

□ (+86) 1867-2958-964 | ■ xuenan@whu.edu.cn | ★ cherubicxn.github.io | ☑ cherubicXN

Education

PhD Student Wuhan University

STRUCTURE-FROM-MOTION, JUNCTION DETECTION AND DEEP LEARNING

Wuhan, China

Sep. 2016 - present

Master Student Wuhan University

STRUCTURE-FROM-MOTION, MULTIVIEW GEOMETRY

Wuhan, China

Sep. 2014 - Jun. 2016

Research Intern Wuhan University

POLAR-SAR IMAGE DENOISING

Wuhan, China

Nov. 2013 - Aug. 2014

Sep. 2010 - Jun. 2014

Bachelor of Science Wuhan University

COMPUTATIONAL MATHEMATICS Wuhan, China

Research Experience

I was started my research since Nov. 2013 under the supervision of Prof. Gui-Song Xia and Liangpei Zhang. During the research intern period, we proposed a *complex tensor diffusion* method for PolSAR image denoising. After that, I started to study the *multiview geometry*, *structure-from-motion* and some multiview stereo knowledges. In this period, I developed a small SfM system to reconstruct 3D geometry and track camera poses from images taken by UAVs. When I studied the multiview geometry, I found that existing SfM systems heavily rely on the correspondences of key-points (e.g. SIFT, Harris-Affine, etc.), which is not appropriate in indoor scenes. Different from the key-points, the junctions are more salient in indoor scenes. Motivated by this, we started to develop an algorithm for matching junctions in *indoor scenes* and we proposed a new junction model ASJ (anisotropic scale junction) and its detection algorithm based on the *a-contrario* models. Benefiting from the affine-invariant property of the proposed ASJ, we developed a method to match ASJs and outperforms all other methods in indoor scenes.

Complex Tensor Diffusion for PolSAR Images

- Proposed a mathematical model from complex tensor diffusion.
- · Applied the proposed model to PolSAR image denoising.

Structure-from-Motion System

- Implemented the basic algorithms for multiview-geometry.
- Developed an incremental SfM system which can reconstruct a sparse 3D model and camera poses from photo collections or video sequences.

Dense Reconstruction for Light-reflecting Scenes (Industry Project)

- Implemented a RGB-D SLAM system for reconstructing 3D geometry and tracking camera poses in real-time.
- Implemented a surface reconstruction system to estimate the surfaces from pointclouds.
- Deployed the RGB-D SLAM in Nvidia Jetson TX1 platform.

Anisotropic-scale Junction Detection and Matching for Indoor Scene

- Proposed a new junction model (ASJ) and an a-contrario model to detect ASJs.
- Developed an efficient scheme for making the correspondence of anisotropic-scale junctions.
- Outperforms the state-of-the-art in indoor image matching.

Panoroma stitching for Multiple fisheye camera system (Industry Project)

- Proposed an engineering method to estimate camera poses for extremely large FOV cameras.
- Developed a program to estimate the relative camera poses between 4 fisheye cameras.
- Stitching panoroma images from 4 fisheye cameras in real-time.

Honors & Awards

2016	Second Prize (top 10%), Scholarship for Graduate Students	Wuhan University
2015	Second Prize (top 10%), Scholarship for Graduate Students	Wuhan University
2014	Scholarship for Excellent Freshman	Wuhan University
2013	Second Prize (top 10%), RenMin Scholarship	Wuhan University
2012	Meritorious Winner (top 9%), The American Mathematical Contest in Modeling	American Consortium
		for Math. and Its Appl.
2009	First Prize National Olympiad in Informatics in Provinces	China Computer
		Federation (CCF)
2008	Second Prize National Olympiad in Informatics in Provinces	China Computer
		Federation (CCF)

Skills.

COMPUTER

- Good at C, C++, Matlab, Python and TeX.
- Familiar with Mathematic and Maple.
- Experienced in developing algorithms at Unix/Linux with CMake, Make.

DEEP LEARNING

• Good at TensorFlow, CaffeLibrary and pyTorch

MATHEMATICS

Calculus and Analysis, Linear Algebra and Abstract Algebra, Probability and Statistics, Differential Equations, Differential Geometry, Multiview Geometry, Variational Calculus

INFORMATICS

• Image Processing, Computer Vision, Scientific Computing, Data Structure, Machine Learning

LANGUAGE

- Mandarin Chinese (mother tongue)
- English (Fluent)

Academic Publications

- [1] Fudong Wang, **Nan Xue**, Yipeng Zhang, and Gui-Song Xia. Adaptively transporting graph matching. In *submitted to European Conference on Computer Vision*, 2018.
- [2] **Nan Xue**, Gui-Song Xia, Xiang Bai, Liangpei Zhang, and Weiming Shen. Anisotropic-scale junction detection and matching for indoor images. *IEEE Transactions on Image Processing*, 27(1):78–91, 2017.
- [3] Bowen Xu, **Nan Xue**, Gui-Song Xia, and Liangpei Zhang. Finding edges of buildings via a junction process in high-resolution remotely sensed images. In *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2015.
- [4] Gui-Song Xia, **Nan Xue**, Zifeng Wang, and Liangpei Zhang. Anisotropic diffusion on complex tensor fields for polsar image filtering. *Geomatics and Information Science of Wuhan Universit (in Chinese)*, 2015.
- [5] **Nan Xue**, Gui-Song Xia, and Liangpei Zhang. Anisotropic diffusion on complex tensor fields for polsar image filtering. In *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2014.
- [6] Gang Liu, Gui-Song Xia, Wen Yang, and **Nan Xue**. Sar image segmentation via non-local active contours. In *IEEE International Geoscience and Remote Sensing Symposium (IGARSS)*, 2014.