MAP 433: Introduction aux méthodes statistiques. Cours 4

21 février 2014

MAP 433: Introduction aux méthodes statistiques. Cours 4

Aujourd'hui

- 1 M-estimation, rappel du Cours 3
 - Principe de maximum de vraisemblance
- 2 EMV, asymptotique des Z- et M- estimateurs
- 3 Méthode d'estimation dans le modèle de régression
 - Modèle de régression, notion de « design »
 - Régression à design déterministe
 - La droite des moindres carrés
 - Régression linéaire multiple

MAP 433: Introduction aux méthodes statistiques. Cours 4

M-estimation

- <u>Situation</u>: on observe X_1, \ldots, X_n de loi \mathbb{P}_{ϑ} sur \mathbb{R} et $\vartheta \in \Theta$.
- Principe: Se donner une application $\psi: \Theta \times \mathbb{R} \to \mathbb{R}_+$ telle que, pour tout $\vartheta \in \Theta \subset \mathbb{R}^d$,

$$a \leadsto \mathbb{E}_{\vartheta} \left[\psi(a, X) \right] = \int \psi(a, x) \, \mathbb{P}_{\vartheta}(dx)$$

admet un maximum en $a = \vartheta$.

Définition

On appelle M-estimateur associé à ψ tout estimateur $\widehat{\vartheta}_n$ satisfaisant

$$\sum_{i=1}^{n} \psi(\widehat{\vartheta}_{n}, X_{i}) = \max_{a \in \Theta} \sum_{i=1}^{n} \psi(a, X_{i}).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

Principe de maximum de vraisemblance

EMV, asymptotique des *Z*- et *M*-

Un exemple classique : paramètre de localisation

■ $\Theta = \mathbb{R}$, $\mathbb{P}_{\vartheta}(dx) = f(x - \vartheta)dx$, et $\int_{\mathbb{R}} xf(x)dx = 0$, $\int_{\mathbb{R}} x^2 \mathbb{P}_{\vartheta}(dx) < +\infty$ pour tout $\vartheta \in \mathbb{R}$. On pose

$$\psi(a,x) = -(a-x)^2$$

La fonction

$$a \rightsquigarrow \mathbb{E}_{\vartheta}\left[\psi(a,X)\right] = -\int_{\mathbb{R}} (a-x)^2 f(x-\vartheta) dx$$

admet un maximum en $a = \mathbb{E}_{\vartheta} [X] = \int_{\mathbb{R}} x f(x - \vartheta) dx = \vartheta.$

■ *M*-estimateur associé :

$$\sum_{i=1}^{n} (X_i - \widehat{\vartheta}_n)^2 = \min_{a \in \mathbb{R}} \sum_{i=1}^{n} (X_i - a)^2.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

Principe de maximum de vraisemblance

EMV, asymptotique des *Z*- et *M*estimateurs

Paramètre de localisation

C'est aussi un Z-estimateur associé à $\phi(a,x)=2(x-a)$: on résout

$$\sum_{i=1}^{n} (a - X_i) = 0 \text{ d'où } \widehat{\vartheta}_n = \overline{X}_n.$$

- Dans cet exemple très simple, tous les points de vue coïncident.
- Si, dans le même contexte, $\int_{\mathbb{R}} x^2 \, \mathbb{P}_{\vartheta}(dx) = +\infty$ et f(x) = f(-x), on peut utiliser Z-estimateur avec $\phi(a,x) = \operatorname{Arctg}(x-a)$. Méthode robuste, mais est-elle optimale? Peut-on faire mieux si f est connue? A suivre...

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

Principe de maximum de vraisemblance

EMV, asymptotique des Z- et M-

Lien entre Z- et M- estimateurs

- Pas d'inclusion entre ces deux classes d'estimateurs en général :
 - lacksquare Si ψ non-régulière, M-estimateur \Rightarrow Z-estimateur
- Toutefois, si ψ est régulière, les M-estimateurs sont des Z-estimateurs : si $\Theta \subset \mathbb{R}$ (d=1), en posant

$$\phi(\mathsf{a},\mathsf{x})=\partial_{\mathsf{a}}\psi(\mathsf{a},\mathsf{x}),$$

on a

$$\left| \sum_{i=1}^n \partial_a \psi(\vartheta, X_i) \right|_{a=\widehat{\vartheta}_n} = \sum_{i=1}^n \phi(\widehat{\vartheta}_n, X_i) = 0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3 Principe de

Principe de maximum de vraisemblance

EMV, asymptotique des *Z*- et *M*-

Maximum de vraisemblance

- Principe fondamental et incontournable en statistique. Cas particuliers connus depuis le XVIIIème siècle. Définition générale : Fisher (1922).
- Fournit une première méthode systématique de construction d'un *M*-estimateur (souvent un *Z*-estimateur, souvent aussi *a posteriori* un estimateur par substitution simple).
- Procédure optimale (dans quel sens?) sous des hypothèses de régularité de la famille $\{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\}$ (Cours 6).
- Parfois difficile à mettre en oeuvre en pratique → méthodes numériques, statistique computationnelle.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation rappel du Cours 3 Principe de maximum de vraisemblance

EMV, asymptotique des Z- et M-

Fonction de vraisemblance

■ La famille $\{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\}$ est dominée par une mesure σ -finie μ . On se donne, pour $\vartheta \in \Theta$

$$f(\vartheta,x)=\frac{d\,\mathbb{P}_{\vartheta}}{d\mu}(x),\;x\in\mathbb{R}\,.$$

Définition

Fonction de vraisemblance du n-échantillon associée à la famille $\{f(\vartheta,\cdot),\vartheta\in\Theta\}$:

$$\vartheta \rightsquigarrow \mathcal{L}_n(\vartheta, X_1, \dots, X_n) = \prod_{i=1}^n f(\vartheta, X_i)$$

• C'est une fonction aléatoire (définie μ -presque partout).

MAP 433: Introduction aux méthodes statistiques. Cours 4

Principe de

Exemples

■ Exemple 1 : Modèle de Poisson. On observe

$$X_1, \ldots, X_n \sim_{\text{i.i.d.}} \text{Poisson}(\vartheta),$$

 $\theta \in \Theta = \mathbb{R}_+ \setminus \{0\}$ et prenons $\mu(dx) = \sum_{k \in \mathbb{N}} \delta_k(dx)$.

■ La densité de \mathbb{P}_{ϑ} par rapport à μ est

$$f(\boldsymbol{\vartheta}, x) = e^{-\boldsymbol{\vartheta}} \frac{\boldsymbol{\vartheta}^{x}}{x!}, \quad x = 0, 1, 2, \dots$$

La fonction de vraisemblance associée s'écrit

$$\vartheta \rightsquigarrow \mathcal{L}_n(\vartheta, X_1, \dots, X_n) = \prod_{i=1}^n e^{-\vartheta} \frac{\vartheta^{X_i}}{X_i!}$$

$$= \frac{1}{\prod_{i=1}^n X_i!} e^{-n\vartheta} \vartheta^{\sum_{i=1}^n X_i}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du Cours 3

Principe de maximum de vraisemblance

EMV, asymptotique des *Z*- et *M*estimateurs

Exemples

Exemple 2 Modèle de Cauchy. On observe

$$X_1, \ldots, X_n \sim_{\mathsf{i.i.d.}} \mathsf{Cauchy},$$

$$\vartheta \in \Theta = \mathbb{R}$$
 et $\mu(dx) = dx$ (par exemple).

On a alors

$$\mathbb{P}_{\boldsymbol{\vartheta}}(dx) = f(\boldsymbol{\vartheta}, x) dx = \frac{1}{\pi (1 + (x - \boldsymbol{\vartheta})^2)} dx.$$

La fonction de vraisemblance associée s'écrit

$$\vartheta \rightsquigarrow \mathcal{L}_n(\vartheta, X_1, \dots, X_n) = \frac{1}{\pi^n} \prod_{i=1}^n (1 + (X_i - \vartheta)^2)^{-1}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du Cours 3 Principe de

Principe de maximum de vraisemblance

EMV, asymptotique des *Z*- et *M*estimateurs

Principe de maximum de vraisemblance

Cas d'une famille de lois restreinte à deux points

$$\Theta = \{\vartheta_1, \vartheta_2\} \subset \mathbb{R},$$

avec \mathbb{P}_{ϑ_i} discrète et $\mu(dx)$ la mesure de comptage.

■ A priori, pour tout $(x_1, ..., x_n)$, et pour $\vartheta \in \{\vartheta_1, \vartheta_2\}$,

$$\mathbb{P}_{\vartheta} \left[X_1 = x_1, \dots, X_n = x_n \right] = \prod_{i=1}^n \mathbb{P}_{\vartheta} \left[X_i = x_i \right]$$
$$= \prod_{i=1}^n f(\vartheta, x_i).$$

La probabilité d'avoir la réalisation fixée (x_1, \ldots, x_n) .

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du Cours 3 Principe de maximum de

vraisemblance EMV, asymptotique

asymptotique des Z- et M- estimateurs

Principe de maximum de vraisemblance

■ A posteriori, on observe $(X_1, ..., X_n)$. L'événement

$$\left\{\prod_{i=1}^n f(\boldsymbol{\vartheta_1}, X_i) > \prod_{i=1}^n f(\boldsymbol{\vartheta_2}, X_i)\right\} \quad (Cas 1)$$

ou bien l'événement

$$\left\{ \prod_{i=1}^{n} f(\vartheta_2, X_i) > \prod_{i=1}^{n} f(\vartheta_1, X_i) \right\} \quad (\text{Cas 2})$$

est réalisé. (On ignore le cas d'égalité.)

Principe de maximum de vraisemblance :

$$\widehat{\vartheta}_{\mathrm{n}}^{\,\mathrm{mv}} = \underline{\vartheta}_{\mathbf{1}} \mathbf{1}_{\{\mathsf{Cas}\,\,\mathbf{1}\}} + \underline{\vartheta}_{\mathbf{2}} \mathbf{1}_{\{\mathsf{Cas}\,\,\mathbf{2}\}}.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du Cours 3 Principe de maximum de

maximum de vraisemblance

asymptotique des *Z*- et *M*estimateurs

Estimateur du maximum de vraisemblance

- On généralise le principe précédent pour une famille de lois et un ensemble de paramètres quelconques.
- <u>Situation</u>: $X_1, \ldots, X_n \sim_{\text{i.i.d.}} \mathbb{P}_{\vartheta}$, $\{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\}$ dominée, $\Theta \subset \mathbb{R}^d$, $\vartheta \leadsto \mathcal{L}_n(\vartheta, X_1, \ldots, X_n)$ vraisemblance associée.

Définition

On appelle estimateur du maximum de vraisemblance tout estimateur $\widehat{\vartheta}_n^{\text{mv}}$ satisfaisant

$$\mathcal{L}_n(\widehat{\vartheta}_n^{\,\text{mv}}, X_1, \dots, X_n) = \max_{\vartheta \in \Theta} \mathcal{L}_n(\vartheta, X_1, \dots, X_n).$$

Existence, unicité...

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

Principe de maximum de vraisemblance

EMV,

asymptotique des Z- et M- estimateurs

Remarques

Log-vraisemblance :

$$\vartheta \leadsto \ell_n(\vartheta, X_1, \dots, X_n) = \log \mathcal{L}_n(\vartheta, X_1, \dots, X_n)$$

$$= \sum_{i=1}^n \log f(\vartheta, X_i).$$

Bien défini si $f(\vartheta, \cdot) > 0$ μ -pp.

Max. vraisemblance = max. log-vraisemblance.

- L'estimateur du maximum de vraisemblance ne dépend pas du choix de la mesure dominante μ .
- Notion de racine de l'équation de vraisemblance : tout estimateur $\widehat{\vartheta}_n^{rv}$ vérifiant

$$\nabla_{\vartheta}\ell_n(\widehat{\vartheta}_n^{\text{rv}}, X_1, \dots, X_n) = 0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du
Cours 3
Principe de maximum de

EMV, asymptotique des *Z*- et *M*estimateurs

Exemple: modèle normal

L'expérience statistique est engendrée par un n-échantillon de loi $\mathcal{N}(\mu, \sigma^2)$, le paramètre est $\vartheta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+ \setminus \{0\}$.

Vraisemblance

$$\mathcal{L}_n((\mu, \sigma^2), X_1, \dots, X_n) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right).$$

Log-vraisemblance

$$\ell_n((\mu, \sigma^2), X_1, \dots, X_n) = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du Cours 3 Principe de maximum de

EMV, asymptotique des Z- et M-

Exemple: modèle normal

Equation(s) de vraisemblance

$$\begin{cases} \partial_{\mu}\ell_{n}((\mu,\sigma^{2}),X_{1},\ldots,X_{n}) & = & \frac{1}{\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\mu) \\ \\ \partial_{\sigma^{2}}\ell_{n}((\mu,\sigma^{2}),X_{1},\ldots,X_{n}) & = & -\frac{n}{2\sigma^{2}}+\frac{1}{2\sigma^{4}}\sum_{i=1}^{n}(X_{i}-\mu)^{2}. \end{cases}$$

Solution de ces équations (pour $n \ge 2$) :

$$\widehat{\vartheta}_n^{\text{rv}} = \left(\overline{X}_n, \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2\right)$$

et on vérifie que $\widehat{\vartheta}_n^{rv} = \widehat{\vartheta}_n^{mv}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

Principe de maximum de vraisemblance

EMV, asymptotique des Z- et M-

Exemple : modèle de Poisson

Vraisemblance

$$\mathcal{L}_n(\vartheta, X_1, \dots, X_n) = \frac{1}{\prod_{i=1}^n X_i!} e^{-n\vartheta} \vartheta^{\sum_{i=1}^n X_i}.$$

■ Log-vraisemblance

$$\ell_n(\vartheta, X_1, \ldots, X_n) = c(X_1, \ldots, X_n) - n\vartheta + \sum_{i=1}^n X_i \log \vartheta.$$

Equation de vraisemblance

$$-n + \sum_{i=1}^{n} X_i \frac{1}{\vartheta} = 0$$
, soit $\widehat{\vartheta}_n^{\text{rv}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n$

et on vérifie que $\widehat{\vartheta}_{n}^{rv} = \widehat{\vartheta}_{n}^{mv}$.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation rappel du Cours 3
Principe de maximum de varicantelance

EMV, asymptotique des *Z*- et *M*-

Exemple : modèle de Laplace

L'expérience statistique est engendrée par un n-échantillon de loi de Laplace de paramètre $\vartheta \in \Theta = \mathbb{R}$. La densité par rapport à la mesure de Lebesgue :

$$f(\vartheta, x) = \frac{1}{2\sigma} \exp\left(-\frac{|x - \vartheta|}{\sigma}\right),$$

où $\sigma > 0$ est connu.

Vraisemblance

$$\mathcal{L}_n(\vartheta, X_1, \dots, X_n) = (2\sigma)^{-n} \exp\left(-\frac{1}{\sigma} \sum_{i=1}^n |X_i - \vartheta|\right)$$

Log-vraisemblance

$$\ell_n(\vartheta, X_1, \ldots, X_n) = -n \log(2\sigma) - \frac{1}{\sigma} \sum_{i=1}^n |X_i - \vartheta|.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du Cours 3 Principe de

Principe de maximum de vraisemblance

asymptotique des Z- et M-

Exemple : modèle de Laplace

Maximiser $\mathcal{L}_n(\vartheta, X_1, \ldots, X_n)$ revient à minimiser la fonction $\vartheta \leadsto \sum_{i=1}^n \left| X_i - \vartheta \right|$, dérivable presque partout de dérivée constante par morceaux. Equation de vraisemblance :

$$\sum_{i=1}^n \operatorname{sign}(X_i - \vartheta) = 0.$$

Soit $X_{(1)} \leq \ldots \leq X_{(n)}$ la statistique d'ordre.

- n pair : $\widehat{\vartheta}_{n}^{mv}$ n'est pas unique; tout point de l'intervalle $\left[X_{\left(\frac{n}{2}\right)}, X_{\left(\frac{n}{2}+1\right)}\right]$ est un EMV.
- n impair : $\widehat{\vartheta}_n^{\,\mathrm{mv}} = X_{\left(\frac{n+1}{2}\right)}$, l'EMV est unique. Mais $\widehat{\vartheta}_n^{\,\mathrm{rv}}$ n'existe pas.
- pour tout n, la médiane empirique est un EMV.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation rappel du Cours 3
Principe de maximum de varisemblance

EMV, asymptotique des *Z*- et *M*-

Exemple : modèle de Cauchy

Vraisemblance

$$\mathcal{L}_n(\vartheta,X_1,\ldots,X_n)=\pi^{-n}\prod_{i=1}^n\frac{1}{1+(X_i-\vartheta)^2}.$$

Log-vraisemblance

$$\ell_n(\vartheta, X_1, \dots, X_n) = -n \log \pi - \sum_{i=1}^n \log \left(1 + (X_i - \vartheta)^2\right)$$

Equation de vraisemblance

$$\sum_{i=1}^{n} \frac{X_i - \vartheta}{1 + (X_i - \vartheta)^2} = 0$$

pas de solution explicite et admet en général plusieurs solutions.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation rappel du Cours 3
Principe de maximum de vraisemblance

asymptotique des *Z*- et *M*-

Méthode d'estimation dans le modèle

Maximum de vraisemblance = M-estimateur

• Une inégalité de convexité : μ mesure σ -finie sur \mathbb{R} ; f, gdeux densités de probabilités par rapport à μ . Alors

$$\int_{\mathbb{R}} f(x) \log f(x) \mu(dx) \ge \int_{\mathbb{R}} f(x) \log g(x) \mu(dx)$$

(si les intégrales sont finies) avec égalité ssi $f = g \mu$ -pp.

■ Preuve : à montrer

$$\int_{\mathbb{R}} f(x) \log \frac{g(x)}{f(x)} \mu(dx) \le 0.$$

(avec une convention de notation appropriée)

MAP 433: Introduction aux méthodes statistiques. Cours 4

Une inégalité de convexité

- On a $\log(1+x) \le x$ pour $x \ge -1$ avec égalité ssi x = 0.
- Donc

$$\log \frac{g(x)}{f(x)} = \log \left(1 + \left(\frac{g(x)}{f(x)} - 1\right)\right) \le \frac{g(x)}{f(x)} - 1$$

(avec égalité ssi f(x) = g(x)).

■ Finalement

$$\int_{\mathbb{R}} f(x) \log \frac{g(x)}{f(x)} \mu(dx) \le \int_{\mathbb{R}} f(x) \left(\frac{g(x)}{f(x)} - 1\right) \mu(dx)$$

$$= \int_{\mathbb{R}} g(x) \mu(dx) - \int_{\mathbb{R}} f(x) \mu(dx)$$

$$= 0.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

Principe de maximum de vraisemblance

EMV, asymptotique des Z- et M-

Conséquence pour l'EMV

On pose

$$\psi(a,x) := \log f(a,x), \ a \in \Theta, \ x \in \mathbb{R}$$

(avec une convention pour le cas où on n'a pas $f(a,\cdot) > 0$.)

La fonction

$$a \leadsto \mathbb{E}_{\vartheta} \left[\psi(a, X) \right] = \int_{\mathbb{R}} \log f(a, x) f(\vartheta, x) \mu(dx)$$

a un maximum en $a = \vartheta$ d'après l'inégalité de convexité.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

Principe de maximum de vraisemblance

EMV, asymptotique des *Z*- et *M*-

estimateurs Méthode d'estimation

Le M-estimateur associé à ψ maximise la fonction

$$a \rightsquigarrow \sum_{i=1}^{n} \log f(a, X_i) = \ell_n(a, X_1, \dots, X_n)$$

c'est-à-dire la log-vraisemblance. C'est l'estimateur du maximum de vraisemblance.

■ C'est aussi un Z-estimateur si la fonction $\vartheta \leadsto \log f(\vartheta, \cdot)$ est régulière, associé à la fonction

$$\phi(\vartheta, x) = \partial_{\vartheta} \log f(\vartheta, x) = \frac{\partial_{\vartheta} f(\vartheta, x)}{f(\vartheta, x)}, \ \vartheta \in \Theta, x \in \mathbb{R}$$

lorsque $\Theta \subset \mathbb{R}$, à condition que le maximum de log-vraisemblance n'est pas atteint sur la frontière de Θ . (Se généralise en dimension d.)

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimatior rappel du Cours 3 Principe de maximum de vraisemblance

EMV, asymptotique des Z- et Mestimateurs

Choix de modèle statistique

- Le statisticien a le choix de la famille $\{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\}$. L'EMV dépend de ce choix.
- **Exemple** : on a l'échantillon (n = 10) :

$$\underbrace{0.92, -0.20, -1.80, 0.02, 0.49, 1.41, -1.59, -1.29, 0.34}_{\textit{tirage de }\mathcal{N}(0,1)}, \underbrace{100.}$$

- On prend $\mathbb{P}_{\vartheta}(dx) = f(x \vartheta)dx$ pour deux f différents :
- f densité de la loi normale $\Rightarrow \widehat{\vartheta}_n^{\text{mv}} = \overline{X}_n = 9.83$.
- f densité de loi de Laplace \Rightarrow tout point de l'intervalle [0.02, 0.34] est un $\widehat{\vartheta}_{n}^{\text{mv}}$, en particulier, la médiane :

$$\widehat{\vartheta}_{n}^{\,\text{mv}} = M_{n} = (0.02 + 0.34)/2 = 0.18.$$

Autre choix de modèle...

MAP 433: Introduction aux méthodes statistiques. Cours 4

Principe de

Un M-estimateur qui n'est pas un Z-estimateur

- On observe $X_1, \ldots, X_n \sim_{\text{i.i.d.}}$ uniformes sur $[0, \vartheta]$, $\vartheta \in \Theta = \mathbb{R}_+ \setminus \{0\}$.
- On a

$$\mathbb{P}_{\boldsymbol{\vartheta}}(dx) = \boldsymbol{\vartheta}^{-1} 1_{[0,\boldsymbol{\vartheta}]}(x) dx$$

et

$$\mathcal{L}_n(\vartheta, X_1, \dots, X_n) = \vartheta^{-n} \prod_{i=1}^n 1_{[0,\vartheta]}(X_i)$$
$$= \vartheta^{-n} 1_{\{\max_{1 \le i \le n} X_i \le \vartheta\}}$$

- La fonction de vraisemblance n'est pas régulière.
- L'estimateur du maximum de vraisemblance est $\widehat{\vartheta}_{\mathbf{n}}^{\text{mv}} = \max_{1 \le i \le n} X_i$.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

rappel du Cours 3 Principe de

Principe de maximum de vraisemblance

asymptotique des *Z*- et *M*-

Asymptotique des Z- et M-estimateurs

- Problème général délicat. Dans ce cours : conditions suffisantes.
- Convergence : critère simple pour les *M*-estimateurs.
- Vitesse de convergence : technique simple pour les Z-estimateurs, à condition de savoir que l'estimateur est convergent.
- Sous des hypothèses de régularité, un *M*-estimateur est un *Z*-estimateur.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du

EMV, asymptotique des Z- et M-estimateurs

Convergence des *M*-estimateurs

- <u>Situation</u>: on observe $X_1, ..., X_n$ i.i.d. de loi dans la famille $\{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\}$.
- $\psi: \Theta \times \mathbb{R} \to \mathbb{R}$ fonction de contraste.
- Loi des grands nombres :

$$M_n(a) = \frac{1}{n} \sum_{i=1}^n \psi(a, X_i)$$

converge en \mathbb{P}_{ϑ} -probabilité vers

$$M(a,\vartheta) = \mathbb{E}_{\vartheta} \left[\psi(a,X) \right]$$

qui atteint son maximum en $a = \vartheta$

■ « à montrer » :

$$\widehat{\vartheta}_n = \arg\max_{\mathbf{a} \in \Theta} M_n(\mathbf{a}) \xrightarrow{\mathbb{P}_{\vartheta}} \arg\max_{\mathbf{a} \in \Theta} \mathbb{E}_{\vartheta} \left[\psi(\mathbf{a}, X) \right] = \vartheta.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EMV, asymptotique des Z- et M- estimateurs

Convergence des *M*-estimateurs

Proposition

Si le M-estimateur $\widehat{\vartheta}_n$ associé à la fonction de contraste est bien défini et si

- $\sup_{a\in\Theta} |M_n(a) M(a,\vartheta)| \stackrel{\mathbb{P}_{\vartheta}}{\longrightarrow} 0$,
- $\forall \varepsilon > 0$, $\sup_{|a-\vartheta| \ge \varepsilon} M(a,\vartheta) < M(\vartheta,\vartheta)$ (condition de maximum)

alors
$$\widehat{\vartheta}_n \xrightarrow{\mathbb{P}_{\vartheta}} \vartheta$$
.

 La condition 1 (convergence uniforme) peut être délicate à montrer... MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EMV, asymptotique des Z- et Mestimateurs

Loi limite des Z-estimateurs

- <u>Situation</u>: on observe X_1, \ldots, X_n i.i.d. de loi dans la famille $\{\mathbb{P}_{\vartheta}, \vartheta \in \Theta\}$, $\Theta \subset \mathbb{R}$.
- $ullet \widehat{\vartheta}_n: Z$ -estimateur associé à $\phi: \Theta imes \mathbb{R} o \mathbb{R}$ vérifie

$$\sum_{i=1}^n \phi(\widehat{\vartheta}_n, X_i) = 0$$

- Si $\widehat{\vartheta}_n$ est un M-estimateur associé à la fonction de contraste ψ régulière, alors c'est un Z-estimateur associé à la fonction $\phi(a,x) = \partial_a \psi(a,x)$.
- On suppose $\widehat{\vartheta}_n$ convergent. Que dire de sa loi limite?

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EMV, asymptotique des Z- et M- estimateurs

Loi limite des Z-estimateurs : principe

Loi des grands nombres

$$Z_n(a) = \frac{1}{n} \sum_{i=1}^n \phi(a, X_i) \xrightarrow{\mathbb{P}_{\vartheta}} Z(a, \vartheta) = \mathbb{E}_{\vartheta} \left[\phi(a, X) \right]$$

lacktriangle Principe. Développement de Taylor autour de artheta :

$$0 = Z_n(\widehat{\vartheta}_n) = Z_n(\vartheta) + (\widehat{\vartheta}_n - \vartheta)Z'_n(\vartheta) + \frac{1}{2}(\widehat{\vartheta}_n - \vartheta)^2 Z''(\widetilde{\vartheta}_n).$$

On néglige le reste :

$$\sqrt{n}(\widehat{\vartheta}_n - \vartheta) \approx \frac{-\sqrt{n}Z_n(\vartheta)}{Z'_n(\vartheta)}$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du

EMV, asymptotique des *Z*- et *M*-estimateurs

Loi limite des Z-estimateurs : principe

■ Convergence du numérateur

$$\sqrt{n}Z_n(\vartheta) = \frac{1}{\sqrt{n}}\sum_{i=1}^n \phi(\vartheta, X_i) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \mathbb{E}_{\vartheta}\left[\phi(\vartheta, X)^2\right])$$

$$\mathsf{si} \,\, \mathbb{E}_{\vartheta} \left[\phi(\vartheta, \mathsf{X}) \right] = \mathsf{0} \,\, \mathsf{et} \,\, \mathbb{E}_{\vartheta} \left[\phi(\vartheta, \mathsf{X})^2 \right] < +\infty.$$

Convergence du dénominateur

$$Z'_n(\vartheta) = \frac{1}{n} \sum_{i=1}^n \partial_{\vartheta} \phi(\vartheta, X_i) \xrightarrow{\mathbb{P}_{\vartheta}} \mathbb{E}_{\vartheta} \left[\partial_{\vartheta} \phi(\vartheta, X) \right]$$

 \neq 0 (à supposer).

• + hypothèses techniques pour contrôler le reste (besoin de la convergence de $\widehat{\vartheta}_n$).

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EMV, asymptotique des Z- et Mestimateurs

Loi limite des Z-estimateurs

Proposition (Convergence des Z-estimateurs)

Soit Θ un ouvert de \mathbb{R} . Pour tout $\vartheta \in \Theta$, $\widehat{\vartheta}_n \stackrel{\mathbb{P}_{\vartheta}}{\to} \vartheta$, $\mathbb{E}_{\vartheta} \left[\phi(\vartheta, X)^2 \right] < +\infty$ et

$$\mathbb{E}_{\vartheta}\left[\phi(\vartheta,X)\right]=0,\;\mathbb{E}_{\vartheta}\left[\partial_{\vartheta}\phi(\vartheta,X)\right]\neq0.$$

■ (Contrôle reste) pour tout $\vartheta \in \Theta$, pour tout a dans un voisinage de ϑ ,

$$|\partial_a^2 \phi(a,x)| \le g(x), \ \mathbb{E}_{\vartheta} [g(X)] < +\infty.$$

Alors

$$\sqrt{n}(\widehat{\boldsymbol{\vartheta}_n} - \boldsymbol{\vartheta}) \stackrel{d}{\longrightarrow} \mathcal{N}\left(0, \frac{\mathbb{E}_{\boldsymbol{\vartheta}}[\phi(\boldsymbol{\vartheta}, \boldsymbol{X})^2]}{\left(\mathbb{E}_{\boldsymbol{\vartheta}}[\partial_{\boldsymbol{\vartheta}}\phi(\boldsymbol{\vartheta}, \boldsymbol{X})]\right)^2}\right).$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du

EMV, asymptotique des Z- et M- estimateurs

Influence d'une variable sur une autre

■ Principe : on part de l'observation d'un *n*-échantillon

$$Y_1,\ldots,Y_n \ (Y_i \in \mathbb{R})$$

- A chaque observation Y_i est associée une observation auxiliaire $X_i \in \mathbb{R}^k$.
- On suspecte l'échantillon

$$X_1,\ldots,X_n \quad (X_i \in \mathbb{R}^k)$$

de contenir la « majeure partie de la variabilité des Y_i ».

MAP 433: Introduction aux méthodes statistiques. Cours 4

Modèle de régression.

≪ design ≫

Modélisation de l'influence

■ Si X_i contient toute la variabilité de Y_i , alors Y_i est mesurable par rapport à X_i : il existe $r: \mathbb{R}^k \to \mathbb{R}$ telle que

$$Y_i = r(\boldsymbol{X}_i),$$

mais peu réaliste (ou alors problème d'interpolation numérique).

 Alternative : représentation précédente avec erreur additive : on postule

$$Y_i = r(\boldsymbol{X}_i) + \xi_i,$$

 ξ_i erreur aléatoire centrée (pour des raisons d'identifiabilité).

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

:IMV, svmptot

asymptotique des Z- et M- estimateurs

Méthode
d'estimation
dans le modèle
de régression
Modèle de
régression,
notion de
≪ design ≫
Régression à
design
déterministe

Motivation : meilleure approximation L^2

Meilleure approximation L^2 . Si $\mathbb{E}\left[Y^2\right] < +\infty$, la meilleure approximation de Y par une variable aléatoire X-mesurable est donnée par l'espérance conditionnelle $\mathbb{E}\left[Y|X\right]$:

$$\mathbb{E}\left[\left(Y-r(\boldsymbol{X})\right)^{2}\right]=\min_{h}\mathbb{E}\left[\left(Y-h(\boldsymbol{X})\right)^{2}\right]$$

■ où

$$r(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \ \mathbf{x} \in \mathbb{R}^k.$$

• On appelle $r(\cdot)$ fonction de régression de Y sur X.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EMV,

asymptotique des Z- et M- estimateurs

Méthode d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe La droite des moindres carrés

Régression

On définit :

$$\xi = Y - \mathbb{E}[Y|X] \implies \mathbb{E}[\xi] = 0.$$

On a alors naturellement la représentation désirée

$$Y = r(X) + \xi, \quad \mathbb{E}\left[\xi\right] = 0$$

si l'on pose

$$r(\mathbf{x}) = \mathbb{E}\left[Y|\mathbf{X} = \mathbf{x}\right], \ \mathbf{x} \in \mathbb{R}^k$$

On observe alors un n-échantillon

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

οù

$$Y_i = r(\boldsymbol{X}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0$$

avec comme paramètre la fonction $r(\cdot)$ + un jeu d'hypothèses sur la loi des ξ_i .

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EMV,

asymptotique des *Z*- et *M*estimateurs

Méthode d'estimation dans le modèle de régression Modèle de

régression,
notion de

≪ design ≫
Régression à
design
déterministe
La droite des
moindres carrés
Régression

Modèle de régression à design aléatoire

Définition

Modèle de régression à design aléatoire = donnée de l'observation

$$(\boldsymbol{X}_1, Y_1), \ldots, (\boldsymbol{X}_n, Y_n)$$

avec $(Y_i, X_i) \in \mathbb{R} \times \mathbb{R}^k$ i.i.d., et

$$Y_i = r(\vartheta, \mathbf{X}_i) + \xi_i, \ \mathbb{E}\left[\xi_i | \mathbf{X}_i\right] = 0, \ \vartheta \in \Theta \subset \mathbb{R}^d.$$

- **x** \leftrightarrow $r(\vartheta, x)$ fonction de régression, connue au paramètre ϑ près.
- X; = variables explicatives, co-variables, prédicteurs; $(X_1,\ldots,X_n)=$ design.

MAP 433: Introduction aux méthodes statistiques. Cours 4

Modèle de régression. notion de ≪ design ≫

Modèle alternatif : signal+bruit

Principe : sur un exemple. On observe

$$Y_i = r(\vartheta, i/n) + \xi_i, \quad i = 1, \ldots, n$$

où $r(\vartheta, \cdot) : [0, 1] \to \mathbb{R}$ est une fonction connue au paramètre $\vartheta \in \Theta \subset \mathbb{R}^d$ près, et les ξ_i sont i.i.d., $\mathbb{E}\left[\xi_i\right] = 0$.

- But : reconstruire $r(\vartheta, \cdot)$ c'est-à-dire estimer ϑ .
- Plus généralement, on observe

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, i = 1, \ldots, n$$

où x_1, \ldots, x_n sont des points de \mathbb{R}^k déterministes.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

*M-*estimation, rappel du Cours 3

EMV,

asymptotique des Z- et M- estimateurs

Méthode d'estimation dans le modèle de régression Modèle de régression,

régression,
notion de

design

Régression à
design
déterministe

La droite des
moindres carrés

Modèle de régression à design déterministe

Définition

Modèle de régression à design déterministe = donnée de l'observation

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec $Y_i \in \mathbb{R}, x_i \in \mathbb{R}^k$, et

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \ \mathbb{E}\left[\xi_i\right] = 0, \ \vartheta \in \Theta \subset \mathbb{R}^d.$$

- x_i déterministes, donnés (ou choisis) : plan d'expérience, points du « design ».
- Hypothèses sur les ξ_i : à débattre. Pour simplifier, les ξ_i sont i.i.d. (hypothèse restrictive).
- $\blacksquare \implies les \ Y_i \ ne \ sont \ pas \ i.i.d.$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EIVIV,

asymptotique des *Z*- et *M*- estimateurs

Méthode d'estimation dans le modèle de régression Modèle de régression, notion de ≪ design ≫

régression, notion de ≪ design ≫ Régression à design déterministe La droite des moindres carrés

 $\underline{\mathsf{Question}} : \mathsf{Comment} \ \mathsf{estimer} \ \theta \ \mathsf{dans} \ \mathsf{ce} \ \mathsf{modèle} \ ?$

Régression gaussienne

Modèle de régression à design déterministe :

$$Y_i = r(\vartheta, \mathbf{x}_i) + \xi_i, \ \vartheta \in \Theta \subset \mathbb{R}^d.$$

- Supposons : $\xi_i \sim \mathcal{N}(0, \sigma^2)$, i.i.d.
- On a alors le modèle de régression gaussienne. Comment estimer ϑ ? On sait explicier la loi de l'observation $Z = (Y_1, \ldots, Y_n) \Longrightarrow$ appliquer le principe du maximum de vraisemblance.
- La loi de Y_i :

$$\mathbb{P}^{Y_i}(dy) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y - r(\vartheta, \mathbf{x}_i))^2\right) dy$$

$$\ll dy.$$

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

asymptotique

des Z- et Mestimateurs

Vethode
d'estimation
dans le modèle
de régression
Modèle de
régression,
notion de
≪ design ≫
Régression à
design
déterministe
La droite des
maindres carrés

EMV pour régression gaussienne

- Le modèle $\{\mathbb{P}_{\vartheta}^n = \text{loi de } (Y_1, \dots, Y_n), \vartheta \in \mathbb{R}^k\}$ est dominé par $\mu^n(dy_1 \dots dy_n) = dy_1 \dots dy_n$.
- D'où

$$\frac{d \mathbb{P}_{\vartheta}^{n}}{d\mu^{n}}(y_{1},\ldots,y_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{1}{2\sigma^{2}}(y_{i} - r(\vartheta, \boldsymbol{x}_{i}))^{2}\right)$$

$$= \frac{1}{(\sqrt{2\pi\sigma^{2}})^{n}} \exp\left(-\frac{1}{2\sigma^{2}}\sum_{i=1}^{n} (y_{i} - r(\vartheta, \boldsymbol{x}_{i}))^{2}\right).$$

La fonction de vraisemblance

$$\mathcal{L}_n(\vartheta, Y_1, \dots, Y_n) \propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - r(\vartheta, \boldsymbol{x}_i))^2\right)$$

MAP 433: Introduction aux méthodes statistiques. Cours 4

Régression à design déterministe

Estimateur des moindres carrés

Maximiser la vraisemblance en régression gaussienne = minimiser la somme des carrés :

$$\sum_{i=1}^{n} (Y_i - r(\vartheta, \mathbf{x}_i))^2 \to \min_{\vartheta \in \Theta}.$$

Définition

Estimateur des moindres carrés : tout estimateur $\widehat{\vartheta}_{n}^{mc}$ t.q. $\widehat{\vartheta}_{\mathbf{n}}^{\,\mathrm{mc}} \in \operatorname{arg\,min}_{\vartheta \in \Theta} \sum_{i=1}^{n} (Y_i - r(\vartheta, \mathbf{x}_i))^2$.

- L'EMC est un M-estimateur. Pour le modèle de régression gaussienne : |EMV = EMC|.
- Existence, unicité.
- Propriétés remarquables si la régression est linéaire : $r(\vartheta, \mathbf{x}_i) = \vartheta^T \mathbf{x}_i$

MAP 433: Introduction aux méthodes statistiques. Cours 4

Régression à design déterministe

Droite de régression

■ Modèle le plus simple $r(\vartheta, x) = a + bx$

$$Y_i = a + bx_i + \xi_i, \quad i = 1, \ldots, n$$

avec $\vartheta = (a, b)^T \in \Theta = \mathbb{R}^2$ et les (x_1, \dots, x_n) donnés.

L'estimateur des moindres carrés :

$$\widehat{\vartheta}_{\mathsf{n}}^{\,\mathsf{mc}} = (\hat{a}, \hat{b}) = \arg\min_{(a,b) \in \mathbb{R}^2} \sum_{i=1}^n (Y_i - a - bx_i)^2.$$

Solution explicite existe toujours, sauf cas pathologique quand tous les x_i sont les mêmes (Poly, page 112).

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

:IVIV,

asymptotique des Z- et M- estimateurs

Méthode d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design

La droite des moindres carrés Régression

Régression linéaire simple

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation rappel du Cours 3

EMV, asymptotique des *7*- et *M*-

Méthode d'estimation

d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe

La droite des moindres carrés

linéaire multipl

Régression linéaire simple

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation rappel du Cours 3

EMV, asymptotique des *7*- et *M*-

Méthode d'estimation

d'estimation dans le modèle de régression

Modèle de régression, notion de ≪ design ≫ Régression à design déterministe

La droite des moindres carrés

linéaire multipl

Régression linéaire multiple (=Modèle linéaire)

■ La fonction de régression est $r(\vartheta, \mathbf{x}_i) = \vartheta^T \mathbf{x}_i$. On observe

$$(\mathbf{x}_1, Y_1), \ldots, (\mathbf{x}_n, Y_n)$$

avec

$$Y_i = \vartheta^T \mathbf{x}_i + \xi_i, \quad i = 1, \dots, n$$

où
$$\vartheta \in \Theta = \mathbb{R}^k$$
, $\mathbf{x}_i \in \mathbb{R}^k$.

Matriciellement

$$m{Y} = \mathbb{M}\vartheta + m{\xi}$$

avec $\mathbf{Y} = (Y_1, \dots, Y_n)^T$, $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^T$ et \mathbb{M} la matrice $(n \times k)$ dont les lignes sont les x_i .

MAP 433: Introduction aux méthodes statistiques. Cours 4

Régression linéaire multiple

イロト イ御ト イヨト イヨト

EMC en régression linéaire multiple

Estimateur des moindres carrés en régression linéaire multiple : tout estimateur $\widehat{\vartheta}_n^{\,mc}$ satisfaisant

$$\sum_{i=1}^{n} (Y_i - (\widehat{\vartheta}_n^{mc})^T \mathbf{x}_i)^2 = \min_{\vartheta \in \mathbb{R}^k} \sum_{i=1}^{n} (Y_i - \vartheta^T \mathbf{x}_i)^2.$$

En notations matricielles :

$$\begin{split} \| \boldsymbol{Y} - \mathbb{M} \, \widehat{\vartheta}_{n}^{\, \text{mc}} \|^{2} &= \min_{\vartheta \in \mathbb{R}^{k}} \| \boldsymbol{Y} - \mathbb{M} \, \vartheta \|^{2} \\ &= \min_{v \in V} \| \boldsymbol{Y} - v \|^{2} \end{split}$$

où $V = \operatorname{Im}(\mathbb{M}) = \{ v \in \mathbb{R}^n : v = \mathbb{M} \, \vartheta, \, \vartheta \in \mathbb{R}^k \}.$ Projection orthogonale sur V.

MAP 433 : Introduction aux méthodes statistiques. Cours 4

M-estimation, rappel du Cours 3

EMV,

asymptotique des Z- et Mestimateurs

Méthode d'estimation dans le modèle de régression

Modèle de égression, notion de ≪ design ≫ Régression à lesign léterministe .a droite des

moindres carrés
Régression
linéaire multiple