Assignment 7

Details

Author : Varad Mashalkar
 Roll Number : 33337

3. Batch : M114. Class : TE11

Problem Statement

Visualize the data using Python libraries matplotlib, seaborn by plotting the graphs for assignment no. 2 and 3

Implementation details

- 1. Dataset URLs
 - A. Facebook metrics: https://archive.ics.uci.edu/ml/datasets/Facebook+metrics (https://archive.ics.uci.edu/ml/datasets/Facebook+metrics)
 - B. Heart Disease : https://archive.ics.uci.edu/ml/datasets/Heart+Disease (https://archive.ics.uci.edu/ml/datasets/Heart+Disease)
- 2. Python version: 3.7.4
- 3. Imports:
 - A. pandas
 - B. numpy
 - C. matplotlib
 - D. seaborn

Dataset details

- 1. Facebook Metrics:
 - A. Given dataset is a representative of some of the Facebook metrics which are assosciated with the posts on social media.
 - B. These metrics are indicative of the engagement of the users with the corresponding post.
 - C. It includes various types of posts and their details
- 2. Heart Disease Dataset:
 - A. This database contains 76 attributes, but all published experiments refer to using a subset of 14 of them. In particular, the Cleveland database is the only one that has been used by ML researchers to this date.
 - B. The "goal" field refers to the presence of heart disease in the patient.
 - C. It is integer valued from 0 (no presence) to 4. Experiments with the Cleveland database have concentrated on simply attempting to distinguish presence (values 1,2,3,4) from absence (value 0).
 - D. The names and social security numbers of the patients were recently removed from the database, replaced with dummy values

Importing required libraries

In [11]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
%matplotlib inline
```

A) Visualization for Facebook metrics dataset

1) Loading the dataset

In [3]:

```
facebook_dataset = pd.read_csv("./dataset_Facebook.csv", sep=";")
facebook_dataset.head()
```

Out[3]:

	Page total likes	Туре	Category	Post Month	Post Weekday	Post Hour	Paid	Lifetime Post Total Reach	Lifetime Post Total Impressions	Lifetime Engaged Users	C
0	139441	Photo	2	12	4	3	0.0	2752	5091	178	
1	139441	Status	2	12	3	10	0.0	10460	19057	1457	
2	139441	Photo	3	12	3	3	0.0	2413	4373	177	
3	139441	Photo	2	12	2	10	1.0	50128	87991	2211	
4	139441	Photo	2	12	2	3	0.0	7244	13594	671	
4											•

2) Distribution of data based on type of Post

In [4]:

```
# Acquiring unique post values
post_types = facebook_dataset.Type.unique()
post_types
```

Out[4]:

```
array(['Photo', 'Status', 'Link', 'Video'], dtype=object)
```

In [6]:

```
# Generating frequency data for each type of post

frequency_data = {}
for post in post_types:
    subset = facebook_dataset[facebook_dataset.Type == post]
    frequency_data[post] = subset.shape[0]

frequency_data
```

Out[6]:

```
{'Photo': 426, 'Status': 45, 'Link': 22, 'Video': 7}
```

In [20]:

```
fig = plt.figure(figsize=(8, 8))
# Adds subplot on position 1
ax = fig.add subplot(111)
# Generating legend for pie chart
legend = [
    "Photo",
    "Status",
    "link",
    "Video"
]
# Defining explode values
explode = [0.1, 0.1, 0.1, 0.1]
# Generating and displaying piechart
plt.pie(
    x=frequency_data.values(),
    labels=legend,
    explode=explode,
plt.title("Composition of post types in data (Pie Chart)", fontsize=20)
plt.show()
```

Composition of post types in data (Pie Chart)

3) Likes per type of data

In [12]:

```
# Generating data for count of likes
likes_per_type = {}

for post in post_types:
    subset = facebook_dataset[facebook_dataset.Type == post]
    likes_per_type[post] = subset.like.sum()

likes_per_type
```

Out[12]:

```
{'Photo': 77610.0, 'Status': 7952.0, 'Link': 1613.0, 'Video': 1620.0}
```

In [19]:

```
# Generating bar graph
fig = plt.figure(figsize=(8, 8))

# Adds subplot on position 1
ax = fig.add_subplot(111)

# Generating and displaying bar chart
plt.bar(
    x=likes_per_type.keys(),
    height=likes_per_type.values()
)
plt.xlabel("Type of Post", fontsize=20)
plt.ylabel("Number of Likes", fontsize=20)
plt.title("Number of likes per type (Bar Plot)", fontsize=20)
plt.show()
```


4) Counting number of paid and unpaid posts

In [21]:

```
# Generating bar graph
fig = plt.figure(figsize=(8, 8))

# Adds subplot on position 1
ax = fig.add_subplot(111)

sns.countplot(x=facebook_dataset.Paid)

plt.xlabel("Paid posts (0 : unpaid, 1: paid)", fontsize=20)
plt.ylabel("Count", fontsize=20)
plt.title("Count of paid and unpaid posts (Count plot)", fontsize=20)
plt.show()
```


B) Heart Disease dataset

1) Loading the dataset

```
In [23]:
```

```
heart_dataset = pd.read_csv("./processed.cleveland.csv", header=None)
heart_dataset.head()
```

Out[23]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	63.0	1.0	1.0	145.0	233.0	1.0	2.0	150.0	0.0	2.3	3.0	0.0	6.0	0
1	67.0	1.0	4.0	160.0	286.0	0.0	2.0	108.0	1.0	1.5	2.0	3.0	3.0	2
2	67.0	1.0	4.0	120.0	229.0	0.0	2.0	129.0	1.0	2.6	2.0	2.0	7.0	1
3	37.0	1.0	3.0	130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0	0.0	3.0	0
4	41.0	0.0	2.0	130.0	204.0	0.0	2.0	172.0	0.0	1.4	1.0	0.0	3.0	0

2) Renaming columns

In [24]:

```
heart_dataset.columns = [
    "age",
    "sex",
    "chest_pain",
    "trestbps",
    "cholestrol",
    "fbs",
    "restecg",
    "thalach",
    "exang",
    "oldpeak",
    "slope",
    "ca",
    "thal",
    "num"
]
```

In [25]:

```
heart_dataset.head()
```

Out[25]:

	age	sex	chest_pain	trestbps	cholestrol	fbs	restecg	thalach	exang	oldpeak	slope	C
0	63.0	1.0	1.0	145.0	233.0	1.0	2.0	150.0	0.0	2.3	3.0	0
1	67.0	1.0	4.0	160.0	286.0	0.0	2.0	108.0	1.0	1.5	2.0	3
2	67.0	1.0	4.0	120.0	229.0	0.0	2.0	129.0	1.0	2.6	2.0	2
3	37.0	1.0	3.0	130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0	0
4	41.0	0.0	2.0	130.0	204.0	0.0	2.0	172.0	0.0	1.4	1.0	0
4												•

3) Quartile spread of thalach feature

In [27]:

```
# Generating bar graph
fig = plt.figure(figsize=(8, 8))

# Adds subplot on position 1
ax = fig.add_subplot(111)

sns.boxplot(x=heart_dataset.thalach)
plt.title("Quartile spread of thalach feature (Box plot)", fontsize=20)
plt.show()
```

Quartile spread of thalach feature (Box plot)

4) Distribution of age in entire dataset

In [30]:

```
# Generating bar graph
fig = plt.figure(figsize=(10, 10))

# Adds subplot on position 1
ax = fig.add_subplot(111)

sns.distplot(x=heart_dataset.age)
plt.show()
```

/home/varadmash/anaconda3/envs/python3.7_TF2.0/lib/python3.7/site-pack ages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a dep recated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

5) Checking correlation using heatmap

In [32]:

```
# Generating bar graph
fig = plt.figure(figsize=(15, 15))

# Adds subplot on position 1
ax = fig.add_subplot(111)
sns.heatmap(heart_dataset.corr())
plt.plot()
```

Out[32]:

[]

Conclusion

1. Implemented following visualization methods: localhost:8888/notebooks/33337_data_visualization.ipynb

- A. Pie chart
- B. Bar chart
- C. Count plot
- D. Box plot
- E. Distribution plot (Histogram)
- F. Heatmap

End of Notebook