Convergence Tests 35

Lemma 35.1 (Lemma 8.20)

Assume $c_n > 0$ for $n \ge 1$. If $\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = L$ where L = 1, then what is $\lim_{n \to \infty} c_n$?

Ex 1: let a be any number > 0. Then let $c_n = a$ for all n. Then $\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = 1$ and $\lim_{n \to \infty} c_n = a$.

Ex 2: Let $c_n = n$ for $n \ge 1$. Then $\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = 1$ and $\lim_{n \to \infty} c_n = \infty$.

Also $c_n = \frac{1}{n}, \dots, \lim_{n \to \infty} c_n = 0.$

7 Convergence Tests

1. kth term test: If $\lim_{k\to\infty} a_k \neq 0$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Example 35.2

 $\sum_{k=1}^{\infty} k \sin \frac{1}{k}$. Suppose we write

$$\lim_{k \to \infty} k \sin \frac{1}{k} = \lim_{k \to \infty} \frac{\sin \frac{1}{k}}{1/k} = \lim_{m \to \infty} \frac{\sin m}{m} \cdots$$

Note L'Hopital's rule does not apply to sequences.

Valid:

$$\lim_{k \to \infty} k \sin \frac{1}{k} = \lim_{k \to \infty} k \sin \frac{1}{k} = \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0^+} \frac{\cos x}{1} = 1$$

So diverges by kth term test.

- 2. Comparison test: If $0 < a_k \le b_k$ for $k \ge 1$, then
 - (a) If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
 - (b) If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.

Example 35.3 $\sum_{k=1}^{\infty} \frac{1}{2^k+1} \le \sum_{k=1}^{\infty} \frac{1}{2_k}$ which converges, so the given series converges by the comparison test.

 $\sum_{k=1}^{\infty} \frac{1}{k}$ diverging means $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ also diverges, because $\frac{1}{k} \leq \frac{1}{\sqrt{k}}.$

3. Geometric Series Test: If $c \neq 0$, then $\sum_{k=m}^{\infty} cr^k = \frac{cr^m}{1-r} = \frac{\text{first term}}{1-r}$ converges if |r| < 1. Diverges if $|r| \geq 1$.

Example 35.4

$$\sum_{k=2}^{\infty} \frac{2^k + 4^{k+1}}{6^k} = \sum_{k=2}^{\infty} \frac{2^k}{6^k} + \sum_{k=2}^{\infty} \frac{4^{k+1}}{6^k} = \sum_{k=2}^{\infty} \left(\frac{1}{3}\right)^k + 4\sum_{k=2}^{\infty} \left(\frac{2}{3}\right)^k = \frac{1/9}{1 - \frac{1}{3}} + 4\frac{4/9}{1 - \frac{2}{3}} = \dots = \frac{11}{2}$$

- 4. Ratio Test: Let $a_k > 0$, $k \ge 1$, let $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = L$
 - (a) If L < 1, the series converges.
 - (b) If L > 1, then the series diverges.
 - (c) If L=1, then the test is inconclusive.

Partial proof: (i) Let $0 \le L < 1$. Then let a be such that L < a < 1. Then there is N so $k \ge N \implies 0 < \frac{a_{k+1}}{a_k} < a$, so $a_{k+1} < a_k a$. Then $a_{N+1} < a_N a$, $a_{N+2} < a_{N+1} a < a_N a^2$. And if $k \ge 0$, then $a_{N+k} \le a_N a^k$. Then $\sum_{k=N}^{\infty} a_k \le \sum_{k=N}^{\infty} a_n a^k$ by converges by the geometric series

So by the comparison test, because $\sum_{k=N}^{\infty} a_k$ converges, so $\sum_{k=1}^{\infty} a_k$ converges.

Example 35.5 Prove $\sum_{k=1}^{\infty} \frac{k!}{k^k}$ converges.

Proof: by ratio test,

$$\frac{(k+1)!/(k+1)^{k+1}}{k!/k^k} = \frac{(k+1)!}{k!} \frac{k^k}{(k+1)^{k+1}} = \left(\frac{k}{k+1}\right)^k = \left(\frac{1}{1+1/k}\right)^k = \frac{1}{(1+1/k)^k} \to \frac{1}{e} < 1$$

so the series converges.

5. Let $\{a_k\}_{k=1}^{\infty}$ be strictly decreasing, with $\lim_{k=1} a_k = 0$. Let $f:[1,\infty) \to \mathbb{R}$ be continuous, decreasing, $f(k) = a_k$ for $k \ge 1$. Then $\sum_{k=1}^{\infty} a_k$ converges iff $\int_1^{\infty} f(x) \, dx$ converges.

Proof. Claim $\sum_{k=2}^{n} a_k \leq \int_1^n f(x) dx \leq \sum_{k=1}^{n-1} a_k$. $\sum_{k=2}^{n} a_k$ is the left sum on [1, n] with the partition $\{1, 2, \dots, n\}$, and $\sum_{k=1}^{n-1} a_k$ is the right sum. Because f is decreasing, the left sum is greater than the integral, and the right sum is less than the integral. All 3 of these converge, or none of them converge.

6. p-test: $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges iff p > 1. (Proof by integral test with $\int_1^{\infty} \frac{1}{k^p} dx$).

Example 35.6 $\sum_{k=1}^{\infty} \frac{1}{k} \text{ diverges } (p=1), \sum_{k=1}^{\infty} \frac{1}{k^2} \text{ converges } (p=2.)$

7. Alternating Series Test: Let $\{a_k\}_{k=1}^{\infty}$ have $a_{k+1} > a_k$ for all $k \ge 1$, and $\lim_{k \to \infty} a_k = 0$. Then $\sum_{k=1}^{\infty} (-1)^k a_k$ converges and $\left|\sum_{k=1}^{\infty} (-1)^k a_k - \sum_{k=1}^{j} (-1)^k a_k\right| < a_{j+1}$ for any $j \ge 2$. (where the second term is the jth partial sum.)