Linear Program n variables Variables: 21, 20 CR  $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n < b_1$ Contraints. 7~107: {aij,bis  $a_{21}x_1 + a_{22}x_2 + a_{2n}x_n \in b_2$ m constraints !  $a_{m_1}x_1 + a_{m_2}x_2 + a_{m_n}x_n \leq b_m$ Manimise C, x, + G21, + ... Cn2n

CHANGING FORMS OF LP S Constraints to > Constraints  $\sum a_i x_i > b_i \iff -\sum a_i x_i \leq -b_i$ = constraints to < Constraints  $\sum_{\alpha_i n_i} = b_i$   $\sum_{\alpha_i n_i} \leq b_i$   $-\left(\sum_{\alpha_i n_i}\right) \leq -b_i$ Maximization to Minimization 



Standard form.  $\sum_{j=1}^{n} a_{ij} n_{ij} = b_{ij}^{\bullet}$ Ja 1=1., M j = 1 ... n  $\chi_i > 0$ Min

Manimum Flow Setup: 1) Directed graph G=(V,E) 2) Source & node 3) "Sink" + node B) Capacitles Ce ETR<sup>†</sup> for eachedge e Z<sup>†</sup> GOAL: THINK of as a network of 'pipes", what is maximum amount of water one conflow from ?



Definition: (Flow) A flow is an ausignment fe for each directed edge e. Capacity: He, fe \ Ce = capacity of edge Conservation: Y node V & Sources/Sink t Total Flow enfering = Total flow leaving Manimise: 25 frw

## GENERAL 10EA OF AN ALGORITHM TO COMPUTE MAX FLOW



#### GENERAL IDEA

REPEAT:

1) Find a path P from S to to with left-over capacity to send more flow.

2) Add flow along P.



ALGO FOR MAXFLOW

REPEAT: \* FIND A PATH P from & tot with non-zero capacity in RESIDUAL GRAPH [TERMINATE if NO PATH P exists] \* Add flow along P to the Corrent flow

Residual graph



1 - Nunit: 
$$S \rightarrow A \rightarrow B \rightarrow t$$
  
1-unit  $S \rightarrow B \rightarrow A \rightarrow t$   
2 units

Kesidual Graph: Given: \* G= (V,E) is a directed graph \* f is some flow on h.

THE RESIDUAL GRAPH GF ON same vertices V and edges

Hedge u, v with capacity flow f IN ORIGINAL GRAPH G



### EXAMPLE:

ORIGINAL GRAPH

Capacity 10

Flow 4

# EXECUTE MAXFLOW ALGO ON





An 8-t Cut is (L, R) 's-t (ot: LUR=W left ight SEL ER Capacity (L,R) = u-ov chelver FACT: For any flow f, and any cut (L,R)  $size(f) \leq capacity(C,R)$ 

CUTS: 
$$\frac{1}{5}$$
  $\frac{1}{5}$   $\frac{1}{5}$ 

In objent. In any graph Minimum Maximom 3-t cut 8-t flow Ch Proof: 1) Run the algo

Pit termination Ino path from stronger in residual graph Gf. L= vertices reachable from 3 in residual graph R = ve maining V-L. TSise(f) = Capacity(L, K)

provenidual capacity from Lto R. (Sise(f) = Capacity(L, K) SURPRISE COROLLARY OF MAX FLOW ALGO integers Corollary: il fall capacities ove ==) Moninum flow is integral (all fox values ore integers) Proof: If all capacities are integers =) in each iteration, the algo adds an integer amount of flow =) At termination all flow values are integers

# Matching:

Inaporti Bipartile Graph G= (V,E)

Croal: Find a Matching between U and V.



