UNIVERSIDADE FEDERAL DE MINAS GERAIS

MÍNIMOS QUADRADOS ORDINÁRIOS: UMA APLICAÇÃO NA ANÁLISE DAS QUESTÕES INSTITUCIONAIS DE MUNICÍPIOS BRASILEIROS

Flávio Hugo Pangracio Silva flaviopangracio@cedeplar.ufmg.br
Cedeplar - UFMG

Guilherme Gomes Ferreira guilhermegf2019@cedeplar.ufmg.br
Cedeplar - UFMG

DOCENTE: Ana Hermeto.

Belo Horizonte - MG Abril - 2024

LISTA DE FIGURAS

LISTA DE TABELAS

SUMÁRIO

1. INTRODUÇÃO

O presente trabalho se propõe a explorar de maneira detalhada o método de mínimos quadrados ordinários (MQO), apresentando uma aplicação na análise das questões institucionais presentes nos municípios brasileiros. Este método estatístico é amplamente utilizado na análise econômica, sendo fundamental para compreender as relações entre variáveis e realizar previsões.

A escolha desse enfoque se justifica pela relevância crescente do estudo das instituições no contexto municipal brasileiro, visto que as políticas públicas e a gestão eficiente dessas instituições desempenham um papel fundamental no desenvolvimento socioeconômico local. Nesse sentido, compreender como diferentes variáveis institucionais estão relacionadas entre si e como influenciam indicadores de crescimento e desenvolvimento municipal torna-se uma questão de interesse.

Por meio deste trabalho, pretendemos não apenas apresentar a aplicação prática do modelo de MQO, mas também fornecer uma base sólida de compreensão teórica, destacando os fundamentos matemáticos e estatísticos subjacentes a esse método. Para isso, organizaremos o conteúdo em várias seções, nas quais abordaremos desde os princípios básicos da regressão linear até aspectos mais avançados, passando pela discussão sobre a formulação teórica do modelo de MQO.

Inicialmente, abordaremos os principais conceitos e definições relacionados à regressão linear, discutindo os pressupostos e as limitações desse modelo estatístico. Posteriormente, dedicaremos atenção especial à formulação teórica do modelo de MQO, descrevendo o processo de estimativa dos parâmetros e apresentando as principais propriedades estatísticas dos estimadores obtidos por esse método. Além disso, discutiremos técnicas de diagnóstico e avaliação da qualidade do modelo, destacando a importância da interpretação correta dos resultados obtidos.

Por fim, demonstraremos a aplicação do modelo de MQO na análise das questões institucionais de municípios brasileiros, utilizando dados da REGIC 2018 para ilustrar o processo de formulação, estimação e interpretação do modelo. Espera-se que este trabalho contribua para ampliar o entendimento sobre o método de MQO e sua aplicação.

2. O MODELO CLÁSSICO DE REGRESSÃO LINEAR

A priori, antes de adentrar em detalhes do estimador de MQO, é preciso explicar o modelo clássico de regressão linear, bem como suas hipóteses subjacentes. Nesse sentido, deve se salientar que o modelo clássico de regressão linear admite a forma simples e a forma múltipla. No modelo simples, também conhecido como modelo de regressão bivariada, temos apenas uma variável explicada e uma variável explicativa, além de um intercepto e dos resíduos do modelo.

Um problema fundamental do modelo de regressão simples, no entanto, é a dificuldade de fazer uma análise parcial com apenas uma variável explicativa, ignorando todas outras variáveis que afetam a variável explicada, Y, e são não correlacionadas com a variável independente, X. É nesse sentido que existe o modelo de regressão linear múltipla, o qual permite explicar uma variável através de uma junção de mais variáveis independentes e não correlacionadas uma com a outra. Doravante, este trabalho focará no modelo de regressão linear múltipla, com a justificativa de que os pressupostos são análogos aos pressupostos do modelo simples e que com mais variáveis, o que só é permitido neste modelo, é possível fazer uma análise mais robusta.

