What is claimed is:

1. A spectacle lens having an outer surface and an inner surface, one of the outer and inner surfaces being configured to be a rotationally-asymmetrical aspherical surface, when a curvature at a coordinate (h,θ) of the outer surface is represented by $C_1(h,\theta)$, a curvature at a coordinate (h,θ) of the inner surface is represented by $C_2(h,\theta)$, and a difference between curvatures of the outer surface and the inner surface at the coordinate (h,θ) is represented by $C_{2-1}(h,\theta)=C_2(h,\theta)-C_1(h,\theta)$, if $C_{2-1}(0,\theta)>0$, said spectacle lens satisfying a condition (1):

 $C_{2-1}(h,\theta+180)-C_{2-1}(h,\theta) > 0 \qquad \cdots (1),$ and if $C_{2-1}(0,\theta)<0$, said spectacle lens satisfying a condition (2):

$$C_{2-1}(h, \theta+180)-C_{2-1}(h, \theta) < 0$$
(2)

wherein the conditions (1) and (2) hold within ranges of 10mm \leq h \leq 20mm and 30° \leq 0 \leq 150°,

wherein given that a normal line which is normal to the outer surface through a centration point is regarded as a z_1 -axis, a direction which is perpendicular to the z_1 -axis and which corresponds to an upward direction in the state of wearing of said spectacle lens is regarded as a y_1 -axis, and a direction which is perpendicular to the y_1 -axis and the z_1 -axis in a left hand coordinate system is

regarded as an x_1 -axis, the coordinate (h,θ) of the outer surface is defined as a point having a height h (unit: mm) from the z_1 -axis on an intersection line which is formed between the outer surface and a plane including the z_1 -axis and forming an angle θ (unit: degree) with respect to the x_1 -axis,

wherein given that a normal line which is normal to the inner surface through the centration point is regarded as a z_2 -axis, a direction which is perpendicular to the z_2 -axis and which corresponds to the upward direction in the state of wearing of said spectacle lens is regarded as a y_2 -axis, and a direction which is perpendicular to the y_2 -axis and the z_2 -axis in the left hand coordinate system is regarded as an x_2 -axis, the coordinate (h,0) of the inner surface is defined as a point having a height h (unit: mm) from the z_2 -axis on an intersection line which is formed between the inner surface and a plane including the z_2 -axis and forming an angle 0 (unit: degree) with respect to the x_2 -axis,

wherein the centration point being defined as a point which coincides with a pupil position of a wearer when said spectacle lens is viewed from a front side in a state of wearing of said spectacle lens.

2. The spectacle lens according to claim 1,

2 4

wherein when the inner surface is configured to be the rotationally-asymmetrical aspherical surface, if $C_{2-1}(0,\theta)>0$, said spectacle lens satisfying a condition (3):

$$C_2(h, \theta+180) - C_2(h, \theta) > 0$$
(3)

and if $C_{2-1}(0,\theta) < 0$, said spectacle lens satisfying a condition (4):

$$C_2(h, \theta+180) - C_2(h, \theta) < 0$$
(4)

wherein the conditions (3) and (4) hold within the ranges of 10mm \leq h \leq 20mm and 30° \leq 0 \leq 150°.

3. The spectacle lens according to claim 1,

wherein when the outer surface is configured to be the rotationally-asymmetrical aspherical surface, if $C_{2-1}(0,\theta)>0$, said spectacle lens satisfying a condition (5):

$$C_1(h, \theta+180)-C_1(h, \theta) < 0$$
(5),

and if $C_{2-1}(0,\theta)<0$, said spectacle lens satisfying a condition (6):

$$C_1(h, \theta+180)-C_1(h, \theta) > 0$$
(6)

wherein the conditions (5) and (6) hold within the ranges of 10mm \leq h \leq 20mm and 30° \leq 0 \leq 150°.

4. The spectacle lens according to claim 1, wherein the outer surface is configured to be a spherical surface, and the inner surface is configured to be the rotationally-asymmetrical aspherical surface.

Q a

- 5. The spectacle lens according to claim 1, wherein the outer surface is configured to be the rotationally-asymmetrical aspherical surface, and the inner surface is configured to be a spherical surface.
- 6. The spectacle lens according to claim 1, wherein the outer surface is configured to be the rotationally-asymmetrical aspherical surface, and the inner surface is configured to be a toric surface.
- 7. The spectacle lens according to claim 1, wherein both of the outer and inner surfaces are configured to be aspherical surfaces.
- 8. The spectacle lens according to claim 1, wherein the outer surface is configured to be a rotationally-symmetrical aspherical surface, and the inner surface is configured to be the rotationally-asymmetrical aspherical surface.
- 9. The spectacle lens according to claim 1, wherein the outer surface is configured to be the rotationally-asymmetrical aspherical surface, and the inner surface is configured to be a rotationally-symmetrical aspherical

surface.

- 10. The spectacle lens according to claim 1, wherein both of the outer and inner surfaces are configured to be the rotationally-asymmetrical aspherical surfaces.
- 11. The spectacle lens according to claim 1, wherein one of the outer and inner surfaces has cylindrical refractive power for correction of an astigmatic vision.