Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007

9^a Aula Prática

Soluções e algumas resoluções abreviadas

1. Se $f(n)=(-1)^n$, então $f(n+1)-f(n)=(-1)^{n+1}-(-1)^n=2(-1)^{n+1}$. Agora, como f é diferenciável em \mathbb{R}^+ , é contínua em [n,n+1] e diferenciável em]n,n+1[, para cada $n\in\mathbb{N}$. Do Teorema de Lagrange temos então que existe $c_n\in]n,n+1[$ tal que

$$\frac{f(n+1) - f(n)}{(n+1) - n} = f'(c_n) \Leftrightarrow f'(c_n) = 2(-1)^{n+1}$$

e concluimos que $f'(c_n)$ é uma sucessão divergente (tem dois sublimites, -2 e 2). Como $n < c_n < n+1$, temos que $c_n \to +\infty$, logo f' não tem limite no infinito (se tivesse, $f'(c_n)$ seria convergente).

2. A função g será diferenciável em $\mathbb{R} \setminus \{0\}$ e portanto será crescente em \mathbb{R}^+ se $g'(x) \geq 0$ para x > 0. Temos

$$g'(x) = \frac{xf'(x) - f(x)}{x^2} \ge 0 \Leftrightarrow xf'(x) \ge f(x) \Leftrightarrow \frac{f(x)}{x} \le f'(x)$$

(note-se que x > 0). Agora, aplicando o Teorema de Lagrange à função f no intervalo [0, x], temos que, como f(0) = 0,

$$\frac{f(x)}{x} = f'(c)$$

para algum $c \in [0, x[$. Como f' é crescente, $c < x \Rightarrow f'(c) \le f'(x)$.

3. Se a<0 e b>0 são as soluções não-nulas de $f(x)=x^2$, temos $f(b)=b^2, f(a)=a^2$ e também f(0)=0. Aplicando o Teorema de Lagrange nos intervalos [a,0] e [0,b], temos que existem $c_1\in]a,0[$, $c_2\in]0,b[$ tais que

$$\frac{f(a)}{a} = f'(c_1), \quad \frac{f(b)}{b} = f'(c_2),$$

ou seja, $f'(c_1) = a < 0$ e $f'(c_2) = b > 0$. Como f' é contínua (f é de classe C^1), temos do Teorema do Valor Intermédio que existe $d \in]c_1, c_2[$ tal que f'(d) = 0.

- 4. a) $\frac{x}{x^2+1}$: (estritamente) crescente¹ em [-1,1], (estritamente) decrescente em $]-\infty,-1]$ e em $[1,+\infty[$, ponto de mínimo em -1, ponto de máximo em 1, que são absolutos uma vez que $\lim_{x\to\pm\infty}\frac{x}{x^2+1}=0$, f(-1)=-1/2 e f(1)=1/2;
 - b) $\frac{1}{x} + \frac{1}{x^2}$: crescente em [-2,0[, decrescente em $]-\infty,-2]$ e em $]0,+\infty[$, ponto de mínimo em -2, que é absoluto, uma vez que $\lim_{x\to+\infty}\frac{1}{x}+\frac{1}{x^2}=0$ e $-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}<0$.
 - c) $|x^2-5x+6|$: crescente em $\left[2,\frac{5}{2}\right]$ e em $\left[3,+\infty\right[$, decrescente em $]-\infty,2]$ e em $\left[\frac{5}{2},3\right]$, pontos de mínimo em 2, 3, absolutos uma vez que $|x^2-5x+6|>0$, para $x\neq 2,3$, e ponto de máximo em $\frac{5}{2}$, local uma vez que $\lim_{x\to\pm\infty}|x^2-5x+6|=+\infty$. (Nota: $|x^2-5x+6|$ não é diferenciável em 2 e 3.)
 - d) $x \log x$: crescente em $[e^{-1}, +\infty[$, decrescente $]0, e^{-1}]$, ponto de mínimo em e^{-1} , absoluto.
 - e) e^{-x^2} : crescente em] $-\infty$, 0], decrescente em $[0, +\infty[$, ponto de máximo em 0, absoluto.
 - f) $\frac{e^x}{x}$: crescente em $[1,+\infty[$, decrescente em $]-\infty,0[$ e em]0,1], ponto de mínimo em 1, relativo uma vez que $\lim_{x\to 0^-}\frac{e^x}{x}=-\infty.$
 - g) xe^{-x} : crescente em] $-\infty,1$], decrescente em $[1,+\infty[$, ponto de máximo em 1 que é absoluto.
 - h) $\arctan x \log \sqrt{1 + x^2}$: crescente em $]-\infty, 1]$, decrescente em $[1, +\infty[$, ponto de máximo em 1, que é absoluto.
- 5. $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = |x|e^{-\frac{x^2}{2}}$.
 - a) $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} -xe^{-\frac{x^2}{2}}$ é uma indeterminação do tipo $\infty \cdot 0$. Escrevendo $-xe^{-\frac{x^2}{2}} = \frac{-x}{\frac{x^2}{2}}$, ficamos com uma indeterminação do tipo $\frac{\infty}{\infty}$, a que podemos aplicar a Regra de Cauchy:

$$\lim_{x \to -\infty} \frac{-x}{e^{\frac{x^2}{2}}} = \lim_{x \to -\infty} \frac{(-x)'}{\left(e^{\frac{x^2}{2}}\right)'} = \lim_{x \to -\infty} \frac{-1}{xe^{\frac{x^2}{2}}} = 0.$$

Como a função é par, $\lim_{x\to+\infty} f(x) = \lim_{x\to-\infty} f(x) = 0$.

b) A função $e^{-\frac{x^2}{2}}$ é diferenciável em \mathbb{R} e |x| é diferenciável em $\mathbb{R} \setminus \{0\}$. Logo, para $x \neq 0$, f é dada pelo produto de duas funções diferenciáveis, sendo portanto diferenciável. Para x = 0:

$$\lim_{x \to 0^+} \frac{|x|e^{-\frac{x^2}{2}}}{x} = \lim_{x \to 0^+} \frac{xe^{-\frac{x^2}{2}}}{x} = \lim_{x \to 0^+} e^{-\frac{x^2}{2}} = 1,$$

 $^{^1\}mathrm{Neste}$ e noutros esboços de solução dos exercícios aplica-se, geralmente sem explicações adicionais, o seguinte raciocínio muito útil: se f é uma função diferenciável num intervalo aberto, com derivada positiva (resp. negativa), e contínua no respectivo intervalo fechado então f é estritamente crescente (resp. decrescente) no intervalo fechado. Além disso o advérbio estritamente será omitido pois do contexto tal é geralmente óbvio.

$$\lim_{x \to 0^{-}} \frac{|x|e^{-\frac{x^{2}}{2}}}{x} = \lim_{x \to 0^{-}} \frac{-xe^{-\frac{x^{2}}{2}}}{x} = \lim_{x \to 0^{+}} -e^{-\frac{x^{2}}{2}} = -1.$$

Logo, $f'_d(0) \neq f'_e(0)$ e f não é diferenciável em 0. Conclui-se que o domínio de diferenciabilidade de f é $\mathbb{R} \setminus \{0\}$ e neste caso

$$f'(x) = \begin{cases} \left(xe^{-\frac{x^2}{2}}\right)' = e^{-\frac{x^2}{2}}(1-x^2), & \text{se } x > 0, \\ \left(-xe^{-\frac{x^2}{2}}\right)' = e^{-\frac{x^2}{2}}(x^2 - 1) & \text{se } x < 0. \end{cases}$$

c) Usamos a alínea anterior.

Para x > 0:

$$f'(x) > 0 \Leftrightarrow e^{-\frac{x^2}{2}}(1 - x^2) > 0 \Leftrightarrow -1 < x < 1 \land x > 0 \Leftrightarrow 0 < x < 1,$$

$$f'(x) = 0 \Leftrightarrow x = 1,$$

logo f é crescente em [0,1] e decrescente em $[1,+\infty[$.

Para x < 0:

$$f'(x) > 0 \Leftrightarrow e^{-\frac{x^2}{2}}(x^2 - 1) > 0 \Leftrightarrow (x < -1 \lor x > 1) \land x < 0 \Leftrightarrow x < -1$$

 $f'(-1) = 0$

logo f é crescente em $]-\infty,-1]$ e decrescente em [-1,0].

Conclui-se que 1 e -1 são pontos de máximo, absolutos uma vez que f(-1) = f(1). Como f é decrescente em [-1,0] e crescente em [0,1], temos também que 0 é ponto de mínimo, absoluto uma vez que f(0) = 0 e f(x) > 0, para $x \neq 0$.

- d) Temos da alínea anterior que f tem um máximo absoluto em 1, com $f(1) = e^{-\frac{1}{2}}$ e um mínimo absoluto em 0 com f(0) = 0, logo $f(\mathbb{R}) \subset [0, e^{-\frac{1}{2}}]$. Como f é contínua em [0, 1], temos também, do Teorema do Valor Intermédio, que $[0, e^{-\frac{1}{2}}] \subset f(\mathbb{R})$. Logo o contradomínio de f é $f(\mathbb{R}) = [0, e^{-\frac{1}{2}}]$.
- 6. $g: \mathbb{R} \to \mathbb{R}$ definida por:

$$g(x) = \begin{cases} e^x + \alpha x + \beta & \text{se } x \le 0, \\ \arctan(e^x + e^{-x} - 1) & \text{se } x > 0, \end{cases}$$

onde α e β são constantes reais.

