Python for data analysis

FINAL PROJECT:
SEOUL BIKE SHARING DEMAND DATASET

https://archive.ics.uci.edu /ml/datasets/Seoul+Bike+ Sharing+Demand

> Léo DUJOURD'HUI William GAINNIER Mélanie GAMBIEZ

Data Exploration

COLUMNS NAME AND TYPES

Date	object
Rented Bike Count	int64
Hour	int64
Temperature(°C)	float64
Humidity(%)	int64
Wind speed (m/s)	float64
Visibility (10m)	int64
Dew point temperature(°C)	float64
Solar Radiation (MJ/m2)	float64
Rainfall(mm)	float64
Snowfall (cm)	float64
Seasons	object
Holiday	object
Functioning Day	object
dtype: object	

NON NUMERIC DATA

Date (object): each day date from 31/12/2017 to 30/11/2018

<u>Seasons</u> (object): Winter, Spring, Summer, Autumn

Holiday (object): No Holiday, Holiday

Functioning Day (object): No, Yes

THERE ARE 8760 ROWS AND 14 COLUMNS

Data Cleaning

NO NULL VALUES

NO DUPLICATED VALUES

SOME EXTREME VALUES

```
quant96 = df["Rented Bike Count"].quantile(0.96)
df = df[(df["Rented Bike Count"] < quant96)]</pre>
```


Data Preparation

COLUMNS CREATION

Year : 2017 2018

Months : 1 to 12

Day : Monday > 0,
 Tuesday > 1,
 Wednesday > 2,
 Thursday > 3,
 Friday > 4,
 Saturday > 5,
 Sunday > 6

COLUMNS CHANGES: OBJECT TO NUMERICAL

Seasons: Winter > 0,
Spring > 1,
Summer > 2,
Autumn > 3

<u>Functioning Day</u>: No > 0, Yes > 1

COLUMNS DELETION

<u>Date_Format</u> (temporary created for the Year and Months columns creation)

<u>Date</u>

NEW COLUMN NAME AND TYPES

Rented Bike Count	int64
Hour	int64
Temperature(°C)	float64
Humidity(%)	int64
Wind speed (m/s)	float64
Visibility (10m)	int64
Dew point temperature(°C)	float64
Solar Radiation (MJ/m2)	float64
Rainfall(mm)	float64
Snowfall (cm)	float64
Seasons	int64
Holiday	int64
Functioning Day	int64
Year	int64
Months	int64
Day	int64

dtype: object

THERE ARE 8409 ROWS AND 16 COLUMNS

Data Analysis

Data Analysis

RENTED BIKE COUNT PER HOUR AND SEASON

% OF RENTED BIKE PER MONTH

TOTAL RENTED BIKE COUNT PER HOUR

6

Data Modeling: PREDICT THE NUMBER OF RENTED BIKES AT GIVEN HOUR

DATAFRAME DIVIDED INTO TARGET AND DATA SETS

Target = Rented Bike Count

BEST MODEL

GradientBoostingRegressor
(with GridSearchCV)
> Mean error = 77.2523

TEST: On the 06/12/22 in Seoul, considering all conditions (9am, 1°C, ...), our model predicted the rent of 457 bikes.

RENTED BIKE NUMBER PREDICTION FOR 100 HOURS

Data Modeling: PREDICT THE NUMBER OF RENTED BIKES AT GIVEN HOUR

TESTED MODELS

<u>HistGradientBoostingRegressor (without GridSearchCV)</u>

> Mean error = 88.6770

RandomForestRegressor

> Mean error = 97.6920

Data Modeling : PREDICT THE NUMBER OF RENTED BIKES AT GIVEN HOUR

TESTED MODELS

Bayesian Ridge Model

> Mean error = 270,1722

SVR Model

> Mean error = 271.8103

Data Modeling: PREDICT THE NUMBER OF RENTED BIKES AT GIVEN HOUR

API Python

For more information on this dataset analysis, please check our GitHub: https://github.com/le-cmyk/Seoul_Bike