National Junior College JC 2 Term 2 Physics Topical Quiz 1 Nuclear Physics

Name: Fan 8hi Yong	Total Marks:		
Reg. No.: <u>0356H</u>	Time: 20 mins	18	
Useful Constants:			
Unified atomic mass constant, u Speed of light in free space, c	1.66 x 10 ⁻²⁷ kg 3.00 x 10 ⁸ ms ⁻¹		
1a. Explain what is meant by (i) the radioactive decay of a nuclei the distributer spentaneous distributed into smaller every unstable parent nuclei to form stable day (ii) nuclear fission. (ii) nuclear fission. The distributer after the large analler, note stable muclei have a release.	and random disintegration were stable nuclei sontaneous	dientegration	
1b. The equation shows a typical fission reaction for uranium.			
$^{235}U + {}_{0}^{1}n \rightarrow {}_{55}^{141}Cs + {}_{37}^{93}Rb + 2({}_{0}^{1}n)$	and the second second		
Given: Atomic mass of 141 Cs = 140.92 Atomic mass of 93 Rb = 92.922 Atomic mass of 235 U = 235.04 Mass of neutron, $^{1}_{0}n$ = 1.0086	157 u 1392 u		
Calculate the energy produced from 235.04392 uc² + (-00 866 uc² =	+ E		
Energy released = 235-043 -2(1.00	392uc²+1-00866uc²-140-9196 7868u)c²	334c²-92-921574c²	
= 0.194 $= 0.1940$	06 uc² 6 (1-68×10 ⁻²⁷)(3.00×10 ⁸))2	
= 2-8 2- Energy from (-D/y of 235 U =	90×10-11 J (35-4) 2-899×10-11 × 235-043	12 1900 × 6.02×1023	
	13 - C = -NI		

1c. When Uranium is mined, the ratio of fissionable ²³⁵U to ²³⁸U is 0.0072. Calculate how many years ago the ratio would have been 0.03.

Half-life of ^{235}U = 7.0×10^8 years Half-life of ^{238}U = 4.5×10^9 years

$$\frac{N}{N_0} = e^{-\lambda t}$$

$$\frac{0.0072}{0.03} = e^{-\lambda t}$$

$$\frac{0.0072}{0.03} = e^{-\lambda t}$$

$$\frac{0.0072}{0.03} = e^{-\lambda t}$$

$$\frac{0.0072}{0.03} = e^{-\lambda t}$$

1 0-03 = - to range

 $\frac{N}{N_0} = e^{-\lambda t}$ $\frac{N}{N_0} = e^{-\lambda t}$ $\frac{0.0072}{0.03} = e^{-\lambda t}$ $\frac{0.0072}{0.0072} = e^{-\lambda t}$ $\frac{10^2}{0.0072}$ $\frac{10^2}{0.0072}$ N=38 = NO 6-44 - (5)

N258 - (No)255 e-(1205-1200) t t = 9-27 × 109 years (35-t) 0-0072 = 0-03e-(14-45)×100

t=1.7 × 109 years

State what is meant by the binding energy per nucleon of a nucleus. [1] The amount of energy required to separate a nucleus into its constituent not reutrons to infinite distance from each other divided by the total number of neutrons in the nucleus. - are see chist Made to separate nucleus into individual Aucteons
2b. Sketch a graph to show the variation with nucleon number of the binding

energy per nucleon of nuclei.

56 Fe

Nucleon No.

2c. By reference to your graph, explain how the process of nuclear fission may result in the release of energy.

The birding energy per nuclear of heavier nuclides is less than the trivial energy per nuclear of energy by the heavier fission may result in release of energy by the heavier nuclides disintegrate to form lighter nucleas with higher finding energy per nuclear as the difference in energy is released from nuclei of I birding energy per nuclear as product nuclei form nuclei of I birding energy per nuclear as product nuclei are suffered to freak reasonst nucleic energy released in formation of the product o

2d. When Uranium-235 nuclei are fissioned by slow moving neutrons, the Uranium nucleus gives, among other fission products, a Strontium-90 nucleus and a Xenon-143 nucleus. The following information are also

Type of nuclei	Binding energy per nucleon/ MeV
$^{235}_{92}U$	7.8
$^{90}_{38}Sr$	8.9
¹⁴³ ₅₄ Xe	9.0

(i) Write down the nuclear equation for the above process.

(ii) Write down the nuclear equation for the above process.

(iii) $\frac{235}{92}$ $\sqrt{1 + 1}$ $\sqrt{1 - 3}$ $\sqrt{1 + 3}$ \sqrt

(ii) Use the values provided in the table to calculate the energy released during this fission process. [2]

£+
$$235(7.8)$$
= $90(8.9) + 143(9.0)$ ##E
Energy released = 255 MeV

The second secon

.

187 7.77 = 100 100 000