1.B

• (OR [9.2,9.3]. OR Problem (1) in 9.A)

Suppose V is a real vector space. The complexification of V, denoted by $V_{\mathbb{C}}$, equals $V \times V$. An element of $V_{\mathbb{C}}$ is an ordered pair (u, v), where $u, v \in V$, but we write this as u + iv.

• Addition on $V_{\mathbb{C}}$ is defined by

$$(u_1 + iv_1) + (u_2 + iv_2) = (u_1 + u_2) + i(v_1 + v_2)$$

for all $u_1, v_1, u_2, v_2 \in V$.

• Complex scalar multiplication on $V_{\mathbb{C}}$ is defined by

$$(a+bi)(u+iv) = (au - bv) + i(av + bu)$$

for all $a, b \in \mathbf{R}$ and all $u, v \in V$.

Prove that with the definitions above, $V_{\mathbb{C}}$ *is a complex vector space.*

Think of V as a subset of $V_{\mathbb{C}}$ by identifying $u \in V$ with u + i0. The construction of $V_{\mathbb{C}}$ from V can then be thought of as generalizing the construction of \mathbb{C}^n from \mathbb{R}^n .

SOLUTION:

- Commutativity: $(u_1 + iv_1) + (u_2 + iv_2) = (u_2 + iv_2) + (u_1 + iv_1)$.
- Associativity:

$$\begin{aligned} &\text{(I)} \ [(u_1+\mathrm{i} v_1)+(u_2+\mathrm{i} v_2)]+(u_3+\mathrm{i} v_3)=(u_1+\mathrm{i} v_1)+[(u_2+\mathrm{i} v_2)+(u_3+\mathrm{i} v_3)].\\ &\text{(II)} \left\{ \begin{array}{l} [(a+b\mathrm{i})(c+d\mathrm{i})](u+\mathrm{i} v)=[(ac-bd)+(ad+bc)\mathrm{i}](u+\mathrm{i} v)=[(ac-bd)u-(ad+bc)v]+\mathrm{i}[(ac-bd)v+(ad+bc)u]\\ (a+b\mathrm{i})[(c+d\mathrm{i})(u+\mathrm{i} v)]=(a+b\mathrm{i})[(cu-dv)+\mathrm{i}(cv+du)]=[a(cu-dv)-b(cv+du)]+\mathrm{i}[a(cv+du)+b(cu-dv)] \end{array} \right. \end{aligned}$$

- Additive inverse: $(u_1 + iv_1) + (-u_1 + i(-v_1)) = 0$.
- Multiplication identity.
- Distributive properties:

$$(I) \left\{ \begin{array}{l} (a+b\mathrm{i})[(u_1+\mathrm{i}v_1)+(u_2+\mathrm{i}v_2)] = (a+b\mathrm{i})[(u_1+u_2)+\mathrm{i}(v_1+v_2)] \\ = [a(u_1+u_2)-b(v_1+v_2)]+\mathrm{i}[a(v_1+v_2)+b(u_1+u_2)] \\ (a+b\mathrm{i})(u_1+\mathrm{i}v_1)+(a+b\mathrm{i})(u_2+\mathrm{i}v_2) = [(au_1-bv_1)+\mathrm{i}(av_1+bu_1)]+[(au_2-bv_2)+\mathrm{i}(av_2+bu_2)] \\ (II) \left\{ \begin{array}{l} [(a+b\mathrm{i})+(c+d\mathrm{i})](u+\mathrm{i}v) = [(a+c)+(b+d)\mathrm{i}](u+\mathrm{i}v) = [(a+c)u-(b+d)v]+\mathrm{i}[(a+c)v+(b+d)u] \\ (a+b\mathrm{i})(u+\mathrm{i}v)+(c+d\mathrm{i})(u+\mathrm{i}v) = [(au-bv)+\mathrm{i}(av+bu)]+[(cu-dv)+\mathrm{i}(cv+du)] \end{array} \right. \end{array} \right.$$

• Suppose S is a nonempty set. Let V^S denote the set of functions from S to V. Define a natural addition and scalar multiplication on V^S , and show that V^S is a vector space with these definitions.

SOLUTION:

- Addition on V^S is defined by (f+q)(x)=f(x)+g(x) for any $x\in S$ and $f,q\in V^S$.
- Scalar Multiplication on V^S is defined by $(\lambda f)(x) = \lambda f(x)$ for any $x \in S, \lambda \in \mathbb{F}$, $f \in V^S$.

Commutativity. Associativity.

Additive identity: 0(x) = 0.

Additive inverse: f(x) + (-f)(x) = 0.

Multiplication identity: I(x) = x.

Distributive properties: $(\lambda(f+q))(x) = \lambda(f(x)+q(x)) = (\lambda f)(x) + (\lambda q)(x)$;

$$((\lambda + \mu)f)(x) = (\lambda + \mu)f(x) = \lambda f(x) + \mu f(x).$$

2 Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove that a = 0 or v = 0.

SOLUTION: If a = 0, then we are done.

Otherwise,
$$\exists a^{-1} \in \mathbf{F}, a^{-1}a = 1$$
, hence $v = 1 \cdot v = (a^{-1}a)v = a^{-1}(av) = a^{-1} \cdot 0 = 0$. \Box

3 Suppose $v, w \in V$. Explain why there exists a unique $x \in V$ such that v + 3x = w.

SOLUTION:

[Existence] Let
$$x = \frac{1}{3}(w - v)$$
.

[Uniqueness] Suppose $v + 3x_1 = w$,(I) $v + 3x_2 = w$ (II).

Then (I)
$$-$$
 (II) : $3(x_1 - x_2) = 0 \Rightarrow \text{By Problem (2)}, x_1 - x_2 = 0 \Rightarrow x_1 = x_2$. \square

5 Show that in the definition of a vector space, the additive inverse condition can be replaced with the condition that 0v = 0 for all $v \in V$. Here the 0 on the left side is the number 0, and the 0 on the right side is the additive identity of V.

The phrase a "condition can be replaced" in a definition means that the collection of objects satisfying the definition is unchanged if the original condition is replaced with the new condition.

SOLUTION: Using [1.31].
$$0v = 0$$
 for all $v \in V \Leftrightarrow (1 + (-1))v = 1 \cdot v + (-1)v = v + (-v) = 0$. \square

6 Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**.

Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty, -\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} -\infty & \text{if } t > 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t < 0, \end{cases}$$

and (I) $t + \infty = \infty + t = \infty + \infty = \infty$,

(II)
$$t + (-\infty) = (-\infty) + t = (-\infty) + (-\infty) = -\infty$$
,

(III)
$$\infty + (-\infty) = (-\infty) + \infty = 0.$$

With these operations of addition and scalar multiplication, is $\mathbf{R} \cup \{\infty, -\infty\}$ a vector space over \mathbf{R} ? Explain. Solution: Not a vector space. By Associativity: $(a + \infty) + (-\infty) \neq a + (\infty + (-\infty))$.

OR By Distributive properties: $\infty = (2 + (-1))\infty \neq 2\infty + (-\infty) = \infty + (-\infty) = 0$. \square

ENDED

1.C

2 (1.35)

(b) The set of continuous real-valued functions on the interval [0,1] is a subspace of $\mathbf{R}^{[0,1]}$

Denote the set by
$$U$$
. $\forall x \in [0,1]$ we have $(-) \ 0 \in U; \ f(x) = 0 \Leftrightarrow f = 0$

$$(-) \ 0 \in U; \ f(x) = 0 \Leftrightarrow f = 0$$

$$(-) \ \forall f, g \in U, \ (f+g)(x) = f(x) + g(x)$$

$$(-) \ \forall f \in U, \forall \lambda \in \mathbf{F} = \mathbf{R}, \ (\lambda f)(x) = \lambda f(x)$$

(c) The set of differentiable real-valued functions on ${\bf R}$ is a subspace of ${\mathbb R}^{\mathbb R}$

Denote the set by
$$U$$
. $(-) 0 \in U$
$$(-) \forall f, g \in U, (f' + g') = f' + g'$$

$$(-) \forall f, g \in U, \forall \lambda \in \mathbf{F} = \mathbf{R}, (\lambda f)' = \lambda(f)'$$

(d) The set of differentiable real-valued functions f on the interval (0,3) such that f'(2) = b is a subspace of $\mathbf{R}^{(0,3)}$ if and only if b = 0.

Denote the set by U. Suppose b=0. Then

$$(-) 0 \in U \\ (-) \forall f, g \in U, (f+g)'(2) = f'(2) + g'(2) = 0 \\ (-) \forall f, U, \forall \lambda \in F = R, (\lambda f)'(2) = \lambda f'(2) = 0 \\ (-) \forall f \in U, \forall \lambda \in F = R, (\lambda f)'(2) = \lambda f'(2) = 0 \\ (-) \forall f \in U, \forall \lambda \in F = R, (\lambda f)'(2) = \lambda f'(2) = 0 \\ (-) \forall f \in U, \forall \lambda \in F = R, (\lambda f)'(2) = \lambda f'(2) = 0 \\ (-) \forall f \in U, \forall \lambda \in F = R, (\lambda f)'(2) = \lambda f'(2) = 0 \\ (-) \forall f \in U, \forall \lambda \in F = R, (\lambda f)'(2) = \lambda f'(2) = 0 \\ (-) \forall f \in U, \partial_{\lambda}, \dots, \partial_{\lambda}, \partial_{\lambda}, \partial_{\lambda}, \dots, \partial_{\lambda}, \partial$$

11 Prove that the intersection of every collection of subspaces of V is a subspace of V . SOLUTION: Suppose $\{U_{\alpha}\}_{\alpha\in\Gamma}$ is a collection of subspaces of V ; here Γ is an arbitrary index set. We need to prove that $\bigcap_{\alpha\in\Gamma}U_{\alpha}$, which equals the set of vectors
12 Prove that the union of two subspaces of V is a subspace of V
if and only if one of the subspaces is contained in the other.
SOLUTION: Suppose U and W are subspaces of V .
(a) Suppose $U \subseteq W$. Then $U \cup W = W$ is a subspace of V .
(b) Suppose $U \cup W$ is a subspace of V . Suppose $U \not\subseteq W$ and $U \not\supseteq W$ ($U \cup W \neq U$ and W).
Then $\forall a \in U \text{ but } a \notin W; \ b \in W \text{ but } b \notin U. \ a + b \in U \cup W.$
(1) Consider $a + b \in U \Rightarrow b = (a + b) + (-a) \in U$, contradicts! (2) Consider $a + b \in W \Rightarrow a = (a + b) + (-b) \in W$, contradicts! $\Rightarrow U \cup W = U$ or W . Contradicts!
Thus $U \subseteq W$ and $U \supseteq W$. \square
13 Prove that the union of three subspaces of V is a subspace of V
if and only if one of the subspaces contains the other two.
This exercise is surprisingly harder than Exercise 12, possibly because this exercise is not true
if we replace F with a field containing only two elements.
SOLUTION: Suppose A, B, C are subspaces of V .
(a) If any two of them are subsets of the third one, then $A \cup B \cup C = A$, B or C , which is a subspace of V .
(b)* If $A \cup B \cup C$ is a subspace of V , suppose $ \left\{ \begin{array}{c} A \not\supseteq B \text{ and } C \\ B \not\supseteq A \text{ and } C \\ C \not\supseteq A \text{ and } B \end{array} \right\} \Longleftrightarrow A \cap B \cap C \neq A, B \text{ and } C. $
$(C \not\supseteq A \text{ and } B)$
$\forall a \in A \text{ but } a \notin B, C; \ \forall b \in B \text{ but } b \notin A, C; \ \forall c \in C \text{ but } c \notin A, B; \text{ by assumption, } a+b+c \in A \cup B \cup C.$
(I) $A \cup B$ is a subspace \Rightarrow By Problem (12), $A \subseteq B$ or $A \supseteq B$.
(II) $A \cup C$ is a subspace \Rightarrow By Problem (12), $A \subseteq C$ or $A \supseteq C$.
(III) $B \cup C$ is a subspace \Rightarrow By Problem (12), $B \subseteq C$ or $B \supseteq C$.
Any two of (I), (II) and (III) must be true.

$$(-). (I) \text{ and (II) are true. Then} \quad \text{or } C \supseteq B \supseteq A \\ \text{or } B \supseteq A, C \\ \text{or } B \subseteq A, C \\ \text{or } C \supseteq A, B \\ \Rightarrow \begin{cases} A \supseteq B, C \\ \text{or } B \supseteq A, C \\ \text{or } C \supseteq A, B \end{cases}$$

$$A \subseteq C \subseteq B \\ \text{or } A \supseteq C \supseteq B \\ \text{or } A \supseteq C \supseteq B \\ \text{or } C \supseteq A, B \\ \text{or } C \supseteq A, B \end{cases} \Rightarrow \begin{cases} A \supseteq B, C \\ \text{or } C \supseteq A, B \\ \text{or } C \supseteq A, B \end{cases}$$

$$B \subseteq A \subseteq C$$
 or $B \supseteq A \supseteq C$ or $B \supseteq A, C$ or $A \subseteq B, C$ or $A \subseteq B, C$ or $C \supseteq A, B$
$$\begin{cases} A \supseteq B, C \\ A \supseteq B, C \\ A \supseteq B, C \\ A \supseteq B, C \end{cases}$$
 or $A \subseteq A, C$ or $A \subseteq A, B$
$$\begin{cases} A \supseteq B, C \\ A \supseteq B, C \\ A \supseteq B, C \\ A \supseteq B, C \end{cases}$$
 or $A \subseteq A, B$
$$\begin{cases} A \supseteq B, C \\ A \supseteq B, C \\ A \supseteq A, C \\ A \supseteq A, B \end{cases}$$

$$\begin{cases} A \supseteq B, C \\ A \supseteq A, C \\ A \supseteq A, B \end{cases}$$

$$\begin{cases} A \supseteq B, C \\ A \supseteq A, C \\ A \supseteq A, B \end{cases}$$
 Among these, any two of (1), (2) and (3) must be true.
$$\begin{cases} A \supseteq B, C \\ A \supseteq A, C \\ A \supseteq A, B \end{cases}$$

$$\Rightarrow C \subseteq A \subseteq B \\ A \supseteq A \supseteq C \end{cases}$$

$$\Rightarrow B \subseteq A \subseteq C$$

• Suppose $U = \{(x, -x, 2x) \in \mathbf{F}^3 : x \in \mathbf{F} \}$ and $W = \{(x, x, 2x) \in \mathbf{F}^3 : x \in \mathbf{F} \}$. Describe U + W using symbols, and also give a description of U + W that uses no symbols. **SOLUTION:**

(a)
$$U + W = \{(x + y, x - y, 2(x + y)) \in \mathbf{F}^3 : x, y \in \mathbf{F}\} = \{(x', y', 2x')) \in \mathbf{F}^3 : x', y' \in \mathbf{F}\}.$$

(b) U + W is a plane of which (1,0,2), (0,1,0) is a basis. \square

15 Suppose U is a subspace of V. What is U + U?

16 Suppose
$$U$$
 and W are subspaces of V . Prove that $U+W=W+U$?

SOLUTION: $\forall x \in U, y \in W, \quad x+y=y+x \in W+U \Rightarrow U+W \subseteq W+U \\ y+x=x+y \in U+W \Rightarrow W+U \subseteq U+W$ $\Rightarrow U+W=W+U.$

17 Suppose V_1, V_2, V_3 are subspaces of V. Prove that $(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3)$. **SOLUTION:**

Let
$$x \in V_1, y \in V_2, z \in V_3$$
. Denote $(V_1 + V_2) + V_3$ by $L, V_1 + (V_2 + V_3)$ by R . $\forall u \in L, \exists x, y, z, \ u = (x + y) + z = x + (y + z) \in R \Rightarrow L \subseteq R$ $\forall u \in R, \exists x, y, z, \ u = x + (y + z) = (x + y) + z \in L \Rightarrow R \subseteq L$ $\Rightarrow (V_1 + V_2) + V_3 = V_1 + (V_2 + V_3)$. \Box

18 *Does the operation of addition on the subspaces of V have an additive identity?* Which subspaces have additive inverses?

SOLUTION:

Suppose Ω is the additive identity.

For any subspace U of V. $\Omega \subseteq U + \Omega = U \Rightarrow \Omega \subseteq U$. Let $U = \{0\}$, then $\Omega = \{0\}$.

Now suppose W is an additive inverse of $U \Rightarrow U + W = \Omega$.

Note that $U + W \supset U, W \Rightarrow \Omega \supset U, W$. Thus $U = W = \Omega = \{0\}$. \square

19 Prove or give a counterexample: If V_1, V_2, U are subspaces of V such that $V_1 + U = V_2 + U$, then $V_1 = V_2$.

SOLUTION: An counterexample:

$$V = \mathbf{F}^3, U = \{(x, 0, 0) \in \mathbf{F}^3 : x \in \mathbf{F} \},$$

$$V_1 = \{(x, x, y)) \in \mathbf{F}^3 : x, y \in \mathbf{F} \}, V_2 = \{(x, y, z)) \in \mathbf{F}^3 : x, y, z \in \mathbf{F} \}.$$

Example: Suppose $U = \{(x, x, y, y) \in \mathbf{F}^4 : x, y \in \mathbf{F}\}, W = \{(x, x, x, y) \in \mathbf{F}^4 : x, y \in \mathbf{F}\}.$ Prove that $U + W = \{(x, x, y, z) \in \mathbf{F}^4 : x, y, z \in \mathbf{F}\}.$

SOLUTION: Let T denote $\{(x, x, y, z) \in \mathbb{F}^4 : x, y, z \in \mathbb{F} \}$.

- (a) By definition, $U+W = \{(x_1+x_2, x_1+x_2, y_1+x_2, y_1+y_2) \in \mathbf{F}^4 : (x_1, x_1, y_1, y_1) \in U, (x_2, x_2, x_2, y_2) \in W \}.$ $\Rightarrow \forall v \in U+W, \ \exists \ t \in T, \ v=t \Rightarrow U+W \subseteq T.$
- (b) $\forall x, y, z \in \mathbf{F}$, let $u = (0, 0, y x, y x) \in U$, $w = (x, x, x, -y + x + z) \in W$ $\Rightarrow (x, x, y, z) = u + w \in U + W$. Hence $\forall t \in T, \exists u \in U, w \in W, t = u + w \Rightarrow T \subseteq U + W$. \square
- **21** Suppose $U = \{(x, y, x + y, x y, 2x) \in \mathbf{F}^5 : x, y \in \mathbf{F} \}$. Find a subspace W of \mathbf{F}^5 such that $\mathbf{F}^5 = U \oplus W$.

SOLUTION:

- (a) Let $W = \{(0, 0, z, w, u) \in \mathbf{F}^5 : z, w, u \in \mathbf{F} \}$. Then $W \cap U = \{0\}$.
- (b) $\forall x, y, z, w, u \in \mathbf{F}$, let $u = (x, y, x + y, x y, 2x) \in U$, $w = (0, 0, z x y, w x y, u 2x) \in W$ $\Rightarrow (x, y, z, w, u) = u + w \Rightarrow \mathbf{F}^5 \subset U + W$. \square
- **22** Suppose $U = \{(x, y, x + y, x y, 2x) \in \mathbf{F}^5 : x, y \in \mathbf{F} \}$. Find three subspaces W_1, W_2, W_3 of \mathbf{F}^5 , none of which equals $\{0\}$, such that $\mathbf{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

SOLUTION:

- (1) Let $W_1 = \{(0,0,z,0,0) \in \mathbf{F}^5 : z \in \mathbf{F} \}$. Then $W_1 \cap U = \{0\}$. Let $U_1 = U \oplus W_1$. Then $U_1 = \{(x,y,z,x-y,2x) \in \mathbf{F}^5 : x,y,z \in \mathbf{F} \}$. (Check it!)
- (2) Let $W_2 = \{(0,0,0,w,0) \in \mathbf{F}^5 : w \in \mathbf{F} \}$. Then $W_2 \cap U_1 = \{0\}$. Let $U_2 = U_1 \oplus W_2$. Then $U_2 = \{(x,y,z,w,2x) \in \mathbf{F}^5 : x,y,z,w \in \mathbf{F} \}$.
- (3) Let $W_3 = \{(0,0,0,0,u) \in \mathbf{F}^5 : u \in \mathbf{F}\}$. Then $W_3 \cap U_2 = \{0\}$. Let $U_3 = U_2 \oplus W_3$. Then $U_3 = \{(x,y,z,w,u) \in \mathbf{F}^5 : x,y,z,w,u \in \mathbf{F}\}$. Thus $\mathbf{F}^5 = ((U \oplus W_1) \oplus W_2) \oplus W_3$. \square
- **23** Prove or give a counterexample: If V_1, V_2, U are subspaces of V such that $V = V_1 \oplus U$ and $V = V_2 \oplus U$, then $V_1 = V_2$.

HINT: When trying to discover whether a conjecture in linear algebra is true or false, it is often useful to start by experimenting in \mathbf{F}^2 .

SOLUTION: An counterexample:

$$V = \mathbf{F}^2, U = \{(x, x) \in \mathbf{F}^2 : x \in \mathbf{F}\}, V_1 = \{(x, 0) \in \mathbf{F}^2 : x \in \mathbf{F}\}, V_2 = \{(0, x) \in \mathbf{F}^2 : x \in \mathbf{F}\}.$$

24 Let V_e denote the set of real-valued even functions on \mathbf{R} and let V_o denote the set of real-valued odd functions on \mathbf{R} . Show that $\mathbb{R}^{\mathbb{R}} = V_e \oplus V_o$. Solution:

(a)
$$V_e \cap V_o = \{f : f(x) = f(-x) = -f(-x)\} = \{0\}.$$

(b)
$$\begin{cases} f_e \in V_e \Leftrightarrow f_e(x) = f_e(-x) \Leftarrow \text{let } f_e(x) = \frac{g(x) + g(-x)}{2} \\ f_o \in V_o \Leftrightarrow f_o(x) = -f_o(-x) \Leftarrow \text{let } f_o(x) = \frac{g(x) - g(-x)}{2} \end{cases} \} \Rightarrow \forall g \in \mathbb{R}^{\mathbb{R}}, g(x) = f_e(x) + f_o(x). \square$$

2.A

- **2** (a) Show that a list of length one in a vector space is linearly independent if and only if the vector in the list is not 0.
 - (b) Show that a list of length two in a vector space is linearly independent if and only if neither of the two vectors in the list is a scalar multiple of the other.

SOLUTION:

- Suppose $v \neq 0$. Then let $av = 0, a \in \mathbb{F}$. Getting a = 0. Thus (v) is linearly independent.
- Suppose (v) is linearly independent. $av = 0 \Rightarrow a = 0$. Then $v \neq 0$, for if not, $a \neq 0 \Rightarrow av = 0$. Contradicts.
- Denote the list by (v, w), where $v, w \in V$. If (v, w) is linearly independent, suppose $av + bw = 0 \Rightarrow a = b = 0$.
- Without loss of generality, suppose $v \neq cw \ \forall c \in \mathbf{F}$. Then let av + bw = 0, getting $a = b = 0 \Rightarrow (v, w)$ is linearly independent.

1 Prove that if (v_1, v_2, v_3, v_4) spans V, then the list $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V.

SOLUTION: Assume that $\forall v \in V, \exists a_1, \dots, a_4 \in \mathbf{F}$,

$$\begin{aligned} v &= a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 \\ &= b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4 \\ &= b_1v_1 + (b_2 - b_1)v_2 + (b_3 - b_2)v_3 + (b_4 - b_3)v_4, \text{ letting } b_i = \sum_{r=1}^i a_r. \end{aligned}$$
 Thus $\forall v \in V, \ \exists \ b_i \in \mathbf{F}, \ v = b_1(v_1 - v_2) + b_2(v_2 - v_3) + b_3(v_3 - v_4) + b_4v_4.$

Hence the list $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ also spans V. \square

6 Suppose (v_1, v_2, v_3, v_4) is linearly independent in V.

Prove that the list $(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$ is also linearly independent.

SOLUTION:
$$a_1(v_1 - v_2) + a_2(v_2 - v_3) + a_3(v_3 - v_4) + a_4v_4 = 0$$

 $\Rightarrow a_1v_1 + (a_2 - a_1)v_2 + (a_3 - a_2)v_3 + (a_4 - a_3)v_4 = 0$
 $\Rightarrow a_1 = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = 0 \Rightarrow a_1 = \dots = a_4 = 0 \Rightarrow \square$

7 Prove that if (v_1, v_2, \dots, v_m) is a linearly independent list of vectors in V, then $(5v_1 - 4v_2, v_2, v_3, \dots, v_m)$ is linearly independent.

SOLUTION:
$$a_1(5v_1 - 4v_2) + a_2v_2 + a_3v_3 + a_4v_4 = 0$$

 $\Rightarrow 5a_1v_1 + (a_2 - 4a_1)v_2 + a_3v_3 + a_4v_4 = 0$
 $\Rightarrow 5a_1 = a_2 - 4a_1 = a_3 = a_4 = 0 \Rightarrow a_1 = \dots = a_4 = 0$

- Suppose (v_1, \ldots, v_m) is a list of vectors in V. For $k \in \{1, \ldots, m\}$, let $w_k = v_1 + \cdots + v_k$.
 - (a) Show that $span(v_1, \ldots, v_m) = span(w_1, \ldots, w_m)$.
 - (b) Show that (v_1, \ldots, v_m) is linearly independent if and only if (w_1, \ldots, w_m) is linearly independent.

SOLUTION:

(a) Let span
$$(v_1, \ldots, v_m) = U$$
. Assume that $\forall v \in U, \exists a_i \in \mathbf{F},$
 $v = a_1v_1 + \cdots + a_mv_m = b_1w_1 + \cdots + b_mw_m = \sum_{j=1}^m (\sum_{i=j}^m b_i)v_j$

$$\Rightarrow b_1 = a_1, \ b_i = a_i - \sum_{r=1}^{i-1} b_r$$
. Thus $\exists b_i \in \mathbf{F}$ such that $v = b_1 w_1 + \cdots + b_m w_m$.

(b)
$$a_1w_1 + \dots + a_mw_m = 0$$

$$\Rightarrow (a_1 + \dots + a_m)v_1 + \dots + (a_i + \dots + a_m)v_i + \dots + a_mv_m = 0$$

$$\Rightarrow a_m = \cdots = (a_m + \cdots + a_i) = \cdots = (a_m + \cdots + a_1) = 0. \square$$

- **10** Suppose (v_1, \ldots, v_m) is linearly independent in V and $w \in V$. (a) Prove that if $(v_1 + w, \dots, v_m + w)$ is linearly dependent, then $w \in span(v_1, \dots, v_m)$. (b) Show that (v_1, \ldots, v_m, w) is linearly independent $\iff w \not\in span(v_1, \ldots, v_m)$. **SOLUTION:** (a) Suppose $a_1(v_1+w)+\cdots+a_m(v_m+w)=0, \ \exists \ a_i\neq =0 \Rightarrow a_1v_1+\cdots+a_mv_m=0=-(a_1+\cdots+a_m)w.$ Then $a_1 + \cdots + a_m \neq 0$, for if not, $a_1v_1 + \cdots + a_mv_m = 0$ while $a_i \neq 0$ for some i, contradicts. Hence $w \in \text{span}(v_1, \dots, v_m)$. (b) Suppose $w \in \text{span}(v_1, \dots, v_m)$. Then (v_1, \dots, v_m, w) is linearly dependent. Thus have we proven the " \Rightarrow " by its contrapositive. Suppose $w \notin \text{span}(v_1, \dots, v_m)$. Then by [2.23], (v_1, \dots, v_m, w) is linearly independent. \square **14** Prove that V is infinite-dim if and only if there is a sequence (v_1, v_2, \dots) in V such that (v_1, \ldots, v_m) is linearly independent for every $m \in \mathbf{N}^+$. **SOLUTION:** Similar to [2.16]. Suppose there is a sequence (v_1, v_2, \dots) in V such that (v_1, \dots, v_m) is linearly independent for any $m \in \mathbb{N}^+$. Choose an m. Suppose a linearly independent list (v_1, \ldots, v_m) spans V. Then there exists $v_{m+1} \in V$ but $v_{m+1} \not\in \operatorname{span}(v_1, \dots, v_m)$. Hence no list spans V. Thus V is infinite-dim. Conversely it is true as well. For if not, V must be finite-dim, contradicting the assumption. \square **15** *Prove that* \mathbf{F}^{∞} *is infinite-dim.* **SOLUTION:** Let $e_i = (0, \dots, 0, 1, 0, \dots) \in \mathbf{F}^{\infty}$ for every $m \in \mathbf{N}^+$, where '1' is on the ith entry of e_i . Suppose \mathbf{F}^{∞} is finite-dim. Then let span $(e_1,\ldots,e_m)=V$. But $e_{m+1}\not\in \operatorname{span}(e_1,\ldots,e_m)$. Contradicts. \square **16** Prove that the real vector space of all continuous real-valued functions on the interval [0,1] is infinite-dim. **SOLUTION:** Denote the vec-sp by U. Note that for each $m \in \mathbb{N}^+$, $(1, x, \dots, x^m)$ is linearly independent. Because if $a_0, \ldots, a_m \in \mathbf{R}$ are such that $a_0 + a_1 x + \cdots + a_m x^m = 0$, $\forall x \in [0, 1]$, Similar to [2.16], U is infinite-dim. then the polynomial has infinitely many roots and hence $a_0 = \cdots = a_m = 0$. OR. Note that for $a_n = \frac{1}{n}$, $a_1 < a_2 < \cdots < a_m$, $\forall m \in \mathbb{N}^+$. Suppose $f_n = \begin{cases} x - \frac{1}{n}, & x \in [\frac{1}{n}, 1) \\ 0, & x \in [0, \frac{1}{n}) \end{cases}$. Then for any $m, f_1(\frac{1}{m}) = \dots = f_m(\frac{1}{m})$, while $f_{m+1}(\frac{1}{m}) \neq 0$. Hence $f_{m+1} \notin \text{span}(f_1, \dots, f_m)$. Thus by Problem (14), U is infinite-dim. **17** Suppose $p_0, p_1, \ldots, p_m \in \mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0, \ldots, m\}$. *Prove that* (p_0, p_1, \dots, p_m) *is not linearly independent in* $\mathcal{P}_m(\mathbf{F})$. **SOLUTION:** Suppose (p_0, p_1, \dots, p_m) is linearly independent. Define $p \in \mathcal{P}_m(\mathbf{F})$ by $p(z) = z \ \forall z \in \mathbf{F}$. But $\forall a_i \in \mathbf{F}, z \neq a_0 p_0(z) + \cdots + a_m p_m(z)$, for if not, let z = 2, contradicts. Thus $z \notin \text{span}(p_0, p_1, \dots, p_m)$.
 - Hence (p_0, p_1, \ldots, p_m) is linearly dependent in $\mathcal{P}_m(\mathbf{F})$. For if not, notice that the list $(1, z, \ldots, z^m)$ spans $\mathcal{P}_m(\mathbf{F})$, thus by [2.23], (p_0, p_1, \ldots, p_m) spans $\mathcal{P}_m(\mathbf{F})$. Contradicts. \square

ENDED

Then span $(p_0, p_1, \dots, p_m) \subsetneq \mathcal{P}_m(\mathbf{F})$ while the list (p_0, p_1, \dots, p_m) has length m+1.

Note For *linearly independent sequence and [2.34].*

" $V = \text{span}(v_1, \dots, v_n, \dots)$ " is an invalid expression.

If we allow using "infinite list", then we must guarantee that $(v_1, \ldots, v_n, \ldots)$ is a spanning "list" such that for all $v \in V$, there exists a certain positive integer such that $v = a_1 v_{\alpha_1} + \cdots + a_n v_{\alpha_n}$, where $\Gamma = \{\alpha_1, \ldots, \alpha_n\}$ is an finite index set. The key point is, how do we find such a "list"?

Note For " $\mathbb{C}_VU\cap\{0\}$ ": " $\mathbb{C}_VU\cap\{0\}$ " is supposed to be "W", where $V=U\oplus W$.

But if we let $u \in U \setminus \{0\}$ and $w \in W \setminus \{0\}$, then $\begin{cases} w \in \mathbb{C}_V U \cap \{0\} \\ u \pm w \in \mathbb{C}_V U \cap \{0\} \end{cases} \Rightarrow u \in \mathbb{C}_V U \cap \{0\}$. Contradicts.

NEW NOTATION: Denote the set $\{W_1, W_2 \dots\}$ by $S_V U$, where for each $W_i, V = U \oplus W_i$. See also in (1.C.23).

1 Find all vector spaces that have exactly one basis. Solution: $\mathbf{F} = \mathbf{C}, \mathbf{R}, \mathbf{Q}, \{0,1\}, \mathcal{P}_0(\mathbf{F})$.

6 Suppose (v_1, v_2, v_3, v_4) is a basis of V. Prove that $(v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4)$ is also a basis.

SOLUTION: $\forall v \in V, \ \exists ! \ a_1, \dots, a_4 \in \mathbf{F}, \ v = a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4.$

Assune that $v = b_1(v_1 + v_2) + b_2(v_2 + v_3) + b_3(v_3 + v_4) + b_4v_4$. Then $v = b_1v_1 + (b_1 + b_2)v_2 + (b_2 + b_3)v_3 + (b_3 + b_4)v_4$. $\Rightarrow \exists ! \ b_1 = a_1, \ b_2 = a_2 - b_1, \ b_3 = a_3 - b_2, \ b_4 = a_4 - b_3 \in \mathbf{F}$. \square

7 Prove or give a counterexample: If v_1, v_2, v_3, v_4 is a basis of V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \in U$, then v_1, v_2 is a basis of U.

SOLUTION: Let $V = \mathbf{F}^4, v_1 = (1,0,0,0), v_2 = (0,1,0,0), v_3 = (0,0,1,1), v_4 = (0,0,0,1).$ And $U = \{(x,y,z,0) \in \mathbf{R}^4 : x,y,z \in \mathbf{F}\}$. We have an counterexample.

• Suppose V is finite-dim and U, W are subspaces of V such that V = U + W.

Prove that there exists a basis of V consisting of vectors in U + W

Prove that there exists a basis of V consisting of vectors in $U \cup W$.

SOLUTION: Let (u_1, \ldots, u_m) and (w_1, \ldots, w_n) be bases of U and W respectively.

Then $V = \operatorname{span}(u_1, \dots, u_m) + \operatorname{span}(w_1, \dots, w_n) = \operatorname{span}(u_1, \dots, u_m, w_1, \dots, w_n)$.

Hence, by [2.31], we get a basis of V consisting of vectors in U or W. \square

8 Suppose U and W are subspaces of V such that $V = U \oplus W$. Suppose also that (u_1, \ldots, u_m) is a basis of U and (w_1, \ldots, w_n) is a basis of W. Prove that $(u_1, \ldots, u_m, w_1, \ldots, w_n)$ is a basis of V.

SOLUTION:

$$\forall v \in V, \ \exists ! \ a_i, b_i \in \mathbf{F}, \ v = (a_1 u_1 + \dots + a_m u_m) + (b_1 w_1 + \dots + b_n w_n)$$

$$\Rightarrow (a_1 u_1 + \dots + a_m u_m) = -(b_1 w_1 + \dots + b_n w_n) \in U \cap W = \{0\}. \text{ Thus } a_1 = \dots = a_m = b_1 = \dots = b_n. \ \Box$$

 \bullet (OR 9.4) Suppose V is a real vector space.

Show that if (v_1, \ldots, v_n) is a basis of V (as a real vector space), then (v_1, \ldots, v_n) is also a basis of the complexification $V_{\mathbb{C}}$ (as a complex vector space).

See Section 1B (4e) for the definition of the complexification $V_{\mathbb{C}}.$

SOLUTION:

 $\forall u + \mathrm{i}v \in V_{\mathbb{C}}, \ \exists ! \ u, v \in V, a_i, b_i \in \mathbf{R},$ $u + \mathrm{i}v = (a_1v_1 + \dots + a_nv_n) + \mathrm{i}(b_1v_1 + \dots + b_nv_n) = (a_1 + b_1\mathrm{i})v_1 + \dots + (a_n + b_n\mathrm{i})v_n$ $\Rightarrow u + \mathrm{i}v = c_1v_1 + \dots + c_nv_n, \ \exists ! \ c_i = a_i + b_i\mathrm{i} \in \mathbf{C}$ $\Rightarrow \text{By the uniqueness of } c_i \text{ and } [2.29], (v_1, \dots, v_n) \text{ is a basis of } V_{\mathbb{C}}. \ \Box$

2·C

1 Suppose V is finite-dim and U is a subspace of V such that $\dim V = \dim U$.

Let (u_1, \ldots, u_m) be a basis of U. Then $n = \dim U = \dim V$. X $u_i \in V$.

Then by [2.39], (u_1, \ldots, u_m) is a basis of V. Thus V = U.

2 Show that the subspaces of \mathbb{R}^2 are precisely $\{0\}$, all lines in \mathbb{R}^2 containing the origin, and \mathbb{R}^2 .

SOLUTION:

Suppose U is a subspace of \mathbb{R}^2 . Let dim U = n.

If n = 0, then $U = \{0\}$.

If n=1, then $U=\operatorname{span}(v)$, where v is a vector in \mathbb{R}^2 . Thus U can be any line in \mathbb{R}^2 containing the origin.

If n=2, then $U=\mathrm{span}(v,w)$, where v,w are vectors in \mathbf{R}^2 and (v,w) is linearly independent $\Rightarrow U=\mathbf{R}^2$. \square

3 Show that the subspaces of \mathbb{R}^3 are precisely $\{0\}$, all lines in \mathbb{R}^3 containing the origin, all planes in \mathbb{R}^3 containing the origin, and \mathbb{R}^3 .

SOLUTION:

Suppose U is a subspace of \mathbb{R}^3 . Let dim U = n.

If n = 0, then $U = \{0\}$.

If n=1, then $U=\operatorname{span}(v)$, where v is a vector in \mathbb{R}^3 . Thus U can be any line in \mathbb{R}^3 containing the origin.

If n=2, then $U=\operatorname{span}(v,w)$, where v,w are vectors in \mathbb{R}^3 and (v,w) is linearly independent.

Thus U can be any plane in \mathbb{R}^3 containing the origin.

If n = 3, then U = span(u, v, w), where u, v, w are vectors in \mathbb{R}^3 and (u, v, w) is linearly independent

$$\Rightarrow U = \mathbf{R}^3$$
. \square

- **7** (a) Let $U = \{ p \in \mathcal{P}_4(\mathbf{F}) : p(2) = p(5) = p(6) \}$. Find a basis of U.
 - (b) Extend the basis in (a) to a basis of $\mathcal{P}_4(\mathbf{F})$.
 - (c) Find a subspace W of $\mathcal{P}_4(\mathbf{F})$ such that $\mathcal{P}_4(\mathbf{F}) = U \oplus W$.

