1 EQUAÇÕES DE DIFERENÇAS LINEARES

Em muitas aplicações da matemática o tempo é discreto. Isto significa que as grandezas são medidas em instantes isolados, formando uma seqüência. Nestes casos, as equações diferenciais não são o instrumento mais adequado para exprimir a evolução dos fenômenos, sendo substituídas pelas equações de diferença.

Uma equação de diferença autônoma de ordem k é uma equação da forma:

$$y_{t+k} = f(y_{t+k-1}, y_{t+k-2}, \dots, y_t)$$
 (1)

onde a incógnita é a sequência $(y_0, y_1, \ldots, y_l, \ldots)$, que satisfaz a equação (1). Fixados arbitrariamente $y_0, y_1, \ldots, y_{k-1}$, a equação (1) admite uma ÚNICA solução que é:

$$(y_0, y_1, \ldots, y_{k-1}, f(y_{k-1}, \ldots, y_0), f(y_k, \ldots, y_1), f(y_{k+1}, \ldots, y_2), \ldots).$$

Os valores $y_0, y_1, \ldots, y_{k-1}$ são chamados valores iniciais.

Neste trabalho estudaremos apenas as equações de diferenças lineares homogêneas autônomas (isto quer dizer que a função f na equação (1) independe do termo independente t).

Uma equação de diferença linear autônoma homogênea de ordem k é uma equação da forma:

$$y_{t+k} + \alpha_{t+k-1}y_{t+k-1} + \alpha_{t+k-2}y_{t+k-2} + \dots + \alpha_{t+1}y_{t+1} + \alpha_t y_t = 0$$
 (2)

onde $\alpha_t \neq 0$. Note que a eq. (2) é um caso particular da eq. (1), onde f é linear e dada por:

$$f(y_{t+k-1}, y_{t+k-2}, \dots, y_t) = -\alpha_{t+k-1}y_{t+k-1} - \alpha_{t+k-2}y_{t+k-2} - \dots - \alpha_{t+1}y_{t+1} - \alpha_t y_t$$

Analisando (2), vamos verificar para quais condições esta equação possui uma solução da forma $y_t = c\lambda^t$. Substituindo y_t em (2) temos que:

$$c\lambda^{t+k} + \alpha_{t+k-1}c\lambda^{t+k-1} + \alpha_{t+k-2}c\lambda^{t+k-2} + \dots + \alpha_{t+1}c\lambda^{t+1} + \alpha_tc\lambda^t = 0 \iff$$

$$c\lambda^t(\lambda^k + \alpha_{t+k-1}\lambda^{k-1} + \alpha_{t+k-2}\lambda^{k-2} + \dots + \alpha_{t+1}\lambda + \alpha_t) = 0 \iff$$

$$c\lambda^t p(\lambda) = 0$$

onde

$$p(\lambda) = \lambda^k + \alpha_{t+k-1}\lambda^{k-1} + \alpha_{t+k-2}\lambda^{k-2} + \dots + \alpha_{t+1}\lambda + \alpha_t.$$

(lembrando que $\alpha_t \neq 0$)

Como estamos a procura de uma solução não-trivial e a candidata a solução é $y_t = c\lambda^t$, podemos exigir que $c, \lambda \neq 0$. Então, temos que y_t é solução não-trivial de (2) se, e somente se, λ é raiz de $p(\lambda)$. $p(\lambda)$ é chamado de polinômio característico.

Teorema 1 O conjunto solução S de (2) é um espaço vetorial de dimensão k.

Dem.: O fato de que $S \subset \mathbb{R}^{\infty}$, formado pelas seqüências $x = (x_0, x_1, \dots, x_l, \dots)$ é um subespaço vetorial, segue do fato de que S é o núcleo do operador linear $A : \mathbb{R}^{\infty} \longrightarrow \mathbb{R}^{\infty}$ definido por Ay = x, onde

$$x_t = y_{t+k} + \alpha_{t+k-1}y_{t+k-1} + \alpha_{t+k-2}y_{t+k-2} + \dots + \alpha_{t+1}y_{t+1} + \alpha_t y_t$$

Além disso, o comentário feito no início sobre a existência e unicidade da solução de uma equação de ordem k $y_{t+k} = f(y_{t+k-1}, y_{t+k-2}, \dots, y_t)$ com valores iniciais y_0, y_1, \dots, y_{k-1} pré-fixados, significa precisamente que a correspondência $S \longrightarrow \mathbb{R}^k$, que associa a cada solução da equação (1) seus k primeiros termos $(y_0, y_1, \dots, y_{k-1})$ nesta ordem, é um isomorfismo entre S e \mathbb{R}^k . Portanto o espaço vetorial S tem dimensão k.

Corolário 1 Se $p_k(\lambda)$ só tiver raízes simples λ_i , como são k raízes, então $\lambda_1^t, \lambda_2^t, \ldots, \lambda_k^t$ formam uma base do conjunto solução S.

Dem.: Vamos provar que $\lambda_1^t, \lambda_2^t, \dots, \lambda_k^t$ são LI. Seja $a_1\lambda_1^t + a_2\lambda_2^t + \dots + a_k\lambda_k^t = 0$ uma combinação linear nula arbitrária para os λ_i^t . Como esta equação é válida para $t = 0, 1, \dots, k-1$, temos o seguinte sistema:

$$\begin{cases} a_1 + a_2 + \dots + a_k & = 0 \\ \lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_k a_k & = 0 \\ \lambda_1^2 a_1 + \lambda_2^2 a_2 + \dots + \lambda_k^2 a_k & = 0 \\ \vdots & & \\ \lambda_1^{k-1} a_1 + \lambda_2^{k-1} a_2 + \dots + \lambda_k^{k-1} a_k & = 0 \end{cases}$$

Na forma matricial temos:

$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_k^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \dots & \lambda_k^{k-1} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_k \end{bmatrix} = 0$$

A matriz da esquerda é a matriz de Vandermonde que, como sabemos, é não singular, logo a única solução do sistema acima é a solução trivial. Portanto, $a_1 = a_2 = \ldots = a_k = 0$. Como $\lambda_1^t, \lambda_2^t, \ldots, \lambda_k^t$ são LI e soluções de (2), pelo teorema o conjunto solução S de (2) é um espaço vetorial de dimensão k. Então podemos concluir que $\lambda_1^t, \lambda_2^t, \ldots, \lambda_k^t$ formam uma base para S.

No caso em que todas as raízes $\lambda_1, \lambda_2, \dots, \lambda_k$ de $p(\lambda)$ são simples, podemos concluir do Corolário que a solução geral de S é da forma:

$$y_t = c_1 \lambda_1^t + c_2 \lambda_2^t + \dots + c_k \lambda_k^t$$

Agora analisemos o caso em que nem todas as raízes de $p(\lambda)$ são simples. Suponha que γ seja uma raiz de $p_k(\lambda)$ com multiplicidade m.

Afirmação: $\gamma^t, t\gamma^t, t^2\gamma^t, \dots, t^{m-1}\gamma^t$ são LI.

Dem.: Com efeito, considere a combinação linear nula:

$$b_0 \gamma^t + b_1 t \gamma^t + b_2 t^2 \gamma^t + \ldots + b_{m-1} t^{m-1} \gamma^t = 0$$

$$\Leftrightarrow \gamma^t (b_0 + b_1 t + b_2 t^2 + \dots + b_{m-1} t^{m-1}) = 0$$

Note que $\gamma \neq 0$ pois o coeficiente constante α_t de $p(\lambda)$ é não nulo. Logo, a equação acima é equivalente a $b_0 + b_1 t + b_2 t^2 + \ldots + b_{m-1} t^{m-1} = 0$. Pela igualdade de polinômios temos que $b_0 = b_1 = b_2 = \cdots = b_{m-1} = 0$. Portanto, $\gamma^t, t\gamma^t, t^2\gamma^t, \ldots, t^{m-1}\gamma^t$ são LI.

Vamos somente afirmar que $y_t = t^i \gamma^t$ para i = 0, 1, ..., m-1 são soluções de (2) e vamos provar isto somente para equações de diferença de ordem 2. Então podemos generalizar o seguinte resultado: se $p(\lambda)$ possui r raízes reais distintas $\lambda_1, \lambda_2, ..., \lambda_r$ com suas respectivas multiplicidades m(1), m(2), ..., m(r), temos que a solução geral de (2) é dada por:

$$y(t) = c_1^1 \lambda_1^t + c_2^1 t \lambda_1^t + c_3^1 t^2 \lambda_1^t + \dots + c_{m(1)}^1 t^{m(1)-1} \lambda_1^t +$$

$$c_1^2 \lambda_2^t + c_2^2 t \lambda_2^t + c_3^2 t^2 \lambda_2^t + \dots + c_{m(2)}^2 t^{m(2)-1} \lambda_2^t + \dots +$$

$$c_1^r \lambda_r^t + c_2^r t \lambda_r^t + c_3^r t^2 \lambda_r^t + \dots + c_{m(r)}^r t^{m(r)-1} \lambda_r^t$$

onde $m(1) + m(2) + \cdots + m(r) = k$ (pois o grau de $p_k(\lambda)$ é k).

Agora vamos analisar o caso em que $p(\lambda)$ possui uma raiz complexa. Seja $\lambda_1 = a + bi$ uma raiz complexa de $p(\lambda)$. Então $\lambda_2 = a - bi$ também é raiz de $p(\lambda)$. Sabemos que

$$\lambda_1 = re^{i\theta} = r(\cos\theta + i\sin\theta)$$

 $\lambda_2 = re^{-i\theta} = r(\cos\theta - i\sin\theta)$,

onde $\theta = \arctan(\frac{b}{a})$ e $r = \sqrt{a^2 + b^2}$ ($\theta = \pi/2$ se a = 0). Sabemos que $(a+bi)^t$ e $(a-bi)^t$ são soluções da eq. (2). Note que $(a+bi)^t = (re^{i\theta})^t = r^t e^{i\theta t} = r^t (\cos \theta t + i \sin \theta t) =$

$$(r^t \cos \theta t) + i (r^t \sin \theta t) \tag{3}$$

Como (3) satisfaz a equação (2)

$$y_{t+k} + \alpha_{t+k-1}y_{t+k-1} + \alpha_{t+k-2}y_{t+k-2} + \cdots + \alpha_{t+1}y_{t+1} + \alpha_t y_t = 0$$

e a expressão à esquerda da desigualdade é linear, isto implica que $\gamma_1 = r^t \cos \theta t$ e $\gamma_2 = r^t \sin \theta t$ também satisfazem a eq. (2).

É fácil ver que $\lambda_1^t = (a+bi)^t$ e $\lambda_2^t = (a-bi)^t$ são LI e que γ_1 e γ_2 são LI. Como $\lambda_1^t = \gamma_1 + i\gamma_2$ e $\lambda_2^t = \gamma_1 - i\gamma_2$, temos que $\langle \lambda_1^t, \lambda_2^t \rangle = \langle \gamma_1, \gamma_2 \rangle$.

Então, ao construirmos a solução geral para (2), basta substituirmos o termo $a_1\lambda_1^t + a_2\lambda_2^t$ por $b_1\gamma_1 + b_2\gamma_2$, isto é, $a_1(a+bi)^t + a_2(a-bi)^t$ por $b_1r^t\cos\theta t + b_2r^t\sin\theta t$, onde $r \in \theta$ são como acima.

Estudaremos apenas as equações de diferenças de segunda ordem:

$$y_{t+2} + by_{t+1} + cy_t = 0 (4)$$

Note que o polinônio característico de (4) é:

$$P_2(\lambda) = \lambda^2 + b\lambda + c$$

Observe que como o conjunto solução da equação (4) é um espaço vetorial de dimensão 2 então toda solução desta equação se exprime, de modo único, como combinação linear de duas soluções LI.

Outra observação é que se α é uma raíz de $P_2(\lambda)$ então a seqüência $\alpha^* = (1, \alpha, \alpha^2, \dots, \alpha^t, \dots)$ é uma solução de (4). (Com efeito, como α é uma raíz de $P_2(\lambda)$, isto é, $P_2(\alpha) = 0$ então

$$\alpha^2 + b\alpha + c = 0$$

Assim,

$$\alpha^{t+2} + b\alpha^{t+1} + c\alpha^t = \alpha^t(\alpha^2 + b\alpha + c) = \alpha^t \times 0 = 0$$

Logo α^* é uma solução de (4)).

Assim, para determinar todas as soluções da equação (4) devemos usar as raízes do seu polinômio característico a fim de obter duas soluções LI. Todas as demais soluções serão combinações destas.

Temos três casos:

Primeiro caso. $P_2(\lambda)$ tem duas raízes reais distintas λ_1 e λ_2 .

Então as seqüências $\lambda_1^* = (1, \lambda_1, \lambda_1^2, \dots, \lambda_1^t, \dots)$ e $\lambda_2^* = (1, \lambda_2, \lambda_2^2, \dots, \lambda_2^t, \dots)$ são soluções e, como $\lambda_1 \neq \lambda_2$, os vetores $(1, \lambda_1)$ e $(1, \lambda_2)$ são LI em \mathbb{R}^2 , logo λ_1^* e λ_2^* são LI em \mathbb{R}^∞ . Temos então duas soluções LI para S que é o conjunto solução de (4) que, como sabemos do teorema 1, é um espaço vetorial de dimensão 2.

Portanto, a solução geral de (4) é

$$y_t = c_1 \lambda_1^t + c_2 \lambda_2^t$$

com c_1 , c_2 constantes.

Segundo caso. $P_2(\lambda)$ tem uma raíz real dupla $\lambda \neq 0$.

Temos que a raiz de $P_2(\lambda)$ com multiplicidade 2 é $\lambda = -\frac{b}{2} \Rightarrow 2\lambda + b = 0$

Já sabemos que uma solução da equação (4) é $\lambda^* = (1, \lambda, \lambda^2, \dots, \lambda^t, \dots)$.

Afirmação: $\lambda^{**} = (0, \lambda, 2\lambda^2, \dots, t\lambda^t, \dots)$ é outra solução. Com efeito, se $y_t = t\lambda^t$ então

$$y_{t+2} + by_{t+1} + cy_t = (t+2)\lambda^{t+2} + b(t+1)\lambda^{t+1} + ct\lambda^t = \lambda^t [t(\lambda^2 + b\lambda + c) + \lambda(2\lambda + b)] = 0$$

Além disso, como os vetores $(1,\lambda)$ e $(0,\lambda)$ são LI em \mathbb{R}^2 , segue-se que λ^* e λ^{**} são duas soluções LI.

Portanto a solução geral da equação (4) é da forma

$$y_t = c_1 \lambda^t + c_2 t \lambda^t$$

com c_1 , c_2 constantes.

Terceiro caso. As raízes de $P_2(\lambda)$ são os números complexos $\alpha + \beta i$ e $\alpha - \beta i$ com $\beta \neq 0$.

Primeiramente escreveremos o número complexo $r = \alpha + i\beta$ sob a forma trigonométrica $r = \rho(\cos \theta + i \sin \theta)$, onde $\alpha = \rho \cos \theta$ e $\beta = \rho \sin \theta$.

Exatamente como no caso real, verificamos que a seqüência de números complexos $r^t = \rho^t(\cos \theta t + i \sin \theta t)$, t = 0,1,2,..., é solução de $P_2(\lambda)$.

Agora note que se a seqüência complexa $(z_0, z_1, \ldots, z_t, \ldots)$, com $z_t = x_t + iw_t$, é solução de $z_{t+2} + bz_{t+1} + cz_t = 0$, onde b e c são reais, então

$$(x_{t+2} + iw_{t+2}) + b(x_{t+1} + iw_{t+1}) + c(x_t + iw_t) = 0$$

$$\Leftrightarrow (x_{t+2} + bx_{t+1} + cx_t) + i(w_{t+2} + bw_{t+1} + cw_t) = 0$$

$$\Leftrightarrow \begin{cases} x_{t+2} + bx_{t+1} + cx_t = 0 \\ w_{t+2} + bw_{t+1} + cw_t = 0 \end{cases}$$

Logo as sequências $x_t = \rho^t \cos \theta t$ e $w_t = \rho^t \sin \theta t$ são soluções de $P_2(\lambda)$. Além disso, como $(x_0, x_1) = (1, \rho \cos \theta)$ e $(w_0, w_1) = (0, \rho \sin \theta)$ e $sen \theta \neq 0$ (pois $\beta \neq 0$, ou seja, r não é real), então (x_0, x_1) e (w_0, w_1) são LI.

Portanto a solução geral de (4), quando $b^2 < 4c$ é dada por

$$y_t = c_1 x^t + c_2 w^t = c_1 \rho^t \cos \theta t + c_2 \rho^t \sin \theta t = \rho^t (c_1 \cos \theta t + c_2 \sin \theta t)$$

onde c_1 e c_2 são constantes.

Exercícios

a)
$$y_{t+2} - 5y_{t+1} + 6y_t = 0$$

$$P(\lambda) = \lambda^2 - 5\lambda + 6$$

$$P(\lambda) = 0 \Leftrightarrow \lambda = 2 \text{ ou } \lambda = 3$$

Solução geral: $y_t = a2^t + b3^t, \forall a, b \in \mathbb{R}$

b)
$$\begin{cases} y_{t+1} - 5y_t + 4y_{t-1} = 0 \\ y_1 = 9 \text{ e } y_2 = 23 \end{cases}$$

$$P(\lambda) = \lambda - 5 + \frac{4}{\lambda}$$

$$P(\lambda) = 0 \Leftrightarrow \lambda^2 - 5\lambda + 4 = 0 \Leftrightarrow \lambda = 4 \text{ ou } \lambda = 1$$

Solução geral: $y_t = a4^t + b, \forall a, b \in \mathbb{R}$

Para $y_1 = 9$ e $y_2 = 23$ temos

$$\begin{cases} 4a+b=9\\ 16a+b=23 \end{cases} \Leftrightarrow \begin{cases} a=\frac{7}{6}\\ b=\frac{13}{3} \end{cases}$$

Assim
$$x_t = \frac{7}{6}4^t + \frac{13}{3}$$

c)
$$\begin{cases} y_t - 4y_{t-1} + 4y_{t-2} = 0 \\ y_0 = 1 \text{ e } y_1 = 2 \end{cases}$$

$$P(\lambda) = 1 - \frac{4}{\lambda} + \frac{4}{\lambda^2}$$

$$P(\lambda) = 0 \Leftrightarrow \lambda^2 - 4\lambda + 4 = 0 \Leftrightarrow \lambda = 2$$

Solução geral: $y_t = a2^t + bt2^t, \forall a, b \in \mathbb{R}$

Para $y_0 = 1$ e $y_1 = 2$ temos

$$\begin{cases} a=1\\ 2a+2b=2 \end{cases} \Leftrightarrow \begin{cases} a=1\\ b=0 \end{cases}$$

Assim $y_t = 2^t$

$$\mathbf{d}) \begin{cases} y_{t+2} + y_t = 0 \\ y_0 = y_1 = 4 \end{cases}$$

$$P(\lambda) = \lambda^2 + 1$$

$$P(\lambda) = 0 \Leftrightarrow \lambda^2 + 1 = 0 \Leftrightarrow \lambda_1 = i \text{ e } \lambda_2 = -i$$

Como $\lambda_1 = \alpha + \beta i \text{ e } \lambda_2 = \alpha - \beta i \text{ com } \alpha = 0 \text{ e } \beta = 1 \Rightarrow r = \sqrt{\alpha^2 + \beta^2} = 1 \text{ e}$
 $\theta = \frac{\pi}{2}$

Assim a solução geral é da forma:

$$y_t = 1^t \left(a \cos\left(\frac{\pi}{2}t\right) + b \sin\left(\frac{\pi}{2}t\right) \right) = a \cos\left(\frac{\pi}{2}t\right) + b \sin\left(\frac{\pi}{2}t\right)$$

Para $y_0 = y_1 = 4$ temos

$$\begin{cases} a\cos(0) + b\sin(0) = 4 \\ a\cos(\frac{\pi}{2}) + b\sin(\frac{\pi}{2}) = 4 \end{cases} \Leftrightarrow \begin{cases} a = 4 \\ b = 4 \end{cases}$$

Portanto

$$y_t = 4\left(\cos\left(\frac{\pi}{2}t\right) + \sin\left(\frac{\pi}{2}t\right)\right)$$

Exemplos de Modelos Biológicos com Equações de Diferenças Lineares

Exemplo 1: Considere a equação:

$$y_{t+1} = ay_t$$

Colocando no formato padrão, a equação é equivalente a

$$y_{t+1} - ay_t = 0$$

Polinônio característico: $p(\lambda) = \lambda - a$

Raíz de $p(\lambda): \lambda = a$

Solução geral da equação:

$$y_t = ca^t, c \in \mathbb{R}$$

Equilíbrio: $y_{t+1} = y_t \Leftrightarrow ay_t = y_t, \forall t$

$$\Leftrightarrow \left\{ \begin{array}{l} y_t = 0, \forall t \\ a = 1 \end{array} \right.$$

Exemplo 2: Suponha que um capital c_0 é aplicado a uma taxa i. Qual será o montante após t períodos:

- a) Se regime de juros simples?
- b) Se regime de juros compostos?

Solução de a): A equação que queremos neste caso é:

$$c_{t+1} - c_t = ic_0$$

Neste caso, a equação linear acima é não homogênea. Considere a equação homogênea correspondente:

$$c_{t+1} - c_t = 0$$

O polinômio característico é $p(\lambda)=\lambda-1$, cuja raíz é $\lambda=1$ Então a solução geral da equação homogênea será $c_t^h=k.1^t=k$. Uma solução particular da equação não-homogênea é $c_t^p=(ic_0)t$. Com efeito,

$$c_{t+1}^p - c_t^p = (ic_0)(t+1) - (ic_0)t = ic_0.$$

Então, a solução geral da equação não homogênea $c_{t+1} - c_t = ic_0$ é:

$$c_t = c_t^h + c_t^p = k + (ic_0)t$$

Podemos achar o valor de k com a condição inicial: $t=0 \Rightarrow c_t=c_0$. Então $c_0=k+(ic_0).0=k$.

Portanto, a solução geral do PVI é:

$$c_t = c_0 + (ic_0)t = c_0(1+it)$$

Solução de b): A equação correspondente neste caso é:

$$c_{t+1} - c_t = ic_t \Leftrightarrow c_{t+1} - (i+1)c_t = 0$$

Polinômio característico: $\lambda - (i+1) = 0 \Leftrightarrow \lambda = i+1$

Solução geral da equação: $c_t = k (1+i)^t$.

Podemos encontrar o valor de k com a cond. inicial: $t = 0 \Rightarrow c_t = c_0$. Então $c_0 = k (1+i)^0 = k$. Daí a solução geral do PVI será:

$$c_t = c_0 \left(1 + i \right)^t$$

Exemplo 3: População de insetos.

Embora geralmente a capacidade de produzir filhos (fecundidade) e a fase possível de sobrevivência de adultos dependam das condições ambientais, da qualidade de seus alimentos e do tamanho da população, vamos momentaneamente ignorar estes fatos e estudar um modelo simples nos quais todos os parâmetros são constantes.

Primeiro definimos o seguinte:

 $a_t = \text{número de fêmeas adultas em t};$

 $p_t = \text{número de descendentes em t};$

r = fração de fêmeas;

m = fração de mortalidade de insetos jovens;

1-m = fração de sobreviventes;

f = número de descendentes por fêmea.

Agora escreveremos equações para representar populações sucessivas de insetos e usaremos isto para obter expressões para o número de fêmeas adultas

na geração t se inicialmente existem a_0 fêmeas.

Como cada fêmea produz f descendentes então o número de descendentes na geração t+1 é igual ao número de fêmeas na geração anterior vezes o número de filhos por fêmea. Assim

$$p_{t+1} = fa_t$$

O número de fêmeas adultas na geração t+1 é igual ao número de descendentes na geração t+1 vezes a fração de sobreviventes adultos vezes a fração de fêmeas. Logo

$$a_{t+1} = r(1-m)p_{t+1} = fr(1-m)a_t$$

Assim:

$$a_1 = fr(1-m)a_0$$

$$a_2 = fr(1-m)a_1 = [fr(1-m)]^2 a_0$$

$$\vdots$$

$$a_n = [fr(1-m)]^n a_0$$

onde a_0 é o número de fêmeas adultas na população inicial.

Exemplo 4: Sequências de Fibonacci

Quantos coelhos adultos haverá após t meses, começando com um casal adulto e um casal jovem, se em cada mês cada casal adulto gera um novo casal, o qual se tornará adulto após 2 meses? Assuma que o casal jovem inicial possui 0 meses e que a_t é o número de casais adultos após t meses.

mês	a_t	casais jovens	total de casais
0	1	1	2
1	1	2	3
2	2	3	5
3	3	5	8
:	•••	:	<u>:</u>

- Condições iniciais: $a_0 = a_1 = 1$.
- Equação de diferença: $a_{t+2} = a_{t+1} + a_t$,
- Polinômio característico: $p(\lambda) = \lambda^2 \lambda 1$.

• Raízes:
$$\lambda_{1,2} = \frac{1 \pm \sqrt{5}}{2}$$

• Solução geral:
$$a_t = A\left(\frac{1+\sqrt{5}}{2}\right)^t + B\left(\frac{1-\sqrt{5}}{2}\right)^t$$

Usando as condições iniciais $a_0 = a_1 = 1$, podemos determinar os valores de A e B através do sistema:

$$\begin{cases} A+B &= 1\\ A\left(\frac{1+\sqrt{5}}{2}\right) + B\left(\frac{1-\sqrt{5}}{2}\right) &= 1 \end{cases}$$

Daí, obtemos

$$A = \frac{\sqrt{5} + 1}{2\sqrt{5}}, \text{ e } B = \frac{\sqrt{5} - 1}{2\sqrt{5}}.$$

Portanto,

$$a_t = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{t+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{t+1} \right].$$

Observe que o primeiro termo da expressão à direita da igualdade cresce quando $t \to \infty$ e o segundo termo oscila tendendo a zero quando $t \to \infty$. Logo, $a_t \to \infty$ quando $t \to \infty$.

Exemplo 5: Modelo de propagação anual de plantas sazonais

Determinadas plantas produzem sementes no final do verão quando então morrem. Parte das sementes sobrevivem ao inverno e algumas germinam dando origem a uma nova geração de plantas. A fração que germina depende da idade da semente, que sobrevive no máximo 2 invernos.

 $p_t \to$ número de plantas na geração t (cada geração corresponde a um ano).

 $\gamma \to \text{número de sementes produzidas por planta.}$

 $\sigma \to \text{fração}$ de sementes que sobrevivem a cada inverno.

 $\alpha \to \text{fração de sementes que germinam no primeiro ano.}$

 $\beta \to \text{fração de sementes que germinam no segundo ano.}$

$$p_t = \begin{pmatrix} \text{plantas originadas de} \\ \text{sementes de 1 ano} \end{pmatrix} + \begin{pmatrix} \text{plantas originadas de} \\ \text{sementes de 2 anos} \end{pmatrix}$$

ou seja,

Equação modelo:

$$p_t - \underbrace{\alpha \sigma \gamma}_{b} p_{t-1} - \underbrace{\beta \sigma^2 (1 - \alpha) \gamma}_{c} p_{t-2} = 0$$

Polinômio característico:

$$\lambda^2 - b\lambda - c = 0$$

Raízes:

$$\lambda_{1,2} = \frac{b \pm \sqrt{b^2 + 4c}}{2}$$

Solução geral:

$$p_t = c_1 \lambda_1^t + c_2 \lambda_2^t$$

onde

$$\lambda_1 = \frac{b + \sqrt{b^2 + 4c}}{2}, \ e \ \lambda_2 = \frac{b - \sqrt{b^2 + 4c}}{2}$$

Note que $\lambda_1 > \lambda_2$, mais ainda, $|\lambda_1| > |\lambda_2|$. Será que a polpulação de plantas irá sobreviver?

Note que a sobrevivência da espécie acontecerá se, e somente se, $|\lambda_1| \ge 1$. Uma condição necessária e suficiente para que isso aconteça é:

$$\gamma \ge \frac{1}{\alpha \sigma + \beta \sigma^2 (1 - \alpha)}$$

Com efeito, note que:

$$\lambda_1 = \frac{b + \sqrt{b^2 + 4c}}{2}$$
, onde $b = \alpha \sigma \gamma$ e $c = \beta \sigma^2 (1 - \alpha) \gamma$

Então temos que:

$$\frac{\alpha\sigma\gamma+\sqrt{\alpha^2\sigma^2\gamma^2+4\beta\sigma^2(1-\alpha)\gamma}}{2}\geq 1 \Leftrightarrow$$

$$\alpha\sigma\gamma + \sqrt{\alpha^2\sigma^2\gamma^2 + 4\beta\sigma^2(1-\alpha)\gamma} \ge 2 \Leftrightarrow$$

$$\sqrt{\alpha^2\sigma^2\gamma^2 + 4\beta\sigma^2(1-\alpha)\gamma} \ge 2 - \alpha\sigma\gamma \Leftrightarrow$$

$$\alpha^2\sigma^2\gamma^2 + 4\beta\sigma^2(1-\alpha)\gamma \ge (2-\alpha\sigma\gamma)^2 = 4 - 4\alpha\sigma\gamma + \alpha^2\sigma^2\gamma^2 \Leftrightarrow$$

$$\beta\sigma^2(1-\alpha)\gamma \ge 1 - \alpha\sigma\gamma \Leftrightarrow$$

$$\gamma(\alpha\sigma + \beta\sigma^2(1-\alpha)) \ge 1 \Leftrightarrow$$

$$\gamma \ge \frac{1}{\alpha\sigma + \beta\sigma^2(1-\alpha)}$$

Sistemas de Equações de Diferenças Lineares

Considere o sistema geral da forma:

$$(S) \begin{cases} x_{t+1} = a_{11}x_t + a_{12}y_t \\ y_{t+1} = a_{21}x_t + a_{22}y_t \end{cases}$$

Escrevendo o sistema acima na forma matricial temos

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix}$$

Agora vamos converter o sistema para uma equação linear de ordem 2. Reescrevendo em t+1 a primeira eq. do sistema e substituindo a segunda eq. do sistema nesta, teremos:

$$x_{t+2} = a_{11}x_{t+1} + a_{12}y_{t+1} = a_{11}x_{t+1} + a_{12}(a_{21}x_t + a_{22}y_t)$$

Mas da primeira eq., temos que:

$$a_{12}y_t = x_{t+1} - a_{11}x_t$$

Substituindo esta última na anterior, obtemos:

$$x_{t+2} = a_{11}x_{t+1} + a_{12}a_{21}x_t + a_{22}(x_{t+1} - a_{11}x_t)$$
 ou
$$x_{t+2} - (a_{11} + a_{22})x_{t+1} + (a_{11}a_{22} - a_{12}a_{21})x_t = 0 \ (*)$$

Isto é equivalente a

$$x_{t+2} - (trM)x_{t+1} + (detM)x_t = 0$$

onde

$$M = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

 $trM=a_{11}+a_{22}=$ traço de M e $detM=a_{11}a_{22}-a_{12}a_{21}=$ determinante de M.

Os autovalores de M são valores λ tais que $det(M-\lambda I)=0$, onde I é a matriz identidade, ou seja,

$$det(M - \lambda I) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$
$$\lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21}) = 0$$

Note que $P(\lambda) = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21})$ é o polinômio característico de (*) e que as raízes de $P(\lambda)$ são os autovalores de M.

Teorema 2 Se λ for um autovalor de M associado ao autovetor $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ então $X_t = \lambda^t v = \lambda^t \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ é solução do sistema (S).

Dem ·

Primeiramente, note que podemos escrever o sistema (S) na notação vetorial

$$X_{t+1} = MX_t$$

onde
$$X_t = \begin{pmatrix} x_t \\ y_t \end{pmatrix}$$
 e $M = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Logo $MX_t=M(v\lambda^t)=\lambda^t(Mv)=\lambda^t(\lambda v)=\lambda^{t+1}v=X_{t+1}$ e portanto $X_t=\lambda^t v$ é solução do sistema. \blacksquare

Corolário 2 O conjunto solução do sistema (S) é um espaço vetorial de, no máximo, dimensão 2.

Corolário 3 Se $\lambda_1 \neq \lambda_2$ forem autovalores da matriz M associados aos autovalores v_1 e v_2 então v_1 e v_2 são LI.

Dem.: Suponha, por contradição, que v_1 e v_2 são LD. Logo $\exists \alpha \neq 0 \in \mathbb{R}$ tal que $v_1 = \alpha v_2$.

Assim, $Mv_1 = \lambda_1 v_1 = \lambda_1 \alpha v_2$.

Por outro lado, $Mv_1 = M(\alpha v_2) = \alpha(Mv_2) = \alpha \lambda_2 v_2$.

Temos então $\lambda_1 \alpha v_2 = \lambda_2 \alpha v_2 \stackrel{\alpha \neq 0}{\Longrightarrow} (\lambda_1 - \lambda_2) v_2 = 0 \stackrel{v_2 \neq 0}{\Longrightarrow} \lambda_1 = \lambda_2.$

Portanto v_1 e v_2 são LI.

Sejam v_1 e v_2 autovetores da matriz M associados aos autovalores λ_1 e λ_2 , respectivamente. Temos três casos:

Caso 1)
$$\lambda_1 \neq \lambda_2$$
 reais

Pelo teorema 2, sabemos que $V_t = \lambda_1^t v_1$ e $U_t = \lambda_2^t v_2$ são soluções do sistema (S). Como $\lambda_1 \neq \lambda_2$ então v_1 e v_2 são LI. Temos então que V_t e U_t são LI se $\lambda_1, \lambda_2 \neq 0$. Com efeito, se $\lambda_1, \lambda_2 \neq 0$ (isto é equivalente a $det M \neq 0$), e tomando uma combinação linear nula de U_t e V_t , temos o seguinte:

$$\alpha U_t + \beta V_t = 0 \Rightarrow \alpha \lambda_1^t v_1 + \beta \lambda_2^t v_2 = 0 \xrightarrow{v_1, v_2 LI}$$
$$\alpha \lambda_1^t = \beta \lambda_2^t = 0 \xrightarrow{\lambda_1, \lambda_2 \neq 0} \alpha = \beta = 0$$

Logo, U_t e V_t são LI.

Este fato juntamente com o corolário 2 nos dá a seguinte solução geral para (S):

$$X_t = c_1 V_t + c_2 U_t$$

onde c_1 e c_2 são constantes.

Caso 2)
$$\lambda_1 = \lambda_2 = \lambda$$

Vamos verificar se $V_t = t\lambda^t v$ é solução do sistema (S)

$$MV_t = M(t\lambda^t v) = t\lambda^t (Mv) = t\lambda^{t+1} v \neq (t+1)\lambda^{t+1} v = V_{t+1}$$

Logo V_t não é solução de (S). Agora vamos tentar $U_t = (tv + u)\lambda^t$. Temos que:

$$MU_{t} = \lambda^{t} M(tv + u) = \lambda^{t} (tMv + Mu) = t\lambda^{t+1}v + \lambda^{t} Mu$$

$$e$$

$$U_{t+1} = ((t+1)v + u)\lambda^{t+1}$$

Assim, se $\lambda \neq 0$, teremos:

$$MU_t = U_{t+1} \Leftrightarrow t\lambda^{t+1}v + \lambda^t Mu = t\lambda^{t+1}v + \lambda^{t+1}v + \lambda^{t+1}u \stackrel{\lambda \neq 0}{\Longleftrightarrow} Mu = \lambda v + \lambda u \Leftrightarrow (M - \lambda I)u = \lambda v.$$

Note que $u \neq \alpha v$, pois se fosse $u = \alpha v$, teríamos:

$$(M-\lambda I)\alpha v=\lambda v\Rightarrow \alpha Mv-\alpha\lambda v=\lambda v\Rightarrow \lambda v=0\Rightarrow \lambda=0$$
, o que não é o caso.

Falta mostrar que V_t e U_t são LI.

De fato, suponha que $U_t = kV_t$, para algum $k \Rightarrow (tv + u)\lambda^t = k\lambda^t v \Rightarrow u = (k - t)v$ o que é absurdo pois, por hipótese, u não é múltiplo de v.

Portanto, se encontrarmos um vetor u tal que $(M-\lambda I)u=\lambda v$, a solução geral do sistema será

$$X_t = c_1 V_t + c_2 U_t = c_1(v\lambda^t) + c_2(tv+u)\lambda^t$$

onde c_1 e c_2 são constantes.

Caso 3) Autovalores complexos:
$$\lambda_1 = \alpha + \beta i$$
 e $\lambda_2 = \alpha - \beta i$

Neste caso teremos autovetores e soluções complexas $X_t = X_t^1 + X_t^2 i$. Se X_t é solução do sistema, então X_t^1 e X_t^2 também são soluções. De fato,

$$MX_{t} = X_{t+1} \Rightarrow M(X_{t}^{1} + X_{t}^{2}i) = (X_{t+1}^{1} + X_{t+1}^{2}i)$$

$$\Rightarrow MX_{t}^{1} + iMX_{t}^{2} = X_{t+1}^{1} + X_{t+1}^{2}i$$

$$\Rightarrow MX_{t}^{1} = X_{t+1}^{1} \text{ e } MX_{t}^{2} = X_{t+1}^{2}$$

Podemos escrever λ_1^t do seguinte modo:

$$(\alpha + \beta i)^t = r^t(\cos \theta t + i \sin \theta t)$$
, onde $r = \sqrt{\alpha^2 + \beta^2}$ e $\theta = \begin{cases} \arctan \frac{\beta}{\alpha}, \text{ se } \alpha \neq 0 \\ \frac{\pi}{2}, \text{ se } \alpha = 0 \end{cases}$

Substituindo na solução do sistema $X_t = c_1 v_1 \lambda_1^t + c_2 v_2 \lambda_2^t$ e lembrando que os autovetores são complexos e que as partes real e imaginária também são soluções então podemos escrever a solução geral como

$$X_{t} = \begin{pmatrix} x_{t} \\ y_{t} \end{pmatrix} = r^{t} \begin{pmatrix} A\cos\theta t \\ -B\sin\theta t \end{pmatrix} + r^{t} \begin{pmatrix} C\sin\theta t \\ D\cos\theta t \end{pmatrix} i$$

onde A,B, C e D são constantes.

O comportamento qualitativo da solução do sistema depende dos autovalores λ_i .

Se $|\lambda_i| < 1$, para todo i, então a solução $X_t \to 0$ quando $t \to \infty$.

Se $|\lambda_i| \geq 1$, para algum i, então a solução $X_t \nrightarrow 0$ quando $t \to \infty$.

Exercícios

a)
$$\begin{cases} x_{t+1} = 2x_t + y_t \\ y_{t+1} = x_t + 2y_t \end{cases}$$

Escrevendo o sistema na forma matricial temos

$$\left(\begin{array}{c} x_{t+1} \\ y_{t+1} \end{array}\right) = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right) \left(\begin{array}{c} x_t \\ y_t \end{array}\right)$$

Agora vamos encontrar os autovalores de

$$M = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right)$$

$$P(\lambda) = det(M - \lambda I) = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3$$

$$P(\lambda) = 0 \Leftrightarrow \lambda_1 = 1 \text{ ou } \lambda_2 = 3$$

Para $\lambda_1 = 1$,

$$(M-1I)v_1 = 0 \Leftrightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow v_{11} + v_{21} = 0 \Leftrightarrow v_{11} = -v_{21}$$

Tomando $v_{21} = 1$ temos

$$v_1 = \left(\begin{array}{c} -1\\ 1 \end{array}\right)$$

é o autovetor associado ao autovalor $\lambda_1 = 1$. Agora para $\lambda_2 = 3$,

$$(M-3I)v_2 = 0 \Leftrightarrow \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow -v_{12} + v_{22} = 0 \Leftrightarrow v_{12} = v_{22}$$

Tomando $v_{12} = 1$ temos que

$$v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

é o autovetor associado ao autovalor $\lambda_2 = 3$. Portanto a solução geral do sistema é

$$X_t = c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} 3^t$$

Neste caso $X_t \nrightarrow 0$ quando $t \to \infty$

b)
$$\begin{cases} x_{t+1} = x_t - y_t \\ y_{t+1} = x_t + 3y_t \end{cases}$$

A forma matricial deste sistema é:

$$\left(\begin{array}{c} x_{t+1} \\ y_{t+1} \end{array}\right) = \left(\begin{array}{cc} 1 & -1 \\ 1 & 3 \end{array}\right) \left(\begin{array}{c} x_t \\ y_t \end{array}\right)$$

Agora vamos encontrar os autovalores de

$$M = \left(\begin{array}{cc} 1 & -1 \\ 1 & 3 \end{array}\right)$$

$$P(\lambda) = det(M - \lambda I) = (1 - \lambda)(3 - \lambda) + 1 = \lambda^2 - 4\lambda + 4 = (\lambda - 2)^2$$

$$P(\lambda) = 0 \Leftrightarrow \lambda_1 = \lambda_2 = 2$$

Temos dois autovalores iguais. Para calcular um autovetor resolvemos o sistema (M-2I)v=0

$$\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow v_1 + v_2 = 0 \Leftrightarrow v_1 = -v_2$$

Tomando $v_2 = 1$ temos que

$$v = \left(\begin{array}{c} -1\\1 \end{array}\right)$$

Agora vamos resolver o sistema (M-2I)u=2v para encontrar o vetor u.

$$\begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix} \Leftrightarrow u_1 + u_2 = 2 \Leftrightarrow u_1 = 2 - u_2$$

Tomando $u_2 = 1$ temos que

$$u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Logo a solução geral do sistema é:

$$X_t = c_1 \begin{pmatrix} -1 \\ 1 \end{pmatrix} 2^t + c_2 \left[t \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right] 2^t$$

Note que quando $t \to \infty$, $X_t \nrightarrow \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

c)
$$\begin{cases} x_{t+1} = x_t + 2y_t \\ y_{t+1} = -2x_t + y_t \end{cases}$$

A forma matricial deste sistema:

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix}$$

Calculando os autovalores de

$$M = \left(\begin{array}{cc} 1 & 2 \\ -2 & 1 \end{array}\right)$$

$$P(\lambda) = det(M - \lambda I) = (1 - \lambda)^2 + 4 = \lambda^2 - 2\lambda + 5$$

$$P(\lambda) = 0 \Leftrightarrow \lambda_1 = 1 + 2i \text{ ou } \lambda_2 = 1 - 2i$$

Para $\lambda_1 = 1 + 2i$

$$(M-\lambda_1 I)v_1 = 0 \Leftrightarrow \begin{pmatrix} -2i & 2 \\ -2 & -2i \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -2iv_{11} + 2v_{21} = 0 \\ 2v_{11} + 2iv_{21} = 0 \end{cases} \Leftrightarrow v_{21} = iv_{11}$$

Tomando $v_{11} = 1$ temos

$$v_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$$

é o autovetor associado ao autovalor $\lambda_1 = 1 + 2i$.

Agora para $\lambda_2 = 1 - 2i$,

$$(M - \lambda_2 I)v_2 = 0 \Leftrightarrow \begin{pmatrix} 2i & 2 \\ -2 & 2i \end{pmatrix} \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 2iv_{12} + 2v_{22} = 0 \\ -2v_{12} + 2iv_{22} = 0 \end{cases} \Leftrightarrow v_{12} = iv_{22}$$

Tomando $v_{22} = 1$ temos que

$$v_2 = \begin{pmatrix} i \\ 1 \end{pmatrix}$$

Portanto a solução geral é

$$X_t = c_1 \begin{pmatrix} 1 \\ i \end{pmatrix} (1+2i)^t + c_2 \begin{pmatrix} i \\ 1 \end{pmatrix} (1-2i)^t$$

$$= \begin{pmatrix} 1 \\ i \end{pmatrix} c_1 (\sqrt{5})^t (\cos \theta t + i \sin \theta t) + c_2 \begin{pmatrix} i \\ 1 \end{pmatrix} (\sqrt{5})^t (\cos \theta t - i \sin \theta t)$$

$$= (\sqrt{5})^t \left[c_1 \begin{pmatrix} \cos \theta t + i \sin \theta t \\ -\sin \theta t + i \cos \theta t \end{pmatrix} + c_2 \begin{pmatrix} \sin \theta t + i \cos \theta t \\ \cos \theta t - i \sin \theta t \end{pmatrix} \right]$$

Tomando $c_1 = 1$ e $c_2 = 0$ temos que

$$(\sqrt{5})^t \left[\begin{pmatrix} \cos \theta t \\ -\sin \theta t \end{pmatrix} + i \begin{pmatrix} \sin \theta t \\ \cos \theta t \end{pmatrix} \right]$$

é solução.

$$(\sqrt{5})^t \begin{pmatrix} \cos \theta t \\ -\sin \theta t \end{pmatrix}$$
 e $(\sqrt{5})^t \begin{pmatrix} \sin \theta t \\ \cos \theta t \end{pmatrix}$

são também soluções.

Portanto a solução geral é:

$$X_t = \begin{pmatrix} x_t \\ y_t \end{pmatrix} = (\sqrt{5})^t \left[k_1 (\sqrt{5})^t \begin{pmatrix} \cos \theta t \\ -\sin \theta t \end{pmatrix} + k_2 (\sqrt{5})^t \begin{pmatrix} \sin \theta t \\ \cos \theta t \end{pmatrix} \right]$$

onde k_1 e k_2 são constantes.

Neste caso, quando $t \to \infty X_t \nrightarrow 0$.

Exemplo 6: Crescimento populacional das tilápias com taxas de sobrevivência

As tilápias são peixes da água doce que apresentam três estágios em seu ciclo de vida: ovos, jovens e adultos. A capacidade de reproduzir dos adultos ocorre aproximadamente aos 4 meses de idade. As tilápias podem desovar a cada 2 meses quando a temperatura da água permanece acima de $20^{\circ}C$. As fêmeas põem seus ovos nos ninhos que são fecundados pelos machos. Após a fecundação, as fêmeas recolhem os ovos na boca para a incubação, eclosão e proteção das larvas. Dependendo do tamanho da fêmea, o número de larvas produzidas pode variar de 100 a 600 por desova com uma taxa de mortalidade igual a 50%.

Considerações:

- 1) Somente a fêmea adulta desova e o faz a cada 2 meses;
- 2) Após 4 meses um alevino torna-se adulto;
- 3) As probabilidades de nascer macho ou fêmea são iguais.

Seja c a quantidade de ovos de uma desova. Então

nº de ovos × nº de fêmeas =
$$\frac{1}{2}a_nc$$

é a quantidade de ovos num estágio n, onde a_n é a quantidade de peixes adultos em n. Se α é a taxa de eclosão de ovos então $\alpha c \frac{1}{2} a_n$ são os ovos sobreviventes no estágio n.

Sejam:

- \bullet $\gamma = \frac{\alpha c}{2}$ a taxa de sobrevivência da população de ovos;
- b_n a quantidade de jovens (alevinos) em cada estágio n;
- β taxa de conversão de alevinos para adultos;
- δ taxa de sobrevivência dos adultos;
- \bullet a_n a quantidade de adultos em cada estágio n: (adultos que sobreviveram no estágio (n-1)) + (jóvens que chegaram à fase adulta)

$$a_n = \delta a_{n-1} + \beta b_{n-1}$$

• c_n a quantidade do ovos viáveis em cada estágio n: c_n = (ovos provenientes da desova dos adultos) + (ovos provenientes da desova dos alevinos que chegaram na fase adulta)

$$c_n = \gamma a_{n-1} + \gamma \beta b_{n-1}$$

 \bullet $b_n=$ jovens sobreviventes do estágio (n-1)

$$b_n = c_{n-1}$$

Assim obtemos o sistema linear de ordem 3:

$$\begin{cases} a_n = \delta a_{n-1} + \beta b_{n-1} \\ b_n = c_{n-1} \\ c_n = \gamma a_{n-1} + \gamma \beta b_{n-1} \end{cases}$$

Escrevendo este sistema na forma matricial:

$$\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = \begin{pmatrix} \delta & \beta & 0 \\ 0 & 0 & 1 \\ \gamma & \gamma \beta & 0 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ b_{n-1} \\ c_{n-1} \end{pmatrix}$$

Logo os autovalores λ são dados pelas raízes da equação característica

$$P(\lambda) = \det(J - \lambda I) = \begin{pmatrix} \delta - \lambda & \beta & 0 \\ 0 & -\lambda & 1 \\ \gamma & \gamma \beta & -\lambda \end{pmatrix}$$

$$P(\lambda) = 0 \Leftrightarrow -\lambda^3 + \lambda^2 \delta + \beta \gamma + \gamma \beta \lambda - \gamma \beta \delta = 0$$

Se os valores dos parâmetros γ , δ e β são conhecidos então o cálculo das raízes do polinômio característico $-\lambda^3 + \lambda^2 \delta + \gamma \beta \lambda = \gamma \beta (\delta - 1)$ pode ser feito por métodos numéricos.

Exemplo 7: Um modelo esquemático de produção de células vermelhas sangüíneas (CVS) :

No sistema circulatório, as CVS estão constantemente sendo destruídas e repostas. Uma vez que estas células transportam oxigênio pelo organismo, sua quantidade deve ser mantida em algum nível fixo. Assuma que uma fração destas células é destruída diariamente pelo baço e que a medula óssea produz um número de CVS proporcional ao número perdido no dia anterior. Qual seria a quantidade de CVS no t-ésimo dia?

Para modelar este problema considere:

- $R_t = \text{número de CVS na circulação no dia } t;$
- $\bullet \ M_t =$ número de CVS produzidas pela medula óssea no dia t;
- f = fração de CVS removidas pelo baço;
- $\gamma =$ produção constante de CVS (quantidade produzida por quantidade removida).

Temos a partir disso que:

$$\begin{cases} R_{t+1} = (1-f)R_t + M_t \\ M_{t+1} = \gamma f R_t \end{cases}$$

Chamemos $V_t = \begin{pmatrix} R_t \\ M_t \end{pmatrix}$ e coloquemos o sistema acima na forma matricial:

$$V_{t+1} = MV_t$$
, onde $M = \begin{pmatrix} 1 - f & 1 \\ \gamma f & 0 \end{pmatrix}$

Vamos calcular os autovalores de M:

$$det(M - \lambda I) = 0 \Leftrightarrow \begin{vmatrix} 1 - f - \lambda & 1 \\ \gamma f & -\lambda \end{vmatrix} = 0 \Leftrightarrow$$
$$\lambda(\lambda + f - 1) - \gamma f = 0 \Leftrightarrow \lambda^2 + \lambda f - \lambda - \gamma f = 0 \Leftrightarrow$$
$$\lambda^2 + \lambda(f - 1) - \gamma f = 0$$

As raízes em λ da equação acima são:

$$\lambda_1 = \frac{(1-f) + \sqrt{(1-f)^2 + 4\gamma f}}{2}$$
 e $\lambda_2 = \frac{(1-f) - \sqrt{(1-f)^2 + 4\gamma f}}{2}$

É fácil ver que $\lambda_1 > 0$ e $\lambda_2 < 0$.

Suponhamos que v_1 e v_2 são autovetores reais associados a λ_1 e λ_2 , respectivamente. Então a solução geral de $V_{t+1}=MV_t$, será:

$$V_t = \lambda_1^t V_1 + \lambda_2^t V_2$$

ou então:

$$\begin{pmatrix} R_t \\ M_t \end{pmatrix} = \lambda_1^t \begin{pmatrix} r_1 \\ m_1 \end{pmatrix} + \lambda_2^t \begin{pmatrix} r_2 \\ m_2 \end{pmatrix}$$

Note que

- Se $\gamma<1$ então $\lambda_1<1$ e $\lambda_2>-f$, ou seja, $|\lambda_1|,\,|\lambda_2|<1$. Temos então que $R_t\to 0$ quando $t\to\infty$
- \bullet Se $\gamma>1$ então $\lambda_1>1$ e $\lambda_2<-f,$ ou seja, $|\lambda_1|>1.$ Temos então que $R_t\to\infty$ quando $t\to\infty$
- Se $\gamma=1$ então $\lambda_1=1$ e $\lambda_2=-f$, ou seja, $|\lambda_1|=1$ e $\lambda_2=f<1$. Temos então que $R_t\to r_1$ quando $t\to\infty$

Portanto, a única forma de manter a quantidade de CVS num nível aproximadamente constante na circulação é impondo que $\gamma=1$. Isto significa que a quantidade de CVS removida pelo baço no dia t tem que ser igual à quantidade de CVS produzida pela medula óssea no dia t+1.

2 EQUAÇÕES DE DIFERENÇAS NÃO-LINEARES DE PRIMEIRA ORDEM

Uma equação de diferença não-linear de primeira ordem é uma fórmula de recorrência do tipo

$$y_{t+1} = f(y_t) (2.1)$$

onde $f: I \subset \mathbb{R} \to \mathbb{R}$ é uma combinação não-linear de y_t (quadrática, potências, exponenciais, etc).

A solução de (2.1) é uma expressão que relaciona y_t e y_o (condição inicial) para cada estágio t.

Uma maneira de analisar estas equações é através de seus pontos de equilíbrio. No contexto das equações de diferenças tem-se a estabilidade do processo quando

$$y_{n+1} = y_n = \bar{y} \ (2.2)$$

Da equação (2.1), tem-se um ponto de equilíbrio quando

$$\bar{y} = f(\bar{y}) \ (2.3)$$

isto é, \bar{y} é um ponto fixo da função f.

Para encontrar \bar{y} devemos ter:

$$y_{t+1} = y_t, \forall t \Leftrightarrow f(y_y) = y_t, \forall t$$

Uma maneira simples para determinar os pontos de equilíbrio de uma equação não-linear é através dos gráficos de Lamery.

No plano cartesiano, considere os valores de y_t no eixo das abscissas e y_{t+1} no eixo das ordenadas. A interseção da bissetriz $y_{t+1} = y_t$ com o gráfico da f fornece os pontos de equilíbrio.

Teorema 3 Seja f uma função de classe C^1 . Um ponto fixo ou ponto de equilíbrio \bar{y} é assintoticamente estável se

$$|f'(\bar{y})| < 1$$

e é instável se

$$|f'(\bar{y})| > 1.$$

Dem.: Seja a solução $y_t = \bar{y} + y_t$ (2.4) de (2.1) onde y'_t é uma pequena perturbação do ponto de equilíbrio \bar{y} . Das equações $\bar{y} = f(\bar{y})$ e (2.4) segue-se que a perturbação y'_t satisfaz

$$y'_{t+1} = y_{t+1} - \bar{y} = f(y_t) - \bar{y} = f(\bar{y} + y'_t) - \bar{y}$$

Expandindo a função f em série de Taylor, temos:

$$f(\bar{y}) + y'_t = f(\bar{y}) + f'(\bar{y})\bar{y'} + O(y'^2_t)$$
 (2.6)

Substituindo (2.5) em (2.6) temos

$$\bar{y} + y'_t = f(\bar{y}) + f'(\bar{y})\bar{y}' + O(y'^2_t)$$

ou seja,

$$y'_{t} = f(\bar{y}) - \bar{y} + f'(\bar{y})\bar{y}' + O(y'^{2}_{t})$$

Lembrando que $f(\bar{y}) = \bar{y}$ então

$$y_t' \cong f'(\bar{y})\bar{y}'$$
 (2.7)

Logo, transformamos um problema não-linear em linear. Do capítulo 1, sabemos que a solução da equação (2.7) será decrescente quando $|f'(\bar{y})| < 1$ e crescente quando $|f'(\bar{y})| > 1$.

Portanto \bar{y} é assintoticamente estável se $|f'(\bar{y})| < 1$ e instável se $|f'(\bar{y})| > 1$.

Definição: \bar{y} é uma *órbita (ou n-ciclo)* de período n se \bar{y} for ponto fixo de $f^{(n)}(y)$, sendo n o menor inteiro com esta propriedade, isto é,

$$f^{(n)}(\bar{y}) = \bar{y} \in f^{(k)}(\bar{y}) \neq \bar{y} \ \forall k < n$$

Por exemplo, se y_0 for 2-ciclo $\Rightarrow f(y_0) \neq y_0$ e $f(f(y_0)) = y_0$

Exemplos

1. Considere a seguinte equação de diferenças não-linear para o crescimento populacional:

$$y_{t+1} = \frac{ky_t}{b+y_t},$$

onde k, b > 0.

Encontre os pontos de equilíbrio e diga a condição para que estes pontos sejam assintoticamente estável.

Solução: Para calcular os pontos de equilíbrio, seja $\bar{y} = y_{t+1} = y_t$.

Então

$$\bar{y} = \frac{k\bar{y}}{b+\bar{y}} \Leftrightarrow \bar{y}(b+\bar{y}) - k\bar{y} = 0 \Leftrightarrow \bar{y}(b+\bar{y}-k) = 0$$

$$\Leftrightarrow \bar{y}_1 = 0 \text{ ou } \bar{y}_2 = k - b$$

Note que $\bar{y}_2 = k - b$ só faz sentido se k > b.

Agora vamos calcular a derivada da $f(y) = \frac{ky}{b+y}$

$$f'(y) = \frac{kb}{(b+y)^2}$$

Logo para \bar{y}_1 temos,

$$f'(\bar{y}_1) = f'(0) = \frac{k}{h}$$

Como k > b então $|f'(\bar{y}_1)| > 1$.

Logo $\bar{y}_1 = 0$ não pode ser assintoticamente estável.

Para o ponto de equilíbrio \bar{y}_2 temos,

$$|f'(\bar{y}_2)| = |f'(k-b)| = |\frac{b}{k}| < 1 \Leftrightarrow k > b.$$

Logo \bar{y}_2 é assintoticamente estável.

2. Equação Logística Discreta.

Considere a equação de diferenças não linear

$$y_{t+1} = f(y_t) = ry_t(1 - y_t)$$

com r > 0.

Para calcular os pontos de equilíbrio fazemos $y_{t+1} = y_t = \bar{y}$, ou seja,

$$\bar{y} = f(\bar{y}) = r\bar{y}(1 - \bar{y}) \Leftrightarrow r\bar{y}(1 - \bar{y}) - \bar{y} = 0 \Leftrightarrow \bar{y}[r(1 - \bar{y}) - 1] = 0$$

$$\Leftrightarrow \bar{y}_1 = 0 \text{ ou } \bar{y}_2 = 1 - \frac{1}{r}$$

Podemos ver os pontos de equilíbrio pelo Gráfico de Lamery:

Note novamente que \bar{y}_2 só faz sentido se $1-\frac{1}{r}>0$, ou seja, r>1.

Agora vamos calcular a derivada da função f

$$f'(y) = r - 2ry$$

Para o ponto de equilíbrio $\bar{y}_1 = 0$ temos $f'(\bar{y}_1) = r$. E para o equilíbrio $\bar{y}_2 = 1 - \frac{1}{r}$ temos, $f'(\bar{y}_2) = 2 - r$.

Então:

- a) se 0 < r < 1 então
- $\bullet\,$ para o equilíbrio \bar{y}_1 temos

$$f'(\bar{y}_1) = r < 1$$

 $\Rightarrow \bar{y}_1 = 0$ é assintoticamente estável

 $\bullet\,$ para o equlíbrio \bar{y}_2 temos

$$f'(\bar{y}_2) = 2 - r > 1$$

 $\Rightarrow \bar{y}_2$ é instável.

b) se r = 1 então

$$f'(\bar{y}_1) = f'(\bar{y}_2) = 1$$

 $\Rightarrow \bar{y}_1 = \bar{y}_2 = 0$ é estável.

c) se r > 1 então

ullet para o equilíbrio \bar{y}_1 temos

$$f'(\bar{y}_1) = r > 1$$

 $\Rightarrow \bar{y}_1$ é instável.

• para o equlíbrio \bar{y}_2 temos que \bar{y}_2 é assintoticamente estável se

$$|f'(\bar{y}_2)| = |2 - r| < 1 \Leftrightarrow 1 < r < 3$$

e se r > 3

$$f'(\bar{y}_2) = |2 - r| > 1$$

 $\Rightarrow \bar{y}_2$ é instável.

d) se
$$r = 3$$
 então $f'(\bar{y}_2) = -1$.

Neste caso aparece oscilações de período 2 (ciclos de 2 pontos), isto é, que satisfazem as duas equações

$$y_{t+1} = f(y_t)$$
$$y_{t+2} = y_t$$

ou seja,

$$y_{t+2} = f(y_{t+1}) = f(f(y_t)) = y_t \in \bar{y}_2 = f(f(\bar{y}_2))$$
 é ponto fixo de f^2 .

Sistemas Não Lineares

Considere o sistema de equações:

$$(S) \begin{cases} x_{t+1} = f(x_t, y_t) \\ y_{t+1} = g(x_t, y_t) \end{cases}$$

onde f e g são funções não lineares e $f,g:D\subset\mathbb{R}^2\to\mathbb{R}.$

Seja (\bar{x}, \bar{y}) ponto de equilíbrio tal que

$$\left\{ \begin{array}{l} \bar{x} = f(\bar{x}, \bar{y}) \\ \bar{y} = g(\bar{x}, \bar{y}) \end{array} \right.$$

Analizemos a estabilidade de (\bar{x}, \bar{y}) .

Expandindo as funções f e g (em duas variáveis) em séries de Taylor:

$$f(\bar{x} + x', \bar{y} + y') = f(\bar{x}, \bar{y}) + \frac{\partial f}{\partial x}(\bar{x}, \bar{y})\bar{x} + \frac{\partial f}{\partial y}(\bar{x}, \bar{y})\bar{y} + R_1(\bar{x}, \bar{y})$$

$$g(\bar{x} + x', \bar{y} + y') = g(\bar{x}, \bar{y}) + \frac{\partial g}{\partial x}(\bar{x}, \bar{y})\bar{x} + \frac{\partial g}{\partial y}(\bar{x}, \bar{y})\bar{y} + R_2(\bar{x}, \bar{y})$$

onde $R_1(\bar{x}, \bar{y}) \to (0,0)$ quando $(\bar{x}, \bar{y}) \to (0,0)$ e $R_2(\bar{x}, \bar{y}) \to (0,0)$ quando $(\bar{x}, \bar{y}) \to (0,0)$.

Note que (\bar{x}, \bar{y}) é ponto de equilíbrio do sistema $(S) \Leftrightarrow (0,0)$ é ponto de equilíbrio do sistema

$$(S') \begin{cases} x'_{t+1} = a_{11}x'_t + a_{12}y'_t \\ y'_{t+1} = a_{21}x'_t + a_{22}y'_t \end{cases}$$
 onde $a_{11} = \frac{\partial f}{\partial x}(\bar{x}, \bar{y}), \ a_{12} = \frac{\partial f}{\partial y}(\bar{x}, \bar{y}), \ a_{21} = \frac{\partial g}{\partial x}(\bar{x}, \bar{y}), \ a_{22} = \frac{\partial g}{\partial y}(\bar{x}, \bar{y})$

Escrevendo o sistema (S') na forma matricial temos:

$$\begin{pmatrix} x'_{t+1} \\ y'_{t+1} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x'_{t} \\ y'_{t} \end{pmatrix} \Leftrightarrow X'_{t+1} = AX'_{t}$$

onde
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 e $X'_t = \begin{pmatrix} x'_t \\ y'_t \end{pmatrix}$.

Agora reduzimos o problema para um sistema de equações lineares. Para determinar a estabilidade de (\bar{x}, \bar{y}) usamos os mesmos métodos dados no capítulo 1. Em resumo:

1) Achamos a equação característica de (S') fazendo

$$det(A - \lambda I) = \lambda^2 - \beta \lambda + \gamma = 0$$

onde $\beta = a_{11} + a_{22}$ e $\gamma = a_{11}a_{22} - a_{12}a_{21}$.

2) Verificamos se as raízes da equação (os autovalores) são menores que 1 em módulo. Caso afirmativo, podemos concluir que o ponto de equilíbrio é estável.

Critério de estabilidade para equações de segunda ordem

Dada a equação característica $\lambda^2-\beta\lambda+\gamma=0$ (2.7), ambas raízes terão módulo menor que 1 se

$$2 > 1 + \gamma > |\beta|$$

Dem.:

As raízes da equação (2.7) são

$$\lambda_{1,2} = \frac{\beta \pm \sqrt{\beta^2 - 4\gamma}}{2}$$

Para que o ponto de equilíbrio (\bar{x}, \bar{y}) seja estável é necessário que

$$|\lambda_1| < 1 \ e \ |\lambda_2| < 1$$

Agora note que o ponto médio, dado por $\frac{\lambda_1 + \lambda_2}{2} = \frac{\beta}{2}$, também deve está no intervalo (-1,1). Então

$$\left|\frac{\beta}{2}\right| < 1 \ (2.8)$$

Além disso, é necessário que a distância entre $\frac{\beta}{2}$ e as outras raízes seja menor que a distância entre $\frac{\beta}{2}$ e o ponto extremo do intervalo. Então,

$$0 < \frac{\sqrt{\beta^2 - 4\gamma}}{2} < 1 - \left| \begin{array}{c} \beta \\ 2 \end{array} \right|$$

Elevando ambos lados da desigualdade acima ao quadrado:

$$(1 - \left| \frac{\beta}{2} \right|)^2 > \left(\frac{\sqrt{\beta^2 - 4\gamma}}{2} \right)^2 \Leftrightarrow 1 - \left| \beta \right| + \frac{\beta^2}{4} > \frac{\beta^2}{4} - \gamma \Leftrightarrow 1 + \gamma > \left| \beta \right| (2.9)$$

Combinando as equações (2.8) e (2.9) temos que $2 > 1 + \gamma$.

Portanto

$$2 > 1 + \gamma > |\beta|$$

Critério de estabilidade para sistemas de ordem maior

Considere $P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \ldots + a_{n-1} \lambda + a_n$ a equação característica de um sistema.

Defina as seguintes combinações de parâmetros:

Teste Jury: As condições necessárias e suficientes para que as raízes de $P(\lambda)$ satisfaça $|\lambda| < 1$ são as seguintes:

1.
$$P(1) = 1 + a_a + \dots + a_{n-1} + a_n$$

2.
$$(-1)^n P(-1) = (-1)^n [(-1)^n + a_1(-1)^{n-1} + \dots + a_{n-1}(-1) + a_n] > 0$$

3.
$$\begin{aligned} a)|a_n| &< 1, \\ b)|b_n| &> |b_1|, \\ c)|c_n| &> |c_2|, \\ d)|d_n| &> |d_3|, \\ \vdots \\ q)|q_n| &> |q_{n-2}|, \end{aligned}$$

Exemplo: Aplique o teste de Jury para

$$\lambda^4 + \lambda^3 + \lambda^2 + \lambda^1 + 1 = 0$$

Solução:

Neste caso n=4. Vamos analisar as condições do teste de Jury: Examinando as condições:

1.
$$P(1) = 1 + 1 + 1 + 1 + 1 > 0$$

2.
$$(-1)^4 P(1) = 1(1-1+1+1+1) > 0$$

3.
$$|a_n| = 1$$

Dessa forma o polinômio tem pelo menos uma raíz λ tal que $|\lambda| > 1$.

Exercícios

1) Determine quando os seguintes pontos fixos são estáveis:

a)
$$y_{t+1} = ry_t(1 - y_t), \ \bar{y} = 0.$$

b)
$$y_{t+1} = y_t ln y_t^2$$
, $\bar{y} = e^{\frac{1}{2}}$.

Solução:

a) Temos que $f(y) = ry - ry^2$. Logo

$$f'(y) = r - 2ry \Rightarrow f'(y^*) = f'(0) = r$$

Assim $\bar{y} = 0$ é estável $\Leftrightarrow |f'(0)| = |r| < 1$.

b)Note que $f(y) = y \ln y^2$.

Assim
$$f'(y) = \ln y^2 + y \frac{1}{y^2} 2y = \ln y^2 + 2$$
.

Logo,
$$|f'(e^{\frac{1}{2}})| = 1 + 2 = 3 > 1$$
.

 $\Rightarrow \bar{y}$ é instável.

2)Numa dinâmica populacional um modelo encontrado para população de peixes é baseada numa equação chamada Equação de Ricker:

$$N_{n+1} = \alpha N_n e^{-\beta N_n}$$

onde $\alpha>0$ representa o crescimento máximo da fração dos organismos e $\beta>0$ é a inibição do crescimento causado pela superpopulação.

a) Mostre que esta equação tem ponto de equilíbrio não nulo

$$\bar{N} = \frac{ln\alpha}{\beta}$$

- b) Mostre que o ponto de equilíbrio da letra a) é estável se $|1-ln\alpha|<1$.
 - a) \bar{N} é ponto de equilíbrio se

$$\bar{N} = \alpha \bar{N} e^{-\beta \bar{N}}$$

$$\Leftrightarrow \bar{N}(1-\alpha e^{-\beta\bar{N}})=0 \Leftrightarrow \bar{N}=0 \text{ ou } 1-\alpha e^{-\beta\bar{N}}=0$$
isto é,

$$e^{-\beta \bar{N}} = \frac{1}{\alpha}$$

ou seja,

Solução:

$$\bar{N} = \frac{ln\alpha}{\beta}$$

b) Temos que $f(N) = \alpha N e^{-\beta N}$ Assim,

$$f'(N) = \alpha e^{-\beta N} - \beta \alpha N e^{-\beta N} = \alpha e^{-\beta N} (1 - \beta N)$$
$$f'(\bar{N}) = f'(N^{\frac{\ln \alpha}{\beta}}) = 1 - \ln \alpha$$

Logo \bar{N} é estável se $|f'(\bar{N})| = |1 - ln\alpha| < 1$.

3) A equação $N_{n+1} = \lambda N_n (1 + a N_n)^{-b}$, onde $\lambda, a, b > 0$ é frequentemente encontrada na biologia como uma descrição do crescimento populacional. Por exemplo, λ é a fração de crescimento e a e b são parâmetros relacionados com a fração de realimentação. Encontre os pontos de equilíbrio e determine a condição de estabilidade para cada um.

Solução:

 \bar{N} é ponto fixo se

$$\bar{N} = \lambda \bar{N} (1 + a\bar{N})^{-b} \Leftrightarrow \bar{N} (1 - \lambda (1 + N^*)^{-b}) = 0$$

$$\Leftrightarrow \bar{N}_1 = 0 \text{ ou } \lambda = (1 + a\bar{N})^b$$

$$\Leftrightarrow \lambda^{\frac{1}{b}} = 1 + a\bar{N} \Leftrightarrow \bar{N}_2 = \frac{-1 + \lambda^{\frac{1}{b}}}{a}$$

Sabemos que $f(N) = \lambda N (1+aN)^{-b} = \frac{\lambda N}{(1+aN)^b}$, então

$$f'(N) = \frac{\lambda(1+aN)^b - \lambda Nb(1+aN)^{b-1}a}{(1+aN)^{2b}}$$

Para $\bar{N}_1 = 0$ temos que $f'(0) = \lambda$ Assim 0 é estável $\Leftrightarrow |\lambda < 1|$.

Para
$$\bar{N}_2 = \frac{-1+\lambda^{\frac{1}{b}}}{a}$$
 temos que $f'(\bar{N}_2) = b(1-\lambda^{-1/b}-1)$.

Logo
$$\bar{N}_2$$
 é estável $\Leftrightarrow |(1 - \lambda^{-1/b}) - 1| < 1$

$$\Leftrightarrow -1 < b(1-\lambda^{-1/b}) - 1 < 1 \Leftrightarrow 0 < b(1-\lambda^{-1/b}) < 2.$$

3 APLICAÇÕES PARA EQUAÇÕES DE DIFERENÇAS NÃO-LINEARES

Assumimos que uma fração de crescimento, de reprodutividade e de sobrevivência depende da densidade da população para considerar modelos da forma:

$$N_{t+1} = f(N_t)$$

onde $f(N_t)$ é alguma função não linear da população.

Freqüêntemente algumas populações, como de insetos, por exemplo, são descritas por tais equações, onde f é uma função que é ajustada para um dado obtido por gerações sucessivas da população.

Vamos apresentar vários modelos deste tipo e suas propriedades.

1) Modelo de Varley, Gradwell e Hassell (1973):

$$N_{t+1} = \frac{\lambda}{\alpha} N_t^{1-b}$$

onde λ é a taxa de reprodução.

 $\frac{1}{\alpha N_t^b}$ é a fração da população que sobrevive da fase da infância até a fase de adultos reprodutivos.

Podemos escrever a equação $N_{t+1} = f(N_t)$ como

$$N_{t+1} = \left(\frac{1}{\alpha}N_t^{-b}\right)(\lambda N_t)$$

onde $\alpha, b, \lambda > 0$.

 $\lambda N_t =$ número de descendentes na geração t,

 $\frac{1}{\alpha}N_t^{-b}=$ fração que sobrevive para a geração t+1

Pontos de equilíbrio:

Seja
$$\bar{N}$$
 tal que $\bar{N} = N_{t+1} = N_t$.

Assim,

$$\bar{N} = \frac{\lambda}{\alpha} \bar{N}^{1-b}$$

$$\Leftrightarrow \bar{N} \left(1 - \frac{\lambda}{\alpha} \bar{N}^{1-b} \right) = 0 \Leftrightarrow \bar{N}_1 = 0 \text{ ou } \bar{N}_2 = \left(\frac{\lambda}{\alpha} \right)^{\frac{1}{b}}$$

Temos que,

$$f(N) = \frac{\lambda}{\alpha} N^{1-b} \Rightarrow f'(N) = \frac{\lambda}{\alpha} (1-b) N^{-b}$$

Para $\bar{N}_2 = \left(\frac{\lambda}{\alpha}\right)^{\frac{1}{b}}$ temos que f'(N) = 1 - b.

Logo \bar{N}_2 é assintoticamente estável $\Leftrightarrow |f'(N)| = |1-b| < 1,$ ou seja, 0 < b < 2.

2) Modelo de May (1975):

$$N_{t+1} = N_t e^{r\left(1 - \bar{N}_t/k\right)}$$

onde r, k são constantes positivas.

