FOUNDATIONS OF STATISTICAL DECISION MAKING

Measuring Uncertainty

June 18, 2019

Aaron R. Baggett, Ph.D.

Department of Physical Therapy University of Mary Hardin-Baylor PHTH 7147: Critical Inquiry I

PREVIEW

Preview

- 1. June 18, 2019
 - Fundamentals of Statistical Inference: Measuring Uncertainty
- 2. July 02, 2019
 - Fundamentals of Statistical Decision Making: Comparing Multiple Groups
- 3. July 09, 2019
 - Fundamentals of Statistical Decision Making: Relationships and Prediction

3 / 49

Outline

- Descriptive vs. inferential statistics
- The normal distribution
- Comparing groups
- Statistical/practical significance

Resources

• Slides, data, and handouts available at:

bit.ly/umhb_dpt

Statistics

- Experimentation and observation:
 - 1. Measurement of uncertainty
 - 2. Examination of the consequences of that uncertainty

Statistics

- Two fundamental branches
 - 1. Descriptive statistics
 - Summarize data
 - Condense larger themes
 - 2. Inferential statistics
 - Infer meaning
 - Test predictions

Low Birth Weight Study

- Baystate Medical Center, Springfield, MA.
- Sample of 189 births in 1986
- Risk factors in low birth weight babies

Low Birth Weight Study

Age	Weight	Race	Smoking Status	Birth Weight
19	182	Black	Non-Smoker	5.56
33	155	Other	Non-Smoker	5.62
20	105	White	Smoker	5.64
21	108	White	Smoker	5.72
18	107	White	Smoker	5.73
21	124	Other	Non-Smoker	5.78

DESCRIPTIVE STATISTICS

- How many babies were born at low birth weight (< 5.5 lbs.)?
- How many mothers smoked during pregnancy?
- How much did the average baby weigh?
 - Given mothers' smoking status
 - Given mothers' race

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

How should we answer this question?

Question:

[ON AVERAGE], do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Smoking Status	n	Min.	Max.	М	SD
Non-Smoker	115	2.25	11.00	6.74	1.66
Smoker	74	1.56	9.34	6.11	1.46

Question:

1. Based on our sample, what are we left to assume about the weights of babies *in the population* born to smoking and non-smoking mothers?

Question:

- 1. Based on our sample, what are we left to assume about the weights of babies *in the population* born to smoking and non-smoking mothers?
 - That the sample estimates represent the population parameters

Smoking Status	n	Min.	Max.	М	SD
Non-Smoker	115	2.25	11.00	6.74	1.66
Smoker	74	1.56	9.34	6.11	1.46

 In fact, we assume that the population distribution of baby weights is "normal"

Baggett (PHTH 7147) Measuring Uncertainty 06/18/2019 24 / 49

INFERENTIAL STATISTICS

Inferential Statistics

- More useful than descriptives
- Allow for making predictions or generalizations
- Key to hypothesis testing
- Two varieties:
 - 1. 95% confidence intervals (CIs)
 - 2. Null-hypothesis significance testing (NHST)

Inferential Statistics

Question:

Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

- Since we are interested in the mean difference in birth weights in the population, a first inferential step is to calculate a 95% confidence interval
- Confidence intervals are a plausible range of values for a population parameter
- Point estimates often may not represent the population parameter
- Cls are more likely to capture the population parameter than a point estimate alone

28 / 49

• 95% CI:

$$(M_1 - M_2) \pm 2 \times \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

• 95% CI:

$$(6.11_{NS} - 6.74_S) \pm 2 \times \sqrt{\frac{2.12_{NS}}{74_{NS}} + \frac{2.75_S}{115_S}}$$

• 95% CI:

$$-0.63 \pm (2 \times 0.229) =$$
$$(-1.09, -0.17)$$

 Thus, we can be 95% confident that, in the population, the true difference in birth weight of babies born to smoking mothers compared to those born to non-smoking mothers is between -1.09 and -0.17 lbs. less, on average.

• In other words, if we replicated this study 25 times, 24 of the 25 replications would include the true population parameter

Inferential Statistics

Question:

Do babies born to mothers who smoked during pregnancy weigh [STATISTICALLY SIGNIFICANTLY] less than those born to mothers who did not?

How should we answer this question?

Inferential Statistics::Hypothesis Testing

• What do we mean by statistical significance?

Inferential Statistics::Hypothesis Testing

- What do we mean by statistical significance?
- Observed differences which exceed "normality."

Inferential Statistics::Hypothesis Testing

- We usually consider differences beyond \pm 2 SDs from M to be "statistically significant"
- NOTE: Statistical significance \neq practical significance

Low Birth Weight Study

Question:

• Do babies born to mothers who smoked during pregnancy weigh less than those born to mothers who did not?

Low Birth Weight Study

Hypotheses:

• H_0 : There is no mean difference in the birth weight of babies born to mothers who did and did not smoke during pregnancy

$$(M_{non\text{-smoker}} - M_{smoker} = 0)$$

• H_1 : There is some difference in the birth weight of babies born to mothers who did and did not smoke during pregnancy

$$\circ (M_{non\text{-smoker}} - M_{smoker} \neq 0)$$

Low Birth Weight Study

- Let's test our hypothesis using an independent-samples t-test
 - IV: Mothers' smoking status (smoker, non-smoker)
 - DV: Baby birth weight

$$t = \frac{\overline{X}_{non-smokers} - \overline{X}_{smokers}}{\sqrt{\frac{s_{non-smokers}^2}{N_{non-smokers}} + \frac{s_{smokers}^2}{N_{smokers}}}}$$

Table 1: Results of Independent-Samples *t*-Test

	Non-Smokers			Smokers					
	n	М	SD	n	М	SD	t(187)	р	ω^2
Baby birth weight	115	6.74	1.66	47	6.11	1.46	2.63	0.009	0.008

Note: M = Mean; SD = Standard deviation

- Assuming the null hypothesis, in reality, is true, the probability of obtaining a mean difference in birth weight ≥ 0.62 lbs. is 0.009 (0.90%)
- Birth weights appear to differ statistically significantly

• But, is the difference of M = 0.62 lbs. meaningful?

- But, is the difference of M = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world

- But, is the difference of M = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2): Proportion of variance explained in the model

- But, is the difference of M = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2): Proportion of variance explained in the model
- Smoking status explains 0.009 (0.90%) of the variance in baby birth weight

- But, is the difference of *M* = 0.62 lbs. meaningful?
- A meaningful difference implies practicality or usefulness in the real world
- Effect size (ω^2): Proportion of variance explained in the model
- Smoking status explains 0.009 (0.90%) of the variance in baby birth weight
- Thus, 100% 0.991% = 99.10% of the variance in baby birth weight is left unexplained

46 / 49

Recap

- Descriptive statistics allow us to summarize data from a sample
- Inferential statistics allow us to predict and generalize about a population
- Hypothesis testing allows us to construct a sense of meaning about the world

48 / 49

Next Time

- Making decisions using hypothesis testing and prediction
 - Statistical variables
 - Multiple group comparisons (ANOVA)
 - Predicting outcomes (Regression)