(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 1 August 2002 (01.08.2002)

PCT

(10) International Publication Number WO 02/059148 A2

(51) International Patent Classification7: C07K 14/195

(21) International Application Number:

(22) International Filing Date: 21 January 2002 (21.01.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

A 130/01

26 January 2001 (26.01.2001)

(71) Applicant (for all designated States except US): CISTEM BIOTECHNOLOGIES GMBH [AT/AT]; Rennweg 95b, A-1030 Vienna (AT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MEINKE, Andreas [DE/AT]; Piettegasse 26/1, A-3013 Pressbaum (AT). NAGY, Eszter [HU/AT]; Taborstrasse 9/15, A-1020 Vienna (AT). VON AHSEN, Uwe [DE/AT]; Shmalzhofgasse 22/25 A-1060 Vienna (AT). KLADE, Christoph [AT/AT]; Gröhrmühlgasse 1B, A-2700 Wr. Neustadt (AT). HENICS, Tamas [HU/AT]; Taborstrasse 9/15, A-1020 Vienna (AT). ZAUNER, Wolfgang [AT/AT]; Parkgasse 13/22, A-1030 Vienna (AT). MINH, Duc, Bui [VN/AT]; Rudolf Zeller Gasse 70/6/9, A-1230 Vienna (AT). VYTVYTSKA, Oresta [UA/AT]; Leystrasse 110/1/2, A-1200 Vienna (AT). ETZ, Hildegard [AT/AT]; Lortzinggasse 1/21, A-1140 Vienna (AT). DRYLA, Agnieszka [PL/AT]; Pragerstrasse 43-47/2/15, A-1210 Vienna (AT). WEICHHART, Thomas [AT/AT]; Hinterholz 10, A-3071 Böheimkirchen (AT). HAFNER, Martin [AT/AT]; Arnoldgasse 2/7/4/27, A-1210 Vienna (AT). TEMPELMAIER, Brigitte [AT/AT]; Messenhausergasse 10/20, A-1030 Vienna (AT).

- (74) Agents: SONN, Helmut et al.; Riemergasse 14, A-1010 Wien (AT).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, ΛZ, BΛ, BB, BG, BR, BY, BZ, CΛ, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: A METHOD FOR IDENTIFICATION, ISOLATION AND PRODUCTION OF ANTIGENS TO A SPECIFIC **PATHOGEN**

(57) Abstract: Described is a method for identification, isolation and production of hyperimmune serum-reactive antigens from a specific pathogen, a tumor, an allergen or a tissue or host prone to autoimmunity, said antigens being suited for use in a vaccine for a given type of animal or for humans, which is characterized by the following steps: - providing an antibody preparation from a plasma pool of said given type of animal or from a human plasma pool or individual sera with antibodies against said specific pathogen, tumor, allergen or tissue or host prone to auto-immunity, - providing at least one expression library of said specific pathogen, tumor, allergen or tissue or host prone to auto-immunity, - screening said at least one expression library with said antibody preparation, identifying antigens which bind in said screening to antibodies in said antibody preparation, - screening the identified antigens with individual antibody preparations from individual sera from individuals with antibodies against said specific pathogen, tumor, allergen or tissue or host prone to auto-immunity, - identifying the hyperimmune serum-reactive antigen portion of said identified antigens and which hyperimmune serum-reactive antigens bind to a relevant portion of said individual antibody preparations from said individual sera and - optionally isolating said hyperimmune serum-reactive antigens and producing said hyperimmune serum-reactive antigens by chemical or recombinant methods.

WO 02/059148 PCT/EP02/00546

A method for identification, isolation and production of antigens to a specific pathogen

The invention relates to a method for identification, isolation and production of antigens to a specific pathogen as well as new antigens suitable for use in a vaccine for a given type of animal or for humans.

Vaccines can save more lives (and resources) than any other medical intervention. Owing to world-wide vaccination programmes the incidence of many fatal diseases has been decreased drastically. Although this notion is valid for a whole panel of diseases, e.g. diphtheria, pertussis, measles and tetanus, there are no effective vaccines for numerous infectious disease including most viral infections, such as HIV, HCV, CMV and many others. There are also no effective vaccines for other diseases, infectious or noninfectious, claiming the lifes of millions of patients per year including malaria or cancer. In addition, the rapid emergence of antibiotic-resistant bacteria and microorganisms calls for alternative treatments with vaccines being a logical choice. Finally, / the great need for vaccines is also illustrated by the fact that infectious diseases, rather than cardiovascular disorders or cancer or injuries remain the largest cause of death and disability in the world.

Several established vaccines consist of live attenuated organisms where the risk of reversion to the virulent wild-type strain exists. In particular in immunocompromised hosts this can be a live threatening scenario. Alternatively, vaccines are administered as a combination of pathogen-derived antigens together with compounds that induce or enhance immune responses against these antigens (these compounds are commonly termed adjuvant), since these subunit vaccines on their own are generally not effective.

Whilst there is no doubt that the above vaccines are valuable medical treatments, there is the disadvantage that, due to their complexity, severe side effects can be evoked, e.g. to antigens that are contained in the vaccine that display cross-reactivity with molecules expressed by cells of vaccinated individuals. In addition, existing requirements from regulatory authorities, e.g.

the World Health Organization (WHO), the Food and Drug Administration (FDA), and their European counterparts, for exact specification of vaccine composition and mechanisms of induction of immunity, are difficult to meet.

Some widely used vaccines are whole cell-vaccines (attenuated bacteria or viruses (e.g. Bacille Calmette-Guerin (BCG) (tuberculosis), Measles, Mumps, Rubella, Oral Polio Vaccine (Sabin), killed bacteria or viruses (e.g. Pertussis, Inactivated polio vaccine (Salk)), subunit-vaccines (e.g. Toxoid (Diphtheria, Tetanus)), Capsular polysaccharide (H. influenzae type B), Yeast recombinant subunit (Hepatitis B surface protein).

A vaccine can contain a whole variety of different antigens. Examples of antigens are whole-killed organisms such as inactivated viruses or bacteria, fungi, protozoa or even cancer cells. Antigens may also consist of subfractions of these organisms/tissues, of proteins, or, in their most simple form, of peptides. Antigens can also be recognized by the immune system in form of glycosylated proteins or peptides and may also be or contain polysaccharides or lipids. Short peptides can be used since for example cytotoxic T-cells (CTL) recognize antigens in form of short usually 8-11 amino acids long peptides in conjunction with major histocompatibility complex (MHC). B-cells can recognize linear epitopes as short as 4-5 amino acids, as well as three dimensional structures (conformational epitopes). In order to obtain sustained, antigen-specific immune responses, adjuvants need to trigger immune cascades that involve all cells of the immune system necessary. Primarily, adjuvants are acting, but are not restricted in their mode of action, on so-called antigen presenting cells (APCs). These cells usually first encounter the antigen(s) followed by presentation of processed or unmodified antigen to immune effector cells. Intermediate cell types may also be involved. Only effector cells with the appropriate specificity are activated in a productive immune response. The adjuvant may also locally retain antigens and co-injected other factors. In addition the adjuvant may act as a chemoattractant for other immune cells or may act locally and/or systemically as a stimulating agent for the immune system.

Antigen presenting cells belong to the innate immune system, which has evolved as a first line host defence that limits infection early after exposure to microorganisms. Cells of the innate immune system recognize patterns or relatively non-specific structures expressed on their targets rather than more sophisticated, specific structures which are recognized by the adaptive immune system. Examples of cells of the innate immune system are macrophages and dendritic cells but also granulocytes (e.g. neutrophiles), natural killer cells and others. By contrast, cells of the adaptive immune system recognize specific, antigenic structures, including peptides, in the case of T-cells and peptides as well as three-dimensional structures in the case of Bcells. The adaptive immune system is much more specific and sophisticated than the innate immune system and improves upon repeated exposure to a given pathogen/antigen. Phylogenetically, the innate immune system is much older and can be found already in very primitive organisms. Nevertheless, the innate immune system is critical during the initial phase of antigenic exposure since, in addition to containing pathogens, cells of the innate immune system, i.e. APCs, prime cells of the adaptive immune system and thus trigger specific immune responses leading to clearance of the intruders. In sum, cells of the innate immune system and in particular APCs play a critical role during the induction phase of immune responses by a) containing infections by means of a primitive pattern recognition system and b) priming cells of the adaptive immune system leading to specific immune responses and memory resulting in clearance of intruding pathogens or of other targets. These mechanisms may also be important to clear or contain tumor cells.

The antigens used for such vaccines have often been selected by chance or by easiness of availability. There is a demand to identify efficient antigens for a given pathogen or - preferably - an almost complete set of all antigens of a given pathogen which are practically (clinically) relevant. Such antigens may be preferred antigen candidates in a vaccine.

It is therefore an object of the present invention to comply with these demands and to provide a method with which such antigens may be provided and with which a practically complete set of an-

- 4 -

tigens of e.g. a given pathogen may be identified with a given serum as antibody source. Such a method should also be suitable for rapidly changing pathogens which evolve a fast resistance against common drugs or vaccines. The method should also be applicable to identify and isolate tumor antigens, allergens, autoimmune antigens.

Therefore, the present invention provides a method for identification, isolation and production of hyperimmune serum-reactive antigens from a specific pathogen, a tumor, an allergen or a tissue or host prone to auto-immunity, especially from a specific pathogen, said antigens being suited for use in a vaccine for a given type of animal or for humans, said method being characterized by the following steps:

- *providing an antibody preparation from a plasma pool of said given type of animal or from a human plasma pool or individual sera with antibodies against said specific pathogen, a tumor, an allergen or a tissue or host prone to auto-immunity,
- *providing at least one expression library of said specific pathogen, a tumor, an allergen or a tissue or host prone to auto-immunity,
- *screening said at least one expression library with said antibody preparation,
- identifying antigens which bind in said screening to antibodies in said antibody preparation,
- *screening the identified antigens with individual antibody preparations from individual sera from individuals with antibodies against said specific pathogen, tumor, allergen or tissue or host prone to auto-immunity,
- *identifying the hyperimmune serum-reactive antigen portion of said identified antigens which hyperimmune serum-reactive antigens bind to a relevant portion of said individual antibody preparations from said individual sera and
- optionally isolating said hyperimmune serum-reactive antigens and producing said hyperimmune serum-reactive antigens by chemical or recombinant methods.

This method is also suitable in general for identifying a practically complete set of hyperimmune serum-reactive antigens of a specific pathogen with given sera as antibody sources, if at

least three different expression libraries are screened in a pathogen/antigen identification programme using the method according to the present invention. The present invention therefore also relates to a method for identification, isolation and production of a practically complete set of hyperimmune serum-reactive antigens of a specific pathogen, said antigens being suited for use in a vaccine for a given type of animal or for humans, which is characterized by the following steps:

- *providing an antibody preparation from a plasma pool of said given type of animal or from a human plasma pool or individual sera with antibodies against said specific pathogen,
- *providing at least three different expression libraries of said specific pathogen,
- *screening said at least three different expression libraries with said antibody preparation,
- *identifying antigens which bind in at least one of said at least three screenings to antibodies in said antibody prepara-
- *screening the identified antigens with individual antibody preparations from individual sera from individuals with antibodies against said specific pathogen,
- *identifying the hyperimmune serum-reactive antigen portion of said identified antigens which hyperimmune serum-reactive antigens bind to a relevant portion of said individual antibody preparations from said individual sera,
- •repeating said screening and identification steps at least
- *comparing the identified hyperimmune serum-reactive antigens identified in the repeated screening and identification steps with the identified hyperimmune serum-reactive antigens identified in the initial screening and identification steps,
- *further repeating said screening and identification steps, if at least 5% of the hyperimmune serum-reactive antigens have been identified in the repeated screening and identification steps only, until less than 5 % of the hyperimmune serum-reactive antigens are identified in a further repeating step only to obtain a complete set of hyperimmune serum-reactive antigens of a specific pathogen and
- optionally isolating said hyperimmune serum-reactive antigens and producing said hyperimmune serum-reactive antigens by

- 6 -

chemical or recombinant methods.

The method according to the present invention mainly consists of three essential parts, namely 1. identifying hyperimmune serum sources containing specific antibodies against a given pathogen, 2. screening of suitable expression libraries with a suitable antibody preparation wherein candidate antigens (or antigenic fragments of such antigens) are selected, and - 3. in a second screening round, wherein the hyperimmune serum-reactive antigens are identified by their ability to bind to a relevant portion of individual antibody preparations from individual sera in order to show that these antigens are practically relevant and not only hyperimmune serum-reactive, but also widely immunogenic (i.e. that a lot of individual sera react with a given antigen). With the present method it is possible to provide a set of antigens of a given pathogen which is practically complete with respect to the chosen pathogen and the chosen serum. Therefore, a bias with respect to "wrong" antigen candidates or an incomplete set of antigens of a given pathogen is excluded by the present method.

Completeness of the antigen set of a given pathogen within the meaning of the present invention is, of course, dependent on the completeness of the expression libraries used in the present method and on the quality and size of serum collections (number of individual plasmas/sera) tested , both with respect to representability of the library and usefulness of the expression system. Therefore, preferred embodiments of the present method are characterized in that at least one of said expression libraries is selected from a ribosomal display library, a bacterial surface library and a proteome.

A serum collection used in the present invention should be tested against a panel of known antigenic compounds of a given pathogen, such as polysaccharide, lipid and proteinaceous components of the cell wall, cell membranes and cytoplasma, as well as secreted products. Preferably, three distinct serum collections are used: 1. With very stable antibody repertoire: normal adults, clinically healthy people, who overcome previous encounters or currently carriers of e.g. a given pathogen without acute disease and symptoms, 2. With antibodies induced acutally by the presence of the pathogenic organism: patients with acute disease with different manifestations (e.g. S. aureus sepsis or wound infection, etc.), 3. With no specific antibodies at all (as negative controls): 5-8 months old babies who lost the maternally transmitted immunoglobulins 5-6 months after birth. Sera have to react with multiple pathogen-specific antigens in order to consider hyperimmune for a given pathogen (bacteria, fungus, worm or otherwise), and for that relevant in the screening method according to the present invention.

In the antigen identification programme for identifying a complete set of antigens according to the present invention, it is preferred that said at least three different expression libraries are at least a ribosomal display library, a bacterial surface library and a proteome. It has been observed that although all expression libraries may be complete, using only one or two expression libraries in an antigen identification programme will not lead to a complete set of antigens due to preferential expression properties of each of the different expression libraries. While it is therefore possible to obtain hyperimmune serumreactive antigens by using only one or two different expression libraries, this might in many cases not finally result in the identification of a complete set of hyperimmune serum-reactive antigens. Of course, the term "complete" according to the present invention does not indicate a theoretical maximum but is indeed a practical completeness, i.e. that at least 95% of the practically relevant antigens or antigenic determinants have been identified of a given pathogen. The practical relevance is thereby defined by the occurrence of antibodies against given antigens in the patient population.

According to the present invention also serum pools or plasma fractions or other pooled antibody containing body fluids are "plasma pools".

An expression library as used in the present invention should at least allow expression of all potential antigens, e.g. all surface proteins of a given pathogen. With the expression libraries according to the present invention, at least one set of potential antigens of a given pathogen is provided, this set being prefera-

bly the complete theoretical complement of (poly-)peptides encoded by the pathogen's genome (i.e. genomic libraries as described in Example 2) and expressed either in a recombinant host (see Example 3) or in vitro (see Example 4). This set of potential antigens can also be a protein preparation, in the case of extracellular pathogens preferably a protein preparation containing surface proteins of said pathogen obtained from said pathogen grown under defined physiological conditions (see Example 5). While the genomic approach has the potential to contain the complete set of antigens, the latter one has the advantage to contain the proteins in their naturally state i.e. including for instance post-translational modifications or processed forms of these proteins, not obvious from the DNA sequence. These or any other sets of potential antigens from a pathogen, a tumor, an allergen or a tissue or host prone to auto-immunity are hereafter referred to as "expression library". Expression libraries of very different kinds may be applied in the course of the present invention. Suitable examples are given in e.g. Ausubel et al., 1994. Especially preferred are expression libraries representing a display of the genetic set of a pathogen in recombinant form such as in vitro translation techniques, e.g. ribosomal display, or prokaryotic expression systems, e.g. bacterial surface expression libraries or which resemble specific physiological expression states of a given pathogen in a given physiological state, such as a proteome.

Ribosome display is an established method in recombinant DNA technology, which is applicable for each specific pathogen for the sake of the present invention (Schaffitzel et al, 1999). Bacterial surface display libraries will be represented by a recombinant library of a bacterial host displaying a (total) set of expressed peptide sequences of a given pathogen on e.g. a selected outer membrane protein at the bacterial host membrane (Georgiou et al., 1997). Apart from displaying peptide or protein sequences in an outer membrane protein, other bacterial display techniques, such as bacteriophage display technologies and expression via exported proteins are also preferred as bacterial surface expression library (Forrer et al., 1999; Rodi and Makowski, 1993; Georgiou et al., 1997).

The antigen preparation for the first round of screening in the method according to the present invention may be derived from any source containing antibodies to a given pathogen. Preferably, if a plasma pool is used as a source for the antibody preparation, a human plasma pool is selected which comprises donors which had experienced or are experiencing an infection with the given pathogen. Although such a selection of plasma or plasma pools is in principle standard technology in for example the production of hyperimmunoglobulin preparations, it was surprising that such technologies have these effects as especially shown for the preferred embodiments of the present invention.

Preferably the expression libraries are genomic expression libraries of a given pathogen, or alternatively m-RNA, libraries. It is preferred that these genomic or m-RNA libraries are complete genomic or m-RNA expression libraries which means that they contain at least once all possible proteins, peptides or peptide fragments of the given pathogen are expressable. Preferably the genomic expression libraries exhibit a redundancy of at least 2x, more preferred at least 5x, especially at least 10x.

Preferably, the method according to the present invention comprises screening at least a ribosomal display library, a bacterial surface display library and a proteome with the antibody preparation and identifying antigens which bind in at least two, preferably which bind to all, of said screenings to antibodies in said antibody preparation. Such antigens may then be regarded extremely suited as hyperimmunogenic antigens regardless of their way of expression. Preferably the at least two screenings should at least contain the proteome, since the proteome always represents the antigens as naturally expressed proteins including post-translational modifications, processing, etc. which are not obvious from the DNA sequence.

The method according to the present invention may be applied to any given pathogen. Therefore, preferred pathogens are selected from the group of bacterial, viral, fungal and protozoan pathogens. The method according to the present invention is also applicable to cancer, i.e. for the identification of tumorassociated antigens, and for the identification of allergens or

WO 02/059148 PCT/EP02/00546

pathogen, even in a state where this pathogen is effectively defeated. It has been discovered within the course of the present invention, especially during performance of the S.aureus example that only 1-2% of the antibody repertoire of a patient having high titers against S.aureus are indeed antibodies directed against S.aureus. Moreover, over 70% of this specific 1% portion is directed against non-protein antigens, such as teichoic acid, so that only a total of 0.1% or less of the antibodies are directed to proteinaceous antigens.

One of the advantages of using recombinant expression libraries, especially ribsome display libraries and bacterial surface display libraries, is that the identified hyperimmune serum-reactive antigens may be instantly produced by expression of the coding sequences of the screened and selected clones expressing the hyperimmune serum-reactive antigens without further recombinant DNA technology or cloning steps necessary.

The hyperimmune serum-reactive antigens obtainable by the method according to the present invention may therefore be immediately finished to a pharmaceutical preparation, preferably by addition of a pharmaceutically acceptable carrier and/or excipient, immediately after its production (in the course of the second selection step), e.g. by expression from the expression library platform.

Preferably, the pharmaceutical preparation containing the hyperimmune serum-reactive antigen is a vaccine for preventing or treating an infection with the specific pathogen for which the antigens have been selected.

The pharmaceutical preparation may contain any suitable auxiliary substances, such as buffer substances, stabilisers or further active ingredients, especially ingredients known in connection of vaccine production.

A preferable carrier/or excipient for the hyperimmune serum-reactive antigens according to the present invention is a immunostimulatory compound for further stimulating the immune response to the given hyperimmune serum-reactive antigen. Pref-

erably the immunostimulatory compound in the pharmaceutical preparation according to the present invention is selected from the group of polycationic substances, especially polycationic peptides, immunostimulatory deoxynucleotides, alumn, Freund's complete adjuvans, Freund's incomplete adjuvans, neuroactive compounds, especially human growth hormone, or combinations thereof.

The polycationic compound(s) to be used according to the present invention may be any polycationic compound which shows the characteristic effects according to the WO 97/30721. Preferred polycationic compounds are selected from basic polypeptides, organic polycations, basic polyamino acids or mixtures thereof. These polyamino acids should have a chain length of at least 4 amino acid residues (see: Tuftsin as described in Goldman et al. (1983)). Especially preferred are substances like polylysine, polyarginine and polypeptides containing more than 20%, especially more than 50% of basic amino acids in a range of more than 8, especially more than 20, amino acid residues or mixtures thereof. Other preferred polycations and their pharmaceutical compositons are described in WO 97/30721 (e.g. polyethyleneimine) and WO 99/38528. Preferably these polypeptides contain between 20 and 500 amino acid residues, especially between 30 and 200 residues.

These polycationic compounds may be produced chemically or recombinantly or may be derived from natural sources.

Cationic (poly)peptides may also be anti- microbial with properties as reviewed in Ganz et al, 1999; Hancock, 1999. These (poly)peptides may be of prokaryotic or animal or plant origin or may be produced chemically or recombinantly (Andreu et al., 1998; Ganz et al., 1999; Simmaco et al., 1998). Peptides may also belong to the class of defensins (Ganz, 1999; Ganz et al., 1999). Sequences of such peptides can be, for example, be found in the Antimicrobial Sequences Database under the following internet address:

http://www.bbcm.univ.trieste.it/~tossi/pag2.html

Such host defence peptides or defensives are also a preferred form of the polycationic polymer according to the present inven-

WO 02/059148

tion. Generally, a compound allowing as an end product activation (or down-regulation) of the adaptive immune system, preferably mediated by APCs (including dendritic cells) is used as polycationic polymer.

Especially preferred for use as polycationic substance in the present invention are cathelicidin derived antimicrobial peptides or derivatives thereof (International patent application PCT/EP01/09529, incorporated herein by reference), especially antimicrobial peptides derived from mammal cathelicidin, preferably from human, bovine or mouse.

Polycationic compounds derived from natural sources include HIV-REV or HIV-TAT (derived cationic peptides, antennapedia peptides, chitosan or other derivatives of chitin) or other peptides derived from these peptides or proteins by biochemical or recombinant production. Other preferred polycationic compounds are cathelin or related or derived substances from cathelin. For example, mouse cathelin is a peptide which has the amino acid sequence NH,-RLAGLLRKGGEKIGEKLKKIGOKIKNFFQKLVPQPE-COOH. Related or derived cathelin substances contain the whole or parts of the cathelin sequence with at least 15-20 amino acid residues. Derivations may include the substitution or modification of the natural amino acids by amino acids which are not among the 20 standard amino acids. Moreover, further cationic residues may be introduced into such cathelin molecules. These cathelin molecules are preferred to be combined with the antigen. These cathelin molecules surprisingly have turned out to be also effective as an adjuvant for a antigen without the addition of further adjuvants. It is therefore possible to use such cathelin molecules as efficient adjuvants in vaccine formulations with or without further immunactivating substances.

Another preferred polycationic substance to be used according to the present invention is a synthetic peptide containing at least 2 KLK-motifs separated by a linker of 3 to 7 hydrophobic amino acids (International patent application PCT/EP01/12041, incorporated herein by reference).

Immunostimulatory deoxynucleotides are e.g. neutral or artificial

CpG containing DNA, short stretches of DNA derived from non-vertebrates or in form of short oligonucleotides (ODNs) containing non-methylated cytosine-guanine di-nucleotides (CpG) in a certain base context (e.g. Krieg et al., 1995) but also inosine containing ODNs (I-ODNs) as described in WO 01/93905.

Neuroactive compounds, e.g. combined with polycationic substances are described in WO 01/24822.

According to a preferred embodiment the individual antibody preparation for the second round of screening are derived from patients with have suffered from an acute infection with the given pathogen, especially from patients who show an antibody titer to the given pathogen above a certain minimum level, for example an antibody titer being higher than 80 percentile, preferably higher than 90 percentile, especially higher than 95 percentile of the human (patient or carrier) sera tested. Using such high titer individual antibody preparations in the second screening round allows a very selective identification of the hyperimmune serum-reactive antigens to the given pathogen.

It is important that the second screening with the individual antibody preparations (which may also be the selected serum) allows a selective identification of the hyperimmune serum-reactive antigens from all the promising candidates from the first round. Therefore, preferably at least 10 individual antibody preparations (i.e. antibody preparations (e.g. sera) from at least 10 different individuals having suffered from an infection to the chosen pathogen) should be used in identifying these antigens in the second screening round. Of course, it is possible to use also less than 10 individual preparations, however, selectivity of the step may not be optimal with a low number of individual antibody preparations. On the other hand, if a given hyperimmune serum-reactive antigen (or an antigenic fragment thereof) is recognized in at least 10 individual antibody preparations, preferably at least 30, especially at least 50 individual antibody preparations, identification of hyperimmune serum-reactive antigen is also selective enough for a proper identification. Hyperimmune serum-reactivity may of course be tested with as many individual preparations as possible (e.g. with more than 100 or even with

- 15 -

PCT/EP02/00546

more than 1000).

Therefore, the relevant portion of the hyperimmune serum-reactive antibody preparation according to the method of the present invention should preferably be at least 10, more preferred at least 30, especially at least 50 individual antibody preparations. Alternatively (or in combination) hyperimmune serum-reactive antigen may preferably be also identified with at least 20%, preferably at least 30%, especially at least 40% of all individual antibody preparations used in the second screening round.

According to a preferred embodiment of the present invention, the sera from which the individual antibody preparations for the second round of screening are prepared (or which are used as antibody preparations), are selected by their titer against the specific pathogen (e.g. against a preparation of this pathogen, such as a lysate, cell wall components and recombinant proteins). Preferably, some are selected with a total IgA titer above 4000 U, especially above 6000 U, and/or an IgG titer above 10 000 U, especially above 12 000 U (U = units, calculated from the OD_{405mm} reading at a given dilution) when whole organism (total lysate or whole cells) is used as antigen in ELISA. Individual proteins with Ig titers of above 800-1000 U are specifically preferred for selecting the hyperimmune serum-reactive antigens according to the present invention only for total titer. The statement for individual proteins can be derived from Fig. 9.

According to the demonstration example which is also a preferred embodiment of the present invention the given pathogen is a Staphylococcus pathogen, especially Staphylococcus aureus and Staphylococcus epidermidis. Staphylococci are opportunistic pathogens which can cause illnesses which range from minor infections to life threatening diseases. Of the large number of Staphylococci at least 3 are commonly associated with human disease: S. aureus, S. epidermidis and rarely S. saprophyticus (Crossley and Archer, 1997). S. aureus has been used within the course of the present invention as an illustrative example of the way the present invention functions. Besides that, it is also an important organism with respect to its severe pathogenic impacts on humans. Staphylococcal infections are imposing an increasing

WO 02/059148 PCT/EP02/00546

threat in hospitals worldwide. The appearance and disease causing capacity of Staphylococci are related to the wide-spread use of antibiotics which induced and continue to induce multi-drug resistance. For that reason medical treatment against Staphylococcal infections cannot rely only on antibiotics anymore. Therefore, a tactic change in the treatment of these diseases is desperately needed which aims to prevent infections. Inducing high affinity antibodies of the opsonic and neutralizing type by vaccination helps the innate immune system to eliminate bacteria and toxins. This makes the method according to the present invention an optimal tool for the identification of staphylococcal antigenic proteins.

Every human being is colonized with S. epidermidis. The normal habitats of S. epidermidis are the skin and the mucous membrane. The major habitats of the most pathogenic species, S. aureus, are the anterior nares and perineum. Some individuals become permanent S. aureus carriers, often with the same strain. The carrier stage is clinically relevant because carriers undergoing surgery have more infections than noncarriers. Generally, the established flora of the nose prevents acquisition of new strains. However, colonization with other strains may occur when antibiotic treatment is given that leads to elimination of the susceptible carrier strain. Because this situation occurs in the hospitals, patients may become colonized with resistant nosocomial Staphylococci. These bacteria have an innate adaptability which is complemented by the widespread and sometimes inappropriate use of antimicrobial agents. Therefore hospitals provide a fertile environment for drug resistance to develop (close contact among sick patients, extensive use of antimicrobials, nosocomial infections). Both S. aureus and S. epidermidis have become resistant to many commonly used antibiotics, most importantly to methicillin (MRSA) and vancomycin (VISA). Drug resistance is an increasingly important public health concern, and soon many infections caused by staphylococci may be untreatable by antibiotics. In addition to its adverse effect on public health, antimicrobial resistance contributes to higher health care costs, since treating resistant infections often requires the use of more toxic and more expensive drugs, and can result in longer hospital stays for infected patients.

WO 02/059148

- 17 -

Moreover, even with the help of effective antibiotics, the most serious staphylococcal infections have 30-50 % mortality.

Staphylococci become potentially pathogenic as soon as the natural balance between microorganisms and the immune system gets disturbed, when natural barriers (skin, mucous membrane) are breached. The coagulase-positive S. aureus is the most pathogenic staphylococcal species, feared by surgeons for a long time. Most frequently it causes surgical wound infections, and induces the formation of abscesses. This local infection might become systemic, causing bacteraemia and sepsis. Especially after viral infections and in elderly, it can cause severe pneumonia. S. aureus is also a frequent cause of infections related to medical devices, such as intravascular and percutan catheters (endocarditis, sepsis, peritonitis), prosthetic devices (septic arthritis, osteomyelitis). S. epidermidis causes diseases mostly related to the presence of foreign body and the use of devices, such as catheter related infections, cerebrospinal fluid shunt infections, peritonitis in dialysed patients (mainly CAPD), endocarditis in individuals with prosthetic valves. This is exemplified in immunocompromised individuals such as oncology patients and premature neonates in whom coagulase-negative staphylococcal infections frequently occur in association with the use of intravascular device. The increase in incidence is related to the increased used of these devices and increasing number of immunocompromised patients.

Much less is known about S. saprophyticus, another coagulasenegative staphylococci, which causes acute urinary tract infection in previously healthy people. With a few exceptions these are women aged 16-25 years.

The pathogenesis of staphylococci is multifactorial. In order to initiate infection the pathogen has to gain access to the cells and tissues of the host, that is adhere. S. aureus expresses—surface proteins that promote attachment to the host proteins such as laminin, fibronectin, elastin, vitronectin, fibrinogen and many other molecules that form part of the extracellular matrix (extracellular matrix binding proteins, ECMBP). S. epider—

WO 02/059148 PCT/EP02/00546

- 18 -

midis is equipped with cell surface molecules which promote adherence to foreign material and through that mechanism establish infection in the host. The other powerful weapons staphylococci use are the secreted products, such as enterotoxins, exotoxins, and tissue damaging enzymes. The toxins kill or misguide immune cells which are important in the host defence. The several different types of toxins are responsible for most of the symptoms during infections.

Host defence against S. aureus relies mainly on innate immunological mechanisms. The skin and mucous membranes are formidable barriers against invasion by Staphylococci. However, once the skin or the mucous membranes are breached (wounds, percutan catheters, etc), the first line of nonadaptive cellular defence begins its co-ordinate action through complement and phagocytes, especially the polymorphonuclear leukocytes (PMNs). These cells can be regarded as the cornerstones in eliminating invading bacteria. As Staphylococci are primarily extracellular pathogens; the major anti-staphylococcal adaptive response comes from the humoral arm of the immune system, and is mediated through three major mechanisms: promotion of opsonization, toxin neutralisation, and inhibition of adherence. It is believed that opsonization is especially important, because of its requirement for an effective phagocytosis. For efficient opsonization the microbial surface has to be coated with antibodies and complement factors for recognition by PMNs through receptors to the Fc fragment of the IgG molecule or to activated C3b. After opsonization, staphylococci are phagocytosed and killed. Moreover, S. aureus can attach to endothelial cells, and be internalised by a phagocytosislike process. Antibodies bound to specific antigens on the cell surface of bacteria serve as ligands for the attachment to PMNs and promote phagocytosis. The very same antibodies bound to the adhesins and other cell surface proteins are expected to neutralize adhesion and prevent colonization.

There is little clinical evidence that cell mediated immunity has a significant contribution in the defence against Staphylococci, yet one has to admit that the question is not adequately addressed. It is known, however, that Staphylococcus aureus utilizes an extensive array of molecular countermeasures to

WO 02/059148 PCT/EP02/00546

- 19 -

manipulate the defensive microenvironment of the infected host by secreting polypeptides referred to as superantigens, which target the multireceptor communication between T-cells and antigen-presenting cells that is fundamental to initiating pathogen-specific immune clearance. Superantigens play a critical role in toxic shock syndrome and food poisoning, yet their function in routine infections is not well understood. Moreover, one cannot expect a long lasting antibody (memory) response without the involvement of T-cells. It is also known that the majority of the antistaphylococcal antibodies are against T-cell independent antigens (capsular polysacharides, lipoteichoic acid, peptidoglycan) without a memory function. The T-cell dependent proteinaceous antigens can elicit long-term protective antibody responses. These staphylococcal proteins and peptides have not yet been determined.

For all these above mentioned reasons, a tactic change on the war field against staphylococcal infections is badly needed. One way of combating infections is preventing them by active immunisation. Vaccine development against S. aureus has been initiated by several research groups and national institutions worldwide, but there is no effective vaccine approved so far. It has been shown that an antibody deficiency state contributes to staphylococcal persistence, suggesting that anti-staphylococcal antibodies are important in host defence. Antibodies - added as passive immunisation or induced by active vaccination - directed towards surface components could both prevent bacterial adherence, neutralize toxins and promote phagocytosis. A vaccine based on fibronectin binding protein induces protective immunity against mastitis in cattle and suggest that this approach is likely to work in humans (refs). Taking all this together it is suggestive that an effective vaccine should be composed of proteins or polypeptides, which are expressed by all strains and are able to induce high affinity, abundant antibodies against cell surface components of S. aureus. The antibodies should be IgG1 and/or IgG3 for opsonization, and any IgG subtype and IgA for neutralisation of adherence and toxin action. A chemically defined vaccine must be definitely superior compared to a whole cell vaccine (attenuated or killed), since components of S. aureus which paralyze TH cells (superantigens) or inhibit opsonization (protein A)

can be eliminated, and the individual proteins inducing protective antibodies can be selected. Identification of the relevant antigens help to generate effective passive immunisation (humanised monoclonal antibody therapy), which can replace human immunoglobulin administration with all its dangerous side-effects. Neonatal staphylococcal infections, severe septicemia and other life-threatening acute conditions are the primary target of passive immunisation. An effective vaccine offers great potential for patients facing elective surgery in general, and those receiving endovascular devices, in particular. Moreover, patients suffering from chronic diseases which decrease immune responses or undergoing continuous ambulatory peritoneal dialysis are likely to benefit from such a vaccine.

For the illustrative example concerning Staphylococcus aureus three different approaches have been employed in parallel. All three of these methods are based on the interaction of Staphylococcus proteins or peptides with the antibodies present in human sera with the method according to the present invention. This interaction relies on the recognition of epitopes within the proteins which can be short peptides (linear epitopes) or polypeptide domains (structural epitopes). The antigenic proteins are identified by the different methods using pools of pre-selected sera and - in the second screening round - by individual selected sera.

Following the high throughput screening, the selected antigenic proteins are expressed as recombinant proteins or in vitro translated products (in case it can not be expressed in prokaryotic expression systems), and tested in a series of ELISA and Western blotting assays for the assessment of immunogeneicity with a large human serum collection (> 100 uninfected, > 50 patients sera). The preferred antigens are located on the cell surface or secreted, that is accessible extracellularly. Antibodies against the cell wall proteins (such as the Extracellular matrix binding proteins) are expected to serve double purposes: to inhibit adhesion and promote phagocytosis. The antibodies against the secreted proteins are beneficial in toxin neutralisation. It is also known that bacteria communicate with each other through secreted proteins. Neutralizing antibodies against these proteins

- 21 -

will interrupt growth promoting cross-talk between or within staphylococcal species. Bioinformatics (signal sequences, cell wall localisation signals, transmembrane domains) proved to be very useful in assessing cell surface localisation or secretion. The experimental approach includes the isolation of antibodies with the corresponding epitopes and proteins from human serum, and use them as reagents in the following assays: cell surface staining of staphylococci grown under different conditions (FACS, microscopy), determination of neutralizing capacity (toxin, adherence), and promotion of opsonization and phagocytosis (in vitro phagocytosis assay).

The recognition of linear epitopes by antibodies can be based on sequences as short as 4-5 aa. Of course it does not necessarily mean that these short peptides are capable of inducing the given antibody. in vivo. For that reason the defined epitopes, polypeptides and proteins may further be tested in animals (mainly in mice) for their capacity to induce antibodies against the selected proteins in vivo. The antigens with the proven capability to induce antibodies will be tested in animal models for the ability to prevent infections. 1.__

The antibodies produced against Staphylococci by the human immune system and present in human sera are indicative of the in vivo expression of the antigenic proteins and their immunogenicity.

Accordingly, novel hyperimmune serum-reactive antigens from Staphylococcus aureus or Staphylococcus epidermidis have been made available by the method according to the present invention. According to another aspect of the present invention the invention relates to a hyperimmune serum-reactive antigen selected from the group consisting of the sequences listed in any one of Tables 2a, 2b, 2c, 2d, 3, 4 and 5, especially selected from the group consisting of Seq.ID No. 56, 57, 59, 60, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 87, 88, 89, 90, 92, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 132, 134, 138, 140, 142, 151, 152, 154, 155 and hyperimmune fragments thereof. Accordingly, the present invention also relates to a hyperimmune serum-reactive antigen obtainable by the method according to the present invention

- 22 -

and being selected from the group consisting of the sequences listed in any one of Tables 2a, 2b, 2c, 2d, 3, 4 and 5, especially selected from the group consisting of Seq.ID No. 56, 57, 59, 60, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 87, 88, 89, 90, 92, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 132, 134, 138, 140, 142, 151, 152, 154, 155 and hyperimmune fragments thereof.

Antigens from Staphylococcus aureus and Staphylococcus epidermidis have been extracted by the method according to the present invention which may be used in the manufacture of a pharmaceutical preparation, especially for the manufacture of a vaccine against Staphylococcus aureus and Staphylococcus epidermidis infections. Examples of such hyperimmune serum-reactive antigens of Staphylococcus aureus and Staphylococcus epidermidis to be used in a pharmaceutical preparation are selected from the group consisting of the sequences listed in any one of Tables 2a, 2b, 2c, 2d, 3, 4 and 5, especially selected from the group consisting of Seq.ID No. 55, 56, 57, 58, 59, 60, 62, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 130, 132, 134, 138, 140, 142, 151, 152, 154, 155, 158 and hyperimmune fragments thereof for the manufacture of a pharmaceutical preparation, especially for the manufacture of a vaccine against Staphylococcus aureus and Staphylococcus epidermidis infections.

A hyperimmune fragment is defined as a fragment of the identified antigen which is for itself antigenic or may be made antigenic when provided as a hapten. Therefore, also antigen or antigenic fragments showing one or (for longer fragments) only a few amino acid exchanges are enabled with the present invention, provided that the antigenic capacities of such fragments with amino acid exchanges are not severely deteriorated on the exchange(s). i.e. suited for eliciting an appropriate immune response in a individual vaccinated with this antigen and identified by individual antibody preparations from individual sera.

preferred examples of such hyperimmune fragments of a hyperimmune serum-reactive antigen are selected from the group consisting of

1

- 23 -

62,

peptides comprising the amino acid sequences of column "predicted immunogenic aa", "Location of identified immunogenic region" and "Serum reactivity with relevant region" of Tables 2a, 2b, 2c and 2d and the amino acid sequences of column "Putative antigenic surface areas of Table 4 and 5, especially peptides comprising amino acid No. aa 12-29, 34-40, 63-71, 101-110, 114-122, 130-138, 140-195, 197-209, 215-229, 239-253, 255-274 and 39-94 of Seq.ID No. 55, aa 5-39, 111-117, 125-132, 134-141, 167-191, 196-202, 214-232, 236-241, 244-249, 292-297, 319-328, 336-341, 365-380, 385-391, 407-416, 420-429, 435-441, 452-461, 477-488, 491-498, 518-532, 545-556, 569-576, 581-587, 595-602, 604-609, 617-640, 643-651, 702-715, 723-731, 786-793, 805-811, 826-839, 874-889, 37-49, 63-77 and 274-334, of Seq.ID No.56, aa 28-55, 82-100, 105-111, 125-131, 137-143, 1-49, of Seq.ID No. 57, aa 33-43, 45-51, 57-63, 65-72, 80-96, 99-110, 123-129, 161-171, 173-179, 185-191, 193-200, 208-224, 227-246, 252-258, 294-308, 321-329, 344-352, 691-707, 358-411 and 588-606, of Seq.ID No. 58, aa 16-38, 71-77, 87-94, 105-112, 124-144, 158-164, 169-177, 180-186, 194-204, 221-228, 236-245, 250-267, 336-343, 363-378, 385-394, 406-412, 423-440, 443-449, 401-494, of Seq.ID No. 59, aa 18-23, 42-55, 69-77, 85-98, 129-136, 182-188, 214-220, 229-235, 242-248, 251-258, 281-292, 309-316, 333-343, 348-354, 361-367, 393-407, 441-447, 481-488, 493-505, 510-515, 517-527, 530-535, 540-549, 564-583, 593-599, 608-621, 636-645, 656-670, 674-687, 697-708, 726-734, 755-760, 765-772, 785-792, 798-815, 819-824, 826-838, 846-852, 889-904, 907-913, 932-939, 956-964, 982-1000, 1008-1015, 1017-1024, 1028-1034, 1059-1065, 1078-1084, 1122-1129, 1134-1143, 1180-1186, 1188-1194, 1205-1215, 1224-1230, 1276-1283, 1333-1339, 1377-1382, 1415-1421, 1448-1459, 1467-1472, 1537-1545, 1556-1566, 1647-1654, 1666-1675, 1683-1689, 1722-1737, 1740-1754, 1756-1762, 1764-1773, 1775-1783, 1800-1809, 1811-1819, 1839-1851, 1859-1866, 1876-1882, 1930-1939, 1947-1954, 1978-1985, 1999-2007, 2015-2029, 2080-2086, 2094-2100, 2112-2118, 2196-2205, 2232-2243, 198-258, 646-727 and 2104-2206, of Seq.ID No. 60, aa 10-29, 46-56, 63-74, 83-105, 107-114, 138-145, 170-184, 186-193, 216-221, 242-248, 277-289, 303-311, 346-360, 379-389, 422-428, 446-453, 459-469, 479-489, 496-501, 83-156, of Seq.ID No.

PCT/EP02/00546 WO 02/059148

- 24 -

aa 14-22, 32-40, 52-58, 61-77, 81-93, 111-117, 124-138, 151-190, 193-214, 224-244, 253-277, 287-295, 307-324, 326-332, 348-355, 357-362, 384-394, 397-434, 437-460, 489-496, 503-510, 516-522, 528-539, 541-547, 552-558, 563-573, 589-595, 602-624, 626-632, 651-667, 673-689, 694-706, 712-739, 756-790, 403-462, of Seq.ID No. 66, aa 49-56, 62-68, 83-89, 92-98, 109-115, 124-131, 142-159, 161-167, 169-175, 177-188, 196-224, 230-243, 246-252, 34-46, of Seq. ID No. 67, aa 11-20, 26-47, 69-75, 84-92, 102-109, 119-136, 139-147, 160-170, 178-185, 190-196, 208-215, 225-233, 245-250, 265-272, 277-.284, 300-306, 346-357, 373-379, 384-390, 429-435, 471-481, 502-507, 536-561, 663-688, 791-816, 905-910, 919-933, 977-985, 1001-1010, 1052-1057, 1070-1077, 1082-1087, 1094-1112, 493-587, 633-715 and 704-760, of Seq.ID No.70, aa.6-20, 53-63, 83-90, 135-146, 195-208, 244-259, 263-314, 319-327, 337-349, 353-362, 365-374, 380-390, 397-405, 407-415, 208-287 and 286-314, of Seq.ID No. 71, - aa 10-26, 31-43, 46-58, 61-66, 69-79, 85-92, 100-115, 120-126, 128-135, 149-155, 167-173, 178-187, 189-196, 202-222, 225-231, 233-240, 245-251, 257-263, 271-292, 314-322, 325-334, 339-345, 59-74, of Seq.ID No. 72, aa 4-9, 15-26, 65-76, 108-115, 119-128, 144-153, 38-52 and 66-114, of Seq. ID No. 73, aa 5-22, 42-50, 74-81, 139-145, 167-178, 220-230, 246-253, 255-264, 137-237 and 250-267, of Seq.ID No. 74, aa 10-26, 31-44, 60-66, 99-104, 146-153, 163-169, 197-205, 216-223, 226-238, 241-258, 271-280, 295-315, 346-351, 371-385, 396-407, 440-446, 452-457, 460-466, 492-510, 537-543, 546-551, 565-582, 590-595, 635-650, 672-678, 686-701, 705-712, 714-721, 725-731, 762-768, 800-805, 672-727, of Seq.ID No. 75, aa 5-32, 35-48, 55-76, of Seq.ID No. 76, aa 7-35, 54-59, 247-261, 263-272, 302-320, 330-339, 368-374, 382-. 411, 126-143 and 168-186, of Seq.ID No. 77, aa 5-24, 88-94, 102-113, 132-143, 163-173, 216-224, 254-269, 273-278, 305-313, 321-327, 334-341, 31-61 and 58-74, of Seq.ID No.

aa 16-24, 32-39, 43-49, 64-71, 93-99, 126-141, 144-156, 210-218, 226-233, 265-273, 276-284, 158-220, of Seq.ID No. 79, aa 49-72, 76-83, 95-105, 135-146, 148-164, 183-205, 57-128, of

78,

Seq.ID No. 80, aa 6-15, 22-32, 58-73, 82-88, 97-109, 120-131, 134-140, 151-163, 179-185, 219-230, 242-255, 271-277, 288-293, 305-319, 345-356, 368-381, 397-406, 408-420, 427-437, 448-454, 473-482, 498-505, 529-535, 550-563, 573-580, 582-590, 600-605, 618-627, 677-685, 718-725, 729-735, 744-759, 773-784, 789-794, 820-837, 902-908, 916-921, 929-935, 949-955, 1001-1008, 1026-1032, 1074-1083, 1088-1094, 1108-1117, 1137-1142, 1159-1177, 1183-1194, 1214-1220, 1236-1252, 1261-1269, 1289-1294, 1311-1329, 1336-1341, 1406-1413, 1419-1432, 1437-1457, 1464-1503, 1519-1525, 1531-1537, 1539-1557, 1560-1567, 1611-1618, 1620-1629, 1697-1704, 1712-1719, 1726-1736, 1781-1786, 1797-1817, 1848-1854, 1879-1890, 1919-1925, 1946-1953, 1974-1979, 5 to 134, of Seq.ID No. 81, aa 6-33, 40-46, 51-59, 61-77, 84-104, 112-118, 124-187, 194-248, 252-296, 308-325, 327-361, 367-393, 396-437, 452-479, 484-520, 535-545, 558-574, 582-614, 627-633, 656-663, 671-678, 698-704, 713-722, 725-742, 744-755, 770-784, 786-800, 816-822, 827-837, 483-511, of Seq.ID No. 82, aa 4-19, 57-70, 79-88, 126-132, 144-159, 161-167, 180-198, 200-212, 233-240, 248-255, 276-286, 298-304, 309-323, 332-346, 357-366, 374-391, 394-406, 450-456, 466-473, 479-487, 498-505, 507-519, 521-530, 532-540, 555-565, 571-581, 600-611, 619-625, 634-642, 650-656, 658-665, 676-682, 690-699, 724-733, 740-771, 774-784, 791-797, 808-815, 821-828, 832-838, 876-881, 893-906, 922-929, 938-943, 948-953, 969-976, 1002-1008, 1015-1035, 1056-1069, 1105-1116, 1124-1135, 1144-1151, 1173-1181, 1186-1191, 1206-1215, 1225-1230, 1235-1242, 6-66, 65-124 and 590-604, of Seq.ID No. 83, aa 5-32, 66-72, 87-98, 104-112, 116-124, 128-137, 162-168, 174-183, 248-254, 261-266, 289-303, 312-331, 174-249, of Seq.ID No. 84, aa 4-21, 28-40, 45-52, 59-71, 92-107, 123-137, 159-174, 190-202, 220-229, 232-241, 282-296, 302-308, 312-331, 21-118, of Seq.ID No. 85, aa 9-28, 43-48, 56-75, 109-126, 128-141, 143-162, 164-195, 197-216, 234-242, 244-251, 168-181, of Seq.ID No. 87, aa 4-10, 20-42, 50-86, 88-98, 102-171, 176-182, 189-221, 223-244, 246-268, 276-284, 296-329, 112-188, of Seq.ID No. 88, aa 4-9, 13-24, 26-34, 37-43, 45-51, 59-73, 90-96, 99-113, 160-173, 178-184, 218-228, 233-238, 255-262, 45-105, 103-166 and 66-153, of Seq.ID No. 89,

aa 13-27, 42-63, 107-191, 198-215, 218-225, 233-250, 474-367, of Seq.ID No. 90;

aa 26-53, 95-123, 164-176, 189-199, 8-48, of Seq.ID No. 92,

aa 7-13, 15-23, 26-33, 68-81, 84-90, 106-117, 129-137, 140-159,

165-172, 177-230, 234-240, 258-278, 295-319, 22-56, 23-99, 97-

115, 233-250 and 245-265, of Seq.ID No. 94,

aa 13-36, 40-49, 111-118, 134-140, 159-164, 173-183, 208-220,

232-241, 245-254, 262-271, 280-286, 295-301, 303-310, 319-324,

332-339, 1-85, 54-121 and 103-185, of Seq.ID No. 95,

aa 39-44, 46-80, 92-98, 105-113, 118-123, 133-165, 176-208, 226-

238, 240-255, 279-285, 298-330, 338-345, 350-357, 365-372, 397-

402, 409-415, 465-473, 488-515, 517-535, 542-550, 554-590, 593-

601, 603-620, 627-653, 660-665, 674-687, 698-718, 726-739, 386-

402, of Seq.ID No. 96,

aa 5-32, 34-49, 1-43, of Seq.ID No. 97,

aa 10-27, 37-56, 64-99, 106-119, 121-136, 139-145, 148-178, 190-216, 225-249, 251-276, 292-297, 312-321, 332-399, 403-458, 183-

200, of Seq.ID No. 99,

aa 5-12, 15-20, 43-49, 94-106, 110-116, 119-128, 153-163, 175-

180, 185-191, 198-209, 244-252, 254-264, 266-273, 280-288, 290-

297, 63-126, of Seq.ID No. 100,

aa 5-44, 47-55, 62-68, 70-78, 93-100, 128-151, 166-171, 176-308,

1-59, of Seq.ID No. 101,

aa 18-28, 36-49, 56-62, 67-84, 86-95, 102-153, 180-195, 198-218,

254-280, 284-296, 301-325, 327-348, 353-390, 397-402, 407-414,

431-455, 328-394, of Seq.ID No. 102,

aa 7-37, 56-71, 74-150, 155-162, 183-203, 211-222, 224-234, 242-

272, 77-128, of Seq.ID No. 103,

aa 34-58, 63-69, 74-86, 92-101, 130-138, 142-150, 158-191, 199-

207, 210-221, 234-249, 252-271, 5-48, of Seq.ID No. 104,

aa 12-36, 43-50, 58-65, 73-78, 80-87, 108-139, 147-153, 159-172,

190-203, 211-216, 224-232, 234-246, 256-261, 273-279, 286-293,

299-306, 340-346, 354-366, 167-181, of Seq.ID No. 106,

aa 61-75, 82-87, 97-104, 113-123, 128-133, 203-216, 224-229,

236-246, 251-258, 271-286, 288-294, 301-310, 316-329, 337-346,

348-371, 394-406, 418-435, 440-452 of Seq.ID No. 112,

aa 30-37, 44-55, 83-91, 101-118, 121-128, 136-149, 175-183, 185-

193, 206-212, 222-229, 235-242 of Seq.ID No. 114,

aa 28-38, 76-91, 102-109, 118-141, 146-153, 155-161, 165-179,

186-202, 215-221, 234-249, 262-269, 276-282, 289-302, 306-314,

WO 02/059148

- 27 -

321-326, 338-345, 360-369, 385-391 of Seq.ID No. 116, aa 9-33, 56-62,75-84, 99-105, 122-127, 163-180, 186-192, 206-228, 233-240, 254-262, 275-283, 289-296, 322-330, 348-355, 416-424, 426-438, 441-452, 484-491, 522-528, 541-549, 563-569, 578-584, 624-641, 527-544, of Seq.ID No. 142, aa 37-42, 57-62, 121-135, 139-145, 183-190, 204-212, 220-227, 242-248, 278-288, 295-30, 304-309, 335-341, 396-404, 412-433, 443-449, 497-503, 505-513, 539-545, 552-558, 601-617, 629-649, 702-711, 736-745, 793-804, 814-829, 843-858, 864-885, 889-895, 905-913, 919-929, 937-943, 957-965, 970-986, 990-1030, 1038-1049, 1063-1072, 1080-1091, 1093-1116, 1126-1136, 1145-1157, 1163-1171, 1177-1183, 1189-1196, 1211-1218, 1225-1235, 1242-1256, 1261-1269, 624-684, of Seq.ID No. 151, aa 8-23, 31-38, 42-49, 61-77, 83-90, 99-108, 110-119, 140-147, 149-155, 159-171, 180-185, 189-209, 228-234, 245-262, 264-275, 280-302, 304-330, 343-360, 391-409, 432-437, 454-463, 467-474, 478-485, 515-528, 532-539, 553-567, 569-581, 586-592, 605-612, 627-635, 639-656, 671-682, 700-714, 731-747, 754-770, 775-791, 797-834, 838-848, 872-891, 927-933, 935-942, 948-968, 976-986, 1000-1007, 1029-1037, 630-700, of Seq.ID No. 152, aa 17-25, 27-55, 84-90, 95-101, 115-121, 55-101, of Seq.ID No. 154, aa 13-28, 40-46, 69-75, 86-92, 114-120, 126-137, 155-172, 182-193, 199-206, 213-221, 232-238, 243-253, 270-276, 284-290, 22-100, of Seq.ID No. 155 and aa 7-19, 46-57, 85-91, 110-117, 125-133, 140-149, 156-163, 198-204, 236-251, 269-275, 283-290, 318-323, 347-363, 9-42 and 158-174, of Seq.ID No. 158, aa 7-14, 21-30, 34-50, 52-63, 65-72, 77-84, 109-124, 129-152, 158-163, 175-190, 193-216, 219-234 of Seq.ID.No. 168, aa 5-24, 38-44, 100-106, 118-130, 144-154, 204-210, 218-223, 228-243, 257-264, 266-286, 292-299 of Seq.ID.No. 174, aa 29-44, 74-83, 105-113, 119-125, 130-148, 155-175, 182-190, 198-211, 238-245 of Seq.ID.No. 176, and fragments comprising at least 6, preferably more than 8, especially more than 10 aa of said sequences . All these fragments individually and each independently form a preferred selected aspect of the present invention.

Especially suited helper epitopes may also be derived from these

antigens. Especially preferred helper epitopes are peptides comprising fragments selected from the peptides mentioned in column "Putative antigenic surface areas" in Tables 4 and 5 and from the group of aa 6-40, 583-598, 620-646 and 871-896 of Seq.ID.No.56, aa 24-53 of Seq.ID.No.70, aa 240-260 of Seq.ID.No.74, aa 1660-1682 and 1746-1790 of Seq.ID.No. 81, aa 1-29, 680-709, and 878-902 of Seq.ID.No. 83, aa 96-136 of Seq.ID.No. 89, aa 1-29, 226-269 and 275-326 of Seq.ID.No. 94, aa 23-47 and 107-156 of Seq.ID.No. 114 and aa 24-53 of Seq.ID.No. 142 and fragments thereof being T-cell epitopes.

According to another aspect, the present invention relates to a vaccine comprising such a hyperimmune serum-reactive antigen or a fragment thereof as identified above for Staphylococcus aureus and Staphylococcus epidermidis. Such a vaccine may comprise one or more antigens against S. aureus or S. epidermidis. Optionally, such S. aureus or S. epidermidis antigens may also be combined with antigens against other pathogens in a combination vaccine. Preferably this vaccine further comprises an immunostimulatory substance, preferably selected from the group comprising polycationic polymers, especially polycationic peptides, immunostimulatory deoxynucleotides (ODNs), neuroactive compounds, especially human growth hormone, alumn, Freund's complete or incomplete adjuvans or combinations thereof. Such a vaccine may also comprise the antigen displayed on a surface display protein platform on the surface of a genetically engineered microorganism such as E. coli.

According to another aspect, the present invention relates to specific preparations comprising antibodies raised against at least one of the Staphylococcus aureus and Staphylococcus epidermidis antigens or Staphylococcus aureus and Staphylococcus epidermidis antigen fragments as defined above. These antibodies are preferably monoclonal antibodies.

Methods for producing such antibody preparations, polyclonal or monoclonal, are well available to the man skilled in the art and properly described in the prior art. A preferred method for producing such monoclonal antibody preparation is characterized by the following steps

- •initiating an immune response in a non human animal by administering a Staphylococcus antigen or a fragment thereof, as defined above, to said animal,
- •removing the spleen or spleen cells from said animal,
- •producing hybridoma cells of said spleen or spleen cells,
- •selecting and cloning hybridoma cells specific for said antigen and
- •producing the antibody preparation by cultivation of said cloned hybridoma cells and optionally further purification steps.

Preferably, removing of the spleen or spleen cells is connected with killing said animal.

Monoclonal antibodies and fragments thereof can be chimerized or humanized (Graziano et al. 1995) to enable repeated administration. Alternatively human monoclonal antibodies and fragments thereof can be obtained from phage-display libraries (McGuinnes et al., 1996) or from transgenic animals (Brüggemann et al., 1996).

A preferred method for producing polyclonal antibody preparations to said Staphylococcus aureus or Staphylococcus epidermidis antigens identified with the present invention is characterized by the following steps

- •initiating an immune response in a non human animal by administering a Staphylococcus antigen or a fragment thereof, as defined above, to said animal,
- removing an antibody containing body fluid from said animal,and
- *producing the antibody preparation by subjecting said antibody containing body fluid to further purification steps.

These monoclonal or polyclonal antibody preparations may be used for the manufacture of a medicament for treating or preventing diseases due to staphylococcal infection. Moreover, they may be used for the diagnostic and imaging purposes.

The method is further described in the following examples and in the figures, but should not be restricted thereto.

WO 02/059148 PCT/EP02/00546

Figure 1 shows the pre-selection of sera based on anti-staphylo-coccal antibody titers measured by ELISA.

Figure 2 shows the size distribution of DNA fragments in the LSA50/6 library in pMAL4.1.

Figure 3 shows the MACS selection with biotinylated human serum. The LSA50/6 library in pMAL9.1 was screened with 10 µg biotinylated, human serum in the first (A) and with 1 µg in the second selection round (B). P.serum, patient serum; B.serum, infant serum. Number of cells selected after the 2nd and 3rd elution are shown for each selection round.

Figure 4 shows the serum reactivity with specific clones isolated by bacterial surface display as analyzed by Western blot analysis with patient serum at a dilution of 1 : 5000.

Figure 5 shows peptide ELISA with serum from patients and healthy individuals with an epitope identified by ribosome display.

Figure 6 shows representative 2D Immunoblot of S. aureus surface proteins detected with human sera. 800 µg protein from S. aureus/COL grown on BHI were resolved by IEF (pI 4-7) and SDS-PAGE (9-16%), and subsequently transferred to PVDF membrane. After blocking, the membrane was incubated with sera IC35 (1:20,000). Binding of serum IgG was visualized by an anti-human IgG/HRPO conjugate and ECL development.

Figure 7 demonstrates a representative 2D gel showing S. aureus surface proteins stained by Coomassie Blue. 1 mg protein from S. aureus/COL were resolved by IEF (pI 4-7) and SDS-PAGE (9-16%). Spots selected for sequencing after serological proteome analysis are marked.

Figures 8Aand 8B show the structure of LPXTG cell wall proteins.

Figure 9 shows the IgG response in uninfected (N, C) and infected (P) patients to LPXTGV, a novel antigen and probable surface adhesin of S. aureus, discovered by both the inventive bacterial

surface-display and proteomics approaches.

Figure 10 shows the surface staining of S. aureus with purified anti-LPXTGV IgGs.

Figure 11 shows a 2D gel where S. aureus surface proteins are stained by Coomassie Blue (left). 1 mg protein from S. aureus/agr grown to early log phase was resolved by IEF (pI 6-11) and SDS-PAGE (9-16%). Spots selected for sequencing after serological proteome analysis are marked. Corresponding 2D-immunoblot (right). 800 µg protein from the same preparation was resolved in parallel by 2DE, and subsequently transferred to PVDF membrane. After blocking, the membrane was incubated with the P-pool (1:10,000). Binding of serum IgG was visualized by an anti-human IgG/HRPO conjugate and ECL development.

EXAMPLES

Discovery of novel Staphyloccocus aureus antigens

Example 1: Preparation of antibodies from human serum

The antibodies produced against staphylococci by the human immune system and present in human sera are indicative of the in vivo expression of the antigenic proteins and their immunogenicity. These molecules are essential for the identification of individual antigens in the approach as the present invention which is based on the interaction of the specific anti-staphylococcal antibodies and the corresponding S. aureus peptides or proteins. To gain access to relevant antibody repertoires, human sera were collected from I. patients with acute S. aureus infections, such as bacteriaemia, sepsis, infections of intravascular and percutan catheters and devices, wound infections, and superficial and deep soft tissue infection. S. aureus was shown to be the causative agent by medical microbiological tests. II. A collection of serum samples from uninfected adults was also included in the present analysis, since staphylococcal infections are common, and antibodies are present as a consequence of natural immunization from WO 02/059148 PCT/EP02/00546

- 32 -

previous encounters with Staphylococci from skin and soft tissue infections (furunculus, wound infection, periodontitits etc.).

The sera were characterized for S. aureus antibodies by a series of ELISA assays. Several styaphylococcal antigens have been used to prove that the titer measured was not a result of the sum of cross-reactive antibodies. For that purpose not only whole cell S. aureus (protein A deficient) extracts (grown under different conditions) or whole bacteria were used in the ELISA assays, but also individual cell wall components, such as lipoteichoic acid and peptidoglycan isolated from S. aureus. More importantly, a recombinant protein collection was established representing known staphylococcal cell surface proteins for the better characterization of the present human sera collections.

Recently it was reported that not only IgG, but also IgA serum antibodies can be recognized by the FcRIII receptors of PMNs and promote opsonization (Phillips-Quagliata et al., 2000; Shibuya et al., 2000). The primary role of IgA antibodies is neutralization, mainly at the mucosal surface. The level of serum IgA reflects the quality, quantity and specificity of the dimeric secretory IgA. For that reason the serum collection was not only analyzed for anti-staphylococcal IgG, but also for IgA levels. In the ELISA assays highly specific secondary reagents were used to detect antibodies from the high affinity types, such as IgG and IgA, and avoided IgM. Production of IgM antibodies occurs during the primary adaptive humoral response, and results in low affinity antibodies, while IgG and IgA antibodies had already undergone affinity maturation, and are more valuable in fighting or preventing disease

Experimental procedures

Enzyme linked immune assay (ELISA). ELISA plates were coated with 2-10 µg/ml of the different antigens in coating buffer (sodium carbonate pH 9.2). Serial dilutions of sera (100-100.000) were made in TBS-BSA. Highly specific (cross-adsorbed) HRP (Horse Radish Peroxidase)-labeled anti-human IgG or anti-human IgA secondary antibodies (Southern Biotech) were used according to the manufacturers' recommendations (~ 2.000x). Antigen-antibody complexes were quantified by measuring the conversion of the sub-

strate (ABTS) to colored product based on OD405nm readings in an automated ELISA reader (Wallace Victor 1420). The titers were compared at given dilution where the dilution response was linear (Table 1). The ~ 100 sera were ranked based on the reactivity against multiple staphylococcal components, and the highest ones (above 90 percentile) were selected for further analysis in antigen identification. Importantly, the anti-staphylococcal antibodies from sera of clinically healthy individuals proved to be very stable, giving the same high ELISA titers against all the staphylococcal antigens measured after 3, 6 and 9 months (data not shown). In contrast, anti-S. aureus antibodies in patients decrease, then disappear after a couple of weeks following the infection (Coloque-Navarro et al, 1998). However, antibodies from patients are very important, since these are direct proof of the in vivo expression of the bacterial antigens tested in or ELISAs or identified as immunogenic during the screens according to the present invention.

This comprehensive approach followed during antibody characterization is unique, and led to unambiguous identification of antistaphylococcal hyperimmune sera.

Purification of antibodies for genomic screening. Five sera from both the patient and the noninfected group were selected based on the overall anti-staphylococcal titers. Antibodies against E. coli proteins were removed by either incubating the heat inactivated sera with whole cell E. coli (DH5a, transformed with pHIE11, grown under the same condition as used for bacterial display) or with E. coli lysate affinity chromatography for ribosome display. Highly enriched preparations of IgG from the pooled, depleted sera were generated by protein G affinity chromatography, according to the manufacturer's instructions (UltraLink Immobilized Protein G, Pierce). IgA antibodies were purified also by affinity chromatography using biotin-labeled anti-human IgA (Southern Biotech) immobilized on Streptavidin-agarose (GIBCO BRL). The efficiency of depletion and purification was checked by SDS-PAGE, Western blotting, ELISA, and protein concentration measurements. For proteomics, the depletion the IgG and IgA preparation was not necessary, since the secondary reagent ensured the specificity.

Example 2: Generation of highly random, frame-selected, small-fragment, genomic DNA libraries of Staphylococcus aureus

Experimental procedures

Preparation of staphylococcal genomic DNA. This method was developed as a modification of two previously published protocols (Sohail, 1998, Betley et al., 1984) and originally specifically adapted for the methicillin resistant Staphylococcus aureus strain COL to obtain genomic DNA in high quality and large scale. 500 ml BHI (Brain Heart Infusion) medium supplemented with 5 μg/ml Tetracycline was inoculated with bacteria from a frozen stab and grown with aeration and shaking for 18 h at 37°. The culture was then harvested in two aliquots of 250 ml each, centrifuged with 1600 x g for 15 min and the supernatant was removed. Bacterial pellets were carefully re-suspended in 26 ml of 0.1 mM Tris-HCl, pH 7.6 and centrifuged again with 1600 x g for 15 min. Pellets were re-suspended in 20 ml of 1 mM Tris-HCl, pH 7.6, 0.1 mM EDTA and transferred into sterile 50 ml polypropylene tubes. 1 ml of 10 mg/ml heat treated RNase A and 200 U of RNase T1 were added to each tube and the solution mixed carefully. 250 ul of Lysostaphin (10 mg/ml stock, freshly prepared in ddH₂O) was then added to the tubes, mixed thoroughly and incubated at 40°C for 10 min in a shaking water bath under continuous agitation. After the addition of 1 ml 10 % SDS, 40 µl of Proteinase K (25 mg/ml stock) and 100 µl of Pronase (10 mg/ml), tubes were again inverted several times and incubated at 40°C for 5 min in a shaking water bath. 3.75 ml of 5 M NaCl and 2.5 ml of cetyl trimethyl-ammonium bromide solution (CTAB) (10% w/v, 4% w/v NaCl) were then added and tubes were further incubated at 65°C in a shaking water bath for 10 min. Samples were cooled to room temperature and extracted with PhOH/CHCl3/IAA (25:24:1) and with CHCl3/IAA (24:1). Aqueous phases were carefully collected and transferred to new sterile 50-ml tubes. To each tube 1.5 ml of Strataclean™ Resin was added, mixed gently but thoroughly and incubated for one minute at room temperature. Samples were centrifuged and the upper layers containing the DNA were collected into clean 50ml-tubes. DNA was precipitated at room temperature by adding 0.6 x volume of Isopropanol, spooled from the solution with a sterile Pasteur pipette and transferred into tubes containing 80% ice cold ethanol. DNA was recovered by centrifuging the precipitates with 10-12 000 \times g, then dried on air and dissolved in ddH₂O.

Preparation of small genomic DNA fragments. Genomic DNA fragments were mechanically sheared into fragments ranging in size between 150 and 300 bp using a cup-horn sonicator (Bandelin Sonoplus UV 2200 sonicator equipped with a BB5 cup horn, 10 sec. pulses at 100 % power output) or into fragments of size between 50 and 70 bp by mild DNase I treatment (Novagen). It was observed that sonication yielded a much tighter fragment size distribution when breaking the DNA into fragments of the 150-300 bp size range. However, despite extensive exposure of the DNA to ultrasonic wave-induced hydromechanical shearing force, subsequent decrease in fragment size could not be efficiently and reproducibly achieved. Therefore, fragments of 50 to 70 bp in size were obtained by mild DNase I treatment using Novagen's shotgun cleavage kit. A 1:20 dilution of DNase I provided with the kit was prepared and the digestion was performed in the presence of MnCl, in a 60 ul volume at 20°C for 5 min to ensure double-stranded cleavage by the enzyme. Reactions were stopped with 2 µl of 0.5 M EDTA and the fragmentation efficiency was evaluated on a 2% TAE-agarose gel. This treatment resulted in total fragmentation of genomic DNA into near 50-70 bp fragments. Fragments were then blunt-ended twice using T4 DNA Polymerase in the presence of 100 µM each of dNTPs to ensure efficient flushing of the ends. Fragments were used immediately in ligation reactions or frozen at -20°C for subsequent use.

Description of the vectors. The vector pMAL4.1 was constructed on a pEH1 backbone (Hashemzadeh-Bonehi et al., 1998) with the Kanamycin resistance gene. In addition it harbors a b-lactamase (bla) gene cloned into the multiple cloning site. The bla gene is preceded by the leader peptide sequence of ompA to ensure efficient secretion across the cytoplasmic membrane. A Sma I restriction site serves for library insertion. The Sma I site is flanked by an upstream FseI site and a downstream NotI site which were used for recovery of the selected fragments. The three restriction sites are inserted after the ompA leader sequence in such a way that the bla gene is transcribed in the -1 reading frame result-

ing in a stop codon 15 bp after the NotI site. A +1 bp insertion restores the bla ORF so that b-lactamase protein is produced with a consequent gain of Ampicillin resistance.

The vector pMAL4.31 was constructed on a pASK-IBA backbone (Skerra, 1994) with the b-lactamase gene exchanged with the Kanamycin resistance gene. In addition it harbors a b-lactamase (bla) gene cloned into the multiple cloning site. The sequence encoding mature b-lactamase is preceded by the leader peptide sequence of ompA to allow efficient secretion across the cytoplasmic membrane. Furthermore a sequence encoding the first 12 amino acids (spacer sequence) of mature b-lactamase follows the ompA leader peptide sequence to avoid fusion of sequences immediately after the leader peptidase cleavage site, since e.g. clusters of positive charged amino acids in this region would decrease or abolish translocation across the cytoplasmic membrane (Kajava et al., 2000). A Smal restriction site serves for library insertion. The Smal site is flanked by an upstream Fsel site and a downstream NotI site which were used for recovery of the selected fragment. The three restriction sites are inserted after the sequence encoding the 12 amino acid spacer sequence in such a way that the bla gene is transcribed in the -1 reading frame resulting in a stop codon 15 bp after the NotI site. A +1 bp insertion restores the bla ORF so that b-lactamase protein is produced with a consequent gain of Ampicillin resistance.

The vector pMAL9.1 was constructed by cloning the lamB gene into the multiple cloning site of pEH1. Subsequently, a sequence was inserted in lamB after amino acid 154, containing the restriction sites FseI, SmaI and NotI. The reading frame for this insertion was chosen in a way that transfer of frame-selected DNA fragments excised by digestion with FseI and NotI from plasmids pMAL4.1 or pMAL4.31 to plasmid pMAL9.1 will yield a continuous reading frame of lamB and the respective insert.

The vector pHIE11 was constructed by cloning the fhuA gene into the multiple cloning site of pEH1. Thereafter, a sequence was inserted in fhuA after amino acid 405, containing the restriction site FseI, XbaI and NotI. The reading frame for this insertion was chosen in a way that transfer of frame-selected DNA fragments excised by digestion with FseI and NotI from plasmids pMAL4.1 or

pMAL4.31 to plasmid pHIE11 will yield a continuous reading frame of fhuA and the respective insert.

- 37 -

Cloning and evaluation of the library for frame selection. Genomic S. aureus DNA fragments were ligated into the SmaI site of either the vector pMAL4.1 or pMAL4.31. Recombinant DNA was electroporated into DH10B electrocompetent E. coli cells (GIBCO BRL) and transformants plated on LB-agar supplemented with Kanamycin (50 µg/ml) and Ampicillin (50 µg/ml). Plates were incubated over night at 37°C and colonies collected for large scale DNA extraction. A representative plate was stored and saved for collecting colonies for colony PCR analysis and large-scale sequencing. A simple colony PCR assay was used to initially determine the rough fragment size distribution as well as insertion efficiency. From sequencing data the precise fragment size was evaluated, junction intactness at the insertion site as well as the frame selection accuracy (3n+1 rule).

Cloning and evaluation of the library for bacterial surface display. Genomic DNA fragments were excised from the pMAL4.1 or pMAL4.31 vector, containing the S. aureus library with the restriction enzymes FseI and NotI. The entire population of fragments was then transferred into plasmids pMAL9.1 (LamB) or pHIE11 (FhuA) which have been digested with FseI and NotI. Using these two restriction enzymes, which recognise an 8 bp GC rich sequence, the reading frame that was selected in the pMAL4.1 or pMAL4.31 vector is maintained in each of the platform vectors. The plasmid library was then transformed into E. coli DH5a cells by electroporation. Cells were plated onto large LB-agar plates supplemented with 50 µg/ml Kanamycin and grown over night at 37°C at a density yielding clearly visible single colonies. Cells were then scraped off the surface of these plates, washed with fresh LB medium and stored in aliquots for library screening at -80°C.

Results

Libraries for frame selection. Two libraries (LSA50/6 and LSA250/1) were generated in the pMAL4.1 vector with sizes of approximately 50 and 250 bp, respectively. For both libraries a total number of clones after frame selection of $1-2\times10^6$ was

received using approximately 1 µg of pMAL4.1 plasmid DNA and 50 ng of fragmented genomic S. aureus DNA. To assess the randomness of the LSA50/6 library, 672 randomly chosen clones were sequenced. The bioinformatic analysis showed that of these clones none was present more than once. Furthermore, it was shown that 90% of the clones fell in the size range of 19 to 70 bp with an average size of 25 bp (Figure 2). All 672 sequences followed the 3n+1 rule, showing that all clones were properly frame selected.

Bacterial surface display libraries. The display of peptides on the surface of E. coli required the transfer of the inserts from the LSA50/6 library from the frame selection vector pMAL4.1 to the display plasmids pMAL9.1 (LamB) or pHIE11 (FhuA). Genomic DNA fragments were excised by FseI and NotI restriction and ligation of 5ng inserts with 0.1µg plasmid DNA resulted in 2-5x 10⁶ clones. The clones were scraped off the LB plates and frozen without further amplification.

Example 3: Identification of highly immunogenic peptide sequences from S. aureus using bacterial surface displayed genomic libraries and human serum

 $\begin{bmatrix} 1 \end{bmatrix}$

Experimental procedures

MACS screening. Approximately 2.5×10^8 cells from a given library were grown in 5 ml LB-medium supplemented with 50 µg/ml Kanamycin for 2 h at 37° C. Expression was induced by the addition of 1 mM IPTG for 30 min. Cells were washed twice with fresh LB medium and approximately 2×10^7 cells re-suspended in 100 µl LB medium and transferred to an Eppendorf tube.

10 μg of biotinylated, human serum was added to the cells and the suspension incubated over night at 4°C with gentle shaking. 900 μl of LB medium was added, the suspension mixed and subsequently centrifuged for 10 min at 6000 rpm at 4°C. Cells were washed once with 1 ml LB and then re-suspended in 100 μl LB medium. 10 μl of MACS microbeads coupled to streptavidin (Miltenyi Biotech, Germany) were added and the incubation continued for 20 min at 4°C. Thereafter 900 μl of LB medium was added and the MACS microbead cell suspension was loaded onto the equilibrated MS column (Mil-

WO 02/059148 PCT/EP02/00546

tenyi Biotech, Germany) which was fixed to the magnet. (The MS columns were equilibrated by washing once with 1 ml 70% EtOH and twice with 2 ml LB medium.)

The column was then washed three times with 3 ml LB medium. The elution was performed by removing the magnet and washing with 2 ml LB medium. After washing the column with 3 ml LB medium, the 2 ml eluate was loaded a second time on the same column and the washing and elution process repeated. The loading, washing and elution process was performed a third time, resulting in a final eluate of 2 ml.

A second round of screening was performed as follows. The cells from the final eluate were collected by centrifugation and resuspended in 1 ml LB medium supplemented with 50 µg/ml Kanamycin. The culture was incubated at 37°C for 90 min and then induced with 1 mM IPTG for 30 min. Cells were subsequently collected, washed once with 1 ml LB medium and suspended in 10 µl LB medium. Since the volume was reduced, 1 µg of human, biotinylated serum was added and the suspension incubated over night at 4°C with gentle shaking. All further steps were exactly the same as in the first selection round. Cells selected after two rounds of selection were plated onto LB-agar plates supplemented with 50 µg/ml Kanamycin and grown over night at 37°C.

Evaluation of selected clones by sequencing and Western blot analysis. Selected clones were grown over night at 37°C in 3 ml LB medium supplemented with 50 µg/ml Kanamycin to prepare plasmid DNA using standard procedures. Sequencing was performed at MWG (Germany) or in a collaboration with TIGR (U.S.A.).

For Western blot analysis approximately 10 to 20 µg of total cellular protein was separated by 10% SDS-PAGE and blotted onto HybondC membrane (Amersham Pharmacia Biotech, England). The LamB or FhuA fusion proteins were detected using human serum as the primary antibody at a dilution of 1:5000 and anti human IgG antibodies coupled to HRP at a dilution of 1:5000 as secondary antibodies. Detection was performed using the ECL detection kit (Amersham Pharmacia Biotech, England). Alternatively, rabbit antification of the combination with the respective secondary antibodies couples in combination with the respective secondary antibodies couples.

- 40 -

pled to HRP for the detection of the fusion proteins.

Results

Screening of bacterial surface display libraries by magnetic activated cell sorting (MACS) using biotinylated human serum. The libraries LSA50/6 in pMAL9.1 and LSA250/1 in pHIE11 were screened with a pool of biotinylated, human patient sera (see Example 1) Preparation of antibodies from human serum). The selection procedure was performed as described under Experimental procedures. As a control, pooled human sera from infants that have most likely not been infected with S. aureus was used. Under the described conditions between 10 and 50 fold more cells with the patient compared to the infant serum were routinely selected (Figure 3). To evaluate the performance of the screen, approximately 100 selected clones were picked randomly and subjected to Western blot analysis with the same pooled patient serum. This analysis revealed that 30 to 50% of the selected clones showed reactivity with antibodies present in patient serum whereas the control strain expressing LamB or FhuA without a S. aureus specific insert did not react with the same serum. Colony PCR analysis showed that all selected clones contained an insert in the expected size range.

Subsequent sequencing of a larger number of randomly picked clones (500 to 800 per screen) led to the identification of the gene and the corresponding peptide or protein sequence that was specifically recognized by the human patient serum used for screening. The frequency with which a specific clone is selected reflects at least in part the abundance and/or affinity of the specific antibodies in the serum used for selection and recognizing the epitope presented by this clone. In that regard it is striking that some clones (ORF2264, ORF1951, ORF0222, lipase and IsaA) were picked up to 90 times, indicating their highly immunogenic property. All clones that are presented in Table 2 have been verified by Western blot analysis using whole cellular extracts from single clones to show the indicated reactivity with the pool of human serum used in the screen.

It is further worth noticing that most of the genes identified by the bacterial surface display screen encode proteins that are ei-

ther attached to the surface of S. aureus and/or are secreted. This is in accordance with the expected role of surface attached or secreted proteins in virulence of S. aureus.

Assessment of reactivity of highly immunogenic peptide sequences with different human sera. 10 to 30 different human patient sera were subsequently used to evaluate the presence of antibodies against the selected immunogenic peptide sequences that have been discovered in the screen according to the present invention. To eliminate possible cross-reactivity with proteins expressed by E. coli, all sera were pre-adsorbed with a total cellular lysate of E. coli DHa cells expressing FhuA protein.

This analysis is summarized in Table 2 and as an example shown in Figure 4 and is indicative of the validity of the present screen. It further shows that already short selected epitopes can give rise to the production of antibodies in a large number of patients (ORF1618, ORF1632, IsaA, Empbp, Protein A). Those peptide sequences that are not recognized by a larger set of patient sera may still be part of an highly immunogenic protein, but the recombinant protein itself may be tested for that purpose for each single case.

Example 4: Identification of highly immunogenic peptide sequences from genomic fragments from S. aureus using ribosome display and human serum

Experimental procedures

Ribosome display screening: 2.4 ng of the genomic library from S. aureus LSA250/1 in pMAL4.1 (described above) was PCR amplified with oligos ICC277 and ICC202 in order to be used for ribosome display.

Oligos

ICC277
(CGAATAATACGACTCACTATAGGGAGACCACAACGGTTTCCCACTAGTAATAATTTTGTTTAAC TTTAAGAAGGAGATATATCCATGCAGACCTTGGCCGGCCTCCC)

and

ICC202
(GGCCCACCCGTGAAGGTGAGCCGGCGTAAGATGCTTTTCTGTGACTGG) hybridize 5' and 3' of the Fse I-Not I insertion site of plasmid pMAL4.1, respectively. ICC277 introduces a T7 phage RNA polymerase promoter, a palindromic sequence resulting in a stem-loop structure on the RNA level, a ribosome binding site (RBS) and the translation start of gene 10 of the T7 phage including the ATG start codon.

WO 02/059148 PCT/EP02/00546

Oligo ICC202 hybridizes at nucleotide position 668 of the K-lactamase open reading frame and also introduces a stem-loop structure at the 3' end of the resulting RNA. PCR was performed with the High fidelity PCR kit (Roche Diagnostic) for 25 cycles at 50°C hybridization temperature and otherwise standard conditions.

The resulting PCR library was used in 5 consecutive rounds of selection and amplification by ribosome display similar as described previously (Hanes et al., 1997) but with modifications as described below.

One round of ribosome display contained the following steps: In vitro transcription of 2 µg PCR product with the RiboMax kit (Promega) resulted in ca. 50 µg A. In vitro translation was performed for 9 minutes at 37°C in 22 ul volume with 4.4 ul Premix Z (250 mM TRIS-acetate pH 7.5, 1.75 mM of each amino acid, 10 mM ATP, 2.5 mM GTP, 5 mM cAMP, 150 mM acetylphosphate, 2.5 mg/ml E. coli tRNA, 0.1 mg/ml folinic acid, 7.5 % PEG 8000, 200 mM potassium glutamate, 13.8 mM Mg(Ac)2, 8 µl S30 extract (x mg/ml) and about 2 µg in vitro transcribed RNA from the pool. S30 extract was prepared as described (Chen et al, 1983). Next, the sample was transferred to an ice-cold tube containing 35.2 µl 10 % milk-WBT (TRIS-acetate pH 7.5, 150 mM NaCl, 50 mM Mg(Ac)2, 0.1 % Tween-20, 10 % milk powder) and 52.8 µl WBTH (as before plus 2.5 mg/ml heparin). Subsequently, immuno precipitation was performed by addition of 10 µg purified IgGs, incubation for 90 minutes on ice, followed by addition of 30 µl MAGmol Protein G beads (Miltenyi Biotec, 90 minutes on ice). The sample was applied to a pre-equilibrated µ column (Miltenyi Biotec) and washed 5 times with ice-cold WBT buffer. Next 20 µl EB20 elution buffer (50 mM TRIS-acetate, 150 mM NaCl, 20 mM EDTA, 50 µg/ml S. cerevisiae RNA) was applied to the column, incubated for 5 minutes at 4°C. Elution was completed by adding 2 \times 50 μ l EB20. The mRNA from the elution sample was purified with the High pure RNA isolation kit (Roche Diagnostics). Subsequent reverse transcription was performed with Superscript II reverse transcriptase kit (Roche Diagnostics) according to the instruction of the manufacturer with 60 pmol oligo ICC202 for 1 hour at 50°C in 50 µl volume. 5 µl of this mix was used for the following PCR reaction with primers ICC202 and ICC277 as described above.

Three rounds of ribosome display were performed and the resulting selected PCR pool subsequently cloned into plasmid pHIE11 (described above) by cleavage with restriction endonucleases NotI and FseI.

Evaluation of selected clones by sequencing and peptide-ELISA analysis: Selected clones were grown over night at 37°C in 3 ml LB medium supplemented with 50 µg/ml Kanamycin to prepare plasmid DNA using standard procedures. Sequencing was performed at MWG (Germany) or at the Institute of Genomic Research (TIGR; Rockville, MD, U.S.A.). Peptides corresponding to the inserts were synthesized and coated in 10 mM NaHCO₃ pH 9.3 at a concentration of 10 µg/ml (50 µl) onto 96-well microtiter plates (Nunc). After blocking with 1% BSA in PBS at 37°C, 1:200 and 1:1000 dilutions of the indicated sera were diluted in 1% BSA/PBS and applied to the wells. After washing with PBS/0.1 % Tween-20, biotin-labeled anti-human IgG secondary antibodies (SBA) were added and these were detected by subsequent adding horseradish-peroxidase-coupled streptavidin according to standard procedures.

Results

The 250-bp genomic library (LSA250/1) as described above was used for screening. Purified IgGs from uninfected adults but with high titer against S. aureus as described above were used for selection of antigenic peptides.

Three rounds of ribosome display selection and amplification were performed according to Experimental procedures; finished by cloning and sequencing the resulting PCR pool.

Sequence analyses of a large number of randomly picked clones (700) led to the identification of the gene and the corresponding peptide or protein sequence that was specifically recognized by the high titer serum used for screening. The frequency with which a specific clone was selected reflects at least in part the abundance and/or affinity of the specific antibodies in the serum used for selection and recognizing the epitope presented by this clone. Remarkably, some clones (ORFs) were picked up to 50 times, indicating their highly immunogenic property. Table 2 shows the ORF name, the Seq.ID No. and the number of times it was identi-

fied by the inventive screen.

For a number of immuno-selected ORFs peptides corresponding to the identified immunogenic region were synthesized and tested in peptide-ELISA for their reactivity towards the sera pool they were identified with and also a number of additional sera from patients who suffered from an infection by S. aureus. The two examples in the graphs in figure 5 show the values of peptides from aureolysin and Pls. They are not only hyperimmune reactive against the high titer sera pool but also towards a number of individual patient's sera. All synthesized peptides corresponding to selected immunogenic regions showed reactivity towards the high titer sera pool and Table 2 summarizes the number of times the peptides were reactive towards individual patients sera, similar as described above.

In addition, it is striking that for those ORFs that were also identified by bacterial surface display described above), very often the actual immunogenic region within the ORF was identical or overlapping with the one identified by ribosome display. This comparison can be seen in Table 2.

Example 5: Identification of highly immunogenic antigens from S. aureus using Serological Proteome Analysis.

Experimental procedures

Surface protein preparations from S. aureus containing highly immunogenic antigens. S. aureus strains COL (Shafer and Iandolo, 1979) and agr- (Recsei et al., 1986) were stored as glycerol stocks at -80°C or on BHI (DIFCO) plates at 4°C. Single clones were used for inoculation of overnight cultures in either BHI ("standard conditions") or RPMI 1640 (GibcoBRL), last one depleted from iron ("stress conditions") by treating o/n with iminodiacetic acid (Sigma). Fresh medium was inoculated 1:100 the next day and bacteria were grown to O.D. 600 between 0.3 and 0.7. Bacteria were harvested by centrifugation and washed with icecold PBS. Surface proteins were prepared by lysostaphin treatment under isotonic conditions (Lim et al. 1998). Briefly, ~3x 10° bacteria (according to O.D. 600 = 1 are about 5x10° bacteria) were re-

suspended in 1 ml digestion buffer containing 35% raffinose (Aldrich Chemical Company), protease inhibitors (Roche) and 5 units lysostaphin (Sigma). After incubation at 37°C for 30 min, protoplasts were carefully sedimented by low-speed centrifugation. This treatment releases surface proteins covalently linked to the pentaglycine bridge of the peptidoglycan cell wall to the supernatant (in Crossley, 1997). Cell surface proteins were either precipitated with methanol/chlorophorm (Wessel, 1984) or concentrated in centrifugal filter-tubes (Millipore). Protein samples were frozen and stored at -80°C or dissolved in sample buffer and used for isoelectric focusing (IEF) immediately (Pasquali et al. 1997).

Serological proteome analysis of surface protein preparations from S. aureus. Samples were obtained from a) S. aureus/agr grown under "stress conditions", b) S. aureus/COL grown under "standard conditions" and c) S. aureus/COL "stress conditions". Loading onto 17 cm-strips containing immobilized pH gradients (pH 4-7, the "in-gel-reswelling procedure" done using (Pasquali et al., 1997). The gels for blotting were loaded with 100-800 µg protein, the preparative gels with 400-1,000 µgprotein. Isoelectric focusing and SDS-PAGE (9-16% gradient gels) were performed as described (Pasquali et al., 1997). For Western blotting, proteins were transferred onto PVDF-membranes (BioRad) by semi-dry blotting. Transfer-efficiency was checked by amidoblack staining. After blocking (PBS/0.1% Tween 20/10% dry milk, 4°C for 16 h), blots were incubated for two hours with serum (1:2,500-1:100,000 in blocking solution, see Table 3). After washing, specific binding of serum IgG was visualized with a goat-anti-human-IgG / peroxidase conjugate (1:25,000, Southern and development secondary antibody Biotech) as Chemiluminescence substrate (ECL $^{\text{TM}}$, Amersham). A representative result is shown in Figure 6. Membranes were stripped by treatment with 2% R-ME/Laemmli buffer for 30 min at 50-65°C, immediately re-probed with a different serum, and developed as described above. This procedure was repeated up to five times. Signals showing up with patient and/or healthy donor control sera but not with the infant pool, were matched to the Coomassie (BioRad) stained preparative gels (example shown in Figure 7). The results of these serological proteome analyses of surface protein preparations from S. aureus are summarized in Table 3.

WO 02/059148 PCT/EP02/00546

- 46 **-**

Sequencing of protein spots by peptide-fingerprint MALDI-TOF-MS and tandem MS/MS. Gel pieces were washed alternately three times with 10 ul digestion buffer (10mM NH, HCO, /CAN, 1:1). Afterwards the gel pieces were shrunken with 10 µl ACN and reswollen with 2 μl protease solution (0.05 μg/μl trypsin, Promega, Madison, USA). Digestion was performed for 10-12 h at 37°C. For MALDI-TOF-MS peptides were extracted from the gel pieces with 10 µl digestion buffer. The supernatant was concentrated with ZipTip™ (Millipore, Bedford, USA), the peptides were eluted onto the MALDI target with 0.5 μ l extraction buffer (0.1% TFA/CAN, 1:1) and 0.5 μ l matrix solution (HCCA in ACN/0.1% TFA, 1:1) was added. MALDI-TOF-MS was done using a REFLEX III (Bruker Daltonik, Bremen, Germany) equipped with a SCOUT384 ion source. The acceleration voltage was set to 25 kV, and the reflection voltage to 28.7 kV. The mass range was set from 700 Da to 4000 Da. Data acquisition was done on a SUN Ultra using XACQ software, version 4.0. Post-analysis data processing was done using XMASS software, version 4.02 (Bruker Daltonik, Bremen, Germany). The results are summarized in tables 3 and 4.

Example 6: Characterisation of highly immunogenic proteins from S. aureus

The antigens identified by the different screening methods with the IgG and IgA preparations form pre-selected sera are further characterized, by the following ways:

1. The proteins are purified, most preferably as recombinant proteins expressed in E. coli or in a Gram+ expression system or in an in vitro translation system, and evaluated for antigenicity by a series of human sera. The proteins are modified based on bioinformatic analysis: N-terminal sequences representing the signal peptide are removed, C-terminal regions downstream of the cell wall anchor are also removed, and extra amino acids as tags are introduced for the ease of purification (such as Strep-tagII, His-tag, etc.) A large number of sera is then used in ELISA assays to assess the fraction of human sera containing specific antibodies against the given protein (see Fig. 9 as an example). One of the selected antigens is a 895 aa long protein, what was called LPXTGV (see Tables 2 and 4), since it contains the Gram-cell wall anchor sequence LPXTG. This signature has been shown to

serve as cleavage site for sortase, a trans-peptidase which covalently links LPXTG motif containing proteins to the peptidoglycan cell wall. LPXTGV is also equipped with a typical signal peptide (Fig. 8). ELISA data using this protein as a Strep-tagged recombinant protein demonstrate that this protein is highly immunogenic (high titers relative to other recombinant proteins) in a high percentage of sera (Fig. 9). Importantly, patients with acute S. aureus infection produce significantly more of these anti-LPXTGV antibodies, than healthy normals, suggesting that the protein is expressed during in vivo infection. The overall ELISA titers of the individual antigenic proteins are compared, and the ones inducing the highest antibody levels (highly immunogenic) in most individuals (protein is expressed by most strains in vivo) are favored. Since the antigen specificity and quality (class, subtype, functional, nonfunctional) of the antibodies against S. aureus produced in individual patients can vary depending on the site of infection, accompanying chronic diseases (e.g. diabetes) and chronic conditions (e.g. intravascular device), and the individuals' immune response, special attention was paid to the differences detected among the different patient groups, since medical records belonging to each sera were available. In addition, each patient serum is accompanied by the pathogenic strain isolated from the patient at the time of serum sampling.

- 2. Specific antibodies are purified for functional characterization. The purity and the integrity of the recombinant proteins are checked (e.g. detecting the N-terminal Strep-tag in Western blot analysis in comparison to silver staining in SDS-PAGE). The antigens are immobilized through the tags to create an affinity matrix, and used for the purification of specific antibodies from highly reactive sera. Using as an example strep-tagged LPXTGV as the capture antigen, 20 µg of antibody from 125 mg of IgG were purified. Based on the ELISA data a pure preparation was received, not having e.g. anti-LTA and anti-peptidoglycan (both dominant with unfractionated IgG) activity. The antibodies are then used to test cell surface localization by FACS and fluorescent microscopy (Fig. 10).
- 3. Gene occurrence in clinical isolates
 An ideal vaccine antigen would be an antigen that is present in
 all, or the vast majority of, strains of the target organism to

which the vaccine is directed. In order to establish whether the genes encoding the identified Staphylococcus aureus antigens occur ubiquitously in S. aureus strains, PCR was performed on a series of independent S. aureus isolates with primers specific for the gene of interest. S. aureus isolates were obtained from patients with various S. aureus infections. In addition several nasal isolates from healthy carriers and several lab strains were also collected and analyzed. The strains were typed according to restriction fragment length polymorphism (RFLP) of the spa and coa genes (Goh et al. 1992, Frénay et al., 1994, vanden Bergh et al. 1999). From these results 30 different strains were identified - 24 patient isolates, 3 nasal isolates and 3 lab strains. To establish the gene distribution of selected antigens, the genomic DNA of these 30 strains was subjected to PCR with gene specific primers that flank the selected epitope (ORF1361: Seq.ID No. 187 and 188; ORF2268: Seq.ID No. 193 and 194; ORF1951: Seq.ID No. 195 and 196; ORF1632: Seq.ID No. 181 and 182; ORF0766: Seq.ID No. 183 and 184; ORF0576: Seq.ID No. 185 and 186; ORF0222: Seq.ID No. 189 and 190; ORF0360: Seq.ID No. 191 and 192). The PCR products were analyzed by gel electrophoresis to identify a product of the correct predicted size. ORFs 1361, 2268, 1951, 1632, 0766 and 0222 are present in 100% of strains tested and ORF0576 in 97%. However ORF0360 occurred in only 71% of the strains. Thus ORFs 1361, 2268, 1951, 1632, 0766, 0576 and 0222 each have the required ubiquitous presence among S. aureus isolates.

These antigens (or antigenic fragments thereof, especially the fragments identified) are especially preferred for use in a vaccination project against S. aureus.

4. Identification of highly promiscuous HLA-class II helper epitopes within the ORFs of selected antigens

The ORFs corresponding to the antigens identified on the basis of recognition by antibodies in human sera, most likely also contain linear T-cell epitopes. Especially the surprising finding in the course of the invention that even healthy uninfected, non-colonized individuals show extremely high antibody titers (> 100,000 for some antigens, see Example 5) which are stable for >1 year (see Example 1), suggests the existence of T-cell dependent memory most probably mediated by CD4+ helper-T-cells. The molecular

definition of the corresponding HLA class II helper-epitopes is usefull for the design of synthetic anti-staphylococcal vaccines, which can induce immunological memory. In this scenario the helper-epitopes derived from the staphylococcal antigens provide "cognate help" to the B-cell response against these antigens or fragments thereof. Moreover it is possible to use these helperepitopes to induce memory to T-independent antigens like for instance carbohydrates (conjugate vaccines). On the other hand, intracellular occurring staphylococci can be eliminated by CD8+ cytotoxic T-cells, which recognize HLA class I restricted epitopes.

T-cell epitopes can be predicted by various public domain algorithms: http://bimas.dcrt.nih.gov/molbio/hla bind/ (Parker et al. 1994),

http://134.2.96.221/scripts/MHCServer.dll/home.htm (Rammensee at al. 1999), http://mypage.ihost.com/usinet.hamme76/ (Sturniolo et al. 1999). The latter prediction algorithm offers the possibility to identify promiscuous helper-epitopes, i.e. peptides that bind to several HLA class II molecules. In order to identify highly promiscuous helper-epitopes within staphylococcal antigens the ORFs corresponding to Seq ID 64 (IsaA), Seq ID 114 (POV2), Seq ID 89 (ORF0222), Seq ID 70 (LPXTGIV), Seq ID 56 (LPXTGV), Seq ID 142 (LPXTGVI), Seq ID 81 (ORF3200), Seq ID 74 (ORF1951), Seq ID 94 (Empbp), Seq ID 83 (autolysin) and Seq ID 58 (ORF2498) were analyzed using the TEPITOPE package http://mypage.ihost.com/usi- net.hamme76/ (Sturniolo et al. 1999). The analysis was done for 25 prevalent DR-alleles and peptides were selected if they were predicted to be a) strong binders (1% threshold) for at least 10/25 alleles or b) intermediate (3% threshold) binders for at least 17/25 alleles.

The following peptides containing one or several promiscuous helper-epitopes were selected (and are claimed):

pos. 6-40, 583-598, 620-646, 871-896 Seq ID 56:

no peptide fulfills selection criteria Seq ID 58:

no peptide fulfills selection criteria Seq ID 64:

pos. 24-53 Seq ID 70:

pos. 240-260 Seq ID **74:**

pos. 1660-1682, 1746-1790 Seq ID 81:

pos. 1-29, 680-709, 878-902 Seq ID 83:

WO 02/059148 PCT/EP02/00546

Seq ID 89: pos. 96-136

Seq ID **94:** pos. 1-29, 226-269, 275-326

Seq ID **114:** pos. 23-47, 107-156

Seq ID **142:** pos. 24-53

The corresponding peptides or fragments thereof (for instance overlapping 15-mers) can be synthesized and tested for their ability to bind to various HLA molecules in vitro. Their immunogenicity can be tested by assessing the peptide (antigen)-driven proliferation (BrdU or 3H-thymidine incorporation) or the secretion of cytokines (ELIspot, intracellular cytokine staining) of T-cells in vitro (Mayer et al. 1996, Schmittel et al. 2000, Sester et al. 2000). In this regard it will be interesting to determine quantitative and qualitative differences in the T-cell response to the staphylococcal antigens or the selected promiscuous peptides or fragments thereof in populations of patients with different staphylococcal infections, or colonization versus healthy individuals neither recently infected nor colonized. Moreover, a correlation between the antibody titers and the quantity and quality of the T-cell response observed in these populations is expected. Alternatively, immunogenicity of the predicted peptides can be tested in HLA-transgenic mice (Sonderstrup et al. 1999).

Similar approaches can be taken for the identification of HLA class I restricted epitopes within staphylococcal antigens.

Synthetic peptides representing one or more promiscuous T helper epitopes from S.aureus

Partially overlapping peptides spanning the indicated regions of Seq ID 56 (LPXTGV), Seq ID 70 (LPXTGIV), Seq ID 74 (ORF1hom1), Seq ID 81 (EM_BP), Seq ID 83 (Autolysin), Seq ID 89 (ORF1hom2), Seq ID 94 (EMPBP), Seq ID 114 (POV2) and Seq ID 142 (LPXTGVI) were synthesized. Sequences of the individual peptides are given in Table 5. All peptides were synthesized using Fmoc chemistry, HPLC purified and analyzed by mass spectrometry. Lyophilized peptides were dissolved in DMSO and stored at -20°C at a concentration of 5-10 mM.

Binding of synthetic peptides representing promiscuous T helper

WO 02/059148 PCT/EP02/00546

- 51 -

epitopes to HLA molecules in vitro

Binding of peptides to HLA molecules on the surface of antigenpresenting cells is a prerequisite for activation of T cells. Binding was assessed in vitro by two independent biochemical assays using recombinant soluble versions of HLA class II molecules. One assay measures the concentration dependent competitive replacement of a labeled reference peptide by the test peptides. The second assay is based on the formation of SDS-stable complexes upon binding of high- and intermediate affinity ligands. A summary of the results obtained by the two assays is given in Table 5.