SOLUTION:

Suppose $p(z) = az^4 + bz^3 + cz^2 + dz + e$ and p(2) = p(5) = p(6).

Then
$$\begin{cases} p(2) = 16a + 8b + 4c + 2d + e \text{ (I)} \\ p(5) = 625a + 125b + 25c + 5d + e \text{ (II)} \\ p(6) = 1296a + 216b + 36c + 6d + e \text{ (III)} \end{cases}$$

You don't have to compute to know that the dimension of the set of soultions is 3.

- (a) A basis: 1, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6).
- (b) Extend to a basis of $\mathcal{P}_4(\mathbf{F})$ as $1, z, z^2, (z-2)(z-5)(z-6), z(z-2)(z-5)(z-6)$.
- (c) Let $W = \operatorname{span}(z, z^2) = \{az + bz^2 : a, b \in \mathbf{F} \}$, so that $\mathcal{P}_4(\mathbf{F}) = U \oplus W$. \square
- **9** Suppose (v_1, \ldots, v_m) is linearly independent in V and $w \in V$.

Prove that dim $span(v_1 + w, ..., v_m + w) \ge m - 1$.

SOLUTION:

Note that $v_i - v_1 = (v_i + w) - (v_1 + w) \in \text{span}(v_1 + w, \dots, v_n + w)$, for each $i = 1, \dots, m$.

 (v_1,\ldots,v_m) is linearly independent $\Rightarrow (v_1,v_2-v_1,\ldots,v_m-v_1)$ is linearly independent

 $\Rightarrow (v_2 - v_1, \dots, v_m - v_1)$ is linearly independent of length m - 1.

 \mathbb{Z} By the contrapositive of (2.A.10), $w \notin \text{span}(v_1, \dots, v_m) \Rightarrow (v_1 + w, \dots, v_m + w)$ is linearly independent.

 $\therefore m \ge \dim \operatorname{span}(v_1 + w, \dots, v_m + w) \ge m - 1. \quad \Box$

10 Suppose m is a positive integer and $p_0, p_1, \ldots, p_m \in \mathcal{P}(\mathbf{F})$ are such that each p_k has degree k. Prove that (p_0, p_1, \ldots, p_m) is a basis of $\mathcal{P}_m(\mathbf{F})$.

SOLUTION: Using mathematical induction on m.

- (i) For p_0 , deg $p_0 = 0 \Rightarrow \operatorname{span}(p_0) = \operatorname{span}(1)$.
- (ii) Suppose for $i \geq 1$, span $(p_0, p_1, \dots, p_i) = \text{span}(1, x, \dots, x^i)$.

Then span $(p_0, p_1, \dots, p_i, p_{i+1}) \subseteq \text{span}(1, x, \dots, x^i, x^{i+1}).$

$$\mathbb{Z} \operatorname{deg} p_{i+1} = i+1, \quad p_{i+1}(x) = a_{i+1}x^{i+1} + r_{i+1}(x); \quad a_{i+1} \neq 0, \quad \operatorname{deg} r_{i+1} \leq i.$$

$$\Rightarrow x^{i+1} = \frac{1}{a_{i+1}}(p_{i+1}(x) - r_{i+1}(x)) \in \operatorname{span}(1, x, \dots, x^i, p_{i+1}) = \operatorname{span}(p_0, p_1, \dots, p_i, p_{i+1}).$$

$$x^{i+1} \in \text{span}(p_0, p_1, \dots, p_i, p_{i+1}) \Rightarrow \text{span}(1, x, \dots, x^i, x^{i+1}) \subseteq \text{span}(p_0, p_1, \dots, p_i, p_{i+1})$$

Thus
$$\mathcal{P}_m(\mathbf{F}) = \operatorname{span}(1, x, \dots, x^m) = \operatorname{span}(p_0, p_1, \dots, p_m)$$
. \square

• Suppose m is a positive integer. For $0 \le k \le m$, let $p_k(x) = x^k(1-x)^{m-k}$. Show that (p_0, \ldots, p_m) is a basis of $\mathcal{P}(\mathbf{F})$.

The basis in this exercise leads to what are called Bernstein polynomials. You can do a web search to learn how Bernstein polynomials are used to approximate continuous functions on [0, 1].

SOLUTION: Using mathematical induction.

(i)
$$k = 0, 1, 2, p_m(x) = x^m, p_{m-1}(x) = x^{m-1} - x^m, p_{m-2}(x) = x^{m-2} + x^m - 2x^{m-1}.$$

(ii) $k \ge 2$. Suppose for $p_{m-k}(x)$, $\exists ! a_i \in \mathbb{F}$, $x^{m-k} = p_{m-k}(x) + a_m x^m + \dots + a_{m-k+1} x^{m-k+1}$.

Then for $p_{m-k-1}(x), \exists ! c_i \in \mathbf{F}$,

$$x^{m-k-1} = p_{m-k-1}(x) + \mathcal{C}_{k+1}^{1}(-1)^{2}x^{m-k} + \dots + \mathcal{C}_{k+1}^{k}(-1)^{k+1}x^{m-1} + (-1)^{k-2}x^{m}$$

$$\Rightarrow c_{m-i} = \mathcal{C}_{k+1}^{k+1-i}(-1)^{k-i}.$$

Thus for each x^i , $\exists ! b_i \in \mathbf{F}$, $x^i = b_m p_m(x) + \cdots + b_{m-i} p_{m-i}(x)$.

$$\Rightarrow \operatorname{span}(x^m,\ldots,x,1) = \operatorname{span}(p_m,\ldots,p_1,p_0)$$
. \square

• Suppose V is finite-dim and V_1, V_2, V_3 are subspaces of V with

 $\dim V_1 + \dim V_2 + \dim V_3 > 2 \dim V$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.

$$\dim V_1 + \dim V_2 > 2\dim V - \dim V_3 \ge \dim V \Rightarrow V_1 \cap V_2 \ne \{0\}$$

SOLUTION: $\dim V_2 + \dim V_3 > 2 \dim V - \dim V_1 \ge \dim V \Rightarrow V_2 \cap V_3 \ne \{0\}$ $\Rightarrow V_1 \cap V_2 \cap V_3 \ne \{0\}$. \square

$$\dim V_1 + \dim V_3 > 2\dim V - \dim V_2 \ge \dim V \Rightarrow V_1 \cap V_3 \ne \{0\}$$

• Suppose V is finite-dim and U is a subspace of V with $U \neq V$. Let $n = \dim V$, $m = \dim U$. Prove that there exist (n-m) subspaces of V, say U_1, \ldots, U_{n-m} , each of dimension (n-1), such that $\bigcap_{i=1}^{n} U_i = U$.

SOLUTION: Let (v_1, \ldots, v_m) be a basis of U, extend to a basis of V as $(v_1, \ldots, v_m, \ldots, v_n)$.

Define $U_i = \operatorname{span}(v_1, \dots, v_m, v_{m+1}, \dots, v_{m+i-1}, v_{m+i+1}, \dots, v_n)$ for each i. Thus we are done.

EXAMPLE: Suppose dim V=6, dim U=3.

$$\underbrace{ \begin{pmatrix} v_1, v_2, v_3, v_4, v_5, v_6 \end{pmatrix}, \text{ define }}_{\text{Basis of V}} \begin{array}{c} U_1 = \text{span}(v_1, v_2, v_3) \oplus \text{ span}(v_5, v_6) \\ U_2 = \text{span}(v_1, v_2, v_3) \oplus \text{ span}(v_4, v_6) \\ U_3 = \text{span}(v_1, v_2, v_3) \oplus \text{ span}(v_4, v_5) \\ \end{array} \right\} \Rightarrow \dim U_i = 6 - 1, \ i = \underbrace{1, 2, 3}_{6-3=3}.$$

14 Suppose that V_1, \ldots, V_m are finite-dim subspaces of V.

Prove that $V_1 + \cdots + V_m$ is finite-dim and $\dim(V_1 + \cdots + V_m) \leq \dim V_1 + \cdots + \dim V_m$.

SOLUTION:

Choose a basis \mathcal{E}_i of $V_i \Rightarrow V_1 + \cdots + V_m = \operatorname{span}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$; dim $U_i = \operatorname{card} \mathcal{E}_i$.

Then $\dim(V_1 + \cdots + V_m) = \dim \operatorname{span}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m)$.

 \mathbb{X} dim span $(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}(\mathcal{E}_1 \cup \cdots \cup \mathcal{E}_m) \leq \operatorname{card}\mathcal{E}_1 + \cdots + \operatorname{card}\mathcal{E}_m$.

Thus $\dim(V_1 + \cdots + V_m) \leq \dim U_1 + \cdots + \dim U_m$.

•The inequality above is an equality if and only if $V_1 + \cdots + V_m$ is a direct sum.

For each i, $(V_1 + \cdots + V_i) \cap V_{i+1} = \{0\} \iff V_1 + \cdots + V_m \text{ is a direct sum} \iff \square$

17 Suppose V_1, V_2, V_3 are subspaces of a finite-dim vector space, then

$$\dim(V_1 + V_2 + V_3) = \dim V_1 + \dim V_2 + \dim V_3$$

$$-\dim(V_1 \cap V_2) - \dim(V_1 \cap V_3) - \dim(V_2 \cap V_3) + \dim(V_1 \cap V_2 \cap V_3).$$

Explain why you might think and prove the formula above or give a counterexample.

SOLUTION:

Looks like: given three sets A, B and C.

Note that: $\operatorname{card}(X \cup Y) = \operatorname{card}(X) + \operatorname{card}(Y) - \operatorname{card}(X \cap Y); \ (X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z).$

Then: card $((A \cup B) \cup C) = \text{card } (A \cup B) + \text{card } C - \text{card } ((A \cup B) \cap C)$.

And: card $((A \cup B) \cap C) = \text{card}((A \cap C) \cup (B \cap C)) = \text{card}(A \cap C) + \text{card}(B \cap C) - \text{card}(A \cap B \cap C)$.

Thus: $\operatorname{card}((A \cup B) \cup C) = \operatorname{card} A + \operatorname{card} B + \operatorname{card} C + \operatorname{card} (A \cap B \cap C) - \operatorname{card} (A \cap B) - \operatorname{card} (A \cap C) - \operatorname{card} (B \cap C)$.

Because
$$(V_1 + V_2) + V_3 = V_1 + (V_2 + V_3) = (V_1 + V_3) + V_2$$
.

$$\dim(V_1 + V_2 + V_3) = \dim(V_1 + V_2) + \dim(V_3) - \dim((V_1 + V_2) \cap V_3)$$
 (1)

$$= \dim(V_2 + V_3) + \dim(V_1) - \dim((V_2 + V_3) \cap V_1) \quad (2)$$

$$= \dim(V_1 + V_3) + \dim(V_2) - \dim((V_1 + V_3) \cap V_2)$$
 (3)

Notice that $(X + Y) \cap Z \neq X \cap Z + Y \cap Z$.

For example, $X = \{(x, 0) \in \mathbb{R}^2 : x \in \mathbb{R} \}, Y = \{(0, y) \in \mathbb{R}^2 : y \in \mathbb{R} \}, Z = \{(z, z) \in \mathbb{R}^2 : z \in \mathbb{R} \}.$

• Corollary: If V_1, V_2 and V_3 are finite-dim vector spaces, then $\frac{(1)+(2)+(3)}{3}$:

$$\dim(V_1+V_2+V_3) = \dim V_1 + \dim V_2 + \dim V_3 - \frac{\dim(V_1\cap V_2) + \dim(V_1\cap V_3) + \dim(V_2\cap V_3)}{3}$$

$$-\frac{\dim((V_1+V_2)\cap V_3)+\dim((V_1+V_3)\cap V_2)+\dim((V_2+V_3)\cap V_1)}{3}$$

The formula above may seem strange because the right side does not look like an integer. \Box

ENDED

3.A

2 Suppose $b, c \in \mathbf{R}$. Define $T : \mathcal{P}(\mathbf{R}) \to \mathbf{R}^2$ by

$$Tp = (3p(4) + 5p'(6) + bp(1)p(2), \int_{-1}^{2} x^3 p(x) dx + c \sin p(0)).$$

Show that T is linear if and only if b = c = 0.

SOLUTION:

(a) Suppose
$$b=c=0$$
, then $\forall p,q\in \mathcal{P}(\mathbf{R}), T(p+q)=(3(p+q)(4)+5(p+q)'(6), \int_{-1}^2 x^3(p+q)(x)\mathrm{d}x).$

Because
$$(p+q)(x) = p(x) + q(x), (p+q)'(x) = p'(x) + q'(x),$$

$$\int_{-1}^{2} x^{3}(p+q)(x) dx = \int_{-1}^{2} x^{3}p(x) dx + \int_{-1}^{2} x^{3}q(x) dx.$$

$$\Rightarrow T(p+q) = Tp + Tq$$
. Similarly, $\forall \lambda \in \mathbf{F}, \lambda Tp = T(\lambda p)$. Thus T is linear.

(b) Suppose T is linear, denote the linear map in (a) by $S \Rightarrow (T - S)$ is linear. \Rightarrow $(T-S)(p) = (bp(1)p(2), c \sin p(0))$ is linear. Consider $p(x) = q(x) = \frac{\pi}{2}, \ \forall x \in \mathbf{R}.$ $\Rightarrow ((T-S)(p+q) = (T-S)(\pi) = (b\pi^2, 0) = (T-S)(\frac{\pi}{2}) + (T-S)(\frac{\pi}{2}) = (b\frac{\pi^2}{2}, 2c) \Rightarrow b = c = 0. \ \Box$ • **TIPS:** $T:V \to W$ is linear $\iff \begin{cases} \forall v,u \in V, T(v+u) = Tv + Tu \\ \forall v,u \in V, \lambda \in \mathbf{F}, T(\lambda v) = \lambda(Tv) \end{cases} \iff T(v+\lambda u) = Tv + \lambda Tu.$ **3** Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$. Prove that $\exists A_{j,k} \in \mathbf{F}$ such that $T(x_1,\ldots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\cdots,A_{m,1}x_1+\cdots+A_{m,n}x_n)$ for any $(x_1,\ldots,x_n)\in \mathbf{F}^n$. **SOLUTION:** Let $T(1,0,0,\ldots,0,0) = (A_{1,1},\ldots,A_{m,1}),$ Note that (1, 0, ..., 0, 0), ..., (0, 0, ..., 0, 1) is a basis of \mathbf{F}^n . $T(0,1,0,\ldots,0,0) = (A_{1,2},\ldots,A_{m,2}),$ Then by [3.5], we are done. \square $T(0,0,0,\ldots,0,1) = (A_{1,n},\ldots,A_{m,n}).$ **4** Suppose $T \in \mathcal{L}(V, W)$ and (v_1, \ldots, v_m) is a list of vectors in V such that (Tv_1, \ldots, Tv_m) is linearly independent in W. Prove that (v_1, \ldots, v_m) is linearly independent. **SOLUTION:** Suppose $a_1v_1 + \cdots + a_mv_m = 0$. Then $a_1Tv_1 + \cdots + a_mTv_m = 0$. Thus $a_1 = \cdots = a_m = 0$. **5** Prove that $\mathcal{L}(V,W)$ is a vector space, **SOLUTION:** Note that $\mathcal{L}(V,W)$ is a subspace of W^V . \square 7 Show that every linear map from a one-dim vector space to itself is multiplication by some scalar. More precisely, prove that if dim V=1 and $T\in\mathcal{L}(V)$, then there exists $\lambda \in \mathbf{F}$ such that $Tv = \lambda v$ for all $v \in V$. **SOLUTION:** Let u be a nonzero vector in $V \Rightarrow V = \operatorname{span}(u)$. Because $Tu \in V \Rightarrow Tu = \lambda u$ for some λ . Suppose $v \in V \Rightarrow v = au$, $\exists ! a \in \mathbb{F}$. Then $Tv = T(au) = \lambda au = \lambda v$. \Box **8** Give an example of a function $\varphi : \mathbf{R}^2 \to \mathbf{R}$ such that $\varphi(av) = a\varphi(v)$ for all $a \in \mathbf{R}$ and all $v \in \mathbf{R}^2$ but φ is not linear. **SOLUTION:** Define $T(x,y) = \begin{cases} x + y, & \text{if } (x,y) \in \text{span}(3,1), \\ 0, & \text{otherwise.} \end{cases}$ OR. Define $T(x,y) = \sqrt[3]{(x^3 + y^3)}$. **9** *Give an example of a function* $\varphi : \mathbb{C} \to \mathbb{C}$ *such that* $\varphi(w+z) = \varphi(w) + \varphi(z)$ for all $w, z \in \mathbb{C}$ but φ is not linear. (Here C is thought of as a complex vector space.) **SOLUTION:** Suppose $V_{\mathbb{C}}$ is the complexification of a vector space V. Suppose $\varphi: V_{\mathbb{C}} \to V_{\mathbb{C}}$. Define $\varphi(u + iv) = u = \Re(u + iv)$ OR. Define $\varphi(u + iv) = v = \Im(u + iv)$. \square

• OR (3.D.16) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that T is a scalar multiple of the identity if and only if $ST = TS$ for every $S \in \mathcal{L}(V)$. Solution:
Assume that (v, Tv) is linearly dependent for every $v \in V$, then by (2.A.2.(b)), $Tv = \lambda_v v$ for some $\lambda_v \in \mathbf{F}$.
To prove that λ_v is independent of v (in other words, for any two distinct nonzero vectors v and w in V, we have $\lambda_v \neq \lambda_w$), we discuss in two cases: (-) If (v, w) is linearly independent, $\lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = a_vv + a_ww$ $\Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0$ $\Rightarrow a_{vv} = a_{vv}$.
$\Rightarrow (\lambda_{v+w} - \lambda_v)v + (\lambda_{v+w} - \lambda_w)w = 0$ $(=) \text{ Otherwise, suppose } w = cv, \ a_w w = Tw = cTv = ca_v v = a_v w \Rightarrow (a_w - a_v)w$ Now we prove the assumption by contradiction. Suppose (v, Tv) is linearly independent for every nonzero vector $v \in V$. Fix one v . Extend to (v, Tv, u_1, \dots, u_n) a basis of V .
Define $S \in \mathcal{L}(V)$ by $S(av + bTv + c_1u_1 + \cdots + c_nu_n) = bv \Rightarrow S(Tv) = v = T(Sv) = 0$. Hence a contradiction arises. \square
10 Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U, W)$ and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$).
Define $T: V \to W$ by $Tv = \begin{cases} Sv, & \text{if } v \in U, \\ 0, & \text{if } v \in V \setminus U. \end{cases}$ Prove that T is not a linear map on V .
SOLUTION:
Suppose T is a linear map. And $v \in V \setminus U$, $u \in U$ such that $Su \neq 0$. Then $v + u \in V \setminus U$, (for if not, $v = (v + u) - u \in U$) while $T(v + u) = 0 = Tv + Tu = 0 + Su \Rightarrow Su = 0$.
Hence we get a contradiction. \Box
11 Suppose V is finite-dim. Prove that every linear map on a subspace of V can be extended to a linear map on V . In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U,W)$, then there exists $T \in \mathcal{L}(V,W)$ such that $Tu = Su$ for all $u \in U$.
SOLUTION: Define $T \in \mathcal{L}(V, W)$ by $T(a_1u_1 + \dots + a_nu_n + a_{n+1}u_{n+1} + \dots + a_mu_m) = a_1Su_1 + \dots + a_nSu_n$. Where: Let (u_1, \dots, u_n) be a basis of U , extend to a basis of V as $(u_1, \dots, u_n, \dots, u_m)$.
12 Suppose V is finite-dim with dim $V > 0$, and W is infinite-dim. Prove that $\mathcal{L}(V, W)$ is infinite-dim.
SOLUTION:
Let (v_1, \ldots, v_n) be a basis of V . Let (w_1, \ldots, w_m) be linearly independent in W for any $m \in \mathbb{N}^+$. Define $T_{x,y} \in \mathcal{L}(V,W)$ by $T_{x,y}(v_x) = w_y$, $\forall x \in \{1,\ldots,n\}, y \in \{1,\ldots,m\}$.
Suppose $a_1T_{x,1} + \dots + a_mT_{x,m} = 0$. Then $(a_1T_{x,1} + \dots + a_mT_{x,m})(v_x) = 0 = a_1w_1 + \dots + a_mw_m$.
$\Rightarrow a_1 = \cdots = a_m = 0$. $\not \subseteq m$ is arbitrarily chosen.
Thus $(T_{x,1},\ldots,T_{x,m})$ is a linearly independent list in $\mathcal{L}(V,W)$ for any x and length m . Hence by (2.A.14). \square
13 Suppose (v_1, \ldots, v_m) is a linearly dependent list of vectors in V . Suppose also that $W \neq \{0\}$. Prove that there exist $(w_1, \ldots, w_m) \in W$ such that no $T \in \mathcal{L}(V, W)$ satisfies $Tv_k = w_k$ for each $k = 1, \ldots, m$.
SOLUTION: We show it by contradiction.
By linear independence lemma, $\exists j \in \{1,, m\}$ such that $v_j \in \text{span}(v_1,, v_{j-1})$.
Fix j . Let $w_j \neq 0$, while $w_1 = \cdots = w_{j-1} = w_{j+1} = w_m = 0$.
Define T by $Tv_k = w_k$ for all k . Suppose $a_1v_1 + \cdots + a_mv_m = 0$ (where $a_j \neq 0$). Then $T(a_1v_1 + \cdots + a_mv_m) = 0 = a_1w_1 + \cdots + a_mw_m = a_jw_j$ while $a_j \neq 0$ and $w_j \neq 0$. Contradicts. \square

A subspace \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}, ET \in \mathcal{E}, \forall E \in \mathcal{E}, T \in \mathcal{L}(V)$. **SOLUTION:** Let (v_1, \ldots, v_n) be a basis of V. If $\mathcal{E} = 0$, then we are done. Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$. Let $S \in \mathcal{E} \setminus \{0\}$. Suppose $Sv_i \neq 0$ and $Sv_i = a_1v_1 + \cdots + a_nv_n$, where $a_k \neq 0$. Define $R_{x,y} \in \mathcal{L}(V)$ by $R_{x,y}(v_x) = v_y$, $R_{x,y}(v_z) = 0$ ($z \neq x$). Then for any $x, y \in \mathbb{N}^+$, $(R_{k,y}S)(v_i) = a_k v_y \Rightarrow ((R_{k,y}S) \circ R_{x,i})(v_x) = a_k v_y$, and $((R_{k,y}S) \circ R_{x,i})(v_z) = 0$ for $z \neq x$. Thus $R_{k,y}SR_{x,i} = a_kR_{x,y}$. Denote by $T_{x,y}$. Getting $(\frac{1}{a_k}T_{1,1} + \dots + \frac{1}{a_k}T_{n,n})v_j = v_j \Rightarrow \sum_{r=1}^n \frac{1}{a_k}T_{r,r} = I.$ ot Z By assumption, $T_{x,y} \in \mathcal{E} \Rightarrow I \in \mathcal{E}$. Hence for any $T \in \mathcal{L}(V)$, $I \circ T = T \circ I = T \in \mathcal{E} \Rightarrow \mathcal{E} = \mathcal{L}(V)$. \square **ENDED** 3.B **2** Suppose $S, T \in \mathcal{L}(V)$ are such that range $S \subseteq null T$. Prove that $(ST)^2 = 0$. **SOLUTION:** $TS = 0 \Rightarrow STST = (ST)^2 = 0$. \square **3** Suppose (v_1, \ldots, v_m) in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m$. (a) What property of T corresponds to (v_1, \ldots, v_m) spanning V? (b) What property of T corresponds to (v_1, \ldots, v_m) being linearly independent? **ANSWER:** (a) Surjectivity; (b) Injectivity. □ **4** Show that $U = \{T \in \mathcal{L}(\mathbf{R}^5, \mathbf{R}^4) : \dim null T > 2 \}$ is not a subspace of $\mathcal{L}(\mathbf{R}^5, \mathbf{R}^4)$. **SOLUTION:** Let $(v_1, v_2, v_3, v_4, v_5)$ be a basis of \mathbb{R}^5 , (w_1, w_2, w_3, w_4) be a basis of \mathbb{R}^4 . Define $T_1, T_2 \in U$ as $T_1v_1 = 0$, $T_1v_2 = 0$, $T_1v_3 = 0$, $T_1v_4 = w_4$, $T_1v_5 = w_1$; $T_2v_1=0, \ T_2v_2=0, \ T_2v_3=w_3, \ T_2v_4=0, \ T_2v_5=w_4.$ Thus $T_1+T_2\not\in U$. For $U' = \{T \in \mathcal{L}(\mathbf{R}^5, \mathbf{R}^4) : \dim null T > 0 \},$ define $T_1, T_2 \in U'$ as $T_1v_1 = 0$, $T_1v_2 = w_2$, $T_1v_3 = w_3$, $T_1v_4 = w_4$, $T_1v_5 = w_1$; $T_2v_1=w_1,\ T_2v_2=w_2,\ T_2v_3=0,\ T_2v_4=w_3,\ T_2v_5=w_4.$ Thus $T_1+T_2\notin U'.$ 7 Suppose V is finite-dim with $2 \le \dim V \le \dim W$, if W is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : T \text{ is not injective } \} \text{ is not a subspace of } \mathcal{L}(V, W).$ **SOLUTION:** Let (v_1, \ldots, v_n) be a basis of $V, (w_1, \ldots, w_m)$ be linearly independent in W. (Let dim W=m, if W is finite, otherwise, we choose $m \in \{n, n+1, \dots\}$ arbitrarily; $2 \le n \le m$). Define $T_1 \in \mathcal{L}(V, W)$ as $T_1 : v_1 \mapsto 0, v_2 \mapsto w_2$, $v_i \mapsto w_i$. Define $T_2 \in \mathcal{L}(V, W)$ as $T_2 : v_1 \mapsto w_1, v_2 \mapsto 0, v_i \mapsto w_i, i = 3, \dots, n$. Thus $T_1 + T_2 \not\in U$. \square **COMMENT:** If dim V = 0, then $V = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T$ is injective. Hence $U = \emptyset$. If dim V = 1, then $V = \text{span}(v_0)$. Thus $U = \text{span}(T_0)$, where $T_0v_0 = 0$. If V is infinite-dim, the result is true as well.

• Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$.

8 Suppose W is finite-dim with dim $V \ge \dim W \ge 2$, if V is finite-dim. Show that $U = \{ T \in \mathcal{L}(V, W) : T \text{ is not surjective } \} \text{ is not a subspace of } \mathcal{L}(V, W).$ **SOLUTION:** Let (v_1, \ldots, v_n) be linearly independent in $V, (w_1, \ldots, w_m)$ be a basis of W. (Let $n = \dim V$, if V is finite, otherwise we choose $n \in \{m, m+1, \dots\}$; $2 \le m \le n$). Define $T_1 \in \mathcal{L}(V, W)$ as $T_1 : v_1 \mapsto 0, v_2 \mapsto w_2$, $v_j \mapsto w_i$, $v_{m+i} \mapsto 0.$ Define $T_2 \in \mathcal{L}(V, W)$ as $T_2 : v_1 \mapsto w_1, v_2 \mapsto 0$, $v_i \mapsto w_i$ $v_{m+i} \mapsto 0.$ For each $j=2,\ldots,m;\ i=1,\ldots,n-m,$ if V is finite, otherwise let $i\in \mathbb{N}^+$. Thus $T_1 + T_2 \not\in U$. \square **COMMENT:** If dim W = 0, then $W = \{0\} = \text{span}()$. $\forall T \in \mathcal{L}(V, W), T$ is surjective. Hence $U = \emptyset$. If dim W=1, then $W=\text{span}(v_0)$. Thus $U=\text{span}(T_0)$, where $T_0v_0=0$. If W is infinite-dim, the result is true as well. **9** Suppose $T \in \mathcal{L}(V, W)$ is injective and (v_1, \ldots, v_n) is linearly independent in V. Prove that (Tv_1, \ldots, Tv_n) is linearly independent in W. **SOLUTION:** $a_1 T v_1 + \dots + a_n T v_n = 0 = T(\sum_{i=1}^n a_i v_i) \iff \sum_{i=1}^n a_i v_i = 0 \iff a_1 = \dots = a_n = 0.$ **10** Suppose (v_1, \ldots, v_n) spans V and $T \in \mathcal{L}(V, W)$. Show that (Tv_1, \ldots, Tv_n) spans range T. **SOLUTION:** (a) range $T = \{ Tv : v \in V \} = \{ Tv : v \in \text{span}(v_1, \dots, v_n) \}$ $\Rightarrow Tv_1, \dots, Tv_n \in \text{range } T \Rightarrow \text{By [2.7] and [3.19], span}(Tv_1, \dots, Tv_n) \subseteq \text{range } T.$ (b) $\forall w \in \text{range } T, \ \exists v \in V, Tv = w. \ \not \boxtimes \ \forall v \in V, \ \exists \ a_i \in \mathbf{F}, v = a_1v_1 + \cdots + a_nv_n$ $\Rightarrow w = Tv = a_1Tv_1 + \cdots + a_nTv_n \Rightarrow \operatorname{range} T \subseteq \operatorname{span}(Tv_1, \dots, Tv_n). \square$ **11** Suppose S_1, \ldots, S_n are injective linear maps and $S_1 S_2 \ldots S_n$ makes sence. *Prove that* $S_1S_2...S_n$ *is injective.* **SOLUTION:** $S_1S_2...S_n(v) = 0 \iff S_2S_3...S_n(v) = 0 \iff \cdots \iff S_n(v) = 0 \iff v = 0$. \square **12** Suppose that V is finite-dim and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \operatorname{null} T = \{0\}$ and range $T = \{Tu : u \in U\}$. **SOLUTION:** By [2.34], there exists a subspace U of V such that $V = U \oplus \text{null } T$. $\forall v \in V, \exists ! w \in \text{null } T, u \in U, v = w + u. \text{ Then } Tv = T(w + u) = Tu \in \{ Tu : u \in U \} \Rightarrow \Box$ **COMMENT:** V can be infinite-dim. See the above of [2.34]. **16** Suppose there exists a linear map on V whose null space and range are both finite-dim. Prove that V is finite-dim. **SOLUTION:** Denote the linear map by T. Let (Tv_1, \ldots, Tv_n) be a basis of range T, (u_1, \ldots, u_m) be a basis of null T. Then for all $v \in V$, $T(\underbrace{v - a_1v_1 - \cdots - a_nv_n}) = 0$, where $Tv = a_1Tv_1 + \cdots + a_nTv_n$. $\Rightarrow u = b_1 u_1 + \dots + b_m u_m \Rightarrow v = a_1 v_1 + \dots + a_n v_n + b_1 u_1 + \dots + b_m u_m.$ Getting $V \subseteq \text{span}(v_1, \dots, v_n, u_1, \dots, u_m)$. Thus V is finite-dim. \square

18 Suppose V and W are both finite-dim. Prove that there exists a surjective $T \in \mathcal{L}(V, W)$ if and only if dim $V \ge \dim W$.

SOLUTION:

- (a) Suppose there exists a surjective T. Then $\dim V = \dim \operatorname{range} T + \dim \operatorname{null} T = \dim W + \dim \operatorname{null} T \Rightarrow \dim W = \dim V \dim \operatorname{null} T \leq \dim V$.
- (b) Suppose dim $V \ge \dim W$, letting (v_1, \dots, v_n) and (w_1, \dots, w_m) be bases of V and W respectively. Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_mv_m + a_{m+1}v_{m+1} + \dots + a_nv_n) = a_1w_1 + \dots + a_mw_m$. \square
- **19** Suppose V and W are finite-dim and that U is a subspace of V. Prove that $\exists T \in \mathcal{L}(V, W)$, $null T = U \iff \dim U \ge \dim V - \dim W$.

SOLUTION:

- (a) Suppose $\exists T \in \mathcal{L}(V, W)$, null T = U. Then dim null $T = \dim U \ge \dim V \dim W$.
- (b) Suppose $\dim U \geq \dim V \dim W$ ($\Rightarrow \dim W = p \geq n = \dim V \dim U$). Let (u_1, \dots, u_m) be a basis of U, extend to a basis of V as $(u_1, \dots, u_m, v_1, \dots, v_n)$. Let (w_1, \dots, w_p) be a basis of W. Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_nv_n + b_1u_1 + \dots + b_mu_m) = a_1w_1 + \dots + a_nw_n$. \square
- TIPS: Suppose $T \in \mathcal{L}(V,W)$ and $R = (Tv_1, \ldots, Tv_n)$ is linearly independent in range T. (Let $\dim range\ T = n$, if $range\ T$ is finite, otherwise choose n arbitrarily.). By (3.A.4), $L = (v_1, \ldots, v_n)$ is linearly independent in V.

NEW NOTATION: Denote K_R by spanL, if range T is finite-dim, otherwise, denote it by an vector space in the set S_V null T.

NEW THEOREM:

$$\mathcal{K}_R \oplus \text{null } T = V \Leftarrow \begin{cases} \text{ (a) } T(\sum_{i=1}^n a_i v_i) = 0 \Rightarrow \sum_{i=1}^n a_i T v_i = 0 \Rightarrow a_1 = \dots = a_n = 0 \Rightarrow \mathcal{K}_R \cap \text{null } T = \{0\}. \\ \text{ (b) } \forall v \in V, T v = \sum_{i=1}^n a_i T v_i \Rightarrow T v - \sum_{i=1}^n a_i T v_i = T(v - \sum_{i=1}^n a_i v_i) = 0 \\ \Rightarrow v - \sum_{i=1}^n a_i v_i \in \text{null } T \Rightarrow v = (v - \sum_{i=1}^n a_i v_i) + (\sum_{i=1}^n a_i v_i) \Rightarrow \mathcal{K}_R + \text{null } T = V. \end{cases}$$

COMMENT: null $T \in \mathcal{S}_V \mathcal{K}_{R}$.

• Suppose V is finite-dim, $T \in \mathcal{L}(V, W)$, and U is a subspace of W. Prove that $\mathcal{K}_U = \{ v \in V : Tv \in U \}$ is a subspace of Vand $\dim \mathcal{K}_U = \dim null T + \dim(U \cap range T)$.

SOLUTION: For any $u, w \in \mathcal{K}_U$ and $\lambda \in \mathbf{F}$, $T(u + \lambda w) = Tu + \lambda Tw \in U \Rightarrow T$ is linear Define $S \in \mathcal{L}(\mathcal{K}_U, U)$ as Rv = Tv for all $v \in \mathcal{K}_U$. Hence range $R = U \cap \text{range } T$. Suppose Tv = 0 for some $v \in V$. $\not \subset U \Rightarrow Rv = 0$. Thus null $T \subseteq \text{null } R$. \square

20 Suppose $T \in \mathcal{L}(V, W)$. Prove that T is injective $\iff \exists S \in \mathcal{L}(W, V), ST = I \in \mathcal{L}(V)$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W,V), ST = I$. Then if $Tv = 0 \Rightarrow ST(v) = 0 = v$. Hence T is injective. (b) Suppose T is injective. $\forall w \in \text{range } T, \ \exists ! v \in V, Tv = w. \ (\text{if } w = 0, \text{ then } v = 0)$ Define $S: W \to V$ by Sw = v and Su = 0, $u \in U$. Where $W = U \oplus \text{range } T$. $\Rightarrow S(Tv + \lambda Tu) = S(T(v + \lambda u)) = v + \lambda u \text{ and } S(x + \nu y) = 0, \ x, y \in U.$ Thus $S|_{\text{range }T+U} = S|_W \in \mathcal{L}(W,V)$ and ST = I. \square OR. Let $R = (Tv_1, \dots, Tv_n)$ be linearly independent in range $T \subseteq W$, (\dots) and then $\mathcal{K}_R \oplus \text{null } T = V$. Supose $W=U\oplus \operatorname{range} T$. Define $S\in \mathcal{L}(W,V)$ by $S(Tv_i)=v_i$ and $Su=0,\ u\in U$. Thus ST=I. \square **21** Suppose $T \in \mathcal{L}(V, W)$. Prove that T is surjective $\iff \exists S \in \mathcal{L}(W, V), TS = I \in \mathcal{L}(W)$. **SOLUTION:** (a) Suppose $\exists S \in \mathcal{L}(W,V), TS = I$. Then for any $w \in W, TS(w) = w \in \text{range } T \Rightarrow \text{range } T = W$. \square (b) Suppose T is surjective. $\forall w \in W, \exists v \in V, Tv = w$. Define $S: W \to V$ by Sw = v. But $T(Sv + \lambda Su) = T(Sv) + \lambda T(Su) = v + \lambda u = T(S(v + \lambda u)) \not\Rightarrow Sv + \lambda Su = S(v + \lambda u).$ So we let $R = (Tv_1, \dots, Tv_n)$ be linearly independent in range T = W, (\dots) and then $\mathcal{K}_R \oplus \text{null } T = V$. Define $S \in \mathcal{L}(W, V)$ by $S(Tv_i) = v_i$. Then TS = I. \square **22** Suppose U and V are finite-dim vec-sps and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. *Prove that* $\dim null ST \leq \dim null S + \dim null T$. **SOLUTION:** Define $R \in \mathcal{L}(\text{null } ST, V)$ by Ru = Tu for all $u \in \text{null } ST \subseteq U$. $S(Tu) = 0 = S(Ru) \Rightarrow \operatorname{range} R \subseteq \operatorname{null} S \Rightarrow \operatorname{dim} \operatorname{range} R \leq \operatorname{dim} \operatorname{null} S$ $Tu = 0 = Ru \Rightarrow \operatorname{null} R \supseteq \operatorname{null} T \Rightarrow \operatorname{dim} \operatorname{null} R = \operatorname{dim} \operatorname{null} T$ • COROLLARY: (1) If T is injective, then dim null $T = 0 \Rightarrow \dim \text{null } ST \leq \dim \text{null } S$. (2) If T is surjective, then range $R = \text{null } S \Rightarrow \dim \text{null } ST = \dim \text{null } S + \dim \text{null } T$. (3) If S is injective, then range $R = \{0\} \Rightarrow \dim \text{null } ST = \dim \text{null } R = \dim \text{null } T$. **23** Suppose U and V are finite-dim vec-sps and $S \in \mathcal{L}(V,W)$ and $T \in \mathcal{L}(U,V)$. Prove that $\dim range\ ST \leq \min\{\dim range\ S, \dim range\ T\}$. **SOLUTION:** $\operatorname{range} ST = \{Sv : v \in \operatorname{range} T\} = \operatorname{span}\left(Su_1, \dots, Su_{\operatorname{dim}\operatorname{range} T}\right), \operatorname{letting}\operatorname{span}\left(u_1, \dots, u_{\operatorname{dim}\operatorname{range} T}\right) = \operatorname{range} T.$ $\dim \operatorname{range} ST \leq \dim \operatorname{range} T \setminus \dim \operatorname{range} ST \leq \dim \operatorname{range} S \Rightarrow \square$ • COROLLARY: (1) If S is injective, then dim range $ST = \dim \operatorname{range} T$. (2) If T is surjective, then range ST = range S. • (a) Suppose dim V = 5 and $S, T \in \mathcal{L}(V)$ are such that ST = 0. Prove that dim range $TS \leq 2$. (b) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^5)$ with ST = 0 and dim range TS = 2. **SOLUTION:** By Problem (23), dim range $TS \leq \min\{\dim \operatorname{range} S, \dim \operatorname{range} T\}$. 5-dim null T 5-dim null S Suppose dim range $TS \ge 3$. Then $\min\{5 - \dim \operatorname{null} T, 5 - \dim \operatorname{null} S\} \ge 3$ \Rightarrow max{dim null T, dim null S} ≤ 2 .

