OC BLOCK TYP	E ENT	RY COUNT	CURRENT C	OUNT RETRY	
	1	GENERATE		5744	0		
	2	QUEUE ENTER		5744	3233	0	
					0	0	
		DEPART		2511		0	
	5	ADVANCE LEAVE		2511	1	0	
				2510	0	0	
		TERMINATE			0		
	8	GENERATE TERMINATE		1	0	0	
	9	IERMINAIE	2	1	U	U	
EUE	MAX	X CONT. ENTRY	ENTRY(0)	AVE.COM	T. AVE.TIM	E AVE.(-0)	RETRY
THER	323	4 3233 5744	1 1	1617.676	2838.81	9 2839.313	0
	CA						
UNKT		1 0 0	1 2	511 1	1.000	1.000 0 32	33
C XN	PRI	BDT ASSE	M CURREN	T NEXT	PARAMETER	VALUE	
2512	0 100	80.255 2512	5	6			
5746	0 100	80.384 5746	5 0	1			
5747	0 201	60.000 5747	7 0	8			

Рис. 4.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. [4.7], [4.8], [4.9]).

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TRANSFER 0.33,obs_new,Obsl_3 ; выбираем произв. пункт пропуска
obs_new TRANSFER 0.5,Obsl_1,Obsl_2
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 : присоединение к очереди
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl_2 QUEUE Other2 : присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
DSFART Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
; задание условия остановить могироедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта, указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; запуск процедуры моделирования
START 1 ; запуск процедуры моделирования
```

Рис. 4.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

	START TIME 0.000			END TIME BLOCKS FA									
	0.0	000	10	080.00	00	23	3		0				
	NAME				VAI	IIE.							
	NAME OBSL_1 OBSL_2 OBSL_3					000							
	OBST_1				10.								
	OBSL_2				16.								
	OBS NEW				10.	000							
	OTHER2				3. 10000.	000							
	OTHER3				10000.								
	OTHERL				10002.								
	PUNKT1				10005.								
	PUNKT2				10001.								
	PUNKT3				10003.								
LABEL		LOC	BLOCK TY	PE	ENTE	Y COUNT	CURRENT	COUN	T RI	ETRY			
		1	GENERATE		5	547		0		0			
		2	TRANSFER		5	547		0		0			
OBS_NEW OBSL 1		3	GENERATE TRANSFER TRANSFER QUEUE		3	682		0		0			
OBSL_1		4	QUEUE		1	853		1		0			
		5	SEIZE		1	852		0		0			
		6	QUEUE SEIZE DEPART ADVANCE RELEASE TERMINAT		1	852		0		0			
		,	ADVANCE		1	052		1		0			
		9	TEDMINAT		1	051		0		0			
OBSL_2		10	OUTUE	L	1	820		0		0			
0001_2		11	QUEUE SEIZE		1	829 829		0		0			
		12	DEPART		1	829		0					
		13	DEPART ADVANCE			829		0		0			
		14	RELEASE		1	829		0		0			
		15	RELEASE TERMINAT	E	1	829		0		0			
OBSL 3		16	QUEUE		1	865		3		0			
_		17	SEIZE DEPART		1	862		0		0			
						862 862							
		19	ADVANCE		1	862		1		0			
		20	RELEASE		1	861		0		0			
			TERMINAT			861		0		0			
		22	GENERATE			1		0		0			
		23	TERMINAT	E		1		0		0			
							0131ED						
FACILITY	EI	NIKIES	0111.	AVE.	TIME	AVAIL.	OWNER PI	NT TN	TER	KEIKY	DELAY		
PUNKT2 PUNKT3		1029	0.717 0.740 0.727		4 004	1	E E 2 4	0	0	0	0		
PUNKI3 PUNKT1		1002	0.727		3 057	1	5546	0	0	0	3		
LOMELL		1002	0.727		0.001	_	0010	0	•	•	_		

Рис. 4.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

QUEUE		MAX C	ONT.	ENTRY	ENTRY(0)	AVE.CONT	. AVE.TIME	AVE.(-0)	RETRY
OTHER2		11	0	1829	508	1.112	6.126	8.482	0
OTHER3		13	3	1865	513	1.134	6.132	8.458	0
OTHERL		9	1	1853	529	0.929	5.055	7.075	0
FEC XN	PRI	BDT		ASSEM	CURREN:	NEXT	PARAMETER	VALUE	
5549	0	10081.	799	5549	0	1			
5534	0	10082.	440	5534	19	20			
5546	0	10085.	099	5546	7	8			
5550	0	20160.	000	5550	0	22			

Рис. 4.9: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэф-

фициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. [4.10], [4.11], [4.12]).

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TRANSFER 0.5,a,b ; smbGrapem произв. пункт пропуска
a TRANSFER 0.5,obsl 1,obsl 2
b TRANSFER 0.5,obsl 3,obsl 4
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выкод из очереди 1
ADVANCE 4,3 ; обслуживание на пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
Obsl 3 QUEUE Other3 ; присоединение к очереди 3
SEIZE punkt3 ; занятие пункта 3
DEPART Other3 ; выход из очереди 3
ADVANCE 4,3 ; обслуживание на пункте 3
RELEASE punkt3 ; освобождение пункта 3
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 3
RELEASE punkt3 ; освобождение пункта 3
RELEASE punkt3 ; освобождение пункта 3
RELEASE punkt4 ; освобождение пункта 4
Obsl 4 QUEUE Other4 ; присоединение очереди 4
SEIZE punkt4 ; занятие пункта 4
DEPART Other4 ; выход из очереди 4
ADVANCE 4,3 ; обслуживание на пункта 4
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 4
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиксивного транзакта, указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
; задание условия остановки процедуры моделирования
START 1 ; запуск процедуры моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 4.10: Модель первой стратегии обслуживания с 4 пропускными пунктами

	START T	END T	IME	FACILITIES	ACILITIES STORAGE					
	0.	000	10080.	000	30	4	0			
	NAME				VALUE					
	A				3.000					
	В				4.000					
	OBSL 1				5.000					
	OBSL 2				11.000					
	OBSL 3				17.000					
	OBSL 4				23.000					
	OTHER2			100	04.000					
	OTHER3				02.000					
	OTHER4				00.000					
	OTHERL				06.000					
	PUNKT1				07.000					
	PUNKT2				05.000					
	PUNKTS				03.000					
	PUNKT4				01.000					
	FUNKIA			100	01.000					
LABEL		T.O.C.	BLOCK TYPE	F	NTRY COUN	IT CURRENT	COUNT	RETRY		
2.1.0.2.2			GENERATE	_	5622	12 0011112112	0	0		
		2	TRANSFER		5622		0	0		
A		3	TRANSFER		2831		0	0		
В		_	TRANSFER		2791		0	0		
OBSL 1			OUEUE		1465		0	0		
0202_1			SEIZE		1465		0	0		
		-	DEPART		1465		0	0		
			ADVANCE		1465		1	0		
			RELEASE		1464		0	0		
		-	TERMINATE		1464		0	0		
OBSL 2			QUEUE		1366		0	0		
			SEIZE		1366		0	0		
			DEPART		1366		0	0		
			ADVANCE		1366		0	0		
			RELEASE		1366		0	0		
			TERMINATE		1366		0	0		
OBSL 3			QUEUE		1378		0	0		
-			SEIZE		1378		0	0		
			DEPART		1378		0	0		
		20	ADVANCE		1378		0	0		
			RELEASE		1378		0	0		
		22	TERMINATE		1378		0	0		
OBSL 4			QUEUE		1413		0	0		
		24	SEIZE		1413		0	0		
			DEPART		1413		0	0		
			ADVANCE		1413		1	0		
			RELEASE		1412		0	0		
					1112		_			

Рис. 4.11: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

		28 29 30	TERMINAT GENERATE TERMINAT	_	1	412 1 1		0		0 0 0	
FACILITY PUNKT4		ENTRIES 1413	UTIL. 0.557			AVAIL.		PEND 0	INTER 0	RETRY 0	DELAY 0
PUNKT3			0.545		3.989	_	0	0	0	0	0
PUNKT2		1366	0.541		3.993	1	0	0	0	0	0
PUNKT1		1465	0.584		4.018	1	5621	0	0	0	0
QUEUE OTHER4 OTHER3 OTHER2 OTHERL		MAX CC 7 8 6 6	0 141 0 137 0 136	3 6 8 6	RY(0) 628 655 625 590	0.415 0.345 0.363		E.TIME 2.958 2.527 2.676 3.385	3 7 5	E.(-0) 5.325 4.816 4.934 5.667	RETRY 0 0 0 0
FEC XN 5624 5621 5623	PRI 0 0	BDT 10080.0 10080.3	398 562	4	JRRENT 0 8 26	NEXT 1 9 27	PARAN	METER	VA:	LUE	

Рис. 4.12: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. [4.13], [4.14]).

