

Scientific visualization

PDC Summer School 2023

Jean M. Favre, CSCS

June 27, 2023

- Use a scalar field visualization technique
- Use glyphs representations (oriented arrows in the direction of the field)
- Use lines tangent to the vector field

Time-dependent data:

- Use particle traces
- Use pathlines

Shade the vector field by its magnitude

- Missing cues?
 - direction

 Draw arrows oriented in the direction of the field

Issues?

- Make the density of arrows dependent on the zoom ration
- Difficulties?
 - Can be too complicated in 3D

Apply both techniques seen earlier

 Draw streamlines tangent to the vector field

- Difficulties?
 - too dense, or too sparse

 Draw evenly-spaced streamlines tangent to the vector field

- Difficulties?
 - Missing in 3D

 Use a GPU-based representation to do a Linear Integral Convolution

- Difficulties?
 - Missing in 3D
 - Not correct for transient data

 Transient particles advected by the vector field

- Issues?
 - Particles disappearing
 - Can we re-inject particles at regular intervals?

 Transient particles advected by the vector field