 \mathbb{X} dim null $ST=5\leq \dim \operatorname{null} S+\dim \operatorname{null} T\leq 4$. Contradicts. Thus dim range $TS\leq 2$. \square

```
EXAMPLE: V = \operatorname{span}(v_1, \dots, v_5)
                   T: v_1 \mapsto 0, \quad v_2 \mapsto 0, \quad v_i \mapsto v_i;
                   S: v_1 \mapsto v_4, v_2 \mapsto v_5, v_i \mapsto 0 ; i = 3, 4, 5
• Suppose dim V=n and S,T\in\mathcal{L}(V) are such that ST=0.
 Prove that dim TS \leq m = \begin{cases} \frac{n}{2}, & \text{if } 2 \mid n. \\ \frac{n-1}{2}, & \text{otherwise.} \end{cases}
SOLUTION:
   By Problem (23), dim range TS \leq \min\{\dim \operatorname{range} S, \dim \operatorname{range} T\}. Suppose dim range TS \geq m+1.
                                                                               n-dim null S
   Then \min\{n-\dim\operatorname{null} T, n-\dim\operatorname{null} S\}\geq m+1
       \Rightarrow max{dim null T, dim null S} < n - m - 1.
   \mathbb{X} dim null ST = n \leq \dim \operatorname{null} S + \dim \operatorname{null} T \leq n - m - 1. Contradicts. Thus dim range TS \leq m. \square
24 Suppose that W is finite-dim and S, T \in \mathcal{L}(V, W).
     Prove that null S \subseteq null T \iff \exists E \in \mathcal{L}(W) such that T = ES.
SOLUTION:
   Suppose null S \subseteq \text{null } T. Let R = (Sv_1, \dots, Sv_n) be a basis of range S \Rightarrow (v_1, \dots, v_n) is linearly independent.
   Let \mathcal{K}_R = \operatorname{span}(v_1, \dots, v_n) \Rightarrow V = \mathcal{K}_R \oplus \operatorname{null} S.
   Define E \in \mathcal{L}(W) by E(Sv_i) = Tv_i, Eu = 0; for each i = 1, ..., n and u \in \text{null } S.
   Hence \forall v \in V, (\exists! a_i \in \mathbf{F}, u \in \text{null } S), Tv = a_1 T v_1 + \dots + a_n T v_n = E(a_1 S v_1 + \dots + a_n S v_n) \Rightarrow T = ES.
   Suppose \exists E \in \mathcal{L}(W) such that T = ES. Then \text{null } T = \text{null } ES \supseteq \text{null } S. \square
25 Suppose that V is finite-dim and S, T \in \mathcal{L}(V, W).
    Prove that range S \subseteq range T \iff \exists E \in \mathcal{L}(V) \text{ such that } S = TE.
SOLUTION:
   Suppose range S \subseteq \text{range } T. Let (v_1, \ldots, v_m) be a basis of V.
   Because range S \subseteq \text{range } T \Rightarrow Sv_i \in \text{range } T \text{ for each } i. \text{ Suppose } u_i \in V \text{ for each } i \text{ such that } Tu_i = Tv_i.
   Thus defining E \in \mathcal{L}(V) by Ev_i = u_i for each i \Rightarrow S = TE.
   Suppose \exists E \in \mathcal{L}(V) such that S = TE. Then range S = \text{range } TE \subseteq \text{range } T. \square
• (OR (5.B.4)) Suppose P \in \mathcal{L}(V) and P^2 = P. Prove that V = null P \oplus range P.
SOLUTION:
   Let P^2v_1, \ldots, P^2v_n be a basis of range P^2. Then (Pv_1, \ldots, Pv_n) is linearly independent in V.
     Let \mathcal{K} = \operatorname{span}(Pv_1, \dots, Pv_n) \Rightarrow V = \mathcal{K} \oplus \operatorname{null} P^2

\not\subset \mathcal{K} = \operatorname{range} P = \operatorname{range} P^2; \quad \operatorname{null} P = \operatorname{null} P^2 \Rightarrow \Box
26 Prove that the differentiation map D \in \mathcal{P}(\mathbf{R}) is surjective.
SOLUTION: Note that \deg Dx^n = n - 1.
   Because span (Dx, Dx^2, \dots) \subseteq \text{range } D. \mathbb{Z} By (2.A.10), span (Dx, Dx^2, \dots) = \text{span } (1, x, \dots) = \mathcal{P}(\mathbf{R}). \square
27 Suppose p \in \mathcal{P}(\mathbf{R}). Prove that there exists a polynomial q \in \mathcal{P}(\mathbf{R}) such that 5q'' + 3q' = p.
SOLUTION:
   Define B \in \mathcal{L}(\mathcal{P}(\mathbf{R})) by B = 5D^2 + 3D \Rightarrow B(q) = 5q'' + 3q'.
   Note that deg Bx^n = n - 1. Similar to Problem (26), we conclude that B is surjective.
   Hence for any p \in \mathcal{P}(\mathbf{R}), there exists q \in \mathcal{P}(\mathbf{R}) such that Bq = p. \square
```

28 Suppose $T \in \mathcal{L}(V, W)$ and (w_1, \ldots, w_m) is a basis of range T. Prove that $\exists \varphi_1, \ldots, \varphi_m \in \mathcal{L}(V, \mathbf{F}) \text{ such that for all } v \in V, Tv = \varphi_1(v)w_1 + \cdots + \varphi_m(v)w_m.$ **SOLUTION:** Suppose (v_1, \ldots, v_m) in V such that $Tv_i = w_i$ for each i. Then (v_1, \ldots, v_m) is linearly independent, extend it to a basis of V as $(v_1, \ldots, v_m, u_1, \ldots, u_n)$. Note that $\forall v \in V, v = a_1v_1 + \cdots + a_mv_m + b_1u_1 + \cdots + b_nu_n, \exists ! a_i, b_i \in \mathbb{F} \Rightarrow Tv = a_1w_1 + \cdots + a_mw_m.$ Define $\varphi_i: V \to \mathbf{F}$ by $\varphi_i(v) = a_i v_i$ for each i. We now check the linearity. $\forall v, u \in V \ (\exists ! a_i, b_i, c_i, d_i \in \mathbf{F}), \lambda \in \mathbf{F}, \varphi_i(v + \lambda u) = a_i + \lambda c_i = \varphi(v) + \lambda \varphi(u). \ \Box$ **29** Suppose $\varphi \in \mathcal{L}(V, \mathbf{F})$ and $\varphi \neq 0$. Suppose $u \in V$ is not in null φ . *Prove that* $V = null \varphi \oplus \{au : a \in \mathbb{F} \}.$ **SOLUTION:** (a) Suppose $v = cu \in \text{null } \varphi \cap \{au : a \in \mathbf{F}\}$, where $c \in \mathbf{F}$. Then $\varphi(v) = 0 = c\varphi(u) \Rightarrow c = 0$. Hence $\operatorname{null} \varphi \cap \{au : a \in \mathbf{F}\}\$. (b) Suppose $v \in V$. Then $v = (v - \frac{\varphi(v)}{\varphi(u)}u) + \frac{\varphi(v)}{\varphi(u)}u \Rightarrow \varphi(v) = 0$. $\left. \begin{array}{l} v - \frac{\varphi(v)}{\varphi(u)} u \in \operatorname{null} \varphi \\ \frac{\varphi(v)}{\varphi(u)} u \in \left\{ au : a \in \mathbf{F} \right\} \end{array} \right\} \Rightarrow V = \operatorname{null} \varphi \oplus \left\{ au : a \in \mathbf{F} \right\}. \ \square$ This may seems strange. Here we explain why. $\varphi \neq 0 \Rightarrow \exists$ a linearly independent list $(v_1, \ldots, v_n \in V)$ such that $\varphi(v_i) = a_i \neq 0$. Choose a v_k arbitrarily. Then $\varphi(v_k - \frac{\varphi(v_k)}{\varphi(v_i)}v_j) = 0$ for each $j = 1, \ldots, k-1, k+1, \ldots, n$. Thus span $\{v_k - \frac{\varphi(v_k)}{\varphi(v_i)}v_j\}_{j\neq k} \subseteq \text{null } \varphi$. Hence there is only one nonzero vector in every vec-sp in \mathcal{S}_V null φ . **30** Suppose $\varphi_1, \varphi_2 \in \mathcal{L}(V, \mathbf{F})$ and null $\varphi_1 = \text{null } \varphi_2 = \text{null } \varphi$. Prove that $\exists c \in \mathbf{F}, \varphi_1 = c\varphi_2$ **SOLUTION:** If null $\varphi = V$, then $\varphi_1 = \varphi_2 = 0$, we are done. Suppose $u \in V/\text{null } \varphi \Rightarrow \varphi_1(u), \varphi_2(u) \neq 0$. By Problem (29), $V = \text{null } \varphi \oplus \text{span } (u)$. Hence for any $v \in V, v = w + a_v u, \exists ! w \in \text{null } \varphi, a_v \in \mathbf{F}$. $\varphi_1(v) = a_v \varphi_1(u), \quad \varphi_2(v) = a_v \varphi_2(u) \Rightarrow a_v = \frac{\varphi_1(v)}{\varphi_1(u)} = \frac{\varphi_2(v)}{\varphi_2(u)} \Rightarrow \frac{\varphi_1(u)}{\varphi_2(u)} = \frac{\varphi_1(v)}{\varphi_2(v)} = c \in \mathbf{F}.$ Thus $\varphi_1 = c\varphi_2$. \square **31** Give an example of $T_1, T_2 \in \mathcal{L}(\mathbf{R}^5, \mathbf{R}^2)$ such that null $T_1 = \text{null } T_2$ and that T_1 is not a scalar multiple of T_2 . **SOLUTION:** Let (v_1, \ldots, v_5) be a basis of \mathbb{R}^5 , (w_1, w_2) be a basis of \mathbb{R}^2 . Define $T, S \in \mathcal{L}(V, W)$ by $\left. \begin{array}{ll} Tv_1 = w_1, & Tv_2 = w_2, & Tv_3 = Tv_4 = Tv_5 = 0 \\ Sv_1 = w_1, & Sv_2 = 2w_2, & Sv_3 = Sv_4 = Sv_5 = 0 \end{array} \right\} \Rightarrow \operatorname{null} T = \operatorname{null} S.$ Suppose $T = \lambda S$. Then $w_1 = Tv_1 = \lambda Sv_1 = \lambda w_1 \Rightarrow \lambda = 1$.

While $w_2 = Tv_2 = \lambda Sv_2 = 2\lambda w_2 \Rightarrow \lambda = \frac{1}{2}$. Contradicts. \square

• Suppose V is finite-dim, X is a subspace of V, and Y is a finite-dim subspace of W. Prove that there exists $T \in \mathcal{L}(V,W)$ such that $\operatorname{null} T = X$ and $\operatorname{range} T = Y$ if and only if $\dim X + \dim Y = \dim V$.

SOLUTION:

(a) Suppose $\dim X + \dim Y = \dim V$. Let (u_1, \dots, u_n) be a basis of X, $R = (w_1, \dots, w_m)$ be a basis of Y. Extend (u_1, \dots, u_n) to a basis of V as $(u_1, \dots, u_n, v_1, \dots, v_m)$. Define $T \in \mathcal{L}(V, W)$ by $T(a_1v_1 + \dots + a_mv_m + b_1v_1 + \dots + b_nv_n) = a_1w_1 + \dots + a_mw_m$. Now we show that $\operatorname{null} T = X$ and $\operatorname{range} T = Y$ Suppose $v \in V$. Then $\exists ! a_i, b_j \in \mathbb{F}, v = a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_nu_n$. $v \in \operatorname{null} T \Rightarrow Tv = 0$ $\Rightarrow a_1 = \dots = a_m = 0$ $\Rightarrow v \in X \Rightarrow \operatorname{null} T \subseteq X$. $v \in X \Rightarrow v \in \operatorname{null} T \Rightarrow \operatorname{null} T \supseteq X$. $v \in X \Rightarrow v \in \operatorname{null} T \Rightarrow \operatorname{null} T \supseteq X$.

$$w \in \operatorname{range} T \Rightarrow \exists \ v \in V, Tv = w \Rightarrow \operatorname{let} v = a_1v_1 + \dots + a_mv_m + b_1u_1 + \dots + b_nu_n$$

$$\Rightarrow Tv = w = a_1w_1 + \dots + a_mw_m \Rightarrow w \in Y \Rightarrow \operatorname{range} T \subseteq Y.$$

$$w \in Y \Rightarrow w = a_1Tv_1 + \dots + a_mTv_m = T(a_1v_1 + \dots + a_mv_m)$$

$$\Rightarrow w \in \operatorname{range} T \Rightarrow \operatorname{range} T \supseteq Y.$$

(b) Conversely it is true as well.

• Suppose V is finite-dim and $T \in \mathcal{L}(V, W)$. Let (Tv_1, \ldots, Tv_n) be a basis of range T. Extend (v_1, \ldots, v_n) to a basis of V as $(v_1, \ldots, v_n, u_1, \ldots, u_m)$. Prove or give a counterexample: (u_1, \ldots, u_m) is a basis of null T.

SOLUTION: An counterexample:

Suppose dim V = 3, $Tv_1 = Tv_2 = Tv_3 = w_1$. Then span $(Tv_1, Tv_2, Tv_3) = \text{span } (w_1)$. Extend (v_i) to (v_1, v_2, v_3) for each i. But none of (v_1, v_2) , (v_1, v_3) , (v_2, v_3) is a basis of null T.

• Suppose V is finite-dim and $T \in \mathcal{L}(V, W)$. Let (u_1, \ldots, u_m) be a basis of null T. Extend (u_1, \ldots, u_m) to a basis of V as $(u_1, \ldots, u_m, v_1, \ldots, v_n)$. Prove or give a counterexample: (Tv_1, \ldots, Tv_n) spans range T.

SOLUTION:

 $\forall w \in \operatorname{range} T, \ \exists v \in V, \ (\exists ! \ a_i, b_i \in \mathbf{F}), Tv = T(a_1v_1 + \dots + a_nv_n) = w$ $\Rightarrow w \in \operatorname{span} (Tv_1, \dots, Tv_n) \Rightarrow \operatorname{range} T \subseteq \operatorname{span} (Tv_1, \dots, Tv_n). \ \square$ COMMENT: If T is injective, then (Tv_1, \dots, Tv_n) is a basis of range T. • Suppose V is finite-dim with $\dim V > 1$. Show that if $\varphi : \mathcal{L}(V) \to \mathbf{F}$ is a linear map such that $\varphi(ST) = \varphi(S) \cdot \varphi(T)$ for all $S, T \in \mathcal{L}(V)$, then $\varphi = 0$. HINT: The description of the two-sided ideals of $\mathcal{L}(V)$ in Section 3A might be useful.

SOLUTION: Using notations in (3.A.• the last).

Suppose
$$\varphi \neq 0 \Rightarrow \exists i, j \in \{1, \dots, n\}, \varphi(R_{i,j}) \neq 0$$
.

Because
$$R_{i,j} = R_{x,j} \circ R_{i,x}, \ \forall x = 1, \dots, n$$

$$\Rightarrow \varphi(R_{i,j}) = \varphi(R_{x,j}) \cdot \varphi(R_{i,x}) \neq 0 \Rightarrow \varphi(R_{x,j}) \neq 0 \text{ and } \varphi(R_{i,x}) \neq 0.$$

Again, because $R_{i,x} = R_{y,x} \circ R_{i,y}, \ \forall y = 1, \dots, n$. Thus $\varphi(R_{y,x}) \neq 0$ for any $x, y = 1, \dots, n$.

Let
$$l \neq i, k \neq j$$
 and then $\varphi(R_{l,k} \circ R_{i,j}) = \varphi(0) = 0 = \varphi(R_{l,k}) \cdot \varphi(R_{i,j})$

$$\Rightarrow \varphi(R_{l,k}) = 0 \text{ or } \varphi(R_{i,j}) = 0. \text{ Contradicts. } \square$$

• Suppose that V and W are real vector spaces and $T \in \mathcal{L}(V, W)$.

Define $T_{\mathbb{C}}: V_{\mathbb{C}} \to W_{\mathbb{C}}$ by $T_{\mathbb{C}}(u+iv) = Tu + iTv$ for all $u, v \in V$.

- (a) Show that $T_{\mathbb{C}}$ is a (complex) linear map from $V_{\mathbb{C}}$ to $W_{\mathbb{C}}$.
- (b) Show that $T_{\mathbb{C}}$ is injective \iff T is injective.
- (c) Show that range $T_{\mathbb{C}} = W_{\mathbb{C}} \iff \text{range } T = W$.

See Exercise 8 in Section 1B for the definition of the complexification $V_{\mathbb{C}}$.

The linear map $T_{\mathbb{C}}$ is called the complexification of the linear map T.

SOLUTION:

(a)
$$\forall u_1 + iv_1, u_2 + iv_2 \in V_{\mathbb{C}}, \lambda \in \mathbf{F},$$

 $T((u_1 + iv_1) + \lambda(u_2 + iv_2)) = T((u_1 + \lambda u_2) + i(v_1 + \lambda v_2)) = T(u_1 + \lambda u_2) + iT(v_1 + \lambda v_2)$
 $= Tu_1 + iTv_1 + \lambda Tu_2 + i\lambda Tv_2 = T(u_1 + iv_1) + \lambda T(u_2 + iv_2). \quad \Box$

(b) Suppose
$$T_{\mathbb{C}}$$
 is injective. Let $T(u) = 0 \Rightarrow T_{\mathbb{C}}(u+\mathrm{i}0) = Tu = 0 \Rightarrow u = 0$. Suppose T is injective. Let $T_{\mathbb{C}}(u+\mathrm{i}v) = Tu+\mathrm{i}Tv = 0 \Rightarrow Tu = Tv = 0 \Rightarrow u+\mathrm{i}v = 0$. Suppose $T_{\mathbb{C}}$ is surjective. $\forall w, x \in W, \ \exists \, u, v \in V, T(u+\mathrm{i}v) = Tu+\mathrm{i}Tv = w+\mathrm{i}x$

$$\begin{array}{c} \Rightarrow Tu=w, Tv=x \Rightarrow \text{T is surjective.} \\ \text{Suppose T is surjective.} \ \forall w, x \in W, \ \exists \, u, v \in V, Tu=w, Tv=x \\ \Rightarrow \forall w+\text{i} x \in W_{\mathbb{C}}, \ \exists \, u+\text{i} v \in V, T(u+\text{i} v)=w+\text{i} x \Rightarrow T_{\mathbb{C}} \ \text{is surjective.} \end{array}$$

ENDED

• NOTE FOR [3.47]:
$$LHS = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} (C_{\cdot,k})_{r,1} = (A_{j,\cdot} C_{\cdot,k})_{1,1} = A_{j,\cdot} C_{\cdot,k} = RHS.$$

• Note For [3.48]:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 8 \end{pmatrix} & \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} & \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 7 \\ 10 \end{pmatrix} \\ \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ 8 \end{pmatrix} & \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} & \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 10 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \times 5 + 2 \times 8 & 1 \times 6 + 2 \times 9 & 1 \times 7 + 2 \times 10 \\ 3 \times 5 + 4 \times 8 & 3 \times 6 + 4 \times 9 & 3 \times 7 + 4 \times 10 \end{pmatrix} = \begin{pmatrix} 21 & 24 & 27 \\ 47 & 54 & 61 \end{pmatrix}$$

• NOTE FOR [3.49]:
$$: [(AC)_{\cdot,k}]_{j,1} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} A_{j,r} (C_{\cdot,k})_{r,1} = (AC_{\cdot,k})_{j,1}$$

 $: (AC)_{\cdot,k} = A_{\cdot,\cdot} C_{\cdot,k} = AC_{\cdot,k}$

• **EXERCISE 10:**
$$: [(AC)_{j,\cdot}]_{1,k} = (AC)_{j,k} = \sum_{r=1}^{n} A_{j,r} C_{r,k} = \sum_{r=1}^{n} (A_{j,\cdot})_{1,r} C_{r,k} = (A_{j,\cdot}C)_{1,k}$$
$$: (AC)_{j,\cdot} = A_{j,\cdot}C_{\cdot,\cdot} = A_{j,\cdot}C_{\cdot}.$$

• Suppose $C \in \mathbf{F}^{m,c}$, $R \in \mathbf{F}^{c,p}$.

(a) For
$$k = 1, ..., p$$
, $(CR)_{\cdot,k} = CR_{\cdot,k} = C_{\cdot,\cdot}R_{\cdot,k} = \sum_{r=1}^{c} C_{\cdot,r}R_{r,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c}$

(b) For
$$j = 1, ..., m$$
, $(CR)_{j,\cdot} = C_{j,\cdot}R = C_{j,\cdot}R_{\cdot,\cdot} = \sum_{r=1}^{c} C_{j,r}R_{r,\cdot} = C_{j,1}R_{1,\cdot} + \cdots + C_{j,c}R_{c,\cdot}$

EXAMPLE:

$$P = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} \in \mathbf{F}^{2,3}.$$

$$P_{\cdot,1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 \\ 8 \end{pmatrix} = 5 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 8 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 21 \\ 47 \end{pmatrix};$$

$$P_{\cdot,2} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 6 \\ 9 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 9 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 24 \\ 54 \end{pmatrix};$$

$$P_{\cdot,3} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 10 \end{pmatrix} = 7 \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 10 \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 27 \\ 61 \end{pmatrix};$$

$$P_{1,\cdot} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = 1 \begin{pmatrix} 5 & 6 & 7 \end{pmatrix} + 2 \begin{pmatrix} 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 21 & 24 & 27 \end{pmatrix};$$

$$P_{2,\cdot} = \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{pmatrix} = 3 \begin{pmatrix} 5 & 6 & 7 \end{pmatrix} + 4 \begin{pmatrix} 8 & 9 & 10 \end{pmatrix} = \begin{pmatrix} 47 & 54 & 61 \end{pmatrix};$$

• Note For [3.52]:
$$A \in \mathbb{F}^{m,n}, c \in \mathbb{F}^{n,1} \Rightarrow Ac \in \mathbb{F}^{m,1}$$

$$\therefore (Ac)_{j,1} = \sum_{r=1}^{n} A_{j,r} c_{r,1} = \left[\sum_{r=1}^{n} (A_{\cdot,r} c_{r,1}) \right]_{j,1} = (c_1 A_{\cdot,1} + \dots + c_n A_{\cdot,n})_{j,1}$$

$$\therefore Ac = A_{\cdot,\cdot}c_{\cdot,1} = \sum_{r=1}^{n} A_{\cdot,r}c_{r,1} = c_1A_{\cdot,1} + \dots + c_nA_{\cdot,n}$$
 OR. By $(Ac)_{\cdot,1} = Ac_{\cdot,1}$ Using (a) above.

• Exercise 10:
$$a \in \mathbf{F}^{1,n}, C \in \mathbf{F}^{n,p} \Rightarrow aC \in \mathbf{F}^{1,p}$$

$$\therefore (aC)_{1,k} = \sum_{r=1}^{n} a_{1,r} C_{r,k} = \left[\sum_{r=1}^{n} a_{1,r} (C_{r,\cdot})\right]_{1,k} = (a_1 C_{1,\cdot} + \dots + a_n C_{n,\cdot})_{1,k}$$

$$\therefore aC = a_{1,\cdot}C_{\cdot,\cdot} = \sum_{r=1}^{n} a_{1,r}C_{r,\cdot} = a_{1}C_{1,\cdot} + \dots + a_{n}C_{n,\cdot}$$
 OR. By $(aC)_{1,\cdot} = a_{1,\cdot}C$. Using (b) above.

• COLUMN-ROW FACTORIZATION (CR Factorization)

Suppose $A \in \mathbb{F}^{m,n}$, $A \neq 0$. Let $S_c = span(A_{\cdot,1}, \ldots, A_{\cdot,n}) \subseteq \mathbb{F}^{m,1}$, dim $S_c = c$.

And
$$S_r = span(A_{1,\cdot}, \ldots, A_{n,\cdot}) \subseteq \mathbf{F}^{1,n}, \dim S_r = r$$
.

Prove that A = CR. $\exists C \in \mathbf{F}^{m,c}, R \in \mathbf{F}^{c,n}$.

SOLUTION: Notice that $A \neq 0 \Rightarrow c, r \geq 1$.

Let $(C_{\cdot,1},\ldots,C_{\cdot,c})$ be a basis of S_c , forming $C \in \mathbb{F}^{m,c}$.

Then for any
$$A_{\cdot,k}$$
, $A_{\cdot,k} = R_{1,k}C_{\cdot,1} + \cdots + R_{c,k}C_{\cdot,c} = (CR)_{\cdot,k}$, $\exists ! R_{1,k}, \ldots, R_{c,k} \in \mathbf{F}$. Hence, by letting $R = \begin{pmatrix} R_{1,1} & \cdots & R_{1,n} \\ \vdots & \ddots & \vdots \\ R_{c,1} & \cdots & R_{c,n} \end{pmatrix}$, we have $A = CR$.

OR. Let (R_1, \ldots, R_c) be a basis of S_r , forming $R \in \mathbf{F}^{c,n}$.

For any $A_{j,\cdot}$, $A_{j,\cdot}=C_{j,1}R_{1,\cdot}+\cdots+C_{j,c}R_{c,\cdot}=(CR)_{j,\cdot}$, $\exists ! C_{j,1},\ldots,C_{j,c}\in \mathbf{F}$. Similarly. \square

EXAMPLE:

$$A = \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \\ 46 & 33 & 20 & 7 \end{pmatrix} \stackrel{(1)}{=} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 10 & 7 & 4 & 1 \\ 26 & 19 & 12 & 5 \end{pmatrix} \stackrel{(2)}{=} \begin{pmatrix} 7 & 4 \\ 19 & 12 \\ 33 & 20 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}$$

(1) Because $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix} = 2 \begin{pmatrix} 10 & 7 & 4 & 1 \end{pmatrix} + \begin{pmatrix} 26 & 19 & 12 & 5 \end{pmatrix}$.

 $\begin{pmatrix} 46 & 33 & 20 & 7 \end{pmatrix}$ can be uniquely written as a linear combination of $A_{1,\cdot}, A_{2,\cdot}$.

Hence dim $S_r = 2$. We choose $(A_{1,\cdot}, A_{2,\cdot})$ as the basis.

(2) Because
$$\begin{pmatrix} 10 \\ 26 \\ 46 \end{pmatrix} = 2 \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix} - \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix}; \quad \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 12 \\ 20 \end{pmatrix} - \begin{pmatrix} 7 \\ 19 \\ 33 \end{pmatrix}.$$

Hence dim $S_c = 2$. We choose $(A_{\cdot,2}, A_{\cdot,3})$ as the basis.

• COLUMN RANK EQUALS ROW RANK (Using the notation above)

For any
$$A_{j,\cdot} \in S_r$$
, $A_{j,\cdot} = (CR)_{j,\cdot} = C_{j,1}R = C_{j,1}R_{1,\cdot} + \cdots + C_{j,c}R_{c,\cdot}$

$$\Rightarrow$$
 span $(A_{1,\cdot},\ldots,A_{m,\cdot})=S_r=$ span $(R_{1,\cdot},\ldots,R_{c,\cdot})\Rightarrow$ dim $S_r=r\leq c=$ dim S_c .

Apply the result to $A^t \in \mathbb{F}^{n,m} \Rightarrow \dim S_r^t = \dim S_c = c \leq r = \dim S_r = \dim S_c^t$. \square

• Suppose $T \in \mathcal{L}(V)$, and u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V.

Prove that the following are equivalent.

- (a) T is injective.
- (b) The columns of $\mathcal{M}(T)$ are linearly independent in $\mathbf{F}^{n,1}$.
- (c) The columns of $\mathcal{M}(T)$ span $\mathbf{F}^{n,1}$.
- (d) The rows of $\mathcal{M}(T)$ span $\mathbb{F}^{1,n}$.
- (e) The rows of $\mathcal{M}(T)$ are linearly independent in $\mathbf{F}^{1,n}$.

Here $A = \mathcal{M}(T)$ means $\mathcal{M}(T, (u_1, \dots, u_n), (v_1, \dots, v_n))$.

SOLUTION:

$$T$$
 is injective \iff dim $V = \dim \operatorname{range} T + \dim \operatorname{null} T = \dim \operatorname{range} T$

$$\iff$$
 (Tu_1, \ldots, Tu_n) is linearly independent in V , and therefore is a basis of V

$$\iff (\mathcal{M}(Tu_1), \dots, \mathcal{M}(Tu_n))$$
 is linearly independent, as well as $(A_{\cdot,1}, \dots, A_{\cdot,n})$

$$\iff (A_{\cdot,1},\ldots,A_{\cdot,n})$$
 is a basis of $\mathbf{F}^{n,1}$.

$$\left(\begin{array}{c} \mathbb{Z} \dim \operatorname{span} \left(A_{\cdot,1}, \ldots, A_{\cdot,n} \right) = \dim \operatorname{span} \left(A_{1,\cdot}, \ldots, A_{n,\cdot} \right) = n \end{array} \right) \\ \iff \left(A_{1,\cdot}, \ldots, A_{n,\cdot} \right) \text{ is a basis of } \mathbf{F}^{1,n}.$$

• Suppose A is an m-by-n matrix with $A \neq 0$. Prove that the rank of A is 1 if and only if there exist $(c_1, \ldots, c_m) \in \mathbf{F}^m$ and $(d_1, \ldots, d_n) \in \mathbf{F}^n$ such that $A_{j,k} = c_j \cdot d_k$ for every $j = 1, \ldots, m$ and every $k = 1, \ldots, n$. Solution: Using the notation in CR Factorization.

(a) Suppose
$$A = \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix} \begin{pmatrix} d_1 & \cdots & d_n \end{pmatrix} = \begin{pmatrix} c_1d_1 & \cdots & c_1d_n \\ \vdots & \ddots & \vdots \\ c_md_1 & \cdots & c_md_n \end{pmatrix}$$
. $(\exists c_j, d_k \in \mathbf{F}, \forall j, k)$

Then $S_c = \operatorname{span} \begin{pmatrix} c_1d_1 \\ \vdots \\ c_md_1 \end{pmatrix}$, $\begin{pmatrix} c_1d_2 \\ \vdots \\ c_md_2 \end{pmatrix}$, \dots , $\begin{pmatrix} c_1d_n \\ \vdots \\ c_md_n \end{pmatrix}$) = $\operatorname{span} \begin{pmatrix} c_1 \\ \vdots \\ c_m \end{pmatrix}$).

OR. $S_r = \operatorname{span} \begin{pmatrix} \begin{pmatrix} c_1d_1 & \cdots & c_1d_n \\ \vdots \\ c_2d_1 & \cdots & c_2d_n \end{pmatrix}$, $\begin{pmatrix} c_2d_1 & \cdots & c_2d_n \\ \vdots \\ c_md_1 & \cdots & c_md_n \end{pmatrix}$ = $\operatorname{span} (\begin{pmatrix} d_1 & \dots & d_n \end{pmatrix})$. Hence the rank of A is 1.

(b) Suppose the rank of
$$A$$
 is dim $S_c = \dim S_r = 1$
Let $c_j = \frac{A_{j,1}}{A_{1,1}} = \frac{A_{j,2}}{A_{1,2}} = \dots = \frac{A_{j,n}}{A_{1,n}}, \qquad d'_k = \frac{A_{1,k}}{A_{1,1}} = \frac{A_{2,k}}{A_{2,1}} = \dots = \frac{A_{m,k}}{A_{m,1}}. \quad (\forall j,k)$

$$\Rightarrow A_{j,k} = d'_k A_{j,1} = c_j A_{1,k} = c_j d'_k A_{1,1} = c_j d_k. \text{ Letting } d_k = d'_k A_{1,1}.$$

1 Suppose $T \in \mathcal{L}(V, W)$. Show that with respect to each choice of bases of V and W, the matrix of T has at least dim range T nonzero entries.

SOLUTION: Let (v_1, \ldots, v_n) and (w_1, \ldots, w_m) be bases of V and W respectively. We prove by contradiction. Suppose $A = \mathcal{M}(T, (v_1, \ldots, v_n), (w_1, \ldots, w_m))$ has at most (dim range T-1) nonzero entries.

Then by Pigeon Hole Principle, at least one of $A_{\cdot,k} = 0$.

Thus there are at most (dim range T-1) nonzero vectors in Tv_1, \ldots, Tv_n .

While range $T = \operatorname{span}(Tv_1, \dots, Tv_n) \Rightarrow \dim \operatorname{range} T \leq \dim \operatorname{range} T - 1$. Hence we get a contradiction. \square

3 Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$.

Prove that there exist a basis of V and a basis of W such that

[letting $A = \mathcal{M}(T)$ with respect to these bases],

 $A_{k,k} = 1, A_{i,j} = 0$, where $1 \le k \le \dim range T, i \ne j$.

SOLUTION:

Let $R = (Tv_1, \dots, Tv_n)$ be a basis of range T, extend it to the basis of W as $(Tv_1, \dots, Tv_n, w_1, \dots, w_p)$.

Let $K_R = \operatorname{span}(v_1, \ldots, v_n)$. Let (u_1, \ldots, u_m) be a basis of null T.

Then $(v_1, \ldots, v_n, u_1, \ldots, u_m)$ is the basis of V.

Thus $T(v_k) = Tv_k, T(u_j) = 0 \Rightarrow A_{k,k} = 1, A_{i,j}$ for each $k \in \{1, \dots, \dim \operatorname{range} T\}$ and $j \in \{1, \dots, m\}$. \square

4 Suppose (v_1, \ldots, v_m) is a basis of V and W is finite-dim. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis (w_1, \ldots, w_n) of W such that all entries in the first column of $A = \mathcal{M}(T, (v_1, \ldots, v_m), (w_1, \ldots, w_n))$ are 0 except for possibly a 1 in the first row, first column.

SOLUTION: If $Tv_1 = 0$, then we are done. Otherwise, extend (Tv_1) to a basis of W, as desired. \square

SOLUTION:

Let (u_1, \ldots, u_m) be a basis of V. If $A_{1,\cdot} = 0$, then let $v_i = u_i$ for each $i = 1, \ldots, n$, we are done. Otherwise, $(A_{1,1}, \ldots, A_{1,m}) \neq 0$, choose one $A_{1,k} \neq 0$.

Otherwise,
$$A_{1,1}$$
 \cdots $A_{1,m} \neq 0$, choose one $A_{1,k} \neq 0$.
Let $v_1 = \frac{u_k}{A_{1,k}}$; $v_j = u_{j-1} - A_{1,j-1}v_1$ for $j = 2, ..., k$; $v_i = u_i - A_{1,i}v_1$ for $i = k+1, ..., n$.

6 Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. Prove that $\dim range T = 1$ if and only if there exist a basis of V and a basis of W such that with respect to these bases, all entries of $A = \mathcal{M}(T)$ equal 1.

SOLUTION:

Denote the bases of V and W by $B_V = (v_1, \ldots, v_n)$ and $B_W = (w_1, \ldots, w_m)$ respectively.

- (a) Suppose B_V, B_W are the bases such that all entries of A equal 1. Then $Tv_i = w_1 + \cdots + w_m$ for all $i = 1, \dots, n$. Hence dim range T = 1.
- (b) Suppose $\dim \operatorname{range} T = 1$. Then $\dim \operatorname{null} T = \dim V 1$. Let (u_2, \ldots, u_n) be a basis of $\operatorname{null} T$. Extend it to a basis of V as (u_1, u_2, \ldots, u_n) . Let $w_1 = Tv_1 w_2 \cdots w_m$. Extend it to B_W the basis of W. Let $v_1 = u_1, v_i = u_1 + u_i$. Extend it to B_V the basis of V. \square
- **12** Give an example of 2-by-2 matrices A and B such that $AB \neq BA$.

Solution:
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

13 Prove that the distributive property holds for matrix addition and matrix multiplication. In other words, suppose A, B, C, D, E and F are matrices whose sizes are such that A(B+C) and (D+E)F make sense. Explain why AB+AC and DF+EF both make sense and prove that.

SOLUTION: Using [3.36], [3.43].

(a) Left distributive: Suppose $A \in \mathbf{F}^{m,n}$ and $B, C \in \mathbf{F}^{n,p}$. Because $[A(B+C)]_{j,k} = \sum_{r=1}^n A_{j,r}(B+C)_{r,k} = \sum_{r=1}^n (A_{j,r}B_{r,k} + A_{j,r}C_{r,k})$. Hence we conclude that A(B+C) = AB + AC.

OR. Let (e_1, \ldots, e_M) be the standard basis of \mathbf{F}^M , where $M = \max\{m, n, p\}$. Suppose $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$ such that $Te_k = \sum_{j=1}^m A_{j,k} e_j$ for each $k = 1, \ldots, n$. Then $\mathcal{M}(T) = A$.

Similarly, define S, R such that $\mathcal{M}(S) = B, \mathcal{M}(R) = C.$ $\Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR)$

Thus
$$T(S+R) = TS + TR$$
 $\Rightarrow \mathcal{M}(T(S+R)) = \mathcal{M}(TS+TR)$ $\Rightarrow \mathcal{M}(T)[\mathcal{M}(S) + \mathcal{M}(R)] = \mathcal{M}(T)\mathcal{M}(S) + \mathcal{M}(T)\mathcal{M}(R)$ $\Rightarrow A(B+C) = AB + AC.$ Suppose $\mathcal{M}(T) = D$, $\mathcal{M}(S) = E$, $\mathcal{M}(R) = F$.

(b) Right distributive: Similarly. Then (T+S)R = TR + SR $\Rightarrow \mathcal{M}((T+S)R) = \mathcal{M}(TR) + \mathcal{M}(SR)$ $\Rightarrow [\mathcal{M}(T) + \mathcal{M}(S)]\mathcal{M}(R) = \mathcal{M}(T)\mathcal{M}(R) + \mathcal{M}(S)\mathcal{M}(R)$ $\Rightarrow (D+E)F = DF + EF. \square$ 14 Prove that matrix multiplication is associative. In other words,

suppose A, B and C are matrices whose sizes are such that (AB)C makes sense.

Explain why A(BC) makes sense and prove that (AB)C = A(BC).

Try to find a clean proof that illustrates the following quote from Emil Artin:

"It is my experience that proofs involving matrices can be shortened by 50% if one throws the matrices out."

