COMS3261: Computer Science Theory

Fall 2013

Mihalis Yannakakis

Lecture 14, 10/23/13

CLOSURE PROPERTIES OF CFL's

CFLs closed under Concatenation:

$$L_1, L_2 CFL \Rightarrow L_1 \cdot L_2 CFL$$

Proof: Given CFGs G_1, G_2 for L_1, L_2 .

Wlog assume G_1 , G_2 have disjoint sets of variables V_1, V_2 and start symbols S_1 , S_2

New grammar G:

Variable set $V = V_1 \cup V_2$ + new start variable S

Productions = union of the productions and $S \rightarrow S_1 S_2$

Examples: Concatenation

1. L={ $a^nb^nc^m \mid n, m \ge 0$ } is a CFL:

concatenation of $\ L_1 = \{a^nb^n|\ n \ge 0\}$ and $\ L_2 = \{c^m|\ m \ge 0\} = c^*$

Grammar: $S \rightarrow S_1 S_2$

 $S_1 \rightarrow \varepsilon \mid aS_1b$

 $S_2 \rightarrow \epsilon \mid cS_2$

2. L={ $a^ib^ja^k | j=i+k; i,j,k \ge 0$ } is CFL:

concatenation of $L_1 = \{ a^i b^i \mid i \ge 0 \}$ and $L_2 = \{ b^k a^k \mid k \ge 0 \}$

Grammar: $S \rightarrow S_1 S_2$

 $S_1 \rightarrow \varepsilon \mid aS_1b$

 $S_2 \rightarrow \epsilon \mid bS_2 a$

Closure under Union

• CFLs closed under Union: L_1 , L_2 CFL \Rightarrow $L_1 \cup L_2$ CFL

Proof: Similar to concatenation

Given CFGs G_1, G_2 for L_1, L_2 .

Wlog assume G_1 , G_2 have disjoint sets of variables V_1, V_2 and start symbols S_1 , S_2

New grammar G:

Variable set $V = V_1 \cup V_2$ + new start variable S

Productions = union of the productions and $S \rightarrow S_1 \mid S_2$

Example: Union

- Example: L = { $a^ib^jc^k \mid i=j \text{ or } j=k \text{ ; } i,j,k \ge 0$ } is CFL L = { $a^ib^jc^k \mid i=j$ } \cup { $a^ib^jc^k \mid j=k$ }
- Grammar for $L_1 = \{ a^i b^j c^k \mid i = j \}$ (a shorter version)

$$S_1 \rightarrow T \mid S_1 c$$

$$T \rightarrow \epsilon \mid aTb \quad [T derives all strings of form $a^ib^i]$$$

• Grammar for $L_2 = \{ a^i b^j c^k \mid j = k \}$

$$S_2 \rightarrow R \mid aS_2$$

$$R \rightarrow \epsilon \mid bRc \quad [R derives all strings of form b^kc^k]$$

· Grammar for L

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow T \mid S_1c$$

$$T \rightarrow \epsilon \mid aTb$$

$$S_2 \rightarrow R \mid aS_2$$

$$R \to ~\epsilon \,|\, bRc$$

Closure Under Star

CFLs closed under Star *: L₁ CFL ⇒ (L₁)* CFL
 Proof: Take grammar G₁ for L₁ with start symbol S₁
 Add new start symbol S and production S → ε | S₁S

Example: The set of strings of the form $a^{n1}b^{n1} a^{n2}b^{n2} a^{n3}b^{n3} \cdots a^{nk}b^{nk}$ is CFL

= {
$$a^nb^n | n \ge 0$$
}*

Grammar: $S \rightarrow \epsilon \mid S_1 S$

$$S_1 \rightarrow \varepsilon \mid aS_1b$$

Closure under Homomorphism

- Homomorphism: Mapping h from an alphabet Σ to set of strings over an alphabet T (same or different)
- $\forall a \in \Sigma$, $h(a) \in T^*$
- Extend map to strings: h(a₁...a_n) = h(a₁)...h(a_n) ∈T*
- Extend to languages L over Σ : $h(L) = \{ h(w) \mid w \in L \}$

Generalization: Closure under Substitution

- Substitution: Mapping s from an alphabet Σ to set of languages over an alphabet T (same or different)
- $\forall a \in \Sigma$, $s(a)=L_a$, a language over T
- Extend map to strings: s(a₁...a_n) = s(a₁)...s(a_n)=L_{a₁}...L_{a_n}
 Note: s(string) is a language, not a string
- Extend to languages L over Σ : $s(L) = \bigcup_{w \in L} s(w)$
- Example: $\Sigma = \{1,2\}$, $T = \{a,b,c\}$, $s(1) = \{a^nb^n|n\geq 1\}$, $s(2) = \{bc\}$ $s(12) = \{a^nb^{n+1}c|n\geq 1\}$, $s(11) = \{a^{n1}b^{n1}a^{n2}b^{n2}|n_1,n_2\geq 1\}$ $s(1^*) = \{a^{n1}b^{n1}a^{n2}b^{n2}...a^{nk}b^{nk}|k\geq 0, n_i\geq 1\}$

Substitution examples

Union, Concatenation, Star are special cases of Substitution applied to languages

Union: $s(\{1,2\}) = L_1 \cup L_2$

Concatenation: $s(\{12\}) = L_1 L_2$

Star: s ($\{1\}^*$) = (L_1)*

CFL Closure under Substitution

- Theorem: If L is a cfl over alphabet Σ, and s(a)=La is cfl for all a∈ Σ, then s(L) is cfl.
- Proof: Take grammars G=(V,Σ,P,S) for L, and grammars (Va,T,Pa,Sa) for each La. Assume wlog all variable sets disjoint by renaming them if necessary.
- Replace each occurrence of each terminal a in productions of G by S_a.
- Resulting cfg G'=(V',T,P',S) where V'= $V \cup \bigcup_{a \in \Sigma} V_a$, P'= modified P $\cup \bigcup_a P_a$
- Example: 1* generated by $S \rightarrow \epsilon \mid 1S$ $s(1) = L_1 = \{a^nb^n \mid n \geq 0\} \text{ generated by } S_1 \rightarrow \epsilon \mid aS_1b$ CFG for $(L_1)^*$: $S \rightarrow \epsilon \mid S_1 \mid S$, $S_1 \rightarrow \epsilon \mid aS_1b$

Proof of Theorem

 Parse trees of G': Take a parse tree T of G, replace each leaf labeled a∈Σ by a parse tree T_a in G_a (several leaves of T may have same label a, but the trees can be different)

$$y \in s(L) \Leftrightarrow y \in L(G')$$

Both ways:

 $y \in s(L) \Rightarrow \exists a_1...a_n \in L,$ $\exists x_1 \in La_1, x_n \in La_n \text{ s.t. } y = x_1...x_n \Rightarrow$ can construct a parse tree like that $y \in L(G') \Rightarrow \text{ its parse tree can be}$ decomposed like that

Closure under Reversal

- Can't show with substitution theorem, but can show directly
- Given grammar G=(V,T,P,S), define G^R = (V,T,P^R,S), where P^R reverses the bodies of all the productions of P, i.e. A → α becomes A → α^R
- Then every derivation of G, S ⇒ ⇒ w yields a corresponding derivation in G^R where all sentential forms are reversed S ⇒ ⇒ w^R

Closure under Inverse Homomorphism

- If h:Σ→ T* is a homomorphism and L a language, then h⁻¹(L) ={ w∈Σ* | h(w)∈L }
- Theorem: If L is a CFL then h-1(L) is also a CFL
- Proof:
- Use a PDA A for L to construct a PDA B for h⁻¹(L)

NON-CLOSURE Properties of CFLs

- Not closed under: Intersection, Complement, Difference
- Intersection:
- $L_1=\{a^nb^nc^i \mid n \ge 0, i \ge 0\}$ is CFL, $L_2=\{a^ib^nc^n \mid n \ge 0, i \ge 0\}$ is CFL, but $L_1 \cap L_2=\{a^nb^nc^n \mid n \ge 0\}$ is not CFL

CFL Nonclosure ctd.

• Complement:

Proof 1: By DeMorgan's law $L_1 \cap L_2 = (L_1^c \cup L_2^c)^c$ If CFL were closed under complement, and since they are closed under \cup , then they would be also closed under \cap

Proof 2: { $a^nb^nc^n \mid n \ge 0$ } is not CFL complement = $(a^*b^*c^*)^c \cup \{a^ib^jc^k \mid i\ne j\} \cup \{a^ib^jc^k \mid j\ne k\}$ is CFL

- Difference: L₁ L₂
 Proof: Take L₁ = Σ*. Then (L₂)^c = L₁ L₂
- DCFLs are closed under complement
 Switch final, nonfinal states of DPDA & eliminate first nonterminating computations (nontrivial)

- If L is CFL and R is a regular language then L∩R is CFL Also L-R is CFL (caution: but R-L is not necessarily CFL)
- Proof: Take PDA P for L, FA A for R.
- Product construction:

Construct PDA M that follows in parallel the computation of both on a given input w (similar to \cap of regular languages). State of M keeps track of both the state of P and R M=P×A has state set Q_M =Q_P×Q_A, Final set F_M=F_P×F_A

ALGORITHMS for CFLs

- We saw already several algorithms:
- Conversion between PDAs that accept by final state or empty stack: Linear time, size
- Conversion from CFG to PDA: Linear time, size
- Conversion from PDA to CFG: O(n³), where n is the size of the description of the PDA (states, all transitions)

ALGORITHMS for CFLs

- · We will discuss algorithms for:
- Emptiness of a language of a CFG:

Given CFG G, is $L(G) = \emptyset$?

- If CFL given by PDA, can convert to CFG and test the CFG
- Cleaning algorithms for CFG
 e.g. elimination of useless variables and productions
- Transformation to a simple form: Chomsky Normal Form
- Membership / Parsing problem
 Given CFG G, string w, does w ∈ L(G)?

Testing Emptiness of CFG

- Given CFG G=(V,T,P,S), is L(G) = ∅?
- A variable X is called generating if X ⇒* w for some terminal string w
- L(G) ≠ Ø iff the start variable S is generating
- · We will compute all the generating variables

Algorithm for Computing the Generating Variables

- Initialization (Basis): K := T
- Loop (Induction): while (\exists production $X \rightarrow \beta$ such that $X \notin K$ but all symbols of $\beta \in K$) $K := K \cup \{X\}$
- Return the variables in K
- Time: straightforward: O(|G|²), where |G| is the size of the grammar (includes sum of lengths of the productions)
- Can do in O(|G|) time with more care with appropriate data structure – see book, Sec 7.4.3

Example

- S → ABE | AC
 - $A \rightarrow 1B \mid 0C$
 - $B \rightarrow 0D$
 - $C \rightarrow 1$
 - $D \rightarrow AB$
 - $E \rightarrow 0$
- K ={0,1}
- Add C, E, A, S
- ⇒ B, D not generating

Correctness of Generating Algorithm

- 1. If $X \in \text{final set } K \text{ then } X \text{ generating}$
- Proof: by induction on the iteration i that added X to K
 X→β such that all symbols of β ∈ K in earlier iteration or
 because they are terminals. By i.h. they can each derive
 a terminal string ⇒ X too.
- 2. If X generating then $X \in \text{final set } K$

Proof: By induction on length of shortest derivation $X \Rightarrow^* w$ Derivation starts as $X \Rightarrow \beta \Rightarrow^* w$

Every variable of β has a shorter derivation \Rightarrow in K by i.h. \Rightarrow will add also X to K.