Rozwiązania niektórych z około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej (i jednego nie aż tak trudnego, jak się o nim mówi)

Numeracja zadań jak w zbiorze z 2017 roku

Wrocław, 14 kwietnia 2017

1 Wskazówki

Patrząc perspektywicznie w stronę zbliżających się egzaminów, ta sekcja wydaje mi się ważnejsza i zachęcam do spędzania z nią czasu podczas samodzielnych wieczornych rozmyślań.

1.1 Języki i automaty

Zadanie 63. Warto zastanowić się, jak miałby wyglądać niedeterministyczny automat ze stosem rozpoznający taki język. Pomocny może się też okazać pewien lemat.

1.1.1 Języki rodzynkowe

Zadanie 71. Probem sprowadza się do rozpoznawania liter języka L*. Gdyby miał istanieć taki język L, to pewnie musiałby być nieskończony (dlaczego?). Może istnieje jakaś prosta, nieskończona rodzina słów postaci a*ba*, którą automat ze stosem może łatwo rozpoznawać, ale taki bez stosu będzie miał trudniej? Formalnie, jak to bywa, warto używać lematów.

1.2 Obliczalność

Zadanie 92. Jak coś ma nie być r.e. to na pewno chodzi o redukcję z $\overline{\mathbb{K}}$. Delikatna modyfikacja 89.

Zadanie 99. i) Jak coś ma nie być r.e. to na pewno chodzi o redukcję $z \overline{\mathbb{K}}$. Delikatna modyfikacja 89.

ii)
$$Czy \Phi_m \neq \Phi_n \iff \exists k \Phi_m(k) \neq \Phi_n(k)$$
?

Zadanie 101. Trzeba wprost zdefiniować redukcję z B do A.

Zadanie 102. a. założenie o nietrywialności zadania b. implikuje odpowiedź w zadaniu a.. Pewna użyteczna redukcja i w tym zadaniu okaże się pomocna. b. formalne sformulowanie tego, co to znaczy że $n \in B$, używająca 3 zmiennych, wprost prowadzi do co-r.e. zbioru A.

Zadanie 103. Należałoby się zastanowić, co wspólnego mają te warunki z monotonicznością f.

Zadanie 110. To jest wgl. ważne zadanie i warto mu poświęcić dłuższą chwilę.

- a) Chcemy zakodować Maszynę Turinga (z ustalonym wejściem) jako automat deterministyczny z dwoma stosami.
- a₀) Zamienić MT z ustalonym wejściem na równoważną MT z pustym wejściem.
- a₁) Trzeba się przyjrzeć dokładniej temu, jak Maszyna wygląda, porysować coś. W szczególności spostrzec, że działa ona bardzo lokalnie. Trochę podobne do zadania 130, może być ono pewną inspiracją.
- b) Zamienić stos na licznik.
- b₀) Jak zamienić potencjalnie szeroki wybór sweterków (jak u blondynki) na sweterki tylko dwóch kolorów (jak u blondyna)?
- b_1) Popatrzeć na taki zamieniony stos i zobaczyć, że w rzeczywistości wystarczy nam pamiętać jedną liczbę zamiast jednego stosu.
- b₂) Poświęcić chwilę (!) na względnie dopracowanie wymaganych od stosów operacji w licznikowej implementacji stosów. Przydatne mogą okazać się dwa dodatkowe liczniki.
- c) Zachwycić się bogactwem liczb naturalnych w szczególności można skorzystać ze znanego wszem i wobec kodowania skończonych ciągów liczbowych jako pojedyncze liczby. Np. ciągi 4-elementowe też się da. Zaimplementować wymagane operacje przy użyciu drugiego licznika.

Zadanie 114. Mocno podobne do zadania 127 (gramatyk ze znikaniem). Tym razem trzeba zrobić dwie gramatyki, osobną dla słów l_i i r_i .

