Resolução do 1º Teste de

Lógica EI

Lic. Eng. Informática Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

1. Seja $X=\{0,1\}$ e seja $G\subseteq X^*$ o conjunto gerado pela seguinte definição indutiva:

$$\frac{u \in G}{1 \in G} \ (i) \qquad \quad \frac{u \in G}{00u \in G} \ (ii) \qquad \quad \frac{u \in G}{u1 \in G} \ (iii)$$

(a) Construa uma árvore de formação do elemento 0011 de G.

R: Uma árvore de formação do elemento 0011 é a seguinte:

$$\frac{\overline{1 \in G}}{ \begin{array}{c} 001 \in G \\ \hline 0011 \in G \end{array}} (ii) \\ (iii)$$

(b) A definição indutiva de G é determinista?

R: Não. Se fosse determinista, cada elemento de G teria uma e uma só árvore de formação. Ora 0011 term duas árvores de formação: aquela indicada na alínea anterior e a seguinte:

$$\frac{\overline{1 \in G}}{11 \in G} \stackrel{(i)}{(iii)} \\ \overline{0011 \in G} \stackrel{(iii)}{(ii)}$$

(c) Enuncie o Teorema de Indução Estrutural para G.

R: Seja P(u) uma propriedade, com $u \in X^*$. Se

- (I) P(1); e
- (II) para todo $u \in X^*$, se P(u) então P(00u);e
- (III) para todo $u \in X^*$, se P(u) então P(u1);

então: para todo $u \in G$, P(u) é verdade.

(Uma versão alternativa é tomar P(u) com $u \in G$, e quantificar em (II) e (III) sobre $u \in G$.)

- (d) Seja $f: X^* \to X^*$ a função definida, para cada $u \in X^*$, por f(u) = 0u. Diga se G é fechado para f.
- R: G é não é fechado para f, pois existe $v \in G$ tal que $f(v) \notin G$. Basta tomar v = 1 ($v \in G$ segue da regra (i)). Vejamos que $f(v) \notin G$, ou seja $01 \notin G$. Por um lado, o número de ocorrências de 0 em 01 é impar; por outro lado, qualquer que seja $u \in G$, o número de ocorrências de 0 em u é par; segue que $01 \notin G$. (A prova de que o número de ocorrências de 0 em u é par, para todo $u \in G$, é por indução estrutural: percorrendo as regras da definição indutiva de G, observa-se que a propriedade de ter um número par de ocorrências de 0 é imediata em u = 1; e se se verifica na premissa u das regras (ii) ou (iii), verifica-se ainda nas respectivas conclusões).

(Prova alternativa de que $01 \notin G$. Por redução ao absurdo. Suponhamos que $01 \in G$. Então 01 tem árvore de formação, que necessariamente termina com uma aplicação da regra (iii) (pois $01 \neq 1$ e 01 não tem 2 ocorrências de 0). Mas então 0 tem árvore de formação. Porém, nenhuma das regras (i), (ii), e (iii) permite concluir $0 \in G$. Absurdo. Deste modo, concluímos $01 \notin G$.)

- 2. Considere $f: \mathcal{F}^{CP} \to \{0,1\}$ a função definida recursivamente por:
 - (i) $f(p_i) = 0 \quad (i \in \mathbb{N}_0).$
- (ii) $f(\bot) = 0$.

(iii) $f(\neg \varphi) = f(\varphi)^2$.

- (iv) $f(\varphi \Box \psi) = f(\varphi) \times f(\psi) \quad (\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}).$
- (a) Verifique que $f(\neg(\neg p_3 \to \bot)) = 0$.

R:

$$f(\neg(\neg p_3 \to \bot)) = f(\neg p_3 \to \bot)^2 \quad (por \ (iii))$$

$$= f(\neg p_3) \times f(\bot) \quad (por \ (iv))$$

$$= f(\neg p_3) \times 0 \quad (por \ (ii))$$

$$= 0$$

- (b) Prove por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, $f(\varphi) = 0$.
- **R:** Defina-se $P(\varphi)$ sse $f(\varphi) = 0$. Pelo Princípio de Indução Estrutural para \mathcal{F}^{CP} , basta demonstrar as afirmações (I)-(IV) seguintes:
 - (I) $P(p_i)$ $(i \in \mathbb{N}_0)$.
 - (II) $P(\perp)$.
 - (III) Para todo $\varphi \in \mathcal{F}^{CP}$, se $P(\varphi)$ então $P(\neg \varphi)$.
 - (IV) Para todo $\varphi, \psi \in \mathcal{F}^{CP}$, para todo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, se $P(\varphi)$ e $P(\psi)$ então $P(\varphi \square \psi)$.

