1.Logistic_Algorithm

1. What is the percentage of correct classification of both (Purchased and Not Purchased) to the total input of test set?

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purchased			Not Purchased		
Purchased	74	TP		11	FP	
Not_Purchased	5	F_Np		44	T_Np	

Accuracy = $T(Purchased)+T(Not\ Purchased)+T(Not\ Purchased)+F(Purchased)+F(Not\ Purchased)$

```
=74+44÷74+44+11+5=118÷134= 0.88
```

Recall:

What Is the percentage of correct Classification Of Purchased to the total input of Purchased in the test set?

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purchased			Not Purchased		
Purchased	74	TP		11	FP	
Not_Purchased	5	F_Np		44	T_Np	

Recall=T(Purchased)+F(Purchased)

```
=74÷74+11=74÷85=0.87
```

What Is the percentage of correct Classification Of Not Purchased to the total input of NotPurchased in the test set?

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purch	nased	Not Pu	Not Purchased		
Purchased	74	TP	11	FP		
Not_Purchased	5	F_Np	44	T_Np		

```
Recall= T(Not_Purchased) ÷T(Not_Purchased) +F(Not_Purchased) =44÷44+5=44÷49=0.897
```

Precision:

What is the percentage of correct Classification of (Purchased) to sum of correctly Classified as (Purchased) and wrongly classified as (Purchased) in the test set?

The Confusion Matrix:

	purch	ased	Not P	Not Purchased		
Purchased	74	TP	11	FP		
Not_Purchased	5	F_Np	44	T_Np		

Precision = T(Purchased) + T(Purchased) + F(Purchased)

```
= 74÷74+5=74÷79=0.936
```

What is the percentage of correct Classification of (Not_Purchased) to sum of correctly Classified as (Not_Purchased) and wrongly classified as (Not_Purchased) in the test set?

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purchased	Not Purchased
Purchased	74 TF	11 FP
Not_Purchased	5 F_N	44 T_Np

```
\label{eq:precision} \begin{split} & Precision= T \; (Not\_Purchased) \div T (Not\_Purchased) + F (Not\_Purchased) \\ & = 44 \div 44 + 11 = 44 \div 55 = 0.8 \end{split}
```

F1_Measure:

What is the overall performance of Purchased?

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purchased		Not Purchased	
Purchased	74	TP	11	FP
Not_Purchased	5	F_Np	44	T_Np

 $\textbf{F1_Measure=2*0.87*0.936} \div 0.87 + 0.936 = 1.62864 \div 1.806 = 0.90$

What is the overall performance of Not_Purchased?

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purch	purchased		Not Purchased	
Purchased	74	TP	11	FP	
Not_Purchased	5	F_Np	44	T_Np	

 $F1_Measure=2*0.897*0.8 \div 0.897 + 0.8 = 1.4352 \div 1.697 = 0.84$

Macro _Average:

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purch	purchased		Not Purchased	
Purchased	74	TP	11	FP	
Not_Purchased	5	F_Np	44	T_Np	

Precision:

What is the average performance of Precision(correctly and wrongly classified)?

Precision(Purchased)+Precision(Not_Purchased)+2

```
=0.936+=0.8\div2=1.736\div2
Precision=0.86
```

Recall:

What is the average performance of Recall(correctly classified)?

Recall(Purchased)+Recall(Not_Purchased)+2

```
=0.87+0.897 ÷2=1.767÷2
```

=0.88

Which is the average performance of F1_Measure(overall_performance)?

=F1(Purchased)+F2(Not_Purchased)÷2

```
=0.90+0.84 \div 2 = 1.74 \div 2
=0.87
```

Weighted Average:

```
The confusion Matrix: [[74 11] [ 5 44]]
```

	purchase	ed	Not Purchased		
Purchased	74 TP		11 FP		
Not_Purchased	5	F_Np	44	T_Np	

Precision:

Total count in the test set = 134

Total count of Purchased in the test set = 118

Total count of Not_Purchased in the test set = 16

What is the sum of Product of proportion rate weight of each class?

Precision(Purchased)*118÷134+Precision(Not Purchased)*16÷134

```
Precision=0.936*118÷134+0.8*16÷134
=110.448÷134+12.8÷134
=0.8242+0.0955
=0.919
```

Recall:

What is the sum of product of proportion rate weight of each class?

 $Recall(Purchased)*118 \div 134 + Recall(Not_Purchased)*16 \div 134$

Recall=0.87*118÷134+0.897*16÷134

=102.66÷134+14.352÷134

=0.7661+0.1071

=0.8732

F1_Measure

What is the sum of product of proportion rate weight of each class?

F1_Measure=f1(Purchased)*118÷134+F2(Not_Purchased)*16÷134

```
=0.90*118\div134+0.84*16\div134
```

=0.892

^{=106.2÷134+13.44÷134=0.792+0.100}