МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М. В. ЛОМОНОСОВА

Механико-математический факультет

Численное решение двумерного уравнения Hавье-Cтокса с использованием схемы с центральными разностями Π лотность-Cкорость (последовательный вариант).

Ковальков Максим, 404 группа

Содержание

1.	Постановка задачи	2
2.	Описание схемы.	2
	Таблицы ошибок. $3.1. \ \mu = 0.1 \\ 3.2. \ \mu = 0.01 \\ 3.3. \ \mu = 0.001 \\ \ldots$	4
4.	Случай с набеганием и вытеканием.	6

1. Постановка задачи

Система уравнений, описывающая нестационарное движение баротропного газа в области Ω , выглядит следующим образом:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0\\ \rho \left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}, \nabla) \mathbf{u} \right] + \nabla p = L\mathbf{u} + \rho \mathbf{f} \\ p = p(\rho) \end{cases}$$

Или в дивергентном виде:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{u}) = 0\\ \frac{\partial \rho \mathbf{u}}{\partial t} + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = L\mathbf{u} + \rho \mathbf{f} \end{cases}$$

где L есть линейный симметричный положительно определенный оператор. В нашем случае берем $L\mathbf{u} \equiv \operatorname{div}(\mu \nabla \mathbf{u}) + \frac{1}{3} \nabla (\mu \operatorname{div} \mathbf{u})$

Приведем развернутую запись уравнений для двумерного случая:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_1}{\partial x_1} + \frac{\partial \rho u_2}{\partial x_2} = 0\\ \frac{\partial \rho u_1}{\partial t} + \frac{\partial \rho u_1^2}{\partial x_1} + \frac{\partial \rho u_2 u_1}{\partial x_2} + \frac{\partial p}{\partial x_1} = \mu \left(\frac{4}{3} \frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{1}{3} \frac{\partial^2 u_2}{\partial x_1 \partial x_2} \right) + \rho f_1\\ \frac{\partial \rho u_2}{\partial t} + \frac{\partial \rho u_1 u_2}{\partial x_1} + \frac{\partial \rho u_2^2}{\partial x_2} + \frac{\partial p}{\partial x_2} = \mu \left(\frac{1}{3} \frac{\partial^2 u_1}{\partial x_1 \partial x_2} + \frac{\partial^2 u_2}{\partial x_1^2} + \frac{4}{3} \frac{\partial^2 u_2}{\partial x_2} \right) + \rho f_2 \end{cases}$$

Через μ обозначен коэффициент вязкости газа, которую будем считать известной неотрицательной величиной ($\mu=0.1,0.01,0.001$). Неизвестные функции: плотность ρ и вектор скорости \overline{u} являющиеся функциями переменных Эйлера $(t,x)\in [0,T]\times\Omega$. В уравнения также входят две известные функции: давление газа $p=C\rho$ и вектор внешних сил f, являющейся функцией переменных Эйлера.

Описание схемы.

Для поиска численного решения задачи можно использовать разностную схему, в которой при аппроксимации конвективных членов используются центральные разности, а приближенные значения плотности H и скоростей V_1,V_2 ищутся в узлах сетки Ω_h

$$\begin{cases} H_{t} + 0.5 \sum_{k=1}^{s} (V_{k} \hat{H}_{x_{k}} + (V_{k} \hat{H})_{\overset{\circ}{x_{k}}} + H(\hat{V}_{k})_{\overset{\circ}{x_{k}}}) = 0, & \mathbf{x} \in \Omega_{\mathbf{h}} \\ H_{t} + 0.5 ((V_{k} \hat{H})_{x_{k}} + H(\hat{V}_{k})_{x_{k}}) = 0, & \mathbf{x} \in \gamma_{k}^{-} \\ H_{t} + 0.5 ((V_{k} \hat{H})_{\overline{x}_{k}} + H(\hat{V}_{k})_{\overline{x}_{k}}) = 0, & \mathbf{x} \in \gamma_{k}^{+} \\ (V_{k})_{t} + \frac{1}{3} (V_{k} (\hat{V}_{k})_{\overset{\circ}{x_{k}}} + (V_{k} \hat{V}_{k})_{\overset{\circ}{x_{k}}}) + \frac{1}{2} \sum_{m=1, m \neq k}^{s} (V_{m} (\hat{V}_{k})_{\overset{\circ}{x_{k}}} + (V_{m} \hat{V}_{k})_{\overset{\circ}{x_{k}}} - V_{k} (V_{m})_{\overset{\circ}{x_{k}}}) + \frac{p'_{\rho}(H)}{H} \hat{H}_{\overset{\circ}{x_{k}}} = \\ = \tilde{\mu} (\frac{4}{3} (\hat{V}_{k})_{x_{k}\overline{x_{k}}} + \sum_{m=1, m \neq k}^{s} (\hat{V}_{k})_{x_{m}\overline{x_{m}}}) - (\tilde{\mu} - \frac{\mu}{H}) (\frac{4}{3} (V_{k})_{x_{k}\overline{x_{k}}} + \sum_{m=1, m \neq k}^{s} (V_{k})_{x_{m}\overline{x_{m}}}) + \\ + \frac{\mu}{3H} \sum_{m=1, m \neq k}^{s} (V_{m})_{\overset{\circ}{x_{k}},\overset{\circ}{x_{m}}} + f_{k}, & \mathbf{x} \in \Omega_{\mathbf{h}} \\ \hat{V}_{k} = 0, & \mathbf{x} \in \gamma_{\overline{h}}, & k = 1, 2 \end{cases}$$

3. Таблицы ошибок.

