First and Last Name:	

2. Simple Harmonic Motion

A particle undergoing simple harmonic motion has the position

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t).$$

This position can also be written as $x(t) = E\cos(\omega_0 t - \phi)$ where E > 0. What are E and ϕ in terms of A and B?

Solution: Using the sum of angles formula we find

$$x(t) = E\cos(\omega_0 t - \phi)$$

= $E\cos\phi\cos(\omega_0 t) + E\sin\phi\sin(\omega_0 t)$. (1)

Equating this result to the given position, we find

$$E\cos\phi\cos(\omega_0 t) + E\sin\phi\sin(\omega_0 t) = A\cos(\omega_0 t) + B\sin(\omega_0 t), \tag{2}$$

which implies that $E\cos\phi=A$ and $E\sin\phi=B$. Using trigonometric identities and the condition E>0, we then find

$$E = \sqrt{A^2 + B^2}, \qquad \phi = \tan^{-1} \frac{B}{A}.$$
 (3)

First and Last Name:	

3. Effective spring constant

Two springs with spring constants k_1 and k_2 are connected in parallel as shown in Fig. 1. What is the

Figure 1

effective spring constant k_{eff} ? In other words, if the mass is displaced by x, find the k_{eff} for which the force equals $F = -k_{\text{eff}}x$.

Solution: If the mass is displaced a distance x from its equilibrium position, the spring with spring constant k_1 exerts a restoring force $-k_1x$. Similarly, the spring with spring constant k_2 exerts a restoring force $-k_2x$ on the mass. Thus the net force on the mass is

$$F_{\text{net}} = -k_1 x - k_2 x = -(k_1 + k_2) x. \tag{4}$$

Therefore the effective spring constant is $k_{\rm eff}=k_1+k_2.$

|--|

4. Superposition

Let $x_1(t)$ and $x_2(t)$ be solutions to the differential equation

$$\ddot{x}^2(t) = b x(t).$$

where b is a constant. Is the linear combination $x(t) = c_1x_1(t) + c_2x_2(t)$, where c_1 and c_2 are constants, a solution to the differential equation? (Provide a calculation showing why or why not).

Solution: If x_1 and x_2 solve the differential equation $\ddot{x}^2(t) = b x(t)$, then we have

$$\ddot{x}_1^2(t) = b \, x_1(t) \qquad \ddot{x}_2^2(t) = b \, x_2(t). \tag{5}$$

For $x(t) = c_1x_1(t) + c_2x_2(t)$ to be a solution to the differential equation, it too must satisfy the equations above. Checking whether it does, we have

$$\left[\frac{d^2}{dt^2} \left(c_1 x_1(t) + c_2 x_2(t)\right)\right]^2 \stackrel{?}{=} b \left[c_1 x_1(t) + c_2 x_2(t)\right]
\left(c_1 \ddot{x}_1 + c_2 \ddot{x}_2\right)^2 \stackrel{?}{=} b c_1 x_1 + b c_2 x_2
c_1^2 \ddot{x}_1^2 + 2c_1 c_2 \ddot{x}_1 \ddot{x}_2 + c_2^2 \ddot{x}_2^2 \stackrel{?}{=} b c_1 x_1 + b c_2 x_2
c_1^2 b x_1 + 2c_1 c_2 \ddot{x}_1 \ddot{x}_2 + c_2 x_2 \neq b c_1 x_1 + b c_2 x_2$$
(6)

where in the last line we used Eq.(5). Thus the linear combination $c_1x_1(t) + c_2x_2(t)$ does not satisfy the differential equation and is not a solution to it.

First and Last Name:	

5. An Anti-Hookean oscillator

A particle of mass m and at a position x is subject to a force

$$F(x) = +kx$$

with k > 0.

- (a) What is the most general form of x(t) in terms of the parameters of the system?
- (b) The particle begins at x_0 and after long times (i.e., $t \to \infty$), the particle is at x = 0. What is the particle's initial velocity?

Solution: The equation of motion of this system is $m\ddot{x} - kx = 0$, or

$$\ddot{x} - \frac{k}{m}x = 0. (7)$$

Finding the general solution by guessing a general exponential and fixing its parameters, we find

$$x(t) = Ae^{t\sqrt{k/m}} + Be^{-t\sqrt{k/m}}. ag{8}$$

If the particle begins at x_0 , we have $A+B=x_0$. If the particle is at x=0 when $t\to\infty$, then we have A=0. Thus, the specific solution is

$$x(t) = x_0 e^{-t\sqrt{k/m}},\tag{9}$$

and the particle's initial velocity is $v_0 = -x_0\sqrt{k/m}$.

First and Last Name:	
THE and Last Name.	

6. Exponential force

A particle of mass m is attached to a spring of spring constant k and is subject to another external force $F(t) = F_0 e^{-bt}$. The equation of motion of the system is

$$\ddot{x} + \omega_0^2 x = \frac{F_0}{m} e^{-bt},\tag{10}$$

where $\omega_0^2=k/m$. Guess a solution of the form $x(t)=Ae^{\alpha t}$ and determine what A and α should be in order for this solution to satisfy the above differential equation.

Solution: Guessing a solution of the form $x(t)=Ae^{\alpha t}$ and plugging it into the equation of motion we find

$$(\alpha^2 + \omega_0^2)Ae^{\alpha t} = \frac{F_0}{m}e^{-bt}.$$
(11)

In order for this equation to be true for all time, we need to take $\alpha=-b$ and $A=F_0/[m(\alpha^2+\omega_0^2)]=F_0/[m(b^2+\omega_0^2)]$. We therefore find the particular solution to the given differential equation is

$$x(t) = \frac{F_0/m}{\omega_0^2 + b^2} e^{-bt}. (12)$$

First and	Last Name:	
I II St allu	Last Manic.	

7. Matrix algebra

We have the following system of two equations of motion

$$m\ddot{x}_1 = -k_L x_1 + k_M (x_2 - x_1)$$

$$m\ddot{x}_2 = -k_R x_2 - k_M (x_2 - x_1),$$

where x_1 and x_2 are position variables and k_L , k_M , and k_R are spring constants. Say we want to write the two equations as a matrix equation where a 2×2 matrix multiplies a 2×1 matrix to yield a 2×1 matrix:

$$m\left(\begin{array}{c} \ddot{x}_1 \\ \ddot{x}_2 \end{array}\right) = \left(\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

What should the values of the question marks be?

Solution: The equations of motion for x_1 and x_2 are

$$m\ddot{x}_1 = -(k_L + k_M)x_1 + k_M x_2$$

$$m\ddot{x}_2 = -(k_R + k_M)x_2 + k_M x_1,$$

Writing the above equation of motion as a matrix, we have

$$m \left(\begin{array}{c} \ddot{x}_1 \\ \ddot{x}_2 \end{array} \right) = \left(\begin{array}{cc} -k_K - k_M & k_M \\ k_M & -k_R - k_M \end{array} \right) \left(\begin{array}{c} x_1 \\ x_2 \end{array} \right).$$

First and	Last Name:	
rusi and	Last Name:	

8. Second derivatives

Say we have the function

$$f(x) = x^2 + \sin(2x).$$

Compute the value of

$$\lim_{a \to 0} \frac{f(x+a) - 2f(x) + f(x-a)}{a^2}.$$

Solution: The given limit is the definition of a second derivative. Thus for the provided function we have

$$\lim_{a \to 0} \frac{f(x+a) - 2f(x) + f(x-a)}{a^2} = \frac{d^2 f}{dx^2} = 2 - 4\sin(2x). \tag{13}$$