Integrantes: Juliano Giusti, Karine Pestana Ramos e Kristofer Kappel

Relatório de desempenho do trabalho de FIA:

1. Informações sobre a implementação:

Foram implementados quatro métodos de busca no arquivo "search.py":

- Custo Uniforme: O algoritmo busca pelo nó que ainda não tenha sido expandido (visitado) com o custo de caminho mais baixo, assim considera apenas a altura g(h) para buscar o próximo nodo. Mesmo se ele acha o nodo objetivo, continua a buscar pelos caminhos que ainda poderiam ter o custo total mais barato.
- 2. **A*:** O algoritmo busca não expandir nodos que geram um caminho mais "caro" para o nodo final, assim a estimação do custo do nodo em questão até o objetivo não pode ser maior do que a mesma estimação do nodo anterior.
- 3. **Subida de Encosta:** O algoritmo tem a ideia de buscar o objetivo com o menor número de passos e percorre o espaço de estados no sentido do valor crescente (ou decrescente).
- 4. Têmpera Simulada: Similar ao Subida de Encosta, o Têmpera Simulada sempre busca um máximo local, porém, ao encontrá-lo e o mesmo não for um estado final, o algoritmo utiliza uma métrica o qual calcula um novo local para recomeçar a subida em busca do estado final.

2. Hardware utilizado nos testes:

Os testes foram realizados no sistema operacional Ubuntu, com as seguintes características:

Memória: 7,7 Gib
Processador: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
Versão do sistema operacional: 16.04.2 LTS
Versão do Python: Python 2.7.12

3. Metodologia dos testes:

Foram realizados três testes em cada labirinto (small, medium e big) para cada algoritmo além de realizada a média. Foi então analisado: se a busca encontrou o caminho, o tempo decorrido para achar o caminho e o número de nodos expandidos.

Universidade Federal de Pelotas

Integrantes: Juliano Giusti, Karine Pestana Ramos e Kristofer Kappel

4. Dados de desempenho:

a. Small

Fyeeve	Custo Uniforme		A *		Subida de Encosta		Têmpera Simulada	
Execução	Tempo	Nodos	Tempo	Nodos	Tempo	Nodos	Tempo	Nodos
1	0,0046s	43	0,0052s	52	Х	Х	0,0067s	261
2	0,0044s	43	0,0066s	52	х	Х	0,0329s	1543
3	0.0060s	43	0,0085s	52	Х	Х	0,0130s	531
Média	0.0050s	43	0,00676s	52	Х	Х	0,01753s	778,33

X - Representa que o algoritmo não encontrou solução.

b. Medium

- ~	Custo Uniforme		A *		Subida de Encosta		Têmpera Simulada	
Execução	Tempo	Nodos	Tempo	Nodos	Tempo	Nodos	Tempo	Nodos
1	0,0135s	98	0,3472s	2493	Х	х	0,1179s	4239
2	0,0135s	98	0,3441s	2493	Х	х	0,0121s	393
3	0,0136s	98	0,3441s	2493	Х	х	0,0371s	1713
Média	0,0135s	98	0,3451s	2493	х	х	0,0557s	2115

X - Representa que o algoritmo não encontrou solução.

c. Big

Fwa-wa Za	Custo Uniforme		A *		Subida de Encosta		Têmpera Simulada	
Execução	Tempo	Nodos	Tempo	Nodos	Tempo	Nodos	Tempo	Nodos
1	0,0332s	269	0,0338s	275	Х	Х	0,1035s	3600
2	0,0327s	269	0,0329s	275	Х	Х	0,1256s	4426
3	0,0325s	269	0,0304s	275	х	х	0,5026s	12810

Universidade Federal de Pelotas

Integrantes: Juliano Giusti, Karine Pestana Ramos e Kristofer Kappel

Média	0,0328s	269	0,03236s	275	х	x	0,2439s	6945,33	

X - Representa que o algoritmo não encontrou solução.

5. Considerações finais:

Os algoritmos que tiveram o melhor desempenho foram o algoritmo A* e o Custo Uniforme. Três dos quatro algoritmos aqui abordados sempre encontraram a solução para o labirinto (mesmo que fosse em um tempo mais lento), estes foram: Custo Uniforme, A* e Têmpera Simulada.

O algoritmo que não encontra solução, o Subida de Encosta não atingiu o objetivo em nenhum dos três labirintos avaliados. Por conta de sua forma de buscar os nodos, acaba ficando preso em um máximo local.

Não pode-se dizer muito sobre a eficiência do algoritmo de Têmpera Simulada que tem uma grande variação por conta de sua fórmula probabilística de backtracking, contudo sempre encontrou a solução em todos os labirintos.

6. Referências:

• ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/ea072_2s06/notas_de_aula/to picoP2.4_06.pdf