

ФГОБУ ВПО "СибГУТИ" **Кафедра вычислительных систем**

Дисциплины "ЯЗЫКИ ПРОГРАММИРОВАНИЯ" "ПРОГРАММИРОВАНИЕ"

Примеры алгоритмов обработки массивов

Преподаватель:

Перышкова Евгения Николаевна

План лекции

1. Задача сортировки и алгоритмы ее решения

- 1.1. Мера упорядоченности последовательности
- 1.2. Задача сортировки
- 1.3. Алгоритм сортировки выбором
- 1.4. Алгоритм сортировки вставками
- 1.5. Алгоритм сортировки методом пузырька

2. Задача поиска простых чисел в заданном диапазоне

- 2.1. Линейный алгоритм
- 2.2. Алгоритм Эратосфена

Задача сортировки и алгоритмы ее решения

Мера упорядоченности последовательности

3 4 6 29 12 15 17 27	8 30
----------------------	------

Количественная мера упорядоченности

 $\it Инверсией$ элементов $\it i$ и $\it j$ последовательности а называется ситуация, когда $\it a[i] > \it a[j]$ и $\it i < \it j$.

$$a[4] = 29, a[9] = 8: 4 < 9, 29 > 8.$$

Общее количество инверсией определяет степень упорядоченности последовательности. Для вычисления этого показателя элементы последовательности перебираются слева направо, для каждого элемента вычисляется количество его инверсий с элементами, расположенными правее.

Количественная мера упорядоченности (2)

- 1) a[1] a[3]: количество инверсий 0;
- 2) a[4] = 29: инверсии с элементами a[5] a[9] = 5;
- 3) a[5] a[8]: инверсия с элементом a[9], в сумме = 4;
- 4) а[9]: инверсий нет.
- 5) а[10]: инверсий нет.

Итого: 9 инверсий.

Мера упорядоченности последовательности

абсолютное: 16 инверсий

относит: 0,356

абсолютное: 0 инверсий

относит: 0


```
3 4 6 29 12 15 17 27 8 30
```

абсолютное: 9 инверсий

относит: 0,2

абсолютное: 24 инверсий

относит: 0,533

абсолютное: 45 инверсий

относит: 1

Задача сортировки (sorting problem)

Дано: последовательность из n чисел $\langle a_1, a_2, a_3, ..., a_n \rangle$

Необходимо: переставить элементы последовательности так, чтобы для любых элементов новой последовательности $\langle a'_1, a'_2, a'_3, ..., a'_n \rangle$ выполнялось соотношение:

$$a'_{1} \le a'_{2} \le a'_{3} \le \ldots \le a'_{n}$$
 (сортировка по возрастанию)

Алгоритм сортировки выбором

5	3	8	9	4
5	3	8	4	9
5	3	4	8	9
4	3	5	8	9

Алгоритм сортировки выбором

Суть алгоритма заключается в последовательном формировании упорядоченной последовательности слева направо.

На каждом шаге рассматривается фрагмент массива с i по n-й элементы. Среди них выбирается наименьший, который занимает первое место диапазона (на место i-го элемента). При этом i-й элемент перемещается на позицию, в которой найден минимум:

После этого считается, что элементы массива с 1 по i отсортированы. Поэтому далее процедура повторяется для диапазона элементов с i+1 по n.

Алгоритм сортировки выбором (2)

Алгоритм сортировки выбором (3)

i = 6 min $(a[k], k = i, n) = 1$	10	9	8	7	6	5	4	3	2	1
i = 6, min $(a[k], k = in) = 10inv = 4$	15	21	17	10	19	7	6	5	4	2
111V — 4				-	K					
	10	9	8	7	6	5	4	3	2	1
$i = 7$, $\min(a[k], k = in) = 15$	15	21	17	19	10	7	6	5	4	2
inv = 1	1			K		-			-	
i=0 min $(a[k], k=i, n)=1$	10	9	8	7	6	5	4	3	2	1
i = 8, $min(a[k], k = in) = 1inv = 1$	19	21	17	15	10	7	6	5	4	2
$\mathbf{m}\mathbf{v} = 1$						-		-	-	
	10	9	8	7	6	5	4	3	2	1
i = 9, min $(a[k], k = in) = 1$	19	21	17	15	10	7	6	5	4	2
inv = 0	★	K								
	10	9	8	7	6	5	4	3	2	1
	21	19	17	15	10	7	6	5	4	2

Проход алгоритма сортировки выбором

Основной подзадачей, возникающей в процессе сортировки, является поиск **индекса** минимального элемента в диапазоне с i по n (в примере на рис. диапазон — с 3 по 10).

