

Fifty⁺ Nifty Variations of Two-Transistor Circuits

Circuit No. 1

This is the ubiquitous digital **inverter**. The input voltage $V_{\rm in}$ switches one of both transistors on while the other is off.

Circuit No. 2

The same structure can be used as a **voltage amplifier** ($V_{\rm out}$, with high-Z loading) or low-voltage complementary **transconductance stage** ($I_{\rm out}$, with low-Z loading) when both MOS-FET are held in saturation.

Circuit No. 3

The (dynamic threshold) **DT-MOS inverter** achieves an improved current drive at low leakage current. It needs to be operated at low supply voltages to avoid a forward bias of the well diodes.

Circuit No. 4

An ESD-safe **tie-zero** for unused CMOS logic inputs (no MOS-FET gate should be tied directly to a supply rail). The tie-one can be constructed accordingly.

Circuit No. 5

Using a current source $I_{\rm bias}$ with finite output impedance to bias this structure, this circuit implements an **XNOR** logic function ($V_{\rm out} = \overline{V_{\rm a} \oplus V_{\rm b}}$). The logic inputs $V_{\rm a}$ and $V_{\rm b}$ must be driven by low-ohmic logic levels between $V_{\rm DD}$ and $V_{\rm SS}$.

Circuit No. 6

This series connection of two MOS-FETs realizes a logical **NAND** function $(V_{\rm out} = \overline{V_{\rm a} \wedge V_{\rm b}})$ when driven by logic inputs.

Circuit No. 7

This circuit complements the logic gates and realizes a NOR function $(V_{\rm out} = \overline{V_{\rm a} \vee V_{\rm b}})$.

Circuit No. 8

This circuit is the basic **current mirror**, simultaneously copying and sizing of $I_{\text{out}} = (W/L)_2/(W/L)_1 \cdot I_{\text{in}}$ according to the dimensions of M_1 and M_2 .

Circuit No. 9

The ubiquitous **differential pair** (or long-tailed pair), like the current mirror, is a fundamental building block in integrated circuits.

Circuit No. 10

The **pseudo-differential pair** spares the tail current source's headroom in exchange for reduced common-mode rejection, but with the benefit of class-AB operation.

Circuit No. 11

This is the **source follower** (or common-drain stage), utilizing M_2 as a current source to bias M_1 .

Circuit No. 12

The **common-source** amplifier stage with active load.

Circuit No. 13

The **cascoded common-source** stage boosts the output impedance of M_1 considerably to $r_{\rm out} \approx g_{m2}/(g_{ds1} \cdot g_{ds2})$.

Circuit No. 14

This is the **cascoded common-gate** stage. Note that $I_{\rm out} \approx I_{\rm in}$, but the impedance level changes drastically, creating gain or a high output impedance at the output node.

Circuit No. 15

The **common-gate stage**, employing M_2 as a current source to bias transistor M_1 . The input can be either a voltage- or a current-signal.

Circuit No. 16

The transmission gate switches either voltage (V_1 and V_2) or current (I_1 and I_2) (and it works rail to rail, too).

Circuit No. 17

The 2-to-1 **multiplexer**, connecting either V_1 or V_2 to $V_{\rm com}$. Depending on $V_{\rm sel1}$ and $V_{\rm sel2}$, the MOS-FETs are alternately switched on or off.

Circuit No. 18

This circuit is an improved **bulk-driven current mirror** that allows low voltage operation, requiring a voltage headroom substantially less than $V_{\rm GS1}$.

Circuit No. 19

The common-source amplifier with diode load is sometimes called a wide-band amplifier due to its potentially high-speed operation. Here, the gain is set precisely to $A_v = V_{\rm out}/V_{\rm in} = -\sqrt{(W/L)_1/(W/L)_2}$, only depending on transistor sizing (if we neglect the body effect and finite output conductance).

Circuit No. 20

This wide-band amplifier has the advantage of a removed body effect in M_2 and a ground-referred output node.

Circuit No. 21

This ultra-low-power diode (ULPD) shows a reduced leakage in the reverse direction when $V_{\rm n} > V_{\rm p}$.

Circuit No. 22

This class-B **push-pull follower** can be considered an enhanced version of the simple source follower. However, lacking a class-A bias component, this structure is subject to cross-over distortion.

Circuit No. 23

This circuit is a MOS-FET-R degenerated common-source stage. By sizing M_2 appropriately, the degeneration can be adapted. This arrangement using two transistors can also increase the length of a (compound) device, for example, in current mirrors, as otherwise, MOS-FETs with different L will not match well.

Circuit No. 24

This is a variation of the implementation shown earlier, where the **degeneration** of M_1 can be **adapted** by tuning V_{bias} .

Circuit No. 25

This **common-gate-common-source** topology offers an impedance-matched single-ended input and a differential output while simultaneously canceling noise and distortion.

Circuit No. 26

This **low-noise amplifier** was discovered by doing an exhaustive search for potential two-transistor wide-band amplifiers. For practical implementation, M_1 requires an ac-coupling (and proper biasing) in its gate connection to keep M_2 in saturation.

Circuit No. 27

This (simple) bias voltage generator uses the current source M_1 to bias M_2 so that $V_{\rm bias} = V_{\rm GS2}$. Note that the generated voltage is susceptible to changes in process, supply voltage, and temperature (PVT).

Fifty⁺ Nifty Variations of Two-Transistor Circuits

Circuit No. 28

This **constant bias voltage** generator creates a remarkably stable output voltage (note that M_1 and M_2 must have different threshold voltages $V_{\rm th1} \neq V_{\rm th2}$).

Circuit No. 29

This circuit is a **PTAT voltage** generator, if M_1 and M_2 are kept in subthreshold operation.