SOLUTION:

Because
$$[(AB)C]_{j,k} = (AB)_{j,\cdot}C_{\cdot,k} = \sum_{s=1}^{n} (A_{j,s}B_{s,\cdot})C_{\cdot,k} = \sum_{s=1}^{n} A_{j,s}(B_{s,\cdot}C_{\cdot,k}) = \sum_{s=1}^{n} A_{j,s}(BC)_{s,k} = A(BC)_{j,k}$$

Hence we conclude that $(AB)C = A(BC)$.

OR. Suppose $A \in \mathbf{F}^{m,n}, B \in \mathbf{F}^{n,p}, C \in \mathbf{F}^{p,s}$.

Let (e_1, \ldots, e_M) be the standard basis of \mathbf{F}^M , where $M = \max\{m, n, p, s\}$.

Suppose
$$T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$$
 such that $Te_k = \sum_{j=1}^m A_{j,k} e_j$ for each $k = 1, \dots, n$. Then $\mathcal{M}(T) = A$.

Similarly, define S, R such that $\mathcal{M}(S) = B, \mathcal{M}(R) = C$.

Hence
$$(TS)R = T(SR) \Rightarrow \mathcal{M}((TS)R) = \mathcal{M}(T(SR))$$

$$\Rightarrow [\mathcal{M}(T)\mathcal{M}(S)]\mathcal{M}(R) = \mathcal{M}(T)[\mathcal{M}(S)\mathcal{M}(R)]$$

$$\Rightarrow (AB)C = A(BC). \square$$

15 Suppose A is an n-by-n matrix and $1 \le j, k \le n$.

Show that the entry in row j, column k, of A^3

(which is defined to mean AAA) is
$$\sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}$$
.

SOLUTION:
$$(AAA)_{j,k} = (AA)_{j,\cdot}A_{\cdot,k} = \sum_{p=1}^{n} (A_{j,p}A_{p,\cdot})A_{\cdot,k} = \sum_{p=1}^{n} \sum_{r=1}^{n} A_{j,p}A_{p,r}A_{r,k}$$
.

$$OR. \quad (AAA)_{j,k} = \sum_{r=1}^{n} (AA)_{j,r} A_{r,k} = \sum_{r=1}^{n} (\sum_{p=1}^{n} A_{j,p} A_{p,r}) A_{r,k}$$

$$= \sum_{r=1}^{n} (A_{j,1} A_{1,r} A_{r,k} + \dots + A_{j,n} A_{n,r} A_{r,k})$$

$$= A_{j,1} \sum_{r=1}^{n} A_{1,r} A_{r,k} + \dots + A_{j,n} \sum_{r=1}^{n} A_{n,r} A_{r,k} = \sum_{r=1}^{n} \sum_{r=1}^{n} A_{j,p} A_{p,r} A_{r,k}. \quad \Box$$

ENDED

3.D

• Suppose $T \in \mathcal{L}(V, W)$ is invertible. Show that T^{-1} is invertible and $(T^{-1})^{-1} = T$.

SOLUTION

$$\left. \begin{array}{l} TT^{-1} = (T^{-1})^{-1}T^{-1} = I \in \mathcal{L}(V) \\ T^{-1}T = T^{-1}(T^{-1})^{-1} = I \in \mathcal{L}(W) \end{array} \right\} \Rightarrow T = (T^{-1})^{-1}, \text{ by the uniqueness of inverse.} \quad \Box$$

1 Suppose $T \in \mathcal{L}(U, V)$ and $S \in \mathcal{L}(V, W)$ are both invertible linear maps.

Prove that $ST \in \mathcal{L}(U, W)$ is invertible and that $(ST)^{-1} = T^{-1}S^{-1}$.

SOLUTION:

$$(ST)(T^{-1}S^{-1}) = STT^{-1}S^{-1} = I \in \mathcal{L}(W)$$

$$(T^{-1}S^{-1})(ST) = T^{-1}S^{-1}ST = I \in \mathcal{L}(V)$$

$$\Rightarrow (ST)^{-1} = T^{-1}S^{-1}, \text{ by the uniqueness of inverse. } \square$$

9 Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$.

Prove that ST *is invertible* \iff S *and* T *are invertible.*

SOLUTION:

Suppose S, T are invertible. Then $(ST)(T^{-1}S^{-1}) = (T^{-1}S^{-1})(ST) = I$. Hence ST is invertible.

Suppose ST is invertible. Let $R = (ST)^{-1} \Rightarrow R(ST) = (ST)R = I$.

Notice that V is finite-dim. Hence S, T are invertible. \square

10 Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that $ST = I \iff TS = I$.

SOLUTION:

Suppose ST = I.

$$\left. \begin{array}{l} Tv = 0 \Rightarrow v = STv = 0 \\ v \in V \Rightarrow v = S(Tv) \in \operatorname{range} S \end{array} \right\} \Rightarrow T \text{ is injective, } S \text{ is surjective.}$$

Notice that V is finite-dim. Thus T, S are invertible.

OR. By Problem (9), V is finite-dim and ST = I is invertible $\Rightarrow S, T$ are invertible.

$$S((TS)v) = ST(Sv) = Sv \Rightarrow (TS)v = v$$
 (S is invertible).

OR.
$$ST = I \Rightarrow S = T^{-1} \Rightarrow S^{-1} = T$$
. $\not \supset S = S \Rightarrow TS = S^{-1}S = I$.

Reversing the roles of S and T, we conclude that $TS = I \Rightarrow ST = I$. \square

11 Suppose V is finite-dim and $S, T, U \in \mathcal{L}(V)$ and STU = I.

Show that T is invertible and that $T^{-1} = US$.

SOLUTION: Using Problem (9) and (10).

$$(ST)U = U(ST) = (US)T = T(US) = S(TU) = (TU)S = I.$$

 $\Rightarrow U^{-1} = ST, \quad T^{-1} = US, \quad S^{-1} = TU. \quad \Box$

12 Show that the result in Exercise 11 can fail without the hypothesis that V is finite-dim.

SOLUTION:

Let
$$V = \mathbf{R}^{\infty}$$
, $S(a_1, a_2, \dots) = (a_2, \dots)$, $T(a_1, \dots) = (0, a_1, \dots)$, $U = I$.

Then STU = I but T^{-1} is not invertible.

13 Suppose V is finite-dim and $R, S, T \in \mathcal{L}(V)$ are such that RST is surjective. *Prove that* S *is injective.*

SOLUTION:

By Problem (1) and (9), Notice that V is finite-dim. Then RST is invertible.

$$(RST)^{-1} = ((RS)T)^{-1} = T^{-1}(RS)^{-1} = T^{-1}S^{-1}R^{-1}.$$

OR. Let
$$X = (RST)^{-1}$$
, $\begin{cases} Tv = 0 \Rightarrow v = X(RSTv) = 0 \Rightarrow T \text{ is injective, and therefore is invertible.} \\ \forall v \in V, v = (RST)Xv \in \text{range } R \Rightarrow R \text{ is surjective, and therefore is invertible.} \end{cases}$

Thus $S = R^{-1}(RST)T^{-1}$ is invertible.

15 Prove that every linear map from $\mathbf{F}^{n,1}$ to $\mathbf{F}^{m,1}$ is given by a matrix multiplication. In other words, prove that if $T \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{m,1})$, then $\exists A \in \mathbf{F}^{m,n}, Tx = Ax, \forall x \in \mathbf{F}^{n,1}$.

SOLUTION:

Let
$$E_i \in \mathbf{F}^{n,1}$$
 for each $i = 1, ..., n$ (where $M = \max\{m, n\}$) be such that $(E_i)_{j,1} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$

Then (E_1, \ldots, E_n) is linearly independent and thus is a basis of $\mathbf{F}^{n,1}$.

Similarly, let (R_1, \ldots, R_m) be a basis of $\mathbf{F}^{m,1}$.

Suppose
$$T(E_i) = A_{1,i}R_1 + \dots + A_{m,i}R_m$$
 for each $i = 1, \dots, n$. Hence by letting $A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}$. \Box

COMMENT: $\mathcal{M}(T) = A$. Conversely it is true as well.

• OR (10.A.2) Suppose $A, B \in \mathbb{F}^{n,n}$. Prove that $AB = I \iff BA = I$.

SOLUTION: Using Problem (10) and (15).

Define
$$T, S \in \mathcal{L}(\mathbf{F}^{n,1}, \mathbf{F}^{n,1})$$
 by $Tx = Ax, Sx = Bx$ for all $x \in \mathbf{F}^{n,1}$. Then $\mathcal{M}(T) = A, \mathcal{M}(S) = B$.
Thus $AB = I \Leftrightarrow A(Bx) = x \iff T(Sx) = x \Leftrightarrow TS = I \iff ST = I \iff \mathcal{M}(S)\mathcal{M}(T) = BA = I.\square$

• NOTE FOR [3.60]: Suppose (v_1, \ldots, v_n) is a basis of V and (

NOTE FOR [3.60]: Suppose
$$(v_1, \ldots, v_n)$$
 is a basis of V and (w_1, \ldots, w_m) is a basis of W .

Define $E_{i,j} \in \mathcal{L}(V, W)$ by $E_{i,j}(v_x) = \delta_{ix}w_j$; $\delta_{ix} = \begin{cases} 0, & i \neq x \\ 1, & i = x \end{cases}$

COROLLARY: $E_{l,k}E_{i,j} = \delta_{jl}E_{i,k}$.

Denote $\mathcal{M}(E_{i,j})$ by $\mathcal{E}^{(j,i)}$. $(\mathcal{E}^{(j,i)})_{l,k} = \begin{cases} 0, & i \neq k \text{ or } j \neq l \\ 1, & i = k \text{ and } j = l \end{cases}$

Because $\mathcal{L}(V, W)$ and $\mathbf{F}^{m,n}$ are isomorphic. And $T = \mathcal{M}^{-1}\mathcal{M}(T)$, $E_{i,j} = \mathcal{M}^{-1}\mathcal{E}^{(j,i)}$

Hence
$$\forall T \in \mathcal{L}(V, W), \exists ! A_{i,j} \in \mathbf{F} (\forall i = \{1, \dots, m\}, j = \{1, \dots, n\}), \mathcal{M}(T) = A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}$$

Hence
$$\forall T \in \mathcal{L}(V, W), \ \exists ! A_{i,j} \in \mathbf{F} (\forall i = \{1, \dots, m\}, j = \{1, \dots, n\}), \mathcal{M}(T) = A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix}$$
.

Thus $A = \begin{pmatrix} A_{1,1}\mathcal{E}^{(1,1)} + & \cdots & +A_{1,n}\mathcal{E}^{(1,n)} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & +A_{m,n}\mathcal{E}^{(m,1)} + & \cdots & +A_{m,n}\mathcal{E}^{(m,n)} \end{pmatrix} \iff T = \begin{pmatrix} A_{1,1}E_{1,1} + & \cdots & +A_{1,n}E_{n,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & +A_{m,n}E_{n,m} \end{pmatrix}.$

$$\therefore \mathcal{L}(V, W) = \operatorname{span}\left(\underbrace{\begin{bmatrix} E_{1,1}, & \cdots & , E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{1,m}, & \cdots & , E_{n,m} \end{bmatrix}}_{F^{m,n}}; \quad \mathbf{F}^{m,n} = \operatorname{span}\left(\underbrace{\begin{bmatrix} \mathcal{E}^{(1,1)}, & \cdots & , \mathcal{E}^{(1,n)}, \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \mathcal{E}^{(m,1)}, & \cdots & , \mathcal{E}^{(m,n)} \end{bmatrix}}_{R}.$$

Hence by [2.42] and [3.61], we conclude that B is a basis of $\mathcal{L}(V, W)$ and that B_M is a basis of $\mathbf{F}^{m,n}$.

- \circ Suppose V is finite-dim and $S \in \mathcal{L}(V)$. Define $A \in \mathcal{L}(\mathcal{L}(V))$ by A(T) = ST for $T \in \mathcal{L}(V)$.
 - (a) Show that $\dim \operatorname{null} A = (\dim V)(\dim \operatorname{null} S)$.
 - (b) Show that $\dim range A = (\dim V)(\dim range S)$.

SOLUTION: Using NOTE FOR [3.60].

Let (w_1, \ldots, w_m) be a basis of range S, extend it to a basis of V as $(w_1, \ldots, w_m, \ldots, w_n)$.

Let $v_i \in V$ such that $Sv_i = w_i$ for m = 1, ..., m. Extend $(v_1, ..., v_m)$ to a basis of V as $(v_1, ..., v_m, ..., v_n)$. Define $E_{i,j} \in \mathcal{L}(V)$ by $E_{i,j}(v_x) = \delta_{ix}w_i$.

Thus
$$S = E_{1,1} + \dots + E_{m,m}$$
; $\mathcal{M}(S, (v_1, \dots, v_n), (w_1, \dots, w_n)) = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix}$.

Define $R_{i,j} \in \mathcal{L}(V)$ by $R_{i,j}(w_x) = \delta_{ix}v_i$.

Let $E_{j,k}R_{i,j} = Q_{i,k}$, $R_{j,k}E_{i,j} = G_{i,k}$

Because
$$\forall T \in \mathcal{L}(V)$$
, $\exists ! A_{i,j} \in \mathbf{F} (\forall i, j = 1, \dots, n)$, $T = \begin{pmatrix} A_{1,1}R_{1,1} + & \cdots & +A_{1,m}R_{m,1} + & \cdots & +A_{1,n}R_{n,1} \\ + & \cdots & + & \cdots & + & \cdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & +A_{m,m}R_{m,m} + & \cdots & +A_{m,n}R_{n,m} \\ + & \cdots & + & \cdots & +A_{m,n}R_{n,m} \\ + & \cdots & + & \cdots & +A_{m,n}R_{m,m} + & \cdots & +A_{m,n}R_{n,m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & + & \cdots & +A_{m,n}R_{m,n} + & \cdots & +A_{n,n}R_{n,n} \end{pmatrix}$

$$\Rightarrow A(T) = ST = (\sum_{r=1}^{m} E_{r,r})(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j}R_{j,i}) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j}Q_{j,i} = \begin{pmatrix} A_{1,1}Q_{1,1} + & \cdots & +A_{1,m}Q_{m,1} + & \cdots & +A_{1,n}Q_{n,1} \\ + & \cdots & + & \cdots & + & \cdots \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ + & \cdots & +A_{m,m}Q_{m,m} + & \cdots & +A_{m,n}Q_{n,m} \end{pmatrix}$$

Thus null
$$A = \operatorname{span}\begin{pmatrix} R_{1,m+1}, & \cdots & , R_{n,m+1}, \\ \vdots & \ddots & \vdots \\ R_{1,n}, & \cdots & , R_{n,n} \end{pmatrix}$$
, range $A = \operatorname{span}\begin{pmatrix} Q_{1,1}, & \cdots & , Q_{n,1}, \\ \vdots & \ddots & \vdots \\ Q_{1,m}, & \cdots & , Q_{n,m} \end{pmatrix}$.

Hence (a) dim null $A = n \times (n - m)$; (b) dim range $A = n \times m$. \square

• COMMENT: Define $B \in \mathcal{L}(\mathcal{L}(V))$ by B(T) = TS for $T \in \mathcal{L}(V)$.

Similarly,
$$B(T) = TS = (\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} R_{j,i})(\sum_{r=1}^{m} E_{r,r}) = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{i,j} G_{j,i} = \begin{pmatrix} A_{1,1}G_{1,1} & \cdots & +A_{1,m}G_{m,1} \\ + & \cdots & + \\ \vdots & \ddots & \vdots \\ + & \cdots & +A_{m,m}G_{m,m} \\ + & \cdots & +A_{m,m}G_{m,m} \end{pmatrix}$$

• OR (10.A.1) Suppose $T \in \mathcal{L}(V)$ and (v_1, \ldots, v_n) is a basis of V.

Prove that $\mathcal{M}(T,(v_1,\ldots,v_n))$ *is invertible* \iff T *is invertible*.

SOLUTION: Notice that \mathcal{M} is an isomorphism of $\mathcal{L}(V)$ onto $\mathbf{F}^{n,n}$.

(a)
$$T^{-1}T = TT^{-1} = I \Rightarrow \mathcal{M}(T^{-1})\mathcal{M}(T) = \mathcal{M}(T)\mathcal{M}(T^{-1}) = I \Rightarrow \mathcal{M}(T^{-1}) = \mathcal{M}(T)^{-1}$$
.

(b)
$$\mathcal{M}(T)\mathcal{M}(T)^{-1} = \mathcal{M}(T)^{-1}\mathcal{M}(T) = I$$
. $\exists ! S \in \mathcal{L}(V)$ such that $\mathcal{M}(T)^{-1} = \mathcal{M}(S)$

$$\Rightarrow \mathcal{M}(T)\mathcal{M}(S) = \mathcal{M}(S)\mathcal{M}(T) = I = \mathcal{M}(TS) = \mathcal{M}(ST)$$

$$\Rightarrow \mathcal{M}^{-1}\mathcal{M}(TS) = \mathcal{M}^{-1}\mathcal{M}(ST) = I = TS = ST \Rightarrow S = T^{-1}. \quad \Box$$

• OR (10.A.4) Suppose that (u_1, \ldots, u_n) and (v_1, \ldots, v_n) are bases of V. Let $T \in \mathcal{L}(V)$ be such that $Tv_k = u_k$ for each $k = 1, \ldots, n$. Prove that $A = \mathcal{M}(T, (v_1, \ldots, v_n)) = \mathcal{M}(I, (u_1, \ldots, u_n), (v_1, \ldots, v_n)) = B$.

SOLUTION:

$$\forall k \in \{1,\ldots,n\}, Iu_k = u_k = B_{1,k}v_1 + \cdots + B_{n,k}v_n = Tv_k = A_{1,k}v_1 + \cdots + A_{n,k}v_n \Rightarrow A = B.$$
 OR. Note that $\mathcal{M}(T,(v_1,\ldots,v_n),(u_1,\ldots,u_n))$ is the identity matrix.

$$A = \mathcal{M}(T, (v_1, \dots, v_n)) = \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n)) \underbrace{\mathcal{M}(T, (v_1, \dots, v_n), (u_1, \dots, u_n))}_{-I} = B. \quad \Box$$

• COMMENT: Denote $\mathcal{M}(T,(u_1,\ldots,u_n))$ by A'.

$$u_k = Iu_k = B_{1,k}v_1 + \dots + B_{n,k}v_n, \ \forall \ k \in \{1, \dots, n\}.$$

OR.
$$A' = \mathcal{M}(T, (u_1, \dots, u_n)) = \mathcal{M}(T, (v_1, \dots, v_n), (u_1, \dots, u_n)) \mathcal{M}(I, (u_1, \dots, u_n), (v_1, \dots, v_n)) = B.$$

16 Suppose V is finite-dim and $S \in \mathcal{L}(V)$.

Prove that $\exists \lambda \in \mathbf{F}, S = \lambda I \iff ST = TS$ *for every* $T \in \mathcal{L}(V)$.

SOLUTION: Using the notation and result in (\circ) .

Suppose $S = \lambda I$. Then $ST = TS = \lambda T$ for every $T \in \mathcal{L}(V)$. Conversely, if S = 0, then we are done.

Suppose
$$S \neq 0$$
, $ST = TS$, $\forall T \in \mathcal{L}(V)$. Let $S = E_{1,1} + \cdots + E_{m,m} \Rightarrow \mathcal{M}(S, (v_1, \dots, v_1)) = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))$

Then $\forall k \in \{m+1,\ldots,n\}, 0 \neq SR_{k,1} = R_{k,1}S$. Hence $n = \dim V = \dim \operatorname{range} S = m$.

Note that $R_{i,j}S = SR_{i,j} \iff Q_{i,j} = G_{i,j}$. Thus $Q_{i,j}(w_i) = w_j = a_{i,i}v_j = G_{i,j}(a_{1,i}v_1 + \cdots + a_{n,i}v_n)$. Where:

$$a_{i,j} = \mathcal{M}(I, (w_1, \dots, w_n), (v_1, \dots, v_n))_{i,j} \iff w_i = Iw_i = a_{1,i}v_1 + \dots + a_{n,i}v_n;$$

For each j, for all i. Thus $a_{i,i} = a_{k,k} = \lambda, \forall k \neq i$.

Hence
$$w_i = \lambda v_i \Rightarrow \mathcal{M}(S) = \begin{pmatrix} \lambda & 0 \\ & \ddots & \\ 0 & \lambda \end{pmatrix} = \mathcal{M}(\lambda I, (v_1, \dots, v_n)) \Rightarrow S = \mathcal{M}^{-1}(\mathcal{M}(\lambda I)) = \lambda I. \square$$

• OR (10.A.3) Suppose V is finite-dim and $T \in \mathcal{L}(V)$.

Prove that T has the same matrix with respect to every basis of V

if and only if T is a scalar multiple of the identity operator.

SOLUTION: [Compare with the first solution of Problem (16) in (3.A)]

Suppose $T = \lambda I$ for some $\lambda \in \mathbf{F}$. Then T has the same matrix with respect to every basis of V.

Conversely, if T=0, then we are done; Suppose $T\neq 0$. And v is a nonzero vector in V.

Assume that (v, Tv) is linearly independent.

Extend (v, Tv) to a basis of V as (v, Tv, u_3, \dots, u_n) . Let $B = \mathcal{M}(T, (v, Tv, u_3, \dots, u_n))$.

$$\Rightarrow Tv = B_{1,1}v + B_{2,1}(Tv) + B_{3,1}u_3 + \dots + B_{n,1}u_n \Rightarrow B_{2,1} = 1, B_{i,1} = 0, \forall i \neq 2.$$

By assumption, $A = \mathcal{M}(T, (v, w_2, \dots, w_n)) = B$ for any basis (v, w_2, \dots, w_n) .

Then $A_{2,1}=1, A_{i,1}=0$ ($i\neq 2$) $\Rightarrow Tv=w_2,$

which is not true if we let $w_2 = u_3, w_3 = Tv, w_j = u_j \ (j = 4, ..., n)$. Contradicts.

Hence (v, Tv) is linearly dependent $\Rightarrow \forall v \in V, \exists \lambda_v \in \mathbf{F}, Tv = \lambda_v v.$

Now we show that λ_v is independent of v, that is,

to show that for any two nonzero distinct vectors $v, w \in V, \lambda_v = \lambda_w$. Thus $T = \lambda I$ for some $\lambda \in \mathbf{F}$.

$$(v,w) \text{ is linearly independent} \Rightarrow T(v+w) = \lambda_{v+w}(v+w)$$

$$= \lambda_{v+w}v + \lambda_{v+w}w$$

$$= \lambda_v v + \lambda_w w = Tv + Tw \Rightarrow \lambda_{v+w} = \lambda_v = \lambda_w$$

$$(v,w) \text{ is linearly dependent, } w = cv \Rightarrow Tw = \lambda_w w = \lambda_w cv = c\lambda_v v = T(cv) \Rightarrow \lambda_v = \lambda_w$$

Then for any $E_{i,j} \in \mathcal{E}$, $(\forall x, y = 1,, n)$, by assumption, $E_{j,x}E_{i,j} = E_{i,x} \in \mathcal{E}$, $E_{i,j}E_{y,i} = E_{y,j} \in \mathcal{E}$. Again, $E_{y,x'}, E_{y',x} \in \mathcal{E}$ for all $x', y', x, y = 1,, n$. Thus $\mathcal{E} = \mathcal{L}(V)$. \square		
18 Show that V and $\mathcal{L}(\mathbf{F}, V)$ are isomorphic vector spaces.		
SOLUTION:		
Define $\varphi \in \mathcal{L}(V, \mathcal{L}(\mathbf{F}, V))$ by $\varphi(v) = \varphi_v$; where $\varphi_v \in \mathcal{L}(\mathbf{F}, V)$ and $\varphi_v(\lambda) = \lambda v$.		
(a) $\varphi(v) = \varphi_v = 0 \Rightarrow \forall \lambda \in \mathbf{F}, \varphi_v(\lambda) = \lambda v = 0 \Rightarrow v = 0$. Hence φ is injective.		
(b) $\forall \psi \in \mathcal{L}(\mathbf{F}, V)$, let $v = \psi(1) \Rightarrow \psi(\lambda) = \lambda v = \varphi_v(\lambda), \forall \lambda \in \mathbf{F}$ $\Rightarrow \varphi$ is an isomorphism. \square		
$\Rightarrow \psi = \varphi_{\psi(1)} = \varphi(\psi(1))$. Hence φ is surjective.		
• Suppose $q \in \mathcal{P}(\mathbf{R})$. Prove that there exists a polynomial $p \in \mathcal{P}(\mathbf{R})$ such that $q(x) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$ for all $x \in \mathbf{R}$.		
SOLUTION:		
Note that $deg[(x^2 + x)p''(x) + 2xp'(x) + p(3)] = deg p$.		
Define $T_n: \mathcal{P}_n(\mathbf{R}) \to \mathcal{P}_n(\mathbf{R})$ by $T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3)$.		
As can be easily checked, T_n is an operator.		
Now how can we prove that $T_n(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3) = 0 \iff p = 0$?		
Hence T_n is injective and therefore is surjective.		
Thus $\forall q \in \mathcal{P}(\mathbf{R}), \deg q = m, \ \exists \ p \in \mathcal{P}_m(\mathbf{R}), q(x) = T_m(p) = (x^2 + x)p''(x) + 2xp'(x) + p(3) \text{ for all } x \in \mathbf{R}.$		
19 Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbf{R}))$ is injective. $\deg Tp \leq \deg p$ for every nonzero $p \in \mathcal{P}(\mathbf{R})$.		
(a) Prove that T is surjective.		
(b) Prove that for every nonzero p , $\deg Tp = \deg p$.		
SOLUTION:		
(a) T is injective $\iff T _{\mathcal{P}_n(\mathbb{R})}: \mathcal{P}_n(\mathbf{R}) \to \mathcal{P}_n(\mathbf{R})$ is injective for any $n \in \mathbb{N}^+$		
$\iff T _{\mathcal{P}_n(\mathbb{R})}$ is surjective for any $n \in \mathbb{N}^+ \iff T$ is surjective.		
(b) Using mathematical induction.		
(i) $\deg p = 0 \Rightarrow p = C \Rightarrow \deg Tp = \deg p = 0$.		
$\deg p = -\infty \Rightarrow p = 0 \Rightarrow \deg Tp = \deg p = -\infty.$		
(ii) Suppose deg $f = \deg Tf$ for all $f \in \mathcal{P}_n(\mathbf{R})$. Then suppose deg $g = n + 1, g \in \mathcal{P}_{n+1}(\mathbf{R})$.		
Assume that $\deg Tg < \deg g$ ($\Rightarrow \deg Tg \leq n, Tg \in \mathcal{P}_n(\mathbf{R})$).		
Then by (a), $\exists f \in \mathcal{P}_n(\mathbf{R}), T(f) = (Tg). \ \ \ \ \ \ \ \ T$ is injective $\Rightarrow f = g$.		
While $\deg f = \deg Tf = \deg Tg < \deg g$. Contradicts the assumption.		
Hence $\deg T p = \deg p$ for all $p \in \mathcal{P}_{n+1}(\mathbf{R})$.		

17 Suppose V is finite-dim. Show that the only two-sided ideals of $\mathcal{L}(V)$ are $\{0\}$ and $\mathcal{L}(V)$. A subspace \mathcal{E} of $\mathcal{L}(V)$ is called a two-sided ideal of $\mathcal{L}(V)$ if $TE \in \mathcal{E}$, $ET \in$

SOLUTION: Using NOTE FOR [3.60]. Let (v_1, \ldots, v_n) be a basis of V. If $\mathcal{E} = 0$, then we are done.

Suppose $\mathcal{E} \neq 0$ and \mathcal{E} is a two-sided ideal of $\mathcal{L}(V)$.

Thus $\deg Tp = \deg p$ for all $p \in \mathcal{P}(\mathbf{R})$. \square

• Suppose $T \in \mathcal{L}(V)$ and (v_1, \ldots, v_m) is a list in V such that (Tv_1, \ldots, Tv_m) spans V . Prove that (v_1, \ldots, v_m) spans V .			
Solution:			
$V = \operatorname{span}(Tv_1, \dots, Tv_m) \Rightarrow T$ is surjective, X V is finite-dim $\Rightarrow T$ is invertible $\Rightarrow T^{-1}$ is invertible.			
$\forall v \in V, \ \exists a_i \in \mathbf{F}, v = a_1 T v_1 + \dots + a_n T v_n$			
$\Rightarrow T^{-1}v = a_1v_1 + \dots + a_nv_n \Rightarrow \operatorname{range} T^{-1} \subseteq \operatorname{span}(v_1, \dots, v_n) \ \ \ \ \ \ \ \ \ \ $			
OR. Reduce (Tv_1, \ldots, Tv_n) to a basis of V as $(Tv_{\alpha_1}, \ldots, Tv_{\alpha_m})$, where $m = \dim V$ and $\alpha_i \in \{1 \text{ Then } (v_{\alpha_1}, \ldots, v_{\alpha_m}) \text{ is linearly independet of length } m$, therefore is a basis of V , contained in the list			
• Suppose V is finite-dim and $T \in \mathcal{L}(V)$. (Tv_1, \ldots, Tv_n) is a basis of V for some basis (v_1, \ldots, v_n) of $V \Longleftrightarrow T$ is surjective $T : Tv_1, \ldots, Tv_n$ is a basis of $T : Tv_1, \ldots, Tv_n$ is a basis of $T : Tv_1, \ldots, Tv_n$ of $T : Tv_n$ is injective $T : Tv_n : Tv_n$ is a basis of $T : Tv_n : Tv_n$ is a basis of $T : Tv_n : Tv_n$ is injective $T : Tv_n : Tv_$	invertible.		
2 Suppose V is finite-dim and dim $V > 1$.			
Prove that the set of noninvertible operators on V is not a subspace of $\mathcal{L}(V)$.			
SOLUTION:			
Suppose dim $V = n > 1$. Let (v_1, \ldots, v_n) be a basis of V .			
Define $S, T \in \mathcal{L}(V)$ by $S(a_1v_1 + \dots + a_nv_n) = a_1v_1$ and $T(a_1v_1 + \dots + a_nv_n) = a_2v_1 + \dots + a_nv_n$.			
Hence $S + T = I$ is invertible.			
Thus the set of noninvertible linear maps in $\mathcal{L}(V)$ is not closed under addition and therefore is not a	_		
COMMENT: If dim $V=1$, then the set of noninvertible operators on V equals $\{0\}$, which is a subsp	ace of $\mathcal{L}(V)$.		
3 Suppose V is finite-dim, U is a subspace of V , and $S \in \mathcal{L}(U,V)$. Prove that there exists an invertible $T \in \mathcal{L}(V,V)$ such that $Tu = Su$ for every $u \in U$ if and only if S is injective. Solution: $[Compare \ this \ with \ (3.A.11).\]$ (a) $Tu = Su$ for every $u \in U \Rightarrow u = T^{-1}Su \Rightarrow S$ is injective. (b) Suppose (u_1, \ldots, u_m) be a basis of U and S is injective Su_1, \ldots, Su_m is linearly independent of these to bases of V as $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ and $(Su_1, \ldots, Su_m, w_1, \ldots, w_n)$. Define $T \in \mathcal{L}(V)$ by $T(u_i) = Su_i$; $Tv_j = w_j$, for each $i \in \{1, \ldots, m\}, j \in \{1, \ldots, n\}$.	ndent in V .		
4 Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$. Prove that $null S = null T (= U) \iff S = ET, \exists invertible E \in \mathcal{L}(W)$.			
SOLUTION:			
Define $E \in \mathcal{L}(W)$ by $E(Tv_i) = Sv_i$, $E(w_j) = x_j$, for each $i \in \{1,, m\}$, $j \in \{1,, n\}$. When	ere:		
Let (Tv_1, \ldots, Tv_m) be a basis of range T , extend it to a basis of W as $(Tv_1, \ldots, Tv_m, w_1, \ldots, w_n)$. Let (u_1, \ldots, u_n) be a basis of U . Then by (3.B.TIPS), $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ is a basis of V . \mathbb{Z} null $S = \operatorname{null} T \Rightarrow V = \operatorname{span}(v_1, \ldots, v_m) \oplus \operatorname{null} S \Rightarrow \operatorname{span}(Sv_1, \ldots, Sv_m) = \operatorname{range} S$. And dim range $T = \operatorname{dim} \operatorname{range} S = \operatorname{dim} V - \operatorname{null} U = m$. Hence (Sv_1, \ldots, Sv_m) is a basis of range S . Thus we let $(Sv_1, \ldots, Sv_m, x_1, \ldots, x_n)$ be a basis of W .	Hence E is invertible and $S = ET$.		
Conversely, $S = ET \Rightarrow \operatorname{null} S = \operatorname{null} ET$. Then $v \in \operatorname{null} ET \Longleftrightarrow ET(v) = 0 \Longleftrightarrow Tv = 0 \Longleftrightarrow v \in \operatorname{null} T$. Hence $\operatorname{null} ET = \operatorname{null} T = \operatorname{null} T$	ll S. □		

5 Suppose that W is finite-dim and $S, T \in \mathcal{L}(V, W)$. Prove that range $S = range T (= R) \iff S = TE, \exists invertible E \in \mathcal{L}(V).$ **SOLUTION:** Define $E \in \mathcal{L}(V)$ as $E: v_i \mapsto r_i$; $u_j \mapsto s_j$; for each $i \in \{1, ..., m\}, j \in \{1, ..., n\}$. Where: Let (Tv_1, \ldots, Tv_m) and (Sr_1, \ldots, Sr_m) be bases of R such that $\forall i, Tv_i = Sr_i$. Let (u_1, \ldots, u_n) and (s_1, \ldots, s_n) be bases of null T and null S respectively. Hence E is invertible and S = TE. Thus $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ and $(r_1, \ldots, r_m, s_1, \ldots, s_n)$ are bases of V. Conversely, $S = TE \Rightarrow \text{range } S = \text{range } TE$. Then $w \in \operatorname{range} S \iff \exists v \in V, Sv = TE(v) = T(E(v)) = w \in \operatorname{range} T$. Hence $\operatorname{range} S = \operatorname{range} T$. \square **6** Suppose V and W are finite-dim and $S, T \in \mathcal{L}(V, W)$. $[\dim \operatorname{null} S = \dim \operatorname{null} T = n]$ Prove that $S = E_2TE_1$, \exists invertible $E_1 \in \mathcal{L}(V)$, $E_2 \in \mathcal{L}(W) \iff \dim null S = \dim null T$. **SOLUTION:** Define $E_1: v_i \mapsto r_i; u_j \mapsto s_j;$ for each $i \in \{1, \dots, m\}, j \in \{1, \dots, n\}.$ Define $E_2: Tv_i \mapsto Sr_i \; ; \; x_j \mapsto y_j; \quad \text{for each } i \in \{1, \dots, m\}, j \in \{1, \dots, n\}. \text{ Where:}$ Let (Tv_1, \ldots, Tv_m) and (Sr_1, \ldots, Sr_m) be bases of range T and range S. Let (u_1, \ldots, u_n) and (s_1, \ldots, s_n) be bases of null T and null S respectively. Thus $(v_1, \ldots, v_m, u_1, \ldots, u_n)$ and $(r_1, \ldots, r_m, s_1, \ldots, s_n)$ are bases of V. Thus E_1 , E_2 are invertible and $S = E_2TE_1$. Extend (Tv_1, \ldots, Tv_m) and (Sr_1, \ldots, Sr_m) to bases of W as $(Tv_1, ..., Tv_m, x_1, ..., x_p)$ and $(Sr_1, ..., Sr_m, y_1, ..., y_p)$. Conversely, $S = E_2 T E_1 \Rightarrow \dim \operatorname{null} S = \dim \operatorname{null} E_2 T E_1$. $v \in \text{null } E_2TE_1 \iff E_2TE_1(v) = 0 \iff TE_1(v) = 0$. Hence $\text{null } E_2TE_1 = \text{null } TE_1 = \text{null } S$. X By (3.B.22.COROLLARY), E is invertible \Rightarrow dim null $TE_1 = \dim \text{null } T = \dim \text{null } S$. \square **8** Suppose V is finite-dim and $T: V \to W$ is a surjective linear map of V onto W. Prove that there is a subspace U of V such that $T|_U$ is an isomorphism of U onto W. $T|_U$ is the function whose domain is U, with $T|_U$ defined by $T|_U(u) = Tu$ for every $u \in U$. **SOLUTION:** T is surjective \Rightarrow range $T = W \Rightarrow \dim \operatorname{range} T = \dim W = \dim V - \dim \operatorname{null} T$. Let (w_1, \ldots, w_m) be a basis of range $T = W \Rightarrow \forall w_i, \exists ! v_i \in V, Tv_i = w_i$. $\Rightarrow (v_1, \dots, v_m)$ is a basis of \mathcal{K} . Thus dim $\mathcal{K} = \dim W$. Thus $T|_{\mathcal{K}}$ maps a basis of \mathcal{K} to a basis of range T=W. Denote \mathcal{K} by U. • Suppose V and W are finite-dim and U is a subspace of V. Let $\mathcal{E} = \{ T \in \mathcal{L}(V, W) : U \subseteq null T \}.$ (a) Show that \mathcal{E} is a subspace of $\mathcal{L}(V, W)$. (b) Find a formula for dim \mathcal{E} in terms of dim V, dim W and dim U. Hint: Define $\Phi: \mathcal{L}(V,W) \to L(U,W)$ by $\Phi(T) = T|_U$. What is null Φ ? What is range Φ ? **SOLUTION:** (a) $\forall S, T \in \mathcal{E}, \lambda \in \mathbf{F}, Su = Tu = \lambda Tu = (S + \lambda T)u = 0 \Rightarrow (S + \lambda T) \in \mathcal{E}.$ (b) Define Φ as in the hint. $T \in \text{null } \Phi \iff \Phi(T) = 0 \iff \forall u \in U, Tu = 0 \iff T \in \mathcal{E}.$ Hence null $\Phi = \mathcal{E}$. $S \in \mathcal{L}(U, W) \Rightarrow \exists T \in \mathcal{L}(V, W), \Phi(T) = S, \text{ by (3.B.11)} \Rightarrow S \in \text{range } T.$ Hence range $\Phi = \mathcal{L}(U, W)$.

Thus dim null $\Phi = \dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim \operatorname{range} \Phi = (\dim V - \dim U) \dim W$.

OR. Extend (u_1, \ldots, u_m) a basis of U to $(u_1, \ldots, u_m, v_1, \ldots, v_n)$ a basis of V. Let $p = \dim W$. (See NOTE FOR [3.60]) $\forall T \in \mathcal{E}, k \in \{1, \dots, m\}, TE_{k,k} = 0 \Rightarrow \operatorname{span} \left\{ \begin{bmatrix} E_{1,1}, & \cdots, E_{m,1}, \\ \vdots & \ddots & \vdots \\ E_{1,p}, & \cdots, E_{m,p} \end{bmatrix} \cap \mathcal{E} = \{0\}.$ $\mathbb{X} \ W = \operatorname{span} \left\{ \begin{matrix} E_{m+1,1}, & \cdots & , E_{n,1}, \\ \vdots & \ddots & \vdots \\ E_{n,1}, & \cdots & E_{n,n} \end{matrix} \right\} \subseteq \mathcal{E}. \text{ Where } \mathcal{L}(V,W) = R \oplus W \Rightarrow \mathcal{L}(V,W) = R + \mathcal{E}.$ Then $\dim \mathcal{E} = \dim \mathcal{L}(V, W) - \dim R - \dim(R \cap \mathcal{E}) = (\dim V - \dim U) \dim W.$ **ENDED** 3.E **2** Suppose V_1, \ldots, V_m are vec-sps such that $V_1 \times \cdots \times V_m$ is finite-dim. Prove that every V_i is finite-dim. **SOLUTION:** Denote $V_1 \times \cdots \times V_m$ by U. Denote $\{0\} \times \cdots \{0\} \times V_i \times \{0\} \cdots \times \{0\}$ by U_i . Let (v_1, \ldots, v_M) be a basis of U. Note that $\forall u_i \in V_i, \in U_i \subseteq U$, for each i. Define $R_i \in \mathcal{L}(V_i, U)$ by $R_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0)$. Define $S_i \in \mathcal{L}(U, V_i)$ by $S_i(u_1, \dots, u_i, \dots, u_m) = u_i$ $\Rightarrow S_i|_{U_i} = R_i^{-1}|_{U_i}$. Thus U_i and V_i are isomorphic. X U_i is a subspace of a finite-dim vec-sp U. \Box **3** Give an example of a vec-sp V and its two subspaces U_1, U_2 such that $U_1 \times U_2$ and $U_1 + U_2$ are isomorphic but $U_1 + U_2$ is not a direct sum. **SOLUTION:** NOTE that at least one of U_1, U_2 must be infinite-dim. For if not, $U_1 \times U_2$ is finite-dim and $\dim(U_1 \times U_2) = \dim(U_1 + U_2) = \dim U_1 + \dim U_2$. And V must be infinite-dim. For if not, both U_1 and U_2 are finite-dim subspaces. Let $V = \mathbf{F}^{\infty} = U_1, U_2 = \{(x, 0, \dots) \in \mathbf{F}^{\infty} : x \in \mathbf{F} \}.$ $\begin{array}{l} \text{Define } T \in \mathcal{L}(U_1 \times U_2, U_1 + U_2) \text{ by } T((x_1, x_2, \cdots), (x, 0, \cdots)) = (x, x_1, x_2, \cdots) \\ \text{Define } S \in \mathcal{L}(U_1 + U_2, U_1 \times U_2) \text{ by } S(x, x_1, x_2, \cdots) = ((x_1, x_2, \cdots), (x, 0, \cdots)) \end{array} \right\} \Rightarrow S = T^{-1}. \ \ \Box$ **4** Suppose V_1, \ldots, V_m are vec-sps. Prove that $\mathcal{L}(V_1 \times \cdots \times V_m, W)$ and $\mathcal{L}(V_1, W) \times \cdots \times \mathcal{L}(V_m, W)$ are isomorphic. **SOLUTION:** Using the notations in Problem (2). Note that $T(u_1, \ldots, u_m) = T(u_1, 0, \ldots, 0) + \cdots + T(0, \ldots, u_m)$. Define $\varphi: T \mapsto (T_1, \dots, T_m)$ by $\varphi(T) = (TR_1, \dots, TR_m)$. Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1S_1 + \dots + T_mS_m$. $\rbrace \Rightarrow \psi = \varphi^{-1}$. \Box **5** Suppose W_1, \ldots, W_m are vec-sps. *Prove that* $\mathcal{L}(V, W_1 \times \cdots \times W_m)$ *and* $\mathcal{L}(V, W_1) \times \cdots \times \mathcal{L}(V, W_m)$ *are isomorphic.* **SOLUTION:** Using the notations in Problem (2). Note that $Tv = (w_1, \dots, w_m)$. Define $T_i \in \mathcal{L}(V, W_i)$ by $T_i(v) = w_i$.

Define $\varphi: T \mapsto (T_1, \dots, T_m)$ by $\varphi(T) = (S_1 T, \dots, S_m T)$. Define $\psi: (T_1, \dots, T_m) \mapsto T$ by $\psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m$. $\} \Rightarrow \psi = \varphi^{-1}. \square$ **6** For $m \in \mathbb{N}^+$, define V^m by $\underbrace{V \times \cdots \times V}_{m \text{ times}}$. Prove that V^m and $\mathcal{L}(\mathbf{F}^m, V)$ are isomorphic.

SOLUTION:

Define $T:(v_1,\ldots,v_m)\to\varphi$, where $\varphi:(a_1,\ldots,a_m)\mapsto v$ is defined by $\varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m$. Suppose $T(v_1,\ldots,v_m)=0$. Then $\forall\,(a_1,\ldots,a_n)\in \mathbf{F}^m,\, \varphi(a_1,\ldots,a_m)=a_1v_1+\cdots+a_mv_m=0$ $\Rightarrow (v_1, \dots, v_m) = 0 \Rightarrow T$ is injective.

Suppose $\psi \in \mathcal{L}(\mathbf{F}^m, V)$. Let (e_1, \dots, e_m) be the standard basis of \mathbf{F}^m . Then $\forall (b_1, \dots, b_n) \in \mathbf{F}^m$, $(T(\psi(e_1),\ldots,\psi(e_m)))(b_1,\ldots,b_m)=b_1\psi(e_1)+\cdots+b_m\psi(e_m)=\psi(b_1e_1+\cdots+b_me_m)=\psi(b_1,\ldots,b_m).$ Thus $T(\psi(e_1), \dots, \psi(e_m)) = \psi$. Hence T is surjective. \square

7 Suppose $v, x \in V$ (chosen arbitrarily) of which U and W are subspaces. Suppose v + U = x + W. Prove that U = W.

SOLUTION:

- (a) $\forall u \in U, \exists w \in W, v + u = x + w, \text{ let } u = 0, \text{ getting } v = x + w \Rightarrow v x \in W.$

(b)
$$\forall w \in W, \ \exists \ u \in U, v + u = x + w, \ \text{let} \ w = 0, \ \text{getting} \ x = v + u \Rightarrow x - v \in U.$$
 Thus $\pm (v - x) \in U \cap W \Rightarrow \left\{ \begin{array}{l} u = (x - v) + w \in W \Rightarrow U \subseteq W \\ w = (v - x) + u \in U \Rightarrow W \subseteq U \end{array} \right\} \Rightarrow U = W. \ \Box$

- Let $U = \{(x, y, z) \in \mathbb{R}^3 : 2x + 3y + 5z = 0\}$. Suppose $A \subseteq \mathbb{R}^3$. Prove that A is a translate of $U \iff \exists c \in \mathbf{R}, A = \{(x, y, z) \in \mathbf{R}^3 : 2x + 3y + 5z = c\}.$ [Do it in your mind.]
- Suppose $T \in \mathcal{L}(V, W)$ and $c \in W$. Prove that $U = \{x \in V : Tx = c\}$ is either \varnothing or is a translate of null T.

SOLUTION:

If $c \in W$ but $c \notin \text{range } T$, then $U = \emptyset$ and we are done.

Suppose $c \in \text{range } T$, then $\exists u \in V, Tu = c \Rightarrow u \in U$.

Suppose $y \in \text{null } T \Rightarrow y + u \in U \iff T(y + u) = Ty + c = c$. Thus $u + \text{null } T \subseteq U$. Hence u + null T = U, for if not, suppose $z \notin u + \text{null} T$ but $Tz = c \Leftrightarrow z \in U$, then $\forall w \in \text{null} T, z \neq u + w \Leftrightarrow z - u \notin \text{null} T$. $\not \subseteq \tilde{T}(z+\text{null }T) = \tilde{T}(u+\text{null }T) \Rightarrow z+\text{null }T = u+\text{null }T \Rightarrow z-u \in \text{null }T, \text{ contradicts. } \square$

- COROLLARY: The set of solutions to a system of linear equations such as [3.28] is either \emptyset or a translate of the null subspace.
- **8** Prove that a nonempty subset A of V is a translate of some subspace of V if and only if $\lambda v + (1 - \lambda)w \in A$ for all $v, w \in A$ and all $\lambda \in \mathbb{F}$.

SOLUTION:

Suppose A = a + U, where U is a subspace of V. $\forall a + u_1, a + u_2 \in A, \lambda \in \mathbf{F}$,

$$\lambda(a+u_1) + (1-\lambda)(a+u_2) = a + [\lambda(u_1-u_2) + u_2] \in A.$$

Suppose $\lambda v + (1 - \lambda)w \in A, \forall v, w \in A, \lambda \in \mathbf{F}$. Suppose $a \in A$ and let $A' = \{x - a : x \in A\}$.

Then $\forall x - a, y - a \in A', \lambda \in \mathbf{F}$,

- (I) $\lambda(x-a) = [\lambda x + (1-\lambda)a] a \in A'$. Then let $\lambda = 2$.
- (II) $\lambda(x-a) + (1-\lambda)(y-a) = \frac{1}{2}(x-a) + \frac{1}{2}(y-a) = \frac{1}{2}x + (1-\frac{1}{2})(y) a \in A'$. By (I), $2 \times \left[\frac{1}{2}(x-a) + \frac{1}{2}(y-a)\right] = (x-a) + (y-a) \in A'$.

Thus A' is a subspace of V. Hence $a + A' = \{(x - a) + a : x \in A\} = A$ is a translate. \square

9 Suppose $A_1 = v + U_1$ and $A_2 = w + U_2$ for some $v, w \in V$ and some subspaces U_1, U_2 of V. Prove that the intersection $A_1 \cap A_2$ is either a translate of some subspace of V or is \varnothing .

 $\forall \lambda \in \mathbf{F}, \lambda(v+u_1)+(1-\lambda)(w+u_2) \in A_1$ and A_2 . Thus $A_1 \cap A_2$ is a translate of some subspace of V. \square **10** Prove that the intersection of any collection of translates of subspaces of Vis either a translate of some subspace or \varnothing . **SOLUTION:** Suppose $\{A_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of translates of subspaces of V, where Γ is an arbitrary index set. Suppose $x, y \in \bigcap_{\alpha \in \Gamma} A_{\alpha} \neq \emptyset$, then by Problem (18), $\forall \lambda \in \mathbb{F}$, $\lambda x + (1 - \lambda)y \in A_{\alpha}$ for every $\alpha \in \Gamma$. Thus $\bigcap_{\alpha \in \Gamma} A_{\alpha}$ is a translate of some subspace of V. \square **11** Suppose $A = \{\lambda_1 v_1 + \cdots + \lambda_m v_m : \sum_{i=1}^m \lambda_i = 1\}$, where each $v_i \in V, \lambda_i \in \mathbf{F}$. (a) Prove that A is a translate of some subspace of V: By Problem (8), $\forall \sum_{i=1}^{m} a_i v_i, \sum_{i=1}^{m} b_i v_i \in A, \lambda \in \mathbf{F}, \quad \lambda \sum_{i=1}^{m} a_i v_i + (1-\lambda) \sum_{i=1}^{m} b_i v_i = (\lambda \sum_{i=1}^{m} a_i + (1-\lambda) \sum_{i=1}^{m} b_i) v_i \in A. \ \Box$ (b) Prove that if B is a translate of some subspace of V and $\{v_1, \ldots, v_m\} \subseteq B$, then $A \subseteq B$. (c) Prove that A is a translate of some subspace of V and dim V < m. **SOLUTION:** (b) Let $v = \lambda_1 v_+ \cdots + \lambda_m v_m \in A$. To show that $v \in B$, use induction on m by k. (i) $k = 1, v = \lambda_1 v_1 \Rightarrow \lambda_1 = 1$. $\forall v_1 \in B$. Hence $v \in B$. (ii) $2 \le k \le m$, we assume that $v = \lambda_1 v_1 + \dots + \lambda_k v_k \in A \subseteq B$. $(\forall \lambda_i \text{ such that } \sum_{i=1}^k \lambda_i = 1)$ For $u = \mu_1 v_1 + \dots + \mu_k v_k + \mu_{k+1} v_{k+1} \in A$. $\forall i = 1, \dots, k, \ \exists \ \mu_i \neq 1$, fix one such i by ι . Then $\sum_{i=1}^{k+1} \mu_i - \mu_\iota = 1 - \mu_\iota \Rightarrow (\sum_{i=1}^{k+1} \frac{\mu_i}{1 - \mu_\iota}) - \frac{\mu_\iota}{1 - \mu_\iota} = 1$. Let $w = \underbrace{\frac{\mu_1}{1 - \mu_\iota} v_1 + \dots + \frac{\mu_{\iota-1}}{1 - \mu_\iota} v_{\iota-1} + \frac{\mu_{\iota+1}}{1 - \mu_\iota} v_{\iota+1} + \dots + \frac{\mu_{k+1}}{1 - \mu_\iota} v_{k+1}}_{k \ terms}$. Let $\lambda_i = \frac{\mu_i}{1 - \mu_\iota}$ for $i = 1, \dots, \iota - 1$; $\lambda_j = \frac{\mu_{j+1}}{1 - \mu_\iota}$ for $j = \iota, \dots, k$. Then, $\left. \begin{array}{l} \sum\limits_{i=1}^k \lambda_i = 1 \Rightarrow w \in B \\ v_\iota \in B \Rightarrow u' = \lambda w + (1-\lambda)v_\iota \in B \end{array} \right\} \Rightarrow \operatorname{Let} \lambda = 1 - \mu_\iota. \text{ Thus } u' = u \in B \Rightarrow A \subseteq B. \quad \Box$ (c) $\forall k = 1, ..., m, \ \forall \lambda_1, ..., \lambda_{k-1}, \lambda_{k+1}, ..., \lambda_m, \text{ let } \lambda_k = 1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m$ $\Rightarrow \lambda_1 v_1 + \cdots + \lambda_m v_m$ $= \lambda_1 v_1 + \dots + \lambda_{k-1} v_{k-1} + (1 - \lambda_1 - \dots - \lambda_{k-1} - \lambda_{k+1} - \dots - \lambda_m) v_k + \lambda_{k+1} v_{k+1} + \dots + \lambda_m v_m$ $= v_k + \lambda_1(v_1 - v_k) + \dots + \lambda_{k-1}(v_{k-1} - v_k) + \lambda_{k+1}(v_{k+1} - v_k) + \dots + \lambda_m(v_m - v_k).$ Thus $A = v_k + \text{span}(v_1 - v_k, \dots, v_{k-1} - v_k, v_{k+1} - v_k, \dots, v_m - v_k)$. \square **12** Suppose U is a subspace of V such that V/U is finite-dim. *Prove that is* V *is isomorphic to* $U \times (V/U)$. **SOLUTION:** Let $(v_1 + U, \dots, v_n + U)$ be a basis of V/U. Note that $\forall v \in V, \ \exists ! \ a_1, \dots, a_n \in \mathbf{F}, \ v + U = \sum_{i=1}^n a_i(v_i + U) = (\sum_{i=1}^n a_i v_i) + U$ $\Rightarrow (v - a_1v_1 - \dots - a_nv_n) = u \in U \text{ for some } u; v = \sum_{i=1}^n a_iv_i + u.$ Thus define $\varphi \in \mathcal{L}(V, U \times (V/U))$ by $\varphi(v) = (u, \sum_{i=1}^{n} a_i v_i + U)$ and $\psi \in \mathcal{L}(U \times (V/U), V)$ by $\psi(u, w + U) = u + w; w = \sum_{i=1}^{n} b_i v_i + U$.

SOLUTION: Suppose $v + u_1, w + u_2 \in A_1 \cap A_2 \neq \emptyset$. By Problem (8),

So that $\psi = \varphi^{-1}$. \square

• Suppose $V = U \oplus W$, (w_1, \ldots, w_m) is a basis of W. Prove that $(w_1 + U, \dots, w_m + U)$ is a basis of V/U. **SOLUTION:** Note that for any $v \in V$,

$$\exists ! u \in U, w \in W, v = u + w \not \subset \exists ! c_i \in \mathbf{F} \text{ such that } w = \sum_{i=1}^m c_i w_i \Rightarrow v = u + \sum_{i=1}^m c_i w_i.$$

Thus
$$v + U = \sum_{i=1}^{m} c_i w_i + U \Rightarrow v + U \in \operatorname{span}(w_1 + U, \dots, w_m + U) \Rightarrow V/U \subseteq \operatorname{span}(w_1 + U, \dots, w_m + U).$$

Now suppose
$$a_1(w_1+U)+\cdots+a_m(w_m+U)=0+U\Rightarrow \sum_{i=1}^m a_iw_i\in U$$
 while $U\cap W=\{0\}$.

Then
$$\sum_{i=1}^{m} a_i w_i = 0 \Rightarrow a_1 = \cdots = a_m = 0$$
. \square

13 Suppose
$$(v_1 + U, \dots, v_m + U)$$
 is a basis of V/U and (u_1, \dots, u_n) is a basis of U . Prove that $(v_1, \dots, v_m, u_1, \dots, u_n)$ is a basis of V .

SOLUTION: By Problem (12),
$$U$$
 and V/U are finite-dim $\Rightarrow U \times (V/U)$ is finite-dim, so is V .

$$\dim V = \dim(U \times (V/U)) = \dim U + \dim V/U = m + n.$$

OR. Note that for any
$$v \in V$$
, $v + U = \sum_{i=1}^{m} a_i v_i + U$, $\exists ! a_i \in \mathbf{F} \Rightarrow v = \sum_{i=1}^{m} a_i v_i = \sum_{i=1}^{m} b_i v_i$, $\exists ! b_i \in \mathbf{F}$.

$$\Rightarrow v \in \operatorname{span}(v_1, \dots, v_m, u_1, \dots, u_n) \supseteq V.$$

$$\bigvee \operatorname{Notice\ that}\left(\sum_{i=1}^m a_i v_i\right) + U = 0 + U \\ \left(\Rightarrow \sum_{i=1}^m a_i v_i \in U\right) \\ \Longleftrightarrow a_1 = \dots = a_m = 0.$$

Hence
$$\operatorname{span}(v_1, \dots, v_m) \cap U = \{0\} \Rightarrow \operatorname{span}(v_1, \dots, v_m) \oplus U = V$$

Thus
$$(v_1, \ldots, v_m, u_1, \ldots, u_n)$$
 is linearly independent, so is a basis of V . \square

14 Suppose $U = \{(x_1, x_2, \dots) \in \mathbf{F}^{\infty} : x_k \neq 0 \text{ for only finitely many } k\}.$

- (a) Show that U is a subspace of \mathbf{F}^{∞} . [Do it in your mind]
- (b) Prove that \mathbf{F}^{∞}/U is infinite-dim.

SOLUTION:

For
$$u=(x_1,\ldots,x_p,\ldots)\in \mathbf{F}^{\infty}$$
, denote x_p by $u[p]$. For each $r\in \mathbf{N}^+$.

$$\text{Define } e_r[p] = \left\{ \begin{array}{l} 1\,, (p-1) \equiv 0 \, (\text{mod } r) \\ 0\,, \text{ otherwise} \end{array} \right. \text{, simply } e_r = \left(1, \underbrace{0, \ldots, 0}_{(p-1) \, times}, 1, \underbrace{0, \ldots, 0}_{(p-1) \, times}, 1, \ldots\right) \in \mathbf{F}^{\infty}.$$

Choose $m \in \mathbb{N}^+$ arbitrarily.

Suppose
$$a_1(e_1 + U) + \cdots + a_m(e_m + U) = (a_1e_1 + \cdots + a_me_m) + U = 0 + U = 0$$
.

$$\Rightarrow a_1e_1 + \cdots + a_me_m = u \text{ for some } u \in U.$$

Then suppose
$$u = (x_1, \dots, x_t, 0, \dots) \Rightarrow u[t+i] = 0, \forall i \in \mathbb{N}^+$$

then let
$$j = s \cdot m! + 1 \ge t \ (\exists \ s \in \mathbb{N}^+)$$
 so that $e_1[j] = \dots = e_m[j] = 1, \ u[j+i] = 0.$

Now we have:
$$u[j+i] = (\sum_{r=1}^m a_r e_r)[j+i] = \sum_{r=1}^m a_r e_r[s \cdot m! + 1 + i] = a_{i_1} + \dots + a_{i_{\tau(i)}} = 0,$$

$$\Rightarrow (\sum_{r=1}^{m} a_r e_r)[j+i] = a_{i_1} + \dots + a_{i_{\tau(i)}} = 0. \ (\Delta)$$

where
$$i_1,\ldots,i_{\tau(i)}$$
 are distinct ordered factors of i ($1=i_1\leq\cdots\leq i_{\tau(i)}=i$).

(Note that by definition,
$$e_r[s \cdot m! + 1 + i] = 1 \iff s \cdot m! + i \equiv i \equiv 0 \pmod{r} \iff r \mid i$$
.)

Let
$$i' = i_{\tau(i)-1}$$
. Notice that $i'_l = i_l, \forall l \in \{1, \dots, \tau(i')\}; \text{ and } \tau(i') = \tau(i) - 1$.

Again by (
$$\Delta$$
), $(\Sigma_{r=1}^m a_r e_r)[j+i'] = a_{i'_1} + \dots + a_{i'_{\tau(i')}} = a_{i_1} + \dots + a_{i_{\tau(i)-1}} = 0.$

Thus
$$a_{i_{\tau}(i)} = a_i = 0$$
 for any $i \in \{1, ..., m\}$.

Hence
$$(e_1, \ldots, e_m)$$
 is linearly independent in \mathbf{F}^{∞} , so is $(e_1, \ldots, e_m, \ldots)$, since $m \in \mathbf{N}^+$.

$$\not \subset e_i \notin U \Rightarrow (e_1 + U, e_2 + U, \dots)$$
 is linearly independent in \mathbf{F}^{∞}/U . By [2.B.14]. \square

SOLUTION: By [3.91] (d), dim range $\varphi = 1 = \dim V / (\text{null } \varphi)$. \square NOTE FOR [3.88, 3.90, 3.91] For any $W \in \mathcal{S}_V U$, because $V = U \oplus W$. $\forall v \in V, \exists ! u_v \in U, w_v \in W, v = u_v + w_v$. Define $T \in \mathcal{L}(V, W)$ by $T(v) = w_v$. Hence null T = U, range T = W. Then $\tilde{T} \in \mathcal{L}(V/\text{null }T,W)$ is defined as $\tilde{T}(v+U) = Tv = w_v$. Thus \tilde{T} is injective (by [3.91(b)]) and surjective (range $\tilde{T} = \text{range } T = W$), and therefore is an isomorphism. We conclude that V/U and W, namely any vec-sp in S_V , are isomorphic. **16** Suppose dim V/U=1. Prove that $\exists \varphi \in \mathcal{L}(V, \mathbf{F})$ such that null $\varphi=U$. **SOLUTION:** Suppose V_0 is a subspace of V such that $V = U \oplus V_0$. Then V_0 and V/U are isomorphic. dim $V_0 = 1$. Define a linear map $\varphi: v \mapsto \lambda$ by $\varphi(v_0) = 1, \varphi(u) = 0$, where $v_0 \in V_0, u \in U$. \square **17** Suppose V/U is finite-dim. W is a subspace of V. (a) Show that if V = U + W, then dim $W > \dim V/U$. (b) Suppose dim $W = \dim V/U$ and $V = U \oplus W$. Find such W. **SOLUTION:** Let (w_1, \ldots, w_n) be a basis of W (a) $\forall v \in V, \exists u \in U, w \in W \text{ such that } v = u + w \Rightarrow v + U = w + U$ Then $V/U \subseteq \operatorname{span}(w_1 + U, \dots, w_n + U) \Rightarrow V/U = \operatorname{span}(w_1 + U, \dots, w_n + U)$. Hence dim $V/U = \dim \operatorname{span}(w_1 + U, \dots, w_n + U) \le \dim W$. (b) Let $W \in \mathcal{S}_V U$. In other words, reduce (w_1+U,\ldots,w_n+U) to a basis of V/U as $(w_{\alpha_1}+U,\ldots,w_{\alpha_m}+U)$ and let $W=\text{span}\,(w_{\alpha_1},\ldots,w_{\alpha_m})$. \square **18** Suppose $T \in \mathcal{L}(V, W)$ and U is a subspace of V. Let π denote the quotient map. *Prove that* $\exists S \in \mathcal{L}(V/U, W)$ *such that* $T = S \circ \pi$ *if and only if* $U \subseteq null\ T$. **SOLUTION:** (a) Define $S \in \mathcal{L}(V/U, W)$ by S(v + U) = Tv. We have to check it is well-defined. Suppose $v_1 + U = v_2 + U$, while $v_1 \neq v_2$. Then $(v_1 - v_2) \in U \Rightarrow S((v_1 - v_2) + U) = T(v_1 - v_2) = 0 \Rightarrow Tv_1 = Tv_2$. Checked. \square (b) Suppose $\exists S \in \mathcal{L}(V/U, W), T = S \circ \pi$. Then $\forall u \in U, Tu = S \circ \pi(u) = S(0 + U) = 0 \Rightarrow U \subseteq \text{null } T.\Box$ **20** Define $\Gamma: \mathcal{L}(V/U,W) \to \mathcal{L}(V,W)$ by $\Gamma(S) = S \circ \pi (=\pi'(S))$. (a) Prove that Γ is linear: By [3.9] distributive properties and [3.6]. \square (b) *Prove that* Γ *is injective:* $\Gamma(S) = 0$ $\iff \forall v \in V, S(\pi(v)) = 0$ $\iff \forall v + U \in V/U, S(v + U) = 0$ $\iff S = 0. \square$ (c) Prove that range Γ (= range π') = { $T \in \mathcal{L}(V, W) : U \subseteq null T$ }: By Problem (18). \square

15 Suppose $\varphi \in \mathcal{L}(V, \mathbf{F}) \setminus \{0\}$. Prove that dim $V/(null \varphi) = 1$.

3.F • By (18) in (3.D) we know that $\varphi: V \to \mathcal{L}(\mathbf{F}, V)$ is an isomorphism. Now we prove that (v_1,\ldots,v_m) is linearly independent $\iff (\varphi(v_1),\ldots,\varphi(v_m))$ is linearly independent. **SOLUTION:** (a) Suppose (v_1, \ldots, v_m) is linearly independent and $\vartheta \in \text{span}(\varphi(v_1), \ldots, \varphi(v_m))$. Let $\vartheta = 0 = a_1 \varphi(v_1) + \dots + a_m \varphi(v_m)$. Then $\vartheta(1) = 0 = a_1 v_1 + \dots + a_m v_m \Rightarrow a_1 = \dots = a_m = 0$. OR Because φ is injective. Suppose $a_1\varphi(v_1) + \cdots + a_m\varphi(v_m) = 0 = \varphi(a_1v_1 + \cdots + a_mv_m)$. Then $a_1v_1 + \cdots + a_mv_m = 0 \Rightarrow a_1 = \cdots = a_m = 0$. Thus $(\varphi(v_1), \ldots, \varphi(v_m))$ is linearly independent. (b) Suppose $(\varphi(v_1), \ldots, \varphi(v_m))$ is linearly independent and $v \in \text{span}(v_1, \ldots, v_m)$. Let $v=0=a_1v_1+\cdots+a_mv_m$. Then $\varphi(v)=a_1\varphi(v_1)+\cdots+a_m\varphi(v_m)=0 \Rightarrow a_1=\cdots=a_m=0$. Thus v_1, \ldots, v_m is linearly independent. \square 1 Explain why each linear functional is surjective or is the zero map. For any $\varphi \in V'$ and $\varphi \neq 0$, $\exists v \in V$, such that $\varphi(v) \neq 0$. (a) $\dim \operatorname{range} \varphi = \dim \mathbf{F} = 1. \text{ (b)}$ **SOLUTION: 4** Suppose V is finite-dim and U is a subspace of V such that $U \neq V$. Prove that $\exists \varphi \in V'$ and $\varphi \neq 0$ such that $\varphi(u) = 0$ for every $u \in U$. **SOLUTION:** Let (u_1, \ldots, u_m) be a basis of U, extend to $(u_1, \ldots, u_m, u_{m+1}, \ldots, u_{m+n})$ a basis of V. Choose $k \in \{1, ..., n\}$ arbitrarily. Define $\varphi \in V'$ by $\varphi(u_i) = \begin{cases} 1, & \text{if } i = m + k. \\ 0, & \text{otherwise.} \end{cases}$ OR: Equivalent to proving that $U^0 \neq \{0\}$. By [3.106], $\dim U^0 = \dim V - \dim U > 0$. \square • Suppose $T \in \mathcal{L}(V, W)$ and (w_1, \ldots, w_m) is a basis of range T. Hence $\forall v \in V, Tv = \varphi_1(v)w_1 + \cdots + \varphi_m(v)w_m, \exists ! \varphi_1(v), \ldots, \varphi_m(v),$ thus defining functions $\varphi_1, \ldots, \varphi_m$ from V to **F**. Show that each $\varphi_i \in V'$. **SOLUTION:** For each $w_i, \exists v_i \in V, Tv_i = w_i$, getting a linearly independent list (v_1, \ldots, v_m) . Now we have $Tv = a_1Tv_1 + \cdots + a_mTv_m, \forall v \in V, \exists ! a_i \in \mathbf{F}.$ Let (ψ_1, \ldots, ψ_m) be the dual basis of range T. Then $(T'(\psi_i))(v) = \psi_i \circ T(v) = a_i$. Thus letting $\varphi_i = \psi_i \circ T$. • Suppose φ , $\beta \in V'$. Prove that $null \varphi \subseteq null \beta$ if and only if $\beta = c\varphi$. $\exists c \in \mathbb{F}$. **SOLUTION:** Using (3.B.29, 30) (a) Suppose $\operatorname{null} \varphi \subseteq \operatorname{null} \beta$. Choose a $u \notin \operatorname{null} \beta$. $V = \operatorname{null} \beta \oplus \{au : a \in \mathbf{F}\}$. If $\operatorname{null}\varphi = \operatorname{null}\beta$, then let $c = \frac{\beta(u)}{\varphi(u)}$, we are done. Otherwise, suppose $u' \in \text{null}\beta$, but $u' \notin \text{null}\varphi$, then $V = \text{null}\varphi \oplus \{bu' : b \in \mathbf{F}\}$. $\forall v \in V, v = w + au = w' + bu', \exists ! w, w' \in \text{null} \varphi, a, b \in \mathbf{F}.$ Thus $\beta(v) = a\beta(u), \ \varphi(v) = b\varphi(u')$. Let $c = \frac{a\beta(u)}{b\varphi(u')}$. We are done (b) Suppose $\beta = c\varphi$ for some $c \in \mathbf{F}$. If c = 0, then $\text{null}\beta = V \supseteq \text{null}\varphi$, we are done. $\forall v \in \operatorname{null}\varphi, \varphi(v) = 0 = \beta(v) \Rightarrow \operatorname{null}\varphi \subseteq \operatorname{null}\beta.$ $\forall v \in \operatorname{null}\beta, \beta(v) = 0 = \varphi(v) \Rightarrow \operatorname{null}\beta \subseteq \operatorname{null}\varphi.$ $\Rightarrow \operatorname{null}\varphi = \operatorname{null}\beta.$ Otherwise,

 \Rightarrow null $\varphi \subseteq$ null β . \square

5 Prove that $(V_1 \times \cdots \times V_m)'$ and $V_1' \times \cdots \times V_m'$ are isomorphic.
SOLUTION: Using notations in (3.E.2).
Define $\varphi: (V_1 \times \cdots \times V_m)' \to V_1' \times \cdots \times V_m'$
by $\varphi(T) = (T \circ R_1, \dots, T \circ R_m) = (R'_1(T), \dots, R'_m(T)).$ Define $\psi : V'_1 \times \dots \times V'_m \to (V_1 \times \dots \times V_m)'$ $\Rightarrow \psi = \varphi^{-1}. \square$
Define $\psi: V_1' \times \cdots \times V_m' \to (V_1 \times \cdots \times V_m)'$
by $\psi(T_1, \dots, T_m) = T_1 S_1 + \dots + T_m S_m = S'_1(T_1) + \dots + S'_m(T_m)$.
• Suppose (v_1, \ldots, v_n) is a basis of V and $(\varphi_1, \ldots, \varphi_n)$ is the dual basis of V' .
Define $\Gamma: V \to \mathbf{F}^n$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_n(v))$.
Define $\Gamma: V \to \mathbf{F}^n$ by $\Gamma(v) = (\varphi_1(v), \dots, \varphi_n(v))$. Define $\Lambda: \mathbf{F}^n \to V$ by $\Lambda(a_1, \dots, a_n) = a_1v_1 + \dots + a_nv_n$. $\rbrace \Rightarrow \Lambda = \Gamma^{-1}$.
35 Prove that $(\mathcal{P}(\mathbf{R}))'$ and \mathbf{R}^{∞} are isomorphic.
SOLUTION:
Define $\theta \in \mathcal{L}((\mathcal{P}(\mathbf{R}))', \mathbf{R}^{\infty})$ by $\theta(\varphi) = (\varphi(1), \varphi(x), \dots, \varphi(x^n), \dots)$.
Injectivity: $\theta(\varphi) = 0 \Rightarrow \forall x^k$ in the basis $(1, x, \dots, x^n, \dots)$ of $\mathcal{P}_n(\mathbf{R})$ for any $n, \ \varphi(x^k) = 0 \Rightarrow \varphi = 0$.
Surjectivity: $\forall (a_0, a_1, \dots, a_n, \dots) \in \mathbf{F}^{\infty}$, let ψ be such that $\psi(x^k) = a_k$ and thus $\theta(\psi) = (a_0, a_1, \dots, a_n, \dots)$.
Hence θ is an isomorphism from $(\mathcal{P}(\mathbf{R}))'$ onto \mathbf{R}^{∞} . \square
7 Suppose m is a positive integer. Show that the dual basis of the basis $(1, x, \ldots, x_m)$ of $\mathcal{P}_m(\mathbf{R})$
i S $arphi_0,arphi_1,\ldots,arphi_m$, $where\ arphi_k=rac{p^{(k)}(0)}{k!}$. Here $p^{(k)}$ denotes the k^{th} derivative of p , with the understanding that the 0^{th} derivative of p is p .
SOLUTION:
$\begin{cases} j(j-1)\dots(j-k+1)\cdot x^{(j-k)}, & j\geq k. \\ 0, & j\neq k. \end{cases}$
For each j and k , $(x^j)^{(k)} = \begin{cases} j(j-1)\dots(j-k+1)\cdot x^{(j-k)}, & j \geq k. \\ j(j-1)\dots(j-j+1) = j!, & j = k. \\ 0, & j \leq k. \end{cases}$ Then $(x^j)^{(k)}(0) = \begin{cases} 0, & j \neq k. \\ k!, & j = k. \end{cases}$
Thus $\varphi_k = \psi_k$, where ψ_1, \dots, ψ_m is the dual basis of $(1, x, \dots, x_m)$ of $\mathcal{P}_m(\mathbf{R})$.
8 Suppose m is a positive integer.
(a) By [2.C.10], $B = (1, x - 5, \dots, (x - 5)^m)$ is a basis of $\mathcal{P}_m(\mathbf{R})$.
(b) Let $\varphi_k = \frac{p^{(k)}(5)}{k!}$ for each $k = 0, 1, \dots, m$. Then $(\varphi_0, \varphi_1, \dots, \varphi_m)$ is the dual basis of B .
9 Suppose (v_1, \ldots, v_n) is a basis of V and $(\varphi_1, \cdots, \varphi_n)$ is the corresponding dual basis of V' .
Suppose $\psi \in V'$. Prove that $\psi = \psi(v_1)\varphi_1 + \cdots + \psi(v_n)\varphi_n$.
SOLUTION: $\psi(v) = \psi(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i \psi(v_i) = \sum_{i=1}^n \psi(v_i) \varphi_i(v) = [\psi(v_1) \varphi_1 + \dots + \psi(v_n) \varphi_n](v) \Rightarrow \square$
COMMENT: For any other basis (u_1, \ldots, u_n) of V and the corresponding dual basis of (ρ_1, \ldots, ρ_n) ,
$\psi = \rho(u_1)\rho_1 + \dots + \rho(u_n)\rho_n.$
$\psi = \rho(u_1)\rho_1 + \cdots + \rho(u_n)\rho_n.$ 12 Show that the dual map of the identity operator on V is the identity operator on V' .
12 Show that the dual map of the identity operator on V is the identity operator on V' .
12 Show that the dual map of the identity operator on V is the identity operator on V' . Solution: $I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'.$
12 Show that the dual map of the identity operator on V is the identity operator on V' . Solution: $I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'.$ \square • Suppose W is finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $T' = 0 \Longleftrightarrow T = 0$. Solution: $T = 0 \Leftrightarrow T'(\varphi) = \varphi \circ T = 0$ for all $\varphi \in V' \Leftrightarrow T' = 0$. \square
12 Show that the dual map of the identity operator on V is the identity operator on V' . Solution: $I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'.$ \square • Suppose W is finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $T' = 0 \Longleftrightarrow T = 0$. Solution: $T = 0 \Leftrightarrow T'(\varphi) = \varphi \circ T = 0$ for all $\varphi \in V' \Leftrightarrow T' = 0$. \square 13 Define $T: \mathbf{R}^3 \to \mathbf{R}^2$ by $T(x,y,z) = (4x + 5y + 6z, 7x + 8y + 9z)$.
12 Show that the dual map of the identity operator on V is the identity operator on V' . Solution: $I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'.$ \square • Suppose W is finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $T' = 0 \Longleftrightarrow T = 0$. Solution: $T = 0 \Leftrightarrow T'(\varphi) = \varphi \circ T = 0$ for all $\varphi \in V' \Leftrightarrow T' = 0$. \square 13 Define $T: \mathbf{R}^3 \to \mathbf{R}^2$ by $T(x,y,z) = (4x+5y+6z,7x+8y+9z)$. Let $(\varphi_1,\varphi_2), (\psi_1,\psi_2,\psi_3)$ denote the dual basis of the standard basis of \mathbf{R}^2 and \mathbf{R}^3 .
12 Show that the dual map of the identity operator on V is the identity operator on V' . Solution: $I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'. \ \Box$ • Suppose W is finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $T' = 0 \iff T = 0$. Solution: $T = 0 \Leftrightarrow T'(\varphi) = \varphi \circ T = 0$ for all $\varphi \in V' \Leftrightarrow T' = 0$. \Box 13 Define $T: \mathbf{R}^3 \to \mathbf{R}^2$ by $T(x,y,z) = (4x+5y+6z,7x+8y+9z)$. Let $(\varphi_1,\varphi_2), (\psi_1,\psi_2,\psi_3)$ denote the dual basis of the standard basis of \mathbf{R}^2 and \mathbf{R}^3 . (a) Describe the linear functionals $T'(\varphi_1), T'(\varphi_2) \in \mathcal{L}(\mathbf{R}^3,\mathbf{R})$
12 Show that the dual map of the identity operator on V is the identity operator on V' . Solution: $I'(\varphi) = \varphi \circ I = \varphi, \ \forall \varphi \in V'.$ \square • Suppose W is finite-dim and $T \in \mathcal{L}(V,W)$. Prove that $T' = 0 \Longleftrightarrow T = 0$. Solution: $T = 0 \Leftrightarrow T'(\varphi) = \varphi \circ T = 0$ for all $\varphi \in V' \Leftrightarrow T' = 0$. \square 13 Define $T: \mathbf{R}^3 \to \mathbf{R}^2$ by $T(x,y,z) = (4x+5y+6z,7x+8y+9z)$. Let $(\varphi_1,\varphi_2), (\psi_1,\psi_2,\psi_3)$ denote the dual basis of the standard basis of \mathbf{R}^2 and \mathbf{R}^3 .

 $T'(\varphi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \ T'(\varphi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3.$

14 Define $T: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $(Tp)(x) = x^2p(x) + p''(x)$ for each $x \in \mathbf{R}$. (a) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = p'(4)$. Describe $T'(\varphi) \in \mathcal{P}(\mathbf{R})'$. $(T'(\varphi))(p) = [x^2p(x) + p''(x)]'(4) = [2xp(x) + x^2p'(x) + p'''(x)](4) = 8p(4) + 16p'(4) + p'''(4).$ (b) Suppose $\varphi \in \mathcal{P}(\mathbf{R})'$ is defined by $\varphi(p) = \int_0^1 p(x) dx$. Evaluate $(T'(\varphi))(x^3)$. $(T'(\varphi))(x^3) = \int_0^1 (x^5 + 6x) dx = \int_0^1 (\frac{1}{6}x^6 + 3x^2)' dx = \frac{6}{19}$ • Suppose V and W are finite-dim and $T \in \mathcal{L}(V, W)$. *Prove that* T *is invertible if and only if* $T' \in \mathcal{L}(W', V')$ *is invertible.* **SOLUTION:** By [3.108] and [3.110]. **16** Suppose V and W are finite-dim. Define Γ by $\Gamma(T) = T'$ for any $T \in \mathcal{L}(L, W)$. *Prove that* Γ *is an isomorphism of* $\mathcal{L}(V, W)$ *onto* $\mathcal{L}(W', V')$. **SOLUTION:** V, W are finite-dim \Rightarrow dim $\mathcal{L}(V, W) = \dim \mathcal{L}(W', V')$. And by [3.101], Γ is linear. \mathbb{X} Suppose $\Gamma(T) = T' = 0$. By Problem (15), T = 0. Thus T is injective $\Rightarrow T$ is invertible. **17** Suppose $U \subseteq V$. Explain why $U^0 = \{ \varphi \in V' : U \subseteq null \varphi \}$. **SOLUTION:** Because for $\varphi \in V'$, $U \subseteq \text{null} \varphi \iff \forall u \in U, \varphi(u) = 0$. By definition in [3.102]. \square **18** $U \subseteq V$. We have $U = \{0\} \iff \forall \varphi \in V', U \subseteq null \varphi \iff U^0 = V'$. **19** U is a subspace of V. Prove that $U = V \iff U_V^0 = \{0\} = V_V^0$. **SOLUTION:** Suppose $U_V^0 = \{0\}$. Then U = V. Conversely, suppose U=V, then $U_V^0=\{\varphi\in V':V\subseteq \operatorname{null}\varphi\}$, therefore $U_V^0=\{0\}$. **20, 21** Suppose U and W are subsets of V. Prove that $U \subseteq W \iff W^0 \subseteq U^0$. **SOLUTION:** (a) $U \subseteq W \Rightarrow \forall w \in W, u \in U \cap W = U, \ \ \forall \varphi \in W^0, \ \varphi(w) = 0 = \varphi(u) \Rightarrow \varphi \in U^0.$ Thus $W^0 \subseteq U^0.$ (b) $W^0 \subseteq U^0 \Rightarrow \forall w \in W, u \in U, \varphi(w) = 0 \Rightarrow \varphi(u) = 0$. Then $\operatorname{null} \varphi \supseteq W \Rightarrow \operatorname{null} \varphi \supseteq U$. Thus $W \supseteq U$. \square . • COROLLARY: $W^0 = U^0 \iff U = W$. **22** *Prove that* $(U + W)^0 = U^0 \cap W^0$. **SOLUTION:** (a) $U \subseteq U + W \\ W \subseteq U + W$ $\Rightarrow (U + W)^0 \subseteq U^0 \\ (U + W)^0 \subseteq W^0$ $\Rightarrow (U + W)^0 \subseteq U^0 \cap W^0.$ (b) $\forall \varphi \in U^0 \cap W^0, \varphi(u+w) = 0$, where $u \in U, w \in W \Rightarrow \varphi \in (U+W)^0$. Thus $(U+W)^0 \supseteq U^0 \cap W^0$. \square **23** *Prove that* $(U \cap W)^0 = U^0 + W^0$. **SOLUTION:** $\left. \begin{array}{c} U \cap W \subseteq U \\ U \cap W \subseteq W \end{array} \right\} \Rightarrow \left. \begin{array}{c} (U \cap W)^0 \supseteq U^0 \\ (U \cap W)^0 \supseteq W^0 \end{array} \right\} \Rightarrow (U \cap W)^0 \supseteq U^0 + W^0 \supseteq U^0 \cap W^0.$ (b) $\forall \varphi \in U^0, \psi \in W^0$ and $\forall v \in U \cap W, (\varphi + \psi)(v) = \varphi(v) + \psi(v) = 0$. Thus $U^0 + W^0 \subseteq (U \cap W)^0$. \square • COROLLARY: Suppose $\{V_{\alpha_i}\}_{\alpha_i \in \Gamma}$ is a collection of subspaces of V. Then $(\sum_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \bigcap_{\alpha_i \in \Gamma} (V_{\alpha_i}^0);$ And $(\bigcap_{\alpha_i \in \Gamma} V_{\alpha_i})^0 = \sum_{\alpha_i \in \Gamma} (V_{\alpha_i}^0).$

24 Suppose V is finite-dim and U is a subspace of V. Prove, using the pattern of [3.104], that $dimU + dimU^0 = dimV$. **SOLUTION:** Let (u_1, \ldots, u_m) be a basis of U, extend to a basis of V as $(u_1, \ldots, u_m, \ldots, u_n)$, and let $(\varphi_1, \ldots, \varphi_m, \ldots, \varphi_n)$ be the dual basis. (a) Suppose $\varphi \in \text{span}(\varphi_{m+1}, \dots, \varphi_n)$, then $\exists a_i \in \mathbb{F}, \varphi = a_{m+1}\varphi_{m+1} + \dots + a_n\varphi_n$. For all $u \in U$, $\varphi(u) = 0$. Thus $\varphi \in U^0$, getting span $(\varphi_{m+1}, \dots, \varphi_n) \subseteq U^0$. (b) Suppose $\varphi \in U^0$, then $\exists a_i \in \mathbb{F}$, $\varphi = a_1 \varphi_1 + \cdots + a_m \varphi_m + \cdots + a_n \varphi_n$. For all $u_i \in U$, $0 = \varphi(u_i) = \sum_{i=1}^n \varphi(u_i) = a_i$. Then $\varphi = a_{m+1}\varphi_{m+1} + \cdots + a_n\varphi_n$. Thus $\varphi \in \operatorname{span}(\varphi_{m+1}, \dots, \varphi_n)$, getting $\operatorname{span}(\varphi_{m+1}, \dots, \varphi_n) \supseteq U^0$. Hence span $(\varphi_{m+1}, \dots, \varphi_n) = U^0$, dim $U^0 = n - m = \dim V - \dim U$. **25** Suppose U is a subspace of V. Explain why $U = \{v \in V : \varphi(v) = 0 \text{ for every } \varphi \in U^0\}.$ **SOLUTION:** Note that $U=\{v\in V:v\in U\}$ is a subspace of V and $\varphi(v)=0$ for every $\varphi\in U^0\Longleftrightarrow v\in U$. \square **26** Suppose V is finite-dim and Ω is a subspace of V'. Prove that $\Omega = \{v \in V : \forall \varphi \in \Omega, \varphi(v) = 0\}^0$. **SOLUTION:** Using the corollary in Problem (20, 21). Suppose $U = \{v \in V : \forall \varphi \in \Omega, \varphi(v) = 0\}.$ Getting $U^0 = \{v \in V : \forall \varphi \in \Omega, \varphi(v) = 0\}^0$. We need to show that $\Omega = U^0$. (a) $\forall \varphi \in \Omega, v \in U, \varphi(v) = 0 \Rightarrow \varphi \in U^0 \Rightarrow \Omega \subseteq U^0.$ (b) $v \in U \Leftrightarrow \left\{ \begin{array}{l} \forall \varphi \in \Omega, \varphi(v) = 0 \\ \forall \psi \in U^0, \psi(v) = 0 \end{array} \right.$ Thus $\Omega \supseteq U^0.$ **27** Suppose $T \in \mathcal{L}(\mathcal{P}_5(\mathbf{R}))$ and $null T' = span(\varphi)$, where φ is the linear functional on $\mathcal{P}_5(\mathbf{R})$ defined by $\varphi(p) = p(8)$. Prove that range $T = \{p \in \mathcal{P}_5(\mathbf{R}) : p(8) = 0\}$. **SOLUTION:** By Problem (26), span(φ) = { $p \in \mathcal{P}_5(\mathbf{R}) : \psi(p) = 0, \forall \psi \in \text{span}(\varphi)$ }⁰, By the corollary in Problem (20, 21), range $T = \{p \in \mathcal{P}_5(\mathbf{R}) : p(8) = 0\}$. \square **28, 29** Suppose V, W are finite-dim, $T \in \mathcal{L}(V, W)$. (a) Suppose $\exists \varphi \in W'$ such that $nullT' = span(\varphi)$. Prove that $rangeT = null\varphi$. (b) Suppose $\exists \varphi \in V'$ such that range $T' = span(\varphi)$. Prove that $null T = null \varphi$. **SOLUTION:** Using Problem (26), [3.107] and [3.109]. Because span $(\varphi) = \{v \in V : \forall \psi \in \text{span}(\varphi), \psi(v) = 0\}^0 = \{v \in V : \varphi(v) = 0\}^0 = (\text{null}\varphi)^0$. $\begin{array}{l} \text{(a) } (\operatorname{range} T)^0 = \operatorname{null} T' = \operatorname{span}(\varphi) = (\operatorname{null} \varphi)^0 \Longleftrightarrow \operatorname{range} T = \operatorname{null} \varphi. \\ \text{(b) } (\operatorname{null} T)^0 = \operatorname{range} T' = \operatorname{span}(\varphi) = (\operatorname{null} \varphi)^0 \Longleftrightarrow \operatorname{null} T = \operatorname{null} \varphi. \end{array} \right\} \Rightarrow \ \square$ **31** Suppose V is finite-dim and $(\varphi_1, \ldots, \varphi_n)$ is a basis of V'. Show that there exists a basis of V whose dual basis is $(\varphi_1, \ldots, \varphi_n)$. **SOLUTION:** Using (3.B.29,30). For each φ_i , $\text{null}\varphi_i \oplus \{au_i : a \in \mathbf{F}\} = V$. Because $\varphi_1, \ldots, \varphi_m$ is linearly independent. $\text{null}\varphi_i \neq \text{null}\varphi_j$ for all $i, j \in \mathbb{N}^+$ such that $i \neq j$. Thus (u_1, \ldots, u_m) is linearly independent, for if not, then $\exists i, j$ such that $\text{null}\varphi_i = \text{null}\varphi_j$, contradicts. \mathbb{X} dim $V' = m = \dim V$. Then (u_1, \ldots, u_m) is a basis of V whose dual basis is $\varphi_1, \ldots, \varphi_n$. \square .

```
• Suppose dim and \varphi_1, \ldots, \varphi_m \in V'. Prove that the following three sets are equal to each other.
   (a) span(\varphi_1,\ldots,\varphi_m)
   (b) ((null\varphi_1) \cap \cdots \cap (null\varphi_m))^0
   (c) \{\varphi \in V' : (null\varphi_1) \cap \cdots \cap (null\varphi_m) \subseteq null\varphi\}
   SOLUTION: By Problem (17), (b) and (c) are equivalent. By Problem (26) and the corollary in Problem (23),
        \frac{((\mathrm{null}\varphi_1) \cap \dots \cap (\mathrm{null}\varphi_m))^0 = (\mathrm{null}\varphi_1)^0 + \dots + (\mathrm{null}\varphi_m)^0.}{\mathbb{Z} \operatorname{span}(\varphi_i) = \{v \in V : \forall \psi \in \operatorname{span}(\varphi_i), \psi(v) = 0\}^0 = (\mathrm{null}\varphi_i)^0.} \right\} \Rightarrow (a) = (b). \quad \Box
30 OR COROLLARY:
   Suppose V is finite-dim and \varphi_1, \ldots, \varphi_m is a linearly independent list in V'.
   Then dim((null\varphi_1) \cap \cdots \cap (null\varphi_m)) = (dimV) - m.
6 Define \Gamma: V' \to \mathbf{F}^m by \Gamma(\varphi) = (\varphi(v_1), \dots, \varphi(v_m)), where v_1, \dots, v_m \in V.
   (a) Show that span(v_1, \ldots, v_m) = V \iff \Gamma is injective.
   (b) Show that (v_1, \ldots, v_m) is linearly independent \iff \Gamma is surjective.
SOLUTION:
              Suppose \Gamma is injective. Then let \Gamma(\varphi) = 0, getting \varphi = 0 \Leftrightarrow \text{null} \varphi = V = \text{span}(v_1, \dots, v_m).
             Suppose span(v_1, \ldots, v_m) = V. Then let \Gamma(\varphi) = 0, getting \varphi(v_i) = 0 for each i,
                                                                     \operatorname{null}\varphi = \operatorname{span}(v_1, \dots, v_m) = V, thus \varphi = 0, \Gamma is injective.
             Suppose \Gamma is surjective. Then let \Gamma(\varphi_i) = e_i for each i, where (e_1, \dots, e_m) is the standard basis of \mathbf{F}^m.
                    Then (\varphi_1, \ldots, \varphi_m) is linearly independent, suppose a_1v_1 + \cdots + a_mv_m = 0,
                    then for each i, we have \varphi_i(a_1v_1+\cdots+a_mv_m)=a_i=0. Thus v_1,\ldots,v_n is linearly independent.
             Suppose (v_1, \ldots, v_m) is linearly independent. Let (\varphi_1, \ldots, \varphi_m) be the dual basis of span(v_1, \ldots, v_m).
                   Thus for each (a_1, \ldots, a_m) \in \mathbf{F}^m, we have \varphi = a_1 \varphi_1 + \cdots + a_m \varphi_m so that \Gamma(\varphi) = (a_1, \ldots, a_m). \square
• Define \Gamma: V \to \mathbf{F}^m by \Gamma(v) = (\varphi_1(v), \dots, \varphi_m(v)), where \varphi_1, \dots, \varphi_m \in V'.
   (c) Show that span(\varphi_1, \ldots, \varphi_m) = V' \iff \Gamma is injective.
   (d) Show that (\varphi_1, \ldots, \varphi_m) is linearly independent \iff \Gamma is surjective.
SOLUTION:
            Suppose \Gamma is injective. Then \Gamma(v) = 0 \Leftrightarrow \forall i, \varphi_i(v) = 0 \Leftrightarrow v \in (\text{null}\varphi_1) \cap \cdots \cap (\text{null}\varphi_m) \Leftrightarrow v = 0.
                   Getting (\text{null }\varphi_1) \cap \cdots \cap (\text{null }\varphi_m) = \{0\}. By Problem (\bullet) above, span (\varphi_1, \dots, \varphi_m) = V'
            Suppose span (\varphi_1, \dots, \varphi_m) = V'. Again by Problem (\bullet), (\text{null } \varphi_1) \cap \dots \cap (\text{null } \varphi_m) = \{0\}.
                   Thus \Gamma(v) = 0 \Rightarrow \forall i, \varphi_i(v) = 0 \Rightarrow v = 0.
             Suppose (\varphi_1, \ldots, \varphi_m) is linearly independent. Then by Problem (31), (v_1, \ldots, v_m) is linearly independent.
                   Thus for any (a_1, \ldots, a_m) \in \mathbf{F}, by letting v = \sum_{i=1}^m a_i v_i, then \varphi_i(v) = a_i \Rightarrow \Gamma(v) = (a_1, \ldots, a_m).
             Suppose \Gamma is surjective. Let e_1, \ldots, e_m be a basis of \mathbf{F}^m.
   (d)
                   For every e_i, \exists v_i \in V such that \Gamma(v_i) = (\varphi_1(v_i), \dots, \varphi_m(v)) = e_i,
                   fix v_i (\Rightarrow (v_1, \dots, v_m)) is linearly independent). Thus \varphi_i(v_i) = 1, \varphi_i(v_i) = 0.
                   Hence (\varphi_1, \ldots, \varphi_m) is the dual basis of the basis v_1, \ldots, \varphi_m of span (v_1, \ldots, v_m). \square
33 Suppose A \in \mathbb{F}^{m,n}. Define T: A \to A^t. Prove that T is an isomorphism of \mathbb{F}^{m,n} onto \mathbb{F}^{n,m}
SOLUTION: By [3.111], T is linear. Note that (A^t)^t = A.
      (a) For any B \in \mathbf{F}^{n,m}, let A = B^t so that T(A) = B. Thus T is surjective.
      (b) If T(A) = 0 for some A \in \mathbf{F}^{n,m}, then A = 0. Thus T is injective.
```

for if not, $\exists j, k \in \mathbb{N}^+$ such that $A_{j,k} \neq 0$, then $T(A)_{k,j} \neq 0$, contradicts.

32 Suppose $T \in \mathcal{L}(V)$, and (u_1, \ldots, u_m) and (v_1, \ldots, v_m) are bases of V . Prove that T is invertible \iff The rows of $\mathcal{M}(T, (u_1, \ldots, u_m), (v_1, \ldots, v_m))$ form a basis of $\mathbf{F}^{1,n}$.
Solution: Note that T is invertible $\Rightarrow T'$ is invertible. And $\mathcal{M}(T') = \mathcal{M}(T)^t = A^t$, denote it by B .
Let $(\varphi_1, \ldots, \varphi_m)$ be the dual basis of (v_1, \ldots, v_m) , (ψ_1, \ldots, ψ_m) be the dual basis of (u_1, \ldots, u_m) .
(a) Suppose T is invertible, so is T' . Because $T'(\varphi_1), \dots, T'(\varphi_m)$ is linearly independent.
Noticing that $T'(\varphi_i) = B_{1,i}\psi_1 + \dots + B_{m,i}\psi_m$.
Thus the columns of B , namely the rows of A , are linearly independent (check it by contradiction).
(b) Suppose the rows of A are linearly independent, so are the columns of B .
Then $(T'(\varphi_1), \ldots, T'(\varphi_m))$ is a basis of range T' , namely V' . Thus T' is surjective.
Hence T' is invertible, so is T . \square
34 The double dual space of V , denoted by V'' , is defined to be the dual space of V' .
In other words, $V'' = \mathcal{L}(V', \mathbf{F})$. Define $\Lambda : V \to V''$ by $(\Lambda v)(\varphi) = \varphi(v)$.
(a) Show that Λ is a linear map from V to V'' .
(b) Show that if $T \in \mathcal{L}(V)$, then $T'' \circ \Lambda = \Lambda \circ T$, where $T'' = (T')'$.
(c) Show that if V is finite-dim, then Λ is an isomorphism from V onto V'' .
Suppose V is finite-dim. Then V and V' are isomorphic, but finding an isomorphism from V onto V' generally requires choosing
a basis of V . In contrast, the isomorphism Λ from V onto V'' does not require a choice of basis and thus is considered more natural.
SOLUTION:
(a) $\forall \varphi \in V', \ \forall v, w \in V, a \in \mathbf{F}, \ (\Lambda(v+aw))(\varphi) = \varphi(v+aw) = \varphi(v) + a\varphi(w) = (\Lambda v)(\varphi) + a(\Lambda w)(\varphi).$
Thus $\Lambda(v + aw) = \Lambda v + a\Lambda w$. Hence Λ is linear.
(b) $(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ (T'))(\varphi) = (\Lambda v)(T'(\varphi)) = (T'(\varphi))(v) = (\varphi \circ T)(v) = \varphi(Tv) = (\Lambda(Tv))(\varphi).$
Hence $T''(\Lambda v) = (\Lambda(Tv))$, getting $T'' \circ \Lambda = \Lambda \circ T$.
(c) Suppose $\Lambda v = 0$. Then $\forall \varphi \in V', (\Lambda v)(\varphi) = \varphi(v) = 0 \Rightarrow v = 0$. Thus Λ is injective.
$ ot Z $ Because V is finite-dim. dim $V=\dim V'=\dim V''$. Hence Λ is an isomorphism. \square
36 Suppose U is a subspace of V . Define $i: U \to V$ by $i(u) = u$. Thus $i' \in \mathcal{L}(V', U')$.
(a) Show that null $i' = U^0$: null $i' = (range\ i)^0 = U^0 \Leftarrow range\ i = U$. \square
(b) Prove that if V is finite-dim, then range $i' = U'$: range $i' = (null \ i)_U^0 = (\{0\})_U^0 = U'$. \square
(c) Prove that if V is finite-dim, then \tilde{i}' is an isomorphism from V'/U^0 onto U' :
Note that $\tilde{i}': V'/\text{null } i' \to \text{range } i' \Rightarrow \tilde{i}': V'/U^0 \to U'$. By (a), (b) and [3.91(d)]. \square
The isomorphism in (c) is natural in that it does not depend on a choice of basis in either vector space.
37 Suppose U is a subspace of V and π is the quotient map. Thus $\pi' \in \mathcal{L}((V/U)', V')$.
(a) Show that π' is injective: Because π is surjective. Use [3.108]. \square
(b) Show that range $\pi' = U^0$.
(c) Conclude that π' is an isomorphism from $(V/U)'$ onto U^0 .
The isomorphism in (c) is natural in that it does not depend on a choice of basis in either vector space.
In fact, there is no assumption here that any of these vector spaces are finite-dim.
SOLUTION: [3.109] is not available. Using (3.E.18), also see (3.E.20).
(b) $\psi \in \text{range } \pi' \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \text{null } \psi \supseteq U \iff \psi \in U^0$. Hence range $\pi' = U^0$.
(c) $\psi \in \text{range } \pi \iff \exists \varphi \in (V/U)', \psi = \varphi \circ \pi \iff \text{range } \pi = \emptyset$. Then $\psi \supseteq \psi \in \emptyset'$. There exists $\psi = \psi' \in \emptyset'$. Then $\psi' = \psi' \in \emptyset'$ is surjective. And by (a). \square

• NOTE FOR [4.8]: division algorithm for polynomials

Suppose $p, s \in \mathcal{P}(\mathbf{F})$, with $s \neq 0$. Then $\exists ! q, r \in \mathcal{P}(\mathbf{F})$ such that p = sq + r and $\deg r < \deg s$. Another Proof: Suppose $\deg p \geq \deg s$. Then $(\underbrace{1, z, \ldots, z^{\deg s - 1}}_{\text{of length } \deg s}, \underbrace{s, zs, \cdots, z^{\deg p - \deg s}}_{\text{of length } (\deg p - \deg s + 1)})$ is a basis of $\mathcal{P}_{\deg p}(\mathbf{F})$.

Because $q \in \mathcal{P}(\mathbf{F}), \exists ! a_i, b_j \in \mathbf{F},$

$$q = a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1} + b_0 s + b_1 z s + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s} s$$

$$= \underbrace{a_0 + a_1 z + \dots + a_{\deg s - 1} z^{\deg s - 1}}_{r} + s \underbrace{(b_0 + b_1 z + \dots + b_{\deg p - \deg s} z^{\deg p - \deg s})}_{a_s}.$$

With r, q as defined uniquely above, we are done. \square

• Note For [4.11]: each zero of a polynomial corresponds to a degree-one factor; Another Proof:

First suppose $p(\lambda) = 0$. Write $p(z) = a_0 + a_1 z + \dots + a_m z^m$, $\exists ! a_0, a_1, \dots, a_m \in \mathbf{F}$ for all $z \in \mathbf{F}$.

Then
$$p(z) = p(z) - p(\lambda) = a_1(z - \lambda) + \dots + a_m(z^m - \lambda^m)$$
 for all $z \in \mathbf{F}$.

Hence for each $k \in \{1, \dots, m\}, z^k - \lambda^k = (z - \lambda)(z^{k-1}\lambda^0 + z^{k-2}\lambda^1 + \dots + z\lambda^{k-2} + z^0\lambda^{k-1}).$

Thus
$$p(z) = \sum_{j=1}^{m} a_j(z-\lambda) \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) \sum_{j=1}^{m} a_j \sum_{i=1}^{k} \lambda^{i-1} z^{k-i} = (z-\lambda) q(z)$$
.

• NOTE FOR [4.13]: fundamental theorem of algebra, first version

Every nonconstant polynomial with complex coefficients has a zero in C. Another Proof:

De Moivre's theorem (which you can prove using induction on k and the addition formulas for cosine and sine), states that if $k \in \mathbb{N}^+$, $\theta \in \mathbb{R}$, then $(\cos \theta + i \sin \theta)^k = \cos k\theta + i \sin k\theta$.

Suppose $w \in \mathbb{C}, k \in \mathbb{N}^+$ and using polar coordinates. $\exists r \geq 0, \theta \in \mathbb{R}$ such that $r(\cos \theta + \mathrm{i} \sin \theta) = w$.

Hence $(r^{1/k}(\cos\frac{\theta}{k}+\mathrm{i}\sin\frac{\theta}{k}))^k=w$. Thus every complex number has a k^{th} root, a fact that we will soon use.

Suppose a nonconstant $p \in \mathcal{P}(\mathbf{C})$ with highest-order nonzero term $c_m z_m$.

Then
$$|p(z)| \to \infty$$
 as $|z| \to \infty$ (because $\frac{|p(z)|}{|z_m|} \to |c_m|$ as $|z| \to \infty$).

Thus the continuous function $z \to |p(z)|$ has a global minimum at some point $\zeta \in \mathbb{C}$.

To show that $p(\zeta) = 0$, suppose that $p(\zeta) \neq 0$.

Define
$$q \in \mathcal{P}(\mathbf{C})$$
 by $q(z) = \frac{p(z+\zeta)}{p(\zeta)}$.

The function $z \to |q(z)|$ has a global minimum value of 1 at z = 0.

Write $q(z) = 1 + a_k z^k + \cdots + a_m z^m$, where k is the smallest positive integer such that $a_k \neq 0$.

Let
$$\beta \in \mathbb{C}$$
 be such that $\beta^k = -\frac{1}{a_k}$.

There is a constant c > 1 such that if $t \in (0, 1)$,

then
$$|q(t\beta)| \le |1 + a_k t^k \beta^k| + t^{k+1} c = 1 - t^k (1 - tc)$$
.

Thus taking t to be 1/(2c) in the inequality above, we have $|q(t\beta)| < 1$,

which contradicts the assumption that the global minimum of $z \to |q(z)|$ is 1.

Hence
$$p(\zeta) = 0$$
, as desired. \square

• Prove that if $w, z \in \mathbb{C}$, then $ w - z \le w - z $. The inequality here is called the reverse triangle inequality.
SOLUTION:
$ w-z ^2 = (w-z)(\overline{w} - \overline{z})$
$= w ^2+ z ^2-(w\overline{z}+\overline{w}z)$
$= w ^2+ z ^2-(\overline{\overline{w}z}+\overline{w}z)$
$= w ^2+ z ^2-2Re(\overline{w}z)$
$= w + z = 2Re(wz)$ $\geq w ^2 + z ^2 - 2 \overline{w}z $
$= w ^2 + z ^2 - 2 w z = w - z ^2.$
Geometric interpretation: The length of each side of a triangle is greater than or equal to the difference of the lengths of the two other sides.
• Suppose V is a complex vector space and $\varphi \in V'$.
Define : $V \to \mathbf{R}$ by $\sigma(v) = \Re \varphi(v)$ for each $v \in V$.
Show that $\varphi(v) = \sigma(v) - i\sigma(iv)$ for all $v \in V$.
Solution:
Notice that $\varphi(v) = \Re \varphi(v) + i\Im \varphi(v) = \sigma(v) + i\Im \varphi(v)$. $\chi \Re \varphi(iv) = \Re [i\varphi(v)] = -\Im \varphi(v) = \sigma(iv)$.
Hence $\varphi(v) = \sigma(v) - i\sigma(iv)$. \square
2 Suppose m is a positive integer. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbf{F}) : \deg p = m\}$
a subspace of $\mathcal{P}(\mathbf{F})$?
SOLUTION:
$x^m, x^m + x^{m-1} \in U$ but $\deg[(x^m + x^{m-1}) - (x^m)] \neq m \Rightarrow (x^m + x^{m-1}) - (x^m) \notin U$.
Hence U is not closed under addition, and therefore is not a subspace. \square
3 Suppose m is a positive integer. Is the set $U = \{0\} \cup \{p \in \mathcal{P}(\mathbf{F}) : \deg p \text{ is even }\}$ a subspace of $\mathcal{P}(\mathbf{F})$?
SOLUTION:
$x^2, x^2 + x \in U$ but $deg[(x^2 + x) - (x^2)]$ is odd and hence $(x^2 + x) - (x^2) \not\in U$.
Thus U is not closed under addition, and therefore is not a subspace. \square
4 Suppose that m and n are positive integers with $m \leq n$, and suppose $\lambda_1, \ldots, \lambda_m \in \mathbf{F}$.
Prove that $\exists p \in \mathcal{P}(\mathbf{F})$ such that $\deg p = n$, the zeros of p are $\lambda_1, \ldots, \lambda_m$.
SOLUTION: Let $p(z) = (z - \lambda_1)^{n - (m-1)}(z - \lambda_2) \cdots (z - \lambda_m)$.
5 Suppose that $m \in \mathbb{N}$, z_1, \ldots, z_{m+1} are distinct elements of \mathbb{F} , and $w_1, \ldots, w_{m+1} \in \mathbb{F}$.
Prove that $\exists ! p \in \mathcal{P}_m(\mathbf{F})$ such that $p(z_k) = w_k$ for each $k = 1,, m + 1$.
This result can be proved without using linear algebra. However, try to find the clearer, shorter proof that uses some linear algebra.
SOLUTION:
Define $T: \mathcal{P}_m(\mathbf{F}) \to \mathbf{F}^{m+1}$ by $Tq = (q(z_1), \dots, q(z_m), q(z_{m+1}))$. As can be easily checked, T is linear.
We need to show that T is surjective, so that such p exists; and that T is injective, so that such p is unique.
$Tq = 0 \iff q(z_1) = \dots = q(z_m) = q(z_{m+1}) = 0$
$q \in \mathcal{P}_m(\mathbf{F})$ is the zero polynomial, for if not,
q has at least $m+1$ distinct roots, while $\deg q=m$. Contradicts (by [4.12]). Hence T is injective.
dim range $T = \dim \mathcal{P}_m(\mathbf{F}) - \dim \operatorname{null} T = m+1 = \dim \mathbf{F}^{m+1}$. \mathbf{X} range $T \subseteq \mathbf{F}^{m+1}$. Hence T is surjective. \Box

6 Suppose $p \in \mathcal{P}_m(\mathbf{C})$ has degree m. Prove that

p has m distinct zeros \iff p and its derivative p' have no zeros in common.

SOLUTION:

- (a) Suppose p has m distinct zeros. By [4.14] and $\deg p = m$, let $p(z) = c(z \lambda_1) \cdots (z \lambda_m)$, $\exists ! c, \lambda_i \in \mathbb{C}$. For each $j \in \{1, \dots, m\}$, let $\frac{p(z)}{(z \lambda_j)} = q_j \in \mathcal{P}_{m-1}(\mathbb{C})$, then $p(z) = (z \lambda_j)q_j(z)$ and $q_j(\lambda_j) \neq 0$. $p'(z) = (z \lambda_j)q'_j(z) + q_j(z) \Rightarrow p'(\lambda_j) = q_j(\lambda_j) \neq 0$, as desired.
- (b) To prove the implication on the other direction, we prove the contrapositive: Suppose p has less than m distinct roots.

We must show that p and its derivative p' have at least one zero in common.

Let λ be a zero of p, then write $p(z) = (z - \lambda)^n q(z)$, $\exists ! n \in \mathbb{N}^+, q \in \mathcal{P}_{m-n}(\mathbb{C})$.

 $p'(z) = (z - \lambda)^n q'(z) + n(z - \lambda)^{n-1} q(z) \Rightarrow p'(\lambda) = 0, \lambda \text{ is a common root of } p' \text{ and } p.$

7 Prove that every polynomial of odd degree with real coefficients has a real zero. Solution:

Using the notation proof of [4.17]. $\deg p = 2M + m$ is odd $\Rightarrow m$ is odd. Hence λ_1 exists. \square

OR. Using calculus but not using [4.17].

Suppose $p \in \mathcal{P}_m(\mathbf{F})$, deg p = m, m is odd.

Let
$$p(x) = a_0 + a_1 x + \cdots + a_m x^m$$
. Then $a_m \neq 0$. Denote $|a_m|^{-1} a_m$ by δ

Write
$$p(x) = x^m (\frac{a_0}{x^m} + \frac{a_1}{x^{m-1}} + \dots + \frac{a_{m-1}}{x} + a_m).$$

Thus p(x) is continuous, and $\lim_{x\to -\infty} p(x) = -\delta\infty$; $\lim_{x\to \infty} p(x) = \delta\infty$.

Hence we conclude that p has at least one real zero. \square

8 For
$$p \in \mathcal{P}(\mathbf{R})$$
, define $Tp : \mathbf{R} \to \mathbf{R}$ by $(Tp)(x) = \begin{cases} \frac{p(x) - p(3)}{x - 3} & \text{if } x \neq 3, \\ p'(3) & \text{if } x = 3 \end{cases}$ for all $x \in \mathbf{R}$.

Show that $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$ and that $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is a linear map. Solution:

For
$$x \neq 3$$
, $T(x^n) = \frac{x^n - 3^n}{x - 3} = \sum_{i=1}^n 3^{i-1} x^{n-i}$.

For
$$x = 3$$
, $T(x^n) = 3^{n-1} \cdot n$. Note that if $x = 3$, then $\sum_{i=1}^n 3^{i-1} x^{n-i} = \sum_{i=1}^n 3^{n-1} = 3^{n-1} \cdot n$.

Hence for all $x \in \mathbf{R}$ and for all $n \in \mathbf{N}$, $T(x^n) = \sum_{i=1}^n 3^{i-1} x^{n-i} \in \mathcal{P}(\mathbf{R})$.

Because T is linear, we conclude that $Tp \in \mathcal{P}(\mathbf{R})$ for all $p \in \mathcal{P}(\mathbf{R})$.

Now we show that T is linear:

$$\forall p, q \in \mathcal{P}(\mathbf{R}), \lambda \in \mathbf{R}, T(p + \lambda q)(x) = \begin{cases} \frac{(p + \lambda q)(x) - (p + \lambda q)(3)}{x - 3} & \text{if } x \neq 3, \\ (p + \lambda q)'(3) & \text{if } x = 3 \end{cases} \text{ for all } x \in \mathbf{R}.$$

Notice that
$$(p + \lambda q)(x) - (p + \lambda q)(3) = (p(x) - p(3)) + (\lambda q(x) - \lambda q(3))$$
;

$$(p + \lambda q)'(3) = p'(3) + \lambda q'(3).$$

Thus
$$T(p + \lambda q)(x) = (T(p) + \lambda T(q))(x)$$
 for all $x \in \mathbf{R}$. \square

9 Suppose $p \in \mathcal{P}(\mathbf{C})$. Define $q : \mathbf{C} \to \mathbf{C}$ by $q(z) = p(z)\overline{p(\overline{z})}$.

Prove that q is a polynomial with real coefficients.

SOLUTION:

$$p(z) = a_n z^n + \dots + a_1 z + a_0 \Rightarrow p(\overline{z}) = \underline{a_n \overline{z}^n + \dots + a_1 \overline{z}} + a_0 \Rightarrow \overline{p(\overline{z})} = \overline{a_n} z^n + \dots + \overline{a_1} z + \overline{a_0}.$$
Note that $q(z) = p(z)\overline{p(\overline{z})} = \overline{p(\overline{z})}p(z) = \overline{p(\overline{z})}\overline{p(\overline{\overline{z}})} = \overline{q(\overline{z})}.$

Hence letting $q(z) = c_m x^m + \cdots + c_1 x + c_0 \implies \overline{c_k} = c_k, c_k \in \mathbf{R}$ for each k. \square

10 Suppose $m \in \mathbb{N}$ and $p \in \mathcal{P}_m(\mathbb{C})$ is such that

there are (m+1) distinct real numbers x_0, x_1, \ldots, x_m with $p(x_k) \in \mathbf{R}$ for each x_k . Prove that all coefficients of p are real.

SOLUTION: Let $p(x_k) = y_k$ for each k. By Problem (5), $\exists ! q \in \mathcal{P}_m(\mathbf{R})$ such that $q(x_k) = y_k$. Hence p = q. \Box OR. Using the Lagrange Interpolating Polynomial.

Define
$$q(x) = \sum_{j=0}^{m} \frac{(x-x_0)(x-x_1)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_m)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{j-1})(x_j-x_{j+1})\cdots(x_j-x_m)} p(x_j).$$

 \mathbb{X} For each $j, x_j, p(x_j) \in \mathbb{R} \Rightarrow q \in \mathcal{P}_m(\mathbb{R}) \subseteq \mathcal{P}_m(\mathbb{C})$.

Notice that $q(x_k) = 1 \cdot p(x_k) \Rightarrow (q - p)(x_k) = 0$ for each $k \in \{0, 1, \dots, m\}$.

Then (q-p) has (m+1) distinct zeros, while $(q-p) \in \mathcal{P}_m(\mathbb{C})$. Hence by [4.12], $q-p=0 \Rightarrow p=q$. \square

11 Suppose $p \in \mathcal{P}(\mathbf{F})$ with $p \neq 0$. Let $U = \{pq : q \in \mathcal{P}(\mathbf{F})\}$.

- (a) Show that dim $\mathcal{P}(\mathbf{F})/U = \deg p$.
- (b) Find a basis of $\mathcal{P}(\mathbf{F})/U$.

SOLUTION:

U is a subspace of $\mathcal{P}(\mathbf{F})$ because $\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, pf + \lambda pg = p(f + \lambda g) \in U$.

