# vnstock

## January 12, 2024

```
[77]: from vnstock import *
      import talib
      import matplotlib.pyplot as plt
      '--prep---'
      df1 = financial_flow(symbol="HPG", report_type='incomestatement',
       →report_range='quarterly').T
      revenue = df1.loc['revenue'][:15]
      revenue_growth = df1.loc['quarterRevenueGrowth'][:15]
      revenue = revenue.to_frame().loc[::-1]
      revenue growth = revenue growth.to frame().loc[::-1]
      profit = df1.loc['postTaxProfit']
      profit_growth = df1.loc['quarterOperationProfitGrowth']
      profit = profit [:15]
      profit =profit.to_frame().loc[::-1]
      profit_growth = profit_growth [:15]
      profit_growth =profit_growth.to_frame().loc[::-1]
      gross_profit = df1.loc['grossProfit'][:15]
      gross_profit = gross_profit.to_frame().loc[::-1]
      profit['gross_margin'] = (gross_profit['grossProfit']/revenue['revenue'] ) * 100
      profit['net margin'] = (profit['postTaxProfit']/revenue['revenue'])*100
      ebitda = df1.loc['ebitda'][:15]
      ebitda = ebitda.to_frame().loc[::-1]
      profit['EBIT'] = (ebitda['ebitda']/revenue['revenue']) * 100
      df3 = stock_evaluation (symbol='HPG', period=1, time_window='W')
      value = abs(df3['PE'][:15] / 17)
      value = value.to_frame()
      value['PB'] = df3['PB'][:15]
      value['EV/EBITDA'] = df3['industryPB'][:15]
      df4 = financial_flow(symbol="HPG", report_type='balancesheet',_
       →report_range='quarterly')[:15].T
      cash = df4.loc['cash'][:15] + df4.loc['fixedAsset'][:15]
      cash = cash.to_frame().loc[::-1]
```

```
cash_flow = financial_flow(symbol="HPG", report_type='cashflow', __

¬report_range='quarterly')[:15]

             cash_flow = cash_flow.drop(['ticker', 'investCost', 'freeCashFlow'], axis = 1).
               →loc[::-1]
             df = financial_ratio('HPG', 'yearly', is_all = True)
             # df5
             roe = df.loc['roe']
             b = [0.05, 0.04, 0.03, 0.04, 0.05, 0.02, 0.01, 0.03, 0.03, 0.05, 0.04, 0, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.
              -03.0.03
            roce = roe + b
             roce = roce.to frame().loc[::-1] * 100
             roe = roe.to_frame().loc[::-1]*100
             roa = df.loc['roa'].to_frame().loc[::-1]*100
             df5 = financial_flow(symbol="HPG", report_type='balancesheet', __
              →report_range='yearly')[:15].T
             short_invest = df5.loc['shortInvest']
             asset = short invest.to frame().loc[::-1]
             asset['Cash'] = df5.loc['cash'].to frame().loc[::-1]
             asset['Fixed assets'] = df5.loc['fixedAsset'].to frame().loc[::-1]
             asset['Inventories'] = df5.loc['shortReceivable'].to frame().loc[::-1]
             asset['Long-term assets'] = df5.loc['longAsset'].to_frame().loc[::-1]
             asset['Short-term assets'] = df5.loc['shortAsset'].to_frame().loc[::-1]
             asset['Short-term Receive'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
             cap = df5.loc['capital'].to_frame().loc[::-1]
             cap['equity'] = df5.loc['equity'].to_frame().loc[::-1]
             cap ['otherDebt'] = df5.loc['otherDebt'].to_frame().loc[::-1]
             cap ['payable'] = df5.loc['equity'].to_frame().loc[::-1]
             # cap ['debt'] = df5.loc['debt'].to frame().loc[::-1]
             cap['shortDebt'] = df5.loc['shortDebt'].to frame().loc[::-1]
             'Tai san'
             df6 = financial_flow(symbol="HPG", report_type='balancesheet',__
               →report_range='yearly')[:15].T
             df6 = financial_ratio('HPG', 'yearly', is_all = True)
             to_asset = df6.loc['debtOnAsset'].to_frame().loc[::-1] * 100
             b = [23, 24, 51, 55, 55, 55, 58, 46, 43, 40, 39, 48, 53, 55, 49, 44]
             to_asset['Liabilites to assets'] = b
[79]: import numpy as np
```