Circuit No. 30

This **pA** current source is based on the periodic filling and flushing of the $Si-SiO_2$ interface traps by alternating M_1 between accumulation and inversion. It can operate with reasonably high clock frequencies and still create tiny currents.

Circuit No. 31

Two transistors with cross-coupling form a **negative resistance** between $V_{\rm p}$ and $V_{\rm n}$, mainly employed in oscillators and comparators. As in a differential pair, the bias current source can be replaced by a fixed potential.

Circuit No. 32

This circuit is a **low-voltage** version of a **cross-coupled pair**, where the body controls the MOS-FETs, avoiding the significant $V_{\rm GS}$ drop at $V_{\rm p}$ and $V_{\rm n}$.

Circuit No. 33

This **varactor** (the capacitance between $V_{\rm p}$ and $V_{\rm n}$ depends on the bias voltage $V_{\rm bias}$) is often used in voltage-controlled oscillators. In most technologies, the NMOS can be put inside the n-well so that the varactor works in accumulation, providing an optimized tuning range and high Q.

Circuit No. 34

The anti-parallel MOS-FET diodes can be employed for many things, for example, voltage clamping.

Circuit No. 35

The **anti-parallel MOS-FET capacitors** make the differential capacitance between $V_{\rm p}$ and $V_{\rm n}$ more linear and symmetrical. As in a varactor, an NMOS-in-n-well is an option.

Circuit No. 36

This circuit, which is a similar configuration as the flipped voltage follower, can function as an **active inductor**, providing $L = C_{GS1}/(g_{m1} \cdot g_{m2})$.

Circuit No. 37

This circuit is an area-efficient voltage divider. If M_1 and M_2 are of the same size, then $V_{\rm out} \approx V_{\rm in}/2$. Often, a PMOS version is a better choice since it can avoid the body effect by tying the body to the respective source for M_1 and M_2 .

Circuit No. 38

This implementation is the **Bult current divider** (if M_1 and M_2 are of identical size, then $I_{\rm in}$ is precisely split in half between $I_{\rm out1}$ and $I_{\rm out2}$).

Circuit No. 39

This is a **sample-and-hold** circuit as used in a lot of ADC implementations, using the gate capacitance of M_2 as a storage capacitor (a low to zero $V_{\rm th}$ would be an advantage in this case).

Circuit No. 40

This arrangement creates an enormous resistance between $V_{\rm p}$ and $V_{\rm n}$, although susceptible to temperature and process variations.

Circuit No. 41

In this dual-gate MOS-FET mixer, the periodic local-oscillator signal $V_{\rm lo}$ causes the time-variant change of the transconductance of M_1 , resulting in a frequency conversion from the input $V_{\rm rf}$ to the output $I_{\rm out}$.

Circuit No. 42

The sample-and-hold circuit becomes a continuous-time **low-pass filter** if M_1 is connected to a fixed bias voltage instead of a clock signal. Note that this circuit transforms into a high-pass filter when M_1 and M_2 are swapped.

Circuit No. 43

This circuit is a minimalistic **peak-voltage detector** (essentially a max-hold), where $V_{\rm peak}=V_{\rm in,max}-V_{\rm gs1}$.

Circuit No. 44

A similar circuit to the peak detector can function as an approximate **voltage** doubler when driven by a sinusoidal input voltage (on negative swings of $V_{\rm in}$ the capacitor M_1 gets charged to $|V_{\rm in}|-V_{\rm gs2}$, which is added to $V_{\rm in}$ during positive swings when M_2 is off). As in any circuit with negative voltages, proper connection of the wells is required.

Circuit No. 45

This circuit implements a current-controlled (high-impedance) floating **resistor** between $V_{\rm p}$ and $V_{\rm n}$.

Circuit No. 46

The floating **level shift** (or "floating **battery**") effectively shifts a bias point between $V_{\rm p}$ and $V_{\rm n}$, as $V_{\rm shift}=V_{\rm p}-V_{\rm n}=V_{\rm GS1}+V_{\rm GS2}$.

Circuit No. 47

This circuit is a perfectly **linear** I-to-V converter with $V_{\rm out}/I_{\rm in}=[\mu C_{\rm ox}\cdot (W/L)\cdot (V_{\rm bias}-2V_{\rm th})]^{-1}$, if we assume a square-law behavior, neglect the body effect, and M_1 and M_2 are of same size and kept in saturation.

Circuit No. 48

This **level-shifter circuit** shifts a digital input voltage $V_{\rm in}$ to an output voltage $V_{\rm out}$ swinging around $V_{\rm SS}$.

Circuit No. 49

The **flipped voltage follower** is an improved version of the standard source follower, employing feedback to lower the output impedance to $r_{\text{out}} = g_{ds2}/(g_{m1} \cdot g_{m2})$.

Circuit No. 50

The **regulated cascode** improves the effect of the cascode M_1 by g_{m2}/g_{ds2} due to feedback. Note that the source of M_2 can be tied to ground if combined with a common-source input stage.

Circuit No. 51

Exploiting the parasitic (lateral) PNP transistor inherent in a PMOS struc-

ture, this simple CTAT voltage generator can be created.

Circuit No. 52

The parasitic BJT (lateral or vertical) often suffers from poor $\beta \ll 10$. This circuit forces the collector current of the parasitic (vertical) **PNP** (realized by M_1) to $I_C = I_{\rm bias1} - I_{\rm bias2}$, although the collector terminal (being the p-substrate) is not accessible. By doing this, the resulting $V_{\rm EB} = V_{\rm E} - V_{\rm B}$ can be accurately used in a bandgap circuit.