Pontos de equilíbrio (\bar{N}) :

$$\bar{N} = \bar{N}e^{r\left(1 - \bar{N}/k\right)}$$

$$\Leftrightarrow \bar{N}(1 - e^{r(1 - \bar{N}/k)}) = 0$$

$$\Leftrightarrow N_1 = 0 \text{ ou } e^{r\left(1 - \bar{N}/k\right)} = 1 \Leftrightarrow r\left(1 - \bar{N}/k\right) = \ln 1 = 0$$

Como r>0,então $1-\frac{\bar{N}}{k}=0,$ isto é, $\bar{N}_2=k$

Para analisar a estabilidade, derivamos a função $f(N) = Ne^{r\left(-1 - \frac{N}{k}\right)}$. Então

$$f'(N) = (1 - Nr/k) e^{r(1 - N/k)}$$

Avaliando em $\bar{N} = \bar{N}_2 = k$ temos

$$f'(k) = 1 - k\frac{r}{k} = 1 - r$$

Então a estabilidade é obtida quando

$$|f(k)| = |1 - r| < 1,$$

ou seja, quando

3) Modelo de Hassell (1975):

$$N_{t+1} = \lambda N_t (1 + aN_t)^{-b},$$

onde $\lambda, a, b > 0$

Temos pelo exercício 3 do capítulo 2, que os pontos de equilíbrio são $\bar{N}_1=0$ e $\bar{N}_2=\frac{\lambda^{1/b}-1}{a}$

Então 0 é estável $\Leftrightarrow |\lambda| < 1$ e \bar{N}_2 é estável $\Leftrightarrow 0 < b(1-\lambda^{\frac{-1}{b}}) < 2.$

Sistema Hospedeiro-Parasita

Uma fêmea adulta de um inseto procura por um hospedeiro para depositar seus ovos. Em alguns casos, os ovos são depositados no exterior da superfície do hospedeiro durante o estágio larval ou pupal. Em outros casos, os ovos são injetados na carne do hospedeiro. A larva parasitada desenvolve e cresce no hospedeiro, consumindo-o e eventualmente matando-o antes de chegar na fase de pupa.

Algumas hipóteses:

- 1) Os hospedeiros parasitados dão origem a próxima geração de parasitas;
- 2) Hospedeiros não parasitados contribuem para a população de hospedeiros;
- 3) A fração de hospedeiros parasitados depende do encontro das duas espécies.

Considere os seguintes parâmetros:

 $N_t = \text{número de hospedeiros na geração } t;$

 P_t = número de parasitas na geração t;

 $f = f(N_t, P_t) = \text{fração de hospedeiros não-parasitados};$

1 - f = fração de hospedeiros parasitados;

 $\lambda = \tan \theta$ reprodução dos hospedeiros;

c = número médio de ovos viáveis dos parasitas.

Assim,

• N_{t+1} = número de hospedeiros na geração anterior x fração de hospedeiros não parasitados x taxa de reprodução (λ) , isto é,

$$N_{t+1} = \lambda N_t f(N_t, P_t) = F(N_t, P_t)$$

• P_{t+1} = número de hospedeiros parasitados na geração anterior x fecundidade dos parasitados (c), isto é,

$$P_{t+1} = cN_t(1 - f(N_t, P_t)) = G(N_t, P_t)$$

Estas duas equações acima esboçam o contexto geral para o modelo hospedeiro-parasita. Para continuar é necessário especificar o termo $f(N_t, P_t)$ e como ele depende das populações.

Modelo de Nicholson-Bailey

É um caso particular do modelo anterior. Nicholson e Bailey acrescentaram mais duas hipóteses sobre o número de encontros e a fração de parasitas de um hospedeiro:

4) Os encontros ocorrem por acaso. O número de encontros N_e de hospedeiros por parasitas é proporcional ao produto de suas densidades:

$$N_e = aN_tP_t$$

onde a é uma constante que representa a eficiência da procura de parasitas.

5) Apenas o primeiro encontro entre hospedeiros e parasitas é levado em conta.

Definimos agora a Distribuição de Poisson.

A Distribuição de Poisson é a probabilidade que descreve a ocorrência de eventos por acaso, tal como encontros entre presa e predador. A probabilidade de r eventos é:

$$p(r) = \frac{e^{-\mu}}{r!} \mu^r,$$

onde $\mu = \frac{N_e}{N_t}$ é o número médio de eventos em um dado intervalo de tempo.

Reescrevendo a equação $N_e = aN_tP_t$ temos

$$\frac{N_e}{N_t} = aP_t = \mu$$

Por exemplo, a fração de hospedeiros não parasitados é:

$$P(0) = \frac{e^{-aP_t}(aP_t)^0}{0!} = e^{-aP_t}$$

Dessa forma, com a hipótese de que os encontros são independentes e acontecem por acaso e que sua eficiente procura é constante, temos as equações de Nilchoson-Bailey:

$$\begin{cases} N_{t+1} = \lambda N_t e^{-aP_t} \\ P_{t+1} = cN_t (1 - e^{-aP_t}) \end{cases}$$

Analizaremos agora este modelo usando os métodos desenvolvidos no capítulo 2. Encontrando os pontos de equilíbrio (N,P):

Sejam $F(N_t, P_t) = \lambda N e^{-aP}$ e $G(N_t, P_t) = cN(1 - e^{-aP})$. Para encontrar os pontos de equilíbrio, devemos resolver o sistema

$$\begin{cases} F(N_t, P_t) = \bar{N} \\ G(N_t, P_t) = \bar{P} \end{cases} \Leftrightarrow \begin{cases} \lambda^{\bar{N}} e^{-a\bar{P}} = \bar{N} \\ c\bar{N}(1 - e^{-a\bar{P}}) = \bar{P} \end{cases}$$

De $\lambda^{\bar{N}}e^{-a\bar{P}}=\bar{N}$ temos que $\bar{N}=0$ ou $\bar{P}=\frac{\ln\lambda}{a}$.

Para $\bar{N} = 0$ temos que $\bar{P} = 0$.

Para $\bar{P}_2 = \frac{\ln \lambda}{a}$, substituindo em $c\bar{N}(1-e^{-a\bar{P}}) = \bar{P}$

$$c\bar{N}(1-e^{-a\frac{\ln\lambda}{a}}) = \frac{\ln\lambda}{a} \Leftrightarrow \bar{N}_2 = \frac{\lambda\ln\lambda}{(\lambda-1)ac} , \lambda \neq 1$$

Assim temos dois pontos de equilíbrios

$$P_1 = (0,0) e P_2 = (\bar{N}_2, \bar{P}_2) = \begin{pmatrix} \frac{\lambda ln\lambda}{(\lambda - 1)ac}, & \frac{ln\lambda}{a} \end{pmatrix}$$

Notação: $\frac{\partial f(\bar{N},\bar{P})}{\partial N} = F_N(\bar{N},\bar{P})$

Para analisar a estabilidade dos pontos de equilíbrio, vamos calcular os coeficientes a_{ij} da Matriz Jacobiana:

$$J = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

$$a_{11} = F_N(\bar{N}, \bar{P}) = \lambda e^{-a\bar{P}}$$

$$a_{12} = F_P(\bar{N}, \bar{P}) = -a\lambda N e^{-a\bar{P}}$$

$$a_{21} = G_N(\bar{N}, \bar{P}) = c(1 - e^{-a\bar{P}})$$

$$a_{22} = G_P(\bar{N}, \bar{P}) = ca\bar{N}e^{-a\bar{P}}$$

Para $P_1 = (0,0)$ temos $a_{11} = \lambda$, $a_{12} = 0$, $a_{21} = 0$, $a_{22} = 0$.

Logo a Matriz Jacobiana do ponto P_1 é:

$$J = \left(\begin{array}{cc} \lambda & 0\\ 0 & 0 \end{array}\right)$$

Calculando o traço (β) e det (γ) temos $\beta = \lambda$ e $\gamma = 0$. Mas $1 + 0 < |\beta| = |\lambda|$. Como não satisfaz o critério de estabilidade dado no capítulo 2, P_1 é

instável.

Agora para P_2 , as entradas da Matriz Jacobiana são:

$$a_{11} = 1$$
, $a_{12} = -a\bar{N}_2$, $a_{21} = c(1 - 1/\lambda)$, $a_{22} = ca\bar{N}/\lambda$

Logo,

$$J = \begin{pmatrix} 1 & -a\bar{N}_2 \\ c(1-1/\lambda) & \frac{ca\bar{N}_2}{\lambda} \end{pmatrix}$$

Vamos calcular o traço (β) e o det (γ) da matriz acima:

$$\beta = 1 + \frac{ca\bar{N}_2}{\lambda}$$

е

$$\gamma = \frac{ca\bar{N}_2}{\lambda} + ca\bar{N}_2(1 - \frac{1}{\lambda}) = ca\bar{N}_2 = \frac{\lambda ln\lambda}{\lambda - 1}$$

Mostraremos que $\gamma > 1$, isto é, devemos verificar que $\frac{\lambda ln\lambda}{(\lambda-1)} > 1$, ou seja,

$$S(\lambda) \equiv \lambda - 1 - \lambda \ln \lambda < 0$$

Observe que S(1)=0, $S'(\lambda)=1-ln\lambda-\lambda\frac{1}{\lambda}=-ln\lambda.$ Então $S'(\lambda)<0$ para $\lambda\geq 1.$ Desta forma $S(\lambda)$ é decrescente e conseqüêntemente $S(\lambda)<0$ para $\lambda\geq 1.$

Logo, pelo critério de estabilidade dado no capítulo 2, o ponto de equilíbrio $P_2 = (\bar{N}_2, \bar{P})_2$ nunca será estável pois $2 < 1 + \gamma$. Portanto P_2 é instável.

Exercícios

1) Para o cálculo da estabilidade para o modelo de Nicholson-Bailey nós observamos que as predições são independentes dos parâmetros a e c e depende somente de λ . Considere uma formulação diferente do modelo.

Defina:

$$n_t = acN_t$$

$$p_t = aP_t$$

onde a, c são constantes.

Substitua as novas variáveis na equação

$$N_{t+1} = \lambda N_t e^{-aP_t}$$
$$P_t(t+1) = cN_t(1 - e^{-aP_t})$$

para obter as equações em termo de n_t e p_t .

Solução:

Substituindo $N_t = \frac{n_t}{ac}$ e $P_t = \frac{p_t}{a}$ na equação acima temos

$$\begin{cases} \frac{n_{t+1}}{ac} = \lambda \frac{n_t}{ac} e^{-ap_t/a} \\ \frac{p_t}{a} = c \frac{n_t}{ac} (1 - e^{-ap_t/a}) \end{cases} \Leftrightarrow \begin{cases} n_{t+1} = \lambda n_t e^{-p_t} \\ p_t = n_t (1 - e^{-p_t}) \end{cases}$$

2) Considere o seguinte modelo para plantas herbívoras no qual o tamanho da população é h_n e a concentração de pétalas é v_n :

$$\begin{cases} v_{n+1} = fv_n(e^{-ah_n}) \\ h_{n+1} = rh_n(\delta - h_n/v_n) \end{cases}$$

onde f, a, r, δ são constantes positivas e $v_n \neq 0$.

- a) Encontre os pontos de equilíbrio do sistema. O que acontece se f = 1?
- b) Mostre que é possível reduzir o número de parâmetros. Para isto, defina

$$V_n = \frac{v_n}{\bar{v}} \in H_n = \frac{h_n}{\bar{h}}.$$

Mostre que o sistema de equações pode ser convertido para a seguinte forma:

$$\begin{cases} V_{n+1} = V_n(e^{k(1-H_n)}) \\ H_{n+1} = bH_n(1 + \frac{1}{b} - \frac{H_n}{v_n}) \end{cases}$$

Qual é a relação de k e b com a, h e δ ?

c) Mostre que a nova equação tem ponto de equilíbrio

$$\bar{H} = \bar{Q} = 1$$

d) Determine quando o ponto de equilíbrio é estável.

Solução:

Seja (\bar{v}, \bar{h}) ponto de equilíbrio. Então:

$$\bar{v} = v_{n+1} = v_n \in \bar{h} = h_{n+1} = h_n$$

Substituindo na equação temos

$$\left\{ \begin{array}{l} \bar{v} = f \bar{v} (e^{-a\bar{h}}) \\ \bar{h} = r \bar{h} (\delta - \bar{h}/\bar{v}) \end{array} \right.$$

De $\bar{v}=f\bar{v}(e^{-a\bar{h}})$ temos que $\bar{v}(1-f(e^{-a\bar{h}}))=0$. Como $\bar{v}\neq 0$, por hipótese, então

$$fe^{-a\bar{h}}=1 \Leftrightarrow e^{-a\bar{h}}=\frac{1}{f} \Leftrightarrow \ln e^{-a\bar{h}}=\ln \frac{1}{f} \Leftrightarrow a\bar{h}=\ln f \Leftrightarrow \bar{h}=\frac{\ln f}{a}$$

Substituindo na segunda equação do sistema temos:

$$\bar{v}\bar{h} = r\bar{h}(\delta\bar{v} - \bar{h}) \Leftrightarrow \bar{v}(1 - r\delta) = -r\bar{h} \Leftrightarrow \bar{v} = \frac{r\bar{h}}{r\delta - 1} = \frac{r}{r\delta - 1}\frac{\ln f}{\sigma}$$

para $\bar{h} \neq 0$.

Se
$$f = 1$$
 então $\bar{h} = \frac{lnf}{a} = 0$.

b) Substituindo $v_n = V_n \bar{v}$ e $h_n = H_n \bar{h}$ no sistema temos

$$V_{n+1}\bar{v} = fV_n\bar{v}(e^{-aH_n\bar{h}}) = V_ne^{a\bar{h}}(e^{-aH_n\bar{h}}) = V_ne^{a\bar{h}(1-H_n)} = V_ne^{k(1-H_n)}$$

onde $k = a\bar{h}$.

e ainda

$$\begin{split} H_{n+1}\bar{h} &= rH_n\bar{h}\left(\delta - \frac{H_n\bar{h}}{V_n\bar{v}}\right) = rH_n\bar{h}\left(\delta - \frac{H_n\bar{h}}{V_n\frac{r}{r\delta - 1}\bar{h}}\right) \\ \Leftrightarrow H_{n+1} &= rH_n\left(\delta - \frac{H_n}{V_n\frac{r}{r\delta - 1}}\right) = H_n\left(r\delta - 1 + 1 - \frac{rH_n}{V_n\frac{r}{r\delta - 1}}\right) \end{split}$$

$$\Leftrightarrow H_{n+1} = H_n \left((r\delta - 1) + 1 - (r\delta - 1) \frac{H_n}{V_n} \right)$$

$$\Leftrightarrow H_{n+1} = (r\delta - 1) H_n \left(1 + \frac{1}{r\delta - 1} - \frac{H_n}{V_n} \right)$$

$$\Leftrightarrow H_{n+1} = b H_n \left(1 + \frac{1}{b} - \frac{H_n}{V_n} \right)$$
onde $b = r\delta - 1$.

c) Seja (\bar{H}, \bar{V}) o ponto de equilíbrio do novo sistema. Então:

$$\bar{V} = V_{n+1} = V_n \in \bar{H} = H_{n+1} = H_n$$

Logo,

$$\left\{ \begin{array}{l} \bar{V} = \bar{V}(e^{k(1-\bar{H})}) \\ \bar{H} = b\bar{H}(1 + \frac{1}{b} - \frac{\bar{H}}{\bar{V}}) \end{array} \right.$$

Da equação $\bar V=\bar V(e^{k(1-\bar H)})$ temos $\bar V(1-(e^{k(1-\bar H)}))=0$. Como $\bar V\neq 0$ (pois $\bar V=v_n/v$ e $\bar v$ e v são não nulos) então

$$e^{k(1-\bar{H})} = 1 \Leftrightarrow \ln e^{k(1-\bar{H})} = \ln 1 = 0 \Leftrightarrow k(1-\bar{H}) = 0 \Leftrightarrow \bar{H} = 1$$

pois $k = a\bar{h} \neq 0$.

Logo, substituindo $\bar{H}=1$ na segunda equação do novo sistema temos:

$$1 = b \left(1 + \frac{1}{b} - \frac{1}{\bar{V}} \right) \Leftrightarrow 1 = b + 1 + \frac{b}{\bar{V}} \Leftrightarrow \frac{b}{\bar{V}} = b \Leftrightarrow \bar{V} = 1$$

Portanto a nova equacção tem equilíbrio $\bar{V} = \bar{H} = 1$.

d) Sejam
$$F(H, V) = Ve^{k(1-H)} \in G(H, V) = bH\left(1 + \frac{1}{b} - \frac{H}{V}\right)$$
.

Para determinar quando o ponto $(\bar{H}, \bar{V}) = (1,1)$ é estável, devemos calcular primeiro a Matriz Jacobiana:

$$J = \left(\begin{array}{cc} F_H & F_V \\ G_H & G_V \end{array}\right)$$

Temos que $F_H = Ve^{k(1-H)}(-k) = -kVe^{k(1-H)}$

$$G_H = b + 1 - 2\frac{bH}{V}$$

$$F_V = e^{k(1-H)}$$

$$G_V = bH\left(b + \frac{1}{b} + \frac{H}{V^2}\right)$$

Para $(\bar{H}, \bar{V}) = (1, 1)$ temos a matriz:

$$J = \left(\begin{array}{cc} -k & 1\\ 1-b & 2b+1 \end{array}\right)$$

Assim, o traço de J é $\beta=2b+1-k$ e o determinante é $\gamma=k(2b+1)-(1-b).$

Para que (\bar{H}, \bar{V}) seja estável é preciso a contecer $|\beta| < \gamma + 1 < 2$, isto é, |2b+1-k| < -2b-k-1+b+1 < 2

Vamos analisar cada desigualdade:

I)
$$|2b+1-k| < -2kb-k+b$$

$$\Leftrightarrow \left\{ \begin{array}{ll} k<-(1+b)/2b & \text{se} \quad k<1+2b \\ k>(3b+1)/(2b+2) & \text{se} \quad k>1+2b \end{array} \right.$$
 II) $-2kb-k-b<2 \Leftrightarrow k>\frac{b-2}{2b+1}$

4 MODELOS CONTÍNUOS

DECAIMENTO RADIOATIVO

A atividade de uma substância radioativa é medida pelo número de desintegrações por unidade de tempo. Sabe-se que essa atividade é proporcional ao número de átomos radioativos presentes em cada instante. A formulação matemática desta afirmação pode ser escrita assim:

Se N=N(t) é o número de átomos radioativos na amostra no instante t, e N_0 a quantidade inicial destes átomos, ou seja, $N(0)=N_0$, então:

$$\frac{dN}{dt}=-\mu N,$$
onde $\mu>0$ é a constante de desintegração

Note que $\frac{dN}{dt}$ < 0, isto é, o número de átomos na amostra diminui ao longo do tempo. A solução da equação pode ser encontrada de forma simples:

$$\frac{dN}{dt} = -\mu N \Rightarrow \frac{1}{N} \frac{dN}{dt} = -\mu \Rightarrow$$

$$\frac{d}{dt} [\ln N] = -\mu \Rightarrow \ln N = \int (-\mu) dt = -\mu t + C \Rightarrow$$

$$N(t) = Ke^{-\mu t}$$

Podemos encontrar o valor de K usando a condição inicial $N(0) = N_0$:

$$N_0 = N(0) = Ke^0 = K \Rightarrow K = N_0$$

Então, a solução do problema é:

$$N(t) = N_0 e^{-\mu t}$$

Levando em conta que $N = \frac{N_A}{A}m$, onde A é o número de massa do elemento radioativo e N_A é o número de avogadro, a razão $\frac{N_A}{A}$ é constante para cada elemento e mede o número de átomos em um grama deste elemento. Assim, podemos escrever a lei de atividade como:

$$\frac{N_A}{A} m(t) = \frac{N_A}{A} m(0) e^{-\mu t} \Rightarrow$$

$$m(t) = m(0)e^{-\mu t}$$

A constante μ é determinada experimentalmente e é característica de cada elemento radioativo. Ela permite dizer se o dado elemento tem vida curta ou longa.

Note que $\frac{1}{N}\frac{dN}{dt}=-\mu$, isto é, μ é a taxa de decaimento específico de partículas.

Análise Dimensional

Podemos usar para N a unidade P que significa população (neste caso, de partículas). Para m, podemos escolher uma unidade de massa adequada, chamemos de M. Para t podemos usar uma unidade de tempo T.

Daí teremos:

$$[N] = P$$

$$[t] = T$$

$$\left[\frac{dN}{dt}\right] = \frac{P}{T}$$

$$[\mu] = \frac{1}{P}\frac{P}{T} = \frac{1}{T} = T^{-1} \text{ ou}$$

$$\left[\frac{1}{\mu}\right] = T$$

Vida Média

Note que podemos explicitar t em função de N da seguinte forma:

$$N(t) = N_0 e^{-\mu t} \Rightarrow \frac{N(t)}{N_0} = e^{-\mu t} \Rightarrow -\mu t = \ln\left(\frac{N(t)}{N_0}\right) \Rightarrow$$
$$t = -\frac{1}{\mu} \ln\left(\frac{N(t)}{N_0}\right)$$

Vamos resolver a integral imprópria:

$$\int_{N_0}^0 t(N)dN$$

Fazendo uma mudança de variáveis, a integral torna-se:

$$\int_0^\infty t(N) \, \frac{dN}{dt} \, dt = \int_0^\infty t \left[-\mu N(t) \right] dt = \int_0^\infty t \left[-\mu N_0 e^{-\mu t} \right] dt = -\mu N_0 \int_0^\infty t e^{-\mu t} dt$$

E então teremos:

$$\frac{1}{N_0} \int_{N_0}^0 t \, dN = -\mu \int_0^\infty t e^{-\mu t} dt$$

Podemos calcular a integral à direita da igualdade realizando uma integração por partes:

$$u = t$$
 $du = dt$
$$dv = e^{-\mu t} dt \quad v = -\frac{e^{-\mu t}}{\mu}$$

E então teremos:

$$-\mu \int_0^\infty t e^{-\mu t} dt = -\mu \left[-\frac{t e^{-\mu t}}{\mu} \Big|_0^\infty + \int_0^\infty \frac{e^{-\mu t}}{\mu} dt \right] =$$

$$\frac{1}{\mu^2} (-\mu) = -\frac{1}{\mu}$$

E finalmente:

$$\frac{1}{N_0} \int_0^{N_0} t \ dN = \frac{1}{\mu}$$

O termo à esquerda da igualdade é chamado de Vida Média ou Expectativa de vida da população.

Meia Vida

É o tempo necessário para que a quantidade de partículas radioativas de uma amostra se reduza à metade.

$$N(t) = N_0 e^{-\mu t}$$

Quando $N(t) = \frac{N_0}{2}$, temos:

$$\frac{N_0}{2} = N_0 e^{-\mu T_{1/2}} \Rightarrow e^{-\mu T_{1/2}} = \frac{1}{2} \Rightarrow -\mu T_{1/2} = -\ln 2 \Rightarrow T_{1/2} = \frac{\ln 2}{\mu}$$

Alguns exemplos:

• Urânio $(U^{238}) \to T_{1/2} = 4,56 \times 10^9$ anos

• Carbono-14 $(C^{14}) \to T_{1/2} = 5.730$ anos

Obs.: A fotossíntese faz com que todos os vegetais vivos estejam em equilíbrio com o $C^{14}O_2$ atmosférico. Um animal que se alimenta desses vegetais absorve o C^{14} e a proporção deste elemento se mantém constante em seus tecidos. Quando este animal morre, o Carbono-14 que estava em equilíbrio em seu corpo começa a se desintegrar. A suposição que se faz é que a atividade da amostra no momento da morte no passado é igual à atividade de uma amostra semelhante viva hoje (o mesmo acontece quando uma planta morre). O teste do Carbono-14 é muito utilizado para se datar eventos ocorridos num passado não muito distante e é de grande interesse para a arqueologia.

Exercícios

1. (Exerc. 1, pg 40, retirado do livro Eq. Diferenciais com Aplic., Bassanezi e Ferreira Jr.) Nas escavações arqueológicas da cidade de Nipur (antiga Babilônia) foi encontrada uma viga carbonizada com uma atividade de 4,09 dpm/g (decomposição por minuto em 1 g). Usando para o carvão recente a atividade de 6,7 dpm/g, calcule quando se deu tal incêndio na antiga cidade.

Solução: Usaremos $T_{1/2} = 5.730$ anos para o C^{14} . Assim obtemos $\mu = \frac{\ln 2}{5.730} \cong 0,000121 \text{ ano}^{-1}$.

Conhecemos
$$\frac{dN}{dt}(\tau)=4,09$$
 dpm/g e $\frac{dN}{dt}(0)=6,7$ dpm/g. Então:

$$\frac{dN}{dt}(\tau) = -\mu N(\tau) = 4{,}09 \text{ dpm/g}$$

$$\frac{dN}{dt}(0) = -\mu N_0 = 6,7 \text{ dpm/g}$$

Da equação $N(t) = N_0 e^{-\mu t}$, temos:

$$-\mu N(\tau) = -\mu N_0 e^{-\mu \tau}$$

$$4,09 = 6,7e^{-(1,21\times10^{-4})\tau} \Rightarrow \ln\left(\frac{4,09}{6,7}\right) = -(1,21\times10^{-4})\tau$$

$$\Rightarrow \tau = 4,079 \times 10^3 = 4.079 \text{ anos}$$

2. (Exerc. 2 , pg 40, retirado do livro Eq. Diferenciais com Aplic., Bassanezi e Ferreira Jr.) A enorme mesa redonda presa às paredes do castelo de Winchester _ e que é mostrada aos crédulos turistas como sendo a famosa "Távola Redonda" do rei Arthur _ apresentou em 1977 uma atividade de 6,08 dpm/g, verifique se esta mesa serviu de fato para os cotovelosdo rei e de seus lendários cavaleiros Lancelot, Galahad, Gwain, Percival, etc. Do pouco que sabemos dessa fabulosa confraria, uma coisa é certa: viveram no séc. V.

Solução: Conhecemos
$$\frac{dN}{dt}(\tau) = 6,08 \text{ dpm/g e } \frac{dN}{dt}(0) = 6,68 \text{ dpm/g}$$

 $-\mu N(\tau) = -\mu N_0 e^{-\mu \tau} \Rightarrow 6,08 = 6,68 e^{(-1,21\times 10^{-4})\tau}$
 $\ln\left(\frac{6,08}{6,68}\right) = (-1,21\times 10^{-4}) \tau$
 $\Rightarrow \tau \cong 777.8 \text{ anos}$

A mesa consta do sec. XIII e, portanto, não é da época do rei Arthur, que viveu no sec. V

3. (Exerc. 1.13, pg 20, retirado e modificado do livro Dynamics and Bifurcations, Hale e Koçak)

Carbono-14: A meia vida do naturalmente radioativo C^{14} , é conhecida ser 5568 anos. Compute o tempo necessário para que a massa do C^{14} se reduza a 20% do seu peso original.

Um método efetivo de estimar as idades de restos arqueológicos de origem orgânica é o teste de C^{14} , descoberto por W. Libby em 1949. Suponha que em t=0 uma árvore morre. Seja R(t) a taxa de desintegração de C^{14} na madeira morta no tempo t. Deduza a fórmula

$$t = \frac{1}{\lambda} \ln \frac{R(0)}{R(t)}$$

 $A\breve{g}rn\ Da\breve{g}nda$: Em 1956, um pedaço de madeira velha escavada no Monte Ararat deu uma contagem de 5,96 dpm/g de C^{14} , enquanto que

a madeira viva deu 6,68. O pedaço de madeira velha pode ter vindo da Arca?

Solução: Primeiramente vamos calcular o tempo necessário para que a massa do C^{14} se reduza à metade.

Sendo $T_{1/2}=5568$ anos, $\lambda=\frac{\ln 2}{5568}=1,24\times 10^{-4}$ ano⁻¹ e m(t) a massa de C^{14} no tempo $t,\,t$ em anos, temos:

$$m(t) = m(0)e^{-\lambda t} \Rightarrow 0, 2m(0) = m(0)e^{-(1,24 \times 10^{-4})t} \Rightarrow$$

 $\ln 0, 2 = -(1,24 \times 10^{-4})t \Rightarrow t \approx 12.979 \text{ anos}$

Agora vamos deduzir a fórmula mencionada no exercício.

Seja R(t) a taxa de desintegração de C^{14} na madeira morta no tempo t.

Sabemos que:

$$R(t) = R_0 e^{-\lambda t} \Rightarrow \ln\left(\frac{R(t)}{R(0)}\right) = -\lambda t \Rightarrow$$

$$t = -\frac{1}{\lambda} \ln \left(\frac{R(t)}{R(0)} \right) \Rightarrow t = \frac{1}{\lambda} \ln \left(\frac{R(0)}{R(t)} \right)$$

Agora vamos analisar o caso Ağrı Dağında.

Usando para o C^{14} $\lambda=1,24\times 10^{-4}$ ano e os dados R(0)=6,68 dpm/g e R(t)=5,96 dpm/g. então temos

$$t = \frac{1}{1,24 \times 10^{-4}} \ln \left(\frac{6,68}{5,96} \right) \cong 919,74$$
 anos

portanto, como podemos ver, a madeira é muito jovem para ter vindo da Arca.

Método da separação de variáveis

Considere a equação:

$$\frac{dy}{dt} = g(y)h(t)$$

Passo 1: Encontrar as soluções constantes g(y) = 0

Passo 2: Encontrar as soluções não constantes $g(y) \neq 0$

Depois de encontradas as soluções constantes, seguimos para o passo 2:

$$\frac{dy}{dt} = g(y)h(t) \Rightarrow \frac{dy}{g(y)} = h(t)dt \Rightarrow \int \frac{dy}{g(y)} = \int h(t)dt \Rightarrow G(y) = H(t) + C$$

Exemplo:

$$\frac{dN}{dt} = -\mu N + K$$
, onde $g(N) = -\mu N + K$ e $h(t) = 1$

Soluções constantes: $g(N) = 0 \Leftrightarrow -\mu N + K = 0 \Leftrightarrow N(t) = \frac{K}{\mu}$

Soluções não-constantes: $g(N) \neq 0$

$$\frac{dN}{K - \mu N} = dt \Rightarrow \int \frac{dN}{K - \mu N} = \int dt \Rightarrow -\frac{1}{\mu} \ln(K - \mu N) = t + C \Rightarrow$$

$$\ln(K - \mu N) = -\mu t - \mu C \Rightarrow K - \mu N = Ae^{-\mu t} \Rightarrow$$

$$\mu N = K - Ae^{-\mu t}$$

$$\Rightarrow N(t) = \frac{K}{\mu} - \frac{A}{\mu} e^{-\mu t}$$

Agora podemos calcular A com a condição inicial $N(0) = N_0$:

$$N_0 = \frac{K}{\mu} - \frac{A}{\mu} e^0 = \frac{K - A}{\mu} \Rightarrow \mu N_0 = K - A$$
$$\Rightarrow A = K - \mu N_0$$

Então, a solução geral do PVI é:

$$N(t) = \frac{1}{\mu} (K - (K - \mu N_0) e^{-\mu t})$$

RESFRIAMENTO DE UM CORPO

Um corpo que não possui nenhuma fonte interna de calor e que está à temperatura T, quando deixado em um meio ambiente, tende à temperatura do meio que o cerca T_a .

Lei de resfriamento de Newton: "A taxa de variação da temperatura de um corpo (sem fonte interna) é proporcional à diferença entre sua temperatura e a do meio ambiente."

Seja:

- T(t): Temperatura de um corpo no instante t
- T_a : Temperatura do ambiente

Colocando a lei em termos matemáticos:

$$\frac{dT}{dt} = -\lambda (T - T_a)$$

onde $\lambda > 0$, pois se $T > T_a$, então $\frac{dT}{dt} < 0$ e se $T < T_a, \frac{dT}{dt} > 0$.

Note que a equação

$$\frac{dT}{dt} = \lambda(T_a - T) = f(T)$$

pode ser resolvida por separação de variáveis.

Podemos analisar o comportamento das soluções pelo método gráfico:

A solução geral desta equação (calculada por separação de variáveis) é:

$$T(t) = Ke^{-\lambda t} + T_a , K \in \mathbb{R}$$

Supondo $T(0) = T_0$, temos:

$$T_0 = T(0) = Ke^0 + T_a \Rightarrow K = T_0 - T_a$$

Logo

$$T(t) = (T_0 - T_a)e^{-\lambda t} + T_a$$

Exemplo: (Exemplo 8, pg 44, retirado e modificado do livro Eq. Diferenciais com Aplic., Bassanezi e Ferreira Jr.) Um indivíduo é encontrado morto em seu escritório pela secretária que liga imediatamente para a polícia. A

temperatura do escritório era de 20°C. Quando a polícia chega, 2 horas depois da chamada, examina o cadáver e mede sua temperatura achando 35°C. Uma hora depois mediu novamente obtendo 34, 2°C e, logo depois, o detetive prende a secretária. Supondo que a temperatura normal de uma pessoa viva seja constante e igual a 36, 5°C, explique o porquê da prisão.

Solução: Sendo T(t) a temperatura do defunto no instante t, t em horas, sabemos que $T(0) = 36,5^{\circ}\text{C}$, $T(t^{*}) = 35^{\circ}\text{C}$ e $T(t^{*}+1) = 34,2^{\circ}\text{C}$, onde t^{*} é o tempo decorrido desde o instante da morte.

Temos então que

$$T(t) = (36, 5 - 20)e^{-\lambda t} + 20$$

Assim

$$35 = 16, 5e^{-\lambda t^*} + 20 \Rightarrow \frac{15}{16, 5} = e^{-\lambda t^*}$$
$$34, 2 = 16, 5e^{-\lambda(t^*+1)} + 20 \Rightarrow \frac{14, 2}{16, 5} = e^{-\lambda(t^*+1)}$$

Dividindo membro a membro as equações, obtemos

$$\frac{15}{14,2} = \frac{1}{e^{-\lambda}} \Rightarrow e^{\lambda} = 1,056338 \Rightarrow \lambda \cong 0,05481$$

e, portanto,

$$t^* = \frac{-\ln\left(\frac{15}{16,5}\right)}{\lambda} \cong 1,73892h$$

Podemos concluir, pois, que o indivíduo morreu a aproximadamente 1 hora e 15 minutos antes de a polícia chegar, portanto, quando a secretária telefonou, seu chefe ainda estava vivo!

Este é um problema de ficção policial impossível, pois os dados colhidos pelo legista estão completamente fora da realidade, uma vez que neste caso, o tempo necessário para o corpo atingir a temperatura de $20,2^{0}$ C (equivalente a 101% da temperatura ambiente) seria $t_{\infty} = 80,5$ horas, pois:

$$T(x) = 20, 2 = 16, 5e^{-0.05481x} + 20 \Rightarrow e^{0.05481x} = 82, 5 \Rightarrow x \approx 80, 51$$

Porém, o valor normal para t_{∞} é aproximadamente 6 horas. Concluindo, nem sempre um problema convincente está baseado em dados reais.

Perguntamos então: Quais seriam as medidas corretas obtidas pelo legista

para termos uma melhor aproximação da realidade? Tomando $t_{\infty}=6\mathrm{h},$ obtemos:

$$T(6) = 20, 2 = 16, 5e^{-6\lambda} + 20 \Rightarrow 0, 2 = 16, 5e^{-6\lambda} \Rightarrow \lambda = \frac{\ln 82, 5}{6} \cong 0,7354664$$

Se quisermos obter $t^* = 1,73892h$, fazemos:

$$T(t^*) = 16, 5e^{-0.7354664 \times 1.73892} + 20 \approx 24, 6^{\circ}\text{C}$$

 $T(t^* + 1) = 16, 5e^{-0.7354664 \times 2.73892} + 20 \approx 22, 2^{\circ}\text{C}$

Por outro lado, nem sempre um problema com dados convincentes é real.

Agora, suponha ainda que o indivíduo assassinado estivesse com febre quando morreu; seria ainda possível descobrir o instante "exato" de sua morte? Obviamente que precisamos da temperatura do corpo do indivíduo no instante da morte, portanto, seria impossível tirar tais conclusões sem esse dado.

DIFUSÃO ATRAVÉS DE MEMBRANA

Lei de Fick: "O fluxo através de uma membrana é proporcional à área da membrana e à diferença de concentração de ambos os meios separados pela membrana."

Suponhamos que uma célula de volume constante V esteja mergulhada em um meio líquido homogêneo de concentração C_e . O processo de difusão garante que existe um fluxo de moléculas através da membrana da célula em ambas as direções, até que a concentração da solução em seu interior

C = C(t) seja igual a C_e .

Seja A a área da membrana da célula e m(t) a massa da solução no interior da célula no instante t. Podemos representar o fluxo de duas maneiras, por $\frac{dC}{dt}$ ou por $\frac{dm}{dt}$.

Se adotarmos $\frac{dC}{dt}$ como a representação para o fluxo, a equação que modela o fenômeno será:

$$\frac{dC}{dt} = KA(C_e - C) \ (1)$$

Por outro lado, podemos adotar $\frac{dm}{dt}$ para representar o fluxo. Sabemos que:

$$m(t) = V.C(t) \Rightarrow \frac{dm}{dt} = V\frac{dC}{dt}$$

Então, a equação que modela o fenômeno será:

$$\frac{dm}{dt} = KA(C_e - C)$$
 ou então,

$$\frac{dC}{dt} = \frac{KA}{V}(C_e - C) \ (2)$$

Note que as duas equações (1) e (2) são idênticas, porém diferentes do ponto de vista biológico. Podemos analisar o comportamento das soluções de (2) através da análise gráfica. Seja

$$f(C) = \frac{KA}{V}(C_e - C) = \frac{dC}{dt}$$

Também podemos calcular a solução geral da equação (2) pelo método de separação de variáveis, e então obtemos:

$$C(t) = Ke^{-\left(\frac{KA}{V}\right)t} + C_e$$

DINÂMICA POPULACIONAL

Modelo de Malthus

Seja P(t) o total de uma população num instante t. Num intervalo de tempo Δt , a lei de Malthus pressupõe que os nascimentos e as mortes são proporcionais ao tamanho da população e ao tamanho do intervalo, isto é,

- número de nascimentos = $\alpha P(t) \Delta t$
- número de mortes = $\beta P(t)\Delta t$

onde α é o coeficiente de natalidade e β é o coeficiente de mortalidade. Assim,

$$\Delta P = P(t + \Delta t) - P(t) = \alpha P(t) \Delta t - \beta P(t) \Delta t$$
$$\Delta P = (\alpha - \beta) P(t) . \Delta t$$
$$\frac{\Delta P}{\Delta t} = (\alpha - \beta) P(t)$$

Tomando o limite quando $\Delta t \rightarrow 0$, obtemos a equação diferencial

$$\frac{dP}{dt} = (\alpha - \beta)P$$

Essa equação diz que a taxa de variação de uma população é proporcional à população em cada instante.

A solução desta equação será

$$P(t) = P_0 e^{(\alpha - \beta)t}, P(0) = P_0$$

Se $\alpha = \beta$ a população não varia;

Se $\alpha > \beta$ a população cresce exponencialmente;

Se $\alpha < \beta$ a população diminui e tende à extinção.

Modelo de Verhulst

O modelo de Verhulst supõe que a população de uma certa espécie, vivendo num determinado meio, atinja um limite máximo sustentável L.

$$\frac{dP}{dt} = \lambda P \left(1 - \frac{P}{L} \right) \ , \ \lambda > 0 \ (3)$$

Note que quando $P \to L$, a taxa de crescimento da população $\frac{dP}{dt} \to 0$. Considere

$$\frac{dP}{dt} = f(P).g(P)$$
, onde $f(P) = \lambda P \in g(P) = \left(1 - \frac{P}{L}\right)$

Podemos notar que $\frac{dP}{dt}$ possui um fator crescente e um fator decrescente. Considere a equação:

$$\frac{dP}{dt} = \mu P(d - rP) \ (4)$$

Note que a equação (4) pode ser posta na forma da equação (3) com $\lambda = \mu d$ e L = d/r.

Análise Gráfica

Note que t^* é um ponto de inflexão, onde a taxa $\frac{dP}{dt}$ passa de crescente para decrescente.

Podemos ver que no modelo de Verhulst a inflexão acontece na metade da capacidade de suporte L.

Separação de variáveis

$$\frac{dP}{dt} = \lambda P \left(1 - \frac{P}{L} \right)$$
 , onde $g(P) = P \left(1 - \frac{P}{L} \right)$ e $h(t) = \lambda$

Esta equação é não-linear, porém pode ser resolvida por separação de variáveis.

Soluções constantes: $g(P)=0 \Rightarrow P=L$ ou P=0

Soluções não-constantes:

$$\frac{dP}{P\left(1-\frac{P}{L}\right)} = \lambda dt \Rightarrow \int \frac{dP}{P\left(1-\frac{P}{L}\right)} = \lambda t + C_1$$

Iremos resolver a integral à esquerda da igualdade usando frações parciais:

$$\frac{A}{1 - \frac{P}{L}} + \frac{B}{P} = \frac{AP + B - \frac{BP}{L}}{P\left(1 - \frac{P}{L}\right)} = \frac{1}{P\left(1 - \frac{P}{L}\right)} \Longrightarrow$$

$$\begin{cases} A - \frac{B}{L} = 0 \\ B = 1 \end{cases} \iff \begin{cases} A = \frac{1}{L} \\ B = 1 \end{cases}$$

Então:

$$\int \frac{dP}{P\left(1 - \frac{P}{L}\right)} = \int \frac{\frac{1}{L}}{1 - \frac{P}{L}} dP + \int \frac{1}{P} dP =$$

$$\int \frac{1}{L-P} dP + \int \frac{1}{P} dP =$$

$$-\ln|L-P| + \ln P + C_2 = \ln\left|\frac{P}{L-P}\right| + C_2$$

Voltando à equação:

$$\int \frac{dP}{P(1 - \frac{P}{L})} = \lambda t + C_1 \implies \ln\left|\frac{P}{L - P}\right| = \lambda t + C \implies$$

$$\frac{P}{L - P} = Ke^{\lambda t} \implies \frac{L - P}{P} = \frac{1}{K}e^{-\lambda t} \implies$$

$$\frac{L}{P} = 1 + \frac{1}{K}e^{-\lambda t} \implies \frac{1}{P} = \frac{K + e^{-\lambda t}}{LK} \implies$$

$$P(t) = \frac{LK}{K + e^{-\lambda t}}$$

Usando a condição inicial $P(0) = P_0$, podemos encontrar o valor de K:

$$P_0 = P(0) = \frac{LK}{K+1} = \Rightarrow KP_0 + P_0 = LK \Rightarrow K(P_0 - L) = -P_0 \Rightarrow$$

$$K = \frac{P_0}{L - P_0}$$

Então, a solução geral do PVI

$$\begin{cases} \frac{dP}{dt} = \lambda P \left(1 - \frac{P}{L} \right) \\ P(0) = P_0 \end{cases}$$

é:

$$P(t) = \frac{LK}{K + e^{-\lambda t}}$$
, onde $K = \frac{P_0}{L - P_0}$

Equilíbrio

Seja dada a EDO:

$$\frac{dx}{dt} = f(x)$$

 \bar{x} é um equilíbrio da EDO se $f(\bar{x}) = 0$.

Se o valor inicial $x(0) = x_0 = \bar{x}$, então a solução da EDO é $x(t) = \bar{x}$, $\forall t$. Com efeito, $x(t) = \bar{x}$ satisfaz a condição inicial $x(0) = x_0$ e a EDO, pois

$$\frac{dx}{dt} = 0 = f(\bar{x}) = f(x)$$

Estabilidade de pontos de equilíbrio

• Um equilíbrio \bar{x} da EDO $\frac{dx}{dt} = f(x)$ é dito estável se para todo $\varepsilon > 0$ existir um $\delta > 0$ tal que, para todo $|x_0 - \bar{x}| < \delta$, a solução $x(t, x_0)$ obedece $|x(t, x_0) - \bar{x}| < \varepsilon$ para todo $t \ge t_0$, onde $x(t_0) = x_0$ e $x(t, x_0)$ é a solução do PVI

$$\begin{cases} \frac{dx}{dt} = f(x) \\ x(t_0) = x_0 \end{cases}$$

Caso contrário, \bar{x} é chamado de equilíbrio instável.

• \bar{x} é dito ser um equilíbrio assintoticamente estável se for estável e $\lim_{t \to \infty} (x(t,x_0) - \bar{x}) = 0 \text{ se } |x_0 - \bar{x}| < r$

Teorema 4 : Suponha que f é de classe C^1 e \bar{x} é um equilibrio da equação $\frac{dx}{dt} = f(x)$. Então, o equilibrio \bar{x} é **assintoticamente estável** se f'(x) < 0 e é **instável** se f'(x) > 0.

Dem.: Seja $y = x - \bar{x}$. Então y' = x'. Daí teremos:

$$\frac{dx}{dt} = f(x) \iff \frac{dy}{dt} = f(\bar{x} + y) \cong \underbrace{f(\bar{x}) + f'(\bar{x})y}_{\text{linearização}} = f'(\bar{x})y \text{, pois } f(\bar{x}) = 0$$

A partir desse resultado, podemos concluir que se $f'(\bar{x}) < 0$ então \bar{x} é assintoticamente estável, pois $y = x - \bar{x} \to 0$ quando $t \to \infty$, e se $f'(\bar{x}) > 0$ então

 \bar{x} é instável.

Obs.: A equação $\frac{dx}{dt} = f(\bar{x})(x - \bar{x})$ é chamada de linearização de $\frac{dx}{dt} = f(x)$ em torno de \bar{x} .

Verhulst

$$\frac{dP}{dt} = \lambda P \left(1 - \frac{P}{K} \right) = f(P)$$

Equilíbrios: P = 0 e P = K

$$f'(P) = \lambda - \frac{2\lambda P}{K}$$

$$f'(0) = \lambda > 0$$

$$f'(K) = \lambda - \frac{2\lambda K}{K} = \lambda - 2\lambda = -\lambda < 0$$

O equilíbrio P=0 é instável e o equilíbrio P=K é assintoticamente estável.

Gompertz

$$\frac{dy}{dt} = -ay \ln \frac{y}{K}$$
, onde $a > 0$

Equilíbrios: y = 0 e y = K

$$f'(y) = -a \ln \frac{y}{K} - ay \frac{K}{y} \frac{1}{K} = -a \ln \frac{y}{K} - a$$

 $f^{\prime}(K)=-a<0$, então y=K é assintoticamente estável

LEI DA ALOMETRIA

"A variação específica de órgãos em um mesmo indivíduo cresce a uma razão constante."

Sejam:

x(t) a medida de um determinado órgão, num instante t, de um indivíduo; y(t) a medida de outro órgão, num instante t, do mesmo indivíduo.

O modelo matemático que obtemos é:

$$\frac{1}{x}\frac{dx}{dt} = \alpha \frac{1}{y}\frac{dy}{dt}$$

Podemos encontrar uma relação entre x e y da seguinte maneira:

$$\int \frac{1}{x} \frac{dx}{dt} dt = \alpha \int \frac{1}{y} \frac{dy}{dt} dt \Rightarrow \ln x = \alpha \ln y + C \Rightarrow$$
$$x = e^{\alpha \ln y + C} = ae^{\alpha \ln y} = ay^{\alpha}, \text{ ou seja}$$
$$x(t) = a(y(t))^{\alpha}$$

CRESCIMENTO DE PEIXES

O peso p(t) de um peixe é dado pela equação de von Bertalanffy, a qual estabelece que o peso de um peixe cresce proporcional à sua área e decresce proporcional ao próprio peso.

O modelo é o seguinte:

$$\frac{dp}{dt} = \alpha A - \beta p = \alpha p^{2/3} - \beta p$$

onde A=A(t) representa a área do peixe, α é a constante de anabolismo e β é a constante de catabolismo.

Sabemos pela Lei da Alometria que:

$$\frac{1}{A}\frac{dA}{dt}=c\frac{1}{p}\frac{dp}{dt}\Rightarrow A=Kp^c$$
, onde c representa o comprimento do peixe

Então

$$\frac{dp}{dt} = \alpha K p^c - \beta p = ap^c - \beta p$$

A razão pela qual $c \cong \frac{2}{3}$ é :

$$\begin{cases} p \sim c^3 \text{ (comprimento ao cubo)} \\ A \sim c^2 \text{ (comprimento ao quadrado)} \end{cases}$$

$$\Rightarrow c \sim A^{1/2} \sim p^{1/3} \Rightarrow A \sim p^{2/3}$$

Então temos:

$$\frac{dp}{dt} = ap^{2/3} - \beta p$$

Esta EDO, apesar de ser não linear, pode ser resolvida.

Equação de Bernoulli

$$\frac{dy}{dx} + g(x)y = h(x)y^n$$

onde g e h são funções contínuas de x em $(a,b)\subset \mathbb{R}$ e n é uma constante qualquer.

Temos que y = 0 é uma solução trivial.

Se $y \neq 0$, podemos escrever a equação assim:

$$y^{-n}\frac{dy}{dx} + g(x)y^{1-n} = h(x)$$

Tomando $z=y^{1-n},$ segue que $\frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx},$ que substituída na equação

$$(1-n)y^{-n}\frac{dy}{dx} + (1-n)g(x)y^{1-n} = (1-n)h(x)$$

nos dá:

$$\frac{dz}{dx} + (1 - n)g(x)z = (1 - n)h(x)$$
 (eq. linear)

A EDO

$$\frac{dp}{dt} + \beta p = ap^{2/3}$$

é uma eq. de Bernoulli, com $g(x) = \beta$, h(x) = a e $n = \frac{2}{3}$.

Façamos a mudança de variáveis:

$$z = p^{1-\frac{2}{3}} = p^{1/3} \Longrightarrow \frac{dz}{dt} = \frac{1}{3}p^{-2/3}\frac{dp}{dt}$$

que substituída em

$$\frac{1}{3}\frac{dp}{dt}p^{-2/3} + \frac{1}{3}\beta p^{1/3} = \frac{1}{3}a$$

nos dá:

$$\frac{dz}{dt} + \frac{\beta}{3} z = \frac{a}{3} \Longrightarrow \frac{dz}{dt} = \frac{a - \beta z}{3}$$
 (eq. linear)

que pode ser resolvida por separação de variáveis.

