

Introduction

ECE 449, Machine Learning

Classification

• From data to discrete classes

Examples: Spam Filtering

Data

Welcome to New Media Installation: Art that Learns

Natural _LoseWeight SuperFood Endorsed by Oprah Winfrey, Free Trial 1 bottle, pay only \$5.95 for shipping mfw rlk $_{\mbox{\tiny Spam}}$ $|\times$

Prediction

Spam/Not Spam

Examples: Image Classification

Examples: Weather Prediction

Regression

• Predicting a numeric value

Examples: Stock Market

Predict stock prices given stock history and today's news

Examples: Weather Prediction Revisited

Clustering

• Discovering structure in data

Examples: Clustering Data

Embedding

• Visualization and discriminative feature learning

Examples: Face Embedding

Classification

Predict discrete classes

Regression

• Predicting a numeric value

Model

Treat model as a function (linear or nonlinear)

Training

- Given data, Learn θ
- For example, line fitting
 - We have three points (x,y), i.e., (1,2), (2,1), (3,2)
 - $f(x|\theta) = w_0 + w_1 x$, here $\theta = \{w_0, w_1\}$

•
$$loss = (2 - f(1|\theta))^2 + (1 - f(2|\theta))^2 + (2 - f(3|\theta))^2$$
Data (1,2)

Data (2,1)

Data (3,2)

- Define prediction $\hat{y} = f(x|\theta)$
- $loss = l(y, \hat{y}) = \sum_{i} (y f(x|\theta))^2$

Training

- Estimate $\theta = \{w_0, w_1\}$
 - $l = \sum_{i} (y f(x|\theta))^{2} = (y_{1} (w_{0} + w_{1}x_{1}))^{2} + (y_{2} (w_{0} + w_{1}x_{2}))^{2} + (y_{3} (w_{0} + w_{1}x_{3}))^{2}$
- Minimize the loss
 - $\hat{\theta} = arg \min_{\theta} l(y, f(x|\theta))$
- Solve θ by setting the gradient to 0
 - $\frac{\partial l}{\partial w_0} = 0, \frac{\partial l}{\partial w_1} = 0$

Training

- How about classification?
 - Set classifier $[\hat{p}_{dog}, \hat{p}_{cat}, \hat{p}_{bird}] = f(x|\theta)$
 - If we have many image-label pairs, we want to estimate θ as well.
- Convert class label to one-hot label
 - Set y = [dog, cat, bird], then $y_1 = [1,0,0]$, $y_2 = [0,1,0]$, $y_3 = [0,0,1]$
- Define loss
 - $loss = -(y_1^T \log(f(x_1|\theta)) + y_2^T \log(f(x_2|\theta)) +$ $y_3^T \log(f(x_3|\theta))$
 - $loss = -\sum_{i} y_{i}^{T} \log(f(x_{i}|\theta))$
- Minimize the loss
 - $\hat{\theta} = arg \min_{\theta} l(y, f(x|\theta))$

$$y_1 = dog$$

$$y_2$$
=cat

 y_3 =bird

Testing

• Given the learned model (function) $f(\cdot | \hat{\theta})$, we can input any testing data x to get the prediction $\hat{y} = f(x | \hat{\theta})$

Big Picture

- Algorithms that give computers the ability to learn from experience (data) to do specific tasks
 - Different tasks use different types of data, different learning algorithms
 - Performance driven learning: minimize loss function

x: Input data

y: Ground truth label or supervision signal

 θ : Model parameters

 $f(x|\theta)$: Mapping from input to the target output

l: Loss function

Types of Data

- Data can be
 - Binary, numerical or categorical (ordered or not) or a combination
 - A vector/matrix/graph
- Raw input data gets mapped to numerical or indicator form (feature extraction)
- Form of output data impacts loss function

Types of Learning Algorithms/Models

- We need to define the model (function) configuration $f(x|\theta)$ before training.
 - Linear model (with respect to θ)

```
 f(x|\theta) = w_0 + w_1 x
```

•
$$f(x|\theta) = w_0 + w_1 x + w_2 x^2$$

•
$$f(x|\theta) = w_0 + w_1x_1 + w_2x_1x_2$$

• ...

Non-linear function

•
$$f(x|\theta) = w_0 + w_1 x + w_2 x^2 + w_2 \log(w_1) x^3$$

• ...

Deep learning models

Types of Learning Algorithms/Models

- Supervised learning
 - Learning data includes examples with target output, goal is to find a decision function
- Unsupervised learning
 - Learning data has no target output, goal is to learn interesting structure
- Reinforcement learning
 - Sequential decision making in a scenario with changing state and occasional reward/penalty
- Semi-supervised learning, active learning, incremental learning, curriculum learning, federated learning ...

