BENZOFURAN DERIVATIVE AND MEDICINE COMPOSITION CONTAINING IT

Patent number:

JP9124631

Publication date:

1997-05-13

Inventor:

TAKASHIMA JUNKO; UCHIDA AKIKO; MIYAJIMA KAZUTAMA; TAKAYANAGI HISA

HITOAKI; TOU TOMIYASU; KIYO SEIEN; OU CHIYOUTAI

Applicant:

SENSEISHIYOU CHIYUUIYAKU KENKI;; MITSUBISHI CHEM CORP

Classification:

- international:

C07D307/79; A61K31/495; C07D307/81

- european:

Application number: JP19940011935 19940203 **Priority number(s):** JP19940011935 19940203

Abstract not available for JP9124631

Br 3 Ou

Br CH₂CH(OEt)₂

Ri a

CO₂H

Π

H

W

١

Requested Patent:

JP9124631A

Title:

BENZOFURAN DERIVATIVE AND MEDICINE COMPOSITION CONTAINING IT

Abstracted Patent:

JP9124631;

Publication Date:

1997-05-13;

Inventor(s):

TAKASHIMA JUNKO; UCHIDA AKIKO; MIYAJIMA KAZUTAMA; TAKAYANAGI HISAO; SHIYA HITOAKI; TOU TOMIYASU; KIYO SEIEN; OU CHIYOUTAI ;

Applicant(s):

SENSEISHIYOU CHIYUUIYAKU KENKI; MITSUBISHI CHEM CORP;

Application Number:

JP19940011935 19940203;

Priority Number(s):

JP19940011935 19940203;

IPC Classification:

C07D307/79; A61K31/495; C07D307/81;

Equivalents:

ABSTRACT:

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-124631

(43)公開日 平成9年(1997)5月13日

(51) Int.Cl. ⁶	識別記号	庁内整理書号	F I					技術表示箇所	
C 0 7 D 307/79	9		C 0 7 D 307/79						
A61K 31/49	5 ABN	ABN		A 6 1 K 31/495			ABN	ABN	
	ABS						ABS		
	ABU		•				ABU		
	ADN	·					ADN		
		審査請求	未請求	前求項	の数8	OL	(全 14 頁)	最終頁に続く	
(21) 出願番号	特膜平 6-11935		(71)出題人		592043	942			
					陝西省	中医薬	研究院	•	
(22) 出版日	平成6年(1994)2	平成6年(1994)2月3日			中華人	民共和	国陕西省西安	市臺湖区西華門	
					20 13				
			(71)	出職人	000005	968		•	
	•		1		三菱化	学株式	会社		
					東京都	千代田	区丸の内二丁	目5番2号	
	•	•	(72)	発明者	高端	纯子			
	•				神奈川	県横浜	市縁区鳴志田	町1000番地三菱	
					化成株	式会社	総合研究所内	•	
			(74)	代理人	弁理士	進山	勉 (外2	名)	
				٠					
								最終頁に続く	

(54) 【発明の名称】 ペンゾフラン誘導体及びそれを含む医薬組成物

(57)【要約】

【目的】 新規なベンゾフラン誘導体及びこの誘導体を 有効成分として含む医薬組成物、特に高脂質低下性抗高 血圧剤を提供する。 【構成】 一般式(I)で示されるベンゾフラン誘導体 及びその薬学的に許容される塩を医薬組成物の有効成分 とする。

【化1】

(式中、 R^1 は水素原子、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $N'-C_1 \sim C_6$ アルキルカルボヒドラゾノメチル基を表し、Xは水素原子、ハロゲン原子、 C_1

 \sim C $_6$ のアルキル基、又はC $_1$ \sim C $_6$ のアルコキシ基を表し、また $_1$ は $_0$ \sim 1 $_0$ の整数を表す。)

【特許請求の範囲】

【請求項1】 一般式(1)で示されるベンゾフラン誘

導体及びその薬学的に許容される塩。 【化1】

$$X \longrightarrow \mathbb{N} + CH_2 + \mathbb{C} \xrightarrow{5} \frac{4}{6} \xrightarrow{3} \mathbb{R}^1 \qquad (I)$$

(式中、 R^1 は水素原子、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $N^1 - C_1 \sim C_6$ アルキルカルボヒドラゾノメチル基を表し、Xは水素原子、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $C_1 \sim C_6$ のアルコキシ基を表し、またnは $0 \sim 10$ の整数を表す。)

【請求項2】 R^1 がベンゾフラン環の4-、5-、6-、Xは7-位に置換し、水素原子、ハロゲン原子、又は C_1 $\sim C_6$ のアルキル基を表すことを特徴とする請求項1記載の化合物。

【請求項3】 R^1 がベンゾフラン環の2-又は3-位に置換し、 $N^2-C_1\sim C_6$ アルキルカルボヒドラゾノメチル基を表すことを特徴とする請求項1記載の化合物。

【請求項4】 R¹がベンゾフラン環の2-位に置換していることを特徴とする請求項3記載の化合物。

【請求項5】 nが0~2の整数を表すことを特徴とする請求項1~4のいずれか1項に記載の化合物。

【請求項6】 nが0又は2であることを特徴とする請求項1~4のいずれか1項に記載の化合物。

【請求項7】 請求項1に記載の一般式(I)で示されるベンゾフラン誘導体又はその薬学的に許容される塩を有効成分として含む医薬組成物。

【請求項8】 医薬組成物が脂質低下性抗高血圧剤として使用される請求項7の医薬組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、新規なベンゾフラン誘導体、及びそれを含む医薬組成物、詳しくは脂質低下性抗高血圧剤に関する。

[0002]

【従来の技術】ベンゾフラン誘導体を有効成分とする循環器用医薬の開発は、従来より種々行われている。その中でも、4-フェニルピペラジニル基を有するベンゾフラン誘導体系抗高血圧剤(降圧剤)に関しては、いくつかの報告がある。

【0003】例えば、特開昭60-202872号、特開昭61-218582号等には、α-遮断作用及びCa拮抗作用を有する抗高血圧剤として下記化2の一般式で示されるベンゾフラン誘導体が記載されている。

[0004]

【化2】

【0005】(式中、Rはアセチル基、カルバモイル

基、シアノ基、低級アルコキシカルボニル基、カルボキシル基、又は1-ヒドロキシエチル基を表し、Yは水素原子、低級アルコキシ基、低級アルキル基、又はハロゲン原子を表す。)

また特開昭64-70480号にも4-フェニルピペラ ジニル基を有するケリノン誘導体を含むベンゾフラン誘 導体がCa拮抗作用を有する抗高血圧剤として記載され ている。

【0006】高血圧は、循環系疾病の重要な危険因子であるが、現在、例えば上記のような種々の抗高血圧剤の 開発により、高血圧患者の血圧を下げることは比較的容易になっている。しかし、抗高血圧剤の投与を行って も、心筋梗塞や突然死に至る率はあまり改善されていないのが現状である。

【0007】従ってこれらの率を改善できる抗高血圧剤の開発が特たれていた。一方、本発明化合物に類似した化合物としては、例えば中枢作用を有する物質として、Indian J.Chem., Sect.B, 28B(5), 385(1989)又はActa. Pol. Pharm.,44(6),497(1987)にベンゾフラン環の2ー又は3-位、即ちフラン環側にωー(4ーフェニルピペラジニル)アシル側鎖を有する化合物がいくつか知られているが、4ー、5ー、6ー、又は7-位、即ちベンゼン環側にωー(4ーフェニルピペラジニル)アシル側鎖を有する化合物は知られていない。

[8000]

【発明が解決しようとする課題】本発明は、上記観点からなされたものであり、心筋梗塞や突然死に至る率を改善し得る医薬、特に抗高血圧剤として有効に利用可能な、ベンゼン環側にωー(4ーフェニルピペラジニル)アシル側鎖を有する新規なベンゾフラン誘導体を提供することを課題とする。

[0009]

