自旋几何与 Dirac 算子

院长讨论班讲稿

王进一 jin12003@163.com 2022 年秋

目录

1	1 Clifford 代数与旋量群		4			
	1.1 Clifford 代数		4			
	1.2 伴随表示		5			
	1.3 旋量群		6			
	1.4 Spin_n 的 Lie 代数		7			
	1.5 Clifford 代数的表示		8			
2	2 主从,分类空间与示性类		8			
	•		8			
	2.2 分类空间与万有主丛		10			
	2.3 O_n -主丛与定向 \ldots		10			
	2.4 关联丛		11			
	2.5 结构群的约化		11			
3	向量丛的自旋结构 12					
•			12			
			12			
	· · · · · · · · · · · · · · · · · · ·		14			
4	4 自旋流形与自旋配边		14			
-	*					
5			14			
			14			
	5.2 旋量丛, $\mathrm{C}\ell(E)$ 上的不可约模 \dots		15			
6	6 联络		15			
	6.1 联络的一般概念		15			
	6.2 不同主丛上的联络		18			
	6.3 向量丛上的联络		18			
			19			
	6.5 Riemann 流形上的构造		20			
7	7 曲率		2 0			
8 微分算子理论			21			
			21			
9	9 Dirac 算子		22			
0			22			
	, 		22			
			23			
			24			
			24			

	9.4.2	二维的例子	24
	9.4.3	三维	25
	9.4.4	四维	25
9.5	Dirac	算子的平方与 Laplace 算子	25
	9.5.1	Riemann 几何复习	25
	9.5.2	Clifford 丛上 Dirac 算子的平方, Hodge Laplace 算子	27
	9.5.3	旋量丛上 Dirac 算子的平方, Lichnerowicz 公式	27

1 Clifford 代数与旋量群

1.1 Clifford 代数

Clifford 代数在几何与物理上有重要的意义. 考虑带有二次型的向量空间 (V,q). 定义

$$C\ell(V,q) := \mathcal{T}(V)/(x \otimes x + q(x)).$$

直观上, $C\ell(V,q)$ 是 V 中的向量在 $x \cdot x = -q(x)$ 的关系之下生成的代数. [注 1]

下文中的向量乘法 xy 默认为 Clifford 代数中的乘法.

注意到 $(x \otimes x + q(x))$ 是由偶数次元素生成的理想, 从而 $C\ell(V,q)$ 继承了 $\mathcal{I}(V)$ 的 $\mathbb{Z}/2\mathbb{Z}$ -分次代数结构. 我们记这个分次结构为 $C\ell(V,q) = C\ell^0 \oplus C\ell^1$. 换言之, $C\ell^0$ 是 $C\ell(V,q)$ 中由形如 xy 的元素生成的子代数.

 $\mathrm{C}\ell(V,q)$ 上有滤过结构: \mathscr{F}^r 是由不超过 r 个向量的乘积张成的向量子空间, 满足 $\mathscr{F}^r\mathscr{F}^s\subset\mathscr{F}^{r+s}$.

与外代数的典范同构 因为 \wedge^*V 可视为 $\mathcal{I}V$ 的子空间 (但不是子代数):

$$v_1 \wedge \cdots \wedge v_m \mapsto \frac{1}{m!} \sum_{\sigma \in S_m} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(m)},$$

复合商映射, 我们得到典范的线性映射 $\wedge^*V \to C\ell_n$ (但不是代数同态). 容易证明这是一个同构.

Clifford 代数的基

命题 1.1. 设 e_1, \dots, e_n 为 V 关于 q 的正交基[注 2], 即 $q(e_i, e_j) = 0$ $(i \neq j)$. 那么 $C\ell(V, q)$ 的一组基为

$$e_{i_1}\cdots e_{i_k} (0 \le k \le n).$$

推论 1.2. $\dim_{\mathbb{R}} C\ell(V,q) = 2^n$.

注意到若 q(x,y) = 0, 则 x,y 反交换:

$$xy + yx = (x + y)^{2} - x^{2} - y^{2} = -q(x + y) + q(x) + q(y) = -2q(x, y).$$

Clifford 代数上的内积结构 我们引入 $C\ell(V,q)$ 上自然的内积. 这里自然是一个非常重要的性质, 指不依赖于向量空间 V 的基的选取.

张量代数 $\mathcal{I}V$ 上的转置 $(-)^t$ 对于纯张量定义为

$$(v_1 \otimes \cdots \otimes v_r)^t = v_r \otimes \cdots \otimes v_1.$$

注意到 $(x \otimes x + q(x))^t = x \otimes x + q(x)$, 故 $(-)^t : \mathscr{T}V \to \mathscr{T}V$ 诱导了转置 $(-)^t : \mathrm{C}\ell(V,q) \to \mathrm{C}\ell(V,q)$. 由定义, $(xy)^t = y^t x^t$.

定义 $\alpha: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto -x.$ α 诱导了 $\mathcal{I}V$ 作为代数的自同构 $\alpha: \mathcal{I}V \to \mathcal{I}V$

$$\alpha(v_1 \otimes \cdots \otimes v_r) = (-1)^r v_1 \otimes \cdots \otimes v_r.$$

[[]注 1] 这个看上去有些奇怪的负号可追溯至 Grassmann 的 Ausdehnungslehre, 以及 Hamilton 关于四元数的工作,与 $i^2=j^2=k^2=-1$ 有关. Clifford 正是在此基础上定义了后人称作 Clifford 代数的东西.

 $^{[^{[\}dot{t}\ 2]}$ 由于此处 q 是任意的二次型, 我们无法要求这些向量的长度, 但正交基总是存在的.

注意到 $\alpha(x \otimes x + q(x)) = x \otimes x + q(x)$, 故 α 诱导了代数自同构 α : $C\ell(V,q) \to C\ell(V,q)$. 注意到 $C\ell^0, C\ell^1$ 是 α 的特征子空间: $\alpha|_{C\ell^0} = 1$, $\alpha|_{C\ell^1} = -1$.

注意到 α 和 $(-)^t$ 是交换的:

$$\alpha((v_1 \otimes \cdots \otimes v_r)^t) = (-1)^r v_r \otimes \cdots \otimes v_1 = (\alpha(v_1 \otimes \cdots \otimes v_r))^t.$$

另外 α 和 $(-)^t$ 都是对合, 即 $\alpha(\alpha(x)) = x$, $(x^t)^t = x$.

将上述两个运算复合, 我们定义 Clifford 共轭 $\overline{(-)}$, 作为复共轭与四元数共轭的推广:

$$\overline{x} := \alpha(x^t).$$

定义迹映射 $\operatorname{tr} : \operatorname{C}\ell(V,q) \to \mathbb{R}$,

$$\operatorname{tr}(x) := \frac{1}{2^n} \operatorname{tr} L_x, \quad L_x \colon \mathrm{C}\ell(V, q) \to \mathrm{C}\ell(V, q), \ y \mapsto xy.$$

注意到 $\dim_{\mathbb{R}} C\ell(V,q) = 2^n$,故 $tr(1) = \frac{1}{2^n} \cdot 2^n = 1$;而对 V 关于 q 的任意正交基 e_1, \cdots, e_n ,对任意子集 $\{i_1, \cdots, i_k\} \subset \{1, \cdots, n\}$ (k > 0),有 $tr(e_{i_1} \cdots e_{i_k}) = 0$. 故 tr(x) 也等于 x 在这组基下的展开的 0 阶项. (特别地, 这说明 0 阶项是自然的, 这个事实从定义不容易看出.) 因此有 $tr(x) = tr(\alpha(x)) = tr(x^t)$. 另外,由迹的定义可知 tr(xy) = tr(yx).

定义 Clifford 代数 $C\ell(V,q)$ 上的双线性型 (-,-) 与函数 Norm,

$$(x,y) := \operatorname{tr}(x\overline{y}) = \operatorname{tr}(\alpha(x)y^t), \quad \operatorname{Norm}(x) := (x,x).$$

遗憾的是, Norm 一般并不保持乘法. 但是, 若 x,y 分别是若干个向量的乘积, 则有 Norm(xy) = Norm(x) Norm(y).

约定 以下记 $C\ell_n = C\ell(\mathbb{R}^n, |\cdot|^2)$, $C\ell'_n = C\ell(\mathbb{R}^n, -|\cdot|^2)$. 本文中所有的 $|\cdot|$ 都是指 \mathbb{R}^n 上的标准 Euclid 范数. 在文献中有如下的记号 (但我们不会用到):

$$C\ell_{r,s} = C\ell(\mathbb{R}^n, x_1^2 + \dots + x_r^2 - x_{r+1}^2 - \dots - x_{r+s}^2).$$

那么用我们的记号, $C\ell_{n,0} = C\ell_n$, $C\ell_{0,n} = C\ell'_n$.

例 $C\ell_1 \simeq \mathbb{C}$; $C\ell_2 \simeq \mathbb{H}$.

值得一提的是, $\mathrm{C}\ell_2^0\simeq\mathbb{C},\,\mathrm{C}\ell_3^0\simeq\mathbb{H}.\,$ 一般地, $\mathrm{C}\ell_{n+1}^0\simeq\mathrm{C}\ell_n.$

 $C\ell_3^0$ 的一组基是 $1, i = e_2e_3, j = e_3e_1, k = e_1e_2$.

1.2 伴随表示

定义 Clifford 代数 $C\ell_n$ 上的的伴随表示

$$\operatorname{Ad} : \operatorname{C}\ell_n^{\times} \to \operatorname{Aut}(\operatorname{C}\ell_n), \quad \operatorname{Ad}_{\varphi}(x) = \varphi x \varphi^{-1}.$$

其中 $C\ell_n^{\times}$ 表示可逆^[注 3]元素的乘法群. 伴随表示的重要性质是:

命题 1.3. 设 $v \in \mathbb{R}^n \setminus \{0\}$, 则 $-\mathrm{Ad}_v \neq \mathbb{R}^n$ 上关于 v^{\perp} 的反射.

[[]注 3]在一般的 (非交换) 代数中, 可逆的定义是同时有左逆和右逆.

证明. 注意到, 两个向量的内积

$$(x,y) = \frac{1}{2} (-(x+y)^2 + x^2 + y^2) = -\frac{1}{2} (xy + yx).$$

因此 x 关于 v^{\perp} 的反射为

$$x - \frac{2(x,v)}{(v,v)}v = x - \frac{xv + vx}{v^2}v = -vxv^{-1}.$$

因为两个反射的乘积为一旋转, 故得

推论 1.4. 对任意 $v, w \in \mathbb{R}^n$, $\mathrm{Ad}_{vw} \in \mathrm{SO}(n)$.