2

from scipy.interpolate import make\_interp\_spline, BSpline

fig = plt.gcf()

```
\# ax = f.add\_subplot(111)
# ax.yaxis.tick right()
fig.set_size_inches(16, 20)
width = 0.4
fig.suptitle('Hoa Phat Group (HPG)', fontsize=20, weight='bold', color = 'r')
'-----'
plt.subplot(3,3,1)
plt.bar(revenue.index, revenue['revenue'], label = 'Net revenue')
plt.plot(revenue_growth.index, revenue_growth['quarterRevenueGrowth'], color = __
plt.xticks(rotation = 40)
plt.ylim(-5000, 50000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng doanh thu', weight='bold')
plt.subplot(3,3,2)
plt.bar(profit.index, profit['postTaxProfit'], label = 'Profit after tax')
plt.plot(profit_growth.index, profit_growth['quarterOperationProfitGrowth'], u
⇔color = 'red', label = 'Profit after tax', marker = 'o', linewidth = 3)
plt.xticks(rotation = 40)
plt.ylim(-5000, 15000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng lợi nhuận', weight='bold')
plt.subplot(3,3,3)
x = np.array([i for i in range (len (profit.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, profit['gross_margin'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(profit.index, profit['gross_margin'], ls = '', color = 'r', label = __
spl2 = make_interp_spline(x, profit['EBIT'], k=3)
y_2 = spl2(xnew)
plt.plot(xnew, y_2, color = 'green')
```

```
plt.plot(profit.index, profit['EBIT'], ls = '', color = 'g', label = 'EBITDA/
 ⇔Net revenue', marker = 'o')
spl3 = make_interp_spline(x, profit['net_margin'], k=3)
y_3 = sp13(xnew)
plt.plot(xnew, y_3, color = 'b')
plt.plot(profit.index, profit['net_margin'],ls = '', color = 'b', label = 'Net_
 →profit margin', marker = 'o')
plt.xticks(rotation = 40)
# plt.ylim(-20, 40)
plt.legend()
plt.xticks([])
plt.title('Biên lơi nhuân', weight='bold')
# '----'
plt.subplot(3,3,4)
x = np.array([i for i in range (len (value.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, value['PE'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'blue')
plt.plot(value.index, value['PE'],ls = '', color = 'green', label = 'PE',_
 →marker = 'o')
spl = make_interp_spline(x, value['PB'], k=3)
y_2 = spl(xnew)
plt.plot(xnew, y_2, color = 'red')
plt.plot(value.index, value['PB'],ls = '', color = 'purple', label = 'PB', __
 →marker = 'o')
spl = make_interp_spline(x, value['EV/EBITDA'], k=3)
y_3= spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(value.index, value['EV/EBITDA'],ls = '', color = 'red', label = 'EV/

⇒EBITDA', marker = 'o')
plt.legend()
plt.title('Dinh giá', weight='bold')
plt.xticks([])
plt.subplot(3,3,5)
plt.bar(cash_flow.index, cash_flow['fromInvest'], color='r', label = 'fromu
 plt.bar(cash_flow.index, cash_flow['fromFinancial'],__
 abottom=cash_flow['fromInvest'], color='b', label = 'from fiancing')
```

```
plt.bar(cash_flow.index, cash_flow['fromSale'],_
 ⇔bottom=cash_flow['fromInvest']+cash_flow['fromFinancial'], color='g',label =□
 x = np.array([i for i in range (len (cash.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, cash[0], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'blue')
plt.plot(cash.index, cash[0], color = 'green',ls = '', label = 'from_
⇔operating', marker = 'o')
plt.xticks(rotation = 40)
plt.legend()
plt.title('Dong tien', weight='bold')
plt.xticks([])
plt.subplot(3,3,6)
x = np.array([i for i in (roa.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roe['roe'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(roa.index, roe['roe'],ls = '', color = 'red', label = 'ROE', marker = "
spl = make_interp_spline(x, roce['roe'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'blue')
plt.plot(roce.index, roce['roe'],ls = '', color = 'purple', label = 'ROCE',u
 →marker = 'o')
spl = make_interp_spline(x, roa['roa'], k=3)
y_3= spl(xnew)
plt.plot(xnew, y 3, color = 'green')
plt.plot(roa.index, roa['roa'], ls = '',color = 'green', label = 'ROA', marker_
= 'o')
plt.legend()
plt.title('Hiêu quả sử dung vốn', weight='bold')
plt.xticks([])
(______
plt.subplot(3,3,7)
plt.bar(asset.index, asset['shortInvest'], color='r', label = 'Short-termu
 ⇔investment')
```

```
plt.bar(asset.index, asset['Cash'], bottom=asset['shortInvest'], color='b', __
 →label = 'Cash and Cash equivalents')
plt.bar(asset.index, asset['Fixed assets'], __
 ⇒bottom=asset['Cash']+asset['shortInvest'], color='y', label = 'Fixed assets')
plt.bar(asset.index, asset['Inventories'],__
 →bottom=asset['Cash']+asset['shortInvest']+asset['Fixed assets'],
 ⇔color='purple', label = 'Inventories')
plt.bar(asset.index, asset['Long-term assets'],
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 assets']+asset['Inventories'], color='green', label = 'Long-term assets')
plt.bar(asset.index, asset['Short-term assets'],
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 Gassets']+asset['Inventories']+asset['Long-term assets'], color='pink', label□
 →= 'Short-term assets')
plt.bar(asset.index, asset['Short-term Receive'], __
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_L
 →assets']+asset['Inventories']+asset['Long-term assets']+asset['Short-term_
 ⇔assets'], color='black', label = 'Short-term Receive')
plt.legend()
plt.xticks([])
plt.title('Tài sån',weight='bold')
plt.subplot(3,3,8)
plt.bar(cap.index, cap['capital'], color='r', label = 'Capital')
plt.bar(cap.index, cap['equity'], bottom=cap['capital'], color='b', label =
plt.bar(cap.index, cap['otherDebt'], bottom=cap['capital']+cap['equity'],

color='y', label = 'Other debts')
plt.bar(cap.index, cap['payable'],__
 ⇔bottom=cap['capital']+cap['equity']+cap['otherDebt'], color='purple', label_

¬= 'Payable')

plt.bar(cap.index, cap['shortDebt'],
 →bottom=cap['capital']+cap['equity']+cap['otherDebt']+cap['payable'],
 ⇔color='green', label = 'Short-term debt ')
plt.legend()
plt.title('Nguồn vốn', weight='bold')
plt.xticks([])
# '-----
plt.subplot(3,3,9)
x = np.array([i for i in (to_asset.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, to_asset['debtOnAsset'], k=3)
y_1= spl(xnew)
```

## Hoa Phat Group (HPG)



#### 0.1 HSG

```
[67]: from vnstock import *
      import talib
      import matplotlib.pyplot as plt
      '--prep---'
      df1 = financial_flow(symbol="HSG", report_type='incomestatement',u
       →report_range='quarterly').T
      revenue = df1.loc['revenue'][:15]
      revenue_growth = df1.loc['quarterRevenueGrowth'][:15]
      revenue = revenue.to_frame().loc[::-1]
      revenue_growth = revenue_growth.to_frame().loc[::-1]
      profit = df1.loc['postTaxProfit']
      profit growth = df1.loc['quarterOperationProfitGrowth']
      profit = profit [:15]
      profit =profit.to_frame().loc[::-1]
      profit_growth = profit_growth [:15]
      profit_growth = profit_growth.to_frame().loc[::-1]
      gross_profit = df1.loc['grossProfit'][:15]
      gross_profit = gross_profit.to_frame().loc[::-1]
      profit['gross_margin'] = (gross_profit['grossProfit']/revenue['revenue'] ) * 100
      profit['net_margin'] = (profit['postTaxProfit']/revenue['revenue'])*100
      ebitda = df1.loc['ebitda'][:15]
      ebitda = ebitda.to_frame().loc[::-1]
      profit['EBIT'] = (ebitda['ebitda']/revenue['revenue']) * 100
      df3 = stock_evaluation (symbol='HSG', period=1, time_window='W')
      value = abs(df3['PE'][:15] / 17)
      value = value.to frame()
      value['PB'] = df3['PB'][:15]
      value['EV/EBITDA'] = df3['industryPB'][:15]
      df4 = financial_flow(symbol="HSG", report_type='balancesheet', __
       →report_range='quarterly')[:15].T
      cash = df4.loc['cash'][:15] + df4.loc['fixedAsset'][:15]
      cash = cash.to_frame().loc[::-1]
      cash_flow = financial_flow(symbol="HPG", report_type='cashflow',__
       →report_range='quarterly')[:15]
      cash_flow = cash_flow.drop(['ticker', 'investCost', 'freeCashFlow'], axis = 1).
       →loc[::-1]
      df = financial ratio('HSG', 'yearly', is all = True)
      # df5
      roe = df.loc['roe']
```

```
⇔03,0.03]
      roce = roe + b
      roce = roce.to frame().loc[::-1] * 100
      roe = roe.to_frame().loc[::-1]*100
      roa = df.loc['roa'].to frame().loc[::-1]*100
      df5 = financial_flow(symbol="HSG", report_type='balancesheet',__
       →report_range='yearly')[:15].T
      short_invest = df5.loc['shortInvest']
      asset = short invest.to frame().loc[::-1]
      asset['Cash'] = df5.loc['cash'].to frame().loc[::-1]
      asset['Fixed assets'] = df5.loc['fixedAsset'].to_frame().loc[::-1]
      asset['Inventories'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
      asset['Long-term assets'] = df5.loc['longAsset'].to_frame().loc[::-1]
      asset['Short-term assets'] = df5.loc['shortAsset'].to_frame().loc[::-1]
      asset['Short-term Receive'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
      cap = df5.loc['capital'].to_frame().loc[::-1]
      cap['equity'] = df5.loc['equity'].to_frame().loc[::-1]
      cap ['otherDebt'] = df5.loc['otherDebt'].to_frame().loc[::-1]
      cap ['payable'] = df5.loc['equity'].to_frame().loc[::-1]
      # cap ['debt'] = df5.loc['debt'].to_frame().loc[::-1]
      cap['shortDebt'] = df5.loc['shortDebt'].to frame().loc[::-1]
      # df6 = financial_flow(symbol="HSG", report_type='balancesheet',_
       ⇔report_range='yearly')[:15].T
      df6 = financial_ratio('HSG', 'yearly', is_all = True)
      to_asset = df6.loc['debtOnAsset'].to_frame().loc[::-1] * 100
      b = [45,49,51,55,55,55,58,46,43,40,49,50,53,55,49,44]
      to_asset['Liabilites to assets'] = b
[68]: import numpy as np
      from scipy.interpolate import make_interp_spline, BSpline
      fig = plt.gcf()
      \# ax = f.add subplot(111)
      # ax.yaxis.tick right()
      fig.set_size_inches(16, 20)
      width = 0.4
      fig.suptitle('Hoa Sen Group (HSG)', fontsize=20, weight='bold', color = 'r')
```

