

Universidad Nacional del del Perú

Facultad de Ingeniería Química

Departamento Académico de Química, Ingeniería y Tecnología

LABORATORIO DE FENÓMENOS DE TRANSPORTE - 051-B

Presentado a : Ing. HENRY OCHOA LEÓN

Presentado por:

ARANCIBIA CURI JOSHEMAR

BALDEÓN TIMOTEO NATALY FIORELLA

CERRÓN VEGA DANILO LUIS

FLOREZ GASPAR SIXTO

GONZALES PIZARRO LUCERO

GUEVARA BERNAOLA ANID

ROSMERY CAMARENA ROJAS

ZARATE VASQUEZ CYNTHIA

Semestre : V

HUANCAYO-PERU

2011

RESUMEN

En presente laboratorio realizado se hizo uso de una aleta recta de sección transversal tipo aguja Estas superficies extendidas tienen amplias aplicaciones industriales como aletas fijadas o anexadas a las paredes del equipo de transferencia de calor, como por ejemplo: en radiadores de automóviles, enfriamiento de equipos eléctricos y electrónicos, en motores de combustión interna enfriados por el aire, en intercambiadores de calor, etc., con el fin de incrementar la rapidez del calentamiento o enfriamiento. Cuando a una superficie de transferencia de calor se le agregan pedazos de metal sobre ella, estos aumentan la superficie disponible para la transmisión con el consiguiente aumento del intercambio de calor. A estos pedazos metálicos se les conoce con el nombre de aletas. Estas pueden ser de muchos tipos, siendo las más usadas, las longitudinales, transversales y las acuñadas. Un requisito fundamental que debe cumplir un intercambiador de calor es que tenga una máxima economía en construcción, operación y mantenimiento. Para lograr esto, es necesario encontrar los valores de un conjunto de variables que definan el área de transferencia óptima.

En la práctica hicimos uso de una aleta recta de sección constante tipo aguja con las siguientes características:

MATERIAL	Aluminio
DIÁMETRO (cm)	1.2
LONGITUD (cm)	53.3
CONDUCTIVIDAD TÉRMICA W/(m·K)	209.3

Para analizar su comportamiento en la transferencia de calor lo sometimos a conducción - convección y obtuvimos los siguientes resultados

L (m)	T _{fluido}	T _{pared} (K)	
-------	---------------------	------------------------	--

0	333	446
10.3	325	369
20.6	315	345
30.9	309	325
41.2	306	320
51.5	304	320

INDICE

1.	NOMENCLATURA
	4
2.	INTRODUCCION
	5
3.	OBJETIVOS
	6
4.	MARCO
	TEORICO
	7
	PARTE EXPERIMENTAL
5.	METODOLOGIA
	11
6.	RESULTADOS Y
	DISCUSION13
7.	CONCLUSIONES
	17

8.	RECOMENDACIONES
	18
	BIBLIOGRAFIA
	CUESTIONARIO

NOMENCLATURA

qflujo de calor		
nf	eficiencia de la aleta	
Nu	numero de Nussel	

Ka	numero de Rayleigt
Gr	numero de Grashof
β	coeficiente de expansibilidad
Pr	numero de prandt

INTRODUCCIÓN

Se usan las aletas o superficies extendidas con el fin de incrementar la razón de transferencia de calor de una superficie, en efecto las aletas convexas a una superficie aumenta el área total disponible para la transferencia de calor.

En el análisis y diseño de una superficie con aleta, la cantidad de energía calorífica disipada por una sola aleta de un tipo geométrico dado, se determina auxiliándonos del gradiente de temperatura y el área transversal disponible para el flujo de calor en la base de la aleta Usualmente se usa una superficie con aletas cuando el fluido convectivo participante es un gas, ya que los coeficientes convectivos de transferencia de calor para un gas son usualmente menores que los de un liquido. Como ejemplo de una superficie con aletas se tienen los cilindros de la máquina de una motocicleta, y los calentadores caseros. Cuando se debe disipar energía calorífica de un vehículo espacial, donde no existe convección, se usan superficies con aletas que radian energía calorífica. Las aletas pueden ser con secciones transversales rectangulares, como tiras que se anexan a lo largo de un tubo, se les llama aletas longitudinales; o bien discos anulares concéntricos alrededor de un tubo, se les llama aletas circunferenciales. El espesor de las aletas puede ser uniforme o variable.

OBJETIVOS

OBJETIVO GENERAL

• Analizar el comportamiento de una aleta recta de sección constante tipo aguja sometida a conducción – convección.

OBJETIVOS ESPECIFICOS

- Obtener el perfil de temperaturas longitudinal en la aleta y compararlo con los resultados teóricos.
- Calcular el flujo de calor transmitido.
- Calcular la eficiencia de la aleta.

MARCO TEORICO

ALETAS

Las aletas son superficies adicionales o extendidas que se instalan para incrementar el flujo calorífico desde un determinado componente hacia el medio que le rodea. Sobretodo se utilizan cuando el coeficiente de convección (h) entre el sólido y el medio fluido es bajo, caso éste muy habitual en la transmisión de calor a gases y muy especialmente cuando se utiliza la convección natural.

El bajo coeficiente de película se compensa con un aumento en el área expuesta al fluido.

Las formas que adoptan las aletas son muy variadas, y dependen en gran medida de la morfología del sólido y de la aplicación concreta. Las "aletas anulares" van unidas coaxialmente a superficies cilíndricas (tuberías generalmente).

Al colocar aletas sobre una superficie primaria, la temperatura superficial media del conjunto resulta ser menor, por lo que al reducir la diferencia media de temperatura entre la superficie y el fluido, puede ocurrir que el aumento de superficie no produzca un incremento notable en el flujo de calor disipado o incluso que éste disminuya, es decir, que las aletas aíslen térmicamente la superficie. Resulta importante pues, determinar el campo de temperaturas resultante al instalar las aletas.

TIPOS DE ALETAS:

Las formas que adoptan las aletas son variadas, y dependen en gran medida de la morfología del sólido y de la aplicación concreta. La aeta se denomina "aguja" o "pin" cuando la superficie extendida tiene forma cónica o cilíndrica. La expresión "aleta longitudinal" se aplica a superficies adicionales unidas a paredes planas o cilíndricas. Las "aletas anulares" van unidas coaxialmente a superficies cilíndricas (tuberías generalmente).

ALETAS DE SECCION TRANSVERSAL CONSTANTE:

❖ ALETAS DE SECCION TRANSVERSAL VARIABLE:

BALANCE DE ENERGIA

❖ BALANCE GENERAL:

 $qx|x-qx|x+\Delta x-qc=0$

***** ECUACION GENERAL:

 $dAkdx.dTdx+Akd2Tdx2-hkT-T \propto dAcdx=0$

❖ ECUACIÓN GENERAL PARA UNA ALETA DE SECCIÓN TRANSVERSAL CONSTANTE:

d2Tdx2-hpAkkT-T = 0

Sí:

M2=hpAkk

❖ LA SOLUCIÓN GENERAL PARA UNA ALETA SE SECCIÓN TRANSVERSAL CONSTANTE: $d2Tdx2-M2T-T \propto = 0$

 $T-T \propto = C1eMx + C2e-Mx$

❖ SI SE APLICA LAS SIGUIENTES CONDICIONES LIMITES:

 $x=0 \rightarrow T=Tw$

 $x=L\rightarrow dTdx=0$

REMPLAZANDO SE OBTIENE LA SOLUCIÓN PARTICULAR:

❖ DISTRIBUCION DE TEMPERATURA

 $T-T \propto Tw-T \propto = coshML-xcoshML$

❖ ECUACION DE FLUJO DE CALOR DISIPADO POR LA ALETA:

q=PhkA kTw-T∝tanhML

❖ EFICIENCIA DE UNA ALETA:

nf=tanhMLML

COEFICIENTE DE PELÍCULA CONVECTIVA:

Existiendo una transferencia de calor por convección natural del cilindro horizontal hacia el fluido (aire), se tiene que:

❖ NUMERO DE NUSSEL:

Nu=hD1k=CRan

❖ NUMERO DE RAYLEIGT:

Ra=Gr.Pr

❖ NUMERO DE GRASHOF:

Gr=gβρμ2D13Tb-T∝

❖ NUMERO DE GRASHOF A LA TEMPERATURA DE PELÍCULA:

Tp=Tb+T∝2

❖ EL COEFICIENTE DE EXPANSIÓN TÉRMICA:

 $\beta = 1Tp$

❖ NUMERO DE PRANDT:

Pr=Cpµk

Donde tendremos que:

h=kD1CRan

METODOLOGIA

DESCRIPCIÓN DE LOS EQUIPOS

TERMOCUPLA

Una termocupla básicamente es un transductor de temperaturas, es decir un dispositivo que convierte una magnitud física en una señal eléctrica. Está constituida por dos alambres metálicos diferentes que unidos, desarrollan una diferencia de potenciad eléctrica entre sus extremos libres que es aproximadamente proporcional a la diferencia de temperaturas entre estas puntas y la unión. Se suelen fabricar con metales puros o aleaciones (caso más común) y la característica más notable es que son empleadas para medir temperaturas en un rango noblemente grande comparadas con otros termómetros. Valores típicos del rango están entre 70 K y 1700 K, pudiéndose llegar en algunas circunstancias con aleaciones especiales hasta los 2000 K.

Una termocupla, en rigor, mide diferencias de temperaturas y no temperaturas absolutas. Esto hace necesario el uso de una temperatura de referencia, por lo que suele emplearse un baño de agua con hielo (0º C). El empleo de termocuplas para medir temperaturas esta fundamentado en el efecto seebeck que a su vez es una combinación de dos efectos: el Thompson y el Peltier.

ALETA TIPO AGUJA

La aleta se denomina "aguja" o "pin" cuando la superficie extendida tiene forma cónica o cilíndrica. La expresión "aleta longitudinal" se aplica a superficies adicionales unidas a paredes planas o cilíndricas.

MATERIALES Y REACTIVOS

EQUIPOS YMATERIALES: 1.61

- Cocinilla eléctrica
- Termocupla
- Cronómetro
- Aleta tipo aguja

PROCEDIMIENTO EXPERIMENTAL

- Conectar la alimentación eléctrica y ajustar los reóstatos a la posición deseada.
- Dejar transcurrir el tiempo necesario hasta que todas las temperatura sean estables, es decir hasta que alcance el régimen permanente en la transmisión de calor en la aleta tipo aguja.
- Anotar las temperaturas en los distintos puntos de la aleta haciendo uso de la termocupla.
- Anotar las temperaturas a 1cm de distancia en los distintos puntos de la aleta haciendo uso de la termocupla.

CÁLCULOS REALIZADOS

Tabla1: datos de la superficie extendida

Material	Aluminio
Diámetro(cm)	1.2
Longitud(cm)	53.3
Conductividad térmica W/(m·K)	209.3

Tabla2: temperatura del fluido y de la base de la pared

L(cm)	T _{fluido(K)}	$T_{pared(K)}$	$T_{fluido(K)}$	$T_{pared(K)}$	$T_{fluido(K)}$	$T_{pared(K)}$
0	333	446	210	48	284	450
10.3	325	369	53	13	87	195
20.6	315	345	50	108	73	95
30.9	309	325	4	75	58	81
41.2	306	320	36	65	47	56
51.5	304	320	34	60	41	52

RESULTADOS Y CÁLCULOS:

DATOS EXPERIMENTALES:

CUADRO № 1: datos de la superficie extendida.

MATERIAL	Aluminio
DIÁMETRO (cm)	1.2
LONGITUD (cm)	53.3
CONDUCTIVIDAD TÉRMICA ALUMINIO W/(m·K)	209.3

 ${\bf CUADRO}\ {\bf N^{o}2}$: temperatura de fluido y de la base de la pared

L (m)	T _{fluido} (K)	T _{pared} (K)
0	333	446

10.3	325	369
20.6	315	345
30.9	309	325
41.2	306	320
51.5	304	320

DATOS BIBLIOGRÁFICOS:

PARA LA PELICULA CONVECTIVA

Propiedades termo físicas del aire a 315,3 K:

T = 315,3K

 $\mu = 0.00002082 \text{N.s/m}^2$

 $\rho=0.9950 Kg/m^3$

 $v = 2,092. \ 10^{-5} \ m/s^2$

 $k = 0.03W/ (m \cdot K)$

Pr = 0,700

Valores de las constantes de la ecuación de Nusselt por convección natural en un cilindro horizontal

105 < Ra < 107

C = 0.54

n = 0.25

 $g=9.8 \text{ m/s}^2$

 $\beta = 1/315.3 = 0,00317$

CALCULOS REALIZADOS:

Hallando h (para Tb=: 446)

• Número de Grashof:

 $Gr = g\beta\rho\mu 2DI3Tb-T\infty$

Gr=16105,26

• Número de Prandtl:

 $Pr = cp\mu k = 0,0007476$

• Número de Rayleigh:

Ra=Gr.Pr=12,0402

Ra=12,0402

Ecuación para determinar h:

h=kDlCRan

 $h=0.03Wm.K0.012m\times0.54\times12.04020.25$

h=2,5147

Wm2.K

Hallando M:

 $P=\pi D=3.1416\times 0.012 \text{ m}=0.03769 \text{ m}$

 $AK = \pi D24 = 1,1309$

M=hPkAK=

M=1,6714

A) Para el caso I:

CASO I x=0 $T=T \infty x=L \rightarrow dT dx=0$

• Distribución de temperatura:

T-T∞Tb-T∞=coshML-xcoshML

Aquí se puede reemplazar los valores tomados en el experimento, para conseguir su perfil de temperatura.

• Ecuación de flujo de calor disipado por la aleta:

q=PhKAKTb-T∞tanhML

q=5,2756

• Eficiencia de una aleta:

nf=tanhMLML

nf = 0.7990

CUADRO Nº3: DISIPACIÓN DE CALOR A TRAVÉS DE ALETAS A UNA TEMPERATURA Tb=355.15 K (COMPARATIVO)

El banco de ensayo	X	T (experimental)
es de diseño propio, y está compuesto	0	355.15
por una varilla recta de aleación de	0.038	343.15
aluminio de 350 mm	0,138	320.15
de longitud efectiva y 10 mm de	0,238	306.15
diámetro que está	0,338	298.15
calefactada en uno de sus extremos	0,438	295.15

(base de la aleta)	
por una resistencia	

FUENTE: http://www.sc.ehu.es/nmwmigaj/ALETA.htm

Resultados:

q=13.3702 W nf= 0,364

DISCUSIÓN DE RESULTADOS

- Según los resultados obtenidos podemos decir que la distribución de temperatura de la aleta tiene un comportamiento para el caso I en que la longitud L se aproxima a infinito, ya que los resultados se ajustan más esta ecuación.
- La comparación con los resultados bibliográficos obtenidos en la web ,solo nos proporcionan un margen relativo de referencia , para lo cual se necesitaría de corridas experimentales adicionales.
- El flujo de calor disipado por la aleta q y la eficiencia de la aleta serán q=5,2756W nf= 0.7990 respectivamente, estos resultados se tomaron como base de referencia para la comparación con posteriores replicas para su verificación.

CONCLUSIONES

- Observamos que el perfil de temperatura de la aleta se ajusta más a una aleta con L→∞ (primer caso)
- Determinamos el flujo de calor transmitido que es q=5, 2756W
- También determinamos que la eficiencia de la aleta es nf= 0,7990
- Se logro analizar el comportamiento de una aleta recta de sección constante tipo aguja sometida a conducción – convección.
- Se obtuvo el perfil de temperaturas longitudinal en la aleta.
- Se calculo el flujo de calor transmitido.
- Se calculo la eficiencia de la aleta.

RECOMENDACIONES

Recomendaciones para evitar el recalentamiento de artefactos eléctricos aplicando los principios de transferencia de calor:

- Utilizar placas (preferiblemente de aluminio) que estén en contacto con los circuitos eléctricos de manera que pueda ocurrir una transferencia por conducción.
- Utilizar un extractor de manera que haya una transferencia por conducción debido a que el calor va a ser transferido de los componentes electrónicos hacia el aire y este será extraído por el extractor

Entre otros:

- Tratar de no tocar mucho la aleta para modificar su temperatura real
- Tomar las temperaturas con rapidez para que no varíe las temperaturas con el tiempo.

BIBLIOGRAFIA

- [1] http://es.wikipedia.org/wiki/N%C3%BAmero de Prandtl
- [2]www.google.com
- [3]http://es.wikipedia.org/wiki/N%C3%BAmero_de_Grashof
- [4]R.B.BIRD Y OTROS, "Fenómenos de Transporte", Editorial Reverte, S.A, España, 1982
- [5]Incropera, F.P. y DeWitt, D.P. 1999 *Fundamentos de Transferencia de Calor*, Prentice Hall

Hispanoamericana, México.

[6] http://www.sc.ehu.es/nmwmigaj/ALETA.htm

ANEXOS

PROPIEDADES TERMO FÍSICAS DEL AIRE A PRESIÓN ATMOSFÉRICA

<i>T</i> (K)	ρ (kg/m³)	Cp (J/kg·K)	$\mu 10^7$ (N·s/m ²)	v10 ⁶ (m ² /s)	k·10 ³ (W/m·K)	(m ² /s)	Pr
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7548	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0,9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32,39	37.3	47.2	0,686
500	0.6964	- 1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288,4	45.57	43.9	66.7	0,683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0,690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354,6	76,37	54.9	109	0,702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384,3	93.80	59.6	131	0,716
900	0.3868	1.121	398.1	102.9	62.0	143	0,720
950	0.3666	1.131	411.3	112,2	64.3	155	0.723
1.000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1.100	0,3166	1.159	449.0	141.8	71.5	195	0.728
1.200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1.300	0,2679	1.189	496.0	185.1	82	238	0.719
1.400	0.2488	1.207	530	213	91	303	0,703
1.500	0,2322	1.230	557	240	100	350	0,685