

République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Page: 1/4

Date: 22/06/2021

EPREUVE D'EVALUATION

	A ug v z				
Année Universitaire : 2020/2021	Date de l'Examen : 22/06/2021				
Nature: ☐ DC	Durée: ☐ 1h ☐ 1h30min ☑ 2h				
Diplôme : ☐ Mastère ☐ Ingénieur	Nombre de pages : 4				
Section: ☐ GCP ☐ GCV ☐ GEA ☐ GCR ☐ GM	Enseignant (e): BENHAMAD Maha				
Niveau d'étude : ☑ 1 ère ☐ 2 ème ☐ 3 ème année	Documents Autorisés :□ Oui ☑ Non				
Matière : Mesure et Instrumentation	Remarque: Calculatrice autorisée				

A- Questions de cours (3pts)

- 1) Quelle est la différence entre thermistance et thermocouple? (1 pt)
- 2) Décrire un thermocouple : son principe de fonctionnement et sa mise en œuvre. (1 pt)
- 3) En quoi consiste l'étalonnage d'un capteur ? (1 pt)

B- Exercices (Les détails des calculs doivent apparaître sur les copies)

Exercice 1: (4 pts)

La jonction de mesure d'un thermocouple, muni de son système d'affichage et de son système de compensions de sa jonction de référence, se trouvant initialement à température ambiante T_A=21°C, est brusquement plongée dans un bain d'eau chaude à température constante et égale à 60°C. Les températures relevées en fonction du temps sont données dans le tableau suivant:

t [s]	0	0,2	0,4	0,6	0,8	1	1,2
T [°C]	, 21	35,3	45,6	51,3	53,8	56	58

La loi d'évolution de la température de la jonction de mesure en fonction du temps a pour expression:

$$T(t) = A \exp(-t / \tau) + B$$

Avec t est le temps, A et B sont des constantes et τ le temps de réponse du thermocouple.

- 1. Calculer les constantes A et B sans oublier les unités. (2 pt)
- 2. Déduire la valeur de τ (1 pt)
- 3. Calculer le temps t auquel la température de la jonction de mesure atteint 59°C. (1 pt)

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Date: 22/06/2021

Page: 2/4

EPREUVE D'EVALUATION

Exercice 2: (6 pts) (

On désire étudier l'étalonnage d'un thermocouple de type J : Composition : Fer / Constantan (alliage nickel et cuivre) entre la température ambiante 24°C et 450°C à l'aide d'un four. On notera la f.e.m qu'il délivre, lorsque sa jonction de mesure (chaude) est à la température T et sa avec jonction de référence à 24°C. Les différentes valeurs expérimentales sont données dans le tableau suivant :

T (°C)	24	30	60	90	120	150	180	210	240
f.e.m (mV)	-0,6	-0,1	1,8	3,3	4,9	6,4	8,1	9,8	11,4

T (°C)	270	300	330	360	390	420	450
f.e.m (mV)	13,4	15	16,7	18,7	20,4	22	23,1

1- Tracer la courbe f.e.m = f(T). (Tpt)

2- Calculer la sensibilité du thermocouple à T=100°C, $\mathbf{S}_{(T=100^{\circ}C)}^{\dagger}$ et à T= 400 °C, $\mathbf{S}_{(T=400^{\circ}C)}$. pt)

3- Quelle serait la valeur de f.e.m délivrée par le thermocouple si sa jonction de mesure était à la température ambiante et la jonction de référence était à 0° C. (Indiquer la valeur sur la courbe). (1 pt)

4- Déduire les valeurs des f.e.m délivrées aux différents températures de l'étalonnage dans l'hypothèse si la jonction de référence aurait été à 0° C. Tracer la courbe f.e.m =f (T) Jema = Jen + C sur la même figure (Question 1). (1 pt)

Déterminer le polynôme d'ordre 2 qui approche mieux la f.e.m en fonction de T. On considère la jonction de référence est à 0°C. (2 pt)

Exercice 3: (7 pts) (4)

On se propose de réaliser un transmetteur permettent d'actionner un régulateur pour maintenir, constante, la température T d'un four autour de 200°C (±10°C). Pour cela on utilise comme capteur une sonde à résistance électrique en Nickel Rc(T) dont les caractéristiques sont les suivantes:

$$R_C(T) = R_0 \times (1+5,510^{-3}T-6,710^{-6}T^2)$$

Avec : R_0 la valeur de la résistance $R_C(T)$ à $T=0^{\circ}C$: $R_0=100\Omega$

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès

Indice: 3

EPREUVE D'EVALUATION

Date: 22/06/2021

Réf: DE-EX-01

Page: 3/4

Cette résistance forme la branche AD d'un pont de Wheatstone. La branche AB est formée par une résistance de précision de valeur fixe R₁. Les deux branches BC et CD sont formées de deux résistances de précision et de valeurs fixes et égales $R=1K\Omega$. Le pont est alimenté par une source de tension constante E (Voir Figure 1).

Figure 1

- 1- Quelle valeur numérique doit on donner à R_1 pour que le signal $S=V_B-V_D$ soit égale à zéro à T=200°C. (1 pt)
- 2- Pour des faibles variations de la température T autour d'une valeur T*; on peut approximer la loi de variation de $R_C(T)$ par une loi de variation linéaire. Soit :

$$R_C(T) = R_C(T^*) \times (1 + \alpha_R(T^*) \times (T - T^*))$$

- a. Que répresente $\alpha_R(T^*)$? Rappler son expression (0,5 pt)
- b. Calculer la valeur de $\alpha_R(T^*)$ pour $T^*=200$ °C. (0.5 pt)

Dans toute la suite de l'exercice on notera $\alpha_R(T^* = 200^{\circ}C)$ par α_R .

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Date: 22/06/2021

Page: 4/4

EPREUVE D'EVALUATION

- 3- Exprimer les courants I1 et I2 qui circulent dans les deux branches respectives du pont en fonction de E, R, R₁, et R_C(T) (1 pt)
- 4- Montrer que le signal S du déséquilibre du pont peut être exprimé par la relation suivante: (1 pts)

$$S = \frac{E.R_1.R.\alpha_R.(T-200)}{(R_1 + R)^2 \left(1 + \frac{R_1.\alpha_R.(T-200)}{(R_1 + R)}\right)}$$

- 5- Montrer que la valeur de terme $\frac{R_1 \cdot \alpha_R \cdot (T-200)}{(R_1+R)}$ est bien négligeable devant 1, quelques soit la température T du fonctionnement du four. Donner la nouvelle expression de S. (2 pts)
- 6- Déterminer la valeur de E pour que S soit égale à 10 mV à T=210°C

Good Luck @

République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Réf:	DE-EX-01
------	----------

Indice: 3

Date: 02/12/2019

Page: 1/4

Année Universitaire : 2020/2021 Date de l'Examen : 03/04/2021 Nature : ☑ DC □ Examen □ DR Durée : 🗆 1h ☑ 1h30min □ 2h ☑ Ingénieur Nombre de pages : 3 Section: ☑ GCP ☑ GCV ☐ GEA ☐ GCR ☐ GM Enseignant (e) : Abir Hmida et Maha BenHamad Niveau d'étude : ☑ 1 ère ☐ 2 ème ☐ 3 ème année Documents Autorisés :□ Oui ✓ Non Matière : Mesure et Instrumentation

A-Questions de cours (5pts)

1) Qu'est-ce qu'un capteur? selon leurs sorties électriques en combien de catégories (classes ou types) peut-on les classer. Donner un exemple pour chaque type. (1 pt)

Remarque : Calculatrice autorisée

- 2) Qu'est-ce qu'un Corps d'épreuve et un Capteur composite? Donner un schéma explicatif. (1 pt)
- 3) Quels sont les différents types (classes ou catégories) d'erreurs. Donner un schéma explicatif. (1 pt)
- 4) Qu'est-ce que une grandeur d'influence ? Donner trois exemples. (1 pt)
- 5) Qualifier de point de vue fidélité et justesse les capteurs décrits ci-dessous (1 pt) :
 - Un capteur dont les erreurs systématiques importantes et erreurs aléatoires faibles.
 - Un capteur dont les erreurs systématiques et erreurs aléatoires élevées.
 - Un capteur dont les erreurs systématiques et erreurs aléatoires faibles.