```
punkt STORAGE 3

GENERATE (Exponential (1,0,1.75)) ; прибытие автомобилей

QUEUE Other ; присоединение к очереди

ENTER punkt,1 ; занятие пункта|

DEPART Other ; Выход и 3 очереди

ADVANCE 4,3 ; обслуживание на пункте

LEAVE punkt,1 ; освобождение пункта

TERMINATE ; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GEMERATE 10080 ; генерация фиктивного транзакта, указывающего на окончание рабочей недели

; (7 дней x 24 часа x 60 мин = 10080 мин)

TERMINATE 1 ; остановить моделирование

START 1 ; запуск процедуры моделирования
```

Рис. 4.13: Модель второй стратегии обслуживания с 3 пропускными пунктами

	GPSS	World	Simu	ılatio	n Repo	ort -	lab16_	3.14.1			
		суббо	Ta, N	иая 24	, 202	5 16:3	1:10				
	START 1	TIME		EN	D TIME	E BLO	CKS F	ACILITIES	STO	RAGES	
								0			
	NAME	Ξ				VALU	E				
	OTHER				10	0001.0	00				
	PUNKT				10	0.000	00				
LABEL								CURRENT	COUNT	RETRY	
		1	GENE	ERATE		56	83		0		
		2	QUE	JE		56	83		0	0	
		3	ENTE	ER							
		4	DEPA	ART		56	83		0	0	
		5	ADV	ANCE /E		56	83		3	0	
		6	LEAV	/E			80				
		7	TERN	MINATE		56	80		0		
		8	GENE	ERATE			1		0	0	
		9	TERN	MINATE			1		0	0	
QUEUE		MAX C	ONT.	ENTRY	ENTR	Y(0) A	VE.CON	T. AVE.T	ME	AVE. (-0)	RETRY
OTHER		12	0	5683	253	21	1.063	1.8	885	3.388	0
STORAGE		CAP	DFM	MTN	MAY	FNTDT	FS AVI.	AVE C	HTTI.	DETDV	DET.AV
PUNKT								2.243			
2 011112							_	2.2.0	0.7.2		
EEC WI	DD T			3000	v	DENT	NEVE	DADAMET			
EE90	PRI	10080	434	ESSO.	rı CUI	KENI	NEXI	FARAMEII	.R	VALUE	
5680 5683 5685	0	10080. 10080. 10082.	631	5680		5	6				
5003	0	10080.	051	5683		0	1				
5604	0	10002.	E 0.2	5603		<u> </u>	-				
	0										
3000	9	20100.	000	3000		•	0				

Рис. 4.14: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. [4.15], [4.16]).

```
punkt STORAGE 4
GEMERATE (Exponential (1,0,1.75)); прибытие автомобилей
QUEUE Other; присоединение к очереди
ENTER punkt,1; занятие пункта
DEPART Other; Выход и 3 очереди
ADVANCE 4,3; обслуживание на пункте
LEAVE punkt,1; освобождение пункта
TERMINATE; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GEMERATE 10080; генерация фиктивного транзакта, указывающего на окончание рабочей недели
; (7 дней x 24 часа x 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 4.15: Модель второй стратегии обслуживания с 4 пропускными пунктами

	GPS	S World Sim	ulation R	eport - :	lab16_3	3.15.1		
		суббота,	мая 24, 2	025 16:3	3:42			
	START	TIME	FND T	TMF BIO	CKS E1	CTITTES	STODACES	
		.000						
	NAM	re-		173.7.11	-			
	OTHER	ie.		VALU	00			
	PUNKT			10000.0	00			
LABEL		TOC BIO	CV TUDE	PNTDV	COUNT	CUDDENT C	OUNT DETDY	
LABEL		1 GFN	FRATE	57	19	CORRENT	OUNT RETRY	
		2 OUE	UE	57	19	0	0	
		3 ENI	ER	57	19	C	0	
		4 DEF	ER ART ANCE	57	19	0	0	
		5 ADV	ANCE	57	19	4	0	
		6 LEA	VE	57	15	0	0	
		7 TER	MINATE ERATE	57	15	0	0	
		8 GEN	ERATE MINATE		1	0	0	
		9 125	MINAIL		1		U	
QUEUE		MAX CONT.	ENTRY EN	TRY(0) A	VE.CONI	. AVE.TIM	E AVE.(-0)	RETRY
OTHER		7 0	5719	4356	0.194	0.34	1 1.431	0
STODAGE		CAD DEM	MIN MAY	FNTDI	ES AUT	AVE C	UTIL. RETRY	DELYA
PUNKT							0.563 0	
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE	
5718	0	10082.346	5718	5	6			
		10082.412		5	6			
5721	0	10084.393	5721	0	1			
5720	0	10084.393 10085.162	5720					
5722	0	20160.000	5722	0	8			
1								

Рис. 4.16: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены, при этом время ожидания и среднее число автомобилей меньше, чем в случае второй стратегии с 3 пунктами, однако и загрузка меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

5 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменение модели таким образом, чтобы определить оптимальное число пропускных пунктов для каждой из двух стратегий.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Имитационное моделирование в GPSS [Электронный ресурс].
- 2. Королькова А.В., Кулябов Д.С. Лабораторная работа 16. Задачи оптимизации. Модель двух стратегий обслуживания [Электронный ресурс].