3.1. $\mu = 0.1$

Table for H in C-norma

$N \setminus M$	20	40	80
20	2.119264e- 01	2.244937e-01	2.432936e-01
40	1.556927e-01	1.632566e- 01	1.449694e-01
80	1.245299e-01	1.028954e-01	8.583144e-02

Table for H in L2-norma

$N \setminus M$	20	40	80
20	7.960317e-01	6.984756 e - 01	8.350843e-01
40	4.159086e- 01	4.483944e-01	4.457728e-01
80	2.438668e-01	2.361752e-01	2.059500e-01

Table for H in W-norma

$N \setminus M$	20	40	80
20	9.914825e- 01	9.542974e-01	9.044845e-01
40	9.322386e- 01	7.009247e-01	5.338537e-01
80	8.023375 e-01	6.376466e-01	4.206129e-01

Table for V1 in C-norma $\,$

$N \setminus M$	20	40	80
20	3.490151e-01	3.481725 e-01	3.438588e-01
40	2.182725e-01	2.242968e-01	2.316573e-01
80	1.266325e-01	1.304546e-01	1.254176e-01

Table for V1 in L2-norma

$N \setminus M$	20	40	80
20	$1.147608\mathrm{e}{+00}$	$1.072740\mathrm{e}{+00}$	$1.053143\mathrm{e}{+00}$
40	6.317741e-01	6.742165e-01	6.886450 e-01
80	3.219885e-01	3.601378e-01	3.542157e-01

Table for V1 in W-norma

$N \setminus M$	20	40	80
20	$3.371840\mathrm{e}{+00}$	$2.238684\mathrm{e}{+00}$	$1.840045\mathrm{e}{+00}$
40	$3.425209\mathrm{e}{+00}$	$2.173418\mathrm{e}{+00}$	$1.758465\mathrm{e}{+00}$
80	3.127839e+00	$2.376216\mathrm{e}{+00}$	1.796877e + 00

Table for V2 in C-norma

$N \setminus M$	20	40	80
20	1.270917e-01	1.488103e-01	1.424088e-01
40	9.100088e-02	7.778334e-02	8.624692e-02
80	4.608960 e - 01	4.436222e-02	4.200588e-02

Table for V2 in L2-norma

$N \setminus M$	20	40	80
20	4.090814e-01	4.382719e-01	4.641564e-01
40	2.556554e-01	2.255813e-01	2.582047e-01
80	1.503232e-01	1.272572e- 01	1.260206 e - 01

Table for V2 in W-norma

$N \setminus M$	20	40	80
20	7.274000e-01	5.516204e-01	4.766699e-01
40	6.342910 e-01	4.661118e-01	3.330324e-01
80	4.689820e-01	3.548305 e - 01	2.548886e-01

3.2. $\mu = 0.01$

Table for H in C-norma

$N \setminus M$	20	40	80
20	2.272866e-01	2.249396e-01	2.744850e-01
40	1.711320e-01	1.601257e-01	1.765804e-01
80	1.129292e-01	9.595093e- 02	1.138504e-01

Table for H in L2-norma

$N \setminus M$	20	40	80
20	8.614482e-01	7.722036e-01	8.575079e-01
40	4.534375e-01	5.094813e-01	4.117091e-01
80	3.060240 e-01	2.668916e-01	2.126439e-01

Table for H in W-norma

$N \setminus M$	20	40	80
20	$1.079349\mathrm{e}{+00}$	$1.031622 \mathrm{e}{+00}$	$1.062424 \mathrm{e}{+00}$
40	9.429952e-01	8.162313e-01	5.766082e-01
80	9.551239 e-01	7.220589e-01	4.816178e-01

Table for V1 in C-norma

$N \setminus M$	20	40	80
20	3.787872e- 01	4.453037e-01	4.005741e-01
40	2.247250e-01	2.223312e-01	2.556666e-01
80	1.358048e-01	1.410218e-01	1.239392e-01

Table for V1 in L2-norma

$N \setminus M$	20	40	80
20	$1.128330\mathrm{e}{+00}$	$1.342920\mathrm{e}{+00}$	1.242549e+00
40	6.202055 e-01	6.883295 e-01	7.264404e-01
80	3.955356e-01	4.138486e-01	3.902202e-01

Table for V1 in W-norma

$N \setminus M$	20	40	80
20	$3.952400\mathrm{e}{+00}$	$2.857428\mathrm{e}{+00}$	$2.010595\mathrm{e}{+00}$
40	$3.936872\mathrm{e}{+00}$	$2.834286\mathrm{e}{+00}$	$1.625943\mathrm{e}{+00}$
80	$3.910621\mathrm{e}{+00}$	$2.482752\mathrm{e}{+00}$	$2.022516\mathrm{e}{+00}$

Table for V2 in C-norma

$N \setminus M$	20	40	80
20	1.355919e-01	1.393642e-01	1.667592e-01
40	9.473723e- 02	9.097656e- 02	9.810688e-02
80	4.868214e-01	5.284192e-02	4.590516e-02

Table for V2 in L2-norma $\,$

$N \setminus M$	20	40	80
20	5.474924e-01	4.210679 e-01	4.103040 e - 01
40	2.691916e-01	2.481152e-01	2.842884e-01
80	1.751324e-01	1.367324e-01	1.362766e-01

Table for V2 in W-norma

$N \setminus M$	20	40	80
20	8.219620e-01	5.699290 e-01	5.213096e-01
40	5.951228e-01	5.354580e-01	4.352607e-01
80	6.099865 e-01	4.331506e-01	2.619840e-01

3.3. $\mu = 0.001$

Table for H in C-norma

$N \setminus M$	20	40	80
20	2.344102e-01	3.114377e-01	3.081273e-01
40	2.436152e-01	1.389545e-01	1.876075e-01
80	1.180193e-01	1.490614e-01	1.355184e-01

Table for H in L2-norma

$N \setminus M$	20	40	80
20	$1.108139e{+00}$	9.382856e- 01	$1.108806\mathrm{e}{+00}$
40	5.770622e-01	6.375939e-01	5.862333e- 01
80	2.789555e-01	2.514197e-01	3.362586 e - 01

Table for H in W-norma

$N \setminus M$	20	40	80
20	1.665127e + 00	$1.087258\mathrm{e}{+00}$	1.102125e+00
40	1.337404e+00	6.415243e- 01	5.841191e-01
80	8.649548e-01	6.959457e-01	4.995064e-01

Table for V1 in C-norma

$N \setminus M$	20	40	80
20	4.828102e-01	4.670868e-01	3.631206 e - 01
40	3.524400e- 01	3.190824e-01	3.279108e-01
80	1.872792e-01	1.712138e-01	1.232000e-01

Table for V1 in L2-norma

$N \setminus M$	20	40	80
20	$1.356264\mathrm{e}{+00}$	$1.037400\mathrm{e}{+00}$	$1.054284e{+00}$
40	6.729069e-01	9.090055e- 01	8.878716e-01
80	5.563539e-01	4.393268e-01	4.941189e-01

Table for V1 in W-norma

$N \setminus M$	20	40	80
20	$4.510000\mathrm{e}{+00}$	$3.629640\mathrm{e}{+00}$	$1.792670\mathrm{e}{+00}$
40	$4.676665\mathrm{e}{+00}$	$3.315975\mathrm{e}{+00}$	$2.295349\mathrm{e}{+00}$
80	$3.657368\mathrm{e}{+00}$	$3.404520\mathrm{e}{+00}$	2.505087e+00

Table for V2 in C-norma

$N \setminus M$	20	40	80
20	1.886496e-01	1.240314e-01	1.459656e-01
40	1.299420e-01	1.094309e-01	1.190030e-01
80	4.719383e-01	6.640944e- 02	5.919816e-02

Table for V2 in L2-norma

$N \setminus M$	20	40	80
20	4.618094e-01	6.055808 e-01	5.338226 e-01
40	2.939654e-01	2.432692e-01	3.378916e-01
80	1.949504e-01	1.514716e-01	1.575578e-01

Table for V2 in W-norma

$N \setminus M$	20	40	80
20	9.208884e-01	7.583304 e - 01	5.423467e-01
40	6.471522e-01	4.652340 e - 01	3.326811e-01
80	6.740325 e - 01	3.849819e-01	2.524325e-01

4. Случай с набеганием и вытеканием.

set output "1/5.png"plot [-0.5:3.5] [-0.5:2.5] 'out5.txt' using 1:2:3:4 with vectors lt rgb 'red', "shab.txt"with lines lw 1 lt rgb 'black'

Рис. 1. $\mu = 0.01$, Время=0.25

Рис. 2. $\mu = 0.01$, Время=0,5

Рис. 3. $\mu = 0.01$, Время=0.75

Рис. 4. $\mu = 0.01$, Время=1

Рис. 5. $\mu = 0.001$, Время=0,25

Рис. 6. $\mu = 0.001$, Время=0,5

Рис. 7. $\mu = 0.001$, Время=0,75

Рис. 8. $\mu = 0.001$, Время=1