6.006 Cheat Sheet (shreyask)

Hash Tables

Pre-Hashing, whatever key we have, we convert to non-negative integer by just taking the binary representation of that object \rightarrow integer.

Chaining if collision, store as a list. Worst case O(n), any hashing. But randomized?

SUHA: each key is equally likely to be hashed to any slot of the table, independent of each other.

Proof of Constant Time: expected length of chain $n/m = \alpha$ load factor. n is keys, M slots.

$$collisions = \frac{N(N-1)}{2} \frac{1}{M}$$

$$P(collision) = 1/m$$

$$P(query\ correct) = (1-1/m)^{n-1}$$

It takes us O(n + m + m') to grow table because we need to rehash. If we double the table when we hit the load factor, our insert time is **Amortized** O(1). For table doubling to work our doubling factor can at least be 2 and at most be 3, anything above that isn't amortized constant anymore.

BFS

```
BFS (V,Adj,s):
                                         See CLRS for queue-based implementation
     level = \{ s: 0 \}
     parent = \{s : None \}
    i = 1
    frontier = [s]
                                            # previous level, i-1
    while frontier:
                                            \# next level, i
           next = []
           for u in frontier:
               for v in Adj [u]:
                  if v not in level
                                           # not yet seen
                       level[v] = i
                                           \sharp = \mathsf{level}[u] + 1
                       parent[v] = u
                       next.append(v)
           frontier = next
           i + =1
```

DFS

```
visited = {}
def do_something(node):
    print node
```

The output reversed is also toposorted.

SSSP

Graph Structure	Best Known SSSP Algorithm	Complexity
Unweighted	BFS	O(E+V)
General	Bellman-Ford	O(EV)
Nonnegative weights	Dijkstra + Fibonacci heap	$O(E + V \log V)$
DAG	DFS + Topological sort + BFS	O(E+V)

APSP

Graph Structure	Best Known APSP Algorithm	Complexity
Unweighted	$ V imes ext{BFS}$	O(VE)
General	$ V imes ext{Bellman-Ford*}$	$O(V^2E)$
General (dense)	Floyd-Warshall	$O(V^3)$
General (sparse)	Johnson's	$O(VE + V^2 \log V)$
Nonnegative weights	$ V imes ext{Dijkstra}$	$O(VE + V^2 \log V)$

*Not the best-known algorithm

Dijkstra

```
\begin{aligned} \text{RELAX}(u, v, w) \\ \text{if } d[v] > d[u] + w(u, v) \\ \text{then } d[v] \leftarrow d[u] + w(u, v) \\ \Pi[v] \leftarrow u \end{aligned}
```

Lemma: The relaxation algorithm maintains the invariant that $d[v] \geq \delta(s,v)$ for all $v \in V$

Proof: By induction on the number of steps.

Consider RELAX(u,v,w). By induction $d[u] \geq \delta(s,u)$. By the triangle inequality, $\delta(s,v) \leq \delta(s,u) + \delta(u,v)$. This means that $\delta(s,v) \leq d[u] + w(u,v)$, since $d[u] \geq \delta(s,u)$ and $w(u,v) \geq \delta(u,v)$. So setting d[v] = d[u] + w(u,v) is safe.

```
Dijkstra (G,W,s) //uses priority queue Q Initialize (G,s) S \leftarrow \phi Q \leftarrow V[G] //insert into Q while Q \neq \phi do u \leftarrow \text{EXTRACT-MIN}(Q) //deletes u from Q S = S \cup \{u\} for each vertex v \in \text{Adj}[u] do RELAX (u,v,w) \leftarrow this is an implicit DECREASE.KEY operation
```

Types of Edges

Proof That Difference of 1 is balanced

 N_h is the minimum number of nodes that's possible of height h. Since the two sub trees differ by height 1,

$$\begin{split} N_h &= 1 + N_{h-1} + N_{h-2} \\ &> 1 + 2N_{h-2} \\ &> 2N_{h-2} \\ &= \Theta(2^{n/2}) \\ \Longrightarrow \ h < 2\log n \end{split}$$

Open Addressing

Linear Probing

Let's say you have a table with a cluster. If h(k,i) maps to this cluster. At the end, you just increase your cluster length by 1. If $0.01 < \alpha = n/m < 0.99$ cluster are of size $\Theta(\ln n)$. Dict is not constant time any more.

Double Hashing

 $h(k, i) = (h_i(k) + ih_2(k)) mod m$ if $h_2(k)$ is relatively prime \implies permutation. Number of expected probes on operation insert $\leq \frac{1}{1-\alpha}$

Copyright © 2014 Winston Chang http://www.stdout.org/~winston/latex/