$11n_{112} \ (K11n_{112})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 3u^{17} - 18u^{16} + \dots + 2b + 10, \ 5u^{17} - 20u^{16} + \dots + 4a + 12, \ u^{18} - 6u^{17} + \dots + 10u - 4 \rangle \\ I_2^u &= \langle -27u^4a^3 - 15u^4a^2 + \dots + 53a - 207, \ -u^4a^3 - 2u^4a^2 + \dots + 14a + 29, \ u^5 + u^4 - u^2 + u + 1 \rangle \\ I_3^u &= \langle -u^{10} - u^9 + 2u^8 + 3u^7 - 3u^6 - 5u^5 + 2u^4 + 3u^3 - 2u^2 + b - u + 1, \\ u^{10} + u^9 - 3u^8 - 3u^7 + 5u^6 + 6u^5 - 6u^4 - 5u^3 + 5u^2 + a + 2u - 3, \\ u^{11} + u^{10} - 2u^9 - 3u^8 + 3u^7 + 5u^6 - 2u^5 - 4u^4 + 2u^3 + 2u^2 - u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 49 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 3u^{17} - 18u^{16} + \dots + 2b + 10, \ 5u^{17} - 20u^{16} + \dots + 4a + 12, \ u^{18} - 6u^{17} + \dots + 10u - 4 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{5}{4}u^{17} + 5u^{16} + \dots + \frac{19}{4}u - 3 \\ -\frac{3}{2}u^{17} + 9u^{16} + \dots + \frac{21}{2}u - 5 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{4}u^{17} - 4u^{16} + \dots - \frac{23}{4}u + 2 \\ -\frac{3}{2}u^{17} + 9u^{16} + \dots + \frac{19}{2}u - 5 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{5}{4}u^{17} + 9u^{16} + \dots + \frac{59}{4}u - 9 \\ \frac{5}{2}u^{17} - 15u^{16} + \dots - \frac{39}{2}u + 11 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{2}u^{17} + \frac{5}{2}u^{16} + \dots + \frac{5}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{17} - 2u^{16} + \dots + 2u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 3u^{17} - \frac{35}{2}u^{16} + \dots - 26u + \frac{31}{2} \\ -\frac{7}{2}u^{17} + 18u^{16} + \dots + \frac{45}{2}u - 10 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{16} + 2u^{15} + \dots - u + \frac{3}{2} \\ \frac{3}{2}u^{17} - 6u^{16} + \dots + 5u^{2} - \frac{9}{2}u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{16} + 2u^{15} + \dots - u + \frac{3}{2} \\ \frac{3}{2}u^{17} - 6u^{16} + \dots + 5u^{2} - \frac{9}{2}u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-3u^{17} + 18u^{16} - 43u^{15} + 32u^{14} + 66u^{13} - 182u^{12} + 133u^{11} + 115u^{10} - 314u^9 + 239u^8 + 3u^7 - 163u^6 + 156u^5 - 65u^4 - 7u^3 + 6u^2 + 24u - 26$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{18} + 6u^{17} + \dots - 10u - 4$
c_2	$u^{18} + 6u^{17} + \dots + 44u + 16$
c_3, c_4, c_9	$u^{18} - u^{17} + \dots + 2u + 1$
c_{6}, c_{10}	$u^{18} - 12u^{17} + \dots + 144u - 32$
C ₇	$u^{18} + 17u^{16} + \dots - 4u - 1$
c_{8}, c_{11}	$u^{18} + 2u^{17} + \dots - 15u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{18} - 6y^{17} + \dots - 44y + 16$
c_2	$y^{18} + 14y^{17} + \dots + 1680y + 256$
c_3, c_4, c_9	$y^{18} - 9y^{17} + \dots - 8y + 1$
c_6, c_{10}	$y^{18} + 6y^{17} + \dots - 9984y + 1024$
