Права призма

Л. В. Йовков

НПМГ "Акад. Л. Чакалов"

Абстракт

В тази тема ще бъде разгледан първият от важните многостени, срещащи се практиката — призмата. Ще бъдат посочени основните елементи на призмите, както и съответните формули за повърхнина и обем. Върху конкретни съдържателни примери ще бъдат изложени методи за решаване на някои по-трудни задачи от призми.

Аксиоматичното изграждане на стереометрията и постановката на въпросите за взаимно положение на точки, прави и равнини в пространството ни водят до първия основен клас стереометрични обекти — **многостените**.

Дефиниция 1 Тяло в пространството, заградено от краен брой многостен.

Всеки от многоъгълниците представлява **стена** на многостена. Страните на многоъгълниците са **ръбове** на многостена, а върховете им — **върхове** на многостена. Всяка отсечка, която свързва два върха на многостена и не лежи в негова стена, се нарича (**телесен**) диагонал. Към основните характеристики на многостените причисляваме още и важните понятия **повърхнина** и **обем**, които засега ще приемем на интуитивно ниво.

Най-простите многостенни обекти са призмите.

Дефиниция 2 Тяло в пространството, за което две от стените са еднакви многоъгълници, лежащи в успоредни равнини, а останалите стени са успоредници, се нарича **призма**.

Двата многоъгълника са **основи** на призмата, а успоредниците — **околни стени**. Страните на основите са **основни ръбове** на призмата. Отсечките, които свързват два срещуположни върха от основите, се наричат **околни ръбове**.

Дефиниция 3 Призма, за която околните ръбове са перпендикулярни на основите, се нарича **права призма**.

Дефиниция 4 Права призма, за която основите са правилни n-ъгълници, се нарича правилна n-ъгълна призма.

Дефиниция 5 Призма, чиито основи са успоредници, се нарича **пара**лелепипед.

На фигура 1 е показана права призма с основи еднаквите n-ъгълници $A_1A_2...A_{n-1}A_n$ и $B_1B_2...B_{n-1}B_n$. Да посочим основните ѝ елементи, използвайки дефинициите:

- \blacksquare A_1A_2 , A_2A_3 , ..., $A_{n-1}A_n$, A_nA_1 и B_1B_2 , B_2B_3 , ..., $B_{n-1}B_n$, B_nB_1 основни ръбове;
- $A_1B_1, A_2B_2, ..., A_{n-1}B_{n-1}, A_nB_n$ околни ръбове;
- $A_1B_3, A_1B_4, ..., A_1B_{n-1}$ и т. н. диагонали на призмата;
- $A_1A_2B_2B_1, A_2A_3B_3B_2, ..., A_nA_1B_1B_n$ околни стени.

Фигура 1: Права призма

Сборът от лицата на всичките околни стени представлява **околната повърх- нина** S на призмата. Ако към околната повърхнина прибавим и лицата на основите, получаваме **пълната повърхнина** S_1 на призмата.

Нека да означим околния ръб на призмата от фигура 1 с h, а лицата на основите — с B. Понеже околните стени са правоъгълници, имаме:

$$S = h \cdot A_1 A_2 + h \cdot A_2 A_3 + \dots + h \cdot A_n A_1 = h \left(A_1 A_2 + A_2 A_3 + \dots + A_n A_1 \right) = P_{A_1 A_2 \dots A_{n-1} A_n} h.$$

Така получаваме, че околната повърхнина на всяка права призма се пресмята по формулата

$$S = P_{\text{och.}}h,\tag{1}$$

където $P_{\text{осн.}}$ е периметърът на основата. Съобразяваме веднага, че за пълната повърхнина на права призма е в сила формулата

$$S_1 = P_{\text{och.}}h + 2B. \tag{2}$$

С принципа на Кавалиери 1 може да се докаже следната формула за обем на призма:

$$V = Bh, (3)$$

валидна както за права, така и за наклонена призма. Във втория случай ще приемаме, че с h е означено разстоянието между успоредните равнини на основите.

Пример 1 (зад. 20.2, стр. 90, "Сборник по математика за 10 клас", изд. "Коала прес", Пенка Рангелова. Пловдив, 2019) Основните ръбове на прав паралелепипед са $\sqrt{18}$ и 7, а ъгълът между тях е 135°. Намерете диагоналите на паралелепипеда, ако околният ръб е 12.

Решение.

Нека $ABCDA_1B_1C_1D_1$ е даденият паралелепипед, за който AB=7, $BC=\sqrt{18}$ и $\angle ABC=135^\circ$ (вж. фигура 2). Да приложим косинусова теорема за страната AC в $\triangle ABC$. Намираме $AC=\sqrt{109}$. Съвършено аналогично от $\triangle ABD$ с $\angle BAD=45^\circ$ получаваме BD=5. Сега, понеже паралелепипедът е прав, то околните му ръбове са перпендикулярни на равнините на основите. Тогава от $AC\in (ABCD)$ и $CC_1\bot(ABCD)$ устано-

Фигура 2

вяваме, че $CC_1\bot AC$. Така ΔACC_1 е правоъгълен. По Питагорова теорема пресмятаме, че $AC_1^2=AC^2+CC_1^2$, т. е. $AC_1=\sqrt{253}$. Накрая от правоъгълния по същата причина ΔBDD_1 пресмятаме и другия диагонал на паралелепипеда: $BD_1=13$.

Пример 2 (зад. 20.5, стр. 91, "Сборник по математика за 10 клас", изд. "Коала прес", Пенка Рангелова. Пловдив, 2019) Дадена е правилна

 $^{^{1}\}mathrm{C}$ този принцип можете да се запознаете например чрез страницата: https://mathbitsnotebook.com/Geometry/3DShapes/3DCavalieri.html.

четириъгълна призма с основен ръб 10 и диагонал в околна стена 15. Да се намери лицето на околната повърхнина на призмата.

Решение. Да следваме Понеже призмата е правилна, то околните ѝ ръбове са перпендикулярни на основите. Тогава $\angle CBB_1 = 90^\circ$ и чрез Питагорова теорема в ΔBB_1C изчисляваме дължината на околния ръб:

$$BB_1 = 5\sqrt{5}.$$

Сега по формула (1) веднага намираме

$$S = 200\sqrt{5}$$
. \Box

означенията на фигура 3.

Фигура 3

Пример 3 (зад. 20.6, стр. 91, "Сборник по математика за 10 клас", изд. "Коала прес", Пенка Рангелова. Пловдив, 2019) Лицето на околната повърхнина на правилна четириъгълна призма е 32, а лицето на пълната ѝ повърхнина е 40. Намерете височината на призмата.

Решението на този пример извършете самостоятелно!

Пример 4 (зад. 20.9, стр. 91, "Сборник по математика за 10 клас", изд. "Коала прес", Пенка Рангелова. Пловдив, 2019) Основните ръбове на права триъгълна призма са равни на 10, 17 и 21, а височината ѝ е равна на 18. Да се намерят:

- а) лицето на пълната повърхнина на призмата;
- б) обемът на призмата.

Решението на този пример извършете самостоятелно!

Пример 5 (зад. 20.12, стр. 91, "Сборник по математика за 10 клас", изд. "Коала прес", Пенка Рангелова. Пловдив, 2019) Основата на права призма $ABCA_1B_1C_1$ е ΔABC , за който AB=AC и $\angle ABC=\alpha$. Точката D е среда на ръба AA_1 , $\angle DCA=\beta$ и CD=b. Намерете лицето на околната повърхнина на призмата.

Решение.

Да разгледаме чертежа, представен на фигура 4. Както в предишните примери, установяваме, че ΔACD е правоъгълен. С помощта на тригонометрични зависимости получаваме

$$AC = AB = b\cos\beta$$
, $AD = b\sin\beta$.

Следователно дължината на околния ръб е $AA_1 = 2b\sin\beta$.

По-нататък: от равнобедрения ΔABC с остър ъгъл α по синусова теорема имаме

$$\frac{BC}{\sin \angle BAC} = \frac{AC}{\sin \angle ABC} \Rightarrow$$

$$\frac{BC}{\sin(180^\circ-2\alpha)} = \frac{b\cos\beta}{\sin\alpha} \Rightarrow$$

$$BC = \frac{b\cos\beta\sin2\alpha}{\sin\alpha} = 2b\cos\alpha\cos\beta.$$

Сега по формула (1) следва, че

$$S = P_{\Delta ABC} \cdot BB_1 = (2AC + BC) \cdot BB_1,$$

откъдето след заместване на конкретните стойности окончателно получаваме

$$S = 4b^2 \sin \beta \cos \beta (1 + \cos \alpha)$$
. \square

Пример 6 (зад. 20.19, стр. 92,

"Сборник по математика за 10 клас", изд. "Коала прес", Пенка Рангелова. Пловдив, 2019) Основата на прав паралелепипед е ромб със страна а и остър ъгъл 60°. По-малкият диагонал на паралелепипеда определя с една от околните стени ъгъл, равен на 30°. Да се намерят:

- а) диагоналите на паралелепипеда;
- **б**) двустенният ъгъл между равнината на основата и равнината, определена от два неравни диагонала на паралелепипеда.

Решение, а). Нека $\angle BAD=60^\circ$ (вж. фигура 5). Тогава BD<AC и от теоремата за връзката между дължините на наклонените към дадена равнина и на техните ортогонални проекции върху тази равнина получаваме $BD_1 < AC_1$.

Фигура 4

Ще построим ъгъла между диагонала BD_1 и околната стена (BCC_1B_1). За целта в началото да установим мястото на ортогоналната проекция на точка D_1 в равнината (BCC_1B_1). Построяваме

$$D_1 M \perp B_1 C_1. \tag{4}$$

Понеже $\angle B_1C_1D_1=60^\circ$, то $\Delta B_1C_1D_1$ е равностранен, следователно точка M е вътрешна за отсечката B_1C_1 и е нейна среда. Пренасяме отсечката CC_1 успоредно в т. M до отсечката MF, $F\in BC$. Тъй като по условие паралелепипедът е прав, то околните ръбове са перпендикулярни на равнините на основите. Тогава очевидно $MF\bot(A_1B_1C_1D_1)$. Но $D_1M\in (A_1B_1C_1D_1)$

$$\Rightarrow MF \perp D_1 M.$$
 (5)

Сега от (4) и (5) получаваме, че отсечката D_1M е перпендикуляр-

Фигура 5

на на две пресичащи се прави от равнината (BCC_1B_1) , т. е. е перпендикулярна на тази равнина. По този начин установяваме, че ортогоналната проекция на D_1 в равнината (BCC_1B_1) е средата на B_1C_1 . Следователно

$$\angle [BD_1; (BCC_1B_1)] = \angle (BD_1; BM) = \angle D_1BM = 30^{\circ}.$$

От ΔC_1D_1M лесно пресмятаме $D_1M=rac{a\sqrt{3}}{2},$ а от правоъгълния ΔBD_1M с ъгъл 30° имаме $BD_1=a\sqrt{3}$.

Диагоналът BD в основата ABCD е с дължина BD=a. Чрез прилагане на Питагорова теорема в правоъгълния триъгълник BDD_1 намираме и дължината на околния ръб: $DD_1=a\sqrt{2}$. От ΔABC с $\angle ABC=120^\circ$ по косинусова теорема получаваме $AC=a\sqrt{3}$, а от правоъгълния $\Delta ACC_1-AC_1=a\sqrt{5}$.

И така, диагоналите на паралелепипеда имат дължини $AC_1=a\sqrt{5},$ $BD_1=a\sqrt{3}.$

б) Ясно е, че равнината (ABC_1D_1) съдържа два неравни диагонала на паралелепипеда. Ще построим линеен ъгъл на двустенния ъгъл между тази равнина и долната основа на паралелепипеда. Нека $CK \perp AB$.

Тъй като $\angle ABC = 120^\circ$, точката K е външна за отсечката AB. По теоремата за трите перпендикуляра $C_1K \perp AB$. Следователно правата BK е перпендикулярна на равнината (CC_1K) и значи $\angle CKC_1$ е линеен ъгъл на двустенния ъгъл между равнините (ABCD) и (ABC_1D_1) .

От правоъгълния ΔBCK с помощта на тригонометрични зависимости веднага изчисляваме $CK=\frac{a\sqrt{3}}{2}$. Накрая от ΔCC_1K имаме

$$\tan \angle CKC_1 = \frac{CC_1}{CK} = \frac{4}{\sqrt{6}} \Rightarrow \angle CKC_1 \approx 58, 5^{\circ}. \square$$

ЗАДАЧИ ЗА САМОСТОЯТЕЛНА РАБОТА

Задача 1 Намерете лицето на диагоналното сечение на куб с ръб 5. **Отг.** $25\sqrt{2}$

Задача 2 Основата на прав паралелепипед е ромб със страна 4 и остър ъгъл 45° . Намерете обема на паралелепипеда, ако височината му е 8. **Отг.** $64\sqrt{2}$

Задача 3 Основните ръбове на правилна четириъгълна призма имат дължина 5, а телесният ѝ диагонал — $13\sqrt{2}$. Намерете обема на призмата.

Отг. $300\sqrt{2}$

Задача 4 Основата на права призма е равнобедрен трапец с основи 9 и 1. В трапеца може да се впише окръжност и нейният радиус е равен на височината на призмата. Намерете обема и лицето на повърхнината на призмата.

OTT. $V = 22, 5, S_1 = 60$

Задача 5 Основата на правилна шестоъгълна призма има страна 4, а височината на призмата е равна на полупериметъра на основата. Намерете обема и лицето на повърхнината на призмата.

Отг. $V = 288\sqrt{3}$, $S_1 = 48(6 + \sqrt{3})$

Задача 6 Всички ръбове на прав паралелепипед имат дължина 2. Два основни ръба сключват помежду си ъгъл с мярка 60°. Намерете обема на паралелепипеда.

OTF. $4\sqrt{3}$

Задача 7 Равностранен ΔABC със страна 1 служи за основа на правилна триъгълна призма $ABCA_1B_1C_1$. Намерете дължината на ръба AA_1 на призмата, ако правата BC_1 сключва ъгъл с големина 45° с равнината (ABA_1B_1) .

OTF.
$$\frac{1}{\sqrt{2}}$$

Задача 8 Лицата на околните стени на права триъгълна призма са 26, 28 и 30, а лицето на основата ѝ е 84. Намерете обема на призмата.

Отг. 168

Задача 9 Основата на права призма е правоъгълен триъгълник с височина 12 и хипотенуза 25. Намерете обема и лицето на околната повърхнина на призмата, ако височината ѝ е равна на по-големия катет на основата.

Отг.
$$V = 3000$$
, $S = 1200$

Задача 10 Основата на права триъгълна призма е правоъгълен триъгълник. Катетите, хипотенузата на основата и височината на призмата, взети в този ред, образуват растяща аритметична прогресия. Намерете обема на призмата, ако лицето на повърхнината ѝ е 84.

Отг. 36

Задача 11 Основата на права призма е триъгълник с ъгъл 120° , чиито страни образуват аритметична прогресия. Обемът и околната повърхнина на призмата са равни на 45 и $60\sqrt{3}$. Намерете височината ѝ.

OTF. $4\sqrt{3}$

Задача 12 Основата на права призма е триъгълник, един от ъглите на който е 120° , а дължините на заключващите го страни се отнасят както 7:8. Ако лицето на най-голямата околна стена на призмата е 156, намерете лицето на околната повърхнина на призмата.

Отг. 336

Задача 13 Основата на права призма е равнобедрен трапец с основи 4 и 14 и диагонал 15. Две от околните стени на призмата са квадрати. Намерете лицето на пълната повърхнина на призмата.

Отг. 788

Задача 14 Страните на основата на правоъгълен паралелепипед са a и b. Диагонал на паралелепипеда сключва c основата ъгъл α . Намерете лицето на околната повърхнина на паралелепипеда.

OTF. $2(a+b) \tan \alpha \sqrt{a^2 + b^2}$

Задача 15 Лицето на околна стена на правилна шестоъгълна призма е Q. Намерете лицето на диагоналното сечение на призмата, което минава през малък диагонал на основата.

OTF. $Q\sqrt{3}$

Задача 16 Диагоналите на прав паралелепипед са 9 и $\sqrt{33}$. Периметърът на основата му е 18, а околният ръб — 4. Намерете лицето на пълната повърхнина и обема на паралелепипеда.

OTT. $S_1 = 200, V = 64$

Задача 17 Основата на права призма $ABCDA_1B_1C_1D_1$ е равнобедрен трапец ABCD с основи $AB=10,\,CD=4$ и височина 4. Ъгълът между равнините (ADB_1) и (ABC) е 45° . Намерете обема на призмата. Отг. 224

Литература

- [1] Г. Кожухарова, И. Марашева, П. Недевски, Ю. Цветков. "Сборник по математика за 10. клас". Издателство "Анубис". София, 2019
- [2] **К. Коларов**, **Хр.** Лесов. "Сборник от задачи по геометрия VII XII клас". Издателство "Интеграл". Добрич, 2007
- [3] **П. Рангелова.** "Сборник по математика за X клас". Издателство "Коала прес". Пловдив, 2019
- [4] Ч. Лозанов, Т. Витанов, П. Недевски, Евг. Стоименова. "Математика за 12. клас — профилирана подготовка". Издателство "Анубис". София, 2002