Deep Generative Models

Lecture 3

Roman Isachenko

Moscow Institute of Physics and Technology

Autumn, 2021

Recap of previous lecture

MLE problem for autoregressive model

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} p(\mathbf{X}|oldsymbol{ heta}) = rg \max_{oldsymbol{ heta}} \sum_{i=1}^{m} \sum_{j=1}^{m} \log p(x_{ij}|\mathbf{x}_{i,1:j-1}oldsymbol{ heta}).$$

Sampling

$$\hat{x}_1 \sim p(x_1|\boldsymbol{\theta}), \quad \hat{x}_2 \sim p(x_2|\hat{x}_1, \boldsymbol{\theta}), \ldots, \quad \hat{x}_m \sim p(x_m|\hat{\mathbf{x}}_{1:m-1}, \boldsymbol{\theta})$$

New generated object is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

Masking helps to make neural network autoregressive.

- MADE masked autoencoder (MLP).
- WaveNet masked 1D convolutions.
- PixelCNN masked 2D convolutions.

PixelCNN++ uses discretized mixture of logistic distribution to make the output distribution more natural.

Recap of previous lecture

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \arg\max_{\boldsymbol{\theta}} \bigl(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\bigr)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta \approx p(\mathbf{x}|\theta^*).$$

Latent variable models (LVM)

MLE problem

$$m{ heta}^* = rg \max_{m{ heta}} p(\mathbf{X}|m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i|m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i|m{ heta}).$$

The distribution $p(\mathbf{x}|\theta)$ could be very complex and intractable (as well as real distribution $\pi(\mathbf{x})$).

Extended probabilistic model

Introduce latent variable z for each sample x

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}); \quad \log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) + \log p(\mathbf{z}).$$

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z})d\mathbf{z}.$$

Motivation

The distributions $p(\mathbf{x}|\mathbf{z}, \theta)$ and $p(\mathbf{z})$ could be quite simple.

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

Examples

Mixture of gaussians

PCA model

- ▶ $p(z) = \text{Categorical}(\pi)$ ▶ $p(z) = \mathcal{N}(z|0, I)$
- $p(\mathbf{x}|z,\theta) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_z, \boldsymbol{\Sigma}_z) \quad P(\mathbf{x}|\mathbf{z},\theta) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$

Latent variable models (LVM)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \log \int p(\mathbf{x}|\mathbf{z},oldsymbol{ heta}) p(\mathbf{z}) d\mathbf{z}
ightarrow \max_{oldsymbol{ heta}}$$

PCA projects original data **X** onto a low dimensional latent space while maximizing the variance of the projected data.

- $p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$
- $p(z) = \mathcal{N}(z|0, \mathbf{I})$
- $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \mathbf{W}\mathbf{W}^T + \sigma^2 \mathbf{I})$
- $p(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{M}^{-1}\mathbf{W}^T(\mathbf{x} \boldsymbol{\mu}), \sigma^2\mathbf{M}), \text{ where } \mathbf{M} = \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I}$

Maximum likelihood estimation for LVM

MLE for extended problem

$$egin{aligned} m{ heta}^* &= rg\max_{m{ heta}} p(\mathbf{X}, \mathbf{Z} | m{ heta}) = rg\max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}) = \ &= rg\max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i, \mathbf{z}_i | m{ heta}). \end{aligned}$$

However, **Z** is unknown.

MLE for original problem

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i, \mathbf{z}_i|\boldsymbol{\theta}) d\mathbf{z}_i = \\ &= \arg\max_{\boldsymbol{\theta}} \log \sum_{i=1}^n \int p(\mathbf{x}_i|\mathbf{z}_i, \boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive approach: Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta})$$

Variational lower bound

Derivation 1

$$\begin{aligned} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \\ &= \log \int \frac{q(\mathbf{z})}{q(\mathbf{z})} p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \log \mathbb{E}_q \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} \right] \geq \\ &\geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} d\mathbf{z} = \mathcal{L}(q, \boldsymbol{\theta}) \end{aligned}$$

Derivation 2

$$\log p(\mathbf{x}|\theta) = \int q(\mathbf{z}) \log p(\mathbf{x}|\theta) d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{p(\mathbf{z}|\mathbf{x}, \theta)} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \theta)q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} + \int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z}|\mathbf{x}, \theta)} d\mathbf{z} =$$

$$= \mathcal{L}(q, \theta) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)) \ge \mathcal{L}(q, \theta).$$

Variational lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q, \boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta})) \geq \mathcal{L}(q, \boldsymbol{\theta}).$$

