MROCP Invariants API

API Documentation

November 10, 2014

Contents

\mathbf{C}	Contents	1			
1	Module computation.algs.degree.degree	2			
	1.1 Functions	2			
	1.2 Variables	2			
2	Module computation.algs.eigen.eigen				
	2.1 Functions	3			
	2.2 Variables	3			
3	Module computation.algs.scan1stat.scan1	4			
	3.1 Functions	4			
	3.2 Variables	4			
4	Module computation.algs.transitivity.transitivity	5			
	4.1 Functions	5			
	4.2 Variables				
5	Module computation.algs.triangles.triangles	6			
	5.1 Functions	6			
	5.2 Variables	6			

1 Module computation.algs.degree.degree

1.1 Functions

r_igraph_degree(g, mode='total', save_fn=None)

Compute degree of graph g and save as necessary

Parameters

g: The igraph loaded via Rpy2 so an R object

 ${\tt mode:}$ the type of degree. Default is an undirected i.e. in-degree + out degree

save_fn: the filename you want to use to save it. If not provided the graph

adds a degree attribute to all nodes and returns.

Return Value

the graph with the degree attribute set.

Name	Description
package	Value: 'computation.algs.degree'

2 Module computation.algs.eigen.eigen

2.1 Functions

r_igraph_eigs(g, k, return_eigs=False, save_fn=None, real=True, lcc=False)

Eigen spectral decomposition. Compute the top-k eigen pairs.

(section) Positional arguments

Parameters

g: The igraph graph loaded via Rpy2 i.e. an R object

k: the number of eigenpairs to compute. Must be < # nodes - 2

return_eigs: boolean on whether to just return the eigenpairs or the whole

graph

save_fn: must an 2 item list/tuple with 2 names OR None

real: Compute only the real part

lcc: use the largest connected component only

Return Value

A graph with eigs as graph attributes OR actual eigenpairs

$get_str_eigvects(idx)$

Used for mapping to get eigenvectors that correspond to each vertex of the graph

Parameters

idx: a 2-tuple that gives the indexes of the eigenvector 1-d flattened matrix that correspond to the particular vertex

Return Value

A vector i.e the eigenvector (latent position) for that vertex cast to a string

 $\mathbf{cut}(num)$

Shorten the format of a number to 2 decimal places plus exponent

Parameters

num: the number to be shorten

Name	Description
gl_eigvects	Value: None
package	Value: 'computation.algs.eigen'

3 Module computation.algs.scan1stat.scan1

3.1 Functions

 $r_igraph_scan1(g, save_fn=None)$

Compute the scan statistic 1 of graph g and save as necessary

Parameters

g: The igraph loaded via Rpy2 so an R object

save_fn: the filename you want to use to save it. If not provided the graph

adds a scan1 attribute to all nodes and returns.

Return Value

The graph with the scan1 attribute appended

Name	Description
package	Value: 'computation.algs.scan1stat'

4 Module computation.algs.transitivity.transitivity

4.1 Functions

$r_igraph_clust_coeff(g, save_fn=None)$

Compute clustering coefficient/transitivity of graph g and save as necessary

Parameters

g: The igraph loaded via Rpy2 so an R object

save_fn: the filename you want to use to save it. If not provided the graph

adds a clustcoeff attribute to all nodes and returns.

Return Value

the graph with the clustcoeff attribute appended

Name	Description
package	Value: 'computation.algs.transitivity'

5 Module computation.algs.triangles.triangles

5.1 Functions

 $r_igraph_triangles(g, save_fn=None)$

Compute local triangle count of graph g and save as necessary

Parameters

g: The igraph loaded via Rpy2 so an R object

save_fn: the filename you want to use to save it. If not provided the graph

adds a tri count attribute to all nodes and returns.

Return Value

The graph with the tri vertex attribute appended

Name	Description
package	Value: 'computation.algs.triangles'