Manufacturing Line Productivity Analysis Using Power BI Documentation

Project Overview

This project analyzes the productivity of a manufacturing line using Power BI. The objective is to gain insights into production efficiency and identify key downtime factors.

Project Scope

The scope of this project includes:

- Analyzing batch-level production data to assess productivity.
- Identifying downtime factors and their impact on production.
- Creating interactive Power BI visualizations to support data-driven decisionmaking.

Data Sources

The project uses the following data sources:

- Line Productivity: Batch-level production data with product type, operator, and time details.
- Products: List of products with descriptions and minimum batch times.
- Downtime Factors: Description of various downtime reasons and whether they are operator related.
- Line Downtime: A Detailed record of downtime occurrences per batch.

Table	Field	Description
Line productivity		Fact table containing details for each batch produced
Line productivity	Date	Date the batch was produced (Date).
Line productivity	Product	ID for the product produced in the batch (Text).
Line productivity	Batch	Unique ID for the batch produced (Whole Number).
Line productivity	Operator	Production line operator in charge of the batch (Text).
Line productivity	Start Time	Time the batch production started (Date/Time).
Line productivity	End Time	Time the batch production ended (Date/Time).
Products		Dimension table with details on each product
Products	Product	Unique product ID (Text).
Products	Flavor	Soda flavor for the product (Text).
Products	Size	Product size (volume) (Text).
		Minimum time required to produce a batch (with no downtime)
Products	Min batch time	(Whole Number).
		Fact table containing downtime (in minutes) by factor for each
Line downtime		batch
Line downtime	Batch	Unique ID for the batch produced (Whole Number).
Line downtime	Downtime factor	Downtime minutes for each factor ID (across columns) (Text).
Downtime		
factors		Dimension table with details on each downtime factor
Downtime		
factors	Factor	Unique ID for each downtime factor (Whole Number).
Downtime		
factors	Description	Downtime factor description (Text).
Downtime		
factors	Operator Error	Is this due to operator error? (Yes/No) (Text).

Data Preparation

Data preparation involved:

- Cleaning and transforming the data.
- Handling missing values.
- Merging datasets to create a comprehensive view.
- Creating New Table (Down Time for lines)
- Converting time fields into appropriate formats.

Data Modeling

- Fact Table: Line productivity.
- Dimension Tables: Products, Downtime Factors, Down Time for Lines.
- Relationships were established between fact and dimension tables to enable analysis.

Analysis Tools

The following tools were used in the analysis:

- Power Query: Data transformation and cleaning.
- DAX (Data Analysis Expressions): Custom calculations and aggregations.
- Power BI Visualizations: Interactive charts, tables, and dashboards.
- Data Relationships: Establishing connections between tables.

• Filters and Slicers: Enabling dynamic data exploration.

Visualizations

- Production Efficiency by Product.
- Downtime by Factor.
- Batch Time Comparison.

Key Questions

Productivity Analysis

- 1. What is the average batch production time compared to the minimum batch time for each product?
- 2. Which products have the highest production efficiency?
- 3. How does batch production time vary by operator?

Downtime Analysis

- 4. What are the most common downtime factors?
- 5. Which downtime factors contribute the most to overall downtime duration?
- 6. Is there a correlation between operator-related downtime factors and total downtime duration?

Operator Performance

- 7. Which operators have the fastest production times?
- 8. Which operators are associated with the highest number of downtime occurrences?
- 9. How does operator performance vary across different products?

Time-Based Analysis

- 10. Is there a pattern in downtime occurrences by time of day or day of the week?
- 11. Does batch production time improve over time (learning curve effect)?
- 12. What is the average downtime duration per batch?

Key Insights

- Top-performing products.
- Common downtime reasons.
- Correlation between operator errors and downtime.

Challenges and Solutions

- Data inconsistencies and missing values: Extensive data cleaning using Power
 Query to fill missing values and standardize formats.
- Establishing accurate relationships between tables: Careful data modeling with consistent keys and validation checks.
- Designing effective visualizations: Iterative design process with feedback loops to ensure clear and insightful charts.

Conclusion

The Power BI report provides actionable insights into production efficiency and downtime management, helping to optimize manufacturing performance.