Soluble HLA molecules (DRA1*0101/DRB1*0101 DRA1*0101/DRB1*0401) were expressed in SC-2 cells and purified as described in Aichinger et al., 1997. For the competition assay (Hammer et al. 1995) HLA molecules were applied between 50 and 200 ng/well. For DRB1*0101 biotinilated indicator peptide HA (PKYVKONTLKLAT, Valli et al. 1993) was used at 0.008 µM. For DRB1*0401 biotinilated indicator peptide UD4 (YPKFVKQNTLKAA, Valli et al. 1993) was used between 0.03 and 0.06 μM. Test peptides were used in serial dilutions from 0.02 nM to 200 µM. Molecules, indicator and test peptides were incubated overnight at 37°C, pH 7. HLA:peptide complexes obtained after incubation with serial dilutions of test and reference peptides (the known highaffinity binders HA and UD4 were used as positive control) were captured in ELISA plates coated with antibody L243, which is known to recognize a conformational epitope formed only by correctly associated heterodimers. Incorporated biotin was measured by standard colorimetric detection using a streptavidin-alkaline phosphatase conjugate (Dako) with NBT/BCIP tablets (Sigma) as substrate and automated OD reading on a Victor reader (Wallac).

T cell response against promiscuous T helper epitopes assessed by IFNg ELIspot assay

Upon antigenic stimulation T cells start to proliferate and to secrete cytokines such as interferon gamma (IFNg). Human T cells specifically recognizing epitopes within S.aureus antigens were detected by IFNg-ELIspot (Schmittel et al. 2000). PBMCs from healthy individuals with a strong anti-S.aureus IgG response were isolated from 50-100 ml of venous blood by ficoll density gradient centrifugation and used after freezing and thawing. Cells were seeded at 200,000/well in 96-well plates. Peptides were added as mixtures corresponding to individual antigens, in both cases at 10 µg/ml each. Concanavalin A (Amersham) and PPD (tuberculin purified protein derivate, Statens Serum Institute) served as assay positive controls, assay medium without any peptide as negative control. After overnight incubation in Multi Screen 96well filtration plates (Millipore) coated with the anti-human IFNg monoclonal antibody B140 (Bender Med Systems) the ELIspot was developed using the biotinylated anti-human IFNg monoclonal antibody B308-BT2 (Bender Med Systems), Streptavidin-alkaline phosphatase (DAKO) and BCIP/NBT alkaline phosphatase substrate (SIGMA). Spots were counted using an automatic plate reader (Bioreader 2000, BIO-SYS). Spots counted in wells with cells stimulated with assay medium only (negative control, generally below 10 spots / 100.000 cells) were regarded as background and subtracted from spot numbers counted in wells with peptides.

Table 5: Promiscuous T helper epitopes contained in S.aureus antigens

Amino acid	sequences within S.aureus antigens containing	binding	IFNg
	miscuous T helper epitopes	1)	ELIspot
mranry bro	WIDOGOGD . Morbon ob-1-12		2)
Sea TD 56	(LPXTGV): pos. 6-40		
· ·	>PKLRSFYSIRKSTLGVASVIVST//	+	
=	>VIVSTLFLISQHQAQA//		
p24-40	↑ ↑ ↑ ↑ ↑ ↑ TIT TITE X • X • X • 1		
			44;80;8
	•		;95;112
	600 646	 	133,111
	(LPXTGV): pos. 620-646		
p620-646	>FPYIPDKAVYNAIVKVVVANIGYEGQ//	+	
Seq ID 56	(LPXTGV): pos. 871-896		
p871-896	>QSWWGLYALLGMLALF1PKFRKESK//		
Seq ID 70	(LPXTGIV): pos. 24-53		
p24-53	>YSIRKFTVGTASILIGSLMYLGTQQEAEA//	nd	34;14;0
222 33			;57;16
Seg ID 74	(ORF1hom1): pos. 240-260		
	>MNYGYGFGVVTSRTISASQA//	+	47;50;0
D240-200			;85;92
1		•	•

Seq ID 81 (EM_BP): pos. 1660-1682	1	1
p1660-1682 >NEIVLETIRDINNAHTLQQVEA//	nd	
DIOOOIOON MILLIAMILIANS		
		0 14 5
		2;14;5;
Seq ID 81 (EM_BP): pos. 1746-1790		77;26
_	nd	1
p1746-1773 >LHMRHFSNNFGNVIKNAIGVVGTSGLLA//	nd	
p1753-1779 >NNFGNVIKNAIGVVGISGLLASFWFFI//	1	
p1777-1789 >FFIAKRRKEDEE/	nd	
Seq ID 83 (Autolysin) pos. 1-29	9	
p1-29: >MAKKFNYKLPSMVALTLVGSAVTAHQVQA//	nd	
		6;35;7;
		60;49
Seq ID 83 (Autolysin) pos. 878-902	_	
p878-902: >NGLSMVPWGTKNQVILTGNNIAQG/	nd	
Seq ID 89 (ORF1hom2): pos. 96-136		
p96-121 >GESLNIIASRYGVSVDQLMAANNLRG//	-	
p117-136 >NNLRGYLIMPNQTLQIPNG//	_	0;35;0;
		29;104
Seq ID 94 (EMPBP): pos. 1-29		ľ
p4-29 : >KLLVLTMSTLFATQIMNSNHAKASV//	 + 	<u> </u>
Seq ID 94 (EMPBP): pos. 226-269		
p226-251 >IKINHFCVVPQINSFKVIPPYGHNS//	-	
p254-270 >MHVPSFQNNTTATHQN//	+	
		26;28;1
		6;43;97
Seq ID 94 (EMPBP): pos. 275-326		
p275-299 >YDYKYFYSYKVVKGVKKYFSFSQS//	+	
p284-305 >YKVVKGVKKYFSFSQSNGYKIG//	+	
p306-326 >PSLNIKNVNYQYAVPSYSPT//	+	
Seq ID 114 (POV2): pos. 23-47		
p23-47 >AGGIFYNQTNQQLLVLCDGMGGHK//	-	49;20;4
	ļ	;77;25
Seq ID 114 (POV2): pos. 107-156		
p107-124 >ALVFEKSVVIANVGDSRA/	-	
p126-146 >RAYVINSRQIEQITSDHSFVN//	nd	
p142-158 >SFVNHLVLTGQITPEE//	nd	
Seq ID 142 (LPXTGVI): pos. 1-42		
p6-30 >KEFKSFYSIRKSSLGVASVAISTL//	++	
p18-42 >SSLGVASVAISTLLLLMSNGEAQA//	nd	
·		0;41;20
·		;88;109
Seq ID 142 (LPXTGVI): pos. 209-244		
p209-233 >IKLVSYDTVKDYAYIRFSVSNGTKA//	+	
p218-244 >KDYAYIRFSVSNGTKAVKIVSSTHFNN//	+	
Seq ID 142 (LPXTGVI): pos. 395-428	3	
p395-418 >FMVEGQRVRTISTYAINNTRCTIF//	_	
p416-428 >TIFRYVEGKSLYE//	-	
	ı	1

WO 02/059148 PCT/EP02/00546

- 54 -

Seq ID 142 (LPXTGVI): pos. 623-647		
p623-647 >MTLPLMALLALSSIVAFVLPRKRKN //	_	

"binding to soluble DRA1*0101/DRB1*0401 molecules was determined using a competition assay (+, ++: binding, -: no competition up to 200 µM test peptide; nd: not done)

2) results from 5 healthy individuals with strong anti-S.aureus IgG response. Data are represented as spots/200.000 cells (background values are subtracted

- 5. Antigens may be injected into mice - and the antibodies against these proteins can be measured.
- Protective capacity of the antibodies induced by the antigens through vaccination can be assessed in animal models.

Both 5. and 6. are methods well available to the skilled man in the art.

Example 7: Applications

- A) An effective vaccine offers great potential for patients facing elective surgery in general, and those receiving endovascular devices, in particular. Patients suffering from chronic diseases with decreased immune responses or undergoing continuous ambulatory peritoneal dialysis are likely to benefit from a vaccine with S. aureus by immunogenic serum-reactive antigens according to the present invention. Identification of the relevant antigens will help to generate effective passive immunization (humanized monoclonal antibody therapy), which can replace human immunoglobulin administration with all its dangerous side-effects. Therefore an effective vaccine offers great potential for patients facing elective surgery in general, and those receiving endovascular devices, in particular.
- S. aureus can cause many different diseases.
- 1. Sepsis, bacteriaemia
- 2. Haemodialysed patients bacteriemia, sepsis
- 3. Peritoneal dialyses patients peritonitis
- 4. Patients with endovascular devices (heart surgery, etc) docarditis, bacteriemia, sepsis

- 5. Orthopedic patients with prosthetic devices septic arthritis
- 6. Preventive vaccination of general population

B) Passive and active vaccination, both with special attention to T-cells with the latter one: It is an aim to induce a strong T helper response during vaccination to achieve efficient humoral response and also immunological memory. Up till now, there is no direct evidence that T-cells play an important role in clearing s. aureus infections, however, it was not adequately addressed, so far. An effective humoral response against proteinaceous antigens must involve T help, and is essential for developing memory. Naïve CD4+ cells can differentiated into Th1 or Th2 cells. Since, innate immunological responses (cytokines) will influence this decision, the involvement of T-cells might be different during an acute, serious infection relative to immunization of healthy individuals with subunit vaccines, not containing components which impair the immune response during the natural course of the infection. The consequences of inducing Th1 or Th2 responses are profound. Th1 cells lead to cell-mediated immunity, whereas Th2 cells provide humoral immunity.

C) Preventive and therapeutic vaccines

Preventive: active vaccination/passive immunization of people in high risk groups, before

infection

Therapeutic: passive vaccination of the already sick.

Active vaccination to remove nasal carriage

Specific example for an application

Elimination of MRSA carriage and prevention of colonization of the medical staff

Carriage rates of S. aureus in the nares of people outside of the hospitals varies from 10 to 40%. Hospital patients and personnel have higher carriage rates. The rates are especially high in patients undergoing hemodialysis and in diabetics, drug addicts and patients with a variety of dermatologic conditions. Patients at highest risk for MRSA infection are those in large tertiary-care hospitals, particularly the elderly and immunocompromised, those

in intensive care units, burn patients, those with surgical wounds, and patients with intravenous catheters.

The ELISA data strongly suggest that there is a pronounced IgA response to S. aureus, which is not obvious or known from the literature. Since the predominant mucosal immune response is the production of IgA with neutralizing activity, it is clear that the staphylococcal epitopes and antigens identified with the highly pure IgA preparations lead to an efficient mucosal vaccine.

- •Clear indication: Everybody's threat in the departments where they perform operation (esp. orthopedics, traumatology, gen. surgery)
- •Well-defined population for vaccination (doctors and nurses)
- •Health care workers identified as intranasal carriers of an epidemic strain of S. aureus are currently treated with mupirocin and rifampicin until they eliminate the bacteria. Sometimes it is not effective, and takes time.
- •Available animal model: There are mice models for intranasal carriage.

Table 1: ELISA titers of séra from non-infected individuals against multiple staphylococcal proteins.

*								•	5	, 					\neg		٠,						1
Map-w				4	3			7								8,9	9			1		2	
CIFB				7	1				8,9	5,6	5,6								4			<u>, </u>	
SrtA			-	3	٠.				7			9				8							
Fīb			3	2		15.00		4	5	1				8									
coagul				2									4,5	-									
LP342	<u>.</u>		9		3											7							
LP309				3	1		5									9							
enolase			·	,	6,7	•		5		3,4													
EBP				٠	2			7							٠				3				
sdrC					1		4	t		3			[,`:]	2									
sdrE				1	3			7	8	1 1	1.7			5							•		
FnBPA sdrE					2				-							5						,	
D1+D3			4		2					5		9	-							-			
CIfA			8	3	9											-			1			2	
PG					11					5						2,3			6,7				
LTA			2] ****			9		4					L.	5							
BHI	lysate		22		*****					4,5,6				Ü		3	•				ij	ŋ	
Sera ID#	red	-	7	3	4	5	9	1	8	6	10	11	12	13	14	15	16	17	18	19	20	21	

1

:

						<u>1</u>	Т				Т	.]				\neg				
Мар-w				8,9											4					<u>. </u>
CIRB			7												3					8,9
SrtA			2				5													
Fib						7								9						
1			6,7				4,5				1			6,7			3		[]	
LP342 coagul							4,5							1						4,5
ļ ·			7				4					i		2	***					
enolase LP309			6,7						1				<u> </u>	2				3,4	,	
EBP			77	9			٠					-	-		5		·			
sdrC			7				8						5	اس استار						
			2	4		-												/-)·		
FnBPA sdrE			9								<u>-1</u>		4							3
D1+D3			3								11			7,8			7,8			
ClfA			5		٦		17221	ll					4	ĺ			7	1		
PG					5							4	Ί		2,3					6,7
LTA															8	3				7
BHI	lysate		4,5,6			8	1								4,5,6					
Sera ID#		52	23	24	25	56	27	28	29	30	31	32	33	34		36	37	38	39	40

Table I. ELISA titers of sera from non-infected individuals against multiple staphylococcal proteins.

Anti-staphylococcal antibody levels were measured individually by standard ELISA with total lysate prepared from S. aureus grown in BHI medium (BHI), lipoteichoic acid (LTA), peptidoglycan (PG), 13 recombinant proteins, representing cell surface and secreted proteins, such as clumping factor A and B (ClfA, ClfB), Fibronectinbinding protein (FnBPA), SD-repeat proteins (sdrC, sdrE), MHC Class II analogous protein (map-w), Elastin-binding protein (EBP), enolase (reported to be cell surface located and immunogenic), iron transport lipoproteins (LP309, LP342), sortase (srtA), coagulase (coa), extracellular fibrinogen-binding protein (fib). Two short synthetic peptides representing 2 of the five immunodominant D repeat domains from FnBPA was also included (D1+D3) as antigens. The individual sera were ranked based on the IgG titer, and obtained a score from 1-9. Score 1 labels the highest titer serum and score 8 or 9 labels the sera which were 8th or 9th among all the sera tested for the given antigen. It resulted in the analyses of the top 20 percentile of sera (8-9/40). The five "best sera" meaning the most hyper reactive in terms of anti-staphylococcal antibodies were selected based on the number of scores 1-8. **** means that the antibody reactivity against the particular antigen was exceptionally high (>2x ELISA units relative to the 2nd most reactive serum).

Table 2a: Immunogenic proteins identified by bacterial surface and ribosome display: S. aureus

Bacterial surface display: A, LSA250/1 library in fhuA with patient sera 1 (655); B, LSA50/6 library in lamB with patient sera 1 (484); C, LSA250/1 library in fhuA with IC sera 1 (571); E, LSA50/6 library in lamB with IC sera 2 (454); F, LSA50/6 library in lamB with patient sera P1 (1105); G, LSA50/6 library in lamb with IC sera 1 (471)); H, LSA250/1 library in fhuA with patient sera 1 (IGA, 708). Ribosome display: D, LSA250/1 library with IC sera (1686). *, identified 18 times of 33 screened; was therefore eliminated from screen C. **, prediction of antigenic sequences longer than 5 amino acids was performed with the programme ANTIGENIC (Kolaskar and Tongaonkar, 1990); #, identical sequence present twice in ORF; ##, clone not in database (not sequence by

TIGR).

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)	_	lected	identified	with relevant re-	(DNA
antigenic	number	<u>.</u>		clones per	immuno-	gion (positive/total)	+Pret)
protein				ORF and	genic region		i
F				screen			
SaA0003	ORF2963P	repC	5-20, 37-44, 52-59, 87-94, 116-132	C:3	aa 112-189	C:GSBYM94(112-	171, 172
						189):26/30	
SaA0003	ORF2967P	repC	7-19, 46-57, 85-91, 110-117, 125-	C:18	aa 9-42	•	150, 158
		,	133, 140–149, 156–163, 198–204,		aa 158-174	42):1/1	
		·	236-251, 269-275, 283-290, 318-				
			323, 347–363		00 100	A CCD27 70/00	24.96
0093	ORF1879	SdrC		A:1, D:5,		A:GSBXL70(98-	34, 86
			157, 173–180, 186–205, 215–226,	C:1, F:6,	aa 684-764	182):9/30	
			239-263, 269-274, 284-304, 317-	G:2	aa 836-870	D:n.d.	
		-	323, 329–336, 340–347, 360–366,			C:GSBYH73(815-	
			372-379, 391-397, 399-406, 413-			870):3/16	
	1		425, 430–436, 444–455, 499–505,			,	
	ł		520-529, 553-568, 586-592, 600-		8.1		
	ł		617, 631–639, 664–678, 695–701,				
	0.001	017	891-903, 906-912, 926-940	C-12 E-2	00 147-102	C:GSBYH31(147-	145 153
0095	ORF1881	SdrE	25-45, 72-77, 147-155, 198-211,	C:12, E:2	aa 147-132	192):2/14	143, 133
			217-223, 232-238, 246-261, 266-			E:GSBZA27(144-	
			278, 281–294, 299–304, 332–340,			162):23/41	
			353-360, 367-380, 384-396, 404-			102).23/41	
			409, 418–429, 434–440, 448–460,				
	1		465~476, 493~509, 517~523, 531~				
	į		540, 543–555, 561–566, 576–582, 584–591, 603–617, 633–643, 647–	1]
			1				
			652, 668-674, 677-683, 696-704,				
			716-728, 744-752, 755-761, 789-				
			796, 809–815, 826–840, 854–862,				
			887-903, 918-924, 1110-1116,				
0123	ORF1909	unknown	9-28, 43-48, 56-75, 109-126, 128-	B:3, E:7,	aa 168-181	B:GSBXF80(168-	35, 87
V123	Join 1909		141, 143–162, 164–195, 197–216,	G:1		181):5/27	'
]]	234-242, 244-251]	1	E:GSBZC17(168-	ļ
			20, 212, 211 ===			181):25/41	
0160	ORF1941	unknown	4-10, 20-42, 50-86, 88-98, 102-171,	A:1	aa 112-188	A:GSBXO07(112-	36, 88
			176-182, 189-221, 223-244, 246-			188):5/30	
			268, 276-284, 296-329				
0222	ORF1988	homology with	4-9, 13-24, 26-34, 37-43, 45-51,	A:52,	aa 45-105	A:GSBXM63(65-	37, 89
		ORF1	59-73, 90-96, 99-113, 160-173,	C:18*,	aa 103-166	95):1/1	
			178-184, 218-228, 233-238, 255-	H:19	aa 66-153	A:GSBXM82(103-	
			262			166):14/29	
/						A:GSBXK44-	
17						bmd3(65	
·/						153):47/51	
0308	ORF2077	Complement, un-	13-27, 42-63, 107-191, 198-215,	A:6, B:2,	1	A:GSBXK03(bp473	38, 90
		known	218-225, 233-250	C:47,	bp 474-367	1 '	
				E:35		B:GSBXD29(bp465	
	1	1		1	1	-431):10/27 ·	1

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigeni	number		•	ciones per	immuno-	gion (positive/total)	+Prot)
protein		,		ORF and	genic region		
	ľ			screen			
0317	ORF2088	preprotein translo-	16-29, 64-77, 87-93, 95-101, 127-	A:1	aa 1-19	A:GSBXP37(1-	39, 91
1		case seca subunit	143, 150-161, 204-221, 225-230,			19):6/29	
			236-249, 263-269, 281-309, 311-				
		1	325, 337-343, 411-418, 421-432,				
	ļ		435-448, 461-467, 474-480, 483-	-			
			489, 508-516, 542-550, 580-589,				
			602-611, 630-636, 658-672, 688-		·		
			705, 717723, 738746, 775786,				
			800-805, 812-821, 828-834				
0337	ORF2110	Hypothetical pro-	26-53, 95-123, 164-176, 189-199	D:12	aa 8-48	D:n.d.	40, 92
		tein			706 00 0	,	
0358	ORF2132	Clumping factor A	8-35, 41-48, 59-66, 87-93, 139-144,		aa 706-809	D:n.d.	41, 93
	Ì		156-163, 198-209, 215-229, 236-	E :1	·		ĺ
1			244, 246–273, 276–283, 285–326,				•
1./			328-342, 349-355, 362-370, 372-				
			384, 396–402, 405–415, 423–428,				
1			432-452, 458-465, 471-477, 484-				
			494, 502~515, 540~547, 554~559,				
0360	ORF2135	extracellular	869-875, 893-898, 907-924 7-13, 15-23, 26-33, 68-81, 84-90,	A:46,	aa 22-56	A:GSBXK24(23-	42, 94
0300	Empbp	matrix and plasma	106-117, 129-137, 140-159, 165-	B:21,	aa 23-99	55):1/1	42, 54
	Empop	binding protein	172, 177–230, 234–240, 258–278,	,	aa 23 99 aa 97-115	B:GSBXB43(39-	,
		omaing protein	295-319		aa 233–250	54):58/71	
	İ		255-319	H: 12	aa 245-265	A:GSBXK02-	
				11. 12.	aa 243 203	bmd1(22-99):59/59	
1		,				B:GSBXD82-	
						bdb19(97-115):1/1	
ŀ						F;SALAL03(233~	
					:	250):15/41	
0453	ORF2227	coma operon	17-25, 27-55, 84-90, 95-101, 115-	C:3	aa 55-101	C:GSBYG07(55-	146, 154
		protein 2	121	·		101):1/1	- -
0569	ORF1640	V8 protease	5-32, 66-72, 87-98, 104-112, 116-	A:1, F:1	aa 174–249	A:GSBXS51(174-	32, 84
	1		124, 128–137, 162–168, 174–183,			249):11/30	
			248-254, 261-266, 289-303, 312-				
	<u> </u>		331				

Γ	S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
I	aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
١	ntigenic	number		•	clones per	immuno-	gion (positive/total)	+Prot)
١	protein				ORF and	genic region		i
١	•				screen			
t)576	ORF1633	autolysin, adhe-	4-19, 57-70, 79-88, 126-132, 144-	A:21,	aa 6-66	A:GSBXN93(6-	31, 83
l		Autolysin	sion	159, 161–167, 180–198, 200–212,	B:46,	aa 65-124	66):5/16	
١	1			233-240, 248-255, 276-286, 298-	C:55, E:5,	aa 579-592	C:GSBYH05(45-	
1		:		304, 309–323, 332–346, 357–366,	F:85,	aa 590-604	144):7/8	
l				374-391, 394-406, 450-456, 466-	H :19		A:GSBXK66-	
ı				473, 479–487, 498–505, 507–519,			bmd18(65-	
١				521-530, 532-540, 555-565, 571-			124):16/30	
l				581, 600-611, 619-625, 634-642,		:	B:GSBXB89(108-	
١				650-656, 658-665, 676-682, 690-			123):1/1	
l			·	699, 724–733, 740–771, 774–784,			B:GSBXB02(590-	
١				791-797, 808-815, 821-828, 832-			603):39/71	
1				838, 876–881, 893–906, 922–929,			F:SALAM15(579-	
1				938-943, 948-953, 969-976, 1002-			592):25/41	
١				1008, 1015–1035, 1056–1069, 1105–				
١				1116, 1124-1135, 1144-1151, 1173-				
١				1181, 1186-1191, 1206-1215, 1225-				
L			•	1230, 1235–1242				
I	0657	ORF un-	LPXTGVI protein	9-33, 56-62, 75-84, 99-105, 122-		aa 527-544	B:GSBXE07-	1, 142
۱		known	·	127, 163–180, 186–192, 206–228,	F:15		bdb1(527-	
١				233-240, 254-262, 275-283, 289-			542):11/71	
١				296, 322–330, 348–355, 416–424,			F:SALAX70(526-	
۱				426-438, 441-452, 484-491, 541-			544):11/41	
ŀ	0740	ODELACO	0.11	549, 563-569, 578-584, 624-641	C:2	aa 630-700	C:GSBYK17(630-	144, 152
ı	0749	ORF1462	1 - 1	8-23, 31-38, 42-49, 61-77, 83-90,	1	aa 030-700	700):5/9	144, 132
1			phate synthase	99-108, 110-119, 140-147, 149-155,			100).3/9	
1				159-171, 180-185, 189-209, 228-	1			
1				234, 245–262, 264–275, 280–302, 304–330, 343–360, 391–409, 432–				
		•		437, 454–463, 467–474, 478–485,				
			ŀ					
١				515-528, 532-539, 553-567, 569-				
				581, 586–592, 605–612, 627–635, 639–656, 671–682, 700–714, 731–				
				747, 754–770, 775–791, 797–834,				
				838-848, 872-891, 927-933, 935-				
				942, 948–968, 976–986, 1000–1007,	1			
ı				1029-1037				
	944	ORF1414	Yfix	6-33, 40-46, 51-59, 61-77, 84-104,	D:4	aa 483-511	D :n.d.	30, 82
	- • •	1	-	112-118, 124-187, 194-248, 252-				
				296, 308–325, 327–361, 367–393,				
			1	396-437, 452-479, 484-520, 535-				
]	545, 558-574, 582-614, 627-633,				
				656-663, 671-678, 698-704, 713-				
				722, 725-742, 744-755, 770-784,	ļ			
				786-800, 816-822, 827-837				
	1050	ORF1307	unknown	49-72, 76-83, 95-105, 135-146,	A:1, H:45	aa 57-128	A:GSBXM26(57-	28, 80
				148-164, 183-205	<u>L</u>	<u></u>	128):7/30	

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigen	le number			clones per	immuno-	gion (positive/total)	+Prot)
proteir	,			ORF and	genic region	·	
1			ļ.	screen			
1209	ORF3006	hemN homolog	12-36, 43-50, 58-65, 73-78, 80-87,	B:7, F:8	aa 167-181	B:GSBXB76(167-	54, 106
			108-139, 147-153, 159-172, 190-			179):25/71	
			203, 211–216, 224–232, 234–246,			F:SALBC54(169-	
1			256-261, 273-279, 286-293, 299-			183):18/41	
1344	ORF0212	NifS protein	306, 340-346, 354-366 8-16, 22-35, 49-58, 70-77, 101-121,	Δ-11	aa 34-94	A:GSBXK59-	5, 141
1344	OKI-0212	homolog	123-132, 147-161, 163-192, 203-	1	uu 54 74	bmd21(34-94):6/29	5, 141
		lioniolog	209, 216-234, 238-249, 268-274,			0.12.02.1(0.1.7.1).01.22	
			280-293, 298-318, 328-333, 339-				
1			345, 355–361, 372–381				
1356	ORF0197	Hypothetical pro-	28-55, 82-100, 105-111, 125-131,	D:12	aa 1-49	D:n.d.	4, 57
<u></u>		tease	137-143				
1361	ORF0190	LPXTGV protein	5-39, 111-117, 125-132, 134-141,	A:1, B:23,	l	B:GSBXF81(37-	3, 56
			167-191, 196-202, 214-232, 236-	E:3, F:31	ва 63-77	49):1/1	
			241, 244–249, 292–297, 319–328,		aa 274-334	B:GSBXD45-	
1			336-341, 365-380, 385-391, 407-			bdb4(62-77):12/70	
			416, 420–429, 435–441, 452–461, 477–488, 491–498, 518–532, 545–			A:GSBXL77(274- 334):5/30	
1			556, 569-576, 581-587, 595-602,			F:SALAP81(62-	
			604-609, 617-640, 643-651, 702-			77):10/41 \	
			715, 723-731, 786-793, 805-811,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			826-839, 874-889				
1371	ORF0175	YtpT, conserved	37-42, 57-62, 121-135, 139-145,	C:3, E:2,	aa 624-684	C:GSBYG95(624-	143, 151
1		hypothetical pro-	183-190, 204-212, 220-227, 242-	G:1	aa 891-905	684):7/22	
1		tein	248, 278–288, 295–30, 304–309,	1		E:GSBZB45(891-	
			335-341, 396-404, 412-433, 443-			905):10/41	
1			449, 497–503, 505–513, 539–545,	1			
			552-558, 601-617, 629-649, 702-				
1			711, 736–745, 793–804, 814–829,	<u> </u>			
- [843-858, 864-885, 889-895, 905- 913, 919-929, 937-943, 957-965,				1
			970-986, 990-1030, 1038-1049,		•		
		-	1063-1072, 1080-1091, 1093-1116,				
d	,		1126-1136, 1145-1157, 1163-1171,				
l			1177-1183, 1189-1196, 1211-1218,				
1			1225-1235, 1242-1256, 1261-1269				
1491	ORF0053	Cmp binding fac-	12-29, 34-40, 63-71, 101-110, 114-	A:7, C:2,	aa 39-94	A:GSBXM13(39-	2, 55
		tor 1 homolog	122, 130-138, 140-195, 197-209,	E:7, F:4	[94):10/29	1
-			215-229, 239-253, 255-274			F:SALAY30(39-	
1616	IODE1100	leukocidin F ho-	16-24 20 20 42 40 64 51 02 00	A.10	aa 158-220	53):4/41 A:GSBXK06(158-	27, 79
1616	ORF1180	ĺ	16-24, 32-39, 43-49, 64-71, 93-99, 126-141, 144-156, 210-218, 226-	A:10		A:GSBXK06(158- 220):8/29	21, 17
		molog	233, 265–273, 276–284		1	J.0167	
1618	ORF1178	LukM homolog	5-24, 88-94, 102-113, 132-143,	A:13, B:3	aa 31-61	A:GSBXK60(31-	26, 78
			163-173, 216-224, 254-269, 273-	1	aa 58-74	61):20/29	
1			278, 305-313, 321-327, 334-341	F:12, G:2,	1	B:GSBXB48(58-	1
				H:10		74):49/71	
						F:SALAY41(58-	
					<u> </u>	74):30/41	

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by komology)		lected	identified	with relevant re-	(DNA
antigenic	number			clones per	immuno-	gion (positive/total)	+Prot)
protein			·	ORF and	genic region		
				screen		·	
1632	ORF1163	SdrH homolog	7-35, 54-59, 247-261, 263-272,	B:6, E:11,	aa 105-119	B:GSBXG53(168-	25, 77
			302-320, 330-339, 368-374, 382-	F:34	aa 126-143	186):39/71	·
			411		aa 168–186	F:SALAP07(105	
						119):11/41	
1763	ORF1024	unknown	5-32, 35-48, 55-76	C:3	-	C;GSBYI30(98aa):1	24, 76
<u> </u>				D 5 E 0	bp 237-170	/1	02.75
1845	ORF0942	Hyaluronate lyase	10-26, 31-44, 60-66, 99-104, 146-	D:5, F:2	aa208-224	D;n.d.	23, 75
			153, 163–169, 197–205, 216–223,		aa 672-727		
			226-238, 241-258, 271-280, 295-		:		
			315, 346–351, 371–385, 396–407,				
.			440-446, 452-457, 460-466, 492-				
]]			510, 537-543, 546-551, 565-582,				
		`	590-595, 635-650, 672-678, 686-				
			701, 705–712, 714–721, 725–731,				
			762-768, 800-805	1.000	. 100 000	D CODY CO3(100	00.74
1951	ORF0831	homology with	5-22, 42-50, 74-81, 139-145, 167-	A:223,	l	B:GSBXC07(180-	22, 74
		ORF1	178, 220–230, 246–253, 255–264	B:56,	aa 250-267	190):1/1	
				C:167,		A:GSBXK29(177-	
1			,	E:43,		195):15/29	
				F:100,		B:GSBXD43(250-	
				G:13,		267):10/71	1
				H:102		F:SALAM13(178-	
				11.00	20.50	191):20/41	01.72
1955	ORF0826	homology with	4-9, 15-26, 65-76, 108-115, 119-	A:1, B:3,	aa 38-52	A:GSBXR10(66-	21, 73
1	:	ORFI	128, 144–153	E:1, F:8	aa 66-114	114):5/30	}
						F:SALAM67(37-	
2031	ORF0749	unknown	10-26, 31-43, 46-58, 61-66, 69-79,	B:2, F:2	aa 5974	52):16/41 B:GSBXC01(59-	20, 72
2031	OK1-0749	HIKHOWH	85-92, 100-115, 120-126, 128-135,	D.2, 1 .2	uu 32 /4	71):11/26	20, 72
			149–155, 167–173, 178–187, 189–			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			196, 202–222, 225–231, 233–240,			,	
1 1			245-251, 257-263, 271-292, 314-				
			322, 325–334, 339–345		1		
2086	ORF0691	IgG binding	6-20, 53-63, 83-90, 135-146, 195-	A:1, B:8,	aa 208-287	A:GSBXS55(208-	19, 71
ľl	Sbi	protein	208, 244–259, 263–314, 319–327,	E:24, F:9,	l .	287):38/46	[
}	~~.	F	337-349, 353-362, 365-374, 380-	G:137	B .	B:GSBXB34(299-	1
			390, 397-405, 407-415			314)::11/71	
1 1			100, 107 110		İ	F:SALAX32(261-	
						276):21/41	

S.	Old	Putative function	predicted immunogenic na**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigenic	number			clones per	immuno-	gion (positive/total)	+Prot)
protein		,		ORF and	genic region		
· .				screen			
2180	ORF0594	LPXTGIV protein	11-20, 26-47, 69-75, 84-92, 102-	A:3, C:3,	aa 493-587	A:GSBXS61(493-	18, 70
			109, 119-136, 139-147, 160-170,	E:6, F:2,	aa 633-715	555):1/1	
			178-185, 190-196, 208-215, 225-	H: 6	aa 704-760#	A:GSBXL64(496-	
			233, 245–250, 265–272, 277–284,		aa 760832	585):1/1	
			300-306, 346-357, 373-379, 384-		(na 832-	A:GSBXS92(760-	
		•	390, 429-435, 471-481, 502-507,		887)"	841):1/1 .	
			536-561, 663-688, 791-816, 905-		ŕ	A:bmd4(704-	
			910, 919–933, 977–985, 1001–1010,			760):16/30 [#]	
			1052–1057, 1070–1077, 1082–1087,			(A:bmd4(830-	
			1094–1112			885):16/30) [#]	
				البسنة		F:SALBC43(519-	
						533):4/41	
2184	ORF0590	FnbpB	5-12, 18-37, 104-124, 139-145,	A:2, C:4,	aa 701-777	A:GSBXM62(702-	17, 69
			154-166, 175-181, 185-190, 193-	G:9	aa 783822	777):28/28	
			199, 203-209, 235-244, 268-274,			A:GSBXR22(783- ·	
			278–292, 299–307, 309–320, 356–			855):1/1	
			364, 375–384, 390–404, 430–440,				
			450-461, 488-495, 505-511, 527-				
			535, 551–556, 567–573, 587–593,				
			599-609, 624-631, 651-656, 665-				
			671, 714~726, 754–766, 799–804,				
		٠	818-825, 827-833, 841-847, 855-				
2196	ODEOGO	T-t-	861, 876-893, 895-903, 927-940	44 64	710, 707	C. CCDVDYOSCOIO	16.69
2186	ORF0588	Fnbp	8-29, 96-105, 114-121, 123-129,	A:4, C:4,		C:GSBYN05(710-	16, 68
		,	141-147, 151-165, 171-183, 198-	D:5, E:2	aa 855-975	787):19/25 D:n.d.	
			206, 222~232, 253~265, 267~277, 294~300, 302~312, 332~338, 362~		aa 916-983	A:GSBXP01(916-	
			368, 377-383, 396-402, 410-416,			983):17/30	
			451-459, 473-489, 497-503, 537-			903 3.1 7/30	
	·		543, 549~559, 581~600, 623~629,				
			643-649, 655-666, 680-687, 694-				
			700, 707-712, 721-727, 770-782,				
			810-822, 874-881, 883-889, 897-	1			
			903, 911-917, 925-931, 933-939,				
ĺĺĺ			946-963, 965-973, 997-1010	1			
2224	ORF0551	unknown	49-56, 62-68, 83-89, 92-98, 109-	B:2	aa 34-46	B:GSBXD89(34-	15, 67
1			115, 124-131, 142-159, 161-167,			46):1/1	
			169-175, 177-188, 196-224, 230-		,		
			243, 246–252	<u></u>			

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigenic	number			clones per	immuno-	gion (positive/total)	+Prot)
protein				ORF and	genic region		
				screen			
2254	ORF0519	Conserved hypo-	14-22, 32-40, 52-58, 61-77, 81-93,	D:3	aa 403-462	D.n.d.	14, 66
		thetical protein	111-117, 124-138, 151-190, 193-				
			214, 224–244, 253–277, 287–295,				
			307324, 326332, 348355, 357-				
			362, 384–394, 397–434, 437–460,		ļ '		
			489-496, 503-510, 516-522, 528-				
			539, 541-547, 552-558, 563-573,				
	,		589-595, 602-624, 626-632, 651-				
,			667, 673–689, 694–706, 712–739,				
2264	ORF0509	ORF1; homology	756–790 5–31, 47–55, 99–104, 133–139, 156–	A-121	aa 7–87	À:GSBXP22(145-	13, 65
2204	ORP0309	with putative se-	172, 214–224, 240–247	B:51,	aa 133-242	196):1/1	15,05
		creted antigen	172, 214-224, 240-247	C:13,	aa 133-242	A:GSBXK05-	
		precursor from S.		E:43,		bmd16(178~	
		epidermidis		F:78, G:2,		218):6/29	
		cpracrimais		H:17		B:GSBXE24-	
						bdb20(167-178):1/1	
						F:SALAQ91(173-	
						184):15/41	
2268	ORF0503	IsaA, possibly ad-	7-19, 26-45, 60-68, 94-100, 111-	A:7, B:65,	aa 67-116	A:GSBXK88(67-	12, 64
		hesion/aggrega-	119, 126–137, 143–148, 169–181,	C:3, E:2,	aa 98-184	116):1/1	
		tion	217–228	F:53	aa 182-225	A:GSBXN19(98-	
						184):22/29	
			1			A:GSBXN32(182-	
						225):34/71	
				}		B:GSBXB71(196-	
			`			209):16/29	
			,			F:SALAL22(196-	
2344	ORF0426	Clumping foster D	4-10, 17-45, 120-127, 135-141,	D:9, E:1,	aa 706-762	210):16/41 D:n.d.	11, 63
2344	ORF0420	Ciumping factor B	168-180, 187-208, 216-224, 244-	F:3, H: 4	aa 810-852	D.II.d.	11,03
			254, 256–264, 290–312, 322–330,	1.3, 11. 4	aa 610 652	1,7	
			356-366, 374-384, 391-414, 421-	· .			
			428, 430-437, 442-449, 455-461,				
			464-479, 483-492, 501-512, 548-			j	
		1	555, 862–868, 871–876, 891–904				
2351	ORF0418	aureolysin	10-29, 46-56, 63-74, 83-105, 107-	A:1, C: 6	aa 83-156	A:GSBXO46(83-	10, 62
			114, 138–145, 170–184, 186–193,			156):14/29	
			216-221, 242-248, 277-289, 303-				
			311, 346-360, 379-389, 422-428,	ł			
		<u> </u>	446-453, 459-469, 479-489, 496-	l			
		1	501	1 .			İ

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigenic	number	·		clones per	immuno-	gion (positive/total)	+Prot)
protein				ORF and	genic region		
				screen			
2359	ORF0409	ISSP, immuno-	4-29, 92-99, 119-130, 228-236,	B:4, F:11		,	9,61
		genic secreted	264-269, 271-280, 311-317, 321-		aa 206-220	184):1/1	
		protein precursor,	331, 341-353, 357-363, 366-372,		aa 297-309	B:GSBXD62(205-	
		putative	377–384, 390–396, 409–415, 440–			220):1/1	
			448, 458–470, 504–520, 544–563,			B:GSBXC17(297-	
			568-581, 584-592, 594-603, 610-			309):6/27	
			616			F:SALAL04(205-	
			10.02.40.55.60.57.85.00.120	C.I. D.Z	aa 198-258	220):9/41 C:GSBYI73(646-	8, 60
2378	ORF0398	SrpA	18-23, 42-55, 69-77, 85-98, 129-	C:1, D:7, F:4, H:11		727): 2/9	8,00
			136, 182–188, 214–220, 229–235,	F:4, II:11	aa 846-857	F:SALAO33(846-	
			242-248, 251-258, 281-292, 309- 316, 333-343, 348-354, 361-367,		aa 2104~	857):10/41	·
	ŀ		!		2206	D:n.d.	
			393-407, 441-447, 481-488, 493-		2200	D.n.u.	
			505, 510-515, 517-527, 530-535,	[
			540-549, 564-583, 593-599, 608- 621, 636-645, 656-670, 674-687,				
			697-708, 726-734, 755-760, 765-				
	ľ		772, 785–792, 798–815, 819–824,				
			826-838, 846-852, 889-904, 907-				
	[913, 932-939, 956-964, 982-1000,				1
1			1008-1015, 1017-1024, 1028-1034,				
			1059-1065, 1078-1084, 1122-1129,				
			1134-1143, 1180-1186, 1188-1194,	1			
			1205-1215, 1224-1230, 1276-1283,				
			1333–1339, 1377–1382, 1415–1421,	İ			
1			1448-1459, 1467-1472, 1537-1545,				1
			1556-1566, 1647-1654, 1666-1675,				
			1683-1689, 1722-1737, 1740-1754,				
			1756-1762, 1764-1773, 1775-1783,				
		1	1800-1809, 1811-1819, 1839-1851,				
			1859-1866, 1876-1882, 1930-1939,				1
			1947-1954, 1978-1985, 1999-2007,				ļ
1	l .		2015-2029, 2080-2086, 2094-2100,				
	1		2112-2118, 2196-2205, 2232-2243		<u> </u>		
2466	ORF0302	YycH protein	16-38, 71-77, 87-94, 105-112, 124-	D:14	aa 401-494	D:n.d.	7, 59
·			144, 158–164, 169–177, 180–186,				
	ŀ	-	194–204, 221–228, 236–245, 250–				
			267, 336–343, 363–378, 385–394,	ĺ			
	lon mare		406-412, 423-440, 443-449	C:1	aa 414-455	C:GSBYH60(414-	169,170
2470	ORF0299	Conserved hypo-	4-9, 17-41, 50-56, 63-69, 82-87,	C:3	da 414-433	455):28/31	109,170
		thetical protein	108-115, 145-151, 207-214, 244-			7337.20131	
			249, 284–290, 308–316, 323–338,	1		1.	
			348-358, 361-378, 410-419, 445-				
			451, 512–522, 527–533, 540–546,				
	1	•	553-558, 561-575, 601-608, 632-				
ŀ			644, 656–667, 701–713, 727–733,				
1	1		766-780			<u> </u>	

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigenic	number	(=,		clones per	immuno-	gion (positive/total)	+Prot)
protein	Humber			ORF and	genic region	,	
protess				screen	goine region		
2498	ORF0267	Conserved hypo-	33-43, 45-51, 57-63, 65-72, 80-96,	D:12	aa 358-411	D:17/21	6, 58
		thetical protein	99-110, 123-129, 161-171, 173-179,		aa 588-606		
			185-191, 193-200, 208-224, 227-	}			
			246, 252–258, 294–308, 321–329,				
			344-352, 691-707				
2548	ORF2711	IgG binding	4-16, 24-57, 65-73, 85-91, 95-102,	A:55,	aa 1-48	A:GSBXK68(1	53, 105
		protein A	125-132, 146-152, 156-163, 184-	B:54,	aa 47-143	73):21/30	
			190, 204–210, 214–221, 242–252,	C:35,	aa 219-285	A;GSBXK41(47-	
			262-268, 272-279, 300-311, 320-	F:59,	aa 345-424	135):1/1	
	,	, ·	337, 433-440, 472-480, 505-523	G:56,		A:GSBXN38(219-	
			•	H:38		285):19/30	
l i				İ		A:GSBXL11(322-	
					•	375):10/30	
						B:GSBXB22(406-	
						418):37/71	
						F:SALAM17(406	
						418):29/41	
2577	ORF2683	Hypothetical pro-	4-21, 49-56, 65-74, 95-112, 202-	C:6	aa 99-171	C:GSBYL56(99-	149, 157
		tein	208, 214–235			171):1/1	
2642	ORF2614	unknown	34-58, 63-69, 74-86, 92-101, 130-	C:1, E:1	aa 5-48	C:bhe3(5-	52, 104
			138, 142–150, 158–191, 199–207,		}	48):25/30 ^{##}	
3664	ORF2593	Conserved hypo-	210-221, 234-249, 252-271 7-37, 56-71, 74-150, 155-162, 183-	D:35	aa 77-128	D:n.đ.	51, 103
2664	OKF2593	1	203, 211–222, 224–234, 242–272	D.33	ad 11-120	D.II.U.	31, 103
2670	ORF2588	thetical protein Hexose transporter		D:16	aa 328-394	D:n.d.	50, 102
150,0	014 -000		102-153, 180-195, 198-218, 254-				
			280, 284-296, 301-325, 327-348,				
	ļ]	353-390, 397-402, 407-414, 431-				
			455				
2680	ORF2577	Coagulase ·	4-18, 25-31, 35-40, 53-69, 89-102,	C:26, G:4,	aa 438-516	C:GSBYH16(438-	148, 156
			147-154, 159-165, 185-202, 215-	H:8	aa 505-570	516):3/5	
			223, 284-289, 315-322, 350-363,	1	aa 569-619	C:GSBYG24(505-	
			384-392, 447-453, 473-479, 517-	l.		570):1/7	'
			523, 544-550, 572-577, 598-604,		'	C:GSBYL82(569-	
1			617–623	<u> </u>		619):2/7	
2740	ORF2515	Hypothetical pro-	5-44, 47-55, 62-68, 70-78, 93-100,	D:4	aa 1-59	D:n.d.	49, 101
		tein	128-151, 166-171, 176-308	1 77 12	12.62.125	1.00DX04046	40 100
2746	ORF2507	homology with	5-12, 15-20, 43-49, 94-106, 110-	A:1, H:13	aa 63-126	A:GSBXO40(66-	48, 100
		ORFI	116, 119–128, 153–163, 175–180,			123):8/29	
	1		185-191, 198-209, 244-252, 254-				
0702	ORF2470	unknown	264, 266–273, 280–288, 290–297 10–27, 37–56, 64–99, 106–119, 121–	B:3, E:2,	aa 183-200	B:GSBXE85(183-	47, 99
2797	UKF24/0	unknown	136, 139–145, 148–178, 190–216,	F:13, H:3	aa 349-363	200):11/27	", "
			225-249, 251-276, 292-297, 312-	1, 1	ua 5-75 505	F:SALAQ47(183-	
			· ·	1		200):8/41	
		<u></u>	321, 332–399, 403–458	L	.L	200).0/41	

S.	Öld	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigenie	number			clones per	immuno-	gion (positive/total)	+Prot)
protein				ORF and	genic region		
•				screen			
2798	ORF2469	Lipase (geh)	12-35, 93-99, 166-179, 217-227,	A:41,	aa 48-136	C:GSBYG01(48-	46, 98
			239–248, 269–276, 288–294, 296–	B:42, C:3,	aa 128-172	136):2/6	
			320, 322–327, 334–339, 344–356,	F:35, G:1,	aa 201-258	A:GSBXM31-	
			362-371, 375-384, 404-411, 433-	H:11		bmd12(128-	
			438, 443-448, 455-464, 480-486,			188):11/30	
			497-503, 516-525, 535-541, 561-	ł		B:GSBXE16(165-	
			570, 579-585, 603-622, 633-641	1		177):10/30	
						A:GSBXN20(201-	
						258):8/30	
[F:SALAW05(165-	
			•			177):13/41	
2815	ORF2451	Conserved hypo-	5-32, 34-49	D:21	aa 1-43	D:n.d.	45, 97
		thetical protein					
2914	ORF2351	metC	39-44, 46-80, 92-98, 105-113, 118-		aa 386-402	A:GSBXM18(386-	44,96
			123, 133–165, 176–208, 226–238,	F:2		402):17/29	
			240-255, 279-285, 298-330, 338-	İ	ļ		
]	345, 350-357, 365-372, 397-402,				
"			409-415, 465-473, 488-515, 517-	٠.			
			535, 542-550, 554-590, 593-601,				
			603-620, 627-653, 660-665, 674-		Ì		
			687, 698–718, 726–739				10.05
2960	ORF2298	putative Exotoxin	13-36, 40-49, 111-118, 134-140,	C:101,	aa 1-85	C:GSBYG32(1-	43, 95
			159-164, 173-183, 208-220, 232-	E:2, H:58	aa 54-121	85)::6/7	
	t		241, 245–254, 262–271, 280–286,		aa 103-195	C:GSBYG61-	
		İ	295-301, 303-310, 319-324, 332-			bhe2(54-121):26/30	
	Ta !	İ	339			C:GSBYN80(103-	
			10.00.10.16.60.05.06.00.114	G2 E2	00 100	195):13/17	147, 155
2963	ORF2295	putative Exotoxin	13-28, 40-46, 69-75, 86-92, 114-	C:3, E:3,	aa 22-100	C:GSBYJ58(22-	147, 155
			120, 126–137, 155–172, 182–193,	G:1		100):9/15	
			199-206, 213-221, 232-238, 243-	l		L)	
2000	ORF1704	homology with	253, 270-276, 284-290 4-21, 28-40, 45-52, 59-71, 92-107,	A:2, C:1,	aa 21-118	A:GSBXL06(21-	33, 85
3002	OKF1704	1 "		H:4	44 21-110	118):50/52	55, 65
1		ORF1 ,	123-137, 159-174, 190-202, 220-	111.4		110).30/32	
1			229, 232–241, 282–296, 302–308,	1			
L	l	1	312-331	1		<u> </u>	<u></u>

S.	Old	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity	Seq ID no:
aureus	ORF	(by homology)		lected	identified	with relevant re-	(DNA
antigenic	number			clones per	immuno—	gion (positive/total)	+Prot)
protein				ORF and	genic region		
				screen			
3200	ORF1331	putative extracel-	6-15, 22-32, 58-73, 82-88, 97-109,	A:11,	aa 5-134	A:GSBXL07(5-	29, 81
		lular matrix bind-	120-131, 134-140, 151-163, 179-	B:11,		134):6/28	
		ing protein	185, 219–230, 242–255, 271–277,	C:36			
			288-293, 305-319, 345-356, 368-				
			381, 397-406, 408-420, 427-437,				
			448-454, 473-482, 498-505, 529-				
			535, 550–563, 573–580, 582–590,				
			600-605, 618-627, 677-685, 718-			•	
			725, 729-735, 744-759, 773-784,	٠	,		
			789-794, 820-837, 902-908, 916-				
			921, 929–935, 949–955, 1001–1008,				
			1026-1032, 1074-1083, 1088-1094,				
			11081117, 11371142, 11591177,				
			1183-1194, 1214-1220, 1236-1252,		•		
			1261-1269, 1289-1294, 1311-1329,				
			1336-1341, 1406-1413, 1419-1432,				
			1437–1457, 1464–1503, 1519–1525,		•		
			1531-1537, 1539-1557, 1560-1567,				
			1611–1618, 1620–1629, 1697–1704,				
			1712–1719, 1726–1736, 1781–1786,			,	
			17971817, 18481854, 18791890,				
			1919–19 25, 1946–1953, 1974–1979				

Table 2b: Additional immunogenic proteins identified by bacterial surface and ribosome display: S. aureus

Bacterial surface display: A, LSA250/1 library in fhuA with patient sera 1 (655); B, LSA50/6 library in lamB with patient sera 1 (484); C, LSA250/1 library in fhuA with IC sera 1 (571); E, LSA50/6 library in lamB with IC sera 2 (454); F, LSA50/6 library in lamB with patient sera P1 (1105); G, LSA50/6 library in lamb with IC sera 1 (471); H, LSA250/1 library in fhuA with patient sera 1 (IgA, 708). Ribosome display: D, LSA250/1 library with IC sera (1686). **, prediction of antigenic sequences longer than 5 amino acids was performed with the programme ANTIGENIC (Kolaskar and Tongaonkar, 1990). ORF, open reading frame; CRF, reading frame on complementary strand; ARF, alternative reading frame.

<i>aureus</i> antige ni c protein	(by homology)					
		1	lected	ldentified	region (positive/total)	no:
c protein			clones	immuno-		(DNA
			per ORF	genic region		+Prot)
1			and			
			screen			
ARF028 I	Putative protein	7–14	F:6	aa 25-43	SALAM59(25-43): 1/1	401, 402
CRF014 I	Putative protein	18-28, 31-37, 40-47, 51-83, 86-126	F:5	aa 81∸90	SALAZ40(81-90): 2/12	403, 404
	Putative protein	4-24, 26-46, 49-86	G:8	aa 60-76	SALAJ87(60-76): n.d.	365, 378
	Putative protein	40-46	A:6, B:2,	aa 5-38	A:GSBXK03(7-36):28/69	391, 392
8	- •		C:47,		B:GSBXD29(10-20):10/27	
			E:35			
CRF033 1	Unknown	4–17	D:3	aa 1-20	D:n.d.	469; 486
	Putative protein	4-28, 31-53, 58-64	B:13, F:5	aa 18-34	GSBXF31(19-34): 1/7	366, 379
	Unknown	4–20	D: 7	aa 1-11	D:n.d.	470; 487
8 CRF075	Putative protein	4-11, 18-24, 35-40	G:44	aa 25-39	SALAG92(26-39): n.d.	367, 380
0	r utative protein	11, 10 24, 33 40		Lat. 25 55	57. m. 107. (20° 57). m. 1.	307,300
CRF114 I	Unknown	4–57	D:28	aa 16-32	D:n.d.	464; 481
	Putative protein	4-25, 27-56	F:6	aa 36-46	SALAR23(36-46): n.d.	368, 381
CRF125 I	Putative protein	19-25, 38-47, 55-74, 77-87	G:5	aa 5467	SALAG65(54–67): n.d.	369, 382
	Unknown	8-15; 18-24; 27-38	D: 5	aa 5-33	D:n.d.	471; 488
CRF176	Putative protein	4-9, 23-41, 43-58, 71-85	C:3	aa 1-22	C:GSBYI30(1-22):1/1	407, 408
	Unknown	8–161	D: 5	aa 76-127	D:n.d.	465; 482
1	Unknown	4-28; 30-36	D: 272	aa 1-17	D:n.d.	472; 489
5 CRF186	Unknown	6-11; 13-34; 36-50	D:8 .	aa 4-27	D;n.d.	466; 483
1 CRF192	Putative protein	4-9, 17-30	F:9	aa 13-22	SALAR41(13-22): n.d.	370, 383
8 CRF200	Putative protein	18-38	F:13	aa 16-32	SALAM75(16-32); n.d.	371, 384
4 CRF215	Putative protein	4-15, 30-58	F:9	aa 54-66	SALAQ54(54-66):1/12	372, 385
5						<u> </u>
CRF218 1	Putative protein	4-61, 65-72, 79-95, 97-106	E:13	aa 86-99	GSBZE08(86-99): n.d.	373, 386
	Unknown	4–13	D: 3	aa 17-39	D:n.d.	473; 490
CRF230	Putative protein	4-9, 22-33, 44-60	C:5	aa 80-116	GSBYL75(80-116): n.d.	374, 387
5 CRF234	Putative protein	4-23, 30-44, 49-70	F:8	aa 46-55	SALAW31(46-55); n.d.	375, 388
1 CRF234 9	Putative protein	4-32, 39-46, 62-69, 77-83	B:10, F:4	aa 46-67	GSBXC92(52-67):2/11	376, 389

S.	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with relevant	Seq ID
aureus	(by homology)		lected	identified	region (positive/total)	no:
antigeni			clones	immuno-		(DNA
c protein			per ORF	genic region	,	+Prot)
. p. 0.00			and			
			screen			
CRF235	Unknown	4-18	D: 3	aa 3-18	D:n.d.	475; 492
6						
	Unknown	4-31	D: 9	aa 7-21	D:n.d.	476; 493
2		,				
CRF249	Putative protein	4-29, 31-41	G:8	aa 2-15	SALAF30(3-15): n.d.	377, 390
8						
CRF255	Unknown	4-35; 37-42	D: 4	aa 1-20	D:n.d.	474; 491
3						467, 404
CRF257	Unknown	5-25; 30-39	D: 11	aa 9-30	D;n,d.	467; 484
8						477, 404
CRF266	Unknown	11–21	D: 17	aa 1-14	D:n,d.	477; 494
4			D.A	40 50	SALAQ25(40-56): 1/1	405, 406
CRF272	Putative protein	10-41, 50-57	F:3	aa 40-56	SALAQ23(40-30). 1/1	405,400
9			D: 78	aa 17-40	D:n.d.	478; 495
CRF286	Unknown	4–43	ט: וט	aa 17-40	D.ii.d.	,
3/1	77.1	4–46	D: 78	aa 44-49	D;n.d.	479; 496
CRF286	Unknown	4-40	D. 70		2,2.0	1
3/2 CRFA00	Unknown	17-39;52-59	D: 3	aa 38-55	D:n.d.	463; 480
	Circiowa	1, 33,32 33			'	l
2 CRFNI	Unknown	5-20; 37-44; 52-59; 87-94; 116-132	D: 4	aa 94-116	D:n.d.	468; 485
ORF018	UDP-N-acetyl-	11-18, 43-56, 58-97, 100-118, 120-	B:4, F:29	aa 197-210	SALAM14(198-209): n.d.	397, 398
8	D-mannosamine	148, 152–171, 195–203, 207–214,	Į			
	transferase, puta-	220-227, 233-244				
	tive	·	i			
ORF025	Multidrug efflux	4-33, 35-56, 66-99, 109-124, 136-	D: 3	aa 155-175	D: n.d.	297,325
4	transporter	144, 151–180, 188–198, 201–236,				
	1	238-244, 250-260, 266-290, 294-				
		306, 342–377				
ORF030	Conserved hypo-	4-23, 25-67, 76-107, 109-148	D: 3	aa 9 44	D; n.d.	298, 326
7	thetical protein					
ORF045	Conserved hypo-	4-35, 41-47, 55-75, 77-89, 98-113,	D: 5	aa 105-122	D: n.d.	299, 327
2	thetical protein	116-140, 144-179, 194-215, 232-	1			1
		254, 260-273, 280-288, 290-302,		1		
		315-323, 330-369, 372-385, 413-432				
ORF045	Na+/H+Antiporter	4-81	D: 66	aa 1-21	D: n.d.	300, 328
6			1			201 200
ORF055		5-23, 50-74, 92-99, 107-122, 126-	D : 10	aa 1-18	D: n.d.	301, 329
6	binding protein	142, 152–159, 172–179, 188–196,				
		211-218, 271-282	<u> </u>		<u> </u>	202 22
ORF062	Hypothetical	9-44, 63-69, 75-82, 86-106, 108-	D: 313	aa 13 – 37	D: n.d.	302, 330
9	Protein	146, 153-161, 166-178, 185-192,	1			
		233-239, 258-266, 302-307		<u></u>	1 .	

S.	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with relevant	Seq ID
aureus	(by homology)		lected	identified	region (positive/total)	no:
antigeni			clones	immuno-	,	(DNA
c protein			per ORF	genic region		+Prot)
•			and			
			screen			
ORF063	GTP-binding	10-19, 22-32, 95-105, 112-119, 121-	F:3	aa 107-119	F:SALAX70(107-119):10/41	393, 395
7	protein TypA	133, 140-154, 162-174, 186-200,				
		207-224, 238-247, 254-266, 274-				
		280, 288–294, 296–305, 343–351,	j			
		358-364, 366-373, 382-393, 403-				1
		413, 415-422, 440-447, 499-507,	1			
		565-575, 578-588				
ORF071	Conserved	22-51, 53-71, 80-85, 93-99, 105-	D: 3	aa 487 - 513	D: n.d.	303, 331
3	hypothetical	112, 123-146, 151-157, 165-222,			•	
	transmembrane	226-236, 247-270, 290-296, 301-				
	protein, putative	324, 330-348, 362-382, 384-391,				
		396-461, 463-482, 490-515				
ORF078	Cell division pro-	104-111, 158-171, 186-197, 204-	D: 4	aa 152 – 178	D: n.d.	304, 332
8	tein	209, 230–247, 253–259, 269–277,				
		290-314, 330-340, 347-367, 378-388				
ORF079	Conserved	11-40, 56-75, 83-102, 112-117, 129-	D:12	aa 196 -218	D; n.d.	305, 333
7	hypothetical	147, 154–168, 174–191, 196–270,	ļ	ļ		1 1
	protein	280-344, 354-377, 380-429, 431-	ł			
1		450, 458–483, 502–520, 525–532,				
		595-602, 662-669, 675-686, 696-				
1	·	702, 704–711, 720–735, 739–748,	l			
		750-756, 770-779, 793-800, 813-				l
		822, 834-862				224 224
ORF083 .	Cell Division Pro-	34-91, 100-119, 126-143, 147-185,	D:5	aa 26 – 56	D: n.d.	306, 334
6	tein	187-197, 319-335, 349-355, 363-				
		395, 397-412, 414-422, 424-440,			·] [
		458-465, 467-475, 480-505, 507-			1	
		529, 531-542, 548-553, 577-589,	l	1		
i		614-632, 640-649, 685-704, 730-	1			
		741, 744–751, 780–786	<u> </u>	1.05 1.50	n 1	207 225
ORF131	Amino acid per-	11-21, 25-32, 34-54, 81-88, 93-99,	D: 8	aa127 - 152	D: n.d.	307, 335
8	mease	105-117, 122-145, 148-174, 187-				
		193, 203–218, 226–260, 265–298,	1			
ļ		306-318, 325-381, 393-399, 402-	Ì		İ	
		421, 426-448	P. C	420, 422	E:GSBZE16(420-432):5/41	197, 216
ORF132	Pyruvat kinase	4-11, 50-67, 89-95, 103-109, 112-	E:6	aa 420-432	E.U3DAE10(42U-432);3/41	157, 210
11		135, 139–147, 158–170, 185–204,				
		213-219, 229-242, 248-277, 294-				
		300, 316–323, 330–335, 339–379,				
		390-402, 408-422, 431-439, 446-].		
		457, 469–474, 484–500, 506–513,				1
	<u> </u>	517-530, 538-546, 548-561				

S.	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with relevant	Seq ID
aureus	(by homology)	•	lected	identified	region (positive/total)	no:
antigeni	(0)		clones	immuno-		(DNA
c protein			per ORF	genic region		+Prot)
c proten			and			
		ļ	screen			
ORF138	LPXTG cell wall	11-31, 86-91, 103-111, 175-182,	D: 3	aa 508 - 523	D: n.d.	308, 336
8	anchor motif	205-212, 218-226, 242-247, 260-		1		
ľ		269, 279-288, 304-313, 329-334,				
		355-360, 378-387, 390-399, 407-				1 1
		435, 468–486, 510–516, 535–547,				
		574-581, 604-615, 635-646, 653-			•	
		659, 689-696, 730-737, 802-812,				
		879-891, 893-906, 922-931, 954-				1
		964, 997-1009, 1031-1042, 1089-				
1		1096, 1107-1120, 1123-1130, 1149-				1 1
· ·		1162, 1176-1184, 1192-1207, 1209-				1.
		1215, 1253-1259, 1265-1275, 1282-				
		1295, 1304-1310, 1345-1361, 1382-				
		1388, 1394–1400, 1412–1430, 1457–				
		1462, 1489-1507, 1509-1515, 1535-		Ì		.
		1540, 1571–1591, 1619–1626, 1635–				
		1641, 1647–1655, 1695–1701, 1726–			'	
		1748, 1750–1757, 1767–1783, 1802–				
	1	1807, 1809–1822, 1844–1875, 1883–	İ			
İ	}	1889, 1922-1929, 1931-1936, 1951-				
		1967, 1978–1989, 1999–2008, 2023–			· ·	
		2042, 2056-2083, 2101-2136, 2161-				
		2177				
ORF140	3,4-dihydroxy-2-	18-23, 32-37, 54-63, 65-74, 83-92,	E:3	aa 121-137	E:GSBZB68(121-137):7/41	198, 217
2	butanone-4-	107-114, 123-139, 144-155, 157-	1			
	phosphate syn-	164, 191-198, 232-240, 247-272,				1 .
1	thase	284-290, 295-301, 303-309, 311-				
1		321, 328-341, 367-376	<u> </u>		·	
ORF147	hemolysin II	4-36, 39-47, 57-65, 75-82, 108-114,	F:1	aa 245-256	F:SALAP76(245-256):6/41	199, 218
3	(LukD-Leuktoxin)	119-126, 135-143, 189-195, 234-				
1		244, 250-257, 266-272, 311-316	<u> </u>		<u> </u>	: 000 000
ORF152	Iron uptake regu-	13-27, 29-44, 46-66, 68-81, 97-116,	D:3	aa 120- 135	D: n.d.	309, 337
3 .	lator	138-145		101 110	E GAT DO00(104, 118)-7/41	200, 219
ORF170	į.	4-23, 57-77, 89-103, 119-125, 132-	F:1	aa 104-118	F:SALBC82(104-118):7/41	200, 219
7	protein, 60 kDa	172, 179–197, 210–254, 256–265,	1			
		281-287	D. 2	aa 293 - 31	2 Drnd	310, 338
ORF175	i amiB	5-10, 16-24, 62-69, 77-96, 100-115	D: 3		2 1. 1kd.	3.0, 550
4		117-126, 137-156, 165-183, 202-				
		211, 215-225, 229-241, 250-260,				1
	1	267-273, 290-300, 302-308, 320-	1			
		333, 336–342, 348–356, 375–382,	1			
		384-389			1	

Corpute	Seq ID
natigeni c protein c protein CRF178 Mrp protein G(mtB) 192-197, 206-213, 215-220, 225-231, 249-258, 273-279, 281-287, 300-306, 313-319, 323-332, 335-341, 344-3451, 360-382, 407-431, 443-448, 459-468, 475-496, 513-520, 522-537, 543-550, 556-565, 567-573, 580-585, 593-615, 619-631, 633-642, 670-685, 688-698, 759-766, 768-782, 799-808, 842-848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1806-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-22298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF188 ORF189 The motein of the drug of the drug of the drug of the drug of the drug of the drug of the drug of the drug of 5-27, 79-85, 105-110, 138-165, 183- ORF201 Putative drug of 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205 - 224 D: n.d.	no:
c protein	(DNA
ORF178 Mrp protein 5-29, 46-52, 70-76, 81-87, 155-170, F:2 aa 850-860 F:SALAQ36(850-860):8/41 192-197, 206-213, 215-220, 225- 231, 249-258, 273-279, 281-287, 300-306, 313-319, 323-332, 335- 341, 344-351, 360-382, 407-431, 443-448, 459-468, 475-496, 513- 520, 522-537, 543-550, 556-565, 567-573, 580-585, 593-615, 619- 631, 633-642, 670-686, 688-698, 759-766, 768-782, 799-808, 842- 848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 2076-1876, 183-188, 18, 133-138 18, 133-138, 1	+Prot)
ORF178 Mrp protein 5-29, 46-52, 70-76, 81-87, 155-170, 152 aa 850-860 F:SALAQ36(850-860):8/41 192-197, 206-213, 215-220, 225-231, 249-258, 273-279, 281-287, 300-306, 313-319, 323-332, 335-341, 344-3418, 459-468, 475-496, 513-520, 522-537, 543-550, 556-565, 567-573, 580-585, 593-615, 619-631, 633-642, 670-686, 688-698, 759-766, 768-782, 799-808, 842-848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-4475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C	
ORF178 Mrp protein (fintB) 5-29, 46-52, 70-76, 81-87, 155-170, F:2 aa 850-860 F:SALAQ36(850-860):8/41 192-197, 206-213, 215-220, 225-231, 249-258, 273-279, 281-287, 300-306, 313-319, 323-332, 335-341, 344-351, 360-382, 407-431, 443-448, 459-468, 475-496, 513-520, 522-537, 543-550, 556-565, 567-573, 580-585, 593-615, 619-631, 633-642, 670-686, 688-698, 759-766, 768-782, 799-808, 842-848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- 18:5 aa 75-90 E:GSBZB15(75-90):6/41 notein 12 (rpiB) ribosomal protein 12 (rpiB) 131-39, 48-54, 61-67, 75-83, 90-98, F:4 aa 239-257 F:SALAV36(239-257):19/41 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
3 (fmtB) 192–197, 206–213, 215–220, 225– 231, 249–258, 273–279, 281–287, 300–306, 313–319, 323–332, 335– 341, 344–351, 360–382, 407–431, 443–448, 459–468, 475–496, 513– 520, 522–537, 543–550, 556–565, 567–573, 580–585, 593–615, 619– 631, 633–642, 670–686, 688–698, 759–766, 768–782, 799–808, 842– 848, 868–877, 879–917, 945–950, 979–988, 996–1002, 1025–1036, 1065–1084, 1101–1107, 1113–1119, 1125–1142, 1163–1169, 1183–1189, 1213–1219, 1289–1301, 1307–1315, 1331–1342, 1369–1378, 1385–1391, 1410–1419, 1421–1427, 1433–1447, 1468–1475, 1487–1494, 1518–1529, 1564–1570, 1592–1609, 1675–1681, 1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF184 Map–ND2C 4–27, 42–66, 70–76, 102–107, 113– 8 protein 118, 133–138 ORF189 ribosomal protein 118, 133–138 ORF189 ribosomal protein 119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	201, 220
300-306, 313-319, 323-332, 335- 341, 344-341, 360-382, 407-431, 443-448, 459-468, 475-496, 513- 520, 522-537, 543-550, 556-565, 567-573, 580-585, 593-615, 619- 631, 633-642, 670-686, 688-698, 759-766, 768-782, 799-808, 842- 848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1933-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- 8 protein 118, 133-138 ORF199 ribesomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 12 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
341, 344–351, 360–382, 407–431, 443–448, 459–468, 475–496, 513– 520, 522–537, 543–550, 556–565, 567–573, 580–583, 593–615, 619– 631, 633–642, 670–686, 688–698, 759–766, 768–782, 799–808, 842– 848, 868–877, 879–917, 945–950, 979–988, 996–1002, 1025–1036, 1065–1084, 1101–1107, 1113–1119, 1125–1142, 1163–1169, 1183–1189, 1213–1219, 1289–1301, 1307–1315, 1331–1342, 1369–1378, 1385–1391, 1410–1419, 1421–1427, 1433–1447, 1468–1475, 1487–1494, 1518–1529, 1564–1570, 1592–1609, 1675–1681, 1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF189 ORF184 Map–ND2C 4–27, 42–66, 70–76, 102–107, 113– 8 protein 118, 133–138 ORF189 ribosomal protein 118, 133–138 ORF189 ribosomal protein 11, 133–148, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	1
443–448, 459–468, 475–496, 513– 520, 522–537, 543–550, 556–565, 567–573, 580–585, 593–615, 619– 631, 633–642, 670–686, 688–698, 759–766, 768–782, 799–808, 842– 848, 868–877, 879–917, 945–950, 979–988, 996–1002, 1025–1036, 1065–1084, 1101–1107, 1113–1119, 1125–1142, 1163–1169, 1183–1189, 1213–1219, 1289–1301, 1307–1315, 1331–1342, 1369–1378, 1385–1391, 1410–1419, 1421–1427, 1433–1447, 1468–1475, 1487–1494, 1518–1529, 1564–1570, 1592–1609, 1675–1681, 1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF189 ORF189 ribosomal protein 118, 133–138 ORF189 ribosomal protein 11, 133–138 ORF189 ribosomal protein 11, 133–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	
520, 522-537, 543-550, 556-565, 567-573, 580-585, 593-615, 619- 631, 633-642, 670-686, 688-698, 759-766, 768-782, 799-808, 842- 848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 11125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- 8 protein 118, 133-138 ORF189 ribosomal protein 18, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D.5 aa 205-224 D: n.d.]
567-573, 580-585, 593-615, 619-631, 633-642, 670-686, 688-698, 759-766, 768-782, 799-808, 842-848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113-8, protein 118, 133-138 ORF189 ribosomal protein 118, 133-138 ORF189 ribosomal protein 11-19, 123-145, 160-167, 169-176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183-D:5 aa 205-224 D: n.d.	
631, 633–642, 670–686, 688–698, 759–766, 768–782, 799–808, 842– 848, 868–877, 879–917, 945–950, 979–988, 996–1002, 1025–1036, 1065–1084, 1101–1107, 1113–1119, 1125–1142, 1163–1169, 1183–1189, 1213–1219, 1289–1301, 1307–1315, 1331–1342, 1369–1378, 1385–1391, 1410–1419, 1421–1427, 1433–1447, 1468–1475, 1487–1494, 1518–1529, 1564–1570, 1592–1609, 1675–1681, 1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF184 Map—ND2C 4–27, 42–66, 70–76, 102–107, 113– 8 protein 118, 133–138 ORF189 ribosomal protein 31–39, 48–54, 61–67, 75–83, 90–98, 1 L2 (rplB) 103–119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	
759-766, 768-782, 799-808, 842- 848, 868-877, 879-917, 945-950, 979-988, 996-1002, 1025-1036, 1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
848, 868–877, 879–917, 945–950, 979–988, 996–1002, 1025–1036, 1065–1084, 1101–1107, 1113–1119, 1125–1142, 1163–1169, 1183–1189, 1213–1219, 1289–1301, 1307–1315, 1331–1342, 1369–1378, 1385–1391, 1410–1419, 1421–1427, 1433–1447, 1468–1475, 1487–1494, 1518–1529, 1564–1570, 1592–1609, 1675–1681, 1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF184 Map–ND2C 4–27, 42–66, 70–76, 102–107, 113– 8 protein 118, 133–138 ORF189 ribosomal protein 31–39, 48–54, 61–67, 75–83, 90–98, 1 L2 (rplB) 103–119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205–224 D: n.d.	
979–988, 996–1002, 1025–1036, 1065–1084, 1101–1107, 1113–1119, 1125–1142, 1163–1169, 1183–1189, 1213–1219, 1289–1301, 1307–1315, 1331–1342, 1369–1378, 1385–1391, 1410–1419, 1421–1427, 1433–1447, 1468–1475, 1487–1494, 1518–1529, 1564–1570, 1592–1609, 1675–1681, 1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF184 Map–ND2C 4–27, 42–66, 70–76, 102–107, 113– E:5 aa 75–90 E:GSBZB15(75–90):6/41 8 protein 118, 133–138 ORF189 ribosomal protein 31–39, 48–54, 61–67, 75–83, 90–98, F:4 aa 239–257 F:SALAV36(239–257):19/41 1 L2 (rplB) 103–119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	
1065-1084, 1101-1107, 1113-1119, 1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	1
1125-1142, 1163-1169, 1183-1189, 1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- E:5 aa 75-90 E:GSBZB15(75-90):6/41 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	1
1213-1219, 1289-1301, 1307-1315, 1331-1342, 1369-1378, 1385-1391, 1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
1331–1342, 1369–1378, 1385–1391, 1410–1419, 1421–1427, 1433–1447, 1468–1475, 1487–1494, 1518–1529, 1564–1570, 1592–1609, 1675–1681, 1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF184 Map–ND2C 4–27, 42–66, 70–76, 102–107, 113– 8 protein 118, 133–138 ORF189 ribosomal protein 31–39, 48–54, 61–67, 75–83, 90–98, 1 L2 (rplB) 103–119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	
1410-1419, 1421-1427, 1433-1447, 1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- E:5 aa 75-90 E:GSBZB15(75-90):6/41 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
1468-1475, 1487-1494, 1518-1529, 1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- E:5 aa 75-90 E:GSBZB15(75-90):6/41 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
1564-1570, 1592-1609, 1675-1681, 1686-1693, 1714-1725, 1740-1747, 1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468	
1686–1693, 1714–1725, 1740–1747, 1767–1774, 1793–1807, 1824–1841, 1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF184 Map–ND2C 4–27, 42–66, 70–76, 102–107, 113– 8 protein 118, 133–138 ORF189 ribosomal protein 31–39, 48–54, 61–67, 75–83, 90–98, 1 L2 (rplB) 103–119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	
1767-1774, 1793-1807, 1824-1841, 1920-1937, 1953-1958, 1972-1978, 1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	}
1920–1937, 1953–1958, 1972–1978, 1980–1986, 1997–2011, 2048–2066, 2161–2166, 2219–2224, 2252–2257, 2292–2298, 2375–2380, 2394–2399, 2435–2440, 2449–2468 ORF184 Map–ND2C 4–27, 42–66, 70–76, 102–107, 113– E:5 aa 75–90 E:GSBZB15(75–90):6/41 protein 118, 133–138 ORF189 ribosomal protein 31–39, 48–54, 61–67, 75–83, 90–98, 1 L2 (rplB) 103–119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	
1980-1986, 1997-2011, 2048-2066, 2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- E:5 aa 75-90 E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E:D E:GSBZB15(75-90):6/41 E:D E	i
2161-2166, 2219-2224, 2252-2257, 2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- E:5 aa 75-90 E:GSBZB15(75-90):6/41 8 protein 118, 133-138 ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, 1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
2292-2298, 2375-2380, 2394-2399, 2435-2440, 2449-2468 ORF184 Map-ND2C	
CRF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- E:5 aa 75-90 E:GSBZB15(75-90):6/41	
ORF184 Map-ND2C 4-27, 42-66, 70-76, 102-107, 113- E:5 aa 75-90 E:GSBZB15(75-90):6/41 8 protein 118, 133-138 ORF189 ribosomal protein 131-39, 48-54, 61-67, 75-83, 90-98, L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
8 protein 118, 133–138 ORF189 ribosomal protein 31–39, 48–54, 61–67, 75–83, 90–98, F:4 aa 239–257 F:SALAV36(239–257):19/41 1 L2 (rplB) 103–119, 123–145, 160–167, 169– 176, 182–193, 195–206, 267–273 ORF201 Putative drug 5–27, 79–85, 105–110, 138–165, 183– D:5 aa 205 – 224 D: n.d.	
ORF189 ribosomal protein 31-39, 48-54, 61-67, 75-83, 90-98, F:4 aa 239-257 F:SALAV36(239-257):19/41 1	202, 221
1 L2 (rplB) 103-119, 123-145, 160-167, 169- 176, 182-193, 195-206, 267-273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	203, 222
176, 182–193, 195–206, 267–273 ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205 - 224 D: n.d.	203, 222
ORF201 Putative drug 5-27, 79-85, 105-110, 138-165, 183- D:5 aa 205-224 D: n.d.	
OR 201 I many cores	311, 339
	321,000
transporter 202, 204–225, 233–259, 272–292,	
298-320, 327-336, 338-345, 363- 376, 383-398, 400-422, 425-470,	ŀ
489-495, 506-518, 536-544, 549-	
554, 562–568, 584–598, 603–623	1
ORF202 lactase permease, 10-33, 38-71, 73-103, 113-125, 132- E:2 aa 422-436 E:GSBZF58(422-436):6/41	204, 223
7 putative 147, 154–163, 170–216, 222–248,	
250–269, 271–278, 287–335, 337–	
355, 360-374, 384-408, 425-442,	
453-465, 468-476, 478-501, 508-529	
ORF208 Hemolysin II 8-27, 52-59, 73-80, 90-99, 104-110, D: 3 aa 126 - 147 D: n.d.	312, 34
7 (putative) 117–124, 131–140, 189–209, 217–	- 1
232, 265–279, 287–293, 299–306	

S.	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with relevant	Seq ID
aureus	(by homology)		lected	identified	region (positive/total)	no:
antigeni			clones	immuno-		(DNA
c protein			per ORF	genic region	•	+Prot)
-	,		and			
			screen			
ORF209	preLukS	8-26, 75-82, 118-126, 136-142, 163-	F:2	аа 270-284	F:SALAQ77(270-284):23/41	205, 224
0	~	177, 182–189, 205–215, 221–236,				
		239-248, 268-274				
ORF209	Hemolysin II	5-22, 30-47, 58-65, 75-81, 87-92,	F:3	aa 238-253	F:SALAQ67(237-252):10/41	206, 225
2	(preLUK-F)	99–105, 107–113, 119–126, 189–195,				
		217-223, 234-244, 250-257, 266-272				
ORF210	Multidrug	10-28, 30-43, 50-75, 80-113, 116-	D: 9	aa 54 - 104	D: n.d.	313, 341
7	resistance protein	125, 136–167, 170–191, 197–245,				
	(putative)	253-329, 345-367, 375-396				
ORF219	Transcriptional	20-31, 46-52, 55-69, 74-79, 89-97,	D: 3	aa 15 – 35	D: n.d.	314,
2	regulator GntR	108-113, 120-128, 141-171, 188-214				342
	family, putative					
ORF230	Amino acid per-	25-79, 91-103, 105-127, 132-149,	D: 53	aa 363 - 393	D: n.d.	315, 343
5	mease	158-175, 185-221, 231-249, 267-				
		293, 307–329, 336–343, 346–359,		,	•	
		362-405, 415-442, 446-468	<u> </u>			
ORF232	Citrate dransporter	10-77, 85-96, 99-109, 111-138, 144-	D: 7	aa 37 – 83	D: n.d.	316, 344
4		155, 167–176, 178–205, 225–238,				
		241-247, 258-280, 282-294, 304-		ļ.	·	٠.
4.		309, 313–327, 333–383, 386–402,				
		405-422, 429-453	7.16	077 007		212 245
ORF242	i -	7–26, 28–34, 36–53, 55–73, 75–81,	D: 16	aa 275 – 295	D; n.d.	317, 345
2	family protein	87-100, 108-117, 121-138, 150-160,				
		175-181, 184-195, 202-215, 221-			·	
		247, 265–271, 274–314, 324–337,				
		341-412, 414-423, 425-440, 447-				
		462, 464–469	D.2	1 00	D	210 246
ORF255	SirA	5-22, 54-78, 97-103, 113-123, 130-	D:3	aa 1 – 22	D: n.d.	318, 346
3		148, 166–171, 173–180, 192–201,				1
OPPOSS	211 2 2 2 2 2 2 2	254-261, 266-272, 310-322	E.2	22_48	E:GSBZB37(32-48):11/41	207, 226
1		20-35, 37-50, 96-102, 109-120, 123-	E:2	aa 32–48	E:G8BZB37(32-46):11/41	207, 220
5	aminase	137, 141–150, 165–182, 206–224,				İ
ĺ		237-256, 267-273, 277-291, 300-		1.		1
OPERS	M. William and	305, 313–324 11–63, 79–129, 136–191, 209–231,	D: 8	aa 84 - 100	D: n.d.	319, 347
ORF255	Multidrug resis-		D. 8	aa 64 - 100	D. 11.0.	319, 547
8	tance efflux pro-	237-250, 254-276, 282-306, 311-	ļ	}		İ
ORF261	ten, putative	345, 352–373, 376–397 4–30, 34–40, 79–85, 89–98, 104–118,	D: 13	aa 114 - 141	Dind	320, 348
	Cap5M	124-139, 148-160, 167-178	D. 13	24 114 - 141	D: n.u.	320, 346
0 ORF261	Cap5P (UDP-N-	4-9, 17-24, 32-38, 44-54, 68-82,	B:3, F:11	aa 321-341	F:SALAU27(325-337):9/41	208, 227
3		89–95, 101–120, 124–131, 136–142,	,11	Jul 321 371	A TOTAL COLICOLO SOLITORIA	
ľ	2-epimerase)	145-157, 174-181, 184-191, 196-				
	2 opiniciase)	204, 215–224, 228–236, 243–250,				
		259-266, 274-281, 293-301, 314-				
			1			
<u> </u>	<u> L</u>	319, 325-331, 355-367, 373-378		<u> </u>	<u> </u>	.—

S.	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with relevant	Seq ID
aureus	(by homology)	•	lected	identified	region (positive/total)	no:
antigeni	(5)		clones	immuno-		(DNA
e protein			per ORF	genic region		+Prot)
o protein			and	g		
			screen			
ORF262	Hypothetical pro-	9-15, 28-36, 44-62, 69-88, 98-104,	F:6	aa 694-708	F:SALBD82(1288-1303):9/41	209, 228
8	tein	111-136, 139-149, 177-186, 195-		aa 790-800]]
		217, 224–236, 241–257, 260–278,		aa 1288		
		283-290, 292-373, 395-408, 411-		1305		
		443, 465-472, 475-496, 503-520,				
		552-559, 569-589, 593-599, 607-				
		613, 615–636, 648–654, 659–687,				
		689-696, 721-733, 738-759, 783-				
ŀ		789, 795-801, 811-823, 827-836,				
		839-851, 867-875, 877-883, 890-				
		898, 900-908, 912-931, 937-951,				
	:	961-992, 994-1002, 1005-1011,	•			
		1016-1060, 1062-1074, 1088-1096,				
		1101-1123, 1137-1153, 1169-1192,				i i
		1210-1220, 1228-1239, 1242-1251,				
		1268-1275, 1299-1311, 1322-1330,				
	ĺ	1338-1361, 1378-1384, 1393-1412,				
		1419-1425, 1439-1459, 1469-1482,			,	
		1489-1495, 1502-1519, 1527-1544,			÷	
		1548-1555, 1600-1607, 1609-1617,				
		1624-1657, 1667-1691, 1705-1723,				
		1727–1742, 1749–1770, 1773–1787,		•	·	
		1804-1813, 1829-1837, 1846-1852,		ļ		
		1854–1864, 1869–1879, 1881–1896,		1		
		1900-1909, 1922-1927, 1929-1935,				
		1942-1962, 1972-2005, 2009-2029,				
}	,	2031–2038, 2055–2076, 2101–2114,			·	
		2117-2124, 2147-2178, 2188-2202,				
		2209-2217, 2224-2230, 2255-2266,				
		2271-2280, 2282-2302, 2307-2316,				
1		2319-2324, 2379-2387	 			
ORF264	PTS system, su-	8-15, 24-30, 49-68, 80-93, 102-107,	F:4	aa 106-159	F:SALAW60(106-125):3/41	210, 229
4	crose-specific	126-147, 149-168, 170-180, 185-				
	IIBC component	193, 241–305, 307–339, 346–355,	Ì			
		358-372, 382-390, 392-415, 418-				
		425, 427-433, 435-444, 450-472				
ORF265	Oligopeptide ABC	5-61, 72-84, 87-99, 104-109, 124-	D: 5	aa 182 -209	D: n.d.	321, 349
4	transporter, puta-	145, 158–170, 180–188, 190–216,				1
	tive	223-264, 270-275, 296-336, 355-372	ļ			011 000
ORF266	maltose ABC	1,	F:1	aa 306-323	F:SALBC05(306-323):2/41	211, 230
2	transporter, puta-	161, 199–205, 219–235, 244–258,				
}	tive	265-270, 285-291, 300-308, 310-]]	
		318, 322–328, 346–351, 355–361,		1		
	1	409-416	<u> </u>	<u> </u>		ــــــــــــــــــــــــــــــــــــــ

S.	Putative function	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with relevant	Seq ID
aureus	(by homology)		lected	identified	region (positive/total)	no:
antigeni			clones	immuno-	_	(DNA
c protein	1		per ORF	genic region		+Prot)
			and			
		!	screen	,		
ORF271	sorbitol	4-12, 19-40, 61-111, 117-138, 140-	B:2, F:4	aa 244-257	F:SALAX93(249-256):6/41	212, 231
0	dehydrogenase	153, 161-180, 182-207, 226-235,			·	
	}	237-249, 253-264, 267-274, 277-			,	
		292, 311-323		İ		
ORF274	Hypothetical pro-	4-41, 49-56, 61-67, 75-82, 88-104,	D: 188,	aa 303 - 323	D: n.d.	322, 350
2	tein	114-125, 129-145, 151-165, 171-	H:4	Ì		
}		178, 187-221, 224-230, 238-250,				
		252-275, 277-304, 306-385				
ORF278	brnQ	4-29, 41-63, 74-95, 97-103, 107-	D: 3	aa 26 40	D; n.d.	323, 351
0		189, 193-209, 220-248, 260-270,	ŀ			ŀ
		273-299, 301-326, 328-355, 366-	}			
		397, 399-428				
ORF280	Phage related pro-	10-17, 23-29, 31-37, 54-59, 74-81,	F:3	aa 104-116	F:SALBC34:1/I	213, 232
6	tein	102-115, 127-137, 145-152, 158-				
1		165, 178–186, 188–196, 203–210,				
		221-227, 232-237				
ORF290	Conserved hypo-	4-27, 34-43, 62-73, 81-90, 103-116,	D: 24	aa 360 - 376	D: n,d,	324, 352
0	thetical protein	125-136, 180-205, 213-218, 227-	.			
}		235, 238-243, 251-259, 261-269,	ļ.			{ ·
	1	275-280, 284-294, 297-308, 312-				
}	}	342, 355–380, 394–408, 433–458,				
		470-510, 514-536, 542-567		<u> </u>		
ORF293	conserved	4-19, 43-54, 56-62, 84-90, 96-102,	E:6	aa 22~37	E:GSBZA13(22~37):7/41	214, 233
1	hypothetical	127-135, 157-164, 181-187	Ì			1
	protein		<u> </u>			202 221
ORF295	Exotoxin 2	7-19, 26-39, 44-53, 58-69, 82-88,	F;1	aa 154-168	F:SALBB59(154~168):4/41	215, 234
8		91-107, 129-141, 149-155, 165-178,				
		188-194	77.5		T. CODYTY C	200 400
ORF297	Surface protein,	9-23, 38-43, 55-60, 69-78, 93-101,	H:5	aa 1-70	H:GSBYU66: n.d.	399, 400
0	putative	103-112, 132-148, 187-193, 201-		1		
		208, 216-229, 300-312, 327-352,	1			
l	ł	364-369, 374-383, 390-396, 402-		1		1
<u> </u>	<u> </u>	410, 419-426, 463-475, 482-491	<u></u>	L	<u> </u>	<u> </u>

Table 2c: Immunogenic proteins identified by bacterial surface and ribosome display: S. epidermidis.

Bacterial surface display: A, LSE150 library in fhuA with patient sera 2 (957); B, LSE70 library in lamB with patient sera 2 (1420); C, LSE70 library in lamB with patient sera 1 (551). Ribosome display: D, LSE150 in pMAL4.31 with P2 (1235). **, prediction of antigenic sequences longer than 5 amino acids was performed with the programme ANTIGENIC (Kolaskar and Tongaonkar,

1990). ORF, open reading frame; ARF, alternative reading frame; CRF, reading frame on complementary strand. ORF, open reading frame; CRF, reading frame on complementary strand.

