In [1]:	Zadanie 2 Pracownia Specjalistyczna - Eksploracja danych Krzysztof Funkowski from math import *
[-]	import random import numpy as np import matplotlib.pyplot as plt import pandas as pd Zadania
	 Budowanie macierzy kowariancji Σk dla poszczególnych zbiorów uczących Ck = {xj} w danych Irys (k = 1, 2, 3). Implementacja iteracyjnej procedury rozwiązywania zagadnienia własnego. Wyznaczenie wartości własnych χi i wektorów własnych ki dla wybranej macierzy kowariancji Σk. Zwizualizować wektory cech xj na płaszczyznę rozpiętą przez dwa wektory własne ki
In [2]:	<pre>Funkcja służąca do obliczania kowariancji dla dwóch wektorów def cov(x, y, x_avg, y_avg): elements_count = len(x) # ilość elementów w tablicy elements_sum = 0 for x,y in zip(x,y): elements_sum = elements_sum + ((x - x_avg)*(y - y_avg)) # sumowanie (x - średnia_arytmetyczna_x) * (y - średnia_arytmetyczna_y)</pre>
In [3]:	return elements_sum / elements_count # suma dzielona przez liczbę elementów Funkcja obliczająca macierz kowariancji dla zbioru danych def cov_for_dataset(cov_dataset): avgs = [] matrix_shape = cov_dataset.shape[1] # wymiary_macierzy czyli liczba_kolumn_bioru_danych x liczba_kolumn_bioru_danych
	<pre>for i in range(matrix_shape): avgs.append(cov_dataset[:,i].mean()) # obliczanie średnich dla każdego parametru matrix = [] for i in range(matrix_shape): matrix_row = [] for j in range(matrix_shape): #matrix_shape): #matrix_shape*i + j</pre>
	res = cov(cov_dataset[:,i],cov_dataset[:,j], avgs[i], avgs[j]) # wyznaczanie kowariancji dla każdej pary parametrów matrix_row.append(res) # budowanie wiersza macierzy matrix.append(matrix_row) # dodawanie wiersza macierzy do tablicy bazowej return np.matrix(matrix) # przekształcanie typu tablicy na macierz Funkcja do obliczania długości wektora własnego
In [4]:	<pre>def eigenvector_len(v1): dims = v1.shape[0] # ilość elementów wektora length = 0 for i in range(dims): val = v1[i].ravel().tolist()[0][0] length = length + pow(val, 2) # sumowanie elementów podniesionych do kwadratu</pre>
	length = sqrt(length) # pierwiastkowanie wyniku sumy elementów wektora podniesionych do kwadratów return length # zwracanie długości Funkcja normalizująca, zwracająca wartość własną i wektor własny
In [5]:	def eigenvector_normalization(v1): eigenvalue = eigenvector_len(v1) # wylicznaie wartości własnej eigenvector = v1 / eigenvalue # wyliczanie wektora własnego return eigenvalue, eigenvector # zwrócenie wartości własnej i wektora własnego Pomocnicza funkcja zmieniająca tablicę wektorów własnych w odpowiednią formę macierzy
In [6]:	<pre>def rearrange_matrix(eigenvectors): res = [] for i in range(len(eigenvectors)): row = eigenvectors[i].ravel().tolist()[0] res.append(row)</pre>
In [8]:	return np.matrix(res).T Funkcja odpowiadająca za obliczanie wartości własnych i wektorów własnych def eigenvalues_eigenvectors(matrix, num_iterations): n = matrix.shape[0] # jeden z wymiarów macierzy, ponieważ jest kwadratowa to wystarczy tylko jeden eigenvalues = [] # lista na wartości własne
	<pre>eigenvectors = [] # lista na wektory własne for i in range(n): # losowe dane wektora na początku eigenvector = np.random.rand(n,1) # algorytm iteracyjny wykonywany num_iterations razy for _ in range(num_iterations):</pre>
	eigenvector = np.dot(matrix, eigenvector) # mnożenie macierzy kowariancji przez wektor eigenvalue, eigenvector = eigenvector_normalization(eigenvector) # normalizacja wektora # usuwanie z macierzy znalezionej wartości własnej i wektora własnego # marix - wartość własna * iloczyn zewnętrzny wektora własnego matrix = matrix - eigenvalue * np.multiply(eigenvector, eigenvector.T).T '''if i % 2 == 0: matrix = matrix - eigenvalue * np.multiply(eigenvector, eigenvector.T).T
	else: eigenvector = eigenvector * -1 matrix = matrix - eigenvalue * np.multiply(eigenvector, eigenvector.T).T''' eigenvalues.append(eigenvalue) # dodanie znalezionej wartości własnej do listy eigenvectors.append(eigenvector) # dodanie znalezionego wektora własnego do listy
In [9]:	return eigenvalues, rearrange_matrix(eigenvectors) # zwrócenie wartości własnych i wektorów własnych Funkcja do rysowania projekcji def draw_plot(datasets): colors = ['red', 'blue', 'green']
	<pre>print(len(datasets)) # dla każdego zbioru danych z danej kategorii for i in range(len(datasets)): # przejście po wszystkich punktach for j in range(datasets[i][1].shape[0]): if j==0:</pre>
	<pre>plt.scatter(datasets[i][1][j,0],datasets[i][1][j,1], color=colors[i], label=datasets[i][0]) else: # zaznaczanie punktu dla pierwszego (SepalLengthCm) i drugiego (SepalWidthCm) parametru plt.scatter(datasets[i][1][j,0],datasets[i][1][j,1], color=colors[i]) plt.grid() plt.legend() plt.show()</pre>
	Wczytanie zbioru Irisa i konwersja na dataframe'a df = pd.read_csv('Iris.csv', sep=',', index_col=0) dataset = df.to_numpy() df SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species
Out[8]:	Id 1 5.1 3.5 1.4 0.2 Iris-setosa 2 4.9 3.0 1.4 0.2 Iris-setosa 3 4.7 3.2 1.3 0.2 Iris-setosa 4 4.6 3.1 1.5 0.2 Iris-setosa
	5 5.0 3.6 1.4 0.2 Iris-setosa 146 6.7 3.0 5.2 2.3 Iris-virginica 147 6.3 2.5 5.0 1.9 Iris-virginica 148 6.5 3.0 5.2 2.0 Iris-virginica
	149 6.2 3.4 5.4 2.3 Iris-virginica 150 5.9 3.0 5.1 1.8 Iris-virginica 150 rows × 5 columns Wyodrębnienie parametrów ze zbioru
	<pre>cov_dataset = np.array(dataset[:,[0,1,2,3]], dtype='double') cov_dataset array([[5.1, 3.5, 1.4, 0.2], [4.9, 3. , 1.4, 0.2], [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2],</pre>
	[5. , 3.6, 1.4, 0.2], [5.4, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3], [5. , 3.4, 1.5, 0.2], [4.4, 2.9, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5.4, 3.7, 1.5, 0.2], [4.8, 3.4, 1.6, 0.2], [4.8, 3. , 1.4, 0.1],
	[4.3, 3. , 1.4, 0.1], [5.8, 4. , 1.2, 0.2], [5.7, 4.4, 1.5, 0.4], [5.4, 3.9, 1.3, 0.4], [5.1, 3.5, 1.4, 0.3], [5.7, 3.8, 1.7, 0.3], [5.1, 3.8, 1.5, 0.3], [5.1, 3.8, 1.5, 0.3],
	[5.1, 3.7, 1.5, 0.4], [4.6, 3.6, 1., 0.2], [5.1, 3.3, 1.7, 0.5], [4.8, 3.4, 1.9, 0.2], [5., 3., 1.6, 0.2], [5., 3.4, 1.6, 0.4], [5.2, 3.5, 1.5, 0.2], [5.2, 3.4, 1.4, 0.2],
	[4.7, 3.2, 1.6, 0.2], [4.8, 3.1, 1.6, 0.2], [5.4, 3.4, 1.5, 0.4], [5.2, 4.1, 1.5, 0.1], [5.5, 4.2, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5. , 3.2, 1.2, 0.2], [6.5, 3.5, 1.3, 0.2], [4.9, 3.1, 1.5, 0.1],
	[4.4, 3. , 1.3, 0.2], [5.1, 3.4, 1.5, 0.2], [5. , 3.5, 1.3, 0.3], [4.5, 2.3, 1.3, 0.3], [4.4, 3.2, 1.3, 0.2], [5. , 3.5, 1.6, 0.6], [5.1, 3.8, 1.9, 0.4], [4.8, 3. , 1.4, 0.3],
	[5.1, 3.8, 1.6, 0.2], [4.6, 3.2, 1.4, 0.2], [5.3, 3.7, 1.5, 0.2], [5. , 3.3, 1.4, 0.2], [7. , 3.2, 4.7, 1.4], [6.4, 3.2, 4.5, 1.5], [6.9, 3.1, 4.9, 1.5], [6.5, 2.3, 4. , 1.3], [6.5, 2.8, 4.6, 1.5],
	[5.7, 2.8, 4.5, 1.3], [6.3, 3.3, 4.7, 1.6], [4.9, 2.4, 3.3, 1.], [6.6, 2.9, 4.6, 1.3], [5.2, 2.7, 3.9, 1.4], [5., 2., 3.5, 1.], [5.9, 3., 4.2, 1.5], [6., 2.2, 4., 1.],
	[6.1, 2.9, 4.7, 1.4], [5.6, 2.9, 3.6, 1.3], [6.7, 3.1, 4.4, 1.4], [5.6, 3. , 4.5, 1.5], [5.8, 2.7, 4.1, 1.], [6.2, 2.2, 4.5, 1.5], [5.6, 2.5, 3.9, 1.1], [5.9, 3.2, 4.8, 1.8],
	[6.1, 2.8, 4., 1.3], [6.3, 2.5, 4.9, 1.5], [6.1, 2.8, 4.7, 1.2], [6.4, 2.9, 4.3, 1.3], [6.6, 3., 4.4, 1.4], [6.8, 2.8, 4.8, 1.4], [6.7, 3., 5., 1.7], [6., 2.9, 4.5, 1.5],
	[5.7, 2.6, 3.5, 1.], [5.5, 2.4, 3.8, 1.1], [5.5, 2.4, 3.7, 1.], [5.8, 2.7, 3.9, 1.2], [6., 2.7, 5.1, 1.6], [5.4, 3., 4.5, 1.5], [6., 3.4, 4.5, 1.6], [6.7, 3.1, 4.7, 1.5],
	[6.3, 2.3, 4.4, 1.3], [5.6, 3. , 4.1, 1.3], [5.5, 2.5, 4. , 1.3], [5.5, 2.6, 4.4, 1.2], [6.1, 3. , 4.6, 1.4], [5.8, 2.6, 4. , 1.2], [5. , 2.3, 3.3, 1.], [5. , 2.7, 4.2, 1.3],
