# Sisteme de convoluție-proprietăți, stabilitate, răspuns

#### Tudor C. Ionescu

Dept. de Automatică și Ingineria Sistemelor (ACSE), Facultatea de Automatică și Calculatoare, Universitatea Politehnica București

e-mail: tudor.ionescu@acse.pub.ro

URL: http://acse.pub.ro/person/tudor-cornel-ionescu/

13 octombrie 2020

SISTEME de convoluție/FILTRE: Concept. Proprietăți. Caracterizări.



- Semnale & Sisteme definiții
- 2 Semnale. Operaţii. Transformăr
  - Operații
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

## Semnale & Sisteme-definiții



Un semnal este o funcție de timp.

### Definiția 1

Un semnal este o funcție  $f:\mathcal{T}\to A$ , unde A este imaginea (sau mulțimea de valori a) semnalului și  $\mathcal{T}$  este axa (sau domeniul de definiție a) semnalului. Dacă  $\mathcal{T}\subset\mathbb{R}$  (mulțime "continuă"), atunci u este un semnal continual; în cazul în care  $\mathcal{T}\subset\mathbb{Z}$  (mulțime "discretă") atunci u este un semnal discret.

### Definiția 2

Un sistem, în accepțiunea intrare-ieșire, este o aplicație  $T: \mathcal{U} \to \mathcal{Y}, y = T(u)$ , unde  $\mathcal{U}$  este spațiul semnalelor de **intrare** și  $\mathcal{Y}$  spațiul semnalelor de **ieșire**.

- Semnale & Sisteme definiții
- Semnale. Operaţii. Transformări
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

# Caracterizări. Exemple

Un semnal este o funcție de timp.

#### Mărimi fizice variabile în timp

- forța F care acționează asupra unui punct material,
- tensiunea  $v_o$  la ieșirea unui AO,
- curentul i. printr-un element de circuit,
- presiunea p a unui fluid.

#### Notație:

- F,  $v_o$ , p sau  $F(\cdot)$ ,  $v_o(\cdot)$ ,  $p(\cdot)$  se referă la semnal sau funcție;
- F(t),  $v_o(10.33)$ , p(t-1) desemnează valoarea semnalelor la momentele t, 10.33, t-1.

### Observația 1

Pentru utilizarea calculatorului semnalele cu timp continuu pot fi discretizate/eșantionate = transformate în semnale cu timp discret. Folosim anumiți pași astfel încât pierderea de informație să fie cât mai puțină și să putem reconstrui semnalul la nevoie.

### Exemple

**0** Cursul leu-dolar. Axa semnalului: discretă; imaginea:  $\mathbb{R}_+$ .

0 Secvență semi-infinită de biți: 0111001 . . . . Axa semnalului:  $\mathbb{Z}_+$ ; imaginea:  $\{0,1\}$ .

lacktriangle Tensiunea de ieșire a unui AO. Axa semnalului:  $\mathbb{R}_+$ ; imaginea:  $\mathbb{R}$ .

Nivelul apelor Dunării: semnal eșantionat.

# Semnale standard-treaptă & rampă

a) Treaptă unitară:  $\mathbf{1}(t) = \begin{cases} 1, & t \geq 0, \\ 0, & t < 0. \end{cases}$ 

real, continuu pe porțiuni. De tip "curent continuu".





Semnal scalar real. Funcție de tip "polinomial".



### Observatia 2

Semnal scalar

 $ramp(t) = t \mathbf{1}(t)$ . În general, pentru a pune în evidență suportul pozitiv al semnalului, îl înmulțim cu  $\mathbf{1}(t)$ , i.e.<sup>a</sup>,  $\begin{cases} f(t), & t \geq 0 \\ 0, & t < 0 \end{cases} = f(t) \cdot \mathbf{1}(t), \text{ cu } f : \mathbb{R} \to \mathbb{R}.$ 

Similar în cazul discret.

<sup>&</sup>lt;sup>a</sup>ld est (în latinește) care înseamnă adică.

# Semnale standard–impuls & semnale geometrice

d) Impuls discret:  $\delta(n) = \begin{cases} 1, & n = 0, \\ 0, & n \neq 0. \end{cases}$ 



e) Impuls

dreptunghiular: drept $(t) = \begin{cases} 1, & a \le t \le b, \\ 0, & \text{altfel}. \end{cases}$ 



f) Impuls triunghiular:

$$\mathsf{trian}(t) = \left\{ egin{array}{ll} 1 - |t|, \ -1 \leq t \leq 1, \\ 0, & \mathsf{altfel}. \end{array} 
ight.$$



### Semnale standard-armonice



cu

- A amplitudinea,
- $\omega$  pulsația, i.e.,  $\omega = 2\pi f = 2\pi/T$  unde  $f \in \mathbb{R}_+$  este frecvența semnalului iar  $T \in \mathbb{R}_+$  este perioada acestuia,
- $\bullet$   $\phi$  faza (sau defazajul).

Reprezentarea *complexă* a semnalelor armonice  $(a \in \mathbb{C})$ :

$$u(t) = a e^{j\omega t} = A e^{j\phi} e^{j\omega t} = A \cos(\omega t + \phi) + j A \sin(\omega t + \phi).$$

- Semnale & Sisteme definiții
- Semnale. Operații. Transformări
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer



# Operații cu semnale

Fie u(t) și v(t) două semnale.

#### Operații standard

- Adunarea/suma: (u + v)(t) = u(t) + v(t);
- Produs (modulare):  $(uv)(t) = u(t) \cdot v(t)$ ;
- (Produs de) Convoluție: (u \* v)(t) = ... va urma;



#### Transformarea axei de timp

Figura 1: Translatie cu  $\tau = 1$ 

- Scalarea axei de timp:  $u_{\alpha}(t) = (u)(\alpha t), \ \alpha \in \mathbb{R}$ . Dacă  $\alpha < 1 \Rightarrow$  dilatarea axei de timp. Dacă  $\alpha > 1 \Rightarrow$  contractarea axei de timp.
- Inversarea:  $u_{-}(t) = u(-t), t \ge 0$ ;
- Translația/întârzierea (Figura 1):  $(\sigma^{\tau}u)(t) = u_{\tau}(t) = u(t-\tau), \ \tau \in \mathbb{R}$ . În discret:  $(\sigma^l x)(n) = x(n-l), n \in \mathbb{Z}$ .

Translația - rol important în definirea invarianței în timp a sistemelor liniare.

Sisteme de convoluție-proprietăți, stabilitate, răspuns

## Operații cu semnale-Convoluția

Importantă în definirea sistemelor liniare și a răspunsurilor/evoluțiilor lor.

Definiția 3 (Produsul de convoluție a două semnale (funcții de timp))

Cont. Fie  $u,v\in\mathcal{S}_{\mathbb{R}}$ . Presupunem că pentru  $t\in\mathbb{R}$ , funcția  $\tau\to u(t-\tau)v(\tau)$  este integrabilă pe  $\mathbb{R}$ . Atunci

R. Atunci
$$w(t) = \int_{-\infty}^{+\infty} u(t - \tau)v(\tau)d\tau = (u * v)(t)$$

$$\theta = t - \tau \int_{-\infty}^{+\infty} u(\theta)v(t - \theta)d\theta = (v * u)(t)$$
(1)

este o funcție bine definită în  $t \in \mathbb{R}$  și se numește produsul de convoluție sau CONVOLUȚIA semnalelor continuale u și v.

*Disc.* Fie  $x,y\in\mathcal{S}^d_\mathbb{R}$ . Presupunem că pentru  $n\in\mathbb{Z}$ , funcția  $k\to x(n-k)y(k)$  este sumabilă pe  $\mathbb{Z}$ . Atunci

$$z(n) = \sum_{k=-\infty}^{+\infty} x(n-k)y(k) = (x*y)(n) \stackrel{l=n-k}{=} \sum_{l=-\infty}^{+\infty} x(l)y(n-l) = (y*x)(n)$$

este o funcție bine definită în  $n \in \mathbb{Z}$  și se numește *produsul de convoluție* sau CONVOLUȚIA semnalelor *discrete* x și y.

## Semnale cu impulsuri-Impulsul Dirac

- Motivaţie: ∃ situaţii în care anumite semnale (funcţii) acţionează pe intervale foarte scurte de timp, unde pot lua valori extrem de mari.
- Consecință: este imposibil să măsurăm valorile instantanee ale unui astfel de semnal (există o limită fizică a măsurării unui interval de timp). Putem insă observa/măsura efectul acțiunii acestui semnal. Important pentru definirea unui sistem - funcția pondere.

### Definiția 4 (Impuls Dirac)

Se numește impuls Dirac, notat  $\delta(t)$ , (un "obiect" care este) o **idealizare** a unui semnal având proprietățile:

- **o** este foarte mare intr-o vecinătate a lui t=0:  $\delta(t)$  este *nedefinit* în 0; poate fi chiar infinit;
- $oldsymbol{0}$  este foarte mic în afara acestei vecinătăți:  $\delta(t)=0$  pentru t
  eq 0;
- $\int_{-\infty}^{+\infty} \delta(t) dt = 1.$



# Aproximări ale lui $\delta$ -o proprietate remarcabilă

### Observatia 3

 $\delta$  nu este un semnal per se, dar acționează ca un semnal. El nu poate fi vizualizat nici măcar grafic după definiție, dar poate fi aproximat (pe calculator).

În Figura 2, avem  $p_{\varepsilon}(t) = \mathbf{1}(t) - \mathbf{1}(t - \varepsilon)$ , de unde

$$\delta(t) = \lim_{\varepsilon \searrow 0} \frac{\mathbf{1}(t) - \mathbf{1}(t - \varepsilon)}{\varepsilon} = \frac{\mathrm{d}\mathbf{1}(t)}{\mathrm{d}t}!$$



# Nu contează

forma și valorile pe care le ia o aproximație oarecare a lui  $\delta$ , ci efectul acțiunii acesteia, adică faptul că  $\int_{\mathbb{D}} = 1$ .

$$\int_{-\infty}^{\infty} \delta(t) f(t) dt = f(0)$$



Sisteme de convoluție-proprietăți, stabilitate, răspuns



- 1 Semnale & Sisteme definiții
- Semnale. Operații. Transformări
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

### Transformări

Ne interesează semnalele care pot fi descompuse în sumă de exponențiale  $\leftarrow$  specific sistemelor limiare  $\rightarrow$  Principiul Superpoziției. Foarte pe scurt...

$$f(t) = \sum_{k} f_{k} e^{\rho_{k} t}.$$

Clasa de semnale

- Periodice:  $f(t) = f(t+T), \ T>0, \ \forall t\in\mathbb{R}$ , pe care le scriem ca serii de armonice  $\Leftrightarrow f(t) = \sum_{0}^{\infty} a_k \, \mathrm{e}^{j\omega t}$ , unde  $\omega = 2\pi/T \leftarrow \mathrm{transformata}$  Fourier  $\to \mathrm{transformata}$  Laplace.
- Aperiodice: Orice  $f \in L^1(\mathbb{R})$  (cu acțiune finită) și continuu. E ca și cum am avea perioada  $T \to \infty$   $\leftarrow$  armonicele se apropie infinit una de alta  $\Rightarrow$  suma devine integrală.

 $f(t) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) e^{j\omega t} d\omega \leftarrow combinație liniară de oscilații armonice <math>e^{j\omega t}$  de

amplitudine variabilă  $|F(j\omega)|$ , unde

$$F(j\omega) := \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt = \underbrace{|F(j\omega)|}_{\text{amplitudinea}} e^{j\underbrace{\text{arg}[F(j\omega)]}_{\text{faza}}}, F: j\mathbb{R} \to \mathbb{C}$$

 $\leftarrow$  transformata Fourier a lui f(t).

### Transformarea Laplace pentru semnale continuale

Transformarea Laplace + Laplace discretă sau transformarea  ${\cal Z}$ 

Definiția 5 (Transformata Laplace)

Fie  $f:\mathbb{R} \to \mathbb{C}$ . Se numește transformata Laplace unilaterală la dreapta a lui f în punctul s

$$F(s) = \int_0^\infty f(t) e^{-st} dt.$$
 (3)

F este bine definită în s (integrala improprie converge) dacă  $s \in \mathbf{S}_f^+$ , unde  $\mathbf{S}_f^+ = \{s \in \mathbb{C} : (3) \text{ este absolut convergentă}\}.$ 

Aplicația  $f \stackrel{\mathcal{L}}{\mapsto} F$  se numește transformarea Laplace (unilaterală la dreapta).

# Funcții original (Laplace)

Spunem că  $f: \mathbb{R} \to \mathbb{C}$  este o funcție original Laplace,  $f \in \mathcal{O}$ , dacă f are următoarele proprietăți:

- f(t) = 0, pentru t < 0.
- f este continuă pe porțiuni în  $[0, \infty)$ .
- $\blacksquare$   $\exists M > 0, s_0 > 0$  astfel încât  $|f(t)| < M e^{s_0 t}, \forall t \ge 0$ . Numărul real  $s_0$  se numește indice de creștere (exponențială)  $\Rightarrow f(t)$  funcție de indice  $s_0$ .

#### Teorema 1

Fie  $f \in \mathcal{O}$  o funcție fixată de indice  $s_0$ . Atunci F(s) este olomorfă în  $\mathbf{S}_{\mathbf{f}}^+ = \{ s \in \mathbb{C} \mid \operatorname{Re} s > s_0 \}$  (derivabilă într-o vecinătate a oricărui punct din multime).

### Notație:

- Transformata Laplace a funcției f în punctul s:  $F(s) = \mathcal{L}\{f(t)\}(s)$ .
- Transformarea Laplace:  $F = \mathcal{L}(f)$ .
- Funcția F se numește funcția imagine (Laplace) a funcției (original) f.

# Proprietățile transformatei Laplace

Transformata Laplace inversă. Fie  $f \in \mathcal{O}$  cu indicele de creștere  $s_0$  și  $F = \mathcal{L}(f)$ . Atunci

$$\mathcal{L}^{-1}\{F(s)\}(t)=f(t):=rac{1}{2\pi j}\int_{\sigma-i\infty}^{\sigma+j\infty}F(s)\;\mathrm{e}^{st}\;\mathrm{d}s,\;\;orall\,\sigma>s_0\;\;\mathrm{si}\;\;t\geq0.$$

- Liniaritate.  $\mathcal{L}\left\{\alpha f + \beta g\right\}(s) = \alpha F + \beta G$ .
- Asemănare (scalarea axei de timp).  $\mathcal{L}\left\{f(\alpha t)\right\}(s) = \frac{1}{\alpha}F\left(\frac{s}{\alpha}\right)$ .
- Translaţie (întârziere) în timp.  $\mathcal{L}\{f(t-\tau)\}(s) = e^{-\tau s} F(s), \tau > 0.$
- Translatie în frecvență.  $\mathcal{L}\left\{e^{-at} f(t)\right\}(s) = F(s+a)$ .
- Derivarea imaginii.  $\mathcal{L}\left\{t^n f(t)\right\}(s) = (-1)^n F^{(n)}(s)$ .
- Derivarea funcției original. Dacă  $f, \dot{f}, \ddot{f}, \dots, f^{(n)} \in \mathcal{O}$ . atunci

$$\mathcal{L}\left\{f^{(n)}(t)\right\}(s) = s^n F(s) - s^{n-1} f(0_+) - \ldots - f^{(n-1)}(0_+),$$

unde  $g(0_+) = \lim_{t \to 0} g(t)$ .

