

Recommender Systems Bayesian Personalized Ranking

Professor Robin Burke Spring 2019

Bayesian Personalized Ranking

- [Rendle 2009]
- Main idea
 - Learn the contrast between liked and non-liked items
 - Designed for implicit data
- Optimization over a smoothed version of AUC

Represent pairwise preferences

- For each user,
 - Create an |M| x |M| matrix of binary preferences
 - Assume unrated items should be ranked lower than rated ones
- Note that if we could complete these matrices
 - We would know exactly how to rank all items for each user

Bayesian part

■ Given the preference matrix >_u

$$p(\Theta|>_u) \propto p(>_u|\Theta) p(\Theta)$$

- Assumptions
 - Each pair is independent
 - Each user is independent
- Therefore

$$\prod_{u \in U} p(>_u |\Theta) = \prod_{(u,i,j) \in U \times I \times I} p(i>_u j|\Theta)^{\delta((u,i,j) \in D_S)}$$

 $\underline{\cdot} (1 - p(i >_u j | \Theta))^{\delta((u,j,i) \notin D_S)}$

These terms drop out because these relations are unknown

$$\prod_{u \in U} p(>_u |\Theta) = \prod_{(u,i,j) \in D_S} p(i>_u j|\Theta)$$

Think of θ as the latent factors in our model

Indicator function:
1 if the preference
is known

Optimization criterion

Maximize this

- Assume that we're going to create some factorized model that predicts probability of item i preferred to j
 - Rating

$$p(i >_{\mu} j | \Theta) := \sigma(\hat{x}_{uij}(\Theta))$$

• Where σ is the logistic function

Remember logistic function for pairs of scores

Log-likelihood turns product into a sum

BPR-OPT :=
$$\ln p(\Theta|>_{u})$$

= $\ln p(>_{u}|\Theta) p(\Theta)$
ihood
oduct
= $\ln \prod_{(u,i,j)\in D_{S}} \sigma(\hat{x}_{uij}) p(\Theta)$
= $\sum_{(u,i,j)\in D_{S}} \ln \sigma(\hat{x}_{uij}) + \ln p(\Theta)$
= $\sum_{(u,i,j)\in D_{S}} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} ||\Theta||^{2}$

Bayesian equivalent of regularization: large factors = low probability

How do we know this function is convex? $\sum_{n \in \mathbb{N}} \ln \sigma(\hat{x}_{uij}) - \lambda_{\Theta} \|\Theta\|^{2}$

- A. It has a squared term in it somewhere, so it must be convex
- B. It appears in a paper on machine learning so it must be convex
- C. The natural log function is convex and so the expression is a linear combination of convex functions, which is convex.
- D. It doesn't need to be convex because it isn't a loss function: we are maximizing it

Factorization part

$$\hat{x}_{uij} := \hat{x}_{ui} - \hat{x}_{uj}$$

■ Assume WH^T factorization

$$\hat{x}_{ui} = \langle w_u, h_i \rangle = \sum_{f=1}^k w_{uf} \cdot h_{if}$$

Gradients

$$\frac{\partial}{\partial \theta} \hat{x}_{uij} = \begin{cases} (h_{if} - h_{jf}) & \text{if } \theta = w_{uf}, \\ w_{uf} & \text{if } \theta = h_{if}, \\ -w_{uf} & \text{if } \theta = h_{jf}, \\ 0 & \text{else} \end{cases}$$

■ Update rule
$$\Theta \leftarrow \Theta + \alpha \left(\frac{e^{-\hat{x}_{uij}}}{1 + e^{-\hat{x}_{uij}}} \cdot \frac{\partial}{\partial \Theta} \hat{x}_{uij} + \lambda_{\Theta} \Theta \right)$$

Gradient descent methods

- Regular gradient descent too slow
 - |N|x|N| matrix for each user!
- Must use stochastic method
 - LearnBPR = Bootstrap sample over all u,i,j triples
 - Including unknown triples
 - Faster than regular SGD

Relation to AUC

■ AUC is the probability that the classifier will rank a randomly-chosen positive instance above a randomly-chosen negative instance

$$AUC(u) := \frac{1}{|I_u^+| |I \setminus I_u^+|} \sum_{i \in I_u^+} \sum_{j \in |I \setminus I_u^+|} \delta(\hat{x}_{uij} > 0)$$

$$\mathrm{AUC}(u) = \sum_{(u,i,j) \in D_S} z_u \, \delta(\hat{x}_{uij} > 0)$$

- But this is an non-differentiable version of the sigmoid
 - Log version comes directly from the probabilistic formulation

Loss functions

+ Some results

Video Rental: Netflix

BPR key ideas

- Bayesian approach
 - Learning the highest probability factorization
 - Given known ranking information
- Interestingly
 - Relies on the assumption that known items should be ranked higher than unknown
 - Uses "naïve" assumptions of independence
 - Trains best with "negative sampling" outside of the known ratings

