- 2 A person uses a trolley to move suitcases at an airport. The total mass of the trolley and suitcases is 72 kg.
  - (a) The person pushes the trolley and suitcases along a horizontal surface with a constant speed of 1.4 m s<sup>-1</sup> and then releases the trolley. The released trolley moves in a straight line and comes to rest. Assume that a constant total resistive force of 18 N opposes the motion of the trolley and suitcases.
    - (i) Calculate the power required to overcome the total resistive force on the trolley and suitcases when they move with a constant speed of 1.4 m s<sup>-1</sup>.

(ii) Calculate the time taken for the trolley to come to rest after it is released.

(b) At another place in the airport, the trolley and suitcases are on a slope, as shown in Fig. 2.1.



Fig. 2.1 (not to scale)

The person releases the trolley from rest at point X. The trolley moves down the slope in a straight line towards point Y. The distance along the slope between points X and Y is 9.5 m.

The component F of the weight of the trolley and suitcases that acts along the slope is 54 N. Assume that a constant total resistive force of 18 N opposes the motion of the trolley and suitcases.

|     | (i)   | Calculate the speed of the trolley at point Y.                                                                                                                                                   |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       |                                                                                                                                                                                                  |
|     |       |                                                                                                                                                                                                  |
|     |       |                                                                                                                                                                                                  |
|     |       |                                                                                                                                                                                                  |
|     |       | speed = $m s^{-1}$ [3]                                                                                                                                                                           |
|     | (ii)  | Calculate the work done by <i>F</i> for the movement of the trolley from X to Y.                                                                                                                 |
|     |       |                                                                                                                                                                                                  |
|     |       |                                                                                                                                                                                                  |
|     |       | work done = J [1]                                                                                                                                                                                |
|     | (iii) | The trolley is released at point X at time $t = 0$ .                                                                                                                                             |
|     |       | On Fig. 2.2, sketch a graph to show the variation with time $t$ of the work done by $F$ for the movement of the trolley from X to Y. Numerical values of the work done and $t$ are not required. |
|     |       | <b>♦</b>                                                                                                                                                                                         |
|     |       | work done                                                                                                                                                                                        |
|     |       |                                                                                                                                                                                                  |
|     |       |                                                                                                                                                                                                  |
|     |       |                                                                                                                                                                                                  |
|     |       | $0 \frac{}{}$                                                                                                                                                                                    |
|     |       | Fig. 2.2                                                                                                                                                                                         |
|     |       | [2]                                                                                                                                                                                              |
| (c) |       | e angle of the slope in <b>(b)</b> is constant. The frictional forces acting on the wheels of the ving trolley are also constant.                                                                |
|     |       | plain why, in practice, it is incorrect to assume that the total resistive force opposing the tion of the trolley and suitcases is constant as the trolley moves between X and Y.                |
|     |       |                                                                                                                                                                                                  |

[Total: 12]