Лабораторная работа №1. Вариационные ряды и их графическое изображение

Содержание

Лабораторная работа №1. Вариационные ряды и их графическое изображение	1
Цель работы	1
Оборудование	
Задание №1	
Постановка задачи	
Решение	
Задание №2	
Постановка задачи	
Решение	
Задание №3	E
Постановка задачи	6
Задача 1	
Решение задачи	
Задача 2	
Решение задачи	

Цель работы

Построить дискретные и интервальные вариационные ряды и их графические изображения.

Оборудование

ПК, табличный процессор (Google Spreadsheets).

Задание №1

Постановка задачи

В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0, 3, 1, 0, 1, 1, 3, 2, 3, 1, 2, 1, 2. Построить дискретный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Решение

Дискретный вариационный ряд:

Xi	0	1	2	3	4
m_{xi}	6	7	3	5	3
W_{xi}	0,250	0,292	0,125	0,208	0,125

Графическое представление:

Задание №2

Постановка задачи

Дан ряд распределения хозяйств по количеству рабочих на 100 га сельскохозяйственных угодий (n = 60):

12	6	8	6	11	10	11	7	10	12	8	7	7	6	7	8	6	11	9	11
9	10	11	9	15	10	7	8	8	8	11	9	8	7	5	9	7	7	14	11
9	8	7	4	6	7	5	5	10	7	7	5	8	10	10	15	10	10	13	12

Построить интервальный вариационный ряд. Результаты вычислений представить в таблице. Вариационный ряд изобразить графически.

Решение

Определим максимальное и минимальное значение X по данным таблицы:

$$X_{min} = 4$$
; $X_{max} = 15$;

Определим число интервалов k с помощью формулы:

$$k=1+1,4\ln 60 \simeq 6,732$$

Выберем число интервалов k = 7. За начало первого интервала примем $a_1 = 4$, за конец седьмого — $a_8 = 16$.

Длина каждого интервала будет равна

$$\Delta = \frac{a_8 - a_1}{k} = \frac{16 - 4}{7} \approx 1,714$$

Подсчитаем число вариант, попадающих в каждый интервал. Получим вариационный ряд:

Xi	[4; 5,714)	[5,714; 7,428)	[7,428; 9,142)	[9,142; 10,856)	[10,856; 12,57)	[12,57; 14,284)	[14,284; 16)
m_i	5	17	15	9	10	2	2

По данным таблицы построим полигон и гистограмму:

Полигон

Построим эмпирическую функцию распределения. Для этого вычислим накопленные частоты \mathbf{w}_{ai}

Xi	4	5,714	7,428	9,142	10,856	12,57	14,284	16
Wai	0	0,083	0,367	0,617	0,767	0,933	0,967	1

По формуле $ho_i = \frac{m_i}{n \, \Delta}$ вычислим значения эмпирической плотности вероятности для каждого интервала

χ_i	[4; 5,714)	[5,714; 7,428)	[7,428; 9,142)	[9,142; 10,856)	[10,856; 12,57)	[12,57; 14,284)	[14,284; 16)
$ ho_i$	0,0486	0,1653	0,1459	0,0875	0,0972	0,0194	0,0194

Построим гистограмму эмпирической плотности

Эмпирическая плотность

Задание №3

Постановка задачи

Предложить две свои задачи на построение вариационного ряда (дискретного и непрерывного).

Задача 1

Телекоммуникационная компания заказала исследование проникновения интернета в жизнь сельского населения. Исследователи опросили 100 семей из 20 деревень и посёлков. Для каждой семьи они подсчитали, какое количество устройств с выходом в интернет приходится на одного члена этой семьи в среднем и получили следующие данные:

0,85	1,59	0,48	0,85	1,48	0,51	1,2	0,84	0	1,16
1,44	1,78	1,03	0,01	0,16	0,2	0,26	1,59	1,12	1,77
1,92	0,32	0,46	1,1	0,36	1,52	0,12	0,75	1,86	1,4
0,53	1,75	0,09	0,24	1,49	1	1,94	0,45	0,53	1,9
1,07	0,49	1,13	1,03	0,86	1,22	1,72	1,84	0,89	0,74
1,84	0,49	0,93	0,01	0,57	0,57	1,08	0,83	0,71	1,77
1,56	0,41	1,55	0,26	0,08	0,24	1,09	1,01	1,79	0,98
0,31	1,02	1,52	0,34	1,45	0,04	0,65	1,14	1,68	1,11
0,83	1,19	0,18	1,58	1,73	1,63	1,81	1,51	1,62	0,05
0,24	1,41	1,01	0,24	0,23	0,3	0,33	1,4	1,69	1,34

Для данной выборки постройте интервальный вариационный ряд, полигон, гистограмму.

Решение задачи

Определим максимальное и минимальное значение X по данным таблицы:

$$X_{min} = 0$$
; $X_{max} = 1.94$;

Определим число интервалов k с помощью формулы:

$$k=1+1.4 \ln 100 \simeq 7.447$$

Выберем число интервалов k=8. За начало первого интервала примем $a_1=0$, за конец восьмого — $a_9=2$.

Длина каждого интервала будет равна

$$\Delta = \frac{a_9 - a_1}{k} = \frac{2 - 0}{8} = 0,25$$

Подсчитаем число вариант, попадающих в каждый интервал. Получим вариационный ряд:

Xi	[0; 0,25)	[0,25; 0,5)	[0,5; 0,75)	[0,75; 1)	[1; 1,25)	[1,25; 1,5)	[1,5; 1,75)	[1,75; 2)
m_i	16	14	8	10	18	8	14	12

По данным таблицы построим полигон и гистограмму:

Задача 2

Процессор смартфона имеет 8 ядер. Для снижения энергопотребления система может подключать и отключать ядра по мере необходимости. Инженеры разработали новый алгоритм принятия решений об отключении или подключении дополнительных ядер. Чтобы протестировать алгоритм, инженеры в течение часа разными способами нагружали процессор и ежеминутно записывали количество активных в данный момент ядер:

2	3	2	6	6	5	3	2	8	3
6	2	2	1	7	8	6	2	8	6
4	6	8	4	2	5	4	1	5	1
8	1	7	2	6	4	4	2	1	8
2	3	3	5	6	2	7	5	8	3
1	2	4	4	2	4	1	6	8	5

Для данной выборки постройте дискретный вариационный ряд, полигон, кумулянту.

Решение задачи

Построим дискретный вариационный ряд

Xi	1	2	3	4	5	6	7	8
m_{xi}	7	13	6	8	6	9	3	8
W_{xi}	0,117	0,217	0,100	0,133	0,100	0,150	0,050	0,133

Построим кумулянту и полигон для этих данных:

