AI HARDWARE

In-focus: DNN Learning Curves

STUDENT: Stanciu Iulia-Cristina

Strategies for the handwritten digit recognition:

For this exercise there are used two machine learning strategies for digit recognition.

The MNIST database is a 70000 samples set made out of images of 784 pixels. The pixels are being analysed to determine the handwritten digit that can be seen in the picture.

Both algorithms require a well-thought division of the provided date into three categories:

A training set

The training set is usually bigger than the validation set or the test set and it is used to estimate the weights of the neural network

A validation set

The validation set is used is used in the model evaluation part of the training and it is used to optimize the learning rate of the algorithm.

A test set

The test set is used for the final evaluation of the algorithm. The performance of the algorithm is given by the processing of the test set and the comparison between the true answer and the predicted one.

REFERENCES

[1] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). "Gradient-based learning applied to document

[2] LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R. E.; Hubbard, W.; Jackel, L. D. (December 1989). "Backpropagation Applied to Handwritten Zip Code Recognition". Neural Computation.

[3] Goodfellow, L., Bengio, Y., Courville, A. (2016), Deep Learning, The MIT Press,

[4] Hastie et al. (2008). The Elements of Statistical Learning, Second Edition (corrected 12th printing), Springer,

Machine learning workflow and learning curves:

The Machine Learning Project Workflow

Modelling is one of the most important stages of the ML workflow.

The modelling part of the process consists of a loop involving the computation of the models, estimating the performance for the training set and a model evaluation which is done by processing the validation set.

Learning curves are the representation of how an algorithm learns during the evaluation and validation part of the process. The "learning" refers to the improvement of the accuracy of the algorithm in a given period of time or of repetition of the loop.

LeNet:

LeNet is a convolutional neural network structure proposed by LeCun. It is a simple convolutional neural network, a neural network whose artificial neurons can respond to a part of the surrounding cells in the coverage range and perform well in large-scale image processing. LeNet-5 was one of the earliest convolutional neural networks.

(In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of artificial neural network (ANN), most commonly applied to analyze visual imagery. CNNs are regularized versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next laver.)

LeCun combined a convolutional neural network trained by backpropagation algorithms to read handwritten numbers and successfully applied it in identifying handwritten zip code numbers provided by the US Postal Service.

Lenet	AlexNet
Image: 28 (height) x 28 (width) x 1 (channel)	Image: 224 (height) x 224 (width) x 3 (channels)
· ·	V
Convolution with 5×5 kernel+2 padding:28×28×6	Convolution with 11×11 kernel+4 stride:54×54×96
√sigmoid	ReLu
Pool with 2 x2 average kernel+2 stride: 14 x 14 x 6	Pool with 3×3 max. kernel+2 stride: 26×26×96
Convolution with 5×5 kernel (no pad): 10×10×16	Convolution with 5×5 kernel+2 pad:26×26×256
√sigmoid	ReLu
Pool with 2×2 average kernel+2 stride: 5×5×16	Pool with 3x3 max. kernel+2 stride: 12x12x256
fatten	
Dense: 120 fully connected neurons	Convolution with 3x3 kernel+1 pad:12x12x384
↓sigmoid	ReLu
Dense: 84 fully connected neurons	Convolution with 3x3 kernel+1 pad:12x12x384
√sigmoid	ReLu
Dense: 10 fully connected neurons	Convolution with 3×3 kernel+1 pad:12×12×256
V	ReLu
Output: 1 of 10 classes	Pool with 3×3 max. kernel+2 stride:5×5×256
	flatten
	Dense: 4096 fully connected neurons
	ReLu, dropout p=0.5
	Dense: 4096 fully connected neurons
	ReLu, dropout p=0.5
	Dense: 1000 fully connected neurons
	V
	Output: 1 of 1000 classes

LeNet-5 consists of seven layers. In addition to input, every other layer can train parameters. Eve convolutional layer includes three parts: convolution pooling, and nonlinear activation functions.

Analyzing the MNIST dataset with SciKit-Learn and SKORCH and LeNet Convolutional Network respectively:

For the purpose of this exercise the accuracy of the algorithm and the learning curves are analysed for different values of parameters; division of the dataset into training, validation and test sets (the partition can be seen below), values for the number of neurons on the hidden layer of the first algorithm (values of 98, 130,196), values for number of epochs and number of neurons that interconnect the two last lavers of LeNet (tested for values of 50, 150 and 200).

As it can be seen it the table below, having the same number of epochs, the accuracy of the algorithms rises while increasing the number of neurons on the hidden layer. At the same time, a large enough training set further improves the accuracy of the algorithm.

Considering the LeNet algorithm, the bigger the number of neurons that interconnects the last two layers, the better the testing accuracy, giving the best results for 200 neurons; accuracy > 98%.

Variables Accuracy Values LeNet LeNet Accuracy Values

Accuracy values of the algorithms for different learning parameters

Set (Number of	Validation Set (Number of samples)	(Number of	Training Set (percentage)		Yest Set (percentage)	Number of neurons on the hidden layer (bidden_dkt)		Training accuracy Strain_acc	accuracy	accuracy	Number of neurons that interconnect two of the last layers of Lefflet	Training accuracy (N)	Wildution accuracy (%)	Testing accuracy (%)	impowement of ti previously miscless images (%)										
28000	21000	21000	40	30	30			97.6500	96.0429	95.9857															
											50	98.9657	98.4286	98.4057	73.40										
35000	17500	17500	50	25	25			97.8257	97.8257 96.4657 96.4914	96.4914	150	99.2057	98.7029	98.4742	73.66										
										200	99.3229	98.7771	98.7543	78.26											
42000	14000	14000	60	20	20	96	40	97.9167	96.7286	96.6500															
											50	98.4796	98.0000	97.9619	63.53										
49000	10500	10500	70	15	15			98.0163	96.8857	96.7714	150	99.3163	98.8571	98.6286	74.88										
											200	99.4286	58.5429	98.7809	76.81										
56000	7000	7000	80	10	10			98.1143	96.6857	97.0714															
											50	98.9071	98.3905	98.4524	72.54										
28000 21000 2	21000 40	40	40 30	30			97.9464	96.3000	96.4190	150	99.2214	98.5286	98.5666	74.34											
							Ιl	11				200	99.2750	98.6810	98.6095	76.56									
						130 40	130 4	130	1	1	I	I	I					50	98.9229	98,4743	98.3600	68.43			
35000	17500	17900	50	25	25				40	98.0971 96.7371 96	96.7371	96.7657	150	99.1457	98.5714	98.514	71.21								
																							200	99.3829	98.8114
42000	14000	14000	60	20	20			98.2619	97.0286	96.9286															
49000	10500	10500	70	15	15			- 11	98.3673	97.3143	97.2190														
56000	7000	7000	80	10	10	- 1			98.4732	97.1000	97.3286														
28000	21000	21000	40	30	30			95.2679	96.5476	96.5057															
											50	98.9771	98.4686	98.3771	67.69										
35000	17500	17500	50	25	25			98,3914	96,7943	96.8971	150	99.1686	98.6057	98.5543	70.19										
							ı				200	99.3714	98.8057	98.7257	74.74										
						196	40				50	58.5429	58.6357	98.4500	69.51										
42000	14000	14000	60	60 20 20	20			98.5476	97.2143	97.0857	150	99.4000	98.9571	98.8000	75.15										
								\vdash			200	99.4367	99.0095	98.8095	77.78										
49000	10500	10500	70	15	15		ı	98.6265	97.3524	97.3143															
56000	7000	7000	80	10	10			98,7214	97.2143	97.4286															

SciKit-Learn with 10 epochs

Partition of MNIST database

ut,	=>	Final va	lidation	
ery		curacy of		6
on.	epoch	train_loss	valid_acc	valid_los
,	1	0.9813	0.8791	0.448
	3	0.4931	0.9013 0.9113	0.349
	4	0.3661	0.9203	0.272
	5	0.3336	0.9254	0.251

7	0.2885	0.9334
	0.2812	0.9363
9	0.2664	0.9387
10	0.2549	0.9424
	curacy: 95.12	
alidation	accuracy: 94.	3771

SciKit-Learn with 40 epochs => Final validation

38	0.1569	0.9581	0.1334	1
31	0.1553	0.9589	0.1320	- 0
32	0.1546	8.9594	0.1318	1
33	0.1498	0.9580	0.1300	.0
34	0.1506	0.9607	0.1303	1
35	0.1500	8.9607	0.1275	-1
36	0.1438	8.9607	0.1281	-
37	0,1454	0.9617	0.1249	
311	0.1447	0.0013	0.1267	
39	0.1410	0.9624	0.1237	í
40	0.1402	0.9614	0.1237	1

Observation! For the LeNet algorithm the

number of epochs was initially set to 10.

The evolution of the learning can curve be bv seen modifying the of number epochs. An example of the leaning process can be seen below. The biaaer the number epochs (until a point), the better the accuracy.

LeNet with 5 epochs => Final validation accuracy of 98.47%

poch	train_loss	valid_acc	valid_loss	dur
1	0.4813	0.9659	0.1077	4.8217
2	0,1604	0.9786	0.0644	0.9827
3	0.1252	0.9813	0.0547	1.0000
4	0.1019	0.9851	0.0458	0.9940
	0.0919	0.9864	0.0453	1.0038

LeNet with 20 epochs

	aı vallda	tion accu	iracy of	98.95
10	0.0662	0.9889	0.0373	1.7723
11	0.0612	0.9871	0.0399	1.5279
12	0.0588	0.9886	0.0377	1.1946
13	0.0583	0.9889	0.0382	1.1597
14	0.0528	0.9899	0.8485	1.0105
15	0.0557	0.9893	0.0368	0.9957
16	0.0503	0.9887	0.0394	0.9916
17	0.0498	0.9891	0.0388	0.9936
18	0.0487	0.9981	0.0359	0.9922
19	0.0469	0.9983	0.0325	0.9881
20	0.0450	0.9989	0.0351	1.0127
mining ac	curacy: 99.66	57		