Passemos à demonstração destas afirmações.

- (I) $f(p_i) = 0$ por (i) na def. de f.
- (II) $f(\perp) = 0$ por (ii) na def. de f.
- (III) Seja $\varphi \in \mathcal{F}^{CP}$ tal que $f(\varphi) = 0$ (HI). Então

$$f(\neg \varphi) = f(\varphi)^2 \quad (por \ (iii) \ na \ def. \ de \ f)$$
$$= 0^2 \quad (por \ HI)$$
$$= 0$$

(IV) Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ tais que $f(\varphi) = f(\psi) = 0$ (HI). Então

$$\begin{array}{lcl} f(\varphi \square \psi) & = & f(\varphi) \times f(\psi) & (\textit{por (iv) na def. de f}) \\ & = & 0 \times 0 & (\textit{por HI}) \\ & = & 0 \end{array}$$

- (c) Diga se f é uma valoração.
- **R:** f não \acute{e} uma valoração. Se fosse uma valoração, ter-se-ia $f(\neg \varphi) = 1 f(\varphi)$ para todo φ . Por $\acute{e}m$, esta igualdade \acute{e} falsa, não apenas para algum φ , mas inclusivamente para qualquer φ : por um lado $f(\neg \varphi) = f(\varphi)^2 = 0^2 = 0$; por outro, $1 f(\varphi) = 1 0 = 1$.
- 3. Seja φ a seguinte fórmula do Cálculo Proposicional:

$$\varphi = (p_0 \to \bot) \lor (p_1 \leftrightarrow \neg p_2).$$

- (a) Dê exemplo de uma forma normal conjuntiva logicamente equivalente a φ .
- R: Através de diversas equivalências lógicas estudadas, temos que:

$$\varphi$$

$$\Leftrightarrow (\neg p_0 \lor \bot) \lor ((p_1 \to \neg p_2) \land (\neg p_2 \to p_1))$$

$$\Leftrightarrow \neg p_0 \lor ((\neg p_1 \lor \neg p_2) \land (\neg \neg p_2 \lor p_1))$$

$$\Leftrightarrow \neg p_0 \lor ((\neg p_1 \lor \neg p_2) \land (p_2 \lor p_1))$$

$$\Leftrightarrow (\neg p_0 \lor \neg p_1 \lor \neg p_2) \land (\neg p_0 \lor p_2 \lor p_1))$$

A última fórmula, sendo uma conjunção de disjunções de literais, é uma forma normal conjuntiva.

(b) Diga se $\varphi[(p_1 \vee p_2) \wedge (\neg p_1 \vee \neg p_2)/p_0]$ é uma tautologia.

R: Chamemos ψ à fórmula $(p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2)$. Efectuando a substituição, temos que $\varphi[\psi/p_0] = (\psi \to \bot) \lor (p_1 \leftrightarrow \neg p_2) = (((p_1 \lor p_2) \land (\neg p_1 \lor \neg p_2)) \to \bot) \lor (p_1 \leftrightarrow \neg p_2)$. Construamos a tabela de verdade desta fórmula:

p_1	p_2	$\neg p_1$	$\neg p_2$	$p_1 \lor p_2$	$\neg p_1 \lor \neg p_2$	ψ	$\psi o \bot$	$p_1 \leftrightarrow \neg p_2$	$\varphi[\psi/p_0]$
1	1	0	0	1	0	0	1	0	1
1	0	0	1	1	1	1	0	1	1
0	1	1	0	1	1	1	0	1	1
0	0	1	1	0	1	0	1	0	1

Verificamos assim que $\varphi[(p_1 \vee p_2) \wedge (\neg p_1 \vee \neg p_2)/p_0]$ assume sempre o valor lógico 1, pelo que esta fórmula é uma tautologia.

- (c) Verifique se $\neg (p_1 \land p_2)$ é consequência semântica de $\{\varphi, p_0\}$.
- **R:** Pretende-se verificar se φ , $p_0 \models \neg(p_1 \land p_2)$, ou seja, se para toda a valoração v tal que $v(\varphi) = 1$ e $v(p_0) = 1$ se tem que $v(\neg(p_1 \land p_2)) = 1$. Esta afirmação é verdadeira. De facto, quando $v(p_0) = 1$ e $v(p_1 \leftrightarrow \neg p_2) = 1$, teremos que ter $v(p_1 \leftrightarrow \neg p_2) = 1$, pois $v(p_0 \to \bot) = 0$. De $v(p_1 \leftrightarrow \neg p_2) = 1$, segue que $v(p_1) \neq v(p_2)$, donde um destes valores é necessariamente $v(p_1 \leftrightarrow \neg p_2) = 1$, pelo que $v(\neg(p_1 \land p_2)) = 1$.