NOTE: Define $P:\to \mathcal{P}(\mathbf{F})$ by $(Pq)(x)=p(q(x))=(p\circ q)(x)$ ($\neq p(x)q(x)$). P is not linear.

(a) By [4.8],
$$\forall f \in \mathcal{P}(\mathbf{F}), \ \exists \ ! \ q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \ \deg r < \deg p.$$

Hence
$$\forall f \in \mathcal{P}(\mathbf{F}), \exists ! pq \in U, r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), f = (pq) + (r); r \notin U.$$

Thus $\mathcal{P}(\mathbf{F}) = U \oplus \mathcal{P}_{\deg p-1}(\mathbf{F})$. Therefore $\mathcal{P}(\mathbf{F})/U$ and $\mathcal{P}_{\deg p-1}(\mathbf{F})$ are isomorphic.

OR.
$$\forall f \in \mathcal{P}(\mathbf{F}), \exists ! q, r \in \mathcal{P}(\mathbf{F}), f = (p)q + (r); \deg r < \deg p.$$

Define
$$R: \mathcal{P}(\mathbf{F}) \to \mathcal{P}_{\deg p-1}(\mathbf{F})$$
 by $(Rf)(z) = r(z)$ for each $z \in \mathbf{F}$.

$$\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F}, R(f + \lambda g)(z) = R(f) + \lambda R(g).$$

BECAUSE:
$$\forall f, g \in \mathcal{P}(\mathbf{F}), \lambda \in \mathbf{F},$$

$$\exists ! q_1, r_1 \in \mathcal{P}(\mathbf{F}), f = (p)q_1 + (r_1), \deg r_1 < \deg p;$$

$$\exists ! q_2, r_2 \in \mathcal{P}(\mathbf{F}), g = (p)q_2 + (r_2), \deg r_2 < \deg p;$$

$$\exists \,!\, q_3, r_3 \in \mathcal{P}(\mathbf{F}), \lambda g = (p)q_3 + (r_3) = (p)(\lambda q_2) + (\lambda r_2), \ \deg r_3 < \deg p \ \text{ and } \deg \lambda r_2 < \deg p.$$

$$\Rightarrow q_3 = \lambda q_2, r_3 = \lambda r_2.$$

$$\exists ! q_0, r_0 \in \mathcal{P}(\mathbf{F}), (f + \lambda g) = (p)q_0 + (r_0)$$

$$=(p)(q_1 + \lambda q_2) + (r_1 + \lambda r_2), \ \deg r_0 < \deg p \ \text{ and } \ \deg(r_1 + \lambda r_2) < \deg p.$$

 $\Rightarrow q_1 + \lambda q_2 = q_0; \ r_1 + \lambda r_2 = r_0.$

Hence R is linear.

$$R(f) = 0 \iff f = pq, \exists ! q \in \mathcal{P}(\mathbf{F}). \text{ Thus null } R = U.$$

$$\forall r \in \mathcal{P}_{\deg p-1}(\mathbf{F}), \text{ let } f = p+r, \text{ then } R(f) = r. \text{ Thus range } R = \mathcal{P}_{\deg p-1}(\mathbf{F}).$$

Finally, by [3.91(d)], $\mathcal{P}(\mathbf{F})/\text{null } R$, namely $\mathcal{P}(\mathbf{F})/U$, and range R, namely $\mathcal{P}_{\deg p-1}(\mathbf{F})$, are isomorphic.

(b)
$$(1 + U, x + U, \dots, x^{\deg p - 1}) + U$$
) can be a basis of $\mathcal{P}(\mathbf{F})/U$. \square

• Suppose nonconstant $p, q \in \mathcal{P}(\mathbf{C})$ have no zeros in common. Let $m = \deg p, n = \deg q$. Use (a)—(c) below to prove that $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that $rp + sq = 1$. (a) Define $T : \mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C}) \to \mathcal{P}_{m+n-1}(\mathbf{C})$ by $T(r,s) = rp + sq$. Show that the linear map T is injective. (b) Show that the linear map T in (a) is surjective. (c) Use (b) to conclude that $\exists ! r \in \mathcal{P}_{n-1}(\mathbf{C}), s \in \mathcal{P}_{m-1}(\mathbf{C})$ such that $rp + sq = 1$. Solution: (a) T is linear because $\forall r_1, r_2 \in \mathcal{P}_{n-1}(\mathbf{C}), s_1, s_2 \in \mathcal{P}_{m-1}(\mathbf{C}), \lambda \in \mathbf{F},$ $T((r_1, s_1) + \lambda(r_2, s_2)) = T(r_1 + \lambda r_2, s_1 + \lambda s_2) = (r_1 + \lambda r_2)p + (s_1 + \lambda s_2)q = T(r_1, s_1) + \lambda T(r_2, s_2).$
Suppose $T(r,s)=rp+sq=0$. Notice that p,q have no zeros in common. Then $r=s=0$, for if not, write $\frac{q(z)}{r(z)}=\frac{p(z)}{s(z)}$, while for any zero λ of $q,\frac{q(\lambda)}{r(z)}=0\neq\frac{p(\lambda)}{s(z)}$. Hence \square
(b) $\dim(\mathcal{P}_{n-1}(\mathbf{C}) \times \mathcal{P}_{m-1}(\mathbf{C})) = \dim \mathcal{P}_{n-1}(\mathbf{C}) + \dim \mathcal{P}_{m-1}(\mathbf{C}) = n + m = \dim \mathcal{P}_{m+n-1}(\mathbf{C}).$
Ended
5.A • Note For [5.10]: linearly independent eigenvectors Suppose $T \in \mathcal{L}(V)$. Then every list of eigenvectors of T corresponding to distinct eigenvalues of T is linearly independent. Another Proof:
Suppose the desired result is false.
Then there exists a smallest positive integer $m>1$
(because an eigenvector is, by definition, nonzero) such that
there exists a linearly dependent list (v_1, \ldots, v_m) of eigenvectors of T
corresponding to distinct eigenvalues $\lambda_1, \dots, \lambda_m$ of T .
Thus there exist $a_1, \ldots, a_m \in \mathbf{F}$, none of which are 0 (because of the minimality of m), such that $a_1v_1 + \cdots + a_{m-1}v_{m-1} + a_mv_m = 0$.
Apply $T - \lambda_m I$ to both sides of the equation above, getting $a_1(\lambda_1 - \lambda_m)v_1 + \cdots + a_{m-1}(\lambda_{m-1} - \lambda_m)v_{m-1} = 0$.
Because the eigenvalues $\lambda_1, \ldots, \lambda_m$ are distinct, none of the coefficients above equal 0.
Thus v_1, \ldots, v_{m-1} is a linearly dependent list of $m-1$ eigenvectors of T corresponding to distinct eigenvalues.
Contradicts the minimality of m . \square
Contradicts the minimality of m.
1 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V . (a) Prove that if $U \subseteq null\ T$, then U is invariant under T .
1 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V .
1 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V . (a) Prove that if $U \subseteq \operatorname{null} T$, then U is invariant under T .
1 Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V . (a) Prove that if $U \subseteq \operatorname{null} T$, then U is invariant under T . (b) Prove that if range $T \subseteq U$, then U is invariant under T .

• Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$.
(a) Prove that $\operatorname{null}(T - \lambda I)$ is invariant under S , where λ is chosen arbitrarily.
(b) Prove that range $(T - \lambda I)$ is invariant under S , where λ is chosen arbitrarily.
SOLUTION:
Note that $ST = TS \Rightarrow (T - \lambda I)S = S(T - \lambda I)$.
(a) Suppose $v \in \text{null } (T - \lambda I)$, then $(T - \lambda I)(Sv) = S(T - \lambda I)v = S(0) = 0$.
Hence $Sv \in \text{null}(T - \lambda I)$ and therefore null $(T - \lambda I)$ is invariant under S .
(b) Suppose $v \in \text{range}(T - \lambda I)$, therefore $\exists u \in V, (T - \lambda I)u = v$.
Then $Sv = S(T - \lambda I)u = (T - \lambda I)(Su) \in \text{range}(T - \lambda I).$
Hence $Sv \in \text{range}(T - \lambda I)$ and therefore range $(T - \lambda I)$ is invariant under S . \square
COMMENT: Reversing the roles of S and T, letting $\lambda = 0$, we can conclude that
null S and range S is invariant under T , which is what we will prove in Problem (2) and (3) below.
, <u> </u>
2 Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$. Prove that null S is invariant under T .
SOLUTION: $\forall u \in \text{null } S, Su = 0 \Rightarrow TSu = 0 = STu \Rightarrow Tu \in \text{null } S.$
3 Suppose $S, T \in \mathcal{L}(V)$ are such that $ST = TS$. Prove that range S is invariant under T .
SOLUTION: $\forall w \in \text{range } S, \ \exists \ v \in V, Sv = w, STv = TSv = Tw \in \text{range } S.$
4 Suppose $T \in \mathcal{L}(V)$ and V_1, \ldots, V_m are subspaces of V invariant under T . Prove that $V_1 + \cdots + V_m$ is invariant under T . Solution:
For each $i = 1,, m, \forall v_i \in V_i, Tv_i \in V_i$
Hence $\forall v = v_1 + \dots + v_m \in V_1 + \dots + V_m, Tv = Tv_1 + \dots + Tv_m \in V_1 + \dots + V_m.$
5 Suppose $T \in \mathcal{L}(V)$. Prove that the intersection of every collection
of subspaces of V invariant under T is invariant under T .
SOLUTION:
Suppose $\{V_{\alpha}\}_{{\alpha}\in\Gamma}$ is a collection of subspaces of V invariant under T ; here Γ is an arbitrary index set.
We need to prove that $\bigcap_{\alpha \in \Gamma} V_{\alpha}$, which equals the set of vectors
that are in V_{α} for each $\alpha \in \Gamma$, is invariant under T .
For each $\alpha \in \Gamma$, $\forall v_{\alpha} \in V_{\alpha}$, $Tv_{\alpha} \in V_{i}$.
Hence $\forall v \in \bigcap_{\alpha \in \Gamma} V_{\alpha}, Tv \in V_{\alpha}, \forall \alpha \in \Gamma \Rightarrow Tv \in \bigcap_{\alpha \in \Gamma} V_{\alpha}$. Thus $\bigcap_{\alpha \in \Gamma} V_{\alpha}$ is invariant under T . \square
6 Prove or give a counterexample:
If V is finite-dim and U is a subspace of V that is invariant under every operator on V ,
then $U = \{0\}$ or $U = V$.
SOLUTION:
Notice that V might be $\{0\}$. In this case we are done. Suppose $\dim V \ge 1$. We prove by contrapositive: Suppose $U \ne \{0\}$ and $U \ne V$, then $\exists T \in \mathcal{L}(V)$ such that U is not invariant under T .
Let W be such that $V = U \oplus W$.

Let (u_1, \ldots, u_m) be a basis of U and (w_1, \ldots, w_n) be a basis of W.

Define $T \in \mathcal{L}(V)$ by $T(a_1u_1 + \cdots + a_mu_m + b_1w_1 + \cdots + b_nw_n) = b_1w_1 + \cdots + b_nw_n$. \square

Hence $(u_1, \ldots, u_m, w_1, \ldots, w_n)$ is a basis of V.

7 Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is defined by $T(x,y) = (-3y,x)$. Find the eigenvalues of T .
SOLUTION: Suppose $\lambda \in \mathbf{R}$ and $(x,y) \in \mathbf{R}^2 \setminus \{0\}$ such that $T(x,y) = (-3y,x) = \lambda(x,y)$. Then $-3y = \lambda x$ and $x = \lambda y$. Thus $-3y = \lambda^2 y \Rightarrow \lambda^2 = -3$, ignoring the possibility of $y = 0$ (because if $y = 0$, then $x = 0$). Hence the set of solution for this equation is \varnothing , and therefore T has no eigenvalues in \mathbf{R} . \square
8 Define $T \in \mathcal{L}(\mathbf{F}^2)$ by $T(w, z) = (z, w)$. Find all eigenvalues and eigenvectors of T .
SOLUTION:
Suppose $\lambda \in \mathbf{F}$ and $(w, z) \in \mathbf{F}^2$ such that $T(w, z) = (z, w) = \lambda(w, z)$. Then $z = \lambda w$ and $w = \lambda z$.
Thus $z = \lambda^2 z \Rightarrow \lambda^2 = 1$, ignoring the possibility of $z = 0$ ($z = 0 \Rightarrow w = 0$).
Hence $\lambda_1 = -1$ and $\lambda_2 = 1$ are all eigenvalues of T .
For $\lambda_1 = -1, z = -w, w = -z$; For $\lambda_2 = 1, z = w$.
Thus the set of all eigenvectors is $\{(z, -z), (z, z) : z \in \mathbf{F} \land z \neq 0\}$. \square
9 Define $T \in \mathcal{L}(\mathbf{F}^3)$ by $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3)$.
Find all eigenvalues and eigenvectors of T .
SOLUTION:
Suppose λ is an eigenvalue of T with an eigenvector $(z_1, z_2, z_3) \in \mathbf{F}^3$.
Then $T(z_1, z_2, z_3) = (2z_2, 0, 5z_3) = \lambda(z_1, z_2, z_3)$.
Thus $2z_2 = \lambda z_1$, $0 = \lambda z_2$, $5z_3 = \lambda z_3$.
We discuss in two cases:
For $\lambda = 0$, $z_2 = z_3 = 0$ and z_1 can be arbitrary ($z_1 \neq 0$).
For $\lambda \neq 0$, $z_2 = 0 = z_1$, and z_3 can be arbitrary ($z_3 \neq 0$), then $\lambda = 5$.
The set of all eigenvectors is $\{(0,0,z),(z,0,0):z\in \mathbf{F}\wedge z\neq 0\}$. \square
• Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$.
Prove that if λ is an eigenvalue of P , then $\lambda = 0$ or $\lambda = 1$.
SOLUTION: (See also at (3.B), just below Problem (25), where (5.B.4) is answered.)
Suppose λ is an eigenvalue, $v \in V \setminus \{0\}$ such that $Pv = \lambda v$.
Then because $P(Pv) = Pv$, hence $\lambda^2 v = \lambda v$.
Thus $\lambda = 1$ or 0. \square
10 Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, \dots, x_n) = (x_1, 2x_2, 3x_3, \dots, nx_n)$
(a) Find all eigenvalues and eigenvectors of T .
(b) Find all invariant subspaces of V under T .
SOLUTION:
(a) Suppose $v = (x_1, x_2, x_3, \dots, x_n)$ is an eigenvector of T with an eigenvalue λ .
Then $Tv = \lambda v = (x_1, 2x_2, 3x_3, \dots, nx_n) = (\lambda x_1, \lambda x_2, \lambda x_3, \dots, \lambda x_n).$
Hence $1, \ldots, n$ are eigenvalues of T .
And $\{(0,\ldots,0,x_{\lambda},0,\ldots,0)\in \mathbf{F}^n:\lambda=1,\ldots,n,\ x_{\lambda}\in \mathbf{F}\wedge x_{\lambda}\neq 0\}$ is the set of all eigenvectors of T .
(b) Let $V_{\lambda} = \{(0, \dots, 0, x_{\lambda}, 0, \dots, 0) \in \mathbf{F}^n : x_{\lambda} \in \mathbf{F} \land x_{\lambda} \neq 0\}$. Then V_1, \dots, V_n are invariant under T .
Hence by Problem (4), every sum of V_1, \ldots, V_n is a invariant subspace of V under T . \square

11 Define $T : \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by $Tp = p'$. Find all eigenvalues and eigenvectors of T .
SOLUTION:
Note that in general, $\deg p' < \deg p$ ($\deg 0 = -\infty$).
Suppose λ is an eigenvalue of T with an eigenvector p .
Suppose $\lambda \neq 0$. Then $\deg \lambda p > \deg p'$ while $\lambda p \neq p'$. Contradicts. Thus $\lambda = 0$.
Therefore $\deg \lambda p = -\infty = \deg p \Rightarrow p$ is a nonzero constant polynomial. Hence the set of all eigenvectors is $\{C: C \in \mathbf{R} \land C \neq 0\} = \mathcal{P}_0(\mathbf{R}) \setminus \{0\}$.
12 Define $T \in \mathcal{L}(\mathcal{P}_4(\mathbf{R}))$ by $(Tp)(x) = xp'(x)$ for all $x \in \mathbf{R}$.
Find all eigenvalues and eigenvectors of T .
SOLUTION:
Suppose λ is an eigenvalue of T with an eigenvector p , then $(Tp)(x) = xp'(x) = \lambda p(x)$. Let $p = a_0 + a_1x + \cdots + a_nx^n$.
Then $xp'(x) = a_1x + 2a_2x^2 + \dots + na_nx^n = \lambda a_0 + \lambda a_1x + \lambda a_2x^2 + \dots + \lambda a_nx^n$.
Similar to Problem (10), $0, 1, \ldots, n$ are eigenvalues of T .
The set of all eigenvectors of T is $\{cx^{\lambda}: \lambda = 0, 1, \dots, n, c \in \mathbf{F} \land c \neq 0\}$. \square
13 Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$.
Prove that $\exists \alpha \in \mathbb{F}, \alpha - \lambda < \frac{1}{1000}$ and $(T - \alpha I)$ is invertible.
SOLUTION:
Let $\alpha_k \in \mathbf{F}$ be such that $ \alpha_k - \lambda = \frac{1}{1000 + k}$ for each $k = 1, \dots, \dim V + 1$.
Note that each $T \in \mathcal{L}(V)$ has at most dim V distinct eigenvalues.
Hence $\exists k = 1,, \dim V + 1$ such that α_k is not an eigenvalue of T and therefore $(T - \alpha_k I)$ is invertible. \Box
• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\alpha \in \mathbf{F}$.
<i>Prove that</i> $\exists \delta > 0$ <i>such that</i> $(T - \lambda I)$ <i>is invertible for all</i> $\lambda \in \mathbb{F}$ <i>such that</i> $0 < \alpha - \lambda < \delta$.
SOLUTION:
Choose $\delta > 0$ arbitrarily.
Let $\alpha_k \in \mathbf{F}$ be such that $ \alpha_k - \lambda = \frac{\delta}{k}$ for each $k = 1, \ldots, \dim V + 1$.
Similar to Problem (13), $\exists k$ such that α_k is not an eigenvalue. \Box
14 Suppose $V = U \oplus W$, where U and W are nonzero subspaces of V .
Define $P \in \mathcal{L}(V)$ by $P(u+w) = u$ for each $u \in U$ and each $w \in W$.
Find all eigenvalues and eigenvectors of P.
SOLUTION:
Suppose λ is an eigenvalue of P with an eigenvector $(u+w)$.
Then $P(u+w) = u = \lambda u + \lambda w \Rightarrow (\lambda - 1)u + \lambda w = 0$. By [1.44] and $V = U \oplus W$, $(\lambda - 1)u = \lambda w = 0$.
Thus if $\lambda = 1$, then $w = 0$; if $\lambda = 0$, then $u = 0$.
Hence the eigenvalues of P are 0 and 1 , the set of all eigenvectors in P is $U \cup W$. \square

15 Suppose $T \in \mathcal{L}(V)$. Suppose $S \in \mathcal{L}(V)$ is invertible.

- (a) Prove that T and $S^{-1}TS$ have the same eigenvalues.
- (b) What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1}TS$? **SOLUTION:**

Suppose λ is an eigenvalue of T with an eigenvector v.

Then
$$S^{-1}TS(S^{-1}v) = S^{-1}Tv = S^{-1}(\lambda v) = \lambda S^{-1}v$$
.

Thus λ is also an eigenvalue of $S^{-1}TS$ with an eigenvector $S^{-1}v$.

Suppose λ is an eigenvalue of $S^{-1}TS$ with an eigenvector v.

Then
$$S(S^{-1}TS)v = TSv = \lambda Sv$$
.

Thus λ is also an eigenvalue of T with an eigenvector Sv. \square

OR. Note that
$$S(S^{-1}TS)S^{-1} = T$$
.

Hence every eigenvalue of $S^{-1}TS$ is an eigenvalue of $S(S^{-1}TS)S^{-1} = T$.

And every eigenvector v of $S^{-1}TS$ is $S^{-1}v$, every eigenvector u of T is Su. \square

17 Give an example of an operator on \mathbb{R}^4 that has no (real) eigenvalues.

SOLUTION:

Define
$$T \in \mathcal{L}(\mathbf{R}^4)$$
 by $\mathcal{M}(T, (e_1, e_2, e_3, e_4)) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & -1 \\ 3 & 8 & 11 & 5 \\ 3 & -8 & -11 & 5 \end{pmatrix}$. Where (e_1, e_2, e_3, e_4) is the standard basis of \mathbf{R}^4 . Suppose λ is an eigenvalue of T with an eigenvector (x, y, z, w) .

Suppose λ is an eigenvalue of T with an eigenvector (x,y,z,w).

$$\text{Then } T(x,y,z,w) = \lambda(x,y,z,w) \Rightarrow \left\{ \begin{array}{l} (1-\lambda)x + y + z + w = 0 \\ -x + (1-\lambda)y - z - w = 0 \\ 3x + 8y + (11-\lambda)z + 5w = 0 \\ 3x - 8y - 11z + (5-\lambda)w = 0 \end{array} \right.$$

This linear equation has no solutions.

(You can type it on https://zh.numberempire.com/equationsolver.php to check.)

OR. Define
$$T \in \mathcal{L}(\mathbf{R}^4)$$
 by $T(x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$.

Suppose λ is an eigenvalue of T with an eigenvector (x, y, z)

Then
$$T(x, y, z, w) = (\lambda x, \lambda y, \lambda z, \lambda w) = (-y, x, -w, z) \Rightarrow \begin{cases} -y = \lambda x \\ x = \lambda y \\ -w = \lambda z \end{cases} \Rightarrow \begin{cases} -xy = \lambda^2 xy \\ -zw = \lambda^2 zw \end{cases}$$

If $xy \neq 0$ or $zw \neq 0$, then $\lambda^2 = -1$, we fail.

Otherwise, $xy = 0 \Rightarrow x = y = 0$, for if $x \neq 0$, then $\lambda = 0 \Rightarrow x = 0$, contradicts.

Similarly, y = z = w = 0. Then we fail.

Thus T has no eigenvalues. \square

• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\lambda \in \mathbf{F}$.

Show that λ is an eigenvalue of $T \iff \lambda$ is an eigenvalue of the dual operator $T' \in \mathcal{L}(V')$.

SOLUTION:

(a) Suppose λ is an eigenvalue of T with an eigenvector v.

Then $(T - \lambda I_V)$ is not invertible. \mathbb{Z} V is finite-dim.

Thus by [3.108, 110], [3.101] and Problem (12) in (3.F), $(T - \lambda I_V)' = T' - \lambda I_{V'}$ is not invertible.

Hence λ is an eigenvalue of T'.

(b) Suppose λ is an eigenvalue T' with an eigenvector ψ . Then $T'(\psi) = \psi \circ T = \lambda \psi$.

$$\mathbb{X}$$
 $\psi \neq 0 \Rightarrow \exists v \in V$ such that $\psi(v) \neq 0$. Note that $\psi(Tv) = \lambda \psi(v)$.

Thus
$$\lambda = \frac{\psi(Tv)}{\psi(v)} \Rightarrow Tv = \frac{\psi(Tv)}{\psi(v)}v = \lambda v$$
. Hence λ is an eigenvalue of T . \square

• TODO Suppose (v_1, \ldots, v_n) is a basis of V and $T \in \mathcal{L}(V)$.

Prove that if λ is an eigenvalue of T, then

$$|\lambda| \leq n \max\{|\mathcal{M}(T)_{j,k}| : 1 \leq j, k \leq n\}$$
, where $\mathcal{M}(T, (v_1, \dots, v_n))$.

SOLUTION:

Suppose λ is an eigenvalue of T, and therefore is an eigenvalue of $\mathcal{M}(T)$, with an eigenvector v.

We discuss in two cases:

If $\mathcal{M}(T)$ is invertible (\iff T is invertible), then $\mathcal{M}(Tv) = \mathcal{M}(\lambda v) \Rightarrow \frac{1}{\lambda}\mathcal{M}(v) = \mathcal{M}(T^{-1}v)$.

Otherwise, (T - 0I) is not invertible and therefore $\lambda = 0$ is an eigenvalue. And other λ s?

- Suppose $\mathbf{F} = \mathbf{R}, T \in \mathcal{L}(V)$.
 - (a) (OR (9.11)) $\lambda \in \mathbf{R}$. Prove that λ is an eigenvalue of $T \iff \lambda$ is an eigenvalue of $T_{\mathbb{C}}$.
 - (b) (OR Problem (16)) $\lambda \in \mathbb{C}$. Prove that λ is an eigenvalue of $T_{\mathbb{C}} \iff \overline{\lambda}$ is an eigenvalue of $T_{\mathbb{C}}$.

SOLUTION:

(a) Suppose $v \in V$ is an eigenvector corresponding to the eigenvalue λ .

Then
$$Tv = \lambda v \Rightarrow T_{\mathbb{C}}(v + i0) = Tv + iT0 = \lambda v$$
.

Thus λ is an eigenvalue of T.

Suppose $v+\mathrm{i}u\in V_{\mathbb{C}}$ is an eigenvector corresponding to the eigenvalue $\lambda.$

Then $T_{\mathbb{C}}(v+\mathrm{i}u)=\lambda v+\mathrm{i}\lambda u\Rightarrow Tv=\lambda v, Tu=\lambda u$. (Note that v or u might be zero).

Thus λ is an eigenvalue of $T_{\mathbb{C}}$.

(b) Suppose λ is an eigenvalue of $T_{\mathbb{C}}$ with an eigenvector v + iu.

Let
$$(v_1, \ldots, v_n)$$
 be a basis of V . Write $v = \sum_{i=1}^n a_i v_i, u = \sum_{i=1}^n b_i v_i$, where $a_i, b_i \in \mathbf{R}$.

Then $T_{\mathbb{C}}(v+\mathrm{i}u)=Tv+\mathrm{i}Tu=\lambda v+\mathrm{i}\lambda u=\lambda\sum_{i=1}^n(a_i+\mathrm{i}b_i)v_i$. Conjugating two sides, we have:

$$\overline{T_{\mathbb{C}}(v+\mathrm{i}u)} = \overline{Tv+\mathrm{i}Tu} = \overline{Tv}-\mathrm{i}\overline{Tu} = Tv-\mathrm{i}Tu = T_{\mathbb{C}}(\overline{v+\mathrm{i}u}) = \overline{\lambda}\sum_{i=1}^{n}(a_i+\mathrm{i}b_i)v_i = \overline{\lambda}\sum_{i=1}^{n}(a_i-\mathrm{i}b_i)v_i.$$

Hence $\overline{\lambda}$ is an eigenvalue of $T_{\mathbb{C}}$. To prove the other direction, notice that $\overline{\overline{\lambda}} = \lambda$. \square

18 *Show that the forward shift operator* $T \in \mathcal{L}(\mathbf{F}^{\infty})$

defined by $T(z_1, z_2, \dots) = (0, z_1, z_2, \dots)$ has no eigenvalues.

SOLUTION:

Suppose λ is an eigenvalue of T with an eigenvector (z_1, z_2, \dots) .

Then
$$T(z_1, z_2, \dots) = (\lambda z_1, \lambda z_2, \dots) = (0, z_1, z_2, \dots).$$

Thus
$$\lambda z_1 = 0, \lambda z_2 = z_1, \dots, \lambda z_k = z_{k-1}, \dots$$
.

Let $\lambda = 0$, then $\lambda z_2 = z_1 = 0 = \lambda z_k = z_{k-1}$, therefore $(z_1, z_2, \dots) = 0$ is not an eigenvector.

Suppose $\lambda \neq 0$. Then $\lambda z_1 = 0 \Rightarrow z_1 = 0 \Rightarrow z_2 = 0 = z_k$ for all $k \in \mathbb{N}^+$.

And then $(z_1, z_2, \dots) = 0$ is not an eigenvector. Hence T has no eigenvalues. \square

19	Suni	pose	n	\in	N^+ .
	$\sim \iota \iota \rho \rho$	<i>-</i>	, 0	_	

Define
$$T \in \mathcal{L}(\mathbf{F}^n)$$
 by $T(x_1, \dots, x_n) = (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n)$.

In other words, the entries of $\mathcal{M}(T)$ with respect to the standard basis are all 1's. Find all eigenvalues and eigenvectors of T.

SOLUTION:

Suppose λ is an eigenvalue of T with an eigenvector (x_1, \ldots, x_n) .

Then
$$T(x_1, ..., x_n) = (\lambda x_1, ..., \lambda x_n) = (x_1 + ... + x_n, ..., x_1 + ... + x_n).$$

Thus
$$\lambda x_1 = \cdots = \lambda x_n = x_1 + \cdots + x_n$$
.

For
$$\lambda = 0, x_1 + \dots + x_n = 0$$
.

For
$$\lambda \neq 0$$
, $x_1 = \cdots = x_n$ and then $\lambda x_k = nx_k$ for each k .

Hence 0, n are eigenvectors of T.

And the set of all eigenvectors of T is $\{(x_1,\ldots,x_n)\in \mathbb{F}^n: x_1+\cdots+x_n=0 \vee x_1=\cdots=x_n\}$. \square

20 Define the backward shift operator $S \in \mathcal{L}(\mathbf{F}^{\infty})$ by $S(z_1, z_2, z_3, \dots) = (z_2, z_3, \dots)$.

- (a) Show that every element of \mathbf{F} is an eigenvalue of S.
- (b) Find all eigenvectors of S.

SOLUTION:

Suppose λ is an eigenvalue of S with an eigenvector (z_1, z_2, \dots) .

Then
$$S(z_1, z_2, z_3...) = (\lambda z_1, \lambda z_2,...) = (z_2, z_3,...).$$

Thus
$$\lambda z_1 = z_2, \lambda z_2 = z_3, \dots, \lambda z_k = z_{k+1}, \dots$$

For
$$\lambda = 0$$
, $\lambda z_1 = z_2 = 0 = \lambda z_2 = z_3 = \cdots = z_k$ for all k .

While z_1 can be arbitrary, so that $(z_1, 0, ...)$ is an eigenvector with $z_1 \neq 0$.

For
$$\lambda \neq 0$$
, $\lambda^k z_1 = \lambda^{k-1} z_2 = \cdots = \lambda z_k = z_{k+1}$ for all k .

Then
$$(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots)$$
 is an eigenvector with $z_1 \neq 0$.

Hence (a) each element of $\lambda \in \mathbf{F}$ is an eigenvalue of T.

And (b) the set of all eigenvectors of T is $\{(z_1, \lambda z_1, \lambda^2 z_1, \dots, \lambda^k z_1, \dots) \in \mathbf{F}^{\infty} : \lambda \in \mathbf{F}, z_1 \neq 0\}$

21 Suppose $T \in \mathcal{L}(V)$ is invertible.

(a) Suppose $\lambda \in \mathbf{F}$ with $\lambda \neq 0$.

Prove that λ is an eigenvalue of $T \iff \frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

(b) Prove that T and T^{-1} have the same eigenvectors.

SOLUTION:

(a) Suppose λ is an eigenvalue of T with an eigenvector v.

Then $T^{-1}Tv = \lambda T^{-1}v = v \Rightarrow T^{-1}v = \frac{1}{\lambda}v$. Hence $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .

(b) Suppose $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} with an eigenvector v.

Then $TT^{-1}v = v = \frac{1}{\lambda}Tv \Rightarrow Tv = \lambda v$. Hence λ is an eigenvalue of T.

OR. Note that $(T^{-1})^{-1}=T$ and $\frac{1}{\frac{1}{\lambda}}=\lambda$. \square

22 Suppose $T \in \mathcal{L}(V)$ and there exist nonzero vectors u, w in V

such that Tu = 3w and Tw = 3u. Prove that 3 or -3 is an eigenvalue of T.

SOLUTION: COMMENT: $Tu = 3w, Tw = 3u \Rightarrow T(Tu) = 9u \Rightarrow T^2$ has an eigenvalue 9.

$$Tu = 3w, Tw = 3u \Rightarrow T(u+w) = 3(u+w), T(u-w) = 3(w-u) = -3(u-w).$$

Hence 3 or -3 is an eigenvalue of T. \square

23 Suppose V is finite-dim, $S,T \in \mathcal{L}(V)$. Prove that ST and TS have the same eigenvalues. **SOLUTION:**

Suppose λ is an eigenvalue of ST with an eigenvector v. Then $T(STv) = \lambda Tv = TS(Tv)$.

If $Tv \neq 0$, then λ is an eigenvalue of TS.

Otherwise, $\lambda = 0$, ($v \neq 0$, $\lambda v = 0 = STv$), then T is not invertible

 $\Rightarrow TS$ is not invertible $\Rightarrow (TS - 0I)$ is not invertible $\Rightarrow \lambda = 0$ is an eigenvalue of TS.

Reversing the roles of T and S, we conclude that ST and TS have the same eigenvalues.

24 Suppose $A \in \mathbb{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by Tx = Ax,

where elements of \mathbf{F}^n are thought of as n-by-1 column vectors.

- (a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an eigenvalue of T.
- (b) Suppose the sum of the entries in each column of A equals 1. Prove that 1 is an eigenvalue of T.

SOLUTION:

(a) Suppose λ is an eigenvalue of T with an eigenvector $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{c=1}^{n} A_{1,c} x_c \\ \vdots \\ \sum_{c=1}^{n} A_{n,c} x_c \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{r=1}^{n} A_{R,c} = 1$ for each $R = 1, \dots, n$.

Thus if we let $x_1 = \dots = x_n$, then $\lambda = 1$, and hence is an eigenvalue of T .

(b) Suppose λ is an eigenvalue of T with an eigenvector $x = \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix}$.

Then
$$Tx = Ax = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r} x_r \\ \vdots \\ \sum_{r=1}^{n} A_{n,r} x_r \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. While $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C = 1, \dots, n$.

Thus
$$\sum_{r=1}^{n} (Ax)_{r,\cdot} = \sum_{r=1}^{n} (Ax)_{r,1}$$

$$= \sum_{c=1}^{n} (A_{1,c} + \dots + A_{n,c}) x_c = \sum_{c=1}^{n} x_c = \lambda \begin{pmatrix} x_1 \\ + \\ \vdots \\ x_n \end{pmatrix}.$$

Hence $\lambda = 1$, for all x such that $\sum_{i=1}^{n} x_{c,1} \neq 0$. \square

OR. Prove that (T-I) is not invertible, so that we can conclude $\lambda=1$ is an eigenvalue.

Because
$$(T-I)x = (A-\mathcal{M}(I))x = \begin{pmatrix} \sum_{r=1}^{n} A_{1,r}x_r - x_1 \\ \vdots \\ \sum_{r=1}^{n} A_{n,r}x_r - x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}.$$

Then
$$y_1 + \dots + y_n = \sum_{r=1}^n \sum_{c=1}^n (A_{r,c} x_c - x_r) = \sum_{c=1}^n x_c \sum_{r=1}^n A_{r,c} - \sum_{r=1}^n x_r = 0.$$

Thus range
$$(T-I)\subseteq \{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\in \mathbf{F}^n: y_1+\cdots+y_n=0\}$$
. Hence $(T-I)$ is not surjective. \square

• Suppose $A \in \mathbb{F}^{n,n}$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by Tx = xA,

where elements of \mathbf{F}^n are thought of as 1-by-n row vectors.

(a) Suppose the sum of the entries in each column of A equals 1.

Prove that 1 is an eigenvalue of T.

(b) Suppose the sum of the entries in each row of A equals 1.

Prove that 1 is an eigenvalue of T.

SOLUTION:

(a) Suppose λ is an eigenvalue of T with an eigenvector $x = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}$.

Then
$$Tx = xA = \left(\sum_{r=1}^{n} x_r A_{r,1} \cdots \sum_{r=1}^{n} x_r A_{r,n}\right) = \lambda \left(x_1 \cdots x_n\right)$$
. While $\sum_{r=1}^{n} A_{r,C} = 1$ for each $C = 1, \dots, n$. Thus if we let $x_1 = \cdots = x_n$, then $\lambda = 1$, hence is an eigenvalue of T .

(b) Suppose λ is an eigenvalue of T with an eigenvector $x = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix}$.

Then
$$Tx = xA = \left(\sum_{c=1}^n x_c A_{c,1} \cdots \sum_{c=1}^n x_c A_{c,n}\right) = \lambda \left(x_1 \cdots x_n\right)$$
. While $\sum_{c=1}^n A_{R,c} = 1$ for each $R = 1, \dots, n$. Thus $\sum_{c=1}^n (xA)_{\cdot,c} = \sum_{c=1}^n (xA)_{1,c} = \sum_{c=1}^n (A_{c,1} + \cdots + A_{c,n}) x_c = \sum_{c=1}^n x_c = \lambda \left(x_1 + \cdots + x_n\right)$. Hence $\lambda = 1$, for all x such that $\sum_{c=1}^n x_{c,c} = 0$. \square

OR. Prove that (T-I) is not invertible, so that we can conclude $\lambda=1$ is an eigenvalue.

Because
$$(T - I)x = x(A - \mathcal{M}(I)) = \left(\sum_{c=1}^{n} x_c A_{c,1} - x_1 \cdots \sum_{c=1}^{n} x_c A_{c,n} - x_n\right) = \left(y_1 \cdots y_n\right).$$

Then $y_1 + \cdots + y_n = \sum_{c=1}^{n} \sum_{r=1}^{n} (x_r A_{r,c} - x_c) = \sum_{r=1}^{n} x_r \sum_{c=1}^{n} A_{r,c} - \sum_{c=1}^{n} x_c = 0.$

Thus range
$$(T-I)\subseteq\{\begin{pmatrix} y_1 & \cdots & y_n \end{pmatrix}, \in \mathbf{F}^n: y_1+\cdots+y_n=0\}$$
. Hence $(T-I)$ is not surjective. \square

25 Suppose $T \in \mathcal{L}(V)$ and u, w are eigenvectors of T

such that u + w is also an eigenvector of T.

Prove that u and w are eigenvectors of T corresponding to the same eigenvalue.

SOLUTION:

Suppose $\lambda_1, \lambda_2, \lambda_0$ are eigenvalues of T corresponding to u, w, u + w respectively.

Then
$$T(u+w) = \lambda_0(u+w) = Tu + Tw = \lambda_1 u + \lambda_2 w \Rightarrow (\lambda_0 - \lambda_1)u = (\lambda_2 - \lambda_0)w$$
.

Notice that u, w, u + w are nonzero.

If (u, w) is linearly dependent, then let w = cu, therefore

$$\lambda_2 c u = T w = c T u = \lambda_1 c u \qquad \Rightarrow \lambda_2 = \lambda_1.$$

$$\lambda_0 (u + w) = T (u + w) = \lambda_1 u + \lambda_1 c u = \lambda_1 (u + w) \Rightarrow \lambda_0 = \lambda_1.$$

Otherwise,
$$\lambda_0 - \lambda_1 = \lambda_2 - \lambda_0 = 0 \Rightarrow \lambda_1 = \lambda_2 = \lambda_0$$
. \square

26 Suppose $T \in \mathcal{L}(V)$ is such that every nonzero vector in V is an eigenvector of T.

Prove that T is a scalar multiple of the identity operator.