S. <i>epidermidi</i> s antigenic protein	Putative function (by homology)	predicted immunogenic aa**	No. of selected clones per ORF and screen	Location of identified immuno— genic region	Serum reactivity with relevant region (positive/total)	Seq ID no: (DNA +Prot)
ARF0172	cation-transport- ing ATPase, EI- E2 family	4–34, 37–43	D:6	aa332	D: nd	497, 548
ARF0183	condensing en- zyme, putative, FabH-related	4-22, 24-49	D:4	aa1-52	D: nd	498, 5 49
ARF2455	NADH dehydrogenase, putative	4-29	D:3	aa1-22	D: nd	499, 550
CRF0001	Unknown	4-14, 16-26	D:3	aa5-21	D: nd	500, 551
CRF0002	Unknown	4-13, 15-23, 36-62	D:5	aa2170	D: nd	501, 552
CRF0003	Unknown	4-12, 14-28	D:3	aa 4–31	D: nd	502, 553
CRF0004	Unknown	5-15, 35-71, 86-94	D:4	aa31-72	D: nd	503, 554
CRF0005	Unknown	8-26, 28-34	D:3	aa:9-33	D: nd	504, 555
CRF0006	Unknown	4-11, 15-28	D:3	aa10-22	D: nd	505, 556
CRF0007	Unknown	4-19, 30-36	D:3	aa 7-44	D: nd	506, 557
CRF0008	Unknown	10-48	D:4	aa:9-44	D: nd	507, 558
CRF0009	Unknown	41883	D:3	aa5-14	D: nd	508, 559
CRF0192	Putative protein	4-23, 25-68	C:4	aa 15-34	C:GSBBM10(15-34): n.d.	445, 446

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by homology)	predicted minutings and da	selected	identified	region (positive/total)	no:
s antigenic	(by homology)		clones	immuno-	region (postere total)	(DNA
protein		.*	per ORF	genic region		+Prot)
brotein			-	genic region		+Prot)
			and		j	
CRF0275	Putative protein	4-40, 49-65	screen B;5	aa 35-68	B;SELAK28(35-68); n.d.	447,
CKI-02/3	rutative protein	14 40,45 03	B.3	aa 55 00	D.5CLAR26(55 00). n.u.	448
CRF0622	Putative protein	4-12, 17-57, 62-70, 75-84, 86-100	C:4	aa 75-99	C:GSBBR74(76-99); n.d.	449,
	•	, , , , , , , , , , , , , , , , , , , ,	1			450
CRF0879	Putative protein	4-14, 38-44	A:3, B:10	aa 9-40	B:SELAC39(10-40): n.d.	451,
						452
CRF1004	Putative protein	4-40	A:3, B:5	aa 2965	B:SELAI63(35-63): n.d.	453,
						454
CRF2248	Putative protein	410, 1940, 5364, 7491	C:30	aa 74-111	C:GSBBN64(16-35): n.d.	455,
CDTCCC	Dati	4 10 25 41 00 00	A.10	41 07	A. GENERAL AGAIL OCT	456
CRF2307	Putative protein	4-19, 35-41, 80-89	A:19	aa 4187	A:SEFAL47(41-87):n.d.	457,
CRF2309	Putative protein	15-21	B:6	aa 4-16	B:SELAL02(4-16): n.d.	458 459,
CIG 2309	1 dimerve protein	13 21	D.0	4 10	D.O.D.C. TOJ. II.d.	460
CRF2409	Putative protein	625	B:6	aa 2-24	B:SELAB48(5-24): n.d.	461,
	-				, ,	462
ORF0005	hypothetical pro-	13-27, 33-67, 73-99, 114-129, 132-	D:3	aa105-128	D: nd	509,
014.0003	-		15.5	aa103 120	D. IId	
	tein	158, 167–190, 193–234, 237–267,				560
		269-299, 316-330, 339-351, 359-				
		382, 384423				
ORF0008	Streptococcal he-	9-14, 16-24, 26-32, 41-50, 71-79,	B:2	aa 895-926	B:SELAF79(895-926): 7/12	239,
	magglutinin	90-96, 177-184, 232-237, 271-278,				268
		293–301, 322–330, 332–339, 349–				
		354, 375–386, 390–396, 403–409,				
		453-459, 466-472, 478-486, 504-				
		509, 518525, 530541, 546552,	٠.			
		573-586, 595-600, 603-622, 643-]		
		660, 668–673, 675–681, 691–697,				
		699-711, 713-726, 732-749, 753-				
		759, 798–807, 814–826, 831–841,				
		846-852, 871-878, 897-904, 921-	ļ		i .	j,
		930, 997–1003, 1026–1031, 1033– 1039, 1050–1057, 1069–1075, 1097–			t	
		1103, 1105–1111, 1134–1139, 1141–		· .		
		1147, 1168–1175, 1177–1183, 1205–				
,		1211, 1213–1219, 1231–1237, 1241–		ļ ·		
		1247, 1267–1273, 1304–1309, 1311–				
		1317, 1329–1335, 1339–1345, 1347–	ļ		·	
		1353, 1382–1389, 1401–1407, 1411–				
		1417, 1447–1453, 1455–1461, 1483–				1
į		1489, 1491–1497, 1527–1533, 1545–				
		1551, 1556–1561, 1581–1587, 1591–	Ü	1		
		1597, 1627–1638, 1661–1667, 1684–				
		1689, 1691–1697, 1708–1715, 1719–				
		1725, 1765-1771, 1813-1820, 1823-				
		1830, 1835–1856	1			1
		· · · · · · · · · · · · · · · · · · ·				

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by homology)	•	selected	identified	region (positive/total)	no:
s antigenic			clones	immuno−		(DNA
protein			per ORF	genic region		+Prot)
			and			
ORF0038	extracellular	6-25, 29-35, 39-45, 64-71, 82-88,	screen C:6	aa 136-165	C:GSBBN08(136-165):1/1	353,359
OKI 0050	i i	96-102, 107-113, 119-131, 170-176,				
		186-192, 196-202, 215-220, 243-				
		248, 302–312, 345–360, 362–371,				
		378–384, 458–470, 478–489, 495–				l
ORF0099	hypothetical	504 6-18, 31-37, 42-49, 51-67, 73-85,	D:5	aa218-265	D: nd	510,
OKF0099		87–93, 102–109, 119–126, 150–157,	2.5			561
	protein	,				
		170-179; 185-191, 204-214, 217-				
	}	223, 237–248, 269–275, 278–316,				
		320-340, 359-365				
ORF0101	hypothetical	4-10, 15-27, 67-94, 123-129, 167-	D:18	aa26-109	D: nd	511,
	protein	173, 179–184, 187–198, 217–222,				562
• •		229-235, 238-246				
ORF0121	C4-dicarboxylate	4-20, 24-62, 73-86, 89-106, 110-	D:5	aa323-379	D: nd	512,
	transporter, an-	122, 131–164, 169–193, 204–213,				563
	aerobic, putative	219-236, 252-259, 263-281, 296-				
		306, 318–324, 328–352, 356–397,				
		410–429				
ORF0143	amino acid per-	25-79, 91-103, 105-127, 132-150,	D:35	aa247-339	D: nd	513,
	mease	157-174, 184-206, 208-219, 231-				564
		249, 267–294, 310–329, 336–343,				
		346-405, 417-468	,			
ORF0162	Immunodominant	4-27, 35-45, 52-68, 83-89, 113-119,		aa 90-227	B:SELAA19(100-118): 1/I	240,
	Antigen A	133-150, 158-166, 171-176, 198-	B:11;		B:SELAE24(170-190): 11/12	269
		204, 219–230	C:153			
ORF0201	capa protein,	10-17, 27-53, 81-86, 98-105, 126-	D:9	aa11-53	D: nd	514,
	putative	135, 170-176, 182-188, 203-217,			ļ	565
		223-232, 246-252, 254-269, 274-	Ì			
		280, 308-314	<u> </u>	<u> </u>		-
ORF0207	Ribokinase (rbsK)	1 ' '	B:10	aa 20-45	B:SELAQ30 (20-45): 12/12	241, 270
	*.	108-114, 126-132, 134-156, 161- 186, 191-197, 210-224, 228-235,				
		239-248, 258-264, 275-290				
ORF0288	LrgB	7-28, 34-56, 68-119, 127-146, 149-	D:4	aa112-149	D: nd	515,
		180, 182–189, 193–200, 211–230				566

S. epidermidi s antigenic protein	Putative function (by homology)	predicted immunogenic aa**	No. of selected clones per ORF	Location of identified immuno- genic region	Serum reactivity with relevant region (positive/total)	Seq ID no: (DNA +Prot)
protein			and screen	Bama ragian		
ORF0304	Herpęsvirus saimiri ORF73 homolog, putative	8-16, 30-36, 83-106, 116-122, 135- 143, 152-165, 177-188, 216-225	D:8	aa69-117	D: nd	516, 567
ORF0340	nitrate transporter	7-21, 24-93, 101-124, 126-139, 141-156, 163-179, 187-199, 202- 242, 244-261, 267-308, 313-322, 340-353, 355-376	D:5	aa238~309	D: nd	517, 595
ORF0346	hypothetical pro-	8–27, 65–73, 87–93, 95–105	D:8	aa 1–29	D: nd	518, 568
ORF0355	conserved hypothetical protein	5-30, 37-43, 57-66, 85-94, 103-111, 118-125	C:5	aa 63-86	C:GSBBL39(63-86):1/1	354, 360
ORF0356	conserved hypo-	4-14, 21-53, 60-146, 161-173, 175- 182, 190-198, 200-211	D:5	aa51-91	D: nd	519, 569
ORF0406	hypothetical pro-	12–32, 35–63, 68–102, 106–137, 139–145, 154–168, 173–185, 203– 222, 230–259, 357–364, 366–374	D:19	aa1-48, aa69-102	— D: nd	520, 570
ORF0425	amino acid per- mease	40-58, 75-86, 93-110, 117-144, 150-173, 199-219, 229-260, 264- 300, 317-323, 329-356, 360-374, 377-390, 392-398, 408-424, 427- 452	D:3	ав401-440	D: nd	521, 571
ORF0442	SceB precursor	7-22, 42-48, 55-66, 83-90, 109-118, 136-141	C:38	аа 60-102	C:GSBBM60(65-84):1/1	355, 361
ORF0448	SsaA precursor	6-25, 39-47, 120-125, 127-135, 140-148, 157-168, 200-208, 210- 220, 236-243, 245-254	C:170	aa 15-208	C:GSBBN58(81-105):1/1 C:GSBBL13(167-184):1/1 C:GSBBL25(22-45):1/1	356, · 362
ORF0503	Ribosomal protein L2	31–39, 48–54, 61–67, 75–83, 90–98, 103–115, 123–145, 160–167, 169–176, 182–193, 195–206, 267–273	A:1, B:3	aa 212-273	B:SELAA47(238-259):12/12	242, 271
ORF0551	Conserved hypo- thetical protein	5-25, 29-36, 45-53, 62-67, 73-82, 84-91, 99-105, 121-142, 161-177, 187-193, 203-224, 242-251, 266- 271, 278-285	A:16, B:9	aa 162-213	B:SELAL12(164-197): 8/12	243, 272
ORF0556	hypothetical pro-	4-24, 30-41, 43-68, 82-90, 107-114, 123-143, 155-168	D:3	aa 126	D: nd	522, 596

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by homology)		selected	identified	region (positive/total)	no:
s antigenie	(4)		clones	immuno-		(DNA
protein			per ORF	genic region		+Prot)
			and			l
			screen			
ORF0623	Fumble, putative	10-17, 32-38, 55-72, 77-84, 88-96,	A:10,	aa 95-150	B:SELAB86(95-128): 3/12	244,
	· -	126-134, 152-160, 176-185, 190-	B:12; C:1			273
		203, 208-214, 217-225, 233-252,				
		257–262				
ORF0740	Hypothetical pro-	18-24, 47-61, 69-83, 90-96, 125-	B:3	aa 1093-	B:SELAB23(1097-1114): 7/12	245,
	tein	132, 140–163, 171–188, 222–249,		1114		274
		281-296, 305-315, 322-330, 335-	,			
		351, 354-368, 390-397, 411-422,				i i
		424-431, 451-469, 479-485, 501-				
		507, 517-524, 539-550, 560-568,				
ļ		588-599, 619-627, 662-673, 678-				
		689, 735-742, 744-749, 780-786,				
		797-814, 821-827, 839-847, 857-				
		863, 866-876, 902-911, 919-924,			,	
		967–982, 1005–1015, 1020–1026,			,	1.
		1062-1070, 1078-1090, 1125-1131,				
		1145-1150, 1164-1182, 1208-1213,				
		1215-1234, 1239-1251, 1256-1270,				
		1298-1303, 1316-1325, 1339-1349,		!		
		1362-1369, 1373-1384, 1418-1427,				
		1440-1448, 1468-1475, 1523-1532,				
		1536-1542, 1566-1573, 1575-1593,				
		1603-1619, 1626-1636, 1657-1667,		ł		
	ļ	1679–1687, 1692–1703, 1711–1718,				
		1740-1746, 1749-1757, 1760-1769,	l	İ		
		1815-1849, 1884-1890, 1905-1914,		1		
		1919–1925, 1937–1947, 1955–1963,				
	1	1970–1978, 2003–2032, 2075–2089,		· .		
		2117-2124, 2133-2140, 2146-2151,				
		2161-2167, 2173-2179, 2184-2196,				
	İ	2204-2220, 2244-2254, 2259-2264,				
1		2285-2296, 2300-2318, 2328-2334,				
		2347-2354, 2381-2388, 2396-2408,				
		2419-2446, 2481-2486, 2493-2500,	1			
		2506-2516, 2533-2540, 2555-2567,	1			
1	1	2576-2592, 2599-2606, 2615-2639,				1
		2647-2655	10.6	060.001	CICEDDNOLOCO COANTO	257
ORF0757	hypothetical	13-20, 22-28, 33-40, 60-76, 79-86,	C:6	aa 260-284	C:GSBBN01(260-284):1/1	357, 363
	protein	90-102, 112-122, 129-147, 157-170,	·			303
		178–185, 188–193, 200–205, 218–	1			
		228, 234–240, 243–250, 265–273,				
		285-291, 310-316, 330-348, 361-				
	<u> </u>	380, 399–405, 427–446, 453–464	<u> </u>	<u> </u>	1	

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by homology)		selected	identified	region (positive/total)	no:
s antigenic			clones	immuno-		(DNA
protein			per ORF	genic region		+Prot
			and			
			screen			
ORF0912	DNA mismatch	9-16, 28-39, 47-56, 69-76, 104-121,	A:25	aa 242-304	SEFAT31(242-290); n.d.	441,
	repair protein	124-130, 137-144, 185-195, 199-				442
		214, 238–243, 293–307, 317–337,				
		351-370, 385-390, 411-428, 472-				
		488, 498–516, 518–525, 528–535,				
		538-545, 553-559, 563-568, 579-				
		588, 592-607, 615-622, 632-638,				
		641-648, 658-674, 676-705, 709-				
		720, 727–739, 742–750, 753–760,				
		768-773, 783-788, 811-819, 827-	1			
		838				<u> </u>
ORF0923	GTP-binding	4-10, 18-27, 42-55, 64-72, 77-92,	B:13	aa 144-163	B:SELAD55(151-163): 8/12	246,
	protein	114-126, 132-157, 186-196, 206-	ļ			275
		217, 236–243, 257–280, 287–300,				
		306-312, 321-328, 338-351, 360-			•	
000000	~	367, 371–382, 385–399	1.0 P.10	10 61	T) OTT ATTOLOGY 103-5/10	247
ORF0979	Conserved hypo-	4-28, 44-51, 53-84, 88-107, 113-	A:9, B:18	aa 12-51	B:SELAH01(26-49):5/12	247, 276
	thetical protein	192				276
ORF0982	sodium/alanine	13-21, 24-50, 73-84, 91-118, 126-	D:3	aa277-305	D: nd	523,
	symporter (alsT)	133, 142–149, 156–175, 189–249,			• •	572
		251-273, 294-332, 339-347, 358-				
		381, 393-413, 425-448, 458-463				
ORF1230	Signal peptidase I	6-33, 44-59, 61-69, 74-82, 92-98,	D:14	aa 1-53	D: nd	524,
		133–146, 163–175				573
ORF1232	Exonuclease	4-12, 16-32, 36-48, 50-65, 97-127,	В:б	aa 188-219	B:SELAA13(188-216): n.d.	443,
-	RexA	136-142, 144-165, 176-190, 196-	 			444
		202, 211–222, 231–238, 245–251,				
		268-274, 280-286, 305-316, 334-				
•		356, 368–376, 395–402, 410–417,				1
		426-440, 443-449, 474-486, 499-			,	1
		508, 510-525, 540-549, 568-576,				
		608-617, 624-639, 646-661, 672-			•	1
		678, 688–703, 706–717, 727–734,				1
		743-755, 767-773, 783-797, 806-		1		
		814, 830-839, 853-859, 863-871,				İ
		877-895, 899-918, 935-948, 976-				
		990, 998-1007, 1020-1030, 1050-				
		1062, 1070–1077, 1111–1125, 1137–				
		1149, 1153-1160, 1195-1211				<u> </u>
ORF1284	permease PerM,	10-60, 72-96, 103-109, 127-133,	D:27	aa55-106	D: nd	525,
	putative	146-177, 182-189, 196-271, 277-				574
	Ī	289, 301-319, 323-344, 347-354	1			1

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by homology)	producted animalis going an	selected	identified	region (positive/total)	no:
s antigenic	(by nomorogy)		clones	imnuno-	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(DNA
protein		:	per ORF	genic region		+Prot)
proton			and	goine region.		
			screen			
ORF1319	2-oxoglularate	9-31, 36-45, 59-67, 71-81, 86-94,	B:5; C:1	aa 400-413	B:SELAF54(404-413): 11/12	248,
	decarboxylase	96-107, 111-122, 127-140, 153-168,			4	277
	(menD)	180-211, 218-224, 226-251, 256-				
		270, 272–289, 299–305, 310–323,		·		
		334-341, 345-353, 358-364, 369-				
		379, 384-390, 396-410, 417-423,]]
		429-442, 454-464, 470-477, 497-			,	
		505, 540-554				
ORF1326	autolysin AtlE	6-25, 40-46, 75-81, 150-155, 200-	B:7; C:5	aa 1282-	B:SELAD20(1282-1298): 10/12	249,
	(lytD)	205, 237–243, 288–295, 297–306,		1298		278
		308-320, 341-347, 356-363, 384-				
		391, 417-429, 440-452, 465-473,			•	
		481-514, 540-546, 554-560, 565-	1			
		577, 585-590, 602-609, 611-617,				
		625-634, 636-643, 661-668, 676-				1
		684, 718-724, 734-742, 747-754,		1		
		766-773, 775-781, 785-798, 800-		ļ		
		807, 825-832, 840-857, 859-879,				
	ĺ	886-892, 917-923, 950-956, 972-			•	
		978, 987-1002, 1028-1035, 1049-	l			
		1065, 1071–1099, 1111–1124, 1150–	İ			
		1172, 1185–1190, 1196–1207, 1234–				
	· ·	1241, 1261-1271, 1276-1281, 1311-				
		1320, 1325–1332			·	
ORF1333	quinol oxidase	4-27, 33-55, 66-88	D:4	аа 3—93	D: nd	526,
	polypeptide iv (ec					575
	1.9.3) (quinol	-			•	
·	oxidase aa3-600,		1			
	subunit qoxd)				; —)	
ORF1356	hypothetical pro-	9-36, 44-67, 74-97, 99-149, 161-	D:32	aa54—95	D; nd	527,
	tein	181, 189–198, 211–224, 245–253,				597
		267-273, 285-290, 303-324, 342-			į į	
		394, 396–427				
ORF1373	dihydrolipoamide	33-39, 42-78, 103-109, 126-136,	A:3, B:1	aa 124-188	A:SEFAP57(124-188): 2/12	250,
	acetyltransferase	184-191, 225-232, 258-279, 287-	}			279
		294, 306-315, 329-334, 362-379,				1
		381-404, 425-430				
ORF1381	hypothetical pro-	21-45, 62-67, 74-106, 108-142,	D:5	aa744	D: nd	528,
	tein	154-160, 230-236, 245-251, 298-				576
		305				
	<u> </u>		1	٠	<u> </u>	

S,	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by komology)	,	selected	identified	region (positive/total)	no:
s antigenic			clones	immuno-		(DNA
protein			per ORF	genic region		+Prot)
			and			
ORF1420	Muts2 protein,	8-32, 34-41, 46-55, 70-76, 81-89,	screen B:7	aa 581-608	B:SELAM40(581-604): 9/12	251,
ORI 1420	putative	97-115, 140-148, 153-159, 165-171,		LL 201 GGO	B.OLLIMITO(301 004). 312	280
	.	175-188, 207-239, 256-276, 280-				
		289, 297-319, 321-335, 341-347,				
		352-360, 364-371, 384-411, 420-				
		440, 449460, 495-502, 505-516,				
		560-566, 573-588, 598-605, 607-				
	·	614, 616–624, 674–694, 702–717				-
ORF1443	cell division	61–66, 111–117, 148–155, 173–182,	D:4	aa175-229	D: nd	529,
	protein (divIB)	194-224, 263-293, 297-303, 313-				577
		321, 334-343, 345-356, 375-381,				
		384-395, 408-429, 448-454				
ORF1500	Cell division pro-	100-107, 154-167, 182-193, 200-	A:2, B:3	aa 77-182	B:SELAP37(139-162): 9/12	252,
	tein FtsY	206, 223–231, 233–243, 249–257,				281
		265-273, 298-310, 326-336, 343-				
		362, 370–384	<u> </u>			
ORF1665	amino acid ABC	4-25 , 4 4-55 , 66-76, 82-90, 93-99,	D :5	aa 1~52	D: nd	530,
	transporter,	104-109, 176-209, 227-242, 276-			pr. 4-,	578
	permease protein	283, 287–328, 331–345, 347–376,				
	i	400-407, 409-416, 418-438, 441-			,	
		474			(,,,,)	
ORF1707	putative host cell	12-31, 40-69, 129-137, 140-151,	D:4	aa 20-76	D: nd	531,
	surface-exposed	163–171, 195–202, 213–218				598
	lipoprotein					
			<u> </u>			
ORF1786	D-3-	4-10, 16-32, 45-55, 66-78, 87-95,	D:5	aa400-442	D: nd	532,
	phosphoglycerate	103-115, 118-124, 135-150, 154-				579
	dehydrogenase,	161, 166-174, 182-193, 197-207,				
	putative	225-231, 252-261, 266-304, 310-				
		315, 339-347, 351-359, 387-402,	Ì			
		411-423, 429-436, 439-450, 454-				
		464, 498-505, 508-515				
ORF1849	yhjN protein	8-51, 53-69, 73-79, 85-132, 139-	D:5	aa254-301	D: nd	533,
,		146, 148-167, 179-205, 212-224,				580
		231-257, 264-293, 298-304, 309-				
		317, 322–351		1		
			<u> </u>	<u> </u>	<u> </u>	

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by homology)	•	selected	identified	region (positive/total)	no:
s antigenic			clones	immuno-		(DNA
protein			per ORF	genic region		+Prot)
			and		·	1
			screen			
ORF1877	protein-export	6-19, 26-39, 41-51, 59-67, 72-85,	D:7	aa367-409	D: nd	534,
	membrane protein	91-98, 104-111, 120-126, 147-153,				581
	SecD (secD-1)	158-164, 171-178, 199-209, 211-				
		218, 233–249, 251–257, 269–329,				
		362-368, 370-385, 392-420, 424-				
		432, 454-489, 506-523, 534-539,		:		
		550-556, 563-573, 576-596, 603-				
		642, 644-651, 655-666, 685-704,				
		706733, 747753				
				101 105	D 1	535,
ORF1912	unknown con-	23-35, 37-70, 75-84, 90-112, 129-	D:4	aa131-187	D: nd	
	served protein	135, 137–151, 155–180, 183–209,				582
	(conserved)	211-217, 219-225, 230-248, 250-			{	
		269, 274–284, 289–320, 325–353,				_
		357-371, 374-380, 384-399, 401-	Ì			
		411,				
ORF2015	Trehalose-6-	8-17, 30-54, 82-89, 94-103, 157-	A:3, B:8	aa 465-498	B:SELAH62(465-498): 5/12	253,
	phosphate	166, 178–183, 196–204, 212–219,				282
	hydrolase	222-227, 282-289, 297-307, 345-		-		
		364, 380–393, 399–405, 434–439, 443–449, 453–475, 486–492, 498–			·	
		507, 512–535, 538–548				1
ORF2018	Glucose-6-	4-16, 21-27, 39-51, 60-69, 76-83,	B:17	aa 250-287	B:SELAI19(250-279): 3/12	254,
	phosphate 1-DH	97-118, 126-132, 159-167, 171-177,				283
		192-204, 226-240, 247-259, 281-		Ì		
		286, 294-305, 314-320, 330-338,		}		
1	,	353-361, 367-372, 382-392, 401-				
_		413, 427-434, 441-447, 457-463	<u> </u>	<u> </u>		
ORF2040	LysM domain	51-56, 98-108, 128-135, 138-144,	D:23	aa259-331	D: nd	536,
	protein protein	152-158, 177-192, 217-222, 232-	l		·,	583
<u> </u>		251, 283–305, 406–431, 433–439		<u> </u>	(7	
ORF2098	PilB related	13-18, 36-43, 45-50, 73-79, 95-100,	A:60	aa 1-57	A:SEFAQ50(15-57): 5/12	255,
	protein	111-126, 133-139	-		₁	284
ORF2139	sodium:sulfate	7-12, 22-97, 105-112, 121-128,	D:41	aa42-118	D: nd	537,
	symporter family	130-146, 152-164, 169-189, 192-			• • • • • • • • • • • • • • • • • • • •	584
	protein, putative	203, 211–230, 238–246, 260–281,				
		304-309, 313-325, 327-357, 367-				
1		386, 398-444, 447-476, 491-512			-	

.s.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq 1D
epidermidi	(by homology)		selected	identified	region (positive/total)	no:
s antigenic			clones	immuno-		(DNA
protein		'	per ORF	genic region		+Prot)
			and			
ORF2172	SceB precursor	4-23, 28-34, 38-43, 45-51, 63-71,	screen A:438,	aa 6-215	B:SELAH53(188-209): 3/12	256,
Old 21/2	(lytE)	85-96, 98-112, 118-126, 167-174,	B:40, D:4	da 0 213	D.SELMISS(100 207). 3/12	285
		179-185, 219-228, 234-239, 256-				
		263				
ORF2200	zinc ABC	4-31, 33-40, 48-64, 66-82, 92-114,	D:19	aa162-225	D: nd	538,
	transporter,	118-133, 137-159, 173-246, 248-				585
	permease protein,	266				
	putative					
ORF2248	membrane protein,	411, 1734, 7278, 127137, 178-	D:17	aa1-59,	D: nd	539,
	MmpL family,	227, 229-255, 262-334, 352-380,		aa159-225,		586
	putative	397-405, 413-419, 447-454, 462-		aa634-674		
		467, 478-490, 503-509, 517-558,				,
		560-568, 571-576, 582-609, 623-				
		629, 631–654, 659–710, 741–746,		·		
		762-767, 771-777, 788-793, 856-				<u>.</u>
		867				
	Unknown con-	5-10, 18-29, 31-37, 66-178, 196-	B:4	aa 123-142	B:SELAG77(123-142): 12/12	257,
	served protein in	204, 206–213				286
ORF2282	others conserved hypo-	16-22, 41-50, 52-64, 66-74, 89-95,	A:4	aa 51-97	A:SEFAR88(51-97): 3/12	258,
I	thetical protein	107-114, 123-130, 135-159, 167-				287
		181, 193-199, 223-231, 249-264,				
		279–289				
ORF2376	DivIC homolog,	27-56, 102-107, 111-116	D:7	aa15-58	D: nd	540,
	putative					587
ORF2439	membrane-bound	4-9, 11-26, 36-56, 59-73, 83-100,	A:459,	aa 10-217	B:SELAC31(75-129): 12/12	259,
	lytic murein	116-130, 148-163, 179-193, 264-	B:2, D:53			288
1	transglycosidase	270, 277–287, 311–321				
	D, putative					
ORF2493	conserved hypo-	4-29, 37-77, 80-119	D:6	aa69-113	D: nd	541,
	thetical protein					588
ORF2535	ATP-binding	5-28, 71-81, 101-107, 128-135,	D:8	aa1-65	D: nd	542,
	cassette	146-52, 178-188, 209-214, 224-233,				589
	transporter-like	279-294, 300-306, 318-325, 342-				
	protein, putative	347, 351–357	1			

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
epidermidi	(by homology)	•	selected	identified	region (positive/total)	no:
s antigenic			clones	immuno-	•	(DNA
protein			per ORF	genic region	•	+Prot)
•			and			
			screen			
ORF2627	cation-	8-31, 34-80, 125-132, 143-153,	D:3	aa61-105	D: nd	543,
	transporting	159-165, 176-189, 193-198, 200-				590
	ATPase, EI-E2	206, 215–242, 244–262, 264–273,				
	family, putative	281-289, 292-304, 318-325, 327-				
	lainity, putative	,				
		338, 347–371, 404–416, 422–429,			,	
		432-450, 480-488, 503-508, 517-				1
		525, 539-544, 551-562, 574-587,				
		600-631, 645-670				
ORF2635	Hypothetical	4-10, 17-24, 26-42, 61-71, 90-96,	A:2, B:2	aa 139-169	B:SELAB63(138-163): 7/12	260,
	protein	102-111, 117-125, 158-164, 173-				289
		182, 193-201, 241-255, 268-283,				
		289-298, 305-319, 340-353, 360-				
		376, 384–390, 394–406				
ORF2669	Hypothetical	4-21, 35-42, 85-90, 99-105, 120-	A:14, B:8	aa 22-81	B:SELAE27(22-51): 5/12	261,
	protein	125, 148–155, 175–185, 190–196,	l,			290
		205-210, 217-225	<u> </u>			0.00
ORF2671	Hypothetical pro-	4-23, 43-49, 73-84, 93-98, 107-113,	1	aa 2368	B:SELAD21(36-61): 5/12	262,
	tein	156–163, 179–190, 197–204, 208–	B:14			291
		218, 225–231, 248–255	A:16, B:3	22.69	B:SELAE25(23-54): 2/12	263,
ORF2673	Hypothetical	4-20, 65-71, 99-105, 148-155, 171- 182, 190-196, 204-210, 221-228,	A:10, B :3	aa 23-06	D.SELAEZ3(23°34). 2/12	292
	protein	240-246		Ì	•	
ORF2694	Hypothetical	4-26, 93-98, 121-132, 156-163,	A:19,	aa 25-82	B:SELAB26(27-60): 5/12	264,
	protein	179-192, 198-204, 212-220, 225-	B:30			293
	Processi	238				
ORF2695	Hypothetical	4-26, 43-50, 93-98, 107-113, 156-	A:7	aa 22-78	A:SEFAH77(22-66): 6/12	265,
	protein	163, 179–190, 198–204, 212–218,				294
		225-231, 247-254				
ORF2719	two-component	5-52, 60-71, 75-84, 91-109, 127-	B:4	aa 123132	B:SELAA62(123-132): 6/12	266,
	sensor histidine	135, 141-156, 163-177, 185-193,	1			295
] .	kinase, putative	201-214, 222-243, 256-262, 270-				·
		279, 287-293, 298-303, 321-328,				1
		334-384, 390-404, 411-418, 427-				
		435, 438-448, 453-479, 481-498,				
	<u> </u>	503-509		<u> </u>		
ORF2728	Accumulation→	4-13, 36-44, 76-86, 122-141, 164-	A:265,	aa 803	B:SELAA10(850-878): 11/12	267,
	associated protein	172, 204–214, 235–242, 250–269,	B:448;	1001	•	296
	1	291-299, 331-337, 362-369, 377-	C:4, D:9			
		396, 419-427, 459-469, 505-524,				
		547-555, 587-597, 618-625, 633-			,	1
		652, 675-683, 715-727, 740-753,				1
		761-780, 803-811, 842-853, 962-				
1	<u> </u>	968, 1006–1020		1	<u> </u>	

S.	Putative function	predicted immunogenic aa**	No. of	Location of	Serum reactivity with relevant	Seq ID
<i>epiderm</i> idi	(by homology)		selected	identified	region (positive/total)	no:
s antigenic			clones	immuno-		(DNA
protein			per ORF	genic region		+Prot)
			· and			
ORF2740	lipase precursor	4-21, 190-200, 218-228, 233-241,	screen C:3	aa 110-177	C:GSBBL80(110-177):1/1	358,
Old 2710	tipuso producos	243~261, 276~297, 303~312, 316~				364
		325, 346-352, 381-387, 436-442,]]
	5.)	457~462, 495~505, 518~532, 543~				
	**	557, 574-593				
ORF2764	oligopeptide ABC	14-36, 62-131, 137-147, 149-162,	D:4	aa 6-41	D: nđ	544,
	transporter, per-	164-174, 181-207, 212-222, 248-				591
	mease protein,	268, 279-285				
	putative					
ORF2767	unknown con-	7-20, 22-35, 40-50, 52-61, 63-92,	D:4	aa276316	D: nd	545,
	served protein in	94-101, 103-126, 129-155, 161-178,				592
	others	192-198, 200-208, 210-229, 232-			•	
	,	241, 246-273, 279-332, 338-359,				
		369-383				
ORF2809	sodium:sulfate	4-29, 37-53, 56-82, 87-100, 108-	D:9	aa266-317,	D: nd	546,
	symporter family	117, 121-138, 150-160, 175-180,		aa357-401		593
	protein	189-195, 202-214, 220-247, 269-				
		315, 324-337, 341-355, 361-412,		}		
		414-423, 425-440, 447-467				
ORF2851	putative trans-	7-13, 20-32, 37-90, 93-103, 107-	D:11	aa137-185	D: nd	547,
	membrane efflux	126, 129–155, 159–173, 178–189,				594
	protein	195-221, 234-247, 249-255, 268-				
		303, 308–379				

Table 2d: Immunogenic proteins identified by bacterial surface and ribosome display: S. aureus (new annotation)

Bacterial surface display: A, LSA250/1 library in fhuA with patient sera 1 (655); B, LSA50/6 library in lamB with patient sera 1 (484); C, LSA250/1 library in fhuA with IC sera 1 (571); E, LSA50/6 library in lamB with IC sera 2 (454); F, LSA50/6 library in lamB with patient sera P1 (1105); G, LSA50/6 library in lamb with IC sera 1 (471). Ribosome display: D, LSA250/1 library with IC sera (1686). **, prediction of antigenic sequences longer than 5 amino acids was performed with the programme ANTIGENIC (Kolaskar and Tongaonkar, 1990); #, identical sequence present twice in ORF.

S.	Old	Putative	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with rele-	Seq
<i>aureus</i> an	ORF	function	·(lected	identified	vant region (positive/total)	ID no:
tigenic	number	(by homology)		clones per	immuno-		(DNA
protein				ORF and	genic re-		+Prot)
l e			· 	screen	gion		
SaA0003	ORF2967	repC	7-19, 46-57, 85-91, 110-117, 125-	B:3, C:14;	aa 9-42	C:GSBYI53(9-42):1/1	394,
	&	1	133, 140-149, 156-163, 198-204,	F:29	aa 156-241	C:GSBYG39(156-241):1/1	396
	ORF2963		236-251, 269-275, 283-290, 318-		aa 300-314	C:GSBYM94(343-420):26/30	
'			323, 347–363		aa 343-420		
ORF0123	ORF1909	unknown	4-10, 25-30, 38-57, 91-108, 110-	B:3, E:7,	aa 145–163	B:GSBXF80(150-163):5/27	409,
	18 aa at		123, 125-144, 146-177, 179-198,	G:1		E:GSBZC17(150-163):25/41	410
	N		216-224, 226-233				
	terminus						
ORF0160	ORF1941	unknown	4-26, 34-70, 72-82, 86-155, 160-	A:1	aa 96-172	A:GSBXO07(96-172):5/30	411,
	-16 aa at		166, 173–205, 207–228, 230–252,				412
	N	(260-268 , 280-313		1		
	terminus					D CCD47500 1 11 1 (600	413.
ORF0657	ORF un-	LPXTGVI	9-33, 56-62, 75-84, 99-105, 122-	1 '	aa 526-544	B:GSBXE07-bdb1(527-	414
	known	protein	127, 163–180, 186–192, 206–228,	F:15		542):11/71	414
]			233-240, 254-262, 275-283, 289-			F:SALAX70(526-544):11/41	1
•			296, 322-330, 348-355, 416-424,				
			426-438, 441-452, 484-491, 541-				1
			549, 563-569, 578-584, 624-641		50 101	L CODYD (0///0 10/) 7/70	415,
ORF1050	ORF1307	unknown	45-68, 72-79, 91-101, 131-142,	A:1, H:45	aa 53-124	A:GSBXM26(53-124):7/30	416
	-4 aa at		144-160, 179-201				410
	N-termi-						
	nus	1	12 04 10 10 11 10 00 110 114	Aiti	24-94	A.GCDVV60_hmd21/24_	417,
1	1	NifS protein	13-26, 40-49, 61-68, 92-112, 114-	A:I1	aa 24-84	A:GSBXK59-bmd21(24-	418
	-10 aa at	homolog	123, 138–152, 154–183, 194–200,			84):6/29	7,10
	N-		207-225, 229-240, 259-265, 271-				1
	terminus		284, 289–309, 319–324, 330–336,				
L	<u> </u>	<u> </u>	346-352, 363-372	1		<u> </u>	

ſ	s.	Old	Putative	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with rele-	Seq
1	aureusan	ORF	function	_	lected ·	identified	vant region (positive/total)	ID no:
1	tigenic	number	(by homology)		clones per	immuno–		(DNA
١	protein		,,		ORF and			+Prot)
	•				screen	gion		,
ŀ	ORF1632	ORF1163	SdrH homolog	4-31, 50-55, 243-257, 259-268,			B:GSBXG53(164-182):39/71	419,
		-4 aa at		298-316, 326-335, 364-370, 378-	F:34	aa 115-139	F:SALAP07(101-115):11/41	420
ı		N-		407		aa 158–186		
		terminus						
Ī	ORF2180	ORF0594	LPXTGIV	9-17, 24-45, 67-73, 82-90, 100-107,	A:3, C:3,	aa 491-587	A:GSBXS61(491-555):1/1	421,
1		2 aa at	protein	117-134, 137-145, 158-168, 176-	E:6, F:2,	aa 633-715	A:GSBXL64(494-585):1/1	422
		N-		183, 188–194, 206–213, 223–231,	H:6	aa 702	A:GSBXS92(758-841):1/I	
ı		terminus		243-248, 263-270, 275-282, 298-	,	757"	A:bmd4(702-757):16/30#	
١				304, 344–355, 371–377, 382–388,		aa 758-830	(A:bmd4(830-885):16/30)#	i i
١				427-433, 469-479, 500-505, 534-		(aa 830-	F:SALBC43(519-533):4/41	
ı				559, 597–607, 662–687, 790–815,		885)#		
				918-943, 1032-1037, 1046-1060,				
١				1104-1112, 1128-1137, 1179-1184,				
L				1197-1204, 1209-1214, 1221-1239		44.4 - 44		
ľ	ORF2184	ORF0590	FnbpB	10-29, 96-116, 131-137, 146-158,		1	` '	423,
		- 8 aa at		167-173, 177-182, 185-191, 195-	G:9	aa 774-847	A:GSBXR22(774~847):1/1	424
۱		N-termi-		201, 227–236, 260–266, 270–284,				
ı		nus		291-299, 301-312, 348-356, 367-				
ı				376, 382–396, 422–432, 442–453,				
				480-487, 497-503, 519-527, 543-				
ı				548, 559–565, 579–585, 591–601,				
1	1			616-623, 643-648, 657-663, 706- 718, 746-758, 791-796, 810-817,				
1				819-825, 833-839, 847-853, 868-				
				885, 887–895, 919–932		·		
ŀ	ORF2470	ORF0299	Conserved hv-	4-27, 36-42, 49-55, 68-73, 94-101,	C:3	aa 400-441	C:GSBYH60(400-441):28/31	425,
	ŀ	- 14 aa at		131-137, 193-200, 230-235, 270-				426
١	ŧ	N-	protein	276, 294-302, 309-324, 334-344,	•		,	
ı		terminus		347-364, 396-405, 431-437, 498-				
١	1			508, 513-519, 526-532, 539-544,				
١				547-561, 587-594, 618-630, 642-			,	
١				653, 687–699, 713–719, 752–766				
t	DRF2498	ORF0267	Conserved hy-	8-19, 21-44, 63-76, 86-92, 281-286,	D:12, F:6	aa 358-411	D:17/21	427,
١		ORF app.	pothetical	303-322, 327-338, 344-354, 364-		aa 588-606	F:SALAT38(895-909):8/41	428
l		580 aa	protein	373, 379–394, 405–412, 453–460,		aa 895–909		
-		longer at		501-506, 512-518, 526-542, 560-				
		N termi-		570, 577-583, 585-604, 622-630,				
1	Į	nus; plus		645-673, 677-691, 702-715, 727-				
		other		741, 748-753, 770-785, 789-796,				
		changes		851-858, 863-869, 876-881, 898-				
				913, 917–924, 979–986, 991–997,			•	
				1004-1009, 1026-1041, 1045-1052,				
				1107-1114, 1119-1125, 1132-1137,				
				1154-1169, 1173-1192, 1198-1204,				
				1240-1254, 1267-1274, 1290-1298,				
L				1612-1627	l			

S.	Old	Putative	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with rele-	Seq
<i>aureus</i> an	ORF	function		lected	identified	vant region (positive/total)	ID no:
tigenic	number	(by homology)		clones per	·immuno-		(DNA
protein			:	ORF and	genic re-		+Prot)
-			<i>:</i>	screen	gion	1	
ORF2548	ORF2711	lgG binding	4-37, 44-53, 65-71, 75-82, 105-112,	A:55,	aa 1-123	A:GSBXK68(1-73):21/30	429,
	-12 aa at	protein A	126-132, 136-143, 164-170, 184-	B:54,	aa 207-273	A:GSBXK41(35-123):1/1	430
İ	N-		190, 194-201, 222-232, 242-248,	C:35,	aa 310-410	A:GSBXN38(207-273):19/30	
	terminus		252-259, 280-291, 300-317, 413-	F:59,		A:GSBXL11(310-363):10/30	
			420, 452-460, 485-503	G:56,		B:GSBXB22(394-406):37/71	
				H:38		F:SALAM17(394-406):29/41	
ORF2746	ORF2507	homology with	4-9, 12-17, 40-46, 91-103, 106-113,	A:1, H:13	aa 63-126	A:GSBXO40(66-123):8/29	431,
	- 3 aa at	ORFI	116-125, 150-160, 172-177, 182-				432
	N-		188, 195-206, 241-261, 263-270,				
	terminus		277-285, 287-294				
ORF2797	ORF2470	unknown	13-32, 40-75, 82-95, 97-112, 115-	B:3, E:2,	1	B:GSBXE85(159-176):11/27	433,
	-24 aa at		121, 124-154, 166-192, 201-225,	F:13, H:3	aa 325-339	F:SALAQ47(159-176):8/41	434
	N-termi-		227-252, 268-273, 288-297, 308-				
	nus		375, 379-434				
ORF2960	ORF2298	putative	8-31, 35-44, 106-113, 129-135,	C:101,	aa 1-80	C:GSBYG32(1-80)::6/7	435,
-	– 5 aa at	Exotoxin	154-159, 168-178, 203-215, 227-	E:2, H:58	aa 48-121	C:GSBYG61-bhe2(48-	436
	N-		236, 240–249, 257–266, 275–281,		aa 98-190	116):26/30	
	terminus		290-296, 298-305, 314-319, 327-			C:GSBYN80(98-190):13/17	
			334				100
ORF2963	ORF2295	putative	8-23, 35-41, 64-70, 81-87, 109-115,	1	aa 17-95	C:GSBYJ58(17-95):9/15	437,
1	−5 aa at	Exotoxin	121-132, 150-167, 177-188, 194-	G:1		,	438
	N-		201, 208–216, 227–233, 238–248,				
	terminus	1	265-271, 279-285				

S.	Old	Putative	predicted immunogenic aa**	No. of se-	Location of	Serum reactivity with rele-	Seq
<i>aureus</i> an		function	F	lected	ldentified	vant region (positive/total)	ID no:
tigenic	number	(by homology)		clones per		There a organic (product to company)	(DNA
protein	Munici	(b) nontotogy)		ORF and			+Prot)
protein		,		screen	gion		1 1 100
ORF3200	ORF1331	putative	8-32, 45-52, 92-103, 154-159, 162-	A:11,	aa 8543-	A:GSBXL07(8543-8601):6/28	439.
	+8506 aa	extracellular	168, 207-214, 232-248, 274-280,	B:11,	8601	,	440
	at N-	i i	297-303, 343-349, 362-375, 425-	C:36,	aa 8461-		
	terminus	protein	442, 477-487, 493-498, 505-512,	H:32	8475		
			522-533, 543-550, 558-564, 568-			,	
			574, 580-600, 618-630, 647-652,				
			658-672, 692-705, 711-727, 765-				
			771, 788-798, 812-836, 847-858,				
			870-898, 903-910, 1005-1015,				
			1018-1025, 1028-1036, 1058-1069,				
			1075-1080, 1095-1109, 1111-1117,			·	
			1119-1133, 1166-1172, 1183-1194,				
			1200-1205, 1215-1222, 1248-1254,				
			1274-1280, 1307-1317, 1334-1340,				
			1381-1391, 1414-1420, 1429-1439,				
			1445-1467, 1478-1495, 1499-1505,			·	
			1519–1528, 1538–1550, 1557–1562,				
	·		1572-1583, 1593-1599, 1654-1662,				
			1668-1692, 1701-1707, 1718-1724,				
			1738–1746, 1757–1783, 1786–1793,				
			1806-1812, 1815-1829, 1838-1848,				l
			1853-1860, 1875-1881, 1887-1893,				
			1899-1908, 1933-1940, 1952-1961,				
			1964-1970, 1977-1983, 1990-1996,				}
			2011–2018, 2025–2038, 2086–2101,				
			2103-2117, 2177-2191, 2195-2213,			·	
			2220–2225, 4"22372249, 2273				
			2279, 2298–2305, 2319–2327, 2349–				
			2354, 2375–2381, 2391–2398, 2426–				
			2433, 2436–2444, 2449–2454, 2463–				
			2469, 2493–2499, 2574–2589, 2593–				
			2599, 2605–2611, 2615–2624, 2670–	•			
			2684, 2687–2698, 2720–2727, 2734–			•	
			2754, 2762–2774, 2846–2866, 2903–				Ì
			2923, 2950–2956, 2985–2998, 3011–				
			3031, 3057–3064, 2"3102–3117,		1		
			3137-3143, 3186-3195, 3211-3219,				
			3255-3270, 3290-3300, 3327-3334,				
			3337-3343, 3390-3396, 3412-3419,				
			3439-3446, 3465-3470, 3492-3500,				
			3504-3510, 3565-3573, 3642-3650,		}		1
			3691-3698, 3766-3775, 3777-3788,		1		
			3822-3828, 3837-3847, 3859-3864,				
			3868-3879, 3895-3902, 3943-3951,				
			3963-3971, 3991-3997, 4018-4030,				
			4054-4060, 4074-4099, 4123-4129,				
			4147-4153, 4195-4201, 4250-4255,			,	
1	ı	I ,	14262-4267, 4270-4277, 4303-4310,	1	ı	i	I

4321-4330, 4343-4352, 4396-4408, 4446-4451, 4471-4481, 4503-4509, 4516-4534, 4596-4604, 4638-4658, 4698-4710, 4719-4732, 4776-4783, 4825-4833, 4851-4862, 4882-4888, 4894-4909, 4937-4942, 5047-5054, 5094-5100, 5102-5112, 5120-5125, 5146-5153, 5155-5164, 5203-5214, 5226-5236, 5278-5284, 5315-5321, 5328-5342, 5348-5359, 5410-5420, 5454-5466, 5481-5489, 5522-5538, 5597-5602, 5607-5614, 0"5623-5629, 5650**-5**665, 5707**-**5719, 5734-5742, 5772-5778, 5785-5790, 5833-5845, 5857-5863, 5899-5904, 5908-5921, 5959-5971, 5981-5989, 6010-6017, 6034-6043, 6058-6064, 6112-6120, 6154-6169, 6210-6217, 6231-6240, 6261-6268, 6288-6294, 6318-6324, 6340-6349, 6358-6369, 6402-6407, 6433-6438, 6483-6493, 6513-6519, 6527-6546, 6561-6574, 6599-6608, 6610-6616, 6662-6673, 6696-6705, 6729-6743, 6769-6775, 6792-6801, 6819-6828, 6840-6846, 6860-6870, 6915-6928, 6966-6972, 7021-7028, 7032-7047, 7096-7101, 7109-7117, 7138-7149, 7157-7162, 7201-7206, 7238-7253, 7283-7294, 7296-7302, 7344-7365, 7367-7376, 7389-7404, 7413-7433, 7475-7482, 7493-7500, 7535-7549, 7596-7608, 7646-7651, 7661-7678, 7722-7731, 7741-7754, 7764-7769, 7776-7782, 7791-7806, 7825-7837, 7862-7875, 7891-7897, 7922-7931, 7974-7981, 7999-8005, 8039-8045, 8049-8065, 8070-8075, 8099-8112, 8119-8125, 8151-8158, 8169-8181, 8226-8232, 8258-8264, 8291-8299, 8301-8310, 8325-8335, 8375-8389, 8394-8400, 8405-8412, 8421-8436, 8478-8485, 8512-8521, 8528-8538, 8564-8579, 8587-8594, 8603-8615, 8626-8637, 8640-8646, 8657-8672, 8684-8691, 8725-8736, 8748-8761, 8777-8783, 8794-8799, 8810-8825, 8851-8862, 8874-8887, 8903-8912, 8914-8926, 8933-8943, 8954-8960, 8979-8988, 9004-9011, 9035-9041, 9056-9069, 9077-9086, 9088-9096, 9106-9111, 9124-9133, 9183-9191, 9224-9231, 9235-9241, 9250-9265, 9279-9290, 9295-

	9300, 9326–9343, 9408–9414, 9422-			
	9427, 9435-9441, 9455-9461, 9507-			
	9517, 9532-9538, 9580-9589, 9594-		•	1 1
	9600, 9614-9623, 9643-9648, 9665-			
1 1	9683, 9688-9700, 9720-9726, 9742-			1 1
	9758, 9767–9775, 9795–9800, 9817–			
1 1 .	9835, 9842-9847, 9912-9919, 9925-			
	9938, 9943-9963, 9970-10009,			l i
	10025-10031, 10037-10043, 10045-			1 1
1 1	10063, 10066-10073, 10117-10124,			1 1
	10126-10136, 10203-10210, 10218-		•	1. 1
	10225, 10232-10242, 10287-10292,			1 1
1. 1	10303-10323, 10352-10360, 10385-			1 1
	10396, 10425-10431, 10452-10459,		•	
	10480-10485			1 i

WO 02/059148 PCT/EP02/00546

Table 3. Serological proteome analysis of S. aureus surface proteins using human sera

a) S. aureus/agr "stress conditions"

Spot ID/sera	IC40 1:20,000	1C35, N26, C4 1:50,000 each	Infant pool C2,5,6,10,12 1:10,000	N22 1:10.000 IC40 1:50,000
PCK2	+	+	_	+
PCK4	+	+++	_	+++
PCK5	_	(+)	· _	+
PCK6	+	+	-	+

Spot ID/sera	IC35, 4 1:50,00 N22 1:10,	00	P-pool (P6,18,25,28,29) 1:50,000 each	Infant pool C2,5,6,10,12 1:10,000	
PAC1	++		++		
PAC2	++		+++	<u>-</u>	
PAC3			+	_	
PAC5	_		++	_	

Spot ID/sera	P-pool (P6,18,25,28,29) 1:50,000 each	Infant 14 1:10,000	IC pool / IgG (N26, IC34,35) 1:30,000 each	IC pool / IgA (N26, IC34,35) 1:30,000 each
PAC11	++		++	++
PAC12	++-	-	++	++
PAC13	_	_		++
PAC14	_	_	+	+ [
PAC15	_	-	+++	+++
PAC16	+	-	+	+
PAC17	+	_	+	+
PAC18	++	_	_	
PAC19		_	++	++
PAC20	++	_		-
POV31	+++	_	_	
POV32	+ .	-	_	_
POV33	+	-	_	_
POV34	+	_	_	
POV35	+	_	_	
P OV36	+	-		_
P OV37	++	_	_	_

P OV38	++		_	
P OV39	+++	_	-	_
P OV40	+++	-		-

b) S. aureus/COL "standard conditions"

Spot ID/sera	IC pool (N26,IC34,35)	1C35 1:20,000	P18 1:10,000	P25 1:10,000	P1 1:5,000	P29 1:2,500	Infant 18 1:10,000
	1:30,000 each				<u> </u>		
POV2	+++	+++	+++	+++	+++	- '	-
POV3.1	+++	+++	+++	+++	+++	_	_
POV3.2	+++	+++	+++	+++	+++	_	_
POV4	+	+++	_	_	_	 .	_
POV7	-		+++		_	-	_
POV10	_	++	(+)	(+)	_	(+)	_
POV12	_		_	-	_	+++	-
POV13	++	+++	+++	++ +	++	++	_
POV14	++ .	+++	+++	++	++	++	_
POV15	+	+	_	+	(+)	_	-

c) S. aureus/COL "stress conditions"

Spot ID/sera	P-pool (P6,18,25,28,29) 1:50,000 each	IC34+IC35 1:20,000 each	P18 1:10,000	P29 1:10,000	Infant 14 1:10,000
POV16	_	+++	_		
POV17	-	+++	(+)		- -
POV18	+	_	++	_	<u>-</u>
POV19	(+)	_	+++	_	_
POV21	_		+	_	
POV23	_	+		_	-
POV24	_	+		-	-
POV25	+				

Table 4. S. aureus antigens identified by MALDI-TOF-MS sequencing (ORFs in bold were also identified by bacterial surface display)

Prediction of antigenic regions in selected antigens identified by serological proteome analysis using human sera

spot ID	S. aureus pro- tein (ORF no. / ab- brev.)	Putative function (by homology)	Seq ID no: (DNA, Prot)	Putative local- ization
PCK2	ORF0599	Glycinamide-ribosyl synthase	107, 108	cytoplasmic
PCK5	ORF0484 yitU	conserved hypoth. protein (yitU)	109, 110	cytoplasmic
PCK6	ORF2309	membrane-associated malate-quinone oxidase	111, 112	peripheral mem- brane
POV2	·	protein phosphatase contributing to me- thicilin resistance	113, 114	trans-membrane
POV4, 17 PAC14, 19		C-terminal part of 44 kDa protein similar to elongation factor Tu	115, 116	cytoplasmic/ se- creted
POV5 ¹⁾	ORF0782	3-ketoacyl-acyl carrier protein reduc- tase (fabG)	117, 118	cytoplasmic
POV7	ORF0317 SecA	protein transport across the membrane SecA	39, 91	cytoplasmic
POV10	ORF1252 yrzC	hypothetical BACSU 11.9 kd protein (upf0074 (rff2) family)	119, 120	cytoplasmic
POV12	ORF0621 pdhB	dihydrolipoamide acetyltransferase (pdhB)	121, 122	cytoplasmic
POV14	ORF0072 rpoB	DNA-directed RNA polymerase ß	125, 126	cytoplasmic
POV15	ORF0077 EF-	85 kD vitronectin binding protein	127, 128	cytoplasmic
POV18	not found YLY1	general stress protein YLY1	129, 130	cytoplasmic
POV30 ¹⁾	ORF0069 RL7	ribosomal protein L7	131, 132	cytoplasmic
POV21	ORF0103 yckG			cytoplasmic
,POV24	ORF0419 yurX	conserved hypothetical protein (yurX)	137, 138	cytoplasmic

spot ID	S. aureus pro- tein (ORF no. / ab- brev.)	Putative function (by homology)	Seq ID no: (DNA, Prot)	Putative local- ization
POV25	ORF2441 gidA	glucose inhibited division protein a (gidA)	139, 140	cytoplasmic
PAC1	ORF1490 prsA	protein export protein prsa precursor (prsA)	173, 174	periplasmic
PAC2	ORF1931 ModA	periplasmic molybdate binding protein (ModA)	175, 176	surface
PAC3	ORF2053	heavy metal dependent transcriptional activator, putative regulator of multidrug resistance efflux pump pmrA	177, 178	cytoplasmic
PAC5	ORF2233 ydaP	pyruvate oxidase (ydaP)	179, 180	cytoplasmic .
PAC11	ORF1361	LPXTGV, extracellularmatrix-bdg. 3		surface
PAC12	ORF1244	alanyi-tRNA synthetase	159, 160	cytoplasmic
PAC13	ORF0835 ymfA	RNA processing enzyme/ATP-bdg.	161, 162	cytoplasmic
PAC15	ORF1124 bimBB	lipoamid acyltransferase component of branched-chain alpha-keto acid dehy- drogenase complex	163, 164	cytoplasmic
PAC16	ORF0340 GAPDH	glyceraldehydes-3-phosphate dehydrogenase	165, 166	cytoplasmic
PAC17	not found Contig83	5'-methylthioadenosine nucleosidase / S-adenosylhomo-cysteine nucleosidase		cytoplasmic
PAC20	ORF2711	75% identity to ORF2715 similar to hypothetical proteins	167, 168	unknown
POV31	ORF0659	29 kDa surface protein	236, 238	surface
POV32	ORF0659	29 kDa surface protein	236, 238	surface
POV33	ORF0659	29 kDa surface protein	236, 238	surface
POV34	ORF0659	29 kDa surface protein	236, 238	surface
POV35	ORF0659	29 kDa surface protein	236, 238	surface
P OV36	ORF00661	LPXTG-motif cell wall anchor domain protein	235, 237	surface
P OV37	ORF0659	29 kDa surface protein	236, 238	surface

168

PAC20

ORF2711

spot ID	S. aureus pro- tein (ORF no. / ab-		Seq ID no: (DNA, Prot)	Putative local- ization
	brev.)			-
P OV38	ORF0659	29 kDa surface protein	236, 238	surface
P OV39	ORF0657	LPXTG-anchored surface protein	1, 142	surface
P OV40	not identified	·		

Seq ID no: (Protein)	spot ID	S. aureus ORF no. / abbrev.	Putative local- ization	Putative antigenic surface areas (Antigenic package)
112	PCK6	ORF2309	peripheral	61-75, 82-87, 97-104, 113-123, 128-133,
		mqo	membrane	203–216, 224–229, 236–246, 251–258, 271–
				286, 288–294, 301–310, 316–329, 337–346,
				348-371, 394-406, 418-435, 440-452
114	POV2	ORF766 aux1	trans-mem-	30–37, 44–55, 83–91, 101–118, 121–128,
			brane	136–149, 175–183, 185–193, 206–212, 222–
				229, 235–242
116	POV4	ORF078 EF-Tu	cytoplasmic/	28–38, 76–91, 102–109, 118–141, 146–153,
			secreted	155–161, 165–179, 186–202, 215–221, 234–
				249, 262–269, 276–282, 289–302, 306–314,
				321–326, 338–345, 360–369, 385–391
176	PAC2	ORF1931	periplasmic	29-44, 74-83, 105-113, 119-125, 130-148,
		ModA		155–175, 182–190, 198–211, 238–245
174	PAC1	ORF1490	periplasmic	5-24, 38-44, 100-106, 118-130, 144-154,
:		prsA		204–210, 218–223, 228–243, 257–264, 266–

spot ID	GI no. or TIGR no.	S. aureus pro- tein (ORF no. / ab- brev.)	.,	Seq ID no: (DNA, Prot)
PCK2	TIGR1280	ORF0599	Glycinamide-ribosyl synthase	107, 108

unknown

286, 292–299

216, 219–234

7-14, 21-30, 34-50, 52-63, 65-72, 77-84,

109–124, 129–152, 158–163, 175–190, 193–

N				
PCK4	7672993	ORF2268 IsaA	possibly adhesion/aggregation	12, 64
PCK5	TIGR6209	ORF0484 yitU	conserved hypoth. protein (yitU)	109, 110
PCK6	TIGR6182	ORF2309	membrane-associated malate-quinone	111, 112
			oxidase	
POV2	6434044	ORF0766 aux1	protein phosphatase contributing to methi-	113, 114
			cilin resistance	
POV3.1	7672993	ORF2268 IsaA	possibly adhesion/aggregation	12, 64
POV3.2	7672993	ORF2268 IsaA	possibly adhesion/aggregation	12, 64
POV4	TIGR8079	ORF0078 EF-	C-terminal part of 44 kDa protein similar	115, 116
		Tu	to elongation factor Tu	
POV5 1)	TIGR8091	ORF0782	3-ketoacyl-acyl carrier protein reductase	117, 118
	•		(fabG)	
POV7	2500720	ORF0317 SecA	protein transport across the membrane	39, 91
		-	SecA	
POV10	TIGR8097	ORF1252 yrzC	hypothetical BACSU 11.9 kd protein	119, 120
			(upf0074 (rff2) family)	
POV12	2499415	ORF0621 pdhB	dihydrolipoamide acetyltransferase (pdhB)	121, 122
POV13	7470965	ORF0094 SdrD	fibrinogen-bdg. (LPXTG) protein homolog	123, 124
			(SdrD)	
POV14	1350849	ORF0072 rpoB	DNA-directed RNA polymerase β	125, 126
POV15	6920067	ORF0077 EF-G	85 kD vitronectin binding protein	127, 128
POV17	TIGR8079	ORF0078	C-terminal part of 44 kDa protein similar	115, 116
			to elongation factor Tu	
POV18	3025223	not found	general stress protein YLY1	129, 130
POV30 1)	350771	ORF0069 RL7	ribosomal protein L7	131, 132
POV21	<u> </u>	ORF0103	probable hexulose-6-phosphate synthas	133, 134
	,		(yckG)	
POV23		ORF0182	lipoprotein (S.epidermis)	135, 136

 $^{^{1)}}$ identified from a total lysate from S. aureus 8325-4 spa- grown under standard conditions. Seroreactivity with 1/1 patient and 2/4 normal sera but not with infant serum (C5).

References

Aichinger G., Karlsson L., Jackson M.R., Vestberg M., Vaughau J.H., Teyton L., Lechler R.I. and Peterson P A. Major Histocompatibility Complex classII-dependent unfolding, transport and degradation of endogenous proteins. J. Biol. Chem., v.272, 1997, pp. 29127-29136

Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. Eds. (1994). Current protocols in molecular biology. John Wiley & Sons, Inc.

Betley, M.J., Lofdahl, S., Kreiswirth, B.N., Bergdoll, M.S. and Novick, R.P. (1984). Staphylococcal enterotoxin A gene is associated with a variable genetic element. Proc. Natl. Acad. Sci. U.S.A. 81:5179-5183.

Bruggemann M, Neuberger MS (1996) Immunol. Today 17:391-397

Burnie, J.P., Matthews, R.C., Carter, T., Beaulieu, E., Donohoe, M., Chapman, C., Williamson, P. and Hodgetts, S.J. (2000). Identification of an immunodominant ABC transporter in methicillin-resistant Staphylococcus aureus infections. Infect. Immun. 68:3200-3209.

Chen, H.Z. and Zubay, G. (1983). Methods Enzymol. 101:674-690.

Coloque-Navarro, P., Söderquist, B., Holmberg, H., Blomqvist, L., Olcen, P., and Möllby, R.(1998) Antibody response in Staphylococcus aureus septicaemia - a prospective study. J. Med. Microbiol. 47, 217-25.

Crossley, K.B. and Archer G.L., eds. (1997). The Staphylococci in Human Disease. Churchill Livingston Inc.

Flock, J.-I. (1999). Extracellular-matrix-binding proteins as targets for the prevention of Staphylococcus aureus infections. Molecular Medicine Today 5:532-537.

Forrer, P., Jung, S. and Plückthun, A. (1999). Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr. Opin. Struct. Biol. 9:514-520.

Foster, T.J. and Hook, M. (1998). Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6:484-488.

Frénay, H. M. E., Theelen, J. P. G., Schouls, L. M., Vanden-broucke-Grauls, C. M. J. E., Vernoef, J., van Leeuwen, W. J., and Mooi, F. R. (1994). Discrimination of epidemic and nonepidemic methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. J. Clin. Microbiol. 32:846-847.

Georgiou, G., Stathopoulos, C., Daugherty, P.S., Nayak, A.R., Iverson, B.L. and Curtiss III, R. (1997). Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nature Biotechnology 15:29-34.

Goh, S.-H., Byrne, S. K., Zhang, J. L., and Chow, A. W. (1992). Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. J. Clin. Microbiol. 30:1642-1645.

Graziano et al. (1995) J. Immunol. 155:4996-5002

Hammer et al. J. Exp. Med (1995) 181: 1847-1855

Hanes, J. and Plückthun, A. (1997). In vitro selection and evolution of functional proteins by using ribosome display. PNAS 94:4937-4942.

Hashemzadeh-Bonehi, L., Mehraein-Ghomi, F., Mitsopoulos, C., Jacob, J.P., Hennessey, E.S. and Broome-Smith, J.K. (1998). Importance of using lac rather than ara promoter vectors for modulating the levels of toxic gene products in Escherichia coli. Mol. Microbiol. 30:676-678.

Hryniewicz, W. (1999). Epidemiology of MRSA. Infection 27:S13-16.

Immler, D., Gremm, D., Kirsch, D., Spengler, B., Presek, P., Meyer, H.E. (1998). Electrophoresis 19:1015-1023.

Kajava, A.V., Zolov, S.N., Kalinin, A.E. and Nesmeyanova, M.A. (2000). The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of Gram-negative bacteria. J. Bacteriol. 182:2163-2169.

Kluytmans, J., van Belkum, A. and Verbrugh, H. (1997). Nasal car-

riage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10:505-520.

Kolaskar, A.S. and Tongaonkar, P.C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 276:172-174.

Lim, Y., Shin, S.H., Jang, I.Y., Rhee, J.H. and Kim, I.S. (1998). Human transferring-binding protein of Staphylococcus aureus is immunogenic in vivo and has an epitope in common with human transferring receptor. FEMS Microbiol. Letters 166:225-230.

Lorenz, U., Ohlsen, K., Karch, H., Hecker, M., Thiede, A. and Hacker, J. (2000). Human antibody response during sepsis against targets expressed by methicillin resistant Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 29:145-153.

Mamo, W., Jonsson, P. and Muller, H.P. (1995). Opsonization of Staphylococcus aureus with a fibronectin-binding protein antiserum induces protection in mice. Microb. Pathog. 19:49-55

McGuiness BT et al. (1996) Nature Biotech. 14:1149

Modun, B., Evans, R.W., Joannou, C.L. and Williams, P. (1998). Receptor-mediated recognition and uptake of iron from human transferring by Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 66:3591-3596.

Nilsson, I., Patti, J.M., Bremell, T., Höök, M. and Tarkowski, A. (1998). Vaccination with a Recombinant Fragment of Collagen Adhesin provides Protection against Staphylococcus aureus-mediated Septic Death. J. Clin. Invest. 101:2640-2649.

Parker, K. C., M. A. Bednarek, and J. E. Coligan (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152:163.

Pasquali, C., Fialka, I. & Huber, L.A. (1997). Electrophoresis 18:2573-2581.

Phillips-Quagliata, J.M., Patel, S., Han, J.K., Arakelov, S., Rao, T.D., Shulman, M.J., Fazel, S., Corley, R.B., Everett, M., Klein, M.H., Underdown, B.J. and Corthesy, B. (2000). The IgA/IgM receptor expressed on a murine B cell lymphoma is poly-Ig receptor. J. Immunol. 165:2544-2555

Rammensee, Hans-Georg, Jutta Bachmann, Niels Nikolaus Emmerich, Oskar Alexander Bachor, Stefan Stevanovic (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50: 213-219

Recsei P., Kreiswirth, B., O'Reilly, M., Schlievert, P., Gruss, A. and Novick, R.P. (1986). Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol. Gen. Genet. 202:58-61.

Rodi, D.J. and Makowski, L. (1999). Phage-display technology--finding a needle in a vast molecular haystack. Curr. Opin. Biotechnol. 10:87-93.

Schaffitzel et al., Ribosome display: an in vitro method for selection and evolution of antibodies from libraries; Journal of Immunological Methods 231, 119-135 (1999).

Sanchez-Campillo, M., Bini, L., Comanducci, M., Raggiaschi, R., Marzocchi, B., Pallini, V. and Ratti, G. (1999). Electrophoresis 20:2269-2279.

Schmittel A, Keilholz U, Thiel E, Scheibenbogen C. (2000) Quantification of tumor-specific T lymphocytes with the ELISPOT assay.

J Immunother 23(3):289-95

Sester M, Sester U, Kohler H, Schneider T, Deml L, Wagner R, Mueller-Lantzsch N, Pees HW, Meyerhans A. (2000) Rapid whole blood analysis of virus-specific CD4 and CD8 T cell responses in persistent HIV infection. AIDS 14(17):2653-60.

Shafer, W.M. and Iandolo, J.J. (1979). Genetics of staphylococcal enterotoxin B in methicillin-resistant isolates of Staphylococcus aureus. Infect. Immun. 25:902-911.

Shibuya, A., Sakamoto, N., Shimizu, Y., Shibuya, K., Osawa, M., Hiroyama, T., Eyre, H.J., Sutherland, G.R., Endo, Y., Fujita, T., Miyabayashi, T., Sakano, S., Tsuji, T., Nakayama, E., Phillips, J.H., Lanier, L.L. and Nakauchi, H. (2000). Fc_a/_g receptor mediates endocytosis of IgM-coated microbes. Nature Immunology 1:441-446.)

Skerra, A. (1994). Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131-135.

Sohail, M. (1998). A simple and rapid method for preparing genomic DNA from Gram-positive bacteria. Mol. Biotech. 10:191-193.

Sonderstrup G, Cope AP, Patel S, Congia M, Hain N, Hall FC, Parry SL, Fugger LH, Michie S, McDevitt HO (1999) HLA class II transgenic mice: models of the human CD4+ T-cell immune response. Immunol Rev 172:335-43

Sturniolo, T. et al., E Bono, J Ding, L Raddrizzani, O. Tuereci, U Sahin, M Braxenthaler, F Gallazzi, MP Protti, F Sinigaglia, and J Hammer (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA chips and virtual HLA class II matrices. Nature Biotechnology 17: 555-562.

Valli et al. J. Clin. Invest. (1993) 91: 616-62

VandenBergh M. F. Q., Yzerman E. P. F., van Belkum, A., Boelens, H. A. M., Sijmons, M., and Verbrugh, H. A. (1999). Follow-up of Staphylococcus aureus nasal carriage after 8 years: redining the persistent carrier state. J. Clin. Microbiol. 37:3133-3140..

Wessel, D. and Fluegge, U.I. (1984). Anal. Biochem. 138:141-143.

Claims:

- 1. Method for identification, isolation and production of hyperimmune serum-reactive antigens from a pathogen, a tumor, an allergen or a tissue or host prone to auto-immunity, said antigens being suited for use in a vaccine for a given type of animal or for humans, characterized by the following steps:
 - *providing an antibody preparation from a plasma pool of said given type of animal or from a human plasma pool or individual sera with antibodies against said specific pathogen, tumor, allergen or tissue or host prone to auto-immunity,
 - *providing at least one expression library of said specific pathogen, tumor, allergen or tissue or host prone to auto-immunity
 - *screening said at least one expression library with said antibody preparation,
 - *identifying antigens which bind in said screening to antibodies in said antibody preparation,
 - *screening the identified antigens with individual antibody preparations from individual sera from individuals with antibodies against said specific pathogen, tumor, allergen or tissue or host prone to auto-immunity,
 - *identifying the hyperimmune serum-reactive antigen portion of said identified antigens and which hyperimmune serum-reactive antigens bind to a relevant portion of said individual antibody preparations from said individual sera and
 - *optionally isolating said hyperimmune serum-reactive antigens and producing said hyperimmune serum-reactive antigens by chemical or recombinant methods.
- 2. Method for identification, isolation and production of a practically complete set of hyperimmune serum-reactive antigens of a specific pathogen, said antigens being suited for use in a vaccine for a given type of animal or for humans, characterized by the following steps:
 - *providing an antibody preparation from a plasma pool of said given type of animal or from a human plasma pool or individual sera with antibodies against said specific pathogen,
 - *providing at least three different expression libraries of said specific pathogen,

WO 02/059148 PCT/EP02/00546

- *screening said at least three different expression libraries with said antibody preparation,
- *identifying antigens which bind in at least one of said at least three screenings to antibodies in said antibody preparation.
- •screening the identified antigens with individual antibody preparations from individual sera from individuals with antibodies against said specific pathogen,
- *identifying the hyperimmune serum-reactive antigen portion of said identified antigens which hyperimmune serum-reactive antigens bind to a relevant portion of said individual antibody preparations from said individual sera,
- *repeating said screening and identification steps at least once.
- *comparing the hyperimmune serum-reactive antigens identified in the repeated screening and identification steps with the hyperimmune serum-reactive antigens identified in the initial screening and identification steps,
- *further repeating said screening and identification steps, if at least 5% of the hyperimmune serum-reactive antigens have been identified in the repeated screening and identification steps only, until less than 5 % of the hyperimmune serum-reactive antigens are identified in a further repeating step only to obtain a complete set of hyperimmune serum-reactive antigens of a specific pathogen and
- *optionally isolating said hyperimmune serum-reactive antigens and producing said hyperimmune serum-reactive antigens by chemical or recombinant methods.
- 3. Method according to claim 1 or 2 characterized in that at least one of said expression libraries is selected from a ribosomal display library, a bacterial surface library and a proteome.
- 4. Method according to claim 2 characterized in that said at least three different expression libraries are at least a ribosomal display library, a bacterial surface library and a proteome.
- 5. Method according to any one of claims 1 to 4, characterized

in that said plasma pool is a human plasma pool taken from individuals having experienced or are experiencing an infection with said pathogen.

- Method according to any one of claims 1 to 5, characterized in that said expression libraries are genomic expression libraries of said pathogen.
- Method according to any one of claims 1 to 6, characterized 7. in that said expression libraries are complete genomic expression libraries, preferably with a redundancy of at least 2x, more preferred at least 5x, especially at least 10x.
- Method according to any one of claims 1 to 7, characterized 8. in that it comprises the steps of screening at least a ribosomal display library, a bacterial surface display library and a proteome with said antibody preparation and identifying antigens which bind in at least two, preferably which bind to all, of said screenings to antibodies in said antibody preparation.
- Method according to any one of claims 1 to 8, characterized in that said pathogen is selected from the group of bacterial, viral, fungal and protozoan pathogens.
- 10. Method according to any one of claims 1 to 9, characterized in that said pathogen is selected from the group of human immunedeficiency virus, hepatitis A virus, hepatitis B virus, hepatitis C virus, Rous sarcoma virus, Epstein-Barr virus, influenza virus, rotavirus, Staphylococcus aureus, Staphylococcus epidermidis, Chlamydia pneumoniae, Chlamydia trachomatis, Mycobacterium tuberculosis, Mycobacterium leprae, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Enterococcus faecalis, Bacillus anthracis, Vibrio cholerae, Borrelia burgdorferi, Plasmodium sp., Aspergillus sp. or Candida albicans.
- 11. Method according to any one of claims 1 to 10, characterized in that at least one of said expression libraries is a ribosomal display library or a bacterial surface display library and said hyperimmune serum-reactive antigens are produced by expression of the coding sequences of said hyperimmune serum-reactive antigens

WO 02/059148 PCT/EP02/00546

contained in said library.

- 12. Method according to any one of claims 1 to 11, characterized in that said produced hyperimmune serum-reactive antigens are finished to a pharmaceutical preparation, optionally by addition of a pharmaceutically acceptable carrier and/or excipient.
- 13. Method according to claim 12, characterized in that said pharmaceutical preparation is a vaccine.
- 14. Method according to claim 12 or 13, characterized in that said pharmaceutically acceptable carrier and/or excipient is an immunostimulatory compound.
- 15. Method according to claim 14, characterized in that said immunostimulatory compound is selected from the group of polycationic substances, especially polycationic peptides, immunostimulatory deoxynucleotides, alumn, Freund's complete adjuvans, Freund's incomplete adjuvans, neuroactive compounds, especially human growth hormone, or combinations thereof.
- 16. Method according to any one of claims 1 to 15, characterized in that said individual antibody preparations are derived from patients with acute infection with said pathogen, especially from patients with an antibody titer to said pathogen being higher than 80%, preferably higher than 90%, especially higher than 95% of human patient or carrier sera tested.
- 17. Method according to any one of claims 1 to 16, characterized in that at least 10, preferably at least 30, especially at least 50, individual antibody preparations are used in identifying said hyperimmune serum-reactive antigens.
- 18. Method according to any one of said claims 1 to 17, characterized in that said relevant portion of said individual antibody preparations from said individual sera are at least 10, preferably at least 30, especially at least 50 individual antibody preparations, and/or at least 20%, preferably at least 30%, especially at least 40%, of all individual antibody preparations used in said screening.

- 19. Method according to any one of claims 1 to 18, characterized in that said individual sera are selected by having an IgA titer against a lysate, cell wall components or recombinant proteins of said pathogen being above 4000 U, especially above 6000 U, and/or by having an IgG titer being above 10000 U, preferably above 12000 U.
 - 20. Method according to any one of claims 1 to 19, characterized in that said pathogen is a Staphylococcus pathogen, especially Staphylococcus aureus. and/or Staphylococcus epidermidis.
 - 21. A hyperimmune serum-reactive antigen selected from the group consisting of the sequences listed in any one of Tables 2a, 2b, 2c, 2d, 3, 4 and 5, especially selected from the group consisting of Seq.ID No. 56, 57, 59, 60, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 87, 88, 89, 90, 92, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 130, 132, 134, 138, 140, 142, 151, 152, 154, 155 and hyperimmune fragments thereof.
 - 22. A hyperimmune serum-reactive antigen obtainable by a method according to any one of claims 1 to 20 and being selected from the group consisting of the sequences listed in any one of Tables 2a, 2b, 2c, 2d, 3, 4 and 5, especially selected from the group consisting of Seq.ID No. 56, 57, 59, 60, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 87, 88, 89, 90, 92, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 130, 132, 134, 138, 140, 142, 151, 152, 154, 155 and hyperimmune fragments thereof.
 - 23. Use of a hyperimmune serum-reactive antigen selected from the group consisting of the sequences listed in any one of Tables 2a, 2b, 2c, 2d, 3, 4 and 5, especially selected from the group consisting of Seq.ID No. 55, 56, 57, 58, 59, 60, 62, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 89, 90, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 126, 128, 130, 132, 134, 138, 140, 142, 151, 152, 154, 155, 158 and hyperimmune fragments thereof for the manufacture of a pharmaceutical preparation, es-

- 113 -

pecially for the manufacture of a vaccine against staphylococcal infections or colonization in particular against Staphylococcus aureus or Staphylococcus epidermidis.

24. Hyperimmune fragment of a hyperimmune serum-reactive antigen selected from the group consisting of peptides comprising the amino acid sequences of column "predicted immunogenic aa", "Location of identified immunogenic region" and "Serum reactivity with relevant region" of Tables 2a, 2b, 2c and 2d and the amino acid sequences of column "Putative antigenic surface areas" of Table 4 and 5, especially peptides comprising amino acid No. aa 12-29, 34-40, 63-71, 101-110, 114-122, 130-138, 140-195, 197-209, 215-229, 239-253, 255-274 and 39-94 of Seq.ID No. 55, aa 5-39, 111-117, 125-132, 134-141, 167-191, 196-202, 214-232, 236-241, 244-249, 292-297, 319-328, 336-341, 365-380, 385-391, 407-416, 420-429, 435-441, 452-461, 477-488, 491-498, 518-532, 545-556, 569-576, 581-587, 595-602, 604-609, 617-640, 643-651, 702-715, 723-731, 786-793, 805-811, 826-839, 874-889, 37-49, 63-77 and 274-334, of Seq.ID No.56, aa 28-55, 82-100, 105-111, 125-131, 137-143, 1-49, of Seq.ID No. 57, aa 33-43, 45-51, 57-63, 65-72, 80-96, 99-110, 123-129, 161-171, 173-179, 185-191, 193-200, 208-224, 227-246, 252-258, 294-308, 321-329, 344-352, 691-707, 358-411 and 588-606, of Seq.ID No. 58, aa 16-38, 71-77, 87-94, 105-112, 124-144, 158-164, 169-177, 180-186, 194-204, 221-228, 236-245, 250-267, 336-343, 363-378, 385-394, 406-412, 423-440, 443-449, 401-494, of Seq.ID No. 59, aa 18-23, 42-55, 69-77, 85-98, 129-136, 182-188, 214-220, 229-235, 242-248, 251-258, 281-292, 309-316, 333-343, 348-354, 361-367, 393-407, 441-447, 481-488, 493-505, 510-515, 517-527, 530-535, 540-549, 564-583, 593-599, 608-621, 636-645, 656-670, 674-687, 697-708, 726-734, 755-760, 765-772, 785-792, 798-815, 819-824, 826-838, 846-852, 889-904, 907-913, 932-939, 956-964, 982-1000, 1008-1015, 1017-1024, 1028-1034, 1059-1065, 1078-1084, 1122-1129, 1134-1143, 1180-1186, 1188-1194, 1205-1215, 1224-1230, 1276-1283, 1333-1339, 1377-1382, 1415-1421, 1448-1459, 1467-1472, 1537-1545, 1556-1566, 1647-1654, 1666-1675, 1683-1689, 1722-1737, 1740-1754, 1756-1762, 1764-1773, 1775-1783, 1800-1809, 1811-1819, 1839-1851, 1859-1866, 1876-1882, 1930-1939, 1947-1954, 1978-1985,

1999-2007, 2015-2029, 2080-2086, 2094-2100, 2112-2118, 2196-2205,

No. 66,

2232-2243, 198-258, 646-727 and 2104-2206, of Seq.ID No. 60, aa 10-29, 46-56, 63-74, 83-105, 107-114, 138-145, 170-184, 186-193, 216-221, 242-248, 277-289, 303-311, 346-360, 379-389, 422-428, 446-453, 459-469, 479-489, 496-501, 83-156, of Seq.ID No. 62,

aa 14-22, 32-40, 52-58, 61-77, 81-93, 111-117, 124-138, 151-190, 193-214, 224-244, 253-277, 287-295, 307-324, 326-332, 348-355, 357-362, 384-394, 397-434, 437-460, 489-496, 503-510, 516-522, 528-539, 541-547, 552-558, 563-573, 589-595, 602-624, 626-632, 651-667, 673-689, 694-706, 712-739, 756-790, 403-462, of Seq.ID

aa 49-56, 62-68, 83-89, 92-98, 109-115, 124-131, 142-159, 161-167, 169-175, 177-188, 196-224, 230-243, 246-252, 34-46, of Seq.ID No. 67,

aa 11-20, 26-47, 69-75, 84-92, 102-109, 119-136, 139-147, 160-170, 178-185, 190-196, 208-215, 225-233, 245-250, 265-272, 277-284, 300-306, 346-357, 373-379, 384-390, 429-435, 471-481, 502-507, 536-561, 663-688, 791-816, 905-910, 919-933, 977-985, 1001-1010, 1052-1057, 1070-1077, 1082-1087, 1094-1112, 493-587, 633-715 and 704-760, of Seq.ID No.70,

aa.6-20, 53-63, 83-90, 135-146, 195-208, 244-259, 263-314, 319-327, 337-349, 353-362, 365-374, 380-390, 397-405, 407-415, 208-287 and 286-314, of Seq.ID No. 71,

aa 10-26, 31-43, 46-58, 61-66, 69-79, 85-92, 100-115, 120-126, 128-135, 149-155, 167-173, 178-187, 189-196, 202-222, 225-231, 233-240, 245-251, 257-263, 271-292, 314-322, 325-334, 339-345, 59-74, of Seq.ID No. 72,

aa 4-9, 15-26, 65-76, 108-115, 119-128, 144-153, 38-52 and 66-114, of Seq.ID No. 73,

aa 5-22, 42-50, 74-81, 139-145, 167-178, 220-230, 246-253, 255-264, 137-237 and 250-267, of Seq.ID No. 74,

aa 10-26, 31-44, 60-66, 99-104, 146-153, 163-169, 197-205, 216-

223, 226-238, 241-258, 271-280, 295-315, 346-351, 371-385, 396-

407, 440-446, 452-457, 460-466, 492-510, 537-543, 546-551, 565-

582, 590-595, 635-650, 672-678, 686-701, 705-712, 714-721, 725-

731, 762-768, 800-805, 672-727, of Seq.ID No. 75,

aa 5-32, 35-48, 55-76, of Seq.ID No. 76,

aa 7-35, 54-59, 247-261, 263-272, 302-320, 330-339, 368-374, 382-411, 126-143 and 168-186, of Seq.ID No. 77,

aa 5-24, 88-94, 102-113, 132-143, 163-173, 216-224, 254-269, 273-

278, 305-313, 321-327, 334-341, 31-61 and 58-74, of Seq.ID No. aa 16-24, 32-39, 43-49, 64-71, 93-99, 126-141, 144-156, 210-218, 226-233, 265-273, 276-284, 158-220, of Seq.ID No. 79, aa 49-72, 76-83, 95-105, 135-146, 148-164, 183-205, 57-128, of Seq.ID No. 80, aa 6-15, 22-32, 58-73, 82-88, 97-109, 120-131, 134-140, 151-163, 179-185, 219-230, 242-255, 271-277, 288-293, 305-319, 345-356, 368-381, 397-406, 408-420, 427-437, 448-454, 473-482, 498-505, 529-535, 550-563, 573-580, 582-590, 600-605, 618-627, 677-685, 718-725, 729-735, 744-759, 773-784, 789-794, 820-837, 902-908, 916-921, 929-935, 949-955, 1001-1008, 1026-1032, 1074-1083, 1088-1094, 1108-1117, 1137-1142, 1159-1177, 1183-1194, 1214-1220, 1236-1252, 1261-1269, 1289-1294, 1311-1329, 1336-1341, 1406-1413, 1419-1432, 1437-1457, 1464-1503, 1519-1525, 1531-1537, 1539-1557, 1560-1567, 1611-1618, 1620-1629, 1697-1704, 1712-1719, 1726-1736, 1781-1786, 1797-1817, 1848-1854, 1879-1890, 1919-1925, 1946-1953, 1974-1979, 5 to 134, of Seq.ID No. 81, aa 6-33, 40-46, 51-59, 61-77, 84-104, 112-118, 124-187, 194-248, 252-296, 308-325, 327-361, 367-393, 396-437, 452-479, 484-520, 535-545, 558-574, 582-614, 627-633, 656-663, 671-678, 698-704, 713-722, 725-742, 744-755, 770-784, 786-800, 816-822, 827-837, 483-511, of Seq.ID No. 82, aa 4-19, 57-70, 79-88, 126-132, 144-159, 161-167, 180-198, 200-212, 233-240, 248-255, 276-286, 298-304, 309-323, 332-346, 357-366, 374-391, 394-406, 450-456, 466-473, 479-487, 498-505, 507-519, 521-530, 532-540, 555-565, 571-581, 600-611, 619-625, 634-642, 650-656, 658-665, 676-682, 690-699, 724-733, 740-771, 774-784, 791-797, 808-815, 821-828, 832-838, 876-881, 893-906, 922-929, 938-943, 948-953, 969-976, 1002-1008, 1015-1035, 1056-1069, 1105-1116, 1124-1135, 1144-1151, 1173-1181, 1186-1191, 1206-1215, 1225-1230, 1235-1242, 6-66, 65-124 and 590-604, of Seq.ID No. 83, aa 5-32, 66-72, 87-98, 104-112, 116-124, 128-137, 162-168, 174-183, 248-254, 261-266, 289-303, 312-331, 174-249, of Seq.ID No. 84, aa 4-21, 28-40, 45-52, 59-71, 92-107, 123-137, 159-174, 190-202, 220-229, 232-241, 282-296, 302-308, 312-331, 21-118, of Seq.ID No. 85, aa 9-28, 43-48, 56-75, 109-126, 128-141, 143-162, 164-195, 197-

216, 234-242, 244-251, 168-181, of Seq.ID No. 87,

aa 4-10, 20-42, 50-86, 88-98, 102-171, 176-182, 189-221, 223-244, 246-268, 276-284, 296-329, 112-188, of Seq.ID No. 88, aa 4-9, 13-24, 26-34, 37-43, 45-51, 59-73, 90-96, 99-113, 160-173, 178-184, 218-228, 233-238, 255-262, 45-105, 103-166 and 66-153, of Seq.ID No. 89, aa 13-27, 42-63, 107-191, 198-215, 218-225, 233-250, 474-367, of Seq.ID No. 90, aa 26-53, 95-123, 164-176, 189-199, 8-48, of Seq.ID No. 92, aa 7-13, 15-23, 26-33, 68-81, 84-90, 106-117, 129-137, 140-159, 165-172, 177-230, 234-240, 258-278, 295-319, 22-56, 23-99, 97-115, 233-250 and 245-265, of Seq.ID No. 94, aa 13-36, 40-49, 111-118, 134-140, 159-164, 173-183, 208-220, 232-241, 245-254, 262-271, 280-286, 295-301, 303-310, 319-324, 332-339, 1-85, 54-121 and 103-185, of Seq.ID No. 95, aa 39-44, 46-80, 92-98, 105-113, 118-123, 133-165, 176-208, 226-238, 240-255, 279-285, 298-330, 338-345, 350-357, 365-372, 397-402, 409-415, 465-473, 488-515, 517-535, 542-550, 554-590, 593-601, 603-620, 627-653, 660-665, 674-687, 698-718, 726-739, 386-402, of Seq.ID No. 96, aa 5-32, 34-49, 1-43, of Seq.ID No. 97, aa 10-27, 37-56, 64-99, 106-119, 121-136, 139-145, 148-178, 190-216, 225-249, 251-276, 292-297, 312-321, 332-399, 403-458, 183-200, of Seq.ID No. 99, aa 5-12, 15-20, 43-49, 94-106, 110-116, 119-128, 153-163, 175-180, 185-191, 198-209, 244-252, 254-264, 266-273, 280-288, 290-297, 63-126, of Seq.ID No. 100, aa 5-44, 47-55, 62-68, 70-78, 93-100, 128-151, 166-171, 176-308, 1-59, of Seq.ID No. 101, aa 18-28, 36-49, 56-62, 67-84, 86-95, 102-153, 180-195, 198-218, 254-280, 284-296, 301-325, 327-348, 353-390, 397-402, 407-414, 431-455, 328-394, of Seq.ID No. 102, aa 7-37, 56-71, 74-150, 155-162, 183-203, 211-222, 224-234, 242-272, 77-128, of Seq.ID No. 103, aa 34-58, 63-69, 74-86, 92-101, 130-138, 142-150, 158-191, 199-207, 210-221, 234-249, 252-271, 5-48, of Seq.ID No. 104, aa 12-36, 43-50, 58-65, 73-78, 80-87, 108-139, 147-153, 159-172, 190-203, 211-216, 224-232, 234-246, 256-261, 273-279, 286-293, 299-306, 340-346, 354-366, 167-181, of Seq.ID No. 106, aa 61-75, 82-87, 97-104, 113-123, 128-133, 203-216, 224-229,

236-246, 251-258, 271-286, 288-294, 301-310, 316-329, 337-346,

348-371, 394-406, 418-435, 440-452 of Seq.ID No. 112, aa 30-37, 44-55, 83-91, 101-118, 121-128, 136-149, 175-183, 185-193, 206-212, 222-229, 235-242 of Seq.ID No. 114, aa 28-38, 76-91, 102-109, 118-141, 146-153, 155-161, 165-179, 186-202, 215-221, 234-249, 262-269, 276-282, 289-302, 306-314, 321-326, 338-345, 360-369, 385-391 of Seq.ID No. 116, aa 9-33, 56-62,75-84, 99-105, 122-127, 163-180, 186-192, 206-228, 233-240, 254-262, 275-283, 289-296, 322-330, 348-355, 416-424, 426-438, 441-452, 484-491, 522-528, 541-549, 563-569, 578-584, 624-641, 527-544, of Seq.ID No. 142, aa 37-42, 57-62, 121-135, 139-145, 183-190, 204-212, 220-227, 242-248, 278-288, 295-30, 304-309, 335-341, 396-404, 412-433, 443-449, 497-503, 505-513, 539-545, 552-558, 601-617, 629-649, 702-711, 736-745, 793-804, 814-829, 843-858, 864-885, 889-895, 905-913, 919-929, 937-943, 957-965, 970-986, 990-1030, 1038-1049, 1063-1072, 1080-1091, 1093-1116, 1126-1136, 1145-1157, 1163-1171, 1177-1183, 1189-1196, 1211-1218, 1225-1235, 1242-1256, 1261-1269, 624-684, of Seq.ID No. 151, aa 8-23, 31-38, 42-49, 61-77, 83-90, 99-108, 110-119, 140-147, 149-155, 159-171, 180-185, 189-209, 228-234, 245-262, 264-275, 280-302, 304-330, 343-360, 391-409, 432-437, 454-463, 467-474, 478-485, 515-528, 532-539, 553-567, 569-581, 586-592, 605-612, 627-635, 639-656, 671-682, 700-714, 731-747, 754-770, 775-791, 797-834, 838-848, 872-891, 927-933, 935-942, 948-968, 976-986, 1000-1007, 1029-1037, 630-700, of Seq.ID No. 152, aa 17-25, 27-55, 84-90, 95-101, 115-121, 55-101, of Seq.ID No. 154, aa 13-28, 40-46, 69-75, 86-92, 114-120, 126-137, 155-172, 182-193, 199-206, 213-221, 232-238, 243-253, 270-276, 284-290, 22-100, of Seq.ID No. 155 and aa 7-19, 46-57, 85-91, 110-117, 125-133, 140-149, 156-163, 198-204, 236-251, 269-275, 283-290, 318-323, 347-363, 9-42 and 158-174, of Seq.ID No. 158, aa 7-14, 21-30, 34-50, 52-63, 65-72, 77-84, 109-124, 129-152, 158-163, 175-190, 193-216, 219-234 of Seq.ID.No. 168, aa 5-24, 38-44, 100-106, 118-130, 144-154, 204-210, 218-223, 228-243, 257-264, 266-286, 292-299 of Seq.ID.No. 174, aa 29-44, 74-83, 105-113, 119-125, 130-148, 155-175, 182-190, 198-211, 238-245 of Seq.ID.No. 176, and fragments as depicted in Tables 2 and 4 and fragments comprising at least 6, preferably

WO 02/059148 PCT/EP02/00546

- 118 -

more than 8, especially more than 10 aa of said sequences.

- 25. Helper epitopes of an antigen or a fragment, as defined in anyone of claims 21 to 24, especially peptides comprising fragments selected from the peptides mentioned in column "Putative antigenic surface areas" in Table 4 and 5 and from the group aa 6-40, 583-598, 620-646 and 871-896 of Seq.ID.No.56, aa 24-53 of Seg.ID.No.70, aa 240-260 of Seg.ID.No.74, aa 1660-1682 and 1746-1790 of Seq.ID.No. 81, aa 1-29, 680-709, and 878-902 of Seq.ID.No. 83, aa 96-136 of Seq.ID.No. 89, aa 1-29, 226-269 and 275-326 of Seq.ID.No. 94, aa 23-47 and 107-156 of Seq.ID.No. 114 and aa 24-53 of Seq.ID.No. 142 and fragments thereof being T-cell epitopes.
- 26. Vaccine comprising a hyperimmune serum-reactive antigen or a fragment thereof, as defined in any one of claims 21 to 25.
- 27. Vaccine according to claim 25, characterized in that it further comprises an immunostimulatory substance, preferably selected from the group comprising polycationic polymers, especially polycationic peptides, immunostimulatory deoxynucleotides (ODNs), neuroactive compounds, especially human growth hormone, alumn, Freund's complete or incomplete adjuvans or combinations thereof.
- 28. Preparation comprising antibodies against at least one antigen or a fragment thereof, as defined in any one of claims 21 to 25.
- 29. Preparation according to claim 27, characterized in that said antibodies are monoclonal antibodies.
- 30. Method for producing a preparation according to claim 28, characterized by the following steps:
 - •initiating an immune response in a non human animal by administering an antigen or a fragment thereof, as defined in any one of the claims 21 to 25, to said animal,
 - •removing the spleen or spleen cells from said animal,
 - •producing hybridoma cells of said spleen or spleen cells,
 - selecting and cloning hybridoma cells specific for said anti-

gen and

producing the antibody preparation by cultivation of said cloned hybridoma cells and optionally further purification steps.

- 31. Method according to claim 29, characterized in that said removing the spleen or spleen cells is connected with killing said animal.
- 32. Method for producing a preparation according to claim 27, characterized by the following steps:
 - ·initiating an immune response in a non human animal by administering an antigen or a fragment thereof, as defined in any one of the claims 21 to 25, to said animal,
 - removing an antibody containing body fluid from said animal,and
 - producing the antibody preparation by subjecting said antibody containing body fluid to further purification steps.
- 33. Use of a preparation according to claim 27 or 28 for the manufacture of a medicament for treating or preventing staphylococcal infections or colonization in particular against Staphylococcus aureus or Staphylococcus epidermidis.
- 34. A screening method assessing the consequences of functional inhibition of at least one antigen or a fragment thereof, as defined in any one of claims 21 to 25.

IgA vs. IgG titer against total S. aureus lysate

IgA titer 10.000X

Figure 1

Figure 2

Figure 3

Figure 4

Figure

Figure (

Figure 7

EXTRACELLUEAR DOMAIN

Figure 84

Constitutive Cell Wall Proteins of S. aureus with LPXTG motif

	Known proteins	Predicted	Things Indicophible removante domain basic C-terminus
-	Mrp protein	255/4.6	AKTEEDTIGMSHNDDLFYAELALGAGMAFLHRRFTKKDQQTEE
	Pls (MRSA)	167/4.1	NKE EPDIGNDRONGINEGSDERALGGDETVGRERKNINBEK
	SdrD (SD-repeat)	133/4.1	AKALIPBTGNENSGSNNATIFFGGTFFATGSLIJFFGRRKKONK
	Cha	126/5.6	IKBUPKYCMGATISHIUNYFIGIIGIATAILERKRENS
-	SdrE	117/4.1	AKALPETGSENNGSNIPTIFGGGGFFALGSLILLFGRRKKONK
ف	FnBPA	104/4.5	KSELDETGGEESTNKGMLEGGIFST LGIALIRRNKKNHKA
+	Sdrc	94/4.1	AKALTERIĞSENINSINGTLEGGLERALGSILISEGREKKONK
1-	FnBPB	96/4.5	KSELPENGGEESTINGOLFGGLEST LGLALIRRNKKNIHKA
0	ClfA (clumping factor 89/3.4	89/3.4	KEPTEDYGSEDENNISTI WGLIASTGSILLI FRRKKENKDKK
1_	10 CLEB (clumping factor 88/3.7	88/3.7	TDALEBITGDKSENTRATTE GAMMATIGSTILLFRKRKODHKEKA
۲.	11 Spa (Protein A)	48/5.2	AOALDETIGENPETGTTVEGGESTALGAALLAGRREEL

	Predicted based on sequence (TIGR)		
Ü.	Anonymus I.	79/9.3	EKODPKTGTNKSSSPERMFVILLAGIGLITATVRRKAS
	Anonymus II.	227/4.2	EKRLPDTGDSIKONGILGGVMTILVGLGIMKRKKKKDEND
-	Anonymus III.	200/4.1	ekembentigsegad metakeralitagaarilaarrruknekes
-	Anonymus IV.	122/5.8	raempriglestokglitystigiagiallarrrn
100	Anonymus V.	101/5.0	SKALPKTGETTSSOSWWGIYALLCALLALFTPKFRKESK

Figure 8B

Figure 9

- 1

Surface staining of S. aureus (strain 8325-4 spa-) with purified anti-LPXTGV IgGs

[]

Figure 10

SEQUENCE LISTING

Intercell Biomedizinische Forschungs- und Entwicklungs AG Cistem Biotechnologies GmbH

R 39035

Priority: Austrian Patent Application No. A 130/2001 of 26.01.2001

Seq.ID Nos. 1-598

Organisms: S.aureus; S.epidermidis

atgaacaacagcaaaagaatttaaatcattttattcaattagaaagtcatcactaggc gttgcatctgtagcaattagtacacttttattattaatgtcaaatggcgaagcacaagca gcagctgaagaaacaggtggtacaaatacagaagcacaaccaaaaactgaagcagttgca agtccaacaacaacatctgaaaaaagctccagaaactaaaccagtagctaatgctgtctca gtatctaataaagaagttgaggcccctacttctgaaacaaaagaagctaaagaagttaaa gaagttaaagcccctaaggaaacaaaagaagttaaaccagcagcaaaagccactaacaat gettacattegettetetytateaaaeggaacaaaagetyttaaaattyttagtteaaca caetteaataacaaagaagaaaaataegattacacattaatggaattegeacaaccaatt tataacagtgcagataaattcaaaactgaagaagattataaagctgaaaaattattagcg aaaatgactgatttacaagatacaaaatatgttgtttatgaaagtgttgagaataacgaa tctatgatggatacttttgttaaacaccctattaaaacaggtatgcttaacggcaaaaaa tatatggtcatggaaactactaatgacgattactggaaagatttcatggttgaaggtcaa gatggacaataccatgtcagaatcgttgataaagaagcatttacaaaagccaataccgat aaatotaacaaaaaagaacaacaagataactcagotaagaaggaagotactccagotacg cotagoaaaccaacacoatcacotgttgaaaaagaatcacaaaaaacaagacagocaaaaa gatgacaataaacaattaccaagtgttgaaaaagaaaatgacgcatctagtgagtcaggt aaaggcgtaacgottgctacaaaaccaactaaaggtgaagtagaatcaagtagtacaact ccaactaaggtagtatctacgactcaaaatgttgcaaaaccaacaactggttcatcaaaa acaacaaaagatgttgttcaaacttcagcaggttctagcgaagcaaaagatagtgctcca ttacaaaaagcaaacattaaacacacaaatgatggacacactcaaagccaaaacaataaa aatacacaagaaaataaagcaaaatcattaccacaaactggtgaagaatcaataaagat atgacattaccattaatggcattattagctttaagtagcatcgttgcattcgtattacct agaaaacgtaaaaactaa 2. atgagaaatatagagaatctaaatcccggagattcagttgatcactttttcttagtgcat aaagctacacagggtgtaacagcacaaggtaaagattatatgacattacatttgcaagat aaaagtggtgaaattgaagcgaaattttggacggctacaaaaaatgatatggcaacaatc aagcctgaagaaattgtacatgttaaaggtgacatcataaactatcgcggaaataaacag atgaaagtcaaccaaattagactagcgacaactgaagatcaattaaaacagaacaattt gtagatggtgcacctttatcaccggcagaaatacaagaagaatttctcattatttgcta gatattgaaaatgctaatttacaacgtatcacacgtcatttattgaaaaaatatcaagaa cgattttacacatatccagctgctagttctcatcatcataactttgcgagtggcttaagc tatcatgtattaacgatgttacgtattgcaaaatcaatttgtgacatttatccattgtta aacaaagtttgttatatatgtggtattattttgcatgatattggtaaagttagagaattg agtggtcctgttgcgacgtcgtatacagtcgaaggtaacttattaggacacatctcgatt atgtttgaaaaggcatataaaaaaactgacaagggtcagtttacagataaaatatttggt cttgaaaatcgtagattctacaatcctgaatcactcgat

3. gttgoatcggtcattgtcagtacactatttttaattacttctcaagcacaagca gcagaaaatacaaatacttcagtacactattctcagtacactcaagcacaagca gcagaaaatacaaatacttcagataaaatctcggaaaatcaaaataataatgcaactaca actcagccacctaaggatacaaatcaaacacaacctgctacgcaaccagcaaacactgcg aaaaactatcetgcagcggatgaatcacttaaagatgcaattaaagatcctgcattagaa aataaagaacatgatataggtccaagagaacaagtcaatttccagttattagataaaaac aatgaaacgcagtactatcactttttcagcatcaagatccagcagatgtgtattacact aaaaagaaagcagaagttgaattagacatcaatactgcttcaacatggaagaagtttgaa gtctatgaaaacaatcaaaaattgccagtgagacttgtatcatatagtcctgtaccagaa gaccatgcctatattcgattcccagtttcagatggcacacaagaattgaaaattgtttct tcgactcaaattgatgatggagaagaaacaaattatgattatactaaattagtatttgct aaacctatttataacgatcettcacttgtaaaatcagatacaaatgatgcagtagtaacg aatgatcaatcaagttcagtcgcaagtaatcaaacaacacgaatacatctaatcaaaat acatcaacgatcaacaatgctaataatcaaccgcaggcaacgaccaatatgagtcaacct gcacaaccaaaatcgtcaacgaatgcagatcaagcgtcaagccaaccagctcatgaaaca aattctaatggtaatactaacgataaaacgaatgagtcaagtaatcagtcggatgttaat attgaatatggtgagaacatccatgaagactatgattatacgctaatggtctttgcacag cctattactaataacccagacgactatgtggatgaagaaacatacaatttacaaaaatta ttagctccgtatcacaaagctaaaacgttagaaagacaagtttatgaattagaaaaatta caagagaaattgccagaaaaatataaggcggaatataaaaagaaattagatcaaactaga gtagagttagctgatcaagttaaatcagcagtgacggaatttgaaaatgttacacctaca aatgatcaattaacagatttacaagaagcgcattttgttgttgtttttgaaagtgaagaaaat agtgagtcagttatggacggctttgttgaacatccattctatacagcaactttaaatggt caaaaatatgtagtgatgaaaacaaaggatgacagttactggaaagatttaattgtagaa ggtaaacgtgtcactactgtttctaaagatcctaaaaataattctagaacgctgattttc ccatatatacctgacaaagcagtttacaatgcgattgttaaagtcgttgtggcaaacatt ggttatgaaggtcaatatcatgtcagaattataaatcaggatatcaatacaaaagatgat gataaagatgccgataatagcgttggtatgtcatctaatgtcgatactgataaagactct aataaaaataaagacaaagtcatacagctgaatcatattgccgatactgataaagactact ggaaaagcagcaaagcttgacgtagtgaaacaaaattataatacagacaaagttact ggtatgttagetttatteatteetaaatteagaaaagaatetaaa Atgtcagattttaatcatacagatcattctacaacaaaccatagccaaacacctagatac 4. Aaattoggtacogttoatgaaatgataaaaatogtotoocotacaatgttggagttatt Aacatgcaaaaagcatcaagtgtagacgacttattaaaaggcaaatcatctaaaccatct Gaagctggagtaggttcaggtgttatctatcaaataaacaacaattcagcttatatcgtt Acaaacaatcatgttattgatggcgcaaatgaaattagagtccaattacataataaaaaa Caagttaaagcgaaattagttggtaaagatgcagtaactgatattgctgtacttaaaatt Gaaaatacaaaaggtattaaagcgattcaatttgccaactcttcaaaagtacaaactggc Gatagcgtattcgcaatgggtaacccattaggattacaatttgctaactctgtaacatct Ggtatcatttcagcaagcgaacgtacgattgacgctgagacaactggtggcaatacaaa Gttagcgttcttcaaacagatgctgctattaacccaggtaactcaggtggcgcattagta Gatattaatggtaatttagttggtattaactcaatgaaaattgctgcgacacaagttgaa Ggtatcgggtttgctattccaagtaatgaagttaaagtaacaattgaacaacttgtaaaa Aaagatgatgttgatttaagaagctatttatatgaaaataaaaacctggtgaatcagtc Actgttaccgttatccgtgatggtaaaacaaaagaagttaaagtgaaattaaaacaacaa Aaagaacaaccaaaacgtcaaagccgatcagaacgtcaatcacctggccaaggcgataga gatttctttaga 5. caaattaatgcaatgattaattcaaaaacaaattatgatgttgtattcactagtggtgca actgaatccaataatcttgctttaaaaggtattgcctatcgtaaatttgatacagcgaag gaaataattacatccgtgttagagcatccgtccgtattagaggttgtaagatatttggaa aaggcacattttcatgtagatgcggttcaagcattggcaaaatttaaaatggatctcaat aaggcacattttcatgtagatgcggttcaagcattggcaaaatttcaaatggatctcaat aacatagatagtattagtttaagtggacacaagtttaatggtttaaaaggacaaggcgtc ttacttgtaaatcacattcaaaatgttgaaccaactgtccatggtggtggtcaaggatta ggcgttagaagtggaacagttaatttgccaaatgattattgcaatggttaaagcgatgaag atagctaatgaaaactttgaagcattgaatgcatttgttactgagttaaataatgacgtc cgtcaattttttaaataatatcatggagtttatattaattcttcaacttcaggttcacca ttcgttttaaatattagttttcctggcgtaaaaggtgaagtattagttaatgctttttca aaatatgacattatgatatctacgacaagtgcttgttcatctaaacgtaataaattaaat gaagtattggctactacaatgggattatcagacaaatctattgaaggtagtataagattatca tttggggctactacaactaaagaagatatagcgaggtttaaagaaatatttatcatcatt tatgaggaaattaaggagttgctaaaa

8.

acyaytataatolayyatoyatostyytatotaattaytaytaytatotaytaatay gtaagcotatotgattotgtgagtgoatotaagtoattaagcacatotgaaagtaatagt gtatoaagotoaacaagcacaagtttagtgaattoacaaagtgtatoatcaagcatgtog gattoagotagtaaatoaacatoattaagogattotattoaaactotagcagtactgaa

11.	ttgaaaaaaagaattgattatttgtcgaataagcagaataagtattcgattagacgtttt caagtaggtaccaactagtaatagtagggcaactatactatttgggataggcaatcat caagcacaagcttcagaacaatagaacgatacaagcaatcttcgaaaaatagtg caagttccgaaaaaaacaattgatagaagaatacaacgcaacttctcgaaaaatagtgaagt gcagattccgaaaaaaacaattgatagaacaaccaacagcaacttcgaacaacaagtg tctaccaaaacgagcaataccactacaacaggcagttcaacaaaagagcaagttgatgatagaacaacaacag tctacacaaacgagcaatacaactacacaacaggcagttcaacaaatgaaacacctcaa ccgacggcaattaaaaatcaagcaactgctgcaaaaatgacaaactgttccaa gaagcaaattctcaagtagataaaacacagatgtgctaatagcaagca	The state of the s
12.	atgaaaaagacaattatggcatcatcattagcagtggcattaggtgtaacaggttacgca gcaggtacaggacatcaagcacagctgctgaagtaaacgttgatcaagcacacttagtt gacttagcgcataatcaccaagatcaattaaatgcagctccaatcaaagatggtgcatat gacatccactttgtaaaagatggtttccaatataacttcacttcaaatggtactacatgg tcatggagctatgaagcagctaatggtcaaactgctggtttctcaaacgttgcaggtgca gactacactac	
	ttgggaggatatttaattatgaaaaaaatcgttacagctacaatcgctacagcaggactt gccactatcgcatttgcaggacatgatgcacaagccgcagaacaaataacaatggatat aattctaatgacgctcaatcatacagctatacaattgatat cattacacttggacaggaaattggaatccaagtcaattaacgaacaacaacacatactac tacaacaactacaatacttatagttataacaatgcatcttacaattaactat tcattacaatacaa	

15.

14.

