Lecture 10

Tian Han

Outline

Attention For RNN

Self-attention

Transformer basic (attention, self-attention layer)

Attention for RNNs

Revisiting Seq2Seq Model

Encoder RNN

Shortcoming: The final state is incapable of remembering a **long** sequence.

Shortcoming: The final state is incapable of remembering a **long** sequence.

Shortcoming: The final state is incapable of remembering a **long** sequence.

Attention for Seq2Seq Model

Reference

Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate.
 In ICLR, 2015.

Seq2Seq Model with Attention

- Attention significantly improves RNN Seq2Seq model.
- With attention, RNN Seq2Seq model does not forget source input.
- With attention, the decoder knows where to focus.
- Downside: much more computation.

Weight:
$$\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{s}_0)$$
.

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$$
.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

Option 1 (used in the original paper):

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

Option 1 (used in the original paper):

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$$
.

Option 2 (more popular; the same to Transformer):

1. Linear maps:

- $\mathbf{k}_i = \mathbf{W}_K \cdot \mathbf{h}_i$, for i = 1 to m. $\mathbf{q}_0 = \mathbf{W}_Q \cdot \mathbf{s}_0$.

2. Inner product:

- $\tilde{\alpha}_i = \mathbf{k}_i^T \mathbf{q}_0$, for i = 1 to m.
- 3. Normalization:

•
$$[\alpha_1, \dots, \alpha_m] = \text{Softmax}([\tilde{\alpha}_1, \dots, \tilde{\alpha}_m]).$$

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$$
.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_0)$.

Context vector: $\mathbf{c}_0 = \alpha_1 \mathbf{h}_1 + \cdots + \alpha_m \mathbf{h}_m$.

SimpleRNN

SimpleRNN

SimpleRNN:

$$\mathbf{s}_1 = \tanh\left(\mathbf{A}' \cdot \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{s}_0 \end{bmatrix} + \mathbf{b}\right)$$

SimpleRNN:

$$\mathbf{s}_1 = \tanh\left(\mathbf{A}' \cdot \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{s}_0 \end{bmatrix} + \mathbf{b}\right)$$

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$$
.

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$$
.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$.

Weight: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$.

Weight:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_1)$$
.

$$\mathbf{s_2} = \tanh\left(\mathbf{A'} \cdot \begin{bmatrix} \mathbf{x}_2' \\ \mathbf{s_1} \\ \mathbf{c_1} \end{bmatrix} + \mathbf{b}\right)$$

Time Complexity

Question: What is the total number of α 's we have computed?

Time Complexity

Question: What is the total number of α 's we have computed?

- To compute one vector \mathbf{c}_{i} , we compute m weights: $\alpha_{1}, \cdots, \alpha_{m}$.
- The decode has *t* states, so there are a total of *mt* weights.

Comparisons

Without Attention

With Attention

Time complexity: O(m + t)

Time complexity: O(mt)

Attention: Weights Visualization

Decoder RNN (target language: French)

Encoder RNN (source language: English)

Attention: Weights Visualization

Decoder RNN (target language: French)

Encoder RNN (source language: English)

• Standard Seq2Seq model: the decoder looks at only its current state.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.
- Attention: decoder knows where to focus.

- Standard Seq2Seq model: the decoder looks at only its current state.
- Attention: decoder additionally looks at all the states of the encoder.
- Attention: decoder knows where to focus.

- Downside: higher time complexity.
 - *m*: source sequence length
 - t: target sequence length
 - Standard Seq2Seq: O(m+t) time complexity
 - Seq2Seq + attention: O(mt) time complexity

Self-Attention for RNNs

Self-Attention

- Self-Attention [2]: attention [1] beyond Seq2Seq models.
- The self-attention paper uses LSTM.
- To make teaching easy, I replace LSTM by SimpleRNN.

Original paper:

- Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate. In ICLR, 2015.
- Cheng, Dong, & Lapata. Long Short-Term Memory-Networks for Machine Reading. In EMNLP, 2016.

$$\mathbf{c}_0 = \mathbf{0}$$

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

 \mathbf{c}_0

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

SimpleRNN + **Self-Attention**:

$$\mathbf{h_1} = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X_1} \\ \mathbf{c_0} \end{bmatrix} + \mathbf{b}\right)$$

 \mathbf{c}_1

Weights: $\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{h}_4)$.

