Discussion 1: Basic Structures, Algorithm Analysis CS101 Fall 2024

CS101 Course Team

Oct 2024

Contact Us

• 周守琛

qq: 1354038619

email: zhoushch@shanghaitech.edu.cn

• 卢骜

email: luao@shanghaitech.edu.cn

Array

- Representation of polynomial coefficients:
- Increase array capacity:

	Copies per Insertion	Unused Memory
Increase by 1	n-1	0
Increase by <i>m</i>	n/m	m - 1
Increase by a factor of 2	1	n
Increase by a factor of $r > 1$	1/(r-1)	(r-1)n

Linked List

- Given value v and header h, how to find a specific node with value v?
- only by traversing the linked list!
- Time complexity O(n)

	Front/1st node	<i>k</i> th node	Back/ <i>n</i> th node
Find	<i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Insert After	O(1)	O(1)	<i>O</i> (1)
Replace	O(1)	O(1)	<i>O</i> (1)
Next	O(1)	<i>O</i> (1)	n/a
Previous	n/a	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)

- How to implement a linked list? Array, Stack, Queue
- Doubly Linked List: O(1) previous, O(n) extra space.

Stack

- LIFO(Last In First Out) Data Structure.
- Basic Operation:
 - Push: Adds an element to the top of the stack.
 - **Pop**: Removes the top element from the stack.
 - **Peek**: Returns the top element without removing it.
 - IsEmpty: Checks if the stack is empty.
 - IsFull: Checks if the stack is full (in case of fixed-size arrays).
- ALL implemented in O(1)
- use linked list to implement a stack.
- Check if the given push and pop sequence of the stack is valid or not:

 $1\ 3\ 4\ 7\ 5\ 2\ 6$

Queue

- FIFO(First In First Out) Data Structure.
- How to use an array to represent a queue?

Array Representation of Queue

- use linked list to implement a queue.
- Circular Array: Index using a modulo operation.

Deque

Oct 2024

Time Complexity

Here is the definition of Landau Symbols without using the limit:

$$\begin{split} f(n) &= \Theta(g(n)) : \exists c_1, c_2 \in \mathbb{R}^+, \exists n_0, \forall n > n_0, 0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n). \\ f(n) &= O(g(n)) : \exists c \in \mathbb{R}^+, \exists n_0, \forall n > n_0, 0 \leq f(n) \leq c \cdot g(n). \\ f(n) &= \Omega(g(n)) : \exists c \in \mathbb{R}^+, \exists n_0, \forall n > n_0, 0 \leq g(n) \leq c \cdot f(n). \\ f(n) &= o(g(n)) : \forall c \in \mathbb{R}^+, \exists n_0, \forall n > n_0, 0 \leq f(n) < c \cdot g(n). \\ f(n) &= \omega(g(n)) : \forall c \in \mathbb{R}^+, \exists n_0, \forall n > n_0, 0 \leq g(n) < c \cdot f(n). \end{split}$$

Precise Form: $\Theta(), o(), \omega()$

Order:

$$1 < \log n < n < n \log n < n^2 < n^2 \log n < n^3 < 2^n < 3^n < n! < n^n$$

Worst-, Best-, Average-Case

- Worst Case Analysis: Upper bound of running time. e.g. The worst-case time complexity of the linear search would be O(n).
- Best Case Analysis: Lower bound of running time. Very rarely used! for linear search, the lower bound should be $\Omega(1)$
- Average Case Analysis: take all possible inputs and calculate the computing time for all of the inputs.
 - Must know (or predict) the distribution of cases! For linear search, all cases are uniformly distributed.

