Algorithms Graph Representation Homework 3

Mostafa S. Ibrahim
Teaching, Training and Coaching for more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

Problem #1: Find a sink

- In a **directed** graph of N nodes, a **universal sink** is a vertex with *in-degree N-1 and out-degree 0.*
- Prove: In a directed graph, there is at most one universal sink.
 - I actually give the proof in the quiz
- Write an O(N) algorithm to find the sink. Prove correctness
 - int find_universal_sink_fast(GRAPH &graph)
 - Graph is an adjacency matrix for the directed graph (including multiple edges / loops)
 - o Return 0-based index for node i that is think or -1 if none
 - Think carefully and develop several cases

Problem #1: Find a sink

- Your program should read multiple graphs as following
 - First read integer T for T test cases
 - Then for each test case read 2 numbers: nodes and edges
 - Then read the edges (0-based)
- There is an input file (find_sink-input.txt) and output file (find_sink-output.txt).
 - Copy and test your code (or read from a file).
 - Compare your output with my output

5	
3	
3	
3	
3	
3	
9	
3	
3	
3	
3	
5	
5	
5	
5	
5	
4	
1	
2	
3	
	5 3 3 3 3 9 3 3 3 5 5 5 5 5 4 1 2 3

Problem #2: Adjacency matrix power

- Assume we built the binary adjacency matrix of a directed unweighted graph
 M[i][i] = 1 IFF there is at least one edge from i to i
- Assume we computed the matrix C = M², that is C = MxM
- In this homework, you will think/investigate what is C in terms of the original graph
- Optional challenge: What is M^k: that is raising M to the power K
- You don't need to write code to compute matrix power.
- Just use any <u>online calculator</u>

Problem #2: Adjacency matrix power

- Tips. How to do some analysis?
- You need a mix of 2 things
 - Logical thinking. With proper thinking skills, you can find observations
 - Finding patterns in concrete examples
 - Another tip. Start with simple examples
 - For example: What is the smallest graph? A chain of N-1 edges

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."