4. Considere as seguintes proposições:

- João gosta de computadores mas não usa óculos.
- Se João gosta de computadores, então usa óculos se e só se é engenheiro.
- João não é engenheiro ou usa óculos.
- (a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
- **R:** Representemos por p_0 a frase atómica "João gosta de computadores", por p_1 a frase "João usa óculos" e por p_2 "João é engenheiro". Então, as três proposições acima exprimem-se respectivamente pelas fórmulas φ_1 , φ_2 e φ_3 seguintes:

$$\varphi_1 = p_0 \land \neg p_1, \qquad \varphi_2 = p_0 \to (p_1 \leftrightarrow p_2) \qquad e \qquad \varphi_3 = \neg p_2 \lor p_1.$$

- (b) Diga se as três proposições acima podem ser simultaneamente verdadeiras.
- **R:** As três proposições podem ser simultaneamente verdadeiras. De facto, φ_1 é verdadeira precisamente para as valorações v tais que $v(p_0) = 1$ e $v(p_1) = 0$ pois, neste caso,

$$v(\varphi_1) = \min\{v(p_0), v(\neg p_1)\} = \min\{1, 1 - v(p_1)\} = \min\{1, 1 - 0\} = 1.$$

Agora, dado que $v(p_0)=1$, para se ter $v(\varphi_2)=1$ é necessário e suficiente que $v(p_1\leftrightarrow p_2)=1$. Ora, sendo $v(p_1)=0$ deduz-se que $v(p_2)=0$. Provou-se assim que as valorações v tais que $v(p_0)=1$ e $v(p_1)=v(p_2)=0$ verificam $v(\varphi_1)=v(\varphi_2)=1$. Ora, para estas valorações tem-se ainda

$$v(\varphi_3) = \max\{v(\neg p_2), v(p_1)\} = \max\{1 - v(p_2), 0\} = \max\{1 - 0, 0\} = 1,$$

o que mostra que as três proposições acima podem ser simultaneamente verdadeiras.

Alternativamente, poderiam ser construídas as tabelas de verdade das fórmulas φ_1 , φ_2 e φ_3 e poderia ser verificado por essas tabelas que existem valorações (precisamente aquelas para as quais p_0 , p_1 e p_2 assumem os valores lógicos 1, 0 e 0 respectivamente) que atribuem o valor lógico 1 às três fórmulas.

- 5. Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Diga se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Se Γ é consistente e $\Gamma \models \varphi$, então φ não é uma contradição.

- R: Suponhamos que Γ é consistente e $\Gamma \models \varphi$. Note-se que a hipótese $\Gamma \models \varphi$ significa que, se v' é uma valoração tal que $v' \models \Gamma$, então $v' \models \varphi$. Ora, da consistência de Γ deduzimos que existe uma valoração v tal que $v \models \Gamma$. Então, da hipótese $\Gamma \models \varphi$, resulta que $v \models \varphi$, isto é, que $v(\varphi) = 1$. Isto mostra que φ não é uma contradição pois para tal seria necessário que φ tivesse o valor lógico 0 para todas as valorações. Conclui-se assim que a afirmação é verdadeira.
- (b) $p_0 \vee \neg p_0 \models \varphi$ se e só se φ é uma tautologia.
- **R:** Como é evidente, a fórmula $p_0 \vee \neg p_0$ é uma tautologia. Ou seja, $v \models p_0 \vee \neg p_0$ para toda a valoração v. Logo, pela definição de uma fórmula ser consequência de um conjunto de fórmulas (ver resposta da alínea anterior), deduz-se imediatamente que $p_0 \vee \neg p_0 \models \varphi$ se e só se $v \models \varphi$ para toda a valoração v. Portanto, $p_0 \vee \neg p_0 \models \varphi$ se e só se φ é uma tautologia, donde a afirmação é verdadeira.
- (c) Se $\Gamma, p_0 \to p_2 \models p_0 \land p_2$, então Γ é inconsistente.
- **R:** Esta afirmação é falsa. Um contra-exemplo é fornecido, por exemplo, pelo conjunto $\Gamma = \{p_0\}$. De facto, tem-se que

$$\Gamma, p_0 \to p_2 \models p_0 \land p_2$$

pois, se v é uma valoração tal que $v(p_0) = v(p_0 \to p_2) = 1$, então $v(p_2) = 1$ e, por conseguinte, $v(p_0 \land p_2) = 1$. No entanto Γ é consistente já que existem valorações que satisfazem p_0 .

Cotações	1.	2.	3.	4.	5.	
Cotações	1+1+1+1	1+2+1	1,5+1,5+1,5	1,5+1,5	1,5+1,5+1,5	