Formula Sheet for CSCI-3327-001 Probability and Applied Stats

Formulas taken from Wackerly, D., Mendenhall, W., & Scheaffer, R. (2008). *Mathematical Statistics with Applications* (7th ed.). Thomson Brooks/Cole.

Definition 4.1 - Probability Distribution for a Continuous Random Variable

"Let Y denote any random variable. The distribution function of Y, denoted by F(y), is such that $F(y) = P(Y \le y)$ for $-\infty < y < \infty$ " (Wackerly et al., 2008, p. 158).

Theorem 4.1 - Properties of a Distribution Function

- 1. $F(-\infty) \equiv \lim_{y \to -\infty} F(y) = 0$
- 2. $F(\infty) \equiv \lim_{y \to \infty} F(y) = 1$
- 3. F(y) is a nondecreasing function of y. [If y_1 and y_2 are any values such that $y_1 < y_2$, then $F(y_1) \le F(y_2)$.]

"If F(y) is a distribution function, then..." (Wackerly et al., 2008, p. 160).

Definition 4.3 - Probability Density Function

$$f(y) = \frac{dF(y)}{dy} = F'(y)$$

"Let F(y) be the distribution function for a continuous random variable Y. Then f(y)...is called the *probability density function* for the random variable Y" (Wackerly et al., 2008, p. 161).

Theorem 4.2 - Properties of PDF

- 1. $f(y) \ge 0$ for all $y, -\infty < y < \infty$
- $2. \int_{-\infty}^{\infty} f(y) dy = 1$

"If f(y) is a density function for a continuous random variable then..." (Wackerly et al., 2008, p. 162).

Theorem 4.3 - PDF for Interval

$$P(a \le Y \le b) = \int_{a}^{b} f(y)dy$$

"If the random variable Y has density function f(y) and a < b, then the probability that Y falls in the interval [a, b] is..." (Wackerly et al., 2008, p. 164).

Definition 4.5 - Expected Value of Continuous RV

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy$$

(Wackerly et al., 2008, p. 170).

Example 4.6 - Expected Variance of Continuous RV

$$\sigma^2 = V(Y) = E(Y^2) - [E(Y)]^2$$

(Wackerly et al., 2008, p. 171).

Definition 4.6 - Continuous Uniform Probability Distribution

$$f(y) = \frac{1}{\theta_2 - \theta_1}, \ \theta_1 \le y \le \theta_2$$

0, elsewhere

"If $\theta_1 < \theta_2$, a random variable *Y* is said to have a continuous *uniform probability distribution* on the interval (θ_1, θ_2) if an only of the density function of *Y* is..." (Wackerly et al., 2008, p. 174).

Theorem 4.6 - Expected Value and Expected Variance of Uniform PD

$$\mu = E(Y) = \frac{\theta_1 + \theta_2}{2}$$
 and $\sigma^2 = V(Y) = \frac{(\theta_2 - \theta_1)^2}{12}$

"If $\theta_1 < \theta_2$, and *Y* is a random variable uniformly distributed on the interval (θ_1, θ_2) , then..." (Wackerly et al., 2008, p. 176).

Definition 5.1 - Joint (or Bivariate) Probability Function

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2), -\infty < y_1 < \infty, -\infty < y_2 < \infty$$

"Let Y_1 and Y_2 be discrete random variables. The *joint* (or bivariate) *probability function* for Y_1 and Y_2 is given by..." (Wackerly et al., 2008, p. 225).

Theorem 5.1

1.
$$p(y_1, y_2) \ge 0$$
 for all y_1, y_2 .

2. $\sum_{y_1, y_2} p(y_1, y_2) = 1$, where the sum is over all values (y_1, y_2) that are assigned

nonzero probabilities.

"If Y_1 and Y_2 are discrete random variables with joint probability function $p(y_1, y_2)$, then..." (Wackerly et al., 2008, p. 225).

Example of Joint Probabilities - Die-tossing Experiment

$$P(2 \le Y_1 \le 3, \ 1 \le Y_2 \le 2) = p(2, \ 1) + p(2, \ 2) + p(3, \ 1) + p(3, \ 2)$$

= $\frac{4}{36} = \frac{1}{9}$

"For the die-tossing experiment, $P(2 \le Y_1 \le 3, 1 \le Y_2 \le 2)$ is..."

Definition 5.2 - Joint (Bivariate) Distribution Function

$$F(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2), -\infty < y_1 < \infty, -\infty < y_2 < \infty$$

"For any random variables Y_1 and Y_2 , the joint (bivariate) distribution function $F(y_1, y_2)$ is..." (Wackerly et al., 2008, p. 226).

Definition 5.3 - Jointly Continuous

$$F(y_1, y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1, t_2) dt_2 dt_1$$

"Let Y_1 and Y_2 be continuous random variables with joint distribution function $F(y_1, y_2)$. If there exists a nonnegative function $f(y_1, y_2)$ such that... for all

 $-\infty < y_1 < \infty$, $-\infty < y_2 < \infty$, then Y_1 and Y_2 are said to be *jointly continuous random variables*. The function $f(y_1, y_2)$ is called the *joint probability density function*" (Wackerly et al., 2008, p. 227).

NOTE: The next two theorems (<u>Theorem 5.2 - Joint Distribution Function</u> and <u>Theorem 5.2 - Joint Density Function</u>) are both Theorem 5.2 in the 2008 Wackerly Textbook, thus I have changed the second **Definition 5.2** to **Definition 5.3**.

