Tobit v.s. Quantile Analysis

Carver Coleman

April 1, 2020

Regressions and Correlation Matrices

```
tobit_bias_regression <- lm(Coefficient ~ Alpha + Omega + Cutoff, data = tobit)
summary(tobit_bias_regression)
##
## Call:
## lm(formula = Coefficient ~ Alpha + Omega + Cutoff, data = tobit)
## Residuals:
##
       Min
                  1Q
                     Median
                                   3Q
                                           Max
## -1.68108 -0.09257 0.00007 0.09167 1.46015
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                         0.003904 128.813
## (Intercept) 0.502908
                                             <2e-16 ***
## Alpha
              -0.009167
                          0.000235 -39.008
                                             <2e-16 ***
## Omega
               0.000299
                          0.000235
                                    1.272
                                              0.203
              -0.001002
                          0.004700 -0.213
                                              0.831
## Cutoff
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1946 on 171496 degrees of freedom
## Multiple R-squared: 0.008804,
                                   Adjusted R-squared: 0.008787
## F-statistic: 507.8 on 3 and 171496 DF, p-value: < 2.2e-16
tobit_mse_regression <- lm((Coefficient - .5)^2 ~ Alpha + Omega + Cutoff, data = tobit)
summary(tobit_mse_regression)
##
## Call:
## lm(formula = (Coefficient - 0.5)^2 ~ Alpha + Omega + Cutoff,
      data = tobit)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.09146 -0.03535 -0.00868 0.00997 2.74345
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.494e-03 1.525e-03 -5.571 2.53e-08 ***
              -1.773e-03 9.177e-05 -19.324 < 2e-16 ***
## Alpha
## Omega
               1.511e-02 9.177e-05 164.658 < 2e-16 ***
## Cutoff
              -1.715e-02 1.835e-03 -9.342 < 2e-16 ***
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
##
## Residual standard error: 0.07601 on 171496 degrees of freedom
## Multiple R-squared: 0.1385, Adjusted R-squared: 0.1385
## F-statistic: 9191 on 3 and 171496 DF, p-value: < 2.2e-16
quant_bias_regression <- lm(Coefficient ~ Alpha + Omega + Cutoff, data = quantile)
summary(quant_bias_regression)
##
## Call:
## lm(formula = Coefficient ~ Alpha + Omega + Cutoff, data = quantile)
## Residuals:
##
       Min
                 1Q
                    Median
                                   3Q
## -1.82006 -0.11116 -0.00015 0.11223 1.61460
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.923e-01 4.703e-03 104.678
                                             <2e-16 ***
## Alpha
              7.718e-05 2.831e-04
                                   0.273
                                              0.785
                                              0.360
## Omega
              2.594e-04 2.831e-04
                                   0.916
              7.182e-03 5.662e-03
## Cutoff
                                   1.268
                                              0.205
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2345 on 171496 degrees of freedom
## Multiple R-squared: 1.471e-05, Adjusted R-squared: -2.783e-06
## F-statistic: 0.8409 on 3 and 171496 DF, p-value: 0.4712
quant_mse_regression <- lm((Coefficient - .5)^2 ~ Alpha + Omega + Cutoff, data = quantile)
summary(quant_mse_regression)
##
## Call:
## lm(formula = (Coefficient - 0.5)^2 ~ Alpha + Omega + Cutoff,
##
      data = quantile)
## Residuals:
               1Q Median
                               30
      Min
                                      Max
## -0.1215 -0.0518 -0.0108 0.0127 3.2151
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.888e-02 2.177e-03 -13.266
                                             <2e-16 ***
              -3.761e-05 1.310e-04 -0.287
                                              0.7741
## Alpha
## Omega
               2.190e-02 1.310e-04 167.155
                                              <2e-16 ***
## Cutoff
              -4.679e-03 2.620e-03 -1.785
                                              0.0742 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1085 on 171496 degrees of freedom
## Multiple R-squared: 0.1401, Adjusted R-squared: 0.1401
## F-statistic: 9315 on 3 and 171496 DF, p-value: < 2.2e-16
```

kable(cor(quantile))

	Alpha	Omega	Cutoff	Coefficient
Alpha	1.0000000	0.0000000	0.0000000	0.0006583
Omega	0.0000000	1.0000000	0.0000000	0.0022126
Cutoff	0.0000000	0.0000000	1.0000000	0.0030629
Coefficient	0.0006583	0.0022126	0.0030629	1.0000000

kable(cor(tobit))

	Alpha	Omega	Cutoff	Coefficient
Alpha	1.0000000	0.0000000	0.0000000	-0.0937795
Omega	0.0000000	1.0000000	0.0000000	0.0030588
Cutoff	0.0000000	0.0000000	1.0000000	-0.0005127
Coefficient	-0.0937795	0.0030588	-0.0005127	1.0000000

Graphics:

Change in Alpha with cutoffs greater than or equal to top 75% of data

```
# Calculate subsetted averages
tobit_alpha <- subset(tobit, tobit$Cutoff >= .75)
tob <- tapply(tobit_alpha$Coefficient, tobit_alpha$Alpha, mean)</pre>
quantile_alpha <- subset(quantile, quantile$Cutoff >= .75)
quant <- tapply(quantile_alpha$Coefficient, quantile_alpha$Alpha, mean)
# Create dataframe with bias and MSE
data <- data.frame(-3:3, tob - .5, (tob - .5)^2, "Tobit", row.names = 1:7)
data1 <- data.frame(-3:3, quant - .5, (quant - .5)^2, "Quantile", row.names = 1:nrow(data))
colnames(data) <- c("Alpha", "Bias", "MSE" , "Type")</pre>
colnames(data1) <- colnames(data)</pre>
final <- as.data.frame(rbind(data, data1))</pre>
# Bias graph
jpeg('alpha_bias.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
ggplot(final, aes(x = Alpha, y = Bias, color = Type)) +
 geom_point() +
 geom_path() +
 geom_abline(mapping = aes(slope = 0, intercept = 0)) +
 ylim(-.1, .1) +
 labs(title = "Tobit and Quantile Bias for levels of Skewness",
       subtitle = "Only Cutoffs above 75th percentile")
dev.off()
```

pdf ## 2

```
# MSE graph
jpeg('alpha_mse.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
ggplot(final, aes(x = Alpha, y = MSE, color = Type)) +
  geom point() +
  geom_path() +
  geom_abline(mapping = aes(slope = 0, intercept = 0)) +
 ylim(-.005, .005) +
  labs(title = "Tobit and Quantile MSE for levels of Skewness",
       subtitle = "Only Cutoffs above 75th percentile")
dev.off()
## pdf
## 2
Change in Omega with 75th Percentile and Above and Base Alpha level
# Calculate subsetted averages
tobit_alpha <- subset(tobit, tobit$Cutoff >= .75 & tobit$Alpha == 0)
tob <- tapply(tobit_alpha$Coefficient, tobit_alpha$Omega, mean)</pre>
quantile_alpha <- subset(quantile, quantile$Cutoff >= .75 & quantile$Alpha %in% c(-3,-2,-1))
quant <- tapply(quantile_alpha$Coefficient, quantile_alpha$Omega, mean)
# Create dataframe with bias and MSE
data <- data.frame(1:7, tob - .5, (tob - .5)^2, "Tobit", row.names = 1:nrow(data))
data1 <- data.frame(1:7, quant - .5, (quant - .5)^2, "Quantile", row.names = 1:nrow(data1))</pre>
colnames(data) <- c("Omega", "Bias", "MSE", "Type")</pre>
colnames(data1) <- colnames(data)</pre>
final <- as.data.frame(rbind(data, data1))</pre>
# Bias graph
jpeg('omega_bias.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
ggplot(final, aes(x = Omega, y = Bias, color = Type)) +
 geom point() +
 geom_path() +
  geom_abline(mapping = aes(slope = 0, intercept = 0)) +
 ylim(-.1, .1) +
  labs(title = "Tobit and Quantile Bias for levels of Spread",
       subtitle = "Only Cutoffs above 75th percentile and Base Skewness")
dev.off()
## pdf
##
   2
# MSE graph
jpeg('omega_mse.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
ggplot(final, aes(x = Omega, y = MSE, color = Type)) +
 geom_point() +
  geom_path() +
  geom_abline(mapping = aes(slope = 0, intercept = 0)) +
 ylim(-.0005, .0005) +
 labs(title = "Tobit and Quantile MSE for levels of Spread",
       subtitle = "Only Cutoffs above 75th percentile and Base Skewness")
```

