

General Description

The MAX13030E-MAX13035E 6-channel, bidirectional level translators provide the level shifting necessary for 100Mbps data transfer in multivoltage systems. The MAX13030E-MAX13035E are ideally suited for memory-card level translation, as well as generic level translation in systems with six channels. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. Logic signals present on the VL side of the device appear as a higher voltage logic signal on the VCC side of the device and vice versa. The MAX13035E features a CLK_RET output that returns the same clock signal applied to the CLK_V_L input.

The MAX13030E-MAX13035E operate at full speed with external drivers that source as little as 4mA output current. Each I/O channel is pulled up to VCC or VL by an internal 30µA current source, allowing the MAX13030E-MAX13035E to be driven by either pushpull or open-drain drivers.

The MAX13030E-MAX13034E feature an enable (EN) input that places the device into a low-power shutdown mode when driven low. The MAX13030E-MAX13035E features an automatic shutdown mode that disables the part when V_{CC} is less than V_L. The state of I/O V_{CC} and I/O VL_ during shutdown is chosen by selecting the appropriate part version (see Ordering Information/ Selector Guide).

The MAX13030E-MAX13035E accept VCC voltages from +2.2V to +3.6V and V_L voltages from +1.62V to +3.2V, making them ideal for data transfer between low-voltage ASIC/PLDs and higher voltage systems. The MAX13030E-MAX13035E are available in 16-bump UCSP (2mm x 2mm) and 16-pin TQFN (4mm x 4mm) packages, and operate over the extended -40°C to +85°C temperature range.

Applications

SD Card Level Translation MiniSD Card Level Translation MMC Level Translation Transflash Level Translation Memory Stick Card Level Translation

Features

- ♦ Compatible with 4mA Input Drivers or Larger
- ◆ 100Mbps Guaranteed Data Rate
- **♦ Six Bidirectional Channels**
- ◆ Clock Return Output (MAX13035E)
- ◆ Enable Input (MAX13030E-MAX13034E)
- ♦ ±15kV ESD Protection on I/O V_{CC} Lines
- **♦** +1.62V ≤ V_L ≤ +3.2V and +2.2V ≤ V_{CC} ≤ +3.6V **Supply Voltage Range**
- ◆ Lead-Free, 16-Bump UCSP (2mm x 2mm) and 16-pin TQFN (4mm x 4mm) Packages

Typical Operating Circuits

Functional Diagram and Pin Configurations appear at end of data sheet.

Ordering Information/Selector Guide

PART	PIN-PACKAGE	I/O V∟ STATE DURING SHUTDOWN	I/O V _{CC} _STATE DURING SHUTDOWN	PKG CODE
MAX13030EEBE+	16 UCSP	High impedance	High impedance	B16-1
MAX13030EETE+	16 TQFN-EP**	High impedance	High impedance	T1644-4

Note: All devices are specified over the -40°C to +85°C operating temperature range.

+Denotes a lead-free package.

Ordering Information/Selector guide continued at end of data sheet.

^{**}EP = Exposed paddle.

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)	Operating Temperature Range40°C to +85°C
V _{CC} , V _L 0.3V to +4V	Storage Temperature Range65°C to +150°C
I/O V _{CC} , CLK_V _{CC} 0.3V to (V _{CC} + 0.3V)	Junction Temperature+150°C
I/O V _{L_} , CLK_V _I , CLK_RET0.3V to (V _L + 0.3V)	Bump Temperature (soldering)+235°C
EN0.3V to +4V	Lead Temperature (soldering, 10s)+300°C
Short-Circuit Duration I/O V _L , I/O V _{CC} ,	
CLK_V _{CC} , CLK_V _L , CLK_RET to GNDContinuous	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
16-Bump UCSP (derate 8.2mW/°C)660mW	
16-Pin TQFN (derate 25.0mW/°C)2000mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.2V \text{ to } +3.6V, V_L = +1.62V \text{ to } +3.2V, EN = V_L, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V, V_L = +1.8V \text{ and } T_A = +25^{\circ}\text{C}.)$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
V _L Supply Range	VL	(Note 2)	1.62		3.20	V
V _{CC} Supply Range	Vcc		2.2		3.6	V
Supply Current from V _{CC}	Iqvcc	I/O V _{CC} _ = V _{CC} , I/O V _L _ = V _L		16	25	μΑ
Supply Current from V _L	I _{QVL}	I/O V _{CC} _ = V _{CC} , I/O V _L _ = V _L		6	10	μΑ
V Chutdaug Cuanh Curant		$T_A = +25$ °C, EN = GND or $V_L > V_{CC} + 0.7V$, MAX13030E–MAX13034E		2	4	
V _{CC} Shutdown Supply Current	ISHDN-VCC	$T_A = +25$ °C, $V_L > V_{CC} + 0.7V$, MAX13035E,		2	4	μΑ
V _L Shutdown Supply Current	I _{SHDN-VL}	$T_A = +25^{\circ}C$, EN = GND or $V_L > V_{CC} + 0.7V$, MAX13030E–MAX13034E		0.1	4	μΑ
		$T_A = +25$ °C, $V_L > V_{CC} + 0.7$ V, MAX13035E		0.1	4	
I/O V _{CC} _, I/O V _L _, CLK_V _{CC} Tri-State Leakage Current	ILEAK	$T_A = +25$ °C, EN = GND or $V_L > V_{CC} + 0.7V$		0.1	2	μΑ
EN Input Leakage Current	ILEAK_EN	T _A = +25°C, MAX13030E–MAX13034E			1	μΑ
V _L - V _{CC} Shutdown Threshold High	V _{TH} _H	V _{CC} rising	-0.2	0.05V _L	0.7	V
V _L - V _{CC} Shutdown Threshold Low	V _{TH_L}	V _{CC} falling	-0.2	0.1V _L	0.7	V
I/O V _{CC} _Pulldown Resistance During Shutdown	Rvcc_pd_sd	EN = GND, MAX13032E/MAX13034E	10	16.5	23	kΩ
I/O V _{CC} _Pullup Resistance During Shutdown	Rvcc_pu_sd	EN = GND, MAX13031E	10	16.5	23	kΩ
I/O V _{L_} Pulldown Resistance During Shutdown	Rvl_pd_sd	EN = GND, MAX13033E/MAX13034E	10	16.5	23	kΩ

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC}$ = +2.2V to +3.6V, V_L = +1.62V to +3.2V, EN = V_L , T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.3V, V_L = 1.8V and T_A = +25°C.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I/O V _{L_} , CLK_V _L , CLK_RET Pullup Resistance During Shutdown	R _{VL_PU_SD}	(V _L > V _{CC} + 0.7V), MAX13035E	45	75	105	kΩ
I/O VL_, CLK_VL, CLK_RET Pullup Current	R _{VL_PU}	EN = V _{CC} or V _L , I/O V _L = GND	20			μΑ
I/O V _{CC} , CLK_V _{CC} Pullup Current	R _{VCC_PU}	EN = V _{CC} or V _L , I/O V _{CC} _ = GND	20			μΑ
I/O V _L to I/O V _{CC} DC Resistance	R _{IOVL_IOVCC}	(Note 3)		3		kΩ
ESD PROTECTION (Note 3)						
		Human Body Model, C _{VCC} = 1.0μF		±15		
I/O V _{CC_} , CLK_V _{CC}		IEC 61000-4-2 Air-Gap Discharge, C _{VCC} = 1.0µF		±12		kV
		IEC 61000-4-2 Contact Discharge, C _{VCC} = 1.0μF		±8		
LOGIC-LEVEL THRESHOLDS	•					
I/O V _{L_} , CLK_V _L Input-Voltage High Threshold	V _{IHL}	(Note 4)			V _L - 0.2	V
I/O V _{L_} , CLK_V _L Input-Voltage Low Threshold	VILL	(Note 4)	0.15			V
I/O V _{CC_} , CLK_V _{CC} Input- Voltage High Threshold	VIHC	(Note 4)			V _C C - 0.4	V
I/O V _{CC} , CLK_V _{CC} Input- Voltage Low Threshold	VILC	(Note 4)	0.2			V
EN Input-Voltage High Threshold	VIH	MAX13030E-MAX13034E			V _L - 0.4	V
EN Input-Voltage Low	V _{IL}	MAX13030E-MAX13034E	0.4			V
I/O V _L , CLK_V _L , CLK_RET Output-Voltage High	Vohl	I/O V _L , CLK_V _L , CLK_RET source current = 20µA, I/O V _{CC} ≥ V _{CC} - 0.4V	2/3 V _L	_		V
I/O V _L , CLK_V _L , CLK_RET Output-Voltage Low	Voll	I/O V_L , CLK_ V_L , CLK_RET sink current = 20 μ A, I/O V_{CC} \leq 0.2 V			1/3 V _L	V
I/O V _{CC} , CLK_V _{CC} Output- Voltage High	Vohc	I/O V _{CC} , CLK_V _{CC} source current = $20\mu A$, I/O V _L \geq V _L - $0.2V$	2/3 V _C C			V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.2V \text{ to } +3.6V, V_L = +1.62V \text{ to } +3.2V, EN = V_L, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V, V_L = 1.8V \text{ and } T_A = +25^{\circ}C.)$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I/O V _{CC} , CLK_V _{CC} Output- Voltage Low	Volc	I/O V _{CC} , CLK_V _{CC} sink current = 20μ A, I/O V _L ≤ 0.15 V			1/3 V _{CC}	V
RISE/FALL TIME ACCELERATO	R STAGE (No	te 3)	•			
A a a a la vator Dula a Duration		On falling edge		3		
Accelerator Pulse Duration		On rising edge		3		ns
V _L -Output-Accelerator Source		V _L = 1.62V		11		Ω
Impedance		V _L = 3.2V		6		\$2
V _{CC} -Output-Accelerator Source		V _{CC} = 2.2V		9		Ω
Impedance		V _{CC} = 3.6V		8		\$2
V _L -Output-Accelerator Sink		V _L = 1.62V		9		Ω
Impedance		V _L = 3.2V		8		\$2
V _{CC} -Output-Accelerator Sink		V _{CC} = 2.2V		10		0
Impedance		V _{CC} = 3.6V		9		Ω

TIMING CHARACTERISTICS

 $(V_{CC} = +2.2V \text{ to } +3.6V, V_L = +1.62V \text{ to } +3.2V, C_{I/OVL} \le 15 \text{pF}, C_{I/OVCC} \le 15 \text{pF}, R_{SOURCE} = 150\Omega, EN = V_L, I/O V_L \text{ to } I/O V_{CC} \text{ rise/fall time} = 3 \text{ns}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V, V_L = 1.8V \text{ and } T_A = +25 ^{\circ}\text{C}.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I/O V _{CC} _, CLK_V _{CC} Rise Time	trvcc	$R_S = 150\Omega$, $C_{I/OVCC} = 10pF$, $C_{CLK_VCC} = 10pF$, push-pull drivers (Figure 1)			2.5	ns
I/O V _{CC} _, CLK_V _{CC} Fall Time	tFVCC	$R_S = 150\Omega$, $C_{I/OVCC} = 10pF$, $C_{CLK_VCC} = 10pF$ (Figures 1, 2)			2.5	ns
I/O V _{L_} , CLK_V _L Rise Time	t _{RVL}	$R_S = 150\Omega$, $C_{I/OVL} = 15pF$, $C_{CLK_VL} = 15pF$, push-pull drivers (Figure 3)			2.5	ns
I/O V _{L_} , CLK_V _L Fall Time	t _{FVL}	$R_S = 150\Omega$, $C_{I/OVL} = 15pF$, $C_{CLK_VL} = 15pF$ (Figures 3, 4)			2.5	ns
Propagation Delay (Driving I/O V _L , CLK_V _L)	tpvL-vcc	$R_S = 150\Omega$, $C_{I/OVCC} = 10pF$, $C_{CLK_VCC} = 10pF$, push-pull drivers (Figure 1)			6.5	ns
Propagation Delay (Driving I/O V _{CC} _, CLK_V _{CC})	tpvcc-vl	$R_S = 150\Omega$, $C_{I/OVL} = 15pF$, $C_{CLK_VL} = 15pF$, push-pull drivers (Figure 3)			6.5	ns
Channel-to-Channel Skew	tskew	$R_S = 150\Omega$, $C_{I/OVCC} = 10pF$, $C_{I/OVL} = 15pF$			0.8	ns
Propagation Delay from I/O V _L to I/O V _{CC} after EN	t _{EN-VCC}	$R_{LOAD} = 1M\Omega$, $C_{I/OVCC} = 10$ pF (Figure 5) (MAX13030E–MAX13034E)		5		μs

TIMING CHARACTERISTICS (continued)

 $(V_{CC} = +2.2V \text{ to } +3.6V, V_L = +1.62V \text{ to } +3.2V, C_{I/OVL} \le 15pF, C_{I/OVCC} \le 15pF, R_{SOURCE} = 150\Omega, EN = V_L, I/O V_L \text{ to I/O } V_{CC} = 1.8V \text{ and } T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V, V_L = 1.8V \text{ and } T_A = +25^{\circ}\text{C}.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay from I/O V _{CC} to I/O V _L after EN	t _{EN-VL}	$R_{LOAD} = 1M\Omega$, $C_{I/OVL} = 15pF$ (Figure 5) (MAX13030E–MAX13034E)		5		μs
Maximum Data Rate		Push-pull operation, R _{SOURCE} = 150_, C _{I/OVCC} = 10pF, C _{I/OVL} = 15pF, C _{CLK_VCC} = 10pF, C _{CLK_VL} = 15pF	100			Mbps

- Note 1: All units are 100% production tested at $T_A = +25$ °C. Limits over the operating temperature range are guaranteed by design and not production tested.
- Note 2: V_L must be less than or equal to V_{CC} 0.2V during normal operation. However, V_L can be greater than V_{CC} during startup and shutdown conditions and the part will not latch-up or be damaged.
- Note 3: Guaranteed by design.
- Note 4: Input thresholds are referenced to the boost circuit.

Typical Operating Characteristics

 $(V_{CC} = 3.3V, V_L = 1.8V, C_L = 15pF, R_{SOURCE} = 150\Omega, data rate = 100Mbps, push-pull driver, T_A = +25°C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(V_{CC} = 3.3V, V_L = 1.8V, C_L = 15pF, R_{SOURCE} = 150\Omega, data rate = 100Mbps, push-pull driver, T_A = +25°C, unless otherwise noted.)$

Pin Description

	PIN				
MAX13030E	-MAX13034E	MAX1	3035E	NAME	FUNCTION
UCSP	TQFN	UCSP	TQFN		
A1	4	A1	4	I/O VL3	Input/Output 3. Referenced to V _L .
A2	6	A2	6	I/O V _{CC} 3	Input/Output 3. Referenced to VCC.
A3	7	АЗ	7	I/O V _{CC} 4	Input/Output 4. Referenced to VCC.
A4	9	A4	9	I/O VL4	Input/Output 4. Referenced to V _L .
B1	3	B1	3	I/O V _L 2	Input/Output 2. Referenced to V _L .
B2	5	B2	5	I/O V _{CC} 2	Input/Output 2. Referenced to VCC.
В3	8	В3	8	I/O V _{CC} 5	Input/Output 5. Referenced to VCC.
B4	10	B4	10	I/O V _L 5	Input/Output 5. Referenced to V _L .
C1	2	C1	2	VL	Logic-Supply Voltage, +1.62V to +3.2V. Bypass V _L to GND with a 0.1µF capacitor placed as close as possible to the device.
C2	16	C2	16	Vcc	Power-Supply Voltage, +2.2V to +3.6V. Bypass V _{CC} to GND with a 0.1µF ceramic capacitor. For full ESD protection, connect a 1µF ceramic capacitor from V _{CC} to GND as close as possible to the V _{CC} input.
C3	13	C3	13	GND	Ground
C4	11	_	_	EN	Enable Input. Drive EN to GND for shutdown mode, or drive EN to V _L or V _{CC} for normal operation.
D1	1	D1	1	I/O V _L 1	Input/Output 1. Referenced to V _L .
D2	15	D2	15	I/O V _{CC} 1	Input/Output 1. Referenced to V _{CC} .
D3	14	_	_	I/O V _{CC} 6	Input/Output 6. Referenced to VCC.
D4	12	_	_	I/O VL6	Input/Output 6. Referenced to V _L .
_	_	C4	11	CLK_RET	Clock Return Output. CLK_RET is the returned signal of a clock applied to CLK_VL. CLK_RET is referenced to VL.
_	_	D3	14	CLK_V _{CC}	Translator Channel for a Clock Applied to V _{CC}
_		D4	12	CLK_V _L	Translator Channel for a Clock Applied to V _L
_	EP	_	EP	EP	Exposed Paddle. Connect exposed paddle to GND.

Test Circuits/Timing Diagrams

Figure 1. Push-Pull Driving I/O V_L Test Circuit and Timing

Figure 2. Open-Drain Driving I/O VL_ Test Circuit and Timing

Test Circuits/Timing Diagrams (continued)

Figure 3. Push-Pull Driving I/O VCC_ Test Circuit and Timing

Figure 4. Open-Drain Driving I/O V_{CC}_ Test Circuit and Timing

Test Circuits/Timing Diagrams (continued)

Figure 5. Enable Test Circuit and Timing

Detailed Description

The MAX13030E–MAX13035E 6-channel, bidirectional level translators provide the level shifting necessary for 100Mbps data transfer in multivoltage systems. The MAX13030E–MAX13035E are ideally suited for memory card level translation, as well as generic level translation in systems with six channels. Externally applied voltages, VCC and VL, set the logic levels on either side of the device. Logic signals present on the VL side of the device appear as a higher voltage logic signal on the VCC side of the device, and vice versa. The MAX13035E features a CLK_RET output that returns the same clock signal applied to the CLK_VL input.

The MAX13030E-MAX13035E operate at full speed with external drivers that source as little as 4mA output current. Each I/O channel is pulled up to VCC or VL by an internal 30 μ A current source, allowing the MAX13030E-MAX13035E to be driven by either pushpull or open-drain drivers.

The MAX13030E–MAX13034E feature an enable (EN) input that places the device into a low-power shutdown mode when driven low. The MAX13030E–MAX13035E features an automatic shutdown mode that disables the part when $V_{\rm CC}$ is less than $V_{\rm L}$. The state of I/O $V_{\rm CC}$ and I/O $V_{\rm L}$ during shutdown is chosen by selecting the appropriate part version (see *Ordering Information/Selector Guide*).

The MAX13030E–MAX13035E accept V_{CC} voltages from +2.2V to +3.6V and V_L voltages from +1.62V to +3.2V.

Level Translation

For proper operation, ensure that $+2.2V \le V_{CC} \le +3.6V$, and $+1.62V \le V_{L} \le V_{CC}$ - 0.2V. When power is supplied to V_{L} while V_{CC} is either missing or less than V_{L} , the MAX13030E-MAX13035E automatically enters a low-power mode. In addition, the MAX13030E-MAX13034E enters a low-power mode if EN = 0V. This allows V_{CC} to be disconnected and still have a known state on I/O V_{L} . The maximum data rate depends heavily on the load capacitance (see the *Typical Operating Characteristics Rise/Fall Times*), output impedance of the driver, and the operating voltage range.

Input Driver Requirements

The MAX13030E–MAX13035E architecture is based on an nMOS pass gate and output accelerator stages (see Figure 6). Output accelerator stages are always in tristate mode except when there is a transition on any of the translators on the input side, either I/O V_L, CLK_V_L, I/O V_{CC}, or CLK_V_{CC}. A short pulse is then generated during which the output accelerator stages become active and charge/discharge the capacitances at the I/Os. Due to its architecture, both input stages become

Figure 6. Simplified Functional Diagram for One I/O Line

active during the one-shot pulse. This can lead to some current feeding into the external source that is driving the translator. However, this behavior helps to speed up the transition on the driven side.

The MAX13030E–MAX13035E have internal current sources capable of sourcing $30\mu\text{A}$ to pullup the I/O lines. These internal pullup current sources allow the inputs to be driven with open-drain drivers, as well as push-pull drivers. It is not recommended to use external pullup resistors on the I/O lines. The architecture of the MAX13030E–MAX13035E permit either side to be driven with a minimum of 4mA drivers or larger.

Output Load Requirements

The MAX13030E–MAX13035E I/O are designed to drive CMOS inputs. Do not load the I/O lines with a resistive load less than $25k\Omega$ and do not place an RC circuit at the input of these devices to slow down the edges. If a slower rise/fall time is required, refer to the MAX3000E/MAX3001E logic-level translator datasheet. For I²C level translation, refer to the MAX3372E–MAX3379E/MAX3390E–MAX3393E datasheet.

Shutdown Mode

The MAX13030E–MAX13034E feature an enable (EN) input that places the device into a low-power shutdown mode when driven low. The MAX13030E–MAX13035E features an automatic shutdown mode that disables the part when VCC is missing or less than VL.

12 ______ /VI/XI/M

Clock Return (CLK_RET)

The MAX13035E features a CLK_RET output that returns the clock signal applied to CLK_VL. CLK_VL and CLK_VCC are identical to the other I/O channels, the only difference being that CLK_VCC is internally tied to the VCC side of CLK_RET (see the Functional Diagram).

Application Information

Layout Recommendations

Use standard high-speed layout practices when laying out a board with the MAX13030E–MAX13035E. For example, to minimize line coupling, place all other signal lines not connected to the MAX13030E–MAX13035E at least 1x the substrate height of the PCB away from the input and output lines of the MAX13030E–MAX13035E.

Power-Supply Decoupling

To reduce ripple and the chance of introducing data errors, bypass V_L and V_{CC} to ground with $0.1\mu F$ ceramic capacitors. Place all capacitors as close as possible to the power-supply inputs. For full ESD protection, bypass V_{CC} with a $1\mu F$ ceramic capacitor located as close as possible to the V_{CC} input.

Unidirectional vs. Bidirectional Level Translator

The MAX13030E–MAX13035E bidirectional level translators can operate as a unidirectional device to translate signals without inversion. These devices provide the smallest solution (UCSP package) for unidirectional level translation without inversion.

Use with External Pullup/Pulldown Resistors

Due to the architecture of the MAX13030E–MAX13035E, it is not recommended to use external pullup or pulldown resistors on the bus. In certain applications, the use of external pullup or pulldown resistors is desired to have a known bus state when there is no active driver on the bus. For example, this may happen when interfacing to a memory card slot with no memory card inserted. The MAX13030E–MAX13035E include internal pullup current sources that set the bus state when the device is enabled. In shutdown mode, the state of I/O V_{CC} and I/O V_L is dependent on the selected part version (see *Ordering Information/Selector Guide* for further information).

Open-Drain Signaling

The MAX13030E–MAX13035E are designed to pass open-drain as well as CMOS push-pull signals. When used with open-drain signaling, the rise time is dominated by the interaction of the internal pullup current source and the parasitic load capacitance. The MAX13030E–MAX13035E include internal rise time accelerators to speed up transitions, eliminating any need for external pullup resistors.

SD Card Detection

SD, MiniSD, MMC and similar types of cards provide detection of a card through a pullup resistor on one of the DAT lines, or by use of a mechanical switch. This pullup resistor is internal to the memory card itself. The MAX13030E–MAX13035E only support detection of a memory card through a mechanical switch, and it is recommended that the internal resistor for card detection be switched off by the command interface. For example, when using SD cards, the command SET_CLR_CARD_DETECT (ACMD42) disables this resistor.

UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profiles, as well as the latest information on reliability testing results, go to Maxim's web site at www.maxim-ic.com/ucsp to find the Application Note: UCSP – A Wafer-Level Chip-Scale Package.

Chip Information

Process: BiCMOS

_Functional Diagram

Pin Configurations

Typical Operating Circuits (continued)

Ordering Information/Selector Guide (continued)

PART	PIN-PACKAGE	I/O V _L STATE DURING SHUTDOWN	I/O V _{CC} _STATE DURING SHUTDOWN	PKG CODE
MAX13031EEBE+*	16 UCSP	High impedance	16.5k Ω to V _{CC}	B16-1
MAX13031EETE+*	16 TQFN-EP**	High impedance	16.5k Ω to V _{CC}	T1644-4
MAX13032EEBE+	16 UCSP	High impedance	16.5k Ω to GND	B16-1
MAX13032EETE+	16 TQFN-EP**	High impedance	16.5k Ω to GND	T1644-4
MAX13033EEBE+*	16 UCSP	16.5kΩ to GND	High impedance	B16-1
MAX13033EETE+*	16 TQFN-EP**	16.5kΩ to GND	High impedance	T1644-4
MAX13034EEBE+*	16 UCSP	16.5kΩ to GND	16.5k Ω to GND	B16-1
MAX13034EETE+*	16 TQFN-EP**	16.5kΩ to GND	16.5kΩ to GND	T1644-4
MAX13035EEBE+	16 UCSP	75k Ω to V _L	High impedance	B16-1
MAX13035EETE+	16 TQFN-EP**	75 k $Ω$ to V_L	High impedance	T1644-4

Note: All devices are specified over the -40°C to +85°C operating temperature range.

16 ______/N/XI/M

⁺Denotes a lead-free package.

^{**}EP = Exposed paddle.

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

				COMM	1DN	DIME	112N	INS								Ш	E	XPOS	ED	PAD	VAR	ITAI	DNS	
PKG	12	2L 4×	4	16	L 4x	4	20	L 4×	4	2.	4L 4>	<4	2:	8L 4>	(4	П	DVC		132			E5		DOWN
REF.	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NON.	MAX.	MIN.	NOM.	MAX.	П	PKG. CODES	MIN.	NOM.	MAX.	MIN.	NON	MAX.	ALLOVE BONDS
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20.0	0.05	0.0	20.0	0.05	0,0	0.02	0.05	0.0	0.02	0.05	Ш	T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	NO
A2		.20 REI	F	0.	20 RE	F	0.	20 RE	F	٥	20 RE	F		0.20 RE	F	Ш	T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
ło	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25	ш	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	NO
D	3,90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	Ш	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
£	3.90	4.00	4.10	3.90	4.00	4.10		4.00	4.10	3.90	4.00	4.10	3.90		4.10	Н	T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	NO
e	+	28 08.0	-	_	65 BS		$\overline{}$	50 BS	-	-	1.50 BS	_	_	0.40 BS	_	H	T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	+	-	Н	T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45		0.65	0.30	0.40	0.50	0.30	0.40	0.50	H	T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND
N	+-	12	_		16			50		_	24		-	28			T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	NO
ND NE	+	3	_		4			5	_	_	6		-	7		ı								
Jedec Var.	+	VGGB	_		VGGC			3 /GGD-1	_	_	6 WGGD-	_	_	VGGE										
	DIMENS	IONING WENSION											•			,								
1. 2. 3.	DIMENS ALL DIV N IS TO THE TE JESD 9		AL NUM	IN MI MBER C ENTIFIE DETAI	LUMETE F TER R AND ILS OF	ERS. A MINALS TERMI TERMI	NGLES A	ARE IN	DEGR	EES. MENTK	IONAL,	BUT M	UST BE	E LOCAL		HIN	ı							
1. 2. 3.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS	MENSION HE TOTA RMINAL 5-1 SF	AL NUM #1 ID PP-012 NCATED	IN MI MBER C ENTIFIE DETAI THE	LUMETE F TER R AND ILS OF TERMIN	ERS. AI MINALS TERMI TERMII IAL #1	NAL NU	MBERIN IDENTI IDENTI	DEGR NG CON FIER AN AY BE	EES. MENTK E OPT EITHER	TONAL,	BUT M	UST BI	E LOCAT	TURE.		ı							
1. 2. 3. 4. 5.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI	MENSION HE TOTA RMINAL 5-1 SE ONE IND ION 6 IERMINA O NE R	#1 ID PP-012 IICATED APPLIE IL TIP.	IN MIL MBER O ENTIFIE DETAI THE S TO M	LUMETE F TERI R AND ILS OF TERMIN METALLI NUMB	ERS. AI MINALS TERMI TERMI TERMI IAL #1 ZED TE	NAL NU NAL #1 IDENTIF RMINAL	MBERIN IDENTI IDENTI IER M AND	DEGR NG CON FIER AN AY BIE IS MEA IN EAC	EES. WENTK E OPT EITHEF	TIONAL, R A MO BETW	BUT M OLD OR EEN O.	UST BI MARK 25 mm	E LOCAT ED FEA n AND	TURE.		ı							
1. 2. 3. \$\hat{\sh}\$	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPI	MENSION HE TOTA RMINAL 5-1 SF ONE IND HON B TERMINA D NE R ULATION	#1 ID PP-012 HCATED APPLIE APPLIE LTIP. EFER 1	IN MI MBER O ENTIFIE DETAI THE S TO M	LUMETE OF TERM R AND ILS OF TERMIN METALU NUMB	ERS. AMINALS TERMI TERMI TERMI IAL #1 ZED TE ER OF SYMME	NAL NU IAL #1 IDENTIF RMINAL TERMIN	MBERIN IDENTII FIER M AND IALS O FASHK	DEGR NG CON FIER AN AY BIE IS MEA IN EAC DN.	EES. MENTK E OPT EITHEF SURED H D A	TONAL, RAMO BETW	BUT M OLD OR EEN O. SIDE RI	UST BI MARK 25 mm ESPECT	E LOCAT ED FEA IN AND	TURE.		1							
1. 2. 3. \$\hat{\sh}\$	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPI	MENSION HE TOTA RMINAL 5-1 SE ONE IND ION 6 IERMINA O NE R	#1 ID PP-012 HCATED APPLIE AL TIP. EFER 1	IN MI MBER O ENTIFIE DETAI THE S TO M	LUMETE OF TERM R AND ILS OF TERMIN METALU NUMB	ERS. AMINALS TERMI TERMI TERMI IAL #1 ZED TE ER OF SYMME	NAL NU IAL #1 IDENTIF RMINAL TERMIN	MBERIN IDENTII FIER M AND IALS O FASHK	DEGR NG CON FIER AN AY BIE IS MEA IN EAC DN.	EES. MENTK E OPT EITHEF SURED H D A	TONAL, RAMO BETW	BUT M OLD OR EEN O. SIDE RI	UST BI MARK 25 mm ESPECT	E LOCAT ED FEA IN AND	TURE.		ı							
1. 2. 3. 4. 5. 7.	DIMENS ALL DIM N IS THE TE JESD 9 THE ZC DIMENS FROM ND ANI DEPOPLA	MENSION HE TOTA RMINAL 5-1 SF ONE IND HON B TERMINA D NE R ULATION	AL NUM #1 ID PP-012 NCATED APPLIE AL TIP. EFFER 1 I IS PO	IN MI	LUMETE F TERE R AND ILS OF TERMIN METALLI NUMB IN A	ERS. AMINALS TERMI TERMI TERMI IAL #1 ZED TE ER OF SYMME POSED	NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S	MBERIN IDENTI IDENTI IER M AND IALS O FASHK SINK S	DEGR NG CON FIER AF AY BIE IS MEA IN EAC IN EAC IN.	EES. MENTK E OPT EITHEF SURED H D A	TIONAL, RAMO BETWO ND E:	BUT M OLD OR EEN O. SIDE RI HE TER	UST BI MARK 25 mm ESPECT	E LOCAI ED FEA II AND IIVELY.	TURE.		ı							
1. 2. 3. \$\hat{\sh}\$	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPE COPLAN DRAWIN	MENSION HE TOTA RMINAL 5-1 SF ONE IND HON B TERMINA D NE R ULATION HARITY	AL NUM #1 ID PP-012 HICATED APPLIE LEFER 1 I IS PO APPLIE FORMS	IN MI MBER O ENTIFIE DETA THE S TO M TO THE SSIBLE S TO T	LUMETI OF TERM R AND ILS OF TERMIN METALLI NUMB IN A THE EXI DEC M	ERS. AMMINALS TERMITERMITERMITERMITERMITERMITERMITERMI	NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S	MBERIN IDENTI IDENTI IER M AND ALS O FASHK SINK S	DEGR NG CON FIER AF AY BIE IS MEA IN EAC ON. LUG AS	EES. MENTK E OPT EITHEF SURED H D A	TIONAL, RAMO BETWO ND E:	BUT M OLD OR EEN O. SIDE RI HE TER	UST BI MARK 25 mm ESPECT	E LOCAI ED FEA II AND IIVELY.	TURE.									
1. 2. 3. 4. 5. 7. 48. 9.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPE COPLAY DRAWIN WARKING	MENSION HE TOTA RMINAL 5-1 SP NE IND ION 6 ITERMINA D NE R ULATION HARITY HIG CONI	MS ARE AL NUM #1 ID PP-012 IICATED APPLIE IL TIP. EFFER 1 I IS PO APPLIE FORMS R PACI	IN MI	LUMETI OF TERM R AND ILS OF TERMIN METALLI NUMB IN A THE EXI DEC M ORIENTA	ERS. AMMINALS TERMITERMITERMITERMITER ER OF SYMME POSED 0220, ITION F	NAL NU NAL MI IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT	MBERIN IDENTI IDENTI IER M AND ALS O FASHK SINK S	DEGR NG CON FIER AF AY BIE IS MEA IN EAC ON. LUG AS	EES. MENTK E OPT EITHEF SURED H D A	TIONAL, RAMO BETWO ND E:	BUT M OLD OR EEN O. SIDE RI HE TER	UST BI MARK 25 mm ESPECT	E LOCAI ED FEA II AND IIVELY.	TURE.									
1. 2. 3. 4. 5. 7. 48. 9.	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPUT COPLAN MARKING COPLAN	MENSION HE TOTA RMINAL 5-1 SF ONE IND ION 6 TERMINA D NE R ULATION HARITY IG CONI	MS ARE AL NUM #1 ID PP-012 ICATED APPLIE AL TIP, EFFER 1 I IS PO APPLIE FORMS R PACI	IN MILER OF ENTIFIES TO ME OF THE OF SSIBLE OF TO JECKAGE OF EXIST EXECUTED TO JECKAGE OF EXIST	LUMETE OF TERM R AND ILS OF TERMIN METALLI NUMB IN A THE EXI DEC M DRIENTA CEED (ERS. AMMINALS TERMITERMINAL #1 ZED TE ER OF SYMME POSED 0220, CTION F	NAL NU NAL MI IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT	MBERIN IDENTI IDENTI IER M AND ALS O FASHK SINK S	DEGR NG CON FIER AF AY BIE IS MEA IN EAC ON. LUG AS	EES. MENTK E OPT EITHEF SURED H D A	TIONAL, RAMO BETWO ND E:	BUT M OLD OR EEN O. SIDE RI HE TER	UST BI MARK 25 mm ESPECT	E LOCAI ED FEA II AND IIVELY.	TURE.			- DA						
1. 2. 3. 4. 5. 6. 7. 6. 9. 11. 12. 1	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPI COPLAN MARKING COPLAN WARPAG LEAD CE	MENSION HE TOTA RMINAL 5-1 SF SNE IND ION 6 TERMINA D NE R ULATION MARITY IS FO ARITY S	#1 ID	IN MILES OF THE STOLE OF THE ST	LUMETE OF TERM R AND ILS OF TERMIN METALLI NUMB IN A THE EXI DEC M ORIENTA CEED (ND 0.1 T TRUE	ERS. AMMINALS TERMITERMINAL #1 ZED TE ER OF SYMME POSED 0220, TION F 0.08mm E POSE	NAL NUMBER OF THE PROPERTY OF	MBERIN IDENTII IDENTII IER M AND I MALS O FASHK SINK SI ICE ON	DEGR NG CON FIER AF AY BE IS MEA IN EAC ON. LUG AS T2444- ILY.	EES. WENTK E OPT EITHEF SURED H D A WELL -3, T2	TONAL, R A MO BETWI ND E : AS TI	BUT M DLD OR EEN O. SIDE RI HE TER	UST BI MARK 25 mm ESPECT MINALS	E LOCATED FEA	TURE.							<u>/ 1</u>	×	1/1
1. 2. 3. 4. 5. 6. 7. 6. 9. 11. 12. 1	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPI COPLAN MARKING COPLAN WARPAG LEAD CE	MENSION HE TOTA RMINAL 5-1 SF SNE IND ION 6 TERMINA D NE R ULATION MARITY IS CONI S IS FO ARITY SI E SHALE ENTERLIE	#1 ID	IN MILES OF THE STOLE OF THE ST	LUMETE OF TERM R AND ILS OF TERMIN METALLI NUMB IN A THE EXI DEC M ORIENTA CEED (ND 0.1 T TRUE	ERS. AMMINALS TERMITERMINAL #1 ZED TE ER OF SYMME POSED 0220, TION F 0.08mm E POSE	NAL NUMBER OF THE PROPERTY OF	MBERIN IDENTII IDENTII IER M AND I MALS O FASHK SINK SI ICE ON	DEGR NG CON FIER AF AY BE IS MEA IN EAC ON. LUG AS T2444- ILY.	EES. WENTK E OPT EITHEF SURED H D A WELL -3, T2	TONAL, R A MO BETWI ND E : AS TI	BUT M DLD OR EEN O. SIDE RI HE TER	UST BI MARK 25 mm ESPECT MINALS	E LOCATED FEA	TURE.			LE PAC	KAGE	OUTLI	NE,			
1. 2. 3. 4. 5. 6. 7. 6. 9. 11. 12. 1	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS FROM ND ANI DEPOPI COPLAN MARKING COPLAN WARPAG LEAD CE	MENSION HE TOTA RMINAL 5-1 SF SNE IND ION 6 TERMINA D NE R ULATION MARITY IS CONI S IS FO ARITY SI E SHALE ENTERLIE	#1 ID	IN MILES OF THE STOLE OF THE ST	LUMETE OF TERM R AND ILS OF TERMIN METALLI NUMB IN A THE EXI DEC M ORIENTA CEED (ND 0.1 T TRUE	ERS. AMMINALS TERMITERMINAL #1 ZED TE ER OF SYMME POSED 0220, TION F 0.08mm E POSE	NAL NUMBER OF THE PROPERTY OF	MBERIN IDENTII IDENTII IER M AND I MALS O FASHK SINK SI ICE ON	DEGR NG CON FIER AF AY BE IS MEA IN EAC ON. LUG AS T2444- ILY.	EES. WENTK E OPT EITHEF SURED H D A WELL -3, T2	TONAL, R A MO BETWI ND E : AS TI	BUT M DLD OR EEN O. SIDE RI HE TER	UST BI MARK 25 mm ESPECT MINALS	E LOCATED FEA	TURE.		111	LE PAC	KAGE	OUTLI 24, 28L		QFN, 4		

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

__Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600