Recommender Systems Challenge

Arianna Galzerano, Francesco Fulco Gonzales

Project Timeline

Data exploration

Models exploration and evaluation

Hybrids

Final model

Cross-validation & other techniques

Analysis of URM and ICM data

Hyperparameters optimization and base models comparison

Implementation of different hybrid models starting from the best base models

Structure of the final hybrid model

Techniques to improve performance and avoid overfitting

Understanding the data

URM:

min= 9, max 2191

Genre, subgenre, channels, event

Base Models Evaluation

Base Model	Valid MAP@10
SLIMElasticNet	0.2391579
EASE-R	0.2393846
IALS implicit	0.2324677
PureSVD	0.2309224
RP3beta	0.2250362
ItemKNNCF	0.2131692
SLIMBPR	0.2033459

Some techniques

- Stacking URM ICM
- Train validation split: 80:20 (initially 90:10)
- Bayesian Optimization from course repo
- Change of parameters range for different models during optimization and search
- Training both locally and in the cloud

Preprocessing

User Grouping

We tried segmentation into 2 to 10 groups of users based on n. Of interactions

Stacking

For some of the base models it was useful for performance improvement (EASE-R and Rp3beta)

Hybrids techniques and implementation

Linear Combination

Weighted sum of scores

HYBRID RATINGS class

List Combination

Combination of the recommendation lists of the submodels of the hybrid

Similarity Merge

Weighted sum of similarity matrices

HYBRID SIMILARITY CLASS

Cotraining for optimization

Joint hyperparameter optimization of models

Private leaderboard MAP score: **0.48656** (7th place)

Final Hybrid Model

Stacking URM with:

- ➤ ICM channel for SLIM
- ICM event for EASE_R

Other techniques

k-fold cross validation

- k=5 to keep 80:20 split
- Bayesian hyperparameter tuning on cross-validated MAP
- Robustness check for private leaderboard

Selective Cotraining

 Fixed some of the most compute-intensive models to finetune the others

IALS from implicit library

- Significant speed up in training time
- Leveraging Cython and multithreading

Thank you for the attention! Any questions?

Code and optimization results available on github:

@fulcus & @arigalzi