

Базовая математика

Урок 7. Критические точки функции: максимумы и минимумы. Применение производной к исследованию функции

Рассмотрим рисунок:

На нем изображен график функции $y=x^3-3x^2$. Рассмотрим некоторый интервал, содержащий точку x=0, например от -1 до 1. Такой интервал еще называют *окрестностью* точки x=0. Как видно на графике, в этой окрестности функция $y=x^3-3x^2$ принимает наибольшее значение именно в точке x=0.

В таком случае точку x=0 называют точкой максимума функции. По аналогии с этим, точку x=2 называют точкой минимума функции $y=x^3-3x^2$, потому что существует такая окрестность этой точки, в которой значение в этой точке будет минимальным среди всех других значений из этой окрестности.

Определение 1. Точка x_0 называется *точкой максимума* функции f(x), если существует окрестность точки x_0 , такая, что для всех x, не равных x_0 , из этой окрестности, выполняется неравенство

$$f(x) < f(x_0)$$

Точка x_0 называется *точкой минимума* функции f(x), если существует окрестность точки x_0 , такая, что для всех x, не равных x_0 , из этой окрестности, выполняется неравенство

$$f(x) > f(x_0)$$

В точках максимума и минимума функций значение производной функции равно нулю. Но это не достаточное условие для существования в точке максимума или минимума функции.

Например, функция $y=x^3$ в точке x=0 имеет производную, равную нулю. Но точка x=0 не является точкой минимума или максимума функции. Как известно, функция $y=x^3$ возрастает на всей числовой оси.

Таким образом, точки минимума и максимума всегда будут находиться среди корней уравнения f'(x) = 0, но не все корни этого уравнения будут являться точками максимума или минимума.

Определение 2. Точки, в которых значение производной функции равно нулю, называются *ста- ционарными точками*.

Отметим, что точки максимума или минимума могут иметься и в точках, в которых производной у функции вообще не существует. Например, функция y=|x| в точке x=0 имеет минимум, но производной в этой точке не существует. Эта точка будет являться критической точкой функции.

При исследовании функции очень часто приходится применять производные. Одной из основных задач при исследовании функции является определение промежутков возрастания и убывания функции. Это исследование очень легко можно произвести с помощью производной функции.

Признак возрастания функции. Если f'(x) > 0 на некотором промежутке, то функция f(x) возрастает на данном промежутке.

Признак убывания функции. Если f'(x) < 0 на некотором промежутке, то функция f(x) убывает на данном промежутке.

Пример 1. Найти промежутки возрастания и убывания функции $f(x) = x^3 - 2x^2 + x$.

Решение. Найдем производную этой функции:

$$f'(x) = (x^3 - 2x^2 + x)' = 3x^2 - 4x + 1$$

Найдем стационарные точки, то есть точки, в которых производная равна нулю. Для этого решим уравнение f'(x) = 0:

$$3x^2 - 4x + 1 = 0$$

Это несложное квадратное уравнение решаем любым из известных вам способов, получаем два корня:

$$x_1 = \frac{1}{3}, \ x_2 = 1$$

Определим знак производной в промежутках, на которые эти два корня разбили всю числовую ось. Для этого разложим квадратный трёхчлен на множители:

$$f'(x) = 3\left(x - \frac{1}{3}\right)(x - 1)$$

Производная положительна на промежутке $x<\frac{1}{3}$ и на промежутке x>1, значит, функция на этих промежутках возрастает. На промежутке от $\frac{1}{3}$ до 1 производная отрицательна, следовательно, в этом интервале функция убывает.

Ответ: при $x \in \left(-\infty; \frac{1}{3}\right] \cup [1; +\infty)$ функция возрастает; при $x \in \left[\frac{1}{3}; 1\right]$ функция убывает.

Помимо, определения промежутков возрастания и убывания функции, с помощью производной при исследовании функции находят точки максимума и минимума этой функции. Точки максимума и минимума функции называют еще точками *экстремума*.

Для отыскания точек экстремума существует отдельный признак.

Достаточное условие существования экстремума в точке. Пусть f(x) некоторая дифференцируемая на интервале (a;b) функция, точка $x_0 \in (a;b)$ и $f'(x_0) = 0$. Тогда:

- 1. Если при переходе через стационарную точку x_0 производная функции f(x) меняет знак, с «плюса» на «минус», то точка x_0 является точкой максимума функции.
- 2. Если при переходе через стационарную точку x_0 производная функции f(x) меняет знак, с «минуса» на «плюс», то точка x_0 является точкой минимума функции.

Пример 2. Найти экстремумы функции $f(x) = x^3 - 2x^2 + x$.

Решение. Мы нашли две стационарные точки:

$$x_1 = \frac{1}{3}, \ x_2 = 1$$

Так как слева от точки $x=\frac{1}{3}$ функция возрастает, а справа убывает, точка $x=\frac{1}{3}$ будет являться точкой *максимума*. Точка x=1 будет являться точкой *минимума*, так как слева от неё функции убывает, а справа возрастает.

Посчитаем значение функции в точках максимума и минимума:

$$f\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^3 - 2\left(\frac{1}{3}\right)^2 + \frac{1}{3} = -\frac{4}{27}, \ f(1) = 0$$

Пример 3. Найти промежутки возрастания и убывания функции $f(x) = \frac{x^2}{x-1}$.

Решение. Найдём производную функции:

$$f'(x) = \left(\frac{x^2}{x-1}\right)' = \frac{(x^2)'(x-1) - x^2(x-1)'}{(x-1)^2} = \frac{2x(x-1) - x^2}{(x-1)^2} = \frac{x(x-2)}{(x-1)^2}$$

Найдём значения x, при которых f'(x) = 0:

$$\frac{x(x-2)}{(x-1)^2} = 0$$

Это точки x=0, x=2. Кроме того, точка x=1 не принадлежит области определения. Эти точки делят числовую прямую на четыре интервала:

$$(-\infty; 0) \cup (0; 1) \cup (1; 2) \cup (2; \infty)$$

Знак первого интервала положительный (например, можно подставить f'(-1) = 0.75). Второго — отрицательный, третьего — отрицательный, четвёртого — положительный.

$(-\infty;0)$	(0;1)	(1;2)	$(2;\infty)$
+		_	+

Значит, производная меняет знак только в точках x=0 и x=2. В точке x=0 она меняет знак с положительного на отрицательный, значит, это точка максимума со значением функции f(0)=0. В точке x=2 она меняет знак с отрицательного на положительный, значит, это точка минимума со значением функции f(2)=4.

 $\it Omsem: x = 0$ — точка максимума; $\it x = 2$ — точка минимума.

Домашнее задание

- 1. Найти экстремумы функции $f(x) = x^3 4x^2 + 3$ и построить её график.
- 2. Найти экстремумы функции $f(x) = x^3 3x^2 9x + 2$ и построить её график.