Cryptographic Random Numbers

random numbers

a sequence of uniformly distributed numbers over a defined set predicting future values based on what has been observed in the past is impossible

in computers?

generating, impossible

random number generators don't produce a random sequence because of their deterministic nature if something is predictable, it cannot be random

types of random numbers

pseudo-random sequences

a sequence of random numbers that looks random

and passes all the statistical tests of randomness

but these numbers are not safe for cryptographic purposes

cryptographically secure pseudo-random sequences

pseudo-random and unpredictable

given the algorithm, hardware, all previous bits in the stream, etc

it is still infeasible to predict the next outcome

these numbers are considered cryptographically secure

real random sequences

cryptographically secure pseudo-random and cannot be reproduced

computers cannot produce a real random sequence of numbers

usually, some external data (e.g., radioactive decay information, mouse movement, etc) is used e.g., lava lamps at Cloudflare

https://blog.cloudflare.com/randomness-101-lavarand-in-production/

random numbers are heavily used in cryptography

especially for key generation

the security of most cryptosystems depends on the quality of the random number sequence it uses

seed

an integer that acts as the starting point to generate a series of random numbers a unique seed produces a unique sequence of random numbers

that is repeatable!

therefore, not secure for cryptographic purposes

how/why is this useful?

philosophical question: does anything truly random even exist?

Python examples