Evidence Lower Bound (ELBO)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} =$$

$$= \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}$$

$$= \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Instead of maximizing incomplete likelihood, maximize ELBO (equivalently minimize KL)

$$\max_{m{ heta}} p(\mathbf{x}|m{ heta}) \quad o \quad \max_{q,m{ heta}} \mathcal{L}(q,m{ heta}) \equiv \min_{q,m{ heta}} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},m{ heta})).$$

EM-algorithm

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} + \int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d\mathbf{z}.$$

Block-coordinate optimization

- ▶ Initialize θ^* :
- ► E-step

$$egin{aligned} q(\mathbf{z}) &= rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}^*) = \ &= rg \min_{q} \mathit{KL}(q(\mathbf{z}) || p(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*)) = p(\mathbf{z} | \mathbf{x}, oldsymbol{ heta}^*); \end{aligned}$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathcal{L}(q, oldsymbol{ heta});$$

Repeat E-step and M-step until convergence.

EM illustration

Bishop C. Pattern Recognition and Machine Learning, 2006

Amortized variational inference

E-step

$$q(\mathbf{z}) = rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}^*) = rg \min_{q} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta}^*).$$

- ▶ $p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*)$ could be **intractable**;
- $ightharpoonup q(\mathbf{z})$ is different for each object \mathbf{x} .

Idea

Restrict a family of all possible distributions $q(\mathbf{z})$ to a particular parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}}$$

Variational EM-algorithm

ELBO

$$\log p(\mathsf{x}|\theta) = \mathcal{L}(\phi,\theta) + \mathsf{KL}(q(\mathsf{z}|\mathsf{x},\phi)||p(\mathsf{z}|\mathsf{x},\theta)) \geq \mathcal{L}(\phi,\theta).$$

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta_{k-1})|_{\phi = \phi_{k-1}},$$

where ϕ – parameters of variational distribution $q(\mathbf{z}|\mathbf{x},\phi)$.

M-step

$$\theta_k = \theta_{k-1} + \eta \nabla_{\theta} \mathcal{L}(\phi_k, \theta)|_{\theta = \theta_{k-1}},$$

where θ – parameters of the generative distribution $p(\mathbf{x}|\mathbf{z},\theta)$.

Now all we have to do is to obtain two gradients $\nabla_{\phi} \mathcal{L}(\phi, \theta)$, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$.

Challenge: Number of samples n could be huge (we heed to derive unbiased stochastic gradients).

ELBO interpretations

$$egin{aligned} \log p(\mathbf{x}|oldsymbol{ heta}) &= \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})). \ &\mathcal{L}(q,oldsymbol{ heta}) &= \int q(\mathbf{z}|\mathbf{x},oldsymbol{\phi}) \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x},oldsymbol{\phi})} d\mathbf{z}. \end{aligned}$$

Evidence minus posterior KL

$$\mathcal{L}(q, \theta) = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}|\mathbf{x}, \theta)).$$

Average negative energy plus entropy

$$\mathcal{L}(q, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}, \mathbf{z}|\theta) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right]$$

$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}, \mathbf{z}|\theta) + \mathbb{H} \left[q(\mathbf{z}|\mathbf{x}, \phi) \right].$$

Average reconstruction minus KL to prior

$$\mathcal{L}(q, \theta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} [\log p(\mathbf{x}|\mathbf{z}, \theta) + \log p(\mathbf{z}) - \log q(\mathbf{z}|\mathbf{x}, \phi)]$$
$$= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})).$$

Monte-Carlo estimation

$$\sum_{i=1}^n \mathbb{E}_q f(\mathbf{z}_i) \approx n \cdot \mathbb{E}_q f(\mathbf{z}) = n \cdot \int q(\mathbf{z}) f(\mathbf{z}) d\mathbf{z} \approx n \cdot f(\mathbf{z}^*), \text{where } \mathbf{z}^* \sim q(\mathbf{z}).$$

ELBO gradients

$$abla_{ heta} \sum_{i=1}^n \mathcal{L}_i(\phi, oldsymbol{ heta}) pprox n \cdot
abla_{oldsymbol{ heta}} \mathcal{L}(\phi, oldsymbol{ heta}); \quad
abla_{\phi} \sum_{i=1}^n \mathcal{L}_i(\phi, oldsymbol{ heta}) pprox n \cdot
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta})$$

ELBO

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \left[\log p(\mathbf{x}, \mathbf{z} | oldsymbol{ heta}) - \log q(\mathbf{z} | \mathbf{x}, \phi)
ight]
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

