1 Definition: Transition System

A **planning task** is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$

A transition system is a 6-tuple $T = \langle S, L, c, T, s_0, S^* \rangle$ where:

- S: finite set of states
- . L: finite set of transition labels
- $c: L \mapsto \mathbb{R}^+$: label cost function
- $T \subseteq S \times L \times S$: transition relation
- s₀ ∈ S: initial state
- S^{*} ⊆ S: set of goal states

1.1 Forms and Properties

1.1.1 Heuristics

- Admissable: $h(s) < h^*(s)$
- Consistent: $h(s) \le c(s, s') + h(s')$
- Goal aware: $h(s \in S^*) = 0$
- Safe: $h(s) = \infty \rightarrow h^*(s) = \infty$

1.1.2 Task forms and Misc.

- · Positive normal form: All ops and goal are positive and flat
- o is positive if pre(o) and eff(o) are positive
- ▶ A logical proposition is positive if ¬ doesn't appear (including \leftarrow and \leftrightarrow
- o is flat, if eff(o) is flat (i.e. contains only atomics or (x ▷ y))
- STRIPS: If all ops are STRIPS and goal follows: $\bigwedge_{v \in V} v$
- o is STRIPS if pre(o) follows same form, and eff(o) is atomic
- i-g Form: STRIPS form. $\{i, g\} \subseteq V$. $I := \{i\}$. $\gamma \coloneqq \{g\}. \ \forall (o \in O)(|\operatorname{pre}(o)| > 0)$
- · Any task can be made i-g form trivially, if already STRIPS.
- Algorithm is sound → plans are correct, and "unsolveable" answer is correct.

1.2 On-Set and Dominating states

- The on-set is the set of propositional variables that are true in a interpretation.
- Domainiting interpretations for $on(s) \subseteq on(s'), s, s' \in S$

1.3 Complexity

- $P \subseteq NP \subseteq PSPACE = NPSPACE$
- (PlanEx)istance < (B)ounded (C)ost PlanEx
- (PlanEx)istance ∈ PSPACE
- · True for both optimal and satisfycing

 φ satisfiable iff $\exists I: I \models \varphi$ φ valid iff $\forall I : I \models \varphi$ $\varphi \models \psi \text{ iff } \forall I : I \models \varphi \rightarrow I \models \psi$

 $\varphi \equiv \psi \text{ iff } \varphi \models \psi \wedge \psi \models \varphi$

Let $\varphi=\varphi_1\wedge\ldots\wedge\varphi_n$ be a conjunction of atoms, and o's add effects $T_{V(O)}=\bigvee_{o\in O}t_{V(o)}$ be $\{a_1,...,a_k\}$, and delete effects $\{d_1,...,d_l\}$

 $\operatorname{sregr}(\varphi,o) := \left\{ \begin{smallmatrix} \bot \text{ if } \exists (i,j)\varphi_i = d_j \\ \operatorname{pre}(o) \land (\{\varphi_1, \ldots, \varphi_n\}/\{a_1, \ldots, a_k\}) \text{ otherwise} \end{smallmatrix} \right.$

Algorithm 1: SAT Planning

procedure satplan("Pi") for T in {0, 1, 2, ...} do $\varphi \leftarrow \text{build sat formula}(\Pi, T)$ $I \leftarrow \text{sat_solver}(\varphi)$ if I != none then $\textbf{return} \; \text{extract_plan}(\Pi, T, I)$ end

- oⁱ_i (operator chosen at step i)
- $o_1^i \vee ... \vee o_n^i$ for 1 < i < T
- $\neg o_i^i \lor \neg o_k^i$ for $1 \le i \le T$, $1 \le j < k \le n$ (at most one operator
- This is equal to ¬(oⁱ_i ∧ oⁱ_k)

Precondition:

• $\neg o^i \lor \operatorname{pre}(o)^{i-1}$ for $1 \le i \le T$, $o \in O$

Positive/Negative Effects Clauses:

- ¬αⁱ ∨ ¬αⁱ⁻¹ ∨ vⁱ
- $\neg \alpha^i \lor \alpha^{i-1} \lor \neg \delta^{i-1} \lor \neg v^i$

Positive/Negative Frame Clauses:

- ¬oⁱ ∨ ¬vⁱ⁻¹ ∨ δⁱ⁻¹ ∨ vⁱ
- $\neg o^i \lor \alpha^{i-1} \lor v^{i-1} \lor \neg v^i$

where $\alpha = \text{effcond}(v, \text{eff}(o)) \delta = \text{effcond}(\neg v, \text{eff}(o))$

	Hash table	Formula	BDD
s ∈ S?	O(k)	0(5)	O(k)
$S := S \cup \{s\}$	O(k)	O(k)	O(k)
$S := S \setminus \{s\}$	O(k)	O(k)	O(k)
S∪S'	O(k S + k S')	0(1)	0(s s')
s ∩ s'	O(k S + k S')	0(1)	0(s s')
s \ s'	O(k S + k S')	0(1)	0(s s')
s `	O(k2 ^k)	0(1)	0(s)
$\{s \mid s(v) = T\}$	O(k2k)	0(1)	0(1)
S = Ø?	0(1)	co-NP-complete	0(1)
S = S'?	O(k S)	co-NP-complete	0(1)
S	0(1)	#P-complete	0(s)

6 BDD Operators

6.1 Conditioning

Conditioning variable v in formula φ to T or F:

- $\varphi\left[\frac{T}{v}\right]$ or $\varphi\left[\frac{F}{v}\right]$: restrict v to a given value
- Time: O(|φ|)

6.2 Forgetting

Forgetting (existential abstraction): allow both v=T and v=Fand eliminate v.

- On formulas: $\exists v\varphi = \varphi\left[\frac{T}{v}\right] \vee \varphi\left[\frac{F}{v}\right]$
- On sets: $\exists vS = S\left[\frac{T}{v}\right] \cup S\left[\frac{F}{v}\right]$
- Time: O(|φ|)

6.3 Renaming

Renaming X to Y in formula φ , written $\varphi[X \to Y]$: replace all Xby Y in φ (Y not present in φ).

Time: O(|φ|)

7 BDD Transitions

7.1 Transition BDD

$$T_{V(O)} = \bigvee\nolimits_{o \in O} t_{V(o)}$$

 $t_{V(O)} = \text{pre}(o) \land \bigwedge_{v \in V} (\text{effcond}(v, e) \lor (v \land \neg \text{ effcond}(\neg v, e)) \leftrightarrow v')$

7.2 Apply

Algorithm 2: BDD Apply

1: **procedure** Apply(reached,
$$O$$
)
2: $B \leftarrow T_{V(O)}$
3: $B \leftarrow \text{bdd-intersection}(B, \text{reached})$
4: $\text{for } v \in V \text{ do}$
5: $B \leftarrow \text{bdd-forget}(B, v)$
6: end
7: $\text{for } v \in V \text{ do}$
8: $B \leftarrow \text{bdd-rename}(B, v', v)$
9: end
10: $\text{return } B$

By then taking the union of the out and the previous reached, you get the reached for the following timestep.

8 Relaxed Task Graph (RTG)

```
o_1 = \langle c \lor (a \land b), c \land ((c \land d) \triangleright e), 1 \rangle
o_2 = \langle \top, f, 2 \rangle
o_3 = \langle f, g, 1 \rangle
o_4 = \langle f, h, 1 \rangle
```


8.1 hmax & hadd

- $h^{\text{max}} \le h^+ \le h^{\text{FF}} \le h^{\text{add}}$
- $\bullet \ h^{\max(s)} = \infty \leftrightarrow h^{+(s)} = \infty \leftrightarrow h^{\mathrm{FF}(s)} = \infty \leftrightarrow h^{\mathrm{add}(s)} = \infty$
- h^{\max} and $h^{\text{add}} \rightarrow$ admissible and consistent
- h^+ and $h^{\rm FF}$ \to NOT admissible and consistent
- · All are safe and goal-aware.

Above, only nodes where h^{max} (left) and h^{add} (right) differ are recorded.

- h^{max} : Pick the max predecessor at AND node, and the min at OR
- h^{add}: Add the predecessors at AND node, and pick the min at OR
- Both can be computed efficently by expanding the minimum/ newest node that CAN be updated

8.2 h^{FF} and Best Achiever Graphs (G)

· BAG can be achieved by removing all incoming edges into a OR node, except the minimum cost one

best achievers for h^{add} ; modified goal $e \vee (g \wedge h)$

- $h^{\rm FF}$ can be achieved by adding all operators participating in the G^{add} for h^{add}
- G are also useful for analysis when h^{add} overapprox and when $h^{\rm max}$ under approx.