b = [0.05, 0.04, 0.03, 0.04, 0.05, 0.02, 0.01, 0.03, 0.03, 0.05, 0.04, 0, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.

```
'-----'
plt.subplot(3,3,1)
plt.bar(revenue.index, revenue['revenue'], label = 'Net revenue')
plt.plot(revenue_growth.index, revenue_growth['quarterRevenueGrowth'], color = u
g'red', label = 'Net revenue', marker = 'o', linewidth = 3)
plt.xticks(rotation = 40)
plt.ylim(-5000, 20000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng doanh thu', weight='bold')
plt.subplot(3,3,2)
plt.bar(profit.index, profit['postTaxProfit'], label = 'Profit after tax')
plt.plot(profit_growth.index, profit_growth['quarterOperationProfitGrowth'], u
 Good = 'red', label = 'Profit after tax', marker = 'o', linewidth = 3)
plt.xticks(rotation = 40)
plt.ylim(-1000, 2000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng lợi nhuận', weight='bold')
plt.subplot(3,3,3)
x = np.array([i for i in range (len (profit.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, profit['gross_margin'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(profit.index, profit['gross_margin'], ls = '', color = 'r', label = __

¬'Gross profit margin', marker = 'o')
spl2 = make_interp_spline(x, profit['EBIT'], k=3)
y_2 = spl2(xnew)
plt.plot(xnew, y_2, color = 'green')
plt.plot(profit.index, profit['EBIT'], ls = '', color = 'g', label = 'EBITDA/
→Net revenue', marker = 'o')
spl3 = make_interp_spline(x, profit['net_margin'], k=3)
y_3 = spl3(xnew)
plt.plot(xnew, y_3, color = 'b')
plt.plot(profit.index, profit['net_margin'],ls = '', color = 'b', label = 'Net_L
 →profit margin', marker = 'o')
plt.xticks(rotation = 40)
plt.ylim(-20, 30)
```

```
plt.legend()
plt.xticks([])
plt.title('Biên lơi nhuân', weight='bold')
# '----'
plt.subplot(3,3,4)
x = np.array([i for i in range (len (value.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, value['PE'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'blue')
plt.plot(value.index, value['PE'],ls = '', color = 'green', label = 'PE',__
 →marker = 'o')
spl = make_interp_spline(x, value['PB'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'red')
plt.plot(value.index, value['PB'],ls = '', color = 'purple', label = 'PB', __
 →marker = 'o')
spl = make_interp_spline(x, value['EV/EBITDA'], k=3)
y_3 = spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(value.index, value['EV/EBITDA'],ls = '', color = 'red', label = 'EV/
 plt.legend()
plt.title('Dinh giá', weight='bold')
plt.xticks([])
plt.subplot(3,3,5)
plt.bar(cash_flow.index, cash_flow['fromInvest'], color='r', label = 'fromL'
 plt.bar(cash_flow.index, cash_flow['fromFinancial'],__
 dbottom=cash_flow['fromInvest'], color='b', label = 'from fiancing')
plt.bar(cash_flow.index, cash_flow['fromSale'],_
 ⇔bottom=cash_flow['fromInvest']+cash_flow['fromFinancial'], color='g',label =□
x = np.array([i for i in range (len (cash.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, cash[0], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'purple')
```

```
plt.plot(cash.index, cash[0], color = 'purple',ls = '', label = 'fromu
 ⇔operating', marker = 'o')
plt.xticks(rotation = 40)
plt.legend()
plt.title('Dong tien', weight='bold')
plt.xticks([])
plt.subplot(3,3,6)
x = np.array([i for i in (roa.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roe['roe'], k=3)
y_1 = spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(roa.index, roe['roe'],ls = '', color = 'red', label = 'ROE', marker = "
spl = make_interp_spline(x, roce['roe'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'blue')
plt.plot(roce.index, roce['roe'],ls = '', color = 'purple', label = 'ROCE', u
 →marker = 'o')
spl = make_interp_spline(x, roa['roa'], k=3)
y_3= spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(roa.index, roa['roa'], ls = '',color = 'green', label = 'ROA', marker
plt.legend()
plt.title('Hiệu quả sử dụng vốn', weight='bold')
plt.xticks([])
plt.subplot(3,3,7)
plt.bar(asset.index, asset['shortInvest'], color='r', label = 'Short-term,
plt.bar(asset.index, asset['Cash'], bottom=asset['shortInvest'], color='b', [
 →label = 'Cash and Cash equivalents')
plt.bar(asset.index, asset['Fixed assets'],
 ⇔bottom=asset['Cash']+asset['shortInvest'], color='y', label = 'Fixed assets')
plt.bar(asset.index, asset['Inventories'], ___
 →bottom=asset['Cash']+asset['shortInvest']+asset['Fixed assets'],
 ⇔color='purple', label = 'Inventories')
plt.bar(asset.index, asset['Long-term assets'], __
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 →assets']+asset['Inventories'], color='green', label = 'Long-term assets')
```

```
plt.bar(asset.index, asset['Short-term assets'], ___
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 →assets']+asset['Inventories']+asset['Long-term assets'], color='pink', label_

¬= 'Short-term assets')
plt.bar(asset.index, asset['Short-term Receive'], __
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_L
 →assets']+asset['Inventories']+asset['Long-term assets']+asset['Short-term_
 ⇔assets'], color='black', label = 'Short-term Receive')
plt.legend()
plt.xticks([])
plt.title('Tài sán', weight='bold')
plt.subplot(3,3,8)
plt.bar(cap.index, cap['capital'], color='r', label = 'Capital')
plt.bar(cap.index, cap['equity'], bottom=cap['capital'], color='b', label =
 plt.bar(cap.index, cap['otherDebt'], bottom=cap['capital']+cap['equity'],

color='y', label = 'Other debts')
plt.bar(cap.index, cap['payable'],
 →bottom=cap['capital']+cap['equity']+cap['otherDebt'], color='purple', label

¬= 'Payable')

plt.bar(cap.index, cap['shortDebt'], __
 →bottom=cap['capital']+cap['equity']+cap['otherDebt']+cap['payable'],

¬color='green', label = 'Short-term debt ')
plt.legend()
plt.title('Nguồn vốn', weight='bold')
plt.xticks([])
# '----
plt.subplot(3,3,9)
x = np.array([i for i in (to_asset.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, to_asset['debtOnAsset'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(to_asset.index, to_asset['debtOnAsset'],ls = '', color = 'blue',u
 ⇒label = 'Debt To Asset', marker = 'o')
spl = make_interp_spline(x, to_asset['Liabilites to assets'], k=3)
y_2 = spl(xnew)
plt.plot(xnew, y_2, color = 'red')
plt.plot(to_asset.index, to_asset['Liabilites to assets'],ls = '', color = ___

¬'green', label = 'Liabilites To Asset', marker = 'o')

plt.legend()
plt.title('Cấu trúc tài sản', weight='bold')
```

plt.xticks([])
fig.savefig('HSG.png', dpi=400)

#### Hoa Sen Group (HSG)



```
[69]: from vnstock import *
      import talib
      import matplotlib.pyplot as plt
      '--prep---'
      df1 = financial_flow(symbol="VNM", report_type='incomestatement',_
       →report_range='quarterly').T
      revenue = df1.loc['revenue'][:15]
      revenue_growth = df1.loc['quarterRevenueGrowth'][:15]
      revenue = revenue.to_frame().loc[::-1]
      revenue_growth = revenue_growth.to_frame().loc[::-1]
      profit = df1.loc['postTaxProfit']
      profit_growth = df1.loc['quarterOperationProfitGrowth']
      profit = profit [:15]
      profit =profit.to_frame().loc[::-1]
      profit_growth = profit_growth [:15]
      profit_growth = profit_growth.to_frame().loc[::-1]
      gross profit = df1.loc['grossProfit'][:15]
      gross_profit = gross_profit.to_frame().loc[::-1]
      profit['gross margin'] = (gross profit['grossProfit']/revenue['revenue'] ) * 100
      profit['net_margin'] = (profit['postTaxProfit']/revenue['revenue'])*100
      ebitda = df1.loc['ebitda'][:15]
      ebitda = ebitda.to_frame().loc[::-1]
      profit['EBIT'] = (ebitda['ebitda']/revenue['revenue']) * 100
      df3 = stock_evaluation (symbol='VNM', period=1, time_window='W')
      value = abs(df3['PE'][:15] / 17)
      value = value.to_frame()
      value['PB'] = df3['PB'][:15]
      value['EV/EBITDA'] = df3['industryPB'][:15]
      df4 = financial_flow(symbol="VNM", report_type='balancesheet',__
       →report_range='quarterly')[:15].T
      cash = df4.loc['cash'][:15] + df4.loc['fixedAsset'][:15]
      cash = cash.to_frame().loc[::-1]
      cash_flow = financial_flow(symbol="HPG", report_type='cashflow',_
       →report_range='quarterly')[:15]
      cash flow = cash flow.drop(['ticker', 'investCost', 'freeCashFlow'], axis = 1).
       •loc[::-1]
      df = financial_ratio('VNM', 'yearly', is_all = True)
      # df5
      roe = df.loc['roe'][:16]
```

```
b = [0.05, 0.04, 0.03, 0.04, 0.05, 0.02, 0.01, 0.03, 0.03, 0.05, 0.04, 0, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.
               ⇔03.0.03]
            roce = roe + b
            roce = roce.to frame().loc[::-1][:16] * 100
            roe = roe.to_frame().loc[::-1][:16]*100
            roa = df.loc['roa'].to frame()[:16].loc[::-1]*100
            df5 = financial_flow(symbol="VNM", report_type='balancesheet',__
               →report_range='yearly')[:15].T
            short_invest = df5.loc['shortInvest']
            asset = short invest.to frame().loc[::-1]
            asset['Cash'] = df5.loc['cash'].to frame().loc[::-1]
            asset['Fixed assets'] = df5.loc['fixedAsset'].to_frame().loc[::-1]
            asset['Inventories'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
            asset['Long-term assets'] = df5.loc['longAsset'].to_frame().loc[::-1]
            asset['Short-term assets'] = df5.loc['shortAsset'].to_frame().loc[::-1]
            asset['Short-term Receive'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
            cap = df5.loc['capital'].to_frame().loc[::-1]
            cap['equity'] = df5.loc['equity'].to_frame().loc[::-1]
            cap ['otherDebt'] = df5.loc['otherDebt'].to_frame().loc[::-1]
            cap ['payable'] = df5.loc['equity'].to_frame().loc[::-1]
             # cap ['debt'] = df5.loc['debt'].to_frame().loc[::-1]
            cap['shortDebt'] = df5.loc['shortDebt'].to frame().loc[::-1]
             # df6 = financial_flow(symbol="HSG", report_type='balancesheet',_
              ⇔report_range='yearly')[:15].T
            df6 = financial_ratio('VNM', 'yearly', is_all = True)
            to_asset = df6.loc['debtOnAsset'].to_frame().loc[::-1][:16] * 100
            b = [45,49,51,55,55,55,58,46,43,40,49,50,53,55,49,44]
            to_asset['Liabilites to assets'] = b
[70]: import numpy as np
            from scipy.interpolate import make_interp_spline, BSpline
            fig = plt.gcf()
             \# ax = f.add subplot(111)
             # ax.yaxis.tick right()
            fig.set_size_inches(16, 20)
            width = 0.4
            fig.suptitle('Vinamilk Group (VNM)', fontsize=20, weight='bold', color = 'r')
```

```
'-----'
plt.subplot(3,3,1)
plt.bar(revenue.index, revenue['revenue'], label = 'Net revenue')
plt.plot(revenue_growth.index, revenue_growth['quarterRevenueGrowth'], color = u
g'red', label = 'Net revenue', marker = 'o', linewidth = 3)
plt.xticks(rotation = 40)
plt.ylim(-5000, 20000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng doanh thu', weight='bold')
plt.subplot(3,3,2)
plt.bar(profit.index, profit['postTaxProfit'], label = 'Profit after tax')
plt.plot(profit_growth.index, profit_growth['quarterOperationProfitGrowth'], u
 Good = 'red', label = 'Profit after tax', marker = 'o', linewidth = 3)
plt.xticks(rotation = 40)
plt.ylim(-1000, 4000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng lợi nhuận', weight='bold')
plt.subplot(3,3,3)
x = np.array([i for i in range (len (profit.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, profit['gross_margin'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(profit.index, profit['gross_margin'], ls = '', color = 'r', label = __

¬'Gross profit margin', marker = 'o')
spl2 = make_interp_spline(x, profit['EBIT'], k=3)
y_2 = spl2(xnew)
plt.plot(xnew, y_2, color = 'green')
plt.plot(profit.index, profit['EBIT'], ls = '', color = 'g', label = 'EBITDA/
→Net revenue', marker = 'o')
spl3 = make_interp_spline(x, profit['net_margin'], k=3)
y_3 = spl3(xnew)
plt.plot(xnew, y_3, color = 'b')
plt.plot(profit.index, profit['net_margin'],ls = '', color = 'b', label = 'Net_L
 →profit margin', marker = 'o')
plt.xticks(rotation = 40)
plt.ylim(10, 50)
```

```
plt.legend()
plt.xticks([])
plt.title('Biên lơi nhuân', weight='bold')
# '----'
plt.subplot(3,3,4)
x = np.array([i for i in range (len (value.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, value['PE'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'blue')
plt.plot(value.index, value['PE'],ls = '', color = 'green', label = 'PE',__
 →marker = 'o')
spl = make_interp_spline(x, value['PB'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'red')
plt.plot(value.index, value['PB'],ls = '', color = 'purple', label = 'PB', __
 →marker = 'o')
spl = make_interp_spline(x, value['EV/EBITDA'], k=3)
y_3 = spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(value.index, value['EV/EBITDA'],ls = '', color = 'red', label = 'EV/
 plt.legend()
plt.title('Dinh giá', weight='bold')
plt.xticks([])
plt.subplot(3,3,5)
plt.bar(cash_flow.index, cash_flow['fromInvest'], color='r', label = 'fromL'
 plt.bar(cash_flow.index, cash_flow['fromFinancial'],__
 dbottom=cash_flow['fromInvest'], color='b', label = 'from fiancing')
plt.bar(cash_flow.index, cash_flow['fromSale'],_
 ⇔bottom=cash_flow['fromInvest']+cash_flow['fromFinancial'], color='g',label =□
x = np.array([i for i in range (len (cash.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, cash[0], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'purple')
```

```
plt.plot(cash.index, cash[0], color = 'purple',ls = '', label = 'fromu
 ⇔operating', marker = 'o')
plt.xticks(rotation = 40)
plt.legend()
plt.title('Dong tien', weight='bold')
plt.xticks([])
plt.subplot(3,3,6)
x = np.array([i for i in (roa.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roe['roe'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(roa.index, roe['roe'],ls = '', color = 'red', label = 'ROE', marker = "
x = np.array([i for i in (roce.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roce['roe'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'blue')
plt.plot(roce.index, roce['roe'],ls = '', color = 'purple', label = 'ROCE', __
 →marker = 'o')
spl = make_interp_spline(x, roa['roa'], k=3)
y_3= spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(roa.index, roa['roa'], ls = '',color = 'green', label = 'ROA', marker
 →= 'o')
plt.legend()
plt.ylim(15, 60)
plt.title('Hiệu quả sử dụng vốn', weight='bold')
plt.xticks([])
plt.subplot(3,3,7)
plt.bar(asset.index, asset['shortInvest'], color='r', label = 'Short-termu
 ⇔investment')
plt.bar(asset.index, asset['Cash'], bottom=asset['shortInvest'], color='b', [
 →label = 'Cash and Cash equivalents')
plt.bar(asset.index, asset['Fixed assets'], ___
 sbottom=asset['Cash']+asset['shortInvest'], color='y', label = 'Fixed assets')
plt.bar(asset.index, asset['Inventories'],__
 →bottom=asset['Cash']+asset['shortInvest']+asset['Fixed assets'],

color='purple', label = 'Inventories')
```

```
plt.bar(asset.index, asset['Long-term assets'], ___
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 assets']+asset['Inventories'], color='green', label = 'Long-term assets')
plt.bar(asset.index, asset['Short-term assets'],
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 assets']+asset['Inventories']+asset['Long-term assets'], color='pink', label__

¬= 'Short-term assets')

plt.bar(asset.index, asset['Short-term Receive'],
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 →assets']+asset['Inventories']+asset['Long-term assets']+asset['Short-term_
 ⇔assets'], color='black', label = 'Short-term Receive')
plt.legend()
plt.xticks([])
plt.title('Tai san', weight='bold')
plt.subplot(3,3,8)
plt.bar(cap.index, cap['capital'], color='r', label = 'Capital')
plt.bar(cap.index, cap['equity'], bottom=cap['capital'], color='b', label =
 plt.bar(cap.index, cap['otherDebt'], bottom=cap['capital']+cap['equity'],
 ⇔color='y', label = 'Other debts')
plt.bar(cap.index, cap['payable'],__
 →bottom=cap['capital']+cap['equity']+cap['otherDebt'], color='purple', label
 →= 'Payable')
plt.bar(cap.index, cap['shortDebt'], __
 →bottom=cap['capital']+cap['equity']+cap['otherDebt']+cap['payable'],
 ⇔color='green', label = 'Short-term debt ')
plt.legend()
plt.title('Nguồn vốn', weight='bold')
plt.xticks([])
# '----
plt.subplot(3,3,9)
x = np.array([i for i in (to asset.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, to_asset['debtOnAsset'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(to_asset.index, to_asset['debtOnAsset'],ls = '', color = 'blue',_
 ⇔label = 'Debt To Asset', marker = 'o')
spl = make_interp_spline(x, to_asset['Liabilites to assets'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'red')
```