	[5.7, 3., 4.2, 1.2], [5.7, 2.9, 4.2, 1.3], [6.2, 2.9, 4.3, 1.3], [5.1, 2.5, 3., 1.1], [5.7, 2.8, 4.1, 1.3], [6.3, 3.3, 6., 2.5], [5.8, 2.7, 5.1, 1.9], [7.1, 3., 5.9, 2.1],
	[6.3, 2.9, 5.6, 1.8], [6.5, 3., 5.8, 2.2], [7.6, 3., 6.6, 2.1], [4.9, 2.5, 4.5, 1.7], [7.3, 2.9, 6.3, 1.8], [6.7, 2.5, 5.8, 1.8], [7.2, 3.6, 6.1, 2.5], [6.5, 3.2, 5.1, 2.],
	[6.4, 2.7, 5.3, 1.9], [6.8, 3., 5.5, 2.1], [5.7, 2.5, 5., 2.], [5.8, 2.8, 5.1, 2.4], [6.4, 3.2, 5.3, 2.3], [6.5, 3., 5.5, 1.8], [7.7, 3.8, 6.7, 2.2], [7.7, 2.6, 6.9, 2.3],
	[6., 2.2, 5., 1.5], [6.9, 3.2, 5.7, 2.3], [5.6, 2.8, 4.9, 2.], [7.7, 2.8, 6.7, 2.], [6.3, 2.7, 4.9, 1.8], [6.7, 3.3, 5.7, 2.1], [7.2, 3.2, 6., 1.8], [6.2, 2.8, 4.8, 1.8], [6.1, 3., 4.9, 1.8],
	[6.4, 2.8, 5.6, 2.1], [7.2, 3., 5.8, 1.6], [7.4, 2.8, 6.1, 1.9], [7.9, 3.8, 6.4, 2.], [6.4, 2.8, 5.6, 2.2], [6.3, 2.8, 5.1, 1.5], [6.1, 2.6, 5.6, 1.4], [7.7, 3., 6.1, 2.3],
	[6.3, 3.4, 5.6, 2.4], [6.4, 3.1, 5.5, 1.8], [6. , 3. , 4.8, 1.8], [6.9, 3.1, 5.4, 2.1], [6.7, 3.1, 5.6, 2.4], [6.9, 3.1, 5.1, 2.3], [5.8, 2.7, 5.1, 1.9], [6.8, 3.2, 5.9, 2.3],
	[6.7, 3.3, 5.7, 2.5], [6.7, 3. , 5.2, 2.3], [6.3, 2.5, 5. , 1.9], [6.5, 3. , 5.2, 2.], [6.2, 3.4, 5.4, 2.3], [5.9, 3. , 5.1, 1.8]]) Macierz kowariancji dla zbioru Irisa
In [10]: Out[10]:	cov_matrix = cov_for_dataset(cov_dataset) cov_matrix matrix([[0.68112222, -0.03900667, 1.26519111, 0.51345778],
In [11]: Out[11]:	<pre>Występujące gatunki w zbiorze danych species = np.array(list(set(dataset[:,4]))) species array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype='<u15')< pre=""></u15')<></pre>
	Wartości własne i wektory własne na podstawie macierzy kowariancji num_iterations = 10000 eigenvalues, eigenvectors = eigenvalues_eigenvectors(cov_matrix, num_iterations) print(f"Wartość własna:\n {eigenvalues}")
	print(f"Wektor własny:\n {eigenvectors}") Wartość własna: [4.1966751631979795, 0.24062861448333192, 0.07800041537352695, 0.0235251402784947] Wektor własny: [[0.36158968 0.65653988 -0.58099728 0.31725455] [-0.08226889 0.72971237 0.59641809 -0.32409435] [0.85657211 -0.1757674 0.07252408 -0.47971899]
	[0.35884393 -0.07470647 0.54906091 0.75112056]] Wartości własne i wektory własne wygenerowane przez gotowe narzędzie z biblioteki NumPy w celu sprawdzenia poprawności wyników # porównanie wyników metody zaimplementowanej w domu z gotową z biblioteki NumPy eigenvalues2, eigenvectors2 = np.linalg.eig(cov_matrix) eigenvalues2, eigenvectors2 (array([4.19667516, 0.24062861, 0.07800042, 0.023525141)).
Out[13]:	(array([4.19667516, 0.24062861, 0.07800042, 0.02352514]), matrix([[0.36158968, -0.65653988, -0.58099728, 0.31725455],
In [20]:	# dla każdego gatunku for s in species: current_datasets = [] # lista w której będą zbiory do rysowania current_species_dataset = df[df['Species'].str.contains(s)].to_numpy() # wybieranie danych tylko dla badanego gatunku current_species_dataset = current_species_dataset[:, [0, 1, 2, 3]] # wybranie parametrów ze zbioru danych num_iterations = 10000 # ustalenie liczby iteracji
	current_cov_matrix = cov_for_dataset(current_species_dataset) # macierz kowariancji dla głównego w tym momencie gatunku # wartości własne i wektory własne dla badanego gatunku current_eigenvalues, current_eigenvectors = eigenvalues_eigenvectors(current_cov_matrix, num_iterations) print(f'{s}: \n macierz cov:\n{current_cov_matrix} \n\n wartości własne: {current_eigenvalues}\n wektory własne:\n{current_eigenvectors} \n\n dwa pierwsze wektory własne:\n {current_eigenvectors[:,:2]}\n') projection = current_species_dataset * current_eigenvectors[:,:2] # projekcja zbioru danych rozpiętego na dwa pierwsze wektory własne current_datasets.append((s,projection)) # dodanie do listy do rysowania other_species = species[species!=s] # wyznaczenie zbioru gatunków które nie są aktualnym badanym
	# dla każdego gatunku który nie jest aktualnie badanym / nie jest głównym w danej iteracji for os in other_species: other_species_dataset = df[df['Species'].str.contains(os)].to_numpy() # wybieranie danych tylko dla niegłównego gatunku other_species_dataset = other_species_dataset[:, [0, 1, 2, 3]] # wybranie parametrów ze zbioru danych # projekcja zbioru danych dla gatunku innego niż główny w danej iteracji, rozpiętego na dwa pierwsze wektory własne other_projection = other_species_dataset * current_eigenvectors[:,:2] current_datasets.append((os,other_projection)) # dodanie do listy do rysowania
	<pre>draw_plot(current_datasets) # rysowanie projekcji</pre> Iris-setosa: macierz cov: [[0.121764 0.098292 0.015816 0.010336] [0.098292 0.142276 0.011448 0.011208] [0.015816 0.011448 0.029504 0.005584] [0.010336 0.011208 0.005584 0.011264]]
	<pre>wartości własne: [0.2337492578217779, 0.035534325601655904, 0.026312230196171977, 0.009212186380394142] wektory własne: [[0.6662063</pre>
	[[0.6662063
	lris-versicolor lris-virginica
	1
	[[0.261104 0.08348 0.17924 0.054664] [[0.08348 0.0965 0.081 0.04038] [[0.17924 0.081 0.2164 0.07164] [[0.054664 0.04038 0.07164 0.038324]] wartości własne: [0.4781164652566476, 0.07093641392609654, 0.05368056334125243, 0.009594557476003636] wektory własne: [[0.68672376 -0.66908906 0.26508336 0.1022796]
	[0.30534703
	[0.21498369
	0.00 -0.25
	-0.50 -0.75 -1.00
	-1.25
	[0.297224 0.069952 0.298496 0.047848] [0.048112 0.046676 0.047848 0.073924]] wartości własne: [0.6813497414608959, 0.10442020142375677, 0.05124951922482228, 0.03358053789052519] wektory własne: [[0.74101679 -0.16525895 -0.53445017 0.37141165] [0.20328772 0.74864279 -0.3253749 -0.54068405] [0.62789179 -0.16942776 0.65152357 -0.39059336]
	[0.12377451 0.61928804 0.4289653 0.64587225]] dwa pierwsze wektory własne: [[0.74101679 -0.16525895] [0.20328772 0.74864279] [0.62789179 -0.16942776] [0.12377451 0.61928804]]
	2.25 2.00 Iris-virginica Iris-versicolor
	1.75
	1.00