



## Course on Numerical Methods in Heat Transfer and Fluid Dynamics

## **Fractional Step Method**

## **Staggered and Collocated Meshes**

Escola Superior d'Enginyeries Industrial, Aeronàutica i Audiovisual de Terrassa (ESEIAAT)

Centre Tecnològic de Transferència de Calor (CTTC)

**Universitat Politècnica de Catalunya (UPC)** 

#### **Contents**

- Objectives
- Introduction to Fractional Step Method (FSM)
- Theoretical background: the Helmholtz-Hodge theorem (HH)
- Application of the Helmholtz-Hodge theorem to Navier-Stokes equations (NS)
- The checkerboard problem
- FSM for staggered meshes
- Non-uniform meshes
- Exercises: lid-driven cavity problem, square cylinder, differentially-heated cavity
- Bibliography
- Annex: FSM for collocated meshes

## **Objectives**

- Solve the NS equations using the FSM
- To understand the key features of the <u>Fractional</u> <u>Step Method</u>
- Study the <u>checkerboard problem</u> and review the different existing solutions
- Implement a <u>CFD code</u> for structured and staggered or collocated meshes
- <u>Verification</u> of the developed code using different benchmark case data

## **Introduction to Fractional Step Method**

The fractional step method (**FSM**) is a common technique for solving the incompressible NS equations. The main reasons for this success are basically:

- Better performance than other methods, e.g SIMPLE-like algorithms
- Code simplicity

Main issues to bear in mind:

- **FSM** are also referred to as **projection methods** because it can be interpreted as a projection into a divergence-free velocity space.
- The *intermediate (or predictor) velocity*, is an approximate solution of the momentum equations, but it cannot satisfy the incompressibility constraint at the next time level.
- The pressure Poisson equation determines the minimum perturbation that will make the predictor velocity incompressible.

#### Theoretical background: the Helmholtz-Hodge theorem

**Theorem:** A given vector field  $\boldsymbol{\omega}$ , defined in a bounded domain  $\Omega$  with smooth boundary  $\delta\Omega$ , is uniquely decomposed in a pure gradient field and a divergence-free vector parallel to  $\delta\Omega$ 

$$\omega = a + \nabla \varphi$$

where,

$$\nabla \cdot a = 0$$
  $a \in \Omega$ 

The theorem also applies for periodic inflow/outflow conditions.

The proof of the theorem can be found in the extra material of the course entitled: "Introduction to the Fractional Step Method".

#### Application of the HH theorem to NS equations (1/4)

Navier-Stokes (NS) equations for incompressible and constant viscosity flows:

$$\nabla \cdot \boldsymbol{v} = 0$$

$$\rho \frac{\partial v}{\partial t} + (\rho v \cdot \nabla) v = -\nabla p + \mu \Delta v \quad or \quad \rho \frac{\partial v}{\partial t} = \mathbf{R}(v) - \nabla p$$

where  $\mathbf{v} = u\mathbf{i} + v\mathbf{j} + w\mathbf{k}$  and  $\mathbf{R}(\mathbf{v}) = -(\rho\mathbf{v} \cdot \nabla)\mathbf{v} + \mu\Delta\mathbf{v}$ 

Time integration of NS equations gives:

$$\nabla \cdot \boldsymbol{v}^{n+1} = 0$$

$$\rho \frac{\boldsymbol{v}^{n+1} - \boldsymbol{v}^n}{\Delta t} = \frac{3}{2} \boldsymbol{R}(\boldsymbol{v}^n) - \frac{1}{2} \boldsymbol{R}(\boldsymbol{v}^{n-1}) - \boldsymbol{\nabla} p^{n+1}$$

Momentm equations are integrated at time instant (n+1/2) while continuity equations is implicitly integrated.

#### Application of the HH theorem to NS equations (2/4)

Now, if we introduce the following unique decomposition (thanks to the HH theorem),

$$v^p = v^{n+1} + \frac{\Delta t}{\rho} \nabla p^{n+1}$$
 (where  $\nabla \cdot v^{n+1} = 0$ )

we can transform the original momentum equation to the following velocity projection equation,

$$\rho \frac{\boldsymbol{v}^p - \boldsymbol{v}^n}{\Delta t} = \frac{3}{2} \boldsymbol{R}(\boldsymbol{v}^n) - \frac{1}{2} \boldsymbol{R}(\boldsymbol{v}^{n-1})$$

#### Application of the HH theorem to NS equations (3/4)

An equation for the pressure can be derived from the velocity decomposition equation if the divergence operator is applied,

$$\nabla \cdot \boldsymbol{v}^{n+1} = \nabla \cdot \boldsymbol{v}^p - \nabla \cdot (\frac{\Delta t}{\rho} \nabla p^{n+1})$$

Since  $\nabla \cdot v^{n+1} = 0$ , a final Poisson equation for the pressure is found,

$$\Delta p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{v}^p$$

#### Application of the HH theorem to NS equations (4/4)

Finally,  $v^{n+1}$  results from the original decomposition,

$$\boldsymbol{v}^{n+1} = \boldsymbol{v}^p - \frac{\Delta t}{\rho} \nabla p^{n+1}$$

Therefore, at each time step the following equations give a unique  $\boldsymbol{v}^{n+1}$  and  $\boldsymbol{\nabla} p^{n+1}$ . In summary:

1. Evaluation of 
$$R(v^n)$$

1. Evaluation of 
$$R(v^n)$$
  
2.  $v^p = v^n + \frac{\Delta t}{\rho} \left[ \frac{3}{2} R(v^n) - \frac{1}{2} R(v^{n-1}) \right]$   
3.  $\Delta p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot v^p$   
4.  $v^{n+1} = v^p - \frac{\Delta t}{\rho} \nabla p^{n+1}$ 

3. 
$$\Delta p^{n+1} = \frac{\rho}{\Lambda t} \nabla \cdot \boldsymbol{v}^p$$

4. 
$$v^{n+1} = v^p - \frac{\Delta t}{\rho} \nabla p^{n+1}$$

## The checkerboard problem (1/3)

If we focus ourselves in the 1D spatial discretization of the step 3 of the previously described FSM, and after applying finite differences at node P:

$$\boldsymbol{v}^{n+1} = \boldsymbol{v}^p - \frac{\Delta t}{\rho} \nabla p^{n+1}$$

For the x-component of the velocity (v=ui+vj+wk) at node P:

$$u_P^{n+1} = u_P^p - \frac{\Delta t}{\rho} \left( \frac{p_E^{n+1} - p_W^{n+1}}{2\Delta x} \right)$$



Therefore, the discrete approximation of  $\nabla p^{n+1}$  at node P is independent of  $p_P^{n+1}$ .

## The checkerboard problem (2/3)

We can obtain converged velocity fields for unphysical pressure distributions. For example,

$$p_{WW}^{n+1} = 100$$
 $p_{W}^{n+1} = 0$ 
 $p_{P}^{n+1} = 100$ 
 $p_{E}^{n+1} = 0$ 
 $p_{EE}^{n+1} = 100$ 



This final "unphysical" pressure field verifies  $\nabla p^{n+1} = 0$ ! Remember,  $\nabla p^{n+1}$  at node P is independent of  $p_P^{n+1}$ .



We need a smarter strategy to couple  $\nabla p^{n+1}$  with the velocity field  $v^{n+1}$ !

## The checkerboard problem (3/3)

Two possible solutions have been developed to solve the checkerboard problem,

#### Staggered meshes





#### Collocated meshes

Structured meshes



Unstructured meshes



Attention is now focused on staggered meshes. Collocated meshes are explained in the Appendix.

## FSM for staggered meshes (1/13)



- Staggered velocity mesh solves the checkerboard problem.
- Easy to implement on structured meshes.
- But on unstructured meshes, it is difficult to implement !!
- Widely used for academic purposes.
- Next lesson will be focused on collocated arrangement (*Unit 4:* FSM. Part 2: Collocated Meshes).

