

# Practical Machine Learning

# Day 8: Mar22 DBDA

Kiran Waghmare

# Agenda

- Classification
- Measures for classification
- KNN

### **Problem Statement**

- Titanic dataset
- **Explore:** How does each feature relate to whether a person survives/alives?
- Do the EDA in more detail than usual and explain the results!
  - Splitting: 80-20, stratify: y, random\_state = 0

#### Preprocessing:

- \* Drop decks
- \* Fill in the missing value using a simple imputer
- \* One hot encoding: sex, alone
- \* Ordinal encoding: class
- \* Binary encoding: embark town

#### Model selection:

- \* Evaluation metrics used: F1\_score
- Logistic Regression



| Index | Animal |              |
|-------|--------|--------------|
| 0     | Dog    | One-Hot code |
| 1     | Cat    |              |
| 2     | Sheep  |              |
| 3     | Horse  |              |
| 4     | Lion   |              |

| Index | Dog | Cat | Sheep | Lion | Horse |
|-------|-----|-----|-------|------|-------|
| 0     | 1   | 0   | 0     | 0    | 0     |
| 1     | 0   | 1   | 0     | 0    | 0     |
| 2     | 0   | 0   | 1     | 0    | 0     |
| 3     | 0   | 0   | 0     | 0    | 1     |
| 4     | 0   | 0   | 0     | 1    | 0     |

State (Nominal Scale) Maharashtra Tamil Nadu Delhi Karnataka Gujarat Uttar Pradesh



# Label Encoding

# Food Name Categorical # Calories Apple 1 95 Chicken 2 231 Broccoli 3 50

# One Hot Encoding

| Apple | Chicken | Broccoli | Calories |
|-------|---------|----------|----------|
| 1     | 0       | 0        | 95       |
| 0     | 1       | 0        | 231      |
| 0     | 0       | 1        | 50       |

# Target Mean Encoding

| Height |   | Target |
|--------|---|--------|
| Short  |   | 100    |
| Tall   |   | 50     |
| Short  | , | 70     |
| Medium |   | 60     |

| Height | Target Mean    |
|--------|----------------|
| Short  | (100+70)/2 =85 |
| Medium | 60             |
| Tall   | 50             |

| Height |   | Height |
|--------|---|--------|
| Short  |   | 85     |
| Tall   |   | 50     |
| Short  | , | 85     |
| Medium |   | 60     |

#### Classification

Training dataset:collection of records

-tuple(x,y)

-x:Independent,attribute,predictor,variable,vas

-y:Dependent ,class,response,variable,output



# Amphibians



#### Task:

- -----
- -Learning of a model
- -Mapping of x, y attributes

Numeric, Categorical, Text, Img, Audio, Video



## **General Approach for Building Classification Model**



General Approach for Building Classification Model Association, prob, bayes, hyperplanes Lazy Learners Training Set Learning Algorithm Marital Defaulted Home Annual IID Eager Learners Yes Single 125K 2 Married 100K No No 3 70K Single No No Yes Married 120K No 95K Yes No Divorced Induction: No Married SOK No No "Learn Model" Yes Divorced 220K Yes Single 8514 No Model Married 75K No No No Single 90K Yes Deduction: "Apply Model" Annua Classification Model Evaluation criteria 11 No 55K 12 Yes SOK Divorced 110K 13 Yes Single 14 Single 95K No 15 67K No Married Accuracy Test Set Confusion matrix 

11

2/1/2021

# Performance metrics

Most of the time accuracy will not be enough to assess performance.

• 
$$accuracy = \frac{TP + TN}{P + N}$$

Percentage of correctly classified instances.

• 
$$sensitivity = \frac{TP}{P}$$

The proportion of positives that are correctly identified as such.

• precision= 
$$\frac{TP}{TP+FP}$$

Equivalently, it is the fraction of relevant instances among the selected ones.

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Matthews correlation coefficient (takes into account imbalance)

$$logloss = -rac{1}{N}\sum_{i}^{N}\sum_{j}^{M}y_{ij}\log(p_{ij})$$

N is the number of rows

M is the number of classes

#### 2. Confusion Matrix

#### Actual Values





# Confusion Malviatrix

Confusion Matrix:

y\_pred



y\_test

- a: TP (true positive)
- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)

# **Accuracy**

|                 | PREDICTED CLASS |           |           |
|-----------------|-----------------|-----------|-----------|
|                 |                 | Class=Yes | Class=No  |
| ACTUAL<br>CLASS | Class=Yes       | a<br>(TP) | b<br>(FN) |
|                 | Class=No        | c<br>(FP) | d<br>(TN) |

Accuracy = 
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Most widely-used metric:

# **Alternative Measures**

|        | PREDICTED CLASS |           |          |
|--------|-----------------|-----------|----------|
|        |                 | Class=Yes | Class=No |
| ACTUAL | Class=Yes       | а         | b        |
| CLASS  | Class=No        | С         | d        |

Precision (p) = 
$$\frac{a}{a+c}$$

Recall (r) = 
$$\frac{a}{a+b}$$

F-measure (F) = 
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$