Zadanie 115. Warto skorzystać z zadania 114. Udowodnić, że $(L_G)^c$ dla CFG G z zad. 114 jest CFL. Porachować, przypomnieć sobie prawa de Morgana.

Zadanie 116. Warto skorzystać z zadania 115.

Zadanie 118. To mi wygląda na redukcję z PCP ($\langle a, b \rangle = \langle l_i, r_i \rangle$), ale jeszcze nie wiem.

2 Szkice rozwiązań

2.1 Języki i automaty

2.1.1 Synchronizacja automatów częściowych

Zadanie 40.

Odp: NIE.

Rysunek 1: $csync(\{1,2\}) \supset \{a\}$; $csync(\{1,3\}) \supset \{b\}$; $csync(\{1,2\}) \supset \{c\}$. Natomiast $csync(Q) = \emptyset$.

Zadanie 41.

W obydwu podpunktach wystarczy zbadać funkcję

$$F: 2^Q \times \Sigma \longrightarrow 2^Q$$

$$F(S, a) = \{\delta(q, a): q \in S\}.$$

Oczywiście $s \in csync(S) \iff |\widehat{F}(S,s)| = 1$, gdy zdefiniujemy \widehat{F} w naturalny sposób. Ponadto $1 \leqslant |F(A,a)| \leqslant |A|$, zatem $1 \leqslant |\widehat{F}(S,p)| \leqslant |S|$ dla dowolnego prefiksu p słowa s, czyli $\widehat{F}(S,p)$ może przyjmować co najwyżej $\sum_{k=1}^{|S|} \binom{|Q|}{k}$ różnych wartości. Oznaczmy tę liczbę jako M.

Dla |s| > M istnieją prefiksy p_1 i p_2 słowa $s = p_1 s_1 = p_2 s_2$, $|p_1| < |p_2|$, takie że $\widehat{F}(S, s_1) = \widehat{F}(S, s_2)$ (Zasada Szufladkowa). Wtedy oczywiście $\widehat{F}(S, s) = \widehat{F}(S, p_1 s_2)$, przy czym $|p_1 s_2| < |s|$.

W zwiazku z powyższym $csync(Q) \neq \emptyset \iff \exists s \in S | s | \leqslant M$. Dokładne odpowiedzi wynikają z tego wprost, po podstawieniu za S a) dowolniego trzyelementowego zbioru stanów b) Q.

Zadanie 42.

Wystarczy rozwiązać M, L i XL wynikają w prosty sposób. Wskazówka jest myląca.

Zbudujmy automat (częściowy) z trzech cykli, ułożonych jeden nad drugim, każdy długości m. Trzy stany, ułożene jeden nad drugim, będą stanowiły nasz początkowy zbiór S

Naszym celem jest, aby co jedną literę zmieniał się stan na górnym cyklu, co m liter stan na drugim, a co m^2 na trzecim. Zapenimy też, że synchronizacja będzie mogła nastąpić dopiero po przejściu przez dolny stan całego cyklu (czyli m^3 krokach).

Możemy to wymusić w następujący sposób:

przy czym pętelki z literą a są przy każdym stanie na drugim dysku, a pętelki z literami a,b są przy każdym stanie na trzecim dysku.

Możliwość synchronizacji zapeniamy przez dodanie przejść z przedostatnich stanów na każdym dysku do pierwszego stanu dolnego dysku. Oznaczenie ich specjalną "literką synchronizacji", jak d, zapewni nam, że skorzystać z niej będzie można dopiero gdy dolny stan dojdzie do przedostatniego miejsca na dolnym dysku (co następuje dopiero po m^3 krokach:

Zauważmy teraz, że ten automat (zanim dojedzie do synchronizacji) jednoznacznie wyznacza słowo, dla którego funkcja przejścia jest określona dla wszystkich stanów z S:

$$s = ((a^{m-1}b)^{m-1}c)^{m-1}d$$

Takie s synchronizuje S i nie istnieje żadne krótsze od niego. Nietrudno wyliczyć, że jest ono odpowiednio długie.

Zadanie 63.

Przypuśćmy nie wprost, że ten język jest bezkontekstowy. Niech N będzie stałą z lematu o pompowaniu dla tego języka. Wystarczy rozważyć słowo $0^{2N}1^{2N}0^{2N}1^{2N}$ i pamiętać, że przy podziale z lematu (ozn. vwxyz) zachodzi $|wxy| \leq N$. Odpowiednio cierpliwe rozpatrywanie przypadków (gdzie w oryginalnym słowie ląduje podsłowo wxy) prowadzi nas do wniosku, że zawsze można odpowiedni fragment podpompować (lub spompować) i uzyskać słowo spoza języka.

2.1.2 Języki rodzynkowe

Zadanie 71.

Rozważmy $L = \{a^nba^n : n \in \mathbb{N}\}$. Łatwo sprawdzić, że nawet deterministyczny automat ze stosem daje sobie radę z językiem L^* , bo rozpoznawanie liter tego języka (czyli słów języka L) jest bardzo łatwe.

Z lematu o pompowaniu bardzo łatwo pokazać, że L^* nie jest regularny (L też nie jest).

2.1.3 Transducery

Zadanie 77.

Podpunkt 1: definiujemy $\sigma_{Mealy} = \sigma_{Moore} \circ \delta$. Reszta zostaje. Podpunkt 2: definiujemy (dla transducera Mealy'ego $\langle \Sigma, \Sigma_1, Q, q_0, \delta, \sigma_{Mealy} \rangle$)

- 1. $Q' = Q \times \Sigma \cup q'_0$. Stan (q, a) = stan do którego doszlibyśmy w starym automacie ze stanu q wczytując literę a. Stan q'_0 dodatkowy stan początkowy.
- 2. $\delta'((q, a), b) = (\delta(q, a), b) \text{ dla pary } (q, a) \in Q \times \Sigma$ $\delta'(q'_0, a) = (q_0, a)$
- 3. $\sigma_{Moore}((q, a)) = \sigma_{Mealy}(q, a)$ $\sigma_{Moore}(q'_0) = \varepsilon$

Otrzymujemy transducer Moore'a $\langle \Sigma, \Sigma_1, Q', q'_0, \delta', \sigma_{Moore} \rangle$ równoważny z pierwotnym t. Mealy'ego.

Dowód w obu przypadkach zapewne angażuje Zasadę Indukcji Matematycznej względem długości słowa.

Zadanie 78.

bso. (77) zajmijmy się transducerem Mealy'ego $\langle \Sigma, \Sigma_1, Q, q_0, \delta, \sigma_{Mealy} \rangle$, który świadczy że $A \leqslant_{reg} B$. Niech przy okazji $A_B = \langle \Sigma_1, Q^B, q_0^B, F^B, \delta^B \rangle$ będzie DFA rozpoznającym B. Definiujemy $\delta'(q,a) = \widehat{\delta^B}(q,\sigma_{Mealy}(q,a))$. Udajemy, że jesteśmy słowem z języka B i chodzimy po automacie A_B . Wtedy $\langle \Sigma, Q^B, q_0^B, F^B, \delta' \rangle$ jest DFA rozpoznającym A (d-d. indukcyjny względem długości słowa).

Zadanie 79.

Definiujemy transducer Mealy'ego T_{Mealy} :

1.
$$\Sigma = \{1, 2, 3, ..., n\}$$

2.
$$Q = \Sigma$$

3.
$$q_0 = 1$$

4.
$$\delta(q, a) = a$$

5.
$$\Sigma_1 = Q \times \Sigma$$

6.
$$\sigma_{Mealy} = Id$$

Niech $T_{Moore} = \langle \Sigma, \Sigma_1, Q', q'_0, \delta', \sigma_{Moore} \rangle$ będzie transducerem Moore'a równoważnym z T_{Mealy} .

