DESARROLLO DE SOFTWARE PARA SISTEMAS EMPOTRADOS

Gestión del tiempo en POSIX

Mario Aldea Michael González Héctor Pérez

DSSE: M. Aldea, M. González y H. Pérez

Planificación de threads en POSIX

- Conceptos básicos
- Tipos de relojes
- Interfaz para el manejo de relojes
- Interfaz para la suspensión de threads
- Implementación de threads periódicos

2

Conceptos básicos

- El **reloj** representa un objeto que mide el paso del tiempo
 - la resolución (o "tick") del reloj es el intervalo de tiempo más pequeño que el reloj puede medir
- La época toma como referencia las 0 horas, 0 minutos, 0 segundos del 1 de enero de 1970, UTC (Coordinated Universal Time)
 - para calcular los segundos desde la época
 sec + min*60 + hour*3600 + yday*86400
 + (year-1970)*31536000 + ((year-1969)/4)*86400

DSSE: M. Aldea, M. González y H. Pérez

Conceptos básicos

 POSIX define un tipo de dato denominado timespec para especificar el tiempo con alta resolución:

```
struct timespec {
    time_t tv_sec; // segundos (32 bits con signo)
    long tv_nsec;// nanosegundos
}
```

• Por tanto, el tiempo se calcularía mediante la siguiente fórmula

```
tiempo (nanosegundos) = tv\_sec*10^9 + tv\_nsec
siendo 0 \le tv nsec < 10^9
```

• Este tipo de dato resulta incómodo para hacer operaciones de suma, resta, multiplicación o división

Tipos de relojes

- Reloj del sistema
 - mide los segundos transcurridos desde la época

```
#include <time.h>
time_t time (time_t *tloc);
```

si tloc no es NULL, también devuelve la hora en *tloc

DSSE: M. Aldea, M. González y H. Pérez

Tipos de relojes

- Reloj de tiempo oficial
 - mide el tiempo transcurrido desde la época
 - su hora puede ser cambiada
 - · puede coincidir o no con el reloj del sistema
 - se usa para timeouts y para crear temporizadores
 - definido en el estándar POSIX como CLOCK_REALTIME
 - la resolución máxima permisible es de 20 ms

NO es el más indicado para usar en aplicaciones de tiempo real

Tipos de relojes

- Reloj monótono no decreciente
 - permite medir intervalos de tiempo
 - su origen de tiempos es indeterminado
 - su hora *no* puede ser cambiada
 - definido en el estándar POSIX como CLOCK_MONOTONIC

CLOCK_MONOTONIC es el más indicado para usar en aplicaciones de tiempo real

DSSE: M. Aldea, M. González y H. Pérez

Interfaz para el manejo de relojes

#include <time.h>

Cambiar la hora:

Leer la hora:

Leer la resolución del reloj:

Interfaz para la suspensión de threads (1/2)

#include <unistd.h>

Suspensiones relativas:

- *rqtp es el tiempo a suspenderse
- si es interrumpida por una señal, en *rmtp retorna el tiempo que falta para finalizar la suspensión

DSSE: M. Aldea, M. González y H. Pérez

Interfaz para la suspensión de threads (2/2)

Suspensiones absolutas o relativas:

- clock_id es el identificador del reloj a usar
- flags especifica las opciones de la suspensión
 si la opción TIMER_ABSTIME está presente, es absoluto
- Posibles valores de clock_id son:
 - CLOCK MONOTONIC
 - CLOCK_REALTIME

Implementación de threads periódicos

- La necesidad de realizar una actividad de forma periódica es un requerimiento muy común en los sistemas de tiempo real
- En POSIX utilizaremos un thread con la siguiente estructura: