INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA

ENGENHARIA DE COMPUTAÇÃO

Antônio F. A. Terceiro

Diogo da Silva Santos

Jorge V. S. Castro

João Marcos de A. Almeida

Uso do microcontrolador ESP 32 para automação de controle de luminosidade em ambientes

Relatório Final - Internet of Things - Sistema de Iluminação

CAMPINA GRANDE - PB

Dez/23

1 OBJETIVO

Criar um sistema de Internet das Coisas (IoT) com a capacidade de monitorar a luminosidade em tempo real nas salas de aula e laboratórios por meio de sensores de luminosidade. As informações coletadas por esses sensores serão utilizadas como referência para o controle automatizado dos sistemas de iluminação.

O objetivo central do projeto é desenvolver um sistema IoT que incorpore os princípios do Smart Campus, visando proporcionar melhorias na eficiência e na qualidade de vida no campus. O sistema terá a função de monitorar e controlar a luminosidade ambiente nas salas ou laboratórios, com o intuito de reduzir o consumo de energia e promover o aumento do conforto dos usuários.

2 RECURSOS DAS PLACAS

Módulo ESP32-S3-USB-OTG:

- Características:
 - o CPU: Xtensa® Dual-Core 32-bit LX7
 - o Clock: 80 MHz~240 MHz (Ajustável)
 - o ROM: 384 KB
 - o RAM: 520 Kbytes SRAM
 - o Flash: 4 MB
 - o WiFi 802.11 b/g/n: 2.4GHz~2.5 GHz
 - 45 GPIOs programáveis
- Pinout:
 - o 10 e 11: Pinos de comunicação analógico (I2C).
 - o GND: Pinos para passagem do ground.
 - VCC OUT: Saída de tensão (varia de acordo com a tensão de alimentação;

Módulo ESP32-C3-WROOM-02

- Características:
 - o CPU: 32-bit RISC-V single-core processor, up to 160 MHz
 - Clock: 40 MHz ~160 MHz (Ajustável)
 - o ROM: 384 KB
 - o RAM: 400KB
 - o Flash: 4MB
 - o WiFi 802.11 b/g/n: 2.4GHz
 - o 19 GPIOs
- Pinout:

- o GND: Pinos para passagem do ground.
- VCC OUT: Saída de tensão (varia de acordo com a tensão de alimentação;
- o 05: Ligado ao relé para ligamento e desligamento

3 DOS REQUISITOS DO PROJETO

Quantidade	Descrição
1	ESP32-C3
1	ESP32-S3-WROOM
1	PROTOBOARD
1	RELÉ
1	SENSOR TSL-2561
1	LÂMPADA
1	INTERRUPTOR
1	TOMADA
1	BOCAL
~	JUMPERS

4 FUNCIONAMENTO

4.1 Nó sensor de luminosidade:

- Responsabilidade: Coletar e enviar dados sobre a luminosidade ambiente para o Middleware.
- Protocolo de Comunicação: Utilizará o protocolo I2C para conexão com o gateway, visando a comunicação a curta distância.

4.1.1 Hardware Utilizado:

- ESP-32: O cérebro do nó, controlando o fluxo de dados.
- Sensor TSL2561: Este sensor é usado para medir a luminosidade ambiente, com a saída analógica.

4.2 Nó Atuador:

- Responsabilidade: Controlar o ponto de iluminação da sala.
- Protocolo de Comunicação: Comunicação via serial entre o nó e o gateway.

4.2.1 Hardware Utilizado:

- Microcontrolador ESP32-S3: O microcontrolador oferece conectividade Wi-Fi e Bluetooth.
- Módulo Relé: Utilizado para controlar o dispositivo de iluminação.

4.2.2 Controle de Iluminação:

O nó atuador recebe comandos de controle do relé. O módulo de relé é responsável por controlar a alimentação do ponto de iluminação. Pode ser utilizado para ligar/desligar a iluminação ou modular a intensidade da luz.

4.4 Gateway:

- Responsabilidade: Interface de comunicação com a Cloud para visualização.
- Hardware Utilizado: ESP 32-C3.
- Conexão com a Internet: WiFi.

4.5 Nuvem

• Provedor: Arduino Cloud

Protocolo: MQTT

5 ILUSTRAÇÃO DO SISTEMA

6 DIAGRAMA DE BLOCOS

7 ESQUEMA ELÉTRICO

8 DISCUSSÕES

Na fase de discussões, o projeto passou por uma série de decisões cruciais desde o início. Inicialmente, a escolha do sensor TLS 2561 e do protocolo I2C para a

comunicação sensor-microcontrolador foi deliberada para garantir uma leitura precisa da luminosidade. Foi escolhido o uso do ESP 32-C3, dada sua versatilidade e eficiência na comunicação, além de já vir com conectividade WiFi e Bluetooth.

Ao longo do desenvolvimento, surgiram desafios notáveis, a princípio nosso objetivo era utilizar uma placa Raspberry Pi, porém devido a nova regra de tributação sobre produtos de origem chinesa e incertezas quanto a um possível prazo de entrega, decidimos utilizar uma placa BeagleBone Black como gateway do nosso sistema disponibilizada pela instituição por meio do professor, entretanto devido a motivos técnicos, optamos por utilizar apenas placas do tipo ESP 32-C3 como tal função. Além disso, apresentaram-se problemas relacionados à comunicação das partes do sistema. A resolução desses problemas demandou trabalho do grupo como um todo, refinando continuamente o código e ajustando parâmetros para assegurar a funcionalidade.

A escolha de integrar a Arduino Cloud e a comunicação serial com o ESP32-S3-WROOM e o uso do protocolo MQTT visava uma abordagem simples, prática e eficiente para a distribuição de dados. Isso permitiu o armazenamento na nuvem, mas também a ativação local do relé para controle imediato da lâmpada.

Em resumo, as discussões durante o desenvolvimento abordaram a tomada de decisões, superação de desafios e a maximização do potencial das tecnologias escolhidas. Essa fase foi essencial para a montagem de um projeto funcional.

9 CONCLUSÃO

Em conclusão, a implementação bem-sucedida deste projeto IoT, que envolve a leitura do sensor TLS2561, comunicação via protocolo I2C entre o ESP32-C3 e o sensor, envio de dados para a Arduino Cloud via MQTT, e ativação de um relé pelo ESP32-S3-WROOM, representou não apenas uma conquista técnica, mas também destacou a eficácia da integração de dispositivos na Internet das Coisas. A funcionalidade prática do sistema, evidenciada pelo controle da lâmpada, destaca o potencial transformador da IoT em cenários do mundo real. Este projeto não só aprimora nossas habilidades técnicas, mas também ressalta a importância da conectividade e da automação em ambientes cada vez mais interconectados. Com a finalização bem-sucedida, estamos mais conscientes do impacto positivo da IoT na otimização de processos e na criação de soluções inteligentes.

10 REFERÊNCIAS BIBLIOGRÁFICAS

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-reference/peripherals/touch_pad.html

https://pt.aliexpress.com/item/1005005059816321.html?gatewayAdapt=glo2bra

https://github.com/espressif/esp-who/blob/master/docs/en/get-started/ESP32-S3-EYE Getting Started Guide.md

 $\frac{\text{https://pt.aliexpress.com/item/1005005507532921.html?spm=a2g0o.productlist.main.37.37497cbezUdEXM&algo_pvid=a0b18e70-d656-4007-a0b8-e7e724d2f58a&algo_exp_id=a0b18e70-d656-4007-a0b8-e7e724d2f58a-18&pdp_npi=3%40dis%21BRL%215.36%213.96%21%21%21%21%21%21%40211be10916878936892306245d07e2%2112000033349692652%21sea%21BR%21166774328&curPageLogUid=noONjwjob3hv}$

https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf

https://randomnerdtutorials.com/esp32-bh1750-ambient-light-sensor/

https://www.esp32learning.com/code/esp32-and-a-tsl2561-luminosity-sensor-examp le.php

 $\frac{https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.pdf/18a41097-2035-4333-c70e-bfa544c0a98b$

 $\frac{\text{https://pt.aliexpress.com/item/}1005004926993351.\text{html?spm=a2g0o.productlist.main.}25.37497\text{cbezUdEXM&algo_pvid=a0b18e70-d656-4007-a0b8-e7e724d2f58a&algo_exp_id=a0b18e70-d656-4007-a0b8-e7e724d2f58a-12&pdp_npi=3%40dis%21BRL%2111.87%2111.52%21%21%21%21%21%40211be10916878936892306245d07e2%2112000031048693211%21sea%21BR%21166774328&curPageLogUid=FdY69yNyPOwc}$

https://www.vishav.com/docs/84366/veml6030.pdf

https://pt.aliexpress.com/item/1005001765423193.html

https://www.14core.com/wiring-the-vishay-veml6030-high-accuracy-ambient-light-digital-sensor/

 $\frac{https://www.analog.com/media/en/technical-documentation/data-sheets/DS18B20.p}{df}$

https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf

https://datasheet.lcsc.com/szlcsc/1909111105 HI-LINK-HLK-PM24 C399250.pdf