Задача А

Условие

Найти значения переменных в формуле 3SAT, при которых наибольшее число скобок принимают истинное значение.

Доказательство NPH

Надо доказать, что $3SAT \leq_p MAX3SAT$. Допустим мы умеем решать MAX3SAT, то есть мы нашли такой набор $X=(x_1,x_2,...,x_n)$ при котором максимальное число скобок (обозначим k) истинно. Этот набор X и будет решением 3SAT, если k= числу скобок. $k\neq$ числу скобок, то 3SAT не разрешима.

Задача R

Условие

Рассмотрим такой алгоритм построения максимальной клики: будем каждый раз удалять из графа вершину минимальной степени, пока не получим полный граф. Докажите или опровергните, что такой алгоритм дает решение, не более чем в X раз отличающееся от оптимального.

Решение

Утверждение. Если клика размера N, то все входящие в нее вершины имеет степень = N-1. Доказательство очевидно.

Утверждение. Для любого n можно построить граф, в котором степень хотя бы одной вершины будет n, а всех остальных вершин будет $\geq n$, а размер максимальной клики будет 2.

Таким графом будет n-мерный куб. Степень каждой вершины в него входящий будет равна n, так как хроматическое число n-мерного куба равно 2. Если хроматическое число графа равно 2, то в нем по определению не существует клик размера больше 2.

Утверждение. Для любого N, существует граф, в котором есть клика размера N и используя этот алгоритм будет получаться клика размера 2. # Возьмем клику C размера N+1. Возьмем граф G, в котором существует вершина v, степень которой N, а степень всех остальных вершин $\geq N$. Соединим C и G любым ребром, главное, чтобы оно не касалось вершины v. В получившемся графе минимальная степень вершины N и существует вершина степени N, входившая в граф C. Допустим алгоритм начнет удаление именно с этой вершины. Затем он будет постоянно удалять все вершины графа C, так как при удалении вершины графа C, степень всех вершин графа C уменьшиться на 1. Таким образом граф C будет полностью удален и задача сведется к нахождению максимальной клики в графе G. А у этого графа максимальная клика имеет размер 2 по определению. #

Вывод

Последнее утверждение опровергает существование константы X.

Задача U

Условие

Предложить $\frac{1}{2}$ -приближенный алгоритм для решения следующей задачи. Требуется разбить множество вершин неориентированного графа G=(V,E) на два непересекающихся множества S и T таким образом чтобы число ребер $(u,v):u\in S$ и $v\in T$ было максимально.

Решение

Начинаем со случайного разбиения. На каждой итерации алгоритма из одного множества переносим вершину в другое множество, таким образом, что бы решение улучшалось. Как только решение перестает улучшаться, алгоритм останавливается. Во время остановки алгоритма верно, что для каждой вершины половина (или больше) ребер ведут в другое множество. Если бы это было не так, то мы могли бы перенести эту вершину и улучшить решение. Это значит, что как минимум половина ребер ведут из одного множества в другое, а значит это $\frac{1}{2}$ -приближенный алгоритм.

Использована информация из: Ссылка на источник.

z-test для оценки доли: $t=\frac{\overline{p}-p_0}{\sqrt{\sigma^2/n}},\overline{p}=mean(X)$

Нам известна ширина интервала w и погрешность α : $w=2t_{\alpha/2}\sqrt{\sigma^2/n},t-$ распределение Стьюдента с n-1 степенями свободы, но можно это заменить на нормальное распределение с параметрами p_0 и σ . Тогда

$$n = \frac{z_{\alpha/2*\sigma}}{w}$$