

AutoRef Project -

Final presentation

Mahmoud Abdelhady Designer

Aneesh Ashok System Architect

Ivan Kolodko Project Manager

Gijs Linskens Designer

Maryam Mashayekhi Designer

Lars Maxfield Team Leader

Anand Vazhayil
Designer

Haoyu ZhuDesigner

Contents

Problem description

Approach

Functional specification

Design

Conclusions

Future work

\bigcirc — Problem description —

Problem description -

Black Box

— Problem description —

Black Box

Decision

- Problem description -

Black Box

Decision

Problem description -

Black Box

Problem description

Problem description

Project purpose:

Design a system capable to substitute a human-being referee during RoboCup MSL soccer matches

- Approach

Previous work

5 MSD generations

Major concerns

Fair gameplay

Continuity of the project

Interest

Continuity of the project

 Enforce the rules of the lawbook Overall structure

Functional specification

Approach -

Project scope:

Functional specification development

Distance violation check task design

Past works archive

Functional Specification

Enforce the rules of the lawbook

What does the referee do?

Middle Size Robot League Rules and Regulations for 2020

Version - 21.4 20200106

MSL Technical Committee 1997-2020

Minoru Asada Tucker Balch Saced Shiry Ghidary Roel Merry Andrea Bonarini Bernardo Cunha Ansgar Bredenfeld Steffen Gutmann Darwin Lau Saeed Ebrahimijam Oliver Zweigle António J. R. Neves Gerhard Kraetzschmar Pedro Lima Emanuele Menegatti José Miguel Almeida Hamed Rasam Farad Alireza Fadaci Tehrani Takayuki Nakamura Robin Soetens Zhao Yong Shota Chikushi Gerald Steinbauer Martin Lauer Yasunori Takemura Wu Jia Hao Masoud Montazeri Junhao Xiao Huimin Lu Enrico Pagello Fernando Ribeiro Ricardo Dias Andreas Witsch Thorsten Schmitt Wei-Min Shen Zhao Yong Seyed Ehsan Marjani Wouter Houtman Hans Sprong Shoji Suzuki Yasutake Takahashi Yifei Han Junchong Ma Paul G. Ploeger Frank Schreiber Jürge van Eijck Edwin Schreuder Zhiqian Zhou Xinzhe Lyu

January 6, 2020

Functional specification

Functional Specification

What is the functional specification?

Functional Specification -

How are the functions specified?

Game-state flow visualization

Functional Specification

Game-state flow visualization

- Over arching game states
- State specific referee tasks
- Flow of the tasks

Design

Objective

Detect ball-player distance violation during the following game states:

- 1. Free kick
- 2. Kick-off
- 3. Corner kick
- 4. Goal kick
- 5. Throw-in
- 6. Penalty kick

Design

Objective

Detect ball-player distance violation during the following game states:

- 1. Free kick
- 2. Kick-off
- 3. Corner kick
- 4. Goal kick
- 5. Throw-in
- 6. Penalty kick

Free kick—Team Blue

No violation!

Objective

Detect ball-player distance violation during the following game states:

- 1. Free kick
- 2. Kick-off
- 3. Corner kick
- 4. Goal kick
- 5. Throw-in
- 6. Penalty kick

Free kick—Team Blue

Violation by team Blue

Objective

Detect ball-player distance violation during the following game states:

- 1. Free kick
- 2. Kick-off
- 3. Corner kick
- 4. Goal kick
- 5. Throw-in
- 6. Penalty kick

Free kick—Team Blue

Violation by team Red

Objective

Detect ball-player distance violation during the following game states:

- 1. Free kick
- 2. Kick-off
- 3. Corner kick
- 4. Goal kick
- 5. Throw-in
- 6. Penalty kick

Free kick—Team Blue

No violation by team Red! Penalty box exemption!

Motivation

New functionality for the system

Hard to realize for human-being

Proof of concept for functional specification

Corresponding to the team learning goals

Scope of design work

- Requirements formulation
- Algorithm architectural decomposition development
- Individual software blocks development
- Individual software blocks integration
- Algorithm testing on images and videos

Approach

Design

Major Design Choices

Programming language:

Simulation environment:

Vision System Parameters:

- Height 12 m
- Frame of view (FOV) 1.2 radians
- Resolution 1920x1080

Requirements. Functional ones

- The system must detect the players and the ball inside the soccer field boundaries and identify the players' team.
- The system must **detect** the different **zones** inside the soccer field (corner area, penalty area, etc.)
- The system must **check** if the **distance** between the center of the **ball** and any part of the **attacker team** members (except for the kicker) before free kick, corner kick, kick-off, goal kick, and throw-in is not less than **2m**. (with acceptable 5cm inaccuracy). **One** of the robots may stay anywhere inside the **penalty area** (except for the goal area) of its own team, even if the distance to the ball is shorter than 2m.
- The system must **check** if the **distance** between the center of the **ball** and any part of the **defender team** members before free kick, corner kick, kick-off, goal kick, and throw-in is not less than **3m**. (with acceptable 5cm inaccuracy). One of the defender robots may stay anywhere inside the **penalty area** (except for the goal area) of its own team, even if the distance to the ball is shorter than 3m.
- The system must **check** if the **distance** between the center of the **ball** and any part of all the **players** before the dropped-ball is **1m**. (with acceptable 5cm inaccuracy in this distance.). One of the robots may stay anywhere inside the penalty area (except for the goal area) of its own team, even if the distance to the ball is shorter than 1m.

Requirements. Performance. Frequency

The system must be able to **realize** the functional requirements (based on the system accuracy) at least every **89 ms** in order to avoid false-negative detections, which means it should have a **detection frequency** of **11.2Hz**.

Requirements. Color detection

The system must detect and distinguish objects mentioned in the Table by means of their RGB values (with ~8% margin for each channel value)

Object	RGB value
Ball	[255, 175, 10]
Team A player	[240, 10, 10]
Team B player	[250, 250, 10]

Requirements. Minimal distortion

The system should capture an image of the furthest player in such a way that it's top outermost point should not overcover the region of radius of it's bottom outermost point with addition of 5 cm.

Otherwise it will lead to false positive

The camera should be located at 150 meters height which is not feasible in real life

Software Decomposition

–Design

Zone of Field Identification

-Design

Ball detection and Area of interest identification

Ball Detection

Area of interest identification

-Design

Player Detection and Classification

Labelled Player detections

Player Detection and Classification

Design

Decision Making Function

Inputs:

- 1. Kicker team and game state
- 2. Areas of interest
- 3. Player detection matrices
- 4. Labelled zone matrix

Outputs

- 1. Number of violations per team
- 2. Confidence in each violation

High Confidence violation

Low Confidence violation

Video Tests

Extreme Case Scenario 2

Scenario: Player tangentially passes through area of interest

Result: Independent of Algorithm speed

Result: Dependent on Algorithm speed

Design

Main Highlights

- Straightforward implementation when using top camera system
- Use of confidence estimate on violations could give flexibility in enforcing decisions

Main Issues

- High algorithm execution time—current execution time is approximately 0.4 -0.5 seconds, (2 Hz), below the required specification of 12 Hz
- Dealing with occlusions— if the ball is hidden from view, last known position is considered
- Separating 'connected players' additional camera viewpoints (from sides) would be useful to separate players

-Design

Conclusions

Functional specification

- Complete framework for functional specification
- Part of the lawbook fully specified
- Overall game-state framework

Distance violation design

- Top view static camera concept explored
 – good alternative to drone
- Successful implementation in simulation environment
- Key improvement points identified

Explanation video for future generations

Functional specification

- For future system architecture
 - Fully specify the database and visualization
 - Synchronize and unify the database and visualization
- For future implementations
 - Use the functional specification for next implementations

Distance violation design

- Integrate additional viewpoints to the top-camera system concept
- Use C++ code during hardware implementation

Keep the archive up to date

Thank you

-Design

Video Tests

Extreme Case Scenario 1

Scenario: Player enters area of interest and reverses

Result: Independent of Algorithm speed

Result: Dependent on Algorithm speed