c ₇	$y^{18} + 34y^{17} + \dots - 6y + 1$
c_8, c_{11}	$y^{18} - 30y^{17} + \dots - 93y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.03064		
a = -0.576519	-0.344722	-12.6080
b = -1.20658		
u = 0.034225 + 0.854848I		
a = -0.575049 + 0.286242I	-1.28974 - 2.24091I	-2.04967 + 3.46388I
b = 0.667178 + 0.239294I		
u = 0.034225 - 0.854848I		
a = -0.575049 - 0.286242I	-1.28974 + 2.24091I	-2.04967 - 3.46388I
b = 0.667178 - 0.239294I		
u = 0.761337 + 0.893787I		
a = 1.58989 + 0.60538I	6.17929 - 0.49659I	-2.59772 - 0.34027I
b = -1.84179 + 0.14912I		
u = 0.761337 - 0.893787I		
a = 1.58989 - 0.60538I	6.17929 + 0.49659I	-2.59772 + 0.34027I
b = -1.84179 - 0.14912I		
u = 0.745128		
a = -0.611661	-0.993591	-11.3770
b = 0.116162		
u = 0.783872 + 0.987963I		
a = -1.19142 - 0.90650I	3.90675 + 6.64708I	-3.39037 - 3.27550I
b = 1.87322 + 0.37011I		
u = 0.783872 - 0.987963I		
a = -1.19142 + 0.90650I	3.90675 - 6.64708I	-3.39037 + 3.27550I
b = 1.87322 - 0.37011I		
u = 1.172860 + 0.467576I		
a = -0.060409 - 0.687195I	-4.67695 - 2.28427I	-4.21274 + 1.51830I
b = 0.433362 - 0.027095I		
u = 1.172860 - 0.467576I		
a = -0.060409 + 0.687195I	-4.67695 + 2.28427I	-4.21274 - 1.51830I
b = 0.433362 + 0.027095I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.232750 + 0.324924I		
a = 0.257894 + 0.181216I	-5.50095 + 6.46042I	-6.77713 - 7.07518I
b = 0.886664 + 0.189258I		
u = -1.232750 - 0.324924I		
a = 0.257894 - 0.181216I	-5.50095 - 6.46042I	-6.77713 + 7.07518I
b = 0.886664 - 0.189258I		
u = 1.038010 + 0.783746I		
a = 1.12937 + 1.35055I	5.30009 - 5.74871I	-4.51000 + 4.97294I
b = -1.78812 + 0.17611I		
u = 1.038010 - 0.783746I		
a = 1.12937 - 1.35055I	5.30009 + 5.74871I	-4.51000 - 4.97294I
b = -1.78812 - 0.17611I		
u = 1.063090 + 0.847970I		
a = -1.42765 - 0.98450I	3.01116 - 13.36860I	-4.65398 + 7.41233I
b = 1.87096 - 0.72149I		
u = 1.063090 - 0.847970I		
a = -1.42765 + 0.98450I	3.01116 + 13.36860I	-4.65398 - 7.41233I
b = 1.87096 + 0.72149I		
u = -0.477881 + 0.414788I		
a = 0.121456 - 0.765696I	1.14170 + 1.25649I	2.18406 - 4.14834I
b = -0.556271 - 0.507565I		
u = -0.477881 - 0.414788I		
a = 0.121456 + 0.765696I	1.14170 - 1.25649I	2.18406 + 4.14834I
b = -0.556271 + 0.507565I		

$$\text{II. } I_2^u = \langle -27u^4a^3 - 15u^4a^2 + \dots + 53a - 207, \ -u^4a^3 - 2u^4a^2 + \dots + 14a + 29, \ u^5 + u^4 - u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.380282a^{3}u^{4} + 0.211268a^{2}u^{4} + \cdots + 0.746479a + 2.91549 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.380282a^{3}u^{4} - 0.211268a^{2}u^{4} + \cdots + 1.74648a - 2.91549 \\ 0.380282a^{3}u^{4} + 0.211268a^{2}u^{4} + \cdots + 0.746479a + 2.91549 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0140845a^{3}u^{4} + 0.436620a^{2}u^{4} + \cdots + 0.323944a - 1.77465 \\ 0.394366a^{3}u^{4} - 0.25352a^{2}u^{4} + \cdots + 0.323944a - 1.77465 \\ 0.394366a^{3}u^{4} - 0.366197a^{2}u^{4} + \cdots + 0.239437a - 2.25352 \\ -0.0140845a^{3}u^{4} - 0.563380a^{2}u^{4} + \cdots + 0.323944a + 6.22535 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.140845a^{3}u^{4} - 0.563380a^{2}u^{4} + \cdots + 0.323944a + 6.22535 \\ -0.0140845a^{3}u^{4} - 0.563380a^{2}u^{4} + \cdots + 0.323944a + 6.22535 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0845070a^{3}u^{4} + 0.619718a^{2}u^{4} + \cdots + 0.0563380a - 4.64789 \\ -0.0563380a^{3}u^{4} - 0.253521a^{2}u^{4} + \cdots + 0.295775a + 4.90141 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.309859a^{3}u^{4} + 0.605634a^{2}u^{4} + \cdots + 0.126761a - 5.04225 \\ -0.0985915a^{3}u^{4} - 0.943662a^{2}u^{4} + \cdots + 0.126761a - 5.04225 \\ -0.0985915a^{3}u^{4} - 0.943662a^{2}u^{4} + \cdots + 0.126761a - 5.04225 \\ -0.0985915a^{3}u^{4} - 0.943662a^{2}u^{4} + \cdots + 0.126761a - 5.04225 \\ -0.0985915a^{3}u^{4} - 0.943662a^{2}u^{4} + \cdots + 0.126761a - 5.04225 \\ -0.0985915a^{3}u^{4} - 0.943662a^{2}u^{4} + \cdots + 0.126761a - 5.04225 \\ -0.0985915a^{3}u^{4} - 0.943662a^{2}u^{4} + \cdots + 0.1267606a + 5.57746 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{20}{71}u^4a^3 - \frac{52}{71}u^4a^2 + \dots - \frac{176}{71}a - \frac{462}{71}a^2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^5 - u^4 + u^2 + u - 1)^4$
c_2	$(u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^4$
c_3, c_4, c_9	$u^{20} + u^{19} + \dots - 78u + 43$
c_6,c_{10}	$(u^2 + u + 1)^{10}$
	$u^{20} + u^{19} + \dots + 860u + 1849$
c_{8}, c_{11}	$u^{20} + 3u^{19} + \dots + 982u + 169$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^4$
c_2	$(y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^4$
c_3, c_4, c_9	$y^{20} - 9y^{19} + \dots - 12276y + 1849$
c_6, c_{10}	$(y^2 + y + 1)^{10}$
	$y^{20} + 15y^{19} + \dots - 22905412y + 3418801$
c_8, c_{11}	$y^{20} - 13y^{19} + \dots + 46972y + 28561$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.758138 + 0.584034I		
a = 0.749890 - 0.621375I	-3.11500 - 4.24385I	-5.11432 + 7.68699I
b = -0.08602 + 1.68144I		
u = 0.758138 + 0.584034I		
a = -0.566965 + 0.314182I	-3.11500 - 0.18409I	-5.11432 + 0.75879I
b = 0.882926 + 0.389982I		
u = 0.758138 + 0.584034I		
a = -0.06960 - 1.47984I	-3.11500 - 4.24385I	-5.11432 + 7.68699I
b = 0.362793 - 0.374311I		
u = 0.758138 + 0.584034I		
a = -1.59288 + 0.14727I	-3.11500 - 0.18409I	-5.11432 + 0.75879I
b = 0.110691 - 1.283240I		
u = 0.758138 - 0.584034I		
a = 0.749890 + 0.621375I	-3.11500 + 4.24385I	-5.11432 - 7.68699I
b = -0.08602 - 1.68144I		
u = 0.758138 - 0.584034I		
a = -0.566965 - 0.314182I	-3.11500 + 0.18409I	-5.11432 - 0.75879I
b = 0.882926 - 0.389982I		
u = 0.758138 - 0.584034I		
