Combining Symbolic Expressions and Black-box Function Evaluations in Neural Programs

Forough Arabshahi* Sameer Singh* Animashree Anandkumar[†]

*University of California, Irvine † California Institute of Technology

Neural Programming

- Learning black-box functions
- Observations:
- * black-box function evaluations (*fEval*)
- * program execution traces (eTrace)
- Challenges: Lack of generalization due to:
- * *fEval*: Insufficient structural information
- * eTrace: Computational issues affecting the domain coverage
- Solution:
- * Most problems have access to symbolic representations (sym)
- * Combine *sym* and *fEval* data:
- * *sym*: preserve problem's structure
- \star *fEval*: enable function evaluation
- Case study: Modeling mathematical equations
- Summary of contributions:
- * Combine symbolic representation and function evaluation
- * Equation verification and equation completion using TreeLSTMs
- * Balanced dataset generation method
- * Represent numbers with their decimal expansion tree

Mathematical Equation Modeling

• Grammar rules:

$$I \rightarrow =(E, E), \neq (E, E)$$

 $E \rightarrow T, F_1(E), F_2(E, E)$
 $F_1 \rightarrow \sin, \cos, \tan, \dots$

 $F_1 \rightarrow \text{SIII}, \cos, \tan, .$

 $F_2 \to +, \wedge, \times, \dots$

 $T \rightarrow -1, 0, 1, 2, \pi, x, y, \dots$, any number in [-3.14,+3.14]

• Covered domain:

Table: Symbols in our grammar, i.e. the functions, variables, and constants

Unary functions, F_1					Term	ninal, T	Binary, F_2
\sin	COS	CSC	sec	tan	0	1	+
cot	arcsin	arccos	arccsc	arcsec	2	3	×
arctan	arccot	sinh	\cosh	csch	4	10	\wedge
sech	tanh	coth	arsinh	arcosh	0.5	-1	
arcsch	arsech	artanh	arcoth	exp	0.4	0.7	
					π	x	

• Examples of equation trees:

Tree LSTMs for Modeling Equations

- Tree LSTM whose structure mirrors the input equation
- * W_{Function} : LSTM cells associated with each Function
- $*W_{\text{symb}}:$ 1-layer feed-forward net for embedding symbolic terminals
- * W_{num} : 2-layer feed-forward net for encoding floating point numbers
- * W_{num}^{-1} : 2-layer feed-forward net for decoding floating point numbers

- Baselines:
- * Sequential Recurrent Neural Networks
- * Sequential LSTMs
- * Tree-structured RNNs without function evaluation data
- * Tree-LSTMs without function evaluation data
- * Tree-structured RNNs with function evaluation data

Dataset Generation Scheme:

Generating Symbolic Equations

- Generate possible equations valid in the grammar
 - * Start from a small initial set of axioms
- * For each axiom, choose a random tree node
- * Make local random changes to the node:
- * Problem: More incorrect equations than correct
- * Solution: Sub-tree matching
- Generate additional correct equations
- * mathDictionary: A dictionary of valid mathematical statements.
 - \star E.g. (x + y : y + x) forms a key-value pair
- * For each correct equation in the dataset, chose a random tree node
- * Find a dictionary key whose pattern matches the chosen sub-tree
- * Replace the sub-tree with the value's pattern, e.g.
- \star Equation: $\sin^2 \theta + \cos^2 \theta = 1$
- \star Chosen node: +

* Key-value pair: (x + y : y + x)* output: $\cos^2 \theta + \sin^2 \theta = 1$

Generating function evaluation equations

- Function Evaluation
- * Range of floating point numbers of precision 2: [-3.14, 3.14]
- * For each unary function: draw a random number and evaluate
- * For each binary function: draw two random numbers and evaluate
- Representation of numbers
- * For all numbers in the dataset, form the decimal expansion tree
- * E.g. $2.5 = 2 \times 10^0 + 5 \times 10^{-1}$

Experiments and Results

Complexity of an equation: its expression tree depth

• Equation Verification: Generalization to unseen identities

Table: **Generalization Results:** the train and the test contain equations of the same depth [1,2,3,4]. Results are on unseen equations. *Sym* refers to accuracy of Symbolic expressions and *F Eval* refers to MSE of function evaluation expressions. The last four columns measure the accuracy of symbolic expressions of different depths.

Approach	Sym	F Eval	depth 1	depth 2	depth 3	depth 4
Test set size	3527	401	7	542	2416	563
Majority Class	50.24	-	28.57	45.75	52.85	43.69
Sympy	81.74	-	85.71	89.11	82.98	69.44
RNN	66.37	-	57.14	62.93	65.13	72.32
LSTM	81.71	-	85.71	79.49	80.81	83.86
TreeNN	92.06	-	100.0	95.37	94.16	87.45
TreeLSTM	95.18	-	85.71	96.50	95.07	94.50
TreeNN + data	93.60	0.191	100.0	94.1	93.13	95.11
TreeLSTM + data	97.20	0.047	71.42	98.29	97.45	96.00
_						

Equation Verification: Extrapolation to unseen depths

Table: **Extrapolation Evaluation** to measure the capability of the model to generalize to unseen depth. Acc: Accuracy, Prec: Precision, Rec: Recall

Approach	Train	:1,2,3;	Test on 4	Train:1,3,4; Test on 2		
Арргоасп	Acc	Prec	Rec	Acc	Prec	Rec
Majority Class	55.22	0	0	56.21	0	0
RNN	65.15	68.61	75.51	71.27	82.98	43.27
LSTM	76.40	71.62	78.35	79.31	75.27	79.31
TreeNN	88.36	87.87	85.86	92.58	89.04	94.71
TreeLSTM	93.27	90.20	95.33	94.78	94.15	93.90
TreeNN + data	93.34	90.34	95.33	93.36	89.75	95.78
TreeLSTM + data	96.17	92.97	97.15	97.37	96.08	96.86

Equation Completion

