LOG111 Hand-in 3

Frank Tsai

October 11, 2024

1

Proof. By construction, the set $\Gamma_1 \cup \Gamma_2$ is unsatisfiable, so by compactness, there is a finite unsatisfiable subset $\Delta \subseteq \Gamma_1 \cup \Gamma_2$.

Consider

$$\Delta_1 := \Delta \setminus \Gamma_2$$
 $\Delta_2 := \Delta \setminus \Gamma_1$.

We claim that Δ_1 and Δ_2 respectively axiomatize $\mathsf{Th}(\Gamma_1)$ and $\mathsf{Th}(\Gamma_2)$. We prove that this is the case for Δ_1 ; the argument for Δ_2 is completely analogous.

We need to prove that for any formula φ , $\Gamma_1 \vdash \varphi$ iff $\Delta_1 \vdash \varphi$. To this end, it suffices to prove their semantic counterpart by soundness and completeness.

The if direction is an immediate consequence of monotonicity. In the other direction, suppose that $\Gamma_1 \models \varphi$ and let $M \models \Delta_1$. If $M \models \Gamma_1$ then we are done. On the other hand, if $M \not\models \Gamma_1$ then it follows that $M \models \Delta_2$, but this means that $M \models \Delta_1 \cup \Delta_2$ contradicting the fact that $\Delta = \Delta_1 \cup \Delta_2$ is unsatisfiable.

2

1.

$$\frac{c_x < c_y \quad [c_y < c_x]^1}{\frac{c_x < c_x}{\frac{\bot}{c_y \not< c_x}} \underset{RAA_2^1}{R}} T$$

2.

$$(X,R) \not\models \bot$$
 $(X,R) \models c_x < c_y \text{ iff } (x,y) \in R$
$$(X,R) \models c_x \not< c_y \text{ iff } (x,y) \not\in R$$

 Γ \models φ iff for every (X, R), if (X, R) satisfies every formula in Γ then (X, R) satisfies φ .

3. To prove soundness, we can do an induction on the height of the derivation tree.

The base case is immediate. In the induction case, we do a case analysis on the last applied rule. When the last applied rule is RAA₁, the induction hypothesis yields Γ , $c_x \not< c_y \models \bot$. Thus, for any (X, R) satisfying Γ , (X, R) must satisfy $c_x < c_y$, i.e., $\Gamma \models c_x < c_y$.

4. Given a formula φ that is not \bot , we shall use the informal notation $\neg \varphi$ to denote the opposite of φ , e.g., if $\varphi \equiv c_x \not< c_y$ then $\neg \varphi \equiv c_x < c_y$. Note that the set of formulas is enumerable because $X \times X$ is countable. We write $c_{n_1} < c_{n_2}$ or $c_{n_1} \not< c_{n_2}$ for the n-th enumeration.

Construction 1. Let Γ be consistent, we extend Γ by the following process and we name the resulting set Γ^* .

$$\Gamma^* = \left\{ \int \{ \Gamma_n \mid n \in \mathbb{N} \} \right. \qquad \Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n, c_{n_1} < c_{n_2} & \text{if the resulting set is consistent,} \\ \Gamma_n, c_{n_1} \not< c_{n_2} & \text{otherwise.} \end{cases}$$

Lemma 2. If Γ is consistent, then the set Γ^* in Construction 1 is consistent and complete in the sense that for any $a, b \in X$, either $c_a < c_b \in \Gamma^*$ or $c_a \nleq c_b \in \Gamma^*$.

Proof. Completeness is evident: if the pair (n_1, n_2) names $(a, b) \in X \times X$, then either $c_a < c_b$ or $c_a \nleq c_b$ is added at step n + 1.

Now, we show that each Γ_n is consistent. We proceed by induction on n. The base case is trivial. In the induction step, if $\Gamma_{n+1} = \Gamma_n$, $c_{n_1} < c_{n_2}$ then there is nothing left to prove.

If $\Gamma_{n+1} = \Gamma_n$, $c_{n_1} \not< c_{n_2}$, then Γ_n , $c_{n_1} < c_{n_2} \vdash \bot$ by construction. Suppose that Γ_n , $c_{n_1} \not< c_{n_2} \vdash \bot$. Then we have a derivation of $\Gamma_n \vdash c_{n_1} < c_{n_2}$ as follows.

$$\begin{bmatrix} c_{n_1} \not< c_{n_2} \end{bmatrix}$$

$$\vdots$$

$$\frac{\bot}{c_{n_1} < c_{n_2}} ARR$$

Cutting the derivations of Γ_n , $c_{n_1} < c_{n_2} \vdash \bot$ and $\Gamma_n \vdash c_{n_1} < c_{n_2}$ gives a derivation of $\Gamma_n \vdash \bot$. This contradicts the induction hypothesis.

Now suppose that $\Gamma^* \vdash \bot$ then there is an inconsistent subset $\Gamma' \subseteq \Gamma^*$, rendering Γ_n for some n inconsistent. This gives a contradiction.

Lemma 3. *If* Γ *is consistent then* Γ *has a model. Moreover, if* $\Gamma \not\vdash \varphi$ *, then this model also satisfies* $\neg \varphi$ *, where* φ *is not* \bot .

Proof. By Lemma 2, Γ^* is consistent and complete. Consider the following relation.

$$R = \{(x, y) \mid c_x < c_y \in \Gamma^*\}$$

We postpone the additional proof obligations for irreflexivity and transitivity.

To show that $(X,R) \models \Gamma$, it suffices to show that $(X,R) \models \Gamma^*$. Let $\varphi \in \Gamma^*$. Note that it must be either $c_x < c_y$ or $c_x \not< c_y$ because Γ^* is consistent. In the former case, there is nothing left to prove. In the latter case, suppose that $(x,y) \in R$. Then by definition $c_x < c_y \in \Gamma^*$. This yields $\Gamma^* \vdash \bot$ as follows.

$$\frac{c_x < c_y \quad c_x \not< c_y}{\bot} \perp$$

This is a contradiction.

It remains to show the second half of the statement. Note that if $\Gamma \nvdash \varphi$, then $\Gamma, \neg \varphi$ is consistent because if $\Gamma, \neg \varphi \vdash \bot$ then we would have a derivation of $\Gamma \vdash \varphi$.

$$[\neg \varphi]$$
 \vdots
 $\frac{\perp}{\varphi}$ RAA

Thus, $\neg \varphi$ has to be added to Γ^* at some point. Then it follows by construction that $(X, R) \models \neg \varphi$.

Proof of irreflexivity. If $(x, x) \in R$, then by definition $c_x < c_x \in \Gamma^*$. But this means that there is a derivation of $\Gamma^* \vdash \bot$.

$$\frac{c_x < c_x}{\perp}$$
 R

This contradicts the fact that Γ^* is consistent.

Proof of transitivity. Let $(x,y), (y,z) \in R$. We need to show that $(x,z) \in R$. By completeness, either $c_x < c_z \in \Gamma^*$ or $c_x \not< c_z \in \Gamma^*$. In the former case, there is nothing left to prove. On the other hand, if $c_x \not< c_z \in \Gamma^*$ then we have a derivation of $\Gamma^* \vdash \bot$.

$$\frac{c_x < c_y \qquad c_y < c_z}{\frac{c_x < c_z}{\bot}} \text{ T} \qquad c_x \not< c_z \quad \bot$$

This contradicts the fact that Γ^* is consistent.

Theorem 4 (Completeness). *If* $\Gamma \models \varphi$ *then* $\Gamma \vdash \varphi$.

Proof. Suppose that $\Gamma \nvDash \varphi$ and that $\Gamma \vDash \varphi$. The first assumption implies that Γ is consistent, so by Lemma 3, Γ has a model (X,R) which also satisfies $\neg \varphi$. But this is a contradiction because (X,R) must satisfy its opposite φ by the second assumption.

5. *Proof.* It suffices to repair the induction step of Lemma 2. The proof of the first half of Lemma 3 goes through without any problem.

There is nothing to repair in the first case of the induction step. In the second case, we know that $\Gamma_n, c_{n_1} < c_{n_2} \vdash_i \bot$. Suppose that $\Gamma_n, c_{n_1} \not< c_{n_2} \vdash_i \bot$. Let us consider the last rule of this derivation. Only R and \bot are immediately applicable.

The premise of R is a positive formula, so it must come from Γ_n . But this is impossible because Γ_n is consistent by the induction hypothesis. Thus, we can rule out R.

The only applicable rule is \bot . This rule demands $c_{n_1} < c_{n_2}$, so we must have a derivation of $\Gamma_n \vdash_i c_{n_1} < c_{n_2}$. But this means that Γ_n is not consistent after all.

6. Note that the intuitionistic fragment cannot derive negative formulas, so consider $c_x < c_y \models c_x \not< c_y$. This clearly holds. In fact, Problem A and soundness imply this.