Predicting the chain restaurant landscape in the United States based on County Sociodemographical Data from US Census

Importing Libraries and initial data

```
In [1]: # Instalation of Pandas Profiling only for the firs time
        #pip install ydata-profiling
In [2]: # Importing the Libraries needed Pandas and Numpy
        import pandas as pd
        import numpy as np
        #Visualization and Profiling Libraries
        import matplotlib.pyplot as plt
        import seaborn as sns
        import os
        from ydata_profiling import ProfileReport
        #General Libraries for Model Performance and Split
        from sklearn.model_selection import train_test_split
        from sklearn.datasets import make_classification
        from sklearn.metrics import confusion_matrix,ConfusionMatrixDisplay
        from dmba import classificationSummary
        #Logistic Regression Library
        from sklearn.linear model import LogisticRegression
        #Libraries for NN
        from sklearn.neural_network import MLPClassifier
        #Libraries for Chi2
        from sklearn.preprocessing import LabelEncoder
        from sklearn.feature selection import chi2
        # Importing origial datasets
In [3]:
        df1 = pd.read_csv("chainness_point_2021_part1.csv")
        df2 = pd.read csv("chainness point 2021 part2.csv")
        df3 = pd.read_csv("chainness_point_2021_part3.csv")
In [4]:
        # Concat the dataset into one table
        df = pd.concat([df1,df2,df3])
```

Exploratory Data Analysis

```
In [5]: #Printing dataframe shape
    print('Number of instances: ', df.shape[0])
    print('Number of variables: ', df.shape[1])

Number of instances: 705621
    Number of variables: 14

In [6]: #Sampling dataframe
    df.sample(5)
```

		RestaurantName	Cuisine	OpenHours	State	CNTY_GEOID	CNTY_NAME	UA_GEOID	UA_NAME	ľ
	94274	Wendy's	American	Sun Thu 630 AM 100 AM Fri Sat 630 AM 200 AM	FL	12031	Duval	42346.0	Jacksonville, FL	
	167076	Arps	Restaurant	Tue Sun 1100 AM 200 PM	CO	8079	Mineral	NaN	NaN	
	214139	Cohens Bagel Company	American Cafe Deli Soups	Mon Fri 600 AM 300 PM Sat Sun 700 AM 200 PM	СТ	9009	New Haven	62407.0	New Haven, CT	
	235175	Ginos Pizza	Italian	Sun Sat 1100 AM 900 PM	NY	36061	New York	63217.0	New York Newark, NYNJCT	
	35593	McDonald's	Fast Food	Sun 600 AM 1100 PM Mon 700 AM 1200 AM Tu	MT	30047	Lake	70588.0	Polson, MT	

Understanding the variables

- RestaurantName: Restaurant name (processed)
- Cusine: Restaurant cuisine (raw)
- OpenHours: Restaurant's open hours (raw)
- State: State (raw)

Out[6]:

- CNTY_GEOID: County GEOID, which can be joined with other datasets (processed)
- CNTY_NAME: The name of the county where the restaurant is located (processed)
- UA_GEOID: Urban area GEOID, which can be joined with other datasets (processed)
- UA_NAME: The name of the urban area where the restaurant is located (processed)
- MSA_GEOID: Metropolitan statistical area GEOID, which can be joined with other datasets (processed)
- MSA_NAME: The name of the metropolitan statistical area where the restaurant is located (processed)
- Lon: The longitude of the restaurant, projected to WGS84, crs=4326 (processed)
- Lat: The latitude of the restaurant, projected to WGS84, crs=4326 (processed)
- Frequency: The frequency of the restaurant (processed)
- isChain: A binary indicator that is 1 if the restaurant frequency > 5 else 0 (processed)

Data Cleaning and Formatting

Treating Null Values

In [7]: # Verifying data type and variables with null values
df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 705621 entries, 0 to 225620
Data columns (total 14 columns):
    Column Non-Null Count Dtype
                             -----
--- -----
 0 RestaurantName 705621 non-null object
 1 Cuisine 705607 non-null object
1 Cuisine 705607 non-null object
2 OpenHours 463511 non-null object
3 State 705621 non-null int64
5 CNTY_GEOID 705621 non-null int64
5 CNTY_NAME 705621 non-null object
6 UA_GEOID 631864 non-null float64
7 UA_NAME 631864 non-null object
8 MSA_GEOID 613885 non-null float64
9 MSA_NAME 613885 non-null object
9 MSA_NAME
10 Lon
11 Lat
                           705621 non-null float64
 11 Lat
                            705621 non-null float64
12 Frequency13 isChain
                            705621 non-null int64
                            705621 non-null int64
dtypes: float64(4), int64(3), object(7)
memory usage: 80.8+ MB
```

The variables with null values are: 'OpenHours', 'UA_GEOID', 'UA_NAME', 'MSA_GEOID', 'MSA_NAME'

```
In [8]: #Finding amount of null values per column
    df_na = pd.DataFrame(df.isnull().sum())
    df_na['Qty_NullValues']= df.isnull().sum()