16.

gaatttaaatcagagccgccagtggagaagcatgaattgactggtacaatcgaagaagt
aatgattctaagccaattgattttgaatatcatacagctgttgaaggtgcagaaggtcat
gcagaaggtaccattgaaactgaagaagattctattcatgtagactttgaagaatcgaca
catgaaaattcaaacatcatgctgatgttgttgaatatgaagaagatacaaacccaggt
ggtggtcaggttactactgagtctaacctagttgaatttgaagaagattctacaaaaggt
attgaactggtgetgttagcgatcataacaacaattgaagataccgaagaatatacgact
gaaagtaatctgattgaactagtagatgaactacctgaagaacatggtcaagcgcaagga
ccaatcgaggaaattactgaacaacaatcatatttctcattctgttttaggaactgaa
aatggtcacggtaattatggcgtgattgaagaaatcgaagaaaatagccacgtggatatt
aagagtgaattaggttacgaaggtggccaaaatagcggtaatcgatttgaggaaga
acagaagaagataaaccgaaatatgaacaaggtggcaatatcgtagatatcgattcgat

aggagagataatagaataatgatatagatagaggagagataagagagatacagag agggtacctcaaattcatggtcaaaataatggtaaccaatcattcgaaggagatacagag aaagacaaacctaagtatgaacaaggtggtaatatcattgatatcgacttcgacagtgtg caactattcaacggattcaataaggacactgaaattattgaaggagatacaaataaagat aaaccaaattatcaattcggtggacacaatagtgttgactttgaagaagatacaacttcca caagtaagtggtcataatgaaggtcaacaatagtgttgaagaagatacaacactccaatc gtgccaccaacgccaccgacaccagaagtaccaagcggagacggaaacaccaacaccg caaccaggagtaccaagcgagccggaaacaccaacaccgccaacgccagaggtaccaac gaacctggtaaaccaataccacctgctaaagaagaacctaaaaaaccttctaaaccagtg gaacaaggtaaagtagtaacacctgttaattgaaatcaatgaaaaggttaaagcagtggta

ccaactaaaaagcacaatctaagaaatctgaactacctgaaacaggtggagaagaatca acaaacaacggcatgttgttcggcggattatttagcattttaggtttagcgttattacgc agaaataaaaagaatcacaaagca

19

atgcaaatgagagataagaaaggaccggtaaataaaagagtagattttctatcaaataaa ttgaataaatattcaataagaaaatttacagttggaacagcatctattttaattggctca ctaatgtatttgggaactcaacaagaggcagaagcagctgaaaacaatattgagaatcca agtgttgatatacaaaaaaaaccaacagatttaggggtatcagaggtaaccaggtttaat agtgttgatatacaaaaaaaccaacagatttaggggtatcagaggtaaccaggtttaat gttggtaatgaagtaatggtttgataggagctttacaattaaaaaaatagatttt agtaaggatttcaattttaaagttagatggcaaataccaactacaaccaaggt gctgatggttgggggttcttattagatgggcaaatgcagaagaatatttaactaatggt ggaatccttgggggttctatttagtacaggcagatttaaaattgatactggatac atttatacaagttccatggacaaactgaaaagcaggcaaagctgacaaggttatagagaga gagcttttgtgaaaaatgacagtctggtaattcacaaatggttggagaaaatttgat aaatcaaaaactaatttttaaactatgggacaattcaacataatacatcagatggaaag tttcatggcaacgtttaaatgatgtcatcttaacttagttgctcaactggtaaaat aaagcagaatatgctggtaaaacttggagaacattcaactagttcaactggtaaaaat aaagcagaatatgctggtaaaacttggagaacttcaataaacacagtttactaaa gytgagaagacaataacgacaccaacactaaaaaatccattaactggagtaattattagt aaaggtgaaccaaaagaagagattacaaaagatccgattaatgaattaacagaa cctgaaaccaatagcgccaggtcatcgagacgaatttgatccgaagttaccaacaggagag aaagaggaagttccaggtaaaccaggaattaagaatccagaaacaggagacgtagttaga ccgccggtcgatagcgtaacacaaatatggacctgtaaaaggagacatcgattgtagaaaaa gaagarattccattcragaaagaacgtagattaatccaggatttagcaccagggacagaa aaagtaacaaggagaaggacaaaaaggtggagaagacaataacgacgcaacaactaaaaaaa coattaacagagaagaatattaattagtacagaagaagaaaatcacaaaaaatcc acagrangaattacaaaagaccgaatttaatccgaagttaccaacaggagagaaagagtaagtt acagrangagaattaagaatccagaaacaggagatgtagttagaccaccggtcgat agcgtaacaaaatatggacctgtaaaaggagaatcgattgtagaaaaagaagaaattcca aggyaaagaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaaga gaaggacaaaaaggtgagaagacaataacgacgccaacactaaaaaatccattaactgga gaaattattagtaaaggtgaatcgaaagaagaaatcacaaaagatccagttaatgaatta acagaatteggtggcgagaaaataccgcaaggtcataaaggatatctttgatccaaactta ccaacagatcaaacggaaaaagtaccaggtaaaccaggaatcaagaatccagacacagga aaagtgatcgaagagccagtggatgatgtgattaaacacggaccaaaaacgggtacacca atgaaaaataaatatatctcgaagttgctagttggggcagcaacaattacgttagctaca

gcatcatcaatcaaaaatacattaagtaatttattatcattctggaaa

22.	ggataftttaacgagttatatgattatataagttetgatatttagaggttttaattgaggattatgagatat gggggtttaaattgaatatgattattgagttattataggagattagattatgagattatt	
	gtcaaatcttcagtagagtcagattcaagttataaacaaatgattattaaattcatat tcggacatagataaaatgaagtctttaatgacagataaacagtatttctaaaaacggatta acaacaacttaaaatatatatagacatggatcgtgtcaacctatcataacaagactta gactttgcatttggtttaagtatgacgtcgaaaaacgtagcacgctatgaaagtatcaac gagagagaatttaaaaggttggcacacttggtgctggaatgtcttattattataacacggat gtcaaacactatcatgataacttctgggtgcagcagatagtattattatataacagcgat gtcaaacactatcatgataacttctgggtgacagcagatagtattataaggtaca acaactttagacaatgaaactattaaaagatacggatgataaaaagtcgagtaaaactttt gttggcggaacaaaagttgatgaccaacatgctagtatcggattggattttgaaaatcat gacaaactttaactgccaaaaaatcatattatataaaggatgagttttgaaaatcag gacaaaactttaactgccaaaaaacatcatattcaaacgataaacgataaacgat ggaactggcattaaaaagtcgattacacaacaagatacagattacaacaatcgc aaagcgattggtatacgttatatacagacgataaacaacaaccaattctgataatcag gaaacaattcagtcttttagagtccacagataccaaaaagacactcggttatcatttt ttaaacaaaccgaaaatactgtaaaaaaagaaagtcatactggtagaaagaa	
	attaatattyaatattyttaatattyttyttattattytaattatt	
24.	gtgaatgattttgaattaactaaa gtgaatgattttgaagcaattttatatattgcgttagtatgtggtgtgatagcaggtctt ggtgctttcttacatataccgcagtatccgagcatgacaattccacgtatagtagctatt ttaggaattatcagtgctatgttgacttttaaagacaagcaaatcagcgcctcattaaag tttagcgcattgttaattaatgtgctgccattatgcggtacctttgtagcttcaaat	

25.	gtgtctcgtgaaatgtcatatcattggtttaagaaaatgttactttcaacaagtattta attttaagtagtagtttagggcttgcaacgcacacagttgaagcaaaggataactta aatggagaaaaaccaactactaatttgaatcataatataacttcaccatcagtaaatagt gaaatgaataatagagactgggacacctcacagatcaaatcaaacgggtaatgaagga acaggttcgaatggtgtgatgctaatcctgattcgaataaatgtgaagccagactcaaac aaccaaaacccaagtacagattcaaaaccagacccaaataaccaaaacccaagtccgaat cctaaaccagatccagattcaaaaccagacccaaatcaaccagaccaagtccaaa cctaaaccagatccagattcaaaaccagatccaaatccagatccaaatccagatcca aaccagaccag
26.	atgaaaataaaaacgtgttttaatagcgtcatcattatcatgtgcaatttattgtta tcagcagcaacgactcaagcaaattcagctcataaagactctcaagaccaaaataagaaa gaacatgttgataagtctcaacaaaaagacaaacgtaatgttactaataaagataaaaat tcaacagcaccggatgatattgggaaaaacgtaaaattcacaaaacgaactgaacagta tatgatgagaaacaaatatactccaaaattacacattcgacgtattactaattaaagtt tatgatgagaaacaaatatactcaaaattgacaattcacaaattcaaatttaaagtt gaatctcataaagaagaaaaaaattcaaaattggttaaagtatccaagtgagtaccatgta gattttcaaagtagaaagaaatcgtaaaactgaaatattagaccaattgccgaaaaataa atttcaactgcaaaaagtagacagtacaattttcatatagaccaattgccgaaaaataa atttcaactgcaaaaagtagacagtacattttcatatagaccaattgctgatacatgta caaaaggtattggacgaacttcatcaaaatagctactccaaaacggtagtacactggtcagt caaaattatgacaccaattgccagcgtaaaaataatactggcatgtacactggtcagtt attgcgaatgacttgaagtatggtggagaagtgaaaaatagaaatgatgatattat
27.	atgtatacacgtacagctacaacaagtgatagtcaaaaaaatattactcaaagcttacaa tttaatttcttaactgaacctaattatgataaagcaacagtatttatt
28.	gtggtgaaalttatgaattatcaaatggtaaaccatatcgtaaaaatagtgctatagac ggagggaaaaagaccgctgcctttagtaatattgagtatggtggacgtggtatgtcactt gaaaaggatatcgaacattcaaatacgttttatcttaaaagcgacatttgcagttattcac aaaaagcctacgccagtacaaatagttaatgtcaactatcctaagcggagtaaagctgtg attaacgaagcttattttcgtacaccttcaacaactgattacaacggcgtttatcaaggt tattatattgattttgaagcaaaggaaactaaaaacaagacgtcctttcctttaaataat attcatgaccatcaagtcgaacatatgaaaaatgcatatcaaccaaaaagggtattgtgtt ttaatgatcattttaaaacgctagatgaagttatcttttaccatattcaaaattcgaa gtattttggaaggaatataaagataatattaaaragtctataacagttgatgaaatacga aaaatggttaccatattccttatcagtatcaaccaagattagactatcaaaagcagtt gataagttgatattagatgaaagtgaggaccgcgta

29.

gtgaatacaacgaaagcagcattacatggtgatgtgaagttacaaaatgataaagatcat gctaagcaaacggttagtcaattagcacatctaaacaatgcacaaaaacatatggaagat gcgagcagtgcatatgtcaatgcagaaccgaataaaaaacaatcctatgatgaagcagtt gugaguaguguguatatgudatguaguatugattaaataatudatututagatguaguagta caaaatgutgagtutatuattguaggattaaataatucaactatuaataaaggtaatgta tuaagtgugactuaagcagtaatatuatutaaaatguattagatggtgttgaaugatta ataaatgcagcgcctacaagaacagaggttgcacaacatgttcaaactgctactgaactt gatcacgcgatggaaacattgaaaaataaagttgatcaagtgaatacagataaggctcaa ccaaattacactgaagcgtcaactgataaaaaagaagcagtagatcaagcgttacaagct gcagaaagcattacagatccaactaatggttcaaatgcgaataaagacgctgtagaccaa gtattaactaagcttcaagaaacaactattgaccaattaacacatttaaatgctgatcaaatt gcaactgctaaacaacagcgaaacattgatcaagcgacaacttcaaccaattgctgatcaaatt gcaactgctaaacaaacattgatcaagcgacagaaacttcaaccaattgctgataagtagaacat gatcaagcaacgcaattgaatcaatctatggatcaattacaacaagcagttaatgacaa gatcaagcaacgcaattgaatcaatctatggatcaattacaacaagcagttaatgaacat gctaacgttgagcaaactgtagattacacacaagcagattcagataaacaaaatgcttat aaacaagctattgctgatgctgaaaatgtattgaaacaaatgcgaataagcaacaagtg gatcaagcacttcaaaacaattgtaatgcaaaacaagcattaaatggtgatgaacgtgta gcacttgctaaaacaaatggtaaacatgaccaattgaactaatgcattaaacaatgc caagtatatgatgaaacggttgataaagcgaaacaagcacttgataaatcgactggtcaa aacttaactgcaaaacaagttatcaaattaaatgatgcagtcactgcagctaagaaagca ttaaatggtgaagaaagacttaataatcgtaaagctgaagcattacaaagattggatcaa ttaacacatctaaacaatgctcaaagacaattagcaatccaacaaattaataatgctgaa acgotaaataaagcatctcgagcaattaatagagcaactaaattagataatgcaatgggt gcagtacaacaatatattgacgaacagcaccttggtgttatcagcagcacaaattacatc aatgcagatgacaatttgacagcacattatgataatgcaattgcgaatgcagcacatgag ttagataaagtgcaaggtaatgcaattgcaaagctgaagcagagcaattgaaacaaaat attatcgatgctgcaaaatgcattaaatggagaccaaaaaccttgcaaatgccaaagataaa gcaaatgcgtttgttaattcgttaaatggattaaatcaacagcaacaagatcttgcacat aaagcaattaacaatgccgatactgtatcagatgtaacagatattgttaataatcaaatt gcaatccaagcagtcaatgatgcaatccataatcttaatggtgatcaacgactacaagat gctaaagacaaggcaattcaatctattaatcaagctttagctaataagctaaaagaaatc gaagcttcaaatgcgacggatcaagacaagcttattgcgaaaaataaagcagaagaatt gcaaacagcatcatcaacaattaataaagcaacaagtaatcaggctgtatctcaagtt caaacagcaggcaaccacgcgattgaacaagtgcatgccaatgaaataccaaaagcaaaa attgatgccaataaagacgttgataagcaagttcaagcattaattgacgaaattgatcga aatccaaatctaacagataaggaaaaacaagcacttaaagatcgtattaatcaaatactt caacaaggtcataacggcattaacaatgcgatgactaaagaagaaattgaacaagccaaa gaacaacttgcgcaagcattacaagacatcaaagatttagtgaaagctaaagaagatgcg aaacaagatgttgataaacaagttcaagctttaattgacgaaatcgatcaaaatccaaat ctaacagataaggaaaacaagcacttaaagatcgtattaatcaaatacttcaacaaggt catarcgacattamcaatgcgatgacaaaagaagcaattgaacaagcaaaagaacgttta gcgcaagcattgcaagacatcaaagatttagtgaaagctaaagaagatgcgaaaaatgat attgataaacgtgtacaagctttaattgacgaaatcgatcaaaatccaaatctaacagat aaggaaaacaagcacttaaagatcgaattaatcaaatacttcaacaaggtcataacgac attaacaatgcgctgactaaagaagaaattgagcaggcaaaagcacaacttgcacaagca ttgcaagacatcaaagatttagtgaaagctaaagaagatgcgaaaaatgcaataaaagcc ttagctaatgcgaagcgtgatcaaatcaattcaaatccagatttaacacctgagcaaaaa gcaaaagcgctcaaagaaattgacgaagctgaaaaacgagcactacaaaacgttgagaat gctcaaactatagatcaattaaatcgaggattaaacttaggtttagatgacattagaaat acacatgtatggaggttgatgaacaacctgctgtaaatgaaatttttgaagcaacact gagcaaatcctagttaatggtgaactcattgtacatcgtgatgacatcattacagaacaa gatattetgetgeacacataaacttaattgatcagctttcagcagaagtcatcgatacacca tcaactgcaacgatttctgatagcttaacagcaaaagttgaagttacattgcttgatgga tcaaaagtgattgttaatgttcctgtaaaagttgtagaaaaagaattgtcagtagtcaaa caacaggcaattgaatcaatcgaaaatgcggcacaacaaaagattaatgaaatcaataat agtgtgacattaacactggaacaaaaagaagctgcaattgcagaagttaataagcttaaa gctcgtactgatctaacagataaagagaagcaagaagctattgctaagttaaatcaatta aaagaacaagcaattcaagcgattcaacgtgcgcaaagcatcgatgaaataagtgagcaa ttggaacaatttaaagctcaaatgaaagcagctaatccaacagcaaaagaactagctaaa ataaaagagactttagacgatacaaaacatttaccacttttatttgcgaaacgtcgcaga aaagaagatgaagaagatgttactgttgaagaaaaagattcgctaaataatggcgagtca ctcgataaagttaaacatacgccgttcttcttaccaaaacgtcgtcgtaaagaagatgaa gaagatgtggaagttacaaatgaaaacacagatgaaaaagtgttgaaagataacgaacat tcaccactcttattcgcaaaacgacgcaaagataaagaggaagatgttgaaacaacaact agtattgaatctaaagatgaggacgttcctttattattggctaaaaaggaaaaatcaaaaa gataaccaatccaaagacaaaaagtcagcatcaaaaaatacttctaaaaaaggtagcagct aaaaagaagaaaaaagacagctaagaaaaataaaaaa

32.

atggttgcattaacgcttgtaggttcagcagtcactgcacatcaagttcaagcagctgag acgacacaagatcaaactactaataaaaacgttttagatagtaataaagttaaagcaact actgaacaagcaaaagctgaggtaaaaaatccaacgcaaacaatttctggcactcaagta tatcaagacctgctattgtccaaccaaaaaacagcaaataacaaaacaggcaatgctcaa aaagacttaaatgttcaaaacttaggcaaagaagttaaaacgactcaaaaatatactgtt aataaatcaaataacggcttatcaatggttccttggggtactaaaaaccaagtcattta acaggcaataacattgctcaaggtacatttaatgcaacgaaacaagtatctgtaggcaa gatgttatttatacggtactattaataaccgcactggttgggtaaatgcaaaagattta actgcaccaactgctgtgaaaccaactacatcagctgccaaagattataactacacttat gtaattaaaaatggtaatggttattactatgtaacaccaaattctgatacagctaaatac teattaaaagcatttaatgaacaaccattcgcagttgttaaagaacaagtcattaatgga caaacttggtactatggtaaattatctaacggtaaattagcatggattaaatcaactgat aatgctaaaatcatcaaaggctactatgataaaattggcgaagtcggcaaatacttcgac

34.

atgaataataaaaagacagcaacaaatagaaaaggcatgataccaaatcgattaaacaaa atyaataataangutattotgtaggtactgcttcaattttagtagggacaacattgatt ttttggataagtggtcatgaagctaaagcggcagaacatacgaatggagaattaaatcaa tcaaaaaatgaaacgacagccccaagtgagaataaaacaactaaaaagttgatagtcgt caactaaaagacaatacgcaaactgcaactgcagatcagcctaaagtgaacaatgagtgat agtgcaacagttaaagaaactagtagtaacatgcagatcagcctaaaagtgacaacgagctaa caatctactacaaaaactagcaatgtaacaacaaatgataaatcatcaactacatatagt aatgaaactgataaaagtaatttaacacaagcaaaagatgtttcaactacacctaaaaca acgactattaaaaccaagaactttaaatcgcatggcagtgaatactgttgcagctccacaa gttgcatttgcgaaacgtaaaaatgcaacaactgataaaacagcttataaaatggaagta gttgcatttgcgaaatgatacatatgcgaagaaatcattgtcgattatggtaataaaaaagca actttaggtaatgatacatatagcgaagaaatcattgtcgattatggtaataaaaaagca caaccgcttatttcaagtacaaactatattaacaatgaagatttatcgcgtaatatgact aatggaaaaattgattatactttagacactgacaaaactaaatatagttggtcaaatagt tattcaaatgtgaatggctcatcaactgctaatggcgaccaaaagaaatataatctaggt gactatgtatgggaagatacaaataaagatggtaaacaagatgccaatgaaaaagggatt gactacycatygacatactacaaagatygaaagaattagatagtagaaaaaaaa aaaggtyttatytcattcttaaagatagtaacgytaaagaattagatagtacgacaaca gatyaaaatyytaaatatcagttcactygtttaagcaatygaacttatagtytagagttt tcaacaccagccygttatacaccgacaactycaaatytagytacagatyatyctytagat tctgatggactaactacaacaggtgtcattaaagacgctgacaacatgacattagatagt ggattctacaaaacaccaaaatatagtttaggtgattatgtttggtacgacagtaataaa gatggtaaacaagattcgactgaaaaaggaattaaaggtgttaaagttactttgcaaaac gaaaaaggcgaagtaattggtacaactgaaacagatgaaaatggtaaataccgctttgat aatttagatagtggtaaattacaaagttatctttgaaaaaacctgctggcttaactcaaaca ggtacaaatacaactgaagatgataaagatgccgatggtggcgaagttgatgtaacaatt aggatcatgatgatttcacacttgattaatggctactacgaagaagaacatcagatagc gactcagattctgacagcgattcagactcagatagcgactcagattcagattagcgactca gattcagacagcgattcagacagcgactcagattcagattcagattcagacagc gactcagactcagactcagattcagactcggattagcgactcagactcagattcagactca gattcggatagcgactcagactcagattcagattcagattcagattcagattcagactca gacagtgattcagattcagattcagattcagattcagattctgacagcgattcagactca gacagtgattcagactcagatagtgattcagattcagacagcgactcagattcagactca gacagtgattcagactcagacagtgattcagattcagacagcgactcagattcagatagcgactcagactcagattcagattcagactcagactcaga gattcagacagcgactcagattcagatagcgattcggactcagacaacgactcagattca gatagcgattcagattcagatgcaggtaaacatactccggctaaaccaatgagtacggtt aaagatcagcataaaacagctaaagcattaccagaaacaggtagtgaaaataataattca aataatggcacattattcggtggattattcgcggcattaggatcattattgttattcggt cgtcgtaaaaaacaaaataaa

35.

36.	gtgattgctataatgaatgtaattatcgatgaaagaaaagagaatgctatgacatttaat aaagtattattgagctggatagtcatattgattataacaactagcatatatctattttgg cagttgggcgatatcaatgatgtatttaaccagtctattttaatcaatgttagattaccg agattattagaagcattgttgacaggtatattaactgttgcaggccttatatttcaa acagtttttaaataatgcattggcagatagctttacaattaggattgcaggcgcgctaca tttggttcaggattagcattattttaggtttaacaacgttatggattcctgtatttca ataacatttagtttgataacattaataactgtattagtcattacgtcggtattgagccaa ggctatccagttagaatcttaataattaggtttaatgattggtcgttattcaattca cttctatatttttttgattttattaaaacctcgcaaattaatacaattgccaattactg tttggtggttttggtgatgcagaatactcaaatgtattattaatacaattgccaattatctg tttggtggttttggtgatgcagaatactcaaatgtattattataatacaattgccaattatct attgcattgtttggtatattattatcattcttaatcaactaaagttattgcgaattaggagaa ctaaaaagtcagtagcttaaatgttcaattgattatacaatatatcgcgttatgtata gcttctatgataacggcgataaatgtcgcatatgttggcatcattggatcattggtatg gtgataccgcaactcattagaaaaatggcagtggaaccaatcattaggaagacaattggct ttaaatattgtaactggaggacaaataatgttagtgcagtttattggtagcacaata ttgtcaccagtacaaataccggcaagtatatcattggcagtttaattggtataccagtgtta ttttacatgctaaatatctcagtcgaaacggttacac
37.	ttgaaaaaattagcatttgcaataacagcaacatctggtgcagctgcatttttaacgcat catgatgcacaagcttctacacaacatacagtacaatctggtgaatcattttgagagtatt gctcaaaatacaacacttcagtagaggtattaacaacattaggtgaatcatt ttggtattccctggtcaagttatctcagtaggtggaagtgatgcacaattagataacaac ttggtattccctggtcaagttatctcagtaggtggaagtgatgcacaaaatacgtcaaac acttctcacaagctggttcagcatcatctcatactgtacaagctggtgaactattaaat atcattgctagcagatatggtgtttcagttgatcaattaatggcagccaataacttacgt ggttatttaattatgcctaaccaaacattacaaattcctaatggtggatcaggtggtaca acaccaacagctacaacaggtagcaatggcaatgcatcatcttttaatcaccaaaattta tacactgctggtcaatgtacatggtacgtatttgaccgtcgtgctcaagctggtagtcca attagcacatattggtcagacgtaagtattggctggtaacgcagctaatggtgtac caagtaaacaacaccatcagttggttcaattatgcaaagcacactggtccatatggt catgttgcttatgttgaacggtcaatggtagtgatgttattctgaaatggat tacacatatggtccatacaatatgaactacogtacaattcagcttcagaagtttctagc tatgcattcatccat
38.	atgccagattcaatcacaattatagatgaaaacaaagtgattgat
39.	atgggattittacaaaattcttgatggcaataataaagaaattaaacagtagtaaa cttgctgataaagtaatcgctttagagaaaaaaggcaattttacatgatgaaatt cgtaataaaacgaacaattccaaacagaattagctgacattgataatgtcaaaaagaa aatgattatttagataaaatttaccagaagcattagctgacattgatagagagctctaaa cgtgtattcaatatgacaccatataaagtcaaattagcggtgtattgcaattcataaa ggtgatatcgctgagagagaaaggtgaaggtaaaacattaacagcgacaattgccaaca tactaaatgcattagctgdtagaggtgtacacgttattacaagcgacaaattgccaaca tactaaaatgcatagcgaaggagtgtatataaacattcacagcgacaaatgccaaca ggtgtcaaaggagaaaagggtgagttatataaacttcttaggtttgactgcggatta aacttaaacagtagagcaagaagaaaaacgtgaagcatacgcacaagaagattacttac

40.	gtgagggaggtatgtcgaatcaaaattacgactacaataaaaatgaagatggaagtaag aagaaaatgagtacaacagcgaaagtagttagcattgcgacggtattgctattactcgga ggattagtatttgcaattttgcatatgtagatcattcgcaataaagcataaagacgtatg ggattagtatttgcaatttttgcatatgtagatcattcgaataaagctaaagaacgtatg ttgaacgaacaaaggaggaacaaagaagagcgtcaaaaagaaatgcagaaaacaa agaaagaaaagcaacaagaggaatcaatatcaatatgtgccacctcaagcaacaaccaa tatcagcaattgccacagcagaatcaatatcaatatgtgccacctcaagcacacacca acaagcaacgtcctgctaaagaagagaaatgatgataaagcatcaaaggatgagtgag
41.	gtgttgtaggtacgttaatcggttttggactactcagcagtaaagaagataggtaag aaaatgtgttacgcaaatcgataggcaagtaacgaaagtaatgattcaagt agogttagtgtcgcacctaaaacagacgacacaaacgtgatgatactaaaacatgtca aacactaataatggcaaacgattgtggcgcaaaatccagcaacagagaacgacaa tcatcacacaaatgcaactacggaagaaacgcggtaactggtgaagctactactacg acacgaatcaacaatcacggaagaaacgcggtaactggtgaagctactactacg tcatcatcaacaaatgcaactacggaagaaacgcggtaactggtgaagctactactuga ttagtgaatcaaacaagtaatgaaacgacttctaatgatacaagtacatctgaa ttagtgaatcaaacaatgaatcaagctccaacaggtaacagatacaatctgaa ttagtgaatcaaacaatgaatcaggccctaagaatgaagacatttaagttagcgaag aattcacctcaaaattctacaaatgggcacagatattaacaagtagagacatttagttaagacaaccttcaaacaatggacaggcacagatataaagagacagtagtaataaagac gtagttaatcaaggggttaatacaagtggcoctagaatgagagcatttagttaaacagacag gtagttggaatggacaggatggcacagaatataagacatgaagacagg gtagtagaatggaacggaggggcgcagaatatacagaatgagaagacaggacagaca
	tctgaagatgaagcaaatacgtcactaatttggggattattagcatcaataggttcatta ctacttttcagaagaaaaaaagaaaataaagataagaaa
	atgaattcaaatcacgctaaagcatcagtgacagagagtgttgacaaaaaatttgtagtt ccagaatcaggaattaataaaattattccagcttacgatgaatttaagaattcgccaaa gtaaatgttagtaatttaactgacaataaaaactttgtagcttctgaagataaattgaat aagattgcagattcatcggcagctagtaaaattgtagataaaaactttgtgccagaa tcaaagttaggaaacattgtgccagagtacaaagaaatcaataatcgcgtgaatgtagca acaaacaatccagcttcacaacaagttgataagcattttgttgctaaaggcccagaagta aatagattattacttcatacaaaatcaacacattcattactacacaagtaaaaccacatca aagaaagttattacttcatacaaaatcaacacatgtacataaacatgtaaatcattgcaaag gattctattaataaacactttattgtaaaccatcagaatcgcctagatatacacatcca tctcaatctttaattacaagcatcattttgcagttcctggatatcacggcataaattt gttacaccagggcatgctagcattaaaattaatcacttttgtgtgttgcacaaaataa agttcaaggtaattccaccatatggtcacaattcacatcgtatgcatgtaccaagttc caaaataacacaacagcaacacatcaaaatgctaaaattaaacacattgtaccaagttc caaaataacacaacagcaacacatcaaaatgctaaaatttccatttctcatttccaatca aatggttataaaattggaaaccatcattaaaattcacattcaaatttccaattccaaatca aatggttataaaattgggaaaccatcattaaatacaaaaatgtaaatttccaattccaaatcg gttccaagttataagccctacacacacactcagattcctgaatttaaggtagcttaccagcacca cgagta

caaqaa

45

ttggagcatacaattatgaaaatgagaacaattgctaaaaccagtttagcactagggctt 43. ccatcaacaacagccacaaccaatgcaatctactaaatcagacacaccacacaatctcca accataaacaagcacaacaaccaatgcacaatgacctcaaatatgaagatttaagagcgtatta caaaaaccgagttttgaatttgaaatgcactttagatttgaatttgaatttgaatttgaatttgaatttgaatttgaatttgaccataggacgacggtttatgattttaaatgcatgtacgacgacggtttaaggtaaatgtattcaaataggtcacttacgataatatcgatgtttagtttgaaaa gatgagaaaaaatatcaattgaaaaaatattcagtttaggagacgatcactacgatgtatttatcgttttagaa gacaataaatatcaattgaaaaaatattctgtcggtgcaatcacgaagactaataataaaaagtagaattaaccaaagtagaattaactaagaagaattaccaaagaagaattaccaagaagaattaccaagaagaattacctgaagtatcaagaagatttccttgaaagagcttgatttaaattgagaaaaacaacttattgaaaaacaatttattacggtaaatatacgttgaattaccaaaaaaacggaagaatatacgttgaattaccaaaaaaactgcaaagacaacatcgtagagcaaatatacgttgaattacacaaaaaaactgcaaagagaacaacatcgaagacaaatatatgataaacatgaaagagaataaaaa

gagcatcgtatggcaggcactaatattgataacattgaagtgaatataaaa atgacaacaattaaaacatcaaacttaggattcccaagattaggtagaaaaagagaatgg ccactttataagaagtgtttgaatcattaattgatgcaggtgctgagtacattcaagtt gatgagccaatcttagttacagacgacagcgaaagctatgaaaatattacacgtgaagct tatgactatttcgaaaaagctggtgttgctaaaaaattagtcattcaaacatactttgaa attatagatgatgatgatgatgatgattagttcacaggtgaatttgaacgtaatgacatggtt caagaagacattggcttagatgtattagttcacaggtgaattttgaacgtaatgacatggtt gaattcttcggagaaaaattacaaggtttcttagtaactaaattcggttgggtgcaatca tatggttcacgtgccgtaaaaccaccaatcatttatggtgatgtaaaatggacagcgcct ctacaacaaatcgaccgctcattattctgggtaaaccctgactgtggtttaaaaacgcga aaagaagaagattaaagatgcattgactgtgcttgtgaatgctgttaaaagctaaacgc

atgagcgacacatataaaagctacctagtagcagtactatgcttcacagtcttagcaatt gtacttatgccgtttctatacttcactacagcatggtcaattgcggggattcgcaagtatc gcaacattcatattttataaagaatacttttatgaagaa

46.	atgttaagaggacaagaagaaagtatagtattagaaagtatcaatagagggtggtg tcagtgttagcggctacaatgtttgttgtgtatcacactgaagaccaaggctcggaaaaa acatcaactaatgcagcggcacaaaagaaacactaaatcaacgggaggaacaagggaat gcgataaagtggaacagtgacagtaggaaagcaattagacgatatgcataaaggaat ggtaaaagtggaacagtgacagaaggtaaagatacgcttcaatcatcgaaggcatcaatca	
47.	atgattcatctcattaaggggaagatgcatcatacagttttgtgtattcatttaaacaaa ggggttggttttaatgatcaatacattctaatgcacaacaaaccaagtgcattgcgtttt tttgtctatagtttagtgggcatactatgtttctttatccttttacgattaatggtaac aacactattttcgtcgatcatgttcatctagcattcgctcaatcataggtcacttatg ccctatgttgcactgattatgattttaattggtacagcgttaccaatagtgagacgtact ttatgacttcaatcacaaacttggtcattacatta	
48.	atggttattatgaagaaaacaattttactgacgatgacaactcttactttattta	
49.	ttggaggtatcgtcaatgaagccttatatacaacttgttgtgttcaagcaatggttacaa tacatcttgctcgtaacaaccattgtcatcgcactcgtacttattggtatcggttaccgt gtagcacatgacaacttcaaaataccgattaccattcaagatttagaccaaaccactgca tcaaaatcattcgtcaataaaattaaacaatctgactatgtaactattaaaaaagtcgat gaagatgaaagctatattgaagatgatgttactaaaaaggaagctattttaagtatgcaa attcctaaaggtttctctcaaaaaattaaaagaagaaccgtttaaaatagtagtat tatggtagagatgactttataggtggtattgctgtagaaaattgtagtagtatatata	

50.	atgattgaggtgacagagatgaacttttttgatatccataagattccgaacaaaggcatt ccattatcggtacaacgtaaattatggcttagaaacttcatgcaagctttcttcgtagtg ttctttgtttatatggctatgtatttattcgaaacaactttaaggcagcacaaccgttt ttaaaagaggaaattggattatctacattagaacttggttatatcggattagcatttagt atcacgtacggtttaggaaaaacattacttggatattttgcgatggattagcatttagt atcacgtacggtttaggaaaaacattacttggatattttgcgatggactaacacaaaa cgtattatctcgttcttacttatcttat	
51.	atgacaaagaagaaaaacatattaaaagcaatcggtatttacagttttatagcgatgatg tttgtcatcattttataccactactgtggacatttggcatttcccttaatccaggtacg aacttgtatggtgccaaaatgataccagacaatgcaacatttaaaaattatggcattctta ctattcgatgacagtagtcaatacctgacttggtataaaaatacgcttatcgtagcatct gcaaatgcactgtttagtgtgatatttgtcacgttaacagcatatgctttttctagatat cgcttgttggtcgtaaatacgggctgattacatttttgattttacaaatgttccctgta ttaatggcaatggtcgcaatctatattttgctaaatacggttattaaaatgttccttgta ttttggactaacactggtatatattggtggaatcaataccgatgaatgcctttttagtgaaa ggtacttcgatacgattccaaaagaacttgatgaatcgccaaaatggatgatggtggagg catatgcgtattttcttacaaattatgctgccattagctaagccgattttagcagtgtgt gcttgttcaattttatggggccatttatggacttatattaccaaaaatactataaga agtcctgaaaaattcacattagcagttggattgtcaactttatataagaaatgcaa aataatttcacagtgtttgcagcaggggcaattatagattgacaccaaaagcat ttcttgtcattggcacgctatttagtatcaacacaggtgcgacaaaaggt	
52.	gtgatggaaaatagtacgacgaaggggtaatgaaggacgatgcatcttgatgaaatg actgtggaaggaggctttaattacgatgaataaagaagatcagcaagtcccgttagcagtt caaaggacgaataccacaattgacaaagtaataaagaagatcagcaagtcccgttagcagtt caaaggacaataccacaattgacaaagtagaaaaaacaattgcacagtataaaaag ggtggacgattgatttatatcggtgcaggtacaaagtggaaggttggtgtcttagatgca gcggaggtgtgtacctacattcaatactgacctcatgaaattatagggtattattattgctggt ggacaacatgctatgacgatggctgtagaaaggtcgggaagatcacaaaaaaattagcggaa gaagatttgaaaatatagagtattaacatcaaaaaagttgcgtataagaagtgcggaagatcacaaaaaaattgccgcgagt ggcaaaacgccatatgttataagggtttaacatttgctgaaattgccgcagtggaagatcaatttcaatgcggttaaaagttgaaattgccgcagtatcaacaa gtatcaatttcatgacaacaaggttaaaagttgaaaatggtgcagaaagttaacaggttaaaagttggtgcagaaagttaacaggttcaacaatggttggt	
53.	ttgaaatacataattcgttatattatgatgactttacaatacatac	

54.	ttggataaaaagtctgagaagcggggcattaaaatgacggtacaaagtgcatatatacat attccattttgtgtaagaatatgtacatattgtgatttcaataaata
55.	MRNIENLNPGDSVDHFFLVHKATQGVTAQGKDYMTLHLQDKSGEIEAKFWTATKNDMATI KPEEIVHVKGDIINYRGNKQMKVNQIRLATTEDQLKTEQFVDGAPLSPAEIQEEISHYLL DIENANLQRITRHLLKKYQERFYTYPAASSHHHNFASGLSYHVLTMLRIAKSICDIYPLL NKSLLYSGIILHDIGKVRELSGPVATSYTVEGNLLGHISIASDEVVEAARELNIEGEEIM LLRHMILSHHGKLEYGSPKLPYLKEAEILCYIDNIDARMNMFEKAYKKTDKGQFTDKIFG LENRRFYNPESLD
	MNKHHPKLRSFYSIRKSTLGVASVIVSTLFLITSQHQAQAAENTNTSDKISENQNNNATT TQPPKDTNQTQPANTQANTAKNYPAADESLKDAIKDPALENKEHDIGPREQUNFQLIDKN NETQYYHFFSIKDPADVYYTKKKAEVELDINTASTWKKFEVYENNQKLPVRLVSYSPVPE DHAY1RPPVSDGTQELKTVSSTQIDDGEETNTDYTKLVFAKPIYNDPSLVKSDTNDAVVT NDQSSSVASNQTNTNTSNQNTSTINNANNQPQATTNMSQPAQPRSSTNADQASSQPAHET NSNGNTNDKTNESSNQSDVNQQYPPADESLQDAIKNPAIIDKEHTADNWRPIDFQMKNDK GERQFYHYASTVEPATVIFTKTGPIIELGIKTASTWKKFEVYEGDKKLPVELVSYDSDKD YAYIRFFVSNGTREVKLVSSIEYGENIHEDYDYTLMVFAQPITNNPDDYVDEETYNLQKL LAPYHRAKTLERQVYELEKLQEKLPEKYKAEYKKKLDQTRVELADQVKSAVTEFENVTPT NDQLTTLQEAHFVVFESEENSESVMDGFVEHPFYTATLNGQKYVVMKTKDDSYWKDLIVE GKRVTTVSKDPKNNSRTLIFPYIPDKAVYNAIVKVVVANIGYEGQYHVRIINQDINTKDD DTSQNNTSEPLNVQTGQEGKVADTDVAENSSTATNPKDASDKADVIEPESDVVKDADNNI DKDVQHDVDHLSDMSDKNHFDKYDLKEMDTQIAKDTDRNVDKDADNSVGMSSNVDTDKDS MKNKDKVIQLNHIADKNNHFDKAYLLDVVKQNINTDKVTDKKTTEHLPSDIHKTVDKTV KTKEKAGTPSKENKLSQSKMLPKTGETTSSQSWWGLYALLGMLALFIPKFRKESK
57.	Msdfnhtdhsttnhsqtpryrrpkfpwfktvivaliagiigallvlgigkvlnstilnkd Gstvqttnnkggnqldgqskkfgtvhemiksvsptivgvinmqkassvddllkgksskps Eagygsgviyqinnnsayivtnnhvidganeirvqlhnkkqvkaklvgkdavtdiavlki Entkgikaiqfansskvqtpdsvfamgnplglqfansvtsgiisasertidaettgqntk Vsvlqtdaainpgnsggalvdingnlvginsmkiaatqvegigfaipsnevkvtieqlvk Hgkidrpsigiglinlkdipeeereqlhtdredgiyvakadsdidlkkgdiiteidgkki Kddvdlrsylyenkkpgesvtvtvirdgktkevkvklkqqkeqpkrqsrserqspgqgdr dffr
58.	VNQQQEKTTTPTTINPLTGEKVGEGEPTTEVTKEPVDBITQFGGEEVPQGHKDEFDPNL PIDGTESVPGKFGIKNPETGEVVTPPVDDVTKHGPKAGBFBVTKEEIPFBKKREFNPDLK PGBEKVTQEGQTGEKTTTTPTTINPLTGEKVGEGBPTTEVTKEPVDBITQFGGEEVPQGH KDEFDPNLPIDGTEEVPGKPGIKNPETGEVVTPPVDDVTKHGPKAGEPEVTKEEIPYETK RVLDPTMEPGSPDKVAQKGENGEKTTTTPTTINPLTGEKVGEGEPTTEVTKEPIDEIVNY APEIIPHGTREELDPNLPEGETKVIPCKNGCKDPETGEIIEEPQDEVIIHARDDSDADS DSDADSDSDADSDSDADSDSDSDSDSDSDSDS
59.	MKSLKTVIGMNNKEHIKSVILALLVLMSVVLTYMVWNFSPDIANVDNTDSKKSETKPLTT PMTAKMDTTITPFQIIHSKNDHPEGTIATVSNVMKLITKPLKNKEVKSVEHVRDHNLMIP DLMSDFILFDFTYDLPLSTYLGQVLMMMAKVPNHFMFNRLVIDHDADDNIVLVAISKDRH DYVKLITTTKNDHFLDALAAVKKDMQPYTDIITMKDTIDRTTHVFAPSKPEKLKTYRMVF MTISVEKMMAILFDDSTIVRSSKSGVTTYNNNTGVANYNDKNEKYHYKNLSBDEASSKM EETIPGTFDFINGHGFLNEDFRLFSTNNQSGELTYQRFLNGYPTFNKEGSNQIQVTWGE KGYFDYRRSLLRTDVVLNSEDNKSLPKLESVRSSLANNSDINFEKVTNIAIGYEMQDNSD HNHIEVQINSELVPRWYVEYDGEWYVYNDGRLE

60.	MSKRQKAFHDSLANEKTRVRLYKSGKNWVKSGIKEIEMFKIMGLPFISHSUSQDNQSIS KKMTGYGLKTTAVIGGAFTVNMLHDQQAFAASDAPLTSELNTQSETVCNQNSTTIEASTS TADSTSVTKNSSSVQTSNSDTVSSEKSEKVTSTTNSTSNQQEKLTSTESETSSKNTTSSS DTKSVASTSSTEQPINTSTNQSTASNNTSQSTTPSSVNLINKTSTTSTSTAPVKLRTFSRL AMSTFASAATTTAVTANTITVNKDNLKQVMTTSGNATYDQSTGIVTLTQDAYSQKGALTL GTRIDSNKSFHFSGKVNLGNKYEGHGNGGDGIGFAFSPGVLGETGLNGAVGIGGLSNAF GFKLDTYHNTSKPNSAAKANADESNVAGGGAFGAFVTTDSYGVATTYTSSSTADNAAKLN VQPTNNTFQDFDINYNGDTKVMTVKYAGQTWTRNISDWIAKSGTTNFSLSMTASTGGATN LQQVQFGTFFYTESAVTQVRYVDVTTGKDIIPPKTYSGNVDQVVTIDNQSALTARGYNY LQQVQFGTFFYTESAVTQVRYVDVTTGKDIIPPKTYSGNVDQVVTIDNQSALTARGYNY TSVDSSYASTYNDTNRTVKMTNAGQSVTYYFTDVKAPTVVGNQTIEVGKTMNPIVLTTT DNGTGTVTNTVTGLPSGLSYDSATNSIIGTPTKIGQSTVTVVSTDQANKSTTTFTINVV DTTAPTVTPIDQSSEVYSPISPLKIATQDNSGNAVTNTVTGLPSGLTFDSTNNTISGTP TNIGTSTISIVSTDASGNKTTTFKYEVTRNSMSDSVSTSGSTQQSQSVSTSKADSQSAS TSTSGSIVVSTSASTSKSTSVSLSDSVSASKSLSTSESNSVSSSTSTSLVNSQSVSSSSMS DSASKSTSLSDSISNSSSTEKSESLSTSTSDSLRTSTSLSDSLSMSTSGLSKSQSLSTS LSGSSSTSASLSDSTSNASSTEKSESLSTSTSDSISINSANSQSASTTSRSGSVSSSSTSIS LSTSDSKSMSTSESLSDTSTSGSVSGSLSIAASQSVSTSTSDSMSTSGIVSDSISTSGS LSASDSKSMSVSSSMSTSQSGSTSESLSDSQSTSDSDSKSLSQSTSTSTSTSAS VRTSESQSTSGGMSAQQSDSMSISTSFSDSTSDSKSLSQSTSTSTSTSTSSSTS TSLSTSNSERTSTSMSDSTSLSTSESSTSSTSLSDSTSSTSTSLNSTSGTS SSSGSSASAFLGESLSESTSESTSSSTSSTSLSDSTSSSTSTSLSNTS DSESGSASAFLGESLSESTSESTSESVSSSTSESTSLSDSTSSSTSTSTSTSSSSTS ISTSTSLSSTSTSKASSSSSTSTSSTSSSTSSSTSSSTSSSTSSSTS	
61.	MPKNKILIYLLSTTLVLPTLVSPTAYADTPQKDTTAKTTSHDSKKSNDDETSKDTTSKDI DKADKNNTSNQDNNDKFKTIDDSTSDSNNIIDFIYKNLPQTNINQLITKNKYDDNYSLT TLIQNLFNLNSDISDYBQPRNGEKSTNDSNKNSDNSIKNDTDTQSSKQDKADNQKAPKSN NTKPSTSNKQPNSPKPTQPNQSNSQPASDDKANQKSSSKDNQSMSDSALDSILDQYSEDA KKTQKDYASQSKKDKNEKSNTKNPQLPTQDBLKHKSKPAQSFNNDVNQKDTRATSLFETD PSISNNDDSGQFNVVDSKDTRQPVKSIAKDAHRIGQDNDIYASVMIAQAILESDSGRSAL AKSPNHNLFGIKGAPEGNSVPFNTLEADGNQLYSINAGFRKYPSTKESLKDYSDLIKNGI DGNRTIYKPTWKSEADSYKDATSHLSKTYATDPNYAKKLNSIIKHYQLTQFDDERMPDLD KYERSIKDYDDSSDEFKPFREVSDSMPYPHGQCTWYVYNRMKQFGTSISGDLGDAHNWNN RAQYRDYQVSHTPKRHAAVVFEAGQFGADQHYGHVAFVEKVNSDGSIVISESNVKGLGII SHRTINAAAAEELSYITGK	
62.	MRKFSRYAFTSMAALTLLSTLSPAALAIDSKNKPANSDIKFEVTQKSDAVKALKELPKSE NVKNIYQDYAVTDVKTÜKKGFTHYTLQPSVDGVHAPDKEVKVHADKSCKVVLINGDTDAK KVKPTNKVTLSKDDAADKAFKAVKIDKNKAKNLKDKVIKENKVEIDGDSNKYVYNVELIT VTPEISHWKVKIDAQTGEILEKMNLVKBAABTGKGKGVLGDTKDININSIDGGFSLEDLT HQGKLSAFSFNDQTGQATLITNEDENFVKDEQRAGVDANYYAKQTYDYYKDTFGRESYDN QGSPIVSLTHVNNYGGQDNRNNAAWIGDKMIYGDGDGRTFTSLSGANDVVAHELTHGVTQ ETANLEYKDQSGALNESFSDVFGYFVDDEDLMGEDVYTPGKEGDALRSMSNPEQFGQPA HMKDYVFTEKDNGGVHTNSGIPNKAAYNVIQAIGKSKSEQIYYRALTEYLTSNSNFKDCK DALYQAAKDLYDEQTABQVYEAWNEVGVE	
63.	MKKRIDYLSNKQNKYSIRRFTVGTTSVIVGATILFGIGNHQAQASEQSNDTTQSSKNNAS ADSEKNNMI ETPQLNTTANDTSDISANTNSANVDSTTKPMSTQTSNTTTTEPASTNETPQ PTAIKNQATAAKAQDQTVPQEANSQVDNKTTNDANSIATNSELKNSQTIDLPQSSPQTIS NAQGTSKPSVRTRAVRSLAVAEPVVNAADAKGTNVNDKVTASNFKLEKTTFDPNQSGNTF MAANFTVTDKVKSGDVFTAKLPDSLTGNGDVDV SSISNNTMPIADIKSTNGDVVAKATYDI LTKTYTFVFTDYVNNKENINGQPSILPFTDRAKAPRSGTYDANINIADEMFNNKITYNYS SPIAGIDKPNGANISSQIIGVDTASGQNTYKQTVFVNPKQRVLGNTWVYIKGYQDKIESS SGKVSATDTKLRIFFVNDTTSKLSDSYYADPNDSNLKEVTDQFKNRIYYEHFNVASIKFGD ITKTYVVLVEGHYDNTGKNLKTQVIQENVDPVTNRDYSIFGWNNENVVRYGGGSADGDSA VNPKDPTPGPPVDPEPSPDPEPEPTPDPEPSPDPEPEPSPDPDDSDSDSDSDSDSDSDSSDSDS	
64.	MKKTIMASSLAVALGVTGYAAGTGHQAHAAEVNVDQAHLVDLAHNHQDQLNAAPIKDGAY DIHFVKDGFQYNFTSNGTTWSWSYEAANGOTAGFSNVAGADYTTSYNQGSNVQSVSYNAQ SSNSNVEAVSAPTYHNYSTSTTSSSVRLSNGNTAGATGSSAAQIMAQRTGVSASTWAAII ARESNGOVNAYNPSGASGLFOTMPGWGPTNTVDQQINAAVKAYKAGGLGAWGF	
65.	MGGYLIMKKIVTATIATAGLATIAFAGHDAQAAEQNNNGYNSNDAQSYSYTYTIDAQGNY HYTWTCNWNPSQLTQNNTYYYNNYNFYSYNNASYNNYYNHSYQYNNYTNNSGTATNNYYT GGGASYSTTSNNVHVTTTAAPSSNGRSISNGYASGSNLYTSGQCTYYVFDRVGKKIGST WGNASNWANAAASGYTVNNTPKVGAIMQTTQGYYGHVAYVEGVNSNGSVRVSEMNYGHG AGVVTSRTISANQAGSYNFIH	

66.	MANTKKTTLDITGMTCAACSNRIEKKLNKLDDVNAQVNLTTEKATVEYNPDQHDVQEFIN TIQHLGYGVAVETVELDITGMTCAACSSRIEKVLNKMDGVQNATVNLTTEQAKVDYYPEE TDADKLVTRIQKLGYDASIKDNNKDQTSRKAEALQHKLIKLIISAVLSLPLLMLMFVHLF NMHPALFTNPWFQFILATPVQFIIGWQFYVGAYKNLRNGGANMDVLVAVGTSAAYFYSI YEMVRWLNGSTTQPHLYFETSAVLITLILFGKYLEARAKSQTTNALGBLLSLQAKEARIL KDGNEVMIPLNEVHVGDTLIVKPGEKIPVDGKIIKGMTAIDESMLTGBSIPVEKNVDDTV IGSTMNKNGTITMTATKVGGDTALANIIKVVEBAQSSKAPIQRLADIISGYFVPIVVGIA LLTTLVWITTUTPGTFEPALVASISVLVIACPCALGLATPTSIMVGTGRAAENGTLFKGG EFVERTHQIDTIVLDKTGTITNGRPVVTDYHGDNQTLQLLATAEKDSEHPLAEAIVNYAK EKQLLLTETTTFKAVPGHGIEATIDHHHLLVGNRKLMADNDISLPKHISDDLTHVERDGK TAMLIAVNYSLTGTIAVADTVKDHAKDAIKQLHDMGIEVAMLTGDINKNTAQAIAKQVGID TVIADILPBEKAAQIAKLQQQGKKVAMVGDGVNDAPAIVKADIGIAIGTGTEVALEAADI TILGGDLMLIFKAIYASKATIRNIRQNLFWAFGYNIAGIPIAALGLLAPWVAGAAMALSS VSVVTNALRLKKMRLEPRKDA
67.	MFDSTRETIDYAVENNMSFADIMVKEEMELSGKSRDEVRAQMKQNLDVMRDAVIKGTTGD GVESVTGYTGHDAAKLRDYNETHHALSGYEMIDAVKGAIATNEVNAAMGIICATPTAGSS GTIPGALFKLEKTHDLTEEQMIDFLFTSALFGRVVANNASVAGATGGCOBEVGSASAMAA AAAVAIFGGSPEASGHAMALAISNLLGLVCDPVAGLVEIPCVMRNAIGSGNALISADLAL AGIESRIPVDEVIEAMDKVGRNLPASLRETGLGGLAGTPTGEAIKRKIFGTAEDMVKNN
68.	MKNNLRYGIRKHKLGAASVFLGTMIVVGMGQDKEAAASEQKTTTVEENGNSATDNKTSET QTTATMVNHIEBTQSYNATVTEQPSNATQVTTEEAPKAVQAPQTAQPANIETVKEEVVKE EAKPQVKETTQSQDNSGDQRQDLTPKKATQNQVABTQVEVAQPRTASESKPRVTRSADV AEAKEASNAKVETGTDVTSKVTVEIGSIEGHNNTNKVEPHAGQRAVLKYKLKFENGLHQG DYFDFTLSNNVMTHGVSTARKVPEIKNGSVVMATGEVLEGGKIRYFTNDIEDKVDVTAE LEINLFIDPKTVQTNGNQTITSTLNEEDTSKELDVKYKDGIGNYYANLNGSIETFNKANN RFSHVAFIKPNNGKTTSTVTGTLMKGSNQNGNQPKVRIFEYLGMNEDIAKSVYANTTDT SKFKEVTSNMSGNINLQNNGSYSLNIENLDKTVVVHYDGBYLNGTDEVDFRTQMVGHPEQ LYKYYYDRGYTLTWDNGLVLYSNKANGGKNGFILONNKFEYKBDTIKETLTGQYDKNLV TTVEEBYDSSTLDIDYHTALDGGGGYVDGYIETIEETDSSAIDIDYHTAVDSEAGHVGGY TESSEESNPIDFEESTHENSKHHADVVBYEEDTNPGGGQVTTESNLVEFDESSTKGIVTG AVSDHTTVEDTKBYTTESNLIELVDELDEHGQAGGPVEBITENNHHISHGGLGTENGHG NYDVIEEIENSHVDIKSELGYBGGQNSGNQSFEEDTEEDKPKYEQGGNIVDIDFDSVPQ THGQNKGNQSFEEDTEKDKPKYEHGGNIIDIDFDSVPHHGFNKHTEILEEDTNKDKPSY QFGGHNSVDFEEDTLPKVSGONGGQQTIEEDTTPPTPTPTPEVPSEPETTPTPPTPEV
69.	EINEKUKAVAPTKKPQSKKSELPETGGEESTNKGMLFGGLFSILGLALLRRNKKNHKA LHLRENIIVKSNLRYGIRKHKLGAASVFLGTMIVVGMGQEKEAAASEQNNTTVEESGSSA
	TESKASETOTTTNNVNTIDETQSYSATSTEQPSQSTQVTTEEAPKTVQAPKVETSRVDLP SEKVADKETTGTQVD1AQPSNVSEIKPRMKRSTDVTAVAEKEVVEETKATGTDVTNKVEV EEGSEIVGHKQDTNVVNPHNAERVTLKYKWKFGEGIKAGDYDFDTLSDNVETHGISTLRK VPEIKSTDGQVMATGEIIGERKVRYTFKEYVQEKKDLTAELSLNLFIDPTTVTQKGNQNV EVKLGETTVSKIFNIQYLGGVRDNWGVTANGRIDTLINKVDGKFSHFAYMKPNNQSLSSVT VTGQVTKGNKPGVNNPTVKVYKHIGSDDLAESVYAKLDDVSKFEDVTDNMSLDFDTNGGY SLNFFNNLDQSKNTVIKYEGYYDSNASALEFQTHLFGYYNYYTSNLTWKNGVAFYSNNAQ GDGKDKLKEPIIEHSTPIELEFKSEPPVEKHELTGTIEESNDSKPTDFEYHTAVGAEGH AEGTIETEEDSIHVDFESTHENSKHHADVVEYEEDTNPGGGQVTTESNLVEFDEDSTKG IVTGAVSDHTTIEDTKEYTTESNLIELVDELPEENGQAQFIEBITENNHHISHSGLGTE MGHGNYGVIEELEENSHVDIKSELGYEGGQNSGNQSFEEDFEEDKFXEGGGNIVDIDFD SVPQIHGQNNGNQSFEEDFERDKFKYEGGGNIIDLDFDSVPHIHGFNKHTEILEDTNKD KRNYQFGGHNSVDFEDTLEQVSGHNEGQQTIEBTTPPTVPPTPFTPEVPSEPETPTPP TPEVPSEPETPTPPTPEVPTEPGKPIPPAKEEPKKPSKPVEQGGKVVTPVIEINEKVKAVV PTKKAQSKKSELPETGGEESTNNGMLFGGLFSILGLALLKRNKKNHKA
70.	MQMRDKKGPVNKRVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQQEAEAAENNIENP TTLKDNVQSKEVKIREVTNKDTAPQGVEAKSEVTSNKDTIBHESVKAEDISKKEDTPKE VADVAEVQPKSSVTHNAETFKVRKARSVDEGSFDITRDSKNVVESTPITIQGKEHFEGYG SVDIQKKPTDLGVSEVTRFNVGNESNGLIGALQLKNKIDFSKDFNFKVRVANNHQSNTTG ADGWGFLFSKGNAEEYLTNGGILGDKGLVNSGGFKLDTGYIYTSSMDKTEKQAGGYRGY GAPVKNDSSGNSQMYGENIDDKSKTNFLNYADNSTNTSDGKFRGQRLMVLILTVVASTGKM RABYAGKTWETSITDLGLSKNQAYNFLITSSQRWGLNQGINANGWRTDLKGSEFTFTPE APKTITELEKKVEEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGVIIS KGBPKEEITKDP INBLTEYGPBTTAPGHRDEFDPKLPTGEKEEVPGRFGIKNPBTGDVVR PPVDSVTKYGPVKGDSIVEKEEIPFXKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKN PLTGEIISKGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEVPGRFGKN PETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFKKERKFNPDLAPGTEKVTREGQKGEKT TTTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETITTGHRDEFDPKLPTGEKEVTR EGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETTTPGHRDEFDPKLPTGEKEV PEKRGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGCKGEKT EGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPVNELTEFGGEKLPQGHKDIFDPNL PTDQTEKVPGKPGIKNPDTGKVIEEPVDDVIKHGPKTGTPETKTVEIPFETKREFNPKLQ PGBERVKOBGQPGSKTITTPTIKNPLTGEEVGEGQPTEEITKQPVDKIVEFGGEKPKDPK GPENPEKPSRPTHPSGPVNPNNFGLSKDRAKPNGPVHSMDKNDKVKKSKIAKESVANQEK KRBELPKTGLESTQKGLIFSSIIGIAGLMLLARRKN
71.	MKNKYISKLLVGAATITLATMISNGEAKASENTQQTSTKHQTTQNNYVTDQQKAFYQVLH LKGITEEORNQYIKTLREHPERAQEVFSESLKDSKNFDRRVAQQNAFYNVLKNDNITEQE KNNYIAQIKENPDRSQQVWVESVQSSKAKERQNIENADKAIKDFQDNKAPHDKSAAYEAN SKLPKDLRDKNNRFVEKVSIEKAIVRHDERVKSANDAISKLNEKDIENRRLAQREVNKA PMDVKEHLQKQLDALVAQKDAEKKVAPKVEAPQIQSPQIEKPKVESPKVEVPQIQSPKVE VPQSKLLGYYQSLKDSFNYGYKYLTDTYKSYKEKYDTAKYYYNTYYKYGAIDQTVLTVL GSGSKSYIQPLKVDDKNGYLAKSYAQVRNYVTESINTGKVLYTFYQNPTLVKTAIKAQET ASSIKNTLSNILSFWK
72.	MAVFSKEKKRGCIVVIETFKAFVIDKDESGKVTPTFKQLSPTDLPKGDVLIKVHYSGINY KDALATQDHNAVVKSYPMIPGIDLAGTIVESEAPGFEKGEQVIVTSYDLGVSHYGGFSEY ARVKSEWIIKLPDTLTILEESMIYGTAGYTAGLAIERLEKVGMNIEDGPVLVRGASGGVGT LAVLMLNELGYKVIASTGKQDVSDQLLELGAKEVIDRLPVEDDHKKPLASSTWQACVDPV GGEGINYVTKRINHSGSIAVIGMTAGNTYTNSVFPHLLRGVNILGIDSVFTAMKLRQRVW RRLAKDLMPENLHEIKQVITFDELPEQLNKVIKHENKGRIVIDFGVDK
73.	MKKLVTATTLTAGIGTALVGQAYHADAAENYTNYNNYNYNTTOTTTTTTTTTTTTTTSSISHS GNLYTAGQCTWYVYDKVGGEIGSTWGNANNWAAAAQGAGFTVNHTPSKGAILQSSEGPFG HVAYVESVNSDGSVTISEMNYSGGPFSVSSRTISASEAGNYNYIHI

74.	MKKIATATIATAGFATIAIASGNQAHASEQDNYGYNPNDPTSYSYTYTIDAQGNYHYTYK GNWHPSQLNQDNGYYSYYYNGYNNYNNYNNGYSYNNYSRYNNYSNNNQSYNTYNNYNSYN TNSYRTGGLGASYSTSSNNVQVTTTMAPSSNGRSISSGYTSGRNLYTSGQCTYYVFDRVG GKIGSTWCNASNWANAARAGYTVNNTPKAGAIMQTTQGAYGHVAYVESVNSNGSVRVSE MNYGYGPGVVTSRTISASQAAGYNFIH
75.	MSMTYRIKKWOKLSTITLIMAGVITLNGGEFRSVDKHQIAVADTNVQTPDYELRARIWDD VNYGYDKYDENNFDMKKKFDATEKBATNLLKEMKTESGRKYLWSGAETLETNSSHMTRTY RNIEKIABAMRNPKTTLNTDENKKKVKDALEWLHKNAYGERPDKKVKELSENFTKTTGKN TNLNWWYEIGTPKSLTNTLILLNDQFSNEEKKKFTAPIKTFAPDSDKILSSVGKAELAK GONLVDISKVKLLECIIEEDKDMMKKSIDSFNKVFTXVQDSATGKERNGFYKDGSYIDHQ DVPYTGAYGVVLLEGISQMPMIKETPFNDKTQNDTTLKSWIDDGFMPLIYKGEMMDLSR GRAISRENETSHSASATVMKSLLRLSDAMDDSTKAKYKKLVKSSVESDSSYKQNDYLNSY SDIDKMKSLMTDNSISKNGLTQQLKIYNDMDRVTYHNKDLDFAFGLSMTSKNVARYESIN GENLKGWHTGAGMSYLYNSDVKHYHDNEWVTADMKRLSGTTTLDNEILKDTDDKKSSKTF VGGTKVDDQHASIGMDFENQDKTLTAKKSYFILNDKIVFLGTGIKSTDSSKNPVTTIENR KANGYTLYTDDKQTTNSDNQENNSVFLESTDTKKNIGYHFLNKPKITVKKESHTGKWKEI NKSQKDTQRTDEYYEVTQKHSNSDNKYGYVLYPGLSKDVFKTKKDEVTVVKQEDDFHVVK DNESVWAGVNYSNSTQTFDINNTKVEVKAKGMFILKKKDDNTYECSFYNPESTNSASDIE SKISMTGYSTTNKNTSTSNESGYHFELTK
76.	MNDLKQFLYIALVCGVIAGLGAFLHIPQYPSMTIPRIVAILGIISAMLTFKDKQISASLK FSALLINVLPLCGTFVASN
77 -	VSREMSYHWFKKMLLSTSILILSSSSLGLATHTVEAKDNINGEKPTTNINHNITSPSVNS EMNNETGTPHESNQTGNEGTGSNSRDANPDSNNVKPDSNNONPSTDSKPDPNNONPSPN PKPDPDNPRKPDPKPDPDKPKPNPDPKPPDPNPKPPDPDKPKPPPDKPPPDKPP KPPDPNKPPPNRSPDPPDQPGDSNIEGGSKNGGTWPNASDGSNGGWQPNGNQGN KPMPNPRKPPNRSPDPPDQPGDSNIEGGSKNGGTWPNASDGSNGGWQPNGNQGN SQNPTGNDFVSQRFLALANGAYKYNPYIINQINKLGKDYGEVTDEDIYNITRKQNFSGNA YINGLQQGSNYFRFQYFNPLKSERYYRNIDEQVLALTGEIGSMPDLKKPEDKPDSKQRS FEPHEKDDFTVVKKQEDNKKSASTAYSKSWLAIVCSMMVVFSIMLFLFVKRNKKNKNES ORR
78.	MKNKKRVLIASSLSCAILLLSAATTQANSAHKDSQDQNKKEHVDKSQQKDKRNVTMKDKN STAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKF ESHKBEKNSNMLKYPSEYHVDFQVKRNRKTEILDQLFKNKISTAKVDSTFSYSGGKFDS TKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWSVIANDLKYGGEVKNRNDELLF YRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDIL KNRPGIHYAPPILEKNKDGORLIVTYEVDWKNKTVKVVDKYSDDNKPYKEG
79.	MYTRTATTSDSQKNITQSLQFNFLTEPNYDKETVFIKAKGTIGSGLRILDPNGYWNSTLR WPGSYSVSIQNVDDNNYTNYTDFAPKNQDESREVKYTYGYKTGGDFSINRGSLTGNITKE SNYSETISYQQPSYRTLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLITNDSDNRTKSEIF SLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFK IDWNRHGFWGYWSGRNHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK
80.	VVKFMNYPNGKPYRKNSAIDGGKKTAAFSNIEYGGRGMSLEKDIEHSNTFYLKSDIAVIH KKPPPVQIVNVNYPKRSKAVINEAYFRTPSTTDYNGVYQGYYIDFEAKETKNKTSFPLNN HDHQVEHMKNAYQQKGIVFLMIRFKTLDEVYLLPYSKFEVFWKRYKDNIKXSITVDEIR KNGYHIPYQYQPRLDYLKAVDKLILDESEDRV
81.	WNTTKAALHGDVKLQNDRDHAKQTVSQLAHLNNAQKHMEDTLIDSETTRTAVKQDLITEAQ ALDQLMDALQQSTADKDATRASSAYVNAEPNKKQSYDEAVQNAESILAGLNNETINKGNV SSATQAVISSKNALDGVERLAQDKOTAGROSLNHLDQLTPAQQQOALENQINNATTRGEVAQ KLTEAQALNQAMEALRNSIQDQQCTEAGSKFINEDKPQKDAYQAAVQNAKDLINQTINNET LDKAQVEQLTQAVMQAKDNIHGDQKLADDKQHAVTDLNQLNGLINNPQRQALESQINNAAT RGEVAQKLABKAALDQAMQALRNSIQDQQOTESGSKFINEDKPQKDAYQAAVQNAKDLIN QTGNPTLDKSQVEQLTQAVTTAKDNLHGDQKLADDKQHAVTDLNQLNGLINNPQRQALESQINNAAT RGEVAQKLABKAALDQAMQALRNSIQDQQOTESGSKFINEDKPQKDAYQAAVQNAKDLIN QTGNPTLDKSQVEQLTQAVTTAKDNLHGDQKLARDQQQAVTTVANALPNLNHAQQQALTDA INAAPTRTEVAQHVQTATELDHAMETLKNKVDQVNTDKAQPNYTEASTDKKEAVDQALQA AESITDPTMGSNANKDAVDQVLTKLQEKENELMGNERVABAKTQAKQTIDQLTHLNADQI ATAKQNIDQATKLQPIAELVDQATQLNQSMDQLQQAVNEHANVEQTVDVTQADSDKQNAY KQALADAENVLKQNANKQQVDQALQNILNAKQALNGDERVALAKTNGKHDIDQLNALNNA QQOGFKGRIDQSNDLNQIQQIVDEAKALNRAMDQLSQEITDNEGRTKGSTNYVNADTQVK QVYDETVDKAKQALDKSTGONLTAKQVIKLNDAVTAAKKALNGEERLNNRKAEALQRLDQ LTHLNNAQRQLAIQQINNASTLNRASRAINAATKLLNAMGAVQQYTDEGHLGVISSTNYI NADDNLKANYDNAIANAAHELDKVQGNAIAKABAEQLKQNIIDAQNALNGDQNLANAKDK ANAFVNSINGLNQQQQDLAHKAINNADTVSDVTDIVNNQIDLANDAMETLKHLVDNEIPNA EQTYNYQNADDNAKTNNFDDAKRLANTLLNSDNTTNVNDINSALQAVNDALHNINLNGDQRLQD AKDKAIQSINQALANKLKEIEASNATDQDKLIAKNKABELANSIINNIKKATSNQAVSQV QTAGNHAIBQVHANEIPKAKIDANKDVDKQVQALIDEIDNANETLKHLVDNEIPNA LTDKEKQALKDRINQILQQGHNDIKNADVKQVQALIDEIDNNNLTTKEEIEQAKAQLAQA LQDIKGNINNAMTKEEIEQAKAQLAQALQDIKDLVKAKEDAKQDVDKQVQALIDEIDQNNN LTDKEKQALKDRINQILQQGHNDIXNADVKBVAGKEDAKQDLOKKQVAAQA LQDIKGNINNAMTKEEIEQAKAQLAQALQDIKDLVKAKEDAKQDUDKQVQALIDEIDQNNN AQTIDQLNRGLNLGLDDIRNTHVWEVDEQPAVNEIFEATEQILVNGELIVHRDDITTEQ DILAHINLIDQLSAEVIDTPSTATISDSITAKVEVYLLDGSKVILVNVPKVVEKELSVVK QQAIESIENAAQQKINEINNSVTLTLEQKEAAIAEVNKLKQQAIDHVNNAPDVHSVEEIQ QGQAHEGOPNPEGFTIEQAKSNAIKSIEDAIQHHDEIKARTDLTDKEKQAILVHRDDITTEQ DILAHINLIDQLSAEVIDTPSTATISDSITAKVEVYLLDGSKVILVNDVKVVEKELSVVK QQAIESIENAAQQKINEINNSVTLTLEQKEAAIAEVNKLKQQAIDHVNNAPDVHSVEEIQ QGQAHEGOPNPEGFTIEQAKSNAIKSIEDAIQHHDEIKARRIDDEIDMHHPHSNISI RNSEIGTADEKQAAMMQINEIVLETIRDINNAHTLGQVEAALNNGLAR SAVQIVPSDRA KQSSSTGNESNSHLTIGYGTANHPNSST

82.	MNQEVKNKIFSILKITFATALFIFVAITLYRELSGINFKDTLVEFSKINRMSLVLLFIGG GASLVILSMYDVILSRALKMDISLGKVLRVSYIINALNAIVGFGGFTGAGVRAMVYKNYT HDKKKLWHFISLILISMLTGLSLLSLLIVFHVFDASLILDKITWNWLYVVSFFLPLFI IYSMVRPPDKNNRFVGLYCTLVSCVEWLAAAVVLYFCGVIVDAHVSFWSFTAIFIIAALS GLVSFIPGGFGAFDLVVLLGFKTLGVPEEKVLLMLLLYRFAYYFVPVIIALILSSFEFGT SAKKYIEGSKYFIPAKDVTSFLMSYQKDITAKIPSLSLAILVFFTSMIFFVNNITITVYDA LVDGNHLTYYILLAIHTSACLLLLLINVVGIYKQSRRAIIFAMISILLITVATFFTYASYI LITWLAIIFVLLIVAFRARRLKRPVRMRNIVAMLLFSLFILYVNHFIAGTLYALDIYT IEMHTSVLRYYFWLTILIATIIGMIAWLFDYQFSKVRISSKIEDCEEIINQYGGNYLSH LIYSGDKQFFTNENKTAFLMYRYKASSLVVLGDPLGDENAFDELLEAFYNYAEYLIGYDVI FYQVTDQHMPLYHNFGNQFFKLGEAIIDLTQFSTSGKKRRGFRATLMKFDELNISFEII EPPFSTEINELQHVSDLWLDDRQEMHFSVGEFNEEYLSKAPIGVMRNEENEVIAFCSLM PPTYFNDAISVDLIRWLPELDLPLMDGLYLHMLLWSKEQGYTKFNMGMATLSNVGQLHYSY LRERLAGRVFEHFNGLYRFQGERRYKSKYMPNWEPPFLVYRRDNSLWESLSKWRUTRHK
83.	MVALITLVGSAVTAHOVQAAETTQDQTTNKNVLDSNKVKATTEQAKAEVKNPTQNISGTQV YQDPAIVQPKTANNKTGNAQVSQKVDTAQVMGDTRANQSATTNNTQPVAKSTSTTAPKTN TNVTNAGYSLVDDEDDNSENQINPELIKSAAKPAALETQYKTAAPKAATTSAPKAKTEAT PKYTTFSASAQPRSVAATPKTSLPKYKPQVMSSINDYIRKNNLKAPKIEEDYTSYFPKYA YRMGVGRPBGIVVHDTANDRSTINGEISYMKNNYQNAFVHAFVDGDRILETAPTDYLSWG VGAVGNPRFLINVEIVHTHDYASFARSMNNYADYAATQLQYYGLKPDSAEYDGNGTWTHY AVSKYLGGTDHADPHGYLRSHNYSYDQLYDLINEKYLIKMGKVAPWGTQSTTTPTTPSKP TTPSKPSTGKLTVAANNGVAQIKPTNSGLYTTVYDKTGKATNSVQKTFAVSKTATLGNQK FYLVQDYNSGNKFGWVKEGDVVYNTAKSPVNVNQSYSIKPGTKLLYTVPWGTSKQVAGSVS GSGNQTFKASKQQIDKSIYLYGGVMGKSGWVSKAYLVDTAKPTPTPTEKPSTPTTNNKL TVSSLNGVAQINAKNNGLFTTVYDKTGKFTKLYSVEWGTYKQBAGAVSGTRQTFKAK QQQIDKSIYLFGTVNGKSGWVSKAYLAVPAAPKAVAQPKTAVKAYTVTPOTTQTVSKI AQVKPNNTGTRASVYEKTAKNGAKYADRTFYVTKERAHGNETYVLLNNTSHNIPLGWFNV KDLNVQNLGKSVKTTCKYTVNKSNNGLSMVFWGTKNQVILITGNNIAQGTFNATKQVSVGK DVYLYGTINNTTGWVNAKDLTAPTAVKPTTSAAKDYNYTYVIKNGNGYYVTPNSDTAKY SLKAFNEQPFAVVKEQVINGQTWYYGKLSNGKLAWIKSTDLAKELIKYNQTGMALNQVAQ IQAGLQYKPQVQRVPGKWTGANFNDVKHAMDTKRLAQDPALKYQFLRDQPQNISIDKIN QFIKGKGVLENQGAAFNKAAQMYGINEVYLISHALLETGNGTSQLAKGADVVNNKVVTNS NTKYHNVFGIAAYDNDPLREGIKYAKQAGMTVSKAIVGGAKFTGNSYVKAGQNTLYKMR WNPAHPGTHQYATDVDWANINAKIIKGYYDKIGEVGKYFDIPQYK
84.	MKGKFLKVSSLFVATLTTATLVSSPAANALSSKAMDNHPQQTQSSKQQTPKIQKGGNLKP LEQREHANVILPNNDRHQITDTTNGHYAPVTYIQVEAPTGTFIASGVVVGKDTLLTNKHV VDATHGDPHALKAFPSAINQDNYPNGGFTAEQITKYSDEGDLAIVKFSPNEQHKHIGEVV KPATMSNNADTQVNQNITVTGYPGDKPVATMWESKGKITYLKGEAMQYDLSTTGGNSGSP VFNEKNEVIGIHWXGVPNEFNGAVFINENVRNFLKQNIEDIHFATMTNLITQIILITLTI LITLTTQMNQITLTTLITLIIQTMAIXIIQTIQMQLN
85.	MQKKVIAATIGTSAISAVAATQANAATTHTVKPGESVWAISNKYGISIAKLKSLNNLTSN LIFPNQVLKVSGSSNSTSNSSRPSTNSGGGSYYTVQAGDSLSLIASKYGTTYQNIMRLNG LNNFFIYPGOKLKVSGTASSSNAASNSSRPSTNSGGGSYYTVQAGDSLSLIASKYGTTYQ KIMSLNGLNNFFIYPGQKLKVTGNASTNSGSATTTNRGYNTPVFSHQNLYTWGQCTYHVF NRRAEIGKGISTYWWNANWDNAAADGYTIDNRPTVGSIAQTDVGYYGHVMFVERVNND GSILVSEMNYSAAPGILTYRTVPAYQVNNYRYIH
86.	MNNKKTATNRKGMIPNRLNKFSIRKYSVGTASILVGTTLIFGLSGHEAKAAEHTNGELMQ SKNETTAPSENKTTKKVDSRQLKDNTQTATADQPKVTMSDSATVKETSSNMQSPQNATAN QSTTKRSNVTTNDKSSTTYSNETDKSNLTQAKDVSTTPRTTTIKPRTLNRMAVNTVAAPQ QGTNVNDKVHFSNIDIAIDKGHVNQTTGKTEFWATSSDVLKLKANYTIDDSVKEGDTFTF KYGQYFRYGSVRLPSQTQNLYNAQGNILAKGIYDSTTRTTTYTFTNYVDQYTNVRGSFEQ VAFARKNATTBKTAYKMEVTLGNDTYSEEIIVDYGNKKAQPLISSTNYINNEDLSRNMT AYVNQPKNTYTKQTFVTNLTGYKFNPNAKNFKIYEVTDQNQFVDSFTPDTSKLKDVTDQF DVIYSNDNKTATVDLMKGGTSSNKQYIIQQVAYPDNSSTDNGKLDYTLDTDKTKYSWSNS YSNVNGSSTANGDKKYNLDAYVWEDTNKDGKQDANEKGIKGVYVILKDSNGKELDRTTT DENGKYQFTGLSNGTYSVEFSTPAGYTPTTANVGTDDAVDSDGLTTTGVIKDADNMTLDS GFYKTFKYSLGDYVWYDSNKDGKQDSTEKGIKGVKVTLQNEKGEVIGTTETDENGKYRFD NLDSGKYKVIFEKPAGLTQTGTNTTEDDKDADGGSVDVTTTDHDDFTLDNGYYEEETSDS DSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD
87.	MDINSEEYKQEVLIKDVVMLAARILLESGAEGTRVEDTMTRIAKKLGYSESNSFVTNTVI QFTLHSESFPRIFRITSRDTMLIKISQANKISRQITNNEISLAEARTQLEKIYVAKRDSS LPFKGFAAAMIAMSFLYLQGGRLIDVLTAILAGSLGYLVTEILDRKLHAQFIPEFIGSLV IGIIAVIGHTLIPTGDLATIIIAAVMPIVPGVLITNAIQDLFGGHMIMFTTKSLEALVTA FGIGAGVGSVLILV
88.3	VIAIMNVIIDERKENAMTFNKVLLSWIVILIITTSIYLFWQLGDINDVFNQSILINVRLP RLLEALLTGMILTVAGLIFQTVLNNALADSFTLGLASGATFGSGLALFLGLTTLWIPVFS ITFSLTTLITVLVITSVLSQGYPVRILTLSGLMIGALFNSLLYFLILLKPRKLNTIANYL FGGFGDAEYSNVSIIAITFIIALFGIFIILNQLKLLQLGELKSQSLGLNVQLITYIALCI ASMITAINVAYVGIIGFIGMVIPQLIRKWQWKQSLGRQLALNIVTGGQIMVMADFIGSHI LSPVQIPASIIIALIGIPVLFYMLISQSKRLH
89.	MKKLAFAITATSGAAAFLTHHDAQASTQHTVQSGESLWSTAQKYNTSVESIKQNNQLDNN LVFPGQVISVGGSDAQNTSNTSPQAGSASSHTVQAGESLNIIASRYGVSVDQLMAANNLR GYLIMPNQTLQIPNGGSGGTTPTATTGSNGNASSFNHQNLYTAGQCTWYVFDRRAQAGSP ISTYWSDAKYWAGNAANDGYQVNNTPSVGSIMQSTFGPYGHVAYVERVNGDGSILISEMN YTYGPYNMNYRTIPASEVSSYAFIH
90.	MPDSITIIDENKVIDYVLIAGRILLESGAETYRVEDTMNRIAHSYGLHNTYSFVSSTAII PSLNDRTSTRLIRVQERTTDLEKIALTNSLSRKISNKELTIDEAKSEFIHLQHASLQYSF LTNFFAAAIACGFFLFMFGGVASDCWIAVIAGGSAFLTFSFVQRYIQIKFFSEFVAAAVV ISIAATFTKLGIATNQDIITIASVMPLVPGILITNAIRDLLAGELLAGMSRGVEAALTAF AIGAGVAIVLLII

91.	MGFLSKILDGNNKEIKQLGKLADKVIALEEKTAILTDEEIRNKTKQFQTELADIDNVKKQ NDYLDKILPEAYALVREGSKRVFNMTPYKVQIMGGIAIHKGDIAEMRTGEGKTLITATMPT YLNALAGRGVHVITVNEYLSSVQSEEMAELYNFLGLTVGLNLNSKTTEEKREAYAQDITY YLNALAGRGVHVITVNEYLSSVQSEEMAELYNFLGLTVGLNLNSKTTEEKREAYAQDITY TQANVFARMLKQDEDYKYDEKTKAVHLTEQGADKAERMFKVENLYDVQNVDVISHINTAL RAHVTLQRDVDYMVVDGEVLIVDOFTGRTMPGRRFSEGLHQAIEAKEGVQIQNESKTMAS RIHVTLQRDVDYMVVDGEVLIVDOFTGRTMPGRRFSEGLHQAIEAKEGVQIQNESKTMAS ITFQNYFRMYNKLAGMTGTAKTEEEEFRIYINMTYQIFTNKFVQNRDKSBLIYISQKGK FDAVVEDVVEKHKAGQFVLLGTVAVETSEYISNLLKKRGIRHDVLNAKNHEREABIVAGA GQKGAVTIATNMAGRGTDIKLGEGVEELGGLAVIGTERHESRRIDDQLRGRSGRQGKGD GRFYLSLQDELMIRFGSERLQKMMSRLGLDDSTPIESKMVSRAVESAQKRVEGNNFDARK RILBYDEVLRKQREIIYNERNSIIDEEDSSQVVDAMLRSTLQRSINYYINTADDEPEYQP FIDYINDIFLQEGDITBDDIKGKDAEDIFEVVWAKIEAAYQSQKDILEEQMNEFERMILL RSIDSHWTDHIDTMDQLRQGIHLRSYAQQNPLRDYQNEGHELFDIMMQNIEEDTCKFILK SVVQVEDNIEREKTTEFGEAKHVSAEDGKEKVKPKPIVKGDQVGRNDDCPCGSGKKFKNC
92.	MRESMSNQNYDYNKNEDGSKKKMSTTAKVVSIATVLLLLGGLVFAIFAYVDHSNKAKERM LNEOKQEQKEKRQKENAEKERKKQQEEKEQNELDSQANQYQQLPQQNQYQYVPPQQQAP TKQRPAKBENDDKASKDESKDKDDKASQDKSDDNQKKTDDNKQPAQPKPQPQQPTPKPNN NQQNNQSNQQAKPQAPQQNSQSTTNKQNNANDK
93.	MMKKKEKHATRKSIGVASVLVGTLIGFGLLSSKEADASENSVTQSDSASNESKSNDSS SVSAAPKTDDTNVSDTKTSSNTNNGETSVAQNPAQQETTQSSSTNATTEETPVTGBATTT TTNQANTPATTQSSNTMAEELWAQTSNETTSNDTNTVSSVNSPQNSTNAENVGTTQTST EATPSNNESAPQSTDASNKDVVNQAVNTSAPRMRAFSLAAVAADAPAAGTDITNQLTNVT VGIDSGTTVYPHQAGYVKLNYGFSVPNSAVKGDTFKITVPKELNLNGVTSTAKVPPIMAG DQVLANGVIDSDGNVIYFTDYVMYKDDVKATLTMPAYIDPENVKKTGNVTLATGIGSTT ANKTVLVDYEKYGKFYNLSIKGTLDQIDKTNNTYRQTIYVNPSGDNVIAPVLTGNLKPNT DSNALIDQQNTSIKVYKVDNAADLSESYFVNPENFEDVTNSVNITFPNPNQYKVEFNTPD DQITTPYTVVVNGHIDPNSKGDLALRSTLYGYNSNIIWSSMSVDNEVAFNNGSGSGDGID KPVVPEQPDEPGEIEPIPEDSDSDPGSDSGSDSDSDSDSDSDSDSDSDSDSDSDSDSDS
94.	MNSNIAKASVTESVOKKFVVPESGINKIIPAYDEFKNSPKVNVSNLTDNKNFVASEDKLN KIADSSAASKIVDKNFVVPESKLGNIVPEYKEINNRVNVATNNPASQQVDKHFVAKGPEV NRFITQNKVNHHFITTQPHYKKVITSYKSTHVHKHVNHAKDSINKHFIVKPSESPRYTHP SQSLIIKHHFAVPGYHAHKFVTPGHASIKINHFCVVPQINSFKVIPPYGHNSHRMHVPSF QNNTTATHQNAKVNKAYDYKYYSYKVVKGVKKYFSFSQSNGYKIGKPSLNIKNVNYQYA VPSYSPTHYVPEFKGSLPAPRV
95.	LEHTIMKMRTIAKTSLALGLLTTGAITVTTQSVKAEKIQSTKVDKVPTLKAERLAMINIT AGANSATTQAANTRQERTPKLEKAPNTNEEKTSASKIEKISQPKQEEQKTLNISATPAPK QEQSQTTTESTTPKTKVTTPPSTNTPQPMQSTKSDTPQSPTIKQAQTDMTPKYBDLRAYY TKPSFEFEKQPGFMLKPWTTVRFMNVIPNFIYKIALVGKDEKKYKDGPYDNIDVFIVLE DNKYQLKKYSVGGITKTNSKKVNHKVELSITKKDNQGMISRDVGBYMITKEEISLKELDF KLRKOLIEKHNLYGNMGSGTIVIKMKNGGKYTFELHKKLQEHRMAGTNIDNIEVNIK
96.	MTTIKTSNLGFPRLGRKREWKKAIESYWAKKISKEELDQTLTDLHKENLLLQKYYHLDSI PVGDFSLYDHILDTSLLFNIIPERFQGRTIDDLLFDIARGNKDHVASALIKWFTNYHY IVPEWDNVEPKVSENVLLDRFKYAGSLAVNAHPUVGFITFVKLSKGGHOFFEEKVKTLL PLYKEVFESLIDAGABYIQVDEPILVTDDSESYENITREAYDYFEKAGVAKKLVIQTYFE RAHLKFLSSLPVGGIGLDFVHDNGYNLKQIEAGDFDKSKTLYAGIIDGRNVWASDIEAKK VLIDKLLAHTNELVIQPSSSLHVPVSLDDETLDTSVGEGLSFATEKLDELDALRRLFNQ NDSVKYDKLKARYERFQNGSFKNLDYDFESVRTSRQSPFAQRIEQQQKRLNLPDLPTTTI GSFPQSREVRKYRADWKNRRITDBAYETFLKNEIARWIKIQEDIGLDVLVHGEFFRNDMV EFFGEKLQGFLVTKFGWVQSYGSRAVKPPIIYGDVKWYAPLTVDETVYAQSLTDKFVKGM LTGPVTILNWSFERVDLPRKVVQDQIALAINEEVLALEAAGIKVIQVDEPALREGLPLRS EYHEQYILKDAVLSFKLATSSVRDETQIHTHMCYSQFGQIIHAIHDLDADVISIETSRSHG DLIKDFEDINYDLGIGLGVYDIHSPRIPTKEEITTAINRSLQQIDRSLFWVNPDCGLKTR KEEEVKDALTVLVMAVKARRQE
97.	MSDTYKSYLVAVLCFTVLAIVLMPFLYFTTAWSIAGFASIATFIFYKEYFYEE
98.	MLRGQEERKYSIRKYSIGVVSVLAATMFVVSSIEAQASEKTSTNAAAQKETLNOPGEQGN ATTSHQMGSGKQLDDMHKENGKSGTVTEGKDTLQSSKHQSTQNSKTIRTQNDDNQVKQDSE RQGSKQSHQNNATNNTERQMDQVQNTHHABRNGSQSTTSQSNDVDKSQPSIPAQKVIPNH DKAAPTSTTPPSNDKTAPKSTKAQDATTDKHPNQQDTHQPAHQIIDAKQDDTVRQSEQKP QVGDLSKHIDGQNSPEKPTDKNTDNKQLIKDALQAPKTRSTTNAAADAKKVRPLKANQVQ PLNKYPVVFVHGFLGLVGDNAPALYPNYWGGNKFKVIEELRKQGYNVHQASVSAFGSNYD RAVELYYYIKGGRUDYGAAHAAKYGHERYGKTYKGIMPNWEPGKKVHLVGHSMGGQTIRL MEEFLRNGNKEEIAYHKAHGGEISPLFTGGHNNMVASITTLATPHKGSQAADKFGNTEAV RKIMFALNRFMGNXYSNIDLGLTQWGFKQLPNESYIDYIKRVSKSKIWTSDDNAAYDLTL DSGAKLNNMTSMNPNITYTTYTGVSSHTGPLGYENPDLGTFFLMATTSRIIGHDAREEWR KNDGVVPVISSLHPSNOPFVNVTNDEPATRGIWQVKPIIQGWD
99.	MIHLIKGKMHHTVLCIHLNKGVALMNQYHSNAQQPSAWRFFVYSLVGILCFFIPFIINGN NTIFVDHVHLAIRSIIGPLMPYVALIMILIGTALPIVRTFMTSITNLVITLFKVAGAMI GIMYVFKIGPSILFKANYGPFLFEKLMMPLSILIPVGAIALSLLVGYGLLEFVGVYMEPI MRPIFKTPGKSAVDAVASFVGSYSLGLLITNRVYKQGMYNKREATIIATGFSTVSATFMI IVAKTLGLMPHWNLYFWITLVITFVVTAITAWLPPISNESTEYYNGGBGEQEVAIEGSRL KTAYAEAMKQNALTPSLVKNYWDNLKDGLEMTVGILPSILSIGFLGLIVANYTPFIDWLG YIFYPFIYIFPIADQALLAKASAISIVEMFLPSLLVTKAAMSTKFVVGVVSVSAIIFFSA LYPCILATEIKIPVWKLIIMFLRVALSLLITIPVALLIFG
100.	MVIMKKTILLTMTTLTLFSMSPNSAQAYTNDSKTLEEAKKAHPNAQFKVNKDTGAYTYTY DKNNTPNNNHQNQSRTNDNHQHANQRDLNNNQYHSSLSGQYTHINDAIDSHTPPQTSFSN PLTPAIPNVEDNDDELNNAFSKDNKGLITGIDLDELYDELQIAEFNNKAKTADGKPLALG NGKIDQPLITSKNNLYTAGQCTWYVFDKRAKDGHTISTFWGDAKNWAGQASSNGFKVDR HPTRGSILQTVNGPPGHVAYVEKVNIDGSILISEMNWIGEYIVSSRTISASEVSSYNYIH

101.	MEVSSMKPYIQLVVFKQWLQYILLVTTIVIALVLIGIGYRVAHDNFKIPITIQDLDQTTA SKSFVNKIKQSDYVTIKKVDEDESYIEDDVTKKEAILSMQIPKGFSQKLKENRLKETIQL
	YGRDDFIGGIAVELYSSLYEQQIPNIIYEHLEDARQRQSIDATNOSINKII SITKQAQHSISISLIFAVILFVSAVQVVLHYRLNQQAALQRLSQYHLSRFKLYSTYVMTH TILLLLVLLAVSLYLSQPLSLIFYLKSLLLILIYEIGIVFILFHIQTISHRLFMTFIYAL
102.	MIEVTEMNFFDIHKIPNKGIPLSVQRKLWLRNFMQAFFVVFFVYMAMYLIRNNFKAAQPF LKEBIGLSTLELGYIGLAFSITYGLGKTLLGYFVDGRNTKRIISFLLILSAITYLIMGFV LSYFGSVMGLLIVLWGLNGVFQSVGGPASYSTISRWAPRTKRGRYLGFWNTSHNIGGAIA GGVALWGANVFFHGNVIGMFIFFSVIALLIGIATLFIGKDDPEELGWNRAEEIWEEPVDK ENIDSQGMTKWEIFKKYILGNPVIWILCVSNVFVYIVRIGIDNWAPLXVSEHLHFSKGDA VNTIFYFEIGALVASILWGYVSDLLKGRRAIVAIGCMFMTIFFVVLFYTNATSVMMVNISL FALGALIFGPQLLIGVSLTGFVPKNAISVANGMTGSFAYLFGDSMAKVGLAAIADPTRNG LNTEGYTLSGWTDVFIVFYVALFLGMILLGIVAFYEEKKIRSLKI
103.	MTKKKNILKAIGIYSFTAMMFVIILYPLLWTFGISLNPGTNLYGAKMIPDNATFKNYAFL LFDDSSQYLTWYKNTLIVASANALFSVIFVTLITAYAFSRYRFVGRKYGLITFLILQMFPV LMAMVAIYILLNTIGLIDSLFGLTLVYIGGSIPMNAFLVKGYFDTIPKELDESAKIDGAG HMRIFLQIMLPLAKFILAVVALFNFMGPFMDFILPKILLRSPEKFTLAVGLFNFINDKYA NNFTVFAAGAIMIAVPIAIVFLFLQRYLVSGLTTGATKG
104.	MMENSTTEARNEATMHLDEMTVEEALITMIKEDQQVPLAVRKAIPQLTKVIKKTIAQYKK GGRLIYIGAGTSGRLGVUDAAECVPTFNTDPHEIIGIIAGGHAMTMAVEGAEDHKKLAE EDLKNIDLISKDVVIGIAASGKTPYVIGGLTFANTIGATTVSISCNEHAVISEIAQYPVE VKVGPEVLITGSTRLKSGTAQKLILNMISTITMVGVGKVYDNIMIDVKATNQKLIDRSVRI IOEICAITYDEAMALYOVSEHDVKVATVMGMCGISKEEATRRLLNNGDIVKRAIRDRQP
105.	LQYIIRYIMMTLQIHTGGINLKKKNIYSIRKLGVGIASVTLGTLLISGGVTPAANÄAQHD EAQQNAFYQVINMPNLNADQRNGFIQSLKDDPSQSANVLGBAQKLNDSQAPKADAQQNNF NKDQQSAFYEILMMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNK EQQNAFYEILMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEQ QNAFYEILHLPNLTEEQRNGFIQSLKDDPSQSANLLSEAKKLNDAQAPKADNKFNKEQQN AFYEILHLPNLTEEQRNGFIQSLKDDPSQSANLLAEAKKLNDAQAPKEDNNKPGKEDNN KPGKEDNNKPGKEDNNKPGKEDGNKPGKEDGNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNSTATADNKLAADNKLAKNGTADKLAADNKLADALPTGETTYFGGLSLALGAALLAGRREL
106.	MDKKSEKRGIKMTVOSAYIHIPFCVRICTYCDFNKYFIQNQPVDEYLDALITEMSTAKYR ILKTMYVGGGTPTALSINQLERLLKAIRDTFTITGEYTFEANPDELITKEKVQLLEKYGVK RISMGVQTFKPBLLSVLGRTHNTEDIYTSVLNAKNAGIKSISLDLMYHLPKQTIEDFEQS LDLALDMDIQHISSYGLILEPKTQFYNMYRKGLLKLPNEDLGADMYQLLMSKIEQSPFHQ YEISNFALDGHESEHNKVYWFNEEYYGFGAGASGYVDGVRYTNIMPVNHYIKAINKESKA ILVSNKPSLTERMEEEMFLGLRLNEGVSSSRFKKKFDQSIESVFGQTINNLKEKELIVEK NDVIALTNRGKVIGNEVFEAFLIND
107.	atgaatgtattagtaattggtgtgtggacgagaacatgcacttgcatataaacttaat caatcgaatctagttaaacaagtgtttgtcattccaggtaatgaggcaatgacactata gctgaagtacacactgaaatttcagaacctgatcatcaagcgatactaagttttgctaaa cggcaaaatgttgattggtggtagtattaggtccagacagcgctaattgatggattagca gacattttacgagcgaatggtttcaaagtgttggtcaaatcagcagctaaatc gaaggctcaaaattattggtcaaaaggatgtttggtccaaataagcaagc
108.	MNVLVIGAGGREHALAYKLNQSNLVKQVFVIPGNEAMTPIAEVHTEISEPDHQAILDFAK RQNVDWVVIGPEQPLIDGLADILRANGFKVFGPNKQAAQIEGSKLFAKKIMEKYNIPTAD YKEVERKKDALTYIENCELPVVVKKDGLAAGKGVIIADTIEAARSAIEIMYGDEEEGTVV FETFLEGEEFSLMTFVNGDLAVPFDCIAQDHKRAFDHDEGPNTGGMGAYCPVPHISDDVL KLTNETIAQPIAKAMINEGYOFFGVLYIGALITKDGPKVIEFNARFGDPEAQVILSRMES DLMQHIIDLDEGKRTEFKWKNESIVGVMLASKGYPDAYEKGHKVSGFDLENTFVSGLKK OGDTFVTSGGRVILAIGKGDNYQDAQRDAYKKVSGDIQSDHLFYRHDIANKALQLK
109.	atgcaaccacatttaatatgtctagacttagacggaacattattaaacgataacaaagaa atttcatcatatactaaacaagtattaaatgaattacaacaacgagacaccaaattatg attgcgactggcagaccttatcgtgcaagtcaagt
110.	MQPHLICLDLDGTLLNDNKEISSYTKQVLNELQQRGHQIMIATGRPYRASQMYYHELNLT TPIVNFNGAYVHHPKDKNFKTCHEILDLGIAQNIIQGLQQYQVSNIIAEVKDYVFINNHD PRLFEGFSMGNPRIQTGNLLVHLKESPTSILIEAEESKIPEIKNMLTHFYADHIEHRRWG APFPVIEIVKLGINKARGIEQVRQFLNIDRNNIIAFGDEDNDIEMIEYARHGVAMENGLQ ELKDVANNITFNNNEDGIGRYLNDFFNLNIRYYC

111.	gtgaaaccaatggctaatgtctaatagtaaagacatcgttttaattggagccggtgtactt agcacaacatttggttcaatgttaaaagaaattgagccagactggaatatccaggtttac gaacgcttggatcgtcctgcaatcgaaagttcaaacgaaagaaa
112.	MKPMAKSNSKDIVLIGAGVLSTTFGSMLKEIEPDWNIHVYERLDRPAIESSNBRNNAGTG HAALCELNYTVLQPDGSIDIEKAKVINEEFEISKQFWGHHVKSGSIENPREFINPLPHIS YVRGKNNVKFLKDRYEAMKAFPMFDNIEYTEDIEVMKKWIPLMMKGREDNPGIMAASKID EGTDVNFGELTRKMAKSIEAHPNATVQFNHEVVDFEQLSNGQWEVTVKNRLTGEKFKQVT DYVFTGAGGGAIPLLQKTGIPESKHLGGFPISGQFLACTNPQVIEQHDAKVYGKEPPGTP PMTVPHLDTRYIDGQRTLLFGPFANVGPKFLKNGSNLDLFKSVKTYNITTILIAAAVKNLP LIKYSFDQVLMTKEGCMHLRTFYPEARNEDWQLYTAGKRVQVIKDTPEHGKGFIQFGTE VVNSQDHTVIALLGESFGASTSVSVALEVLERNFPEYKTEWAPKIKKMIPSYGESLIEDE KLMRKIRKQTSKDLEIGYYEN
113.	atgctagaggcacaattttttactgatactggacaacatagagataagaatgagatggggttggtatttttttaataa
114.	matdtghrdkndaggyntnvcdgmgghkagvaskvtdksranhanwrnnkdnyhyanayk gmgttcvcavksvvanvgdsrayvnsrtsdhsvnhvtgtathrntkvmgtdkrvsdkrny dynsdgtdyvkdnkrvkgtdhgdmadnhskdnvtaagdkv
115.	atggcaaaagaaaaattcgatcgttctaaagaacatgcaatatcggtactatcggtcac gttgaccatggtaaaacaacattaacagcagcaatcgctactgtattagcaaaaaatggt gactcagttgcacaatcatatgacatgattgacaacgctcacgaagaaaaagaacgtggt atcacaatcaattctctcacattgagtaccaaactgacaaacgtcactgcacacgtt gactgcccaggacacgctgactacgttaaaaacatgatcactggtgctgctaaatggac ggcggtatcttagtagtatctgctgacggtccaatgccacaaactggtgacacacatt cttttatcacgtaacgttggtgtaccagcattagtgattcttctaaacaagttgacatg gttgacgatgaagaattattagaattagtagaattgtgagttcgtgacttattaagcgaa tatgacttcccaggtgacgatgtacctgtaaatcgctggttcagcattaaaagcttagaa ggcgatgctcaatacgagaaaaaaatcttagaattaatggaagctgtagtacattacatt ccaactccagaacgtgattctgacaaaccattcatgatgccagttgagaacgtattctca atcactggtcgtggtaactgtgctacaggccgtgttgaacgatgagaacgtattcca atcactggtcgtggtaactgttgctacaggccgtgttgaacgatgaagaagttgcca atcactggtcgtggtaactgttgctacaggccgtgttgaacgtggtcaaatcaaagttggt
	gaagaagttgaaattattagactacggtttacatgacacatctaaaacaactgttacaggtgttgaa atgttccgtaaattattagactacgctgaagctggtgacaacattggtgcattattacgt ggtgttgctcgtgaagacgtacaacgtggtcaagtattagctgctcctggttcaattacac ccacatactgaattcaaagcagaagtatacgtattatcaaaagacgaaggtggacgtcac actccattcttctcaaactatcgtccacaattctatttccgtactactgacgtaactggt gttgttcacttaccagaaggtactgaaatggtaatgcctggtgataacggtgaaatgaca gtagaattaatcgctccaatcgcgattgaagacggtactcgtttccaatccgtgaaggt ggacgtactgtaggaaggtactgtatactgaaatcattaaa
116.	MAKEKFDRSKEHANIGTIGHVDHGKTTLTAAIATVLAKNGDSVAQSYDMIDNAPEEKERG ITINTSHIEYQTDKRHYAHVDCPGHADYVKNMITGAAQMDGGILVVSAADGPMPQTREHI LLSRNVGVPALVVFLNKVDMVDDEELLELVEMEVRDLLSEYDFPGDDVPVIAGSALKALE GDAQYEEKILELMEAVDTYIPTPERDSDKPFMMPVEDVFSITGRGTVATGRVERGQIKVG BEVEIIGLHDTSKTTVTGVEMFRKLLDYAEAGDNIGALLRGVAREEIQRGQVLAAPGSIT PHTEFKAEVYVLSKDEGGRHTPFFSNYRPQFYFRTTDVTGVVHLPEGTEMVMPGDNVEMT VELIAPIAIDEGTRFSIREGGRTVGSGVVTEITE

117.	atgactaagagtgctttagtaacaggtgcatcaagaggaattggacgtagtattgcgtta caattagcagaaggatataatgtagcagtaaactatgcaggcag
118.	MTKSALVTGASRGIGRSIALQLAEEGYNVAVNYAGSKEKAEAVVEEIKAKGVESFAIQAN VADADEVKAMIKEVVSQFGSLDVLVANAGITADNLLARMKEQENDDVIDTNLKGVFNCIQ KATPQMLRQRSGAIINLSSVVGAVGNPGQANYVATKAGVIGLTKSAARELASRGITVNAV APGFIVSDMTDALSDELKEQMLTQIPLARFGQDTDIANTVAFLASDKAKYITGQTIHVNG GMYM
119.	atgaaaatttotactaaagggagatatggacttacattgatgatttotottgotaaaaaa gaggggcaaggatgtatatocattaaagtcaattgotgaaagaaaataatttgaggtgattta tattagaacagcatgattta tattagaacagcattgatgatta tattagaacagcagggtocattaagaacggggataatgaggggataccaattaagaggggaagaaaatotcagcaggggatattata agactgttagaaggtcocaattacatttgttgaaagtattgaatcagaaccacottgogcaa aaacaactatggattogatgaggagatgcagtgagagatgtttagataatacaacattg aaatatttagcaggaatacaagtgaagatgtattagaagattataatacaacatt aaatatttagcggaatatgtagaacaagtgaagatgtagagatgtattagaatgttttatatt
120.	MIKISTKGRYGI/TIMIELAKKHGEGPTSLKSIAQTNNLSEHYLEQIVSPLRNAGIVKSIR GAYGGYVIGSEPDAITAGDIIRVLEGPISLLKCWKMRSLPSVSSGFASGML
121.	gtggcatttgaatttagattacccgatatcggggaaggtatccacgaaggtgaaattgta aaatggttgtgtaagaaatccattgaagaaggaaggtattttagctgaggtacaa aacgataaatcagtagaagaaatccattagaagaaggatgtttagg gtagaagaaggtacagtagctgtagttggtgacgtattgttaaaatcgatgcacctgat gcagaagaatatgcaatttaaaaggtcatgatgatgatcatcatacatctaaagaagaacctgcg aaagaggaaggccagcagaagacaggtaagtagtactcaaactgaagaagatagat
122.	MAFEFRLPDIGEGIHEGEIVKWFVKAGDTIEEDDVLAEVQNDKSVVELPSPVSGTVEEVM VEEGTVAVVGDVIVKLDAPDAEDMQFKGHDDDSSSKEEPAKEEAPAEQAPVATQTEEVDE NRTVKAMPSVRKYAREKGVNIKAVSGSGKNGRITKEDVDAYINGGAPTASNEGAASATSE EVAETPAAPAAVTLEGDFPETTEKIPAMRRAIAKAMVNSKHTAPHVTLMDEIDVQALWDH RKKFKEIAAEQGTKLTFLPYVVKALVSAIKKYPALNTISFNEEAGEIVHKHYWNIGIAADT DKGLLVPVVKHADRKSIFQISDEINELAVKARDGKLTADEMKGATCTISNIGSAGGQWFT PVINHPEVATLGIGRIAQKPIVKDGEIVAAPVLALSLSFDHRQIDGATGQNAMNHIKRLL

atgctaaacagagaaaataaaacggcaataacaaggaaaggcatggtatccaatcgatta acuyanguyanaattuaykang tyutaattaatugaytyataang tygatabagat ctaaatcaagaagacaatactaaaaabgataatcaaanagaaabgytatcatctcaaggt aatgaaacgacttcaaatgggaataaattaatagaaaagaagtgtacaatctaccact ggaaataaagttgaagtttcaactgccaaatcagatgagcaagcttcaccaaaatctacg aataaaacggtgttcaagaattaggagaaaaaggcgttggcaatgtaactgtaactgta
tttgataataatacaaatacaaaggagagagagcagttactaaagaagatgggtcatac
ttgattccaaacttacctaatggagattactagaattttctaaacttacctaataggagagttactagaatttttcaaacttacctcaaaaggt
tatgaagtaaccccttcaaaacaaggtaataacgaagaattagattcaaacggcttatct
tcagttattacagttaatgcaaaggtaacattatctgcagacttaggtattcaaaacct
aaatacaacttaggtgactatgtctgggaagatacaaataaaaatggtatccaagaccaa
gatgaaaaaggtatactggcgtaacggtaacattaaaagtgaaaacggtatcaagtgtaa
aaacagttacaacagacgctgatggcaaatataaatttactgatttagataatggtag
tataaagttgaattactacaccagaaggctatacaccgactacagtaacatctggtag
gacattgaaaaagacctaatggttataacaacaacaggtgttattaaatggtgctgataac
atgacattgaaaaagacgtgtaacgagatccaaataaatttaggtaattatgg
gaagatacaaataaagatggtaagagagatcaaacgaaaaggtatttcaccaggagaacatttcaactgaaaaagggagatcaaca
ttacattgaaaaatgaaaacggtgaagtttacaacaaaaaaacaaaaagatgaaaagg gttacattgaaaatgaaaacggtgaagttttacaaacaactaattaaacagataaagatggt aaatatcaatttactggattagaaaatggaacttataaagttgaattcgaaacaccatca ggttacacaccaacacaagtaggttcaggaactgatgaaggtatagattcaaatggtaca ggttacacaccaccacagagagtttcaggatacagtagagtactagttgatttaatggatac tcaacaacaggtgtcattaaagataaagataacgatactattgactctggtttctacaaa ccgacttacaacttaggtgactatgtatgggaagatacaaataaaaacggtgttcaagat aaagatgaaaagggcatttcaggtgtaacagttacgttaaaagatgaaaacgacaaagtt ttaaaaacagttacaacagatgaaaatggtaaatacaattcagtgattaaacaagtga acttataaagttgaattcgagacacatcaggttatacacaaacttcagtaacttctgga aatgatactgaaaaagattctaatggtttaacaacaacaggtgtcattaaagatgcagat aacatgacattagacagtggtttctataaaacaccaaaatatagtttaggtgattatgtt tggtacgacagtaataaagacggcaaacaagattcaactgaaaaaggtatcaaagatgtt aggttacttattaatgaaaaaggcgaagtaattggaacaactaaaacagatgaaaat ggtaaatactgctttgataatttagatagcggtaaatacaaagttatttttgaaaagcct gctggcttaacacaaacaggtacaaatacaactgaagatgataaagatgcagatggtggc gatagcgattcagattcagacagagactcagatagtgattcagactcagatagcgactca gattcagacagcgactcagattcagacagcgactcagactcagatagtgattcagactca gatagcgactcagattcagactcagactcagactcagactcagactcagactcagatagt gactcagattcagattcagactcagactcagactcagactcagactcagatagt gactcagattcagattagcgactcagattcggacagcgattcagactcagatagcgactca gattcagatagcgattcagactcagatagcgactcagattcagatagtgattcagactca 125.

PVKPMSTTKDHHNKAKALPETGNENSGSNNATLFGGLFAALGSLLLFGRRKKONK acaattattocaaacogtggtgcatggttagaatatgaaacagatgctaaagatgttgta
tacgtacgtattgatagaacacgtagttgaacgattatgaacagatgctattgta
tacgtacgtattgatagaacacgtaaactaccattaacagtattgttacgtgcattaggt
ttctcaagcgaccaagaaattgttgaccttttaggtgacaatgaatatttacgtaatact
ttaggaaagacgcactgaaaaacactgaacaagcgttattagaaatctatgaacgttta
cgtccaggtgaaccaccaactgttgaaaatgctaaaagtctattgtattcacgtttcttt ttaaaacatogtttatttaatoaaaaattagotgagocaattgtaaatactgaaactggt gaaattgtagttgaagaaggtacagtgottgatogtogtaaaatcgacgaaatcatggat gtacttgaatcaaatgcaaacagcgaagtgtttgaattgcatggtagcgttatagacgag ccagtagaaattcaatcaattaaagtatatgttcctaacgatgatgaaggtcgtacgaca actgtaattggtaatgctttccctgactcagaagttaaatgcattacaccagcagatatc attgcttcaatgagttacttctttaacttattaaggggtattggatatacagatgatatt gaccatttaggtaaccgtcgtttacgttctgtaggtgaattactacaaaaccaattccgt atcggtttatcaagaatggaaagagttgtacgtgaaagaatgtcaattcaagatactgag tctatcacacctcaacaattaattaattcgacctgttattgcatctattaaagaattc tttggtagctctcaattatcacaattcatggaccaagcaaacccattagctgagttaacg cataaacgtcgtctatcagcattaggacgtggtggtttaacacgtgaacgtgctcaaatg gaagtacgtgacgttcactactctcactatggccgtatgtgtccaattgaaacacctgag ggaccaaacattggattgattaactcattatcaagttatgcacgtgtaaatgaattcggc tttattgaaacaccatatcgtaaagttgatttagatacacatgctatcactgatcaaatt gactatttaacagctgacgaagaagatagctatgttgtagcacaagcaaactctaaatta gatgaaaatggtcgtttcatggatgatgtagttgtatgtcgtttccgtggtaacaataca gttatggctaaagaaaaatggattatatggatgtatcgccgaagcaagttgtttcagca gcgacagcatgtattecattettagaaaatgatgactcaaaccgtgcattgatgggtgcg aacatgcaacgtcaagcagtgcctttgatgaatccagaagcaccatttgttggtacaggt atggaacacgttgcagcacgtgatcttggtgcggctattacagctaagcacagaggtcgt gttgaacatgttgcagcacgtgatcttggtcgtcgtcgtctagttgaagagaacggcgtt gagcatgaaggtgaattagatcgctatccattagctaaatttaaacgttcaaactcaggt acatgttacaaccaacgtccaatcgttgcagttggagatgttgttggtataacgagatt ttagcagatggaccatctatggaattaggagaaatggcattaggtagaaacgtagtagtt ggtttcatgacttgggacggttacaactatgaggatgccgttatcatgagtgaaagactt gtgaaagatgacgtgtatacttctattcatattgaagagtatgaatcagaagtacgtgat actaagttaggacctgaagaaatcacaagagatattcctaatgtttctgaaagtgcactt aagaacttagacgatcgtggtatcgtttatatttggtgcagaagtaaaagatggagatatt ggtgtaccatctcgtatgaacatcggacaagtattagagctacacttaggtatggctgct aaaaatcttggtattcacgttgcatcaccagtatttgacggtgcaaacgatgacgatgta tggtcaacaattgaagaagctggtatggctcgtgatggtaaaactgtactttatgatgga cgtacaggtgaaccattcgataaccgtatttcagtaggtgtaatgtacatgttgaaactt gcgcacatggttgatgataaattacatgcgcgttcaacaggaccatattcacttgttaca caacaaccacttggcggtaaagcgcaattcggtggacaacgtttttggtggagatggaggta tgggcacttgaagcatatggtgctgcatacacattacaagaaatcttaacttacaaatcc gatgatacagtaggacgtgtgaaaacatacgaggctattgttaaaggtgaaaacatctt agaccaagtgttccagaatcattccgagtattgatgaagaattacaaagtttaggttta gatgtaaaagttatggatgagcaagataatgaaatcgaaatgacagacgttgatgacgat gatgttgtagaacgcaaagtagatttacaacaaaatgatgctcctgaaacacaaaaagaa

126.	MAGQVVQYGRHKKRNYARISEVLELPNLIEIQTKSYEWFLREGLIEMFRDISPIEDFTG NLSLEFVDYRLGEPKYDLEBSKNRDATYAAPLRVKVRLIIKETGEVKEQEVFMGDFPHMT DTGTTFVINGABRVIVSQLVRSPSVYFNEKIDKNGRENYDATIIPNGAMLEYETDAKDVV YVRIDRFRKLPLTVLLRALGFSSDQEIVDLLGDNEYLRNTLEKDGTENTEQALLEIYERL RPGEPPTVENAKSLLYSBFFDPKRYDLASVGRYKTNKKLHLKHRLFNOKLAEFIVNTETG EIVVEEGTVLDBRKIDEIMDVLESNANSEVFELHGSVIDEPVEIQSIKVYVPNDDEGRTT TVIGNAFPDSEVKCITPADIIASMSYFFNLLSGIGYTDDIDHLGNRRLRSVGELLQNQFR IGLSRMERVVRERMSIQDTESITPQQLINIRPVIASIKEFFGSSQLSOFMDQAMPLAELT HKRRLSALGPGGLTRERAQMEVRDVHYSHYGRMCPIETPEGPNIGLINSLSSYARVNEFG FIETPYRKVDLDTHAITDQIDYLTADEEDSYVVAQANSKLDENGRFMDDEVVCRPRGNNT VMAKEKMDYMDVSPKQVVSAATACIPFLENDDSNRALMGANMORQAVPLMNPEAPFVGTG MEHVAARDSGAAITAKHRGRVEHVBSNEILVRRLVEEMGVEHGEGLDRYPLAKFKRSNSG TCYNQRPIVAVGDVVEYNEILADGPSMELGEMALGRNVVVGFMTWDGYMYEDAVIMSERL VKDDVYTSIHIEEYESRQRDTKLGPEEITRDIPNVSESALKNLDDRGIVVIGAEVKDGD LLVGKVTPKGVTELTABERLLHAITGEKAREVRDTSLRVPHGAGGIVLDVKVFMEEGDD TLSPGVNGLVRVVIVQKRITHVGDKMCGRHGNKGVISKIVPEEDMPYLPDGRPIDIMLNP LGVPSRNNIGQVLELHLGMAAKNLGIHVASPVFDGANDDDVWSTIEBAGMARDGKTVLYD GRTGEPFDNRISVGVMYMLKLAHMVDDKLHARSTGPYSLUTVQCLGGKAQFGGQRFGEME WALEAVGAAYTLQEILTYKSDDTVGGRVKTYEALVKGENISRPSVPESFRVLMKELQSLG LDVKVMDEQDNEIEMTDVDDDDVVERKVDLQQNDAPETQKSY
127.	atgettaggcategceatatetategtatttattcagtaatataaaactggaaggagaa aaatacatggctagagaattttetatgaaaaaaactgtaatateggtacac attgatgctggtaaaacgactgaacgatttetttattacactggcegtatecac attgatgctggtaaacacacgaaggtgeteacacaaatggactggatggagcaagaacaagac cgtggtattacatcacactgctgcaacaacagcagcttggaaggtcacgtgtaaac attatcgatacacctggacacgtagacttcactgtagaaggttgaacgttgaaccgtgtaaac attatcgatacacctggacacgtagacttcactgtagaaggttgaacgttcaattacgtgta cttgacggagcagttacagtacttgatgtcacacatcaggtgttgaacctcaaactgaaca gtttggcgtcaggctacaacttatggtgttcacacatcaggtgttgaacctcaaaactgaaca gtttggcgtcaggctacaacttatggtgttcacacattacatgattgtttgaacctcaaaatggac aaattaggtgctaacttcgaatactcgtaagtacattacatgattgtttacaaggtaac gctgctccaatccaa
128.	MAREFSLEKTRNIGIMAHIDAGKTTTERILYYTGRIHKIGETHEGASQMDWMEQEQDRG ITITSAATTAAWEGHRVNIINTPGHVDFTVEVERSLRVLDGAVTVLDAQSGVEPQTETVW RQATTYGVPRIVFVNKMDKLGANFEYSVSTLHDRLQANAAPIQLPIGAEDEFEAIIDLVE MKCPKYTNDLGTEIEEIEIPBDHLDRAEEARASLIEAVAETSDELMEKYLGDEEISVSEL KEAIRQATTNVEFYPVLCGTAFKNKGVQLMLDAVIDYLPSPLDVKPIIGHRASNPEEEVI AKADDSAEFAALAFKUMTDPYYGKLTFFRYYSGTMTSGSTVKNSTKGKRERVGRLLQMHA NSRQEIDTYVSGDIAAAVGLKUNTGTGDTLCGEKNDIILESMEFPEPVIHLSVEPKSKADQ DKMTQALVKLQBEDPTFHAHTDEETGQVIIGGMGELHLDILVDRMKKEFNVECNVGAPMV SYRETFKSSAQVQGKFSRQSGGRGQYGDVHIEFTPNETGAGFEFENAIVGGVVPREYIPS VEAGLKDAMENGVLAGYPLIDVKAKLYDGSVPDVDSSGMAFKIAASLALKEAAKCDPVI LEPMMKVTIEMPEEYMGDIMGDVTSRRGKVDGMEPRGNAQVVNAYVPLSEMFGYATSLRS NTQGRGTYTMYPDHYAEVPKSIAEDIIKKNKGE
129.	atgactaaaaaagtagcaattattctagcaaacgaatttgaagatatagaatattcaagc cctaaaggagcattagcaggctttaatactgtagtgattggagatactgcaaat agtgaagttgttggtaaacacggtgaaaaagttactgtcgatgtagtgattgcagaagct aaaccagaagattatgatgcattattaattcctggaaggattttcaccagatcatttacgt ggagatacagaaggtcgatatggcacatttgctaaatactttactaaaaatgatgtacca acatttgccatttgtcatgggccacaaatactaatagatacagacgatttaaaaggtcgt acgttaacagcagtattaaatgtacgcaaagatttatcaaatgcaggcgcacatgtagtt gatgagtcagtagttgtagacaacaatattgtaacaagtcgagtaccagacgatttagat gattttaatcgagaaatcgttaaacaattacaa
130.	MTKKVAIILANEFEDIEYSSPKEALENAGFNTVVIGDTANSEVVGKHGEKVTVDVGIAEA KPEDYDALLIPGGFSPDHLRGDTEGRYGTFAKYFTKNDVPTFAICHGPQILIDTDDLKGR TLTAVLNVRKDLSNAGAHVVDESVVVDNNIVTSRVPDDLDDFNREIVKQLQ
131.	atggctaatcatgaacaaatcattgaagcgattaaagaaatgtcagtattagaattaaac gacttagtaaaagcaattgaagaagaatttggtgtaactgcagctgctccagtagcagta gcaggtgcagctggtggcgctgcagcagcagaaaaaactgaatttgacgttgagtta acttcagctggttcatctaaaatcaaagttgttaaagctgttaaagcaactggttta ggattaaaagatgctaaagaattagtagacggagctcctaaagtaatcaaagaagcttta cctaaagaagaagctgaaaaacttaaagaacaattagaagaagttggagctactgtagaa ttaaaa
132.	MANHEQIIÉAIKEMSVLELNDLVKATEEEFGVTAAAPVAVAGAAGGADAAAEKTEFDVEL TSAGSSKIKVVKAVKEATGLGLKDAKELVDGAPKVIKEALPKEEAEKLKEQLEEVGATVE LK

1	gtggaattacaattagcaattgatttattaaacaaagaagacgcggctgagttagcaaat
133.	gtggaattacaattagcaattgatttattaadaadaagaagatgggggtgtgacaatgaaggt aaagtaaaagattatgtagaatacgtagaaataggtaagacagggttacaacaaggat ttaccagcagttaaacatatggcagacaacattagtaaatgtaaaagtattagcagacatg aaaattatggatgcagctgattatgaagttagccaagcaattaaaatttaggcggggatgta attacaactactaggtgcagaaggatgcatcaattaaagacagctattgaagaagctcat aaaaattaataaacaattactagttgatattgctgttcaagatttagaaaaacgtgca aaagactagatgaaatgggtgctgattatattgcagtacacactggttatgatttacaa gcagaagggcaattcaccattagaaagtttaagaaccgttaaatctgttattaaaaattct aaagttgcagtagcaggtggattaaaccagatacaattaaagatattgtcgctgaaagt cctgatcttgttattgttggtggcggaatcacaaatgcagatgatccagtagaagctgca
	aaacaatgtcgcgctgcaatcgaaggtaag MELQLAIDLLNKEDAAELANKVKDYVDIVEIGTPIIXNEGLPAVKHMADNISNVKVLADM
134.	KIMDAADYEVSQAIKFGADVITILGVAEDASI.KAAIEBAHKNINKQLUVUITIAVQUDENKA KELDEMGADYIAVHTGYDLQAEGQSPLBSILITVKSVIKNSKVAVAGGIKPDTIKDIVAES DDIATIVGGGTANADDPVEAAKOCRAAIEGK
135.	atgaaaaattagtacctttattatgcctttattactctctagttgctgctagtagtact ggtggtaaacaaagcagtgataagtcaaatggcaaattaaaagtagtaaacgacgaattca atttatatgatattggctaaaaaatgttggtggaactcctgttgtgtcact cctgttggtcaagatcctcatgaatatgaagttaaacctaaagatattaaaaagttaact gacgctgacgttattttatacaacggattaaatttagaagtagacaggttggtt
136.	MKKLVPLLIALILIVAACGTGGKQSSDKSNGKLKVVTTNSILYDMAKNVGGDNVDIHSIV PVGQDPHEYEVKPKDIKKLTDADVILYNGINLETGNGWFEKALEQAGKSLKDKKVIAVSK DVKPIYLNGEEGNKDKQDPHAWLSLDNGIKYVKTIQQTFIDNDKKKKADYEGNKYIAQ LEKLNNDSKDKFNDIPKBQRAMITSEGAFKYFSKQYGITPGYIWEINTEKQGTPEQWRQA IEFVKKHKLKHLLVETSVDKKAMESLSEETKKDIPGEVYTDSIGKEGTKGDSYYKMMKSN IETVHGSMK
137.	atgacaactgatattttgaacattctgaagaacaacttgttgattattctaaagcccac aatgaaccttcttggatgacagaattacgtaaaaaagctttgaaattaacagaaacttta gaaatgccaaaacctgataaaacaaattaagaaaatgggattttgattcttttaaacaa cacgatgtaaaaggtgatgtttatcaatcttatcacaattacctgagtcagtaagagaa attattgacgtagatcattctaaaaacttagtaattcaacaataatacgattgcgtac acacaagttgatgataatgcatcgaaagatggcgttatcgttgaaggttagcagtagagagcgc cttatgaaccatagtgatttagtacaaaagtagctttatgaaggttagcgataacagtagat gaacatcgtatcacagcgctacacacggcattagttaatggtggcgtatttttttagt cctaaaaatgtagttgtagaacatccagtacaatagttgtgtgcgcaatttgttagt gcaagcttttataaccatgttatcatcgttactgaagaaagcgcgaagtcacatagtt gaaaattacttatcaaatgcatctggtgaaggaaatcaattaatt
138.	MTTDILNISEEQLVDYSKAHNEPSWMTELRKKALKLTETLEMPKPDKTKLRKWDFDSFKQ HDVKGDYYQSLSQLPESVREIIDVDHSKNIVIQHNNTIAYTQVDDNASKDGVUYBGLADA LMNHSDLVQKYFMKDAVTVDEHRITALHTALVNGGVFVYVPKNVVVEHPVQYVVLHDDEN ASFYNHVIIVTEESAEVTYVENYLSNASGEGNQLNILSEVIAGANSNITYGSVDYMDKGF TGHIIRRGITEADASINWALGLMNEGSQIIDNTTNLFGDRSTSSLKSVVVGTGEQKINLT SKIVQYGKETDGYILKHGYMKEHASSVFNGIGYIKHGGTKSIANQESRVLMLSEHARGDA NPILLIDEDDVQAGHAASVGRVDPDQLYYLMSRGISQREAERLVIHGFLDPVVRELPIED VKRQLREVIERKVSK

139.	gtggttcaagaatatgatgtaatcgttataggtggggacatgcaggtgtagaagcaggt ttagcatctgcaagacgtggtgctaaaacattaatgctaacaataaatttagataatatt gcatttatgccatgtaaccatctgtaggtggacagctaaaggtatcgttgttcggaa attgatgcttaggtggacaaatggcaaaaacaatcgataaaacaacaattcaaatgaga atgttaaatacaggtaaaggacctgctgtaagaagcactaagagcagcagcagataaagta ctttatcaacaagaaatgaacagcgtgattgaagatgaagaaaattgcaataatgcaa ggtatggtagacgaacttattatagaagataattatacaacgggaacattttacgtgggaa ggtatggtagacgaacttattataagaagataattatacaacgggaacaatttttacgtggtgaa atcattttaggtaatatgaagtattcaagtggaccaaatcaccaatcaat	
140.	MVQEYDVIVIGAGHAGVEAGLASARRGAKTLMLTINLDNIAFMPCNPSVGGPAKGIVVRE IDALGGQMAKTIDKFHLQMRMLNTGKGPAVRALRAQADKVLYQQEMKRVIEDEENDHIMQ GWODELIEDNEVKGVRTNIGTEYLSKAVIITTGTFLRGEIILGNMKYSSGPNHQLPSIT LSDNLRELGFDIVRFKTGTPPRVNSKTIDYSKTBIDFGDDVGRAFSFETTEYILDQLPCW LTYTNAETHKVIDDNLHLSAMYSGMIKGTGPRYCPSIEDKFVRFNDKPRHQLFLEPEGRN TMEVYVQGLSTSLPEHVQRQMLETIPGLEKADMMRAGYAIEYDAIVPTQLWPTLETKMIK NLYTAGQINGTSGYEEAAGQGLMAGINAAGKVLNTGEKILSRSDAYIGVLIDDLVTKGTN EPYRLLTSRAEYRLLRHDNADLRITDMGYEIGMISEERYARFNEKRQQIDAEIKRLSDI RIKPNEHTQAIIEQHGGSRLKDGILAIDLLRRPEMTYDIILELLEEEHQLMADVEEQVEI QTKYEGYINKSLQQVEKVKRMEKKIPEDLDYSKIDSLATEAREKLSEVKPLNIAQASRI SGYNPADISILLIYLEGGKLQRVSD	
141.	LMINEREVFILIYLDNAAXTKAFEEVLDTYLKVNQSMYYNPNSPHKAGLQANQLLQQART QINAMINSKINYDVVFTSGATESINILALKGIAYRKFDTAKEIITSVLEHFSULEVVRYLE AHEGFKVKYYDVVKKOGSINLEHFKELMSDKVGLUTCMYVNIVTGQIQPIPQMAKVIKNYP KAHFHVDAVQAFGKISMDINNIDSISLSGHKFNGLKGQGVLLVNHIQNVEPTVHGGGQEY GVRSGTVNLPNDIAMVKAMKIANENFEALMAFVTELMNDVRQFINKYHGVYINSSTSGSP FVLNISFPGVKGEVLVNAFSKYDLMISTTSACSSKRNKLNEVLAAMGLSDKSIEGSIRLS FGATTKEDIARFKEIFILIYEEIKELLK	
142.	MNKQQKEFKSFYSIRKSSLGVASVAISTLLLIMSNGEAQAAAEETGGTNTEAQPKTEAVA SPTTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN TYPILNQELREAIKNPAIKDKDHSAPNSRPIDFEMKKKDETQQFYHYASSVKPARVIFTD SKPEIELGLQSGQFWRKFEVYEGDKKLPIKLUSYDTVKDYAYIRFSVSNGTKAVKIVSST HFNNKEEKYDYTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQD KLPEKLKAEYKKLEDTKKALDBQVKSAITEFQNVQPTNEKMTDLQDTKYVVYYESVENNE SMMDTFYKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKGVTLATKPTKGEVESSSTT PTKUVSTTQNVAKPTTGSSKTTKDVVQTSAGSSEAKDSAPLQKANLKHTNDGHTQSQNNK NTQENKAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN	

atgagctggtttgataaattattcggcgaagataatgattcaaatgatgacttgattcat agaaagaaaaaagacgtcaagaatcacaaaatatagataacgatcatgactcattactg cctcaaaataatgatatttatagtcgtccgaggggaaaattccgttttcctatgagcgta gcttatgaaaatgaaaatgttgaacaatctgcagatactatttcagatgaaaaagaacaa taccatcgagactatcgcaaacaagaccacgattotcgttcacaaaaacgacatcgccgt agaagaaatcaaacaactgaagaacaaaattatagtgaacaacgtgggaattctaaaata tcacagcaaagtataaaatataaagatcattcacattaccattacgaataagccagtaca tatgtttctgcaattaatggtattgagaaggaacgcacaagccaaaacacataatatg tatctaataatacaaatcatcgtgctaaagattcaactccaaattaccacaaagaa gataaatatgtagctaagacgcaaacgtctcaaaataaacaattagaacaagaaaaacaa aatgatagtgttgtcaaacaaggaactgcatctaaatcatctgatgaaaatgtatcatca acaacaaaatcaatgcctaattattcaaaagttgataatactatcaaaattgaaaaatat agtyatatatagaaatgaataacgaagaaattacagaaaatgtgcaaaacgaagcagct gaaagtyaacaaaatgtcgaagagaaaactattgaaaacgtaaatccaaagaaacagact gaaaaggtttcaactttaagtaaaagaccatttaatgttgtcatgacgccatctgataaa aagcgtatgatggatcgtaaaaagcattcaaaagtcaatgtgcctgaattaaagcctgta caaagtaagcaagctgtgagtgaaagaatgcctgcgagtcaagccacaccatcatcaaga tctgattcacaagagtcaaatacaaatgcatataaaacaaataatagacatcaacaat gaagtaagggacataactgaagaaagggaagaaacaacacatccaaacaatactagtgga caacaagataatgatgatcaacaaaaagatttacagtcatcattttcaaataaaaatgaa gatacagctaatgaaaatagacctcggacgaaccaacaagatgttgcaacaaatcaagct gtacaacatctaagccgatgattcgtaaaggcccaaatattaaattgccaagtgtttca ttactacaagaaccacaagttattgagtcggacgaggactggattacagataaaaagaaa gaactgaatgacgcattattttactttaatgtacctgcagaagtacaagatgtaactgaa ggtccaagtgttacaagatttgaattatcagttgaaaaaggtgttaaagtttcaagaatt acggcattacaagatgacattaaaatggcattggcagcgaaagatattcgtatagaagcg cctattccaggaactagtcgtgttggtattgaagttccgaaccaaaatccaacgacagtc aacttacgttctattattgaatctccaagttttaaaaatgctgaatctaaattaacagtt gcgatggggtatagaattaataatgaaccattacttatggatattgctaaaacgccacac gcactaattgcaggtgcaactggatcagggaaatcagtttgtatcaatagtattttgatg tetttactatataaaaatcateetgaggaattaagattattacttategatecaaaaatg gttgaattageteettataatggtttgccacatttagttgcaceggtaattacagatgte aaagcagctacacagagtttaaaatgggccgtagaagaaatggaacgacgttataagtta tttgcacattaccatgtacgtaatataacagcatttaacaaaaagcaccatatgatgaa agaatgccaaaaattgtcattgtaattgatgagttggctgatttaatgatgatggctccg ataccaacaagaattgcatttatggtatcatcaagtgtagatttggagaacgatattagac agtggtggagcagaacgcttgttaggatatggcgatatgttatatcttggtagoggtatg aataaaccgattagagttcaaggtacatttgtttctgatgacgaaattgatgatgttgt gattttatcaaacaacaaagagaaccggactatctatttgaagaaaaagaattgttgaaa aaaacacaaacacaatcacaagatgaattatttgatgatgtttgtgcatttatggttaat gaaggacatatttcaacatcattaatccaaagacatttccaaattggctataatagagca gcaaggaattatcgatcaattagagcaactcggttatgtttcgagtgctaatggttcaaaa ccaagggatgtttatgttacggaagcagatttaaataaagaa

atgattaacagggataataaaaaggcaataacaaaaagggtatgatttcaaatcgctta 145. caactagaagotaaaaagaatatatatatatagaatatagaaaagataaaccttcaact gataaaactgcgacagaagatacatctgttattttagaagagaagaaagcaccaaataat acaaataacgatgtaactacaaaaccatctacaagtgaaccatctacaagtgaaattcaa gtaacaattacgatcatgatgattcacacttgataacggatacttcgaagaagataca tcagacagcgattcagactcagatagtgactcagacagcgactcagactcagacagcgac tcagactcagacagtgattcagattcagacagcgactcagattcagatagcgactcagat tcggacagcgattcagactcagatagcgactcagattcagatagcgattcagactcagac agcgactcagattcagatagcgattcggactcagacagcgattcagactcagatagcgac tcagactcagacagcgactcagattcagatagcgattcagactcagatagcgactcagat tcagacagcgattcagactcagatagcgactcagattcagacagcgattcagactcagat agcgactcagactcagacagtgattcagattcagacagcgactcagactcagatagcgac aacgcaacgttatttggtggattatttgcagcattaggttcattattgttattcggtcgt cgcaaaaaacaaacaaa atgactcatttattagagacatttgagatgtcaatagatcaccaggaagatggtttagtt gttatttctatgcctgttactgataaagtaaaacaaccatttggatatttacatggtggg 146 gcttcgattgctttaggtgaaacagcatgttcattaggatctgctaatttaattgataca aaacctttaaaa atggagcatacaactatgaaaataacaacgattgctaaaacaagtttagcactaggcctt 147. ttaacaacaggtgtaatcacaacgacaacgcaggaaaacgcggacaacaccatcttcc actaaagtggaagcaccacaatcaacaccgccctcaactaaaatagaagcaccgcaatca ataaatcctaaatttaaagatttaagagcgtattatacgaaaccaagtttagaatttaaa agaattattaggututtattaggaagaattagattttaaattgagaaaacaacttattgaa actaaagaacagatttccttgaaagaacttgattttaaattgagaaaacaacttattgaa aaaaataatctgtacggtaacgttggttcaggtaaaattgttattaaaatgaaaaacggt ggaaagtacacgtttgaattgcacaaaaaaattacaagaaaatcgcatggcagatgtcatt

tagtgaacaaattaaaaacatcgaagtgaatttgaaa

148.	atgaaaaagcaaataatttegetaagegcattageagttgeatetagettatttaeatgg gataacaaagcagatgegatagtaacaaaggattatagegaaattetaagtgggaaatcaaaagtaatget gggagtaaaaatgggacattaatagagaagtatttaagtgggaaatcaatattt tataaagaagctaaagataggttyttggaaaaggtattaaaggaagataatattt tataaagaagctaaaagataggttyttggaaaaggtataaaggaagaacattttg gagagaaagaaatccaatatgaagattataaaaatggatagaaatttteg gagagaaagaaatctaaatgaagattataaaaatggatagaaattttegaagaacttteg atgaaagaatacaatgaactacaggatgcattaaagagagcactggatgattttcacaga gaagttaaagaatattaaggatatacagatgtagaaacatttagaagaagaga gataaagcaactaaggaagtatacgactgatatttcagaactttagatgatgatat gataaggaatattaaggatatcagactgaaacatttagatgatgata gataaagcaactaaggaagtatacgaccagcgaaagagttacgagcaaaaaagaaga gataaagcaactaaggaagtatacgaccagcgaaagagttacagagcaaaaaagagagaagagagag
	acaacacatgcagatggtactgcgacatatgggcctagagtaacaaaa
149.	atgaaaaaattagcaacagtaggttctttaattgtaacaagcactttagtattctcaagt atgccttttcaaaatgcgcatgccgacaacttcaatgaatg
150.	gtgcttaggagtgatttttatatgtcttattccattgttagagtttcaaaagttaaatct
	ggaacaatacaacgggcatacaaaaacatgttcaaagggaaaataataatattgaaaat gaagatatagaccatagtaaaacttacttaaattatgatttggtaaatgctaataaacag aattttaatacttgattgatgaaaaaactgaacagaattatacaggcaaaagaaaaatt agaacagacgcgattaaacacattgatggtttaattacatcagacaatgattctttgat aatcaaacgccagaagatacaaagcagttttttgaatatgctaaaagatttttagaacaa gaatacggtaaagaatatttattatatgcaacagttcacatggacgaaaaaacacacat atgatggtaaagaatatttatatatgcaacagttcacatggacgaaaaaacacacat atgatataggcgttgttcaaaacaggtatgatggacgaaaaaacacacat atgatataggcgttgttcaaaaactgatgatggttaaaggattgta ggtaataaaaaagcttaacagcgtttcaagatagatttaatgagcatgttaaacaacga ggatatgattagaacgtgggcaatcaagacaagtaacaaaaaacgctaaacaagagggaaatatacaaaagaatatcaaaaaaaa
151.	MSWFDKLFGEDNDSNDDLIHRKKKRRQESQNIDNDHDSLLPQNNDIYSRPRGKFRFPMSV AYENENVEQSADTISDEKEQYHRDYRKQSHDSRSQKRHRRRRNQTTEEQNYSEQRGNSKI
	SQSTKYKDHSHYHTNKPGTYVSAINGIEKETHKPKTHNMYSNNTNHRAKDSTPDYHKES FKTSEVESAIFGTMKPKKLENGRIPVSKPSEKVESDKYYDKYVAKTOTSONKOLEGEKO NDSVVKQGTASKSSDENVSSTTKSMPNYSKUDNTIKIENIYASQIVEETRERERKVLQK RRFKKALQCKREBHKNEEQDAIQRAIDEMYAKQAERYVGDSSLNDDSDLTDNSTDASQLH TNGIENETYSNDENKQASIQNEDTNDTHYDESPYNYEEVSLNQVSTTKQLSDDEVTVSNV TSQHQSALQHNVEVNDKDELKNQSRLIADSEEDGATNKEBYSGSQIDDAEFYELNDTEVD EDTTSNIEDNTNRNASEMHVDAPKTQEYAVTESQVNNIDKTVDNEIELAPRHKKDDQTNL SVNSLKTNDVNDNHVVEDSSMMBIEKNNABITENVQNEAAESEQNVEEKTIENVMPKKQT EKVSTLSKRPFNVVMTPSDKKRMMDRKHSKVNVPELKPVQSKQAVSERMPASQATPSSR SDSQESNTNAYKTNNMTSNNVENNQLIGHABTENDYQNAQQYSEQKPSVDSTQTEIFEES QDDNQLENEQVDQSTSSVSEVSDITESBESTTHENNTSGQQDNDDQQKDLQSSFSNKNE DTANENRPRTNQQDVATNQAVQTSKPMIRKGPNIRLIPSVSLLEBEPQVIESDEDWITDKKK ELNDALFYFNVPAEVQDVTEGFSVTRFELSVEKGVKVSRITALQDDIKMALAAKDIRIEA PIPGTSRVGIEVPNQNPTTVNLRSIIESPSFKNABSKLTVAMGYRINNBELLMDIAKTPH ALIAGATGSGKSVCINSILMSLLYKNHPEELRLLLIDPKMVELAPYNGLPHLWAPVTTDV KAATQSLKMAVEEMERRYKLFAHYHVRNITAFNKKAPYDERMFKIVTUDELADLMMMAP QEVEQSIARIAQKARACGIHMLVATQRPSVNVITGLIKANIPFRIAFMVSSSVDSRTILD SGGBERLLGYGDMLYLGSGMNKPIRVQGTFVSDDEIDDVVDFIKQQREPDYLFEEKELLK KTQTQSQDELFDDVCAFMVNEGHISTSLLQRTFVSDDEIDDVVDFIKQQREPDYLFEEKELLK KTQTQSQDELFDDVCAFMVNEGHISTSLLQRTFVSDDEIDDVVDFIKQQREPDYLFEEKELLK

152.	MPKRNDIKTILVIGSGPIIIGQAABFDYAGTQACLALKEBGYRVILVNSNPATIMTDKET ADKVYIEPLTHDFIARIIRKEQPDALLPTLGGGTGLMMAIQLHESGULQDNNVQLLGTEL TSIQQAEDREMFRILMNDLNVPVPESDIVNTVEQAFKFKEQVGYPLIVRPAFTMGGTGGG ICHNDBELHELVSNGCHYSPATQCLLEKSIAGFKEIEYEVMRDKNDNAIVVCNMENIDPV GIHTGDSIVVAPSQTLSDVEYQMLRDVSLKVIRALGIEGGCNVQLALDPHSFDYYIIEVN PRVSRSSALASKATGYPIAKLAAKIAVGLITLDEMLNPITGTSYAAFEPTLDVYISKIPRF PFDKFEKGERELGTQMKATGEVMAIGRTYEESLIKAIRSLEYGVHHLGLPNGESFDLDYI KERISHQDDERLFFIGEAIRRGTTLEEIHNMTQIDYFFLHKFQNIIDIEHQLKEHQGDLE YLKVAKDYGFSDKTIAHRFNMTEESVYQLRMENDIKPVYKMVDTCAAFFESSTPYYYGTY ETENESIVTDKEKILVLGSGPIRIGGVEFDYATVHAWAIQKAGYEAIIVNNNPETVST DFSISDKLYFEPLTEEDVMNIINLEKPKGVVVQFGGQTAINLADKLAKHGVKILGTSLEN LNRAEDRKEFFBALLRKINVPQPQCKTATSPEEBALANAAEIGYPVVVRPSYVLGGRAMEIV DNDKELENYMTQAVKASPEHPVLVDRYLTGKEIEVDAICDGETVIIPGIMEHIERAGVHS GGSIAVYPPQTLTEDELATLEDYTIKLAKGINIIGLINIQFVIAHDGVVVLEVNPRSSRT VPFLSKITDIPMAQLAMRAIIGEKLTDMGYQEGVQPYABGVFVKAPVFSFNKLKNVDITL GPEMKSTGEVMGKDTTLEKALFKGLTGSGENDLLTRIQMGDVQIVINTMTKGKEVERDGF QYKILATSGTANKLAETDIPAEVVKRIGGENDLLTRIQMGDVQIVINTMTKGKEVERDGF
153.	MINRDNKKAITKKGMISNRLNKFSIRKYTVGTASILVGTTLIFGLGNQEAKAAENTSTEN AKQDDATTSDNKEVVSETENNSTIENNSTNPIKKETNIDSQPEAKKESTSSIGKQOMV TATTETKPQNIEKENVKPSTDKTATEDTSVILEEKKAPNNINDVTKKPSTSEPSTSEIQ TKPTTPQESTNIENSQPQPTPSKVDNQVTDATNPKEPVNVSKEELKKNPEKLKELVRNDS NTDHSTKPVATAPTSVAPKRVNAKMRFAVAQPAAVASNNVNDLIKVTKQTIKVGDGKDNV AAAHDGKDIEYDTEFTIDNKVKKGDTMTINYDKNVIPSDLITDKNDPIDITDPSGEVIAKG TFDKATKQITTTFTDYVDKYEDIKSRLITLYSYIDKKTVPNETSLNLTFATAGKETSQNVT VDYQDPMVHGDSNIQSIFTKLDEDKQTIEQQIYVNPLKKSATNTKVDIAGSQVDDYGNIK LGNGSTIIDQNTEIKVYKVNSDQQLPQSNRIYDFSQYEDVTSQFDNKKSFSNNVATLDFG DINSAYIIKVVSKYTPTSDGELDIAQGTSMRTTDKYGYYNYAGYSNFIVTSNDTGGGDGT VKPEEKLYKIGDYVWEDVDKDGVQGTDSKEKPMANVLVTLTYPDGTTKSVKTDANGHVEF GGLKDGETYTVKFETPTGYLFTKVNGTTDGEKDSNGSSVTVKINGKDDMSLDTGFYKEPK YNLGDYVWEDTNKDGIQDANEPGIKDVKVTLKDSTGKVIGTTTTTDASGKYKFTDLDNGNY TVEFETPAGYTPTVKNTTADDKDSNGLTTTGVIKDADMMTLDRGFYKTPKYSLGDYVWYD SNKDGKQDSTEKGIKDVTVTLQNEKGEVIGTTKTDENGKYRFDNLDSGKYKFTDLDNGNY TVEFETPAGSTDFNDADGGEVDVTITDHDDFTLDNGYFEEDTSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSDSD
154.	MTHLLETFEMSIDHQEDGLVVISMPVTDKVKQPFGYLHGGASIALGETACSLGSANLIDT TKFIPLGLEMNANHIHSAKDGRVTATAEIIHRGKSTHVWDIKIKNDKEQLITVMRGTVAI KPLK
155.	MEHTTMKITTIAKTSLALGLLITTGVITTTTQAANATTPSSTKVEAPQSTPPSTKIEAPQS KPNATTPPSTKVEAPQQTANATTPPSTKVTTPPSTNTPQEMQSTRSDTPQSPTTKQVPTE INPKFKDLRAYYTKPSLEFKNEIGIILKKWTTIRFMNVVPDYFIYKIALVGKDDKKYGEG VHRNVDVFVVLEENNYNLEKYSVGGITKSNSKKVDHKAGVRITKEDNKGTISHDVSEFKI TKEQISLKELDFKLRKQLIEKNNLYGNVGSGKIVIKMKNGGKYTFELHKKLQENRMADVI NSEQIKNIEVNLK
156.	MKKQIISLGALAVASSLFTWDNKADAIVTKDYSGKSQVNAGSKNGTLIDSRYLNSALYYL EDYIIYAIGLITKKYEYGDNIYKEAKDRLLEKVLREDQYLLERKKSQYEDYKWYANYKKE NPRTDLKMANFHKYNLEELSMKEYNELODALKRALDDFHREDVKDIKDKNSDLKTFNAAEE DKATKEVYDLVSEIDTLVVSYYGDKDYGEHAKELRAKLDLILGDTDNPHKITNERIKKEM IDDLNSIIDDFFMETKQNRPKSITKYNPTTHNYKTNSDNKPNFDKLVEETKKAVKEADDS WKKKTVKKYGETETKSPVVKBEKKVEEPQAPKVDNQQEVKTTAGKABETTQPVAQPLVKI PQGTITGEIVKGPEYPTMENKTVQGEIVGPDFTLTMEQSGPSLSNNYTNPPLTNPILEGL EGSSSKLBIKPQGTESTLKGTQGESSDIEVKPQATETTEASQYGPRPOFNKTPKYVKYRD AGTGIREYNDGTFGYEARPRFNKPSETNAYNVTTHANGQVSYGARPTYKKPSETNAYNVT THANGQVSYGARPTONKPSKTNAYNVTTHANGQVSYGARPTQNKPSKTNAYNVTTHANGQ VSYGARPTYKKPSKTNAYNVTTHADGTATYGPRVTK
157.	MKKLATVGSLIVTSTLVFSSMPFONAHADTTSMNVSNKQSONVONHRPYGGVVPQGMTQA QYTELEKALPQLSAGSNMQDYNMKLYDATQNIADKYNVIITTNVGVFKPHADMNGHAL PITKLGENFYQTNVDANGVNHGGSEMVQNKTGHMSQQGHMQQNTHMNQQPHMQQGHMQSSN HQMMSPKANMHSSNHQMNQSNKKVLPAAGESMTSSILTASIAALLLVSGLFLAFRRRSTNK
158.	VLRSDFYMSYSIVRVSKVKSGTNTTGIQKHVQRENNNYENEDIDHSKTYLNYDLVNANKQ NFNNLIDEKLEQNYTGKRKLIKTDAIKHLDGLITSDNDFFDNQTPEDTKQFFBYAKEFLEQ EYGKDKILLYATVHMDEKTPHHYGVVPITDDGRLSAKEVVGNKKALTAFQDRFMEHVKQR GYDLERGQSRQVTNAKHEQISQYKQKTEYHKQEYERESQKTDHIKQKNDKLMQEYQKSLN TLKKPINVPYEQBTEKVGGLFSKEIQETGNVVISQKDFNEFQKQIKAAQDISEDYEYIKS GRALDDEDKEIRERDDLLINKAVERIENADDNFNQLYENAKPLKENIEIALKLLKILLKEL ERVLGRNTFAERVNKLTEDEPMA

atgatgaaaaagttaaaagcgagtgaaattagacaaaaatatctagatttctttgttgaa aaaggacatatggttgaaccttctgcaccattagtgccaattgatgatgatacattatta tggattaattcaggtgtagcaacattaaagaaatattttgatgacgtgaaacacctaaa 159. yatattyytyaayyyetteesyaatoyaatotattotagytygagaaaatyaacgctatett tatggacaagatecggcagaagaaatytatecaggtygagaaaatyaacgctatett gaagtatggaaettagtatttagtyaatteaateataataaagateatagttacacacca ttacetaataaaaatattyatactgycatgygyettyageytatgyeetcaytttetcaa aaagcgacaacaaatgaaattaatgggaaagatgcatttaaattgtatagtatdgtatgt ttcccaattgaattaactgaagaaatagcagtgcaagcaggattgaaagttgatatgaca acattcgagtcagaaatgcaacaacaacgtgatcgtgcacgtcaagcacgtcaaaattct caatcaatgcaagttcaaagtgaagtattgaaaaatattacatctgcaagtacttttgt ggttatgatactgcgacagctcaaacaacacactagatacgataaggtattcaaaggtagaaga gtttcacaagttgaagcgggtgaaacagtatacttcatgttaacggaaacaccattttat gcaatcagtggtggacaagttgcgggatacaggtattgtttataatgacaattttgaaatt gctgttagtgagtaaccaaagcaccaaatggtcaaaacttgcataaaggagtagtacaa tttggccaagtaaatgttggggctacagtgtctgctgaagtgaaccaaaatgatcgacgt gacattcaaaagaaccatagtgcaacacatttattacatgcagggttgaaatcagtactg ggtgatcatgttaaccaagctggttcactagtagaagcagatcgtttaagttttgatttc tctcattttggtccaatgactaatgatgaaattgatcaagttgaacgcttagtaaatgaa gaaatttggaaaggtattgacgttaacattcaagaaatggatattgcttcagctaaagaa atgggcgcaatggcattattcggtgaaaaatatggtgatgttgtgcgtgtagtaatatg gcaccattttcaattgaattatgtggtggtattcatgtccgcaatacttctgaaattggc ttattcaaaatagtaagtgagtcaggtacaggagctggtgtgcgtcgtattgaagcatta acaggtaaagcagctttcttatatttagaagatattcaagagaaatttaatacgatgaaa tcacagctgaaagtgaaatctgatgatcaagtagtcgataagttaacacaattacaagat gaagaaaaagcattattaaaacaattagagcaacgtgacaaagaaatcacatcacttaaa atgggtaatattgaagatcaagttgaagaaatcaatggctataaagtattggttactgaa gtggatgtaccaaatgcgaaagcaattcgctcgacaatggacgattttaaatctaaacta gaaaatateteaaaateattaagetttattaaagattaeattaaaaateta MMKKLKASEIROKYLDFFVEKGHMVEPSAPLVPIDDDTLLWINSGVATLKKYFDGRETPK

160. KPRIVNSOKAIRTNDIENVGFTARHHTFFEMLGNFSIGDYFKQBAIEFAWEFL/TSDKWMG MEPDKLYVTIHPEDMEAYNIWHKDIGLEESRIIRIEGNFWDIGEGPSGPNTEIFYDRGEA MEPDKLYYT LIPEDMEAYNIWHKDIGLEESRIIRIEGNFWDIGEGPSGPNTELFYDRGEA
YGQDDPAEEMYPGGENERYLEVWNLVFSEFNHNKDHSYTPLPNKNIDTGMGLERMASVSQ
NVRTNYETDLFWPIMMEIEKVSGKQYLVMNEQDVAFKVIADHLRTIAFAISDGALPANEG
RGYVLRRLLRRAVRFSQTLGINEPFMYKLVDIVADIMEPYYPNVKEKADFIKRVIKSEEB
RFHETLEDGLAILNELIKKAKATTIBLINGKDAFKLYDTYGFPIELTEEIAVQAGLKVDMT
TFESEMQQQRDRARQARQNSQSMQVQSEVLKNITSASTFVGYDTATAQTTLTHLIYNGEE
VSQVEAGETVYFMLTETPFYAISGGQVADTGIVYNDNFEIAVSEVTKAPNGQNLHKGVVQ
FGQVNVGATVSAEVNQNDRRDIQKNHSATHLLHAALKSVLGDHVNQAGSLVEADRLRFDF
SHFGPMTNDEIDQVERLIVNEEIWKGIDVNIQEMDIASAKEMGAMALFGEKYGDRVRVNM SHIPGHIND AND APPSIELCGGIHVENTSEIGLFKIVSEGGTGAGVARIEALTGKAAFLYLEDIQEKFNTMK
SQLKVKSDDQVVDKLTQLQDEEKALLKQLEQRDKEITSLKMGNIEDQVEEINGYKVLVTE
VDVPNAKAIRSTMDDFKSKLQDTIIILASNVDDKVSMVATVPKSLTNNVKAGDLIKQMAP

161

IVGGKGGGRPDMAQGGGTQPENISKSLSFIKDYIKNL atgaatagtgagtttatatatggacgggtaacaaatttaggaggtaagattttgagttta ataaagaaaagaataaagatattegattataccattaggcggtgttggcgaaattgct aaaaatatgtatatcgttgaagtagacgatgaaatgtttatgttagatgctggacttatg tttccagaagacgaaatgctaggtattgatattgttataccagacatttcatacgtactt gaaaataaagataaattgaagggtatattccttacacacggacatgagcacgcgattggt gcagtgagttatgttttagaacaattagatgcaccagtatatggatctaaattgacaata gcgttaattaaagaaaatatgaaagcccgtaatattgataaaaaagttcgctactataca gttaataatgattcaattatgagattcaaaaacgtgaatattagtttctttaatacgaca cacagtattcctgatagtttaggtgtttgtattcacacttcatatggtgccattgtgtat acaggtgaatttaagtttgaccaaagtttacatggacattatgcaccagatattaaacgt attgcgaatacattaaatgagcttgtacgtgctggcgcacatattattccaaataacaaa aagattcatgcttcaagtcatggttgcatggaagaattaaaaatgatgattaatattattg aaacctgaatactttattcctgtacaaggtgaatttaaaatgcagatagcacatgcgaag gcagaagatggtatctttattgctgttgtaacgttagatcctaaaaattagacgtatagct gcgggacctgaaattcaatctcgtgggtttgtatatgtacgtgaaagtgaagacttatta cgtgaagcagaagagaaagtacgtgaaatagtagaggctggtttacaagaaaaacgcata gaatggtctgaaattaaacaaaatatgcgtgatcaaattagtaaactattattcgaaagt acaaaacgtcgtcctatgattattccagtaatttctgaaatt

162.	MNSEFIYGRVTNLGGKILSLIKKKNKDIRIIPLGGVGEIAKNMYIVEVDDEMFMLDAGLM FPEDEMLGIDIVIPDISYVLENKDKLKGIFLTHGHEHAIGAVSYVLBQLDAPVYGSKLTI ALIKENMKARNIDKKVRYYTVNNDSIMRFKNVMISFFNTTHSIPDSLGVCIHTSYGAIVY TGEFKFDQSLHGHYAPDIKRMAEIGEEGVFVLIBDSTEAEKPGYMPPENVIEHHMYDAFA KVRGRLIVSCYASMFIRIQQVLNIASKLNRKVSFLGRSLESSFNIARKMGYFDIPKDLLI PITEVDNYPKNEVIIIATGMQGEPVEALSQMAQHKHKIMNIEEGDSVFLATTASANMEVI IANTLNELVRAGAHTIPNNKKIHASSHGCMEELKMMINIMKPEYFIPVGEFKMQIAHAK LAAEAGVAPEKIFLVEKGDVINYNGKDMILNEKVMSGNILIDGIGIGDVGNIVLRDRHLL AEDGIFIAVVTLDPKNRRIAAGPEIQSRGFVYVRESEDLLREAEEKVREIVEAGLQEKRI EWSEIKQNMRDQISKLLFESTRRPMIIPVISEI
163.	atggaaataacaatgcctaagttaggtgagagtgttcatgaaggcaccattgaacaatgg ttagtttctgttggtgatcatattgatgaatatagaaccattatgtgaagttattacagat aaagtgacagctgaagtcccttccacgatatcaggaacaattatcagaaattttagttgaa gcggggcagacagtagctattgatacaattatctgtaaaattgaaactgctgatgaaaag acaaatgaaacaactgaaggaacagcaaaagtggatgagcatactcagaaatctact aaaaaggtagtgcacagtggaacagacatctactgctaaaaaaaa
164.	MEITMPKLGESVHEGTIEQWLVSVGDHIDEYEPLCEVITDKVTAEVPSTISGTITEILVE AGQTVAIDTIICKIETADEKTNETTEEIQAKVDEHTOKSTKKASATVEQTSTAKKNOOPRN NGRFSPVUFKLASEHDIDLSQVVGSGFEGRVTKKDIMSVIENGGTTAQSDKQVQTKSTSV DTSSNQSSEDNSEDNSTIEVNGVRKAIAQNMVNSVTEIPHAWMMIEVDATNLVKTRNHYKN SFKNKEGYNLTFFAFFVKAVADALKAYPLLNSSWQGNEIVLHKDINISIAVADENKLYVP VIKHADEKSIKGIAREINTLATKARNKQLTAEDMQGGTFTVNNTGTFGSVSSMGIINHPQ AAILQVESIVKKPVVINDMIAIRNMVNLCISIDHRILDGLQTGKFMNHIKQRIEQYTLEN TNIY
165.	
166.	
167.	atggaggacaacatgatttatgcaggtattttagcaggaggtattgttcgagaatgggg aacgtgccattaccaaaacaatttttagatattgataataaaccgattttaatccataca attgagaagttcattttagtgagtgaatttaatgagattattatcgcaacgccagcacg tggatttcccatacacaggatattttaaaaaaaatataacattacagatcaacgttcaaa gtagttcccatacacaggatattttaaaaaaaatatacacattacagatcaacgttcaaa gtagttgcaggtggtacggatcgaaatgatgatgtattgtaactcatgatgccgtaagaccattt ttaactcaacgtattataaaagagaacattgaagtagatgacgcaaaatatggtgcagtagat acagtcattgaagcaattgatacgattgtaatgtctaaagataaacagaacatta ttacaagatagaacaattgatacaaggccaaacaccacaatcatttaatataaatta ttacaagatagtatcgcgccttaaagtagtgaacaaaaaagaaactttaacagatgaagt aaaatcattgtcgaacttggacatgcagttaaattggtacgtggagaactatacacatt aaagtgacaacaccgtatgatttaaaagtagcaaattgccattatcaaggtgatattgc gatgat
168.	MEDNMIYAGILAGGIGSRMGNVPLPKQFLDIDNKPILIHTIEKFILVSEFNEIIIATPAQ WISHTQDILKKYNITDQRVKVVAGGTDRNETIMNIIDHIRNVNGINNDDVIVTHDAVRPF LTQRIIKENIEVAAKYGAVDTVIEAIDTIVMSKDKQNIHSIPVRNEMYQGQTPQSFNIKI LQDSYRALSSEQKEILSDACKIIVESGHAVKLVRGELYNIKVTTPYDLKVANAIIQGDIA DD

169.	atgataatatatggtgatagacagttaatggagggaacgaaatgaaagctttatactt aaaacagtgtatggctcgttttgctttttatagggatatacgaacgcagcaggagcagcatcaacaacgataggcaacgacaacgacaacgacaacgacaacgacaacgacaaca	
170.	MITYWCMTVNGGNEMKALLKTSVWLVLLFSVMGLWQVSNAAEQHTPMKAHAVTTIDKAT TDKQQVPPTKEAAHHSGKEAATNVSASAQGTADDTNSKVTSNAPSNKPSTVVSTKVNETR DVDTQQASTOKPTHTATFKLSNAKTASLSPRMFAANAPQTTTHKLHTNDLHGRLAEEKG RVIGMAKLKTVKEQEKPDLMLDAGDAPGGLPLSNOSKGEEMKAMMAVGYDAMAVGNHEF DFGYDQLKKLEGMLDFPMLSTNVYKDGKRAFKPSTIVTKNGIRYGIIGVTTPETKTKTRP EGIKGVEPRDPLQSVTAEMMRIYKDVDTFVVISHLGIDPSTQETTWGDYLVKQLSQNPQL KKRITVIDGHSHTVLQNGQIYNNDALAQTGTALANIGKITFNYRNGEVSNIKPSLINVKD VENVTPMKALAEQINQADQTFRAQTAEVIIPNNTIDFKGERDDVRTRETNLGNAIADAME AYGVKNFSKKTDFAVTNGGGTRASIAKGKVTRYDLISVLPFGNTIAQIDVKGSDWTAFE HSLGAPTTQKDGKTVLTANGGLHHISDSIRVYYDINKPSGKRINAAQIUKKTGKFENID LKRVYHVTMNDFTASGGDGYSMFGGPREBGISLDQVLASYLKTANLAKYDTTEPQRMLLG KPAVSEQPAKGQQGSKGSKSGKDTQPIGDDKVMDPAKKPAFGKVVLLLAHRGTVSSGTEG SGRTIEGATVSSKSGKQLARMSVPKGSAHEKQLPKTGTNQSSSPEAMFVLLAGIGLIATV	
171.	atgcaagagtaccaaaaatcgttaaatacgcttaaaaagcctataaatgttccgtatgag caagaaactgaaaaagtaggtggttatttagcaaagaaataccaagaaactggaaatgtt gtaataagccaaaaagattcaatgaatttcagaaaacagataaaagctgctcaagatatt tcggaagattacgagtatataaaagtctggtagagccttagatgataaagataaggaaata cgagagaaagatgatttattaaaagcagttgagcgtattgaaaacgcagacgataat tttaaccaactttacgaaaatgcaaagccacttaaaggaatatagaaatagcgttaaag cttttaaaaatcttactaaaagagttagaacgagttttaggaagaaatacctttgcggaa agagttaataagttaacagaagatgaaccaaaactaaatggtttagcaggaaacttagat aaaaaaatgaatccagaattatattcagaacaggaacagcaacaagaacaacaaaagaat caaaaacgagatagaggtatgcactta	
172.	MQEYQKSLNTLKKPINVPYEQETEKVGGLFSKEIQETGNVVISQKDFNEFQKQIKAAQDI SEDYEYIKSGRALDDKDKEIREKDDLLNKAVERIENADDNFNQLYENAKPLKENIEIALK LLKILLKELERVLGRNTFAERVNKLTEDEPKLNGLAGNLDKKMNPELYSEQEQQQEQQKN QKRDRGMHL	
173.	atgaagatgataaacaaattaatcgttccggtaacagctagtgctttattattaggcgct tgtggcgctagtgccacagactctaaagaaaatacattaatttcttctaaagctggagac gtaacagttgcagatacaatgaaaaaatacgtaaagatcaaattgcagaac gtaacagttgcagatacaatgaaaaaatcggtaaagatcaaattgcaaattgcatcatt actgaaatgttaaataaaattttagctgataaatataaaaataaagttaatgataagag attgacgaacaaattgaaaaaattgcaaaagcaatacaggcggtaaaagataaatttgaaaag gcccttcaacagcaaggtttaacagccgataaatataaagaaaatttacgtactgctgct tatcataaagaattactatcagataaaattaaaatcctgattctgaaattaaagaaga agcaagaaagcttcacacattttaattaaagttaaatctaagaaagcgacaaagaaggc ttagatgataaagagggaaacaaaaagctgaagaaattcaaagaaggtctaaaagaagcgcaaagaaattggtgaaatttggtgaaatcgctaaaaagaagcagacaagaagattttaaagaagatcaatggaaatttggtgaaataggttatgttctaaaggacaaactaggtgaaaattggataatggttaaggtaattggtgaagatacatt attaaagctgataaaccaacagactttaacagtgaaaacaaagcctgaaagaaa	·
174.	MKMINKLIVPVTASALLLGACGASATDSKENTLISSKAGDVTVADTMKKIGKDQIANASF TEMLNKILADKYKNKVNDKKIDEQIEKMQKQYGGKDKFEKALQQQGITÄDKYKENLRTAA YHKELLSDKIKISDSEIKEDSKKASHILIKVKSKKSDKEGLDDKEAKQKAEEIQKEVSKD PSKFGEIAKKESMOTGSAKKOGELGYVLKGQTDKDFEKALFKLKDGEVSEVVKSSFGYHI IKADKPTDFNSEKQSLKEKLVDQKVQKNPKLLTDAYKDLLKEYDVDFKDRDIKSVVEDKI LNPEKLKQGGAQGGQSGMSQ	

176. LILLI-LACSINSININISERKUDANINGKOGETONAAA SLIDVIKKLASERKERKRALIKE NYKOSKALKEN ESKAP VIVYKAKANIKUUDALKINKAHIKEN SINTAKUNAUTUKULANI YKOSKALKEN ESKAP VIVYKAKANIKUUDALKINKAHIKEN SINTAKUNAUTUKULANI LOOPATA LIKEVITYAA 177. LUGGATE CARLAGACH ERABAGE AL TALE UBABA IL EAGGI DETAGACHBARAKANI LEPITAA 178. LUGGATE CARLAGACH ERABAGE AL TALE UBABA IL EAGGI DETAGACHBARAKANI LEPITAA 178. LUGGATE CARLAGACH ERABAGE AL TALE UBABA IL EAGGI DETAGACHBARAKANI LEPITAA 178. LUGGATE CARLAGACH ERABAGE AL TALE UBABA IL EAGGI DETAGACHBARAKANI LUGGATAGACHBAR	175.	atgcttttagtattagctggttgctctaattctaacgataataatgaaagtaaaaaagat gacgcagacaatggtaagaaacaagagattcaagttgcagcggcagcagtttaacagat gtaaccaagaaattagcttcagaatttaaaaaagagcataaaaatgctgatattaaattt aactatggtggatcaggggcattaagaaacaaattgaatcaggcgcacctgttgacgta tttatgtctgcaaataactaaagatgtagatgcattaaaagacaagaataaagcgcatgat acatataaatatgcgaaaaatagtctagtattaattggtgataaagatcaaattacact tcagtaaaagacttaaaagacaatgataaattagcattaggtgaagtgaaagtgaaaactgacca gcaggaaaatatgcgaaacagtattagatacaataacttattataaagaagtgaaagt aaaatcgtttatgctaaagatgtaaaatagatataaattagtgtgaaaagggtaatgcg aaacaaggttttggtgtaaaaactgacttatataaaacaaataaaattagtgaaaagtggaaatcgaaagagtgaaactgacatcaaaagaagtagaacttaagaagcaatcacaaaaataaaaaattggctacaatca gatagtaaattagcaaaagagtggaagccaatcacaaaacagaagctggtgctacatca gatagtaaattagcaaaagagtggaatggaa
ttggcatacachtcaagtgatattattgaattatacagtgtgtatacagtgt ttaadtattacagtgatattaggtattatattcoagtgatataagtgtaaaatt ttaadtattacagtgaagtttgaaaattacaaaagatttaattaccagt gttaaaaacagcaagcttagaaaattacaaaagatttaatacactattgaaaatt tttgatatcoctaaaataagatattatataattacacaattattaattacagt tttgatattgctaaattaaaagaagcattataatacagcagttttaatacaattaatt	176.	NYGGSGALKQIESGAPUDVFMSANTKDVDALKDKRKAHDITKYARNSLVBIESGAPUT SVKDLKDNDKLALGEVKTVPAGKYAKQYLDNNNLFKEVESKIVYAKDVKQVLDNYVEKGNA KQGFVYKTDLYKQNKKIDTVKVIKEVELKKPITYEAGATSDSKLAKEWMEFLKSDKAKEI LEEYHFAA
178. MATTYLKDILETGYNKRILHYDEIGLIJPOKNOKYNYKYKOODLEKLOKILLINSID PIJAHKYVISTNNOKRILSEDISTAKUKISIDISTAHRYOEPIKKISLELDISTINKT LOSGYDKERSIKKGETKANOSFIRKOSIGSDIRKKITTIFAKRYNEHSLELDISTINKT LOSGYDKERSIKKGETKANOSFIRKOSIGSDIRKKITTIFAKRYNEHSLELDISTINKT LUYENKARMYITADDIBETTACLIAKTYEDUTERFOURTSINNOKLASTISTANYTISTAW NKSONP 179. atggcaaaataaaaggaatgaagcattagttaaaggattacaaggattagttacgtaggattaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagtaggaagattaggaagtagaag	177.	ttggcatacacatacactttaaaagatattattgaaattacaggtgtaactaaaagaact ttacattattacgatgaaataggattattagttccagataaaaaatgatactacgc gtttataaacagcaagacttatagaaaaattacaaaagattttaatacactagcagatattattagat tttgatatcgctaaaataaaa
cacttgtategtattccaggagactcaatcgacgagtagtcgatagtttagtagtagtagtagtagtagtagtagtagtag	178.	MAYTYTLKDIIEITGVTKRTLHYYDEIGLLVPDKNDKNYRVYKQQDLEKLQKILLIKSFD FDIAKIKQYISYDNEQLEKLLSEQISKLDKKISDLQLITRSVCEFIKGLSLIDTSILNKT LQSQYDKEASIKYGHTKAYQSFIRRKDSLQSQDIRHKLTTIFNKFNHMSLSHYPIQDCSD LVFEWKAFMNTIADFDDETLCCIAKTYEDDTRFKDYFNSYDNQNLASYISEAVNYFLSNV NKSDDF
181. gtagtagtttagggettgeaacgcac 182. caccatcatagaacatacaattgetage 183. ctgatactggacaacatagaga 184. aagtaacgttatetttegaatggt 185. attetggacatcaagtatatacaagac 186. tggettaggtgttggtgtagge 187. ataatgcaactacaactcagec 188. ttgategttgatgtattttgattagat 189. ctacaataactacagecgttaca 190. gtgaatgaagttataaccagcag		cacttgtatggtattccaggagactcaatcgacgcagtagtcgatagtttacgtaagttg agagatcaatttaattatagtacgtcatgaagagtagacgctggyctgct ggttacacaaaatttaactggtaaaatcggtgtgcattaagtataggccctggttta attcatttattaataggtatgtatgtatgcaaaatggataatgtaccgcaattaatt
183. ctgatactggacaacatagaga 184. aagtaacgttatctttcgaatggt 185. atttctggcactcaagtatatcaagac 186. tggcttaggtgttggtgtaggc 187. ataatgcaactcaagcc 188. ttgategttgatgtattttgattagat 189. ctacaataactacagccgttaca 190. gtgaatgaagttataaccagcag		gtagtagtttagggcttgcaacgcac
184. aagtaacgttatctttcgaatggt 185. atttctggcactcaagtatatcaagac 186. tggcttaggtgttggtgtaggc 187. ataatgcaactacaactcagcc 188. ttgatcgttgatgtattttgattagat 189. ctacaataactacagccgttaca 190. gtgaatgaagttataccagcag		
186. tggcttaggtgttggtgtaggc 187. ataatgcaactcagcc 188. ttgatcgttgatgtattttgattagat 189. ctacaataactacagccgttaca 190. gtgaatgaagttataaccagcag		
187. ataatgcaactacaactcagcc 188. ttgatcgttgatgtattttgattagat 189. ctacaataactacagccgttaca 190. gtgaatgaagttataaccagcag		
188. ttgatcgttgatgtattttgattagat 189. ctacaataactacagccgttaca 190. gtgaatgaagttataaccagcag		
189. ctacaataactacagccgttaca 190. gtgaatgaagttataaccagcag		
190. gtgaatgaagttataaccagcag		
		
LULE COMMONICALLING LUCKICOM		
192. agcattttgatgtgttgctgttgtgtt		

193.	gaatccccaagcacctaaac
194.	gtaaacgttgatcaagcacact
195.	tttgcaataacagcaacatctggtgcag
196.	gaaacttctgaagctggaattgtacgg
197.	atgagaaaaactaaaattgtatgtacaattggaccagcttcagaatcagaagaaatgatt
40	gagaaattaatgaatgctgctgcacgattaaacttttcacatgguaguuu.
	waananataaanatanaattnatacaattcotaaagtagctadaagattagacadacc
	gtagcaattttattagatacaaaaggtccagaaattcgtacgcataatatgaaagacggt
	atcattgaacttgaacgtggcaacgaagttattgttagcatgaatga
	cctgaaaagttctcagtaacatatgaaaacttaattaacgatgttcaagtaggttcatac
	atttacttgattgatgatgattaattgaattacaagttaaagatattgaccatgctaaaaaa gaagttaaatgtgatattttaaactctggtgagcttaaaaaacaaaaaaggtgttaactta
	gaagttaaatgtgatattttaactetggtgagttaaaaaaaatataddggtgatatcogttc cotggcgtaagagtaagtttacctggtattacagaaaaagatgctgaagatatcogtttc
	ggtattaaagaaatgttgacttcattgcagcaagtttcgtacgtcgtcctagtgatgtt
	Ftagaaattcotoaaattttagaagaacaaaaagctaacatttcagtattccctadddu
	gaaaagaagaagaagatattgataatattgcggaaattcttgaagtgtctgatggtttaatg
	the acceptant acceptant of the acceptance ac
	catttastcacaatctaccaattacctaaaccacttattacaccactacacacaatgtta
	l gattotatocaacotaacccacotoctacacotocagaagctagtgacottgccadugca
	=totatgatggtacagatgcagtaatgttatctggtgaaactgctgctggtttatatcct
	l magaaggetgttaaaaggaatgagaaatattggtgtatcaggtgaaggaggcgaagauudg
	aaaaagttattgtcagatcgtactaaattagttgaaacttcattagtgaatgctatcggt
	atttcggttgcacatacagctttaaacttaaatgttaaagcaattgtagctgctactgaa
	agtggttcaacggcacgtactatctccaaatatcgtccacattcagacattattgcggtg
	actccaagtgaagaaactgcacgtcaatgttcaattgtttggggagttcaacctgtagtt
	aaaaaaggacgtaagagtacagatgcattgttaaacaatgcagttgcaacagctgttgaa actggtagagtatctaatggtgatttaatcattattactgctggtgtaccaactggtgaa
	actggtagagtatctaatggtgatttaatcattattactgctggtgtactaattgctaattgctaat
	actggaactactaatatgatgaaaatccacctagttygtgatgaactgctaatygttaat ggtattggacgtggatcagttgttggtactacgttagttgctgaaactgttaaaagattta
	ggtattggacgtggattagttgttagtactacgttagttgttgataactgatgataacgtttgta gaaggtaaaggttatcggatgaaacgtttgta
	octtatotagaaaaactttagacttaattacagaagaaaatggtattacatcaccaagt
5	ccasttettecttacaaaaaggtattccaacagttgtaggtgtagaaaaagctgttaaa
	aacataagcaataacatgttagttacgattgatgctgctcaaggtaaaatctttgaagga
	tatgcaacgtacta
198.	atgcaattcgataatattgacagtgctttaatggctttaaaaaatggagaaccaattatt
190.	gtagtagatgatgatgagaatcgtgaaaatgaaggtgatttagtagcggttactgaatggatg
	l aaccataataccattaattttatggggaaagaaggaaggggttaatatggggaccagtg
	tctaaacatattccacaacctttccattccatacaaatccttcatgataactccgacatc
	tttggtacgcaatttacagtgagtattgatcatgtagatacaacaacaggaattagtgct
	tatgaacgtacattgactgccaaaaagctcattgatcctagtagtgaagctaaagatttt
	aatcgtcctggtcatttatttccattagtagcacaagataaaggcgtattagctagaaat
	ggacacacagaagcggctgttgatttagctaaacttactggtgccaagcccgctggtgtc
	atttgtgagattatgaatgatgacggcacgatggcgaaaggacaagatttacaaaagttt
	aaagaaaaacatcaattaaagatgattacgattgatgatttaattgaatatcgtaaaaaa
	ttagaaccagaaattgaatttaaggcaaaagtgaaaatgcctacagatttcggaacattt
	gatatgtatggttttaaagcgacatacacagatgaagagatagttgtactgacaaaaggt gcaattcgacaacatgaaaatgtacgcttacattctgcgtgccttacaggcgatattttc
	catagtcaacgttgtgattgtggtgctcaacttgaatcgtctatgaagtatatcaatgaa
	l catgotggcatgattatttatctacctcaagaaggtcgtggcataggattgttaaacaaa
	ttacgcgcatatgaattaattgagcaaggatatgatacagtaactgcaaatttagcatta
	ggttttgatgaagatttgcgagattatcatattgctgcacagattttaaaatattttaac
	l arcgaacatatcaatttattaagtaataatccaagtaaatttgagggattaaaacaatat
	qqcattqatattgcagaaagaattgaagttatcgtaccagaaacggtacataatcatgat
	tatatggaaacgaaaaaataaaaatgggtcatttaata
199.	atgaaaatgaaaaaattagtcaaatcagttgcttcatcaattgcactgcttttgcta
	tcgaatacagttgatgcagctcaacatatcacacctgtaagcgagaaaaaagtagatgac
	aaaatcactttatacaaaacaacagcaacatctgataatgataaattgaatatttctcaa
	latettaacgttaatttaatttaaggataaaagttatgacaaagatacgttagtacttaag
	gcagccggaaacattaattcaggttataaaaaagcctaatccaaaagattacaattactca
	cagttttattggggcggtaagtataatgtttcggttagttcagaatcaaatgatgctgta
	aatgttgttgactatgcacctaaaaatcaaaatgaagaattccaagttcaacaaaca
	ggttattcttatggcggagatattaatatatctaatggcttatcaggtggattaaatgga tcaaaatcattttcagaaacgataaattataaacaagaaagttacagaactacgattgat
	agaaaacaaatcataaatcaattagctggggtgttgaggcgcacaaaattatgaataat
	ggttggggaccatatggtagagatagttatgacccaacatatggtaatgaactgtttta
	grantagagagagtagttgaaatgctggtgaaaatttcttgccaacacatcaaatgcct
	trafforcorofogtaactttaacccagaatttataagcgtactttctcataaacaaaat
	catacagagatctagagtcagagtagcttaccagagagag
	l caatggaatggactacactgggttggtaataactacaaaaatcaaaatacagtaacgttt
	acatctacttatgaagttgactggcaaaaccatactgttaaattaatcggtacggattct
	aaagaaactaatcctggagta
200.	Atgaagaaaaagcgttactaccattatttttaggtattatggtctttttggctggttgt
	Gactattctaaacctgaaaaacgtagtgggtttttctacaatacattcgtagatccaatg
	Aaaaatotattggattgggaaataacttattaaacgacaattatggtttagctatt
	Attatecttgtattggtaattegtattatttattaecatteatgttgteaaaetataaa
	Aatagtcatatgatgcgtcaaaaaatgaaagttgcaaagccagaagttgaaaaaattcaa
	Gaaaaagtgaaacgtgcgcgtacacaagaagaaaaaatggctgcaaaccaagaattaatg
	Caagtatataaaaagtatgacatgaacccgattaagagtatgttgggttgtttaccaatg
	Ctaatccaattaccaatcatcatgggattatactttgtacttaaagaccaacttgtagat
	Ggtttgtttaaatatccacacttcttatggttcgatttaggacgtcctgatatttggatt Acaattattgccggtgttttatactttatccaagcatatgtatcaagtaaaacgatgcca
	Acaattattgccggtgttttatactttatccaagcatatgtatcaagtaaaacgatgcaa Gacgaacaacgtcaaatgggttacatgatgatggtcatttcaccaattatgattatctgg
	Atttcattaagctcagcatcagcacttggtttgtactggtcagtca
	Gtagttcaaacacactttgcgaacatttattatgaaaaagtcgctaaaaaagaagtacaa
	Cctttcattgaagcgtatgaaagagcacaacggcggcagcaataaaaaaaggcaaaaaa
	CCLLECALEGAAGCGLALGAAAGAGAGCACAACGGCGGCGGCGGCGGCGGCGGCGGCG

ccagataaatctttaaaattatcatataaagttaatgttgcgaatattgatdatdctaaa aatattgatttaatgaaaaattaacatategtaattgattgatgttaattaataat gcgcaaccagaagttacactaactgcagatccattttcagtagcggttgaaatgaacaa gatgcgttgcaacaacaagtaaactcacaagtgataatagtcattacacaacagcatca attgcagaatacaataaacttaaacaacaagcagtaattatttaaatgaagatgcgaat catgttaaaactgcaaatcgtgcatctcaaggggatattgatgattagtaactaaagttcaagata caagctgcattaattgataatcaagcagcaattgctgaattagatgaattacaagatcaagat caaggtgtcacaactgaaaaagataatggtatcgcagtgttagaacaagatgtgattaca ccaacagttaaacctcaagcgaaacaagatattatccaagcagttacaactcgtaaacaa caaattaaaaagtcaaatgcatcattacaagatgaaaaagatgtagcaaatgataaaatt ggtaaaattgaaacaaaggcaattaaagatattgatgcagcaacaacaaatgcacaagta yg taaaattyaaacaaayycaattaaayatattyatycaycaacaacaacaatycataayta gaayccattaaaacaaaaycaatcaatgatattaatcaacttacacttyacacaayot aaaycaycayctettyaayaatttyacyaayttytteaaycacaaattyatcaaycacct gccattacacctgatgcaaatgtaaaccagcagcaaaacaagcaattgcagataaagta caagctcaagaaacagcaattgatggaaataacggctcaacaactgaagaaaaagcagct gctaaacaacaagttcaaactgaaaaaaacaacagctgatgccgcaatagatgcagcacat acaaatgoggaagttgaagoggotaaaaaagoagoaattgotaaaattgaagogattcag ccagcaacaacaactaaagattaatgogaaagaagcaattgotacgaaagogaatgaacgt aaacagcaatcgotcaaacgcaagacattactgotgaagaaattgcagoggotaatgog gacgtagataatgctgtgacacaagcaaatagcaacattgaagctgctaatagtcaaaat gatgtagaccaagcgaaaacgacaggtgaaaatagtattgatcaagtaacaccaacagtt aataaaaaagcaactgcacgtaatgaaatcacagcaattttaaataacaaattgcaagag gaagctaaagcaaatgcagaagcagcgattaatgcggtaacaccaaaagttgtgaagaaa dadduguytuguadaguugugdaacudadagaagaacugatadadadacuggg gotacaactgaagagaaaaatgcagcaaaagatttagttttaaaagctaaagaaaaagcg tatcaagatatotttaaatgcacaaacaactaatgatgttacgcaaattaaagataaagca gtgctgatattcaaggtattactgcagatacaacaattaaagatgttgcgaaagtaa ttagcaacaaaagcaaacgaacaaaaagcgcttattgcacaaactgcagatgcgactact gaagaaaaagaacaagcaaatcaacaagtagagcgcacaattaacacaaggtaatcaaaat attgaaaatgcacagtcaatcgatgatgtaaacactgcaaaagataatgcaattcaagca ggtaacgatattggaccagttagagcagcatatgaagaaggtttaaataatattaatgca gcaactactactaggtgatgtaactactgctaaagatacagcagtacaaaaagttcaacaa cttcatgcaaatcctgttaagaaaccagcaggtaaaaaagaattagatcaagctgcagct attgatgagtacaaaaaaagatgctttagctaaaattgaagatgcatataatgctaaagta aacgaagcggataactctaacgcatcgacttcaagtgaaattgctgaagcgaaacaaaaa cttgctgaattaaaacaaactgcggatcaaaatgttaatcaagctacttctaaagatgac attgaagttcaaattcataatgacttagataatattaacgattacacaattccaacaggt aaaaaagaatcagctacaacagatttatatgcttatgcagatcagaagaaaaataatat tcagctgacactaatgcaacacaagatgaaaagcaacaagcaattaagcaagttgaccaa aatgttcaaactgcattagaaagcattaataatggtgtgggataatggtgacgttgatgat gcattaacacaaggtaaagcagcaattgatgctattcaagtagatgctactgttaaacct aaagcgaaccaagctattgaagttaaagcagaagatacgaaagaatctattgatcaaagt

202.	atgaaactaaaatcatttgttactgccactttagcattgggattattatcaacggtcgga gctgcattaccgagtcacgaagcatctgcagatagtaataacggctataaagaaatgact gtggatggttatcacacctgttccttacacaattcagtagatggtattactgcattacat cgaacttactttatcttcccagaaaataaaaatgttctttatcaagaaaattgacagtaaa gtaaaaaatgaattagcttctcaacgtggtgttacaacagaaaaaattaataatgcccaa acagcaacttatacgcttactttgaatgatggtaataaaaagtagtgaatctaaagaaa aatgacgacgctaaaaattcaattgatccaagtacaatcaaacagatacaaattgtagtt aaa
203.	atggctattaaaaagtataagccaataacaaatggtcgtcgtaatatgacttcgttagat ttcgcagaaaatcacagaaaactacacctgaaaagtcattattaaaaccgctaccgaaaaaa gcgggacgtaacaaccaaggtaaattgactgtaagacaccatggtggtggacacaaacgt caataccgtgttatcgatttcaaacgtaacaaagatggtattcaatgcaaaagttgatet attcaatatgatccaaaccgctcagcaaacatcgctttagttgtatatgcagacggtgaa aaacgatatatcattgctcctaaaggattagaagtaggtcaaatcgttgaagtggtget gaagctgacatcaaagttggtaacgcattaccattacaaaacattccagttgtaaggtgcaa gtacacaacatcgagcttaaacctggtaaaggtggacaaatcgcttgttcagctggtgca agtgctcaagtacttggtaaaggaaggtaaatcgtattaatcagattaagatctggtgaa gttcgtatgatcttatctactactgcgctgctacaatcggtcaagttagtaacgtagtgaa gttcgtatgatcttatctactactgcgctgctacaatcggtcaagttggtgacaccacacac gaattagttaacgttggtaaagccggacgttcaagatggaaaggtatccgtccaacagtt cgtggttctgtaatgaaccctaacggacaaccacacggtggtggtgaaggacgtgctcct atcggtagaccatctccaatgtcaccatgggtaaaccacacctggtcaagaacaccccccacggtgttaagaaaaacccgt cgtggtaaaaaactcatcaatgcacaaacttatcgttcgt
204	atgttagtaatacgtttaaccatttgataattattattattgtcttaattgcagca ataccgattgtactgtttttactatgtttaactgttttaaatggaaggtatttatgca gctattacaacacttgttgtaacattactaattgcaataccatttttcaaattgccagtt ggatacgctctgggcagtagtgcgaaggttcttccaaggtatcattcggacagtt ggatacgctctgggcagtattgttaacaaaattactgttgaatccggtatggcaa atcgttatgatggcagtattgtatacaaaattactgttgaatctggacaatttttaaca attcaagatagtattacaaaatattcacaagaccaacgtattcaagttttactttgga tttgcattcaacgcatttttagaaggtgcagcaggagtattggtgaccaattggaatttgt gcacttttattaacacaattaggatttaatccattaaaagctgcgatgtttagtttagtc gcaaatgcagcgtctggtgcttttggtgcgattggtatccctgtaggtgttgtagaaacg ttgaaattacctggagatgtttcagtataggtgtttctcaatcagcaactttaacattg gcaattacataaatttcattattcattattattattgatggtttagagg gtaaaggaacattaccagcaattttagtagtttcaatcacttactcaagga ttattaacagtattcagtggacctgaattagcagtattattccaccgttattaacaatg ttagcattagcagtattttctaaaaaattccaaccaaaacacatttatcgtgttaataaa gatgaagaaaattgaacctgcaaaagcaattctgcaaaagcagtattatcatggtttaaaaa gatgaagaaaattgaacctgcaaaagcaattctgcaaaagcagtattatcatggatgg
205.	atgottaaaaataaaatattaactacaactttatotgtgagottacttgococtottgoc aatocgttattatagaaatgotaaagotgotaacggatactgagacatcggtaaaggaago gatatagaaattatcaaaggacaggaagataaaacaagtaataaatggggogtgactoaa aatattcaatttgattttgtaaaggataaaaaatataacaagatgotttgatattaaag atgoaaggattcattagototagaacaacaattacaactataaaatagataatatagtt aaagotatgogaattocaatataatattggtttaaaaacaaagatagataaatatgtt tottaattaattatttacotaaaaataaaattgaatotacaacgggagtoagatatta ggatacaatatoggtggtaatttocaataagococatoactggtggtaatggatcattt aactattotaaatoggtggtaatttocaataagococatoactggtggtaatggatcattt aactattotaaatoggtggtaatttocaatcagococatoactcggtggtaatggatcattt aactattotaaatggattagotatacaacacaaaaatatgtaaaggaagtagaacaacaa aactoaaaagtgttttatggggggtcaaagogaattcattcgccactgaatcaggtcaa aaatoagocttggatagogatttatttgtaggctacaaacotoatagtaaaggatcotaga gattatttogtbocagacagtgagttaccactottgtacaaagtggatttaacocottoa ttatcgccacagtatotoatgaaaaaggtcaaaggatacaagcgaatttgaaattact tacggaagaaacatggatgccataagccattaaaaggtcaacagcattatggcaacagt tattagacggacataggtccatagcaatcaaggtgaaagaactataotggaaatac gaggtcaattggaagactcatgaaatcaaggtgaaagaacagaat
206.	atgaaaatgaataaattagtcaaatcatccgttgctacatctatggcattattattactt tctggtactgctaatgctgaaggtaaaataacacagtcagcgtaaaaataatcgatgac aaagttactttatacaaaacacaggcacaggcagtcaggtaaaatttaaaatttcacag atttaacatttaatttcatcaaagataaaagttatgataaaatttaaaatttcacag attttaacatttaatttcatcaaagataaaagttatgataaagatacttagacatttcaa gctactgggaatattaactcaggctttgtgaaacctaatcctaatgactatgactttca aaattatattggggagctaaatacaaatgaatgatacacaatcaaatgattcaagta aacgtcgttgattatgcaccaaaaaatcaaaatgaaggtttcaagttcaagattcaagta gcgtatacatttggtgggacattagtatctctaatggtttatctggtggacttaatgga aatacagctttttctgaaacaattaattataaacaagaaagttacagaacaacattaagt ggcaacacaaaattataaaaatgtggctggggagttgaagcacataaaattatgaataa ggttggggaccttatggaagagatagcttccaccaacatatggtaatgaactcttctta gctggcagacaaagcagtgcatacgctggccaaaacttcataggcaacacaaatgca ttatatctagaagtaacttcaatccagaatttttaagcgtactacacaaatgca ttatatctagaagtaacttcaatccagaatttttaagcgtactacacaaatgcca tcgttggaatggcttctactgggcaggcgcaaattataaaaacttaaaacataaacaaatt cgttggaatggcttctactgggcaggcgcaaattataaaaacttaaaacataaaactt cgttggaatggcttctactgggcaggcgcaaattataaaaacttaaaacataaaacatt aaatcaacatatgaaattgattggggaaaatcacaaagtgaattt aaatcaacatatgaaattgattggggaaaatcacaaagtgaaattgtaagaacaatt aactgaaaacataaaaa actgaaaacaaaaaaa

207.	atgaatagagagatgttgtatttaaatagatcagatattgaacaagcgggaggtaatcat tcacaagtttatgtggacgcattaacagaagcattaacagcccatgcgcacaatgatttt gtacaaccgcttaagccgtatttaagacaggatcctgaaaatggacacatcgcagatcga attattgcaatgccaagtcatatcggtggtgaacacgcaagtttaagtggata ggtagtaagcacgacaatccatcgaaacgtaatatggagcgtgcaagtgcgcacattatt ttgaatgatccagaaacgaattatccaattgcagttattggagcaagtttaattagtagt atgcgtactgcagcagtttcagtgattgcagcaagcatttagtagt atgcgtactgcagcagtttcagtgattgcagcaagcatttggagcaaagtttaatagtagt atgcgtactgcagcagtttcagtgattgcagcaagcatttggaagcaagtttaatag gacttaacaatcattggatgcgggctaatcggagacaagcaattacaaagattttaaa gacttaacaatcgatgcggggttttgtttacgatcaattcctagaagcatgttagag caattcgatcatattgaacgcgtgtttgtttacgatcaattctctgaagcatgtgcacgc tttgttgatagatggcacaacaacagcgtccggaaattaatt
208.	atgaaaaaattatggttattttcggtacgagacccgaagcaataaaaatggcaccatta gtaaaagaaattgatcataatgggaactttgaagcgaacattgtgattacagcacacat agagatatgttagatgtgttaagtatatttgatgtatacatgcatcatgatttaaat atatgcaagatcaacaacattagcaggccttacggcgaatgcacttgctaaacttgat agcatcattaatgaggaacaacggatatgattttagtacatggtgatactacaacgact tttgtaggaagtttggcagcatttatcatcaaattcggtcgg

atgattatgggtaatttgagatttcaacaggaatattttcgtatatacaaaaataataca gaatcacqggacacccgtaatgcgtattgggttaaactcgctaaaaatgttgaagctact aaatgatgtatgcattatcgacaattgtgcaacaacacatgcatctataagacatttttt gatgttactaccgatgacaatttaacaatgatacttcatgaatttctgcctttattgag ataaacaagttccatcttcttccgcaaaactatgatttagaagctttttttaagcaagaa ttaagtacttaaccattttaatgattcacctttattcaagttaaattgttcagttcgct acgctgagtgacttagttcgaaatatttatttgcaaattactgaagaaaatggaaataaa cgaacaactgtagatgaacttaatttgatgacagaacgtgatattcaattatatgacgat atcaatttaagtttgcctgagatagatgatgcgcaaacagttgttaccttatttgagcaa attaggtgtgttgaaagctggtggggcttacgtgccaattgatccgaactatccaagtgat cgtcaggagtacattttaaaagatgtaacgcctaaagttgtaataacgtaccaagcttta tatgaaaatggtaaacaaaatattaatcacattgatttgaataagatagcgtggaaaaat attgataatctttctaaatgtaacacgttagaagatcatgcttatgttatttacacgtcg gggacaactggtaaccctaaagggacactaattccgcaccgaggtattgttcgcttggtc yayacaactyytaactaayyyaaactaataatyaagaagaagaagatyatytoocaacaatatatyacagaadatata gcctttgatgctgcaacatttgaaatatatggtgcattgctcaatggtggaaagetgatt gttgctaaaaaagaacaattattaaatccaatagcggtagaacaattaatcaatgaaaat gacgttaatactatgtggttaacctcctcattatttaatcagattgctagtgaacgaata gaagtattggtatcgttaaagtatttattaattggtggagaagtattgaatgctaagtgg gtggatttgcttaatcaaaaaccgaagcatcctcaaattattaatggttatggaccaact gaaaatacaacatttacaacgacgtataatatacctaacaaagttccaaatcgtattcct attggtaaaccgattctgggtactcatgtttatatcatgcaaggcgagcgtcggtgtggcgttggtattcctggagaattatgtacaagtggctttgggttagctgcaggttatttaaat gacdatacaagttaagattcgagggtttaggattggtattgtcagaggttggacacgg gacgtatacaaggtattaataaagcagttgttattgttcaaaatcatgatcaagatcag tatatcgttgcttattatgaagcgatgcatacattatcacattaataagattaaatcacaa ttacgtatgaccttaccggagtacatgataccagttaattcatgcatattgagcaaat cctattactattaatgggaaattagataagagagcattgcctatcatggactatgtcgat acggatgcctatgtagcaccgagtacagataccgaacacttgctatgccaaattttgca gatattttacatgtgaatcaagtaggtattcatgataatttctttgaattaggtggccat tcattaaaagcaacgttagtggtgaatcggatagaggcatctactgggaaacgattacaa attggtgatttattacaaaagccaactgtatttgaactagcacaagcgattgctaaggtt caagaacaaactatgaagtgattccagaaactatagttaaagatgattatgtgtgagc tctgcacaaaagcgtatgtatttattatggaaatcaaaccataaagatagttatatgtgttgagc gtaccttttttatggcggttatcatcagaacttaatgtagctcaattgcgacaagcagtg cagcgtttgatagcgcgacatgagattttacgaacacaatatattgttgtagatgatgatgaggttogacaacgtattgtggcagatgttgcagttgactttgaagaagttaacacgcatttt catcgtgatatgacgaaacatagacaatattggttatctcaattcaaagatgaagtacct attttaagcttaccgacagactatgttagaccaaatattaaaacgacaaatggagcaatg atgtcatttacaatgaatcaacaaatgagacagctacttcaaaagtatgtagaaaagcat caaattactgattttatgttctttatgagtgtggtcatgacgttgttaagtagatatgct cgaaaagatgatgttgttgtcggtagtgtgatgagtgcgcgtatgcataaaggcacggag tcaaatggtgtgggcaatggtcaacgggttgccttgtttacagaacgtagttttgaaatg attgcggcgatgttggcgacagttaaagtaggtgcatcttatatacctatcgatattgat tttccgaataaacgacaaggtgcaattttggaggatgctaaagtaactgcagtcatgtct tacggcgttgaaattgaaacgacattaccagtcattcaattggaaaatgctaaaggcttt gttgaatcaaaggaaaatgaacaatatgatgatttacatggcaatcaacttgaaaacaca gcgatgttagataatgagatgtatgctatttacacatctggtacgaccgggatgcctaaa cgtgttaatccagaacagttacaacaactcattaataagcatcgtgtgacggttgcgtcg attccgttacagatgtgtagtgttatggaagacttttatattgaaaaagttgattacaggc ggggcaactagtacggcatcctttgttaaatattgagaagcattgtggcacgtattt aatgcctatggaccatctgagtcacagtcatcacatcgtattggtcacatcattgtggt gatttgatacctgagacgattccaattggcaaacccttatctaacatccaagtgtatat gatttgatacttgagacgattccaattggcaaattttattaatattcaagtgatattt atgtcagattggtttatgcggtattgcaggcgagttgttgtattgcaggtgat agtttagcgataggatatattaatcgtccagaattaatggctgataaatggcaaaataat ccatttggtaaaggaaagttgtatcatagtggtgatttagcacgttatacatctgatggt caaattgaatttttaggaagaatagataaacaagtgaaagttaacgggtaccgtattgaa cttgatgaaattgaaatgcaatattagctattcgtggtatatctgattgtgttgtaaca

210.	atgaccaaagaacaacaacttgcagaacgaattattgctgcagtaggtggtatggataat atagatagtgtcatgaactgtatgacacgtgtgcgtattaaagtattagatgagataaa gtagatgaccaagaactaaggcatattgatggtgtcatgggtgtattaaacgatgaacga attcaagttgtggttggacctggtacagtcaataaagtggtcaatcatatggcggaatta agtggtgttaaactaggtgacccaataccacaccatcacaatgatagtgaaaaaacga tataaatcatatgcagctgataaaggaaagg
211.	atgtctaaaatttaaaatgtatcacgttagccgtggtaatgttattaatcgtaactgca tgtggccctaatcgttcgaaagaagatattgataaagcattgaataaagtaattctaaa gacaagcctaaccaacttacgatgtgggtggatggcgacaagcaaatggcgttttataaa aaaattacggatcaatatactaaaaaaactggcatcaaagtaaagcttgtaaatattggt caaaatgatcaactagaaaatatttcgctagacgcctcctgcaggaaaaggtccagatatc ttttcttagcacatgataatactggaagtgcctatctacaaggcttgtaaatatta gacaatagcacaagatggttgaaaggttcaatagtgaattat gacaataagcaactagcattgccagctatcgtgaaccacctaaaggcatgaattat gacaataagcaactagcattgccagctatcgttgaaaccaccgcactttttaaaataa aaattagtgaaaaatgcaccgcaaacgttagaagattgaaggctaatgctgccaaacta actgatagtaaaaagaacaatacggtatgttatttgaagctaatgctgccaaacta actgatagtaaaaagaaccaatacggtatgttatttcaagaaaaatttctatttaat tatccgttttattcggcaatgattatattttcaagaaaaatgcagtgaatatgat attcatcagctaggactaaattcaaaaaattcgtcgtcaagaatgctgaacgattacaaaaa tggtacgacaaagggtatcttcctaaggcagcacacatgatgctgaacgattacaaaaa tggtacgacaaagggtatcttcctaaggcagcacacatgatgctgaacgattacaaaaa acgtttggtaaagatagagacaaatttgtcactgacggtggaacattaatgaaaa ccattctaggtgtacgtggttggtatttactgaatatagtagaatgtgggcaaacctatgaaa ccattctaggtgtacgtggttgaagtacaactaatgaaatacaataaagatgtgggc aaggaaattactggacgtgttgacgtgaaacacttacaaaaaatatacagatgaaatg agcgaaattactggacgtgttgacgtgaaatcattacaaaaaatatacagatgaaatg aagcaagcacgtcatgctgaaccgatgcctaatattcctgaaatgcgacaagtttggaa ccgatgggcaatgcaagcatatttattcaaaaaggtaaagaacccaacaaaggcgttagaa gaggcgacgaatgcaagcatatttattcaaaaaggtaaagaacccaacaaaaaggcgtagaa gaggcgacagaatgaatgaaaaaaaaaa
212.	gtgaaagcattgaaattatatggcgtggaagatttacggtatgagggataatgaaaagcca gtcattgaaagtgcgaatgacgttattattaaagtacgagcgactggcatattgtgttca gacacgtcacgatacaaaaaaatggggccatacattaaaggtatggcaatttggtcatgaa ttttcaggtgtagtagtagccattggaagtgatgtcatttagtgggggacaaa gtgacaggttgaccagcaataccttgttatcaatgcgagtattgtttaaaaggtgaatat gcacgattgaaaagttattcgtcattggctcatatgaacctggtcatttggcggaatat gtcaaattgcaagcgcaatactttttaaaggttccagacatgtttacagtggaatat gcacgattgtgaaaagttattcgtcattggctcatatgaacctggatcgtttgcgggaatat gcaaattgcagcgcaaaatgttttaaaggttccagacaatgttgatcaattgaagca gcaatggttgagccatcagcgttgttggcaatgaggttttataaaacgaatatacaacct ggtatgactgttgcagtaattggggtgtggcagtataggtttgttagcaatatacaacct ggtatgactgttgcagtaattcatcgctatagatataggttggtagcaatcaat
213.	atgcaagcattacaaacatttaattttaaagagctaccagtaagaacagtagaaattgaa aacgaaccttattttgtaggaaaagatattgctgagattttaggatatgcaagc aatgccattagaaatcatgttgatagcgaggacaagctgacgcaccaatttagtgcatca ggtcaaaacagaaatatgatcattatcaacgagttatatacagtctaatcttcgat gcttctaaacaaagcaaaaacgaaaatacagagaaaccgctcggaaattcaaacgatgg gtaacatcagatgtcctaccagctattcgcaaacacggtataatacgcaacagacaatgta attgaacaacattaaaagatccagactacatcattacagtgttgactgagtataagaaa gaaaaagagcaaaacttacttttacaacaagaaaatcggagaactaaaacccaaagcagac tatgtagatgaaatcttaaagtcaactggcacattagcaccaactcaaatcgggcagac tacggtatatcagcacaaaagttaacaaactactacacgagacaactcaaacgaaaa gtaaataaacagtgggtgctttactcagaacacatgggcaagagttacacaggaaa gtaaataacagtgggtgctttactcagaacacagttttacaaacaa
214.	atgaaattaaaatcattagcagtgttatcaatgtcagcggtggtgettactgcatgtggc aatgatactccaaaagatgaaacaaatcaacagagtcaaatactaatcaagacactaat acaacaaaagatgttattgctttaaaagatgttaaaacaagcccagaagatgctgtgaaa aaagctgaagaaacttacaaaggccaaaagttgaaaggaatttcatttgaaaattctaat ggtgaatgggcttataaagtgacgcaacaaaaatctggtgaagagtcagaagtacttgtt gctgataaaaataaaaaagtgattaacaaaaaaactggaaaaagaagatacaatgaatg