În particular,  $\mathcal{L}\left\{\dot{f}(t)\right\}(s) = sF(s) - f(0_+)$ .



# Proprietățile transformatei Laplace. Exemplu.

- 8) Teorema valorii finale (TVF). Dacă  $f, \dot{f} \in \mathcal{O}$  și dacă există  $\lim_{t \to \infty} f(t) \stackrel{\text{not.}}{=} f(\infty) < \infty$ , atunci  $\lim_{s \to 0} sF(s) = f(\infty)$ .
- 9) Teorema valorii iniţiale (TVI). Dacă  $f, \dot{f} \in \mathcal{O}$  și dacă există  $\lim_{s \to \infty} sF(s)$ , atunci  $\lim_{s \to \infty} sF(s) = f(0_+)$ .
- 10) Convoluția. Dacă  $h, u \in \mathcal{O}$  și h\*u este bine definită, atunci y = h\*u este funcție original și

$$\mathcal{L}\left\{y(t)\right\}(s) = H(s)U(s). \tag{4}$$

**Exemplu.** Funcția treaptă unitară  $\mathbf{1}(t)$  este o funcție original având  $s_0 = \varepsilon > 0$ . Atunci  $\mathbf{S}_f^+ = \{s \in \mathbb{C} : \operatorname{Re} s > 0\}$  și

$$\mathcal{L}\left\{\mathbf{1}(t)\right\}(s) = \int_0^\infty e^{-st} dt = \frac{1}{s}.$$



### Exemple

$$\mathcal{L}\left\{e^{at} \ \mathbf{1}(t)\right\}(s) \stackrel{5}{=} \frac{1}{s-a}.$$

$$\mathcal{L}\left\{\cos\omega t\,\mathbf{1}(t)\right\}(s) = \mathcal{L}\left\{\frac{1}{2}(e^{j\omega t} + e^{-j\omega t})\,\mathbf{1}(t)\right\}(s)$$

$$\stackrel{1}{=} \frac{1}{2}\mathcal{L}\left\{e^{j\omega t}\,\mathbf{1}(t)\right\}(s) + \frac{1}{2}\mathcal{L}\left\{e^{-j\omega t}\,\mathbf{1}(t)\right\}(s)$$

$$\stackrel{4}{=} \frac{1}{2}\frac{1}{s - j\omega} + \frac{1}{2}\frac{1}{s + j\omega} = \frac{s}{s^2 + \omega^2}.$$

În mod similar,  $\mathcal{L}\left\{\sin \omega t \, \mathbf{1}(t)\right\}(s) = \frac{\omega}{s^2 + \omega^2}$ .

### Observația 4

Dacă avem impulsuri la t=0, le includem  $\Rightarrow F(s)=\int_{0_{-}}^{\infty}f(t)\,\mathrm{e}^{-st}\,\mathrm{d}t$ . În consecință,  $\mathcal{L}\left\{\delta(t)\right\}(s)=\left.\mathrm{e}^{-st}\right|_{t=0}=1$ . Mai mult,  $\mathcal{L}\left\{\delta^{(k)}(t)\right\}(s)=\int_{0_{-}}^{\infty}\delta^{(k)}(t)\,\mathrm{e}^{-st}\,\mathrm{d}t=(-1)^k\left.\frac{\mathrm{d}^k\,\mathrm{e}^{-st}}{\mathrm{d}t^k}\right|_{s=0}=s^k\,\mathrm{e}^{-st}|_{t=0}=s^k$ .

TC Ionescu

- Semnale & Sisteme definiții
- Semnale. Operații. Transformări
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

### Transformarea $\mathcal{Z}$

### Definiția 6 (Transformata $\mathcal{Z}$ )

Fie  $x: \mathbb{Z} \to \mathbb{R}$  ( $\mathbb{C}$ ) un semnal discret. Se numește transformata  $\mathcal{Z}$  (bilaterală) a lui x, funcția  $X: D \subset \mathbb{C} \to \mathbb{C}$  definită de

$$X(z) = \sum_{k=-\infty}^{\infty} x(k) z^{-k}, \tag{5}$$

unde *D* este *domeniul de convergență* al seriei dublu-infinite.

Vom nota în mod obișnuit  $X(z) = \mathcal{Z}\{x(k)\}(z)$ , sau, mai simplu,  $X = \mathcal{Z}\{x\}$ .

Aplicația  $x \mapsto X$  se numește transformarea  $\mathcal{Z}$ .

Mulțimea D este în mod uzual o coroană circulară.

Ne concentrăm atenția (ca și în cazul continuu) asupra transformatei  $\mathcal Z$  unilaterale la dreapta,

$$X(z) = \sum_{k=0}^{\infty} x(k) z^{-k}.$$
 (6)

## Exemple

- Impulsul discret:  $\mathcal{Z}\left\{\delta(k)\right\}(z) = \delta(0) + \delta(1)z^{-1} + \delta(2)z^{-2} \dots = \delta(0) = 1$ . Domeniu de convergență:  $\mathbb{C}$ .
- Treapta unitară discretă:  $\mathbf{1}(k) = 1$ , pt.  $k \ge 0$  si  $\mathbf{1}(k) = 0$ , pt. k < 0. Avem  $\mathcal{Z}\{\mathbf{1}(k)\}(z) = 1 + z^{-1} + z^{-2} + \ldots = \lim_{n \to \infty} \frac{z^{-n} 1}{z^{-1} 1} = \frac{z}{z 1}$ .

Domeniu de convergență: |z|>1.

② Eşantionarea exponenţialei:  $x(k) = e^{-\alpha t_k} = e^{-\alpha kT} = a^k$ ,  $a = e^{-\alpha T}$ . Avem  $\mathcal{Z}\left\{x(k)\right\}(z) = 1 + az^{-1} + a^2z^{-2} + \dots = \lim_{n \to \infty} \frac{(a^{-1}z)^{-n} - 1}{(a^{-1}z)^{-1} - 1} = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$ .

Domeniu de convergență: |z| > |a|. Intuitiv:  $z = e^{sT}$ .

Coexistă 2 tipuri de notații: în z și în  $z^{-1}$ . Cea de-a doua este folosită frecvent în Identificarea Sistemelor și în Prelucrarea Semnalelor.

**Exercițiu.** Calculați transformata  $\mathcal{Z}$  pentru  $x(n) = a^{|n|}$ . Discuție după  $a > 0, a \neq 1$ .

Indicație: Se scrie  $x(n) = a^n \mathbf{1}(n) + a^{-n} \mathbf{1}(-n-1)$  și se analizează convergența celor 2 factori ai sumei.

## Proprietăți

- Convergența seriei din (5) depinde exclusiv de r=|z|, seria fiind convergentă acolo unde  $x(n)r^{-n}$  este absolut sumabilă pe  $\mathbb{Z}$ ,  $\sum_{n=-\infty}^{\infty}|x(n)r^{-n}|<\infty$ . Dacă seria converge în  $z_0$ , atunci converge evident pentru orice z cu  $|z|=|z_0|$ .
- Domeniul de convergență va conține așadar cercuri concentrice, centrate in jurul originii planului complex.
- Domeniul de convergență nu poate conține poli ai lui X(z).
- Pentru semnalele cu suport finit, convergența are loc pentru orice  $z \in \mathbb{C}$ , eventual cu excepția originii și a punctului de la infinit.
- Dacă domeniul de convergență al transformatei  $\mathcal{Z}$  a unui semnal x(n), cu x(n) = 0 pentru orice  $n < N_0$ , conține cercul  $|z| = r_0$ , atunci seria din (5) va converge pentru acei z pentru care  $|z| > r_0$  (eventual și pentru  $z = \infty$ ).

## Proprietăți - continuare

- 1. Liniaritate:  $\mathcal{Z}\{\alpha_1x_1 + \alpha_2x_2\}(z) = \alpha_1\mathcal{Z}\{x_1\}(z) + \alpha_2\mathcal{Z}\{x_2\}(z)$ .
- 2. Inversarea timpului:  $\mathcal{Z}\left\{x(-n)\right\}(z) = X(z^{-1}) \mathcal{Z}$  bilaterală.
- 3. Translație în timp:  $\mathcal{Z}\left\{x(k-l)\right\}(z)=z^{-l}X(z),\ l\in\mathbb{Z}-\mathcal{Z}$  bilaterală.
- 3a. Translație în timp (la dreapta):  $\mathcal{Z}\left\{x(k-l)\mathbf{1}(k-l)\right\}(z)=z^{-l}X(z)$ .
- 3b. Translație în timp (la dreapta):

$$\mathcal{Z}\{x(k-l)\}(z) = z^{-l}X(z) + \sum_{m=1}^{l} x(-m)z^{m-l}, \ l \ge 1.$$

3c. Translație în timp (la stânga):

$$\mathcal{Z}\left\{x(k+l)\mathbf{1}(k)\right\}(z) = z^{l}X(z) - \sum_{m=0}^{l-1} x(m)z^{l-m}, \ l \ge 1.$$

- 4. Translație în frecvență:  $\mathcal{Z}\left\{a^kx(k)\right\}(z)=X(a^{-1}z)$ .
- 5. Derivarea imaginii:  $\mathcal{Z}\left\{k\,x(k)\right\}(z) = -z\frac{\mathrm{d}X(z)}{\mathrm{d}z}$ .
- 6. Convoluţie:  $\mathcal{Z}\left\{(x*y)(k)\right\}(z) = X(z)Y(z)$ .
- 7. Teorema valorii iniţiale (TVId):  $x(0) = \lim_{z \to \infty} X(z)$ .
- 8. Teorema valorii finale (TVFd): Dacă  $\exists \lim_{k \to \infty} x(k)$ , atunci

$$\lim_{k\to\infty} x(k) = \lim_{z\to 1} (1-z^{-1})X(z).$$

# Proprietăți - atenție! Alte exemple

9. Transformarea  $\mathcal{Z}$  inversă:

$$\mathcal{Z}^{-1}\{X(z)\}(k) = \frac{1}{2\pi j} \oint z^{k-1} X(z) dz.$$
 (7)

### Atenție la domeniul de convergență! Exemple:

1. Fie 
$$x(n) = \left(\frac{1}{3}\right)^{n-2} \mathbf{1}(n-2)$$
. Atunci

$$X(z) \stackrel{2}{=} z^{-2} \mathcal{Z}\left\{\left(\frac{1}{3}\right)^n \mathbf{1}(n)\right\}(z) \stackrel{3}{=} z^{-2} \mathcal{Z}\left\{\mathbf{1}(n)\right\}(3z) = z^{-2} \frac{3z}{3z-1} = \frac{3}{3z^2-z}.$$

2. Semnale armonice *eșantionate*:

$$x(k) = \cos(\omega t_k) = \cos(\omega kT) = \frac{e^{j\omega kT} + e^{-j\omega kT}}{2} = \frac{a^{-k} + a^k}{2},$$

unde  $a = e^{-j\omega T}$ .

### Armonice-continuare

#### Rezultă

$$\mathcal{Z}\left\{\cos(\omega kT)\right\}(z) = \frac{1}{2}(\mathcal{Z}\left\{a^{-k}\right\}(z) + \mathcal{Z}\left\{a^{k}\right\}(z)) = \frac{1}{2}\left(\frac{z}{z - a^{-1}} + \frac{z}{z - a}\right)$$
$$= \frac{z(z - \cos(\omega T))}{z^{2} - 2z\cos(\omega T) + 1}.$$

Similar, pentru  $y(k) = \sin(\omega kT)$  se obţine

$$\mathcal{Z}\left\{\sin(\omega kT)\right\}(z) = \frac{z\sin(\omega T)}{z^2 - 2z\cos(\omega T) + 1}.$$

3. Fie  $x(n) = 3\left(\frac{1}{4}\right)^n \mathbf{1}(n) + 2\left(\frac{1}{3}\right)^n \mathbf{1}(n)$ . Atunci

$$X(z) \stackrel{1}{=} 3\mathcal{Z}\left\{\left(\frac{1}{4}\right)^n \mathbf{1}(n)\right\}(z) + 2\mathcal{Z}\left\{\left(\frac{1}{3}\right)^n \mathbf{1}(n)\right\}(z) = \frac{12z}{4z-1} + \frac{6z}{3z-1}.$$



- Semnale & Sisteme definiții
- 2 Semnale. Operaţii. Transformări
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

### Sistem

Recall Definiția 2:  $T: \mathcal{U} \to \mathcal{Y}, y = T(u), \mathcal{U}$ -spațiul semnalelor de **intrare**, &  $\mathcal{Y}$ -spațiul semnalelor de **ieșire**.

- Sistemul se numește
  - ullet (cu timp) continuu dacă  ${\mathcal U}$  și  ${\mathcal Y}$  sunt spații de semnale continuale,
  - ullet (cu timp) discret dacă  $\mathcal U$  și  $\mathcal Y$  sunt spații de semnale discrete,
  - hibrid dacă  $\mathcal U$  și  $\mathcal Y$  sunt unul spațiu de semnale continuale iar celălalt spațiu de semnale discrete.
- Caz remarcabil:  $\mathcal{U} = L^2(\mathbb{R})$  (sau  $l^2(\mathbb{Z})$ ),  $\mathcal{Y} = L^2(\mathbb{R})$  (sau  $l^2(\mathbb{Z})$ ).

Q: Ce studiem?

**A:** Sisteme liniare, invariante în timp și cauzale ← sisteme de convoluție.



- Semnale & Sisteme definiții
- Semnale. Operaţii. Transformări
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluţie
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

# Sisteme liniare și invariante în timp (LTI). Cazul discret

Un sistem y = T(u) este LTI dacă este

- Liniar:  $T(\alpha u[n] + \beta v[n]) = \alpha T(u[n]) + \beta T(v[n]) \leftarrow \text{Principiul superpoziției,}$
- Invariant în timp:  $y[n] = T(u[n]) \Rightarrow y[n-k] = T(u[n-k]) \leftarrow$  orice întârziere a ieșirii este reflectarea imediată a întârzierii intrării.

Proprietățile sunt valabile și în cazul continuu.

### Propoziția 1

y = T(u), discret, liniar și invariant în timp este un sistem de convoluție caracterizat de **răspunsul la impuls**  $h[n] = T(\delta[n])$ , pentru  $\mathcal{U} = \mathcal{Y} = l^2(\mathbb{Z})$ .

Obiect de studiu: Sisteme de convoluție



## Sisteme de convoluție

Idee: Generic, un sistem liniar și invariant în timp este un sistem de convoluție (e.g.<sup>1</sup>, când  $\mathcal{U}$  și  $\mathcal{Y}$  sunt  $l^2(\mathbb{Z})$ ).

