

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

	9709/22
Fe	ebruary/March 2017
	1 hour 15 minutes
	CANDIDATE NUMBER Fe

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

				•••••				•••••
•••••	•••••	•••••	•••••••	•••••		••••••	•••••	•••••
				•••••				
•••••	•••••	•••••	•••••••••••••••••••••••••••••••••••••••	•••••	••••••	•••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	•••••	•••••	••••••	•••••		•••••		••••••
•••••	••••••	•••••	•	••••••	•	•••••••	•••••	••••••
	•••••							
•••••	•••••	•••••		•••••		••••••		•••••
				•••••				
•••••	•••••	•••••	•••••••	••••••	••••••	•••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••		•••••	••••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••						•	•••••
•••••	•••••	•••••	•••••••	•••••		••••••	•••••	•••••
•••••	•••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••

) (Given that $\tan 2\theta \cot \theta = 8$, show that $\tan^2 \theta = \frac{3}{4}$.	[3]
•		
	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
٠	Hence solve the equation $\tan 2\theta \cot \theta = 8$ for $0^{\circ} < \theta < 180^{\circ}$.	[2]
٠		[2]

(i)	Solve the inequality $ 2x - 5 < x + 3 $.	[4]
		••••••
(ii)	Hence find the largest integer y satisfying the inequality $ 2 \ln y - 5 < \ln y + 3 $.	[2]

Find the gradient of the curve $x^2 \sin y + \cos 3y$	r = 4
at the point $(2, \frac{1}{2}\pi)$.	ϵ

5	It is	given	that	a is	a	positive	constant	such	that

$$\int_0^a (1 + 2x + 3e^{3x}) \, \mathrm{d}x = 250.$$

i) Show that $a = \frac{1}{3} \ln(251 - a - a^2)$.	[5

4 signincant figui	res. Give the resu	iii oi each itei	ration to 6 sig	mincant figure	s.	[3
•••••		•••••	•••••	••••••	•••••	••••••
						•••••
		•••••		•••••		•••••
				••••••		•••••
						•••••
						•••••
••••		••••	•••••	•••••		
•••••	•••••	•••••	•••••		•••••	••••••
						•••••
		•••••	•••••	•••••		
			•••••	•••••		
•••••	•••••	•••••	•••••	••••••	•••••	••••••
						••••••
		•••••		•••••		•••••
		•••••		•••••		
				•••••		•••••
						•••••

6	The polynomial $p(x)$ is	s defined by
---	--------------------------	--------------

$$p(x) = ax^3 + bx^2 - 17x - a,$$

where a and b are constants. It is given that (x + 2) is a factor of p(x) and that the remainder is 28 when p(x) is divided by (x - 2).

values of a and b .	[5

(11)	Hence factorise $p(x)$ completely.	[3]
		•••••
		•••••
ii)	State the number of roots of the equation $p(2^y) = 0$, justifying your answer.	[2]
		••••••

7

The diagram shows part of the curve

$$y = 2\cos 2x\cos(2x + \frac{1}{6}\pi).$$

The shaded region is bounded by the curve and the two axes.

(i) Show that $2\cos 2x\cos(2x+\frac{1}{6}\pi)$ can be expressed in the form

$$k_1(1 + \cos 4x) + k_2 \sin 4x,$$

where the values of the constants k_1 and k_2 are to be determined.	[5]
	· • • • • • • • • • • • • • • • • • • •
	· • • • • •
	· • • • • •
	· • • • • •
	· • • • • •
	· • • • • •
	· • • • • •
	· • • • • •
	· • • • • •

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.