2	215.	atgaaaatgaaaaatattgcaaaaataagtttgttattaggaatattagcaacaggtgta aacactacaacggaaaaaccagttcatgccgaaaagaaacctattgtaataagtgaaaat agcaaaaaattaaaagcttattataatcaacctagtattgaatataaaaatgtgacaggt tatatcagtttcatccaaccaagtattaaaattatgaatatcatagatggtaattctgtt
		aataatattgetttaattggcaaagataagcaacattatcatacggtgtacatcgtaat cttaatatattttacgttaattgaggataagagatttgaaggtgcaaagtactetattggg ggtatcacgagtgcaaacgataaagctgtcgacctaatagcagaagcaagagttattaaa gaagatcataggtgataatatgattatgacttttcccatttaaaatagataaagaagcg
.		atgtcattgaaagagattgattttaaattaagaaaataccttattgataattatggtctt tacggtgaaatgagtacaagaaaattacagtcaaaaagaaatactatggaaagtataca tttgaattggataaaagttacaagaagaccgtatgtccgatgttatcaatgtcacagat attgattagaataaagttacaagatgacagtatgtccgatgttatcaatgtcacagat
2	216.	mrktkivctigpaseseemieklinagmnvarlnfshgsheehkgridtirkvakrldki vailldtkgpeirthmmkdgiielergnevivsmnevegtpekfsvtyenlindvqvgsy illddglielqvkdidhakkevkcdilnsgelknkkgvnlpgvrvslpgitekdaedirf gikenvdfiaasfvrrpsdvleireileeqkanisvfpkienqegidniaeilevsdglm vargdmgveippekvpmvqkdlirqcnklgkpvitatqmldsmqrnpratraeasdvana iydgtdavmlsgetaaglypeeavktmrniavsaeaaqdykhllsdrtklvetslvnaig isvahtalnlnvkaivaatesgstartiskyrphsdiiavtpseetarqcsivwgvqpvv kkgrkstdallnnavatavetgrvsngdliiitagvptgetgttmmmkihlvgdeiangq gigrgsvygttlvaetvkdlegkdlsdkvivtnsidetfvpyvekalgliteengitsps aivglekgiptvvgvekavknisnnmlvtidaaqgkifegyanvl
2	217.	mqfdnidsalmalkngepiivvddenrenegdlvavtewmndntinfmakearglicapv skdiagrldlvqmvddnsdifgtqftvsidhvdtttgisayertltakklidpsseakdf nrpghlfplvaqdkgvlarnghteaavdlakltgakpagviceimnddgtmakggdlqkf kekhqlkmitiddlieyrkklepeiefkakvkmptdfgtfdmygfkatytdeeivvltkg airqhenvrlhsacltgdifhsqrcdcgaqlessmkyinehggmiiylpqegrgigllnk lrayelieqgydtvtanlalgfdedlrdyhiaaqilkyfniehinllsnnpskfeglkqy gidiaerievivpetvhnhdymetkkikmghli
2	218.	mkmkklvkssvassiallllsntvdaaqhitpvsekkvddkitlykttatsdndklnisq iltfnfikdksydkdtlvlkaagninsgykkpnpkdynysqfywggkynvsvssesndav nvvdyapknqneefqvqqtlgysyggdinisnglsgglngsksfsetinykqesyrttid rktnhksigwgveahkimnngwgpygrdsydptygnelflggrqsssnagqnflpthqmp llargnfnpefisvlshkqndtkkskikvtyqremdrytnqwnrlhwvgnnyknqntvtf tstyevdwqnhtvkligtdsketnpgv
2	219.	mkkkallplflgimvflagcdyskpekrsgffyntfvdpmknvldwlgnnllndnyglai iilvlviriillpfmlsnyknshmmrqkmkvakpevekiqekvkrartqeekmaanqelm qvykkydmnpiksmlgclpmliqlpiimglyfvlkdqlvdglfkyphflwfdlgrpdiwi tiiagvlyfiqayvssktmpdeqrqmgymmmvispimiiwislssassalglywsvsaafl vvqthfaniyyekvakkevqpfieayerelnggsnkkgkntqvvskkkkk
	220.	mnlfrqqkfsirkfnvgifsaliatvtfistnpttasaaeqnqpaqnqpaqpadantqm anagaqmptaqpaapaqqpaqpaqqqqqanqqqqaaqpaqaaqpaqadqnnaaq aqpqnatpanqaqqmnatpmnatpanqtqpanpaqqaaqpapvaanaqtqdpnasn tgegsintiltfddpaistdenrqdptvtvtdkvngyslinngkigfvnseltrsdmfdk mpqnyqakgnvaalgrvnandstdhqnfngisktvnvkpdseliinfttmqtnskqgat nlvikdakkntelatvnvaktgtahlfkvptdadrldlqfjpdntavadasrittnkdgy kyysfidnvglfsgshlyvknrdlapkatnnkeytinteignngnfgaslkadqfkyevt lpqgytyvnnslttfpngmedstvlkmtvnydqmankvtftsqgvttargthtkevlf pdkslklsykvavanidtpknidfnekltyrtasdvvinnaqpevtltadpfsvavemnk dalqqvnsqvdnshyttasiaeynklkqadtilnedanhvktanrasqadidglvtkl qaalidnqaalaeldtkaqekvtaaqqskkytqdevaalvtkinndknnalaeinkqtta qgvttekdngiavleqdvitptvtpqakqdiiqavttrkqdikksnaslqdekdvandki gkietkaikdidaattnaqvealktkaindinqttpattakaaaleefdevvqaqidqap lnpdttneevaealerinaakvsyvkaieatttaqdlervkneeiskienitdstqtkmd aynevkqaatarkaqnatvsnatneevaeadaavdaaqkgylhdiqvvkskqevadtksk vldkinaiqtqakvkpaadtevenayntrkqeignsnastteekqaayteldtkkqeart nldaantnsdvttakdnsiaainqvqaattkksdakaeiaqkaserktaieamndsttee qqaakdkvdqavtsnadidnaamndvdnakttneatiaaitpdanvkpaakqaladkv qaqetaidgnngstteekaaakqqvqtekttadaidaahtnaeveaakkaaiakieaiq patttkdnakeaiatkanerktaiaqtqditaeeiaaanadvdnavtqansnieaansqn dvdqakttgensidqvptvnkkatameitailnnklqqatpdatdeekqaadaean tengkanqaisaattnaqvdeakanaeaainavtpkvvkkqaakdeidqlqatqtnvinn dqmatteekeaaiqqlatavtdaklantiaatddnydqakdagknsigtpatavksna kndvdqavttqnqaidnttgatteeknaakdlvlkakekayqdilnaqttndvtqikdqa vadiqgitadttikdvakdelatkaneqkaliaqtadatteekqaaqqvdaqltqnqn ienaqsiddvntakdnaiqaidpiqastdvktnaraelltemqnkiteilnmettneek gndigpvraayeeglnninaatttgdvttakdtavqkvqqlhanyvkpagkkeldqaaa kkktjeqtpnasqqeindakqevdtelnqaktnvdqstkpanqaievkaedtkesidqs dqltaeektealamikqitdqakqgitdatthaevekakqqleidniqdstekqkai eeletaldqieaynvnnadatteekeaftnaledilskatedisqqtkaqdivnigdskdi eeletaldqieaynvnnadatteekeaftnaledilskatedisdqttnaeiatvknsal eqlkaqrinpevkknaleairevvnkqieilkmadaasakelartdlgryfafradkld ktqtnaeveslnyttjaleaivgndgdandtnngidnndatannanatpentgqnn settangkadaspttpnnsdaatgettatsatddandkpqannssvdastnappnv settangkadasp
	221.	mklksfvtatlalg11stvgaalpsheasadsmgykemtvdgyhtvpytisvdgitalh rtyfifpenknvlyqeidskvknelasqrgvttekinnaqtatytltlndgnkkvvnlkk nddaknsidpstikqlqivvk maikkykpitngrrnmtsldfaeitkttpeksllkplpkkagrnmqgkltvrhhqgghkr
		qyrvidfkrnkdginakvdsiqydpnrsanialvvyadgekryiiapkglevgqivesga eadikvgnalplqnipygtvvhnielkpgkggqiarsagasaqvlgkegkyvlirlrsge vrmilstcratigqvgnlqhelvnvgkagrsrwkgirptvrgsvmnpndhphgggegrap igrpspmspwgkptlgkktrrgkkssdklivrgrkkk

223.	mlvntfnpfdnlllssliaaipivlfllcltvfkmkgiyaaittlvvtlliaipffklpv giasgavvegffqgiipigyivmmavllykitvesgqfltiqdsitnisqdqriqvllig fafnaflegaagfgvpiaicallltqlgfnplkaamlclvanaasgafgaigipygvet lklpgdvsvlgvsqsatltlaiinfiipfllifiidgfrgvketlpailvvsitytltqg lltvfsgpeladiipplltmlalavfskkfqpkhiyrvnkdeeiepakahsakavlhaws pfivltvivmiwsapffknlflpngalsslvfkfnlpgtisevthkplvltlnliiqtgt ailltiiitlmskkvnfkdagrlfgvtfkelwlpvlticfilaiskittygglsaamgq giakagnvfpvlspilgwigvfmtgsvvnnnslfapiqasvaqqigtsgsllvsantvgg vaaklispqsiaiataavkqvgkesellkmtlkysvcllificiwtfilsll
224.	mlknkiltttlsvsllaplanpllenakaandtedigkgsdieiikrtedktsnkwgvtq niqfdfvkdkkynkdalilkmqgfissrttyynykktnhvkamrwpfqyniglktndkyv slinylpknkiestnvsqilgyniggnfqsapslggngsfnysksisytqqnyvseveqq nsksvlwgvkansfatesgqksafdsdlfvgykphskdprdyfvpdselpplvqsgfnps fiatvshekgssdtsefeitygrnmdvthaikrsthygnsyldghrvhnafvnrnytvky evnwktheikvkgqn
225.	mkmnklvkssvatsmallllsgtanaegkitpvsvkkvddkvtlykttatadsdkfkisq iltfnfikdksydkdtlvlkatgminsgfvkpnpndydfsklywgakynvsissgsndsv nvvdyapknqneefqvqntlgytfggdisisnglsgglngntafsetinykqesyrttls rntnyknvgwgveahkimnngwgpygrdsfhptygnelflagrqssayagqnfiaqhqmp llsrsnfnpeflsvlshrqdgakkskitvtyqremdlyqirwngfywaganyknfktrtf kstyeidwenhkvklldtketennk
226.	mnremlylnrsdieqaggnhsqvyvdaltealtahahndfvqplkpylrqdpenghiadr iiampshiggehaisgikwigskhdnpskrnmerasgviilndpetnypiavmeasliss mrtaavsviaakhlakkgfkdltiigcgligdkqlqsmleqfdhiervfvydqfseacar fvdrwqqqrpeinfiatenakeavsngevvitctvtdqpyieydwlqkgafisnisimdv hkevfikadkvvvddwsqcnrekktinqlvlegkfskealhaelgqlvtgdipgreddde iillnpmgmaiedissayfiyqqaqqqnigttlnly
227.	mkkimvifgtrpeaikmaplvkeidhngnfeanivitaqhrdmldsvlsifdiqadhdln imqdqqtlagltanalakldsiineeqpdmilvhgdtttffvgslaafyhqipvqhveag lrthqkyspfpeelnrumvsniaelnfaptviaaknllfenkdkerifitgntvidalst tvqndfvstiinkhkgkkvvlltahrrenigepmhqifkavrdladeykdvvfiypmhrn pkvraiaekylsgnnrieliepldaiefhnftnqsylvltdsggiqeeaptfgkpvlvlr nhterpegveagtsrvigtdydnivrnvkqlieddeayqrmsqannpygdgqasrricea ieyyfglrtdkpdefvplrhk
228.	mingmlrfqqeyfriyknntestthrnaywyklaknveatkmmyalstivqqhasirhff dvttddnltmlheflpfieikqypssanydleaffkqelstyhfndsplfkvklfqfa daayilldfhvsifddsqidiflddlcnayrgntvinntrqhahinrnddkdnqdashia ldsnyfrlennsdihidsyfpikhpfeqalyqtyliddmtsidmaslavsvylahimsq qhdvtlgihypshlpndlhqmivpltltidakdkvqqftftdfnkvlqmmsqlqcakssl sletifncyhnmmscondviedvnqihdahtsladieifphqhgfkilynsaaydllsie tlsdlvrniylqiteengnkrttvdelnlmterdiqlyddinlslpeiddagtvvtlfeq qveatphhvavqfdgvfityqtlnarandlahrlrnqygvepndrvaviaeksiemiiam iqylkaggayyidpnypsdrqeyilkdvtpkvvityqalyengkqminhidlnkiawkn idnlskcntledhayvjtsgttgmpkgtliphrgivrlvhqnhyvplneettillsgti afdaatfeiygallnggklivakkeqllnplaveqlinendvntmwltsslfnqisexri evlvslkylliggevlnakwydllngkpkhpginigygyptentftfttynipnkypnrip igkpilgthvyimggerrcgygipgelctsgfglaagylngpeltadkfikdsninqlmy rsgdivrllpdgnidylyrkdkqvkirgfrielsevehaleriqginkavvivqnhdqd ylvayyeamhtlshnkiksqlrmtlpeymipvnfmhieqipitingkldkkalpimdyd tdayvapstdtehllcqifadilhvnqvgidndffelgghslkatlvvnrieastgkrlq igdllqfbytfelaqalakvqeqnyevipetivkddyvlssaqkrmyllwsnhkdtvyn vpflwrlsselnvaqlrqavqrliarheilrtgylvvddevrgrivadvavdfeevnthf tdeqeimrqfvapfnelepsgirvyirsplhaylfidthhindgmsniqlmmdlnaly qhklllplklqykdysewmshrdmtkhrqwlsqfkdevpilslptdyvrpniktngam msftmnqamrqllqkvvekhqitdfmffmsvvmtllsryarkddvvygsvmsarmhkgte qmlgmfantlvyrgopspdkmwtfflqevkemsleayehqeypfeclvndldqshdasrn plfdvmlvlqnnetnhahfghsklthiqpksvtakfdlsfileedrddytinieyntdly hsetvrhmgqncminidyilkhqdtlqiddingteellnwnthndrmlnypgnksii syfnevvsrqgnhvalvmndltmtyetlrnydaiahmllsnyonggrvalftersfem iaamlatvkyasyipididfpnkrggailedakvtavmsygveiettlpviqlenakgf veskenseqvddlhgnqlentamldnemyaiytsgttgmpkgvairqrnllnlvhawstel qlgdnevflqhanivfdasvmeiyccllnghtlyfpdreervnpeqlqqlinkhrvtvas iplgmsvybglgslsniqvyimsgllcgjgmpgelciagdslaigyinrpelmadkwqnn pfgkgklyhsgdlarytsdgqiefjgridkqkvknygyrieldeienaliarigisdevvt vshfdthdilnayyvgeqqveqdlkqylndqlpkymipktithidemplttndkvdtrl pppppiqgsnkylspsglariyvjmymyqnqgalvalpdlselytixphyrpelmadkvnyn lkfghismgtlyqyktvrqltynymyqnqgelvalpdlselythymyryliddevtrla qqhharliyvstisvgtyfdidtedvtfseadvykgqfltssytrskf
229.	mtkeqqiaerilaavgmonidsvmomitvikvitakvoddeliniqyvinder iqvvvggtvnkvanhmaelsgvklgdpiphhhndsekmdyksyaadkakankeahkakq kngklnkvlksianifiplipafigagliggiaavlsnlmvagyisgawitqlitvfnvi kdgmlaylaiftginaakefgatpglggviggttlltgiagkniimmvftgaplqpqgg iigvifawilsivekrlhkivpnaidiivtptiallivglltififmplagfvsdslvs vvngiisiggvfsgfiigasflplvmlglhhiftpihieminqsgatyllplaamagagq vgaalalwvrckrnttlrntlkgalpvgflgigepliygvtlplgrpfltacigggigga viggighigakaigpsgvsllplisdnmylgyiagllaayaggfvctylfgttkamrqtd llgd

230.	mskilkcitlavvmllivtacgpnrskedidkalnkdnskdkpnqltmwvdgdkqmafyk kitdqytkktgikvklvnigqndqlenisldapagkgpdifflahdntgsaylqglaaei klskdelkgfnkqalkamnydnkqlalpaivettalfynkklvknapqtleeveanaakl tdskkkqygmlfdaknfyfnypflfgnddyifkkngseydinqlglnskhvvknaerlqk wydkgylpkaathdwniglfkegkvgafvtgpwnineyqetfgkdlgvttlptdggkpmk pflgvrgwylseyskhkywakdlmlyitskdtlqkytdemseitgrvdvkssnpnlkvfe kqarhaepmpnipemrqvwepmgnasifisngknpkqaldeatnditqnikilhpsqndk kgd
231.	vkalklygvedlryednekpviesandviikvratgicgsdtsrykkmgpyikgmpfghe fsgvvdaigsdvthvnvgdkvtgcpaipcyqceyclkgeyarceklfvigsyepgsfaey vklpaqnvlkvpdnvdyieaamvepsavvahgfyksniqpgmtvavmgcgsigllaiqwa rifgaahiiaididahkldiatslgahqtinskeenlekfienhyanqidlaiessgakv tiggaltlpkkggevvllgipyddieidrvhfekilrneltvcgswnclssnfpgkewta tlhymktkdinvkpiishflplekgpetfdklvnkkerfdkvmftiy
232.	mqalqtfnfkelpvrtveienepyfvgkdiaeilgyarsdnairnhvdsedklthqfsas gqnrnmiiinesglyslifdaskqsknekiretarkfkrwvtsdvlpairkhgiyatdnv ieqtlkdpdyiitvlteykkekeqnlllqqeigelkpkadyvdeilkstgtlattqiaad ygisaqklnkllhearlqrkvnkqwvlysehmgksytesdtiaivrsdgredtvlqtrwt qkgrlkiheimtefgyeanlgga
233.	mklkslavlsmsavvltacgndtpkdetkstesntnqdtnttkdvialkdvktspedavk kaeetykgqklkgisfensngewaykvtqqksgeesevlvadknkkvinkktekedtmme ndnfkysdaidykkaikegqkefdgdikewslekddgklvynidlkkgnkkqevtvdakn gkvlkseqdh
234.	mkmkniakislllgilatgvntttekpvhaekkpivisenskklkayynqpsieyknvtg yisfiqpsikfmniidgnsvnnialigkdkqhyhtgvhrnlnifyvnedkrfegakysig gitsandkavdliaearvikedhtgeydydffpfkidkeamslkeidfklrkylidnygl ygemstqkitvkkkyygkytfeldkklqedrmsdvinvtdidrieikvika
235.	Ttgaaaaatattttaaaagtttttaatacaacgattttagcgttaattatcatcatcgcg Acattcagtaattctgcaaatgccgcagatagcggtactttgaattattgaggtttacaaa Tacaataccaatgacacgtcaattgctaatgactatttaataaaccggcaaagtacatt Aagaaaaatggtaaattgtatgttcaaatagctgtcaaccacagtcattggattactgga Atgagtatcgaaggacataaagaaaatattattagtaaaaacactgccaaagatgaacgc Acttctgaatttgaagtaagttgaacggtaaaatagatggaaaaattgacgtttat Atcgatgaaaaagtaaatggaaagccattcaaatatgaccatcattacaacattacatat Aaatttaatggaccaactgatgtagcaggtgctaatgcaccaggtaaagatgaaaaat Tctgcttcaggtagtgacaaaggatctgatggaacgactactggtcaaagtgaatctaat Agttcgaataaagacaaagtagaaaatccacaaacaaatgctggtaacactgctaataa Agttcgaataaagacaaagtagaaaatccacaaacaaatgctggtacacctgctatataa Tatacaataccagttgcatcoctagcattattaatcgcaatcacattgtttgttagaaaa aaatccaaaggcaatgtggaa
236.	atgacaaaacattatttaaacagtaagtatcaatcagaacaacgttcatcagaaa aagattacaatgggcacacagaacaagttacaatgggcacacagaacaagttacaatcagttgatacacacaagtcaacagacacacaagtcaacagacacacaagtcaacacaagtcaacacaattaatt
237.	Eknilkvfnttilaliiiiatfsnsanaadsgtlnyevykyntndtsiandyfnkpakyi Kkngklyvqitvnhshwitgmsieghkeniiskntakdertsefevsklngkidgkiddy Idekvngkpfkydhynitykfngptdvaganapgkddkmsasgsdkgsdgtttgqsesn ssnkdkvenpqtnagtpayiytipvaslalliaitlfvrkkskgnve
238.	mtkhylnskyqseqrssamkkitmgtasiilgslvyigadsqqvnaateatnapnnqstq vsqatsqpinfqvqkdgssekshmddymqhpgkvikqnnkyyfqtvlnnasfwkeykfyn annqelattvvndnkkadtrtinvavepgykslttkvhivvpqinynhrytthlefekai ptladaakpnnvkpvqpkpaqpktpteqtkpvqpkvekvkptvtttskvednhstkvvst dttkdqtktqtahtvktaqtaqeqnkvqtpvkdvataksesnnqavsdnksqqtnkvtkh netpkqaskakelpktgltsvdnfistvafatlallgslslllfkrkesk

atgacaaagaaagaaaaggattataaaaaaagtcttgagcaacaaaaaaacacgggtaaaa atatacaagtcaggaaaaagctgggtaaaagcaagtataatgaaatagaattgttaaaa acaatggggctaccattttaagtaaaaacgaaatacaagaaaatgtgactgaaaagacg gtgacgtacgttggacaaacctttacgagaaatcttacagattggataaaaaacagtggg ggtacgacgttttctctatctatgactgctcaactggtggcgcaaaaaatttacaacaa gttcaatttggaacattcgagtatacagaatcagctgttgctaaagtacgctatgtagat gatgytottaaagsatgtgatttataaattcaaagatgttcaaggtcctcaaattagtgtt gatagtcaaactagagaagttggaaagaccattaatccaattacaattactacaactgac aatagtaaagacgtattaactacaactgtgacaggtctaccttcagggttatcttttgat aatagtaadgatgtattaattaattatuggattaggattaggaagtaggaactacaactgtgaaagtt caaacgactaatacaattattggcacgccaagtgaagtaggaactacaactgtgacagtt aatactactgatgctactgggaacgtaacatctaagcaattacaataacgattcaagat acaatcagccctgttgtaaatgtgacgccaagtcaagcatcagaggttttcacgccgatt agtaaaaag agtgagagtgactcaacaagtgaaagtacatcgttaagtgactcgacaagtgcgagtctt tcagaatcgacaagtacatcaacatccgacagtgcgtcacatcaacgagtgagagtgac tcagacagtgcgtcaacatcaacaagtgtgagtgagtcaagcagtacaagtaagaagtta tcagaatcagcgagtacgtcgatgtctgatagcgcatctgcatcaacgagtgaatcaaac agtacaagtacgtcattaagtggctcgacaagtacgagtctttcaggatcaacgagtga agtacaagtacgtcattaagtggctcgacaagtacgagtctttcaggatcaacgagtaca tcgacttcagaaagtgcgtcaacaacatcaacgagcgtaagtgactccaatagcgcaagtacg tcattaagtgaatcgacaagtacgagtctttcagactcaacgagtacatcgacatcagat agtacgtctgcatcaacaagtgagagtgactcaacagtacaagcacatccatgagtgaa tcattaagcacaagcgtttcagattcaacaagtacgtcaacgtcagacagtgcatcaacg tcaacaagtggagtgactccaatagcgcaagtacgtcattaagtgcatcaacagtaca agcatttcagactcaacgagtgcgtcgacatcagatagtgcgtcagaagtacaacaagtaca agtgaatcaacagtgaaagtacatcggtaagtgaatcaacaagtacaagtgagt tcaacaagtacatcggcaacaggagagtgcatcaacaagcgcagagtgaatcaacaa agtgaaagtacatcggtaagtgaatcatcaagtacaagcgtttcagattcaacaagtaca agtgaaagtacatcggtaagtgaatcatcaagtacaagcgtttcagattcaacaagtaca agtgaaagtacatcggtaagtgaatcatcaagtacaagcgagagtgaatcaacaagtacaa tcgacatcagaaagtgcatcaacgtcaacaagcgagagtgaatcaacaagtgaaagtacg tcattaagtggatcatcaagtacaagcgtttcagattcaacaagtacgtcaacgtcagaa tcagtaagtggctcaacaagtacaagtatttcagattcatcaagcacgtccacatcaatg agtacatctgaaactttcacttctcaatctcctataaatagtgaaagtcaatttattggt gatagcttgtctgaagatacaatcgtgactcaatcaaaaaatacgaatatgcttaataaa actggaaaagattatgatttacaagaacaaagaggttatactgattcagaacaacacaat gaaacacaaagtaatcaagctgataatcactcaaacaacctcgatttacttcatcaaaat cgtttacaagataaagtcgttaaacaaccgactaaaggagaagatggagttgtaagcaac ggttttatagtagcagtagcaatagtattggctatcttcggtttggcaaaaaatctaga

240.	atgaaaaaacagttatcgcttctacattagcagtatctttaggaattgcaggttacggt ttatcaggacatgaagcacacgcttcagaaactacaaacgttgataaagcacacttagta gatttagcacaacataatcctgaagaattaaatgctaaaccagttcaagctggtgctac gatattcatttcgtagacaatggataccaatacaacttcacttcaaatggttctgaatgg tcatggagctacgctgttcagatggttcagatgctgattacacagatgttcagaccaa gaagtagtgcaaatacacaatctagtaacacaaatgtacacagctgtttcagctccaact tcttcagaaagtcgtagctacagcacatcaactacttcatactagcaccaagccataac tacagctctcacagtagttcagtagatatacaatggtaatactgctggttctgtaggt tcatatgctgctgccaaatggctgcacgtactggtgtatctgctgttcagcagcac atcattgctagagaatcaaatggctacattacacagcagtattcaggtggaacac atcattgctagagaatcaaatggctacattacaatgcagtatactggtgtaggtgga ttattccaaactatgccaggttggggttcaactggttcagtaaatcagtcggtgga ttattccaaactatgccaggttggggttcaactggttcagtaaatcaatc
241.	abgaabaaaataaagtgabtgtaabtggabcaacaaatgtagabaaabtbcbbaagtbaaagggagtbtccaaaagcggagcaabtacababtaabtaabcaagcbcaaaagggagtbtggt gggggcaagggagcaabtacagcabtagbagabtagcaggagabtacaacabtb abcagbaagggagcaabtaagcabtgcaactbbaabtagagcaggagabtbcaaaaagca ggbabcabaccaababbbbbaacbcagagbagaababggagaabtbcaaaaagca ggbabcabaagaggagcaagabbbbbbbaacbggbgggggggaaggabbbbaabtagacabta acbgbbgaagcaggacaaaabtaggabtbbbbbbbbbbaacbggbggggaababbbbbbbbbb
242.	atggctcttaaaaaatataagccaattacaaatggtcgtcgtaatatgactactttagat ttcgctgaaatcacaaaaacacacctgaaaagtcattattacaaccgctaccgaaaga gcgggacgcaataaccaaggtaaattgactgttcgccatcatggtggtggacaacaaacgt caataccgtgttatcgattttaaacgtaacaaagatggaatcattgctaagttgattca attcaatatgatccaaaccgttcagcaaacattgcattg
243.	atgaagtcaaaattcacaattctattattacaatcttttctacaaca
244.	atgaagattggaattgatgcoggagggactttaattaaaattgtacaagagcatgacaat cgtagatattacagaactgaaattaacaactaatatccaaaaagtcatagattggcttaac aatgaagaaatcgaaacattaaagcttacaggtggaaatgctggagtaatagcagatcaa attcatcatcccctgaaatattgtagagttcgatgcatcaataaaaggtttagaaatt ttattggatgaacaaggtcatcaaattgaacattacatt

atgactttaaataaccattttgcatatacatttgaggagagacctaccccaaaattatgg agtgtaatacgttcaatgaatgcaaagaatttcttatctgaaaaactttataatgaacgt gagttatatgtttttgagtctgtttggacggaagaaaatcatacagacgctcaagaatta tatgatgacgctgtaaaacaaatgaaggaacaaaagaaaatcaatagaacgattacagtt gaaatgcaattagatttccaaactaatcaagtaaaaattactattagtgatatttttgat tacaaagatttagacacaatcatcgctgaaaaattagcccaaactacctctacttcttct caagttgatttccataaacaacaaattagagagcaaaccggaagaattacagatatgact cgtcttatcgaaggtgagtgggacgcaaataaaaagcgtgtgatggctggtaatgaaaca gttgatattggttcacatggtgttaaagtcattcaaaagagagaaccttaacgaattcgta atcatggttggtggcgtaattgctatgactcgtgataacggtgaaacatttaaaactggt attacaccagaaggtatcaatgctgaaatgcttatcggtaaagatgatcgttggtgaaact ttaacttttgaaaatgagtctggtacagttaaattcgacaaagatggactttatgttaac tctaaaaacttccatttagtttcaaatgatggagaagaagactacttcgataaattaaaa cgtgaaatgtctgaaaacgctaaacaacaaacagacagaatgttagaagagtataaaaaa gaagtttcacaaactatttctgaagctactgacgttagaaacattgttgataatgcagca gatattcttcaagcagcttttgctgatggagttatcacagatgttgaaaaacgtttgat tetgaaactettgeteaacttgaaaaagaaaatagagaattegaagataaaattaactta getttaaaccaccettacatcactgaggaagatactattgaggtaaataattetategtt gaatatagctcaatgtatgaaacacttgttatttctattaatgaaagtgttagtgacaag caagctactttagaagaagcaaaagattatacaacaagagttcgtgagatattaaagat gaattaaaagacttaaataattcatttaaatctttaaatagtacagttgaagagtcatta caagataatatttttgacgctgctgaattagaagctattaaaacagttgtattagtaact aaatcagaatatcaagatattacaaatagatattcttcaatgtctgcaaatacagattta aaatcggaaagtaaattagatttaacaaaatcttataaaactttagatactagctttaat gactttgttaaatatattgacgaaatgacaatggatagaattgcagatgagactgagaaa gttaattacaaaaagaaatatgatactttacaaaagaacttatcagattatatgaaaaaa tatgataactgtattttggaaatatctaaaaagtattctaatgacgcagcagataaagtg ttaggtgacttcacagctattgctactgaattacaaaatgatttccaagatgttaaagac aattgggctgaattcaagcaaactactcttgagtcatttaaagatggtatagtaactgag gcagaaaaagctcgactaagagtacaattagatatgcttgatcgtgaaagcatggatatt gaagaacgatataaaagcttacttgctaaccaatatactaatactgatattaaaaaatcgc ttaactgcttcacgttctccttacttatcagttcatgctagtttaagaaaagtaattgaacaaataattgctgacggaaaagttgatgaaagtgaaaaacattagctaataattcactt aatacatacaacacacattaactgcttattctaaaacaattcaagaagctctaaataca ttatcacaaatcatcatctcttctgatgtagcaagtaaaaaagttgaagaattcaatggtgta ataactacaatttcttcagacgttgatacaatcaagaaacaaagagatggtgcagtaatc acttattattatagcggtgtacctacattatctaacgatcagctaaaagttggacgact aatgatttaaaagacttacatattaaagatatgtatttagcactaaaatctggttatgca tatacttcactaaatctggtactagttattcttggaaaccactaatcgaccaagttatt gttagctcattgaaacaagcaaaaaatgcacaagacacagcggacaataaacgtagagtt gttagttoattgaaacaaguaaaaatgtacaagaacaaguagaacaagaagaatatgt tttgtaaaccaacctattcctctatgacaaggagatatgtggactaaaggttcacaa ggagatatttatgtctgtggaacttcgagagctactggctcattcgtaagtagcgactgg gttaaagcgagcaaatacactgacgatacagtagctaaacaggcagcaaaagatttagaa gattataaagtcaaaatgactaaagacttcaaagatttaaatgacggtgtatctacttt aaaactgaagtggttaaagatttcaaagatggaattgtaactgaagctgagaaaactaga acaaatattactgatattcaacaagattgatggtgcaattgaagttatadadatatadada acaaatattactgatattcaacaagattgatggtgcaattgaaactttctattacagt ggagtaccaacacttactaatatccccgcttcgtattggacaactgctagtaaacgtgaa gctcatttaggtgatttatatttagacactgctactggtgttgcttatcgtttcttaaaa aaaggaacaacttcccctacttactattggtctccaatttctgatcaaaattattacagac gcattgaatagagcaaaaacagctcaagacaccgccgatggaaaaaagaagaggatttttttgta aatacacctgttccaccatacgacactggtgacatgtggacgcaaggagctagtggtgac atcttagtttgtaaaacacctaaagctaaaggtggtatttactcaataagcgactgggta aaagctagtaagtatacagatgatacagtagcaaacagtgctgttcaacaattaaatgaa ttaacaactgatgaaagacaaagtggacaaattagtgtttatccatactcccctaacgga gcaagagagacagtaaatattaaagacggtaaaattacttatacatttactgcacaaact gaaagtacacaatttcttatttataaagacgtggctggtcaatctgatgtagacttaaat gtaacaatcgagaaggctattttagtcgaaggaaataaagttacagggtggtctccagca ccagaggagacttcttctgctttacgagattataatactcgtatctcctcagcagaaaca ttcattgagaaaaacaagaaaagatttctcaaattgctactaaatctgatgttgacgct cttcctgacgcaatcactaataaaaataagaaatataatacagttaaaatgacatacaat aaaaatacaaattacccttctgtattttctaattttatttctgttggaaaaggtcaagag gtagctattggtgaacatttaacactaacttgttatgcctatatcccttcttcatctaaa ggtaaattaactggtaacatatatattgaattcgctggttactatgaaaaagaccaaaaa tcaaacccaatgattgctagacatgaaatattacctaaagattttgaatataataaatgg ttcagaatgacagctagtactgctattccttctactaactctgagggtaaaaaaatcaat agacttgacgtatttagcactgaacaattggcagctaagattgcctcaaacccagagagt gtggatattatcgcaagaatattgatttcaatactgactcaatgaagatttataattct aacggtacattaaacatttctggagatactttaacaattagtaacaacaatagttctaat gagccggggatgaatggttattacactataaatactggtgtttacaattttgcagtacaa cacaaacaactattagaggtaaataatacaaaaaatgcgagagttaacaggtatacatat cctaacaatttgccagacttttttgaattacaagctggtattgcctatggagaaaataat tctattgatggtttctttagaattagacgtatggcaatgacagatacaccaaatgcggag

246.	atgtataacgtgacacagcatgcgacttataaaacaaaaaataaacgagaaactgctgta ttaatcggtgtacatgctcaaacggatcgtcaatttaattttgaatctactatggaagg ctcgatgctttatcacaaacttgccaacttaatgttaaaggacaaatcactcaaaataga gagcaatttgaccataatattatgttggaaaggaagacaattcgatgaaataaaatctttc atagaattcactgatatagatgttgtcgtaaccaacgatgaattaacgacggcacagtct aaaacgttaaatgataatttgggcattaaaatcatcgatgaaccaatttagga atattcgcgttgcgagcgagaagtagaaggagaagctacaagtagaaccaaattatttagga atattcgcgttgcgagcgagaagtagaaggagaagctacaagtagaacttgcacaactc gattatttgttaccaagactacatggtcatggtaaaagcctgtcctcgtcttggtggcg ataggaacaagagcccaggtgaaacaaaattagaaatggatcgtcgccatattagaaca cgtatgaatgagattaaacatcaattaaaaacggtcgtggatcatcgggaaagaagatagaa cagtagaacgaaaaatcaagttttcaaatcgctttagtggtaaaaaaatatttgttt gcaacattagatcaaggttttagctatggtgaaggagacctatgaaaaaaatttttgttt gcaacattagatttaatgttttagctaatcaagtgaaggaag	
247.	atgatgatcatcgtcatgttaatcttgagttatctgattggtgcattcccaagcgggtta attattggtaaattatttttaaaaaagatataagacaatacggtagtggaaatactgga gcaactaacagttttcgtgttcttggaagaccagctggatttatagttacgtttttagat attttcaagggatttattacagtctttttccactatggtcccagttcatgcggatgt gttataagcaccttctttacaaatggtttaatagtaggattgtttgcaatactcggtcac gtgtatccaatatotgaaatttaatggcggaaaagcagtagctaccagtgcaggagtt gtataggtgtcaatcctatttacttcttatctgcgaataatttttttt	ı
248.	atgatgaatcatagtgaagctttaactgaacaagtattttcatttgcttcagagctttat gcttatggtgtaagagaagtagtaattagtccaggttcaagctcaaccattagcactt gttttcgaagcacactcaacaatattaacactgaattcaccctgatgagcaagcgaagtgctgca ttttttgctttaggtcttattaaaaggtagcgaaaaacctgtagcaaattcttttgctttagctttattaaaggtagcgaaaaacctgtagacaaatcatttgcactt ggaacagccgctgcgaactacacacccgctatagctgaaagtcaaattagtcgtttgcct ctcgttgtttaacagcgaacagaccgcatgaactgcgcagtgggtgg	

atggcgaaaaattcaattacaattaccgtctatggttgctttaacgttatttggcaca atygcyaaadatttaattacaaattatuguttattyjttytttaatyttatugudda gettitaetgeacatcaagcaaatgetgetgaacaaaccacagaatcagttaatoataaa aatytattagatgatcaaactgecetcaaacaagcagaaaaagctaaaagcgaagttaca caatcaactacaaatgtatctggtacacaaacatatcaagaccetacccaagttcaacc gcacctaaacaagtaaaaccatctacacaaactgtaaatcaaattgctcaagtgaaagct aataattotggaataagagcatctgtatatgataaaacagccaaaagtggtacgaaatac gctaaccgtacattccttatcaataaacaacgtactcaaggtaataaacacgtatgtacta tatatggatccaacaaaagcaaaccgatattctttaaaaccatattatgaacaaactttc tatatggatccaacaaaagcaaaccgatattctttaaaaccatattatgaacaaactttc acagtcattaagcaaaaaaatattaatggcgttaaatggtactatggtcaacttttagac ggtaaatatgtttggataaaatcaactgacttagttaaggaaaaaattaaatatgcatat actggaatgactttaaataacgcgataaatatccaatctcgtcttaaaatataaaccacaa gtacaaaatgagcctttgaaatggtcaaatgctaattatgcaattctaagttagatcag gatacaaaagggtttaggtaatgattcatccttaaaatatccaatctacgttaagatcaa

250.

atgaatgaaacagacgaaatttcacaaatctataacaagcatcgattaccaagtttaagt atgaatgaacagacgaaatttcacadatctatacaagcatcgattaccagttataag ggtotagcaaaagtgtotccacttgttcatagggccagcataggaggcgttttaaatgtg gcagaattaaacagaattaaacgcctagttcaagtgcaaaatcaatttaaaacattttac aatcaaatgctagaagaagatgaagaggttaagtatcctatactgcatgataaaatgaat catctaccgatacttacagatttatttaaagaaattaatgaaacatgtgatgcacacgat ttatttgaccatgcaagttatactttacaaagtattagaagtaaaatttcaagaacaaac caacgaattcgtcaaaatttagatagaatagtgaaaaatcaagggaatcaaaaaaacta tctgatgcaattgtaacagtaagaaatgatcgcaatgttattccggtgaaagctgaatat gacgatgtagaaacagtcataattactggaccaaacacgggtggtaagacggttacttta aaaacactaggattgataattgtcatggcacaatcaggattgttaattcctacactggat ggaagtcaattaagtatctttgaaaatgtatattgtgatattggagatgaacaatctata gaacaatcattatcaacattttcatctcacatgaaaatatagtagaaatattacaagat gcagatcaaaatagtctcattttatttgatgaactaggcgcaggtacagatccaagtgaa ggtgcggcactcgcaatgagtatcttagattatgtacgccgtttagggtctttagttatg gcaacaacacattaccctgaattaaaagcttatagttataatcgtgaaggtgtcatgaat gcaagcgttgaatttgacgttgaaacactgagcccgacttataaattattaatgggtgtc ccagggagatctaatgcctttgatatatcgaaaaaacttggtctaagtctcaacatcatt adagaacatgaattaattgataaaaagaaacaacttgatgatcaatatgaggtaaaatca attaagcaacatgttcaaaagaaaaagtatgatacgattcatactggagatgaagtgaaa gttctatcttacggtcaaaaaggtgaagtgcttgaacttgtaggtgacgaagaagcagtt gtacaaatgggaatcattaaaatgaaattacctattgaagatttagaaaaaacgaaaaag aaaaaagaaaacctacaaaaatggtaacaagacaaaatagacaaactattaaaacagaa ctagatttaagaggatatcgttacgaagaagctttaaatgaattagatcaatatcttgat caggcggttttaagcaattacgaacaagtttatattattcatggtaaaggtacgggggca cttcaaaaaggtgttcaacaacatttgaaaaaacataaaagcgttagacaatttagggga ggtatgcctagtgaaggtggatttggtgtcactgtggcagaactcaag atgagtttttttaaacgtctgaaagataaattttctagtaaaaatgaagatgatattcaa 252. aaagacctggatgaatctgtagattcaaatgttaacagtgattcagattcaatggatccg aatgattctgatgaacaagttaaacccaaaaagaaacctaaaaaattaagtgaagctgat tttgacgaagatggcttgatatcgattgaagattttgaagaaatagaagctcaaaaaatt ggagcaaaattcaaggccggtttggaaaaatcacgtcaaaacttccaagaacagttaaat aatttaattgctcgatatagaaaagttgacgaagatttettcgaagctctggaagaaatg cttattactgcggacgttggttttaatactgttatgaaattaactgatgagctacgtaca gaagcacaaagacgtaatatacaagaaacagaagacttaaggaggttatagttgagaag attgtagaaatctatcatcaagaggacgatcattctgaagcaatgaatattgaagatgga cgtttaaatgtcatactgatggttggtgaatggtgtcggcaaaacaacaactagt aaattagettategttateaacaagaaggtaaaaagtaatgttagetgetggtgataet tttagagetggageaatteaacaattaaacgtetggggagaacgtgttggcgttgaagtt ccccatgaagctttattatgcttagatgcaacaactggtcaaaatgcactttcacaagca tccgttgaatctgaagaaggtaac atgaaaagaaattggtggaaagaagcagttgcatatcaagtatatccacgaagttttaat gatagtaatggagatggaataggtgatctacctggattaattgaaaaattagattatcta 253 gttactcctaatgatgctgaagaatgggtaggagaagaaatggggaaatttaattatgata ttccagtttgaacatcttggtttatggagtactggcgatacgaaattcgatgttaaatcc tataaacaagtcttaaatcgttggcaaaagcaactagaaaatgtaggttggaatgcttta tttatcgaaaaccatgatcaaccacgtcgtgttttcaacctggggtgatgataaaaattat tggtatgaatcagcaactagtcacgctactgcctacttttacaacagggcacacctttt atttaccaaggtcaagaaataggtatgactaattatccatttgaaagcattgaaagtttc aacgatgtcgcagtgaaaactgaatatcaaatagtcaaaaaagaaggtggagatgtcaat caattactagataaatataaaatggaaaaccgagacaatgcaaggactccaatgcaatgg aataattctatcaatgctggattcactactggtaagccatggtttcatgtaaaccctaac ttaattytagocaatctoacaaatgaagtatcagaactaaacctaccttttgaattagat atttcatctytagatataaaattycataattatcacttaaatgatataaatttagaccat attaaaccttatgaatcattcytcyttyaaata

	·	1
254.	ttgagtcatagaaagctatttccttctatattccatttatatcaacaagacaatttagat gaacatattgctattattggtataggacgtcgcgattataataacgaacaatttcgcgac caagttaaagcgtcaattcaaacttatgttaaagatacagatagaatttgatggtttatg acgcatgtttttatcataaaactgacgtgagtgataaagaattgatgggtttactt caatttagtgagcgactagattcagaatttgctttaggtgggaatcgtcgttttactt gcgatggcaccacaattttttggagtggatctcagattacctt caaactacaggatttaaacgcttagttataggagaaacaatttgggcagtgatctaaatct gctgaaccacaattttttggagtgatctcagattaccttaaatcttctggtcttact gctgaatcattaaataatcaaataagacgttcgtttaaagaagaagaagaatttacggata gatcactatcttggcaaagatatggtgcaaatattaagaagttttggcattcgcaaacgcg atgtttgaacctttatggaataataaaatacaattcaagatttcgaattggatgacctatagaag gtattaggtgtcgaagatcgtggtggctactatgaatctagtggtgcacttaaagacatg gtacaaaatcacatgctacagatggttgctttacttgcaatggaagcacgataagtttg aatagtgaagatatacgtgcagaaaagtcacaagtactaaatctctagacaattaaaa ccagaagaagttaaacagtgcagaagaatcgcgtagcaatatgatcaagacacgataagttg aaacaggttaagtcatacgagaagaatcgcgtagcaatatgatcaagacacgataagtta aaacaggttaagtcatatcgagaagaaatcggtgagcacgaattcaaggcaa tttgtatcgggtaaattaacaattgataactttagatggctggagttcctttacacgaca tttgtatcgggtaaattaacaattgataactttagatggctgaggttcctttcacatt agaacgggtaaacgattagaaatcaaaaacgatacaagtcgtagtagaatttaaagaaga cctatgaatttatattatgaaactgacaatttactagatctaaatttgctagtcattaat actcaaccaaatgaggaattccattcattgctagtcaagatagaatttaaaaatcgaatcaagtagaattgaatcaacat ggaggaagaaattacattgataatcattagatgctaagatagaacattcaacag gatgcaatatgaaaacttattgttgattgcttaaaggtgatgcgactaatttaacagat ggaggaagaattacaacttggaaatttgtcttaaaggtgatgcgactaatttaacaat tgggaagaaattaacattgttgatgtcttaaaggtgatgcaccaagatcaatggacat gttgaaccatgtttccctaaactatggaaagtggatacaccac ttttattaaacaattgataacattggaaggggatacaccaagatcaatggacat ttgaaccatgtttccctaaactatggaaattgtaagaacgaccatccaagatcaatggacat ttgaaccatgtttccctaaactatggaaggggatacacaccaccactcttgaaagtgacaccact ttgaaccatgtttccctaaactatggaagcgggatacacacac	
255.	atgattaaaaaaacaaagaagaactgaatgacatggagtatctagtcactcaagaaaat ggtactgaacctccgtttcaaaacgagtattggaatcactttgaaaaaggaatttacgtt gataaattgccggcaaaccattatttacttcagaggataaatttgcggt tggccaagtttctccaaagcattatttacttcagaggataaatctgtgtgataaatctaattgcggt tggccaagtttctccaaagcattaatgatgatgaaatcgtagaacttgttgataaatca tttggtatgaatagaactgaagttcgatcagaaaaagcaaatagtcacttggggcatgtt tttaatgacggacctaaagaaaaaggtggtttaaagatactgtattaactctgctgcgatt cagtttataccttatgataaactagaagagttaggatatggagatttaattaa	
256.	ttgaaaaagttagcetttgcaattacagcegcttcaggegcagcagcagtetatcacat catgatgctgaagcttctacacaacataaggtcaatctaggagaatccttatggactatt gcacaacaatacaat	
257.	atggcacgtattgctacaaaattgggctatcctgaaagcaatagtttcgtgactaatact gtaattgaatttgttttacataacgaagcatatcctcggttatataggattaaaaactga gatacgaacttaataaaatttctcaagctaatgaatccacgtcaaattacaaattgc gatacgaacttaataaaatttccaagctaatgaatctcacgtcaaaattacaaatggc acgatgacgcttgaagaagctaagtatcaattagaggaaatatatgttgctaaaagagat agcagtctaccttcaacaggaggtcgtctggtgatatcatcacacgctgtattagctggaacgattgctctatcta	
258.	atgacagaatttgacttatccactagagagggtcgttggaaacatttcggttctgtgac cctgtcaaaggtacgaaaccaactactaaaaatgaaatg	
259.	gtgcaaaaaaatatattactgccattattggaacaactgcccttagcgcattgcatca actcatgcacaagctgcaacaacgcatacagtaaaaaagtggagaatctgtatggcaatt tctcacaaatatgggattagtattgctaaattaaaatcacttaatggattgacttccaat ttaatattccctaatcaagtattgaaagtatcaggctcatcttcaagagcaacgtcaaca aatagtggcacagtttatacagttaaagctggagattcattatcttctattgctgcaaaa tacggtacaacttatcaaaaaatcatgcaacttaatgggttaaataactatcttatttc cctggacaaaagttgaaagtttctggtaaagcgggttaaataactacttatttc cctggacaaaagttgaaagtttctggtaaagcaggttcagtgggataactacatatctgcaatt ggtctagtggtgcgtactgcaacaatatactgttaagtatggagactcactatctgcaatt gctagtaaatatgggacaacgtatcaaaaattatgcaattaagatggattaactaattctc tttatctatcctggacagagttaaaagtgcctggaggtagttctagtagctcatctct aataatactagatcaaacggtggctattatcaccaacttttaaccaacaacattgat acttggggacaatgcacatggcacgtatttaatcgcacgtgctgaaataggaaaaggtatc agtacatactggtggaatgcaaataattgggacaatgcatcagctgctgaaataggaaaggtatc attgattatcgtcctacagtaggctgaatgcacaagcatgcat	

260.	gtgaccaaaaaagcttttattcttattctagaacaagtgatgaacatttaaatagagtt gtgagaataggagaagttgagattgatcatggaattgatgttattttagatgtatgg gattgcactgagggagatgacttgaattttttatggagtctatggtaatgacagagcg atagattttgttattattataagaggatttcagtatttaatagagctaatgaagaga ggaggagttggaaaagaagcacaataattacttctcaaatttatgataagcaaaagat agtaagtttatacctgctttttagatattctggataatggaaaaccatcattaccaact tttgtaatactagattcgctattgatatgacagacatcgaattagataagagaaaagagagag
261.	atgcactatctaaagaaagtaactatatacataagtttattaattttggtgagtggttgt gagacagcaaagaaacggaaatcaaacaaaaactttaataatgtgtaaatgtgtatcca actaaaaatctagaagacttttatgataaagagggttatcgatgaagagtttgataaag gatgacaaaggaacatggattattagatctgaaatgacaaaacagccaaaaggtaagatt atgacttcaaaaggtattggtgttacatatgaatagaaatactagaagatcaactggttat tacgttattaggaaaatttctgaagataataaaagtgaaattgatgaagaaaaggaaa tatcctataaagatggtaaataacaagataattccaactcaaaaaattaatgacaataaa ttgaagaatgaaatagaaaactttaagttctttgtacaatacggaagctttaaaaattca gatgattataaagaagggatattgaatacaactcaatgcaccaaattattctgcacaa tatcatttaagtaatgatgactataataataacaattaagaaaaagatattaaa acgaaaaaaacccctagattattaatgagagggctggagatccaaaaggatcttctgta ggttataaaaaactctagattattaatgagaaggcgctggagatccaaaaggatcttctgta ggttataaaaaatcttgaatttacatttgttaagaataagagaaaatatttatt
262.	gtgaaacattcgaaaaagttacttttatgcatcagtttttattaataacgttttttatt ggtggatgtggatttatgaataaagacgatggtaaagaaacggaaaatcaaacaaa
263.	atgcgttatctcaagaaagtaacgatatacataagtttattaattttggtaagtggttgt ggaaacggtaaagaaacggaaatcaaacaaaactttaataaaatgttagacatgtatccg actaaaaatctagaagacttttatgataaagaaggctatcgagatgaagagtttgataaa aaggataaagggacatggatagttggatctaccatgacaattgaaccaaaaggcaagtac atggaatctagaggtatgtttctatatattaatcgcaatactagaacaactaaaggttat tattatgtgaggaaaacaacagatgacagtaaaggtagactaaaagatgatgaaaagaga tatcctgtaaaaatggaacacaataaaattattccaacgaagccaatacctaatgacaaa ctaaaaaagaaatagaaaacttcaaattttttgtacaatatggagattttaaaaactta aaggattataaagatggacattcatacaatcctaatgtacctagttattctgaaaa tatcaattgagtaataatgactataatgtaaaacattacgaaaaagagatatgatgatattccc accaaccaagcccctaaattattttataaagaggatgtgacttaaaaggccatactata ggttccaaaagtttagaatttacttttatagaaaataaagaggaatatgatatttttttt
264.	atgaaacattcaagcaaaataatagtatttgtaagtttcttaattttaacgattttatt ggaggatgtggttttataaataagaagatagcaaagaagctgaaatcaaacaaa
265.	atgcgttatctcaagaaagtaactatatacataagttattaatttaacgatttttatt ggaggatgtggttttaaaataaagaagatagcaaagaaacggaaatcaaacaaa

267..

gtggatgatgtgacaaaatatggtccagttgatggagatccgattacgtcaacggaagaa attccgtttgataaaaaacgggaatttgatccaaacttagcgccaggtacagagaaagtcgttcaaaaaggtgaaccaggaacaaaaacaattacaacaccaacaactaagaacccatta gagatogttcattatggtggcgaagaaatcaagacaggccataaggatgaatttgatccg aacgcaccgaaaggtagtcaaacaacgcaaccaggtaagccaggagttaaaaatcctgat acaggcgaagtagtcacaccaccagtggatgatgtgacaaaattatggtccagttgatgga gatccgattacgtcaacggaagaaattccgtttgataaaaaacgcgaatttgatccaaac ttagcgccaggtacagagaaagtcgttcaaaaaaggtgaaccaggaacaaaaacaattaca acgccaacaactaagaacccattaacaggggaaaaagttggtgaaggtgaaccaacagaa aaaataacaacaaccagtggatgagatcgttcattatggtgggaagaaaatcaagcca ggccataaggatgaatttgatccaaacgcaccgaaaggtagccaagaggacgttccaggt aaaccaggagttaaaaatcctgatacaggcgaagtagtcacaccagcagtggatgatgtg acaaaatatggtccagttgatggagatycgattacgtcaacggaagaaattccgtttgat aaaaaacgcgaatttgatccaaacttagcgccaggtacagagaaagtcgttcaaaaaggt gaaccaggaacaaaaacaattacaacaacaactaagaaccattaacaggggaaaaa gttggcgaaggtgaaccaacagaaaaataacaacaacaacagtagatgaaatcacagaa tatggtggcgaagaaatcaagccaggccataaggatgaatttgatccgaacgcaccgaaa caaccagtggatgagatcgttcattattggtggcgaagaaatcaagacaggccataaggat gaatttgatccgaacgcaccgaaaggtagtcaaacaacgcaaccaggtaagccaggagtt aaaaatcctgatcgatcgatagtcacaccaccagtggatgatgtgacaaaattggt ccagttgatggagatccgattacgtcaacggaagaaattccgtttgataaaaaacgcgaa tttgatccaaacttagcgccaggtacagagaaagtcgttcaaaaaaggtgaaccaggaaca aaaacaattacaacgccaacaactaagaacccattaacaggggaaaaagttggtgaaggt gaaccaacagaaaaaataacaaacaaccagtggatgagatcgttcattatggtggcgaa gaaatcaagccaggccataaggatgaatttgatccaaacgcaccgaaaggtagccaagag gacgttccaggtaaaccaggagttaaaaatcctgatacaggcgaagtagtcacaccacca gtggatgatgtgacaaaatatggtccagttgatggagattcgattacgtcaacggaagaa attccqtttgataaaaaacgcgaatttgatccaaacttagcgccaggtacagagaaagtc gttcaaaaaggtgaaccaggaacaaaaacaattacaacgccaacaactaagaacccatta acaggagaaaaagttggcgaaggtgaaccaacagaaaaaataacaaaacaaccagtggat gagattgttcattatggtggtgaacaaataccacaaggtcataaagatgaatttgatcca gagattgttattatgtgggggggtaaaaattgaagttccaggtaaaccaggagttaaaaatcctgat acaggtgaagttgttaccccaccagtggatgatgtgacaaaatatggtccagttgatgga gattcgattacgtcaacggaagaaattccgtttgataaaaaaccggaatttgatccaaac ttagcgcaggtacagagaaagtcgttcaaaaaaggtgaaccaggaacaaaaacaattaca acgccaacaactaagaacccattaacaggagaaaaagttggcgaaggtaaatcaacagaa caagctaatgagggaactttagtcggatctctattagcaattgtcggatcattgttcata tttggtcgtcgtaaaaaaggtaatgaaaaat

268.	mtkkekdykksleqqktrvkiyksgkswvkasineiellktmglpflskneiqenvtekt kghklksaakttalvggaftfmmlmhqafaasetpitseissnsetvanqnsttikns qketvnstslesnhsnstnkqmssevtntagssekagisqgssetsngsklntyastdh vesttinndntaqqdqkssmvtskstqantsseknissnltqsietkatdslatsear tstnqisnltststsngssptsfanlrtfsrftvlntmaaptttstttssltsnsvvm kdnfnehmnlsgsatydpktgiatltpdaysqkgaislntrldsnrsfrfigkvnlgmry egyspdgvaggdgigfafspspplgqigkegaavgigglmnafgfkldtyhntstprsdak akadprnvgggafgafvstdrngmatteestaaklnvqptdnsfqdfvidyngdtkvmt vtyagqtftrnltdwiknsggttfslsmtastggaknlqqvqfgtfeytesavakvryvd antgkdiippktiagevdgtvnidkqlmnfknlgysyvgtdalkapnytetsgtptlklt nssqtviykfkdvqgpqisvdsqtrevyktinpitittidnskdvltttvtglpsglsfd qtntiigtpsevgttvvtnttdatgnvtskqfttiqdtispvvnvtpsaevftpi mpititatdnsgkvvthtvtglpgglkfdastnsivgtptqigtntitiestdasgnktt tkinyevtrnsasdststsivnsvstsisnstslsdsvkasgslstkestskslsgslsa stsnsasikasesatskklsesastskklsesastskklsesastskslsessatskslsesastskslsesastskslsesastskslsesastskslsesastskslsesastskslsesaststsesd snststslseststslsestststsdsaststsesd snststslseststslsestststsdsaststsesd snststslseststslsestststsdsaststsesd snststslsestststsdsastststsesd snsatstslsestststsdsaststststststsststststststststs
269.	mkktviastlavslgiagyglsgheahasettnvdkahlvdlaqhnpeelnakpvqagay dihfydngyqynftsngsewswsyavagsdadytesssnqevsantqssntnvqavsapt ssesrsyststtsysapshnysshsssvrlsngntagsvgsyaaaqmaatqsvastweh iiaresngqlharnasgaaglfqtmpgwgstgsvndqinaaykaykaqglsawgm
270.	mnknkvivigstnvdkflnvkrfpkpgetlhinqaqkefgggkganqaiaasrlaadttf iskvgkdgnanfiledfkkagihtqyiltseseetgqafitvdeagqntilvygganmtl satdvemsvdafigadfvvaqlevpfeaieqafkiarkqnittvlnpapaielpksllel tdiipneteaelltgisinnesdmketatyfldlgisavlitlgeqgtycayqeqykmi pacnvkaidttaagdtfigaflselnkdlsnlesairlanqassltvqrkgaqasiptrk eveaeyn
271.	malkkykpitngrrnmttldfaeitkttpeksllqplpkragrnnqgkltvrhhggghkr qyrvidfkrnkdgiiakvdsiqydpnrsaniallvyadgekryiiapkglqvgqtvesga eadikvgnalplqnipvgtvihnielkpgkggqlarsagassqvlgkegkyvlirlrsge vrmilstcratigqvgnlqhelvnvgkagrsrwkgvrptvrgsvmnpndhphgggegrap igrpspmspwgkptlgkktrrgkkssdklivrgrkkk
272.	mkskftillftifsttvlvlviiynktqsqsyisthysnnkikttatlflhgyggserse tfmvkqalnknvtnevitarvssegkvyfdkklsedaanpivkvefkdnkngnfkenayw ikevlsqlksqfgiqqfnfvghsmgnmsfafymknygddrhlpqlkkevniagvyngiln mnenvneiivdkqgkpsrmnaayrqllslhkiycgkeievlniygdledgshsdgrvsns ssqslqyllrgstksyqemkfkgakaqhsqlhenkdvaneiiqflwet
273.	mkigidaggtlikivqehdnrryyrtelttniqkvidwlmeeietlkltggnagviadq ihhspeifvefdasskgleilldeqghqiehyifanvgtgtsfhyfdgkdqqrvggvgtg ggmiqglgyllsnitdykeltnlaqngdrdaidlkvkhiykdteppipgdltaanfgnvl hhldnqftsanklasaigvvgevittmaitlareyktkhvvyigssfnmqllrevveny tvlrgfkpyyiengafsgalgalyl

274.	mtlnnhfaytfeerptpklwlckpdgtrieriadfsklggtfkftnvntlhfdlplqvfs	1
	edtkqiernkvvdlvknkylidyryngyrdifviddikksandsdfitlnldsraselnk kaaneiellgstipqmmnkilsvyaplwklghvdgkiidvkreltgsnttvnalidnics	
	lfdavaiynninrtisfyhkdnvgtnrglrvrensylksfedqfvskdivtrlypfgqsg ltiqsvnpagssyiedfsyfmspfkrdnnrnylqhsdymsdelchalldyqefyaskkdq	ļ
	agelskqysailkehsqedfrlnqlsatlqrlnervelvkpkseyidlgtkvknfkitvp kssyylimirndgsftrikfnnkqydipsgewlyiklktgkfndatkfekqleypleils	-
	ananlrvvytrssegdyeeedtktieekynlekykilvkdqekvvasierrlkafedqka svirsmnaknflseklynerelyvfesvwteenhtdagelyddavkqmkeqkkinrtitv	1
	dlvnfiqsldhkddwdklnvgdkvvfqnkifntkikayitemqldfqtnqvkitisdifd ykdldtiiaeklaqttstssqvdfhkqqireqtgritdmtrliegewdankkrvmagnet	١
	vdigshgvkviskenpnefvimvggviamtrdngetfktgitpeginaemligkmivget	١
,	ltfenesgtvkfdkdglyvnsknfhlvsndgeedyfdklkremsenakqqtdrmleeykk evsqtiseatdvrnivdnaadilqaafadgvitdvekrlisetlaqlekenrefedkinl	
	alnhpyiteedtielnnsiveyssmyetlvisinesvsdkmitpqeseeinqniinfree ikdilslveeiiertknaglgatleeakdyttrvrddikdelkdlnnsfkslnstveesl	
	qdnifdaaeleaiktvvlvtkseyqditnryssmsantdlkseskldltksyktldtsfn dfvkyidemtmdriadetekvnykkkydtlqknlsdymkkydncileiskkysndaadkv	
	lgdftaiatelqndfqdvkdnwaefkqttlesfkdgivteaekarlrvqldmldresmdi eeryksllanqytntdiknrltasrspylsvhaslrkvieqiiadgkvdesektlannsl	
	ntynttltaysktiqealntlsqiissdvaskkveefngvittissdvdtikkqrdgavi	
	tyyysgvptlsndpakswttndlkdlhikdmyldtksgyaytftksgtsyswkpltdqvi vsslkqaknaqdtadnkrrvfvtqpippydqgdmwtqgsqgdiyvcgtsratgsfvssdw	
	vkaskytddtvakqaakdledykvkmtkdfkdlndgvstfktevvkdfkdgivteaektr lrvqldildresqdieerynsifnsqyadtqvktsisnarstynnsltklrntiqtvied	
	gkvtptekttanqtltaynnaltsysaaiqealnsmskviaqkeatsqynqfneviknin tnitdiqkqvdgaietfyysgyptltnipasywttaskreahlgdlyldtatgvayrflk	
	kgttsptyywspisdqiitdalnraktaqdtadgkrrvfyntpyppydtgdmwtqgasgd ilycktpkakggiysisdwykaskytddtyansayqqlneykrtnnldiadlkrktsdfe	1
	ktvvnafddrvisisesssikgqlallnhekdrltrqyeniirnsnlvgaektklstays	
	nintklsdlsttinsaivdnkivdaesksvtskfelykasvneyqiafdnalnsiireia ssqakdrldewkrtefstdsdgiiervagakfdskwtdtwrntvnpaiqqvsnitygsen	
	lllnsesrsdganttthsfiryyltrpletgktytlkasvlttderqsgqisvypyspng aretvnikdgkitytftaqtestqfliykdvagqsdvdlnvtiekailvegnkvtgwspa	
	peetssalrdyntrissaetfieknkekisqiatksdvdaslskvatyetqynvssgtny qiplqeynqsfftdnytyevyaknnslssnnvataifvskgsnngyelveldnmsktgan	1
	prfyldskgrpsistfspqsttqdisviytkylgsasainttkslieqtassielqvkkl taeteynnillnsdfssgwegwinvdpqysivdkntfgitlpdaitnknkkyntvkmtyn	1
	kntnypsvfsnfisvgkgqevaigehltltcyayipssskgkltgniyiefagyyekdqk	
	snpmiarheilpkdfeynkwfrmtastaipstnsegkkinyiraclrydgknqsvnnsai fyyalpqlergskptewslsrldyfsteqlaakialnpesvdiiarnidfntdsmkiyns	
	ngtlnisgdtltisnnnssneviinpkgftlkkdgvvkfkngldtsdysvqayepqfssw nnikatdpaakskynyirhiepgmngyytintgvynfavqhkqllevnntknarvnryty	
	lynkrylkiqmsassrgksklyiifktktgdttlhqeivssssmvypditidlqaklgyp pnnlpdffelqagiaygennsidgffrirrmamtdtpnaev	ļ
275.	mynvtqhatyktknkretavligvhaqtdrqfnfestmeeldalsqtcqlnvkgqitqnr eqfdhkyyygkgkideiksfiefhdidvvvtndelttaqsktlndnlgikiidrtqlile	
	ifalrarsregklqvelaqldyllprlhghgkslsrlgggigtrgpgetklemdrrhirt rmneikhqlktvvdhreryrnkregnqvfqialvgytnagksswfnvlaneetyeknilf	
	atldpktrqiqvnegfnliisdtvgfiqklpttlvaafkstleeakgadvlmhvvdashs	
	eyrtqidtvnqiindldmdhipqvvifnkkdlcneqmdvpvsksahvfvssrdendkqkv knlviqeiknslspyeeivdsadadrlyflkqhtlvtelifdetqasyrikgfkkl	
276.	mmiivmlilsyligafpsgliigklffkkdirqygsgntgatnsfrvlgrpagfivtfld ifkgfitvffplwfpvhadgvistfftnglivglfailghvypiylkfnggkavatsagv	
	vlgvnpilllilaiiffsvlkifkyvslssiiaaiscvigsiiihdyillavsgivsiil iirhksnivrifkgeepkikwm	
277.	mmnhsealteqvfsfaselyaygvrevvispgsrstplalvfeahpniktwihpdersaa	٦
	ffalglikgsekpvailctsgtaaanytpalaesqisrlplvvltsdrphelrsvgapqa inqvnmfsnyvnfqfdlpiadgsehtidtinyqmqiasqylygphrgpihfnlpfreplt	١
	pdldrvdlltsvtktlphyqksisvddikdilqekngliivgdmqhqavdqiltystiyd lpiladplsqlrkekhpnvittydllyraglnlevdyvirvgkpviskklnqwlkktday	l
	qiivqnndqidvfptpphisyeisandffrslmeeplverkkwlqqwqsleqqarieisd ylkhatdeaayvgsliqkltkedtlfvgnsmpirdvdnllfdseasvyanrgangidgvv	١
	stalgmaahknvtlligdlsfyhdmmgllmaklnelhinivlvnnngggifsylpqkrsa tkvferlfgtptglnfeytallydftfkrfdnltdfkvaelskmgshmyevitnrdenlh	
278.	qhqnlyqklseivnytl	4
2/8.	makkfnyklpsmvaltlfgtaftahqanaaeqpqnqsnhknvlddqtalkqaekaksevt qsttnvsgtqtyqdptqvqpkqdtqsttydasldemstyneissnqkqqslstddanqnq	
'	tnsvtknageetndltgedktstdtnalgetasvakenekdlgananneagdkkmtasap sengaietatasnanesaaksaavtseanetatpkvsntnasgynfdyddedddsstdhl	
	epislnnvnatskqttsykykepaqrvttntvkketasnqatidtkqftpfsataqprtv ysvssqktsslpkytpkvnssinnyirkknmkaprieedytsyfpkygyrngvgrpegiv	
	vhdtandnstidgeiafmkrnytnafvhafvdgnriietaptdylswgagpygnqrfinv eivhthdydsfarsmnnyadyaatqlqyynlkpdsaendgrgtvwthaaisnflggtdha	
	dphqylrshnysyaelydliyekyliktkqvapwgttstkpsqpskpsggtnnkltvsan rqvaqikptnnglyttvydskghktdqvqktlsvtktatlgnnkfylvedynsgkkygwv	
	kqgdvvyntakapvkvnqtynvkagstlytvpwgtpkqvaskvsgtgnqtfkatkqqid katylyqtvnqksgwiskylttaskpsnptkpstnnqltvtnnsgvaqinaknsglytt	
	vydłkgkttnqiqrtlsvtkaatlgdkkfylvgdyntgtnygwvkqdeviyntakspvki	
	nqtynvkpgvklhtvpwgtynqvagtvsgkgdqtfkatkqqqidkatylygtvngksgwi skyyltapskvqalstqstpapkqvkpstqtvnqiaqvkannsgirasvydktaksgtky	
	anrtflinkqrtqgnntyvllqdgtsntplgwvnindvttqnigkqtqsigkysvkptnn glysiawgtknqqllapntlanqafnaskavyvgkdlylygtvnnrtgwiaakdliqnst	
	dagstpynytfvinnsksyfymdptkanryslkpyyeqtftvikqkningvkwyygqlld gkyvwikstdlvkekikyaytgmtlnnainiqsrlkykpqvqneplkwsnanysqiknam	
	dtkrlandsslkyqflrldqpqylsaqalnkllkgkgylenggaafsqaarkyglneiyl ishalvetqngtsqlakggdvskgkfttktghkyhnvfgigafdnnalvdgikyaknagw	
1		
	tsvskaiiggakfignsyvkagqntlykmrwnpanpgthqyatdinwanvnaqvlkqfyd kigevgkyfeiptyk	

279.	vafefrlpdigegihegeivkwfikagdtieeddvlaevqndksvveipspvsgtveevl vdegtvavvgdvivkidapdaeemqfkghgddedskkeekeqespvqeeasstgsqekte vdesktvkampsvrkyarengvnikavngsgkngritkedidaylnggsseegsntsaas estssdvvnasatqalpegdfpettekipamrkaiakamvnskhtaphvtlmdeidvqel wdhrkkfkeiaaeqgtkltflpyvvkalvsalkkypalntsfneeagevvhkhywnigia adtdkgllvpvkhadrksifeisdeinelavkardgkltseemkgatctisnigsaggq wftpvinhpevailgigriaqkpivkdgeivaapvlalslsfdhrqidgatgqnamnhik rllnmpelllmeg
280.	mnetdeisqiynkhrlpslsglakvsplvhrasiggvlnvaelnrikrlvdvdqqtktty nqmleedeevkypilhdkmnhlpiltdlfkeinetcdahdlfdhasytlqsirskisrtn qrirqnldrivknqgnqkklsdaivtvrndrnvipvkaeyrqdfngivhdqsasgqtlyi epnsvvemnnqisrlrndeavererilteltgfvsaeadalliaesvmgqidfliakary artikgtkptfkedrtiylpnafhplldkdtvvantiefiddvetviitgpntggktvtl ktlgliivmaqsglliptldgsqlsifenvycdigdeqsieqslstfsshmkniveilqd adqmslilfdelgagtdpsegaalamsildyvrrlgslvmatthypelkaysynregvmm asvefdvetlsptykllmgvpgrsnafdiskklglslniinkaktmigtdeqeinamies leqnskrvdqqrieldrlvreaqqthdalskqyqqymytslmdeakekanqrvksatk eadeilkelrnlrdhkgaevkehelidkkkqlddqvevksikqhvqkkkydtihtgdevk vlsyqdkgevlelvgdeeavvqmgiikmklpiedlektkkkkekptkmvtrqnrqtikte ldlrgyryeealneldqyldqavlsnyeqvyiihgkgtgalqkgvqqhlkkhksvrqfrg
281.	msffkrlkdkfsskneddiqkdldesvdsnvnsdsdsmdpndsdeqvkpkkkpkklsead fdedglisiedfeeieaqkigakfkagleksrqnfqeqlnnliaryrkvdedffealeem litadvgfntvmkltdelrteaqrrniqetedlrevivekiveiyhqeddhseamniedg rlnvilmvgvngvgktttigklayryqqegkkvmlaagdtfragaiqqlnvwgervgvev vsqnegsdpaavvydainaaknkdvdilicdtagrlqnksnlmqeldkmkrvinraipda pheallcldattgqnalsqarsfkevtnvsgivltkldgtakggivlairnelhipvkyv
282.	mkrnwwkeavayqvyprsfndsngdgigdlpgliekldylenlgidviwlspmypsphdd ngydisdykgimsefgtmndfdqllssihqrgmklildlvvnhtsdehpwfieskssktn akrdwyiwadpkpdgsepnnwesifngstwefdestkqyyfhlfskkqpdlnwenpdvrq avfemmwwfekgidgfrvdaithikknfeagdlpvpdgkkfapafdvdmnqpgiqewlq emkdkslsrydimtvgeangvtpndaeewvgeengkfmnifqfehlglwstgdtkfdvks ykqvlnrwqkqlenvgwnalfienhdqprrvstwgddknywyesatshatayflqqgtpf iyqqqeigmtnypfesiesfndvavkteyqivkkeggdvnqlldkykmenrdnartpmqw nnsinagfttgkpwfhvnpnyteinvkqqlndkfsilsyykaliqlkksdliytygkfnm ydaenkqvfaytrtfknntvlivanltnevselnlpfeldissvdiklnnyhlndinldh ibnyesfywei
283.	lshrklfpsifhlyqqdnldehiaiigigrrdynneqfrdqvkasiqtyvkdtdridefm thvfyhktdvsdkesyqsllqfserldsefalggnrlfylamapqffgvisdylkssglt qttgfkrlviekpfgsdlksaeslnnqirrsfkeeeiyridhylgkdmvqnievlrfana mfeplwmkyisniqvtssevlgvedrggyyessgalkdmvqnhmlqmvallameapisl nsediraekvkvlkslrqlkpeevkknfvrgqydqgnidgkqvksyreedrvakdsvtpt fvsgkltidnfrwagynfyirtgkrmksktiqvvvefkevpmnlyyetdnllsnllvin iqpnegislhlnakkniqgidtepvqlsyamsaqdkmtvdayenllfdclkgdatnfth veelkstykfydaigdwtmyengfpnyeagtngplesdlllsrdgnhwwddih
284.	mikknkeelndmeylvtqengteppfqneywnhfekgiyvdklsgkplftsedkresnog wpsfskalnddeivelvdksfgmirtevrsekanshlghvfndgpkekgglrycinsaai afinydkleelgyddlikhfkk
285.	1kklafaitaasgaaavlshhdaeastqhkvqsgeslwtiaqqyntsvesikqnnism mvfpgqvinvggsasqntssntssssasshtvvageslniiankygvsvdalmqanhlng ylimpnqiltipnggsgsgsggtatqtsgnytspsfnhqnlytegqctwyvfdkrsqagk pistywsdakywasnaandgyqvdntpsvgaimqstpgpyghvayveringdgsilisem nyangywmmyrtipassyssvafih
286.	mariatklgypesnsfythtviefylhneayprlyriktrdthlikisganelsfgithg tmtleeakygleeiyyakrdsslpfkgiaaaiiatsflylgggrlydiitavlagtigyl yveildrklhagfipefigslyigiisvighafypsgdlatiiiaavmpiypgylithai
287.	mtefdlstregrwkhfgsvdpvkgtkpttknemtdlqsthknflfeieevgiknitypvl idqyqtaglfsfstslnknekginmsrilesvekhydngielefntlhqllrtlqdkmnq naagvdvsgkwffdryspvthikavghadvtyglaienhtvtrkeltiqakvttlcpcsk eiseysahnqrgivtvkayldknndviddyknkildameanassilypilkrpdekrvte
288.	vqkkyitaiigttalsalasthaqaatthtvksgesvwsishkygislakiksligitsi lifpnqvlkvsgsssratstnsgtvytvkagdslssiaakygttyqkimqlnglnnylif pgqklkvsgkatssrakasgssgrtatytvkygdslsaiaskygttyqkimqlngltnf fiypoqklkvpggsssssssntrsnggyysptfnhqmlytwgqtwhvfnrraeigkgi stywmannwdnasaadgytidyrptvgsiaqtdagyyghvafvervnsdgsilvsemnw
289.	vtkkafisysrtsdehlnrvvrigeslrvdhgidvildvwdctegddlnffmesmyndet idfviilsdfqyfnrandreggygkestiitsqiydkqkdskfipvfldildngkpslpt fcntrfaidmtdieldiekieeiarkihdkplfekprlgkvpdynqnqmelkkaikkltl sksynetrnfeealdiiyktleniensveeynkddlmtlkevfdtwkefityalnndnfy freliiehynrclklteeefenpmtrifnyfsflilvseslssganeflkdllnakfhfs rreanyyilslypqvlskkysyntnvkkmlaemyfegkelkkvqdadvilyteslmkkdi hsvyetwhgvllysrwpmleqqtinilinkfrskkyldqfdflfgssqrevfenydkiks
290.	mhylkkvtiyisllilvsgcgdsketeikqnfnkmlnvyptknledfydkegyrdeefdk ddkgtwiirsemtkqpkgkimtskgmvlhmnrntrsttgyyvirkisednkseiddeekk ypikmvnnkiiptqkindnklkneienfkffvqygsfknsddykegdieynpnapnysaq yhlsnddynikqlrkrydiktkktprllmrgagdpkgssvgyknleftfvknneeniyft dsinfnpskgksl
291.	vkhskklllcisfilitffiggggfmnkddgketeikqnfnkmlnvyptknlenfydkeg yrdeefdkddkgtwivhskmviepkgknmesrgmvlfinrntrtskgyfivneiekdrkg rpinnkkkypvkmknnkiiptkpisndklkkeienfkffvqygnfkdiknykdgdisynp nvpsysakyqlsnneynvqqlrkrydiptkkvpklllkgdgdlkgssvgsknleftfien keeniyftdsvlfspsednes

292.	mrylkkvtiyisllilvsgcgngketeikqnfnkmldmyptknledfydkegyrdeefdk kdkgtwivgstmtiepkgkymesrgmflyinrntrttkgyyyvrkttddskgrlkddekr ypvkmehnkiiptkpipndklkkeienfkffvqygdfknlkdykdgdisynpnvpsysak yqlsnndynvkqlrkrydiptnqapklllkgdgdlkgssigsksleftfienkeeniffs dgvqftpsedses
293.	mkhsskiivfvsfliltifiggcgfinkedskeaeikanfnktlsmyptknledfydkeg yrdeefdkddkgtwiinskmivepkgeemeargmvlrinrntrtakgnfiikritennkg ipdvkdkkypvkmehnkiiptkqikdkklkkeienfkffvqygnfknlkdykdgeisynp nvpsysaqyqlnnydnnvkqlrkrydiptnqapklllkgtgdlkgssvgykhleftfven kkeniyftdsinfnpsrgn
294.	mrylkkvtiyislliltifiggcgfinkedsketeikqnfnkmlnvyptknledfydkeg frdeefdkgdkgtwiirsemtkqpkgkimtsrgmvlyinrntrtakgyfildeikddnsg rpienekkypvkmnhnkifptkpisddklkkeienfkffvqygdfknlkdykdgeisynp nvpsysaqyqlnnndnnvkqlrkrydiptnqapklllkgdgdlkgssvgsknleftfven keenifftdavqftpseddes
295.	mktykpyrhqlrrslfastifpvfmvmiiglisfyaiyiwvehrtihqhtyqtqtelqri dkhfhtfvtqqqkqwrhvdlshptditkmkrqllkqvhqqpailyydlkgssgsftnnye qldttkmyliskyridfkddtyilkiymsstpllknikknsqqsalivdsydtvlytndd rfsiqqkyqppqfgfmmeslklnshhahliiykdihetiedgiallvvmgvvlillvifg 'yisadrmakrqsedieaivrkiddaknrhlgsyeplkkhseleeinnyiydlfesneqli qsieqterrlrdiqlkeierqfqphflfntmqtiqyliplspkvaqtviqqlsqmlrysl rtashtvklaeelsyiqqyvaiqnirfddmiqlyidapedyqhqtigkmmlqplvenaik hgrgseplkitirirltkrklhilvhdngigmspshlervrqslhhdvfdtthlglnhlh nraiiqygtyarlhifsrshqgtlmcyqiplv
296.	vddvtkygpvdgdpitsteeipfdkkrefdpnlapgtekvvqkgepgtktittpttkmpl tgekvgegeptekitkqpvdeivhygeeiktghkdefdpnapkgsqttqpgkpgvkmpd tgevvtppvddvtkygpvdgdpitsteeipfdkkrefdpnlapgtekvvqkgepgtktit tpttkmpltgekvgegeptekitkqpvdeivhyggeeikpghkdefdpnapkgsqedvpg kpgvkmpdtgevvtppvddvtkygpvdgdxitsteeipfdkkrefdpnlapgtekvvqkg epgtktittpttkmpltgekvgegeptekitkqpvdeiteyggeeikpghkdefdpnapk gsqedvpgkpgvkmpdtgevvtppvddvtkygpvdgdpitsteeipfdkkrefdpnlapg tekvvqkgepgtktittpttkmpltgekvgegeptekitkqpvdeivhyggeeiktghkd efdpnapkgsqttepgkpgvkmpdtgevvtppvddvtkygpvdgdpitsteeipfdkkre fdpnlapgtekvvqkgepgtktittpttkmpltgekvgegeptekitkqpvdeivhygge eikpghkdefdpnapkgsqedvpgkpgvkmpdtgevvtppvddvtkygpvdgdsitstee ipfdkkrefdpnlapgtekvvqkgepgtktittpttkmpltgekvgegeptekitkqpvd eivhyggeqipgghkdefdpnapvdsktevpgkpgvkmpdtgevvtppvddvtkygpvdg dsitsteeipfdkkrefdpnlapgtekvvqkgepgtktittpttkmpltgekvgegeptekitkqpvd eivhyggeqipgghkdefdpnapvdsktevpgkpgvkmpdtgevvtppvddvtkyppvdg dsitsteeipfdkkrefdpnlapgtekvvqkgepgtktittpttkmpltgekvgegkste kvtkqpvdeiveygptkaepgkpaepgkpaepgtpaepgkpaepgtpaepgkpa epgkpaepgkpaepgkpaepgtpaepgkpaepgtpaepgkpa esgkpvepgtpaqsgapeqpnrsmbstdnknqlpdtgenrqanegtlvgsllaivgslfi fgrrkkgnek
297.	atgaataaacagatttttgtcttatattttaatattttcttgatttttttaggtatcggt ttagtaataccagtcttgcctgtttatttaaaagatttgggattaactggtagttta ggattactagttgctgcttttgcgttatttaaaagatttgggattaactggtagtgatta ggattactagttgcgcttttgcgttatctcaaatgattatatcgccgtttggtggtacg ctagctgacaaattagggaagaattaattattatgattaggattaattttgtttcagtg tcagaatttatgtttgcagttggccacaatttttcggtattgatgtatcgagatgatt ggtggtatgagtgctggtatggta
298.	atgctattttatttatttcattttacaatcagctttatatcaacagtacttttctctatc attttcaatgcacccaaacgcctcttagtagcatgtggatttgtgggtgccattgcatgg acgatttaccaattaacggtagatttagagtttggataaagttggggttcatttttggga agcttaattttagggttaatgagtttatgagtcgcagatataaacgaccggtaatt atattcatagtgccaggcattataccattagtacctggtggtgcagcttatcaagcgact cgttttttagtatcaaatgattatacaagtgctgtaaatacatttttagaagttacactg atttcaggtgcgattgctttcggtatattagttctgaaattctatattaccataccac cgtatcaaacaactgtatggtaaaatcaaaggtaagacatataaaaaatcttacaacag aataatagagtt

299.	atgataaatgcagtagtaatagcagtaattttaatgattatgctatgtttatgtcgatta aacgtagttataaagcttatttatcagtgcgctagttggtggtgttaatttcaggcattgagc attgaaaaagttataaatgtatttggaaaaaataatagtcgatggtggtgaggtagcaatta agctatgctttattaggtggatttgcagcattaatttcatacagtggtacaaaagctaat ttagtaggaaaaattataaatgcaattcacgctgaaaatagtcgatggtcaaaaacttaatt cctgtacaatattgcattcattccaattgcattatatgagtatacatgagtcaaaaacttaatt cctgtacatattgcattcattccaattgtattatagctattaatgcgattaattcccgt ttaaaaatagatagacgtttaatcggtttgattatcggttttagttatgtttaatgac ttaaaaatagatagacgtttaatcggtttgattatcggttttggtttatgtttcccgtat gtgttattaccatatggattcaatttccagcaaattttccaaagtggctttgca aaggcaaatcacccaattgggtttaatatgatttggaaagcaatgcttattccttcaatg gggtatattgttggcttacttatcggtttatatggtatatcgtatatccttcaatag gggtatattgttgggcttacttatcggtttatatggtaaaaccaattatagta acacgtaaaatttcagataggtacaatgttacagagttaaaccaattatcaatgata acaattgagcaatactagctacatttttagtacaaacatttacagattcaatgat gatgctaagtttgttgaaggtattaaaaattattgagtagtagta
300.	atgaatcataatgttattatcgttattgcattaatcatagttgtcatttctatgttagct atgctcattcgcgttgtgctaggcccatcacttgccgatcgtgttgtcgcattagatgcg attggtcttcaattaatggcagttatagcattattcagtattttattaataattaaatac atgattgtcgttattatgatgatggtatattagcttttttaggtactgcagtattctct aaatttatggacaaaggtaaggt
301.	gtgaataggaatatcgttaaactagttgtgttcatgctaattttagttgtagcagtagcg ggttgtgtgtcaaaaagatactgaagagaaaactgaaatgacgacaataaaagatgaatta ggaactgaaaaaataagaaaaatcctaaacgtgttgttgtattagaatatagttttgct gattatttagcagcattagatatgaaacctgttggtattgcagatgatggcagcactaaa aatataacaaagtcagtaaggaaattagggcatatgaatcggttggatctagaccg caaccgaaattggaagtgataagtaaattagaaccggatttgatcattgatcgatgcagatgttagc agacataagaaaatcaaatc
302.	atgactggagaacaatttactcaaattaaacgtccagtaagta
303.	gtggaaaatacaattaatgaaagtgaaaagaaaaaacgatttaaattaaaaatgccaggt gcatttatgattttatcattttaacggttgttgcagttatagcaacatgggttattcct gctggtgcatattctaacactttettacgaaccttcatcccaagaactaaagattaac cctcataaccaagtgaaaaaggttccgggtacgcaacaggaactagacaaaatgggggtt aaaattaagaatgattaaagcaacatcagetggaccagaacaagaactagacaaattacgat actattgaaagattaaagcaacatccagetggaccagaacaaataacaagtagcatggtt gaaggtacgatagaagcggtcgatatcatggtattcattc

305.

gtgttaaaaaagtggctaaattcaaacgtcaaacaattctttgttataactttcattagt gtaatattaacgcttattttattttctactcatatctctggattatattgtgaatggtact gttttagcggggctggagatggattccgtcaaatgatgccatttcaaatgtatttgta gaacatctacgtagtttttctagtttatatgatgcatcgtttggattaggtggcgattat atgaaaggactatattattattegotgtcacotttaatgtggctaaattttctattc attaaaataggagaaacggttggtatatttaatccgacgacaatacatttttggccgaca aaccaacttattatggctatgatacgagctatcataacatttgtcgtgaccttctactta tttaaaatattacactttaaacgctcagcaaatatgatcgctacgattttatacggcatg tcaactgtcgttatatactttaattttacttggtcattttatggaaatttattattta ttgccattatcgattcttggtttggaaagatattttcaacaacgcaaaatcggtattttc attgttgcgatagccttaacactatttagcaatttttattcagttattatcaagctatt attataggttgctactatttatatcgactcattttcacttacaaatatgacattgtctct agaacacaaaaattaatttgcgtcatatctgctacagttttgagtgtgttatcaagtgta gcactatcatcaagtgctctttgcggattgtttattcaacatttatcaacattaaatatg tttaatggagacattttaaaatattatgacaagacactccaaattaatatgccaatcgat aaaaacagcacttatagattacttggcaatcgtcaaaatttactatcactttggaatgtt aatgatcgaattagagtgaatcatgatgacaacttaccatatggatttaaaattaagtct cctacaaaacatttattacaagttaaacaaaataatggtggtctaactgtacagttgcca aaatcagtttctaatcaatttaaagatttgtattttgaaatggatttagaattactttcg ccgyataaagattatgatatgatatgaatgaatataaagatagaatataaagatacaagatataaatatagaatataaagatataaagatataaagatataaagatataaagatataaagatataaagatataaagatataaagatataagatagatataagatataagatataagatataagatataagatataagatataagatataagatataagatataagatataagatataagatataagatataagatataagatatagatagatatagatatagatagatatagatagatatagatagatatagatagatatagatagatagatatagatagatagatatagatagatagatagatagatagatagatatag ggtgttatgaccggcattaaagcacctaaaaatataacaaagattcaattgagctatacc ccaccatactattatttacttataacaattactatatttggcattatatgtagtattatt ttcacgagatgggcaagacaaaaa

gtgcgtcaattggcacaagcaaaaaagaaatcgacagctaagaaaaaaacaacatcaaaa aaaagaacaaattcgaggaaaaagaagaatgataatccgatacgttatgtcatagctatt ttagtagttgtattaatggtgttgggtgttttccaattaggaataataggtcgtctaatt gacagcttctttaattatttatttgggtacagtagatatttaacatatattttagtactc ttagcaactggttttattacatactctaaacgtattcctaaaactagacgaacggctggt tggtttggttcatttaatgaaaaaatgtcggaaagaaaccaagaaaacaattgaagcgt gaagaaaaagcaagacttaaagaagaacaaaaggcacgtcaaaatgaacagccacaata aaagatgtgagtgattttacggaagtgcctcaagaaagagatattccaatttatgggcat actgaaaatgaaagtaaaagccagagtcaaccaagtcgaaaaaaacgagtgtttgatgca gagaatagttcgaataacatcgtaaatcatcatcaagcagaatcagcaagaacaattaaca gaacaaactcataacagtgttgaaagtgaaaacactattgaagaagctggtgaagttacg aatgtatcgtatgttgttccaccgttaactttacttaatcaacctgcaaaacaaaaagca acatctaaagctgaagtgcaacgtaaaggacaagtactagagaatacattaaaagatttt ggggtaaatgcaaaagtgacacaaattaaaattggtcctgcagtaactcaatatgaaatt caaccagctcaaggggttaaagtgagtaaaattgtaaacttgcataatgatattgcatta gctttagcagcaaaagatgttagaatcgaagcgccaatacctggtcgttctgcagtaggt attgaagtgccaaatgagaaaatttcattagtttcactaaaagaagttttagatgaaaaa ttcccgtctaataataaactagaagttggattaggaagagatatatcaggtgatccaattactgttccactaaatgaaatgccacacttattggtggcaggatcgacgggtagtggtagatctgttgttgtataaatggtattattacaagtattttattattaaatgctaagccgcatgaagtt aaacttatgttaatogatoogaaaatggttgaactaaatgtttataacggaattocacacttattatatocggttgttacaaatcctcataaaggtgctcaaggtttagaaaaaattgta gctgagatggaaagacgttatgatttattccaacattcatcaactagaaacattaaaggt tataacgaattaatccgtaagcaaaatcaagaattagatgagaagcaaccagaattacct tatatcgttgttattgtagatgagcttgcagatttaatgatggtagctggtaaagaagtt gaaaatgcgattcaacgtattacacaaatggcacgtgcagcaggtatacatttaattgta gcgacacaaagaccttctgtggatgtaattacaggtatcattaaaaataatattccatct agaatagcttttgctgtgagttctcaaacagattcaagaactattattggtactggcggc ggaataagttacttggtagtttaaatagttatacgaattattggaattgggggg gcagaaaagttacttggtaaaaggtgacatgttatacgttggaaatggtgaccatcacaa acacgtattcaaggggcgtttttaagtgaccaagaggtgcaagatgttgtaaattatgta gtagaacaacaacaggcaaattatgtaaaagaaatggaaccagatgcaccagtggataaa tcggaaatgaaaagtgaagatgctttatatgatgaagcgtatttgtttyttyttgtagaaca caaaaggcaagtacatcattgttacaacgccaatttagaattggttataatagagcatct agacaagttttaatagatcttaataatgacgaggtg

307.

atgaatttgttaaagaaaaataaatatagtattaggaagtataaagtaggcatattctct cgtattcaacaagctgattatacatttgcgtcattagatatctttaatggtctgaaacga caagcatatattgattcattaactaatcaaatgcaacatacgttaattcgaagtgttgat gctgaaaatgcagttaataaaaaagttgaccaaatggaagatttagttaatcaaaatgat gaattgacagatgaagaaaaacaagcagcaatacaagttatcgaggaacataaaatgat ataattggtgaatattggtgaccaaacgactgatgatggcgttactagaatcaaagatcaa ggtatacagaccttaagtggggatactgcaacaccggttgttaaaccaaatgctaaaaaa gcaatacgtgataaagcaacgaaacaaagggaaattatcaatgcaacaccagatgttact gagacgagattcaagatgcactaaatcaatagctacggatgaaacagatgctattgat aatgttacgaatgctactacaaatgctgacgttgaaacagctaaaataatggcatcat actattggagcagttgttcctcaagtaactcataaaaaagctgcaaggaatgcaattaac caagcaacagcaacgaaaagacaacaaataaataataataaaaaaaccaacacaa ccagctacaaaagtaaaaacagatgcaaaaaatgccatcgataaaagtgcggaaacgcaa cataatacgatatttaataataatgatgcgacgctcgaagaacaacaagcagcacaacaa ttacttgatcaagctgtagcacagcgaagcaaaatattaatgcagcagatacgaatcaa gaagttgcacaagcaaaagatcagggcacacaaaatatagtagtgattcaaccggcaaca caagttaaaacggatactcgcaatgttgtaaatgataaagcgcgagaggcgataacaaat atcaatgctacaactggcgcgactcgagaagagagaaacaagaagcgataaatcgtgtcaat acacttaaaaatagagcattaactgatattggtgtgacgtctactactgcgatggtcaat agtattagagacgatgcagtcaatcaaatcggcgcagttcaaccgcatgtaacgaagaaa atcactgctgaagtggcgdagggtattgaggggttaataaacactactgaggggaggagagaagaagaagaagaagaattaatcaa gaagaaaagcaggctgctgttaatcaaattaatcaacttaaagatcaagcgattaatcaa attaatcaaaaccaaacaaatgatcaggtagacacaactacaaatcaagcggtaaatgct atagataatgttgaagctgaagtagtaattaaaccaaaggcaattgcagatattgaaaaa acagacaacy cyang cay the control of gttagaaatcaaacaatcaaggcaatagagcaaataaaacctaaagtaagacgtaaacga acaattaaaaatgacattgcacaaaacaaaacgaatgcagaagtggatcgaactgagact gatggcaacgacaacatcaaagtgatttacctaaagttcaagttaaaccagcagcgcgt caatctgttggtgtaaaagccgaagctcaaaatgcactaatcgatcaaagcgatttatca

309.	atgagtgttgaaatagaatcaattgaacatgaactagaagaatcaattgcatcattgcga caagcaggcgtaagaattacacctcaaagacaagcaatattacgttatttaatttcttca catactcatccaacagctgatgaaatttacaagcactttcacctgattttccaaatata agtgttgcgacaatatataataacttaagagtgtttaaagatattggaattgtaaaagaa ttaacatatggagactcatcaagtcgattcgactttaatacacataatcattatcatatt atatgtgaacaatgtggtaagattgttgattttcaatatccacagttaaatgaaattgaa agattagctcagcatatgactgactttgacgtaacacatcatcgaattgaaattgaa gtttgtaaagaatgccaagataaa
310.	atgagtgaaaacaacaaattctcgattatatagaaacaataatagttatatcgaa atcagtcatagaattcatgaacgtcctgaaacttggtaatgaagaaatatttggtctcga actttaatagatcgtttgaaagagcatgattttgaaatgagaaacagagtgctcga gcaactgggtttatagcgacatatgatttagggcctgggccagctataggttttta gcagaatacgatgctttgccaggattgggtcatgcttgacgggccagctataggttttta gcagatgtcttggtgcaattgggtcatgcttgtggtcataatatcattggaact gcagtgttcttggtgcaattggtttgaagcaagtgattgaccaaattggtggtgaaagta gtcgttcttggtgcaattggtttgaagcaagtggtgggaaaattggtgagcgctaaagctctata gtcaaggctggtgtgattgatcaaatagacattgccttaatgattcatccgggaaatgaa acttataaaacgattgatactttggcagtgatgttttagatgttaaatttacggaaaa acttataaaacgattgatactttggcagtgatgttttagatgttaaatttacggaaaa agtgctcatgcctctgaaaatgcagatgagcgttaaatgcattagacgctatgattagt tattttaatggtgtagcacaactacgacaacatattaaaaaagatcaacggtaggt gtgattttagatggcgggaaagcagctaatattattccagacatacactgctcgttt tatactagagcaatgacgcgtaaagaattggatatattacacagaaaaagtcacact gcacgtggagctgcgatacagactggtgtgtgattatgaattggcaatacaaacgg gcagtggagctgcgatacagactggttgtgattatgaatttggtcgaattcaaaacggt gtgaatgaattcattaaaacgccgaaattagatgatttattt
311.	atgactacgaccttcattattagctacattattttagcgctcattattgttggggttatc aatttattttaataagatcaagaaaaaaggcaaacgccaacaaaaggaacaacaattt acgacacgtcaatcaaatctaaatttaaagctagtgatttagacaaaacaactgat
	caatcgacacaacgtatgacgcatgaagagttgcgtgttgacaatcaagatgatcatagc caagttagtctaaatggttacacaaaggggtctgagaaagatcaagaagcattcactaat aataaggatgaggaagcagttgctgctaaaaatcctgaatcaagaagaatataaagtgaat gaaaaaataaaaaagaacataaaaaccttatttttggtgaaggtgtttacacgcggtaaa atattagcggcattattattcggtatgtttattgcgattttaaaccaaacataattaat
	tteattategggattategetatttaattggttttgtatggtttaagttatateaatat acaacaaacectaaagetgatateccaggtateatttttagtaegattggtttttgtgtget ttgttatatggttteteagaagetggcaacaaaggttggggtteagtaggagatagaaaca atgtttgegattggtattatetttattattetattegttattagagaattaagaatgaaa teaccaatgttgaatttagaagtattgaaatteceaacatttacattaacaacaattatt aatatggttgtaatgttaagtttatatggtggtatgattttatta
	ataatgatgccaatggtaactgcagctattaatggtatteggtatetgggactggacggacgttgcctctcat ggtaatgctttcttaaatacgatgcgtcaattagcaggctctataggtacagcaatctta gttactgtaatgacaacacaaactacacacacttatcagctttttggggaaggagttagat aaaacgaatcctgttgtacaaagatcatatgcgtgaattagcatcacaatatggcggacaa gaaggcgcaatgaaagtgttactacaatttgtaaataagctagcacaggttgaaggtatt aatgatgcatttataggttgcaacgatatttagcatcacactgctaattttatgtttattt ttacaaagtaataaaaaagcaaaagctacagctcaaaagttagatgcagataatagtatc aatcatgaa
312.	atgattaaaaataaaatattaacagcaactttagcagttggtttaatagcccctttagcc aatccatttatagaaatttctaaagcagaaaataagatagaagatatcggccaaggtgca gaaatcatcaaaagaacacaagacattactagcaaacgattagctataactcaaaacatt caatttgattttgtaaaagataaaaaaattacaaagatgccctagttgttaaagatgcaa ggottcattagetctagaacaacatattcagacttaaaaaaaatatccatatattaaaaga atgatatggccatttcaatataatat
	aacatggatgctacatatgcttacgtgacaagacatcgtttagccgttgatagaaaacat gatgcttttaaaaaccgaaacgttacagttaaatatgaagtgaactggaaaacacatgaa gtaaaaattaaaagcatcacacctaag

313.	atgcaatcaacgaaaaccaaaacgaagcattttcattttattgctaattacgttaggc gtcatgaccgcttttggcccactaactatagatatgtacgtac
314.	atgatgtatggatatccagagaaatggttggaaggtatgacaactggagaaggtatcgcg gcagaattacgcttaggcattgtgaatggtcacatagctgaaggtacgttactcactgaa aatcaaatggcaaagcaatttaatgtgagtcgttcgccaattcgagatgcatttaaatta ttgcaacaaaatcaactcatccaattagaaagaatgggtgcacatgttgccgtttggg gaacaagaaaagaa
315.	atgggaagttttttcaataaatagcacgaaaagaggatccggctatctat
316.	atgaatagtgataatatgtggttaacagtaatggggctcattattattattattattatatgta ggtttactcattgccaaaaagataaatccagttgtaggtatgacaatcataccttgctta ggggcaatgattttaggatatagtgtgacagatttggttgg

317.	atggaaaacacggttaaatatcgtaagtttatactccctatcgttgtaggtctccttatt tgggcacttacaccttttaaaccggatgctgtggatccaacagcatggtatatgttcgca atattcgtcgcgacaatcattgcttgtatcaccaaccgatgccaattgggggccgtctct ataattggatttacaatcatggtactcgttggcattgttgacatgaaaacggctgtcgct ggttttggtaataatagcatttggttaattgctatggcatttttcatttcgagagggattt gtgaaaacaggtcttggtagacgtatcgcacttcatttcgtcaaattattcgaaaaaa acattaggattagcatattctatcgtcggtgtagatttatctagctacacca agtaataccgcgcgtgctggtggaatcatgttcccaattatcaaatcactttctgaatca tttggttcgaaaccgaaagacggatcagcacgcaaaatggtgcatttcttgttttcaca gaattccaaggtaatttaatt
318.	atgaataaagtaattaaaatgcttgttgttacgcttgctt
319.	atgattaatcagtctatatggcgcagtaactttcgcattttatggctcagtcag
320.	atgaagcgattattcgatgtagtgagttcaatatatggtttagtagttttaagtccgatt ctgttaattacagcattactaattaaaatggaatcacctggaccagccattttcaaacaa aaaagaccgacgattaataatgaattgtttaatatttataagtttagatcaatggaaata gacacacctaatgttgcaactgatttaatggttcaacatcgtatataacaaagacaggg aaggtcattcgtaagacctctattgatgaattgccacaattattgaatgttttaaacaagga gaaatgtcaattgtaggtcctagaccagcgctttataatcaatacgaattaatcgaaaaa cgtacaaaagcgaacgtgcatacgattagaccaggtgtgacaggactagctcaagtgatg gggaggatgataccatgatgatcaaaaagtagcgtatgatcattattacttaacacat caatctatgatgcttgatatgtatacatataaaacaattaaaaaatatcgttacttca gaaggtgtgcatcac

