## Mining database of multiple graphs



## Graph notations



- G = (V, E) graph
- $V = \{v_1, \dots, v_n\} = \text{set}$  of vertices or nodes
- |V| = number of nodes
- node label  $l(v_i)$
- $\mathbf{E} = \{e_1, \dots, e_m\} = \text{set}$ of edges,  $e_i = (v, u)$ ,  $v, u \in V$
- $|\mathbf{E}|$  = number of edges

Now we assume that edges undirected and don't have labels

### Graph isomorphism of unlabelled graphs

Two unlabelled graphs  $G_1 = (V, E)$  and  $G_2 = (U, F)$  are isomorphic or matching if there is an edge-preserving bijection  $f : V \to U$  such that for any  $v_1, v_2 \in V$ :  $(v_1, v_2) \in E \Leftrightarrow (f(v_1), f(v_2)) \in F$ .



Matching can be presented as  $\mathcal{M} = \{(v, u) \mid v \in V, u \in U, u = f(v)\}$ 

### Graph isomorphism of labelled graphs

Two labelled graphs  $G_1 = (V, E)$  and  $G_2 = (U, F)$  are isomorphic, if there is an edge- and label-preserving bijection  $f : V \to U$  such that

- (i) Corresponding nodes have same labels:  $\forall v \in \mathbf{V}$  and  $f(v) \in \mathbf{U} \ l(v) = l(f(v))$ .
- (ii) An edge between matched nodes exists in  $G_1$  iff the corresponding edge exists in  $G_2$ :  $\forall v_1, v_2 \in \mathbf{V}$ :  $(v_1, v_2) \in \mathbf{E} \Leftrightarrow (f(v_1), f(v_2)) \in \mathbf{F}$ .

Note: no polynomial time algorithms are known (except special cases)

### There can be many matchings!

Two matchings for molecules 1 and 2. Totally 4!=24 matchings!





$$\mathcal{M} = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}\$$
  $\mathcal{M} = \{(1,1), (2,2), (3,4), (4,3), (5,5)\}\$ 

$$\mathcal{M} = \{(1,1), (2,2), (3,4), (4,3), (5,5)\}$$

Image source: Aggarwal Fig. 17.2

## Subgraph isomorphism

Does a certain query graph  $G_q$  match a part of another graph G?

Query graph  $G_q = (V, E)$  is a subgraph isomporphism of G = (U, F), if there is an injection  $f : V \to U$  such that

- (i) For all  $v \in V$  there is  $f(v) \in U$  such that l(v) = l(f(v)); and
- (ii) For any  $v_1, v_2 \in V$ :  $(v_1, v_2) \in E \Leftrightarrow (f(v_1), f(v_2)) \in F$ .

Notes: 1) Usually it is required that the graphs are connected.

2) Sometimes a weaker condition suffices for (ii):

if 
$$(v_1, v_2) \in \mathbf{E} \Rightarrow (f(v_1), f(v_2)) \in \mathbf{F}$$

### Subgraph isomorphism: example



Algorithm: see Aggarwal Ch 17.2.1

Image source: Aggarwal Fig. 17.3

## Maximum common subgraph (MCG)

Problem: Given  $G_1$  and  $G_2$ , find  $G_0 = (V_0, E_0)$  such that

- (i)  $G_0$  is a subgraph isomorphism of both  $G_1$  and  $G_2$  and
- (ii)  $|V_0|$  is as large as possible.

- + useful for comparing graphs
  - distances between graphs
  - frequent subgraph discovery
- NP-hard problem (like subgraph isomorphism)

# **Algorithm for** $MCG(G_1, G_2)$

```
function MCG(\mathbf{G}_1, \mathbf{G}_2, \mathcal{M}, \mathcal{M}_{best})
/* Create candidates for matching node pairs */
C = \{(v, u) \mid v \in \mathbf{V}, u \in \mathbf{U}, l(v) = l(u), (v, u) \notin \mathcal{M}\}
Prune C
/* Recursion: */
for all (v, u) \in C
    if valid(\mathcal{M}, (v, u))
                                                         // is (u, v) a valid extension?
        \mathcal{M}_{best} = MCG(\mathbf{G}1, \mathbf{G}2, \mathcal{M} \cup (v, u), \mathcal{M}_{best})
if (|\mathcal{M}| > |\mathcal{M}_{best}|)
    return M
else return \mathcal{M}_{best}
```

