36 Chapter 4.

Appendix 4.A Continuous-Time Fourier Transform : Properties

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \iff X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Property	Signal	Fourier transform
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\omega) + \beta Y(\omega)$
Shift in time	$x(t-t_0)$	$e^{-jt_0\omega}X(\omega)$
Shift in frequency	$e^{j\omega_0 t}x(t)$	$X(\omega-\omega_0)$
Scaling in time and frequency	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time reversal	x(-t)	$X(-\omega)$
Differentiation in time Differentiation in frequency	$\frac{d^n}{dt^n}x(t)$ $(-jt)^nx(t)$	$\frac{(j\omega)^n X(\omega)}{\frac{d^n}{d\omega^n} X(\omega)}$
Integration in time	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j\omega}X(\omega)$, assuming $X(0)=0$.
Convolution in time	(x*y)(t)	$X(\omega)Y(\omega)$
Convolution in frequency	x(t)y(t)	$\frac{X(\omega)Y(\omega)}{\frac{1}{2\pi}(X*Y)(\omega)}$
Conjugate Conjugate, time-reversed	$x^*(t) \\ x^*(-t)$	$X^*(-\omega)$ $X^*(\omega)$
Conjugate symmetry	x(t) real-valued	$X(\omega) = X^*(-\omega)$
	x(t) real and even i.e., $x(t) = x(-t)$	which implies $ X(\omega) = X(-\omega) $ $X(\omega)$ real and even $i.e., X(\omega) = X(-\omega)$
Parseval's Equality	$\int_{-\infty}^{+\infty} x(t) $	$ ^{2}dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) ^{2} d\omega$

Appendix 4.B Continuous-Time Fourier Transform : Pairs

	Signal	Fourier transform
Dirac delta function	$x(t) = \delta(t)$ $x(t) = \delta(t - t_0)$	$X(\omega) = 1$ $X(\omega) = e^{-jt_0\omega}$
Dirac comb	$x(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$X(\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{T}\right)$
Constant function Harmonics	$x(t) = 1$ $x(t) = e^{j\omega_0 t}$ $x(t) = \cos(\omega_0 t)$ $x(t) = \sin(\omega_0 t)$	$X(\omega) = 2\pi\delta(\omega)$ $X(\omega) = 2\pi\delta(\omega - \omega_0)$ $X(\omega) = \pi \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right)$ $X(\omega) = \frac{\pi}{j} \left(\delta(\omega - \omega_0) - \delta(\omega + \omega_0)\right)$
Step function	$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0. \end{cases}$	$U(\omega) = \frac{1}{j\omega} + \pi\delta(\omega)$
One-sided exponential with $Re(a) > 0$	$x(t) = e^{-at}u(t)$	$X(\omega) = \frac{1}{a + j\omega}$
for integers $n \ge 2$	$x(t) = \frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$X(\omega) = \frac{1}{(a+j\omega)^n}$
Two-sided exponential	$x(t) = e^{-a t }$ with $Re(a) > 0$	$X(\omega) = \frac{2a}{a^2 + \omega^2}$
Sinc function	$x(t) = \sqrt{\frac{\omega_0}{2\pi}} \operatorname{sinc}\left(\frac{\omega_0}{2\pi}t\right)$ where $\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$	$X(\omega) = \begin{cases} \sqrt{\frac{2\pi}{\omega_0}}, & \omega \le \frac{1}{2}\omega_0\\ 0, & \text{otherwise.} \end{cases}$
Box function	$b(t) = \begin{cases} \frac{1}{\sqrt{t_0}}, & t \le \frac{1}{2}t_0, \\ 0, & \text{otherwise.} \end{cases}$	$B(\omega) = \sqrt{t_0} \operatorname{sinc}\left(\frac{t_0}{2\pi}\omega\right)$

38 Chapter 4.

Appendix 4.C Discrete-Time Fourier Transform: Properties

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega \quad \longleftrightarrow \quad X(e^{j\omega}) = \sum_{n = -\infty}^{+\infty} x[n] e^{-j\omega n}$$

Property	Signal	Fourier transform
Linearity Shift in time Shift in frequency	$\alpha x[n] + \beta y[n]$ $x[n - n_0]$ $e^{j\omega_0 n} x[n]$	$\alpha X(e^{j\omega}) + \beta Y(e^{j\omega})$ $e^{-j\omega n_0} X(e^{j\omega})$ $X(e^{j(\omega - \omega_0)})$
Time Reversal	x[-n]	$X(e^{-j\omega})$
Differentiation in Frequency	nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$
Convolution in time Circular convolution in frequency	(x*y)[n] x[n]y[n]	$X(e^{j\omega})Y(e^{j\omega})$ $\frac{1}{2\pi} \int_{2\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$
Conjugate Conjugate, time-reversed	$x^*[n] \\ x^*[-n]$	$X^*(e^{-j\omega})$ $X^*(e^{j\omega})$
Conjugate symmetry	$x[n]$ real-valued $x[n] ext{ real and even}$ $i.e., \ x[n] = x[-n]$	$\begin{split} X(e^{j\omega}) &= X^*(e^{-j\omega}) \\ \text{which implies } X(e^{j\omega}) &= X(e^{-j\omega}) \\ X(e^{j\omega}) \text{ real and even} \\ i.e., \ X(e^{j\omega}) &= X(e^{-j\omega}) \end{split}$

Parseval's Relation for Aperiodic Signals

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\omega})|^2 d\omega$$

Appendix 4.D Discrete-Time Fourier Transform : Pairs

	Signal	Fourier transform
Kronecker delta	$ \delta[n] \\ \delta[n-n_0] $	$1 \\ e^{-jn_0\omega}$
Constant	$x[n] = 1$ $x[n] = e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$ $2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$
Step function	$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & \text{otherwise.} \end{cases}$	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$
One-sided exponential	$x[n] = \begin{cases} \alpha^n, & n \ge 0\\ 0, & \text{otherwise.} \end{cases}$ with $ \alpha < 1$	$\frac{1}{1 - \alpha e^{-j\omega}}$
"Arithmeticgeometric"	$x[n] = \begin{cases} n\alpha^n, & n \ge 0\\ 0, & \text{otherwise.} \end{cases}$ with $ \alpha < 1$	$\frac{\alpha e^{-j\omega}}{(1 - \alpha e^{-j\omega})^2}$
Sinc sequence	$\sqrt{\frac{\omega_0}{2\pi}}\operatorname{sinc}\left(\frac{\omega_0}{2\pi}n\right)$ where $\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$	$X(e^{j\omega}) = \begin{cases} \sqrt{\frac{2\pi}{\omega_0}}, & \omega \le \frac{1}{2}\omega_0\\ 0, & \text{otherwise.} \end{cases}$
Box sequence	$x[n] = \begin{cases} \frac{1}{\sqrt{n_0}}, & n \le \frac{1}{2}(n_0 - 1), \\ 0, & \text{otherwise.} \end{cases}$ where n_0 is odd	$\sqrt{n_0} \frac{\operatorname{sinc}\left(\frac{n_0}{2\pi}\omega\right)}{\operatorname{sinc}\left(\frac{1}{2\pi}\omega\right)}$

42 Chapter 4.

Appendix 4.F Continuous-Time Fourier Series : Properties

$$x(t) = \sum_{k=-\infty}^{+\infty} X_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{+\infty} X_k e^{jk(2\pi/T)t}$$
$$X_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

Let x(t) and y(t) both be periodic signals of fundamental period T.

Property	Periodic Signal	Fourier Series Coefficients
Linearity	Ax(t) + By(t)	$AX_k + BY_k$
Time-Shifting	$x(t-t_0)$	$X_k e^{-jk\omega_0 t_0} = X_k e^{-jk(2\pi/T)t_0}$
Frequency-Shifting	$e^{jM(2\pi/T)t}x(t)$	X_{k-M}
Conjugation	$x^*(t)$	X_{-k}^*
Time Reversal	x(-t)	X_{-k}
Time Scaling		
Periodic Convolution	$x(\alpha t), \alpha > 0$ $\int_{T} x(\tau)y(t-\tau)d\tau$	TX_kY_k
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{+\infty} X_l Y_{k-l}$
Differentiation	$\frac{dx(t)}{dt}$	$jk\omega_0 X_k = jk \frac{2\pi}{T} X_k$
Integration	$\int_{-\infty}^{t} x(\tau)d\tau$	$\left(\frac{1}{jk\omega_0}\right)X_k = \left(\frac{1}{jk(2\pi/T)}\right)X_k$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} X_k = X_{-k}^* \\ Re(X_k) = Re(X_{-k}) \\ Im(X_k) = -Im(X_{-k}) \\ X_k = X_{-k} \\ \arg X_k = -\arg X_{-k} \end{cases}$
Real and Even Signals	x(t) real and even	
Real and Odd Signals	x(t) real and odd	X_k purely imaginary and odd

Parseval's Relation for Periodic Signals

$$\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{+\infty} |X_k|^2$$

Appendix 4.G Continuous-Time Fourier Series : Pairs

Signal	Fourier series coefficients
$\sum_{k=-\infty}^{+\infty} X_k e^{jk\omega_0 t}$	X_k
$e^{j\omega_0t}$	$X_1 = 1$ $X_k = 0$, otherwise
$\cos \omega_0 t$	$X_1 = X_{-1} = \frac{1}{2}$ $X_k = 0, \text{ otherwise}$
$\sin \omega_0 t$	$X_1 = -X_{-1} = \frac{1}{2j}$ $X_k = 0, \text{ otherwise}$
x(t) = 1	$X_0 = 1, X_k = 0, \ k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$)
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k\omega_0 T_1}{\pi} \right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t - nT)$	$X_k = \frac{1}{T}$ for all k

70 Chapter 6.

Appendix 6.A Laplace Transform : Properties

Property	Signal	Transform	ROC
	$x(t) \\ x_1(t) \\ x_2(t)$	$X(s) X_1(s) X_2(s)$	$R \\ R_1 \\ R_2$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
Shift in time	$x(t-t_0)$	$e^{-st_0}X(s)$	R
Shift in the s -Domain	$e^{s_0 t} x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $(s - s_0)$ is in R)
Scaling in time	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	"Scaled" ROC
			(i.e., s is in the ROC if (s/a) is in R)
Differentiation in time	$\frac{d}{dt}x(t)$	sX(s)	At least R
Differentiation in the s -Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
Integration in time	$\int_{-\infty}^{t} x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{Re(s) > 0\}$
Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
Conjugation	$x^*(t)$	$X^*(s^*)$	R
Conjugate symmetry	x(t) real-valued	$X(s) = X^*(s^*)$	

Appendix 6.B Laplace Transform : Pairs

	Signal	Transform	ROC
Dirac delta function	$\delta(t) \\ \delta(t-T)$	$\begin{vmatrix} 1 \\ e^{-sT} \end{vmatrix}$	All s All s
Step function	$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & \text{otherwise.} \end{cases}$ $-u(-t)$	$\begin{array}{c} \frac{1}{s} \\ \frac{1}{s} \end{array}$	Re(s) > 0 $Re(s) < 0$
	$\frac{t^{n-1}}{(n-1)!}u(t)$	$\frac{1}{s^n}$	Re(s) > 0
	$-\frac{t^{n-1}}{(n-1)!}u(-t)$	$\frac{1}{s^n}$	Re(s) < 0
One-sided exponential	$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$Re(s) > -Re(\alpha)$
ехропениа	$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$Re(s) < -Re(\alpha)$
	$\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t)$	$\frac{1}{(s+\alpha)^n}$	$Re(s) > -Re(\alpha)$
	$-\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t)$	$\frac{1}{(s+\alpha)^n}$	$Re(s) < -Re(\alpha)$
One-sided Cosines and Sines	$[\cos \omega_0 t] u(t)$	$\frac{s}{s^2 + \omega_0^2}$	Re(s) > 0
and omes	$\left[\sin\omega_0 t\right] u(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}$	Re(s) > 0
	$[e^{-\alpha t}\cos\omega_0 t]u(t)$ $[e^{-\alpha t}\sin\omega_0 t]u(t)$	$\frac{s+\alpha}{(s+\alpha)^2+\omega_0^2}$	$Re(s) > -Re(\alpha)$ $Re(s) > -Re(\alpha)$
	$e^{-\alpha t} \sin \omega_0 t u(t)$	$\frac{\omega_0}{(s+\alpha)^2 + \omega_0^2}$	$Re(s) > -Re(\alpha)$

Appendix 7.A Z-Transform : Properties

Property	Signal	$Z ext{-}\mathbf{Transform}$	ROC
	$x[n]$ $x_1[n]$ $x_2[n]$	$X(z) X_1(z) X_2(z)$	R R_1 R_2
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2
Shift in time	$x[n-n_0]$	$z^{-n_0}X(z)$	R except for the possible addition
Scaling in the z -Domain	$e^{j\omega_0 n}x[n]$ $z_0^nx[n]$	$X(e^{-j\omega_0}z) \\ X\left(\frac{z}{z_0}\right)$	or deletion of the origin $R \ z_0 R$
Time reversal	x[-n]	$X(z^{-1})$	R^{-1} (i.e., the set of points z^{-1} where z is in R)
Convolution	$(x_1 * x_2)[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2
Differentiation in the z -Domain	nx[n]	$-z\frac{dX(z)}{dz}$	R
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
Time expansion by some integer k	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$ where z is in R)
Conjugation	$x^*[n]$	$X^*(z^*)$	R
Conjugate symmetry	x[n] real-valued	$X(z) = X^*(z^*)$	

88 Chapter 7.

Appendix 7.B Z-Transform : Pairs

	Signal	Z-Transform	ROC
Kronecker delta	$\delta[n]$	1	All z
	$\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
Step function	$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & \text{otherwise.} \end{cases}$	$\frac{1}{1-z^{-1}}$	z > 1
	-u[-n-1]	$\frac{1}{1-z^{-1}}$	z < 1
One-sided	$\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
exponential	$-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
	$n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
	$-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
One-sided cosines and	$[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
sines	$\left[\sin\omega_0 n\right] u[n]$	$ \frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}} $	z > 1
	$r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
	$r^n \sin \omega_0 n] u[n]$	$ \frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}} $	z > r