Discrete Mathematics and Mathematical Logic I

Grado en Ingeniería Informática (UCM)

Homework 1 September 2020

Exercises on logic and proof methods

1 Training exercises

Exercise 1 Determine whether these implications are true or false:

- 1. If 1 + 1 = 2, then 2 + 2 = 5.
- 2. If 1 + 1 = 3, then 2 + 2 = 4.
- 3. If 1 + 1 = 3, then 2 + 2 = 5.
- 4. If 1 + 1 = 3, then God exists.

Exercise 2 Prove that if the universe of discourse U is $\{a_1, \dots, a_n\}$, the following propositions are equivalent:

- 1. $\forall x P(x)$ and $P(a_1) \land ... \land P(a_n)$.
- 2. $\exists x P(x)$ and $P(a_1) \lor ... \lor P(a_n)$.

Exercise 3 Determine whether $\forall x (P(x) \to Q(x))$ and $\forall x P(x) \to \forall x Q(x)$ have the same truth value. If P(x) stands for "x lives in the ocean", Q(x) for "x is a fish" and the universe for x consists of all animals, what is the meaning of those assertions in English?

Exercise 4 Study whether the proposition $\forall x(x+2 < x)$ is true when the universe is \mathbb{R} and when the universe consists of the real solutions to the equation $(x^2 + 2)^2 = 1$.

Exercise 5 Study whether the proposition $\exists x(x+2>x)$ is true when the universe is \mathbb{R} and when the universe consists of the real solutions to the equation $(x^2+2)^2=1$.

Exercise 6 Study whether the following propositions are true or false when the universe is \mathbb{R} ; in case they are false, show a counterexample.

- 1. $\forall x \forall y (x^2 = y^2 \rightarrow x = y)$.
- 2. $\forall x \exists y (y^2 = x)$.
- 3. $\forall x \forall y (xy \ge x)$.

Exercise 7 Prove that the following assertions are true:

- 1. For all integers *a* and *b*, if both are odd then so is *ab*.
- 2. There exist two integers a and b such that ab = 60 and a + b < 20.

Exercise 8 Prove by cases that max(x, y) + min(x, y) = x + y, where x, y are real numbers.

2 Additional exercises

Exercise 1 Prove that if 17n + 2 is odd then n is odd.

Exercise 2 Prove that $\neg \exists x Q(x)$ is equivalent to $\forall x \neg Q(x)$.

Exercise 3 Prove or provide a counterexample:

- 1. If *c* and *d* are perfect squares, then *cd* is a perfect square.
- 2. If cd is a perfect square and $c \neq d$, then c and d are perfect squares.

Exercise 4 Prove by contradiction that if m and n are integers such that $n + n^2 + n^3 = m + m^2$, then n is even.