Nonmetric Multidimensioanl Scaling-Functional group biomass

Data

- functional groups based on NOAA IEA feeding guilds (https://noaa-edab.github.io/tech-doc/aggroups.html)
- average across depth strata using the NOAA IEA procedure (https://noaa-edab.github.io/tech-doc/inshoresurvdat.html#data-analysis-29)

Sea <chr></chr>	_	Y <int></int>	benthivore <dbl></dbl>	benthos <dbl></dbl>	piscivore <dbl></dbl>	planktivore <dbl></dbl>		YEAR_GR <chr></chr>
1 Fall	1	2000	30.60977	0.9329012	77.09522	13.07894	4.2592593	2000-2004
2 Fall	1	2001	47.61454	1.6392593	129.71385	27.03765	3.4701323	2000-2004
3 Fall	1	2002	18.78933	0.1253846	124.10729	21.38419	0.3071276	2000-2004
4 Fall	1	2003	52.99875	0.0500000	114.75687	29.33979	6.7406250	2000-2004
5 Fall	1	2004	28.93660	0.0450000	347.72374	113.07280	4.2019335	2000-2004
6 Fall	1	2005	41.88070	0.0277193	327.19086	30.81101	10.1458814	2005-2009
6 rows 1-	-10 of 14	columi	าร					
4								

Set up data for NMDS

- · split community matrix into two dataframes- one for grouping variables and one for species biomass
- · calculate dissimilarity matrix with Bray-Curtis distances

```
#set up final grouping data into dataframe
ME_group_data<-trawl_data_arrange[, c(1,2,3,9,10,11,12,13)]
ME_NMDS_data<-as.matrix(trawl_data_arrange[,4:8])
#calculate distance matrix
ME_NMDS_distance<- vegdist(ME_NMDS_data, method="bray")</pre>
```

Run the NMDS and extract scores

- · change in community composition
- · uses rank order
- stress < 0.2 is good, < 0.1 is great, <0.05 is excellent representation in reduced dimensions

```
## Run 0 stress 0.1741426
## Run 1 stress 0.1756294
## Run 2 stress 0.1877507
## Run 3 stress 0.1746683
## Run 4 stress 0.1756323
## Run 5 stress 0.1741403
## ... New best solution
## ... Procrustes: rmse 0.0006199605 max resid 0.007893183
## ... Similar to previous best
## Run 6 stress 0.1741405
## ... Procrustes: rmse 7.09628e-05 max resid 0.0005544999
## ... Similar to previous best
## Run 7 stress 0.1773452
## Run 8 stress 0.1746632
## Run 9 stress 0.1756293
## Run 10 stress 0.1773453
## Run 11 stress 0.1773441
## Run 12 stress 0.1877506
## Run 13 stress 0.175632
## Run 14 stress 0.174663
## Run 15 stress 0.1756323
## Run 16 stress 0.1756295
## Run 17 stress 0.1756295
## Run 18 stress 0.1756293
## Run 19 stress 0.1877569
## Run 20 stress 0.1741425
## ... Procrustes: rmse 0.0006007181 max resid 0.007808326
## ... Similar to previous best
## *** Solution reached
```

```
#extract NMDS scores for ggplot
data.scores = as.data.frame(scores(ME_NMDS))
#add columns to data frame
data.scores$Stratum = trawl_data_arrange$Stratum
data.scores$Region = trawl_data_arrange$Region
data.scores$Year = trawl_data_arrange$Year
data.scores$Season= trawl_data_arrange$Season
data.scores$Year_groups= trawl_data_arrange$YEAR_GROUPS
data.scores$Year_decades= trawl_data_arrange$YEAR_DECADES
data.scores$Region_new=trawl_data_arrange$REGION_NEW
data.scores$Region_year=trawl_data_arrange$REGION_YEAR
data.scores$Season_year=trawl_data_arrange$SEASON_YEAR
```

Plots

Region

-0.50

Time

-0.2

-0.25

0.00 NMDS1 0.25

East of Penobscot Bay, 2000-2004 East of Penobscot Bay, 2005-2009 East of Penobscot Bay, 2010-2014 East of Penobscot Bay, 2015-2019

Season

Fall, 2015-2019

- **Spring**