Obserwacja 1. Możemy założyć, że każdy stan z Q' jest osiągany przez DFA stowarzyszony z T_{Moore} . W przeciwnym razie możemy usunąć te stany, a powstały T'_{Moore} wciąż będzie równoważny z T_{Mealy} .

Obserwacja 2. $s \in Im(\sigma_{Mealy}) \Rightarrow |s| = 1$. $Zatem \ s \in Im(\sigma_{Moore}) \Rightarrow |s| = 1$.

Gdyby było $|Q'| < n^2$, to $Im(\sigma_{Mealy}) \nsubseteq Im(\sigma_{Moore})$. Niech $s \in Im(\sigma_{Mealy}) \setminus Im(\sigma_{Moore})$. s = (k, l) dla pewnych $k, l \in \Sigma$. Rozważmy słowo t = kl. Wtedy $f_{T_{Mealy}}(t) = \sigma_{Mealy}(1, k)\sigma_{Mealy}(k, l) = (1, k)(k, l)$. Załóżmy nie wprost, że $f_{T_{Moore}}(t) = f_{T_{Mealy}}(t)$. Jest to równoważne (obs. 2) z tym, że $\sigma_{Moore}(\delta'(q'_0, k)) = \sigma_{Mealy}(1, k)$ oraz $\sigma_{Moore}(\hat{\delta'}(q'_0, kl)) = \sigma_{Mealy}(k, l) = (k, l)$. Druga równość stoi w jawnej sprzeczności z naszym założeniem, że $(k, l) \notin Im(\sigma_{Moore})$.

Zadanie 80.

Zdaje się, że świadczy o tym następujący transducer Mealy'ego:

1.
$$\Sigma = \{(,),[,],\langle,\rangle\}$$

2.
$$Q = \{q_0\}$$

3.
$$q_0 = q_0$$

4.
$$\delta \equiv q_0$$

5.
$$\Sigma_1 = \{(,),[,]\}$$

6.
$$\sigma_{Mealy}(q_0, (/)) = ((/))$$
$$\sigma_{Mealy}(q_0, [/]) = [[/]]$$
$$\sigma_{Mealy}(q_0, (/)) = [(/)]$$

Dowód pozostawiamy Czytelnikowi jako ćwiczenie.

2.2 Obliczalność

Zadanie 89.

```
Niech B=\{n:Dom(\Phi_n)=\mathbb{N}\}. Robimy redukcję f_{89} z \overline{\mathbb{K}}. Definiujemy f_{89}(n) jako numer następującego programu: wczytaj k odpal \Phi_n(n) na k kroków jeżeli się skończył : zapętl się w p.p. : zwróć 1 Sprawdzenie, że zachodzi n\in\overline{\mathbb{K}}\Longleftrightarrow f_{89}(n)\in B pozostawiamy jako proste ćwiczenie.
```

Zadanie 92.

```
Robimy redukcję f z \overline{\mathbb{K}}. Definiujemy f(n) jako numer następującego programu: wczytaj k jeżeli k jest parzyste : zapętl się w p.p. : odpal \Phi_n(n) na k kroków jeżeli się skończył : zapętl się w p.p. : zwróć 1 Oczywiście Dom(\Phi_{f(n)}) = (2\mathbb{N} + \{1\}) \cap \{t \in \mathbb{N} : t < \text{czas wykonania się } \Phi_n(n)\}. Sprawdzenie, że zachodzi n \in \overline{\mathbb{K}} \iff f(n) \in B pozostawiamy jako proste ćwiczenie.
```

Zadanie 99.

i) Robimy redukcję f
 z $\overline{\mathbb{K}},$ pamiętając o redukcji $f_{89}.$ Niec
hcbędzie numerem następującego programu:

wczytaj k

zwróć 1

Definiujemy $f(n) = \langle c, f_{89}(n) \rangle$. Jest oczywiste (po zrobieniu zadania 89), że zachodzi

$$n \in \overline{\mathbb{K}} \iff f(n) \in T.$$

ii) Nie. Robimy redukcję f z $\overline{\mathbb{K}}$.

Niech $f_a(n)$ będzie numerem następującego programu:

wczytaj k

jeżeli k > 1 : zapętl się

w p.p. :

odpal $\Phi_n(n)$

zwróć 1

Niech $f_b(n)$ będzie numerem następującego programu:

wczytaj k

```
jeżeli k > 1 : zapętl się w p.p. : zwróć 1 Definiujemy f(n)=\langle f_a(n),f_b(n)\rangle. Oczywiste zachodzi
```

$$n \in \overline{\mathbb{K}} \iff f(n) \in \overline{T}.$$

Zadanie 101.

Definiujemy f^{-1} w następujący sposób:

wczytaj n

Dla k = 1, 2, 3...:

jeżeli f(k)=n : zwróć k

Oczywiście f^{-1} jest całkowita, bo f jest "na". Łatwo sprawdzić, że zachodzi również $f \circ f^{-1} = Id$ (a czy $f^{-1} \circ f = Id$?).

Pokażemy, że f^{-1} jest redukcją zB do A :

$$n \in B \iff Id(n) \in B \iff f(f^{-1}(n)) \in B \iff f^{-1}(n) \in A$$

przy czym ostatnia równoważność wynika z tego, że f jest redukcją z A do B. Oczywiście powyższe oznacza doładnie to, że f^{-1} jest redukcją z B do A.

Zadanie 102.

- a) Nie. Wysztarczy pokazać redukcję z \mathbb{K} (dlaczego?). O dziwo, jest to dokładnie f_{89} .
- b) Definiujemy $A = \{(n, k, t) : \Phi_n(i) \text{ kończy się po co najwyżej } t \text{ krokach dla } i = 1, 2, ..., k \text{ oraz nie kończy się dla } i > k\}$. Ten zbiór jest dobry, a sprawdzenie pozostawiamy jako ćwiczenie.

Zadanie 103.

- a) Tak. Bo istanieje takie duże N, że na zbiorze $\{N,N+1,\ldots\}$ f jest niemalejąca. Z zadania 86 wynika więc, że $f(\{N,N+1,\ldots\})$ jest rekurencyjny. Zatem $f(\mathbb{N})=f(\{1,2,\ldots,N-1\})\cup f(\{N,N+1,\ldots\})$ jest rekurencyjny, jako suma dwóch zbiorów rekurencyjnych.
- b) Nie. Niech $A=\{1\}$. Niech g będzie całkowitą funkcją rekurencyją, taką że $g(\mathbb{N})=\mathbb{K}$ (skądinąd wiemy, że taka istnieje np. 87). Rozważmy następującą funkcję f:

wczytaj n

jeżeli n jest parzyste : zwróć $g(\frac{n}{2})$

w p.p. : zwróć 1

f spełnia warunek z zadania, ale $f(\mathbb{N}) = \mathbb{K} \cup \{1\}$, a to nie jest zbiór rekurencyjny.

Zadanie 105.

```
Uwaga: N_{emp} jest r.e. Semi-rozstrzyga go następujący program \Phi_{N_{emp}}: wczytaj n dla k=1,2,3,\ldots: odpal \Phi_n(i) na k kroków dla i=1,2,\ldots,k jeżeli na którymś z argumentów \Phi_n się zatrzymał: zwróć 1 a) Tak. Świadczy o tym następująca redukcja f: Jako f(n) przyjmijmy numer następującego programu: wczytaj k odpal \Phi_{N_{emp}}(n) zwróć 1 Dowód poprawności pozostawiamy jako ćwiczenie.
```

b) Nie, bo Tot nie jest r.e. (zadanie 89), a N_{emp} jest.