1.3 旋量群

当 $n \ge 3$ 时, $\pi_1(SO(n)) \simeq \mathbb{Z}/2\mathbb{Z}$, 旋量群 $Spin_n$ 是 SO(n) 的万有覆盖群. 下面我们给出 $Spin_n$ 的具体构造.

定义 Pin_n 为 $\operatorname{C}\ell_n^{\times}$ 中由 $\{v \in \mathbb{R}^n : |v| = 1\}$ 生成的子群. 定义 $\operatorname{Spin}_n = \operatorname{Pin}_n \cap \operatorname{C}\ell_n^0$. 换言之,

$$Pin_n = \{v_1 \cdots v_r : |v_i| = 1\}, \quad Spin_n = \{v_1 \cdots v_r : |v_i| = 1, r 为偶数\}.$$

因为 O_n 中的任何元素均可表示为有限个 (不超过 n 个) 反射, 且 SO_n 的元素表示为偶数个反射, 所以有

推论 1.5. Ad 给出了满同态 $Pin_n \to O(n)$ 以及 $Spin_n \to SO(n)$.

命题 1.6. 对于 $x \in Pin_n$, $L_x \in SO(C\ell_n)$.

证明. 只需对生成元验证结论. 设 $x \in \mathbb{R}^n$, |x| = 1. 对 $\varphi, \psi \in \mathrm{C}\ell_n$,

$$(x\varphi, x\psi) = \operatorname{tr}(x\varphi \overline{x\psi}) = \operatorname{tr}(\overline{x\psi}x\varphi) = \operatorname{tr}(\overline{\psi}(\bar{x}x)\varphi) = \operatorname{tr}(\overline{\psi}\varphi) = (\varphi, \psi).$$

由 Pin_n 的定义知 Pin_n 是连通的, 所以 $L_x \in SO(C\ell_n)$.

命题 1.7. Ad: $Spin_n \to SO(n)$ 是二重覆盖.

证明. 我们证明 $\ker(\operatorname{Ad}:\operatorname{Spin}_n\to\operatorname{SO}(n))=\{\pm 1\}.$

取 \mathbb{R}^n 的标准正交基 e_1, \dots, e_n .

假设 $\varphi \in \mathrm{Spin}_n$, $\mathrm{Ad}_{\varphi} = \mathrm{id}$, 则 φ 与 \mathbb{R}^n 中的全体向量交换.

设 $\varphi = a + be_1$, 其中 a, b 为 e_2, \dots, e_n 的多项式, $a \in C\ell_n^0$, $b \in C\ell_n^1$. 那么 e_1 与 a 交换. 又 e_1 与 φ 交换, 知 e_1 与 b 交换. 这说明 b = 0, 从而 φ 不含 e_1 .

同理,
$$\varphi$$
 不含任何一个 e_i . 故 $\varphi \in \mathbb{R}$. 由命题1.6, $\varphi = \pm 1$.

由于 $Spin_n$ 是连通的, 它是 SO_n 的非平凡二重覆盖, 故得

推论 1.8. 当 $n \ge 3$ 时, $Spin_n$ 是单连通的.

1.4 Spin, 的 Lie 代数

将 Spin_n 视为 C ℓ_n^{\times} 的 Lie 子群, 则其 Lie 代数 \mathfrak{spin}_n 可视为 c ℓ_n^{\times} 的 Lie 子代数, Lie 括号为 [x,y]=xy-yx.

对于正交的单位向量 e_1, e_2 ,令 $i=e_1e_2$,则 $e^{it}=\cos t+i\sin t\in \mathrm{Spin}_n$ 在 t=0 处的导数为 i. 这说明对于一组标准正交基 $\{e_j\}$, \mathfrak{spin}_n 包含了 $\frac{n(n-1)}{2}$ 个元素 e_je_k (j< k). 而 $\dim \mathrm{Spin}_n=\dim \mathrm{SO}_n=\frac{n(n-1)}{2}$,故

$$\mathfrak{spin}_n = \operatorname{span}\{e_j e_k : j < k\}.$$

回忆二重覆盖 ξ_0 : Spin_n \to SO_n. 我们研究其诱导的 Lie 代数同态 Ξ_0 : $\mathfrak{spin}_n \to \mathfrak{so}_n$. 将 \mathfrak{so}_n 的元素视为 n 阶反对称矩阵, 记 $e_j \wedge e_k$ 为如下矩阵.

$$\begin{array}{c|cccc}
j & k \\
 & | & | \\
0 & -1 \\
k & \hline
 & 1 & 0
\end{array}$$

一般地, $v \wedge w$ 对应变换 $x \mapsto \langle v, x \rangle w - \langle w, x \rangle v$.

命题 **1.9.** 对 j < k,

$$\Xi_0(e_j e_k) = 2e_j \wedge e_k.$$

证明. 记 $i = e_j e_k$, 则

$$\Xi_0(e_j e_k)(x) = \frac{d}{dt}\Big|_{t=0} \xi_0(e^{it})(x)$$

$$= \frac{d}{dt}\Big|_{t=0} e^{it} x e^{-it}$$

$$= ix - xi$$

$$= 2e_j \wedge e_k(x).$$

其中最后一步注意到 $i = e_{\ell} (\ell \neq j, k)$ 均交换.

上面的命题建立了 \mathfrak{spin}_n 与 \mathfrak{so}_n 的联系.

推论 **1.10.** 对 $x, y \in \mathbb{R}^n$,

$$\Xi_0^{-1}(x \wedge y) = \frac{1}{4}[x, y].$$

证明. 由 $\Xi_0^{-1}(e_j \wedge e_k) = \frac{1}{2}e_j e_k$ 得

$$\Xi_0^{-1}(e_j \wedge e_k) = \frac{1}{4}[e_j, e_k].$$

(注意右端是 $C\ell_n$ 中的交换子, 故此式对 j=k 也成立.) 线性延拓可得结论.

设 M 是 $\mathrm{C}\ell_n$ -左模, 则有 Spin_n 的表示 $\mu\colon\mathrm{Spin}_n\to\mathrm{SO}(M)$. 考虑 Lie 代数同态

$$\mathfrak{so}_n \overset{\Xi_0^{-1}}{\to} \mathfrak{spin}_n \overset{\mu_*}{\to} \mathfrak{so}(M).$$

$$\mathrm{C}\ell_n^{\times} \longrightarrow \mathrm{GL}(M) \qquad \qquad \mathfrak{cl}_n \longrightarrow \mathfrak{gl}(M)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\mathrm{SO}_n \xleftarrow{\xi_0} \mathrm{Spin}_n \xrightarrow{\mu} \mathrm{SO}(M) \qquad \qquad \mathfrak{so}_n \xleftarrow{\Xi_0} \mathfrak{spin}_n \xrightarrow{\mu_*} \mathfrak{so}(M)$$

$$x \wedge y \longleftarrow \frac{1}{4}[x, y]$$

推论 1.11. [注 4] 在上述假设下, 对于 $v \wedge w \in \mathfrak{so}_n (v, w \in \mathbb{R}^n), m \in M$,

$$\mu_*(v \wedge w)(m) = \frac{1}{4}[v,w] \cdot m.$$

1.5 Clifford 代数的表示

许多问题可化为 Clifford 代数的表示. 比如, 由于 $\mathrm{Spin}_n \subset \mathrm{C}\ell_n^0 \subset \mathrm{C}\ell_n$, Clifford 代数的表示自然诱导 Spin_n 的表示.

为了研究 Clifford 代数的表示, 有必要了解 Clifford 代数的结构. 前 8 个 Clifford 代数的结构与不可约表示的数量 v_n 如下表 (但请注意这些同构不是典范的). 其中 $\mathbb{H}(2)$ 表示 \mathbb{H} 上的 2 阶矩阵代数.

n	$\mathrm{C}\ell_n$	v_n
1	$\mathbb C$	1
2	\mathbb{H}	1
3	$\mathbb{H}\oplus\mathbb{H}$	2
4	$\mathbb{H}(2)$	1
5	$\mathbb{C}(4)$	1
6	$\mathbb{R}(8)$	1
7	$\mathbb{R}(8) \oplus \mathbb{R}(8)$	2
8	$\mathbb{R}(16)$	1

由周期性定理 $C\ell_{n+8} \simeq C\ell_n \otimes \mathbb{R}(16)^{[\dot{L}5]}$ 可得所有 $C\ell_n$ 的同构类.

因为矩阵代数是单代数,一个单代数仅有一个不可约表示,所以由上表可得 Clifford 代数的表示的分类.

值得一提的是, 定义 $\mathbb{C}\ell_n = \mathrm{C}\ell(\mathbb{C}^n, q_{\mathbb{C}})$, 其中 $q_{\mathbb{C}}$ 是 \mathbb{C}^n 上唯一的二次型, 那么 $\mathbb{C}\ell_{n+2} \simeq \mathbb{C}\ell_n \otimes \mathbb{C}(2)$, 即复数域上 Clifford 代数的结构更简单.

2 主从,分类空间与示性类

2.1 主丛

设 X 为仿紧 (paracompact) Hausdorff 空间, G 为拓扑群.

X上的 G-主丛 (principal G-bundle) 是一种特殊的纤维丛, 其纤维上具有简单传递的 G-右作用. 特别地, 这说明每个纤维同胚于 G.

G-主丛的等价定义是以 G 为纤维, G 为结构群的丛, 且结构群左作用于纤维上.

直观上, G-主丛是纤维形如 G 的丛, 但纤维忘掉了"单位元", 同一纤维上每个点都是平等的.

^[注 4]这里特别容易产生混淆.

^[注 5]证明略.

下面讨论 G-主丛的局部刻画. 给定 X 的开覆盖 $\mathscr{U} = \{U_{\alpha}\}_{\alpha \in A}$,使得存在保持 G-作用的局部平凡化 $\pi^{-1}(U_{\alpha}) \xrightarrow{h_{\alpha}} U_{\alpha} \times G$. 这些局部平凡化之间存在转移函数 (transition functions) $g_{\alpha\beta} \colon U_{\alpha} \times U_{\beta} \to G$,满足如下交换图,

其中 $U_{\alpha\beta} := U_{\alpha} \cap U_{\beta}$,对于 $x \in U_{\alpha\beta}$, $g_{\alpha\beta}(x)$ 左作用于 G 上. 注意这个左作用 (即 G-主丛的结构群的作用) 与 G 在纤维上的右作用交换.

