PCA kraniometrie klokanů

Aplikovaná statistika II - Domácí úkol

Tomáš Spurný

11. května 2023

Nahrání a představení dat

Dataset obsahuje údaje z **měření lebek klokanů** (jde o upravenou verzi datasetu kanga z knihovny faraway z knihy Data z roku **1985**).

U každého klokana z 148 byl určen **druh, pohlaví a 12** lebečních rozměrů. Přičemž lebka klokana je zachycena na následujícím obrázku a přejmenování rozměrů v prvním bloku kódu v proměnné VARIABLES.

Jsou zde zachyceni klokani tří druhů – všechny se liší velikostí, vzhledem a rozšířením:

- Klokan velký Macropus fuliginosus: anglicky western grey kangaroo, je třetí největší druh klokana po klokanovi obrovském (Macropus giganteus) a klokanovi rudém (Macropus rufus). Vyskytuje se v jižní až jihozápadní Austrálii. Má šedou krátkou srst. Dle přesnějšího výskytu se rouzlišuje poddruh Macropus fuliginosus (endemit na Klokaním ostrově) a poddruh Macropus fuliginosus melanops (zbytek zmíněného území)
- Klokan obrovský Macropus giganteus: anglicky eastern grey kangaroo je druhý největší druh klokana, žije ve východní Austrálii a Tasmánii. Má šedou dlouhou srst a širší ušní boltce.
- Macropus melanops: v datech jde nejspíš o poddruh Macropus fuliginosus melanops.

Spolu s nahráním, byla zjištěna struktura dat a nahrány konstantní vektory pro překódování názvů proměnných a barvy pro druhy klokanů. Na začátku práce byly také nahrány knihovny pomocí kódu č. 0 v příloze.

¹ Nestuduji antropologii, takže moje překlady proměnných do češtiny nejsou nejspíš správné.

Data obsahují 1,9 % NA hodnot. Nejvíc neúplné jsou veličiny: šířka patra a délka čelisti. Chybějící pozorování byly tedy odstraněny a byly tak vytvořeny dvě tabulky: celistvá df0 a dfNum s pouze numerickými veličinami.


```
df0 <- df |> #data pro analýzu
    drop_na()

dfNum <- df |> #spojité proměnné
    drop_na() |>
    select_if(is.numeric)
    nrow(df0) /nrow(df) #% úplných pozorování
## [1] 0.7567568
```

Pozůstavši data tvoří 76% originálu.

Korelační analýza

Na numerických datech byly zhodnoceny vazby mezi proměnnými pomocí korelační matice.

```
CorMat <- cor(dfNum, method = "pearson")</pre>
```

Ta byla vynesena do heatmapy níže pomocí kódu č. 1 v příloze.

Negativní korelaci vykazuje se všemi rozměry **šířka hřebene**. Ostatní nezanedbatelné korelace jsou všechny kladné. Malé korelace vykazuje se všemi **délka otvoru a očnicová šířka**. Silné korelace se obvykle týkají rozměrů na **jedné lebeční části**.

Příklady

- Silné pozitivní korelace (1-0,7): šířka a délka nosu (0,84)
- Negativní korelace: šířka hřebene a délka nosu (-0,73)
- Slabé korelace (0,1-0,3): šířka patra a očnicová šířka

Korelace byla zachycena i znázorněním v XY grafech pomocí <u>kódu č. 2 v příloze</u>. Lze pozorovat zápornou korelaci u šířky hřebene i silné korelace na jedné lebeční části (např. nos). V některých grafech se zdá, že se jednotlivé druhy systematicky liší – např. druh *Macropus fuliginosus* má menší délku čelisti při stejné lícní šířce než zbylé dva druhy a opačně např. u dvojice délka čelisti – šířka nosu.

Rozpětí naměřených hodnot a škálování

Byly vypočteny průměry veličin. Nejmenším rozměrem je délka otvoru a největším bazilární délka.

col	colMeans (dfNum)											
##	Délka bazilární	Délka patra	Šířka patra	Délka nosu	Šířka nosu							
##	1496.0179	1026.9107	255.9107	665.4911	233.6250							
##	Šířka lícní	Šířka očnicová	Šířka hřebene	Délka otvoru	Délka čelisti							
##	879.7143	240.2857	121.7054	95.0000	1264.4196							
##	Šířka čelisti	Hloubka čelisti										
##	140.0179	197.4375										

Proměnné byly znázorněny graficky v krabicových diagramech (kód č. 3 v příloze), barva diagramu určuje **jednu část lebky**, na které je měřen jeden nebo více rozměrů. Z polohy statistik boxplotu lze říci, že proměnné jsou přibližně **normálního** rozdělení, ale obsahují odlehlé hodnoty. Je vidět, že celkové rozpětí hodnot je veliké, proto se při PCA **provede škálování**. Lingvisticky: většina šířek je kratších než většina délek.