9 Invariant/Mutex/FDR

- Validating invariant is AS HARD as planning.
- · Mutex group is a set of variables where AT MOST one can be true
- · A Mutex cover is a set of mutex groups where each variable occurs in exactly one group
- · A mutex group is positive if it contains no negations of variables

9.1 Mutex-based Reformulation of Propositional

Given a conflict-free propositional planning task Π w/ positive mutex cover $\{G_1, ..., G_N\}$

- In all condition where variable $v \in G_i$ occurs, replace v with $v_G := v$
- In all effects e where variable v ∈ G_i occurs,
- Replace all atomic add effects v with $v_G \coloneqq v$
- Replace all atomic delete effects ¬v with:
- $-\left(v_{G_i} = v \land \neg \bigvee_{v' \in G_i \setminus \{v\}} \operatorname{effcond}(v', e)\right) \triangleright v_{G_i} := \operatorname{none}$
- Practically, this means, if v_G is being deleted AND IS NOT BEING SET TO ANOTHER VARIABLE, set it to none. This is keep it conflict-free.

The consistency condition $\mathrm{consist}(e)$ prohibits two simultaneous assignments to the same mutex group.

I.e. $\neg (\operatorname{effcond}(v := d, e) \land \operatorname{effcond}(v := d', e))$

9.2 SAS+

An operator of an FDR operator is a SAS+ operator if

- pre(o) is a satisfiable conjunction of atoms, and
- eff(o) is a conflict-free conjunction of atomic effects.

An FDR task is a SAS+ task if all operators are SAS+ and the goal is a satisfiable conjunction of atoms

10 Abstraction

- $s \in \gamma \rightarrow \alpha(s) \in \gamma_{\alpha}$
- $\langle s, o, s' \rangle \in \mathcal{T} \rightarrow \langle \alpha(s), o, \alpha(s') \rangle \in \mathcal{T}_{\alpha}$
- Abstraction are composable, i.e. $(\beta \circ \alpha)$ is a valid abstraction.
- · Abstraction are surjective.
- Abstraction uses coarsening/refinement terminology.
- $h^{\beta \circ \alpha} < h^{\alpha} < h^*$
- h^α is safe, goal-aware, admissible and consistent.

$h^{\alpha}(\{p \mapsto L, t_A \mapsto R, t_B \mapsto R\}) = 3$

10.1 Additivity

- Orthogonal α_1 & α_2 : If $\forall (t \in \mathcal{T})(\alpha_1(s) = \alpha_2(t)) \lor (\alpha_2(s) =$ $\alpha_2(t)$), where $t = \langle s, \ell, t \rangle$
- Affect α for ℓ , if $\langle \alpha(s), \ell, \alpha(t) \rangle$, where $\alpha(s) \neq \alpha(t)$
- · Also ortogonal if no label affects both abstractions.
- The sum of orthogonal h^{α} is safe, goal-aware, admissible and consistent

10.2 Projections & Pattern Databases

- A projection (π_P) is a special kind of abstraction
- π_P : S → S' is defined asπ_{P(s)} := s|_P (where s|_{P(n)} := s(v) for all v)
- . I.e. we condition a state on a single variable assignment.
- The heuristic induced by \(\pi_P\), we call a PDB heuristic (\(h^P\))
- Syntatic projections (Π|_P), gives the projected planning task, by practically, removing the variables in the projection, from $\langle P, I|_P, \{o|_P, o \in O\}, \gamma|_P \rangle$

10.3 PDB Lookup

- · PDBs are precomputed before search.
- · Is effective done via perfect hashing.
- $N_i := \prod_{i=1}^{i-1} |\text{dom}(v_i)|$
- PDB-index(s) := $\sum_{i=1}^{k} N_i \cdot s(v_i)$

11 Merge and Shrink

- ▶ 1) Project ∏ to atomic projection
- → 2) Merge two of the resulting transition systems (T|P)
- → 3) Shrink combined T' by abstracting more states
- 4) Pick the result as the first transition system and go to step (2)

