DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014 Summary of Lectures (Set - II)

1 The Euclidean Space \mathbb{R}^n and its Subspaces

Definition 1.1. Let n be a positive integer. Then the space \mathbb{R}^n , as defined below, is called the n-dimensional **Euclidean** space. The space \mathbb{R}^n is also a vector space (vector space, in general, will be discussed later).

$$\mathbb{R}^n = \{ [x_1, x_2, \dots, x_n]^t : x_1, x_2, \dots, x_n \in \mathbb{R} \}.$$

- Elements of \mathbb{R}^n are called *n*-vectors or simply **vectors**.
- Note that $[x_1, x_2, \dots, x_n]^t = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ is a column vector.
- Sometimes, an element $[x_1, x_2, \dots, x_n]^t$ of \mathbb{R}^n is also written as a row vector $[x_1, x_2, \dots, x_n]$ or (x_1, x_2, \dots, x_n) .
- The element (x_1, x_2, \dots, x_n) is also termed as an *n*-tuple.
- The vector $[0,0,\ldots,0]^t$ of \mathbb{R}^n , called the **zero** vector, is denoted by the symbol **0**.
- If A is an $m \times n$ real matrix (all entries are real numbers) and $\mathbf{b} \in \mathbb{R}^m$, then a solution of $A\mathbf{x} = \mathbf{b}$, if any, is an element of \mathbb{R}^n . Note that if A is of size $m \times n$ and if we consider the system $A\mathbf{x} = \mathbf{b}$, then both \mathbf{x} and \mathbf{b} must be regarded as column vectors of \mathbb{R}^n and \mathbb{R}^m , respectively.
- Normally, while discussing a system of linear equations, elements of \mathbb{R}^n are regarded a column vectors. Otherwise, elements of \mathbb{R}^n may be regarded as row vectors just for some conveniences in writing, though there is no hard and fast rules.

Definition 1.2. Let $\mathbf{u} = [u_1, u_2, \dots, u_n]^t$, $\mathbf{v} = [v_1, v_2, \dots, v_n]^t \in \mathbb{R}^n$ and $c \in \mathbb{R}$. We define

- $\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2, \dots, u_n + v_n]^t;$
- $c\mathbf{u} = [cu_1, cu_2, \dots, cu_n]^t$;
- $-\mathbf{u} = (-1)\mathbf{u} = [-u_1, -u_2, \dots, -u_n]^t$: and
- $\mathbf{u} \mathbf{v} = \mathbf{u} + (-1)\mathbf{v} = [u_1 v_1, u_2 v_2, \dots, u_n v_n]^t$.

The vector $\mathbf{u} + \mathbf{v}$ is called the **vector addition** of \mathbf{u} and \mathbf{v} . The vector $c\mathbf{u}$ us called the **scalar multiplication** of c and \mathbf{u} .

Some Basic Properties: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$. Then

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\bullet \ \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \ (\mathrm{associativity});$
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity over vector addition);
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity over scalar addition);
- $\mathbf{u} + \mathbf{0} = \mathbf{u}$, $0\mathbf{u} = \mathbf{0}$, $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$, $1\mathbf{u} = \mathbf{u}$ and $c(d\mathbf{u}) = (cd)\mathbf{u}$.

An Example Revisited: Consider the homogeneous system $A\mathbf{x} = \mathbf{0}$, where $A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{bmatrix}$.

The solutions set for $A\mathbf{x} = \mathbf{0}$ is

$$S_h = \left\{ s \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} + t \begin{bmatrix} -1\\0\\1\\1 \end{bmatrix} : s, t \in \mathbb{R} \right\}.$$

Can we describe S_h with a few of the solutions? Can we derive some special properties of solution sets like S_h ?

Linear Combination: A vector \mathbf{v} in \mathbb{R}^n is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n if there exists real numbers c_1, c_2, \dots, c_k such that $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$. The numbers c_1, c_2, \dots, c_k are called the **coefficients** of the linear combination.