## FSM for staggered meshes (2/13)

#### **Summary:**

1. 
$$R(v^n)$$

2. 
$$\mathbf{v}^p = \mathbf{v}^n + \frac{\Delta t}{\rho} \left[ \frac{3}{2} \mathbf{R}(\mathbf{v}^n) - \frac{1}{2} R(\mathbf{v}^{n-1}) \right]$$

3. 
$$\Delta p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{v}^{\mu}$$

3. 
$$\Delta p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{v}^p$$
4.  $\boldsymbol{v}^{n+1} = \boldsymbol{v}^p - \frac{\Delta t}{\rho} \nabla p^{n+1}$ 

5. Choose your new 
$$\Delta t = min(\Delta t_c, \Delta t_d)$$

The unsteady resolution advances with adaptive time steps until a specified condition is reached, e.g. steady state.

 $t = t_{steady}$ 

At each time step

... and finish when, e.g., the steady state is reached

## FSM Step 1: Stagg-x mesh (3/13)

**Step 1 FSM** (x component of v):  $u^P = u^n + \frac{\Delta t}{\rho} \left[ \frac{3}{2} R(u^n) - \frac{1}{2} R(u^{n-1}) \right]$  where :

$$R(u) = -(\rho \boldsymbol{v} \cdot \nabla)u + \mu \Delta u$$

If we integrate R(u) over the staggered-x control volume and then the Gauss theorem is applied:

$$\int_{\Omega_{\mathcal{X}}} R(u) d\Omega_{\mathcal{X}} = -\int_{\Omega_{\mathcal{X}}} (\rho \boldsymbol{v} \cdot \nabla) u d\Omega_{\mathcal{X}} + \int_{\Omega_{\mathcal{X}}} \mu \Delta u d\Omega_{\mathcal{X}} =$$

$$= -\int_{\partial \Omega_{\mathcal{X}}} (\rho \boldsymbol{v}) u \cdot \boldsymbol{n} dS + \int_{\partial \Omega_{\mathcal{X}}} \mu \nabla u \cdot \boldsymbol{n} dS$$

## FSM Step 1: Stagg-x mesh (4/13)

$$\int_{\Omega_X} R(u) d\Omega_X = -\int_{\partial \Omega_X} (\rho \boldsymbol{v}) u \cdot \boldsymbol{n} dS + \int_{\partial \Omega_X} \mu \nabla u \cdot \boldsymbol{n} dS$$

$$\begin{split} R(u)\Omega_{xP} &= -\left[\dot{m}_{e}u_{e} - \dot{m}_{w}u_{w} + \dot{m}_{n}u_{n} - \dot{m}_{s}u_{s}\right] + \\ &\left[\mu_{e}\frac{u_{E} - u_{P}}{d_{EP}} A_{e} - \mu_{w}\frac{u_{P} - u_{W}}{d_{WP}} A_{w} + \mu_{n}\frac{u_{N} - u_{P}}{d_{NP}} A_{n} - \mu_{s}\frac{u_{P} - u_{S}}{d_{SP}} A_{s}\right] \end{split}$$

where  $\dot{m}_e=(\rho u)_eA_e$ ,  $\dot{m}_w=(\rho u)_wA_w$ ,  $\dot{m}_n=(\rho v)_nA_n$ ,  $\dot{m}_s=(\rho v)_sA_s$  ( here  $\dot{m}$  is positive in the positive coordinate direction).

But, how can we evaluate, the volumetric flow rate and the transport property (i.e. momentum)?:

$$(\rho u)_e$$
,  $(\rho v)_n$ ,  $(\rho u)_w$ ,  $(\rho v)_s$ ??? and  $u_e$ ,  $u_n$ ,  $u_w$ ,  $u_s$ ???

## FSM Step 1: Stagg-x mesh (5/13)



## FSM Step 1: Stagg-y mesh (6/13)

**Step 1 FSM** (y component of v):  $v^P = v^n + \frac{\Delta t}{\rho} \left[ \frac{3}{2} R(v^n) \frac{1}{2} R(v^{n-1}) \right]$  where :

$$R(v)\Omega_{yP} \approx -\left[\dot{m}_{e}v_{e} - \dot{m}_{w}v_{w} + \dot{m}_{n}v_{n} - \dot{m}_{s}v_{s}\right] + \left[\mu_{e}\frac{v_{E} - v}{d_{EP}} A_{e} - \mu_{w}\frac{v_{P} - v_{W}}{d_{WP}} A_{w} + \mu_{n}\frac{v_{N} - v_{P}}{d_{NP}} A_{n} - \mu_{s}\frac{v_{P} - v_{S}}{d_{SP}} A_{s}\right]$$

where,

- $\dot{m}_e=(\rho u)_eA_e$ ,  $\dot{m}_n=(\rho v)_nA_n$ ,  $\dot{m}_w=(\rho u)_wA_w$ ,  $\dot{m}_s=(\rho v)_sA_s$ ; volumetric fluxes are evaluated with mass conserving interpolations
- $v_e$ ,  $v_n$ ,  $v_w$ ,  $v_s$  are evaluated with convective numerical schemes