#### Definiția 7

Un sistem y = Tu este un sistem de convoluție dacă există un semnal h astfel încât y = h \* u. Funcția h se numește funcția pondere a sistemului de convoluție.

Sistem de convoluţie cu timp continuu:

$$y(t) = \int_{-\infty}^{+\infty} h(t-\tau)u(\tau)d\tau = \int_{-\infty}^{+\infty} h(\theta)u(t-\theta)d\theta.$$

• Siteme de convoluție cu timp discret:

$$y(n) = \sum_{k=-\infty}^{+\infty} h(n-k)u(k) = \sum_{l=-\infty}^{+\infty} h(l)u(n-l).$$

<sup>1</sup>Exempli gratia, pe latinește, care înseamnă spre exemplu. 🔞 🗅 🔻 🗗 🔻 📲 🔻 💆 🗸

## Proprietăți

#### Propoziția 2

Un sistem de convoluție este liniar și invariant în timp.

#### Demonstratie.

**Liniaritate**. Dacă  $y_1(t) = (h * u_1)(t)$  și  $y_2(t) = (h * u_2)(t)$ ,  $\alpha, \beta \in R$ , atunci

$$y(t) = \int_{-\infty}^{+\infty} h(t - \tau) (\alpha u_1(\tau) + \beta u_2(\tau)) d\tau$$

$$= \int_{-\infty}^{+\infty} h(t - \tau) \alpha u_1(\tau) d\tau + \int_{-\infty}^{+\infty} h(t - \tau) \beta u_2(\tau) d\tau$$

$$= \alpha (h * u_1)(t) + \beta (h * u_2)(t) = \alpha y_1(t) + \beta y_2(t).$$

## Invarianța în timp a unui sistem de convoluție

#### Demonstratie.

**Invarianță în timp**. Fie u(k) o intrare oarecare a sistemului de convoluție discret y(n)=(h\*u)(n) și fie  $\tilde{y}(n)$  ieșirea sistemului la intrarea  $\tilde{u}(k)=u(k-l),\ l\in\mathbb{Z}$ arbitrar, fixat.

Avem

$$\tilde{y}(n) = \sum_{k=-\infty}^{+\infty} h(n-k)\tilde{u}(k) = \sum_{k=-\infty}^{+\infty} h(n-k)u(k-l)$$

$$\stackrel{k-l=m}{=} \sum_{m=-\infty}^{+\infty} h(n-l-m)u(m) = y(n-l).$$

Reciproca este, în general, adevărată  $\leftarrow$  Sisteme definite de ecuații diferențiale liniare cu coeficienti constanti.

### Cauzalitate

Cauzalitate = ieșirea nu depinde decât de "informația" furnizată la intrare în prezent și din trecut  $\leftarrow$  fără caracter anticipativ.

**Q:** Când este un sistem de convoluție și cauzal?

### Propoziția 3

Un sistem de convoluție y = h \* u este cauzal  $\Leftrightarrow h(t) = 0, \quad \forall t < 0$   $(h(n) = 0, \quad \forall n < 0).$ 

Dar stabil? ← proprietate fundamentală pentru filtrare și pentru funcționarea "device"-urilor ⇔ semnale de ieșire măriginite pe canalele de ieșire!

- Semnale & Sisteme definiții
- 2 Semnale. Operaţii. Transformăr
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer



# Stabilitate (intrare—ieșire)

Reamintim că un semnal  $f: \mathbb{R} \to \mathbb{R}$  este mărginit dacă există M > 0 astfel încât

$$|f(t)| < M, \quad \forall \ t \in \mathbb{R}.$$

#### Definiția 8

Un sistem y = T(u) este stabil în sens intrare mărginită— ieșire mărginită sau stabil BIBO<sup>a</sup>, dacă pentru **orice** intrare u mărginită ieșirea rezultată, y = T(u), este de asemenea mărginită.

<sup>a</sup>Bounded Input/Bounded Output

## Stabilitatea sistemelor de convoluție

#### Teorema 2

Fie  $\Sigma$  un sistem de convoluție y = h \* u. Sunt adevărate următoarele afirmații:

Sistemul ∑ este stabil dacă şi numai dacă funcția pondere este

#### Continuu:

absolut integrabilă pe  $\mathbb{R}$ ,  $h \in L^1(\mathbb{R})$ , i.e.,

## Discret:

absolut sumabilă pe  $\mathbb{Z}$ ,  $h \in l^1(\mathbb{Z})$ , i.e.,

$$||h||_1 = \int_{-\infty}^{+\infty} |h(t)| \mathrm{d}t < \infty;$$

$$||h||_1=\sum_{n=-\infty}^{\infty}|h(n)|<\infty.$$

adică h are acțiune finită.

Dacă Σ este stabil atunci

#### Continuu:

$$\sup_{t\in\mathbb{R}}|y(t)|\leq \|h\|_1 \sup_{t\in\mathbb{R}}|u(t)|;$$

#### Discret:

$$\sup_{n\in\mathbb{Z}}|y(n)|\leq \|h\|_1 \sup_{n\in\mathbb{Z}}|u(n)|.$$

## Stabilitate în sens nestrict

#### Observația 5

Stabilitatea BIBO a sistemelor de convoluție, caracterizată de condiția  $h \in L^1(\mathbb{R})$   $(h \in \ell^1(\mathbb{Z}))$ , se mai numește și stabilitate externă în sens strict.

### Definiția 9

Un sistem de convoluție y = h \* u este stabil extern (sau BIBO) în sens nestrict dacă h este mărginită.

### Exemple.

- Analizați stabilitatea sistemului de convoluție având funcția pondere semnal treaptă,  $h(t) = \mathbf{1}(t)$ . Ce se constată?
  Sol.  $||h||_1 = \int_{-\infty}^{\infty} |h(t)| dt = \int_0^{\infty} |h(t)| dt = t|_0^{\infty} = \infty \Rightarrow$  sistemul este stabil BIBO doar în sens nestrict ← h marginită, dar are acțiune infinită și e cauzal.
- **②** Aceeași problemă pentru sistemul discret cu  $h(n) = 2^n \mathbf{1}(-n)$ .

Sol. 
$$||h||_1 = \sum_{n=-\infty}^{0} 2^n = \lim_{n \to -\infty} \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} = \infty$$
. Sistemul nu este stabil (nici

măcar în sens strict ← nemărginire), nefiind nici cauzal.

- Semnale & Sisteme definiții
- Semnale. Operaţii. Transformări
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

# Răspunsul în timp al sistemelor de convoluție

### **A.** Răspunsul la impuls.

1. Cazul **continuu**. Fie y(t)=(h\*u)(t) un sistem de convoluție cu timp continuu. Dacă  $u(\tau)=\delta(\tau)$  atunci răspunsul sistemului la impuls este

$$y_{\perp}(t) = \int_{-\infty}^{+\infty} h(t - \tau)\delta(\tau) d\tau = h(t).$$
 (8)

2. Cazul **discret**. Fie y(n) = (h \* u)(n) un sistem de convoluție cu timp discret. Dacă  $u(k) = \delta(k)$ , atunci răspunsul sistemului la impuls este

$$y_{\perp}(n) = \sum_{k=-\infty}^{+\infty} h(n-k)\delta(k) = h(n).$$
 (9)

Funcția pondere a unui sistem de convoluție este răspunsul la impuls al sistemului respectiv.



### B. Răspunsul la treaptă unitară.

1. Cazul **continuu**. Fie y(t) = (h\*u)(t) un sistem de convoluție cu timp continuu, unde  $u(\tau) = \mathbf{1}(\tau)$ . Atunci răspunsul sistemului este

$$y_1(t) = \int_{-\infty}^{+\infty} h(\theta) \mathbf{1}(t - \theta) d\tau = \int_{-\infty}^{t} h(\theta) d\theta.$$
 (10)

Se observă că  $h(t)=y_{\perp}(t)=\frac{\mathrm{d}y_1(t)}{\mathrm{d}t}$ : funcția pondere este derivata răspunsului la treaptă unitară.

2. Cazul **discret**. Fie y(n) = (h \* u)(n) un sistem de convoluție discret, unde  $u(k) = \mathbf{1}(k)$ . Atunci răspunsul sistemului este

$$y_1(n) = \sum_{k=-\infty}^{\infty} h(l)\mathbf{1}(n-l) = \sum_{l=-\infty}^{n} h(l).$$
 (11)

#### Observația 6

$$h(n) = y_1(n) - y_1(n-1).$$

4112 400 4 - 2 4 - 2 - 3

- Semnale & Sisteme definiții
- Semnale. Operații. Transformăr
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

# Răspunsul în frecvență al unui sistem de convoluție

**C.** Răspunsul la intrare de tip armonic. Fie  $u(t) = e^{j\omega t}$ , unde  $\omega = 2\pi f$  este pulsația iar f este frecvența semnalului armonic.

$$y_{\sim}(t) = \int_{-\infty}^{+\infty} h(\theta) e^{j\omega(t-\theta)} d\theta = \int_{-\infty}^{+\infty} h(\theta) e^{-j\omega\theta} d\theta e^{j\omega t}$$
$$= \widehat{h}(j\omega) u(t). \tag{12}$$

Funcția

$$\widehat{h}(j\omega) = \int_{-\infty}^{+\infty} h(\theta) \, \mathrm{e}^{-j\omega\theta} \, \, \mathrm{d}\theta$$

este răspunsul în frecvență al sistemului de convoluție y = h \* u.



# Proprietăți ale răspunsului în frecvență

### Observația 7

 $\widehat{h}(j\omega)=H(j\omega)$ , unde  $H(j\omega)$  este transformata Fourier a funcției pondere h. Aceasta este bine definită dacă  $h\in L^1(\mathbb{R})$ .

#### Lema 1

Dacă h(t) ia valori reale, atunci  $\widehat{h}(j\omega) = \widehat{h}(-j\omega)$ . Mai mult,  $|\widehat{h}(j\omega)| = |\widehat{h}(-j\omega)|$ ,  $\arg[\widehat{h}(-j\omega)] = -\arg[\widehat{h}(j\omega)]$ .

### Propoziția 4

 $y_{\sim}(t)$  este un semnal armonic de acceași frecvență  $\omega$  cu intrarea u(t), dar de amplitudine și fază modificate. Mai precis, fie  $u(t) = A\cos\omega t$  și  $\hat{h}(j\omega) = |\hat{h}(j\omega)| e^{j\arg[\hat{h}(j\omega)]}$ . Atunci

$$y_{\sim}(t) = A[\hat{h}(j\omega)] \cos(\omega t + \arg[\hat{h}(j\omega)]).$$
 (13)

#### Corolarul 1

Dacă  $u(t) = e^{j\omega t}$ , atunci  $y_{\sim}(t) = |\widehat{h}(j\omega)| e^{j(\omega t + arg[\widehat{h}(j\omega)])}$ .

## Cazul discret

Fie  $u(n) = e^{j\omega n}$ , unde  $\omega = 2\pi f$  este pulsația iar f este frecvența semnalului armonic.

$$y_{\sim}(n) = \sum_{l=-\infty}^{+\infty} h(l) e^{j\omega(n-l)} = \sum_{l=-\infty}^{+\infty} h(l) e^{-j\omega l} e^{j\omega n}$$
$$= \hat{h}(e^{j\omega}) u(n). \tag{14}$$

Funcția

$$\widehat{h}(e^{j\omega}) = \sum_{l=-\infty}^{+\infty} h(l) e^{-j\omega l} = |\widehat{h}(e^{j\omega})| e^{arg[\widehat{h}(e^{j\omega})]}.$$

este răspunsul în frecvență al sistemului de convoluție y = h \* u.

### Propoziția 5

Dacă  $u(n) = A e^{j\omega n}$ , atunci  $y_{\sim}(n) = A|\widehat{h}(e^{j\omega})| e^{j(\omega n + arg[\widehat{h}(j\omega)])}$ .



# Exemplu de răspuns în frecvență

Considerăm un filtru discret cu răspuns finit la impuls (FIR)  $y(n) = \frac{1}{2}[u(n) + u(n-1)] \Rightarrow h(n) = \frac{1}{2}[\delta(n) + \delta(n-1)]$ . Analizăm răspunsul în frecvență al sistemului.

$$\begin{split} \widehat{h}(\mathrm{e}^{j\omega}) &\stackrel{\mathrm{not.}}{=} H(\mathrm{e}^{j\omega}) = \frac{1}{2}(1 + \mathrm{e}^{-j\omega}) \\ &= \mathrm{e}^{\frac{-j\omega}{2}} \frac{\mathrm{e}^{\frac{j\omega}{2}} + \mathrm{e}^{\frac{-j\omega}{2}}}{2} \\ &= \cos\frac{\omega}{2} \, \mathrm{e}^{\frac{-j\omega}{2}} \,. \end{split}$$

#### Caracteristici deduse:

- Amplitudine  $|H(e^{j\omega})| = \cos \frac{\omega}{2}$ ;
- Fază (argument)  $\arg(H(e^{j\omega})) = -\frac{\omega}{2}$ .
- Pentru  $u = e^{j \cdot 0 \cdot n} = 1 \Rightarrow y(n) = 1 \Leftrightarrow H(e^{j \cdot 0}) = H(1) = 1.$
- Pentru  $u=\mathrm{e}^{j\pi n}=(-1)^n\Rightarrow y(n)=0\Leftarrow H(\mathrm{e}^{j\pi})=0\Rightarrow \mathrm{trec}$  doar armonicele cu pulsații între 0 și  $\pi\leftarrow\mathrm{trece}$ -bandă.



 $v_i$ 

## Divizorul de tensiune

Ecuațiile (cu 
$$u = v_i$$
,  $y = v_o$ )

$$\frac{di}{dt} = -\frac{R}{L}i + \frac{1}{L}u, \quad i(0) = 0$$
$$y = Ri$$

Prin urmare,  $i(t) = \int_0^t e^{-\frac{R}{L}(t-\tau)} \frac{1}{L} u(\tau) d\tau \Longrightarrow$ 



$$y(t) = R \int_0^t e^{-\frac{R}{L}(t-\tau)} \frac{1}{L} u(\tau) d\tau = \left(\frac{R}{L} e^{-\frac{R}{L}(\cdot)} * u\right) (t), \quad y = T(u);$$

Egalitatea de mai sus arată că circuitul definește un sistem de convoluție (cauzal).

Funcția pondere este  $h(t) = \frac{R}{I} e^{-\frac{R}{L}t}$  pentru  $t \ge 0$  și h(t) = 0 pentru t < 0.

Funcția de răspuns în frecvență este

$$\widehat{h}(j\omega) = \int_0^\infty \frac{R}{L} e^{-\frac{R}{L}(\theta)} e^{-j\omega\theta} d\theta = \frac{R}{j\omega L + R},$$

ceea ce arată că circuitul LR are un comportament de tip filtru trece-jos.



