

Intro to Vectors and Matrix Operations

QL1.1

Learning Outcomes

By the end of today, you should be able to...

- 1. Describe vectors and Matrices
- 2. Compare and contrast different types of matrix multiplication
- 3. Implement matrix multiplication using numpy
- 4. Apply matrix operation to solve various problems

Why we need Linear Algebra

- Whatever you see in your display is achieved by linear algebra
- Airplanes, trains, satelites, GPS, Video Games, etc all use Matrix operations.
- Most of machine learning models and all most all deep learning models need it

Everything is in Matrix!

Matrix Definition

 Matrix: a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns.

	1	2		n _
1	a_{11}	a_{12}		$a_{1m{n}}$
2	a_{21}	a_{22}		$a_{2oldsymbol{n}}$
3	a_{31}	a_{32}		a_{3n}
•	:	:	:	÷
m	a_{m1}	a_{m2}		a_{mn}

Vector

Vector: Vector is a matrix with 1 dimension.

Name	Size	Example	
Row vector	1 × n	[3 7 2]	A matrix with one row, sometimes used to represent a vector
Column vector	n×1	$\begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$	A matrix with one column, sometimes used to represent a vector

Addition, Scalar multiplication and Transposition

Operation	Definition	Example
Addition	The $sum\ \mathbf{A}+\mathbf{B}$ of two m -by- n matrices \mathbf{A} and \mathbf{B} is calculated entrywise: $(\mathbf{A}+\mathbf{B})_{i,j}=\mathbf{A}_{i,j}+\mathbf{B}_{i,j}, \text{ where } 1\leq i\leq m \text{ and } 1\leq j\leq n.$	$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$
Scalar multiplication	The product $c\mathbf{A}$ of a number c (also called a scalar in the parlance of abstract algebra) and a matrix \mathbf{A} is computed by multiplying every entry of \mathbf{A} by c : $(c\mathbf{A})_{i,j} = c \cdot \mathbf{A}_{i,j}.$ This operation is called <i>scalar multiplication</i> , but its result is not named "scalar product" to avoid confusion, since "scalar product" is sometimes used as a synonym for "inner product".	$2 \cdot \begin{bmatrix} 1 & 8 & -3 \\ 4 & -2 & 5 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 & 2 \cdot 8 & 2 \cdot -3 \\ 2 \cdot 4 & 2 \cdot -2 & 2 \cdot 5 \end{bmatrix} = \begin{bmatrix} 2 & 16 & -6 \\ 8 & -4 & 10 \end{bmatrix}$
Transposition	The <i>transpose</i> of an <i>m</i> -by- <i>n</i> matrix \mathbf{A} is the <i>n</i> -by- <i>m</i> matrix \mathbf{A}^{T} (also denoted \mathbf{A}^{tr} or ${}^{t}\mathbf{A}$) formed by turning rows into columns and vice versa: $(\mathbf{A}^{T})_{i,j} = \mathbf{A}_{j,i}.$	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 7 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 2 & -6 \\ 3 & 7 \end{bmatrix}$

Numpy Arrays

8 min

Create two vectors a and b in numpy and

- Add them together and put the result in c.
- b. Multiply them together (element-wise)
- c. Divide a by b (element-wise)
- d. Obtain the modulo (element-wise)


```
>>> x = np.array([3,2])
>>> y = np.array([5,1])
>>> z = x + y
>>> z
array([8, 3])
```



```
>>> x = np.array([3,2])
>>> y = np.array([5,1])
>>> z = x - y
>>> z
array([-2, 1])
```

Teacher Demo: Matrix Multiplication

- 1. Vector times a vector
- 2. Vector times a matrix
- 3. Matrix times a matrix
- 4. $AB \neq BA$

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 \\ 6 \end{bmatrix} =$$

On paper, Calculate:

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 2 & 5 \\ 6 & 7 \end{bmatrix} =$$

Matrix Multiplication

5 mins

Numpy Matrix Multiplication


```
a = np.array([[1, 0],
              [0, 1]
b = np.array([[4, 1],
              [2, 2]
np.matmul(a, b)
array([[4, 1],
       [2, 2]])
Note: Don't confuse a * b with np.matmul(a,b). The first one
is element-wise multiplication not a matrix multiplication!
```


Break 10 mins

Scalar Product = Dot Product = Inner Product

The dot product of two vectors a = [a1, a2, ..., an] and b = [b1, b2, ..., bn] is defined as:

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

Meaning of Dot Product

Reference

1. https://www.python-course.eu/matrix_arithmetic.php