Project Title

by
Group id:
Group Member Name
Under Guidance by
Guide Name
Department of Computer engineering

Presentation outlines

- Abstract
- Introduction
- Literature Survey
- Problem Statement
- Proposed System
- Algorithm
- Mathematical Model
- Risk Analysis
- Hardware/Software Requirements
- Project Goals
- Project Modules
- Diagram
- Conclusion & Future Scope
- References

Abstract

- Quotation Creation and Conversion: The process begins with the creation of a detailed and accurate quotation tailored to the customer's requirements. This involves itemizing the products or services, specifying quantities, prices, and any applicable discounts.
- Order Acceptance and Confirmation: Upon receiving the customer's acceptance of the quotation, the sales team verifies the details and terms.

• Real-time Inventory: In the context of the quotation creation and conversion process, a crucial addition is the integration of real-time inventory management. As the sales team itemizes products or services for the quotation, the system should provide up-to-the-minute information on the availability of these items in the inventory. This ensures that accurate quotations are generated, taking into account the current store.

Introduction

- The sales process in Hindustan Tungsten Carbide involves a meticulous journey from creating a tailored quotation to issuing a tax invoice.
- This system presents a concise overview of the four pivotal stages that constitute this process: Quotation Creation and Conversion, Order Acceptance and Confirmation, Proforma Invoice Generation, and Tax Invoice Issuance.
- The system constantly monitors the availability of products in the inventory. When creating a tailored quotation, the sales team can readily check stock levels to ensure that the requested items are in stock. If a product is available in limited quantities, the system can automatically allocate stock to the customer's order as soon as the quotation is accepted

Literature Review

	racare recore	<u> </u>			
Sr.No	Title of the paper	Author's	IEEE	Summary	Findings/Limitat
		name	transaction/Jour		ions
			nal/		
			conference/Wor		
			kshop		
1	From ERP to Advanced	Marc	40th Annual Hawaii	In this paper, we show that the	Low accuracy
1	Resource Planning:	Lambrecht; Nico	International Conference	planning and decision support	
	Improving Operational	Vandaele	on System Sciences	capabilities of the MPC	
	Performance by Getting the		(HICSS'07)	(Manufacturing Planning and	
	Inputs Right			Control) system, which forms the	
				core of any ERP package, may be	
				greatly enhanced by including an	
				Advanced Resource Planning	
				(ARP) module as an add-on at the	
				midterm planning level.	

Literature Review Continue

Sr.No	Title of the paper	Author's name	IEEE transaction/Jour nal/ conference/Wor kshop	Summary	Findings/Limitations
2	Designing Green Procurement System Based On Enterprise Resources Planning For The Rubber Processing Industry	Octa Karlina; Ari Yanuar Ridwan	<u> </u>	The user requirements for green procurement that focus on the ability of the application system to provide purchase requisition, request for quotation, supplier selection, purchase order and integrating data	Low performance

Literature Review Continue

Sr.No	Title of the paper	Author's	IEEE	Summary	Findings/Limitat
		name	transaction/Jour		ions
			nal/		
			conference/Wor		
			kshop		
3	ERP system adoption		Fourth edition of the	This paper proposes three	Insufficient
	traditional ERP systems vs.			alternative approaches for	Explanation of Cloud
	cloud-based ERP systems	A. Al-Mashari		organizations to select from based on security rate, investment level	Computing
			1 0	and organizational size	Lack of Specifics
				and organizational bize	Each of Specifics

Literature Review Continue

Sr.No	Title of the paper	Author's	IEEE	Summary	Findings/Limitat
		name	transaction/Jour		ions
			nal/		
			conference/Wor		
			kshop		
4	A comparison of	Xiaolin Xiao;	IEEE International	This study compared a recently	Scope of Dataset
7	classification methods for	Minpeng Xu	Conference on	developed algorithm, i.e.	
	recognizing single-trial ERP		Computational	discriminative canonical pattern	Interpretability
	in RSVP-based brain-		Intelligence and Virtual	matching (DCPM), with five	
	computer interfaces		Environments for	traditional classification methods,	Computational
			Measurement Systems	i.e. linear discriminant analysis	Complexity
			and Applications	(LDA), four advanced methods of	
			(CIVEMSA)	LDA included stepwise LDA,	
				Bayesian LDA, shrinkage LDA and	
				spatial-temporal discriminant	
				analysis (STDA), for the detection	
				of single-trial ERPs with a small	
				number of training samples	

Problem statement

Data and incoming orders. It should automatically generate purchase or production orders for items that are running low or are expected to be in high demand. This proactive approach to inventory management helps prevent stockouts, ensures products are available when needed, and optimizes warehouse space. By addressing these inventory management challenges and seamlessly integrating them into the streamlined sales process.

Proposed System

- Quotation Generation: The system allows sales teams to create detailed and accurate quotations tailored to customer requirements.
- Order Acceptance and Confirmation: Upon customer acceptance of the quotation, the system verifies details and terms, and upon confirmation, triggers subsequent workflow steps.
- Module Inventory Management: The system maintains real-time records of module inventory. It tracks quantities, stock levels, and warehouse locations.
- Automated Replenishment: The system monitors module stock levels and automatically generates purchase orders when stock falls below a predefined threshold.
- Reporting and Analytics: The system offers reporting and analytics tools to monitor sales trends, inventory turnover, and profitability.

Algorithm (Hashing)

- Step 1: User Authentication and Access Control: Users are required to authenticate themselves using a secure login process.
- Step 2: Module Inventory Management: Initialize and update the module inventory database with information on module quantities, stock levels, and locations.
- Step 3: Quotation Generation: Sales teams create detailed quotations by selecting products/services and specifying quantities.
- Step 4: Order Acceptance and Confirmation: Upon customer acceptance of the quotation, verify details and terms.
- Step 5: Proforma Invoice Generation: Generate a Proforma Invoice with a detailed cost breakdown, including product prices, taxes, and shipping charges.
- Step 6: Tax Invoice Issuance: After receiving payment, generate a Tax Invoice with all necessary legal and financial information for taxation purposes.

Risk Analysis

- •Data Security Breaches: There is a risk of data breaches or unauthorized access to sensitive customer and financial data. Mitigation strategies include robust encryption, access controls, regular security audits, and employee training.
- •System Integration Challenges: Integrating various modules and ensuring seamless communication between them can be technically challenging
- •Staff Training and User Adoption: Employees may have difficulty adapting to the new system, leading to inefficiencies. Address this risk through comprehensive training programs and user-friendly interfaces.
- •Cost Overruns: The project may exceed the allocated budget due to unforeseen expenses or scope changes. Regular budget tracking and contingency planning can mitigate this risk.

Mathematical Model

System Description:

S = (I,O,F)

Where,

- S: System.
- I = { UL, URU, SE, QC} are set of Inputs

Where,

- 1. URU: User record Update
- 2. UL: User Login
- 3. SE: Stock Entry
- 4. QC: Quotation Creation

$F = \{A, DP, S, IM\}$ are set of Function

Where,

A: Aauthentication

DP: Data Processing.

S: Security

IM: Inventory Management

$O = \{ QM, AM \}$ are set of Output

Where, QM: Quotation Master

AM: Account Module

Success Conditions:

Proper Data

Failure Conditions:

No database, Internet connection

Hardware Requirements

- 1. RAM 4 GB or Above
- 2. i3 Processor or above
- 3. 150 GB Hard disk or above

Software Requirements

- 1. Windows 10 or above
- 2. Python 3.10
- 3. Sqlite
- 4. Django
- 5. Vs code

Project Goals

- Improved Efficiency and Accuracy: Quotation creation becomes more efficient, reducing the time required to respond to customer inquiries.
- Enhanced Customer Satisfaction: Faster response times and accurate quotations lead to improved customer satisfaction.
- Optimized Inventory Control: Automated replenishment reduces the risk of stockouts and overstock situations, optimizing inventory levels.
- Cost Reduction: Streamlined processes and reduced manual work lead to cost savings.
- Effective Communication: Clear communication between sales, production, and logistics teams ensures seamless order fulfillment.

Project Modules

Quotation Generation Module:

- ·User Interface for Sales Teams
- ·Customer Requirements Input
- ·Quotation Generation Algorithm
- ·Customization and Personalization Options
- •Document Generation (PDFs, etc.)

Order Acceptance and Confirmation Module:

- Customer Acceptance Tracking
- Verification of Details and Terms

Inventory Management Module:

- •Real-time Inventory Records
- Module Tracking (Quantities, Stock Levels, Warehouse Locations)

Automated Replenishment Module:

- Stock Level Monitoring
- •Threshold-Based Alerts
- Purchase Order GenerationVendor Management

User Management and

- Authentication Module:
- •User Roles and Permissions
- Secure Authentication
- ·Password Management
- ·User Profile Management

Activity Diagram

Sequence Diagram

Conclusion

In conclusion, the project offers a comprehensive solution to streamline business operations, enhance customer satisfaction, and optimize resource utilization. Through efficient quotation generation, automated inventory management, robust security measures, and data-driven insights, the project enables organizations to respond swiftly to customer needs, reduce operational costs, and make informed decisions. Moreover, it ensures compliance with legal requirements, safeguards sensitive data, and fortifies the organization's competitive position.

Future Scope

Project extends beyond its initial implementation, offering opportunities for ongoing enhancements and adaptations. As technology continues to evolve, incorporating artificial intelligence and machine learning can enable predictive inventory management, further reducing costs and improving resource allocation. Integration with emerging ecommerce platforms and mobile applications can expand customer reach and accessibility. Enhanced data analytics capabilities can provide deeper insights into market trends, enabling proactive decision-making.

References

- 1. M Asif Rashid, Hammad Qureshi, Muiz-ud-Din Shami, Nawar Khan, Erol Sayin, Ibrahim H. Seyrek "Aerospace-Academia: ERPCommunication Framework Strategy "Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30-July 2, 2010, London, U. K.
- 2. Lazoi M, Ceci F, Corallo A, Secundo G, "Collaboration in an Aerospace SME's Cluster: Innovation and ICT Dynamics "Journal of Innovation and Technology Management Vol. 8, No. 3 (2011) 393-414
- 3. "Aerospace and Defense in the United States" in November 2011 by DataMonitor at www. datamonitor. com, refcode: 0072-1002
- 4. G. Stanbus, Activity Costing and Input-output Accounting, Chicago:Richard D, Irwin, INC., pp. 193-198, 1971.
- 5. R. Cooper, "The Rise of Activity-Based Costing-Part one: What Is an Activity-Based Cost System", Cost Manangement, vol. 2, no. 2, pp. 45-54, 1988.