CHỦ ĐÈ 7. TÍNH TRỰC GIAO

- Bài 1. Cho W là không gian con của \mathbb{R}^4 sinh bởi $\{v_1 = (1;0;-2;1), v_2 = (0;1;3;-2)\}$.
 - a) Hãy tìm W^{\perp} .
 - b) Tìm 1 cơ sở và số chiều của W[⊥].
- Bài 2. Cho $S = \{(x_1; x_2; x_3; x_4) \in \mathbb{R}^4 | 2x_1 + 3x_2 x_3 + x_4 = 0, 2x_1 + 4x_2 + x_3 + x_4 = 0\}$ là một không gian con \mathbb{R}^4 .
 - a) Tìm cơ sở và số chiều của S.
 - b) Tìm cơ sở và số chiều của S^{\perp} .
- Bài 3. Cho W = $\{(0; x; y; 0) | x, y \in \mathbb{R}\}$. Tìm phần bù trực giao của W.
- Bài 4. Chứng minh tập $\{u_1 = (1;2;0), u_2 = (2;-1;0), u_3 = (0;0;1)\}$ là một cơ sở trực giao của \mathbb{R}^3 .
- Bài 5. Cho $u_1 = (1;2)$ và $u_2 = (m;m-4)$. Tìm m để $\{u_1,u_2\}$ là một cơ sở trực giao của \mathbb{R}^2 .
- Bài 6. Hãy tìm các vecto trực giao A, B, C bằng phương pháp Gram-Schmidt từ các véc tơ: a = (1; -1; 0; 0); b = (0; 1; 2; 0); c = (0; -1; 1; 1).
- Bài 7. Cho các véc to $v_1 = (1;0;0;0), v_2 = (2;1;0;0), v_3 = (3;2;1;0).$
 - a) Chứng minh hệ véc tơ $\{v_1, v_2, v_3\}$ độc lập tuyến tính;
- b) Dùng trực giao hóa Gram Schmidt xây dựng tập trực giao $\{u_1,u_2,u_3\}$ từ $\{v_1,v_2,v_3\}$.