 $\mathbf{c}_1 \qquad \mathbf{c}_2 \qquad \mathbf{c}_3 \qquad \mathbf{c}_4 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \alpha_3 \mathbf{h}_3 + \alpha_4 \mathbf{h}_4.$

Weights: $\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{h}_5)$.

Summary

• With self-attention, RNN is less likely to forget.

Summary

- With self-attention, RNN is less likely to forget.
- Pay attention to the context relevant to the new input.

```
The
The FBI
    FBI is
The
    FBI is chasing
The
The
    FBI is
            chasing a
    FBI is chasing a criminal
The
    FBI is chasing a
                       criminal on
The
            chasing a
    FBI is
                       criminal on the
The
                       criminal on
    FBI is
            chasing a
                                   the run
The
            chasing a
The
    FBI
                       criminal
                               on the run.
```

Figure is from the paper "Long Short-Term Memory-Networks for Machine Reading."

Transformer Model: Attention without RNN

Transformer Model

 Original paper: Vaswani et al. Attention Is All You Need. In NIPS, 2017.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Transformer Model

- Transformer is a Seq2Seq model.
- Transformer is not RNN.
- Purely based on attention and dense layers.
- Higher accuracy than RNNs on large datasets.

Output Probabilities

Revisiting Attention for RNN

Weights:
$$\alpha_{ij} = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_j)$$
.

Weights:
$$\alpha_{ij} = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_j)$$
.

• Compute $\mathbf{k}_{:i} = \mathbf{W}_K \mathbf{h}_i$.

Weights:
$$\alpha_{ij} = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_j)$$
.

- Compute $\mathbf{k}_{:i} = \mathbf{W}_K \mathbf{h}_i$.
- Compute $\mathbf{q}_{:j} = \mathbf{W}_Q \mathbf{s}_j$.
- Compute weights: $\alpha_{:j} = \operatorname{Softmax}(\mathbf{K}^T \mathbf{q}_{:j}) \in \mathbb{R}^m$.

Weights:
$$\alpha_{ij} = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_j)$$
.

- Compute $\mathbf{k}_{:i} = \mathbf{W}_K \mathbf{h}_i$.
- Compute $\mathbf{q}_{:j} = \mathbf{W}_Q \mathbf{s}_j$.
- Compute weights: $\alpha_{ij} = \text{Softmax}(\mathbf{K}^T \mathbf{q}_{ij}) \in \mathbb{R}^m$.


```
Weights: \alpha_{ij} = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_j).
```

```
• Query: \mathbf{q}_{:i} = \mathbf{W}_O \mathbf{s}_i. (To match others.)
       • Key: \mathbf{k}_{:i} = \mathbf{W}_K \mathbf{h}_i. (To be matched.)
• Value: \mathbf{v}_{:i} = \mathbf{W}_V \mathbf{h}_i. (To be weighted averaged.)
```

Weights:
$$\alpha_{ij} = \operatorname{align}(\mathbf{h}_i, \mathbf{s}_i)$$
.

• Query: $\mathbf{q}_{:j} = \mathbf{W}_{Q} \mathbf{s}_{j}$. (To match others.)
• Key: $\mathbf{k}_{:i} = \mathbf{W}_{K} \mathbf{h}_{i}$. (To be matched.)
• Value: $\mathbf{v}_{:i} = \mathbf{W}_{V} \mathbf{h}_{i}$. (To be weighted average (To be weighted averaged.) **Context vector:** $\mathbf{c}_{i} = \alpha_{1i}\mathbf{v}_{:1} + \cdots + \alpha_{mi}\mathbf{v}_{:m}.$


```
Query: \mathbf{q}_{:j} = \mathbf{W}_Q \mathbf{s}_j, Key: \mathbf{k}_{:i} = \mathbf{W}_K \mathbf{h}_i, Value: \mathbf{v}_{:i} = \mathbf{W}_V \mathbf{h}_i.

Weights: \alpha_{:j} = \operatorname{Softmax}(\mathbf{K}^T \mathbf{q}_{:j}) \in \mathbb{R}^m.
```


Context vector:
$$\mathbf{c}_j = \alpha_{1j} \mathbf{v}_{:1} + \cdots + \alpha_{mj} \mathbf{v}_{:m}$$
.

Context vector:
$$\mathbf{c}_j = \alpha_{1j} \mathbf{v}_{:1} + \cdots + \alpha_{mj} \mathbf{v}_{:m}$$
.

Attention without RNN

- We study Seq2Seq model (encoder + decoder).
- Encoder's inputs are vectors $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m$.
- Decoder's inputs are vectors $\mathbf{x}'_1, \mathbf{x}'_2, \cdots, \mathbf{x}'_t$.

Encoder's inputs:

Decoder's inputs:

 $\mathbf{x}_1 \qquad \mathbf{x}_2 \qquad \mathbf{x}_3 \qquad \cdots \qquad \mathbf{x}_m$

 $\begin{bmatrix} \mathbf{x}_1' & \mathbf{x}_2' & \mathbf{x}_3' & \cdots & \mathbf{x}_t' \end{bmatrix}$

• Keys and values are based on encoder's inputs x_1, x_2, \dots, x_m .

• Key: $\mathbf{k}_{:i} = \mathbf{W}_K \mathbf{x}_i$. • Value: $\mathbf{v}_{:i} = \mathbf{W}_V \mathbf{x}_i$.

- Keys and values are based on encoder's inputs x_1, x_2, \dots, x_m .
- Key: $\mathbf{k}_{:i} = \mathbf{W}_K \mathbf{x}_i$.
- Value: $\mathbf{v}_{:i} = \mathbf{W}_{V}\mathbf{x}_{i}$.
- Queries are based on decoder's inputs $\mathbf{x}_1', \mathbf{x}_2', \dots, \mathbf{x}_t'$.
- Query: $\mathbf{q}_{:j} = \mathbf{W}_Q \mathbf{x}_j'$.

• Keys and values are based on encoder's inputs x_1, x_2, \dots, x_m .

- Key: $\mathbf{k}_{:i} = \mathbf{W}_K \mathbf{x}_i$. Value: $\mathbf{v}_{:i} = \mathbf{W}_V \mathbf{x}_i$.
- Queries are based on decoder's inputs $\mathbf{x}'_1, \mathbf{x}'_2, \cdots, \mathbf{x}'_t$.
- Query: $\mathbf{q}_{:j} = \mathbf{W}_Q \mathbf{k}'_j$.

• Compute weights: $\alpha_{:1} = \text{Softmax}(\mathbf{K}^T \mathbf{q}_{:1}) \in \mathbb{R}^m$.

• Compute context vector: $\mathbf{c}_{:1} = \alpha_{11}\mathbf{v}_{:1} + \cdots + \alpha_{m1}\mathbf{v}_{:m} = \mathbf{V}\alpha_{:1}$.

• Compute weights: $\alpha_{:2} = \text{Softmax}(\mathbf{K}^T \mathbf{q}_{:2}) \in \mathbb{R}^m$.

• Compute context vector: $\mathbf{c}_{:2} = \alpha_{12}\mathbf{v}_{:1} + \cdots + \alpha_{m2}\mathbf{v}_{:m} = \mathbf{V}\alpha_{:2}$.

• Compute context vector: $\mathbf{c}_{:j} = \alpha_{1j} \mathbf{v}_{:1} + \cdots + \alpha_{mj} \mathbf{v}_{:m} = \mathbf{V} \alpha_{:j}$.

Output of attention layer:

- Here, $\mathbf{c}_{:j} = \mathbf{V} \cdot \operatorname{Softmax}(\mathbf{K}^T \mathbf{q}_{:j})$.
- Thus, $\mathbf{c}_{:j}$ is a function of \mathbf{x}_j' and $[\mathbf{x}_1, \cdots, \mathbf{x}_m]$.

Output of attention layer:

Attention Layer for Machine Translation

Translate English to German.

• Use C₂ to generate the 3rd German word. \mathbf{p}_2 Softmax Classifier $\mathbf{k}_{:3}$ **V**:3 $\mathbf{k}_{:2}$ $\mathbf{v}_{:2}$ $\mathbf{q}_{:2}$ \mathbf{X}_3 \mathbf{X}_2 English 133 German

Attention Layer for Machine Translation

- Attention layer: $[\mathbf{c}_{:1}, \mathbf{c}_{:2}, \cdots, \mathbf{c}_{:t}] = \operatorname{Attn}(\mathbf{X}, \mathbf{X}').$
 - Encoder's inputs: $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m]$.
 - Decoder's inputs: $\mathbf{X}' = [\mathbf{x}_1', \mathbf{x}_2', \cdots, \mathbf{x}_t']$.
 - Parameters: \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V .

