Department of Data Science - Data and Visual Analytics Lab

Lab2. Red Wine Quality Data Analysis using NumPy Part-II

Objectives

In this lab, you will continue to work on analyzing red wine quality dataset.

How To Use This Notebook

For each question, you should write NumPy statements in the "In[]" Cell and the expected output "Out[]" is already shown just below all In[] cells.

Import necessary modules

NumPy Aggregation Methods

Find sum of all residual sugar values

```
In [3]: When [:, 3]. sum()
Out[3]: 4059.55
```

Find sums of every feature value. There are 12 features altogether

```
In [4]: Whes. Sum (axis =0)
Out[4]: array([13303.1 , 843.985 , 433.29 , 4059.55 , 139.859 ,
25384. , 74302. , 1593.79794, 5294.47 , 1052.38 ,
16666.35 , 9012. ])
```

Find sum of every row

In [5]: Wills-sum (ars-1)
Out[5]: array([74.5438, 123.0548, 99.699, ..., 100.48174, 105.21547, 92.49249])

What is its size?

In [6]: 6]: 6]: 8 km (axis = 1). shape Out[6]: (1599.)

What is the maximum residual sugar value in red wines data?

In [7]: # convert sugar value into int data type first in her [3] 6 askype (nt)
Out[7]: array([1, 2, 2, ..., 2, 2, 3])

find its maximum residual sugar value

In [8]: np. max (whes [3, 3]. ashgre (9nt))
Out [8]: 15

What is the minimum residual sugar value in red wines data?

In [9]: np.min (wires [;, 3] = astype (int))
out[9]: 0

What is the average residual sugar value in red wines data?

In [10]: Np. benean (wines [3, 3])
Out[10]: 2.53880550343965

What is 25 percentile residual sugar value?

In [11]: np. percentile (10 nes (2, 3), 25)
out[11]: 1.9

What is 75 percentile residual sugar value?

In [12]: pp. pexcentile (wines [5,3], 75)
Out[12]: 2.6

Find the average of each feature value

NumPy Array Comparisons

Show all wines with quality > 5

In [14]: いかいとしょうけっち Out[14]: array([False, False, False, ..., True, False, True])

Show all wines with quality > 7

In [15]: Wines じ, バンラフ Out[15]: array([False, False, False, ..., False, False, False])

check if any wines value is True for the condition quality > 7

In [16]: np. any (where [3, 1] 57) == True
Out[16]: True

Show first 3 rows where wine quality > 7, call it high_quality

In [17]: high_quality = while [3, 17) if

In [18]: high_quality

Out[18]: array([False, False, False, ..., False, False, False])

Show only top 3 rows and all columns of high_quality wines data

```
In [19]: 
Out[19]: array([[7.900e+00, 3.500e-01, 4.600e-01, 3.600e+00, 7.800e-02, 1.500e+01, 3.700e+01, 9.973e-01, 3.350e+00, 8.600e-01, 1.280e+01, 8.000e+00], [1.030e+01, 3.200e-01, 4.500e-01, 6.400e+00, 7.300e-02, 5.000e+00, 1.300e+01, 9.976e-01, 3.230e+00, 8.200e-01, 1.260e+01, 8.000e+00], [5.600e+00, 8.500e-01, 5.000e-02, 1.400e+00, 4.500e-02, 1.200e+01, 8.800e+01, 9.924e-01, 3.560e+00, 8.200e-01, 1.290e+01, 8.000e+00]])
```

Show wines with a lot of alcohol > 10 and high wine quality > 7

```
In [20]: high-quality-and-alcohol= (winex[:,10]>10) 10 (winex [:,1]>7)
```

show only alcohol and wine quality columns

```
In [21]: wines [high-quality - and - alcohol, 10:]
Out[21]: array([[12.8, 8.],
                [12.6,
                [12.9,
                [13.4,
                [11.7,
                [11.
                [11.
                [12.7,
                [12.5,
                [11.8,
                [13.1,
                [11.7,
                        8.
                        8.],
                        8.],
                [11.3,
                [11.4, 8.]])
```

Combining NumPy Arrays

Combine red wine and white wine data

Open white wine dataset

In [22]: white_wines = np.genfromtxt("winequality-white.csv", delimiter=";", skip_heade Show size of white_wines In []: wines shape combine wines and white_wines data frames using vstack and call it all_wines In [23]: all wines = np. tstare ((wires, white wines)) In [24]: # what is size of all_wines? all_wines. Shape Out[24]: (6497, 12) In []: Combine wines and white_wines data frames using concatenate method In [25]: dataz=np. concatenate ((winer, white - wines) taxig=0) In [26]: # size of data2 data2. shape Matrix Operations and Reshape Find Transpose of wines and print its size In [27]: Ap. Lewspose (whee). Shape Out[27]: (12, 1599) Convert wines data into 1D array In [28]: when yave! Out[28]: array([7.4 , 0.7 , 0. , ..., 0.66, 11. , 6.]) In [29]: # show size whes rave 10. shape Out[29]: (19188,)

Reshape second row of wines into a 2-dimensional array with 2 rows and 6 columns

In [30]: Whee [1,]. reshape ((2,6))
Out[30]: array([[7.8, 0.88, 0., 2.6, 0.098, 25.],
[67., 0.9968, 3.2, 0.68, 9.8, 5.])

Sort alcohol column Ascending Order

In [31]: sorted_alcohol = Np. bost (wines (2, 10))

In [32]: sorted_alcohol

Out[32]: array([8.4, 8.4, 8.5, ..., 14. , 14. , 14.9])

Make sorting to take place in-place

In [33]: # In-place sorting wines [5; 10], sort []

Show top 10 rows

In [34]: where [2,10]
Out[34]: array([8.4, 8.4, 8.5, ..., 14. , 14. , 14.9])

Sort alcohol column Descending Order

Will original data be modified?. Check top 10 rows

In [37]: where to, id

Out[37]: array([8.4, 8.4, 8.5, ..., 14. , 14. , 14.9])

In []: