Fourier Transform of sine - Gaussian

Define Functions

$$ln[63]:=$$
 sineGaussian[t_] := A $e^{-\Gamma t^2}$ Sin[2 π f_c t]

In[170]:=
$$FT[f] := Abs \left[\frac{\sqrt{2}}{\sqrt{T}} \int_{-T}^{T} \left(sineGaussian[t] e^{2\pi f l t} \right) dl t \right]$$

Define constants

In[192]:=
$$T = 1$$
; $f_c = 7*^1$; $Q = 1$; $\Gamma = \frac{2 \pi f_c}{Q}$; $A = 1$;

Plot time-series

 $ln[193]:= Plot[sineGaussian[t], \{t, -T, T\}, PlotRange \rightarrow All]$

If I copy the output of typing FT[f] and turn it into a new function, and plot the new function, it is significantly faster than just plotting FT[g]—this takes much longer.

In[•]:=

Plot Fourier Transform

$\label{eq:logLogPlotEvaluate} $$ \ln[194] := LogLogPlot[Evaluate[FT[f]], \{f, 1, 1000\}, PlotRange \rightarrow Full] $$$

