

Operating Systems

File-System Interface & Implementation

File-System Interface

- File Concept
- Access Methods
- Directory Structure
- File-System Mounting
- File Sharing
- Protection

File System Implementation

- File-System Structure
- File-System Implementation
- Directory Implementation
- Allocation Methods
- Free-Space Management
- Efficiency and Performance

File Concept

- Contiguous logical address space
- Types:
 - Data
 - numeric
 - character
 - binary
 - Program

File Structure

- None sequence of words, bytes
- Simple record structure
 - Lines
 - Fixed length
 - Variable length
- Complex Structures
 - Formatted document
 - Relocatable load file
- Can simulate last two with first method by inserting appropriate control characters
- Who decides:
 - Operating system
 - Program

File Attributes

- Name only information kept in human-readable form
- Identifier unique tag (number) identifies file within file system
- Type needed for systems that support different types
- Location pointer to file location on device
- Size current file size
- Protection controls who can do reading, writing, executing
- Time, date, and user identification data for protection, security, and usage monitoring
- Information about files are kept in the directory structure, which is maintained on the disk

File Operations

- File is an abstract data type
- Create
- Write
- Read
- Reposition within file
- Delete
- Truncate
- Open(F_i) search the directory structure on disk for entry F_i, and move the content of entry to memory
- Close (F_i) move the content of entry F_i in memory to directory structure on disk

Open Files

- Several pieces of data are needed to manage open files:
 - File pointer: pointer to last read/write location, per process that has the file open
 - File-open count: counter of number of times a file is open – to allow removal of data from open-file table when last processes closes it
 - Disk location of the file: cache of data access information
 - Access rights: per-process access mode information

Open File Locking

- Provided by some operating systems and file systems
- Mediates access to a file
- Mandatory or advisory:
 - Mandatory access is denied depending on locks held and requested
 - Advisory processes can find status of locks and decide what to do

File Locking Example – Java API

```
import java.io.*;
import java.nio.channels.*;
public class LockingExample {
   public static final boolean EXCLUSIVE = false;
   public static final boolean SHARED = true;
   public static void main(String arsg[]) throws IOException {
         FileLock sharedLock = null:
         FileLock exclusiveLock = null;
         try {
                  RandomAccessFile raf = new RandomAccessFile("file.txt",
   "rw");
                  // get the channel for the file
                  FileChannel ch = raf.getChannel();
                  // this locks the first half of the file - exclusive
                  exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);
                  /** Now modify the data . . . */
                  // release the lock
                  exclusiveLock.release();
```

File Locking Example – Java API (Cont.)

```
// this locks the second half of the file - shared
              sharedLock = ch.lock(raf.length()/2+1,
raf.length(),
                                       SHARED);
              /** Now read the data . . . */
              // release the lock
              sharedLock.release();
     } catch (java.io.IOException ioe) {
              System.err.println(ioe);
     }finally {
              if (exclusiveLock != null)
              exclusiveLock.release();
              if (sharedLock != null)
              sharedLock.release();
```

File Types – Name, Extension

file type	usual extension	function
executable	exe, com, bin or none	ready-to-run machine- language program
object	obj, o	compiled, machine language, not linked
source code	c, cc, java, pas, asm, a	source code in various languages
batch	bat, sh	commands to the command interpreter
text	txt, doc	textual data, documents
word processor	wp, tex, rtf, doc	various word-processor formats
library	lib, a, so, dll	libraries of routines for programmers
print or view	ps, pdf, jpg	ASCII or binary file in a format for printing or viewing
archive	arc, zip, tar	related files grouped into one file, sometimes compressed, for archiving or storage
multimedia	mpeg, mov, rm, mp3, avi	binary file containing audio or A/V information

Access Methods

Sequential Access

read next
write next
reset
no read after last write
(rewrite)

Direct Access

read *n*write *n*position to *n*read next
write next
rewrite *n*

n = relative block number

Sequential-access File

Simulation of Sequential Access on Direct-access File

sequential access	implementation for direct access
reset	cp = 0;
read next	read cp ; cp = cp + 1;
write next	write cp ; $cp = cp + 1$;

