```
In [1]: #Import Libraries
        import pandas as pd
        import numpy as np
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import SVC
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import classification_report, confusion_matrix
        import xgboost as xgb
        #Load Data
In [2]:
        df = pd.read_csv('C:\liver_cirrhosis.csv')
        df.head()
Out[2]:
                                     Age Sex Ascites Hepatomegaly Spiders Edema Biliru
           N_Days Status
                             Drug
        0
              2221
                        C Placebo
                                   18499
                                            F
                                                                                   Ν
                                                    Ν
                                                                   Υ
                                                                           Ν
        1
              1230
                        C Placebo
                                  19724
                                           Μ
                                                                   Ν
                                                                                   Ν
        2
             4184
                        C Placebo 11839
                                            F
                                                    Ν
                                                                  Ν
                                                                           Ν
                                                                                   Ν
        3
              2090
                                            F
                        D Placebo 16467
                                                    Ν
                                                                                   Ν
                                            F
                                                                   Υ
        4
              2105
                        D Placebo 21699
                                                    Ν
                                                                           Ν
                                                                                   Ν
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25000 entries, 0 to 24999
Data columns (total 19 columns):

#	Column	Non-Null Count	Dtype		
0	N_Days	25000 non-null	int64		
1	Status	25000 non-null	object		
2	Drug	25000 non-null	object		
3	Age	25000 non-null	int64		
4	Sex	25000 non-null	object		
5	Ascites	25000 non-null	object		
6	Hepatomegaly	25000 non-null	object		
7	Spiders	25000 non-null	object		
8	Edema	25000 non-null	object		
9	Bilirubin	25000 non-null	float64		
10	Cholesterol	25000 non-null	float64		
11	Albumin	25000 non-null	float64		
12	Copper	25000 non-null	float64		
13	Alk_Phos	25000 non-null	float64		
14	SGOT	25000 non-null	float64		
15	Tryglicerides	25000 non-null	float64		
16	Platelets	25000 non-null	float64		
17	Prothrombin	25000 non-null	float64		
18	Stage	25000 non-null	int64		
dtyp	es: float64(9),	int64(3), objec	t(7)		
memory usage: 3.6+ MB					

In [4]: print(df.describe())

	N_Days	Age	Bilirubin	Cholesterol	Albumin	\
count	25000.000000	25000.000000	25000.000000	25000.000000	25000.000000	
mean	1887.117040	18495.877080	3.402644	372.331471	3.486578	
std	1091.690918	3737.596616	4.707491	193.668452	0.380488	
min	41.000000	9598.000000	0.300000	120.000000	1.960000	
25%	1080.000000	15694.000000	0.800000	275.000000	3.290000	
50%	1680.000000	18499.000000	1.300000	369.510563	3.510000	
75%	2576.000000	20955.000000	3.400000	369.510563	3.750000	
max	4795.000000	28650.000000	28.000000	1775.000000	4.640000	
	Copper	Alk_Phos	SGOT	Tryglicerides	Platelets	\
count	25000.000000	25000.000000	25000.000000	25000.000000	25000.000000	
mean	100.184663	1995.675597	123.166345	123.822548	256.007337	
std	73.184840	1798.885660	47.747616	52.786350	98.679006	
min	4.000000	289.000000	26.350000	33.000000	62.000000	
25%	52.000000	1032.000000	92.000000	92.000000	189.000000	
50%	97.648387	1828.000000	122.556346	124.702128	251.000000	
75%	107.000000	1982.655769	134.850000	127.000000	311.000000	
max	588.000000	13862.400000	457.250000	598.000000	721.000000	
	Prothrombin	Stage				
count	25000.000000	25000.00000				
mean	10.734549	2.00116				
std	0.904436	0.81387				
min	9.000000	1.00000				
25%	10.000000	1.00000				
50%	10.600000	2.00000				
75%	11.100000	3.00000				
max	18.000000	3.00000				

In [5]: print(df.isnull().sum())

```
N_Days
                       0
      Status
                       0
      Drug
                       0
                       0
      Age
      Sex
                       0
      Ascites
                       0
      Hepatomegaly
                       0
      Spiders
      Edema
                       0
      Bilirubin
                       0
      Cholesterol
                       0
      Albumin
      Copper
                       0
      Alk_Phos
                       0
      SGOT
      Tryglicerides
                       0
      Platelets
                       0
      Prothrombin
                       0
      Stage
      dtype: int64
In [6]: print("\nClass Distribution:")
        print(df['Stage'].value_counts())
      Class Distribution:
      Stage
      2
           8441
      3
           8294
      1
           8265
      Name: count, dtype: int64
In [7]: df = df.drop(columns=['N_Days'], errors='ignore')
        df
```

Out[7]:	S	Status	Drug	Age	Sex	Ascites	Hepatomegaly	Spiders	Edema	Bilirı
	0	С	Placebo	18499	F	N	Υ	N	N	
	1	С	Placebo	19724	М	Υ	N	Υ	N	
	2	С	Placebo	11839	F	N	N	N	N	
	3	D	Placebo	16467	F	N	N	N	N	
	4	D	Placebo	21699	F	N	Υ	N	N	
	•••				•••	•••				
	24995	D	D- penicillamine	23612	F	N	N	N	N	
	24996	D I	D- penicillamine	23612	F	N	N	N	N	
	24997	D	D- penicillamine	16736	F	N	Υ	Υ	Υ	
	24998	C	D- penicillamine	16990	F	N	Υ	N	N	
	24999	C	D- penicillamine	16990	F	N	Υ	N	N	
	25000 rov	ws × 18	columns							
	1)				•
In [8]:	df['Age'].descr	ribe()							
Out[8]:	mean std min 25% 50% 75% max	18495 3737 9598 15694 18499 20955 28650								
In [9]:	print(df	['Age']	.head())							
	19724 2 11839 3 1646 4 21699 Name: Age	4 9 7 9 , dtype	: int64 ['Age']/365							

```
In [11]: #Encode Categorical Features
            from sklearn.preprocessing import LabelEncoder
            label_cols = ['Sex', 'Ascites', 'Hepatomegaly', 'Spiders', 'Edema', 'Drug', 'State
            for col in label_cols:
                  df[col] = LabelEncoder().fit_transform(df[col])
In [12]: print(df.head())
              Status
                         Drug
                                               Sex
                                                     Ascites Hepatomegaly
                                                                                    Spiders
          0
                             1 50.682192
                     0
                                                             0
                                                                                1
          1
                     0
                             1 54.038356
                                                  1
                                                              1
                                                                                0
                                                                                            1
                                                                                                     0
          2
                     0
                             1 32.435616
                                                                                0
                                                                                            0
                                                                                                     0
                                                              0
          3
                     2
                             1 45.115068
                                                                                0
                                                                                            0
                     2
                             1 59.449315
                                                              a
                                                                                                     a
              Bilirubin Cholesterol Albumin Copper Alk_Phos
                                                                                    SGOT Tryglicerides
          0
                      0.5
                                    149.0
                                                  4.04
                                                           227.0
                                                                        598.0
                                                                                   52.70
                                                                                                        57.0
                      0.5
                                    219.0
                                                  3.93
                                                                        663.0
                                                                                  45.00
                                                                                                        75.0
          1
                                                            22.0
          2
                      0.5
                                     320.0
                                                  3.54
                                                            51.0
                                                                       1243.0 122.45
                                                                                                        80.0
          3
                      0.7
                                    255.0
                                                  3.74
                                                            23.0
                                                                       1024.0 77.50
                                                                                                        58.0
                      1.9
                                    486.0
                                                  3.54
                                                           74.0
                                                                       1052.0 108.50
                                                                                                      109.0
              Platelets Prothrombin Stage
          0
                   256.0
                                       9.9
                   220.0
                                      10.8
                                                   2
          1
          2
                   225.0
                                      10.0
                                                   2
          3
                                      10.2
                   151.0
                                                   2
          4
                   151.0
                                      11.5
            plt.figure(figsize=(12,6))
            sns.heatmap(df.corr(), annot=True)
Out[13]: <Axes: >
                                                                                                                  - 1.0
                 Status - 1 -0.017 0.09 0.042 0.021 0.31 0.039 0.27 0.44 0.15 -0.26 0.33 0.14 0.27 0.19 -0.094 0.26 0.28
                  Drug -0.017 1 0.00560.07 0.37 -0.12 0.34-0.00360.047 0.01 -0.04 0.0280.0054 0.02 0.02-0.00580.026 0.031
                  Age - 0.09-0.005 1 0.14 0.2 0.053 0.029 0.1 0.00610.036-0.110.0067 0.03 0.011 0.031 -0.12 0.042 0.17
                                                                                                                  - 0.8
                   Sex -0.042 -0.07 0.14 1 -0.0280.059 -0.11 0.0110.0014-0.01 0.031 0.039 0.0260.0005900890.0850.046 0.062
                Ascites -0.021 0.37 0.2 -0.028 1 -0.3 0.64 0.11 0.0590.0092-0.19 0.023-0.0210.058 0.03 -0.19 0.12 0.11
          Hepatomegaly - 0.31 -0.12 0.053 0.059 -0.3 1 -0.13 0.23 0.26 0.11 -0.13 0.15 0.055 0.15 0.13 -0.12 0.16 0.35
                                                                                                                  - 0.6
                Spiders -0.039 0.34 0.029 -0.11 0.64 -0.13 1 0.12 0.12 0.029 -0.2 0.1 -0.00210.095 0.044 -0.17 0.2 0.17
                Edema - 0.27-0.0036 0.1 0.011 0.11 0.23 0.12 1 0.37-0.022-0.28 0.21 0.018 0.19 0.11 -0.13 0.31 0.25
                                                                                                                  - 0.4
               Bilirubin - 0.44 0.0470.006 D.00140.059 0.26 0.12 0.37 1 0.34 -0.28 0.43 0.11 0.37 0.38 -0.095 0.25 0.17
             Cholesterol - 0.15 0.01 -0.036 -0.01-0.00920.11 0.029-0.022 0.34 1 -0.066 0.13 0.12 0.32 0.25 0.008 0.00620.025
               Albumin --0.26 -0.04 -0.11 0.031 -0.19 -0.13 -0.2 -0.28 -0.28 -0.066 1 -0.18 -0.13 -0.16 -0.11 0.12 -0.22 -0.23
                                                                                                                  - 0.2
                Copper - 0.33 0.0280.00670.039 0.023 0.15 0.1 0.21 0.43 0.13 -0.18 1 0.2 0.28 0.25 -0.075 0.14 0.13
               Alk_Phos - 0.14 0.0054 0.03 0.026-0.0210.0550.00210.018 0.11 0.12 -0.13 0.2 1 0.15 0.13 0.00790.072 0.084
                 SGOT - 0.27 0.02 0.0110.00059.058 0.15 0.095 0.19 0.37 0.32 -0.16 0.28 0.15 1 0.12 -0.094 0.13 0.18
                                                                                                                   0.0
            Tryglicerides - 0.19 0.02 0.0310.0089 0.03 0.13 0.044 0.11 0.38 0.25 -0.11 0.25 0.13 0.12 1 -0.0210.027 0.079
               Platelets -0.0940.0058-0.12 -0.085-0.19 -0.12 -0.17 -0.13-0.0950.0088 0.12 -0.0750.00790.0940.021 1 -0.16 -0.25
            Prothrombin - 0.26 0.026 0.042 0.046 0.12 0.16 0.2 0.31 0.25 0.0062-0.22 0.14 0.072 0.13 0.027 -0.16 1 0.29
                 Stage - 0.28 0.031 0.17 0.062 0.11 0.35 0.17 0.25 0.17 0.025 -0.23 0.13 0.084 0.18 0.079 -0.25 0.29 1
                                                                  Cholesterol
In [14]: numeric_columns = df.select_dtypes(include='number').columns
            plt.figure(figsize=(18, 12))
            for i, col in enumerate(numeric columns, 1):
```

```
plt.subplot((len(numeric_columns) - 1) // 4 + 1, 4, i)
sns.histplot(df[col], bins=30, color='salmon', edgecolor='black')
plt.title(col)
plt.xlabel('')
plt.ylabel('Count')
plt.tight_layout()
plt.suptitle("Histograms of Numeric Features", fontsize=18, y=1.02)
plt.show()
```



```
In [15]: #Recode Target Variable (Stage)
df['Stage'] = df['Stage'].replace({1:0,2:1,3:2})
```

In [16]: df

Out[16]:		Status	Drug	Age	Sex	Ascites	Hepatomegaly	Spiders	Edema	Bilirubir
	0	0	1	50.682192	0	0	1	0	0	0.5
	1	0	1	54.038356	1	1	0	1	0	0.5
	2	0	1	32.435616	0	0	0	0	0	0.5
	3	2	1	45.115068	0	0	0	0	0	0.7
	4	2	1	59.449315	0	0	1	0	0	1.9
	•••									
	24995	2	0	64.690411	0	0	0	0	0	3.0
	24996	2	0	64.690411	0	0	0	0	0	3.0
	24997	2	0	45.852055	0	0	1	1	2	5.1
	24998	0	0	46.547945	0	0	1	0	0	3.0
	24999	0	0	46.547945	0	0	1	0	0	3.0

25000 rows × 18 columns

```
In [17]: df['Stage']
Out[17]: 0
                  0
                  1
         2
                  1
         3
                  1
                  0
                 . .
         24995 1
         24996 1
         24997
               2
         24998
                  1
         24999
                  1
         Name: Stage, Length: 25000, dtype: int64
In [18]: #Exploratory Data Analysis
         sns.countplot(x='Status', data=df)
         sns.heatmap(df.corr(), annot=True, fmt='.2f')
Out[18]: <Axes: >
```

```
Status 1.00.00.00.09.00.00.3D.00.20.40.15.26.3B.10.20.19.09.26.2
                  Drug 0.01.00.00.00.00.30.10.34.00.05.0-D.04.08.0D.02.0-20.00.08.03
                   Age -0.0-00.01.00.14.20.05.05.10.0-D.0-9.10.0D.05.0D.0-5.10.0-9.1
                                                                                          - 0.8
                    Sex -0.0-0.007.14.0-0.003.0-60.101.0 D.0-00.001.0 B.0-0-30.0 0.0-D.0-9.0 5.0 6
                Hepatomegaly -0.3-D.10.05.060.31.00.16.28.26.1-D.16.15.06.15.1-8.10.16.3
                                                                                          - 0.6
                Spiders -).04.34.030.10.640.11.00.10.10.030.20.140.00.09.040.10.20.1
                Edema - 0.2-70.000.1 0.0 0.1 0.2 0.1 2.00 0.3-70.0 0.26.2 0.0 0.1 9.1-0.16.3 0.2
               Bilirubin -0.40.05.00.00.06.26.10.31.00.30.30.48.10.30.30.30.10.25.1
                                                                                          - 0.4
            Cholesterol -0.15.0-D.04.00.00.1D.0-B.02.34.00.00.1B.12.32.25.0D.0D.03
               Albumin 0.26.04.10.030.19.16.20.28.28.0 1.00.18.16.16.10.170.20.2
                                                                                          - 0.2
                Copper -- 3.3B.0B.0D.04.0D.15.10.2D.4B.1-3.11.00.20.28.2-5.00.14.1
               Alk Phos -0.14.00.08.030.02.060.00.00.10.1-20.16.24.00.16.18.00.00.00.08
                  SGOT --).20.00.0-D.00.06.15.09.19.30.3-0.16.28.1:1.00.1-0.09.10.18
                                                                                         - 0.0
           Tryglicerides -0.19.00.00.00.00.10.04.10.38.2-5.10.25.10.11.00.00.00.00.00
               Platelets 0.09.00.10.09.19.10.10.10.10.00.12.00.00.00.00.01.00.16.2
           Prothrombin -1.26.08.04.05.10.16.20.30.25.0-0.20.14.00.18.0-0.11.00.29
                                                                                            -0.2
                  Stage -0.28.08.10.06.10.35.10.25.10.00.29.10.08.18.00.25.24.00
                                                Edema
                                                   Bilirubin
                                                      Cholesterol
                                                          Albumin
                                                                      ryglicerides
                                          lepatomegaly
