

ACADEMIC-GRADUATE STUDIES AND RESEARCH DIVISION

First Semester 2023-2024 Course Handout

Date: 01/08/2023

In addition to Part I (General Handout for all courses appended to the Timetable) this portion gives further specific details regarding the course.

Course Number : EEE G612

Course Title : Coding Theory & Practice Course Coordinator : Prof. RUNA KUMARI.

1. Course Description

Codes for data-compression: instantaneous codes; Kraft inequality; Mcmillan theorem; Huffman codes; codes for error-detection and correction; binary symmetric channel; channel capacity, Shannon's fundamental theorem; linear codes; Macwilliam's identity; Reed-muller codes; cyclic codes; BCH codes; codes for secrecy and security; private-key cryptosystems; affine codes; twisted codes; one-time-pads; public-key cryptosystems based on large primes and discrete logarithms.

2. Scope and Objective of the Course:

The course covers source coding, channel coding & encryption. The former deals with error correction in noisy channel, and the latter deals with secrecy of communication. Channel coding, which constitutes the major portion of the course, will introduce a number of important classes of error-detecting and error-correcting codes and their decoding. Finally the course will give an introduction to encryption & decryption of data for secret communications.

3. Text Books:

Information theory, Coding and Cryptography, Ranjan Bose, Tata McGraw Hill, 3rd ed, 2017.

4. Reference Books:

- 1. Element of Information Theory, Thomas M Cover, John Wiley & Sons, 2004
- 2. Information Theory and Coding, Normal Abrahamson, Mcgraw Hill, Electronic Sciences Series.
- 3. Principles of Digital Communication by Robert Gallager, Cambridge University Press.
- 4. Introduction to Data Compression by Khalid Sayood, Morgan Kaufmann, Elsevier.
- 5. Error Control Coding-Fundamentals and Applications, Shu Lin and Daniel Costello, Prentice Hall

5. Course Plan / Schedule:

Sl .#	Learning objectives	Topics to be covered	Chapter No.	No. of lectur
1.	Introduction	Introduction to the course & Coding		1
2.	To introduce the concept of Uncertainty, Entropy	Data compression, Entropy	TB:Ch. 1 Ref:Ch.2	3
3.	To introduce the concepts of	Unique and instantaneous	TB:Ch. 1	1

	coding and decoding	codes, Kraft's inequality	Ref:Ch.5	
4.	To introduce Universal Source coding	Huffman, Shannon-Fano-Elias, Arithmetic, L-z, Run Length Coding	TB:Ch.1	5
5.	To introduce optimal codes	Rate distortion theorem, Optimal code length	TB:Ch. 1 Ref:Ch. 13	2
6.	To introduce the concept of channel capacity and coding	Channel models, channel capacity, Shannon limit	TB:Ch. 2	2
7.	To introduce the concept of error correcting codes	Linear block codes, generator & parity check matrix	TB:Ch. 3	4
8.	To introduce the concept of syndrome and decoding through syndrome	Syndrome decoding of linear codes	TB:Ch. 3	2
9.	To study cyclic codes, their encoding & decoding	Cyclic codes	TB:Ch. 4	4
10	To study certain well known linear codes	Well-known block codes ; Golay code, CRC codes	TB:Ch. 4	3
11	To introduce the important class of BCH codes	BCH codes, Reed-Solomon codes	TB:Ch.5	3
12	To introduce the important class of Convolutional coder & decoder	Convolutional codes, Viterbi decoding, turbo codes	TB:Ch. 7	6
13	To introduce the concept of data encryption and decryption	Models, goals and early cipher systems	TB:Ch.9	2
14	To introduce Public Key Cryptosystems	Public Key Crypto systems and some examples	TB:Ch. 9	2
		Total no. of classes planned		40

6. Evaluation Scheme:

Component	Duration	Weightage	Marks	Date & Time	Remarks
Mid Sem	90 mts.	20%	60	13/10 - 9.30 - 11.00AM	Closed Book
Quizzes		10%	30	-	Closed Book
Laboratory		20%	60	2 Hr Lab Session per week +	Open Book
Component				design expt + 2Hr End	
_				semester Practical Exam	
Term Project		20%	60	Weekly interaction+	Open Book
				literature survey +	
				simulation + mid sem and	
				End semester Project	
				presentation	
Comprehensive	3 Hrs	30%	90	18/12/23	Closed Book
Totals		100%	300		

- 7. Chamber Consultation Hour: To be announced in Class
- **8.** <u>Make-up Policy:</u> Make-up will be given on extremely genuine grounds only. Prior application should be made for seeking the make-up examination.
- 9. Notices: Notices, if any, concerning the course will be put up on CMS only

10.Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Runa Kumari Instructor-in-Charge EEE G612