转移函数须满足 Čech 1-上圈条件, 即在 $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ 上,

$$g_{\alpha\beta}g_{\beta\gamma}g_{\gamma\alpha}=1.$$

这由下图即可看出.

G-主丛的信息由开覆盖 $\{U_{\alpha}\}$ 和满足 Čech 上圈条件的转移函数 $g_{\alpha\beta}$ 完全确定.

一个自然的问题是, 给定开覆盖 $\{U_\alpha\}$ 和两组转移函数 $g_{\alpha\beta},\,g'_{\alpha\beta},\,$ 由它们确定的 G-主丛何时等价. 假若等价, 那么存在函数 $g_\alpha\colon U_\alpha\to G$ 满足如下交换图,

那么有如下交换图.

这是 Čech 上边缘条件.

Čech 上圈在上述等价关系下的等价类的集合记作 $H^1(\mathcal{U};G)$. 它也表示 X 上可由开覆盖 \mathcal{U} 局部平凡化的 G-主丛等价类的集合.

若开覆盖 \mathscr{V} 是 \mathscr{U} 的细化, 带有映射 $j:\mathscr{V}\to\mathscr{U}$ 满足 $V\subset j(V)$, 则由限制, 我们得到映射

$$r_{\mathscr{V},\mathscr{U}}: H^1(\mathscr{U};G) \to H^1(\mathscr{V};G).$$

所有开覆盖关于细化构成一定向系统 (directed system), 且上述限制与定向系统相容, 故可将其上 $H^1(-;G)$ 的极限定义为

$$H^1(X;G) = \lim H^1(\mathcal{U};G),$$

自然地, $H^1(X;G)$ 表示 $X \perp G$ -主丛等价类的集合:

$$\operatorname{Prin}_G(X) \simeq H^1(X;G).$$

若 G 是 Abel 群, 则 $H^1(X;G)$ 正是 X 的 G 系数第一 Čech 上同调群. (当 G 非交换时, $H^1(X;G)$ 不是群, 只是带有一个特殊元素的集合, 这个特殊元素是 X 上的平凡 G-丛.)

例 1 二重覆盖就是 \mathbb{Z}_2 -主丛, X 上的二重覆盖——对应于 $H^1(X;\mathbb{Z}_2)$ 的元素.

例 2 对于流形 X, 其万有覆盖 $p: \tilde{X} \to X$ 是一个 $\pi_1(X)$ -主丛.

2.2 分类空间与万有主丛

群 G 的分类空间是一个连通空间 BG, 带有 G-主丛 $EG \to BG$, 称为万有 G-主丛 (universal principal G-bundle), 满足如下条件. 对任意紧 Hausdorff 空间 X, 有一一对应

$${X \perp h G- \pm M}/h h \leftrightarrow {\psi h X \rightarrow BG}/h h h f^*EG \leftrightarrow f.$$

BG 在同伦等价的意义下是唯一的.

万有主丛的等价定义是一个全空间可缩的 G-主丛.

设 Λ 为环, 考虑 BG 的 Λ 系数 (奇异) 上同调. 每个元素 $c \in H^k(BG;\Lambda)$ 都定义了 G-主丛的一个示性类: 对 G-主丛 $P \to X$, 存在映射 $f \colon X \to BG$ 使得 $P \simeq f^*EG$, 从而

$$c(P) := f^*(c) \in H^k(X; \Lambda)$$

定义了 G-主丛的一个示性类.

2.3 O_n -主丛与定向

设 $\pi\colon E\to M$ 是 n 维向量丛. 其对应的 O_n -主丛 $P_O(E)$ 可视为 E 的单位正交标架丛. E 的定向丛 $\mathrm{Or}(E)=P_O(E)/\mathrm{SO}_n$. 它是二重覆盖, E 可定向当且仅当它是平凡丛.

二重覆盖也就是 \mathbb{Z}_2 -主丛. 因此, 空间 X 上的二重覆盖的等价类一一对应于 $H^1(X;\mathbb{Z}_2)$ 的元素.

2.4 关联丛

设 $\pi\colon P\to X$ 为 G-主丛. 给定 G 在另一空间 F 上的左作用 ρ , 我们可构造 X 上一个以 F 为纤维的 丛

$$P \times_{\rho} F = P \times F/((pg, f) \sim (p, gf)),$$

称为关联丛 (assciated bundle).

G-主丛的关联丛的结构群是 G; 事实上, 结构群是 G 的丛一定是 G-主丛的关联丛: 给定以 G 为结构群的丛 π : $E \to B$, 设 $(U_i, \phi_i : \pi^{-1}(U_i) \to U_i \times F)$ 是其局部平凡化, 转移映射为 $\phi_{ij} : U_i \cap U_j \to G$. 那么我们可定义 G-主丛 $P \to X$, 其局部平凡化为 $(U_i, g_i : U_i \to U_i \times G)$, 转移映射仍为 $\phi_{ij} : U_i \cap U_j \to G$.

例 1 向量丛 E 的正交标架丛 $P_{O}(E)$ 是与之关联的 O(n)-主丛; 若 E 可定向, 则其结构群可约化为 SO(n), 定向正交标架丛 $P_{SO}(E)$ 是与之关联的 SO(n)-主丛.

例 2 对于流形 X, 其万有覆盖 $p: \tilde{X} \to X$ 是一个 $\pi_1(X)$ -主丛.

2.5 结构群的约化

给定群同态 $\varphi: H \to G, H$ 左作用于 G 上. 结构群的约化 (reduction of structure group) 是指把一个以 G 为结构群的丛表示成一个以 H 为结构群的丛.

首先我们需要一个准备工作,即通过群同态 φ : $H\to G$, 由 H-主丛可构造 G-主丛. 在抽象的层面上,这是很明显的: 由分类空间的函子性,态射 $H\to G$ 诱导 $BH\to BG$,而 X 上的 H-主丛可视为态射 $X\to BH$. 这两个态射的复合即为 G-主丛 $X\to BG$. 然而我们也可给出这个 G-主丛具体的构造. 设 π : $P\to X$ 为 H-主丛. 定义

$$P \times_H G := E \times G/(eh, g) \sim (e, hg),$$

则 $P \times_H G \to X$ 为 G-主丛, 其上的 G-右作用为 (e,g)g' = (e,gg').

主丛的约化 设 $\pi: P \to X$ 为G-主丛. 若存在H-主丛 $P' \to X$ 使得 $P \simeq P' \times_H G$,则称其结构群可约化为H.

一般丛的约化 设 $E \to X$ 是以 G 为结构群的丛, 将其写为 G-主丛 P 的关联丛 $E = P \times_{\rho} F$, ρ 为 G 在 F 上的右作用. 若 P 的结构群可约化为 H, 那么 E 的结构群可约化为 H. 具体地, 若 $P = P' \times_H G$, 则

$$E = (P' \times_H G) \times_{\rho} F = \{(p', g, f)\} / \frac{(p', hg, f) \sim (p'h, g, f)}{(p', gg', f) \sim (p', g, g' \cdot f)} = P' \times_{\rho'} F,$$

其中 ρ' 是 H 在 F 上的左作用, $\rho'(h)(f) := \rho(\varphi(h))f$.

3 向量丛的自旋结构

3.1 定向结构与第一 Stiefel-Whitney 类

定向结构的定义 设 $\pi: E \to X$ 是 n 维向量丛. 定义 $P_{\mathcal{O}}(E)$ 为 E 的标准正交标架丛. $P_{\mathcal{O}}(E)$ 是 \mathcal{O}_n -主 从.

向量丛的定向结构是下图中 $P_{\mathcal{O}}(E)$ 中的一个 SO_n -主丛.

$$SO_n \longleftarrow O_n$$

$$P_{SO}(E) \longleftarrow P_{O}(E)$$

$$X$$

定向结构将向量丛的结构群由 O(n) 约化到 SO(n), 它与第一 Stiefel-Whitney 类有关. 我们不加证明地陈述下列事实.

命题 **3.1.** 上同调环 $H^*(BO_n; \mathbb{Z}_2)$ 是 \mathbb{Z}_2 上由典范的生成元 $w_k \in H^k(BO_n; \mathbb{Z}_2)$ 生成的多项式环.

对 n 维向量丛 $E \to X$, 设其分类映射为 $f: X \to BO_n$, 定义 $w_k(E) = f^*w_k$.

 w_1 的另一种定义 E 的定向丛 $\operatorname{Or}(E)$ 定义为商丛 $P_{\operatorname{O}}(E)/\operatorname{SO}_n$. $\operatorname{Or}(E)$ 是 \mathbb{Z}_2 -主丛, 即二重覆盖. 定义 $\operatorname{Or}(E)$ 在 $H^1(X;\mathbb{Z}_2)$ 中对应的上同调类为第一 Stiefel-Whitney 类 $w_1(E) \in H^1(X;\mathbb{Z}_2)$.

命题 3.2. 按照上述定义,向量丛 E 可定向当且仅当 $w_1(E)=0$,且此时定向结构一一对应于 $H^0(X;\mathbb{Z}_2)$ 的元素 (即每个连通分支上有两个选取).

命题 3.3. w_1 的两种定义相容.

证明. 我们只须验证如下事实.

- (i) w_1 是自然的, 即与拉回相容;
- (ii) 对于万有丛 $\mathbb{E}O_n \to BO_n$, $w_1(\mathbb{E}O_n)$ 是 $H^1(BO_n; \mathbb{Z}_2)$ 的生成元.

性质 (i) 是因为标准正交标架丛是自然的, 即 $f^*P_O(E) = P_O(f^*E)$, 从而定向丛也是自然的. 性质 (ii) 是因为万有 n-向量丛不可定向. (否则所有的 n-向量丛都可定向, 这不可能.)

另一种看法是短正合列

$$1 \to SO_n \xrightarrow{i} O_n \xrightarrow{\rho} \mathbb{Z}_2 \to 0$$

诱导上同调的正合列

$$H^1(X; SO_n) \xrightarrow{i_*} H^1(X; O_n) \xrightarrow{\rho_*} H^1(X; \mathbb{Z}_2)$$

(但这个正合列无法继续延伸, 因为 SO_n, O_n 非交换.)

