Conditionals, custom functions, and game theory

Brian Kissmer

USU Department of Biology

Sept. 17th, 2024

Brian Kissmer

Week 4

Unit 1: Introduction to Computational Biology

But not really

USU Department of Biology Brian Kissmer

- 1. Learn how to use conditional statements and custom functions in R
- 2. Understand the applications of game theory to studies in biology

- Conditionals and custom functions
- Game theory simulations

See the Handout for this week

Simulations in biology

- As we discussed last week, stochastic simulations are essential for understanding stochastic processes.
 - Drift, mutation, dispersal, developmental noise, etc.
- Analytical methods often fail in the face of complexity, in these cases simulations can be quite insightful.

Game theory

- Game theory is a useful method for simulating patterns across biology
- > When a phenotype's fitness depends on its frequency
- Predator-prey dynamics
- Coevolution
- > Etc.

Rock paper scissors

- Rock paper scissors is a great example of game theory:
 - If rock and scissors meet, rock wins
 - If paper and rock meet, paper wins
 - If scissors and paper meet, scissors wins

Rock paper scissors

➤ <u>Link to video</u>

Brian Kissmer USU Department of Biology

- > One way in which game theory used extensively in biology is to model the fitness of competitive strategies (i.e. phenotypes) over time.
- > Strategies that cannot be beaten by new (mutant) strategies are considered to be Evolutionarily Stable

Game theory and Evolutionarily Stable Strategies (ESS)

- > One way in which game theory used extensively in biology is to model the fitness of competitive strategies (i.e. phenotypes) over time.
- Strategies that cannot be beaten by new (mutant) strategies are considered to be Evolutionarily Stable
- Populations can be in Evolutionarily Stable states even when not fixed for a single strategy
- Same theory can be used to study ESS related to the evolution of sociality, cooperation, competition, sex-ratio evolution, and more

Unit 1: Introduction to Computational Biology

Hawk-Dove game

Brian Kissmer USU Department of Biology

Hawk-Dove game

- \succ Two animals compete for resource with value V, where V is the gain in Darwinian fitness
- > Animals have three moves: display, escalate, or retreat
- > "Hawks" escalate until injured or opponent retreats
- > "Doves" escalate but retreat if opponent escalates
- > If two opponents escalate, one is injured with fitness cost C

Hawk-Dove game

- > Dove meets dove: Doves split resource
- > Dove meets hawk: Dove retreats, hawk steals resource
- > Hawk meets hawk: hawks split resource after deducting resource cost

	Hawk	Dove
Hawk	$\frac{1}{2}(V-C)$	V
Dove	0	$\frac{V}{2}$

$$\rightarrow p = \text{Hawk (H) frequency}$$

$$\rightarrow w_H$$
 and w_D denote H and D fitness

$$\triangleright$$
 $E(H,D)$ = payoff for H against D

$$w_H = w_0 + pE(H, H) + (1 - p)E(H, D)$$

$$w_D = w_0 + pE(D, H) + (1 - p)E(D, D)$$

Hawk-Dove game

$$\rightarrow$$
 $p = \text{Hawk (H) frequency}$

$$\rightarrow w_H$$
 and w_D denote H and D fitness

$$\triangleright$$
 $E(H,D)$ = payoff for H against D

$$ho_{t+1} =
ho_t rac{w_H}{ar{w}}$$

 $\bar{w} = p_t w_H + (1 - p_t) w_D$

Making predictions

How do we think the Hawk-Dove game will play out? Is one strategy better than the other? Is there likely a stable (ESS) state? Would this change with different values of V and C? How about on the initial conditions of the population? Discuss for \sim 5 minutes?

Brian Kissmer

Hawk is a ESS if V > C

P = V/C is stable if V < C

Brian Kissmer

See the week 4 worksheet.

Brian Kissmer

USU Department of Biology

Week 4