응집물질물리실험 예비보고서 실험주제: STM

HuiJae-Lee¹

¹Physics Department, Inha University* (Dated: September 1, 2022)

이번 실험에서는 STM(주사 터널링 현미경)의 작동원리와 사용 방법에 대해 알아보고 Graphite 의 표면을 직접 관찰하며 응용해본다. 또한, STM을 이용한 관찰로 부터 결정구조에 대해 공부하고 이해하는 것을 목표로 한다.

I. INTRODUCTION

Ricard Fyenman는 1959년 그의 강연 "There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics"에서 각각의 원자를 뚜렷하게 보고 우리가 원하는 방식으로 배열하는 새로운 연구 분야를 제시했고, 그로부터 20년 후 과학자들은 STM(Scanning Tunneling Microscope)과 AFM(Atomic Force Microscope)의 개발로 그 목표를 달성하기 시작했다. 그 결과로 나노스케일에서의 과학과 기술을 더욱 높은 수준으로 끌어올렸고 기초 물리학에 대한 이해 또한 엄청나게 발전하였다. 그 중에서도 이번 실험에 사용할 STM은 3차원에서표면 구조를 직접 그리고 실제로 제공한다.

II. EXPERIMENT

A. Theory

1. 양자 터널링

STM의 원리를 이해하기 위해서는 양자 터널링 현상에 대해 알아야 한다. 양자 터널링은 양자역학과 고전역학의 뚜렷한 차이점 중 하나로, 입자의 동력학적 거동을 해석하는데 파동함수와 확률을 도입하여 설명한다. 다음과

FIG. 1. 퍼텐셜 장벽

같은 퍼텐셜 장벽과 이 장벽에 대해 왼쪽에서 입사하는 자유 입자를 고려하자. 퍼텐셜 장벽의 너비는 2a이고 퍼 텐셜의 크기는 V_0 이다. 중요한 점은 입사하는 자유 입자가 가진 에너지 E가 V_0 보다 작다는 것이다. 즉, $E < V_0$ 이다. 이 때 투과확률 T는 다음과 같다.

$$T = \frac{1}{1 + \left(\frac{k^2 + q^2}{2kq}\right)^2 \sinh^2 qa},$$

$$k = \sqrt{\frac{2mE}{\hbar^2}}, \quad q = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}.$$
(1)

2. STM

시료의 표면을 측정하기 위해, STM에 달린 작은 금속 꼭지가 표면에 굉장히 근접한다. 이 금속 꼭지는 하나의 원자로 되어있다. 시료에 전압을 걸어주었을 때 시료와 금속 꼭지 사이에는 터널링 전류(tunneling current)가 측정된다. 이 때 금속 꼭지가 근접하는 거리는 꼭지와 표면 사이의 저항을 측정 가능할 만큼이다. 시료에 전류가 흘러야 하므로, 도체 시료를 이용한다. 터널링 전류는 꼭지와 시료 사이 터널링 확률(tunneling probability)에 비례하고 이 확률은 거리에 지수적으로 민감하다. WKB 근사로부터, 터널링 확률 P가 거리 z와 다음의 비례관계에 있음을 알 수 있다.

$$P \propto \exp\left(-2\sqrt{\frac{2m\phi}{\hbar^2}z}\right).$$
 (2)

 ϕ 는 터널링을 위한 유효 장벽의 높이이다. STM은 확률이 거리에 민감하게 반응하는 만큼 정확하게 표면을 측정할 수 있다.

3. Graphite

B. Experimental Methods

C. Theory

^{*} hjlee6674@inha.edu

- [1] C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, 2007).
- [2] G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surface Science 126, 236 (1983).
- [3] J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B **31**, 805 (1985).
- [4] G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surface science 126, 236 (1983).
- [5] C. Kittel, P. McEuen, and P. McEuen, *Introduction to solid state physics*, Vol. 8 (wiley New York, 1996).