

deeplearning.ai

Unpaired Image-to-Image Translation

Outline

- Paired vs. unpaired image-to-image translation
- Unpaired image-to-image translation
 - Mapping between two piles of image styles
 - Finding commonalities and differences

Edges to photo

Paired images

Edges to photo

Paired images

Monet to photo

Unpaired images

Unpaired Image-to-Image Translation

Mapping Between Two Piles

(Center) Images available from: https://arxiv.org/abs/1703.10593 (Side) Images available from: https://github.com/togheppi/CycleGAN

Mapping Between Two Piles

(Center) Images available from: https://arxiv.org/abs/1703.10593 (Sides) Images available from: https://github.com/togheppi/CycleGAN

Mapping Between Two Piles

(Center) Images available from: https://arxiv.org/abs/1703.10593 (Sides) Images available from: https://github.com/togheppi/CycleGAN

Summary

- Unpaired image-to-image translation:
 - Learns a mapping between two piles of images
 - Examines common elements of the two piles (content) and unique elements of each pile (style)
- Unlike paired image-to-image translation, this method is unsupervised

deeplearning.ai

CycleGAN Overview

Outline

- Overview of CycleGAN
 - The "Cycle" in CycleGAN
 - o Two GANs!

Real

Fake

Two GANs

Two GANs

Two GANs

CycleGAN

Generator ≈ U-Net

CycleGAN

Generator ≈ U-Net + DCGAN generator

CycleGAN

Additional skip connections

Generator ≈ U-Net + DCGAN generator

Summary

- CycleGAN uses two GANs for unpaired image-to-image translation
- The discriminators are PatchGAN's
- The generators are similar to a U-Net and DCGAN generator with additional skip connections

deeplearning.ai

CycleGAN: Two GANs

Outline

- Two GANs, four components
 - Two generators
 - Two discriminators

Generator $Z \rightarrow H$ Discriminator H $GANZ \rightarrow H$ $\mathsf{GAN}\,\mathsf{H}\to\mathsf{Z}$ Generator $H \rightarrow Z$ Discriminator Z

Summary

- CycleGAN has four components:
 - Two generators
 - Two discriminators
- The inputs to the generators and discriminators are similar to Pix2Pix, except:
 - There are no real target outputs
 - Each discriminator is in charge of one pile of images

deeplearning.ai

CycleGAN: Cycle Cycle Consistency

Outline

- Encouraging cycle consistency
 - Cycle Consistency Loss term
- Loss with cycle consistency for each of two GANs
- How cycle consistency helps

Cycle Consistency Loss is the sum of both directions

Adversarial Loss +

Adversarial Loss + Cycle Consistency Loss

Adversarial Loss + λ * Cycle Consistency Loss

Without Adversarial GAN Loss, outputs are not realistic

Ground truth Input

Without Cycle Consistency Loss, outputs show signs of mode collapse

Input

Ground truth GANs + 1-way cycle

Without **full** Cycle Consistency Loss, outputs see mode collapse too

Ground truth Input

CycleGAN uses both
Adversarial Loss and
Cycle Consistency Loss

Summary

- Cycle consistency helps transfer uncommon style elements between the two GANs, while maintaining common content
- Add an extra loss term to each generator to softly encourage cycle consistency
- Cycle consistency is used in both directions

deeplearning.ai

CycleGAN: Least Squares Loss

Outline

- Least squares in statistics
- Least Squares Loss in GANs
 - Discriminator
 - Generator

Least Squares Loss: Another GAN Loss Function

- Came out when training stability was a big problem in GANS
 - Similar time to WGAN-GP

Least Squares Loss: Another GAN Loss Function

- Came out when training stability was a big problem in GANS
 - Similar time to WGAN-GP
- Helps with vanishing gradients and mode collapse

Least Squares Loss: Another GAN Loss Function

- Came out when training stability was a big problem in GANS
 - Similar time to WGAN-GP
- Helps with vanishing gradients and mode collapse

GAN loss functions are chosen empirically

Minimize sum of squares

$$(D(\boldsymbol{x})-1)^2$$

Discriminator classification of real image x

$$\mathbb{E}_{m{x}}ig[(D(m{x})-1)^2ig]$$

$$\mathbb{E}_{oldsymbol{x}}ig[(D(oldsymbol{x})-1)^2ig]+ (D(G(oldsymbol{z}))-0)^2$$

Discriminator classification of fake image G(z)

$$\mathbb{E}_{oldsymbol{x}}igl[(D(oldsymbol{x})-1)^2igr]+\mathbb{E}_{oldsymbol{z}}igl[(D(G(oldsymbol{z}))-oldsymbol{0})^2igr]$$

Least Squares Loss: Discriminator

$$\mathbb{E}_{oldsymbol{x}}ig[(D(oldsymbol{x})-1)^2ig]+\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z})))^2ig]$$

Least Squares Loss: Generator

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Discriminator Loss
$$\mathbb{E}_{m{x}}ig[(D(m{x})-1)^2ig]+\mathbb{E}_{m{z}}ig[(D(G(m{z})))^2ig]$$

Discriminator Loss
$$\mathbb{E}_{m{x}}ig[(D(m{x})-1)^2ig]+\mathbb{E}_{m{z}}ig[(D(G(m{z})))^2ig]$$

Generator

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Discriminator Loss

$$\mathbb{E}_{oldsymbol{x}}ig[(D(oldsymbol{x})-1)^2ig]+\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z})))^2ig]$$

Generator Loss

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Reduces vanishing gradient problem

Discriminator Loss

$$\mathbb{E}_{oldsymbol{x}}ig[(D(oldsymbol{x})-1)^2ig]+\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z})))^2ig]$$

Generator Loss

$$\mathbb{E}_{oldsymbol{z}}ig[(D(G(oldsymbol{z}))-1)^2ig]$$

Also known as Mean Squared Error!

Context of Least Squares Loss

Adversarial Loss + λ * Cycle Consistency Loss

Least Squares Loss

Summary

- Least squares fits a line from several points
- Least Squares Loss is used as the Adversarial Loss function in CycleGAN
- More stable than BCELoss, since the gradient is only flat when prediction is exactly correct

CycleGAN: Identity Loss

Outline

- Identity Loss
 - How it works
 - Impact on outputs

Adversarial Loss + λ * Cycle Consistency Loss

Adversarial Loss + λ * Cycle Consistency Loss

Adversarial Loss + λ * Cycle Consistency Loss

+ Identity Loss

Adversarial Loss + λ_1^* Cycle Consistency Loss

+ λ_2^* Identity Loss

Identity Loss Example: Photo → Monet

Identity Loss helps preserve original photo color

Available from: https://arxiv.org/abs/1703.10593

Summary

- Identity Loss takes a real image in domain B and inputs it into Generator:
 A → B, expecting an identity mapping
 - An identity mapping means the output is the same as the input
- Pixel distance is used
 - Ideally, no difference between input and output!
- Identity Loss is optionally added to help with color preservation

deeplearning.ai

CycleGAN: Putting It All Together

Outline

- Putting CycleGAN together!
 - Two GANs
 - Cycle Consistency Loss
 - Least Squares Adversarial Loss
 - Identity Loss (optional)

CycleGAN Loss

Summary

- CycleGAN is composed of two GANs
- Generators have 6 loss terms in total, 3 each:
 - Least Squares Adversarial Loss
 - Cycle Consistency Loss
 - Identity Loss
- Discriminator is simpler, with BCELoss using PatchGAN

deeplearning.ai

CycleGAN Applications & Variants

Outline

- Overview of some CycleGAN applications
- Some variants of unpaired image-to-image translation

Applications

Applications

Flair Real T1 Transformed T1 Real

(a) A translation removing tumors

(b) A translation adding tumors

Available from: https://arxiv.org/abs/1805.08841

Applications

Available from: https://www.nature.com/articles/s41598-019-52737-x.pdf

Variant: UNIT

Available from: https://github.com/mingyuliutw/UNIT

Variant: Multimodal UNIT (MUNIT)

Available from: https://github.com/NVlabs/MUNIT

Variant: Multimodal UNIT (MUNIT)

Available from: https://github.com/NVlabs/MUNIT

Summary

- Various applications of CycleGAN including:
 - Democratized art and style transfer
 - Medical data augmentation
 - Creating paired data
- UNIT and MUNIT are other models for unpaired (unsupervised) image-to-image translation