Example 1.1. Is the vector $[1,2,3]^t$ a linear combination of $[1,0,3]^t$ and $[-1,1,-3]^t$?

Result 1.1. A system of linear equations with augmented matrix $[A \mid \mathbf{b}]$ is consistent if and only if \mathbf{b} is a linear combination of the columns of A.

Span of Vectors: Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Then the collection of all linear combinations of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called the **span** of S (or span of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$), and is denoted by $\mathrm{span}(S)$ (or $\mathrm{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k)$). That is,

$$\operatorname{span}(S) = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_k \mathbf{v}_k \text{ for some real numbers } c_1, c_2, \ldots, c_k \}.$$

- Convention: $\operatorname{span}(\emptyset) = \{\mathbf{0}\}.$
- If $\operatorname{span}(S) = \mathbb{R}^n$, then S is called a spanning set for \mathbb{R}^n .
- For example, $\mathbb{R}^2 = \operatorname{span}(\mathbf{e}_1, \mathbf{e}_2)$, where $\mathbf{e}_1 = [1, 0]^t$ and $\mathbf{e}_2 = [0, 1]^t$, since for any $[x, y]^t \in \mathbb{R}^2$ we have $[x, y]^t = x\mathbf{e}_1 + y\mathbf{e}_2$.

Example 1.2. Let $\mathbf{u} = [1, 2, 3]^t$ and $\mathbf{v} = [-1, 1, -3]^t$. Describe span (\mathbf{u}, \mathbf{v}) geometrically.

Subspace of \mathbb{R}^n : Let $S(\neq \emptyset) \subseteq \mathbb{R}^n$. Then S is called a subspace of \mathbb{R}^n iff $a\mathbf{u} + b\mathbf{v} \in S$ for every $\mathbf{u}, \mathbf{v} \in S$ and for every $a, b \in \mathbb{R}$.

- For example, $S = \{0\}$ and $S = \mathbb{R}^n$ are some trivial examples of subspaces of \mathbb{R}^n .
- If S is a subspace of \mathbb{R}^n then it is clear that if $\mathbf{u}, \mathbf{v} \in S$ then $0\mathbf{u} + 0\mathbf{v} = \mathbf{0} \in S$, $a\mathbf{u} + 0\mathbf{u} = a\mathbf{u} \in S$ and $1\mathbf{u} + 1\mathbf{v} = \mathbf{u} + \mathbf{v} \in S$.

Example 1.3. Examine whether the sets $S = \{[x, y, z]^t \in \mathbb{R}^3 : x = y + 1\}$, $T = \{[x, y, z]^t \in \mathbb{R}^3 : x = z^2\}$ and $U = \{[x, y, z]^t \in \mathbb{R}^3 : x = 5y\}$ are subspaces of \mathbb{R}^3 .

Example 1.4. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, v_k\} \subseteq \mathbb{R}^n$. Then span(S) is a subspace of \mathbb{R}^n .

Example 1.5. Let A be an $m \times n$ matrix. Then $S = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$ is a subspace of \mathbb{R}^n , called the **nullspace** of A.

Example 1.6. Let U and V be two subspaces of \mathbb{R}^n . Then $U + V = \{\mathbf{u} + \mathbf{v} : \mathbf{u} \in U, \mathbf{v} \in V\}$ is also a subspace of \mathbb{R}^n .

If U and V are subspaces of \mathbb{R}^n such that $U \cap V = \{\mathbf{0}\}$, then U + V is called an **internal direct sum**. Notation: $U \oplus V$.

Result 1.2. Let $A\mathbf{x} = \mathbf{b}$ be a system of equations with n variables. Then exactly one of the following is true:

- 1. there is no solution of the system $A\mathbf{x} = \mathbf{b}$;
- 2. there is a unique solution of the system $A\mathbf{x} = \mathbf{b}$;
- 3. there are infinitely many solutions of the system $A\mathbf{x} = \mathbf{b}$.

Linear Dependence: A set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors (or the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$) in \mathbb{R}^n is (are) said to be **linearly dependent** if there are real numbers c_1, c_2, \dots, c_k , at least one of them is non-zero, such that $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$.