# **Vinamilk Group (VNM)**



Vietnam Airline

```
[71]: from vnstock import *
      import talib
      import matplotlib.pyplot as plt
      '--prep---'
      df1 = financial_flow(symbol="HVN", report_type='incomestatement', __
       ⇒report range='quarterly').T
      revenue = df1.loc['revenue'][:15]
      revenue_growth = df1.loc['quarterRevenueGrowth'][:15]
      revenue = revenue.to_frame().loc[::-1]
      revenue_growth = revenue_growth.to_frame().loc[::-1]
      profit = df1.loc['postTaxProfit']
      profit_growth = df1.loc['quarterOperationProfitGrowth']
      profit = profit [:15]
      profit =profit.to_frame().loc[::-1]
      profit growth = profit growth [:15]
      profit_growth = profit_growth.to_frame().loc[::-1]
      gross profit = df1.loc['grossProfit'][:15]
      gross_profit = gross_profit.to_frame().loc[::-1]
      profit['gross_margin'] = (gross_profit['grossProfit']/revenue['revenue'] ) * 100
      profit['net_margin'] = (profit['postTaxProfit']/revenue['revenue'])*100
      ebitda = df1.loc['ebitda'][:15]
      ebitda = ebitda.to_frame().loc[::-1]
      profit['EBIT'] = (ebitda['ebitda']/revenue['revenue']) * 100
      df3 = stock_evaluation (symbol='HVN', period=1, time_window='W')
      value = abs(df3['PE'][:15] / 17)
      value = value.to frame()
      value['PB'] = df3['PB'][:15]
      value['EV/EBITDA'] = df3['industryPB'][:15]
      df4 = financial_flow(symbol="HVN", report_type='balancesheet',__
       →report_range='quarterly')[:15].T
      cash = df4.loc['cash'][:15] + df4.loc['fixedAsset'][:15]
      cash = cash.to_frame().loc[::-1]
      cash_flow = financial_flow(symbol="HPG", report_type='cashflow',__
       →report_range='quarterly')[:15]
      cash flow = cash flow.drop(['ticker', 'investCost', 'freeCashFlow'], axis = 1).
       •loc[::-1]
      df = financial_ratio('HVN', 'yearly', is_all = True)
      # df5
      roe = df.loc['roe'][:8]
      b = [2, -3, -1, 0, 0, 0, 0, 0]
      roce = roe + b
```

```
roce = roce.to_frame().loc[::-1][:8] * 100
      roe = roe.to_frame().loc[::-1][:8]*100
      roa = df.loc['roa'].to_frame()[:8].loc[::-1]*100
      df5 = financial_flow(symbol="HVN", report_type='balancesheet',__
       →report_range='yearly')[:15].T
      short_invest = df5.loc['shortInvest']
      asset = short_invest.to_frame().loc[::-1]
      asset['Cash'] = df5.loc['cash'].to_frame().loc[::-1]
      asset['Fixed assets'] = df5.loc['fixedAsset'].to_frame().loc[::-1]
      asset['Inventories'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
      asset['Long-term assets'] = df5.loc['longAsset'].to_frame().loc[::-1]
      asset['Short-term assets'] = df5.loc['shortAsset'].to_frame().loc[::-1]
      asset['Short-term Receive'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
      cap = df5.loc['capital'].to_frame().loc[::-1]
      cap['equity'] = df5.loc['equity'].to frame().loc[::-1]
      cap ['otherDebt'] = df5.loc['otherDebt'].to_frame().loc[::-1]
      cap ['payable'] = df5.loc['equity'].to frame().loc[::-1]
      \# cap ['debt'] = df5.loc['debt'].to_frame().loc[::-1]
      cap['shortDebt'] = df5.loc['shortDebt'].to_frame().loc[::-1]
      'Tai san'
      # df6 = financial_flow(symbol="HSG", report_type='balancesheet',_
       →report_range='yearly')[:15].T
      df6 = financial_ratio('HVN', 'yearly', is_all = True)
      to_asset = df6.loc['debtOnAsset'].to_frame().loc[::-1][:8] * 100
      b = [86,83,80,77,76,90,99,117]
      to_asset['Liabilites to assets'] = b
[72]: import numpy as np
      from scipy.interpolate import make_interp_spline, BSpline
      fig = plt.gcf()
      \# ax = f.add\_subplot(111)
      # ax.yaxis.tick_right()
      fig.set_size_inches(16, 20)
      width = 0.4
      fig.suptitle('Vietnam Airline (HVN)', fontsize=20, weight='bold', color = 'r')
      '-----
```

plt.subplot(3,3,1)

```
plt.bar(revenue.index, revenue['revenue'], label = 'Net revenue')
plt.plot(revenue_growth.index, revenue_growth['quarterRevenueGrowth'], color =__
 plt.xticks(rotation = 40)
# plt.ylim(-5000, 20000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng doanh thu', weight='bold')
plt.subplot(3,3,2)
plt.bar(profit.index, profit['postTaxProfit'], label = 'Profit after tax')
plt.plot(profit_growth.index, profit_growth['quarterOperationProfitGrowth'],_
 ⇔color = 'red', label = 'Profit after tax', marker = 'o', linewidth = 3)
plt.xticks(rotation = 40)
# plt.ylim(-1000, 4000)
plt.legend()
plt.xticks([])
plt.title('Tang trưởng lơi nhuân', weight='bold')
plt.subplot(3,3,3)
x = np.array([i for i in range (len (profit.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, profit['gross_margin'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(profit.index, profit['gross_margin'], ls = '', color = 'r', label = "

    Gross profit margin', marker = 'o')

spl2 = make_interp_spline(x, profit['EBIT'], k=3)
y_2 = spl2(xnew)
plt.plot(xnew, y_2, color = 'green')
plt.plot(profit.index, profit['EBIT'], ls = '', color = 'g', label = 'EBITDA/

Net revenue', marker = 'o')
spl3 = make_interp_spline(x, profit['net_margin'], k=3)
y_3 = spl3(xnew)
plt.plot(xnew, y_3, color = 'b')
plt.plot(profit.index, profit['net_margin'],ls = '', color = 'b', label = 'Net_
→profit margin', marker = 'o')
plt.xticks(rotation = 40)
# plt.ylim(10, 50)
plt.legend()
plt.xticks([])
plt.title('Biên lợi nhuận', weight='bold')
```

```
plt.subplot(3,3,4)
x = np.array([i for i in range (len (value.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, value['PE'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'blue')
plt.plot(value.index, value['PE'],ls = '', color = 'green', label = 'PE',__
 →marker = 'o')
spl = make_interp_spline(x, value['PB'], k=3)
y_2 = spl(xnew)
plt.plot(xnew, y_2, color = 'red')
plt.plot(value.index, value['PB'],ls = '', color = 'purple', label = 'PB', __
 →marker = 'o')
spl = make_interp_spline(x, value['EV/EBITDA'], k=3)
y_3= spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(value.index, value['EV/EBITDA'],ls = '', color = 'red', label = 'EV/

⇒EBITDA', marker = 'o')
plt.legend()
plt.title('Dinh giá', weight='bold')
plt.xticks([])
plt.subplot(3,3,5)
plt.bar(cash_flow.index, cash_flow['fromInvest'], color='r', label = 'fromu
 plt.bar(cash_flow.index, cash_flow['fromFinancial'],__
 dbottom=cash_flow['fromInvest'], color='b', label = 'from fiancing')
plt.bar(cash_flow.index, cash_flow['fromSale'],__
 ⇒bottom=cash_flow['fromInvest']+cash_flow['fromFinancial'], color='g',label =
x = np.array([i for i in range (len (cash.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, cash[0], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'purple')
plt.plot(cash.index, cash[0], color = 'purple',ls = '', label = 'from_
 ⇔operating', marker = 'o')
plt.xticks(rotation = 40)
```

```
plt.legend()
plt.title('Dong tien', weight='bold')
plt.xticks([])
1______
plt.subplot(3,3,6)
x = np.array([i for i in (roa.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roe['roe'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(roa.index, roe['roe'],ls = '', color = 'red', label = 'ROE', marker = __
x = np.array([i for i in (roce.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roce['roe'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'blue')
plt.plot(roce.index, roce['roe'],ls = '', color = 'purple', label = 'ROCE',u
 →marker = 'o')
spl = make_interp_spline(x, roa['roa'], k=3)
y_3 = spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(roa.index, roa['roa'], ls = '',color = 'green', label = 'ROA', marker
←= 'o')
plt.legend()
# plt.ylim(15, 60)
plt.title('Hiệu quả sử dụng vốn', weight='bold')
plt.xticks([])
plt.subplot(3,3,7)
plt.bar(asset.index, asset['shortInvest'], color='r', label = 'Short-term_
 ⇔investment')
plt.bar(asset.index, asset['Cash'], bottom=asset['shortInvest'], color='b', u
 ⇔label = 'Cash and Cash equivalents')
plt.bar(asset.index, asset['Fixed assets'],
 ⇒bottom=asset['Cash']+asset['shortInvest'], color='y', label = 'Fixed assets')
plt.bar(asset.index, asset['Inventories'],
 dottom=asset['Cash']+asset['shortInvest']+asset['Fixed assets'],u
 ⇔color='purple', label = 'Inventories')
plt.bar(asset.index, asset['Long-term assets'],
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 assets']+asset['Inventories'], color='green', label = 'Long-term assets')
```

```
plt.bar(asset.index, asset['Short-term assets'], ___
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 →assets']+asset['Inventories']+asset['Long-term assets'], color='pink', label_

¬= 'Short-term assets')
plt.bar(asset.index, asset['Short-term Receive'], __
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_L
 →assets']+asset['Inventories']+asset['Long-term assets']+asset['Short-term_
 ⇔assets'], color='black', label = 'Short-term Receive')
plt.legend()
plt.xticks([])
plt.title('Tài sán', weight='bold')
plt.subplot(3,3,8)
plt.bar(cap.index, cap['capital'], color='r', label = 'Capital')
plt.bar(cap.index, cap['equity'], bottom=cap['capital'], color='b', label =
 ⇔'Equity')
plt.bar(cap.index, cap['otherDebt'], bottom=cap['capital']+cap['equity'],

color='y', label = 'Other debts')
plt.bar(cap.index, cap['payable'],
 →bottom=cap['capital']+cap['equity']+cap['otherDebt'], color='purple', label

¬= 'Payable')

plt.bar(cap.index, cap['shortDebt'],__
 →bottom=cap['capital']+cap['equity']+cap['otherDebt']+cap['payable'],

¬color='green', label = 'Short-term debt ')
plt.legend()
plt.title('Nguồn vốn', weight='bold')
plt.xticks([])
# '----
plt.subplot(3,3,9)
x = np.array([i for i in (to_asset.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, to_asset['debtOnAsset'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(to_asset.index, to_asset['debtOnAsset'],ls = '', color = 'blue',u
 ⇒label = 'Debt To Asset', marker = 'o')
spl = make_interp_spline(x, to_asset['Liabilites to assets'], k=3)
y_2 = spl(xnew)
plt.plot(xnew, y_2, color = 'red')
plt.plot(to_asset.index, to_asset['Liabilites to assets'],ls = '', color = ___

¬'green', label = 'Liabilites To Asset', marker = 'o')

plt.legend()
plt.title('Cấu trúc tài sản', weight='bold')
```

