INGENIERÍA MECATRÓNICA

DIEGO CERVANTES RODRÍGUEZ

ELECTRÓNICA DIGITAL: CIRCUITOS LÓGICOS, LENGUAJE VHDL Y VERILOG
XILINX (64-BIT PROJECT NAVIGATOR) & ADEPT

Display de 7 Segmentos: Suma, Resta, Multiplicación y Decodificador BCD

Contenido

TLD: Manejo de Tiempos, 2 Secuencias de Semáforo	2
Divisor de Reloj: Módulo DIV	3
Secuencia Semáforo: Modo Normal y Nocturno	4
Código VHDL:	4
Divisor de Reloj (DIV):	4
Contador/Selector (CONTADOR DE TIEMPO):	5
Secuencia (SECUENCIA SEMÁFORO):	5
Módulo TLD:	6
Código UCF:	7
Simulación Secuencia Semáforo:	7

TLD: Manejo de Tiempos, 2 Secuencias de Semáforo

El diagrama de bloques que se muestra a continuación pretende ejecutar una secuencia que se ejecute de forma indefinida, eligiendo entre dos tipos de semáforos distintos por medio de un switch para conmutar entre la secuencia normal y de modo nocturno, para ello se agregan los siguientes bloques:

- **DIV:** Un módulo divisor de reloj.
- **CONTADOR DE TIEMPO:** Un módulo contador/selector que dicte el tiempo en el que se ejecuta cada paso de la secuencia.
- SECUENCIA SEMÁFORO: En este módulo se indican las acciones a realizar en cada uno de los pasos de la secuencia, para ello debemos tener bien en cuenta de cuantos pasos se conforma cada secuencia y el tiempo de separación que queremos que haya entre cada paso, osea la velocidad con la que se ejecuta la secuencia.

Divisor de Reloj: Módulo DIV

Del divisor de reloj se elegirá una frecuencia de 0.745Hz con un periodo de $\frac{1}{0.745\,Hz}=~1.3422\,segundos$, que se encuentra en la coordenada 26 del vector que divide al reloj y se obtiene por medio de la fórmula porque no se encuentra en la tabla.

q(i)	BASYS 2 y NEXYS 2		NEXYS 3 y NEXYS 4	
	Frecuencia (Hz)	Periodo (s)	Frecuencia (Hz)	Periodo (s)
1.0	50,000,000.00	0.00000002	100,000,000.00	0.0000001
0	25,000,000.00	0.00000004	50,000,000.00	0.00000002
1	12,500,000.00	0.00000008	25,000,000.00	0.00000004
2	6,250,000.00	0.0000016	12,500,000.00	0.00000008
3	3,125,000.00	0.00000032	6,250,000.00	0.0000016
4	1,562,500.00	0.00000064	3,125,000.00	0.00000032
5	781,250.00	0.00000128	1,562,500.00	0.00000064
6	390,625.00	0.00000256	781,250.00	0.00000128
7	195,312.50	0.00000512	390,625.00	0.00000256
8	97,656.25	0.00001024	195,312.50	0.00000512
9	48,828.13	0.00002048	97,656.25	0.00001024
10	24,414.06	0.00004096	48,828.13	0.00002048
11	12,207.03	0.00008192	24,414.06	0.00004096
12	6,103.52	0.00016384	12,207.03	0.00008192
13	3,051.76	0.00032768	6,103.52	0.00016384
14	1,525.88	0.00065536	3,051.76	0.00032768
15	762.94	0.00131072	1,525.88	0.00065536
16	381.47	0.00262144	762.94	0.00131072
17	190.73	0.00524288	381.47	0.00262144
18	95.37	0.01048576	190.73	0.00524288
19	47.68	0.02097152	95.37	0.01048576
20	23.84	0.04194304	47.68	0.02097152
21	11.92	0.08388608	23.84	0.04194304
22	5.96	0.16777216	11.92	0.08388608
23	2.98	0.33554432	5.96	0.16777216
24	1.49	0.67108864	2.98	0.33554432

$$fi = \frac{f}{2^{i+1}}$$

Secuencia Semáforo: Modo Normal y Nocturno

En el programa se describen dos secuencias simples de un semáforo para el control de un crucero que tiene dos sentidos, de Sur a Norte SN (abajo hacia arriba) y de Oeste a Este OE (derecha a izquierda), cada secuencia se conforma de los pasos descritos a continuación, donde además se tiene que tomar en cuenta que cuando el semáforo SN se encuentre con la luz verde o amarilla encendida, el semáforo OE debe estar en rojo y viceversa:

- Modo normal (Secuencia 1): En esta secuencia 10s se muestra la luz roja, 7s se muestra la luz verde con 3 parpadeos antes del amarillo y 3s se muestra la luz amarilla, estas secuencias están entrelazadas en los dos semáforos SN y OE, dando en total una secuencia de 20s.
- Modo nocturno (Secuencia 2): En esta secuencia simplemente se pone a parpadear la luz roja en el semáforo SN y parpadea la luz amarilla en el semáforo OE.

El tiempo total que abarcan ambas secuencias no es de 10 + 7 + 3 + 3 = 23 segundos, aunque así parezca, ya que los tiempos de encendido y apagado de los focos rojo, amarillo y verde están entrelazados en los dos semáforos al mismo tiempo.

Código VHDL:

DI_CERO

Divisor de Reloj (DIV):

```
--1.-DIVISOR DE RELOJ:
--Este proceso sirve para dictarle al reloj en que frecuencia quiero que opere.
use IEEE.STD LOGIC 1164.ALL;
--Librerias para poder usar el lenguaje VHDL. use IEEE.STD LOGIC UNSIGNED.ALL;
--Librería declarada para poder hacer operaciones matemáticas sin considerar el signo.
entity divisorDeReloi is
      int ( relojNexys2 : in STD_LOGIC; --Reloj de 50MHz proporcionado por la NEXYS 2 en el puerto B8.
    rst : in STD LOGIC; --Botón de reset.
            salidaReloj : out STD_LOGIC); --Reloj que quiero con una frecuencia menor a 50MHz.
end divisorDeReloi:
architecture frecuenciaNueva of divisorDeReloj is
signal divisorDeReloj : STD_LOGIC_VECTOR (25 downto 0);
           process(reloiNexvs2, rst)
                      if(rst='1') then
                                divisorDeReloj <= "000000000000000000000000000000";
                      elsif(rising_edge(relojNexys2)) then
                                divisorDeReloj <= divisorDeReloj + 1;
           end process;
           salidaReloj <= divisorDeReloj(25);</pre>
           --La coordenada 25 corresponde a una frecuencia de 0.745Hz, obtenida con la formula.
end frecuenciaNueva;
```

Contador/Selector (CONTADOR DE TIEMPO):

--2.-CONTADOR:

```
--En proceso se realiza el conteo de 0 a 23 del selector que indicara el comportamiento
--de las dos secuencias del semáforo: Modo normal y modo nocturno.
use IEEE.STD LOGIC 1164.ALL;
--Librerías que sirven solamente para poder usar el lenguaje VHDL
USA TEER STD LOGIC UNSIGNED ALL:
  -Librería para poder realizar operaciones matemáticas sin considerar el signo
     Port (frequenciaReloj: in STD_LOGIC; --Reloj de 50MHz de la NEXYS 2.

--Contador de 5 bits, desde 0 hasta el 31 en binario, aquí se abarcan

--los 20 segundos de la secuencia.

Contador: out STD_LOGIC_VECTOR (4 downto 0);

reiniciar: in STD_LOGIC_VECTOR (5 downto 10);
end contadorTiempo;
architecture Behavioral of contadorTiempo is
signal conteoAscendente : STD_LOGIC_VECTOR (4 downto 0) := "00000";
              process(frecuenciaReloj, reiniciar)
             begin
                           if(rising_edge(frecuenciaReloj)) then
                                         --Cuando el conteo llegue hasta 20, se reinicia el conteo del selector.

if(conteoAscendente >= "10100") then

conteoAscendente <= "00000";
                                         --Tambien si se presiona el botón de reset, el conteo se reinicia.

elsif(reiniciar = '1') then

conteoAscendente <= "00000";
                                         --Si el conteo no ha llegado a los 20 segundos o no se ha reiniciado, cuenta
                                         --de 0 a 20 con un tiempo de separación de 1/0.745 \mathrm{Hz} = 1.3422 segundos.
                                                      conteoAscendente <= conteoAscendente + "00001";</pre>
                                         end if:
             end process:
             Contador <= conteoAscendente;
end Behavioral:
Secuencia (SECUENCIA SEMÁFORO):
--3.-SECUENCIA MODO NORMAL Y NOCTURNO:
--En proceso se prenden y apagan los tres leds (rojo, amarillo y verde) en las dos secuencias
--modo normal y nocturno en los dos semáforos SN (abajo hacia arriba) y OE (izquierda a derecha)
             -Secuencia 1 (modo normal): 10s se muestra la luz roja, 7s se muestra la verde con 3 parpadeos antes del amarillo y 3s se muestra la luz amarilla, estas secuencias están entrelazadas en los dos semáforos SN y OE, dando en total una secuencia de 20s.
--
             -Secuencia 2 (modo nocturno): En esta secuencia simplemente se pone a parpadear la luz roja en el semáforo SN y la amarilla en el semáforo OE.
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity secuenciaSemaforo is
     Port ( conteo : in STD_LOGIC_VECTOR (4 downto 0);
              modoParpadeo : in STD_LOGIC;
semSN : out STD_LOGIC_VECTOR (2 downto 0);
semOE : out STD_LOGIC_VECTOR (2 downto 0));
end secuenciaSemaforo;
architecture Behavioral of sequenciaSemaforo is
             constant verde: std_logic_vector (2 downto 0):="100"; --Semáforo en verde.

constant amarillo: std_logic_vector (2 downto 0):="010"; --Semáforo en amarillo.

constant rojo: std_logic_vector (2 downto 0):="001"; --Semáforo en rojo.

constant parpadeo: std_logic_vector (2 downto 0):="000"; --Semáforo que estén parpadeando.
begin
             asignacion: process (conteo, modoParpadeo) begin
                           --Si el switch modoParpadeo esta activado, se enciende el modo Nocturno, donde simplemente --parpadean los semáforos SN y OE, en SN parpadea la luz roja y en OE parpadea la luz amarilla.
                           if (modoParpadeo = '1') then
                                         case(conteo) is -- Alternativa con case
                                                                                                             semOE<=parpadeo;
                                                      when "00000" => semSN<=parpadeo;
when "00001" => semSN<=rojo;</pre>
                                                                                                                                         --segundo 0.
                                                                                                                                         --segundo 1.
                                                                                                             semOE<=amarillo;
                                                      when "00010" => semSN<=parpadeo;
when "00011" => semSN<=rojo;</pre>
                                                                                                             semOE<=parpadeo;
                                                                                                                                         --segundo 2.
                                                                                                                                        --segundo 3.
                                                       when "00110" => semSN<=rojo;
when "00110" => semSN<=parpadeo;
when "00110" => semSN<=rojo;
when "00110" => semSN<=parpadeo.</pre>
                                                                                                             semOE<=amarillo;
                                                                                                             semOE<=parpadeo;
                                                                                                                                         --segundo 4.
                                                                                                             semOE<=amarillo;
                                                                                                                                         --segundo 5.
                                                                                                             semOE<=parpadeo;
                                                                                                                                         --segundo 6.
                                                       when "00111" => semSN<=rojo;
                                                                                                              semOE<=amarillo;
                                                       when "01000" => semSN<=parpadeo;</pre>
                                                                                                             semOE<=parpadeo;
                                                                                                                                         --segundo 8.
                                                       when "01001" => semSN<=rojo;
when "01010" => semSN<=parpadeo;</pre>
                                                                                                             semOE<=amarillo;
                                                                                                                                         --segundo 9
                                                                                                             semOE<=parpadeo:
                                                                                                                                         --segundo 10.
                                                       when "01011" => semSN<=rojo;
                                                                                                             semOE<=amarillo;
                                                                                                                                         --segundo 11.
                                                       when "01100" => semSN<=parpadeo;</pre>
                                                                                                             semOE<=parpadeo;
                                                                                                                                         --segundo 12.
                                                       when "01101" => semSN<=rojo;
                                                                                                             semOE<=amarillo;
                                                                                                                                         --segundo 13.
                                                                                                             semOE<=parpadeo;
                                                       when "01110" => semSN<=parpadeo;</pre>
                                                                                                                                         --segundo 14.
                                                       when "01111" => semSN<=rojo;
                                                                                                                                         --segundo 15.
                                                                                                             semOE<=amarillo;
                                                       when "10000" => semSN<=parpadeo;</pre>
                                                                                                             semOE<=parpadeo;
                                                                                                                                         --segundo 16.
```

```
when "10001" => semSN<=roio:
                                                                                                    semOE<=amarillo:
                                                                                                                             --segundo 17.
                                                  when "10001" -> semSN<-10J0,
when "10010" -> semSN<-parpadeo;
when "10011" -> semSN<-rojo;</pre>
                                                                                                    semOE<=parpadeo;
                                                                                                                              --segundo 18.
                                                                                                    semOE<=amarillo;
                                                                                                                              --segundo 19.
                                                  when others => semSN<=parpadeo;</pre>
                                                                                                                               -otros, reinicio del conteo.
                                                                                                    semOE<=parpadeo;
                         --Si el switch modoParpadeo esta activado, se enciende el modo Nocturno, donde 10s se muestra --la luz roja, 7s se muestra la verde con 3 parpadeos antes del amarillo y 3s se muestra la luz --amarilla, estas secuencias están entrelazadas en los dos semáforos SN y OE, dando en total
                         --una secuencia de 20s.
                         else
                                     case (conteo) is -- Alternativa con case
                                                  when "00000" => semSN<=rojo;
when "00001" => semSN<=rojo;</pre>
                                                                                                     semOE<=verde;
                                                                                                                        --segundo 0: Empieza el rojo en NS.
                                                                                                     semOE<=parpadeo; -- segundo 1
                                                         "00010" => semSN<=rojo;
                                                                                                     semOE<=verde;
                                                         "00011" => semSN<=rojo;
                                                                                                    semOE<=parpadeo; --segundo 3.
                                                  when
                                                         "00100" => semSN<=rojo;
                                                                                                    semOE<=verde;
                                                                                                                          --segundo 4.
                                                  when
                                                         "00101" => semSN<=rojo;
                                                  when
                                                                                                     semOE<=parpadeo; --segundo 5.
                                                         "00110" => semSN<=rojo;
                                                  when
                                                                                                    semOE<=verde;
                                                                                                                          --segundo 6.
                                                  when "00111" => semSN<=rojo;
                                                                                                     semOE<=amarillo; --segundo 7.
                                                  when "01000" => semSN<=rojo;
                                                                                                    semOE<=amarillo: --segundo 8.
                                                         "01001" => semSN<=rojo;
                                                                                                     semOE<=amarillo; --segundo 9.
                                                  when "01010" => semSN<=verde;
                                                                                                     semOE<=roio;
                                                                                                                          --segundo 10: Empieza verde en NS.
                                                   when
                                                         "01011" => semSN<=parpadeo;
                                                                                                    semOE<=rojo;
                                                                                                                          --segundo 11: Empieza parpadeo NS.
                                                  when "01100" => semSN<=verde;
                                                                                                     semOE<=roio;
                                                                                                                          --segundo 12.
                                                   when
                                                         "01101" => semSN<=parpadeo;
                                                                                                    semOE<=rojo;
                                                                                                                          --segundo 13.
                                                   when "01110" => semSN<=verde;</pre>
                                                                                                    semOE<=rojo;
                                                                                                                          --segundo 14.
                                                         "01111" => semSN<=parpadeo;
                                                  when
                                                                                                     semOE<=roio:
                                                                                                                          --segundo 15.
                                                         "10000" => semSN<=verde;
                                                                                                     semOE<=rojo;
                                                                                                                           --segundo 16.
                                                         "10001" => semSN<=amarillo;
                                                  when
                                                                                                     semOE<=rojo;
                                                                                                                          --segundo 17: Empieza amarillo NS.
                                                         "10010" => semSN<=amarillo;
                                                   when
                                                                                                    semOE<=rojo;
                                                                                                                          --segundo 18.
                                                   when "10011" => semSN<=amarillo;</pre>
                                                                                                     semOE<=rojo;
                                                                                                                          --segundo 19.
                                                  when others => semSN<=parpadeo;</pre>
                                                                                                    semOE<=rojo;
                                                                                                                           --otros, reinicio del conteo.
                         end if:
             end process asignacion:
end Rehavioral:
Módulo TLD:
--4.-TLD (Top Level Design) Semáforo: En el programa se describen dos secuencias simples de un semáforo para el control
--de un crucero que tiene dos sentidos, de Sur a Norte SN (abajo hacia arriba) y de Oeste a Este OE (derecha a --izquierda), en cada secuencia se tienen los siguientes tiempos, donde además se tiene que tomar en cuenta que
--cuando el semáforo SN se encuentre con la luz verde o amarilla encendida, el semáforo OE debe estar en rojo y
--viceversa:
                         - Secuencia 1 (modo normal): 10s se muestra la luz roja, 7s se muestra la verde con 3 parpadeos antes del
                           amarillo y 3s se muestra la luz amarilla, estas secuencias están entrelazadas en los dos semáforos SN y OE, dando en total una secuencia de 20s.
                         - Secuencia 2 (modo nocturno): En esta secuencia simplemente se pone a parpadear la luz roja en el semáforo SN
                           y la amarilla en el semáforo OE.
--El tiempo total que abarcan ambas secuencias no es de 10 + 7 + 3 + 3 = 23 s aunque así parezca, ya que los tiempos de
--encendido y apagado de los focos rojo, amarillo y verde están entrelazados en los dos semáforos.
use IEEE.STD LOGIC 1164.ALL;
--Entidad: Las entradas y salidas en este módulo son las que van a entrar y salir del diagrama de bloques global.
entity manejoDeTiemposSemaforoTLD is
    Port ( Reset : in STD_LOGIC;
clkNexys2 : in STD_LOGIC;
modoNocturno : in STD_LOGIC;
semaforoSurNorte : out STD_LOGIC VECTOR (2 downto 0);
semaforoOesteEste : out STD_LOGIC_VECTOR (2 downto 0));
end manejoDeTiemposSemaforoTLD;
architecture Behavioral of manejoDeTiemposSemaforoTLD is
  Conexiones internas del diseño TLD. gnal reloj : STD LOGIC;
signal reloj :
signal controlSecuencia : STD_LOGIC_VECTOR (4 downto 0);
begin
            --INSTANCIAS:
            --Debo darle un nombre a cada instancia que cree, indicar el nombre de la entidad del módulo que quiero instanciar,
--usar la palabra reservada port map(); y dentro de su paréntesis asignarle a todas las entradas y salidas del
--módulo instanciado una entrada, salida o signal de este módulo separadas por comas una de la otra, esto hará que
            --lo que entre o salga del otro módulo, entre, salga o se guarde en este.
--La sintaxis que debemos usar es la siguiente:
             --NombreInstancia
                                                                           entity work. Entidad Del Modulo Oue Oueremos Instanciar
                                                                                                                                                       port map (
                                     Entrada_Del_Modulo_Instanciado => Entrada_En_Este_Modulo,
            --
                                     Salida_Del_Modulo_Instanciado => Salida_En_Este_Modulo,
                                     Entrada_Del_Modulo_Instanciado => Salida_En_Este_Modulo,
Salida Del Modulo Instanciado => Entrada En Este Modulo,
                                     Entrada_Del_Modulo_Instanciado => Signal_En_Este_Modulo,
Salida_Del_Modulo_Instanciado => Signal_En_Este_Modulo
            --):
            --INSTANCIA DEL MODULO divisorDeReloj para obtener la frecuencia en la que quiero que se cree el contador/selector. frecuenciaReloj : entity work.divisorDeReloj port map(
                                     relojNexys2 => clkNexys2
                                      --La entrada relojNexys2 del divisorDeReloj se asigna a la entrada clkNexys2 de este módulo.
                                      --La entrada rst del divisorDeReloj se asigna a la entrada Reset de este módulo.
```

```
salidaReloi => reloi
                                       -La salida salidaReloj del divisorDeReloj se asigna a la signal reloj de este módulo.
              -INSTANCIA DEL MODULO contadorTiempo para obtener el conteo que controla la secuencia del semáforo.
            contadorSecuencia: entity work.contadorTiempo port map(
frecuenciaReloj => reloj,
--A la entrada frecuenciaReloj del contadorSelector se le asigna el valor de la signal reloj.
                                     Contador => controlSecuencia,
                                       --La salida contador del contadorTiempo se asigna a la signal controlSecuencia de este módulo.
                                     reiniciar => Reset
                                      --La entrada rst del divisorDeReloj se asigna a la entrada Reset de este módulo.
             --INSTANCIA DEL MODULO secuenciaSemaforo para recibir el contador e iniciar la secuencia del semaforo.
            controlSemaforo : entity work.secuenciaSemaforo port map(
                                     conteo => controlSecuencia,
                                       --A la entrada conteo de secuenciaSemaforo se le asigna el valor de la signal controlSecuencia.
                                     modoParpadeo => modoNocturno,
                                      --La entrada modoParpadeo de secuenciaSemaforo se asigna a la entrada modoNocturno de este módulo.
                                     semSN => semaforoSurNorte,
                                      --La salida semNS de secuenciaSemaforo se asigna a la salida semaforoNorteSur de este módulo.
                                     semOE => semaforoOesteEste
                                      --La salida semEO de secuenciaSemaforo se asigna a la salida semaforoNorteSur de este módulo.
                         );
end Behavioral:
Código UCF:
//ENTRADAS DEL DIAGRAMA TLD:
net "Reset" loc = "R17";
net "clkNexys2" loc = "B8";
                                                  // Reset para el reloj BTN3.
// Reloj de 50MHz.
net "modoNocturno" loc = "G18";
                                                  // Activación del modo nocturno SWO.
//SALIDAS DEL DIAGRAMA TLD:
//Salidas Del Diagrama 12D.
//Semaforo Sur Norte.
net "semaforoSurNorte[2]" loc = "R4"; // LD7 semáforo NS luz verde.
net "semaforoSurNorte[1]" loc = "F4"; // LD6 semáforo NS luz amarilla.
net "semaforoSurNorte[0]" loc = "P15"; // LD5 semáforo NS luz roja.
net "semaforoOesteEste[2]" loc = "K15"; // LD2 semáforo EO luz verde.
net "semaforoOesteEste[1]" loc = "J15"; // LD1 semáforo EO luz amarilla.
net "semaforoOesteEste[0]" loc = "J14"; // LD0 semáforo EO luz roja.
```

Simulación Secuencia Semáforo:

