- 答案用紙、問題用紙に学籍番号、氏名を書くこと。特に学籍番号の数字は丁寧に記すこと。
- 結果を導く過程がわかるように解答すること。計算には問題用紙の裏を用いてよい。
- **問題 1.** 1 次元 x 座標上に、質量 m_1 の粒子 1 と質量 m_2 の粒子 2 がある。それぞれ座標を x_1 、 x_2 とおく。これらの粒子間には、大きさが互いの距離の 3 乗に $\overline{\Sigma}$ 比例する 引力 がはたらいている。 $\overline{\Sigma}$ $\overline{\Sigma}$
 - (1) それぞれの粒子に対する運動方程式をたてなさい。
 - (2) $x = x_1 x_2$ と相対座標を定義する。このときxに関する運動方程式を導きなさい。
 - (3) t = 0で $x_1, x_2) = (\ell, 0)$ 、 $(\dot{x}_1, \dot{x}_2) = (v_0, 0)$ であった。ただし、 ℓ, v_0 はともに正である。このとき x で の ℓ の値を求めなさい。
 - (4) ② の初期条件のとき、2粒子間の距離は離れ続けた。 ℓ と v_0 の間にはどのような関係があるか答えなさい。
- **問題 2**. 図 (a) に示すようになめらかで水平な床に置かれた長さ *l*、質量 *M* の棒を考えて,その重心は *Q* とする。いま,この棒の上を歩く質量 *m* の人を P として,最初は P が棒の左端にいるとする。 P が初速度 0 で歩き出し棒の右端に到達したとき,棒はどれくらい動くか、以下の設問に答えながら求めなさい。 ただし,棒は一様で Q は棒の中心にあるものとする。
 - (1) \boxtimes (a) のようにx軸を定め、P、 Qの座標をそれぞれ x_1 、 x_2 としたとき、P、Qからなる 2 体の重心 G の位置 x_G を答えなさい。
 - (2) P、Q ともに水平方向には外力が加わらないとする。 x_G の運動方程式を答えなさい。
 - (3) 図 (a) のように P が左端に位置するときの P,Q の座標を x_1^0 、 x_2^0 、図 (b) のように P が右端に到達したときの座標を x_1' 、 x_2' とする. x_1^0 、 x_2^0 、(b) x_1' 、 x_2' のあいだの関係式を答えなさい。(ヒント: P が左端にいるとき初速度は P,Q ともにゼロであるから $m\dot{x}_1+M\dot{x}_2=0$ である)
 - (4) $x_2^0-x_1^0=l$ 2、 $x_2'-x_1'=-l/2$ であることを利用して棒の移動距離 $x_2'-x_2^0$ を求めなさい。
- 問題 3. 図のように鉛直面内に固定された半径 a の円周上に両端が滑らかに固定された長さ 2l(l < a)、質量 M の一様な棒の運動を考える。鉛直下方向に働く重力加速度を g、円の中心を O、棒の重心を G とする。
 - (1) 棒の重心まわりの 慣性モーメントを求めよ。計算過程も明記すること。
 - (2) 中心 〇 に関する棒の慣性モーメントを求めよ。
 - (3) 線分 OG と O から下ろした鉛直線間の角度を θ としたとき、 θ を記述する運動方程式をたてよ。
 - (4) 微小な θ に対しては、この棒は単振動を行う。この時、周期Tを求めよ。
- 問題 4. 図のように、質量が一様な 2次元半円板が重力 g のもとで床の上を すべらずと 左右にゆれる運動を考える。半円板の半径は ℓ であり全質量は M である。半円板の中心を A とする。
 - (1) 半円板の重心と中心 A の間の距離 L_G を求めなさい。

半円板が図のように角度 θ 傾いてAがA'に移動した。AもA'も床から ℓ の高さにあることに注意して、以下の設問に答えなさい。必要なら L_G ,重心まわりの慣性モーメント I_A を使って良い。

- (2) ポテンシャルエネルギー $U(\theta)$ を求めなさい。但し、U(0) = 0 とする。
- (3) θ を使って重心 G の位置 \mathbf{r}_G を $\theta=0$ の時の A を原点とした x,y 座標で表しなさい。
- (4) 全エネルギーを θ を使って表しなさい。ただし $-\pi/2 < \theta < \pi/2$ である。