321.	atggcacaacttaattcaaagatagcttccttaaaattattcgcaagttacgccatagca acttatattttagttatattaacgagtgcattaaatctttttaatggcgcgat acgttctatattgcggaacattgctaatcgttttaaccatcattttaattattta acaacggaacaaacatggaagcatcatgacctatggcgacgtatcgtgcgagtgttgtta ttgttgatgacattaacaggcaacgtatttacattattatatattata ttgttgatgacattaacaggcaacgtatttacattattatatgttgtaagtattagacgt taccaacgtacatcgcaaataccatagttataacgggtgggaatcgtttatacgaaaaact actagacatcgtattgcgattatcgggttacttattttagtctacatgcgcacattatca attggtcacaatttacatttgatacgacattggctactaaaaatcagttcaatgcactg ttaccatggaccgagtctagcctatccgtttggtactgattttcggtaggagacttattt acacgcgtagttgtaggaacgaagctgacatttcaatttcaattatttcagtagtatt gcagttattttggtgttactaggcactatcgcaggttatttaatcaatatgtgatat ttaataatgcgaattttagatgtagtgtttgcaattcatattattgttagcggtgca attattgcatcatttggagcaagtattccaaatttaattattgtttaagtaat ttaataatgcgaatttagagcactacaggtgccagtgttttagaaattaaacgcatggaatat gtagatgcagcacgtacactggtgaaaacacttggaatacatatagggttatatttta ccgaatgcgattgcgcctatgattgtacgtttttcattaaatatggcgttgttata acaacaagtagtttaagttcctaggacttggtgttgcacctgatgtggtgtgtata acaacaagtagtttaagttcctaggaacttggtgttgcacctgatgtagttagctattgacct ggtgtttgtattaggtagtagcttttaatatattagcgtgaatgcagtgacct ggtgtttgtattaggtagtgcgtgat
322.	gcactagatccaagaattcat atgaaaacaatacatttgtttegcatctaccactctttttattgaaaaagtggtatttg attatctatttactattatatta
323.	ttgaaaaacaagttattatttcgggcctcatgttattttcactattttttggagccgga aatttaatattcccgcccatgcttggccatacaacagcgggtcaaaatatgtggattg ctaggctttgcccttacaggcatattacccccttattactgttattgttgttgt tatgatgaaggtgttgaaagtgtaggcaatcgtatacatccatggttcgggtttatttt gctgtcgtgatttacatgtctatcggagcattttacggtattccacgtggtgcgcaaatgtc gcgtacgaaattggtacaagacacattttaccggtattcacatggtctgcaaatgtc gcgtacgaaattggtacaagacacatttacctgtgcataaccaatggacttaattata ttcgcagcaatcttttttgccatcgttactggattagttaaatccatcgaaaatcgtt gataatttaggtaaattatacaccgttattactgttcactaggatataattaagcat gctgtattttcaaccctgaatctgcactaagtgcactaaggataaatatataacacat ccttcatttcaggaagtttggaaggctatttacatgtcgctcatataagtat tttccgtagtcattgtcaatggctataagtttaaaggatcttgttgctgcgttagct ttttccgtagtcattgtcaatggctataagtttaaaggcctatattacttggaatgaaatt ttaaaaatagtctgcttttcaggtcttattgagccatattacttggaatgaat
324.	gtgaaacattatttgactaaatttgtagcaatgctaataactgctgctatggtgtagc tttgggttactgaaaagtcaggcagcagaaacacaaaagtattagtgatgtatatatgtgtg ataacggatgcgaaatctgcactttctaataattcgattgcagatgacaataagcagaaa gcaattgagcaagtggtaagtgcagttaagaaattacgcttgaaggataattagtgaaagt aatgctgtcaaatcagatytgagaaagcttgaagatgcaaaagcgaatgataatcaaaaa gatacactttcgcaattaaagaagtattgctgatgagagaga

325.	mnkqifvlyfnifliflgiglvipvlpvylkdlgltgsdlgllvaafalsqmiispfggt ladklgkkliiciglilfsvsefmfavghnfsvlmlsrviggmsagmvmpgvtgliadis pshqkaknfgymsaiinsgfilgpgiggfmaevshrmpfyfagalgilafimsivlihdp kksttsgfqklepqlltkinwkvfitpviltlvlsfglsafetlyslytadkvnyspkdi siaitgggifgalfqiyffdkfmkyfseltfiawsllysvvvlillvfandywsimlisf vvfigfdmirpaitnyfsniagerqgfagglnstftsmgnfigpliagalfdvhieapiy maigyslagyvivliekqhraklkeqmm	
326.	mlfylfhftisfistvlfsiifnapkrllvacgfvgaiawtiyqltvdlefgkvgasflg slilglmshtmsrrykrpviifivpgiiplvpggaayqatrflvsndytsavntflevtl isgaiafgilvseilyylytrikqlygkikgktykksynmnnrv	
327.	minavviavilmimlclcrlnvvislfisalvgglisgmsiekvinvfgknivdgaeval syallggfaalisysgitdylvgkinaihaensrwsrvkvkvtiiiallamsimsqnli pvhiafipivippllslfndlkidrrligliigfglcfpyvllpygfgqifqqiiqsgfa kanhpiefnmiwkamlipsmgyivglliglyvyrkpreyetrkisdsdnvtelkpyiliv tivailatflvqtftdsmifgalagvlvffisraynwyeldakfvegikimayigvvilt angfagvmnatgdidelvktltsitgdnklfsiimmyviglivtlgigssfatipiiasl fipfgasigldtmalialigtasalgdsgspasdstlgptaglnvdgqhdhirdtcvpnflfyniplmifgtiaamvl	
328.	mnhnviivialiivvismlamlirvvlgpsladrvvaldaiglqlmavialfsillniky mivvimmigilaflgtavfskfmdkgkviehdqnhtd	
329.	mnrnivklvvfmlilvvavagcggkdteektemttikdelgtekikknpkrvvvleysfa dylaaldmkpvgiaddgstknitksvrdkigayesvgsrpqpnmevisklkpdliiadvs rhkkikselskiaptimlvsgtgdynanieafktvakavgkekegekrlekhdkilaeir kkiegstlksafafgisragmfinnedtfmgqflikmgiqpevtkdktthvgerkggpyi ylnneelaninpkvmilatdgktdknrtkfidpavwkslkavkdnkvydvdrnkwlksrg iiasesmaedlekiaekak	
330.	mtgeqftqikrpvsrltekvlgwlcwvmllvltvitmfialvsfsnntsianlentlnnn afiqqllagngynttqfviwlqngiwaiivyfivcllisflalismnirilsgflflisa ivtiplvlliivtllipilffiiammlfirkdkvemvapqyyeeyngpiydyrepvyerpq pkddyydvpkyekeldksntvydqeqerdkydqfpkraveseynhderteeepsvlsrqa kykqksteelgieddgyyaepevdpkelkaqqkrekaeikakkkekrkaynqrmkerrkn qpsavsqrrmmfeerrqiynndiseernssevkdkkeqe	
331.	mentinesekkkrfklkmpgafmilfiltvvaviatwvipagaysklsyepssqelkivn phnqvkkvpgtqqeldkmgvkikieqfksgainkpvsipntyerlkqhpagpeqitssmv egtieavdimvfilvlggligvvqasgsfesgllaltkktkghefmlivfvsilmiiggt lcgieeeavafypilvpifialgydsivsvgaiflassvystfstinpfsvviasnaagt tftdglywrigacivgaifvisylywyckkikndpkasysyedkdafeqqwsvlkdddsa hftlrkkiiltlfvlpfpimvwgvmtqgwwfpvmasafliftiimfiagtgksglgekg tvdafvngasslvgysliiglarginlvlnegmisdtilhfssslvqhmsgplfiivllf iffclgfivpsssglavlsmpifapladtvgiprfvivttyqfgqyamlflaptglvmat lcmlnmryshwfrfwpvvafvlifgggvlitqvliys	
332.	msffkrlkdkfatnkeneevkslteeggdkledthsegstqdandlaenaevkkkprkl seadfdddglisiedfeeieagkmgakfkagleksrqnfqeqlnnliaryrkvdedffea leemlitadvgfntvmtlteelrmeagrrniqdtedlrevivekiveiyhqeddnseamn ledgrlnvilmvgvngvgktttigklayrykmegkkvmlaagdtfragaidqlkvwgerv gvdvisgsegsdpaavmydainaaknkgvdilicdtagrlqnktnlmqelekvkrvinra vpdapheallcldattgqnalsqarnfkevtnvtgivltkldgtakggivlairnelhip vkyvglgeqlddlqpfnpesyvyglfadmieqneeittvendqivteekddnhgsk	
333	mlkkwlnsnvkqffvitfisviltlilfsthiydyivngtvfsgagdgfrqmmpfqmyly ehlrsfsslydasfglggdymkglsyyyslsplmwlnflfikigetvgifnpttihfwpt nqlimamiraiitfvvtfylfkilhfkrsammiatilygmstvviyfnftwsfygnllyl lplsilgleryfqqrkigifivaialtlfsnfyfsyyqaiiigcyylyrliftykydivs rtqklicvisatvlsvlssvfglftgisaflendrkqnpnvdipfltpldyhyfffsdgf yitisiltivallsfklyrfyfyrlfaivtwilfigslsqyfdsafngfsfperrwyyil alsssalcqlfiqhlstlnmkyylirtipvciiailyvllspthplalivgiillivlav ilkfslwrykkltvailvlivmiqqivildnnknmaikpyqqslstlkqhdyhsnyvnql ikkinqnatgsfnridymsdyalnspfiyhyngislyssifngdilkyydktlqinmpid knstyrllgnrqnllslwnvndrirvnhddnlpygfkiksehkdnkvrwhlskntihyps ahitnkvfsnkelkspldkeqamlqgivsnnikdvnthfkanknllsdstiklnsaawqs ptkhllqvkqnnggltvqlpksvsnqfkdlyfemdlellspdkahdvkvneytqernklt ykyrrvvtpvtirikapdririslpkgkyrvnlkgiygedyttlkdasnsleavkvsktk hgytitknknssgyivlptaynqgmkatsgdqslkveqvngvmtgikapknitkiqlsyt ppyyyllititifglicsiiftrwarqk	
334.	mrqlaqakkkstakkkttskkrtnsrkkkndnpiryviailvvvlmvlgvfqlgiigrli dsffnylfgysryltyilvllatgfityskripktrrtagsivlqiallfvsqlvfhfns gikaerepvlsyvygsydhshfpnfgggvlgfyllelsvplislfgvciitilllcsvi lltnhqhrevakvalenikawfgsfnekmsernqekqlkreekarlkeeqkarqneqpqi kdvsdftevpqerdipiyghtenesksqsgpsrkkrvfdaenssnnivnhhqadqqeqlt eqthmsvesentieeagevtnvsyvvppltlnqpakqkatskaevqrkgqvlentlkdf gvnakvtqikigpavtqyeiqpaqqvkvskivnlnndialalaakdvrieapipgrsavq ievpnekislvslkevldekfpsnnklevglgrdisgdpitvplnemphllvagstgggk svcingiitsillnakphevklmlidpkmvelnvyngiphllipvvtnphkaaqalekiv aemerrydlfqhsstrnikgynelirkqnqeldekqpelpyivvivdeladlmmvagkev enaiqritqmaraagihlivatqrpsvdvitgiiknnipsriafavssqtdsrtiigtgg aekllgkgdmlyvgngdssqtriggaflsdqevqdvvnyvveqqqanyvkemepdapvdk semksedalydeaylfvveqqkastsllqrqfrigynrasrlmddlernqvigpqkgskp rqylidlnndev	
335.	maeklqrelsnrhiqliaiggaigtglflgagqtialtgpsilltyiiigfmlfmfmrgl geiiiqntefksfadvtntyigpfagfvtgwtywfcwiitgmaevtavakyvsfwfpeip nwisalfcvlllmsfnllsarlfgelefwfsiikiatiiglivvgfvmilfafktqfgha sftnlyehgifakgasgffmsfqmalfsfvgiemigvtagetkdpvktipkainsvpiri lifyvgalavimsiipwqqvdpdnspfvklfaligipfaaglinfvvltaaasscnsgif snsrmlfglssqqqappnfsktnkygvphvaifassalllvaallnyifpdatkvftyvt tistvlflvvwgliiiayinysrknpdlhknatykllggkymgylifvffifvfgllfin vdtrraiyfipiwfillafmylrykriaaksnk	

336.	mmllkknkysirkykygifstligtvlllsnpngaqalttdnnvqsdtnqatpvnsqdkd vannrglansaqntpnqsattnqatnqalvnhnngsivnqatptsvqsstpsaqnmhtd gnttatetvsnannndvvsnntalnvptktnengsghltlkeiqedvrhssnkyelvai aepasnrpkkrsrraapadpnatpadpaaaavqnggepvai tapytpttdpnannagqna pnevlsfddngirpstnrsvptvnvvnnlpgftlinggkvgvfshamvrtsmfdsgdnkn yqagqnvialgrihgtdtndhgdfngiekaltvnpnselifefntmttkngqgatnviik nadtndtiaektveggptlrfkwpdnvrnlkiqfvpkndaitdargjvqlkdgykyysf vdsiglhsgshvfverrtmdptatnnkeftvttslknngnsgasldtndfvyqvqlpegv eywnsltkdfpsnnsgvdvndmnvtydaanrvitikstgggtansparlmpdkildlry klrvnnyptprtvtfnetltyktytqdfinsaaeshtvstnpytidiimmkdalqaevdr riqqadytfasldifnglkrraqtildenrnnvplnkrvsqayidsltnqmqhtlirsvd aenavnkvdqmedlvnqndeltdeekqaaiqvieehkneiignigdqttddgvtrikdq giqtlsgdtatpvvkpnakkairdkatkqreiinatpdvtedeiqdalnqlatdetdaid nvtnattnadvetaknngintigavvpqvthkkaardainqatatkrqqinsnreatqee knaalneltqatnhaleqinqattnadvdnakgdglnainpiapvtvvkqaardavshda qqhiaeinanpdatgeerqaaidkvnaavtaantnilnantnadveqvktnaiqgiqait patkvktdaknaidksaetqhntifnnndatleeqqaaqqlldqavatakqninaadtnq evaqakdggtmivviqpatqvktdtrnvvndkareaitninattgatreekqeainrvn tlknraltdigvtsttamvnsirddawnqigavqphvtkkqtatgvlnlatakkqeinq ntnatteekqvalnqvdqelatainninqadtnaevdqaqqlgtkainaiqpnivkqaa laqinqnynaklaeinatpdatndeknaaintlnqdrqqaiesikqantnaevdqaatva emidavqvdvvkkqaardkitaevakrieavkqtpnatdeekqaavnqinqlkdqainq inqnqtndqvdtttnqavnaidnveaevvikpkaiadiekavkekqqidnsldstdnek evasqalakekekalaaidqaqtnsqvnqaatnysaikiiqpetkvkpaarekinqkan elrakinqdkeataeerqvaldkinefvnqamtditnnrunqvddttsqaldsialvtp dhivraaardavkqqyeakkreieqaehatdeekqvalnqlannekralqnidqaiannd
	vkrvetngiatlkgvgphivikpeaqqaikasaenqvesikdtphatvdeldeanqlisd tlkqaqqeientnqdaavtdvrnqtikaieqikpkvrrkraaldsieennknqldairnt ldttqderdvaidtlnkivntikndiaqnktnaevdrtetdgndnikvilpkvqvkpaar qsvgvkaeaqnalidqsdlsteeerlaakhlveqalnqaidqinhadktaqvnqdsinaq niiskikpattvkatalqqiqniatnkinlikanneatdeeqniaiaqvekelikakqqi asavtnadvayllhdekneireiepvinrkasareqlttlfndkkqaieaniqatveern silaqlqniydtaigqidqdrsnaqvdktaslnlqtihdldvhpikkpdaektinddlar vtalvqnyrkvsnrnkadalkaitalklqmdeelktartnadvdavlkrfnvalsdieav itekensllridniaqqtyakfkaiatpeqlakvkvlidqyvadqnrmidedatlndikq htqfivdeilaiklpaeatkvspkeiqpapkvctpikkeethesrkvekelpntgsegmd
337.	lplkefalitgaallarrrtknekes msveiesieheleesiaslrqagvritpqrqailrylisshthptadeiyqalspdfpni svatiynnlrvfkdigivkeltygdsssrfdfnthnhyhiiceqcgkivdfqypqlneie rlaqmtdfdvthhrmeiygvckecqdk
338.	msekqqildyietnkysyieishriherpelgneeifasrtlidrlkehdfeieteiagh atgfiatydsgldgpaigflaeydalpglghacghniigtasvigaiglkqvidqiggkv vvlgcpaeeggengsakasyvkagvidqidialmihpgnetyktidtlavdvldvkfygk sahasenadealnaldamisyfngvaqlrqhikkdqrvhgvildggkaaniipdytharf ytramtrkeldiltekvnqiargaaiqtgcdyefgriqngvnefiktpklddlfakyaee vgeavidddfgygstdtgnvshvvptihphikigsrnlvghthrfreaaasvhgdealik gakimalmglelitnqdvyddieehahlkgngk
339.	mtttfiisyiilaliivgvinlflirsrkkgkrqqkeqqfttrqsnqskfkasdldkttd qstqrmtheelrvdnqddhsqvslngytkgsekdqeaftnnkdeeavaaknpeseeykvn ekikkehknfifgegvsrgkilaallfgmfiailnqtllnvalpkintefnisastgqwl mtgfnlvngilipitaylfnkysyrklflvalvlftigslicaismnfpimmvgrvlqai gagvlmplgsiviitiyppekrgaamgtmgiamilapaigptlsgyivqnyhwnvmfygm fiigiiailigfvwfklyqyttnpkadipgiifstigfgallygfseagnkgwgsveiet mfaigiifiilfvirelrmkspmlnlevlkfptftlttiinmvvmlslygmillpjylq nlrgfsaldsgllllpgslimgllgpfagklldtiglkplaifgiavmtyatweltklnm dtpymtimgiyvlrsfgmafimmpmvtaainalpgrlashgnaflntmrqlagsigtail vtvmttqttqhlsafgeeldktnpvvqdhmrelasqygqegamkvllqfvnklatvegi ndafivatifsiialilclflgsnkkakataqkldadnsinhe
340.	miknkiltatlavgliaplanpfieiskaenkiedigggaelikrtqditskrlaitqni qfdfvkdkkynkdalvvkmqgfissrttysdlkkypyikrmiwpfqynislktkdsnvdl inylpknkidsadvsqklgyniggnfqsapsiggsgsfnysktisynqknyvtevesqns kgvkwgvkansfvtpngqvsaydqylfaqdptgpaardyfvpdnqlppliqsgfnpsfit tlshergkgdksefeitygrnmdatyayvtrhrlavdrkhdafknrnvtvkyevnwkthe vkiksitpk
341.	mqstktktkhfsflllitlgvmtafgpltidmyvpslpkvqgdfgsttseiqltlsftmi glalgqfifgplsdafgrkriavsilliifilvsglsmfvdqlplfiltlrfiqgltgggvi viakasagdkfsgmalakflaslmvvngjitliaplagglalsvatwrsiftiltivali iligvasqlpktskdelkqvnfssvikdfgsllkkpafiipmllqgltyvmlfsyssasp fitgklynmtpqqfsimfavngvgliivsqvvallveklhrhilliiltiiqvvgvalli ltltfhlplwvlliafflnvcpvtsigplgftmameertgsgnassllglfqfilggav aplvglkgefntspymiiifitaillvslqiiyfkmikkqhva
342.	mmygypekwlegmttgegiaaelrlgivnghiaegtlltenqmakqfnvsrspirdafkl lqqnqliqlermgahvlpfgegekkemydlrimlesfafsrvknqerlpivkemkkqlem mkvavkfedaesftkhdfefhetlikasnhqylnsfwshlkpvmmalvltsmrqrmqqnp qdferihhnhqvfidaveqydsqilkeafhlnfddvgkdiegfwln
343.	mgsffnkiarkedpaiyonkdghlkrtlrvrdflalgvgtivstsiftlpgivaaehagp avalsfllaaivaglvaftyaemaampfagsayswnvlfgeffgwvagwallaeyfia vafvasgfsanlrglvkpigielpaalsnpfgtnggfidiiaaivilltalllsrgmsea armenilvilkvlaiilfvivgltainvsnyvpfipehkvtatgdfggwggiyagvsmif layigfdsiaansaealdpoktmprgilgslsvaivlfiavalvlvgmfhysqyannaep vgwalrogsphgvvaaivogaisvigmftaligmmlagsrllysfgrdgllpswlshlndkh lpnralviltiigvligsmfpfaflaqlisagtlvafmfvslamyrlrkegkdlpipaf klplypvlpaitfvlvllvfwglgfeaklytliwfivgiilylsyglrhskkndvaeyhp pk

344.	mnsdnmwltvmgliiiisivglliakkinpvvgmtiipclgamilgysvtdlvgffakgl
244.	dqvinvvimfifaliffgimmdsglfkplvkrlilmtrgnvvivcamtaligtlaqldga gavtfllsipallplykalnmnkyllilllalsaaimnmvpwggpmarvaavlkaksvne lwglipigigfilwnlfavvlqfkegkrikkalernelpotgdidyhklvevyerdgd
	vrīpvkgrartkswikwvntaltlavilsmliniappefafmigvslalvinfksvdeqm erlrahapnalmmaaviiaagmflgvlnetgmlkalatnlikvipaevgpylhiivgllg vpldlltstdayyfavlpiveqtagqfgvpsvstaysmvigniigtfvspfspalwlaig laeanmgtyikyaffwiwgfaivmlviamlmgivti
345.	mentykyrkfilpiyyolliwaltofkodaydotawymfaifyatiiacitqpmpigays
	iigftimvlvgivdmktavagfgmnsiwliamaffisrgfvktglgrrialhfvklfgkk tlglaysivgvdlilapatpsntaraggimfpiikslsesfgskpkdgsarkmgaflvft efggmlitaamfltamagnplaqnlasstsnvhitwmnwflaalvpglvslivypfiiyk iypptvketpnakswaenelatmgkialaekfmigifvvaltlwivgsfihidatltafi alaillltgvltwqdilnetgawntlvwfsvlvlmadqlnklgfipwlsksiatslggls wpivlvililfyfyshylfasstahisamyaallgvaiaagapplfsalmlgffgnllas
	tthyssgpapilfssgyvtqkrwwtmnlilgfvyfiiwiglgslwmkvlgif
346.	mnkvikmlvvtlafllvlagcsgnsnkqssdnkdkettsikhamgtteikgkpkrvvtly qgatdvavslgvkpvgaveswtqkpkfeyikndlkdtkivgqepapnleeisklkpdliv askvrnekvydqlskiaptvstdtvfkfkdttklmgkalgkekaeddllkkyddkvaafq kdakakykdawplkasvvnfradhtriyaggyageilndlgfkrnkdlqkqvdngkdiiq
	ltskesiplmnadhifvvksdpnakdaalvkktesewtsskewknldavknnqvsddlde itwnlaggyksslkliddlyeklniekqsk
347.	mingsiwrsnfrilwlsgfiaiagltvlvpllpiymaslqnlsvveiqlwsgiaiaapav ttmlaspiwgklgdkisrkwmvlrallglavclflmalcttplqfvlvrllqqlfggvvd
	assafasaeapaedrokylorlossysagslyopliggytasilgrsallmslavitily
	cifgalklietthmpksqtpninkgirrsfqcllctqqtcrfiivgvlanfamygmltal splassvnhtaiddrsvigflqsafwtasilsaplwgrfndksyvksvyifatiacgcsa
	ilqqlatniefimaarilqqltysaliqsvmfvvvnachqqlkqtfvgttnsmlvvgqii gslsgaaitsyttpattfivmgvvfavsslflicstitnqindhtlmklwelkqksak
348.	mkrlfdvvssiyglvvlspillitallikmespgpaifkqkrptinnelfniykfrsmki dtpnvatdlmdstsyitktgkvirktsidelpqllnvlkgemsivgprpalynqyeliek rtkanvhtirpgvtglaqvmgrdditddqkvaydhyylthqsmmldmyliyktiknivts
349.	egyhh maqlnskiaslklfasyaiatyilviltsalnlfkgyvadtfyiaetllivltiiliiil
313.	tteqtwkhhdlwrrivevllllmtltgnvftllmfvsirryqrtsqihsyngwesfirkt trhriaiigllilvymltlsivsqftfdttlatknqfnallhgpslaypfgtddfgrdlf tryvyqtkltfsisiisvviavifqyllgtiagyfnhidnlimrildvvfaipslllava
	iiasfgasipnliialsignipsfartmrasvleikrmeyvdaaritgentwniiwryll pnaiapmivrfslnigvvvlttsslsflglgvapdvaewgnilrtgsnylethsnlaivp gvcimfvvlafnfigdavrdaldprih
350.	mktihlfriyhsfllkkwyliiyllfilaallitlttiqhvteddnhfnigvvdkdqsse tklilnsigkgsnlgknvsikayddkqahtllkkhklqgyfvfdkgmtkafykqgelpis
	vvtvdcqsmksvvlsqltdsvvqrlmrsmqqilafqdlapkashsdsinvmtdllitgln
	rsgafnlepihlydtgsyyaitgflttvfifalslftvlkmnqdtvlkarlkmfhfsker lliirtlitwfytmlwsivgvvwivfsipnifelynwptlaihlsyyvtflilwllliel
	lttgllnsiskvilaivilvlsgltiptiflqhiangvfniqpfavvtnqlleiilnnyi lelhpsfylsfialliinlavlvwryrq
351.	mkkqviisglmlfslffgagnlifppmlghtagqnmwigmlgfaltgillpfitvivvaf ydegvesvgnrihpwfgfifavviymsigafygipraanvayeigtrhilpvhnqwtlii
	faaiffaivywislnpskivdnlgklltpllllmvallsiavifnpesalsapkdkyith
	pfisgslegyftmdlvaalafsvvivngykfkgltdrmkilkyvcfsgliaaillgmiyf alayvgastapgnfkdgtdiltynslrlfgsfynlvfgmtvilacittciglvnacatft
	kkhvpkfsykifalifsiigflfttlglemilkiavplltliypvsialvlisfanmfst frfswayrlatvitliisilqilnsfnllhgvilksfmmlpladidlawlvpfmlfaiig fiidvfirrpkqatt
352.	mkhyltkfvamlitaamvcsfgllksqaaeqqsisdvysvitdaksalsnnsisndnkqk aieqvvsavkklslednsesnavksdvrkledakandnqkdtlsqltksliayeeklask
	dagskikllqqqvdakdaamtkaikdknkaeleslnnslnqiwtsnetvirnydanqygq ievallqlriaihkspldtakvshawttfksnidhvdkksntsandqyhvsqlndaleka
	ikaiddnglsdadaalthfietwpyyeggigtkdgalytkiedkipyygsyldehnkahy
	kdglvdlnnqikevvghsysfvdvmiiflreglevllivmtlttmtrnvkdkkgtasvig galaglvlsiilaitfvetlgnsgilresmeaglgivavilmfivgvwmhkrsnakrwnd
	miknmyanaisngnlvllatiglisvlregveviitymgmigelatkdiligialaivii iifallfrfivklipifyifrvlsififimgfkmlgvsiqklqllgamprhviegfptin
L	wlgfypsyepliaggayimvvailifkfkk

353.	atgaagaatttttetaaattegeacttacaagtattgeegeattaactgtggeaagteet ttagteaataeggaggttgaegetaaggataaagtateageaacteaaaacategatgeg aaagtaacceaagaateteaageattgaaaggataceaaaatetgaaaat ataaaaaagaattacaaagattataaggteactgaaaaggataceaaaatetgaaaat acaaaagattacaaagattataaggteactgaaaaggataacaaaggattt acgeattacacattgeaacegaagtgggeacacagtatgeaceagacaaagaagtaaaa gtteatacgaataaaggaggtaaggtatettgteaatggtgatactgatgetaagaaa gtteaacetacgaataaggtaggegataagtaagaagtgecacagataaagettegaa gcaataaaaattgacegteaaaaagtaaaaattaatatatataaaacttacaaaceat aaagttgagattgatggagaaaaaaataaattgattataacatagaaattatacaact tcaccaaaaateteteattggaatgtgaaaattgacegtgaaactggteaaggtgtgat aaattaaatattataatagtgaagagtacaggtacaggtaaaggtgtactaggtgac acgaacaaattacattataatagtgacageggggtataacaggtaaaggtgacaaggtgacaaggaacacattecaacagaaacagaaacagaaaacagaaaaaattattatagtgaagagagacactgeagagatcactggteaaggtacaagtagacaaggagacacattattacaacaggagaaacaggtacaaggtacaaggagacacaaggagacacattattacaacagggagaaacaggaggagaaacaaggaggacacaattattacaagggagaaacaaggaggagaaacaaggaggagacaaattattacaagggagacaaacagaacaaaca
354.	atycctaaacatagtyctagttagttattatyttttaataactttattycctattttt caatatcaagcttctycacatycgactttagaaaaatcaacaccacaacagcaagyygtt attaaagacaaaccagaagcaatcaagttagagtttaatyaacctytgaacaccaaatac tcgagtytgaccttatttgatgataaagytaaaaagattaaagacottaaaccaataaca actygatygtctcagacagttytattttcatctgagcaaattyttaatygcacgaatact attgaatycctagacagtgatggacatyaagcagaaattyttaatygcacgaatact gtgaatygcatacgytatctycggatygacatyaagtcggagatacgtttgaattttca gttggaaaagtgaggctaaagaty
355.	atgaaaaaatcaaaacaatctcgacattggtagctggacttggtatagcatttctaggt cacacaacaca
356.	atgaaaaaatcgctacagctacaattgcaactgcaggaatcgctactttcgcatttgca caccatgacgcacaagcaggaacaaaataatgatgggtacaatccaaaacgacccttat tcatatagctacaactgcagaacaaatgctgaaggtaactaccactacaactgacaggt aactggagtccagatcgtgtaaatacttcatataactataaataa
357.	ttggaagataaaaagctccagtaaatgaagactttttaaattacatcaaaaactatgcc gatgtaagaaacatacctctttcaagacgtaagatggcctcgttgttcacacttctaaa actgcaattgatgdtccacaagaaaaactaaatacttggttacgaaacctgataag ttttacgtgaatattatcgagcttcgaaagacttatattacaaagctggtagatatcgt agcttacttaattactttattgatatggctcgtttctattatgtgattgat

358.	gtgggagtcgtgtcaatcattactgggattacaatatttgtcagtggtcagcatgctcaa gctgctgaaatgacacaatcatcatcagattctaacgaacagtcacaacaaaca	
359.	mknfskfaltsiaaltvasplvntevdakdkvsatqnidakvtqesqatnalkelpksen ikkhykdykvtdtekdnkgfthytlqpkvgntyapdkevkvhtnkegkvvlvngdtdakk vqptnkvaiskesatdkafeaikidrqkaknlksdviktnkveidgeknkyvynieiitt spkishwnvkidaetgqvvdklnmikeaattgtgkgvlgdtkqininsvsggytlqdltq qgtlsaynydantgqaylmqdkdknfvddeqragvdanyyaketydyykntfgresydnq gspiisiahvnnfqgqdnrnnaawigdkmiygdgdgrtftalsgandvvaheithgvtqq tanlvyrsqsgalnesfsdvfgyfiddedflmgedvytpgvggdalrsmsnperfgqpsh mndfvytnsdnggvhtnsgipnkaayntirsigkqrseqiyyraltvyltsnsdfqdaka slqqaafdlygdgiaqqvgqawdsvgv	
360.	mskhsatlvimflitllpifqyqasahatlekstpqqqgvikdkpeaiklefnepvntky ssvtlfddkgkkikdlkpittgwsqtvvfsseqivngtntiewhtvsadghevgdtfefs vgkvrlkm	
361.	mkkiktistlvaglgiaflghtthadaaennnqqqstynysttevsfsnsgnlytsgqct wyvydktggkigstwgnanswataaqaagftvnntpeegaimqssegafghvafvesvnn dgsitvsemnydggpfalstrtisaseassynyihln	
362.	mkkiatatiatagiatfafahhdaqaaeqmndgynpndpysysytytidaegnyhytwkg nwspdrvntsynynmynnynyygynnysnynnysnynnyasnntgsqrttqptgglg asystsssnvhvtttsapssngvslsnarsasgmlytsgqctyyvfdrvggkigstwgna nnwanaaarsgytvnnspakgailqtsqgayghvayvegvnsngsirvsemnyghgagvv tsrtisasqaasynyih	
363.	ledkkapvnedflnyiknyadvrniplsrrkmaslfhtsktaiddvsqeklntwlrkpdk fyvniielskdlyyksgeyrsllnyfidmarfyyvidplfssdskmskekvkkdlskisl qlnkmnlkhelakiyktevlediffgyeiedkdnyfmlkldpkycklvgisdgmytyafn lsyfdgmldllktfpeefgraylersidkgadlnwfipdftksvvfkineddptilppfs tmfeplldlndykklkkagakinnymllhqkvpmhdnankdyqadnfaisaeamdyfsel vnenlpdeigsivspmevnpikldrddktdkvleatrdvynasgvssfifnmdknstggl tysvrkdelfvinfyrqverwlnrkirygmivaknqwrisllnvtgmsedtyleqltksg tfgfsvrgriaalhgldyhtlsqslelennildldtnliplasshtgglntaveqtkgki edsggrptketkdlsdsgqanrdssnsetksleggdtnne	
364.	vgvvsiitgitifvsgqhaqaaemtqsssdsneqsqqteqvehkedtthlsyelnqeget asqsktsqenqsdgnvqkksnqiqdstqtsplndqkqtsmeqqskdnhvtpnsrqdtyp kgqnqddkgkqqfkdnqhsqtehqpntqnqnndqdssdkkqhpsdqtqdssskgtqpkqs qsiedrdktvkqpsskvhkigntktdktvktnqkkqtsltsprvvkskqtkhinqltaqa qyknqypvvfvhgfvglvgedafsmypnywggtkynvkqeltklgyrvheanvgafssny dravelyyyikggrvdygaahaakyghkrygrtyegimpdwepgkkihlvghsmggqtir lmehflrngnqeeidygrqyggtvsdlfkggdqnmvstittlgtphngtpaadklgstkf ikdtinrigkiggtkaldlelgfsqwgfkqqpnesyaeyakrianskvwetedqavndlt tagaeklnqmttlnpnivytsytgaathtgplgnevpnirqfplfdltsrviggddnknv rvndgivpvssslbpsdeafkkvgmmnlatdkgiwqvrpvqydwdhldlvgldttdykrt geelgqfymsminnmlkveeldgitrk	
365.	tcaataaggtgctttctaaagaatttttctccccatgtccaatctataaataa	
366.	ctgttgcaccatttggtccttttgcacctaagtcaattgatacttgccagttgccatat caggaattaacattggtacgaaaaatggactcacacgtcttgggcctttatccattaatt gtttatgtgcaatttcaaatgtttccataccaccgataccagaaccaatccatacaccga ttcgatctgcagtattttcat	
367.	gatgcacetttaggtetaatacetggtgttaettttaaaaatgatgtaeetaaettttea gteaacatacgaettteaagaggtgaacaaacaaegeeatetaaaceagetgcatttget aacttggcataa	
368.	tacatcaaaccactatgtttacccattttcttaccatcaagtgttatcatatcacccggt tgtgcaggtaaatattgtgataaaaatgttttaaagttttttcgccgataaaacaaatg cctgtagaatctttttcttagcagtaacaagtccttgttcttcagcaattcgacgcact tcactcttttcgatgtcgccaattgggaacatcacttttgaaagttgttgt	

cgtttcgcatcttcatcatattctaataatggccaatctgtcacccataagaagtttaat tttgtttcatcgattaaacctaattctttagctaatttgacacgtaatgcacctaaactt tgtgcaacgacatttggtttgtctgcaacaaacattactaagtcaccagcttcagcacca gttaatgtaagtaatgtttcaacattttctgtttcaaagaaacgtccaattggacctgtc aaaccatcttccacaactttaacccacgctaatcctttagcacca	
cgtcaacgtcctgtccatgtgtttccaaaaaataataatccacatgggcaatataatcat caatatcaacatcactacgtaacgctagcaaatgctttt	
atgaatgaagcatetaatttaatettaaceatgecaaatgaatecaaagcegeaactaaa atagcaaagattaageegecaateactggtgetggtatacaaataegttttaaaaaatta acg	
attetateageegeattateeacaeeggeattattaaacaacategattetteeaaac tgtteetttatgteagacaeaaagtetaeeacttgttgttegettgeattateeacatta taegeettegeattgteacaattaetttaatttategaeagteteegataeegettea getatgtetaeegeeaataeataegeacettat	
cctggcgctattgtttcaggtccgtattctgttaattcattaatcggatcttttgtaatc tcttcttttggttcacctttactaataattactccagttaatggattttttagtgttggt gtcgttattgtcttctcacctttttgtccttctcttgttactttttctgtccttggtgct aaatccggattaaatttacgttctttcttgaatggaatctcttcaactttttttt	
ttactaacatttattgctgttaaacctacgatgacaaataaaataatagctaatactttt aaaataactaaaatattttccatacgagctgcttccgacataccacgtgatagtaataat gcagttaataaaataa	
gatgtgttgaaactgagttcaattaaattatatgtttttattatacactttttgacatat tttttaaatttaagaatgcgaagatttttaacatttctgatgctagctttcttt	
totatoattgtaaatactgtatotaagtgcataaaagttogactagttggaatttcaatt gctactacttttttaaacgtogoctgoggattttcaaaaaatacgtogogotaacttttca atagottgtgcagatgtacgttotgaaacgcotatagccaagacatottttagataaaaca agttoatogocgocttcaatattgaatgggcaatotogatotaaccagattggaatatto gcatotttaaatotagga	
gaagtettggccatteeettgagtaaacatgaageeeceageeatetgeteetgttgtatt acettggttgttgtttgctaetggaacagtaattgtaaagtetttattaaaatetatttt ateattatattetaa	
sircflknfsphvqsinkslvkncdttilirlcikpvcvnsiiaasmignpvcpshhalk sasfcdhficrylglkawyevsgycvint	
11hhlvl1hlsqlilaqlpyqe1tlvrkmdshvlglyplivyvqfqmfpyhryqnqsihr fdlqyfh	·
daplglipgvtfkndvpnfsvnirlsrgeqttpskpaafanla	
yikplclpiflpssviispgcagkycdknvlkffspikqmpvesfflavtspcssairrt slfsmspignitfescc	
rfasssysnngqsvthkkfnfvssikpnslanltrnapklcattfglsatnitkspasap vnvsnvstfsvskkrpigpvkpssttlthanplap	
rqrpvhvfpknnnphgqvnhqvqhhyvtlanaf]
mneasnliltmpneskaatkiakikppitgagiqirfkklt	
ilsaalstpallnntsilpncsfmsdtksttccslalstlyafalsplllilstvsdtas amstantyapy	
pgalvsgpysvnsligsfvissfgsplliitpvngffsvgvvivfspfcpslvtfsvpga ksglnlrsflngisstffsnsvivfgasgvkvnsepfksvliqpfafip	
lltfiavkptmtnkiiantfkitkifsiraasdiprdsnnavnkitiaaiisikppfvpn gfdnaagnsmpigftsprkfaenpdatkataikysanraqpathpknspnntltqe	
ipirtdlliyilq	
sssppsilngqsrsnqigifaslnlg	
cgttgcacaaagctgaatgttaaaaatgcggatccgccagcaatgactgcaatccaacaa tctgatgcgacacgaca	
aaattcgttaaaaaagaatattgtaatgatgcatgctgtaaa	
	ttyttheatogalthaaacctaattctttagetaattyaeacgaatatyaeccaacca tytaatytaagtaatytttoaccaacattttotytttoaaagtaaccagettoagcacca gttaatytaagtaatytttoaacattttotytttoaaagaaagtocaattygacctgc gchaacytcctytcatytytttocaaaaaattatateacacatyggcaatataatata cgaatacaacacacatagatacgctaaaccttaagaaccaaagacgc gataacytaagtaagctaacgcaaaaatyttt atgaatyaagcatctaatttaatttaaccatgccaaatgaatccaaagcgcaactaaa atagcaaagattaagccgcaatcatyggtgtgytacaaataagttttaaaaaatta acg attoctatcagcogcaattatcaacacgggattattaaacaacacatggattcttccaaac tyttoctttatytcagacacaaagytctaccacttyttyttgetytgattataccacatta tacgcettogcattytaccacattactttaattttatgacagatctcgcattcaccactta tacgcettogcattytcaccattacttatatttattytacgaagtctcgcattyccacattactacaccatta cctygcgctattyttcagatcacatacattacgacccttat cctygcgctattyttcacctttactactacgattctttacttttttgttytaatc gctatytctaccgccaatacatacgaccttat cctytttygttycacctttactaataattactccagttaatggattttttagtyttgg tgcyttattytcttcacctttttytctttttyaatygaatctttcaactttttytctctgyty tactaccagcaatttyttyttyttyttytaaagataaacttyaaccttttacatttttttttagtttttagatytcyttttyttytaaagataacttytactttttacattttttytcattttaatttttagattctttaaaattacttttacattacagagattcttcaacacttttttaaatttttcaatacagagattaatattttaaaataattttccatacagagagacaataaaataaat

393.	atgactaataaaagagaagatgtccgcaatatagcaattattgctcacgttgaccatggt aaacaactttagtagatgagttgttaaaacaatctggtatattcagagaaaatgaacat gtcgatgaacgtgcaatggactctaacgatatcgaaagagagcgtggaattacgattcta gccaaaaatacggctgttgattataaaaggtacacgtattatgaaaatggttgatggggttgtctta gcaaaataggctgtgggaaagtagaacgtattatgaaaatggttgatggggttgtctta gtagtagatgcgtatgaaggtacaatgcctcaaacacgttttgtactggggttgtctta gtagtagatgcgtatgaaggtttgtgttgttataaaattgataaaccatcagcacgtcca gagggtgttgtagaagatgtttagatttattattattgaattagaagcaaacgatgcca aaggagtgttgtagaagattttagatttattattattgaattagaagcaaacgatgaacaa ttagaattccctgttgtttatgcttcagcagtaaatggtacacgtagatcaga tagaatgataatttacaatcattatatgaaacaattattgattatgtaccagctcca aatgataacagtgatgagccattacaattccaagtagcattgttggactacaatgattat gttggacgtattggtattggtgtgtattcagaggtaaaatgcgtgtcggagataatgta tcactaattaaatta
394.	gtgcttaggagtgatttttatatgtcttattccattgttagagtttcaaaagttaaatct ggaacaaatacaacgggcatacaaaaacatgttcaaaggagaaaataataattatgaaaat gaagatatagaccatagtaaaacttacttaattatgatttggtaatgctaataaacag aattttaataacttgattgatgaaaaaatcgaacagaattatacaggcaaaagaaaaatt agaacagacgcgattaaacacattgatggtttaattacacgacaatgatttctttgat aatcaaacgccagaagatacaaagcagtttttgaatatgctaaagagttttagacaa gaatacggtaaagataatttattatatgcaacagttcacatggacaaagacacacac
395.	mtnkredvrniaiiahvdhgkttlvdellkqsgifrenehvderamdsndierergitil akmtavdykgtrinildtpghadfggeverimkmvdgrvlvvdayegtmpqtrfvlkkal eqnlkpvvvnkidkpsarpegvvdevldlfieleandeqlefpvvyasavngtasldpe kqddnlqslyetiidyvpapidnsdeplqfqvalldyndyvgrigigrvfrgkmrvgdnv slikldgtvknfrvtkifgyfglkrleieeaqagdliavsgmedinvgetvtphdhqeal pvlrideptlemtfkvmnspfagregdfvtarqiqerlnqqletdvslkvsntdspdtwv vagrgelhlsilienmrregyelqvskpqviikeidgymcepfervqcevpqenagavie slgarkgemvdmtttdngltrlifnvpargmigyttefmsmtrgygiinhtfeefrprik aqiggrnngalismdqgsastyailgledrgvnfmepgtevyegmivgehnrendltvni tktkhqtnvrsatkdqtqtmnrpriltleealqfinddelvvvtpesirlrkkilnknvr ekeakrikqmmqene VLRSDFYMSYSIVRVSKVKSGTNTTGIQKHVQRENNNYENEDIDHSKTYLNYDLVNANKQ
	NFNNLIDEKIEQNYTGKRKIRTDAIKHIDGLITSDNDFFDNQTPEDTKQFFEYAKEFLEQ EYGKDNLLYATYHMDEKTPHMHYGVPITDDGRLSAKEFVGNKKALTAFQDRFNEHVKQR GYDLERGQSRQVTNAKHBQISQYKQKTEYHKQEYERESQKTDHIKQKNDKLMQEYQKSIN TLKKPINVPYEQETEKVGGLFSKEIQETGNVVISQKDFNEFQKQIKAAQDISEDYEYIKS GRALDDKDKEIREKDDLLNKAVERIENADDNFNQLYENAKPLKENIEIALKLLKILLKEL ERVLGRNTFAERVNKLTEDEPKLNGLAGNLDKKMNPELYSEQEQQQEQQKNQKRDRGMHL
397.	atgactgttgaagaagatccaatacagccaaagttgacattttaggggtcgattttgat aatacaacaatgttgcaaatggttgaaaatatttaaaccttttttgcaaatcaacg aataatctttttatagtaacagccaaccctgaaatagtgaattacgcgacgacacatcaa gcgtatttagagttaataaatcaagcgagctatattgttgctgatgggacaggagtagtc aaagcttcgcatcgtttaaagcaacctctagcgcatcgtatacctggtattggtgtgtgt
398.	mtveersntakvdilgvdfdnttmlqmveniktffanqstnnlfivtanpeivnyatthq aylelinqasyivadgtgvvkashrlkqplahripgielmdeclkiahvnhqkvfllgat nevveaaqyalqqrypnisfahhhgyidledetvvkriklfkpdyifvgmgfpkqeewim thenqfestvmmgyggslevfagakkrapyifrklniewiyralidwkrigrlksipifm ykiakakrkikkak

399.	atgattgaaaattttaagttacgtaaaatgaaagtcggtttagtatctgttgcaattaca atgttatatatatgagacaacggacaagcagaagcatctgaaaatcaaaacgctttaatc tctaatataaatgtagacaatcaggaaaaacagaatatgtaaatcaaacgctttcagcct caaaataatactaatgaaacatcaaaagtaccggctaattttgtcaaattgaatgtatt aaaccaggtgatacttctatacaaaggaacaactttaccaaattatatactattaact attgataaaaaagatgtgagctcagttgaagattctgacagcagctttgttatgtctgat aaagatgggaattttaagattgacttaaatggtcgcaaaattgttcataatcaagaaatt gaagtgtcttcatcaagatccctatttaggtcgcaaaattgttcataatcaagaaatt gaagtgtcttcatcagatccctatttaggtgacgatgaagaagtagaagaagaagaagacagctaaaagcagacagctatataca acaccgcgatatgaaaaagcgtaggaagaagaagtagaagcagacagctaaaagcagaaga acttcaactgaagaagttggtgtgaggaagaagtagaagtagaagcaaaaagaagaga actcaccaagtttttatcgaacctattaactgaaggttcaggtattattaaaagacaaact tctgtaaaaggtaaagttgctcatctattaataaatttattaactttgagacaaaat gctaatggtggtccaaataaagaagagggaaatctggatcagaaggatctgatgcct attgatgacaaaggtactttaattttgactccaaaacgaaaggttcgatgcct attgatgacaaaggatactttaattttgactccaaaacgaaaggttcgatgcatg ttaaagaaaaatgatgagatctcattaacatttgcacctgatgacgaaggtttagag ttaagacaaagagatacttaaatttgcacctgatgacgaaggtttaagagaact aaatatgaccatactaaagtgaaaagaagtttagaagagtttaaagaagattta aagtcattaatttcaaagtgaaacagatttagaagagtttaaaagaagattta aaagaaggtactaaagtaattaaaggaaactaaattcgcaaatgcagttgaaggta taagaaggtactaaagtaattaaaggaagatctgaagaacattcctgat aaagaaggtactaaagtagaagatcatccctgatttgcaagtcgatgraaaaggtagaa ttcagctttgatgtagaagatcatacatgctggatttaaaaacata gactttgatgtagatcctattacaggtgaattataaagagaaacttaccaaagtgagaaacactaaacttc acagtagttgatcctattacaggtgaattattaagtggaaattttttgatcaaaacacac acacctgcatatcataaattacatggtgataaaaatttggaaagaaccacaaacttc acagtagttgaacctataaaattacatggtgataaaaatttggaaagaacacaaacctaaaccacacctgatttacataaattacatggtgaaaaaaacacaaacacacac
400.	gaaaaa msenfklrkmkvglvsvaitmlyimtngqaeasenqnalisninvdnqekqnnvnqavqp qnntnetskypanfvklndikpgdtsiqgttlpnqfilltidkkdvssvedsdssfvmsd kdgnfkydlngrkivhnqeievsssdpylgddeedeeveetsteevgaeeesteakatyt tpryekayeipkeqlkekdghhqvfiepitegsgiikghtsvkgkvalsinnkfinfetn anggnkeeaksgsegiwmpiddkgyfnfdfktkrfddlelkkndeisltfapddedeal kslifktkvtsledidkaetkydhtkvekvkvlkdvkedlhvdeiygslyhtekgkgild kegtkvikgktkfanavvkvdselgegqefpdlqvdxkgefsfdvdhagfrlqngetlnf tvvdpitgellsgnfvsknidiyespeekadrefdermentpayhklhgdkivgydtngf pitwfyplgekkverkapklek
401.	gtctatatgctatcaagtaccaggtttattgttaggtggtacaacaattgtaataagtcc actaatatcattaatgaaagatcaagtggatcaattaaaagcgatgggaattcaagctgc ttttttaaa
402.	vymlsstrfivrwynncnkstniinerssgsiksdgnsscffk
403.	tttaaatataaaaaaaaaagaaaaatacctagtattatgatgcaacaaattaaaattaat ataatattaatttaacgataaataaattggataccttottaacataaca
404.	fkykknrkipsimmqqikitilysyltinkweyllnitpnktvlpatgqkelilavftmf kvsksfsliltyffgisqliigkksanhvltksiikysslyliilylgfllifsvsqsnv stsfqlvly
405.	ggaatgaaaatgatttcgatttccgatgaaatcaattgtttaatttgttgcaattgtgta gggttatgttcttttttttcttctgctaagtatattttttggatttccatttcttctaac actgtagctaagacatcaataaagcgtggtaagtttttagttacagctaggtcgatacga cga
406.	gmkmisisdeincliccncvglcsfissakyifwisissntvaktsikrgkflvtarsirr
407.	tttgaagetacaaaggtacegeataatggeageacattaattaacaatgegetaaacttt aatgaggegetgatttgettgtetttaaaagtcaacatagcactgataattcetaaaata getactatacgtggaattgtcatgeteggatactgeggtatatgtaagaacgaccaaga cetgetatcacaccacatactaacgcaatatatagaaattgettcaaatcattcacteet aaattgttattacactattacaca
408.	featkvphngstlinnalnfnealicls1kvnialiipkiatirgivmlgycgickkapr paitphtnaiyrncfksftpkll1hyyt
409.	atgettgetgetegeatactattagaatetggtgeagaaggtaegegtgtagaagatace atgacacgtattgcaaaaaaacttggttacagtgaaagtaacagetttgttacaaacact gtcatccagtttacatteggaategtttectagaatatttagaattacetetega gatacaaacttaataaaaattteteaagetaataaaatttegegteaaattacaaacaat gaaatttetttageegaageaaaaaegeaacttgaaaaaattatgttgetaagegtgae agagtetteeetttaaaggttttgetgeageaatgattgaatgagtttettatattta caaggtggtagattgattgatgttttaaetgegatattagaaggtagtetaggataceta gtcactgagattttagategtagttttaactgegatattaecagaggtagtetaggtacat ttagttattgggattattggagetaaggtagetaetagagttatecaaaaggtgacttggea actattatcattgeggagtcatgeetattgteetgggtattatacaaaacgcaata caagatttatttggtgagatcatgectattgteetggtgtattaaataacaacgcaata actagegtttggcateggggtggtggtgtgtgtagagcattaatttagta
410.	mlaarillesgaegtrvedtmtriakklgysesnsfvtntviqftlhsesfprifritsr dtnlikisqankisrqitnneislaeaktqlekiyvakrdsslpfkgfaaamiamsflyl qggrlidvltailagslgylvteildrklhaqfipefigslvigiiavightliptgdla tiiiaavmpivpgvlitnaiqdlfgghmlmfttkslealvtafgigagvgsvlilv

411.	atgacatttaataaagtattattgagctggatagtcatattgattataacaactagcata tatctattttggcagttgggcgatatcaatgatgtatttaaccagtctattttaatcaat gttagattaccgagattattagaagcattgttgacaggtatgatattaactgttgcaggc cttatatttcaaacagttttaaatacattggcagatatgatttaacattaggattggca agcggcgctacatttggttcaggattagcattattttaagtttaacaacgttatggat cctgtattttcaataacatttagttgataacattaataactgtattagcattacgtcg gtattgagccaaggctatccagttagaatcttaatattaagtggttaatgattggtgg gtattcacttcatattttttgatttaattattaagtggttaatgattggtgg
412.	mtfnkvllswiviliittsiylfwqlgdindvfnqsilinvrlprllealltgmiltvag lifqtvlnnaladsftlglasgatfgsglalflglttlwipvfsitfslitlitvlvits vlsqgypvrililsglmigalfnsllyffillkprklntianylfggfgdaeysnvsiia itfiialfgifiilnqlkllqlgelksqslglnvqlityialciasmitainvayvgiig figmvipqlirkwqwkqslgrqlalnivtggqimvmadfigshilspvqipasiiialig ipvlfymlisqskrlh
413.	atgaacaaacagcaaaagaatttaaatcattttattcaattagaaagtcatcactaggc gttgcatctgtagcaattagtacacttttattattaatgcaaatggcgaagcacaagca gcagctgaagaaacaggtggtacaaatacagaagcacaaccaaaaactgaagcagttgca agtccaacaacacatctgaaaaagctccagaaactaaaccagtagctaatgctgca gtatctaattaaagaagttgaggccctacttctgaaacaaaagaagctaaagattaaa gcagttaaagcccctaaggaaacaaaagaagttaaaaccagcagcaaaagccactaacaat acatatcctatttgaatcaggaacttagagaaggttaaaccagcagcaaaagccactaacaat acatatcctatttgaatcaggaacttagagaaggttattttgaaatgaaaagatgga aactcaacagtttatcattatgcaagttctgttaaaactgctagagttattttcactgat tcaacagtttatcattatgcaagttctgttaaaactgctagagttatttcacaggtcattttcacatggattatttagaagtt tagaaggtgacaaaaaggtgccaaattaaatt
414.	agaaacgtaaaac MNKQKBFKSFYSIRKSSLGVASVAISTLLLIMSNGEAQAAAEETGGTNTEAQPKTEAVA SPTTTSBKAPETKPVANAVSVSNKEVEAPTSBTKEAKBVKEVKAPKETKEVKPAAKATNN TYPILNQELREAIKNPAIKDKDHSAPNSRPIDFEMKKKDGTQQFYHYASSVKPARVIFTD SKPEIEGLQSGQFWRKFBVYEGDKKLPIKLVSYDTVKDYAYIRFSVSNGTKAVKIVSST HFNNKEEKYDYTLMEFAQPIYNSADKFKTBEDYKAEKLLAPYKKAKTLERQVYELNKIQD KLPEKLKAEYKKLEDTKKALDEQVKSAITEFQNVQPTNEKMTDLQDTKXVVYESVENNE SMMDTFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKAETPAT PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDKTPATKPTKGEVESSSTT PTKVVSTTQNVARPTTASSKTTKDVVQTSAGSSRAKDSAPLQKANIKNTNDGHTQSQNNK NTQENKAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN
415.	atgaattatccaaatggtaaaccatatcgtaaaaatagtgctatagacggagggaaaaag accgctgcctttagtaatattgagtatggtagtggcgtggtatgtcacttgaaaaagatatc gaacattcaaatacgttttatcttaaaaagcgacattgcagttattcacaaaaagcctacg ccagtacaaatagttaatgtcaactatcctaagcggagtaaagctgtgattaacgaagct tatttcgtacaccttcaacacactgattacaacgggggttaaaagctgtgattaatattgat tttgaagcaaaggaaactaaaaacagacgtctttcctttaaataatattcatgaccat caagtcgaacatatgaaaatgcatatcaacaaaaaggtattgtttttaatgattttaaacgctagatgaacattcttttacacaaaaaggtatttttggaag agatataaaggtagatgatatatcttttaccctattcaaaattcgaagtattttggaag agatataaaagatattaaaaragctaacacatccattcctatcagtatcagtatgacaattccttatcagtatcaacaagattgataacagtgataaattctcttatcagtatcaacaagttgataacagatgagtgataattcataacagttgatgaaaatggataagttgataa ttagatgaaagtgagaaggacgcgta
416.	mnypngkpyrknsaidggkktaafsnieyggrgmslekdiehsntfylksdiavihkkpt pvqivnvnypkrskavineayfrtpsttdyngvyqgyyidfeaketknktsfplnnihdh qvehmknayqqkgivflmirfktldevyllpyskfevfwkrykdnikxsitvdeirkngy hipyqyqprldylkavdklildesedrv

417.	ttgatatatctagataatgcggcaacgacgaaggcatttgaagaagtgttagatacttat ttaaaagtaaatcaatcaatgtattataatccgaatagtcgcataaagctggtttgcag gcaaatcaattactacaacaagcaaaaacccaaattaatgcaatgattaattcaaaaaca aattatgatgttgtattcactagtggtgcaactgaatccaataatcttgctttaaaaggt attgctatcgtaaatttgatacagcgaaggaaataatatacatccgtgttagagcatccg tccgtattagaggttgtaagatatttggaagcacacgaaggatttaaagttaaagttagatg gatgtaaagaaag
418.	liyldnaattkafeevldtylkvnqsmyynpsphkaqlqanqllqqaktqinaminskt nydvvftsgatesmlalkgiayrkfdtakeiitsvlehpsvlevvryleahegfkvkyv dvkkdgsinlehfkelmsdkvglvtcmyvnnvtgqiqpipqmakviknypkahfhvdavq afgkismdlmnidsislsghkfnglkqqgvllvnhiqnveptvhggqqeygvrsgtvnlp ndiamvkamkianenfealnafvtelnndvrqfinkyhgvyinsstsgspfvlnisfpgv kgevlvnafskydimisttsacsskrnklnevlaamglsdksiegsirlsfgatttkedi arfkeifiliveeikellk
419.	atyteatateattggtttaagaaaatgttaettteaacaagtattttaattttaagtagt agtagtttagggettgeaacgcacagttgaagcaaaaggataacttaaatggagaaaaa ccaactactaatttgaatcataatataactteaccatcagtaaataagtgaaatgaataat aatgagactggacacctcacgaatcaaatca
420.	msyhwfkkmllstsililsssslglathtveakdnlngekpttnlnhnitspsvnsemnn netgtphesnqtgnegtgsnsrdanpdsnnvkpdsnnqnpstdskpdpnnqnpspnpkpd pdnpkpdpdkpkpnpdpkpdpdnpkpnpdpkpdpdlpkpnpdpkpdpdkpkpnp npkpdpnkpnpnpspdpdqpgdsnhsggsknggtwnpnasdgsnqgwmpngngnsqnp tgndfvsqrflalangaykynpyilnqinklgkdygevtdediyniirkqnfsgnaylng lqqqsnyfrfqyfnplkseryyrnldeqvlalitgeigsmpdlkkpedkpdskqrsfeph ekddftvvkkqednkksastayskswlaivcsmmvvfsimlflfvkrnkkknknesqrr

422.

gatatacaaaaaaaaccaacagatttaggggtatcagaggtaaccaggtttaatgttggt gy togggataaaggtotggtaaattcagggggattttaaattgatactggatacatttat acaagttccatggacaaaactgaaaagcaagctggacaaggttatagaggatacggagct actagtteettiggacaaattgataatteattgatagttggagaaaattattgataaatca aaaactaattttttaaactatggggacaattcaactaatacatcagatggaaagtttcat gggcaacgtttaaatgatgtcatcttaacttatgttgcttcaactggtaaaatgagagca gggtaatgctadatggggaggacttcaataacagatttaggtttatctaaaaatcag gcatataatttcttaattacatctagtcaaagatggggccttaatcaagggataaatgca aatggctggatgagaactgacttgaaaggttcagagtttacttttacaccagaagggcca acaagagaaggacaaaaaggtgagaagacaataacgacaccaacactaaaaaatccatta actggagtaattattagtaaaggtgaaccaaaagaagaaatcacaatagatccgattaat gaattaacagaatacggaccagaaacgataacaccaggtcatcgagacgaatttgatccg gaaatcacaaaagatccgattaatgaattaacagaatacggaccagaaacgataacacca ggtcatcgagacgaatttgatccgaagttaccaacaggaggaaagaggaagttccaggtaaaccaggaattaagaatccaggaaacaggagacgtagttagaccaccggtcgatagcgta acaaaatatggacetgtaaaaggagactcgattgtagaaaagaagaaattccattcaag aaagaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaagagaagga caaaaaggtgagaagacaataacgacgccaacactaaaaaatccattaactggagaaatt attagtaaaggtgaatcgaaagaagaaatcacaaaagatcgattaatgaattaacagaa tacggaccagaaacgataacaccaggtcatcgagacgaatttgatcgaagttaccaaca ggagagaaagagaagttccaggtaaaccaggaattaagaatccagaaacaggagatgta gttagaccaccggtcgatagcgtaacaaaatatggacctgtaaaaggagactcgattgta gaaaaaggagaaattccattcgagaaaggacgtaaatttaatcctgatttagcaccaggg acagaaaaggtaacaagagaaggacaaaaaggtgagaagacaataacgacgccaacacta tttaatccaaaattacaacctggtgaagagcgagtgaaacaagaaggacaaccaggaagt aagacaatcacaacaccaatcacagtgaacccattaacaggtgaaaaagttggcgagggt caaccaacagaagagatcacaaaacaaccagtagataaagattgtagagttggagag aaaccaaaagatcaaaaggacctgaaaacccagagaagccgagcagaccaactcatcca agtggcccagtaaatcctaacaatccaggattatcgaaagacagagcaaaaccaaatggc ccagttcattcaatggataaaaatgataaagttaaaaaatctaaaattgctaaagaatca gtagctaatcaagagaaaaaacgagcagaattaccaaaaacaggtttagaaagcacgcaa aaaggtttgatctttagtagtataattggaattgctggattaatgttattggctcgtaga

agaagaat
mrdkkgpvnkrvdflsnklnkysirkftvgtasiligslmylgtqqaaaaannienptt
lkdnvqskevkieevtnkdtapqgveaksevtsnkdtiehepsvkaediskkedtpkeva
dvaevqpkssvthnaetpkvrkarsvdegsfditrdsknvvestpitiqgkehfegygsv
diqkptdlgvsevtrfnvgnesngligalqlknkidfskdfnfkvrvannhqsnttgad
gwfflfskgnaeeyltnggilgdkglvnsggfkidtgyjytssmdktekqagggyrgyga
fvkndssgnsqmvgenidksktnflnyadnstntsdgkfngqrlndviltyvastgkmra
evagktwetsitdlglsknqaynflitssgrwglnqginangwmrtdlkgseftftpeap
ktitelektveeipfkkerkfnpdlapgtekvtregqkgektittptlkmpltgviiskg
epkeeitkdpinelteygpetiapghrdefdpklptgekeevpgkgrikmpetgdvvrpp
vdsvtkygpvkgdsivekeeipfekerkfnpdlapgtekvtregqkgektittptlkmpl
tgviiskgepkeeitkdpinelteygpetitpghrdefdpklptgekeevpgkpgikmpe
tgdvvrppvdsvtkygpvkgdsivekeeipfkkerkfnpdlapgtekvtregqkgektit
tptlkmpltgeiiskgeskeeitkdpinelteygpetitpghrdefdpklptgekeevpg
kpgikmpetgdvvrppvdsvtkygpvkgdsivekeeipfkkerkfnpdlapgtekvtreg
gkgektittptlkmpltgeiiskgeskeeitkdpinelteygpetitpghrdefdpklpt
gekeevpgkpgikmpetgdvvrppvdsvtkygpvkgdsivekeeipfekerkfnpdlapg
tekvtreggkgektittptlkmpltgeiiskgeskeeitkdpvneltefggekipgghkd
ifdpnlptdqtekvpgkpgiknpdtgkvieepvddvikhgpktgtpetktveipfetkre
fnpklqpgeervkqegqpgsktittpitvnpltgekygegqpteeitkqpvdkivefgge
kpkdkgpenpekpsrpthpsgvnnnnpglskdrakpngpvhsmdkndkvkkskiakes
vangekkraelpktglestqkglifssiigiaglmllarrrkm

ggattatttagcattttaggtttaggttattacgcagaaataaaaagaatcacaaagca vksnlrygirkhklgaasvflgtmivvgmgqekeaaaseqnnttveesgssateskaset qtttnnvntidetqsysatsteqpsqstqvtteeapktvqapkvetsrvdlpsekvadke ttgtqvdiaqpsnvseikprmkrstdvtavaekevveetkatgtdvtnkveveegseivg hkqdtnvvnphnaervtlkykwkfgegikagdyfdftlsdnvethgistlrkvpeikstd gqwatgeiigerkvrytfkeyvqekkdltaelslnlfidpttvtqkgnqnvevklgett vskifniqylggvrdnwgvtangridtlnkvdgkfshfaymkpnnqslssvtvtgqvtkg nkpgvmptvkvykhigsddlaesvyaklddvskfedvtdnmsldfdtnggyslnfnnld qsknyvikyegyydsnasnlefqthlfgyynyytsnltwkngvafysnnaggdgkdklk epiiehstpielefkseppvekheltgtieesndskpidfeyhtavegaeghaegtiete edsihvdfeesthenskhhadvveyeedtnpggqqvttesnlvefdedstkgivtgavsd httiedtkeyttesnlielvdelpeehgaqgpieitennhhishsglgtenghgnygv ieeieenshvdikselgyeggmsgnqsfeedteedkpkyeggnivdidfdsvpqihgq nngnqsfeedtekdkpkyeggmiididfdsvphihgfnkhteiieedtnkdkpnyqfg hmsvdfeedtlpqvsghnegqtieedttppivpptpevpsepetptpptpevpsep etptpptpevptepgkpippakeepkkpskpveggkvvtpvieinekvkavvptkkaqsk kselpetggeestnngmlfgglfsilglallrrnkknhka

atgaaagetttattaettaaacaagtgtatggetegttttgetttttagtgtaatggga ttatggeaagtetegaaegeggetgageageataeaeeaatgaaageaeatgeagtaaca 425. acgatagacaaagcaacaacagataagcaacaagtaccgccaacaaaggaagcggctcat ctagccgaagaaaaagggcgtgtcatcggtatggctaaattaaaaacagtaaaagaacaa gaaaagcctgatttaatgttagacgcaggagacgccttccaaggtttaccactttcaaac cagtctaaaggtgaagaaatggctaaagcaatgaatgcagtaggttatgatgctatggca

mkalllktsvwlvllfsvmglwqvsnaaeqhtpmkahavttidkattdkqqvpptkeaah hsgkeaatnvsasaqgtaddtnskvtsnapsnkpstvvstkvnetrdvdtqqastqkpth tatfklsnaktaslspmfaanapqttthkilhtndihgrlaeekgrvigmaklktvkeq ekpdlmldagdafqglplsnqskgeemakamnavgydamavgnhefdfgydqlkklegml dfpmlstnyykdgkrafkpstivtkngirygiigvttpetktktrpegikgvefrdplqs vtaemmriykdvdtfvvishlgidpstqetwrgdylvkqlsqnpqlkkritvidghshtvlqmgqiynndalaqtgtalanigkitfnyrngevsnikpslinvkdvenvtpnkalaeqinqadqffraqtaeviipnntidfkgerddvrtretnlgnaiadameaygvknfsktdfavtngggirasiakgkvtrydlisvlpfgmtiaqidvkgsdvwtafehslgapttqkdgktvltanggllhisdsirvyydinkpsgkrinaiqilnketgkfenidlkryhvtmndftasggdgysmfggpreegisldqvlasylktanlakydttepqrmllgkpavseqpakgqqgskgsksgkdtqpjgddkvmdpakkpapgkvvlllahrgtvssgtegsgrtiegatvssksgkqlarmsvpkgsahekqlpktgtngssspeamfvllagigliatvrrrkas 426.

atgaataaaaattcgaagaagaagctcgattttcttccaaacaagcttaataagtactca attagacgtttcactgtagggacagcttcgattttagtaggagctactttaattttcggt gttgcaaatgatcaagcagaagccgctgagaataacacaactcaaaagcaagatgatagt tcagatgcaagtaaagtaaaagtaatgttcaaactattgaacaatcttctgcaaattca aatgaatctgatattcctgaacaagttgatgtaactaaagatacaactgaacaagcatca acagaagaaaaagcaaatacaactgaacaagcatcaacagaagaaaaagcagatacaact gaacaagcaacaagaagaagcgccaaaagctgaaggaacagacaaagtagaaacagaa gaagcgccaaaagctgaagaaacagacaaaagcaacaacagaagaagcgccaaaagctgaa gaaacagacaaagcaacagaagaagcaccaaaaactgaagaaacagacaaagcaacaaca gagagaactcaagttgtagatacagttgctaagagtacttaaacgctcaactatcagaact gagagagaactcaagttgtagatacagttgctaaagatttatataaaaaatctgaagttaca gaagcagaaaaagctgaaattgaaaaagtattaccaaaagatatttcaaacttatctaat gaagaaattaaaaaaatagctttaagtgaagtacttaaagaaacagctaacaaagaaaac gcacaaccaagagcaacattccgttcagtaagcagcaatgctagaacaacaaatgttaac tattcagcaacagcattaagagcagctgcacaagacacagttactaaaaaaaggaactggt aactttactgcatggagatataatccataaaacttataaagaagaattccctaatgaa ggcacgctaactgcattcaatacaaacttcaatcctaatacaggaactaaaggcgcatta gaatataatgataaaatagattttaataaagactttacaattactgttccagtagcaaac aacaaccaaggtaatacaacaggagcagatggctggggcttcatgtttactcaagggaat ggccaagacttcttaaaccaaggtggtattttaagagacaaaggtatggcaaatgcatct ggttttaaaattgatacggcatataataatgttaatggtaaagtcgataaactcgatgca catggccaaagattaaatgatgtagtattaaattatgatgcagcaacaagtacaataact gctacatatgcaggaaaacatggaaagctactacagatgatttaggaattgataaatca caaaaatataattcttaattacttcaagtcatatgcaaaatagatattctaatggaatt atgagaacaaatcttgaaggtgtaacaattacaacgcctcaagctgatttaattgatgat gtggaagtaacgaaacaaccaattcctcataaaactattcgtgagtttgatccaactcta gaaccaggctcacctgatgttattgtacaaaaaggtgaagatggagagaaaacaacaact acaccaactaaagttgaccctgatacaggagatgtagttgaacgtggtgaaccaacaaca gaagttacaaaaaatccagttgacgagattgtacactttacacctgaagaagtaccaca ggtcataaagatgagttcgatccaaacttaccaattgacggtacagaagaagtaccaggt aaaccaggcatcaagaatcctgaaacaggtgaagtagtaacacctccggttgacgatgtc acaaaacatggtccaaaagcaggcgaaccagaggttactaaagaagaaataccattcgag aaaaaacgtgagttcaatccagacttaaaaccaggtgaaggaaagtaacgcaagaagga caaactggagagaaacaacaacaacacacaacaattaatccattaacgggagaaaaa gtaggcgaaggtgaaccaacaacagaagtaacaaaagaaccagtagatgaaatcacacaa ttcggtggagaagaagtaccacaaggtcataaagatgagttcgatccaaacttaccaatt gacggtacagaagaagtaccaggtaaaccaggcatcaagaatcctgaaacaggtgaagta gtaacacctccggttgacgatgtcacaaaaacatggtccaaaaagcaggcgaaccagaggt attaatccattaacgggagaaaaagtaggcgaaggtgaaccaacaacagaagtaacaaaa attattrattrattatugggagadadagtaggagagagagagagagagagaggacadadagat gaaccagtagatgaaaccacaattcggtgagagagagtaccacaggtaaaccaggatt gagttcgatccaaacttaccaattgacggtacagaagaagtaccaggtaaaccaggattc aagaatcctgaaaccaggtgaagtagtaacacctccggttgacgatgtcacaaaacatgg ccaaaagcaggcgaaccagaggttactaaagaagaaataccattcgagaaaaaacgtgag ttcaatccagacttaaaaccaggtgaagagaaagtaacgcaagaaggacaaactggaga aaaacaacaacgccaacaacaattaatccattaacgggagaaaaagtaggcgaaggt gaaccaacaacagcagtaacaaaagaaccagtagatgaaatcacacaattcggtggagaa gaagtaccacaaggtcataaagatgagttcgatccaaacttaccaattgacggtacagaa gaagtaccaggtaaaccaggcatcaagaatcctgaaacaggtgaagtagtaacaccacca gtagacgatgtcacaaaacatggtccaaaagcaggcgaaccagaggttactaaagaagaa attccatatgaaactaaacgcgtattagatccaacaatggaaccaggtagtcctgataaa gattcagatgcggacagcgattcagacgcagattcagacagcgattcagatgcgattcagactca gacgcagatagcgactctgatgcggacagcgattcagacagcgatagcgattcagattca gatagcgactctgatgcggacagcgattcagacagcgatagcgattcagacgcagatagcgattcagatgcgattcagatgcgattcagatgc gattctgatgcagacagcgactcagacgcagatagcgactcagattcagactcagattcagacgcagatagcgactcagattcagactca gattcagacagcgattcagacgcagatagcgattcagattcagatagtagactctgatgcg gacagcgactcagacgcagatagcgactctgatgcggacagcgactcagacgcagatagc gacagcgactcagacgagattagtactctyatguggactctgagacgagatagattag gattctgattcagacgagattcagacgcagatagcgactcagacgagatagcgattcag gacgcagatagcgattcagattcagatgugattcagattcagatagcgactctgatgcg gacagcgatagcgattcagattcagacgagcgactcagacgcagatagcgactcagacga gatagcgatagcgattctgatgcagacagcgactcagacgagatagcgactctgatgcg gacggcgactcagacgcagatagcgattctgatgcagacagcgactcagacagcgattag gattctgattcagacgcagtattcagacgcagatagcgactcagattcagacagcgattca gacgcagatagagatcataatgacaaaacagataaaccaaataataaagagttaccagat actggtaatgatgctcaaaataatggcacattatttggttcactattcgctgcgcttgga ggattattcttagttggcagacgtcgtaaaaacaaaaataatgaagaaaa

428.	mnknskkldflpnklnkysirrftvgtasilvgatlifgvandgaeaaennttqkqdds sdaskvkgnvqtiegssansnesdipeqvdvtkdttegasteekanttegasteekadtt egatteeapkaegtdkveteeapkaeetdkatteeapkaeetdkatteeapkteetdkte eeapaaeetskaateeapkaeetskaateeapkaeetektateeapkteetdkveteeap kaeetskaateeapkaeetnkveteeapaaeetnkaateetpavedtnaksnsnaqpset ertqvvdtvakdlykksevteaekaeiekvlpkdisnlsneeikkialsevlketanken aqpratfrsvssnarttnvnysatalraaaqdtvtkkgtgnftaigdilihktykeefpne giltafntnfnpntgtkgaleyndkidfnkdftitvpvannnqgnttgadgwgfmftqgn gqdflnqggilrdkgmanasgfkidtaynnvngkvdkldadktnnlsqigaakvgygtfv kngadgvtnqvgqnalntkdkpvnkiiyadnttnhldgqfhgqrlndvvlnydaatstit atvagktwkattddlgidksqkynflitsshmqnrysngimrtnlegvtittpqadlidd vevtkqpiphktirefdptlepgspdvivqkgedgekttttptkvdpdtgdvvergeptt evtknpvdeivhftpeevpqghkdefdpnlpidgteevpgkpgiknpetgevvtppvddv tkhgpkagepevtkeeipfekkrefnpdlkpgeekvtqegqtgekttttpttinpltgek vgegepttevtkepvdeitqfggeevpqghkdefdpnlpidgteevpgkpgiknpetgev tippldgvkygegepttevtkepvdeitqfggeevpqghkdefdpnlpidgteevpgkpgi knpetgevvtppvddvtkhgpkagepevtkeeipfekkrefnpdlkpgeekvtqegqtgekttttptt inpltgekvgegepttevtkepvdeitqfggeevpqghkdefdpnlpidgteevpgkpgi knpetgevvtppvddvtkhgpkagepevtkeeipfekkrefnpdlkpgeekvtqegqtge ktttpttinpltgekvgegepttevtkepvdeitqfggeevpqghkdefdpnlpidgte evpgkpgiknpetgevvtppvddvtkhgpkagepevtkeeipfekkrefnpdlkpgeekvtqegqtge ktttpttinpltgekvgegepttevtkepvdeitqfggeevpqghkdefdpnlpidgte evpgkpgiknpetgevvtppvddvtkhgpkagepevtkeeipfekrrefnpdlkptmepgspdk vagkgengekttttpttinpltgekvgegepttevtkepideivnyapeiiphgtreeid pnlpegetkvipgkdglkdpetgeiieepqdeviihgakdsdadsdadsdadsdsdadsd dadsdadsdsdadsdsdsds	
429.	ttgaaaagaaaaacatttattcaattcgtaaactagtgtaggtattgcatctgtaact ttaggtacattacttatatctggtggcgtaacactggtgcgaaatgctgcgcaacacgat gaagctcaacaaaatgcttttatacaagtcttaaatatgcctaacttaaatgctgatcaa cgcaatggttttatccaaagccttaaagatgatccaagccaaagtgctaacgttttaggt gaagctcaaaaacttaatgactctcaagctccaaaagctgatgcgcaacaaaataccttc aacaagatcaacaaagcgcttcatgaaatcttgaacattgctaacttaaacgaagcg caacgtaacggcttcattcaaagctcttaaagacgccaaagccaaagcactaacgtttta ggtgaagctaacaaattaaacgaatctcaagcaccgaaagccaaagcactaacgtttta ggtgaagctaaaaaattaaacgaatctcaagcaccgaaagctgataaccaattcaaccaa gaacaacaaatgctttctatgaaatcttgaatatgcctaacttaacgaaggacaaag gataaaaggttaaatgaatctcaagcacgaaagcggataacaattcaacaaagaacaa gctaaaaagttaaatgaatctcaagcacgaaagcggataacaaattcaacaagaacaa gctaaaaggttaaatgaatctcaagcaccgaagcggataacaattcaacaagaacaa aagctaaatgatgctcaagcaccaaagcctgacaaagcgtaaccttttagcagaagctaaa agctaaatgatgctcaagcaccaaagctgacaacaaattcaacaaagacaacaaaa agcttactagaaatttacatttacctaacttaact	
430.	lkkkniysirklgygiasvtlgtllisggvtpaanaaqhdeaqqnafyqvlnmpnlnadq rngfigslkddpsqsanvlgeaqklndsqapkadaqqmnfnkdqqsafyeilmmpnlneaq rngfiqslkddpsqstnvlgeaqklndsqapkadnnfnkeqqmafyeilmmpnlneeqr ngfiqslkddpsqsanllseakklnesqapkadnnfnkeqqmafyeilhlpnlneeqrn fiqslkddpsqsanllaeakklndaqapkadnkfnkeqmafyeilhlpnlneeqrn gslkddpsyskeilaeakklndaqapkednnkpgkednnkpgkednnkpgkednnkpgk edgnkpgkednkkpgkedgnkpgkednktpgkedgnkpgkedgngvhvvvkpg dtvndiakangttadkiaadnkladknmikpgqelvvdkkqpanhadankaqalpetgee npfigttvfgglslalgaallagrrrel	
431.	atgaagaaaacaattttactgacgatgacaactcttactttattta	
432.	mkktilltmttltlfsmspnsaqaytndsktleeakkahpnaqfkvnkdtgaytytydkn ntpnnnhqnqsrtndnhqhanqrdlnmqyhsslsgqythindaidshtppqtspsnplt paipnvednddelnnafskdnkglitgidldelydelqiaefndkaktadgkplalgngk iidqplitsknnlytagqctwyvfdkrakdghtistfwgdaknwagqassngfkvdrhpt rgsilqtvngpfghvayvekvnidgsilisemnwigeyivssrtisasevssynyih	

433.	atgaatcaatatcattctaatgcacaacaaccaagtgcatggcgtttttttgtctatagt ttagtgggcatactatgttctttattccttttacgattaatggggatacaacacactatttc gtcgatcatgttcatctagccattcgctcaatcatcagtgcaccttatgcca ctgattatgattttaattggtacagcgttaccaattagtgcagcgtacttatttat
434.	mnqvhsnaqqpsawrffvyslvgilcffipftingnntifvdhvhlairsiigplmpyva limiligtalpivrrtfmtsitnlvitlfkvagamigimyvfkigpsilfkanygpflfe klmmplsilipvgaialsllvgygllefvgvymepimrpifktpgksavdavasfvgsys lgllitnrvykqgmynkreatiiatgfstvsatfmiivaktlglmphwnlyfwitlvitf vvtaitawlppisnesteyyngqegeqevaiegsrlktayaeamkqmaltpslvknvwdn lkdglemtvgilpsilsigflglivanytpfidwlgyifypfiyifpiadqallakasai sivemflpsllvtkaamstkfvvgvvsvsaiiffsalvpcilateikipvwkliiiwflr valsllitipvallifg
. 435.	atgaaaatgagaacaattgctaaaaccagtttagcactagggcttttaacaacaggcgca attacagtaacgacgcaatcggtcaaaggagaaaaatacaatcaactaaagttgacaaa gtaccaacgcttaaagcaggagattagcaatgataaacactaaacagcaggtgcaaattca gcgacaacacaagcagcatcagcttagcaatgaaaacacacac
436.	mkmrtiaktslalgllttgaitvttqsvkaekiqstkvdkvptlkaerlaminitagans attqaantrqertpklekapntneektsaskiekisqpkqeeqktlnisatpapkqeqsq tttesttpktkvttppstntpqpmqstksdtpqsptikqaqtdmtpkyedlrayytkpsf efekqfgfmlkpwttvrfmnvipnrfiykialvgkdekkykdgpydnidvfivlednkyq lkkysvggitktnskkvnhkvelsitkkdnqqmisrdvseymitkeeislkeldfklrkq liekhnlyqmqsqtivikmknggkytfelhkklqehrmagtnidnievnik
437.	atgaaaataacaacgattgctaaaacaagtttagcactaggccttttaacaacaggtgta atcacaacgacaacgcagcaacaacgcgacaacaccatcttccactaaagttgaagca ccacaatcaacaccgccctcaactaaaatagaagcaccgcaatcaaaacaaac
438.	mkittiaktslalgllttgvittttqaanattpsstkveapqstppstkieapqskpnat tppstkveapqqtanattppstkvttppstntpqpmqstksdtpqspttkqvpteinpkf kdlrayytkpslefkneigiilkkwttirfmnvvpdyfiykialvgkddkkygegvhrnv dvfvvleennynlekysvggitksnskkvdhkagvritkednkgtishdvsefkitkeqi slkeldfklrkqlieknnlygnvgsgkivikmknggkytfelhkklqenrmadvinseqi knievnlk

gtgaattategtgataaaatteaaaagtttagtattegtaaatatacagttggtacattt teaaetgteattgegacattggtattttaggatteaatacateacaageacatgetget gaaaccaaatcaaccagcagcgtggttaaacagaaacaacaaagtaataatgaacagact gagaatcgagaatctcaagtacaaaattctcaaaattcacaaaatggtcaatcattatct gctactcatgaaaatgagcaaccaaatattagtcaagctaatttagtagatcaaaaagta aatacattgaaggcetetgaeteaaaggaaattgetettatgaeagcgaaacaaaetgga gaegggtaecaatgggttattaagtttaataaaggacatgeteeacatcaaaatatggt ttttggtttgeattaecageagaecaagtgeeagtaggaagaaetgaetttgtaacagtt gatttatctagagcgagtgattattttagtgaagctggagcgacacctgctactaaagct tttggtagacaaaattttgaatatattaatggtcaaaaacctgctgaatcaccgggtgtt cctaaagtttatactttcatcggtcaaggtgatgcaagttatacaatttcatttaaaaca caaggtccaactgttaataaattgtactatgcagcaggtgggcgtgctttagagtacaat caattatttatgtacagtcaactatacgtcgaatcaacgcaagaccatcaacaacgtctt aatggtttaagacaagtggttaatcgtacatatcgcataggtacaactaaacgtgtagaa gtgagtcaaggaaatgtacaaacgaaaaaggtattagaaagtacaaacctaaatatagat gattttgttgatgatcctttaagttatgttaagacgccgagtaataaagtgttaggattt attcaaccattacggtattaatttaacaagtaatgagaattttacagataaagattggcaa attaacaggtattccgcgtacatttaacacattgagaattttacagataaagactgaca attacaggtattccgcgtacattacacattgaaaactcgacaaatagacctaataatgcc agagaacgcaatattgaactgttggtaacttattaccaggggattactttggaacgat cgttttggacgtaaagaacattattcgaaattcgtgttaaaccacatacaccaaata acaacgacagctgagcaattaagaggtacagcattacaaaaagtgcctgttaatatttcg ggaataccgttggatccatcggcattggtttatttagttgcaccaacaatcaaactacg aatggtggtagtgaggcagatcaaataccatctggttatacgatacttgcgactggtaca cctgatggggtgcataatacaattactatacgaccgcaagattatgttgtattcatacca gatgaaaagcaaaagcataattactgcctttatgaataaaaaccaaaatataagaggatat ttagcatcaactgatccagtaactgtcgataataataggtaatgtcacattacattaccgt gatggctcatcgacaacgcttgatgctacaaatgtgatgacatacgaaccagttgtgaaa cctgaataccaaactgtcaatgctgctaaaacagcaacggtaacgattgctaaaggacaa tcatttagtattggtgatattaaacaatattttactttaagtaatggacaacctattcca agtggcacatttacaaatattacatctgatagaactattccaactgcacaagaagttagt caaatgaacgcaggcacgcagttataccatataactgctacaaatgcgtatcataaagat agtgaagacttctatattagtttgaaaatcatcgatgtgaaacaaccagaaggcgatcaa cgtgtatatcgtacatcaacatatgatttaactactgatgaaatctcaaaagtaaaacaa gcatttattattgcaaatagagatgtaattacgcttgccgaaggtgatatttcagttaca aatacacctaatggtgctaatgtaagtactattacagtaaatattaataaaggtcgatta acgaaatcattcgcgtcaaacctagctaatatgaatttcttgcgttgggttaatttccca caagattatacagtgacatggacgaatgcaaaaattgcaaacagaccaacagatggtggt ttatcatggtctgatgaccataaatctttaatttatcgttatgatgctacattaggtact tratcatggtcgatgaccataaatctttaatttatcgttatgatgctacattaggtact caaattacgacgaatgatattttaaccaatgtaaaaagcaacaactacagtgcctggattg cgaaataacattactggtaatgaaaaatcacaagcagaagctggcggaagacctaacttt agaacgactggttattcacaatcaaatggacaactgatggtcaacgtcaatttacgttg aatggtcaaagtgattcaagtgttagacatcatcaacccttcaaacggttataatggtgggcaa cctgttacaaattcaaatactcgtgcaaaccatagtaactcaactgttgttaacgtaaac gaaccggcagctaatggtgctggcgcatttacaattgaccacgttgtaaaaaggtaattc acacataatgcaagtgatgcagtttataaagcacagttatacttaacgccatatggtcca aaacaatatgttgaacatttaaatcaaaatacaggaaatactactgacgctattaacatt tattttgtaccaagtgacttagtgaatccaacaatttcagtaggtaattacactaatcat caagtgttctcaggtgaaacatttacaaatactattacagcgaatgataactttggtgtg caatctgtaactgtaccaaatacatcacaaattacaggtactgttgataataaccatcaa gcaactgatacaageggeaatacagetacaacttegtteaatgtaacagtgaaacetttg egtgataaatategagttggtaetteateaaeggetgetaateetgtgagaattgeeaat atttcgaataatgcgacagtatcacaagctgatcaaacgacaattattaattcgttaacg tttactgaaacagtaccaaatagaagttatgcaagagcaagtgcgaatgaaatcactagt aaaacagttagtaatgtcagtcgtactggaaataatgccaatgtcacagtaactgttact tatcaagatggaacaacatcaacagtgactgtacctgtaaagcatgtcattccagaaatc gttgcacattcgcattacactgtacaaggccaagacttcccagcaggtaatggttctagt gcatcagattactttaagttatctaatggtagtgacattgcagatgcaactattacatgg gtaagtggacaagcgccaaataaagataatacacgtattggtgaagatataactgtaact gcacatatettaattgatggcgaaacaacgccgattacgaaaacagcaacatataaagta gtaagaactgtaccgaaacatgtetttgaaacagccagaggtgttttatacccaggtgtt tcagatatgtatgatgcgaaacaatatgttaagccagtaaataattettggtcgacaaat gcgcaacatatgaatttccaatttgttggaacatatggtcctaacaaagatgttgtaggc atatctactcgtcttattagagtgacatatgataatagacaaacagaagatttaactatt tatctaaagttaaacctgacccacctagaattgacgcaaactctgtgacatataaagca

ggtottacaaaccaagaaattaaagttaataacgtattaaataactcgtcagtaaaatta ggtcttacaaaccaagaaattaaagttaataacgtattaaataactcgtcagtaaaatta
tttaaagcagataatacaccattaaatgtcacaaatattactcatggtagcggttttagt
tcggttgtgacagtaagtgacgcgttaccaaatggcggaattaaagcaaaatcttcaatt
tcaatgaacaatgtgacgtatacgacgcaagacgaacatggtcaagttgttacagtaaca
agaaatgaatctgttgattcaaatgacagtgcaacagtaacagtgacaccacaattacaa
gcaactactgaaggcgctgtatttattaaaggtggcgacggttttgatttcggacacgta
gaaagatttattcaaaacccgccacatggggcaacggttgcatggcatgatagtccagat
gaaagatttattcaaaatgcgcacatggggcaacggttgcatgacacgataccagat acatacgctgataaattagttattaaacgtaatggtaacgttgtgacgacatttacacgt cgcaataatacgagtccatgggtgaaagaagcatctgcagcaactgtagcaggtattgct ggaactaataatggtattactgttgcagcaggtactttcaaccctgctgatacaattcaa gatatcacgcctaataatccatcaggacatttaattaatccaactcaagcaatggatatt gottacactgaaaagtgggtaatggtgcagaacatagtaagacaattaatgttgttcgt ggtcaaaataatcaatggacaattgcgaatagcctgactatgtaacgttagatgcacaa gaaattaacaatgcagttcaagttgctaataaacgtactgcaacgattaaaaatggcaca gcaatgcctactaatttagctggtggtagcacaacgacgattcctgtgacagtaacttac aatgatggtagtactgaagaagtacaagagtccattttcacaaaagcggataaacgtgag ataagaacagtacaagaagtgcaatctgcgttaacaaatgtaaatcgtgtcaatgagcga ttaacgcaagcaattaatcaattagtacctttagctgataatagtgctttaaaaactgct aagacgaaacttgatgaagaaatcaataaatcagtaactactgatggtatgacacaatca toaatccaagcatatgaaaatgctaaaacgtgcgggtcaaacagaatcaacaaatgcacaa aatgttattaacaatggtgatgcgactgaccaacaaattgccgcagaaaaaacaaaagta gaagaaaaatataatagcttaaaacaagcaattgctggattaactccagacttggcacca tacaaactgcaaaaactcagttgcaaaatgatattgatcagccaacgagtacgactggt atgacaagcgcatctattgcagcatttaatgaaaaactttcagcagctagaactaaaatt caagaaattgatcgtgtattagcctcacatccagatgttgcgacaatacgtcaaaacgtg acagcagcgaatgcgctaaatcagcacttgatcaagcacgtaatggcttaacagtcgat aaagcgcctttagaaaatgcgaaaaatcaactacaatatagtattgacacgcaaacaagt acaactggtatgacacaagactctataaatgcatacaatgcgaagttaacagctgcacgt actactygtatyacacaayactctataaatygatataatygaagttaacaayygaagtaaaaaattaat aataagattcaacaaatcaatcaagtattagcaggttcaccgactgtagaacaaaattaat acaactagtctacagcaaatcaagctaaatctgatttagatcatgcacgtcaagcttta acaccagataaagcgccgcttcaaactgcgaaaacgcaattagaacaaagcattaatcaa ccaacggatacaacaggtatgacgacgcttcgttaaatgcgtacaaccaaaaatttacaa gcagcgcgtcaaaagttaactgaaattaactaagtgttgaatggcaacccaactgtccaa aatatcaatgataaagtgacagaggcaaaccaagctaaggatcaattaaatacagcacgt caaggtttaacattagatagacagccagcgttaacaacattacatggtgcatctaactta aaccaagcacaacaaaataatttcacgcaacaaattaatgctgctcaaaatcatgctgcg cttgaaacaattaagtctaacattacggctttaaatactgcgatgacgaaattaaaagac agtgttgcggataataatacaattaaatcagatcaaaattacactgacgcaacaccagct aataaacaagcgtatgataatgcagttaatgcggctaaaggtgtcattggagaaacgact aatccaacgatggatgttaacacagtgaaccaaaaagcagcatctgttaaatcgacgaaa gatgctttagatggtcaacaaaacttacaacgtgcgaaaacagaagcaacaaatgcgatt acgcatgcaagtgatttaaaccaagcacaaaagaatgcattaacacaacaagtgaatagt gcacaaaacgtgcaagcagtaaatgatattaaacaaacgactcaaaagcttaaatactgct atgacaggtttaaaacgtggcgttgctaatcataaccaagtcgtacaaagtgataattat gtcaacgcagatactaataagaaaaatgattacaacaatgcatacaaccatgcgaatgac attattaatggtaatgcacaacatccagttataacaccaagtgatgttaacaatgcttta tcaaatgtcacaagtaaagaacatgcattgaatggtgaagctaagttaaatgctgcgaaa caagaagcgaatactgcattaggtcatttaaacaatttaaataatgcacaacgtcaaaac ttacaatcgcaaattaatggtgcgcatcaaattgatgcagttaatacaattaagcaaaat gcaacaaacttgaatagtgcaatgggtaacttaagacaagctgttgcagataaagatcaa gtgaaacgtacagaagattatgcggatgcagatacagctaaacaaaatgcatataacagt gcagtttcaagtgccgaaacaatcattaatcaaacaacaatccaacgatgtctgttgat gatgttaatcgtgcaacttcagctgttacttctaataaaaatgcattaaatggttatga aaattagcacaatctaaaacagatgctgcaagagcaattgatgcattaccacatttaaat aatgcacaaaaagcagatgttaaatctaaaattaatgctgcatcaaatattgctggcgta aatactgttaaacaacaaggtacagatttaaatacagcgatgggtaacttgcaaggtgca actactgtcgctggtgttcaaacggttcaatcaaatgccaatacattagatcaagccatg aatacgttaagacaaagtattgccaacaaagatgcgactaaagcaagtgaagattacgta gatgctaataatgataagcaaacagcatataacaacgcagtagctgctgctgaaacgatt attaatgctaatagtaatccagaaatgaatccaagtacgattacacaaaaagcagagcaa aaactggcagaagcgaaagcggcagctaaacaaaactaggcactttaaacaattatcg aatgcacaacgtactgacttagaaggccaaaacaatcaagcgacgactgttgatggcgtt aatgcacaacgtactgacttagaaggccaaaaacaatcaagcgacgactgttgatggcgtt aatactgtaaaaacaaatgccaatacattagacggcgcaatgaatagcttacaaaggtca caaaatgtagcaggtgtaaatggtgttaaagataactggagtactaagttaagttaactgcaatg ggtgcattacgtacaagtatccaaaatgataatacgacgaaaacaagtcaaaattatctt gatgcatctgcacagcaacaaaaataattacaatactgctgtaaataatgcaaaatggtgt catactgcgactgaattaaatactgcgatgacagctttaaagcgtgccattgctgataaa gctgagacaaaagctagtggtaactatgtcaatgctgatgcgaataaacgtcaagcatat gatgaaaaagttacagctgccgaaaatatcgttagtggtacaccaacaccaacgttaaca ccagcagatgttacaaatgcagcaacgcaagtaacgaatgctaagacgcagttaaacgcaattaatattaagaagtagcgaaacaaaatgctaacactgcaattgatggttaacttct ttaaatgtccgcaaaaagcaaaacttaaagaacaagtggtcaagcgacgacgttgca aatgttcaaactgttcgtgataatgcacaaacattaaacactgcaatgaaaggtctacga gatagcattgcgaatgaagcaagcaattaaagcaggtcaaaactacacagatgcaagtca ttgaacggcttaatggacttaactgacgctcaaaaagatgcaagtgaacgt ttgaacggcttaagtgacttaactgacgctcaaaaagatgcaagtgaaacgtcaaatcgaa ggtgcaacgcatgttaatgaagtaacacaagcacaaaataatgcggatgcattaaatcga gctatgacgaacttgaaaaatggtattcaagatcagaatacgattaagcaaggtgttaac ttcactgatgccgacgaagcgaaacgtaatgcattatacaaatgcagtgacgcaagctgaa caaattttaaataaagcacaaggtccaaatacttcaaaagacggtgtcgaaactgcgtta gaaaatgtacaacgtgctaaaaacgaattgaacggtaatcaaaatgttgcgaacgctaag acaactgcgaaaaatgcattgaataacctaacatcaattaataatgcacaaaaaggagca ttgaaatcacaaattgaaggtgcgacaacagttgcaggtgtaaatcaagtgtctacaacg gcatctgaattaaatacagcaatgagcaacttacaaaatggtattaatgatgaagcagct acaaaagcagctcaaaacgttattagataaaacagctggttcaaatgac gctgtaacagcagctaaaacgttattagataaaacagctggttcaaatgac gctgttgaacaagcattacaacgtgtgaatactgctaaacagcattaaatggtgacgag cgattaaatgaagcgaagaacacagctaaacaacagtagcgacaatgtcacacttaact gatgctcaaaaagcaaacttaacatcgcaaatcgaaagtggtacgactgttgcaggtgt caaggtattcaagctaatgcggtactttagatcaagcaatgaatcaattaagacaaagt attgcttctaaagatgcgactaaatcaagcgaagattatcaagacgcgaatgcagatta caaaatgcatacaatgatgcggtaactaatgctgaaggtattattagtgcaacgaataac ggtgacgcgaacttacaacgcgctaaaactgaagctatacaagctatcgataacttgacacatttgaatacaccacaaaaaacagcattaaaacaacaagtgaacgctgcgcaacgtgta gatagcgcgadacaagtaactggcgttcaaagtgtgaaagacaacgcggacaaatcttgat aatgcaatgaatcaacttcgaaatagtattgcgaataaagatgatgtaaaagcgggtcaa ccatatgttgatgcagatagagataaacaaaatgcatacaatacagcagttacaaatgct gaaaatatcattaatgcaacgagtcagccgacacttgatccatctycagtaacacaagca gctaatcaagtgagcactaacaaaactgcgcttaatggtgcacaaaacttagcggaataaa gcagcgcttaatggtactcaaaaccttgaaaaagctaaacaacacgcaaattacagcaatt gacggtttaagccatttaacaaatgcacaaaaagcggcattaaaacaattggtacaacaa tcgactactgttgcagaagcacaaggtaatgagcaaaaagcaaacaatgttgatgcagca actgatcaaattaatggcgcgcatactgttgatgaagcaaatcaaattaagcaaaatgcg caaaacttaaattacagcgatgggtaacttgaaacaagcgatagctgacaaagatgctacg aaagcgacagttaacttcactgatgcagatcaagcaaaacaagcatataacactgct adayogatua gttacaaatgctgaaaatatcatttcaaaaagctaatggcggcaatgcaacacaagctgaa gttgaacaagcaatcaaacaagttaatgctgcaaaacaagcattaaatggtaatgccaac gttcaacatgcaaaagacgaagcaacagcattaattaatagctctaatgaccttaaccaa gcacaaaaagacgcattaaaacaacaagttcaaaatgcaactactgtagctggtgtaaac aatgttaaacaaacagcacaagagttaaacaatgctatgacacaattaaaacaaggcatt gcagataaagaacaacaacaacaggtgatggtaactttgtcaatgcagatcctgataagcaa

