Ejercicio 51.-1ª

					Z3
D	d	С	r	10	0 1
X2-1	X ³ -3x ² +6x-4	0	X ² -1	1	-X2+1
X ³ -3x ² +6x-4	X ² -1	Х	x+2	-X	x ³ +2x ² -x-2
X2-1	x+2	Х	0	X²+1	

					Z 5
D	d	С	r	10	0 1
X2-1	X ³ -3x ² +6x-4	0	X ² -1	1	-X ² +1
X ³ -3x ² +6x-4	X ² -1	X+2	2x+3	-x-2	2x ³ +3x ² -2x-2
X ² -1	2x+3	3x+3	0	3x2+9x++7	

 2^{a}

					Z3
D	d	С	r	10	0 1
x ² +2x+1	X ³ +7x ² +15x+9	0	x ² +2x+1	1	-x ² +2x+1
$X^3+7x^2+15x+9$	x²+2x+1	X+5	X+4	-x-5	x ² +3x ² -11x-4
x ² +2x+1	X+4	X+1	0	x²+6x+6	

					Z 5
D	d	С	r	10	0 1
x ² +2x+1	X ³ +7x ² +15x+9	0	x ² +2x+1	1	-x ² +2x+1
$X^3+7x^2+15x+9$	x ² +2x+1	Х	4x+4	-X	x3-2x2+x+1
x ² +2x+1	4x+4	4x+4	0	4x²+4x+1	

 3^{a}

					Z3
D	d	С	r	10	0 1
$X^5+5x^4+4x^3+3x^2+2x-1$	x ³ -3x ² +2x-1	x ² +2x+2	2	1	-x ² +2x+2
x ³ -3x ² +2x-1	2	2x3+x+1	0	-2x3-x-1	

					Z 5
D	d	С	r	10	0 1
$X^5+5x^4+4x^3+3x^2+2x-1$	x3-3x2+2x-1	x2+3x+1	x2+3x	1	-x ² +3x+1
x ³ -3x ² +2x-1	x²+3x	X+4	4	-x-4	x ³ +4x ² -10x-7
x ² +3x	4	4x ² +2x	0	4x3+18x2+8x+1	

Ejercicio 32.-

Primera parte – Calculo de las ecuaciones que cumplen las tres condiciones:

a)
$$n \equiv 1 \pmod{2} > n \equiv 11 \pmod{2^2} > n \equiv 3 \pmod{4}$$

b) $n \equiv 0 \pmod{3} > n \equiv 00 \pmod{3^2} > n \equiv 0 \pmod{9}$
c) $n \equiv 2 \pmod{5} > n \equiv 12 \pmod{5^2} > n \equiv 7 \pmod{25}$

Sistema de ecuaciones:

$$n \equiv 3 \pmod{4}$$

$$n \equiv 0 \pmod{9}$$

$$n \equiv 7 \pmod{25}$$

$$n = 3+4k$$

$$\cdot 3+4k = 0 \pmod{9} > 4k = -6 \pmod{9} > k = 56 \pmod{9} > k = 6+9k'$$

$$n = 3+4(6+9k') > n= 27+36k'$$

$$\cdot$$
 27+36k' = 7(mod 25) > 36k' = -20 (mod 25) > k² = 5+25k'

$$n = 27+36(5+25k') > n = 207 + 900k$$

Segunda parte.- Enteros entre 1500 y 2500

$$1500 \le n \le 2500$$

Sustituimos la n por el valor que hemos sacado antes:

$$1500 \le 207 + 900k \le 2500$$
 -207
 $1293 \le 900k \le 2293$
 $:900$
 $1,436 \le k \le 2,547$

Entre 1,536 y 2,547 el único numero entero es el 2, por lo tanto k=2

Solución final= 900*2+207= 2007

```
Ejercicio 31.-
```

```
17834x \equiv 1870 \pmod{21989}
89710x \equiv 10489 \pmod{8147}
10022x \equiv 81984 \pmod{20984}
20987x \equiv 10002 \pmod{11090}
4094x \equiv 12353 \pmod{56271}
1^{a}.-17834,1870,21989
19316+21989k
2^{a}.-89710*21989,10489-89710*19316,8147
7922+8147k
3^{a}.-19316+21989*7922,19316*8147
174216174+157367452k
4^{o}.-10022*157367452,81984-10022*174216174,20984
```

