Segundo Examen Parcial: 30/Junio/2022

Nombre:	Reg.:
---------	-------

Para aprobar el examen deberá realizar correctamente al menos el 50% del mismo

La resolución del examen debe ser enviada a los siguientes correos: 51MS34080647@campus.economicas.uba.ar y 83EL31412970@campus.economicas.uba.ar el **día 30 de Junio hasta las 16.20 horas.** Cualquier recepción posterior a este horario no será considerada.

Integración numérica

- a) Considere la función $\Gamma(x)$. Aproxime $\Gamma(9.22)$, usando el método de Simpson Compuesto con n = 100.
- b) Considere la función de densidad de la variable Y, con α =9.22 y β =2. Aproxime P(Y<0.6) mediante una integral utilizando el método de trapecio compuesto con n = 50. Calcule la cota del error de la aproximación.
- c) Sea g(X, K) = max(X K; 0), donde K es una constante dada. Calcule la esperanza de g(X, K) con K = 0.50.

[Obs.:Usted debe seleccionar los parámetros (que no estén dados) de los algoritmos para las estimaciones. Justifique.]

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

Función de densidad de Y:
$$f_Y(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}; \quad 0 < x < 1$$

<u>Simulación</u>

- a) Simule 1000 caminos de precios diarios, considerando P0= 75, μ = 0.15 y σ = 0.20, y un horizonte temporal de seis meses. Grafique un histograma de los precios finales.
- b) Calcule la probabilidad de que el precio final PT esté entre 65 y el precio inicial PO.
- c) Calcule la probabilidad de que el precio final PT sea menor al precio esperado en T; es decir, Prob(PT<E[PT]).

<u>Interpolación</u>

- a) Explique en cual es la ventaja de la utilización de Polinomios de Newton por sobre los Polinomios de Lagrange respecto de las metodologías de interpolación.
- b) Considere la siguiente tabla de perdidas (L) y probabilidades acumuladas (PA = Prob(L<x))

L	PA
9.4812	0.1
9.5244	0.2
10.0952	0.3
11.1160	0.4
12.8725	0.5
13.4483	0.6
14.1008	0.7
14.4795	0.8
15.2031	0.9
19.6600	1.0

Usando un polinomio de Lagrange para interpolar, estime las probabilidades P(L <14) y P(L <18). Comente los resultados hallados.