dev.off()

```
## pdf
## 2
```

Change in Cutoff with Base Alpha level

```
# Calculate subsetted averages
tobit_alpha <- subset(tobit, tobit$Alpha == 0)</pre>
tob <- tapply(tobit_alpha$Coefficient, tobit_alpha$Cutoff, mean)
quantile_alpha <- subset(quantile, quantile$Alpha %in% c(-3,-2,-1))
quant <- tapply(quantile_alpha$Coefficient, quantile_alpha$Cutoff, mean)
# Create dataframe with bias and MSE
data <- data.frame(c(.65, .7, .75, .8, .85, .9, .95), tob - .5, (tob - .5)^2, "Tobit",
                   row.names = 1:nrow(data))
data1 <- data.frame(c(.65, .7, .75, .8, .85, .9, .95), quant - .5, (quant - .5)^2, "Quantile",
                    row.names = 1:nrow(data1))
colnames(data) <- c("Cutoff", "Bias", "MSE", "Type")</pre>
colnames(data1) <- colnames(data)</pre>
final <- as.data.frame(rbind(data, data1))</pre>
# Bias graph
jpeg('cutoff_bias.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
ggplot(final, aes(x = Cutoff, y = Bias, color = Type)) +
 geom_point() +
  geom_path() +
 geom_abline(mapping = aes(slope = 0, intercept = 0)) +
 vlim(-.1, .1) +
 labs(title = "Tobit and Quantile Bias for Percentile Cutoff Levels",
       subtitle = "Only Base Skewness")
dev.off()
## pdf
##
   2
# MSE graph
jpeg('cutoff_mse.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
ggplot(final, aes(x = Cutoff, y = MSE, color = Type)) +
 geom_point() +
  geom_path() +
 geom_abline(mapping = aes(slope = 0, intercept = 0)) +
 ylim(-.0005, .0005) +
  labs(title = "Tobit and Quantile MSE for Percentile Cutoff Levels",
       subtitle = "Only Base Skewness")
dev.off()
## pdf
##
quantile <- data.frame(quantile, "Type" = "Quantile")</pre>
tobit <- data.frame(tobit, "Type" = "Tobit")</pre>
final_data <- as.data.frame(rbind(quantile, tobit))</pre>
```

```
jpeg('density.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
ggplot(final_data, aes(x = Coefficient - .5, color = Type)) +
  geom_density() +
  xlim(-5,5) +
  xlab("Bias") +
  labs(title = "Bias Density of Tobit v.s. Quantile Coefficients")
dev.off()
## pdf
##
# quant <- read.csv("quantile_accuracy.csv")</pre>
# mean(quant$Difference < .5)</pre>
# tapply(quant$Difference[quant$Cutoff <= 0.65], quant$Alpha[quant$Cutoff <= .65], mean)</pre>
# jpeg('density_quant.jpg', quality = 100, width = 12, height = 8, units = "in", res = 300)
\# ggplot(quant, aes(x = Difference)) +
  geom_density() +
# xlim(0,1) +
# xlab("Bias") +
  geom_vline(aes(xintercept = .5, color = "red")) +
# labs(title = "Bias Density of Tobit v.s. Quantile Coefficients") +
# theme(legend.position = "none")
# dev.off()
```