* SemiConductors: Their conductivity lies between conductors & insulators. eg: Si, Ge imp.

* Energy Band: Energy given to an e-for hearling the conduction band. Eg)s: ~0.7eV Eg)qe ~0.3eV {ot Room temprature} also as [T1 Eg + +1 R+]

* Currents in a semiconductor 1. Hole current:

Net: Hole current + Electron current & Electron current

e- & hole move in opposite den but current flow in same direction.

ise = in + ip & i = JA = nAe Vd = + EA

4= ne k = ne rd = +

Jsc = e[n un+ pur]

U= mobility J: are ent density T: conductivity E; EF Va: Drift ourrent

also for newhality: n+Np=Nn+p

& by man action law np = n;2 change density

C: 1.61 X10-19 C

applied.

where k => boltzmann constant e 3 1.61 ×10-19C

$$K/e = 1/11600$$

 $[V_b]$

Wp]

-> home Barnion potential &

Revenue Bias

* Diode-Voltage Relationship:

$$\begin{bmatrix}
V_d = V_0 | \text{tage across} \\
V_d = V_0 | \text{tage across}
\end{bmatrix}$$

$$\frac{T_{diode}}{T_{Saturation}} = e^{\frac{\frac{1}{4}V_d}{T}} - 1$$

$$\frac{V_d}{T_S} = e^{\frac{1}{4}V_c \cdot 1} - 1$$

$$\frac{V_d}{T_S} = e^{\frac{1}V_c \cdot 1} - 1$$

$$\frac{V_d}{T_S} = e^{\frac{1}{4}V_c \cdot 1} - 1$$

$$\frac{V_d$$

FB:

as temprature inc the Vo

decrease by 0.25 \log / 100°c

V_T' = V_T - (25) DT

decrease by 0.25 v / 100°c

$$V_{T'} = V_{T} - \left(\frac{25}{10^4}\right) \Delta T$$

* Diode Equivalent ckt:

ii) for constant Voltage/Simplified equincht

$$\frac{\nabla - \nabla d}{R_L + R_D} = 0$$

i

a point or operating point

$$\frac{V - Vd}{R_L + R_D} = 0$$

* Resistances

LRO CV-VW

RL+RD

for DC vollage connected thus graph

dont varies

$$R = \frac{1}{\text{slope}} = \frac{1}{\sqrt{1000}}$$

R = d Va

dId

$$R = \frac{\eta V_T}{I_s e^{Va/\eta V_T}} = \frac{\eta V_T}{I_d + I_s}$$

$$\longrightarrow R = \frac{n V_{\top}}{I} = \frac{n \cdot T}{11600 I}$$

20 0 D D 2 K. I Vo

Rectifiers

e)
$$\eta$$
 (efficiency) = $\frac{2}{\rho_{sms}}$ (FF) = $\frac{100}{(FF)^2}$

d) Ripple factor (8):

(Ac comp. in output)
$$T = \sqrt{F \cdot F^2 - 1}$$
 or $T = \frac{Rms}{arg \cdot value} \frac{arg}{arg}$

out put.

$$\begin{bmatrix} \mathbf{v}_i - \mathbf{v}_d = \mathbf{v}_o \end{bmatrix}$$

ii) fue - wave Rechtjere:

		ه کی	ntre - tapping	- 1
_	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, s	J6 8 80	*
٧;	allunuulla Sammuulla	- RL	$\begin{cases} \frac{\mathbf{v}:}{\mathbf{z}} \end{cases}$. <u>21</u> 5 =
		D Z		

0	8 68		
	$\frac{v}{z}$	2 S	v. ?

>	Ξ	V	n	(4	

				1001(#) -1	1671
	Aug.	Rms.	FF TMS/aug	Ripple 1	7
Half ware	٧/ _K	× 2	T/2	121 %	4o 1.
fue wave	2√ <u>k</u>	√ /12	*/[8	48.39%	817.

* Clipper ckts: Used to clip either the positive or negative halves of Vi.

O: Determin Vo if Vi is (a) & ckt is (b).

[SIn in register]

S. 1: for 0-T/2

$$V_{c} = \{ i_{c} = 0 \}$$
 $V_{c} = \{ i_{c} = 0 \}$
 $V_{c} = \{ i_{c} = 0 \}$