a) Se g tem derivada finita em 0, será contínua em 0, logo $g(0)=g(0^+)=g(0^-),$ ou seja,

$$g(0) = 1 + \beta = \lim_{x \to 0^+} \arctan\left(e^x + e^{-x} - 1\right) = \arctan 1 = \frac{\pi}{4},$$

logo $\beta = \frac{\pi}{4} - 1$. Por outro lado, g é diferenciável em 0 logo $g'_e(0) = g'_d(0)$ e temos

$$g'_e(0) = \lim_{x \to 0^-} \frac{e^x + \alpha x + \frac{\pi}{4} - 1 - \frac{\pi}{4}}{x} = \lim_{x \to 0^-} \frac{e^x - 1}{x} + \alpha = \alpha + 1,$$

$$g'_d(0) = \lim_{x \to 0^+} \frac{\arctan\left(e^x + e^{-x} - 1\right) - \frac{\pi}{4}}{x} = \lim_{x \to 0^+} \frac{e^x - e^{-x}}{1 + \left(e^x + e^{-x} - 1\right)^2} = 0$$

(onde se usou a Regra de Cauchy na indeterminação $\frac{0}{0}$) logo $\alpha = -1$.

b)

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} e^x - x + \frac{\pi}{4} - 1 = +\infty$$
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \arctan\left(e^x + e^{-x} - 1\right) = \frac{\pi}{2}$$

(Justifique!).

c) g é diferenciável em \mathbb{R} (justifique) e

$$g'(x) = \begin{cases} e^x - 1 & \text{se } x \le 0, \\ \frac{e^x - e^{-x}}{1 + (e^x + e^{-x} - 1)^2} & \text{se } x > 0. \end{cases}$$

- d) Temos para $x \leq 0$: $g'(x) = e^x 1 < 0$ para qualquer x < 0 e g'(0) = 0. Logo g é decrescente em $] \infty, 0]$. Para x > 0: $g'(x) = \frac{e^x e^{-x}}{1 + (e^x + e^{-x} 1)^2} > 0 \Leftrightarrow e^x > e^{-x} \Leftrightarrow e^{2x} > 1 \Leftrightarrow x > 0$. Logo g é crescente em $]0, +\infty[$. Conclui-se que 0 é um ponto de mínimo, absoluto usando a continuidade de g em 0.
- e) Da alínea anterior temos que $g(0) = \frac{\pi}{4}$ é um mínimo absoluto, logo $g(x) \geq \frac{\pi}{4}$ para qualquer x e $g(\mathbb{R}) \subset \left[\frac{\pi}{4}, +\infty\right[$. Por outro lado, $\lim_{x \to -\infty} g(x) = +\infty$ e g é contínua em $]-\infty,0]$. Conclui-se do Teorema do Valor Intermédio que $\left[\frac{\pi}{4}, +\infty\right[\subset g(\mathbb{R})$. Logo o contradomínio de g é $g(\mathbb{R}) = \left[\frac{\pi}{4}, +\infty\right[$.
- 7. $f(x) = |x|e^{-|x-1|}$.
 - a) $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} -xe^{x-1}$ é uma indeterminação do tipo $\infty\cdot 0$. Escrevendo $-xe^{x-1} = \frac{-x}{e^{1-x}}$ temos uma indeterminação do tipo $\frac{\infty}{\infty}$ a que podemos aplicar a Regra de Cauchy:

$$\lim_{x \to -\infty} \frac{-x}{e^{1-x}} = \lim_{x \to -\infty} \frac{-1}{-e^{1-x}} = 0.$$

Da mesma forma,

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x e^{-x+1} = \lim_{x \to +\infty} \frac{x}{e^{x-1}} = \lim_{x \to +\infty} \frac{1}{e^{x-1}} = 0.$$

b) A função é diferenciável em $\mathbb{R} \setminus \{0,1\}$ por ser dada nesse conjunto pelo produto de duas funções diferenciáveis: |x| diferenciável em $\mathbb{R} \setminus \{0\}$ e $e^{-|x-1|}$ diferenciável em $\mathbb{R} \setminus \{1\}$ (por ser a composta de duas funções: exponencial diferenciável em \mathbb{R} e |x-1| diferenciável em $\mathbb{R} \setminus \{1\}$). Em x=1:

$$\lim_{x \to 1^+} \frac{|x|e^{-|x-1|} - 1}{x - 1} = \lim_{x \to 1^+} \frac{xe^{-x+1} - 1}{x - 1} = \lim_{x \to 1^+} e^{-x+1}(1 - x) = 0$$

(onde se usou a Regra de Cauchy para levantar a indeterminação $\frac{0}{0}$) e da mesma forma,

$$\lim_{x \to 1^{-}} \frac{|x|e^{-|x-1|} - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{xe^{x-1} - 1}{x - 1} = \lim_{x \to 1^{-}} e^{x-1}(1 + x) = 2.$$

Logo, $f'_d(1) = 0 \neq f'_e(1) = 2$ e f não é diferenciável em 1.

No ponto 0, pode ver-se (justifique!) que $f_d'(0) = e^{-1} \neq f_e'(0) = -e^{-1}$, logo f não é diferenciável em 0, e o seu domínio de diferenciabilidade é $\mathbb{R} \setminus \{0,1\}$.

$$f'(x) = \begin{cases} (xe^{-x+1})' = e^{-x+1}(1-x), & \text{se } x > 1, \\ (xe^{x-1})' = e^{x-1}(1+x), & \text{se } 0 < x < 1, \\ (-xe^{x-1})' = -e^{x-1}(1+x), & \text{se } x < 0. \end{cases}$$

- c) Temos (justifique!): $f'(0) = 0 \Leftrightarrow x = -1$, estudando o sinal de f' e usando a continuidade de f,
 - f crescente em $]-\infty,-1]$ e em [0,1],
 - f decrescente em [-1, 0] e em $[1, +\infty[$.

Logo, -1 é ponto de máximo, 0 é ponto de mínimo e 1 é ponto de máximo. Como f(0) = 0 e f(x) > 0 para $x \neq 0$, 0 é mínimo absoluto. Por outro lado, f(1) = 1 e $f(-1) = e^{-2} < 1$, logo 1 é ponto de máximo absoluto, e consequentemente, -1 é ponto de máximo relativo.

- d) Da alínea anterior, temos que 0 = f(0) é mínimo absoluto de f e 1 = f(1) é máximo absoluto de f. Logo $f(\mathbb{R}) \subset [0,1]$. Como f é contínua em [0,1], do Teorema do Valor Intermédio, $[0,1] \subset f(\mathbb{R})$. Logo o contradomínio de f é $f(\mathbb{R}) = [0,1]$.
- 8. $f(x) = x + 2 \arctan |x|$.

a)

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x + 2 \arctan|x| = \lim_{x \to -\infty} x + \pi = -\infty.$$
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x + 2 \arctan|x| = \lim_{x \to +\infty} x + \pi = +\infty.$$

b) A função arctg é diferenciável em \mathbb{R} e a função |x| é diferenciável em $\mathbb{R} \setminus \{0\}$. Logo, para $x \neq 0$, arctg |x| é dada pela composição de funções diferenciáveis, e é portanto diferenciável em $\mathbb{R} \setminus \{0\}$, e também o será f(x).

Quanto a x = 0:

$$f'_d(0) = \lim_{x \to 0^+} \frac{x + 2 \arctan|x|}{x} = \lim_{x \to 0^+} 1 + \frac{2 \arctan x}{x} = 1 + \lim_{x \to 0^+} \frac{2}{1 + x^2} = 3$$

(onde se usou a Regra de Cauchy para levantar a indeterminação do tipo $\frac{0}{0}$ resultante de $\lim_{x\to 0^+}\frac{2\operatorname{arctg} x}{x}$.) Por outro lado,

$$f'_e(0) = \lim_{x \to 0^-} \frac{x + 2 \arctan|x|}{x} = \lim_{x \to 0^-} 1 + \frac{2 \arctan(-x)}{x} = 1 + \lim_{x \to 0^-} \frac{-2}{1 + x^2} = -1.$$

Logo, como $f'_d(0) \neq f'_e(0)$, f não é diferenciável em 0.

Conclui-se que o domínio de diferenciabilidade é $\mathbb{R} \setminus \{0\}$. Temos

$$f'(x) = \begin{cases} 1 + \frac{2}{1+x^2}, & \text{se } x > 0, \\ 1 - \frac{2}{1+x^2}, & \text{se } x < 0. \end{cases}$$

c) Para x > 0, $f'(x) = 1 + \frac{2}{1+x^2} > 0$ para qualquer x, logo f é crescente em $]0, +\infty[$.

Para x < 0, $f'(x) = 1 - \frac{2}{1+x^2} = \frac{x^2-1}{1+x^2}$. Temos

$$f'(x) = 0 \Leftrightarrow x^2 - 1 = 0 \land x < 0 \Leftrightarrow x = -1,$$

e, como $1+x^2>0$, f'(x)>0 para x<-1, ou seja, f é crescente em $]-\infty,-1]$, e f'(x)<0 para -1< x<0, ou seja f é decrescente em]-1,0[.

Conclui-se assim que -1 é ponto de máximo, relativo uma vez que $\lim_{x\to-\infty} f(x) = -\infty$. Por outro lado, como f é contínua e decrescente em]-1,0[, crescente em $]0,+\infty[$, temos que 0 é ponto de mínimo, de novo relativo uma vez que $\lim_{x\to+\infty} f(x) = +\infty$.

- d) Temos $\lim_{x\to-\infty} f(x) = -\infty$ e f(0) = 0, e temos um máximo relativo em -1 com $f(-1) = -1 + 2 \arctan 1 = -1 + \frac{\pi}{2} > 0$. Como f é crescente e contínua em $]-\infty,-1]$ temos que, pelo Teorema do Valor Intermédio, $f(]-\infty,-1]) =]-\infty,-1+\frac{\pi}{2}]$. Por outro lado, como f é decrescente e contínua em [-1,0] temos que $f([-1,0]) = [0,-1+\frac{\pi}{2}]$. Logo $f(]-\infty,0]) =]-\infty,-1+\frac{\pi}{2}]$.
- 9. Do teorema de derivação da função composta,

$$(\varphi(x))' = (2 \operatorname{tg} (g(x)) - g(x))'$$

= $(2 + 2 \operatorname{tg}^2 (g(x)))g'(x) - g'(x)$
= $g'(x)(2 \operatorname{tg}^2 (g(x)) + 1).$

Logo $\varphi'(0)=0$. Como g'(0)=0 e g' é estritamente monótona, temos que g' muda de sinal numa vizinhança de 0 (se g' é crescente, g'(x)< g'(0)=0, para x<0 e g'(x)>0 para x>0) e portanto, como $2\operatorname{tg}^2(g(x))+1>0$ para qualquer $x,\,\varphi'$ também muda de sinal numa vizinhança de 0. Conclui-se que $\varphi(0)$ é extremo de φ (mínimo, se g' for crescente).