                                                                          Platelets
In [19]: # Feature and Target Split
          X = df.drop(columns=['Status'])
          y = df['Status']
In [20]: #Scale Features
          scaler = StandardScaler()
          X scaled = scaler.fit transform(X)
In [21]: #Train/Test Split
          X train, X test, y train, y test = train test split(X scaled, y, test size=0.2, ra
In [22]: #Train Multiple Models
          log_reg = LogisticRegression(max_iter=1000)
          log_reg.fit(X_train, y_train)
          y_pred_log_reg = log_reg.predict(X_test)
          print("Logistic Regression Performance")
          print(confusion_matrix(y_test, y_pred_log_reg))
          print(classification_report(y_test, y_pred_log_reg))
```

- 1.0

Logistic Regression Performance

```
[[2381
                 1 321]
        [ 212
               18 176]
        「 770
                7 1114]]
                     precision
                                recall f1-score
                                                     support
                  0
                                    0.88
                                              0.79
                                                        2703
                          0.71
                  1
                          0.69
                                    0.04
                                              0.08
                                                         406
                   2
                          0.69
                                    0.59
                                              0.64
                                                        1891
                                                        5000
                                              0.70
           accuracy
                          0.70
                                    0.50
                                              0.50
                                                        5000
          macro avg
       weighted avg
                          0.70
                                    0.70
                                              0.67
                                                        5000
In [23]: rf_clf = RandomForestClassifier(class_weight='balanced', random_state=42)
         rf_clf.fit(X_train, y_train)
         y_pred_rf = rf_clf.predict(X_test)
         print("Random Forest Performance")
         print(confusion_matrix(y_test, y_pred_rf))
         print(classification_report(y_test, y_pred_rf))
        Random Forest Performance
        [[2690
                 2
                     111
        [ 14 383
                      9]
           28
                 0 1863]]
        precision
                                recall f1-score
                                                     support
                  0
                          0.98
                                    1.00
                                              0.99
                                                        2703
                  1
                          0.99
                                    0.94
                                              0.97
                                                         406
                   2
                          0.99
                                    0.99
                                              0.99
                                                        1891
                                              0.99
                                                        5000
           accuracy
                                    0.97
                                              0.98
                                                        5000
          macro avg
                          0.99
                                    0.99
                                              0.99
                                                        5000
       weighted avg
                          0.99
In [24]: xgb clf = xgb.XGBClassifier(eval metric='mlogloss', use label encoder=False)
         xgb_clf.fit(X_train, y_train)
         y_pred_xgb = xgb_clf.predict(X_test)
         print("XGBoost Performance")
         print(confusion_matrix(y_test, y_pred_xgb))
         print(classification report(y test, y pred xgb))
        C:\Users\sakshi\AppData\Roaming\Python\Python311\site-packages\xgboost\training.py:
        183: UserWarning: [13:54:15] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\l
        earner.cc:738:
        Parameters: { "use_label_encoder" } are not used.
         bst.update(dtrain, iteration=i, fobj=obj)
```

```
XGBoost Performance
        [[2692
                 2
                      9]
            9 391
                      6]
        [
        22
                 0 1869]]
                     precision
                                recall f1-score
                                                     support
                  0
                          0.99
                                    1.00
                                              0.99
                                                        2703
                  1
                          0.99
                                    0.96
                                              0.98
                                                         406
                   2
                          0.99
                                    0.99
                                              0.99
                                                        1891
                                              0.99
                                                        5000
           accuracy
                          0.99
                                    0.98
                                              0.99
                                                        5000
          macro avg
                                              0.99
                                                        5000
       weighted avg
                          0.99
                                    0.99
In [25]: svm_clf = SVC(class_weight='balanced', kernel='linear', random_state=42)
         svm_clf.fit(X_train, y_train)
         y_pred_svm = svm_clf.predict(X_test)
         print("SVM Performance")
         print(confusion_matrix(y_test, y_pred_svm))
         print(classification_report(y_test, y_pred_svm))
        SVM Performance
        [[2193 198 312]
        [ 81 256
        [ 535 320 1036]]
                     precision
                                recall f1-score
                                                     support
                  0
                          0.78
                                    0.81
                                              0.80
                                                        2703
                  1
                          0.33
                                    0.63
                                              0.43
                                                         406
                   2
                          0.73
                                    0.55
                                              0.63
                                                        1891
                                              0.70
                                                        5000
           accuracy
                                              0.62
                                                        5000
          macro avg
                          0.61
                                    0.66
                          0.73
                                    0.70
                                              0.70
                                                        5000
       weighted avg
In [26]: #Evaluate Model Performance
         models = ['Logistic Regression', 'Random Forest', 'XGBoost', 'SVM']
         predictions = [y_pred_log_reg, y_pred_rf, y_pred_xgb, y_pred_svm]
         for model, pred in zip(models, predictions):
             print(f"\n{model} Classification Report:")
             print(classification report(y test, pred))
             print(confusion_matrix(y_test, pred))
```

Logistic Regression	Classification	Report:
---------------------	----------------	---------

	precision	recall	f1-score	support
0	0.71	0.88	0.79	2703
1	0.69	0.04	0.08	406
2	0.69	0.59	0.64	1891
accuracy			0.70	5000
macro avg	0.70	0.50	0.50	5000
weighted avg	0.70	0.70	0.67	5000

[[2381 1 321] [212 18 176] [770 7 1114]]

Random Forest Classification Report:

	precision	recall	f1-score	support
0	0.98	1.00	0.99	2703
1	0.99	0.94	0.97	406
2	0.99	0.99	0.99	1891
accuracy			0.99	5000
macro avg	0.99	0.97	0.98	5000
weighted avg	0.99	0.99	0.99	5000

[[2690 2 11] [14 383 9] [28 0 1863]]

XGBoost Classification Report:

precision	recall	f1-score	support
0.99	1.00	0.99	2703
0.99	0.96	0.98	406
0.99	0.99	0.99	1891
		0.99	5000
0.99	0.98	0.99	5000
0.99	0.99	0.99	5000
	0.99 0.99 0.99	0.99 1.00 0.99 0.96 0.99 0.99	0.99 1.00 0.99 0.99 0.96 0.98 0.99 0.99 0.99 0.99 0.98 0.99

