Теортест-1 (Вариант 6)

Тема – определенный интеграл

Задача 1

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f((a+b)/2) = 1;
- 2. f(a) = f(b) = 1;
- 3. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau, \xi \colon s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 2. $\forall \tau \ \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$
- 3. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} \varepsilon;$
- 4. $\forall \tau \ \exists \xi \colon s_{\tau} = \sigma_{\tau}(\xi);$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-1, 10];
- 2. [-10, 20];
- 3. [-1, 20];
- 4. [0, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 4

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. площадь отрезка равна нулю;
- 2. если $A \subset B$, то площадь A меньше площади B;
- 3. площадь $A \cup B$ равна сумме площадей A и B;
- 4. площадь графика любой функции равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. $\int_a^b f(x)dx = F(b) F(a);$
- 2. F первообразная для f на [a, b];
- 3. F ограничена на [a, b];
- 4. F не убывает на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{2x+1}{x^2(x+1)^2}$;
- 2. $\frac{x^4}{(x^5+1)^3}$;
- 3. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 4. $\frac{x}{x^2-1}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 7

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx;$
- 2. $\int \frac{f'(x)}{x} dx = \frac{f(x)}{x} + \int \frac{f(x)}{x^2} dx;$

3. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$

4. $\int f(x) \ln x dx = \ln x \cdot f'(x) - \int \frac{f'(x)}{x} dx;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения:

- 1. Длина кривой зависит от параметризации;
- 2. Длина замкнутой кривой равна нулю;
- 3. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 4. Длина любой кривой конечна;
- 5. Гладкая кривая это кривая, все параметризации которой гладкие;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. vdt = du;
- 2. v = u' + C:
- 3. u' = v + C:
- 4. u = v' + C;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 10

Пусть $f \in R[a, b], a < b$. Выберите все верные утверждения:

- 1. Если f > 0 на [a, b], то $\int_a^b f(x) dx > 0$;
- 2. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 3. Если $\left| \int_a^b f(x) dx \right| < A$, то $\int_a^b |f(x)| dx < A$;
- 4. Если $f \ge 0$ на [a, b], то $\int_a^b f(x) dx \ge 0$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)