In [9]: #Finfing percentage of null values per column
    df_na['Pct_NullValues'] = df_na['Qty_NullValues']/df.shape[0]
    df_na = df_na.iloc[:,1:3]
    df_na
```

Out[9]	1:	Qty NullValues	Pct NullValues
000	0	Qty Hull values	i ct italivalacs

RestaurantName	0	0.000000
Cuisine	14	0.000020
OpenHours	242110	0.343116
State	0	0.000000
CNTY_GEOID	0	0.000000
CNTY_NAME	0	0.000000
UA_GEOID	73757	0.104528
UA_NAME	73757	0.104528
MSA_GEOID	91736	0.130007
MSA_NAME	91736	0.130007
Lon	0	0.000000
Lat	0	0.000000
Frequency	0	0.000000
isChain	0	0.000000

The table above shows that over 34% of variable 'OpenHours' is null value. Other variables showed a maximum of 13%.

• The cleaning will be to drop the columns 'OpenHours' and erase the rows with null values

```
In [10]: # Drop the columns 'OpenHours' since it contans null values and it is not relevant to the ana
         df_cleaned = df.drop('OpenHours', axis=1)
         # Drop rows with at least one null value.
In [11]:
         df_cleaned = df_cleaned.dropna()
         df_cleaned.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 575822 entries, 0 to 225619
         Data columns (total 13 columns):
             Column
                             Non-Null Count
                                             Dtype
             -----
                             -----
             RestaurantName 575822 non-null object
          1
            Cuisine
                             575822 non-null object
          2 State
                             575822 non-null object
          3 CNTY_GEOID
                             575822 non-null int64
            CNTY_NAME
          4
                             575822 non-null object
          5
             UA GEOID
                             575822 non-null float64
          6
            UA_NAME
                             575822 non-null object
          7
             MSA GEOID
                             575822 non-null float64
             MSA NAME
                             575822 non-null object
                             575822 non-null float64
          9
             Lon
                             575822 non-null float64
          10 Lat
          11 Frequency
                             575822 non-null int64
          12 isChain
                             575822 non-null int64
         dtypes: float64(4), int64(3), object(6)
         memory usage: 61.5+ MB
         print('Number of rows after cleaning null values: ', df_cleaned.shape[0])
In [12]:
         Number of rows after cleaning null values: 575822
```

Treating Duplicated Rows

Pandas Profiling for the EDA

Number of rows after cleaning duplicates: 575785

Overview

Dataset statistics

Number of variables	13
Number of observations	575785
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	269.1 MiB
Average record size in memory	490.1 B
/ariable types	
Categorical	7
Numeric	6

Alerts

```
RestaurantName has a high cardinality: 291072 distinct values

Cuisine has a high cardinality: 18323 distinct values

High cardinality

State has a high cardinality: 51 distinct values

High cardinality

High cardinality
```

Out[16]:

```
In [17]: profile.to_file("RestaurantsEDA.html")
Export report to file: 0%| | 0/1 [00:00<?, ?it/s]</pre>
```

Formating Clean DataFrame

```
In [18]: #Loding file with state name and achronym
    states = pd.read_csv("states.csv")

In [19]: #Left join of df_clean with states
    df_cleaned=df_cleaned.merge(states, left_on='State', right_on='Postal')

In [20]: #Renaming Columns
    df_cleaned.rename(
```

```
columns={"State_x": "Postal", "State_y": "State"},
    inplace=True)

In [21]: #Drop non-useful columns
    df_cleaned= df_cleaned.drop(columns=['Postal'])

In [22]: # Using + operator to combine two columns to create key to join tables later
    df_cleaned['CountyKey'] = df_cleaned['CNTY_NAME'] + df_cleaned['State']
```

Unsupervised Segmentation to Define "Chainess" Buckets

Data Formatting

```
#Renaing df_cleaned for next section
In [23]:
          df=df_cleaned
          #Assing id by conting rows
In [24]:
          df= df.assign(id=range(len(df)))
          # Shift column id to first position
          first_column = df.pop('id')
          df.insert(0, 'id', first_column)
          #Examining variable types for each columns
In [25]:
          df.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 575785 entries, 0 to 575784
          Data columns (total 15 columns):
           # Column Non-Null Count Dtype
          --- -----
                               -----
                              575785 non-null int64
           0
             id
           1 RestaurantName 575785 non-null object
           2 Cuisine
                              575785 non-null object
          3 CNTY_GEOID 575785 non-null int64
4 CNTY_NAME 575785 non-null object
5 UA_GEOID 575785 non-null float64
6 UA_NAME 575785 non-null object
             MSA_GEOID 575785 non-null float64
MSA_NAME 575785 non-null object
           7
           9
                              575785 non-null float64
              Lon
           10 Lat
                              575785 non-null float64
           11 Frequency
                             575785 non-null int64
           12 isChain
                              575785 non-null int64
           13 State
                              575785 non-null object
           14 CountyKey
                              575785 non-null object
          dtypes: float64(4), int64(4), object(7)
          memory usage: 70.3+ MB
In [26]: #Removing sub catefories from Cuisine Column
          df['CuisineShort'] = df['Cuisine'].str.split(' ').str[0]
In [27]:
         #Using drop() to delete rows based on column value
          indexCuis = df[(df['CuisineShort']== 'Restaurant')].index
          df.drop(indexCuis , inplace=True)
In [28]:
         # creating list of restaurant types to keep as it is.
          allowed_cuisines = ['American','Mexican','Pizza','Italian','Chinese','Cafe','Fast','Japanese'
          # converting the rest to 'Other'
          df.loc[~df['CuisineShort'].isin(allowed_cuisines), 'CuisineShort'] = 'Other'
In [29]:
         #Renaming Columns
          df.rename(
```

```
columns={"Fast": "Fast Food", 'Middle':'Middle Eastern'},
    inplace=True)