Sol. constantes: $z = \frac{a}{\beta}$, isto é, $p = (\frac{a}{\beta})^3$

Sol. não-constantes:

$$3\int \frac{dz}{a-\beta z} = \int dt \Longrightarrow -\frac{3}{\beta} \ln|a-\beta z| = t + K$$

$$\implies \ln|a - \beta z| = -\frac{\beta}{3}t + -\frac{\beta}{3}K \implies a - \beta z = Ae^{-\frac{\beta t}{3}}$$
$$z = \frac{a}{\beta} - \frac{A}{\beta}e^{-\frac{\beta t}{3}}$$

Então teremos:

$$p = \left(\frac{a}{\beta} - \frac{A}{\beta}e^{-\frac{\beta t}{3}}\right)^3$$

Equilíbrios:

$$\frac{dp}{dt} = ap^{2/3} - \beta p = g(p)$$

$$g(p) = 0 \Longrightarrow \begin{cases} p = 0 \\ p = \left(\frac{a}{\beta}\right)^3 \end{cases}$$

$$g'(p) = \frac{2}{3}ap^{-\frac{1}{3}} - \beta$$

$$\Longrightarrow g'\left(\left(\frac{a}{\beta}\right)^3\right) = \frac{2}{3}a\frac{\beta}{a} - \beta = -\frac{\beta}{3} < 0$$

Então, o equilíbrio $p=(\frac{a}{\beta})^3$ é assintoticamente estável.

Note que:

•
$$\frac{dp}{dt} = ap^{2/3} - \beta p > 0 \text{ se } p < \left(\frac{a}{\beta}\right)^3$$

•
$$\frac{d^2p}{dt^2} = \frac{2}{3} \ a \ p^{-1/3} - \beta = 0 \iff p^{-1/3} = \frac{3}{2} \ \frac{\beta}{a} \iff p = \left(\frac{2}{3}\right)^3 \left(\frac{a}{\beta}\right)^3$$

• Portanto, no gráfico temos uma inflexão em
$$p = \left(\frac{2}{3}\right)^3 \left(\frac{a}{\beta}\right)^3 \cong 0,296 \left(\frac{a}{\beta}\right)^3$$

 t^* está associado com a época da desova.

Então, o peixe pescado deve ser devolvido se seu peso for abaixo de $0,296 \times P$, onde $P = \left(\frac{a}{\beta}\right)^3$ é o peso do peixe na fase adulta (varia de acordo com cada espécie).

Por exemplo, o Pacu na fase adulta pesa em média 10,5kg e o período de desova ocorre em torno dos 3kg ($\cong 0,296 \times 10,5$).

5 SISTEMA LINEAR BIDIMENSIONAL

$$\begin{cases} x'(t) = a_{11}x + a_{12}y \\ y'(t) = a_{21}x + a_{22}y \end{cases}$$

Na forma matricial

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \text{ ou } X' = AX$$

Soluções

Vamos ver se existe solução para X'=AX do tipo $X(t)=Ve^{\lambda t}$, onde $V=\left(\begin{array}{c} v_1\\ v_2 \end{array}\right)$ e $\lambda\in\mathbb{R}.$

$$\begin{cases} X'(t) = \lambda V e^{\lambda t} \\ AX = A(V e^{\lambda t}) = e^{\lambda t} (AV) \end{cases}$$

Para que tenhamos X'=AX, basta que $AV=\lambda V$, isto é, se V for um autovetor de A correspondente ao autovalor λ , então $X(t)=Ve^{\lambda t}$ é solução de X'=AX.

Teorema 5 A dimensão do espaço solução do sistema bidimensional X' = AX é no máximo 2.

Considere o conjunto H dos autovalores de A. Então H é o conjunto formado pelas raízes de $p(\lambda) = det(A - \lambda I)$.

Então H possui no máximo 2 elementos, ou seja, $H = \{\lambda_1, \lambda_2\}$ (pois o grau

de $p(\lambda)$ é 2). Temos 3 casos a considerar:

Caso 1: λ_1 e λ_2 são reais e $\lambda_1 \neq \lambda_2$.

Sejam V_1 e V_2 autovetores associados aos autovalores λ_1 e λ_2 , respectivamente

Então $X_1=V_1e^{\lambda_1t}$ e $X_2=V_2e^{\lambda_2t}$ são soluções da eq. X'=AX. V_1 e V_2 são LI?

Se V_1 e V_2 fossem LD, então existiria um $\alpha \in \mathbb{R}$ tal que

$$V_1 = \alpha V_2 \Rightarrow AV_1 = \alpha AV_2 \Rightarrow \lambda_1 V_1 = \alpha \lambda_2 V_2 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = 0 \Rightarrow \lambda_1 V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 \Rightarrow (\lambda_1 - \lambda_2) V_1 = \lambda_2 V_1 \Rightarrow (\lambda_1 - \lambda_2) V_2 \Rightarrow (\lambda_1 - \lambda_2$$

$$\lambda_1 - \lambda_2 = 0 \Rightarrow \lambda_1 = \lambda_2$$
. Contradição!

Portanto, V_1 e V_2 são LI.

Assim podemos concluir que X_1 e X_2 são LI, pois:

$$\alpha X_1 + \beta X_2 = 0 \Leftrightarrow \alpha V_1 e^{\lambda_1 t} + \beta V_2 e^{\lambda_2 t} = 0 \Leftrightarrow \alpha e^{\lambda_1 t} = \beta e^{\lambda_2 t} = 0 \Leftrightarrow \alpha = \beta = 0$$

Portanto, a solução geral de X' = AX é:

$$X(t) = K_1 X_1 + K_2 X_2 = K_1 V_1 e^{\lambda_1 t} + K_2 V_2 e^{\lambda_2 t}$$

Caso 2: $\lambda_1 = \lambda_2 = \lambda$

Vamos verificar se $X(t) = t V e^{\lambda t}$ pode ser uma solução para X' = AX:

$$X(t) = Vte^{\lambda t} \Rightarrow X'(t) = Ve^{\lambda t} + te^{\lambda t}\lambda V$$

$$AX = A(Vte^{\lambda t}) = te^{\lambda t}AV = te^{\lambda t}\lambda V$$

Como podemos ver, esta ecolha de X(t) não pode ser uma solução para X' = AX.

Outra escolha: $X(t) = (U + Vt)e^{\lambda t}$, para algum U.

$$X'(t) = Ve^{\lambda t} + (U + Vt)\lambda e^{\lambda t} = (V + \lambda U)e^{\lambda t} + t\lambda Ve^{\lambda t}$$
$$AX = e^{\lambda t}AU + te^{\lambda t}AV = e^{\lambda t}AU + te^{\lambda t}\lambda V$$

Para que esta escolha de X seja uma solução de X' = AX, basta impormos a seguinte condição:

$$e^{\lambda t}AU = e^{\lambda t}(V + \lambda U) \Leftrightarrow AU = V + \lambda U \Leftrightarrow (A - \lambda I)U = V$$

Obs 1: Chame $A - \lambda I = B$ e note que detB = 0 (pois λ é um autovalor de A), portanto, se $B \neq 0$ (isto é, $A \neq \lambda I$) $\Rightarrow postoB = 1$. Então B é da forma:

$$B = \left(\begin{array}{cc} m & n \\ \alpha m & \alpha n \end{array}\right)$$

Então o sistema BU = V pode ser escrito da seguinte forma:

$$\begin{cases} mu_1 + nu_2 = v_1 \\ \alpha mu_1 + \alpha nu_2 = v_2 \end{cases}, \text{ onde } U = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \text{ e } V = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Note que, para que este sistema tenha solução em U, é necessário e suficiente que $v_2 = \alpha v_1$ e $B \neq 0$. Neste caso, o sistema BU = V terá infinitas soluções.

Obs 2: Se U existe, então X_1 e X_2 são LI. Com efeito,

$$\alpha X_1 + \beta X_2 = 0 \Rightarrow \alpha V e^{\lambda t} + \beta (U + V t) e^{\lambda t} = 0 \Rightarrow$$
$$\alpha (A - \lambda I) V e^{\lambda t} + \beta [(A - \lambda I) U + t(A - \lambda I) V] e^{\lambda t} = 0$$

Como $(A - \lambda I)V = 0$ e $(A - \lambda I)U = V$, a eq. acima torna-se:

$$\beta V e^{\lambda t} = 0 \Rightarrow \beta = 0$$
 e com isso teremos $\alpha V e^{\lambda t} = 0 \Rightarrow \alpha = 0$

Portanto, a solução geral de X' = AX é:

$$X(t) = K_1 X_1 + K_2 X_2 = K_1 V e^{\lambda t} + K_2 (U + V t) e^{\lambda t} , \text{ onde } U \text{ \'e tal que } (A - \lambda I) U = V.$$

Exemplo

Difusão através de uma membrana submersa em um líquido

Modelo:

$$\begin{cases} \frac{dc_1}{dt} = a(c_2 - c_1) \\ \frac{dc_2}{dt} = a(c_1 - c_2) \end{cases} \Leftrightarrow C' = AC$$

Podemos notar que a > 0.

$$A = \begin{pmatrix} -a & a \\ a & -a \end{pmatrix} \Rightarrow A - \lambda I = \begin{pmatrix} -a - \lambda & a \\ a & -a - \lambda \end{pmatrix}$$
$$p(\lambda) = \det(A - \lambda I) = (a + \lambda)^2 - a^2 = \lambda^2 + 2a\lambda$$

Então

$$p(\lambda) = 0 \Rightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = -2a \end{cases}$$

Agora encontraremos autovetores V_1 e V_2 associados a λ_1 e λ_2 , respectivamente.

Para $\lambda_1 = 0$:

$$AV_1 = 0 \Leftrightarrow \left(\begin{array}{cc} -a & a \\ a & -a \end{array} \right) \left(\begin{array}{c} v_1^1 \\ v_2^1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) \Leftrightarrow \left\{ \begin{array}{c} -av_1^1 + av_2^1 = 0 \\ av_1^1 - av_2^1 = 0 \end{array} \right. \Leftrightarrow v_1^1 = v_2^1$$

Podemos escolher $V_1 = (1, 1)$.

Para $\lambda_2 = -2a$:

$$(A+2aI)V_2 = 0 \Leftrightarrow \begin{pmatrix} a & a \\ a & a \end{pmatrix} \begin{pmatrix} v_1^2 \\ v_2^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow av_1^2 + av_2^2 = 0 \Leftrightarrow v_1^2 = -v_2^2$$

Podemos escolher $V_2 = (1, -1)$.

Solução geral para a equação C' = AC:

$$C(t) = \begin{pmatrix} c_1(t) \\ c_2(t) \end{pmatrix} = K_1 e^0 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + K_2 e^{-2at} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} K_1 \\ K_1 \end{pmatrix} + e^{-2at} \begin{pmatrix} K_2 \\ -K_2 \end{pmatrix} \xrightarrow{t \to \infty} \begin{pmatrix} K_1 \\ K_1 \end{pmatrix}$$

Observação: Note que se forem dadas as condições iniciais $c_1(0) = c_1^0$ e $c_2(0) = c_2^0$, então teremos para K_1 e K_2 os valores:

$$K_1 = \frac{c_1^0 + c_2^0}{2} \in K_2 = \frac{c_1^0 - c_2^0}{2}$$

À medida que o tempo passa, $C(t) = \begin{pmatrix} c_1(t) \\ c_2(t) \end{pmatrix}$ vai se aproximando de $\begin{pmatrix} K_1 \\ K_1 \end{pmatrix}$, ou seja, as concentrações dos dois meios vão tendendo à média das concentrações iniciais dos meios.

Caso 3: Caso complexo, onde $\lambda_1 = \alpha + \beta i$ e $\lambda_2 = \alpha - \beta i$ Solução geral de X' = AX:

$$X(t) = K_1 \begin{pmatrix} v_{11} \\ v_{21} \end{pmatrix} e^{(\alpha+\beta i)t} + K_2 \begin{pmatrix} v_{12} \\ v_{22} \end{pmatrix} e^{(\alpha-\beta i)t}$$

Usando a igualdade

$$e^{(\alpha+\beta i)t} = e^{\alpha t}(\cos\beta t + i\sin\beta t)$$

podemos colocar X(t) na sua forma complexa, isto é:

$$X(t) = \underbrace{\begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix}}_{I_1(t)} + i \underbrace{\begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix}}_{I_2(t)}$$

Como X(t) é solução de X' = AX e esta é uma equação linear, então $I_1(t)$ e $I_2(t)$ também são soluções desta EDO. Adotando valores adequados para K_1 e K_2 , podemos obter valores para $I_1(t)$ e $I_2(t)$ que sejam LI:

$$\begin{pmatrix} x_1(t) \\ y_1(t) \end{pmatrix} = e^{\alpha t} \begin{pmatrix} a\cos\beta t \\ b\sin\beta t \end{pmatrix} e \begin{pmatrix} x_2(t) \\ y_2(t) \end{pmatrix} = e^{\alpha t} \begin{pmatrix} c\sin\beta t \\ d\cos\beta t \end{pmatrix}$$

Exemplo

Resolver o sistema
$$\begin{cases} x' = x + 2y \\ y' = -2x + y \end{cases}$$

Podemos escrever o sistema na forma matricial:

$$X' = AX$$
 , onde $X = \left(\begin{array}{c} x \\ y \end{array} \right)$ e $A = \left(\begin{array}{c} 1 & 2 \\ -2 & 1 \end{array} \right)$

$$det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 \\ -2 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 4 = \lambda^2 - 2\lambda + 5 \Rightarrow \lambda_{1,2} = 1 \pm 2i$$

Para $\lambda_1 = 1 + 2i$:

$$(A - \lambda_1 I)V_1 = 0 \Leftrightarrow \begin{pmatrix} -2i & 2 \\ -2 & -2i \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} -2iu_1 + 2v_1 = 0 \\ -2u_1 - 2iv_1 = 0 \end{cases} \Leftrightarrow v_1 = u_1 i$$

Podemos escolher $V_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$

Para $\lambda_2 = 1 - 2i$:

$$(A - \lambda_2 i)V_2 = 0 \Leftrightarrow \begin{pmatrix} 2i & 2 \\ -2 & 2i \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 2iu_2 + 2v_2 = 0 \\ -2u_2 + 2iv_2 = 0 \end{cases} \Leftrightarrow u_2 = v_2 i$$

Podemos escolher $V_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$

Solução geral:

$$X(t) = K_1 \begin{pmatrix} 1 \\ i \end{pmatrix} e^{(1+2i)t} + K_2 \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{(1-2i)t}$$

$$= K_1 \begin{pmatrix} \cos 2t + i \sin 2t \\ i \cos 2t - \sin 2t \end{pmatrix} e^t + K_2 \begin{pmatrix} \cos 2t - i \sin 2t \\ -i \cos 2t - \sin 2t \end{pmatrix} e^t$$

$$= (K_1 + K_2) \begin{pmatrix} \cos 2t \\ -\sin 2t \end{pmatrix} e^t + i (K_1 - K_2) \begin{pmatrix} \sin 2t \\ \cos 2t \end{pmatrix} e^t$$

Escolhendo $K_1 = 1$ e $K_2 = 0$, obtemos duas soluções $I_1(t)$ e $I_2(t)$ reais e LI de X' = AX:

$$I_1(t) = \begin{pmatrix} \cos 2t \\ -\sin 2t \end{pmatrix} e^t \in I_2(t) = \begin{pmatrix} \sin 2t \\ \cos 2t \end{pmatrix} e^t$$

Então, a solução geral de X' = AX pode ser escrita assim:

$$X(t) = A_1 \begin{pmatrix} \cos 2t \\ -\sin 2t \end{pmatrix} e^t + A_2 \begin{pmatrix} \sin 2t \\ \cos 2t \end{pmatrix} e^t, A_1, A_2 \in \mathbb{C}$$

Equilíbrios e estabilidade

Note que para a equação X' = AX, $\bar{X} = 0$ é o equilíbrio.

 $\bar{X}=0$ é um equilíbrio assintoticamente estável se $X(t)\stackrel{t\to\infty}{\longrightarrow}0,$ ou seja $\lim_{t\to\infty}||X(t)||=0$

Sejam λ_1 e λ_2 os autovalores de A. Vejamos alguns casos:

- Se $\lambda_1 \neq \lambda_2$ são reais e $\lambda_1 > 0$ (ou $\lambda_2 > 0$), então $||X(t)|| \stackrel{t \to \infty}{\longrightarrow} \infty \Rightarrow \bar{X} = 0$ é instável.
- Se $\lambda_1, \lambda_2 < 0$, então $||X(t)|| \xrightarrow{t \to \infty} 0 \Rightarrow \bar{X} = 0$ é assintoticamente estável.
- Se $\lambda_1 = \alpha + \beta i$ e $\lambda_2 = \alpha \beta i$, com $\beta \neq 0$, então teremos os seguintes casos:

Se
$$\alpha = 0 \Rightarrow ||X(t)|| = r(cte) \not\rightarrow 0$$

Se
$$\alpha > 0 \Rightarrow ||X(t)|| \to \infty \Rightarrow \bar{X}$$
 é instável

Se
$$\alpha < 0 \Rightarrow ||X(t)|| \to 0 \Rightarrow \bar{X}$$
 é assintoticamente estável

76

 $\lambda = \alpha + \beta i$, $\alpha < 0$

espiral estável

 $\lambda=\alpha+\dot{\beta}i$, $\alpha>\!0$

espiral instável

Sistemas Autônomos (Quase Linear)

(S)
$$\begin{cases} \frac{dx}{dt} = F(x,y) \\ \frac{dy}{dt} = G(x,y) \end{cases}$$

Seja (\bar{x}, \bar{y}) um ponto do domínio de F e de G. O sistema (S) é quase linear próximo de (\bar{x}, \bar{y}) se

$$F(x,y) = F(\bar{x},\bar{y}) + \frac{\partial F}{\partial x}(\bar{x},\bar{y})(x-\bar{x}) + \frac{\partial F}{\partial y}(\bar{x},\bar{y})(y-\bar{y}) + R_1(x,y)$$

$$G(x,y) = G(\bar{x},\bar{y}) + \frac{\partial G}{\partial x}(\bar{x},\bar{y})(x-\bar{x}) + \frac{\partial G}{\partial y}(\bar{x},\bar{y})(y-\bar{y}) + R_2(x,y)$$

onde

$$\lim_{(x,y)\to(\bar{x},\bar{y})} \frac{R_1(x,y)}{\sqrt{(x-\bar{x})^2 + (y-\bar{y})^2}} = \lim_{(x,y)\to(\bar{x},\bar{y})} \frac{R_2(x,y)}{\sqrt{(x-\bar{x})^2 + (y-\bar{y})^2}} = 0$$

O sistema (L) abaixo é a linearização de (S) em torno de (\bar{x}, \bar{y}) , onde (\bar{x}, \bar{y}) é o equilíbrio de (S) (o sistema está nas variáveis $u = x - \bar{x}$ e $v = y - \bar{y}$).

$$(L) \begin{cases} \frac{du}{dt} = \frac{\partial F}{\partial x}(\bar{x}, \bar{y})u + \frac{\partial F}{\partial y}(\bar{x}, \bar{y})v \\ \frac{dv}{dt} = \frac{\partial G}{\partial x}(\bar{x}, \bar{y})u + \frac{\partial G}{\partial y}(\bar{x}, \bar{y})v \end{cases}$$

Observação: Como (\bar{x}, \bar{y}) é o equilíbrio de (S), então $F(\bar{x}, \bar{y}) = G(\bar{x}, \bar{y}) = 0$

Teorema 6 (Teorema da linearização de Lyapunov-Poincaré): Suponha que F e G sejam continuamente diferenciáveis em uma vizinhança de (\bar{x}, \bar{y}) . Então

- 1) $Se(\bar{x}, \bar{y})$ for assintoticamente estável para (L), ele será também para (S);
- **2)** Se $re(\lambda) > 0$ para algum autovalor λ de (L), então (\bar{x}, \bar{y}) será instável para (S);
- 3) Se $re(\lambda) > 0$ para todo autovalor de (L), então (\bar{x}, \bar{y}) é repulsor para (S), ou seja, se V é uma vizinhança de (\bar{x}, \bar{y}) e X(t) é uma solução de (S), então existe um t_0 tal que $X(t) \notin V$, para todo $t \geq t_0$.

Exemplo

$$\begin{cases} \frac{dx}{dt} = 3x^2 - 6y = F(x, y) \\ \frac{dy}{dt} = -x + y = G(x, y) \end{cases}$$

Equilíbrios: $P_1 = (0,0) e P_2 = (2,2)$

$$\frac{\partial F}{\partial x}(x,y) = 6x \quad \frac{\partial F}{\partial y}(x,y) = -6$$
$$\frac{\partial G}{\partial x}(x,y) = -1 \quad \frac{\partial G}{\partial y}(x,y) = 1$$

Para $P_1 = (0,0)$ (note que $u = x - \bar{x} = x - 0 = x$ e $v = y - \bar{y} = y - 0 = y$):

$$\begin{cases} \frac{dx}{dt} = 0x - 6y = -6y \\ \frac{dy}{dt} = -x + y \end{cases}$$

Então

$$A = \begin{pmatrix} 0 & -6 \\ -1 & 1 \end{pmatrix}$$

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -\lambda & -6 \\ -1 & 1 - \lambda \end{vmatrix} = -\lambda(1 - \lambda) - 6 = \lambda^2 - \lambda - 6$$

Raízes de $p(\lambda)\colon\thinspace \lambda_1=3$ e $\lambda_2=-2\Rightarrow \lambda_1>0$ $(P_1$ é instável para (S))

Para $P_2 = (2, 2)$:

$$A = \begin{pmatrix} 12 & -6 \\ -1 & 1 \end{pmatrix}$$

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} 12 - \lambda & -6 \\ -1 & 1 - \lambda \end{vmatrix} = (12 - \lambda)(1 - \lambda) - 6 = \lambda^2 - 13\lambda + 6$$

raízes de $p(\lambda)$: $\lambda_{1,2} = \frac{13 \pm \sqrt{145}}{2} \Rightarrow \lambda_1, \lambda_2 > 0 \ (P_2 \text{ \'e repulsor para } (S))$

MODELOS EM BIOMATEMÁTICA

Modelo de competição entre duas espécies

Sejam:

 $x \to$ número de indivíduos da espécie A

 $y \rightarrow$ número de indivíduos da espécie B

(S)
$$\begin{cases} \frac{dx}{dt} = ax - bx^2 - \alpha xy \\ \frac{dy}{dt} = cy - dy^2 - \beta xy \end{cases}$$

Note que α e β estão entre 0 e 1, e que α e β não podem ser negativos, senão não seria competição.

(S)
$$\begin{cases} \frac{dx}{dt} = (a - bx - \alpha y)x = F(x, y) \\ \frac{dy}{dt} = (c - dy - \beta x)y = G(x, y) \end{cases}$$

Equilíbrios:

$$P_{1} \begin{cases} x = 0 \\ y = 0 \end{cases} \qquad P_{2} \begin{cases} x = 0 \\ c - dy - \beta x = 0 \end{cases}$$

$$P_{3} \begin{cases} a - bx - \alpha y = 0 \\ y = 0 \end{cases} \qquad P_{4} \begin{cases} a - bx - \alpha y = 0 \\ c - dy - \beta x = 0 \end{cases}$$

Isto é:

$$P_1 = (0,0)$$
, $P_2 = \left(0, \frac{c}{d}\right)$, $P_3 = \left(\frac{a}{b}, 0\right)$ e
$$P_4 = \left(\frac{ad - \alpha c}{bd - \alpha \beta}, \frac{bc - a\beta}{bd - \alpha \beta}\right)$$

onde P_4 foi encontrado resolvendo o seguinte sistema:

$$\begin{cases} bx + \alpha y = a \\ \beta x + dy = c \end{cases}$$

Cuja solução em (x, y) é:

$$x_e = \frac{\begin{vmatrix} a & \alpha \\ c & d \end{vmatrix}}{\begin{vmatrix} b & \alpha \\ \beta & d \end{vmatrix}} e y_e = \frac{\begin{vmatrix} b & a \\ \beta & c \end{vmatrix}}{\begin{vmatrix} b & \alpha \\ \beta & d \end{vmatrix}}$$

Portanto $P_4 = (x_e, y_e)$.

Se $bd - \alpha\beta > 0$:

•
$$x_e > 0 \Leftrightarrow ad - \alpha c > 0 \Leftrightarrow \frac{a}{\alpha} > \frac{c}{d}$$

•
$$y_e > 0 \Leftrightarrow cb - a\beta > 0 \Leftrightarrow \frac{c}{\beta} > \frac{a}{b}$$

Se $bd - \alpha\beta < 0$:

•
$$x_e > 0 \Leftrightarrow ad - \alpha c < 0 \Leftrightarrow \frac{a}{\alpha} < \frac{c}{d}$$

•
$$y_e > 0 \Leftrightarrow cb - a\beta < 0 \Leftrightarrow \frac{c}{\beta} < \frac{a}{b}$$

$$\frac{\partial F}{\partial x}(x,y) = a - 2bx - \alpha y \quad \frac{\partial F}{\partial y}(x,y) = -\alpha x$$

$$\frac{\partial G}{\partial x}(x,y) = -\beta y \qquad \frac{\partial G}{\partial y}(x,y) = c - 2dy - \beta x$$

Para
$$P_1 = (0,0) \Rightarrow A = \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \Rightarrow \lambda_1 = a > 0 \text{ e } \lambda_2 = c > 0$$

Então $P_1 = (0,0)$ á repulsor

Então $P_1 = (0,0)$ é repulsor

Para
$$P_2 = \left(0, \frac{c}{d}\right) \Rightarrow A = \begin{pmatrix} a - \alpha \frac{c}{d} & 0\\ -\beta \frac{c}{d} & -c \end{pmatrix} \Rightarrow \lambda_1 = a - \alpha \frac{c}{d} \in \lambda_2 = -c < 0$$

•
$$\lambda_1 < 0$$
 se $a - \alpha \frac{c}{d} < 0 \Leftrightarrow \frac{a}{\alpha} < \frac{c}{d}$

Neste caso, P_2 é assintoticamente estável.