Linear Independence: The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ of vectors (or the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$) in \mathbb{R}^n is (are) said to be **linearly independent** if it is (they are) **not** linearly dependent. That is, if the equation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k = \mathbf{0}$ implies that $c_1 = c_2 = \dots = c_k = 0$ then the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

• It is easy to check that a set of vectors containing the **0** is always linearly dependent.

Example 1.7. Let $\mathbf{e}_i \in \mathbb{R}^n$ be the *i*-th column of the identity matrix I_n . Is $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ linearly independent?

Example 1.8. Examine whether the sets $T = \{[1,2,0]^t, [1,1,-1]^t, [1,4,2]^t\}$ and $S = \{[1,4]^t, [-1,2]^t\}$ are linearly dependent.

Result 1.3. The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n are linearly dependent iff at least one of the vectors can be expressed as a linear combination of the others.

Linear combinations of rows:

Suppose
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 is an $m \times n$ matrix. Then

- For $c_i \in \mathbb{R}$, $\mathbf{a} = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T$ is a linear combination of the rows of A. Note that \mathbf{a} is an $1 \times n$ matrix and $\mathbf{a}^T \in \mathbb{R}^n$.
- Note: $c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = [c_1, \dots, c_m] A$. Thus, for any $\mathbf{c} \in \mathbb{R}^m$, $\mathbf{c}^T A$ is a linear combination of rows of A.
- The rows of A are linearly dependent iff $\mathbf{c}^T A = c_1 \mathbf{a}_1^T + \dots c_m \mathbf{a}_m^T = \mathbf{0}^T$ (zero row) for some nonzero $\mathbf{c} \in \mathbb{R}^m$.
- The rows of A are linearly dependent iff $\mathbf{a}_1, \dots, \mathbf{a}_m$ are linearly dependent, i.e., the columns of A^T are linearly dependent.

Result 1.4. Suppose R = RREF(A) has a zero row. Then the rows of A are linearly dependent.

Result 1.5. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be vectors in \mathbb{R}^n and let A be the $n \times m$ matrix $[\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_m]$ with these vectors as its columns. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ are linearly dependent if and only if the homogeneous system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution.

Result 1.6. Let
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq \mathbb{R}^n$$
 and consider the $m \times n$ matrix $A = \begin{bmatrix} \mathbf{v}_1^t \\ \mathbf{v}_2^t \\ \vdots \\ \mathbf{v}_m^t \end{bmatrix}$. Then S is linearly dependent

if and only if rank(A) < m.

Result 1.7. Any set of m vectors in \mathbb{R}^n is linearly dependent if m > n.

Basis: Let S be a subspace of \mathbb{R}^n and $B \subseteq S$. Then B is said to be a **basis** for S iff B is linearly independent and $\operatorname{span}(B) = S$.

- The set $\{1\}$ is a basis for \mathbb{R}^1 (= \mathbb{R}).
- The set $\{\mathbf{e}_1, \mathbf{e}_2\}$, where $\mathbf{e}_1 = [1, 0]^t$ and $\mathbf{e}_2 = [0, 1]^t$, is a basis for \mathbb{R}^2 .
- In general, if $\mathbf{e}_i = [0, \dots, 0, 1, 0, \dots, 0]^t$, where 1 is at the *i*-th entry and the other entries are zero, then $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis for \mathbb{R}^n .
- The vectors \mathbf{e}_i (for $i = 1, 2, \dots, n$) are called the $n \times 1$ standard unit vector.
- If \mathbf{e}_i is written as a row vector, then the vectors \mathbf{e}_i (for $i=1,2,\ldots,n$) are called the $1\times n$ standard unit vector.

Result 1.8. For a subspace U, a subset $B = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq U$ is a basis of U iff every element of U is a unique linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_r$.