Для решения этой задачи можно воспользоваться уже известным алгоритмом поиска минимального элемента:

$$m \leftarrow i, k \leftarrow i + 1$$

while $k \le n$ do
if $a[k] < a[m]$ then
 $m \leftarrow k$
 $k \leftarrow k + 1$
 $t \leftarrow a[i], a[i] \leftarrow a[m], a[m] \leftarrow t$

Приведенный фрагмент называется "проходом" данного алгоритма.

Алгоритм сортировки выбором (4)

После каждого прохода алгоритма сортировки выбором размер отсортированной части увеличивается на 1 элемент:

Поэтому, учитывая, что на последнем проходе рассматривается один элемент, количество проходов составляет n-1.

Алгоритм сортировки выбором (псевдокод)

Учитывая, что на последнем проходе рассматривается один элемент, количество проходов для получения полностью отсортированной последовательности составляет n-1.

```
i \leftarrow 1
while i < n do
m \leftarrow i, k \leftarrow i + 1
while k \le n do
if a[k] < a[m] then
m \leftarrow k
k \leftarrow k + 1
t \leftarrow a[i], a[i] \leftarrow a[m], a[m] \leftarrow t
i \leftarrow i + 1
```


Алгоритм сортировки вставками

Суть данного алгоритма (аналогично предыдущему) заключается в последовательном формировании упорядоченной последовательности слева направо. Однако, в отличие от сортировки вставками, основная работа осуществляется в отсортированной части массива.

На каждом шаге имеется отсортированная часть последовательности с 1 по (i-1) и не отсортированная — с i по n элементы. Для первого не отсортированного элемента с номером i в отсортированной части ищется подходящая позиция, как показано на рисунке:

Алгоритм сортировки вставками (2)

Проход алгоритма сортировки вставками

Основной подзадачей, возникающей в процессе сортировки, является поиск для очередного элемента правильного места в уже отсортированной части массива и вставка его на эту позицию.

Решение этой задачи можно разбить на следующие шаги:

- 1. Поиск индекса подходящей позиции k для элемента a[i].
- 2. Запоминание элемента a[i] во временной ячейке t: t = a[i].
- 3. Сдвиг элементов a[k], a[k+1], ..., a[i-1] на один элемент вправо, т.е. в ячейки a[k+1], a[k+2], ..., a[i] соответственно.
 - 4. Поместить значение из ячейки t в a[k]: a[k] = t.

Проход алгоритма сортировки вставками (2)

- 1. Поиск индекса подходящей позиции k для элемента a[i].
- 2. Запоминание элемента a[i] во временной ячейке t: t = a[i].
- 3. Сдвиг элементов a[k], a[k+1], ..., a[i-1] на один элемент вправо, т.е. в ячейки a[k+1], a[k+2], ..., a[i] соответственно.
 - 4. Поместить значение из ячейки t в a[k]: a[k] = t.

На практике поиск элемента часто объединяют со сдвигом элементов:

Проход алгоритма сортировки вставками (3)

Псевдокод одного прохода алгоритма сортировки вставками выглядит следующим образом:

$$t \leftarrow a[i], k \leftarrow i - 1$$

$$a[k+1] \leftarrow a[k]$$

$$a[k+1] \leftarrow t$$

$$a[k+$$

Приведенный фрагмент называется "проходом" данного алгоритма.

Алгоритм сортировки вставками (3)

После каждого прохода алгоритма сортировки выбором размер отсортированной части увеличивается на 1 элемент:

Алгоритм сортировки вставками (псевдокод)

$$t \leftarrow a[i], k \leftarrow i - 1$$

while $k \ge 1$ in $a[k] > t$ do
$$a[k+1] \leftarrow a[k]$$

$$k \leftarrow k - 1$$

$$a[k+1] \leftarrow t$$

$$i \leftarrow 2$$
while $i < n$ do
$$t \leftarrow a[i], k \leftarrow i - 1$$
while $k \ge 1$ is $a[k] > t$ do
$$a[k+1] \leftarrow a[k]$$

$$k \leftarrow k - 1$$

$$a[k+1] \leftarrow t$$

$$i \leftarrow i + 1$$

Алгоритм сортировки методом пузырька

Суть данного заключается в том, что на каждом проходе определяется наибольший элемент, который выводится на последнее место рассматриваемой подпоследовательности и исключается из дальнейшего рассмотрения. Важным отличием данного алгоритма от ранее рассмотренных является то, что в процессе выведения наибольшего элемента участвуют все элементы и количество инверсий сокращается более, чем на вклад наибольшего элемента.

Проход алгоритма заключается в попарном сравнении соседних элементов и устранении "локальных" инверсий. В результате такого прохода наибольший элемент (пузырек наибольшего размера) выдвигается в крайнюю правую позицию.

1									
10	15	4	7	19	6	2	17	21	5

Проход алгоритма сортировки методом пузырька

Алгоритм сортировки методом пузырька (3)

	10	9	8	7	6	5	4	3	2	1
inv = 22	5	21	17	2	6	19	7	4	15	10
	10	9	8	7	6	5	4	3	2	1
inv = 17	21	5	17	19	2	6	15	7	4	10
	10	9	8	7	6	5	4	3	2	1
inv = 11	21	19	5	17	15	2	6	10	7	4
	10	9	8	7	6	5	4	3	2	1
inv = 8	21	19	17	5	15	10	2	6	7	4
	10	9	8						2	1
	10		ð	7	6	5	4	3	4	1
inv = 5	21	19	17	15	5	10	7	2	6	4
inv = 5								l	1	
inv = 5 $inv = 3$	21	19	17	15	5	10	7	2	6	4
	21 10	19 9	17 8	15 7	5	10 5	7	3	6	1

Алгоритм сортировки методом пузырька (4)

Особенностью алгоритма сортировки методом пузырька является то, что существует возможность *досрочного прекращения* сортировки при условии, что на очередном проходе не было выполнено ни одного обмена.

Проход алгоритма сортировки методом пузырька (2)

$$j \leftarrow 1$$

while $j \leq (n-i)$ do

if $a[j+1] < a[j]$ then

 $t \leftarrow a[j+1]$
 $a[j+1] \leftarrow a[j]$
 $a[j] \leftarrow t$
 $j \leftarrow j+1$

Алгоритм сортировки методом пузырька (5)

После каждого прохода алгоритма сортировки методом пузырька наибольший размер отсортированной правой части увеличивается на 1 элемент:

1	2	3	4	5	6	7	8	9	10	
10	15	4	7	19	6	2	17	21	5	inv = 1
1	2	3	4	5	6	7	8	9	10	
10	4	7	15	6	2	19	17	5	21	inv = 1
			•		•	•	•	•	•	•
				•	• •					
1	2	3	4	5	6	7	8	9	10	_
2	4	5	6	7	10	15	17	19	21	inv = 0

Алгоритм сортировки методом пузырька (псевдокод)

$$j \leftarrow 1$$

while $j \leq (n-i)$ do

if $a[j+1] < a[j]$ then

 $t \leftarrow a[j+1]$
 $a[j+1] \leftarrow a[j]$
 $a[j] \leftarrow t$
 $j \leftarrow j+1$

```
i = 1
while i < n - 1 do
    j \leftarrow 1
     while j \leq (n-i) do
          if a[j+1] < a[j] then
                t \leftarrow a[j+1]
                a[j+1] \leftarrow a[j]
                a[j] \leftarrow t
         j \leftarrow j + 1
     i \leftarrow i + 1
```


Алгоритм сортировки методом пузырька с досрочным выходом (псевдокод)

$$i = 1, f \leftarrow 1$$

while $i < n - 1 \text{ if } > 0$ do
 $j \leftarrow 1, f \leftarrow 0$
while $j \le (n - i)$ do
if $a[j+1] < a[j]$ then
 $t \leftarrow a[j+1]$
 $a[j+1] \leftarrow a[j]$
 $a[j] \leftarrow t$
 $f \leftarrow 1$
 $j \leftarrow j + 1$
 $i \leftarrow i + 1$

Задача поиска простых чисел в заданном диапазоне

Простые числа

Простое число — это натуральное число, имеющее ровно два различных натуральных делителя: единицу и само себя.

Примеры простых чисел:

2, 13, 59, 101, 431, 733, 1153, 2069 и др.

Все остальные натуральные числа, кроме единицы, называются составными.

Все натуральные числа больше единицы разбиваются на простые и составные.

Изучением свойств простых чисел занимается теория чисел.

Список первых 500 простых чисел: http://ru.wikipedia.org/wiki/Список_простых_чисел.

Задача поиска простых чисел в заданном диапазоне

Дан диапазон натуральных чисел [2, N]. Требуется выбрать из него только те числа, которые являются простыми:

Линейный алгоритм поиска простых чисел в заданном диапазоне

Наиболее простым алгоритмом решения задачи является перебор всех чисел диапазона [2, N] и проверка каждого из них на простоту линейным алгоритмом.

Для того, чтобы проверить, является ли число x простым достаточно проверить, делится ли оно на одно из чисел диапазона [2, x/2]. Упрощенный вариант этого алгоритма уже рассматривался при изучении циклов.

Числа, прошедшие проверку на простоту могут быть помещены в специально отведенный для этого массив, размерность которого совпадает с исходным (пессимистическое выделение памяти).

Проверка на простоту

x — целое число, которое проверяется на простоту. На каждой итерации проверяется потенциальный делитель $j \in [2, [x/2]].$

Если $x \mod j = 0$ (делится нацело), то *переменная-флаг* f = 1.

На выходе значение флага f определяет результат:

- если f = 0 ((**не** f) = 1), то среди чисел диапазона [2, [x/2]] не нашлось ни одного делителя число простое.
- иначе f = 1 ((**не** f)= 0) число составное.

Проверка на простоту (2)

На выходе значение флага f определяет результат:

- если f = 0 ((**не** f) = 1), то среди чисел диапазона [2, [x/2]] не нашлось ни одного делителя число простое.
- иначе f = 1 ((**не** f)= 0) число составное.

Линейный алгоритм поиска простых чисел в заданном диапазоне

```
x \leftarrow 2, n \leftarrow 0 // x — проверяемые числа, n — счетчик простых чисел
while x \leq N do
    // j — потенциальные делители, f — флаг, 0 => простое число
   j \leftarrow 2, f \leftarrow 0
    while j \le (x \text{ div } 2) \text{ do}
        if (x \bmod j = 0) then // если x делится на j - x не простое!
            f \leftarrow 1
         j \leftarrow j + 1 // перейти к следующему делителю
    if f = 0 then // если флаг f = 0, то x — простое число
        n \leftarrow n + 1 // счетчик n — первый свободный элемент
        primes[n] \leftarrow x
                                                  Как исключить ненужные
    x \leftarrow x + 1
                                                            операции?
```


Пути оптимизации

- 1. Если обнаружен хотя бы один делитель, число уже не является простым и дальнейшую проверку проводить не требуется.
- 2. Чтобы проверяемое число было простым достаточно, чтобы оно не делилось ни на одно из ранее найденных простых чисел.

Линейный алгоритм поиска простых чисел в заданном диапазоне (версия 2)

```
x \leftarrow 2, n \leftarrow 0 // x — проверяемые числа, n — счетчик простых чисел
while x \leq N do
    // j — потенциальные делители, f — флаг, 0 => простое число
    j \leftarrow 2, f \leftarrow 0
    while j \le (x \text{ div } 2) \text{ u } f \ne 1 \text{ do}
         if (x \bmod j = 0) then // если x делится на j - x не простое!
             f \leftarrow 1
         j \leftarrow j + 1 // перейти к следующему делителю
    if f = 0 then // если флаг f = 0, то x — простое число
         n \leftarrow n + 1 // счетчик n — первый свободный элемент
        primes[n] \leftarrow x
    x \leftarrow x + 1
```


Линейный алгоритм поиска простых чисел в заданном диапазоне (версия 3)

```
x \leftarrow 2, n \leftarrow 0 // x — проверяемые числа, n — счетчик простых чисел
while x \leq N do
    // j — потенциальные делители, f — флаг, 0 => простое число
    j \leftarrow 1, f \leftarrow 0
    while j \le n u f \ne 1 do
        if (x \mod primes[j] = 0) then
            f \leftarrow 1
         j \leftarrow j + 1 // перейти к следующему делителю
    if f = 0 then // если флаг f = 0, то x — простое число
        n \leftarrow n + 1 // счетчик n — первый свободный элемент
        primes[n] \leftarrow x
    x \leftarrow x + 1
```


Решето Эратосфена

W http://ru.wikipedia.org/wiki/Решето_Эратосфена.