In [30]: #Loading Census Data and Walkability Index
    df_census = pd.read_excel('SocioDemo.xlsx')
    df_walk = pd.read_excel('Walkability Index.xlsx')
```

Chainess Variables Computation

The 'Chainess" of a County is derived from:

- 1. Avergae Replicability = Average of the 'Frequency' column. Indicates on average how many times one same restaurant has been replicated in a given county.
- 2. isChain Proportion = Number of Chains (where isChain = 1) / Total Restaurants (where isChain = 1 OR 0) by County. Indicates the percentage of restaurants that are chains in a given county.
- 3. Cuisine Proportion = Number of Restaurants Per Cuisine / Total Restaurants. Indicates the percentage of restaurants that belong to a cuisine in a given county.

Average Replicability

```
In [31]:
         #Calculate avergae frequency of a restaurant by County
         df_freq=df.groupby(['CNTY_GEOID'])['Frequency'].agg(['mean'])
In [32]:
         #Turn multi index into columns
         df_freq = df_freq.reset_index()
In [33]: #Left merge of df and df_freq on CNTY_GEOID
         df=df.merge(df freq, left on='CNTY GEOID', right on='CNTY GEOID')
In [34]:
         #Renaming Columns
         df.rename(
             columns={"mean": "AvgRepl"},
             inplace=True)
In [35]: # Checking for Outliers
         # Count the number of outliers using IQR method
         Q1 = df['AvgRepl'].quantile(0.25)
         Q3 = df['AvgRepl'].quantile(0.75)
         IQR = Q3 - Q1
         outliers = df[(df['AvgRepl'] < (Q1 - 1.5 * IQR)) | (df['AvgRepl'] > (Q3 + 1.5 * IQR))]
          num outliers = len(outliers)
         num outliers
         10113
Out[35]:
In [36]: # Remove outliers using IQR method
         df = df[(df['AvgRepl'] >= (Q1 - 1.5 * IQR)) & (df['AvgRepl'] <= (Q3 + 1.5 * IQR))]
```

isChain Proportion

```
In [37]: #Calculate the isChain proportion by County
    df_isch=df.groupby(['CNTY_GEOID'])['isChain'].agg(['sum','count'])

In [38]: #Turn multi index into columns
    df_isch = df_isch.reset_index()

In [39]: #Calculating the proportion of restaurants that are chains
    df_isch['isChainProp'] = df_isch['sum']/df_isch['count']
```

```
In [40]: df=df.merge(df_isch, left_on='CNTY_GEOID', right_on='CNTY_GEOID')
         #Drop non-useful columns
In [41]:
          df= df.drop(columns=['sum', 'count'])
         # Checking for Outliers
In [42]:
         # Count the number of outliers using IQR method
         Q1 = df['isChainProp'].quantile(0.25)
         Q3 = df['isChainProp'].quantile(0.75)
          IQR = Q3 - Q1
          outliers = df[(df['isChainProp'] < (Q1 - 1.5 * IQR)) | (df['isChainProp'] > (Q3 + 1.5 * IQR))
          num_outliers = len(outliers)
          num_outliers
         447
Out[42]:
In [43]: # Remove outliers using IQR method
          df = df[(df['isChainProp'] >= (Q1 - 1.5 * IQR)) & (df['isChainProp'] <= (Q3 + 1.5 * IQR))]
         Cusine Replicability
         #Calculate avergae frequency of a restaurant by County
In [44]:
         df_freq=df.groupby(['CNTY_GEOID', 'CuisineShort'])['Frequency'].agg(['mean'])
In [45]: #Turn multi index into columns
         df_freq = df_freq.reset_index()
         # Using + operator to combine two columns to create key to join tables later
In [46]:
          df_freq['ConcatKey'] = df_freq['CNTY_GEOID'].astype(str) + df_freq['CuisineShort']
          df['ConcatKey'] = df['CNTY_GEOID'].astype(str) + df['CuisineShort']
         #Left join of df with df_cuisine using the ConcatKey above
In [47]:
         df=df.merge(df_freq, left_on='ConcatKey', right_on='ConcatKey')
In [48]:
         #Drop non-useful columns
         df= df.drop(columns=['CNTY_GEOID_y', 'CuisineShort_y', 'ConcatKey'])
         #Renaming Columns
In [49]:
          df.rename(
             columns={"CuisineShort_x": "CuisineShort", "CNTY_GEOID_x": "CNTY_GEOID", "mean":"CuisRepl
             inplace=True)
In [50]:
         # Checking for Outliers
          # Count the number of outliers using IQR method
         Q1 = df['CuisRepl'].quantile(0.25)
         Q3 = df['CuisRepl'].quantile(0.75)
         IQR = Q3 - Q1
          outliers = df[(df['CuisRepl'] < (Q1 - 1.5 * IQR)) | (df['CuisRepl'] > (Q3 + 1.5 * IQR))]
          num_outliers = len(outliers)
          num_outliers
         20885
Out[50]:
         # Remove outliers using IQR method
In [51]:
          df = df[(df['CuisRepl'] >= (Q1 - 1.5 * IQR)) & (df['CuisRepl'] <= (Q3 + 1.5 * IQR))]
```

Grouping Data By Cuisines

