

Рекурзија

25

Рекурзија је начин дефинисања функције такав да се вредности функције рачунају преко претходно већ одређених вредности те функције и коришћењем других, већ дефинисаних функција.

Нека су f(x) и g(x,y,z) дате функције и нека је функција h

дефинисана са
$$\left\{ \begin{array}{ll} h(x,0) &= f(x) \\ h(x,y+1) &= g\left(x,y,h(x,y)\right) \end{array} \right.$$

Да ли је ова дефиниција коректна? Како израчунати нпр. h(x,3)?

$$h(x,3) = g(x,2, \quad h(x,2)) \\ h(x,2) = g(x,1, \quad h(x,1)) \\ h(x,1) = g(x,0, \quad h(x,0)) \\ h(x,0) = f(x)$$

За овако дефинисану функцију h кажемо да је добијена рекурзијом функција f и g.

Рекурзија

```
Пример. Функција y! дефинисана је са \begin{cases} 0! &= 1 \\ (y+1)! &= (y+1) \cdot y! \\ \text{па је} \end{cases} 4! = 4 \cdot 3! = 4 \cdot 3 \cdot 2! = 4 \cdot 3 \cdot 2 \cdot 1! = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 0! = 4 \cdot 3 \cdot 2 \cdot 1 \cdot 1 = 24. Функција y! је добијена рекурзијом константне функције 1 и фун
```

Нека

Рекурзија

$$f:D_f \to \mathbb{N},\, D_f \subseteq \mathbb{N}^n$$
 u $g:D_g \to \mathbb{N},\, D_g \subseteq \mathbb{N}^{n+2}.$

 ${f D}$ ефиниција. За јединствено одређену функцију $h:D_h o \mathbb{N}$, где $D_h\subseteq \mathbb{N}^{n+1}$, такву да важе једнакости

$$\begin{cases} h(x_1, \dots, x_n, 0) \stackrel{\text{def}}{=} & f(x_1, \dots, x_n) \\ h(x_1, \dots, x_n, y + 1) \stackrel{\text{def}}{=} & g(x_1, \dots, x_n, y, h(x_1, \dots, x_n, y)) \end{cases}$$

кажемо да је добијена рекурзијом функција f и g.

При томе за домен D_h важи:

$$(x_1,\ldots,x_n,0)\in D_h$$
 акко $(x_1,\ldots,x_n)\in D_f$,

$$(x_1, \dots, x_n, y+1) \in D_h$$
 акко $(x_1, \dots, x_n, y) \in$

$$D_h$$
 и $(x_1, \dots, x_n, y, h(x_1, \dots, x_n, y)) \in D_g$

Специјално, за n=0 :

$$\begin{cases} h(0) &= a, a \in \mathbb{N} \\ h(y+1) &= g(y,h(y)), \exists x \in \mathbb{R} \end{cases}$$

(1) Сабирање природних бројева је рекурзивна функција, јер је дефинисана са

$$\left\{ \begin{array}{rcl} x + 0 & = & x \\ x + (y + 1) & = & (x + y) + 1 \end{array} \right.,$$

тј. функција
$$h(x,y)=x+y$$
 је добијена рекурзијом
$$\left\{ \begin{array}{ll} h(x,0)&=x\\ h(x,y+1)&=h(x,y)+1 \end{array} \right.$$
 функција $f(x)=x$ и $g(x,y,z)=z+1.$

(2) Множење природних бројева је рекурзивна функција, јер је дефинисана са

$$\begin{cases} x \cdot 0 &= 0 \\ x \cdot (y+1) &= (x \cdot y) + x \end{cases},$$

тј. функција $h(x,y)=x\cdot y$ је добијена рекурзијом $\begin{cases} h(x,0)&=0\\ h(x,y+1)&=h(x,y)+x \end{cases}$ функција f(x)=0 и g(x,y,z)=z+x.

