Содержание

- □ Цель лекции
- □ Понятие генеративной модели
- Отличие дискриминативных и генеративных моделей
- □ Генеративные состязательные сети
 - Общая схема модели
 - Постановка задачи обучения
 - Алгоритм обучения модели
- □ Классификация генеративных состязательных сетей
- □ Примеры приложений генеративных состязательных сетей
- □ Заключение

Цель лекции

□ **Цель** - изучить общую схему построения генеративных состязательных сетей и алгоритм их обучения, рассмотреть классификацию генеративных состязательных сетей и примеры их практического использования

ПОНЯТИЕ ГЕНЕРАТИВНОЙ МОДЕЛИ

Генеративная модель

□ *Генеративная модель* описывает общие правила генерации набора данных в терминах вероятностной модели. Сэмплирование данных из построенной вероятностной модели позволяет генерировать новые данные

Схема генеративного моделирования (1)

Схема генеративного моделирования (2)

- □ Предполагается, что имеется набор данных, содержащий множество примеров сущностей, которые требуется генерировать, *тренировочный набор данных* (training dataset)
- □ Наблюдение (observation) отдельный элемент тренировочного набора данных
- □ В задаче генерации изображений каждое наблюдение состоит из множества признаков, как правило, признак - значение интенсивности отдельного пикселя
- Модель обучается генерировать *данные* (изображения) по тем же правилам, что построен тренировочный набор данных
- В процессе генерации каждому пикселю назначается некоторое значение интенсивности

Схема генеративного моделирования (3)

- □ Генеративная модель должна быть вероятностной
- □ Если модель в процессе сэмплирования, например, в качестве значения интенсивности пикселя выдает среднее значение по тренировочной выборке, то модель не является генеративной, поскольку обеспечивает всегда одинаковый результат
- Модель должна включать элемент случайности, отражающий индивидуальные особенности сгенерированного примера
- □ Таким образом, должно существовать вероятностное распределение, которое объясняет, почему некоторые наблюдения (изображения) похожи в тренировочном наборе, а другие нет
- □ Цель построить модель, наилучшим образом имитирующую это распределение

ОТЛИЧИЕ ДИСКРИМИНАТИВНЫХ И ГЕНЕРАТИВНЫХ МОДЕЛЕЙ

Схема дискриминативного моделирования (1)

Схема дискриминативного моделирования (2)

- □ Предполагается, что имеется *тренировочный набор данных* (training dataset)
- □ *Наблюдение* (observation) отдельный элемент тренировочного набора данных
- □ Каждое наблюдение имеет метку (label)
- □ Цель построить функцию на основании тренировочного набора данных, которая наилучшим образом отображает наблюдения на множество меток

Отличие дискриминативного и генеративного моделирования (1)

□ Разные цели моделирования

- *Генеративные модели* оценивают p(x, y) совместное распределение вероятностей (оценивают границы классов)
 - Если набор данных не размечен (решается задача обучения без учителя), то модели оценивают p(x) вероятность увидеть наблюдение x
 - Если тренировочный набор размечен, то генеративная модель может оценивать условную вероятность p(x|y) (вычисляется по правилу Байеса) вероятность увидеть наблюдение x при условии, что известна его принадлежность классу y
- **Дискриминативные модели** оценивают p(y|x) вероятность метки y при условии, что на входе имеется наблюдение x (оценивают границу между классами)

^{*} Ng A.Y., Jordan M.I. On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naïve Bayes // Advances in Neural Information Processing Systems. - 2002. - [http://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf].

Отличие дискриминативного и генеративного моделирования (2)

 □ Графическая интерпретация на примере двумерного наблюдения и двух классов объектов:

ГЕНЕРАТИВНЫЕ СОСТЯЗАТЕЛЬНЫЕ СЕТИ

Общая схема модели (1)

Общая схема модели (2)

- □ Генеративная состязательная сеть состоит из двух нейронных сетей:
 - *Генератор* сеть, которая генерирует образцы. Цель генератора научиться «обманывать» дискриминатор
 - **Дискриминатор** сеть, которая пытается отличить реальные наблюдения от сгенерированных образцов. Цель дискриминатора научиться наилучшим образом отличать «обман»
- □ Пример генерация фотографий реалистичных лиц:
 - Вход генератора многомерный случайный шум, выход генератора (вход дискриминатора) сгенерированное RGB-изображение лица
 - Выход дискриминатора достоверность того, что RGBизображение - настоящее лицо (число от 0 до 1)

Постановка задачи обучения (1)

□ Обозначения:

- $\it X$ множество наблюдений из распределения $\it p_{data}$
- Z пространство латентных факторов из распределения p_Z (например, множество случайных векторов из равномерного распределения на отрезке [0;1])

□ Генератор

- Отображение $G:Z \to \mathbb{R}^n$ с параметрами θ
- Цель G сгенерировать образец, максимальное похожий на наблюдения из распределения p_{data}

□ Дискриминатор

- Отображение $D: \mathbb{R}^n \to [0;1]$ с параметрами γ
- Цель D выдавать максимальную оценку на наблюдениях из X и минимальную оценку на образцах, сгенерированных G

Постановка задачи обучения (2)

- □ Обозначения:
 - θ и γ параметры нейронных сетей, соответствующих генератору и дискриминатору
 - $-\ p_{gen}$ распределение образцов, порождаемое генератором
- lacktriangledown построить распределение p_{gen} , которое наилучшим образом описывает распределение p_{data}

Постановка задачи обучения (3)

Функция ошибки:

$$E_{x \sim p_{data}}[\log D(x)] + E_{x \sim p_{gen}}[\log (1 - D(\tilde{x}))],$$
 где $E_{x \sim p_{gen}}[\log (1 - D(x))] = E_{z \sim p_{Z}}[\log (1 - D(G(z)))]$

□ Задача обучения генеративной состязательной сети сводится к решению задачи оптимизации (минимаксная игра)

$$\min_{X} \max_{G \in \mathcal{D}} E_{x \sim p_{dat}a} [\log D()] + E_{z \sim p_{Z}} \left[\log \left(1 - D(G(z)) \right) \right]$$

 \Box *Примечание:* обоснование сходимости распределения p_{gen} к p_{data} описано в исходной статье*, где предложены модели

*Goodfellow I.J., et al. Generative Adversarial Nets. - 2014. - [https://arxiv.org/pdf/1406.2661.pdf].

Алгоритм обучения. Этап 1 (1)

1. Сэмплировать $\{x_1, x_2, ..., x_m\}$ из распределения p_{data}

Алгоритм обучения. Этап 1 (2)

1. Сэмплировать $\{x_1, x_2, ..., x_m\}$ из распределения p_{data}

Алгоритм обучения. Этап 1 (3)

1. Сэмплировать $\{x_1, x_2, ..., x_m\}$ из распределения p_{data}

2. Сэмплировать $\{z_1, z_2, ..., z_m\}$ из распределения p_Z

Алгоритм обучения. Этап 2 (1)

Алгоритм обучения. Этап 2 (2)

Алгоритм обучения. Псевдокод

for i = 1..num_iteration do
 for j = 1..k do

- 1. Сэмплировать $\{x_1, ..., x_m\}$ из распределения p_{data}
- 2. Сэмплировать $\{z_1, \dots, z_m\}$ из распределения p_2
- 1.3. Обновить параметры дискриминатора γ

$$\Delta \gamma \leftarrow \nabla_{\gamma} \frac{1}{m} \sum_{t=1}^{m} [\log D(x_t)] + \left[\log \left(1 - D(G(z_t))\right)\right]$$

end for

- 1. Сэмплировать $\{z_1, ..., z_m\}$ из распределения p_Z
- 2. Обновить параметры генератора heta

$$\Delta \theta \leftarrow \nabla_{\theta} \frac{1}{m} \sum_{t=1}^{m} \left[log \left(1 - D(G(z_t)) \right) \right]$$

end for

Алгоритм обучения. Особенности реализации

- □ Количество итераций обновления параметров дискриминатора
 k и параметров генератора num_iterations являются
 параметрами алгоритма обучения
- □ При реализации обратного распространения ошибки в исходном методе обучения используется *стохастический градиентный спуск* (Stochastic Gradient Descend, SGD)

КЛАССИФИКАЦИЯ ГЕНЕРАТИВНЫХ СОСТЯЗАТЕЛЬНЫХ СЕТЕЙ

Классификация генеративных состязательных сетей (1)

- □ Полносвязные генеративные состязательные сети (Fully Connected GANs)
- □ Условные генеративные состязательные сети (Conditional GANs, CGAN)
- □ *Пирамида Лапласа из состязательных сетей* (Laplacian Pyramid of Adversarial Networks, LAPGAN)
- □ Глубокие сверточные генеративные состязательные сети (Deep Convolutional GANs, DCGAN)
- □ Генеративные рекуррентные состязательные сети (Generative Recurrent Adversarial Networks, GRAN)
- **.**...

^{*} Alqahtani H., Kavakli-Thorne M., Kumar G. Applications of Generative Adversarial Networks (GANs): An Updated Review // Archives of Computational Methods in Engineering. - 2019.

Классификация генеративных состязательных сетей (2)

- □ Генеративные состязательные сети, максимизирующие информацию (Information Maximizing GANs, InfoGAN)
- □ Двунаправленные генеративные состязательные сети (Bidirectional GANs, BiGAN)
- □ За пределами лекции останутся следующие виды генеративных состязательных сетей:
 - Генеративные автокодировщики (Adversarial Autoencoders, AAE)
 - Гибриды вариационных автокодировщиков и генеративных состязательных сетей (Variational Autoencoder-GAN, VAE-GAN)
 - Некоторые другие специализированные модели

* Alqahtani H., Kavakli-Thorne M., Kumar G. Applications of Generative Adversarial Networks (GANs): An Updated Review // Archives of Computational Methods in Engineering. - 2019.

Fully Connected GANs

- □ Полносвязные генеративные состязательные сети (Fully Connected GANs) модели, в которых генератор и дискриминатор имеют вид полносвязных глубоких нейронных сетей
- Впервые полносвязные генеративные состязательные сети использованы для генерации реалистичных изображений, аналогичных содержащимся в следующих наборах данных*:
 - MNIST [http://yann.lecun.com/exdb/mnist]
 - CIFAR-10 [https://www.cs.toronto.edu/~kriz/cifar.html]
 - Toronto Face Dataset (TFD)**

^{**} Susskind J., Anderson A., Hinton G. E. The Toronto face dataset. Technical Report UTML TR 2010-001. - 2010.

^{*} Goodfellow I.J., et al. Generative Adversarial Nets // Advances in neural information processing systems. - 2014. - P. 2672-2680. - [https://arxiv.org/pdf/1406.2661.pdf].

Conditional GANs (1)

- □ Условные генеративные состязательные сети
 (Conditional GANs, CGAN) модели, позволяющие
 генерировать синтетические изображения, которые
 удовлетворяют некоторым условиям или обладают
 некоторыми свойствами (специфическими характеристиками)
- Генератор и дискриминатор получают дополнительную входную информацию
- В простейшем случае в качестве дополнительной информации используется класс изображения (вектор меток в представлении one-hot) или интересующие свойства

^{*} Mirza M., Osindero S. Conditional generative adversarial nets. - 2014. - [https://arxiv.org/pdf/1411.1784.pdf].

Conditional GANs (2)

Conditional GANs (3)

Генератор

- Вход генератора перестает быть абсолютно случайным в результате добавления вектора условий в качестве входной информации
- Добавление вектора условий помогает генератору понять, каким образом лучше сгенерировать данные

□ Дискриминатор

- Дискриминатор принимает решение о реальности/ поддельности данных, учитывая дополнительную информацию
- □ Общая схема алгоритма обучения аналогична ранее рассмотренной, разница состоит в функции ошибки, которая зависит от дополнительных векторов условий

Laplacian Pyramid of Adversarial Networks (1)

- □ Пирамида Лапласа из состязательных сетей (Laplacian Pyramid of Adversarial Networks, LAPGAN) модель, основанная на каскаде сверточных сетей, которые образуют пирамиду Лапласа для изображений разного масштаба
- Модель позволяет генерировать естественные изображения высокого разрешения за счет захвата особенностей на разных масштабах
- □ Пирамида Лапласа строится на базе пирамиды Гаусса с помощью операций повышающей (upsampling) и понижающей дискретизации (downsampling)
- Элемент пирамиды Лапласа задается разницей между соседними уровнями пирамиды Гаусса

* Denton E.L., et al. Deep generative image models using a Laplacian pyramid of adversarial networks // Advances in neural information processing systems. - 2015. - P. 1486-1494. - [https://arxiv.org/pdf/1506.05751.pdf].

Laplacian Pyramid of Adversarial Networks (2)

Laplacian Pyramid of Adversarial Networks (3)

- Первая состязательная сеть в каскаде в процессе обучения принимает на вход исходное изображение
- Изображение размывается и уменьшается вдвое средствами операции понижающей дискретизации
- Разрешение полученного изображения увеличивается до разрешения исходного изображения с использованием операции повышающей дискретизации
- □ *Генератор* принимает на вход увеличенное изображение и шум и пытается предсказать отличие увеличенного изображения относительно исходного
- □ *Дискриминатор* принимает решение, является ли полученное отличие реальным
- □ Обучение модели обучение условной генеративной состязательной сети

Laplacian Pyramid of Adversarial Networks (4)

- Схема построения каждой последующей генеративной состязательной сети в каскаде аналогична представленной, за исключением последней сети
- □ Последняя сеть обеспечивает восстановление изображения на основании шума, т.е. она не является условной генеративной состязательной сетью

Laplacian Pyramid of Adversarial Networks (5)

 При обучении очередной модели на вход подается изображение, полученное в результате размытия и уменьшения разрешения для предшествующей сети

- Обучение отдельных генеративных состязательных сетей может осуществляться независимо
- Использование обученного каскада сводится к обратному проходу по построенной последовательности моделей, на входе последней модели изображение низкого разрешения

Deep Convolutional GANs (1)

- □ *Глубокие сверточные генеративные состязательные сети* (Deep Convolutional GANs, DCGAN) модели, в которых генератор и дискриминатор представляют собой глубокие сверточные сети, обладающие следующими ограничениями:
 - Отсутствуют полносвязные слои
 - Дискриминатор вместо слоев пространственного объединения (pooling) содержит разреженные свертки (strided convolutions), а генератор разреженные свертки с дробным шагом (fractional-strided convolutions)
 - В генераторе и дискриминаторе используется нормализация по пачке (batch normalization)

- ...

^{*} Radford A., Metz L., Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. - 2015. - [https://arxiv.org/pdf/1511.06434.pdf].

Deep Convolutional GANs (2)

- □ *Глубокие сверточные генеративные состязательные сети* (Deep Convolutional GANs, DCGAN) модели, в которых генератор и дискриминатор представляют собой глубокие сверточные сети, обладающие следующими ограничениями:
 - На всех слоях генератора, кроме последнего, используется функция активации «положительная срезка» (ReLU). В исходной работе* используется гиперболический тангенс (Tanh)
 - На всех слоях дискриминатора используется «слабая положительная срезка» (Leaky ReLU)

^{*} Radford A., Metz L., Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. - 2015. - [https://arxiv.org/pdf/1511.06434.pdf].

Generative Recurrent Adversarial Networks (1)

- □ Генеративные рекуррентные состязательные сети (Generative Recurrent Adversarial Networks, GRAN) модели, в которых генератор содержит рекуррентную связь
- □ Генератор получает на вход последовательность примеров «шума» и создает последовательность изображений
- Очередное изображение построенной последовательности накапливает обновления, что приводит к получению финального образца
- □ Дискриминатор определяет, является ли полученное суммарное изображение реальным
- □ Далее приведена схема построения генератора
- * Im D.J., Kim C.D., Jiang H., Memisevic R. Generating images with recurrent adversarial networks. 2016. [https://arxiv.org/pdf/1602.05110.pdf].

Generative Recurrent Adversarial Networks (2)

- \square $\{z_t, t = \overline{1,T}\}, z_t \sim p(Z)$ последовательность примеров шума
- \square $\Delta C_1, \Delta C_2, \dots, \Delta C_T$ сгенерированная последовательность изображений

Generative Recurrent Adversarial Networks (3)

- $g(\cdot)$ сеть, содержащая последовательность сверточных слоев и полносвязный слой, работает как кодировщик
- \Box $f(\cdot)$ обратная копия сети $g(\cdot)$ (полносвязный слой и последовательность разверточных слоев), работает как декодировщик
- $ightharpoonup h_{ct}$ закодированное представление изображения, сгенерированного на шаге t-1
- \square h_{zt} гипотеза о необходимых обновлениях
- \square $[h_{ct}, h_{zt}]$ конкатенация
- □ Выход генератора представляет собой сумму по всем сгенерированным изображениям
- □ Обучение реализуется посредством метода обратного распространения ошибки с развертыванием во времени (backpropagation through time)

Information Maximizing GANs (1)

- □ Генеративные состязательные сети, максимизирующие информацию (Information Maximizing GANs, InfoGAN) теоретико-информационное расширение генеративных моделей, которые способны строить распутанные признаковые представления без учителя
- Распутанное признаковое представление набор признаков, которые явно представляют характерные особенности экземпляра данных и могут быть полезны для широко круга задач
- □ Цель моделей построить значимые представления посредством максимизации взаимной информации между небольшим подмножеством переменных шума и наблюдений

^{*} Chen X., et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets // Advances in Neural Information Processing Systems. - 2016. - P. 2172-2180. - [https://arxiv.org/pdf/1606.03657.pdf].

Information Maximizing GANs (2)