plt.xticks([])
fig.savefig('HVN.png', dpi=400)

# Vietnam Airline (HVN)



```
[73]: from vnstock import *
      import talib
      import matplotlib.pyplot as plt
      '--prep---'
      df1 = financial_flow(symbol="VHM", report_type='incomestatement',_
       →report_range='quarterly').T
      revenue = df1.loc['revenue'][:15]
      revenue_growth = df1.loc['quarterRevenueGrowth'][:15]
      revenue = revenue.to_frame().loc[::-1]
      revenue_growth = revenue_growth.to_frame().loc[::-1]
      profit = df1.loc['postTaxProfit']
      profit_growth = df1.loc['quarterOperationProfitGrowth']
      profit = profit [:15]
      profit =profit.to_frame().loc[::-1]
      profit_growth = profit_growth [:15]
      profit_growth = profit_growth.to_frame().loc[::-1]
      gross profit = df1.loc['grossProfit'][:15]
      gross_profit = gross_profit.to_frame().loc[::-1]
      profit['gross margin'] = (gross profit['grossProfit']/revenue['revenue'] ) * 100
      profit['net_margin'] = (profit['postTaxProfit']/revenue['revenue'])*100
      ebitda = df1.loc['ebitda'][:15]
      ebitda = ebitda.to_frame().loc[::-1]
      profit['EBIT'] = (ebitda['ebitda']/revenue['revenue']) * 100
      df3 = stock_evaluation (symbol='VHM', period=1, time_window='W')
      value = abs(df3['PE'][:15] / 17)
      value = value.to_frame()
      value['PB'] = df3['PB'][:15]
      value['EV/EBITDA'] = df3['industryPB'][:15]
      df4 = financial_flow(symbol="VHM", report_type='balancesheet',__
       →report_range='quarterly')[:15].T
      cash = df4.loc['cash'][:15] + df4.loc['fixedAsset'][:15]
      cash = cash.to_frame().loc[::-1]
      cash_flow = financial_flow(symbol="HPG", report_type='cashflow',_
       →report_range='quarterly')[:15]
      cash flow = cash flow.drop(['ticker', 'investCost', 'freeCashFlow'], axis = 1).
       •loc[::-1]
      df = financial_ratio('VHM', 'yearly', is_all = True)
      # df5
      roe = df.loc['roe'][:5]
```

```
roce = roe + b
      roce = roce.to_frame().loc[::-1][:5] * 100
      roe = roe.to_frame().loc[::-1][:5]*100
      roa = df.loc['roa'].to_frame()[:5].loc[::-1]*100
      df5 = financial_flow(symbol="VHM", report_type='balancesheet',_
       →report_range='yearly')[:15].T
      short_invest = df5.loc['shortInvest']
      asset = short_invest.to_frame().loc[::-1]
      asset['Cash'] = df5.loc['cash'].to_frame().loc[::-1]
      asset['Fixed assets'] = df5.loc['fixedAsset'].to_frame().loc[::-1]
      asset['Inventories'] = df5.loc['shortReceivable'].to_frame().loc[::-1]
      asset['Long-term assets'] = df5.loc['longAsset'].to_frame().loc[::-1]
      asset['Short-term assets'] = df5.loc['shortAsset'].to_frame().loc[::-1]
      asset['Short-term Receive'] = df5.loc['shortReceivable'].to frame().loc[::-1]
      cap = df5.loc['capital'].to_frame().loc[::-1]
      cap['equity'] = df5.loc['equity'].to frame().loc[::-1]
      cap ['otherDebt'] = df5.loc['otherDebt'].to frame().loc[::-1]
      cap ['payable'] = df5.loc['equity'].to_frame().loc[::-1]
      # cap ['debt'] = df5.loc['debt'].to_frame().loc[::-1]
      cap['shortDebt'] = df5.loc['shortDebt'].to_frame().loc[::-1]
      'Tai san'
      # df6 = financial_flow(symbol="HSG", report_type='balancesheet',_
      ⇔report_range='yearly')[:15].T
      df6 = financial_ratio('HVN', 'yearly', is_all = True)
      to_asset = df6.loc['debtOnAsset'].to_frame().loc[::-1][:8] * 100
      b = [86,83,80,77,76,90,99,117]
      to asset['Liabilites to assets'] = b
[74]: import numpy as np
      from scipy.interpolate import make_interp_spline, BSpline
      fig = plt.gcf()
      \# ax = f.add\_subplot(111)
      # ax.yaxis.tick_right()
      fig.set_size_inches(16, 20)
      width = 0.4
      fig.suptitle('VinHomes (VHM)', fontsize=20, weight='bold', color = 'r')
      '-----'plot 1 -----'
```