a = -0.06960 + 1.47984I	-3.11500 + 4.24385I	-5.11432 - 7.68699I
b = 0.362793 + 0.374311I		
u = 0.758138 - 0.584034I		
a = -1.59288 - 0.14727I	-3.11500 + 0.18409I	-5.11432 - 0.75879I
b = 0.110691 + 1.283240I		
u = -0.935538 + 0.903908I		
a = -0.917729 + 0.847158I	6.02349 + 1.30186I	-4.08126 + 1.10182I
b = 1.52925 - 0.42833I		
u = -0.935538 + 0.903908I		
a = 1.18464 - 0.79636I	6.02349 + 5.36163I	-4.08126 - 5.82638I
b = -2.04795 - 0.07963I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.935538 + 0.903908I		
a = 1.16701 - 1.04206I	6.02349 + 1.30186I	-4.08126 + 1.10182I
b = -1.78733 - 0.41229I		
u = -0.935538 + 0.903908I		
a = -1.47807 + 0.67792I	6.02349 + 5.36163I	-4.08126 - 5.82638I
b = 1.44900 + 0.72345I		
u = -0.935538 - 0.903908I		
a = -0.917729 - 0.847158I	6.02349 - 1.30186I	-4.08126 - 1.10182I
b = 1.52925 + 0.42833I		
u = -0.935538 - 0.903908I		
a = 1.18464 + 0.79636I	6.02349 - 5.36163I	-4.08126 + 5.82638I
b = -2.04795 + 0.07963I		
u = -0.935538 - 0.903908I		
a = 1.16701 + 1.04206I	6.02349 - 1.30186I	-4.08126 - 1.10182I
b = -1.78733 + 0.41229I		
u = -0.935538 - 0.903908I		
a = -1.47807 - 0.67792I	6.02349 - 5.36163I	-4.08126 + 5.82638I
b = 1.44900 - 0.72345I		
u = -0.645200		
a = -1.90553 + 0.26854I	-5.81699 - 2.02988I	-13.60884 + 3.46410I
b = 1.09670 + 1.08254I		
u = -0.645200		
a = -1.90553 - 0.26854I	-5.81699 + 2.02988I	-13.60884 - 3.46410I
b = 1.09670 - 1.08254I		
u = -0.645200		
a = 2.92924 + 1.50457I	-5.81699 - 2.02988I	-13.60884 + 3.46410I
b = -0.010057 + 0.799590I		
u = -0.645200		
a = 2.92924 - 1.50457I	-5.81699 + 2.02988I	-13.60884 - 3.46410I
b = -0.010057 - 0.799590I		

III.
$$I_3^u = \langle -u^{10} - u^9 + \dots + b + 1, \ u^{10} + u^9 + \dots + a - 3, \ u^{11} + u^{10} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{10} - u^{9} + 3u^{8} + 3u^{7} - 5u^{6} - 6u^{5} + 6u^{4} + 5u^{3} - 5u^{2} - 2u + 3 \\ u^{10} + u^{9} - 2u^{8} - 3u^{7} + 3u^{6} + 5u^{5} - 2u^{4} - 3u^{3} + 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{10} - 2u^{9} + 5u^{8} + 6u^{7} - 8u^{6} - 11u^{5} + 8u^{4} + 8u^{3} - 7u^{2} - 3u + 4 \\ u^{10} + u^{9} - 2u^{8} - 3u^{7} + 3u^{6} + 5u^{5} - 2u^{4} - 3u^{3} + 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{10} - u^{9} + 3u^{8} + 3u^{7} - 5u^{6} - 6u^{5} + 5u^{4} + 5u^{3} - 4u^{2} - 2u + 2 \\ u^{9} - 2u^{7} - u^{6} + 4u^{5} + 2u^{4} - 3u^{3} - u^{2} + 2u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 2u^{10} + u^{9} - 5u^{8} - 4u^{7} + 9u^{6} + 7u^{5} - 9u^{4} - 6u^{3} + 7u^{2} + 2u - 3 \\ -u^{10} - u^{9} + 2u^{8} + 3u^{7} - 3u^{6} - 5u^{5} + 2u^{4} + 4u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{10} + u^{9} - 5u^{8} - 3u^{7} + 9u^{6} + 5u^{5} - 9u^{4} - 3u^{3} + 8u^{2} - 2 \\ -u^{10} + 3u^{8} + u^{7} - 5u^{6} - 2u^{5} + 5u^{4} + 2u^{3} - 3u^{2} + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} - 3u^{8} - u^{7} + 6u^{6} + 2u^{5} - 6u^{4} - 2u^{3} + 5u^{2} - 1 \\ u^{8} + u^{7} - u^{6} - 2u^{5} + u^{4} + 3u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{10} - 3u^{8} - u^{7} + 6u^{6} + 2u^{5} - 6u^{4} - 2u^{3} + 5u^{2} - 1 \\ u^{8} + u^{7} - u^{6} - 2u^{5} + u^{4} + 3u^{3} - u \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$u^{10} + u^9 + u^8 - u^7 + u^6 + u^5 + 2u^4 + u^3 + 4u^2 + u - 6u^4 + u^4 + u^4$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1	$ u^{11} + u^{10} - 2u^9 - 3u^8 + 3u^7 + 5u^6 - 2u^5 - 4u^4 + 2u^3 + 2u^2 - u - 1 $		
c_2	$u^{11} + 5u^{10} + \dots + 5u + 1$		
<i>c</i> ₃	$u^{11} + u^{10} - 4u^9 - 4u^8 + 6u^7 + 6u^6 - 2u^5 - 3u^4 - 4u^3 - u^2 + 4u + 1$		
c_4, c_9	$u^{11} - u^{10} - 4u^9 + 4u^8 + 6u^7 - 6u^6 - 2u^5 + 3u^4 - 4u^3 + u^2 + 4u - 1$		
<i>C</i> ₅	$u^{11} - u^{10} - 2u^9 + 3u^8 + 3u^7 - 5u^6 - 2u^5 + 4u^4 + 2u^3 - 2u^2 - u + 1$		
<i>c</i> ₆	$u^{11} - u^{10} + 3u^9 + u^8 + u^7 + 6u^6 + 4u^4 + 4u^3 + u^2 + 2u + 1$		
<i>C</i> ₇	$u^{11} - u^9 - 5u^8 - 9u^7 + 7u^6 + 24u^5 - 3u^4 + 6u^3 + 6u^2 + 2u + 1$		
<i>C</i> ₈	$u^{11} + 2u^{10} + u^9 + 4u^8 + 4u^7 + 6u^5 + u^4 + u^3 + 3u^2 - u + 1$		
c_{10}	$u^{11} + u^{10} + 3u^9 - u^8 + u^7 - 6u^6 - 4u^4 + 4u^3 - u^2 + 2u - 1$		
c_{11}	$u^{11} - 2u^{10} + u^9 - 4u^8 + 4u^7 + 6u^5 - u^4 + u^3 - 3u^2 - u - 1$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{11} - 5y^{10} + \dots + 5y - 1$
c_2	$y^{11} + 7y^{10} + \dots - 7y - 1$
c_3, c_4, c_9	$y^{11} - 9y^{10} + \dots + 18y - 1$
c_6, c_{10}	$y^{11} + 5y^{10} + \dots + 2y - 1$
	$y^{11} - 2y^{10} + \dots - 8y - 1$
c_8, c_{11}	$y^{11} - 2y^{10} + \dots - 5y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.890464		
a = 0.557576	0.241342	1.70090
b = 0.938618		
u = -1.050460 + 0.434817I		
a = -0.953762 - 0.951226I	-6.50834 + 4.79164I	-9.43330 - 4.58871I
b = -0.325584 + 0.585988I		
u = -1.050460 - 0.434817I		
a = -0.953762 + 0.951226I	-6.50834 - 4.79164I	-9.43330 + 4.58871I
b = -0.325584 - 0.585988I		
u = 0.568178 + 0.624341I		
a = -0.810571 - 0.115740I	-4.04644 - 2.66477I	-7.34246 + 3.51719I
b = -0.251884 - 1.139160I		
u = 0.568178 - 0.624341I		
a = -0.810571 + 0.115740I	-4.04644 + 2.66477I	-7.34246 - 3.51719I
b = -0.251884 + 1.139160I		
u = 1.087470 + 0.533146I		
a = 0.213335 + 0.242827I	-5.77248 - 1.97523I	-11.11734 + 0.94758I
b = 0.012610 + 0.843323I		
u = 1.087470 - 0.533146I		
a = 0.213335 - 0.242827I	-5.77248 + 1.97523I	-11.11734 - 0.94758I
b = 0.012610 - 0.843323I		
u = -0.931392 + 0.876271I		
a = -1.23579 + 0.88821I	6.35313 + 3.25083I	-3.04144 - 2.67262I
b = 1.69939 + 0.19552I		
u = -0.931392 - 0.876271I		
a = -1.23579 - 0.88821I	6.35313 - 3.25083I	-3.04144 + 2.67262I
b = 1.69939 - 0.19552I		
u = -0.619026 + 0.353653I		
a = 2.00800 + 1.43553I	-4.95095 - 1.33491I	-5.91593 - 1.31203I
b = -0.603838 - 0.687137I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.619026 - 0.353653I		
a = 2.00800 - 1.43553I	-4.95095 + 1.33491I	-5.91593 + 1.31203I
b = -0.603838 + 0.687137I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{5} - u^{4} + u^{2} + u - 1)^{4}$ $\cdot (u^{11} + u^{10} - 2u^{9} - 3u^{8} + 3u^{7} + 5u^{6} - 2u^{5} - 4u^{4} + 2u^{3} + 2u^{2} - u - 1)$ $\cdot (u^{18} + 6u^{17} + \dots - 10u - 4)$
c_2	$((u^5 + u^4 + 4u^3 + 3u^2 + 3u + 1)^4)(u^{11} + 5u^{10} + \dots + 5u + 1)$ $\cdot (u^{18} + 6u^{17} + \dots + 44u + 16)$
c_3	$(u^{11} + u^{10} - 4u^9 - 4u^8 + 6u^7 + 6u^6 - 2u^5 - 3u^4 - 4u^3 - u^2 + 4u + 1)$ $\cdot (u^{18} - u^{17} + \dots + 2u + 1)(u^{20} + u^{19} + \dots - 78u + 43)$
c_4,c_9	$(u^{11} - u^{10} - 4u^9 + 4u^8 + 6u^7 - 6u^6 - 2u^5 + 3u^4 - 4u^3 + u^2 + 4u - 1)$ $\cdot (u^{18} - u^{17} + \dots + 2u + 1)(u^{20} + u^{19} + \dots - 78u + 43)$
c_5	$(u^{5} - u^{4} + u^{2} + u - 1)^{4}$ $\cdot (u^{11} - u^{10} - 2u^{9} + 3u^{8} + 3u^{7} - 5u^{6} - 2u^{5} + 4u^{4} + 2u^{3} - 2u^{2} - u + 1)$ $\cdot (u^{18} + 6u^{17} + \dots - 10u - 4)$
c_6	$((u^{2} + u + 1)^{10})(u^{11} - u^{10} + \dots + 2u + 1)$ $\cdot (u^{18} - 12u^{17} + \dots + 144u - 32)$
c_7	$(u^{11} - u^9 - 5u^8 - 9u^7 + 7u^6 + 24u^5 - 3u^4 + 6u^3 + 6u^2 + 2u + 1)$ $\cdot (u^{18} + 17u^{16} + \dots - 4u - 1)(u^{20} + u^{19} + \dots + 860u + 1849)$
c_8	$(u^{11} + 2u^{10} + u^9 + 4u^8 + 4u^7 + 6u^5 + u^4 + u^3 + 3u^2 - u + 1)$ $\cdot (u^{18} + 2u^{17} + \dots - 15u - 1)(u^{20} + 3u^{19} + \dots + 982u + 169)$
<i>c</i> ₁₀	$((u^{2} + u + 1)^{10})(u^{11} + u^{10} + \dots + 2u - 1)$ $\cdot (u^{18} - 12u^{17} + \dots + 144u - 32)$
c_{11}	$(u^{11} - 2u^{10} + u^9 - 4u^8 + 4u^7 + 6u^5 - u^4 + u^3 - 3u^2 - u - 1)$ $\cdot (u^{18} + 2u^{17} + \dots - 15u - 1)(u^{20} + 3u^{19} + \dots + 982u + 169)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$((y^5 - y^4 + 4y^3 - 3y^2 + 3y - 1)^4)(y^{11} - 5y^{10} + \dots + 5y - 1)$ $\cdot (y^{18} - 6y^{17} + \dots - 44y + 16)$
c_2	$((y^5 + 7y^4 + 16y^3 + 13y^2 + 3y - 1)^4)(y^{11} + 7y^{10} + \dots - 7y - 1)$ $\cdot (y^{18} + 14y^{17} + \dots + 1680y + 256)$
c_3,c_4,c_9	$(y^{11} - 9y^{10} + \dots + 18y - 1)(y^{18} - 9y^{17} + \dots - 8y + 1)$ $\cdot (y^{20} - 9y^{19} + \dots - 12276y + 1849)$
c_6, c_{10}	$((y^{2} + y + 1)^{10})(y^{11} + 5y^{10} + \dots + 2y - 1)$ $\cdot (y^{18} + 6y^{17} + \dots - 9984y + 1024)$
c_7	$(y^{11} - 2y^{10} + \dots - 8y - 1)(y^{18} + 34y^{17} + \dots - 6y + 1)$ $\cdot (y^{20} + 15y^{19} + \dots - 22905412y + 3418801)$
c_8, c_{11}	$(y^{11} - 2y^{10} + \dots - 5y - 1)(y^{18} - 30y^{17} + \dots - 93y + 1)$ $\cdot (y^{20} - 13y^{19} + \dots + 46972y + 28561)$