

PROGRAMA DE ASIGNATURA

I. IDENTIFICACIÓN DE LA ASIGNATURA.

Asignatura: Teoría de Probabilidades y Procesos Estocásticos		Sigla: MAT-263	Fecha de aprobación		
Créditos UTFSM: 4	Prerrequisitos: MAT-041 + MAT-226	Examen: No	Unidad Académica que la imparte.		
Créditos SCT: 4			Departa	mento c	le Matemática
Horas Cátedra	Horas Ayudantía	Horas Laboratorio	Semestre en que se dicta		
Semanal: 3	Semanal: 1,5	Semanal: 0	Impar X	Par	Ambos
Eje formativo:					
Tiempo total de de	dicación a la asignatu	ıra: 120 horas cronolo	ógicas.		

Descripción de la Asignatura

El estudiante adquiere herramientas de la teoría de probabilidades para modelar fenómenos aleatorios y determinar su comportamiento. Al término de este ramo, podrá utilizar procesos estocásticos para describir el comportamiento de fenómenos aleatorios en el tiempo.

Requisitos de entrada

- Utiliza la teoría de medida.
- Utiliza herramientas avanzadas del análisis matemático, en particular análisis de Fourier.
- Posee conocimientos básicos de variables aleatorias discretas y continuas, esperanza, varianza.

Contribución al perfil de egreso		

Resultados de Aprendizaje que se esperan lograr en esta asignatura.

- 1. **Describe** fenómenos aleatorios, **utilizando** los conceptos básicos de la teoría de probabilidad.
- 2. **Distingue** los momentos de una variable aleatoria, **aplicándolo** al cálculo de esperanzas, varianzas y momentos de orden superior.
- 3. **Identifica** las nociones de convergencia de una variable aleatoria, **determinando** el comportamiento de una variable en problemas asintóticos.
- 4. **Explica** la demostración del teorema central del límite, **aplicándolo** al cálculo de probabilidades límites bajo independencia.
- 5. **Utiliza** las extensiones del teorema central del límite, **identificando** situaciones de dependencia.
- 6. Identifica la noción de proceso estocástico, analizando sus propiedades básicas.
- 7. **Utiliza** procesos estocásticos básicos, **describiendo** fenómenos aleatorios que dependen del tiempo.
- 8. **Distingue** los conceptos básicos de integración estocástica, **identificando** la fórmula de Ito y los puentes brownianos.

Contenidos temáticos

- 1. Espacios de probabilidad. Ejemplos: Esquema de Bernoulli, medida de conteo, medida geométrica (medida de Lebesgue).
- 2. Variables aleatorias. Distribución de una variable aleatoria. Esperanza matemática, desigualdad de Chebyshev.
- 3. Varianza y covarianza. Independencia de variables aleatorias. Ejemplos.
- 4. Convergencia en probabilidad. Ley débil de números grandes. Convergencia casí segura. Ejemplos y contraejemplos. Desigualdad de Kolmogorov. Ley fuerte de números grandes. Lemas de Borel/Cantelli. Ley 0-1 de Kolmogorov.
- 5. Desviaciones grandes.
- 6. Convergencia en distribución. El teorema central del límite. Prueba del teorema con funciones características. El teorema de Lindeberg-Feller. El teorema central del límite multidimensional.
- 7. Caminos aleatorios multidimensionales. Esperanza condicional. Martingalas discretas. Integrales estocásticas discretas. Procesos de Markov con tiempo discreto.
- 8. Tiempos de parada (Markov). Procesos de Markov con tiempo continuo. El movimiento Browniano. Principio de reflexión. Continuidad de los caminos del movimiento Browniano. Ley 0-1 de Blumenthal.
- 9. Integrales estocásticas. Fórmula de Ito. Puentes Brownianos.
- 10. Procesos de Poisson.

Metodología de enseñanza y aprendizaje

- · Clases expositivas.
- Resolución de ejercicios en estudio independiente por parte de los estudiantes.
- · Ayudantías de resolución de ejercicios.

Evaluación y calificación de la asignatura. (Ajustado a Reglamento N°1)

Reglamento, N°1)						
Requisitos	de	Evaluación:					
aprobación	У						
calificación		Deberán aplicarse al menos dos certámenes y máximo tres certámenes, con una ponderación de al menos 60% de la nota final. Se deberán realizar otras actividades de evaluación (tareas, controles y/o exposiciones), cuya ponderación será al menos de 20%.					
		Instrumentos de evaluación	Min %				
		Certámenes (C) (2 a 3)	60				
		Trabajos, tareas controles y/o exposiciones. (T)	20				
		Calificación:					
		Nota Final = a*C + b*T, con 0,6 ≤ a ≤ 0,8 y 0,2 ≤ b ≤ 0,4, siendo a+b=					

Recursos para el aprendizaje.

Bibliografía:

Bibliografia:		
Texto Guía		Feller, W. (1968). An introduction to probability theory and its
		applications. Wiley.

Complementaria u Opcional	•	Billingsley, P. (1995) <i>Probability and measure</i> : John Wiley, New
		York.
	•	Karatzas, I., Shreve, St. E. "Brownian motion and stochastic
		calculus" 2nd ed. Springer 1991.
	•	Adventures in Stochastic Processes 2002 edition by Resnick,
		Sidney I. (1992)

II. CÁLCULO DE CANTIDAD DE HORAS DE DEDICACIÓN- (SCT-Chile)- CUADRO RESUMEN DE LA ASIGNATURA.

	Cantidad de horas de dedicación					
ACTIVIDAD	Cantidad de horas por semana	Cantidad de semanas	Cantidad total de horas			
	PRESENCIAL	Scilialias	liolas			
Cátadra a Classa ta áriasa		47	1 45			
Cátedra o Clases teóricas	3	17	45			
Ayudantía/Ejercicios	1,5	14	21			
Visitas industriales (de						
Campo)						
Laboratorios / Taller						
Evaluaciones (certámenes,						
otros)						
Otras (detallar)						
NO PRESENCIAL						
Ayudantía						
Tareas obligatorias	1,5	10	15			
Estudio Personal (Individual o	1,5	14	25,5			
grupal)						
Otras (detallar)						
TOTAL (HORAS RELOJ)			120			
Número total en CRÉDITOS TRANSFERIBLES 4						