NO TIENE SOLUCION

```
def ecuacion(a,b,m):
    d=xgcd(a,m)
    if b\%d[0] == 0:
          (a,b,m)=(a/d[0],b/d[0],m/d[0])
         b=b*d[1]
          return [b%m,m]
    else:
          return "No tiene solucion"
ec1=ecuacion (17834,1870,21989)
ec1
    [19316, 21989]
ec2= ecuacion(89710*ec1[1],10489-89710*ec1[0],8147)
ec2
    [7922, 8147]
ec3= (ec1[0]+ec1[1]*ec2[0],ec1[0]*ec2[1])
ec3
    (174216174, 157367452)
ec4= ecuacion(10022*ec3[1],81984-10022*ec3[0],20984)
ec4
     'No tiene solucion'
```

```
Ejercicio 37.- 3761373923x + 472926384y = 382734927

xgcd(3761373923,472926384)

(1,11997467, -95420685)
```

La primera solución es:

```
(3761373923*(11997467*382734927))
+
(472926384*(-95420685*382734927))
=
1*382734927
```

Resto de soluciones

```
X= 4591849656429909 + 472926384/1 * C
Y= -36520828907764995 - 3761373923/1 * C
```

Siendo C un numero entero

```
Solucion 2:

(3761373923*(4591849656429909 + 472926384*2))

+

(472926384*(-36520828907764995 - 3761373923*2))

=

382734927
```

Ejercicio 42.-

 x^4+1 irreducible en Zp[x] para p=(2,3,5,7,11,13,17)

Ejercicio 60.-

Demuestra que X²+1 es irreducible en Z³

Demuestra que X³+x+1 es irreducible en Z²

Describe todos los elementos y la aritmética de $Z^3[x]X^2+1$ y $Z^2[x]x^3+x+1$.

$$X^2+1 = [0,1,2,x,x+1,x+2,2x,2x+1,2x+2]$$

 $X^3+x+1 = [0,1,x,x+1,x^2,x^2+1,x^2+x,X^2+x+1]$

Ejercicio 31.-

Simplifico las ecuaciones hasta el formato $x=a \pmod{b}$

```
 \begin{cases} 17834x \equiv 1870 \pmod{21989} \\ 89710x \equiv 10489 \pmod{8147} \\ 10022x \equiv 81984 \pmod{20984} \\ 20987x \equiv 10002 \pmod{11090} \\ 4094x \equiv 12353 \pmod{56271} \end{cases} \qquad \begin{cases} x \equiv 19316 \pmod{21989} \\ x \equiv 726 \pmod{8147} \\ x \equiv 6344 \pmod{10492} \\ x \equiv 1386 \pmod{11090} \\ x \equiv 13789 \pmod{56271} \end{cases}
```

Tenemos el primer valor de x:

```
x = 19316 + 21989k^{1}
```

Resolvemos la segunda ecuación con el resultado de la primera:

```
19316+21989k^1 \equiv 726 \pmod{8147} => k^1 = 7922+8147k^2
```

Calculamos el nuevo valor de x con el resultado de la nueva ecuación:

```
x = 19316+21989(7922+8147k^2)
= 174176564 + 174176564 k<sup>2</sup>
```

Resolvemos la tercera ecuación con el resultado:

```
174176564 + 174176564 \, k^2 \equiv 6344 \, (\text{mod } 10492) \implies k^2 = 1460 + 2623 \, k^3
```

Calculamos de nuevo el valor de x:

```
x = 174176564 + 174176564(1460+2623k^3)
= 261665502644 + 469788868704 k<sup>3</sup>
```

Resolvemos la 4º ecuación:

```
261665502644 + 469788868704 \text{ k}^3 \equiv 1386 \pmod{11090} => \text{k}^3 = 3678 + 5545 \text{k}^4
```

Ultimo valor de x:

```
x = 261665502644 + 469788868704(3678+5545k^4)
= 1728145124595956+2604979276963680k<sup>4</sup>
```

Resolvemos la 5° ecuación:

```
1728145124595956+2604979276963680k^{4} \equiv 13789 \pmod{56271} 2604979276963680 \equiv -1728145124582167 \pmod{56271} mcd (2604979276963680 y 56271) = 3 -1728145124582167 \pmod{3} = 2
```

Como el mcd no divide a -1728145124582167 no tiene solución.