【課題を解決するための手段】本発明者らは心筋梗塞や突然死に至る率を改善するには脂質低下作用を併せ持った抗高血圧剤の開発が必要であることに注目し、従来より抗高血圧剤として知られているベンゾフラン誘導体について改良研究を重ねた結果、ベンゾフラン環のベンゼン環側、即ち4-、5-、6-、又は7-位にω-(4-フェニルビペラジニル)アシル側鎖を有する新規なベンゾフラン誘導体が、従来の例えばベンゾフラン環のフラン環側、即ち2-又は3-位にω-(4-フェニルピペラジニル)アシル側鎖を有するベンゾフラン誘導体系抗高血圧剤には全く見られなかった脂質低下作用を併せ持つことを見出し、本発明を完成した。

【0010】即ち本発明は、下記一般式(1)で示されるベンゾフラン誘導体及びその薬学的に許容される塩を提供するものである。

【0011】 【化3】

$$X = \frac{1}{100} + CH_2 + \frac{1}{100} + \frac{5}{100} + \frac{3}{100} + \frac{3}{$$

【0012】(式中、 R^1 は水素原子、Nロゲン原子、 $C_1 \sim C_6$ のアルキル基、Xは $N' - C_1 \sim C_6$ アルキルカルボヒドラゾノメチル基を表し、Xは水素原子、Nロゲン原子、 $C_1 \sim C_6$ のアルキル基、Xは $C_1 \sim C_6$ のアルコキシ基を表し、またnは $0 \sim 10$ の整数を表す。)本発明はまた、前記一般式(I)で示されるベンゾフラン誘導体又はその薬学的に許容される塩を有効成分として含む、特に脂質低下性抗高血圧剤として有用な医薬組成物を提供するものである。

【0013】以下、本発明を詳細に説明する。本発明のベンゾフラン誘導体は上記一般式(I)で示される化合物であるが、一般式(I)の置換基R¹; Xが結合する基等の詳細は次の通りである。

【0014】<置換基 R^1 について> R^1 は水素原子、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $N' - C_1 \sim C_6$ アルキルカルボヒドラゾノメチル基を表すが、中でも水素原子、ハロゲン原子、又は $N' - C_1 \sim C_6$ アルキルカルボヒドラゾノメチル基が好ましい。

【0015】なお、 R^1 が水素原子、ハロゲン原子、又は $C_1 \sim C_6$ のアルキル基である場合は、ベンゾフラン環のベンゼン環側、つまりベンゾフラン環の4-、5-、6-、又は7-位に置換していることが好ましい。また、 R^1 が $N^*-C_1 \sim C_6$ アルキルカルボヒドラゾノメチル基 [-CH= $NNHCOR^2$ (R^2 は $C_1 \sim C_6$ のアルキル基)で示される。]である場合はベンゾフラン環のフラン環側、つまりベンゾフラン環の2-又は3-位に置換していることが好ましく、更に、ベンゾフラン環の2-位に置換していることがより好ましい。

【0016】R¹がハロゲン原子である場合、ハロゲン原子としては塩素原子、臭素原子、又は弗素原子のいずれでもよいが、中でも塩素原子が好ましい。R¹がC¹~C⁵のアルキル基である場合、このアルキル基としては、メチル基、エチル基、nープロピル基、iープロピル基、nーブチル基、secーブチル基、tertーブチル基、nーペンチル基、nーヘキシル基等が挙げられる。

【0017】 R^1 が N^1 - C_1 ~ C_6 アルキルカルボヒドラゾノメチル基である場合、この C_1 ~ C_6 のアルキル基としては、 R^1 の場合と同様、メチル基、エチル基、ロープロビル基、i-プロビル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。

【0018】 <置換基Xについて>Xがハロゲン原子で

ある場合、ハロゲン原子としては塩素原子、臭素原子、 又は弗素原子のいずれでもよいが、中でも塩素原子が好ましい。

【0019】Xが $C_1 \sim C_6$ のアルキル基である場合、このアルキル基としては、メチル基、エチル基、n-プロビル基、i-プロビル基、n-プチル基、sec-プチル基、tert-プチル基、n-ペンチル基、n-ペキシル基等が挙げられる。

【0020】Xが $C_1 \sim C_6$ のアルコキシ基である場合、この $C_1 \sim C_6$ アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ベントキシ基、n-ベントキシ基、n-ベントキシ基、n-

【0021】またXは、ピペラジニル基に対してoー、mー、又はpー位のいずれに置換していてもよいが、中でもo一位に置換していることが好ましい。nは0~10の整数であるが、好ましくは0、1又は2、更に好ましくは0又は2である。

【0022】なお、Xが結合する置換基、即ち下記化4のピペラジニルカルボニル基は、ベンゾフラン環の4-、5-、6-、又は7-位のいずれの位置に置換していてもよいが、中でも5-位又は7-位に置換していることが好ましい。

[0023]

【化4】

【0024】本発明において、一般式(1)で示される ベンゾフラン誘導体の塩は、医薬として許容し得る鉱酸 又は有機酸の塩であり、例えば塩酸塩、硫酸塩、硝酸 塩、酢酸塩、蓚酸塩、酒石酸塩、くえん酸塩、乳酸塩等 が挙げられる。

【0025】本発明の一般式(I)で示されるベンゾフラン誘導体は、例えば次のような方法A~Dで製造することができる。なお、各方法には、反応に直接関与する反応剤の使用量については特に説明していないが、いずれも化学量論量である。

【0026】<一般式(I)の化合物の製造方法> (1)方法A:この方法は下記化5に示されるように、 ブロモフェノール(II)とブロモアセトアルデヒドジエ チルアセタール(III)とをアルカリ条件下で反応さ せ、この反応物を環化してプロモベンゾフラン(IV)とし、このプロモベンゾフランのプロモ基をシアノ基に変換してシアノベンゾフラン(V)とし、次いでこれを加水分解してカルボン酸(VI)とし、最後にこのカルボン

酸をN-フェニルピペラジンと縮合させて目的化合物 (VII)を得る方法である。 【0027】 【化5】

$$\begin{array}{c} R_{1} \stackrel{5}{\stackrel{5}{\stackrel{6}{\longrightarrow}}} \stackrel{6}{\stackrel{6}{\longrightarrow}} + BrCH_{2}CH(OEt)_{2} & - \stackrel{8}{\stackrel{5}{\stackrel{6}{\longrightarrow}}} \stackrel{7}{\stackrel{7}{\nearrow}} \stackrel{7}{\nearrow} \stackrel$$

【0028】(式中、 R^1 は水素原子、ハロゲン原子、 又は $C_1 \sim C_6$ のアルキル基を表し、Xは水素原子、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $C_1 \sim C_6$ のアルコキシ基を表す。)

この方法では、まずブロモベンゾフラン (IV) は次の2 つの段階を経て製造される。

【0029】第一段階では、ブロモフェノール (II) を ブロモアセトアルデヒドジエチルアセタール (III) と 反応させてアセタール化する。この反応は、通常、有機 溶媒中、塩基の存在下に行われる。ここで使用される塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ントリウム、炭酸カリウム、水素化ナトリウム、トリエチルアミン等が挙げられる。また、有機溶媒 としては、例えばアセトニトリル、テトラヒドロフラン、ジオキサン、N, Nージメチルホルムアミド、ジメチルスルホキシド、アセトン、メチルエチルケトン、エタノール等が挙げられる。

【0030】第一段階の反応温度及び反応時間は特に制限されず、通常、米冷から還流までの任意の温度で15分~24時間程度反応させればよい。この反応生成物は、通常の処理手段、例えば溶媒による抽出、クロマトグラフィーによる分離、結晶化、蒸留等を行って単離又は精製した後、次の反応に使用する。なお、特に記載しないが、以下の工程又は段階で得られる反応生成物は同様な処理手段で単離又は精製するものとする(方法B~Dについても同様)。

【0031】第二段階では、得られた反応生成物(アセタール)を適当な有機溶媒中又はニートで、酸触媒の存在下、環化する。有機溶媒としては、通常、例えばベンゼン、トルエン、キシレン等が使用される。

【0032】第二段階の反応温度及び反応時間は特に制

限されず、通常、氷冷から300℃までの任意の温度で 15分~24時間程度反応させればよい。次にシアノベ ンゾフラン (V)は、このブロモベンゾフラン (IV)と 金属シアン化合物とを適当な有機溶媒中又はニートで反 応させて得られる。ここで金属シアン化合物としては、 例えばシアン化カリウム、シアン化ナトリウム、シアン 化銅等が挙げられるが、中でもシアン化銅が好ましい。 有機溶媒としては、例えばヒリジン、キノリン、N、N ージメチルホルムアミド、N-メチルピロリドン、ヘキ サメチルホスホルアミド (HMPA)等が使用できる。 【0033】この工程での反応温度及び反応時間は特に 制限されず、通常、氷冷から300℃までの任意の温度 で15分~24時間程度反応させればよい。次に、カル ボン酸 (VI) は、このシアノベンゾフラン (V) を酸又 はアルカリで加水分解して得られる。ここで使用される 酸としては、例えば塩酸、臭化水素酸、硫酸、硝酸、酢 酸、蟻酸等が、またアルカリとしては、例えば水酸化ナ トリウム、水酸化カリウム、水酸化バリウム等が挙げら れる。これらの酸又はアルカリは水、低級アルコール (メタノール、エタノール、イソプロパノール、プロバ ノール等)、ジオキサン、テトラヒドロフラン、有機酸 (但し、酸加水分解の場合、例えばカルボン酸、スルホ ン酸等) 及びそれらの混合物等の溶媒に溶解して使用す

【0034】この工程での反応温度及び反応時間は特に制限されず、通常、氷冷から還流までの任意の温度で15分~24時間程度反応させればよい。最後の目的化合物である4-フェニルピペラジニルカルボニルベンゾフラン(VII)は、このカルボン酸(VI)とN-フェニルピペラジンとを縮合させて得られる。

【0035】この縮合反応は、カルボン酸 (VI) をいっ

た人酸塩化物、酸無水物、エステル、アミド等のカルボン酸誘導体に導いてから、アミンと反応させるか、或は 直接アミンと脱水反応させることにより、行われる。

【0036】(2)方法B:この方法は下記化6に示されるように、ブロモサリチルアルデヒド(VIII)とジエチルブロモマロネート(IX)とをアルカリ条件下で反応させ、次いで加水分解してブロモベンゾフランカルボン

酸(X)を得た後、このカルボン酸のプロモ基をシアノ 基に変換し、更に脱炭酸してシアノ化合物(XI)とし、 次にこれを方法Aの最終工程と同様な方法で、方法Aと 同じ目的化合物(VII)を得る方法である。

【0037】 【化6】

【0038】(式中、 R^1 は水素原子、ハロゲン原子、 又は $C_1 \sim C_6$ のアルキル基を表し、Xは水素原子、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $C_1 \sim C_6$ のアルコキシ基を表す。)

この方法では、まずカルボン酸(X)はブロモサリチルアルデヒド(VIII)とジエチルブロモマロネート(IX)とを通常、有機溶媒中、塩基の存在下に反応させた後、この反応物(カルボン酸エステル)を加水分解して得られる。ここで使用される塩基、有機溶媒、及び反応条件は方法Aにおける最初の工程(ブロモベンゾフラン(IV)の製造工程)の第一段階(ブロモフェノールとブロモアセトアルデヒドジエチルエーテルとの反応)と同じてよい。

【0039】次に、このカルボン酸エステルを酸又はアルカリで加水分解してカルボン酸(X)とする。この加水分解反応で使用される酸又はアルカリ、溶媒、及び反応条件は前記方法Aの加水分解反応の場合と同様でよい。

【0040】次にシアノベンゾフラン(V)は、このブロモベンゾフランカルボン酸(X)を前記方法Aのブロモ体(IV)からシアノ体(V)への変換反応と同様な方法で製造することができる。但し、方法Bの場合の変換反応では同時に脱炭酸反応が起こり、目的のシアノ体(V)が得られる。方法Bの変換反応で使用される金属シアノ化合物、有機溶媒、及び反応条件は方法Aの場合

と同様でよい。

【0041】最終目的化合物(VII)を得るまでのその後の工程は、方法Aのシアノベンゾフラン(V)の加水分解反応によるベンゾフランカルボン酸(VI)の製造工程及びこのカルボン酸(VI)とNーフェニルピペラジンとの縮合反応による4-フェニルピペラジニルカルボニルベンゾフラン(VII)の製造工程と同様な方法で行なわれる。

【0042】(3)方法C:この方法は下記化7に示されるように、ブロモサリチルアルデヒド(VIII)とジエチルブロモマロネート(IX)とをアルカリ条件下で反応させ、得られたベンゾフランー2ーカルボン酸エチル(XI)のブロモ基をシアノ基に変換してシアノ化合物(XII)とし、この化合物の2一位のカルボン酸エステルを2ーアルデヒド体(XIII)に誘導し、次いでエチレングリコール等でアセタール化してアセタール体(XIV)としてから、シアノ基を加水分解してカルボン酸(XIV)とし、これをNーフェニルビベラジンでアミド化してアミド体(XV)とし、次いでこのアミド体のアセタール基を加水分解してアルデヒド体(XVI)とした後、適当なヒドラジン化合物で目的化合物のヒドラジド(XVI)を得る方法である。

【0043】 【化7】

$$(VIII) \qquad (IX) \qquad (XII)$$

$$(VIII) \qquad (IX) \qquad (XII)$$

$$(VIII) \qquad (IX) \qquad (XIII)$$

$$(VIII) \qquad (XIII)$$

$$(XIII) \qquad (XIIV)$$

$$(XIV) \qquad (XVII)$$

$$(XVII) \qquad (XVIII)$$

【0044】(式中、R²はC₁~C6のアルキル基を表し、Xは水素原子、ハロゲン原子、C1~C6のアルキル基、又はC1~C6のアルコキシ基を表し、またZは各々置換してもよいエチレン又はプロピレン鎖を表す。)この方法で第一工程の環化及び加水分解は、方法Bの第一工程(プロモベンゾフランカルボン酸(X)の製造工程)と同様な方法で行うことができる。また第二工程のシアノ化は、方法A及びBで述べたプロモ基のシアノ基への変換工程と同様な方法で行うことができる。

【0045】こうして得られた2-カルボン酸エステル (XII)は、下記のような通常の方法で2-アルデヒド 体(XIII)に誘導することができる。例えば、エステル (XII)を、① 金属水素化物で金属アルコキシドに還 元した後、加水分解して直接アルデヒド (XIII) とする か、② いったん金属水素化物でアルコールに還元した 後、アルデヒド (XIII) に酸化するか、或は30 カルボ ン酸に加水分解してから、金属水素化物でアルコールに 還元し、更にアルデヒド (XIII) に酸化することができ る。ここで使用される金属水素化物としては、例えば水 素化アルミニウムリチウム、水素化アルミニウムナトリ ウム、トリメトキシ水素化アルミニウムリチウム、トリ エトキシ水素化アルミニウムリチウム、水素化アルミニ ウム等が挙げられる。これらの金属水素化物は、テトロ ヒドロフランのような有機溶媒中で使用することができ る。なお、3の方法のように、カルボン酸をアルコール に還元する方法では、テトロヒドロフラン中で水素化ア ルミニウムリチウムを使用することが好ましい。また③ の方法のようにカルボン酸を経由する方法では、カルボ ン酸を混合酸無水物に誘導してから、アルコールに還元 すると、有利な場合がある。

【0046】また加水分解は、方法Bにおけるカルボン

酸エステルの加水分解工程と同様な方法で行うことができる。また酸化工程で使用される酸化剤としては、例えば二酸化マンガン、クロム酸、有機過酸化物、DMSO(ジメチルスルホキシド)等が挙げられる。

【0047】次の第四工程はこうして得られた2-アルデヒド体(XIII)のアルデヒド基を環状アセタール(XIV)に誘導、保護した後、シアノ基を加水分解する工程である。

【0048】アルデヒド基をアセタール化する第一段階 は、通常有機溶媒中、酸触媒及びジオールの存在下に行 われる。ここで使用される酸触媒としては、例えばロー トルエンスルホン酸、塩酸、硫酸、蟻酸、酢酸、陽イオ ン交換樹脂等が挙げられる、ジオールとしては、例えば グリセロール、1、3-プロパンジオール、2、2-ジ 等が挙げられる。また有機溶媒としては、例えばベンゼ ン、トルエン、キシレン、テトラヒドロフラン、ジオキ サン、アセトニトリル、クロロホルム等が挙げられる。 【0049】この第一段階(アセタール化)の反応温度 及び反応時間は特に制限されず、通常、氷冷から還流ま での任意の温度で15分~24時間程度反応させればよ い。次のアセタールを加水分解する第二段階は、通常、 溶媒中、酸触媒の存在下で行われる。ここで使用される 酸触媒としては、例えば塩酸、硫酸、硝酸、過塩素酸、 酢酸、蟻酸、蓚酸等が挙げられる。また溶媒としては、 例えば水、メタノール、エタノール、イソプロパノー ル、プロパノール、ジオキサン、テトラヒドロフラン等 が使用できる。

【0050】第五工程はアミド(XV)のアセタールを加水分解してアルデヒド(XVI)に戻す工程である。この工程は、前の工程の第二段階の加水分解と同じ方法で行われる。

【0051】最後の工程は有機溶媒中でアルデヒド(XV I)にアルキル置換アシルヒドラジンを反応させてアシルヒドラジン(XVII)を得る工程である。ここで使用される有機溶媒としては、例えば酢酸、メタノール、エタノール、N, N-ジメチルホルムアミド、ピリジン等が挙げられる。

【0052】この工程での反応温度及び反応時間は特に 制限されず、通常、氷冷から湿流までの任意の温度で1 5分~24時間程度反応させればよい。

【0053】(4)方法D: この方法は下記化8に示さ

$$\begin{array}{c} R_1 \\ \bigcirc CO_2E_1 \\ \bigcirc CO_2E_1 \end{array}$$

$$\begin{array}{c} R_1 \\ \bigcirc COCH_3 \\ \bigcirc CXX \end{array}$$

【0055】(式中、 R^1 は水素原子、ハロゲン原子、 又は $C_1 \sim C_6$ のアルキル基を表し、Xは水素原子、ハロゲン原子、 $C_1 \sim C_6$ のアルキル基、又は $C_1 \sim C_6$ のアルコキシ基を表す。)

この方法で、第一工程のアシル化は、通常、有機溶媒中、酸触媒の存在下、2-エトキシカルボニルベンゾフラン誘導体(XVIII)と酸塩化物又は酸無水物とのフリーデルクラフツ反応によって行われる。ここで使用される酸触媒としては、例えば塩化アルミニウム、塩化鉄、三塩化チタン、塩化錫、塩化亜鉛、弗化水素、硫酸、ポリ燐酸等が挙げられる。有機溶媒としては、例えばニトロベンゼン、二硫化炭素、ジクロロメタン、四塩化炭素、1,2-ジクロロエタン等が挙げられる。

【0056】第一工程の反応温度及び反応時間は特に制限されず、通常、氷冷から湿流までの任意の温度で15分~24時間程度反応させればよい。次にこうして得られたアシル体 (XIX)のカルボン酸エステルは加水分解した後、脱炭酸して相当するアシル体 (XX)とする。この工程の加水分解は、方法Aの加水分解工程 (シアノベンゾフラン (V)を加水分解してベンゾフランカルボン酸(VI)を製造する工程)と同様な方法で行うことができる。引続き、得られたカルボン酸を通常、有機溶媒中、銅触媒の存在下で脱炭酸する。ここで使用される有機溶媒としては、例えばN、Nージメチルホルムアミド、キノリン等が挙げられる。脱炭酸段階の反応温度は、常温を越える高温が好ましく、特に加熱湿流温度が好ましい。この場合の反応時間は特に制限されないが、通常15分~24時間程度である。

【0057】最後に、このアシル体(XX)を通常マンニット反応条件下、溶媒中でN-フェニルピペラジンとホ

れるように、2-エトキシカルボニルベンゾフラン誘導体(XVIII)をアシル化して相当するアシル体(XIX)とし、このアシル体の2-位のエステルを加水分解した後、脱炭酸してアシル体(XX)とし、最後にこのアシル体(XX)をN-フェニルピペラジン及びホルムアルデヒド(又はパラホルムアルデヒド)とマンニッヒ反応させて目的化合物(XXI)を製造する方法である。

【0054】 【化8】

ルムアルデヒド又はパラホルムアルデヒドと反応させて目的化合物(XXI)を製造する。ここで使用される溶媒としては、例えば水、メタノール、エタノール、n-プロパノール、n-ブタノール、ジオキサン等が挙げられる。このマンニッヒ反応の反応温度及び反応時間は特に制限されず、通常、氷冷から澄流までの任意の温度で15分~24時間程度反応させればよい。

【0058】以上のようにして製造される本発明のベン ゾフラン誘導体はいずれも新規化合物で、後述する薬理 作用により優れた抗高血圧作用と共に脂質低下作用を有 し、従って新規な脂質低下性抗高血圧剤として有用であ る。

【0059】本発明の化合物を医薬として使用する際 は、通常の製剤担体と共にこの化合物を投与方法に応じ た製剤とすることができる。例えば、経口投与では錠 剤、カプセル剤、顆粒剤、散剤、液剤等の形態に調剤さ れる。経口投与用固形製剤を調製する際は、慣用の賦形 剤、結合剤、滑沢剤、着色剤、崩壊剤等を使用すること ができる。賦形剤としては、例えば乳糖、デンプン、タ ルク、ステアリン酸マグネシウム、結晶セルロース、メ チルセルロース、カルボキシメチルセルロース (CM C)、グリセリン、アルギン酸ナトリウム、アラビアゴ ム等が挙げられる。結合剤としては、例えばポリビニル アルコール(PVA)、ポリピニルエーテル、エチルセ ルロース、アラビアゴム、シェラック、白糖等がある。 滑沢剤としては、例えばステアリン酸マグネシウム、タ ルク等が挙げられる。着色剤としては、例えば食用黄色 4号アルミニウムレーキ (タートラジン) 等がある。 ま た崩壊剤としてはヒドロキシプロピルセルロース、カル ボキシメチルセルロース、デンプン類等が挙げられる。

なお錠剤として使用する場合は、浸漬、スプレー、塗布等、周知の方法で本発明の化合物をコーティングしてもよい。また液状製剤は、水性又は油性の懸濁液、溶液、シロップ、エリキシル剤等であってよく、常法に従って調製される。注射剤の場合は、本発明化合物にpH調整剤、緩衝剤、安定化剤、等張剤、局所麻酔剤等を添加し、常法に従って皮下、筋肉内、静脈内用注射剤を調製することができる。坐薬の場合は、基剤として、例えばカカオ脂、ポリエチレングリコール、ラノリン、脂肪酸トリグリセライド、ウイテアゾール(ダイナマイトノーベル社の登録商標)等の油脂が使用できる。

【0060】こうして調製される製剤の投与量は患者の症状、体重、年齢等によって異なり、一概に決められないが、成人の場合で通常1日当り本発明化合物が約10~2000mgの範囲になる量が好ましい。またこの場合、通常1日当り1~4回に分けて投与することが好ましい。

[0061]

【実施例】以下に本発明化合物である一般式(I)のベンゾフラン誘導体の製造方法及びこの化合物を含む脂質 低下性抗高血圧剤を実施例によって更に詳しく説明する。

[0062]

【実施例1】 5-[4-(2-メトキシフェニル) ピペラジニルカルボニル] ベンゾフラン (化合物1)の製造

【0063】(1)5-ブロモベンゾフランの製造 5-プロモフェノール35.0g及びプロモジエチルア セタール40.0gをN, N-ジメチルホルムアミド1 00mlに溶解した溶液を水素化ナトリウム8.9gの N, N-ジメチルホルムアミド100mlの懸濁液中に 氷冷下で適下した。得られた反応液を6時間加熱還流し た後、室温まで冷却し、水を加えた。水層を酢酸エチル で抽出し、有機層を水洗し、硫酸マグネシウムで乾燥し た。溶媒を減圧留去し、得られた残査にポリ燐酸45g 及びベンゼン500mlを加え、2時間加熱遏流した。 得られた反応液を室温に冷却した後、上清をデカントし て取り、残査をn-ヘキサンで洗浄して上清と合わせ、 減圧留去した。残査をnーヘキサンを溶出液とするシリ カゲルカラムクロマトグラフィーで精製し、5ープロモ ベンゾフラン28.0g(収率70%)を油状物として 得た。

【0064】NMR &(CDC13):6.72(1H,dd),7.24(1H,dd),7.42(1H,d),7.57(1H,d),7.63(1H,d) 【0065】(2)5-シアノベンゾフランの製造前記(1)で得られた5-ブロモベンゾフラン18.0g及びシアン化銅9.6gをN,N-ジメチルホルムアミド50m1に溶解した溶液を6時間還流した。得られた反応液を室温まで冷却した後、水を加え、析出した固 体を沪取し、水洗した。この固体に水30ml及びエチレンジアミン18mlを加え、水層をクロロホルムで3回抽出し、硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた残査をnーヘキサン~酢酸エチル混合溶媒(容量比で10:1)を溶出液とするシリカゲルカラムクロマトグラフィーで精製した。次いで目的物を含む 画分を減圧濃縮し、析出する結晶として5ーシアノベンゾフラン9.1g(収率72%)を得た。

【0066】融点: 87~88℃ NMR &(CDC1₃): 6.72-6.73(1H, dd), 7.26(2H, S), 7.42(1H, dd), 7.96(1H, d)

【0067】(3)5-ベンゾフランカルボン酸の製造前記(2)で得られた5-シアノベンゾフラン13.0 gと水酸化カリウム12.0gとの混合物にエチレングリコール100m1及び水100m1を加え、2時間加熱湿流した。得られた反応液を室温まで冷却した後、濃塩酸で酸性にし、水層を酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧濃縮して5-ベンゾフランカルボン酸の結晶13.5g(収率91%)を得た。

【0068】融点: 168~172℃ NMR δ(CDC1₃): 6.88(1H, d), 7. 57(1H, d), 7.71(1H, d), 8.10(1 H, d), 8.45(1H, d)

【0069】(4)5-[4-(2-メトキシフェニ ル) ピペラジニルカルボニル] ベンゾフランの製造 前記(3)で得られた5-ベンゾフランカルボン酸2. Ogを1,2-ジクロロエタン10mlに懸濁させた懸 濁液にN, N-ジメチルホルムアミドO. 1ml及びチ オニルクロライド1.8gを加え、1時間加熱還流し た。溶媒を減圧留去した後、残査にジクロロメタンを加 えて溶液とし、この溶液を1-(2-メトキシフェニ ル) ピペラジン2. 8g及びトリエチルアミン1.6g をジクロロメタン10mlに溶解した溶液に氷冷下に適 下し、室温で1時間撹拌した。得られた反応液に水を加 え、これを酢酸エチルで抽出し、有機層を飽和食塩水で 洗浄した後、硫酸マグネシウムで乾燥した。溶媒を留去 し、得られた残査をnーヘキサン~酢酸エチル混合溶媒 (容量比で2:1)を溶出液とするシリカゲルカラムク ロマトグラフィーで精製した後、前記n-ヘキサン~酢 酸エチル混合溶媒から再結晶して5-[4-(2-メト キシフェニル) ピペラジニルカルボニル] ベンゾフラン 3.5g(収率86%)を得た。

【0070】融点: $121\sim124$ °C NMR δ (CDC l_3): 3. 08(4H, br s), 3. 69(2H, brs), 3. 87(3H, s), 4. 00(2H, brs) 6. 81(1H, d), 6. 81-6. 92(3H, m), 6. 92-6. 94(1H, m), 7. 37(1 H, d), 7. 42(1H, d), 7. 72(1H, d) [0071]

【実施例2】 5-(4-フェニルピペラジニルカルボニル)ベンゾフラン(化合物2)・塩酸塩の製造5-ベンゾフランカルボン酸を600mgと、1-(2-メトキシフェニル)ピペラジン2.8gの代わりに1-フェニルピペラジン540mgとを用いて実施例1の(4)と同機な方法で5-(4-フェニルピペラジニルカルボニル)ベンゾフラン610mg(収率64%)を製造した。

【0072】次にこの5-(4-フェニルピペラジニルカルボニル)ベンゾフラン610mgを酢酸エチルに溶解して溶液とし、この溶液に7%塩化水桑含有酢酸エチル溶液を加え、新出した固体を沪取して5-(4-フェニルピペラジニルカルボニル)ベンゾフラン・塩酸塩690mgを得た。

[0073] 固点: $170\sim172$ ℃ NMR δ (DMSO- d_6): 3.35(4H, brs), 3.72(4H, brs), 7.03(2H, m), 7.33-7.44(5H, m) 7.68(1H, d), 7.99(1H, d), 8.0 9(1H, d)

[0074]

【突旋例3】 5-[4-(3-クロロフェニル) ピペラジニルカルボニル] ペンゾフラン (化合物3)・塩酸塩の湿造

5-ベンゾフランカルボン酸を600mgと、1-(2-メトキシフェニル) ピペラジン2.8gの代わりに1-(3-クロロフェニル) ピペラジン650mgとを用いて実応例1の(4)と同機な方法で5-[4-(3-クロロフェニル) ピペラジニルカルボニル] ベンゾフラン460mg(収率41%)を製造した。

【0075】次にこの5-[4-(3-クロロフェニル)ピペラジニルカルボニル]ベンゾフラン460mgを酢酸エチルに溶解して溶液とし、この溶液に7%塩化水素含有酢酸エチル溶液を加え、折出した固体を沪取して5-[4-(3-クロロフェニル)ピペラジニルカルボニル]ベンゾフラン・塩酸塩510mgを得た。

【0076】融点: 168~170℃

NMR δ (DMSO-d₆): 3. 24 (4H, brs), 3. 60 (4H, brs), 6. 84 (1H,

d), 6.94-7.02(3H, m)

7. 19 (1H, t), 7. 38 (1H, dd), 7. 67 (1H, d), 7. 76 (1H, d), 8. 09 (1H, d)

[0077]

【実施例4】 5-[4-(4-メトキシフェニル) ピペラジニルカルボニル] ペンゾフラン(化合物4)の設造

5-ペンゾフランカルボン酸を0.95gと、1-(2)

-メトキシフェニル)ピペラジン2.8gの代わりに1 - (4-メトキシフェニル)ピペラジン1.20gとを 用いて実応例1の(4)と同様な方法で5-[4-(4 -メトキシフェニル)ピペラジニルカルボニル]ベンゾ フラン1.30g(収率73%)を認造した。

【0078】融点: 125~126℃ NMR & (CDC1₃): 3.09(4H, br s), 3.77(3H, s), 3.84(4H, br s), 6.81-6.94(5H, m) 7.40(1H, dd), 7.55(1H, d), 7. 71(1H, dd)

[0079]

【実応例5】 5- [4-(2-クロロフェニル) ピペラジニルカルボニル] ベンゾフラン (化合物5) の製造5-ベンゾフランカルボン酸を2.5gと、1-(2-メトキシフェニル) ピペラジン2.8gの代わりに1-(2-クロロフェニル) ピペラジン3.0gとを用いて実施例1の(4)と同般な方法で5-[4-(2-クロロフェニル) ピペラジニルカルボニル] ベンゾフラン500mg(収率36%)を製造した。

【0080】 殿点: $175\sim176$ ℃ NMR δ (CDC 1_3): 3.06 (4H, brs), 3.71 (2H, brs), 3.96 (2H, brs), 6.82 (1H, d), 6.82-7.01 (2H, m), 7.01-7.21 (2H, m), 7.24-7.27 (2H, m), 7.36-7.42 (2H, m), 7.56 (1H, dd), 7.69 (1H, d), 7.71 (1H, d)

[0081]

【実院例6 】 7- [4 - (2 - メトキシフェニル) ピ ペラジニルカルボニル] ベンゾフラン(化合物6)の裂 造

【0082】(1) 7-ブロモベンゾフランの製造 5-ブロモフェノール35. 0gの代わりに2-ブロモフェノール25. 0gと、ブロモジエチルアセタール2 8. 6gとを用いて実施例1の(1)と同磁な方法で7 -ブロモベンゾフラン16. 1g(収率58%)を油状物として得た。

【0083】NMR &(CDCI3):6.83(1H,d),7.11(1H,dd),7.46(1H,d),7.53(1H,d),7.68(1H,d)
【0084】(2)7ーシアノベンゾフランの製造5ープロモベンゾフラン18.0gの代わりに前記(1)で得られた7ープロモベンゾフラン15.0gと、シアン化網8.0gとを用いて実施例1の(2)と同機な方法で7ーシアノベンゾフラン9.8g(収率90%)を製造した。

【0085】融点: 57~58℃ NMR δ(CDCl₃): 6.88(1H,d),7. 32(1H,dd),7.61(1H,dd),7.76 (1H, d), 7.85(1H, dd) 【0086】(3)7-ベンゾフランカルボン酸の製造 5-シアノベンゾフラン13.0gの代わりに前記 (2)で得られた7-シアノベンゾフラン9.8gを用いて実施例1の(3)と同機な方法で7-ベンゾフランカルボン酸10.3g(収率92%)を製造した。 【0087】 融点: 160~161℃

NMR δ (DMSO- d_6): 7. 08(1H, d), 7. 38(1H, dd), 7. 88(1H, d), 7. 9 4(1H, d), 8. 13(1H, d), 13. 20(1 H, brs)

【0088】(4) 7- [4-(2-メトキシフェニル)ピペラジニルカルボニル] ベンゾフランの製造 5-ベンゾフランカルボン酸2.0gの代わりに前記 (3) で得られた7-ベンゾフランカルボン酸500mgを用いて実施例1の(4)と同機な方法で目的の7-[4-(2-メトキシフェニル)ピペラジニルカルボニル] ベンゾフラン730mg(収率70%)を製造した。

【0089】□点: 91~92℃

NMR δ (CDC1₃): 3.04(2H, brs), 3.21(2H, brs), 3.55(2H, brs), 3.87(3H, s), 4.09(2H, brs), 6.82(1H, d), 6.88-7.05(4H, m), 7.30(1H, dd), 7.41(1H, d), 7.66-7.68(2H, m)

[0090]

【実施例7】 5-クロロ-7-[4-(2-メトキシフェニル) ピペラジニルカルボニル] ペンゾフラン (化合物7)の設造

(1) 5-クロロ-7-ブロモベンゾフラン-2-カルボン酸の製造

3ープロモー5ークロロー2ーヒドロキシベンズアルデ ヒド25.0g、ジエチルブロモマロネート50.7 g、及び炭酸カリウム44.0gをメチルエチルケトン 110m1中で5時間加熱還流した。冷却後、析出した 塩を沪去し、沪液を減圧留去して54gの残産を得た。 これを10%硫酸水300m1及び酢酸エチル300m 1で順次抽出し、水圏を更に酢酸エチル150mlで2 回抽出した。酢酸エチル層を飽和食塩水375m1で洗 浄後、無水硫酸マグネシウムで乾燥した。硫酸マグネシ ウムを沪去後、溶媒を減圧留去して80gの残意を得 た。これにエタノール性10%水酸化カリウム水溶液2 50mlを加え、1時間加熱湿流した後、エタノールを 浅圧留去した。 更に、これに31の水を加え、加熱溶解 した後、熱時温塩酸を加え、析出した結晶を沪取した。 この結晶を水625m1で洗浄後、沪取、乾燥して5-クロローアーブロモベンゾフラン-2-カルボン酸2 4.2g(収率83%)を得た。

【0091】融点: 204~205℃

NMR $\delta(DMSO-d_6)$: 7.69(1H, s), 7.87(2H, s)

【0092】(2)5-クロロ-7-シアノベンゾフランの製造

5-ブロモベンゾフラン18.0gの代わりに前記

(1)で得られた5-クロロ-7-ブロモベンゾフラン-2-カルボン酸を18.0gと、シアン化閉8.2gとを用いて実施例1の(2)と同機な方法で5-クロロ-7-シアノベンゾフラン6.6g(収率57%)を得た。

【0093】融点: 133~134℃ NMR δ(CDCl₃): 6.84(1H, d), 7.58(1H, d), 7.80(1H, d), 7.82 (1H, d)

【0094】(3)5ークロロー7ーベンゾフランカルボン酸の製造

5-シアノベンゾフラン13.0gの代わりに前記(2)で得られた5-クロロ-7-シアノベンゾフラン5.8gを用いて実施例1の(3)と同級な方法で5-クロロ-7-ベンゾフランカルボン酸5.8g(収率90%)を製造した。

【0095】 融点: 215~216℃
NMR δ(DMSO-d₆):7.04(1H, d),
7.76(1H, d), 8.01(1H, d), 8.18
(1H, d), 13.51(1H, brs)
【0096】(4)5-クロロ-7-[4-(2-メトキシフェニル)ピペラジニルカルボニル】ペンゾフランの録造

5-ベンゾフランカルボン酸2.0gの代わりに前記(3)で得られた5-クロロ-7-ベンゾフランカルボン酸500mgを用いて実施例1の(4)と同様な方法で目的の5-クロロ-7-[4-(2-メトキシフェニル)ピペラジニルカルボニル]ベンゾフラン670mg(収率71%)を製造した。

[0097] 融点: $139\sim141$ ℃ NMR δ (CDC I_3): 3.03(2H, brt), 3.19(2H, brt), 3.54(2H, brt), 3.87(3H, s), 4.06(2H, brt), 6.78(1H, d), 6.87-7.08(4H, m), 7.38(1H, d), 7.63(1H, d), 7.69(1H, d)

[0098]

【実施例8】 2-(N'-アセチルヒドラゾノ)メチル-5-[4-(2-メトキシフェニル)ピペラジニルカルボニル]ベンゾフラン(化合物8)の製造【0099】(1)5-ブロモ-2-エトキシカルボニルベンゾフランの製造5-ブロモ-2-ヒドロキシベンズアルデヒド25.0g、ジエチルブロモマロネート50.0g、及び炭酸カ

リウム51.4gをメチルエチルケトン100ml中で

5時間加熱環流した。冷却後、析出した塩を沪去し、沪液を減圧留去し、得られた残査を10%硫酸水300m 1及び酢酸エチル300m 1で順次抽出し、水層を更に酢酸エチル150m 1で2回抽出した。酢酸エチル層を飽和食塩水375m 1で洗浄後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムを沪去後、溶媒を減圧留去し、得られた残査をnーヘキサン~酢酸エチル混合溶媒(容量比で20:1)を溶出液とするシリカゲルカラムクロマトグラフィーで分離して5-ブロモー2-エトキシカルボニルベンゾフラン28.2g(収率90%)を得た。

【0100】融点: 59~60℃ NMR δ(CDCl₃): 1.42(3H, t), 4.

44(2H, q)
7. 45(1H, s), 7. 46(1H, d)

7.53(1H, dd), 7.81(1H, d) 【0101】(2)5-シアノ-2-エトキシカルボニ ルベンゾフランの製造

5-ブロモベンゾフラン18.0gの代わりに前記(1)で得られた5-ブロモーベンゾフラン-2-エトキシカルボニルベンゾフランを13.0gと、シアン化網5.1gとを用いて実施例1の(2)と同様な方法で5-シアノ-2-エトキシカルボニルベンゾフラン11.1g(収率47%)を油状物として得た。

【0102】NMR δ (CDC l_3): 1. 44 (3 H, t), 4. 47 (2H, q), 7. 57 (1H, s), 7. 71 (2H, m), 8. 07 (1H, d) 【0103】(3)5ーシアノー2ーヒドロキシメチル ベンゾフランの製造

前記(2)で得られた5-シアノ-2-エトキシカルボ ニルベンゾフラン11.1g及び水酸化ナトリウム2. 1gに水50m1及びエタノール50m1を加え、1時 間加熱湿流した。反応液を室温まで冷却した後、エタノ ールを留去し、残査を水に溶解した。この溶液に濃塩酸 を加えた後、テトラヒドロフランで抽出した。このテト ラヒドロフラン溶液を飽和食塩水で洗浄した後、硫酸マ グネシウムで乾燥し、溶媒を減圧留去し、10.0gの 残査を得た。残査にトリエチルアミン12.3m1及び テトラヒドロフラン200mlを加え、氷冷下クロロ炭 酸エチルを適下した後、30分間室温で撹拌した。析出 したトリエチルアミン塩酸塩を沪去し、沪液(テトラヒ ドロフラン溶液)を、水素化ほう素ナトリウム6.1g の水200m1溶液に氷冷下適下し、室温で3時間撹拌 した。得られた反応液に氷冷下1N塩酸300m1を適 下し、水層を酢酸エチルで抽出し、有機層を飽和食塩水 で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留 去し、得られた残査をn-ヘキサン~酢酸エチル混合溶 媒(容量比で1:1)を溶出液とするシリカゲルカラム クロマトグラフィーで情製して5ーシアノー2ーヒドロ キシメチルベンゾフラン5.8g(収率62%)を得

た。

【0104】融点: 105~108℃ NMR $\delta(CDC1_3): 2.06(1H, brs)$, 4.82(2H, s), 6.74(1H, s), 7.55 (1H, s), 7.90(1H, s)【0105】(4)2-(1,3-ジオキソラン-2-イル)-5-ベンゾフランカルボン酸の製造 ピリジン32m1のジクロロメタン400m1溶液にク ロム酸20.0gを加え、15分後に前記(3)で得ら れた5-シアノ-2-ヒドロキシメチルベンゾフラン 5.8gを加え、室温で15分間撹拌した。上滑をデカ ントして取り、残査をジクロロメタンで洗浄し、この溶 液を上清と合わせて1N水酸化ナトリウム溶液、1N塩 酸、飽和炭酸水素ナトリウム水溶液、及び飽和食塩水で 順次洗浄した後、硫酸マグネシウムで乾燥した。溶媒を 留去し、得られた残査にトルエン100m1、エチレン グリコール3.10g、p-トルエンスルホン酸100 mgを加え、ディーン・スタークトラップで水を除きな がら、2時間加熱湿流した。得られた反応液を飽和炭酸 水素ナトリウ水溶液で洗浄し、硫酸マグネシウムで乾燥 した。溶媒を留去し、得られた残査にエチレングリコー ル60m1、水60m1、及び水酸化カリウム6.60 gを加え、1時間加熱湿流した。得られた反応液を氷冷 下1N塩酸で酸性とし、酢酸エチルで抽出した。有機層 を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、溶 媒を留去し、n-ヘキサン~酢酸エチル混合溶媒で再結 晶して2-(1,3-ジオキソラン-2-イル)-5-ベンゾフランカルボン酸4.30g(収率55%)を得 た。

【0106】融点: 300℃以上 NMR &(CDC1₃):4.10-4.21(4H, m),6.11(1H,s),6.91(1H,s), 7.54(1H,d)

【0107】(5)2-(1,3-ジオキソラン-2-イル)-5-[4-(2-メトキシフェニル)ピペラジ ニルカルボニル]ベンゾフランの製造

前記(4)で得られた2-(1,3-ジオキソラン-2-イル)-5-ベンゾフランカルボン590mgにカルボジイミダゾール410mgを加え、室温で1時間撹拌した後、1-(2-メトキシフェニル)ピペラジン490mgを加え、室温で更に1時間撹拌した。得られた反応液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた残査をn-ヘキサン~酢酸エチル混合溶媒(容量比で1:1)を溶出液とするシリカゲルカラムクロマトグラフィーで精製し、2-(1,3-ジオキソラン-2-イル)-5-[4-(2-メトキシフェニル)ピペラジニルカルボニル]ベンゾフラン430mg(収率43%)を油状物として得た。

[0108] NMR δ (CDC l_3): 3. 02(4)

H, brs), 3. 63(2H, brs), 3. 88(3 H, s), 3. 98(2H, brs), 4. 09-4. 2 0(4H, M), 6. 10(1H, s), 6. 85-6. 94(3H, M), 7. 02-7. 10(1H, m), 7. 40(1H, d), 7. 53(1H, d), 7. 69 (1H, S)

【0109】(6)2-(N'-アセチルヒドラゾノ) メチルー5-[4-(2-メトキシフェニル) ピペラジ ニルカルボニル] ベンゾフランの製造

前記(5)で得られた2-(1,3-ジオキソラン-2 ーイル) -5-[4-(2-メトキシフェニル) ピペラ ジニルカルボニル] ベンゾフラン430mgにエタノー ル20m1及び1N塩酸10m1を加え、50℃で1時 間加熱した後、溶媒を留去して飽和炭酸水素ナトリウム 水溶液を徐々に加えた。水層を酢酸エチルで抽出した 後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウ ムで乾燥した。溶媒を減圧留去し、得られた残査にアセ チルヒドラジン90mgを加え、エタノール5ml中で 時間加熱運流した。反応液の溶媒を減圧留去し、得られ た残査をジクロロメタン〜メタノール混合溶媒 (容量比 で20:1)を溶出液とするシリカゲルカラムクロマト グラフィーで精製し、目的の2-(N'-アセチルヒド ラゾノ) メチルー5ー[4-(2-メトキシフェニル) ピペラジニルカルボニル] ベンソフラン300mg (収 率60%)を得た。

【0110】融点: $194\sim195$ ℃ NMR δ (CDC1 $_3$): 1. 65(3H, s), 2. 44(3H, s), 3. 10(4H, brs), 3. 65(2H, brs), 4. 02(2H, brs), 6. 88-7. 02(5H, m), 7. 48(1H, d), 7. 54(1H, d), 7. 72(1H, s), 7. 82(1H, s), 10. 01(1H, brs)

【実施例9】 5-[3-{4-(2-メトキシフェニル) ピペラジニル} プロピオニル] ベンゾフラン (化合物9) の製造

(1)5-アセチルー2-エトキシカルボニルベンソフ ランの製造

2-エトキシカルボニルベンゾフラン10.0gと、アセチルクロライド41.0gのジクロロメタン100m 1溶液を氷冷下、塩化アルミニウム53.0gのジクロロメタン200m 1懸濁液に適下し、1時間室温で撹拌した後、12時間加熱浸流した。得られた反応液を氷水に徐々に加えた。この反応処理液を酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた残査をnーへキサン~酢酸エチル混合溶媒(容量比で10:1)を溶出液とするシリカゲルカラムクロマトグラフィーで精製して5ーアセチルー2-エトキシカルボニルベンゾフラン11.0gを油状物として得た。

[0112] NMR $\delta(CDC1_3):1.45(3)$ H, t), 2.68(3H, s), 4.47(2H,9), 7. 60(1H, s), 7. 64(1H, s), 8. 09(1H, d), 8. 33(1H, d) 【0113】(2) 5-アセチルベンソフランの製造 前記(1)で得られた5-アセチル-2-エトキシカル ボニルベンゾフラン3.15g及び水酸化ナトリウム 1. 14gにエタノール15m1及び水15m1を加 え、1時間加熱還流した。得られた反応液を1 N塩酸で 酸性にし、析出した結晶を沪取し、水洗した。この結晶 に銅粉100mg及びキノリン10mlを加え、1時間 加熱湿流した。得られた反応液を冷却後、酢酸エチルを 加え、有機層を6N塩酸で3回、次いで飽和食塩水で1 回洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減 圧留去し、得られた残査をnーヘキサン~酢酸エチル混 合溶媒(容量比で10:1)を溶出液とするシリカゲル カラムクロマトグラフィーで精製して5ーアセチルベン ゾフラン850mgの結晶を得た。

【0114】融点: 39~41℃ NMR δ(CDCl₃): 2.66(3H, s), 6. 86(1H, s), 7.54(1H, d), 7.69(1 H, s), 7.95(1H, d), 8.26(1H, s) 【0115】(3)5-[3-{4-(2-メトキシフェニル)ピペラジニル}プロピオニル]ベンゾフランの 製造

1-(2-メトキシフェニル)ピペラジン1.70gのエタノール10ml溶液に濃塩酸1.5mlを加え、室温で1時間撹拌後、溶媒を減圧留去した。得られた残査にパラホルムアルデヒド600mg、濃塩酸0.02ml、及び前記(2)で得られた5-アセチルベンゾフラン1.08gの95%エタノール10ml溶液を加え、10時間加熱湿流した。得られた反応液を冷却した後、溶媒を留去し、残査を1N水酸化ナトリウムで希釈し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去した後、得られた残査をn-ヘキサン~酢酸エチル混合溶媒(容量比で2:1)を溶出液とするシリカゲルカラムクロマトグラフィーで精製して目的の5-[3-{4-(2-メトキシフェニル)ピペラジニルトプロピオニル]ベンゾフランの結晶1.45g(収率69%)を得た

【0116】融点: $132\sim133\%$ NMR $\delta(\text{CDCl}_3):2.77(4\text{H, brs}),$ 2.96(2H, t), 3.13(4H, brs), 3.3 1(2H, t), 3.87(3H, s), 6.85-6.9 2(2H, m), 6.94-7.03(3H, m), 7.5 6(1H, d), 7.70(1H, d), 7.98(1H, dd), 8.29(1H, d) 一方、参考例として化4の置換基が2-、又は3-位に

結合したベンゾフラン誘導体 (従来品)を次のようにし

て製造した。

[0117]

【参考例1】 下記化9の2-[4-(2-メトキシフェニル) ピペラジニルカルボニル] ベンゾフラン (化合物10)の製造

【0118】 【化9】

【0119】5-ベンゾフランカルボン酸2.0gの代わりに2-ベンゾフランカルボン酸810mgと、1-(2-メトキシフェニル)ピペラジン1.13gとを用い、また再結晶溶媒としてメタノールを用いて実施例1の(4)と同様の方法で2-[4-(2-メトキシフェニル)ピペラジニルカルボニル]ベンゾフラン1.54g(収率92%)を製造した。

【0120】融点: 161~163℃

[0121]

【参考例2】 下記化10の2-[3-{4-(2-メトキシフェニル) ピペラジニル} プロピオニル] ベンゾフラン・2塩酸塩 (化合物11)の製造

【0122】 【化10】

【0123】1-(2-メトキシフェニル)ピペラジン1.26gと、5-アセチルベンゾフラン1.08gの代わりに2-アセチルベンゾフラン800mgと、パラホルムアルデヒド440mgとを用いて実施例9の(3)と同様な方法で2-[3-{4-(2-メトキシフェニル)ピペラジニル}プロピオニル]ベンゾフランを製造した後、これを塩化水素含有酢酸エチル溶液で処理して2塩酸塩の結晶1.17g(収率59%)を得た。

【0124】融点: 185~187℃

[0125]

【参考例3】 下記化11の3-[4-(2-メトキシフェニル) ピペラジニルカルボニル] ベンゾフラン・塩酸塩 (化合物12)の製造

【0126】 【化11】

【0127】5-ベンゾフランカルボン酸2.0gの代わりに3-ベンゾフランカルボン酸370mgと、1-(2-メトキシフェニル)ピペラジン520mgとを用い、実施例1の(4)と同様の方法で3-[4-(2-メトキシフェニル)ピペラジニルカルボニル]ベンゾフランを製造した後、これを塩化水素含有酢酸エチル溶液で処理して塩酸塩の結晶720mg(収率85%)を得た。

【0128】融点: 205~207℃ 次に以上のようにして得られたベンゾフラン誘導体の抗 高血圧作用及び脂質低下作用について下記試験を行っ た。

[0129]

【試験例1】 抗高血圧作用の試験

試験前日にエーテル麻酔下で高血圧自然発症ラット(SHR)の尾動脈より腹部大動脈内に血圧測定用のポリエチレンカテーテルを挿入した後、個別ケージに入れ、尾を固定した。無麻酔下、半拘束状態で血圧を圧トランスデューサー(TP-400T;日本光電社製)を用いて測定した。心拍数は血圧の静脈より心拍計(AT-601G;日本光電社製)を用いて求めた。

【0130】試験化合物をTween80(シグマ社製界面活性剤の商品名)の1.5%水溶液に懸濁し、10ml/kgの用量でSHRに経口投与した。結果を表1に示す。

[0131]

【表1】

化合物 No.	用量(mg/kg, p.o.)	最大降圧量*(mailg)
1	30	-27.9±12.7
	100	-62.3±7.0
9	3	-18.5±3.9
,	10	-64.1±7.2

*投与前をOとした変化量で、平均値±S.E.

【0132】この表から判るように、本発明の試験化合

物はSHRの血圧を用量依存的に降下させた。

【0133】これに対し、2-、又は3-位の置換体である参考例の化合物10、11、12は公知の化合物であるが、100mg/kgの用量でもSHRの血圧を変化させることはできなかった。

[0134]

LIUI,

【試験例2】 高抗脂血症作用の試験

6週齢のゴールデンシリアンハムスターを1群6~8匹で用い、高抗脂血症作用の試験を行った。試験化合物を投与する投与群及び試験化合物を投与しない対照群にはコレステロール1%及びコール酸0.5%含有飼料(オリエンタル酵母工業社製)を与え、高脂血症を起こさせた。また無処置対照群として正常固形飼料[MF(オリ

エンタル酵母工業社製)]を与えた群を用意した。 【0135】試験化合物はTween80の1.5%水溶液に懸濁した。溶媒又は試験化合物はコレステロール含有飼料に変えると同時に投与を開始し、1日1回10mg/kgの用量で5日間経口投与した。最終投与後、3時間目にネンブタール麻酔下で腹部下行大静脈より採血し、血清を採取して血清中の総コレステロール(TC)をアッセイキット(協和メデックス社製)を用いて酵素法により測定し、TC上昇抑制率を下記式から算出した。

[0136]

【数1】

TC上昇抑制率=100-(試験化合物投与群TC-無処置対照群TC) ×100 (対照群TC-無処置対照群TC)

【0137】結果を表2に示す。

[0138]

【表2】

化合物 No.	用量(mg/kg, p.o.)	例数	TC上昇抑制率(X)	
1	30	6	0	
	100	8	51	
9	9 10		36	
	30	7	66	

【0139】この表から判るように、本発明の試験化合物は用量依存的にTC上昇を抑制した。

[0140]

【発明の効果】本発明のベンゾフラン誘導体は、優れた

抗高血圧作用と共に、高脂質低下作用を有するので、優れた抗高血圧剤としてばかりでなく、狭心症、心筋梗塞、心不全等の虚血性疾患の予防又は治療薬として有用である。

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

C 0 7 D 307/81

(72)発明者 内田 晶子

神奈川県横浜市緑区鴨志田町1000番地三菱 化成株式会社総合研究所内

(72)発明者 宮嶋 千玲

神奈川県横浜市緑区鴨志田町1000番地三菱 化成株式会社総合研究所内

(72)発明者 高柳 久男

神奈川県横浜市緑区鴨志田町1000番地三菱 化成株式会社総合研究所内

(72)発明者 謝 人明

C O 7 D 307/81

中華人民共和国西安市西華門20号陝西省中 医薬研究院内

(72) 発明者 湯 臣康

中華人民共和国西安市西華門20号陝西省中医薬研究院内

(72) 発明者 許 青媛

中華人民共和国西安市西華門20号陝西省中医薬研究院內

(72) 発明者 王 長岱

中華人民共和国西安市西華門20号陝西省中 医薬研究院内