A.V.V.M. SRI PUSHPAM COLLEGE (AUTONOMOUS), POONDI

Programme: M. Sc.

Department: Biotechnology

Syllabus Revision 2017-2018

S.No.	Courses	Number of courses having changes
1.	Core Course	05
2.	Elective Course	-
	TOTAL	05

Total Number of Courses : 23

Total Number of Courses having changes : 05

Percentage of Revision : 21.7 %

Note:

The content of the syllabus which has been revised is highlighted.

M.Sc., BIOTECHNOLOGY (2017 - 2018)

S.	SEM	M Category	Paner Code	Paper Code Title of the Paper	Maximum Marks N		Minim	Minimum Marks for Pass		Hours	Credits	
No	JLI-1	category	i uper code	Title of the Luper	CIA	E.E	Total	CIA	E.E	Total	Week	Cicuits
1.		Core	17P1BTC1	Biochemistry	25	75	100	10	30	50	6	5
2.		Core	17P1BTC2	Advances in Microbiology	25	75	100	10	30	50	6	5
3.	I	Core	17P1BTC3	Environmental Biotechnology	25	75	100	10	30	50	6	5
4.		Core	17P1BTCP1	Practical – I (Biochemistry, Microbial and Environmental Biotechnology)	40	60	100	16	24	50	6	3
5.		Major Elective-I	17P1BTEL1A 17P1BTEL1B 17P1BTEL1C	Immunology and Immuno technology/ Entrepreneur skill Development / Molecular Modeling And Drug Designing	25	75	100	10	30	50	6	4
6.		Core	17P2BTC4	Molecular Genetics	25	75	100	10	30	50	4	4
7.		Core	17P2BTC5	Plant and Animal Biotechnology	25	75	100	10	30	50	4	4
8.		Core	17P2BTC6	Enzyme Biotechnology	25	75	100	10	30	50	4	4
9.		Core	17P2BTC7	(Nano biotechnology	25	75	100	10	30	50	4	4
10.		Core	17P2BTC8	Genomics and Proteomics	25	75	100	10	30	50	4	4
11.	II	Core	17P2BTCP2	Practical–II (Molecular Genetics, Plant and Animal Biotechnology, Enzyme Biotechnology and Industrial Biotechnology, Nano biotechnology, Proteomics & Genomics)	40	60	100	16	24	50	6	3
12.		Major Elective-II	17P2BTEL2A 17P2BTEL2B 17P2BTEL2C	Bio-Instrumentation and Biometry / Bio-informatics, IPR & Nanotechnology/ Bio-Informatics, Intellectual Property Rights & Nanotechnology	25	75	100	10	30	50	4	4
13.		Core	17P3BTC9	Bio-Process Technology	25	75	100	10	30	50	5	4
14.		Core	17P3BTC10	Clinical biochemistry	25	75	100	10	30	50	5	4
15.		Core	17P3BTC11	Recombinant DNA Technology	25	75	100	10	30	50	5	5
16.		Core	17P3BTC12	Aquatic Biotechnology	25	75	100	10	30	50	5	4
17.	III	Core	17P3BTCP3	Practical – III (Bioprocess Technology, Recombinant DNA Technology and Clinical Chemistry)	40	60	100	16	24	50	5	4
18.		EDC	17P3BTEDC	Fundamentals of Biotechnology	25	75	100	10	30	50	4	
			Communicativ	ve Skill And Personality Development	-	-	ı	-	-	-	1	-
19.		Core	17P4BTC13	Research Methodology	25	75	100	10	30	50	8	5
20.		Core	17P4BTC14	Industrial Biotechnology	25	75	100	10	30	50	8	5
21.	IV	Major Elective-III	17P4BTEL3A 17P4BTEL3B 17P4BTEL3C	Biosafety and Bioethics/ Biodiversity and Bio resources/ Enzymology	25	75	100	10	30	50	8	4
22.		CN	17P4BTCN	Comprehension	-	100	100	-	_	50	5	2
23.		Project	17P4BTPR	Project	40	60	100	16	24	50		4
		Communicative Skill and Personality Development					1	•				
				Total			2300				120	90

Semester	Subject Code	Title of the Paper	Hours of Teaching / Week	No. of Credits
II.	(17P2BTC7)	Core - NANOBIOTECHNOLOGY	4	4

- 1. To know about the Nanotechnology.
- 2. To learn about the nanoparticles and targeted drug delivery.
- 3. To learn the improved diagnostic products and techniques.
- 4. To study about the applications of nanomaterials.

UNIT – I

Principles of Nanobiotechnology; Introduction to nanotechnology - History of nanotechnology - Fundamental concept of Nanotechnology - Scope and application of Nanotechnology.

UNIT - II

Nanomaterials - classification of nanomaterials - properties of nanomaterials - Preparation of Nanomaterials - Synthesis of nanomaterials.

UNIT – III

Synthesis of nanoparticles. Using natural sources – nanotubes, carbon nanotubes, Formation of carbon nanotubes – uses of nanotubes – Biological applications of nano tubes.

UNIT - IV

Measurement techniques for nanomaterials – x-ray crystallography – Atomic force microscope – Electron microscope – SEM, TEM – Flouresence microscope.

UNIT - V

Applications of nanomaterials — Present and future nanoparticles in medicine — Introduction of drug delivery in pharmaceutics. Nanoparticles carrier and carrier characteristics.

- 1. Claupdio Nicolini, Nanobiotechnology & Nanobiosciences Pan Stanford Publishing Pte. Ltd. 2009.
- 2.O.Skoseyov, Ilan levy, Nanobiotechnology BioInspired Devices and Materials of the Future, Humana Press Inc, 2008.
- 3.N.Yao and Zhong Lin Wang, Handbook of Microscopy for Nanotechnology Kluwer Academic Publishers, 2005.
- 4. Nanotechnology N. Arumugam Saras Publications.
- 5.Indroduction to Nanotechnology Neal lane and James .R. Heath.

Semester	Subject Code	Title of the Paper	Hours of Teaching / Week	No. of Credits
II	17P2BTCP2	Core – Practical – II – MOLECULAR GENETICS, PLANT AND ANIMAL BIOTECHNOLOGY,ENZYME BIOTECHNOLOGY, NANOBIOTECHNOLOGY AND PROTEOMICS & GENOMICS	6	3

- 1. To study the Isolation of DNA, Electrophoresis and GUS Assay.
- 2. To study the Tissue Culture methods.

Molecular Genetics

- 1. Plasmid extraction: Alkaline lysis, Mini preparation.
- 2. Chromosomal DNA isolation (Animal tissue, plants, bacteria and fungi)
- 3. Quantification of DNA & RNA
- 4. Electrophoresis of DNA & RNA
- 5. Bacterial transformation
- 6. Isolation of drug resistant autotrophic mutants.
- 7. Study of mutation by Ames test.

Plant and Animal Biotechnology

- 1. Preparation of Tissue Culture medium for plant and animals.
- 2. Micro propagation of shoot tip & seed culture.
- 3. Preparation of single cell suspension from spleen and thymus.
- 4. Cell counting and cell viability
- 5. Macrophage monolayer from PBMC and measurement of Phagocyte activity
- 6. Macrophage monolayer and subcultruing
- 7. Cryopreservation and Thawing
- 8. Measurement of doubling time
- 9. Isolation of DNA and demonstration of apoptosis of DNA laddering.
- 10. MTT assay for cell viability and growth
- 11. Cell fusion with PEG.

Enzyme Biotechnology

- 1. ELISA
- 2. Immobilization of enzymes.
- 3. Effect of pH & temperature on enzyme activity.

Genomics and Proteomics

- 1. Sequence alligenment- Local and Global allignment.
- 2. Sequence retrieval from biological databases- NCBI, EMBL, DDBJ, SWISSPROT.
- 3. Protein structure visualization- Rasmol.

Nanobiotechnology

- 1. Synthesis of Nanoparticles.
- 2. Metal microbes interactions.
- 3. Nanoparicles for diagnosis and treatment.

- 1. Genetic Transformation of plants (Molecular Methods of Plant Analysis 2003 Publisher: Springer)
- 2. Plant Tissue Culture by S.S. Purohit, 2004, Mrs. Saraswati Purohit for Student edition.
- 3. Animal Cell Culture Practical approach, Ed. Martin Clynes, Springer.

- 4. Animal Cell Culture Techniques. Ed. Martin Clyines, Springer.
- 5. Culture of Animal Cells, 3rd End, R.Ian Freshney, Wiley Liss.
- 6. Animal Cell Culture Practical Approach, Ed. John R.W. Masters, Oxford.
- 7. Animal Cells: Culture and Media: Essential Data (Essential Data Series) by D.C. Darling, S.J. Morgan, 195, John Wiley and Sons Ltd.
- 8. Priniciples of Tissue Englineering by : Rovert P. Lanza, Robert Langer, Joseph P. Vacanti, 2000 Academic Press.
- 9. Handbook of Industrial Cell Culture: Mammalian, Microbial, and Plant Cells 2002.

Semester	Subject Code	Title of the Paper	Hours of Teaching / Week	No. of Credits
Ш	17P3BTC9	Core – BIO-PROCESS TECHNOLOGY	5	5

- 1. To study the Bioprocess engineering.
- 2. To study the microbial strain involved in Bioprocess.
- 3. To study the food processing.

Unit I Hrs15

Introduction and scope of Bioprocess engineering. Microbial growth kinetics, Biomass production. Thermodynamics – energy balance in microbial – metabolic heat generation. Advantages of Bioprocess over chemical process.

Unit II Hrs15

Microbial strain improvement, increased yield. Upstream processing – Effect of pH, Temperature, Media formulation, carbon source, Nitrogen, vitamin, minerals, inducers, precursors, inhibitors and growth factors.

Unit III Hrs15

Downstream Processing – Biomass removal and distruption. Removal of microbial cells: and solid matter, centrifugation, sedimentation, Flocculation, microfiltration, sonication, Bead mills, Homogenizer, Chemical lysis, enzymatic lysis. Membrane based Purification – Ultrafiltration; Reverse osmosis, dialysis Pervapouration, Perstraction, absorption and chromatography. Precipitation, Biological affinity. Electrophoresis. Extraction (solvent aqueous two phase, super critical) Drying and crystallization.

Unit IV Hrs15

Fermentation products: Bread, Cheese, fermented milk products.

Beverages: Beer, Wine. Fermented vegetables.

Unit V Hrs15

Food processing technology – canning, packing, sterilization, pasteurization, food spoilage, food preservation – modern methods of preservation of Milk, Fruit, Food product, meat and other animal products.

- 1. Bioprocess Technology: Fundamentals and Applications, KTH, Stockholm.
- 2. Jackson, A.T., Process Engineering in Biotechnology, Prentice Hall, Angelwood Cliffs.
- 3. Shuler, M.L. and Kargi, F., Bioprocess Engineering: Basic Concepts, Prentice Hall, Engelwood Cliffs.
- 4. Stanbury, P.F. and A. Whitaker, 1995, Principles of Fermentation Technology, Pergamon Press, Oxford
- 5. Wulf Crueger and Anneliese Crueger, 2000, A Text Book of Industrial Microbiology, Panima Publishing Corporation, New Delhi.
- 6. Pharmaceutical Biotechnology, Purohit, S.S. (2009).
- 7. Pharmaceutical Microbiology, Purohit, S.S. (2008).

Semester	Subject Code	Title of the Paper	Hours of Teaching / Week	No. of Credits
Ш	17P3BTC12	Core – AQUATIC BIOTECHNOLOGY	4	4

- 1.To study the scope of aquaculture.
- 2.To know about the disease management of aquatic organism.
- 3.To know about the cryopreservation techniques in aquatic organism.
- 4. To study about the transgenic fishes.

UNIT – I Hrs 12

Scope of Aquaculture – Aquaculture in India – Types of aquaculture – Culture practices in India – Culturable organisms: Fin fishes, Shell fishes – water quality management & aquatic pollutions.

UNIT – II

Construction of Fish pond – Fresh water aquaculture – Types of Culture – Extensive, Semi intensive, Intensive culture, Mono culture, Monosex culture, Poly culture, Cage culture, Pen culture. Integrated fish farm. Role of probionts in aquaculture.

UNIT – III Hrs 12

Diseases of aquaculture organisms – Ectoparasites and Endoparasites – Bacterial, Viral and Fungal diseases. Preservation of fishes – PCR and applications.

UNIT – IV

Crypreservation of gametes – Implication of cryopreservation in Aquaculture – Hypophysation – Principles, Prodecures of hypophysations – mechanism of pituitary action – Ovaprim – Advantages of hypophysations. Southern blotting & DNA Finger printing.

UNIT – V

Transgenic fish – Candidate genes for transfer – Making gene construction – Mechanism of gene transfer – Characterization of transgenic fish – Potential hazards and benefits.

- 1.Hackett, P.B. 1993. The molecular biology of transgenic fish. In: Biochemistry and Molecular Biology of Fish, (Eds. Hochachka, P., Mommsen, T.) Vol.2, Elsevier Science Publishers, Amsterdam, pp.207 240.
- 2.Leung, L.K.P. and Jamieson, B.G.M.1991. Live preservation of fish gametes. In: Fish Evolution and Systematics: Evidence from spermatozoa (Ed.Jamieson,B.G.M) pp.245-295, Cambridge University Press.
- 3.Old, R.W. and Primrose, S.B. 1994. Principles of gene manipulation: An introduction to genetic engineering, Blackwell Scientific Publications, Oxford.
- 4.Balasubramanyam, D.et.al. 1998. Concepts in Biotechnology, University Press.
- 5.Ranga, M.M.1999. Animal Biotechnology, Agrobios, Jodhpur, New Delhi.
- 6.Karunasagar, Aquaculture and Biotechnology (for chapters 11 & 14).
- 7. Ranga and Shammi. 1999. Fish Biotechnology.