3.2 自旋结构与第二 Stiefel-Whitney 类

自旋结构将向量丛的结构群由 SO(n) 约化到 $Spin_n$.

自旋结构的定义 设 $n \geq 3$, $\pi: E \to X$ 是定向向量丛. 定义 $P_{SO}(E)$ 为 E 的定向标准正交标架构成的 SO_n -主丛.

E 上的自旋结构 (spin structure) 是一个 Spin_n -主丛 $P_{\operatorname{Spin}}(E)$ 与一个二重覆盖 $\xi \colon P_{\operatorname{Spin}_n}(E) \to P_{\operatorname{SO}}(E)$, 满足相容性条件 $\xi(p \cdot g) = \xi(p) \cdot \xi_0(g)$, 其中 $\xi_0 \colon \operatorname{Spin}_n \to \operatorname{SO}(n)$ 是万有覆盖.

$$\mathbb{Z}_2 \longrightarrow \operatorname{Spin}_n \xrightarrow{\xi_0} \operatorname{SO}_n$$

$$\mathbb{Z}_2 \longrightarrow P_{\operatorname{Spin}}(E) \xrightarrow{\xi} P_{\operatorname{SO}}(E)$$

$$X$$

命题 3.4. 向量丛 E 上的自旋结构一一对应于 $H^1(P_{SO}(E); \mathbb{Z}_2)$ 限制在纤维上非平凡的元素.

证明. 设 $\xi \in H^1(P_{SO}(E); \mathbb{Z}_2)$ 限制在纤维上非平凡, 即 ξ 为二重覆盖 $\xi \colon P' \to P_{SO}(E)$, 则 $\pi \circ \xi \colon P' \to X$ 的每个纤维为 SO_n 的非平凡二重覆盖, 从而同胚于 $Spin_n$. 由覆盖空间理论, SO(n) 在 $P_{SO}(E)$ 上的作用可提升为 $Spin_n$ 在 P' 上的作用, 从而使 P' 成为 $Spin_n$ -主丛.

w_2 的第二种定义 短正合列

$$0 \to \mathbb{Z}_2 \to \operatorname{Spin}_n \to \operatorname{SO}_n \to 1$$

诱导上同调的正合列

$$H^0(X; \mathrm{SO}_n) \to H^1(X; \mathbb{Z}_2) \to H^1(X; \mathrm{Spin}_n) \to H^1(X; \mathrm{SO}_n) \stackrel{\delta}{\to} H^2(X; \mathbb{Z}_2).$$

定义

$$w_2(E) := \delta([P_{SO}(E)]).$$

命题 3.5. 按照上述定义, $P_{SO}(E)$ 的结构群可约化为 $Spin_n$ 当且仅当 $w_2(E)=0$.

 w_2 的第三种定义 首先我们介绍谱序列中的 "五项正合列"(five-term exact sequence). 设 $E_2^{p,q} \Rightarrow H^n(A)$ 为第一象限谱序列, 则存在五项正合列

$$0 \rightarrow E_2^{1,0} \rightarrow H^1(A) \rightarrow E_2^{0,1} \stackrel{\delta_2}{\rightarrow} E_2^{2,0} \rightarrow H^2(A).$$

这个正合列来自下图, 以及谱序列的收敛性.

对于纤维丛

$$SO_n \xrightarrow{i} P_{SO}(E) \xrightarrow{\pi} X,$$

五项正合列的前四项给出

$$0 \to H^1(X; \mathbb{Z}_2) \stackrel{\pi^*}{\to} H^1(P_{SO}(E); \mathbb{Z}_2) \stackrel{i^*}{\to} H^1(SO(n); \mathbb{Z}_2) \stackrel{w_E}{\to} H^2(X; \mathbb{Z}_2).$$

注意五项正合列中 $E_2^{1,0} \to H^1(A)$ 与 $H^1(A) \to E_2^{0,1}$ 两个映射称为边界映射 (edge map), 在 Serre 谱序列中分别对应 π^* 与 i^* .

设 $g_2 \in H^1(SO_n; \mathbb{Z}_2)$ 为生成元, 我们定义 $w_2(E) = w_E(g_2)$ 是 E 的第二 Stiefel-Whitney 类. 回忆自旋结构对应于 $H^1(P_{SO}(E); \mathbb{Z}_2)$ 在 i^* 之下像非零的元素, 故

命题 **3.6.** 按照上述定义, 可定向向量丛 E 存在自旋结构当且仅当 $w_2(E) = 0$, 且此时自旋结构一一对应于 $H^1(X; \mathbb{Z}_2)$ 的元素.

比较命题3.2.

通过验证自然性与非平凡性,类似可得

命题 3.7. w_2 的三种定义相容.

3.3 O_n 的 Whitehead 塔

 SO_n 与 $Spin_n$ 位于 O_n 的 Whitehead 塔的末端:

$$\cdots \to \text{Fivebrane}_n \to \text{String}_n \to \text{Spin}_n \to \text{SO}_n \to \text{O}_n$$

这个序列是通过依次去除同伦群得到的: 从 O_n 开始, 去除 π_0 得到 SO_n , 去除 π_1 得到 $Spin_n$, 而 $\pi_2(Spin_n) \simeq \pi_2(SO_n) = 0$, 去除 π_3 得到 $String_n$, 等等. 其中, 所谓去除同伦群 π_n 是通过考虑到 Eilenberg—Maclane 空间的映射 $X \to K(G,n)$, 使得其在 π_n 上诱导同构, 那么这个映射的同伦纤维 F 满足 $\pi_n(F) = 0$, $\pi_i(F) \simeq \pi_i(X)$ (i > n).

X 上的向量丛可视为映射 (的同伦类) $X \to BO_n$. 向量丛上存在定向结构等价于这个映射可以提升至 BSO_n , 存在自旋结构等价于这个映射可以提升至 $BSpin_n$.

$$\cdots \longrightarrow \operatorname{BString}_n \longrightarrow \operatorname{BSpin}_n \xrightarrow{\nwarrow} \operatorname{BSO}_n \xrightarrow{\nwarrow} \operatorname{BO}_n$$

4 自旋流形与自旋配边

若一个流形的切丛有自旋结构,则称其为自旋流形 (spin manifold).

回忆命题3.6, 可定向流形 X 有自旋结构等价于 $w_2(X)=0$, 且此时自旋结构一一对应于 $H^1(X;\mathbb{Z}_2)$ 的元素.

5 Cliffod 丛与旋量丛

5.1 Clifford 丛

由于 \mathbb{R}^n 的正交变换诱导 $\mathscr{I}\mathbb{R}^n$ 的自同构, 且保持理想 $(x \otimes x + q(x) : x \in \mathbb{R}^n)$ 不变, 所以正交变换也诱导商代数 $\mathrm{C}\ell_n$ 的自同构. 我们得到 SO_n 在 $\mathrm{C}\ell_n$ 上的左作用

$$c\ell(\rho_n) \colon SO_n \to Aut(C\ell_n).$$

定义带定向 Riemann 向量丛 E 的 Clifford 丛为关联丛

$$C\ell(E) = P_{SO}(E) \times_{c\ell(\rho_n)} C\ell_n.$$

我们可以把 $C\ell(E)$ 想象成以 E 的每个纤维构造一个 Clifford 代数得到的代数丛. 事实上

$$C\ell(E) = (\bigoplus_r \otimes^r E)/I(E),$$

I(E) 是由 $v \otimes v + |v|^2$ 生成的理想丛.

Clifford 代数的内蕴结构可迁移到 Clifford 丛上. 如存在 \mathbb{Z}_2 分次结构 $\mathrm{C}\ell(E) = \mathrm{C}\ell^0(E) \oplus \mathrm{C}\ell^1(E)$, 且由典范线性同构 $\wedge^*\mathbb{R}^n \to \mathrm{C}\ell_n$ 可构造向量丛的典范同构 $\wedge^*E \to \mathrm{C}\ell(E)$.

5.2 旋量丛, $C\ell(E)$ 上的不可约模

设 E 是定向向量丛, 具有自旋结构 $\xi: P_{\mathrm{Spin}}(E) \to P_{\mathrm{SO}}(E)$. 定义 E 的一个 (实) 旋量丛 (spinor bundle) 是如下形式的丛:

$$S(E) = P_{\text{Spin}}(E) \times_{\mu} M,$$

其中 M 是 $C\ell_n$ -左模, μ 是 $Spin_n \subset C\ell_n$ 在 M 上的左作用.

回忆自旋结构即为 $P_{SO}(E)$ 到 $P_{Spin}(E)$ 的约化; 当自旋结构存在时, 有 $P_{SO}(E) = P_{Spin}(E) \times_{\xi_0} SO_n$, 因此

$$C\ell(E) = P_{SO}(E) \times_{\rho} C\ell_{n}$$

$$= P_{Spin}(E) \times_{\xi_{0}} SO_{n} \times_{\rho} C\ell_{n}$$

$$= P_{Spin}(E) \times_{Ad} C\ell_{n}.$$

其中 $\rho: SO_n \to Aut(C\ell_n)$ 是正交变换诱导的 Clifford 代数的自同构, $\xi_0: Spin_n \to SO_n$ 是二重覆盖, 而伴随表示 $Ad = \rho \circ \xi_0: Spin \to SO_n \to Aut(C\ell_n)$.

左乘作用 ℓ 与伴随表示 Ad 是不一样的.

命题 5.1. 设 S(E) 为 E 的一个实旋量丛. 那么 S(E) 可作为代数丛 $C\ell(E)$ 的模丛.

证明. 回忆 $S(E) = P_{Spin}(E) \times_{\mu} M$, 我们需要定义映射

$$\mu \colon \mathrm{C}\ell(E) \otimes S(E) \to S(E).$$

而

$$C\ell(E) \otimes S(E) = (P_{Spin} \times_{Ad} C\ell_n) \otimes (P_{Spin} \times_{\mu} M) = P_{Spin} \times_{Ad \otimes \mu} (C\ell_n \otimes M).$$

定义

$$\mu: \varphi \otimes (p,m) \mapsto (p,\varphi m).$$

良定性. 对 $g \in \text{Spin}_n$, $\varphi \otimes (p, m) \sim \text{Ad}_g(\varphi) \otimes (pg^{-1}, gm)$, 而

$$\mu(\mathrm{Ad}_g(\varphi)\otimes (pg^{-1},gm))=(pg^{-1},g\varphi g^{-1}gm)\simeq (p,\varphi m).$$

6 联络

6.1 联络的一般概念

联络刻画了纤维丛各纤维之间的关系. 以下的四种结构都体现了联络. 在某些场合, 它们可以互相转化.

- 1. 水平空间 (horizontal spaces).
- 2. Lie 代数取值的 1-形式.
- 3. 协变导数 (covariant derivative).
- 4. 平行移动 (parallel transport).

联络的第一种定义. 水平空间 设 X 是 n 维流形, π : $P \to X$ 是 G-主丛. 设 τ 是 P 的切 n-平面场, 即对每个 $p \in P$, τ_p 是 T_pP 的 n 维子空间. 且满足 π_* : $\tau_p \to T_pX$ 为线性同构. 称 τ_p 为 p 处的水平空间.

进一步假设 τ_p 是 G-等变 (equivariant) 的, 即

$$\tau_{p \cdot g} = \tau_p \cdot g \, (g \in G),$$

则 τ 定义了 P 上的一个联络.

水平空间与平行移动的关系 我们将沿着水平子空间的"无穷小移动"视为平行移动. [注 6]

垂直空间与 Lie 代数 记 \mathcal{V}_p 为 p 所在的纤维在 p 处的切空间, 称为垂直空间. 回忆 G 右作用于 P 上, 其轨道正是 P 的纤维, 于是 G 的 Lie 代数 \mathfrak{g} 的元素 (作为 "无穷小变换") 对应 P 的垂直向量场. 具体而言, $V \in \mathfrak{g}$ 给出了 P 上的向量场 \tilde{V} , 满足

$$\tilde{V}_p = \frac{d}{dt}\Big|_{t=0} (p \cdot \exp(tV)) \in \mathscr{V}_p,$$

且 $V \mapsto \tilde{V}_p$ 给出了线性同构 $\mathfrak{g} \to \mathscr{V}_p$.

$$\operatorname{Ad}_{q^{-1}} \circ \omega = q^* \omega \, (q \in G),$$

(其中 Ad 是 G 在 \mathfrak{g} 上的伴随表示.) 则 ω 定义了 P 上的一个联络, 称 ω 为其联络形式 (connection form).

上图直观地展示了 ω 的 G-等变条件:

$$\omega(g_*X) = \mathrm{Ad}_q(\omega(X)),$$

此即

$$g^*\omega = \mathrm{Ad}_{q^{-1}} \circ \omega.$$

水平空间与 1-形式的关系 T_pP 是水平空间 τ_p 与垂直空间 \mathscr{V}_p 的直和. 于是, 投影 $T_pP \to \mathscr{V}_p$ 可视为 \mathfrak{g} -取值的 1-形式 $\omega_p \colon T_pP \to \mathfrak{g}$.

直观上, \mathfrak{g} -取值的 1-形式 ω 衡量的是 P 上的无穷小移动所造成的垂直方向 "高度"的变化, 由此我们可以对截面 "求导", 这便是协变导数.

当然, 由这样一个 1-形式我们也可以反过来得到水平空间 $\tau_p = \ker \omega_p$. τ_p 便是那些 "高度" 不变的无穷小移动, 也即平行移动.

[[]注 6]在此我们不具体介绍平行移动.

联络的局部表达式 局部上, 联络的信息可由底空间 B 上的 \mathfrak{g} -取值 1-形式给出. (之所以只能局部表达, 是因为对于非平凡的 G-主丛而言, 底空间上的 1-形式无法表示全局的联络.)

例如 $G = (\mathbb{R}, +)$, $P = \mathbb{R} \times M$ 是 M 上的 G-主丛. (想象 M 是地球表面, P 是地球大气层.) 此时 P 上的联络在局部上就形如 df, f 是 M 上的函数. (想象 f 是地表的海拔高度.)

我们将给出联络的局部表达式,并且写下不同局部平凡化之间的关系.

设 $\pi: P \to X$ 为G-主丛,U为X的开集,使得存在局部截面 $\sigma: U \to P$,与相应的局部平凡化

$$\varphi \colon U \times G \to \pi^{-1}(U), (x,g) \mapsto \sigma(x) \cdot g.$$

$$U \times G \xrightarrow{\varphi} \pi^{-1}(U)$$

$$\downarrow_{\pi_1} \qquad \downarrow_{\pi}$$

$$\downarrow_{U}$$

那么 $\varphi^*\omega \in \Omega^1(U \times G, \mathfrak{g})$ 是 $U \times G$ 上的联络. 为了具体写下 $\varphi^*\omega$ 的表达式, 我们首先设

$$\varphi^*\omega = \omega_0 + \omega_1,$$

其中 $\omega_0 = a_i(x, g)dx^i$, $\omega_1 = b_i(x, g)dg^i$,

由联络的条件, 我们有 $\omega_1 = g^{-1}dg$. 这是 Maurer-Cartan 形式, 即 G 上唯一的左不变 \mathfrak{g} -取值 1-形式. 它衡量的是垂直方向的移动, 是联络形式中冗余的信息.

$$记 \omega_U = \pi_1^* \sigma^* \omega \in \Omega^1(U \times G, \mathfrak{g}).$$
 那么 $\omega_0 = \operatorname{Ad}_{g^{-1}} \omega_U$. [注 7] 综上,

$$\varphi^*\omega = \operatorname{Ad}_{g^{-1}}\omega_U + g^{-1}dg.$$

现在设 U 上有另一个局部平凡化, 重复如上的构造, 记号上用一撇表示.

设 $\Phi(x,g) = (x,h(x)g)$, 其中转移函数 $h: U \to G$ 满足

$$\varphi(x,g) = \sigma(x) \cdot g = \sigma'(x) \cdot h(x)g = \varphi'(x,h(x)g).$$

因为

$$\varphi^*\omega = \Phi^*(\varphi')^*\omega,$$

所以

$$\operatorname{Ad}_{g^{-1}} \omega_U + g^{-1} dg = \operatorname{Ad}_{(h(x)g)^{-1}} \omega_U' + (h(x)g)^{-1} d(h(x)g)$$

$$= \operatorname{Ad}_{g^{-1}} \operatorname{Ad}_{h(x)^{-1}} \omega_U' + g^{-1} h(x)^{-1} (dh(x)g + h(x)dg)$$

$$= \operatorname{Ad}_{g^{-1}} \left(\operatorname{Ad}_{h(x)^{-1}} \omega_U' + h(x)^{-1} dh(x) \right) + g^{-1} dg.$$

我们得到

$$\omega_U = \operatorname{Ad}_{h(x)^{-1}} \omega_U' + h(x)^{-1} dh(x). \tag{*}$$

^[注 7]这里略去了一些细节.

6.2 不同主丛上的联络

回忆对于群同态 $\varphi: H \to G$,由 H-主丛 $P \to X$ 可构造 G-主丛 $P':= P \times_{\varphi} G \to X$. 我们研究 P 与 P' 上联络的关系.

首先注意到存在自然的映射 $P \to P'$, $p \mapsto (p,e)$, $e \not\in G$ 的单位元. 我们假设 φ 是单同态, 那么映射 $P \to P'$ 是嵌入.

命题 6.1. 设 $\varphi: H \to G$ 是单同态, 那么 P 上的一个联络唯一确定了 P' 上的联络, 使得联络形式满足

$$\omega'|_P = \varphi_*\omega.$$

其中我们将 P 视为 P' 的子丛, $\omega(\omega')$ 为 P(P') 上的 $\mathfrak{h}(\mathfrak{g})$ -取值的 1-形式, $\varphi_*:\mathfrak{h}\to\mathfrak{g}$ 是 Lie 代数同态.

评注. 这个命题是不足为怪的. 回忆前面的评注, H-主丛联络的信息在局部上可由底空间 B 上的 \mathfrak{h} -取值 1-形式给出, 而群同态 φ : $H \to G$ 又给出了 Lie 代数同态 $\mathfrak{h} \to \mathfrak{g}$, 所以由 \mathfrak{h} -取值 1-形式可得到 \mathfrak{g} -取值 1-形式.

6.3 向量丛上的联络

可定向向量丛上的联络 (协变导数) 来自于其关联的 SO_n -主丛上的联络.

协变导数 设 $E \to X$ 是向量丛, E 上的协变导数是线性映射

$$\nabla \colon \Gamma(E) \to \Gamma(T^*X \otimes E),$$

满足 Leibniz 法则

$$\nabla (fe) = df \otimes e + f \nabla e.$$

这里 $\Gamma(E)$ 应理解为局部的截面. (有的向量丛没有整体截面.)

设 $E \to X$ 是向量丛, $P = P_{SO}(E)$ 是其对应的 SO(n)-主丛.

注意到 SO(n) 的 Lie 代数是反对称矩阵的空间 $\mathfrak{so}(n)$, $\mathfrak{so}(n)$ -取值的 1-形式可视为 $n \times n$ 矩阵值 1-形式 (ω_{ij}) , 其中 $\omega_{ji} = -\omega_{ij}$.

命题 **6.2.** 设 $\omega \in \Omega^1(P_{SO}(E), \mathfrak{so}_n)$ 是 $P_{SO}(E)$ 上的联络形式.

设 $U \neq X$ 的开集, $\mathscr{E} = (e_1, \dots, e_n)$: $U \to P_{SO}(E)$ 是 $P_{SO}(E)$ 的局部截面, 也即 X 上的局部标准正交标架. 定义 $\tilde{\omega} = \mathscr{E}^* \omega \in \Omega^1(U, \mathfrak{so}_n)$, 记 $\tilde{\omega} = (\tilde{\omega}_{ij})$.

那么 E 上存在唯一的协变导数 $\nabla: \Gamma(E) \to \Gamma(T^*X \otimes E)$, 使得对于任何如上的局部正交标架,

$$\nabla e_i = \sum_i \tilde{\omega}_{ji} \otimes e_j.$$

证明. 由 Leibniz 法则,

$$\nabla \Big(\sum f_i e_i\Big) = \sum_i df_i \otimes e_i + \sum_{i,j} f_i \tilde{\omega}_{ji} \otimes e_j = \sum_k \left(df_k + \sum_i f_i \tilde{\omega}_{ki}\right) \otimes e_k.$$

为了说明上式定义了 E 上整体的协变导数, 我们需要如下的相容性条件. 设 e'_i 是另一坐标卡上的局部标准正交标架, $\tilde{\omega}'_{ii}$ 是相应 \mathfrak{so}_n -取值 1-形式的分量, 在两坐标卡相交处设

$$e_i = \sum_j e'_j g_{ji}.$$

以 ∇ 作用之,

$$\sum_{k} \tilde{\omega}_{ki} \otimes e_{k} = \sum_{j,\ell} \tilde{\omega}'_{\ell j} \otimes e'_{\ell} g_{ji} + \sum_{j} dg_{ji} \otimes e'_{j},$$

故而

$$\sum_{k} g_{\ell k} \tilde{\omega}_{ki} = \sum_{j} \tilde{\omega}'_{\ell j} g_{ji} + dg_{\ell i}$$

即

$$\tilde{\omega} = g^{-1}\tilde{\omega}'g + g^{-1}dg.$$

而这正是等式(*).

