

Extension of the SWIFT option pricing scheme for European options calibration under Heston stochastic volatility model

Master in Advanced Mathematics and Mathematical Engineering
Master's thesis
Supervised by Luis Ortiz-Gracia

Eudald Romo Grau July 2020

Motivation

Challenges in option contracts trading.

Market data

Get the required option and underlying asset data.

Fetch Option Prices

Tune Model

Set

Option

Prices

Option calibrator

Choose model parameters that fit the prices of a set of strikes and maturities.

Option pricer

Use the calibrated model all the options of interest.

Market data

Get the required option and underlying asset data.

Option calibrator

Choose model parameters that fit the prices of a set of strikes and maturities.

Investing strategy

Decide how to react to the current theoretic prices and inform the exchange.

Send Orders Set Option Prices

Option pricer

Use the calibrated model all the options of interest.

Market data

Get the required option and underlying asset data.

Option calibrator

Choose model parameters that fit the prices of a set of strikes and maturities.

Investing strategy

Decide how to react to the current theoretic prices and inform the exchange.

Send Orders Set Option Prices

Option pricer

Use the calibrated model all the options of interest.

Option Pricing

Risk-neutrality applied to European options.

Underlying asset models

Why is Heston stochastic model relevant?

Black-Scholes-Merton model

Definition

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

Analytic European option price

$$v^{(C)}(S_t, \tau) = N(d_1)S_t - e^{-r\tau}N(d_2)K$$

$$d_1 = \frac{1}{\sigma\sqrt{\tau}} \left[ln\left(\frac{S_t}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)\tau \right]$$

$$d_2 = d_1 - \sigma\sqrt{\tau}$$

Volatility Smile

Volatility Smile

Heston model

Definition

$$dS_t = \mu S_t dt + \sqrt{\nu_t} S_t dW_t^{(1)}$$

$$d\nu_t = \kappa(\bar{\nu} - \nu_t)dt + \sigma\sqrt{\nu_t}dW_t^{(2)}$$

$$dW_t^{(1)}dW_t^{(2)} = \rho dt$$

$$\theta = (\nu_0, \bar{\nu}, \rho, \kappa, \sigma)$$

Relation with volatility smile

- \mathbf{v}_0 : controls position of the volatility surface.
- \bigcirc ρ : controls its skewness.
- \bigcirc κ and σ : control the convexity of the surface.
- $\kappa(\nu_0 \bar{\nu})$: controls the term structure.

Cui's expression

Characteristic function

$$\hat{f}(u) = \exp\left(-iur\tau + \frac{\kappa \bar{\nu}\sigma\tau iu}{\sigma} - A + \frac{2\kappa\hat{\nu}}{\sigma^2}\right)$$

Characteristic function gradient

$$\nabla_{\theta} \hat{f}(u) = h(u)\hat{f}(u)$$

What advantages does SWIFT provide?

Heston formula

$$V(x,\tau) = K(e^{x}P_1(\theta; x, \tau) - e^{-ir\tau}P_2(\theta; x, \tau))$$

$$P_1(\theta; x, \tau) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{iux}}{iu} \frac{\hat{f}(-u+i)}{\hat{f}(i)}\right) du$$

$$P_2(\theta; x, \tau) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty Re\left(\frac{e^{iux}}{iu}\hat{f}(-u)\right) du$$

Approximation degree m

Approximation degree m

Family of functions $\phi_{m,k}$

Approximation degree m

Family of functions $\phi_{m,k}$

Function Projection

$$F pprox \sum_{k \in \mathbb{Z}} D_{m,k} \phi_{m,k}$$

Approximation degree m

Family of functions $\phi_{m,k}$

Function Projection

$$f \approx \sum_{k \in \mathbb{Z}} D_{m,k} \phi_{m,k}$$

Sinc function

SWIFT

Wavelet projection

Series truncation

Density coefficients approximation

Payoff coefficients approximation

$$v(x,\tau) = e^{-r\tau} \int_{\mathbb{R}} f(y|x)v(y,0)dy$$

SWIFT

Wavelet projection (m)

Series truncation

Density coefficients approximation

Payoff coefficients approximation

$$f_1(y|x) = \sum_{k \in \mathbb{Z}} D_{m,k} \phi_{m,k}$$

$$v_1(x,\tau) = e^{-r\tau} \int_{\mathbb{R}} f_1(y|x)v(y,0)dy$$

SWIFT

Wavelet projection

Series truncation (η)

Density coefficients approximation

Payoff coefficients approximation

$$f_2(y|x) = \sum_{k=1-\eta}^{\eta} D_{m,k} \phi_{m,k}$$

$$v_2(x,\tau) = e^{-r\tau} \int_{\mathbb{R}} f_2(y|x)v(y,0)dy$$

SWIFT

Wavelet projection

Series truncation

Density coefficients approximation (J_d)

Payoff coefficients approximation

$$f_3(y|x) = \sum_{k=1-\eta}^{\eta} D_{m,k}^* \phi_{m,k}$$

$$v_3(x,\tau) = e^{-r\tau} \sum_{k=1-\eta}^{\eta} D_{m,k}^* V_{m,k}$$

$$V_{m,k} = \int_{\mathbb{R}} \phi_{m,k} v(y,0) dy$$

SWIFT

Wavelet projection

Series truncation

Density coefficients approximation

Payoff coefficients approximation (J_p)

$$v_4(x,\tau) = e^{-r\tau} \sum_{k=1-\eta}^{\eta} D_{m,k}^* V_{m,k}^*$$

New contributions

Gradient computation

- Invariant parameters assumption.
- Alternative SWIFT formulation for multiple strikes

$$\nabla_{\theta} v_4(x, \tau) = e^{-r\tau} K \sum_{j=1}^{J_d} Re\{h(u_j 2^m) \hat{f}(u_j 2^m) e^{-iu_j 2^m x} \overline{U}_j(c)\}$$

New contributions

Gradient computation

- Invariant parameters assumption.
- Using an alternative SWIFT formulation for multiple strikes presented in previous studies.

$$\nabla_{\theta} v_4(x, \tau) = e^{-r\tau} K \sum_{j=1}^{J_d} Re\{h(u_j 2^m) \hat{f}(u_j 2^m) e^{-iu_j 2^m x} \overline{U}_j(c)\}$$

Speed-up techniques

- Extension of previous techniques to the gradient computation.
- Reusing computations through all calibration steps.
- Reusing computations between price and gradient computations.

Option calibration

Minimization problem approach

What is a calibrated model?

Strike/expiry pairs (K_i, τ_i)

What is a calibrated model? Fetch market data Strike/expiry pairs (K_i, τ_i) **Parameter** candidate θ

What is a calibrated model?

 $\begin{aligned} & \textbf{Residuals} \\ & r_i(\theta) = \\ & |V^*(K_i, \tau_i) - V(\theta; K_i, \tau_i)| \end{aligned}$

Objective function

$$f(\theta) = \frac{1}{2}r^{T}(\theta)r(\theta)$$

How is the optimum reached?

- A Levenberg-Marquardt method is used.
 - It behaves like steepest descent far from the optimum.
 - It behaves like Gauss-Newton close to the optimum.
- It stops when:
 - ϵ_1 : Small value of the objective function.
 - ϵ_2 : Small gradient.
 - ϵ_3 : Stagnate update.

Numerical results

Extreme situations, speed, and applicability.

Stress Tests. $\tau = 45$ years.

S	К	V ^{m=3} SWIFT	V ^{m=7} SWIFT	$V_{\mathcal{C}ui}^{\overline{u}=200}$	$V^{\overline{u}=6}_{Cui}$	V ^{u=200} Schoutens
100	50	65.565	nan	nan	65.565	65.565
100	100	46.911	nan	nan	46.911	46.911
100	200	27.198	nan	nan	27.198	27.198

Speed Tests

	40 strikes x 1 expiry	8 strikes x 5 expiries	8 strikes x 5 expiries (disabling reusable data across strikes)	
SWIFT (no speed-ups)	7s	36s	[36s]	
SWIFT (with speed-ups)	4.5ms	45ms	170ms	
Comparison test	46ms	63ms	[63ms]	

Stress Tests. $\tau=2$ weeks.

S	К	$V_{SWIFT}^{m=3}$	V ^{m=7} SWIFT	$V_{Cui}^{\overline{u}=200}$
100	50	44.221	50.000	50.000
100	100	0.380	1.045	1.046
100	200	0	0	1.08e-3

Realistic Convergence Tests

	Foreign exchange	Interest rate	Equity
Max absolute error in parameter estimation	1.98e-3	2.66e-4	1.16e-3
Average number of iterations	13.85	6.32	6.78
Average time (ms)	334	194	201
Objective function final value	2.87e-11	2.03e-11	3.64e-11

Conclusions and further research

Conclusions

- A complete extension of SWIFT for calibration is provided.
- Cui's Heston characteristic expression numerical problems are discussed.
- The presented calibration method execution time is comparable to the highly efficient reference one.
- Useful for supervised trading.
- Insufficient for high-frequency trading.
- Challenging volatility surfaces are properly calibrated in under 1 second.

Conclusions

- A complete extension of SWIFT for calibration is provided.
- Cui's Heston characteristic expression numerical problems are discussed.
- The presented calibration method execution time is comparable to the highly efficient reference one.
- Useful for supervised trading.
- Insufficient for high-frequency trading.
- Challenging volatility surfaces are properly calibrated in under 1 second.

Further research

- Extend SWIFT calibrator to other contracts.
- Investigate alternative optimal parameters.
- Apply the speed-ups to the reference calibrator.

Thanks for you time.

Contact information eudald.rg@gmail.com