Types of Loss Functions

- Mean squared error (usually for regression, i.e., the goal is to predict continuous numerical values)
 - $\frac{1}{N}\sum (y_i \hat{y}_i)^2$
- Cross entropy (usually for classification, i.e., the goal is to predict discrete classes)
 - $-\sum_{i=1}^{C} y_i \log \hat{y}_i$

Training and Inference/Testing

- Training
 - Given data (x, y), algorithm, minimize the loss function to estimate the model parameters θ
- Inference/Testing
 - Given data x (without y), algorithm and model parameters θ , get the prediction $\hat{y} = f(x|\theta)$

Machine Learning Options

- Non-parametric
 - use the data directly
 - Ex: nearest-neighbor
- Parametric
 - Assume a particular distribution
 - Ex: Gaussian → find mean & var from data
 - Assume a functional form
 - Ex: linear $(a^tx) \rightarrow find coeffs a^t from data$

- Example
 - N-th order regression

- Consider the regression problem
- Assume the perfect decision function exists: y = f(x)

$$MSE = E_{\mathcal{T}} \left[(\hat{y}_0 - f(x_0))^2 \right]$$

$$= E_{\mathcal{T}} [(\hat{y}_0 - E_{\mathcal{T}} [\hat{y}_0])^2] + (E_{\mathcal{T}} [\hat{y}_0] - f(x_0))^2$$

$$= Var(\hat{y}_0) + Bias^2(\hat{y}_0)$$

• where \mathcal{T} is the training set (random samples)

$$MSE(x_0) = E_{\mathcal{T}} \left[\left(\hat{y}_0 - f(x_0) \right)^2 \right]$$

$$= E_{\mathcal{T}} \left[\left(\hat{y}_0 - E_{\mathcal{T}} [\hat{y}_0] + E_{\mathcal{T}} [\hat{y}_0] - f(x_0) \right)^2 \right]$$

$$= E_{\mathcal{T}} \left[\left(\hat{y}_0 - E_{\mathcal{T}} [\hat{y}_0] \right)^2 \right] + E_{\mathcal{T}} \left[\left(E_{\mathcal{T}} [\hat{y}_0] - f(x_0) \right)^2 \right]$$

$$+ 2E_{\mathcal{T}} \left[\left(\hat{y}_0 - E_{\mathcal{T}} [\hat{y}_0] \right) \left(E_{\mathcal{T}} [\hat{y}_0] - f(x_0) \right) \right]$$

$$= E_{\mathcal{T}} \left[\left(\hat{y}_0 - E_{\mathcal{T}} [\hat{y}_0] \right)^2 \right] + \left(E_{\mathcal{T}} [\hat{y}_0] - f(x_0) \right)^2$$

$$= Var(\hat{y}_0) + Bias^2(\hat{y}_0)$$

- Bias = distance between average model & theoretical best
- Variance = variability with different training samples

Deterministic classifier $\alpha(x) = \omega_i \ \forall x$

Linear classifier

True n-th order classifier

Given a Fixed Training Set

Examples

• N-th order regression

Set the Hyper-Parameters

- The model complexity ≫ #training samples → overfitting
- Whether overfitting → check the testing error
- What happens when # samples N grows?
 - For a specific model: variance ↓as N ↑
- Model complexity also depends on feature dimensionality d (higher d more params)
 - For y=Ax: scalar x,y \rightarrow scalar A, vector x,y \rightarrow d_yd_x params in A
 - Dimensionality reduction (feature selection or projection, supervised or unsupervised)
 - Feature extraction driven by domain knowledge

Practical Implications

- ALWAYS assess performance on data that you haven't looked at in training or model selection (independent test set)
- What does it mean to be "independent"?
 - Two sentences in the same document are not independent
 - Two segments in the same image are not independent
- Use regularization to encourage some parameters to be small

Training Data

Test Data

Practical Implications

- Use a held-out validation set or cross-validation for model selection and parameter tuning
- Cross-validation (CV)
 - Partition data into N subsets
 - Train on N-1, validate on Nth
 - Rotate through all N options
 - Choose best configuration
 - Retrain on all the data with best config
- Trade-offs of CV vs. held-out
 - CV makes better use of small data sets
 - CV is more expensive

Training Data

Validation Set

Test Data

Other Wrong "Model" Problems

- Training data is not representative → impacts all ML approaches
- Could be due to
 - Sampling bias
 - Noisy observations
 - Samples are not independent