6.4 Clifford 丛与旋量丛上的联络

设 E 为定向 Riemann 向量丛, 带有 Riemann 联络, 即 $P_{SO}(E)$ 上的联络. 回忆表示

$$c\ell(\rho_n) \colon SO_n \to Aut(C\ell_n),$$

(我们已经证明它的像包含在 $SO(C\ell_n)$ 中.)

回忆 Clifford 丛

$$C\ell(E) = P_{SO}(E) \times_{c\ell(\rho_n)} C\ell_n.$$

Lie 群 Aut($C\ell_n$)^[注 8]的 Lie 代数 Der($C\ell_n$) 是由 $C\ell_n$ 上的导子构成的. 代数 C 上的导子即线性映射 $d: C \to C$, 满足 d(ab) = (da)b + a(db).

回忆命题6.1, SO_n -主丛 P 与其上的联络 $\omega \in \Omega^1(P_{SO}(E), \mathfrak{so}_n)$ 唯一确定了一个 $Aut(C\ell_n)$ -主丛 P' 与其上的联络 $\omega' \in \Omega^1(P', Der(C\ell_n))$.

回忆命题6.2, C $\ell(E)$ 上的协变导数 ∇ 由 X 上局部的 1-形式 $\tilde{\omega}' = \sigma^* \omega'$ 定义, 其中 $\sigma: U \to P'$ 是 P' 的局部截面. 从而我们得到

命题 **6.3.** E 上的 Riemann 联络诱导 $C\ell(E)$ 上的协变导数 ∇ , 其作为导子作用在 $C\ell(E)$ 的局部截面上,即对于 $C\ell(E)$ 的局部截面 φ, ψ ,

$$\nabla(\varphi \cdot \psi) = (\nabla \varphi) \cdot \psi + \varphi \cdot (\nabla \psi).$$

现在进一步设向量丛 E 存在自旋结构 $\xi: P_{\mathrm{Spin}}(E) \to P_{\mathrm{SO}}(E)$. 由 $P_{\mathrm{SO}}(E)$ 上的联络 ω 可拉回得到 $P_{\mathrm{Spin}}(E)$ 上的联络 $\xi^*\omega \in \Omega^1(P_{\mathrm{Spin}}(E),\mathfrak{so}_n)$. (注意其中 \mathfrak{so}_n 同时也是 Spin_n 的 Lie 代数.)

设 M 为 $C\ell_n$ -左模, $S(E) = P_{Spin}(E) \times_{\mu} M$ 是旋量丛.

命题 **6.4.** E 上的 Riemann 联络诱导 S(E) 上的协变导数 ∇ , 其作用与 S(E) 的 $C\ell(E)$ -模结构相容, 即对 $C\ell(E)$ 的截面 φ 与 S(E) 的截面 σ ,

$$\nabla(\varphi \cdot \sigma) = (\nabla \varphi) \cdot \sigma + \varphi \cdot (\nabla \sigma).$$

证明. 表示 $Ad = c\ell(\rho_n)$: $Spin_n \to SO_n \to Aut(C\ell_n)$ 以及 μ : $Spin_n \to End(M)$ 与 M 上的 $C\ell_n$ 模结构相容. 具体地, 对 $g \in Spin_n$, $\varphi \in C\ell_n$, $\sigma \in M$,

$$\mu(g)(\varphi \cdot \sigma) = (g\varphi) \cdot \sigma = (g\varphi g^{-1}) \cdot g \cdot \sigma = \left[\operatorname{Ad}_g(\varphi) \right] \cdot \left[\mu(g)(\sigma) \right].$$

^[注 8]我们没有证明它是 Lie 群.

在 g=1 处微分, 得对于 $A \in \mathfrak{so}_n$,

$$\mu_*A(\varphi\cdot\sigma) = \left[(c\ell(\rho_n)_*A)(\varphi) \right] \cdot \sigma + \varphi \cdot \left[(\mu_*A)(\sigma) \right].$$

6.5 Riemann 流形上的构造

设 X 是 Riemann 流形, $P_{SO}(X) := P_{SO}(TX)$ 是 TX 的定向 (单位正交) 标架丛. 记 X 上的 Clifford 丛 $C\ell(X) := C\ell(TX)$.

命题 6.5. (Riemann 几何基本定理) $P_{SO}(X)$ 上存在唯一的联络, 使得对应的协变导数 ∇ 满足无挠条件

$$\nabla_V W - \nabla_W V - [V, W] = 0.$$

进一步, 若X为自旋流形, 则这个联络可提升为 $P_{\mathrm{Spin}}(X)$ 上的联络. 从而诱导X上任何旋量丛上的联络.

7 曲率

曲率是沿无穷小回路的平行移动,刻画了主丛的平坦和扭曲.

设 π : $P \to X$ 是 G-主丛, $\omega \in \Omega^1(P,\mathfrak{g})$ 是联络形式. 定义 ω 对应的曲率形式 (curvature form) $\Omega \in \Omega^2(P,\mathfrak{g})$ 为

$$\Omega = d\omega + [\omega, \omega].$$

命题 7.1. 对 $x, y \in \mathbb{R}^n$, $\varphi \in \mathrm{C}\ell_n$,

$$\operatorname{Ad}_*(x \wedge y)(\varphi) = \frac{1}{4}[[x, y], \varphi].$$

证明. 在推论1.11中取 $M=\mathrm{C}\ell_n$, 注意到表示 $\mu=\mathrm{Ad}\colon\mathrm{Spin}_n\to\mathrm{SO}(\mathrm{C}\ell_n)$ 来自 $\mathrm{Ad}\colon\mathrm{C}\ell_n^{\times}\to\mathrm{Aut}(\mathrm{C}\ell_n)^{[!\pm 9]}$, 故

$$\mathrm{Ad}_*(x \wedge y)(\varphi) = \frac{1}{4}[x,y] \cdot \varphi = \frac{1}{4}\big[[x,y],\varphi\big].$$

我们不加证明地给出如下结论. 注意与推论1.11的关系.

命题 7.2. 设 ω 为 $P_{SO}(E)$ 上的联络形式, S 为关联于 E 的旋量丛, $\sigma=(e_1,\cdots,e_n)$ 为 E 的局部标准正交标架. 则 S 上的协变导数 ∇^s 由下式给出:

$$\nabla^s \sigma_{\alpha} = \frac{1}{2} \sum_{i < j} \omega_{ji} \otimes e_i e_j \cdot \sigma_{\alpha},$$

其中 $(\omega_{ij}) = \sigma^* \omega$ 是 ω 的局部表达式.

命题 7.3. 设 S 为 X 上的旋量丛, V,W 为 X 上的向量场, φ 是 S 的截面, 则 S 上的曲率算子可表示为

$$R_{V,W}^{s}(\varphi) = \frac{1}{2} \sum_{i < j} \langle R_{V,W}(e_i), e_j \rangle e_i e_j \varphi.$$

8 微分算子理论

8.1 微分算子的象征

微分算子的象征 (symbol) 粗略地说即是将每个导数算子 ∂_i 变为一个变量 ξ_i .

首先我们给出微分算子的定义. 设 E,F 是微分流形 X 上的向量丛, 阶数分别为 q,p. 微分算子 $P:\Gamma(E)\to\Gamma(F)$ 是局部如下定义的算子:

$$P = \sum_{|\alpha| \le m} A^{\alpha}(x) \partial_x^{\alpha}.$$

其中 $A^{\alpha}(x)$ 是 $q \times p$ 矩阵函数, 存在 $|\alpha| = m$ 使得 $A^{\alpha}(x)$ 非零. 称 m 为微分算子 P 的阶数.

微分算子的主象征 微分算子 $D: \Gamma(E) \to \Gamma(E)$ 的主象征 (principal symbol) 是一族映射 $\sigma_{\xi}(D): E_x \to E_x \ (x \in X, \xi \in T_x^*X$ 是余切向量), 定义如下. 设局部上

$$D = \sum_{|\alpha| \le m} A_{\alpha}(x) \partial_x^{\alpha}, \quad \xi = \sum_k \xi_k dx_k,$$

那么

$$\sigma_{\xi}(D) = i^m \sum_{|\alpha|=m} A_{\alpha}(x) \xi^{\alpha}.$$

(注意这个求和只包括 $|\alpha|=m$, 即最高阶项)

若 $\xi \neq 0$ 时 $\sigma_{\xi}(D) \neq 0$, 则称算子 D 为椭圆算子 (elliptic operator).

例 设 X 为 Riemann 流形, E, F 为平凡线丛, 那么 $\Gamma(E) \simeq C^{\infty}(X)$. Laplace 算子 $\Delta: C^{\infty}(X) \to C^{\infty}(X)$ 是 2 阶微分算子, 局部由下式定义:

$$\triangle = \frac{1}{\sqrt{g}} \sum_{j,k} \frac{\partial}{\partial x_j} \left(\sqrt{g} g^{jk} \frac{\partial}{\partial x_k} \right) = \sum_{j,k} g^{jk} \frac{\partial^2}{\partial x_j \partial x_k} + 低阶項.$$

因此 Laplace 算子的主象征是

$$\sigma_{\xi}(\triangle) = -\sum_{j,k} g^{jk} \xi_j \xi_k = -\|\xi\|^2.$$

其中 $\|\xi\|^2$ 表示 Riemann 流形余切空间上的诱导度量.

我们介绍关于椭圆算子的如下定理 [3, p.122].

命题 8.1. 若 $D: \Gamma(E) \to \Gamma(E)$ 为形式自伴的椭圆算子,则 D 有离散的特征值,以 ∞ 为聚点. 进一步, $L^2(X,E)$ 作为 Hilbert 空间分解为 D 的特征子空间的直和.