Algorithm 3: Merge and Shrink

```
procedure Merge-and-Shrink(\Pi,B)
                     F \leftarrow F(\Pi)
                     while |F| > 1 do
                           "type" \leftarrow pick-merge-or-shrink(F)
                          if type = merge then
                               \mathcal{T}_1 \leftarrow \operatorname{pick}(\vec{F})
                               \mathcal{T}_{2} \leftarrow \operatorname{pick}(F \setminus \{\mathcal{T}_{1}\})
                               \vec{F} \leftarrow (F \setminus \{\mathcal{T}_1, \mathcal{T}_2\}) \cup \{\mathcal{T}_1 \otimes \mathcal{T}_2\}
                          if type = shrink then
                               \mathcal{T} \leftarrow \operatorname{pick}(F)
                              \begin{array}{l} \beta \leftarrow \text{pick-abstraction(B)} \\ F \leftarrow (F \setminus \{\mathcal{T}\}) \cup \left\{\mathcal{T}^{\beta}\right\} \end{array}
12.
13-
14.
                         end
                     end
15.
                    return F[0]
17:
               end
```

 $\mathcal{T}^{\pi_{\{\text{package}\}}} \otimes \mathcal{T}^{\pi_{\{\text{truck A}\}}}$:

 $S_{\otimes} = S_1 \times S_2$

- A finite set $F = \{\mathcal{T}_1, ..., \mathcal{T}_n\}$, where all share ℓ and $\mathrm{cost}(s)$.
- FTS induced by Π is $F(\Pi) = \{\mathcal{T}^{\pi_v} \mid v \in V\}$

11.2 Merge Strategies

- · f-preserving strategy
- Combine nodes with identical g and h value
- Rational: Preserves h and overall graph shape

explored by A*, so it can be more inprecise.

 Tie-breaking criterion, prefer merging high q + h - Rational: High values heuristic estimates are less likely to be

11.3 Merge and Shrink - Effective Shrink

· This is done by first converting the combined table (which is a cross product of two abstractions) into a linked list. And then...

$list_4 = \{(2,0)\}$ $list_5 = \{(2,1)\}$	$\begin{array}{l} \textit{list}_0 = \{(0,0)\} \\ \textit{list}_1 = \{(0,1)\} \\ \textit{list}_2 = \{(1,0),(1,1)\} \\ \textit{list}_3 = \varnothing \\ \textit{list}_4 = \{(2,0)\} \\ \textit{list}_5 = \{(2,1)\} \\ \textit{list}_6 = \{(3,0)\} \\ \textit{list}_7 = \{(3,1)\} \end{array}$	6	$ \begin{aligned} & \text{ist}_0 = \{(0,0)\} \\ & \text{ist}_1 = \{(0,1)\} \\ & \text{ist}_2 = \{(1,0),(1,1)\} \\ & \text{ist}_3 = \emptyset \\ & \text{ist}_4 = \{(2,0),(2,1),(3,0),(3,1)\} \\ & \text{ist}_5 = \emptyset \\ & \text{ist}_6 = \emptyset \\ & \text{ist}_7 = \emptyset \end{aligned} $	$ \begin{aligned} & list_0 = \{(\\ & list_1 = \{(\\ & list_2 = \{(\\ & list_3 = \{(\\ & \\ & list_4 = \emptyset \\ & list_5 = \emptyset \\ & list_6 = \emptyset \\ & list_7 = \emptyset \end{aligned} $	0, 1)} 1, 0), (1, 1)),
				s ₁ = 0 s ₁ = 1 s ₁ = 2 s ₁ = 3	s ₂ = 0 0 2 3 3	s ₂ = 1 1 2 3 3

11.4 Merge and Shrink Lookup

· Looking up the heuristic value in a MAS system requires looking up from first single variables and then into the larger merge, i.e.

