Introduccion y Motivacion Simulación Experimentación Conclusiones y Trabajo Futuro Referencias

Título

Agustín Borgna, Teodoro Freund, Jonathan Scherman, Jessica Singer

Universidad de Buenos Aires

December 21, 2018

- 1 Introduccion y Motivacion
- Simulación
 - Generando los rayos
 - Vectores de incidencia
- Experimentación
 - Variando cant. y tipo de rayos
 - Variando ruido
 - Variando valores singulares
 - Experimentando con nro. de condición
- Conclusiones y Trabajo Futuro
- Referencias

- Introduccion y Motivacion
- 2 Simulación
 - Generando los rayos
 - Vectores de incidencia
- Experimentación
 - Variando cant. y tipo de rayos
 - Variando ruido
 - Variando valores singulares
 - Experimentando con nro. de condición
- Conclusiones y Trabajo Futuro
- 6 Referencias

Introduccion y Motivacion

- La tomografía computada es una tecnologia que permite conseguir una imagen de un corte (o seccion) del cuerpo.
- Distinta disposicion de los rayos dan distintos resultados y si uno quisiese encontrar la mejor topologia, deberia conducir estudios de rayos x (caros) en seres humanos (peligrosos), de aqui sale la motivacion de poder simular este proceso.

- Introduccion y Motivacion
- Simulación
 - Generando los rayos
 - Vectores de incidencia
- 3 Experimentación
 - Variando cant. y tipo de rayos
 - Variando ruido
 - Variando valores singulares
 - Experimentando con nro. de condición
- Conclusiones y Trabajo Futuro
- 6 Referencias

Tipos de rayos

Calculando vectores de incidencia

- Introduccion y Motivacion
- 2 Simulación
 - Generando los rayos
 - Vectores de incidencia
- 3 Experimentación
 - Variando cant. y tipo de rayos
 - Variando ruido
 - Variando valores singulares
 - Experimentando con nro. de condición
- Conclusiones y Trabajo Futuro
- 6 Referencias

Scripts para mediciones

- Generamos un script que redimensiona la imagen y la inyecta en el programa
- Cacheamos datos para acelerar la experimentación
- Medimos para cada ejecución su PSNR y tiempos.

Outputs usando tomo2.png

Tiempos y PSNR

Tiempos

PSNR

Análisis de ruido

Error std	Tipo de Rayos	Resultado
0	Random	()
40	Random	
100	Random	
160	Random	•

Resultados variando valores singulares

Alpha	Tipo de Rayos	#Autovalores	Resultado
0.001	Random	793	#
0.01	Random	769	
0.1	Random	668	
0.6	Random	420	*
1	Random	344	*
10	Random	143	*
100	Random	59	

Nro. de condición

Nro. de condición

- Introduccion y Motivacion
- 2 Simulación
 - Generando los rayos
 - Vectores de incidencia
- Experimentación
 - Variando cant. y tipo de rayos
 - Variando ruido
 - Variando valores singulares
 - Experimentando con nro. de condición
- 4 Conclusiones y Trabajo Futuro
- 5 Referencias

Conclusiones

- Tener una forma de simular este proceso (caro) nos permitió experimentar exhaustivamente.
- Tomar más o menos valores singulares para la descomposición SVD nos permite analizar un trade off entre velocidad de procesamiento y calidad del resultado.

Trabajo Futuro

- Rayos más complejos;
- otras formas de resolver CML;
- rendir el final.

Trabajo Futuro

- Rayos más complejos;
- otras formas de resolver CML;
- rendir el final.

- Introduccion y Motivacion
- 2 Simulación
 - Generando los rayos
 - Vectores de incidencia
- Experimentación
 - Variando cant. y tipo de rayos
 - Variando ruido
 - Variando valores singulares
 - Experimentando con nro. de condición
- Conclusiones y Trabajo Futuro
- Seferencias

Salomon, David. (2007). Data Compression: *The Complete Reference*. 281.

Wu, Xiaolin (1991). "Fast Anti-Aliased Circle Generation". In James Arvo. Graphics Gems II. San Francisco: Morgan Kaufmann. pp. 446–450. ISBN 0-12-064480-0.

Belsley, David A.; Kuh, Edwin; Welsch, Roy E. (1980). "The Condition Number". Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley Sons.

 $sepwww.stanford.edu/public/docs/sep73/ray1/paper_html/node3.html \\$

Heatmap de rayos