```
In [52]: # Using pandas qcut() to assign each row to a latitude and longitude area
         df['LatBin'] = pd.qcut(df['Lat'], q=25, labels=False)
         df['LonBin'] = pd.qcut(df['Lon'], q=25, labels=False)
         #Drop non-useful columns
In [53]:
         df= df.drop(columns=['id', 'RestaurantName', 'Cuisine', 'isChain', 'Frequency', 'Lat', 'Lon'])
         # Checking for duplicated rows
In [54]:
         df.duplicated().sum()
         326436
Out[54]:
         # Droping duplicated rows
In [55]:
         df = df.drop_duplicates()
In [56]: df = df.assign(row_number=range(len(df)))
In [57]:
         #Renaming Columns
         df.rename(
             columns={"row number": "id"},inplace=True)
         Assigning Chainability
In [58]: #Subsetting Data to include only variables defining Chainess
         df clus = df[['isChainProp', 'AvgRepl', "CuisRepl"]]
In [59]: # Computing the ideal value of k.
         #The ideal value of k is where the curve "bends" or the inflection point of the curve.
         #In this case the ideal value of k is 3.
         from sklearn.cluster import KMeans
         wcss = []
         for k in range(1,11):
             kmeans = KMeans(n_clusters=k, init="k-means++")
             kmeans.fit(df_clus.iloc[:,1:])
             wcss.append(kmeans.inertia )
         plt.figure(figsize=(12,6))
         plt.grid()
         plt.plot(range(1,11),wcss, linewidth=2, color="red", marker ="8")
```

plt.xlabel("K Value")

plt.ylabel("WCSS")

plt.show()

plt.xticks(np.arange(1,11,1))

```
C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarning: The
         default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\AppData\Local\Temp\ipykernel_21972\4129201520.py:16: UserWarning: Matplotlib i
         s currently using module://matplotlib inline.backend inline, which is a non-GUI backend, so c
         annot show the figure.
         plt.show()
         # Applying K Means Clustering with k = 3
In [60]:
         km = KMeans(n_clusters=3)
          clusters = km.fit predict(df clus.iloc[:,1:])
          df_clus["Clusters"] = clusters
         df_clus
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:870: FutureWarning: The
         default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` exp
         licitly to suppress the warning
           warnings.warn(
         C:\Users\Megan\AppData\Local\Temp\ipykernel_21972\620799678.py:4: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guid
         e/indexing.html#returning-a-view-versus-a-copy
```

df_clus["Clusters"] = clusters

	isChainProp	AvgRepl	CuisRepl	Clusters		
19	0.465990	1204.107614	1245.586777	2		
24	0.465990	1204.107614	1245.586777	2		
29	0.465990	1204.107614	1245.586777	2		
362	0.465990	1204.107614	1245.586777	2		
431	0.465990	1204.107614	582.325581	0		
•••						
373320	0.190476	1410.714286	1.125000	0		
373321	0.190476	1410.714286	1.125000	0		
373328	0.190476	1410.714286	2.000000	0		
373329	0.190476	1410.714286	1.000000	0		
373330	0.190476	1410.714286	1.000000	0		
26010 rows × 4 columns						

 $26010 \text{ rows} \times 4 \text{ columns}$

isChainPlot

Out[60]:

```
In [61]:
         #Plotting clusters against the three defining variables
         from mpl_toolkits.mplot3d import Axes3D
          import matplotlib.pyplot as plt
          import numpy as np
          import pandas as pd
         fig = plt.figure(figsize=(20,10))
          ax = fig.add_subplot(111, projection='3d')
          ax.scatter(df_clus.CuisRepl[df_clus.Clusters == 0], df_clus["AvgRepl"][df_clus.Clusters == 0]
          ax.scatter(df_clus.CuisRepl[df_clus.Clusters == 1], df_clus["AvgRepl"][df_clus.Clusters == 1]
          ax.scatter(df_clus.CuisRepl[df_clus.Clusters == 2], df_clus["AvgRepl"][df_clus.Clusters == 2]
          ax.scatter(df_clus.CuisRepl[df_clus.Clusters == 3], df_clus["AvgRepl"][df_clus.Clusters == 3]
          ax.view init(30, 185)
          plt.xlabel("Cuisine Proportion")
          plt.ylabel("Average Replicability")
          ax.set_zlabel('Chain Proportion')
         plt.show()
         C:\Users\Megan\AppData\Local\Temp\ipykernel_21972\1159020628.py:18: UserWarning: Matplotlib i
         s currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so c
         annot show the figure.
          plt.show()
         #Box Plot of Cuisine Proportion by Cluster
In [62]:
         #It does not seem to be a remarkable difference between clusters.
         CuisPlot = sns.boxplot(x='Clusters', y='CuisRepl', data=df_clus)
         CuisPlot
         <Axes3DSubplot: xlabel='Clusters', ylabel='CuisRepl', zlabel='Chain Proportion'>
Out[62]:
         #Box Plot of Average Replicability by Cluster
In [63]:
         #There seems to be a difference between clusters.
         AvgRepl = sns.boxplot(x='Clusters', y='AvgRepl', data=df_clus)
         AvgRepl
         <Axes3DSubplot: xlabel='Clusters', ylabel='AvgRepl', zlabel='Chain Proportion'>
Out[63]:
         #Box Plot of isChain Proportion by Cluster
In [64]:
         #There seems to be a difference between clusters.
```

isChainPlot = sns.boxplot(x='Clusters', y='isChainProp', data=df_clus)