Example of Index and Relative Files

Directory Structure

A collection of nodes containing information about all files

Both the directory structure and the files reside on disk Backups of these two structures are kept on tapes

Disk Structure

- Disk can be subdivided into partitions
- Disks or partitions can be RAID protected against failure
- Disk or partition can be used raw without a file system, or formatted with a file system
- Partitions also known as minidisks, slices
- Entity containing file system known as a volume
- Each volume containing file system also tracks that file system's info in device directory or volume table of contents
- As well as general-purpose file systems there are many special-purpose file systems, frequently all within the same operating system or computer

A Typical File-system Organization

Operations Performed on Directory

- Search for a file
- Create a file
- Delete a file
- List a directory
- Rename a file
- Traverse the file system

Organize the Directory (Logically) to Obtain

- Efficiency locating a file quickly
- Naming convenient to users
 - Two users can have same name for different files
 - The same file can have several different names
- Grouping logical grouping of files by properties,
 (e.g., all Java programs, all games, ...)

Single-Level Directory

A single directory for all users

Naming problem

Grouping problem

Two-Level Directory

Separate directory for each user

- Path name
- Can have the same file name for different user
- Efficient searching
- No grouping capability

Tree-Structured Directories

Tree-Structured Directories (Cont.)

- Efficient searching
- Grouping Capability
- Current directory (working directory)
 - cd /spell/mail/prog
 - type list

Tree-Structured Directories (Cont)

- Absolute or relative path name
- Creating a new file is done in current directory
- Delete a file

rm <file-name>

Creating a new subdirectory is done in current directory

mkdir <dir-name>

Example: if in current directory /mail

mkdir count

Deleting "mail" ⇒ deleting the entire subtree rooted by "mail"

Acyclic-Graph Directories

Have shared subdirectories and files

Acyclic-Graph Directories (Cont.)

- Two different names (aliasing)
- If *dict* deletes *list* ⇒ dangling pointer
- Solutions:
 - Backpointers, so we can delete all pointers
 Variable size records a problem
 - Backpointers using a daisy chain organization
 - Entry-hold-count solution
- New directory entry type
 - Link another name (pointer) to an existing file
 - Resolve the link follow pointer to locate the file

General Graph Directory

General Graph Directory (Cont.)

- How do we guarantee no cycles?
 - Allow only links to file not subdirectories
 - Garbage collection
 - Every time a new link is added use a cycle detection algorithm to determine whether it is OK

File System Mounting

- A file system must be mounted before it can be accessed
- A unmounted file system is mounted at a mount
 point

(a) Existing (b) Unmounted Partition

Mount Point

File Sharing

- Sharing of files on multi-user systems is desirable
- Sharing may be done through a protection scheme
- On distributed systems, files may be shared across a network
- Network File System (NFS) is a common distributed filesharing method

File Sharing – Multiple Users

- User IDs identify users, allowing permissions and protections to be per-user
- Group IDs allow users to be in groups, permitting group access rights

File Sharing – Remote File Systems

- Uses networking to allow file system access between systems
 - Manually via programs like FTP
 - Automatically, seamlessly using distributed file systems
 - Semi automatically via the world wide web
- Client-server model allows clients to mount remote file systems from servers
 - Server can serve multiple clients
 - Client and user-on-client identification is insecure or complicated
 - NFS is standard UNIX client-server file sharing protocol
 - CIFS is standard Windows protocol
 - Standard operating system file calls are translated into remote calls
- Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS, Active Directory implement unified access to information needed for remote computing

Protection

- File owner/creator should be able to control:
 - what can be done
 - by whom
- Types of access
 - Read
 - Write
 - Execute
 - Append
 - Delete
 - List

Access Lists and Groups

Mode of access: read, write, execute Three classes of users

			LVV
a) owner access	7	\Rightarrow	111
b) group access	6	\Rightarrow	110

DMV

001

group

chmod 761

public

game

Ask manager to create a group (unique name), say G, and add some users to the group.

