วิชา 204451 Algorithm Design and Analysis

รหัสนักศึกษา 630510600 ชื่อสกุล คิณะ กิลากล โพปรกุลพิเภา คอนที่ 2

Assignment5 (2 ส.ค. 65) : String กำหนดส่งงาน : จ. 15 ส.ค. 65 (เวลา 23.59 น.)

ให้นักศึกษา

- 1. เขียนคำตอบตามโจทย์กำหนดด้วยลายมือ แล้วถ่ายรูป (นามสกุล .jpg) หรือไฟล์ pdf ส่งที่เว็บส่งการบ้านภาควิชาฯ
- 2. ตั้งชื่อไฟล์ในรูปแบบ assign_x_id เมื่อ x คือหมายเลข Assignment และ id คือ รหัสนักศึกษา
 (กรณีส่งหลายไฟล์ให้ตั้งชื่อเป็น assign_01_id_a.jpg โดย a หมายถึง ลำดับไฟล์ แล้วทำการ zip รวมทุกไฟล์ส่งในงาน
 Assignment เดียวกันด้วยชื่อ assign_01_id.zip แทน)
- 3. ส่งงานภายในวันเวลาที่กำหนด หากส่งเลยกำหนดให้ขี้แจงเหตุผลกับอ. ประจำ section (พิจารณาคะแนนตามเหตุผล)

กำหนดข้อความ T และ pattern P ดังนี้

ข้อความ T: aaababaabaababaab

pattern P: aabab

ให้แสดงวิธีการค้นหา pattern P ในข้อความ T ด้วยวิธี

- 1) Knuth-Morris-Pratt's algorithm ดัง ตัวอย่างในสไลด์หน้า 22
- 2) Boyer-Moore's algorithm ดัง ตัวอย่างในสไลด์หน้า 28

Knuth-Morris-Pratt's algorithm

i.) Build a prefix table; letting F[j] be the prefix

of P[j], 0 < j < |P|.

j	0	.1	2	3	4
PSj7	a	a	b	a	6
FIj7	0	1	0	1	0

· At j=0, F[j] = 0

• At j=1, let $t=f[j-1]=0 \rightarrow P[t]=P[0]=a$."

Since $P[j]=P[t] \leftrightarrow a^*=a^*$, ... F[j]=t+1=1

At j=2, let $t=f[j-1]=1 \rightarrow P[t]=P[1]=a$? Since $P[j] \neq P[t] \leftrightarrow "b" \neq "a"$ but $t \neq 0$, reconsider $t=f[t-1]=0 \rightarrow P[t]$. P[0]=a? Since $P[j] \neq P[t] \leftrightarrow "b" \neq "a"$ and t=0,

o At J=3, let t = F[j-1]=0 → P[t]=P[0]= "a"
Since P[j]=P[t] ↔ "a"= "a", :. F[j]=t+1=1

At j=4, let $f=f(j-2)=1 \rightarrow P[t]=P[4]="a"$. Since $P[j] \neq P[t] \Leftrightarrow b'' \neq a''$, but $f \neq 0$, reconsider $t=F[t-1]=0 \rightarrow P[t]=P[0]="a"$. Since $P(j) \neq P[t] \Leftrightarrow b'' \neq a''$, and b=0, f=0.

unu dividama burrganism section 2 sus 630510600 10.) Search for the pattern P in T Compare P[0...4] to T[0...4] Т: аа да а . . . P: aakab 0 1 2 3 4 . Shift 1 character. F(j):01010 Compare P[0 1 42 2 to T[1...5]
T: ... a a b ab ... aabab 0 1 2 3 4 Match exactly (.. Found P at T[1...5] D Boyer-Moore's Algorithm (case a.) T: a a a b a b a a b a a ...

bad character: Shift 1 Character so Ty = P3 (T4 + P4) Good ellfix: Shift 1 character P: aabab so that T[1...4] = haba' = P[0...3]

both heuristical rules suggest 1 shift, Found P at T[1.05]