Vlastní analýza hlavních komponent

Barlettův test sféricity

Slouží k určení, jestli jsou veličiny dostatečně korelované, aby mělo význam provádět PCA. Nulová hypotéza tvrdí, že výběrová korelační matice je jednotková, tzn. ostatní výběrové korelační koeficienty jsou nulové.

```
cortest.bartlett(cor(dfNum), nrow(dfNum), diag = TRUE)
## $chisq
## [1] 1880.141
## $p.value
## [1] 0
## $df
## [1] 66
p <- ncol(dfNum)
(kvantil <- qchisq(0.95, df=p*(p-1)/2))
## [1] 85.96491</pre>
```

Testová statistika (1880,1) se realizuje hluboko v kritickém oboru <85,96; ∞), p-hodnota je nulová. Zamítáme tedy nulovou hypotézu a můžeme přistoupit k PCA. **Data jsou dostatečně korelovaná**.

Vlastní PCA

Pomocí příkazu prcomp (), byla provedena analýza hlavních komponent pro spojité proměnné souboru du-kanga.csv.

```
prcomp (dfNum, center = TRUE, scale. = TRUE)
## Importance of components:
##
                             PC1
                                    PC2
                                            PC3
                                                    PC4
                                                             PC5
                                                                     PC6
                                                                             PC7
                                                                                     PC8
## Standard deviation
                          2.7526 1.1924 1.06557 0.82094 0.62345 0.54574 0.41546 0.41124
## Proportion of Variance 0.6314 0.1185 0.09462 0.05616 0.03239 0.02482 0.01438 0.01409
## Cumulative Proportion 0.6314 0.7499 0.84450 0.90066 0.93305 0.95787 0.97225 0.98634
##
                              PC9
                                     PC10
                                             PC11
                                                    PC12
## Standard deviation
                          0.30310 0.21304 0.12107 0.1094
## Proportion of Variance 0.00766 0.00378 0.00122 0.0010
## Cumulative Proportion 0.99400 0.99778 0.99900
                mary(dataPCA)$importance[c(2,3),]
```

Byla vytvořena tabulka podílů variabilit. Prvními třemi hlavními komponentami je vysvětleno 84,5 % variability. První komponenta vysvětluje 63,1 % variability. Další dvě, každá kolem 10 %.

Tabulka podílů variabilit												
Hlavní komponenta	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12
Relativní variabilita	0,631	0,118	0,095	0,056	0,032	0,025	0,014	0,014	0,008	0,004	0,001	0,001
Kumul. rel. variabilita	0,631	0,75	0,845	0,901	0,933	0,958	0,972	0,986	0,994	0,998	0,999	1

Volba počtu hlavních komponent

Pomocí kódu č. 4 v příloze byl vykreslen sutinový diagram:

Podle něj lze popsat původní datový soubor bez podstatné ztráty informace prvními 2 hlavními komponentami. Podle Kaiserova kritéria jsou potřeba první 3 komponenty. To potvrzuje i požadavek na vysvětlení alespoň 80 % variability, jelikož první dvě komponenty tak činí pouze z 75 %. Omezíme se tedy na **první 3 hlavní komponenty**.

Zhodnocení PCA

Korelace: původní proměnné vs. hlavní komponenty

Byla vypočtena korelace původních proměnných a prvních třech hlavních komponent a vynesena do heatmapy.

První hlavní komponenta je vysoce korelovaná se všemi veličinami krom délky otvoru a očnicové šířky. Nejvíce s délkou patra, délkou čelisti a bazilární délkou.

Druhá hlavní komponenta nejvíce koreluje s **délkou otvoru**. Dále i s šířkou čelisti, šířkou hřebene a délkou nosu. Má spoustu korelací, které nejsou zanedbatelné.

