Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Курс «Разработка интернет приложений»

Отчет по рубежному контролю №2 Вариант В-6

Выполнил: студент группы ИУ5-53Б Ветошкин А.А, Проверил: преподаватель каф. ИУ5 Гапанюк Ю.Е.

Ветошкин Артём Алексеевич ИУ5-53Б

Задание:

Вариант В-6.

Есть сущности "Процессор" и "Комьютер". Требуется сделать:

- Создайте проект Python Django с использованием стандартных средств Django.
- Создайте модель Django ORM, содержащую две сущности, связанные отношением один-ко-многим в соответствии с Вашим вариантом из условий рубежного контроля №1.
- С использованием стандартного механизма Django сгенерируйте по модели макет веб-приложения, позволяющий добавлять, редактировать и удалять данные.
- Создайте представление и шаблон, формирующий отчет, который содержит соединение данных из двух таблиц.

Создание моделей и "ручек" для работы с ними

Создание моделей:

```
class PCManager(models.Manager):
   def get_pc_by_processor_id(self, id):
        return self.filter(id_processor=id).all()
class Processor(models.Model):
   id = models.AutoField(primary_key=True)
   name = models.CharField(max_length=30, blank=True, null=False)
   frequency = models.IntegerField()
   memory_cash = models.IntegerField()
    class Meta:
        db table = 'processor'
class PC(models.Model):
   id = models.AutoField(primary_key=True)
   name = models.CharField(max_length=30, blank=True, null=False)
   price = models.IntegerField()
    id_processor = models.ForeignKey('Processor', models.DO_NOTHING,
db_column='id_processor', blank=True, null=True)
   objects = PCManager()
    class Meta:
```

```
db_table = 'pc'
```

Для возможности добавления, редактирования и удаления данных были использован rest_framework.

Сотвественно был прописаны сериализаторы:

```
class PCSerializer(serializers.ModelSerializer):
    class Meta:
        model = models.PC
        fields = ["id", "name", "price", "id_processor"]

class ProcessorSerializer(serializers.ModelSerializer):
    class Meta:
        model = models.Processor
        fields = ["id", "name", "frequency", "memory_cash"]
```

И представления:

```
class PCViewSet(viewsets.ModelViewSet):
    queryset = models.PC.objects.all()
    serializer_class = serializers.PCSerializer

class ProcessorViewSet(viewsets.ModelViewSet):
    queryset = models.Processor.objects.all()
    serializer_class = serializers.ProcessorSerializer
```

И настроен роутер:

```
router = routers.DefaultRouter()
router.register('processor', views.ProcessorViewSet)
router.register('pc', views.PCViewSet)
```

Проверка выполнения запросов на созданные ручик

Для записей о компьютерах

Получение всех компьютеров GET запросом:

Получение конкретного компьютера GET запросом:

Удаление конкретного компьютера DELETE запросом:

Создание записи о компьютере POST запросом:

Для записей о процессорах

Получение всех процессоров GET запросом:

Удаление конкретного процессора DELETE запросом:

Body Cookies Headers (10) Test Results

Pretty Raw Preview Visualize JSON V

"id": 13,
"name": "Intel Pentium",
"frequency": 3000,
"memory_cash": 32

(B) Status: 200 OK Time: 77 ms Size: 408 B Save Response V

Создание записи о процессоре POST запросом:

Создание отчёта

Для показа отчёта было добавленно представление:

```
def index(request):
    processors = models.Processor.objects.all()
    data = []
    for processor in processors:
        data.append((processor,
models.PC.objects.get_pc_by_processor_id(processor.id)))
    return render(request, "index.html", {"data": data})
```

И сверстана страница:

```
<!DOCTYPE html>
<html lang="ru">
<head>
  <meta charset="UTF-8">
  <title>Report</title>
  <style>
    table.collapse {
       border: 2px solid black;
       border-collapse: collapse;
       margin-top: 10px;
       display: inline-block;
    }
    td.upper {
       border: 2px solid black;
       padding: 10px;
    }
    td {
       border: 2px solid black;
       padding: 5px;
    }
    .center-text {
       text-align: center;
    }
  </style>
</head>
<body>
<h1 class="center-text"> Отчёт по данным базы о процессорах и компьюторах</h1>
<div class="center-text">
  {% for value in data %}
    Процессор
       ID
         Название
         Частота
         Размер кэша
       {{ value.0.id }}
         {{ value.0.name }}
         {{ value.0.frequency }}
         {{ value.0.memory_cash }}
       Используется в компьютерах
       ID
```

```
Название
        Цена
      {% for pc in value.1 %}
        >
          {{ pc.id }}
          {{ pc.name }}
          {{ pc.price }}
        {% empty %}
        >
          He найдено
        {% endfor %}
    {% endfor %}
</div>
</body>
</html>
```

Для заполнения данных был написан sql скрипт:

```
INSERT INTO processor (name, frequency, memory_cash) VALUES
    ('Intel i7-10600', 3700, 128),
    ('Intel i5-6500', 3600, 12),
    ('Intel i5-6600', 3700, 32),
    ('Intel i7-8600', 3500, 64),
    ('Intel i7-10600', 3800, 256),
    ('Intel i3-5600', 3500, 128),
    ('Intel i7-4790', 3200, 128),
    ('Ryzen 5 5600X', 3800, 32),
    ('Ryzen 7 5800X', 3700, 32),
    ('Ryzen 9 5900X', 3700, 32),
    ('Ryzen 9 5950X', 3400, 64);
INSERT INTO PC (name, price, id_processor) VALUES
    ('Lenovo IdeaCentre G5 14IMB05', 88000, 8),
    ('HP Pavilion Gaming TG01', 110000, 1),
    ('ZOTAC MAGNUS ONE', 187000, 7),
    ('Apple Mac mini 2020 M1', 173000, 6),
    ('Acer Aspire TC-895', 34000, 7),
    ('Apple iMac 24 2021', 248000, 11),
    ('Gigabyte GB-BR', 93000, 4),
    ('HP M01', 61000, 3);
```

В итоге получился отчёт следующего вида:

Отчёт по данным базы о процессорах и компьюторах

		Процессор	Процессор			Процессор				Процессор					Процессор				
ID	Название	Частота	Размер кэша	ID	Название	Частота	Размер кэша	ID	Название	Частота	Размер кэша	ID	Название	Частота	Размер кэша	ID	Название	Частота	Размер кэша
1	Intel i5-9600	3600	128	2	Intel i7-10600	3700	128	3	Intel i5-6500	3600	12	4	Intel i5-6600	3700	32	5	Intel i7-8600	3500	64
	Используется в компьютерах				Используется в компьютерах				Используется в компьютерах			Используется в компьютерах				Используется в компьютерах			
	ID	Название	Цена		ID	Название	Цена		ID	Название	Цена		ID	Название	Цена		ID	Название	Цена
	2	HP Pavilion Gaming TG01	110000		He	найдено			9	HP M01	61000		7	Gigabyte GB-BR	93000	Не найдено			

				Процессор												
		Процессор		ID Название Частота Размер кэша			Процессор					Процессор				
п	Название	Частота	Размер кэша	7	Intel i3-5600	3500	128	ID	Название	Частота	Размер кэша	ID	Название	Частота	Размер кэша	
(Intel i7-10600	3800	256	Используется в компьютерах			8	Intel i7-4790	3200	128	9	Ryzen 5 5600X	3800	32		
	Испо	льзуется в компьютерах		ID Название Цена				Используется в компьютерах					Используется в компьютерах			
Г	ID	Название	Цена		3	ZOTAC MAGNUS ONE	187000		ID	Название	Цена		ID	Название	Цена	
	4	Apple Mac mini 2020 M1	173000		5	Acer Aspire TC-895	34000	1 Lenovo IdeaCentre G5 14IMB05 88000 Не найдено								

	Про	цессор				Процессор	Процессор					
ID	Название	Частота	Размер кэша	ID	Название	Частота	Размер кэша	ID	Название	Частота	Размер кэша	
10	Ryzen 7 5800X	3700	32	11	Ryzen 9 5900X	3700	32	12	Ryzen 9 5950X	3400	64	
	Используетс	в компью	терах	Используется в компьютерах					Используется в компьютерах			
	ID Название Цена				ID	Название	Цена		ID	Название	Цена	
	He i	найдено			6	Apple iMac 24 2021	248000	Не найдено				