10. a) Como xf'(x) > 0 para $x \neq 0$, temos que para x > 0, f'(x) > 0, ou seja f é crescente em $]0, \epsilon[$, e para x < 0, f'(x) < 0, ou seja f é

decrescente em] $-\epsilon$, 0[. Como f é contínua em 0, 0 é um ponto de mínimo local.

Se f é diferenciável em 0 então f'(0) = 0, uma vez que 0 é ponto de extremo.

b) Por exemplo, a função $f: \left]-1,1\right[\to \mathbb{R}$ tal que

$$f(x) = \begin{cases} 1 + x^2 & \text{se } x \le 0, \\ x^2 & \text{se } x > 0. \end{cases}$$

é diferenciável em $\mathbb{R} \setminus \{0\}$, com f'(x) = 2x, e satisfaz xf'(x) > 0 para $x \neq 0$. Mas 0 não é ponto de extremo, uma vez que para x < 0, f(x) > f(0) e para x > 0, f(x) < f(0).

11. a) $\lim_{x\to 0} \frac{a^x-b^x}{x}$ é uma indeterminação do tipo $\frac{0}{0}$. Pela Regra de Cauchy:

$$\lim_{x \to 0} \frac{a^x - b^x}{x} = \lim_{x \to 0} \log a \cdot a^x - \log b \cdot b^x = \log a - \log b = \log \frac{a}{b}.$$
 (1)

b) $\lim_{x\to+\infty}\frac{\log(x+e^x)}{x}$ é uma indeterminação do tipo $\frac{\infty}{\infty}$. Pela Regra de Cauchy (duas vezes):

$$\lim_{x \to +\infty} \frac{\log(x + e^x)}{x} = \lim_{x \to +\infty} \frac{1 + e^x}{x + e^x} = \lim_{x \to +\infty} \frac{e^x}{1 + e^x} = 1.$$

c) $\lim_{x\to 1} (\log x \cdot \log \log x)$ é uma indeterminação do tipo $0\cdot \infty$. Escrevendo

$$\lim_{x \to 1} \log x \cdot \log \log x = \lim_{x \to 1} \frac{\log \log x}{\frac{1}{\log x}}$$

temos uma indeterminação do tipo $\frac{\infty}{\infty},$ e pela Regra de Cauchy,

$$\lim_{x \to 1} \frac{\log \log x}{\frac{1}{\log x}} = \lim_{x \to 1} \frac{\frac{1}{x \log x}}{-\frac{1}{x \log^2 x}} = \lim_{x \to 1} -\log x = 0.$$

d) $\lim_{x\to 0^+} \frac{e^{-1/x}}{x}$ é uma indeterminação do tipo $\frac{0}{0}$. Escrevendo

$$\lim_{x \to 0^+} \frac{e^{-1/x}}{x} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{e^{1/x}},$$

temos uma indeterminação do tipo $\frac{\infty}{\infty},$ e pela Regra de Cauchy,

$$\lim_{x \to 0^+} \frac{\frac{1}{x}}{e^{1/x}} = \lim_{x \to 0^+} \frac{-\frac{1}{x^2}}{-\frac{1}{x^2}e^{1/x}} = \lim_{x \to 0^+} \frac{1}{e^{1/x}} = 0.$$

(Nota: a Regra de Cauchy aplicada directamente a $\lim_{x\to 0^+}\frac{e^{-1/x}}{x}$ não simplifica a questão...)

- e) $\lim_{x\to 0^-} \frac{e^{-1/x}}{x} = \lim_{x\to 0^-} \frac{1}{x} e^{-1/x} = -\infty \cdot +\infty = -\infty$. (Note que a Regra de Cauchy $n\tilde{a}o$ é aplicável!)
- f) $\lim_{x\to 1^+} x^{\log\log x}$ é uma indeterminação do tipo 1^{∞} . Temos

$$\lim_{x \to 1^+} x^{\log \log x} = \lim_{x \to 1^+} e^{\log \left(x^{\log \log x}\right)} = \lim_{x \to 1^+} e^{\log \log x \log x} = e^{\lim_{x \to 1^+} \log \log x \log x}.$$

Agora, de c), $\lim_{x\to 1^+} \log \log x \log x = 0 \log x$

$$\lim_{x \to 1^+} x^{\log \log x} = e^0 = 1.$$

g) $\lim_{x\to+\infty} x^{\frac{1}{x-1}}$ é uma indeterminação do tipo ∞^0 . Temos

$$\lim_{x \to +\infty} x^{\frac{1}{x-1}} = \lim_{x \to +\infty} e^{\log\left(x^{\frac{1}{x-1}}\right)} = \lim_{x \to +\infty} e^{\frac{1}{x-1}\log x} = e^{\lim_{x \to +\infty} \frac{1}{x-1}\log x}.$$

Agora, $\lim_{x\to +\infty}\frac{1}{x-1}\log x=\lim_{x\to +\infty}\frac{\log x}{x-1}$ é uma indeterminação do tipo $\frac{\infty}{\infty}$ e aplicando a Regra de Cauchy,

$$\lim_{x \to +\infty} \frac{\log x}{x-1} = \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Logo,

$$\lim_{x \to +\infty} x^{\frac{1}{x-1}} = e^0 = 1.$$

- 12. a) $\lim_{x\to 0} \frac{10^x 5^x}{x} = \log 2$ (ver 1).
 - b) $\lim_{x\to 0^+} \frac{x^2 \sin\frac{1}{x}}{\sin x} = \lim_{x\to 0^+} \frac{x}{\sin x} \cdot x \sin\frac{1}{x} = 1 \cdot 0 = 0.$

(Note que não existe $\lim_{x\to 0^+}\frac{\left(x^2\sin\frac{1}{x}\right)'}{(\sin x)'}$ logo a Regra de Cauchy não é aplicável.)

13. a) $\lim_{x\to+\infty}\frac{2^x}{x^2}$ é uma indeterminação do tipo $\frac{\infty}{\infty}$. Aplicando a Regra de Cauchy (duas vezes):

$$\lim_{x \to +\infty} \frac{2^x}{x^2} = \lim_{x \to +\infty} \frac{\log 2 \cdot 2^x}{2x} = \lim_{x \to +\infty} \frac{(\log 2)^2 \cdot 2^x}{2} = +\infty.$$

- b) $\lim_{x \to -\infty} \frac{2^x}{x^2} = \lim_{x \to -\infty} \frac{1}{x^2} 2^x = 0 \cdot 0 = 0.$
- 14. a) $\lim_{x\to 0^+} (\sin x)^{\sin x}$ é uma indeterminação do tipo 0^0 . Temos

$$\lim_{x \to 0^+} (\operatorname{sen} x)^{\operatorname{sen} x} = e^{\lim_{x \to 0^+} \operatorname{sen} x \log \operatorname{sen} x}.$$

Temos que $\lim_{x\to 0^+} \operatorname{sen} x \log \operatorname{sen} x = \lim_{x\to 0^+} \frac{\log \operatorname{sen} x}{\frac{1}{\operatorname{sen} x}}$ é uma indeterminação do tipo $\frac{\infty}{\infty}$. Aplicando a Regra de Cauchy

$$\lim_{x \to 0^+} \frac{\log \operatorname{sen} x}{\frac{1}{\operatorname{sen} x}} = \lim_{x \to 0^+} \frac{\frac{\cos x}{\operatorname{sen} x}}{\frac{\cos x}{\operatorname{sen}^2 x}} = \lim_{x \to 0^+} \operatorname{sen} x = 0.$$

Logo

$$\lim_{x \to 0^+} (\sin x)^{\sin x} = e^0 = 1.$$

b) $\lim_{x\to+\infty} (\log x)^{\frac{1}{x}}$ é uma indeterminação do tipo ∞^0 . Temos

$$\lim_{x \to +\infty} (\log x)^{\frac{1}{x}} = e^{\lim_{x \to +\infty} \frac{1}{x} \log \log x}.$$

Agora $\lim_{x\to+\infty}\frac{1}{x}\log\log x=\lim_{x\to+\infty}\frac{\log\log x}{x}$ é uma indeterminação do tipo $\frac{\infty}{\infty}$ e temos

$$\lim_{x \to +\infty} \frac{\log \log x}{x} = \lim_{x \to +\infty} \frac{1}{x \log x} = 0$$

 $\log_{x \to +\infty} (\log x)^{\frac{1}{x}} = 1.$

- 15. a) $\lim_{x\to+\infty} x \operatorname{sen} \frac{1}{x} = 1$ (justifique!).
 - b) $\lim_{x \to \frac{\pi}{4}} (\operatorname{tg} x)^{\operatorname{tg} 2x} = e^{-1}$ (justifique!).
- 16. $\lim_{x\to 0} x^{\sin x}$ é uma indeterminação do tipo 0^0 . Temos que

$$\lim_{x \to 0} x^{\operatorname{sen} x} = \lim_{x \to 0} e^{\operatorname{sen} x \log x} = e^{\lim_{x \to 0} \operatorname{sen} x \log x}$$

Vamos calcular $\lim_{x\to 0} \operatorname{sen} x \log x$, que é uma indeterminação do tipo $0\cdot\infty$. Escrevendo $\operatorname{sen} x \log x = \frac{\log x}{\frac{1}{\operatorname{sen} x}}$ ficamos com uma indeterminação do tipo $\frac{\infty}{\infty}$ e podemos usar a Regra de Cauchy:

$$\lim_{x \to 0} \frac{\log x}{\frac{1}{\sin x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{\cos x}{\sin^2 x}}$$

$$= \lim_{x \to 0} -\frac{\sin^2 x}{x \cos x}$$

$$= \lim_{x \to 0} -\frac{\sin x}{x} \cdot \frac{\sin x}{\cos x} = -1 \cdot 0 = 0.$$

Logo, $\lim_{x\to 0} x^{\sin x} = e^0 = 1$.

