CAD for VLSI

Binding

Outline

- Motivation and problem formulation
- ☐ Flat and hierarchical graphs
- Functional and memory resources
- Extension to module selection
- Data path generation
- Control synthesis

Allocation and Binding

- Allocation:
 - Number of resources available
- ☐ Binding:
 - Relation between operations and resources
- ☐ Sharing:
 - Many-to-one relation
- ☐ Optimum binding/sharing:
 - Minimize the resource usage

Binding

- ☐ Limiting cases:
 - Dedicated resources
 - One resource per operation
 - No sharing
 - One multi-task resource
 - ALU
 - One resource per type

Optimum Sharing Problem

- □ Scheduled sequencing graphs
 - Operation concurrency well defined
- ☐ Consider *operation types* independently
 - Problem decomposition
 - Perform analysis for each resource type

Compatibility and Conflicts

- Operation compatibility:
 - Same type
 - Non-concurrent

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x-y	3	4
t3	z=a+t		5	

- ☐ *Compatibility* graph:
 - Vertices: operations
 - Edges: compatibility relation
- ☐ *Conflict* graph:
 - Complement of compatibility graph

Compatibility graph

Conflict graph

(5)

Clique

□ Clique

 A clique in an undirected graph G is a subset of vertices V' such that each pair of the vertices is connected by an edge. (i.e. a clique is a complete subgraph of G)

Independent Set

- ☐ Independent set (stable set)
 - An independent set of a graph G is a subset of vertices V' such that any two vertices are not connected to each other.

Graph Terminologies

- \square Clique number $\omega(G)$: the cardinality of the largest clique (maximum clique)
- \square Clique cover number $\kappa(G)$: the cardinality of a minimum clique cover
- \square Stability number $\alpha(G)$: The cardinality of the largest stable set (independent set)
- \Box Chromatic number $\chi(G)$: The smallest number that can be the cardinality of stable set partition

Example

- \Box Clique number $\omega(G)$
- \square Clique cover number $\kappa(G)$
- \Box Stability number $\alpha(G)$
- \Box Chromatic number $\chi(G)$

Graph Properties

- \square $\omega(G) \le \chi(G)$: clique number \le chromatic number
- \square $\alpha(G) \le \kappa(G)$: stability number \le clique cover number
- ☐ Perfect graph: "=" holds

Compatibility and Conflicts

- Operation compatibility:
 - Same type
 - Non concurrent

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x-y	3	4
t3	z=a+t		5	

- ☐ *Compatibility* graph:
 - Vertices: operations
 - Edges: compatibility relation
- ☐ *Conflict* graph:
 - Complement of compatibility graph

Compatibility graph

Conflict graph

Compatibility and Conflicts

- ☐ Compatibility graph:
 - Partition the graph into a minimum number of cliques
 - Find clique cover number $\kappa(G_+)$
- ☐ Conflict graph:
 - Color the vertices by a minimum number of colors
 - Find the chromatic number $\chi(G_{-})$
- NP-complete problems:
 - Heuristic algorithms

Example

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x-y	3	4
t3	z=a+t		5	

Conflict

Compatibility

Coloring

ALU1: 1,3,5 ALU2: 2,4

Partitioning (Clique covering)

Special Perfect Graphs

- ☐ Comparability graph:
 - Graph G (V, E) has an orientation G (V, F) with the transitive property

$$(v_i, v_j) \in F$$
 and $(v_j, v_k) \in F \rightarrow (v_i, v_k) \in F$

- ☐ Interval graph:
 - Vertices correspond to intervals
 - Edges correspond to interval intersection
 - Subset of chordal graphs
 - Every loop with more than three edged has a chord

Data-flow Graphs

- □ The compatibility/conflict graphs have special properties:
 - Compatibility
 - Comparability graph
 - Conflict
 - Interval graph
- □ Polynomial time solutions:
 - Golumbic's algorithm
 - Left-edge algorithm

Comparability Graph Example

Interval Graph Example

Left-edge Algorithm

- ☐ Input:
 - Set of intervals with left and right edge
 - A set of colors (initially one color)
- ☐ Rationale:
 - Sort intervals in a list by left edge
 - Assign non overlapping intervals to first color using the list
 - When possible intervals are exhausted, increase color counter and repeat

Left-edge Algorithm

```
LEFT_EDGE(I) {
     Sort elements of I in a list L in ascending order of I;
     c = 0;
     while (some interval has not been colored) do {
          S = \emptyset;
          r = 0;
          while ( exists s \in L such that I_s > r) do {
                    s = First element in the list L with <math>I_s > r,
                    S = S \cup \{s\};
                    r=r_{s}
                    Delete s from L;
          c = c + 1;
          Label elements of S with color c:
```

Example

Conflict graph

Colored conflict graph

0 1 2 3 4 5 6 7 8

Coloring

ILP Formulation of Binding

- \Box Boolean variable b_{ir}
 - Operation i bound to resource r
- □ Boolean variables x_{ii}
 - Operation i scheduled to start at step I

$$\sum_{r} b_{ir} = 1$$
 for all operations i

$$\sum_{i} b_{ir} \sum_{m=l-di+1..l} x_{im} \le 1$$
 for all steps l and resources r

Hierarchical Sequencing Graphs

- ☐ Hierarchical conflict/compatibility graphs:
 - Easy to compute
 - Prevent sharing across hierarchy
- ☐ Flattened hierarchy:
 - Bigger graphs
 - Destroy nice properties

Example of Multiple Calls

Multiple calls of "a"
(a)

Not an interval graph

(b)

Non-chordal conflict graph (c)

Example of Branching

(a)

Execution intervals

(b)

c and d are compatible→ Non-chordal conflict graph

(c)

Register Binding Problem

- ☐ Given a schedule:
 - Lifetime intervals for variables
 - Lifetime overlaps
- □ Conflict graph (interval graph):
 - Vertices ↔ variables
 - Edges ↔ overlaps
 - Interval graph
- ☐ Compatibility graph (comparability graph):
 - Complement of conflict graph

Register Sharing in Data-flow Graphs

- ☐ Given:
 - Variable lifetime conflict graph
- ☐ Find:
 - Minimum number of registers storing all the variables
- □ Key point:
 - Interval graph
 - Left-edge algorithm (polynomial-time complexity)

Example of DFG

(b)

(c)

Register Sharing General Case

- ☐ Iterative conflicts:
 - Preserve values across iterations
 - Circular-arc conflict graph
 - Coloring is intractable
- ☐ Hierarchical graphs:
 - General conflict graphs
 - Coloring is intractable
- ☐ Heuristic algorithms

Example of General Case

Lecture04 CAD Slide 30

Example Variable-lifetimes and Circular-arc Conflict Graph

Multi-port Memory Binding

- ☐ Assume memory is large enough to hold all data
- ☐ Find *minimum number* of ports to access the required number of variables
- ☐ Variables use the same port (fixed port):
 - Port compatibility/conflict
 - Similar to resource binding
- ☐ Variables can use any port (dynamic port):
 - Decision variable x_{il} is TRUE when variable i is accessed at step I
 - Optimum: max $\sum_{i=1..n_{var}} X_{il}$ s.t. $1 \le l \le \lambda + 1$

Multi-port Memory Binding

- ☐ Find max number of variables to be stored through a fixed number of ports *a*
 - Boolean variables { b_i , $i = 1, 2, ..., n_{var}$ }:
 - Variable with $b_i = 1$ will be stored in memory $\max \sum_{i=1...n_{var}} b_i$ such that

$$\sum_{i=1..n_{var}} b_i x_{il} \le a$$
 $I = 1, 2, ..., \lambda + 1$

Example – Dynamic Port

```
Time – step 1 : r_3 = r_1 + r_2; r_{12} = r_1

Time – step 2 : r_5 = r_3 + r_4; r_7 = r_3 * r_6; r_{13} = r_3

Time – step 3 : r_8 = r_3 + r_5; r_9 = r_1 + r_7; r_{11} = r_{10} / r_5

Time – step 4 : r_{14} = r_{11} & r_8; r_{15} = r_{12} | r_9

Time – step 5 : r_1 = r_{14}; r_2 = r_{15}
```

 $\max \sum_{i=1}^{\infty} b_i$ such that

$$b_1 + b_2 + b_3 + b_{12} \le a$$

$$b_3 + b_4 + b_5 + b_6 + b_7 + b_{13} \le a$$

$$b_1 + b_3 + b_5 + b_7 + b_8 + b_9 + b_{10} + b_{11} \le a$$

$$b_8 + b_9 + b_{11} + b_{12} + b_{14} + b_{15} \le a$$

$$b_1 + b_2 + b_{14} + b_{15} \le a$$

Example - Dynamic Port

- \Box One port a = 1:
 - { b₂, b₄, b₈ } non-zero
 - 3 variables stored: V₂, V₄, V₈
- \Box Two ports a = 2:
 - 6 variables stored: V2, V4, V5, V10, V12, V14
- \Box Three ports a = 3:
 - 9 variables stored: v_1 , v_2 , v_4 , v_6 , v_8 , v_{10} , v_{12} , v_{13} , v_{14}

Bus Sharing and Binding

- ☐ Find the *minimum number of busses* to accommodate all data transfer
- ☐ Find the *maximum number of data transfers* for a fixed number of busses
- ☐ Similar to multi-port memory binding problem
- □ ILP formulation or heuristic algorithms

Example

- ☐ One bus:
 - 3 variables can be transferred
- ☐ Two busses:
 - All variables can be transferred

Module Selection Problem

- Extension of resource sharing
 - Library of resources
 - More than one resource per type
- □ Example:
 - Ripple-carry adder
 - Carry-look-ahead adder
- ☐ Resource modeling:
 - Resource subtypes with
 - (area, delay) parameters

Module Selection Solution

- ☐ ILP formulation:
 - Decision variables
 - Select resource sub-type
 - Determine (area, delay)
- ☐ Heuristic algorithm
 - Determine *minimum latency* with fastest resource subtypes
 - Recover area by using slower resources on noncritical paths

Example – Module Selection

- Multipliers with:
 - (Area, delay) = (5,1) and (2,2)
- Latency bound of 5

Example – Module Selection

- Latency bound of 4
 - Fast multipliers for $\{v_1, v_2, v_3\}$
 - Slower multiplier can be used elsewhere
 - Less sharing
- Minimum-latency design uses fast multipliers only
 - Impossible to use slow multipliers

Data Path Synthesis

- Applied after resource binding
- ☐ Connectivity synthesis:
 - Connection of resources to multiplexers busses and registers
 - Control unit interface
 - I/O ports
- Physical data path synthesis
 - Specific techniques for regular datapath design
 - Regularity extraction

Example – Data Path

DATA-PATH

CONTROL-UNIT

Control Synthesis

- ☐ Synthesis of the control unit
- ☐ Logic model:
 - Synchronous FSM
- □ Physical implementation:
 - Hard-wired or distributed FSM
 - Microcode

Summary

- □ Resource sharing is reducible to vertex coloring or to clique covering:
 - Simple for flattened graphs
 - Intractable for imperfect graphs, but still easy in practice
 - Resource sharing has several extensions:
 - Module selection
- Data path design and control synthesis are conceptually simple but still important steps
 - Generated data paths are interconnections of blocks
 - Control is one or more finite-state machines

