Efeitos da variação da taxa de compressão sobre a eficiência do Ciclo de Otto para motores de combustão interna

Victor Matteus S. Souza

Matrícula: 202105201

Instituto de Física(IF)

UFG

Goiânia, Goiás

Guilherme Vinícius B. de A. Vieira

Matrícula: 202105589

Instituto de Física(IF)

UFG

Goiânia, Goiás

Diogo Pereira Nascimento

Matrícula: 202105179

Instituto de Física(IF)

UFG

Goiânia, Goiás

Resumo—Este estudo de física computacional investiga a eficiência do ciclo termodinâmico de Otto em motores de combustão interna, considerando variações nas taxas de compressão. Um código em Python foi desenvolvido para analisar e gerar gráficos relacionados ao desempenho e eficiência do ciclo. O estudo busca compreender o impacto de diferentes valores de taxa de compressão no desempenho de um cilindro operante, explorando parâmetros como trabalho por ciclo e potência gerada.

I. INTRODUÇÃO

O século XIX marcou a história da humanidade com a Segunda Revolução Industrial, que teve como um dos grandes passos tecnológicos o desenvolvimento do motor a combustão. Todo esse avanço teve como base os estudos na termodinâmica.

A termodinâmica é o ramo da física que estuda as relações entre energia, calor, trabalho e as propriedades das substância, que tem como objetivo descrever os processos físicos e químicos que envolvem a transferência de energia na forma de calor e trabalho, bem como as mudanças de estado de substâncias. Uma série de processos termodinâmicos que levam o sistema de volta ao seu estado inicial pode ser definido como um ciclo termodinâmico.

Dito isso, tem-se que motores de combustão interna são máquinas térmicas que transformam a energia proveniente de uma reação química em energia mecânica. Esse processo de conversão é feito através de ciclos termodinâmicos que envolvem a compressão e expansão de gases gerando uma mudança de temperatura neles [1]. Dentre tais motores, há, então, aqueles que se utilizam do Ciclo Termodinâmico de Otto como base de seu funcionamento.

A. Descrição Histórica do Otto

Alphonse Beau de Rochas foi um engenheiro francês que, em 1862, idealizou o ciclo fechado termodinâmico em que se alternavam duas evoluções adiabáticas e outras duas isocóricas. No entanto, apesar do engenheiro francês ter sido o primeiro a desenvolver esse ciclo, os estudos desenvolvidos pelos alemães Nikolaus August Otto, Gottlieb Daimler e Wilhelm Maybach, acabaram se tornando os mais relevantes na área, por conseguirem desenvolver um motor prático de alta eficiência, desempenho e potência.

Os trabalhos de Otto foram feitos de forma independente ao de Beau de Rochas e tiveram sua conclusão em 1876, na construção do primeiro motor que utilizaria o Ciclo de Otto. Nos anos seguintes, outros engenheiros utilizaram das ideias de Otto para confecção de seus próprios motores, como o motor Daimler, por exemplo, que foi de extrema importância para o desenvolvimento do automobilismo.

Hoje em dia, o Ciclo de Otto é amplamente utilizado nas indústrias e em automóveis, utilizando combustíveis leves como gasolina, álcool ou gás natural [2].

B. Descrição Teórica

O ciclo de Otto possui quatro curvas termodinâmicas que descrevem o comportamento do sistema como um todo. O ciclo é formado por duas etapas isovolumétricas com variação da quantidade de calor (combustão e escape) e por duas isentrópicas, em que a pressão e o volume variam (admissão e compressão), como demonstrado na Figura. 1.

Figura 1: Ilustração das etapas de admissão, compressão, combustão e exaustão de um motor termodinâmico que opera em ciclos. Retirada de [4].

As etapas, como já citadas anteriormente, são dividas da seguinte forma:

 Admissão: Durante esta fase, uma mistura de ar e combustível é admitida na câmara de combustão através da abertura da válvula de admissão. Aumenta-se o volume da câmara, mantendo a pressão baixa.