9 Dirac 算子

9.1 起源

Paul Dirac 1928 年的论文 *The Quantum Theory of Electrons* 提出了第一个将狭义相对论纳入量子力学的理论. 文章的目标是找到满足 Lorentz 不变性的电子波方程, 即寻找 Hamilton 算子 H 以表达方程 $H\psi=i\partial_t\psi^{[\dot{\Xi}\ 10]}$, 且等价于经典理论的类比所得的波方程

$$(-\partial_0^2 + \partial_1^2 + \partial_2^2 + \partial_3^2 - m^2)\psi = 0,$$
 (*)

其中 ∂_0 表示 ∂_t . 而狭义相对论要求的时空对称性使得 H 必须是一阶微分算子, 即形如

$$(\partial_0 + \alpha_1 \partial_1 + \alpha_2 \partial_2 + \alpha_3 \partial_3 + \beta)\psi = 0.$$

因此, 问题化为求合适的 $\alpha_1, \alpha_2, \alpha_3, \beta$.

Dirac 指出, 上式导致

$$0 = \left(-\partial_0 + \alpha_1 \partial_1 + \alpha_2 \partial_2 + \alpha_3 \partial_3 + \beta\right) \left(\partial_0 + \alpha_1 \partial_1 + \alpha_2 \partial_2 + \alpha_3 \partial_3 + \beta\right) \psi$$
$$= \left(-\partial_0^2 + \sum_{j,k=1}^3 \alpha_j \alpha_k \partial_j \partial_k + \beta^2 + \sum_{j=1}^3 (\alpha_j \beta + \beta \alpha_j) \partial_j\right) \psi,$$

与 (*) 式比较, 若令 $\beta = i\alpha_4 m$, 则只需以下条件:

$$\alpha_{\mu}^2 = 1, \quad \alpha_{\mu}\alpha_{\nu} + \alpha_{\nu}\alpha_{\mu} = 0,$$

这正是 Clifford 代数的生成关系[注 11].

9.2 定义

设 X 为 Riemann 流形, S 是 $C\ell(X)$ -左模丛, 且其上具有 Riemann 联络. (回忆命题5.1, 旋量丛上有 Clifford 丛的模结构)

S 上的 Dirac 算子 $D: \Gamma(S) \to \Gamma(S)$ 是由下式定义的一阶微分算子:

$$D\sigma = \sum_{j} e_{j} \nabla_{e_{j}} \sigma.$$

其中 e_1, \dots, e_n 是 T_xX 的单位正交基, 乘法为 Clifford 乘法 (将 T_xX 的向量视为 $C\ell(X)$ 的元素).

Dirac 算子的内蕴定义是如下的复合:

$$D \colon \Gamma(S) \stackrel{\nabla}{\longrightarrow} \Gamma(T^*X \otimes S) \stackrel{\simeq}{\longrightarrow} \Gamma(TX \otimes S) \stackrel{\mu}{\longrightarrow} \Gamma(S).$$

因此这个算子也可写为 (特别是在物理文献中)

$$D = \gamma^{\mu} \nabla_{\mu} = g^{\mu\nu} \gamma_{\mu} \nabla_{\nu},$$

其中 γ_{μ} 是 T_xX 的任意一组基.

命题 9.1. Dirac 算子 D 的主象征是

$$\sigma_{\varepsilon}(D) = i\xi.$$

 $^{^{[\}dot{t}\ 10]}$ 这里简单起见我们考虑无外加电磁场的情形, 采用自然单位制, $\hbar=c=1$. 另外, 我们将 Dirac 的原文使用的动量 p_{μ} 翻译为算子 $i\partial_{\mu}$.

[[]注 11]历史上 Dirac 本人并不了解 Clifford 的工作, 他的工作相当于使用矩阵给出了 Clifford 代数的一个表示.

9.3 Dirac 从

我们抽象出 Dirac 算子所需的性质, 引入 Dirac 丛.

定义 Dirac 丛是 $C\ell(X)$ 的左模丛 S, 其上具有 Riemann 度量, 且 X 上的单位切向量在 S 上的作用 是正交变换; 其上具有 Riemann 联络 ∇ , 且联络与 $C\ell(X)$ -模结构相容:

$$\nabla(\varphi \cdot \sigma) = (\nabla \varphi) \cdot \sigma + \varphi \cdot (\nabla \sigma).$$

一般流形上的 Clifford 丛 $C\ell(X)$ 和自旋流形上的旋量丛都是 Dirac 丛的例子.

由于 X 是 Riemann 流形且 S 上有 Riemann 度量, 我们可定义其两个截面的内积

$$(\sigma_1, \sigma_2) = \int_X \langle \sigma_1(x), \sigma_2(x) \rangle \ dV_g.$$

命题 9.2. Dirac 算子是形式自伴的, 即对旋量丛 S 的 (光滑) 截面 σ_1, σ_2 ,

$$(D\sigma_1, \sigma_2) = (\sigma_1, D\sigma_2).$$

证明. 取 $x \in X$, 取 x 一个邻域上的标准正交标架 e_1, \dots, e_n .

$$\langle D\sigma_1, \sigma_2 \rangle = \sum_j \langle e_j \nabla_{e_j} \sigma_1, \sigma_2 \rangle$$

$$= -\sum_j \langle \nabla_{e_j} \sigma_1, e_j \sigma_2 \rangle \quad (e_j \text{ 的作用是正交变换, 且 } e_j^2 = -1)$$

$$= -\sum_j \left(e_j \langle \sigma_1, e_j \sigma_2 \rangle - \langle \sigma_1, (\nabla_{e_j} e_j) \sigma_2 \rangle - \langle \sigma_1, e_j \nabla_{e_j} \sigma_2 \rangle \right) \quad \text{(Leibniz)}$$

最后一项是我们想要的结果. 现在处理前面两项. 定义向量场 V,

$$\langle V, W \rangle = - \langle \sigma_1, W \sigma_2 \rangle$$
.

那么

$$\begin{split} -\sum_{j} \left(e_{j} \left\langle \sigma_{1}, e_{j} \sigma_{2} \right\rangle - \left\langle \sigma_{1}, (\nabla_{e_{j}} e_{j}) \sigma_{2} \right\rangle \right) &= \sum_{j} \left(e_{j} \left\langle V, e_{j} \right\rangle - \left\langle V, \nabla_{e_{j}} e_{j} \right) \right\rangle \right) \\ &= \sum_{j} \left\langle \nabla_{e_{j}} V, e_{j} \right\rangle = \operatorname{div}(V). \end{split}$$

div(V) 在 X 上的积分等于 0, 从而我们得到

$$(D\sigma_1, \sigma_2) = (\sigma_1, D\sigma_2).$$

椭圆算子理论给出

推论 9.3. 对于 Riemann 流形 X 上任意 Dirac 丛上的 Dirac 算子 D,

$$\ker D = \ker D^2$$
,

且为有限维线性空间.

9.4 例

9.4.1 一维的例子

Spin₁ 是 SO₁ 的二重覆盖, 即二阶群 {±1}.

 S^1 可定向, 且第二 Stiefel-Whitney 类等于 0, 故具有自旋结构. S^1 上的自旋结构一一对应于 $H^1(S^1; \mathbb{Z}_2)$ 的元素. 选定一个 SO_1 -主丛 P_{SO} , 则 $P_{SO} \simeq S^1$. S^1 的两个自旋结构分别为 P_{SO} 的两个二重覆盖.

 $C\ell(S^1)$ 同构于 S^1 上的平凡 $\mathbb C$ 丛; $C\ell(S^1)$ -左模丛即复向量丛. S^1 上的复向量丛是平凡的 (因为复向量丛的分类空间的一阶同伦群平凡). 尽管如此, 由于旋量丛可关联于不同的 Spin_n 主丛, 其上的协变导数并不只有平凡的一种.

平凡的自旋结构 考虑平凡的自旋结构, 关联于平凡丛 $S^1 \times \mathbb{C}$. 那么在 S^1 的参数化 e^{it} 之下, Dirac 算子 $D=i\partial_t$. 在一维复向量丛中它的特征向量是 $e^{2\pi ikt}$, 特征值是 $k\in\mathbb{Z}$. 我们知道这些特征向量构成了 $L^2(S^1,\mathbb{C})$ 的 Hilbert 正交基, 这是结论8.1的特例.

非平凡的自旋结构 考虑非平凡的自旋结构 P_{Spin} 与关联的一维复向量丛 $P_{\mathrm{Spin}} imes_{\rho} \mathbb{C}$, 可以写成

$$S^1 \times \mathbb{C} = \mathbb{R} \times \mathbb{C}/(t,z) \sim (t+1,-z),$$

其中 ρ : $\{\pm 1\} \to \mathbb{C}^{\times}$ 是非平凡表示.

此时联络是平坦的, 但有非平凡的和乐 (holonomy). [注 12] 具体地, 绕 S^1 一周的平行移动等于 -1.

Dirac 算子在局部上仍然是 $i\partial_t$, 但整体上不同于前面的算子. 它的特征向量是 $e^{2\pi i(k+\frac{1}{2})t}$, 特征值是 $k+\frac{1}{6}$ $(k\in\mathbb{Z})$.

下面我们将看到, S^1 上的非平凡自旋结构来自于 \mathbb{R}^2 上唯一的自旋结构的限制.

9.4.2 二维的例子

Spin₂ 是 SO₂ 的二重覆盖. 两者均同构于 S^1 , 此时覆盖映射对应 $z \mapsto z^2$.

考虑 2 维圆盘 \mathbb{D} . 因为 \mathbb{D} 可缩, 所以任何主丛 $P_{\mathrm{Spin}}(\mathbb{D})$, $P_{\mathrm{SO}}(\mathbb{D})$ 均为 \mathbb{D} 上的平凡丛. 考虑正交标架 (v,w), 其中 v 是 \mathbb{D} 的边界 S^1 的法向量.

当它绕 S^1 转一圈时, 它的提升在 $P_{\mathrm{Spin}}(\mathbb{D})$ 上没有回到原处 ("在 Spin_2 上转了半圈"). 因此 $\partial \mathbb{D}$ 上的诱导自旋是 S^1 上的非平凡自旋结构.

有趣的是, 两个非平凡自旋的 S^1 放在一起与 0 自旋配边, 换言之, 两个非平凡自旋的 S^1 的连通和同构于平凡自旋, 因此一维的自旋配边群 $\Omega_1^{\rm Spin}$ 是 \mathbb{Z}_2 .

[[]注 12]和乐是指沿环路的平行移动.

一般地, 考虑亏格为 g, 以 S^1 为边界的二维流形 $M(\mathbb{D}$ 是 g=0 的例子), 其边界上的诱导自旋是 S^1 上的非平凡自旋结构.

设 N 是 M 沿边界粘上圆盘得到的无边流形. 由于含入映射诱导同构 $H^1(N; \mathbb{Z}_2) \simeq H^1(M; \mathbb{Z}_2)$, M 上的自旋结构均为 N 上自旋结构的限制.

9.4.3 三维

紧可定向三维流形可平行化,即其切丛是平凡丛. 这个事实可用自旋结构来证明.

命题 9.4. 紧可定向三维流形均有自旋结构.

证明. (概要) 假设不然, 即存在紧可定向三维流形 M, $w_2(M) \neq 0$. 取 w_2 的 Poincaré 对偶 C, 使得 C 为 M 的 1 维子流形.

因为 $M \setminus C$ 中的 2 维曲面与 C 不相交, 由相交理论, $w_2 \in H^2(M \setminus C; \mathbb{Z}_2)$ 等于 0. 这说明 $M \setminus C$ 存在自旋结构 σ , 但 σ 不能延拓到 M.

取 C 在 M 中的对偶曲面 F, F 与 C 横截相交于点 p. F 为 2 维闭子流形 (不一定可定向). 考虑 F 在 M 中的管状邻域 $\nu(F)$. 注意到

- 2 维闭流形可浸入 (is immersed into)ℝ³,
- F 浸入在 \mathbb{R}^3 中, 其法丛同胚于 $\nu(F)$,
- ν(F) 可继承 ℝ³ 的自旋结构,
- 含入映射诱导了同构 $H^1(F; \mathbb{Z}_2) \to H^1(F \setminus p; \mathbb{Z}_2)$.

所以存在 $\nu(F)$ 上的某个自旋结构,限制到 $\nu(F\setminus p)$ 上与来自 $M\setminus C$ 的自旋结构 σ 相等. 这说明 σ 可延 拓到 C 上,与假设矛盾.

由上述命题, 紧可定向三维流形到 BSO_n 的映射可提升至 $BSpin_n$, 从而均零伦 (因为 $BSpin_n$ 是 3-连通的), 从而紧可定向三维流形上的标准正交标架丛有一个截面, 而这意味着其切丛平凡.

9.4.4 四维

没有自旋结构的第一个紧可定向流形是 $\mathbb{C}P^2$. 事实上, $\mathbb{C}P^n$ 有自旋结构当且仅当 n 是奇数.

9.5 Dirac 算子的平方与 Laplace 算子

9.5.1 Riemann 几何复习

设 $E \not\in X$ 上的 Riemann 向量丛, 带有 Riemann 联络 ∇ . 我们同时以 ∇ 表示 X 上的 Levi–Civita 联络, 但不会产生混淆.

对 X 上的向量场 V, W, E 的截面 φ ,

$$\nabla_{VW}^2 \varphi = \nabla_V \nabla_W \varphi - \nabla_{\nabla_V W} \varphi.$$

由此 E 的 Riemann 曲率张量可表示为

$$R_{V,W} = \nabla_{V,W}^2 - \nabla_{W,V}^2.$$

 ∇^2_{VW} 的重要性质是它在一点 x 处的值仅取决于 V_x 和 W_x , 而不取决于 V,W 在其它点处的值.

定义联络 Laplace 算子 (connection Laplacian)∇*∇: [注 13]

$$\nabla^*\nabla\varphi:=-\operatorname{tr}(\nabla^2\varphi)=-\sum_j\nabla^2_{e_j,e_j}\varphi.$$

这里 ∇^* 是 ∇ 的形式伴随 (formal adjoint), 但我们选择将 $\nabla^*\nabla$ 视为一个整体. 下面的命题证明了这个记号的合理性:

命题 9.5.

$$(\nabla^* \nabla \varphi, \psi) = (\nabla \varphi, \nabla \psi).$$

证明. 任取标准正交标架 $\{e_i\}$.

$$\begin{split} \langle \nabla^* \nabla \varphi, \psi \rangle &= -\sum_j \left\langle \nabla_{e_j} \nabla_{e_j} \varphi - \nabla_{\nabla_{e_j} e_j} \varphi, \psi \right\rangle \\ &= -\sum_j \left\langle \nabla_{e_j} \left\langle \nabla_{e_j} \varphi, \psi \right\rangle + \sum_j \left\langle \nabla_{e_j} \varphi, \nabla_{e_j} \psi \right\rangle + \sum_j \left\langle \nabla_{\nabla_{e_j} e_j} \varphi, \psi \right\rangle. \end{split}$$

第二项是我们需要的结果. 现在处理第一项和第三项. 定义向量场 V 满足

$$\langle V, W \rangle = \langle \nabla_W \varphi, \psi \rangle,$$

那么

$$\begin{split} -\sum_{j} \nabla_{e_{j}} \left\langle \nabla_{e_{j}} \varphi, \psi \right\rangle + \sum_{j} \left\langle \nabla_{\nabla_{e_{j}} e_{j}} \varphi, \psi \right\rangle &= -\sum_{j} \nabla_{e_{j}} \left\langle V, e_{j} \right\rangle + \sum_{j} \left\langle V, \nabla_{e_{j}} e_{j} \right\rangle \\ &= -\sum_{j} \left\langle \nabla_{e_{j}} V, e_{j} \right\rangle = -\operatorname{div}(V). \end{split}$$

推论 9.6. $\nabla^*\nabla \colon \Gamma(E) \to \Gamma(E)$ 是形式自伴的.

Riemann 几何复习到此结束.

现在我们计算 D^2 . 对给定的标准正交标架 $\{e_i\}$, 设

$$\Gamma^{i}_{jk} = \left\langle \nabla_{e_j} e_k, e_i \right\rangle.$$

那么

$$\Gamma^{i}_{ik} + \Gamma^{k}_{ii} = \nabla_{e_i} \langle e_k, e_i \rangle = 0.$$

$$\begin{split} D^2\varphi &= \sum_{j,k} e_j \nabla_{e_j} (e_k \nabla_{e_k} \varphi) \\ &= \sum_{j,k} \left(e_j \nabla_{e_j} e_k \nabla_{e_k} \varphi + e_j e_k \nabla_{e_j} \nabla_{e_k} \varphi \right) \\ &= \sum_{j,k} \left(e_j \nabla_{e_j} e_k \nabla_{e_k} \varphi + e_j e_k \nabla_{\nabla_{e_j} e_k} \varphi + e_j e_k \nabla_{e_j, e_k}^2 \varphi \right) \\ &= \underbrace{\sum_{j,k} \left(e_j \Gamma^i_{jk} e_i \nabla_{e_k} \varphi + \Gamma^i_{jk} e_j e_k \nabla_{e_i} \varphi \right)}_{=0} - \sum_j \nabla^2_{e_j, e_j} \varphi + \sum_{j < k} e_j e_k R_{e_j, e_k} \varphi \\ &= \nabla^* \nabla \varphi + \sum_{j < k} e_j e_k R_{e_j, e_k} \varphi. \end{split}$$

对特殊的 Dirac 丛, 这个结论能导出许多有意义的公式. 下面我们分别考虑 Clifford 丛和旋量丛.

[[]注 13] Laplace 算子的符号永远是一个谜

9.5.2 Clifford 丛上 Dirac 算子的平方, Hodge Laplace 算子

首先回忆 $\wedge^*(TX)$ 作为向量丛典范同构于 $\mathrm{C}\ell(X)$. 在这个向量丛上有外微分算子 d 与外微分的伴随 算子 δ . Hodge Laplace 算子

$$\triangle = d\delta + \delta d$$

是一个保持分次结构的 2 阶微分算子.

推论 9.7. 设 X 是 Riemann 流形, \triangle 是 TX 上的 Hodge Laplace 算子, 那么

$$\triangle = \nabla^* \nabla + \operatorname{Ric}.$$

即 Hodge Laplace 算子与联络 Laplace 算子的差等于 Ricci 曲率.

证明. 见 [1, p.156].

9.5.3 旋量丛上 Dirac 算子的平方, Lichnerowicz 公式

设 X 为自旋流形, 即 TX 具有自旋结构. 设 S 是关联于 TX 的任一旋量丛, 则 S 是 C $\ell(X)$ -模丛, 带有典范 Riemann 联络.

这种情形下的 Dirac 算子最早由 Atiyah 与 Singer 发现, 故称为 Atiyah-Singer 算子.

对于 Atiyah-Singer 算子有如下的 Lichnerowicz 公式.

命题 9.8. 设 S 为自旋流形 X 上的旋量丛, 带有典范 Riemann 联络, D 为 Atiyah—Singer 算子, $\nabla^*\nabla$ 为 联络 Laplace 算子, 那么

$$D^2 = \nabla^* \nabla + \frac{1}{4} \kappa.$$

证明. 见 [1, p.161].

致谢

感谢张蓥莹老师,周杰老师,于品老师,林剑锋老师,Reshetikhin 老师的指导,以及参加讨论班的同学们给我的支持.时间仓促,没有大家及时的帮助我无法完成这篇演讲.事实上,演讲的不完善之处仍然明显:符号不统一,重点不突出,很多概念和主题关系不大,或许只能当作几何和拓扑的一次游览.我高估了自己的学习能力,对于 Dirac 算子的应用没有来得及准备.但我在压力之下逼迫自己读了不敢读的文献,做了不屑做的计算,敲开了不曾拜访的老师办公室的门,相信准备过讨论班的同学一定对此有体会.所以,感谢丘先生和张老师的组织让我获得了这些美妙的体验.

参考文献

- [1] Lawson, H. Blaine; Michelsohn, Marie-Louise (1989), *Spin Geometry*, Princeton University Press, ISBN 978-0-691-08542-5
- [2] Lichnerowicz, A. (1963), Spineurs harmoniques, C. R. Acad. Sci. Paris, 257: 7-9
- [3] Bourguignon, J.P., Hijazi, O., Milhorat, J., Moroianu, A., Moroianu, S. (2015). A Spinorial Approach to Riemannian and Conformal Geometry, European Mathematical Society, ISBN: 978-3-03719-136-1.