caagttgaacaagcaccagatattgcaacagttaataatgttaagcaaaatgctcaaaat ctgaataatgctatgactaacttaaacaatgcattacaagataaaactgagacattaaat agcattaactttactgatgcagatcaagctaagaaagatgcttatactaatgcggtttca catgcaggaggtattttatctaaagcaaatgcagcaatgcaagtcaaactgaagtggaa adayaccadaccadagadadaccadagadaaatactagacaacagagataacagagagataacagagagataacaacaatgagaacacaacagagagataacaacaatgagaacaacagagagatcaacagagagataacgagagataacaggagataacaggagataacaggagataacaggagataacaggagataacaggagataacaggagataacaggagataacaggagatacaaggagatacaaggagatacaaggagatacaaggagaacaatgacaatgacaatgacaatgacaatgacaatgacaatgatacag caagacaaacaagattataacaatgaggctaaccaagcgcaacaaatcgcaaatggc ataccaacacctgtattgacgcctgatacagtaacacaagcggtgacaactatgaatcaa gcgaaagatgcattaaacggtgatgaaaaattagcacaagcgaaacaagaagctttagca aatctgatacgttacgcgatttaaatcaaccacacgtgatgcattacgtaaccaaatc aatcaagcacaaggttagctacagttgaacaaactaaacaaaatgcacaaaatgtgaat acagcaatgagtaacttgaaacaaggtattgcaaacaagatactgtcaaagcaagtgag acagcaaugagtaautugaacaaggtatugcaacaaagatacugtcaaagcaagtgag aactatcatgatgctgatgccgataagcaaacagcatatacaaatgcagtgtctcaagcg gaaggtattatcaatcaaacgacaaatccaacgcttaacccagatgaaataacacgtgca ttaactcaagtgactgatgctaaaaatggcttaaacggtgaagctaaattggcaactgaa aagcaaaatgctaaagatgccgtaagtgggatgacgcatttaaacgatgctcaaaaacaa gcattaaaaggtcaaatcgatcaatcgctgaaattgcttacagtgaaccaagttaaacaa caggcagtagcadagctydagcattartydataatacaaagtygtaattaatggagtaat gcacaagttgaaagcatcactaatgaagtgaacgcagcgaaacaagcattaataatggtaat gacaatttggcaaatgcaaaacaacaagcacaaacaacaattaggcgaacttaacacactta aatgatgcacaaaaacaatcatttgaaagtcaaattacacaagcgccacttgttacagat gtcactacgattaatcaaaagcacataagctgcaagatcatgcgatggaattattaagaaa aggttggggataatcaaacgacattagcgtctgaagattatcatgatgcaactgcgcaa agacaaaatgactataaccaagctgtaacagctgctaataatatcattaatcaactaca tcgcctacgatgaatccagatgatgttaatggtgcaacgacacaagtgaataatacgaaa gttgcattagatggtgatgaaaaccttgcagcagctaaacaacaagcaaacaacagactt gatcaattagatcatttgaataatgcgcaaaagcaacagttacaatcacaattaggcaa tcatctgatattgctgcagttaatggtcacaaacaaacagcagaatctttaaattactgcg atgggtaacttaattaatgcgattgcagatcatcaagccgttgaacaacgtggtaacttc aatgcccaagcaattaatgctcttaacaagcttaaatgatcctcaaaaaacagcatta aaagaccaagttacagctgcaactttagtaactgcagttcatcaaattgaacaaaatgcg aatacgcttaaccaagcaatgcatggtttaagacagagcattcaagataacgcagcaact aaagcaaatagcaaatatatcaacgaagatcaaccagagcaacaaaactatgatcaagct gttcaagccgcaaataatattatcaatgaacaactgcaacattagataataatgcgatt aatcaagcagcgacaactgtgaatacaacgaaagcagcattacatggtgatgtgaagtta caaaatgataaagatcatgctaagcaaacggttagtcaattagcacatctaaacaatgca caaaaacatatggaagatacgttaattgatagtgaaacaactagaacagcagttaagcaa gatttgactgaagcacaagcattagatcaacttatggatgcattacaacaaagtattgct gacaaagatgcaacacgtgcgagcagtgcatatgtcaatgcagaaccgaataaaaaacaa tcctatgatgaagcagttcaaaatgctgagtctatcattgcaggattaaataatccaact atcaataaaggtaatgtatcaagtgcgactcaagcagtaatatcatctaaaaatgcatta gatggtgttgaacgattagctcaagataagcaaactgctggaaattctctaaatcattta gatcaattaacaccagctcaacaacaagcgctagaaaatcaaattaataatgcaacaact caaactaacaatccaacgcttgataaagcacaagttgaacaattgacacaagctgttaac caagctaaagataacctacacggtgatcaaaaacttgcagacgataaacaacatgcggtt actgatttaaatcaattaaatggtttgaataatccgcaacgtcaagcacttgaaagccaa actgatttaatcaattgatttgattaateggtaatgetaatgetaatgetaagatetaataagtaa ataaacaacgcagcaactegtggcgaagtagcacaaaaattagctgaagcaaaagcgctt gatcaagcaatgcaagcattacgtaatagtattcaagatcaacaacaagaagcagcattagcaacagtttaatcaacaacgcagcagttcaaaat gcaaaagtttaattaaccaaaaccgcaaaaaagatgcttaccaaagcagcagtagaacaa tcgacacaagcagtaacaactgcaaaagataatctacatggtgatcaaaaacttgctcgt gatcaacaacaagcagtaacaactgtaaatgcattgccaaacttaaatcatgcacaacaa caagcattaactgatgctataaatgcagcgcctacaagaacagaggttgcacaacatgtt caaactgctactgaacttgatcacgcgatggaaacattgaaaaataaagttgatcaagtg aatacagataaggctcaaccaaattacactgaagcgtcaactgataaaaaagaagcagta gatcaagcgttacaagctgcagaaagcattacagatccaactaatggttcaaatgcgaat aaagacgctgtagaccaagtattaactaagcttcaagaaaaagaaaatgagttaaatggt aatgagagagtegetgaagetaaaacacaagegaaacaaactattgaccaattaacacat ttaaatgetgatcaaattgcaactgetaaacaaaacattgatcaagegacgaaacttcaa caagcagttaatgaacatgctaacgttgagcaaactgtagattacacacaagcagattca gataaacaaaatgcttataaacaagctattgctgatgctgaaaatgtattgaaacaaaa gcgaataagcaacaagtggatcaagcacttcaaaatattttaaatgcaaaacaagcatta ttgtcacaagaaatcactgacaatgaaggacgcacgaaaggtagcacgaactatgtcaat gcagatacacaagtcaaacaagtatatgatgaaacggttgataaagcgaaacaagcactt

gataaatcgactggtcaaaacttaactgcaaaacaagttatcaaattaaatgatgcagtc actgcagctaagaaagcattaaatggtgaagaaagacttaataatcgtaaagctgaagca ttacaaagattggatcaattaacacatctaaacaatgctcaaagacaattagcaatccaa caaattaataatgctgaaacgctaaataaagcatctcgagcaattaatagagcaactaaa ttagataatgcaatgggtgcagtacaacaatatattgacgaacagcaccttggtgttatc agcagcacaaattacatcaatgcagatgacaatttgaaagcaaattatgataatgcaatt gcgaatgcagcacatgagttagataaagtgcaaggtaatgcaattgcaaaagctgaagca gagcaattgaaacaaaatattatcgatgctcaaaatgcattaaatggagaccaaaacctt gcaaatgccaaagataaagcaaatgcgtttgttaattcgttaaatggattaaatcaacag caacaagatcttgcacataaagcaattaacaatgccgatactgtatcagatgtaacagat attgttaataatcaaattgacttaaatgatgcaatggaaacattgaaacatttagttgac aatgaaattccaaatgcagagcaaactgtcaattaccaaaacgctgacgataatgctaaa acaaacttcgatgatgccaaacgtctagcaaatacattgctaaatagtgataacacaaat gtgaatgatatcaatggcgcaatccaagcagtcaatgatgcaatccataatcttaatggt gatcaacgactacaagatgctaaagacaaggcaattcaatctattaatcaagctttagct aataagctaaaagaaatcgaagcttcaaatgcgacggatcaagacaagcttattgcgaaa aataaagcagaagaattggcaaacagcatcatcaacaacattaataaagcaacaagtaat caggctgtatctcaagttcaaacagcaggcaaccagggattgaacaagtgcatgccaat gaaataccaaaagcaaaaattgatgccaataaagacgttgataagcaagttcaagcatta attgacgaaattgatcgaaatccaaatctaacagataaggaaaaacaagcacttaaagat cgtattaatcaaatacttcaacaaggtcataacggcattaacaatgcgatgactaaagaa gaaattgaacaagccaaagcacaacttgcgcaagcattacaagacatcaaagatttagtg aaagctaaagaagatgcgaaacaagatgttgataaacaagttcaagctttaattgacgaa atcgatcaaaatccaaatctaacagataaggaaaaacaagcacttaaagatcgtattaatcaaatacttcaacaaggtcatarcgacattamcaatgcgatgacaaaagaagcaattgaa caagcaaaagaacgtttagcgcaagcattgcaagacatcaaagatttagtgaaagctaaa gaagatgcgaaaaatgatattgataaacgtgtacaagctttaattgacgaaatcgatcaa aatccaaatctaacagataaggaaaaacaagcacttaaagatcgaattaatcaaatactt caacaaggtcataacgacattaacaatgcgctgactaaagaagaaaattgagcaggcaaaa gcacaacttgcacaagcattgcaagacatcaaagatttagtgaaagctaaagaagatgcg aaaaatgcaataaaagccttagctaatgcgaagcgtgatcaaatcaattcaaatccagat ttaacactgagcaaaaagcaaaagcgctcaaagaaattgacgaagctgaaaacgagcactacaaaacgttgagaatgctcaaactatagatcaattaaatcgaggattaaacttaggttaagatgacattagaatgacattagatgacgatgatgaacaacctgctgtaaaatgaa attittgaagcaacacctgagcaaatcctagttaatggtgaactcattgtacatcgtgat gacatcattacagaacaagatattcttgcacacataaacttaattgatcagctttcagca gaagtcatcgatacaccatcaactgcaacgatttctgatagcttaacagcaaaagttgaa gttacattgcttgatggatcaaaagtgattgttaatgttcctgtaaaagttgtagaaaaa gaattgtcagtagtcaaacaacaggcaattgaatcaatcgaaaatgcggcacaacaaaag attaatgaaatcaataatagtgtgacattaacactggaacaaaaagaagctgcaattgca gatgaaataagtgagcaattggaacaatttaaagctcaaatgaaagcagctaatccaaca gcaaaagaactagctaaacgcaagcaagaagctattagtagaattaaagacttttcaaat gaaaaaataaatagtattcgaaatagtgaaattggcacagctgatgaaaaacaagcagca atgaatcaaattaacgaaattgtgcttgaaacaattagagatattaataatgcgcataca ttacagcaagttgaggctgcattgaacaatggtattgctcgaatttcagcagtacaaatt gtaacatotgatcgtgctaaacaatcgtcaagtactggaatctaaattaacttta acaattggttatggaactgcaaatcatccatttaacagttcgactattggacataaaaag aaacttgatgaagatgatgacattgatccacttcatatgcgtcactttagtaataatttc ggtaatgttattaaaaacgctattggtgtgggtatctctggtttactagtatt tggttcttcattgccaaacgtcgtcgtaaagaagatgaagaggaagaattagaaataaga gataataataaagattcaataaaagagactttagacgatacaaaacatttaccactttta tttgcgaaacgtcgcagaaaagaagatgaagaagatgttactgttgaagaaaaagattcg ctaaataatggcgagtcactcgataaagttaaacatacgccgttcttcttaccaaaacgt cgtcgtaaagaagatgaagaagatgtggaagttacaaatgaaaacacagatgaaaaagtg ttgaaagataacgaacattcaccactcttattcgcaaaacgacgcaaagataaagaggaa gatgttgaaacaacaactagtattgaatctaaagatgaggacgttcctttattattggctaaaaagataaaccaatccaaaagatgagacgttcagtatcaaaaaatcaaaaagataaccaatccaaagacaaaaagtcagcatcaaaaaaatact tctaaaaaggtagcagctaaaaagaagaaaaagaaagctaagaaaaataaaaaataa

vnyrdkiqkfsirkytvgtfstviatlvflgfntsqahaaetnqpasvvkqkqqgsmeqt enresqvqnsqnsqngqslsatheneqpnisqanlvdqkvaqssttndeqpasqnvntkk dsataattqpdkeqskhkqnesqsankngndnraahvenheanvvtasdssdngnvqhdr nelqaffdanyhdyrfidrenadsgtfnyvkgifdkintllgsndpinnkdlqlaykele qavalirtmpqrqqtsrrsnriqtrsvesraaeprsvsdyqnanssyyvenandgsgypv gtyinasskgapynlpttpwntlkasdskeialmtakqtgdgyqwvikfnkghaphqnmi gtyinasskgapynlpttpwntlkasdskeialmtakqtgdgyqwvlkfnkghaphqnmi fwfalpadqypvgrtdfvtvnsdgtnvqwshgagagankplqqmweygyndphrshdfki rnrsqqviydwptvhiysledlsrasdyfseagatpatkafgrqnfeyingqkpaespgv pkvytfigqgdasytisfktqgptvnklyyaaggraleynqlfmysqlyvestqdhqqrl nglrqvvnrtyrigttkrvevsggnvqtkkvlestnlniddfvddplsyvktpsnkvlgf ysnnantnafrpggaqqlneyqlsqlftdqklqeaartrnpirlmigfdypdaygnsetl vpvnltvlpeiqhnikffknddtqniaekpfskqaghpvfyvyagnqgnasvnlggsvts igplrinltsnenftdkdwqitgiprtlhienstnrpnnarernielvgnllpgdyfgti rfgrkeqlfeirvkphtptitttaeqlrgtalqkvpvnisgipldpsalvylvaptnqtt nggseadqipsgytilatgtpdgvhntitirpqdyvvfippvgkqiravyyynkvvasnm snavtilpddipptinnpvginakyyrgdevnftmgvsdrhsgiknttittlpngwtsnl tkadknngslsitgrvsmqafnsditfkvsatdnvnnttndsqskhvsihvgiksedah pivlgntekyvvynbtavsndekgsiitafmkncmirgylastdpvtvdnngnvtlhyr pivlgntekvvvnptavsndekqsiitafmmknqmirgylastdpvtvdnngnvtlhyr dgssttldatnvmtyepvvkpeyqtvnaaktatvtiakgqsfsigdikqyftlsnqqpip sqtftnitsdrtiptaqevsqmmagtqlyhitatnayhkdsedfyislkiidvkqpegdq ryyrtstydlttdeiskvkqafinanrdvitlaegdisvtntpnganvstitvninkgrl tksfasnlammflrwvnfpqdytvtwtnakianrptdgglswsddhksliyrydatlgt qittndiltmlkatttvpglrnnitgneksqaeaggrpnfrttgysqsnattdgqqqftl ngqviqvldiinpsngygqpvtnsntranhsnstvvnvnepaangagaftidhvvksns thnasdavykaqlyltpygpkqyvehlnqntgnttdainiyfvpsdlvnptisvgnytnh qvfsgetftntitandnfgvqsvtvpntsqitgtvdnnhqhvsatapnvtsatnktinll atdtsgntattsfnvtvkplrdkyrvgtsstaanpvrianisnnatvsqadqttiinslt ftetvpnrsyarasaneitsktvsnvsrtgnmanvtvtvtyqdgttstvtvpvkhvipei rtetvpnrsyarasaneltsktvsnvsitginantvtvtvydugttstvtvpvntvper vahshytvqgddfpagngssasdyfklsngsdiadatitwvsgqapnkdntrigeditvt ahilidgettpitktatykvvrtvpkhvfetargvlypgvsdmydakqyvkpvnnswstn aqhmnfqfvgtygpnkdvvgistrlirvtydnrqtedltilskvkpdppridansvtyks gltnqeikvnnvlmssvklfkadntplnvtnithgsgfssvvtvsdalpnggikakssi smnnvtyttqdehgqvvtvtrnesvdsndsatvtvtpqlqattegavfikgdgdfdfphv erfiqnpphgatvawhdspdiwkntvgnthktavvtlpngqgtrnvevpvkvypvanaka erfiqnpphgatvawhdspdtwkntvgnthktavvtlpngqgtrnvevpvkvypvanaka psrdvkgqnltngtdammyitfdpntntngitaawanrqqnnqqagvqhlnvdvtypgi saakrvpvtvnvyqfefpqttytttvggtlasgtqasgyahmqnatglptdgftykwnrd ttgtndanwsamnkpnvakvvnakydviynghtfatslpakfvvkdvqpakptvtetaag aitiapganqtvnthagnvttyadklvikrngnvvttftrrnntspwvkeasaatvagia gtnngitvaagtfnpadtiqvvatqgsgetvsdeqrsddftvvapqnpattkiwqnghi ditpmpsghlinptqamdiaytekvgngaehsktinvvrgqnnqwtiankpdyvtldaq tgkvtfnantikpnssititpkagtghsvssnpstltapaalitvntteivkdygsnvtaa einnavqvankrtatikngtamptnlaggstttipvtvtyndgsteevqesiftkadkre litaknhlddpvstegkpgtitqynnamhnaqqqintakteaqqvinneratpqqvsdaltkvraaqtkidqakallqnkednsqlvtskmnlgssvnqvpstagmtqqsidnynakkreaeteitaaqrvidngdataqqisdekhrvdnaltalnqakhdltadthaleqavqlnrtgtttgkkpasitavnnsiralgsdltsaknsnaijdkpirtvgevgsaltnynrvner tgtttgkkpasitaynnsiralgsdlsaknsanaiiqkpirtvqevqsaltnvnrvner tgattgkkpasitaynnsiralgsdlsaknsanaiiqkpirtvqevqsaltnvnrvner ltqainqlvpladnsalktaktkldeeinksvttdgmtqssiqayenakragqtestnaq nvinngdatdqqiaaektkveekynslkqaiagltpdlaplqtaktqlqmdidqprsttg mtsasiaafneklsaartkiqeidrvlashpdvatirqnvtaanaaksaldqarngltvd kaplenaknqlqysidtqtsttgmtqdsinaynakltaarnkiqqinqvlagsptveqin tntstanqaksdldharqaltpdkaplqtaktqleqsinqbtdttgmttaslnaynqklq thtstanqaksdidnarqaltpdkaplqtaktqleqsinqptdttgmttasinaynqkiq aarqklteinqvlngnptvqnindkvteanqakdqlntarqgltldrqpalttlhgasnl nqaqqnnftqqinaaqnhaaletiksnitalntamtklkdsvadnmtiksdqnytdatpa nkqaydnavnaakgvigettnptmdvntvnqkaasvkstkdaldgqqnlqrakteatnai thasdlnqaqknaltqqvnsaqnvqavndikqttqslntamtglkrqvanhnqvvqsdny vnadtnkkndynnaynhandiingnaqhpvitpsdvnnalsnvtskehalngeaklnaak qeantaljhlnnlmaqrqnlqsqinqahqidavntikqnatnlnsamgnlrqavadkd vkrtedyadadtakqnaynsavssaetiinqttnptmsvddvnratsavtsnknalngve klaqsktdaaraidalphlnnaqkadvkskinaasniagvntvkqqgtdlntamgnlqga klaqsktdaaraidalphlnnaqkadvkskinaasniagvntvkqqgtdlntamgnlqga
indeqttlnsqnyqdatpskktaytnavqaakdilnksngqnktkdqvteamnqvnsakn
nldgtrlldqakqtakqqlnnmthlttaqktnltnqinsgttvagvqtvqsnantldqam
ntlrqsiankdatkasedyvdanndkqtaynnavaaaetiinansnpemmpstitqkaeq
vnssktalngdenlaaakqnaktylntltsitdaqknnlisqitsatrvsgvdtvkqnaq
hldqamaslqnginnesqvkssekyrdadtnkqqeydnaitaakailnkstgpntaqnav
eaalqrvnnakdalngdakliaaqnaakqhlgtlthittaqrndltnqisqatnlagves
vkqnansldgamgnlqtaindksgtlasqnfldadeqkrnaynqavsaaetilnkqtgpn
taktaveqalnnvnnakhalngtqnlnnakqaaitaingasdlnqkqkdalkaqngaqr
vsnaqdvqhnatelntamgtlkhaiadktntlasskyvnadstkqnayttkvtnaehiis
gtptvvttpsevtaaanqvnsakqelngderlreakqmantaidaltqlntpqkaklkeq
vqqanrledvdtvqtngqalnnamkglrdsianettvktsqnytdaspnnqstynsavsn
akriingtnnntmdtsaitgattqvnnaknglngaenlrnacmtakmlntlshltnnqk akgiinqtnnptmdtsaitqattqvnnaknglngaenlrnaqmtakqnlntlshltmnqk saissqidraghvsevtatknaatelntqmgnleqaihdqntvkqsvkftdadkakrday tnavsraeailnktqgantskqdveaaiqnvssaknalngdqnvtnaknaaknalnnlts innagkrdlttkidgattvagveavsntstqlntamanlqngindktntlasenyhdads dkktaytqavtnaenilnknsgsnldktavenalsqvanakgalngnhnleqaksnantt inglqhlttagkdklkqqvqqaqnvagvdtvkssantlngamgtlrnsiqdntatkngqn yldaternktnynnavdsangvinatsnpnmdanainqiatqvtstknaldgthnltqak qtatnaidgatnlnkaqkdalkaqvtsaqrvanvtsiqqtanelntamgqlqhgiddena tkqtqkyrdaeqskktaydqavaaakailnkqtgsnsdkaavdralqqvtstkdalngda klaeakaaakgnlgtlnhitnaqrtdlegqnnqattvdgvntvktnantldgammslqgs indkdatlrnqnyldadeskrnaytqavtaaegilnkqtggntskadvdnalnavtraka alngadnlrnaktsatntidglpnltqlqkdnlkhqveqaqnvagvngvkdkgntlntam galrtsiqndnttktsqnyldasdsnknnyntavnnangvinatnnnndanaingmanq vnttkaalngaqnlaqaktnatntinnahdlnqkqkdalktqvnnaqrvsdannvqhtat elnsamtalkaaiadkertkasgnyvnadqekrqaydskvtnaeniisgtpnatltvndv nsaasqynaaktalngdnnlrvakehanntidglaqlnnaqkaklkeqyqsattldgyqt vknssqtlntamkglrdsianeatikagqnytdaspnnrneydsavtaakaiinqtsnpt mepntitqvtsqvttkeqalngarnlaqakttaknnlnnltsinnaqkdaltrsidgatt meghirtiytelytelytelingininadakteaninitsinintsinintsitystevagyngetakatelmamhslqngindetqtkqtqkyldaepskksaydqavnaakailt kasgqnvdkaaveqalqnynstktalngdaklneakaaakqtlgtlthinnaqrtaldne itqatnvegvntvkakaqqldgamgqletsirdkdttlqsqnyqdaddakrtaysqavna aatilnktaggntpkadveramqavtqantalngiqnldrakqaantaitnasdlntkqk ealkaqvtsagrvsaangvehtatelntamtalkraiadkaetkasgnyvnadankrqay

dekvtaaenivsgtptptltpadvtnaatqvtnaktqlngnhnlevakqnantaidglts lngpqkaklkeqvgqattlpnvqtvrdnaqtlntamkglrdsianeatikagqnytdasq nkqtdynsavtaakaiigqttspsmnaqeinqakdqvtakqqalngqenlrtaqtnakqh nglsdltdagkdavkrqiegathvnevtqaqnnadalntamtnlkngiqdqntikqgvn ftdadeakrnaytnavtqaeqilnkaqgpntskdgvetalenvqraknelngnqnvanak ttaknalnnltsinnaqkealksqiegattvagvnqvsttaselntamsnlqqqindeaa tkaaqkytdadrekqtayndavtaaktlldktagsndnkaaveqalqrvntaktalngde rlneakntakqqvatmshltdaqkanltsqiesgttvagvqgiqanagtldqamnqlrqs iaskdatkssedyqdanadlqnayndavtnaeqiisatmpempdtinqkasqvnsaks iaskdatkssedyddanadlqnayndavtnaegiisatnnpempdtinqkasqwnsaks
alngdeklaaakqtaksdigrltdlnnaqrtaanaevdqapnlaavtaaknkatslntam
gnlkhalaekdntkrsvnytdadqpkqqaydtavtqaeaitnangsnanetqvqaalnql
nqakndlngdnkvaqakesakralasysnlnnaqstaatsqidnattvagvtaaqntane
Intamgqlqngindqntvkqqvnftdadqgkkdaytnavtnaqgildkahgqnntkaqve
aalnqvttaknalngdanvrqaksdakanlgtlthlnnaqkqdltsqiegattvngvngv
ktkaqdldgamqrlqsaiankdqtkasenyidadptkktafdnaitqaesylnkdhgank
dkqaveqaiqsvtstenalngdanlqrakteaiqaidnlthlntpqktalkqqvnaaqrv
sgvtdlknsatslnnamdqlkqaiadhdtivasgnytnaspdkqgaytdaynaaknivng spnvitnaadvtaatqrvnnaetglngdtnlatakqqakdalrqmthlsdaqkqsitgqidsatqvtgvqsvkdnatnldnamnqlrnsiankddvkasqpyvdadrdkqnayntavtnaeniinatsqptldpsavtqaanqvstnktalngaqnlankkqettaninqlshlnnaqkq dlntqvtnapnistvnqvktkaeqldqamerlingiqdkdqvkqsvmftdadpekqtayn navtaaeniinqangtnanqsqveaalstvtttkqalngdrkvtdakmnanqtlstldnl nnaqkgavtgninqahtvaevtqaiqtaqelntamgnlknslndkdttlgsqnfadadpe maqkgavigninqantvaevtaqtaqtaqtantaminkisinkistististiadatie khayneavinaenilnkstytniykdqveammqvnatkaalngtqnlekakqhantai dglshltnaqkealkqlvqqsttvaeaqqneqkannvdaamdklrqsiadnattkqnqny tdasqnkkdaynnavttaqqiidqttsptldptvinqaaqqvsttknalnqnenleaakq qasqslysldnlnnaqkqtvtdqinqahtvdeanqikqnaqnlntamqnlkqaiadkdat katvnftdadqakqqayntavtnaeniiskanqqnatqaeveqaikqvnaakqalnqnan yqhakdeatalinssndlnqaqkdalkqqvqnattvagvnnvkqtaqelnnamtqlkqqi wqhakdeatalinssndlnqaqkdalkqqqqnattvagvnnykqtaqelnmamtqlkqqi adkeqtkadgnfynadpdkqnaynqavakaealisatpdvvvtpseitaalnkvtqaknd lngntnlatakqnvqhaidqlpnlnqaqrdeyskqitqatlypnynaiqqaattlndamt qlkqqiankaqikqsenyhdadtdkqtaydnavtkaeellkqttnptmdpntiqqaltkv ndtnqalngnqkladakqdakttlgtldhlndaqkqalttqveqapdiatvnnvkqnaqn lnnamtnlnnalqdktetlnsinftdadqakkdaytnavshaegilskangsnasqteve qamqrvneakqalngndnvqrakdaakqvitnandlnqaqkdalkqqvdaaqtvanvnti kqtaqdlnqamtqlkqgiadkdqtkangnfynadtdkqnaynnavahaeqilsgtpnanv dpqqvaqalqqvnqakqdlngnhnlqvakdnantaidqlpnlnqpqktalkdqvshaelv tgvnaikqnadalnnamgtlkqqiansaqpqsvdftqadqdkqqaynnaanqaqqiang iptpvltpdtvtqavttmnqakdalngdeklaqakqealanldtlrdlnqpqrdalrnqi nqaqalatveqtkqnaqmvntamsnlkqqiankdtvkasenyhdadadkqtaytnavsqa egiinqttnptlnpdeitraltqvtdaknglngeaklatekqmakdavsgmthlndaqkq alkqqidqspeiatvnqvkqtatsldqamdqlsqaindkqtladgnylnadpdkqnayk qavakaeallnkqsgtnevqaqvesitnevnaakqalngndnlanakqqakqqlanlthl ndaqkqsfesqitqaplvtdvttinqkaqtldhamellrnsvadnqttlasedyhdataq rqndynqavtaanniinqttsptmnpddvngattqvnntkvaldqdenlaaakqqannrl dqldhlnnaqkqqlqqitqsqitqssdiaavnqhkqtaeslntamgnlinaiadhqavqqqnfi ndakasisaitapitvuvtinkaatinimimiinisvandetiaasakaannilaakagainri
qoldhlnnaqkqqlqsqitqssdiaavnghkqtaeslntamgolinaiadhqaveqrgnf
inadtdkqtayntavneaaminkqtqqnanqteveqaitkvqttlqalngdmlqvakt
natqaidaltslndpqktalkdqvtaatlvtavhqieqnantlnqamblqrssiqdnaat
kanskyinedqpeqqnydqavqaanniineqtatldnnainqaattvnttkaalhgdvkl
qodkdhakqtvsqlahlnnaqkhmedtlidsettrtavkqdlteaqaldqlmdalqqsia
dkdatrassayvnaepnkkqsydeavqnaesiiaglnnptinkgnvssatqavissknal
dyverlaqdkqtagnslnhldqltpaqqqalenqinnattrgevaqklteaqalqqamea
lrnsiqdqqteagskfinedkpqkdayqaavqnakdlinqtnnptldkaqveqltqavn
qakdnlhgdqkladdkqhavtdlnqlnglnnpqrqalesqinnaatrgevaqklaeakal
dqamqalrnsiqdqqtesgskfinedkpqkdayqaavqnakdlinqtnptldkaqveqltqavn
qakdnlhgdqklardqqqavttvnalpnlnhaqqqaltdainaaptrtevaqhv
qtateldhametlknkvdqvntdkaqpnyteastdkkeavdqalqaaesitdptngsnan
kdavdqvltklqekenelngnervaeaktqakqtidqlthlnadqiatakqnidqatklq
piaelvdqatqlnqsmdqlqqavnehanveqtvdytqadsdkqnaykqaiadaenvlkqn
ankqqvdqalqnilnakqalngdervalaktngkhdidqlnalnnaqqdgfkgridqsnd
lnqiqqivdeakalnramdqlsqeitdnegrtkgstnyvnadtqvkqvydetvdkakqal
dkstqqnltakqviklndavtaakkalngeerlnnrkaealqrldqtthlnnaqqqlaiq
qinnaetlnkasrainratkldnamgavqqvideqhlgvisstnyinaddnlkanydnai qinnaetlnkasrainratkldnamgavqqyideqhlgvisstnyinaddnlkanydnai anaaheldkvqqnaiakaeaeqlkqniidaqnalngdqnlanakdkanafvnslnglnqq qqdlahkainnadtvsdvtdivnnqidlndametlkhlvdneipnaeqtvnyqnaddnak qqdlahkainnadtvsdvtdivnnqidlndametlkhlvdneipnaeqtvnyqnaddnak tnfddakrlantllnsdntnvndingaiqavndaihnlngdqrlqdakdkaiqsinqala nklkeieasnatdqdkliaknkaeelansinninkatsnqaavsqvtganhaieqvhan eipkakidankdvdkqvqalideidrnpnltdkekqalkdrinqilqqqhnginnamtke eieqakaqlaqalqdikdlvkakedakqdvdkqvqalideidqnpnltdkekqalkdrinqilqqqhnginnamtke eieqakaqlaqalqdikdlvkakedakndidkrvqalideidq npnltdkekqalkdrinqilqqqhndinnaltkeeieqakaqlaqalqdikdlvkakeda knaikalamakrdqinsnpdltpeqkakalkeideaekralqnvenaqtidqlnrglnlq iddirnthwevdeqpavneifeatpeqilvnqeljivntdditeqdilahinlidqlsa evidtpstatisdsltakvevtlldgskvivnvpvkvvekelsvvkqaiesienaaqqk ineinnsvtltleqkeaaiaevnklkqqaidhvnnapdvhsveeiqqqeqahieqfnpeqftieqaksnaiksiedaiqhmideikartdltdkekqeaiaklnqlkeqaiqaiqraqsi deiseqleqfkaqmkaanptakelakrkqeaisrikdfsnekinsirnseigtadekqaa mnqineivletirdinnahtlqqveaalnngiarisavqivtsdrakqssstynesnshl tigygtanhpfnsstighkkldedddidplhmrisnnfgnuknaigvysispllasf wffiakrrrkedeeeleirdnnkdsiketlddtkhlpllfakrrrkedeedvtveekds lnngesldkykhtpfflpkrrrkedeedvevtnentdekvlkdnehspllfakrrkdkee dvetttsieskdedvplllakkkngkdngskdkksaskntskkvaakkkkkkakknkk

mffddakeasrvleitltkrdakkenpipmcgvpyhsadnyietlinkgykvaiceqmed pkqtkgmvrrevvriitpgtvmdqngmdekknnyilsfieneefglcycdystgelkvth fkdtatllneittinpneivikqalseelkrqinmitetitvredisdedydmnqlthql mhdttqllldyihhtqkrdlshieevleyaavdymkmdyyakrnleltesirlkskkgtl lwlmdetktpmgarrlkqwidrplinkqqindrlniveefmdrfierdtlrnhlnqydi erlvgrvsygnvaardliqlkhsiseiphikallnelgaqtttqfkeleplddllqllee slveeppisikdgglfkngfnaqldeyleaskngktwlaelqakerertgikslkisfnk vfgyfieitranlnnfqpeafgynrkqtlsnaerfitdelkekediilgaedkaveleye lfvklrehiktyterlqkqakiiseldclqsfaeiaqkynyvkptfsddkvlhlensrhp vvervmdyndyvpndchlddetfiylltgpnmsgkstymrqvaiisimagmgayvpcdsa tlpifdqiftrigaaddlvsgkstfmvemleaqkaltyatensliifdeigrgtstydgl alaqamieyvaqtshaktlfsthyheltsldqmlkclknvhvaaneyggliflhkvkdg avddsygiqvakladlpnevidraqvilnafeqkpsyqlshentdnqdtvpsyndfgrte eegsviethtsnhnyeqatfdlfdgynqqsevecqirelnlsnmtplealiklnelqsqlk

443.	atgattccaactaaacctcatgatgtgatttggacagatgcacaatggcaagtattat gcgaaaggacaggac	
444.	miptkphdviwtdaqwqsiyakgqdilvaaaagsgktavlveriiqrilrddvdvdrllv vtftnlsaremkhrvdkriqeasfkdpnnehlknqrikihqaqistlhsfclkliqqhyd vldidphfrtsseaenillleqtiddvleqhydkldphfielteqlssdrnddqfrsiik qlyffsianpqpfewlnqlaqpykeenkqqqlmqlindlamifmkagyeelqksydlfsm mesvdkqlevietermfitkaiegkvlntdvitqhefmsrfpainskikeanegmedaln eakqhydkykslvmkvkndyfsrnaedlqrdmqqlaprvaylaqivqdviqsfyvqkrsr nildfsdyehfalriltnedgspsriaetyrehfkeilvdeyqdtnrvqekilsciktge ehdgnlfmvgdvkqsiykfrqadpslfiekynrfsssgnesglridlsqnfrsrqevlst tnylfkhmmdeqvgeisyddaaqlyfgspydevshpvqlralveassensdltgseqean yiveqvkdiinhqnvydmktgqyrkatykdivilersfggarnlqqafknndipfhvnsk egyfeqtevrlvlsflrtidnplqdiylvglmrsviyqfteeelaeirvvsphddyfyqs iknymidekadsrlvdklnrfiqdigkyqnysqsqpvyqlidkfyndhfviqyfsgligg kgrranlyglfnkavefenssfrglfqfirfidelidrkdfgeenvvgpndnvvrmmti hsskglefpfviysglskkfnkgdlnapvilnqqyglgmdyfdvnkdmafpslasvayra inekeliseemrliyvaltrakeqlilvgrvkdekslikyeqlavsdthiavnerltatn pfvliygvlakhqspslpndqrferdidqlnsevkprvsividhyedvsteevndneir tieelkaintomedvkikihqqlsydypfkvntmkpskgsvselkrqleteesntnydrv	
445.	rgyrigvasyerpkfltqtkkrkaneigtlmhtvmghlpfreqrltkdelfqyldrlidk qlidedakedirideimhfidgplymeiaqadnvytelpfvvnqikvdgltsededvsii qgmidliyesdgqfyfvdyktdafnrrkgmsdeeignqlkekyqiqmtyyrntletilkr pvkgylyffkfgtleidd ctgtaccatcaaattggtgctacaatttctcctgaatctggtacaaatccgataccatcac ccatcatcttttcagagaaaactttatcaggtacttagatacaggtattatctaccat gtccaggtgcgtaaatttctgtttctacaatatcttccacatgtacaggatcatctgaca	
	cttcttcatcaattqttqtttcacttggttttg	4
446.	lyhqmvlqfllnlvqiryhhpssfqrklyqvlqitvlshhvqvrkflflqylphvqdhlt llhqllfhlvl	

447.	cgcatactttggtcatcactatgcgtaatccacaaaatggcaatccctttatctgctagt ttaaatataatttcttcaattttctttttattatgtgtatctaaagcgctagtagcttcg tccaataataaaacttcaggttcatacatgagttgtctagcgatggtaatacgttgttgc tctcccccagacatgtgctcaatt
448.	rilwsslcvihkmaiplsaslniissiffllcvskalvassnnktsgsymsclamvircc sppdmcsi
449.	tcacgtactttacgcgctctactcttaatactccaaacaggcatgatgtgtggtttgtta tggtcatcatctgaaatcataataaaattcttttcacctttgtttg
450.	srtlralllilqtgmmcgllwssseiiikffsplfvnpytssyfatslinslilissnsd inssviltistmfpssplftltktlspgskissisyvtkrsisalmils
451.	gcaggatttttgactaaagcagtacttaaatcaacttcatctctgtcatcaaacacttct tetacgacttctttacgtgcaatcactctaaatgaaccttcgtccatatttaattctact cttacatttctggcactatca
452.	agfltkavlkstsslssntssttslraitlnepssifnstltflals
453.	tatttetttataagetttttaattagaetaatateatgeteattgattaeegaaaeaatt tegatttgteeatttttagatataattgageeattaeeaeeaateaaggtateateegea aatteaggaatgaetggaageaagtetetaatgggaegtgetgatgeaaaeattaeattg
454.	yffisflirliscslitetisicpfldiieplppikyssansgmtgskslmgradanitl
455.	ttatcttettetaaagettacetteaaegtetaggeaataetgeacetaaceat ttaggaaggtaceatgaagetttaceaaagagtttegteaatgetggaattaatgteata egtacgaegaatgegtegaataaeaeaeegaaaeetaatgegataceeattgaettaatt geaetgteatettggaagaegaatgegatgaatacaetgaaeataaatagtgeageaget acgataaeaggteeaetttettetteataectaeaeggattgaa
456.	lssskalpststfgntapnhlgryhealpksfvnaginvirttnasnntpkpnaipidli alsswktnammtlniisaaatitqplsliptrie
457.	tcatcaactgcttgcattaagtctaagattttttgttcgtattcagcatcgccttctaat gcttttaatgcagaaccagcgattacaggtacatcgtcacctgggaagtcatattcgctt aataagtcacgaacttccatttcaactaattctaataattcttcgtcgtctaccatgtca actttgtttaagaatacaactaatgctggtacaccaacgttacgtgataataagatgtt tcacgagtttgtggcattggaccgtcagcagcagatacaactaagataccgccgtccatt tga
458.	sstacikskifcsysaspsnafnaepaitgtsspgksyslnksrtsistnsnnsssstms tlfknttnagtptlrdnkmcsrvcgigpsaadttkippsi
459.	ttagaaccacctacacgacgagetttaacttctaatactggcatgatattattaattgct tcttcgaacacttctaattgcatcacgaccactacgttgttcaacaagatcaaatgcagaa
460.	lepptrraltsntgmilliassntsnasrplrcstrsnae
461.	aggaggegacegeceagteaaactgeeegeetgacactgteteecaccacgataagtgg tgegggttagaaagecaacacage
462.	rrrppqsncppdtvshhdkwcglesqhs
463.	tgtgctattattccccctattgaaggacctaacccttcacctaaagctacaattgatcct ataaaaccaaaggctttgccttgtttttttttt
464.	gccagtcacttctcgttccatttgattcaatacaaacaaa
465.	tgtcgtattaatactgccttcaccagtattgctagcatttggatcttgagtttgtgcgtt tgctgctacaaggtgctgctggttgcgctgctgctggagaattcgctggctg
466.	atccaacgtttcaggaataaatgttttcaaaccactttgaaatggatcgcggtgttgtgc ttgatatactttgtagcgataacgtttacctacacaatcataacgacaatgaaaatcgtc atcgactgtaactacattgttgacataaatatcatcagg
467.	cggtataaaggtaaagcaaaatgcatcagcttgcttagaatgattgtcctttttttgata atagcgttccattgcaatgacggcagaaggatggtttgcaaacaaa
468.	atgcaagagtaccaaaaatcgttaaatacgcttaaaaagcctataaatgttccgtatgag caagaaactgaaaagtaggtgtttatttagcaaagaaatacaagaaactggaaatgtt gtaataagccaaaaagatttcaatgaatttcagaaagaaa
469.	atgctaactactttcgctgttgtactcattttcttcttacttccatcttcatttttattg
470.	ttgagcatctgcatcattattatcattcatgcgatcatttttgttcacattattaaaaat ggcattcaaaataacaat
471.	ttgcctataccaagtactagaagtgcaccaataattccagcaatcaat
472.	atgetttttgagttaetteataataeteateagttttttgtgtateetttttgaettttatt tatttettteeaettaeeagtatgaetttetttttttaeagttatttteggtttgtt

473.	atgacttgtgaaaaactggaaaatttettgaccagtagcaaagceggcaccaacgacaac accaacaaaggcaaatgccacaataatggactcttt
474.	ttgattgtcattagtaacgttattgccattattttgatttttatctgtttttgtctgcact atcatcttgttgatcattttcttcggtttctgtcttttatgcgtagatttattt
475.	atgtgcagaaattgcccagcattcaccagttgtttcattagggatatcatagttaaatgc ttt
476.	gtggtatacaacgcaacgtatatgcatcttgtacacgtatttctgattgtcgcgtcgtta atgttgatccttctaaccaatcacgcatacgcgctgccacat
477.	gtgacaaatatcacactaaacagtgcatttgcagatgctacgataagcgtatttttatac caagtcaggtat
478.	ttgtgcagtagtagcttggttactattcttaagcttttgttctgcatctctcaactgttt aagtttttgatacgcatcttgtttacgttgatttgtacgtttatattgattttcagcttt tttaagttctgtattcga
479.	ttgccttcttgtttatattgttcaacaagtgctttatgcttagcggactgcttctgtact gcgtcacttgctctttttagttgtgcagtagtagcttggttactattcttaagcttttgt tctgcatctctcaactgtttaagtttt
480.	caiippiegpnpspkatidpikpkalpcfflviflatttiisegnaadptpctnlpkiki kk
481.	ashfsfhliqykqiilnifrstvasillffcllfmiyfrtvkfflnfliindfcfymafn rkrhilsflk
482.	crintaftsiasiwilslevecyrecwlrccwsirwleliereciiireclvisltelve reelisrlelesvirislitlsswleiwleessewislstlvewlycwlslvgreswlee rislstsievrleigiswlewlilerlilleerreervsryksnsgn
483.	igrfrnkcfqttlkwiavlcliyfvaitftytiittmkividcnyivdiniir
484.	rykgkakcisl1rmiv1fliiafhendgrrmvckqmiciftf
485.	mqeyqkslntlkkpinvpyeqetekvgglfskeiqetgnvvisqkdfnefqkqikaaqdi sedyeyiksgralddkdkeirekddllnkaverienaddnfnqlyenakplkenielalk llkillkelervlgrntfaervnkltedepklnglagnldkkmnpelyseqeqqqeqqkn qkrdrgmhl
486.	mlttfavvliffllpssfll
487.	lsiciiiihaiifvhiikngiqnnn
488.	lpipstrsapiipainatmtvlnhgnlgllylgvwlwfvve
489.	mllsyfiilisflcilltfiyffpltsmtfffysyfrfv
490.	mtceklenfltsskagtndntnkgkchnnglf
491.	livisnviaiilificfvctiilliiffgfclfmrrfiflflvit
492. 493.	mcrncpaftscfirdiivkcf vvynatymhlvhvflivaslmlilltnhayalph
494.	vtnitlnsafadatisvflygvry
495.	lcssslvtilkllfcisqlfkflirilftlictfilifsffkfcir
496.	lpsclycstsalcladcfctaslalfscavvawllflsfcsaslnclsf
497.	caagtgetgaaaatgetteagaacateetettgetgatgetattgttaettatgetaaag ataaaggtettaatttaettgataatgacaettttaaateaatteegggaeatggtatta aagetaegatteateaacaacaateettgtgggeaategaaaat
498.	aagaggettgttatgcagcaacacctgcaattcaacttgccaaagattatcttgctcaac gccctaacgaaaaggttettgtcattgctagtgacacagctcgttatggtattcattc
499.	ctgcgcctacgccagtttcagctattatgcacgctggtattgttaatgctggtggcgtta ttettacacgettttctccggtatttaatgacgaaa
500.	cgtttacgatatacttcatacatcattaaacttgcagccacagacgcgttcaagctattg acatgtccaaccattggaatcttaata
501.	tcaagcgtttttgctatacgacttactatcactttttctcgattttcaaatgttggatgc aaaaaacatatcaagggagccataataatgaagaaagaaa
502.	agatotgtaccacatattgtcgtcttaactatgcgaataatagcgtcagtactgctcgta atagttggcttctctttatccgtaagttgtgca
503.	actgccaataatatcatcagcttcataattacgcttaccaacatttacaaaaccaaactg atgggatatttctttaacataatcgaattgaggaataagttcatcaggaggtgctggggg atttgtttatagccatcatacatttcattt
504.	ttcttttgtagattgactcaactcaactggctcaaatacttgtccgttagaatgctttac' atgtattttatgattttcagtataatgaatcatattgtaagtaccatttgt
505.	atttttatatctacatgcgggtgtagtacaacatcagcttggaaggctgaggttttgcca ttaagggttcgattcccatcacccgctccattt
506.	ctaaagaatatattgaggattgtatttattgctggtttgacagttttcttctctggtcct ggccaaacttattcaaacgcagcatttattgatgaatatattcaaacatttggatgga
507.	aggaattccaatcaaatgtaccaaacatttacagcggatattgtacttatatttatgatt attgtacttggaggacttgtagttcaagttccaatgccaattttagcaggtattatggtt atggtttctgagacaatctactgtttgcacctgat
508.	aatcaacgactcgaggaaacaatttcctctccccatcacagctcagcctta

509.	atgaaacaatttttaaacatcactcaacgtaaatttatcgaatggttgattatcttatcc atttttatagttagcattcctaataaatggacattaatgatatctatc
	attgctataataaatcaaccatatttatcatcttttattaacactatcttaaaaggg aagaatagccaagaggtctttatgccgagtgatatgaatattaaagctattgattatgcg ctaactgagcatcctttttaggaagcggttttggtataccaatgataaaagcgagttca gaattacaatactttaatgtagcaacgagtaatatcatcttcggtatgattatctttact ggaataataggacttactttatgtacgatatacatgcttcatatggtacttttagttact tttccaatgagtattactattttattatttttaatcactatctttgttaatatggattat attattttatt
	atgacaaatcaaaaaactgtgggtctagtcgtcgtccaggtgttactgaacgccttgca gaaaatctcatacaagaaatgcctaaaatgttatctacacattatgatcatcagaaaa tggatttttgatttagttacggatccgttactggttttgctgaatctgtagatgaaatt tttggattttggtttgcggatcgtgtttgctgaatctgtagatgaaatt tttgggaaagtagccgattatcacgatagagacaatgggattatgtgatagcaattaca gatttaccgatgtttgcggacaagcaagtgatggcattagatattaatatggaaaatggt gcagctatattctcatatccggcatttggctggggtccagttaaaaaacgtttcaagcat gcagttataaatattattcaagaattaaatgaagctgaacaagaaagtcgtaattatgat aataataagcaaatagaaaattcagtaaaaaaacaatttccgctctctaaaatagataaa gaacaaatatatatgaaagaaacagaccttatcacttaagatattatcaagttcacgt tctagaaggcatgtttcgccttgttagtggaatgacctttgcgaatattatcaagttcacgt tctagaaggcatgtttcgccttgttagtggaatgacctttgcgaataatccattaaatatg atggcaagtttaagtaaatatgatgctattcaattgcggcgttattttggaatttca tttacaacgatgtggcaaatggctattacatttcaatgtggcgcttatttggaatttca attattgcgattattggaatgctaatatggttaatgatgcacatgatttatggagcca gttaataaaagcaaccataagcatattacttggttatacaatcttacaacaataadgaca ttgatttttgccattaaatttattattattttttattatatttttacttatattat
511.	atgaaattetgeceteattgtggaaateegataaaaaaggaacagteattitgtaataaa tgtggaaaacatttaaagacategacacaaagaaaaagtgaaaateaaattgaacatatg cgtgaacagcaategtaatttetegtgtgaggaaagacaateatgatteaacattttat aaggacaacaacategttggetaattgtattateaattatttgtettgttgata gcagegetattgtatggtgegtactatgettacaatcatatattatgtgettggtaagget caccaaacaacagagtetcagcaatcaaatgaaagtgatcaaaatagggaccaatccact ggtccaagcattgatgttttagtgagtgactttgatcaaggtataatgaggetcaa acaagtggatatagaggtgtttataatggaatgacacgtgaagaagttgaagataaattt ggaacatccaatggttetgagaaagtttgaagtgagttacgaacatatggtgatta gctgtagcctacgatgataatgaagttgttagcgatgaggtacaatcaat
.'	atgttatigtttatcatagaaatcataatcatgattctagcgatattatataggattaaga actgctggtgcactgggatgtggcatctttgctatagtagcgcagcttatcatagtattt ggattccagttacctccaggttcagcacagtgaaggcagtgttaactatattatt ggattaccagttacctccaggttcagcacagtggtattgactatttagtatactatt ggtatagcaggtggtacgttacaagccactggtggtattgactatttagtatacattgca tcaggtggattgaacgcttccaaatcaattatttattagcacattgattg

513.	atgggaagtttttttaatcggatgactcgaaaagagaatcctactatttatcaaaataaa gatgggcatcttaagcgcacgttacgtgtacgtgactttcttgcactaggtgttggtaca attgtctctacatctatcttcactttaccaggtgttgcgggctgagcatgccggacct gcgtgggattatcattcttattagctgcattgttgcaggtcttgtagcctttacttat gcagaaatggcatctctatatgcgcattgttgcaggtttgtacggattaacttattattgt gcagaaatggcatctcacaatgccttttgctgagctttattcatggattaatgtactt tttggtgaattattctggatggggttgccggtttatgcaggattaatgtactt tttggtgaattattctgagtggtgcggttttagcagaataactttattgct gttgctttcgttgcttcaggcttttctgctaacttaaggaggtgttattgcaccattaggc atttcttaccaaacattatactaatcacattaggaagtaacggtggtgcastgaacgagcc gctcgtaggaaaatgtattggttatattaacattatacaagggtgttaagcatcattttttgtgatt gttgggctaactggaattattcagtagaaatagtttactattatcagagaaatgaaggtt accggaactggagttaatttcgtggggattaattatgggtgaaactgggagtttcaatgatttc ttagcttatattggtttggaaggttggcaaggtattatcgagaggtttaaccagaaaaggtgacaatgggtggcaggattaatccacag aagcaatggctatggtggcaggttcaaggaattttctttaggttggcaggttggcaggatttaatgggcgggtgggggggg
514.	atgacaaagaaaaaacgtttatcgcctagtgagtggttgcttaaacaatctaaaagacat aaaaggaaaaatacactttacacggcaattgtacttttagtagtgttagttctactcata tttgctgttaaatcaatacaagtagaacctgtaaaaagtgatacgagagacaaagatagc attcgtatcacctatttaggtaacgtcactttaaataaacatattcgacaaactaact
515.	atgattgaacatttaggaattaatacaccttattttgggatattagtatcattaatacca tttgtcataggacttatttttataaaaaaagaatggtttctttttactagcaccttta ttcgtaaggtattggttgcaggtattgctttttttgaaattgacaggaattagttatgagaat tataaaatcggtggcgacattattaatttcttcctagaaccagctacaatatgctttgcg attcctttatatcgcaagcgcgaagtattaaaaaaaatattggttacaaatatttggtgg atacctttatattgccttgttattaatttatcttgttgccaataacattccaa tttggcaatcaaattattgccttgttattaatttatcttgttgcaataacattccaa tttggcaatcaaattatagcatctatgctacctcaagctgcaacgacagcaattgcatta cctgtatctgacggtatcggtgtgtcaaaagaattaacctcactcgcagttattttaaat gcagttgtcatttctgctttaggtgctaaaatagttaaattattatatata
516.	atgaaaagaacagataaatatagagattcatacaaatatgatgaccaatatcaaaatcat cgtaaacgttcagaagaagatatgtatcgacaacatcaaagagtcccaacagagagacaat tcaaatcgtgcaacacaagtgaaaatgatagagagtatgaaaatcatcctgaacgttat 'tacaatggaagagactatcgacgtgagcagcaattggaagaagaaaatgaaaatcaagc aaaactaaaaaatggctgattgcaatcatagttattttactcattattgtagctatcttt atcacgcgtgcaattatcaatcataataatgataaagtaagt
517.	atgaacatgaaaaagggtgtttctcagcttacgttacagacattgagtttggtcgcaggc tttatggcattggagtatcattttctccattaatgccatttattt

518.	atgaaaaataaaaaaggattaggcataggtcttatcacaattatgattatcgtttgtatt gtactagtaatcatgatgttcgtgggtggtaagaaagaatcatactacggtattatgaaa gatagcacgactattgataaaatgataaatactaaaaaatgaaaaaattgaaaaaaaggta gaattacctaaagatgctaatgtatcagttaaaaaaagaagattttgtgatgctctttaaa gatgaaaaactggaaaaattactaagataagtaagaagttaatcacgatgacgtacctcat ggtttaatgtcaaaaatccatgatatgggtaatatgaggtaacatgacgtacctcat
519.	atggctatgtcattactcgtgagtcttgtggtttatatgatgacactcacatctgatata ttagaagatattctatcatttaaattagaagtgataatgcaatttccgtatatattaagc tctatttcactaatcattttgttatactttcattttaaaagattattggaaaaaatatgg tactggctcatttcaatagttatgattgctgtgataagtatgtcggacacgtgtggtca caacaagtgccattatggtcaattatcataagaacaattcatcttatagggctaacgtta tggttaggttcactcgtttatctcatttgttatgctattaaagtgaaaattaatcagttg acgagtgtaagacgtatgcttttaaaagttaatatcattgctgtgatatatgctcgttttt acagggattttaatggctattgatgaaacgaatactttaacactttggaataatgtgagc gcttggtctatttatctgtcataaaaatcgcaggaattattgctatgatgctattaggt ttctatcaaacgatgcgtgctttgagacaacgacacaggtccatcgttttgcactgatg actgaattgttaattggtatgatattaatttgcaggtatca actgaattgttaattggtatgatattaatttgcaggtatca actgaattgttaattggtatgatattaatttgcaggtatca
520.	atgaaaaactctagattttctgggttccaatgggctatgatggtctttgtatttttcgtt atcacaatggcattgtccgtgatactcagagattttcaagcgactatcggagtgaaccgt tttgtcttagtatataagaatttagctcetttcatagctgcaattgtgtgcatattagta tttaagcacagaaaagaacaattagcaggattgaaattttctatcagtttaaaagtgatt gagcgtctacttttagcactcattctaccacttatcattttaatgattggcttgttagc tttaatacttatgctgatagttctactcattacaaacttcagatttatcagtatcatta ttaactatattatgtgcatattttaatggcttttgtagtggagtttggttccgttc tacttacaaaatattcttgaaccagaatgaaccaatttttttgcgagtattgtcgttggt cttattatacagtattacagctaacacgacatttgttggagatttggtcgttggt cttattatacagtatttacagctaacacgacatttgtggagatttggcggataccat ttcttatatacattcatgttttcaatgattattgggtgaaattagtcgtggg cgtacaatttatattgcaactgcttttcacgcaccatgacttttgccctgcttttta tttagtgaagaaacaggcgaccttttctcaatgaagatcatcgcactttctacaacaatt gtgggtgtttcatttattattattagtcaatcaatcgatgctattgttataaaacgacg aaacaaagtttagacgaagttgatcctaataattattattatctcatattcaagatgaaga ccaagtcaagaagacgcctcttcaacttcaaatcatgatgtatcatcaaagatgaaga aagcacaagatattgataatgacaacaacaacaacaaaca
521.	atggaaaataatgagttgcaaaggggattgaatgcaqtcagatgcagatgattgctctt ggtggaacaattggtgttgttgtttttatgggaqcaqtcagatgcagatgattgctctt ggtggaacaattggtgttgttttttattgggaqcaacaagcacaattaagtggacaggt ccatcagttattttgcatatttaattcgtggtattttttattttaattcatgagagcc atgggtgaaatgatatatatatcaaccactggttcttttggagcagtttgctagtgac tatattcatccagcagctggctacatgactgcttggagcaatgtatttcaatgggttgc gtcggcatgagtgaagtga
522.	gtgaaaagacttaagaattttattctcggcttactcattgtggctatagttggcttccta ttatttatgtatatagatgatagtcgcattcaaagttatcaaagattacttcttacaattt aattggttccaaccactattgattgggcttgcaggattacttatattatattatattgatttgattgcaggattacttatattatattattgattg

523.	ttgcaagattttgataacttaattcctggctggtttaaaacatttgttcaagtcgggaat gacttaatttggtctcaatatcttattggattattataacagcaggttttttctttaca attagttctaaatttattcaactcagaatgttaccagagatgttagagcattaactgaa aagccagaaactttaagtagtgggaaagggtatttcaccattcaagcttttgcgatt agtgctgggtcaagagtaggaactggaaatattgccggtgttgcaactgctattgtctt ggtgggcccggtgcagtctctggatggagtatttgcagctattgttctt ggtggaccaggctattctcggatgtggatattgctttattggtgcagctagtgca tttatggaagcaacgcttgctcaagttataaggtacatgacaagaaggtggattccgt ggcggaccagcctattacataacaaaagggctaaaccaaaaatggcttggaattgtatt gctgttttaattacagttacatttgcttttgtatttaatactgttcaagcgaatacaatt gctgaatcattaaatacacaatacataatcagccggtaattactggaatagtactgca gttattacaggtattatcatctttggtggtgttcgtagcagctaactacttcactt attgtgcctattatggctattgtttaataggtaggttttaatcattttattacaca gttactacaggtattgacctatgtttaataggtagttttaatcattttatacaca atagatcaaattgtacctatgattggcactattattaaaagtgcatcgcactacctcc gttaaacaaggttgatgggactgcactattattaaaagtgctgttttatctca aacgaagctggtatgggatcgcactaatctcaaggtattaaaccgtggttttgtaca gctacagcaattatgatttaattatatctggttgcacatctgctggtttgtaca ggtgtagcaggttacgcaatcaggttgaacgattaggttgatagcggcctcaa ggtgtagcaggttacgcaatcaggttgaacgaacatttaggttcagcaggaggtatttc ttaactgtagcagttaccttatttgcattttcatctgttgaggtaaccattatctatgga caatccaatattgaattttatctaacaataagatgatatttttttt
524.	ttgaaaaaagaaattttagagtggattgttgcatagccgttgccattgcacttattgcc ataatcactaaatttgtcggaaaatcatatctattaaaggtgattcaatggatcctaca ttaaaagatggggagcgtgtagtggtaaatattattggctataaattaagtggcgttgaa aaaggaaatgtcattgtatttcatgctaataaaaaagatgattatgttaaaagagttatt ggaactccaggagatagtgttgaatataaaaaatgatacactctatgttaatggtaaaaag caatcagaaccatacttgaactataaatgaaaaacgtaagcaaactgagtatattacacaggt agttcaaaacaaaa
525.	atgttcaataaggtttggtttagaacaggaatattttttattatgctgttcatactcatc aaactatttatggaagtgcatgaagtatttgctccaatagctactatcattggttcagtc ttccttccatttttaattagggatttcettttacataggttacatct ttagaaaagtggggctttccacgttgggctagtataacaacaatattcataggattaata gctatcatcgctattgtggtatcatttatagcacctatcattatttccaatattaataac ttagtaaacaacacacactacattattattacatcgtta agacaaatggataaattaccagatgatgtcacacatcgtattaataattcctcgtta agacaaatggataaattaccagatgatgtcacacatcgtattaataatacc atgggagatggcgcaacgtctattttatctaattcagtgtcatatatat
526.	atgaatacaatcgtaaaacatacagtaggttttattgcttctatcgtactaacgctttta gcagttlttgtaactctatacactaatatgacattccatgctaaggtaactatcatcttt ggttttgcttcattcaagctgcccttcaattattattatgttcatgcatttaactgaaggt aaagatggacgtttacaatcgttcaaagttatctttgcaattactttagtaact gttatcggaacatactgggtaatgcaaggtggacactcttctcactta
527	attetttettaggaaaccaccgaaattatattagttatatactcgttacgtttca cttttacaggtctcattattttatt

528.	atgttaggagagcaatatacacaaattaagcgtccagcaaatcggctaactgaaaaata ttaggttggtttagttgggtattcttactcatattaactattgtttcaatgtttattgg ctcgtatcttttagtaatggtcaatgccaattgcaatttagaaacacacttaataat gaactcgtacaacaaattttagccaattatgattagaacacacttaataat gaactcgtacaacaaattttagcaattattgttatttagttgctaatttggtatttgg ttacaaaatggagtttgggcaattattgttttatttattattgttgctcaatttgtgatttgg ttacaaaatggagtttgggcaattattgtttgttgttgttgttgttgctcatctcgttt ttagcgttaatttctatgaatataagaattttgtctggtttactttttttt
529.	atggaagaataaaatcaacctaataatgagaatatgtcgaataaagacgataataca atcaatttgaatgatagtcaaagtaatgaagacttagagctttttagacggaataaaaac gctcgccaacgcagaagacgtcgcatagataaccaaagtaaaagaaaagatgctacgtct acacaatcacagttagaaactaaaccaatggataaatttattgataatcacaagtcgcat aatcaagataaagaaataaaaagagtattaattgaggataaatttattgataatgacgaatgac aatcaaagataaagaagagaatttaattgaggataaatgttaatgagagatgac aatcaaaatataataatgataaattaaat
530.	atgaagtgtttgttcaaaatgctatcaatcataataataatgttaagtactttcacctta ttcatcagtccgagtacatatgcaaatgaagatgaaaattggactaaaataagaa ggagaaactaagagttggatttgtcagctgattatgcaactttaagaatttgaaaagacgata catggtaaaactgaatatgcgggtgtagatatagaattagctaaaaaagattgcgaaagat aatcatctaaagctaaaaattgtaaacatgcaatttgatagctattaggtgcacttaag accggtaaaatcgatattattatctccggtatgacaccaactcccgaacgaa
531.	atgcaaccaagaaaccgacatcatggtacaaacaagaatggtttatagttttatcactttta ttcatttttccactaggtttatttdtcatgtggaaatttagcaagtggccatctattgca agaacaatcattactgttgcaatttcagttatcgtattagcaagtggccatctattatggt aatctacaaatgatgttgcaatttcagttatcgtattagcaagca

atgagtcataagatattagtatcagacccaatttctgaggatggtttacaaagtatttta aaacatccagaatttgacgtagatatacaaacagatttatctgaaaatgatttagtaaat atgatttcaacttatgatgctcttatcgtacgaagtcaaacccaagtaacagagcgaatt 532. attictgctacagaacattcagtagctatgttgcttgcattggtagdadatattcttda gcacaccaatctttacgtagcaatggtagtagtagattggtaggggttgaactt tatggcaaaaccttaggtgttatcggtggtaggtaggattggtttgggcgtcgctaaacgt gcgcagagtttcggtatgaaaattttagcgttcgatccttatttacagaagagaatcattagaatattcaaattgcaactgttgtagtaattcgaacttgta aagttcacacaccattaacacctaaaactgtagcagagaggggtattatagaact aagctaaacaaaacttacaaatcataaatgttgccagaagggggtattatagaact attgaaattctaactaaagggaatgttgagcatgctgtgaatgctccaaaaatggattta agcaaagttgataaaacaactcaaagctttataggtttaagtacaactattggtgagttt gctattcagcttctcgatggtgctccgagtgaaattaaagttaaatatgctggtgactta gcgcaaaatgacactagtttaattacaagaacaattataacgaacatcttgaagaagaa gcgcaaaatgacactagtttaattacaagaacaattataacgaacatcttgaaagaagat ttaggtaatgaagtcaatattattaatgcaatagcaatacttaaccaacaaggtgtcacg tataattatagaacaacaaaagaaacattctggctttagtagttacattgagctagaacta gttaatgatcaagataaaatcaaaattggcgcaacggtattcgcaggttttggcccaaga atagtacgtattaatgattactcacttgattttaaacctaaccaatatcaattagtaaca ttcaacaaaattattagcactaagttaacaatt ttgaagcggaattttattaataatttaatcatattattaattgctattatgttaagtctg 533. acacttteteagactttaaatatatggedaatadteatettatteteattytygydate atetatataggaatgteaaaaattaactteeceaactaaacaattattaggeaeetataata gttttaattatatggaatatgaeaacacatttaacatttteaetagateattggttgtta gccacagcgcaacttattatatgatacgtattggattacagattgccaacttaatgagt gattaaagggaagaattgcaatagcaatagcctttcaaaatataatgctcatagtcaca acgtttataatgataataggaatacatttgattactaatgaatccatcaatgaattgtt gtgaagaaaacgagtagaataattgcattcatactcctcatagctctactattcacagga atgggtatgacgtataagaatgtagttaaaaatgttaatttaggtctagatttgcaaggt 534. gattatgtttaatgtetggtetggatttaatgtagatoosgatoogatagataaatttaagaaa caagaaactaatcaaccaacagttacatttaaagtaaaaagtaaaagataaatttaagaaa gtaactgaaaagatttctaaaaaaacgtgacaatgtcatggtagtttggttagatttcgaa aaaggcgatagttacaagaaagaagctaaaaagcaacaagaaggtaaaaaagcctaaattt atatctgcagcgagtgtagaccaacctattaattctagtagtgttgaaatttcaggtggc ttcaatgggaaaaaggtgttgaagaagcgaaacaaatagctgagttattaaatgccggc tcattaccagttgatttaaaagaaatttactctaactctgttggtgcacaatttggtcaa atcttagtt

535.	atgggggaaaatacaaaacaagatttcaatcaaaaaggacaaaattttaaattcacaaaa aaacatagacgattattatatggttcagtttttttaatggctacatcagctattggtca gcatttctgactcaaactgcagtgtttactgcacaattttatgctagttttgcat atattaattctattattatagatataggcgctcaaataaat
536.	gtglctaataataatttaaagatgatttcgaaaagaatcgtcaatctattaatccagac gaacatcaaacagaattaaaagaagatgataaaacaaattcctccgagaaaagccgac tctcaaaacagtttatctaataactcaaaattacacaaatttcctccgagaaaatgccaaacga cgaaaaagacgcaggaagacagcaactaatcaaaagaagcagcaaacaacaacaa aaaaatagtgacgctaaaactacagaaggtcattagatgacgttatgacgaagcacag ttacagcaacaacatgataaatcgcaacaacaaaaataaaactgaaaaacaatcaacaagat aatagaatgaaagatggaaaaagatgcagcatttytaaatggaacatctgagtcaccaga cataaatcaaaatcaacacaaaatagacccggcctaaagctcaacaacaacaacaacaacaacaacaacaacaacaaca
537.	atggctaaaggggaccaatatcaagctcatactgaaaatatcatgataaaaagtctaaa aaaagttataaacctgtgtggattatcattagttttatttttattttaattatcttgtta ttaccacaccagcaggattacctgtaatggctaaagcagcactagctattttagctttc gctgtagttatgtgggttaccagaagcagttacttatccagtttctgcaacattaatttta ggattaatgatacttttaccaggtttaagtccagtcaagatttatccgaaaaacttgga aaccctaaaagtggcgacataatactaaaagggtagcgatatttaggaaacgaaactgga cttagtcacgcttttagtggttttcaacctcagccgtagcacttgtagctgcagcatta tttttagcagtagctatgcaggaaaccaatttaccagacacttgtagctgcagcatta tttttagcagtagctatgcaggaaaccaatttacataaacggcttgcagtatacttttgtt ctagcattctttgtaccatcagcagcacttgtggtgtgtgt
538.	atgttagtattgattgttggttggttattggaatggttggttggattatggattatcgg atgttagtttgattgatggtatgtattgatatgttttaaatcgtgcattaatcaca tctattttagttgggattgtatggaacgatgggtaggattattgttttacgtggtctt tctttaatggtgatgcatgagtcatgctgttttaccaggtgttgctttatcttcta tttaatattccaatgtttatcggggcacttgtaacgggaatgcttgcaagtttgttatt ggttttattacttcaaacagtaaaacaaaac

539.	ttggcaaagctattatacaaactaggaaaatttatagctaagaacaaatggctaagtt tataggatggcttyttatactaggtyttatatacaccacaag tttgacagtgacatcactaggatggcataagtcattaagataaactcaccgaag tttgacagtgacatcactaggacggcataagtcattagacacaacagtaaaatcagt aaagaatttcatcaggacagtgagaaagcctgatgaaaatagtcttcattca	
540.	cgatcatctcaacatcgtcatgatgacgaacttagagac atgaataaaaaagtagaacatatcggtaaccaatatacgtcacaagaaaataagaaaaaa caacgacaaaaaatggaagttgtatgtagtagacgtattgctttattcggaggtatt cttttagcgattatcctcattctacttgtattgcttgtacttcaaagacataataacgat caagatgcagttgaaaggaaag	
541.	atgaagatacgtttaacatttattatcttagcaatactatccaccatcggcttagtactt gttttagcaaaatatccaacaggcccacacacaatcaactatacagcaccttatacagta ctcatagccattacagcaatatatataatggttttaccagcactcatattaggtatattt aatcatcttgcatgtagaatcatatcggcgatattacaaataagtgcactgatgatggg gggtttttagtaatcattagcttaattatgggacaaattgtcattatggcttcc ttaacgatacttgcattacttgttagttctattgtcacactttcagtgcacccatctact tcagataaaataaa	
542.	atgaataagaaactattgtggagcatcattggtattgtaattattgtcgtattaatcatt gctgcttttatattaaacaagttaatggttcaggtagtaaagatagtaatgcttacgat acatatacagtaagaaagaacacctattagtttagaaggcaaaggcgtctccagaatct gtgaaaacttataacaataatcaatctgtggtaacttcttaagtgtttcagtacaagat ggtcaaacagttaaacaaggtgaacgtatcacaattatgattatagtttcagtacaagat ggtcaaacagttaaacaaggtgaacgatcacaatctcaagttaatgagaattacaacag caacacctattgaacaaagtgaatcaagcacaatctcaagttaatgatgattacaaaa gtaaatcaaagtcctaacaattacaaattacaagttaaattgacagatcaaagtgct ttaaatgaagctcagcagtcattgtcacaatatgacagaca	

543. tttgcgattttaccagccatgtttatggcggctatgcctgcgatgaatcatttgaatatt trigegattitaceagecatgittalggeggetatgeetgegatgaatettitatgatatt atgeatetgeatteacetgaateageagtattatetgegttaatettaatgegttgatt atgtattattgatteegattgegatgaaaggegtgaaatttaaaggtgeeteaaegeaa aceatattgatgaaaaatatgttagtttaeggettaggeggtatgategtgeeatttate ggeattaageteattgateteateateeaectetttgte ggcattaagctcattgatctcatcatccaactctttytc.

atgattgtyttacgtcytctatttcaagatagaggtyccatatttyctatagctattatt
acaatctacgtagtycttygagttttagctctttaattacattctatgaaccgaatcac
attgatacagcaaataaatttyctygtataagtgytccactygtytyggaacagaccat
ttagttogagatytattaacacgyataatatacgcoataagacctagttyttatatyta
tttgtogcattgattattccgttytygataggagcyatacttygytttatttcca
agctattgtygtcacattygcattagttagtyttyggatgygyttytagaaaatatttcca
agctatytygtcacattygcattygtatacytyttytygcatygytytagaaaaatattatt
attgcatttatattygactcgatyggcytytttytcgcayggtytagaaaaatattatt
attgcatttatattygactcgatyggcytytttytcgcgytyattcgaaccaytyaaty
caataattygaagctgatcatytaaaatttygcaaagtaattygtatagaaccaytyaaty
tcgatygttcaaacattttygcaactaacctttactgacatagcyattattgctagtag
tcgatygttcaatgatattacaaatycaagattctcattccttygattagytytaag
gcacctacagccgaatggyggatgatyctaatgaagacagaaaagtaatytcacacat
cctygaatgatgatcacaacaggtgtygctatcgtcataattytgatygcyttaactt
ttatcagatycttacaaatggcgattgatcctcytagtccgctaaagaaaaacgacty
gcctygaagaaaagtytygaaagcacgtgacactyct
atgaaaggtyccatgtcttygccttttttaagattatatattttaacattgatyttttt 544 atgaaaggtgccatgtcttggccttttttaagattatatattttaacattgatgtttttt 545. actgrandgy tycking the transfer of the state rgggcrggrcaaallattgcacglattggtccgaltaaaglattggdattatatattgattga attaatgctatggcactggtattaatgggtttacaggacttgaaggtatttgattgca cgtatcatgcaaggtgtgtgtacggcattcttctcaatgtctttacaattgggtattata gatgctttacctgagaaatatcgttcagaaggtgtatctctctattcattattttcaacg attccaatttattaggaccattaattgcagttgggatttggcacgtggaaaattgtcc atatttgctattgttatgatttttattgcagtaacaacaaccttatttggttatagaact atatttgctattgttatgatttttattgcagtaacaacaaccttatttggttatagaact
acttttgcaaatacacaaaaagaggtatcaccaaaagacgaagtcttgccttttaatgca
atgactgtatatgtccaattttttaaaaaataaagcactttctgcagtggtatgattattg
atcttgtcatctatcgtgttttggtgcgatgagtacttttataccattatatacggttagg
gaaggtttcgcgaatgcaggtatttcctcacaattcaagccattacagtagtgatagct
agattttatttacgtaagtatgtaccatctgatggttattggcatcaccgttttatgatg
attgtcttaacgtactgatggtgctcagtcattgtagcttttaggacacattagatg
agtatatttgtatataaagtgcaatctttatggaataacacaagcgctcgtttatcg
acattgacaacgtatttaagttgtcttaccaaagaatagaacgtaatagttattagga
ttgttatagcatgtgcagatttaagggatttcactaggaggtgtctaatggggccaata teggatacggtaggatttaaatggatgtatattttatgcgctttattggttactattgca atgacactaagtaaaattagacaaagacaaagtgtttcaaaagcctca

546.	gtgggaagtactgttaaatatcgtaagtttattctacctattgtcgttggtttaattatc tgggcattgacgcctattaaaccagatgccttaaatgatcaagcttggtttatgtttgct attttgtgtcaaccatcattgcttgtattacccaacctatgactataaggtgcagtaca atcattggttttacaatcatgattttggttgaattgttgatacaaaaactgccgttcaa ggcttcggttatagatatttggcttattgcaattgttgatacaaaaactgccgttcaa ggcttcggttaatagtagtatttggcttattgcaattgctcattattcaagaggattt gtaaaacaagggctaggtcgacgtattgctctgcaattcgttaaattatttggaaagaaa
547.	atgaaagataataaaatgttgttcattattttatgataggaacatttacagtaggaatg gctgaatatgtagtgacaggattacttacacaaatcgctgacgatatgaaggtttctatt tcgagtgcaggttattaattagtgtttatgctattagtgttgcattgaagggctttta atgcgaatcataacattgaaagttcacgcacacgtctgttaccgattgaagggctttt attataataagtaatttagtgggaatgttagcaccgaattttaatgtattgttattaca agactcatgtcgggcaatgcgtgcattcttcggtgtgtgt
548.	qvlkmlqnilllmllllmlkikvliylimtllnqfrdmvlklrfinnkslwaien
549.	krlvmqqhlqfnlpkiillnaltkrflsllvtqlvmvfilvvsllkvpvqlq
550.	lrlrqfql1ctlvl1mlvalflhaf1ry1mtk
551.	rlrytsyiiklaatdafklltcptigili
552.	ssvfairltitfsrfsnvgckkhikgaiimkkeiiewivaiivaivivtlvqkflfasyt vkgasnviyh
553.	rsvphivvltmriiasvllvivgfslsvsca tanniisfiitltniyktklmgyffniielrnkfirrcwailfiaiihfisecflphipt
554.	tammisfiltiniykckingitiniterinkiirtewalifiaiinifisetiimipt ncyvsrfdfldsakmmsyktlnticrnsfrivhkliv ffcrltqlnwlkylsvrmlymyfmifsimnhivstic
555. 556.	ifistcgcsttsawkaevlplrvrfpspapf
557.	lknilrivfiagltvffsgpgqtysnaafideyiqtfgwsrtev
558.	rnsnqmyqtftadivlifmiivlgglvvqvpmpilagimvmvsetiyclhl
559.	ngrleetissphhssal
560.	mkqflnitqrkfiewliilsifivsipnkwtlmisialsllllkrgalgvvqliilymlr sqiytpydtqemahyivsmkyiliyvigyfflfkyvkhwirnemilrfikstmilmllyi imslvvsndpiesilkllnffiplilivmyvslikkiknlinwinqfitlviaftflfiv iapksylideeslrsvfkdahsfavilamglvlymvtilkqdqydvfnllllnigmiely lsnsrhifisvilclmlllplshikkrikhpiigamilmaiaiinqpyiyhlfiklilkg knsqevfmpsdmnikaidyaltehpflgsgfgipmikasseiqyfnvatsniifgmiift giigltlctiymlhmvllvtfpmsitillflitifvnmdyiilfdsvglgilcyifwgiy lkegmyqynngqw
561.	mtnqktvglvvapgvterlaenliqempkmlsthydhqqewifdlvtdpltgfaesvdei fgkvadyhdkrqwdyviaitdlpmfadkqvmaldinmengaaifsypafgwrpvkkrfkh aiyniiqelneaeqesrnydnnkqiensvkkqfplskidketiymketdsyhlrylsssr srgmfrlvsgmtfannplnmmaslsnivaiafttgafglvfttmwqmaynfsmwrlfgis iiaiigmliwimmshdlwepvnksnhkhitwlynlttimtlifaiiiyyiilyllfliae ivllpsgflgqqvglkgpagidlylsipwfaasistvagaigagllndelikestygyrq rvryeeqrr
562.	mkfcphcgnpikkeqsfcnkcgkhlktstqrksenqiehmreqqsyisreerqhhdstfy keqkhtgwlivlsiifvlliaallygayyaynhyisdeqshqttesqqsnesdqnrdqst gpsidvfsddfdqgymksastsgyrgvyngmtreevedkfgtsngsveslkwsyetygdl avayddnevvsvgvapnhisedqflsmynepddrnssqliydsnkdndfsvlanvkngdv tvienvnqi
563.	mllfiieiiimilaillglrtagalgcgifaivaqlimifgfqlppgsapvtavliilsi giaggtlqatggidylvyiasrvierfpksiifiapmivfvfvfgigtanialslepiia ktaqkariqpkraltasvltanlallcspaasatayiisvlagyeismgkylsivlptal ismlmlstfctfvgrkehvrdeserlvqmpeveikndfslkvkigvisfllcvmgiltfg ifpnlmpqfnvngdvvkvemteivqffmylsatinlllikintsdilssnitqsamgalf avlgpgwlgatifnaphnlkilkndigsiisevpwlviilvsvvamivisqtatasimvp ivmslgippiyfvamvqtlnvnfvipaqptllfaveldetgrtrptsfmipgffvitvsv itgfviktilgy

564.	mgsffnrmtrkenptiyqnkdghlkrtlrvrdflalgvgtivstsiftlpgvvaaehagp avalsfllaaivaglvaftyaemastmpfagsayswinvlfgelfgwvagwallaeyfia vafvasgfsanlrgliaplgislpkslsnpfgsnggviddiaavviiltalllsrgmnea armenvlvilkvlaiilfvivgltainfsnyipfipehkvtetgdfggwggjyagvsmif layigfdsiaansaeainpqktmprgilgslivaivlfvavalvlvgmfhysgyadnaep vgwalresghgiiaaivqaisvigmftaligmmlagsrllysfgrdgllpswlsqlnhkh lpnralviltiigvvigsmfpfaflaqlisagtlvafmfvslamyrlrkregkdlpkpef klplypilpaitfilvllvfwglsfeaklytliwfivgiiiyliygirhskkndeeayqv pre
565.	mtkkkrlspsewllkqskrhkrkntlytaivllvalvllifavksiqvepvksdtrdkds iritylgnvtlnkhirqtnlndvfkgiqdtldhsdfstgslivndfsrnqkdninknien imflrkhnvksvnlinesmdniqatammrkidsqagynfltgngsnpinsktvqqdikgk kianvsftdiesnytnslknttsisldpaifyplikklkenndyvvvnvdwgipnernvt trqkeyahalanagadviighntviqkvenykrtpifyslgnttsdnflsknqkgmivqq dwkgshnqfhitpiqskdgkiskdnmnkmdhirfknnikdksidlksdqnggytfey
566.	miehlgintpyfgilvslipfviatyfykktngffllaplfvsmvagiaflkltgisyen ykiggdiinfflepaticfaiplyrkrevlkkywlqifggiavgtiiallliylvaitfq fgnqiiasmlpqaattaialpvsdgiggvkeltslavilnavvisalgakivklfkisnp iarglalgtsghtlgvaaakelgeteesmgsiavvivgvivvavvpilapill
567.	mkrtdkyrdsykyddgymhrkrseedmyrqhqesqqransnratqsendreyenhpery yngrdyrreqqleeenekssktkkwliaiivilliivaifitraiinhnndkvandpnvs qnykkevenqnddinrqvdsaksdiknkkdtqsqidklqnqidqlkqneetnadskftkf yqnqidklknannaqlnnengskynnmledintkfdsikaklenilngsnsgn
568.	mknkkglgiglitimiivcivlvimmfyggkkesyygimkdsttidkmintknekieknv elpkdanysykkedfymlfkdektgkitkykkynhddyphglmskihdmgnmkhgm
569.	mamsllvslvvymmtltsdiledilsfklevimqfpyilssisliilfilfilkdmekiw ywlisivmiavismsghvwsqqvplwsiiirtihligltlwlgslvylicyaikvkinql tsvrrmllkvniiavimlvftgilmaidetntltlwnnvsawsiylvikiagiiammllg fyqtmralrqrqqvhrfalmtelligmilllqvs
570.	mknsrfsgfqwammvfvffvitmalsvilrdfqatigvkrfvfsikdlapfiaaivcilv fkhrkeqlaglkfsislkvierlllalilpliilmiglfsfntyadsfillqtsdlsvsl ltilighilmafvvefgfrsylqmiletrmmtffasivvgliysvftanttygveyagyh flytfmfsmiigeliratngrtfyiatafhasmtfalvflfseetgdlfsmkvialstti vgvsfiiislliraivykttkgsldevdpnnylshiqdeepsqedasstsnhdvsskdet kqqdidndkhqskkpnksddalttsnykedassvnketdtthndnikdhstytedrhssv yndykdeihevedhkadtdksh
571.	mennelqrglnarqmqmialggtigvglfmgatstikwtgpsvilayliagiflflimra mgemiyinpttgsfatfasdyihpaagymtawsnvfqwvvymseviavgeymnywfpsl pnwipgviavlflmaanlvsvkafgefefwfalikvvtivlmiiaglglilfgignggnp igisnlwshggfmpngfigfffalsivigsyggveligisagetknpqtnivkavngviw rilifyigaifvivsvypwnqlgsigspfvatfakvgitfaaglinfvvltaalsgcnsg ifsasrmiytlakkgqmpkvftkvmkngvpfytvfavsmgiligallnvilpliidgads ifvyvysasilpgmipwfmilfshlrfrrlhpekvhnhpfkmpggaianyltimflllvl vgmllnketvvsvvigivfltavtlyyliryhkkerqi
572.	lqdfdnlipgwfktfvqvgndliwsqyligllltagffftisskfiqlrmlpemfralte kpetlssgekgispfqafaisagsrygtgniagvataivlggpgavfwmwiiaflgaasa fmeatlaqvykvhdkeggfrggpayyitkglnqkwlgivfavlitvtfafvfntvqanti aeslntqynispvitgivlavitgiiifggvrsiatlsslivpimaivyjgmvliillln idqivpmigtiiksafgvqqvtggavgaailqgikrglfsneagmgsapnaaatsavphp vkqgliqslgvffdtmlvctataimillysglqfgdsapqgvavtqsalnehlgsaggif ltvavtlfafssvvgnyyygqsnieflsnnkmilfifrcfvvllvfygavaktetvwsta dlfmglmaivniisiiglsniafavmkdyqrqrkegkrpvfkpenleinlfgietwgqha kmpkk
573.	lkkeilewivaiavaialiaiitkfvgksysikgdsmdptlkdgervvvniigyklggve kgnviyfhankddyvkrvigtpgdsveykndtlyvngkkqsepylnynekrkqteyitg sfktknlpnanpqsnvipkgkylvlgdnrevskdsrsfglidkdqivgkvslrywpfsef ksnfnpnntkn
574.	mfnkvwfrtgiffimlfiliklfmevhevfapiatiigsvflpflisgflfyiclpfqmi lekwgfprwasittifigliaiiaivvsfiapiiisnimlikqtpslqkeaeqlinfsl rqmdklpddvthrinkavksmgdgatsilsnsvsyitsfistvfllimvpffliymlkdh ekfipaigkffkgerkvfvvdllkdlnftlksyiqgqvtvsiilgiilyigyttiiglpyt pllvlfagvanlipflgpwlsfapaailgiidqpstfiwvcvvtliaqqlegnvitpnvm gkslsihpltiivvilaagdlggftlilvavplyaviktlvsnifkyrqrivdkansnvkd
575.	mntivkhtvgfiasivltllavfvtlytnmtfhakvtiifgfafiqaalqllmfmhlteg kdgrlgsfkvifaiiitlvtvigtywvmggghsshl
576.	mlgeqytqikrpanrltekilgwfswvflliltivsmfialvsfsndtsianlentlnnn elvqqilanndlsttqfviwlqngvwaiivyfivcllisflalismnirilsgllfliaa ivtiplvlliivtliipilffiiammmfarrdrietvpsyyneydqpyydergfyepesrn ehgynddvyepmhtkkedrntrrqfnrnaqqdsyngitdnqpdedtssdqlysdeyvdn edkysqfpkraveseyasqqtedeptvmsrqakynkkskntdfedaqqehmegnqfddvg vvepqidpkelkaqrkrekaeirakkkekrkaynkrmkerrknqpsavnqrrmnyeerrq minneqedtdnnlnqqedskken
577.	meenknapnnenmsnkddntihlndsqsnedlelfrrnknarqrrrridngskekdats tqsqletkpmdkfidnhksinadkeiksdliednvndeddnakynndklndrsvaqtset rqsnedeeefltdhqsekqtkdsrhskkhkllskftskkeketftsfnsnekvtqikpls leekrairrkkqkriqytiitllillilvivlillymftplskisnvnikgnnnvstskikke lnvtsrsrmytfsknkairnlkanplikevdihkqlpntltvnvteyqivgleknkdkyv piiedgkelteykdevshdapiidgfkgdkktriikalsemspkvrnliaevsyaptknk qsrikiftkanmqvigdittiadkmqvypqmsgslsrddsgelktngyidlsvgasfipy qgsstvqsgteqmvtkstqeendakeelqnvlnkinkqskenn

578.	mkclfkmlsiiiimlstftlfispstyanedenwtkiknrgelrvglsadyaplefekti hgkteyagvdielakkiakdnhlklkivnmqfdsllgalktgkidiiisgmtttperkke vdftkpymitnnvmmikkddakryqnikdfegkkiaaqkgtdqekiaqteiedskissln rlpeailslksgkvagvvvekpvgeaylkqnseltfskikfneekkqtciavpknspvll dklnqtidnvkeknlidqymtkaaedmqddgnfiskygsffikgikntilislvgvvlgs ilgsfiallkiskirplqwiasiyieflrgtpmlvqvfivffgttaalgldisalicgti alvinssaylaeiiraginavdkgqteaarslglnyrqtmqsvvmpqalkkilpalgnef vtlikessivstigvseimfnaqvvqgisfdpftpllvaallyflltfaltrvmnfiegr msasd
579.	mshkilvsdpisedglqsilkhpefdvdiqtdlsendlvnmistydalivrsqtqvteri inaatnlkviaragvgvdninieaatlkgilvinapdgntisatehsvamllamarnipq ahqslrnkewnrkafrgvelygktlgvigagriglgvakraqsfgmkilafdpyltedka ksldiqiatvdeiaeksdfvtvhtpltpktrgivgssffnkakqmlqiinvarggiidet aliealdnnlidraaidvfehepptdspliqhdkiivtphlgastveaqekvavsvseei ieiltkgnvehavnapkmdlskvdkttqsffglsttigefaiqlldgapseikvkyagdl aqndtslitrtiitnilkedlgnevniinalailnqqgvtyniekqkkhsgfssyielel vndqdkikigatvfagfgprivrindysldfkpnqyqlvtchkdkpgiygqtgnllgshg iniasmtlgrndaggdalmilsidqqaseevikilnetsgfnkiistklti
580.	lkrnfinnliilliaimlslllkmlhvilpfmfgpilaallcvkvlklkirwpfwlsqig lillgvqigstftqqvikdisknwltivfvtillillaliiafffkkiaqvnletailsv ipgalsqmlvmaeenkkanilvvsltqtsrvifvvilvplisyffqdnhhemnhtmevp tlsqtlniwqiiilfsmvgiiyigmskinfptkqllapiivliiwnmtthltfsldhwll ataqliymiriglqianlmsdlkgriaiaiafqnimlivttfimiigihlitnesinelf lgaapggmsqivlvamatgadvamissyhifriffilfviapligyfinvklnmk
581.	vkktsriiafilliallftgmgmtyknvvknvnlgldlqggfevlfqvdplnkgdkidkk alqatsqtlenrvnvlgysepkiqiedpnriivqlagikdqaqarkllstqanltirdae dhvlmsgsdikqgsakqefkqetnqptvtfkykskdkfkkvtekiskkrdnvmvvwldfe kgdsykkeakkqqegkkpkfisaasvdqpinsssveisggfngkkgveeakqiaellnag slpvdlkeiysnsvgaqfgqdaldktmfasivgialiylfmlgfyrlpglvaiialttyi yltlvafnfisgvltlpglaalvlgvgmavdaniimyerikdelrigrtlkqayskanks sfltifdsnlttviaaavlfffgessvkgfatmlllgilmifvtavflsrgllsllvssn ffkkqywlfgvkkkdrhdinegkdvhdlktsyerlnfvklakplislsiliviigliiis ifklnlgidfssgtradiqsknaitqaqvektvksvglepdqiqingsgnknatvqfkkd lsreednklsakvksefgdnpqintvspligqelaknavtaiilasigiiiyvsIrfewr mglssvlallhdvfiiiaifslfflevdltfiaavltivgysindtivtfdrvrenlhkv kvithtdqiddivnrsirqtmtrsintvltvvvvvaililgaptifnfslalligllsg vfssifiavplwgmlkkrqfkktknnklvvhkekksndekilv
582.	mgentkqdfnqkgqnfkftkkhrrllygsvflmatsaigpafltqtavftaqfyasfafa ilisiiidigaqiniwrilvvtglrqqeisnkvlpglgtiisiliafgglafnigniaga glglnamfgldvkwgaaitaifailifvsrsqqkimdvismilgivmilvvayvmvvsnp pygdalvhtfapehpfklilpiitlvggtvggyitfagahrildsgikgksylpfvnrsa vagilttgvmrtllflavlgvvvtgvtlssenppasvfqhalgpigknifgvvifaaams svigsaytsatflktlhksllnknnlivitfivistfvflfigkpvslliiagaingwil pitlgailiasrkksivgnyqhptwmlvfgiiavivtimtgifslqdlaslwkg
583.	vsnnnfkddfeknrqsinpdehqtelkeddktnenkkeadsqnslsnnsnqqfpprnaqrrkrrretatnqskqqddkhqknsdakttegslddrydeaqlqqqhdksqqqnktekqsqd nrmkdgkdaaivngtsespehkskstqnrpgpkaqqqkrksestqskpstnkdkkaatga giagaagvagaaetskrhhnkkdkqdskhsnhendeksvknddqkqskkqrkaavgagaa agvgaagvahhnnqnkhhneeknsnqnnqyndqsegkkkggfmkillpliaaililgaia ifggmalnnhndsksddqkianqskkdsdkkdgaqsednkdkksdsnkdkksdsdknadd dsdnsssnpnatstnnndnvamnnsnytnqnqqdnanqnsnnqqatqgqqshtvygqenl yriaiqyygegtqanvdkikranglssnninngqtlvipq
584.	makgdqyqahtekyhdkkskksykpvwiiisfiilitilllptpaglpvmakaalailaf avvmwvteavtypvsatlilglmilllglspvqdlseklgnpksgdiilkgsdilgtnna lshafsgfstsavalvaaalflavamqetnlhkrlallvlsivynktrnivigailvsiv laffvpsataragavvpillgmiaafnvskdsrlaslliitavqavsiwnigiktaaaqn ivainfinqnlghdvswgewflyaapwsiimsialyfimikfmppehdaieggkelikke lnklgpvshrewrlivisvlllffwstekvlhpidsasitlvalgiilmpkigvitwkgv ekkipwgtiivfgvgislgnvllktgaaqwlsdqtfglmglkhlpiiatialitlfnili hlgfasatslasalipvfisltstlnlgdhaigfvliqqfvisfgfllpvsapqnmlayg tgtftvkdflktgipltivgyilvivfsltywkwlglv
585.	mldfinhllsyqflnralitsilvgivcgtmgsiivlrglslmgdamshavlpgvalsfl fnipmfigalvtgmlas1figfitsnsktkpdaaigisftaflasgviiislinsttdly hilfgnllaithqsfwttivitvlvilliiifyrplmistfdatfsrmsglnttlihyfv mlllalvtvasiqtvgiilvvallitpastafliskqlyammviasiisvissiiglyfs yiynipsgativictfmiyivtlsitriknkqkrsalt
586.	lakllyklgkfiaknkwlsvigwlvilgviitplminspkfdsditmnglksldtndkis kefhqdsekasmkivfhsnkndglnnkdtkkdiedaldnirqnddyiqnisngydsgqnn degdtaianvsyvvpqtglkdsskhiidkelkdvtdnhnvqiektqggamnsepggtsei vgiivafvillitfgsliaagmpiisaiiglgssvgiialltyifdipnftltlavmigl avgidyslfiifrfkelkkkgvdtveaiatavgtagsavifagltvmiavcglslvgidf lavmgfasaisvlfavlaaltllpalisifhksikikdkptkskdpkdhswakfivgkpv iavivsliililaaipvsgmrlgipddslkptdsseykayklisdnfgegyngqivmlvn tkdggskstierdlnnmrsdledidnvdtvskaqltdnnnyalftiipekgpnsqstenl vydlrdyhsqaqekydygteisgqsvinidmseklnnaipvfagvivvlaffllmivfrs ilvplkavlgfilslmatlgfttlviqhgfmgslfgientgpllaflpvitigllfglai dyelflmtrvheeysktgdndhsirvgikesgpvivaaalimfsvfiafvfdddsaiksm gialgfgvlfdafvvrmtlipaltklfgkaswylpkwlgavlpnvdvegkaleednhhdt ssekghvndknseysrqdkdnyvyqndkrnynrnyndedynrsvhlnnhhdqhhrqhqyd nqrddidyeslytqdgdhthhdernyndrhyqdnydrnddyrhnnhdhqndnhdyhdsnf dkttnlykeltdsnidqdvlfkalmlyarennkgvydrynrssqhrhddelrd
587.	mnkkvehignqytsqenkkkqrqkmkmrvvrrrialfggillaiilillvllviqrhnnd qdaverkeketefqkqqdeeialkeklnnlndkdyiekiarddyylsnkgevifrlpddk kssqsktsnekgn
588.	mkirltfiilailstiglvlvlakyptgphtinynepytvliaittivimalpalilgif nhlacriisailqisalmmwgflviislimgqivimlmasltilallvssivtlsvhpst sdkin

589.	mnkkllwsiigiviivvliiaafilkqvngsgskdsnaydtytvrketpislegkaspes vktynnnqsvgnflsvsvqdgqtvkqgeriinydtngnkrqqllnkvnqagsqvnddyqk vnqspnnhqlqvkltqdqsalneaqqslsqydrqlndsmnasfdgkinikndsdvgegqp ilqlissnpqinatitefdinkikegdevnvtvnstgkkgkgkilkidelptsydtsdds tassaqagaqdseegtemttsnptinqptggksgetskykviigdldipvrsgfsmdak iplktkklpnnvltkdnnvfvvdknnkvhkreikiernngeiivkkglksgdkvlkspkg nlndgekvevss
590.	maettkifeshlvkqalkdsvlklypvymiknpimfvvevgmllalgltiypdlfhqesv srlyvfsifiilltlvfanfsealaegrgkaqanalrqtqtemkarrikqdgsyemida sdlkkghivrvatgeqipndgkvikglatvdesaitgesapvikesggdfdnviggtsva sdwleveitsepghsfldkmiglvegatrkktpneialftllmtltiiflvviltmypla kflnfnlsiamlialavclipttiggllsaigiagmdrvtqfnilaksgrsvetgdvnv lildktgtitygnrmadafipvksssferlvkaayessiaddtpegrsivklaykqhidl pqevgeyipftaetrmsgvkfttrevykgapnsmvkrvkeagghipvdldalvkgvskkg qtplvvledneilgviylkdvikdglverfrelremgietvmctgdneltaatiakeagv drfvaeckpedkinvireeqakghivamtgdgtndapalaeanvglamnsgtmsakeaan lidldsnptklmevvligkqllmtrgslttfsiandiakyfailpamfmaampamnhlni mhlhspesavlsalifnaliivllipiamkgvkfkgastqtilmknmlvyglggmivpfi giklidliiqlfv
591.	mivlrrlfqdrgaifaiaiitiyvvlgvlaplitfyepnhidtankfagiswshwlgtdh lgrdvltriiyairpsllyvfvaliisvvigailgfisgyfpgyidaiimricdvmlafp syvvtlalitlfgmgveniiiafiltrwawfcrvirtsvmqyieadhvkfakvigmndlt iirkhilpltftdiaiiasssmcsmilqmsgfsflglgvkaptaewgmmlnearkvmfth pgmmmttgvaiviivmafnflsdalqmaidprmsakekrlalkkgvkardta
592.	mkgamswpflrlyiltlmffsanailnvfiplrghdlgatntvigivmgaymltamlcrp wagqiiarigpikvlriillinamalvlyyftglegyliarimggvctaffsmslqlgii dalpekyrsegvslyslfstipnllgpliavgiwhvenmsifaivmifiavtttlfgyrt tfantgkevspkdevlpfnamtvyvqffknkalfcsgmimilssivfgamstfiplytvr egfanagifltiqaitvviarfylrkyvpsdglwhhrfmmivltllmvasvivafgphiv sifvyisaifigitqalvyptlttylsfvlpkigrnmllglfiacadlgislggvlmgpi sdtyqfkwmyilcallytiamtlskirqrqsvskas
593.	vgstvkyrkfilpivvgliiwaltpikpdalndqawfmfaifvstiiacitqpmtigavs iigftimilvgivdtktavqgfgnssiwliamaffisrgfvkktglgrrialqfvklfgkk tlglayslvgvdlilapatpsntaraggimfpiikslsesfgssprdgserkmgaffift efqgnlitsamfltamagnpiagslaektahvqitwmnwfvaailpglislivvpfiiyk lypptvketpnakkwateqleemghmsiaeklmvgifiialalwvlgsfinvdatltafi alallltgylawsdilnetgawmtlvwfsvlvlmaeqlnklgfipwlskliaqglngfs wpivlvllilfyfyshylfasatahvsamyaallgvavasgapplfsalmlgffgnllas tthyssgpapilyaagyvtqkrwwtmnivlgivyfiiwigvgslwmkligmm
594.	mkdnkmlfiifmigtftvgmaeyvvtglltqiaddmkvsissagllisvyaisvaligpl mriitlkvhahrllpilvaifiisnlvgmlapnfnvlllsrlmsaamhapffgvcmsvaa tvappakktqaialvqaqltiavmlqvpfgsflggfamwrvvfgfmivlaiitmlgmikf vpnvslsaeaniskeltvfknphiliviaiivfgysgvfttytfmepmirdfspfkivgl tvclfmfglggvignlitgnvpedkltknlyltflllfvtiilfvtviqnsilaliicfl fgfgtfgttpllnskiilsgkeapllastlaasifnvanflgaiigsillsiglpyiqit lisggiivlgmllnlvnqlyekkhitfneys
595.	MAVKVAINGFGRIGRLAFRRIQEVEGLEVVAVNDLTDDMLAHLLKYDTMQGRFTGEVEV VDGGFRVNGKEVKSFSEPDASKLPWKDLNIDVVLECTGFYTDKDKAQAHIBAGAKKVLIS APATGDLKTIVFNTNHQBLDGSETTVSGASCTTNSLAFVAKVLNDDFGLVEGLMTTIHAY TGDQNTQDAPHRKGDKRRARAAAENIIPNSTGAAKAIGKVIPEIDGKLDGGAQRVPVATG SLTBLTVVLEKQDVTVEQVNEAMKWASNESFGYTEDEIVSSDVVGMTYGSLFDATQTRVM SVGDRQLVKVAAWYDNEMSYTAQLVRTLAYLABLSK
596.	vkrlknfilgllivaivgfllfmyiddsriqsyqdyflqfnwfqplliglaglliligli lvlsifkpthrkpglyknfddghiyvsrkavektiydtiakydqvrqpnvvsklynkknk sfidikadffvpnhvqvksltesiradiksnvehfteipvrklevnvrdqktsgprvl
597.	msflrkhteiifsyiigivslftgliifinlplikqfkgdkkvdthvhnvweflnaffae iikvmskfiggfpitsaiviivfgilvmllghtlfrtikydydisifflvigimyfiitl llmtqvygffaivfiipftvhigyivykdelnqdnrknhymwiivtygmsylitqislyg ridaneiesidilsvntffiimwllgqmaiwnfiflrrslpltkeelgeeepelsrtnkg nvsnqtkvhlkqlqnktteyarktrrsvdldkirakrdkfkqkinsivdiqeddipnwmk kpkwvkpmyvqlfcgviilffaflefmrnalfitgewelsqtqyvvewvtlllllfiii iyiattltyylrdkyyylqlfmgsilffkfltefinimvhglllsifitpilllmliami vavslqlrek
598.	mqqettswykqewfivlsllfifplglflmwkfskwpsiartiitvaisvivlasityyg nlqmivpatsnsnnetkettennvndkdernhktaveetktnydstkentkepgkenesa trlensalekaksyyddfhmsklgiydiltseygekfdkedaqyaidhleadyeknalek aksyakdmhmsndsiydllvsnygekfteseakyaiehldn