Machine learning/ Loan Default Prediction

By Supasit Vitooraporn

Loan Default Prediction Dataset:

Home Equity loan (HMEQ)

- The Home Equity dataset (HMEQ) contains baseline and loan performance information for 5,960 recent home equity loans
- The target (BAD) is a binary variable that indicates whether an applicant has ultimately defaulted or has been severely delinquent.
- This adverse outcome occurred in **1,189 cases (20 percent).**
- **12 input variables** were registered for each applicant.

Problem Definition:

Overview

Important Metrics:

Home Equity loan (HMEQ)

Best performance metric that best fits the business objectives: Recall and Accuracy

a. Recall

i. measures the ability of a model to correctly identify the actual positive cases. A high recall means that the model can effectively identify borrowers who are actually at risk of defaulting on their loans.

b. Accuracy

- i. measures the overall correctness of a model's predictions. High accuracy means that the model is making correct predictions for both positive and negative cases.
- The bank wants to maximize the recall. The greater the recall score, the higher chance to minimize the False Negative case that results in defaulted loans.

Solution Approach:

Steps to find the optimal outcome

Proposed Model Algorithms:

Model Solutions

Model performances:

Logistic Regression

Baseline model

Accuracy P		Precision	Recall	F1-score
	0.61	0.58	0.63	0.56

Tuned Model

670.00	746.00
94.00	278.00

Accuracy Precision		Recall	F1-score	
0.53	0.57	0.61	0.51	

137 00

Decision Tree

(Overfitting)

1279 00

Accuracy Precision 0.85 0.78		Recall	F1-score	
		0.76	0.77	

Accuracy	Precision	Recall	F1-score
0.87	0.80	0.82	0.80

Random Forest

(Overfitting)

Accuracy Precision		Recall	F1-score	
0.89	0.86	0.80	0.82	

1310.00	106.00
92.00	280.00

Accuracy	Precision	Recall	F1-score
0.89	0.83	0.84	0.83

Comparison of techniques:

	Precision	Recall	Accuracy	Pros	Cons
Logistic regression model	0.584796	0.627893	0.606823	-	
Logistic regression model using 0.6 threshold	0.584796	0.627893	0.606823		Extremely low recall
Logistic regression model using 0.45 threshold	0.584796	0.627893	0.606823		
Decision Tree	0.779942	0.757495	0.852908	Interpretable	Low recall
Tuned Decision Tree	0.795514	0.815872	0.86689	Interpretable	Lower recall
Random Forest	0.860074	0.797783	0.893177	High accuracy	Lower recall
Balanced Random Forest	0.856855	0.782714	0.888143	High accuracy	Lower recall
Tuned Random Forest	0.829884	0.838915	0.889262	Highest recall*	Non-interpretable
XGBoost	0.865233	0.797852	0.894855	Highest accuracy	Lower recall
KNN	0.786685	0.572592	0.814318	-	Lowest recall
Tuned KNN	0.681039	0.605317	0.798658	-	Extremely low recall

Importance Features:

Model Solutions

Model selection:

Model Solutions

Best model: Tuned Random Forest (Highest Recall, Second highest Accuracy).

a. Accuracy: 0.89b. Recall: 0.84c. Precision: 0.83

Both Decision tree and random forest shared the same most importance features.

Executive Summary:

Home Equity loan (HMEQ)

- A decision tree model can predict loan defaulters 74% of the time they come to ask for a home loan.
- **Debt-to-income ratio** is the most important driver for defaulting or repaying a loan. The bank should consider this as a top feature to consider while processing a loan, but also the one with the most missing data (21.3%) which is similar to the proportion of defaulted customers (20%)
- The bank should consider CLAGE, VALUE, LOAN, MORTDUE, and CLNO as a set of features that have a high impact on defaulting on a loan.
- It is recommendable to explore the possibility to create an alternative business process to manage and take decisions on those clients with no Debt/Income ratio available.

Recommendations:

Home Equity loan (HMEQ)

- Best model: Tuned Random Forest (Highest Recall)
- Best performance metric that best fits the business objectives: Recall and Accuracy
- Check the possibility to create an alternative business process to manage and take decisions on those clients with no Debt/Income ratio available.
- Explore other machine learning techniques such as engineering features, dropping columns, support vector machine, neural networks, among others.
- Create a pilot test with new model and compare the results with the current manual process before completing the transition to the new model.
- Check if there is a way to complete the missing values in the dataset.