•
$$\lambda_1 > 0$$
 se $\frac{a}{\alpha} > \frac{c}{d}$

Neste caso, P_2 é sela.

Para
$$P_3 = \left(\frac{a}{b}, 0\right) \Rightarrow A = \begin{pmatrix} -a & -\alpha \frac{a}{b} \\ 0 & c - \beta \frac{a}{b} \end{pmatrix} \Rightarrow \lambda_1 = -a < 0 \text{ e } \lambda_2 = c - \beta \frac{a}{b}$$

•
$$\lambda_2 = c - \beta \frac{a}{b} < 0 \text{ se } \frac{c}{\beta} < \frac{a}{b}$$

Neste caso, P_3 é assintoticamente estável.

•
$$\lambda_2 > 0$$
 se $\frac{c}{\beta} > \frac{a}{b}$

Neste caso, P_3 é sela.

Para
$$P_4 = (x_e, y_e) \Rightarrow A = \begin{pmatrix} -bx_e & -\alpha x_e \\ -\beta y_e & -dy_e \end{pmatrix}$$

$$p(\lambda) = det(A - \lambda I) = \lambda^2 + (bx_e + dy_e)\lambda + bdx_e y_e - \alpha \beta x_e y_e \Rightarrow$$

$$\lambda_{1,2} = \frac{-(bx_e + dy_e) \pm \sqrt{(bx_e + dy_e)^2 - 4x_e y_e (bd - \alpha \beta)}}{2}$$

Note que

$$\Delta = (bx_e - dy_e)^2 - 4x_e y_e (bd - \alpha\beta) = (bx_e - dy_e)^2 + 4\alpha\beta x_e y_e$$

Vamos analisar apenas os casos onde $P_4 = (x_e, y_e)$ existe do ponto de vista biológico, isto é, os casos em que $x_e > 0$ e $y_e > 0$.

A partir dessa hipótese podemos concluir que

- $\Delta > 0$ e, portanto, λ_1 e λ_2 são reais
- Se $bd \alpha\beta > 0$ então λ_1 e $\lambda_2 < 0$ (P_4 é assintoticamente estável)
- Se $bd \alpha \beta < 0$ então $\lambda_1 > 0$ e $\lambda_2 < 0$ (P_4 é sela)

Análise Qualitativa

• Em cima da reta r: $y = \frac{a}{\alpha} - \frac{b}{\alpha}x$

$$\frac{dx}{dt} = ax - bx^2 - \alpha xy = 0$$

Note que abaixo da reta r $\frac{dx}{dt}>0$ e acima de r $\frac{dx}{dt}<0$

• Em cima da reta s: $y = \frac{c}{\beta} - \frac{d}{\beta}y$

$$\frac{dy}{dt} = cy - dy^2 - \beta xy = 0$$

Note que abaixo da reta $s~\frac{dy}{dt}>0$ e acima de $s~\frac{dy}{dt}<0$

Caso 1: $\frac{a}{\alpha} < \frac{c}{d} e \frac{a}{b} > \frac{c}{\beta}$

Neste caso, P_2 e P_3 são assintoticamente estáveis e P_4 é ponto de sela.

Caso 2: $\frac{a}{\alpha} > \frac{c}{d} e \frac{a}{b} < \frac{c}{\beta}$

Neste caso, P_2 e P_3 são sela e P_4 é assintoticamente estável.

Presa-predador: Lotka-Volterra

Sejam:

 $\mathbf{x} \rightarrow \text{número de presas};$

 $\mathbf{y} \rightarrow$ número de predadores;

O modelo de Lotka-Volterra é o seguinte:

$$\begin{cases} \frac{dx}{dt} = ax - \alpha xy \\ \frac{dy}{dt} = -by + \beta xy \end{cases}$$

onde $a, b, \alpha, \beta > 0$.

Equilíbrio:

$$\begin{cases} (a - \alpha y)x = 0 \\ (-b + \beta x)y = 0 \end{cases} \Rightarrow \begin{cases} P_1 = (0, 0) \\ P_2 = \left(\frac{b}{\beta}, \frac{a}{\alpha}\right) \end{cases}$$
$$\frac{\partial F}{\partial x}(x, y) = a - \alpha y \quad \frac{\partial F}{\partial y}(x, y) = -\alpha x$$
$$\frac{\partial G}{\partial x}(x, y) = \beta y \qquad \frac{\partial G}{\partial y}(x, y) = -b + \beta x$$

• Para
$$P_1 = (0,0) \Rightarrow J = \begin{pmatrix} a & 0 \\ 0 & -b \end{pmatrix} \Rightarrow \lambda_1 = a \in \lambda_2 = -b$$

 $P_1 = (0,0)$ é sela.

• Para
$$P_2 = \left(\frac{b}{\beta}, \frac{a}{\alpha}\right) \Rightarrow J = \begin{pmatrix} 0 & \frac{-\alpha b}{\beta} \\ \frac{a\beta}{\alpha} & 0 \end{pmatrix} \Rightarrow p(\lambda) = \lambda^2 + ab$$
$$\Rightarrow \lambda_1 = \sqrt{ab} \ i \in \lambda_2 = -\sqrt{ab} \ i$$

Trajetória no plano de fase

Podemos obter uma relação entre x e y da seguinte forma:

$$\frac{dx}{dy} = \frac{dx/dt}{dy/dt} = \frac{(a - \alpha y)x}{(-b + \beta x)y} \Leftrightarrow \frac{(-b + \beta x)}{x} dx = \frac{(a - \alpha y)}{y} dy$$

$$\Rightarrow \left(\frac{-b}{x} + \beta\right) dx = \left(\frac{a}{y} - \alpha\right) dy \stackrel{integrando}{\Longrightarrow} \beta x - b \ln x = a \ln y - \alpha y + K$$

Considerando as funções auxiliares

$$\begin{cases} k = f(x) = \beta x - b \ln x \\ w = g(y) = a \ln y - \alpha y \\ z = w + k \end{cases}$$

As partes positivas das três funções acima podem ser esboçadas separadamente, e suas interrelações fornecem os pontos da trajetória no quadrante **xy**.

$$f'(x) = \beta - \frac{b}{x}$$
$$g'(y) = \frac{a}{y} - \alpha$$

Note que

• f'(x) > 0 se $\beta - \frac{b}{x} > 0 \Leftrightarrow \frac{\beta x - b}{x} > 0$ Como queremos esboçar apenas o primeiro quadrante de **xy**, impomos a condição x > 0 e obtemos que

$$f'(x) > 0 \Leftrightarrow x > \frac{b}{\beta}$$
 e $f'(x) < 0 \Leftrightarrow x < \frac{b}{\beta}$

• g'(y) > 0 se $\frac{a}{y} - \alpha > 0 \Leftrightarrow \frac{a - \alpha y}{y} > 0$ Impomos a condição y > 0 e obtemos que

$$g'(y) > 0 \Leftrightarrow y < \frac{a}{\alpha} \quad e \quad g'(y) < 0 \Leftrightarrow y > \frac{a}{\alpha}$$

As trajetórias no plano \mathbf{xy} são fechadas em torno de $\left(\frac{b}{\beta}, \frac{a}{\alpha}\right)$. O ponto P_2 é estável, mas não assintoticamente estável.

 \rightarrow Qual deve ser o número médio de presas e também de predadores em um determinado período T?

Chamemos os números médios de presas e predadores de X e Y, respectivamente.

$$\begin{cases} \frac{1}{x} \frac{dx}{dt} = a - \alpha y \\ \frac{1}{y} \frac{dy}{dt} = -b + \beta x \end{cases}$$

Então

$$\int_0^T \left(\frac{1}{x}\frac{dx}{dt}\right) dt = \int_0^T (a - \alpha y) dt = \left(at|_0^T - \alpha \int_0^T y dt\right) = \left(aT - \alpha \int_0^T y dt\right)$$

Mas

$$aT - \alpha \int_0^T y dt = \int_0^T \left(\frac{1}{x} \frac{dx}{dt}\right) dt =$$

 $\ln x(t)|_0^T = \ln(x(T)) - \ln(x(0)) = 0$ (por definição de $T,\,x(T) = x(0))$

$$\Rightarrow aT = \alpha \int_0^T y dt \Rightarrow$$

$$\frac{a}{\alpha} = \frac{1}{T} \int_0^T y dt = Y$$

Analogamente,

$$\frac{b}{\beta} = X$$

Lotka-Volterra "com pesca"

$$\begin{cases} \frac{dx}{dt} = ax - \alpha xy - \varepsilon_1 x = (a - \varepsilon_1)x - \alpha xy \\ \frac{dy}{dt} = -by + \beta xy - \varepsilon_2 y = -(b + \varepsilon_2)y + \beta xy \end{cases}$$

Equilíbrios:

 $P_1 = (0,0)$ (analogamente ao modelo anterior, este ponto é de sela) e

$$P_2 = \left(\frac{b + \varepsilon_2}{\beta}, \frac{a - \varepsilon_1}{\alpha}\right)$$

Obs.: Podemos observar pelo gráfico que o novo equilíbrio favorece a presa.

Modelo Geral de Presa-Predador (Kolmogorov)

$$\begin{cases} \frac{dx}{dt} = A(x)x - V(x)y\\ \frac{dy}{dt} = B(x)y \end{cases}$$

- A(0) > 0 e A é decrescente
- B(0) < 0 e B é crescente
- V(0) = 0 e V(x) > 0 (para x > 0)

Presa-Predador: Holling-Tanner

$$\begin{cases} \frac{dx}{dt} = rx\left(1 - \frac{x}{k}\right) - \frac{mxy}{D+x} \\ \frac{dy}{dt} = sy\left(1 - h\frac{y}{x}\right) \end{cases}$$

EPIDEMIOLOGIA

Modelo Primitivo para uma infecção viral

Sejam:

x: população de hospedeiros humanos

y: população de vírus

Hipóteses:

- A população de humanos cresce a uma taxa constante na ausência de vírus;
- A infecção viral causa uma mortalidade crescente devido a doença, então g(y)>0;
- A reprodução de partículas virais depende da presença de humanos;
- $\bullet\,$ Na ausência de hospedeiros humanos, as partículas virais 'morrem' ou tornam-se inviáveis a uma taxa $\gamma\,$

$$\begin{cases} \frac{dx}{dt} = \alpha x - g(y)x, \ g(y) > 0 \\ \frac{dy}{dt} = -\gamma y + \beta xy \end{cases}$$

Sejam:

 $S \to a$ população de suscetíveis,

 $I \rightarrow$ a população de infectados, e

 $R \rightarrow$ a população de recuperados.

Vejamos alguns modelos:

Modelo de Kermack, Mc Kendrik (1927) (SI)

Modelo SI (o mais simples):

$$\begin{cases} \frac{dS}{dt} = -\mu SI \\ \frac{dI}{dt} = \mu SI \end{cases}$$

Se considerarmos N=S+I a população total, podemos notar que, pelo modelo acima, $\frac{dN}{dt}=0.$

Relembrando:

$$\begin{cases} \frac{dx}{dt} = a_{11}x + a_{12}y \\ \frac{dy}{dt} = a_{21}x + a_{22}y \end{cases}$$
$$p(\lambda) = \lambda^2 - \underbrace{(trA)}_{b}\lambda + \underbrace{(detA)}_{c}$$
$$\Rightarrow \lambda_{1,2} = \frac{b \pm \sqrt{b^2 - 4c}}{2}$$

- Se $b^2 4c > 0$ (autovalores reais), temos duas possibilidades: \rightarrow Se $c > 0 \Rightarrow \sqrt{b^2 - 4c} < |b| \Rightarrow b \pm \sqrt{b^2 - 4c}$ tem o mesmo sinal de b. Ou seja, λ_1 e λ_2 tem o mesmo sinal de b.
 - \rightarrow Se $c<0 \Rightarrow \sqrt{b^2-4c}>|b| \Rightarrow \lambda_1$ e λ_2 tem sinais contrários.
- Se $b^2 4c < 0$ (autovalores complexos):

$$\rightarrow \lambda_{1,2} = \frac{b \pm i \sqrt{-(b^2 - 4c)}}{2}$$

Análise Gráfica

1. Nó instável se $b^2 > 4c$, b > 0 e c > 0;

2. Ponto de sela se $b^2 > 4c$ e c < 0;

3. Nó estável se $b^2>4c,\,b<0$ ec>0;

4. Espiral instável se $b^2 < 4c$ e b > 0;

5. Espiral estável se $b^2 < 4c$ e b < 0;

6. Centro neutro se $b^2 < 4c$ e b = 0.

Modelo de Kermack, Mc Kendrik (1927) (SIR)

onde

 β : é a taxa de transmissão da doença, e

 ν : é a taxa de remoção.

A variação na classe de S é proporcional ao número de encontro entre suscetíveis e infectados.

Modelo

$$\begin{cases} \frac{dS}{dt} = -\beta SI \\ \frac{dI}{dt} = \beta SI - \nu I \\ \frac{dR}{dt} = \nu I \end{cases}$$

Note que:

$$\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} = 0$$

Então, se N = S + I + R é o número total de indivíduos $\implies \frac{dN}{dt} = 0$, ou seja, não há variação na população ao longo do tempo.

Análise Dimensional

$$[S], [I], [R] = P$$

$$[t] = T$$

$$[\beta] = \frac{1}{PT}$$
 ou $\left[\frac{1}{\beta}\right] = PT$

$$[\nu] = \frac{1}{T}$$
 ou $\left[\frac{1}{\nu}\right] = T$

 $\frac{1}{\nu}$ \rightarrow tempo médio com que cada indivíduo permanece em I.

Modelo (SIRS)

$$\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma R \\ \frac{dI}{dt} = \beta SI - \nu I \\ \frac{dR}{dt} = \nu I - \gamma R \end{cases}$$

Note que:

- \bullet Se considerarmos novamente N=S+I+R,então $\frac{dN}{dt}=0$
- \bullet Como os modelos SI e SIR,o modeloSIRS é não-linear.
- Os parâmetros μ, β, ν, γ podem não ser constantes. Por exemplo, para doenças periódicas, β pode depender do tempo, então $\beta = \beta(t)$.

• O modelo SIR é um caso particular do modelo SIRS com $\gamma = 0$.

Equilíbrios

$$\begin{split} \frac{dI}{dt} &= 0 \leftrightarrow I = 0 \text{ ou } S = \frac{\nu}{\beta} \\ \frac{dS}{dt} &= 0 \leftrightarrow \gamma R = \beta SI = \nu I \\ P_1 &= (N,0,0) \text{ e } P_2 = \left(\frac{\nu}{\beta}, I_2, R_2\right) \text{ , onde } R_2 = \frac{\nu I_2}{\gamma} \end{split}$$

Observe que:

$$I_{2} + R_{2} = N - S_{2} \Rightarrow N - S_{2} = I_{2} + \frac{\nu}{\gamma} I_{2} = \left(\frac{\gamma + \nu}{\gamma}\right) I_{2} \Rightarrow I_{2} = \gamma \frac{N - S_{2}}{\gamma + \nu}$$
$$I_{2} > 0 \Leftrightarrow \gamma \frac{N - S_{2}}{\nu + \gamma} > 0 \Leftrightarrow N - S_{2} > 0 \Leftrightarrow N > \frac{\nu}{\beta} \Leftrightarrow N \frac{\beta}{\nu} > 1$$

onde

$$\frac{\beta}{\nu} = \beta \frac{1}{\nu}$$

representa a fração de indivíduos que foram infectados por um dado indivíduo de I (lembrando que $\frac{1}{\nu}$ representa o tempo médio de permanência de um indivíduo em I).

Então:

$$N\frac{\beta}{\nu}$$

representa o número de infecções secundárias, ou seja, o número médio de novos casos de infecção causados por um único infectado numa população de suscetíveis.

O parâmetro $R_0 = N \frac{\beta}{\nu}$ é característico de cada doença e é usado para medir o grau de cada doença.

Se $R_0>1$ então a doença é epidêmica, se $R_0<1$ então a doença é endêmica.

Considerando R = N - S - I, podemos transformar o sistema do modelo

SIRS de três para duas equações:

$$\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma (N - S - I) = F(S, I) \\ \frac{dI}{dt} = \beta SI - \nu I = G(S, I) \end{cases}$$

Equilíbrios no plano $S \times I$:

$$\begin{cases} \frac{dI}{dt} = 0 \Rightarrow I = 0 \text{ ou } S = \frac{\nu}{\beta} \\ \frac{dS}{dt} = 0 \Rightarrow \beta SI = \gamma (N - S - I) \text{ ou } I = \gamma \frac{(N - S)}{\beta S + \gamma} \end{cases}$$
$$P_1 = (N, 0) \text{ e } P_2 = \left(\frac{\nu}{\beta}, \gamma \frac{(N - \nu/\beta)}{\nu + \gamma}\right)$$

Estabilidade:

$$J = \begin{vmatrix} \frac{\partial F}{\partial S} & \frac{\partial F}{\partial I} \\ \frac{\partial G}{\partial S} & \frac{\partial G}{\partial I} \end{vmatrix} = \begin{vmatrix} -(\beta I + \gamma) & -(\beta S + \gamma) \\ \beta I & \beta S - \nu \end{vmatrix}$$

$$trJ = -\beta I - \gamma + \beta S - \nu = \beta(S - I) - (\gamma + \nu)$$
$$detJ = -(\beta I + \gamma)(\beta S - \nu) + \beta I(\beta S + \gamma)$$

Para $P_1 = (N, 0)$:

$$trJ = \beta N - (\gamma + \nu)$$
 e $detJ = -\gamma(\beta N - \nu)$

Temos 2 casos:

Caso 1:
$$det J = -\gamma(\beta N - \nu) < 0 \Leftrightarrow \beta N - \nu > 0 \Leftrightarrow \frac{\beta N}{\nu} > 1$$
, isto é, $R_0 > 1$
Se $\frac{\beta N}{\nu} > 1$ então P_1 é ponto de sela (e portanto, instável).

Caso 2:
$$det J = -\gamma(\beta N - \nu) > 0 \Leftrightarrow \frac{\beta N}{\nu} < 1$$

Observe que $trJ > 0 \Leftrightarrow \beta N - (\gamma + \nu) > 0 \Leftrightarrow \frac{\beta N}{\gamma + \nu} > 1$ (não acontece se o de cima acontecer), isto é, $detJ > 0 \Rightarrow trJ < 0$.

Neste caso, P_1 é um nó estável.

Obs: Note que este fato (isto é, P_1 ser estável) implica que $\not\exists P_2$, uma vez que a segunda coordenada de P_2 vai ser negativa, pois a condição de P_1 ser estável é $N-\frac{\nu}{\beta}<0$.

Para
$$P_2 = \left(\frac{\nu}{\beta}, I_2\right) = \left(\frac{\nu}{\beta}, \gamma \frac{(N - \nu/\beta)}{\nu + \gamma}\right)$$
:

$$trJ = -(\beta I_2 + \gamma)$$
 e

$$det J = \beta I_2(\nu + \gamma)$$

Para que P_2 exista é necessário que $I_2>0$, então trJ<0 e detJ>0. Então P_2 é um nó estável.

SIRS:
$$\delta = 0 \rightarrow \sigma = \frac{\beta}{\gamma + \nu} \rightarrow R_0 = N \frac{\beta}{\gamma + \nu}$$

SIR:
$$\delta = \gamma = 0 \rightarrow \sigma = \frac{\beta}{\nu} \rightarrow R_0 = N \frac{\beta}{\nu}$$

SIS:
$$\nu = 0 \rightarrow \sigma = \frac{\beta}{\delta} \rightarrow R_0 = N \frac{\beta}{\delta}$$

 R_0 é um parâmetro de importância para a doença. Em cada modelo, R_0 é a relação entre os parâmetros do modelo que indica

$$\frac{dI}{dt} > 0 \ (R_0 > 1) \ \text{ou} \ \frac{dI}{dt} < 0 \ (R_0 < 1)$$

Sistema Linear

O modelo do esquema acima possui k+2 equações.

Critério de Routh-Hurwitz

Seja $p(\lambda) = \lambda^k + a_1 \lambda^{k-1} + a_2 \lambda^{k-2} + \cdots + a_k$ o polinômio associado a um sistema com k equações, de um modelo como o do esquema.

$$H_{1} = (a_{1}) ; H_{2} = \begin{pmatrix} a_{1} & 1 \\ a_{3} & a_{2} \end{pmatrix} ; H_{3} = \begin{pmatrix} a_{1} & 1 & 0 \\ a_{3} & a_{2} & a_{1} \\ a_{5} & a_{4} & a_{3} \end{pmatrix} ; \dots$$

$$\dots ; H_{j} = \begin{pmatrix} a_{1} & 1 & 0 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & 1 & \dots & 0 \\ a_{5} & a_{4} & a_{3} & a_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ a_{2j-1} & a_{2j-2} & a_{2j-3} & a_{2j-4} & \dots & a_{j} \end{pmatrix}$$

$$\dots ; H_{k} = \begin{pmatrix} a_{1} & 1 & 0 & 0 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & 1 & \dots & 0 \\ a_{3} & a_{2} & a_{1} & 1 & \dots & 0 \\ a_{5} & a_{4} & a_{3} & a_{2} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \end{pmatrix}$$

O equilíbrio será estável se, e somente se,

$$det(H_i) > 0 \text{ para } j = 1, 2, \dots, k$$

Exemplos:

Para k=2:

$$p(\lambda) = \lambda^2 + a_1 \lambda + a_2 \to H_1 = (a_1) \in H_2 = \begin{pmatrix} a_1 & 1 \\ 0 & a_2 \end{pmatrix}$$

$$\begin{cases} \det(H_1) > 0 \Leftrightarrow a_1 > 0 \\ \operatorname{Se} \det(H_1) > 0, \ a_1 a_2 = \det(H_2) > 0 \Leftrightarrow a_2 > 0 \end{cases}$$

Para k = 3:

$$p(\lambda) = \lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3 \to H_1 = (a_1) ; H_2 = \begin{pmatrix} a_1 & 1 & 0 \\ a_3 & a_2 \end{pmatrix} ; H_3 = \begin{pmatrix} a_1 & 1 & 0 \\ a_3 & a_2 & a_1 \\ 0 & 0 & a_3 \end{pmatrix}$$

$$\begin{cases} \det(H_1) > 0 \Leftrightarrow a_1 > 0 \\ \operatorname{Se} \det(H_1) > 0 \text{ , então } \det(H_2) = a_1 a_2 - a_3 > 0 \Leftrightarrow a_2 > \frac{a_3}{a_1} \\ \operatorname{Se} \det(H_2) > 0 \text{ , então } \det(H_3) = a_3 (a_1 a_2 - a_3) > 0 \Leftrightarrow a_3 > 0 \end{cases}$$

Para k = 4:

$$p(\lambda) = \lambda^4 + a_1 \lambda^3 + a_2 \lambda^2 + a_3 \lambda + a_4$$

$$H_{1} = (a_{1}); H_{2} = \begin{pmatrix} a_{1} & 1 \\ a_{3} & a_{2} \end{pmatrix}; H_{3} = \begin{pmatrix} a_{1} & 1 & 0 \\ a_{3} & a_{2} & a_{1} \\ 0 & a_{4} & a_{3} \end{pmatrix}; H_{4} = \begin{pmatrix} a_{1} & 1 & 0 & 0 \\ a_{3} & a_{2} & a_{1} & 1 \\ 0 & a_{4} & a_{3} & a_{2} \\ 0 & 0 & 0 & a_{4} \end{pmatrix}$$

$$\begin{cases} \det(H_1) > 0 \Leftrightarrow a_1 > 0 \\ \operatorname{Se} \ \det(H_1) > 0 \ , \ \operatorname{ent\~ao} \ \det(H_2) = a_1 a_2 - a_3 > 0 \Leftrightarrow a_2 > \frac{a_3}{a_1} \\ \operatorname{Se} \ \det(H_2) > 0 \ , \ \operatorname{ent\~ao} \ \det(H_3) = a_1 a_2 a_3 - a_3^2 - a_1^2 a_4 > 0 \Leftrightarrow a_3 > \frac{a_1^2 a_4}{a_1 a_2 - a_3} \\ \operatorname{Se} \ \det(H_3) > 0 \ , \ \operatorname{ent\~ao} \ \det(H_4) = a_4 (a_1 a_2 a_3 - a_3^2 - a_1^2 a_4) > 0 \Leftrightarrow a_4 > 0 \end{cases}$$

Critério de Lyapunov

Seja $\dot{x}=f(x)$ um sistema dinâmico, $x\in\mathbb{R}^n,\,f:I\subset\mathbb{R}^n\to\mathbb{R}^n$ e \bar{x} um equilíbrio. Se existir $V:U\to\mathbb{R}$ de classe C^1 e U uma vizinhança de \bar{x} , tal que:

- (i) $V(\bar{x}) = 0$ e V(x) > 0, para $x \neq \bar{x}$ em U;
- (ii) $\dot{V}(x) \leq 0$ para $x \neq \bar{x}$ em U;

Então \bar{x} é estável.