```
<Axes3DSubplot: xlabel='Clusters', ylabel='isChainProp', zlabel='Chain Proportion'>
Out[64]:
         #Deriving id column
In [65]:
         df_clus = df_clus.assign(row_number=range(len(df)))
In [66]:
         #Renaming Columns
         df_clus.rename(
              columns={"row_number": "id"},inplace=True)
In [67]:
         #Drop non-useful columns
         df_clus= df_clus.drop(columns=['CuisRepl', 'AvgRepl', 'isChainProp'])
In [68]:
         #Join cluster data with original data set
         df=df.merge(df_clus, left_on='id', right_on='id')
         #Name cluster with low, medium and high
In [69]:
         df['Chainess'] = np.where(df['Clusters']==1, 'High',
                             np.where(df['Clusters']==0, 'Medium','Low'))
         #Calculate avergae frequency of a restaurant by County
In [70]:
          df_balance=df.groupby(['Chainess'])['id'].agg(['count'])
         df balance
Out[70]:
                  count
         Chainess
             High
                   2224
                   4591
             Low
          Medium 19195
```

US Census Data, Formatting and Variable Selection

```
In [71]: #Left join of with Census Data
    df=df.merge(df_census, left_on='CountyKey', right_on='CountyKey')

In [72]: #Left join of with Walkability Index
    df=df.merge(df_walk, left_on='CNTY_GEOID', right_on='GEOID')

In [73]: #Finding amount of null values per column
    df_na = pd.DataFrame(df.isnull().sum())
    df_na['Qty_NullValues']= df.isnull().sum()
    df_na
```

	0	Qty_NullValues
CNTY_GEOID	0	0
CNTY_NAME	0	0
UA_GEOID	0	0
UA_NAME	0	0
MSA_GEOID	0	0
MSA_NAME	0	0
State	0	0
CountyKey	0	0
CuisineShort	0	0
AvgRepl	0	0
isChainProp	0	0
CuisRepl	0	0
LatBin	0	0
LonBin	0	0
id	0	0
Clusters	0	0
Chainess	0	0
Median age (years)	0	0
Sex ratio (males per 100 females)	0	0
Age dependency ratio	0	0
Old-age dependency ratio	0	0
Child dependency ratio	0	0
Population	22	22
Gini Index	0	0
Income Per Capita	252	252
Density	1049	1049
GEOID	0	0
NatWalkInd	0	0

Out[73]:

```
In [74]: # Drop rows with at least one null value.
    df = df.dropna()

In [75]: #Change NatWalkInd type to numerical
    df = df.astype({'NatWalkInd':'float'})

In [76]: #Creating Bins for all numerical Predictors

# Convert MedianAge to categorical
    df['AgeRangeBin'] = pd.cut(df['Median age (years)'], [0, 39, 59, float('inf')], labels=['Youn
    #Source: https://www.researchgate.net/figure/Age-intervals-and-age-groups_tbl1_228404297

# Bin Walkability
    df['NatWalkIndBin'] = pd.cut(df['NatWalkInd'], [0,5.75, 10.5, 15.25, float('inf')], right=Fal
    #Source: https://www.epa.gov/sites/default/files/2021-06/documents/national_walkability_index
```

```
#Source: https://money.usnews.com/money/personal-finance/family-finance/articles/where-do-i-f
         #Divided by 2 cause it is just 1 person
         # Bin Gini
         df['GiniBin'] = pd.cut(df['Gini Index'], [0,.42,.54, float('inf')], right=False, labels=['Low
         #Source: https://www.researchgate.net/figure/Map-of-national-income-Gini-coefficients-reporte
In [77]:
         #Checking for new columns and null values
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 24834 entries, 0 to 26020
         Data columns (total 32 columns):
            Column
                                                Non-Null Count Dtype
                                                -----
          0
             CNTY_GEOID
                                                24834 non-null object
            CNTY NAME
                                                24834 non-null object
          1
                                                24834 non-null float64
            UA GEOID
          3
            UA NAME
                                               24834 non-null object
                                                24834 non-null float64
          4
             MSA GEOID
          5
             MSA NAME
                                                24834 non-null object
          6
             State
                                                24834 non-null object
          7 CountyKey
                                                24834 non-null object
                                                24834 non-null object
            CuisineShort
                                                24834 non-null float64
          9 AvgRepl
                                                24834 non-null float64
          10 isChainProp
                                                24834 non-null float64
          11 CuisRepl
          12 LatBin
                                                24834 non-null int64
          13 LonBin
                                                24834 non-null int64
          14 id
                                                24834 non-null int64
          15 Clusters
                                                24834 non-null int32
          16 Chainess
                                                24834 non-null object
          17 Median age (years)
                                                24834 non-null float64
          18 Sex ratio (males per 100 females) 24834 non-null float64
                                            24834 non-null float64
          19 Age dependency ratio
          20 Old-age dependency ratio
                                              24834 non-null float64
                                               24834 non-null float64
          21 Child dependency ratio
                                               24834 non-null float64
          22 Population
          23 Gini Index
                                               24834 non-null float64
          24 Income Per Capita
                                               24834 non-null float64
                                               24834 non-null float64
          25 Density
          26 GEOID
                                               24834 non-null object
          27 NatWalkInd
                                               24834 non-null float64
          28 AgeRangeBin
                                               24834 non-null category
          29 NatWalkIndBin
                                               24834 non-null category
          30 IncomeBin
                                                24834 non-null category
          31 GiniBin
                                                24834 non-null category
         dtypes: category(4), float64(15), int32(1), int64(3), object(9)
         memory usage: 5.5+ MB
In [78]: #Saving Data set with Predictos and Bins to csv
         df.to csv('df clusters.csv')
```

df['IncomeBin'] = pd.cut(df['Income Per Capita'], [0,26100, 78300, float('inf')], right=False

Variable Selection

Bin Income

Numerical Variables

```
In [79]: #Subseting all possible numerical predictors
    df_corr = df[['Median age (years)', 'Age dependency ratio','Old-age dependency ratio','Child

In [80]: #Building Correlation Matrix
    corr = df_corr.corr()
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
```

```
plt.figure(figsize=(10, 9))
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns,annot=True,cmap="RdBu")
Out[80]:
```

Age Dependency Ratio and Old Dependency Ration have a high correlation among them and with median age. Therefore, they were removed from the predictors. Child Dependency Ratio was also removed beacuse it was deemed unrelevant to the output.

