Parallelism (PAR)

 $\label{eq:Data-aware task decomposition strategies} \mbox{(or ... how to reduce memory coherence traffic in your parallelization)}$

Eduard Ayguadé, José Ramón Herrero, Daniel Jiménez and Gladys Utrera

> Computer Architecture Department Universitat Politècnica de Catalunya

Course 2021/22 (Fall semester)

Learning material for this Unit

- Atenea: Unit 5 Data decomposition
 - Atenea quizz with motivation example
 - Going further: distributed-memory architectures video lesson (OPTIONAL)
- ▶ These slides to deep dive into the concepts in this Unit
- Collection of Exercises: problems in Chapter 5

Task creation in OpenMP (summary)

#pragma omp parallel: One implicit task is created for each thread in the team (and immediately executed)

- ▶ int omp_get_num_threads: returns the number of threads in the current team. 1 if outside a parallel region
- int omp_get_thread_num: returns the identifier of the thread in the current team, between 0 and omp_get_num_threads()-1

Outline

Reducing memory coherence traffic: improving locality by data decomposition

Reducing memory coherence traffic: avoiding false sharing

Task vs. data decompositions

We can imagine¹ data to be distributed across the multiple memories in our NUMA multiprocessor system ...

 \dots then, can we try to assign work so that tasks executed in a certain NUMA node access the data that is stored in the main memory of that NUMA node

- Use of implicit tasks created in parallel ...
- ... and the identifier of the thread they are running to decide what to execute

¹Easy to imagine if we remember first touch, which brings data to the memory of the NUMA node that first touches it.

Data distributions for geometric decomposition

Block (left) and cyclic (right) data decompositions

Data distributions for geometric decomposition

Block (left) and cyclic (right) data decompositions in a triangular iteration space

Data distributions for geometric decomposition

Cyclic (left) and block-cyclic (right) data decompositions

Example: matrix multiply using implicit tasks (1)

Let's write the code for a geometric block data decomposition by rows applied to both matrices A (input) and C (output)

Example: matrix multiply using implicit tasks (2)

Load balancing problem: last implicit task may get up to numprocs-1 additional iterations!

Example: matrix multiply using implicit tasks (3)

Let's reduce the load unbalance to 1 iteration at most ...

```
void matmul (double C[MATSIZE][MATSIZE],
             double A[MATSIZE][MATSIZE],
             double B[MATSIZE][MATSIZE]) {
int i, j, k;
#pragma omp parallel
   int myid = omp_get_thread_num();
   int numprocs = omp_get_num_threads();
   int i_start = myid * (MATSIZE/numprocs);
   int i_end = i_start + (MATSIZE/numprocs);
   int rem = MATSIZE % numprocs;
   if (rem != 0) {
       if (myid < rem) {
           i_start += myid;
           i end += (mvid+1):
       } else {
           i_start += rem;
           i end += rem:
```

Code transformations for other data decompositions (1)

CYCLIC DATA DECOMPOSITION, by ROWS


```
#pragma omp parallel private (i, j)
{
   int my_id = omp_get_thread_num();
   int howmany = omp_get_num_threads();

   for (int i=my_id; i<N; i+= howmany)
        for (int j=0; j<N; j++)
    ...
}</pre>
```

BLOCK-CYCLIC DATA DECOMPOSITION, by COLUMNS

Code transformations for other data decompositions (2)

2D BLOCK / BLOCK DATA DECOMPOSITION

Data distributions for recursive decomposition (Optional)

Quadtree to represent particles in an N-body problem

- Each leaf node stores position and mass for a body
- Other nodes store center of mass and total mass for all bodies below

Data distributions for recursive decomposition

Orthogonal distribution of the particles of an N-body, so that in each bi-partition the number of particles in each side is halved (load balancing)

Example: N-body computation (sequential)

Sequential code

TreeNode structure

```
typedef struct {
...
char isLeaf
TreeNode *quadrant[2][2];
double F; // force on node
double center_of_mass[3];
double mass_of_center;
...
} TreeNode:
```

Calculate forces implementation

A distant subtree is approximated as a single body with mass/center

Example: N-body computation (data decomposition)

Each thread computes the forces in each node caused by the sub-tree assigned to it

Outline

Reducing memory coherence traffic: improving locality by data decomposition

Reducing memory coherence traffic: avoiding false sharing

Examples/situations of false sharing \dots (1)

Possible solution: introduce some load unbalance, so that BS corresponds with a number of elements that fit in a number of complete cache lines

Examples/situations of false sharing ... (2)

```
#pragma omp parallel
{
    int myid = omp_get_thread_num();
    int howmany = omp_get_num_threads();
    for (i=myid; i<n; i+=howmany) A[i] = foo(i*23);
}</pre>
```

A Po P1 P2 P3 P0 P1 P2 P3 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3 P1 P2 P

Possible solution: make larger chunk size (p.e. 4) \rightarrow block-cyclic

Alternative solution: Add padding – i.e. one element per cache line

How? int A[100]; \rightarrow A[100][4]; And the access needs to change ... A[i][0] = foo(i*3);

Examples/situations of false sharing ... (3)

In 2D matrices we can also have false sharing problems ... solutions ?

▶ block → block-cyclic

Add some padding

Parallelism (PAR)

 $\label{eq:Data-aware task decomposition strategies} \mbox{(or ... how to reduce memory coherence traffic in your parallelization)}$

Eduard Ayguadé, José Ramón Herrero, Daniel Jiménez and Gladys Utrera

> Computer Architecture Department Universitat Politècnica de Catalunya

Course 2021/22 (Fall semester)