SOLUTION:

Because $\forall v \in V, \exists ! \lambda_v \in \mathbf{F}, Tv = \lambda_v v.$

Then for any two distinct nonzero vectors $v, w \in V$,

$$T(v+w) = \lambda_{v+w}(v+w) = Tv + Tw = \lambda_v v + \lambda_w w \Rightarrow (\lambda_{v+w} - \lambda_v)v = (\lambda_w - \lambda_{v+w})w.$$

If (v, w) is linearly independent, then let w = cv, therefore

$$\lambda_v c v = c T v = T w = \lambda_w w \qquad \Rightarrow \lambda_w = \lambda_v.$$

$$\lambda_{v+w}(v+w) = T(v+w) = Tv + Tw = \lambda_v(v+cv) \Rightarrow \lambda_{v+w} = \lambda_v.$$

Otherwise, $\lambda_v = \lambda_{v+w} = \lambda_w$. \square

```
27, 28 Suppose V is finite-dim and k \in \{1, \ldots, \dim V - 1\}.
          Suppose T \in \mathcal{L}(V) is such that every subspace of V of dim k is invariant under T.
          Prove that T is a scalar multiple of the identity operator.
SOLUTION:
   We prove the contrapositive:
        If T \neq \lambda I, \forall \lambda \in \mathbb{F}, then \exists a subspace U of V such that dim U = k, and U is invariant under T.
   By Problem (26), \exists v \in V and v \neq 0 such that v is not an eigenvector of T.
   Thus (v, Tv) is linearly independent. Extend to a basis of V as (v, Tv, u_1, \ldots, u_n).
   Let U = \operatorname{span}(v, u_1, \dots, u_{k-1}) \Rightarrow U is not an invariant subspace of V under T.
   OR. Suppose 0 \neq v = v_1 \in V and extend to a basis of V as (v_1, \ldots, v_n).
   Suppose Tv_1 = c_1v_1 + \cdots + c_nv_n, \exists ! c_i \in \mathbf{F}.
   Consider a k - dim subspace U = \text{span}(v_1, v_{\alpha_1}, \dots, v_{\alpha_{k-1}}),
              where \alpha_i \in \{2, \dots, n\} for each j, and \alpha_1, \dots, \alpha_{k-1} are distinct and are chosen arbitrarily.
   Because every subspace such U is invariant.
   Thus Tv_1 = c_1v_1 + \cdots + c_nv_n \in U
      \Rightarrow c_2 = \cdots = c_n = 0,
          for if not, for each c_i \neq 0, choose U_i such that \alpha_j \in \{\underbrace{2, \dots, i-1, i+1, \dots, n}_{\text{length } (n-2)}\} for each j,
          hence for Tv_1 = c_1v_1 + \cdots + c_{i-1}v_{i-1} + c_{i+1}v_{i+1} + \cdots + c_nv_n \in U_i, we conclude that c_i = 0.
      • Suppose V is finite-dim and T \in \mathcal{L}(V). Prove that
 T has an eigenvalue \iff \exists a subspace U of V
                                             such that dim U = \dim V - 1, U is invariant under T.
SOLUTION:
   (a) Suppose \lambda is an eigenvalue of T with an eigenvector v.
       ( If dim V = 1, then U = \{0\} and we are done. )
       Extend v_1 = v to a basis of V as (v_1, v_2, \dots, v_n).
       Step 1 If \exists w_1 \in \text{span}(v_2, \dots, v_n) such that 0 \neq Tw_1 \in \text{span}(v_1),
                 then extend w_1 = \alpha_{1,1} to a basis of span (v_2, \ldots, v_n) as (\alpha_{1,1}, \ldots, \alpha_{1,n-1}).
                 Otherwise, we stop at step 1.
       Step 2 If \exists w_2 \in \text{span}(\alpha_{1,2}, \dots, \alpha_{1,n-1}) such that 0 \neq Tw_2 \in \text{span}(v_1, w_1),
                 then extend w_2 = \alpha_{2,1} to a basis of span (\alpha_{1,2}, \ldots, \alpha_{1,n-1}) as (\alpha_{2,1}, \ldots, \alpha_{2,n-2}).
                 Otherwise, we stop at step 2.
       Step k If \exists w_k \in \text{span}(\alpha_{k-1,2},\ldots,\alpha_{k-1,n-k+1}) such that 0 \neq Tw_k \in \text{span}(v_1,w_1,\ldots,w_{k-1}),
                 then extend w_k = \alpha_{k,1} to a basis of span (\alpha_{k-1,2}, \ldots, \alpha_{k-1,n-k+1}) as (\alpha_{k,1}, \ldots, \alpha_{k,n-k}).
                 Otherwise, we stop at step k.
       Finally, we stop at step m, thus we get (v_1, w_1, \ldots, w_{m-1}) and (\alpha_{m-1,2}, \ldots, \alpha_{m-1,n-m+1}),
       range T|_{\text{span}(w_1,...,w_{m-1})} = \text{span}(v_1, w_1, ..., w_{m-2}) \Rightarrow \dim \text{null } T|_{\text{span}(w_1,...,w_{m-1})} = 0,
       span (v_1, w_1, \dots, w_{m-1}) and span (\alpha_{m-1,2}, \dots, \alpha_{m-1,n-m+1}) are invariant under T.
       Let U=\operatorname{span}\left(\alpha_{m-1,2},\ldots,\alpha_{m-1,n-m+1}\right)\oplus\operatorname{span}\left(v_1,w_1,\ldots,w_{m-2}\right) and we are done. \ \ \Box
       COMMENT: Both span (v_2, \ldots, v_n) and span (\alpha_{m-1,2}, \ldots, \alpha_{m-1,n-m+1}) \oplus \text{span}(w_1, \ldots, w_{m-1}) are in S_V \text{span}(v_1).
```

(b) Suppose U is an invariant subpsace of V under T with $\dim U = m = \dim V - 1$.
(If $m = 0$, then dim $V = 1$ and we are done).
Let (u_1, \ldots, u_m) be a basis of U , extend to a basis of V as (u_0, u_1, \ldots, u_m) .
We discuss in cases:
For $Tu_0 \in U$, then range $T = U$ so that T is not surjective \iff null $T \neq \{0\} \iff 0$ is an eigenvalue of T .
For $Tu_0 \not\in U$, then $Tu_0 = a_0u_0 + a_1u_1 + \dots + a_mu_m$.
(1) If $Tu_0 \in \text{span}(u_0)$, then we are done.
(2) Otherwise, if range $T _U = U$, then $Tu_0 = a_0u_0$ and we are done;
otherwise, $T _U: U \to U$ is not surjective (\Rightarrow not injective), suppose range $T _U \neq \{0\}$
(Suppose range $T _U = \{0\}$. If dim $U = 0$ then we are done.
Otherwise $\exists u \in U \setminus \{0\}, Tu = 0$ and we are done.)
then $\exists u \in U \setminus \{0\}, Tu = 0$, we are done. \square
29 Suppose V is finite-dim and $T \in \mathcal{L}(V)$.
Prove that T has at most $1 + \dim range T$ distinct eigenvalues.
SOLUTION:
Let $\lambda_1, \ldots, \lambda_m$ be the distinct eigenvalues of T and let v_1, \ldots, v_m be the corresponding eigenvectors.
For every $\lambda_k \neq 0$, $T(\frac{1}{\lambda_k}v_k) = v_k$. And if $T = T - 0I$ is not invertible, then $\exists ! \lambda_A = 0$ and $Tv_A = \lambda_A v_A = 0$.
Thus for $\lambda_k \neq 0, \forall k, (Tv_1, \dots, Tv_m)$ is a linearly independent list of length m in range T .
And for $\lambda_A = 0$, there is a linearly independent list of length at most $(m-1)$ in range T .
Hence, by [2.23], $m \leq \dim \operatorname{range} T + 1$. \square
30 Suppose $T \in \mathcal{L}(\mathbf{R}^3)$ and $-4, 5, \sqrt{7}$ are eigenvalues of T .
Prove that $\exists x \in \mathbb{R}^3$ such that $Tx - 9x = (-4, 5, \sqrt{7})$.
SOLUTION: Because 9 is not an eigenvalue. Hence $(T - 9I)$ is surjective. \Box
31 Suppose V is finite-dim and $v_1, \ldots, v_m \in V$.
Prove that (v_1, \ldots, v_m) is linearly independent
$\iff \exists T \in \mathcal{L}(V) \text{ such that } v_1, \ldots, v_m \text{ are eigenvectors of } T$
corresponding to distinct eigenvalues.
Solution:
Suppose (v_1, \ldots, v_m) is linearly independent, extend it to a basis of V as $(v_1, \ldots, v_m, \ldots, v_n)$.
Then define $T \in \mathcal{L}(V)$ by $Tv_k = kv_k$ for each $k \in \{1, \dots, m, \dots, n\}$.
Conversely by [5.10] it is true as well. \Box
32 Suppose that $\lambda_1, \ldots, \lambda_n$ are distinct real numbers. Prove that $(e^{\lambda_1}x, \ldots, e^{\lambda_n}x)$ is linearly independent in $\mathbb{R}^{\mathbb{R}}$.
HINT: Let $V = span(e^{\lambda_1}x, \dots, e^{\lambda_n}x)$, and define an operator $D \in \mathcal{L}(V)$ by $Df = f'$.
Find eigenvalues and eigenvectors of D . SOLUTION:
Define V and $D \in \mathcal{L}(V)$ as in HINT. Then because for each $k, D(e^{\lambda_k x}) = \lambda_k e^{\lambda_k x}$. Thus $\lambda_1, \dots, \lambda_n$ are distinct eigenvalues of D . By [5.10], $(e^{\lambda_1} x, \dots, e^{\lambda_n} x)$ is linearly independent in $\mathbb{R}^{\mathbb{R}}$. \square

• Suppose $\lambda_1, \ldots, \lambda_n$ are distinct positive numbers.
<i>Prove that</i> $(\cos(\lambda_1 x), \dots, \cos(\lambda_n x))$ <i>is linearly independent in</i> $\mathbb{R}^{\mathbb{R}}$.
SOLUTION:
Let $V = \operatorname{span}(\cos(\lambda_1 x), \dots, \cos(\lambda_n x))$. Define $D \in \mathcal{L}(V)$ by $Df = f'$.
Then because $D(\cos(\lambda_k x)) = -\lambda_k \sin(\lambda_k x)$. $\not \subset D(\sin(\lambda_k x)) = \lambda_k \cos(\lambda_k x)$.
Thus $D^2(\cos(\lambda_k x)) = -\lambda_k^2 \cos(\lambda_k x)$.
Notice that $\lambda_1, \ldots, \lambda_n$ are distinct $\Rightarrow -\lambda_1^2, \ldots, -\lambda_n^2$ are distinct.
Hence $-\lambda_1^2, \ldots, -\lambda_n^2$ are distinct eigenvalues of D^2
with the corresponding eigenvectors $\cos(\lambda_1 x), \ldots, \cos(\lambda_n x)$ respectively.
And then $(\cos(\lambda_1 x), \dots, \cos(\lambda_n x))$ is linearly independent in $\mathbb{R}^{\mathbb{R}}$. \square
$ullet$ Suppose V is finite-dim and $T\in\mathcal{L}(V)$.
Define $A \in \mathcal{L}(\mathcal{L}(V))$ by $A(S) = TS$ for each $S \in \mathcal{L}(V)$.
Prove that the set of eigenvalues of T equals the set of eigenvalues of A .
SOLUTION:
(a) Suppose $\lambda_1, \ldots, \lambda_m$ are all eigenvalues of T with eigenvectors v_1, \ldots, v_m respectively.
Extend to a basis of V as $(v_1, \ldots, v_m, \ldots, v_n)$.
Then for each $k \in \{1,, m\}$, span $(v_k) \subseteq \text{null } (T - \lambda_k I)$.
Define $S_k \in \mathcal{L}(V)$ by $S_k(v_j) = v_k$ for each $j \in \{1, \dots, n\}$,
so that range $S_k = \operatorname{span}(v_k)$ for each $k \in \{1, \dots, m\}$, then $A(S_k) = TS_k = \lambda_k S_k$.
Thus the eigenvalues of T are eigenvalues of A .
(b) Suppose $\lambda_1, \ldots, \lambda_m$ are all eigenvalues of A with eigenvectors S_1, \ldots, S_m respectively.
Then for each $k \in \{1,, m\}$, because $\forall v \in V, u = S_k(v) \in V \Rightarrow Tu = \lambda_k u$.
Thus the eigenvalues of A are eigenvalues of T . \square
$ullet$ COMMENT: Define $B \in \mathcal{L}(\mathcal{L}(V))$ by $B(S) = ST, \forall S \in \mathcal{L}(V)$. Then the eigenvalues of B are not the eigenvalues of T .
• Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is a subspace of V invariant under T .
The quotient operator $T/U \in \mathcal{L}(V/U)$ is defined by
$(T/U)(v+U) = Tv + U$ for each $v \in V$.
(a) Show that the definition of T/U makes sense
(which requires using the condition that U is invariant under T)
and show that T/U is an operator on V/U .
(b) (OR Problem 35) Show that each eigenvalue of T/U is an eigenvalue of T .
SOLUTION:
(a) Suppose $v + U = w + U$ ($\iff v - w \in U$).
Then because U is invariant under $T, T(v-w) \in U \iff Tv+U = Tw+U$.
Hence the definition of T/U makes sense.
(b) Suppose λ is an eigenvalue of T/U with an eigenvector $v+U$.
Then $(T/U)(v+U) = \lambda(v+U) = Tv + U = \lambda v + U \Rightarrow (T-\lambda I)v \in U$.
If $(T - \lambda I)v = 0 \Rightarrow Tv = \lambda v$, then we are done.
Otherwise, then $(T _U - \lambda I) : U \to U$ is invertible,
hence $\exists ! w \in U, (T _U - \lambda I)(w) = (T - \lambda I)v \Rightarrow T(v - w) = \lambda(v - w).$
Note that $v-w \neq 0$ (for if not, $v \in U \Rightarrow v+U=0+U$ is not an eigenvector).
Thus λ is an eigenvalue of T . \square

36 Prove or give an counterexample:

The result of (b) in Exercise 35 is still true if V is infinite-dim.

SOLUTION: An counterexample:

Consider $V = \operatorname{span}(1, e^x, e^{2x}, \dots)$ in $\mathbb{R}^{\mathbb{R}}$, and a subspace $U = \operatorname{span}(e^x, e^{2x}, \dots)$ of V.

Define $T \in \mathcal{L}(V)$ by $Tf = e^x f$. Then range T = U is invariant under T.

Consider $(T/U)(1+U) = e^x + U = 0$

 $\Rightarrow 0$ is an eigenvalue of T/U but is not an eigenvalue of T

(null $T = \{0\}$, for if not, $\exists f \in V \setminus \{0\}$, $(Tf)(x) = e^x f(x) = 0$, $\forall x \in \mathbb{R} \Rightarrow f = 0$, contradicts). \square

COMMENT: Using [5.6] requires that V is finite-dim.

33 Suppose $T \in \mathcal{L}(V)$. Prove that T/(range T) = 0.

SOLUTION:

 $\forall v + \text{range } T \in V/\text{range } T, v + \text{range } T \in \text{null } (T/(\text{range } T))$

 \Rightarrow null $(T/(\text{range }T)) = V/\text{range }T \Rightarrow T/(\text{range }T)$ is a zero map. \square

34 Suppose $T \in \mathcal{L}(V)$. Prove that $T/(\operatorname{null} T)$ is injective $\iff (\operatorname{null} T) \cap (\operatorname{range} T) = \{0\}$.

SOLUTION:

(a) Suppose T/(null T) is injective.

Then $(T/(\operatorname{null} T))(u + \operatorname{null} T) = Tu + \operatorname{null} T = 0$

 $\iff Tu \in \operatorname{null} T \not \subset Tu \in \operatorname{range} T \iff u + \operatorname{null} T = 0 \iff u \in \operatorname{null} T \iff Tu = 0.$

Thus $(\text{null } T) \cap (\text{range } T) = \{0\}.$

(b) Suppose $(\text{null } T) \cap (\text{range } T) = \{0\}.$

Then $(T/(\operatorname{null} T))(u + \operatorname{null} T) = Tu + \operatorname{null} T = 0$

 $\Longleftrightarrow Tu \in \operatorname{null} T \not \subset Tu \in \operatorname{range} T \Longleftrightarrow Tu = 0 \Longleftrightarrow u \in \operatorname{null} T \Longleftrightarrow u + \operatorname{null} T = 0.$

Thus $T/(\operatorname{null} T)$ is injective. \square

ENDED

5.B: I [See **5.B:** II below.]

COMMENT: 这里为了照顾 5.B 节两版过大的差距,特别将 5.B 补注分成 \mathbb{I} 和 \mathbb{I} 两部分。

又考虑到第 4 版中 5.B 节的「本征值与极小多项式」与「奇维度实向量空间的本征值」 (相当一部分是从原第 3 版 8.C 节挪过来的)是对原第 3 版「多项式作用于算子 | 与

[本征值的存在性 | (也即第3版5.B前半部分)的极大扩充,这一扩充也大大改变了

原第3版后半部分的「上三角矩阵 | 这一小节,故而将第4版5.B节放在第3版5.B节前面。

I 部分除了覆盖第 4 版 5.B 节和第 3 版 5.B 节前半部分与之相关的所有习题,还会覆盖第 4 版 5.A 节末。 II 部分除了覆盖第 3 版 5.B 节后半部分「上三角矩阵」这一小节,还会覆盖第 4 版 5.C 节;并且,下面 5.C 还会覆盖第 4 版 5.D 节。

- (a) Prove that T is injective \iff T^m is injective.
- (b) Prove that T is surjective $\iff T^m$ is surjective.

SOLUTION:

(a) Suppose T^m is injective. Then $Tv=0 \Rightarrow T^{m-1}Tv=T^mv=0 \Rightarrow v=0$. \Box Suppose T is injective.

Then
$$T^m v = T(T^{m-1}v) = 0$$

$$\Rightarrow T^{m-1}v = 0 = T(T^{m-2}v) \Rightarrow \cdots$$

$$\Rightarrow T^2v = TTv = 0$$

$$\Rightarrow Tv = 0 \Rightarrow v = 0. \quad \Box$$

(b) Suppose T^m is surjective. $\forall u \in V, \exists v \in V, T^m v = u = Tw, \text{ let } w = T^{m-1}v.$ \Box Suppose T is surjective.

Then
$$\forall u \in V, \exists v \in V, T(\underline{v}) = u$$

$$\Rightarrow \exists v_2 \in V, Tv_2 = \underline{v}, T^2(\underline{v_2}) = u$$

$$\vdots$$

$$\Rightarrow \exists v_k \in V, Tv_k = \underline{v_{k-1}}, T^k(\underline{v_k}) = u$$

$$\vdots$$

$$\Rightarrow \exists v_{m-1} \in V, Tv_{m-1} = \underline{v_{m-2}}, T^{m-1}(\underline{v_{m-1}}) = u$$

$$\Rightarrow \exists v_m \in V, Tv_m = v_{m-1}, T^{m-1}(Tv_m) = u. \quad \Box$$

• NOTE FOR [5.17]: Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}(\mathbf{F})$.

Prove that null p(T) *and range* p(T) *are invariant under* T.

SOLUTION: Using the commutativity in [5.10].

(a) Suppose $u \in \text{null } p(T)$. Then p(T)u = 0.

Thus p(T)(Tu) = (p(T)T)u(Tp(T))u = T(p(T)u) = 0. Hence $Tu \in \operatorname{null} p(T)$. \square

(b) Suppose $u \in \text{range } p(T)$. Then $\exists v \in V \text{ such that } u = p(T)v$.

Thus $Tu = T(p(T)v) = p(T)(Tv) \in \operatorname{range} p(T)$. \square

• NOTE FOR [5.21]: Every operator on a finite-dim nonzero complex vector space has an eigval.

Suppose V is a finite-dim complex vector space of dim n > 0 and $T \in \mathcal{L}(V)$. Choose a nonzero $v \in V$.

Then because dim V = n < n+1, the list $(v, Tv, T^2v, \dots, T^nv)$ of length n+1 is not linearly independent.

Suppose $a_0I + a_1T + \cdots + a_nT^n = 0$. Then $\exists a_j \neq 0$.

Thus \exists a nonconst poly p of smallest degree ($\deg p > 0$) such that p(T)v = 0.

By [4.13] and [4.11], $\exists \lambda \in \mathbb{C}$ such that $p(\lambda) = 0 \Rightarrow \exists q \in \mathcal{P}(\mathbb{C}), p(z) = (z - \lambda)q(z), \forall z \in \mathbb{C}$.

Thus using [5.20], $0 = p(T)v = (T - \lambda I)(q(T)v)$.

By the minimality of deg p and deg $q < \deg p$, $q(T)v \neq 0$. Then $(T - \lambda I)$ is not injective.

Thus λ is an eigval of T with eigvec q(T)v.

- COMMENT: The hypothesis in the result above that $\mathbf{F} = \mathbf{C}$ cannot be replaced with the hypothesis that $\mathbf{F} = \mathbf{R}$, as shown by [5.8].
- **EXAMPLE:** an operator on a complex vector space with no eigvals

Define $T \in \mathcal{L}(\mathcal{P}(\mathbf{C}))$ by (Tp)(z) = zp(z).

Suppose $p \in \mathcal{P}(\mathbb{C})$ is a nonzero poly. Then $\deg Tp = \deg p + 1$, and thus $Tp \neq \lambda p, \ \forall \lambda \in \mathbb{C}$.

Hence T has no eigvals. Because $\mathcal{P}(\mathbf{C})$ is infinite-dim, this example does not contradict the result above.

• Note For [8.40]: existence, uniqueness, and degree of minimal polynomial Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that \exists ! monic poly $p \in \mathcal{P}(\mathbf{F})$ of smallest degree such that p(T) = 0. Furthermore, $\deg p \leq \dim V$. SOLUTION: | Existence Part | If dim V=0, then $I=0\in\mathcal{L}(V)$ and let p=1. Now use induction on dim V. Assume that dim V > 0 and that the desired result is true for all operators on all vecsps of smaller dim. Let $u \in V, u \neq 0$. The list $(u, Tu, \dots, T^{\dim V}u)$ of length $(1 + \dim V)$ is linearly dependent. By linear dependence lemma, $\exists ! T^m$ of smallest degree such that $T^m u \in \text{span}(u, Tu, \dots, T^{m-1}u)$. Thus $\exists c_i \in \mathbf{F}$ such that $c_0u + c_1Tu + \cdots + c_{m-1}T^{m-1}u + T^mu = 0$. Define a monic q by $q(z) = c_0 + c_1 z + \cdots + c_{m-1} z^{m-1} + z^m$. Then $q(T)(T^k u) = T^k(q(T)u) = 0, \forall k \in \mathbb{N}$. $\mathbb{X}(u, Tu, \dots, T^{m-1}u)$ is linearly independent. Let $k \in \{1, \dots, m-1\}$, then dim null $q(T) \geq m$. Hence dim range $q(T) = \dim V - \dim \operatorname{null} q(T) \le \dim V - m$. Now let range q(T) = W. Then by assumption, \exists a monic poly $s \in \mathcal{P}(\mathbf{F})$ and $\deg s \leq \dim W, s(T|_W) = 0$. Hence $\forall v \in V, ((sq)(T))(v) = s(T)(q(T)v) = 0$ because $q(T)v \in W$ and $s(T)|_W = s(T|_W) = 0$. Thus sq is a monic poly such that $\deg sq \leq \dim V$ and (sq)(T) = 0. | Uniqueness Part | Let $p, q \in \mathcal{P}(\mathbf{F})$ be monic polys of smallest degree such that p(T) = q(T) = 0 $\Rightarrow (p-q)(T) = 0 \ \ensuremath{\mathbb{Z}} \ \deg(p-q) < \deg p.$ If $p-q=a_mz^m+\cdots+a_1z_1+a_0\neq 0$, then $\frac{1}{a_m}(p-q)$ is a monic poly of smaller degree than p. Hence contradicts the minimality of deg p. Otherwise, p-q=0 and we are done. \square **1** Suppose $T \in \mathcal{L}(V)$ and $\exists n \in \mathbb{N}^+$ such that $T^n = 0$. Prove that (I-T) is invertible and $(I-T)^{-1} = I + T + \cdots + T^{n-1}$. **SOLUTION: 2** Suppose $T \in \mathcal{L}(V)$ and (T - 2I)(T - 3I)(T - 4I) = 0. Suppose λ is an eigval of T. Prove that $\lambda = 2$ or $\lambda = 3$ or $\lambda = 4$. SOLUTION: **3** Suppose $T \in \mathcal{L}(V)$, $T^2 = I$ and -1 is not an eigend of T. Prove that T = I. **SOLUTION: 5** Suppose $S, T \in \mathcal{L}(V), S$ is invertible, and $p \in \mathcal{P}(\mathbf{F})$. Prove that $p(TS) = S^{-1}p(ST)S$. **SOLUTION: 6** Suppose $T \in \mathcal{L}(V)$ and U is a subspace of V invariant under T. Prove that U is invariant under p(T) for every poly $p \in \mathcal{P}(\mathbf{F})$.

7 Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigval of $T^2 \iff 3$ or -3 is an eigval of T. SOLUTION: COMMENT: See also in (5.A.22). • Suppose $n \in \mathbb{N}^+$. Define $T \in \mathcal{L}(\mathbb{F}^n)$ by $T(x_1, \dots, x_n) = (x_1 + \dots + x_n, \dots, x_1 + \dots + x_n)$. [See also at (5.A.19)] Find the mini poly of T. **SOLUTION:** • (See also in [5.8] example) Define $T \in \mathcal{L}(\mathbf{F}^2)$ by T(w,z) = (-z,w). Find the mini poly of T. SOLUTION: • (4E 5.B.7) (a) Give an example of $S, T \in \mathcal{L}(\mathbf{F}^2)$ such that the mini poly of ST does not equal the mini poly of TS. (b) Suppose V is finite-dim and $S, T \in \mathcal{L}(V)$. Prove that if S or T is invertible, then the mini poly of ST equals the mini poly of TS. **SOLUTION: 8** (OR 4E 5.A.31) Give an example of $T \in \mathcal{L}(\mathbf{R}^2)$ such that $T^4 = -I$. **SOLUTION:** • (4E 5.A.32) Suppose $T \in \mathcal{L}(V)$ has no eigvals and $T^4 = I$. Prove that $T^2 = -I$. SOLUTION: • (4E 5.B.8) Suppose $T \in \mathcal{L}(\mathbf{R}^2)$ is the operator of counterclockwise rotation by 1° . Find the minimal polynomial of T. Because dim $\mathbb{R}^2 = 2$, the degree of the mini poly of T is at most 2. Thus the mini poly of T is not the tempting polynomial $x^{180} + 1$, even though $T^{180} = -I$. **SOLUTION:** • (4E 5.B.9) Suppose $T \in \mathcal{L}(V)$ is such that with respect to some basis of V, all entries of the matrix of T are rational numbers.

Explain why all coefficients of the mini poly of T are rational numbers.

• (4E 5.B.10)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.

Prove that $\forall m \in \mathbb{N}, m \geq \dim V - 1, span(v, Tv, \dots, T^m v) = span(v, Tv, \dots, T^{\dim V - 1}v).$

SOLUTION:

11 Suppose $\mathbf{F} = \mathbf{C}$, $T \in \mathcal{L}(V)$, $p \in \mathcal{P}(\mathbf{C})$, and $\alpha \in \mathbf{C}$.

Prove that α *is an eigval of* $p(T) \iff \alpha = p(\lambda)$ *for some eigval* λ *of* T.

SOLUTION:

12 Give an example of an operator on \mathbb{R}^2

that shows the result above does not hold if C is replaced with R.

SOLUTION:

13 Suppose V is a complex vector space and $T \in \mathcal{L}(V)$ has no eigvals.

Prove that every subspace of V *invariant under* T *is either* $\{0\}$ *or infinite-dim.*

SOLUTION:

16 Define $S \in \mathcal{L}(\mathcal{P}_n(\mathbf{C}), V)$ by S(p) = p(T)v. Prove [5.21] using [3.23].

SOLUTION:

17 Define $S \in \mathcal{L}(\mathcal{P}_{n^2}(\mathbb{C}), V)$ by S(p) = p(T)v. Prove [5.21] using [3.23].

SOLUTION:

• (4E 5.B.11)

Suppose V is a two-dim vecsp, $T \in \mathcal{L}(V)$, and the matrix of T with respect to some basis of V is $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$.

- (a) Show that $T^2 (a + d)T + (ad bc)I = 0$.
- (b) Show that the mini poly of T equals

$$\begin{cases} z-a & \text{if } b=c=0 \text{ and } a=d, \\ z^2-(a+d)z+(ad-bc) & \text{otherwise.} \end{cases}$$

SOLUTION:

• (4E 5.B.12 See also at 5.A.9)

Define $T \in \mathcal{L}(\mathbf{F}^n)$ by $T(x_1, x_2, x_3, \dots, x_n) = (x_1, 2x_2, 3x_3, \dots, nx_n)$. Find the mini poly.

• (4E 5.B.13)

Suppose $T \in \mathcal{L}(V)$ and $p \in \mathcal{P}()$.

Prove that \exists ! $r \in \mathcal{P}()$ *such that* p(T) = r(T)

and deg r is less than the degree of the mini poly of T.

SOLUTION:

• (4E 5.B.14)

Suppose V is finite-dim and $T \in \mathcal{L}(V)$ has mini poly $4 + 5z - 6z^2 - 7z^3 + 2z^4 + z^5$. Find the minimal poly.

SOLUTION:

18 (OR 4E 5.B.15)

Suppose V is a finite-dim complex vector space with dim V > 0 and $T \in \mathcal{L}(V)$.

Define $f: \mathbb{C} \to \mathbb{R}$ by $f(\lambda) = \dim range(T - \lambda I)$. Prove that f is not a continuous function.

SOLUTION:

19 Suppose that V is finite-dim, dim V > 1, and $T \in \mathcal{L}(V)$.

Prove that $\{p(T): p \in \mathcal{P}(\mathbf{F})\} \neq \mathcal{L}(V)$.

SOLUTION:

• OR (4E 5.B.16), OR (8.C.18)

Suppose $a_0, \ldots, a_{n-1} \in \mathbf{F}$. Let T be the operator on \mathbf{F}^n such that

$$\mathcal{M}(T) = \begin{pmatrix} 0 & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & & \vdots \\ & \ddots & 0 & -a_{n-2} \\ & & 1 & -a_{n-1} \end{pmatrix}, with respect to the standard basis.$$

Show that the mini poly of T is $a_0 + a_1z + \cdots + a_{n-1}z^{n-1} + z^n$.

 $\mathcal{M}(T)$ is called the **companion matrix** of the poly above. This exercise shows that every monic poly is the mini poly of some operator. Hence a formula or an algorithm that could produce exact eigvals for each operator on each \mathbf{F}^n could then produce exact zeros for each poly [by 8.36(b)]. Thus there is no such formula or algorithm. However, efficient numeric methods exist for obtaining very good approximations for the eigvals of an operator.

SOLUTION:

• (4E 5.B.17)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and p is the mini poly of T. Suppose $\lambda \in \mathbf{F}$.

Show that the mini poly of $(T - \lambda I)$ is the polynomial q defined by $q(z) = p(z + \lambda)$.

• (4E 5.B.18) Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and p is the mini poly of T . Suppose $\lambda \in \mathbf{F} \setminus \{0\}$. Show that the mini poly of λT is the polynomial q defined by $q(z) = \lambda^{\deg p} p(\frac{z}{\lambda})$. Solution:
• (4E 5.B.19) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $\mathcal{E} = \{q(T): q \in \mathcal{P}(\mathbf{F})\}$. Prove that dim \mathcal{E} equals the degree of the minimal polynomial of T . Solution:
• (4E 5.B.20) $Suppose\ T\in L({\bf F}^4)\ is\ such\ that\ the\ eigvals\ of\ T\ are\ 3,5,8.$ $Prove\ that\ (T-3I)^2(T-5I)^2(T-8I)^2=0.$ Solution:
• (4E 5.B.21) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Prove that the mini poly of T has degree at most $1 + \dim range T$. If $\dim range T < \dim V - 1$, then this exercise gives a better upper bound than NOTE FOR [8.40] for the degree of mini poly. SOLUTION:
• (4E 5.B.22) Suppose V is finite-dim, $T \in \mathcal{L}(V)$. Prove that T is invertible $\iff I \in span\left(T, T^2, \ldots, T^{\dim V}\right)$ Solution:
• (4E 5.B.23) Suppose V is finite-dim and $T \in \mathcal{L}(V)$. Let $n = \dim V$. Prove that if $v \in V$, then span $(v, Tv, \dots, T^{n-1}v)$ is invariant under T . Solution:
• (4E 5.B.24) Suppose V is a finite-dim complex vecsp, $T \in \mathcal{L}(V)$ is such that 5 and 6 are eigvals of T and that T has no other eigvals. Prove that $(T-5I)^{\dim V-1}(T-6I)^{\dim V-1}=0$. Solution:
• (4E 5.B.25)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and U is a subspace of V that is invariant under T. Let p be the mini poly of T.

(a) Prove that p is a polynomial multiple of the mini poly of T/U.

SOLUTION:

• (4E 5.C.3)

Suppose $T \in \mathcal{L}(V)$ is invertible and (v_1, \ldots, v_n) is a basis of V with respect to which the matrix of T is upper trig, with $\lambda_1, \ldots, \lambda_n$ on the diagonal. Show that the matrix of T^{-1} is also upper trig with respect to the same basis, with $\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_n}$ on the diagonal.

SOLUTION:

9 (4E 5.C.7)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $v \in V$.

- (a) Prove that \exists ! monic poly p_v of smallest degree such that $p_v(T)v = 0$.
- (b) Prove that the mini poly of T is a polynomial multiple of p_v .

SOLUTION:

14 (OR 4E 5.C.4)

Give an operator T such that with respect to some basis, $\mathcal{M}(T)_{k,k} = 0$ for each k, while T is invertible.

SOLUTION:

15 (OR 4E 5.C.5)

Give an operator T such that with respect to some basis, $\mathcal{M}(T)_{k,k} \neq 0$ for each k, while T is not invertible.

SOLUTION:

20 (OR 4E 5.C.6)

Suppose $\mathbf{F} = \mathbf{C}$, V is finite-dim, and $T \in \mathcal{L}(V)$.

Prove that if $k \in \{1, ..., \dim V\}$, then V has a k dim subspace invariant under T.

SOLUTION:

• (4E 5.C.8)

Suppose V is finite-dim, $T \in \mathcal{L}(V)$, and $\exists v \in V \setminus \{0\}$ such that $T^2v + 2Tv = -2v$.

- (a) Prove that if $\mathbf{F} = \mathbf{R}$, then \nexists a basis of V with respect to which T has an upper-trig matrix.
- (b) Prove that if $\mathbf{F} = \mathbf{C}$ and A is an upper-trig matrix that equals the matrix of T with respect to some basis of V, then -1 + i or -1 i appears on the diagonal of A.

SOLUTION:

• (4E 5.C.9)

Suppose $B \in \mathbf{F}^{n,n}$ with complex entries.

5.C •N	
SOLUTION:	
• N	
SOLUTION:	
• N	
SOLUTION:	
• N	
SOLUTION:	
• N	
SOLUTION:	
• N	
SOLUTION:	
• N	
SOLUTION:	
• N	
SOLUTION:	
• N	
SOLUTION:	

• 1		
SOLUTION:		
• N	 	
SOLUTION:		
• N	 	
SOLUTION:		
• N		
SOLUTION:		
• N	 	
SOLUTION:		
• N		
SOLUTION:		
• N		
SOLUTION:		
• N		
SOLUTION:		
• N		
SOLUTION:		

• N

SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	
SOLUTION:			
• N	 	 	

SOLUTION:
• N
SOLUTION:
Ended
5.E* (4E) 1 Give an example of two commuting operators $S, T \in \mathbf{F}^4$ such that there is a subspace of \mathbf{F}^4 that is invariant under S but not under T and there is a subspace of \mathbf{F}^4 that is invariant under T but not under S .
SOLUTION:
2 Suppose \mathcal{E} is a subset of $\mathcal{L}(V)$ and every element of \mathcal{E} is diagonalizable. Prove that \exists a basis of V with respect to which every element of \mathcal{E} has a diagonal matrix \iff every pair of elements of \mathcal{E} commutes. This exercise extends [5.76], which considers the case in which \mathcal{E} contains only two elements. For this exercise, \mathcal{E} may contain any number of elements, and \mathcal{E} may even be an infinite set. SOLUTION:

3 Suppose $S, T \in \mathcal{L}(V)$ are such that ST = TS. Suppose $p \in \mathcal{P}(\mathbf{F})$.

(a) Prove that $\operatorname{null} p(S)$ is invariant under T . (b) Prove that range $p(S)$ is invariant under T . See Note For [5.17] for the special case $S=T$. Solution:
If A is a diagonal matrix and B is an upper-trig matrix of the same size as A , then A and B commute. Solution:
5 Prove that a pair of operators on a finite-dim vecsp commute \$\iff their dual operators commute.\$ SOLUTION:
Suppose V is a finite-dim complex vecsp and $S, T \in \mathcal{L}(V)$ commute. Prove that $\exists \alpha, \lambda \in \mathbb{C}$ such that range $(S - \alpha I) + range(T - \lambda I) \neq V$. Solution:
The Suppose V is a complex vecsp, $S \in \mathcal{L}(V)$ is diagonalizable, and T commutes with S . Prove that \exists basis B of V such that S has a diagonal matrix with respect to B and T has an upper-trig matrix with respect to B . Solution:
Suppose $m=3$ in Example [5.72] and D_x , D_y are the commuting partial differentiation operators on $\mathcal{P}_3(\mathbf{R}^2)$ from that example. Find a basis of $\mathcal{P}_3(\mathbf{R}^2)$ with respect to which D_x and D_y each have an upper-trig matrix. Solution:

9 Suppose V is a finite-dim nonzero complex vecsp.

Suppose that $\mathcal{E} \subseteq \mathcal{L}(V)$ is such that S and T commute for all $S, T \in \mathcal{E}$.

- (a) Prove that $\exists v \in V$ is an eigence for every element of \mathcal{E} .
- (b) Prove that \exists a basis of V with respect to which every element of \mathcal{E} has an upper-trig matrix. Solution:
- 10 Give an example of two commuting operators S,T on a finite-dim real vecsp such that S+T has a eigval that does not equal an eigval of S plus an eigval of T and ST has a eigval that does not equal an eigval of S times an eigval of S.

	ENDED
• N	
SOLUTION:	