COMP0014 Tutorial 1

Changmin Yu

Basic Linear Algebra

Vector Space

A vector space over a field (e.g., \mathbb{R} or \mathbb{C}) is a set V of elements, or 'vectors', together with two binary operators.

- vector addition denoted for $v_1, v_2 \in V$ by $v_1 + v_2$, where $v_1 + v_2 \in V$, i.e., a vector space is closed under addition.
- scalar multiplication denoted for $\lambda \in \mathbb{R}$ and $v \in V$ by λv , where $\lambda v \in V$, so that the vector space is closed under scalar multiplication.

Vector spaces satisfy the following 8 rules:

• Addition is commutative, i.e. for all $v_1, v_2 \in V$

$$v_1 + v_2 = v_2 + v_1 \tag{1}$$

• Addition is associative, i.e. for all $v_1, v_2, v_3 \in V$

$$v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3 \tag{2}$$

• There exists a unique element $0 \in V$, called the null or zero vector, such that for all $v \in V$

$$v + 0 = v \tag{3}$$

• For all $v \in V$ there exists an additive negative or inverse vector $v' \in V$ such that

$$v + v' = 0 \tag{4}$$

• Scalar multiplication is distributive over scalar addition, i.e. for all $\lambda, \mu \in \mathbb{R}$, and $v \in V$

$$(\lambda + \mu)v = \lambda v + \mu v \tag{5}$$

• Scalar multiplication is distributive over vector addition, i.e. for all $\lambda \in \mathbb{R}$ and $v_1, v_2 \in V$

$$\lambda(v_1 + v_2) = \lambda v_1 + \lambda v_2 \tag{6}$$

• Scalar multiplication of vectors is 'associative', i.e. for all $\lambda, \mu \in \mathbb{R}$ and $v \in V$

$$\lambda(\mu v) = (\lambda \mu)v \tag{7}$$

• Scalar multiplication has an identity element, i.e. for all $v \in V$

$$1 \cdot v = v \tag{8}$$

where 1 is the multiplicative identity in \mathbb{R} .

Spanning Sets, Linear Independence, Bases

First consider 2-dimensional space, \mathbb{R}^2 , an origin O, and two non-zero and non-parallel vectors v_1 and v_2 . Then any vector $v \in \mathbb{R}^2$, we have

$$v = \lambda v_1 + \mu v_2 \tag{9}$$

for scalars $\lambda, \mu \in \mathbb{R}$. We say that the set $\{v_1, v_2\}$ spans the set of vectors lying in \mathbb{R}^2 .

Definition: Spanning set. We say that $S = \{v_1, \dots, v_n\}$ spans a vector space V if for all $v \in V$, v can be expressed as a linear combination of the vectors in S, i.e. for all $v \in V$

$$v = \sum_{i=1}^{n} \lambda_i v_i \tag{10}$$

where $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. In such cases, we say that S spans V.

Definition: Linear independence A set of vectors $S = \{v_1, \ldots, v_n\}$ is said to be a linearly independent set if

$$\sum_{i=1}^{n} \lambda_i v_i = 0 \quad \Rightarrow \quad \lambda_i = 0, \quad i = 1, \dots, n$$
 (11)

Definition: Basis We say that the set $S = \{v_1, \ldots, v_n\}$ is a basis for a vector space if S is a spanning set and S is linearly independent.