Name: Gurjot Singh Suri Roll No. 17CS10058

Tried many convergence criteria like fixing the number of iterations and fixing the difference of squared errors. I have used a difference of 10<sup>-8</sup> between consecutive losses as the criteria for all the parts as it could fit the training data in an acceptable amount of time. Fixing the number of iterations equal to 5\*10<sup>6</sup> gave better results but took a lot more time to run.

1)a)





# 1)b)

### Degree 1:

Training Error: 0.09968054237094173 Test Error: 0.09553057205696289

| Polynomial<br>Term | Co-efficient learnt |
|--------------------|---------------------|
| 1                  | 0.91609634          |
| х                  | -1.85516555         |

# Degree 2:

Training Error: 0.09914021385068623 Test Error: 0.09579854742921143

| Polynomial<br>Term | Co-efficient learnt |
|--------------------|---------------------|
| 1                  | 0.97374768          |
| х                  | -2.2009799          |
| X <sup>2</sup>     | 0.34054149          |

# Degree 3:

Training Error: 0.003239249117089172 Test Error: 0.003248849012703992

| Polynomial<br>Term | Co-efficient learnt |
|--------------------|---------------------|
| 1                  | -0.07671109         |
| х                  | 10.50647865         |
| X <sup>2</sup>     | -31.22342863        |
| $\mathbf{x}^3$     | 20.91010109         |

### Degree 4:

Training Error: 0.004617705375705581 Test Error: 0.004675270139331303

| Polynomial<br>Term    | Co-efficient learnt |
|-----------------------|---------------------|
| 1                     | 0.08300767          |
| х                     | 7.17897137          |
| x <sup>2</sup>        | -15.64847551        |
| <b>x</b> <sup>3</sup> | -3.94947702         |
| X <sup>4</sup>        | 12.65368186         |

# Degree 5:

Training Error: 0.008654167959586343 Test Error: 0.008861655970749617

| Polynomial<br>Term    | Co-efficient learnt |
|-----------------------|---------------------|
| 1                     | 0.19217578          |
| х                     | 5.40864809          |
| X <sup>2</sup>        | -10.24494945        |
| <b>x</b> <sup>3</sup> | -4.97037268         |
| X <sup>4</sup>        | 2.52120717          |
| <b>x</b> <sup>5</sup> | 7.55024148          |

# Degree 6:

Training Error: 0.004544300590550844 Test Error: 0.004590889734806446

| Polynomial<br>Term    | Co-efficient learnt |
|-----------------------|---------------------|
| 1                     | 0.0718704           |
| х                     | 7.23242959          |
| $\chi^2$              | -15.80248417        |
| x <sup>3</sup>        | -2.21222327         |
| X <sup>4</sup>        | 7.14273297          |
| <b>x</b> <sup>5</sup> | 6.20060081          |
| <b>x</b> <sup>6</sup> | -2.30561793         |

# Degree 7:

Training Error: 0.002337724529694965 Test Error: 0.0023336651000341103

| Polynomial<br>Term    | Co-efficient learnt |
|-----------------------|---------------------|
| 1                     | 0.03406228          |
| х                     | 7.64731231          |
| $\chi^2$              | -16.09754347        |
| <b>x</b> <sup>3</sup> | -3.7202358          |
| X <sup>4</sup>        | 6.58935788          |
| <b>x</b> <sup>5</sup> | 8.27073487          |
| <b>x</b> <sup>6</sup> | 3.22071671          |
| <b>X</b> <sup>7</sup> | -5.74997768         |

# Degree 8:

Training Error: 0.001432137497172644 Test Error: 0.0014136227171906394

| Polynomial<br>Term    | Co-efficient learnt |
|-----------------------|---------------------|
| 1                     | 0.03685663          |
| х                     | 7.44790523          |
| x <sup>2</sup>        | -14.81220748        |
| <b>x</b> <sup>3</sup> | -4.95664486         |
| X <sup>4</sup>        | 4.65089426          |
| <b>x</b> <sup>5</sup> | 7.86059968          |
| <b>x</b> <sup>6</sup> | 5.78443294          |
| <b>x</b> <sup>7</sup> | 0.48688848          |
| <b>x</b> <sup>8</sup> | -6.4101526          |

# Degree 9:

Training Error: 0.0012223746686057298 Test Error: 0.0012155775122382672

| Polynomial<br>Term    | Co-efficient learnt |
|-----------------------|---------------------|
| 1                     | 0.05620563          |
| х                     | 7.05636377          |
| X <sup>2</sup>        | -13.33257186        |
| <b>x</b> <sup>3</sup> | -5.56780733         |
| X <sup>4</sup>        | 2.94016501          |
| <b>x</b> <sup>5</sup> | 6.6608546           |
| <b>x</b> <sup>6</sup> | 6.2376834           |
| <b>x</b> <sup>7</sup> | 3.2114854           |
| <b>x</b> <sup>8</sup> | -1.17215435         |
| <b>x</b> <sup>9</sup> | -6.09006228         |

# 2) a)















Plot for n = 9 seems most similar to the training dataset while n = 1 seems the most different from the original curve.



Explain which value of n is suitable for the dataset that you have, and why. Both the training and test losses versus n generally decrease with increase in n as shown in the graph except for n = 3, where the loss is a little lower.

N=9 is most suitable for this dataset as both the training and test losses are the lowest for this value of n. Also the curve for n=9 in 2) a) matches the training dataset most closely. The dataset seems to be a sine function whose expansion consists of polynomial degrees, for n=9, we are able to approximate it for the most number of terms.

3) a)Lasso, N = 1 (maximum training error in part 2)

| Regularization parameter | Training error      | Test error          |
|--------------------------|---------------------|---------------------|
| 0.25                     | 0.09968022792486098 | 0.09553389924245824 |
| 0.5                      | 0.09967999242260117 | 0.09553672808685418 |
| 0.75                     | 0.09967980597872034 | 0.0955392978967117  |
| 1.0                      | 0.09967967915391852 | 0.09554127915980505 |



Training errors decrease slightly with increase in regularization parameter. Test errors increase slightly with increase in regularization parameter.

Lasso, N = 9 (minimum training error in part 2)

| Regularization parameter | Training error        | Test error            |
|--------------------------|-----------------------|-----------------------|
| 0.25                     | 0.0012220960557283696 | 0.0012179143156387038 |
| 0.5                      | 0.0012224808269620492 | 0.0012208992096101122 |
| 0.75                     | 0.0012235489699932178 | 0.0012245526211911329 |
| 1.0                      | 0.0012252904728498849 | 0.0012288643103671754 |



Both training and test errors increase significantly with increase in regularization parameter.

3) b)
Ridge, N = 1 (maximum training error in part 2)

| Regularization parameter | Training error      | Test error          |
|--------------------------|---------------------|---------------------|
| 0.25                     | 0.09968259809327043 | 0.09551486266666791 |
| 0.5                      | 0.0996865113599861  | 0.09549576643865666 |
| 0.75                     | 0.09969259155335454 | 0.09547590473063139 |
| 1.0                      | 0.09970092758275782 | 0.09545680313913259 |



Training errors increase slightly with increase in regularization parameter. Test errors decrease slightly with increase in regularization parameter.

Ridge, N = 9 (minimum training error in part 2)

| Regularization parameter | Training error       | Test error           |
|--------------------------|----------------------|----------------------|
| 0.25                     | 0.015805872212083155 | 0.016592673178909195 |
| 0.5                      | 0.022549258184624242 | 0.023763758392800097 |
| 0.75                     | 0.026196697665996867 | 0.02764190172575355  |
| 1.0                      | 0.028642570549437908 | 0.03023322943038642  |



Both training and test errors increase significantly with increase in regularization parameter.

#### What differences do you notice between the two kinds of regression?

In case of Lasso regression, the training loss for n =1 and lamda=1 is less than the training loss for normal regression of part 2 for n=1. Also the training loss for n =9 and lamda=0.25 is less than the training loss for normal regression of part 2 for n=9. For n=9, the losses are close to and for some values of lamda are better than normal regression losses. In case of n=1, training errors decrease slightly with increase in lamda while for other cases of lamda and n, it increases.

On the other hand for Ridge regression, the training and test losses both are consistently higher than that of normal regression and lasso regression for corresponding values of n and lamda. In case of n=1, test errors decrease slightly with increase in lamda while for other cases, it increases.

#### Which one would you prefer for this problem and why?

I would prefer lasso regression with n=9 and lamda=0.25 as it gives the best training losses as compared to other combinations of regression, n and lamda. Also, the training and test losses both are consistently lower than that of ridge regression for corresponding values of n and lamda.

For lasso regression and n=9, the best training loss is 0.0012220960557283696 For ridge regression and n=9, the best training loss is 0.015805872212083155 which is a lot higher.

This may be because Lasso regression overcomes the disadvantage of Ridge regression by not only punishing high values of the weights but actually setting them to zero if they are not relevant. Therefore, we might end up with fewer features included in the model than we started with, which is a huge advantage.

But even in the lasso case there is not much improvement than the normal regression and could be avoided.