Домашнее задание 3, Новиков Герман, 277

Все вычисления вместе с кодом и комментариями находятся в файле на **github**

Задача 1. 8-го января 2003 года в New York Times были сообщены следующие данные из штата Мэриленд: в случае, если происходило убийство афроамериканца, было вынесено 14 смертных приговоров для преступника, а в 641 случае смертных приговор не последовало. В случае, если происходило убийство белого, то в 62 случаях был вынесен смертный приговор и в 594 случаях не был. Проанализируйте эти данные, используя статистические техники, и интерпретируйте результаты.

Решение: Проверим, является ли значимым цвет кожи убитого, то есть посмотрим - есть ли зависимость между количеством осужденных за убийство человека того или иного цвета кожи от самого цвета кожи убитого. Выдвинем гипотезу, о том что зависимости нет и воспользуемся критерием χ^2 :

Ответ:

Задача 2. (Задача номер 59). Построить критерий для проверки гипотезы $H_1: p=\frac{1}{2}$ при альтернативной гипотезе $H_2: p\neq \frac{1}{2}$ по результатам восьми испытаний, подчиняющихся схеме Бернулли. Вероятность ошибки первого рода α положить равной 0,05.

Решение: Предположим, что верная гипотеза $H_1: p=\frac{1}{2}$. В этом предположении случайная величина

$$\theta = 2\sqrt{n}(\frac{n-k}{k} - \frac{1}{2}),$$

где $n=8,\,k-$ количество 1, имеет в силу ЦПТ распределение к близкое к N(0,1) (сходимость по вероятности).И, таким образом, можно установить пару квантилей, соответствующих $\frac{\alpha}{2}$ и $1-\frac{\alpha}{2}$ (так как распределение N(0,1) является известным) и принимать или отвергать гипотезу в соответствии с ними.

Задача 3. (Задача номер 3) Пусть $X_1, ..., X_n$ — простая выборка, полученная из абсолютно непрерывного распределения с плотностью f. Найти:

• Функцию плотности совместного распределения вариационного ряда $X_{(1)},...,X_{(n)}$.

• Совместное распределение $X_{(1)}$ и $X_{(n)}$ при условии, что X_i имеет равномерное распределение на отрезке [a,b]. Вычислить также их математические ожидания, дисперсии и корреляцию.

Решение:

• Функцию плотности рассмотрим для n=2, для $n\geqslant 2$ ее построение ничем не отличается: Пусть $x_1< x_2$ и будем рассматривать интервалы, по которым могут распределиться все наши элементы ряда: ровно i_1-1 должны попасть в интервал до x_1 , один из элементов в $[x_1,x_1+dx]$, дальше ещё i_2-1-i_1 элемент ровно между x_1+dx и x_2 , один элемент в $[x_2,x_2+dx]$ и все оставшиеся дальше x_2+dx . Таким образом, получим вероятность такого события:

$$C_n^{i_1-1}F^{i_1-1}(x_1)(n-i_1+1)f(x_1)dxC_{n-i_1}^{i_2-1-i_1}(F(x_2)-F(x_1+dx))^{i_2-1-i_1}(n-i_2+1)f(x_2)dx(1-F(x_2))^{n-i_2}$$

Просто берем предел при $dx \to 0$ и получаем функцию распределения для $X(i_1)$ и $X_{(i_2)}$. Дальше аналогично для произвольного n.

• Теперь рассмотрим совместное распределение для двух элементов $i_1=1, i_2=n,$ по формуле, выведенной выше и при условии X_i - равномерна на [a,b]

$$C_n^0 F^0(x_1)(n) f(x_1) C_{n-1}^{n-2}(F(x_2) - F(x_1))^{n-2}(n) f(x_2) dx (1 - F(x_2))^0$$

Где F и f - Φ Р и Φ П для равномерного на [a,b] Математическое ожидание для

Задача 4.

Задача 5.

Задача 6. Проанализируйте данные о возрасте и доходах по ссылке: http://lib.stat.cmu.edu/DASL/Datafiles/montanadat.html

Решение: Воспользуемся аналогично задаче 1 гипотезой независимости и используем критерий χ^2 :

Ответ: