Access Control

#access_control/access_matrix #access_control/protection_system
#access_control/protection_state #access_control/privilege_attenuation

Authorization and Authentication

- authentication verifying someone or something's identity
- authorization deciding whether a subject can perform a requested operation on an object
- authentication is performed for authorization

Protection System

- protection system manages the access control policy for a system
 - a security goal
 - represents protection state and its operations
 - describes what operations each subject can perform on each object
- access matrix a way to represent policy
 - frequently used mechanism for describing policy
 - columns represent set of objects O
 - rows represent set of subjects S within the access matrix A
 - find the appropriate entry to determine if a specific subject has the right to access a specific object
 - succinct descriptor for $\theta(|S||O|)$ entries example

	File 1	File 2	Process 1	Process 2
Process 1	read, write, own	read	read, write, execute, own	write
Process 2	append	read, own	read	read, write, execute, own

- $S = \{Process1, Process2\}$
- O = {File1, File2, Process1, Process2}
- $R = \{ \text{read, write, execute, own, append} \}$

Protection States

- protection state represented by current state of access matrix
- protection state operations modifies protection states
 - some example operations
 - can create subjects and objects
 - owner can add a subject and operation mapping for their objects
 - can delegate authority to perform operations
- protection state transition signifies a change in the protection state

Privilege Attenuation

- access control systems often provide two special rights copy right and own right
- copy right (grant right) allows processor to grant rights to another
 - only the rights that the grantor possesses can be copied
 - copier must surrender the right or pass it along depending on the system
- own right gives special privileges in many systems to add and delete rights for other users and the owner
 - owner is usually the subject that created the object or to which the creator gave ownership
- principle of attenuation of privilege a subject may not give rights it does not possess to another
 - but, owners can give other subjects rights that it does not have
 - how?

Inadequate Usage

- protection system approach is inadequate for certain applications
- example take a media player
 - able to access any web object with no labeling
 - essentially creating a new file in the protection state with default rights for that user
 - runs as the user, so it is able to do anything that a user can
 - can access root processes if the user is able to
 - therefore the root processes are not confined and any can break the system
- goal is to define and enforce a security policy that ensures security goals to be able to prevent such attacks
 - problem is
 - how do we know that the policy expresses effective goals?

- how should this policy be represented and managed?
- how do we know the enforcement mechanism will enforce the policy correctly?