SCREEN SHOTS

ABSTRACT

Malicious social bots generate fake tweets and automate their social relationships either by pretending like a follower or by creating multiple fake accounts with malicious activities. Moreover, malicious social bots post shortened malicious URLs in the tweet in order to redirect the requests of online social networking participants to some malicious servers. Hence, distinguishing malicious social bots from legitimate users is one of the most important tasks in the Twitter network. To detect malicious social bots, extracting URL-based features (such as URL redirection, frequency of shared URLs, and spam content in URL) consumes less amount of time in comparison with social graph-based features (which rely on the social interactions of users). Furthermore, malicious social bots cannot easily manipulate URL redirection chains. In this article, a learning automata-based malicious social bot detection (LA-MSBD) algorithm is proposed by integrating a trust computation model with URL-based features for identifying trustworthy participants (users) in the Twitter network. The proposed trust computation model contains two parameters, namely, direct trust and indirect trust. Moreover, the direct trust is derived from Bayes' theorem, and the indirect trust is derived from the Dempster- Shafer theory (DST) to determine the trustworthiness of each participant accurately. Experimentation has been performed on two Twitter data sets, and the results illustrate that the proposed algorithm achieves improvement in precision, recall, F-measure, and accuracy compared with existing approaches for MSBD.

MALICIOUS HOME ABSTRACT UPLOAD LOGIN REGISTER ADMIN

ABSTRACT

Malicious social bots generate fake tweets and automate their social relationships either by pretending like a follower or by creating multiple fake accounts with malicious activities. Moreover, malicious social bots post shortened malicious URLs in the tweet in order to redirect the requests of online social networking participants to some malicious servers. Hence, distinguishing malicious social bots from legitimate users is one of the most important tasks in the Twitter network. To detect malicious social bots, extracting URL-based features (such as URL redirection, frequency of shared URLs, and spam content in URL) consumes less amount of time in comparison with social graph-based features (which rely on the social interactions of users). Furthermore, malicious social bots cannot easily manipulate URL redirection chains. In this article, a learning automata-based malicious social bot detection (LA-MSBD) algorithm is proposed by integrating a trust computation model with URL-based features for identifying trustworthy participants (users) in the Twitter network. The proposed trust computation model contains two parameters, namely, direct trust and indirect trust. Moreover, the direct trust is derived from Bayes' theorem, and the indirect trust is derived from the Dempster- Shafer theory (DST) to determine the trustworthiness of each participant accurately. Experimentation has been performed on two Twitter data sets, and the results illustrate that the proposed algorithm achieves improvement in precision, recall, F-measure, and accuracy compared with existing approaches for MSBD.

UPLOAD

Browse...

Upload

MALICIOUS

MALICIOUS	номе	ABSTRACT	UPLOAD

	URL Label
)9dca5664cce6f317373/index.php?cmd=_profile-ach&outdated_page_tmpl=p/gen/failed-to-load&nav=0.5.1&login_access=1322408526	Malicious
cgi-bin/webscrcmd=_home-customer&nav=1/loading.php	Malicious
11dsf654321874/href/href/href/secure/center/update/limit/seccure/4d7a1ff5c55825a2e632a679c2fd5353/	Malicious
ww.online.americanexpress.com/index.html	Malicious
'includes/temp/promocoessmiles/?84784787824HDJNDJDSJSHD//2724782784/	Malicious
oegol.servebbs.org/voegol.php	Malicious
essing.com/includes/boleto-2via-07-2012.php	Malicious
1/v1/js/jih321/bpd.com.do/do/l.popular.php	Malicious
super1000.info/docs	Malicious
ogin.php?cmd=_login-run&dispatch=1471c4bdb044ae2be9e2fc3ec514b88b1471c4bdb044ae2be9e2fc3ec514b88b	个 Malicious

REGISTER

Username :	jp
Email ID :	jp@gmail.com
Password :	•••••
	submit

Detection of Malicious Social Bots Using r	nachine Learning
MALICIOUS	LOGIN REGISTER

	LOGIN
Username :	jp
Password :	•••••
	Login

YOUR PROFILE DETAILS

Your name :	jp	
Your email :	jp@gmail.com	
Password :	Sandy@123	

TWEET

view this video https://www.youtube.com/

Predict

TWEET

check this https://www.dataca	mp.com/
	al
@јр	
https://www.youtube.com/	
	al
@jp	

 \uparrow

REGISTER DETAILS

user_id	user_name	Email	password
1	sathish	sathish@gmail.com	Sandy@123
2	santhosh	sonsandy1993@gmail.com	Sandy@123
3	jp	jp@gmail.com	Sandy@123

FULL DETAILS USERS

user_id	user_name	Email	tweets	prediction	status	action
2	santhosh	sonsandy1993@gmail.com	check this https://www.datacamp.com/	No Malicious	Approved	Block
1	sathish	sathish@gmail.com	https://www.pexels.com/	No Malicious	Blocked	Block
1	sathish	sathish@gmail.com	views this product website http://citeceramica.com/	Malicious	Blocked	Block
3	jp	jp@gmail.com	https://www.youtube.com/	No Malicious	Approved	Block
3	jp	jp@gmail.com	view this video https://www.youtube.com/	No Malicious	Approved	Block

 \uparrow

ANALYSIS

ABSTRACT

Malicious social bots generate fake tweets and automate their social relationships either by pretending like a follower or by creating multiple fake accounts with malicious activities. Moreover, malicious social bots post shortened malicious URLs in the tweet in order to redirect the requests of online social networking participants to some malicious servers. Hence, distinguishing malicious social bots from legitimate users is one of the most important tasks in the Twitter network. To detect malicious social bots, extracting URL-based features (such as URL redirection, frequency of shared URLs, and spam content in URL) consumes less amount of time in comparison with social graph-based features (which rely on the social interactions of users). Furthermore, malicious social bots cannot easily manipulate URL redirection chains. In this article, a learning automata-based malicious social bot detection (LA-MSBD) algorithm is proposed by integrating a trust computation model with URL-based features for identifying trustworthy participants (users) in the Twitter network. The proposed trust computation model contains two parameters, namely, direct trust and indirect trust. Moreover, the direct trust is derived from Bayes' theorem, and the indirect trust is derived from the Dempster- Shafer theory (DST) to determine the trustworthiness of each participant accurately. Experimentation has been performed on two Twitter data sets, and the results illustrate that the proposed algorithm achieves improvement in precision, recall, F-measure, and accuracy compared with existing approaches for MSBD.