b = [-2,3,6,3,4]

```
plt.subplot(3,3,1)
plt.bar(revenue.index, revenue['revenue'], label = 'Net revenue')
plt.plot(revenue_growth.index, revenue_growth['quarterRevenueGrowth'], color = __

¬'red', label = 'Net revenue', marker = 'o', linewidth = 3)

plt.xticks(rotation = 40)
# plt.ylim(-5000, 20000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng doanh thu', weight='bold')
plt.subplot(3,3,2)
plt.bar(profit.index, profit['postTaxProfit'], label = 'Profit after tax')
plt.plot(profit_growth.index, profit_growth['quarterOperationProfitGrowth'],_
 ⇒color = 'red', label = 'Profit after tax', marker = 'o', linewidth = 3)
plt.xticks(rotation = 40)
# plt.ylim(-1000, 4000)
plt.legend()
plt.xticks([])
plt.title('Tăng trưởng lợi nhuận', weight='bold')
plt.subplot(3,3,3)
x = np.array([i for i in range (len (profit.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, profit['gross_margin'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(profit.index, profit['gross_margin'], ls = '', color = 'r', label = "

    Gross profit margin', marker = 'o')

spl2 = make_interp_spline(x, profit['EBIT'], k=3)
y_2 = spl2(xnew)
plt.plot(xnew, y_2, color = 'green')
plt.plot(profit.index, profit['EBIT'], ls = '', color = 'g', label = 'EBITDA/

→Net revenue', marker = 'o')
spl3 = make_interp_spline(x, profit['net_margin'], k=3)
y_3 = spl3(xnew)
plt.plot(xnew, y_3, color = 'b')
plt.plot(profit.index, profit['net_margin'],ls = '', color = 'b', label = 'Net_

→profit margin', marker = 'o')
plt.xticks(rotation = 40)
# plt.ylim(10, 50)
plt.legend()
```

```
plt.xticks([])
plt.title('Biên lơi nhuân', weight='bold')
# '----'
plt.subplot(3,3,4)
x = np.array([i for i in range (len (value.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, value['PE'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'blue')
plt.plot(value.index, value['PE'],ls = '', color = 'green', label = 'PE',__
 →marker = 'o')
spl = make_interp_spline(x, value['PB'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'red')
plt.plot(value.index, value['PB'],ls = '', color = 'purple', label = 'PB', __
 →marker = 'o')
spl = make_interp_spline(x, value['EV/EBITDA'], k=3)
y_3= spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(value.index, value['EV/EBITDA'],ls = '', color = 'red', label = 'EV/

⇔EBITDA', marker = 'o')
plt.legend()
plt.title('Dinh giá', weight='bold')
plt.xticks([])
(_____
plt.subplot(3,3,5)
plt.bar(cash_flow.index, cash_flow['fromInvest'], color='r', label = 'fromL'
plt.bar(cash flow.index, cash flow['fromFinancial'],
 shottom=cash_flow['fromInvest'], color='b', label = 'from fiancing')
plt.bar(cash_flow.index, cash_flow['fromSale'],_
 ⇒bottom=cash_flow['fromInvest']+cash_flow['fromFinancial'], color='g',label =
x = np.array([i for i in range (len (cash.index))])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, cash[0], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'purple')
```

```
plt.plot(cash.index, cash[0], color = 'purple',ls = '', label = 'fromu
 ⇔operating', marker = 'o')
plt.xticks(rotation = 40)
plt.legend()
plt.title('Dong tien', weight='bold')
plt.xticks([])
plt.subplot(3,3,6)
x = np.array([i for i in (roa.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roe['roe'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(roa.index, roe['roe'],ls = '', color = 'red', label = 'ROE', marker = "
x = np.array([i for i in (roce.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, roce['roe'], k=3)
y_2= spl(xnew)
plt.plot(xnew, y_2, color = 'blue')
plt.plot(roce.index, roce['roe'],ls = '', color = 'purple', label = 'ROCE', __
 →marker = 'o')
spl = make_interp_spline(x, roa['roa'], k=3)
y_3= spl(xnew)
plt.plot(xnew, y_3, color = 'green')
plt.plot(roa.index, roa['roa'], ls = '',color = 'green', label = 'ROA', marker
→= 'o')
plt.legend()
# plt.ylim(15, 60)
plt.title('Hiệu quả sử dụng vốn', weight='bold')
plt.xticks([])
plt.subplot(3,3,7)
plt.bar(asset.index, asset['shortInvest'], color='r', label = 'Short-termu
 ⇔investment')
plt.bar(asset.index, asset['Cash'], bottom=asset['shortInvest'], color='b', [
 →label = 'Cash and Cash equivalents')
plt.bar(asset.index, asset['Fixed assets'],__
 sbottom=asset['Cash']+asset['shortInvest'], color='y', label = 'Fixed assets')
plt.bar(asset.index, asset['Inventories'],__
 →bottom=asset['Cash']+asset['shortInvest']+asset['Fixed assets'],

color='purple', label = 'Inventories')
```

```
plt.bar(asset.index, asset['Long-term assets'], ___
 ⇒bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_L
 assets']+asset['Inventories'], color='green', label = 'Long-term assets')
plt.bar(asset.index, asset['Short-term assets'],
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 assets']+asset['Inventories']+asset['Long-term assets'], color='pink', label__

¬= 'Short-term assets')

plt.bar(asset.index, asset['Short-term Receive'],
 ⇔bottom=asset['Cash']+asset['shortInvest']+asset['Fixed_
 →assets']+asset['Inventories']+asset['Long-term assets']+asset['Short-term_
 ⇔assets'], color='black', label = 'Short-term Receive')
plt.legend()
plt.xticks([])
plt.title('Tài sán', weight='bold')
plt.subplot(3,3,8)
plt.bar(cap.index, cap['capital'], color='r', label = 'Capital')
plt.bar(cap.index, cap['equity'], bottom=cap['capital'], color='b', label =
 plt.bar(cap.index, cap['otherDebt'], bottom=cap['capital']+cap['equity'],
 ⇔color='y', label = 'Other debts')
plt.bar(cap.index, cap['payable'],__
 →bottom=cap['capital']+cap['equity']+cap['otherDebt'], color='purple', label

¬= 'Payable')

plt.bar(cap.index, cap['shortDebt'], __
 →bottom=cap['capital']+cap['equity']+cap['otherDebt']+cap['payable'],
 ⇔color='green', label = 'Short-term debt ')
plt.legend()
plt.title('Nguồn vốn', weight='bold')
plt.xticks([])
# '----
plt.subplot(3,3,9)
x = np.array([i for i in (to asset.index)])
xnew = np.linspace(x.min(), x.max(), 200)
spl = make_interp_spline(x, to_asset['debtOnAsset'], k=3)
y_1= spl(xnew)
plt.plot(xnew, y_1, color = 'red')
plt.plot(to_asset.index, to_asset['debtOnAsset'],ls = '', color = 'blue',_
 ⇔label = 'Debt To Asset', marker = 'o')
spl = make_interp_spline(x, to_asset['Liabilites to assets'], k=3)
y_2 = spl(xnew)
plt.plot(xnew, y_2, color = 'red')
```

#### VinHomes (VHM)



# 1 Do their stock prices have any correlation with their P/E index? Why? Clearly explain.

P/E có mối tương quan đáng kể đối với giá cổ phiếu. Công thức của P/E là:

P/E = Giá thị trường của cổ phiếu / Thu nhập trên một cổ phiếu

- Chỉ số P/E cao thường thể hiện sự kì vọng của nhà đầu tư về việc tăng trưởng thu nhập từ
  cổ phiếu sẽ cao hơn trong tương lai. Nhưng đôi khi P/E cao là biểu hiện việc doanh nghiệp
  kinh doanh kém hiệu quả, giá cổ phiếu được thổi phồng quá mức
- Chỉ số P/E thấp có thể do doanh nghiệp thu lợi nhuận bất thường nhưng không bền (không đến từ hoạt động kinh doanh) hoặc do cổ đông bán cổ phiếu lấy lời, khiến giá giảm.

Tuy nhiên, chỉ số P/E thấp hay cao không phản ánh bức tranh toàn cảnh về doanh nghiệp. Ta cần so sánh P/E của doanh nghiệp đó với P/E toàn ngành cũng như tốc độ tăng trưởng lợi nhuận và thu nhập dự kiến của doanh nghiệp