Semester	Subject Code	Title of the Paper	Hours of Teaching / Week	No. of Credits
ш	17P3BTCP3	Core – Practical – III – BIO-PROCESS TECHNOLOGY, RECOMBINANT DNA TECHNOLOGY, CLINICAL BIOCHEMISTRY & AQUATIC BIOTECHNOLOGY	6	3

- 1. To know the r-DNA Technology.
- 2. To know the Bioprocess Technology.
- 3. To know the Biodiversity.

Bio-Process Technology

- 1. Isolation of industrially important microorganisms (Amylase, Pectinase, Cellulase) for microbial process.
- 2. Study of optimal culture conditions for the production of Amylase, Pectinase and cellulose in a bioreactor.
- 3. Production of amylase, cellulase, pectinase, wine and beer in a bioreactor.
- 4. Determination of thermal death point and thermal death time of microorganisms for design of a sterilizer.
- 5. Microbial production of citric acid using *Aspergillus niger*.
- 6. Microbial production of Penicillin, (Biosynthesis of Antibiotics).
- 7. Production and Estimation of Alkaline Phosphatase.
- 8. Identification of micro organisms in preserved food product (Milk, Fruit juice, animal meat).

Recombinant DNA Technology

- 1. Restriction analysis of plasmid (PBR322, PUC)
- 2. Selection methods (Blue white screening, Insertional inactivation).
- 3. Primer design and PCR amplification of Beta galactosidase.
- 4. Cloning of PCR product into PBR.
- 5. Introduction of cloned genes and analysis by SDS PAGE.
- 6. SOUTHERN BLOTTING of Beta galactosidase.
- 7. Reporter gene assay (GUS/beta galactosidase).
- 8. Isolation of phage DNA.
- 9. RFLP analysis of 18s r-DNA of genome.
- 10. Genetic diversity of Pseudomonas by RAPD.

Clinical Biochemistry

- **1.** Estimation of Haemoglobin in blood samples
- 2. Estimation of Bile pigments
- 3. Estimation of Creatinine
- **4.** Estimation of triglycerides, steroids

Aquatic Biotechnology

- 1. Estimation of O₂ consumption by fish.
- 2. Estimation of Salinity in given water samples.
- 3. Isolation of microbes from the digestive track of fish.
- 4. Cryopreservation

References

- 1. Short Protocols in Protein Science A Compodium Methods from Current Protocols in Protein Science by John E. Coligan, Ben M. Dunn, 2003, John Wiley and Sons Ltd.
- 2. Enzymes, Biochemistry, Biotechnology, Clinical Chemistry, Trevor Palmer, Horwood Publishing, Chichester, 2001.
- 3. Analytical Biochemistry by David J. Holme and Hazel Peck, 3rd ed., 1998, Pearson Education Ltd., England.
- 4. Principles and Practice of Bioanalysis by Richard F. Venn, 2003. Taylor and Francis, London.

- 5. Biochemical Methods by A. Pingoud, C. Urbanke, J. Hoggett, 2002. Weiley-Velt Verlag Garbh.
- 6. Molecular Cloning, A Laboratory Manual, Vol.I-III by Sambrook et al. (1989), Cold Spring Harbor Laboratory.
- 7. Genetic Analysis of Bacteria by Stanley R. Maloy, Valley J. Stewart, 1996, Cold Spring Harbor Laboratory Press.
- 8. PCR Protocols by John M.S. Barlett, David Stirling, 2003, Humana Press Inc.
- 9. RNA Methodologies, 2nd Edn. by Robert E. Farrel Jr. 1996, Academic Press Inc.
- 10. Short Protocols in Molecular Biology, Vol.I & II, 5th Edn., by Frederick M. Ausubel, Roger Breuyt, 2002, John Wiley & Sons, Inc.
- 11. PCR Strategies by Mixchael, A. Immis, David, II. Gelfand, 1995, Academic Press, Inc.
- 12. Bio-chemical method by A.PINGOUD, C. URBANKE, J.HOGGETT, 2002 Weily Valt Verlag Garbh.