

Projeto de Máquinas

Métodos, custos, ferramental, materiais, cronograma

Prof. Eduardo Furlan 2023

Projeto

- Importância do projeto para a concepção de um produto
 - Metodologia
 - Formal
- O projeto no nosso caso é útil pois há especificações técnicas a serem seguidas

Girafa

- Estimativa de custo
 - Listar componentes necessários e quantidades
 - Horas de trabalho
 - Insumos
- Dimensões
 - Altura 1,7 m
 - Comprimento 1,3 m
 - Compr. da lança 1,25 m
 - Curso do pistão 0,29 m

- Materiais a serem adquiridos prontos
 - Rodízios
 - Pistão hidráulico
 - Parafusos
 - Porcas
 - Arruelas
- Estrutura de cantoneiras e chapas de aço carbono ABNT 1020
- Lança: estampagem e soldagem

• Gancho: tarugo de aço de médio carbono ABNT 1045 forjado

Tabela 1.7 | Itens a serem adquiridos

Item	Unidade	Quant.	Preço unit (R\$)
Rodízio	Peça	3	200,00
Cantoneira (1)	m	4	80,00
Chapa (2)	m²	2	130,00
Tarugo (3)	Peça	1	15,00
Pistão hidráulico	Peça	1	300,00
Diversos (4)			

(1) em L com 4 " x 6 mm de espessura; (2) com 3 mm de espessura; (3) secção quadrada de 20 mm com 300 mm de comprimento; (4) inclui parafusos, porcas e arruelas.

- Processos de fabricação
 - Estampagem
 - Soldagem
 - Forjamento
 - Usinagem
 - Pintura

- Insumos
 - Solda
 - Pintura

- Horas de trabalho
 - Soldador
 - Operador de forja
 - Operador de estampo
 - Fresador
 - Pintor

Tabela 1.8 | Custos em processos de fabricação

Item	Horas	Custo Unitário (R\$)
Soldagem	4	30,00
Forjamento	1	40,00
Usinagem	2	30,00
Estampagem	1	30,00
Pintura	1	30,00

Questões

- Há parâmetros para listar os componentes necessários ao projeto?
- Pode-se fazer um levantamento das quantidades de cada elemento de máquina necessário?
- É possível estimar as horas de trabalho?
- Qual o custo aproximado do projeto?

Projeto de engenharia

- Processo de aplicação de
 - Várias técnicas
 - Princípios científicos
- Para definir um
 - Dispositivo
 - Método
 - Sistema suficientemente pormenorizado
- Realizar, executar, construir
 - Operar conforme especificação de projeto
 - Atender as expectativas do cliente

Projeto e fabricação de ventilador

- Ventilador de mesa caseiro
- Premissas de projeto
 - De baixo custo
 - Atender às classes D e C
- Definir os materiais a serem empregados
- Cronograma aproximado do projeto
- Estimativa de custos
- Confiabilidade do ventilador (usar coef. de segurança)

- Quais são os elementos mecânicos utilizados no projeto que necessitam de especificação de fator de segurança?
- Fazer uma análise da complexidade do projeto
 - Qual deverá ser a principal característica desejada?
- Dividir a máquina em subconjuntos com as funções
- Planilha para guiar o projeto
 - Para cada peça (conjunto)
 - Processos de fabricação envolvidos
 - Todos os demais detalhes
- Quais são os componentes de maior preço?
- No mercado, existem similares com preços menores?

Etapas

Etapa 1: identificação da necessidade

- A necessidade veio do cliente
 - Especificou o produto desejado
 - Definiu os principais detalhes
 - Ventilador de mesa
 - Mecanismo de oscilação
 - Três velocidades
- Deve ficar clara a função da máquina a ser projetada

- Principal função dessa máquina de fluxo
 - Movimentar o ar que passa entre suas pás
 - Aumentando a energia cinética, e o
 - Movimento da massa de ar que passa pelas palhetas
- Os demais fatores podem ser definidos pela equipe de projeto
- Foco no baixo custo

Etapa 2: busca de informações

Marca	Modelo	Hélice - diâmetro (m)	Vazão (m³/s)	Potência (W)	Nº de pás	Preço (R\$)
CADENCE	Eros 2 40	0,4	0,97	79,68	6	150,00
CADENCE	Windy	0,3	0,686	47,7	3	120,00
MALLORY	Ozônic	0,4	0,75	63	6	230,00
MALLORY	Princesas	0,3	0,5	32	4	130,00
MALLORY	Turbo Silence High	0,4	1,039	94,7	6	230,00
MONDIAL	NV-41	0,4	0,893	78,1	6	140,00
MONDIAL	V-45	0,4	0,88	78	3	120,00
ARNO	Turbo Silêncio Maxx	0,4	1,16	88,9	6	179,00
ARNO	Alivio	0,3	0,68	51	4	140,00

- Pesquisar ventiladores existentes
- Selecionar os de baixo custo
 - Mas os de alto podem dar algumas ideias
- Selecionar somente as informações relevantes <u>para esta</u> <u>etapa do projeto</u>
 - Sempre planejar antes de sair fazendo
- Algumas informações adicionais
 - A maioria de polipropileno
 - 110 ou 220 V, são raros os bivolts (pode encarecer)
 - 3 velocidades

Etapa 3: definição dos objetivos

- Equipe multidisciplinar, que inclua engenheiros, economistas, pessoas de marketing e outros
- Baseado na etapa anterior
- pás com 30 ou 40 cm de diâmetro
- 3 velocidades
- 110/220 ou bivolt
- entre 70 W e 100 W
- vazão entre 0,7 m3/s e 1,1 m3/s
- 3, 4 ou 6 pás

- eficiente (Procel)
- corpo de polipropileno
- diversas cores

Etapa 4: especificação das tarefas

- Tarefas guiarão a equipe para que o projeto se desenvolva conforme desejado
 - Análises e definição de especificações
 - Limitar o alcance a ser investigado
- Essa etapa é apenas de definição
 - Um dos objetivos é evitar desperdício de trabalho

Principais tarefas

- Escolha do motor
- Cálculos referentes à pá
- O suporte deve ser calculado
- O espaçamento da grade deve ser calculado
- Desenho CAD 3D
- Fornecedores componentes prontos
- Fornecedor da estrutura em polipropileno

- Definidos os equipamentos para testes
- Previsão do custo
- Estimativa do preço de venda
- Definição dos responsáveis por cada tarefa

Etapa 5: síntese

- Imaginar todos os tipos de ventilador possíveis de serem fabricados
 - Baseado nas etapas anteriores
- Imaginação e criatividade
- Brainstorming
- Grupo misto incluindo
 - Engenheiros e representantes dos outros departamentos
 - Representantes de consumidores
- Detalhar cada ideia o máximo possível, sem censura

- Bons projetos podem eventualmente vir de ideias inicialmente não tão boas
- Partes de ideias, mesmo aparentemente ruins, podem ser
 - Reutilizadas
 - Melhoradas
 - Aproveitadas em projetos futuros
- Apesar da liberdade, os objetivos devem ser seguidos
 - Foco

Tabela 1.10 | Propostas para o projeto do ventilador

Opção	Nº de pás	Potência	Vazão de ar	Estrutura + Pedestal	Extras
1	6	80	1,0	Foto 1	
2	6	80	1,0	Foto 1	Controle remoto
3	4	100	1,1	Foto 2	
4	3	90	0,7	Foto 3	
5	4	60	0,8	Foto 4	Controle remoto
6	4	60	0,8	Foto 4	
7	3	90	0,9	Foto 5	
8	6	90	1,0	Foto 5	
9	4	90	0,9	Foto 3	

(fotos no próximo slide)

Figura 1.13 | Tipos de Ventiladores

Etapa 6: análise

- Restringir o universo a um número reduzido de opções
- Eliminar as opções de custo elevado (2 e 5)
- Muitas decisões nessa fase dependem da opinião dos consumidores
 - Pesquisa de mercado
- Desdobramento da Função Qualidade
 - Opinião do consumidor
 - Coleta de dados
 - Pesquisas, reclamações, e atendimento ao cliente

- Analisando os ventiladores concorrentes
 - 3, 4 ou 6 pás
- Pode-se usar ferramentas disponíveis no mercado para monitoramento e aquisição de dados de concorrentes
- O número de pás interfere pouco no desempenho, na ventilação e no consumo de energia
 - A escolha deve se basear na estética (aparência) e no motor

- A impressão que as pessoas podem ter é a de que mais pás significam que o ventilador é melhor
 - E pode não ser verdade, pode ser pior e mais caro
- Descartar
 - Inviáveis por questões técnicas
 - Produção, montagem ou funcionamento
 - Não atendem o cliente
 - Custo elevado
- A opção 4 será descartada porque apresenta um consumo muito elevado para a ventilação sugerida
- Restam seis propostas consideradas viáveis pela equipe