## FSM Step 2: Main mesh (7/13)

$$\Delta p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{v}^{\boldsymbol{p}}$$

$$\int_{\Omega} \Delta p^{n+1} d\Omega = \frac{\rho}{\Delta t} \int_{\Omega} \nabla \cdot \boldsymbol{v}^{\boldsymbol{p}} d\Omega$$

$$\int_{\partial \Omega} \nabla p^{n+1} \cdot \boldsymbol{n} dS = \frac{\rho}{\Delta t} \int_{\partial \Omega} \boldsymbol{v}^{\boldsymbol{p}} \cdot \boldsymbol{n} dS$$

$$\frac{p_E^{n+1} - p_P^{n+1}}{d_{EP}} A_e - \frac{p_P^{n+1} - p_W^{n+1}}{d_{WP}} A_W + \frac{p_N^{n+1} - p_P^{n+1}}{d_{NP}} A_n - \frac{p_P^{n+1} - p_S^{n+1}}{d_{SP}} A_S = \frac{1}{\Delta t} [(\rho u^P)_e A_e - (\rho u^P)_w A_W + (\rho v^P)_n A_n - (\rho v^P)_S A_S]$$

## FSM Step 2: Main mesh (8/13)

$$a_{P}p_{P}^{n+1} = a_{E}p_{E}^{n+1} + a_{W}p_{W}^{n+1} + a_{N}p_{N}^{n+1} + a_{S}p_{S}^{n+1} + b_{P}$$

$$a_{P} = a_{E} + a_{W} + a_{N} + a_{S}$$

$$a_{E} = \frac{A_{e}}{d_{EP}} \qquad a_{N} = \frac{A_{n}}{d_{NP}}$$

$$a_{W} = \frac{A_{W}}{d_{WP}} \qquad a_{S} = \frac{A_{S}}{d_{SP}}$$

$$b_P = -\frac{1}{\Delta t} [(\rho u^P)_e A_e - (\rho u^P)_w A_w + (\rho v^P)_n A_n - (\rho v^P)_s A_s]$$

Any of the linear solvers developed for the conduction exercises can be used here (Jacobi, Gauss-Seidel, line-by-line, etc.)

## FSM Step 2: Boundary conditions (9/13)

#### Wall boundary condition:



• Since a boundary layer is created at the wall  $\frac{\partial p}{\partial n} = 0$ 

$$a_P = 1$$

$$a_{nb} = 1 \quad a_{i \neq nb} = 0$$

## FSM Step 2: Boundary conditions (10/13)

#### Prescribed velocity:



From,

$$v^{n+1} = v^P - \frac{\Delta t}{\rho} \nabla p^{n+1}$$

if  $oldsymbol{v}^{n+1}{}_P$  is known, we can set  $oldsymbol{v}^P = oldsymbol{v}^{n+1}{}_P$  . Thus,

$$\frac{\partial p}{\partial n} = 0$$

$$a_P = 1$$

$$a_{nb} = 1 \quad a_{i \neq nb} = 0$$

## FSM Step 3: Stagg-x mesh (11/13)



$$u_P^{n+1} = u_P^P - \frac{\Delta t}{\rho} \left(\frac{\partial p}{\partial x}\right)^{n+1}$$

$$u_P^{n+1} = u_P^P - \frac{\Delta t}{\rho} \cdot \frac{p_B^{n+1} - p_A^{n+1}}{d_{BA}}$$

## FSM Step 3: Stagg-y mesh (12/13)



$$v_P^{n+1} = v_P^P - \frac{\Delta t}{\rho} \left(\frac{\partial p}{\partial y}\right)^{n+1}$$

$$v_P^{n+1} = v_P^P - \frac{\Delta t}{\rho} \cdot \frac{p_B^{n+1} - p_A^{n+1}}{d_{BA}}$$

## FSM Step 4: Choice of the time step (13/13)

CFL (Courant-Friedrich-Levy) condition:

$$\Delta t_c = \min\left(0.35 \frac{\Delta x}{|v|}\right)$$
$$\Delta t_d = \min\left(0.20 \frac{\rho \Delta x^2}{\mu}\right)$$

$$\Delta t = \min(\Delta t_c, \Delta t_d)$$

More advanced ways to find the optimal  $\Delta t$  can be found in: "A self-adaptive strategy for the time integration of Navier-Stokes equations", FX Trias, O Lehmkuhl, Numerical Heat Transfer, Part B: Fundamentals 60 (2), 116-134, 2011.

#### Non-uniform meshes

- Consider a line segment joining two points  $\vec{x}_1$  and  $\vec{x}_2$
- On the line,  $\vec{x}_i = \vec{x}_1 + s_i(\vec{x}_2 \vec{x}_1)$  ( $s_i$  is a stretching function, from 0 to 1)
- Hyperbolic concentration:  $s_i = 1 + \frac{tanh\left[k\left(\frac{\iota}{N}-1\right)\right]}{tank(k)}$

where i=0,1,2,...,N, and k is the stretching factor (e.g. k=0.0001: uniform distribution; k=3: strong concentration towards  $\vec{x}_1$ )

## **Exercise: Lid-Driven Cavity (1/4)**



#### Exercise: Driven Cavity, u in the vertical centre line (2/4)

| 129-<br>grid | Re      |          |          |          |          |          |          |          |  |  |
|--------------|---------|----------|----------|----------|----------|----------|----------|----------|--|--|
| pt. no.      | У       | 100      | 400      | 1000     | 3200     | 5000     | 7500     | 10,000   |  |  |
| 129          | 1.00000 | 1.00000  | 1.00000  | 1.00000  | 1.00000  | 1.00000  | 1.00000  | 1.00000  |  |  |
| 126          | 0.9766  | 0.84123  | 0.75837  | 0.65928  | 0.53236  | 0.48223  | 0.47244  | 0.47221  |  |  |
| 125          | 0.9688  | 0.78871  | 0.68439  | 0.57492  | 0.48296  | 0.46120  | 0.47048  | 0.47783  |  |  |
| 124          | 0.9609  | 0.73722  | 0.61756  | 0.51117  | 0.46547  | 0.45992  | 0.47323  | 0.48070  |  |  |
| 123          | 0.9531  | 0.68717  | 0.55892  | 0.46604  | 0.46101  | 0.46036  | 0.47167  | 0.47804  |  |  |
| 110          | 0.8516  | 0.23151  | 0.29093  | 0.33304  | 0.34682  | 0.33556  | 0.34228  | 0.34635  |  |  |
| 95           | 0.7344  | 0.00332  | 0.16256  | 0.18719  | 0.19791  | 0.20087  | 0.20591  | 0.20673  |  |  |
| 80           | 0.6172  | -0.13641 | 0.02135  | 0.05702  | 0.07156  | 0.08183  | 0.08342  | 0.08344  |  |  |
| 65           | 0.5000  | -0.20581 | -0.11477 | -0.06080 | -0.04272 | -0.03039 | -0.03800 | 0.03111  |  |  |
| 59           | 0.4531  | -0.21090 | -0.17119 | -0.10648 | -0.86636 | -0.07404 | -0.07503 | -0.07540 |  |  |
| 37           | 0.2813  | -0.15662 | -0.32726 | -0.27805 | -0.24427 | -0.22855 | -0.23176 | -0.23186 |  |  |
| 23           | 0.1719  | -0.10150 | -0.24299 | -0.38289 | -0.34323 | -0.33050 | -0.32393 | -0.32709 |  |  |
| 14           | 0.1016  | -0.06434 | -0.14612 | -0.29730 | -0.41933 | -0.40435 | -0.38324 | -0.38000 |  |  |
| 10           | 0.0703  | -0.04775 | -0.10338 | -0.22220 | -0.37827 | -0.43643 | -0.43025 | -0.41657 |  |  |
| 9            | 0.0625  | -0.04192 | -0.09266 | -0.20196 | -0.35344 | -0.42901 | -0.43590 | -0.42537 |  |  |
| 8            | 0.0547  | -0.03717 | -0.08186 | -0.18109 | -0.32407 | -0.41165 | -0.43154 | -0.42735 |  |  |
| 1            | 0.0000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |  |  |