[[2692 2 9] [9 391 6] [22 0 1869]]

SVM Classification Report:

	precision	recall	f1-score	support
0	0.78	0.81	0.80	2703
1	0.33	0.63	0.43	406
2	0.73	0.55	0.63	1891
accuracy			0.70	5000
macro avg	0.61	0.66	0.62	5000
weighted avg	0.73	0.70	0.70	5000

[[2193 198 312] [81 256 69] [535 320 1036]]

```
In [27]: #Feature Importance
    importances_rf = rf_clf.feature_importances_
    feat_df_rf = pd.DataFrame({'Feature': X.columns, 'Importance': importances_rf})
    feat_df_rf = feat_df_rf.sort_values(by='Importance', ascending=False)
    feat_df_rf.plot(kind='bar', x='Feature', y='Importance', legend=False)
    plt.title('Random Forest Feature Importance')
    plt.tight_layout()
    plt.show()
```



```
In [28]: xgb.plot_importance(xgb_clf)
  plt.title('XGBoost Feature Importance')
  plt.tight_layout()
  plt.show()
```

Feature

XGBoost Feature Importance


```
#Save Best Model
In [29]:
         import pickle
         with open('rf_model.pkl', 'wb') as f:
In [30]:
             pickle.dump(rf_clf, f)
         with open('xgb_model.pkl', 'wb') as f:
In [31]:
             pickle.dump(xgb_clf, f)
         #Cross-Validation
In [32]:
         from sklearn.model selection import cross val score
In [33]:
         log_reg_scores = cross_val_score(log_reg, X_scaled, y, cv=5, scoring='accuracy')
         rf_scores = cross_val_score(rf_clf, X_scaled, y, cv=5, scoring='accuracy')
         xgb_scores = cross_val_score(xgb_clf, X_scaled, y, cv=5, scoring='accuracy')
         svm_scores = cross_val_score(svm_clf, X_scaled, y, cv=5, scoring='accuracy')
         print("Logistic Regression CV Accuracy: ", log_reg_scores.mean())
         print("Random Forest CV Accuracy: ", rf_scores.mean())
         print("XGBoost CV Accuracy: ", xgb_scores.mean())
         print("SVM CV Accuracy: ", svm_scores.mean())
```

```
C:\Users\sakshi\AppData\Roaming\Python\Python311\site-packages\xgboost\training.py:
        183: UserWarning: [13:59:53] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\l
        earner.cc:738:
        Parameters: { "use_label_encoder" } are not used.
          bst.update(dtrain, iteration=i, fobj=obj)
        C:\Users\sakshi\AppData\Roaming\Python\Python311\site-packages\xgboost\training.py:
        183: UserWarning: [13:59:55] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\l
        Parameters: { "use_label_encoder" } are not used.
          bst.update(dtrain, iteration=i, fobj=obj)
        C:\Users\sakshi\AppData\Roaming\Python\Python311\site-packages\xgboost\training.py:
        183: UserWarning: [13:59:56] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\l
        earner.cc:738:
        Parameters: { "use_label_encoder" } are not used.
          bst.update(dtrain, iteration=i, fobj=obj)
        C:\Users\sakshi\AppData\Roaming\Python\Python311\site-packages\xgboost\training.py:
        183: UserWarning: [13:59:58] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\l
        earner.cc:738:
        Parameters: { "use_label_encoder" } are not used.
          bst.update(dtrain, iteration=i, fobj=obj)
        C:\Users\sakshi\AppData\Roaming\Python\Python311\site-packages\xgboost\training.py:
        183: UserWarning: [14:00:00] WARNING: C:\actions-runner\_work\xgboost\xgboost\src\l
        earner.cc:738:
        Parameters: { "use_label_encoder" } are not used.
          bst.update(dtrain, iteration=i, fobj=obj)
        Logistic Regression CV Accuracy: 0.69892
        Random Forest CV Accuracy: 0.98612
        XGBoost CV Accuracy: 0.99024
        SVM CV Accuracy: 0.6759600000000001
In [34]: models = ['Logistic Regression', 'Random Forest', 'XGBoost', 'SVM']
         cv_accuracies = [
             log_reg_scores.mean()*100,
             rf_scores.mean()*100,
             xgb scores.mean()*100,
             svm scores.mean()*100
         1
         plt.figure(figsize=(8, 5))
         bars = plt.bar(models, cv_accuracies, color=['skyblue', 'lightgreen', 'orange', 'r
         for bar, acc in zip(bars, cv_accuracies):
             plt.text(bar.get_x() + bar.get_width()/2, bar.get_height() + 1,
                      f'{acc:.2f}%', ha='center', va='bottom')
         plt.ylim(0, 110)
         plt.ylabel('Cross-Validated Accuracy (%)')
         plt.title('Final Model Accuracy (5-Fold Cross-Validation)')
         plt.grid(axis='y', linestyle='--', alpha=0.5)
         plt.tight_layout()
         plt.show()
```

Final Model Accuracy (5-Fold Cross-Validation)

In []: