Mathematics for Machine Learning (2025 Fall) Assignment 01

Chuang-Chieh Lin

Department of Computer Science and Engineering, National Taiwan Ocean University

1. (20%) Consider $\mathbf{x} = [-2 \ 1 \ 1]^{\top}$ and the following matrix A, compute $\operatorname{tr}(A\mathbf{x}\mathbf{x}^{\top})$.

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{bmatrix}.$$

2. (20%) Show that $\|\mathbf{v}\|_{\infty} \leq \|\mathbf{v}\|_{1} \leq \sqrt{n} \|\mathbf{v}\|_{2}$ for any $\mathbf{v} \in \mathbb{R}^{n}$ (*Hint*: Use Cauchy-Schwarz Inequality).

- 3. (20%) Consider the following two matrices $\mathbf{A}_1 = \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix}$, $\mathbf{A}_2 = \begin{bmatrix} 9 & 6 \\ 6 & 3 \end{bmatrix}$. Prove the following arguments:
 - (a) A_1 is positive definite.
 - (b) A_2 is not positive definite
- 4. (20%) Prove that for any $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}, m, n, p \in \mathbb{N}$, we have $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- 5. (20%) For the identity matrix $I_n \in \mathbb{R}^{n \times n}$,
 - (a) What are its eigenvalues and the associated eigenvectors?
 - (b) What are the eigenspaces?