For a particular file (say *game*) or subdirectory, define an appropriate access.

Attach a group to a file

c) public access

chgrp G game

File-System Structure

- File structure
 - Logical storage unit
 - Collection of related information
- File system resides on secondary storage (disks)
 - Provided user interface to storage, mapping logical to physical
 - Provides efficient and convenient access to disk by allowing data to be stored, located retrieved easily
- Disk provides in-place rewrite and random access
 - I/O transfers performed in blocks of sectors (usually 512 bytes)
- File control block storage structure consisting of information about a file
- Device driver controls the physical device
- File system organized into layers

Layered File System

File System Layers

- Device drivers manage I/O devices at the I/O control layer
 - Given commands like "read drive1, cylinder 72, track 2, sector 10, into memory location 1060" outputs low-level hardware specific commands to hardware controller
- Basic file system given command like "retrieve block 123" translates to device driver
 - Also manages memory buffers and caches (allocation, freeing, replacement)
 - Buffers hold data in transit
 - Caches hold frequently used data
- File organization module understands files, logical address, and physical blocks
 - Translates logical block # to physical block #
 - Manages free space, disk allocation

File System Layers (Cont.)

- Logical file system manages metadata information
 - Translates file name into file number, file handle, location by maintaining file control blocks (inodes in Unix)
 - Directory management
 - Protection
- Layering useful for reducing complexity and redundancy, but adds overhead and can decrease performance
 - Logical layers can be implemented by any coding method according to OS designer
- Many file systems, sometimes many within an operating system
 - Each with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows has FAT, FAT32, NTFS as well as floppy, CD, DVD Blu-ray, Linux has more than 40 types, with extended file system ext2 and ext3 leading; plus distributed file systems, etc)
 - New ones still arriving ZFS, GoogleFS, Oracle ASM, FUSE

File-System Implementation

- We have system calls at the API level, but how do we implement their functions?
 - On-disk and in-memory structures
- Boot control block contains info needed by system to boot OS from that volume
 - Needed if volume contains OS, usually first block of volume
- Volume control block (superblock, master file table) contains volume details
 - Total # of blocks, # of free blocks, block size, free block pointers or array
- Directory structure organizes the files
 - Names and inode numbers, master file table
- Per-file File Control Block (FCB) contains many details about the file - Inode number, permissions, size, dates
 - NFTS stores into in master file table using relational DB structures

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

In-Memory File System Structures

Directory Implementation

- Linear list of file names with pointer to the data blocks
 - Simple to program
 - Time-consuming to execute
 - Linear search time
 - Could keep ordered alphabetically via linked list or use B+ tree
- Hash Table linear list with hash data structure
 - Decreases directory search time
 - Collisions situations where two file names hash to the same location
 - Only good if entries are fixed size, or use chained-overflow method

Allocation Methods - Contiguous

- An allocation method refers to how disk blocks are allocated for files:
- Contiguous allocation each file occupies set of contiguous blocks
 - Best performance in most cases
 - Simple only starting location (block #) and length (number of blocks) are required
 - Problems include finding space for file, knowing file size, external fragmentation, need for compaction off-line (downtime) or on-line

Contiguous Allocation

Mapping from logical to physical

Block to be accessed = Q + starting address Displacement into block = R

Contiguous Allocation of Disk Space

directory

file	start	length
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

Allocation Methods - Linked

- Linked allocation each file a linked list of blocks
 - File ends at nil pointer
 - No external fragmentation
 - Each block contains pointer to next block
 - No compaction, external fragmentation
 - Free space management system called when new block needed
 - Improve efficiency by clustering blocks into groups but increases internal fragmentation
 - Reliability can be a problem
 - Locating a block can take many I/Os and disk seeks
- FAT (File Allocation Table) variation
 - Beginning of volume has table, indexed by block number
 - Much like a linked list, but faster on disk and cacheable
 - New block allocation simple

Linked Allocation

Each file is a linked list of disk blocks: blocks may be scattered anywhere on the disk

block = pointer

Linked Allocation

Mapping

Block to be accessed is the Qth block in the linked chain of blocks representing the file.

Displacement into block = R + 1

Linked Allocation

File-Allocation Table

Allocation Methods - Indexed

Indexed allocation

Each file has its own index block(s) of pointers to its data blocks

Logical view

Example of Indexed Allocation

Indexed Allocation (Cont.)

Need index table

Random access

Dynamic access without external fragmentation, but have overhead of index block

Mapping from logical to physical in a file of maximum size of 256K bytes and block size of 512 bytes. We need only 1 block for index table

LA/512

Q = displacement into index table

R = displacement into block

Indexed Allocation – Mapping (Cont.)

Mapping from logical to physical in a file of unbounded length (block size of 512 words)

Linked scheme – Link blocks of index table (no limit on size)

LA / (512 x 511)
$$\mathbb{Q}_1$$

 Q_1 = block of index table R_1 is used as follows:

 Q_2 = displacement into block of index table R_2 displacement into block of file:

Indexed Allocation – Mapping (Cont.)

Two-level index (4K blocks could store 1,024 four-byte pointers in outer index -> 1,048,567 data blocks and file size of up to 4GB)

 Q_1 = displacement into outer-index R_1 is used as follows:

 Q_2 = displacement into block of index table R_2 displacement into block of file:

Indexed Allocation – Mapping (Cont.)

Performance

- Best method depends on file access type
 - Contiguous great for sequential and random
- Linked good for sequential, not random
- Declare access type at creation -> select either contiguous or linked
- Indexed more complex
 - Single block access could require 2 index block reads then data block read
 - Clustering can help improve throughput, reduce CPU overhead

Performance (Cont.)

- Adding instructions to the execution path to save one disk I/O is reasonable
 - Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000
 MIPS
 - http://en.wikipedia.org/wiki/Instructions_per_second
 - Typical disk drive at 250 I/Os per second
 - 159,000 MIPS / 250 = 630 million instructions during one disk I/O
 - Fast SSD drives provide 60,000 IOPS
 - 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk
 I/O

Free-Space Management

File system maintains **free-space list** to track available blocks/clusters (Using term "block" for simplicity)

$$bit[i] = \begin{cases} 1 \Rightarrow block[i] \text{ free} \\ 0 \Rightarrow block[i] \text{ occupied} \end{cases}$$

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to return offset within word of first "1" bit

Free-Space Management (Cont.)

```
Bit map requires extra space Example:
```

```
block size = 4KB = 2^{12} bytes
disk size = 2^{40} bytes (1 terabyte)
n = 2^{40}/2^{12} = 2^{28} bits (or 256 MB)
if clusters of 4 blocks -> 64MB of memory
```

Easy to get contiguous files

Linked list (free list)

Cannot get contiguous space easily

No waste of space

No need to traverse the entire list (if # free blocks recorded)

Linked Free Space List on Disk

Free-Space Management (Cont.)

Grouping

 Modify linked list to store address of next n-1 free blocks in first free block, plus a pointer to next block that contains free-blockpointers (like this one)

Counting

- Because space is frequently contiguously used and freed, with contiguous-allocation allocation, extents, or clustering
 - Keep address of first free block and count of following free blocks
 - Free space list then has entries containing addresses and counts

Efficiency and Performance

- Efficiency dependent on:
 - Disk allocation and directory algorithms
 - Types of data kept in file's directory entry
 - Pre-allocation or as-needed allocation of metadata structures
 - Fixed-size or varying-size data structures

Efficiency and Performance (Cont.)

- Performance
 - Keeping data and metadata close together
 - Buffer cache separate section of main memory for frequently used blocks
 - Synchronous writes sometimes requested by apps or needed by OS
 - No buffering / caching writes must hit disk before acknowledgement
 - Asynchronous writes more common, buffer-able, faster
 - Free-behind and read-ahead techniques to optimize sequential access
 - Reads frequently slower than writes

Reference Book

"Operating System Concepts" by Silberchartz, Galvin, Gagne, Wiley India Publications.

