

DATASHEET

Capteur Graphite

Description du capteur

Le capteur graphite permet de mesurer la variation de résistance en fonction de l'angle de torsion de la feuille de papier. Ce capteur est fabriqué en déposant du graphite sur une feuille de 0,16mm d'épaisseur à l'aide d'un crayon de papier. Le graphite déposé est de différent type selon la dureté de la mine (B,H,F,2B,3B,6B,3H). Lorsqu'une contrainte mécanique est appliquée, la distance entre les nanoparticules varie, ce qui modifie la conductivité du graphite

Schéma du capteur

Figure 1 : Schéma du capteur

Connectique

Numéro du pin	Spécifications
1	Vcc
2	Vout

Figure 2 : Description de la connectique

Caractéristiques électrique typiques (alimenté en 5V)

Caractéristique	Valeur	Unité
Résistance à 0°	B: 17 H: N/A F: 100 2B: 20 3B: 25 6B: 3 3H: N/A	ΜΩ
Résistance à 180°	B: 10 H: N/A F: 46 2B: 12 3B: 9 6B: 3 3H: N/A	ΜΩ
Sensibilité *	B: 0,1 H: N/A F: 0,3 2B: 0,05 3B: 0,025 6B: Pas assez élevée 3H: N/A	MΩ/°

Caractéristique	Valeur	Unité
Alimentation	+5	V
TRMC	38	dB
Fréquence d'utilisation max	1,6	Hz

Spécifications

Capteur	Jauge de contrainte	
Туре	Passif (Tension d'entrée externe)	
Tension d'entrée	5V	
Type du signal de sortie	Analogique	
Temps de réponse	<500 ms	
Mesurande	Résistance	
Application	Mesure de l'angle de torsion	

Exemple d'utilisation:

Le capteur graphite est connecté à un AOP afin d'amplifier et de filtrer le signal pour le rendre exploitable. On mesure ensuite la tension à l'aide d'un Arduino Uno.

Il est ensuite possible de remonter à la valeur de la résistance grâce à la tension, en effet :

$$R_{capteur} = R1*(1+\frac{R3}{R2)}*\frac{Vcc}{Vadc} - R1 - R5$$

On peut ensuite tracer la variation de résistance en fonction de l'angle ainsi que la variation de résistance relative en fonction de l'angle.

Résistance du capteur en fonction de l'angle

ΔR/R0 en fonction de l'angle (%)

