(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI.⁷ HO4B **7/O6** (11) 공개번호 특2001-0007526

(43) 공개일자 2001년 01월 26일

(21) 출원번호	10-2000-0035108	
<u>(22) 출원일자</u>	2000년 06월 24일	
(30) 무선권주장 (71) 출원인	99440159.4 1999년06월24일 EP(EP) 알까텔 크리스타안 그레그와르	
(72) 발명자	프랑스 75008 파리 뤼 라 보에따 54 탄게만미템	
(74) 대리인	독일71299레온버그마그스타드터스트라세1/4 주성민, 장수길	
444000 . 000		

실사성구 : 없음

(54) 이동 무선 시스템에서의 디이버서티 전송

ድሞ

공지된 다이버서티 전송 방법(diversity transmission method)에서, 상이한 식별을 가진 두 신호(A, B)는 2개의 떨어져 있는 안테나를 통하여 전송된다. 2개 이상의 안테나(1-4)에 다이버서티 원리를 적용하는 것이 가능하기 위하여, 새로운 방법 및 새로운 기지국이 제안되었다. 상기 새로운 기지국(MB)은 2개의 전송 수단(MXA, MXB)과 각각의 안테나(1, 2, 3, 4) 사이에 대한 연결을 설정하는 할당 수단(SW)을 포함한다. 기지국(MB)은 또한 할당 수단에 연결되어 있고, 안테나를 제 1 안테나 그룹 및 제 2 안테나 그룹으로 나누며, 상기 제 1 안테나 그룹이 상기 제 1 전송 수단(XMA)에 연결되고 상기 제 2 안테나 그룹은 상기 제 2 전송 수단(XMB)에 연결되도록 하는, 연결의 스위청을 제어하는 컴퓨팅 및 제어 수단(CTR)을 포함한다. 안테나들에 대한 제 1 안테나 그룹 및 제 2 안테나 그룹으로의 스위청을 제어하는 컴퓨팅 및 제어 수단(CTR)을 포함한다. 안테나들에 대한 제 1 안테나 그룹 및 제 2 안테나 그룹으로의 여러 상이한 분할에 의해서, 수신기에서 산호(A, B) 사이에 존재하는 진족 및 위상 차미(amplitude and phase difference)(phi)는 2개 미상의 안테나가 사용되어도 보상이 될 수 있다. 또한 가장 높은 다이버서티 이득(diversity gain)을 가진 안테나의 그룹화를 판별하는 것이 가능하다.

445

52

400

다이버서티 전송, 안테나, 기자국, 왈시-하다마드 매트릭스, 이동 무선 시스템

BANE

도면의 간단한 설명

도 1은 본 발명에 따른 기자국과 함께 이동 무선 시스템의 구조를 개략적으로 도시한 도면.

도 2는 본 발명에 따른 방법의 단계들을 도시하는 흐름도.

도 3은 벡터의 도움으로, 상기 발명에 의해 얻어진 신호의 향상을 도시한 도면.

〈도면의 주요 부분에 대한 부호의 설명〉

MXA : 제1 전송 수단 MXB : 제2 전송 수단

CTR : 컴퓨팅 및 제어 수단

SW : 할당 수단

발명의 상세관 설명

발명의 목적

발명이 속하는 기술 분야 및 그 분야의 중래기술

본 발명은 청구항 제1항의 전문에서 설명된 바와 같은 CIOI버서티 전송 방법(diversity transmission

Best Available Conv

method) 및 상기 방법을 수행하기 위한 청구항 제7항의 전문에 설명된 바와 같은 이동 무선 시스템을 위한 기지국(base station)에 관한 것이다.

이동 무선 시스템을 위한 다이버서티 전송(diversity transmission) 방법 및 상기 방법을 수행하기 위한 기지국(base station)은, 앞으로의 이동 무선 시스템 UMTS(universal mobile telecommunications syste n)의 표준화 법위 안에서 표준화 협회 30PP(Third Generation Partnership Project)에 의해 1999년 4월에 발표었고, 인터넷 홈페이지 http://www.39pp.org '를 통해 액세스틸 수 있는, UTRA FDD; Physical layer procedures'라는 표제가 붙여지고 36PP RAN SI.14 V2.0.0"이라고 지정된 문서에 설명되어 있다. Feedback mode transmit diversity'라는 명칭의 제8장의 23 내지 25 쪽에서는, 두 개의 떨어져 있는 안테나를 통해 제 1 신호 및 제 2 신호를 전송하는 기지국이 설명되어 있다. 상기 두 신호는, 두 안테나 경로 - 결국 두 무선 전송 경로가 되는데 -를 표시하기 위해 사용되는, 그들의 따일럿 시퀀스, 즉, 그들의 식별 수단(identification)이 다르다. 그러므로, 수신 상태에서는, 두 신호 사이의 진폭 차이 (amplitude difference) 및 위상 차이(phase difference)를 결정할 수 있다. 수선 위치에 있는 이동국 (mobile station)은, 현존하는 진폭 및 위상 차이의 값을 나타내기 위해 기지국에 피드백 신호를 보내며, 전송 위치에서 진폭 및 위상이 올바르게 교정되어질 수 있도록 한다. 단일 피드백 신호만이 전송되므로, 교정은 단지 두 안테나 사이에서만 가능하다. 하지만, 두 개 이상의 안테나에 대해 다이버서티 전송 방법을 제공하고, 상기 방법을 수행하기 위한 기지국을 제안할 수 있도록 하는 것이 바람작하다.

