This file was provided by: Muath Alghamdi

April Camp - Level 3,4.

Topic 10.

NUMBER THEORY 1

Phi-function $\varphi(n)$ = number of positive integers not bigger than n and coprime to n.

If n = p is a prime then $\varphi(p^a) = p^a - p^{a-1}$ and $\varphi(mn) = \varphi(m)\varphi(n)$ for $\gcd(m,n) = 1$. So

$$\varphi(p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}) = (p_1^{a_1} - p_1^{a_1-1}) \cdots (p_k^{a_k} - p_k^{a_k-1}).$$

<u>Euler theorem</u>: $a^{\varphi(n)} \equiv 1 \pmod{n}$ for integer n > 1 and gcd(a, n) = 1.

Problem 1.

- a) Find all positive integers n such that $\varphi(n) = 2$.
- b) Find all positive integers n such that $\varphi(n) = 2p$ for odd prime p > 3.

Problem 2.

- a) Prove that the equation $\varphi(x) = 2 \cdot 3^{6k+1}$ for $k \in \mathbb{Z}^+$ has exactly two solutions x.
- b) Prove that $\varphi(a^n+b^n)$ is divisible by 2n for any two coprime numbers $a,b\in\mathbb{Z}^+$.

Problem 3.

For a,b are two coprime integers and a > b > 1, consider the sequence

$$u_n = \varphi(a^{2n-1} + b^{2n-1})$$
 for $n = 1, 2, 3, ...$

- a) Prove that the number $u_1u_2...u_{1009}$ is divisible by $\frac{2018!}{1009!}$.
- b) Suppose that for some fix prime $\,p>3$, the number $\,2\,p\,$ appears in this sequence. Find all possible values of the sum $\,a+b$.

Problem 4.

For positive integer n > 1, suppose that $\varphi(n) \mid n-1$ and n is composite. Prove that n is square-free number and it has at least 3 distinct prime divisor.

Problem 5.

Suppose that for some n > 1, the number $1^{\varphi(n)} + 2^{\varphi(n)} + \cdots + n^{\varphi(n)}$ is divisible by n. Prove that n is square-free and find all such number n with no more than 3 prime divisors.

Problem 6.

Find all positive integers n such that $n^2 + 3$ is divisible by $\varphi(n)$.