Computational study of far-field acoustic emission by collapsing bubbles

Magu Raam Prasaad R

August 31, 2022

Indian Institute of Science, Bangalore

Computational approach

• In this work we compute the far-field acoustic waves emitted from bubble collapse process using the Kirchhoff integral formulation.

Figure 1: Schematic of far-field acoustic data computed from CFD solver using the Kirchhoff integral method.

Kirchhoff integral formulation

The Kirchhoff integral equation for a stationary control surface is given by

$$p'(\mathbf{x},t) = \frac{1}{4\pi} \int_{S} \left[\frac{p'}{r'^2} \frac{\partial r'}{\partial n} - \frac{1}{r'} \frac{\partial p'}{\partial n} + \frac{1}{cr'} \frac{\partial r'}{\partial n} \frac{\partial p'}{\partial \tau} \right]_{\tau} dS. \tag{1}$$

p' is the acoustic pressure satisfying the wave equation outside the control surface \mathbf{S} , c is the speed of sound at ambient conditions and n is the normal. The integrands are evaluated at the emission time $\tau = t - \mathbf{r}'/c$ and $\mathbf{r}' = |\mathbf{x} - \mathbf{y}|$ is the distance between observer and source.

• The p', $\partial p'/\partial t$ and $\partial p'/\partial n$ are computed from flow solver.

3

Interpolation of pressure data

Figure 2: The fourth-order WENO polynomial is used to interpolate the data at quadrature points and the four-point Lagrange polynomial is used to interpolate the data at the emission time.

Figure 3: Using the axi-symmetry, the pressure data is copied along the azimuthal direction. We can use the Kirchhoff intergal on a spherical surface to compute the far-field pressure.

Kirchhoff integral on a sphere

We compute the Kirchhoff integral on a spherical surface

$$p'(r,\theta,\phi,t) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} \left[\frac{p'}{r'^2} \frac{\partial r'}{\partial n} - \frac{1}{r'} \frac{\partial p'}{\partial n} + \frac{1}{cr'} \frac{\partial r'}{\partial n} \frac{\partial p'}{\partial \tau} \right]_{\tau} R^2 \sin\theta d\theta d\phi \qquad (2)$$

The above integral is numerically computed using the mid-point rule

$$p'(r,\theta,\phi,t) = \frac{1}{4\pi} \sum_{i}^{N_{\theta}} \sum_{j}^{N_{\phi}} \left[\frac{p'}{r'^{2}} \frac{\partial r'}{\partial n} - \frac{1}{r'} \frac{\partial p'}{\partial n} + \frac{1}{cr'} \frac{\partial r'}{\partial n} \frac{\partial p'}{\partial \tau} \right]_{\tau} R^{2} \sin \theta \Big|_{i,j} \Delta \theta \Delta \phi \tag{3}$$

5

Results: Computation of acoustic waves from Rayleigh collapse

- air bubble in water
- Axi-symmetric domain $\Omega = [-10R, 10R] \times [0, 10R]$
- Radius of the bubble R = 38
- Discretization 500 × 250 cells
- Boundary conditions:
 - top, bottom, left and right boundary — transmissive

Figure 4: Initial condition

Results: Computation of acoustic waves from Rayleigh collapse

- The radius of the spherical Kirchhoff surface is 6R
- The far-field observer point is at (0,9R)
- The number of quadrature points $N_{\theta} = 500$ and $N_{\phi} = 1000$
- The speed of sound in the far-field acoustic medium is given by $\sqrt{\gamma(P+P_{\infty})/\rho}=66.5$

Figure 5: Location of control surface and observer point

Results: Computation of acoustic waves from Rayleigh collapse

observer time, t_0	relative error, $\left \frac{p'_{kirchhoff} - p'_{weno}}{p'_{weno}} \right $
5.00e-03	1.29e-01
6.00e-03	3.99e-02
7.00e-03	6.03e+00

Figure 6: Comparison of acoustic pressure at observer point from flow solver and Kirchhoff solver.

Conclusion

- In this work we have compared the far-field acoustic pressure computed from the flow solver and the Kirchhoff solver for the collapse of a single bubble.
- At observer point (0, 9R) and the observer time, $t_0 = .007$ the relative error is 6.03.
- This shows the Kirchhoff solver does not predict the far-field pressure accurately. This
 might be due to the boundary condition as the observer point is located near the domain
 boundary.

Thank you!