Basic Logic Operations:

- AND *
- OR +
- NOT (Complement) -
- Order of Precedence
 - NOT
 - AND
 - 3. OR
 - can be modified using parenthesis

Basic Logic Operations:

Table 1.8 *Truth Tables of Logical Operations*

	AND ✓			OR			NOT		_ т
n=2	<u>x</u>	у	$x \cdot y$	<u>X</u>	у	x + y		<u>x'</u>	R Joly Z
2	0	0	0 ~	0	0	0 🖊	0	1 ·	14
	0	1	0 -	0	1	1 -	1	0	
	1	0	0 ~	1	0	1			
	1	1	1 ~	1	1	1			_

Basic Logic Operations:

(a) Two-input AND gate

(b) Two-input OR gate

(c) NOT gate or inverter

Additional Logic Operations:

NAND

$$F = (A . B)'$$

NOR

$$-$$
 F = (A + B)'

XOR

Output is 1 iff either input is 1, but not both.

XNOR (Equivalence)

- Output is 1 iff both inputs are 1 or both inputs are 0.

Additional Logic Operations:

Truth Tables:

- Used to describe the functional behavior of a Boolean expression and/or Logic circuit.
- Each row in the truth table represents a unique
 combination of the input variables.
 - For n input variables, there are 2ⁿ rows.
- The output of the logic function is defined for each row.
- 2 unique
- Each row is assigned a numerical value, with the rows listed in ascending order.
- The order of the input variables defined in the logic function is important.

Truth Tables:

3-input Truth Table
$$2^3 = 8$$
 unique Combinations.

F(A,B,C) = Boolean expression

F(A,B,C,D) = Boolean expression

- Boolean expressions are composed of
 - Literals variables and their complements A, B, B

logic operations

Logical operations

literals

Examples

•
$$F = (A+B+C').(A'+B+C).(A+B+C)$$

•
$$F = A.B'.C' + A.(B.C' + B'.C)$$

- Boolean expressions are realized using a network (or combination) of logic gates.
 - Each logic gate implements one of the logic operations in the Boolean expression
 - Each input to a logic gate represents one of the literals in the Boolean expression

A.B.C

- Boolean expressions are evaluated by
 - Substituting a 0 or 1 for each literal

F=	A.B	+ A	ē + AB	
	A	B	10/10	7
	00	0	()	{
essio	on	0	()	

- Calculating the logical value of the expression
- A <u>Truth Table</u> specifies the value of the Boolean expression for every combination of the variables in the Boolean expression.
- For an n-variable Boolean expression, the truth table has 2ⁿ rows (one for each combination).

• Two Boolean expressions are equivalent if they have the same value for each combination of the variables in the Boolean expression.

$$- F_1 = (A + B)' = \overline{(A+B)}$$

$$- F_2 = A'.B' = \overline{A\cdot B}$$

- How do you prove that two Boolean expressions are equivalent?
 - Truth table
 - Boolean Algebra 🚄

Boolean Algebra:

- George Boole developed an algebraic description for processes involving logical thought and reasoning.
 - Became known as <u>Boolean Algebra</u>
- Claude Shannon later demonstrated that Boolean
 Algebra could be used to describe switching circuits.
 - Switching circuits are circuits built from devices that switch between two states (e.g. 0 and 1).
 - Switching Algebra is a special case of Boolean Algebra in which all variables take on just two distinct values.
- Boolean Algebra is a powerful tool for analyzing and designing logic circuits.

•Example:

•Using a Truth table, prove that the following two Boolean expressions are equivalent.

$${}^{\bullet}F_1 = (A + B)'$$

Basic Laws and Theorems:

Commutative Law

Associative Law

Distributive Law

Null Elements

Identity

Idempotence

Complement

Involution

Absorption (Covering)

Simplification

DeMorgan's Rule

Logic Adjacency (Combining)

Consensus

$$A + B = B + A$$

A + (B + C) = (A + B) + C

A.(B + C) = AB + AC

A + 1 = 1

A + 0 = A

A + A = A

A + A' = 1

A'' = A

A + AB = A

A + A'B = A + B

(A + B)' = A'.B'

AB + AB' = A

AB + BC + A'C = AB + A'C

$$A.B = B.A$$

A . (B . C) = (A . B) . C

A + (B . C) = (A + B) . (A + C)

