Grover's Algorithm

Matthew Hurtado and Darwin Vargas

June 18, 2024

Background

What if you are searching for the number of a given person in a sorted list of names?

What about the reverse? (Finding the name using only the number)

Name	Phone Number
Alice	314-1592
Bob	271-8281
Charlie	105-4571
Dave	885-4187
Eve	125-6637
Frank	299-7924
Grace	729-7352
:	: :
Zoe	200-2319

Background - Classical Solutions

Linear Search/Probabilistic - O(N), where $N = 2^n$

Linear Search Algorithm

Quantum Approach - Grover's Algorithm

Quantum algorithm used to perform a search within an unordered list of elements.

- Quadratic speedup of O(sqrt(N))

Oracle / Phase Query Gates

$$f(x) = 1$$
, if $x = w$
 $f(x) = 0$, otherwise

$$U_f |s\rangle = (-1)^{f(w)} \sin \theta |w\rangle + (-1)^{f(r)} \cos \theta |r\rangle$$

$$U_f |s\rangle = (-1)^1 \sin \theta |w\rangle + (-1)^0 \cos \theta |r\rangle$$

$$= -\sin \theta |w\rangle + \cos \theta |r\rangle.$$

Algorithm Outline

Begin by putting the **input** qubits in a uniform superposition of all n-bit strings.

$$|s\rangle = |+\rangle^{\otimes n} = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle, \qquad N = 2^n$$

Example with 2 Qubits

$$|s\rangle = |+\rangle^{\otimes 2}$$

$$= \frac{1}{\sqrt{4}} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

$$= \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

Convenient Form

 $|r\rangle$ is a uniform superposition over all n-bit strings that are not $|w\rangle$

$$|s\rangle = \frac{1}{\sqrt{N}} \left(|w\rangle + \sum_{i \neq w} |i\rangle \right)$$

$$= \frac{1}{\sqrt{N}} |w\rangle + \frac{1}{\sqrt{N}} \sum_{i \neq w} |i\rangle$$

$$= \frac{1}{\sqrt{N}} |w\rangle + \sqrt{\frac{N-1}{N}} \frac{1}{\sqrt{N-1}} \sum_{i \neq w} |i\rangle$$

$$= \frac{1}{\sqrt{N}} |w\rangle + \sqrt{\frac{N-1}{N}} |r\rangle$$

$$= \sin \theta |w\rangle + \cos \theta |r\rangle,$$

Illustration of Phase Flip

$$U_f|s\rangle = (-1)^1 \sin \theta |w\rangle + (-1)^0 \cos \theta |r\rangle$$

= $-\sin \theta |w\rangle + \cos \theta |r\rangle$.

Reflection about $|s\rangle$

$$R_{s} = 2 |s\rangle \langle s| - I$$

$$R_{s} |\psi\rangle = 2 |s\rangle \langle s| |\psi\rangle - |\psi\rangle$$

$$= 2 |s\rangle \langle s|\psi\rangle - |\psi\rangle$$

$$= \begin{cases} |\psi\rangle & \text{if } |\psi\rangle = |s\rangle \\ -|\psi\rangle & \text{if } |\psi\rangle \perp |s\rangle \end{cases}$$

Elucidating the Reflection

$$|s\rangle = |+\rangle^{\otimes n} = H^{\otimes n} |0\rangle^{\otimes n}\rangle$$

$$= H |0\rangle \dots H |0\rangle$$

$$\implies \langle s| = \langle 0| H^{\dagger} \dots \langle 0| H^{\dagger}$$

$$= \langle 0| H \dots \langle 0| H \qquad (H^{\dagger} = H)$$

$$= \langle 0^{\otimes n}| H^{\otimes n}$$

$$I_{n} = I \otimes \dots \otimes I$$

$$= HH \otimes \dots \otimes HH$$

$$= (H \otimes \dots \otimes H)(H \otimes \dots \otimes H)$$

$$= H^{\otimes n}H^{\otimes n}$$

Rewriting R_s

$$R_{s} = 2 |s\rangle \langle s| - I$$

$$= 2(H^{\otimes n} |0^{\otimes n}\rangle)(\langle 0^{\otimes n} | H^{\otimes n}) - H^{\otimes n}H^{\otimes n}$$

$$= H^{\otimes n}(2 |0^{\otimes n}\rangle \langle 0^{\otimes n} | - I)H^{\otimes n}$$

$$R_{s} = H^{\otimes n}R_{0}H^{\otimes n}$$

We define the gate $R_0 = 2 |0^n\rangle \langle 0^n| - I$

Analysis of R₀

What does this gate do?

$$R_{0} = 2 |0^{n}\rangle \langle 0^{n}| - I$$

$$R_{0} |\psi\rangle = 2 |0^{n}\rangle \langle 0^{n}|\psi\rangle - |\psi\rangle$$

$$= \begin{cases} |\psi\rangle & \text{if } |\psi\rangle = |0^{n}\rangle \\ -|\psi\rangle & \text{if } |\psi\rangle \perp |0^{n}\rangle \end{cases}$$

Let's Check out the code!

https://colab.research.google.com/drive/1Tr7RAmyDLTwqNluB701jgWRl3B2CJCNi#scrollTo=K-6feT241Llj

Runtime Analysis

Perform t rotations until we reach w.

How do we get t?

Runtime Analysis

$$\theta + t(2\theta) = \frac{\pi}{2}$$

$$t(2\theta) = \frac{\pi}{2} - \theta$$

$$t = \frac{\pi}{4\theta} - \frac{1}{2}$$

$$t \approx \frac{\pi}{4}\sqrt{N} - \frac{1}{2}$$

$$\implies t \in O(\sqrt{N})$$

$$\sin \theta = \frac{1}{\sqrt{N}}$$

$$\theta = \arcsin\left(\frac{1}{\sqrt{N}}\right)$$

We assume that N is sufficiently large

$$\theta \approx \frac{1}{\sqrt{N}}$$

Open Questions

Grover's Algorithm, as presented, seems to require "knowing" the solution beforehand.

How can we encode data bases in a quantum setting?

Does the additional overhead of encoding the database diminish the quadratic speed-up of the search?

Name	Phone Number
Alice	314-1592
Bob	271-8281
Charlie	105-4571
Dave	885-4187
Eve	125-6637
Frank	299-7924
Grace	729-7352
į	i
Zoe	200-2319

Encoding the Database

To encode our database, we need an additional n qubits: n for our index and n for our database values.

Via a few more circuits, the index of the desired value, despite being unknown to the user, is marked with a phase flip. Grover's Algorithm can proceed from there.

References

Introduction to Classical and Quantum Computing - Thomas G. Wong

Quantum Computing: Applied Approach - Jack D. Hidary

"Searching a Quantum Database with Grover's Search Algorithm" - Ben Kain

IBM Qiskit API

IBM Quantum Composer

ChatGPT