Třetí komponenta má vysokou korelaci s očnicovou šířkou a rozlišuje tedy klokany na základě ní.

Biplot

Pro vytvoření biplotu byla použita knihovna ggbiplot, resp. její upravená verze, která dokáže vykreslit i jednotkový korelační kruh a data přeškáluje.

```
source("ggbiplot-update.R")
ggbiplot2(dataPCA, circle = T, groups = df0$`Druh klokana`) +
   geom_hline(yintercept = 0, color = "#657b83") +
   geom_vline(xintercept = 0, color = "#657b83") +
   scale x_continuous(limits = c(-1.2, 1.2)) +
   scale y_continuous(limits = c(-1.2, 1.2)) +
   scale y_continuous(limits = c(-1.1)) +
   vlab("1. Hlavní komponenta standardizovaná (63,1 % variability)") +
   vlab("2. Hlavní komponenta standardizovaná (11,8 % variability)") +
   labs(title = "Biplot", subtitle = "PCA pro rozměry lebečních částí u klokanů",
        colour = "Druh klokana") +
   coord_equal()
```


Je znát, že rozměry, které byly v původních datech silně korelované **jsou pospolu** (skupinka pro nos, čelist-lícní kosti-očnice, patro-bázi-čelist). Skupina veličin **patro-báze-čelist** nejvíce souvisí s první hlavní komponentou. Šířka hřebene, která vykazovala záporné korelace stojí **oproti ní**.

Rozměry, které měly zanedbatelné korelace v původním souboru mají krátkou šipku anebo jsou orientované kolměji, resp. odpovídají druhé hlavní komponentě.

V rovině 1. a 2. komponenty lze rozlišit **klokany** *Macropus fuliginosus* od zbylých dvou druhů - ty zbylé se překrývají. Stejná situace je i v rovině 2. a 3. komponenty. V rovině 3. a 1. komponenty nejdou klokani rozeznat vůbec. Roviny nejsou dostačující k rozlišení všech tří druhů klokanů.

Všechny kombinace rovin hlavních komponent následují a byly vygenerovány <u>pomocí kódu č. 5</u>. Horní tři se týkají dělení na druhy, dolní tři zase dělení na pohlaví.

Reprodukovaná a reziduální korelační matice

Pomocí maticového násobení byla získána reprodukovaná matice výběrových korelací a residuální korelační matice.


```
corel.residual |>
  round(2) |>
  data.frame() |>
  rownames_to_column("V1") |>
  pivot_longer(cols = -V1, names_to = "V2", values_to = "Korelační\nkoeficient") |>
  ggplot(aes(V1, V2, fill = `Korelační\nkoeficient`, label = `Korelační\nkoeficient`)) +
  geom_tile() +
  scale_fill_viridis(option = "cividis")+
  labs(x = "", y = "", title = "Reprodkovaná korelační matice", subtitle = "Kraniometrie klokanů")
```


V reziduální korelační matici je 17 rozdílů v intervalu (0,10; 0,35), 7 z nich leží na hlavní diagonále, která je v reprodukované matici podhodnocována. Výběrové korelace jsou spíše nadhodnocovány.

Jinak se rezidua pohybují blízko nule, takže by stávající volba hlavních komponent by mohla být dostačující k vystihnutí původního datového souboru.

Příloha – kódy

Kód č. 1

Heatmapa korelační matice

Kód č. 2 Matice XY grafů

```
ggpairs(data=df0, columns = 3:14, switch="both",
mapping = aes(color=`Druh klokana`), upper="blank",legend = 1) +
    theme_stata(base_size = 8) +
    scale_colour_manual(values = KLOKANI) +
    scale_fill_manual(values = KLOKANI) +
    labs(x = "", y = "", title = "Maticový XY diagram", subtitle = "Kraniometrie klokanů") +
    theme(plot.background = element_rect(fill = "#dfebec"),
        strip.background = element_rect(colour = "black", fill = "#bcd3dc"),
        strip.text = element_text(face = "italic", size = 8),
        plot.title = element_text(size = 20, face = "bold", vjust = 2),
        legend.position = "bottom",
        axis.text.y = element_text(angle = 0),
        axis.text.x = element_text(angle = 45),
        plot.subtitle = element_text(size = 10))
```

Kód č. 4 Sutinový test

Kód č. 5 Biploty všech rovin