- Attention layer: $[\mathbf{c}_{:1}, \mathbf{c}_{:2}, \cdots, \mathbf{c}_{:t}] = \operatorname{Attn}(\mathbf{X}, \mathbf{X}')$.
 - Encoder's inputs: $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m]$.
 - Decoder's inputs: $\mathbf{X}' = [\mathbf{x}'_1, \mathbf{x}'_2, \cdots, \mathbf{x}'_t]$.
 - Parameters: \mathbf{W}_{O} , \mathbf{W}_{K} , \mathbf{W}_{V} .

Self-Attention without RNN

• Attention layer: $[\mathbf{c}_{:1}, \mathbf{c}_{:2}, \cdots, \mathbf{c}_{:t}] = \operatorname{Attn}(\mathbf{X}, \mathbf{X}').$

- Self-attention layer: $[\mathbf{c}_{:1}, \mathbf{c}_{:2}, \cdots, \mathbf{c}_{:m}] = \operatorname{Attn}(\mathbf{X}, \mathbf{X}).$
 - Inputs: $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m]$.
 - Parameters: \mathbf{W}_{O} , \mathbf{W}_{K} , \mathbf{W}_{V} .

Inputs:

Weights:
$$\alpha_{:j} = \operatorname{Softmax}(\mathbf{K}^T \mathbf{q}_{:j}) \in \mathbb{R}^m$$
.

Weights:
$$\alpha_{:j} = \operatorname{Softmax}(\mathbf{K}^T \mathbf{q}_{:j}) \in \mathbb{R}^m$$
.

Weights:
$$\alpha_{:j} = \text{Softmax}(\mathbf{K}^T \mathbf{q}_{:j}) \in \mathbb{R}^m$$
.

Context vector: $\mathbf{c}_{:1} = \alpha_{11}\mathbf{v}_{:1} + \cdots + \alpha_{m1}\mathbf{v}_{:m} = \mathbf{V}\alpha_{:1}$.

Context vector: $\mathbf{c}_{:2} = \alpha_{12}\mathbf{v}_{:1} + \cdots + \alpha_{m2}\mathbf{v}_{:m} = \mathbf{V}\boldsymbol{\alpha}_{:2}$.

Context vector: $\mathbf{c}_{:j} = \alpha_{1j}\mathbf{v}_{:1} + \dots + \alpha_{mj}\mathbf{v}_{:m} = \mathbf{V}\boldsymbol{\alpha}_{:j}.$ **c**:1 **c**:2 **C**:3 $|\mathbf{k}_{:3}|$ $\mathbf{k}_{:2}$ **v**:2 **V**:3 $\mathbf{q}_{:2}$ **q**:3 \mathbf{X}_3 \mathbf{X}_2

Output of self-attention layer:

Output of self-attention layer:

- Self-attention layer: $[\mathbf{c}_{:1}, \mathbf{c}_{:2}, \cdots, \mathbf{c}_{:m}] = \operatorname{Attn}(\mathbf{X}, \mathbf{X}).$
 - Inputs: $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m]$.
 - Parameters: \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V .

- Self-attention layer: $[\mathbf{c}_{:1}, \mathbf{c}_{:2}, \cdots, \mathbf{c}_{:m}] = \operatorname{Attn}(\mathbf{X}, \mathbf{X}).$
 - Inputs: $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m]$.
 - Parameters: \mathbf{W}_O , \mathbf{W}_K , \mathbf{W}_V .

Summary

Summary

- Attention was originally developed for Seq2Seq RNN models [1].
- Self-attention: attention for all the RNN models (not necessarily Seq2Seq models [2].
- Attention can be used without RNN [3].
- We learned how to build attention layer and self-attention layer.

Reference:

- 1. Bahdanau, Cho, & Bengio. Neural machine translation by jointly learning to align and translate. In *ICLR*, 2015.
- 2. Cheng, Dong, & Lapata. Long short-term memory-networks for machine reading. In *EMNLP*, 2016.
- 3. Vaswani et al. Attention is all you need. In NIPS, 2017.

Attention Layer

Thank You!