

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Agrupamento IV — 1ª Prova de Avaliação Discreta

10 de novembro de 2017 Duração: **2h**

N.° Mec.:				Nome	:									
(Declaro que desisto:) N. $^{\circ}$ folhas suplementares:						ementares:								
Questão	1a	1b	1c	2	3	4a	4b	4c	4d	5a	5b	5c	5d	Classificação
[Cotação]	[17pts]	[13pts]	[10pts]	[15pts]	[15pts]	[07pts]	[15pts]	[13pts]	[10pts]	[12pts]	[23pts]	[25pts]	[25pts]	(valores)

- Justifique todas as respostas e indique os cálculos efetuados -

1. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \begin{cases} \frac{\ln(1 + \sin^2(x - 1))}{x - 1} & se \quad x < 1\\ \\ \arccos\left(\frac{1}{x}\right) & se \quad x \ge 1. \end{cases}$$

[17pts]	(a)	A função f é contínua em $x=1$? Justifique convenientemente.

13pts]	(b) Usando	a definição de	derivada late	eral, determine	$f'_{+}(1)$.		
						Continua na folha sup	olementar N°
10pts]	(c) Mostre o	$\text{ ue existe } c \in]$	$\sqrt{2},2[$ tal que	$f'(c) = \frac{\pi}{12(2 - 1)}$	$\frac{1}{1-\sqrt{2}}$.		
	N1-1-	$s(\frac{\pi}{3}) = \frac{1}{2} e \cos(\frac{\pi}{3})$	$\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.$				
	Nota: cos						
	NOTA: cos	2					
	Nota: cos	2					
	NOTA: cos						
	NOTA: cos						
	Nota: cos						
	Nota: cos						
	Nota: cos						
	Nota: cos						
	Nota: cos						
	NOTA: COS						
	NOTA: COS						
	Nota: cos						
	NOTA: COS						

N° Mec: Nome:				
IN MEC: Nome:	Nome	•		

[15pts]

2. Mostre que a função g definida por $g(x)=2x^3-3x^2-12x+1$ tem um único zero no intervalo]-1,2[.

Continua na folha suplementar No

3. Seja f uma função contínua em [a,b], diferenciável em]a,b[e tal que f(a)=f(b)=0. Dado [15pts] $\alpha \in \mathbb{R} \setminus \{0\}$, defina-se $g(x) = e^{\alpha x} f(x)$. Prove que existe $c \in]a,b[$ tal que $f(c) = -\frac{1}{\alpha} f'(c)$.

Continua na folha suplementar Nº

(a)) Determir	ne o domíni	io de h , D_h					
	<u></u>		, 16					
						Co	ontinua na fol	ha suplementar
(b)) Estude h	\imath quanto à r	monotonia (e existência	de extremo	s locais e g	lobais.	

Continua na folha suplementar Nº

13pts]	(c)	Caracterize a função inversa de h , indicando o domínio, o contradomínio e a expressão analítica que a define.
		Continua na folha suplementar N°
0pts]	(d)	Seja f tal que $\int f(x)dx=h(x)+C,C\in\mathbb{R}.$ Determine $f(0).$

	5. Dete	rmine os seguintes integra	ais (simplificando o mais po	ssível o resultado):	
[12pts]	(a)	$\int \frac{-\cos x}{(1+\sin x)^2} dx$			
		ſ		Continua na folha suplementar N	I _o
[23pts]	(b)	$\int (2x^3 + x) \cdot \arctan x dx$			

Continua na folha suplementar No

[25pts]

(c)	$\int 2x+1$	da
(C)	$\int \overline{x^3+x}$	ax

Continua na folha suplementar Nº	

[25pts]

(d) $\int \frac{3}{x^2\sqrt{x^2-9}}\,dx$ (Sugestão: utilize a mudança de variável dada por $x=3\sec t$, indicando o domínio adequado a esta substituição).

Continua na folha suplementar No

Formulário

$(f(x)^p)' = p (f(x))^{p-1} f'(x), \operatorname{com} p \in \mathbb{R}$	
$\left(a^{f(x)}\right)' = f'(x)a^{f(x)}\ln(a), \operatorname{com} a \in \mathbb{R}^+ \setminus \{1\}$	$(\log_a(f(x)))' = \frac{f'(x)}{f(x)\ln(a)}, \text{com } a \in \mathbb{R}^+ \setminus \{1\}$
$(\operatorname{sen}(f(x)))' = f'(x)\operatorname{cos}(f(x))$	$(\cos(f(x)))' = -f'(x)\sin(f(x))$
$(\operatorname{tg}(f(x)))' = f'(x) \sec^2(f(x))$	$(\cot g(f(x)))' = -f'(x)\csc^2(f(x))$
$(\sec(f(x)))' = f'(x)\sec(f(x))\operatorname{tg}(f(x))$	$(\operatorname{cosec}(f(x)))' = -f'(x)\operatorname{cosec}(f(x))\operatorname{cotg}(f(x))$
$(\arcsin(f(x)))' = \frac{f'(x)}{\sqrt{1 - (f(x))^2}}$	$(\arccos(f(x)))' = -\frac{f'(x)}{\sqrt{1 - (f(x))^2}}$
$(\operatorname{arctg}(f(x)))' = \frac{f'(x)}{1 + (f(x))^2}$	$(\operatorname{arccotg}(f(x))' = -\frac{f'(x)}{1 + (f(x))^2}$

$1 + \operatorname{tg}^2(x) = \sec^2(x)$, para $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$	$1 + \cot^2(x) = \csc^2(x)$, para $x \neq k\pi, k \in \mathbb{Z}$
$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$sen(x \pm y) = sen x cos y \pm cos x sen y$
$\cos^2(x) = \frac{1 + \cos(2x)}{2}$	$\operatorname{sen}^2(x) = \frac{1 - \cos(2x)}{2}$