YEAR TWELVE FINAL TESTS 1994

### **QUESTION 7**

- An employer wishes to choose two people for a job. There are eight applicants, three of whom are women and five of whom are æ
- If each applicant is interviewed separately and all of the women are interviewed before any of the men, find how many ways there are of carrying out the interviews.  $\in$
- If the employer chooses two of the applicants at random, fir the probability that at least one of those chosen is a woman  $\equiv$
- A particle moving in a straight line is performing Simple Harmonic Motion. At time t seconds its displacement x metres from a fixed point O on the line is given by  $x = 2\cos^2 t$ . 9
- Show that its velocity v ms-1 and its acceleration X ms-2 are given by  $v^2 = 4(2x-x^2)$  and  $\ddot{x} = -4(x-1)$ respectively.  $\in$
- Find the centre, amplitude and period of the motion. €

## **MATHEMATICS**

## 3/4 UNIT COMMON PAPER

# (i.e. 3 UNIT COURSE — ADDITIONAL PAPER; 4 UNIT COURSE — FIRST PAPER)

ternoon session

Friday 12th August 1994.

Time Allowed - Two Hours

#### EXAMINERS

Glenn Abrahams, Patrician Brothers' College, Fairfield Graham Arnold, John Paul II Senior High, Marayong Sandra Hayes, All Saints Catholic Senior High, Casula.

## RECTIONS TO CANDIDATES:

- L questions may be attempted.
- l. questions are of equal value.
- necessary working should be shown in every question.
- i marks may not be awarded for careless or badly arranged work.
- proved calculators may be used.
- ndard integrals are printed on a separate page.



### **QUESTION 1**

- (a) If the positive numbers a, b, c are three consecutive terms in a geometric sequence show that log, a, log, c are three consecutive terms in an arithmetic sequence.
- (i) Write down the expansion of  $\cos(\alpha + \beta)$ . Ð
- Write down the exact values of cos 30° and cos 45°.
- (iii) Hence find the exact value of cos 75°.
- The equation  $x^3-2x^2+4x-5=0$  has roots  $\alpha,\beta,\gamma$ . છ
- Write down the values of  $\alpha\beta + \beta\gamma + \gamma\alpha$  and  $\alpha\beta\gamma$ .
- (ii) Hence find the value of  $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$ .

### QUESTION 2

(a) (i) Find 
$$\frac{d}{dx}e^{3x^2}$$

$$\int xe^{3x^2} dx$$

(ii) Hence find 
$$\int x e^{3x^2} dx + \int_{-1}^{1} \int_{0}^{1} e^{-\frac{1}{2}} \int_{0}^{1} e^{-\frac{1}{2}$$

- (b) Use the substitution  $u = \log_{\theta} x$  to evaluate
- The diagram below shows the graph of  $y = \pi + 2 \sin^{-1} \Im$ <u>ပ</u>



- (i) Write down the coordinates of the endpoints A and C.
- Write down the coordinates of the point B.
- Find the equation of the tangent to the curve  $y = \pi + 2 \sin^{-4} 3x$  at the point B.



In the diagram above ABCD is a cyclic quadrilateral. CD is produced to E. P is a point on the circle through A, B, C, D such that L ABP = L PBC.

- (i) Copy the diagram showing the above information.
- (ii) Explain why LABP = LADP. and use the some some
- (iii) Show that PD bisects LADE.
- If, in addition, L BAP = 90" and L APD = 90", explain where the centre of the circle is located.
- (b) For the function  $y = x + e^{-x}$
- (i) find the coordinates and the nature of any stationary points on the graph of y = f(x) and show that the graph is concave upwards for all values of x.
  - (ii) sketch the graph of y = f(x) showing clearly the coordinates of any turning points and the equations of any asymptotes

### **QUESTION 4**

(a)



 $P(2at,at^2)$  is a point on the parabola  $x^2=4ay$ . S is the focus of the parabola. PQ is the perpendicular from P to the directrix d the parabola. The tangent at P to the parabola cuts the axis of the parabola at the point R.

- (i) Show that the tangent at P to the parabola has equation  $bx y at^2 = 0$ .
- (ii) Show that PR and QS bisect each other.
- (iii) Show that PR and QS are perpendicular to each other.
- (iv) State with reason what type of quadrilateral PORS is.
- (b) In the expansion of  $(1-2x)(1+ax)^{10}$  the coefficient of  $x^6$  is 0. Find the value of a.

### QUESTION 5

Abody is moving in a straight line. At time  $\,t\,$  seconds its displacement is  $\,x\,$  metres from a fixed point  $\,O\,$  on the line and its velocity is v ms<sup>-1</sup>, if v = 1 find its acceleration when x = 0.5. (a)

Janie as sandy 2+ 8800 1 k6 25 5

subtends an angle of 29 radians at the centre of the circle. The chord of the circle joining the ends of the arc is 10 metres long. A pipe which is 12 metres long is bent into a circular arc which ê



- (i) Show that  $6 \sin \theta 5\theta = 0$ .
- (ii) Show that  $\theta_0 = 1$  radian is a good first approximation to the value of 8.
- Use one application of Newton's method to find a better approximation 9, to the value of 9.  $\widehat{\Xi}$

the radius of the arc, rounding off this approximation correct Use this value of  $\theta_1$  to find an approximation to the length of to two decimal places.

### QUESTION 6

- (i) Write down the expression for tan 2a in terms of tan a (a)
- If  $f(a) = a \cot a$  show that  $f(2a) = (1-\tan^2 a) f(a)$ . €

3



In  $\Delta XYZ$ , ZX = y and  $\Delta YZX = 90^{\circ}$ .

Show that the area A and perimeter P of the triangle are given by  $A = \frac{1}{2} y^2 \tan X$  and  $A = \frac{1}{2} y^2 \tan X + \sec X$  respectively.

If  $X = \frac{\pi}{1}$  radians and y is increasing at a constant rate of **E**B

0.1 cm s<sup>-1</sup> find the rate at which the area of the triangle is increasing at the instant when  $y = 20 \, \text{cm}$ .

0.2 radians s<sup>-1</sup> find the rate at which the perimeter of the If y = 10 cm and X is increasing at a constant rate of triangle is increasing when  $X = \frac{\pi}{6}$  radians. 9