Theorem 5.2 - Joint Distribution Function

1.
$$F(-\infty, \infty) = F(-\infty, y_2) = F(y_1, -\infty) = 0$$

2.
$$F(\infty, \infty) = 1$$

3. If
$$y_1^* \ge y_1$$
 and $y_2^* \ge y_2$, then

$$F(y_1^*, y_2^*) - F(y_1, y_2) - F(y_1, y_2^*) + F(y_1, y_2) \ge 0$$

"If Y_1 and Y_2 are random variables with joint distribution function $F(y_1, y_2)$, then..." (Wackerly et al., 2008, p. 228).

Theorem 5.3 - Joint Density Function

1.
$$f(y_1, y_2) \ge 0$$
 for all y_1, y_2 .

2.
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2 = 1$$

"If Y_1 and Y_2 are jointly continuous random variables with a joint density function given by $f(y_1, y_2)$, then..." (Wackerly et al., 2008, p. 228).

Definition 5.4a - Marginal Probability Functions

$$p_1(y_1) = \sum_{all \, y_2} p(y_1, y_2)$$
 and $p_2(y_2) = \sum_{all \, y_1} p(y_1, y_2)$

"Let Y_1 and Y_2 be jointly discrete random variables with probability function $p(y_1, y_2)$. Then the marginal probability functions of Y_1 and Y_2 , respectively, are given by..." (Wackerly et al., 2008, p. 236).

Definition 5.4b - Marginal Density Functions

$$f_1(y_1) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_2$$
 and $f_2(y_2) = \int_{-\infty}^{\infty} f(y_1, y_2) dy_1$

"Let Y_1 and Y_2 be jointly continuous random variables with joint density function $f(y_1, y_2)$. Then the *marginal density functions* of Y_1 and Y_2 , respectively, are given by..." (Wackerly et al., 2008, p. 236).

Definition 5.5 - Conditional Discrete Probability

$$p(y_1|y_2) = P(Y_1 = y_1 | Y_2 = y_2) = \frac{P(Y_1 = y_1, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{p(y_1, y_2)}{p_2(y_2)}$$

"If Y_1 and Y_2 are jointly discrete random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively, then the *conditional discrete* probability function of Y_1 given Y_2 is... provided that $p_2(y_2) > 0$ " (Wackerly et al., 2008, p. 239).

Definition 5.6 - Conditional Distribution Function

$$F(y_1 | y_2) = P(Y_1 \le y_1 | Y_2 = y_2)$$

"If Y_1 and Y_2 are jointly continuous random variables with joint density function $f(y_1, y_2)$, then the *conditional distribution function* of Y_1 given $Y_2 = y_2$ is..." (Wackerly et al., 2008, p. 240).

Definition 5.7a - Conditional Density of \boldsymbol{Y}_1 Given $\boldsymbol{Y}_2 = \boldsymbol{y}_2$

$$f(y_1|y_2) = \frac{f(y_1, y_2)}{f_2(y_2)}$$

"Let Y_1 and Y_2 be jointly continuous random variables with joint density $f(y_1, y_2)$ and marginal densities $f_1(y_1)$ and $f_2(y_2)$, respectively. For any y_2 such that $f_2(y_2) > 0$, the conditional density... given by..." (Wackerly et al., 2008, p. 241).

Definition 5.7b - Conditional Density of Y_2 **Given** $Y_1 = y_1$

$$f(y_2|y_1) = \frac{f(y_1, y_2)}{f_1(y_1)}$$

"... for any y_1 such that $f_1(y_1) > 0$, the conditional density... given by..." (Wackerly et al., 2008, p. 241)." (Wackerly et al., 2008, p. 240).

Definition 5.8 - Distribution Functions Independent

$$F(y_1, y_2) = F_1(y_1)F_2(y_2)$$

"Let Y_1 have distribution function $F_1(y_1)$, F_2 have distribution function $F_2(y_2)$, and Y_1 and Y_2 have joining distribution function $F(y_1, y_2)$. Then Y_1 and Y_2 are said to be *independent* if and only if...for every pair of real numbers (y_1, y_2) " (Wackerly et al., 2008, p. 247).

Theorem 5.4a - Probability Functions Independent

$$p(y_1, y_2) = p_1(y_1) p_2(y_2)$$

"If Y_1 and Y_2 are discrete random variables with joint probability function $p(y_1, y_2)$ and marginal probability functions $p_1(y_1)$ and $p_2(y_2)$, respectively, then Y_1 and Y_2 are independent if and only if...for all pairs of real numbers (y_1, y_2) " (Wackerly et al., 2008, p. 247).

Theorem 5.4b - Density Functions Independent

$$f(y_1, y_2) = f_1(y_1) f_2(y_2)$$

"If Y_1 and Y_2 are continuous random variables with joint density function $f(y_1, y_2)$ and marginal density functions $f_1(y_1)$ and $f_2(y_2)$, respectively, then Y_1 and Y_2 are independent if and only if...for all pairs of real numbers (y_1, y_2) " (Wackerly et al., 2008, p. 248).

Theorem 5.5 - Basically Can Split a Function

$$f(y_1, y_2) = g(y_1) h(y_2)$$

"Let Y_1 and Y_2 have a joint density $f(y_1, y_2)$ that is positive if and only if $a \le y_1 \le b$ and $c \le y_1 \le d$, for constants a, b, c, and d; and $f(y_1, y_2) = 0$ otherwise. Then Y_1 and Y_2 are independent random variables if and only if...where $g(y_1)$ is a nonnegative function of y_1 alone and $h(y_2)$ is a nonnegative function of y_2 alone" (Wackerly et al., 2008, p. 250).