```
In [81]: #Subseting all possible numerical predictors after removing highly correlated predictors
    df_corr = df[['Median age (years)','Population','Income Per Capita', 'Gini Index','NatWalkInd

In [82]: #Building Correlation Matrix after removing highly correlated predictors
    corr = df_corr.corr()
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
    plt.figure(figsize=(9, 9))
    sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns,annot=True,cmap="RdBu")

Out[82]:
```

Categorical Variables

```
In [83]:
         #Enconding Categorical Varibles
         label encoder = LabelEncoder()
         df['ChainessChi'] = label_encoder.fit_transform(df['Chainess'])
         df['CuisineChi'] = label_encoder.fit_transform(df['CuisineShort'])
         df['AgeChi'] = label_encoder.fit_transform(df['AgeRangeBin'])
         df['IncomeChi'] = label_encoder.fit_transform(df['IncomeBin'])
         df['WalkChi'] = label_encoder.fit_transform(df['NatWalkIndBin'])
         df['GiniChi'] = label_encoder.fit_transform(df['GiniBin'])
In [84]:
         #Declaring X and y to apply the method
         X = df[['CuisineChi','LatBin', 'LonBin','AgeChi','IncomeChi','WalkChi','GiniChi']]
         y = df['ChainessChi']
In [85]: # Running chi2 test
         chi_scores = chi2(X,y)
         chi scores
         (array([3.27229658e+03, 9.79109711e+01, 4.10066076e+01, 8.68039078e+00,
Out[85]:
                 8.15128751e-01, 5.40064987e+01, 5.76813057e+00]),
          array([0.0000000e+00, 5.48154218e-22, 1.24602946e-09, 1.30339812e-02,
                 6.65268623e-01, 1.87343148e-12, 5.59070223e-02]))
In [86]:
         #Printing p-values
         p_values = pd.Series(chi_scores[1],index = X.columns)
         p_values.sort_values(ascending = False , inplace = True)
         p_values
         IncomeChi
                     6.652686e-01
Out[86]:
                     5.590702e-02
         GiniChi
                      1.303398e-02
         AgeChi
                     1.246029e-09
         LonBin
         WalkChi
                      1.873431e-12
         LatBin
                     5.481542e-22
         CuisineChi 0.000000e+00
         dtype: float64
```

Income Per Capita has a p-Vaulue greater than 0.5 therefore it was removed from the predictors.

One Hot Econding (Dummies)

```
In [87]: #Change variable type to categoy for numerical categories
    df['LatBin'] = df['LatBin'].astype('category')
```

```
df['LonBin'] = df['LonBin'].astype('category')
In [88]: #Assign predictors to X and outcome to Y
         X = pd.get_dummies(df[['CuisineShort','LatBin', 'LonBin','AgeRangeBin','NatWalkIndBin','GiniB
         y = df['Chainess'].astype('category')
         classes = list(y.cat.categories)
         #Create dataframe for Logistic Regression and NN where predictors are dummies bu outcome is n
In [89]:
         df_ml = X.assign(Chainess = y)
         #Save dataframe to csv for Logistic Regression and NN
In [90]:
         df_ml.to_csv('df_dummies.csv')
In [91]: #Change all variables to dummies (even outcome) for apriori
         df_priori = pd.get_dummies(df[['CuisineShort','LatBin', 'LonBin','AgeRangeBin','NatWalkIndBin
In [92]:
         #Save dataframe to csv for Apriori
         df_priori.to_csv('df_apriori.csv')
         Logistic Regression Algorithm
         #Asign new name to dataframe
In [93]:
         df_logistic = df_ml
In [94]: #Replacing the space between the words with underscores
         df_logistic.columns = [s.strip().replace(' ','_') for s in df_logistic.columns]
In [95]:
         #Selecting Predictors and Outcome
         predictors = df logistic.columns.drop('Chainess')
         outcome = ['Chainess']
         X = df_logistic[predictors]
         y = df_logistic[outcome]
In [96]: #Data Partition with test size = 40%
         train_X, valid_X, train_y, valid_y = train_test_split(X, y, test_size=0.6, random_state=42)
In [97]: # Perform Logistic regression balancing classes
         log_reg = LogisticRegression(solver='newton-cg', class_weight='balanced')
         log_reg.fit(train_X,train_y)
         C:\Users\Megan\anaconda3\lib\site-packages\sklearn\utils\validation.py:1143: DataConversionWa
         rning: A column-vector y was passed when a 1d array was expected. Please change the shape of
         y to (n_samples, ), for example using ravel().
          y = column_or_1d(y, warn=True)
Out[97]:
                                  LogisticRegression
         LogisticRegression(class_weight='balanced', solver='newton-cg')
In [98]:
         # Make prediction using the model
         # perform prediction using the test dataset
         y_train_pred = log_reg.predict(train_X)
         y_valid_pred = log_reg.predict(valid_X)
         # Print model performnance
In [99]:
         print('Training')
         classificationSummary(train_y, y_train_pred)
         ConfusionMatrixDisplay.from_predictions(train_y,y_train_pred)
```

print('Validation')