Etapa 7: seleção

• 6 propostas remanescentes

- A execução da matriz depende de equipe multidisciplinar
 - Quais fatores são importantes
 - Peso ou importância relativa
- Outra equipe deverá dar as notas
- Poderia haver outros fatores, mas esses <u>são suficientes</u>
- Nas próximas fases se houver algum problema, é possível voltar nessa tabela e escolher o próximo (8)

Etapa 8: detalhamento do projeto

- Definir o que será comprado pronto
 - Motor elétrico
 - Parafusos, pinos, porcas e arruelas
 - Fiação
 - Conector
 - Também o que deve ser produzido pela empresa:
 - Carcaça
 - Pedestal
 - Pás
 - Redutor
 - Braço oscilante
 - Botões
 - Grade

- Feitos pela empresa escolha dos materiais
 - Polímero carcaça e pedestal
 - Peso, facilidade de atribuição de cores e ausência de corrosão
 - Polipropileno (mais empregado)
- A resistência não chega a ser um problema grave, desde que o projeto seja bem feito
- O processo de fabricação empregado será a injeção
 - Serão necessários moldes (caros)

- Pás
 - Polipropileno ou o poliestireno
 - Injeção moldes (caros)
 - Só justifica se puderem ser diluídos
- Botões
 - Polipropileno
- Redutor
 - Aço carbono
 - Centro de usinagem

- Braço oscilante
 - Aço carbono
 - Estampagem
- Todas as peças desenhadas em CAD 3D
 - Análise da montagem
 - Especificações
 - Listas
 - Demais documentos
- Definição de todos os fornecedores

Etapa 9: prototipagem

- Verificação
 - Funcionamento, especificações, normas
- Pode-se iniciar com maquetes eletrônicas (CAD)
- Depois protótipos físicos (caros)
 - Os primeiros para medir ventilação
 - Depois motor e hélice
 - Medições para validar cálculos
 - Outros para testar oscilação, estrutura
 - Testes do conjunto completo

Etapa 10: produção

- Antes de colocar o ventilador em produção, é preciso fazer pesquisas de mercado para termos certeza de que ele será bem acolhido pelo público consumidor
 - Eventuais problemas de qualidade poderão ser detectados
- Atenção ao nível de venda para adequar a produção
- Ciclo de vida do produto

Cronograma

Cronograma

Custo do produto

Custo do produto

Figura 1.14 | Cálculo do custo de fabricação de um produto

- Produto deve ser atraente para seu público consumidor
- Geralmente um dos atrativos é o preço
- A estimativa de custo do produto é importante
- Estimativa para cada peça comprada
- Custo das peças fabricadas
 - Custo da matéria-prima e custo de produção
 - Preço da injetora e dos moldes (e amortização)
 - MDO, projeto (equipe, protótipos, etc.)
- Cálculo do ROI e análise de alternativas de investimento

Formas alternativas de calcular o custo

- Partir de um preço e da previsão de vendas
 - Para um preço x as vendas serão y
 - Fazer a conta "ao contrário"
 - O que é possível fazer e como fazer dentro do limite
- Partir do preço final e ir subtraindo
 - Margens lojista, distribuidor, fabricante
 - Custo do projeto, etc.
 - Até chegar no custo de fabricação
 - O que é possível fazer e como fazer dentro do limite

Referências

BUDYNAS, R. G. Elementos De Maquinas De Shigley. 8ª edição. [S. l.]: AMGH, 2011.

COLLISN, J. A.; BUSBY, H. R.; STAAB, G. H. Projeto Mecânico de Elementos de Máquinas: uma Perspectiva de Prevenção da Falha. 2ª edição. [S. l.]: LTC, 2019.

LOBO, Y. R. de O.; JÚNIOR, I. E. de O.; ESTAMBASSE, E. C.; SHIGUEMOTO, A. C. G. Projeto de máquinas. Londrina: Editora e Distribuidora Educacional S.A., 2019.

NORTON, R. L.; BOOKMAN, E.; STAVROPOULOS, K. D.; AGUIAR, J. B. de; AGUIAR, J. M. de; MACHNIEVSCZ, R.; CASTRO, J. F. de. Projeto de Máquinas: Uma Abordagem Integrada. 4ª edição. [S. l.]: Bookman, 2013.

https://github.com/efurlanm/teaching/

Prof. Eduardo Furlan 2023