Se além disso:

(iii) $\dot{V}(x) < 0$ para $x \neq \bar{x}$, então \bar{x} é assintoticamente estável

Obs.: $\dot{V}(x) = \nabla V(x) \cdot f(x)$ (Observe que a saída é um número real.)

Nos modelos clássicos de epidemiologia, quando o equilíbrio não trivial exitir (do ponto de vista biológico), então o equilíbrio trivial é instável.

Teorema 7 Seja $p(\lambda) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \cdots + a_{n-1} \lambda + a_n$. O ponto de equilibrio trivial $(P_0 = (N, 0, 0, \dots, 0))$ é localmente assintoticamente estável se $a_n > 0$, e é instável se $a_n < 0$.

Modelo SIS

$$\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma I = F(S, I) \\ \frac{dI}{dt} = \beta SI - \gamma I = G(S, I) \end{cases}$$

Lembrando que N = S + I é constante pois $\frac{dN}{dt} = 0$

Observe que podemos transformar o sistema acima em uma única equação, considerando I=N-S:

$$\frac{dI}{dt} = \beta(N - I)I - \gamma I$$

Equilíbrios:

$$-\frac{dI}{dt} = \frac{dS}{dt} = 0 \Leftrightarrow I = 0 \ (\to S = N) \text{ ou } S = \frac{\gamma}{\beta} \ (\to I = N - \frac{\gamma}{\beta})$$
$$\Longrightarrow P_1 = (N, 0) \text{ e } P_2 = \left(\frac{\gamma}{\beta}, N - \frac{\gamma}{\beta}\right)$$

Vamos analisar a estabilidade de P_1 e P_2 :

$$J = \begin{pmatrix} \frac{\partial F}{\partial S} & \frac{\partial F}{\partial I} \\ \frac{\partial G}{\partial S} & \frac{\partial G}{\partial I} \end{pmatrix} = \begin{pmatrix} -\beta I & -\beta S + \gamma \\ \beta I & \beta S - \gamma \end{pmatrix}$$
$$tr(J) = -\beta I + \beta S - \gamma$$
$$det(J) = -\beta I(\beta S - \gamma) - \beta I(-\beta S + \gamma) = 0$$

Então os autovalores de J são as raízes da equação:

$$\lambda^2 - tr(J)\lambda = 0 \Rightarrow \lambda_1 = 0 \text{ e } \lambda_2 = tr(J)$$

Para $P_1=(N,0)\Rightarrow \lambda_2=\beta N-\gamma>0$ (é necessário que $\beta N-\gamma>0$ para que P_2 exista).

Podemos ver que P_1 é um equilíbrio instável

Para
$$P_2 = \left(\frac{\gamma}{\beta}, N - \frac{\gamma}{\beta}\right) \Rightarrow \lambda_2 = -\beta N + \gamma < 0$$

Podemos ver que P_2 é um equilíbrio estável.

Consideremos novamente a equação:

$$\frac{dI}{dt} = \beta(N-I)I - \gamma I$$

Podemos resolvê-la analiticamente usando separação de variáveis:

1) Soluções constantes:

$$I = 0$$
 e $I = N - \frac{\gamma}{\beta}$

2) Soluções não-constantes:

$$\int \frac{dI}{(\beta(N-I)-\gamma)I} = \int dt \Rightarrow$$

$$\int \frac{dI}{(\beta(N-I)-\gamma)I} = \int \frac{A}{\beta(N-I)-\gamma} dI + \int \frac{B}{I} dI = t + K$$

onde

$$A = \frac{\beta}{\beta N - \gamma} e B = \frac{1}{\beta N - \gamma}$$

$$\Rightarrow A \int \frac{1}{-\beta I + \beta N - \gamma} dI + B \ln |I| = t + K$$

$$\Rightarrow -\frac{1}{\beta N - \gamma} \ln |-\beta I + (\beta N - \gamma)| + \frac{1}{\beta N - \gamma} \ln |I| = t + K$$

$$\Rightarrow \frac{1}{\beta N - \gamma} \ln \left| \frac{I}{-\beta I + (\beta N - \gamma)} \right| = t + K$$

$$\Rightarrow \frac{1}{\beta N - \gamma} \ln \left| \frac{I}{-\beta I + (\beta N - \gamma)} \right| = t + K \Rightarrow \frac{I}{-\beta I + (\beta N - \gamma)} = Ke^{(\beta N - \gamma)t}$$

$$\Rightarrow I = -\beta I K e^{(\beta N - \gamma)t} + (\beta N - \gamma) K e^{(\beta N - \gamma)t} \Rightarrow I = \frac{(\beta N - \gamma) K e^{(\beta N - \gamma)t}}{1 + \beta K e^{(\beta N - \gamma)t}}$$

$$\Rightarrow I = \frac{\beta N - \gamma}{\frac{1}{K}e^{(\gamma - \beta N)t} + \beta}$$

Para
$$t = 0 \Rightarrow I(t) = I(0) = I_0 \Rightarrow \frac{I_0}{-\beta I_0 + \beta N - \gamma} = K$$

E a solução é a seguinte:

$$I(t) = \frac{\beta N - \gamma}{\beta + [(\beta N - \gamma)\frac{1}{I_0} - \beta]e^{-(\beta N - \gamma)t}}$$

Observe que quando $t \to \infty$, então $I \to N - \frac{\gamma}{\beta}$

Obs.: Note que quando $\gamma=0$ (isto é, o sistema passa de SIS para SI), então

$$I(t) = \frac{\beta N}{\beta + \left[\frac{\beta N}{I_0} - \beta\right]e^{-\beta Nt}}$$

 t^* é o instante em que $\frac{dI}{dt}$ é máximo (inflexão).

Agora vamos mudar um pouco o sistema:

$$\begin{cases} \frac{dS}{dt} = -\beta SI + \gamma I + nN - mS \\ \frac{dI}{dt} = \beta SI - \gamma I - mI \end{cases}$$

onde

 $n \to \text{representa}$ a taxa de nascimento, e

 $m \to \text{representa}$ a taxa de mortalidade.

Agora, N=S+I não é mais constante, N=N(t), pois:

$$\frac{dN}{dt} = \frac{dS}{dt} + \frac{dI}{dt} = (n - m)N \Rightarrow N(t) = N_0 e^{(n-m)t}$$

Equilíbrios:

$$\frac{dI}{dt} = 0 \Leftrightarrow (\beta S - (\gamma + m))I = 0 \Rightarrow I = 0 \text{ ou } S = \frac{\gamma + m}{\beta}$$
$$\frac{dS}{dt} = 0 \Leftrightarrow I = \frac{S(n - m)}{\beta S - (\gamma + n)}, \text{ com } S \neq \frac{\gamma + n}{\beta}$$

Note que:

- Quando $S \to \frac{\gamma+n}{\beta} \Rightarrow I \to \infty$ e quando $S \to \infty \stackrel{\text{L'HOPITAL}}{\Longrightarrow} I \to \frac{n-m}{\beta}$
- $\frac{dI}{dt} < 0$ se $S < \frac{\gamma + m}{\beta}$ e $\frac{dI}{dt} > 0$ se $S > \frac{\gamma + m}{\beta}$
- Acima da curva $I=\frac{S(n-m)}{\beta S-(\gamma+n)}$ $\left(\frac{dS}{dt}=0\right)$ temos que $\frac{dS}{dt}<0$ e abaixo $\frac{dS}{dt}>0$

Dado I_0 , os suscetíveis crescem até um valor máximo que é a intersecção da trajetória com a curva $\frac{dS}{dt}=0$.

Modelo SIR

$$\begin{cases} \frac{dS}{dt} = -\beta SI \\ \frac{dI}{dt} = \beta SI - \gamma I \\ \frac{dR}{dt} = \gamma I \end{cases}$$

onde S + I + R = N é constante, pois $\frac{dN}{dt} = 0$.

Podemos encontrar I em função de S, assim:

$$\frac{\frac{dI}{dt}}{\frac{dS}{dt}} = \frac{dI}{dS} = -1 + \frac{\gamma}{\beta S} \Longrightarrow I(S) = -S + \frac{\gamma}{\beta} \ln S + K$$

6 INTRODUÇÃO ÀS EQUAÇÕES DIFER-ENCIAIS PARCIAIS

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Métodos para resolver esta equação:

Soluções Fundamentais

Considere o operador de funções:

$$\mathcal{L} = D \frac{\partial^2}{\partial x^2} \longrightarrow \mathcal{L}f = D \frac{\partial^2 f}{\partial x^2}$$

fé uma autofunção se existe $\lambda\in\mathbb{R},$ tal que $\mathcal{L}f=\lambda f$ Exemplos de autofunção:

1)
$$f_1(x) = e^{\pm\sqrt{\lambda} x}, \ \lambda > 0$$

$$\mathcal{L}(f_1) = D \frac{\partial^2 f_1}{\partial x^2}$$

$$f_1'(x) = \pm\sqrt{\lambda}e^{\pm\sqrt{\lambda} x} \text{ e } f_1''(x) = \lambda e^{\pm\sqrt{\lambda} x} = \lambda f_1(x)$$

$$\mathcal{L}f_1 = D(f_1'') = D(\lambda f_1) = (D\lambda)f_1$$

2)
$$f_2(x) = \operatorname{sen}(\pm \sqrt{\lambda}x)$$

3)
$$f_3(x) = \cos(\pm\sqrt{\lambda}x)$$

Exemplo:

Condições de contorno: C(0,t) = C(L,t) = 0, $\forall t$

A família $C(x,t)=e^{kt}\operatorname{sen}(\pm\sqrt{\lambda}x)$ é solução da EDP

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Vamos verificar se a afirmação acima é verdadeira, isto é, vamos verificar se $\mathcal{L}(C) = \frac{\partial C}{\partial t}$:

$$\mathcal{L}(C) = e^{kt} D\lambda \operatorname{sen}(\pm \sqrt{\lambda} \ x) \text{ , pois } \operatorname{sen}(\pm \sqrt{\lambda} \ x) \text{ \'e uma autofunção de } \mathcal{L}$$

$$\frac{\partial C}{\partial t} = k e^{kt} \operatorname{sen}(\pm \sqrt{\lambda} \ x)$$

Se $k=D\lambda$, então $C(x,t)=e^{kt}\sin(\pm\sqrt{\lambda}\ x)$ é solução da EDP. Agora, analisemos o contorno:

$$C(0,t) = 0 \Rightarrow e^{kt}0 = 0$$

$$C(L,t) = 0 \Rightarrow e^{kt} \operatorname{sen}(\pm \sqrt{\lambda}L) = 0$$

Condição:
$$\pm \sqrt{\lambda} L = n\pi$$
, isto é, $\lambda = \left(\frac{n\pi}{L}\right)^2$, $n = 0, 1, \dots$

Nós estamos apenas tentando encontrar uma família de soluções para a EDP, não estamos preocupados em encontrar a solução geral.

Método de Separação de variáveis

Investigar se há soluções do tipo

$$C(x,t) = C_T(x,t) + \bar{C}(x)$$

Obs.: Se C dado acima for uma solução da EDP

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

então

$$\frac{\partial^2 \bar{C}}{\partial x^2} \equiv 0 \text{ pois } \frac{\partial \bar{C}}{\partial t} \equiv 0$$

Isto implica que $C_T(x,t)$ também será solução da EDP. Pelo mesmo argumento, se $C_T(x,t)$ for uma solução da EDP, então C(x,t) também será.

Consideremos $C_T(x,t) = S(x)T(t)$. Então devemos ter:

$$\frac{\partial C_T}{\partial t} = D \frac{\partial^2 C_T}{\partial x^2}$$
, isto é $S(x)T'(t) = DS''(x)T(t)$

Supondo $S(x), T(t) \not\equiv 0$, então:

$$\underbrace{\frac{T'(t)}{T(t)}}_{\text{ode appends appends appends de } T} = K \text{ (constante)}$$

$$\frac{T'(t)}{T(t)} = K \Rightarrow T'(t) = KT(t) \Rightarrow T(t) = Ae^{Kt}$$

$$D\frac{S''(x)}{S(x)} = K \Rightarrow S''(x) - \frac{K}{D}S(x) = 0 \Rightarrow \lambda^2 - \frac{K}{D} = 0$$
$$\Rightarrow \lambda = \pm \sqrt{\frac{K}{D}} \Rightarrow S(x) = Be^{\sqrt{\frac{K}{D}}x} + Ce^{-\sqrt{\frac{K}{D}}x}$$

Então

$$C(x,t) = S(x)T(t) + \bar{C}(x) = Ae^{Kt}\left(Be^{\sqrt{\frac{K}{D}}x} + Ce^{-\sqrt{\frac{K}{D}}x}\right) + \bar{C}(x)$$

Se $C(0,t) = C(L,t) \equiv 0$, então:

$$C(0,t) = Ae^{Kt}(B+C) + \bar{C}(0) = 0$$

$$C(L,t) = Ae^{Kt} \left(Be^{\sqrt{\frac{K}{D}}L} + Ce^{-\sqrt{\frac{K}{D}}L}\right) + \bar{C}(L) = 0$$

Para que $C_T(x,t)$ seja solução do problema de contorno

$$\begin{cases} \frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \\ C(0,t) = C(L,t) = 0 \end{cases}$$

Basta que tenhamos:

$$T(t)S(0) = T(t)S(L) = 0$$

Se
$$T(t) \equiv 0 \Rightarrow S(x) = B \operatorname{sen} \sqrt{-\frac{K}{D}} x e K < 0$$

Se
$$S(L) = 0 \Rightarrow -\frac{K}{D} = \left(-\frac{n\pi}{L}\right)^2$$

Ondas Viajantes

São possíveis soluções de EDP, com mesmo perfil $\forall t$ Considere a EDP:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + ru(1 - u)$$

Procurar soluções para esta EDO do tipo onda viajante. u(x,t) é solução desta EDO do tipo onda viajante, se

$$u(x,t) = v(\underbrace{x - ct}_{s}), v; \mathbb{R} \to \mathbb{R}$$

Note que v é função de uma única variável s.

c é chamado de velocidade da onda e, portanto, x-ct é o deslocamento da onda.

Obs.: o valor da função em x_1 no instante t_1 coincide com o valor da função em x_0 no instante t_0 , pois:

$$x_1 = x_0 + c(t_1 - t_0) \Rightarrow x_1 - ct_1 = x_0 - ct_0 \Rightarrow$$

 $u(x_1, t_1) = v(x_1 - ct_1) = v(x_0 - ct_0) = u(x_0, t_0)$

Como encontrar a tal v?

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial t}(v(x - ct)) = -cv'(x - ct)$$

$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x}(v(x - ct)) = v'(x - ct) \cdot \frac{\partial}{\partial x}(x - ct) = v'(x - ct)$$

$$\frac{\partial^2 u}{\partial x^2} = v''(x - ct)$$

Então v(x-ct) será solução da EDP, se:

$$-cv'(x-ct) = v''(x-ct) + rv(x-ct)(1-v(x-ct)) \Leftrightarrow$$
$$v'' + cv' + rv(1-v) = 0 \text{ , onde } v' = \frac{dv}{ds} \text{ , } s = x-ct$$

Agora, basta resolvermos a EDO acima para encontrar a função v que queremos.

Esta EDO pode ser transformada num sistema da seguinta forma. Consideremos w = v'. Então:

$$\begin{cases} w = v' = f_1(v, w) \\ w' = v'' = -cw - rv(1 - v) = f_2(v, w) \end{cases}$$

Na forma matricial:

$$\begin{pmatrix} v \\ w \end{pmatrix}' = \begin{pmatrix} f_1(v, w) \\ f_2(v, w) \end{pmatrix} = \begin{pmatrix} w \\ -cw - rv(1 - v) \end{pmatrix} = F(v, w)$$

Equilíbrios:

$$P_1 = (0,0) e P_2 = (1,0)$$

Estabilidade dos Equilíbrios:

$$J(v,w) = \left[\begin{array}{cc} 0 & 1\\ -r + 2vr & -c \end{array} \right]$$

$$tr(J) = -c < 0$$
 e
 $det(J) = r - 2vr$

Equação dos autovalores de J:

$$\lambda^2 - tr(J) + det(J) = 0$$
, isto é $\lambda^2 + c\lambda + (r - 2vr) = 0$

Para que tenhamos autovalores reais é necessário que $c \ge 2r$.

- Para $P_1 = (0,0)$, det(J) = r > 0, então P_1 é um nó estável.
- \bullet Para $P_2=(1,0),\, det(J)=r-2r=-r<0,$ então P_2 é ponto de sela.

Cálculo dos autovetores:

$$(J(1,0) - \lambda I) = \begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} -\lambda & 1 \\ r & -c - \lambda \end{pmatrix} = \begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow w = \lambda_1 v \text{ ou } w = \lambda_2 v$$

Análise Gráfica

Notemos que

$$\begin{cases} v \to 1 \text{ se } s \to -\infty \\ v \to 0 \text{ se } s \to +\infty \\ v'(s) < 0 \end{cases}$$

Olhando o campo de direções podemos ver que, as soluções que entram no triângulo não podem dele sair. Mais formalmente, isso acontece e é garantido pelo **teorema de Poincaré-Bendixon**, que diz se uma solução entrar num compacto, então ela vai tender para um equilíbrio ou para uma órbita periódica dentro do compacto.

Devido à disposição do campo de direções, não podemos ter uma órbita periódica dentro do triângulo, então, todas as soluções, tenderão ao único esquilíbrio estável que é $P_1 = (0,0)$.

Modelos Matemáticos de Epidemiologia com Distribuição Espacial e Etária

Um modelo geral

Sejam x e t as variáveis de espaço e tempo, respectivamente.

Hipóteses:

- A população consiste somente de infectados I(x,t) e suscetíveis S(x,t);
- A dispersão espacial de S e I é modelada por difusão, com mesmo coeficiente de difusão D para S e I;
- A transição de S para I é proporcional ao número de encontros entre suscetíveis e infectados:
- ullet A classe dos infectados possui uma taxa a de mortalidade devido às infecções.

Modelo:

$$\begin{cases} \frac{\partial S}{\partial t} = -rIS + D\nabla^2 S \\ \frac{\partial I}{\partial t} = rIS - aI + D\nabla^2 I \end{cases}$$

Vamos ilustrar tal sistema com um modelo simples de dispersão da raiva entre raposas na Europa.

Hipóteses:

- As raposas são as únicas responsáveis pela dispersão da raiva;
- A dispersão se dá devido à migração de raposas infectadas, uma vez que as sadias reconhecem seus territórios e, portanto, tem baixa dispersão;

Modelo:

$$(P) \begin{cases} \frac{\partial S}{\partial t} = -IS \\ \frac{\partial I}{\partial t} = IS - \lambda I + \frac{\partial^2 I}{\partial x^2} \end{cases}, \text{ onde } \lambda = \frac{a}{rS_0}$$

O parâmetro $\frac{1}{\lambda}$ é a taxa de reprodutibilidade basal, que mede o número médio de infecções secundárias causadas por um único infectado em contato com a população inicialmente sadia.

 $\frac{1}{a}$ é o tempo médio que um indivíduo permanece infectado antes de morrer (devido à definição de a). Assim, a fração de indivíduos infectados na população devido a um elemento infectado é $r\frac{1}{a}$. Finalmente, $R_0 = \frac{1}{\lambda} = \frac{rS_0}{a}$ tem a interpretação dada acima.

Soluções tipo ondas viajantes

 $s, i : \mathbb{R} \to \mathbb{R}$ é uma solução de (P) do tipo onda viajante se S(x,t) = s(z), I(x,t) = i(z), onde z = x - ct e c > 0 indica a velocidade da onda.

Assim, podemos dizer que se i (ou s) é onda viajante, então o que ocorre em x_1 na data t_1 , coincide com o que ocorreu em x_0 na data t_0 , pois:

$$x_1 = x_0 + c(t_1 - t_0) \Rightarrow$$

$$I(x_1, t_1) = i(x_1 - ct_1) = i(x_0 + c(t_1 - t_0) - ct_1) = i(x_0 - ct_0) = I(x_0, t_0)$$

Agora, supondo que (s,i) é solução do tipo onda viajante vendo que $\frac{\partial S}{\partial t} = -cs'$, $\frac{\partial I}{\partial t} = -ci'$, $\frac{\partial^2 I}{\partial x^2} = i''$, o sistema (P) passa a ser um sistema de equações diferenciais ordinárias:

$$(O) \left\{ \begin{array}{l} cs' = is \\ i'' + ci' + (s - \lambda)i = 0 \end{array} \right., \text{ onde } i' = \frac{di}{dz} \text{ e } s' = \frac{ds}{dz} \end{array}$$

Vamos assumir que longe do foco todas sejam sadias $(s(\infty) = 1, i(\infty) = 0)$, que a doença irá desaparecer algum dia $(i(-\infty) = 0)$ e que haja sobreviventes sadios depois que a epidemia acabar. $(s'(-\infty) = 0)$.

Substituindo a primeira equação do sistema (O) na segunda, obtemos:

$$i'' + ci' + c \frac{s'(s-\lambda)}{s} = 0 \implies i' + ci + cs - \lambda c \ln s = k$$

Como $s \to 1$ se $z \to +\infty$ então k = c. Em seguida fazendo $z \to -\infty$, i' = i = 0, temos a equação para os sobreviventes $\sigma = s(-\infty)$:

$$\sigma - \lambda \ln \sigma = 1$$
 ou $\frac{\sigma - 1}{\ln \sigma} = \lambda$.

 λ é crescente com σ , ou seja, quanto maior o valor de λ , maior o de σ . Como $\lambda = \frac{a}{rS_0}$, λ pode ser visto como uma medida de mortalidade. Assim,quanto mais severa a doença (maior λ) mais sobreviventes teremos depois da epidemia.

Nota: Para ver que λ cresce com σ , $0 < \sigma < 1$, calculemos:

$$\lambda' = \frac{\ln \sigma + \frac{1}{\sigma} - 1}{(\ln \sigma)^2} > 0 \Leftrightarrow \underbrace{\ln \sigma + \frac{1}{\sigma}}_{f(\sigma)} > 1$$

Se $\sigma = 1 \to \ln \sigma + \frac{1}{\sigma} = 1$. Por outro lado, $f'(\sigma) = \frac{1}{\sigma} - \frac{1}{\sigma^2} < 0$. Se $\sigma < 1$, f é decrescente e f(1) = 1, logo $f(\sigma) > 1$.

Admitindo então as soluções do tipo onda viajante com as hipóteses acima: $S(\infty) = 1$, $S'(-\infty) = 0$ e $I(\infty) = I(-\infty) = 0$ poderíamos ter os seguintes formatos:

A onda endêmica I é do tipo "pulso".

Verifica-se que estas soluções apresentam alguma semelhança com dados experimentais apenas no período em que há a epidemia. No entanto, se ao sistema (P) for acrescentado um termo de crescimento logístico para os suscetíveis, verifica-se existir uma boa semelhança entre a solução encontrada e os dados experimentais.

Vamos fazer aqui um rápido comentário a respeito de epidemiologia etária baseando-se na equação de McKendrick-von Foerster:

$$(M) \frac{\partial \rho}{\partial t} + \frac{\partial \rho}{\partial x} = -\lambda(x, t)\rho(x, t),$$

onde $\rho(x,t)$ é a densidade populacional com idade x na data t e $\lambda(x,t)$ é a taxa de mortalidade.

Em muitas doenças a idade cronológica é fator importante para que um indivíduo torne-se infectado (doente). Por exemplo, doenças infantis: catapora, caxumba, sarampo, etc. Assim, aplicando-se a equação (M) aos infectados I(x,t), com idade x em t, temos:

$$(N) \frac{\partial I}{\partial t} + \frac{\partial I}{\partial x} = -\lambda(x, t)I(x, t)$$

Dada uma condição inicial $I(x,0) = I_0$ e de fronteira I(0,t) é possível encontrar uma solução para (N).

Os novos casos de doentes na data t são provenientes da classe dos suscetíveis que entraram em contato com infectados das diversas idades. Assim, é razoável supor que a densidade dos novos casos da doença é uma média ponderada da distribuição por idade da população infectada na data t, ou seja,

$$(Q) I(0,t) = \int_0^\infty r(x,t)I(x,t)dt$$

onde r(x,t) é a medida da infecciosidade da doença para as diversas idades na data t e pode ser considerada como um dado do problema.

Note que a equação (N) e a condição de fronteira (Q) tornam o problema num sistema integro-diferencial já que a incóngnita I(x,t) aparece em (N) e (Q).