집을 제공하고, 성기 영합을 구행하기 위한 기지국을 제한할 후 있도록 하는 것이 마음적하다.
미국 특허 5,652,764는, CHOIHMEI 기법(diversity technique)에 대해 두개의 떨어져 있는 안테나를 통해 기지국이 무선 산호를 보내는 이동 통신 시스템을 개시한다. 전송 신호는 두 개의 다른 확산 신호 (spread signal)를 만들어내기 위해 2개의 상이한 직교 코드를 통해 확산되는데, 그 후 두 개의 떨어져 있는 안테나를 통해 전송된다. 이런 신호들을 수신하는 미동국은 코드를 통해 신호를 식별하게 된다. 기러므로 코드를은 식별(identification)를이다: 이것들은 코드 제너레이터와 함께 제공되는 두 전송 수단을 통해 기지국에 의해 발생된다. 이에 따르면, 미국 특허에 설명된 기지국은 제 1 식별을 가진 제 1 신호 및 제 2 식별을 가진 제 2 신호의 전송 신호로부터 형성되는 제 1 전송 수단 및 제 2 전송 수단을 포함한다. 상이한 식별을 통해 두 신호들을 구별할 수 있는 이동국 또한, 수신기에서 두 신호를 사이에 존재하는 진족 차이 및 위상 차이를 결정할 수 있다. 수신시에, 두 신호의 건설적인 조합은, 진족과 위상 차이가 감소함에 따라 증가하는 다이버서된 이득(diversity gain)을 제공한다. 전행 기술의 다이버서된 단점을 착용하기 위해서는, 안테나 어레이와 페이즈드 어레이(phased array)가 바람직하다.

발명이 이루고자 하는 기술적 과제

그러므로 본 발명의 목적은 두 개 이상의 안테나를 위한 다이버서티 전송 방법 및 이 방법을 수행하기 위한 기자국을 제공하기 위합이다.

상기 목적은 청구항 제1항을 특징으로 하는 다이버서티 전송 방법 및 제 7항을 특징으로 하는 기지국을 통해 달성된다.

따라서 2개 이상의 안테나 사용이 이루어지는데, 제 1 단계에서 안테나들은 제 1 안테나 그룹 및 제 2 안테나 그룹으로 나누어지며, 제 2 단계에서, 제 1 신호는 제 1 안테나 그룹을 통해 전송되고, 제 2 신호는 제 2 안테나 그룹을 통해 전송되고, 제 2 신호는 제 2 안테나 그룹을 통해 전송되고, 제 2 안테나 그룹이 작어도 한번 형성되며, 이후 제 2 단계가 반복된다. 이러한 방식으로, 상기 다이버서티 전송 방법은, 각각 두 개 이상의 안테나의 파트를 포함하는 여러 안테나 그룹에 적용되는데, 두 안테나 그룹은 상이한 안테나 그룹을 사용하여 여러번 형성되며, 이런 과정이 여러번 반복되게 된다. 그 결과로, 교정되어야 할 상이한 진폭 차이 및/혹은 위상 차이가 각 사이를에 나타난다. 과정(process)의 사이를 반복을 통하며, 2개 이상의 안테나가 사용된다면, 단순한 방법을 통해 높은 다이버서티 이득을 얻을 수 있다.

본 발명에 따른 가지국은, 두 개 이상의 안테나들에 연결되며; 각 안테나들을 두 전송 수단 중 하나에 할 당하는 할당 수단을 포함하며; 또한 안테나들을 제 1 안테나 그룹 및 제 2 안테나 그룹으로 나누고, 제 1 안테나 그룹 및 제 2 안테나 그룹이 각각 제 1 전송 수단 및 제 2 전송 수단에 연결되도록 하는 방식으로 할당을 제어하는 할당 수단에 연결되어 있는, 컴퓨팅 및 제어 수단을 포함하는 것을 특징으로 한다..

본 발명의 다른 특징들은 종속 청구항에 기재되어 있다.

특히 유익하게, 제 3 단계에서, 제 1 신호 및 제 2 신호가 수신되며, 수신 위치에서 두 신호 사이에 존재하는 진폭 차이 및/혹은 위상 차이가 편별되고, 다음 단계에서, 이 진폭 차이 및/혹은 이 위상 차이는 전송 위치에 전달되는데, 진폭 및/혹은 위상 상태는 두 안테나 그룹 중 하나에서 변하게 될 수 있다. 신호를 보내는 기지국은 그러므로, 수신기에 존재하는 진폭 차이 및/혹은 위상 차이를 표시하는 교정 신호를 이동국으로부터 수신받는다. 기지국은 진폭 및/혹은 위상 상태를 교정하기 위하여 이 교정 신호를 사용하며, 높은 다이버서티 이득을 얻기 위하여 수신기에 동일한 강도와 위상을 가진 신호가 도달하여 건설적으로 결합될 수 있도록 한다.

이 연결에 있어서, 이 안테나 그룹을 통해 전송되는 신호들의 복소 가중치(complex weighting)를 통하여, 두 안테나 그룹 중 하나에 진폭 및/혹은 위상 상태를 변화시키는 것은 특히 이롭다.

만일 MOI 2의 제곱수인, M개의 안테나가 사용된다면, M개의 안테나를 그룹으로 분류시키는데에 있어서, M × M 요소로 구성된 활쉬-하다마드(Walsh-Hadamard) 행렬을 형성하는 것은 특히 이로운데, 각 M개의 행은 M개의 안테나 중 하나를 할당되고, M개의 행 중에서 제 「행을 따르는 M-1개의 행률은 각각, 안테나들이 2개의 안테나 그룹 중 하나로의 할당을 나타낸다. 이 행렬의 형성에 의하여, 단순한 방법으로 총 M-1개의 가능한 상이한 그룹화 방법이 계산되는데, 각각은 안테나들을 안테나 그룹들로 나누기 위하여, 프로세스(process)의 하나의 사이클에 사용된다. 왈쉬-하다마드(Walsh-Hadamard) 행렬은 정확히 M-1개의 직교조합을 제공하기 때문에, 이들 M-1개의 가능한 그룹화 방법으로, M개의 안테나들은 거의 최적화에 가깝게 서로에 조절될 수 있다.

또한 만일 상기 방법이 2개 이상의 안테나로부터 형성된 안테나 머레이에 연결되어 있는 기지국에서 수행

되고, 만일 기지국이 컴퓨팅 및 제어 수단에 연결되며, 컴퓨팅 및 제어 수단에 의해 제공되는 제어 신호 에 대한 용답으로, 안테나 어레이를 통하며 진송된 진폭 및 위상의 신호를 바꾸는 복잡한 가중치 스테이 지(complex weighting stage)를 포함한다면 특히 이룹다. 이렇게 갖춰진 가지국은 공간 혹은 편파 다이 버서티(space or polarization diversity) 원리에 대한 본 발명에 따른 다이버서티 전송 방법을 수행하는 데 특히 적합하다.

이 연결에서, 안테나 그룹을 페이즈드 어레이(phased array)로서 설계하는 것은 특히 이름다. 이것은 다 미버서티 전승 방법에 있어 SDMA 무선 전송(SDMA= space diversion multiple access) 내에서 수행하는 것 과 무선 자원의 재사용으로 많은 수의 사용자를 서비스하는 것을 가능하게 한다. .

발명의 구성 및 작용

이제 본 발명 및 그 장점들이 첨부된 도면을 참조로 하여 구체적으로 설명될 것이다

도 1은 기지국(NB) 및 이동국(NS)을 가진 이동 무선 시스템의 구조를 도시한다. 기지국은 4개의 안테나 (1,2,3,4)로 구성된 안테나 어레이 (AAR)에 연결되어 있다. 안테나 어레이 (AAR)는 아래에 설명된 다이버서된 전송 방법에 의해 신호들을 방출한다. 이러한 목적 달성을 위해, 기지국은 전송신호로부터 제 1 신호(A)와 제 2 신호(B)를 생성하는 제 1 전송 수단(MXA) 및 제 2 전송 수단(MXB)을 포함한다. 두 신호(A, B)는 그들의 식별이 상이하다. 이 예에서, 전송 신호는 CDMA 신호이며, 두 개의 상이하며 상호 적교 파일럿 시퀀스가 식별 수단으로서 사용된다. 전송 수단(MXA, MXB)은 멀티플렉서들이며, 그 중 하나는 제 1 신호(A)를 생성하기 위해 제 1 파일럿 시퀀스를 더하며, 다른 하나는 제 2 신호(B)를 생성하기 위하여 제 2 파일럿 시퀀스를 더한다. 본 발명에 따르면, 이런 두 개의 신호(A, B)는 그후, 상이한 안테나를 통해 방송되고 다이버서티 원리에 따라 상이한 무선 경로로 전송되는 방식으로 안테나 더레이 (AAR)에 공급된다.

신호(A, B)를 안테나 어레이(AAR)에 공급하기 위해서는, 기지국은 두 개의 전승 수단(MXA, MXB) 각각을 안테나(1-4)에 각각 연결할 수 있는 할당 수단(SW)을 포함하게 된다. 기지국은 또한, 할당 수단에 연결되어 있으며 각 안테나를 전송·수단 중 하나에 할당하는 것을 제어하는 컴퓨팅 및 제어 수단을 포함한다. 도 1에 도시된 예에서, 안테나(1, 3)는 제 1 전송 수단(MXA)에 연결되며, 안테나(2, 4)는 제 2 전송 수단(MXB)에 연결된다. 이를 연결의 설립은 자유롭게 선택할 수 있으며, 아래에서 설명되는 것과 같이 안테나(1-4)를 두 개의 상이한 안테나 그룹으로 분류하는데에 따라 영향을 받는다. 도 1에서, 안테나(1, 3)는 제 1 안테나 그룹을 형성하며, 안테나(2, 4)는 제 2 안테나 그룹을 형성한다.

기지국(NB)은 또한, 안테나 브랜치에 삽입되며, 개별 안테나에 의해 방출되는 신호의 진폭 및 위상을 각각 설정하는 복잡한 가중치 스테미지(complex weighting stage)를 포함한다. 도 1에서 도시된 가중치 스테이지(♥), 씨)와 같은 이름 복잡한 가중치 스테미지는, 또한 컴퓨팅 및 제어 수단(CTR)에 의해 제어된다. 기지국(NB)은 또한, 채널화된 코드(channelization codes) 및 스크램블링 코드(scrambling code)의 수단을 통해 신호들을 확산시키기 위하여 가중치 스테미지를 따르는 스테미지(SPR)를 포함한다. 미들 스테미지(SPR)는, 베이스밴드(baseband)로부터 전송 밴드(transmission band)로의 신호를 변환하는 무선 주파수 스테미지(radio-frequency stage)(NF)가 뒤를 잇는다. 도 1은, 다수의 전송 채널에 대한 예로,하나의 전송 채널에 대한 별록도를 도시한다.

로,하나의 전송 채널에 대한 블록도를 도시한다.

도 1에 도시된 실시예에서, 제 1 신호(A)는, 안테나 (1, 3)를 포함하는 제 1 안테나 그룹에 의해 전송되며, 제 2 신호(B)는 안테나(2, 4)를 포함하는 제 2 안테나 그룹에 의해 전송된다. 안테나 머레이 (AAR)의 원시마(far field)에 위치한 이동국(MS)에게, 두 개의 안테나 그룹을 용한 두 신호(A, B)의 방출은, 두 전통적인 다이버서티 안테나를 통한 방출과 다르지 않다. 이것은 이동국(MS)이, 본질적으로 상이한 소설자 상이한 신호 지연(pdA, pdb)을 가진 두 개의 상이한 경로를 통해 두 신호(A, B)를 수신한다는 것을 뜻한다. 이들 차이점들은 진폭 차이 및 위상 차이에 있어 수신 단말에서(receiving end)에서 더욱 뚜렷하다. 도시를 간략화하기 위하여, 도 1은 수신기에서 두 개의 신호(A, B) 사이에 존재하는 위상 차이(phi)만을 도시한다. 만일 이 위상 차이가 따라나 에 가깝다면, 두 신호에 대한 수신으로 충분한 다이버서티 이득을 얻을 수 있다. 이동국(MS)은, 기지국에 교 전화의 형태로서 판별된 위상 차이(phi)를 전달하는데, 여기서 제어가(CTR)는 그후 위상 상태로 하여 금, 안테나 그룹 중 하나에 연결된 복잡한 가중치 스테이지(씨, 씨3)로 변하도록 한다(여기서 안테나 그룹은 안테나(1, 3)를 포함한다). 폐쇄 루프(CL; closed loop)는 그러므로, 이동국을 통하여 설정된다. 이예에서, 제 1 안테나 그룹을 위한 위상 상태, 즉, 안테나(1, 3)는 교정 신호에 대한 응답으로서 바뀐다.이 교정 과정이 완료되면, 새로운 안테나 그룹이 형성되고, 교정 과정은 이를 새로운 안테나 그룹을 이용하여 반복된다. 새로운 제 1 안테나 그룹은 그후, 예를 들어, 안테나(1, 4)와 같이 형성되며, 새로운 제 2 안테나 그룹은 이를 하여, 안테나(1, 4)와 같이 형성되며, 새로운 지 2 안테나 그룹은 안테나(2, 3)에 의해 형성된다. 이 방식으로, 교정 과정은 여러 번에 걸쳐 사이를된다.

도 2는, 도 1의 참조하여 위에서 설명한 기지국 및 이동국에 의해 수행되는, 본 발명에 따른 다이버서된 전송 방법(100)에 대한 단계를 도시한다. 다음에서는, 이들 도 1 및 도 2에 대한 참조가 이루머지게된다.

방법(100)은 단계(110-170)를 포함하며, 기지국에 의해 수행되는 시작(S) 다음의 제 1 단계(110)부터 시 작된다. 제 1 단계(110)에서는, 기지국의 컴퓨팅 및 제어 수단이 안테나들을 두 개의 안테나 그룹으로 나누게 된다. 제 1 안테나 그룹은 안테나 (1, 3)를 포함하며, 제 2 안테나 그룹은 안테나(2, 4)를 포함 한다.

제 2 단계(120)에서는, 도 1에서 도시된 바와 같이, 제 1 안테나 그룹은 제 1 전송 수단에 연결되며, 제 2 안테나 그룹은 제 2 전송 수단에 연결된다. 그 결과로, 제 1 안테나 그룹, 즉, 안테나(1, 3)는 제 1 선호(A)를, 제 2 안테나 그룹,즉, 안테나(2, 4)에 제 2 선호(B)를 전송한다.

다음 단계(130)에서는, 신호(A, B)는 이동국(MS)에 의해 수신된다. 2개의 신호가 상이한 전송 경로를 통해 도착하게 되면, 무시할 만한 진폭 차이를 제외하고는, 무시하지 못할 만한 위상 차이(phi)가 두 개의

수신된 신호 사이에 존재한다. 이 위상 차이는 이동국(씨S)에 의해 판별된다.

다음 단계(140)에서는, 이동국(MS)은 이 위상 차이를 기지국(MB)에 전달하며, 그 후 안테나(1, 3)와 같은 제 1 안테나 그룹에 대해 위상 상태를 바꾼다. 위상 교정 후, 전송된 신호(A, B)는 그 후 이동국(MS)에 의해 수신될 수 있으며, 다이버서티 이득을 얻기 위해 건설적으로 결합될 수 있다.

다음 단계(150)에서는, 2개의 안테나 그룹을 사용하여 다시 한번 교정 과정을 수행해야 하는지에 대한 검사를 하게 된다. 이 검사에 사용되는 기준은, 안테나 그룹이 얼마나 자주 미미 형성되었나, 즉, 얼마나 자주 그룹화가 미루어졌는가를 나타내는 수인 N이다. 총 4개의 안테나(1-4)는 이미 사용되었기 때문에,최대 4개의 그룹화가 가능한데, 즉,

- (a) 안테나 그룹 (1, 3) 및 (2, 4);
- (b) 안테나 그룹 (1, 4) 및 (2, 3); 및
- (c) 안테나 그룹 (1, 2) 및 (3, 4)

, 이다.

이 예에서, 단지 하나의 그룹화가 이루어졌는데, 즉, 단계(110)에 있는 그룹화 (a)이다. 그러므로, 단계(150)에서는 또 다른 그룹화를 하기 위한 판별이 이루어진다. 그것의 끝으로, 다음 단계(160)에 대해 분기(branch)가 만들어지는데, 2개의 새로운 안테나 그룹을, 즉, 그룹화 (b)에 따른 안테나 그룹(1, 4) 및 안테나 그룹(2, 3)이 형성된다. 그 후, 진폭 및 위상을 교정하기 위한 단계(120-140)가 다시 수행된다. 그 후, 단계(150)에서는, 얼마나 많은 상이한 그룹화가 이루어졌는지를 판별한다. 이 예에서, 3개 중 2개의 가능한 그룹화가 이루어졌으며, 그래서 단계(160) 및 단계(120-140)가 마지막으로 사이클되는데, 이때 안테나물은 이제 그룹화 (c)에 따라 단계(160)에서 그룹화된다. 그러므로, 두 개의 상이한 안테나 그룹들은 3번(N-3) 형성되었으며, 진폭 및 위상 상태를 교정하기 위하여 사용되었다.

이것은 단계(170)가 뒤를 잇는데, 여기서 이동국의 이동 결과로서 전승 품질(transmission quality)이 바 뀌었는지에 대한 검사가 이루어진다. 만일 그렇다면, 단계(110)부터 다시 모든 과정이 반복되어야 한다; 그렇지 않다면 과정은 종료될 수 있다. 방법(110)은 그러므로, 단계(110-170)를 가진 바깥 사이쿨 및 단계(120-150)를 가진 안쪽 사이클로 구성된다.

안쪽 사이클은, 모든 가능한 그룹화가 교정을 위해 사용되어졌을 때까지 통과되어질 필요는 없다. 충분 한 다이버서티 이득을 획득하는 것이 충분히 제한된 수의 사이클을 통해 만족될 수도 있다. 이것은 도 3 에 설명되어 있다.

도 3은 과정 중에 각각의 스냅샷(snapshot)을 나타내는 다섯 개의 부분으로 나누어진다. 왼쪽에서 오른 쪽으로 [마리가는데, 부분들의 정렬(arrangement)은, 스냅샷의 시간에 [마른 순서를 반영한다. 도면의 각 부분은, 각각이 개개의 4개 전승 경로 중 하나를 나타내는 전송 함수를 도시하고 있다.(또한, 도 1을 참 조): 벡터(1)은 안테나(1)로부터 이동국(MS)로의 전송 경로를 나타내며, 벡터(2)는 안테나(2)로부터 이 동국(MS)로의 전송 경로를 나타내는 등등이다.

개별 전승 경로에 대한 상이한 전파 조건 때문에, 벡터(1-4)는 진폭 및 위상에 있어서 상이하다. 이것은 상이한 길이 및 벡터들의 방위(orientation of vector)에 의해 나타난다. 개별 벡터(1-4)는, CIOI버서티 무선 채널의 증합적인 전송 합수에 대응되는 합력을 형성하기 위하여, 수신 위치, 즉, 이동국의 수신기에 서 결합된다. 더 건설적인 개별 벡터(1-4)들이 결합될수록, 즉, 더 긴 합력일수록, 더 높은 다이버서티 이득을 얻는다. 위에서 설명된 방법에 의하여, 안테나에서 위상 상태는, 개별 벡터(1-4)들이 같은 방위 이며 합력(resultant)은 가능한한 길도록 가정하는 방식으로 서로에게서 상대적으로 조정된다. 이 과정 은, 위상 상태의 단계별 교정을 도시하는 도 3에 설명되어 있다.

도면의 가장 왼편 부분은 초기의 상태를 나타내는데, 여기서 안테나들은 아직 서로에게서 상대적으로 조정되어 있지 않으며, 따라서 개별 벡터(1-4)들은 폭넓게 상이한 위상 상태들을 차지한다. 그러므로, 합력(점선)은 개별 벡터(1-4)들의 길이에 대한 합보다 상당히 짧다. 이와 같이, 개별 벡터들의 결합은 최적과는 거리가 있으며 향상될 필요가 있다. 그러므로, 본 발명에 따르면(도 2의 단계(110-140) 참조), 안테나(3, 1)를 포함하는 제 1 안테나 그룹 및 안테나(4, 2)를 포함하는 제 2 안테나 그룹이 형성된다. 이 방법은, 도면의 다음 부분에서 벡터(4, 2, 3 및 1)의 그룹화 및 합 벡터(4+2, 3+1)(부러진 선)에 의해서 설명되어 있다. 그리고, 합벡터(3+1)의 위상 상태, 즉, 제 1 안테나 그룹에 대한 위상 상태는 두 합벡터들이 같은 방위를 가질 수 있도록 바뀌었다. 도면의 제 3 부분에 도시된 것처럼, 벡터들은 이제 처음에 보였던 벡터보다 이미 약간 긴 합력을 형성하기 위하여 결합된다. 제 1 그룹화 및 이어서 수행된 위상 상태의 교정이 끝났으며, 합력의 길이에 대한 증가에 의해 나타나는 추가적인 다이버서된 이득이 이미 얻어졌다.

과정(process)은 이제 새로운, 제 2 그룹화로서 계속된다(도 2의 단계(160) 참조). 새로운 안테나(4, 1)를 포함하는 제 1 안테나 그룹이 형성된다. 이 확정은, 벡터(4, 1, 2, 및 3) 및 합 벡터(4+1, 2+3)(부러진 선)에 의하여 도면의 제 4 부분에서 보여진다. 그리고, 새로운 안테나 그룹에 대한 위상 상태는 바뀌어서, 즉, 벡터(2, 3)가 회전해서, 함벡터(4+1, 2+3)이 같은 방위를 갖도록 한다(도 2의 단계(120-140) 참조). 도면의 가장 오른쪽 부분으로부터 명백한 것처럼, 합력은, 길이가 모든 벡터(1-4)의 길이의 합과 거의 같도록 얻어진다.

그러므로, 안테나물은 거의 최적화가 되도록 서로에게서 상대적으로 조정된다. 거의 가능한 최대의 다이 버서티 이득을 얻게 되며, 과정은 증료될 수 있다. 또한, 모든 가능한 안테나 그룹들이 형성될 수 있으 며, 가장 높은 다이버서티 이득을 가진 그룹이 선택되어질 수 있다.

도 I 및 2를 참조하면, 단계(160)에서 안테나 그룹 각각에 대한 새로운 형성은, 할당 수단(SP)이 제 I 전 송 수단(MXA)으로부터 안테나(1, 4)에 대한 새로운 연결을 설정하는 것을 의미한다. 할당 수단은, 예름 들머 2개의 입구(inlet) 및 4개의 출구(outlet)를 포함할 수 있다. 각 사이클에서의 상이한 그룹화 결과로, 신호(A, B)는 새로운 안테나 그룹읍 통하며 전송된다. 각 사이 클에 있어서, 신호읍 수신하는 이동국(NS)은 앞에서 판별된 위상 차이와 대개 다른 새로운 위상 차이를 판별한다. 이 새로운 위상 차이도 또한, 기지국에 전달되며, 그후 다시 한번 두 안테나 그룹 중 하나에 위상 상태읍 설정하게 된다. 이런 방식으로, 진폭 또한 안테나 그룹에 설정될 수 있다. 각 사이클에 있 어서, 새로운 진폭 및 위상 교정은 안테나 어레이에 수행되며 다이버서티 이득은 증가된다.

설명된 예에서, 총 4개의 안테나를 이용함으로서, 3개의 상이한 그룹화가 가능한데, 즉, 이는 그룹화 '1과 3 및 2와 4', 그룹화 '1과 4 및 2와 3', 및 그룹화 '1과 2 및 3과 4' 이다. 설명된 과정은 그러므로 CHOH버서티 이득을 증가시키기 위하여 세 번 반복되어질 수 있다. 안테나의 수가 많을수록, 상당히더 많은 수의 사이클이 가능하다.

만일 많은 수의 안테나가 사용된다면, 소위 말하는 왈쉬-하다마드(Qalsh-Hadamard) 행렬의 도움으로 안테나 그룹을 형성하는데 유리하다. 만일 사용된 안테나의 수가, 2의 제곱수, 즉, k=2¹¹ 라면, 각 행미 개별 k개의 안테나 중 하나에 지정되고 행이 개별 안테나가 두 개의 안테나 그룹 중 머느 것에 해당하는지를 나타내는, M×M 요소로 구성된 대칭 왈쉬-하다마드 행렬을 형성할 수 있다. 만일 8개의 안테나가 사용된 다면(k=8), 왈쉬-하다마드 행렬 H는 다음과 같이 보며질 것이다.

행렬의 행은 8-비트 왈쉬-하다마드 코드를 나타낸다. 첫째로, 열들은 안테나들로 할당이 되는데, 즉, 열 1은 안테나(1), 열 2는 안테나(2)에, 열 3은 안테나(3)에 등등이다. 그 후, 제 1 행을 따르는 행들은 값 이 구해진다. 각 행은 하나의 그룹화를 나타내는데, 삼봄 +1은 그룹 A의 멤버쉽을 나타낸며, 삼봄 -1은 그룹 8의 멤버쉽을 나타낸다. 행 2는 예를 들어, 다음과 같은 그룹화를 나타낸다: 제 1 안테나 그룹은 안 테나(1, 3, 5, 및 7)를 포함하며, 제 2 안테나 그룹은 안테나(2; 4, 6 및 8)을 포함한다. 왈쉬-하다마드 행렬의 수단에 의해, 안테나 그룹들은 8개의 안테나로부터 7번 형성되는데, 즉, 오직 M-1개의 조합만이 선택되는데, 즉, 가능한 수의 조합보다 훨씬 적다. 왈쉬-하다마드 행렬이 M-1개의 직교 행 벡터를 포함 하기 때문에, M-1=7개의 상이한 조합물(안테나 그룹들)이 교정되지 않게 된다. 그러므로, 안테나 어레이 는 가장 가능한 방식으로 작은 수의 안테나 그룹에 의해 나타내어진다.

본 발명은, 특히 CDMA 이동 무선 시스템에서의 사용에 적합한데, 그런 시스템에서는 전송되어질 신호들이 상미한 파일럿 시퀀스로 제공되어질 수 있는 수단을 이미 포함하기 때문이다. 만일 본 발명에 따른 기지 국이 페이즈드 어레이(phased array)들로 갖추어진다면, 전송은 SDMA(space division multiple access) 방식에서도 이루어질 수 있다.

≅8의 **2**1

본 발명에 따르면, 두 개 이상의 안테나를 위한 다이버서티 전송 방법 및 이 방법을 수행하기 위한 기지국이 제공된다.

(57) 경구의 범위

청구항 1

떨어져 있는 안테나들을 통해 전송되는 제 1 식별(identification)을 가진 제 1 신호(signal) 및 제 2 식별을 가진 제 2 신호를, 전송 신호로부터 형성하는 것을 포함하는 다이버서티 전송 방법에 있어서,

2개 이상의 안테나(1, 2, 3, 4)들이 사용되며, 제 1 단계(110)에서, 상기 안테나(1, 2, 3, 4)들은 제 1 안테나 그룹(antenna group)(1, 3) 및 제 2 안테나 그룹(2, 4)으로 분할되며,

제 2 단계(120)에서, 제 1 신호(A)는 상기 제 1 안테나 그룹(1, 3)을 통해 전송되고, 제 2 산호(B)는 상기 제 2 안테나 그룹(2, 4)을 통해 전송되며,

후속 단계(160)에서, 새로운 제 1 안테나 그룹(1, 4) 및 새로운 제 2 안테나 그룹(2, 3)이 적머도 한번 형성되고,

이어서 제 2 단계(120)가 다시 반복되는 것을 특징으로 하는 다이버서티 전송 방법.