B-Exercices (Les détails des calculs doivent apparaître sur les copies)

Exercice 1: (5pts)

Déterminer les coefficients m et b de la droite d'équation y = mx + b obtenue à partir de la régression linéaire appliquée aux données suivantes :

X	0,5	0,9	1,4	2,0	2,3	2,8	3,2	3,5	3,9	4,2
y	1,4	2,9	4,4	6,2	7,1	8,4	9,8	10,7	11,4	12,4

En présentant les résultats par deux chiffres après la virgule.

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Réf: DE-EX-01

Indice: 3

Date: 02/12/2019

Page: 2/4

EPREUVE D'EVALUATION

On donne:

$$m = \frac{\sum x \sum y - n \sum xy}{(\sum x)^2 - n \sum x^2} \quad ; \quad b = \frac{\sum y - m \sum x}{n} \quad ; \quad R^2 = 1 - \frac{n-1}{n-2} \frac{[y^2] - m[xy]}{[y^2]}$$

$$[xy] = \sum xy - \frac{\sum x \sum y}{n} \qquad [y^2] = \sum y^2 - \frac{(\sum y)^2}{n}$$

Exercice 2: (9pts)

Le dispositif représenté sur la figure 1 destiné à contrôler la température moyenne d'une chambre autour d'une température de référence $T_0=28^{\circ}C$ à plus ou moins $2^{\circ}C$. $(T_0=28\pm2^{\circ}C)$. Le dispositif comprend une sonde Pt (100): une résistance en platine variable avec la température. Elle constitue la branche AD d'un pont de Wheatstone dont les branches CB et CD sont des résistances fixes $R=10K\Omega$. La branche AB est constituée d'une résistance fixe R_1 .

Le signal de déséquilibre du pont S est envoyé vers un circuit (de très haute impédance d'entrée de sorte que $Id \simeq 0$) commandant la mise en route ou l'arrêt du groupe frigorigène (climatiseur). La résolution de ce circuit de commande est de 10mV (c.-à-d. qu'une mise en route n'a lieu que si S>10 mV et qu'un arrêt n'a lieu que si S<-10 mV). Le pont est alimenté par un générateur de tension constante E.

Les caractéristiques de la sonde sont les suivantes :

• Sonde de Platine type Pt 100 dont la résistance (entre 0°C et 100°C) est approximativement donnée par la relation :

$$R(T) = R_0(1+3.91\times10^{-3}T - 6\times10^{-7}T^2)$$

Avec : R_0 la valeur de la résistance R(T) de la sonde à $0^{\circ}C$: $R_0=100\Omega$

- Déterminer la valeur à donner à R₁ pour que le signal S soit nul à T=T₀=28°C.
- Sachant que pour des faibles variations ΔT de température autour d'une valeur T_0 nous pouvons considérer que la variation ΔR d'une résistance R est proportionnelle à ΔT . Soit :

$$\Delta R = R(T) - R(T_0) = A^*(T - T_0).$$

Calculer A; le facteur de variation linéaire de R avec T.

Etablir l'expression de R(T) autour de T₀ (on exprime R(T) uniquement en fonction de T).

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabés

Ecole Nationale d'Ingénieurs de Gabés

EPREUVE D'EVALUATION

Ref : DE-EX-01

Indice: 3

Date: 02/12/2019

Page: 3/4

4) Etablir la relation liant I₁ à E et celle reliant I₂ à E. I₁ et I₂ étant les intensités de courant dans les deux branches du pont.

5) Montrer que le signal S=V_B-V_D est lié à E par :

$$S = \frac{E.R.A.(T - T_6)}{(R_1 + R)^2 \left(1 + \frac{A(T - T_6)}{(R_1 + R)}\right)}$$
Dans la suite on négligera $\frac{A(T - T_6)}{(R_1 + R)}$ devant 1, $(\frac{A(T - T_6)}{(R_1 + R)} <<1)$.

6) Calculer E pour avoir une régulation à ±2°C (c.-à-d. que la température de la chambre soit bien comprise entre 26°C et 30°C).

Figure 1. Schéma de wheatstone

N.B. La présentation est notée (1 pt);

Good Luck @