 $G_1 = (V, E), G_2 = (U, F)$ Call:  $MCG(G_1, G_2, \emptyset, \emptyset)$ 

### Algorithm: valid extensions

**valid**( $\mathcal{M}$ , (v, u)) **if**  $(\exists u_2 \in \mathbf{U} : ((u, u_2) \in F) \&\&((v_2, u_2) \in \mathcal{M}) \&\&((v, v_2) \notin E))$  **or**  $(\exists v_2 \in \mathbf{V} : ((v, v_2) \in E) \&\&((v_2, u_2) \in \mathcal{M}) \&\&((u, u_2) \notin F))$  return 0 **else** return 1



E.g.,  $\mathcal{M} = \{(1,1),(2,2),(3,3),(6,5)\}.$ (4,4) is invalid extension – why? Is there any valid extension?

### Next to distances



### Distances based on maximum common subgraphs

- Let's assume graph size = number of nodes, i.e., for G = (V, E) notate |G| = |V|
- Let  $MCS(G_1, G_2)$ =maximum common subgraph of  $G_1$  and  $G_2$  and  $|MCS(G_1, G_2)|$ =its size

### 1. Unnormalized non-matching measure:

$$U(\mathbf{G}_1, \mathbf{G}_2) = |\mathbf{G}_1| + |\mathbf{G}_2| - 2 \cdot |MCS(\mathbf{G}_1, \mathbf{G}_2)|$$

- = number on non-matching nodes
- Problem: what if graphs have very different sizes?

### Normalized MCS distances

2. Union-normalized distance  $Udist \in [0, 1]$ 

$$Udist(\mathbf{G}_1, \mathbf{G}_2) = 1 - \frac{|MCS(\mathbf{G}_1, \mathbf{G}_2)|}{|\mathbf{G}_1| + |\mathbf{G}_2| - |MCS(\mathbf{G}_1, \mathbf{G}_2)|}$$

- = number of non-matching nodes normalized by union size
- 3. Max-normalized distance  $Mdist \in [0, 1]$

$$Mdist(\mathbf{G}_1, \mathbf{G}_2) = 1 - \frac{|MCS(\mathbf{G}_1, \mathbf{G}_2)|}{\max\{|\mathbf{G}_1|, |\mathbf{G}_2|\}}$$

metric

MCS distances can be computed efficiently only for small graphs!

### Graph edit distance

What is the minimum cost of edit operations to transform  $G_1$  to  $G_2$ ?

- (i) node insertion
- (ii) node deletion (deletes also incident edges)
- (iii) edge insertion
- (iv) edge deletion
  - (v) label substitution of nodes
    - application-specific costs
    - may be exponentially many possible edit paths!
    - NP-hard

### Graph edit distance: example



Image source: Aggarwal Fig. 17.6

### Transformation-based distances

Idea: Transform graphs into a new space where distances are easier to calculate

- a) Type transport using frequent subgraphs
- b) Topological descriptors
- c) Kernel similarity

## Type transport using frequent subgraphs



 $f_i$  = number of times ith subgraph occurs in Gor binary or tf-idf presentation

involves an NP-hard subproblem

### Topological descriptors

Idea: calculate different kinds of indices from graphs ⇒ new numerical features ⇒ Use distances for numerical data

- structural information lost
- utility domain-specific (e.g., good in chemical domain)
- e.g., Wiener index:

$$W(\mathbf{G}) = \sum_{v,u \in \mathbf{V}} d(v,u)$$

d(v, u)=length of shortest path from v to u

more in Aggarwal Ch 17.3.2

### Kernel similarity

#### Idea:

- Assume transformation  $\Phi$  such that similarity of  $G_1$  and  $G_2$  can be measured by  $\Phi(G_1) \cdot \Phi(G_2)$
- Design kernel function K such that  $K(\mathbf{G}_1, \mathbf{G}_2) = \Phi(\mathbf{G}_1) \cdot \Phi(\mathbf{G}_2)$  and use it as a similarity measure (without transformation)
- e.g. shortest path kernel  $(O(n^4))$  and random walk kernel  $(O(n^6))$
- practical for small graphs
- more in Aggarwal Ch 17.3.3

### Next to frequent subgraph discovery



### Frequent subgraph discovery: Motivation



Image source: https://slideplayer.com/slide/5894097/

## Frequent subgraph discovery

Task: Given graph database, search frequent subgraphs given threshold  $\min_{fr}$ .

- Search idea: utilize monotonicity of frequency!
- If  $G_1$  is a subgraph of  $G_2$ , then  $fr(G_1) \ge fr(G_2)$
- similar algorithms than for frequent itemsets, but more complex
- two variants: size of graph may refer to a) number of nodes b) number of edges
  - ⇒ how new candidates are generated

### GraphApriori algorithm

 $\mathcal{F}_i$  = frequent subgraphs of size i,  $C_i$  = candidates

- $\mathcal{F}_1 = \{ \mathbf{G} \mid \text{where } |\mathbf{G}| = 1, P(\mathbf{G}) \ge \min_{fr} \}; i = 1$
- while  $\mathcal{F}_i \neq \emptyset$ 
  - ullet generate candidates  $C_{i+1}$  from  $\mathcal{F}_i$
  - prune  $G \in C_{i+1}$  if G has a subgraph G' such that |G'| = i and  $G' \notin \mathcal{F}_i$  (=monotonicity criterion)
  - count frequencies  $fr(\mathbf{G})$ ,  $\mathbf{G} \in C_{i+1}$
  - set  $\mathcal{F}_{i+1} = \{ \mathbf{G} \in C_{i+1} \mid P(\mathbf{G}) \geq \min_{fr} \}$
  - i = i + 1
- return  $\cup_i \mathcal{F}_i$

### GraphApriori: Candidate generation

For all 
$$G_1, G_2 \in \mathcal{F}_i$$
,  $|G_1| = |G_2| = i$ 

- 1. determine if  $G_1$  and  $G_2$  have a common subgraph  $G_0$  of size i-1
  - may be many isomorphic matchings  $\Rightarrow$  many alternative  $G_0s!$
- 2. for each  $G_0$  create candidate graphs of size i + 1
  - node-based: include all common + 2 non-matching nodes (with extra edge or not)
  - edge-based: include all i-1 common edges and 2 unique edges (with extra node or not)
- same subgraphs may be generated multiple times ⇒ redundancy checking

### Example of node-based join



Image source: Aggarwal Fig. 17.12

## Example of edge-based join



Image source: Aggarwal Fig. 17.13

## Why this is heavy?

- number of candidate patterns may be huge!
- subgraph isomorphism to identify pairs of subgraphs for joining
- graph isomorphism for redundancy checking
- subgraph isomorphism for monotonicity pruning
- subgraph isomorphism for frequency counting

#### Easier if

- many unique node labels
- only small subgraphs are searched
- edge-based join is used (usually less candidates)

# Next to graph clustering



### Distance-based clustering methods

### Common approaches:

- 1. *K*-medoids (needs just a distance function)
- 2. Spectral and other graph-based methods
  - construct a nearest neighbour/similarity graph of graph objects
  - cluster nodes of the new graph

Remember: graph distance measures very expensive to compute! → suitable for smaller graphs

### Methods based on frequent subgraphs

### Approach 1. Type transport: graphs → multidimensional



involves an NP-hard subproblem

 $f_i$  = number of times ith subgraph occurs in Gor binary or tf-idf representation

### Methods based on frequent subgraphs

Approach 2. XProj: cluster representatives = sets of frequent subgraphs

- Initialization: Create K random clusters  $C_1, \ldots, C_K$
- for all  $C_i$ :  $\mathcal{F}_i$  = set of frequent subgraphs (of a given size) from  $C_i$
- repeat until convergence:
  - assign each  $G_j$  to  $C_i$  where  $sim(G_j, \mathcal{F}_i)$  largest
  - for all  $C_i$  determine new  $\mathcal{F}_i$

 $sim(G_j, \mathcal{F}_i)$  = fraction of frequent graphs in  $\mathcal{F}_i$  that occur in  $G_j$ 

### Summary

