Tutorial 1: Basics

1 Solutions

Exercise 1:

1. Show that $P(n): \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ holds for all integer $n \ge 1$.

Proof Base case: P(n) holds for n = 1 as we have $\sum_{i=1}^{n} i^2 = 1 = \frac{1 \cdot 2 \cdot 3}{6} = 1$. Induction hypothesis (I.H.): Assume that the statement P(k) is true for k, i.e.

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$$

holds.

Induction step: Show that the statement P(k+1) holds for k+1. We have

$$\sum_{i=1}^{k+1} i^2 = (k+1)^2 + \sum_{i=1}^{k} i^2$$

$$=^{I.H.} (k+1)^2 + \frac{k(k+1)(2k+1)}{6}$$

$$= \frac{6 \cdot (k+1)^2 + k(k+1)(2k+1)}{6}$$

$$= \frac{(k+1) \cdot (6(k+1) + k(2k+1)}{6}$$

$$= \frac{(k+1) \cdot (2k^2 + 7k + 6)}{6}$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2k+3)}{6}$$

$$= \frac{(k+1) \cdot (k+2) \cdot (2(k+1) + 1)}{6}$$

which is the right hand side of the statement.

2. Show $fib(n) \leq 2^n$ for all non-negative integers n.

Proof Base case: We have $fib(0) = 0 \le 2^0 = 1$ and $f(1) = 1 \le 2^1 = 2$ and therefore the statement is correct for n = 0 and n = 1.

Induction hypothesis (I.H.): Assume that the statement is true for all i, $0 \le i \le k$ and $k \ge 1$, i.e. $fib(i) \le 2^i$, $0 \le i \le k$, holds.

Induction step: Show that the statement is true for all i, $0 \le i \le k+1$: We have $fib(k+1) = fib(k) + fib(k-1) \le^{I.H.} 2^k + 2^{k-1} \le 2 \cdot 2^k = 2^{k+1}$.

3. Show $\sum_{i=0}^{n} a \cdot r^i = \frac{a(1-r^{(n+1)})}{1-r}$ for all integer $n \ge 0$.

Proof Base case: For n=0, we have $\sum_{i=0}^{n} a \cdot r^{i} = a \cdot r^{0} = a = \frac{a(1-r^{1})}{1-r} = a$.

Induction hypothesis (I.H.): Assume that the statement is true for all $0 \le i \le k$, i.e. $\sum_{i=0}^{i} a \cdot r^i = \frac{a(1-r^{(i+1)})}{1-r}$ holds.

Induction step: Show that the statement is true for all $i, 0 \le i \le k+1$: We have

$$\begin{split} \sum_{i=0}^{k+1} a \cdot r^i &= a \cdot r^{k+1} + \sum_{i=0}^{k} a \cdot r^i \\ &=^{I.H.} a \cdot r^{k+1} + \frac{a(1 - r^{k+1})}{1 - r} \\ &= \frac{(1 - r)a \cdot r^{k+1} + a(1 - r^{k+1})}{1 - r} \\ &= \frac{a((1 - r)r^{k+1} + 1 - r^{k+1})}{1 - r} \\ &= \frac{a(r^{k+1} - r^{k+2} + 1 - r^{(k+1)})}{1 - r} \\ &= \frac{a(1 - r^{k+2})}{1 - r} \end{split}$$

Exercise 2: If g(n) = O(f(n)) then there is a constant c and an n_0 such that for all $n \ge n_0$, we have $g(n) \le cf(n)$. This implies that $g(n) + f(n) \le cf(n) + f(n) = (c+1)f(n)$ for the same choice of c and n_0 . Hence, g(n) + f(n) = O(f(n)).

Exercise 3: Show $n^k = o(c^n)$ for any fixed integer k and any c > 1.

Proof We have to show that for all $c_1 > 0$ the exists an n_0 such that for all $n \ge n_0$ $n^k \le c_1 \cdot c^n$ holds. Let $c_1 > 0$, c > 1, and k be fixed constants. We have

$$n^{k} \leq c_{1} \cdot c^{n}$$

$$\iff \log_{c}(n^{k}) \leq \log_{c}(c_{1} \cdot c^{n})$$

$$\iff k \cdot \log_{c}(n) \leq \log_{c}(c_{1}) + n$$

$$\iff k \cdot \log_{c}(n) - \log_{c}(c_{1}) \leq n$$

k and $\log_c(c_1)$ are constants. Choosing n_0 such that $n_0 \ge k \cdot \log_c(n_0) - \log_c(c_1)$ holds fullfills the condition and we have $n^k \le c_1 \cdot c^n$ for all $n \ge n_0$.