Exercise sheet 1 Semantics of Higher-Order Logics (2007)

For exercises 1-3, let \mathcal{D} be the standard frame with $\mathcal{D}_o = \{\bot, \top\}$ and $\mathcal{D}_\iota = \{1\}$.

Exercise 1 Assume $(\mathcal{E}_{\alpha})_{\alpha \in \mathcal{T}}$ is a standard frame with

$$\mathcal{E}_o = \{\bot, \top\}$$

 $\mathcal{E}_{\iota} = \{1\}$

Prove: $\forall \alpha \in \mathcal{T} : \mathcal{E}_{\alpha} = \mathcal{D}_{\alpha}$

Exercise 2 *Prove:* $\forall \alpha \in \mathcal{T} : \mathcal{D}_{\alpha}$ *is finite.*

Exercise 3 *Define inductively an infinite set* $\mathcal{T}^1 \subseteq \mathcal{T}$ *s.t.*

$$\forall \alpha \in \mathcal{T}^1 \quad |\mathcal{D}_{\alpha}| = 1$$

Exercise 4 *Prove every functional* Σ -evaluation is ξ -functional.

Exercise 5 Let $\mathcal{J} := (\mathcal{D}, @, \mathcal{E})$ be a functional Σ -evaluation, φ be an assignment into \mathcal{J} , $\mathbf{F} \in wff_{\alpha \to \beta}(\Sigma)$ and $X_{\alpha} \notin \mathbf{Free}(\mathbf{F})$. Prove

$$\mathcal{E}_{\varphi}(\lambda X_{\alpha} \mathbf{F} X) = \mathcal{E}_{\varphi}(\mathbf{F}).$$

Exercise 6 Let $\mathcal{M} := (\mathcal{D}, @, \mathcal{E}, v)$ be a Σ -model. Prove if either $\top, \bot \in \Sigma$ or $\neg \in \Sigma$, then v is surjective.

Exercise 7 Let $\mathcal{M} := (\mathcal{D}, @, \mathcal{E}, v)$ be a Σ -model. Suppose either $\top, \bot \in \Sigma$ or $\neg \in \Sigma$. Prove \mathcal{M} satisfies \mathfrak{b} iff \mathcal{D}_o has two elements.

Exercise 8 Assume that the signature contains only the logical connective \supset and the quantifier Π^o . Construct a Σ -model $\mathcal M$ such that

1.
$$\mathcal{M} \models \forall P_{o} P$$

Exercise 9 What are the weakest calculi \mathfrak{NR}_* in which the following sentences can be derived? Please give the derivations.

1.
$$\forall X_{o} \forall Y_{o} X \vee Y \Leftrightarrow Y \vee X$$

2.
$$\forall X_o \ \forall Y_o \ X \lor Y \doteq Y \lor X$$

3.
$$\lambda X_{o} \lambda Y_{o} X \vee Y \doteq \lambda X_{o} \lambda Y_{o} Y \vee X$$

4.
$$\vee \doteq \lambda X_{o} \lambda Y_{o} Y \vee X$$