#### Exercise: Driven Cavity, v in the horizontal centre line (3/4)

| 129-            |        | Re       |          |          |          |          |          |          |  |
|-----------------|--------|----------|----------|----------|----------|----------|----------|----------|--|
| grid<br>pt. no. | x      | 100      | 400      | 1000     | 3200     | 5000     | 7500     | 10,000   |  |
| 129             | 1.0000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |  |
| 125             | 0.9688 | -0.05906 | -0.12146 | -0.21388 | -0.39017 | 0.49774  | -0.53858 | -0.54302 |  |
| 124             | 0.9609 | -0.07391 | -0.15663 | -0.27669 | -0.47425 | -0.55069 | -0.55216 | -0.52987 |  |
| 123             | 0.9531 | -0.08864 | -0.19254 | -0.33714 | -0.52357 | -0.55408 | -0.52347 | -0.49099 |  |
| 122             | 0.9453 | -0.10313 | -0.22847 | -0.39188 | -0.54053 | -0.52876 | -0.48590 | -0.45863 |  |
| 117             | 0.9063 | -0.16914 | -0.23827 | -0.51550 | -0.44307 | -0.41442 | -0.41050 | -0.41496 |  |
| 111             | 0.8594 | -0.22445 | -0.44993 | -0.42665 | -0.37401 | -0.36214 | -0.36213 | -0.36737 |  |
| 104             | 0.8047 | -0.24533 | -0.38598 | -0.31966 | -0.31184 | -0.30018 | -0.30448 | -0.30719 |  |
| 65              | 0.5000 | 0.05454  | 0.05186  | 0.02526  | 0.00999  | 0.00945  | 0.00824  | 0.00831  |  |
| 31              | 0.2344 | 0.17527  | 0.30174  | 0.32235  | 0.28188  | 0.27280  | 0.27348  | 0.27224  |  |
| 30              | 0.2266 | 0.17507  | 0.30203  | 0.33075  | 0.29030  | 0.28066  | 0.28117  | 0.28003  |  |
| 21              | 0.1563 | 0.16077  | 0.28124  | 0.37095  | 0.37119  | 0.35368  | 0.35060  | 0.35070  |  |
| 13              | 0.0938 | 0.12317  | 0.22965  | 0.32627  | 0.42768  | 0.42951  | 0.41824  | 0.41487  |  |
| 11              | 0.0781 | 0.10890  | 0.20920  | 0.30353  | 0.41906  | 0.43648  | 0.43564  | 0.43124  |  |
| 10              | 0.0703 | 0.10091  | 0.19713  | 0.29012  | 0.40917  | 0.43329  | 0.44030  | 0.43733  |  |
| 9               | 0.0625 | 0.09233  | 0.18360  | 0.27485  | 0.39560  | 0.42447  | 0.43979  | 0.43983  |  |
| 1               | 0.0000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |  |

## Exercise: Driven Cavity, Re = 5000 (4/4)



## Other interesting exercises (1/3)

Flow over a square cylinder





## Other interesting exercises (2/3)

 Differentially heated cavity (energy equation has also been taken into account)





## Other interesting exercises (3/3)

The differentially heated cavity case also involved the resolution of the discretized energy equation:

$$\rho c_p \frac{T^{n+1} - T^n}{\Delta t} = \frac{3}{2} R_T(T^n) - \frac{1}{2} R_T(T^{n-1})$$

where  $R_T(T) = -\rho c_p \boldsymbol{v} \cdot \nabla T + \nabla \cdot (\lambda \nabla T)$ .

The global algorithm follows these steps at each  $\Delta t$ :

1. 
$$R_T(T^n)$$
 and  $\mathbf{R}(\mathbf{v}^n)$   
2.  $T^{n+1} = T^n + \frac{\Delta t}{\rho c_p} \left[ \frac{3}{2} R_T(T^n) - \frac{1}{2} R_T(T^{n-1}) \right]$  and  $\mathbf{v}^p = \mathbf{v}^n + \frac{\Delta t}{\rho} \left[ \frac{3}{2} \mathbf{R}(\mathbf{v}^n) - \frac{1}{2} R(\mathbf{v}^{n-1}) \right]$ 

3. 
$$\Delta p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{v}^p$$

3. 
$$\Delta p^{n+1} = \frac{\rho}{\Delta t} \nabla \cdot \boldsymbol{v}^{p}$$
4. 
$$\boldsymbol{v}^{n+1} = \boldsymbol{v}^{p} - \frac{\Delta t}{\rho} \nabla p^{n+1}$$

5. New 
$$\Delta t = min(\Delta t_c, \Delta t_d, \Delta t_t)$$
, where  $\Delta t_t = 0.20 \frac{\Delta x^2}{\lambda/\rho c_p}$ 

## **Summary**

- The basics concepts for solving NS equations using the FSM have been studied.
- An introduction to the checkerboard problem and its possible solutions have been presented.
- An staggered mesh code for the solution of NS equations should be developed by the student.
- The developed code must be verified through direct comparison with benchmark data of a driven cavity at different Re.

## **Bibliography**

- A. J. Chorin, "Numerical Solution of the Navier-Stokes Equations", Journal of Computational Physics 22, 745-762 (1968).
- N. N. Yanenko, "The Method of Fractional Steps", Springer-Verlag, 1971.
- "Introduction to the Fractional-Step Method", CTTC report.
- U. Ghia, K.N. Ghia, C.T. Shin, "High-Re Solutions for Incompressible Flow Using Navier-Stokes Equations and a Multigrid Method", Journal of Computational Physics 48, 387-411, 1982.
- Suhas V. Patankar, "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Corporation, McGraw-Hill Book Company, 1980.
- Note: references related to more advanced ways to find the optimal  $\Delta t$ , or the three different benchmark cases here proposed, are given in the corresponding slides.

# Annex: FSM for collocated meshes

#### Introduction

- This interesting option of using just a single CV (see slide 12) needs to face the checkerboard problem.
- As it was mentioned before, we have to distinguish between the variable to be transported (e.g. v or T) and the mass fluxes  $(\dot{m}_f)$  at the CV faces.
- Momentum equation is discretized in two steps and at the main CV (x, y or z component of the velocity):

$$\rho \frac{\boldsymbol{v}_{P}^{n+1} - \boldsymbol{v}_{P}^{p}}{\Delta t} = -(\nabla p)_{P}^{n+1} \quad (1a)$$

$$\rho \frac{\boldsymbol{v}_{P}^{p} - \boldsymbol{v}_{P}^{n}}{\Delta t} = \frac{3}{2} \boldsymbol{R}(\boldsymbol{v}^{n})_{P} - \frac{1}{2} \boldsymbol{R}(\boldsymbol{v}^{n-1})_{P} \quad (1b)$$

where 
$$R(v)_P \Omega_P = \mp \sum \dot{m}_f v_f + \sum \mu_f \frac{v_F - v_P}{d_{PF}} A_f$$
  $(f = e, w, n, s)$ 

## Continuity equation and physical velocities

• Taking the divergence of eq. (1a), considering the continuity equation,  $(\nabla \cdot \boldsymbol{v})_P^{n+1} = 0$ , and discretizing in the usual way along the CV faces, nodal pressures are obtained:

$$\sum \frac{p_F^{n+1} - p_P^{n+1}}{d_{PF}} A_f = \frac{\rho}{\Delta t} \sum \left( \boldsymbol{v}_f^p \cdot \boldsymbol{n}_f \right) A_f \quad (2)$$

Physical nodal velocities are finally obtained from eq. (1a):

$$\boldsymbol{v}_{P}^{n+1} = \boldsymbol{v}_{P}^{p} - \frac{\Delta t}{\rho} (\nabla p)_{P}^{n+1} \quad (3)$$

The key point is the evaluation of the mass fluxes at the CV faces.