Example 1.9. Find a basis for the subspace $S = \{ \mathbf{x} \in \mathbb{R}^4 : A\mathbf{x} = \mathbf{0} \}$, where

$$A = \left[\begin{array}{rrrr} 1 & -1 & -1 & 2 \\ 2 & -2 & -1 & 3 \\ -1 & 1 & -1 & 0 \end{array} \right].$$

Result 1.9. Let S be a subspace of \mathbb{R}^n . Then S has a basis and any two bases for S have the same number of elements.

Dimension: Let S be a subspace of \mathbb{R}^n . Then the number of elements in a basis for S is called the **dimension**, denoted dim(S), of S.

- Thus $\dim(\mathbb{R}) = 1$, $\dim(\mathbb{R}^2) = 2$.
- In general, $\dim(\mathbb{R}^n) = n$.

2 Matrices

Let $A = [a_{ij}]$ be an $m \times n$ matrix.

- If m = n, then A is called a **square** matrix.
- If A is a square matrix, then the entries a_{ii} are called the **diagonal** entries of A.
- If A is a square matrix and if $a_{ij} = 0$ for all $i \neq j$, then A is called a **diagonal matrix**.
- If an $n \times n$ diagonal matrix has all diagonal entries equal to 1, then it is called the **identity matrix** of size n, and is denoted by I_n (or simply by I).
- An $m \times n$ matrix is called a **zero matrix** of size $m \times n$, denoted $\mathbf{O}_{m \times n}$ (or simply \mathbf{O}), if all the entries are equal to 0.
- A matrix B is said to be a **sub matrix** of A if B is obtained by deleting some rows and/or columns of A.
- Recall that the **transpose** A^t of $A = [a_{ij}]$ is defined to be the $n \times m$ matrix $A^t = [b_{ji}]$, where the *i*-th row of A^t is the *i*-th column of A for all i = 1, 2, ..., n, that is $b_{ji} = a_{ij}$ for all i, j.
- The matrix A is said to be symmetric if $A^t = A$, and skew-symmetric if $A^t = -A$.
- If A is a complex matrix, then $\overline{A} = [\overline{a}_{ij}]$ and $A^* = \overline{A}^t$.
- The matrix A^* is called the **conjugate transpose** of A.
- The (complex) matrix A is said to be **Hermitian** if $A^* = A$, and **skew-Hermitian** if $A^* = -A$.
- A square matrix A is said to be **upper triangular** if $a_{ij} = 0$ for all i > j.
- A square matrix A is said to be **lower triangular** if $a_{ij} = 0$ for all i < j.
- Let A be an $n \times n$ square matrix. Then we define $A^0 = I_n$, $A^1 = A$ and $A^2 = AA$.
- In general, if k is a positive integer, we define the power A^k as follows

$$A^k = \underbrace{AA \dots A}_{k \text{ times}}.$$

It is obvious to see that if A and O are matrices of the same size, then A + O = A = O + A, A - O = A, O - A = -A and A - A = O.

Result 2.1. Let A be an $m \times n$ matrix, \mathbf{e}_i an $1 \times m$ standard unit vector, and \mathbf{e}_j an $n \times 1$ standard unit vector. Then $\mathbf{e}_i A$ is the i-th row of A and $A\mathbf{e}_j$ is the j-th column of A.

Result 2.2. Let A be a square matrix and let r and s be non-negative integers. Then $A^rA^s = A^{r+s}$ and $(A^r)^s = A^{rs}$.

Result 2.3. Let A, B and C be matrices of size $m \times n$, and let $s, r \in \mathbb{R}$. Then

- 1. Commutative Law: A + B = B + A.
- 2. **Associative Law**: (A + B) + C = A + (B + C).
- 3. 1A = A, s(rA) = (sr)A.
- 4. s(A + B) = sA + sB and (s + r)A = sA + rA.

Result 2.4. Let A, B and C be matrices, and let $s \in \mathbb{R}$. Then

- 1. Associative Law: (AB)C = A(BC), if the respective matrix products are defined.
- 2. Distributive Law: A(B+C) = AB + AC, (A+B)C = AC + BC, if the respective matrix sum and matrix products are defined.
- 3. s(AB) = (sA)B = A(sB), if the respective matrix products are defined.
- 4. $I_m A = A = AI_n$, if A is of size $m \times n$.

Result 2.5. Let A and B be two matrices and $k \in \mathbb{R}$. Then

- 1. $(A^t)^t = A$, $(kA)^t = kA^t$.
- 2. $(A+B)^t = A^t + B^t$ if A and B are of the same size.
- 3. $(AB)^t = B^t A^t$ if the matrix product AB is defined.
- 4. $(A^r)^t = (A^t)^r$ for any non-negative integer r.

Partitioned Matrix: By introducing vertical and horizontal lines into a given matrix, we can partition it into some blocks of smaller sub-matrices. A given matrix can have several partitions possible. For example, three partitions of the matrix A are given below:

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix}, A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix}, A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 5 \end{bmatrix}, A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ \hline 0 & 0 & 1 & 5 \end{bmatrix}.$$

- A block matrix $A = [A_{ij}]$ is a matrix, where each entry A_{ij} is itself a matrix.
- Thus a partition of a given matrix give us a block matrix.
- For example, the first partition of the previous matrix A is the block matrix $\begin{bmatrix} I & B \\ \mathbf{O} & C \end{bmatrix}$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{O} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}$.

Result 2.6. Let A and B be two matrices of sizes $m \times n$ and $n \times r$, respectively.

1. If $B = [\mathbf{b}_1 \mid \mathbf{b}_2 \mid \dots \mid \mathbf{b}_r]$, where \mathbf{b}_i is the *i*-th column of B then $AB = [A\mathbf{b}_1 \mid A\mathbf{b}_2 \mid \dots \mid A\mathbf{b}_r]$.

2. If
$$A = \begin{bmatrix} \mathbf{a}_1 \\ \overline{\mathbf{a}_2} \\ \vdots \\ \overline{\mathbf{a}_m} \end{bmatrix}$$
, where \mathbf{a}_i is the *i*-th row of A then $AB = \begin{bmatrix} \mathbf{a}_1B \\ \overline{\mathbf{a}_2B} \\ \vdots \\ \overline{\mathbf{a}_mB} \end{bmatrix}$.

3. If
$$m = n = r$$
 and if $A = [\mathbf{a}_1 \mid \mathbf{a}_2 \mid \dots \mid \mathbf{a}_n]$ and $B = \begin{bmatrix} \frac{\mathbf{b}_1}{\mathbf{b}_2} \\ \vdots \\ \overline{\mathbf{b}_n} \end{bmatrix}$, where \mathbf{a}_i is the *i*-th column of A and \mathbf{b}_i is the *i*-th row of B then $AB = \mathbf{a}_1\mathbf{b}_1 + \mathbf{a}_2\mathbf{b}_2 + \dots + \mathbf{a}_n\mathbf{b}_n$.

3 The Inverse of a Matrix

Definition 3.1. An $n \times n$ matrix A is said to be **invertible** if there exists an $n \times n$ matrix B satisfying $AB = I_n = BA$, and B is called an **inverse** of A.

- Note that we can talk of invertibility only for square matrices.
- For example, the matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ is invertible since

$$\left[\begin{array}{cc}2&5\\1&3\end{array}\right]\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]=\left[\begin{array}{cc}1&0\\0&1\end{array}\right]=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right]\left[\begin{array}{cc}2&5\\1&3\end{array}\right].$$

- It is easy to see that the zero matrix **O** is never invertible.
- The matrix $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ is not invertible.

Result 3.1. If A is an invertible matrix, then its inverse is unique.

- We write A^{-1} to denote the inverse of an invertible matrix A.
- That is, if A is invertible then $AA^{-1} = I_n = A^{-1}A$.
- If A is an 1×1 invertible matrix, what is A^{-1} ?

Result 3.2. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad - bc \neq 0$ then A is invertible and $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. If ad - bc = 0 then A is not invertible.

Result 3.3. Let A and B be two invertible matrices of the same size.

- 1. The matrix A^{-1} is also invertible, and $(A^{-1})^{-1} = A$.
- 2. If $c \neq 0$ then cA is also invertible, and $(cA)^{-1} = \frac{1}{c}A^{-1}$.
- 3. The matrix AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$.
- 4. The matrix A^t is invertible, and $(A^t)^{-1} = (A^{-1})^t$.
- 5. For any non-negative integer n, the matrix A^n is invertible, and $(A^n)^{-1} = (A^{-1})^n$.

Elementary Matrices: An elementary matrix is a matrix that can be obtained by performing an elementary row operation on the identity matrix.

- Since there are three types of elementary row operations, there are three types of corresponding elementary matrices.
- For example, the following are the three types of elementary matrices of size 3.

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}.$$

- Note that E_1 is obtained by performing $R_2 \leftrightarrow R_3$ on I_3 , E_2 is obtained by performing $R_2 \to 5R_2$ on I_3 and E_3 is obtained by performing $R_3 \to R_3 2R_1$ on I_3 .
- Let A be the 3×3 matrix as given below:

$$A = \left[\begin{array}{ccc} a & b & c \\ x & y & z \\ p & q & r \end{array} \right].$$

Then we have

$$E_{1}A = \begin{bmatrix} a & b & c \\ p & q & r \\ x & y & z \end{bmatrix}, E_{2}A = \begin{bmatrix} a & b & c \\ 5x & 5y & 5z \\ p & q & r \end{bmatrix} \text{ and } E_{3}A = \begin{bmatrix} a & b & c \\ x & y & z \\ p - 2a & q - 2b & r - 2c \end{bmatrix}.$$

- Notice that E_1A is the matrix obtained from A by performing the elementary row operation $R_2 \leftrightarrow R_3$.
- The matrix E_2A is the matrix obtained from A by performing the elementary row operation $R_2 \to 5R_2$.
- The matrix E_3A is the matrix obtained from A by performing the elementary row operation $R_3 \to R_3 2R_1$.

Result 3.4.

- 1. Let E be an elementary matrix obtained by an elementary row operation on I_n . If the same elementary row operation is performed on an $n \times r$ matrix A, then the resulting matrix is equal to EA.
- 2. The matrix B is row equivalent to A if there are elementary matrices E_1, E_2, \dots, E_k such that $B = E_k \dots E_2 E_1 A$.

We already know that elementary row operation can be undone or reversed. Applying this fact to the previous elementary matrices E_1 , E_2 and E_3 , we see that they are invertible.

• Indeed, applying $R_2 \leftrightarrow R_3$ on I_3 we find E_1^{-1} , applying $R_2 \to \frac{1}{5}R_2$ on I_3 we find E_2^{-1} , and applying $R_3 \to R_3 + 2R_1$ on I_3 we find E_3^{-1} .

We have

$$E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E_1, \ E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}.$$

Result 3.5. Every elementary matrix is invertible, and its inverse is an elementary matrix of the same type.

Result 3.6 (The Fundamental Theorem of Invertible Matrices: Version I). Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- 1. A is invertible.
- 2. A^t is invertible.
- 3. $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^n .
- 4. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- 5. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 6. The reduced row echelon form of A is I_n .
- 7. The rows of A are linearly independent.
- 8. The columns of A are linearly independent.
- 9. rank(A) = n.
- 10. A is a product of elementary matrices.

Result 3.7. Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Result 3.8. Let A be a square matrix. If a sequence of elementary row operations transforms A to the identity matrix I, then the same sequence of elementary row operations transforms I into A^{-1} .

Gauss-Jordan Method for Computing Inverse:

Let A be an $n \times n$ matrix.

- Apply elementary row operations on the augmented matrix $[A \mid I_n]$.
- If A is invertible, then $[A \mid I_n]$ will be transformed to $[I_n \mid A^{-1}]$.
- If A is not invertible, then $[A \mid I_n]$ can never be transformed to a matrix of the type $[I_n \mid B]$.

Example 3.1. Find the inverse of the following matrix A, if it exists:

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right].$$