At the end, our heuristic is represented by six tables:

two tables for the two merge and subsequent shrink steps:

T _{m&s}	s ₂ = 0	$s_2 = 1$	T _{m&s}	s ₂ = 0	$s_2 = 1$	
$s_1 = 0$	0	1	s ₁ = 0	1	1	
s ₁ = 1	2	2	$s_1 = 1$	1	0	
$s_1 = 2$	3	3	$s_1 = 2$	2	2	
$s_1 = 3$	3	3	$s_1 = 3$	3	3	

one table with goal distances for the final transition system:

11.5 Label Reduction

11.5.1 Definition

- A label reduction $\langle \lambda : L \to L', c' : L \to \mathbb{R}^+ \rangle$, such that $\ell \in$ $L, c'(\lambda(\ell)) < c(\ell)$
- The label-reduced transition system $\mathcal{T}^{\langle \lambda,c'\rangle}=$ $\langle S, L', c', \{ \langle s, \lambda(\ell), t \rangle \mid \langle s, \ell, t, \rangle \in T \}, s_0, S_* \rangle$

11.5.2 Properties

- ℓ is alive in F if all $\mathcal{T}' \in F$ have ℓ , dead otherwise
- ℓ locally subsumes ℓ' in $\mathcal T$ if for all transition $\langle s,\ell',t\rangle$ there is
- It also globally subsumes if this is true in all $\mathcal{T} \in F$
- ℓ and ℓ' are locally equivilant if ℓ locally subsumes ℓ' and vice
- + ℓ and ℓ' are $\mathcal{T}\text{-combinable}$ if there are locally equivilant in all transition systems $\mathcal{T}' \in F \setminus \{\mathcal{T}\}$

11.5.3 Exact Label Reduction

- · The label reduction is exact (No loss in information), if for all $\ell_1, \ell_2 \in L$:
- Either ℓ_1 or ℓ_2 globally subsumes the other
- ℓ_1 and ℓ_2 are \mathcal{T} -combinable for some $\mathcal{T} \in F$

12 Landmarks

- · Fact landmark: This must be visited at least once
- · Disjunctive Action: One action from the set must be performed
- · Network flow: Fact consumption should be balanced.

12.1 Relaxed Task Graph Landmarks

- Causal Landmark $\lambda :$ for I if $\gamma \models \lambda$ OR if for all plans $\langle o_1,...,o_n \rangle$ at least one $pre(o_i) \models \lambda$
- Causal fact landmark: Same as above, but $\lambda := v$
- · To calculate the RTG landmarks, first instantiate all nodes with all potential landmarks. Then perform this on RTG

$$LM(n) = \{n\} \bigcap_{n' \to n \in A} LM(n') \text{ if } type(n) = \vee$$

$$LM(n) = \{n\} \bigcup_{n' \to n \in A} LM(n') \text{ if } type(n) = \wedge$$

$$\mathrm{LM}(n) = \{n\} \bigcup_{n' \to n \in A} \mathrm{LM}(n') \; \text{ if } \mathrm{type}(n) = \wedge$$

$$LM(d) = \{d\} \cup LM(o_1)$$

12.2 Minimum Hitting Set

- · The minimum hitting set, the minimal cost set of operators such that a for a set of set of operators, each set contains one of the operators selected.
- · This is relevant for combining disjunctive action landmarks, which is not admissible if additively combined.

12.3.1 Justification Graph

- Precondition choice function: $P:O \rightarrow V$, maps any operator in a task Π to one of it's preconditions.
- Justification graph: $(V, E := \{ \langle P(o), a \rangle \mid o \in O, a \in add(o) \} \rangle$

Example (Precondition Choice Function)

 $P(o_{blue}) = P(o_{green}) = P(o_{black}) = i, P(o_{red}) = b, P(o_{orange}) = a$

 Cut (C ⊆ E): A subset of edges, such that ALL paths i

* g contains $e \in C$. Doesn't have to include all.

Initialize $h^{LM-Cut}(I) := 0$. Then iterate:

- Compute h^{\max} using a RTG. Stop if $h^{\max}(g)=0$
- Compute Justification graph for the P/pcf that chooses the precondition with the MAXIMAL h^{\max} value.
- Determine goal zone V_q (i.e. all nodes with a zero cost path to q).
- Compute the cut L that contains labels of all edges $\langle v, o, v' \rangle$ such that $v \notin V_a, v' \in V_a$, and v CAN be reached from i without traversing V_o . It is guaranteed that cost(L) > 0
- Increase $h^{\text{LM-Cut}}(I)$ by cost(L) (i.e. the cost of the cut).
- Decrease cost(o) by cost(L) for all $o \in L$.