# Divizorul de tensiune-Filtru trece-jos

Intr-adevăr, relația (13) arată că amplitudinea ieșirii  $v_o(t)$  la o intrare de tip armonic de pulsație "mare" (de exemplu,  $v_i(t) = A\cos\omega t$  cu  $\omega > 10^3 R/L$ ) este practic 0. Filtrul "distruge" amplitudinile oscilațiilor armonice de frecvență mare, pentru care  $\hat{h}(j\omega) \approx 0$ .



Pe de altă parte, relația  $V_o(s) = \frac{R}{sL+R}V_i(s)$  caracterizează comportamentul I/O în domeniul operațional.  $H(s) := \frac{R}{sL+R}$  este așa-numita funcție de transfer a

circuitului.

- Semnale & Sisteme definiții
- 2 Semnale. Operaţii. Transformăr
  - Operaţii
  - Transformata Laplace
  - ullet Transformata  ${\mathcal Z}$
- Sisteme. Proprietăți fundamentale.
  - Sisteme de convoluție
  - Stabilitate
  - Răspunsul în timp
  - Răspunsul în frecvență
  - Funcția de transfer

## Funcția de transfer a unui sistem de convoluție

Fie sistemul de convoluție y = h \* u. Fie  $s \in \mathbb{C}$  și  $u(t) = e^{st}$ . Răspunsul sistemului este

$$y(t) = \int_{-\infty}^{+\infty} h(\theta) e^{s(t-\theta)} d\theta = \int_{-\infty}^{+\infty} h(\theta) e^{-s\theta} d\theta e^{st}$$
$$= H(s) u(t).$$
(15)

Funcția  $H: \mathbb{C} \to \mathbb{C}$ ,

$$H(s) = \int_{-\infty}^{+\infty} h(t) e^{-st} dt$$
 (16)

este funcția de transfer a sistemului de convoluție y=h\*u. Aceasta este bine definită în punctele  $s\in\mathbb{C}$  pentru care integrala din (16) converge absolut. Dacă sistemul de convoluție este **cauzal** (h(t)=0 pentru t<0), atunci

$$H(s) = \int_0^\infty h(t) e^{-st} dt$$
 (17)

este transformata Laplace (unilaterală, la dreapta) a funcției pondere h(t).

# Funcție de transfer

Dacă 
$$U(s)=\mathcal{L}\left\{ u(t)
ight\} (s)$$
 și  $Y(s)=\mathcal{L}\left\{ y(t)
ight\} (s)$ , atunci are loc

Domeniul frecvență : 
$$Y(s) = H(s) U(s)$$
,

(18)

Domeniul timp : 
$$y(t) = (h * u)(t)$$
,

în domeniul *comun* de bună definire a celor trei transformate Laplace din formula de mai sus.

## Funcția de transfer a sistemelor de convoluție discrete

Fie  $z \in \mathbb{C}$  și  $u(n) = z^n$ . Răspunsul sistemului este

$$y(n) = \sum_{l=-\infty}^{+\infty} h(l) z^{n-l} = \sum_{l=-\infty}^{+\infty} h(l) z^{-l} z^{n}$$
  
=  $H(z) u(n)$ . (19)

Funcția

$$H(z) = \sum_{l=-\infty}^{+\infty} h(l)z^{-l}$$
 (20)

este funcția de transfer a sistemului de convoluție y=h\*u. Aceasta este bine definită în punctele  $z\in\mathbb{C}$  pentru care suma din (20) converge absolut. Dacă sistemul de convoluție este **cauzal** (h(n)=0 pentru n<0), atunci

$$H(z) = \sum_{l=0}^{\infty} h(l) z^{-l}$$
 (21)

e transformata Laplace **discretă** (unilaterală, la dreapta) a funcției pondere <u>h</u>(n) ...

## Funcție de transfer în cazul discret

Dacă 
$$U(s)=\mathcal{Z}\left\{u(n)\right\}(z)$$
 și  $Y(z)=\mathcal{Z}\left\{y(n)\right\}(z)$ , atunci are loc

Domeniul frecvență : 
$$Y(z) = H(z) U(z)$$
,

(22)

Domeniul timp : 
$$y(n) = (h * u)(n)$$
,

în domeniul comun de bună definire a celor trei transformate  $\mathcal{Z}$ .

## Observații

- 1. În mod uzual, vom considera sisteme de convoluție cauzale ale căror funcții pondere sunt funcții original (Laplace)  $h \in \mathcal{O}$ . De exemplu, ecuațiile diferențiale liniare cu coeficienți constanți definesc astfel de sisteme vezi exemplul divizorului de tensiune în c.a. Cum semnalele (de intrare) standard sunt de asemenea funcții original,  $u \in \mathcal{O}$ , rezultă că  $y = h * u \in \mathcal{O}$  și Y(s) = H(s)U(s).
- 2. De altfel, egalitățile (18) sunt valabile într-un context mai larg, impus de situația în care sistemul este definit de o ecuație diferențială. Vom considera în cele ce urmează sisteme de convoluție având funcții de transfer raționale, definite de ecuații diferențiale liniare având coeficienți constanți.
- **3.** Formulele (18) și (22) sugerează o metodă de calcul (analitic) a răspunsului (în timp al) unui sistem pentru o intrare dată. Cum H și U se cunosc, Y rezultă în mod banal și Y se obține ca transformată Laplace/Z **inversă** a lui Y.

# Sisteme de convoluție cu funcții de transfer raționale

- Ecuațiile fizico-matematice ale unui sistem: exprimarea matematică a relațiilor dintre variabilele care intervin în sistemul fizic.
- Relaţiile dintre variabile --→ ecuaţii diferenţiale: exprimă în mod obişnuit o ecuaţie de echilibru, determinată de principiile (legile) fizicii care descriu fenomenele care au loc în sistem.
- Sisteme fizice cu parametri constanți. Elemente liniare, intervale de liniaritate, liniarizare. Sisteme fizice cu parametri concentrați.

#### Modele matematice:

Ecuații diferențiale ordinare, liniare și cu coeficienți constanți.

# Exemplu: circuitul RLC serie

- elemente liniare de circuit: R, L, C (e.g., R este un element liniar numai în intervalul de funcționare pentru care a fost prevăzut: legea lui Ohm).
- coeficienții sunt *constanți* (ipoteză de lucru: capacitatea condensatorului variază foarte *lent* cu timpul, fiind practic constantă).

### Relația dintre variabile

- legile Kirchoff  $v_i = v_R + v_L + v_C \ (= v_o)$  și
- caracteristicile curent-tensiune (legile constitutive/de funcționare) la bornele
   di

elementelor 
$$v_R=Ri$$
,  $v_L=L\frac{\mathrm{d}i}{\mathrm{d}t}$ ,  $i=C\frac{\mathrm{d}v_C}{\mathrm{d}t}$ 



⇒ ecuație diferențială ordinară, liniară și cu coeficienți constanți

$$LC\frac{\mathrm{d}^2 v_o}{\mathrm{d}t^2} + RC\frac{\mathrm{d}v_o}{\mathrm{d}t} + v_o = v_i(t).$$

În accepțiunea I/O:

- v<sub>i</sub> (tensiunea la bornele circuitului) intrarea sistemului,
- $v_o$  (tensiunea la bornele condensatorului) ieșirea sistemului.

Ecuația (forțată sau comandată) definește (în mod riguros) un sistem.

# RLC serie: Ecuații diferențiale (forțate)

Considerăm ecuația diferențială generală, de ordinul al doilea, în necunoscuta z(t)

$$\boxed{a_2\ddot{z}(t) + a_1\dot{z}(t) + a_0z(t) = b_1\dot{u}(t) + b_0u(t), \ z(0_+) = z_0, \ \dot{z}(0_+) = z_1}, \ a_2 \neq 0.$$
(23)

### Observația 8

- În general, putem trata problema pentru orice ordin  $n \in \mathbb{N}$ . Pentru claritatea expunerii, scriem rezultatele pentru n = 2.
- Sistemele de ordinul al doilea cuprind o clasă largă de procese/fenomene mecanice, electrice etc.
- Ecuațiile de acest tip provin din legi fizice de mișcare sau de conservare.
- Circuitul RLC serie, este descris de o ecuație diferențială de ordinul 2, cu
  - necunoscuta z(t) = v<sub>o</sub>(t),
  - $a_2 = LC$ ,  $a_1 = RC$ ,  $a_0 = 1 \leftarrow$  coeficienți constanți,
  - $u(t) = v_i(t),$
  - $b_1 = 0$ ,  $b_0 = 1 \leftarrow$  coeficienți constanți.
- Condițiile inițiale  $z(0_+) = z_0$ ,  $\dot{z}(0_+) = z_1$ .

# Rezolvarea ecuației diferențiale cu transformarea Laplace

Aplicăm transformarea Laplace în ambii membri ai ecuației (23),

$$\mathcal{L}\Big| a_2\ddot{z}(t) + a_1\dot{z}(t) + a_0z(t) = b_1\dot{u}(t) + b_0u(t).$$

Cu notațiile  $\mathcal{L}\{u(t)\}(s) = U(s)$ ,  $\mathcal{L}\{z(t)\}(s) = Z(s)$  și folosind proprietatea de derivare a imaginii, se obținem

$$a_2[s^2Z(s) - sz_0 - z_1] + a_1[sZ(s) - z_0] + a_0Z(s) = b_1[sU(s) - u(0_+)] + b_0U(s)$$
  

$$\Leftrightarrow (a_2s^2 + a_1s + a_0)Z(s) + (a_2z_0s - a_2z_1 - a_1z_0) = (b_1s + b_0)U(s) - b_1u(0_+)$$

sau, în formă compactă,

$$A(s)Z(s) - A_i(s) = B(s)U(s) - B_i(s),$$

unde

$$A(s) = a_2s^2 + a_1s + a_0,$$
  

$$B(s) = b_1s + b_0,$$
  

$$A_i(s) = a_2z_0s - a_2z_1 - a_1z_0,$$
  

$$B_i(s) = b_1u(0_+).$$



# Răspunsul forțat al unui sistem cu funcție de transfer

Notând Y(s) = Z(s), rezultă ieșirea unui sistem dată de

$$Y(s) = \underbrace{\frac{\mathbf{B}(s)}{\mathbf{A}(s)}}_{\text{Componentă fortată}} U(s) + \underbrace{\frac{A_i(s)}{A(s)}}_{\text{Componentă liberă}} - \underbrace{\frac{B_i(s)}{A(s)}}_{\text{Conditii initiale } u}$$
(24)

În condiții inițiale nule,  $z_0=z_1=0$  și  $u(0_+)=0$ , ecuația (24) devine

$$Y(s) = H(s)U(s)$$
, unde  $H(s) = \frac{B(s)}{A(s)} = \frac{b_1s + b_0}{a_2s^2 + a_1s + a_0}$ .

este funcția de transfer de la intrarea u la ieșirea y definită de ecuația (23). Dimensiunea/ordinul sistemului = grad A(s).

### Observația 9

De cele mai multe ori, în membrul drept al ecuației diferențiale (23) nu apar derivatele lui u, situație în care  $B(s) = b_0$  și  $B_i(s) = 0$ , de unde rezultă că

$$Y(s) = H(s)U(s) + \frac{A_i(s)}{A(s)}.$$

## RLC serie, sistem



Ecuație diferențială ordinară, liniară și cu coeficienți constanți

$$LC\frac{\mathrm{d}^2 v_o}{\mathrm{d}t^2} + RC\frac{\mathrm{d}v_o}{\mathrm{d}t} + v_o = v_i(t).$$

În accepțiunea I/O:

- $v_i$  (tensiunea la bornele circuitului) intrarea sistemului,
- v<sub>o</sub> (tensiunea la bornele condensatorului) ieșirea sistemului.

$$\begin{array}{c|c} u(t) & \xrightarrow{u(t)} & \xrightarrow{u(t)} & \xrightarrow{U(s)} & \xrightarrow{U(s)} & \xrightarrow{Y(s)} \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline \end{array}$$

RLC serie: Sistem cu funcția de transfer

$$H(s) = rac{1}{LCs^2 + RCs + 1}, ext{ cu}$$

- intrarea  $U(s) = V_i(s) = \mathcal{L}\{v_i\}$  și
- ieșirea  $Y(s) = V_o(s) = \mathcal{L}\{v_o\}.$

# Considerații finale

"Morala": Ecuația diferențială (23) definește un sistem de convoluție, y = h \* u, având funcție de transfer rațională,

$$H(s) = \frac{B(s)}{A(s)},$$

a cărui funcție pondere este dată de

$$h(t) = \mathcal{L}^{-1}(H(s))(t).$$

Acest sistem  $u \to y$  realizează tranziția între semnalul de intrare (comanda) u și componenta forțată a răspunsului sistemului (soluției ecuației diferențiale).

Celelalte componente ale răspunsului (soluției) sunt nule în condiții inițiale nule.

Componenta liberă corespunde unei soluții a ecuației omogene, în condiții inițiale date.

## Cazul discret: ecuații cu diferențe, sisteme discrete

Echivalentul discret al ecuației (23) este ecuația cu diferențe

$$\sum_{k=0}^{N} a_k y(n-k) = \sum_{l=0}^{M} b_l u(n-l)$$
 (25)

În mod similar cazului continuu (cand lucrăm cu ecuații diferențiale), soluția unei astfel de ecuații se obține ca suma dintre ecuația omogenă și o soluție particulară a ecuației (25).

O ecuație cu diferențe definește un sistem discret în accepțiunea intrare/ieșire. Acesta este reprezentat prin funcția de transfer asociată ecuației cu diferențe. Presupunem că  $a_n \neq 0$  și aplicăm transformarea  $\mathcal Z$  ambilor membri

$$a_0 Y(z) + a_1 z^{-1} Y(z) + \ldots + a_N z^{-N} Y(z)$$
  
=  $b_0 U(z) + b_1 z^{-1} U(z) + \ldots + b_M z^{-M} U(z)$ .

Rezultă că Y(z) = H(z)U(z), unde

$$H(z) = \frac{b_M z^{-M} + b_{M-1} z^{-M+1} + \ldots + b_0}{a_N z^{-N} + a_{N-1} z^{-N+1} + \ldots + a_0}.$$

este funcția de transfer a sistemului definit de ecuația (25).

În condițiile în care, dacă u(n) = 0 pentru  $n < n_0$ , atunci y(n) = 0 pentru  $n < n_0$ , ecuația (25) definește un sistem liniar și invariant în timp care este și cauzal.

# Conexiunile sistemelor: serie & paralel

Fie două sisteme  $G_1$  și  $G_2$  cu intrările  $u_i$  și  $y_i$ ; i=1,2. Vom spune că cele două sisteme sunt conectate în:

• Serie dacă  $u_2 = y_1$ 



• Paralel dacă  $u_1 = u_2 = u$  și  $y = y_1 + y_2$ 



# Conexiunea în reacție (negativă)

• Reacție dacă  $u_1 = \pm y_2 + u, u_2 = y_1, y = y_1$ 



În ultima diagramă semnul "+" definește conexiunea în reacție pozitivă iar semnul "–" definește conexiunea în reacție negativă.