Homework I

邵彦骏 19307110036

1. 通过经验风险最小化推导极大似然估计。证明模型是条件概率分布,当损失函数是对数损失函数时,经验风险最小化等价于极大似然估计。

PROOF

当损失函数时对数损失函数时,

$$R_{emp}(f) = -rac{1}{N}\sum_{i=1}^{N}\log\left(p(y|x_i,\Theta)
ight)$$

此时的经验风险最小化等价于,

$$argmax \sum_{i=1}^{N} \log \left(p(y|x_i, \Theta) \right)$$

就是极大似然估计 $\underset{\Theta}{argmax} l(\Theta)$ 。

2. The Hoeffding's inequality:

$$\mathbb{P}(rac{1}{n}\sum_{i=1}^n(Z_i-\mathbb{E}[Z_i])\geq t)\leq exp(-rac{2nt^2}{(b-a)^2})$$

The Hoeffding's Lemma: Let Z be a bounded random variable with $Z \in [a,b]$. Then

$$\mathbb{E}[exp(\lambda(Z-\mathbb{E}[Z]))] \leq exp(rac{\lambda^2(b-a)^2}{8})$$
"

PROOF

$$egin{aligned} \mathbb{P}(rac{1}{n}\sum_{i=1}^n(Z_i-\mathbb{E}[Z_i])\geq t) &= \mathbb{P}(e^{\lambda\sum\limits_{i=1}^n(Z_i-\mathbb{E}[Z_i])}\geq e^{\lambda nt}) \ &\leq \mathbb{E}(e^{\lambda\sum\limits_{i=1}^n(Z_i-\mathbb{E}[Z_i])})e^{-\lambda nt} \quad (Markov \; inequality) \ &=\prod_{i=1}^n\mathbb{E}[e^{\lambda(Z_i-\mathbb{E}[Z_i])}]e^{-\lambda nt} \ &\leq exp(n[rac{\lambda^2(b-a)^2}{8}-\lambda t]) \end{aligned}$$

As this inequality holds $\forall \lambda > 0$, we have,

$$\min_{\lambda>0} \left[\frac{\lambda^2(b-a)^2}{8} - \lambda t\right] = -\frac{2t^2}{(b-a)^2}$$

Therefore,

$$\mathbb{P}(rac{1}{n}\sum_{i=1}^n(Z_i-\mathbb{E}[Z_i])\geq t)\leq exp(-rac{2nt^2}{(b-a)^2})$$

- 3. 有监督学习的应用
 - 1. 问题背景:在社交网络中有很多复杂的结构,但有些好友关系的建立却能够被简单地预测,这是因为它们之间总是存在相似度。一些简单的机器学习模型就能很好地预测出这些潜在关系,并且为用户推荐这些潜在好友。

2. 自变量:网络图中的边, $x_{ij}=\mathbf{1}\{$ 节点i与节点j有关联 $\}$

因变量: 网络图中可能的边, $y_{ij} = \mathbf{1}$ {预测节点i与节点j有关联}

- 3. 可以通过社交网络中节点相似度的度量,作为二分类模型的输入,使用支持向量机或者朴素贝叶斯模型对两个节点之间有边(输出为1)和没有边(输出为0)进行预测。
- 4. Please read the background and then prove the following results. Background:

Let $\mathbf{y} = \Psi(\mathbf{x})$, where \mathbf{y} is an m-element vector, and \mathbf{x} is an n-element vector. Denote

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_2} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$$

Prove the results:

(a) Let ${\bf y}={\bf A}{\bf x}$, where ${\bf y}$ is $m\times 1, {\bf x}$ is $n\times 1, {\bf A}$ is $m\times n$, and ${\bf A}$ does not depend on ${\bf x}$ then

$$rac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}^{ op}$$

PROOF

With definition, we have $y_i = \sum\limits_{j=1}^n \mathbf{A}_{ij} \cdot x_j$ and $(\frac{\partial \mathbf{y}}{\partial \mathbf{x}})_{ij} = \frac{\partial y_j}{\partial x_i} = \mathbf{A}_{ji}$. Therefore, we can infer that $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}^T$

(b) Let the scalar α be defined by $\alpha=\mathbf{y}^T\mathbf{A}\mathbf{x}$, where \mathbf{y} is $m\times 1, \mathbf{x}$ is $n\times 1, \mathbf{A}$ is $m\times n$, and \mathbf{A} is independent of \mathbf{x} and \mathbf{y} , then

$$rac{\partial lpha}{\partial \mathbf{x}} = \mathbf{A}^{ op} \mathbf{y}$$

PROOF

With definition, we have $lpha=\mathbf{y}^{\mathrm{T}}\mathbf{A}\mathbf{x}=\sum_{j=1}^n\sum_{k=1}^mA_{kj}\cdot y_k\cdot x_j$. Therefore, we can derive,

$$(rac{\partial lpha}{\partial \mathbf{x}})_i = rac{\partial lpha}{\partial x_i} = \sum_{k=1}^m A_{ki} \cdot y_k = (\mathbf{A}^T y)_i$$

And now we prove that $\frac{\partial \alpha}{\partial \mathbf{x}} = \mathbf{A}^{ op} \mathbf{y}$

(c)For the special case in which the scalar α is given by the quadratic form $\alpha = \mathbf{x}^T \mathbf{A} \mathbf{x}$ where \mathbf{x} is $\mathbf{n} \times \mathbf{1}$, \mathbf{A} is $\mathbf{n} \times \mathbf{n}$, and \mathbf{A} does not depend on \mathbf{x} , then

$$\frac{\partial \alpha}{\partial \mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathrm{T}})\mathbf{x}$$

PROOF

With definition, we have $lpha = \sum\limits_{i=1}^n \sum\limits_{k=1}^m A_{kj} \cdot x_k \cdot x_j$. Therefore, we can derive,

$$(rac{\partial lpha}{\partial \mathbf{x}})_i = rac{\partial lpha}{\partial x_i} = \sum_{k=1}^m (A_{ki} + A_{ik}) \cdot x_k = (\mathbf{A} + \mathbf{A}^{\mathrm{T}} x)_i$$

And now we prove that $\dfrac{\partial lpha}{\partial \mathbf{x}} = ig(\mathbf{A} + \mathbf{A}^{\mathrm{T}}ig)\mathbf{x}$

(d) Let the scalar α be defined by $\alpha = \mathbf{y}^T \mathbf{A} \mathbf{x}$, where \mathbf{y} is $m \times 1$, \mathbf{x} is $n \times 1$, \mathbf{A} is $m \times n$, and both \mathbf{y} and \mathbf{x} are functions of the vector \mathbf{z} , while \mathbf{A} does not depend on \mathbf{z} . Then

$$\frac{\partial \alpha}{\partial \mathbf{z}} = \frac{\partial \mathbf{y}}{\partial \mathbf{z}} \mathbf{A} \mathbf{x} + \frac{\partial \mathbf{x}}{\partial \mathbf{z}} \mathbf{A}^{\top} \mathbf{y}$$

PROOF

With definition, we have $\alpha = \mathbf{y}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \sum_{j=1}^n \sum_{k=1}^m A_{kj} \cdot y_k \cdot x_j$. Therefore, we will have,

$$egin{aligned} rac{\partial lpha}{\partial \mathbf{z}} &= rac{\partial (\sum\limits_{j=1}^n \sum\limits_{k=1}^m A_{kj} \cdot y_k \cdot x_j)}{\partial \mathbf{z}} = \sum\limits_{k=1}^m rac{\partial y_k}{\partial \mathbf{z}} \mathbf{A} \mathbf{x}_k + \sum\limits_{j=1}^n rac{\partial x_j}{\partial \mathbf{z}} \mathbf{A}^ op \mathbf{y}_j \ &= rac{\partial \mathbf{y}}{\partial \mathbf{z}} \mathbf{A} \mathbf{x} + rac{\partial \mathbf{x}}{\partial \mathbf{z}} \mathbf{A}^ op \mathbf{y} \end{aligned}$$

(e) Let ${\bf A}$ be a nonsingular, $m \times m$ matrix whose elements are functions of the scalar parameter α . Then

$$\frac{\partial \mathbf{A}^{-1}}{\partial \alpha} = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \alpha} \mathbf{A}^{-1}$$

PROOF

First of all, we can have

$$rac{\partial \mathbf{A} \mathbf{B}}{\partial lpha} = rac{\partial \mathbf{A}}{\partial lpha} \mathbf{B} + \mathbf{A} rac{\partial \mathbf{B}}{\partial lpha}$$

Hence,

$$\frac{\partial \mathbf{A} \mathbf{A}^{-1}}{\partial \alpha} = \frac{\partial \mathbf{A}}{\partial \alpha} \mathbf{A}^{-1} + \mathbf{A} \frac{\partial \mathbf{A}^{-1}}{\partial \alpha} = \frac{\partial \mathbf{I}}{\partial \alpha} = 0$$

And reorganize the equation,

$$\frac{\partial \mathbf{A}^{-1}}{\partial \alpha} = -\mathbf{A}^{-1} \frac{\partial \mathbf{A}}{\partial \alpha} \mathbf{A}^{-1}$$

(4) Please write \hat{a} as the solution of the minimization problem:

$$\min_{a} \|\mathbf{X}a - \mathbf{y}\|$$

where \mathbf{X} is a $n \times p$ matrix and \mathbf{y} is a $n \times 1$ vector. $\mathbf{X}^T \mathbf{X}$ is nonsingular.

SOLUTION

$$\min_{a} \|\mathbf{X}a - \mathbf{y}\| \Leftrightarrow \min_{a} \|\mathbf{X}a - \mathbf{y}\|^2$$

Take derivative on the right-hand term to minimize it.

$$\frac{\partial \|\mathbf{X}a - \mathbf{y}\|^2}{\partial a} = 2\mathbf{X}^T(\mathbf{X}a - \mathbf{y}) = 0$$

Since $\boldsymbol{X}^T\boldsymbol{X}$ is nonsingular, we can have the optimal solution,

$$a = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}\mathbf{y}$$