Small Wind Turbines & Wind Diesel Systems

Renewable Generation and Grid Integration

July 2016, Christchurch, New Zealand

Dr. Dipl.-Ing. Thomas Ackermann | t.ackermann@energynautics.com

Outline of Lectures

20 July: Part 1: Hybrid Systems

Part 2: Basics on Grid Integration of Renewable Generation

26 July: Part 1: Basics on Grid Integration of Renewable Generation

Part 2: Examples of International High Penetration Studies

27 July: Part 1: Capability of Ancillary Services from RES

Part 2: Outlook- Overall energy systems aspects

Contents

Typical Markets for Small Wind Turbines (< 50 kW)

- "Remote Homes
- "Telecommunications
- "Village/ Rural Electrification
- **"Water Pumping**
- "Oil Well Pumping
- "Refrigeration
- " Desalination

Rural Electrification


```
"World Bank projects in:
```

```
"Brazil;
```

"Russia;

"Indonesia;

"China;

"Mexico ...

Features of Small Turbines for Power Generation

- "Larger tower, compared to turbine size;
- "Mainly variable speed, direct driven systems (no gearbox) for 2 to 10 kW; direct driven systems are also under development for turbines between 10 to 50 kW (Reason: High rotor speed well suitable for direct driven systems);

Generators

"Low Cost Alternatives:

- Alternators are very popular(Advantage: cheaper, long life time);
- "Induction motor (washing machine);

"Advanced Alternatives:

- "AC generators (very seldom DC);
- "Permanent magnet generators;

Power regulation


```
"Yaw (~ 10 %);

"Stall (~ 8 %);

"No Control (~ 14 %);

"Pitch (~ 35 %);

"Tilt (~ 33 %)
```

Yaw/ Horizontal Furling

Tilt/ Vertical Furling

Pitch Control

Blades

"Often very bad aerodynamic design for small blades, e.g.

- " 455 kW/ m2 for Bonus 600 kW
- 260 kW/ m2 for Bergey 10 kW;

Good research in this area is done by the University of New South Wales, Newcastle, Australia

Maintenance

"Low maintenance costs is the key, however, it is often very difficult ton achieve;

"Also, very difficult and risky to climb up a large tower to repair/ maintain a small wind turbine;

Induction Generator

- "Easy to synchronize with the network;
- "Cheap and easy;
- "BUT: Requires reactive power, hence a reactive power source needed!
- "Voltage different to regulate;

- "Reactive power generation possible;
- "Easy to control;
- "BUT: Must be synchronized in frequency, phase and current;

DC Generator

- "Direct connection to battery possible
 (Battery charger);
- "No synchronisation required;
- "Low efficiency;
- "Repair of DC generator can get very expensive;

Battery & Inverter

- "Power output can be regulated;
- "Easy to synchronize;
- "Can supply reactive power;
- "Expensive;
- "Control might be difficult;
- "Lifetime of Battery limited.

Contents

Wind Diesel Systems

- "In many remote locations in the world, power generation with diesel generators is the common;
- "Fuel prices, however, are often very expensive: In Australia/China, fuel costs per kWh can reach up to 20 Uscents;
- "Wind power can be used as fuel saver!

Wind Diesel Systems

- "Different design concepts possible, from very basic to extremely complicated;
- Costs versus reliability, power quality, lifetime of diesel generator & battery, redundancy of equipment.
- "Larger number of different concept are in use.

Diesel/Battery

- "Diesel: Cascade Design;
- Battery: Short term storage up to 5-10 minutes; Short lifetime due to large number of cycles, Extra building, Air-condition?, Environmental problematic;

Practical Steps

"Important: Define Max, Min and average load

Wind-Diesel-Battery Systems

- The grid frequency is used as a measure for loadsharing between the WTG and the diesel genset;
- "If the load increases, speed of diesel drops and frequency decreases;
- "If diesel power output is less than 50 % than wind turbine would sense a rise and would start to pitch (reduce output), hence increase load on the diesel generator

System 1

"Advantages

- "WTG can be installed without communication link;
- "Minimum load on diesel genset is ensured;

" Disadvantages

- Wind speed fluctuations affect grid frequency
- Need to provide spinning reserve to balance wind speed fluctuations;
- Control dynamic problems occur during low load periods when the WTG power output must be decreased;

- "Battery as short term energy buffer;
- "Oversupply of WTG used to recharge the battery;

System II

"Advantages

- "Higher Penetration possible
- "Less use of diesel/ reduced diesel costs/ longer lifetime
- "WTG can be installed without communication link;
- "Increased stability in the network

" Disadvantages

- "Higher investment and maintenance costs (Battery/Inverter)
- Wind speed fluctuations affect grid frequency (but less)
- Control dynamic problems can occur during due to "Tower Shadow effect" and governor system and low load situations

System III: W/D/B with WTG Setpoint Control

Diesel gensets are equipped with load share and speed control. The engine speed controller together with the engine governor control the speed of the engine to a setpoint of 50 HZ. Supported by load share system;

The load share system distributes the load to the diesel gensets and the wind farm, WTG must except setpoints (Pitch), communication required

System III

"Advantages

- "Increased power quality
- "Increased stability in the network

" Disadvantages

- "Higher investment and maintenance costs (Communication link)
- Wind speed fluctuations affect grid frequency (but less less)

- "Wind Turbine as Flywheel;
- "Converter (Battery) as short term energy buffer;
- "Power Factor control;
- **"Better Integration into Control System**

System IV

"Advantages

- "Very Higher Penetration possible (even 100%)
- "Much better power quality;
- "Log lifetime of diesel genset
- "High stability in the network

" Disadvantages

- "Communication Link Required
- "Price!

Other Systems

- ""Our system in Mongolia"
- "Pitchwind/ ÅF (no Battery)
- ""Australia System": Battery at each house

Esperance/ Australia

- "14 MW Diesel,
- "2.4 MW Wind Farm;
- "During low load and high wind periods wind power penetration of up to 75 %

Exmouth/ Australia

- "Three 20/ 25 kW wind turbines (can be removed very fast);
- "Generates about 200,000 kWh per year;
- "Saves about 50,000 Liters (one liter about 0.5 US\$)

Denham/ Australia

- "800 people,
- "1. Step: 1 E30 (230 kW, supplies 20 % of the local electricity, saves 175.000 liter of diesel)

Denham/ Australia


```
" 2. Step:
" two more E30 (230 kW);
" aim: 70 % of electricity;
```


- "3. Step:
- "Short term supply: Two Flywheels (5 kWh, can supply up to 300 kW);
- "Aim: 100 % supply out of wind/ flywheel system!

King Island/ Australia


```
"4 x 1200 kW Diesel;
"Load: 850 kW - 2700 kW;
"3 x 250 kW (Nordex, stall);
"Dump Load, four elements: 35-70-140-280 kW (0-525 kW);
"Nordex argues that dump load is faster than pitch;
"85 % wind power penetration possible;
"Fuel cost savings per year: 250.000 US$
```

King Island/ Australia

http://www.kingislandrenewableenergy.com.au/