# Notes on the Heat Equation for the Computational Differentiation Lecture

Jonathan Hüser, Uwe Naumann

October 24, 2016

## Disclaimer

We use the same symbol for functions and functions evaluated at a point. We also use the same symbol for a value and it's numerical approximation. Furthermore, we don't aim for mathematical generality. If norms and scalar products are used we mean in Euclidean space unless stated otherwise. We use 0 indices like in the C programming language.

## 1 Finite Difference Approximations

In the following we always assume differentiability of the function f.

## 1.1 $f: \mathbb{R} \to \mathbb{R}$ (univariate scalar case)

The derivative can be defined as

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
.

A forward difference approximates the derivative by fixing h to a small value like  $h := |x| \cdot \sqrt{\text{eps}}$  where eps denotes machine precision:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
.

A backward difference works in the same way except that it may give a different value depending on the shape of the function (see Figure 1):

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$
.

A *central difference* gives a better approximation but is more costly because it requires two evaluations at perturbed inputs:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$
.

## 1.2 $f: \mathbb{R}^n \to \mathbb{R}$ (multivariate scalar case)

The derivative is the gradient

$$\nabla f(\boldsymbol{x}) = \left(\frac{\partial f(\boldsymbol{x})}{\partial x_0} \frac{\partial f(\boldsymbol{x})}{\partial x_1} \dots \frac{\partial f(\boldsymbol{x})}{\partial x_{n-1}}\right) .$$



Figure 1: Forward (dashed), backward (dash-dotted) and central (dotted) finite differences. Function f(x) and it's tangent at x (solid).

A finite difference approximates a gradient vector product (directional derivative):

$$\nabla f(\boldsymbol{x}) \cdot \boldsymbol{d} \approx \frac{f(\boldsymbol{x} + h \cdot \boldsymbol{d}) - f(\boldsymbol{x})}{h}$$
.

We can compute all n gradient elements by approximating directional derivatives in the unit directions:

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i} = \nabla f(\boldsymbol{x}) \cdot \boldsymbol{e}_i \approx \frac{f(\boldsymbol{x} + h \cdot \boldsymbol{e}_i) - f(\boldsymbol{x})}{h} \text{ for all } i \in \{0, \dots, n-1\}$$

where  $e_i$  is the *i*th unit vector (has a 1 as *i*th entry and 0 everywhere else).

## 1.3 $f: \mathbb{R}^n \to \mathbb{R}^m$ (multivariate vector case)

The derivative is the Jacobian matrix

$$abla oldsymbol{f}(oldsymbol{x}) = egin{pmatrix} rac{\partial f_0(oldsymbol{x})}{\partial x_0} & rac{\partial f_0(oldsymbol{x})}{\partial x_1} & \cdots & rac{\partial f_0(oldsymbol{x})}{\partial x_{n-1}} \ rac{\partial f_1(oldsymbol{x})}{\partial x_0} & rac{\partial f_1(oldsymbol{x})}{\partial x_1} & \cdots & rac{\partial f_1(oldsymbol{x})}{\partial x_{n-1}} \ dots & dots & \ddots & dots \ rac{\partial f_{m-1}(oldsymbol{x})}{\partial x_0} & rac{\partial f_{m-1}(oldsymbol{x})}{\partial x_1} & \cdots & rac{\partial f_{m-1}(oldsymbol{x})}{\partial x_{n-1}} \end{pmatrix}.$$

A finite difference approximates a Jacobian matrix vector product (directional derivative):

$$abla f(oldsymbol{x}) \cdot oldsymbol{d} pprox rac{oldsymbol{f}(oldsymbol{x} + h \cdot oldsymbol{d}) - oldsymbol{f}(oldsymbol{x})}{h} \; .$$

We can compute all n columns of the Jacobian matrix by approximating directional derivatives in the unit directions:

$$\frac{\partial \boldsymbol{f}(\boldsymbol{x})}{\partial x_i} = \begin{pmatrix} \frac{\partial f_0(\boldsymbol{x})}{\partial x_i} \\ \frac{\partial f_1(\boldsymbol{x})}{\partial x_i} \\ \vdots \\ \frac{\partial f_{m-1}(\boldsymbol{x})}{\partial x_i} \end{pmatrix} = \nabla \boldsymbol{f}(\boldsymbol{x}) \cdot \boldsymbol{e}_i \approx \frac{\boldsymbol{f}(\boldsymbol{x} + h \cdot \boldsymbol{e}_i) - \boldsymbol{f}(\boldsymbol{x})}{h} \text{ for all } i \in \{0, \dots, n-1\}$$

where  $e_i$  is the *i*th unit vector (has a 1 as *i*th entry and 0 everywhere else).



Figure 2: Temperature of the one dimensional stick at  $t = 0, 1, \infty$ 

## 2 Heat Equation

### 2.1 Problem

We consider a model of heat spreading through a one dimensional stick that ranges from 0 to 1 in space. We model two quantities:

- Thermal diffusivity  $c:[0,1] \to \mathbb{R}^+$  that for each point on the stick describes how fast the heat spreads. Thermal diffusivity does not change over time.
- Temperature  $T:[0,1]\times\mathbb{R}^+\to\mathbb{R}$  defined for each point on the stick and each point in time. The temperature evolution also depends on the thermal diffusivity c but we consider c as a constant for now.

The evolution of temperature in the stick over time is determined by a partial differential equation (PDE):

$$\frac{\partial T}{\partial t} = c \cdot \frac{\partial^2 T}{(\partial x)^2} .$$

We model the heat problem as an initial value problem where for the interior of the stick  $\Omega = (0,1)$  we have T(t=0) = i(x) for some initial temperature values  $i: \Omega \to \mathbb{R}$ . Furthermore, the boundaries of the stick have fixed temperature  $T(x=0) = b_0$  and  $T(x=1) = b_1$  for all points in time  $t \in \mathbb{R}^+$ .

We can get an intuition for the time evolution by considering the finite difference approximation for the right-hand side  $\partial^2 T/(\partial x)^2$ . Consider the function f(x) = T(x,t) with fixed t. We approximate the second derivative via backward difference:

$$f''(x) \approx \frac{f'(x) - f'(x - h)}{h}$$
.

We approximate both first derivatives in the above via forward differences:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
  $f'(x-h) \approx \frac{f(x) - f(x-h)}{h}$ .

Plugging in gives:

$$f''(x) \approx \frac{1}{h} \left( \frac{f(x+h) - f(x)}{h} - \frac{f(x) - f(x-h)}{h} \right) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
.

The numerator divided by 2 contains the difference between the function evaluated at x and the average of the function evaluated in the immediate neighborhood of x:

$$\frac{1}{2}(f(x+h) + f(x-h)) - f(x).$$

The second derivative intuitively has this behavior. It described the difference between a point and it's neighborhood (in the limit). The heat equation makes this difference vanish over time and hence has a linearizing effect (see Figure 2). A linear function does not have a second derivative and at each point a linear function takes the value that is the average of it's neighborhood.

In order to solve the heat equation numerically we need to discretize the continuous variables T and c in both space and time.

### 2.2 Space Discretization

We discretize space into n equidistant grid points and hence get the distance between them as

$$\Delta x = \frac{1}{(n-1)}$$

We replace the right-hand side with the previously developed finite difference approximation and hence get an ordinary differential equation (ODE) that describes that dynamics at each grid point:

$$\frac{\partial T_j}{\partial t} = c \cdot \frac{\partial^2 T_j}{(\partial x)^2} \approx c \cdot \frac{T_{j+1} - 2T_j + T_{j-1}}{(\Delta x)^2} = c \cdot (n-1)^2 \cdot (T_{j+1} - 2T_j + T_{j-1}) \text{ for all } j \in \{1, \dots, n-2\} .$$

The dynamics at the boundary points (x = 0, 1) are fixed to 0:

$$\frac{\partial T_j}{\partial t} = 0$$
 for all  $j \in \{0, n-1\}$ .

We write the resulting temperature ODE residual as follows:

$$\frac{\partial T}{\partial t} = r(c, \Delta x, T) .$$

The function  $r(c, \Delta x, T)$  is linear in T and can be expanded into a first-order Taylor series at T = 0 without error term:

$$r(c, \Delta x, T) = r(c, \Delta x, 0) + \frac{\partial r}{\partial T}(c, \Delta x, 0) \cdot (T - 0) = \frac{\partial r}{\partial T}(c, \Delta x, 0) \cdot T.$$

Because  $r(c, \Delta x, 0) = 0$  we can evaluate  $r(c, \Delta x, T)$  as a Jacobian matrix vector product. The Jacobian matrix  $\partial r(c, \Delta x, 0)/\partial T$  is only evaluated at T = 0 and does not depend on the time evolution. A finite difference approximation of the Jacobian matrix requires n evaluations of  $r(c, \Delta, e_i)$  with  $e_i$  the ith unit vector for all  $i \in \{0, \ldots, n-1\}$  (one perturbation for each grid point). Because of the linearity of r the choice of perturbation magnitude r0 does not introduce any truncation error and the finite difference approximation is exact up to machine precision in this case.

### 2.3 Time Discretization

When solving the heat equation numerically we simulate only in the time interval  $t \in (0,1]$ . We discretize time into m equidistant steps with step size

$$\Delta t = \frac{1}{m} \ .$$

We approximate the time derivative by a backward finite difference which results in an implicit Euler scheme for integration (simulation):

$$\frac{\partial T_j}{\partial t}(t_{k+1}) \approx \frac{T_j(t_{k+1}) - T_j(t_k)}{\Delta t} = m \cdot (T_j^{k+1} - T_j^k) .$$

We use the residual developed in the space discretization:

$$m \cdot (T^{k+1} - T^k) = r(c, \Delta x, T^{k+1}) = \frac{\partial r}{\partial T}(c, \Delta x, 0) \cdot T^{k+1}$$
$$T^{k+1} - T^k = \frac{1}{m} \frac{\partial r}{\partial T}(c, \Delta x, 0) \cdot T^{k+1}$$
$$-T^k = \left(\frac{1}{m} \frac{\partial r}{\partial T}(c, \Delta x, 0) - I\right) \cdot T^{k+1}$$

where I is the identity matrix.

We can solve the above time step equation as a linear system of equations  $A \cdot x = b$  with

$$A = \left(\frac{1}{m}\frac{\partial r}{\partial T}(c, \Delta x, 0) - I\right)$$

and  $b=-T^k$ . We solve the linear system by LU decomposition. An LU factorization of A into  $A=L\cdot U$  needs to only be performed once because A does not change over time. The matrices L and U are lower and upper triangular matrices so we solve  $A\cdot x=b$  as  $L\cdot U\cdot x=b$  in two steps: First we solve  $L\cdot z=b$  as a forward substitution and then we solve  $U\cdot x=z$  as a backward substitution. The matrices L and U can be stored in the same amount of memory as A because for one of them the diagonal contains only ones.

With the above time stepping procedure the simulation of the heat equation amounts to m linear system solves with identical matrix.

### 2.4 Parameter Calibration

Consider now the scenario where we have real world measurements (observations) O(x) for the temperature at all points on the stick at time t = 1. To estimate the thermal diffusivity parameter c of our material we want to solve the least squares problem that minimizes the error between the simulation results and the observations:

$$\min_{c} v(c) = \int_{\Omega} (T(1, x, c) - O(x))^{2} \mathrm{d}x \ .$$

We discretize the integral with the same number of equidistant spatial grid points as used in the simulation:

$$v(c) \approx \frac{1}{n-1} \sum_{j=0}^{n-2} (T_j^m(c) - O_j)^2$$
.

A gradient descent optimization of the least squares problem requires  $\nabla v(c)$  the gradient of the approximated loss function in the following iterative scheme to chose improving parameterizations  $c_i$ :

$$c_{i+1} := c_i - \alpha \cdot \nabla v(c_i) \text{ until } \|\nabla v(c_i)\| < \varepsilon$$

where  $\alpha \in \mathbb{R}^+$  is a step size and  $\varepsilon$  is a chosen termination tolerance to reach the first order optimality condition  $\|\nabla v(c)\| = 0$ .

The gradient  $\nabla v(c)$  can be approximated using finite differences with a cost of n+1 evaluations of v each of which requires the full simulation of the heat equation. In the following weeks we will learn how to efficiently compute such derivative information as  $\nabla v(c)$  more efficiently to enable numerical optimization.