```
classificationSummary(valid_y, y_valid_pred)
          ConfusionMatrixDisplay.from_predictions(valid_y,y_valid_pred)
         Confusion Matrix (Accuracy 0.8429)
                Prediction
         Actual
                  0
                        1
                             2
              0 627 193
                            11
              1 501 1154
              2 276 506 6592
         Validation
         Confusion Matrix (Accuracy 0.8349)
                Prediction
         Actual
                 0 1
              0 913 343
                           18
              1 849 1649 123
              2 391 736 9879
         <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x17f0d7cc910>
Out[99]:
         Neural Network Algorithm
          # train neural network with 1 hidden layer and 2 nodes
In [100...
          clf = MLPClassifier(hidden_layer_sizes=(40), activation='logistic', solver='lbfgs',random_sta
          clf.fit(train X, train y.values)
         change the shape of y to (n_samples, ), for example using ravel().
           y = column_or_1d(y, warn=True)
                                         MLPClassifier
```

```
C:\Users\Megan\anaconda3\lib\site-packages\sklearn\neural_network\_multilayer_perceptron.py:1
          096: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please
Out[100]:
          MLPClassifier(activation='logistic', hidden_layer_sizes=40, max_iter=500,
                         random_state=1, solver='lbfgs')
```

```
clf.predict(X)
In [101...
          array(['Low', 'Low', 'Low', ..., 'Medium', 'Medium'],
Out[101]:
                dtype='<U6')
          # Print model performnance
In [102...
          #NN Model Evaluation
          # training performance
          print('Trainning Performance')
          classificationSummary(train_y, clf.predict(train_X))
          print('Validation Performance')
          # validation performance
          classificationSummary(valid y, clf.predict(valid X))
```

```
Confusion Matrix (Accuracy 0.9761)
                 Prediction
          Actual 0 1
                            2
               0 774 47
                           10
               1 36 1627 65
               2 12 67 7295
          Validation Performance
          Confusion Matrix (Accuracy 0.8815)
                 Prediction
                                2
          Actual
                   0
                         1
               0
                  792
                       345
                              137
               1 336 1858 427
               2 107 414 10485
          # Network structure: Intercepts
In [103...
          print('Intercepts')
          clf.intercepts
          Intercepts
          [array([-0.96678834, 1.62926058, 0.6739824, -0.96242113, 1.84580545,
Out[103]:
                  -1.18395929, 3.15961567, -1.56521648, -0.95542004, -0.51106833,
                  -4.8377949 , 0.68768808, -1.33163431, -0.44774931, 2.52917504,
                  -4.57446814, -2.9673629 , -2.37829618, -0.7401056 , 1.81455465,
                  -3.06373802, -0.89756441, 0.89820223, -1.51147016, -0.49069892,
                  \hbox{-0.22102081, -4.06644789, 1.59746883, -2.98520853, -0.83581247,}\\
                  0.07555291, -1.51373994, 2.82407911, -3.29736118, -1.69388914,
                  -3.33679363, 3.99698921, -0.87010794, -0.25298331, 1.64008776]),
           array([-3.97043665, 4.54482594, -0.50623587])]
          # Network structure: Coeficients
In [104...
          print('Weights')
          clf.coefs_
```

Weights

Trainning Performance

```
Out[104]: [array([[-4.45998002, 4.29575099, -7.84300864, ..., -3.98691596,
                   -7.06505631, 1.95319946],
                  [2.6090922, 0.75235027, 0.69817825, ..., -2.40998985,
                    1.95938617, -2.77420758],
                  [-1.15958261, 0.2040192, 1.30555599, ..., 0.36491947,
                    0.98467529, -0.67903691],
                  [ 5.60566671, 1.33197113, 4.37888581, ..., 3.96380909,
                    0.53103083, -0.25499957],
                  [-2.41389825, -0.7123228, -3.31366462, ..., -2.9208934]
                    1.05113024, 2.5515475 ],
                  [-4.18496598, 0.9144798, -0.30878971, ..., -1.84576345,
                   -1.76815378, -0.4032556 ]]),
           array([[ 3.84841714, -8.56271384,
                                               4.54903462],
                                6.2616555 ,
                  [-11.73368523,
                                               5.67957324],
                  [ -1.23296394, -5.84942949,
                                               6.87109298],
                    7.7321755 , -2.00771403, -5.71101715],
                   3.49768244, -7.53128082,
                                               3.58574588],
                  [-7.00950729, -8.4985319, 15.51190717],
                   7.03082107, -9.07237988,
                                              1.91006174],
                  [-4.66718178, -13.79892395, 18.41897952],
                  [ 8.21699852, -6.11931692, -2.10018185],
                                 9.82047359,
                  [-10.0287156]
                                                0.53388128],
                  [ 14.70789449,
                                 -5.53890619,
                                              -9.11900877],
                  [ -5.46805631, -5.26856467, 10.80771553],
                  [ 2.2925455 , -8.54833679 , 6.46597218],
                  [ -4.31335361, -5.34757977,
                                               9.12806295],
                                 -7.69486037, 10.23805766],
                   -2.57874586,
                                 -4.4292938 ,
                  [ 12.74425369,
                                              -8.40301514],
                  9.24515424,
                                -2.99983494, -6.19382086],
                  [ -2.28244449,
                                 7.40311202, -5.25067177],
                  [-12.1471138]
                                 2.56856211,
                                              9.73924497],
                  [ -6.39302083,
                                 -4.64521151, 10.68126424],
                  [ -0.4746253 ,
                                 10.13081037, -10.02089311],
                  [-6.60942485,
                                  8.84414305, -2.03997436],
                  [ -0.04579192,
                                  9.36874762, -9.50834084],
                  [ 0.70410472,
                                  8.3871453 , -9.14295405],
                  [ -7.72090477,
                                  4.27436909,
                                               3.93007779],
                   0.37760332, 10.23574396, -10.57477978],
                  [ 10.74717003, -12.51860152,
                                               1.65643281],
                  [ 11.55320644,
                                -4.95874351,
                                              -6.556725 ],
                  [ 2.17900602, -13.5356795 , 11.16520839],
                  [ 6.56858307,
                                4.62113798, -11.02582607],
                  [-10.27448903, -1.78804727, 12.10287416],
                                 1.77630484,
                  [ -8.59885486,
                                               6.587719 ],
                   3.69326234,
                                 5.82105525, -9.39667759],
                  [-12.56901523,
                                  8.04804204,
                                              4.60176415],
                  [ -1.04078869,
                                  0.07374467,
                                               0.61594524],
                  [ 8.29199348,
                                 -1.0832589 , -7.30289539],
                  [-14.3948715]
                                 3.1061974 , 10.83481663],
                                 9.84627527, -5.31093242],
                  [-4.44236721,
                    6.87990081,
                                 -9.15397994,
                                               2.46534275],
                                  4.6900488 , -12.09401545]])]
                    7.39402275,
```

```
In [105... # Prediction Probabilities
pd.concat([df,pd.DataFrame(clf.predict_proba(X))], axis=1)
```

Out[105]:		CNTY_GEOID	CNTY_NAME	UA_GEOID	UA_NAME	MSA_GEOID	MSA_NAME	State	CountyKey
	0	40143	Tulsa	88948.0	Tulsa, OK	46140.0	Tulsa, OK	Oklahoma	TulsaOklahoma
	1	40143	Tulsa	88948.0	Tulsa, OK	46140.0	Tulsa, OK	Oklahoma	TulsaOklahoma
	2	40143	Tulsa	18760.0	Collinsville, OK	46140.0	Tulsa, OK	Oklahoma	TulsaOklahoma
	3	40143	Tulsa	82360.0	Skiatook, OK	46140.0	Tulsa, OK	Oklahoma	TulsaOklahoma
	4	40143	Tulsa	88948.0	Tulsa, OK	46140.0	Tulsa, OK	Oklahoma	TulsaOklahoma
	•••								
	24623	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	24624	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	24625	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	24626	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	24627	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

25987 rows × 41 columns

https://journals.sagepub.com/doi/full/10.1177/23998083211014896

https://www.sciencedirect.com/science/article/abs/pii/S0143622812000811

https://towardsdatascience.com/customer-segmentation-using-k-means-clustering-d33964f238c3#:~:text=The%20goal%20of%20K%20means,the%20revenue%20of%20the%20company.

In []:

Apriori and Association Rules

te_ary = te.fit_transform(transactional_data)

binary_df = pd.DataFrame(te_ary, columns=te.columns_)

```
In [106...
          import pandas as pd
          from mlxtend.frequent_patterns import apriori
          from mlxtend.preprocessing import TransactionEncoder
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.model selection import train test split
          from sklearn.metrics import accuracy score
          # Load your dataset with dummy variables
In [107...
          df = pd.read_csv('df_dummies.csv')
In [108...
          # Convert dummy variables to binary transactional data
          transactional_data = []
          for index, row in df.iterrows():
              transaction = [col for col in df.columns if row[col] == 1]
              transactional_data.append(transaction)
          # Apriori for Frequent Itemset Mining
In [109...
          # Using TransactionEncoder to transform transactional data to binary format
          te = TransactionEncoder()
```

```
In [ ]:
          # finding frequent itemsetsv
In [110...
          frequent_itemsets = apriori(binary_df, min_support=0.1, use_colnames=True)
          # Extracting association rules from frequent itemsets
In [111...
          from mlxtend.frequent_patterns import association_rules
          association_rules_df = association_rules(frequent_itemsets, metric="confidence", min_threshol
          # new features from association rules
In [112...
          df['association_rule'] = False
          for index, row in association_rules_df.iterrows():
              antecedents = set(row['antecedents'])
              consequents = set(row['consequents'])
              for i, transaction in enumerate(transactional_data):
                  if antecedents.issubset(transaction) and consequents.issubset(transaction):
                       df.at[i, 'association_rule'] = True
In [113...
          # CART Classification Model
          # Prepare X and y for classification
          X = df.drop(['association_rule', 'Chainess'], axis=1) # Replace 'target_variable' with the n
          y = df['Chainess'] # Replace 'target_variable' with the name of your target variable
          # Split data
In [114...
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
          # Train a CART
In [115...
          clf = DecisionTreeClassifier()
          clf.fit(X_train, y_train)
Out[115]: ▼ DecisionTreeClassifier
          DecisionTreeClassifier()
In [116...
          # Running the model on test data
          y_pred = clf.predict(X_test)
In [117...
          # Evaluate the model
          accuracy = accuracy_score(y_train, clf.predict(X_train))
          print(f'Train Accuracy: {accuracy}')
          # validation performance
          accuracy = accuracy_score(y_test, y_pred)
          print(f'Validation Accuracy: {accuracy}')
          Train Accuracy: 1.0
```

Validation Accuracy: 0.9323535333199114