2011-(03)mar-21: dag 16

Mer algebra

Direkta produkter av grupper

Normala grupper

Ringar och kroppar

Permutationsgrupper

Direkta produkter av grupper

Från förra övningen

- 7) Definiera den direkta produkten $(G_1, *_1) \times (G_2, *_2) = (G_1 \times G_2, \circ)$ av $(g_1, g_2) \circ (h_1, h_2) = (g_1 *_1 h_1, g_2 *_2 h_2).$ $g_1, h_1 \in G_1; g_2, h_2 \in G_2$
 - a) Verifiera att detta är en grupp.

G1, Sluten:

Gäller eftersom det gäller för G₁ och G₂.

$$g_1 *_1 h_1 \in G_1$$

 $g_2 *_2 h_2 \in G_2$

G2, Associativ:

Gäller eftersom det gäller för G₁ och G₂.

Vänsterelementet:
$$g_1 *_1 h_1 \in G_1$$

Högerelementet: $g_2 *_2 h_2 \in G_2$

G3, Identietselement:

$$1 = (1_1, 1_2)$$

1₁ är identietselementet i G₁. 1₂ är identietselementet i G₂.

$$(g_1, g_2) \circ (1_1, 1_2) = (g_1 *_1 1_1, g_2 *_2 1_2) = (g_1, g_2)$$

G4, Inverser:

$$(g, h)^{-1} = (g^{-1}, h^{-1})$$

$$(g, h) \circ (g^{-1}, h^{-1}) = (g *_1 g^{-1}, h *_2 h^{-1}) = (1_1, 1_2) = 1$$

$$(\mathbb{R}, +) \times (\mathbb{R}, +) = (\mathbb{R}^2, +)$$

b) Visa att $(\mathbb{Z}_2, +) \times (\mathbb{Z}_3, +) \cong (\mathbb{Z}_6, +)$ (Vi ska alltså visa isomorfi.)

Båda grupperna [$\mathbb{Z}_2 \times \mathbb{Z}_3$ och \mathbb{Z}_6] är cykliska av ordningen 6.

Detta är en isomorfi på grund av att

En isomorfi: \mathbb{Z}_2 \mathbb{Z}_3 \mathbb{Z}_6

$$\phi(0,0) = 0$$

 $\phi(1, 1) = 1$

 $\phi(0, 2) = 2$ båda är cykliska. Beror på additionen.

 $\phi(1, 0) = 3$

 $\phi(0, 1) = 4$

 $\phi(1, 2) = 5$

 $\phi(0, 0) = 0$

Däremot $(\mathbb{Z}_3, +) \times (\mathbb{Z}_3, +) \not\equiv (\mathbb{Z}_9, +)$ eftersom alla element har ordning 1 eller 3 i \mathbb{Z}_3 , $(\mathbb{Z}_3, +) \times (\mathbb{Z}_3, +)$ är alltså inte cyklisk; det är dock \mathbb{Z}_9 .

Normala delgrupper

Definition: En delgrupp, N, till en grupp, G, är en normal delgrupp ($\mathbb{N} \leq \mathbb{G}$) om vänstersidoklasser = högersidoklasser.

Det vill säga:

$$gN = Ng \forall g \in G$$

Exempel: Alla delgrupper för abelska (kommutativa) grupper.

För
$$G_{\square}$$
: {i, r²}, {i, r, r², r³}

Om N är en normal degrupp så bildas

 $G/N = \{gN \mid g \in G\} = \{normal\} = \{Ng \mid g \in G\}, kvotgruppen som är en grupp.$

Motivieringen till namnet är: $|G| = |G/N| \cdot |N|$

 $\begin{array}{ll} g_1N\cdot g_2N = \{g_1n_1g_2n_2 \mid n_1,\, n_2\in N\} = \{normal\} = \{g_1g_2n_3n_2 \mid n_3,\, n_2\in N\} = \\ = g_1g_2N \quad och \quad g_1g_2N \leq g_1Ng_2N \ s\ \ g_1Ng_2N = g_1g_2N. \end{array}$

G/N med operationen $g_1Ng_2N = g_1g_2N$ är en grupp:

G1, Sluten: $g_1g_2N \in G/N \Rightarrow \{g_1g_2 = h\} \Rightarrow hN \in G/N$

G2, Associativ: $(g_1Ng_2N)g_3N = (g_1g_2)g_3N = g_1(g_2g_3)N = g_1N(g_2Ng_3N)$

G3, Identietselement: N = 1N

G4, Inverser: $gN)^{-1} = g^{-1}N$

Exempel: $(\mathbb{Z}, +)$ (abelsk, så sidoklasserna är normala)

 $(\mathbb{Z}, +) / (m\mathbb{Z}, +) = (\mathbb{Z}_m, +)$

G grupp N normal delgrupp

 $G/N = \{gN \mid g \in G\}$

Exempel: $N = \{i, r^2\}$

$$G_{\square}/N = \{\{i, r^2\} = e, \{r, r^3\} = a, \{x, xr^2\} = b, \{xr, xr^3\} = c\}$$

					$N = iN = r^2N$ $xN = Nx = xr^2N =$
	е	а	b	С	$N = Ni = Nr^2 = Nxr^2$
e	е	a	b	С	Till everanel:
a	а	е	С	b	Till exempel: ab = {r, r³}{x, xr²} = = {rx, rxr², r³x, r³xr²} =
b	b	С	е	a	= $\{xr^3, xr^2r^3, r^3x, r^3xr^2\}$ =
С	С	b	а	е	= $\{xr^3, xr, xr, xr^2r\}$ = = $\{xr^3, xr\}$

Gruppisomorfi:
$$\psi: G_1 \rightarrow G_2$$
 $((G_1, *), (G_2, \circ))$

$$\psi(g * h) = \psi(g) \circ \psi(h)$$

Varje homomorfi ges så (av någon normal delgrupp)

Ringar är mängder med 2 operationer.

En ring (R, med addition och multiplikation) betecknas (R, +, \cdot), och definieras av: (Ringar liknar \mathbb{Z} .)

- (1) (R, +) är en abelsk grupp, med identitetselement 0.
- (2) (R, \cdot) är sluten, associativ, med identietselement 1.
- (3) Multiplikation (⋅) är distributiv över addition (+):

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c) = ab + ac$$

 $(a + b) \cdot c = (a \cdot c) + (b \cdot c) = ac + bc$

Exempel på ringar:

$$\mathbb{Z}$$
, \mathbb{Z}_m , $M_n(R)$, \mathbb{R} , \mathbb{Q} , \mathbb{C} , $\mathbb{R}[x]$

$$M_n(R) = n \times n$$
-matriser med element i ringen R.

 $\mathbb{R}[x] = \text{Polynom med koefficienter i } \mathbb{R}. \text{ (Polynom över } \mathbb{R})$

(F, +, ·) (F skrivs ofta \mathbb{F}) är en kropp (en. field) om det är en ring sådan att (F\{0}, ·) är en abelsk grupp.

Exempel (p primtal):

$$\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_p, F(x) = \left\{ \frac{p(x)}{q(x)} \mid p, q \in F[x] \\ q(x) \neq 0 \right\}$$

I en ring R: $x \in R$ kallas invertibel i R omm det finns $u \in R$ sådant att ux = xu = 1; då är $u = x^{-1}$

$$U(R) = \{x \in R : x \text{ invertibelt}\}\$$

Sats: $(U(R), \cdot)$ är en grupp för varje ring R.

Exempel:
$$U(\mathbb{Z}) = \{-1, 1\}$$

 $U(\mathbb{Z}_m) = \{x \in \mathbb{Z}_m : sgd(x, m) = 1\}$

En permutation är en bijektiv funktion med samma domän som kodomän (från en mängd till sig själv):

$$\pi: X \to X$$
, π bijektiv

 $S_n = m$ ängden av alla permutationer av $[n] = \{1, 2, 3, ..., n\}$

 $|S_n| = n!$ (Antelet permutationer)

 (S_n, \circ) är en grupp:

- G1: En sammansättning av bijektioner är också en bijektion.
- G2: Associativitet gäller alltid för sammasättning av funktioner.
- G3: Identietspermutationen id(x) = x är identietselement.

$$\{1,\,2,\,3,\,\ldots\}\to\{1,\,2,\,3,\,\ldots\}$$

G4: Inversen som funktion är inverselement. Inversen av en bijektion är en bijektion.

Varje $g \in G$ (G grupp) ger en permutation av g.

$$\pi_g(h) = gh \qquad \quad \pi_g \in S_G \qquad \text{(G \"{ar} isomorf med en delgrupp av S_G)}$$

För att beskriva permutationer

Till exempel $\pi \in S_6$:

Cykelnotation:

(1 4 1)(2 5 3 2)(6 %) alltså: (1 4)(2 5 3)(6)

 $\sigma \in S_6$

Tvåradsnotation som beskriver bijektionen:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 1 & 3 & 6 \end{pmatrix}$$

Enradsnotation:

[4 5 2 1 3 6]

Det vill säga nedra raden i tvåradsnotation och övre raden är underförstådd.

Cykelnotation, börja någonstans och följ "avbildningspilarna" till man kommer tillbaka. Upprepa tills alla element har tagits med.

Tvåradsnotation:

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 5 & 1 & 4 & 2
\end{pmatrix}$$

Enradsnotation:

[3 6 5 1 4 2]

Cykelnotation:

(1354)(26)

Produkten i S_6 : (först σ sedan π)

$$\pi\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 1 & 4 & 2 \\ 2 & 6 & 3 & 4 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 3 & 4 & 1 & 5 \end{pmatrix} = (1 \ 2 \ 6 \ 5)(3)(4)$$
(id $\rightarrow \sigma$ i först-andra raden, $\sigma \rightarrow \pi$ i andra-tredje raden)