Práctica 5

Ejercicio 1. Determinar cuáles de los siguientes subconjuntos de \mathbb{R} (con la métrica usual) son conexos:

$$\mathbb{N}, \qquad [0,1), \qquad \mathbb{Q}, \qquad \left\{ \frac{1}{n} \ / \ n \in \mathbb{N} \right\}$$

Ejercicio 2. Analizar la validez de las siguientes afirmaciones en un espacio métrico arbitrario (X, d). Pensar además si las que son falsas se vuelven verdaderas cuando el espacio es \mathbb{R}^n .

- i) Toda bola abierta B(a, r) es conexa.
- ii) Para todo $a \in X$, existe r > 0 tal que la bola B(a, r) es conexa.
- iii) Si $A, B \subset X$ son conexos entonces $A \cup B$ es conexo.
- iv) Si $A, B \subset X$ son conexos entonces $A \cap B$ es conexo.
- v) Si $A, B \subset X$ son conexos entonces A B es conexo.
- vi) Si $A \subset X$ es conexo y x es un punto de acumulación de A, entonces $A \cup \{x\}$ es conexo.
- vii) Si $A \subset X$ es conexo, entonces A° es conexo.
- viii) Si $A \subset X$ es conexo, entonces \overline{A} es conexo.

Ejercicio 3. Probar que el conjunto $\{(x,y) \in \mathbb{R}^2 : 0 < ||(x,y)|| < 2\}$ es conexo.

Ejercicio 4. Sea (X,d) un espacio métrico y sea $C \subset X$. Probar que son equivalentes:

- i) No existen U, V abiertos en C, no vacíos y disjuntos tales que $C = U \cup V$.
- ii) No existen \mathcal{U} , \mathcal{V} abiertos en X tales que $C \cap \mathcal{U} \neq \emptyset$, $C \cap \mathcal{V} \neq \emptyset$, $C \cap \mathcal{U} \cap \mathcal{V} = \emptyset$ y $C \subset \mathcal{U} \cup \mathcal{V}$.
- iii) Si $A \subset C$ es no vacío y abierto y cerrado en C, entonces A = C.

Ejercicio 5. Sea (X, d) un espacio métrico y sea C un subconjunto de X que no es conexo. Probar que existen \mathcal{U} , \mathcal{V} abiertos en X disjuntos tales que $C \cap \mathcal{U} \neq \emptyset$, $C \cap \mathcal{V} \neq \emptyset$ y $C \subset \mathcal{U} \cup \mathcal{V}$.

Ejercicio 6. Sea (X,d) un espacio métrico y sea \mathcal{A} una familia de conjuntos conexos de X tal que para cada par de conjuntos $A,B\in\mathcal{A}$ existen $A_0,\ldots,A_n\in\mathcal{A}$ que satisfacen $A_0=A$, $A_n=B$ y $A_i\cap A_{i+1}\neq\emptyset$ para cada $i=0,\ldots,n-1$. Probar que $\bigcup_{A\in\mathcal{A}}A$ es conexo.

Ejercicio 7. Sea $f: \mathbb{R} \longrightarrow \mathbb{Z}$ continua. Probar que f es constante.

Ejercicio 8. Probar que un espacio métrico (X, d) es conexo si y sólo si toda función continua $f: X \longrightarrow \{0, 1\}$ es constante.

Ejercicio 9. Probar que si $n \geq 2$ no existe un homeomorfismo entre \mathbb{R} y \mathbb{R}^n .

Ejercicio 10. Probar que los espacios métricos (0,1), [0,1) y [0,1] (con las métricas que heredan como subespacios de \mathbb{R}) son dos a dos no homeomorfos.

Ejercicio 11. Probar que si $f:[0,1] \longrightarrow [0,1]$ es continua, existe $x_0 \in [0,1]$ tal que $f(x_0) = x_0$.

Ejercicio 12.

- i) Sea (X,d) un espacio métrico conexo y sea $f:X\longrightarrow \mathbb{R}$ una función continua. Sean $a,b\in f(X)$ tales que $a\leq b$. Probar que para todo $c\in [a,b]$ existe $x\in X$ tal que f(x)=c.
- ii) Probar que si (X, d) es conexo, entonces $\sharp X = 1$ o $\sharp X \geq c$.

Ejercicio 13. Hallar las componentes conexas de los siguientes subconjuntos de \mathbb{R} y de \mathbb{R}^2 :

i)
$$arcsen([\frac{\sqrt{2}}{2},1])$$

iii)
$$B((-1,0),1) \cup B((1,0),1)$$

iv)
$$B((-1,0),1) \cup B((1,0),1) \cup \{(0,0)\}$$

Ejercicio 14. Para cada $n \in \mathbb{N}$, sea $A_n = \{\frac{1}{n}\} \times [0,1]$, y sea $X = \bigcup_{n \in \mathbb{N}} A_n \cup \{(0,0),(0,1)\}$. Probar que:

- i) $\{(0,0)\}$ y $\{(0,1)\}$ son componentes conexas de X.
- ii) Si $B \subset X$ es abierto y cerrado en X, entonces $\{(0,0),(0,1)\} \subset B$ o $\{(0,0),(0,1)\} \cap B = \emptyset$.

Ejercicio 15. Sea (X, d) un espacio métrico. Probar que las componentes conexas de X son conjuntos cerrados, y que no necesariamente son abiertos.

Ejercicio 16. Probar que los siguientes conjuntos son totalmente disconexos¹:

- i) Un espacio métrico discreto con cardinal mayor o igual que 2.
- ii) Un espacio métrico numerable.

Ejercicio 17. Sea (X, d) un espacio métrico. Un conjunto $A \subset X$ se dice arcoconexo (o conexo por arcos) si para todo par de puntos $a, b \in A$ existe una función continua $f : [0, 1] \to X$ tal que f(0) = a y f(1) = b.

- i) Probar que todo conjunto arcoconexo es conexo.
- ii) Exhibir un ejemplo de un conjunto conexo que no sea arcoconexo.

¹La RAE sólo admite la palabra *inconexo* en el diccionario, pero aquí somos rebeldes.

Ejercicio 18. Decidir cuáles de los siguientes conjuntos son arcoconexos:

- i) $\{(x,y,z)\in\mathbb{R}^3\mid z=f(x,y)\}\$ donde $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ es una función continua.
- ii) $B(0,1) \subset \mathbb{R}^n$,
- iii) $\mathbb{R}^n B(0,1)$
- iv) $\mathbb{R}^2 \{(x,0) / x \in \mathbb{R}\}$
- v) $\mathbb{R}^2 \{(0,0)\}$

Ejercicio 19. Sean X e Y espacios métricos, con X arcoconexo, y $f: X \longrightarrow Y$ una función continua. Probar que el conjunto f(X) es arcoconexo.

Ejercicio 20. Sea $n \geq 2$ y sea $S \subset \mathbb{R}^n$ un subconjunto contable. Probar que $\mathbb{R}^n - S$ es arcoconexo.

Ejercicio 21. En el espacio $(C[0,1],d_{\infty})$ se considera el conjunto

$$U = \{ f \in C[0,1] : f(x) \neq 0 \text{ para todo } x \in [0,1] \}.$$

Probar que U es abierto y hallar sus componentes conexas.

Ejercicio 22. Un espacio métrico (X, d) se dice localmente conexo (resp. localmente arcoconexo) si para todo $x \in X$ y para todo $U \subset X$ entorno de x, existe un entorno conexo (resp. arcoconexo) V de x tal que $x \in V \subset U$. Probar que:

- i) Si $A \subset \mathbb{R}^n$ es abierto, entonces A es conexo \iff A es arcoconexo
- ii) Un espacio métrico X es localmente (arco)conexo si y sólo si para todo U abierto de X, las componentes (arco)conexas de U son abiertas.
- iii) Todo espacio métrico conexo y localmente arcoconexo es arcoconexo.
- iv) En un espacio métrico localmente arcoconexo todo conjunto abierto y conexo es arcoconexo.
- v) Las componentes arcoconexas de un espacio localmente arcoconexo son abiertas.