Apellido y Nombre: email:

nota	1	2	3	4	5	
Lenguajes y Compiladores	Recuperatorio				1/8/2011	

1. Dado el término

 $(\lambda x.\lambda w.w(wx))((\lambda z.\lambda x.x(x\Delta))((\lambda y.\lambda x.x)w)\Delta,)$

evaluar en modalidad eager y normal (o sea obtener la semántica big-step).

- 2. Considere que queremos extender el lenguaje Iswim con declaración de variables **newref** x := e in e', de manera que tanto la modificación del estado como el entorno sean locales a e'. Dé la semántica denotacional de esta nueva construcción. Suponga que tiene a su disposición una función $remRef : \Sigma \times Ref \to \Sigma$ que satisface $r \notin dom(remRef(\sigma, r))$.
- 3. a) Enúncie cada una de las siguientes propiedades:
 - (i) Regla β
 - (ii) Regla η
 - b) Para la regla β , demuestre o refúte su validez en el cálculo lambda, el cálculo lambda con semántica eager, y el cálculo lambda con semántica normal.