

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Übungsblatt 5

07.12.20

Aufgabe 1 (*Gruppen*)

(10 Punkte)

a) Beweisen Sie: In jeder Gruppe (G, *) gilt für Elemente $x, y, a \in G$:

$$a * x = a * y \iff x = y \iff x * a = y * a$$

b) Es sei (G, *) eine Gruppe und $a, b \in G$. Zeigen Sie:

$$(ab = ba) \iff \forall n \in \mathbb{N} : (ab)^n = a^n b^n$$

c) Beweisen Sie mittels vollständiger Induktion, dass $|\mathscr{S}(n)| = n!$ für alle $n \in \mathbb{N}$ gilt. Dabei bezeichnet $\mathscr{S}(n)$ die symmetrische Gruppe auf n Elementen und $n! = 1 \cdot 2 \cdots n$ die Fakultät von n.

Hinweis: Zeigen Sie, dass die Mengen

$$M_k := \{ \sigma \in \mathcal{S}(n+1) \mid \sigma(n+1) = k \}$$

für $k \in \{1, ..., n+1\}$ alle gleich groß sind, und $M_{n+1} \cong \mathcal{S}(n)$ gilt. Außerdem ist jedes Element von $\mathcal{S}(n+1)$ in genau einer der Mengen $M_1, ..., M_{n+1}$ enthalten.

Aufgabe 2 (Ringhomomorphismen zwischen Körpern)

(10 Punkte)

Es seien K_1 , K_2 zwei Körper (und damit auch Ringe) und $\varphi \colon K_1 \to K_2$ ein Ringhomomorphismus. Beweisen Sie, dass φ dann injektiv ist.

Aufgabe 3 (Zwei Ringe)

(10 Punkte)

a) Die Menge

$$R := \left\{ \begin{pmatrix} \alpha & 2\beta \\ \beta & \alpha \end{pmatrix} \middle| \alpha, \beta \in \mathbb{Q} \right\}$$

bildet einen Unterring von $(\mathbb{Q}^{2\times 2}, +, \cdot)$, wobei + und · die Addition und Multiplikation von Matrizen bezeichnet.

b) Die Menge

$$\mathbb{Q}(\sqrt{2}) \coloneqq \left\{ x + \sqrt{2} y \, \middle| \, x, y \in \mathbb{Q} \right\}$$

bildet einen Unterring von $(\mathbb{R}, +, \cdot)$, wobei + und · die Addition und Multiplikation von reellen Zahlen bezeichnet.

Aufgabe 4 (Körper und Isomorphismen)

(10 Punkte)

- a) Für $x, y \in \mathbb{Q}$ gilt: $x + \sqrt{2}y = 0 \iff x = y = 0$. Hinweis: Es gilt $\sqrt{2} \notin \mathbb{Q}$.
- b) Der Ring $(\mathbb{Q}(\sqrt{2}),+,\cdot)$ aus Aufgabe 3 ist sogar ein Körper. Hinweis: Es könnte helfen, einen Bruch mit $x-\sqrt{2}\,y$ zu erweitern, falls dieser Term nicht Null ist.
- c) Die Ringe $(R, +, \cdot)$ und $(\mathbb{Q}(\sqrt{2}), +, \cdot)$ aus Aufgabe 3 sind isomorph zueinander, d.h. es gibt einen bijektiven Ringhomomorphismus $\varphi \colon R \to \mathbb{Q}(\sqrt{2})$.

Aufgabe 5 (Bonusaufgabe zum Nikolaus)

(10 Punkte)

Diese Aufgabe ist als Bonusaufgabe gedacht. Zur Bearbeitung haben Sie zwei Wochen Zeit, also bis zum 21.12.20.

Durch folgende Additions- und Multiplikationstabellen wird ein Körper mit 4-Elementen gegeben:

+	ð	\odot	•	00
<i>₹</i>		@		00
\odot		ð ∳		•
•	•	∞	ðÞ	\odot
0	8	•	\odot	<i>M</i>

	ð₩	\odot	•	0
<i>\$</i> \$€	<i>8</i> √6	<i>3</i> \$	<i>8</i> €	₩
•	ð₩	\odot	•	00
•	<i>8</i> √6	•	00	\odot
00	<i>8</i> √6	®	\odot	•

Außerdem sei

Was bekommt Gauß vom Nikolaus?