- Compressão: A válvula de admissão é fechada e o pistão comprime a mistura ar-combustível. Isso aumenta significativamente a pressão e a temperatura da mistura. A compressão ocorre de forma adiabática.
- 3) Combustão: Após a compressão, uma vela de ignição causa a ignição da mistura ar-combustível. A queima rápida e controlada leva a um aumento rápido na pressão, empurrando o pistão para baixo.
- 4) Escape: A válvula de escape é aberta e os gases resultantes da queima são expelidos da câmara de combustão à medida que o pistão retorna à posição superior. Isso completa um ciclo e prepara o motor para o próximo ciclo.

C. Eficiência do Ciclo de Otto

A eficiência no ciclo de Otto é descrita a partir de uma análise matemática da energia interna, do calor e do trabalho em cada tempo do motor. A Figura 2 mostra como funciona uma máquina ideal em relação a pressão em função do volume dentro do sistema.

• Para os processos adiabáticos (curvas 1-2 e 3-4):

$$\frac{W_{12}}{m} = (u_2 - u_1) \tag{1}$$

$$\frac{W_{34}}{m} = (u_3 - u_4) \tag{2}$$

Associando ambas as equações pode-se dizer:

$$\frac{W_{\text{ciclo}}}{m} = \frac{W_{34}}{m} - \frac{W_{12}}{m} = (u_3 - u_4) - (u_2 - u_1)$$
 (3)

• Para os processos isovolumétricos (curvas 2-3 e 4-1):

$$\frac{Q_{23}}{m} = (u_3 - u_2) \tag{4}$$

$$\frac{W_{41}}{m} = (u_4 - u_1) \tag{5}$$

Associando os modelos:

$$\frac{Q_{\text{ciclo}}}{m} = \frac{Q_{23}}{m} - \frac{Q_{41}}{m} = (u_3 - u_2) - (u_4 - u_1) \quad (6)$$

A eficiência térmica de uma máquina é descrita como a razão do calor do ciclo pelo trabalho realizado. Com base nesse conhecimento e nas equações já desenvolvidas, pode-se afirmar que a eficiência é dada por:

$$\eta = \frac{(u_3 - u_4) - (u_2 - u_1)}{(u_3 - u_2) - (u_4 - u_1)} = 1 - \frac{(u_4 - u_1)}{(u_3 - u_2)}$$
(7)

Onde fundamentalmente [3] sabemos que:

$$\Delta u = c_{\rm v}(T_{\rm a} - T_{\rm b}) \tag{8}$$

Assim, substituindo a equação 8 na equação 7, obtémse:

$$\eta = 1 - \frac{c_{\rm v}(T_4 - T_1)}{c_{\rm v}(T_3 - T_2)} = 1 - \frac{T_1}{T_2} \tag{9}$$

Utilizando outra relação termodinâmica:

$$\frac{T_2}{T_1} = (\frac{V_1}{V_2})^{\gamma - 1} = C_r^{\gamma - 1} \tag{10}$$

Na qual a variável C_r designa a taxa de compressão do sistema e γ é a razão entre o calor específico para pressão

Figura 2: Etapas do ciclo de Otto. Os caminhos **4-1** e **2-3** possuem comportamento isovolumétrico na qual são referentes aos processos de combustão e de escape enquanto os tempos **1-2** e **3-4** possuem variações de pressão e volume sendo esses, respectivamente, os processos de compressão e admissão. Figura retirada de [3].

constante e o calor específico para volume constante. A partir dessa equação 10, é possível chegar à seguinte expressão para a eficiência térmica do motor:

$$\eta = 1 - \frac{1}{C_r^{\gamma - 1}} \tag{11}$$

Conclui-se, portanto, que quanto maior a taxa de compressão C_r , maior será o rendimento do motor.

D. Características Físicas do Sistema

Na análise do sistema, pode-se descrever as variáveis termodinâmicas como o volume e a pressão em função de termos que descrevem de forma cinemática o funcionamento de uma válvula de um motor.

 Cilindrada: é o volume máximo da mistura de ar e combustível admitido dentro do pistão em um ciclo, que dá a informação da quantidade de combustível e/ou ar aspirado e retirado do motor. Pode ser definido matematicamente como:

$$V_s = -\frac{\pi}{4}d^2L \tag{12}$$

Sendo V_s a cilindrada, d o diâmetro do cilindro e L a altura do diâmetro.

• Volume morto ou volume de folga: informa quanto volume original foi compactado; também pode ser definido como a diferença entre o volume total do cilindro e cilindrada. O espaço coberto pelo volume morto também forma a câmara de combustão. Pode ser definido matematicamente como:

$$V_c = V_t - V_s \tag{13}$$

Sendo V_c o volume morto e V_t o volume total.

 Taxa de compressão: pode ser definido como o valor obtido após dividir o volume total do cilindro pelo volume morto.

 $C_r = \frac{V_t}{V_c} \tag{14}$

Sendo C_r a taxa de compressão.

Usando o conceito de taxa de compressão, é possível definir o volume morto como:

$$V_c = \frac{V_s}{C_r - 1} \tag{15}$$

 Volume do cilindro do pistão: pode ser determinado em função do ângulo da manivela a partir da taxa de compressão, do curso, do diâmetro interno e do comprimento da biela.

$$V = \frac{V_s}{C_r - 1} + \frac{V_s}{2} [1 + R - \cos(\theta) - \sqrt{R^2 - \sin(\theta)}]$$
 (16)

Sendo V o volume do cilindro do pistão e R a metade do comprimento da biela.

Figura 3: Esquema de uma válvula cilíndrica.

II. OBJETIVOS

Assim sendo, tem-se que este artigo tem por objetivo investigar, avaliar e encontrar computacionalmente a eficiência do ciclo termodinâmico de Otto em motores de combustão interna, considerando variações das taxas de compressão C_r . Para isso, buscamos compreender como diferentes valores de C_r afetam o desempenho e a eficiência de um cilindro operante, analisando parâmetros

como o trabalho por ciclo e a potência gerada e gráficos gerados do ciclo.

III. METODOLOGIA

Conforme dito anteriormente, a eficiência (η) de um ciclo termodinâmico depende diretamente das variáveis de estado e das relações entre elas no decorrer de seus processos. Tal fato torna possível então o cálculo de seu valor por meio da equação 11, que relaciona η a taxa de compressão (C_r) , que por sua vez depende das variávies de estado V e T, conforme equação 10.

Assim sendo, o *script python* desenvolvido é iniciado com a importação das bibliotecas necessárias e da adquirição, por meio de entradas do usuário, das variáveis que definem as propriedades geométricas do cilindro como pode-se observar na figura 3. Tais passos podem ser encontrados nos Apêndices VI-A e VI-B.

A seguir, como mostrado no apêndice VI-C, é definida a função "cinemática do pistão", que recebe como parâmetros as características geométricas do cilindro, a taxa de compressão e os ângulos θ do início e final do processo, como explicado na seção I-D. A função calcula primeiramente os volumes de deslocamento e folga das equações 12 e 15. Após isso, dentro de um processo iterativo, calcula a variação angular do ângulo θ para determinar volume do pistão, que é então adicionado a uma lista. Essa lista é então retornada como resultado da função.

Uma vez apresentada a função que retorna o volume ocupado dentro do cilindro, pode-se iniciar o cálculo das variáveis de estado em cada etapa do ciclo. Assim como explicado na seção I-B, o ciclo operante de um motor de combustão interna é composto de 4 etapas básicas: admissão, compressão, ignição e exaustão. Tais etapas se traduzem no Ciclo de Otto também em 4 estados, sendo eles: compressão, adição de calor, expansão e rejeição de calor. Desta forma, para obter a ilustração desse processo em um diagrama PxV (pressão versus volume), é necessário realizar o cálculo das variáveis de estado P, V e T em cada instante desse processo. O Apêndice VI-D é o trecho de código responsável por esses cálculos. Para tal, tem-se que foram utilizadas as equações 10, 12, 13 e 15, além da função de cinemática do pistão e da equação geral de transformação dos gases, definida por:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \tag{17}$$

Uma vez de posse das variáveis de estado, pode-se então realizar os cálculos energéticos do sistema, conforme o trecho de código do Apêndice VI-E. Tal trecho define primeiramente uma função que realiza o cálculo do trabalho gasto por etapa do ciclo, recebendo como parâmetros as variáveis de estado pressão e volume e retornando o trabalho em cada estado e o trabalho por ciclo. Para o cálculo da potência, defini-se primeiramente um parâmetro comparativo de revoluções por minuto do cilindro, de forma a simular o que ocorre em um motor real. Dessa forma, a potência será dada por:

$$Pot = \frac{W_{ciclo}r_pm}{60} \tag{18}$$

Figura 4: Ciclos de Otto para diferentes valores de Taxa de Compressão (Cr) para isotermas $T_1 = 750K$ e $T_2 = 2300K$ para um cilindro de $0.0015cm^3$. Note que o ciclo ocorre no sentido horário, passando pelas fases de compressão, adição de calor, expansão e rejeição de calor.

Por fim, é possível realizar a plotagem do gráfico que representa o Ciclo de Otto para o cilindro em questão, além de realizar a impressão dos resultados obtidos no decorrer da execução do código. Isso está explicito nos Apêndices VI-F e VI-G.

IV. RESULTADOS E DISCUSSÕES

Para o teste do código bem como explicação dos fenômenos físicos envolvidos que interferem na eficiência do ciclo, foram realizados 4 testes à pressão inicial de 101kPa e à temperaturas entre 750K e 2300K para um cilindro de 0.1m diâmetro, 0.1m de curso e 0.15m de biela. Para cada teste, o parâmetro taxa de compressão (C_r) foi alterado com o intuito de se observar as modificações no gráfico PxV do ciclo, bem como de seus respectivos valores energéticos. Tais resultados podem ser observados através da figura 4 e da tabela I.

Nota-se, a princípio, que quanto maior a taxa de compressão (C_r) inserida pela usuário, maior é a eficiência η do ciclo. Tal resultado confirma em termos práticos a veracidade da equação de rendimento equação 11.

Além disso, percebe-se também que o trabalho gerado por ciclo também aumenta com o coeficiente C_r , e, consequentemente, o mesmo ocorre para a potência. Isso ocorre devido ao fato de que seu aumento acarreta o aumento da razão de expansão (equação 14), o que significa uma maior variação de volume durante o ciclo na fase de expansão, gerando maior trabalho de expansão. Dessa forma, o trabalho líquido total por ciclo é também maior.

V. Conclusão

Por fim, conclui-se que a taxa de compressão C_r é um parâmetro importante em motores de combustão interna,

Tabela I: Resultados obtidos para o trabalho, potência e eficiência para cada Ciclo de Otto de um cilindro de $0.0015cm^3$ da figura 4.

Taxa de Compressão(Cr)	Trabalho Expansão(J)	Trabalho Compressão(J)	Trabalho Total por Ciclo(J)	Potência a 3000 rpm (kW)	Eficiência(%)
2,5	608,16	-79,33	528,83	26,44	39,69
4,0	973,06	-79,33	893,73	44,69	42,57
5,5	1337,95	-79,33	1258,63	62,93	49,53
7,0	1702,85	-79,33	1623,52	81,18	54,08

como o ciclo de quatro tempos do motor Otto. Isso se deve dado que essa taxa afeta a eficiência e o desempenho do motor de várias maneiras, como pôde-se observar nos gráficos. Assim, ocorre o aumento do trabalho realizado pelo motor quando a taxa de compressão é aumentada. Sobretudo, têm-se que sua variação acarreta efeitos claros sobre a eficiência termodinâmica e a razão de expansão do motor, conforme demonstradas nesse artigo.

VI. APÊNDICES

A. Bibliotecas

Trecho responsável por fazer a importação das bibliotecas a serem utilizadas ao longo do código.

```
import math
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
```

B. Entradas

Trecho do código responsável por adquirir do usuário as características geométricas do cilindro a ser avalidado. Além disso, define-se o calor específico do ar $\gamma=1.4$ e a taxa de compressão.

C. Cinemática do Pistão

Trecho de código responsável que descreve a função "cinemática-pistão". Tal função recebe como parâmetros o diâmetro, curso, biela, taxa de compressão, ângulo-inicial e ângulo-final do pistão e calcula os volumes de folga e deslocamento do pistão.

```
num_valores = 50 # Número de pontos para

→ discretizar o ciclo

delta_theta = (angulo_final_rad -
V = [] # Lista para armazenar os volumes
# Loop para calcular os volumes ao longo do ciclo
for i in range(0, num_valores):
   \texttt{theta} = \texttt{angulo\_inicial\_rad} \ + \ \texttt{i} \ * \ \texttt{delta\_theta}

→ # Ângulo atual

   termo1 = 0.5 * (taxa_compressao - 1) #
   → Primeiro termo comum nos cálculos
   termo2 = R + 1 - math.cos(theta) # Segundo

→ termo dependente do ângulo

   termo3 = pow(R, 2) - pow(math.sin(theta), 2)
   → # Terceiro termo dependente do ângulo
   termo3 = pow(termo3, 0.5) # Raiz quadrada do

    ← terceiro termo

   # Cálculo do volume no ângulo atual e adição à
   V.append((1 + termo1 * (termo2 - termo3)) *

    ∨_c)

return V # Retorna a lista de volumes ao longo do

→ ciclo
```

D. Estados do Ciclo

Trecho do código responsável por calcular os valores de pressão, temperatura e volume para o ciclo.

```
#Estado 1: Compressão
v_c = v_s / (taxa_compressao - 1) #Volume de folga no
\hookrightarrow cilindro
v1 = v_c + v_s
t1 = 750 #Temperatura dentro do cillindro durante
\hookrightarrow compressão(600K-800K)
p1 = 101000 #Pressão durante a compressão (Pa)
#Estado 2:Adição de Calor
v2 = v_c
p2 = p1 * pow(v1, gamma) / pow(v2, gamma)
rhs = p1 * v1 / t1
t2 = p2 * v2 / rhs
V_compressao = cinematica_pistao(diametro, curso,
constante = p1 * pow(v1, gamma)
P compressao = []
for v in V_compressao:
   P_compressao.append(constante / pow(v, gamma))
#Estado 3 - Expansão/Combustão
t3 = 2300 # Temperatura durante explosão(2300K-2700K)
v3 = v2
rhs = p2 * v2 / t2
p3 = rhs * t3 / v3
V_expansao = cinematica_pistao(diametro, curso, biela,

    taxa_compressao, 0, 180)

constante = p3 * pow(v3, gamma)
P expansao = []
for v in V_expansao:
   P_expansao.append(constante / pow(v, gamma))
#Estado 4 - Rejeição de Calor
v4 = v1
p4 = p3 * pow(v3, gamma) / pow(v4, gamma)
t4 = p4 * v4 / rhs
```

```
#Salva valores em listas
pressoes = [p1, p2, p3, p4]
temperaturas = [t1, t2, t3, t4]
volumes = [v1, v2, v3, v4]
```

E. Cálculo da eficiência, trabalho e potência

Trecho do código responsável por realizar o cálculo do trabalho em cada estado por meio da definição da função "calcular-trabalho". Além disso, calcula a eficiência e a potência gerada pelo cilindro a uma certa quantidade de revoluções por minuto.

```
# Função para calcular o trabalho em um ciclo
def calcular_trabalho(pressures, volumes):
   work = 0
   work_stages = []
   for i in range(3): # Percorrer os três estágios:
    → compressão, combustão e expansão
        delta\_v = volumes[i+1] - volumes[i]
       stage_work = pressures[i] * delta_v
       work += stage_work
        work_stages.append(stage_work)
   return work, work_stages
# Rotações por segundo
rpm = 3000
rps = rpm / 60 # Converter rotações por minuto para
→ rotações por segundo
# Calcular o trabalho em um ciclo e a potência
trabalho_por_ciclo, trabalho_por_etapa =
\hookrightarrow calcular_trabalho(pressoes, volumes)
potencia = trabalho_por_ciclo * rps
eficiencia = (1 - 1 / pow(taxa_compressao, gamma - 1))

→ * 100
```

F. Impressão dos resultados

Trecho do código responsável por imprimir os resultados de trabalho, eficiência e potência calculados. Além disso, armazena os 4 valores principais de pressão, volume e temperatura presentes no gráfico gerado.

```
# Criar um DataFrame do Pandas
data = {
    'Temperatura (K)': temperaturas,
    'Pressão (Pa)': pressoes,
    'Volume (m^3)': volumes,
df = pd.DataFrame(data,index = [1, 2, 3, 4])
# Imprimir o DataFrame
print('\n')
print (80 * '=')
print(df)
print (80 * '=')
print('\n')
# Imprime informações de Energia do Ciclo
print(80*'=')
print('Trabalho durante a Expansão:
\hookrightarrow {:.2f}(J)'.format(trabalho_por_etapa[2]))
```

G. Plotagem de Gráficos

Trecho responsável por plotar o gráfico PxV do ciclo de Otto, atendando-se para os quatro pontos de mudança de curva para determinado coeficiente taxa de compressão (Cr).

```
#Plotando Ciclo Otto
plt.plot([v2, v3], [p2, p3]) # Adição de calor a
→ pressão constante
plt.plot(V_compressao, P_compressao) # Compressão
plt.plot(V_expansao, P_expansao) # Expansão
plt.plot([v1, v4], [p1, p4]) # Rejeição de calor a
→ pressão constante
plt.plot(v1, p1, 'o') # Ponto inicial
plt.plot(v2, p2, 'o') # Segundo ponto
plt.plot(v3, p3, 'o') # Terceiro ponto
plt.plot(v4, p4, 'o') # Quarto ponto
plt.title('Ciclo Otto para Taxa de Compressão(Cr) =
\hookrightarrow {:.2f}'.format(taxa_compressao))
plt.xlabel('Volume em {}'.format(r'$m^3$'))
if taxa_compressao >= 5:
    plt.ylabel('Pressão em MPa')
else:
   plt.ylabel('Pressão em Pa')
plt.legend(('Adição de Calor', 'Expansão',
→ 'Compressão', 'Rejeição de Calor'))
plt.grid(True)
plt.tight_layout()
plt.show()
```

H. Apresentação em vídeo

Segue o link do vídeo de apresentação requerido para o trabalho:

• https://youtu.be/vKrciZkwJuI

I. Código

Segue o link do código disponibilizado no Google Colaboratory:

 https://colab.research.google.com/drive/ 1iNzoSAbDizIpOeDhHVLPJPpRXgoMYnXJ? usp=sharing

REFERÊNCIAS

- [1] Daniel Schulz. Motores de combustão interna. Disponível em: https://www.if.ufrgs.br/~dschulz/web/combustao_interna.htm, Acesso em 21 de agosto de 2023, 2009.
- [2] Jorge Luiz Gomes Dias. Ciclo de otto: aplicação teórica e utilidade prática. Disponível em: https://semanaacademica.org.br/system/files/ artigos/cicloottoartigofinal.pdf, 2009.
- [3] Michael J. Moran, Howard N.Shapiro, and Daise D. Boettner e Margaret B. Bailey. *Princípios de termodinâmica para engenharia*. LTC, 7°edição edition, 2013.
- [4] Simplício. Motor ciclo otto: entenda o funcionamento. Disponível em: https://blog.simplusbr.com/motor-ciclo-otto/, 2020.