Решето Эратосфена — алгоритм нахождения всех простых чисел до некоторого целого числа *N*, который приписывают древнегреческому математику Эратосфену Киренскому.

- 1. Выписать подряд все целые числа от двух до N(2, 3, 4, ..., N).
- 2. Пусть переменная p изначально равна двум первому простому числу.
- 3. Считая от p шагами по p, зачеркнуть в списке все числа от 2p до n кратные p (то есть числа 2p, 3p, 4p, ...).
- 4. Найти первое незачеркнутое число в списке, большее чем p, и присвоить значению переменной p это число.
- 5. Повторять шаги 3 и 4, пока незачеркнутое число есть.

Решето Эратосфена. Алгоритм

- 1. Выписать подряд все целые числа от двух до N(2, 3, 4, ..., N).
- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... N
- 2. Пусть переменная p = 2 (первому простому числу).
- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... N
- 3. Считая от p шагами по p, зачеркнуть в списке все числа от 2p до n кратные p (то есть числа 2p, 3p, 4p, ...).

- 4. Найти первое незачеркнутое число в списке, большее чем p, и присвоить значению переменной p это число: p=3.
 - 5. Повторять шаги 3 и 4, пока незачеркнутое число есть.

Решето Эратосфена. Алгоритм

- 1. Выписать подряд все целые числа от двух до N(2, 3, 4, ..., N).
- $2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad \dots \quad N$
- 2. p = 3

3. Считая от p шагами по p, зачеркнуть в списке все числа от 2p до n кратные p (то есть числа 2p, 3p, 4p, ...).

- 4. Найти первое незачеркнутое число в списке, большее чем p, и присвоить значению переменной p это число: p = 5.
 - 5. Повторять шаги 3 и 4, пока незачеркнутое число есть.

Иллюстрация алгоритма Эратосфена

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120

Prime numbers

W http://ru.wikipedia.org/wiki/Решето_Эратосфена.

Псевдокод алгоритма Эратосфена

```
for i \leftarrow 1 to (N-1) do // Заполнить массив числами диапазона
    primes[i] \leftarrow i + 1
i \leftarrow 1
while i < N do // основной цикл
    s \leftarrow primes[i]
    p \leftarrow i + s
    while p < N \, do // \, Вычеркивание (обнуление) не простых чисел
        primes[p] \leftarrow 0
        p \leftarrow p + s
    i \leftarrow i + 1
    while i < N и primes[i] = 0 do // Первое невычеркнутое
         i \leftarrow i + 1
```


Псевдокод алгоритма Эратосфена (оптимизир.)

```
for i \leftarrow 1 to (N-1) do // Заполнить массив числами диапазона
    primes[i] \leftarrow i + 1
i \leftarrow 1
while i^2 < N do // основной цикл
    s \leftarrow primes[i]
    p \leftarrow i + s
    while p < N \, do // \, Вычеркивание (обнуление) не простых чисел
        primes[p] \leftarrow 0
        p \leftarrow p + s
    i \leftarrow i + 1
    while i < N и primes[i] = 0 do // Первое невычеркнутое
         i \leftarrow i + 1
```


Другие алгоритмы поиска простых чисел

W

http://ru.wikipedia.org/wiki/Решето_Сундарама

В математике решето Сундарама — детерминированный алгоритм нахождения всех простых чисел до некоторого целого числа N. Разработан индийским студентом С. П. Сундарамом в 1934 году. Из ряда натуральных чисел исключаются числа вида i+j+2ij,

где i < j.

W http://ru.wikipedia.org/wiki/Решето_Аткина

В математике решето Аткина — быстрый современный алгоритм нахождения всех простых чисел до заданного целого числа N. Основная идея алгоритма состоит в использовании неприводимых квадратичных форм (представление чисел в виде $ax^2 + by^2$).