RankALS

- Direct optimization of a ranking function without sampling
- Implicit data
- Less prone to overfitting than some other approaches
- Objective function

$$f_R(\Theta) = \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} c_{ui} \sum_{j \in \mathcal{I}} s_j \left[(\hat{r}_{ui} - \hat{r}_{uj}) - (r_{ui} - r_{uj}) \right]^2$$

 $\mathbf{c}_{ui} = 1$ when $i \in T$, and \mathbf{s}_i are parameters to be learned

Why this objective?

$$f_R(\Theta) = \sum_{u \in \mathcal{U}} \sum_{i \in \mathcal{I}} c_{ui} \sum_{j \in \mathcal{I}} s_j \left[(\hat{r}_{ui} - \hat{r}_{uj}) - (r_{ui} - r_{uj}) \right]^2$$

- We are minimizing it
- It is convex
- When would it be zero?
 - If the difference between the predicted ratings for a pair of items
 - Is the same as the difference between between the real ratings for that pair
- Pair-wise ranking
 - If I predict the right score difference
 - Then I will rank the items correctly

Derivation of P gradient @

- A lot of terms, but fundamentally not complex
- Different combinations of the matrices
- Q gradient is similar

$$\frac{\partial f_R(P,Q)}{\partial p_u} = \sum_{i \in \mathcal{I}} c_{ui} \sum_{j \in \mathcal{I}} s_j \left[(q_i - q_j)^T p_u - (r_{ui} - r_{uj}) \right] (q_i - q_j) = \\ \underbrace{\left(\sum_{j \in \mathcal{I}} s_j \right) \left(\sum_{i \in \mathcal{I}} c_{ui} q_i q_i^T \right) p_u - \left(\sum_{i \in \mathcal{I}} c_{ui} q_i \right) \left(\sum_{j \in \mathcal{I}} s_j q_j^T \right) p_u - \\ \underbrace{\left(\sum_{j \in \mathcal{I}} s_j q_j \right) \left(\sum_{i \in \mathcal{I}} c_{ui} q_i^T \right) p_u + \left(\sum_{i \in \mathcal{I}} c_{ui} \right) \left(\sum_{j \in \mathcal{I}} s_j q_j q_j^T \right) p_u - \\ \underbrace{\left(\sum_{i \in \mathcal{I}} c_{ui} q_i r_{ui} \right) \left(\sum_{j \in \mathcal{I}} s_j \right) + \left(\sum_{i \in \mathcal{I}} c_{ui} q_i \right) \left(\sum_{j \in \mathcal{I}} s_j r_{uj} \right) + \\ \underbrace{\left(\sum_{i \in \mathcal{I}} c_{ui} r_{ui} \right) \left(\sum_{j \in \mathcal{I}} s_j q_j \right) - \left(\sum_{i \in \mathcal{I}} c_{ui} \right) \left(\sum_{j \in \mathcal{I}} s_j q_j r_{uj} \right) = \\ \underbrace{\left(\tilde{1} \bar{A} - \bar{q} \tilde{q}^T - \tilde{q} \bar{q}^T + \tilde{1} \tilde{A} \right) p_u - \\ \left(\bar{b} \tilde{1} - \bar{q} \tilde{r} - \bar{r} \tilde{q} + \tilde{1} \tilde{b} \right). }$$

Complexity is the problem

- \blacksquare T = Number of positive training examples
- I = Number of items
- T x I terms in the ranking function
- Consider MovieLens dataset with 1 M ratings and 4000 movies
 - 4 billion terms
- Goal
 - Update in time $O(TF^2 + (U+I)F^3)$
 - Where F is the number of latent factors
 - Still using all the data not sampling

Learning to Rank

- A general class of algorithms
- Different ways of representing / approximating a ranking objective
 - In terms of predicted ratings
- More complex loss functions for underlying factorization problem

Learning to Rank (Model type)

Pointwise	Pairwise	Listwise
Matrix factorization [Koren 2009]	BPR [Rendle 2009]	CofiRank [Weimer 2007]
SVD++ [Koren 2008]	EigenRank [Liu 2008]	ListRank [Shi 2010]
OrdRec [Koren 2011]	pLPA [Liu 2009]	WLT [Volkovs 2012]
Factorization machines [Rendle 2012]	CR [Balakrishnan 2012]	TFMAP [Shi 2012a]
(All rating prediction methods)		CLiMF [Shi 2012b]
		GAPfm [Shi 2013a]
		xCLiMF [Shi 2013b]

Learning to Rank (Technique)

Proxy of rankings	Structured estimation	Non-smooth optimization	Smoothing ranking measures
(All the rating prediction methods)	CofiRank [Weimer 2007]	WLT [Volkovs 2012]	BPR [Rendle 2009]
EigenRank [Liu 2008]			TFMAP [Shi 2012a]
pLPA [Liu 2009]			CLiMF [Shi 2012b]
ListRank [Shi 2010]			GAPfm [Shi 2013a]
CR [Balakrishnan 2012]			xCLiMF [Shi 2013b]

Learning to Rank

- In production systems
 - Not always used
 - Even though the results are better
- Problems
 - Extra computational complexity
 - Extra sparsity / overfitting
- Can overcome the benefits in accuracy