Nesta perspectiva, para a definição do modelo clássico de regressão linear, são necessárias algumas hipóteses:

2.1. Linearidade do modelo

A primeira hipótese implica que o modelo deve ser linear nos parâmetros estimados. Disso decorre que as variáveis explicativas podem ser não lineares. Essa hipótese basicamente indica que a relação das variáveis independentes com o parâmetro estimado é linear (??), ou seja, uma variação marginal nas variáveis independentes resultará em uma variação constante na variável explicada.

$$y = x_1 \beta_1 + x_2 \beta_2 + \dots + x_k \beta_k + \varepsilon \tag{1}$$

2.2. Posto Completo

Essa hipótese é uma condição necessária do MCRL, haja vista que, se não satisfeita, é impossível estimar os paramêtros do modelo. Em termos matriciais, implica que a matriz das variáveis independentes deve ser não singular o que, por sua vez, exige que essas variáveis não sejam combinações lineares perfeitas umas das outras. Também é conhecida como condição de identificação.

2.3. Exogeneidade

Tal condição garante que a média condicional do erro dadas as variáveis explicativas é igual a zero. Também conhecida como exogeneidade estrita, seu significado é de que as variáveis explicativas não possuem relação com o termo de perturbação (??). Além disso, é importante ressaltar que, como a média condicional do erro é zero, sua média incondicional também é zero, o que é garantido pela lei das expectativas iteradas (??). Essa é uma forte implicação que garante que uma estimação pelo MCRL sempre acerta na média. Ademais, o MCRL garante a aleatoriedade dos resíduos, isto é, a média condicional do erro i, dado um erro j qualquer é zero.

$$E[\boldsymbol{\varepsilon}|\mathbf{X}] = \begin{bmatrix} E[\varepsilon_1|\mathbf{X}] \\ E[\varepsilon_2|\mathbf{X}] \\ \vdots \\ E[\varepsilon_n|\mathbf{X}] \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
(2)

$$E[\varepsilon_i] = E_{\mathbf{X}}[E[\varepsilon|\mathbf{X}]] = E_{\mathbf{X}}[0] = 0 \tag{3}$$

2.4. Homocedasticidade e não autocorrelação residual

Essa quarta hipótese define que a variância condicional do erro é constante (??) e que a covariância condicional dos erros é zero (??). A variância constante é conhecida como homocedasticidade, o que significa que para qualquer ponto da amostra, a variância sempre será a mesma. Quando isso não ocorre, dizemos que a variância é heterocedástica.

$$Var[\varepsilon_i|\mathbf{X}] = \sigma^2, \qquad \forall i \in \{1, \dots, n\}. \tag{4}$$

$$Cov[\varepsilon_i, \varepsilon_j | \mathbf{X}] = 0, \qquad \forall i \neq j.$$
 (5)

Já o fato da covariância condicional dor erros ser igual a zero define a não autocorrelação entre os termos de perturbação. Em termos matriciais, temos que a matriz de erros vezes a sua transposta é igual a matriz identidade vezes a variância dos resíduos (??). Vale ressaltar que isso não implica que as observações não são autocorrelacionadas.

$$E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'|\mathbf{X}] = \begin{bmatrix} E[\varepsilon_1\varepsilon_1|\mathbf{X}] & E[\varepsilon_1\varepsilon_2|\mathbf{X}] & \cdots & E[\varepsilon_1\varepsilon_n|\mathbf{X}] \\ E[\varepsilon_2\varepsilon_1|\mathbf{X}] & E[\varepsilon_2\varepsilon_2|\mathbf{X}] & \cdots & E[\varepsilon_2\varepsilon_n|\mathbf{X}] \\ \vdots & \vdots & \ddots & \vdots \\ E[\varepsilon_n\varepsilon_1|\mathbf{X}] & E[\varepsilon_n\varepsilon_2|\mathbf{X}] & \cdots & E[\varepsilon_n\varepsilon_n|\mathbf{X}] \end{bmatrix} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}$$

2.5. Processo Gerador dos dados para a regressão

A quinta premissa se refere a não aleatoriedade do vetor de variáveis explicativas, em outras palavras, ele é não estocástico. Isso quer dizer que o vetor de variáveis explicativas é gerado exogenamente. No entanto, usualmente isso é de difícil aplicação, haja vista que o vetor **X** tende a ser aleatório, tal qual o vetor **Y**. Desse modo, uma forma alternativa é assumir **X** como um vetor aleatório e tratar da distribuição conjunta de **X** e **Y**. Desse modo, essa premissa firma que **X** pode ser fixo ou aleatório.