Pela definição de limite, como $\frac{1}{n} \to 0$, temos agora

$$\lim \left(\frac{1}{n}\right)^{\operatorname{sen}\frac{1}{n}} = 1.$$

17. a) $f(x) = e^{2x}$: $f'(x) = 2e^{2x}$, $f''(x) = 4e^{2x}$, $f'''(x) = 8e^{2x}$. Logo a fórmula de Taylor de ordem 2 relativa ao ponto 0 será

$$f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(\xi)}{3!}x^2 = 1 + 2x + 2x^2 + \frac{4}{3}e^{2\xi}x^3,$$

em que ξ está entre 0 e x. A fórmula de Taylor, de ordem 2, relativa ao ponto 1 será

$$f(1) + f'(1)(x - 1) + \frac{f''(1)}{2}(x - 1)^2 + \frac{f'''(\xi)}{3!}(x - 1)^3$$
$$= e^2 + 2e^2(x - 1) + 2e^2(x - 1)^2 + \frac{4}{3}e^{2\xi}(x - 1)^3,$$

em que ξ está entre 1 e x.

b) $f(x) = \log(1+x)$: $f'(x) = \frac{1}{1+x}$, $f''(x) = -\frac{1}{(1+x)^2}$, $f'''(x) = \frac{2}{(1+x)^3}$. Logo a fórmula de Taylor de ordem 2 relativa ao ponto 0 será

$$f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(\xi)}{3!}x^3 = x - \frac{1}{2}x^2 + \frac{1}{3}\frac{1}{(1+\xi)^3}x^3,$$

em que ξ está entre 0 e x. A fórmula de Taylor de ordem 2 relativa ao ponto 1 será

$$f(1) + f'(1)(x - 1) + \frac{f''(1)}{2}(x - 1)^3 + \frac{f'''(\xi)}{3!}(x - 1)^3$$
$$= \log 2 + \frac{1}{2}(x - 1) + \frac{1}{4}(x - 1)^2 + \frac{1}{3}\frac{1}{(1 + \xi)^3}(x - 1)^3$$

em que ξ está entre 1 e x.

c) $f(x) = \cos(\pi x)$: $f'(x) = -\pi \sin(\pi x)$, $f''(x) = -\pi^2 \cos(\pi x)$, $f'''(x) = \pi^3 \sin(\pi x)$. Logo a fórmula de Taylor de ordem 2 relativa ao ponto 0 será

$$f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(\xi)}{3!}x^3 = 1 - \frac{\pi^2}{2}x^2 + \frac{\pi^3}{6}\sin(\pi\xi)x^3,$$

em que $\xi \in]0,x[$ ou $\xi \in]x,0[$. A fórmula de Taylor de ordem 2 relativa ao ponto 1 será

$$f(1) + f'(1)(x - 1) + \frac{f''(1)}{2}(x - 1)^3 + \frac{f'''(\xi)}{3!}(x - 1)^3$$
$$= -1 + \frac{\pi^2}{2}(x - 1)^2 + \frac{\pi^3}{6}\operatorname{sen}(\pi\xi)(x - 1)^3$$

em que ξ está entre 1 e x.

d) $f(x) = e^{2x}$: para $x \in]0,1[$, temos também $\xi \in]0,1[$ e

$$\left| \frac{4}{3} e^{2\xi} x^3 \right| \le \frac{4e^2}{3}.$$

e) $f(x) = \log(1+x)$: para $x \in]0,1[$, temos também $\xi \in]0,1[$ e

$$\left| \frac{1}{3} \frac{1}{(1+\xi)^3} x^3 \right| \le \frac{1}{3}.$$

f) $f(x) = \cos(\pi x)$: para $x \in]0,1[$, temos também $\xi \in]0,1[$ e

$$\left| \frac{\pi^3}{6} \operatorname{sen}(\pi \xi) x^3 \right| \le \frac{\pi^3}{6}.$$

19. A fórmula de MacLaurin da função exponencial, de ordem 2 é dado por

$$e^x = 1 + x + \frac{x^2}{2} + r_2(x), \qquad \forall x \in \mathbb{R},$$

em que $r_2(x) = \frac{e^{\xi}}{3!} x^3$, com ξ entre 0 e x. Então, para $x \in [0,1]$ temos

$$\left| e^{-x} - \left(1 - x + \frac{x^2}{2} \right) \right| = |r_2(x)| = \frac{e^{-\xi}}{3!} |x|^3 \le \frac{1}{3!} = \frac{1}{6}.$$

20. Sendo a exponencial uma função indefinidamente diferenciável, em \mathbb{R} , temos que q é uma função de classe C^2 num vizinhança de 0 com

$$g(x) = f(e^x),$$
 $g'(x) = f'(e^x) e^x,$ $g''(x) = f'(e^x) + f''(e^x) e^{2x}.$

Em particular temos

$$g(0) = f(1),$$
 $g'(0) = f'(1),$ $g''(0) = f'(1) + f''(1).$

Atendendo ao polinómio de Taylor de f, de ordem 2, relativo ao ponto 1 obtemos f(1)=2, f'(1)=-1, f''(1)=4 e consequentemente

$$g(0) + g'(0) x + \frac{g''(0)}{2} x^2 = 2 - x + \frac{3}{2} x^2$$

é o polinómio de Maclaurin de g, de ordem 2.

21. Nas condições dadas, $f \in C^n(\mathbb{R})$. A fórmula de MacLaurin de f, de ordem n-1 é dada por

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + r_{n-1}(x), \quad \forall x \in \mathbb{R}.$$

Sendo $f^{(n)}(x) = 0$, para qualquer $x \in \mathbb{R}$, a fórmula do resto de Lagrange permite concluir que

$$r_{n-1}(x) = \frac{f^{(n)}(\xi)}{n!}x^n = 0,$$
 para qualquer $x \in \mathbb{R}$,

em particular que f é um polinómio de grau menor que n.

22. Dado que $f \in C^2(I)$ a fórmula de Taylor de f, de ordem 1, relativa a um ponto $a \in I$ é

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(\xi)}{2}(x - a)^2, \quad \forall x \in I,$$

em que ξ está entre a e x. Tomando h > 0 temos, para x = a + h,

$$\frac{f(a+h) - f(a)}{h} = f'(a) + \frac{f''(\xi_1)}{2}h$$

e para x = a - h

$$\frac{f(a-h) - f(a)}{h} = -f'(a) + \frac{f''(\xi_2)}{2}h$$

em que $\xi_1, \xi_2 \in]a - h, a + h[\setminus \{a\}]$. Resulta da igualdade

$$\frac{f(a+h)-2f(a)+f(a-h)}{h^2} = \frac{f''(\xi_1)+f''(\xi_2)}{2},$$

do facto de $\xi_1, \xi_2 \to a$, quando $h \to 0$, e da continuidade de f'' no ponto a, o limite

$$\lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2} = f''(a).$$

24. Dado que $f \in C^{\infty}(\mathbb{R})$ temos

$$f'(x) = (\operatorname{arctg} x^2)' = \frac{2x}{1+x^4}, \qquad f''(x) = (\frac{2x}{1+x^4})' = \frac{2(1-3x^4)}{(1+x^4)^2}$$
$$f'''(x) = 56x^3 \frac{x^4 - 1}{(1+x^4)^3}.$$

Sendo 0 o único ponto crítico de f, ou seja solução de f'(x) = 0, a segunda derivada f''(0) = 1 > 0 mostra que f tem um mínimo no ponto 0. Atendendo a que f(0) = 0 e f é não negativa 0 é um mínimo absoluto.

Os pontos de inflexão de f são as soluções da equação f''(x) = 0, neste caso em $\pm \frac{1}{\sqrt[4]{3}}$. Tal facto decorre de $f'''(\pm \frac{1}{\sqrt[4]{3}}) \neq 0$.

25. Dado que $f \in C^{\infty}(\mathbb{R})$ temos

$$f'(x) = (x^4 e^{-x})' = x^3 (4 - x) e^{-x}, f''(x) = x^2 (12 - 8x + x^2) e^{-x},$$
$$f'''(x) = x (24 - 36x + 12x^2 - x^3) e^{-x},$$
$$f^{(4)}(x) = (24 - 96x + 72x^2 - 16x^3 + x^4) e^{-x}.$$

Os pontos críticos de f, i.e. as solução de f'(x) = 0, são 0 e 4. A função é estritamente crescente no intervalo]0,4[e estritamente decrescente nos intervalos $]-\infty,0[$ e $]4,+\infty[$ porque, em tais intervalos, a função f' é positiva e negativa, respectivamente.

A 2^{a} derivada $f''(4) = -64 e^{-4} < 0$ mostra que f tem um máximo local no ponto 4, enquanto que as 3^{a} e 4^{a} derivadas $f^{(3)}(0) = 0$, $f^{(4)}(0) = 24 e^{-4} > 0$ revela que f tem um mínimo local no ponto 0.

Os pontos de inflexão de f são soluções da equação f''(x)=0, neste caso em 2 e 6. Tal facto decorre de $f^{(3)}(2)=-16e^{-2}\neq 0$ e $f^{(3)}(6)=48e^{-2}\neq 0$.

Os limites de f em $\pm \infty$ existem, em $\overline{\mathbb{R}}$, e são dados por

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^4 e^{-x} = +\infty \quad \text{e} \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^4}{e^x} = 0.$$

O gráfico de f pode agora ser esboçado:

