Função de Transferência

Fundamentos de Controle

Função de Transferência

$$\frac{C(s)}{R(s)} = G(s) = \frac{(b_m s^m + b_{m-1} s^{m-1} + \dots + b_0)}{(a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)}$$

Example 2.4

Transfer Function for a Differential Equation

PROBLEM: Find the transfer function represented by

$$\frac{dc(t)}{dt} + 2c(t) = r(t) \tag{2.55}$$

SOLUTION: Taking the Laplace transform of both sides, assuming zero initial conditions, we have

$$sC(s) + 2C(s) = R(s)$$
 (2.56)

The transfer function, G(s), is

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{s+2}$$
 (2.57)

TABLE 2.2 Laplace transform theorems

Item no.	T	heorem	Name
1.	$\mathscr{L}[f(t)] = F(s)$	$= \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
2.	$\mathcal{L}[kf(t)]$	= kF(s)	Linearity theorem
3.	$\mathcal{L}[f_1(t) + f_2(t)$	$] = F_1(s) + F_2(s)$	Linearity theorem
4.	$\mathcal{L}[e^{-at}f(t)]$	=F(s+a)	Frequency shift theorem
5.	$\mathcal{L}[f(t-T)]$	$=e^{-sT}F(s)$	Time shift theorem
6.	$\mathcal{L}[f(at)]$	$=\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
7.	$\mathscr{L}\left[\frac{df}{dt}\right]$	= sF(s) - f(0-)	Differentiation theorem
8.	$\mathscr{L}\left[\frac{d^2f}{dt^2}\right]$	$= s^2 F(s) - sf(0-) - f'(0-)$	Differentiation theorem
9.	$\mathscr{L}\left[rac{d^n f}{dt^n} ight]$	$= s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{k-1}(0-)$	Differentiation theorem
10.	$\mathcal{L}\left[\int_{0-}^{t}f(\tau)d\tau\right]$	$=\frac{F(s)}{s}$	Integration theorem
11.	$f(\infty)$	$= \lim_{s \to 0} sF(s)$	Final value theorem ¹
12.	f(0+)	$=\lim_{s\to\infty} sF(s)$	Initial value theorem ²

TABLE 2.1 Laplace transform table

Item no.	f(t)	F(s)
1.	$\delta(t)$	1
2.	u(t)	$\frac{1}{s}$
3.	tu(t)	$\frac{1}{s^2}$
4.	$t^n u(t)$	$\frac{n!}{s^{n+1}}$
5.	$e^{-at}u(t)$	$\frac{1}{s+a}$
6.	$\sin \omega t u(t)$	$\frac{\omega}{s^2 + a}$
7.	$\cos \omega t u(t)$	$\frac{s}{s^2 + a}$

Exemplo 2.5

Resposta do Sistema a Partir da Função de Transferência

PROBLEMA: Utilize o resultado do Exemplo 2.4 para obter a resposta, c(t), para uma entrada r(t) = u(t), um degrau unitário, admitindo condições iniciais nulas.

SOLUÇÃO: Para resolver o problema, utilizamos a Equação (2.54), em que G(s) = 1/(s+2) conforme obtido no Exemplo 2.4. Uma vez que r(t) = u(t), R(s) = 1/s, a partir da Tabela 2.1. Como as condições iniciais são nulas,

$$C(s) = R(s)G(s) = \frac{1}{s(s+2)}$$
(2.58)

Expandindo em frações parciais, obtemos

$$C(s) = \frac{1/2}{s} - \frac{1/2}{s+2} \tag{2.59}$$

Finalmente, fazendo a transformada de Laplace inversa de cada um dos termos, resulta

$$c(t) = \frac{1}{2} - \frac{1}{2}e^{-2t} \tag{2.60}$$

Experimente 2.6

Use as seguintes instruções MATLAB e Symbolic Math Toolbox para ajudálo a obter a Equação (2.60).

```
syms s
C=1/(s*(s+2))
C=ilaplace(C)
```

Experimente 2.7

Use as seguintes instruções MATLAB para representar graficamente a Equação (2.60) para t variando de o a 1 em intervalos de 0,01 s.

```
t=0:0.01:1;
plot...
(t,(1/2-1/2*exp(-2*t)))
```

Exercício 2.3

PROBLEMA: Obtenha a função de transferência, G(s) = C(s)/R(s), correspondente à equação diferencial

$$\frac{d^3c}{dt^3} + 3\frac{d^2c}{dt^2} + 7\frac{dc}{dt} + 5c = \frac{d^2r}{dt^2} + 4\frac{dr}{dt} + 3r.$$

RESPOSTA:
$$G(s) = \frac{C(s)}{R(s)} = \frac{s^2 + 4s + 3}{s^3 + 3s^2 + 7s + 5}$$

A solução completa está disponível no GEN-IO, Ambiente de Aprendizagem do Grupo GEN.

Exercício 2.4

PROBLEMA: Obtenha a equação diferencial correspondente à função de transferência,

$$G(s) = \frac{2s+1}{s^2+6s+2}$$

RESPOSTA:
$$\frac{d^2c}{dt^2} + 6\frac{dc}{dt} + 2c = 2\frac{dr}{dt} + r$$

A solução completa está disponível no GEN-IO, Ambiente de Aprendizagem do Grupo GEN.

Exercício 2.5

PROBLEMA: Obtenha a resposta à rampa para um sistema cuja função de transferência é

$$G(s) = \frac{s}{(s+4)(s+8)}$$

RESPOSTA:
$$c(t) = \frac{1}{32} - \frac{1}{16}e^{-4t} + \frac{1}{32}e^{-8t}$$

A solução completa está disponível no GEN-IO, Ambiente de Aprendizagem do Grupo GEN.