基于 jpcap 的网络嗅探器实验报告

孙晴-201818018670034

1.软件环境

下载并安装 JRE,下载并安装 winpcap,下载 jpcap 包,有两个文件,分别是 jpcap. dll 和 jpcap. jar,这两个文件分别放到 JAVA 安装路径/jre/bin 和/jre/lib/ext 下。然后正常使用 IntelliJ IDEA x64 新建项目就可以运行。

sun. jar 文件需要在命令行执行 java -jar sun. jar 才可以运行。

2.主要算法

Jpcap 实际上就是调用了 winpcap/libpcap, 给 JAVA 语言提供了一个公共的接口。Jpcap 可以捕获的数据包有 IP 数据包(IPPacket 类)、数据链路层包(DatalinkPacket 类)、以太帧包(EthernetPacket 类)、以及 ICMP、TCP、UDP、ARP 包(ICMP 类、TCP 类、UDP 类、ARP 类)。

本实验只进行了对 ICMP、TCP、UDP、IP、ARP 数据包的捕获以及分析。

获得网卡信息: JpcapCaptor.getDeviceList()

打开网络接口: JpcapCaptor CAP = JpcapCaptor.openDevice();

捕获数据包: CAP. processPacket();

List<Packet> packetList = new ArrayList();
packetList.add(CAP.getPacket());

设置规则(用户选择): CAP. setFilter("UDP"," true")

Java 文件注释:

线程编程: jpcap_thread. java

获取网卡信息窗口: InterfacesWindows. java

数据包信息分类: PacketContents. java

主要窗口界面操作以及抓取数据包等函数: Sniffer. java

总结:

就是先进行网卡信息展示,然后用户选择网卡进行监听,接下来进行数据包的捕获,线程编程,并可以实时的展示,可以通过点击数据包条目查看数据包的详细信息,以及16进制文件。添加了捕获数据包前的筛选,以及捕获后的筛选操作。可以进行 dump 操作。

3.Jpcap 实现的 sniffer 基本框架

4.算法主要流程图

5.遇到的问题以及解决办法

在配置环境时,无法配置成功,原因是 winpcap 以及 jpcap 以及 jre 都需要配置成 64 位的,然后就可以正常运行了。

Dump 总是出现问题,提示 javasvm 出错,将 svm 以及 javajre 都配置成统一版本才可以实现。

只有在电脑上存在 javasvm环境的时候才可以双击 jar 文件直接 打开,通过命令行 java - jre sun. jre 可以实现程序打开。

6. 收获以及建议

老师给了两周的时间进行实验,有基础并且做过的可以简单的时间,我在大学进行过类似的环境配置,所以这次有很多经验可以直接借鉴,因为 sniffer 的主要代码部分都是在前端展示部分,这次我选择了最简单的 GUI 来实现,其实感觉主要的程序算法代码量并不多,前端部分工作量太大。因为每周都要回所以及其他的作业,这次没有进行对 html 等包的精确分析,如果老师能要求不写前端,同等时间下,应该代码会更加优秀,功能也应该实现的更多一些。

7.程序截图,以及运行结果截图

网卡选择窗口。

运行时截图。

