Эффективная реализация сопрограмм в управляемой среде исполнения

Евгений Пантелеев

Новосибирский государственный университет

Научный руководитель: Бульонков Михаил Алексеевич, канд. физ-мат наук ИСИ СО РАН

> Новосибирск 2021г.

Сопрограммы

- Сопрограмма (англ. coroutine) программный модуль, организованный для обеспечения взаимодействия с другими модулями по принципу кооперативной многозадачности.
- Сопрограммы способны приостанавливать свое выполнение, сохраняя контекст (программный стек и регистры), и передавать управление другой.

- Обработка множества независимых событий.
- ▶ Организация асинхронного ввода/вывода.

Ключевые отличия от потоков ОС

- Переключение контекста сопрограммы требует меньше накладных расходов, чем потока.
- Как правило меньший размер стека, а значит, потребление памяти так же меньше.

Поддержка в языках программирования

В языке Java сопрограммы не реализованы.

Project Loom Fibers and Continuations

- ▶ Project Loom проект на базе OpenJDK, целью которого является разработка сопрограмм для языка Java.
- На данный момент уже доступна ранняя версия проекта.

Цели и задачи

Цель: реализация прототипа сопрограмм в Java.

Поставленные задачи:

- Разработать тесты для сравнения производительности потоков и сопрограмм.
- Реализовать переключение сопрограмм.
- Реализовать трассировку ссылок объектов на стеках сопрограмм для сборки мусора.
- Сравнить производительность сопрограмм и потоков.

Работа проводится на базе Huawei JDK.

Тесты производительности

Был создан набор тестов производительности сопрограмм для языков Go, Java (с "Loom Project").

Тесты создавались для измерения 2 параметров.

- Скорость переключения контекста.
- Потребление памяти.

Репозиторий с тестами: https://github.com/minium2/coroutines-benchmark

Переключение сопрограмм

Подходы к реализации:

- OpenJDK(Проект "Loom"): копирование стека сопрограммы при переключении.
- Go и HuaweiJDK: изменение указателя стека.

Трассировка стеков

- Для работы сборщика мусора необходимо хранить адрес начала и конца стека каждой сопрограммы.
- При сборке мусора сканируются все стеки сопрограмм для поиска корневого множества живых объектов.

Измерение скорости переключения сопрограмм в управляемых средах

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям.

Шт.		łисло переключений, тыс./сек.	
ШIII. Hu	HuaweiJDK	OpenJDK("Loom Project")	Go
100	1956 \pm 38	1900 \pm 20	$\textit{18187} \pm \textit{219}$
1 000	1829 \pm 12	1775 \pm 20	$\textit{17934} \pm \textit{332}$
5 000	1 578 ± 39	1 703 ± 30	$\textbf{12892} \pm \textbf{339}$
10 000	1 316 ± 20	1924 \pm 235	8 307 ± 80
20 000	1226 ± 8	1 863 ± 217	7045 ± 72
30 000	1068 ± 7	1772 \pm 182	6 391 ± 94
40 000	928 ± 7	1 606 \pm 194	$\textit{5790} \pm \textit{67}$
50 000	881 ± 5	1 503 ± 157	5 292 ± 122

Функции для переключения контекста

▶ Первый прототип использовал функции для переключения контекста getcontext/setcontext из glibc.

Функции для переключения	Число переключений, дол. ед.
Из библиотеки Си tbox	7.8
Boost.Context	2.2
getcontext/setcontext us glibc	1

Измерение скорости переключения сопрограмм в HuaweiJDK с новыми функциями переключения контекста

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям. Для измерения используется только одно ядро ЦП.

Шт.	Число переключений, тыс./сек.		
штт.	getcontext/setcontext	Новые функции	
100	1956 \pm 38	$\textit{12980} \pm \textit{540}$	
1 000	1829 \pm 12	11 420 ± 694	
5 000	1 578 \pm 39	5 875 ± 183	
10 000	1 316 \pm 20	4 459 ± 162	
20 000	1226 \pm 8	3 604 ± 93	
30 000	1068 ± 7	3 031 ± 94	
40 000	928 ± 7	2 653 ± 87	
50 000	881 ± 5	2315 ± 60	

Измерение скорости переключения потоков и сопрограмм

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK Каждое значение усреднено по 100 измерениям. Для измерения используется только одно ядро ЦП.

Шт.	Число переключений, тыс./сек.		
шт.	Сопрограммы	Потоки	
100	$\textit{12980} \pm \textit{540}$	2306 ± 50	
1 000	11 420 \pm 694	$\textit{2300} \pm \textit{27}$	
5 000	5875 ± 183	1 554 \pm 37	
10 000	4 459 ± 162	1016 \pm 29	
20 000	3604 ± 93	753 ± 28	
30 000	3031 ± 94	556 ± 16	
40 000	$\textbf{2653} \pm \textbf{87}$	436 ± 12	
50 000	2315 ± 60	361 ± 8	

Измерение потребление памяти сопрограмм в управляемых средах

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ

Шт.	Резидентная память		
шт.	HuaweiJDK	OpenJDK	Go
100	18 Mб	130 Мб	3,04 Мб
1000	22 Мб	161 Mб	3,105 Мб
5000	32 Mб	187 Мб	3,156 Mб
10000	37 Мб	193 Мб	3,308 Mб
20000	45 Mб	196 Mб	3,320 Mб
30000	49 Mб	197 Мб	3,350 Mб
40000	51 M6	200 Мб	3,390 Mб
50000	57 Mб	202 Мб	3,407 Мб

Измерение потребление памяти потоков

Ubuntu, Intel Core i7-8700, 31 Гб ОЗУ, HuaweiJDK

Шт.	Размер физической памяти		
шт.	Сопрограммы	Потоки	
100	18 Мб	34 Мб	
1000	22 Мб	35 Мб	
5000	32 Мб	37 Мб	
10000	37 Мб	40 Mб	
20000	45 Мб	49 Mб	
30000	49 Мб	56 Мб	
40000	51 Мб	63 Мб	
50000	57 Мб	72 Мб	

План дальнейших работ

- ► Поддержка synchronized блоков.
- Переключение сопрограммы при вызове ввода вывода.

Выводы

- Создан набор тестов для сравнения производительности потоков и сопрограмм.
- Реализовано переключение контекста сопрограмм.
- Разработана трассировка ссылок объектов на стеках сопрограмм.
- Оптимизировано переключение контекста сопрограмм.
- Проведено сравнение результаты тестов производительности.