University of Connecticut
Computer Science and Engineering
CSE 4402/5095: Network Security
Vulnerabilities, Firewalls, Packet Filtering
and a bit on IDS/IPS and Honeypots

Last updated: Sunday, 08 December 2024

© Prof. Amir Herzberg

Vulnerabilities, FW & more: Agenda

- Vulnerabilities
- Firewalls: protecting the perimeter
 - Packet filtering FW
- Intrusion Detection/Prevention
- Honeypots

Most network attacks exploit Vulnerabilities.

Why not fix all these vulnerabilities?

We find, fix vulnerabilities... And find more!

Why are Vulnerabilities so Common?

- Systems are complex (large `attack surface')
 - Complexity more errors, harder to detect/find/fix
 - Vulnerabilities Love Complexity
- Lots of code-reuse, open code
 - □ → Lots of vulnerabilities-reuse
- Insufficient motivation to find, fix:
 - Vendors: limited liability/reputation risk
 - Patching and versioning 'lock' clients
 - Gov'ts find/buy vulnerabilities to abuse
 - Esp. Zero-Day (ZD) vulnerabilities
 - Snowden: NSA buys ZD for 25M\$/year
 - Others?

Amir Herzberg 5

Vulnerabilities Markets

- If vendors aren't motivated to find vulnerabilities, and government abuse the ones they find/buy, who find them? And what's their motivation?
 - To secure our world
 - For 'fun and <u>profit</u>'
 - Profit: money and/or credit
- Financial profit:
 - Black markets (sell to anyone)
 - Grey markets: vendors, companies
 - Bug-bounty programs

Bug Bounty Programs

- Pay researchers for disclosed ZD vulnerabilities
 - Based on severity
- Run by many vendors and some markets
- From CEO of the HackerOne market (2018):
 - Bounties from 100\$ to 100,000\$, typical ~750\$
 - Most well paid hacker: 1M\$, total: over 40M\$
- Proposals:
 - Governments / international bounty program
 - Argument: \$ in damage from attacks >> \$ in profit to atkr
 - Compulsory bounty program
- Is it ethical to sell ZD without disclosing/patching?

Cybersecurity Ethics

- Basic cyber-sec ethics:
 - Do no harm
 - Intentional or by negligence (e.g., experiment `in wild')
- But there are dilemmas...
 - Not disclosing/fixing vulnerabilities, using them for law enforcement, e.g., against terrorists
 - One man's terrorist is another man's journalist
 - To help national security?
 - US Cyber Command:
 - ...The two swords represent the dual nature: to defend and engage our enemies in the cyber domain.
 - Which nation?

Disclosures: Types and Ethics

- What to disclose
 - Everything (full), partial (only to defend), none
- Who to disclose to (if at all)?
 - Vendor, bug-bounty program, 'market', public
- When to disclose?
 - Immediate, after patch/fix, after 'reasonable time'
- 'Responsible disclosure':
 - Full, immediate to vendor
 - Partial or full, after delay/fix, to public
 - Expected from academic papers

Vulnerabilities, FW & more: Agenda

- Vulnerabilities
- Firewalls and packet filters
- Intrusion Detection/Prevention
- Honeypots

Firewalls – Keeping Attackers Out

Secure / trusted machine/module:

- On path between two or more networks / host(s)
 - Avoid damage from outside or from spreading
 - We focus on Intranet ('behind' FW) vs. Internet ('outside')
- Controls, inspects and filters the communication
 - Prevents / limits reconnaissance, exploits
 - 'Fixes' traffic, e.g., translate addresses (NAT), fuzzing

Amir Herzberg 13

Packet-Filtering Firewall

- Most basic and common <u>firewall</u>: a router/switch
- Filters packets to block/detect attacks
 - Between network and ISP (aka AS 'Autonomous System'), or between two ASes (typically, customer and provider)
- Filtering policy: ordered list of 'access control rules'
 - Rule: an action and which packets to apply action to
 - Actions: allow, drop, reject, alert, redirect
- Selection of packets that rule applies to:
 - Typically: conditions on header fields
 - Stateless (efficient) or Stateful (more powerful)
 - Stateful FW can filter on existing (TCP) connection
 - Usually: abort on first match (skip remaining rules)
 - Order rules correctly for security and performance!

14

Typical Filtering Rules

- Anti IP spoofing rules:
 - Ingress filtering (packets sent into the Internet)
 - Allow only packets with assigned source IP addresses
 - Egress filtering (packets from (exiting) the Internet)
 - Drop incoming pkts with internal IPs and `forbidden' IPs
 - Drop other spoofed packets (Source Address Validation SAV)
- Attack blocking rules:
 - Block connections/requests from Internet (except to servers)
 - Block (and detect) suspect packets sent to Internet

Amir Herzberg 17

Ingress Filtering: Prevent Spoofed IP Packets

- Spoofing enables DoS and other off-path attacks, e.g. ???
- Ingress filtering: ISPs should drop spoofed packets from customers [BCP38,RFCs 2827, 3013, 3704,...]

Rule name / goal	Intf	Src IP, port	Dst IP, port	Protocol	Flags	Action
Ingress filtering						
(filter traffic from Intranet, sent to the Internet)						

Ingress Filtering: Prevent Spoofed IP Packets

- Spoofing enables DoS and other off-path attacks, e.g. DNS
- [BCP38, ingress filtering]: ISPs should filter spoofed packets from customers

Rule name / goal	Intf	Src IP,	Dst IP, port	Protocol	Flags	Action
Ingress filtering	Intra	1	ροιτ			Drop
(filter traffic from Intranet, sent to		1.6.7.*				e filtoring

the Internet)

Unfortunately, not all ISPs do ingress filtering Few incentives vs. real costs

How many IPs are ingress-filtered?

- As measured by CAIDA's spoofer project
 - Only end-users: participation bias, no hosted servers/nets

Typical Filtering Rules

Anti IP spoofing rules:

- Ingress filtering (packets sent into the Internet)
 - Allow only packets with assigned source IP addresses
- Egress filtering (packets from (exiting) the Internet)
 - Drop incoming pkts with internal IPs and `forbidden' IPs
 - Drop other spoofed packets (Source Address Validation SAV)
- Attack blocking rules:
 - Block connections/requests from Internet (except to servers)
 - Block (and detect) suspect packets sent to Internet

Stateless Egress Filtering Rule

Rule name / goal	Intf	Src IP, port	Dst IP, port	Protocol	Flags	Action
Egress filtering Drop incoming pkts with internal IPs						

Stateless Egress Filtering Rule

Rule name / goal	Intf	Src IP, port	Dst IP, port	Protocol	Flags	Action
Egress filtering Drop incoming pkts with	Inter	In 1.6.7.*				Drop
internal IPs		Doesn't	prevent sp	oofing of <u>c</u>	other IP add	dresses

Typical Filtering Rules

Anti IP spoofing rules:

- Ingress filtering (packets sent into the Internet)
 - Allow only packets with assigned source IP addresses
- Egress filtering (packets from (exiting) the Internet)
 - Drop incoming pkts with internal IPs and `forbidden' IPs
 - Drop other spoofed packets (Source Address Validation SAV)
- Attack blocking rules:
 - Block connections/requests from Internet (except to servers)
 - Block (and detect) suspect packets sent to Internet

IP Spoofing vs. filtering

- IP does not ensure Source Address Validation (SAV)
 - □ → IP spoofing, off-path attacks
 - Done from non-ingress-filtering ISPs [BCP38]
- Source Address Validation (SAV) Filtering
 - Unicast Reverse Path Forwarding [RFC3704]
 - Enhanced Feasible Path uRPF (eFP-uRPF) [RFC8704]
 - In routing lecture: BAR-SAV filtering
 - Ad-hoc: learn, then filter on TTL (hop-count)
 - Tradeoffs: false positives (filter benign packets) and false negatives (allow spoofed packets)

SAV with uRPF

- uRPF: Unicast Reverse Path Forwarding
- Strict uRPF: allow packets from srcIP x via interface I, if there is a path to destIP x via interface I
 - Used for stubs (AS with one neighbor) or symmetric routing
- <u>Feasible-path uRPF (FP-uRPF):</u> allow packets **from** srcIP x via interface I, when <u>some</u> alt-route to x is <u>via</u> interface I
 - May work for (asymmetric) routing
- Loose uRPF: allow if there is any route to x
- Limited use of <u>Feasible</u>; almost no value for <u>Loose</u>
- Later, improved variants: eFP-uRPF and BAR-SAV

Typical Filtering Rules

- Anti IP spoofing rules:
 - Ingress filtering (packets sent into the Internet)
 - Allow only packets with assigned source IP addresses
 - Egress filtering (packets from (exiting) the Internet)
 - Drop incoming pkts with internal IPs and `forbidden' IPs
 - Drop other spoofed packets (Source Address Validation SAV)
- Attack blocking rules:
 - Block connections/requests from Internet (except to servers)
 - Block (and detect) suspect packets sent to Internet

Block Connections/Requests from Internet

- Clients initiate connections and send requests
 - Exception: FTP server initiates `data` connection
- FW rules block incoming connections and requests
 - Except to (public) servers [see later DMZ]
- First: TCP (connection-based services)
- Later: UDP & ICMP (connection-less services)

Amir Herzberg 29

TCP: Transmission Control Protocol

- TCP is the Internet's main transport layer protocol
- TCP server application (e.g., http) listens to a port
- TCP client (e.g., browser) connects to server port
 - Using an arbitrary client port (not connected to this server IP:port)
- TCP sends packets using the Internet Protocol (IP)
 - Packets of a connection identified by (clientIP:port,serverIP:port)
- Connections begin with three-way handshake:

Client

Server

TCP Services

- Like every transport protocol, TCP ensures port-based communication between applications in different hosts
- TCP further ensures:
 - Reliability: messages received as sent (or connection RST)
 - Congestion control: slow down if path is congested
 - Flow control: don't overfill recipient's buffers
 - Challenge-response authentication against off-path attackr

SYN, srcP=9547, dstP=80, seq=1234

ACK, (msg), srcP=9547, dstP=80, seq=1235, ack=8094

Bob, I hate you! Alice [seq? ack? srcPort?]

Server

Off-path TCP inject challenges

- No explicit off-path defenses in TCP
- But... TCP injection requires:
 - 4-tuple: (clientIP:port, serverIP:port)
 - IPs and server port are often known
 - And sequence/ack numbers
 - Initialized randomly (since the 1990s)

srcP=9547, dstP=80, SYN, seq=1234

Bob, I hate you! Alice [seq? ack? srcPort?]

Block Incoming TCP Requests

Rule name / goal	Intf	Src IP, port	Dst IP, port	Protocol	Flags	Action
No incoming TCP connections				TCP		

Block Incoming TCP Requests

- TCP initiation is always by sending a SYN packet
 - Only legit TCP segment without ACK bit
- Responder sends back a SYN-ACK packet
- SYN bit is only set in these first two packets
- Hence: Block incoming (SYN) packets without ACK bit
 - Or simply allow drop incoming pkts without ACK

Amir Herzberg 34

Example: filtering incoming SMTP

MTA A: a.com's mail transfer agent (prevents sending spam)

MTA B: b.com's mail transfer agent (blocks mail from blacklisted IPs)

- SMTP: simple mail transfer protocol, listens to port 25
- Blacklists identify suspect-spamming IP addresses
- MTA B block mail from blacklisted IP (e.g., spammer)
- Spammer could try to send directly to Bob's MDA
 - MDA: mail delivery agent; MUA: mail user agent (client)
- But FW allows SYN from Internet to port 25 only to MTA

Block incoming connectionless requests

- Connectionless transport protocols: UDP, ICMP
 - QUIC provides connection-services over UDP
- How do we block incoming requests?
- Solution 1: Drop all UDP, ICMP traffic
 - Whitelist necessary, e.g., DNS (and QUIC, ICMP unreachable)
 - May whitelist only specific IPs (but IP could be spoofed)
- Solution 2: Drop packets to `known service ports' (<1024,)
- Solution 3 (stateful):
 - Record Src=x.x.x.x:p, dst=y.y.y.y:q, time for outgoing packets
 - Allow responses packets: src=y.y.y.y:q, dst=x.x.x.x:p
 - For up to some time-limit after sending request (few seconds)
 - Similarly for NAT

Example of stateless UDP rules: Allow (only) DNS responses from Internet (egress)

Rule name / goal	Intf	Src IP, port	Dst IP, port	Proto col	Flags	Action
Allow DNS response	out	53	>1024	UDP		Allow
Block other incoming UDP	out	*	*	UDP		DROP

Note: 'allow' must be placed after egress SAV rule(s)

Typical Filtering Rules

Anti IP spoofing rules:

- Ingress filtering (packets sent into the Internet)
 - Allow only packets with assigned source IP addresses
- Egress filtering (packets from (exiting) the Internet)
 - Drop incoming pkts with internal IPs and `forbidden' IPs
 - Drop other spoofed packets (Source Address Validation SAV)
- Attack blocking rules:
 - Block connections/requests from Internet (except to servers)
 - Block (and detect) suspect packets sent to Internet

Example: filtering outgoing SMTP

MTA A: a.com's mail transfer agent (prevents sending spam)

MTA B: b.com's mail transfer agent (blocks mail from blacklisted IPs)

- SMTP: simple mail transfer protocol, listens to port 25
- Blacklists identify suspect-spamming IP addresses
- MTA B block mail from blacklisted IP, blacklists spammers
- MTA A filters spam (and avoids getting blacklisted)
- Spammer controlling Alice's MUA can try to send directly
- But FW allows only MTA A to connect to port 25 (SMTP)

SMTP filtering rules

Rule	Intf	Src IP: port	Dst IP: port	Protocol	Flags	Action
Receive mail only via the MTA	out	*	1.6.7.1:25 *:25	TCP		Allow Drop
Send mail only via the MTA	in	Not MTA:*	*:25	TCP		DROP+ Alert

Block all traffic to/from port 25, except via MTA

De-Militarized Zone (DMZ)

- Subnet for public services:
 - External web/FTP, Incoming mail server, DNS, ...
 - Large attack surface → Separate 'Internal' net, servers
 - Allow connections <u>only</u> from Internet
- Often: separate interface of packet filter
- Block outgoing connections and alert

Cloud Firewalls and 'free ACLs'

- Firewalls often deployed in clouds to protect hosted networks/hosts or physical network
- Also, clouds offer basic stateless firewall to guests
 - 'Network ACLs': basic stateless rules
 - Free of charge for rules, dropped (incoming) traffic
 - Limited number of rules (e.g., 20-50)
 - Can't blacklist attackers!
 - Challenge: limit access (against DoS) ?

Amir Herzberg 50

Few words on Intrusion Detection Systems

- IDS Goals: detect, log, alert [; IPS: also prevent]
 - For traffic that passed the FW's filtering
- Detect known attack signatures / patterns
- Detect other attacks
 - Based on heuristics & statistics (anomaly detection)
- Critical: minimize false alarms
 - Many events * 1% → still too many → ignored!
 - 1% of 100M packets is still 1M!
- Attackers respond by different evasion techniques...

Decoys and Honeypots/nets

- Challenge: how do we detect new attacks?
- Idea: detect attack by any access to 'decoy'
 - Object created (only) to detect access
 - Learn about attack(er): new malware, spam, IP, content, method...
 - Waste attacker resources (time)?

Decoys:

- Decoy host (honeypot), network (honeynet)
- File or records in DB (detect access / modification)
- User/password in password file
- Email mailbox (detect spam messages)
- Addresses in address-book (detect exposure)

Summary

- Vulnerabilities are an ongoing threat to security
- Firewalls provide an important line of defense
 - Defend the perimeter of a network from outsiders
 - Also, prevent attacks by insiders and detect them
 - Good citizenship, preserve reputation (avoid blacklist)
 - Limited Source Address Validation (SAV) mechanisms
 - Block incoming requests, connections
 - Block suspect attacks
- Defense in depth: defend within perimeter
 - Internal firewalls protect against insiders
 - IDS/IPS, decoys/honeypots/honeynets, and more