## Mass fluxes at the CV faces (1/2)

Mass flow rate that is exiting the CV face f:

$$\dot{m}_f^{n+1} = \rho \boldsymbol{v}_f^{n+1} \cdot \boldsymbol{n}_f A_f \quad (4a)$$

• Introducing eq. (3):

$$\dot{m}_f^{n+1} = \rho \left( \boldsymbol{v}_f^p \cdot \boldsymbol{n}_f - \frac{\Delta t}{\rho} (\nabla p)_f^{n+1} \cdot \boldsymbol{n}_f \right) A_f \qquad (4b)$$

After discretizing the pressure gradient at the CV faces:

$$\dot{m}_f^{n+1} = \rho \left( \boldsymbol{v}_f^p \cdot \boldsymbol{n}_f - \frac{\Delta t}{\rho} \, \frac{p_F^{n+1} - p_P^{n+1}}{d_{PF}} \right) A_f \qquad (4c)$$

 Finally, intermediate velocities at the CV faces are obtained by interpolation of the nodal values, i.e.

$$\boldsymbol{v}_f^p \cdot \boldsymbol{n}_f = \overline{(\boldsymbol{v}_P^p)} \cdot \boldsymbol{n}_f = \frac{1}{2} (\boldsymbol{v}_P^p + \boldsymbol{v}_F^p) \cdot \boldsymbol{n}_f.$$

## Mass fluxes at the CV faces (2/2)

- Eq. (4c) shows that CV mass fluxes directly depend on pressure difference at the neighbors nodes. This is a relevant issue.
- It is interesting to see the final form of eq. (4c) after the intermediate velocities are interpolated, i.e. introducing eq. (3):

$$\dot{m}_f^{n+1} = \rho \left[ \overline{(\boldsymbol{v}_P^{n+1})} \cdot \boldsymbol{n}_f + \frac{\Delta t}{\rho} \overline{(\nabla p)_P^{n+1}} \cdot \boldsymbol{n}_f - \frac{\Delta t}{\rho} \frac{p_F^{n+1} - p_P^{n+1}}{d_{PF}} \right] A_f \quad (5a)$$

This equation can be rewritten in the following form:

$$\dot{m}_f^{n+1} = \rho \overline{(\boldsymbol{v}_P^{n+1})} \cdot \boldsymbol{n}_f A_f + \Delta t \left[ \overline{(\boldsymbol{\nabla} p)_P^{n+1}} \cdot \boldsymbol{n}_f - \frac{p_F^{n+1} - p_P^{n+1}}{d_{PF}} \right] A_f$$
 (5b)

 Therefore, the third term of this equation (in brackets) acts a correction term which stabilized the convergence process.

## **Global algorithm**

- Global algorithm (unlike the previously described method for staggered meshes, only a single CV is now used):
  - 1.  $R(v^n)_P \Omega_P = [\dot{m}_e v_e + \dot{m}_w v_w + \dot{m}_n v_n + \dot{m}_s v_s] + [\mu_e \frac{v_E v_P}{d_{EP}} A_e + \mu_w \frac{v_W v_P}{d_{WP}} A_w + \mu_n \frac{v_N v_P}{d_{NP}} A_n + \mu_s \frac{v_S v_P}{d_{SP}} A_s]$
  - 2.  $v_P^p = v_P^n + \frac{\Delta t}{\rho} \left[ \frac{3}{2} R(v^n)_P \frac{1}{2} R(v^{n-1})_P \right]$
  - 3.  $\sum \frac{p_F^{n+1} p_P^{n+1}}{d_{PF}} A_f = \frac{\rho}{\Delta t} \sum (\boldsymbol{v}_f^p \cdot \boldsymbol{n}_f) A_f \to p_P^{n+1}$
  - 4.  $\boldsymbol{v}_P^{n+1} = \boldsymbol{v}_P^p \frac{\Delta t}{\rho} (\nabla p)_P^{n+1}$
  - 5.  $\dot{m}_f^{n+1} = \rho \overline{(\boldsymbol{v}_P^{n+1})} \cdot \boldsymbol{n}_f A_f + \Delta t \left[ \overline{(\nabla p)_P^{n+1}} \cdot \boldsymbol{n}_f \frac{p_F^{n+1} p_P^{n+1}}{d_{PF}} \right] A_f$
  - 6. Go to a new time step with  $\Delta t = min(\Delta t_c, \Delta t_d)$