ELBO gradient (M-step, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$)

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(\phi, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, \phi)
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, \phi). \end{aligned}$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_q \left[\log p(\mathbf{x}, \mathbf{z} | oldsymbol{ heta}) - \log q(\mathbf{z} | \mathbf{x}, \phi)
ight]
ightarrow \max_{\phi, oldsymbol{ heta}}.$$

Challenge

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta}) &=
abla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta}) - \log q(\mathbf{z}|\mathbf{x}, \phi)
ight] d\mathbf{z} \ &
eq \int q(\mathbf{z}|\mathbf{x}, \phi)
abla_{\phi} \left[\log p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta}) - \log q(\mathbf{z}|\mathbf{x}, \phi)
ight] d\mathbf{z} \end{aligned}$$

Solution

Reparametrization trick for $q(\mathbf{z}|\mathbf{x}, \phi)$ allows the expectation to become independent of parameters ϕ .

Reparametrization trick

$$f(\xi) = \mathbb{E}_{q(\eta|\xi)}h(\eta) = \int q(\eta|\xi)h(\eta)d\eta$$

Let $\eta = g(\xi, \epsilon)$, where g is a deterministic function, ϵ is a random variable with a density function $r(\epsilon)$.

$$f(\xi) = \int q(\eta|\xi)h(\eta)d\eta = \int r(\epsilon)h(g(\xi,\epsilon))d\epsilon \approx h(g(\xi,\epsilon^*)), \quad \epsilon^* \sim r(\epsilon).$$

Examples

- $r(\epsilon) = \mathcal{N}(\epsilon|0,1), \ \eta = \sigma \cdot \epsilon + \mu, \ q(\eta|\xi) = \mathcal{N}(\eta|\mu,\sigma^2),$ $\xi = [\mu,\sigma].$
- $ightharpoonup \epsilon^* \sim r(\epsilon), \quad \mathbf{z} = g(\mathbf{x}, \epsilon, \phi), \quad \mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \phi)$

$$egin{aligned}
abla_{\phi} \int q(\mathbf{z}|\mathbf{x},\phi)f(\mathbf{z})d\mathbf{z} &=
abla_{\phi} \int r(\epsilon)f(\mathbf{z})d\epsilon \\ &= \int r(\epsilon)
abla_{\phi}f(g(\mathbf{x},\epsilon,\phi))d\epsilon pprox
abla_{\phi}f(g(\mathbf{x},\epsilon^*,\phi)) \end{aligned}$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}, \mathbf{z}|\theta) - \log q(\mathbf{z}|\mathbf{x}, \phi) \right] d\mathbf{z}$$

$$= \int r(\epsilon) \nabla_{\phi} \left[\log p(\mathbf{x}, g(\mathbf{x}, \epsilon, \phi)|\theta) - \log q(g(\mathbf{x}, \epsilon, \phi)|\mathbf{x}, \phi) \right] d\epsilon$$

$$\approx \nabla_{\phi} \left[\log p(\mathbf{x}, g(\mathbf{x}, \epsilon^*, \phi)|\theta) - \log q(g(\mathbf{x}, \epsilon^*, \phi)|\mathbf{x}, \phi) \right]$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(0, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\boldsymbol{\mu}_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= g(\mathbf{x}, \epsilon, \phi) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \boldsymbol{\mu}_{\phi}(\mathbf{x}). \end{aligned}$$

Here $\mu_{\phi}(\cdot), \sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

If we could calculate $\log p(\mathbf{x}, \mathbf{z}|\theta)$ and $\log q(\mathbf{z}|\mathbf{x}, \phi)$, we are done. Could we?

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$abla_{m{\phi}} \mathcal{L}(m{\phi}, m{ heta}) pprox
abla_{m{\phi}} ig[\log p(\mathbf{x}, g(\mathbf{x}, \epsilon^*, m{\phi}) | m{ heta}) - \log qig(g(\mathbf{x}, \epsilon^*, m{\phi}) | \mathbf{x}, m{\phi} ig) ig]$$

First term

$$\log p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \log p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) + \log p(\mathbf{z}).$$

- ▶ $p(\mathbf{z})$ prior distribution on latent variables \mathbf{z} . We could specify any distribution that we want. Let say $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})$.
- ▶ $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

Second term

Function $\mathbf{z} = g(\mathbf{x}, \epsilon, \phi) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x})$ is invertible.

$$q(\mathbf{z}|\mathbf{x}, \phi) = r(\epsilon) \cdot \left| \frac{\partial \epsilon}{\partial \mathbf{z}} \right| \quad \Rightarrow \quad \log q(\mathbf{z}|\mathbf{x}, \phi) = \log r(\epsilon) - \sum_{i=1}^{d} \log \left[\sigma_{\phi}(\mathbf{x}) \right]_{i}$$

Variational autoencoder (VAE)

Final algorithm

- ▶ pick $i \sim U[1, n]$;
- \triangleright compute a stochastic gradient w.r.t. ϕ

$$egin{aligned}
abla_{\phi} \mathcal{L}(\phi, oldsymbol{ heta}) &pprox
abla_{\phi} ig[\log p(\mathbf{x}, g(\mathbf{x}, oldsymbol{\epsilon}^*, \phi) | oldsymbol{ heta}) - \\ &- \log qig(g(\mathbf{x}, oldsymbol{\epsilon}^*, \phi) | \mathbf{x}, \phi ig) ig], \quad oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); \end{aligned}$$

ightharpoonup compute a stochastic gradient w.r.t. heta

$$abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi});$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp):

$$\phi := \phi + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

$$\theta := \theta + \eta \nabla_{\theta} \mathcal{L}(\phi, \theta).$$

Variational autoencoder (VAE)

- VAE learns stochastic mapping between x-space, from complicated distribution π(x), and a latent z-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

Variational autoencoder (VAE)

- Encoder $q(\mathbf{z}|\mathbf{x},\phi) = \mathsf{NN}_{\mathsf{e}}(\mathbf{x},\phi)$ outputs $\mu_{\phi}(\mathbf{x})$ and $\sigma_{\phi}(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

image credit:

Variational Autoencoder

Generated images for latent objects z sampled from prior $\mathcal{N}(0, \mathbf{I})$

Bayesian framework

Posterior distribution

$$p(\boldsymbol{\theta}|\mathbf{X}) = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})d\boldsymbol{\theta}}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \operatorname*{arg\,max}_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta}|\mathbf{X}) = \operatorname*{arg\,max}_{\boldsymbol{\theta}} \bigl(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\bigr)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X})d\boldsymbol{\theta} = \int p(\mathbf{x}|\boldsymbol{\theta})\delta(\boldsymbol{\theta} - \boldsymbol{\theta}^*)d\boldsymbol{\theta} \approx p(\mathbf{x}|\boldsymbol{\theta}^*).$$

VAE as Bayesian model

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

ELBO

$$\begin{aligned} \log p(\boldsymbol{\theta}|\mathbf{X}) &= \log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &= \mathcal{L}(q,\boldsymbol{\theta}) + \mathcal{K}L(q||p) + \log p(\boldsymbol{\theta}) - \log p(\mathbf{X}) \\ &\geq \left[\mathcal{L}(q,\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right] - \log p(\mathbf{X}). \end{aligned}$$

EM-algorithm

E-step

$$q(\mathbf{z}) = \underset{q}{\operatorname{arg max}} \mathcal{L}(q, \boldsymbol{\theta}^*) = \underset{q}{\operatorname{arg min}} \mathit{KL}(q||p) = p(\mathbf{z}|\mathbf{x}, \boldsymbol{\theta}^*);$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \left[\mathcal{L}(q, oldsymbol{ heta}) + \log p(oldsymbol{ heta})
ight].$$

VAE limitations

 Poor variational posterior distribution (inference model encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\boldsymbol{\mu}_{\phi}(\mathsf{x}), \boldsymbol{\sigma}_{\phi}^2(\mathsf{x})).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor probabilistic model (generative model, decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma_{\boldsymbol{\theta}}^2(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Summary

- ► LVM introduce latent representation of observed samples to make model more interpretable.
- LVM maximizes variational evidence lower bound to find MLE of model parameters.
- ► ELBO maximization is performed by the general variational EM algorithm.
- Amortized inference allows to efficiently compute stochastic gradients for ELBO and to use deep neural networks for $q(\mathbf{z}|\mathbf{x}, \phi)$ and $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ▶ ELBO gradients are computed using Monte-Carlo estimation.
- ► The reparametrization trick allows to get unbiased gradients w.r.t to a variational posterior distribution.
- ▶ The VAE model is an LVM with an encoder network for $q(\mathbf{z}|\mathbf{x}, \phi)$ and a decoder network for $p(\mathbf{x}|\mathbf{z}, \theta)$.
- ▶ VAE is not a "true" bayesian model since parameters θ do not have a prior distribution.
- Standart VAE has several limitations that we will address later in the course.