A . 0 = 0

A.1 = A

 $A \cdot A = A$

 $A \cdot A' = 0$

$$A \cdot (A + B) = A$$

A . (A' + B) = A . B

(A . B)' = A' + B'

 $(A + B) \cdot (A + B') = A$

 $(A + B) \cdot (B + C) \cdot (A' + C) = (A + B) \cdot (A' + C)$

Idempotence:

To exit full screen, press

•A .
$$A = A$$
•G = (A' + B + C').(A + B' + C).(A + B' + C)
•G = (A' + B + C') + (A + B' + C)

Complement:

•G = A + C + D

Distributive Law:

$$\bullet A.(B+C) = AB + AC$$

$$\bullet F = WX.(Y + Z)$$

$$\bullet F = WXY + WXZ$$

$$\bullet G = B'.(AC + AD)$$

$$\bullet$$
 G = AB'C + AB'D

$$\bullet H = A.(W'X + WX' + YZ)$$

$$\bullet H = AW'X + AWX' + AYZ$$

$$\bullet$$
A + (B.C) = (A + B).(A + C)

$$\bullet F = WX + (Y.Z)$$

$$\bullet$$
 F = (WX + Y).(WX + Z)

$$\bullet G = B' + (A.C.D)$$

$$\bullet G = (B' + A).(B' + C).(B' + D)$$

$$\bullet H = A + ((W'X).(WX'))$$

$$\bullet H = (A + W'X).(A + WX')$$

Absorption (Covering):

$$\bullet A + AB = A$$

$$= A.1$$

$$= A$$

$$\bullet G = XYZ + XY'Z + X'Y'Z' + XZ$$

$$\bullet G = XYZ + XZ + X'Y'Z'$$

$$\bullet$$
 G = XZ + X'Y'Z'

$$\bullet$$
A.(A + B) = A

$$\bullet F = A'.(A' + BC)$$

$$\bullet G = XZ.(XZ + Y + Y')$$

$$\bullet G = XZ.(XZ + Y)$$

$$\bullet G = XZ$$

Simplification:

$$\bullet A + A'B = A + B'$$

$$\bullet F = (XY + Z).(Y'W + Z'V') + (XY + Z)'$$

 $\bullet F = Y'W + Z'V' + (XY + Z)'$

$$-A.(A' + B) = A.B$$

•
$$G = (X + Y).((X + Y)' + (WZ))$$

• $G = (X + Y).WZ$

Logic Adjacency (Combining):

$$\bullet A.B + A.B' = A$$

$$\bullet F = (X + Y).(W'X'Z) + (X + Y).(W'X'Z)'$$

$$\bullet F = (X + Y)$$

$$\bullet (A + B).(A + B') = A$$

$$\bullet G = (XY + X'Z').(XY + (X'Z')')$$

• G = XY

DeMorgan's Law:

- Can be stated as follows:
 - The complement of the product (AND) is the sum (OR) of the complements.

 The complement of the sum (OR) is the product (AND) of the complements.

•
$$(X + Y)' = X' \cdot Y'$$

$$\frac{(x+y)}{1} = \overline{x} \cdot \overline{y}$$

$$\overline{x} = \overline{x} \cdot \overline{y}$$

Easily generalized to n variables.

DeMorgan's Law:

$$(X \cdot Y)' = X' + Y'$$

x	y	$x \cdot y$	$\overline{x \cdot y}$	\overline{x}	\overline{y}	$\overline{x} + \overline{y}$	
0	0	0 -	$\rightarrow 1$	1	1	<u>(1)</u>	
0	1	0	1	1	0	1	
1	0	0	1	0	1	1	
1	1	1	0	0	0	0	
	,	· \	LHS	_		RHS	
		\mathbf{L}_{i}	HS	RHS			

DeMorgan's Law:

Importance of Boolean Algebra:

- Boolean Algebra is used to simplify Boolean expressions.
 - Through application of the Laws and Theorems discussed
- Law's and theorems
- Simpler expressions lead to simpler circuit realization, which, generally, reduces cost, area requirements, and power consumption.
- The objective of the digital circuit designer is to design and realize optimal digital circuits.

Importance of Boolean Algebra:

- Justification for simplifying Boolean expressions:
 - Reduces the cost associated with realizing the expression using logic gates.
 - Reduces the area (i.e. silicon) required to fabricate the switching function.
 - Reduces the power consumption of the circuit.
- In general, there is no easy way to determine when a Boolean expression has been simplified to a minimum number of terms or minimum number of literals.
 - No unique solution

