Kaggle Competition:

Allstate Claims Severity

Team KGW: Wen Li · Lei Zhang · Chuan Hong · Lydia Kan

Content

- Workflow
- EDA
- Initial Features Selection
- Feature Engineering

- Supervised Learning
- Results and Finding
- Future Works

Numeric Graphic: Dataset

Categorical Variables

- 116 Variables
- cat1 cat116
- Levels 2 326

Continuous Variables

- 14 Variables
- cont1 cont14

Numeric Graphic: The Categorical Variables

Variable	Train	Test	Variable	Train	Test
cat89	I	F	cat105	RS	
cat90	G		cat106		Q
cat92	F	G E	cat109	BM CJ BV BY BT B BF BP J AG AK	AD
cat96		Н	cat110	BK H BN DV EI BD BI AN AF CB EH	BH CA EN
cat99		U	cat111	D	L
cat101	NU		cat113	BE T AC	AA R
cat102	HJ		cat114	X	
cat103		М	cat116	BI V BL X FS P GQ AY MF JD AH EV CC AB W AM IK AT JO AS JN BF DY IB EQ JT AP MB C IO DQ HO MT FO JI FN HU IX	AQ EM FY AI N ET KO BJ IW DB LP MX BR BH JS ER A BN BE IS LS HS EX

Density Plot of Loss

Density Plot of Loss Transformation

Graphic EDA: Input Variable

Correlations of all continuous variables

Initial Features Selection: Unsupervised

- **→** Goal: Check if the models are able to simplify the dimensions
- Result: There is no significant classification

Features Engineering

Dummify Categorical Dummify Categorical Select the Variables Have > = 15L Variables >> Group the Levels (variables) by Variables Count and Avg of Loss >> Drop Near Zero (Keep All Features) >> Dummify Categorical Variables Variance Pro: Pro: Pro: Time saving/Required by Do Not throw away some models Keep all information useful features (e.g. MLR) Con: Con: Con: Take too much time / High error and may lose Multiple ways to group Not suitable for MLR / some information variables Overfitting

Features Engineering

Multiple Linear Regression

Features Engineering: Drop NZV

RMSE: 0.57659

Multiple Linear Regression

Features Engineering: Drop Correlated V. + New Group

RMSE: 0.56557

Ridge Regression

Features Engineering: New Group

Parameter: Lambda 1e-05

RMSE: 0.56414

Lasso Regression

Features Engineering: New Group

Parameter: Lambda 1.592283e-05

RMSE: 0.56415

Random Forest

Features Engineering: NZV

Parameter: Number of trees = 500, No. of Variables tried at each split = 51

RMSE: 2014.217

Gradient Boost

Features Engineering: NZV

Parameter: ntree=2640

n.minobsev = 20

interation.depth = 5

shinkage = 0.1

RMSE: 0.51

Increase Kaggle score by tuning parameters

ntree n.minobsev

2600: 1163.89861 50: 2251.57822 **2640: 1162.56392** 5: 1165.24778

10: 1162.56392 **20: 1162.22589**

Importance of Variables

- cat99R, cat99T, cat108F: 0.00000000000
- 83 out of 153 variables influence more than 0.05

XGBoost - xgbTree

Features Engineering: New Group

Parameter:

nrounds = c(150, 200, 250, 300)max_depth = c(3, 4, 5)eta = 0.3 gamma = c(0.1, 0.2)colsample_bytree = c(0.6, 0.7, 0.8)min_child_weight = 1 subsample = c(0.65, 0.75, 0.85)

RMSE: 0.5451

Scatter plot of loss.test vs. predicted loss

Results and Finding

Model	Features Engineering	Parameters	RMSE	Kaggle Score
MLR	Drop NZV		0.57659	
MLR	Drop High Cor + New Group		0.56557	
Ridge	New Group	Lambda: 1e-05	0.56414	
Lasso	New Group	Lmabda: 1.592283e-05	0.56415	
RandomForest	Drop NZV	Ntree: 500 mtry = 51	2014.217	
GBM	Drop NZV	Ntree: 2640 n.Minobsev: 20	0.51	1162.22589
XGB (xgbTree)	New Group	nrounds = 300 max_depth = 4 eta = 0.3 gamma = 0.2 colsample_bytree = 0.6 min_child_weight = 1 subsample = 0.85	0.5451	

Future Works

- 1. Gradient Boosting with "zv"
 - "nzv" cut off the variables with 5% less variance
 - The kaggle score of our best boosting model is 5.6% higher than rank 1
 - With all variables, tune the parameter again
- 2. Transform the y value----reduce the variance?
- 3. Stacking different models to get higher accuracy

Y Transformation

red

6000-