(3) Степеновање природних бројева $\left\{ egin{array}{ll} x^0 &=& 1 \\ x^{y+1} &=& x^y \cdot x \end{array}
ight.$ је функција добијена рекурзијом функција f(x)=1 и $g(x,y,z)=x \cdot z.$

Теорема. Ако су $f:D_f\to\mathbb{N}$, где је $D_f\subseteq\mathbb{N}^n$ и $g:D_g\to\mathbb{N}$, где је $D_g\subseteq\mathbb{N}^{n+2}$, израчунљиве функције, онда је израчунљива и функција $h:D_h\to\mathbb{N},\ D_h\subseteq\mathbb{N}^{n+1},$ добијена рекурзијом из функција f и g.

Доказ.

- Нека су F и G програми у стандардном облику који израчунавају редом вредности функција f и g. Одредимо програм H за израчунавање вредности функције h добијене рекурзијом функција f и g.
- Опис програма H:
 - За задату почетну конфигурацију $(x_1, \ldots, x_n, y, 0, 0, \ldots)$ програм H најпре израчунава $h(x_1, \ldots, x_n, 0)$, тј. $f(x_1, \ldots, x_n)$ помоћу потпрограма F, а затим
 - > за $y \neq 0$ израчунава редом $h(x_1,\ldots,x_n,1),\,h(x_1,\ldots,x_n,2),\ldots,h(x_1,\ldots,x_n,y)$ користећи програм G.

наставак доказа.

Обезбеђивање меморијског простора:
 Нека је

$$m = \max\{n+1, \ \delta(F), \ \delta(G)\}\$$

R_1	 R_m	R_{m+1}	 R_{m+n}	R_{m+n+1}	R_{m+n+2}	R_{m+}
		x_1	 x_n	y	k	$h(x_1,\ldots$

Програм H :

$$T(1, m + 1)$$

$$T(n, m + n)$$

$$T(n + 1, n + m + 1)$$

$$F[m + 1, ..., m + n \rightarrow m + n + 3]$$

$$I_p: J(m + n + 2, m + n + 1, q)$$

$$G[m + 1, ..., m + n, m + n + 2, m + n + 3 \rightarrow m + n + 3]$$

$$S(m + n + 2)$$

$$J(1, 1, p)$$

$$I_q: T(m + n + 3, 1)$$

Дакле, функција h је израчунљива. \square

Дефиниција.

- ▶ Свака функција $f:D \to \mathbb{N}$, где је $D \subseteq \mathbb{N}^k$ $(k \in \mathbb{N})$ назива се аритметичка функција.
- ▶ Аритметичка функција f је тотална ако је њен домен скуп \mathbb{N}^k $(k \in \mathbb{N})$, тј. $f: \mathbb{N}^k \to \mathbb{N}$.
- Ако желимо нагласити да нека аритметичка функција можда није тотална, кажемо да је та функција парцијална.
- Функција f је примитивно рекурзивна ако је добијена из основних аритметичких функција (нула функција, следбеник и пројекције) применом супституције и рекурзије.

- Основне аритметичке функције z(x)=0-нула функција, s(x)=x+1-следбеник, $\pi_i(x_1,\dots,x_n)=x_i$ -пројекције су тоталне израчунљиве функције.
- Сабирање и множење природних бројева су тоталне израчунљиве функције. Ове функције су и примитивно рекурзивне.

- Рекурзијом и супституцијом се од тоталних израчунљивих функција увек добијају тоталне израчунљиве функције.
- Основне аритметичке функције (нула функција, следбеник и пројекције) су тоталне.
- То значи да је свака примитивно рекурзивна функција тотална функција.
- Обрнуто не важи, тј. није свака тотална израчунљива функција примитивно рекурзивна (нпр. Акерманова функција).

Пример. Функција

$$g(x) = \left\{ egin{array}{ll} rac{x}{3}, & x \ \mathrm{je} \ \mathrm{дељиво} \ \mathrm{ca} \ 3 \ \mathrm{недефинисано}, & \mathrm{иначe} \end{array}
ight.$$

није тотална, па ни примитивно рекурзивна. Њен домен је скуп природних бројева који су дељиви са 3.

Ова функција је израчунљива, јер се може написати програм који рачуна њене вредности.

Минимизација

K 25

Полазећи од основних аритметичких функција (нула функција, следбеник, пројекције), применом супституције и рекурзије, добија се широка класа израчунљивих аритметичких функција.

Постоје функције које су израчунљиве али нису примитивно рекурзивне, нпр. функција g из претходног примера.

Операција која генерише израчунљиве функције које нису тоталне је минимизација.

Дефиниција. Нека $f:D_f\to\mathbb{N}$, где је $D_f\subseteq\mathbb{N}^{n+1}$. Израчунајмо $f(x_1,\dots,x_n,0),\,f(x_1,\dots,x_n,1),\,f(x_1,\dots,x_n,2),\dots$ све док не добијемо први природни број y такав да је $f(x_1,\dots,x_n,y)=0$, ако такво y постоји.

Минимизација

26

Дефинишимо функцију $g;D_g o\mathbb{N},\,D_g\subseteq\mathbb{N}^n$, на следећи начин

$$g(x_1,\dots,x_n)\stackrel{\mathrm{def}}{=} \left\{egin{array}{ll} y,&y$$
 је најмањи природни број такав да је $f(x_1,\dots,x_n,y) = 0$ и постоје сви $f(x_1,\dots,x_n,z)$ за $z \leq y$ недефинисано, иначе

За функцију $g(x_1,\dots,x_n)$ кажемо да је добијена минимизацијом функције $f(x_1,\dots,x_n,y)$ и означавамо је са $g(x_1,\dots,x_n)=\mu y \ (f(x_1,\dots,x_n,y)=0)$.

Теорема. Ако је функција $f:D_f\to \mathbb{N}$, где је $D_f\subseteq \mathbb{N}^{n+1},$ израчунљива, онда је израчунљива и функција g добијена њеном минимизацијом.

Доказ. Нека је F програм у стандардном облику који израчунава вредности функције f. Напишимо програм G који израчунава вредности функције g.

- lacktriangle Опис програма G:
 - lack За задату почетну конфигурацију $x_1,\dots,x_n,0,0,\dots$ програм G израчунава вредности $f(x_1,\dots,x_n,0),\,f(x_1,\dots,x_n,1),\,\dots$ (користећи програм F) и
 - сваку од ових вредности упоређује са 0.
 - ▶ Прва вредност k за коју је $f(x_1,\dots,x_n,k)=0$ биће излаз програма G.

▶ Обезбеђивање меморије: Нека је

$$m = \max\{n, \delta(F)\}$$

- ightharpoonup Регистре R_1,\ldots,R_m ћемо користити као радну меморију.
- lacktriangle Улаз x_1,\ldots,x_n чуваћемо у регистрима R_{m+1},\ldots,R_{m+n} .
- ▶ Наредни регистар R_{m+n+1} служиће нам за чување текуће вредности за $k, k=1,2,3,\ldots$

I	R_1	 R_m	R_{m+1}	 R_{m+n}	R_{m+n+1}	R_{m+n+2}	
			x_1	 x_n	k	0	

Програм G који рачуна вредности функције g:

$$T(1, m + 1)$$
:
 $T(n, m + n)$
 $I_p: F[m + 1, \dots, m + n + 1 \rightarrow 1]$
 $J(1, m + n + 2, q)$
 $S(m + n + 1)$
 $J(1, 1, p)$
 $I_q: T(m + n + 1, 1)$

(где је I_p прва инструкција програма F).

K 26

(1) Функција g дефинисана са

$$g(x) = \left\{ egin{array}{ll} rac{x}{3}, & x \ \mathrm{je} \ \mathrm{дељиво} \ \mathrm{ca} \ 3 \ \mathrm{недефинисанo}, & \mathrm{иначe} \end{array}
ight.$$

је добијена минимизацијом функције f(x,y)=x-3y, јер је

$$\frac{x}{3} = y \Leftrightarrow 3y = x \Leftrightarrow x - 3y = 0.$$

Дакле, $g(x) = \mu y(x - 3y = 0)$.

(2) Функција

$$g(x) = \left\{ egin{array}{ll} \sqrt{x}, & x \ \mbox{je потпун квадрат} \\ \mbox{недефинисано,} & \mbox{иначе} \end{array}
ight.$$

је добијена минимизацијом функције $f(x,y)=x-y^2$, јер важи

$$y = \sqrt{x} \Leftrightarrow x = y^2 \Leftrightarrow x - y^2 = 0.$$

Дакле,
$$g(x) = \mu y(x - y^2 = 0)$$
.