청구함 2

제1항에 있어서, 상기 후속 단계(160) 및 제 2 단계(120)는, 안테나 그룹의 총합이 예정된 수, 특히 안테나 그룹의 가능한 최대 수와 같이질 때까지 반복 단계(150)가 되는 것을 특징으로 하는 다이버서된 전송

방법.

청구항 3

제1항에 있머서, 제 3 단계(130)에서, 제 1 신호 및 제 2 신호(A, B)가 수신되고, 진승 위치에서 두 신호 (A, B) 사이에 존재하는 진쪽 차이(amplitude difference) 및/혹은 위상 차이(phase difference)(phi)가 판별되며,

다음 단계(140)에서, 상기 진폭 차이 및/혹은 위상 차이(phi)가 전승 위치에 전달되어, 여기서 두 안테나 그룹 중 하나(1, 3)에 대한 대한 진쪽 및/혹은 위상 상태가 변동되는 것을 특징으로 하는 다이버서티 전 승 방법.

청구항 4

제3항에 있머서, 두 안테나 그룹 중 하나(1, 3)에 대한 상기 진폭 및/폭은 상기 위상 상태가, 상기 안테나 그룹(1, 3)을 통해 전송되는 상기 신호(A, B)의 복잡한 가중치(weighting)(♥1, ♥3)에 의하며 변동되는 것을 특징으로 하는 CFOIH서EI 전송 방법.

청구항 5

제1항에 있어서, MOI 2의 제곱수인, 총 M개의 안테나가 사용되며, M개의 안테나를 2개의 안테나 그룹으로 나누기 위해, M×M 요소로 구성되는 왈쉬-하다마드 행렬(Maish-Hadamard matrix)이 형성되며, M개의 열 각각은 M개의 안테나에 각각 할당되고, M개의 행 중 M-1개의 행은 각각 안테나들을 두 개의 안테나 그룹 중 하나에 할당하는 것을 나타내는 제1 행을 따르도록 하며, M-1개의 다른 그룹화가 가능하고, 형성된 안테나 그룹의 수에 대한 예정된 값이 M-1의 2배와 동일하게 되는 것을 특징으로 하는 다이버서티 전송방법.

청구항 6

제1항에 있어서, 산호(A, B)에 대한 전승 품질(transmission quality)이 예정된 값 이하로 떨어지면(단계 170), 상기 프로세스가 제1 단계(110)부터 반복 되는 것을 특징으로 하는 다이버서의 전송 방법.

참구항 7

다이버서티 기법(diversity technique)으로 전송하기 위하여 떨어져 있는 안테나들에 연결되어 있으며, 전송 신호로부터, 제 1 식별을 가진 제 1 신호(A) 및 제 2 식별을 가진 제 2 신호(B)를 각각 형성하여, 떨어져 있는 안테나들을 통해 두 신호(A, B)를 전송하는, 제 1 전송 수단(MXA) 및 제 2 전송 수단(MXB)을 포함하는, 이동 무선 시스템을 위한 기지국(NB)에 있어서,

기지국(NB)이 두 개 이상의 안테나(1, 2, 3, 4)들에 연결되며, 기지국(NB)이 또한 각각의 안테나(1, 2, 3, 4)를 2개의 전송 수단(MA, MXB) 중 하나에 활당하기 위한 활당 수단(SW)을 더 포함하며, 기지국(NB)이 활당 수단(SW)에 연결된, 컴퓨팅 및 제어 수단(CTR)을 더 포함하며, 상기 컴퓨팅 및 제어 수단은 안테나(1, 2, 3, 4)를 제 1 안테나 그룹(1, 3) 및 제 2 안테나 그룹(2, 4)으로 분활하고, 상기 제 1 안테나그룹(1, 3) 및 상기 제 2 안테나 그룹(2, 4)이 제 1 전송 수단(MXA) 및 제 2 전송 수단(XMB)에 각각 활당 되도록 활당을 제어하는 것을 특징으로 하는 이동 시스템을 위한 기지국.

청구항 8

제7항에 있어서, 안테나(1, 2, 3, 4)는 안테나 어레이(AAR), 특히 공간 혹은 편파 \dot{c} 마이버서티(space or polarization diversity)를 위한 안테나 어레이를 형성하며, 기지국(NB)은 또한, 컴퓨팅 및 제어 수단(CTR)에 연결된, 복소 가중치 스테이지(weighting stage)(W1, W2)를 포함하며, 상기 가중치 스테이지는 상기 컴퓨팅 및 제어 수단(CTR)에 의해 제공되는 제어 산호에 응답하여 안테나 그룹(1, 2, 3, 4)중 하나(1, 3)을 통해 전송되는 상기 산호(A, B)의 진폭 및 위상을 변동시키는 것을 특징으로 하는 기지국.

첨구항 9

제8항에 있어서, 안테나 어레이가 페이즈드 어레이(phased array)인 것을 특징으로 하는 기지국.

도四

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		
OTHER:		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.